TIGHTBINDINGBOOK

LIBRARY OU_164149 AWYERSAL AWYERSAL

OSMANIA UNIVERSITY LIBRARY

Accession No. 34C63

Call No. 7665
Author YOST, Don M. & Russell, Horace Jr

Title Systemalie morganic e hemistry.

This book should be returned on or before the date last marked below

Systematic Inorganic Chemistry

C)F THE FIFTH-AND-SIXTH-GROUP NONMETALLIC ELEMENTS

by

DON M. YOST

Professor of Inorganic Chemistry
California Institute of Technology

and

HORACE RUSSELL, JR.

Instructor in Chemistry
California Institute of Technology

"New York
PRENTICE-HALL,
1946

COPYRIGHT, 1944. PRENTICE-HALL, INC. 70 Fifth Avenue, New York

ALL RIGHTS RESERVED. NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY MIMEOGRAPH OR ANY OTHER MEANS, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHERS

First Printing Second Printing May, 1944 August, 1946

TO WILLIAM C. BRAY ABLE SCIENTIST, INSPIRING TEACHER

Preface

Inorganic chemistry has undergone a marked transition in the last three decades as it has grown from an almost purely descriptive branch of science to a field in which all of the modern developments of physics and chemistry find application. In this field the quantum theory plays an important role in the establishment of energy states and molecular structures and in the explanation of the periodic law; thermodynamics finds application in the prediction of the degree of completion of chemical reactions at equilibrium; statistical mechanics makes possible the calculation of the thermodynamic properties of substances from atomic and molecular data and deepens our insight into the still unsolved problems of the rates of chemical reactions; finally, the phenomena of natural and artificial radioactivity not only increase our knowledge of the fundamental structure of matter but also, through the use of radio-elements as tracers, greatly extend our understanding of the mechanisms of chemical reactions. From these considerations it is evident that any discussion of a chemical element or compound is complete only when the spectroscopic, structural, thermodynamic, chemical kinetic, and nuclear properties have been considered. In addition to these more modern aspects of the subject, due consideration must be given to the older, humbler, but nevertheless important, chemical facts that one finds in simple experiments with test tubes, beakers, and flasks.

Since the field of inorganic chemistry embraces all of the chemical elements, a complete discussion of the whole subject would require volumes to record. Therefore, the authors have chosen to cover a selected list of chemical topics and to include in the discussion of each enough of both the old and the new chemistry to bring out the most important features of the substances examined.

The subject matter of this book is devoted to the inorganic chemistry of the nonmetallic elements of the fifth and sixth groups of the periodic system. These elements and their compounds, besides being of great practical and theoretical interest in themselves, exhibit, in their properties and reactions, characteristics that are common to many other substances both inorganic and organic. The factual material chosen for presentation has been selected as critically as possible, and the sources are the original literature or the results of the authors' own researches. The quantitative information presented was taken, for the most part, without change directly from original articles describing what appear to be the most

viii PREFACE

reliable investigations available. Since it is not always possible to make a selection of experimental data on a purely objective basis, in doubtful cases some allowance must be made for the opinions of the authors.

But a survey of a field of science from a purely critical point of vierdoes not satisfy all of the needs of the research man or advanced stude. Also needed is material of a stimulating nature that will suggest fields the require further research for their more complete understanding. In the topics presented in this book, the reader will find many problems worthy of the serious attention of research workers in both pure and applied chemistry. Further, the advanced student should gain from the topics discussed a feeling for the present state of knowledge, and an appreciation of what has been accomplished in the past and what may be reasonably expected of the future.

The subject matter considered here, together with such additional topics as the halogens, coordination compounds, the metals, and artificial radioactivity, form the basis of the senior and graduate courses in inorganic chemistry given at the California Institute of Technology. required that the students of both classes shall have already received thorough training in undergraduate physics, organic chemistry, and chemical thermodynamics. In some cases—for example, in the use of statistical mechanical methods—the principles and theory, though simple, have not yet been included in the physics and physical chemistry courses, and, consequently, the necessary material must be presented along with the topic best suited to the purpose. In general, the inclusion in the course of such necessary additional material adds spice to the main subject. Both chemistry and physics are currently providing so much that is new in fact and theory that the pedagogical methods of presenting the advanced parts of inorganic chemistry have not, fortunately, been crystallized into a discipline. Accordingly, the instructor using this book either as the main text or for reference is restricted only in that the topical method of approach is clearly indicated. research point of view is emphasized should, it is believed, prove advantageous from the teacher's standpoint.

References in the text to the literature are frequent but are not to be regarded as exhaustive or complete; an attempt has been made to give either significant references or ones that will provide the reader with a convenient key to further information. Recent books on more or less specialized subjects, such as those listed in the Bibliography in appendix A, are also referred to as sources of original material. It scarcely needs saying that such books are indispensable as auxiliary texts for courses in advanced inorganic chemistry.

Acknowledgment for assistance in the selection and collection of material is gratefully made to the graduate and undergraduate students of advanced inorganic chemistry at this Institute. Dr. W. V. Claussen

kindly assisted at the early stages of the work on the book. Dr. David P. Stevenson generously made many of the thermodynamic calculations for the chapters on phosphorus and sulfur. Invaluable aid came from many scussions with other members of the chemistry division staff; this aid been especially helpful in the cases of Professors Richard M. Badger. Roscoe G. Dickinson, Howard J. Lucas, Linus Pauling, Richard C. Tolman, and Dr. Verner Shomaker. Deep appreciation for the early help and inspiration of Professors W. C. Bray and A. A. Noves is gratefully expressed. Mr. and Mrs. John B. Hatcher prepared all of the drawings and figures, and special acknowledgment is due them for their assistance and interest throughout the work. The curves in the text were carefully drawn through accurate plots of the published experimental data; in only two cases were graphs taken directly from the literature. Mrs. Marguerite S. Yost, Dr. D. V. R. Golding, and Max Cayley Yost assisted in many ways in the writing and preparation of the manuscript, in the correction of the proofs, and in the construction of the indexes. We wish also to thank the staff of Prentice-Hall, Inc., and the editor of their chemistry series. Professor W. M. Latimer, for their help and cooperation throughout.

> DON M. YOST HORACE RUSSELL, JR.

Pasadena, March, 1944.

Contents

1. NITROGEN AND ITS OXIDES AND SULFIDES .

PAGE

1

	Elementary Nitrogen: Preparation; Physical properties; Chemical properties; Active nitrogen. The Oxides of Nitrogen: Formation; Physical properties of the oxides of nitrogen; N ₂ O; NO; N ₂ O ₃ ; NO ₂ ; N ₂ O ₄ . The Sulfides of Nitrogen: N ₄ S ₄ ; N ₂ S ₅ ; NS ₂ ; N ₄ Se ₄ .	
2.	NITROGEN OXYHALIDES AND OXYACIDS. THE FIXATION OF NITROGEN. The Nitrogen Oxyhalides: Nitrosyl halides; Nitrosyl bisulfate (nitroxyl sulfonic acid; nitrosyl sulfuric acid), NOHSO4; Fluorine nitrate. The Oxyacids of Nitrogen: Hyponitrous acid; Nitrohydroxylamic acid, H2ONNO2; Hydronitrous acid; Nitrous acid, IINO2. The Fixation of Nitrogen and Nitric Acid: Fixation of nitrogen; Nitric acid, HNO4; Properties of nitric acid.	41
3.	HYDROXYLAMINE, AMINE SULFONATES, PHOSPHORUS CHLORONITRIDES, HYDRAZINE, AND HYDRAZOIC ACID Hydroxylamine and Hydroxylamine Sulfonates. Amine Sulfonates. Sulfamide and Imidosulfamides. Amine Sulfinic Acids. Nitramide, NH ₂ NO ₂ . Ammonia Derivatives of Phosphorus Oxyacids. Phosphorus Chloronitrides, (PNCl ₂) _n . Hydrazine, N ₂ H ₄ : Aqueous solutions of hydrazine. Hydrazoic Acid, HN ₃ .	90
4.	Ammonia and Liquid Ammonia Solutions	132
5.	Phosphorus, Phosphorus Oxides, and Phosphorus Sulfides	155
6.	THE OXYACIDS OF PHOSPHORUS. Hypophosphorous acid; Phosphorous acid, H ₂ PO ₁ ; Hypophosphoric, acid, H ₄ P ₂ O ₆ ; Phosphoric acids; Metaphosphates; The polyphosphates, Pyrophosphoric acid; Orthophosphates.	19
	хI	

7.	PHOSPHORUS HALIDES AND OXYHALIDES. PHOSPHINE. The Phosphorus Halides and Oxyhalides: Preparation; Properties; Phosphorus iodides. Phosphine and the Phosphonium Halides: Phosphine; Phosphonium and ammonium halides.	234
8.	OXYGEN, SULFUR, SELENIUM, TELLURIUM, AND THEIR COMPOUNDS WITH HYDROGEN. Oxygen: Preparation; Physical properties; The atmosphere; The chemical properties of oxygen. Ozone: Preparation; Physical properties; Chemical properties. Water: Formation; Physical properties; Chemical properties. Sulfur, Selenium, and Tellurium: Preparation; Properties of solid and liquid S, Se, and Te; Selenium; Tellurium; The vapor states of S, Se, and Te. Hydrogen Sulfide, Selenide, and Telluride: Preparation and properties; Chemical properties.	254
9.	THE HALIDES AND OXYHALIDES OF SULFUR, SELENIUM, Att. TELLURIUM The Halides of Sulfur, Selenium, and Tellurium: Preparation; Physical projection of the halides The Oxyhalides of Sulfur, Selenium, and Tellurium: Preparation; Physical and chemical properties of the oxyhalides	295
	The Oxides of Sulfur, Selenium, and Tellurium: Formation and properties of the monoxides; Preparation of dioxides; Trioxides; Physical properties of the oxides of S. Se, and Te; Chemical properties. The Oxyacids of Sulfur, Selenium, and Tellurium: Sulfurous, selenious, and tellurous acids. Sulfuric, Selenic, and Telluric Acids: Preparation of sulfuric acid; Sulfuric acid; Fluosulfonic chlorsulfonic, and chlorselenic acids. HSO ₃ F, HSO ₃ Cl, and HSeO ₃ Cl; Telluric acid, H ₅ TeO ₆ . Sulfoxylic, Dithionous, and Dithionic Acids: Sulfoxylic acid, H ₂ SO ₂ ; Dithionous (hyposulfurous) acid, H ₂ S ₂ O ₄ ; Dithionic acid, H ₂ S ₂ O ₆ .	310
	tJydrogen Peroxide, Hydrogen Persulfides, and the Peroxyacids. Metallic Peroxides and Superoxides. Polythionic Acids. 1'repuration of hydrogen peroxide; Preparation of hydrogen persulfide; Other persulfides of hydrogen; Physical properties of H ₂ O ₂ and H ₂ S ₂ ; The anemical properties of H ₂ O ₂ ; Metallic peroxides and superoxides; The poinc acids and their salts; Thiosulfuric acid; The polythionic acids; fr.tl.ionate; Tetrathionate; Pentathionate and hexathionate; Wackenroder's liquid. Appendices	361
App	ENDIX A. BIBLIOGRAPHY	400
i	ENDIX B. GENERAL PHYSICAL CONSTANTS	403
ı PP:	ENSIX C. THE PERIODIC SYSTEM OF THE ELEMENTS	405
	ECT INDEX.	407
	E INDEX.	418
	AMERICA	110

Tables

rar .		13 A CT TO
1.	The Physical Constants of Nitrogen	PAGE 5
2.	PV Values for Nitrogen	6
	Adsorption of Nitrogen by Charcoal	9
4.	Reactions of Nitrogen with Metals	10
5.	The Physical Properties of the Oxides of Nitrogen	19
6.	The Physical and Molal Thermodynamic Properties of NO	25
7.	The Physical and Molal Thermodynamic Properties of Nitrogen Dioxide.	28
8.	Experimental Equilibrium Constants for the Reaction $NO_2(g) = NO(g) + \frac{1}{2}O_2(g)$	29
9.	The Vapor Pressures of Nitrogen Pentoxide	32
10.	The Thermodynamic Constants of NOCl and NOBr	46
11.	The Rates of Thermal Decomposition of NO ₂ Cl(g)	47
12.	Solubility of NOHSO $_4(s)$ in Concentrated Sulfuric $\Lambda {\rm cid}$	49
13.	Solubilities of Nitrites	62
14.	Rate Constants for the Oxidation of Nitrite Ion by Iodine	64
15.	The Ratios P_{IINO} ./(HNO ₂) for Nitrous Acid Solutions at 25°	68
16.	Volume Percentage of Ammonia in $3:1\ H_2-N_2$ Equilibrium Mixtures	74
17.	Empirical Equilibrium Constants for $\frac{1}{2}N_2(g)+\frac{3}{2}H_2(g)=NH_2(g)$	74
18.	Equilibrium Constants for the Reaction $3NO_2(g) + H_2O(g) = 2HNO_3(g) + NO(g) \dots \dots \dots \dots \dots \dots \dots$	79
19.	Vapor Pressures of 100 Per Cent HNO ₃	80
2 0.	Equilibrium Constants for the Reaction $H_2O(g) + \frac{1}{2}O_2(g) + 2NO_2(g) = 2HNO_3(g) \dots \dots \dots \dots \dots \dots$	81
21.	Physical Properties of Nitric Acid Solutions	83
22 .	The Thermodynamic Properties of Nitric Acid and Its Hydrates	85
23.	Solubilities of Some Nitrates in Water	87
24 .	Physical Properties of the Phosphorus Chloronitrides	110
25 .	Physical Properties of PaNaCloF6	112

xiv TABLES

26	The Effect of Catalyst and Concentrations on the Yield of
2 0.	Hydrazine
27 .	The Heats of Formation of Hydrazine and Its Hydrate 116
2 8.	Approximate Solubilities of Salts in Anhydrous Hydrazine at Room Temperature
20	Solubility of Hydrazine Bisulfate in Water
	The Oxidation of Hydrazine to Hydrazoic Acid at 80° 128
	Vapor Pressures and Density of Hydrogen Azide 126
	Properties of Alkali Metal Azides
	The Physical and Thermodynamic Properties of Ammonia 133
	The Densities and Partial Ammonia Pressures of Ammonia Solutions
35.	The Molal Susceptibilities of the Alkali Metals
	The Molal Susceptibility of Potassium in Liquid Ammonia 143
37.	Solubilities of the Alkali Metals in Liquid Ammonia 146
38.	The Molal Susceptibilities of Calcium and Barium in Liquid Ammonia
39.	The Solubilities of Salts in Liquid Ammonia
40.	Electromotive Series in Liquid Ammonia Solution and Water at 20°
41.	Solid Forms of Phosphorus
	Heats of Reaction of Solid Phosphorus with Bromine in CS ₂ Solution
43.	Physical Properties of White Phosphorus
	ΔH ₀ ° Values Calculated from Equilibrium and Molecular Data 16°
	Values of K _{atm} Calculated from Spectroscopic Data 16
46.	The Values of ΔH_0° from Molecular and Equilibrium Data 16
47.	The Rate of Oxidation of White Phosphorus with Oxygen 17
48.	Vapor Pressures of Phosphorus Pentoxide
49.	Physical Properties of the Phosphorus Sulfides
50.	The Hydrolysis of the Phosphorus Sulfides
51.	
52 .	The Rate of Decomposition of $H_4P_2O_6$ in Hydrochloric Acid Solution
53.	The Sodium Metaphosphates
54.	The Rate of Hydrolysis of 1% Na ₈ P ₈ O ₁₈ Solutions 22

TABLES

		~ .
55.	The Partial Vapor Pressures of Water in mm Hg Above Orthophosphoric Acid Solutions	229
56 .	Reactions of Phosphoric Acids in Aqueous Solution	233
57.	The Physical Properties of the Phosphorus Halides and Oxyhalides	238
58.	$\label{thm:molecular constants} \mbox{Molecular Constants for Some Phosphorus Compounds} \ . \ . \ .$	240
59.	The Rate of Reaction Between Phosphorus and Iodine in Carbon Tetrachloride Solution at 15°	243
60.	The Physical Properties of Phosphine	246
61.	The Physical Properties of Phosphonium Chloride	250
62 .	The Dissociation of Oxygen	257
63.	Physical-Chemical Properties of Oxygen	258
64.	Composition of Dry Air in Volume Per Cent	2 60
65 .	Equilibrium Constants for the Reaction $\mathrm{O}_3=\frac{3}{2}\mathrm{O}_2.$	264
66.	The Physical Properties of Ozone	264
67.	The Physical Properties of Water	27 0
68.	Molecular Constants of $\mathrm{H}_2\mathrm{O}$ and $\mathrm{D}_2\mathrm{O}$	273
69.	The Calculated Dissociation of Water Vapor	274
70.	The Heat Capacities of Sulfur	278
71.	Solubility of Sulfur in Various Solvents	27 9
72 .	The Fraction of S_{μ} in Liquid Sulfur	280
73.	Percentage Composition of Liquid Sulfur at Equilibrium	280
74.	The Physical Properties of S, Se, and Te	285
75.	The Molal Paramagnetic Susceptibility of $S_2(g)$	286
76 .	Vibrational Energy States of S ₂ , Se ₂ , and Te ₂	287
77.	Thermodynamic Constants of S ₂ , Se ₂ , and Te ₂	288
	The Physical, Thermodynamic, and Structural Properties of H ₂ S, H ₂ Se, and H ₂ Te	289
79.	Solubilities in Water and Ionization Constants of H_2S , II_2Se , and H_2Te at 25°	2 91
80.	The Physical Properties of the Sulfur-Group Fluorides	2 99
	The Physical Properties of the Sulfur-Group Halides	302
82.	The Physical Properties of the Sulfur-Group Oxyhalides	307
	Raman Frequencies of SOCl ₂ and SOF ₂	307
	Equilibrium Constants for the Reaction $\mathrm{SO_2Cl_2}(g) = \mathrm{SO_2}(g)$ +	309
	$Cl_{\mathfrak{g}}(g)$	ひひみ

xvi TABLES

85.	Equilibrium Constants for the Reactions $\frac{1}{2}S_2(g) + \frac{1}{2}O_2(g) =$	PAGE
	$SO(g)$ and $\frac{1}{2}S_2(g) + SO_2(g) = 2SO(g) \dots \dots \dots \dots$	311
86.	ΔF° and ΔH_0° for the Reaction $SO_2 + \frac{1}{2}O_2 = SO_3$	314
87.	Dissociation Pressures of $\mathrm{Fe_2(SO_4)_3.}$	315
88.	The Physical Constants of SO_2 , SeO_2 , and TeO_2	318
89.	The Physical Properties of Sulfur Trioxide	323
90.	The Dissociation Pressures of $\mathrm{H}_2\mathrm{SeO}_3$	330
91.	Solubility of $\mathrm{H}_{2}\mathrm{SeO}_{3}(s)$ in Water	331
92 .	Initial Boiling Points of Sulfuric Acid Solutions and Oleum .	336
93.	The Physical Properties of Sulfuric Acid and Its Hydrates $$. $$	337
94.	The Ionization Constant of Bisulfate Ion in Sulfuric Acid Solutions at 25°	339
95.	Activity Coefficients of Sulfuric Acid and Some of Its Salts	341
96.	Solubilities of Some Sulfates in Water at 25°	342
97.	Free Energies of Formation of Sulfur Acids and Ions at 25° .	342
98.	The Specific Gravities, $20^{\circ}/4^{\circ}$, of Sulfuric and Selenic Acids .	344
99.	Solubilities of Sclenates and Sulfates at 25°	346
100.	The Solubility, S, of Orthotelluric Acid in Water	350
101.	Freezing-Point and Conductance Data for Orthotelluric Acid	351
102.	Solubilities of Some Dithionates in Water at 20°	360
103.	The Physical Properties of H ₂ S, H ₂ S ₂ , H ₂ O, and H ₂ O ₂	363
104.	The Physical Properties of Hydrogen Peroxide	365
105.	Kinetics of the Reaction Between $S_2O_3^-$ and $S_2O_3^-$ at 25°	375
106.	Kinetics of the Reaction Between $S_2O_8^-$ and $S_2O_3^-$ Catalyzed by $CuSO_4$ at 25°	377
107.	Reactions of $S_2O_8^-$ Catalyzed by Silver Ion at 25°	379
108.	Properties of the Alkali Superoxides	387
109.	Solubilities of the Polythionates	392
	Appendix B	
I	General Physical Constants	403
	International Atomic Weights	404
11.	<u>-</u>	
eroi.	Appendix C	405
The	Periodic System of the Elements	405

Illustrations

rigo		PAGE
1.	The Molal Heat Capacity of Air, Nitrogen, and Oxygen in the Ideal Gaseous State.	7
2.	The Molecular Structure of N_2O	20
3.	The Effect of Pressure on the Thermal Decomposition of Nitrous Oxide	21
4.	The Thermal Rate of Reaction Between Nitric Oxide and Hydrogen	26
5.	The Thermal Decomposition and Formation of Gaseous Nitrogen Dioxide	31
6.	The Thermal Decomposition of Nitrogen Pentoxide at Normal and Very Low Pressures	32
7.	The Sulfur-Liquid Ammonia System	34
8.	The Light Transmission of Solutions Containing Both H_2S and N_4S_4 in Liquid Ammonia	35
9.	The Rate of Formation and Decomposition of NOCl and NOBr	43
10.	Dissociation of Nitrosyl Chloride	44
11.	A Typical Apparatus for the Measurement of Equilibria Involving Corrosive Gases.	45
12.	The Molecular Structure of NOCl and NOBr	46
13.	Phase Diagram of the System N ₂ O ₃ —H ₂ O	59
14.	World Production and Consumption of Nitrogen Compounds .	71
15.	The Equilibrium Percentage of Ammonia in the Reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 = NH_3$ as a Function of Pressure at Various Tem-	=0
	peratures (in °C)	73
	The Molal Heat Capacity of Some Gaseous Nitrogen Compounds	75
17.	The Equilibrium Concentration of HNO3 in the Reaction $3NO_2 + H_2O = 2HNO_3 + NO$	78
18.	Phase Diagram for the System H_2O-HNO_3	82
19.	The Molecular Structure of $(\mathrm{PNCl}_2)_3$	110
20.	The Molecular Structure of HN_{3}	123
21.	The Phase Diagram of the System $\mathrm{H}_2\mathrm{O-\!\!\!}\mathrm{NH}_3$	136
22 .	The Vapor Pressure of Ammonia above Solutions of Sodium in Liquid Ammonia at $-33.8^{\circ}~\mathrm{C}$	136

xviii

ILLUSTRATIONS

23.	The Equivalent Conductance of Solutions of Potassium,	PAGE
	Sodium, and Lithium in Liquid Ammonia at -33.5° C	137
2 4.	The Equivalent Conductance of Sodium in Liquid Ammonia at -33.5° C	138
25.	An Assumed Potential Energy Curve for the Electrons in Concentrated Sodium-in-Ammonia Solutions	140
26 .	The Molal Susceptibility of Potassium in Liquid Ammonia	144
27 .	The Density and Volume Change for Solutions of Sodium in Liquid Ammonia at -33.8° C	145
2 8.	The Equivalent Conductance of Potassium Nitrate in Liquid Ammonia and in Water	148
2 9.	The Pressure-Temperature Diagram for Phosphorus	158
30.	The Structure of the P4 and As4 Molecules	167
31.	The Rate of Oxidation of Phosphorus by Pure Oxygen at 18.6° C	172
32.	The Rate of Oxidation of Phosphorus by Oxygen Diluted with Nitrogen at 13.6° C	172
33.	The Critical Pressures for the Oxidation of Phosphorus Vapor .	174
34.	The Molecular Structures of the P ₄ O ₆ S ₄ , P ₄ O ₆ Molecules	177
3 5.	The Vapor Pressure of α -Crystalline Phosphorus Pentoxide, P_4O_{10}	181
36.	The Rate of Hydrolysis and Changes in Hydrogen Ion Concentration of a Solution 0.300 m in Sodium Metaphosphate and 0.010 m in Hydrochloric Acid	216
37.	The Rate of Hydrolysis and Change in Hydrogen Ion Concentration in Solutions 0.500 m in Sodium Metaphosphate Containing the Indicated Concentrations of Hydrochloric Acid	217
38.	The Rate of Hydrolysis and Change in Hydrogen Ion Concentration of a 0.300 m Sodium Metaphosphate Solution	217
3 9.	The Rate of Hydrolysis of a Solution 0.100 m in Sodium Metaphosphate and 0.500 m in Sodium Hydroxide at 75° C	218
40.	The Rate of Hydrolysis of a Solution 0.200 m in Sodium Metaphosphate and 0.500 m in Sodium Hydroxide at 75° C	218
41.	The Rate of Hydrolysis of a Solution 0.100 m in Sodium Metaphosphate and 2.00 m in Sodium Hydroxide at 75° C	218
42 .	The Phase Diagram of the System NaPO ₃ -Na ₄ P ₂ O ₇	224
43 .	The Specific Conductivity of Phosphoric Acid Solutions at 0° and 18° C	227
	The Partial Vapor Pressure of Water above Phosphoric Acid	22 9

	ILLUSTRATIONS	xix
FIGUI	The Molecular Structure of PF ₃ Cl ₂	PAGE 235
	The Molecular Structures of VOCl ₃ , POCl ₃ , POF ₃ , PSF ₃ , PSCl ₃	
	The Molecular Structures of POF ₂ Cl and POFCl ₂	236
	The Molecular Structure of PF ₃ and PCl ₃	240
	The Molecular Structure of PFCl ₂	240
	The Molecular Structure of PCl_5 and PF_5	241
51.	The Critical Pressures for the Oxidation of Phosphine	245
52 .	The Vapor Pressures of Phosphonium and Ammonium Halides.	249
53.	The Vapor Pressure of Phosphonium Chloride at High and Low Temperatures	250
54.	The Molal Heat Capacity at Constant Pressures of Phosphonium Iodide and the Ammonium Halides	251
55.	The Molal Heat Capacity at Constant Pressure of Some Ammonium Salts	252
56 .	Special Cases of Second-Order Equilibria	253
57.	The Electronic plus Rotational Heat Capacity at Low Temperatures for a Hypothetical Non-Condensable Gas Having the Same Energy States as Oxygen	256
58.	An Ozone Generator	262
59 .	The Phase Diagram for Ice	272
60.	The Molecular Structure of S_2Cl_2	300
61.	The Molecular Structures of $SOCl_2$, SOF_2 , $SOBr_2$, and $SeOCl_2$.	306
62 .	The Molecular Structure of SO ₂ Cl ₂	308
63.	The Molecular Structure of SO_3	319
64	Curves Showing the Vapor Pressure of Highly Dried Sulfur Trioxide and How It Varies with Aging and Partial Evaporation	201
۵.	of the Sample	
	The Lead-Chamber Process	334
	Phase Diagram for the System H ₂ O—SO ₃	
	The Specific Conductance of Sulfuric Acid Solutions at 18° C.	339
		340
	The Vapor Pressure-Temperature-Composition Diagram for the System SO_3 — H_2O	340
	The Vapor Pressure-Composition Diagram for the System H_2O — H_2O_2 at 30° and 60° C	364
71.	The Phase Diagram for the System H ₂ O—H ₂ O ₂	367

ı	ı	1		1	C	т	D	Δ	. 1	1	O	N	IC	
	L	_1	₩.	u	J	1	г	_	١ı		v	T.	٧J	

XX

72.	The Time of Appearance of Sulfur in Acidified Sod sulfate Solutions of Various Thiosulfate and Acid		
	trations		
73.	The Decomposition of Polythionates at 50° C	 	393
74.	The Decomposition of $K_2S_3O_6$ in Water	 	394
75 .	The Decomposition of $Na_2S_4O_6$ in Water	 	395
76 .	The Decomposition of $Na_2S_4O_6 + Na_2S_2O_3$ in Water	 	396
77.	The Decomposition of $K_2S_5O_6$ in Water	 	397
78.	The Decomposition of $K_2S_3O_6+K_3S_5O_6$ in Water .	 	398
The	Periodic System of the Elements		406

CHAPTER 1

Nitrogen and Its Oxides and Sulfides

Elementary Nitrogen

Preparation

Nitrogen is present as such in the atmosphere to the extent of 78.09% by volume in clean dry air (O₂, 20.95%; A, 0.93%; CO₂, 0.03%; H₂, 0.00005%; Ne, 0.0018%; He, 0.00052%; Kr, 0.0001%; and Xe, 0.000-008%). The average chemical composition of dry air is remarkably uniform as regards both its geographical and vertical distribution. Samples taken during balloon flights have failed to show any sign of variations up to about 20 km. Above that level, a minute prevalence of helium is indicated, marking an incipient change from convective mixing to diffusion equilibrium. This gravitational separation according to molecular weights was formerly used as the chief support of the hypothesis that the uppermost stratosphere should be practically pure hydrogen. Modern spectroscopic observations of the light emitted by the Aurora Borealis, extending up to 500 km and more, have refuted this contention [Wildt, Rev. Mod. Phys., 14, 151 (1942)].

Air is not a satisfactory material for the preparation of very pure nitrogen because the noble gases present, mainly argon, are not easily To prepare pure nitrogen, the following chemical methods may be used. (1) A saturated solution of NaNO₂ is allowed to drop slowly into a heated mixture of saturated solutions of ammonium chloride and potassium dichromate; the main reaction is the decomposition of ammonium nitrite (which see). The resulting gas must be further purified by passing through dilute H₂SO₄ (to remove any NH₃), FeSO₄ solution (to remove any NO), heated copper, P₂O₅, and finally a trap cooled with liquid air. A further fractional evaporation is also desirable [Kamerlingh Onnes and van Urk, Comm. Leiden, 16, No. 169d (1924)]. (2) Ammonia gas is passed into bromine water, and the resulting gases are passed through suitable absorbents to remove ammonia, bromine. water, and any other impurities. The main reaction involved in this method of preparation is the oxidation of ammonia by bromine, $2NH_3(aq) + 3Br_2 = N_2 + 6HBr(aq)$ [Giauque and Clayton, J. Am. Chem. Soc., 55, 4875 (1933)]. (3) Sodium (or barium) azide, after purification by recrystallization, is carefully dried at 100° to 150° and then heated in a closed system to 300°. The nitrogen evolved according

to the reaction $2NaN_3(s) = 2Na(l) + 3N_2(g)$ is spectroscopically pure. This statement is true if the first gases formed are discarded, since they may contain small quantities of hydrogen if the azide salt is not perfectly dry. This method is ordinarily used for the preparation of comparatively small amounts of nitrogen, the present cost of the azides being somewhat too high to permit their use for the preparation of large quantities of gas.

If great purity is not required, nitrogen, containing argon and small quantities of oxygen, may be obtained by the fractional distillation of liquid air. Any oxygen that remains after the fractionation may be effectively removed by passing the impure nitrogen through a mixture of aqueous ammonia and metallic copper turnings and then through sulfuric acid; the complex ion $\text{Cu}(\text{NH}_3)_2^+$ is readily oxidized to $\text{Cu}(\text{NH}_3)_4^+$ by oxygen. White phosphorus is also used to remove small amounts of oxygen from nitrogen. The nitrogen furnished in steel cylinders is manufactured by the fractional distillation of liquid air.

Physical properties

The nitrogen molecule is diatomic, N₂. It has been found to be diamagnetic, the specific susceptibility being -0.430×10^{-6} at 20° [Havens, Phys. Rev., 43, 999 (1933)], and from this fact it may be concluded thalt the nitrogen molecule in its ground state does not have a resultant electronic angular momentum. Both the rotational and vibrationa energy states have been accurately determined from a study of the emission and Raman spectra of the gas. Lines due to the rotation of the molecule have alternating intensities, this phenomenon being shown in a particularly beautiful manner by the pure rotational Raman spectrum [Rasetti, Phys. Rev., 34, 367 (1929)]; the lines arising from transitions between states with even values of the rotational quantum number J are twice as intense as those for which J is odd; that is, in the gas there are twice as many molecules having J even as there are molecules having J odd. The alternation of intensities shows that the nitrogen nucleus possesses spin properties. For, according to the quantum theory, the ratio of the intensities of the rotational lines for a symmetrical diatomic molecule (at ordinary temperatures) will be I + 1/I where I is the nuclear spin quantum number; accordingly, from I + 1/I = 2 we conclude that I = 1. That part of the eigenfunction for a diatomic molecule due to nuclear rotation about an axis perpendicular to the line joining the two nuclei is symmetrical for J even and antisymmetrical for J odd, with respect to interchange of the nuclei. Experiment shows that nitrogen gas at ordinary temperatures contains twice as many molecules with J even as with J odd. Now, of the $(2I + 1)^2$ possible nuclear spin eigenfunctions, it may be readily shown that I(2I+1) are antisymmetric and $(2I+1)^2 - I(2I+1) = (2I+1)$

(I+1) are symmetric. Since for nitrogen I=1, there will be six symmetric and three antisymmetric nuclear spin functions; that is to say, the ratio of the number of symmetric to antisymmetric nitrogen molecules in the gas will be 6:3=2. It follows from the experimental facts that for J even the molecules are symmetric in the nuclear spin, and for J odd antisymmetric; that is, the symmetric nuclear spin functions are to be associated with the symmetric (J even) rotational functions. Now, the interchange of two composite nitrogen nuclei is equivalent to the interchange of a number of constituent fundamental particles, protons, neutrons, electrons, and so on. According to the principle that interchange of two fundamental particles must lead to a change in sign of the complete eigenfunction (alternation principle) for the molecule, it follows that the nitrogen nucleus must consist of an even number of fundamental particles, since the combined rotational-nuclear spin functions are all symmetric with respect to interchange of the two nuclei. the atomic number of nitrogen is 7 and the atomic mass number is 14. the nucleus could consist of seven protons and seven neutrons, a total of 14 fundamental particles, but it could not consist of 14 protons and 7 electrons or 14 neutrons and 7 positrons, since these combinations lead to an odd number of fundamental particles in the nucleus. It is remarkable that the results of molecular spectra experiments have led rather directly to information about nuclear structure, and, indeed, the assumption of the existence of neutrons was first made to account for the molecular spectra of nitrogen. The neutron subsequently found in nuclear disintegration experiments has a greater mass than that first postulated to explain the nitrogen molecular spectrum.

The existence of two kinds of nitrogen molecules raises the question whether the rotational heat capacity of the gas will, like that of hydrogen, depend on the temperature in a manner suggesting that the symmetrical and antisymmetrical N_2 molecules change only very slowly into each other. The answer is that in the temperature range for which nitrogen is a gas the rotational heat capacity, $C_{rot.}$, is a constant and equal to R. This is due to the fact that the moment of inertia, I, of the N_2 molecule is relatively large, and consequently the energy levels $\epsilon_{rot.} = J(J+1)h^2/8\pi^2I$ are closely spaced.² Any variation with temperature would come

² When the energy levels are closely spaced, the distribution of molecules among the rotational energy levels approximates the classical Maxwell-Boltzmann distribution for which $C_{rot.} = R$ at all temperatures. Even with closely spaced levels, a low

¹ For each nucleus there are 2I+1 nuclear eigenfunctions α , β , γ ... corresponding to the 2I+1 orientations that a nucleus with spin I would assume in a magnetic field. For a symmetrical diatomic molecule with the like nuclei A and B, the nuclear eigenfunctions will be of the form $\alpha(A)\alpha(B)$, $\beta(A)\beta(B)$, $\gamma(A)\gamma(B)$, and so forth, $1/\sqrt{2} \left[\alpha(A)\beta(B) + \alpha(B)\beta(A)\right]$, and so forth, $1/\sqrt{2} \left[\alpha(A)\beta(B) - \alpha(B)\beta(A)\right]$, and so forth. It is not difficult to determine the number of combinations that will be symmetric and antisymmetric with respect to interchanging the symbols A and B.

at the low temperatures at which nitrogen is a solid of very low vapor pressure, namely, in the range 0° to 20°K. The composition of the 2:1 mixture will not, therefore, undergo appreciable change with temperature except possibly at very low temperatures.

The even number of fundamental particles in the nitrogen nucleus and the odd number of extranuclear electrons requires that diatomic nitrogen obey the Bose-Einstein distribution law.

There are two isotopes of nitrogen, namely, N¹⁴ and N¹⁵, and in ordinary nitrogen these are present in the ratio of 346:1 [Murphy and Urey, *Phys. Rev.*, **41**, 141 (1932)]. The heavier isotope has been obtained at greater concentrations than found in nature by a process of fractionation. Organic compounds made from the concentrate are used in biochemical studies, the "heavy nitrogen" serving as a tracer.

The rotational energy states of $N_2(g)$ are given by the empirical formula:

$$\epsilon_{rot.} = [B + \alpha(v + \frac{1}{2})]J^2 + [D + \beta(v + \frac{1}{2})]J^4$$

$$J = 0, 1, 2 \cdot \cdot \cdot , \text{ the rotational quantum number.}$$

 $v = 0, 1, 2 \cdot \cdot \cdot$, the vibrational quantum number. $B = 2.003 \, \text{cm}^{-1}, \ \alpha = -0.023 \, \text{cm}^{-1}, \ D = -5.773 \times 10^{-6} \, \text{cm}^{-1},$

 $\beta = 8.61 \times 10^{-8} \text{ cm}^{-1}$.

These values of B, α , D, and β give ϵ_{rot} in cm⁻¹. The vibrational energy states may be calculated from the formula:

$$\epsilon_{vsb.} = \omega_e(v + \frac{1}{2}) - \omega_r x_e(v + \frac{1}{2})^2$$

 $v = 0, 1, 2, \cdots$
 $\omega_e = 2359.61 \text{ cm}^{-1}$ $\omega_e x_e = 14.445 \text{ cm}^{-1}$

[See Birge and Hopfield, Phys. Rev., 29, 212 (1927).]

The N-N internuclear distance of the molecule in the normal state is 1.095 Å [Rasetti, Phys. Rev., **34**, 367 (1929)], and this corresponds to a triple electron-pair bond between the two atoms, namely, :N:::N:. The dissociation energy for the reaction $N_2(g) = 2N(g)$ is 170,275 cal at 0°K, and $\Delta H_{291}^0 = 171,175$ cal [Herzberg, Molecular Spectra and Molecular Structure, Prentice-Hall, New York; Bichowsky and Rossini, Thermochemistry, Reinhold, New York]. The thermal decomposition of N_2 into N has not been observed in laboratory experiments; the dissociation energies given here were determined spectroscopically.

The general physical properties of nitrogen are presented in the following table. [See Curtis, *Fixed Nitrogen*, Chemical Catalog Co., New York; Baley and Donnan, *J. Chem. Soc.*, **81**, 907 (1902); Giauque and Clayton, *J. Am. Chem. Soc.*, **55**, 4875 (1933).] There are two solid

temperature can be reached at which the number of molecules in the lowest rotational level is a much larger fraction of the total number than is the case with a gas consisting of classical rotators.

Ch 11

modifications of nitrogen, the low-temperature or α (cubic) form, and the higher-temperature, above 35.61°K, or β (hexagonal) form; nitrogen is colorless in all of its modifications.

TABLE 1 THE PHYSICAL CONSTANTS OF NITROGEN $0^{\circ}C = 273.1^{\circ}K$

Melting point = 63.14°K ΔH (fusion) = 172.3 cal/mole at m.p. Boiling point = 77.32°K ΔH (evap.) = 1332.9 cal/mole at b.p. Transition temp. (α to β) = 35.61°K ΔH (trans.) = 54.71 cal/mole Vapor pressure of solid (β) $\log_{10} p_{\rm cm} = -381.6/T - 0.0062372T + 7.41105 Vapor pressure of liquid * <math>\log_{10} p_{\rm cm} = -339.8/T - 0.0056286T + 6.71057$ Surface tension of liquid $\gamma_T = 11.68(1 - 0.00863T)$ dynes/cm Density solid (g/cm³) D = 1.0265 at 20.6°K, 0.8792 at 63°K Density liquid (g/cm³) D = 1.1604 - 0.00455T Weight of one liter N₂(g) at 0° and 760 mm = 1.25046 g Critical temperature = 126.0°K Critical pressure = 33.5 atm

Heat Capacity, C_P (cal/deg/mole) for Solids and Liquid

	a		β			β Liquid					
$C_P \ldots C_P \ldots$	15.82 3.124	35 05 10 84	39 <u>13</u> 8 948	55.88 10 44	61.41	65 02 13 33	70.28	77 74 13.64			

Entropy, S_T° (cal/deg/mole), of N₂ Gas (Ideal) at 1 atm

T(°K)	S'(Exp.)	S (Spectroscopic)
77 32	36 5	36 416
298.1	45 9	45 788

Heat Capacity, C_P , in cal/deg/mole of N_2 Gas (Real) at Various Temperatures and Pressures

 $(C_P = 6.953 \text{ cal/deg/mole for ideal gas at room temperature.})$ $C_P = 6.76 + 0.606 \times 10^{-3}T + 0.13 \times 10^{-6} T^2 \text{ for } 300-2500^{\circ} \text{ and } 1 \text{ atm}$

Press. (atm)	1	50	100	500	1000
T(°C): 30	6.94	7.41 7.21	7 92 7.48 7.19	9.12 8.39 7.36	(9.25) (8 6) 7.46

Viscosity η of N₂ gas in cm⁻¹ g sec⁻¹ at about 1 atm

$$\eta = \frac{KT^{\frac{3}{2}}}{C+T}, \qquad K = \eta_0 \frac{C+T_0}{T_0^{\frac{3}{2}}}$$

 $T_0 = 273.16^{\circ} \text{K}$ $K = 137.7 \times 10^{-7}$ C = 102.7 $\eta_{17^{\circ}} = 1738.2 \pm 0.7 \times 10^{-7}$ [Rigden, Phil. Mag., 25, 961 (1938).]

^{*} Keesom and Bijl [Physica, 4, 305 (1937); Proc. Acad. Sci. Amsterdam, 40, 235 (1937)]

Nitrogen does not obey the perfect gas law even at ordinary pressures and temperatures, although the deviations are not great. Thus, if we select volume units such that PV = 1.0000 for P = 1 atm, then PV = 1.00011 at $\frac{2}{3}$ atm and 1.00028 at $\frac{1}{3}$ atm, at ordinary temperatures [Baxter and Starkweather, *Proc. Nat. Acad.*, 12, 703 (1926)]. For ordi-

TABLE 2 PV VALUES FOR NITROGEN^a (PV = 1.0000 at 1 atm and 0°C)

Pressure (atm)	-100°	0.0°	50°	100°	200°	300°	400°
1	0.6319 .6109 .5180 .4471	1.0000 .9962 .9848 .9848 1.3885 2.0641	1.1835 1.1836 1.1884 1.2046 1.6171 2.2825	1.3669 1.3695 1.3849 1.4121 1.8388 2.4948	1.7335 1.7398 1.7694 1.8111 2.2708 2.9212	2.1000 2 1083 2.1462 2.1973 2.6774 3.3203	2.4663 2.4758 2.5189 2.5751 3.0714 3.7224

^a In the Beattie-Bridgman equation of state [Proc. Natl. Acad., 16, 14 (1930); Deming and Shupe, J. Am. Chem. Soc., 52, 1382 (1930)], $P = RT(1 - \epsilon)(v - B)/v^2 - A/v^2$, $A = A_0(1 - a/v)$, $B = B_0(1 - b/v)$, $\epsilon = C/vT^3$, the constants have, for nitrogen, the values $A_0 = 1.254 \times 10^6$, a = 18.68, $B_0 = 46.04$, b = -25.88, $C = 61.65 \times 10^6$. The units are pressure in atm, volume in cc/mole, RT = 22414 cc/atm/mole at 0°C. For isotherms from 127°K to 373°K, see Kamerlingh Onnes and van Urk [Comm. Leiden, 16, Nos. 169d and 169e (1924–1926)].

nary pressures ($\frac{1}{2}$ to 1 atm) and low temperatures (77–90°K), PV = nRT(1-BP) with $B=0.0022+19600/T^3$ atm⁻¹. Accordingly, at about 100°K and 1 atm $B\approx 0.02$; that is to say, nitrogen shows a deviation of about 2% from the behavior of a perfect gas. At room temperatures the deviation may also be seen: (1) from the variation of the coefficient of expansion α with pressure in $V=V_0(1+\alpha t)$, where $\alpha\times 10^{+7}=36604+127P$ for t=0° to 100°, and P is in meters of Hg;

have made a careful redetermination of the vapor pressures of solid (3) and liquid nitrogen. The results may be calculated from an empirical equation whose form is convenient for the evaluation of temperatures from vapor pressure measurements.

The difference between these boiling and melting points and those given in Table 1 are believed to be due to differences in temperature scale.

Ch. 1]

and (2) from the ratio $PV(0^{\circ}, 0 \text{ atm})/PV(0^{\circ}, 1 \text{ atm}) = 1.00047$. It must be emphasized here that the values of α and of the $(PV)_{0}/(PV)_{1}$ ratio are subject to change, since highly accurate values require very pure nitrogen and careful experimentation, and both of these factors are subject to improvements or changes by successive investigators. For example, a recent determination of α [Kinoshita and Oishi, *Phil. Mag.*, 24, 52 (1937)] for the limit P = 0 resulted in the value 36607×10^{-7} ,

Fig. 1. The Molal Heat Capacity of Air, Nitrogen, and Oxygen in the Ideal Gaseous State.

which is slightly higher than that given by the formula above. The reciprocal of 36607×10^{-7} is 273.16, and this is in good accord with $0^{\circ}\text{C} = 273.16^{\circ}\text{K}$, the accepted value.

The gas imperfections shown by nitrogen become greater at higher pressures, and it is in the high-pressure range that important industrial applications are made. For example, in the synthetic ammonia process, pressures as high as 1000 atm are employed. In Table 2 are presented representative PV, T data for gaseous nitrogen.

It is evident on examining the columns of Table 2 that nitrogen deviates appreciably from the behavior of a perfect gas at low tempera-

tures, but that above 0° the deviations are not great at pressures less than 100 atm. If the gas were perfect, the values of PV in any one column of the table would be constant.

Nitrogen was at one time used in gas thermometers for the determination of absolute temperatures on the thermodynamic Kelvin scale. this purpose it is necessary to know accurately the deviations from the law of ideal gases, namely, PV = nRT. Nitrogen is largely replaced now by helium, since the properties of the latter are much closer to those of a perfect gas than are those of any other known substance; moreover, helium does not condense at atmospheric pressure until a temperature of The limiting value for low pressures of the tempera-4.216°K is reached. ture coefficient of pressure, B, for nitrogen $[P = P_0(1 + Bt)]$, is given variously as 0.0036618, 0.0036606, and 0.0036613, the value depending on the investigator; the corresponding ice-point temperatures $(1/\beta = T_0)$ are 273.09°, 273.20°, and 273.13°K, respectively. The limiting value of the coefficient of expansion α is given as 0.0036604 and 0.0036607, and $T_0 = 1/\alpha = 273.21$ and 273.16°K. The accepted value of T_0 obtained with helium is 273.16°.

Nitrogen is only slightly soluble in water, and the solutions contain no detectable ions containing nitrogen; electrolysis of salt solutions saturated with the gas under pressure does not yield nitrogen compounds. The volumes v_0 of nitrogen, reduced to 0°C and 1 atm, absorbed by one volume of water when the partial pressure of N_2 is one atmosphere, for several temperatures are as follows:

t(°C)	0	20	30	50	100
<i>v</i> ₀	0.02312	.01518	.01319	.01071	.00947

Henry's law is obeyed fairly well by the solutions. The solubilities in NaCl solutions are less than in pure water, but alcohol is capable of dissolving approximately eight times as much at 20° as does water at the same temperature.

Chemical properties

Although nitrogen is unreactive toward most reagents at ordinary temperatures, it is rapidly adsorbed by charcoal in quantities that increase with decreasing temperature of the adsorbent. At liquid-air temperatures, appreciable amounts are adsorbed before the equilibrium pressure rises above 10⁻⁵ mm Hg, and it is for this reason that charcoal traps cooled with liquid air are sometimes used in high-vacuum work. A common and effective method of freeing helium from nitrogen and other gases takes advantage of the fact that helium is not adsorbed by charcoal

Ch. 11

at low temperatures nearly so extensively as is nitrogen, the ratio of the amounts for a given sample of charcoal and for about 1 atm pressure being approximately 1:50 at -190° and 1:250 at -48°. Coconut charcoal is a good adsorber for nitrogen, but blood or animal charcoal is superior to it, as the following results of Hempel and Vater [Z. Electrochem., 18, 724 (1921)] for atmospheric pressure show. In practice coconut charcoal has advantages resulting from its resistance to crushing and powdering. The effect of pressure on the amounts of nitrogen adsorbed by coconut charcoal is also presented in the table [Titoff, Z. phys. Chem., 74, 641 (1910)]. Charcoals vary considerably, and the results cited are for particular samples.

TABLE 3
ADSORPTION OF NITROGEN BY CHARCOAL
(The volumes v_0 in cc adsorbed have been reduced to 0° and 1 atm.)

Temp. (°C)	20	-78	-185
v_0 per cc of coconut charcoal	15.7	79.2	219.4
	21.0	107 4	632.2

 $[^]a$ Heated at 600°, the optimum activation temperature, before measurements were made. For both charcoals the pressure of N_2 was about 1 atm.

 v_0 in cc for 35.662 g Coconut Charcoal, Activated at 550° and Evacuated to 10^{-3} mm Before Measurements Were Made, for Various Equilibrium Pressures

151	.5°)°	-79°			
$p_{ m cm}$	v_0	$p_{ m em}$	vo	$p_{ m cm}$	v ₀		
1.89 8.34 31.61 77.07	1.324 5.050 18.018 41.783	0.43 3.93 22.94 77.46	3.967 35.203 181.221 465 484	0.15 1.25 14.95 38.84 74.06	5.169 123.690 714.126 1192.080 1551.625		

Heat of adsorption, 0° $q_1 = 0.210$ cal/cc (NTP) of adsorbed N₂. q is practically independent of the pressure.

To give some notion of the relative behavior of another gas toward the same sample of coconut charcoal, 35.662 g, the values of v_0 for hydrogen for two temperatures and atmospheric pressure may be cited. At 0° and 74.42 cm, $v_0 = 55.477$ cc, and at -79° and 72.16 cm, $v_0 = 193.068$ cc. It is evident that about eight times as much nitrogen as hydrogen is adsorbed by the sample of charcoal at the temperatures considered. This factor increases somewhat with decreasing pressure. v_0 may be

represented fairly satisfactorily by the formula $v_0 = CP^{1/n}$, where C is a constant depending on the amount and character of the charcoal, and n is another constant, for a given temperature, with a value near unity (1/n = 0.976) for the 151.5° results shown in the table.

The reactions of nitrogen with oxygen at high temperatures and with hydrogen at high pressures in the presence of a catalyst are discussed in detail in a later section.

Nitrogen reacts at more or less elevated temperatures with a number of metals and some compounds. Characteristic is the ability of the heated alkaline earth metals to absorb nitrogen rapidly and readily. On the other hand, the alkali metals, with the exception of lithium, do not react with nitrogen even on strong heating, although stable alkali nitrides prepared by indirect methods are known. The following table presents the compounds formed and the conditions for reaction for a number of metals.

TABLE 4
REACTIONS OF NITROGEN WITH METALS

Metal	Compound Formed	Temp. (°C) Minimum for Reaction	Remarks	$\Delta F^{\circ}_{298.1}$ b
Li ^a	Li ₃ N	Slow at room temp., rapid at 250°.	O ₂ inhibits reaction.	-37,330
Ca	Ca ₂ N ₂	500°	Rapid with glowing.	-70,550
Sr	Sr.N.	300° to 400°	Rapid.	-76,790
Ba	Ba ₃ N ₂	560°		-72,790
Mg	Mg ₃ N ₂	560°	MgO is a catalyst. Reversible, $P_{N_2} = 1$ atm at 1100°.	-100,780
La	LaN	450°		-64,650
Be	Be,N,	900°	Reversible at 2200°.	-121,400
B	BN	> 1200°		-27,690
Al	AlN	800°		-50,050
Ti	TiN	> 800°		-74,040
Si	Si ₃ N ₄	1300°		-154,740
Cr	CrN	580° to 800°		-22,520

^a See Trautz and Kipphan, Z. anal. Chem., 78, 353 (1929). The reaction is autocatalytic.

^b Kelley, "The Thermodynamic Properties of Metal Carbides and Nitrides," Bureau of Mines Bulletin 407 (1937).

Attempts to cause carbon and nitrogen to combine to form cyanogen, C_2N_2 , have always met with failure. Indeed, thermodynamic studies indicate that cyanogen is not to be expected, either at high or low temperatures, to result by the direct combination of carbon and nitrogen. Thus, for $2C(s) + N_2(g) = C_2N_2(g)$, $\Delta H_{298} = 70,560$ cal, $\Delta S_{298}^{\circ} = 9.3$ cal/deg, $\Delta F_{298}^{\circ} = 67,780$ cal; and since ΔS° and ΔC_F will not suffer great

changes on going to higher temperatures, one may expect ΔF_{r}° to be positive even at the temperatures of the electric arc.

A mixture of hydrogen, carbon, and nitrogen reacts slowly at 1900° to 2100°K to give HCN [von Wartenberg, Z. anorg. Chem., 52, 299 (1907)]; an approximate free energy equation for $C(s) + \frac{1}{2}H_2(g) + \frac{1}{2}N_2(g) = HCN(g)$ is $\Delta F_T^o = 31,000 - 10T$. The accepted value of $\Delta F_{298.1}^o$ is 27,730 cal [Latimer, Oxidation Potentials, Prentice-Hall, New York]. At 800°K the reaction $NH_3(g) + C(s) = HCN(g) + H_2(g)$ comes to a measurable equilibrium state with $K_{atm} = P_{H_1}P_{HCN}/P_{NH_1} = 5.8 \times 10^{-6}$ [Badger, J. Am. Chem. Soc., 46, 2166 (1924)]. Calcium carbide reacts with nitrogen at about 1000° to form cyanamide CaCN₂; calcium fluoride and chloride act as catalysts for the reaction. A mixture of sodium carbonate, carbon, and nitrogen will react at around 1000° to give sodium cyanide. (See the section on Fixation of Nitrogen, p. 70.)

The nitrides of the metals hydrolyze more or less readily to form ammonia and the metal hydroxide or oxide. Alkali and alkaline earth nitrides undergo hydrolysis on exposure to moist air or on the addition of cold or warm water, but boron nitride requires hot water or steam to bring about its hydrolysis. Silicon and titanium nitrides are very resistant to the action of water, acids, and alkalis, and treatment of them with these reagents even in a heated sealed bomb causes only a small amount of hydrolysis.

Active nitrogen

If nitrogen at moderately low pressures (about 2 mm) is subjected to the action of a silent electric discharge, a yellow glow is observed, and this glow will persist for a time after the electric current is disconnected. The time of persistence of the glow depends principally on the size of the Thus, in a 24-liter flask the yellow glow may be containing vessel. visible for as long as 110 minutes, while with small vessels this time is much shorter [see, for example, Bay and Steiner, Z. phys. Chem., 9B, 127 (1930); Kaplan, Phys. Rev., 37, 1409 (1931); E. P. Lewis, Astrophys. J., 17, 258 (1903); Rayleigh, Proc. Roy. Soc., 151A, 567 (1935); Willey, J. Chem. Soc., 142 (1932); Proc. Roy. Soc., 152, 158 (1935)]. The glowing or active nitrogen is more reactive with some substances than is ordinary nitrogen. For example, active nitrogen converts white phosphorus into red phosphorus and some phosphorus nitride, combines with sodium at 150°, forms HCN with acetylene, and decomposes NO into nitrogen and oxygen. Small amounts of impurities, Hg(g) and O₂, appear to be necessary in order to obtain active nitrogen having an appreciable length of life. The activity is due to the presence of both metastable activated nitrogen molecules and atoms. The activation energy of the molecules is said to be 6.14 electron volts and that of the atoms 2.37 to 3.56 electron volts.

The Oxides of Nitrogen

Formation

The known oxides of nitrogen are presented in the following list:

Formula	Name	State at Room Temperature	Color
N ₂ O NO N ₂ O ₃ NO ₂ N ₂ O ₄ N ₂ O ₅ NO ₃	Nitrous oxide Nitric oxide Nitrogen sesquioxide Nitrogen dioxide Nitrogen tetroxide Nitrogen pentoxide Nitrogen trioxide	Gas Gas Gas Gas-Liq. Solid	Colorless Colorless Red-brown Red-brown Colorless Colorless

Nitrous oxide is a gaseous compound and is formed in small quantities in the reduction of nitrites and nitrates by a variety of reducing agents (for example, H₂S, H₂SO₃, SnCl₂, Na amalgam, metals). It is produced quantitatively in the slow, spontaneous decomposition of alkaline hyponitrites [Abel, Orlich, and Proisl, *Monatshefte*, 72, 1 (1938)],

$$N_2O_2^- + 2H^+ = N_2O + H_2O$$

and results also from the decomposition of nitrogen compounds whose empirical formula is N₂O·(H₂O)_n. Of these substances, solid ammonium nitrate is by far the most convenient and cheapest for the preparation of The dry salt NH₄NO₃ (m.p. 169.6°) is heated to about 170-260° for a conveniently rapid decomposition; a mixture of sodium or potassium nitrate and ammonium sulfate will, when heated to 170-260°, yield N₂O, and provides a very cheap source of the gas. Attention should be called to the fact that very rapid heating of ammonium nitrate may cause it to explode, although as ordinarily carried out the decomposition of the molten salt takes place smoothly at a rate that appears to depend only on the temperature. The decomposition by heat of NH₄NO₃ yields only a small amount of nitric oxide, NO, and this may be removed by passing the raw gas through a solution of FeSO₄ (the complex FeNO⁺⁺ is formed). Nitrous oxide is moderately inert toward oxidizing and reducing agents; it will support combustion, but does not initiate it except at higher temperatures. It decomposes spontaneously and with a measurable rate into N2 and O2 when heated to 565-850°. With water at low temperatures, it forms the hydrate N2O·6H2O, from which the pure oxide may be obtained by warming. It is used as an anesthetic in dentistry and obstetrics. Because of the solubility of N₂O in ordinary cream, it has found its chief commercial use in the preparation of whipped cream.

Nitric oxide, NO, is a substance of paramount importance to modern civilization, since it is formed at one stage in the principal methods used for the manufacture of nitric acid, a substance which has almost endless applications. Inasmuch as NO, although relatively inert, has a strong thermodynamic tendency to decompose into its elements at room temperatures, it is necessary to bring about its formation from N₂ and O₂ at very high temperatures or by the catalytic oxidation of ammonia. The nature of the former reaction may be judged by the following free-energy equation [see, for example, Giauque and Kemp, J. Chem. Phys., 6, 40 (1938)]

$$\frac{1}{2}$$
O₂ + $\frac{1}{2}$ N₂ = NO ΔF_{298}° = 20,650 cal ΔF_{T}° = 21,600 - 2.50 T (from equilibrium data)

At equilibrium and at 2400°C, air contains only 2.23% by volume of NO, at 3200°C about 4.4%. In the process of manufacture, air is passed through an electric arc the temperature of which is estimated to be some 3500°; by rapidly cooling the heated equilibrium mixture (the rate of decomposition of NO is slow even at 1500°), a mixture of air containing 2% or 3% nitric oxide is obtained.

A large quantity of nitric oxide is now manufactured by the oxidation of ammonia on platinum gauze or other catalysts. The mixture of air (7.5 volumes) and ammonia (1 volume) is passed very rapidly through metal tubes containing fine platinum gauze; if the gas mixture is preheated to some 500°, the oxidation at the gauze proceeds automatically. The heat of reaction contributes to the maintenance of the rather high temperature of the gauze. The presence of water vapor is advantageous in the oxidation.

$$4NH_3 + 5O_2 = 4NO + 6H_2O$$
, $\Delta F_{298}^0 = -229,416$ cal

The large negative value of ΔF_{298}° shows the great thermodynamic tendency for this reaction to take place even at 25°C. There is a still greater thermodynamic tendency for the oxidation to proceed to the formation of nitrogen instead of nitric oxide.

$$4NH_3 + 3O_2 = 2N_2 + 6H_2O$$
, $\Delta F_{298}^{\circ} = -312,056$ cal

and, in the absence of the platinum gauze catalyst, nitrogen is one of the principal products of the reaction when NH₃ burns in an atmosphere of O_2 . At room temperatures neither reaction takes place, in spite of the great tendency indicated by the ΔF values, that is, the reactions are very slow; but at 500° and on the platinum surface, the rate of formation of NO predominates over that to form nitrogen. We have here again a case in which the factors governing the yield of the desired product are

those involving rates alone. In the arc process, the yield of NO is governed mainly by the small thermodynamic tendency for the reaction to take place.

Although large quantities of NO are formed in the arc and ammonia oxidation processes, little if any is compressed into steel cylinders and thus marketed. The main reason for this is that NO reacts, at room temperature, moderately rapidly with oxygen to form nitrogen dioxide, and it is to this form that most of the NO formed is unavoidably converted; another reason is that the demand for pure NO as such is not great. For experimental purposes, there are a number of reactions which yield NO as a purifiable product. By far the most convenient and best of these reactions, from the point of view of purity of products, is that between nitrous acid and potassium iodide. Fifty per cent sulfuric acid is added slowly to a solution that is 4 m in KNO₂ and 1 m in KI. The reaction is:

$$2HNO_2 + 2I^- + 2H^+ = 2NO + I_2 + 2H_2O$$

The evolved gas is passed successively through 90% H₂SO₄, 50% KOH, a trap cooled to -75° , and P₂O₅, and finally it is bubbled through liquid nitric oxide. The sulfuric acid serves to remove excess water from the gas; the KOH absorbs most of the NO₂ if any is present. Non-condensable gases are pumped off while the nitric oxide is kept frozen at liquid-air temperatures. Any N₂O is not absorbed by the alkali but dissolves in the liquid NO, in which it is very soluble. This process, if carried out carefully, yields a product containing only some 0.0008 mole per cent or less of impurities [Johnston and Giauque, *J. Am. Chem. Soc.*, **51**, 3194 (1929)]. The pure nitric oxide when liquefied has a blue color; the solid when in a clear ice-like form is also blue.

Characteristic of NO is its ability to form complexes with many metals and salts. Thus, it will replace NH₃ in $[Co(NH_3)_6]X_2$ to form $[CoNO(NH_3)_5]X_2$ if the gas is bubbled through an ammoniacal solution of the hexammine cobaltous salt; if X_2 represents halides, the product is black in color; if X_2 is sulfate, the product is red [Werner and Karrer, Helv. Chim. Acta, 1, 54 (1918)]. Solutions of FeSO₄ absorb NO reversibly to form Fe(NO)SO₄, and the intense black or deep-red color that results serves as a basis for the detection of nitrites and nitrates. The solid red salt FeNOSO₄ is unstable, and, on heating its solutions, nitric oxide is evolved. The salts FeNOSeO₄·4H₂O (black) and FeNOHPO₄ are more stable than the sulfate [Manchot and Linckh, Z. anorg. Chem., 140, 37 (1924)]. Concentrated solutions of CuCl₂ or CuBr₂ absorb NO to give deep-blue to violet solutions of CuNOCl₃. It will be noted that usually only one and occasionally two NO are absorbed per metal atom. In H₂SO₄ solution, Fe₂(SO₄)₃ will form deep-red Fe₂(NO)₄(SO₄)₃.

The carbonyls react with nitric oxide to form nitroso compounds; thus, with Ni(CO)4 blue to green and even colorless solids are formed whose compositions have not been definitely established and which decompose on heating to 90° with the emission of light [Mond and Wallis, J. Chem. Soc., 121, 32 (1922)]. With cobalt tetracarbonyl, nitric oxide forms the light yellow, volatile cobalt nitrosyl carbonyl Co(CO) 3NO; this compound reacts quantitatively with bromine to form CoBr₂, CO, and NO [Hieber and Anderson, Z. anorg. Chem., 211, 132 (1933); Coleman and Blanchard, J. Am. Chem. Soc., 58, 2160 (1936)]. When the volatile iron pentacarbonyl Fe(CO), is heated to 45° with NO under pressure, the black, unstable tetranitrosyl compound Fe(NO)4 is formed. NO is passed through a suspension of FeS in K₂S₃ solution, the darkcolored compound K[Fe{FeS(NO)₂}₃NO] is formed. A solution containing FeSO₄ and K₂S₂O₃ will absorb NO to form the red-brown $K[Fe(S_2O_3)(NO)_2].$ These compounds and K₂[(NO)₂FeS₂Fe(NO)₂] (obtained by treating the first with alkali) are known as Roussin's salts [Hoffman and Wiede, Z. anorg. Chem., 8-11 (1895-1896)]. The common, brownish-red nitroprussiate of soda, Na₂Fe(NO)(CN)₅, is not obtained by the direct absorption of NO but by warming K₄Fe(CN)₆ with dilute nitric acid and then neutralizing with Na₂CO₃ solution; with soluble sulfides the nitroprussiate reacts to form violet-colored solutions of [Fe(CN)₅NSO]⁴⁺.

More recently the conditions under which nitric oxide can be added more readily to a metal have received further attention. When finely divided, freshly reduced cobalt is treated with a mixture of CO and NO, nitrosyl carbonyl, Co(CO)₃NO (m.p. - 11°, v.p. 56 mm at 16°), is formed. The same compound is formed when an alkaline suspension of Co(CN)₂ is treated first with CO and then with NO. reaction leads to this interesting compound; if an alkaline solution containing CoCl₂ and cysteine, HSCH₂CHNH₂COOH, is treated with carbon monoxide, the latter is absorbed and on acidification [Co(CO)₄]₂ rises to the surface. When nitric oxide is bubbled through this mixture, the nitrosyl carbonyl results in the form of reddish-brown vapors which may be condensed to light yellow crystals [Coleman and Blanchard, J. Am. Chem. Soc., 58, 2160 (1936); Hieber and Anderson, Z. anorg. Chem., 211, 132 (1933); see also the splendid reviews by Blanchard, Chem. Rev., 21, 3 (1937), 26, 409 (1940)]. When NO is passed through a solution of [Fe(CO)₄]₃ (a solid) in Fe(CO)₅ (b.p. 150°) at 95°, the compound Fe(CO)2(NO)2 may be separated by distillation from the resulting It is, at room temperature, a red crystalline solid melting mixture. With iodine in benzene solution, Fe(NO)₂I₂ is formed from the dinitrosyl iron carbonyl [Anderson, Z. anorg. Chem., 208, 238 (1932)]. The solid salts FeCl₃, AlCl₃, and BiCl₃ absorb nitric oxide reversibly to form FeNOCl₂ (red), AlNOCl₂, and BiNOCl₂ (yellow). Bivalent salts

of the metals will, in general, absorb nitric oxide only when in solution (except for the ferrous phosphate and selenate mentioned above), whereas the solid trivalent salts will absorb this gas.

These addition compounds are sufficient to exhibit the ability of nitric oxide to occupy coordination positions in a manner closely similar to that shown by carbon monoxide.

Nitric oxide does not support combustion unless the temperature is rather high. This fact is sometimes adduced as evidence for believing that the NO must dissociate before the oxygen becomes active, but the argument is not convincing. If the gas is passed into an acid permanganate solution, it is oxidized to nitric acid; this reaction is the basis for a volumetric method for the determination of NO. Nitric oxide combines slowly with Br₂ and Cl₂, but not with I₂, to form the nitrosyl halides (which see), NOBr and NOCl.

Nitrogen sesquioxide, N_2O_3 , is very unstable at room temperature and above; it decomposes rapidly and extensively at these temperatures and consists, in large part, of a mixture of NO and NO₂ with a small equilibrium concentration of N_2O_3 . When an equimolal mixture of NO and NO₂ is condensed at -20° , a blue liquid results (b.p. 3.5°) which will solidify at -103° . N_2O_3 may be looked upon as the anhydride of nitrous acid, HNO₂. When solutions of alkali nitrites are acidified, decomposition results, gases (NO + NO₂) are evolved, and the solution has a definite blue color. When an equimolal mixture of NO and NO₂ is dissolved in alkaline solutions, for example KOH or NaOH, pure or almost pure nitrites result. This reaction is usually written

$$N_2O_3 + 2OH^- = 2NO_2^- + H_2O$$

although it must be understood that only a small amount of the gas mixture consists of N_2O_3 . When it is dissolved in water, the reaction is not so simple as that just written; both nitrous and nitric acids are formed in the solution. With concentrated sulfuric acid the white solid nitrosyl bisulfate, $NOHSO_4$ (nitrosyl sulfonic acid), is formed, and this reaction plays an important role in the manufacture of sulfuric acid by the lead chamber process.

Nitric oxide reacts moderately rapidly with oxygen to form the brownish-red gas NO₂, nitrogen dioxide. The reaction is reversible; at room temperature the equilibrium

$$NO + \frac{1}{2}O_2 = NO_2$$

lies almost completely to the right; at about 750° the equilibrium constant

$$K_{\text{atm}} = \frac{P_{\text{NO}}P_{\text{O2}}^{\frac{1}{2}}}{P_{\text{NO2}}}$$

is approximately unity. The dioxide is readily and conveniently pre-

Ch. 1]

pared for laboratory purposes by heating dry lead nitrate, Pb(NO₃)₂. The heating may take place in glass, but, since the lead oxide formed combines to some extent with glass, it is desirable to place the lead salt on a platinum foil in the glass flask to avoid spoiling it. Nitrogen dioxide polymerizes very rapidly and reversibly to form colorless N₂O₄.

$$2NO_2 = N_2O_4$$

Accordingly, NO_2 and N_2O_4 must be discussed together, since at ordinary temperatures both are present in the gas.

The equilibrium mixture of NO_2 and N_2O_4 can be readily condensed to a clear, faintly yellow-colored liquid which boils at 21.15° and which will freeze to a solid with a melting point of -11.2° .

Nitrogen dioxide ($NO_2 + N_2O_4$) is quite reactive as an oxidizing agent. Its main use in this connection is in the lead chamber process for the manufacture of sulfuric acid, where one may regard the catalytic couple as:

$$SO_2 + NO_2 = SO_3 + NO$$

 $NO + \frac{1}{2}O_2 = NO_2$

although the mechanism is much more complicated than this. NO₂ does not react rapidly with CO to form CO₂ below 250°, but it does react with NH₃ to form N₂, H₂O, NO, and NH₄NO₃. It is also capable of acting as a reducing agent, being oxidized to nitric acid by KMnO₄ solutions, for example. The dioxide combines with liquid sulfur dioxide to form (NO)₂S₂O₇, which is the anhydride of nitrosyl bisulfate, NOHSO₄. In the lead chamber process, a mixture of NO and NO₂ dissolves in concentrated sulfuric acid to form this compound:

$$NO + NO_2 + 2H_2SO_4 = 2NOHSO_4 + H_2O$$

Nitrosyl bisulfate (also known as nitrosyl sulfate, nitrosulfuric acid, nitrosulphonic acid, and chamber crystals) is a white solid which melts with decomposition at 73° to give the anhydride (NO₂)S₂O₇ mentioned above. When NOHSO₄ is treated with water, it decomposes according to the important reversible reaction

$$2NOHSO_4 + H_2O = 2H_2SO_4 + NO + NO_2$$

Nitrogen dioxide dissolves in water to form nitric and nitrous acids according to the reversible reaction

$$2NO_2 + H_2O = H^+ + NO_3^- + HNO_2$$

In acid solution, the nitrous acid decomposes:

$$3HNO_2 = H^+ + NO_3^- + H_2O + 2NO$$
, $\Delta F_{298}^{\circ} = -2040$ cal

so that in nitric acid of moderate concentrations the principal reaction is [see Chambers and Sherwood, J. Am. Chem. Soc., 59, 316 (1937)]:

$$3NO_2(g) + H_2O = 2HNO_3(aq) + NO(g), \quad \Delta F_{298}^0 = -5870 \text{ cal}$$

It is clear from the small values of ΔF_{298}° that these reactions come to equilibrium at room temperature when measurable quantities of the reactants are present. It is also evident that the removal of NO favors the formation of nitric acid and the decomposition of nitrous acid; in the manufacture of nitric acid this is accomplished by having oxygen present, which reacts with the NO to form NO₂.

Nitrogen dioxide has a corrosive action on metals and is also dangerous to the health. The fumes should not be allowed to escape into rooms where people are working or where fine machinery is installed. The dioxide combines with only a few substances, if any, to form addition or complex compounds.

Nitrogen pentoxide may be conveniently prepared in either one of two ways. In the first, P_2O_5 is added slowly to cooled 100% nitric acid until a paste results. The mixture is warmed to 35–40° and the N_2O_5 distilled off and condensed at -75° (solid CO_2); the product will contain some NO_2 . A further distillation at room temperature in a stream of ozonized air and drying with P_2O_5 result in a pure product; the ozone oxidizes the NO_2 to N_2O_5 . In the second method pure NO_2 is treated directly with ozonized oxygen. The reaction

$$2NO_2 + O_3 = N_2O_5 + O_2$$

is rapid and complete.

Nitrogen pentoxide is a white solid whose vapor pressure is 76 cm at 32.4°. It decomposes slowly at room temperature and more rapidly at higher temperatures. The study of the decomposition rate of the gas has played an important role in the theories of homogeneous gas reactions. The decomposition takes place irreversibly according to the equation

$$N_2O_5(g) = 2NO_2(g) + \frac{1}{2}O_2$$

and the reaction turns out to be of the first order.

Nitrogen pentoxide dissolves readily in water with the evolution of heat to form nitric acid; accordingly, N₂O₅ is the anhydride of HNO₃. With reducing agents such as metals and organic substances, N₂O₅ reacts readily and sometimes violently to form oxides, or oxides and nitrates

Nitrogen trioxide, NO₃, is said to form in a glow discharge through mixtures of NO₂ and O₂. The gases must be passed directly from the discharge tube into a strongly cooled (-185°) trap, since the NO₃ is not stable. At low temperatures it is a white solid which begins to

Ch. 1)

decompose at -142° . In a 2 n HNO₃ solution it appears to be more stable; the solutions react slowly with I⁻ to form iodine [Schwarz and Achenbach, Ber., 68B, 343 (1935); doubts regarding the formation of NO₃ in a discharge tube have been expressed by Klemenc and Neumann, Z. anorg. Chem., 232, 216 (1937); its existence as an intermediate in gas reactions involving nitrogen oxides is frequently postulated, Crist and Wertz, J. Chem. Phys., 7, 719 (1939)].

Physical properties of the oxides of nitrogen

Owing to their great importance and interesting properties, the physical constants of the oxides of nitrogen have been studied with considerable care by several investigators. The results considered most accurate are presented in Table 5 [see Blue and Giauque, J. Am. Chem. Soc., 57, 991 (1935); Johnston and Giauque, J. Am. Chem. Soc., 51, 3194 (1929); Giauque and Kemp, J. Chem. Phys., 6, 40 (1938)].

TABLE 5
THE PHYSICAL PROPERTIES OF THE OXIDES OF NITROGEN $(0^{\circ}C = 273.1^{\circ}K)$

	Melting Point (°K)	Heat of Fusion, ΔII (cal)	Boiling Point (°K)	Heat of Vaporization, ΔH (cal)	Heat of Formation, ΔH ⁰ ₂₉₈ (cal)	Free Energy of Formation, ΔF_{298}^0 (cal)	Standard Entropy, S ⁰ ₂₉₈ , of Gas (cal/deg)
N ₂ O.	182 26	1563	184 59	3958	19,650	24,930	52 58
NO .	109 49	549 5	121 36	3292.6	21,500	20,650	50 35
NO2.	261 90	3502	(294 25)	9110	7,964	12,275	57 47
			, ,	$(NO_2 + N_2O_4)$	ŕ	•	
N2O4.	261 90	3502	294 25	9110	2,239	23,440	72.73
N2O5.			305.5	13,800	700(g)	_	
NO ₃ .			(subl. point)		-13,100(s) 13,000(?)		

The heat, energy, and entropy values are for one mole of the compound in question.

N_2O

The infrared absorption spectrum of nitrous oxide can be interpreted satisfactorily only on the assumption that the molecule is linear with the two nitrogen atoms adjacent to each other, NNO [Plyler and Barker, Phys. Rev., 41, 369 (1932)]. The N-N and N-O distances are not accurately known, but the moment of inertia of the molecule as obtained from the rotational lines of its spectrum has been established as $I = 66.0 \times 10^{-40} \,\mathrm{g} \,\mathrm{cm}^2$. The vibrational energy states of N₂O are given by

the experimentally established formula

$$\epsilon_{vib./hc} = 1288.7v_1 + 588.3v_2 + 2237.9v_3 - 3.3v_1^2 - 2.2v_2^2 - 13.8v_3^2 - 10v_1v_2 - 26v_1v_3 - 13.5v_2v_3 + 3.0l^2$$

where v_1 , v_2 , and v_3 are the ordinary vibrational quantum numbers and

l must assume only even integral values less than or equal to v_2 . The four quantum numbers v_1 , v_2 , v_3 , and l are required because the molecule is linear. For a nonlinear triatomic molecule like NO₂ or SO₂, there are only three fundamental frequencies of vibration; but for a linear triatomic molecule there are four, two of which have the same frequency (degenerate).

Fig. 2. The Molecular Structure of N₂O. N—N ≅ 1.12Å; N—O ≅ 1.19A. [Schomaker and Spurr, J. Am. Chem. Soc., 64, 1184 (1942).]

The vapor pressures of the solid and liquid are given by the semiempirical equations

Solid:

$$\log_{10} p_{\rm cm} = -\frac{1286}{T} + 9.13061 - 0.0014038T$$

Liquid:

$$\log_{10} p_{\text{cm}} = -\frac{893.56}{T} + 6.72158$$
 (182.26 - 185.85°K)

Heat Capacities (Molal) (cal/deg.)

<i>T</i> (°K)	20	50	100	150	180	185
C_P	1.51	6.52	9.90	12.19	13.98	18.57 (liq.)

The entropy of $N_2O(g)$ can be calculated from spectroscopic data and has also been carefully determined from heat-capacity measurements [Badger and Woo, J. Am. Chem. Soc., **54**, 3523 (1932); Blue and Giauque, J. Am. Chem. Soc., **57**, 991 (1935)]. The results are, in cal/deg mole:

	Spectroscopic Data	Heat-Capacity Measurements	Diff.
S 298	52.581	51.44	1.14

The difference is explained in terms of the randomness of orientation of the N₂O molecule in the crystal at low temperatures. If this ran-

domness were such that the molecules did not differentiate between the orientation NNO and ONN, then the experimentally found value of S_{298}° would be too small by the amount $R \log_{\bullet} 2 = 1.38$ cal/deg. This is not much larger than the 1.14 cal/deg shown above. It is presumed that some randomness of orientations exists but that it is not complete.

No equilibrium measurements involving the formation of nitrous oxide have been made. All known reactions in which it enters are either

Fig. 3. The Effect of Pressure on the Thermal Decomposition of Nitrous Oxide.

irreversible or hopelessly complicated. By using the observed ΔH° and the ΔS° obtained by application of the third law of thermodynamics, it is possible to calculate an accurate value of ΔF°_{298} of formation, namely, the value 24,930 cal, shown in Table 5.

In recent years added interest has been shown in the imperfections of gases both for the purposes of applied thermodynamics and for their theoretical interest. The values of the second virial coefficient B (in PV = RT + BP) for N₂O have been carefully determined [Johnston and Weimer, J. Am. Chem. Soc., 56, 625 (1934)] and, expressed empirically, are, in cm³/mole,

$$B = 32 - \frac{5611.5}{T} + 3.9424 \times \frac{10^6}{T^2} - 3.9145 \times \frac{10^{11}}{T^4} + 3.0747 \times \frac{10^{15}}{T^6}$$

The rate of thermal decomposition of N₂O into N₂ and O₂ has been studied in the temperature range 565° to 850°C and over a large range of

pressures. The results of several investigators are shown in Fig. 3 [Hinshelwood and Burk, *Proc. Roy. Soc.*, **106**, 284 (1924); Hunter, *ibid.*, **144**, 386 (1934)]. The form of the curve is rather complex and it is improbable that the whole pressure range can be represented by any expression with a single set of constants (see Hinshelwood, *The Kinetics of Chemical Change*, p. 131, Oxford University Press, 1940).

NO

Nitric oxide gas is paramagnetic, the molal susceptibility in egs units and gauss being 1.46×10^{-2} at 20° C [Bauer and Picard, $J.\ de\ Phys.$, 1, 97 (1920); Sone, $Sci.\ Rep.\ Tohoku\ Univ.$, 11, (3), 139 (1922); see also Van Vleck, $Phys.\ Rev.$, 31, 587 (1928)]. In terms of $\mu = (3\chi_m RT/(N_0)^2)^{\frac{14}{3}}$, where χ_m is the molal susceptibility, N_0 is Avogadro's number, and μ is the magnetic moment in Bohr magnetons, the following values for NO have been obtained experimentally. The μ (calc.) values were obtained by use of the theory to be discussed below.

T(°K)	μ (obs.)	μ (calc.)	T(°K)	μ (obs.)	μ (calc.)
112.8	1.535	1.546	216 0	1.768	1.771
157.2	1.679	1.678	250.6	1.807	1.807
178.0	1.713	1.718	296.0	1 837	1 837

[See Bitter, Proc. Nat. Acad., 15, 638 (1929); Aharoni and Sherrer, Z. Physik, 58, 749 (1929); Wiersma, deHaas, and Capel, Comm. Leiden, 212b.] The observed values of μ are not constant, as they would be if the electronic state of the molecule did not vary with the temperature. The results of both the magnetic measurements and the absorption spectrum of NO [Jenkins, Barton, and Mulliken, Phys. Rev., 30, 150 (1927); Gillette and Eyster, Phys. Rev., 56, 1113 (1939)] are explained as follows:

The lowest or ground state of the nitric oxide molecule has a resultant angular momentum due to the combined spin and orbital momenta of the odd valence electron (5+6=11). In this ground state, the electron spin momentum of $\frac{1}{2}$ opposes the orbital momentum of 1, so that the resultant is $1-\frac{1}{2}=\frac{1}{2}$. Such a state is given the designation $^{2}\Pi_{14}$. It is comparatively easy to excite the molecule to another higher electronic state in which the spin and orbital momenta add to give a resultant of $1+\frac{1}{2}=\frac{3}{2}$. This state is designated by $^{2}\Pi_{14}$; the energy difference Δ_{ϵ} between the $^{2}\Pi_{14}$ and $^{2}\Pi_{14}$ states is 124.2 cm⁻¹ or about 352 cal/mole. At very low temperatures all of the molecules are in the $^{2}\Pi_{14}$

state; at 121.36°K, 82.3% and at 298°K, 34.5% of the molecules are in this lower $^{2}\Pi_{14}$ state.

The resultant magnetic moment of the molecule in the ${}^2\Pi_{34}$ state is zero while that in the ${}^2\Pi_{34}$ state corresponds to two Bohr magnetons. Consequently, at very low temperatures $\mu=0$ and at very high temperatures $\mu=2$. At intermediate temperatures the values of μ will lie between these two extremes, and the table shows this to be the case experimentally. It is evident that to calculate the susceptibility χ_m or the magnetic moment μ one must make use of the distribution law, and this has been done by Van Vleck [Electric and Magnetic Susceptibilities, Oxford University Press, 1932, p. 269], who finds that

$$\mu = 2 \left\{ \frac{1 - e^{-x} + xe^{-x}}{x + xe^{-x}} \right\}^{1/2}$$
$$x = \frac{\Delta \epsilon}{kT}.$$

The calculated values of μ are shown in the table under μ (calc.); the agreement with experiment is excellent.

There is another interesting property of the NO molecules. The resultant (spin + orbital) electronic angular momentum vector Ω of the odd electron may be directed in one of two directions parallel to the line joining the nuclei. Whether Ω is directed toward the nitrogen atom or toward the oxygen atom might appear, at first sight, to make no difference in energy between the two states, but application of the quantum theory shows that the energies will be different. As a matter of fact, the energy difference is very small for nitric oxide, but it is nevertheless observable, some absorption bands exhibiting a doubling (λ -type doubling).

There are, then, two types of doubling in the nitric oxide molecule, namely, that corresponding to the two electronic states, ${}^{2}\Pi_{14}$ and ${}^{2}\Pi_{34}$, and that known as λ -type doubling. The effect of the λ doubling is, for all ordinary chemical purposes, to introduce an additional weight of 2 in the Boltzman factors, and in entropy calculations this results in an additive term $R \log_{\bullet} 2$ [Johnston and Chapman, J. Am. Chem. Soc., 55, 153 (1933)].

We may next enquire about the rotation states of the molecule as a whole. If **N** is the vector corresponding to the angular momentum of the rotating nuclei, N—O, then the resultant angular momentum will be the quantum theoretical vector sum, **J**, of **N** and Ω . If $\mathbf{J} = \Omega + \mathbf{N}$, then $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2} \cdot \cdot \cdot \cdot$ for the ${}^{2}\Pi_{1/2}$ state and $J = \frac{3}{2}, \frac{5}{2}, \frac{7}{2} \cdot \cdot \cdot \cdot$ for the ${}^{2}\Pi_{1/2}$ state. It is only **J** that is quantized, not **N**. Ω is directed along the figure axis of the molecule when **N** is not large, but for large **N** the electron spin aligns itself with the vector sum of the electronic orbital momentum

L and N; this fact may be looked upon as the result of the magnetic field produced by the rotating nuclei and their electrons, which produce for large N a greater interaction with the electron spin vector S than the field due to the electrons. The least value of J is $\frac{1}{2}$ (${}^{2}\Pi_{\frac{1}{2}}$ state) or $\frac{3}{2}$ (${}^{2}\Pi_{\frac{1}{2}}$ state), and the weight factors are 2J+1.

The vibrational and rotational energy levels of nitric oxide are given by the following formulas which express the results of experiment [Gillette and Eyster, *Phys. Rev.*, **56**, 1113 (1939)].

$$\epsilon_{i}(J, v) = \epsilon_{c} + G_{i}(v) + B_{v} \left\{ (J + \frac{1}{2})^{2} - 1 + (-1)^{i} \right.$$

$$\left. \left[(J + \frac{1}{2})^{2} - \frac{A}{B_{v}} + \frac{A^{2}}{4B_{v}} \right]^{1/2} \right\} + D_{v}J^{2}(J + 1)^{2}$$

$$G_{i}(v) = \omega_{ci}(v + \frac{1}{2}) - \omega_{c}x_{c}(v + \frac{1}{2})^{2} + \omega_{c}y_{c}(v + \frac{1}{2})^{3}$$

$$B_{v} = B_{e} - \alpha(v + \frac{1}{2})$$

$$i = 1 \text{ for } {}^{2}\Pi_{1/2} \text{ state}; \qquad i = 2 \text{ for } {}^{2}\Pi_{3/2} \text{ state}$$

$$\omega_{c1} = 1904.03 \text{ cm}^{-1} \qquad B_{e} = 1.7046 \text{ cm}^{-1}$$

$$\omega_{c2} = 1903.68 \text{ cm}^{-1} \qquad \alpha = 0.0178 \text{ cm}^{-1}$$

$$\omega_{c}x_{e} = 13.97 \text{ cm}^{-1} \qquad I_{e} = 16.423 \times 10^{-40} \text{ g cm}^{2}$$

$$\omega_{c}y_{r} = -0.00120 \text{ cm}^{-1} \qquad r_{e} = 1.1508 \text{ Å}$$

$$A = 124.2 \text{ cm}^{-1} \qquad D_{0} = -5 \times 10^{-6} \text{ cm}^{-1}$$

$$A \text{ is the separation of the } {}^{2}\Pi_{1/2} \text{ states}.$$

The molecular constants and energy states of NO as derived from spectroscopic measurements have been employed in the calculation of entropies and free energies. A summary of the results of the calculations and experiments are shown in Table 6 [see Johnston and Giauque, J. Am. Chem. Soc., 51, 3194 (1929); Nernst, Z. anorg. Chem., 49, 213 (1906)].

It will be noted that the experimental and calculated values of S° differ by 0.75 cal/deg. This is, within the experimental error, equal to $\frac{1}{2}R$ log_e 2, namely, 0.69. The difference is explained by assuming that in the solid form nitric oxide is present as double molecules N_2O_2 , and further that there is a limited randomness in orientation of these molecules in the crystals. If the randomness is of only a twofold nature—that is, if the N_2O_2 molecules fail to differentiate only between the N_2O_2 and O_2N_2 orientations—then, since one mole of NO corresponds to $\frac{1}{2}$ mole of N_2O_2 , the experimental S° (NO) will be too small by

$$\frac{1}{2}R \log_{e} 2 = 0.69$$

This compares well with the 0.75 cal/deg found. Further evidence for the dimeric form of solid nitric oxide is provided by the fact that the solid is diamagnetic.

The second virial coefficient, B (in PV = RT + BP), for NO has been accurately determined by Johnston and Weimer [J. Am. Chem. Soc., 56,

Ch. 11

TABLE 6 THE PHYSICAL AND MOLAL THERMODYNAMIC PROPERTIES OF NO $(0^{\circ}C = 273.1^{\circ}K)$

Vapor Pressure

Solid, $\log_{10} p_{\text{om}} = -867/T + 0.00076T + 9.05125$ Liquid, $\log_{10} p_{\text{om}} = -776/T - 0.002364T + 8.562128$ Melting point, 109.49°K Boiling point, 121.36°K $\Delta II_{109,49}$ (fusion) = 549.5 cal $\Delta II_{121,36}$ (vaporization) = 3292.6 cal

Heat Capacities, Solid and Liquid

S	olid	Liquid		
T(°K)	C_P (cal/deg)	T(°K)	C_P (cal/deg)	
19.51 39.20 62.32 88.96 102.55	1.590 4.060 6 016 7.795 8.713	112.81 115 79 120 56	16.067 16.915 18.667	

Entropy of Gas at 1 atm (calc.)

T(°K)	S° (cal/deg)	T(°K)	S° (cal/deg)
1	10.62	500	54.06
10	25 48	1000	59.39
50	36.90	2000	65.28
298.1	50.35	5000	73.53

<i>T</i> (°K)	S° (calc.)	S° (obs.)		
121.36	43.75	43.0		
298.1	50.35	49.60		

 $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) = NO(g); \Delta H_{298}^{\circ} = 21,500 \text{ cal}; \Delta F_{298}^{\circ} = 20,650 \text{ cal};$ $K = P_{\rm NO}/P^{\frac{1}{2}}_{\rm N_2}P^{\frac{1}{2}}_{\rm O_2}$

T(°K)	K (calc.)	K (obs.)	T(°K)	K (calc.)	K (obs.)
298.1 1000 1500 1811 2033	$7.26 \times 10^{-16} 8.86 \times 10^{-5} 3.30 \times 10^{-3} 1.14 \times 10^{-2} 2.21 \times 10^{-3}$	$ \begin{array}{c} -\\ -\\ 0.93 \times 10^{-2}\\ 1.6 \times 10^{-2} \end{array} $	2675 3000 3500 4000 5000	7.98×10^{-2} 1.24×10^{-1} 2.09×10^{-1} 3.07×10^{-1} 5.26×10^{-1}	5.8 × 10 ⁻²

625 (1934)] and is given in cm³/mole, as a function of the temperature, by

$$B = 20 + \frac{5881.5}{T} - 5.7639 \times \frac{10^6}{T^2} + 8.4301 \times \frac{10^{10}}{T^4} - 9.2783 \times \frac{10^{14}}{T^6}$$

Nitric oxide reacts with hydrogen at a measurable rate in the temperature range 900-1100°K. The reaction is homogeneous in quartz vessels and at pressures above 400 mm, and it is of the third order

Fig. 4. The Thermal Rate of Reaction Between Nitric Oxide and Hydrogen. $-d(NO)/dt = 2k(NO)^2(H_2)$.

[Hinshelwood and Green, J. Chem. Soc., 129, 730 (1926)].

$$2\text{NO} + 2\text{H}_2 = \text{N}_2 + 2\text{H}_2\text{O}$$

 $-\frac{d(\text{NO})}{dt} = k(\text{NO})^2(\text{H}_2)$

The rate constants are shown plotted in Fig. 4, and are given in cc² mole⁻² sec⁻¹ by the empirical equation

$$\log_{10} k = -\frac{38689.5}{T} - 66.37 \log T + 245.410$$

N_2O_3

The instability of N₂O₃ has made it not feasible to investigate

its properties as thoroughly as those of other oxides of nitrogen. The equilibrium $N_2O_3(g) = NO_2(g) + NO(g)$ has been studied by Verhoek and Daniels [J. Am. Chem. Soc., 53, 1250 (1931)] with the following results. Corrections for the N_2O_4 present were, of course, necessary.

$$K = \frac{P_{\text{NO}_{i}}P_{\text{NO}_{i}}}{P_{\text{N}_{2}\text{O}_{i}}}$$

$$25^{\circ} K_{P \text{ atm}} = 2.105 - 45.63C_{\text{N}^{\circ}\text{O}_{i}}^{\circ} \qquad \Delta F_{298}^{\circ} = -441 \text{ cal}$$

$$35^{\circ} K_{P \text{ atm}} = 3.673 - 78.11C_{\text{N}^{\circ}\text{O}_{i}}^{\circ} \qquad \Delta F_{308}^{\circ} = -796 \text{ cal}$$

$$45^{\circ} K_{P \text{ atm}} = 6.880 - 196.4C_{\text{N}^{\circ}\text{O}_{i}}^{\circ} \qquad \Delta F_{318}^{\circ} = -1218 \text{ cal}$$

$$\Delta H^{\circ} = 10,300 \text{ cal}$$

$$N_{2} + \frac{3}{2}O_{2} = N_{2}O_{3} \quad \Delta F_{298}^{\circ} = 33,805 \text{ cal}$$

 $C_{N_2O_3}^{\circ} = \text{Concentration in mole/liter of N}_2O_3 \text{ if none had decomposed.}$ (Boiling point N}_2O_3(1), 3.5°; melting point, -103°.)

That the values of K_P show a dependence on the pressure through the factor $C_{N:0}^{\circ}$ arises from the fact that the gases in equilibrium are not perfect. The boiling and melting points given for the blue liquid and solid are very approximate; the liquid doubtless contains dissolved NO and NO₂.

NO₂

Nitrogen dioxide gas is paramagnetic, and the measured susceptibility corresponds to one (the odd) electron spin; that is to say, only an electron spin moment contributes to the magnetic moment of the molecule. The ground state of the molecule is accordingly designated by $^2\Sigma$. There is no effect due to a resultant orbital moment, since this, unlike that in NO, has been somehow destroyed by the additional oxygen atom. This is expressed by saying $S = J = \frac{1}{2}$, L = 0. Accordingly, the g-factor,

$$g = 1 + \frac{S(S+1) + J(J+1) - L(L+1)}{2J(J+1)}$$

is equal to 2 and

$$\chi_m = \frac{(N\mu_0)^2 S(S+1)4}{3RT} + N\alpha$$

where $N\alpha$ is a small, negative correction term that accounts for the diamagnetism. Since oxygen is also paramagnetic $(S = 2 \times \frac{1}{2} = 1 = J)$, it is found convenient to use it as a standard in measurements on gases. It is found experimentally [Havens, *Phys. Rev.*, 41, 337 (1932)] that

$$\frac{\chi_m(NO_2)}{\chi_m(O_2)} = 0.390, \qquad \chi_m(O_2) = \frac{1.0}{T}$$

Theory gives a ratio of 0.375. The agreement is quite satisfactory and justifies the assumption that for NO_2 , $S = J = \frac{1}{2}$. In the lowest rotational, vibrational, and electronic state of the NO_2 molecule, there still remains the spin momentum $S = \frac{1}{2}$, and the weight of this state will be 2S + 1 = 2. At the lowest temperatures at which heat capacities are ordinarily measured, namely 13°K, the degeneracy of the $^2\Sigma$ state will not be removed, and to the measured entropy the amount $R \log_e 2$ will have to be added to bring accord with the value calculated from molecular data.

The fundamental vibrational frequencies of NO_2 are $\omega_1 = 641$, $\omega_2 = 1373$, and $\omega_3 = 1615$ cm⁻¹, and none of these is degenerate. The molecule is triangular in shape, but the exact determination of its structure has been a difficult problem. By combining the results of thermal and equilibrium measurements with spectroscopic data, the product of the moments of inertia has been evaluated, $I_1I_2I_3 = 1.44 \times 10^{-116} \, \mathrm{g}^3 \, \mathrm{cm}^6$ [Giauque and Kemp, J. Chem. Phys., 6, 40 (1938)]. The most probable structure is N—O distance 1.21 Å, and angle O—N—O 141° [recalculation by R. A. Spurr, using the radial distribution method, from electron-diffraction data of Maxwell and Mosley, J. Chem. Phys., 8, 738 (1940)].

As noted above, nitrogen dioxide at ordinary temperatures always contains some N_2O_4 in equilibrium with the NO_2 . This fact renders the

treatment of thermodynamic data more complicated than is the case with the other substances discussed so far. The following data for the solid, liquid, and vapor refer to the mixture.

TABLE 7 THE PHYSICAL AND MOLAL THERMODYNAMIC PROPERTIES OF NITROGEN DIOXIDE (0°C = 273.1°K)

Vapor Pressure

Solid, $\log_{10} p_{\text{em}} = -2460.000/T + 9.58149 + 7.61700 \times 10^{-3}T - 1.51335 \times 10^{-5}T^2$ Liquid, $\log_{10} p_{\text{em}} = -1753.000/T + 9.00436 - 11.8078 \times 10^{-4}T + 2.0954 \times 10^{-6}T^2$ Melting point = 261.90°K Boiling point = 294.25°K

Heat Capacities

Solid				Liquid	
T(°K)	C _P (cal/deg)	T(°K)	C _P (cal/deg)	T(°K)	C _P (cal/deg)
20 50 100	2 03 8.70 14.51	150 200 250	18.36 21.92 25.63	270 280 290	32.93 33.28 33.71

$$\begin{array}{ll} \Delta II \; ({\rm fusion}) = 3502 \; {\rm cal} & \Delta II \; ({\rm evaporation}) = 9110 \; {\rm cal} \; {\rm at \; b.p.} \\ S_{298.1}^o \; ({\rm equil. \; mixture \; at \; 1 \; atm \; pressure}) = 80.62 \; {\rm cal/deg} \\ S_{298.1}^o \; ({\rm NO_2 \; gas}) = 57.47 \; {\rm cal/deg} & S_{298}^o \; ({\rm N_2O_4(g)}) = 72.73 \; {\rm cal/deg} \end{array}$$

The equilibrium constants of the reaction $N_2O_4 = 2NO_2$ have been measured by several experimenters. The results of Verhoek and Daniels [J. Am. Chem. Soc., 53, 1250 (1931)] appear to be the most accurate.

$$K_{\text{atm}} = \frac{P_{\text{NO}_2}^2}{P_{\text{NsO}_4}}$$

$$25^{\circ} \quad K_{\text{atm}} = 0.1426 - 0.7588 C_{\text{NsO}_4}^{\circ}$$

$$35^{\circ} \quad K_{\text{atm}} = 0.3183 - 1.591 C_{\text{NsO}_4}^{\circ}$$

$$45^{\circ} \quad K_{\text{atm}} = 0.6706 - 3.382 C_{\text{NsO}_4}^{\circ}$$

$$\Delta H^{\circ} = 14,600 \text{ cal} \qquad \Delta F_{298}^{\circ} = 1154 \text{ cal}$$

where $C_{N_1O_4}^{\circ}$ is the concentration of N_2O_4 in moles per liter that would be present if all NO_2 were in that form. The additive term $C_{N_1O_4}^{\circ}$ arises from the fact that the gases NO_2 and N_2O_4 are not perfect. When the results of several investigators are taken together, $\Delta H_{298}^{\circ} = 13,693$ cal and $\Delta F_{298}^{\circ} = 1,110$ cal, for the reaction written $N_2O_4(g) = 2NO_2(g)$, with all energy quantities corrected to those for the hypothetical perfect gas state.

There remains to be discussed the moderately slow, reversible reaction

$$NO_2 = NO + \frac{1}{2}O_2$$

taking place in the gas phase. The results of Bodenstein and Linder

[Z. phys. Chem. 100, 82 (1922)], as recalculated by Giauque and Kemp, are as follows:

Table 8 EXPERIMENTAL EQUILIBRIUM CONSTANTS FOR THE REACTION $NO_2(g) = NO(g) + \frac{1}{2}O_2(g)$

T'(°K)	$K_{\text{atm}} = \frac{P_{\text{NO}} P_{\text{O}^2}^{1/2}}{P_{\text{NO}_3}}$					
298.1 400 450 500 600 700 800 900	$ \begin{vmatrix} 7 & 229 \times 10^{-7} \\ 2 & 534 \times 10^{-4} \\ 1 & 384 \times 10^{-3} \\ 8 & 006 \times 10^{-3} \\ 8 & 082 \times 10^{-2} \\ 4 & 220 \times 10^{-1} \\ 1 & 469 \\ 3 & 870 \end{vmatrix} $ Extrapolated Values					

It is evident from these equilibrium constants that NO₂ is extensively decomposed, at ordinary pressures, at 900°K; at room temperature the decomposition is slight.

The vibrational levels of N_2O_4 have been studied by Sutherland [*Proc. Roy. Soc.*, **141A**, **342** (1933)] and have the following fundamental frequencies:

When all of the thermodynamic and spectroscopic data are combined, the entropies of NO_2 and N_2O_4 , as well as the products of the moments of inertia of these molecules, are calculable. The results indicate, but do not prove, that the N_2O_4 molecule has a symmetrical planar structure

The rate of combination of NO and O₂ is measurable, and the reaction proves to be one of the third order. Investigations of the reverse reaction show it to be of the second order.

$$2NO + O_2 = 2NO_2$$

$$\frac{d(NO_2)}{dt} = k_t(NO)^2(O_2) \qquad \text{(formation)}$$

$$-\frac{d(NO_2)}{dt} = k_d(NO_2)^2 \qquad \text{(decomposition)}$$

The values of k_t and k_d are shown in the following table [Bodenstein, Z. phys. Chem., 100, 68 (1922); Breiner, Pfeiffer, and Malet, J. chim. phys., 21, 25 (1924)].

T(°K)	$k_t \times 10^{-9}$ cm ⁶ mole ⁻² sec ⁻¹	T(°K)	k _d cm³ mole ^{−1} sec ^{−1}
273.1	7.88	592	498
333.2	5.58	603.5	775
470.0	3.34	627	1810
563.6	2.82	651.5	4110
661.9	2.54	656	4740

Aside from being one of the few known third-order gas reactions, it is also one whose rate decreases with increase in temperature. In Fig. 5 is shown a function of the rate constants k plotted against 1000/T.

The rapidity and reversibility of the reaction

$$2\mathrm{NO}_2(g) = \mathrm{N}_2\mathrm{O}_4(g)$$

have been noted above. The equilibrium states can be determined without great difficulty, but the rate of the reaction is so rapid that accurate measurements have not been possible. Historically, the importance of this reaction depended on the possibility that its rate might be greater than the rate of activation of the N₂O₄ molecules by any known There are reactions which are doubtless as rapid as this mechanism. one but which do not appear to be so convenient to study experimentally. Two methods have been used in the measurements; in one of these, the velocity of sound as a function of the frequency is measured and the theory of the effect as given by Einstein is applied to the results [Einstein, Sitzb. Berl. Acad., 380 (1920)]. According to this theory, the velocity of sound should increase when the frequency of the compressional sound waves reaches or exceeds such a magnitude that equilibrium is not attained during a quarter-cycle. It turns out, however, that a variety of factors prevent the theory from being reliably applicable to experimental results, not the least being the failure of some of the internal energy states of the molecules to adjust themselves to the temperature changes occurring during the very rapid adiabatic compressions and expansions arising when sound traverses a gas [see Kistiakowsky and Richards, J. Am. Chem. Soc., 52, 4661 (1930); Richards and Reid, J. Chem. Phys., 1, 737 (1933)]. The results of experiment show that there is no change in the velocity of sound through NO2-N2O4 mixtures at frequencies ranging as high as 80,000 cycles/sec. In the second method the gas is expanded through small holes in a platinum diaphragm into a long tube and allowed finally to condense in a liquid air trap. Small Ch. 1]

thermocouples placed at intervals along the long tube serve to determine the temperature of the gas; the temperature decreases until the dissociation of the N_2O_4 is complete. Since the heat of the reaction N_2O_4 = $2NO_2$ is appreciable, 14,000 cal, the temperature drop is much greater than that corresponding to the Joule-Thomson effect. The results, while subject to some uncertainty, doubtless give the order of magnitude

Fig. 5. The Thermal Decomposition and Formation of Gaseous Nitrogen Dioxide. $-d(O_2)/dt = k_f(O_2)(NO)^2$; $-d(NO_2)/dt = k_d(NO_2)^2$.

of the rate of decomposition of N_2O_4 [Brass and Tolman, J. Am. Chem. Soc., **54**, 1003 (1932)].

$$-\frac{d(N_2O_4)}{dt} = k(N_2O_4)$$

$$k = 15 \text{ sec}^{-1} \text{ at } \approx -15^{\circ};$$

$$k \approx 6 \times 10^4 \text{ sec}^{-1} \text{ (calc.) at } 25^{\circ}.$$

This rate is appreciably less than the rates of activation by collision as calculated from the accepted theories. Nitrogen tetroxide is not, therefore, a substance whose rate of decomposition cannot be adequately explained by molecular collision theories.

N_2O_5

Nitrogen pentoxide is a white, volatile, crystalline solid at room temperatures. The following table of vapor pressures shows that even

at room temperatures the substance is near the sublimation point [Daniels and Bright, J. Am. Chem. Soc., 42, 1131 (1920)].

TABLE 9
THE VAPOR PRESSURES OF NITROGEN PENTOXIDE $[N_2O_5(s) = N_2O_5(g)]$

<i>T</i> (°K)	$p_{ m mm}$	T(°K)	$p_{ m mm}$	T(°K)	$p_{ m mm}$
243.0	3	273.0	51	293.0	279
263.0	21	283 0	118	305.5	760

$$\log_{10} p_{\text{mm}} = \frac{1244}{T} + 34.1 \log_{10} T - 85.929$$

$$\Delta H^{\circ} = 13,800 \text{ cal} \qquad \Delta F^{\circ}_{298} = 32 \text{ cal} \qquad \Delta F^{\circ}_{T} = 13,800 - 45.22T$$

Nitrogen pentoxide is an unstable substance, and even at room tem-

perature the gas decomposes slowly into NO₂ and O₂.

$$N_2O_5(g) = 2NO_2 + \frac{1}{2}O_2$$
In spite of the fact that two molecules Nof ${}_2O_5$ are required to yield one of O_2 ,

$$-\frac{d(\mathrm{N_2O_5})}{dt} = k(\mathrm{N_2O_5})$$

the decomposition rate is first-order.

The vapor pressures given in the table have been corrected for the decomposition taking place during the measurements. The rate of decomposition has been studied repeatedly and it has played an important role in the theories of reaction rates. The reason for this is that the reaction is a homogeneous one, and the rate constants are independent of the pressure even when this is as low as 0.01 mm. At still lower pressures, the constants show a decrease. In Fig. 6 are shown $\log_{10} k$ plotted against 1000/T for measurements made at low-to-

Fig. 6. The Thermal Decomposition of Nitrogen Pentoxide at Normal and Very Low Pressures. $-d(N_2O_5)/dt = k_d$ (N_2O_5). The total initial pressures at the points designated by the small circles are, in descending order: 0.0470, .0142, .0056, .0085, .0073 mm.

moderate pressures, 0.01 mm to 760 mm, by a number of investigators [see, for example, Hodges and Linhorst, Proc. Natl. Acad. Sci., 17, 28 (1931); Schumacher and Sprenger, ibid., 16, 129 (1930); Ramsperger and Tolman, ibid., 16, 6 (1930); Daniels, Wulf and Karrer, J. Am. Chem. Soc., 44, 2402 (1922)]. It does not seem possible that the slow step in the

reaction is $N_2O_5 = 2NO_2 + O - 61,000$ cal, since this would require the absorption of much more energy than is available. A more reasonable mechanism and the one ordinarily proposed is

$$N_2O_5 = N_2O_3 + O_2$$
 (slow)
 $N_2O_3 = NO + NO_2$ (rapid)
 $N_2O_5 + NO = 3NO_2$ (rapid)

It has been shown by Busse and Daniels that the rate of oxidation of NO by N_2O_5 is very rapid [J. Am. Chem. Soc., 49, 1257 (1927)].

We have already remarked that ozone oxidizes NO_2 to N_2O_5 rapidly and completely. It would appear at first sight that in a mixture of N_2O_5 and O_3 at room temperatures, the ozone would disappear at a rate

dependent only on the pressure of N_2O_5 , since ozone itself decomposes only very slowly at room temperatures. It is found, however, that the ozone is catalytically decomposed by the lower oxides of nitrogen, and consequently the rate of oxygen formation is more rapid than that found for the decomposition of N_2O_5 alone. The

t(°C)	k in (cm³ mole ⁻¹) ^{1/3} sec ⁻¹
20	0.0245
25	.0420
35	.135
36	.145

values of k are shown in the accompanying tabulation; the rate equation is

$$-\frac{d(O_3)}{dt} = 2k(N_2O_5)^{3/3}(O_3)^{3/3}$$

The mechanism suggested for the reaction is

$$\begin{array}{c} N_2O_5 = N_2O_3 + O_2 = NO + NO_2 + O_2 & \text{(slow)} \\ N_2O_3 + N_2O_5 = 4NO_2 & \text{(rapid)} \\ N_2O_3 + O_3 = 2NO_2 + O_2 & \text{(rapid)} \\ NO_2 + O_3 = NO_3 + O_2 & \text{(rapid)} \\ NO_3 + NO_3 = 2NO_2 + O_2 & \text{(rapid)} \\ NO_3 + NO_2 = N_2O_5 & \text{(rapid)} \end{array}$$

although it is not free from criticism. It postulates the existence of the compound NO₃, to which reference has already been made [White and Tolman, J. Am. Chem. Soc., 47, 1240 (1925); Schumacher and Sprenger, Z. phys. Chem., 2B, 267 (1929); Nordberg, Science, 70, 580 (1929)].

The Sulfides of Nitrogen

There are two or possibly three well-defined sulfides of nitrogen:

NS₂ (Red liquid. Nitrogen disulfide.)

N₄S₄ (Yellow or orange-yellow solid. Nitrogen tetrasulfide.)

N₂S₅ (Red liquid, steel-gray solid below 10°, the m.p. Nitrogen pentasulfide.)

The first of these has been prepared only in small amounts and has not been extensively investigated [Usher, J. Chem. Soc., 127, 730 (1925)].

N₄S₄

The most important of this group of compounds is nitrogen tetrasulfide. It may be prepared in several ways, of which the two following give the best yields. (1) Dry ammonia diluted with air is passed through an ice-cold mixture of SCl₂ (250 g) and benzene (2 liters). The mixture becomes completely black in the course of about five minutes, and the fumes formed are first white, then violet, then brown, and

Fig. 7. The Sulfur-liquid Ammonia System. The lower curve shows the temperature at which crystallization begins; the solubility of sulfur in liquid ammonia is shown by the upper curve. The maximum in the freezing-point curve corresponds to S(NH₃)₅; the nearly constant solubility of sulfur with temperature indicates the existence of a compound S(NH₃)₃ [Ruff and Hecht].

finally yellow in color. The treatment with NH3 is continued at room temperature for 4 to 5 hours, when the mixture becomes chocolate-brown to orange-red in color. The precipitate of NH₄Cl, N₄S₄, and S which forms is filtered or pressed free from the solvent and is then extracted with successive portions of benzene or, better, with benzene in a Soxlet apparatus. Another method of treating the precipitate consists in mixing with distilled water to dissolve and remove the NH₄Cl and then dissolving the residue in CS₂. Crystallization from benzene or CS2 yields golden-yellow to orange-red crystals. The solvent separated from the original precipitate also contains an appreciable amount of recoverable N₄S₄ [Ruff and Geisel, Ber., 37, 1573 (1904); 38, 2659 (1905); Schenk, Ann., 290, 171 (1896); Francis and Davis, J. Chem. Soc., 85, 259 (1904)]. Purification of N₄S₄ is effected by recrystal-

lization from carbon disulfide solution; to remove free sulfur, the carbon disulfide solutions may be shaken with mercury. To obtain the purest product, the solid N_4S_4 is sublimed at 100° over silver gauze in an evacuated container. It has been found by Van Valkenburgh and Bailar [J. Am. Chem. Soc., 47, 2134 (1925)] that better yields (65%) are obtained by treating a mixture of S_2Cl_2 (5 cc) and ether (150 cc) with ammonia gas. The reactions of formation are, essentially,

$$5SCl_2 + 16NH_3 = N_4S_4 + 12NH_4Cl + S$$

 $6S_2Cl_2 + 16NH_3 = N_4S_4 + 12NH_4Cl + 8S$

(2) Sulfur dissolves slowly in liquid ammonia at -11.5° or higher to form electrically conducting solutions of N₄S₄, (NH₄)₂S, and (NH₄)₂S_z,

according to the reversible reactions

$$10S + 16NH_3(l) = N_4S_4 + 6(NH_4)_2S [in NH_3(l)]$$

$$(NH_4)_2S [in NH_3(l)] + XS = (NH_4)_2S_{x+1} [in NH_3(l)]$$

Equilibrium appears to be attained slowly between the dissolved substances, and the concentration of N_4S_4 at equilibrium appears to be much less than that of the dissolved sulfur. The solution of the sulfur is accompanied by changes in color: at 15° the first more dilute solutions are dirty green to green in color; and as the concentration of S increases, the color becomes first blue and finally red. The amount of sulfur that dissolves in $NH_3(l)$ depends on the temperature: at 70° the saturated

Fig. 8. The Light Transmission of Solutions Containing Both II₂S and N₄S₄ in Liquid Ammonia. The various maxima and minima may indicate the existence of a number of sulfur nitrogen compounds. The diagram also shows the colors of the solutions [Ruff and Hecht].

solution contains about 4% of sulfur; at 20°, it contains about 36%, and the solubility then varies but little with temperature, even down to -85°. At -84.6° the compound S(NH₃)₃ is present in the saturated solution; at -78.3° the freezing point of the solutions goes through a maximum when the ratio of S to NH₃ corresponds to S(NH₃)₆. The blue color of the dilute solutions mentioned above is ascribed to these addition compounds by some investigators [Ruff and Hecht, Z. anorg. Chem., 70, 49 (1911)]. In order to obtain the N₄S₄ formed in the above reversible reactions, it is necessary to remove the S⁻ or S⁻₂, and this is accomplished by adding AgI, which is very soluble in liquid ammonia, to the sulfur-ammonia solutions. After filtering, the filtrate is evaporated to obtain the N₄S₄ [Ruff and Geisel, Ber., 38, 2659 (1905); Bergstrom, J. Am. Chem. Soc., 48, 2319 (1926)].

It has been stated above that the reaction between S and NH₃(l) is reversible. This is confirmed by three facts, namely: on evaporating the solutions to dryness, practically pure sulfur is obtained as a residue; on treatment of the solutions with silver iodide and filtering off the Ag₂S, a yellow solution of N₄S₄ results; and if a liquid ammonia solution of N₄S₄ is treated with H₂S, solutions identical with those obtained on mixing S and NH₃(l) are obtained [Ruff and Hecht, *loc. cit.*]. The studies made by Ruff and Geisel on the S-NH₃ solutions were mainly physical-chemical in nature. Bergstrom attacked the problem from a purely chemical point of view and found, for example, that while solutions of N₄S₄ alone in NH₃(l) do not react with alkali cyanides to give thiocyanates, the solutions of S or S + (NH₄)₂S in NH₃(l) do yield KCNS when treated with KCN. These facts furnish added evidence for the existence of the reversible reactions written above.

Nitrogen tetrasulfide forms golden-yellow or orange-red monoclinic crystals which melt with some decomposition at about 179° and appear to boil at about the same temperature. The crystals may be sublimed in vacuum without difficulty; the sublimate has a specific gravity of 2.24 at 18° and an index of refraction of 2.046 to 1.908 for visible light. When struck, N₄S₄ will explode; it is because of this property that it is said to be dangerous to keep the solid in glass-stoppered bottles, since when the bottle is opened or closed the contents may explode. ever, it is also reported that the pure solid is nonexplosive except when heated to 195° [Arnold, Hugill, and Hutson, J. Chem. Soc., 1645 (1936)]. The formula N₄S₄ has been established by determinations of the freezingpoint lowering of its solutions in naphthalene and in benzene [Van Valkenburgh and Bailar, loc. cit.] and the boiling-point elevation of solutions in CS2, C6H6, and CHCl3. The tetrasulfide is not wetted by water and consequently reacts only slowly with this solvent. The products of the slow hydrolytic reaction with water alone are SO₃, S₅O₆, NH₄, and S, and the resulting solutions are neutral to methyl-red and methyl-orange. Constant shaking is necessary in order to effect appreciable reaction. About 23% of the sulfur from the N₄S₄ appears in the form of pentathionate ion, S₅O₆. The rate of hydrolysis of N₄S₄ is more rapid in alkaline solutions, the products being SO₃, S₂O₃, and small amounts of S- and possibly S₂O₅.

Nitrogen tetrasulfide dissolves in a number of organic solvents. The table on page 37 presents the solubilities in grams of N_4S_4 per liter of solution for three common solvents [Vosnessensky, J. Russ. Phys. Chem. Soc., 59, 221 (1927)].

In liquid ammonia at 100°, N_4S_4 forms, instead of the normal yellow or orange-red, bluish violet solutions; but on evaporation the residue is N_4S_4 and not some new compound. At ordinary or moderately low temperatures, 15° to -40°, the yellow to red liquid ammonia solutions

of N₄S₄ are converted, by gradual addition of H₂S, to solutions whose color varies from the original orange-red to green, then blue, and finally orange-red again. The blue color is most intense when the molal ratio of H₂S to N₄S₄ is about 6:1, and such a mixture corresponds in color and composition to that resulting from the solution of S alone in NH₃(l). The addition of H₂S to the N₄S₄ solutions reverses the reaction attending solution of sulfur.

Temp. (°C)	CS_2	C ₆ H ₆	C ₂ H ₅ OH
0	3.705 6 845 9.391 13.188 16 887	2 266 4 260 6 301 8 692 11 107 13 721 17 100	0.645 .830 1.050 1.271 1.478 1.640

With dry NH₃(g), N₄S₄ forms the addition compound N₄S₄·2NH₃; the vapor pressure of ammonia above this compound is appreciable and indicates that the absorption of ammonia takes place reversibly. Liquid ammonia solutions of N₄S₄ react with PbI₂ and other metallic salts to yield compounds such as PbN₂S₂·NH₃; when this compound is warmed, the NH₃ is driven off, and the resulting PbN₂S₂ formed explodes [Ruff and Geisel, *Ber.*, **37**, 1579 (1904)].

A suspension of N₄S₄ in CS₂ reacts with chlorine, the color of the mixture changing from orange-red to olive-green and finally to brownish red. On cooling the resulting solution, pale-yellow crystals of N₄S₄Cl₄ separate. The compounds N₄S₄Br₅ and N₄S₅Br₂ have also been reported.

When N_4S_4 is refluxed with four parts of acetyl chloride, CH_3COCl , the yellow compound N_3S_4Cl , thiotrithiazyl chloride, results. A solution of N_3S_4Cl in ice water yields a precipitate of N_3S_4I when treated with an ice-cold solution of potassium iodide. A solution of S_2Br_2 in CS_2 reacts with N_4S_4 to form the yellow N_3S_4Br . The nitrate, $N_3S_4NO_3$, bisulfate, $N_3S_4HSO_4$, and thiocyanate are also known. These compounds are almost salt-like in character; because of their interesting nature and properties, they deserve further study.

When N₄S₄ is treated with cold S₂Cl₂, a black, crystalline compound with a green luster is formed whose formula is N₄S₆Cl₂. Still another derivative of N₄S₄, namely, N₄S₄H₄, is formed when N₄S₄ is reduced in a benzene-alcohol mixture with SnCl₂. The N₄S₄H₄ decomposes, on heating to 100–145°, into S, N₄S₄, and NH₃; it is evidently the analogue of N₄S₄Cl₄ [see Meusen, *Ber.*, **62**, 1959 (1929)].

As remarked above, nitrogen tetrasulfide sublimes readily. If the vapors pass through quartz wool heated to 300° and are then allowed to

condense, N_4S_4 condenses first, and in the still cooler portions of the apparatus a compound is observed which is blue by transmitted light but bronze-colored by reflected light. This blue compound was shown by Burt [J. Chem. Soc., 97, 1171 (1910)] to have the empirical formula $(NS)_x$, and he believed it to be an isomer of N_4S_4 . Vosnessensky [J. Russ. Phys. Chem. Soc., 61, 1317 (1929)] is said to have proved that the blue or bronze-colored compound is not an isomer of N_4S_4 , but possibly a form of elementary sulfur. It is not so readily soluble in organic solvents as is the ordinary N_4S_4 .

The structure of N_4S_4 has recently been established by the electron diffraction method to be an eight-membered, cradle-shaped ring with $N-S=1.62\text{\AA}$, $S-S=2.69\text{\AA}$, $S-N-S=112^\circ$, and $N-S-N=106.^\circ$ This structure is consistent with the volatility of the substance and its ability to form addition compounds of the type N_4S_4 (l₄. [Lu and Donohue, J. Am. Chem. Soc., 66, 818(1944).]

The fact that KCN does not react with liquid ammonia solutions of N_4S_4 indicates that the sulfur atoms are not bonded to each other. The further fact that the compounds $N_4S_4Cl_4$ and $N_4S_4H_4$ are readily formed, with the Cl or H probably bonded to S atoms, provides some evidence for believing that four of the 44-valence electrons in N_4S_4 are more readily available for bond formation than the remaining 40. The ring structure proposed is in accord with the moderate volatility of the compound. Through resonance among several structures the four extra electrons could make for a structure which, on the average, would be symmetrical.

Nitrogen tetrasulfide is the analogue of NO; this compound in the solid state is diamagnetic and exists as N₂O₂, but there is no evidence for the existence of N₄O₄.

N₂S₅

This compound is obtained as a deep-red oil (specific gravity, 1.901 at 18°) when N_4S_4 (30 g) is heated for two hours at 100° with very pure CS_2 (500 cc). After cooling and filtering, the solvent is distilled off and the residue is digested with dry ether (500 cc) in which N_2S_5 is soluble. Any dissolved sulfur present in the ether is precipitated out by cooling to -25° and shaking for an hour. The sulfur is filtered off and the filtrate is allowed to evaporate in a moisture-free atmosphere. The dark-red oil that remains will solidify to a crystalline mass on cooling

to -15°. The crystals are steel-gray in color and resemble iodine in appearance; they melt at 10-11° to give the dark-red oil, and both the solid and liquid forms have a very strong and disagreeable odor [Murthmann and Clever, Z. anorg. Chem., 13, 200 (1897); Ber., 29, 340 (1896)]. On heating, the liquid slowly decomposes into nitrogen and sulfur. The compound is not soluble in water but decomposes in contact with it to ammonia and sulfur; in this respect it does not resemble its analogue N₂O₅, which dissolves in water to give nitric acid. Nitrogen pentasulfide is soluble to the extent of from 8 to 12% in CS₂ and from 2 to 3% in ether, but is difficultly soluble in benzene and alcohol. The solutions are stable in the dark but are decomposed by light [see also Van Valkenburgh and Bailar, J. Am. Chem. Soc., 47, 2134 (1925)]. It has been suggested by Usher that the red oil known as N₂S₅ may be a solution of sulfur in one of the lower sulfides.

When N_4S_4 in carbon disulfide solution is treated with NO_2 , the white, solid oxysulfide, $(NSO_4)_z$, results. $N_5S_6O_4$ (yellow) and $N_4S_5O_6$ (yellow) are also known [Murthmann and Clever, *loc. cit.*].

NS₂

If a mixture of N_4S_4 and sulfur is vaporized at 125°, a small amount of red liquid resembling liquid bromine in its intensity and shade of color collects on the cold walls of the distilling apparatus [Usher, J. Chem. Soc. 127, 730 (1925)]. The red liquid is moderately volatile and has a composition corresponding to NS_2 . It is readily soluble in benzene, chloroform, carbon disulfide, and ether, and at room temperatures it slowly decomposes into a mixture which has the appearance of solid N_4S_4 and sulfur. That the correct molecular formula is NS_2 seems doubtful; even NO_2 shows a marked tendency to polymerize, and in analogy with N_4S_4 one would expect NS_2 to have the formula N_2S_4 at the very least.

Another compound of nitrogen and sulfur having a composition corresponding to NS₂ has been described by Moldenhauer and Zimmerman [Ber., 62, 2390 (1929)] as resulting from the action of active nitrogen on sulfur. A silent electric discharge between aluminum electrodes is passed through nitrogen at pressures under 12 mm; the active nitrogen thus formed is allowed to react with the sulfur present in the discharge tube. For reaction the temperature of the sulfur is held at 80–90°. A black or blue-black substance having the odor of iodine collects on the walls of the reaction vessel. The solid is extracted with CS₂ to remove elementary sulfur. Further purification of the residue leads to a black solid having the composition NS₂. On heating in a dry, evacuated container it undergoes a change, without the formation of free nitrogen, to deep-brown fumes which condense to a red oil. The black or blue-black solid may be a polymerized form of the red NS₂ found by Usher.

Still another nitrogen sulfide is formed when N_4S_4 is passed over silver gauze at 125°. In the cooler parts of the vessel, a ruby-red liquid collects which, when warmed to 50° or kept for from one-half hour to two days at room temperature, becomes blue in color; this blue substance resembles that resulting from the vaporization of N_4S_4 through quartz wool heated to 300° [Usher, *loc. cit.*].

N₄Se₄

Nitrogen tetraselenide is formed when Se_2Cl_2 in CS_2 is treated with ammonia. In glacial acetic acid the molecular weight determined from freezing-point depressions is 341 to 357; the formula weight of N_4Se_4 , namely 373, is in accord with that found experimentally. Qualitatively the properties of N_4Se_4 recall those of N_4S_4 [see Van Valkenburgh and Bailar, loc. cit.].

CHAPTER 2

Nitrogen Oxyhalides and Oxyacids. The Fixation of Nitrogen

The Nitrogen Oxyhalides

Nitrosyl halides

Although nitrosyl fluoride, NOF, can be prepared by the direct combination of NO and F₂, nitrosyl chloride is the usual starting point in its preparation. The NOCl vapor is passed over dry AgF; the reaction is

$$NOCl(g) + AgF(s) = NOF(g) + AgCl(s)$$

Silver fluoride is frequently employed to replace combined chlorine or bromine by fluorine. Another convenient method for the preparation of NOF is by the decomposition of NOBF₄ with NaF [Baly and Mailander, Z. anorg. Chem., 217, 161 (1934)]. The nitrosylfluoborate can be prepared by saturating concentrated HBF₄ with N₂O₃.

$$2HBF_4 + N_2O_3 = 2NOBF_4 + H_2O$$

The NOBF₄, which precipitates out as a white, hydroscopic solid, can be dried and further purified by sublimation. When it is heated to 300°C with NaF, the following reaction takes place:

$$NOBF_4 + NaF = NaBF_4 + NOF$$

A copper or platinum vessel should be used for the decomposition, since NOF readily attacks glass at high temperatures.

Nitrosyl fluoride is a colorless gas melting at -132.5° and boiling at -59.9° . At room temperature the dry gas attacks glass only slowly. Reaction with water or moist air is rapid, and nitric, nitrous, and hydrofluoric acids and nitric oxide are formed. The reactions are,

NOF +
$$H_2O$$
 = HNO_2 + HF primarily
3 HNO_2 = H^+ + NO_3^- + $2NO$ + H_2O when (H⁺) is large

Nitrosyl chloride is an orange-yellow gas at room temperature and a deep-red liquid when condensed (b.p. -6.4°). It may be prepared in several ways, the purity of the product being dependent on the method used. Thus, when aqua regia, a mixture of strong nitric and hydrochloric acid, is heated, nitrosyl chloride is one of the products, the others being NO₂, Cl₂, and H₂O. It is believed that the action of aqua regia on

the noble metals, Au and Pt, is due to nitrosyl chloride. A very simple method for the preparation of nitrosyl chloride takes advantage of the remarkable reaction

$$2NO_2(g) + KCl(s) = KNO_3(s) + NOCl(g)$$

which takes place at room temperature [Whittaker, Lundstrom, and Merz, Ind. Eng. Chem., 23, 1410 (1931)]. The potassium chloride must contain a small amount of moisture (2.4%), the role of which is not clear. In practice the moistened KCl crystals are placed in long glass tubes, through which NO_2 is allowed to stream. If the product still contains some NO_2 , it may be recirculated through the column of KCl.

Another and common method for preparing nitrosyl chloride consists in the direct combination of NO and Cl₂. This reaction takes place at a measurable rate at room temperature and more rapidly at higher temperatures. Owing to the fact that the reaction is reversible,

$$2NO + Cl_2 = 2NOCl$$

it is not possible to prepare absolutely pure NOCl; at room temperature, NOCl decomposes to the extent of about 0.5%. The extent of the decomposition increases with temperature and is easily measurable above 125° .

Nitrosyl chloride reacts rapidly with water to form nitric, nitrous, and hydrochloric acid together with nitric oxide, and it is corrosive in its action on many metals. In the vapor phase it reacts rapidly and reversibly with iodine to form iodine monochloride.

$$2NOCl(g) + I_2(g) = 2NO(g) + 2ICl(g)$$

The rate of the reaction is much greater than the rate of decomposition of NOCl alone; accordingly, the iodine must react directly with nitrosyl chloride and not simply with the chlorine resulting from its decomposition.

Nitrosyl bromide, NOBr, is not obtainable in the pure state, since it decomposes reversibly to some extent (about 7% at 1 atm pressure of NOBr) even at room temperature. The decomposition is less at 0°C and becomes quite extensive at 200°. The vapor is red in color and condenses to a dark-red liquid (b.p. $\approx 0^{\circ}$). Nitrosyl bromide is best prepared by allowing nitric oxide and bromine to come together. The rate of the third-order reaction is slow enough to be measured at room temperature. (See Fig. 9.)

$$2NO(g) + Br_2 = 2NOBr$$

The compound is also formed when nitric oxide is bubbled through liquid bromine, although the resulting vapors contain considerable nitric oxide and bromine in addition to nitrosyl bromide.

Nitrosyl bromide, like the chloride, reacts readily with water to form nitric, nitrous, and hydrobromic acid along with nitric oxide. When

gaseous NOBr and chlorine are brought together, a rapid reversible reaction takes place with the formation of NOCl, Br₂, NO, and BrCl, these substances in addition to NOBr and Cl₂ being present in equilibrium with each other. It is to be noted that whereas the gas phase reactions $2NO + Cl_2 = 2NOCl$, $2NO + Br_2 = 2NOBr$, and $Br_2 + Cl_2 = 2BrCl$ are slow at room temperature, a mixture of NO, Cl₂, and Br₂ reacts very rapidly to form the equilibrium mixture; this suggests that one or more

Fig. 9. The Rate of Formation and Decomposition of NOCl and NOBr. $d(NOX)/dt = k(NO)_2(X_2)$, X = Cl or Br. NOBr, \odot Trautz and Dalal [Z. anorg. Chem., 102, 149 (1918)]. NOCl, \odot Welinsky and Taylor, formation; \square Welinsky and Taylor, decomposition [J. Chem. Phys., 6, 466 (1938)]; \diamondsuit Waddington and Tolman, decomposition [J. Am. Chem. Soc., 57, 689 (1935)]; \diamondsuit Trautz and Heglein [Z. anorg. Chem., 110, 233 (1920)]; \diamondsuit Trautz (Z. anorg. Chem., 86, 254 (1914)] recalculated by Welinsky.

of the following reactions is very rapid: NOCl $+\frac{1}{2}Br_2 = NOBr + \frac{1}{2}Cl_2$, NOBr $+\frac{1}{2}Cl_2 = NOCl + \frac{1}{2}Br_2$, and NOCl or NOBr + BrCl = NOCl + Br₂.

The rates of combination of NO and Cl₂ and Br₂ have been measured by several investigators. The rate of decomposition of NOCl has also been studied. Representative results are as follows [NOCl, Welinsky and Taylor, J. Chem. Phys., 6, 466 (1938); NOBr, Trautz and Dalal, Z. anorg. Chem., 102, 149 (1918)]:

$$\frac{d(\text{NOCl})}{dt} = k_1(\text{NO})^2(\text{Cl}_2)$$
 (formation)
 $-\frac{d(\text{NOCl})}{dt} = k_2(\text{NOCl})^2$ (decomposition)

Temp. (°C)	$k_1 \times 10^{-7} \mathrm{cm^6 mole^{-2} sec^{-1}}$	Temp. (°C)	k_2 cm ³ mole ⁻¹ sec ⁻¹
-25 0 0 22.0 60.0 100 0	0.404 .897 1.60 3.55 8 35	200 250 300	76 1,100 10,100

$$\frac{d(\text{NOBr})}{dt} = k(\text{NO})^2(\text{Br}_2)$$
 (formation)

$$k = 3.0 \times 10^{10} \, \mathrm{cm^6 \; mole^{-2} \; sec^{-1}} \; \mathrm{at} \; 0^{\circ}$$

It must be noted that these rate expressions do not hold when equilibrium is being approached; the more exact equation would be

$$\frac{d(\text{NOCl})}{dt} = k_1(\text{NO})^2(\text{Cl}_2) - k_2(\text{NOCl})^2$$

where d(NOCl)/dt now means the net change in (NOCl) with time both near and far from equilibrium. At equilibrium d(NOCl)/dt = 0

Fig. 10. Dissociation of Nitrosyl Chloride. $K_{\rm cm}=({\rm NO})^2({\rm Cl}_2)/({\rm NOCl})^2$.

and $(NO)^2(Cl_2)/(NOCl)^2$ = $k_2/k_1 = K$, the equilibrium constant. Evidently, if K and either k_1 or k_2 are known, then the other rate constant may be calculated. These reactions are two of the small number of third-order homogeneous gas reactions. In Fig. 9 are shown plots of $\log_{10} k$ against 1000/Tfor the nitrosyl halide reactions.

The equilibrium states in the nitrosyl halide reactions have been studied with considerable care, especially so in the case

of $2NO + Cl_2 = 2NOCl$. The results are shown in Fig. 10 and expressed by the following free-energy equations [Beeson and Yost, J. Chem. Phys., 7, 44 (1939); Blair, Brass, and Yost, J. Am. Chem. Soc., 56, 1916 (1934)]:

$$\begin{split} 2\text{NOCl}(\mathbf{g}) &= 2\text{NO}(\mathbf{g}) + \text{Cl}_2(\mathbf{g}) \\ \Delta F_{_{\mathbf{T}}}^{\circ} &= 16429 - 18.967 T \log_{10} T + 21.452 T + 0.010708 T^2 \\ &\qquad \qquad - 2.4208 \times 10^{-6} T^3 \pm 40 \text{ cal} \\ \Delta S_{_{\mathbf{T}}}^{\circ} &= -13.215 + 18.967 \log_{10} T - 0.021416 T + 7.2625 \\ &\qquad \qquad \times 10^{-6} T^2 \pm 0.3 \text{ cal/deg} \end{split}$$

2NOBr(g) = 2NO(g) + Br₂(g)

$$\Delta F_T^{\circ} = 8780 - 30.88T \log_{10} T + 51.26T + 0.0186T^2 - 5.8 \times 10^{-6}T^2 \text{ cal}$$

The thermodynamic constants of NOCl as determined from equilibrium measurements are not in agreement with those calculated from spectroscopic data. The discrepancy seems to be due to the incorrect

Fig. 11. A Typical Apparatus for the Measurement of Equilibria Involving Corrosive Gases. The pressures are measured by means of an all-glass click gauge which may be silvered on its outer surface; the changes of pattern with pressure are observed on a screen.

interpretation of the infrared absorption spectrum rather than to any uncertainty in principle or in the nature of the NOCl molecule (NOCl(g) is diamagnetic).

In order to correct the observed pressures of the equilibrium mixtures for gas imperfections, the virial coefficients B in PV = RT + BP were determined for NOCl over a moderate range of temperatures.

t(°C)	0	25	50	75	100
-B, cm ³ mole ⁻¹	389	307	253	218	196

Both NOCl and NOBr are nonlinear molecules; accordingly, they are examples of molecules having no rotational symmetry. The inter-

nuclear distances and bond angles are shown in Fig. 12 [Ketelaar and Palmer, J. Am. Chem. Soc., 59, 2629 (1937)].

		TABLE 10				
THE	THERMODYNAMIC	CONSTANTS	OF	NOCl	AND	NOBr

	ΔF_{298}° Formation (cal)	ΔII° Formation (cal)	S_{298}° (cal/deg)	Melting Point (°C)	Boiling Point (°C)
NOCl(g)	15,790	12,496	63.0	-64.5	-6.4
NOBr(g)	19,255	15,810	65.2	-55.5	≈ 0°

Fundamental frequencies NOCl: 1832, 633, and 290(?) cm⁻¹

Nitryl halides

Of these compounds only two are known, namely, NO₂F and NO₂Cl. NO₂F is a colorless, rather reactive gas (m.p. -166°, b.p. -72.4°)

Fig. 12. The Molecular Structure of NOCl and NOBr.

	N-X	N—O	∠X—N—O
NOCl	1.95Å	1.14Å	116°
NOBr	2.14	1.15	117

which results, among other substances, when NO and F₂ are brought together. It reacts with heated glass and it hydrolyzes rapidly when passed into water, the products of hydrolysis being nitric and hydrofluoric acids [Ruff, Menzel, and Neumann, Z. anorg. Chem., 208, 293 (1932)].

Nitryl chloride, NO₂Cl, cannot be prepared by the direct reaction between NO₂ and Cl₂, although many efforts have been made to bring about the combination. A successful method was found in the oxidation of NOCl by ozone [Shumacher and Sprenger, Z. anorg. Chem., 182, 139 (1929)].

$$NOCl(g) + O_3(g) = NO_2Cl(g) + O_2(g)$$

The reaction is rapid and complete. NO₂Cl is a colorless gas at ordinary temperatures which condenses to a

colorless liquid or a white crystalline solid at lower temperatures (m.p. -145° , b.p. -15.9°). Representative values of the vapor pressure of the liquid NO₂Cl are as follows:

<i>T</i> (°K)	193.6	207.2	218.5	228.3	237.0	253.6
<i>p</i> _{mm}	16.1	51.4	115.7	209.0	319.8	648.7

and the uncorrected heat of evaporation calculated from the pressures is 6140 cal.

Of considerable interest is the fact that gaseous NO₂Cl decomposes at a measurable rate in the temperature range 100° to 150°. The decomposition reaction is of the first order, and for a given run the rate constants are nicely constant. Variations in the initial pressures lead, however, to variations in the first-order rate constants, as the following table of the results of Schumacher and Sprenger [Z. phys. Chem., 12B, 115 (1931)] shows.

TABLE 11
THE RATES OF THERMAL DECOMPOSITION OF NO₂Cl(g)
NO₂Cl = NO₂ + Cl (slow)
NO₂Cl + Cl = NO₂ + Cl₂ (rapid) $-\frac{dp_{\text{NO}_2\text{Cl}}}{dt} = kp_{\text{NO}_2\text{Cl}}$

$p_{ ext{NO}_2 ext{Cl}}^{oldsymbol{o}}$ in mm	$k \times 10^3$ in min ⁻¹	p _{NO2} Cl in min	$k \times 10^3$ in min ⁻¹
10	00°	1	40°
103.4	1.11	11.1	7.22
184.0	1.73	74.7	23 5
291.8	2.63	142 0	36.4
384.0	11.4	252.0	57 1
594.0	13.7	506.0	82.2
18	30°	1:	50°
11.4	3.41	11.2	14 2
48 1	7.59	50.5	35.7
102.5	11.3	105.8	62.9
208.0	23.0	152.4	93.2
412.2	34.8		

 p°_{NO2Cl} is the initial pressure of $\text{NO_2Cl}(g)$ in mm of Hg. k is expressed in min⁻¹. ΔE (activation) = 20,500 cal.

Not only does k depend upon p_{NozCI}° , but it is also determined by the pressure of any added unreactive gas such as CO_2 , NO_2 , N_2 , and others. This effect of pressure on the rate constants is explained by assuming that the rate of decomposition of the excited molecules depends on the distribution of the excitation energy among the vibrational degrees of freedom of the molecules [see Rice and Sickman, J. Am. Chem. Soc., 56, 1444 (1934), for a discussion of the application of recent theories of reaction rates to the decomposition of NO_2Cl]. Nitryl chloride is not the only substance whose specific rate of decomposition in the gas phase is dependent on the total pressure, but it does show the effect in a more marked degree than most compounds for which experimental data are available.

Nitryl chloride, like the fluoride, dissolves readily in water with the formation of nitric and hydrochloric acids

$$NO_2Cl + H_2O = HCl + HNO_3$$

It is to be expected that nitryl chloride will behave as a powerful oxidizing agent and tend strongly to corrode many metals (for example, Hg). Its molecular structure is not known, and it would be of interest to structural chemists to know whether the molecule is pyramidal in shape with the nitrogen atom at the apex, or planar.

Gordon and Spinks [Canadian J. Res., 18B, 358 (1940)] have reported the formation of nitryl (or nitroxyl) perchlorate, NO₂ClO₄, when ozone, oxides of nitrogen, and chlorine dioxide are mixed. Air is passed through an ozonizer and then mixed with a stream of ClO₂. A white solid of low vapor pressure is produced which hydrolyzes in water according to the equation

$$NO_2ClO_4 + H_2O = HNO_3 + HClO_4$$

Analyses also established the formula as NO₂ClO₄.

Nitrosyl bisulfate (nitroxyl sulfonic acid; nitrosyl sulfuric acid), NOHSO4

The reaction between ice-cold, fuming nitric acid and sulfur dioxide is

$$HNO_3 + SO_2 = NOHSO_4(s)$$

If the solution is warm, the NOHSO₄ may remain dissolved. Nitrosyl bisulfate is formed in two other important reactions; namely

$$N_2O_3(l \text{ or } g) + 2H_2SO_4 \text{ (conc.)} = 2NOHSO_4 \text{ (soln. in } H_2SO_4) + H_2O$$

and $N_2O_4(l) + H_2SO_4 (78 \text{ to } 82\%) = NOHSO_4 + HNO_3$

The first reaction is reversible; a variant of it is the reaction between concentrated sulfuric acid and NaNO₂. The second reaction may be employed for the preparation of solid NOHSO₄.

In the lead chamber process for the manufacture of sulfuric acid, sulfur dioxide, water vapor, and NO₂ are caused to react in huge lead-lined chambers.

$$NO_2 + SO_2 + H_2O = NO + H_2SO_4$$

The resulting NO is re-oxidized, or partially so, to NO₂ by the oxygen present, and the NO₂-NO mixture is then absorbed by concentrated H₂SO₄ in a separate (Gay Lussac) chamber or tower. The absorption reaction leads to NOHSO₄ in sulfuric acid solution. In still another tower, the Glover tower, sulfur dioxide reacts with the sulfuric acid solution of NOHSO₄ according to the equation

$$2NOHSO_4 + SO_2 + 2H_2O = 3H_2SO_4 + 2NO$$

the NO formed being then oxidized by O_2 to NO_2 in the lead chamber. This NO_2 is absorbed later in the sulfuric acid that trickles downward in

the stone or brick-filled Gay Lussac tower. In the proper order, the mixture of SO_2 and O_2 first enters the Glover tower, then passes with the NO and NO₂ to the lead chamber, and finally the spent lead-chamber gases NO, NO₂, and O₂ are passed through the Gay Lussac tower to strip them of the nitrogen oxides. In order to complete the cycle, the NOHSO₄-H₂SO₄ mixture formed in the Gay Lussac tower is pumped to the top of the Glover tower, where it then trickles downward over an acid-resisting packing and flows countercurrent to the entering sulfur dioxide-air mixture. The important point to be emphasized is that concentrated H₂SO₄ absorbs NO₂ or N₂O₃ to form NOHSO₄, and this in turn reacts with SO₂ to form H₂SO₄ and NO. The cycle is completed by the reaction NO + $\frac{1}{2}$ O₂ = NO₂. Sulfuric acid is formed in both the Glover tower (about 15% of the total) and the lead chamber.

NOHSO₄ may be obtained as colorless plates or rhombic crystals; but as ordinarily prepared in the laboratory, it is an almost hair-like mass of colorless crystals. The pure substance melts at 73° with slow decomposition, the decomposition product being the anhydride (NOSO₃)₂O (colorless crystals of m.p. 217°, b.p. 360° without decomposition). The anhydride is also formed when NO and SO₃, or SO₂ and N₂O₅, are mixed together. NOHSO₄ is stable in dry air, but it absorbs moisture readily and deliquesces eventually; it then decomposes according to the reversible reaction mentioned above; namely,

$$H_2O + 2NOHSO_4 = N_2O_3(NO + NO_2) + 2H_2SO_4$$

This reaction takes place rapidly and completely when NOHSO₄ is added to water.

Salts of NOHSO₄ have never been prepared; little is known of its acidic properties.

NOHSO₄(s) is more soluble in very concentrated sulfuric acid than in less concentrated acid, as the following table shows [see the excellent

TABLE 12
SOLUBILITY OF NOHSO₄(s) IN CONCENTRATED SULFURIC ACID
(Solubilities are expressed in g of NOHSO₄ per 100 g of solution.)

Per Cent H ₂ SO ₄		Temperature (°C)	
	0	20.9	49 6
56.7		19.3	35 6
73.1 84.1	17.3 30.5	27.0 42.4	46.0 56.5
90.4 99.8	35.1	49.2 62.0	61.6 67.8

paper of Elliott, Kleist, Wilkins, and Webb, J. Chem. Soc., **129**, 1219 (1926); earlier papers on NOHSO₄ are Lunge and Weintraub, Z. angew. Chem., **12**, 393, 417 (1899); Weber, J. prakt. Chem., **85**, 423 (1862); Müller, Lieb. Ann., **122**, 1 (1862)].

Solutions of NOHSO₄ in concentrated sulfuric acid are said to have been distilled without decomposition. In their oxidizing action, the solutions are much like those of nitric acid in concentrated sulfuric acid.

A number of investigators have suggested structures for NOHSO₄. It was thought for some time that there were two structures in equilibrium, namely, NOHSO₄ and NO₂HSO₃. The basis for this belief was the supposed formation of both nitro and nitroso compounds with dimethylaniline. However, Sperling [Dissertation, Leipsig, 1925, reported in Z. anorg. Chem., 190, 328 (1930)] and others have shown that pure nitrosyl bisulfate gives only the nitroso compound and that the reported. nitro compound probably came from nitric acid present in the reaction mixture. Nitrosyl perchlorate, prepared by the action of a mixture of NO and NO₂ on strong HClO₄ (70% or higher), has been shown [Hantzsch and Berger, Z. anorg. Chem., 190, 321 (1930)] by its conductance in nitromethane to behave as a highly ionized salt. It was also shown that the nitrogen content in the cathode region increases. This strong evidence for a salt-like structure with the nitrosyl cation is further supported by Raman spectra measurements of Angus and Leckie [Proc. Roy. Soc., A 149, 334 (1935); a good summary of previous work on the structure of the nitrosyl compounds is also given]. They examined both NOClO₄ and NOSO₄H in the form of crystals and in solution in the respective acids, perchloric and sulfuric. Spectra very similar to that of the corresponding acid were found in each case, but with the addition of a strong line at about 2315 cm⁻¹ which was ascribed to the NO⁺ ion. X-ray photographs have shown that crystalline NOClO₄ and NOBF₄ have the same structure as NH₄ClO₄ and NH₄BF₄ [Klinkenberg, Rec. trav. chim., 56, 749 (1937)].

If a concentrated sulfuric acid solution of NOHSO₄, or a nitrate, or a solution of any other nitrosyl compound, is treated with Cu, Hg, Zn, Fe, or other suitable metals, the solutions become blue in color (red with Fe). The colored substance is given the formula NOH₂SO₄ and is called nitrosisulfonic acid [Raschig, Z. angew. Chem., 18, 1281 (1905); Lunge and Berl, ibid., 19, 881 (1906)]. It is unstable and decomposes readily with the formation of nitric oxide and sulfuric acid. In the Lunge nitrometer, the blue-colored compound is formed as an intermediate in the reaction

$$8HNO_3 + 3Hg = 2NO + 3Hg(NO_3)_2 + 4H_2O$$

Lunge's method for the determination of nitrogen in nitrates consists in placing a solution of the nitrate in strong sulfuric acid in contact with mercury and measuring the volume of NO evolved. The blue color, as well as the formula given, suggests that NOH₂SO₄ is an "odd" molecule; and if this is the case, the compound is probably paramagnetic.

Fluorine nitrate

It was discovered by Cady that when fluorine is bubbled into nitric acid, a colorless gas is formed which has the formula NO₃F. later found that NO₃F could be prepared more conveniently by passing fluorine over solid potassium nitrate [Yost and Beerbower, J. Am. Chem. Soc., 57, 781 (1935)]. NO₃F gas (b.p. -45.9°, m.p., -175°) explodes when a test tube of it is heated over a Bunsen flame. If fluorine is passed into a test tube containing a few crystals of KNO₃, the tube is soon filled with the colorless gas; and if the tube is then loosely stoppered with a cork stopper and heated a short time over a Bunsen flame, the resulting explosion of the NO₃F will eject the stopper in a lively fashion but will not shatter the tube. NO₃F dissolves to some extent in water and decomposes slowly in the solution to give HF, HNO₃, and O₂. freshly prepared aqueous solutions are very strong oxidizing agents, being capable, for example, of oxidizing Ag+ to Ag₂O₃. The slow reactivity with water makes it possible to wash the gas for purposes of purifica-Solid NO₃F at liquid-air temperatures is violently and dangerously explosive, little or no shock being sufficient to set it off. In the liquid state, no explosions have been reported. The liquid is colorless when pure, but before purification it may have a slightly yellow color.

The structure of the NO_3F molecule has been determined by the electron-diffraction method [Pauling and Brockway, J. Am. Chem. Soc., **59**, 13 (1937)]. As is to be expected, the structure is similar to that ordinarily ascribed to nitric acid; the three oxygen atoms are coplanar with the nitrogen atom. The dimensions shown in the figure are in Angstrom units.

The Oxyacids of Nitrogen

The known oxyacids of nitrogen are presented in the following list together with a method of preparation for each. In most cases the free acids or their aqueous solutions are unstable; in such cases the formula of a known salt is given in parentheses.

$H_2N_2O_2(Ag_2N_2O_2)\dots$	Hyponitrous	$(NaNO_2 + Na amalgam)$
H ₂ ONNO ₂ (Na ₂ ONNO ₂)	Nitrohydroxylamic	$(NH_2OH + CH_8NO_8 +$
		NaOH in CH ₃ OH)
$H_2NO_2(Na_2NO_2)$	Hydronitrous or	(Electrolysis of NaNO ₂
	nitroxylic	in liquid NH3)
$HNO_2(NaNO_2)$	Nitrous	$(NaNO_3 (fused) + Pb;$
		$N_2O_3 + NaOH)$
HNO ₃	Nitric	$(NO_2 + O_2 + water)$

Hyponitrous acid

Free hyponitrous acid, $H_2N_2O_2$, has been prepared by treating an ethereal solution of hydrogen chloride with silver hyponitrite. The reaction is

$$Ag_2N_2O_2(s) + HCl$$
 (in ether) = $AgCl(s) + H_2N_2O_2$ (in ether)

and on evaporating the ether solution, white crystals of $H_2N_2O_2$ are obtained [Hantzsch and Kaufmann, *Lieb. Ann.*, **292**, 323 (1896)]. The free acid decomposes on standing or heating into nitrogen, oxides of nitrogen, and water; the decomposition on heating is often so rapid that the substance explodes. Hyponitrous acid dissolves readily in water, but in solution a moderately rapid decomposition into water and N_2O takes place. Free $H_2N_2O_2$ is also soluble in ether, chloroform, and benzene, but not in ligroin or petroleum ether.

The salts of hyponitrous acid decompose much less rapidly than does the free acid. The relatively insoluble silver hyponitrite, a bright-yellow solid, is ordinarily the starting point for the preparation of pure solutions of the other salts. It is obtained by treating an alkaline solution of the sodium salt with silver nitrate, and the sodium salt in turn is prepared in solution by reducing sodium nitrate or nitrite with sodium amalgam.

The reduction of sodium nitrite to hyponitrite can be brought about as follows: An amalgam containing 25 g of metallic sodium in 140 cc of mercury is added slowly and with shaking to a cooled solution of 25 g NaNO₂ in 50 cc of water. After the necessary amount of amalgam has been added, the aqueous mixture is removed from the cooling bath and is shaken for some thirty minutes to an hour to assure that any hydroxylamine present is converted to ammonia. The addition of silver nitrate

to a few drops of the reaction mixture followed by enough nitric acid to make it just acid will produce a black precipitate of metallic silver if hydroxylamine is present; hyponitrites do not reduce silver ion under the same conditions. The reaction mixture is decanted from the mercury, and the Na₂N₂O₂·8H₂O present is filtered off with asbestos. After trituration with alcohol and filtering, the product may be used at once or it may be further purified by recrystallization from its concentrated solutions [Divers, J. Chem. Soc., 75, 96 (1899); Weitz and Vollmer, Ber., 57, 1016 (1924); Partington and Shah, J. Chem. Soc., 2071 (1931)]. The main reaction is

$$2NO_{2}^{-} + 4Na + 2H_{2}O = N_{2}O_{2}^{-} + 4Na^{+} + 4OH^{-}$$

but there are a number of side reactions which yield hydroxylamine, ammonia, and even hydrogen. The reaction mixture soon becomes strongly alkaline as a result of the main and the side reactions. The pentahydrate, $Na_2N_2O_2\cdot 5H_2O$, can be obtained by crystallization from strong alkaline solutions; the water of crystallization is given off in a vacuum desiccator, and a white, magnesia-like powder results. Both the hydrated and the unhydrated salt are readily soluble in water but not in alcohol. The octahydrate is said to result when an aqueous solution of $Na_2N_2O_2$ is concentrated in a vacuum desiccator containing sulphuric acid. On heating to some 300°, sodium hyponitrite decomposes into nitrogen, nitrous oxide, sodium nitrite, sodium oxide, and other products.

A modification of the above reduction with sodium amalgam has been perfected by Abel and Proisl [Monatshefte, 72, 1 (1938)]. The amalgam is formed by making mercury the cathode in an electrolytic cell containing sodium hydroxide solution as the electrolyte. By mechanical stirring, the amalgam is caused to circulate into an inverted vessel dipping into the mercury and containing sodium nitrite and hydroxide (200 g NaNO₂, 50 g NaOH, in 1 liter of solution). Carbon dioxidefree air is used to stir the nitrite solution. From one to two amperes for two days are required to bring about the reduction of 200 g of NaNO2. The strongly alkaline solution in the inverted vessel is removed, rapidly neutralized with nitric acid, and then treated with silver nitrate to precipitate the bright-yellow Ag₂N₂O₂. The precipitate is separated by decantation and then thoroughly washed. It is necessary to protect silver hyponitrite from light in order to prevent photochemical decomposition.

The reduction of nitrite to hyponitrite may also be brought about with stannous chloride [Raschig, Z. anorg. Chem., 155, 225 (1926)], the best yield being obtained when equal volumes of 0.22 m SnCl₂ (free from excess HCl) and 0.20 m NaNO₂ are mixed at room temperature; the tin is precipitated and removed as hydroxide by the addition of excess

sodium acctate. From the resulting filtered solution, after evaporating at 35° under vacuum to one-tenth the original volume, the $H_2N_2O_2$ is extracted with ether. Both hydroxylamine and N_2O are products of the reduction, the yield of $H_2N_2O_2$ being 3% and that of hydroxylamine $7\frac{1}{3}\%$.

The hydrolysis of sodium hydroxylamine monosulfonate, NaHONH-SO₃, in the presence of rather concentrated potassium hydroxide leads to good (60-80%) yields of hyponitrite. The reduction of the salt $K_2N_2O_2SO_3$, which is obtained from the reaction NO + K_2SO_3 (in conc. KOH), also produces hyponitrite.

Hyponitrites can also be prepared by the interaction of hydroxylamine, sodium ethylate, and ethyl nitrite. Hydroxylamine hydrochloride is dissolved in an alcoholic (absolute) solution of sodium ethylate and, after cooling and filtering to remove NaCl, the resulting solution is cooled in a freezing mixture, and the ethyl nitrite is distilled directly into it. Sodium hyponitrite precipitates out and is filtered free from the mixture and washed with cold absolute alcohol and ether. The yield is about 13% [Jones and Scott, J. Am. Chem. Soc., 46, 2172 (1924)]. The main reactions are:

$$\begin{array}{ll} \mathrm{NH_2OH \cdot HCl} + \mathrm{NaC_2H_5O} = \mathrm{NH_2OH} \left(\mathrm{in} \ \mathrm{C_2H_5OH} \right) + \ \mathrm{NaCl}(s) \\ \mathrm{NH_2OH} + \mathrm{C_2H_5NO_2} + 2\mathrm{NaC_2H_5O} = \mathrm{Na_2N_2O_2}(s) + 3\mathrm{C_2H_5OH} \end{array}$$

The doubled formula of the hyponitrite ion $N_2O_2^-$ has been established by freezing-point experiments on aqueous solutions of its salts [see, for example, Divers, J. Chem. Soc., 75, 122 (1899)].

Aqueous solutions of $Na_2N_2O_2$ are alkaline to litmus, and acid salts of the formula MHN_2O_2 are known. These facts show that hyponitrous acid is weak, and this is shown quantitatively by the ionization constants found by Latimer and Zimmerman [J. Am. Chem. Soc., 61, 1550 (1939)].

$$\frac{(\mathrm{H^+})(\mathrm{HN_2O_2^-})}{(\mathrm{H_2N_2O_2})} = 9 \times 10^{-8} \text{ at } 25^{\circ}$$

$$\frac{(\mathrm{H^+})(\mathrm{N_2O_2^-})}{(\mathrm{HN_2O_2^-})} = 1.0 \times 10^{-11} \text{ at } 25^{\circ}$$

The second ionization constant was also evaluated by Abel and Proisl from the results of reaction-rate measurements, but they obtained the appreciably lower value of 10^{-13} .

Alkaline sodium hyponitrite solutions decompose only slowly at room temperature, but in acid solution the rate of decomposition is rapid, the products of the decomposition in both cases being nitrous oxide and sodium hydroxide.

$$N_2O_2^- + H_2O = N_2O + 2OH^-$$

At 25° or above, the alkaline solutions decompose at a measurable rate,

and the rate and the mechanism of the reaction have been thoroughly investigated by Abel and Proisl [Monatshefte, 72, 1 (1938)]. They found that the rate equation is:

$$\frac{d({\rm N_2O})}{dt} = \frac{k({\rm N_2O_2^-})_*}{({\rm OH^-})\{1+\beta({\rm OH^-})\}}$$

where (N₂O₂), stands for the total concentration of hyponitrite, and k and β are constants whose values are shown in the table.

fact that both ionization constants of H₂N₂O₂ are small, it follows that both HNO₂ and N₂O₂ will be present at appreciable concentrations in the solutions. A chemical analysis of the solutions gives the total concentration of hyponitrite, $(N_2O_2^-)_s$, but the various hyponitrite species present do a Concentrations in moles/liter, time in not, as Abel and Proisl showed, all decompose at the same rate. Since

Temp. (°C)	k^a	βα
25 50 55	$6.0 \times 10^{-5} 4 0 \times 10^{-3} 7 1 \times 10^{-3}$	2 9 2.0 1 3

the acid is weak, rapid reversible hydrolysis will occur; accordingly,

$$N_{2}O_{2}^{-} + H_{2}O = HN_{2}O_{2}^{-} + OH^{-} K_{1} = \frac{(HN_{2}O_{2}^{-})(OH^{-})}{(N_{2}O_{2}^{-})}$$

$$HN_{2}O_{2}^{-} + H_{2}O = H_{2}N_{2}O_{2} + OH^{-} K_{2} = \frac{(H_{2}N_{2}O_{2})(OH^{-})}{(HN_{2}O_{2}^{-})}$$

If the rate-determining step in the decomposition is assumed to be

$$H_2N_2O_2 = N_2O + H_2O$$

that is,

$$\frac{d(N_2O)}{dt} = k'(H_2N_2O_2)$$

then since, effectively,

$$\begin{split} (\mathrm{N_2O_2^-})_{\bullet} &= (\mathrm{N_2O_2^-}) + (\mathrm{HN_2O_2^-}) \\ &= (\mathrm{H_2N_2O_2}) \left[\frac{(\mathrm{OH^-})^2}{k_1 k_2} + \frac{(\mathrm{OH^-})}{K_2} \right] \end{split}$$

the rate equation takes the form

$$\frac{d({\rm N_2O})}{dt} = \frac{k'({\rm N_2O_2^-})_{\bullet}}{({\rm OH^-})\left[\frac{1}{K_2} + \frac{({\rm OH^-})}{K_1K_2}\right]} = \frac{k'K_2({\rm N_2O_2^-})_{\bullet}}{({\rm OH^-})\left[1 + \frac{({\rm OH^-})}{k_1}\right]}$$

If we put

$$k'K_2 = k \quad \text{and} \quad \frac{1}{K_1} = \beta$$
3 4 0 6 3

we may finally write

$$\frac{d(\mathrm{N_2O})}{dt} = \frac{k(\mathrm{N_2O_2^-})_\bullet}{(\mathrm{OH^-})\{1+\beta(\mathrm{OH^-})\}}$$

The derived-rate equation based on the assumed mechanism is evidently identical with that found experimentally; hence the mechanism assumed is justified. It is to be noted that $\beta=1/K_1$; and since K_1 is related to the ionization constant of water and that (the second) of hyponitrous acid, $K_1=K_{\rm w}/K_{\rm A}$, it is clear that $K_{\rm A}$ may be calculated from β and the known values of $K_{\rm w}$ [$K_{\rm w}=1.0\times10^{-14}(25^{\circ})$, $5.48\times10^{-14}(50^{\circ})$, $7.30\times10^{-14}(55^{\circ})$]; thus, at 25° , $K_{\rm A}=({\rm H}^+)({\rm N}_2{\rm O}_2^-)/({\rm HN}_2{\rm O}_2)=K_{\rm w}/K_1$ = $\beta K_{\rm w}=2.9\times1.0\times10^{-14}=2.9\times10^{-14}$. This value is considerably less than that given above, namely, 1.0×10^{-11} ; but, inasmuch as no account has been taken of activity effects, the agreement is reasonably satisfactory. The main features of the mechanism may be regarded as fairly well established.

The hyponitrites are not very reactive toward even strong reducing agents. Sodium amalgam, a very strong and active reducing agent, has little if any effect on solutions of hyponitrites. Indeed, the fact that they are formed by the action of powerful reducing substances on nitrites indicates the rather marked lack of reactivity toward further reduction. If, for analytical purposes, it is desired to convert the hyponitrite to ammonia, it is necessary first to oxidize it to the nitrate stage.

Aqueous solutions of hyponitrous acid and the hyponitrites are strong reducing agents. They are oxidized by the halogens to nitrates. Permanganate in alkaline solution oxidizes hyponitrite ion with moderate rapidity to nitrite ion; if, after some fifteen minutes, excess permanganate is added to the alkaline solution, and if the mixture is then made acid, complete oxidation to nitrate ion is brought about. These reactions form the basis for an analytical procedure in which hyponitrite is determined volumetrically [Thum, Monatshefte, 14, 297 (1893)]. In alkaline solution the reaction between permanganate and hyponitrite is not extremely rapid; in acid solution side reactions render the direct oxidation unsuitable for analytical purposes.

The oxidation of aqueous solutions of $CaN_2O_2\cdot 4H_2O$ with bromine was used by Berthelot as a means for determining the heat of formation of hyponitrous acid and hyponitrite ion [see Bichowsky and Rossini, Thermochemistry]. More recently, Latimer and Zimmerman [J. Am. Chem. Soc., 61, 1550 (1939)] have redetermined the heat of formation of $H_2N_2O_2$ (aq), and they have also made estimates of the entropy changes attending the formation of the hyponitrite ions. Their results are summarized in the following equations:

	ΔH_{298}° (cal)	ΔF ^o ₂₉₈ (cal)
$\begin{array}{l} H_2(g) + N_2(g) + O_2(g) = H_2 N_2 O_2(aq) \\ N_2(g) + O_2(g) + \frac{1}{2} H_2(g) + E^- = H N_2 O_2^- \\ N_2(g) + O_2(g) + 2 E^- = N_2 O_2^- \end{array}$	-11,300 -7,000 -200	11,000 20,400 35,400

It is often asserted that nitrous oxide, N_2O , is not the anhydride of hyponitrous acid. In the sense that an easily measurable quantity of the acid does not result when N_2O reacts with water, the assertion is true. From the point of view of chemical equilibria, one must say that the reaction has such a great tendency to go in the reverse direction that the concentration of $H_2N_2O_2$ is never large. The free-energy equation is

$$N_2O(g) + H_2O(l) = H_2N_2O_2(aq), \quad \Delta F_{298}^{\circ} = 42,760 \text{ cal}$$

and it is an easy calculation to show that, for a 0.001 m solution of $H_2N_2O_2$, the equilibrium pressure of N_2O would be about 10^{27} atmospheres. Even if the reaction proceeds as written, the pressure of N_2O required to yield a measurable concentration of $H_2N_2O_2$ is much too high to be attainable in practice.

Concerning the structure of hyponitrite ion, little of an exact nature is known. It seems reasonable to suppose that the two nitrogens are joined together, since in N₂O this has been found to be the case. Sufficient information is not available to permit of a statement regarding the angle made by the two end oxygens with the N—N bond.

Nitrohydroxylamic acid, H₂ONNO₂

The free acid is not known, but the sodium and other metal salts have been prepared. To prepare the sodium salt, a concentrated solution of sodium ethylate in absolute alcohol is mixed with a warm, saturated solution of hydroxylamine hydrochloride in alcohol. Sodium chloride precipitates from this mixture and is filtered off, and ethyl nitrate is added to the filtrate; on cooling this mixture, Na₂N₂O₃ separates out as a white powder. The salt is readily soluble in water but not in alcohol. On the addition of acid to the solutions of Na₂N₂O₃, decomposition sets in at once, the products being NO and water. Aqueous solutions of the salt are alkaline, a fact which shows that $HN_2O_3^-$ and doubtless $H_2N_2O_3$ also are weak acids. On heating, solutions of the sodium salt decompose to give nitrous oxide and nitrite ion, and it has been assumed that the hypothetical HNO is an intermediate in the decomposition [Angeli, Gazz., 33 II, 245 (1903)]. The addition of alkaline earth chlorides to solutions of Na₂N₂O₃ results in precipitates of the type BaN₂O₃.

soluble lead and cadmium salts, precipitates are also formed (PbN₂O₃ is yellowish, CdN₂O₃ is white); but with silver and mercury salts, reduction to the metals sets in shortly after the formation of the insoluble nitrohydroxylamites [Angeli, Gazz., 26 II, 19 (1896)].

Aqueous solutions of $Na_2N_2O_3$ are readily oxidized. Atmospheric oxygen carries the oxidation to the nitrite stage, but permanganate brings about oxidation to nitrate ion if the initially alkaline mixture is made acid. The first step, in alkaline solution, leads to nitrite, and this in acid solution is oxidized to nitrate by permanganate. The reactions with iodine and ferric ion yield both nitrite and nitric oxide [Cambi, Gazz., 59, 780 (1929)]. With reducing agents, hyponitrous acid is assumed to be formed in an intermediate step [Nichols and Morse, J. Phys. Chem., 35, 1250 (1931)], and this in turn would decompose into N_2O . The experiments on the action of reducing agents were not carried out on N_2O_3 itself but on aqueous solutions of nitric oxide, and it was assumed that these solutions contained $H_2N_2O_3$ as the result of an hydrolysis of NO.

Hydronitrous acid

Only the sodium salt of this acid is known, and it is prepared by the electrolysis of liquid ammonia solutions of sodium nitrite [Maxted, J. Chem. Soc., 111, 1016 (1917), Zintl and Kohn, Ber., 61, 189 (1928)] or by treating liquid ammonia solutions of metallic sodium with NaNO₂. The end point in the latter reaction is reached when the blue color of dissolved sodium has disappeared. Sodium hydronitrite is not very soluble in liquid ammonia and forms a yellow precipitate from which the ammonia can be readily evaporated. The formula of the brilliant yellow-colored Na₂NO₂ suggests, if the compound is monomeric, that it should be paramagnetic, since the total number of valence electrons is odd. In moist air or water, the compound explodes and hydrogen is formed. When protected from moisture and oxygen, the dry salt may be heated to 100° without decomposition, but above this temperature violent decomposition to Na₂O, N₂, NaNO₂, and NaNO₃ takes place. Na₂NO₂ reacts with cxygen to form a peroxide.

Nitrous acid, HNO₂

Nitrous acid appears to exist in the vapor state, and aqueous solutions of it may be prepared without difficulty. Although a large number of reactions lead to its formation, the simplest method of preparing it consists in the addition of a strong acid to a solution of a soluble nitrite. Thus, a solution of Ba(NO₂)₂ when treated with an equivalent amount of H₂SO₄ gives, because of the insolubility of BaSO₄, a solution of the weak acid HNO₂. When the presence of metal ions is of no consequence, the mere addition of a strong acid to the solution of a nitrite, NaNO₂, for example, yields a solution containing nitrous acid.

Nitrous acid solutions may also be prepared by causing gaseous or liquid N_2O_3 to dissolve in water. Such solutions will, in general, contain nitric acid and the dissolved oxides NO and N_2O_4 as well; with ice water, the concentration of HNO_2 in dilute solutions will be considerably greater than that of nitric acid. As has been noted in a previous section, an equal molal mixture of NO and NO_2 will condense to a blue or greenish-blue liquid consisting, for the most part, of N_2O_3 together with some dissolved NO and N_2O_4 . When water is added to this liquid, two layers are formed, an aqueous upper layer which is blue in color if the concentration of N_2O_3 is greater than some 20% (in long columns, the blue

color is observed with 5% N2O3 solutions), and a lower, very deep blue layer consisting principally On heating the H₂Oof N₂O₃. N₂O₃(1) mixture in closed tubes, the two phases can be made to disappear, the temperature of complete miscibility depending on the composition of the mixture. two-phase mixture is cooled sufficiently, ice separates out, the temperature of the freezing point depending on the composition of the mixture. In Fig. 13 are shown both the freezing points and the points of complete miscibility for H₂O-N₂O₃ mixtures for the com-

Fig. 13. Phase Diagram of the System N_2O_3 — H_2O . The turbidity point is the temperature at which two liquid phases separate; the freezing point is the temperature at which ice separates from the solution.

plete range of compositions [Lowry and Lemon, J. Chem. Soc., 1 (1936)]. The diagram shows, for example, that an equimolal mixture of N_2O_3 and water will, above 55°, consist of a solution of N_2O_3 in water; that is, it will be a strong aqueous solution of nitrous acid, HNO_2 .

When a strong acid is added to a solution of sodium or other nitrite, nitric oxide gas, NO, is evolved. The equation for this important reaction is

$$3HNO_2 = H^+ + NO_3^- + 2NO + H_2O$$

and the reaction is reversible. The rate of decomposition is measurable, as is also the rate of the reverse reaction. The first effect of adding the strong acid is to bring about the formation of the weak acid HNO₂, the extent of whose ionization is calculable from the following massaction expression [Schumann, Ber., 33, 527 (1900); Klemenc and Hayek, Monatshefte, 54, 407 (1929)].

$$\text{HNO}_2 = \text{H}^+ + \text{NO}_2^- \qquad \frac{(\text{H}^+)(\text{NO}_2^-)}{(\text{HNO}_2)} = 6.0 \times 10^{-4} \text{ at } 30^{\circ}$$

The nitrous acid then decomposes, at a rate that is dependent on the concentration of nitrous acid and the partial pressure of NO. In a series of very thorough investigations, Abel and his coworkers [see, for example, Z. phys. Chem., 148, 337 (1930) and also Bray, Chem. Rev., 10, 161 (1932)] have found that if the partial pressure of NO above solutions of HNO₂ is kept constant, then, at the beginning of the decomposition,

$$3HNO_2 = H^+ + NO_3^- + 2NO + H_2O$$
$$-\frac{d(HNO_2)}{dt} = \frac{k_1(HNO_2)^4}{P_{NO}^2} \qquad k_1 = 46 \text{ at } 25^\circ$$

and at the beginning of the reverse reaction

$$\frac{d(\text{HNO}_2)}{dt} = k_2(\text{HNO}_2)(\text{H}^+)(\text{NO}_3^-)$$
 $k_2 = 1.6 \text{ at } 25^{\circ}$

the concentrations being expressed in moles/l, the pressures P_{NO} in atmospheres, and the time in minutes. At other temperatures, the following values of k_1 , in the same units, were found.

Temp., t(°C)	0	10	25	40	60
k ₁	0.602	3.63	46	525	5130

The temperature coefficient of k_1 ,

$$\frac{k_{1(t+10^{\circ})}}{k_{1(t)}}$$

is 6.7 at 5° and 3.2 at 50°.

When either the forward or reverse reaction has proceeded beyond the initial stage, then

$$\frac{d(\text{HNO}_2)}{dt} = k_2(\text{HNO}_2)(\text{H}^+)(\text{NO}_3^-) - \frac{k_1(\text{HNO}_2)^4}{P_{\text{NO}}^2}$$

and at equilibrium $d(\mathrm{HNO_2})/dt=0$ and $k_1/k_2=K$, the equilibrium constant. The following values of $K=(\mathrm{H^+})(\mathrm{NO_3^-})P_{\mathrm{NO}}^2/(\mathrm{HNO_2})^3$ with concentrations in moles per liter and pressures in atmospheres have been obtained from both rate and equilibrium measurements.

Temp. (°C)	12.5	15	24.9	30
К	13.3	14.1	28.7	39.6

The mechanism of the forward (decomposition) and reverse reaction proposed and justified by Abel is included in the following reactions.

Forward
$$(A+NO_2 = N_2O_4 + 2NO + 2H_2O)$$
, rapid and reversible (1) $(A+NO_2 = N_2O_4 + H_2O) = (A+NO_2 + H_2O)$, rate-determining step $(A+NO_2 + H_2O) = (A+NO_2 + H_2O)$, rate-determining $(A+NO_2 + H_2O) = (A+NO_2 + H_2O)$, rate-determining step (3) $(A+NO_2 + 2NO_2 + 2H_2O) = (A+NO_2 + 2H_2O)$, rapid-follow reaction (4)

Reaction (2) is assumed to be much slower than (4), and this is in agreement with the well-known fact that N_2O_4 dissolves much less rapidly in water or alkali than does the mixture $N_2O_4 + 2NO$. In fact, when $N_2O_4(g)$ dissolves in alkali, a mixture of nitrite and nitrate ions results; but when a mixture whose composition corresponds to N_2O_3 dissolves in alkali, a solution containing much nitrite but very little nitrate is formed, in spite of the fact that the equilibrium pressure of $N_2O_3(g)$ is much smaller than that of N_2O_4 or NO_2 in the N_2O_3 mixture. The study made by Abel has thrown considerable light on a set of reactions of great importance both in pure chemistry and in chemical technology.

The salts of nitrous acid are of great importance in the manufacture of dyes and a variety of other substances. Accordingly, the methods of manufacture have received considerable attention. The starting materials consist of (1) Chile saltpeter, NaNO₃, or (2) the nitrogen oxides obtained in the arc process $(N_2 + O_2)$ or by the oxidation of ammonia with atmospheric oxygen in the presence of a catalyst. When sodium nitrate is the starting material, it is usually fused alone (m.p. 308°) or together with NaOH or Na₂CO₃ in the presence of a reducing agent. A number of reducing agents have been tried; for laboratory purposes metallic lead serves nicely, but for large-scale operations a cheaper substance is necessary. The following list of reducing agents together with the practically obtainable yields from them will give some idea of the directions that the search for a solution of the problem has taken:

R	Yield from NaNO ₃ (%)	R	Yield from NaNO ₃ (%)
S	56 66.7 63 86.4	FeO	83 25 77

 $NaNO_3(1) + R = NaNO_2(1) + RO$

^{*} A fused mixture of NaNO: and NaOH is used.

It is evident that metallic iron and coke have over-all advantages over the other substances listed. This list is not an exhaustive one; SO₂, CO, and several other reducing agents have been tried or used at one time or another.

When the reduction reaction is complete, the mixture consists of NaNO₂(l) (m.p. 271°), NaOH, and the oxidized form of the reducing agent, if this is not a gas, together with unreacted material. After cooling, the mixture is dissolved in water, and the salts present are then crystallized from the solution. Sodium nitrite is very soluble in water (72 g at 0° and 163 g at 100°, per 100 g water) and may be the last salt recovered.

In the second method for the manufacture of nitrites, the oxides of nitrogen are made to dissolve in a solution of alkali or they are absorbed by a solid hydroxide. Since a mixture of NO and NO₂, corresponding to the composition of N₂O₃, dissolves to form much nitrite and but little nitrate, the mixed gases from the arc process or the ammonia oxidation process are heated to such a temperature (from 150° to 300°) that the reversible reaction NO $+\frac{1}{2}$ O₂ = NO₂ results in an almost equimolal mixture of NO and NO₂ (a slight excess of NO proves to be advantageous). The absorbing solution of NaOH, KOH, Na₂CO₃, or Ca(OH)₂ is eventually subjected to recrystallization to recover the nitrite salts.

The alkali and alkaline earth nitrites, nearly colorless or yellow, are quite soluble in water but much less so in alcohol and ether. They are also very soluble in liquid ammonia. The heavy metal nitrites are often slightly soluble in water. The following table of solubilities shows these facts quantitatively.

TABLE 13 SOLUBILITIES OF NITRITES

	Solubility, Moles of Unhydrated Salt/1000 g H ₂ O			
Substance	-5-0°	20–40°	60–100°	
LiNO ₂ ·H ₂ O	13.6 (0°) 10.48 (0°) 32.9 (0°) V. Sol. V. Sol.		72.8 (½H ₂ O 90°) 23.5 (100°)	
Ca(NO ₂) ₂ ·4H ₂ O	4.68 (0°)	6.66 (30°) 4.26 (35°) 3.49 (30°) .0270 (25°)	18.1 (1H₂O 90°) 7.90 (100°) 13.9 (100°) .0897 (60°)	

LiNO₂ is very soluble in alcohol; the remaining salts in the list are only slightly soluble. Liquid ammonia dissolves many nitrites readily.

The alkali and alkaline earth nitrites are quite stable toward heat, most of them melting with little or no decomposition.

Silver nitrite suspended in water decomposes reversibly according to the equation [Abegg and Pick, Z. anorg. Chem., 51, 1 (1906); Lewis and Adams, J. Am. Chem. Soc., 37, 2308 (1915)]:

$$2AgNO_2(s) = Ag^+ + NO_3^- + Ag(s) + NO(g)$$

At room temperatures the reaction is very slow, but at 55° equilibrium is established in a few days, the pressure of NO being 4.28 atmospheres when the concentration of AgNO₃ is 0.179 m. At 100° and 1.10 m AgNO₃, $P_{NO} = 8.35$ atm. The extrapolated pressure of NO for 25° and $(AgNO_3) = 0.179$ m is 0.162 atm. When the activity of the silver nitrate is taken into account, it is found that

$$2AgNO_2(s) = Ag^+ + NO_3^- + Ag(s) + NO(g)$$

 $\Delta H_{298}^{\circ} = 3600 \text{ cal}, \quad \Delta H^{\circ} = 21,200 \text{ cal}$

When silver nitrite is freshly precipitated, it has a faint yellow color and a curdy appearance. With time, and especially on heating, the precipitate suspended in water becomes dark in color as a result of the silver formed in the above reaction. The dry salt also decomposes on moderate heating to give silver nitrate and nitric oxide, and a careful study of the equilibrium has been made by Randall, Manov, and Brown [J. Am. Chem. Soc., 60, 694 (1938)]. They find that for the reaction

$$2AgNO_2(s) = Ag(s) + AgNO_3(s) + NO(g)$$

 $\Delta F_T^{\circ} = 14,775 + 6.95T \log_e T - 0.00694T^2 - 0.00000091T^3 - 75.147T$
or the temperature range 350-450°K.

$$\Delta F_{298}^{\circ} = 3,537 \text{ cal}, \qquad \Delta H_{298}^{\circ} = 13,368 \text{ cal}, \qquad \Delta S_{298}^{\circ} = 32.98 \text{ cal/deg}$$

Nitrites are formed in an interesting reaction between the alkali and alkaline earth hydroxides and nitric oxide [Barnes, J. Chem. Soc., 133, 2605 (1931)]:

$$2MOH(s) + 4NO(g) = 2MNO_2(s) + N_2O + H_2O$$

At room temperature the reaction requires, for completion, years with LiOH, months with NaOH, days with KOH, and hours with RbOH and CsOH. At 250° the reactions are much more rapid, but the products change also as a result of the catalytic decomposition of the N₂O formed. The side reaction, which at higher temperatures becomes the predominant one, is

$$4MOH(l) + 6NO(g) = N_2(g) + MNO_2(s) + 2H_2O$$

Nitrous acid and the nitrites act both as oxidizing and as reducing agents. With permanganate there is no reaction in neutral or alkaline solution, but on acidifying the mixture quantitative oxidation to nitrate

takes place. Chlorine, bromine, and iodine also oxidize nitrous acid solutions to nitrate. With chlorine the reaction is rapid, and with bromine it is fairly rapid. The reaction between aqueous iodine and nitrite ion is measurably slow, and the rate in buffered solutions (pH = 6 to 7) has been studied by Durrant, Griffith, and McKeown [Trans. Faraday Soc., 32, 999 (1936)]. The net reaction is

$$NO_2^- + I_2 + H_2O = NO_3^- + 2I^- + 2H^+$$

and with phosphate buffers with $(Na_2HPO_4)/(KH_2PO_4) = 0.05/0.2$ to 0.2/0.02, the experimentally determined rate equation is

$$-\frac{d(\Sigma I_2)}{dt} = \frac{k(NO_2^-)(\Sigma I_2)}{\left\{K + (I^-)\left(\frac{A(I^-)^2}{(NO_2^-)} + 1\right)\right\}}$$
$$K = \frac{(I^-)(I_2)}{(I_2^-)}$$

Representative results for the constants are shown in the table; concentrations are expressed in moles per liter and the time in minutes.

Table 14 RATE CONSTANTS FOR THE OXIDATION OF NITRITE ION BY IODINE

t(°C)	Ionic Strength (moles/liter)	A	$k \times 10^5$	k/K
40	2.7 {0.7 {2.7 {0.7 2.7	153.5 160.7 145.7 140.2	2.94 28.4 13.8 115.4 56.6	0.0159 .126 .0612 .444 .2175

More than one mechanism can be set down which is in accord with the empirical rate equation, but one that appears to have features applicable to other reactions is expressed by the following equations.

$$NO_{2}^{-} + I_{2} \stackrel{k_{1}}{\rightleftharpoons} NO_{2} + I^{-} + I \qquad \text{(rapid)}$$

$$NO_{2}^{-} + I \stackrel{k_{3}}{\rightleftharpoons} NO_{2} + I^{-} \qquad \text{(very rapid)}$$

$$k_{4}$$

$$2NO_{2} + H_{2}O \stackrel{k_{5}}{=} HNO_{2} + H^{+} + NO_{3}^{-} \qquad \text{(slow)}$$

It is not difficult to show that the rapid reversible reactions and the requirements of a steady state with respect to the formation and dis-

appearance of I and NO2 imply the relation

$$k_1k_8(NO_2^-)^2(I_2) = k_2k_4(NO_2)^2(I^-)^2 + k_3k_5(NO_2^-)(NO_2)^2 + k_2k_5(NO_2)^3(I^-)$$

The last term on the right may be neglected, since k_5 is small compared to the other rate constants, and by hypothesis $k_2 < k_3$. From the rate equation for the slow step

$$-\frac{d(\Sigma I_2)}{dt} = k_b(NO_2)^2$$

and the steady-state relation, it follows that

$$-\frac{d(\Sigma I_2)}{dt} = \frac{k_1(NO_2^-)(I_2)}{1 + \frac{k_2k_4}{k_3k_5} \frac{(I^-)^2}{(NO_2^-)}} = \frac{k_1K(NO_2^-)(\Sigma I_2)}{\{K + (I^-)\}\{1 + A\frac{(I^-)^2}{(NO_2^-)}\}}$$

where

$$A = \frac{k_2 k_4}{k_3 k_5}$$

and $k = k_1 K$. The temperature coefficient of $k_1 = k/K$ leads to an activation energy of 27,000 cal for the reaction $NO_2^- + I_2 = NO_2 + I^- + I$.

The investigation of this reaction had to be made in the rather narrow range of acid concentrations of pH = 6 to 7, since at higher acidities decomposition of HNO₂ sets in, and at lower acidities the hydrolysis of iodine to iodate takes place at an appreciable rate.

On electrolysis alkaline solutions of nitrite are readily oxidized to nitrate at the anode; the rate of anodic oxidation is slower in acid solutions. Hydriodic acid acts as a reducing agent toward nitrous acid solutions, the reaction products being iodine and nitric oxide. Hydrogen peroxide appears to form with acid solutions of nitrites a yellow peroxynitrite N₂O₆ (thought by some to be identical with the compound resulting from the action of ozone on hydrazoic acid solutions). In acid solution hydrogen peroxide oxidizes nitrous to nitric acid at a measurable rate; in dilute mixtures of HNO₂ (0.0003 - .0009 m) and NO₂, the rate equation is [Shilow, Rybakow, and Pal, Izvestija Ivanovo-Voznesenskogo Politechn. Inst. (Russia), 15, 85 (1930); Chem. Zent., II, 377 (1931)],

$$\begin{aligned} \text{H}_2\text{O}_2 + \text{H}\text{NO}_2 &= \text{NO}_3^- + \text{H}_2\text{O} + \text{H}^+ \\ -\frac{d(\text{H}_2\text{O}_2)}{dt} &= k_1(\text{H}_2\text{O}_2)(\text{H}\text{NO}_2)^2 + k_2 \frac{(\text{NO}_3^-)(\text{H}_2\text{O}_2)(\text{H}\text{NO}_2)^4}{(\text{NO}_2^-)} \\ k_1 &= 5.7 \times 10^3, \qquad k_2 = 3.7 \times 10^9 \text{ at } 20^\circ \end{aligned}$$

Time is expressed in minutes, concentrations in moles per liter. In the presence of excess acid the mechanism of the reaction changes somewhat, and this rate equation is then no longer valid.

The effect of reducing agents on nitrous acid and nitrites is a function of the agent, of acidity, and of temperature. Thus in cold, neutral, or faintly acid solution sulfite reduces nitrite to hydroxylamine disulfonate, but at room temperature amine sulfonates or nitric oxide are reduction products. Ferrous and titanous ions reduce HNO₂ to NO; with stannous ion nitrous oxide is the principal product, but some hyponitrous acid is formed as well as small amounts of hydroxylamine and ammonia. Very strong reducing agents, such as sodium amalgam, can effect the reduction to hyponitrite; in liquid ammonia solution the nitrites are reduced to hydronitrites by metallic sodium.

Some of the reactions of nitrous acid with reducing agents have been studied with care, such being the case, for example, with arsenious acid. Abel, Schmid, and Weiss investigated this reaction under equilibrium conditions in the reaction leading to the decomposition of nitrous acid [Z. phys. Chem., 147, 76 (1930)]:

$$3HNO_2 = II^+ + NO_3^- + 2NO + H_2O$$

The rate equation for the oxidation of arsenious acid then takes the form

$$H_3AsO_3 + 2HNO_2 = H_3AsO_4 + 2NO + H_2O$$

$$\frac{d(H_3AsO_4)}{dt} = k(H_3AsO_3)(HNO_2)^2$$

 $k = 5.75 \times 10^{-3}$ at 25° (time in minutes, conc. in moles/liter)

A mechanism that is in accord with this equation is

$$\begin{array}{ccc} 2HNO_2 = N_2O_3 + H_2O & \text{(rapid and reversible)} \\ N_2O_3 + H_3AsO_3 = H_3AsO_4 + 2NO & \text{(rate-determining step)} \end{array}$$

A large number of reactions involving the oxidation or reduction of nitrites have not been subjected to detailed study, but they exhibit the characteristics of the reactivity of nitrites. Thus aqueous mixtures of NaNO₂ and NaN₃ react with a lively evolution of N₂O and N₂ when acidified with acetic acid [Sommer and Pincas, Ber., 48, 2096 (1915)].

$$HN_3 + HNO_2 = N_2O + N_2 + H_2O$$

Hydroxylamine sulfate solutions react rapidly with nitrous acid with the formation of N₂O and water. Hydrogen sulfide reduces HNO₂ to NO with the formation of elementary sulfur. On the other hand, in a buffer solution of sodium bicarbonate hydrogen sulfide is oxidized to sulfur, but the nitrite is, for the most part, reduced to ammonia. In unbuffered solutions of alkali nitrite, the reaction proceeds nearly quantitatively according to the equation

$$2NO_2^- + 4H_2S = S_2O_3^- + 2S + 2NH_3 + H_2O$$

Thiosulfate reacts readily with nitrous acid solutions to give nitric oxide, hexa- and tetrathionate, and sulfurous and sulfuric acids. Amine sulfonic acid (sulfamic acid), NH₂SO₃H, reacts rapidly and smoothly with nitrous acid to yield nitrogen and sulfuric acid.

$$NH_2SO_3^- + HNO_2 = N_2 + SO_4^- + H^+ + H_2O_4^-$$

Of interest for the purposes of quantitative analysis is the reaction between nitrous acid and silver bromate; namely,

$$Ag^{+} + BrO_{3}^{-} + 3HNO_{2} = 3H^{+} + 3NO_{3}^{-} + AgBr(s)$$

the resulting silver bromide being filtered off and weighed. The silver bromate-alkali nitrite mixture in solution is acidified with acetic acid to bring about the reaction.

A very familiar reaction is the decomposition of aqueous ammonium nitrite solutions according to the equation

$$NH_4^+ + NO_2^- = N_2 + 2H_2O$$

In addition small amounts of nitric oxide and nitric acid are produced through side reactions. The rate of evolution of nitrogen depends on the temperature and acidity of the solution. In the presence of a small amount of added nitric acid and a constant pressure of NO (to prevent decomposition of IINO₂ by the reversible reaction 3HNO₂ + H⁺ = NO $_3$ + 2NO + H₂O), the rate of evolution of nitrogen in moles/min is expressed by the equation

$$\frac{d(N_2)}{dt} = k_{\mu}(NH_4^+)(NO_2^-)(HNO_2)$$
 (1)

 $k_{\mu} = 0.26$ to 0.17 at 25° for ionic strengths, μ , of 0.2 to 3.0 m.

The time unit is minutes, and concentrations are in moles/liter.

In the absence of added acid, and with equivalent amounts of NH₄ and NO₇, the rate equation takes the apparently different form

$$\frac{d(N_2)}{dt} = k[NH_4NO_2]_s^3$$
 (2)

but when the rapid reversible hydrolytic reaction

$$NH_4^+ + NO_2^- + H_2O = NH_4OH + HNO_2$$

is taken into account, it is evident that, since $(NH_4OH)(HNO_2) = (HNO_2)^2 = K(NH_4^+)(NO_2^-) = K[NH_4NO_2]_*^2$, where $[NH_4NO_2]_*$ means the concentration of ammonium nitrite without taking into consideration its ionization, the rate equation (2) reduces to (1) with $k = k_\mu \sqrt{K}$ [Abel, Schmid, and Schafranik, Z. phys. Chem., Bodenstein Festband, 510 (1931)]. The mechanism of the decomposition appears to be given

by the following reactions:

$$NH_4^+ + NO_2^- = NH_4NO_2$$
 (rapid and reversible)
 $NH_4NO_2 + HNO_2 = NH_4NO_2 \cdot HNO_2$ (rate-determining for mation of intermediate)
 $NH_4^+ + NH_4NO_2 \cdot HNO_2 = 2N_2 + 2H_2O + H^+$ (rapid, irreversible)
 $NO_2^- + H^+ = HNO_2$ (rapid, reversible)

Between 15° and 35° the temperature coefficient of the reaction is normal and has the value

$$\frac{k_{t+10}}{k_{t}}=2.9$$

Of the equilibrium physical properties of nitrous acid and the nitrites it will suffice to discuss the vapor pressure of HNO₂ above its solutions. It has been known for some time that a gaseous mixture of NO, NO₂, and H₂O shows some absorption bands different from those of any of its components, including N₂O₃ and N₂O₄. These bands have been ascribed to HNO₂(g), and the partial vapor-pressure measurements of Abel and Neusser [Monatshefte, 54, 855 (1929)] confirm this view. By bubbling NO through aqueous mixtures containing HNO₂, HNO₃, KNO₃, and H₂SO₄ in various proportions, and taking account of all nitrogen compounds present in the vapor phase, Abel and Neusser arrived at the following smoothed values for the constants in Henry's law for nitrous acid.

TABLE 15

THE RATIOS $P_{\rm HNO_2}/({\rm HNO_2})$ FOR NITROUS ACID SOLUTIONS AT 25° $k' = P_{\rm HNO_2}/({\rm HNO_2})$, pressures in atmospheres, concentrations in moles/liter $k' = \gamma \ k$; k, a constant, = 0.0305

$k' \times 10^4$	Activity Coefficient γ of HNO ₂ (aq)
312	1.03
336	1.09
345 ` 357	1.13 1.17
363 393	1.19 1 29
396 424	1.30 1.39
	312 332 336 345 357 363 393

The fact that the k' are fairly constant and increase slowly with the ionic strength is satisfactory evidence for the existence of HNO₂ in the vapor phase. For a solution of ionic strength 0.4 m and 0.1 m in HNO₂, $P_{\text{HNO}_2} = 3.12 \times 10^{-3}$ atm or 2.37 mm. In order that this pressure of

HNO₂ may persist, it is necessary that the concentration of HNO₂ remain constant, and to attain this the solution must contain HNO₃ and be saturated with NO at a pressure such that equilibrium with 0.1 m HNO₂ is attained in the reversible reaction

$$3HNO_2 = H^+ + NO_3^- + 2NO + H_2O$$

It has been noted above that nitrous acid is weak. Conductivity measurements are ordinarily used to determine the ionization constants, and, from the discussion already given regarding the stability of HNO₂, it is evident that the experiments are attended with difficulties. Klemenc and Hayek [Monatshefte, 54, 407 (1929)] have attained somewhat better accuracy in the measurements than previous investigators, and their results are presented here.

$$K = \frac{(\mathrm{H^+})(\mathrm{NO_2^-})}{(\mathrm{HNO_2})}$$
 $\mathbf{t}(^{\circ}\mathrm{C}) \dots \qquad \qquad 0 \qquad 12.5 \qquad 30$
 $K \times 10^4 \dots \qquad \qquad 3 \ 2 \pm 0.3 \qquad 4.6 \pm 0.4 \qquad 6.0 \pm 0.6$

The structure of the nitrite ion has been a subject of speculation almost since the discovery of the substance. X-ray crystal structure studies on nitrites and analysis of the Raman spectrum of NaNO₂ solutions suffice to establish the triangular configuration of the ion.

N—O distance 1.13 Å
$$\beta = 120-130^{\circ}$$

The N—O distance of 1.13 Å is essentially equal to that found in nitrosyl chloride, NOCl; accordingly, the bonds must be of the same character in both substances. The extra pair of electrons are pictured as resonating from one N—O bond to the other, and the bonds are, on the average, stronger than the normal, single N—O bond and not quite as strong as a double bond.

The Raman spectrum of NO₂ shows the following lines [Langseth and Walles, Z. phys. Chem., 27, 209 (1934)]:

Line	Frequency, cm ⁻¹	Intensity (relative at 15°)	Polarization, ρ
A	1331.3 ± 1	12.9 (sharp)	$0.43 \\ 0.84 \binom{6}{7} \\ 0.21$
B	1240 ± 2	2.4 (broad)	
C	813 2	1.0 (sharp)	

These results are in accord with a triangular configuration for NO_2^- since the selection rules permit three lines (corresponding to the three nondegenerate modes of vibration) in the Raman spectrum; only one (fundamental) line would be permitted for a linear symmetrical model O—N—O. The intense line A is due to the symmetrical stretching mode of vibration, while B must arise from the antisymmetrical mode, since $\rho = \frac{\sigma}{2}$.

The Fixation of Nitrogen and Nitric Acid

Fixation of nitrogen

Elementary nitrogen is not very reactive under ordinary conditions, and it combines at an appreciable rate with only a few substances at At higher temperatures it combines readily ordinary temperatures. with some metals, for example, lithium, calcium, magnesium, and silicon; but since these metals are costly to prepare, they do not present economically practical intermediates for nitrogen fixation. Since combined nitrogen is absolutely essential for the maintenance of life and growth of animals and most plants, and since many plants act to deplete the nitrogen content of the soil, it is necessary either to manufacture and apply nitrogen compounds to the soil, or to plant, at least periodically, those plants which are capable with the help of certain bacteria of fixing Some organisms, known as nonsymbiotic bacteria, are capable of absorbing (fixing) nitrogen directly, but they do not serve as the most important source; the nitrogen so fixed does not become available to plants until the organisms die. Another class of bacteria, symbiotic, is capable of bringing about nitrogen fixation when aided in the task by certain plants which act as hosts to the bacteria. The nitrogen fixed by nonsymbiotic organisms amounts to as much as 35 pounds per acre annually, but this is much less than that fixed by symbiotic bacteria, namely, 100-200 pounds per acre annually. These amounts obtain only for a favorable environment and may be much less otherwise.

Symbiotic bacteria grow mostly on the roots of a class of plants known as legumes, and such plants are characterized by nodules on the roots, the nodules being caused by and containing most of the bacteria. The bacteria live on the plant, that is, they obtain their necessary carbohydrate from the plant; at the same time they absorb nitrogen from the air, and this fixed nitrogen is then consumed by the plant to form proteins eventually. Both the plant and the bacteria are necessary in this cooperative process. Important members of the class of plants which are capable of acting as hosts to the symbiotic bacteria are peas, clover, alfalfa, and soy and other beans. It is now common practice to rotate crops so that the nitrogen content of the soils will not become depleted; that is, a few years devoted to plantings of non-legumes (cotton, wheat,

corn, tobacco) are followed by plantings of legumes. The importance of fixed nitrogen in the soil was first clearly realized after 1862. [See Curtis, Fixed Nitrogen (chapter by Allison).]

The mechanism of the absorption of nitrogen by living organisms is not definitely known; that is, it is not known whether the first step consists in the formation of reduced (ammonia) nitrogen compounds or of

Fig. 14. World Production and Consumption of Nitrogen Compounds. The bars are for the "fertilizer years," 1927–1928, 1928–1929, etc. [Based on data from British Sulfate of Ammonia, Ltd.]

oxidized or nitrate nitrogen. Nitrates when absorbed by plants are converted principally into proteins and other derivatives of ammonia.

Nitrogen compounds are necessary for other than fertilizing purposes; thus dyestuffs, poisons, and explosives are usually nitrogen compounds or contain such compounds as an important constituent. In addition to such commodities, many others require for their manufacture the use of fixed nitrogen in one form or another; thus, the lead-chamber process for the manufacture of sulfuric acid and the conversion of cellulose to some types of fabrics require nitric oxide or acid. For this reason a great deal of attention has been given to methods for the conversion of atmospheric

nitrogen to compounds of it. Before such methods became of economic importance, the principal sources of fixed nitrogen consisted of the by-product ammonium sulfate from the distillation of coal and mainly of the deposits of Chile saltpeter, NaNO3, which, although found in many places, occur most abundantly in Chile. The Chile saltpeter was used directly or it was converted to nitric acid by the distillation of the salt with concentrate sulfuric acid. In 1913 Chile saltpeter provided about 55% of the world production of fixed nitrogen, but by 1929 this had decreased to 24%, although the number of tons of saltpeter mined was greater in 1929 than in 1913. The production of artificial fixed nitrogen rose from 7.3% of the total world production in 1913 to more than 50% in 1929. In 1913 the total world production of fixed nitrogen from all sources was 916,160 tons; in 1929 it was 2,324,300 tons. Still later, during the almost world-wide economic depression of 1931-1932, the total world production of fixed nitrogen was 1,553,704 metric tons, of which 170,000 metric tons was Chile nitrate [Read, Industrial Chemistry. John Wiley, N. Y., 1938. As of January 1932 the total world capacity for production was 3,400,000 metric tons exclusive of Chile; the 1938 world production capacity was estimated to be five million tons. The 1933 production capacity was distributed as follows:

Country	Per Cent of World Production Capacity	Country	Per Cent of World Production Capacity
Germany	13 6 10.6	FranceJapanOthers	7.2 5.9 26

In 1935-1936 the world production was over 2,600,000 short tons, of which 8% was Chile nitrate, 17% from coal distillation, and 75% from synthetic ammonia processes. Changes in the sources of fixed nitrogen are shown in the following table in terms of percentages of world production. [For statistics to 1930, see Curtis, *Fixed Nitrogen*.]

	1900	1913	1934
Chile nitrate	33.4	55.4% 37.3 7.3	6.9% 18.6 74.5

The important processes for the artificial fixation of nitrogen depend on four different sets of reactions. A. The arc process. In this process air is passed through an electric arc, and at the high temperatures obtaining there a small fraction, 1 to 2%, of the nitrogen is converted to NO. The yield is limited by the equilibrium state in the reaction $N_2 + O_2 = 2NO$ (see the section on NO, page 25). The emerging gases are rapidly cooled, and at ordinary temperatures the moderately slow reaction $NO + \frac{1}{2}O_2 = NO_2$ produces the dioxide, which is absorbed in water according to the important reversible reaction

$$3NO_2 + H_2O = 2HNO_3 + NO$$

The NO formed is oxidized to NO₂ by atmospheric oxygen, and the gas is then recirculated. The arc process, first perfected by Birkeland

Fig. 15. The Equilibrium Percentage of Ammonia in the Reaction $\frac{1}{2}N_2 + \frac{3}{2}H_2 = NH_2$ as a Function of Pressure at Various Temperatures (in °C).

and Eyde, is no longer of importance; it has given way to the more convenient and economical synthetic ammonia and cyanamide processes. The cost of electric power and the problem of the oxidation and absorption of the dilute nitric oxide are the factors that militated against it.

B. The synthetic ammonia or Haber process. A mixture of hydrogen and nitrogen under pressure and in the presence of an iron catalyst is caused to combine at 450-600° according to the reversible reaction

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

The effect of temperature and pressure on the equilibrium constants of this reaction is shown graphically in Fig. 15 and in the following tables [Larson and Dodge, J. Am. Chem. Soc., 45, 2918 (1923); Larson, ibid., 46, 367 (1924)].

TABLE 16 VOLUME PERCENTAGE OF AMMONIA IN 3:1 H_rN₂ EQUILIBRIUM MIXTURES

Temp.	Pressure in Atmospheres								
(°C)	10	30	50	100	300	600	1000		
300 400 500 600 700	14 73 3 85 1.21 0 49 0.23	30.25 10.15 3.49 1 39 0.68	39.41 15.27 5.56 2.26 1.05	52.04 25.12 10 61 4.52 2.18	70.96 47.00 26.44 13.77 7.28	84.21 65.20 42.15 23.10 12.60	92.55 79 82 57.47 31.43 12.87		

TABLE 17

EMPIRICAL EQUILIBRIUM CONSTANTS FOR $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) = NH_2(g)$

Log₁₀
$$K_{P_{\text{atm}}} = \frac{\alpha}{T} + \beta \log_{10} T + \gamma T + \delta T^2 + I, \qquad K_{\text{atm}} = \frac{P_{\text{NH}_1}}{P_{\text{N}_2}^{1/2} P_{\text{H}_2}^{3/2}}$$

$$\alpha = 2074.8 \qquad \beta = -2.4943$$

Total Pressure (atm)	γ	$\delta imes 10^7$	I
10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.856	1 993
30		1.856	2.021
50		1.856	2.090
100		1.856	2.113
300		1.8564	2.206
600		1.8564	3.059
1000		1.8564	4.473

These equilibrium constants cannot be used directly for calculating free energies, since they refer to pressures and not fugacities. Although in the temperature range $300-700^{\circ}$ C both nitrogen and hydrogen are nearly perfect gases even at high pressures, ammonia is far from being so; hence the K's are to be regarded as empirical only, although they are extremely useful.¹

$$C_{p} = 1.1255 + 0.00238T + \frac{76.8}{T} + \frac{5.45 \times 10^{8}p}{T^{4}} + \frac{(6.5 + 3.8p) \times 10^{27}p}{T^{12}} + \frac{2.37 \times 10^{42}p^{8}}{T^{20}}$$

The weight of one liter of ammonia gas at 760.00 mm and 0°C is 0.771409 grams [Moles and Roquero, Añales Soc. españ. fis. quim., 35, 263 (1937)].

¹ In order to write down thermodynamic equations, it is necessary to know not only the fugacities but also ΔII (22,000 cal) for $N_2(g)+3H_2(g)=2NH_3(g)$ and the heat capacities of the gases involved. The heat capacity of $NH_3(g)$ has been determined by Osborne, Stimson, Sligh, and Cragoe [Sci. Papers, U.S. Bur. Standards, 1924–1926, 65] and is given in joules/g deg as a function of the pressure p (in meters of IIg) and temperature by the empirical formula

The formation of ammonia is evidently favored by high pressures and low temperatures; but if the temperature falls to much below 400°C, the rate of the catalyzed reaction becomes too slow for the economical production of ammonia. If the temperature is too high, the equilibrium pressure of NH₃ is too low for satisfactory yields. Without a catalyst the reaction, which is heterogeneous, is much too slow to be of any use

Fig. 16. The Molal Heat Capacity of Some Gaseous Nitrogen Compounds. N₂O: curve, calculated [Kassel, J. Am. Chem. Soc., 56, 1838 (1934)]; circles, experimental [Eucken and Lüde, Z. physik. Chem., 5B, 437 (1929)]. HCN: experimental [Felsing and Drake, J. Am. Chem. Soc., 58, 1714 (1936)]. NH₃: curve, calculated [Haupt and Teller, J. Chem. Phys., 7, 925 (1939)]; circles, experimental [Osborne, Stimson, Sligh, and Cragoe, Sci. Papers U.S. Bur. Standards, 1924/26, 65]. C₂N₂: curve, calculated [Stevenson, J. Chem. Phys., 7, 171 (1939)]; circles, experimental [Bursik and Yost, J. Chem. Phys., 7, 1114 (1939)].

unless the temperature is quite high; and if the temperature is sufficiently high for a rapid rate (ca. 1000°), the equilibrium lies too far in favor of hydrogen and nitrogen to make the reaction of any practical value.

Many investigations have been made on the catalysts that are effective in ammonia synthesis, with the net result that finely divided iron containing small amounts of one or more "promoters" has been found to be most effective. The catalyst is usually prepared by reducing a heated mixture of Fe (1%), FeO, Fe₂O₃ (ratio of ferrous to ferric iron is

about 0.57), Al₂O₃ (1.3%), and K₂O (0.2%), with a 3-to-1 mixture of hydrogen and nitrogen [see Curtis, *Fixed Nitrogen* (Emmett)]. Another procedure is to reduce a mixture of magnetite, Fe₃O₄, and the promoters Al₂O₃ and K₂O, or other oxides, with the hydrogen-nitrogen mixture.

The catalyst is rendered ineffective, "poisoned," by water, oxygen, and carbon monoxide and dioxide, and these substances must be removed from the hydrogen-nitrogen mixture which is to be converted to ammonia. In practice a purified hydrogen-nitrogen mixture is passed, under pressure and at a higher-than-ordinary temperature, first over a rugged catalyst that brings about the formation of a small amount of ammonia. formation and removal of this ammonia facilitates the removal of any remaining "catalyst-poisons"—carbon compounds, if coke-oven gases are used as a source of hydrogen. The purified hydrogen-nitrogen mixture is then passed through strong-walled, steel cells containing the final catalyst. The temperature in the cells is maintained at about 450-500°: the heat of the reaction more than suffices for maintaining this temperature if high pressures are used and, indeed, makes it necessary to remove heat by proper cooling devices. The ammonia present in the gases emerging from the converters is caused to liquefy in tanks, from which it is periodically drawn off.

A complete mechanism of the catalyzed ammonia synthesis reaction has not been definitely established, but some significant hypotheses have been offered that may point the way to the eventual solution of the problem. The first step in the reaction is assumed to be the formation of an iron nitride by the reaction of nitrogen with very active surface atoms of iron. (Fe₄N and other iron nitrides are not stable at 450°, the equilibrium pressure of nitrogen above a Fe₄N—Fe mixture amounting to about 5000 atmospheres.) Hydrogen, too appears to be activated by the catalyst, since a very rapid conversion of para- to orthohydrogen is known to be effected by the catalysts used. Accordingly, the second concurrent step in the reaction may be supposed to consist of the activation of the hydrogen—no specific statement regarding the nature of this activation being at present possible, although the formation of monatomic hydrogen on the surface of the catalyst is not to be overlooked as a possibility. Finally, the activated hydrogen and Fe₄N may be supposed to react rapidly to form an intermediate NH, and this in turn to combine with further hydrogen to form NH₃.

The ammonia formed in the synthesis is either used as such, combined with acids to form ammonium sulfate or phosphate, or oxidized to nitric oxide with oxygen on a hot platinum gauze. In this oxidation process a mixture of ammonia (10%) and air is passed through a heated (750-900°) 80-mesh platinum gauze, where the reaction $4NH_3 + 5O_2 = 4NO + 6H_2O$ takes place to the exclusion of all but an inappreciable amount of the side reaction $4NH_3 + 3O_2 = 2N_2 + 6H_2O$. The nitric

oxide is then further oxidized at ordinary temperatures to NO₂, and this is finally absorbed in water to form nitric acid.

C. The cyanamide process. This process involves the following independent reactions. Starting with naturally occurring limestone, CaCO₃, lime is formed:

$$CaCO_3(s) = CaO(s) + CO_2(g)$$
 at 1100°

Then in an electric-arc furnace, the lime and carbon are caused to combine:

$$CaO(s) + 3C (coke) = CaC_2(s) + CO(g), \qquad \Delta H = 121,150 \text{ cal}$$

The calcium carbide formed is then ground to such a fineness that it will pass through a 200-mesh screen. A few per cent, 2% or more, of powdered calcium fluoride, CaF₂, is mixed with the carbide and the mixture placed in a furnace. At 900° to 1000° the calcium carbide-calcium fluoride mixture absorbs nitrogen to form calcium cyanamide, CaCN₂.

$$CaC_2(s) + N_2 = CaCN_2(s) + C(s), \qquad \Delta H = -72,700 \text{ cal}$$

The nitrogen must be 99.8% pure or purer and is obtained by the fractional distillation of liquid air. In its applications the cyanamide is either used directly as a fertilizer or is hydrolyzed to produce ammonia. In either event it is desirable to spray it with a small amount of water to bring about the decomposition of any unreacted calcium carbide into Ca(OH)₂ and acetylene, C₂H₂. The hydrolysis is effected by autoclaving the cyanamide at somewhat above 100° with 3% sodium hydroxide solution:

$$CaCN_2 + 3H_2O = 2NH_3 + CaCO_3$$

Attention has been given to the mechanism of the nitrification reaction, with the result that the following steps are rendered probable [Polzenius, Chem.-Ztg., 31, 958 (1907); Krase and Yee, J. Am. Chem. Soc., 46, 1362 (1924); see also Krase in Curtis, Fixed Nitrogen]:

$$3CaC_2 = 3Ca + 6C$$

 $3Ca + N_2 = Ca_3N_2$
 $Ca_3N_2 + 3C + 2N_2 = 3CaCN_2$

.D. The alkali cyanide process. This process, while very attractive in principle, has not proved as successful in practice as the cyanamide or synthetic ammonia process. The main reaction involved is the reversible one

$$Na_2CO_3 + 4C + N_2 + Fe \text{ (catalyst)} \rightleftharpoons 2NaCN + 3CO + Fe \text{ (catalyst)} \qquad \Delta H = 138,500 \text{ cal}$$

and it takes place at about 1000° to such an extent that cyanide

yields of nearly 100% in laboratory experiments and 50% in practice are obtainable. The sodium cyanide is hydrolyzed at 400° to 500° with water, $NaCN + 2H_2O = NaHCO_2 + NH_3$, or it is treated with carbon dioxide to liberate HCN.

The fact that the main nitrifying reaction mixture is molten at 1000° and is a poor conductor of heat makes it difficult to bring it to the proper temperature. Moreover, good contact between the melt and nitrogen is difficult to attain, and satisfactory vessels resistant to the melt have not been found. The hydrolysis of the cyanide to ammonia also is accompanied by many practical difficulties. It is evident that more than one important factor is responsible for the lack of complete success of this process.

Nitric acid, HNO₃

The preparation of nitric acid is accomplished in two ways. In the first and oldest method a nitrate, Chile saltpeter for example, is mixed with concentrated sulfuric acid in a cast-iron retort and distilled, the distillate being condensed in a fused silica condenser cooled with water and eventually collected in stoneware or glass bottles. The second method involves the absorption in water of the NO₂ obtained from the

Fig. 17. The Equilibrium Concentration of HNO₁ in the Reaction 3NO₂ + H₂O = 2HNO₃ + NO. Pressures are expressed in atmospheres.

are process or from the oxidation of ammonia. The absorption reaction is reversible and is

$$3NO_2(g) + H_2O(l) = 2HNO_3(aq) + NO(g)$$

The equilibrium states in this reaction have been extensively investigated by both dynamic and static methods. [See Burdick and Freed, J. Am. Chem. Soc., 43, 518 (1921) (dynamic method); Abel, Schmid, and Stein, Z. Electrochem., 36, 692 (1930), and Chambers and Sherwood, J. Am. Chem. Soc., 59, 316 (1937) (static method).] It is evident that for a fixed concentration of nitric acid

$$\frac{P_{\text{NO}}}{P_{\text{NO}}^3} = K_1$$

and the value of K_1 will vary with the concentration of nitric acid. In Fig. 17 is reproduced Chambers and Sherwood's graphical representation of the results of all investigators for a range of acid concentrations. The complete equilibrium expression, in terms of partial pressures of $NO_2(g)$, $H_2O(g)$, $HNO_3(g)$, and NO(g), is

$$\frac{P_{\text{NO}}P_{\text{HNO}_2}^2}{P_{\text{NO}_2}^3P_{\text{H}_2\text{O}}} = K$$

It is seen that the equilibrium constant depends upon the partial pressures of nitric acid and water as well as upon the ratio $P_{\rm NO}/P_{\rm NO}^3$. These partial pressures have been measured a number of times, but Forsythe and Giauque have recently pointed out [J. Am. Chem. Soc., 64, 48 (1942)] that the data do not obey the Duhem equation,

$$d\,\log_{\rm e}P_{\rm HNO_3}=\,-\,\frac{N_{\rm H_2O}}{N_{\rm HNO_3}}d\,\log_{\rm e}P_{\rm H_2O}$$

and are in fact unreliable by factors ranging to 2 or 3. The constants based on the experimentally determined partial pressures are correspondingly in error. However, by utilizing the experimental value of the entropy of nitric acid gas which they obtained and known thermodynamic properties of the other reactants, they were able to calculate the equilibrium constant as a function of temperature with the results shown in the following table.

TABLE 18 EQUILIBRIUM CONSTANTS FOR THE REACTION $3NO_2(g) + H_2O(g) = 2HNO_3(g) + NO(g)$ $(\Delta H_0^o = -7230 \text{ cal})$

<i>T</i> (°K)	$K_{ m atm}$	T (°K)	$K_{ m atm}$
275 293.1 298.1	1.37×10^{-2} 1.05×10^{-2}	350	1.87×10^{-4} 4.86×10^{-6}

At 25°, $P_{\text{NO}}/P_{\text{NO}2}^3 = K_{1\text{atm}}$ varies from 2.75 × 104 for 37.1% HNO₃ to 1.00×10^2 for 58.8% HNO₃, and for still more concentrated acid $K_{1\text{atm}}$ is so small that the pressure of nitric oxide, for a moderate pressure of NO₂(N₂O₄), becomes too small to permit of high concentrations of nitric acid being readily obtained by the absorption of NO₂ in water. This difficulty is partly overcome by passing a mixture of oxygen and nitrogen dioxide into water, the oxygen serving to oxidize the NO formed to NO₂, but the oxidation is slow and no catalyst for the reaction has been found. By employing a mixture of nitrogen dioxide and oxygen under pressure, much higher concentrations of nitric acid are obtainable, and this device is resorted to in practice to some extent. The rate of absorption of NO₂—N₂O₄ by water is rapid at first and then becomes slow as the concentration of HNO3 increases—so slow, indeed, that for acid of greater than 50% strength the use of oxygen is required. Mixtures of liquid N₂O₄, water, and oxygen under pressures of 300 to 1000 pounds are sometimes used to obtain very strong (nearly 100%) nitric acid. Instead of resorting to high oxygen pressures to obtain the very concentrated nitric acid, it is more common to distill the weaker (50% or less) acid with concentrated sulfuric acid. The distillation of nitric acid alone does not lead to high concentrations, since 68.4% acid forms a constant boiling mixture boiling at 121.9°. Both reaction rates and equilibria are very important in the preparation or manufacture of nitric acid.

So far attention has not been concentrated on another reaction that takes place when NO₂ dissolves in water; namely,

$$2NO_2 + H_2O = H^+ + NO_3^- + HNO_2$$

This reaction is of importance when the concentration of nitric acid is very low, but at higher concentrations the reaction

$$3HNO_2 = H^+ + NO_3^- + H_2O + 2NO$$

goes practically to completion. In 20% nitric acid no detectable amount of nitrous acid is formed when NO₂ is absorbed. (See the sec-

TABLE 19 VAPOR PRESSURES OF 100 PER CENT HNO:

Temperature	Vapor Pressures (mm)				
(°C)		Klemenc and Rupp			
0		15.0			
10	22				
12.5		30.8			
20	42				
25	57	61.8			
35	102				
50	215				
80	625				
85	720				
90	820				

tion on nitrous acid for equilibrium constants and mechanism of this reaction.)

Properties of nitric acid

Pure 100% nitric acid is a colorless liquid which boils at 83° and on cooling forms colorless crystals melting at -41.59° . At 25° the density relative to water 4° is $D_4^{25} = 1.50269$. vapor pressures of the 100% acid are appreciable even at room temperatures, as the accompanying table shows [Taylor, Ind. Eng. Chem., 17, 633 (1925)]. The experimental error in these measurements may be considerable.

Some later values by Klemenc and Rupp [Z. anorg. Chem., 194, 51 (1930)] are given for comparison.

The 100% acid decomposes slowly into NO₂, O₂, and H₂O on exposure to light and on heating, with the result that it becomes colored. The equilibrium constants for the reaction are given in Table 20 [Forsythe and Giauque, J. Am. Chem. Soc., 64, 48 (1942)]. The pure acid is not as reactive in many reactions as its solutions; however, some substances are readily or explosively oxidized if warmed or heated with the 100% acid.

Spectroscopic studies indicate that the three oxygen atoms in HNO₃ lie at the corners of an equilateral triangle and are coplanar with the central nitrogen atom. Electron-diffraction experiments support this structure and give the accompanying distances and angles [Maxwell and Mosely, J. Chem. Phys., 8, 738 (1940). The O—H distance is assumed to be the same as in the water molecule].

The hydrogen atom is attached to one of the oxygen atoms with an H—O—N angle of roughly 90°. The possibility of forming a hydrogen bond (indicated by the dashed line) would be expected to cause a mini-

mum at the NO₃ plane in the potential curve for rotation of the hydrogen about the (OH)—N bond. By comparing the entropy calculated from molecular constants with the experimental entropy, Forsythe and Giauque have found a double potential barrier of about 7000 cal/mole. The rotation of the hydrogen atom is thus greatly restricted and its motion at room temperature approximates closely a vibration of frequency 430 cm⁻¹.

Nitric acid and the solutions of nitric acid in water have been inves-

TABLE 20 EQUILIBRIUM CONSTANTS FOR THE REACTION: $H_2O(g) + \frac{1}{2}O_2(g) + 2NO_2(g) = 2HNO_3(g)$ $(\Delta H_0^0 = -20,025 \text{ cal})$

T(°K)	Katm			
275	3.56×10^{5}			
298 .1	1.45×10^{4}			
300	1.13×10^{4}			
350	4.65×10			
400	$4 \ 43 \times 10^{-}$			
450	2.81×10^{-2}			
500	2.06×10^{-3}			

tigated repeatedly; the following tables and Fig. 18 present some of the more important physical properties. Two definite hydrates are known, the monohydrate, $HNO_3 \cdot H_2O$, which forms small, colorless opaque crystals with m.p. = -37.68° , and the trihydrate, $HNO_3 \cdot 3H_2O$, which exists as large, transparent crystals of m.p. = -18.47° .

Forsythe and Giauque (loc. cit.) have recently published the results of a thorough calorimetric study of nitric acid and its hydrates. The melting points, heat capacities, heats of fusion, and heats of dilution were directly measured. From the integral

$$\int_0^T \frac{C_p}{T} dT$$

the entropies were evaluated. For these entropies to be useful in thermodynamic calculations, it is necessary to know whether the experimental value represents all of the entropy, that is, whether any random-

Fig. 18. Phase Diagram for the System H₂O—HNO₃. [Küster and Kremann, Z. anorg. Chem., 41, 1 (1904).]

ness in structure remained at the lowest temperatures reached (13°K). It is known, for instance, that in water there is a residual entropy after the customary extrapolation to 0°K of about $R \log_e \frac{a}{8} = .81$ cal/deg/mole due to a random orientation of hydrogen bonds (see the section on water), and it was possible that a similar phenomenon might be found in nitric acid. To rule out this possibility, it is necessary to

find some reaction for which the ΔS from the calorimetric entropies based on the third law of thermodynamics can be compared with the ΔS derived from other independent measurements. Such a reaction is:

$$HNO_3$$
 (l) + H_2O (l) = $HNO_3 \cdot H_2O$ (l)
or HNO_3 (l) + $3H_2O$ (l) = $HNO_3 \cdot 3H_2O$ (l)

The free energy of hydration can be evaluated by means of the equation

$$\Delta F = RT \log_{\theta} \frac{P_{\text{HNO}_{\theta}}}{P_{\text{HNO}_{\theta}}^{0}} + 3RT \log_{\theta} \frac{P_{\text{H}_{\theta}0}}{P_{\text{H}_{\theta}0}^{0}}$$

where the P°'s refer to the vapor pressures of the pure components, and the P's refer to the partial pressure of the components over the solution. From the heat-of-solution measurements, the heat of reaction, ΔH , can be calculated. The entropy change is then given by

$$\Delta S = \frac{\Delta H}{T} - \frac{\Delta F}{T}$$

Agreement of this value of ΔS with the ΔS obtained from the third law of thermodynamics would prove that if there is residual entropy, it is the same for the pure acid and its hydrates. As the structures are necessarily different, the residual entropy would most probably be zero.

In attempting to carry out this comparison, Forsythe and Giauque found, as has been previously mentioned, that much of the available

TABLE 21
PHYSICAL PROPERTIES OF NITRIC ACID SOLUTIONS
Density (Relative) of HNO₄ Solutions at 20°

Weight Per Cent HNO:	D_4^{20}	Weight Per Cent HNO ₃	D ₄ ²⁰	Weight Per Cent HNO:	D_4^{20}
1 10 20 30	1.00364 1.0543 1.1150 1.1800	40 50 60 70	1.2463 1.3100 1.3667 1.4134	80 90 95	1.4521 1.4826 1.4932

Partial Vapor Pressures in mm, $p_{\text{H*O}}(=p_W)$ and $p_{\text{HNO}_4}(=p_A)$, of HNO₃ Solutions [See Taylor, Ind. Eng. Chem., 17, 633 (1924), for results of several investigators.]

	t(°C)								
Weight Per Cent HNO:	10		25		50		100		
-	<i>p</i> _w	<i>p</i> _A	p_W	рл	₽₩	<i>p</i> _A	p _w	<i>p</i> _A	
20 30 50 60 80 90	8.0 7.1 4 2 3 0 1.2	0 12 0 41 4 11 22	20.6 17.8 10.7 7.7 3.2 1	 0 39 1 21 10 5 27 57	80 69 42.5 31.0 12 4	0.25 2 18 5.68 41 103 215	383	1 87 6.05 34 2 69 5 330 675 >900	

Examination of Partial Pressure Data for HNO_3 Solutions by the Duhem Equation and with the Aid of the Calorimetric Entropies

[Forsythe and Giauque, J. Am. Chem. Soc., 64, 48 (1942); data of Wilson and Miles, Trans. Faraday Soc., 36, 356 (1940).] (All pressures are for 20°C.)

Weight	p_1	H ₂ O	p hno₃		
Per Cent HNO:	Obs. (mm)	From Curve	Obs. (mm)	From Curve	
49.94	7.75 	7.9 (6.77) 2.62 (1.10) 0.201 0.146 0 028	0.355 2.88 25.70 29.11 41.59	0.183 (0.345) 2.90 (8.43) 25.84 29.07 41.59	

Table 21 (Cont.)
Activity Coefficients, γ , of Nitric Acid at 25°

[Hartman and Rosenfeld, Z. Phys. Chem., 164A, 385 (1933); Redlich, Landolt-Bornstein-Roth, Erg. Bd. 2, p. 1119.]

(Concentrations, m, in moles per 1000 g water. $\gamma = a^{1/2}/m$.)

m	γ	m	γ	m	γ
.001 .005 .01 .05 0.1	0.9660 9295 .9053 .8280 .7909 .7197	1.0 2 3 4 9	7235 .7931 .9090 1.1 1.16 1.45	16 20 36 50 100	1.45 2.2 2.18 2.5 2.1

Heat of Dilution of HNO₃ at Room Temperature H refers to 1 mole HNO₃ with n moles H₂O h refers to 1 mole H₂O with N moles HNO₃

 $H=\frac{8974n}{n+1.737} \text{ cal}, \qquad h=\frac{8974N}{1+1.737N} \text{ cal}$ data on the partial pressures of nitric acid and water over nitric acid

solutions are not self-consistent when tested by the Duhem equation. However, they were able to find two sets of data which were in agreement with the Duhem equation. The test for residual entropy gave the following results:

HNO₃ (l) + H₂O (l) = HNO₃·H₂O (third law)
$$\Delta S_{343.1} = -2.13 \text{ cal/deg} \qquad \text{(third law)}$$

$$= -2.21 \qquad \text{(from } \Delta F \text{ and } \Delta H \text{ values)}$$
HNO₃ (l) + 3H₂O (l) = HNO₃·3H₂O
$$\Delta S_{323.1} = 4.65 \text{ cal/deg} \qquad \text{(third law)}$$

$$= 4.64 \qquad \text{(from } \Delta F \text{ and } \Delta H \text{ values)}$$

The excellent agreement indicates that nitric acid and its mono- and trihydrate approach zero entropy as they approach the absolute zero of temperature. The calorimetric entropies are thus the appropriate ones to use in thermodynamic calculations.

In addition to the ordinary concentrated and dilute nitric acid solutions that are commonly met with in the laboratory and in industrial plants, there is also the red, fuming nitric acid that can be purchased in the market. Red, fuming nitric acid consists of concentrated nitric acid in which is dissolved variable amounts of NO₂; the specific gravity of the commercial product is about 1.59 to 1.60. The acid is sometimes made by adding a small amount of organic reducing agent, for example, formic acid, to the ordinary concentrated acid, the NO₂ produced being absorbed in the nitric acid itself. The solvent action of the red, fuming acid is much more rapid than that of ordinary concentrated nitric acid

owing to the presence of the NO₂. The role played by the nitrogen dioxide is not completely understood notwithstanding the great amount of discussion concerning it.

TABLE 22
THE THERMODYNAMIC PROPERTIES OF NITRIC ACID
AND ITS HYDRATES

[Forsythe and Giauque, J. Am. Chem. Soc., 64, 48 (1942); heat of vaporization, Wilson and Miles, Trans. Faraday Soc., 36, 356 (1940).]

(0°C = 273.1°K)

	HNO ₃	HNO ₃ ·H ₂ O	HNO ₃ ·3H ₂ O
Melting point (°K)	231.51	235 48	254 63
Heat of fusion (cal/mole)	2503	4184	6954
Heat of vaporization at 293.1°			
(cal/mole)	9426		
Heat capacity, (cal/deg mole):			
220°	15 82(s)	19.81(s)	35.51(s)
240	26 70(1)	43 02(1)	38.67
260	26.59	43 32	74.99(1)
280	26.42	43 48	76 72
300	26 24	43.62	77.80
ΔH of infinite dilution at 298.1°			
(cal/mole)	-7971	-4732	-2132
Entropy of liquid at 298.1° (cal/			
deg/mole)	37.19	51.84	82.93
Entropy of gas at 298.1° (cal/deg/			
mole)			

(Note: There was an arithmetical error in the ΔF° 's in the original paper The above values are correct.)

Nitric acid is an oxidizing agent, and it is this property that makes the substance especially useful and valuable. In its reactions the reduction products are variable; thus, at low concentrations the reduction product is principally NO, while the concentrated acid yields considerable NO_2 . The reactions may be typified as follows, where R is a reducing agent:

$$2H^{+} + 2NO_{3}^{-} + 3R = 3RO + 2NO + H_{2}O$$
 (Dilute acid) $2H^{+} + 2NO_{3}^{-} + R = LO + 2NO_{2} + H_{2}O$ (Concentrated acid)

It must not be supposed, however, that the reactions in any given mixture may be represented simply by one or the other of these equations. Both

NO and NO₂ will be found as reduction products with one of the oxides usually predominating.

When nitric acid is added to such metals as pure copper, lead, silver, and others, the oxidation is often slow at first; but once started, for example, by warming, the reaction continues vigorously until the metal is dissolved or the concentration of acid becomes low. Without warming, the reaction may be initiated by dissolving a small amount of NO₂ in the mixture. This noteworthy fact has suggested to many chemists that the mechanism of the oxidation of metals involves nitrous acid. Thus considering the rapid reversible formation of N₂O₄ from NO₂, the mechanism would be expressed by the reactions

$$\begin{array}{c} N_2O_4 + H_2O = H^+ + NO_3^- + HNO_2 \\ Cu + 2HNO_2 = Cu^{++} + 2NO + H_2O \\ 4H^+ + 4NO_3^- + 2NO = 3N_2O_4 + 2H_2O \end{array}$$

the extent of the last reaction depending on the concentration of nitric acid. If the acid is dilute, equilibrium in the last reaction lies to the left, and if concentrated to the right. Oxidation by dilute acid would, therefore, yield mainly NO, and with concentrated acid the product would be NO₂. Such a simple mechanism would probably not suffice to explain the oxidizing action in all its details; to do this the actual or possible formation of ammonia, hydroxylamine, hyponitrous acid, and other lower-valence compounds of nitrogen are invoked. The evidence for some of the detailed mechanisms offered is not altogether sufficient or It would add a great deal to the subject if a very thorough satisfying. investigation of the rate of some reaction involving nitric acid as an oxidizing agent were made; thus the oxidation of Sn++, Ti++, I-, Br-, or some other reducing agent could probably be studied and the mechanism determined in some range of concentrations for which the rate would be The reader is referred to the literature for a detailed discussion of the notions held by some investigators of the mechanisms of nitric acid oxidation reactions. [See Veley, Proc. Roy. Soc., 52, 27 (1893); Veley and Manley, Phil. Trans., 191 A, 365 (1898); ibid., 182 A, 312 (1891); Acworth and Armstrong, J. Chem. Soc., 32, 56 (1877); Banerji and Dhar, Z. anorg. Chem., 122, 73 (1922); Bancroft, J. Phys. Chem., 28, 475, 973 (1924).] It may be added that the theory of nascent hydrogen, that is, freshly formed hydrogen (possibly monatomic hydrogen or an activated hydrogen molecule), in this connection is not regarded with as much favor as formerly, owing to the fact that its presence during reaction has not been susceptible to satisfying proof.

Dilute nitric acid is usually slow in its action; thus, in a solution of a strength of a few tenths normal, iodine is liberated but slowly from iodides, and bromine scarcely at all from bromides. At high concentrations iodine, bromine, and even chlorine are liberated rapidly from

halide salts. Iodine is oxidized slowly to iodate by strong nitric acid. Mixtures of strong nitric and hydrochloric acids have long been known as aqua regia and are so called because of their solvent action on the noble metals, principally gold, platinum, and other elements of the platinum group. From a thermodynamic point of view, concentrated nitric acid alone is capable of oxidizing gold in the presence of substances forming gold complexes. But the presence of the nitrosyl chloride, resulting from the interaction of the concentrated nitric and hydrochloric acids, appears to catalyze the reactions greatly, whereas nitric acid alone acts only very slowly.

Mixtures of concentrated nitric and sulfuric acid have found considerable application in organic chemistry as reagents for adding or substituting a nitro group, —NO₂, in an organic compound.

Nitric acid is a strong acid, and salts of it with strong bases are, in aqueous solution, neutral to litmus. The nitrates in general are characterized by being soluble in water. A few organic nitrates, for example, nitron nitrate, 1,5-diphenylanilodihydrotriazol nitrate, are very slightly soluble and may be used for the gravimetric determination of nitrates. The following table presents the solubilities of some typical neutral or nearly neutral inorganic nitrates [Int. Crit. Tables].

Table 23
SOLUBILITIES OF SOME NITRATES IN WATER
(The solubilities are expressed in formula weights per 1000 g of water.)

Temp.	Li	Na	К	Rb	C's	NH4	Ca
0 25 100	7 3, 3H ₂ O 12 4, 3H ₂ O 33 9	8.62 10 80 20 64	1.30 3 74 24.50	1.33 5.55 (30°) 30.5	0 47 1 86 (30°) 10.10	15 48 29.75 (30°) 129.5	6 22, 4H ₂ O 8.41, 4H ₂ O 22 1
e emunicipal	Sr	Mg		Ba	Pb	Ag	Tl
0 25 100	1.89, 4H ₂ O 3.75, 4H ₂ O 4.80	4.48, 6H ₂ O 5.00 (20°) 6H ₂ O 9.95 (90°) 6H ₂ O		0.190 0.445 (30°) 1.32	1.217 1.80 3.79	6.65 14.00 57.8	0.149 0.535 (30°) 15.3

The configuration of the nitrate ion, as determined by X-ray studies on crystals of NaNO₃, is that of an equilateral triangle, the three oxygen atoms occupying the corners and the nitrogen atom the center. The oxygen atoms and the nitrogen atom all lie in the same plane. The N—O distance is 1.21 Å, a distance which indicates that the bonds have a

mixture of single- and double-bond character, and that in addition there is a formal positive charge on the nitrogen and negative charges on two of the oxygens; as a result of assumed resonance between the double and single bonds, all three N—O distances are equal. [See Elliott, J. Am. Chem. Soc., 59, 1380 (1937); Pauling, The Nature of the Chemical Bond, 2nd Ed., Cornell University Press, 1940.] If all bonds were single, the N—O distance would be 1.36 Å; if double, 1.18 Å.

The commonly applied test for nitrates, namely, that of carefully pouring concentrated sulfuric acid down the inside of a test tube containing a solution of the nitrate and FeSO₄ so that two layers are formed, depends on the formation of the dark-colored complex FeNOSO₄ which appears as a "ring" at the top of the acid layer. Ferrous iron in strong acid serves also to reduce the nitrate to NO; nitrites behave in the same Diphenylamine or diphenylamine sulfonic acid in manner in this test. sulfuric acid solution are colored blue by nitrates [Tillmanns, and Sutthoff, Z. anal. Chem., 50, 485 (1911); Kolthoff and Noponen, J. Am. Chem. Soc., 55, 1448 (1933)]. A reagent commonly used for the colorimetric estimation is phenoldisulfonic acid, which gives a yellow color with even very small amounts of nitrate [Chamot, Pratt, and Redfield, J. Am. Chem. Soc., 33, 366, 382 (1911); Arny and Ring, Ind. Eng. Chem., 8, 309 (1916)]. For larger quantities of nitrate, the quantitative determination can be accomplished by the reduction in neutral, acid, or The reducing agent used is ordinarily an alkaline solution to ammonia. alloy, for example, Dvarda's alloy (45% Al, 50% Cu, and 5% Zn), and the ammonia formed on the addition of NaOH is distilled into an excess of standard acid solution, the excess being determined with a standard

Of importance in analysis is the reaction between hot concentrated nitric acid and ammonium salts in the presence of hydrochloric acid. The ammonium radical is oxidized completely to nitrogen and oxides of nitrogen; the reaction thus serves for the destruction of ammonium salts and accomplishes it in a much more convenient manner than does the volatilization process often used [Swift, A System of Chemical Analysis, Prentice-Hall, N. Y., 1939, p. 362]. Hydrogen sulfide reacts but slowly if at all with nitric acid solutions containing less than 5% HNO₃. More concentrated solutions react with H₂S to form S, NO₂, NO, N₂, and a small amount of ammonium salts. Titanous salts, Ti⁺⁺⁺, reduce nitric acid solutions principally to NO, some N₂O, and N₂ with traces of NO₂ and NH₂OH [Milligan and Gillette, J. Phys. Chem., 28, 747 (1924)]. When Fe++ is warmed with acid nitrate solutions, the reduction of nitrate ion to NO is quantitative. In alkaline solutions (20% NaOH) nitrate is reduced quantitatively to ammonia. reaction between sulfur dioxide and nitric acid is an important one in the lead-chamber process for the manufacture of sulfuric acid.

1:100 HNO₂ solutions, a slow reaction yielding N_2O and H_2SO_4 takes place; with stronger acid, NO_2 and blue solutions (HNO₂) result; with acid of specific gravity 1.16 to 1.22, NO_2 and green solutions result; but if concentrated nitric acid of specific gravity 1.50 or greater is treated with SO_2 , there is formed the so-called lead-chamber crystals or nitrosyl bisulfate, $NOHSO_4$. The colorless crystals are obtained readily if SO_2 is bubbled through chilled (0°C) fuming nitric acid.

CHAPTER 3

Hydroxylamine, Amine Sulfonates, Phosphorus Chloronitrides, Hydrazine, and Hydrazoic Acid

Hydroxylamine and Hydroxylamine Sulfonates

The interesting chemistry of hydroxylamine and its derivatives has attracted the attention of chemists for many years. The names of Fremy (1845), Claus, Divers, Haga, and Raschig are to be associated with this field of nitrogen chemistry; it was by them that much of the original work was done. In the following list are presented the formulas and names of the more important inorganic derivatives of hydroxylamine. The majority of them are stable only as their salts, and for these the negative ion is shown in brackets.

 $\begin{array}{lll} HONH_2 & Hydroxylamine. \\ [HONHSO_3]K & Hydroxylamine monosulfonate. \\ [HON(SO_3)_2]K_2 & Hydroxylamine disulfonate. \\ [SO_3ON(SO_3)_2]K_3 & Hydroxylamine trisulfonate. \\ [SO_3ONHSO_3]K_2 & Hydroxylamine isodisulfonate. \\ [SO_3ONH_2]H & Hydroxylamine isomonosulfonate. \\ [ON(SO_3)_2]K_2 & Nitrosyl disulfonate. \end{array}$

Although hydroxylamine is formed in a variety of reactions [NO + Sn (in conc. HCl) + PtCl₄ (catalyst), $C_2H_5NO_2 + Sn$ (in HCl)], two methods of preparation are outstanding. In the first and most important practical method, a sulfuric or hydrochloric acid solution containing HNO₃ or NaNO₃ is electrolyzed; 50% H₂SO₄ gives the best results, and the concentration of nitrate should be kept low to obtain the highest yields. The yield is strongly influenced by the electrode material; with amalgamated lead electrodes the highest yield, about 65%, is obtained. electrodes, for example, Cu and Pt, give rise to very low yields, but mercury alone when properly used is capable of leading to good yields [see, for example, Tafel, Z. anorg. Chem., 31, 289 (1902); Schtscherbakow and Libina, Z. Electrochem., 35, 826 (1929)]. After the electrolysis of the sulfuric acid solutions, the resulting mixture is neutralized, converted to the chlorides with BaCl2, evaporated to dryness, and then extracted with alcohol in order to obtain the alcohol soluble hydroxylamine hydrochloride. Hydroxylammonium chloride (hydroxylamine hydrochloride), NH₂OH₂Cl, is a white crystalline salt which is quite stable at ordinary temperatures and can be kept indefinitely in glass bottles; on heating, the solid salt decomposes. It is soluble in water to the extent of 83 grams per 100 grams of water at 17°. The nitrate, NH₂OHHNO₃, is more soluble and the sulfate, (NH₂OH)₂H₂SO₄, less soluble than the chloride; when heated, the solid nitrate decomposes into nitric oxide, water, and other products.

In the second method of preparation, a nearly neutral alkali nitrite solution is treated with SO_2 or a bisulfite at 0° to -5°. It is essential for good yields that the concentration of H⁺ does not exceed about 5×10^{-5} moles/l.

This condition is to some extent fulfilled if the NaNO2 and Na2CO3 are dissolved together in water and the resulting solution treated with SO_2 (at 0° to -5°) until the odor of it is just detectable. improved modification of the method is one in which advantage is taken of the buffer action of potassium acetate-acetic acid solutions. method [Rollefson and Oldershaw, J. Am. Chem. Soc., 54, 977 (1932)], 1 mole KNO₂ + 1.2 mole KCH₃CO₂ are dissolved in 200 cc of ice water. After adding 1500 g of finely divided ice, SO₂ is passed slowly into the mixture until the odor of it is just detectable. During the addition of SO₂, the solution remains colorless, and the moderately soluble salt HON(SO₃)₂K₂, potassium hydroxylamine disulfonate, crystallizes out. If the temperature rises above 0° during the reaction, the solution becomes yellow in color, and nitric oxide and amine trisulfonate (nitrilosulfonic acid), H₃N(SO₃)₃, become the products of the reaction; it is only at the lower temperatures that the rate of reduction of nitrite to hydroxylamine disulfonate is greater than the rate of formation of amine trisulfonate. The reaction is

$$NO_2^- + 2HSO_3^- + H^+ = HON(SO_3)_2^- + H_2O$$

Freshly prepared aqueous solutions of HON(SO₃)₂K₂ are neutral to litmus but are only moderately stable; when the solutions are made acid, they hydrolyze fairly rapidly to hydroxylamine monosulfonate ion, HONHSO₃. Because of its strong tendency to hydrolyze, nothing of an exact nature is known about the strength of the acid [HON(SO₃)₂]H₂; but since solutions of the alkali salts are neutral, the acid must be at least as strong as sulfuric acid. The rate of hydrolysis is proportional to the concentrations of (SO₃)₂NOH⁻ and H⁺, and the rate is measurable at 25° when the concentration of H⁺ is in the neighborhood of 0.005 n or less [Wagner, Z. phys. Chem., 19, 668 (1896)]. Even initially neutral solutions of the disulfonate slowly become acid, owing to the hydrolysis. The hydrolytic reaction is

$$(SO_3)_2NOH^- + H_2O = (SO_3)HNOH^- + H^+ + SO_4^-$$

Some recent measurements by Naiditch and Yost [J. Am. Chem. Soc., 63, 2123 (1941)] show that the rate equation is

$$-\frac{d(\mathrm{HON}(\mathrm{SO_3})_{2}^-)}{dt}=k(\mathrm{HON}(\mathrm{SO_3})_{2}^-)(\mathrm{H}^+)$$

k has the value 0.20 mole/l min at 25°, if the concentration of disulfonate is in the neighborhood of 0.1 m. The mechanism involves $[HON(SO_3)_2H]^-$ as the reactive intermediate. In alkaline solution, the rate of hydrolysis is much slower. The solid dry salt $K_2(SO_2)_2NOH\cdot 2H_2O$ can be kept for only a comparatively short time; after a day or so (or less, if moisture is present), the odor of SO_2 can be noted. The anhydrous salt may be prepared by washing the dihydrate with absolute alcohol; in the absence of moisture $K_2(SO_3)_2NOH$ does not decompose, and it differs from the dihydrate in this respect. The solubility of the dihydrate in water or very dilute alkali amounts to 23.0 g per liter of solution at 0°; that is, at 0° the saturated solution is 0.075 molar in the salt. The solutions are not strong oxidizing agents; they react with PbO₂, KMnO₄, and Ag₂O to form nitrosyl disulfonate (peroxylamine sulfonate) ion, ON(SO_3 , a substance which is discussed in detail below.

The potassium monosulfonate, HONHSO₃K, that results from the hydrolysis of the disulfonate, can be crystallized without difficulty from its solutions. The solutions are neutral to litmus, and hence the acid [HONHSO₃]H is strong. When the salt or acid in 0.5 n HCl is heated at 100° for an hour or so, it hydrolyzes completely to form sulfate and hydroxylammonium ions.

$$SO_3HNOH^- + H_2O = H_2NOH \cdot H^+ + SO_4^-$$

Owing to the weakly basic character of hydroxylammonium hydroxide, the solution becomes distinctly acid; the rate of hydrolysis has not been measured.

Solutions of hydroxylamine monosulfonate ion resemble, in their reducing action, those of hydroxylamine itself; thus, they may be titrated with iodine solutions, the reaction being

$$2SO_3HNOH^- + 2I_2 + H_2O = N_2O + 4H^+ + 4I^- + 2HSO_4^-$$

When boiled with alkali, the monosulfonate decomposes to give sulfites, nitrous oxide, and, under some conditions, hyponitrites.

Hydroxylamine can be regarded as a derivative of ammonia, NH₃, in which one hydrogen is replaced by a hydroxyl group. On the basis of this picture, the disulfonate is a derivative of hydroxylamine in which the two hydrogens attached to the nitrogen atom are replaced by two sulfonate groups. Inasmuch as the salts are completely ionized in aqueous solution, we may write the disulfonate and monosulfonate ions as

$$\begin{bmatrix} SO_3 \\ HON \\ SO_3 \end{bmatrix} = \begin{bmatrix} SO_3 \\ HON \\ H \end{bmatrix}$$

The hydroxyl hydrogen in the disulfonates behaves as a very weakly acidic hydrogen and may be neutralized with concentrated KOH to give the salt $K_3[ON(SO_3)_2]$. This salt hydrolyzes rapidly and reversibly in water to give alkaline solutions, and the solutions decompose slowly into KNO_2 and K_2SO_3 .

If a neutral or alkaline solution of HON(SO₃)₂K₂ is treated with PbO₂, KMnO₄, or Ag₂O at room temperature or even somewhat above, the solution slowly becomes violet-blue in color, and from it a yellow salt may be crystallized which has the empirical formula ON(SO₃)₂K₂. This yellow salt dissolves in water to give violet-blue solutions identical in appearance to those from which the yellow salt is crystallized; it was suggested earlier that the solution contains monomeric ON(SO₃)² and that the salt consists of the dimer [ON(SO₃)₂|₂K₄. This view has been confirmed by Asmussen [Z. anorg. Chem., 212, 317 (1933)], who found the solutions to be paramagnetic and the solid salt to be diamagnetic. The molal susceptibility found by Asmussen for the solutions corresponds to a single unpaired electron in an S state. The monomeric ion (SO₃)₂-NO= contains an odd number of electrons, and, according to the Lewis-Sidgwick-Bose rule, it should be paramagnetic; the dimer would contain an even number of electrons and, if these electrons are all paired and are in S states, the compound would be diamagnetic. These facts indicate that $ON(SO_3)_2^-$ may be considered as a derivative of NO_2 in which an oxygen atom is replaced by two sulfonate groups.

The violet-blue solutions of $ON(SO_3)_2^-$ are only moderately stable; after one or two weeks in a solution of dilute KOH, the intensity of the color, which is considerable in 0.1 m solutions, decreases so that the solutions become practically colorless; in acid rapid decomposition takes place. The colored solutions are good oxidizing agents and will liberate iodine from iodides.

$$ON(SO_3)_2^- + I^- + H^+ = HON(SO_3)_2^- + \frac{1}{2}I_2$$

[Raschig, Lieb. Ann., 241, 161 (1887); Divers and Haga, J. Chem. Soc., 77, 440 (1900).] The salt $K_4[(SO_3)_2NO]_2$ is soluble in 0.1 n KOH to the extent of 6.6 grams per 100 grams of solvent at 29° and 0.62 grams at 0°, and the solutions of the salt in water are neutral before decomposition sets in. The solid salt decomposes with time into SO_2 , N_2O , and ammonium sulfate.

The decomposition of the alkaline solutions of $ON(SO_3)_2^{-}$ leads to hydroxylamine trisulfonate, $SO_3ON(SO_3)_2^{-}$, that is, a compound which may be regarded as a derivative of the disulfonate in which the hydroxyl hydrogen is replaced by a sulfonate group.

Hydroxylamine trisulfonate can be prepared by heating gently an alkaline solution of $K_2[HON(SO_3)_2]$ with lead dioxide for an hour or more. The mixture becomes at first violet-blue in color, but on continued warming the color fades completely. From the resulting cooled and filtered solution large, beautiful, colorless crystals of $K_3[(SO_3)_2NOSO_3]$ separate after a few hours. X-ray photographs show the crystal structure to be very complex. The reaction takes place in steps, as is evidenced by the fact that the solution becomes first violet-blue ([(SO_3)_2NO]^-) and then colorless. The two steps in the reaction may be written

$$2(SO_3)_2NOH^- + PbO_2 = 2(SO_3)_2NO^- + PbO + H_2O$$

 $4(SO_3)_2NO^- + OH^- = 2(SO_3)_3NO^- + (SO_3)_2NOH^- + NO_2^-$

the net effect being

$$3(SO_3)_2NOH^- + 2PbO_2 + OH^- = 2(SO_3)_3NO^= + NO_2^- + 2PbO + 2H_2O$$

This equation includes most but not all of the products formed in the reactions. Raschig describes a method of preparation that is more direct but does not differ in principle from that just outlined [Raschig, Ber., 56, 206 (1923)]. 1200 cc of cooled 5 n NaHSO₃ solution are added slowly to a previously stirred mixture of 100 g of NaNO₂ and 1000 g of ice. When the reaction is complete, 600 g of PbO₂ are slowly added with continual stirring. The resulting alkaline solution is treated with 800 g of KCl and placed in an icebox to crystallize. The yield is 800 g of K₃[(SO₃)₂NOSO₃]·2H₂O. The net reaction with the hydroxylamine disulfonate formed is said to be

$$K_2[(SO_3)_2NOH] + K_2SO_3 + PbO_2 = PbO + K_3[(SO_3)_2NOSO_3] + KOH$$

Still another reaction producing the trisulfonate is that between KHSO₃ and [(SO₃)₂NO]⁻, equal molal quantities of tri- and disulfonate being formed.

The potassium hydroxylamine trisulfonate K₃[(SO₃)₂NOSO₃]·2H₂O is soluble in water to the extent of 25.4 grams per 100 grams of solvent at 18°. One part of the sodium salt dissolves in 2.8 parts of water at 21.5°. The solutions are neutral to litmus, and when made alkaline are not affected by permanganate, lead dioxide, or KClO. When solutions of the trisulfonate are carefully acidified with HCl, so that the final concentration is 0.01 n or less, they hydrolyze rapidly to give hydroxyl-

amine isodisulfonate [Raschig, Ber., 39, 245 (1906)].

$$(SO_3)_2NOSO_3^{-1} + H_2O = SO_3HNOSO_3^{-1} + H^+ + SO_4^{-1}$$

The rate of this reaction is measurable at room temperatures and in quite dilute acid (0.01 n or less) solutions. The few measurements made on the reaction by Wagner [Z. phys. Chem., 19, 668 (1896)] do not suffice to conclude more than that the rate appears to be directly proportional to the trisulfonate and hydrogen ion concentrations. When one drop of sulfuric or hydrochloric acid is added to a moderate volume of a $K_3(SO_3)_2$ -NOSO₃ solution, some three or four days are required for complete hydrolysis to the isodisulfonate.

The hydroxylamine isodisulfonate is an isomer of the normal disulfonate described above. One of the sulfonate groups in the isodisulfonate occupies the place occupied by the hydroxyl hydrogen in the normal disulfonate; that is, the two forms may be written as follows:

$$K_{2}$$
 $O_{3}S$
 O_{3}
 $O_{3}S$
 O_{3}
 $O_{3}S$
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O

Potassium hydroxylamine isodisulfonate exists as unhydrated, colorless crystals which are soluble to the extent of 6.64 grams in 100 grams of water at 16.4°. Aqueous solutions of the salt are neutral to litmus, methyl orange, and phenolphthalein and, when made alkaline, are not affected by PbO₂, as is the normal disulfonate [see the excellent paper by Haga, J. Chem. Soc., 89, 240 (1906)]. Sodium hypochlorite oxidizes the alkaline solutions to nitrogen and some N₂O [Raschig, Chem. Abst., 19, 2176 (1925); Chem. Zentr., II, 447 (1924)]. In concentrated KOH solutions at 125°, decomposition to K₂SO₄, KH₂NSO₃, and nitrogen slowly takes place. (The normal disulfonate hydrolyzes very slowly, in concentrated KOH, to nitrite and sulfite.) In acid solutions the isodisulfonates decompose to form hydroxylamine salts and sulfate together with nitric oxide, some nitrogen, and other products. Sodium amalgam reduces alkaline isodisulfonate solutions to K[H₂NSO₃] but does not affect the normal disulfonate.

The hydrolysis of hydroxylamine isodisulfonate in acid solution does not lead to the isomonosulfonate K[SO₃ONH₂] but to hydroxylammonium salts, sulfates, nitrites, and other products. However, when hydroxyl-

ammonium sulfate is warmed with chlorosulfonic acid, HSO₃Cl, a strongly oxidizing compound H[SO₃ONH₂] is formed [Sommer, Schulz, and Nassau, Z. anorg. Chem., 147, 142 (1925)] which precipitates from the mixture and may be washed with ether. In the presence of moisture it hydrolyzes to hydroxylammonium bisulfate; in acid solutions the rate of hydrolysis is slow and in neutral or alkaline solutions the rate is measurable.

In the discussion so far only the potassium salts were described in detail; ordinarily it is these that are most readily prepared. Salts of the other alkali metals, the alkaline earths, and a number of heavy metals have been prepared and their qualitative properties described. The sodium and ammonium salts are more soluble than those of potassium; some of the lead and barium salts are only slightly soluble.

The two series of hydroxylamine sulfonates are, as indicated, interrelated, and this is more easily seen in the following schematic arrangement; for simplicity, the ions are shown when they are well known.

The principal end product of the acid hydrolysis of the hydroxylamine sulfonates is hydroxylamine or, more properly, hydroxylammonium salts. Ordinarily one works with the salts of hydroxylamine, for example, NH₂OHHCl, and only for special reasons is the so-called free base NH₂OH

isolated. The isolation of the free base is best achieved by treating the hydrochloride with sodium ethylate or butylate. To this end sodium is placed in butyl alcohol and the mixture is refluxed until the metal is dissolved. The sodium butylate formed is added slowly to a mixture of NH_2OHHCl and butyl alcohol in a closed vessel, and the resulting sodium chloride is filtered off. When the filtrate is cooled to -10° , large white flakes of NH_2OH separate [Hurd and Brownstein, J. Am. Chem. Soc., 47, 67 (1925)]. Because of its instability, free hydroxylamine should be kept on ice to avoid decomposition.

Free hydroxylamine, NH₂OH, melts at 33° to give a liquid of density 1.204, which, under a pressure of 22 mm, boils at 58° with some decomposition. At higher temperatures decomposition into N₂ and N₂O becomes excessive, and explosions are sometimes observed. The solid is miscible with water, methyl, and ethyl alcohols, but is insoluble in liquid hydrocarbons. It reacts with acetone [Lobry De Bruyn, Ber., 27, 968 (1894)]. Aqueous solutions containing up to 60% NH₂OH are moderately stable.

The properties of NH₂OH recall those of water, and if it is remembered that liquid NH₃ has many properties resembling those of water, it is not surprising that the substitution of an —OH group for H in NH₃ yields a compound that shows a still closer resemblance to water.

Aqueous solutions of the salts of hydroxylamine act as both oxidizing and reducing agents. Thus with trivalent titanium or bivalent chromium, hydroxylammonium salts in acid solution are reduced to ammonium salts [Bray, MacKenzie, and Simpson, J. Am. Chem. Soc., 41, 1363 (1919)]. The reducing action of hydroxylamine is shown in its reactions in acid solutions with noble metal salts (Ag, Au, Hg), the products being the metals, nitrogen, and oxides of nitrogen. Permanganate, bromine, and other oxidizing agents are reduced in acid solutions. In alkaline solution hydroxylamine slowly decomposes into nitrogen, ammonia, and to some extent N₂O. The alkaline solutions oxidize ferrous to ferric hydroxide, ammonia being the reduction product of the hydroxylamine. Cupric hydroxide is reduced to Cu₂O and N₂O is formed. The acid solutions will reduce ferric to ferrous ion, the hydroxylamine being oxidized to N₂O. The acid solutions are much more stable than are the alkaline solutions.

Hydroxylamine has also, like water and ammonia, the property of filling coordination positions in complex compounds, and such complexes are not much less stable than the corresponding ammonia compounds. The zinc hydroxylamine chloride, Zn(NH₂OH)₂Cl₂, can be prepared in the solid form; significant from the point of view of stability is the fact that warming under a vacuum or treatment with ammonia suffices to displace the hydroxylamine. Cobalt in the trivalent form is able to bind six hydroxylamines just as it does six ammonias. Thus

 $Co(NH_2OH)_6Cl_3$ has been prepared. With nickel, the red compound $[Ni(NH_2OH)_6]SO_4$ is formed.

When free hydroxylamine is dissolved in water, the resulting solution is weakly alkaline. In this it resembles ammonia and hydrazine. The ionization constants for these three bases are as follows [Latimer, Oxidation Potentials, pp. 87, 89, 90; Winkelbleck, Z. phys. Chem., 36, 574 (1901); Schwarzenbach, Helv. Chem. Acta, 19, 178 (1936); Ishikawa and Aoki, Bull. Inst. Phys. and Chem. Research, 19, 136 (1940), report $K=4\times 10^{-8}$ for hydroxylamine]:

$$\begin{array}{l} NH_4OH = NH_4^+ + OH^- \\ \frac{(OH^-)(NH_4^+)}{(NH_4OH)} = 1.81 \times 10^{-5} & (\Lambda mmonium \ hydroxide) \\ NH_2OH_2OH = NH_2OH_2^+ + OH^- \\ \frac{(OH^-)(NH_2OH_2^+)}{(NH_2OH_2OH)} = 6.6 \times 10^{-9} & (Hydroxylammonium \ hydroxide) \\ N_2H_6(OH)_2 = N_2H_6OH^+ + OH^- \\ \frac{(OH^-)(N_2H_6OH^+)}{(N_2H_6OH)_2} = 8.5 \times 10^{-7} & (Hydrazinium \ hydroxide) \\ N_2H_6OH^+ = N_2H_6^{++} + OH^- \\ \frac{(OH^-)(N_2H_6^+)}{(N_2H_6OH^+)} = 8.9 \times 10^{-16} \\ \end{array}$$

Amine Sulfonates

Attention has already been called to the view that hydroxylamine can be regarded as a derivative of ammonia; later it will be seen that hydrazine can be considered in a like manner. Thus the three compounds ammonia, hydroxylamine, and hydrazine would be written,

NH₃ NH₂OH NH₂NH₂ Ammonia Hydroxylamine Hydrazine

The hydroxylamine sulfonates, in turn, are derivatives of ammonia in which the hydrogens are replaced by hydroxyl and sulfonate groups.

NH₃ NH₂OH (SO₃)₂NOH-Ammonia Hydroxylamine Hydroxylamine disulfonate

Derivatives of ammonia are well known in which one, two, or three of the hydrogens are replaced by one, two, or three sulfonate groups; that is, unlike the hydroxylamine sulfonates, no hydroxyl group is present. These three compounds and their present and former names are

$N(SO_3)_3^{=}$	$NH(SO_3)_2^{-}$	$NH_2(SO_3)^-$
Amine trisulfonate	Amine disulfonate	Amine sulfonate
(Nitrilosulfonate)	(Imidosulfonate)	(Amidosulfonate)

These compounds could equally well be regarded as derivatives of sulfate ion, SO_4^- , in which the oxygens of one or more sulfate ions are replaced by $-NH_2$, =NH, or $\equiv N$. The equations which show this point, but which do not necessarily represent known reactions, are

$$SO_4^- + NH_3 = SO_3NH_2^- + OH^-$$

 $2SO_4^- + NH_3 = (SO_3)_2NH^- + 2OH^-$
 $3SO_4^- + NH_3 = (SO_3)_2N^= + 3OH^-$

It must be emphasized that the two ways of looking at the amine sulfonates do not necessarily add anything fundamental to our knowledge of their chemistry, but are rather memory aids or suggestions that may serve to lead to a rigorous structure determination. An X-ray investigation has shown that the amine sulfonate ion in crystals of KNH₂SO₃ has a structure similar to that of the sulfate ion with an NH₂ group in place of one O, but distorted slightly from a perfect tetrahedron. The S—N distance is 1.56 Å and the S—O distance is 1.48 Å [Ketelaar and Heilmann, Z. Krist., 103, 41 (1940)]. The hydrogens are not located by the X-ray method, but the packing of the ions is such that they undoubtedly form hydrogen bonds from the nitrogen to the oxygens of neighboring molecules.

The amine sulfonates are written in the ionic form, since the salts are the well-known and stable compounds of them; the free acids are, with the exception of amine monosulfonic acid, unstable.

Amine trisulfonate (nitrilo sulfonate) of potassium was discovered by Fremy in 1845; it is prepared by the reduction of potassium nitrite with neutral potassium sulfite at room temperature or lower |Claus and Koch, Ann., 152, 336 (1869); Divers and Haga, J. Chem. Soc., 79, 1093 (1901)]. For example, a solution of 100 g of KOH in 200-250 cc of water is treated with sulfur dioxide until the resulting solution is neutral. This solution is mixed with one containing 25 g of KNO₂ in 100 g of water. In two or three minutes a large, mushy precipitate of potassium amine trisulfonate, K₃[N(SO₃)₃]·2H₂O, separates; the whole mixture may eventually solidify. After standing for an hour the mixture is heated on a water bath (water is added if necessary for solution) and then allowed to cool. Beautiful, needle-like, rhombic crystals separate. The solid is not stable, and in the course of a month or so it hydrolyzes into K₂[NH(SO₃)₂] and potassium bisulfate. The reaction leading to its formation is

$$NO_2^- + 3HSO_3^- = N(SO_3)_3^{=} + H_2O + OH^-$$

and the hydrolytic decomposition of the salt is represented by

$$K_3N(SO_3)_3\cdot 2H_2O = K_2NH(SO_3)_2 + KHSO_4 + H_2O$$

Potassium amine trisulfonate is only sparingly soluble in cold water,

about 2 g in 100 g of water at 23°, and the solutions are neutral to litmus. The sodium salt is much more soluble than this, and the complex salt [Co(NH₃)₆]N(SO₃)₃ is practically insoluble [Ephraim and Flügel, Helv. Chem. Acta, 7, 724 (1934)]. The similarity of the reduction reaction to that involved in the formation of hydroxylamine disulfonate will be noted at once; the principal difference is that more reducing agent, HSO₃, is mixed with the nitrite and a higher temperature is required. This indicates that hydroxylamine disulfonate would be capable of further reduction, and, indeed, it is possible by means of zinc, Zn-Cu, or sodium amalgam to reduce it to amine disulfonate. When boiled, the solutions of the alkali metal amine trisulfonates are rapidly and irreversibly hydrolyzed to amine disulfonate and amine sulfonate.

The addition of a small amount of acid to the solutions of $K_s[N(SO_3)_s]$ at room temperature catalyzes the hydrolysis to amine disulfonate and amine sulfonate, the former being an intermediate stage. If the acid concentration is very low, the hydrolysis of the di- to monosulfonate appears to be slower than that of the tri- to disulfonate. The efforts of Wagner [Z. phys. Chem., 19, 668 (1896)] to show that the tri- to disulfonate hydrolysis is immeasurably rapid do not seem to have been entirely successful; a careful re-examination of the rates is desirable.

Potassium amine disulfonate (imidosulfonate) is prepared by moistening the crystals of the trisulfonate with very dilute acid and allowing to stand for a day. After washing, the salt is recrystallized from dilute ammonia solution. The resulting small, colorless crystals of $K_2[NH-(SO_3)_2]$ are not very soluble in water, 1.56 g in 100 g water at 23°, and the fresh solutions are practically neutral [Raschig, Ann., 241, 171 (1887)]. The ammonium salt $(NH_4)_2[NH(SO_3)_2]$ NH_3 is formed directly in the reaction between gaseous ammonia and sulfur trioxide.

$$4NH_3(g) + 2SO_3(g) = (NH_4)_2[NH(SO_3)_2]\cdot NH_3(s)$$

In neutral and basic solutions the amine disulfonates are stable at room temperatures, but boiling brings about hydrolysis to the monosulfonate. With warm sodium hypochlorite solutions, the amine disulfonate reacts to form the explosive compound chloraminedisulfonate, $K_2[ClN(SO_3)]_2$; this reaction recalls that between chlorine and ammonia to form chloramine, NH_2Cl . The explosive property is due to the decomposition into $K_3N(SO_3)_3$ and NCl_3 , the latter substance being violently explosive.

The amine disulfonates in dilute acid solution hydrolyze at a measurable rate at room temperatures to the amine sulfonates.

$$NH(SO_3)_2^- + H_2O = NH_2SO_3^- + H^+ + SO_4^-$$

The hydrolysis is catalyzed by hydrogen ion, and the rate appears to be directly proportional to the concentration of both H^+ and $NH(SO_3)_2^-$;

the few measurements reported by Wagner (loc. cit.) are so expressed that it is not possible to determine the units used for expressing the rate constants.

The solid salt K₂NH(SO₃)₂ is stable at room temperature, as are also other alkali and alkaline earth salts, but they decompose on heating to some 200°. The complex cobalt salt [Co(NH₃)₆]₂(NH(SO₃)₂)₃ is quite insoluble (Ephraim and Flügel, loc. cit.). K2NH(SO3)2 is more soluble in KOH solutions than in water, owing to the neutralization of the remaining hydrogen; salts of the formula K₃N(SO₃)₂·H₂O are known which give off water at 100° but do not otherwise decompose even at 200°. Permanganate does not oxidize the alkaline solutions of the disul-When silver nitrate is treated with a solution of the disulfonate (the sodium salt, being very soluble, is to be preferred for solution experiments to the rather insoluble potassium salt), a precipitate of Ag₃N(SO₃)₂ is formed which dissolves on addition of an excess of the disulfonate. From the resulting solution, crystals of the only moderately soluble NaAg₂N(SO₃)₂ and Na₂AgN(SO₃)₂, depending on the relative amount of disulfonate added, separate out. The acid character of the ammonia hydrogen is shown by liquid ammonia itself, where it ionizes slightly into H+ and NH2; the sodium silver salt is another illustration of this tendency in the derivatives of ammonia.

The last member of the series of amine sulfonates, also known as amidosulfonate or sulfamic acid, is the most stable of all; it results from the hydrolysis of the tri- and disulfonates (compare hydroxylamine monosulfonate). The potassium salt, KNH₂SO₃, may be prepared by boiling an aqueous mixture of the tri- or disulfonate of potassium. The free sulfuric acid formed is neutralized with calcium carbonate, and, after filtering, the less soluble K₂SO₄ is crystallized out by evaporating the solution. Eventually KNH₂SO₃ crystallizes from the concentrated and viscous solution as beautiful, colorless crystals [Raschig, Ann., 241, 176 (1887); see also Berglund, Ber., 9, 1896 (1876), and Divers and Haga, J. Chem. Soc., 69, 1634 (1896)]. Owing to their importance, a number of methods for the preparation of amine sulfonates have been developed. When urea, NH₂CONH₂, is dissolved in concentrated sulfuric acid and the resulting solution treated with fuming sulfuric acid, the reaction

$$H_2NCONH_2 + H_2SO_4 + SO_3 = 2HNH_2SO_3 + CO_2$$

takes place. The product precipitates from the reaction mixture and is recrystallized from water [Cupery, Ind. Eng. Chem., 30, 627 (1938); see also the review by Audrieth, Sveda, Sisler, and Butler, Chem. Rev., 26, 49 (1940)]. This method gives good yields, and the reactants are readily obtainable. In another method a solution of hydroxylamine

sulfate (16.5 g) in water (50 g) is cooled to -80° and excess sulfur dioxide is allowed to condense on it. On allowing this mixture, in a sealed container, to stand for fifteen or twenty hours at about 25°, the solid HNH₂SO₃ crystallizes out. The pressure of SO₂ reaches 3.5 to 4 atm above SO₂(1). The yield can reach 70% [Sisler and Audrieth, *J. Am. Chem. Soc.*, 61, 3389 (1939)].

Potassium amine sulfonate is readily soluble in water but insoluble in alcohol, and its aqueous solutions are slightly alkaline to litmus but not to phenolphthalein. Its solutions do not hydrolyze readily at room temperature; but if heated in a closed tube with hydrochloric acid to 140°, or boiled with hydrochloric acid for several hours at atmospheric pressure, the salt is converted eventually to ammonium and sulfate ions.

$$NH_2SO_3^- + H_2O = NH_4^+ + SO_4^-$$

In acid solutions this hydrolysis takes place only very slowly at room temperature. Unlike the amine tri- and disulfonates, the free acid of the monosulfonate, NH₂SO₃H, is stable and can be prepared in the solid unhydrated form. It may be crystallized from acid solutions of its salts, or it may be prepared by passing SO₂ into aqueous solutions of hydroxylamine hydrochloride,

$$NH_2OH_2^+ + Cl^- + H_2SO_3 = 2H^+ + NH_2SO_3^- + Cl^- + H_2O$$

or by either of the two methods described above. The free acid is soluble in water and may be crystallized from its solutions without much difficulty in the anhydrous form; it is appreciably soluble in methyl and ethyl alcohols, slightly so in acetone, but is insoluble in ether; in liquid ammonia it is very soluble. The solubility is said to be low in $\rm H_2SO_3$ solutions. In sulfuric acid the solubilities in 100 g of solvent at 30° are as follows:

Per Cent H ₂ SO ₄	Solubility HNH ₂ SO ₂ , g per 100 g Solvent	Per Cent H ₂ SO ₄	Solubility HNH ₂ SO ₃ , g per 100 g Solvent
0.0	{14.68(0°) 26.09	71.80	0.00
	(47.08(80°)	81.17	0.25
23.91	4.14	Fuming (21.1% SO ₂)	2.38
47.53	1 06	(21.1 // 503)	

The anhydrous acid is quite stable at room temperatures; and because of this fact and the ease with which it can be prepared in pure form, it has been suggested as a primary standard in acidimetry. That this suggestion has merit is shown by the results of Audrieth and coworkers [Butler, Smith, and Audrieth, Ind. Eng. Chem., Anal. Ed., 10, 690 (1938)], who found that a product fractionally recrystallized from warm water was 99.945% pure as determined by titration with carefully standardized barium hydroxide. Bromothymol blue changes sharply from yellow to blue at the equivalence point. NH_2SO_3H melts with decomposition at 205°.

Amine sulfonic acid is a strong acid. Conductivity measurements show the percentage degree of ionization to be 98% at 0.001 m and 79% at 0.03 m at 25° [Sakurai, J. Chem. Soc., 69, 1654 (1896); Winkelbleck, Z. phys. Chem., 36, 546 (1901)]. Solutions of the acid and its salts are not readily oxidized at room temperature; in boiling alkaline solutions, silver oxide is reduced to metallic silver, and sulfite and nitrogen are the oxidation products. With hypochlorous acid, cold solutions of the potassium salt yield solutions of KNHClSO₃, and this may be precipitated by the addition of alcohol to concentrated aqueous solutions KNHClSO₃ is hydrolyzed by warm, strong acids to sulfuric acid and chloramine, NH₂Cl. Acid solutions of NH₂SO₃H are rapidly and quantitatively oxidized to nitrogen by KNO2; concentrated HNO3 reacts to form good yields of N₂O. In neutral or acid solutions of amine sulfonates, silver nitrate produces, under the proper conditions of concentration, a precipitate of AgNH₂SO₃, a salt which is moderately soluble in water (6.7 g per 100 g H₂O at 19°). The addition of potassium hydroxide to the solutions of the silver salt gives rise to a yellow precipitate of KAgNHSO3; that is, the ammonia hydrogens have a weakly acidic character. The barium salt, Ba(NH₂SO₃)₂, is soluble in water to the extent of 34.2 g per 100 g of water at 25°.

Amine sulfonate ion, $NH_2SO_3^-$, is capable of coordinating with bivalent platinum. Thus when K_2PtCl_4 is treated with NH_2SO_3H solutions, a soluble and a sparingly soluble platinum complex are formed, namely, cis and trans $K_2[PtCl_2(NH_2SO_3)_2]$, respectively, the cis being the soluble form. Both of these salts dissolve in potassium hydroxide solution to form tetrapotassium salts, $K_4[PtCl_2(NHSO_3)_2]$ [Kirmreuther, Ber., 44, 3115 (1911)]. The amine sulfonate groups in the complexes are readily replaceable by pyridine. Complex cobalt amine salts, for example, $[Co(NH_3)_6](NH_2SO_3)_3$ ·2H₂O, have been prepared; this salt, unlike the corresponding amine disulfonate, is moderately soluble in water, 1.46 g per 100 g solution.

The properties of the three amine sulfonates can be summarized as follows: The solubilities of the potassium salts increase with decrease in number of sulfonate groups; they hydrolyze to form the lower sulfonates, the rate of hydrolysis being greater the larger the number of sulfonate groups; they are not oxidized or reduced rapidly at room temperature;

the neutrality or near neutrality of fresh solutions of the salts show them to be salts of strong acids; the hydrogens attached to the nitrogen in the di- and monosulfonates are weakly acid in character and may be neutralized with strong bases.

Sulfamide and Imidosulfamides

The amine and hydroxylamine sulfonates are the best-known examples of a large class of derivatives of ammonia. In organic chemistry these derivatives include a large group of compounds which play an important role in life processes. Very often the organic compounds are more stable toward hydrolysis and the action of reagents than are the inorganic derivatives. The inorganic substances have not been extensively investigated; therefore, it must suffice here to give a rather brief account of their preparation and properties.

When ammonia is passed into a chloroform or benzene solution of SO₂Cl₂, there are formed sulfamide, (NH₂)₂SO₂, sulfimide, (NHSO₂)₃, and imidosulfamide, NH(NH₂SO₂)₂, the relative amounts of the products depending on experimental conditions [Hantzsch and Stuer, Ber., 38, 1022 (1905); Ephraim and Michel, Ber., 42, 3833 (1909); Hantzsch and Holl, Ber., 34, 3430 (1901)]. The reactions are

$$\begin{array}{ll} 2NH_3 + SO_2Cl_2 &= (NH_2)_2SO_2 + 2HCl \\ 3NH_3 + 2SO_2Cl_2 &= NH(NH_2SO_2)_2 + 4HCl \\ 3NH_3 + 3SO_2Cl_2 &= (NHSO_2)_3 + 6HCl \end{array}$$

It was found by Ephraim and Gurewitsch [Ber., 43, 138 (1910)] that a much better yield could be obtained by slowly adding SO₂Cl₂ (l) to liquid ammonia at -75°. The main product formed is imidosulfamide, and it is not very soluble in liquid ammonia. After adding the required amount of SO₂Cl₂, the excess ammonia is evaporated, and the residue is dissolved in water. The aqueous solution is made slightly acid and allowed to stand 48 hours, when the hydrolytic reaction to form sulfamide is completed.

$$NH(NH_2SO_2)_2 + 2H_2O = (NH_2)_2SO_2 + NH_4^+ + H^+ + SO_4^-$$

The aqueous solution is evaporated at 50° under a vacuum and the residue is extracted with ethyl acetate, in which only the sulfamide is soluble. The sulfamide may be recrystallized from ethyl acetate, glycol monoethyl, or hot ethyl alcohol as large, colorless, rhombic crystals which are tasteless but have a cooling sensation on the tongue.

Sulfamide melts at 93°, where its density is 1.611 g/cm³ and the surface tension $\gamma = 72.35$ dynes/cm; above the melting point decomposi-

tion sets in with the formation of ammonia and sulfimide. At still higher temperatures, 250°, complete decomposition into ammonia and sulfur acids appears to take place. Sulfamide is readily soluble in water to form very faintly acid solutions ($\Lambda = 30 \text{ ohm}^{-1} \text{ at } .001 \text{ m}$); on addition of ammonia and silver nitrate, a precipitate of Ag₂(NH)₂SO₂ forms which is soluble in acid. These facts indicate the weakly acid character of sulfamide, and the nature of the salt recalls that of analogous compounds of amine and hydroxylamine sulfonates in which a hydrogen attached directly to nitrogen is capable of ionizing slightly. The reaction between sulfamide and metallic potassium in liquid ammonia yields two potassium salts similar to the above-noted silver salt.

Boiling acids bring about the hydrolysis of sulfamide to ammonium sulfate; with alkalies, amine sulfonic acid salts are the hydrolytic products, for example, K[NH₂SO₃]. With cold nitrous acid solutions, sulfamide is oxidized to nitrogen and sulfuric acid. Cold, concentrated nitric acid does not react with sulfamide, but the addition of concentrated sulfuric acid to the nitric acid solution yields an explosive precipitate of NH₂SO₂NHNO₂.

Sulfamide is capable of acting as a coordinating group or addendum in some complex compounds, and in so doing it occupies two coordination positions, as might be expected, since the molecule has at least two if not three polar groups in it. Thus the very stable free acid $H[Rh(H_2O)_2-(SO_2(NH)_2)_2]$ has been prepared by Mann [J. Chem. Soc., 412 (1933)]. It may be heated to 300° without decomposition and is insoluble in water. The sodium salt of the complex has been resolved into its optically active isomers; their molal rotation is $[M]_{5780} = 31^{\circ}$.

Imidosulfamide, NH(NH₂SO₂)₂, appears to exist as such and as still longer chains, namely, NH₂SO₂NHSO₂NHSO₂... NHSO₂NH₂. It acts as a very weak acid of which the silver salts are best known (Ephraim and Gurewitsch, *loc. cit.*). The mixture of imidosulfamide and the longer chains are the first and main products of the action of SO₂Cl₂ on liquid ammonia.

Sulfimide, which is not so well known as the sulfamide and imidosulfamide, is formed in the reaction of ammonia with chloroform or benzene solutions of sulfuryl chloride, and by heating sulfamide at or a little above the melting point. The formula in solution seems to be (NHSO₂)₂. The silver salt is said to be insoluble in alkaline and neutral solutions, and this distinguishes it from the corresponding silver sulfamide, which is insoluble only in alkaline solutions.

Sulfamide and the related compounds may be regarded as derivatives of ammonia, or alternatively as derivatives of sulfur trioxide in the same sense that the amine sulfonates are derivatives of sulfuric acid. Indeed, the alkaline hydrolysis of sulfamide leads directly to amine monosulfonate.

Amine Sulfinic Acids

When sulfur dioxide and ammonia gas are mixed, white solids form which contain the ammonium salts of the mono- and disulfinic acids. Thus,

$$2NH_3 + SO_2 = NH_4(NH_2SO_2)$$
 (Ammonium amine monosulfinite)
 $4NH_3 + SO_2 = (NH_4)_2(NH(SO_2)_2)$ (Ammonium amine disulfinite)

The amine sulfinites may be regarded as derivatives of sulfurous acid in the same sense that the amine sulfonates are derivatives of sulfuric acid.

The reaction between ammonia and thionyl chloride, SOCl₂, yields the anhydrides of the amine sulfinic acids. Thus,

$$3NH_3 + 2SOCl_2 = NH_2SONHSONH_2 + 4HCl$$

The hydrolysis of this compound leads to amine sulfinites in a manner recalling the hydrolysis of sulfamide to amine sulfonic acid.

Nitramide, NH2NO2

So far we have concerned ourselves principally with ammonia derivatives containing sulfur-oxygen groups. The main reason for this is that these compounds are numerous and are easily prepared and studied. Nitramide may be regarded as a derivative of nitric acid, HONO₂, in which the —OH group is replaced by its analogue —NH₂. It has not been prepared by the action of nitryl chloride, NO₂Cl, on ammonia, but it seems reasonable to suppose that it could be. Ordinarily the preparation is accomplished by the hydrolysis of NO₂NHCOOK with concentrated sulfuric acid, the resulting mixture being then saturated with ammonium sulfate and extracted with ether. The ether solution is evaporated, and the residue is dissolved in absolute alcohol, from which the nitramide is precipitated by the addition of chloroform or ligroin. The nitramide is obtained as white, shining plates which melt and immediately decompose at 72–75°.

Aqueous solutions of nitramide are weakly acidic, the ionization constant being

$$\frac{(H^+)(NHNO_2^-)}{(NH_2NO_2)} = 2.55 \times 10^{-7} \text{ at } 15^{\circ}$$

[Bronsted and King, J. Am. Chem. Soc., 49, 200 (1927)]. This acidic character results from the weakly acid properties of ammonia itself (NaNH₂ and Ca₃N₂ are known salts); this property is augmented by the presence of a substituted group. Aqueous solutions of nitramide are not stable; they decompose slowly according to the equation

$$NH_2NO_2 = N_2O + H_2O$$

In alkaline solution the rate of decomposition is very rapid, but in acid solution it is measurably slow [Marlies and LaMer, J. Am. Chem. Soc., 57, 1812 (1935)]. The rate of decomposition in hydrochloric acid solution depends to a small extent on the concentration, C_{HCI} , of acid.

$$-\frac{d(NH_2NO_2)}{dt} = k(NH_2NO_2)$$

$$k = 1.235 \times 10^{-3} + 0.328 \times 10^{-3} C_{HCI} \text{ at } 24.84^{\circ}$$

The fact that the rate is much more rapid in alkaline than in acid solution suggests that $\mathrm{NHNO_2^-}$ is more unstable than the un-ionized nitramide. This property differs from that observed with the ammonia derivatives discussed in the preceding sections in that they decompose more rapidly in acid than in alkaline solution. The small amount of acid catalysis observed in the case of nitramide indicates still another unstable species such as $\mathrm{NH_3NO_2^+}$.

It will be noted that nitramide is isomeric with hyponitrous acid, $H_2N_2O_2$. Hyponitrous acid is about equal in strength $(K=9\times 10^{-8})$ to nitramide, but in contrast with the latter it decomposes rapidly in acid solution. Nitramide is a derivative of ammonia, while hyponitrous acid has the structural formula HONNOH, although the molecule is doubtless not linear. The decomposition of hyponitrous acid yields nitrous oxide and water just as that of nitramide does, but un-ionized $H_2N_2O_2$ decomposes much more rapidly than does un-ionized NH₂NO₂. Hyponitrite ion $N_2O_2^-$ decomposes much less rapidly than does nitramide ion NHNO₂-.

Ammonia Derivatives of Phosphorus Oxyacids

The reaction between phosphorus pentoxide and ammonia is believed to lead to the amine and diamine phosphoric acids. However, these reactions have not been thoroughly investigated, and our knowledge of the amine phosphoric acids comes mainly from the substances prepared by the hydrolysis of phenyl dichlor and diphenyl chlor phosphoric acid [Stokes, Amer. Chem. J., 15, 198 (1893); 20, 740 (1898)].

$$\begin{array}{lll} \text{OClP}(\text{OC}_6\text{H}_5)_2 + \text{NH}_3 + 2\text{H}_2\text{O} &= \text{H}_2[\text{PO}_3\text{NH}_2] + 2\text{C}_6\text{H}_5\text{OH} + \text{HCl} \\ \text{OClPOC}_6\text{H}_5 + 2\text{NH}_3 + \text{H}_2\text{O} &= \text{H}[\text{PO}_2(\text{NH}_2)_2] + \text{C}_6\text{H}_5\text{OH} + 2\text{HCl} \\ \end{array}$$

The same compounds are formed by the action of ammonia on the phosphorus oxychlorides, POCl₃ and PO₂Cl. Both the amine and diamine phosphoric acid exist as such and are soluble in water but not in alcohol; the former is dibasic, while the latter is both monobasic and even pentabasic. Amine phosphoric acid forms both normal and acid salts. Accordingly, the second hydrogen of H₂[PO₃NH₂] ionizes less readily than does the first. The ability of the diamine to form higher salts is due, as in the amine and hydroxylamine sulfonates, to the weakly acidic character of the ammonia hydrogens.

Amine and diamine phosphoric acids hydrolyze slowly in water to yield, eventually, ammonium hydrogen phosphate. The rate of hydrolysis is more rapid in hot than in cold water and is greater in alkaline than in neutral solutions.

The action of ammonia gas on a benzene or ether solution of phosphorous oxide, P₄O₆, brings about the formation of diamine phosphinic acid, H[PO(NH₂)₂] [Thorpe and Tutton, J. Chem. Soc., **59**, 1027 (1891)]. This substance dissolves in water with great violence and with decomposition into ammonium phosphites, phosphates, and phosphorus.

Other ammonia derivatives of the phosphorus acids are known, for example, H[OPOHNH], OPNHNH₂, OPN, O₂P₂OH(NH₂)₃, and HNP₂-O₂NH(NH₂)₂. Thiophosphoric acid derivatives are also known, for example, PS(NH₂)₃.

Phosphorus Chloronitrides, (PNCl₂)_n

When an equimolal mixture of PCl₅ and NH₄Cl are heated together in a closed tube at 150°, a remarkable series of compounds is formed whose general formula is $(PNCl_2)_n$, where $n = 3, 4 \cdots 7$ and higher. The general reaction may be written

$$n \text{ PCl}_5 + n \text{ NH}_4\text{Cl} = (\text{PNCL}_2)_n + 4n \text{ HCl }(g)$$

Two methods of preparation have been developed. In the first, discovered in its essentials by Liebig (1834) and examined in detail by Stokes [Am. Chem. J., 19, 782 (1897); see also Schenck and Römer, Ber., 57, 1343 (1924), 60, 160 (1927)], the mixture of the two solid reagents is heated in a closed glass tube to 150° and cooled to 100°, when the tube is opened to allow the hydrogen chloride to escape. This operation is repeated several times until the contents of the tube have a buttery or thick, yellowish, liquid appearance. The material obtained is fractionally distilled at about 13–17 mm pressure, and is then recrystallized from benzene to separate the constituent compounds. In the second and more convenient method (Schenck and Römer, loc. cit.), a mixture of NH₄Cl (130 g) and PCl₅ (400 g), dissolved in tetrachloroethane (1 liter), C₂H₂Cl₄ (b.p. 146.3°), is refluxed for about seven hours or until the reaction is complete. After cooling and filtering, the solvent is distilled

off at 50° and 11 mm, and the residue is subjected to fractional distillation and recrystallization from benzene as before.

The mixture obtained from the distillation in either case consists of about 50% (PNCl₂)₃ and 25% (PNCl₂)₄ together with higher polymers and small amounts of a definite compound, P6N7Cl9. If the mixture is heated to 250°, a slow further polymerization occurs which becomes very rapid if the temperature is raised to 350°; the resulting product, when cooled to room temperature, is an elastic, colorless, transparent, rubberlike substance which is insoluble in and is not wetted by water. [For physical properties and X-ray studies, see Myer, Lotmar, and Pankow, Helv. Chim. Acta, 19, 930 (1936). Neutral solvents do not dissolve the elastic solid, but it absorbs benzene freely and in so doing swells eventually to four times its original volume. On evaporating the absorbed benzene, the substance returns to practically its original consistency. rubber-like polymer, known as polyphosphorus chloronitride, is heated to somewhat above 350°, slow depolymerization sets in, and this reaction becomes rapid at nearly red heat. From the conditions for polymerization and depolymerization it is evident that the reaction

$$(PNCl_2)_x = (PNCl_2)_{n_1} + (PNCl_2)_{n_2} + \cdots$$

is reversible; at 350° and below equilibrium lies to the left, and above 350° progressively to the right. The slowness of the polymerization reactions below 250° makes possible the isolation of $(PNCl_2)_3$... $(PNCl_2)_7$. Lower polymers have not been isolated, although they are believed to exist as intermediates in some polymerization reactions [see Ficquelmont, Compt. rend., 204, 867 (1937)]. The reversibility of the polymerization reactions and their slowness at lower temperatures makes it possible to convert all of the material to any one of the several known polymers.

The thick yellow liquid or butter-like mixture of the polymers as first prepared may be clarified by heating with water for about two hours, since it does not dissolve in water and hence hydrolysis is very slow. The clarified product is fractionally distilled at low pressures; at 13-15 mm some 70% is recovered as (PNCl₂)₃ and (PNCl₂)₄, which may be separated from each other by fractional crystallization from benzene. The higher polymers distill over at still higher temperatures. Determinations of the molecular weights of the well-defined polymers have been made in boiling benzene, in which solvent all are soluble.

In the following table are presented the data on the physical properties of the well-defined polymers (PNCl₂)_n; solubilities are expressed in grams per 100 grams of solvent.

¹ If ether is added to the water, the aqueous layer wets the polymer mixture and progressive hydrolysis to hydroxy derivatives of the types P₃N₂Cl₄(OH)₂ and (NHPOOH)₃ occurs.

	Boiling Point (°C) Melting		Solu				
Com- pound*	* Point	at 13 mm	at 760 mm	benzene	ether	CC14	Density
(PNCl ₂) ₈ (PNCl ₂) ₄ (PNCl ₂) ₅	114 123.5 41	127 188 224	256 328.5 polymerizes	55.0 21.4 miscible	46.4 12.3 miscible in ether, C ₆ H ₆ , CS ₂	38.88 16.5 —	1.98 2 18 —
(PNCl ₂) ₆ (PNCl ₂) ₇	91 -18	262 293	polymerizes polymerizes	soluble soluble	— — —	_	

TABLE 24
PHYSICAL PROPERTIES OF THE PHOSPHORUS CHLORONITRIDES

 $^{\bullet}\,P_{\,e}N_{7}Cl_{\,e}$ melts at 237°, boils at 251-261° (13 mm), and is soluble in benzene and gasoline.

The boiling points of the lower phosphorus chloronitrides increase with increase in molecular weight, but the melting points of (PNCl₂)₅ and (PNCl₂)₇ are markedly lower than those of the other members of the series. This indicates that the symmetries (symmetry numbers) of

Fig 19. The Molecular Structure of $(PNCl_2)_a$. $P-N \simeq 1.6 \text{Å}$; P-Cl = 2.04 Å; $\angle Cl-P-Cl \simeq 100^\circ$; $\angle P-N-P \simeq 120^\circ$.

(PNCl₂)₅ and (PNCl₂)₇ are less than those of the other members. The insolubility in water and the solubility in the nonpolar solvents suggest that all of the (PNCl₂), are nonpolar, and the manner in which the melting temperatures vary points to ring structures for these compounds. An X-ray crystal structure study [Ketelaar and de Vries, Rec. trav. chim., 58, 1081 (1939)] has proved the ring structure for (PNCl₂)₄ and has given distances P-N = 1.68 Å, $P-Cl = 2.00 \text{ Å and } \angle PNP = 123^{\circ}.$

∠NPN = 117°, and ∠ClPCl = 105°30′. Electron-diffraction experiments indicate the structure of (PNCl₂)₃ shown in Fig. 19 (unpublished data of Dr. Verner Schomaker). [See also the recent review by Audrieth, Steinman, and Joy, Chem. Rev., 32, 109 (1943).]

From what has been said about the symmetries of the members of the series, it seems likely that the structures of (PNCl₂)₅ and (PNCl₂)₇ are also rings, since rings containing five or seven P or N atoms will not have as high a symmetry as rings containing three, four, and six of these

atoms The structure of (PNCl₂)₆ should be the most symmetrical of all, and this is indicated by its comparatively high melting point—that is, high compared to the members of the series immediately preceding or following it.

As already remarked, the series of well-defined phosphorus chloronitrides reacts only slowly even with boiling water. (PNCl₂)₄ appears to be more stable than (PNCl₂)₃ with respect to hydrolysis. The rate of hydrolysis can be greatly increased by the addition of a little ether to the water; this brings about a wetting action and hydrolysis proceeds, as would be expected, to hydroxy derivatives of the type $(PN(OH)_2)_n$ or, as more commonly written, (NHPOOH)_n. The salts Na₃(HNPOO)₃. 4H2O and Na4(HNPOO)4.2H2O have been prepared which indicate the acidic character of (NHPOOH)₃ and (NHPOOH)₄. If these compounds are considered derivatives of metaphosphoric or phosphoric acid, and if we recall the similarity of N=, HN=, and H₂N- groups to oxygen or hydroxyl groups, then it is reasonable to expect (HNPOOH)₃ to have an acidic character, since it contains groups similar to those in phosphoric The hydrolysis of (PNCl₂)₃ (and doubtless other polymers) takes place in steps, it being possible to prepare both P₃N₃Cl₄(OH)₂ and (PN(OH)₂)₃. The hydroxy derivatives (NHPOOH)_n are known as phosphinic acids; their molecular structures are doubtless the same as those of the chlorides from which they are derived. The products of hydrolysis (and ammonolysis) of the phosphorus chloronitrides have been extensively investigated recently by Figurelmont [Ann., 12, 169] At most, only half of the hydrogens in (HNPOOH)₃ and in (HNPOOH) are replaceable. Both the salts and the free acids can be prepared in the hydrated and anhydrous forms.

The hydrolysis of (PNCl₂)_n can be carried still further by treatment with alkalies. Whereas hydrolysis in an ether-water solution leads to the phosphinic acids, the hydrolysis in ammoniacal alcohol, strong alkalies, or concentrated sulfuric acid leads to ammonia and orthophosphate. This fact is made use of in the analytical methods used for the determination of the composition of (PNCl₂)_n. In place of hydrolysis, ammonolysis is also possible. Thus treatment of (PNCl₂)₃ with ammonia alone leads to P₃N₃Cl₄(NH₂)₂ and P₃N₃Cl₂(NH₂)₆, and on heating these are decomposed to P₃N₃Cl₂(NH)₂ and P₃N₃(NH)₃ (phospham), respectively; when either of the two latter compounds is heated in a vacuum at 400°, phosphorus nitride, P₃N₅, is formed. end product of deammonation of an ammonolytic product of (PNCl2)a is the analogue of P₄O₁₀. P₃N₃Cl₄(NH₂)₂ is soluble in ether, 65 g, dioxane, 48 g, and benzene, 1.5 g per 100 g of solvent at 20°; it is only slightly soluble in CCl₄ and CS₂.

The substitution of part, but not all, of the chlorine in (PNCl₂)₄ by fluorine in a somewhat indirect manner has been accomplished by

Schmitz-Dumont and Külkens [Z. anorg. Chem., 238, 189 (1938)]. They obtained $P_4N_4Cl_2F_6$ by heating a mixture of $(PNCl_2)_3$ (25 g) and PbF_2 (100 g) at 130–340° in an atmosphere of nitrogen. It is interesting that a derivative of $(PNCl_2)_4$ rather than one of $(PNCl_2)_3$ is the result. The physical properties of $P_4N_4Cl_2F_6$ were examined more thoroughly than has been the case with the chloronitrides, and they are shown in the following table.

TABLE 25
PHYSICAL PROPERTIES OF P4N4Cl₂F₆

Melting Point (°C)	Boiling Point (°C)	Density at 13.5°	Heat of Vaporization (cal/mole)	Trouton's Constant (cal/deg)
-12.1	105.8	1.8742	8,750	23 07

Vapor pressure,
$$\log_{10} p_{mm} = -\frac{1911}{T} + 7.923$$

Molecular	Formula Weight P4N4Cl2F6			
Temp. (°C)	140	207	302	365
Mol. wt	363.5	298.5	206	

P₄N₄Cl₂F₆ is a colorless liquid with little odor which hydrolyzes slowly with water to form hydrochloric, hydrofluoric, and phosphinic or phosphoric acids. When heated for 17 hours in a metal bomb under pressure at 300°, a colorless rubber-like polymer (at room temperature) is formed. This polymer depolymerizes if heated mildly in the open, and it is less stable than the corresponding phosphorus chloronitride rubber.

The apparent molecular weight of the vapor decreases with increase in temperature and this points to a decomposition into simpler substances. A decomposition according to what might seem a reasonable reaction

$$3P_4N_4Cl_2F_6 = 3P_3N_3F_6 + (PNCl_2)_3$$

would lead to a value higher than 206 for the apparent molecular weight. It appears, then, that some simpler chloro-fluoro nitrides are present in the vapor state at 300°. Schmitz-Dumont and Külkens suggest that the reaction is $P_4N_4Cl_2F_6 = 2P_2N_2ClF_3$, which would result in an apparent

molecular weight of 183, a value that would agree with experiment if it were assumed that the decomposition is not quite complete. Since phosphorus halogenonitrides with less than three phosphorus atoms are not known, it is desirable that the decomposition reaction be studied further.

Phosphorus bromonitrides having the formulas $(PNBr_2)_3$ and $(PNBr_2)_n$ are also known. Their preparation parallels that of the chloronitrides; phosphorus pentabromide is treated with ammonia [Besson, *Compt. rend.*, 143, 37 (1906)]. Efforts to prepare the chloronitrides of antimony and tin have not been successful.

Hydrazine, N2H4

Hydroxylamine may be regarded as a hydroxy derivative of ammonia, and hydrazine in turn may be looked upon as an amide of ammonia.

H₂NH H₂NOH H₂NNH₂ Ammonia Hydroxylamine Hydrazine

The —NH₂ group plays the same role, as it frequently does in other compounds, in hydrazine as the —OH group does in hydroxylamine. The fact that the two nitrogens are bonded to each other suggests also an analogy with hydrogen peroxide,

and, indeed, the properties of hydrazine parallel those of hydrogen peroxide in several respects.

Hydrazine appears in small amounts as a reduction product in a number of reactions involving nitrates, nitrites, and other nitrogen compounds. The method of preparation now used depends, however, on the oxidation of ammonia in alkaline solution by hypochlorite [discovered by Raschig, Ber., 40, 4588 (1907)]. In order that the yield be appreciable, it is necessary that the reaction mixture contain glue or gelatine, the function of which has not been definitely established. The first step in the reaction is thought to be the formation of chloramine, NH₂Cl,

$$NH_3 + ClO^- = NH_2Cl + OH^-$$

then

$$NH_2Cl + NH_8 = N_2H_4 + HCl$$

That the glue or gelatine does not form a compound with chloramine is shown by the fact that the distribution ratio between ether and water or water containing glue and ammonia is the same [Joyner, J. Chem. Soc., 123, 1114 (1923)].

$R = \frac{\text{NH}_{2}\text{Cl (ether layer)}}{\text{NH}_{2}\text{Cl (aqueous layer)}}$	Aqueous Layer
1.4	Water at 0°
1 5	Glue soln. at 0°
1.3	Water at -8°
1 3	2 n NH ₃ at -8°
1.4	2 n NH ₃ + glue at -8°

It is still possible for glue or gelatine to act catalytically without at the same time forming with NH₂Cl a compound present at detectable concentrations.

The effect of the glue or gelatine and the relative concentrations of ammonia and hypochlorite on the yield has been determined carefully by Joyner (loc. cit.); representative data are shown in the following table.

Table 26
THE EFFECT OF CATALYST AND CONCENTRATIONS ON THE YIELD OF
HYDRAZINE

Mixture 0.4 n in NH4OH and

10 cc 3.95 n NaClO + 1 cc 10% glue soln. mixed

	ed to 100 cc and		-90°.	
Moles NH₄OH in 100 cc	Mole Ratio (NH ₃ /NaClO)	Per Cent Yield Based on NaClO	Milligrams Gelatine per 100 cc Mixture	Per Cent Yield Based on NaClO
0.0397 .0795 .1590 .3925 .7155 1.510	2.02 4.04 8.08 20.2 36.4 76.8	5 7 18 32 52 63 75	0 1.9 2.9 3.9 10.9 30.9 100.9	2.0 8.8 18.2 25.4 39.0 48.3 51.0

The presence of NH₄ greatly decreases the yield; for best results, the solution should be alkaline with NaOH. Ordinarily one prepares the mixture by passing the proper amount of chlorine into a sodium hydroxide solution and then adding the most effective amount of strong ammonia solution and some glue or gelatine. The resulting mixture is heated to $80-90^{\circ}$ for from one-half to one hour; it is then cooled and neutralized with sulfuric acid. N₂H₆SO₄ crystallizes out, since it is not very soluble in water and is less so in solutions containing sulfate ion.

A less convenient method for preparing hydrazine, but one which is of chemical interest, is that of Divers and Haga [J. Chem. Soc., 69, 1610]

(1896)]. The salt $K_2[(NO)_2SO_3]$ is first prepared by passing nitric oxide into a solution of K_2SO_3 made alkaline with KOH. After recrystallizing the $K_2[(NO)_2SO_3]$ from hot water, a solution of it is reduced with sodium amalgam. The reactions are

$$2K^{+} + SO_{3}^{-} + 2NO = K_{2}[(NO)_{2}SO_{3}]$$

and

$$(NO)_2SO_3^- + 6Na + 5H_2O = N_2H_4 + SO_4^- + 6Na^+ + 6OH^-$$

It is necessary to acidify the mixture after the reduction is complete, since the oxygen of the air slowly oxidizes the hydrazine to nitrogen and ammonia in alkaline solution.

From the hydrazine bisulfate obtained by the above methods of preparation, it is possible to prepare the monohydrate, N₂H₄·H₂O or N₂H₅OH, and anhydrous hydrazine itself, N₂H₄. The hydrate is prepared by distilling a mixture of KOH (100 g), water (250 g) and N₂H₆SO₄ (100 g) in a silver still. (The hydrate, like ammonium hydroxide, attacks glass slowly.) [Curtius and Schultz, J. prakt. Chem., 123, 1114 (1923).] Alternatively the hydrazine bisulfate can be converted to the bromide N₂H₅Br and this salt treated with KOH solution and alcohol; the KBr precipitates out, and the solution is subjected to distillation to remove the alcohol. The residue consists of a solution of hydrazine hydrate, and the hydrate is isolated by fractional distillation at 125 mm pressure [Lobry de Bruyn, Rec. trav. chim., 18, 297 (1899)].

Hydrazine hydrate, $N_2H_4\cdot H_2O$, is a colorless, fuming liquid (density = 1.0305 at 21°) which boils at 118.5° and at low temperatures solidifies to a colorless solid melting at -40° . Since the vapor, and doubtless the liquid also, dissociates reversibly into N_2H_4 and H_2O , it is not possible to say that the liquid is a pure substance. A mixture of 58.5% N_2H_4 and 41.5% H_2O has a higher boiling point than mixtures containing more or less hydrazine. The molecular weight from the vapor density of $N_2H_4\cdot H_2O$ at 98.8° and 366 mm is 31.6, and at 138° and 744.1 mm it is just one-half the formula weight. This shows that there is appreciable dissociation at 98.8° and 366 mm according to the equation

$$N_2H_4\cdot H_2O(g) = N_2H_4(g) + H_2O(g)$$

and at 138° and 744.1 mm the dissociation is effectively complete [Scott, J. Chem. Soc., 85, 913 (1904)]. The known vapor density data are not sufficient to permit of the calculation of thermodynamic quantities; since these calculations would be of interest, it is desirable to have careful measurements at more frequent temperature intervals, from, say, 90° to 130°. Such measurements might serve to throw more definite light on the nature of the bond between N_2H_4 and H_2O . Presumably the hydrate is H_2N — NH_4OH , since, as will be discussed below, in aqueous solution it has basic properties. The heats of formation of hydrazine

hydrate and of anhydrous hydrazine are given in Table 27 [Hughes, Corruccini, and Gilbert, J. Am. Chem. Soc., 61, 2639 (1939)].

TABLE 27
THE HEATS OF FORMATION OF HYDRAZINE AND ITS HYDRATE

Compound	$\Delta H_{298.1}^{\circ}$ (cal/mole)
N ₂ H ₄ (g)	22,250
N ₃ H ₄ (l)	12,050
N ₂ H ₄ H ₂ O(l)	10,300
N ₂ H ₄ (aq.)	8,160

Hydrazine hydrate attacks cork, rubber, and, more slowly, glass. The bottles of the commercial product (concentrated aqueous solutions) frequently contain gelatinous precipitates of silica or silica hydrates. In the presence of air, slow oxidation to nitrogen, ammonia, and water takes place. Spontaneous decomposition into nitrogen, hydrogen, and ammonia appears to take place to some extent also; this decomposition is accelerated by the presence of spongy platinum [Tantar, Z. phys. Chem., 40, 475 (1904)].

Anhydrous hydrazine, N₂H₄, is prepared by dehydrating the hydrate with barium oxide, BaO. The dehydration with solid sodium hydroxide does not appear to be effective enough to obtain a pure product. In one method 100 cc of N₂H₄·H₂O and 530 g of crushed BaO are heated together for one to three hours under a reflux condenser and in an atmosphere of nitrogen or hydrogen [Hale and Shetterly, J. Am. Chem. Soc., 33, 1071 (1911)]. The resulting liquid is fractionally distilled at low pressures (2-30 mm) in an atmosphere of hydrogen.

Another method for obtaining anhydrous hydrazine directly from the more common hydrazine bisulfate has been suggested by Browne and investigated by Friedrichs [J. Am. Chem. Soc., 35, 244 (1913)]. Advantage is taken of the reversibility of the reaction.

$$N_2H_6SO_4(s) + 2NH_3(l) = (NH_4)_2SO_4(s) + N_2H_4 [in NH_3(l)]$$

and the process consists in the continuous extraction of only the hydrazine bisulfate with liquid ammonia at its boiling temperature, the ammonium sulfate being insoluble in this solvent [Franklin and Kraus, Am. Chem. J., 20, 820 (1898)]; the hydrazine is freed from ammonia by simple evaporation. This method appears adaptable to large-scale operations.

Anhydrous hydrazine is a colorless, fuming liquid which boils at 113.5°; at low temperatures it is a colorless solid melting at 1.8°. The liquid density is 1.0258 g/cc at 0° and 1.0114 g/cc at 15°. The vapor pressures are known, for the most part, only at and above the normal

boiling point; these are 71 mm at 56°, 1.0 atm at 113.5°, 5 atm at 170° 56 atm at 300°, and 145 atm at 380°. The vapor has been shown to be monomeric [Giguère and Rundle, J. Am. Chem. Soc., 63, 1135 (1941)]. The critical temperature is 380°. These data give some indication of the relative inertness toward decomposition of anhydrous hydrazine, namely, that even at rather high temperatures it shows no tendency to decompose, although thermodynamically it is doubtless unstable with respect to decomposition into nitrogen, hydrogen, and ammonia, $2N_2H_4(g) = 2NH_3 + N_2 + H_2$. The dielectric constant of the liquid is 53 at 22°.

Anhydrous hydrazine burns in air and reacts violently with chlorine, bromine, and iodine. It also reacts in a lively fashion with SOCl₂ to yield (H₂N₂H)₂SO, a white solid, and N₂H₆Cl. With SO₂ the acid-like compound HO₂SNHNHSO₂H results, of which two barium salts are known, namely, Ba(O₂SNHNHSO₂) and Ba₂(O₂SN₂SO₂). When vapors of SO₃ are allowed to react with anhydrous N₂H₄, a hydrazine sulfonic acid forms, N₂H₃SO₃H, and the latter with potassium nitrite yields KN₃SO₃ and water.

One of the remarkable properties of anhydrous hydrazine is its ability to dissolve sulfur. [See Ephraim and Piotrowsky, Ber., 44, 386 (1911), and adjoining articles These papers report several interesting reactions of N₂H₄.] The sulfur dissolves freely in the hydrazine (100 cc of N₂H₄ dissolves some 54 g of S at room temperature) to give a dark-red solution. The solutions are not completely stable, since a slow reaction. $3N_2H_4 + 2S = N_2 + 2N_2H_4H_2S$, takes place. The reaction decreases in rapidity with time, but after about twenty-four hours it is nearly complete; the color of the solution changes during the reaction period from dark red to a light yellow of low intensity. H2S dissolves freely in N₂H₄ (1). Some ammonia is also formed in the sulfur solutions. These colored sulfur solutions may be used for the volumetric estimation of zinc or cadmium salts dissolved in hydrazine; ZnS and CdS are precipitated, and the disappearance of the color indicates the end point [Welsh and Broderson, J. Am. Chem. Soc., 37, 825 (1915)]. It must be presumed that the reactions involved are somewhat as follows:

$$N_2H_4 + S = S \text{ (in } N_2H_4)$$
 (1)

$$3N_2H_4 + 2S = 2N_2H_4H_2S + N_2$$
 (2)

$$N_2H_4H_2S + CdI_2 = N_2H_4 \cdot 2HI + CdS$$
 (3)

The rate of reaction (2) is apparently increased in some way as a result of reaction (3) taking place, since (2) is somewhat slow. Reaction (1) is doubtless not so simple as written, the true condition being probably represented by an equilibrium between hydrazine sulfide or polysulfide and a sulfur-nitrogen compound. In this connection, the solution of sulfur in liquid ammonia should be compared.

Iodine dissolves freely in hydrazine with vigorous or explosive reaction.

Metallic sodium reacts with anhydrous hydrazine at a moderate rate if the surface exposed is small, but it may react violently otherwise, to give a yellow solid or, with excess hydrazine, yellow solutions. The solid, NaN₂H₃, is soluble in hydrazine to give solutions that conduct electric current; the solid sometimes explodes violently. Sodium amide reacts with anhydrous hydrazine to form the same compound and ammonia. The reactions are [Welsh, J. Am. Chem. Soc., 37, 497 (1915)]

$$Na + N_2H_4 = NaN_2H_3 + \frac{1}{2}H_2$$

 $NaNH_2 + N_2H_4 = NaN_2H_3 + NH_3$

The analogy between the group of compounds NaOH, NaNH₂, and NaN₂H₃ will be noted at once. The fact that one of the ammonia hydrogens has been replaced by —NH₂ in forming N₂H₄ does not completely inhibit the acid character of the remaining hydrogens.

From what has been said, anhydrous hydrazine has properties that recall those of liquid water, pure H_2O_2 , and liquid ammonia. The acid constituent in the aqueous system is H^+ or H_3O^+ , in the liquid ammonia system it is NH_4^+ , and in the hydrazine system it would be $N_2H_5^+$. $N_2H_3^-$ would correspond to OH^- , and there is little doubt but that hydrazine solutions of N_2H_5Cl and NaN_2H_3 would, when mixed, react according to the equation

$$Na^{+} + N_{2}H_{3}^{-} + N_{2}H_{5}^{+} + Cl^{-} = Na^{+} + Cl^{-} + 2N_{2}H_{4}$$

Because of the comparative difficulty of the experiments in the anhydrous hydrazine system, the detailed chemistry of neutralization, hydrazinolysis, and so on, has not been fully investigated. A few reactions of $N_2H_5^+$ in anhydrous hydrazine on metals have received attention; Cu, Sn, Al, and Zn are not appreciably attacked by such solutions. Magnesium and calcium, on the other hand, are readily attacked if $N_2H_5^+$ is present, but they suffer little or no dissolution in contact with anhydrous hydrazine alone. Accordingly, the reactivity of $N_2H_5^+$ in $N_2H_4(l)$ toward metals is much less than that of H_3O^+ in $H_2O(l)$ [see, for example, Welsh and Broderson, J. Am. Chem. Soc., 37, 825 (1915)].

Ammonia dissolves to a smaller extent in N₂H₄(1) than in water. At 0° the three-phase system N₂H₄(s), NH₃ [in N₂H₄(1)], NH₃(g) shows a partial pressure of NH₃ of 175 mm, and the liquid phase consists of 98% N₂H₄ and 2% NH₃ by weight [Friedrichs, *Z. anorg. Chem.*, 127, 221 (1923)]. At lower temperatures the solubility of ammonia is greater.

The high dielectric constant, 53, of anhydrous hydrazine suggests that it might prove to be an ionizing solvent for polar substances. Not only do solutions of salts in it conduct the electric current, but many salts are readily soluble in anhydrous hydrazine, as the following table

shows [Welsh and Broderson, J. Am. Chem. Soc., 37, 816 (1915); Walden and Hilgert, Z. phys. Chem., A 165, 241 (1933)].

TABLE 28
APPROXIMATE SOLUBILITIES OF SALTS IN ANHYDROUS HYDRAZINE
AT ROOM TEMPERATURE
(S, in grams/100 cc N₂H₄)

Salt	S	Salt	s	Salt	S
NH ₄ Cl As ₂ O ₃ H ₄ BO ₄ CdBr ₂ CaCl ₂ CrCl ₃ LiCl	754 1 55 40 16 13 ⁶ 16	MgSO ₄ NiCl ₂ KCl KBr KI NaClO ₃	0 8 8.5 56 4 135.7 66 12 2	Na ₂ CO ₃ NaNO ₃ Na ₂ SO ₄ ZnCl ₂ RbCl	0 26.6 0 8 5

- a NH is evolved.
- b Red solution (complex), and some gas forms.

A number of other salts dissolve with reaction. Thus AgNO₃ is reduced to metallic silver; NaBrO₃ is reduced with the formation of a yellow solution. Precipitates of unknown composition result with CuCl₂ (brown), PbCl₂ and Pb(NO₃)₂ (yellow), HgI₂(Hg), and MgCl₂ (white, flocculent). The nature of the precipitates is not exactly known; presumably in those cases where reduction is not evident, they consist of nitrides or hydrazinides, M₄N₂.

Aqueous solutions of hydrazine

The aqueous solutions of hydrazine or hydrazine hydrate are weakly alkaline. The reaction with water is, like that of ammonia,

$$N_2H_4 + H_2O = N_2H_5OH$$

and to indicate the basic property

$$N_2H_5OH = N_2H_5^+ + OH^-$$

 $\frac{(N_2H_5^+)(OH^-)}{(N_2H_5OH)} = 8.5 \times 10^{-7} \text{ at } 25^\circ$

The ionization constant for ammonium hydroxide is 1.65×10^{-5} ; that is, at the same total concentration, the (OH⁻) in ammonium hydroxide solutions is about twenty times that in a hydrazinium hydroxide solution. The substitution of an —NH₂ for —H in NH₃ decreases its basic character [Schwarzenbach, *Helv. Chem. Acta*, **19**, 178 (1936)].

Although H₂N—NH₂ is probably not a symmetric molecule, it is to be expected that the dihydroxide, HOH₃N—NH₃OH, would form and that the substance would be diacidic. In fact, it is possible to prepare the

dichloride, N₂H₆Cl₂, and the corresponding nitrate and sulfate by the addition of excess acid and subsequent recrystallization. The second OH⁻, however, ionizes much less freely than does the first,

$$\frac{({\rm N_2H_6^{++}})({\rm OH^-})}{({\rm N_2H_6OH^+})}$$
 = 8.9 \times 10⁻¹⁶ at 25°

and, accordingly, aqueous solutions of $N_2H_6Cl_2$ or similar salts will show extensive hydrolysis and the solutions will be acid. When solutions of N_2H_4 in water are titrated electrometrically with strong acids, only one inflection point is observed, which is to be expected if the second ionization constant of $N_2H_6(OH)_2$ is as small as the value just given [Gilbert, J. Am. Chem. Soc., 46, 2648 (1924)]. The titration of hydrazine sulfate solutions, $N_2H_6SO_4$, with strong bases yields two inflection points, the first corresponding to the neutralization of the acid in $N_2H_5^+ + H^+ + SO_4^-$ and the second to the conversion of $N_2H_5^+$ to N_2H_5OH .

The important salts of hydrazine are the chloride, N_2H_5Cl , the nitrate, $N_2H_5NO_3$, and the bisulfate, $N_2H_5HSO_4$, of which the last is by far the most common and most readily prepared. The chloride is very soluble in water; it melts at 89° and decomposes at higher temperatures. The dichloride is more soluble than the chloride; it may be obtained as octahedral crystals. Hydrazine nitrate is also very soluble in water, 76.61 g being contained in 100 g of the saturated solution at 25°, but it is sparingly soluble in alcohol; it melts at 70.7° and decomposes fairly rapidly at 200°. The bisulfate, $N_2H_5IISO_4$, is much less soluble in water

TABLE 29
SOLUBILITY OF
HYDRAZINE BISULFATE
IN WATER
(S expressed in g/100 g water.)

t(°C)	S
20	2.861
25	3.415
40	5.249
60	9.077
80	14 39

than the other inorganic salts; the solubility is depressed by the presence of sulfate ion, as the mass law would predict [Sommer and Weise, Z. anorg. Chem., 94, 51 (1916)].

The normal sulfate, $(N_2H_6)_2SO_4$, is much more soluble than the bisulfate; 100 g of water dissolves 202.2 g at 25°.

Hydrazine in aqueous solutions shows itself to be both an oxidizing and a reducing agent. With such reducing agents as Zn, Sn, Sn⁺⁺, and Ti⁺⁺⁺ reduction to ammonia is observed, while with oxidizing agents the product is most frequently nitrogen, although

in some cases ammonia and hydrazoic acid, HN₃, are also formed. In agreement with the asserted similarity of hydrazine to hydrogen peroxide, the oxidation to nitrogen is to be expected; thus

$$H_2O_2 + Oxidizer = 2H^+ + O_2 + Reduced form of oxidizer$$

 $N_2H_2^+ + Oxidizer = 5H^+ + N_2 + Reduced form of oxidizer$

The oxidation reactions have been carefully studied by Bray and Cuy [J. Am. Chem. Soc., 46, 1796 (1924), et ante].

The reaction of $N_2H_6^+$ with chlorine or bromine proceeds rapidly and quantitatively in acid solutions.

$$N_2H_5^+ + 2Br_2 = N_2 + 5H^+ + 4Br^-$$

Hypochlorous acid in a buffer solution of NaH₂PO₄—Na₂HPO₄ (to prevent the decomposition of HClO into H2O and Cl2 and thus loss by volatilization) also rapidly oxidizes hydrazinium salts quantitatively to nitrogen. Pentavalent vanadium in acid solution, VO₂, rapidly oxidizes N₂H₅ principally to nitrogen, but the reaction is not quite quantitative. an error of $\frac{1}{2}\%$ or more being possible. With dichromate in acid solution, nitrogen is the principal product; but some NH⁺ and HN₃ are also observed: the dichromate reaction proceeds with a measurable rate which is first-order with respect to both dichromate and hydrazinium ions [Seubert and Carstens, Z. anorg. Chem., 56, 357 (1908)]. Ferricyanide ion reacts rapidly in alkaline solution with N₂H₅⁺ to give nitrogen and ferrocyanide, but in acid solution the reaction is slow. In 0.3 n to 2 n acid solution iodate oxidizes N₂H₅⁺ rapidly and quantitatively to nitrogen, but in alkaline solution the reaction is slow. The reaction with iodine is slow in acid but rapid in alkaline solution, a fact that is probably to be related to the concentration of hypoiodite, this being largest in alkaline Unlike the cases just described, the oxidation of N₂H₅⁺ by permanganate in acid solution, although rapid, is far from quantitative, the number of oxidation equivalents of permanganate required per mole of N₂H₅ varying from 1.4 to 1.7. This number would be 4.0 if only nitrogen were the oxidation product; in alkaline solution 3.9 equivalents are observed, and this suggests that in acid solution some intermediate oxidation state of manganese affects the course of the reaction. The observations of Cuy, Rosenberg, and Bray showed that manganic salts, Mn+++, oxidize N2H5 mainly according to the equation

$$Mn^{+++} + N_2H_5^+ = NH_4^+ + \frac{1}{2}N_2 + Mn^{++} + H^+$$

in acetic acid solution. If the direct reaction with permanganate is

$$4MnO_4^- + 5N_2H_5^+ + 7H^+ = 5N_2 + 4Mn^{++} + 16H_2O$$

and if for every mole of MnO_4^- reacting in this way one mole reacts with Mn^{++} to form Mn^{+++} , and if this in turn oxidizes hydrazine as indicated, then 1.6 equivalents of MnO_4^- per mole of hydrazine would be required. This conclusion is in fair agreement with the number of equivalents observed; namely, 1.4-1.7. In this case the net reaction would be

$$8MnO_4^- + 25N_2H_5^+ + 19H^+ = 20NH_4^+ + 15N_2 + 32H_2O + 8Mn^{++}$$

Hydrazinium salts act as reducing agents toward many other oxidizing agents, the products being principally nitrogen together with some ammonia and hydrazoic acid in a few cases. Ammoniacal silver solutions give silver mirrors, and Fehling's solution (CuSO₄ + KOH + tartrate) is reduced to cuprous oxide. Of special interest is the effect of oxygen on alkaline solutions of N_2H_5OH . It was once supposed that spontaneous decomposition of the hydrazinium hydroxide into nitrogen and ammonia took place, but more careful observations show that in the absence of oxygen the solutions do not change in strength. With oxygen of the air, a 0.05 m solution of N_2H_5OH in 0.5 n OH⁻ may be oxidized to the extent of 1% in five minutes and 20% in 16 hours. A neutral, 0.015 m N_2H_5OH solution loses, by atmospheric oxidation, about 8% of its strength in 48 hours.

Of interest is the catalyzed reaction of $N_2H_5^+$ with chlorate in acid solution. With chlorate alone, the reaction is extremely slow, if it takes place at all. On the addition of a small amount of osmium salt, the evolution of nitrogen sets in slowly at first and then proceeds more rapidly until one of the reactants is used up. The mechanism of the reaction is not known; some unpublished results indicate that osmium acts by being oxidized to OsO_4 by chlorate, the tetroxide then reacting with the hydrazine. That this is not the complete explanation is indicated by the autocatalytic nature of the reaction.

We may conclude our discussion of hydrazine by calling attention once more to its twofold character. First, it acts as both a reducing and an oxidizing agent; second, its structure, because it is a derivative of ammonia, is such that its physical and chemical properties are intermediate between those of ammonia and its analogue, water. Efforts to prepare further derivatives such as NH(NH₂)₂ and N(NH₂)₃ do not appear to have been successful. (Judging from the properties of NH₃ and N₂H₄, NH(NH₂)₂ would be a liquid of high dielectric constant.)

The geometrical structure of hydrazine has not been established; it would be of interest to know whether or not the —NH₂ groups rotate freely about the nitrogen—nitrogen bond. Electron-diffraction experiments show the N—N distance to be 1.47 Å, but the bond angles, H—N—N, are not known [Schomaker and Giguère, unpublished results]. According to our current ideas, the two nitrogens are bonded together through an electron pair; and since the hydrogens are bound to the nitrogens in the same manner, each nitrogen would have a valence of three.

Hydrazoic Acid, HN3

So far we have discussed a number of compounds which were regarded as derivatives of ammonia, but when we consider hydrazoic acid, HN₃, it soon becomes apparent that it cannot be so derived directly from

ammonia alone. Franklin, who has given much attention to this compound, chooses to regard it as an ammono nitric acid, although he properly points out that the chemical evidence has not been sufficient to establish its structure [Franklin, Nitrogen System of Compounds, Reinhold, New York, 1935, Chap. XIV]. Thus, if we proceed formally, we see that

where one =O is replaced by =NH, and —OH and the remaining =O are together replaced by =N. The structure presented implies that one of the nitrogens differs from the other two, and, moreover, that one nitrogen is bound by a triple bond and the other by a double bond to the central nitrogen. From this one would predict the two N-to-N dis-

tances to be different. X-ray and electron-diffraction studies [Hendricks and Pauling, J. Am. Chem. Soc., 47, 2904 (1925); Brockway and Pauling, Proc. Nat. Acad. Sci., 19, 860 (1933)] show both distances to be the same in crystals of NaN₃ and KN₃, while in CH₃N₃ the azide group is unsymmetrical, namely, H₃C—N=N.—N. More recently Eyster [J. Chem. Phys., 8, 135 (1940)] has analyzed the fine structure of the infrared absorption bands for HN₃(g) and finds that the results are in accord with the structure shown in Fig. 20. In the

 $\begin{array}{lll} \textbf{Fig. 20.} & \textbf{The Molecular Structure of} & 11\,N_3. & H_-N = 1.012\,\mathring{A}; \\ N_1-N_2 & = 1.241\,\mathring{A}; & N_2-N_3 & = \\ 1.128\,\mathring{A}; & \angle H_-N_1-N_2 & = 110^\circ\ 52'. \end{array}$

alkali azides, methyl azide, and HN₃, the nitrogens are colinear; there appears no good reason for believing that ring or cyclic structures are possible. The resonating electronic structure now accepted is

$$H:\ddot{N}:\dot{\ddot{N}}:\ddot{\ddot{N}}:, H:\ddot{\ddot{N}}:\ddot{\ddot{N}}::\dot{\ddot{N}}:$$

the form on the right predominating. The space structure of CH₃N₃, as derived from the results of electron-diffraction experiments, is

where the distances are expressed in Angstrom units. In crystals of the

alkali azides, the azide ion has the linear structure $: \dot{N} :: \dot{N} :: \dot{N} :: \dot{N} :: \dot{N}$ with the N=N distances 1.16 Å.

There is little point in trying to force the ammonia-water analogies too far in an attempt to describe the properties of compounds. Hydrazoic acid has also been considered a hydrazine derivative of nitrous acid, HNO₂, in that the —OH and =O groups are regarded as replaced by one $-N_2H$ group. Still another view (Browne) is that HN₃ is an ammonia derivative of hyponitrous acid, $H_2N_2O_2$, the two —OH groups being replaced by an =NH group. These two pictures, together with that presented above, have been of some assistance in explaining or predicting some reactions, but it is doubtful whether they are of any fundamental significance. Indeed, as is often the case, analogies and forced pictures may do harm in that their adoption can close the way to a deeper insight into the problem.

The preparation of hydrazoic acid can be effected in a variety of ways, of which only the most important will be discussed here.

- (1) $3\text{NaNH}_2(1) + \text{NaNO}_3 = \text{NaN}_3 + 3\text{NaOH} + \text{NH}_3$. In this method, powdered sodium nitrate is added cautiously and slowly to pure, molten sodium amide at 175°. The reaction is a vigorous one, and yields as high as 65%, based on the nitrate, are obtainable [Browne and Wilcoxon, J. Am. Chem. Soc., 48, 682 (1926)]. Nitrogen and hydrogen are also formed, but no oxygen or oxides or nitrogen. variant of this method, and the one first discovered, is that of Franklin [J. Am. Chem. Soc., 56, 568 (1934); Science, 56, 28 (1922)], which consists in heating liquid ammonia solutions of potassium amide and nitrate in a metal bomb to 120-140°; the yield can be as high as 75%. The yields with the sodium salts are lower, 16%, but solutions of lead nitrate and excess potassium amide in liquid ammonia lead to 80% yields of Pb(N₃)₂. Iron salts inhibit the reaction, and the yield becomes zero if tubes of ordinary steel are used as vessels. The alkali amide is necessary for reaction; solutions of alkali or ammonium nitrates alone in liquid ammonia do not vield azides when heated. Efforts to bring about the reverse of the main reaction have not been successful.
- (2) 2NaNH₂(1) + N₂O(g) = NaN₃(s) + NaOH(s) + NH₃(g). Nitrous oxide is passed over molten sodium amide at 190° ± 4° in a nickel vessel. Yields as high as 90%, based on the reaction as written, are obtainable; the method is employed in the commercial preparation of sodium azide. After the reaction is complete, the resulting mixture is dissolved in water, and the NaN₃ is then recrystallized from the solution. The reaction was discovered by Wislicenus (1892) and later investigated more thoroughly by Dennis and Browne [J. Am. Chem. Soc., 26, 577 (1904)]. It will be noted that

only one-half of the amide nitrogen is available for the formation of sodium azide; the ammonia that is formed in the reaction can, of course, be used to prepare sodium amide by causing it to react with metallic sodium.

$Na + NH_3 = NaNH_2 + \frac{1}{2}H_2$

- (3) N₂H₅⁺ + HNO₂ = HN₃ + H⁺ + 2H₂O. This was the reaction employed by Curtius, the discoverer of hydrazoic acid, for the preparation of the compound [Ber., 26, 1263 (1892)]. The best conditions for high yields were investigated by Sommer and Pincas [Ber., 49, 259 (1916)], who found that the acidity of the solutions played an important role. At high acid concentrations, nitrous acid rapidly oxidizes the hydrazoic acid formed; if the acidity is too low, a reaction forming N₂O becomes important. Sommer and Pincas found that a mixture made from 400 cc of 16.5-25% H₃PO₄, 27.6g N₂H₅Cl, and 1.35g NaNO₂ in 400 cc water gave a yield of 59.6% based on the nitrite used. The nitrite solution is added slowly and with constant stirring to the hydrazine-phosphoric acid mixture at room temperature.
- (4) N₂H₅⁺ + Oxidizing Agents = HN₃. Browne and Shetterly [J. Am. Chem. Soc., 31, 221 (1909), et ante] studied the effect of a variety of oxidizing agents on hydrazine sulfate solutions with respect to the quantity of hydrazoic acid formed. The oxidizing agent in aqueous solution is usually added to a heated (80°) solution of hydrazine sulfate. The following table summarizes their most

TABLE 30
THE OXIDATION OF HYDRAZINE TO HYDRAZOIC ACID AT 80°

Volume and Concentration of Hydrazine Sulfate Solution	Oxidizing Agent	Per Cent Yield of HN; or NaN;
5 g in 500 cc 6 n H ₂ SO ₄ 100 cc (10 g/l) 30 cc (10 g/l) 30 cc (10 g/l) 30 cc (10 g/l) 100 cc (10 g/l) (reactants mixed and boiled)	H ₂ O ₂ (100 cc 1 m) H ₂ O ₂ (alkaline soln.) NH ₄ VO ₃ (1 g in 120 cc) 6 n H ₂ SO ₄ KClO ₃ (in 6 n H ₂ SO ₄) KBrO ₄ (in H ₂ SO ₄) K ₂ S ₂ O ₃ (4.2 g in 50 cc conc. H ₂ SO ₄) K ₂ S ₂ O ₃ (in alkaline soln.) KMnO ₄ (in acid soln.) KMnO ₄ (in alkaline soln.) KClO ₄ (14 g + 5 cc conc. H ₂ SO ₄) PbO ₂ and MnO ₂ (in H ₂ SO ₄)	28 0.0 13.6 20 6.7 40 1 3 0.0 22 4 or less

important results. The effect of acid is often marked; when specified, the acid concentrations given in the table are for optimum yields. Not enough is known about the detailed mechanisms of these reactions to permit any relevant remarks on the effect of acid concentration.

(5) N₂H₅OH + NCl₃ + 4OH⁻ = N₃⁻ + 3Cl⁻ + 5H₂O. In this method a solution of NCl₃ in benzene is shaken with an alkaline solution of hydrazine sulfate. Under such conditions yields of 36%, based on NCl₃, are obtained; but if the aqueous layer becomes acid, the yield is low [Tantar, Ber., 32, 1399 (1899)].

The above list of the important reactions in which hydrazoic acid or its salts are formed does not include a number in which moderate yields are obtainable. For example, the oxidation of solid hydrazine bisulfate with warm, 10 n nitric acid leads to a 10% yield of HN₃. Also if benzoyl-hydrazine is treated with nitrous acid, and if the resulting benzoyl azide is then hydrolyzed with sodium ethylate, fair yields of HN₃ result. These methods do not appear to be different in principle from (3); it is conceivable that the first step in the nitric acid method consists in the reduction of HNO₃ to nitrous acid, and the subsequent steps would be much the same as those involved in (3). It would be of interest and value to study the rate of one or more of the aqueous solution reactions and from the results arrive at a mechanism of the reaction. An investigation of one or two clear-cut cases might well throw considerable light on the nature and steps of the reactions leading to the formation of hydrazoic acid.

Free hydrazoic acid, HN₃, is readily obtainable from its acidified solutions by distillation. For this purpose moderately strong sulfuric acid is usually used. Anhydrous HN₃ is most conveniently prepared by allowing strong sulfuric acid to drop slowly on solid potassium or sodium azide. Gaseous HN₃ may be dried with anhydrous calcium chloride and then condensed to a colorless mobile liquid which is fearfully and

TABLE 31 VAPOR PRESSURES AND DENSITY OF HYDROGEN AZIDE

t (°C)	Vapor Pressure (mm Hg)	t (°C)	Vapor Pressure (mm Hg)
-78.0 -40.0 -23.0 -18.0	2.3 28 55 64	0.0 15.0 24.7	163.7 321 509

Liquid: $d_{4^{\circ}}^{t} = \frac{1.126}{1 + 0.0013t}$ (0° < t < 21°)

dangerously explosive. The liquid is readily detonated by sharp blows, and even when boiling, in the presence of fragments of glass or alone, it may explode. The explosions have a very high intensity over a small (60 cm) radius. During experimentation with the liquid, it should be kept behind a thick piece of safety glass. The vapors are poisonous, and care should be taken to avoid inhaling them.

As a consequence of the explosive property of liquid HN_3 , its physical constants have not been carefully determined. It boils at 37°, and when it is cooled to low temperatures, a colorless solid forms which melts at -80° . The vapor pressures and density have been determined by Günther, Meyer, and Müller-Skjold [Z. phys. Chem., A 175, 154 (1935)].

The vapor density at both low and ordinary pressures corresponds to the monomer HN₃ [Beckman and Dickinson, J. Am. Chem. Soc., 50, 1870 (1928)]. Gaseous hydrogen azide is colorless and does not absorb light in the visible region, but it does absorb in the ultraviolet (2400 Å and shorter wave lengths) with decomposition. When heated, the vapor begins to decompose at a measurable rate at 290°. There is little pressure increase in the thermal decomposition; the products consist of N₂, H₂, and NH₃, and on cooling a white solid, ammonium azide, NH₄N₃, deposits on the vessel walls. The thermal decomposition is strongly influenced by the nature of the walls of the vessel [Ramsperger, J. Am. Chem. Soc., 51, 2134 (1929)].

The dielectric constant of liquid hydrogen azide is not known, but that it is appreciable is indicated by the fact that the liquid dissolves several salts, and the resulting solutions are conductors of electricity [see Audrieth, Chem. Rev., 15, 169 (1934) for an excellent review of hydrazoic acid and a report on the unpublished solubility experiments of McKinney]. At 0° NH₄Br, NH₄I, CoCl₂, MgCl₂, KCl, KBr, KI, KN₃, NaBr, NaI, and HgCl₂ are appreciably soluble in HN₃(l). Nitrates, sulfates, oxides, carbonates, and sulfides are in general not appreciably soluble. Iodine dissolves readily in the liquid to give a reddish solution which conducts electric current; this fact may be due to the reaction $HN_3(1) + I_2 = H^+ + I^- + IN_3$, iodine azide being a known compound. The free energy of formation of gaseous hydrogen azide is $\Delta F_{298.1}^{\circ}$ = 78,525 cal/mole [Eyster and Gillette, J. Chem. Phys., 8, 369 (1940)]. The result is based upon calculations from molecular constants and the value of $\Delta E = 70,900$ cal/mole [Günther, Meyer, and Müller-Skold, Z. phys. Chem., A 175, 154 (1935). The molal entropy of the ideal vapor at 1 atm and 298.1°K is 56.74 cal/deg.

Hydrazoic acid is a weak acid. The ionization constant at 25° [West, J. Chem. Soc., 77, 705 (1900)] is

$$\frac{(H^+)(N_3^-)}{(HN_3)} = 1.8 \times 10^{-5}$$

and this value is substantially equal to that for acetic acid. The salts of hydrazoic acid resemble in many ways the halide salts. Indeed, the azide group shows many reactions and properties that recall those of the halides and haloids, F^- , Cl^- , Br^- , I^- , CNS^- , CNO^- , and CN^- . Thus AgN_3 and HgN_3 are insoluble in water at room temperatures, and with Fe^{+++} a highly red-colored, weak electrolyte $Fe(N_3)_3$ is formed on the addition of N_3^- .

The normal azide salts of Pb, $Hg^{1.II}$, Tl, and Ba explode on being struck sharply, and they have found application as detonators; the decomposition products are nitrogen and either the metal or a simple nitride of it. The alkali metal azides have the interesting and important property of decomposing into nitrogen and the metal when heated to about 300° or higher [Tiede, Ber., 49, 1742 (1916); Suhrman and Clusius, Z. anorg. Chem., 152, 52 (1926); Mott, Proc. Roy. Soc., 172A, 325 (1939)], and once decomposition starts, it will continue at somewhat lower temperatures. The decomposition reaction of NaN₃ in the absence of air or moisture is

$$NaN_3$$
 (s) = $Na(l) + \frac{3}{2}N_2$ (g)

and it goes to completion with no side reactions, so that a 100% yield of sodium metal and nitrogen is attainable. The other alkali metals form small amounts of nitrides, and the yield of metal and nitrogen is not 100%. Advantage may be taken of the reaction for the preparation of the alkali metals or of very pure nitrogen.

TABLE 32
PROPERTIES OF ALKALI METAL AZIDES

Azide	Yield of Metal on Heating (%)	Temperature of Decomposition (°C)	Solubility in 100 g Water at 17° (g)
LiN ₈			66.41
NaN ₃	100	300	41.7 (16°)
KN ₃	80	320	49.6
RbN ₈	60	310	114.1
CsN ₃	90	350	307.4 (16°)

The thermal decomposition of the alkaline earth and heavy metal azides also leads to nitrogen and the metal or metal nitride. The nitrogen obtained is especially pure and may be used for spectroscopic or atomic-weight purposes.

In general, solutions of the azides are not very reactive to oxidizing and reducing agents at room temperature. On heating with hydrochloric, hydrobromic, or hydriodic acid, the free halogen is liberated, but not in a clean-cut manner. Many metals, even the noble ones, are slowly oxidized by hydrazoic acid, with the formation of the azides,

ammonium salts, nitrogen, and variable quantities of hydrazine. Titanous and chromous ions reduce HN₃ solutions readily to nitrogen and ammonia in acid solution, one mole of ammonia being formed per mole of hydrazoic acid reduced [Piccard and Thomas, Helv. Chim. Acta, 6, 1039 (1923)]. Stannous chloride and sulfurous acid also reduce hydrazoic acid to ammonia and nitrogen. It has been assumed that an intermediate substance, triazene, H₃N₃, is the first reduction product of HN₃, although this compound has never been isolated; the triazene is then assumed to decompose into other intermediates or into ammonia and nitrogen directly. The evidence for these intermediates is mostly indirect [see Audrieth, Z. phys. Chem., 165, 323 (1933)].

Aqueous hydrazoic acid ordinarily reacts slowly with oxidizing agents at room temperature. Ferric salts, iodic acid, and hydrogen peroxide do not show appreciable oxidizing action. Bromate in acid solution reacts at a measurable rate to give gaseous products whose composition is not known. Chloric acid and manganese dioxide react only slowly if at all at ordinary temperatures. Permanganate in acid solution oxidizes hydrazoic acid fairly rapidly, but the products are variable in amount and consist mainly of N₂, HNO₃, and oxygen; the resulting mixtures have a slow oxidizing action on iodide which has led to the doubtful supposition that oxyacids of the form HN₃O and HN₃O₃, the analogues of HClO and HClO₃, are present. Permanganate cannot be used as a reagent for the volumetric estimation of the azides, since the reactions are complex and the products are variable [Raschig, Schwefel und Stickstoffstudien, Verlag Chemie, Leipzig, 1924]. Hypochlorous and nitrous acids and ceric salts bring about the complete and rapid oxidation of HN₂ according to the reactions

$$HClO + HN_3 = ClN_3 + H_2O$$

 $HN_3 + ClN_3 = H^+ + Cl^- + 3N_2$
 $HNO_2 + HN_3 = N_2 + N_2O + H_2O$
 $2Ce^{++++} + 2HN_3 = 2Ce^{+++} + 3N_2 + 2H^+$

The two latter oxidizing agents may be used for the quantitative estimation of azides, the ceric salts being somewhat the better for the purpose [Sommer and Pincas, Ber., 48, 1963 (1915)]. When a gravimetric method is called for, it is common practice to precipitate silver azide and convert the filtered precipitate to the nitrate and then to the chloride; AgN₃ itself may be dried at 100° and weighed as such, although it is explosive when struck.

Hydrazoic acid and iodine react only in the presence of a catalyst, and the known catalysts are thiosulfate, carbon disulfide, and azidodithiocarbonic acid, HSCSN₃. The latter compound is formed by the interaction of solutions of hydrazoic acid or its salts with carbon disulfide [Currier and Browne, J. Am. Chem. Soc., 44, 2849 (1922)]. When

definite volumes of standard solutions of iodine or I₃ and HN₃ are mixed, no reaction is observed, but if titration of the iodine in the mixture with thiosulfate is begun, an evolution of gas, nitrogen, is observed, and the thiosulfate required is less than that corresponding to the initial iodine The difference between the observed and calculated quantities of thiosulfate may be nearly zero if the HN₃ solution contains an added strong acid, and it is greatest when the acid concentration corresponds to that in an equimolal Na₂HPO₄—NaH₂PO₄ buffer solution. addition, before titration is begun, of tetrathionate has no appreciable These facts suggest that the intermediate responsible for the oxidation of the azide is a complex between iodine and thiosulfate, $(I_2S_2O_3)^-$, and that N_3^- is more reactive to the complex than is un-ionized HN₃. It appears that the rate of the reaction between N_3^- and $(I_2S_2O_3)^$ is more rapid than that between the complex and $S_2O_3^-$ to form $S_4O_6^-$ + 2I⁻. If the initial iodine is in considerable excess and if the solution is properly buffered, the catalyzed oxidation can be nearly quantitative according to the reaction.

$$2N_{3}^{-} + I_{2} = 2I^{-} + 3N_{2}$$

Attention has already been called to the similarity between the azides and halides, and this similarity suggests that azide compounds similar to ICl, ICN, and other interhalogen compounds might exist. The colorless gas chlorine azide, ClN₃, results when an aqueous mixture of sodium hypochlorite and azide is acidified with acetic or boric acid [Raschig, Ber., 41, 4194 (1908); Glen, Z. physik., 38, 176 (1926)]; the compound is highly and dangerously explosive. Bromine azide, BrN₃, is prepared by treating silver or sodium azide with a solution of bromine in ether or benzene, or by letting bromine react with dry sodium azide. BrN₃ is a mobile, volatile, orange-red liquid which freezes to a red solid at about -45° [Spencer, J. Chem. Soc., 127, 217 (1925)]. With water, hydrolysis sets in and the resulting hydrazoic acid is oxidized to nitrogen. BrN₃ is probably explosive. Iodine azide, IN₃, is an unstable, lightvellow solid which is formed when an aqueous suspension of AgN₂ is treated with an ether or benzene solution of iodine. IN 3 is somewhat soluble in water and is hydrolyzed by alkali [Hantzsch, Ber., 33, 522 (1900); Gutman, Ber., 57, 1956 (1924)].

Cyanogen azide, CNN₃, is a solid melting at 40.3° to a liquid which explodes at 170°, and is obtained from the reaction between BrCN and NaN₃ [Hart, J. Am. Chem. Soc., 50, 1922 (1928)]. It is soluble in alcohol, ether, and chloroform; with ether solutions of ammonia it reacts to give NCN(NH₂)N₃, and with water it hydrolyzes to CO₂, HN₃, and CNNH₂. Cyanuric azide, (CNN₃)₃, is formed by the action of (CNCl)₃ on NaN₃, or through reactions involving organic hydrazides; it may find application as a detonator [Taylor and Rinkenback, J. Franklin

Inst., 204, 369 (1927)]. When warmed with aqueous sodium hydroxide, $(CNN_3)_3$ hydrolyzes quantitatively to $Na_3C_3O_3N_3$ and NaN_3 ; with an ether solution of ammonia, one azide group is replaced by an $-NH_2$ group to give $CNNH_2(CNN_3)_2$ [see Franklin, The Nitrogen System of Compounds].

A number of other azides, the analogues of the corresponding chlorides, are known, among which are $SO(N_3)_2$ (from $SOCl_2 + 2NaN_3$), a colorless, explosive liquid, KSO_3N_3 (from $NH_2NHSO_3H(s) + KNO_2$ (conc. soln.)), a colorless explosive solid and the analogue of chlorosulfonic acid, HSO_3Cl , and $CO(N_3)_2$, an explosive solid which may be regarded as the analogue of phosgene, $COCl_2$, although it does not appear to have been prepared directly from this substance. The compounds cited leave no doubt about the general nature of the azide group and its similarity to the halogens and the haloids.

CHAPTER 4

Ammonia and Liquid Ammonia Solutions

Ammonia, NH₃, is the most stable and important of the hydrogen At room temperature it is a colorless gas with compounds of nitrogen. a distinctive odor: at lower temperatures it condenses, first to a colorless liquid boiling at -33.4° and then to a colorless solid melting at -77.74° . Large quantities of ammonia are produced at one stage or another in several important industrial processes for the fixation of nitrogen (see Chapter 1). An especially pure product is obtained in the Haber process for the direct combination of nitrogen and hydrogen, and most commercial ammonia sold as such is made in this way. The most convenient laboratory method for the preparation of pure ammonia is to treat ammonium chloride with a saturated potassium hydroxide solution. The resulting gas is dried with solid potassium hydroxide and then with A final distillation with proper precautions yields an ammonia with only about 0.001 mole per cent impurity [Overstreet and Giauque, J. Am. Chem. Soc., 59, 254 (1937)].

Physical properties of ammonia

The ammonia molecule has the form of a low pyramid of height This configuration gives rise to the possibility of the nitrogen atom passing from its equilibrium position on one side of the plane of the hydrogen atoms through the plane to an equally stable position The theoretical problem presented by an atom or on the other side. group of atoms having two equally stable equilibrium positions (the double minima problem) is of great interest and has been solved in considerable detail for the simple case of ammonia [Hund, Z. Physik, 43, 805 (1927); Dennison and Uhlenbeck, Phys. Rev., 41, 313 (1932); Manning, J. Chem. Phys., 3, 136 (1935)]. The double minima problem occurs in complicated molecules also, and its correct treatment is of importance in the calculation of thermodynamic functions. excellent discussion by Pitzer, J. Chem. Phys., 7, 251 (1939). experimental evidence that the nitrogen atom in ammonia has double minima may be regarded as conclusive, as all available spectroscopic data are explained quantitatively [Wu, Vibrational Spectra and Structure of Polyatomic Molecules, p. 191, National Univ. of Peking, Kun-ming, China, 1939l. Deuteroammonia, ND₈, has the same interatomic distances as NH₂ and its spectrum has aided in solving the ammonia problem. The constants for the molecules are given below [Wright and Randall. Phus. Rev., 44, 391 (1933); Migeotte and Barker, Phys. Rev., 50, 418 (1936); dipole moment, de Bruvne and Smythe, J. Am. Chem. Soc.. 57, 1203 (1935)].

	NH3	ND ₂
C_0 Height of molecule	$2.782 \times 10^{-40} \text{ gcm}^2$ 4.497×10^{-40} 0.360 Å 1.016	5.397 × 10 ⁻⁴⁰ gcm ² 8.985 × 10 ⁻⁴⁰ 0.360 Å 1.016
H—H or D—D	1 645	1.645
rundamental vibrations: $\omega_1 \ *$	3337 cm ⁻¹ 3415 933, 967 1628 1 46 ₆ × 10 ⁻¹⁸ c.s.u.	2420 cm ⁻¹ 2556 745.8, 749.2 1191.3 $1.49_6 \times 10^{-18}$ e.s.u.

^{*} The parallel vibrations are double because of the double minima, but the splitting of ωι is very small.

The macroscopic physical properties of ammonia have also been extensively investigated, owing partly to the widespread use of the chemical in refrigeration systems. Very accurate values have been determined by the United States Bureau of Standards for the vapor pressure [Cragoe, Meyers, and Taylor, J. Am. Chem. Soc., 42, 206 (1920)], the heat of vaporization [Osborne and Van Dusen, J. Am. Chem. Soc., 40, 14 (1918)], and the density [Cragoe and Harper, Bur. Stand. Sc. Pp., 420, 313 (1921)] from -80° to $+70^{\circ}$ C. The thermodynamic properties of ammonia are summarized in Table 33 [Overstreet and Giauque, J. Am. Chem. Soc., 59, 254 (1937); spectroscopic entropy, Stephenson and McMahon, ibid., 61, 437 (1939); dielectric constant, Grubb, Chittum, and Hunt, ibid., 58, 776 (1936); viscosity, Plank and Hunt, ibid., 61, 3590 (1939)]. It is surprising that the boiling point is not more accurately known; the best values are -33.35° [Cragoe, Meyers, and Taylor, J. Am. Chem. Soc., 42, 206 (1920)], -33.34° [Henning and Stock, Z. Physik, 4, 226 (1921)], and -33.42° [Overstreet and Giauque, loc. cit.l.

TABLE 33 THE PHYSICAL AND THERMODYNAMIC PROPERTIES OF AMMONIA $(0^{\circ}C = 273.1^{\circ}K)$ Melting point Boiling point (239 75°)

 $\log_{10} p_{\rm em} = -\frac{1630.70}{T} + 9\,00593$ Vapor pressure of solid.

TABLE 33 (Cont.) Vapor Pressure of Liquid

$$\log_{10} p_{\rm cm} = -\frac{1612.500}{T} - 0.012311T + 1.2521 \times 10^{-5}T^2 + 10.83997 \quad (T < 240^{\circ} \rm K)$$

$$\log_{10} p_{\text{mm}} = 12.465400 - \frac{1648.6068}{T} - 0.01638646T + 2.403276 \times 10^{-6}T^{2} - 1.168708 \times 10^{-8}T^{3} \quad (183.1^{\circ} < T < 343.1^{\circ}\text{K})$$

t(°C)	Press. (mm)	t(°C)	Press. (mm)
-80	37.6	0	3221.0
-60	164.2	20	6428.5
-40	538.3	25	7520.5
-20	1426.8	30	8749.0

Triple point pressure . . .

 $4.558 \mathrm{\ cm}$

Critical temperature.... 406 0°K

Molal Heat Capacity

$T({ m ^{\circ}K})$	C _p (cal/deg)	$T({ m ^{o}K})$	C _p (cal/deg)
90	5 612	190(s)	11.71
120	7.497	200 (1)	17.58
150	9.272	220	17.90
170	10 42	240	18.12

Entropy, Sos.1:

Density of Liquid

t(°C)	Density (g/ml)	t(°C)	Density (g/ml)
-70	0.7253	-10	0.6520
-50	.7020	0	.6386
-30	.6777	20	.6103

Viscosity and Dielectric Constant of Liquid

t(°Ç)	Viscosity, Poise	Dielectric Constant
-60 ± 10 5 15 25	0.001618 .001457 .001350	26.7 18.94 17.82 16.26

Aqueous ammonia solutions

Ammonia is very soluble in water, about 700 volumes of gas per volume of water at 20° being required to give an NH₃ pressure of 1 atm. The densities and partial pressures of some ammonia solutions are given in Table 34 [densities, International Critical Tables, Vol. III, p. 59; vapor pressures, Sherwood, Ind. Eng. Chem., 17, 746 (1925), Scheffer and de Wijs, Rec. trav. chim., 44, 654 (1925)].

TABLE 34 THE DENSITIES AND PARTIAL AMMONIA PRESSURES OF AMMONIA SOLUTIONS

	At 20°0		
Weight Per Cent NH ₃	Normality (moles NH ₃ /l soln.)	Density (g/ml)	NH ₃ Pressure (mm Hg)
1	0.584	0.9939	
2	1.162	. 9895	12.5
4	2.304	.9811	26.1
8	4.534	. 9651	60
12	6.694	.9501	100
16	8.796	. 9362	156
20	10.84	.9229	227
24	12.82	.9101	322
28	14.76	.8980	447

At 25°C

Normality	NH ₃ Press. (mm)	Normality	NH ₃ Press. (mm)
0.0618 .1883 .339 .601	0.79 2.41 4.41 7.96	1.005 1.242 1.618	13.46 16.94 22.38

The phase diagram of the system NH₃ and H₂O is shown in Fig. 21 [Postma, Rec. trav. chim., 39, 515 (1920); Elliott, J. Phys. Chem., 28, 887 (1924)]. The compounds NH₄OH and (NH₄)₂O are seen to exist in the solid form, but they are unstable at room temperature. Water solutions of ammonia contain ammonium hydroxide, a weak base; $NH_4OH = NH^+ + OH^-$, $K = 1.65 \times 10^{-5}$ at 25° [Everett and Wynne-Jones, Proc. Roy. Soc. (Lond.), A 169, 190 (1938)].

Fig. 21. The Phase Diagram of the System H₂O-NH₃.

Liquid ammonia solutions

Pure liquid ammonia is of particular chemical interest because of its solvent power for many salts and even some metals. Liquid ammonia solutions have been studied more than those of any other nonaqueous solvent, and important extensions of the concept and theory of solutions have been made. Probably the most unusual and interesting liquid ammonia solutions are those of the

metals.

Metal-in-ammonia solutions

It is a remarkable fact that liquid ammonia will dissolve the alkali and alkaline earth metals with the formation of colored solutions. The color dilute solutions is a lively. This fact may be beautiful blue. easily demonstrated by dissolving a milligram of sodium in 10 ml of liquid ammonia at the temperature of solid CO₂ (dry ice); the metal dissolves quite readily. If the concentration of metal in the solution is high, the liquid has a metallic, copper-like appearance and reflects light at

metallic solutions.

Fig. 22. The Vapor Pressure of Ammonia above Solutions of Sodium in Liquid Ammonia at -33.8° C. [Kraus, Carney, and Johnson, J. Am. Chem. Soc., 49, 2206 (1927).]

perpendicular incidence much more than do ordinary liquids or non-

Repeated experiments have shown that, if the ammonia is evaporated from a freshly prepared alkali metal solution, the residue consists of the original metal; that is, there is no chemical change which is not readily reversible. The nonexistence of compounds is also indicated by the vapor pressure curve of sodium in ammonia shown in Fig. 22. however, the solution is allowed to stand for some time, the blue color fades and the solution becomes colorless. On evaporating this solution,

Fig. 23. The Equivalent Conductance of Solutions of Potassium, Sodium, and Lithium in Liquid Ammonia at -33.5° C. V = liters of pure ammonia of density 0.674 in which one gram atom of the metal is dissolved.

a white solid residue of an amide, for example NaNH2, remains; it may also be shown that the decrease in the intensity of the blue color is accompanied by the evolution of hydrogen,

$$M + NH_8 = MNH_2 + \frac{1}{2}H_2$$

The rate of decomposition is increased markedly by substances such as platinum black, Fe₂O₃, NaOH, or NaNH₂, which act as catalysts, but may be greatly decreased by careful preparation of the solutions. If pure materials are used with rigorous exclusion of moisture, sodium solutions may be prepared which are stable for a week or two. Potassium solutions are less stable but will not show appreciable signs of decomposition for about eight hours. It is evident that the solutions are sufficiently stable to allow quantitative physical and chemical experiments to be performed.

All of the alkali metals give blue dilute solutions. A quantitative investigation of the absorption spectra of these solutions has shown that the spectra are identical at the same concentrations [Gibson and Argo, J. Am. Chem. Soc., 40, 1327 (1918)], and this indicates that the blue color is due to the same substance or ion in all cases. The solutions are

Fig. 24. The Equivalent Conductance of Sodium in Liquid Ammonia at -33.5° C. V = 100 Liters of pure liquid ammonia of density 0.674 in which one gram atom of sodium is dissolved.

good conductors of electricity at all concentrations; the equivalent conductances, Λ , of solutions of sodium, potassium, and lithium as measured by C. Kraus are shown in Figs. 23 and 24 [Kraus, J. Am. Chem. Soc., 43, 749 (1921)].

From both the data and the curves, three characteristics of these solutions are immediately evident: (1) at all concentrations the equivalent conductance is greater than that found for any known salt in solution in any known solvent; (2) the conductance for concentrated solutions is extremely high and of the same order of magnitude as that found for metals (the specific conductance of mercury is 1.036×10^4 reciprocal ohms; that of a saturated solution of sodium in liquid ammonia, 0.5047×10^4); and (3) the conductance goes through a minimum and then

increases with dilution to a limiting value. The behavior of the conductance at the higher dilutions is much the same as that found for ordinary salts in water or liquid ammonia. These results, especially the magnitude of the conductance, indicate strongly that the conducting ion or ions are not of the same kind as those responsible for the conductance of ordinary salt solutions in liquid ammonia or other solvents.

In further studies on the mechanism of the conductance, Kraus determined the electromotive force of concentration cells of the type

Pt,
$$Na[C_1, in NH_3(l)]$$
; $Na[C_2, in NH_3(l)]$, Pt

and since the observed E.M.F. is dependent not only on the concentrations C_1 and C_2 but also on the transference numbers involved, he was able to show that the negative carrier carried from 7 to 280 times the current carried by the positive ion [J. Am. Chem. Soc., 30, 1197 (1908); 36, 864 (1914)]. On the basis of these experiments, Kraus assumed the following equilibria:

From the electromotive force measurements, he calculated that at $C_1 = 1.014$ n and $C_2 = 0.6266$ n only about two-thirds of the negative ions were associated with ammonia molecules. He also made vapor pressure measurements on the sodium-in-ammonia solutions to determine, using Raoult's law, whether the effective concentration of the solute was greater than, equal to, or less than the formal concentration. For solutions about 0.2 n, the apparent molecular weight of sodium in solution turned out to be about 23, which is equal to the atomic weight; but at 0.1519 n, the apparent molecular weight was found to be 21.58. Although the applicability of Raoult's law is somewhat doubtful for these solutions, the value indicated some 12% dissociation.

All these facts could be correlated, qualitatively, at least, by the assumption that sodium atoms, sodium ions, free electrons, and solvated electrons were present in equilibrium in the solution. The high conductance in concentrated solutions would be explained by the free electrons, the subsequent decrease to a minimum by the increasing solvation of the electrons. The final rise in very dilute solution, in which solvation of the electrons would be virtually complete, would be due to the increasing dissociation of the sodium atoms present. This theory explains many facts well; but in spite of its qualitative success, further investigations, both theoretical and experimental, have shown that it cannot be correct in some major respects.

The first disagreement came from a theoretical study by L. Farkas [Z. phys. Chem., A 161, 355 (1932)] of the electrical conductance of sodium in liquid ammonia. Farkas proceeded on the assumption that

the electrons are restrictedly free at all concentrations. At low concentrations the conductance is expressed by the formula of Kohlransch for completely ionized strong electrolytes, $\Lambda_c = \Lambda_0 - a \sqrt{C}$. In the more concentrated solutions, where the conductance increases with such extraordinary rapidity, Farkas regarded the conductance as involving "non-mechanical" transfer or jump of electrons from one metal atom to the next. In the theory, the electrons on the metal atoms are required to penetrate a potential barrier, Fig. 25, in passing from one atom to the next, and the probability that this will occur may be calculated from the quantum theory. An important assumption in the theory is that the sodium atoms form an ordered structure in the solution. Since an

Fig. 25. An Assumed Potential Energy Curve for the Electrons in Concentrated Sodium-in-ammonia Solutions.

electric field is present between the electrodes, the probability that the electrons will go through the barrier in the direction of the anode is greater than for the opposite direction. A net flow or passage of electrons through the solution results. Farkas derived the following expression for the conductance of the metal in ammonia solutions:

$$x = \frac{3 \times 10^{11}}{J_0^{1/2}} 10^{-(4.2 \times 10^6 J_0^{1/2})/C^{1/3}}$$

where $1000x/C = \Lambda$ is the equivalent conductance, C is the concentration in moles per liter of solution, and J_0 is an ionization potential (see Fig. 25) which is evaluated from one experimental value of x. The theory is in moderately good agreement with experiment for solutions containing from one to five moles of sodium per liter of solution.

The most conclusive evidence for rejecting equilibria (such as Na = Na⁺ + E⁻) requiring an appreciable concentration of un-ionized sodium ions or solvated electrons in solution comes from magnetic-susceptibility measurements. If the electrons are not free but are bound to sodium atoms or to ammonia molecules, the solutions would be paramagnetic and the volume susceptibility would depend on the temperature and concentration, in accordance with Curie's law

$$\kappa = \frac{N\mu_0^2 J(J+1)g^2}{V3kT}$$

when N/V is the number of metal atoms or ammonia ions NH_3^- per unit volume of solution, μ_0 is one Bohr magneton, k is Boltzmann's constant, J is the resultant spin-orbital momentum quantum number of the electron, and g is the Landé factor,

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}.$$

At a concentration approximately that at which a minimum in conductance is observed (≈ 0.2 n), the contribution of neutral atoms would be at a maximum, according to the Kraus theory. Actually, it is observed that in this region the susceptibility is very low and in fact is negative (corresponding to diamagnetism) at lower temperatures. temperature coefficient of the susceptibility is very small. From the low value at medium concentrations, the susceptibility per mole of sodium rises until in highly dilute solution it is equivalent to a magnetic moment of one Bohr magneton per sodium atom [Freed and Thode, Nature, 134, 774 (1934); Huster, Ann. Physik, 33, 475 (1938)].

This observed behavior is qualitatively what would be expected if all the electrons were free or under the influence of a periodic (in space, not time) potential field of the sodium atoms. At high concentrations they would then constitute a degenerate Fermi gas with a susceptibility practically independent of temperature, but at lower concentrations the degeneracy would be lifted, with a corresponding rise in the susceptibility. The theory of an electron gas has been developed by Pauli [Z. Phys., 41, 81 (1927)] and by Bloch [Z. Phys., 53, 216 (1929)], who derived the following formulas for the volume susceptibility, κ : Free electrons:

At low temp.².....
$$\kappa = \mu_0^2 \{12(\pi/3)^{2^4} (N/V)^{1/4} m/h^2 - (64\pi^4/9) V m^3 k^2 T^2/Nh^6 \}$$

¹ The Pauli-Bloch formula is derived as follows: The Fermi-Dirac distribution law is

$$n_i = \frac{1}{e^{\beta + \frac{\epsilon_i}{NkT}} + 1}$$

with $\epsilon_1 = \epsilon_1 + \epsilon_m$, where ϵ_i is the translational and ϵ_m the magnetic energy of an electron in a magnetic field, H. In terms of the quantum numbers $n_1, n_2, n_3, m_1, j, l, s$, and the weight factor

$$g = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2i(j+1)}$$

we have

$$\epsilon_t = \frac{h^2}{8m} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2} \right),$$

abc = V, the volume; $\epsilon_m = -m_j g \mu_0 II$. The magnetic moment, M, of the system of electrons will be

$$MH = -\sum_{m=-j}^{+j} n_m \epsilon_m = -\frac{4\pi m V}{h^3} \sqrt{2m} (kT)^{\frac{3}{2}} \sum_{m=-j}^{+j} \epsilon_m \int_{\Gamma}^{\infty} \frac{x^{\frac{1}{2}} dx}{e^{\beta + x + \frac{1}{4m/kT}} + 1}$$

With $j=s=\frac{1}{2}$, l=0, g=2. $\kappa=I/H=M/HV$, we get, after an approximate evaluation of the integrals, the Pauli-Bloch relations. m = mass of the electron.

² The second term on the right containing T^2 is usually very small. For an electron gas $\kappa = 2.20 \times 10^{-14} (N/V)^{\frac{1}{2}} - 1.03 \times 10^{7} (V/N) T^2$; and, since N/V = 2.6 \times 10²² for metallic sodium, $\kappa = 6.6 \times 10^{-7} - 3.9 \times 10^{-16}T^2$. That is, κ is pracAt high temp..... $\kappa = N\mu_0^2/VkT$

Electrons in a periodic field:

At low temp.... $\kappa = K_2 \mu_0^2 N / V \beta$ $K_2 \cong 1$;

β = exchange energy of electron going from one potential hole to a neighboring one.

At high temp..... $\kappa = N\mu_0^2/VkT$

The equations may be otherwise stated in the following manner: At low temperatures and high concentrations, all of the lowest states in which the electrons can exist are filled, and in these states the electrons are paired. Only the relatively small number in the higher states are unpaired and able to contribute to the magnetic susceptibility, that is, able to orient themselves in a magnetic field. At high temperatures or low concentrations, respectively, more electrons can be in the higher states, or there are not enough electrons altogether to fill all available states. The concentration of electrons (one electron per atom is regarded as free) in metallic sodium is about 42 moles per liter, while concentrations of sodium in liquid ammonia as low as 0.0022 moles per liter can be studied as to their magnetic properties, a decrease of 20,000 fold. The theory does not give quantitative agreement with the observed susceptibility even in the case of the alkali metals, but it does explain the essential features of the phenomena, namely, that the paramagnetism is small and nearly independent of the temperature. Observed and calculated values are shown in the following table [Klemn and Hauschulz, Z. Electrochem., 45, 346 (1939)]. The value for a concentrated solution of sodium in liquid ammonia is given also [Huster, Ann. Physik., 33, 477 (1938)]; the agreement between experiment and theory is as satisfactory as for the pure metals.

tically independent of temperature. For most metals and solutions of metals in liquid ammonia, $N/V=10^{22}$ to 10^{16} ; only in the latter case does the second term become important.

The κ is the volume susceptibility; χ_m , the molal susceptibility, is the molar volume times κ . Substituting in the low-temperature expression for κ and omitting the small second term, we get

 $\chi_m = 1.86 \times 10^{-6} V^{\frac{2}{3}}$

where V is the volume available to one mole of electrons. This is the paramagnetic susceptibility. Lande [Z. Physik, 64, 629 (1930)] has shown that free electrons should exhibit a diamagnetism equal to one-third the paramagnetism. The resultant molal susceptibility is then

 $\chi_m = 1.25 \times 10^{-6} V^{\frac{9}{6}}$

This is the formula used to calculate the χ_m (calc.) in Table 35.

Electron Gas Diamagnetic Metal χ_m (obs.) $\times 10^6$ Correction for Cation χ_m (obs.) $\times 10^6$ χ_m (calc.) $\times 10^{6*}$ Li 5 -126 2 7 Na.... 15 -6 21 10 21 . -1536 16 19.5 -22 41.519 Cs..... 30 -35 65 22 Na in liq. NII. (sat. soln.). 80 43

Table 35 THE MOLAL SUSCEPTIBILITIES OF THE ALKALI METALS

Careful measurements on solutions of sodium in ammonia have been made by Huster [Ann. Physik, 33, 477 (1938)] and on potassium in ammonia by Simon Freed and Nathan Sugarman [Sugarman, Ph. D. Thesis, University of Chicago, 1941]. The essential results of the two investigations were the same; the more accurate work of Freed and Sugerman is shown in Fig. 26 and Table 36. Potassium solutions have

Table 36 THE MOLAL SUSCEPTIBILITY OF POTASSIUM IN LIQUID AMMONIA

At -33°C		At -5	3°C
Normality	$\chi_m \times 10^6$	Normality	$\chi_m \times 10^6$
0.00341 .00384 00406 .00481 .00812 .00960 .03180	1268 1180 1240 1180 974 853 402.	0.00354 .00422 .00501 .00844 .0331	809 790 834 488 232

an advantage over sodium solutions in that the susceptibility is greater at a given concentration:

In Fig. 26 is shown also the susceptibility of an ideal electron gas; the values were calculated by Freed and Sugarman using the results of a numerical integration of the Fermi integral [Mott, Proc. Camb. Phil. Soc.,

^{*} Allowing for the Lande diamagnetism; see footnote on p. 142.

32, 108 (1936)]. The Lande diamagnetism [Lande, Z. Physik, 64, 629 (1930)] was omitted. It is seen that the two curves do not agree either quantitatively or qualitatively; the temperature coefficient predicted by the electron gas theory even has the wrong sign According to the Lande theory, the maximum molal susceptibility for free electrons would correspond to a magnetic moment of only two-thirds of a Bohr magneton per electron, owing to induced diamagnetism cancelling one-

Fig. 26. The Molal Susceptibility of Potassium in Liquid Ammonia. Circles are experimental points; the solid curves give the calculated values for a free electron gas obeying the Fermi-Dirac statistics. The arrow marked I represents the limiting paramagnetic susceptibility $(N^2\mu^2/RT)$ of a mole of free electrons, and the arrow marked $\frac{1}{2}$ represents the limiting values $(\frac{3}{2}N^2\mu_0^2/RT)$ for the electrons after the Landau diamagnetism is subtracted; $T = 240^\circ$ K.

third of the normal paramagnetism. It is especially important that experimental points were obtained above the two-thirds value.

Similar results were obtained on solutions of sodium. Huster explained his data by assuming the existence of Na_2 molecules in the solution. A similar explanation may be used for potassium; the greater accuracy of the results allows equilibrium constants to be calculated for the reaction $K_2 = 2K^+ + 2E^-$. Constants calculated by using either the Fermi-Dirac statistics or the classical statistics for the electrons are found to be equally satisfactory [Sugarman, personal communication]. It seems, therefore, that the early hopes of obtaining experimental

evidence about an electron gas from metals-in-ammonia solutions are not to be fulfilled.

Further evidence as to the condition of the electrons in ammonia solution comes from photoelectric measurements on sodium-in-ammonia solutions [Häsing, Ann. Physik, 37, 509 (1940)]. It is found that the spectral distribution of the quantum yield for concentrated solutions is similar to that for the solid alkali metals. The curve for the blue dilute solutions, however, is different, and large quantum yields are evidence for a volume effect. These facts indicate a different energy distribution for the electrons in the dilute solutions and support the theory that the

Fig. 27. The Density and Volume Change for Solutions of Sodium in Liquid Ammonia at -33.8° C. The increase in volume is the increase above the sum of the two components.

majority of the electrons, at least, are bound to some center, such as an ammonia molecule. The optical evidence is thus consistently against free electrons, as neither quantum mechanics nor classical optical theory can explain the observed absorption of light on the basis of free electrons.

Although no completely satisfactory theory can yet be given, the situation may be summarized as follows: All evidence shows that the concentrated metal-in-ammonia solutions behave essentially as a metal. dilute solutions it is probable from magnetic evidence that an equilibrium, $M_2 = 2M^+ + 2E^-$, exists. The optical evidence indicates that the electrons are solvated, although it is difficult to explain the high conductivities with this assumption. Cell measurements show that the mobility of the negative particle is very much greater than that of the positive particle. The explanation of the exact state of the electrons in the metal-in-ammonia solutions still remains an unsolved problem.

The metal-in-ammonia solutions show rather abnormal behavior with respect to other than electrical properties. For example, the volume of the solutions is greater than the sum of the volumes of the sodium and ammonia composing them; this behavior is shown in Fig. 27 [Kraus, Carney, and Johnson, J. Am. Chem. Soc., 49, 2206 (1927)]. Ordinarily the volumes of the constituent substances are greater than the volume of the solution. It is to be noted also that the volume change goes through a maximum.

The solubilities of the alkali metals in liquid ammonia do not change rapidly with the temperature, thus indicating that the heat of solution to form saturated solutions is not very great. This behavior has been regarded by some as evidence for the assumption that the solutions are colloidal in nature. Attempts have also been made to explain the absorption spectrum on that assumption [Kruger, Ann. Physik, 33, 265 (1938)], but the evidence for a colloidal solution does not appear to deserve serious consideration [Freed and Thode, J. Chem. Phys., 7, 85 (1939)]. The solubility data are presented in Table 37.

TABLE 37
SOLUBILITIES OF THE ALKALI METALS IN LIQUID AMMONIA
(The solubilities are in moles NII₃/mole alkah metal.)
Lithium^a

t(°C)	Solubility	Vapor pr	ess. (mm)
$0 \\ -33.2 \\ -63.5$	3 60 3 75 3.81	3	0 3.4 1
Sod	ium ^b	Potas	sium ^c
t(°C')	Solubility	t(°C)	Solubility
0 -33.8 -50 -70 -105	5.79 5.48 5.39 5.20 4.98	0 -33.5 -50	4.68 4.95 5.05

^a Johnson and Piskur, J. Phys. Chem., 37, 93 (1933).

Extensive reviews on the solutions of metals in liquid ammonia have been published by Kraus [The Properties of Electrically Conducting

^b Ruff and Geisel, Ber., 39, 831 (1906).

^c Johnson and Meyer, J. Am. Chem. Soc., 54, 3621 (1932).

Systems, Chap. XIV, Chemical Catalog Co., New York, 1922], by Johnson and Meyer [Chem. Rev., 8, 273 (1931)], and by Fernelius and Watt [Chem. Rev., 20, 195 (1937)].

The alkali metals also dissolve in methyl amine, but to a much smaller extent than in ammonia. In that solvent, the equivalent conductance goes through a minimum just as when the solvent is liquid ammonia; the equivalent conductance is much lower and the positions of the minima are not the same as in the ammonia system, however [Gibson and Phipps, J. Am. Chem. Soc., 48, 312 (1926)].

It has already been stated that the residue that remains on distillation of the metal-in-ammonia solutions consists of the original metal. The alkaline earth metals show a somewhat different behavior in that the residue may consist of a pure type of coordination compound. calcium, strontium, and barium form the coordination compounds Ca(NH₃)₆, Sr(NH₃)₆, and Ba(NH₃)₆, respectively, at about -33° Biltz and Huttig, Z. anorg. Chem., 114, 241 (1920)]. These substances have the properties of metals in appearance and in being good electrical They are not extremely stable, since at higher temperatures the equilibrium pressure of ammonia is sufficient to permit its complete removal. Lithium is intermediate in properties between the other alkali metals and the alkaline earth metals. It is probable that it forms the compound Li(NH₃)₄, although it is very unstable. The density of a saturated lithium-in-ammonia solution at 19° is only 0.477 g/ml. making it the lightest known liquid at room temperature. The solution (or compound, Li(NH₃)₄) has a melting point of $-181 \pm 3^{\circ}$, and the equilibrium pressure of ammonia does not reach one atmosphere until about 70° [Jaffe, Z. Physik, 93, 741 (1935)]. Measurements by Jaffe of the Hall effect proved that the saturated solution corresponded to the solid alkali metal in showing one free electron per lithium atom.

Table 38 THE MOLAL SUSCEPTIBILITIES OF CALCIUM AND BARIUM IN LIQUID AMMONIA

Calcium				Barium		
-33°		- 53°)	-33°		
Normality (g atom Ca/l soln.)	$\chi_m \times 10^6$	Normality (g atom Ca/l soln.)	$\chi_m \times 10^6$	Normality (g atom Ba/l soln.)	x _m × 10 ⁶	
0 00489 02006	1140 938	0.00510 0209	978 271	0 00206	2280	

Magnetic measurements on solutions of calcium and barium in liquid ammonia reveal a striking difference. The molal susceptibility of barium is that expected on the basis of two electrons per atom, whereas the susceptibility of calcium is much lower and may possibly be explained on the basis of one free electron per atom and an assumed coupling of the Ca^+ ions to give Ca_2^{++} . The measured susceptibilities are shown in Table 38 [Nathan Sugarman, Ph. D. Thesis, University of Chicago, 1941].

It is interesting to note a remark by Gibson and Argo [J. Am. Chem. Soc., 40, 1327 (1918)] that the spectrum of calcium appears to be different in type from the spectra of the alkali metals. No magnetic measurements above the spectra of the spect

Fig. 28. The Equivalent Conductance of Potassium Nitrate in Liquid Ammonia and in Water. V = liters solvent/equivalent of solute dissolved. [The values for KNO₃ in liquid ammonia are from Kraus, Am. Chem. J., 23, 277 (1900); see also Kraus, The Properties of Electrically Conducting Systems, Chemical Catalog Co., New York, 1922; and Johnson and Fernelius, J. Chem. Ed., 6, 27 (1929).]

Reactions in liquid ammonia solutions

lithium solutions.

The general nature of the solutions and reactions in liquid ammonia resembles in many respects that of water. Thus, ordinary salts such as NaCl and KNO₃ will ionize in liquid ammonia solution, yielding the same ions as the corresponding aqueous solutions; the equivalent conductances are quite comparable, as shown in Fig. 28. Metathetic reactions involving insoluble salts are also quite common; thus:

$$Tl^{+} + NO_{3}^{-} + Na^{+} + Cl^{-} = TlCl + Na^{+} + NO_{3}^{-}$$

That is, when liquid ammonia solutions of TlNO₃ and NaCl are mixed, a white precipitate of TlCl is formed. Owing presumably to complex formation, some salts are less soluble in liquid ammonia than in water; Ca(NH₃)₆Cl₂, Na(NH₃)₆Cl₂, Zn(NH₃)₆Cl₂, and Cd(NH₃)₆Cl₂, for example, are only slightly soluble in liquid ammonia but dissolve readily in water. On the other hand, silver iodide is very soluble in liquid ammonia but only slightly so in water. Salts of the alkali metals show, as in water, a moderate solubility in liquid ammonia. In order that the solubility relations may be rendered more definite, the following data [Linhard and Stephens, Z. phys. Chem., A 163, 185 (1933); Hunt, and

Hunt and Boncyk, J. Am. Chem. Soc., 54, 3509 (1932), 55, 3528 (1937)] are presented.

Inasmuch as very little work has been done on solubilities in liquid ammonia, the values in Table 39 must be regarded as provisional for the time being. They do give, doubtless, the order of magnitude, but the absolute values as well as the exact nature of the solid phase need to be

TABLE 39
THE SOLUBILITIES OF SALTS IN LIQUID AMMONIA

Solubility in NH ₃ at $-0.1 \pm 0.1^{\circ}$ (Moles of salt per 1000 g of NH ₃)				Solubility in H ₂ O at 0° (Moles of salt per 1000 g of H ₂ O)				
		Na	К				Na	К
Br 6 I 8		2.20 6.21 8.80 15.00	0.0177 2.26 11.06 1.04	Cl			6.10 7.71 10.72 8.62	3.76 4.49 7.72 1.30
Sol	ubili	ty in NI	H ₃ at 25°	(In g per 100	g of NH	.)		
NH ₄ Cl 102 5 NH ₄ Br 237 9 NH ₄ I 368.5 NH ₄ NO ₃ 390.0 NH ₄ ClO ₄ 137.93	Na Na Na Na Na	F Cl Br I NO ₃ NH ₂ CNS.	161.90 97 6 0.004	KBr 1 KI 18 KNO ₃ 1 KNII ₂ KCNO KCIO ₃ KBrO ₃ KIO ₄	3.50 2.0	AgB AgI.	lr	
Li ₂ SO ₄	0 (243.6	66 Ba	NO ₃) ₂	80.22 97.22 87.08				0.10 1.92
TlCl				0.02	60 moles	/100	0 g NH	[,

confirmed. In the case of the alkali salts, ammonium chloride, and thallous chloride, the solid phases are as given in the table, but definite information is lacking for the remainder of the substances listed.

In aqueous solutions, acids are characterized by the presence of hydrogen ion, H^+ , or H_3O^+ (hydronium ion). The corresponding ion in the liquid ammonia system is H^+ , or, in much greater concentrations.

NH₄⁺. When HCl or NH₄Cl is dissolved in liquid ammonia, it gives in that system an acid. Pure water ionizes into H⁺ and OH[−],

$$H_2O = H^+ + OH^-$$

 $2H_2O = H_3O^+ + OH^-$; $(H^+)(OH^-) = 10^{-14}$ at 25°C

Pure liquid ammonia ionizes as follows [Pleskov and Monoszon, *Acta Physicochim. U.S.S.R.*, **1**, 725 (1935)]:

$$NH_3 = H^+ + NH_2^-$$

or $2NH_3 = NH_4^+ + NH_2^-$; $(NH_4^+)(NH_2^-) = 1.9 \times 10^{-33}$ at -50° C

The ion analogous to the hydroxyl ion, OH^- , is therefore the amide ion, NH_2^- . Neutralization in the aqueous and liquid ammonia system is represented by the following equations:

$$H^{+} + OH^{-} = H_{2}O$$

 $NH_{4}^{+} + NH_{2}^{-} = 2NH_{3}$

and it is an experimental fact that when equivalent amounts of solutions of KNH₂ and NH₄Cl are mixed, the resulting solution contains principally K⁺ and Cl⁻ and only a very small amount of NH₄⁺ and NH₂⁻. Indeed, the end point of the neutralization can be determined by means of some common indicator such as phenolphthalein. This indicator is colorless in neutral or acid (NH₄⁺) solutions and pink in basic (NH₂⁻) solutions.

In spite of the fact that the ionization constant of liquid ammonia is very small, some salts will ammonolyze when dissolved in it. Thus, when PbI₂ or Pb(NO₃)₂ is dissolved in liquid ammonia, a cloudy solution results which will clear up on the addition of NH₄Cl [see, for example, Franklin, J. Am. Chem. Soc., 27, 820 (1905); Fernelius and Bowman, Chem. Rev., 26, 3 (1940)]. A number of elements show amphoteric behavior in liquid ammonia; thus, when a solution of KNH₂ is added to one of AgI or PbI₂, there is first formed a precipitate of AgNH₂ or PbNH (both of which are explosive):

$$Ag^{+} + NH_{2}^{-} = AgNH_{2}$$

 $Pb^{++} + 2NH_{2}^{-} = PbNH + NH_{3}$

Upon the addition of further KNH_2 solution, the precipitate redissolves. The reactions may be written:

$$AgNH_2 = HAgNH = H^+ + AgNH^-$$

 $PbNH = HPbN = H^+ + PbN^-$

Then,

or

$$HAgNH + NH_2^- = NH_3 + AgNH^-$$

$$HPbN + NH_2^- = NH_3 + PbN^-$$

That is to say, PbNH and AgNH2 behave both as acids and as bases (imides or amides). This sort of reaction is quite common in the aqueous system, such substances as bivalent lead, aluminum, gallium, zinc, and others being amphoteric; with excess base, they form plumbites, aluminites, and so on. In the aqueous system, compounds of the type Al(OH)₃. H₃AlO₂, and Al₂O₃ are possible; in the liquid ammonia system a larger number of analogous compounds exist owing to the circumstance that the ammonia molecule has three replaceable hydrogen atoms, whereas water has only two.

The analogy can be carried still further into the realm of organic chemistry. Thus.

> C₂H₅OH Alcohol C2H5NH2 Amine $(CH_3)_2O$ Ether $(CH_3)_2NH$ Dimethyl amine $(CH_3)_3N$ Trimethyl amine

In fact, it is possible to obtain the organic amines by the simple process of heating together in the presence of a catalyst an alcohol and ammonia.

A number of organic and inorganic compounds of a more complicated nature may be regarded as having analogues in the water and aqueous system. Thus HN₃ is regarded as the ammonia-system analogue of the aqueous acid HNO3; hydrazine, N2H4, might be regarded as the analogue of hydrogen peroxide, H₂O₂, and Na₂CN₂ as that of Na₂CO₃. It must not be forgotten, however, that an analogue is only an analogue and that, while helpful as an aid to the memory and for purposes of classification, it proves nothing.

Oxidation-reduction reactions are fairly common in liquid ammonia solutions. As might be supposed, the metal-in-ammonia solutions are excellent reducing agents [Fernelius and Watt, Chem. Rev., 20, 195 (1937); Kraus, ibid., 26, 95 (1940)]. In such solutions may be dissolved S, Se, Te, Sn, Pb, and other elements with the formation of a variety of -ide salts. Thus, the reaction

$$4Na (in NH_3) + Pb = Na_4Pb$$

leads to a white precipitate of Na₄Pb. On the addition of further lead, polyplumbides are formed which are soluble and give green-colored solutions:

$$Na_4Pb + 8Pb(s) = Na_4Pb_9$$

It has been shown [see Kraus, Chem. Rev., 8, 251 (1931)] that on the electrolysis of a solution of Na₄Pb₉ between lead electrodes, 2½ atoms of lead are dissolved at the cathode and the same number precipitated on the anode for each equivalent of electricity passed through the solution. This compound undergoes a remarkable reaction when a solution of it in

liquid ammonia is mixed with one of lead nitrate in the same solvent; metallic lead precipitates, leaving sodium nitrate in the solution.

Sulfur, selenium, tellurium, and tin are reduced to simple -ide and poly -ide salts by metal-in-ammonia solutions. In general the normal salt. for example. Na₂Te or Na₄Sn, is formed at first and is colorless and On the addition of further solid oxidizing agent, S. Se. Te. or Sn, the soluble poly-ide salts form, and their solutions show very beautiful colors and color changes as the solids are added. Thus, when solid tellurium is slowly added to sodium-in-ammonia, a white precipitate of Na₂Te forms until all of the sodium has been oxidized; further addition of tellurium results in solutions which are at first green, then yellow-green. vellow, violet-purple, and eventually red when enough has been added to form Na₂Te₄. Tin forms Na₄Sn and, eventually, a bright-red solution of the composition Na₄Sn₈. These experiments are easy to carry out and may be used for lecture demonstrations. It will be recalled that the solution of sulfur in aqueous solutions of sodium sulfide gives the same general type of compound as those just mentioned. It must also be pointed out that the intermetallic -ide compounds may be obtained by melting metallic sodium and the other metal together. The solutionin-ammonia method is in some respects easier and more instructive.

A convenient method for the preparation of some oxides of the alkali metals is the reaction of the metal-in-ammonia with oxygen. Rapid oxidation at -50° of sodium gives Na_2O_2 ; that of potassium gives quantitative yields of K_2O_2 or KO_2 , depending upon how long the reaction is allowed to proceed [Kraus and Whyte, J. Am. Chem. Soc., 48, 1781 (1926); Kraus and Parmenter, *ibid.*, 56, 2384 (1934)]. At higher temperatures, the oxides react with ammonia to give the hydroxide, amide, and nitrite. The carbonyls of the alkali and alkaline earth metals, for example, NaCO and $Ca(CO)_2$, are prepared by passing CO through the metal-in-ammonia solution at -50° [Joannis, Ann. chim. phys., [8] 7, 107 (1906); Pearson, Nature, 131, 166 (1933)]. These carbonyls are white powders which give violent reactions with air and water and decompose explosively on heating:

$$4\text{LiCO} = \text{Li}_2\text{CO}_3 + \text{Li}_2\text{O} + 3\text{C}$$

With carbon dioxide, sodium-in-ammonia at -50° forms H_2NCO_2Na and hydrogen [Rengade, Compt. rend., 138, 629 (1904)]. Nitrosyl compounds NaNO and Ba(NO)₂ are formed by the reaction of the metal and NO [Mentrel, Compt. rend., 135, 740 (1902); Zintl and Harder, Ber., 66, 760 (1933)]. The sodium compound is distinct from the hyponitrite, $Na_2N_2O_2$.

Liquid ammonia is not a good solvent for oxidation reactions, as the common oxidizing agents are much less powerful in it than in aqueous solutions. The halogen elements are unstable in ammonia. Nitric and sulfuric acids form ammonium salts which have little or no oxidizing power. Alkali metal permanganates and chromates are soluble and act as rather weak oxidizing agents. An example of an oxidation-reduction reaction is

$$3KNH_2 + 3KNO_3 = 3KOH + N_2 + NH_3 + 3KNO_2$$

This reaction proceeds at a measurable rate at room temperature if a catalyst such as ferric or cobaltic oxide is present [Bergstrom, J. Am. Chem. Soc., 62, 2381 (1940)]. The further reaction.

$$KNO_2 + KNH_2 = 2KOH + N_2$$

proceeds at an extremely slow rate. No azide is formed, although KN₃ may be prepared in 75% yields by the reaction

$$KNO_3 + 3KNH_2 = 3KOH + KN_3 + NH_3$$

if the solid salts are heated together in a glass tube at 100-130° [Franklin. J. Am. Chem. Soc., 56, 568 (1934)].

A number of replacement reactions have been studied by Bergstrom [J. Am. Chem. Soc., 50, 652 (1928) et ante]. Some of the reactions are noteworthy because a more noble metal can sometimes be made of replace sodium, the reason for the reversal being due to the formation to very insoluble salts of the noble metal. For example:

$$\begin{array}{c} Mg + 2Na^{+} + 2I^{-} = \underline{MgI_{2}} + 2Na \text{ (in NH}_{3}) \\ Al + 3Na^{+} + 3NH_{2}^{-} = \overline{Al(NH_{2})_{3}} + 3Na \text{ (in NH}_{3}) \\ K \text{ (in NH}_{3}) + Na^{+} + Cl^{-} = \overline{KCl} + Na \text{ (in NH}_{3}) \end{array}$$

The electromotive series in liquid ammonia solutions has not received a great deal of attention. of them have not been free from boundary or liquid-junction potentials of unknown magnitudes. From the existing measurements. the following few members of the electromotive series have been established [Pleskov and Monoszon, Acta Physicochim. U.S.S.R., 2, 615 (1935)]. The values are all referred to the normal hydrogen electrode potential in the aqueous system as zero. For purposes of comparison, the corresponding

Table 40 cells have been measured, but all ELECTROMOTIVE SERIES IN LIQUID AMMONIA SOLUTION AND WATER AT 20°

Couple	E° in NH; (1)	E° in H₂O			
K, K ⁺ Na, Na ⁺ Zn, Zn ⁺⁺ Cd, Cd ⁺⁺ Pb, Pb ⁺⁺ H ₂ , H ⁺ Cu, Cu ⁺⁺ Hg, Hg ⁺⁺ Ag, Ag ⁺	2.73 volts 2.59 1.27 0.93 0.42 0.75 0.32 0.00 -0.08	2.92 volts 2.71 0.76 0.40 0.13 0.00 -0.35 -0.79 -0.81			

normal electrode potentials in the aqueous system are included in the

table [Cappe and Watt, J. Chem. Ed., 13, 231 (1936)]. It is evident from the table that in the ammonia system the alkali metals are not such effective reducing agents as they are in the aqueous system.

Two cells free from liquid junctions have been carefully measured, namely, those for which the cell reactions are [Elliott and Yost, J. Am. Chem. Soc., 56, 1057 (1934); Garner, Green, and Yost, ibid., 57, 2055 (1935)]:

$$Zn(s) + 2TlCl(s) + 10NH_3(l) = 2Tl(s) + ZnCl_2 \cdot 10NH_3(s)$$
 $(E^{\circ} = 0.8293 \text{ volts})$
 $Zn(s) + Cd(NH_3)_6Cl_2(s) = Zn(NH_3)_6Cl_2(s) + Cd(s)$
 $(E^{\circ} = 0.3605 \text{ volts})$

Unfortunately the compounds involved in these cells are insoluble in liquid ammonia; hence no notion of the normal potentials can be obtained from these measurements. The cell measurements did prove very useful, however, in evaluating the thermodynamic constants of the solid compounds.

The reduction of organic and organic-like substances can sometimes be carried out very effectively in the metal-in-ammonia solutions. This field of investigation appears to have considerable promise in connection with practical applications. The following reactions are representative [see Fernelius and Watt, Chem. Rev., 20, 195 (1937); Fernelius and Bowman, ibid., 26, 13 (1940)]:

```
RCl + 2Na \text{ (in NH}_3) = NaCl + RH + NaNH}_2

2RCl + 2Na \text{ (in NH}_3) = 2NaCl + RH + RNH}_2

GeH_4 + Na \text{ (in NH}_3) = Na^+ + GeH_3^- + \frac{1}{2}H_2

Na^+ + GeH_3^- + C_2H_5Br = Na^+ + Br^- + C_2H_5GeH_3
```

CHAPTER 5

Phosphorus Phosphorus Sulfides

Phosphorus

Preparation

Phosphorus does not occur in the elementary form in nature, and the reduction of its naturally occurring salts requires both a strong reducing agent and high temperatures. The most important sources of this element are the so-called phosphate rocks; the compounds in these rocks that are of principal importance are normal calcium phosphate. Ca₃(PO₄)₂. and mixed phosphates, for example, apatite, CaF2·3Ca3(PO4)2. The phosphate minerals are divided into two classes according to the ease with which they are decomposed by sulfuric acid, the difficultly decomposable ones being known as "hard phosphates" and the others as "soft phosphates." The coprolites and Charleston phosphates are "soft" calcium phosphates, whereas Redonda phosphate (AlPO4) and vivianite (Fe₃(PO₄)₂·8H₂O) are "hard." It should be remarked that there is a large variety of phosphorus-containing minerals, but calcium phosphate and the apatites are at present by far the most important sources of manufactured phosphorus and phosphoric acid. Calcined bones of animals constituted at one time an important source of phosphorus, since they consist principally of "soft" calcium phosphate, but this source no longer suffices for our demands. Fresh bones contain about 58 per cent of normal calcium phosphate.1

Phosphorus is ordinarily recovered from minerals in two different ways. In the first, calcium phosphate is digested with sulfuric acid (specific gravity, 1.5), when the reaction

$$Ca_3(PO_4)_2(s) + 3H_2SO_4 = 3CaSO_4(s) + 2H_3PO_4$$

¹ In the order of abundance of the elements in the earth's crust (including the atmosphere), phosphorus stands twelfth and is present there to the extent of 0.142 per cent (O, 49.19; Cl, 0.228; P, 0.142; C, 0.139 per cent). Many living things require phosphorus for their existence, and the cycle of its utilization is as important as that of nitrogen. The steps in the cycle are, briefly, absorption of soluble phosphates by plants, conversion of the phosphorus-containing plant substances by animals, return of the phosphorus compounds to the soil, and finally, when necessary, conversion by decomposition to soluble phosphates.

takes place almost completely because of the fact that phosphoric acid is much weaker than sulfuric acid, and the calcium sulfate formed is insoluble in the resulting mixture. The crude phosphoric acid so formed is filtered and then heated with high-pressure steam in coils, the resulting evaporation leading to an acid of from 1.325 to 1.500 specific gravity. This is further purified and sold as such, or is converted to ammonium phosphate; or it may be strongly heated (1050 to 1170°) in a furnace with charcoal, coke, or sawdust and reduced to elementary phosphorus. The effect of the strong heating is twofold: first, it leads to the conversion of the normal or orthophosphoric acid, $(HPO_3)_n$; second, it causes the reduction of the $(HPO_3)_n$ to P by carbon to take place. The acid method of phosphorus recovery has now given way to the electrical arc furnace process.

In the electrical process, the ground phosphate mineral, calcium phosphate, or apatite, is mixed with coke, C, and silica, SiO₂, and the mixture is placed directly in a furnace heated by means of an electric arc between carbon electrodes. The primary purpose of the arc is to supply heat to raise the temperature of the mixture. The reduction reaction begins at about 1150° and is complete at 1450°. Two steps are involved in the reduction, namely,

$$Ca_3(PO_4)_2(s) + 3SiO_2(s) = 3CaSiO_3(s) + P_2O_5(g)$$

and

$$P_2O_5(g) + 5C(s) = 5CO(g) + 2P(g)$$

Calcium silicate and silica are removed at the bottom of the furnace as a molten slag.

More recent developments of the high-temperature method involve oil burner heating, omission of the silica, and the oxidation of the phosphorus vapors by air to P₂O₅. The fine particles (smoke) of P₂O₅ are not rapidly absorbed by water, but they may be readily precipitated electrically by the Cottrell process and then converted to phosphoric acid or ammonium phosphate without difficulty [Jacob, Trans. Am. Electrochem. Soc., 48, 277 (1925)]. The oil-heated furnace operates at 1200–1300°. The omission of the silica obviates slag formation with its attendant heat losses and difficulty of removal. The main reactions are

$$Ca_3(PO_4)_2(s) + 5C(s) = 3CaO(s) + 2P(g) + 5CO(g)$$

and

$$2P(g) + {}_{2}^{5}O_{2}(g) = P_{2}O_{5}(g)$$

No thorough investigation of the equilibrium states of the first reaction appears to have been made.

When phosphorus is recovered in its elementary form by the above reduction methods, the vapors from the furnace are condensed to the liquid state under water. The subsequent treatments to purify it must also be carried out under water in order to avoid rapid oxidation by the air. Pure phosphorus is obtained by fractional distillation in a vacuum or in an atmosphere of nitrogen, or through fractional crystallization from one of the several solvents in which the element is soluble. The form recovered from the furnace and collected under water is known as white or yellow phosphorus, the two colors referring to the same allotropic modification. It is only this form that is appreciably soluble in carbon bisulfide, benzene, ether, and other organic solvents.

Modifications of solid phosphorus

There are several allotropic modifications of elementary phosphorus of which the following have been studied most extensively.

- 1. White or yellow phosphorus. The α or common form of white phosphorus is obtained by the condensation of phosphorus vapors. It is purchasable as soft, yellowish sticks; but when crystallized from solutions or from its vapors, it forms beautiful, transparent crystals of the cubic family. It melts at 44.1°, boils at 280.5°, and reacts readily and sometimes violently with O_2 . It is soluble in carbon bisulfide, ether, benzene, and other organic solvents. The β or low-temperature form results when white phosphorus is cooled to the transition temperature, -76.9° . It has much the same general appearance as the α form, but its crystals belong to the hexagonal family.
- 2. Red or violet phosphorus. Red phosphorus results when the molten white modification is heated at from 240 to 250° or is exposed to the action of light or X-rays. It is red in color, it is not oxidized at room temperature by O₂, and it is not appreciably soluble in any known solvent Crystals of P (red) are very small.
 - Violet or Hittorf phosphorus is obtained as small, violet, monoclinic crystals when a solution of elementary phosphorus in molten lead is cooled. It is believed that the red and violet modifications differ only in their particle or crystal sizes, the crystals of the violet form being larger than those of the red variety.
- 3. Black phosphorus. Black phosphorus is formed when white phosphorus at 220° is subjected to a pressure of 1200 kg/cm². It resembles graphite in appearance, is a conductor of electricity (0.711 ohms/cm cube at 0°, graphite 0.0008 ohms/cm cube, tellurium 0.2 ohms/cm cube), and it is somewhat less reactive toward solvents and oxidizing agents than is red or violet phosphorus.

In the following table are assembled, for comparison, some of the more common physical properties of the five best-understood modifications of solid phosphorus.

In addition to these rather definite allotropic modifications, others have been reported from time to time, but for the most part these have

	TAI	BLE	41
SOLID	FORMS	OF	PHOSPHORUS

Color	Density	M.P. (°C)	B.P. (°C)	Inflamma- bility	Solubility
White α	1.88 2.34	44.1 ~ 593 ≈ 620	280.5 	Very high High High Low	Sol. in organic solvents Insoluble Insoluble Insoluble

not been investigated thoroughly enough to permit very definite statements. For example, a black, noncrystalline variety is formed at high pressures but at lower temperatures than those employed to prepare the

Fig. 29. The Pressure-temperature Diagram for Phosphorus. When white phosphorus is subjected to pressures and temperatures of region I, transition to black noncrystalline phosphorus takes place. Under the conditions of region II or III, the transition is to black crystalline phosphorus; the transition is instantaneous in region III and delayed in region II.

crystalline black form (see Fig. 29). The noncrystalline form goes over into the violet modification on long heating at 125° [Jacobs, J. Chem. Phys., 5, 945 (1937)].

For thermodynamic purposes, white phosphorus is frequently taken as a standard modification, Latimer [Oxidation Potentials] has chosen the red variety for this purpose inasmuch as it is certainly more stable than the white form at room temperature. The black form may be the most stable of all, but this is not absolutely certain. Of interest in this connection is the heat evolved per atomic weight of phosphorus when the various modifications react with bromine in carbon disulfide solution to form solutions of PBr₃. The results shown in the following table were obtained under identical conditions of temperature, amounts, and concentrations [Jacobs. loc.

These results do not prove the black to be more stable than the white or red modifications at room temperature, but they make it appear likely. Entropy measurements would settle this point.

White phosphorus

White phosphorus is characterized by the ease with which it inflames in air or oxygen, by its white or yellowish color and softness, 0.5 (dia-

mond is 10, lead 1.5, silver chloride 1.3, and metallic sodium 0.4), and by its low melting point and the ease with which it supercools. The liquid is clear and colorless if the white phosphorus melted is pure and is protected from excessive light. X-ray diffraction studies show the liquid to contain the element as P_4 molecules; these molecules are tetrahedral with a P-P distance of 2.25 Å [Thomas and Gingrich, J. Chem. Phys., 6, 659 (1938)].

Table 42
HEATS OF REACTION OF SOLID PHOSPHORUS WITH BROMINE IN CS₂
SOLUTION

Modification	Heat of Reaction (cal/at. wt. P)
Black (cryst.)	
atm)	
Black (noncryst.)	44,084
White	(59,500)

The following table contains selected values of the physical properties of solid and liquid white phosphorus [see, for vapor pressures, MacRae and Van Voorhis, J. Am. Chem. Soc., 43, 547 (1921); Centnerszwer, Z. phys. Chem., 85, 99 (1913); for energy changes, Bichowsky and Rossini, Thermochemistry; Anderson and Yost, J. Chem. Phys., 4, 529 (1936); for pressure-m.p. and P-Trans. data, Tammann, Wied. Ann., 66, 492 (1898); Bridgman, J. Am. Chem. Soc., 36, 1344 (1914); for X-ray structures, Hultgren, Gingrich, and Warren, J. Chem. Phys., 3, 351 (1935); and for heat capacities, Young and Hildebrand, J. Am. Chem. Soc., 64, 839 (1942)].

TABLE 43
PHYSICAL PROPERTIES OF WHITE PHOSPHORUS
Density

Temperature (°C)	Density (Solid and Liquid)
0	1.83676(s)
20	1.82321(s)
35	1.763(l)
44.4	1.74529(l)
100	1.69490(l)

Surface tension, liquid: 43.09 dynes/cm at 78.3°, 35.56 at 132.1°. Compressibility of solid at 20° and 100-500 atm: $1/v(\partial v/\partial p)_T = 1.99 \times 10^{-5} \, (\text{kg/cm}^2)^{-1}$. Index of refraction: 1.8244 for D line at 29.2°.

TABLE 43 (Cont.)

Vapor pressures:

Solid: $\log_{10} p_{mm} = -3297.1/T + 9.6511$. Liquid: $\log_{10} p_{mm} = -2757.5/T + 7.9515$ for range 50° to 150°.

Se	olid	Lie	quid
Temperature (°C)	Pressure (mm)	Temperature (°C)	Pressure (mm)
20 25 44.1	0.0253 .0426 .1810	20 50 150	0.035 .262 27.2

Melting point, $44.10 \pm 0.05^{\circ}$.

Boiling point, 280.5°.

Heat Capacity

 $C_{p(solid)} = 21.46 + 0.2872t$. $0^{\circ} < t < 44.1^{\circ}$ cal/deg per mole of P_4 . $C_{p(lgaud)} = 24.47 - 0.09521t - 0.00003927t^2$. $25^{\circ} < t < 97^{\circ}$ cal/deg per mole of P_4 .

 $P(s) = P(l), \quad \Delta H_{317.2} = 150.3 \text{ cal/g atom}$

 $4P(s) = P_4(g),$ $\Delta H = 13,200 \text{ cal/mole}$ $\Delta F_{298}^{\circ} = 5700 \text{ cal/mole}$

Entropy: $S_{298}^{\circ} P(s, w) = 10.1 \text{ cal/deg}$

Solubility

At room temp., grams in 100 g Solvent (approx.):

Ether	C_2H_6OH	Glycerol	Almond Oil
1.4	.8	.17	1.0

In CS₂, solubity S' in g/100 g solution:

In C₆H₆, solubility S in g/100 g solvent:

Temperature (°C)	S'	Temperature (°C)	S
-10 0 10	31.40 81.27 69.80	0 20 30 40	1.513 3.21 4.601 5.75
		81	10.027

Transition Temperatures, α to β Form, as a Function of Pressure

Pressure (kg/cm²)	Temperature (°C)	Δ <i>v</i> (cc/g)
1	-76.9	
6000	-2.4	0.00851
9000	32.7	.000772
12000	64.4	.00694

Tammann found the effect of pressure on the melting point, t_m in °C, of $P(\alpha)$ to be represented by $t_m = 43.93 + 0.0275P - 0.00000050P^2$,

when P is expressed in kg/cm². The effect of pressure on the melting point has also been determined by Bridgman [Phys. Rev., 3, 126 (1914)] with the results shown in the accompanying tabulation.

It has been shown by a number of investigators that, in all the solvents studied, dissolved white phosphorus has the molecular formula P₄; at least, this is

P (atm)	m.p. (°C)	Δυ (cc/kg)
1	44.2	19.3
1000	73.8	17.9
4000	151 3	14.2
6000	196.0	12 0

true for the not too concentrated solutions. The concentrated solutions in CS₂ may well contain more complicated molecules. White phosphorus also dissolves readily in SO₂(l) and NH₃(l).

Red (violet) and black phosphorus

When molten white phosphorus is heated to 240-250°, it goes over, at a slow or moderate rate, into ordinary solid, red phosphorus; indeed, the methods of manufacture make use of this reaction. Several hours, as high as fifty, are required for complete conversion. A number of substances act as a catalyst for the reaction, of which iodine may be mentioned as an effective one. Thus, with a trace of iodine present, the rate is slow at 100° and almost explosively violent at 200° [Brodie, J. Chem. Soc., 5, 289 (1853)]. The conversion of the white to the red form is also brought about slowly by light or X-rays. For the preparation of the red form in the pure state, it is necessary to remove the small amounts of white phosphorus that always remain, and this is accomplished by washing or digesting with carbon bisulfide or with lye (NaOH, sp. gr. 1.3). The former reagent acts simply to dissolve the white phosphorus, while the latter reacts with it to form phosphine, hypophosphite, and some hydrogen; the red form is not appreciably affected by either reagent.

Solutions of white phosphorus under the action of heat or light will deposit the red form, and the rate of the reaction depends upon the temperature and other factors. Of interest are the rate measurements made by Schenck with solutions of $P(\alpha)$ in PBr₃ at 184° [Ber., 36, 979, 4202 (1903); Z. Electrochem., 11, 117 (1905)]. He found that the rate of the reaction

$$P (in PBr_8) = P (red)$$

is first-order; that is,

$$-\frac{d[P \text{ (in PBr}_3)]}{dt} = k[P \text{ (in PBr}_3)]$$

 $k = 0.0078 \text{ min}^{-1} \text{ at } 184^{\circ} \text{ and } 0.0048 \text{ at } 172^{\circ}$

The mechanism of the reaction may be the following. If it is assumed that the red phosphorus contains more than 4 atoms in the molecule, that is, that it is highly polymerized, then the formation of these higher polymers may require P_2 molecules as an intermediate. Thus the slow first step may be $P_4 = 2P_2$; and this reaction, followed by a series of rapid steps, such as $P_4 + P_2 = P_6$, could lead to the formation of higher polymers. The addition of small amounts of iodine to the solutions catalyzes the reaction.

Violet phosphorus is obtained by heating phosphorus (3 g) with lead (200 g) at 800° in a sealed glass tube for about two days and then allowing the mixture to chill in a freezing mixture. Following this, the glass is removed and the lead is cleaned with hydrofluoric acid. Electrolysis in an acetic acid solution of lead acetate causes the metallic lead to dissolve without affecting the phosphorus, which remains as small violet crystals.

Red and violet phosphorus appear to differ only in crystal size. although the difference does lead to somewhat different physical properties that possibly are to be associated with rate rather than with equilibrium effects; thus, red phosphorus melts at from 592.5° to 610° and the violet form at about 620°. If the violet variety is heated in a closed capillary tube at 620°, it melts to a yellow liquid which begins to deposit red particles at 580° and becomes a solid red mass at 570°. The red modification when melted also yields a yellow liquid which on freezing produces a red solid. The fact that the red and violet forms melt at about the same temperature, and further, the fact that the X-ray pattern for the red, after some heat treatment, is the same as that for the violet form, make it appear probable that the two forms are essentially the same [Hultgren, Gingrich, and Warren, J. Chem. Phys., 3, 351 (1935)]. X-ray diffraction experiments with red phosphorus show that each atom has three nearest neighbors 2.29 Å away; the next nearest neighbors are 3.48 Å away [Thomas and Gingrich, J. Chem. Phys., 6, 659 (1938)].

Vapor pressure measurements made on the liquid obtained by melting the white form and on the solid red modification indicate that the pressures may be equal at 589.9°. That is to say, the true melting point

t (°C)	$P_{ m atm}$
308.5	0.07
346	.13
433.5	1.49
505	8.67
581	36.49
589.5	43 1

of the red variety may be 589.9° instead of 592.5°. Vapor pressure equilibrium is reached only very slowly if at all, however, with the solid red form [see Hittorf, *Phil. Mag.*, 31, 311 (1865); Stock and Bomolka, *Ber.*, 42, 4511 (1905)].

The vapor pressures of the solid violet form were determined by Smits and Bokhorst [Z. phys. Chem., 91, 249 (1916)]. Although equilibrium is very slow of attainment, the results in the accompanying tabulation may have some significance. The vapor

pressures of the supercooled and normal liquid from violet phosphorus were determined by the same authors with the results shown in the

second tabulation. Inspection of the log P, 1/T curves for the solid violet form and the liquid shows their pressures to be equal at about 589.5°, which is regarded as the triple point. This temperature is nearly the same as that found at the intersection of the P (red) -P (liquid) vapor-pressure curves.

The vapor pressures of red phosphorus have also been measured by a dynamic (rate of evaporation) method at low pressures, and very much lower values were obtained [Melville and

t (°C)	$P_{\mathtt{atm}}$
504 545 5 574 608	23.2 31.9 38.8 49.0
634	58 6
	l
ritical tama	- 605°

Critical temp. = 695° Critical press. = 82.2 atm

Gray, Trans. Faraday Soc., 32, 1026 (1936)]. The difference is believed to be due to the nature of the vapor, which consists at equilibrium of P_4 molecules in the static method, but of P_2 molecules in the dynamic method; that is, it is assumed that P_2 molecules are in rapid reversible equilibrium with the solid, but that the reaction $2P_2(g) = P_4(g)$ is slow

and that equilibrium is attained only in the long times involved in the use of the static method.

The liquid resulting from melting the violet form seems to be the same as that obtained from the white, since the following single equation will reproduce to within $\pm 5\%$ the vapor pressures of both liquids [MacRae and Van Voorhis, J. Am. Chem. Soc., 43, 547 (1921)] in those

parts of the range from 44° to 634°C, in which the liquid exists.

$$\log_{10} p_{\text{mm}} = -\frac{2898.1}{T} - 1.2566 \log_{10} T + 11.5694$$

It is not possible to make measurements over the whole range, since the molten white phosphorus goes over into the solid red form at 250°, and the red form does not melt until its temperature is about 600°.

From what has been said above concerning possible failure to establish vapor pressure equilibrium, the reader may gather that estimates of the heats of fusion and vaporization of the violet (red) form are not completely reliable. The values given are, for a temperature of 600°,

$$P \text{ (violet)} = P(l)$$
 $\Delta II = 15,600 \text{ cal}$
 $4P \text{ (violet)} = P_4(g)$ $\Delta II = 25,800 \text{ cal}$
 $4P(l) = P_4(g)$ $\Delta H = 10,200 \text{ cal}$

The difference in heat contents of the red and yellow forms at room temperature was determined by Giran [Ann. chim. phys., 30, 203 (1003); see also, Jacobs, J. Chem. Phys., 5, 945 (1937)], who determined the heat

of formation of PBr₃ in carbon disulfide solution using both $P(\alpha)$ and P (red). The result is

$$P(\alpha) = P \text{ (red)}, \quad \Delta H_{291} = -4,200 \text{ cal}$$

A determination of the entropies of the white and red (violet) forms over a range of temperatures would make possible the quantitative evaluation of the relative stabilities of the two modifications and possibly also the transition temperatures.

The compressibility of red phosphorus is $1/v(\partial v/\partial p)_T = 9.2 \times 10^{-6}$ (kg/cm²)⁻¹ at 20° and 100-500 atm.

Black phosphorus was discovered by Bridgman when he subjected the white form to a pressure of 12,000 kg/cm² at 200° [Bridgman, J. Am. Chem. Soc., 36, 1344 (1914)]. This new form, which resembles graphite in appearance and texture, is a conductor of electricity and is not quite as reactive toward oxidizing agents as the red variety. Unlike red phosphorus, it does not ignite when struck by a hammer. It may be ignited with a match, and it is attacked by cold, concentrated nitric acid. Sulfuric acid does not affect it, and carbon bisulfide does not dissolve it. When heated to about 550°, this black form changes to the red.

The vapor pressures of the crystalline black form are apparently lower than those of the red at some temperatures, according to the measurements of Smits and his coworkers [Smits, Meyer, and Beck, *Proc. Amsterdam Acad.*, **18**, 992 (1915)]:

t (°C)	Black Phosphorus	Red Phosphorus
515	8 5 atm (increasing)	10.5 atm
553	19.3 (increasing)	21.5
567	28.6 (constant)	28 5
578	39.5 (constant)	35.0

But, as these authors remark, in the range where the vapor pressures of P (black) are lower than those of P (red), equilibrium had not yet been attained. Whether or not equilibrium is near, it is impossible to say. The facts indicate but do not prove that the black form is more stable than the red at ordinary temperatures.

The crystal structure of black phosphorus has been shown by Hultgren and his coworkers [J. Chem. Phys., 3, 351 (1935)] to be one in which the crystal is built up of a succession of indented layers, each phosphorus atom in a layer being equidistant, 2.18 Å, from its three closest neighbors, with an average bond angle of 102°. The nearest approach of atoms in adjacent layers is 3.68 Å. From this fact one can consider each layer to consist of one giant molecule, the adjacent layers being bound together less strongly than neighboring rows of atoms in the same layer. It is noteworthy that the crystal structure of graphite has some features in common with that of P (black), which fact may be correlated with the similarity of texture (flakiness) of the two substances.

The electrical resistivity of black phosphorus is fairly high, 0.711 ohms/cm cube, and decreases with pressure. The temperature coefficient of resistance is also high and negative, namely,

$$\frac{1}{R}\frac{dR}{dT} = -0.0077/\text{deg}.$$

[Bridgman, Proc. Nat. Acad. Sci., 21, 109 (1935)].

A deep-red form of phosphorus has been mentioned [Birch; see Hultgren *et al.*, *loc. cit.*] as resulting when $P(\alpha)$ is subjected to a pressure of 8000 atm at 300°C. Unlike the black form, it is not flaky.

Phosphorus vapor

All of the early vapor-density measurements on phosphorus were in accord with the assumption of a tetratomic molecule, P4, and more recent studies confirm this for temperatures somewhat below 800°. At 800° and above, the dissociation of P₄ is appreciable. The vapor densities were thoroughly investigated by Preuner and Brockmöller [Z. phys. Chem., 81, 129 (1912)] over the temperature range 800-1200°. They made a large number of pressure-temperature measurements on samples of phosphorus enclosed in a quartz bulb equipped with a spiral-quartztube manometer, and concluded that the molecules P4, P2, and P were present at measurable pressures. Later, Stock, Gibson, and Stamm [Ber., 45, 3527 (1912)] made a similar study, and their results showed that the partial pressures of monatomic phosphorus were much too small to be observed even at 1200°. Recently Stevenson and Yost [J. Chem. Phys., 9, 403 (1941)] have evaluated the equilibrium constants for the reaction $P_2(g) = 2P(g)$ from spectroscopic data alone and have shown that the conclusions of Stock, Gibson, and Stamm are correct and that some interfering substances must have been present in the experiments of Preuner and Brockmöller.

The rotation-vibration spectrum of the P_2 molecule is observed in emission when an electrical discharge is passed through the vapor. This spectrum has been carefully analyzed by Herzberg [Ann. der Physik, 15, 677 (1932)] and by Ashley [Phys. Rev., 44, 919 (1933)]. The vibration levels for the ground electronic state are given in terms of the quantum number v by $\epsilon_{vvb.}/hc = 780.76(v + \frac{1}{2}) - 2.98(v + \frac{1}{2})^2$; and the dissociation energy, D_0 (or ΔH_0^0), for $P_2(g) = 2P(g)$ has been estimated to be 115,450 cal (5.008 electron volts per mole), with a reported error of $\pm \frac{1}{2}\%$. The phosphorus atoms resulting from the dissociation are in the $4S_{\frac{1}{2}}$ state, which is the lowest electronic energy state. The rotational lines of the

molecular spectrum show alternating intensities, the intensity ratio being 3:1, with the odd $(J=1, 3, 5 \cdots)$ levels the more intense. These facts show that the nuclear spin is $\frac{1}{2}$ and, further, that the phosphorus nucleus obeys the Fermi-Dirac distribution law and has therefore an odd number of neutrons and protons. This is in accord with the odd mass number 31 for the single known isotope of phosphorus. The numerical results of Ashley for the rotational constants are:

$$B_{\nu} = B_0 - \alpha v = \frac{h}{8\pi^2 cI}$$

 $B_0 = 0.30579 \pm 0.0006 \text{ cm}^{-1}$
 $\alpha = 0.00165 \pm 0.00003 \text{ cm}^{-1}$
 $r_0 = 1.88 \text{ Å}$ $I = 90.47 \times 10^{-40} \text{ g cm}^2$

where v is the vibrational quantum number.

From the observed energy levels, the partition function may be evaluated. It is defined as

$$Q = \sum_{n=0}^{\infty} \exp\left(-\frac{\epsilon_n}{kT}\right)$$

where ϵ_n is the energy of a single molecule in the *n*th quantum state; the summation is taken over all accessible quantum states, including translational states. The correlation of thermodynamics and statistical mechanics gives the following formula [see, for example, Tolman, *Statistical Mechanics*, Oxford University Press, 1938].

$$\Delta H_0^{\circ} = \Delta F^{\circ} - RT\Delta(\log_{e} N_0 - \log_{e} Q)$$

$$= -RT \log_{e} K - RT\Delta(\log_{e} N_0 - \log_{e} Q)$$
(N₀ is Avogadro's number.)

This expression may be used for the direct calculation of equilibrium constants if a spectroscopic value of ΔH_0° is available; or, conversely, ΔH_0° may be calculated from the experimentally measured equilibrium constants. ΔH_0° is independent of T, and its constancy for a series of temperatures is a test of the consistency of the experimental K and Q values; the test is not always sufficiently sensitive, but it is quite useful.

In Table 44 are presented the ΔH_0° values calculated by means of the above equation and the data of Preuner and Brockmöller. It is evident that neither is the ΔH_0° satisfactorily constant nor is it in agreement with the spectroscopically determined value, 115,450 cal/mole. Table 45 contains the values of K_{atm} calculated from spectroscopic data alone; it is believed that these equilibrium constants are much more reliable than those shown in Table 44. It is evident that the dissociation of diatomic phosphorus is extremely slight even at 1200°.

Further evidence for the superiority of Stock, Gibson, and Stamm's equilibrium data appears when the reaction $P_4(g) = 2P_2(g)$ is considered.

Electron-diffraction experiments show the P4 gas molecule to be tetrahedral with the P-P distance equal to 2.21 Å [Maxwell, Hendricks, and Mosley, J. Chem. Phys., 3, 699 (1935)]. Venkateswaran [Proc. Ind. Acad. Sci., 3, 260 (1935)] photographed the Raman spectrum of liquid phosphorus and found three lines corresponding to the three allowed fundamentals for a tetratomic, tetrahedral molecule. The frequencies and, in parentheir degeneracies $\omega_{1(2)} = 362 \text{ cm}^{-1}, \, \omega_{2(3)} = 463 \text{ cm}^{-1},$ and $\omega_{3(1)} = 607 \text{ cm}^{-1}$; the frequencies conform approximately to the relation $2\omega_1 = \sqrt{2}\omega_2 = \omega_3$, derived from a simple normal coordinate treatment for a tetrahedral structure. Our information is, then, complete enough to allow the calculation of the partition function. In Table 46 are presented the experimental values of K_{stm} obtained by both Preuner and Brockmöller (PB), and Stock, Gibson, and

TABLE 44 $\Delta H_0^{\circ} \text{ VALUES CALCULATED FROM}$ EQUILIBRIUM AND MOLECULAR DATA $[P_2(g) = 2P(g)]$

T (°K)	- Log. Katm	$-\Delta II_0^{\circ}$ (cal)
1073 1173	10.027 8 061	49,400 49,600
1273 1373	6.452 5.065	49,900 50,200
1473	3.859	50,500

TABLE 45 VALUES OF $K_{\rm atm}$ CALCULATED FROM SPECTROSCOPIC DATA $[P_2(g) = 2P(g), K_{\rm atm} = P_P^2/P_{P_2}, \Delta H_0^\circ = 115,450 \text{ cal}]$

$K_{\mathrm{atm}} \times 10^{20}$	- Log. Katm		
0.74 91.	46.35 41.54		
5400.	37.47		
	33.99		
36 × 10,	30.96		
	0.74 91.		

Stamm (SGS), together with the corresponding ΔH_0° values for the reac-

Fig. 30. The Structure of the P₄ and As₄ Molecules. P—P = 2.21Å; As—As = 2.44Å.

tion $P_4(g) = 2P_2(g)$. The constancy of the ΔH_0° values obtained using the experimental results of Stock and co-workers is very satisfactory and is to be contrasted with the large and unidirectional variations shown by the ΔH_0° calculated from Preuner and Brockmöller's data. The results of the calculations show quite definitely that the measurements of Stock, Gibson, and Stamm are free from any major errors, and further, that dissociation of diatomic phosphorus is slight even at 1200°.

From the existing data it was also possible for Stevenson and Yost to calculate a fairly reliable value for the entropy of white phosphorus, P(w).

MacRae and Van Voorhis studied the vapor pressures of both white

Table 46 THE VALUES OF ΔH_0° FROM MOLECULAR AND EQUILIBRIUM DATA $[P_4(g) = 2P_2(g), K_{atm} = P_P^2/P_P]$

T (°K)	K _{atm} (PB)	ΔH_0° (cal)	K _{atm} (SGS)	ΔH_{0}°
1073 1173 1273 1373 1473	0.00855 .0329 .1053 .2763	48,460 49,730 51,000 52,310 53,440	0.00645 .0375 .1671 .6118	53,540 53,590 53,670 53,660

and liquid phosphorus, and their results give

	S ₂₉₈ (cal/deg)
P(g)	38 99
P ₂ (g)	52 15
P ₄ (g)	66.92
P(w)	10.1

$$4P(w) = P_4(g), \quad \Delta F_{298}^{\circ} = 5700 \text{ cal}$$

 $\Delta H_{298}^{\circ} = 13,200 \text{ cal}$

No correction has been made for gas imperfections. The entropies presented for elementary phosphorus were computed from molecular data and the vapor pressure result. Entropy determinations of the four more common modifications

of solid phosphorus, namely, $P(w, \alpha)$, $P(w, \beta)$, P(red), and P(black), would add considerably to our understanding of this important element.

The oxidation of phosphorus

When white phosphorus at room temperature (16-30°) is exposed to the action of moist air or oxygen at lower-than-atmospheric pressures, a greenish glow is observed. The factors affecting the glow and the reactions taking place with it have been repeatedly investigated; and while a completely satisfactory mechanism for the reaction has not as yet been arrived at, it is significant that the excited molecule PO has been found to be the emitter of at least some of the radiation [Rumpf, Z. phys. Chem., 38B, 469 (1938)]. If the intensity of the glow is estimated visually as a function of oxygen pressure, then no light is observed with $p_{0} = 76$ cm; but on decreasing the pressure of oxygen, the glow will eventually appear at $p_{0i} \approx 60$ cm, and its intensity will then increase to a maximum with decrease in p_0 , and then decrease to zero when $p_{0} = 0$. The intensity of the glow is a function of the temperature and the partial pressure of water vapor as well as of oxygen. If an oxygen-water vapor mixture, at less-than-atmospheric pressure, is passed rapidly over white phosphorus at room temperature, the glow no longer comes from the surface of the phosphorus, but appears "downstream" a short distance. It is also known that P_2O_3 glows with O_2 — H_2O mixtures. A number of vapors show an inhibiting action on the glow produced, this effect being such that higher temperatures are required to obtain the same glow intensity in their presence than are necessary when such inhibitors are absent. It is also found that when phosphorus and oxygen react in a closed system, the rate of decrease in p_0 , with time, dp_{0i}/dt , is not constant but increases as p_0 , decreases.

Experiments have also been made on the ignition temperature of white phosphorus as determined by the pressure of oxygen, water vapor, and unreactive gases. Thus, in air saturated with H_2O at 30.1° , the white phosphorus ignites when its temperature reaches 30° ; if the air is saturated with water vapor at 38.1° , then the ignition temperature of the phosphorus is lower, namely, 17° . When water is replaced by organic vapors, the ignition temperature usually increases. Investigations of a more careful nature made on the gas-phase reaction $P_4(g) + O_2$ show that, for a given partial pressure of $P_4(g)$, no ignition results if the oxygen pressure falls below a certain critical value; this critical pressure is a function of the partial pressure of any indifferent gas present, for example, He or Ar.

The facts just cited will serve to give the reader a qualitative notion of the nature of the phenomena observed. A complete mechanism requires a much closer study of the reaction, but it does appear that a chain of intermediate steps is indicated in order to explain the inhibiting action of the oxygen itself as well as that of indifferent gases.

The experimental material may now be examined in somewhat more detail—not with the hope of elucidating completely the mechanism of the oxidation, but rather to exhibit the nature of phenomena themselves; the glow and its effects shall be considered first.

Several investigators have photographed the spectrum of the greenish glow, which, since the intensity is not great, necessitates long exposures up to 95 hours. Ingenious devices for maintaining the glow for long periods have been devised; these depend usually on a means for preventing the temperature of the phosphorus from rising to the ignition point. The spectrum shows a continuum in the visible region (its intensity increasing with the rate of oxidation of the phosphorus) and a series of bands and lines stretching from 3418 Å to 2371 Å. Some fourteen lines or bands were observed by Centnerszwer and Petrikalen [Z. phys. Chem., 80, 235 (1912); Centnerszwer, Z. Physik., 22, 119 (1924); see also Hughes, Proc. Camb. Phil. Soc., 15, 483 (1910); Busse, Ann. Physik., 82, 873 and 83, 80 (1927)]; and some of these were shown by Emeleus and Downey [J. Chem. Soc., 125, 2491 (1924); see also Emeleus and Purcell, J. Chem. Soc., 788 (1927)] to have a resolvable structure. These authors showed that, when the oxidizer is enriched air and the phosphorus is burning,

the continuum is most intense and the ultraviolet lines are weaker and stop at 2530 Å. With air at 5 cm pressure, the glow shows a weaker continuum and the lines extend to 2371 Å wave length. When P_2O_3 at 30–40° burns in moist air, the same spectrum is obtained [Emeleus, J. Chem. Soc., 127, 1362 (1925)]; but this shows only that the emitter is the same in both cases, and not necessarily that the glow owes its origin only to the oxidation of the intermediate P_2O_3 . The emitter of some of the band lines has been shown by Rumpf [Z. phys. Chem., 38B, 469 (1938)] to be phosphorus monoxide, PO, a molecule that does not exist under ordinary conditions, but only in flames or electrical discharges. Phosphorus monoxide is not necessarily the first compound formed in the oxidation of the phosphorus.

Some observers [Downey, J. Chem. Soc., 125, 347 (1924)] report the formation of ozone during the oxidation of the white phosphorus, and also that the ozone will form in oxygen separated from the glowing phosphorusoxygen mixture by a fluorite or quartz window. The liberation of iodine from a potassium iodide solution was the test used for showing the The formation of ozone and the fact that the specpresence of ozone. trum of the glow shows ultraviolet radiation up to 2371 Å suggests immediately that shorter wave length radiation capable of being absorbed by O2 and converting O2 into O3 is also emitted. If ozone is formed, it may well play an important role in the reactions that follow the primary light-producing one. It is pertinent to remark that more definite proof for the formation of ozone is desirable; the fact that iodine is liberated from an aqueous solution of potassium iodide by the gas mixture after passing over P(w) provides necessary but not sufficient evidence for the presence of the ozone. The following data (Downey) for the glow intensity and ozone formed as a function of the temperature of the phosphorus and the oxygen pressure give a quantitative picture of the phenomenon. In the experiments, 390 cc. of dry O2 were passed over the phosphorus for 60 minutes when the phosphorus was kept at 16.6°, and for 30 minutes at 21.8°.

Temp. of Phosphorus	p _{O2} (mm)	O ₃ , Relative	Glow Intensity, Relative
16.6° 21.8°	350 290 238 158 488 388 290	100 108 120 143 734 233 100	100 107 120 142 338 123 100 115

A consideration of the rate of oxidation of white phosphorus by oxygen shows no lack of experimental data, but they have not been obtained under conditions of constant surface and complete mixing. One experiment provides, therefore, a set of measurements which cannot be related quantitatively to the results of another experiment. No measurements appear to have been made in which the gas phase was stirred; hence its composition cannot be regarded as uniform in any of the published results. The following results were obtained by Russell

TABLE 47
THE RATE OF OXIDATION OF WHITE PHOSPHORUS WITH OXYGEN
Temp. = 18.6°

Time (hours)	p ₀₂ (mm)	k ₁	k ₂	Time (hours)	po2ª (mm)	k_1
0. 3. 4. 5.08 7. 7.53 8.08	669.82 527.49 468.20 395.12 200.42 106.87 0.00	346 389 451 749 1058 1068	97.1 106. 118. 167. 206. 335.	0 1 2 6 14 20 22 25	1319.2 1273.7 1231.6 1103.0 874.5 730.0 687.4 615.3	156 149 129 127 128 129 132

Temp. = 13.6° , $p_{N_2} = 240 \text{ mm}$

Time (min.)	p ₀₂ (mm)	Time (min.)	po ₂ (mm)
0	393.42	180	91 93
45	327.14	225	46.93
90	247.54	270	19.38
135	160.05	315	6.30

^a A faint glow, visible only in a dark room, was observed initially; and toward the end of the run, its intensity increased to that ordinarily observed.

[J. Chem. Soc., 83, 1263 (1903); see also Kohlschutter and Frumkin, Ber., 47, 1088 (1914)] in some careful experiments in which the pressure of oxygen above distilled white phosphorus in a closed container was followed with time. He found that very dry and very moist oxygen does not react nearly as rapidly with white phosphorus at room temperatures as does oxygen containing the small amount of water vapor resulting from passing the gas through ordinary concentrated sulfuric acid. Indeed, if $p_{\rm H_2O}$ is around 16-20 mm, its inhibiting effect is very great. This appears to be due to the protecting white layer or crust that forms to a greater or less extent when the moist oxygen first comes in contact with the phosphorus. Reaction does not set in until $p_{\rm O_2} = 500$ mm,

while with nearly dry oxygen, reaction takes place at room temperature even with an oxygen pressure of two atmospheres or more. When $p_{\rm H,0}=4-5\,$ mm, the inhibiting action virtually disappears. In considering Table 47 above, it is necessary to understand that rates

Fig. 31. The Rate of Oxidation of Phosphorus by Pure Oxygen at 18.6° C.

depend on the surface exposed, and hence will not be the same in two experiments, unless, as is rarely the case, the surfaces are the same. The values of k_1 and k_2 were calculated from the integrated form of the equations $-dp_{0}/dt = k_1p_{0}$ and $-dp_{01}/dt = k_2 \sqrt{p_{01}}$ for the interval t = 0 to t = t; to arrive at the constants defined by the differential equations, k_1 and k_2 should be multiplied by 2.3×10^4 . The oxygen used was dried by passing through concentrated sulfuric acid or anhydrous calcium chloride. Fig. 31 is a plot of $\Delta p_{0}/\Delta t$ against p_{0} , for the experiment at 18.6°.

It is at once evident that neither k_1 nor k_2 remains constant in the first, low-pressure experiment; but in the second, high-pressure experiment, k_1 remains quite constant throughout the run. The rate equation should, accordingly, have the form $-dp_{0,1}/dt = k_1p_{0,1}f(1/p_{0,1})$, with

should, accordingly, have the form a_f f(0) = 1 in order that the equation reduce to the proper form for high pressures. When the first-order rate equation is modified to take into account the rate of vaporization of phosphorus, it takes the form $-dp_{0_2}/dt = k_2 \sqrt{p_{0_2}}$; but since k_2 is not constant, the assumption of first order or that the oxidation takes place only in the vapor phase must be discarded. It is possible that a chain mechanism would be in better accord with the experimental results.

An examination of the results for the third experiment, in which nitrogen was present, brings out the fact that $-dp_{0s}/dt$

Fig. 32. The Rate of Oxidation of Phosphorus by Oxygen Diluted with Nitrogen at 13.6° C. Initial $p_{0_1} = 393.4$ mm, $p_{N_1} = 240.1$ mm.

goes through a maximum at $p_{0_1} = 250$ mm, as shown in Fig. 32. The explanation for this result is believed, by Russell, to depend on diffusion effects. Thus, upon reaction, the concentration of oxygen tends to decrease in the neighborhood of the phosphorus, and this would lead to an

increase in $-dp_{0_1}/dt$, if the effect were not offset to some extent by the increase in oxygen concentration resulting from diffusion. Inasmuch as the rate of diffusion decreases with p_{0_1} , we may expect $-dp_{0_1}/dt$ to decrease at low p_{0_1} , since the concentration of O_2 at the phosphorus surface may then become effectively zero. At high and at low partial pressures of oxygen, conditions for a rapid rate are therefore less favorable than at intermediate partial pressures; consequently, there must result a maximum value for $-dp_{0_1}/dt$. It is assumed that no mixing other than by diffusion takes place. Experiments in which O_2 — N_2 mixtures were constantly stirred would establish whether or not diffusion is the sole factor in bringing about a maximum in the rate of oxidation.

Experiments on the oxidation of phosphorus vapor are easier to treat theoretically than those involving solid phosphorus, since the number of effective variables is smaller. Investigations by Semenoff [Z. Physik., 46, 109 (1927)] and by Kowalsky [Z. phys. Chem., 4B, 288 (1929)] have shown that, for a given pressure of P_4 , there is a critical pressure of oxygen above which ignition occurs and below which the rate of oxidation becomes quite slow. For the pressures of P_4 obtainable at room temperature, the critical pressures of oxygen are less than 1 mm. The critical pressure p_0^* depends upon the pressure of $P_4(g)$ and the diameter, d, of the cylindrical reaction vessel, but is independent of the temperature.

$$p_{0}p_{0}^* \left\{ 1 + \frac{p_x}{p_{0} + p_x} \right\} d^2 = \text{Constant}$$

where p_x is the pressure of an added indifferent gas such as helium or argon. There is also an upper critical pressure for a given reaction vessel and pressure of $P_4(g)$, that is, a pressure above which no ignition occurs. This upper limit of p_{0_4} is, unlike the lower limit, directly proportional to the pressure of $P_4(g)$. A chain mechanism is suggested by the facts; if the chains are not terminated at the walls of the vessel, they spread until the rapid reaction of ignition results. A large container favors unbroken chains and hence ignition at lower oxygen pressures. The subject has been considered further by Melville and Ludlam [Proc. Roy. Soc., 132A, 108 (1931); Trans. Faraday Soc., 28, 814 (1932)], who finds that, for a number of indifferent gases, the critical oxygen and phosphorus pressures, p''_{0_4} and p''_{P_4} are more accurately related to the critical pressures $p^*_{0_4}$ and $p^*_{P_4}$ when indifferent gases are absent, by the expression

$$p_{P_4}^* p_{O_2}^* = p_{P_4}^{\prime\prime} p_{O_2}^{\prime\prime} \left\{ 1 + \mu \frac{p_z}{p_{P_4}^{\prime\prime} + p_{O_2}^{\prime\prime}} \right\}$$

where μ is a constant depending on the indifferent gas ($\mu = 0.13$ for He and 0.84 for CCl₄). In Fig. 33 is shown a graph in which the log $p_{\rm P}$, is plotted against the logarithms of the critical oxygen pressures for

both the upper and the lower limits. The simple theory of a branching chain reaction [Kassel, Kinetics of Homogeneous Gas Reactions, Chemical Catalog Co., N. Y., 1932, p. 296] leads to an inequality between the critical pressures of oxygen and phosphorus and the vessel diameter, namely,

$$\frac{k_2}{k_1 d^2} \frac{1}{p_{P_4}} \leqslant p_{O_2} \leqslant \frac{k_1}{k_3} (P_4)$$

where the rate of branching is

$$k_1 N \frac{p_{0_2} p_{P_4}}{p_{0_2} + p_{P_4}}$$

(N is the number of chains in progress) the rate of chain destruction by diffusion to the walls is

$$\left(\frac{k_2N}{d^2}\right)\frac{1}{p_{0_2}+p_{P_4}}$$

and the rate of loss of chains by collision with oxygen is k_3Np_0 . On the assumption that $p_0 \gg p_{P_0}$ the above inequality follows if the number

Fig. 33. The Critical Pressures for the Oxidation of Phosphorus Vapor. The curve corresponds to the predictions of the theory; the points are experimental.

of chains is to increase indefinitely. These results may well have direct relation to the reaction involving solid phosphorus, but this case appears to be rather more complicated in its details (rate of evaporation of phosphorus, lack of vapor-solid equilibrium, and so forth), and further discussion of it, while of interest, would not be fruitful at this time.

There remains the important question as to the oxides formed during the oxidation

of white phosphorus. It is known that the slow oxidation at 11° leads to the formation of some PO₂ (that is, P_nO_{2n}), some P₄O₆ (often written P₂O₃), and considerable quantities of P₄O₁₀ (often written P₂O₅). Since PO₂ is not volatile and, moreover, does not appear to be oxidized rapidly by O₂, it does not seem to be a likely intermediate in the complete oxidation of P(w) to P₂O₅. Phosphorus trioxide, P₄O₆, is formed in considerable amounts when white phosphorus is burned at 50° in 90 mm of an enriched air (75% O₂, 25% N₂); smaller amounts are formed under other conditions. Since P₄O₆ is volatile, and since it too

glows when oxidized to P_4O_{10} with oxygen under proper conditions, it might even be supposed that all of the glow accompanies its oxidation. The fact that the glow with $P(w) + O_2$ is inhibited somewhat by the presence of P_4O_6 does not add support to the idea. Since excited PO molecules have been found to be responsible for at least some of the radiation observed in the greenish glow, and since this substance doubtless reacts rapidly with oxygen, it may form one of the important intermediates in the oxidation reaction.

The Oxides of Phosphorus

Phosphorus oxides

The well-established oxides of phosphorus are the following:

 P_4O_6 Phosphorus trioxide $P_2O_4(P_nO_{2n})$ Phosphorus tetroxide P_4O_{10} Phosphorus pentoxide

There appears to be no reasonable relation between the formulas of the oxides and their names, since the formulas were, at one time, believed to be P_2O_4 , P_2O_3 , and P_2O_5 , respectively. Two other lower oxides, namely, P_4O and P_2O , have been described, but it is not yet certain that they are not simply mixtures of phosphorus and one or more of the known oxides [Chalk and Partington, *J. Chem. Soc.*, 1930 (1927)]. A higher oxide has also been described. It is found that on passing P_4O_{10} vapor mixed with oxygen through an electric discharge, a dark-violet solid is obtained which decomposes above 130°, liberating oxygen. The solid is soluble in water, giving an unstable, strongly oxidizing solution. It is believed to be the anhydride of peroxyphosphoric acid, $H_4P_2O_8$, and is assigned the formula P_2O_8 [Schenck and Platz, *Z. anorg. Chem.*, 233, 403 (1937)].

Phosphorus trioxide, P4O6

This oxide was first studied thoroughly by Thorpe and Tutton [J. Chem. Soc., 57, 545 (1890); ibid., 59, 1019 (1891)], who separated appreciable quantities of the substance from the oxidation products of white phosphorus. Their yields were not high, but attempts to increase them have been successfully made by Manley [J. Chem. Soc., 121, 331 (1922)], and especially by Wolf and Schmager [Ber., 62, 771 (1929)]. The latter authors investigated carefully the conditions under which maximum yields were obtainable and concluded that best results were obtained when white phosphorus at 46-50° is burned in a 17-mm quartz tube in an enriched air (75% O₂) whose pressure is maintained at 90 mm and whose rate of flow through the tube is 30 l/hour. The yield is about 56 per cent, based on the phosphorus consumed. The raw product

always contains some dissolved phosphorus even after repeated distillation, but this is easily removed by illuminating with a mercury arc until all of it is converted into the insoluble red variety. The final purified product forms colorless crystals melting at 23.8° to a clear, colorless liquid which boils without decomposition at 175.4° . Vapor pressures of liquid P_4O_6 have been measured by Doormaal and Scheffer [Rec. trav. chim., 50, 1100 (1931)], and their interpolated values at even tempera-

t (°C)	(°(') p _{mm} t		<i>p</i> _{mm}
50	8.1	120	159.8
60	13 6	140	299
70	22.0	160	520
80	34.6	170	668
100	78 3	175	753

$$\log_{10} p_{\text{mm}} = -\frac{2860.0}{T} + 11.0516 - 0.00400T$$

$$P_4O_6(1) = P_4O_6(g) \qquad \Delta H = 9,400 \text{ cal}$$

tures are shown in the accompanying tabulation.

The dielectric constant of liquid phosphorus trioxide, P_4O_6 , is 3.2 at 22°, the surface tension is 36.58 dynes/cm at 34.3°, and the liquid is soluble in organic solvents. In molten naphthalene at about 80°, it has the molecular formula P_4O_6 [see e.g.. Schenck, Mihr, and Bathien, Ber., 39, 1506 (1906)]. In the vapor state the molecules are

also P₄O₆: their structure has been investigated by the electron-diffraction method [Hampson and Stosick, J. Am. Chem. Soc., **60**, 1814 (1938)] and is shown in Fig. 34.

Phosphorus trioxide is decomposed by heat, slowly at about 210° and more rapidly at higher temperatures. The reaction is

$$2P_4O_6 = 3P_2O_4 + 2P \text{ (red)}$$

When heated with iodine and carbon disulfide in a closed tube, the reaction that takes place is

$$5P_4O_6 + 8I_2 = 4P_2I_4 + 6P_2O_5$$

With an excess of water P_4O_6 forms two liquid layers which react slowly to form a solution of phosphorous acid, H_3PO_3 , and small amounts of phosphoric acid and phosphorus. If a mixture of P_4O_6 and cold water is shaken vigorously, only H_3PO_3 is formed. $P_4O_6 + 6H_2O = 4H_3PO_3$. However, with hot water P_4O_6 reacts vigorously to form P_4PO_4 , and other products [Wolf, Jung, and Tschudnowsky, Ber., 65, 488 (1932)].

The reaction between $P_4O_6(l)$ and oxygen is slow at room temperatures and, under the proper conditions, produces the green glow discussed in a previous section. The glow has the same spectrum as that observed in the oxidation of white phosphorus by oxygen. Some moisture seems to be essential for the formation of the glow when phosphorus trioxide and oxygen react; the intensity of the glow shows a maximum when the

pressure of oxygen is varied slowly from zero to one atmosphere. If dry air at 10-12 mm is passed successively through a bulb containing P_4O_6 on its inner surface, then through slightly damp cotton, and immediately

Fig. 34. The Molecular Structures of the $P_4O_6S_4$, P_4O_6 , and P_4O_{10} Molecules. $P_4O_6S_4$ is shown. If the four sulfur atoms were omitted, the picture would be that of P_4O_6 , and if the four sulfur atoms were oxygen atoms (designated as ()'), the picture would be that of P_4O_{10} .

	P0	P—S	P0'	P—P	∠0—P—0	∠P—O—P	∠0—P—S	∠0—P—0′
P ₄ O ₆ S ₄ P ₄ O ₁₀ P ₄ O ₆	1.61Å 1 62 1.65	1 .85Å — —	1.39Å	2.85Å 2.85 2.96	101.5° 101.5 99	123.5° 123.5 127.5	116.5° —	116 5°

thereafter through a capillary tube, the green glow appears at the entrance of the capillary [Cristina Miller, J. Chem. Soc., 1823, 1829 (1929); Proc. Roy. Soc. Edin., 46, 259, 761 (1926)].

The rate of oxygen absorption by liquid phosphorus trioxide [Schenck,

t (min)	p _{O2} (mm)
0 90 240 625	2102 2026 1902 1651

Mihr, and Bathien, Ber., 39, 1506 (1906)] is said to be proportional to the square root of the oxygen pressure, that is, $-dp_{0z}/dt = k_z p_{0z}^{12}$; but the absolute value of k_z depends on the surface of $P_4O_6(l)$ exposed, the rate of its evaporation, and the temperature. In one experiment made at 40.3° with 5 cc of $P_4O_6(l)$ in a 25-cc vessel, the results in the accompanying tabulation were obtained. Owing to the number of variables involved, it is not possible to make definite

statements concerning the reaction mechanism. Moreover, if we use the data to evaluate the constant in the first-order rate equation, $-dp_{0}/dt = k_{1}p_{0}$, the values of k_{1} are about as constant as those found

for k_2 defined above. If it can be assumed that the reaction is with the vapor and that this always has its equilibrium pressure, then possible mechanisms corresponding to the two approximate rate laws would be, respectively,

```
\begin{array}{lll} First-order: & P_4O_6(g) \, + \, O_2 \, = \, P_4O_8 & (slow) \\ P_4O_8 \, + \, O_2 \, = \, P_4O_{10} & (rapid) \\ Half-order: & & & & & & & & \\ O_2 \, = \, 2O & (rapid, reversible) \\ P_4O_6 \, + \, O \, = \, P_4O_7^* & (slow) \\ P_4O_7^* \, + \, O \, or \, O_2 \, = \, Products \, (rapid) \end{array}
```

In either case P₄O₁₀, phosphorus pentoxide, is the final product. Although the first mechanism is a more satisfying one chemically, the experimental data are not sufficient to establish it. A complete mechanism would also require the introduction of excited phosphorus monoxide molecules, since the spectrum of the green glow is known to be due to PO.

Phosphorus tetroxide, P.O.

This oxide is formed in small amounts when white phosphorus is slowly oxidized by oxygen, but it is best prepared by heating P₄O₆ in a sealed, evacuated tube at 200-250° for two or three days. The resulting red mixture of P (red) and P_nO_{2n} (designated hereafter by P₂O₄) is heated in such a way that the elementary phosphorus is sublimed to one end of the tube and that section then sealed off. On heating the remaining oxide still hotter, the P2O4 sublimes free from the small amount of residue and condenses to highly lustrous, transparent crystals that apparently belong to the cubic family [West, J. Chem. Soc., 81, 923 (1902)]. The vapor density of phosphorus tetroxide at 1400° corresponds to a molecular weight of 459 ± 20; the formula weight of PO₂ is 63, and $\frac{4.59}{63} = 7.3 \pm 0.3$, a result that leads to the formula P_7O_{14} for the so-called tetroxide. While this formula does not appear unreasonable, it must be noted that some regard a more probable formula to be P₈O₁₆. The vapor density at 500° of a more volatile form of the tetroxide gives a much lower molecular weight, corresponding approximately to the formula P4O8 [Emmett and Schultz, Ind. Eng. Chem., 31, 105 (1939)]. Inasmuch as the molecular formula is not certain, it will be given the purely conventional designation P₂O₄ here; it is clear from the vapor-density measurements that this formula is not correct, but it will The density of the solid is 2.537 at 22.6°. serve many of our purposes.

Phosphorus tetroxide is not affected by heat or light, and it is not soluble in organic solvents. It sublimes on heating, but the vapor pressure of the most stable form becomes one atmosphere only at rather high temperatures; vapor-density determinations were not possible much below 1400°. It dissolves slowly in water with a hissing sound and with

the evolution of small amounts of phosphine. The properties of the solutions correspond to those of a mixture of (HPO₃)_n and H₃PO₃, namely, metaphosphoric and phosphorous acids.

Phosphorus pentoxide, P₄O₁₀

Phosphorus pentoxide is the principal product of the complete oxidation of white or red phosphorus. To be sure, the product resulting from the burning of phosphorus in air or oxygen is rarely a single compound, and the conditions can be so controlled that P_4O_6 is formed in the larger quantity, rather than P_4O_{10} ; but with excess air or oxygen and under ordinary conditions of burning, the major amount of the oxide formed is phosphorus pentoxide. In the older methods of manufacture of the pentoxide, the phosphorus burns above a container in such a way that the powder-like oxide falls into it. The small-to-moderate amounts of P_4O_6 and P_2O_4 present must be removed by long heating at 175–200° in a current of air or by treatment with ozone.

A method of oxidizing phosphorus vapor which is of practical interest utilizes carbon dioxide as an oxidizing agent. It is found that at about 1000°C an equilibrium is established between phosphorus tetroxide, phosphorus pentoxide, carbon dioxide, and carbon monoxide [Emmett and Schultz, Ind. Eng. Chem., 31, 105 (1939)]. The equilibrium data could not be readily interpreted, apparently because of the presence of a number of molecular species of the phosphorus oxides. The equation which best fits the data is

$$P_2O_4 + CO_2 = P_2O_5 + CO$$

The values of K experimentally obtained ranged from 0.18 to 0.62 at 1000°C, although it is not at all certain that the flow method used gave equilibrium results. The authors felt that one may safely say that when the ratio of tetravalent phosphorus oxide to pentavalent oxide is one to one, the ratio of carbon dioxide to carbon monoxide will be about two to one. A disadvantage of the method is that a mixture of pentoxide and tetroxide is produced. If, however, quartz or phosphate rock is present, the pentoxide is absorbed and complete oxidation of the phosphorus to the pentavalent state achieved.

Phosphorus pentoxide is not conveniently obtainable by the dehydration of any of the phosphoric acids, $(HPO_3)_n$, $H_4P_2O_7$, and H_3PO_4 . Indeed, the outstanding characteristic of phosphorus pentoxide is its ability to absorb water, and at room temperature the vapor pressure of water above a P_4O_{10} - $(HPO_3)_n$ mixture is less than 10^{-5} mm Hg.

The phosphorus pentoxide of commerce is a fairly nonvolatile, white, amorphous powder, but this is only one of the several modifications in which the substance exists. For reasons of difficult experimentation, investigations of the various forms are incomplete. It is known that a

finely crystalline, volatile form results when ordinary phosphorus pentoxide is sublimed in a vacuum or in an atmosphere of carbon dioxide. When this finely crystalline form is heated to 400-500°, it is transformed into the ordinary amorphous or powdery form. If the amorphous form is heated to about 570°, it melts and goes over into a glass-like form; the melting point is indefinite. The glass-like form can be caused to crystallize to a second crystalline modification by prolonged heating at 500°: the fine, needlelike crystals of this form melt at 569°. Another crystallike modification, the third, seems also to exist. The following list gives the designations and methods of preparation of the four wellestablished forms of P₄O₁₀(s).

- Crystalline, volatile form. Formed by subliming P_4O_{10} . Amorphous, powdery form. Formed by heating α at 400–500°.
- Glassy form. Formed by melting β at about 570°.
- Crystalline form. Formed as fine needles by prolonged heating of γ at 500°: melting point, 569°.

The α form is by far the most volatile, its vapor pressure being 1 atm at about 358°. The vapor pressures of the β and γ forms are much lower and show no discontinuity during progress from one form to the other. Fig. 35 and the following table present the most recent vapor-pressure measurements of Hoeflake and Scheffer [Rec. trav. chim., 45, 191 (1926)]. It is not absolutely certain that vapor-solid equilibrium is always obtained in measurements on phosphorus pentoxide; moreover, the vapor pressure at a given temperature depends in some measure on the method of preparation of the form studied [Smits and Rutgers, J. Chem. Soc., 125, 2573 (1924); Smits and Deinum, Proc. Acad. Sci. Amsterdam, 33, 514 (1930)].

Table 48 VAPOR PRESSURES OF PHOSPHORUS PENTOXIDE

The α-Crystalline- modification			y Amorphous slike Forms	The δ-Crystalline- modification	
t (°C)	p (cm)	t (°C)	p (cm)	t (°C)	p (cm)
260 280.5 305.5 330 356 374 401	3 6 14.5 32.5 66.5 114.5 225.5	432 476 506 541 567 590	5 12 20 35.5 . 54.5 74.5	501.5 517 541 563	8 13 26 47

If the α form is heated rapidly in a sealed, evacuated tube, it melts completely to a clear, colorless liquid which, after ten seconds or so, solidifies to a stable modification. The triple point is 423°, with a triple-point pressure of 380 cm of mercury [Smits, Z. phys. Chem., B 46, 43, (1940)]. Vapor-pressure measurements, necessarily rough, as only the maximum pressure could be measured, showed the liquid to be entirely distinct from ordinary liquid P_4O_{10} . The vapor-pressure curve fits nicely onto that of the solid α form. Phosphorus pentoxide thus shows the remarkable behavior of having a metastable modification which exists in both the solid and the liquid form.

The nature of the α and δ modifications has been explained to a considerable extent by crystal structure investigations by de Decker and

MacGillavry [Rec. trav. chim., 60, 153 (1941)] and de Decker [ibid., 60, 413 (1941)]. The α form was obtained as fine needles by sublimation of P₄O₁₀ in dry oxygen at room temperature, or as large crystals by sublimation at 400°. Both crystal habits had the same rhombohedral structure. detailed examination showed that the crystals consisted of distinct P₄O₁₀ molecules packed together. The dimensions and configuration of the single molecules were the same as those determined for the gas molecules (their structure is described later in this section). The X-ray density is 2.30

Fig. 35. The Vapor Pressure of α-crystalline Phosphorus Pentoxide, P₄O₁₀.

g/cm³ at room temperature. Crystals of the δ form were prepared by heating the α form in a sealed tube at over 500° for some time. These crystals were orthorhombic and were found to have a structure built up of linked PO₄ tetrahedra. The structure is thus continuous, and there are no single molecules. The detailed determination of the parameters showed that the individual bond distances and angles are closely equal to those of the gas molecule. The X-ray density is 2.72 g/cm³. These structures reveal clearly the reason for the difference in volatility—only Van der Waals' forces must be overcome to vaporize the α form, but chemical bonds must be ruptured to vaporize the δ form.

It is evident that the α form is the least and the δ form the most stable of the known modifications. The α form is metastable at all of the temperatures investigated; the conditions under which it would

exist in equilibrium with any of the other established modifications are not known. For thermodynamic purposes, it would be natural to take the δ form as the standard state at room temperatures, but the modification which is most easily prepared and investigated is more commonly chosen for this purpose. In accord with this practice the α form would be selected, although the δ form has preference. No doubt thermodynamic investigations of phosphorus compounds will receive more attention in the future, and a decision on the question of the standard state for $P_4O_{10}(s)$ will be made then.

No reversible reactions have been found whose study would lead to accurate values of the free energy of formation of phosphorus pentoxide. The following thermal data are available [Frandsen, U. S. Bur. Stds. J. Res., 10, 35 (1933); Bichowsky and Rossini, Thermochemistry]:

$$\begin{array}{lll} 4P(w) + 5O_2(g) &= P_4O_{10}(\alpha) & \Delta II_{291}^{\circ} &= -720,000 \text{ cal} \\ P_4O_{10}(\alpha) &= P_4O_{10}(g) & \Delta H^{\circ} &= 17,600 \text{ cal} \\ P_4O_{10}(\delta) &= P_4O_{10}(g) & \Delta II_{298}^{\circ} &= 37,750 \text{ cal}, \\ \Delta F_{298}^{\circ} &= 24,574 \text{ cal} \\ P_4O_{10}(\alpha), \ C_P &= 44.34 + 0.1561t - 16.90 \times 10^{-5}t^2 \text{ cal/deg} \\ P_4O_{10}(g), \ C_P &= 73.6 \text{ cal/deg} & (\text{Average for } 358\text{-}1100^{\circ}) \end{array}$$

It has long been known that phosphorus pentoxide exists, in the vapor phase, as double molecules, P_4O_{10} , and their structure has been determined recently by means of electron-diffraction studies and is shown in Fig. 34 (p. 177) [Hampson and Stosick, *J. Am. Chem. Soc.*, **60**, 1914 (1938)]. In this compound, the phosphorus bond angle, OPO = 101.5°, is very closely that shown by this element in a number of compounds; namely, PF₃ 99°, PCl₃ 100°, PBr₃ 100°, PI₃ 98°, POCl₃ 104°, and P(CH₃)₃ 100°, the assigned error being around $\pm 2^{\circ}$ to 4°.

A notable characteristic of phosphorus pentoxide is the speed and completeness with which it absorbs water. When water is absorbed in small quantities, polymers of metaphosphoric acid, (HPO₃)_n, are formed, and further successive additions of water lead to pyrophosphoric acid, H₄P₂O₇, and orthophosphoric acid, H₃PO₄, the last being the common form in which phosphoric acid is encountered. The rate at which meta-and pyrophosphoric acids hydrolyze to the ortho acid is not rapid.

The Phosphorus Sulfides

Phosphorus sulfides

The compounds formed by phosphorus and sulfur are not, in general, the analogues of the corresponding oxides of phosphorus. It will be recalled that the well-defined phosphorus oxides are P_4O_6 , $(PO_2)_a$, and P_4O_{10} ; and, curiously enough, only one of these has its analogue among the known phosphorus sulfides, P_4S_3 , P_4S_6 , P_4S_7 , $P_3S_6(?)$, and P_4S_{10}

The difference between the oxides and sulfides is considerably greater than that encountered between metallic oxides and sulfides, but the difference brings once more to our attention the well-known fact that extrapolations to or from the first row of the periodic system are frequently unreliable. This circumstance, in turn, is to be correlated with the different electronic structures of the atoms in the first row as compared with those of the succeeding rows.

Before describing the properties of the phosphorus sulfides in detail, it will be helpful to summarize some of the known facts by means of a table showing the important physical constants [see Stock and Herscovici, Ber., 43, 415, 1223 (1910)]. It will be noted at once that the minima or maxima in the physical constants are found with P_4S_7 .

TABLE 49
PHYSICAL PROPERTIES OF THE PHOSPHORUS SULFIDES

	P ₄ S ₃	P_4S_6	P ₄ S ₇	P ₄ S ₁₀
Color: Solid Liquid	Brownish yel-	Sulfur yellow	Almost white Light yellow	Yellow Reddish
Density of solid at 17°. Melting point (°C) Boiling point (°C) Solubility (g/100 g sol-	171-172.5	2.17 (25°) 170–220 —	2.19 305–310 523	brown 2 09 286–290 513–515
vent): CS ₂ 17° 0°20°	27.0	≈10 — —	0.029 .005	0.222 .182 .0833
C ₆ H ₆ 17° 80° Action with cold water			Fairly readily	Slowly decom-
Stability of solid on standing in air			decomposed Decomposes	posed Slowly decom- posed

Tetraphosphorus trisulfide, P₄S₃

This compound is formed by heating a mixture of red phosphorus and powdered sulfur {4P (+ excess) + 3S} in a glass tube gradually to 100° and then more strongly, especially near the surface of the mixture, until the reaction starts and spreads through the mixture. The preparation should be carried out in an atmosphere of CO₂ or in an evacuated tube to avoid any oxidation by the air. Following the reaction, the mixture should be heated strongly until distillation begins, in order that a minimum of higher sulfides be present. After cooling, the mass is extracted with CS₂ or it is distilled in an atmosphere of CO₂. The final

product, after recrystallization, is yellow in color and the rhombic crystals are readily soluble in CS₂, C₆H₆, and toluene (31.2g at 17° and 15.4g at 111° dissolve in 100g of toluene). [See, for example, Stock and Von Bezold, Ber., 41, 657 (1908); Stock and Rudolph, Ber., 42, 2062 (1909); 43, 150 (1910).] An impure form is made commercially by simply heating red phosphorus and powdered sulfur in the proper proportions (S in excess) at 330° in an atmosphere of CO₂. This product is used in the manufacture of certain types of matches.

The molecular weight of P_4S_3 has been determined in boiling benzene and for the vapor alone. In benzene solution, the molecular weight is found to be from 228 to 264, the formula weight of P_4S_3 being 220. Measurements of the vapor density lead to the molecular weights shown in the tabulation [Stock and Von Bezold, Ber., 41, 657 (1908)].

Temp. (°C)	Molecular Weight, P ₄ S ₃
700 750 800 850 900 950 1000	219 213 202 185 182 179 179

The decrease in the calculated molecular weight with increasing temperature indicates the decomposition of P₄S₃ into phosphorus and sulfur vapors; if account were taken of the nature of the molecular species of the two latter substances, equilibrium constants for the reversible decomposition reaction could, in principle, be calculated. Because the precision claimed for the vapor-density measurements is not high, the evaluation of any equilibrium constants is hardly worth

while. The experimental vapor densities are of value, however, in showing that at 750° and lower the vapor molecules are P₄S₃, and that, further, the reversible decomposition reaction at higher temperatures could be employed for the determination of the free energy of the compound.

When heated in oxygen, P_4S_3 luminesces in a manner that recalls P(w) and P_4O_6 . In experiments made at 70° in an atmosphere of dry oxygen, it was observed that when $p_{o_2} = 386.75$ mm, an intermittent greenish glow appears about the solid P_4S_3 . As the pressure was decreased, the glow finally became steady at $P_{o_2} = 321.85$ mm. The pressure of oxygen was then increased slowly and the intermittent effect appeared again; but at $P_{o_2} = 389.25$ mm, the glow stopped altogether [Scharff, thesis, Marburg, 1907; Mellor, Comprehensive Treatise]. Corresponding experiments at other temperatures show the same effect, if the temperatures are not too low.

P₄S₃ is only gradually decomposed by boiling water, and cold hydrochloric and sulfuric acids have scarcely any action on it at all (Lemoine). With cold nitric acid, elementary sulfur and phosphorus oxyacids are formed, and cold aqua regia is capable of oxidizing and dissolving the solid P₄S₃ completely to form phosphoric and sulfuric acids. When

finely divided, P_4S_3 reacts rapidly with solutions of potassium hydroxide to form sulfide ion, phosphine, hydrogen, hypophosphite, and phosphite.

Liquid ammonia dissolves P_4S_3 to form a reddish-brown solution which becomes dark red with time and finally is transformed into a brown jelly. After evaporation of the ammonia and the phosphine that results from the reaction, a viscid mass containing thiophosphates and other substances remains. Both ether and alcohol dissolve P_4S_3 with decomposition.

Tetraphosphorus trisulfide undergoes a number of interesting reactions in carbon bisulfide solution. With iodine, each P₄S₃ consumes about eight equivalents of the halogen, and this result is explained by two reactions

$$7P_4S_3$$
 (in CS₂) + $24I_2$ (in CS₂) = $16PI_3$ (in CS₂) + $3P_4S_7$
 $P_4S_3 + 4I_2 = P_4S_3I_8$

since the yield of P_4S_7 is only some 34%. It is known that P_4S_7 and P_4S_{10} are not oxidized by iodine in carbon bisulfide solution. Over eight (8.3) equivalents of bromine are consumed per mole of P_4S_3 in CS_2 solution, and the products of the reaction appear to be mainly PB_3 and P_4S_{10} [Treadwell and Beeli, *Helv. Chim. Acta*, **18**, 1161 (1935)].

$$10P_4S_3$$
 (in CS_2) + $42Br_2$ (in CS_2) = $28PBr_3$ (in CS_2) + $3P_4S_{10}$ (in CS_2)

The yellow crystalline compound $P_4S_3I_2$ is stated to result from a reaction between P_4S_3 and I_2 in CS_2 solution.

Solutions of P_4S_3 and sulfur in carbon bisulfide react slowly in the presence of light to give phosphorus sulfides that are not obtainable by heating phosphorus and sulfur together. Thus, Dervin [Compt. rend., 138, 366 (1904)] reports pale-yellow needles of P_3S_6 as well as crystalline spherical grains of P_3S_{11} as resulting from the photochemical reaction. By allowing the mixture 11 g $P_4S_3 + 3.5$ g S + 0.1 g I_2 in 100 cc CS_2 to stand in diffuse daylight for three days, Treadwell and Beeli [Helv. chim. Acta, 18, 1161 (1935)] obtained over 11 g of sulfur-yellow crystals whose composition and molecular weight in boiling CS_2 correspond to P_4S_5 . Of the less common phosphorus sulfides, P_4S_5 has been best established.

Solid mixtures of P_4S_3 and P_4S_{10} , when heated in vacuum at 90–95° for some 25 hours, yield a sublimate of the former compound only and a residue consisting principally of P_4S_{10} . The two compounds may, therefore, be separated by vacuum distillation. P_4S_3 and P_4S_7 may be separated in the same way, the residue in this case having a composition corresponding, perhaps accidentally, to P_4S_5 . Sulfur alone sublimes first from P_4S_5 —S mixtures at 90–95° in vacuum. The wide difference in solubility of the phosphorus sulfides in carbon bisulfide and benzene is most conveniently employed to separate and purify the substances [Beeli, Helv. Chim. Acta, 18, 1172 (1935)].

White phosphorus, when molten, will dissolve much sulfur, but no compound is formed between the two elements unless the mixtures are strongly heated.

Tetraphosphorus pentasulfide, P₄S₅

This compound is formed when a solution of P_4S_3 (11 g), sulfur (3.5 g), and iodine (0.1 g) in carbon bisulfide (100 cc) is exposed to diffuse daylight for three days. It results also when a molten mixture of 2P (red) + 3S is slowly cooled. One of the principal reaction products is P_4S_7 , but it is left for the most part unextracted by boiling carbon bisulfide, in which P_4S_5 is moderately soluble. The composition of the slowly cooled phosphorus-sulfur melt indicates an equilibrium reaction [Treadwell and Beeli, Helv. Chim. Acta, 18, 1161 (1935)]:

$$2P_4S_5 = P_4S_3 + P_4S_7$$
 (Reversible)

In boiling carbon bisulfide, P₄S₅ shows a molecular weight of 294-342, the formula weight being 284.4. The crystals of the substance are sulfur yellow in color, and they melt in the range 170-220° to give a sticky, slowly solidifying mass [Treadwell and Beeli, *loc. cit.*].

Tetraphosphorus heptasulfide, P₄S₇

When a mixture of red phosphorus and sulfur in the proportions 2P + 3S is melted in a glass tube, or when 4P + 7S + 5% P_4S_3 are heated in a hard glass tube until distillation becomes evident, the compound P_4S_7 is formed along with small amounts of the other sulfides. The more soluble P_4S_3 and P_4S_{10} may be extracted with carbon bisulfide, and the resulting residue of P_4S_7 may be purified by recrystallization

Temp. (°C)	Molecular Weight
700 750 800 850 900 950 1000	337 323 202 193 179 173 167

from the same solvent. The compound is also formed by heating a carbon bisulfide solution of $P_4S_3 + P_4S_{10}$ at 100° [Stock and Rudolph, Ber., 42, 2062 (1909); Ber., 43, 150 (1910); Stock and Herscovici, Ber., 43, 415, 1223 (1910)]. The purified compound is nearly colorless or pale yellow; it melts at 305–310°, and it boils at 523°. It is the least soluble of all the phosphorus sulfides in carbon bisulfide. Vapor-density measurements by Stock and Herscovici yielded the accompany-

Formula weight, $P_4S_7 = 348$. ing molecular weights for the gas. These results exhibit two things of interest, namely, that at the lowest temperatures the vapor consists of P_4S_7 molecules, and at the highest temperatures the observed molecular weights are very nearly equal to one-half of the formula weight. This fact might suggest immediately

that P_4S_7 dissociates into two simple molecules, but it is not at all certain that this is the case. For example, if the dissociation proceeds reversibly according to the equation $P_4S_7(g) = P_4S_3(g) + \frac{2}{3}S_6$, and if account is taken of the assumed reaction $P_4S_3(g) = P_4(g) + \frac{1}{2}S_6(g)$ and the known equilibria $P_4(g) = 2P_2(g)$ and $S_6(g) = 3S_2(g)$, then at some temperature the observed molecular weight of the vapor will equal one-half the formula weight. It is, of course, possible that the decomposition is more complicated still and in such a way that the less-known phosphorus sulfides, P_4S_5 , P_2S_6 , and so on, are also present in the vapor. It would be of interest to make an accurate study of both $P_4S_3(g)$ and $P_4S_7(g)$ with respect to their reversible decomposition at higher temperatures.

Tetraphosphorus heptasulfide is much more reactive with moisture than the other phosphorus sulfides. This reactivity suggests that P₄S₇ rather than the more commonly used P₄S₁₀ might be the more effective reagent to use in organic reactions in which sulfur is to be substituted in certain classes of carbon compounds.

Triphosphorus hexasulfide, P₃S₆ (?)

There is some uncertainty regarding the existence of this compound. It is said to be formed when the molten mixture P (red) + 28 is distilled or when the same proportions of phosphorus and sulfur are heated to melting [Mai, Ann., 265, 192 (1891); Von Bezold, thesis, Berlin, (1908)]. Vapor-density measurements lead to a molecular weight corresponding approximately to P_4S_8 , but the boiling-point elevations of carbon bisulfide solutions are in accord with the formula P_3S_6 . The compound is said to exist as pale-yellow, needle-like crystals which melt at 296-298° and boil at 516-519°. These values correspond closely to those shown in the table for P_4S_7 . The vapor of the substance at 340° and 11 mm pressure is pale green in color.

Phosphorus pentasulfide, P₄S₁₀

The name of this well-known sulfide, like that of the corresponding oxide, was assigned and came into general use before the doubled molecular weight was established. Its preparation is quite similar to that of the other phosphorus sulfides and consists of heating a mixture of powdered red phosphorus and sulfur in the proportions $2P(\text{red}) + 5S \ (+10\% \text{ excess})$ in an atmosphere of carbon dioxide until reaction begins [Stock and Scharfenberg, Ber., 41, 558 (1908)]. A better preparation is obtained if a reacted mixture whose initial composition was $2P \ (\text{red}) + 5S \ (+1\% \text{ excess})$ is heated in a closed, previously evacuated glass tube at 700° . The pressure in the heated tube may amount to several atmospheres [Stock and Herscovici, Ber., 43, 1223 (1910)].

In either method of preparation, the cooled solid is extracted with carbon bisulfide, a solvent in which the pentasulfide is somewhat soluble

Repeated recrystallizations from hot carbon bisulfide solution results in beautiful, pale-yellow crystals which melt to a red-brown liquid at 286–290°. The colored liquid boils at 513–515°, and, if the vapor is condensed rapidly, a white, more reactive form of the pentasulfide results.

The following vapor-density measurements show that P₄S₁₀(g) is extensively decomposed even at 600° [Stock and Scharfenberg; Stock and Von Bezold, *Ber.*, **41**, 657 (1908)]:

Temp. (°C)	Molecular Weight	Temp. (°C)	Molecular Weight
600	208	800	144
650	196	850	141
670	198	900	136
700	185	1000	133
750	161		
.00	131		

Formula weight, $P_4S_{10} = 444$.

It is evident, indeed, that at the temperatures investigated little if any of the vapor consists of P_4S_{10} molecules, but it would not be safe to conclude that the vapor molecules consist of P_2S_5 , notwithstanding the fact that at the lowest temperatures the molecular weights appear to be approaching 222. It is more likely, in view of the strong tendency for phosphorus sulfides and oxides to contain four atoms of phosphorus, that the vapors of the pentasulfide consist of an equilibrium mixture of the lower sulfides and sulfur. The nature of the equilibrium mixture of the decomposition products is probably worth investigating, but an analysis based on the only moderately accurate vapor-density results cited would not be very significant.

In boiling carbon bisulfide solution, the observed molecular weights of P_4S_{10} vary from 449 to 491, which shows that the doubled formula is correct for the solutions and that doubtless the crystals also do not contain fundamental groups with a smaller number of atoms than does P_4S_{10} [see Stock and Thiel, *Ber.*, 38, 2720 (1905)]. The solubility of P_4S_{10} in carbon bisulfide is shown in Table 49.

Phosphorus pentasulfide hydrolyzes slowly with cold water and cold alkali, but more rapidly with hot water or hot alkali, to give mainly hydrogen sulfide and orthophosphoric acid together with other products that are set forth in more detail in Table 49.

$$P_4S_{10} + 16H_2O = 4H_3PO_4 + 10H_2S$$

When P_4S_{10} is heated with BiF_3 or PbF_2 , the volatile sulfofluoride PSF_3 is formed.

Inasmuch as no thermodynamic studies of the phosphorus sulfides have been made, one has to be content with qualitative notions of their stabilities, and these notions must depend for the most part on the results of vapor-density measurements. From these it is clear that the least stable sulfide is P_4S_{10} , since it is extensively decomposed at 600°, while P_4S_3 is the most stable, since it does not begin to decompose until heated to about 750°. The stability of P_4S_7 is intermediate, but the facts are not so clear in the case of P_4S_5 . A further qualitative estimate of the stabilities of the better-known sulfides may be gained from the following approximate heats of reaction [Treadwell and Beeli, *Helv. Chim. Acta*, 18, 1161 (1935)]:

4P (red) + 3S(s) =
$$P_4S_3(s)$$
 + 29,400 cal
 $P_4S_3(s)$ + 4S(s) = $P_4S_7(s)$ + 36,300 cal
 $P_4S_7(s)$ + 3S(s) = $P_4S_{10}(s)$ + \approx none cal

Hydrolysis of phosphorus sulfides

In the previous sections a detailed account has not been given of the products of the reactions between the phosphorus sulfides and water. This account was postponed so that the results for all of the compounds might be assembled in one place and thus provide the reader with a clear picture of the facts. The results to be given are due to Treadwell and Beeli [Helv. Chim. Acta, 18, 1161 (1935)]; the table shows the percentages of the total phosphorus or sulfur which was recovered as the reaction product listed.

	TABLE	50	
THE HYDROLVSIS	OF THE	PHOSPHORUS	SHIELDES

Product	Per Cent Recovered in Alkaline Solution*		Per Cent Recovered in Acid Solution			
	P ₄ S ₃	P ₄ S ₇	P ₄ S ₁₀	P ₄ S ₃	P ₄ S ₇	P4S10
H ₂ S	94.2 5 0 15.0 75.0 0.0 0 4‡	90.0 2.5 1.5 37.5 57.4	90 0 † 10.0 80.0		90.0 2.5 1.0 40.0 60.0	78.0 — 10.0 0.0 85 0

^{*} Following the alkaline hydrolysis, the solutions were acidified before the analyses were made.

It is noteworthy that even in the case of P₄S₁₀ appreciable amounts of hypophosphorous acid are formed, thus showing that the compound is

[†] In some cases no analysis was made for the product listed.

[‡] Expressed in moles per mole P4S3.

unstable and decomposes in the act of hydrolysis into a lower sulfide and sulfur.

Phosphorus sulfoxide, P4O6S4

If a mixture of phosphorus trioxide, P₄O₆, and sulfur in the proportions P₄O₆ + 4S is heated gradually in an atmosphere of nitrogen or carbon dioxide, the two substances melt at first to form two liquid layers of which the lower is sulfur, but at about 160° a violent and quantitative reaction occurs to form P₄O₆S₄. The preparation of the compound is best carried out by carefully heating from three to five grams of freshly distilled P4O6 with the calculated amount of sulfur in a sealed tube containing an atmosphere of nitrogen. When the temperature reaches 154-168°, an almost violent reaction sets in that is complete in two or three seconds. If greater amounts of P4O6 and sulfur are used, the violence of the reaction may result in an explosion which is accompanied by an intensely bright In the normal case, the reaction product consists of colorless feathery crystals and a yellowish-gray mass. When sublimed at about 140-150° in a vacuum the sublimate is colorless, but ordinary distillation yields a pale-yellow product [Thorpe and Tutton, J. Chem. Soc., 59, 1023 (1891)].

Phosphorus sulfoxide melts at about 102° to a viscous liquid which boils at 295°. Vapor-density measurements on the sublimed crystals at 350–400° show the molecular weight to be 343; the formula weight, 348, is within the experimental error equal to this. The vapor-density measurements show also that the compound does not decompose or dissociate at 400° or lower; this is also shown by the fact that the boiling point of the liquid does not change with time or with the amount distilled off.

The crystals of P₄O₆S₄ are tetragonal and are readily soluble in carbon bisulfide. They are also soluble in benzene, but solution is accompanied by a reaction that forms dark-colored organic products. Phosphorus sulfoxide deliquesces readily in air and is rapidly dissolved and hydrolyzed by water, the reaction being

$$P_4O_6S_4 + 6H_2O = 4HPO_8 + 4H_2S$$

The metaphosphoric acid formed is doubtless not the monomer, but the actual form is not known.

Phosphorus sulfoxide resembles, in its formula, its stability toward heat, and its reactivity toward water, more the pentoxide than the pentasulfide. The structure of the vapor molecules has been determined by the electron-diffraction method [Stosick, J. Am. Chem. Soc., 61, 1130 (1939)] and was found, as is shown by Fig. 34, to be similar to that for P₄O₁₀.

CHAPTER 6

The Oxyacids of Phosphorus

The well-established oxyacids of phosphorus are presented in the following list together with the name and a brief statement describing how each acid or one of its salts is prepared.

 H_3PO_2 Hypophosphorous Acid P + hot $Ba(OH)_2$ soln.

 H_3PO_3 Phosphorous Acid $PCl_3(g) + H_2O(l)$

 $H_4P_2O_6$ Hypophosphoric Acid $P(w) + O_2$ (moist); P(red) + NaClO

(HPO₃)_n Metaphosphoric Acid From H₃PO₄ heated to fuming.

 P_2O_5 + little water.

H₃PO₄ Orthophosphoric Acid P₂O₅ + water; P(w) + HNO₃

II₄P₂O₇ Pyrophosphoric Acid Heat Na₂HPO₄

Only the phosphorous and phosphoric acids can be said to possess acid anhydrides, namely, P₄O₆ and P₄O₁₀, respectively. Phosphorus tetroxide P₂O₄ might be formally regarded as the anhydride of hypophosphoric acid, but it does not combine with water to form hypophosphoric acid; a mixture of phosphorous and phosphoric acids results instead.

Hypophosphorous acid

This acid is prepared by an indirect method. A mixture of one part of white phosphorus, three parts of Ba(OH)₂, and water is heated to boiling for a few hours until all of the phosphorus has dissolved. The reaction is:

$$4P(w) + 3OH^{-} + 3H_{2}O = PH_{3} + 3H_{2}PO_{2}^{-}$$

and since PH₃ is a spontaneously inflammable gas, it is evolved and immediately burned, leaving only the hypophosphite in solution. Excess barium in the solution is precipitated as BaCO₃ by treatment with CO₂. After filtering, the solution is evaporated until crystals of barium hypophosphite Ba(H₂PO₂)₂·H₂O separate, and these are then dissolved in water (285 g in 5 l water). The resulting solution is treated with an equivalent amount of sulfuric acid, the barium sulfate precipitate is filtered off, and the filtrate is concentrated by evaporation, care being taken that the temperature at no time exceeds 130°. On cooling the concentrate to a few degrees below 0°, colorless crystals of H₃PO₂ separate out in a pure or very nearly pure form, only a small amount, if any, of

phosphorous or phosphoric acid being present [Thomsen, Ber., 7, 994 (1845); for modifications of Thomsen's method, see Marie, Compt. rend., 138, 1216 (1904)]. Solutions of hypophosphorous acid are quite stable at room temperature and may be purchased in the market.

Crystals of hypophosphorous acid, H₃PO₂, melt at about 26.5°, they are very soluble in water, and, indeed, when exposed to the air, they will deliquesce. The solutions are not oxidized by atmospheric oxygen, but they do act as strong, though sometimes slowly reacting, reducing agents. Characteristic reduction reactions are those with silver nitrate to give black, metallic silver, and with cupric salts to give cuprous salts and metallic copper. Although the solutions of hypophosphorous acid are stable at room temperature, they will decompose if heated to about 140° or above; crystals of H₃PO₂, as well as its salts, also decompose on heating, the decomposition products being principally phosphine, phosphoric acid, and some hydrogen. The formation of hydrogen is most noticeable in alkaline solution at around 100°; hydrogen is also formed in neutral solutions in the presence of catalysts such as palladium or finely divided copper, the former being the more effective catalyst. The rate of the decomposition reaction in alkaline solution at 91° and 100° has been studied by Sieverts and Loessner [Z. anorg. Chem., 76, 10 (1912)]; the reaction is

$$H_2PO_2^- + OH^- = HPO_3^- + H_2$$

and for a given concentration of hydroxyl ion

Conc. NaOH (moles/l)	$\begin{array}{c} k \times 10^4 \\ \text{(min}^{-1}) \end{array}$	$[k/({ m OH^-})^2] imes 10^4$
1.23	4.1	2.71
1.28	5.3	3.23
1.84	9.7	2.87
2.43	15.2	2.57
3.94	51.6	3.33
4.90	98.3	4.09

$$-\frac{d({\rm H_2PO_2^-})}{dt} = k({\rm H_2PO_2^-})$$

The values of k depend strongly on the (OH⁻), as the results in the accompanying tabulation for 100° show. The values of $k/(\mathrm{OH^{-}})^{2}$, while not strictly constant, do not vary more than would be expected for solutions of such varying ionic strengths.

The complete rate equation therefore appears to have the form:

$$-\frac{d(H_2PO_2^-)}{dt} = k_3(H_2PO_2^-)(OH^-)^2$$

which suggests that the hydrogen liberated does not come from either of the hydrogens bound to phosphorus (see below), but rather from the OH⁻. That is,

$$H_2PO_2^- + 2OH^- = H_2PO_3^- + O^- + H_2$$
 (slow)
 $O^- + H_2O = 2OH^-$ (rapid)

The reaction deserves further investigation.

Hypophosphorous acid is a moderately strong monobasic acid, only one hydrogen being available for neutralization. It is for this reason that the formula is sometimes written H_2POOH , it being supposed that the first two hydrogens are attached directly to the phosphorus atom. The correctness of this assumption has been proved by an X-ray study of $NH_4H_2PO_2$ [Zachariasen and Mooney, J. Chem. Phys., 2, 34 (1934)]

and by the Raman spectrum of H_3PO_2 [Simon and Fehér, Z. anorg. Chem., 230, 289 (1937)]. The ionization constant varies with the concentration of the acid, as the results in the table, due to Kolthoff, show [Kolthoff, Rec. trav. chim., 46, 350 (1927)]. From these data it is seen that the acid is moderately strong, the degree of ionization being 0.55 at 0.5 m. It is of interest at this point to compare the first ionization constants, K_1 , for dilute solutions of the

 $\frac{(H^+)(H_2PO_2^-)}{(H_3PO_2)} = K$

Conc. (moles/l)	$K \times 10^2$ at 18°
0.05	6.2
.01	4.0
.005	2.9
.0025	2.0
.001	1.0

three more common oxyacids of phosphorus, namely, hypophosphorous, phosphorous, and orthophosphoric. Unlike other series of acids (H₂SO₃, H₂SO₄, for example), the first ionization constants vary but little.

Oxyacid	<i>K</i> 1
H ₃ PO ₂ H ₃ PO ₃ H ₃ PO ₄	$\begin{array}{c} 1.0 \times 10^{-2} \\ 1.6 \times 10^{-2} \\ 0.8 \times 10^{-2} \end{array}$

The alkali and alkaline earth salts of hypophosphorous acid are all quite soluble in water, as are also most of those of the heavier metals. The sodium salt, NaH₂PO₂·5H₂O, has been used in medicine. Barium hypophosphite, Ba(H₂PO₂)₂·H₂O,

is soluble in water to the extent of about 30 g per 100 g of water at ordinary temperatures, and is less soluble in alcohol. The oxidation potential for the half-cell reaction $H_3PO_2 + H_2O = H_3PO_3 + 2H^+ + 2E^-$ is estimated to be 0.59 volts, that is, it lies above hydrogen and between Fe, Fe⁺⁺ and Zn, Zn⁺⁺ (Latimer, Oxidation Potentials). Although H_3PO_2 and its salts are powerful reducing agents, they may be reduced to phosphine by the stronger reducing agent zinc.

It has already been pointed out that aqueous hypophosphorous acid, while a very strong reducing agent, is often slow to react with oxidizing agents. This fact is exemplified by the reactions with the halogens and with mercuric and cupric chlorides, all of which proceed at measurable rates. The reaction with iodine [Mitchell, J. Chem. Soc., 117, 1322 (1920)] and those with bromine and chlorine [Griffith and McKeown,

Trans. Faraday Soc., 30, 530 (1934)] have been carefully investigated, and the results are of sufficient importance to warrant a somewhat detailed consideration. The first, main reaction is

$$H_3PO_2 + X_2 + H_2O = H_3PO_3 + 2H^+ + 2X^-$$

the subsequent reaction,

$$H_3PO_3 + X_2 + H_2O = H_3PO_4 + 2HX$$

being very slow, in acid solution when X_2 is iodine, and measurably rapid with Br_2 and Cl_2 only at low acid concentrations.

It is found that the same mechanism applies to all three of the halogen reactions; consequently the one with bromine will be selected as a representative of the group.

$$k_1$$
 $H_2PO_2^- + Br_2$ or $Br_3^- + H_2O = H_3PO_3 + H^+ + 2Br^-$ (slow)
 $H_2PO_2^- + H^+ = (H_3PO_2)_1$ (rapid, reversible)
 k' $(H_3PO_2)_1 = (H_3PO_2)_1$ (slow)
 k'' $(H_3PO_2)_{11} = (H_3PO_2)_1$ (moderately rapid)
 k_2 $(H_3PO_2)_{11} + Br_2$ or $Br_3^- + H_2O = H_3PO_3 + 2H^+ + 2Br^-$ (rapid)

With iodine the first step is so slow that $k_1 \approx 0$. This mechanism is in accord with the following experimentally determined rate equation in which the measured rate constants k_1 , k_2 , and so forth, are dependent on the concentrations of Br⁻, H⁺, and other reactants.

$$-\frac{d(\Sigma H_3 PO_2)}{dt} = (\Sigma H_3 PO_2)(\Sigma Br_2) \left\{ k_1 \alpha + \frac{k_2 k'(1-\alpha)}{k'' + k_2(\Sigma Br_2)} \right\}$$
$$k_{obs} = k_1 \alpha + \frac{k_2 k'(1-\alpha)}{k'' + k_2(\Sigma Br_2)}$$

where α is the degree of ionization of H_3PO_2 . At low acid concentrations (10⁻³ to 10⁻⁹ m), $\alpha \approx 1$, and the second term in brackets is negligible; under these conditions it is found that k_1 is proportional to

$$\frac{1}{K_3 + (Br^-)}$$

where

$$K_3 = \frac{(\mathrm{Br_2})(\mathrm{Br}^-)}{(\mathrm{Br}_3^-)}$$

From this dependence of k_1 on (Br⁻) it follows that $H_2PO_2^-$ reacts with Br₂ and not with Br₃ or HBrO, because $\Sigma Br_2 = (Br_2) + (Br_{3})$ and

$$\frac{(\mathrm{Br_2}) + (\mathrm{Br_3^-})}{K_8 + (\mathrm{Br^-})} = \frac{(\mathrm{Br_2}) + (1/K_3)(\mathrm{Br_2})(\mathrm{Br_3^-})}{K_8 + (\mathrm{Br^-})} = \frac{(\mathrm{Br_2})}{K_3}$$

Hence, when $\alpha \approx 1$

$$-\frac{d\Sigma \mathrm{H_3PO_2}}{dt} = \frac{k_1}{K_3} \left(\Sigma \mathrm{H_3PO_2}\right) (\mathrm{Br_2})$$

When (Br⁻) = 1.137, $k_1 = 3.9$ at 10° and 0.975 at 0.25°, with concentrations expressed in moles/liter and the time in minutes. At high acid concentrations, $k_1\alpha$ becomes small compared with the term in k_{obs} having the factor $(1 - \alpha)$.

The most interesting feature of the mechanism is the assumption of two forms of H₃PO₂, with a slow, reversible reaction involved when one form goes over into the other. Mitchell renders these two forms more specific by assuming the reaction

$$H_3PO_2 + H_2O = H_5PO_3$$
 (slow, reversible)

k' is found to be directly proportional to (H^+) , and at 10° and $(H^+) = 1$ it has the value 0.041. If the reactivity of $(H_3PO_2)_{II}$ is greater than that of $(H_3PO_2)_{I}$ with other oxidizing agents, the values of k' should be equal and independent of the oxidizing agent. That this is the case is shown by the fact that at 25° , k' = 0.21, which is effectively equal to the value 0.256 found in the iodine reaction at the same temperature.

The catalytic effect of H^+ on the reaction between the two forms of H_3PO_2 recalls that attending several hydrolytic reactions, and it suggests that H_3O^+ is the carrier of the water. Accordingly, we may replace Mitchell's reaction by

$$H_3PO_2 + H_3O^+ = H_5PO_3 + H^+$$
 (slow)
 $H^+ + H_2O = H_3O^+$ (rapid)

It is not possible to evaluate k'' and k_2 separately; only the ratio k''/k_2 appears in the rate equation. When the acid concentration is high, the term $k_1\alpha$ in brackets in

$$k_{obs} = \left\{ k_1 \alpha + \frac{k_2 k'(1-\alpha)}{k'' + k_2(\Sigma \operatorname{Br}_2)} \right\}$$

is small compared to the second term. Thus with (HBr) = 1.137 and $(\Sigma Br_2) = 0.0025$, $k_1\alpha = 0.3$, while $k_{ots} = 4.36$. In experiments with added (H₂SO₄) = 2.92 m and $(\Sigma Br_2) = 0.002$ m, k_{obs} varied but little with (Br⁻) ($k_{obs} = 3.2$ at 0.5 n and 4.2 at 0.025 n Br⁻), and consequently the reactant with (H₂PO₂)_{II} appears to be both Br₂ and Br₃⁻, since the second term in brackets, and hence k_2 , does not vary with (Br⁻). HBrO is not the reactant, since the ratio k''/k_2 is found to be directly and not inversely proportional to the acid concentration.

For $(H^+) = 1$, k''/k_2 was found to be of the same order of magnitude for all three of the halogen reactions.

Reaction	Temp. (°C)	k''/k2
I ₂	25 10 0 0	80 140 150 120

Since k''/k_2 is independent of the halogen acting as oxidizing agent, and since, moreover, its temperature dependence was found to be small, it may be assumed that $(H_3PO_2)_{11} + X_2 + X_3^-$ takes place at every collision; that is, $k_2 \approx 4 \times 10^{12}$, and hence $k'' \approx 3 \times 10^{10}$. This assumption permits the evaluation of the equilibrium constant

$$K = \frac{(H_3 PO_3)_{II}}{(H_3 PO_2)_I} = \frac{k'}{k''} \approx 10^{-12}$$

In arriving at these values, it is assumed further that the dependence of k''/k_2 on (H⁺) implies the dependence of k'' but not of k_2 on (H⁺), and this seems reasonable in view of the catalytic effect of H⁺ on the reaction (H₃PO₂)₁ = (H₃PO₂)₁₁.

We may summarize the results of the study of the hypophosphorous acid-halogen reactions in terms of the following more specific mechanism:

The chlorine reaction is more rapid than the bromine reaction; the values of k_{obs} at 0.2° and (HCl) = 1.012 n vary from 2.82 to 4.46, while the corresponding quantity in the bromine reaction varies, for (HBr) = 1.137 n, from 0.305 to 1.706. The iodine reaction is the slowest of the three under the same conditions of concentration and temperature.

It is a striking fact that the reduction of $HgCl_2$ and $CuCl_2$ in acid solution is also in accord with a mechanism involving the slow reversible reaction $(H_3PO_2)_1 = (H_3PO_2)_{II}$. These two reactions and the iodine reaction differ from the bromine and chlorine reactions in that in the former the rate of oxidation of $(H_3PO_2)_1$ or $H_2PO_2^-$ is too small to be measurable. Accordingly, the rate-determining step for moderate concentrations of oxidizing agent will be

$$(H_3PO_2)_1 = (H_3PO_2)_{11}$$

or better,

$$H_3PO_2 + H_3O^+ \underset{k''}{\rightleftharpoons} H_5PO_3 + H^+$$

followed by the moderately rapid reaction

$$k_2$$
 $H_5PO_3 + I_3 = H_3PO_3 + 2H^+ + 3I^-$

At very low concentrations of I_3^- , $CuCl_2$, or $HgCl_2$, the rate of the second reaction becomes small, and the rate of reduction of the oxidizing agent is no longer governed mainly by the rate at which $(H_3PO_2)_1$ goes over into $(H_3PO_2)_{11}$. But when the concentrations of I_2^- , $CuCl_2$, or $HgCl_2$ are moderate or large,

$$-\frac{d({\rm H_3PO_2})}{dt} = k({\rm H_3PO_2})({\rm H^+})$$

That is, the rate is practically independent of the concentration of oxidizing agent. The following values of k for the three oxidizing agents I_2^- , $CuCl_2$, and $HgCl_2$ make it seem probable that the rate-determining step is the same in all three cases [Mitchell, J. Chem. Soc., 121, 1624 (1922) et ante]. The corresponding constants for the bromine and chlorine reactions are included for comparison.

Agent (1	k (moles/l) ⁻¹ min ⁻¹ at 25°C	k at 0.2°C
I ₃ CuCl ₂ HgCl ₂ Br ₂ Cl ₂	0.256 .222 .268 .21	0 012 .029

The values of the constants for the moderately rapid follow-up reaction for the halogens have already been discussed in connection with the bromine reaction. No attempt has been made to isolate the two forms of hypophosphorous acid; further evidence of their reality is certainly a reasonable thing to search for.

The quantitative determination of hypophosphites may be accomplished by first oxidizing them to phosphates (for example, with H_2O_2 in warm alkaline solution) and then precipitating the phosphate by well-known methods. It is often more convenient, however, to make use of volumetric methods, and these have been repeatedly investigated, but most recently by Kolthoff [Rec. trav. chim., 46, 350 (1927)]. In one

method, the hypophosphite solution is made neutral with NaHCO₃ and then treated with standard hypobromite solution; one-half hour is allowed for complete reaction. Potassium iodide and hydrochloric or sulfuric acid are then added. The liberated iodine is titrated with standard thiosulfate. A phosphate buffer would probably be superior to the bicarbonate. In another method a sulfuric acid solution of the hypophosphite is treated with excess standard permanganate, and after two hours' standing the excess permanganate is determined iodometrically or otherwise. In both methods the hypophosphite is oxidized to phosphate. Solutions containing only H₂PO₂ may be titrated with a strong base.

Phosphorous acid, H₃PO₃

The common form of phosphorous acid is the ortho-acid, H_3PO_3 , but there does exist the meta-acid, HPO_2 , which is formed when phosphine is burned in air. In aqueous solution HPO_2 goes over into the ortho-acid. Since the orthophosphorous acid is much the more common acid, it will be referred to simply as phosphorous acid. Phosphorous acid results when the anhydride P_4O_6 is shaken rapidly with ice water, but this does not provide the most convenient method for its preparation, since the P_4O_6 itself is not easily prepared.

Phosphorous acid is prepared by passing a stream of air through phosphorus trichloride, PCl_3 , at 60° and then through ice-cold water. With 100 cc of water, the air stream should have such a velocity that about four hours are required for the formation of a nearly solid mass of H_3PO_3 crystals. This mixture is filtered by suction, and the residue is washed with small amounts of ice-cold water. The crystals are dried in a vacuum. The reaction of hydrolysis is

$$PCl_3 + 3H_2O = H_3PO_3 + 3HCl$$

The acid may also be prepared by adding PCl₃ to concentrated hydrochloric acid and then evaporating the resulting solution until the tem-

t (°C)	S (g)
0	75.58
25.4	82.64
39.4	87.42

perature reaches 180°. At this temperature all of the HCl is driven off and the solution contains mainly H₂PO₂ and some H₂PO₄.

Solid phosphorous acid melts at 71.7–73.6°, it will absorb moisture from the air and deliquesce, and it is very soluble in water. Per 100 g of solution, the accompanying weights S of H_3PO_3 are found in the saturated solutions.

Much purer phosphorous acid may be prepared by treating lead phosphite with H₂S. Sodium phosphite is converted to the insoluble lead salt by mixing solutions of Na₂HPO₃ and lead acetate. After thoroughly washing the lead salt, PbHPO₃, a suspension of it in water is treated with H₂S, the resulting mixture is filtered, and the filtrate is

heated to drive off the excess hydrogen sulfide. This solution will be practically free of phosphate, and it may be evaporated, if desired, to obtain crystals of H₃PO₃.

Both the pure acid and its concentrated solutions will decompose if heated strongly, the decomposition products being phosphine and orthophosphoric acid,

$$4H_3PO_3 = 3H_3PO_4 + PH_3$$

Atmospheric oxygen does not oxidize phosphorous acid solutions at ordinary temperatures at an appreciable rate; in the presence of iodine

and light, oxygen will oxidize H₃PO₃ fairly rapidly, but this catalyzed reaction is slow in the dark.

Although phosphorous acid contains three atoms of hydrogen in the molecule, only two of them are capable of ionizing in aqueous solutions. The two ionization constants have been redetermined recently by Kolthoff [Rec. trav. chim., 46, 350 (1927)]. (See accompanying table.) Because

Concentration (moles/l)	$\begin{array}{c} K_1 \times 10^2 \\ \text{at } 18^{\circ} \end{array}$	$K_2 \times 10^7$ at 18°
1 102	6.2	
0 05	5.4	2 1
.01	3.9	2
.005	-	2
.002	2.8	_
.001	1.6	

phosphorous acid is only dibasic, it is supposed that one of the three hydrogens is bonded directly to the phosphorous atom:

Here, as in hypophosphorous acid, the coordination number of phosphorus is four rather than three.

As a consequence of its dibasic character and the fact that the second hydrogen ionizes less readily than the first, phosphorous acid forms two series of salts, of which Na₂HPO₃·5H₂O (m.p., 53°) and NaH₂PO₃·2½H₂O

t (°C)	S
0	9.07
25	7.47
50	6.09
98	4.24

are representatives. The first of these is very soluble in water, 82.21 g per 100 g of solution at 25.2°, and the second to the extent of 56 g in 100 g of water at 0°. The lithium salt, Li₂HPO₃·H₂O is much less soluble, and its solubility, S, in g/100 g solution, decreases with increase in temperature, as shown in the tabulation. Lithium dihydrogen phosphite, LiH₂PO₃, is very soluble in water, as is also KH₂PO₃. The barium salt, BaHPO₃·½H₂O, is sparingly soluble in

water—only 0.6270 g in 100 g of solution at 30°—and thus differs from

the hypophosphite; the salt dissolves more freely in acids and ammonium chloride solutions, as is to be expected. Phosphorous acid is capable of forming complexes with a number of metals, for example, $KCr(HPO_3)_2\cdot 12H_2O$. The phosphite phosphorus may act as a nucleus in such complexes as $Na_3[P(Mo_2O_7)_3]\cdot 10H_2O$.

When sodium phosphite, $NaH_2PO_3\cdot 2\frac{1}{2}H_2O$, is heated in a vacuum at 160° until water is no longer lost, sodium pyrophosphite, $Na_2H_2P_2O_5$, is formed. • This salt is soluble in water, and the solutions are quite stable at ordinary temperatures, but on boiling, hydrolysis to the orthophosphite takes place. In acid solution, the rate of hydrolysis is more rapid but is still measurable.

Phosphorous acid in aqueous solution is a very strong reducing agent, although frequently it reacts but slowly with the oxidizing agents. For example, it reduces Ag^+ to metallic silver, and it reacts with hot concentrated sulfuric acid to form H_3PO_4 and SO_2 . At room temperatures it reacts at slow but measurable rates with the halogens, dichromate, and mercuric chloride, and only very slowly if at all with peroxysulfate unless iodine or silver ion is present. At $60-70^\circ$ sulfurous acid is reduced to sulfur and some hyposulfurous acid by phosphorous acid. The oxidation potential of the couple, H_3PO_3 , H_3PO_4 , in acid solution is estimated by Latimer [Oxidation Potentials] to be 0.20 volts; in alkaline solution the potential HPO_3^- , PO_4^- is given as 1.05 volts.

The rate of oxidation of phosphorous to phosphoric acid by the halogens has been investigated carefully by Mitchell [J. Chem. Soc., 123, 2241 (1923)], Berthoud and Berger [J. Chim. Phys., 25, 568 (1928)], and Griffith and McKeown [Trans. Faraday Soc., 29, 611 (1933)]. The mechanisms proposed for the three reactions differ in that tautomeric forms of H_3PO_3 are assumed by Mitchell (but not by Berthoud and Berger) in the iodine reaction, and a difference in reactivity of $H_2PO_3^-$ and HPO_3^- with the halogen is assumed in the bromine and chlorine reactions. The latter mechanism seems somewhat more acceptable, and it appears likely that the iodine reaction can be explained by means of it also.

The equation for the main reaction is, in the case of bromine,

$$H_3PO_3 + Br_2 + H_2O = H_3PO_4 + 2H^+ + 2Br^-$$

and the experimentally established rate equation has the form

$$\frac{d(H_3PO_4)}{dt} = k_1(H_2PO_3^-)(Br_2) + k_2(HPO_3^-)(Br_2)$$

Molecular bromine, Br₂, and not Br₃ or HBrO, is the reactive bromine compound. The constants have the following values:

$$k_1 = 10.1 \left(\frac{\text{mole}}{1}\right)^{-1} \text{min}^{-1} \text{ at } 10^{\circ}, \text{ and } 25.3 \text{ at } 20^{\circ}$$

$$k_2 = 4.8 \times 10^7 \left(\frac{\text{mole}}{1}\right)^{-1} \text{min}^{-1} \text{ at } 10^\circ, \text{ and } 916 \times 10^7 \text{ at } 20^\circ$$

The investigation of the chlorine reaction presents some difficulties, and the values of k_1 and k_2 are not given. Empirically the rate may be expressed by

$$\frac{d(H_3PO_4)}{dt} = k(\Sigma Cl_2)(\Sigma H_3PO_3)$$

and k has the accompanying representative values at 10°. Concentra-

tions are expressed in moles per liter and the time in minutes. The reader may assure himself that the rate equation and the constants k for the chlorine reaction are not altogether inconsistent with the mechanism assumed for the bromine reaction. It is of interest that neither HClO nor HBrO is a reactant in the rate-determining steps. These intermediates are formed in the rate-

(HCl)	(NaCl)	k
0.1265 .2025 .253 .354 .506 1 012	0.8855 .813 .762 .661 .508	4.73 2.63 2.075 1.402 0.9145 .3924

determining steps of many reactions in which an oxyacid oxidizes a halide, X⁻; they are the active reactants in the oxidation by halogens in several reactions, but they are not invariably the intermediates in all halogen reactions, as the hypophosphorous and phosphorous acid oxidations show.

It cannot be said that the mechanism of the iodine reaction has been firmly established. Mitchell postulates two tautomeric forms of H₃PO₃ to explain his results, but it is not certain that this is necessary. Empirically the rate equation is

$$\frac{d(H_3PO_4)}{dt} = k_1(I_2)(\Sigma H_3PO_3) + \frac{k_2(\Sigma H_3PO_3)}{1 + k_3/(I_2)}$$

 k_1 , k_2 , and k_3 being somewhat dependent on (H⁺) and other factors as well. The following values at 25° will give an idea of the order of magnitude of the rate. Concentrations are expressed in moles per liter of solution and the time is in hours.

(H+)	k_1	k ₂	k _s
0.0502	2.98	0.00189	0.0025
.1255	2.00	.00465	.0048
.1063	2.01	.00294	.0025
.0829	1.93	.00385	.0040
.1533	1.65	.00682	.0060

At high acid concentrations, the reaction becomes so slow that weeks may be required for its completion.

When iodine is used for analytical purposes, the solutions should be nearly neutral or slightly alkaline. The most satisfactory method of volumetric analyses for the phosphites makes use of iodine as an oxidizer and of a phosphate buffer which is so adjusted that the solution is faintly acid. A phosphate buffer is superior to a sodium bicarbonate buffer because the latter cannot be safely acidified for the purposes of the thiosulfate titration of the excess iodine [Van Name and Huff, Am. J. Sci., 91 (1918)].

The iodine reaction was studied by Berthoud and Berger (loc. cit.) in both acid and neutral solutions, and it is their conclusion that the mechanism is not the same in the two cases. Their experiments were carried out with such an excess of H₃PO₃ or Na₂HPO₃ over the iodine that the phosphite concentration did not change appreciably during a run. In acid solution the rate equation is

$$\text{II}_3\text{PO}_3 + \text{I}_2 + \text{H}_2\text{O} = \text{H}_3\text{PO}_4 + 2\text{II}^+ + 2\text{I}^- - \frac{d(\Sigma \text{I}_2)}{dt} = k_{\bullet}(\Sigma \text{I}_2)(\text{H}_3\text{PO}_3)$$

 $k_{\mathbf{a}}$ increases slightly with acid concentration but is not affected by changes

(HCl)	$k_{\rm a} \times 10^2$
$0 1 \\ .2 \\ .5 \\ .1 \\ (H_{3}PO_{3} = 0.4)$	3 36 4.0 4 6 3.86

in (I⁻), which suggests that the active reactants are $\rm H_3PO_3$, undissociated, and both $\rm I_2$ and $\rm I_3^-$. The values of k_a at 35° for mixtures of varying (HCl), but all having initially (I⁻) = 0.1 n, (H₃PO₃) = 0.2 m, $\rm \Sigma I_2 \approx 0.005$ m, are shown in the table (concentrations in moles/l and time in minutes). At 25° and 45°, k_a has the values 0.0094 and 0.097, respectively. The small variation of k_a with

(H⁺) is effectively removed when the ionization of the H₃PO₃ is taken in account. In acid solution an approximate mechanism is then represented by the equation

$$H_3PO_3 + I_2 \text{ (and } I_3^-) + H_2O = H_3PO_4 + 2H^+ + 2I^-$$

In nearly neutral solutions, the rate of oxidation of phosphites is much more rapid than in acid solution; and since in acid solution the rate depends but little on the acid concentration, the much greater rate in nearly neutral solutions suggests that the mechanism is different in the two cases. The following rate constants k_n are defined by the equation

$$-\frac{d(\Sigma I_2)}{dt} = k_n(\Sigma I_2)(\Sigma H_3 PO_3)$$

In the neutral solutions the phosphite is present principally as HPO; and H.POT. The initial concentration of iodine was $\Sigma I_2 \approx .01$ m. The dependence on (I⁻) is not one of $Na_2HPO_3 = 0.0833 \text{ m}$, HAc = 1 n, inverse proportionality, but rather one in which $k_n = k_1 + k_2/(I^-)$, and this indicates that I2 and I2 react at different rates with the hypophosphites; I2 reacts the more rapidly.

The effect of changes in (H+) in the buffered solutions is shown by the results in the second table. It is evident

centration of hydrogen ion. $Na_2 HPO_3 = 0.0833 \text{ m}, KI = 0.1 \text{ n},$ $NaAc = 0.5 n, t = 0^{\circ}$

(HAc)	k _n
0 25 5 1 0	0.184 .078 .030

 $NaAc = 0.5 \text{ n, t} = 25^{\circ}$

(KI)	k _n
0.166	0.48
.3058	.30
.666	.20

that k_n increases more rapidly than in direct proportion to the con-Finally, the effect of hypophosphite concentration is to be seen in another series of experiments. In this case the constants have been corrected for the effect of Na₂HPO₃ on the concentration of H⁺. The lack of complete constancy in k_n here may indicate that the $H_2PO_3^$ and HPO ions react at different rates with I₂ or I₃. No account has been taken, however, of the effect of total salt

concentration, a fact which may account for such variations in k_n as are observed. A complete and accurate analysis of all of the rate data for the iodine reaction has not been made, but, according to Berthoud and Berger, a fairly satisfactory mechanism consists

of the two following reactions:

$$HPO_3^- + I_2 + OH^- = H_2PO_4^- + 2I^- + H_2PO_3^- + I_2 + OH^- = H_3PO_4 + 2I^-$$

and similar equations with I_3^- in place of I_2 . The fact that k_n increases with total salt concentration could be regarded as evidence for one or more reactions between ions of like sign. The first of these reactions would be more rapid KI = 0.1 n, HAc = 0.5 n, $NaAc = 0.5 n, t = 0^{\circ}$

(Na ₂ HPO ₃) (mole/l)	k _n
0.04166	0.056
.0833	.059
.166	.074

than the second. In acid solution the concentration of OH⁻ would be too low for these reactions to be important, and in neutral or alkaline solution the concentration of undissociated H₃PO₃ is so small that the direct reaction with it is negligible. A very thorough investigation of the iodine reaction should clear up many points that are obscure.

Phosphorous acid reacts slowly with mercuric chloride to form phosphoric acid and mercurous chloride according to the equation

$$H_3PO_3 + 2HgCl_2 + H_2O = H_3PO_4 + 2H^+ + 2Cl^- + 2HgCl$$

The rate increases with increase in acid concentration, and the reaction is first-order with respect to phosphorous acid but is a more complicated function of the concentration of mercuric chloride [Linhart, Am. J. Sci., 35, 353 (1913)]. In hydrochloric acid solution, it is known that mercuric chloride exists in the form of complexes, principally as $H_2Hg_2Cl_6$ together with other less well-established compounds. If it is assumed that the active reactant is $HHgCl_3$, and that it is in equilibrium with $H_2Hg_2Cl_6$ according to the equation

$$H_2Hg_2Cl_6 = 2HHgCl_3$$

and further that the slow reaction is

$$H_3PO_3 + HHgCl_3 = H_2PO_3 + 2H^- + 2Cl^- + HgCl$$

then, if the rapid follow-up reaction is

$$2H_2PO_3 + H_2O = H_3PO_3 + H_3PO_4$$

the rate equation takes the form

$$\frac{d[\text{HgCl}]}{dt} = k'(\text{H}_3\text{PO}_3)(\text{HHgCl}_3)$$

It is assumed further that both $H_2Hg_2Cl_6$ and $HHgCl_3$ ionize freely into H^+ , $Hg_2Cl_6^-$, and $HgCl_3^-$, so that the concentration of $HHgCl_3$ is small, and

$$(HHgCl_3) = K_1(H^+)(HgCl_3^-)$$

In addition to this relation,

$$(HgCl_{2}^{-}) = K_{2}(Hg_{2}Cl_{3}^{-})^{\frac{1}{2}}$$

Using these relations in the rate equation, there results

$$\frac{d[\text{HgCl}]}{dt} = k' K_1 K_2 (\text{H}_3 \text{PO}_3) (\text{H}^+) (\text{Hg}_2 \text{Cl}_6^-)^{1/2}$$
$$= k(\text{H}_3 \text{PO}_3) (\text{H}^+) (\text{Hg}_2 \text{Cl}_6^-)^{1/2}$$

The values of k obtained by Linhart are shown in the following table together with the initial concentrations, in moles per liter of solution, of the reactants. The time is expressed in minutes.

HgCl ₂	H ₂ PO ₂	HCl	t (°C)	$k \times 10^2$
0.132	0.0575	0.264	60	18.9
"	"	.132	"	20.7
"	"	.100	"	22.0
**	0.0585	2.000	25	0.40
"	"	1.000	"	. 256
"	"	0.500	"	.278
"	"	.264	"	.278 to .315
"	"	. 132		. 32 34

When it is considered that the initial concentrations of the electrolytes are rather large and vary over a large range, and hence the salt effects may be appreciable, the values of k are satisfactorily constant. The one disquieting thing about the mechanism involves the rapid follow-up decomposition of metahypophosphoric acid.

$$2H_2PO_3 + H_2O = H_3PO_3 + H_3PO_4$$

The common form of this acid is $H_4P_2O_6$, and its rate of decomposition at room temperature is quite slow in dilute acid solutions. Nothing is known about the metahypophosphoric acid, and it must be assumed that two H_2PO_3 will combine with water to form H_3PO_3 and H_3PO_4 rather than form the less reactive dimer $H_4P_2O_6$. This does seem curious but, of course, is not impossible, so far as we know. It must be obvious by now that the mechanisms of reactions frequently involve steps which resist detailed study, and this is not a very satisfactory state in which to leave them. We are not able, at this time, to do any better.

Hypophosphoric acid, H₄P₂O₆

This acid is not formed when phosphorus tetroxide is dissolved in water, although this oxide would appear to be its anhydride. The reason for this result may be that the heat developed at the surface of the P_2O_4 , upon reaction with water, brings about the decomposition of any $H_4P_2O_6$ that may be formed at first. The reaction of P_2O_4 with water is $P_2O_4 + 3H_2O = H_3PO_3 + H_3PO_4$, and acid solutions of $H_4P_2O_6$ hydrolyze slowly to give the same products.

Hypophosphoric acid can be prepared by partially submerging sticks of white phosphorus in water or sodium acetate solution and allowing air to have limited access to the mixture. Ordinarily, holes are forced lengthwise through the phosphorus sticks and knotted strings threaded through the holes. The sticks are suspended by the strings in the sodium acetate solution so that only about one centimeter of the length is above the liquid and exposed to the air. When the exposed phosphorus is oxidized, a further length is exposed by raising the string. A manyholed porcelain plate provided with corks may be used to hold the upper ends of the strings, and if the plate rests on the beaker of solution and a few of the holes are left unstoppered, the sticks may be raised readily and proper access of air will be provided [Bansa, Z. anorg. Chem., 6, 132 (1894); Ber., 39, 2837 (1906)]. As a result of the oxidation of the phosphorus under these conditions, there is formed phosphorous, hypophosphoric, and phosphoric acids, which, with the sodium acetate solution, form the acid salts. The salt Na₂H₂P₂O₆·6H₂O is much less soluble in water (2 g/100 g H₂O) than are NaH₂PO₃·2½H₂O and NaH₂PO₄·H₂O, and it forms a crystalline precipitate on the bottom of the beaker.

precipitate is washed and recrystallized to purify it. By treating a solution of the sodium salt with lead acetate, the slightly soluble, white lead hypophosphate is formed; and after careful washing, this can be suspended in water and treated with hydrogen sulfide to obtain a solution of hypophosphoric acid alone. On evaporating this solution in a vacuum desiccator containing calcium chloride, rhombic crystals of the hydrated free acid H₄P₂O₆·2H₂O are obtained.

Hypophosphoric acid may also be prepared by causing nitric acid solutions of silver or copper nitrate to react with white phosphorus.

A method developed by Rosenheim and Pinsker [Ber., 43, 2003 (1910)] consists in the anodic oxidation of copper phosphide (14% P) in a 2% solution of sulfuric acid with a potential of 3-10 volts. Copper metal is used as a cathode. The yield is about 60%, the remainder of the phosphorus being converted to orthophosphoric acid. Very little if any phosphorous or hypophosphorous acid is formed if the potential applied is 3 volts or above. Copper ions are formed in the oxidation but are readily removed by electrolysis with plain platinum electrodes.

Another and more convenient method for the preparation of hypophosphates is that of Probst [Z. anorg. Chem., 179, 155 (1929)], in which red phosphorus is slowly added to a well-stirred and cooled (5°) solution which is 0.2 m in NaOH and 1.5 m in NaClO. The reaction is

$$4\text{NaClO} + 2\text{P (red)} + 2\text{H}_2\text{O} = 4\text{NaCl} + \text{H}_4\text{P}_2\text{O}_6$$

and a 25% yield of pure Na₂H₂P₂O₆·6H₂O is obtainable.

Pure, hydrated hypophosphoric acid is a colorless, deliquescent solid which decomposes on heating into H₃PO₃ and H₃PO₄ and which is very soluble in water. The aqueous solutions are not affected by atmospheric oxygen and when cold do not decompose at a measurable rate; when heated, decomposition into H₃PO₃ and H₃PO₄ takes place.

The ionization constants of the acid have been determined by Treadwell and Schwarzenbach [Helv. Chim. Acta, 11, 405 (1928)] by an electromotive force method. For purposes of comparison, approximate ionization constants of ortho- and pyrophosphoric acid are also included in the following table.

TABLE 51
IONIZATION CONSTANTS OF HYPO-, ORTHO-, AND PYROPHOSPHORIC
ACIDS

	K 1	K ₂	K ₃	K.
H ₄ P ₂ O ₆		10 ⁻² 81 10 ^{-1.96} 10 ^{-7.24}	10 ^{-7 27} 10 ^{-6 54} 10 ^{-12 0}	10 ^{-10 03} 10 ^{-8 44} —

One concludes from these results that hypophosphoric acid is not very strong and that in its successive ionizations it resembles pyrophosphoric acid. Of interest is the fact that K_1 and K_2 for $H_4P_2O_6$ are not greatly different; this suggests but does not prove that the structure of the acid is symmetrical with respect to two OH groups. The freezing points of hypophosphoric acid are not in accord with the ionization constants of Treadwell and Schwarzenbach, as the following results of Rosenheim and Pinsker show [Ber., 43, 2003 (1910)], where C is the molar concen-

tration, ΔT is the observed freezing-point lowering, and α is the degree of ionization calculated on the assumption that the molecular species present result mainly from the reaction

$$H_4P_2O_6 = 2H^+ + H_2P_2O_6^-$$

In arriving at values for α , the state of the solutions has doubtless been oversimplified,

\boldsymbol{C}	ΔT (°C)	α
0 612 228 .131 .0158 0079	1 947 0 764 .471 .065 035	0.36 .40 .46 .60

but certainly the freezing-point lowerings show much greater ionization than the values of K_1 and K_2 in Table 51 permit. Moreover, the molar conductances at 25.6° of $H_4P_2O_6$ do not differ greatly from those of

C (mole/l)	ΛH ₄ P ₂ O ₆	Λн4Р2О7
0.050	329.4	353.8
.0125	417.6	438.6
.00125	589.7	602.0

the presumably stronger acid $H_4P_2O_7$, and this fact indicates that the two acids are of approximately equal strength. It can scarcely be said that the data are in accord; no definite statement about the ionization constants K_1 and K_2 can be safely made yet.

Salts of the type $\text{Li}_4P_2O_6.7H_2O$, $\text{Na}_4P_2O_6.10H_2O$, $\text{Na}_2\text{NiP}_2O_6.12H_2O$, $\text{Na}_3\text{HP}_2O_6.9H_2O$, and $\text{Na}_2\text{H}_2P_2O_6.6H_2O$ are well known, and their existence shows that all four hydrogens are capable of ionizing; hypophosphoric acid is a tetrabasic acid.

The formula for hypophosphoric acid was not established with any certainty until recently. It has been argued on the basis of the above conductance and freezing-point data that the formula was simply H₂PO₃; the same data, together with the results of rate measurements, have been cited as evidence for the doubled formula H₄P₂O₆. If the formula were H₂PO₃, the molecule would contain an odd number of extranuclear electrons and hence would be paramagnetic. Bell and Sugden [J. Chem. Soc., 48 (1933)] found, however, that the hypophosphates Na₂H₂P₂O₆, Na₂H₂P₂O₆·6H₂O, Ag₄P₂O₆, and (CN₃H₅)₄H₄P₂O₆·2H₂O are all diamagnetic, and therefore the doubled formula, H₄P₂O₆, is the one to be accepted.

It has already been remarked that sodium dihydrogen hypophosphate is much less soluble in water than are the corresponding phosphite and

and

phosphate. This slight solubility extends to the normal lithium salt and other sodium salts, as the following values show. The potassium salts are more soluble than the corresponding sodium salts.

Temp.	Li ₄ P ₂ O ₆ ·7H ₂ O (g/100 g soln.)	Na ₄ P ₂ O ₆ ·10H ₂ O (g/100 g H ₂ O)	Na ₃ HP ₂ O ₆ ·9H ₂ O (g/100 g H ₂ O)	Na ₂ H ₂ P ₂ O ₆ ·6H ₂ O (g/100 g H ₂ O)
0	0.1018			_
25	.0575	1.49 (25.2°)	4.67	2.00
30		1.72		
35			7.16	3.08
40	.0480	2.27	_	_
50		(40 2°) 3.18	14 96	5.95

The trihydrogen hypophosphates appear not to exist. The guanidine salt, $[NHC(NH_2)_2]_4H_4P_2O_6\cdot 2H_2O$, is soluble to the extent of only 1.038 g/100 cc soln. at 28.5°. Of interest is the only known silver salt $Ag_4P_2O_6$; it is practically insoluble in water and in hypophosphoric acid solutions, and is only sparingly soluble in dilute nitric acid. It will dissolve in ammonia solution, however. No acid salts of silver are known; they do not appear capable of existence.

Solutions of the salts are much more stable toward decomposition than are those of the acid. The rate of decomposition of the acid alone is too slow to be measured at room temperature, but in the presence of added acid the rate is increased. At 60° the rate is measurable when the concentration of added acid is as low as 0.25 n. It was found by Van Name and Huff [Am. J. Sci., 45, 91, 103 (1918)] that the decomposition reaction is quite accurately of the first order if added acid is present in excess, and that the rate constants increase with increase in concentration of acid. The following values of the rate constants are averages of those given by Van Name and Huff; the maximum deviations of individual values from the average are about $\pm 2\%$ or less. mixtures were made by mixing solutions of hydrochloric acid with portions of a 0.05 n Na₂H₂P₂O₆ stock solution in the proportions desired. The normal concentrations of the reactants have been computed from The solutions were analyzed by adding to them excess standard iodine after being made neutral and adding NaH₂PO₄ as a buffer: the iodine oxidizes H₃PO₃ but not H₄P₂O₆ to phosphate. excess iodine was determined with thiosulfate. The main reaction is

$$H_4P_2O_6 + H_2O = H_3PO_3 + H_3PO_4$$

$$\frac{d(H_3PO_3)}{dt} = k(H_4P_2O_6)$$

	SOLUTION				
Temperature	Conc. H ₄ P ₂ O ₆ (moles/l)	Conc. HCl (moles/l)	$\begin{array}{c} k \times 10^4 \\ \text{(min}^{-1}) \end{array}$	k/(HCl) ² × 10 ⁴	
25°	0.025	4.66	10.3	0.48	
	.025	5.0	12.5	.50	
	.013	2.5	1.86	.30	
60°	0.013	2.5	63.1	10.1	
	.013	0.265	0.76	10.9	

TABLE 52
THE RATE OF DECOMPOSITION OF H₄P₂O₆ IN HYDROCHLORIC ACID SOLUTION

The calculated values of $k/(\mathrm{HCl})^2$ are shown in the last column, and their approximate constancy indicates that the reactant is $\mathrm{H_4P_2O_6}$ and that much of the hypophosphoric acid is ionized into $2\mathrm{H^+ + H_2P_2O_6^-}$. As a consequence of this assumed ionization, one sets $(\mathrm{H_4P_2O_6}) = K(\mathrm{H^+})^2 (\mathrm{H_2P_2O_6^-})$, and the rate equation given above becomes

$$\frac{d(H_3PO_3)}{dt} = kK(H^+)^2(H_2P_2O_6^-) = k'(H^+)^2(H_2P_2O_6^-)$$

The small variation of k' with the concentration of acid may be due to neutral salt effects. In view of the previous discussion, it cannot be decided definitely now whether the assumption of extensive ionization of $H_4P_2O_6$ is in accord with the facts; accordingly, the proposed mechanism must be regarded as tentative. It is desirable that the ionization of hypophosphoric acid be studied further. It must be remembered, too, that the mechanism of the acid hydrolysis of many substances is obscure, for example, $H_2S_2O_6$, and it may be that the ionization hypothesis is overworked in attempting to arrive at explanations for the observed rates.

As a reducing agent, hypophosphoric acid is not very reactive. Thus, it is not oxidized by the halogens or even by boiling dichromate. Permanganate oxidizes hypophosphates slowly at room temperature and more rapidly when heated. For the purposes of analyses, the permanganate method is moderately satisfactory but is held in less esteem than the decomposition method. In the latter, the hypophosphate is heated nearly to dryness with hydrochloric acid, and the phosphorous acid formed is oxidized with excess standard iodine in a solution buffered with phosphate. Silver hypophosphate, Ag₄P₂O₆, is only slightly soluble in water, and may be made the basis for a gravimetric method of analysis [see Probst, Z. anorg. Chem., 179, 155 (1929)].

Phosphoric acids

The preparation of these acids has been described in connection with the recovery of phosphorus from phosphates. It is only necessary to add that when the pentoxide, P₄O₁₀, the pentahalides, or the pentavalent oxyhalides are treated with water, rapid hydrolysis sets in with the formation of phosphoric acids. The oxidation of the lower acids to phosphoric acid has already been discussed. Inasmuch as the reduction of the phosphoric acids is accomplished only with very powerful reducing agents, we shall concern ourselves here principally with the properties and structure of the acids themselves rather than with their oxidation-reduction chemistry.

There are a number of phosphoric acids which differ for the most part in their degree of hydration and polymerization. The following list contains those which, for one reason or another, are believed to exist; in some cases only the salts are stable to eventual hydrolysis. There are doubtless other phosphoric acids whose formulas have not yet been firmly established.

(HPO₃)_n n-metaphosphoric acid $(HPO_3)_6$ Hexametaphosphoric acid $(HPO_3)_4$ Tetra meta phosphoric acid (HPO₃)₃ Trimetaphosphoric acid $(HPO_3)_2$ Dimetaphosphoric acid Metaphosphoric acid HPO₃? Pyrophosphoric acid $H_4P_2O_7$ H₅P₈O₁₀ Triphosphoric acid H₂PO₄ Orthophosphoric acid

Metaphosphates

When phosphorus pentoxide is treated with a small amount of water, or when phosphoric acid is strongly heated, the polymetaphosphoric acids, (HPO₃)_n, are formed. Sodium salts may be made by neutralizing the acids, or directly by heating NaH₂PO₄, Na₂H₂P₂O₇, or NaHNH₄PO₄ under various conditions. The polymetaphosphates form a very complex system, and the question of the molecular species that exist has been an outstanding and difficult puzzle in inorganic chemistry. The literature is extensive and contradictory, and much more experimental work must be done before the present confusion can be cleared up.

One of the difficulties in the study of the subject is the lack of uniformity in naming compounds. A single salt prepared in a definite way may be referred to as mono-, tri-, or hexametaphosphate, according to the theories of the author. To clarify the following discussion as much as possible, a table is given of the compounds which seem to have a reasonable claim to be considered definite species. The names given conform as far as possible with the customary usage in the literature and will be used consistently throughout. Each compound is characterized by its method of preparation and a limited number of reactions.

TABLE 53
THE SODIUM METAPHOSPHATES

Name	Probable Polymer	Methods of Preparation	Properties
Pascal's salt	?	(C ₂ H ₅ PO ₃) _n + C ₂ H ₅ ONa in ether solution.	White, deliquescent solid soluble in water; ppts with Ag+, Pb++, Ca++ coagulates albumin.
Sodium dimeta- phosphate	di	 Heat H₂PO₄ a short time at about 300°, neutralize cold solution. Heat NH₄NO₃ (1 pt.), NaH₂PO₄ (5 pts.), and NH₄Cl (1 pt.) at 250°. 	Soluble in water but hy- drolyzes rapidly to pyro- phosphate; ppts. with Pb++ but does not coagu- late albumin.
Maddrell's salt	?	Heat NaH ₂ PO ₄ at 300-400° for several hours.	Crystalline, insoluble solid two crystalline modifica- tions.
Knorre's salt or sodium tri- metaphosphate	tri	 Heat NH₄NO₂ (1 pt.) and NaH₂PO₄ (2 pts.) at 300°. Heat NaH₂PO₄ at 500-600° for several hours. Heat fused Graham's salt at 300-400° for a few hours. 	White, soluble crystalline substance, m.p. 625°; no ppt. with Ag ⁺ or Pb ⁺⁺ in low concentration; no ppt with Ca ⁺⁺ , coagulates albumin.
Sodium tetra- metaphosphate	tetra	Heat CuO and H ₃ PO ₄ up to 400°. Treat copper salt with H ₂ S and neu- tralize.	White soluble substance ppts. Pb++ and Ca++ but not Ag+. Coagulater albumin.
Graham's salt or sodium hexa- metaphosphate	hexa	NaH ₂ PO ₄ , Na ₂ H ₂ P ₂ O ₇ , or NaNH ₄ HPO ₄ fused and quenched.	Easily soluble glass; ppts with Ag +, Pb ++, but forms stable complex ion with Ca ++.
Kurrol's salt	>hexa	Obtained sometimes on heating NaH ₂ PO ₄ below fusion for long periods of time. Potassium salt made readily by heating KH ₂ PO ₄ to above 300°.	Insoluble in water but dissolves in solutions of pyro- and hexametaphosphate to give highly viscous solutions. Melts at 809° to give liquid distinct from melted Graham's salt. The cooled melt is an insoluble glass

If glacial phosphoric acid is warmed for a short time at about 300° until a very thin crust appears on the surface, the resulting mixture consists of an insoluble solid polymer and a soluble liquid. If the heating is stopped at the first appearance of a solid, the product dissolved in ice water, and the calculated amount of base added, a clear, almost neutral solution results [Pascal and Rèchid, Compt. rend., 196, 828 (1933)]. An excess of alcohol will precipitate an oil which soon crystallizes. The

resulting crystals are very soluble in water but hydrolyze quickly to pyrophosphate at room temperature. Tests made immediately after the solution in ice water show that the salt is not pyrophosphate, as determined by the solubility of the zinc salt in alkaline solution and by the absence of a precipitate with Co (NH₃)₆Cl₃ in neutral solution. phosphates give a reddish-vellow precipitate with the cobalt complex; the test is a most useful one, as none of the metaphosphates give precipitates.) The salt does not coagulate albumin, as do the higher metaphosphates. The freezing-point lowering indicated a molecular weight of 130 for a $\frac{1}{10}$ normal solution and 76 for a $\frac{1}{32}$ normal solution. These facts are moderately consistent with the assumption that the salt is a dimetaphosphate; if it were completely ionized, its molecular weight would be 68. Analyses gave the empirical formula (NaPO₃)₂·3H₂O. When the hydrated salt is heated, first some acid pyrophosphate and then the insoluble Maddrell salt is formed. Further heating gives the same products as the NaH2PO4 system discussed later.

Travers and Chu [Compt. rend., 198, 2100 (1934)] repeated the above work, and they state that the product obtained is always contaminated with some pyrophosphate. They were able, however, to prepare the dimeric salt by mixing 5 parts of Na₂HPO₄, 1 part of NH₄NO₃, and 1 part of NH₄Cl and heating in a vacuum at 250° for eight hours. The product was slowly cooled and dissolved in water with the aid of a few drops of acid or base. The resulting solution was made neutral to methyl orange, and the pure salt was separated from the more soluble pyrophosphates by several crystallizations. Freezing-point determinations gave a molecular weight of 68 with 30 g of salt per liter (0.23 n) and 69.6 with 40 g per liter (0.31 n). By treating the crystallized lead salt with hydrogen sulfide, the free acid was obtained; its aqueous solutions hydrolyze slowly at 0° and more rapidly at higher temperatures. The authors state that the hydrolytic reaction

$$H_2O + H_2P_2O_6 = H_4P_2O_7$$

was shown to be first-order at temperatures below 66°, where the hydrolysis of the pyrophosphoric acid could be neglected.

Liquid dimetaphosphoric acid is not stable, especially at high temperatures [Rèchid, Compt. rend., 196, 860 (1934)], and if heating is continued at temperatures less than 400°, crystals of some different polymer begin to form. The phenomenon is evident in about 20 hours at 218° and in a half-hour at 355°. The new substance is crystalline according to X-ray evidence, it is insoluble in water and warm dilute nitric acid, and it is soluble with hydrolysis in boiling sodium hydroxide. It may be warmed to 800° without melting or giving off perceptible vapors. The exact nature of this polymer is obscure.

If, on the other hand, the dimetaphosphoric acid, or the glacial orthophosphoric acid from which it is made, is heated above 400°, a transparent, soluble polymer transformable reversibly to the insoluble polymer is formed. The molecular weight of the soluble polymeric acid. as determined from its salts, increases and the solubilities of the salts decrease progressively with higher temperatures and increased duration of heating. For example, the molecular weight of the sodium salt of an acid heated four hours at 600° was 358. If the soluble polymer is heated to red heat for several hours, the so-called crackly acid is formed; this acid when treated with water makes a crackling sound, and the water becomes turbid with the small white particles shot off. The turbidity is slow to clear up and the solid is slow to disperse; consequently, complete solution results only after a long time. All of the soluble polymeric acids coagulate albumin, and all are uncrystallizable, as are also their The soluble polymer formed by heating above 400° distinguishes itself from the insoluble polymer formed by long heating below 400° by its greater volatility. However, even the high molecular-weight polymers are decomposed on vaporization, and the vapor density at white heat corresponds to the dimeric compound (HPO₃)₂ [Tilden and Barnett, J. Chem. Soc., 69, 154 (1896)]. The quickly condensed vapor is identical in properties with dimetaphosphoric acid.

It seems likely that the structure of the dimer is

and the strong P—O—P bonds are responsible for the stability of the molecule. A structure containing hydrogen bonds,

PASCAL'S SALT. PREPARED AT ROOM TEMPERATURES

g/100 g H ₂ O	-Δ T	Molecular Weight
0.360 .618	0.126° .207	52.8 55.2
.953	.290	60.8

Same Na	PO ₃ Heated	l to 250°
0.360	0.128°	52.0
Same Na	aPO ₈ Melted	l at 900°
0.360	0.139°	48.0

would hardly be stable enough to correspond to the known properties of (HPO₃)₂.

In view of the great stability of the dimer in the vapor phase and of its tendency in the liquid phase to polymerize, the existence of a monomer would hardly be expected under any conditions. However, a compound which was believed to be a monometaphosphate was prepared by Pascal [Bull. soc. chim., 33, 1611 (1923)]. The first step in its preparation consists in boiling a mixture of ether and P_2O_5 to obtain the compound

PASCAL'S SALT. PREPARED AT ROOM TEMPERATURE

	g/100 g H ₂ O	$-\Delta T$	Molecular Weight
I	0.186	0.040°	86.5
	.348	077	84.1
	. 524	.114	90.0
II	.147	.036	88.2
	.298	.070	92.5
	.416	.093	94.5
			<u></u>

(C₂H₅PO₃)_a. This substance on treatment with C₂H₅ONa in ether reacts to form (C₂H₅)₂O and a sodium metaphosphate. The evidence that Pascal's salt is a monometaphosphate is the freezing-point lowerings above (p. 213) found for the aqueous solutions. Since the formula weight of NaPO₃ is 102, the completely ionized salt would show an effective molecular weight of ½ = 51, and the observed values are in accord with this num-

ber. However, Nylèn [Z. anorg. Chem., 229, 30 (1936)] made two preparations of the salt according to Pascal's directions and obtained the freezing-point lowerings in the second table. The calculated, effective molecular weights for the different polymers assuming complete ionization are given for reference:

	Polymer	Molecular Weight
	The state of the s	
mono		51.0
di		68.0
tri		76.5
tetra		81.6
penta		85.0
		87.4

It is apparent that the results of Nylèn disagree completely with those of Pascal. It is difficult to interpret the data, but they indicate that the salt is not a monometaphosphate. Nylèn confirmed the chemical properties given by Pascal. Pascal's salt is a white, hydroscopic, amorphous powder easily soluble in water to give a neutral solution. It yields white precipitates with silver, lead, and barium but not with Co(NH₃)₆Cl₃, and it coagulates albumin. The reported chemical and physical properties of this substance are not those of any other recognized polymetaphosphate, although they seem most like those of hexametaphosphate. The exact nature of the salt is a matter for further study.

Before the nature of the polymetaphosphates was better understood, it was believed that a monometaphosphate could be prepared by fusing microcosmic salt (NaNH₄HPO₄), NaH₂PO₄, or Na₂H₂P₂O₇. For example, Beans and Kiehl [J. Am. Chem. Soc., 49, 1878 (1927)] heated one of these salts for an hour at 200° to dehydrate it, and then they heated it slowly to about 600° until fusion took place. After ten or fifteen minutes at about 600°, the substance was cooled to 450°, when, in about two hours, monoclinic crystals of a metaphosphate formed. The resulting salt is soluble in water and, when purified by recrystallization, gives solutions which are slightly acid, (H⁺) = 2×10^{-6} [Kiehl and Hill, J. Am. Chem. Soc., 54, 1332 (1932)]. The accompanying freezing-point lowerings were obtained by Beans and Kiehl with aqueous solutions of their salt.

The probable nature of this salt may be determined from a consideration of the equilibrium studies on the sodium metaphosphates. Investigations have been made by three groups, who, however, disagree on several points [Pascal, Bull. soc. chim., 35, 1131

g/100 g H ₂ O	–Δ Τ	Molecular Weight
5.0472	0.916°	102.5
2 8159	.546	96.9
1 3435	.351	71 2

(1925); Boullé, Compt. rend., 200, 658 (1935); and Partridge, Hicks, and Smith, J. Am. Chem. Soc., 63, 454 (1941)]. The most reliable of these studies seems to be that of Partridge, Hicks, and Smith, who used thermal and X-ray methods. First they measured the temperature changes when NaH₂PO₄ was heated at a steady rate. The temperature-time curve showed only one definite break, which occurred at about 500°. Then they heated fresh samples of NaH₂PO₄ at various temperatures below fusion for forty hours—one sample for each temperature. X-ray powder pictures of the samples showed three distinct crystal forms, III, and I. The results are expressed diagrammatically as follows:

The method of cooling was not made clear, but presumably the samples were allowed to cool in air. The transformations appear in general to be irreversible. The authors made no attempt to identify the forms found with distinct polymers. The NaPO₃III and NaPO₃III are insoluble and correspond to Maddrell's salt. The two forms could be either two polymers or different crystalline modifications of the same polymer. On the other hand, it may well be that the structure of the

crystal is continuous and there are no distinct molecular units. It will be recalled, for example, that the stable crystalline modification of phosphorus pentoxide has a continuous structure while the less stable α form has a molecular structure. Owing to its low solubility (less than 0.1 g/liter at 15°), nothing is known of the chemical properties of Maddrell's salt. It is also insoluble in solutions of pyrophosphates and hexametaphosphates.

The NaPO₃I is soluble and corresponds to Knorre's salt or trimetaphosphate. Its melting point was found to be 625°; other values given in the literature range from 600° to 640°. If the melt is allowed to cool slowly, crystals of NaPO₃I form. If, however, the melt is quenched, a

Fig. 36. The Rate of Hydrolysis and Changes in Hydrogen Ion Concentration of a Solution 0.300 m in Sodium Metaphosphate and 0.010 m in Hydrochloric Acid.

glass without ordered structure is obtained. This is Graham's salt: it is soluble in water and is usually referred to as the hexametaphosphate. Heating the quenched melt for some time at 300° or above causes it crystallize chiefly NaPO₃I (trimetaphosphate), but partly to NaPO₃II (Maddrell's salt), especially at the lower temperatures.

The results of this investigation appear reliable as far as they go. The existence of metastable forms produced by short heating, or of forms stable only in a very restricted temperature range, is by no means excluded, however. It was mentioned that the investigators are not in perfect agreement. They do all agree that first an insoluble salt and then, above about 500°, a soluble salt is formed. Boullé [Compt. rend., 200, 658 (1935)] obtained about the same transition points as did Partridge, Hicks, and Smith, but he reported the unexpected result that NaPO₃I and NaPO₃III have the same crystal structure.

Pascal [Bull. soc. chem., 35, 1131 (1925)] quenched the sodium metaphosphate from the desired temperature by plunging it into mercury. He then determined the conductance and freezing-point depressions in solutions of the salts. His results are summarized by the reaction scheme

$$NaH_2PO_4 \longrightarrow "Na_2P_2O_6" \longrightarrow Na_3P_3O_9 \rightleftharpoons Na_4P_4O_{12} \rightleftharpoons Na_6P_6O_{18}$$

250° 505 ° 067 °

This diagram agrees fairly well with that given previously except for the reversible formation of the tetrametaphosphate just below the melting point. Pascal's "Na₂P₂O₆" is insoluble and corresponds to Maddrell's

Fig. 37. The Rate of Hydrolysis and Change in Hydrogen Ion Concentration in Solutions 0.500 m in Sodium Metaphosphate Containing the Indicated Concentrations of Hydrochloric Acid. Solid lines represent hydrolysis; dashed lines, hydrogen ion concentration.

salt, for which no formula has been established. The tetrametaphosphate could not be isolated in a pure state owing to the reversible nature of its formation. Evidence for its preparation under other conditions is given in a later paragraph.

From the results given above, it would appear that the salt prepared by Beans and Kiehl and called by them the "monometaphosphate" was in reality practically pure trimetaphosphate, a conclusion supported somewhat by the freezing-point lowerings. However, they report also that their salt gave a precipitate with lead nitrate, a reaction

Fig. 38. The Rate of Hydrolysis and Change in Hydrogen Ion Concentration of a 0.300 m Sodium Metaphosphate Solution.

more characteristic of the tetra- and hexa- metaphosphates than of the trimetaphosphate. This fact may indicate the presence of a considerable amount of hexametaphosphate; it should be pointed out, however, that the lead salt of trimetaphosphate is only moderately soluble and

would give a precipitate in concentrated solution. The lack of any

Fig. 39. The Rate of Hydrolysis of a Solution $0.100~\mathrm{m}$ in Sodium Metaphosphate and $0.500~\mathrm{m}$ in Sodium Hydroxide at 75° C.

solution. The lack of any quantitative solubility data presents a considerable handicap in studying the metaphosphates.

Dilute acid solutions of the metaphosphates hydrolyze over a period of several weeks at room temperature to orthophosphoric acid, H₃PO₄. Hydrolysis is more rapid at higher temperatures. Rather careful measurements of the rate at 45°

were made by Beans and Kiehl [J. Am. Chem. Soc., 49, 1878 (1927)]

with the salt which they prepared and which is probably the trimetaphosphate; the results of some of their experiments are shown graphically in Figs. 36, 37, and 38. mixture, 0.500 f in NaPOs and 0.483 m in HCl, is 50% hydrolyzed in 6.17 hours at 45°; when the HCl is 0.192 m, 25 hours are required for 50% hydrolvsis. The reaction is complicated by the fact that

Fig. 40. The Rate of Hydrolysis of a Solution 0.200 m in Sodium Metaphosphate and 0.500 m in Sodium Hydroxide at 75° C.

pyrophosphoric acid is formed as an intermediate, and hydrogen ion is

a catalyst.

Fig. 41. The Rate of Hydrolysis of a Solution 0.100 m in Sodium Metaphosphate and 2.00 m in Sodium Hydroxide at 75° C.

In alkaline solution and at around 75°, the sodium trimetaphosphate prepared by Kiehl and his co-workers hydrolyzes according to the equation

$$(NaPO_3)_3 + 2H_2O$$

= $Na_2H_2P_2O_7 + NaH_2PO_4$

The analytical method used to determine the amounts of meta-, ortho-, and pyrophosphate depended at one stage on the fact

that zinc acetate in acetic acid solution will give a precipitate with pyrophosphate but not with meta- or orthophosphate, if these be present at concentrations not greater than 0.1 m. Some idea of the rate of the hydrolyses can be gathered from the following representative results at 75° of Kiehl and Coats [J. Am. Chem. Soc., 49, 2180 (1927)], and from Figs. 39, 40, and 41.

NaPO ₃ * Conc.	NaOH Conc	Per Cent Hydrolyzed to Pyro	Per Cent Hydrolized to Ortho	Time (hours)
0.10 f. .200 .100	0.500 m. 	30.5 64.0 27.8 65.7 27.0 65.4	16.7 34.3 16.7 33.8 20.0 34.4	89.5 713.5 84. 1298. 45. 380.

^{*} Probably Na₃P₃O₉.

The reaction is approximately first-order with respect to metaphosphate, and hydroxyl ion is a catalyst. A mechanism for the reaction has not been suggested. Titration curves made using sodium trimetaphosphate prepared by the method of Beans and Kiehl show that all three hydrogens in trimetaphosphoric acid ionize freely. The curves are indistinguishable from those of sodium chloride [Rudy and Schlosser, Ber., 73, 484 (1940)].

Sodium trimetaphosphate or Knorre's salt is also readily prepared by heating a molten mixture of Na₂HPO₄ (3 parts) and NH₄NO₃ (1 part) at about 330° for six hours [Knorre, Z. anorg. Chem., 24, 369 (1900)]. The salt prepared in this way has been shown to give the same X-ray powder spectrum as the salt prepared by heating pure NaH₂PO₄ at

temperatures between 500° and 600° [Boullé, Compt. rend., 200, 658 (1935)]. Sodium trimetaphosphate may be purified from other metaphosphates by precipitating the latter as lead salts in dilute aqueous solution. Pure sodium trimetaphosphate is not hydroscopic. It is easily soluble in water and it does not give precipitates on addition of silver nitrate, lead nitrate, barium, or calcium chloride. The formula is sup-

KNORRE'S SALT

g/100 g H ₂ O	-ΔΤ	Molecular Weight		
0.076	0.018°	78.5		
.098	.023	79.3		
.182	.040	84.8		
. 195	.043	84.4		
.323	.066	91.0		
		<u> </u>		

ported by conductivity measurements and by the freezing-point lowerings, of which the most reliable are those of Nylèn [Z. anorg. Chem., 229, 30 (1936)]. He obtained the accompanying data. The molecular weight corresponding to complete ionization is 76.5. It is generally agreed that the trimetaphosphate is the best-established individual chemical specie in the metaphosphate system.

Copper tetrametaphosphate is prepared by adding powdered CuO to a slight (5%) excess of orthophosphoric acid in a platinum vessel. The mixture is stirred thoroughly and allowed to stand until the mass is a clear blue throughout. Then it is heated slowly on a water bath and later on a sand bath. The temperature should not exceed about 450°. The preparation is finished as soon as the excess metaphosphoric acid begins to be evolved as a white vapor. The resulting mass is powdered and extracted with water; the insoluble copper tetrametaphosphate Continued digestion of the salt with H2S gives the free acid. Various salts can be prepared from the acid; the sodium salt is easily soluble. No precipitate is obtained with AgNO₃ or with Co (NH₃)₆Cl₃. but albumin is coagulated. Doubtful support for the formula (NaPO₃)₄ is given by Bonneman [Compt. rend., 204, 865 (1937)], who made cryoscopic measurements in fused Na₂SO₄·10H₂O, and found a molecular weight of 418. The conductivities also supported the formula given. The X-ray powder spectrum was clear and entirely distinct from that of Knorre's salt. If (NaPO₃)₄ is heated at 375° for two hours, the X-ray lines characteristic of Knorre's salt appear; on heating 12 hours at 500°, the salt is converted entirely into Knorre's salt. If the compound is fused and quenched, Graham's salt results.

Graham's salt, or sodium hexametaphosphate, is prepared by fusing a sodium metaphosphate at about 650° and then quenching the melt. No other method of preparation seems to have been used. For a homogeneous product it is important to hold the melt at 650–700° for at least an hour to get complete dehydration and then to cool it very rapidly—preferably in thin sheets. The product obtained is hydroscopic and readily soluble in water; the solubility is 973.2 g/liter H₂O at 20° and 1744 g/liter H₂O at 80° [Bronnikov, J. Applied Chem. (U.S.S.R.) 12, 1287 (1939)]. It produces precipitates with lead nitrate and benzidine; with Fe⁺⁺ the soluble complex Na₃FeP₆O₁₈ is readily formed. Albumin is coagulated rapidly. The evidence offered for the formula Na₆P₆O₁₈ rests on conductance measurements [Tammann, J. prakt. Chem., 45, 463 (1892)], freezing-point determinations, and the dubious preparation of a salt

g/100 g H ₂ O	-ΔΤ	Molecular Weight
8.48	0.400°	389
10.08	.460	407

Ag₅NaP₆O₁₈ [Rose, Pogg. Ann., **76**, 1 (1849)]. Representative examples of the freezing-point lowerings obtained [Jawein and Thillot, Ber., **22**, 655 (1889)] are shown here; the first column of the table shows the amounts of sodium hexametaphosphate dissolved in 100 g of water. The formula

weight of $Na_6P_6O_{18}$ is 612. No reliable conclusions can be drawn from data for such large concentrations of highly charged ions.

The true justification for calling Graham's salt a hexametaphosphate lies in the fact that its properties are different from the known lower polymers, and the next reasonable member of the series would be the hexapolymer. Actually, it is not at all certain that Graham's salt is a single chemical species. A recent investigation at Upsala showed that a technically "pure" sodium hexametaphosphate contained 26% of a highly polymerized substance which could be ultracentrafuged to give a well-defined sedimentary boundary [Lamm and Malmgren, Z. anorg. Chem., 245, 103 (1940)]. The presence of a variable amount of highly polymerized material in the different metaphosphates investigated would account for much of the confusion in the literature.

Solutions of carefully prepared Graham's salt are slightly acid (pH 6.2), owing probably to small amounts of Na₂H₂P₂O₇. The strength of the acid (HPO₃)₆ has been a matter of some dispute. Salih [Bull. Soc. Chim., 3, 1391 (1936)] decomposed lead hexametaphosphate with H₂S and titrated the free acid, using a conductivity method. indicated that four of the hydrogens ionize freely. Leutwyler [Helv. Chim. Acta, 20, 931 (1937); 21, 1450 (1938)] made pH titration curves of the acid and reported that two hydrogens ionize strongly but the remaining four are weak. Still more recently Partridge [Dual Service News, Hall Lab., Pittsburgh, 1937] and Rudy and Schlosser [Ber., 73, 484 (1940)] have made titration curves which indicate that all six hydrogens ionize freely, and that pure solutions of sodium hexametaphosphate should be neutral. This result appears to be the most reliable It is a striking fact that in all the phosphorus acids there is one rather freely ionizable hydrogen for each phosphorus atom; additional hydrogens are very weakly ionized.

The purer commercial samples of hexametaphosphate contain from 9 to 16% Na₂H₂P₂O₇ resulting from incomplete dehydration, and consequently they give solutions of pH between 5.5 and 6.4. Other commercial mixtures contain from 4 to 6% sodium carbonate or bicarbonate, as well as some Na₄P₂O₇ (up to 19%), and give alkaline solutions.

The commercial importance of hexametaphosphate is due largely to the fact that it forms a soluble complex with calcium ion $Na_2Ca_2P_6O_{18}$, and it may, therefore, be used to soften water and remove scale from boilers [Thomson, Analyst, 61, 320 (1936); Andress and Würst, Z. anorg. Chem., 237, 113 (1938)]. If a solution of calcium ion is added gradually to one of $Na_6P_6O_{18}$, no precipitate will form until all the hexametaphosphate is converted to the complex; the addition of excess calcium ion results in the formation of the white, insoluble $Ca_3P_6O_{18}$. Complexes are also formed with barium, strontium, and magnesium. Portland cement is decomposed by solutions of $Na_6P_6O_{18}$, the calcium present being extensively dissolved.

It has also been discovered that exceedingly minute amounts (0.5 to 4 p.p.m.) of sodium hexametaphosphate in water greatly increase the stability of supersaturated solutions, notably of carbonate [Reitemeier and Buehrer, J. Phys. Chem., 44, 535 (1940)]. Similar amounts greatly inhibit the corrosion of metals by water. Both of these qualities are of extreme importance in water treatment [Schwartz and Munter, Ind. Eng. Chem., 34, 32 (1942)]. Calcium metaphosphate is coming into use as a fertilizer. The Tennessee Valley Authority manufactured over 24,000 tons in the four years 1937–1941 by a process of oxidizing phosphorus to P₄O₁₀ and then passing the vapor over phosphate rock at 1000°C. Ninety-eight per cent of the oxide combines with the Ca₃ (PO₄)₂ in the rock to produce a good quality of metaphosphate [Copson, Pole, and Baskerville, Ind. Eng. Chem., 34, 26 (1942)].

The stability of solutions of Na₆P₆O₁₈ is of considerable importance, but no very satisfactory investigation of it has been made. Germain [Chim. et Ind. 35, 22 (1936)] has published some semi-qualitative investigations on the rate of hydrolysis made with 1% solutions of commercial salts containing, on the average, 12% of Na₂H₂P₂O₇. Hexametaphosphate was determined by its ability to form a complex with barium; other metaphosphates do not form barium complexes of great stability. Germain's results are expressed in grams of P₂O₅ per liter of 1% solution in Table 54 on the opposite page.

The pyro- and orthophosphate were determined by acidimetric titration using a series of indicators. The measurements are valuable in that they show the variation in complex-forming power with time under various conditions, but the analytical methods were inadequate to establish the nature or the exact amount of the decomposition products. With the better methods now available [Jones, Ind. Eng. Chem. Anal. Ed., 14, 536 (1942)], a more thorough study could be made.

In addition to the insoluble Maddrell salt, other insoluble metaphosphates have been reported and are known as the Kurrol salts. These salts are prepared by heating Na₂HPO₄ at various temperatures below fusion [Pascal, Bull. soc. chim., 35, 1131 (1924); Compt. rend., 178, 1541 (1924)]. Another method consists in the prolonged fusion and a slow crystallization of sodium hexametaphosphate. The preparation is capricious, and many investigators have been unable to obtain such salts. Pascal states that the Kurrol salts are crystalline and melt at 809° to give a liquid distinct from the hexametaphosphate melt. They are insoluble in water but are soluble in solutions of pyrophosphates and hexametaphosphates to give highly viscous and apparently colloidal solutions. From variations in viscosity of different preparations, Pascal concluded that there were three distinct Kurrol salts.

Although the existence of the sodium salts is disputed, it is agreed that the potassium salts do exist. On heating K₂HPO₄ to 170°, a soluble

TABLE 54
THE RATE OF HYDROLYSIS OF 1% Na₆P₆O₁₈ SOLUTIONS (Concentrations are in grams of P₂O₅ per liter of solution.)

Temp. (°C)	Time in Days	$p\mathrm{H}$	Hexameta- phosphate	Other Meta- phosphates	Pyrophos- phate	Ortho- phosphate
25	0	6.2	5.45	0.38	1.	0.07
	1		5.33	.53	.89	.15
	9		5.22	.57	.88	.23
50-60	0	6 2	5.45	.42	. 96	07
	2		5.22	.36	. 94	.38
	4		1.78	3.19	.88	1 05
	8		. 23	4.17	. 54	1 95
	Time in Hours					
70-80	0	6.2	5.33	.53	.89	.15
	2		4.85	.67	. 93	.45
	6		3.32	1 51	1.01	1.06
	0	6.2	5.45	.42	.96	.07
	0 2 6		5.33	.40	1.02	. 15
	6		4.50	.74	.99	. 67
100	0 2	2.3 (H ₂ SO ₄)	5.86		1.04	0
	2	1.1	0		. 27	6 63
	0	8 4	5.45	.41	. 97	07
	3	7.3	1.78	2.63	.83	1.66
	6	6.9	.23	3.54	. 95	2.18
	8	6.9	0	3.72	.77	2.41
	14	6 9	0	3.24	. 35	3.31

potassium trimctaphosphate is produced; no salt corresponding to Maddrell's salt is known. On heating to above 320°, a Kurrol salt is formed which melts at 838°. Experiments of Lamm and Malmgren [Z. anorg. Chem., 245, 103 (1940)] illustrate the behavior of the substance. They heated K2HPO4 to a red glow for twenty minutes, sintering it to a hard white mass. The insoluble material was powdered and treated with two equivalents of concentrated sodium chloride solution. The powder gradually flowed together into an extraordinarily viscous, elastic mass. The potassium is partly replaced by sodium, and most of the substance becomes soluble. Addition of more sodium chloride reprecipitates the The chloride was removed by kneading the mass with viscous mass. alcohol. A 1% solution was neutral and had a viscosity five times that of water. After the high viscosity was diminished by addition of an electrolyte, the substance behaved as a normal, high-molecular-weight compound. The original value of the mean molecular weight in dilute HCl was 20,000. In dilute (less than 0.3 m) NaCNS solutions, the polymer proved stable and its mean molecular weight was found to be from 100,000 to 140,000. The polymer hydrolyzes more rapidly in hydrochloric acid than in NaOH solution.

The polyphosphates

Investigations of the polyphosphates, $Na_{n+2}P_nO_{3n+1}$, have shown that in addition to the pyrophosphate, $Na_4P_2O_7$, only $Na_5P_3O_{10}$ certainly exists. This salt is formed by melting mixtures of NaH_2PO_4 and Na_2HPO_4 or $Na_6P_6O_{18}$ and $Na_4P_2O_7$. The pure salt $Na_5P_3O_{10}$ is soluble in water and, like the hexametaphosphate, forms a soluble complex with calcium, $Na_3CaP_3O_{10}$. Aqueous solutions of $Na_5P_2O_{10}$ hydrolyze to orthophosphate only slowly (after weeks) at room temperature; on the addition of acid, the hydrolysis is much more rapid [Andress and Würst,

Fig. 42. The Phase Diagram of the System NaPO₃-Na₄P₂O₇.

Partridge, Hicks, and Smith [J. Am. Chem. Soc., 63, 454, (1941)] have made a thermal and X-ray study of the polyphosphate system NaPO₃-Na₄P₂O₇. Their results, which are in excellent agreement with the conclusions of Andress and Würst [loc. cit.], are summarized in the phase diagram, Fig. 42, taken

Z. anorg. Chem., 237, 113 (1938)].

In the acid H₅P₃O₁₀, three hydrogens ionized strongly and

from their paper.

two much more weakly. The acid is somewhat stronger than pyrophosphoric acid [Rudy and Schlosser, Ber., 73, 484 (1940)].

Pyrophosphoric acid

This acid is formed as an intermediate in the hydrolysis of metaphosphoric acid, and when ordinary orthophosphoric acid is evaporated at elevated temperatures. Solutions of the pure acid are best obtained indirectly from its salts, for example, by igniting disodium hydrogen phosphate, Na_2HPO_4 . A platinum dish should be used for the ignition, since hot phosphates will dissolve much silica from glass or porcelain vessels. The conditions under which the pyrophosphate is formed from dihydrogen phosphate, NaH_2PO_4 , may be seen from the dissociation pressures of H_2O above two phase mixtures of the two salts as measured by Kiehl and Wallace [J. Am. Chem. Soc., 49, 375 (1927)].

$$2N_{a}H_{2}PO_{4}(s) = N_{a_{2}}H_{2}P_{2}O_{7}(s) + H_{2}O(g)$$
(A)

$$nNa_2H_2P_2O_7(s) = 2(NaPO_3)_n(s) + nH_2O$$
 (B)

Temp.	(A) p _{H2O} (in mm)	(B) p _{H2O} (in mm)	Temp.	(A) p _{H2O} (in mm)	(B) p _{H±0} (in mm)
100 120 140 150 170	6.7 36.1 194. 750.	 11	200 240 260 280	=======================================	85 296 517 760

It is presumed that no solid solutions were formed by the ortho and pyrophosphates, although this was not proved.

Sodium pyrophosphate dissolves readily in water to form stable solutions at room temperature. If to the hot solutions concentrated copper sulfate is added, a precipitate of copper pyrophosphate forms which may be washed and treated in aqueous suspension with excess hydrogen sulfide to obtain a solution of pyrophosphoric acid. The precipitate of CuS is filtered off, and the excess hydrogen sulfide is removed by passing a stream of air through the solution. Heating the solutions of $H_4P_2O_7$ brings about their hydrolysis to orthophosphoric acid. By careful evaporation solid $H_4P_2O_7$ is obtainable; it melts at about 61°.

Although neutral or alkaline solutions of pyrophosphates are quite stable with respect to conversion into orthophosphate, acid solutions, even at room temperature, hydrolyze slowly to the common orthophosphoric acid, H_3PO_4 .

$$H_4P_2O_7 + H_2O = 2H_3PO_4$$

The rate of this hydrolysis has been repeatedly studied. Abbott [J. Am. Chem. Soc., 31, 763 (1909)] showed, by conductivity measurements, that, approximately at least,

$$-\frac{d(\Sigma H_4 P_2 O_7)}{dt} = k(H^+)(\Sigma H_4 P_2 O_7)$$

and for a 0.05 formal solution at 100° , k' = 1.53; at the same concentration, but at 75° , k' = 0.127 where the k' are numbers directly proportional to the k. The factor of proportionality is not known; it includes the undetermined ratio of the conductance of the solutions to the concentration of H^{+} . The extent of the hydrolysis with time is more conveniently seen from a table prepared by Abbott (upper table, page 226). From these results it may be estimated that at 45° about 40 hours would be required for 50% hydrolysis of a solution initially 0.05 formal.

A closer insight into the mechanism of pyrophosphoric acid hydrolysis was obtained by Pessel [Monatshefte, 43, 601 (1923); see Kailan, Z. phys. Chem., 160A, 301 (1932)] and by Muus [Z. phys. Chem., 159A, 268 (1932)]. They studied the reaction in the presence of excess hydrochloric

acid. In the experiments of Muus ($\Sigma H_4 P_2 O_7$) was 8.07×10^{-4} m and the concentration of HCl was many times greater than this, namely, about 0.03 to 0.25 m. Many of the experiments were carried out in KCl solutions, so that the ionic strength remained practically constant. A colorimetric method of analysis was used; to 5 cc samples of the solutions were added 2 cc of ammonium molybdate solution (500 cc of 5% solution

Cent Hydrolyzed	Time (minutes)
25	88 220
50 75	470
25 50	52
50 75	135 290
25	5
50 75	12.5 27
	50 75 25 50 75 25 50

plus 200 cc 5 n H_2SO_4), 1 cc of 20% Na_2SO_3 , and 1 cc of $\frac{1}{2}$ % hydrochinon. With orthophosphate, but not with pyrophosphate, a blue-colored solution was produced which may be compared with standards made up under like conditions. Muus found, just as did Abbott, that

$$-\frac{d(\Sigma H_4 P_2 O_7)}{dt} = k'(H^+)(\Sigma H_4 P_2 O_7)$$

and he showed, moreover, that the rate equation is, more precisely,

$$-\frac{d(\Sigma H_4 P_2 O_7)}{dt} = k(H^+)(H_3 P_2 O_7^-)$$

since the ion $H_3P_2O_7^-$ is present initially in greatest and most constant concentration in solutions of varying acidity. This result suggests that

KCl (conc. m/l)	Temp.	$k \times 10^3$
1.0 0.0 1.0 0.0	40 40 20 20	44.2 65.0 3.97 6 5

H₄P₂O₇ is the reactive substance. When the time is expressed in hours, k has the values shown in the table. Expressed otherwise, we may say that when the concentration of hydrogen ion is 1 m, 50% of the pyrophosphoric acid in a solution will have hydrolyzed in 16 hours at 40° and in 172 hours at 20°. Essentially the same results were obtained by Pessel.

So far we have followed the hydrolysis of meta- and pyrophosphoric acids to orthophosphoric acid in dilute solution. If one begins with the dilute ortho acid and evaporates the solution until the temperature reaches about 149°, a syrupy, concentrated orthophosphoric acid results. From 150 to 160° only a little water is lost; but if the temperature is raised to 212–213°, evaporation proceeds slowly with formation of a solution consisting principally of pyrophosphoric acid. Evaporation at 255–260° produces almost pure pyro acid, but evaporation at 290–300° brings about the formation of some metaphosphoric acids; further concentration at still higher temperatures leads to increased amounts of the metaphosphoric acids. Clearly, the hydrolytic reactions are reversible, but practically nothing is known about the equilibrium concentrations

of the various acids in their concentrated solutions.

The ionization of pyrophosphoric acid is discussed in the following section on orthophosphates.

Orthophosphates

Solutions of pure orthophosphoric acid are best prepared by the action of nitric acid (specific gravity, 1.2) on pure white phosphorus. Pure orthophosphoric acid is a white solid which melts at 42.30° to a

Fig. 43. The Specific Conductivity of Phosphoric Acid Solutions at 0° and 18° C.

liquid showing a strong tendency to supercool. The heat of fusion is 2520 cal/mole. There is a solid semihydrate $2H_3PO_4\cdot H_2O$ which melts at 29.35°. Only the strongest and most reactive reducing agents have any effect on pure phosphoric acid. With metallic sodium, a sodium phosphide is formed. In general, the reduction reactions have no especial interest at present.

Since the solution of phosphorus pentoxide in water does not lead directly to orthophosphoric acid, the energy quantities obtained with it and water are variable, and a reliable value for the heat of solution to give the ortho acid is not available. By oxidizing phosphorus with bromine solutions, an accurate value for the heat of formation of $\rm H_3PO_4$ in dilute solutions has been obtained. Determination of the heats of dilution of pure orthophosphoric acid offer no especial difficulty.

The importance of accurate thermodynamic knowledge of phosphates and phosphoric acids is obvious. These substances play a vital part in soil fertility, and it is essential that applied fertilizers have all the properties conducive to a continuously productive agriculture. The following brief discussion indicates the nature of our present information on some relevant compounds.

The heat and free energy of ionization of pyro- and orthophosphoric acids have been repeatedly investigated and by a variety of methods.

In the case of orthophosphoric acid, Pitzer [J. Am. Chem. Soc., 59, 2365 (1937)] has determined heats of ionization and has made a critical selection of the ionization constants. The constants for pyrophosphoric acid are known with fair accuracy.

THE IONIZATION OF ORTHO AND PYROPHOSPHORIC ACIDS

H ₈ PO ₄	ΔH_{298}°	ΔF_{298}°	$-\Delta S_{298}^{\circ}$	K	
First hydrogenSecond hydrogenThird hydrogen	-1880 800 3000	2898 9830 16,300	16.0 30.3 43.	$7.5 \times 10^{-3} \\ 6.2 \times 10^{-8} \\ 10^{-13}$	

 $H_4P_2O_7$, $K_1 = 0.14$, $K_2 = 0.011$, $K_3 = 2.1 \times 10^{-7}$, $K_4 = 4.06 \times 10^{-10}$ at 18° H₄P₂O₇, in 1 n KCl at 18° , $K_2 = 0.027$, $K_3 = 3 \times 10^{-6}$

Careful determinations of the first and second ionization constants of H_3PO_4 by means of electromotive force measurements have been made at a variety of temperatures by Nims [J. Am. Chem. Soc., 56, 1110 (1934); 55, 1946 (1933)]. If K_1 is expressed as $K_1 = 10^{-pK}$, then, for dilute solutions, the following are reliable values of pK_1 and K_2 .

IONIZATION CONSTANTS OF Hapo, AT VARIOUS TEMPERATURES

t (°C)	p <i>K</i> 1	t (°C)	$K_2 imes 10^8$	
0.3 12.5 25. 37.5 50.	2.048 2.076 2.124 2.185 2.260	20 30 40	6.056 6.349 6.471	

$$\log_{10} K_1 = -2.0304 - 5 \times 10^{-5} (t + 18)^2$$

$$\Delta II_T^{\circ} = 4.58 \times 10^{-4} T^2 (T - 255.1)$$

When comparison is made between the ionization constants of the ortho and pyro acids, it is seen that the latter is much the stronger. This behavior is observed in other oxyacids containing one and more than one nuclear acidic element. Thus, $\mathrm{HCr_2O_7^-}(K_2=2.3\times10^{-2})$ is stronger than $\mathrm{HCrO_4^-}(K_2=3.2\times10^{-7})$. This fact is probably to be explained, roughly, by the changes resulting from oxygen-bond formation, the effect being to increase the distance and hence reduce the interaction

between an un-ionized hydrogen and the oxygens attached to the other phosphorus atom.

Of interest are the partial vapor pressures of water above orthophosphoric acid. These are given for several temperatures and concentrations in the following table and Fig. 44 [Kablukov and Zagwosol, Z. anorg. Chem., 224, 315 (1935)].

TABLE 55
THE PARTIAL VAPOR PRESSURES OF WATER IN mm Hg
ABOVE ORTHOPHOSPHORIC ACID SOLUTIONS

Concentration (moles H ₃ PO ₄ / 1000 g water)	25°	40°	60°	80°	Concentration Weight Per Cent
0.00 0.612 1.08 3.03	23.756 23.45 23.21 —	55.324 54.42 53.93 50.82 46.54	149.38 147.18 145.63 139.76 128.76	355.1 349 41 347.89 330.94 300.91	00.0 5.66 9.57 22.16 36.67
6.05 11.80 17.56 46.46 68.30	20.70 16.50 11.49 3.95 2.93	35.40 27.37 8.66 4.82	96.96 74.23 27.37 14.30	235.07 182.94 73.13	54.13 63.11 81.46 87.11

These data may be used to calculate the partial molal heat of vaporization of the water from solutions of any concentration. The directly

determined values for the 40% acid are $\Delta H^{\circ}_{350}=10{,}100$ cal and $\Delta H^{\circ}_{374.6}=9850$ cal, and for the 50% acid $\Delta H^{\circ}_{351.7}=10{,}300$ cal and $\Delta H^{\circ}_{376.4}=10{,}100$ cal per mole of water vaporized.

In principle, the vaporpressure results may be used to calculate the activities of the acid over the whole range of concentrations, but this has not yet been done.

It is evident that even the 90% orthophosphoric acid cannot be used as an effective drying agent, since at 25° the

Fig. 44. The Partial Vapor Pressure of Water above Phosphoric Acid Solutions.

partial vapor pressure of water is already 1.69 mm. The affinity of P_2O_5 for water is very much greater than that of 90% phosphoric acid, the vapor pressure of water in equilibrium with a P_2O_5 -(HPO₂)_n mixture being less than 10^{-5} mm.

When water is added to a phosphoric acid solution, its temperature rises, and the increase in energy is known as the heat of dilution. Rumelin [Z. phys. Chem., 58, 460 (1907)] determined the heats of dilution, dE/dn, when a small amount of water was added to large amounts of solution. His results are as follows:

Composition of Solution— Weight Per Cent H ₃ PO ₄	Energy Change per Mole Water Added, dE/dn (cal/mole)	Specific Heat of Solution (cal/gram)	Temperature (°C)
32.72	33.5	0.697	17.65
28.18	19.9	.776	17.63
21.50	12.3	.813	17.16
15.36	8.2	.834	17.50

The heats of solution of crystalline H_3PO_4 in n moles of water are [Bichowsky and Rossini, *Thermochemistry*]:

n	$-\Delta H_{291}^{\circ}$ (cal)	n	$-\Delta H_{291}^{\circ}$ (cal)
400 200 100 50	2790 2730 2650 2550	20 9 3	2320 1890 680

The densities of orthophosphoric acid solutions are comparable to those of sulfuric acid at the same weight per cent concentrations, as the following specific gravities at 20°/4° show.

Per Cent Acid	H ₃ PO ₄	H ₂ SO₄	Per Cent Acid	H₃PO₄	H ₂ SO ₄
1	1.0038	1.0051	60	1.426	1 4983
10	1.0532	1.0661	80	1.633	1 7272
20	1.1134	1.1394	90	1.746	1 8144
40	1.254	1.3028	100	1.870	1 8305

All of the hydrogens in ortho- and pyrophosphoric acid are replaceable. This fact is illustrated by the following well-established salts. The corresponding ammonium salts are also known. Because of the weakness of both the acid and the base, the tri- and diammonium compounds hydrolyze extensively in aqueous solution.

Salt	Solub	Solubility in Water (g/100 g water)							
NaH ₂ P ₂ O ₇ Na ₂ H ₃ P ₂ O ₇ ·6H ₂ O Na ₃ HP ₂ O ₇ ·6H ₂ O Na ₄ P ₂ O ₇ ·10H ₂ O		14. 28. 8.	7 (18°) ^a 95 (18°) ^a 17 (18°) ^a 14 (25°) 45 (50°)						
	0°	25°	100°						
NaH ₂ PO ₄ ·2H ₂ O Na ₂ HPO ₄ ·12H ₂ O Na ₃ PO ₄ ·12H ₂ O	57.86 (0.1°) 1.67 (-0.5°) 1.5	94.63 12 15.5	246.56 (NaH ₂ PO ₄ at 99.1°) 102.15 (Na ₂ HPO ₄ at 99.77°) 108						

a g/100g soln.

The following are representative of the variety of insoluble salts of orthophosphoric acid:

Mg ₃ (PO ₄) ₂ ·4, 8, and 22H ₂ O	$\mathrm{Co_3(PO_4)_2.8H_2O}$
MgHPO ₄ ·7H ₂ O	$Ni_3(PO_4)_2 \cdot 7H_2O$
$Mg(H_2PO_4)_2\cdot 2H_2O$	$\mathrm{Cu_3(PO_4)_2\cdot 3H_2O}$
NH ₄ MgPO ₄ ·6H ₂ O	$Pb_3(PO_4)_2 4H_2O$
$Zn_3(PO_4)_2\cdot 4H_2O$	$Fe_3(PO_4)_2.8H_2O$
ZnHPO ₄ ·2H ₂ O	$FeHPO_4 \cdot H_2O$
$Zn(H_2PO_4)_2 \cdot H_2O$	$Fe(H_2PO_4)_2 \cdot 2H_2O$
AlPO ₄ ·4½H ₂ O	$FePO_{4}\cdot 4H_{2}O$

In addition to these, a number of phosphates occur naturally, for example, $[Ca(Ca_3(PO_4)_2)_3]F_2$ (apatite). The phosphorus in these may be replaced by As or V, as in $[Pb(Pb_3(AsO_4)_2)_3]F_2$ (Mimetisite) and $[Pb(Pb_3(VO_4)_2)_3]Cl_2$.

The addition of excess phosphoric acid to solutions of ferric ion leads to the formation of the soluble complexes [Weinland and Ensgraber, Z. anorg. Chem., 340, 84 (1913)] H₃[Fe(PO₄)₂] and H₅[Fe(PO₄)₃].

Sodium and ammonium phosphates have found extensive application as fertilizers, the ammonium salts furnishing both available phosphorus and nitrogen to the soil. The sodium salts are much used in aqueous solution as buffers for the maintenance of practically constant concentrations of hydrogen ion during titrations with strong acids or bases. For this purpose moderately large concentrations are necessary, since, for example, in the relation

$$(H^+) = K_2 \frac{(H_2 PO_4^-)}{(HPO_4^-)}$$

the (H⁺) will remain constant on the addition of a strong acid only if the ratio $(H_2PO_4^-)/(HPO_4^-)$ is not greatly altered, *i.e.*, if neither the numerator nor the denominator is changed by more than a per cent or so. When $(H_2PO_4^-) = (HPO_4^-) \approx 1$ m, one has a buffer solution in which $(H^+) = 10^{-7}$ nearly; that is, the solution is practically neutral and will remain so if comparatively small amounts of a strong acid or base are added to it.

The compound NaNH₄HPO₄, known as microcosmic salt, is used in bead tests for metal oxides; the mixed phosphates formed by the fusion (on a platinum loop) of the microcosmic salt with the metal oxide are often distinctively colored. CoNaPO₄, for example, is blue.

The thermodynamic constants for the phosphoric acids and phosphates are for the most part only approximately known. For the formation of H_3PO_4 in dilute solution from H_2 , P (red), and O_2 , $\Delta H^\circ = -302{,}000$ cal and $\Delta F^\circ_{298} = -270{,}000$ cal [Latimer, Oxidation Potentials]. Latimer also gives estimates of the standard potentials of the important couples at 25°. Most of these oxidation potentials are quite large and are in

Reaction	E° (in volts)
$H_{3}O + H_{3}PO_{3} = H_{3}PO_{4} + 2H^{+} + 2E^{-}$ $3OH^{-} + HPO_{3}^{-} = PO_{4}^{-} + 2H_{2}O + 2E^{-}$ $2H_{2}O + H_{4}P_{2}O_{6} = 2H_{3}PO_{4} + 2H^{+} + 2E^{-}$ $2H_{3}PO_{2} = H_{4}P_{2}O_{6} + 2H^{+} + 2E^{-}$ $H_{2}O + H_{3}PO_{2} = H_{2}PO_{3} + 2H^{+} + 2E^{-}$ $3OH^{-} + H_{2}PO_{2}^{-} = HPO_{3}^{-} + 2H_{2}O + 2E^{-}$ $2H_{2}O + P = H_{3}PO_{2} + H^{+} + E^{-}$ $2OH^{-} + P = H_{2}PO_{2}^{-} + E^{-}$	0.20 1.05 0.8 0.4 0.59 1.65 0.29 1.82

accord with the long-known fact that the phosphorus compounds in the lower oxidation states are strong or powerful reducing agents.

Of particular interest from the thermodynamic point of view is the hydrolysis of phosphorus in water.

$$4P \text{ (red)} + 6H_2O = PH_3(g) + 3H_3PO_2, \qquad \Delta F_{298}^0 = -17,000 \text{ cal}$$

This large negative value of ΔF_{298}° shows that the hydrolysis is, at equilibrium, practically complete with $K\approx 10^{13}$; that is, the pressure of phosphine in equilibrium with P (red) and a molal solution of hypophosphorus acid would be enormous, $\approx 10^{13}$ atm, and beyond our ability to measure. This reaction does not, therefore, provide an avenue of approach to the accurate evaluation of the free energies of phosphorus compounds.

We shall conclude this section on phosphoric acids with a table of some of their characteristic reactions with precipitants. Of the precipitants for the orthophosphates, ammonium molybdate in nitric acid solution is the most interesting. The yellow compound formed is a

complex with a phosphorus nucleus, $(NH_4)_3H_4[P(Mo_2O_7)_6]\cdot H_2O$; it is only slightly soluble in water, 0.03 g/100 g H₂O at 15°, but the free acid, $H_7[P(Mo_2O_7)_6]\cdot 10H_2O$, is soluble. The acid is heptabasic, and the normal salts of guanidine, $CN_3H_6^+$, silver, and mercury have been prepared. The corresponding tungsten compounds are known, $M_7[P(W_2O_7)_6]$, and a mixed vanadium molybdenum complex as well, $R_7[P(V_2O_6)_3(Mo_2O_7)_3]$. Phosphomolybdic acids in which all of the phosphate oxygens are not replaced by the pyromolybdate radical are known, for example [Rosenheim and Janecke, Z. anorg. Chem., 100, 304 (1917)],

$$H_7[P(Mo_2O_7)_6], H_7[PO(Mo_2O_7)_5], H_7[PO_2(Mo_2O_7)_4]$$

Compounds like the phosphomolybdic acids are known as heteropolyacids; a large number of them are known to have nuclei other than phosphorus—for example, hydrogen, arsenic, boron, thorium, silicon, tin, cerium, titanium, zirconium, tellurium, iron, cobalt, copper, manganese, and nickel. All of the saturated heteropolyacids contain six addenda of the type Mo_2O_7 or MoO_4 .

Normal zirconium phosphate is insoluble even in concentrated sulfuric acid.

TABLE 56
REACTIONS OF PHOSPHORIC ACIDS IN AQUEOUS SOLUTION

Reagent	Orthophosphoric Acid	Pyrophosphoric Acid	Metaphosphoric Acid
	Yellow Ag ₃ PO ₄ No ppt. in acid, white Ba ₃ (PO ₄) ₂ in alkaline soln.	White crystl. Ag ₄ P ₂ O ₇ No ppt. in acid; Ba ₂ P ₂ O ₇ in alkali	
$Zn(Ac)_{2}$	No ppt.	White Zn ₂ P ₂ O ₇	No ppt.
Al+++	No immediate ppt. Ppt. soluble in HAc Ppt. soluble in HAc	No ppt. Reddish-yellow ppt. Ppt. insoluble in HAc Ppt. insoluble in HAc	No ppt. No immediate ppt. Ppt. insoluble in HAc Ppt. insoluble in HAc
kali Albumin	No ppt.	No ppt. No ppt.	White ppt. White ppt.

^a HAc = acetic acid, CH₂COOH.

It will be realized that the reactions listed under metaphosphoric acid are subject to some reservations as a consequence of the existence of several polymers of this acid. In this connection it may be said that a thorough experimental investigation of the metaphosphoric acids and their salts would be of utmost scientific value; no other element exists in a single-valence stage in such a variety of acids having so many puzzling properties as does phosphorus.

CHAPTER 7

Phosphorus Halides and Oxyhalides. Phosphine

The Phosphorus Halides and Oxyhalides

Preparation

White phosphorus combines readily and often violently with the halogens to form compounds of the type PX₃, PX₅, or P₂X₄. With red phosphorus, the reactions are somewhat less violent but lead to the same products. In all cases further purification is necessary to obtain a product free from a halide higher or lower than that desired. This fact is exemplified by the procedures found necessary by Baxter, Moore, and Boylston [J. Am. Chem. Soc., 34, 259 (1912)] for the preparation of PBr₃ for atomic-weight determinations. Their method of purification involved a series of fractional distillations of both the phosphorus and bromine used as well as of the product, PBr₃. Phosphorus trichloride can also be prepared in a high state of purity in a similar way.

Ordinarily the chlorides and bromides are prepared, as indicated, by allowing the elements to come together in an appropriate vessel. iodides are best made by mixing solutions of white phosphorus and iodine in carbon disulfide and then removing the solvent by evaporation. fluorides are most conveniently prepared by treating the chlorides directly with liquid arsenic trifluoride, AsF3, resublimed antimony trifluoride SbF₃ (Swarts' reaction), or calcium fluoride. The liquid AsF₃ is dropped from a funnel directly onto the PCl₃ or PCl₅; the reaction proceeds smoothly at room temperature, or a few degrees above, and becomes more rapid with time, owing to the fact that at first the two immiscible liquids do not present much surface of contact but, as more AsCl₃ forms, the original two-phase liquid mixture becomes a single phase containing in solution both of the reactants. The volatility of the AsF₃ (b.p., 58°) makes necessary its removal from the reaction products by a fractional distillation.

$$PCl_3 + AsF_3 = PF_3(g) + AsCl_3$$

The trifluoride may also be formed by warming a mixture of ZnF₂ and PBr₃, or by heating copper phosphide with lead fluoride. When resublimed antimony trifluoride is used, it is added in the powdered form to the liquid to be fluorinated; antimony pentachloride and SbF₃Cl₂ act as catalysts in this and other fluorination reactions using antimony tri-

fluoride, and it is conveniently obtained by partially chlorinating the SbF₃ with chlorine until about ten per cent of it is converted to SbF₃Cl₂. In some cases it is desirable to reflux the liquid chloride to be fluorinated in such a way that its vapors circulate through the antimony trifluoride. Calcium fluoride promises to become a convenient and cheap fluorinating agent, although the best conditions for its use have not yet been worked out; the vapors of the chloride or bromide to be fluorinated are simply passed through a heated tube containing the CaF₂. These reactions lead not only to the phosphorus fluoride alone, but, under proper conditions, to the mixed halides as well. Thus, PF₃Cl₂ and the correspond-

ing bromides may be prepared through the Swarts and the calcium fluoride fluorinating reactions; POFCl₂ and POF₂Cl may be prepared in the same manner [Booth, vide infra].

Phosphorus trifluoride reacts with chlorine and bromine with moderate rapidity at room temperature to form PF₃Cl₂ and PF₃Br₂, respectively, and these compounds are decomposed by gentle to moderate heating into phosphorus pentafluoride and the pentachloride or pentabromide.

$$\begin{split} \mathrm{PF_3(g)} + \mathrm{Cl_2(g)} &= \mathrm{PF_3Cl_2(l)} \\ 5\mathrm{PF_3Cl_2(g)} &= 3\mathrm{PF_5(g)} + 2\mathrm{PCl_5(s)} \end{split}$$

The first reaction is measurably slow in the gas phase and quite rapid if PF₃ is caused to react with liquid chlorine; the gas-phase reaction, taking place to considerable extent on the walls of the reaction vessel, does not belong to the class

Fig. 45. The Molecular Structure of PF_3Cl_2 . P-F = 1.59Å; P-Cl = 2.05Å.

tion vessel, does not belong to the class of homogeneous gas reactions [Norton Wilson, Thesis, Cal. Inst. Tech., 1939]. The second or decomposition reaction appears to be catalyzed by organic matter; heating to 100° or less suffices for the decomposition in the absence of catalysts.

An interesting haloid, the isocyanate, $P(NCO)_3$, of trivalent phosphorus has been prepared recently by Forbes and Anderson [J. Am. Chem. Soc., 62, 761 (1940)]. The compound results from a warm mixture of PCl_3 (90 g), AgNCO (230 g), and benzene (300 cc); purification of the product is effected through several distillations. Phosphorus tri-isocyanate is a colorless liquid with b.p. = 169.3° and m.p. = -2° ; the vapor pressures are given by $\log_{10} p_{mm} = 8.7455 - 2595/T$, and $\Delta H_{vap.} = 11,900$ cal. Its density is 1.439 at 20°. The liquid will stand for two weeks without change, but on cooling to -20° , melting at -2° , and then

standing at room temperature for three days, it becomes a solid, melting at about 80° or even 95° if repeatedly melted.

Fig. 46. The Molecular Structures of VOCls, POCls, POFs, PSFs, PSCls.

	v—o	Р—О	P—S	Р—Х	v—x	∠X—P—X	∠X—V—X
VOCl ₃		1.58Å 1.56	1 85Å	2.02Å 1.52	2.12Å	106° 107 99.5	111°

Fig. 47. The Molecular Structures of POF₂Cl and POFCl₂.

	P-O	P—F	P—Cl	$\angle F-P-Cl = \angle F-P-F = \angle Cl-P-Cl$
POF ₂ Cl POFCl ₂	1.55Å	1.51Å	2.01Å	106°
	1 54	1.50	1.94	106

All of the phosphorus halides with the exception of PF₃ hydrolyze very rapidly with water, and advantage is taken of this fact in the preparation of the oxyhalides. Thus, with a little water the reaction

$$PCl_5(s) + H_2O(l) = POCl_3(l) + 2HCl(g)$$

takes place. With excess water orthophosphoric acid, H_3PO_4 , is formed. $POCl_3$ may be prepared on a larger scale by passing chlorine over Ca_3 - $(PO_4)_2$ and charcoal at 750° [Rozhdestvenskii, *Trans. State Inst. Applied Chem.* (US.S.R.), 20, 47 (1934)]. The oxychloride, in turn, may be converted to the trichloride by passing it over coal at red heat. Both $POCl_3$ and $POBr_3$ result with good yields when PCl_5 or PBr_3 are mixed with P_2O_5 . Phosphorus oxyfluoride is formed by direct hydrolysis of PF_5 with little water or by the direct action of HF (g or l) on P_2O_5 . When cryolite, Na_3AlF_5 , is heated in a brass tube with P_2O_5 , POF_3 is formed.

Of the phosphorus fluorides, the trifluoride is most readily prepared pure; and since it neither attacks glass nor hydrolyzes rapidly in moist air, it is not difficult to store if reasonable precautions are taken. It does hydrolyze if passed directly into water or alkali.

An interesting series of fluophosphoric acids has been prepared and studied by Lange [Ber., 62, 1054, 782 (1929) et ante]. They may be regarded as derivatives of metaphosphoric acid.

 $\begin{array}{cccc} HPF_6 & HPO_2F_2 & H_2PO_3F \\ Hydrofluophosphoric & Difluophosphoric & Monofluophosphoric \\ acid & acid & acid & \end{array}$

The preparation consists in heating phosphorus pentoxide at 135° with ammonium fluoride, in adding the pentoxide to 40% hydrofluoric acid, or in hydrolyzing incompletely POF3 with cold, dilute alkali. Both HPF6 and HPO2F2 form relatively insoluble salts with Nitron, C6H5NNCN(C6H5)CHNC6H5, a monoacidic base, and these salts serve as a starting point for the preparation of others. Solutions of the alkali salts of HPF6 and HPO2F2 are neutral to methyl orange and phenolphthalein, hence the acids are strong. The salts of HPF6 resist hydrolysis, and boiling with strong alkali decomposes them only slowly; hydrolysis is more rapid in strong acids. Dilute alkali will hydrolyze the salts of HPO2F2 to those of H2PO3F, and hot strong acids will hydrolyze the latter to phosphoric and hydrofluoric acids, but dilute alkali will not. In many ways HPO2F2 resembles perchloric acid, especially in the solubility of its salts. Solutions of the acid salt KHPO3F are acid to methyl orange while those of K2PO3F are neutral to this indicator.

Properties

Of special interest in recent years have been the mixed halides of phosphorus, and their preparation and purification are due, for the most part, to Booth and his co-workers [J. Am. Chem. Soc., 61, 3120 (1939) et ante]. The importance of these volatile mixed halides results from the fact that the influence of the different halogens on the bond angles

TABLE 57

THE PHYSICAL PROPERTIES OF THE PHOSPHORUS HALIDES AND OXYHALIDES

THE FRISICAL FROFERITES OF THE FROSFRORDS HALLDES AND UNITABLIDES	FROFERII	ES OF TH	E racer	IOROS DA	LIDES A	ND OATHA	LIDES	
Substance	Boiling Point (°C)	Melting Point (°C)	Heat of Vaporization, ΔH° (cal)	Critical Temp. and Pressure (atm)	Standard Entropy of Gas, S ₃₈₈ (cal/deg/ mole)	Heat of Formation, $-\Delta H_{288}^{co}$ (cal)	Bond Angle, X—P—X	Interatomic Distances (Å), P—X
PF ₃	-101.15	-151.5	3490	$\begin{cases} -2.05 \\ (42.69) \end{cases}$	64.13	ı	104°	1.52
PF ₂ Cl	-47.3	-164.8	4200	89.17	ı	ı	l	1
PFCI,	13.85	-144.0	5950	(49.3)	i	1	102°	2.02
PCl ₁	74.2	-111.8	7278	,	74.49	{ 69,120(g) 76.900(l)	101°	2.00
PF ₂ Br	-16.1	-133.8	5721	1	ı	. 1	ı	1
PFBr ₂	78.4	-115.0	7624	1	ı	ı	ı	1
PBr ₈	175.3	-40	1	1	83.11	45,000(1)	100°	2.23
PF6	-75	-83	1	1	1	i	đ	1.57
PF ₈ Cl ₂	10	%	1	1	ı	ı	÷	P-F, 1.59
PCIs	160 (sublimes)	148?	15,500	1	84.3	106,500(s)	1	1 1
PF ₃ Br ₂	1	-20	1	1	ı	1	ı	1
PBr.	Dec.	< 100	1	1	1	60,600(s)	ı	ı
P ₂ I ₄	Dec.	124 5	1	1	1	19,800	ı	ı
PI		61.0	1	1	1	10,900	86	1
POF	-39.8	-39.4	2030	73.3 (41.8)	ı	i	107°	P-F, 1.52 P-0, 1.56
POCI	105.1	1.25	8200		77.59	$ \begin{cases} 138,400(\mathbf{g}) \\ 147,100(1) \\ 150,300(\mathbf{s}) \end{cases} $	106°	{P—Cl, 2.02 P—O, 1.58

TABLE 57 (Cont.)

		•	(1000) 10					
Substance	Boiling Point (°C)	Melting Point (°C)	Heat of Vaporization, ΔH° (cal)	Critical Temp. and Pressure (atm)	act of Temp. Temp. Temp. and Prese Gas, Szss (cal) (stm) Standard Heat Forma (cal/deg/ mole)	Heat of Formation, $-\Delta H_{298}^{\circ}$ (cal)	Bond Angle, X—P—X	Interatomic Distances (Å), P—X ^b
POB.	189.5	56	ı	1	j	106,900(s)	1	
POFCI,		-80.1	7400	ļ	1	l	106°	$egin{pmatrix} P=0, 1.54 \\ P=F, 1.50 \\ P=CI, 1.94 \end{bmatrix}$
POF ₂ Cl	3.1	-96.4	0609	$\left\{\begin{array}{c} 150.6 \\ (43.4) \end{array}\right.$	ļ	ı	106°	(P-0, 1.55 P-F, 1.51 P-Cl, 2.01
POFBr ₂	110.1	-117.2 -84.8	7520 7093	1 1	1 1	ŀ	ı	: I I ;
PSCI	125	-35	ı	ı	79.34	ł	107°	$\{P-CI, 2.0I\}$
PSCI ₂ F	64.7	0.96-	6863	I,	ı	ı	1	. 1
PSCIF	6.3	-155.2	5703	$\begin{cases} 166 \\ (40.9) \end{cases}$	ı	ł	ł	i I !
PSF	-52.3	-148.8	4684	(37.7)	ı	ı	1	(P—F, 1.51 (P—S, 1.85
PSBr ₁	206	37	ı	ı	ı	ŀ	1	ı

chlorine.

* In the trigonal bipyramid, two P—Cl distances appear to be 2.11 Å and the other three are 2.04 Å. (Pauling, The Nature of the Chemical Bond, p. 103.) • These molecules are trigonal bipyramids.
• The P—X distance depends only on X and not on the compound. Thus P—Cl is essentially constant for all phosphorus halides containing

which they make with the phosphorus atom may be readily determined by electron-diffraction experiments. Reference to the table and the accompanying figures will show the interesting fact that the bond angle is almost invariant to the substitution of the halogens by each other. Moreover, the P—X distances in this class of substances are dependent mainly on X and not on the particular compound [see Brockway, Rev. Modern Phys., 8, 231 (1936); Pauling, The Nature of the Chemical Bond].

Fig. 48. The Molecular Structure of PF₃ and PCl₃. P—F = 1.52\AA ; P—Cl = 2.00\AA ; \angle F—P—F = 104° ; \angle Cl—P—Cl = 101° .

Fig. 49. The Molecular Structure of PFCl₂. P—F = 1.55\AA ; P—Cl = 2.02\AA ; \angle Cl—P—Cl = 102° .

There are few measurably reversible reactions to be found among phosphorus compounds; two exceptions are the pentabromide and pentachloride, which decompose reversibly into the trihalide and the halogen.

TABLE 58
MOLECULAR CONSTANTS FOR SOME PHOSPHORUS COMPOUNDS
(Frequencies are in cm⁻¹.)

	ω1	δ1	ω⊥	δ1 ⊥	ω2	δ ₂ ⊥	P—X	P—O	Shape, bond angle
PH ₃ PF ₃ PCl ₃ PBr ₃ POCl ₃ PSCl ₃	2320 890 511 400 1290 748	970 531 257 162 267 245	2430 840 480 380 581 539	1118 486 190 116 193 169	486 430 1	337 382 2	1.42 1.52 2.00 2.23 2.02 2.01	1.56	Pyramidal, 93° Do, 104° Do, 101° Do, 100° Cl—P—Cl 106° Cl—P—Cl 107°

The decomposition of the pentachloride has been repeatedly studied but not by precision methods [see Anderson and Yost, J. Chem. Phys., 4, 529 (1936); Fischer and Jubermann, Z. anorg. Chem., 235, 337 (1938)].

$$\begin{array}{c} \mathrm{PCl}_{\delta}(\mathbf{s}) = \mathrm{PCl}_{\delta}(\mathbf{g}) \\ \Delta H_{\mathrm{T}}^{\circ} = 30,763 - 38.144T, \quad \Delta F_{\mathrm{T}}^{\circ} = 30,763 + 87.83T \log_{10} T - 302.36T \\ \mathrm{PCl}_{\delta}(\mathbf{g}) = \mathrm{PCl}_{\delta}(\mathbf{g}) + \mathrm{Cl}_{2}(\mathbf{g}) \\ \Delta H_{\mathrm{T}}^{\circ} = 20,000 + 3.473T, \quad \Delta F_{\mathrm{T}}^{\circ} = 20,000 - 7.99T \log_{10} T - 17.27T \end{array}$$

These empirical formulas do not represent the measurements in a completely satisfactory manner; the following table presents the experimental values of the equilibrium constants together with the values of ΔH_0° calculated by Dr. D. P. Stevenson [J. Chem. Phys., 9,403 (1941)] on the assumption that the two unobserved vibrational frequencies are 450 and 600 cm⁻¹, respectively, the observed frequencies in the Raman effect being 100, 190 (2), 271 (2), 392, 449 (2), and 495 (2) cm⁻¹. The molecule is a trigonal bipyramid with equatorial P-Cl distances of 2.03 Å and axial P-Cl distances of 2.12 Å (see Fig. 50).

Fig. 50. The Molecular Structure of PCl₅ and PF₅. P—Cl equatorial = 2.03Å; P—Cl axial = 2.12Å; P—F (average) = 1.57Å.

$$PCl_3(g) + Cl_2(g) = PCl_5(g)$$

$$K_{alm} = \frac{P_{PCl_5}}{P_{PCl_5}P_{Cl_7}}$$

Temp. (°K)	$K_{\mathtt{atm}}$	ΔH_0° (kcal.)	Temp. (°K)	$K_{\scriptscriptstyle \mathtt{a} ext{ in}}$	ΔH° (kcal.)
422.6 430.3 442.7 454.0 464.5	122.63 67.96 45.22 15.52 8.88	21.44 21.35 21.61 21.22 21.20	473.1 502.2 556.0 623.0	5.816 1 752 0.2048 0.0234	21.20 21.35 21.31 21.21

It is evident that the two assumed frequencies, which were selected by trial, lead to satisfactorily constant values of ΔH_0° .

In Table 58 are collected the vibrational frequencies and interatomic distances for a few of the phosphorus halides for which the data are

reliably known. The entropies (Table 57) and the free-energy functions for these molecules have been calculated by Yost and Stevenson [J. Chem. Phys., 9, 403 (1941)].

The phosphorous halides combine with many substances to form addition or complex compounds, and in organic chemistry they find application as chlorinating and brominating agents.

All of the pentavalent halides hydrolyze readily even in moist air, but the trivalent compounds vary in this respect. Phosphine is not very reactive toward water or moisture (it may inflame in air); PF₃ likewise hydrolyzes only slowly in moist air, more rapidly in water, and quite rapidly in alkali. PF₂Cl hydrolyzes slowly in air; PFCl₂ does so more rapidly but does not fume; PF₂Br and PFBr₂ both fume in moist air; PCl₃ and PBr₃ are both fuming liquids at room temperature. Evidently the reactivity of this group of compounds toward water decreases as the sum of the atomic numbers of the three attached halogens decreases.

All of the mixed trihalides of phosphorus show a tendency to decompose spontaneously into the simpler ones. For example,

$$3PF_2Br = 2PF_3 + PBr_3$$

and this reaction takes place extensively in a few days [Booth and Frary, J. Am. Chem. Soc., 61, 2934 (1939)]; PFBr₂ decomposes much more slowly (into PF₃ and PBr₃), and the corresponding fluochlorides are decomposed extensively only at higher temperatures, 200° or higher. The reaction

$$PF_3 + PCl_3 = PFCl_2 + PF_2Cl$$

is reversible and at 400° results in about 30% conversion into the mixed halides; the mixed halides will decompose according to the equation at the same temperature. No rate or equilibrium data for these reactions exist. When the mixed trihalides are treated with chlorine or bromine, unstable liquid or solid mixed pentahalides are formed.

Phosphorus iodides

Two iodides of phosphorus are well established, namely, PI₃ and P₂I₄. These are prepared by mixing carbon disulfide solutions of white phosphorus and iodine in proper proportions, partially evaporating the mixture, and then cooling the resulting solution until the crystals separate. If the atomic proportions of P and I are as one is to three, PI₃ (dark red) will result; if as one is to two, P₂I₄ (clear red needles) is formed [Germann and Traxler, J. Am. Chem. Soc., 49, 307 (1927)]. The carbon disulfide solutions of PI₃ are dark red. Mixtures intended for the preparation of P₂I₄ are at first brown and then a beautiful, transparent red in color. PI₃ is also formed when a solution of iodine in carbon bisulfide is treated with an excess of P (red); the solution that results when reaction is

complete is dark red in color. It is possible that the equilibrium P_2I_4 (in CS_2) + I_2 (in CS_2) = $2PI_3$ (in CS_2) exists, although no measurements of it are recorded. The tri-iodide is somewhat unstable at higher temperatures; its vapor density at moderate temperatures corresponds to PI_3 , but little is known about the nature of the decomposition reaction. PI_3 (m.p., 61°) hydrolyzes in moist air and water to form phosphorous and hydriodic acids. The di-iodide, P_2I_4 (m.p., 124.5°), is somewhat unstable on heating and is decomposed into PI_3 and I_2 . When P_2I_4 is added to water, a number of compounds are formed in proportions depending on the temperature of the water; at 0°, HI, H_3PO_2 , H_3PO_3 , H_3PO_4 , PH_3 , and $P_{12}H_6$ are formed. The immediate oxidation of an alkaline solution of P_2I_4 with 30% H_2O_2 leads to a conversion of 24% of the phosphorus to hypophosphate ion, $P_2O_6^{\bullet\bullet}$ [Kolitowski, Roczniki Chem., 15, 29 (1935)].

TABLE 59
THE RATE OF REACTION BETWEEN PHOSPHORUS AND IODINE IN CARBON TETRACHLORIDE SOLUTION AT 15°
(Concentrations are expressed in moles per liter of solution, and the rates -R in millimoles of iodine per liter per minute.)

Initial (P₄) = 0.0084; initial (I₂) = 0.00400.

$(P_4) \times 10^3$	$(I_2) \times 10^3$	-R	$(P_4) \times 10^3$	$(I_2) \times 10^3$	-R
39.9 39.8 39.7 39.6 39.6 39.5	3.50 3.00 2.75 2.50 2.25 2.00	0.25 .10 .046 .029 .014 .007	39.4 39.4 39.3 39.2 39.2	1.75 1.50 1 25 1.00 .75	0.005 .008 .014 .020 .029

Initial $(I_2) = 0.00250$

$(P_4) \times 10^3$	$-R$, at $(I_2) = 2.00 \times 10^{-3} \text{m}$	$(P_4) imes 10^3$	$-R$, at $(I_2) = 1.50$ $\times 10^{-3}$ m	
4.9 9.9 14.9 19.9 24.9 29.9 34.9	0.036×10^{-1} $.098$ $.36$ $.94$ 2.0 3.5 6.0	4.7 9.7 14.7 19.7 24.7 29.7 34.7	0.023×10^{-1} $.062$ $.23$ $.60$ 1.25 2.0 2.8	

$$\frac{R[(I_2) = 2 \times 10^{-3}]}{R[(I_2) = 1.5 \times 10^{-3}]} \approx 1.6$$

The reaction between white phosphorus and iodine in dry carbon tetrachloride solution is slow, and its rate has been investigated and found to be a complicated function of the concentrations of the reactants [Wyllie, Ritchie, and Ludlam, J. Chem. Soc., 583 (1940)]. In all experiments made, the proportions of phosphorus and iodine corresponded to 2P + 4I or to (2 + x)P + 4I, so that at most P_2I_4 would be eventually formed and not any PI_3 . It was established at the beginning of the study that when reaction is complete in a mixture containing 2P + 4I, no free iodine is present. The reaction mixtures were analyzed for iodine by a colorimetric comparison method. In the table on page 243 are presented results for some of the representative experiments made by Wyllie, Ritchie, and Ludlam.

The rate of disappearance of iodine depends strongly on the concentration of phosphorus, especially when this is large, and much less strongly on the iodine concentration. Moreover, in a single run, the rate goes through a minimum, as is shown by the results in the first section of the table. These facts are in qualitative and approximate quantitative accord with the rate equation:

$$-\frac{d(I_2)}{dt} = \frac{4k_1(P_4)(I_2)^2}{(I_2) - b(P_4)} \left\{ 1 + \frac{k_1c(P_4)(I_2)}{(I_2) - b(P_4)} \right\}$$

When $k_1 = 10.0$, b = 0.04 and c = 0.6, and the rate is expressed in millimoles per liter per minute.

This rate equation, as Wyllie, Ritchie, and Ludlam point out, has only approximate validity and must be regarded as tentative, but it does reproduce the main features of the experimental results. A mechanism of the reaction which is in accord with the rate equation consists of the following set of reactions:

$$P_4 + I_2 = P_4I_2$$
 (1) $P_2 + I_2 = P_2I_2$ (4)

$$P_4I_2 = P_2I_2 + P_2$$
 (2) $P_2I_2 + I_2 = P_2I_4$ (5)

$$P_2I_2 + P_4 = P_4I_2 + P_2$$
 (3) $P_2I_2 + P_2I_2 = P_2I_4 + P_2$ (6)

It is assumed further that a steady state obtains in which the concentrations of the intermediates P_4I_2 , P_2I_2 , and P_2 remain constant. From these considerations the rate equation given above may be derived with $b=2k_3/k_5$, $c=4k_6/k_5^2$. The assumption that all intermediates are a steady-state concentrations may not be correct, since the same values of k, b, and c do not suffice to reproduce the experimentally found rates during the whole period of a single experiment. Attention should be called to the fact that the mechanism is not inconsistent with the fact that small concentrations of iodine will act to catalyze the reaction in which phosphorus solutions are converted to red phosphorus. This reaction is doubtless one of polymerization, and one step in the process could be $P_4 + P_2 = P_6$, followed by similar reactions to attain the necessary degree of polymerization.

In the discussion, the phosphorus-iodine reaction has been considered taking place in a solution of dry carbon tetrachloride. The addition of small amounts of water and other substances catalyzes the reaction strongly; with water as a catalyst, the rate may be over a hundred times faster than that found for the dry carbon tetrachloride solutions.

Phosphine and the Phosphonium Halides

Phosphine

the decomposition of phosphorus or its lower oxyacids has already been discussed. Its preparation is more conveniently carried out by carefully adding calcium phosphide, Ca₃P₂, to water or, for the purest product, by treating phosphonium iodide with alkali. The hydrolysis of calcium phosphide produces not only phosphine but the liquid diphosphine (hydrogen hemiphosphide), P2H4, the analogue of hydrazine, as well. The relative amounts of PH3 and P2H4 produced depend on the composition of the calcium phosphide. Like ammonia, phosphine is also formed slowly by the direct combination of the gaseous elements: the yield increases with increase in pres-

The formation of phosphine, PH3, in a number of reactions involving

Fig. 51. The Critical Pressures for the Oxidation of Phosphine. The curve corresponds to the predictions of the theory; the points are experimental. [Kassel, The Kinetics of Homogeneous Gas Reactions, Chemical Catalog Co., New York, 1932, pp. 297-302.]

sure and decrease in temperature.

Phosphine is a colorless gas which, under certain conditions of pres-

Temp. (°K)	$K_{ m atm} imes 10^{1}$
627	10
677	5.6
731	2.5
771	1.9

sure and temperature, will inflame spontaneously in oxygen. The gas from the hydrolysis of calcium phosphide inflames spontaneously in any proportion of air, and this effect is thought to be due to the presence of P₂H₄, since the latter is very reactive toward oxygen. Phosphine is only moderately soluble in water,
 26 cc in 100 cc water at 17°, and it gradually

decomposes in this solvent into phosphorus, hydrogen, and the

lower hydrides of phosphorus. Phosphonium hydroxide is a much weaker base than is ammonium hydroxide, but the ionization constant is not known. An unstable hydrate PH₃·H₂O or PH₄OH is known.

The equilibrium reaction of formation of phosphine from the elements has been studied in a silver-lined bomb at high pressures and temperatures by Ipatiew and Frost [Ber., 63, 1104 (1930)]. Their results have been recalculated by Stevenson and Yost [J. Chem. Phys., 9, 403 (1941)], who have derived the equilibrium constants given on page 245 and the following free energies:

$$\begin{array}{c} {\rm P_4(g)\,+\,6H_2(g)\,=\,4PH_3(g)} \\ \Delta H_0^{\circ}\,=\,1530~{\rm cal} \end{array} \qquad K = \frac{P_{_{\rm PII}}^4}{P_{_{\rm P4}}P_{_{\rm H3}}^6} \\ \Delta F_{_{298}}^{\circ}\,=\,-18,\!370~{\rm cal} \\ {\rm P(w)\,+\,\frac{3}{2}H_2(g)\,=\,PH_3(g)} \\ \Delta F_{_{298}}^{\circ}\,=\,-3,\!140~{\rm cal} } \end{array}$$

The negative value of ΔF_{298}° shows that even at room temperature there is a moderately strong tendency for phosphine to form from solid white phosphorus and hydrogen; the reaction is immeasurably slow, however, and it is not until a temperature of over 300° is reached that appreciable amounts of phosphine are formed from P and H₂.

Measurements have been made of the low-temperature heat capacities of phosphine by Stephenson and Giauque [J. Chem. Phys., 5, 149 (1937)]; their results, together with other physical chemical properties, are presented in Table 60. Like ammonia, the phosphine molecule is pyramidal in shape with a H—P—H bond angle of 93°. In ammonia, the H—N—H bond angle is 109°. The P—H distance is 1.42 Å; the corresponding distance in ammonia is N—H = 1.01 Å [see Howard, J. Chem. Phys., 3, 207 (1935); Stevenson, J. Chem. Phys., 8, 225 (1940)].

TABLE 60
THE PHYSICAL PROPERTIES OF PHOSPHINE
Heat Capacity (cal/mole/deg)

Temp. (°K)	Сυ, α	$C_{\mathfrak{p}}, \gamma, \beta, \delta,$ and liq.	Temp. (°K)	C _ν , α	$C_{\mathfrak{p}}, \gamma, \beta, \delta,$ and liq.
15 20 25 30 35 40 45 50 60 70	0.96 1.79 2.66 3.56 4.48 5.38 6.31	1.56 2.46 3.85 6.23 10.90 9.77 10.32 10.78 11.42 11.79	80 90 100 110 120 130 140 170 185		12.06 11.15 11.21 11.28 11.37 11.53 14.75 14.44 14.49

Table 60 (Cont.) Heats of Transition, Fusion, and Vaporization (cal/mole)

Temp. (°K)	ΔH° (cal)
30.29	19.6 185.7 115.8 270.4 3489.

Vapor pressures:

Solid,
$$\delta$$
, $\log_{10} p_{om} = -\frac{895.700}{T} + 6.86434$; $129-139^{\circ}$ K
Liquid, $\log_{10} p_{om} = -\frac{1027.300}{T} - 0.0178530T + 0.000029135T^{2} + 9.73075$

In the gas equation PV = RT + BP, B in cc is accurately represented by the empirical equation [Long and Gulbransen, J. Am. Chem. Soc., 58, 203 (1936)]:

$$B_{\rm oo} = 406.4 \, - \frac{1.0450 \times 10^6}{T} \, - \frac{3.02163 \times 10^7}{T^2} \, + \frac{1.3141}{T^4} \times \frac{10^{12}}{T} \, + \frac{2.2656 \times 10^{16}}{T^6}$$

Critical temp., $T_o = 324.1$ °K, $P_o = 64$ atm Entropy:

$$S_{298}^{\circ}$$
 (Exp.) = 50.35 cal/deg S_{298}° (Spectr.) = 50.5 cal/deg

Specific gravity D of liquid PH_2 at $T(^{\circ}K)$:

$$D = 0.744 + 0.0005952(186.8 - T)$$

Surface tension γ of liquid:

Temp. (°C)		-105 9	-93.1
γ, dynes/cm	 	22.783	20.798

Decomposition rate of gaseous PH₂:

$$-\frac{dP_{\rm PH_3}}{dt} = kP_{\rm PH_3}$$

Temp. (°C)	310	440	512
k,* sec-1	0.00021	.0025	.0081

^{*} Surface or wall reaction; k varies strongly with nature and extent of surface of containing vessel.

Phosphine melts at 139.35°K under its own vapor pressure of 2.733 cm. There are four solid modifications: the first or α form is stable below a transition point at 49.43°K, and goes over into the second or β form at the transition point. By rapid cooling, the β form may be obtained below the normal α — β transition temperature. The third form, the γ , is observed with the supercooled β form below 30.29°K; at about 36°K the supercooled β form shows an abnormally high heat capacity over a small temperature range. The fourth form, δ , exists above a transition temperature of 88.10°K.

The low-temperature studies on the α and γ forms of phosphine have made possible a test of the third law of thermodynamics. In one form this law states that at 0°K the entropies of all allotropic modifications of a pure substance are equal. That this is true, for the α and γ forms of phosphine, is seen from the following calculation of molal entropy changes. If the entropies of the α and γ forms were not equal at 0°K,

Process	α Form	γ (Supercooled β) Form
0-15°K, Debye function	0 338 	0.495 2.185 — 0.647 — 4.800 8.13

then the entropy changes from 0° to 49.43°K would not be equal for the two thermodynamic paths.

Phosphonium and ammonium halides

When gaseous phosphine and hydrogen iodide are mixed, beautiful, colorless, tetragonal crystals of phosphonium iodide, PH₄I, are deposited. This compound is more conveniently prepared by first treating a carbon disulfide solution of white phosphorus (100 g) with iodine (175 g) and then evaporating the mixture—toward the end, in a stream of CO₂—to dryness. The dark-colored residue is treated portionwise with water (50 g); the resulting reaction leads to the formation and deposition of crystals of moderately volatile PH₄I on the walls of the flask and the attached condenser. Resublimation of the crystals leads to a purer and more beautiful product; fairly large crystals of PH₄I often appear in sealed tubes containing the compound if they are allowed to stand for several days or weeks at room temperature. The corresponding bromide and chloride are gases at room temperature and one atmosphere.

Phosphonium halides react with water, alkalis, or acids to form phosphine and the halogen acid.

$$PH_4I + aq = PH_3 + H^+ + I^-$$

Since phosphonium hydroxide is a very weak base, and since phosphine is only moderately soluble in water, 26 cc in 100 cc water at 17°, gaseous phosphine is evolved when phosphonium iodide is added to water alone. For the preparation of pure phosphine, it is preferable to use an alkali as a hydrolytic agent, since otherwise the liberated gas may not be wholly free from phosphonium iodide (PH₃ + HI). In the solid state phosphonium iodide is slowly attacked by air to give iodine and oxides

Fig. 52. The Vapor Pressures of Phosphonium and Ammonium Halides.

of phosphorus. The volatility of phosphonium iodide, s.p.: = 80°, makes possible the sublimation of the solid even at room temperature.

It is of interest at this point to compare some of the properties of the phosphonium and ammonium halides. The vapors of both are practically completely dissociated at ordinary pressures according to the reactions

$$PH_4X(s) = PH_3(g) + HX(g)$$

 $NH_4X(s) = NH_3(g) + HX(g)$

One of the phosphonium halides, the chloride, exhibits a fairly uncommon phenomenon in that the vapor (hypercritical liquid) may be in equilibrium with the solid above the critical temperature. The same effect is shown by helium, the solid-vapor equilibrium being established at temperatures above which liquid-vapor equilibrium is possible. The pressure-temperature curves are shown for all but one of the phosphonium and ammonium halides in Figs. 52 and 53 [Smith and Calvert, J. Am. Chem. Soc., 36, 1363 (1914); Johnson, J. Am. Chem. Soc., 34,

877 (1912); Tammann, Z. Electrochem., 8, 158 (1902)]. The following table of physical properties of PH₄Cl shows its behavior in several respects; Fig. 53 exhibits the unusual phase relations.

I ABLE UI	
THE PHYSICAL PROPERTIES OF PHOSPHONIUM CI	HLORIDE
Melting point under own vapor pressure (°C)	
Sublimation point (°C)	-28
Critical temperature (°C)	48.8-50.1
Critical pressure	74.2-75.0 atm
Heat of fusion at 28.5°	12,680 cal/mole

Change in molal volume, ΔV , on fusion under pressure at various temperatures:

Temp. (°C)	ΔV (cc/mole)
28.5	61.4*
40	51.5
50	45.5
60	40.9

^{*} That these values are extraordinarily large may be seen by comparing with water, for which $\Delta V = 1.64$ cc/mole at 0°, and with naphthalene, for which $\Delta V = 18.7$ cc/mole at 80.1°.

The heat capacities of phosphonium iodide and the ammonium halides have been repeatedly investigated with the view of finding an explanation for what have come to be known as transitions of the second order or lambda-points. The molal heat capacity of PH₄I(s) increases

Fig. 53. The Vapor Pressure of Phosphonium Chloride at High and Low Temperatures. Curve II is simply an extension of Curve I; the change of scale is responsible for the apparent break.

steadily and very nearly linearly from 11.97 cal/deg at -180° to 24.86 cal/deg at 10°; there are no discontinuities or unusual changes in the C_{ν} , T curve in this temperature range. On the other hand, the ammoumni halides show marked changes in C_{ν} in an interval of from 5 to 10°

in the temperature range from about -30 to -43° , the interval and the range depending on the salt. In Figs. 54 and 55 are shown the $C_{\mathfrak{p}}$ versus T curves for PH₄I(s) and several ammonium salts [Simon, von Simonson, and Ruheman, Z. phys. Chem., 129, 339 (1927); Crenshaw and Ritter, Z. phys. Chem., 16B, 143 (1932); Eucken, a review in Z. Electrochem., 45, 126 (1939)].

The lambda-point, that is, the temperature at which the heat capacities show a maximum, does not correspond to an ordinary isothermal transition such as is observed with rhombic-monoclinic sulfur or yellow-red mercuric iodide, but rather to one for which the heat of transition,

Fig. 54. The Molal Heat Capacity at Constant Pressures of Phosphonium Iodide and the Ammonium Halides.

 ΔH , and the change in molal volume, ΔV , are quite small or zero. Liquid helium at 2.2°K exhibits a similar point, and some of its physical properties change rapidly or discontinuously in this neighborhood.

Application of the Clapeyron equation, $dp/dt = \Delta H/T\Delta V$, is not possible if $\Delta H = \Delta V = 0$ and does not explain the facts in any event. If we consider $\Delta F(p, T) = 0$ for the transition in a finite region, Δp and ΔT near the lambda-point, then, on expanding in series, we obtain, since $\Delta F(p, T) = 0$ and $\Delta F(p + \Delta p, T + \Delta T) = 0$,

$$\left(\frac{\partial \Delta F}{\partial p}\right)_{T} \Delta p + \left(\frac{\partial \Delta F}{\partial T}\right)_{p} \Delta T + \left(\frac{\partial^{2} \Delta F}{\partial p^{2}}\right)_{T} \Delta p^{2} + \frac{\partial^{2} \Delta F}{\partial p \partial T} \Delta p \Delta T + \left(\frac{\partial^{2} \Delta F}{\partial T^{2}}\right)_{p} \Delta T^{2} + \cdots = 0$$

or, replacing the derivatives by their equivalent,

$$\Delta V \Delta p - \frac{\Delta H}{T} \Delta T + \left(\frac{\partial \Delta V}{\partial p}\right)_{T} \Delta p^{2} + \left(\frac{\partial \Delta V}{\partial T}\right)_{p} \Delta p \Delta T - \frac{\Delta C_{p}}{T} \Delta T^{2} + \cdots = 0$$

If Δp and ΔT are taken infinitesimally small, and if the coefficients of their powers are not small or zero, we obtain the Clapeyron equation

Fig. 55. The Molal Heat Capacity at Constant Pressure of Some Ammonium Salts $\Delta V \Delta p - (\Delta H/T) \Delta T = 0$. But if Δp and ΔT are very small but finite, and if in addition ΔV and ΔH are small, then the "second-order" terms may be comparable in value to the first-order ones. If we assume that the third- and higher-order terms can be neglected, then we have a quadratic equation in Δp and ΔT whose graph will be a strongly curved ellipse or hyperbola with vertex near the lambda-point, according to the sign of its discriminant. At a given pressure there will be two temperatures at which one or the other form will exist. That is, if the substance is cooled at a fixed pressure, it will change from one form to the other;

and on further cooling it will reach a temperature at which it will change from the second back to the first form. This is shown by the line AB in Fig. 56. The Clapeyron equation alone would permit only a single temperature for an equilibrium state at a given pressure (univariant system). [See Epstein, Textbook of Thermodynamics, p. 132.]

Many attempts have been made to give an explanation of the second-

order transitions in terms of energy states of the molecules or ions in the crystals. The simplest of these assumes that a restricted rotation (oscillation of an NH⁺₄ about its axis) becomes free on picking up the additional energy resulting from the temperature increase. According to the equations of quantum statistics for non-interacting molecules, one would,

Fig. 56. Special Cases of Second-order Equilibria.

for such a situation, find a hump in the $C_{\rm p}$, T curve. The matter is not quite so simple as assumed, however, since the motion of any one NH $_4^+$ will be appreciably affected by the vibrational or rotational states of its neighbors, and the partition functions to be used will contain the energy in a complicated way. The simple theory is probably correct in its main, general features, however; the transitions of the second order doubtless correspond to changes from a well-ordered arrangement of the molecular orientations to a more chaotic one, or vice versa. For a more detailed discussion of the various theories and their application to experimental results, the reader is referred to the review article by Eucken.

CHAPTER 8

Oxygen, Sulfur, Selenium, Tellurium, and Their Compounds with Hydrogen

Oxygen

Preparation

Oxygen may be prepared by heating a number of oxides, HgO, PbO₂, BaO₂, some oxyacids, KClO₃, K₂Cr₂O₇, and, most conveniently for very pure oxygen, dried KMnO₄. A very pure product may also be obtained by electrolyzing sodium hydroxide solutions. Oxygen is an important article of commerce, the gas being compressed in steel cylinders at 3000 lb gauge or less. For this purpose it is obtained by the fractional distillation of liquid air at pressures varying from one to five or ten atmospheres.

Physical properties

The oxygen molecule is diatomic, O₂, at ordinary pressures, but at high pressures there is evidence for believing that O₄ molecules are also present in small concentrations. The evidence consists in the fact that at moderate or low pressures gaseous oxygen is paramagnetic, the susceptibility per mole at low pressures being given quite accurately as a function of the temperature for low magnetic fields by

$$\chi_m = \frac{1.011}{T} \text{ e.m.u.}$$

[Bauer and Piccard, J. de Phys., 1, 917 (1920)], and in accordance with the statistical interpretation of Curie's law, $\chi_m = \text{constant}/T$, the gas molecules O_2 have associated with them a permanent magnetic moment. The susceptibility of liquid oxygen and the gas at high pressures does not obey Curie's law.

In terms of the elementary magnetic moment μ_0 (Bohr Magneton), the quantum numbers J (total electronic angular momentum), S (total electron spin momentum), and L (total orbital momentum), and Avogadro's number, N, the molal susceptibility is given theoretically by

$$\chi_{m} = \frac{\mu_{0}^{2} N^{2} J(J+1) g^{2}}{3RT}$$

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

If J, S, and L are known from spectroscopic data, then χ_m can be calculated. μ for the spin moment alone is $\mu=2\sqrt{S(S+1)}he/4\pi mc$; for the orbital contribution alone, $\mu=\sqrt{L(L+1)}he/4\pi mc$, e being the charge and m the mass of the electron. In some cases, for example the monatomic vapors of silver, hydrogen, and the alkali metals [L. C. Lewis, Z. Physik, 69, 786 (1931)], the values of J, S, and L are known, and the calculated values of μ and χ_m are in agreement with experiment. If the theory is applied to the oxygen molecule, under the assumptions that L=0 (orbital magnetic moments cancel) and that two electron spins are parallel so that $J=S=1=2\times\frac{1}{2}$, then, since $\mu_0N=5585$ erg/gauss/mole, and g=2,

$$\chi_{m} = \frac{(5585)^{2} \times 2 \times 2^{2}}{3 \times 8.37 \times 10^{7} T} = \frac{0.994}{T}$$

which is in excellent agreement with the experimental value given above. Consequently, the diatomic oxygen molecule contains two unpaired electrons in spite of the fact that the molecule has an even number of electrons all together. The oxygen-oxygen bond may not be regarded, therefore, as simply a double bond, in which all electrons would be paired, but is more complex and probably involves three-electron bonds [Pauling, The Nature of the Chemical Bond, 2nd ed., p. 272].

The magnetic susceptibility of liquid oxygen is given by

$$\chi_m = \frac{7.309 \times 10^{-2}}{T^{1/2}};$$

that is, Curie's law, $\chi_m = \text{constant}/T$, is not obeyed, and this fact is interpreted to mean that liquid oxygen contains diamagnetic O_4 molecules in equilibrium with paramagnetic O_2 molecules [G. N. Lewis, J. Am. Chem. Soc., 46, 2027 (1924)]. Liquid solutions of oxygen in nitrogen also give a lower molal susceptibility for the oxygen than is found for the gas; but as the solutions are made increasingly dilute in oxygen, the limiting susceptibility approaches that of gas. Additional evidence for the existence of O_4 molecules is provided by the absorption spectrum of oxygen at very high pressures [Finkelnburg and Steiner, Z. Physik., 79, 69 (1932); Salow and Steiner, ibid., 99, 137 (1936)]. The heat of formation of O_4 from O_2 has been estimated to be $\Delta II_{291} = -130$ cal.

Associated with the two parallel electron spins in the oxygen molecule is an angular momentum of $\sqrt{S(S+1)}$ $h/2\pi$. This resultant electron-spin momentum assumes the following positions with respect to the angular momentum of the rotating molecule: approximately parallel, anti-parallel, or perpendicular. The three states corresponding to these three orientations are known as F_1 , F_2 , and F_3 , and they differ but little in energy. Each of the O¹⁶ nuclei has an even number of fundamental particles; consequently, the total wave function for the

oxygen molecule must be symmetric with respect to interchange of the nuclei. The O^{16} nucleus has no angular momentum (zero nuclear spin); hence, the spin wave function is symmetric. The ground electronic state is antisymmetric for an inversion of the nuclei; therefore, in order to make the total function symmetric, the rotational states must be antisymmetric. Only rotational states with K odd fulfill this requirement, and only these are observed.

If K is the quantum number for molecular rotation, J the resultant quantum number (quantum mechanical vector sum of K and S), and v the vibration quantum number, the rotational energy states for the three electronic states are given by $\epsilon_{rot.}/hc = (1.438 - 0.01596v)K(K + 1) - 4.86 \times 10^{-6}K^2(K + 1)^2 + F_i$, where, according to theory combined with experiment [Schlapp, Phys. Rev., 51, 342 (1936)],

$$K = 1, 3, 5, 7 \dots$$

$$F_{1} = (2K+3) - \lambda - [(2K+3)^{2}B^{2} + \lambda^{2} - 2\lambda B]^{\frac{1}{2}} + \mu(K+1),$$

$$J = K+1$$

$$F_{2} = 0, \quad J = K$$

$$F_{3} = -(2K+1)B - \lambda + [(2K-1)^{2}B^{2} + \lambda^{2} - 2\lambda B]^{\frac{1}{2}} - \mu K,$$

$$J = K-1$$

$$B = 1.438 \text{ cm}^{-1} \quad \lambda = 1.985 \text{ cm}^{-1} \quad \mu = -.008 \text{ cm}^{-1}$$

Accordingly, the three spin orientation states for the lowest rotation state (K = 1) would differ at most by 1.4 cm⁻¹, that is, about 4 cal/mole.

Fig. 57. The Electronic plus Rotational Heat Capacity at Low Temperatures for a Hypothetical Non-condensable Gas Having the Same Energy States as Oxygen.

It is found experimentally that the F_1 and F_3 states are very close (within 2 cm⁻¹) to the F_2 state for all values of K. It follows from this that for most thermodynamic calculations, except at very low temperatures, this energy difference may be neglected. The quantum weights, 2J + 1, will be, at the higher temperatures, the determining factor in the distribution of molecules among the F_1 , F_2 , and F_3 states. In Fig. 57 is plotted the electronic plus the rotational heat capacity of a hypothetical non-condensable

gas having the same energy states as oxygen; the two maxima correspond to the thermal excitation from the F_3 to the F_1 and F_2 states, respectively. At 90°K, the percentages of molecules in the F_1 , F_2 , and F_3 states are 42.3. 32.1. and 25.6%, respectively. The electronic state

of the oxygen molecule is designated by spectroscopists by the symbol ${}^3\Sigma_{\sigma}^-$, the Σ referring to the fact that the resultant electronic orbital momentum is zero, the superscript on the left indicating the multiplicity $2S+1=2(\frac{1}{2}+\frac{1}{2})+1=3$ of the electronic state, and the symbols on the right giving the symmetry properties of the wave function. In the calculation of entropies and related quantities by statistical mechanical methods, the additive term $R\log_c 3$ must be included to take account of the degeneracy of the molecular ground state if the F_1 , F_2 , and F_3 states are not counted as sensibly different in energy. The result so obtained must, of course, be reduced by $R\log_c 2$, since only the alternate (odd) rotation levels exist as a consequence of the homonuclear nature of the O—O molecule. [See Johnston and Walker, J. Am. Chem. Soc., 55, 172 (1933); Jevons, Report on Band Spectra of Diatomic Molecules, Cambridge University Press, 1932, p. 123; Herzberg, Molecular Spectra.]

The vibration states of oxygen in cm⁻¹ may be calculated over the range of measurements from the empirical formula

$$\omega = 1580.36(v + \frac{1}{2}) - 12.073(v + \frac{1}{2})^2$$

but this expression does not yield a reliable dissociation energy, since a rather large extrapolation is involved. The dissociation energy has been determined spectroscopically from a consideration of higher electronic states to be

$$O_2(g) = 2O(g), \qquad \Delta E = 117,200 \text{ cal}$$

and

$$O_2(g) = 2O(g), \qquad \Delta H_{291}^{\circ} = 118,000 \text{ cal}$$

the ΔE referring to the energy absorbed to dissociate the oxygen molecule at 0°K [Herzberg, *Molecular Spectra*; Bichowsky and Rossini, *Thermochemistry*].

The DISSOCIATION

The calculation of the dissociation of oxygen has received considerable attention; the accompanying table contains representative values [Johnston and Walker, J. Am. Chem. Soc., 55, 5075 (1933)].

From the table it will be seen that at room temperature and one atmosphere, the equilibrium partial pressure of monatomic oxygen is about 10⁻⁴⁰ atm, which corresponds to a very small fraction of an atom per liter on the average. Not until the temperature reaches about 2000°K is the equilibrium partial pressure of the monatomic oxygen appreciable.

 $\log_{10} P_{\rm O}^2 / P_{\rm O_2}$ T (°K) Pressures in Atmospheres 298.1 -80.770600 -369211200 -15.097 1800 - 7.770 - 4.071 2400 5000 1.712

OF OXYGEN

 $[O_2(g) = 2O(g)]$

The spectra from which the above information was derived are of three kinds, namely, the emission spectrum of oxygen from a discharge tube, the ultraviolet absorption bands in the region of 1850 Å, and the atmospheric absorption bands (here the sun is the source of continuous radiation) in the region 7700 to 5890 Å. Of these the latter has yielded the most important information about molecular oxygen. The Raman spectrum of oxygen served to confirm the analysis of the absorption bands.

It was not known until 1929 that oxygen consisted of more than one isotope. At that time Giauque and Johnston [J. Am. Chem. Soc., 51, 3528 (1929)] found from a further analysis of the atmospheric absorption bands photographed by Birge and Babcock that besides O^{16} small amounts of O^{17} (ca. 0.04%) and O^{18} (ca. 0.2%) are present in ordinary oxygen. These amounts are sufficient to give rise to the small difference between the physicists' ($O^{16} = 16.0000$) and chemists' (ordinary oxygen = 16.0000) atomic weight values. In terms of the physicists' standard, the atomic weight of ordinary oxygen would be 16.00436.

The important physical properties of oxygen are shown in Table 63; those of a thermodynamic character are due to Giauque and Johnston [J. Am. Chem. Soc., 51, 2300 (1929)], and to Cath [Comm. Phys. Lab. Univ. Leiden, 152d (1918)].

TABLE 63
PHYSICAL-CHEMICAL PROPERTIES OF OXYGEN
(0°C = 273.10°K)

Boiling point 9		Surface tension	
Melting point 5			b.p.
Transition points $\begin{cases} 2\\ 4 \end{cases}$	23.66°K 13.76°K	Heats of transition	22.42 cal 177.6 ''
Liquid density 1	1.248874-	Dielectric constant	1.491 (at b.p.)
	0.00481(T-68)	Magnetic suscept. of	-
Critical temp 1	.54.26°K	liquid O2	$\chi = 2284 \times$
Critical pressure 4	19.71 atm		$10^{-6}/T^{\frac{1}{2}}$, per
Interatomic distance 1	1.2076 Å	_	gram
Heat of vap. at b.p 1	628.8 cal	Standard entropy, Son	49.03 cal/deg
Heat of fusion 1	106.3 cal		
Vapor pressure equation	(Cath):		
	110.01		

 $\operatorname{Log_{10}}P_{\mathtt{atm}} = -\frac{419.31}{T} + 5.2365 - 0.00648T$

Inasmuch as the temperatures at the corresponding vapor pressures of pure liquid oxygen are used as fixed or standard points (on the international scale) in thermometry, the accepted vapor pressure equation is given. For this purpose pure oxygen is usually prepared by heating pure, dry potassium permanganate, KMnO₄.

The international temperature scale between the normal boiling points of sulfur and oxygen was established by means of a gas thermometer whose readings were corrected for gas imperfections. On the centigrade scale, the following fixed points were determined and adopted as definitive points: b.p. of sulfur, 444.60°; b.p. water, 100.000°; b.p. of oxy-

gen, -182.97°; and f.p. of water under one atmosphere pressure, 0.000°. These temperatures serve to fix four constants in an empirical equation relating the centigrade temperature, t, to the resistance, R, of pure strain-free platinum wires fulfilling certain conditions. The equation is [see, e.g., Hoge and Brickwedde, J. Res. Nat'l Bur. Stds., 22, 351 (1939)

$$\begin{split} t &= \frac{R_t - R_0}{\alpha R_0} + \delta \binom{t}{100} - 1 \frac{t}{100} \quad 0^{\circ} \leqslant t \leqslant 660^{\circ} \\ t &= \frac{R_t - R_0}{\alpha R_0} + \delta \binom{t}{100} - 1 \frac{t}{100} + \beta \left(\frac{t}{100} - 1\right) \binom{t}{100}^{3} \\ &\qquad - 182.97^{\circ} \leqslant t \leqslant 0^{\circ} \\ \alpha &= \frac{R_{100} - R_0}{100 R_0} \\ \alpha &\text{must be} > 0.003900 \\ \delta &\text{must be} < 1.50 \\ \frac{R_{-183}}{R_0} &\text{must be} < 0.250 \end{split}$$

This equation then defines the international centigrade temperature scale; it agrees to within a few hundredths of a degree with the absolute thermodynamic scale T if we put $T_{\text{int}} = T_0 + t$, where $T_0 = 273.16$ °K.

The value 90.13°K for the b.p. of oxygen given in the table differs from 273.16 - 182.97 = 90.19°K because T_0 was assumed to be 273.10°K instead of the more recently reported value of 273.16°K.

The heat capacity of liquid oxygen decreases with increase in temperature, and this fact is considered as further evidence for the existence of O_4 molecules; as the liquid is heated up, the concentration of O_4 molecules decreases and less energy is required for their dissociation into O_2 .

The atmosphere

Oxygen in the atmosphere plays an all-important role in life processes. It is, for example, absorbed reversibly by the hemoglobin in the blood in the alveoli of the lungs at a partial pressure of 95–100 mm. The absorption is reversible, and the arterial blood gives up the oxygen to the tissues in passing through the capillaries, where the blood is exposed to the low partial pressure of oxygen of 35 mm. In the tissues the eventual combination of the oxygen takes place in the complicated processes of cellular oxidation which provide the energy for living.

Other constituents of air play roles of importance equal to that of oxygen. Thus nitrogen, through the agency of legumes and by artificial means, is converted by natural and artificial processes into compounds that are convertible by plants and animals into proteins and other nitrogenous substances. In addition, nitrogen acts as a diluent in air.

Another important constituent of air is carbon dioxide, which, in the presence of water and under the photochemical action of sunlight, is converted into carbohydrates in the leaves of plants. The water vapor in air prevents, by its presence, the desiccation of many varieties of plants and even animals. Present in air are the noble gases helium, neon, argon, krypton, and xenon; and, although these do not seem to be necessary in life processes, their properties have proved to be very significant to the scientist in unraveling the nature of atomic structure and chemical binding. Some of them have proved useful in industry (helium for lighter-than-air craft and for the prevention of "the bends" in divers, and neon for illuminated signs) and science (helium for obtaining very low temperatures and in the production of artificial α particles in transmutation experiments; the others for a variety of purposes).

The composition of air varies slightly with altitude, weather conditions, and geographical position. The moisture content is subject to the greatest variation; its percentage may have values from nearly zero to that corresponding to the equilibrium vapor pressure of water at the temperature of the air. Carbon dioxide is also subject to some variation in amount, especially in regions where factories are operating or people are assembled. Dry air has the following composition at sea level and in open country.

	•			
COMPOSITION OF	F DRY AI	R IN VOLUME	PER	CENT
Oxygen	20.95	Neon		. 0.0018
Nitrogen		Argon		93
Carbon Dioxide	0.03	Krypton		.0001
(0 02	5 to .035)	Xenon		.000008
Helium	.00052	Hydrogen		00005

Neon, if it could be recovered from air at only moderate cost, would prove a very welcome substitute for the somewhat dangerous hydrogen in the production of low temperatures, its boiling point being 27.1°K, which is not greatly above that of hydrogen, namely, 20.4°K. The higher liquid density of neon (Ne 1.2, H₂ 0.0709) is conducive to ease in handling; furthermore, the heat of vaporization of a liter of liquid neon is nearly four times that of the same volume of liquid hydrogen.

Also present in air are small amounts of nitric oxide, carbon monoxide, and methane.

The chemical properties of oxygen

Oxygen is soluble to a small extent in water, the distribution ratio between water and the gas phase being

$$R = \frac{\text{Concentration in water}}{\text{Concentration in gas phase}} = 0.03080$$

at 25° and 0.03630 at 15° ; the value of R is independent of the units used

to express the concentrations. Oxygen at 760 mm pressure is soluble in benzol to the extent of 1.5 to 2 millimoles per liter of solution. slightly soluble in alcohol (coefficient = 0.2337 at 0°; that is, 0.2337 cc O₂ at N.T.P. will dissolve in one cc of solvent if the pressure is 1 atm) and in ether (coefficient = 0.4235 at ordinary (?) temperatures). absorbed by platinum black to the extent of 4.96 cc (N.T.P.) per 4.269 g of Pt black at 25°. Charcoal is also a good adsorbent for oxygen, the amount adsorbed depending on the temperature, pressure, and the nature of the charcoal. For example, one gram (2.5 cc) of activated charcoal will adsorb 10 cc of O2 when the pressure is 760 mm and the temperature 25°: at the same pressure but at liquid air temperatures. the amount adsorbed is 20 times greater [Braunauer and Emmett. J. Am. Chem. Soc., 59, 2682 (1937)]. Charcoal, freshly degassed at 500° and placed in a vacuum system of moderate volume in which the pressure of air is about 1 mm, will, when cooled with liquid air, adsorb the air until the pressure reaches 10⁻⁵ mm or less, and hence serves as an excellent means for attaining a moderately high vacuum. The oxygen adsorbed by charcoal is not completely recoverable as such, some of it uniting with the carbon to form a solid oxide; this oxide, on heating, is decomposed into carbon monoxide and dioxide.

Oxygen reacts directly with most of the elements and many compounds at rates that vary over a large range and that depend on the conditions of mixing. With hydrogen at room temperatures, the reaction is well known to be extremely slow, if it takes place at all, unless the mixture is ignited or a catalyst (Pt black or finely divided Os) is introduced. The alkali metals react at moderate rates at room temperatures and more rapidly at higher temperatures to form oxides M₂O, peroxides M₂O₂, and superoxides MO₂ (best prepared by bubbling oxygen through a liquid ammonia solution of K, Rb, or Cs [Kraus and Whyte, J. Am. Chem. Soc., 48, 1789 (1926)]). The alkaline earth metals, as well as some others (Zn and Re), react to form peroxides as well as the oxides. With the exception of gold and platinum, all of the metals combine more or less readily with oxygen, the rate of reaction being usually slow at room temperatures.

A number of reducing agents in aqueous solution absorb oxygen. Thus alkaline pyrogallol, Cr++, Ti+++, V++, V+++, Fe++, SO₃, and many others are oxidized directly by oxygen. In at least one case, Ti+++, peroxide is an intermediate step in the oxidation, as is shown by the fact that, on shaking a solution of TiCl₃ with oxygen, completion of the reaction is accompanied by the sudden appearance of the orange color of peroxytitanic acid. Often the rate of absorption of oxygen by reducing solutions is greater the more alkaline the solution.

The whole subject of the action of oxygen on reducing substances is one of considerable interest, and the chemistry of these reactions is fundamental to innumerable processes. The mechanisms of the reactions are only beginning to be properly studied and understood.

The term oxidation was derived from the word oxygen. It should be made clear that the term is not restricted to the action of oxygen, since in the general sense now used, oxidation in inorganic chemistry often implies that the substance oxidized has lost electrons. These are gained by the oxidizing agent, whether it be oxygen or some other substance, for example, chlorine, Fe⁺⁺⁺, MnO₄, or sulfur. But the difficulty arises that some so-called oxidation reactions cannot be said to result in the loss and gain of electrons. Thus, in the reactions $C + O_2 = CO_2$, $Si + 2Cl_2 = SiCl_4$, and $SO_3^- + \frac{1}{2}O_2 = SO_4^-$, the electrons are believed to be shared by C and O, Si and Cl, and S and O. Thus, while the general notion of oxidation is a helpful one, care should be exercised in taking too

Fig. 58. An Ozone Generator.

naïve a point of view of the matter. It may be said that for some reactions, especially simple ionic ones, the notion of loss and gain of electrons is a proper one; but it certainly is not true in general.

Ozone

Preparation

Ozone is formed by the action of ultraviolet light of 1850 Å wave length or shorter on oxygen. This reaction takes place in the outer atmosphere; and since ozone is a better absorber of

ultraviolet radiation than is oxygen, the earth is protected from much of the short wave length radiation given off by the sun.

Ozone is usually prepared by passing an electric discharge through oxygen at ordinary pressures. The apparatus ordinarily used consists of a double-walled glass tube with metal foil wrapped about the outside wall and with the inner tube filled with an electrolyte, for example, copper sulfate solution. The terminals of a 20,000-30,000 volt transformer are connected to the metal foil and the electrolyte, respectively, and oxygen is passed through the space between the outer and inner tube. The yield is only a few per cent and depends on a number of factors, including the source of the oxygen [Warburg, Ann. Physik, 9, 781 (1900); Goldstein, Ber., 36, 3042 (1903)]. A typical ozone generator is shown diagrammatically in Fig. 58. Details of the preparation of pure ozone by fractionation have been worked out by Karrer and Wulf [J. Am. Chem. Soc., 44, 2391 (1922)].

A second method of preparation consists in the electrolysis of sulfuric acid solutions with a high current density [Fischer and Massenez, Z. anorg. Chem., 52, 202, 229 (1907); Fischer and Bendixsohn, Z. anorg. Chem., 61, 13, 183 (1909); Griffith and Shutt, J. Chem. Soc., 119, 1948 (1921)]. With a well-cooled cell containing sulfuric acid of density 1.085 g/cm³ and using current densities from 47 to 63 amp/cm², Fischer and Massenez were able to obtain an oxygen-ozone mixture containing from 18 to 25% by weight of ozone. To facilitate cooling of the anode, it is usually constructed of thin platinum tubing through which a stream of water is passed. The yield of ozone is strongly dependent on the concentration of sulfuric acid, and experiment shows that the best results are obtained when the density of the acid is 1.085 g/cm³.

A number of reactions have been reported in which ozone is said to form. In a number of these the results are subject to the criticism that the test for ozone was not unique. For example, it is generally believed that fluorine reacts with water to give ozone, but the oxidizing action of the resulting gaseous reaction products may be due to oxygen fluoride, OF_2 , and not to ozone.

Physical properties

Although the absorption spectrum of ozone in the infrared has been investigated, there is not universal agreement as to its interpretation. One of the difficulties involved is that of purity; the technique of preparation and measurement is such that small amounts of oxidizable substances are often in contact with the reactive ozone, and this contact might lead to the formation of volatile, light-absorbing compounds.

An assignment of the measured bands which gives reasonable values for the force constants has been made by Sutherland and Penney [*Proc. Roy. Soc.*, **A156**, 678 (1936)].

ω1	 1037 cm ⁻¹
ω2	 710 cm ⁻¹
ω	 1740 cm ⁻¹

The angle estimated from these constants is about 127°. The structure of ozone has been determined recently by electron diffraction [R. A. Spurr and W. Shand, J. Am. Chem. Soc., 65, 179 (1943)]. The molecule is bent with the O—O—O \angle = 127 \pm 5° and the O—O distance 1.26 \pm .02 Å. This structure is in accord with the fact that the shape of the absorption bands shows that the molecule is neither linear nor a symmetric top. The molar entropy at 298.1°K calculated from the data given above is 56.81 cal/deg. Table 65 gives values of the equilibrium pressures of ozone and oxygen calculated with the 1941 physical constants of Birge [Rev. Mod. Phys., 13, 235 (1941)]. The $^{1}\Delta$ state of oxygen is included in

TABLE 65
EQUILIBRIUM CONSTANTS FOR THE REACTION O₃ = §O₂
(Pressures are expressed in atmospheres.)

T (°K)	$\log_{10} \frac{P_{0_2}^{\frac{3}{2}}}{P_{0_2}}$
298.1	28.486 18.482 11.122 8.664 7.434 6.697 6.207

 $S_{298.1}^{\circ}(O_3) = 56.81 \text{ cal/deg}; \qquad \Delta H_{298.1}^{\circ} = -34,220 \text{ cal}; \qquad \Delta E_0^{\circ} = -34,513 \text{ cal}.$

the calculations [Spurr and Shand, loc. cit.]. It is clear from the equilibrium constants that even at 3000° only a small concentration of ozone is possible in oxygen. The equilibrium constants may be used to make estimates of the amount of ozone formed in a variety of reactions. Thus it can be shown that the decomposition of KClO₄ can lead to no detectable amount of ozone, while the action of fluorine on water could give rise to large concentrations (or pressures) of ozone. It must not be

TABLE 66
THE PHYSICAL PROPERTIES OF OZONE

Color of Gas	Color of Liquid		Boiling Point ³	Heat of Vaporization at b.p. (cal)		
Light blue	Dark	blue	$-111.5^{\circ} \pm 0.2$	2547		
Freezing Point		Density of Liquid	Critical Temperature			
		71 (-183°) 46 (-111°)	-5°			

Vapor pressure, $p_{mm} = -\frac{765.7}{T} + 1.75 \log_{10} T - 0.01268T + 5.783$

Vapor pressure, $^2 - 193^\circ$ to -183° , $\log_{10} p_{\text{mm}} = -\frac{3700}{4.571T} + 1.75 \log_{10} T - \frac{.05099T}{4.571} + 5.851$

¹ Riesenfeld and Beja, Z. anorg. Chem., 132, 179 (1923).

² Spangenberg, Z. phys. Chem., 119, 419 (1926).

Briner and Biedermann, Helv. Chim. Acta, 16, 207 (1933)

forgotten, however, that free energy values predict only the equilibrium state and do not give any indication of whether or not a reaction written down will actually take place in a reasonable time.

The more common physical properties of ozone have not been determined with great accuracy, owing to the circumstance that the substance decomposes slowly. Liquid ozone, and the gas at high pressures, can be violently explosive; explosions of the liquid are very readily set off by dust particles or bits of organic matter; great care and special precautions should be used when preparing and handling liquid ozone in open vessels. Experiments on the liquid in closed glass systems which are definitely clean and in which only pure gases free from organic vapors are used are less dangerous.

Chemical properties

Ozone is slightly soluble in water. When the ozone pressure is 760 mm, one cubic centimeter of water dissolves the following volumes (reduced to N.T.P.) of gas: 0.494 cc at 0° ; 0.454 cc at 18° . Ozone decomposes more rapidly in neutral or alkaline solutions than in acid solutions. For this reason the solubilities are determined at various concentrations of $\rm H_2SO_4$ and the value for pure water found by extrapolation. Henry's law is obeyed by the acid solutions [Rothmund and Burgstaller, Nernst-Festschr., 391 (1912)].

A much better solvent for ozone is carbon tetrachloride. Three cc (N.T.P.) of ozone at 760 mm pressure will dissolve in 1 cc of CCl₄ at 15°. The solutions have a beautiful blue color, the color decreasing in intensity with time as a result of decomposition of the ozone; some 15 to 20 hours clapse before the color disappears entirely [Fischer and Tropsch, Ber., 50, 765 (1917)]. Ozone dissolved in CCl₄ and CHCl₃ is said to decompose at about the same rate that is found for the gas phase decomposition, but the mechanism may not be the same in the two cases [Bowen, Moelwyn-Hughes, and Hinshelwood, Proc. Roy. Soc., 137A, 211 (1931)]. Glacial acetic acid also dissolves considerable ozone with the formation of blue solutions.

Gaseous ozone decomposes at a measurable rate in the temperature range 90° to 180° according to the equation

$$O_3 = \frac{3}{2}O_2$$

The reaction is a complex one, some of the decomposition taking place on the walls of the vessel and some in the gas phase. The latter, homogeneous part of the reaction appears to be one of second order; the second-order rate equation is $[-d(O_3)]/dt = k_2(O_3)^2$, and $k_2 = 38$ cc/mole sec at 90°. Considerable difficulty has been experienced in arriving at a satisfactory mechanism for the reaction [Wulf and Tolman, J. Am. Chem

Soc., 49, 1650 (1927); Shumacher and Sprenger, Z. phys. Chem., 11B, 38 (1930); Wulf, J. Am. Chem. Soc., 54, 156 (1932); Kassel, Kinetics of Homogeneous Gas Reactions, p. 264] in spite of the apparent simplicity of the second-order part.

The decomposition of ozone is catalyzed by a number of gases, for example, N_2O_5 , Cl_2 , and Br_2 . The first catalyst is of interest because N_2O_5 itself decomposes slowly with known rates to form NO_2 and O_2 , and with O_3 the rapid reaction

$$2NO_2 + O_3 = N_2O_5 + O_2$$

takes place nearly quantitatively. It might be supposed that at 20° the rate of disappearance of O_3 would depend solely on the decomposition rate for N_2O_5 ; but as a matter of fact it is much greater, and to explain this, mechanisms involving the unknown N_2O_6 or NO_3 have been assumed but without complete success (see Kassel, *loc. cit.*). The empirical rate equation is

$$-\frac{d[O_3]}{dt} = 2k[N_2O_5]^{\frac{1}{2}}[O_3]^{\frac{1}{2}}$$

$$k = 0.0245 \text{ (cc mole}^{-1})^{\frac{1}{2}}/\text{sec at } 20^{\circ}$$

$$k = 0.135 \text{ (cc mole}^{-1})^{\frac{1}{2}}/\text{sec at } 35^{\circ}$$

[White and Tolman, J. Am. Chem. Soc., 47, 1240 (1925); Shumacher and Sprenger, Z. phys. Chem., 2B, 266 (1929); Kassel, loc. cit.]. The catalysts Cl₂ and Br₂ are of interest in that the compounds Cl₂O₆ and Br₂O₅·BrO₃ are formed. In the case of chlorine, the rate of O3 decomposition is measurable at 35-50°, while with bromine, the ozone decomposes slowly at first and then a few seconds later explosively at these temperatures, but the rate becomes measurable at 8° and lower. The rate at the lower temperatures with 10 mm Br₂ and 100 mm O₃ behaves in a peculiar manner, going through a maximum, a minimum, another sharp maximum, and then decreasing rapidly. Mixtures of Br2 and O3 at 8° or less react to form a white deposit on the walls of the vessel, the composition of which corresponds to Br₃O₈ and, if this composition is correct, may correspond to Br₂O₅·BrO₃, a mixture of penta and hexavalent bromine. The white solid decomposes readily at room temperatures or even lower to give bromine and oxygen [B. Lewis and Shumacher, Z. phys. Chem., 6B, 423 (1930)]. A number of solid substances act as catalysts in the decomposition of ozone; this seems natural, since the thermal decomposition of O₃ always takes place in part on the walls of the container.

Ozone is a strong oxidizing agent, the oxidation frequently resulting in the reduction of only one of the oxygen atoms to an oxide oxygen atom. This is the case, for example, in the reaction $2NO_2 + O_3 = N_2O_5 + O_2$ (rapid) mentioned above, and in the analogous reaction $NOCl + O_3 =$

NO₂Cl (rapid). Similarly, the well-known reaction with neutral iodide solutions

$$2I^- + H_2O + O_3 = I_2 + 2OH^- + O_2$$

which is used for the analysis of ozone, consumes only one atom of oxygen. The same remarks apply to H₃AsO₃ and Tl⁺ solutions, both of these substances being used in the quantitative determination of ozone [A. A. Noyes, Coryell, Stitt, and Kossiakoff, J. Am. Chem. Soc., 59, 1316 (1937)]. In other reactions the whole ozone molecule combines with the reactant, this behavior being observed with organic compounds containing double bonds,

$$-C = C - + O_3 = C C$$
.

It is, of course, possible for all these oxygen atoms to combine as oxide oxygen, as would happen, for example, if a mixture of ozone and hydrogen were caused to explode.

Qualitative tests for ozone often do not distinguish it from other oxidizing agents. A satisfactory test is said to consist in the use of paper soaked in an alcoholic solution of tetramethyldiaminodiphenylmethane, $(CH_3)_2N\cdot C_6H_4\cdot CH_2\cdot C_6H_4\cdot N(CH_3)_2$; the moist paper shows the following color changes [Arnold and Mentzel, Ber., 35, 1324 (1902)]:

O ₃	Violet
NO ₂	Straw-yellow
Cl ₂ or Br ₂	Blue
H_2O_2	Remains colorless

The test is more sensitive if a small amount of acctic acid is present.

The powerful oxidizing action of ozone is best shown in its action on silver nitrate solutions, the Ag^+ being oxidized to Ag^{++} and Ag^{+++} , and this will precipitate out as the black AgO if the solution is neutral. The Ag^{++} remains in solution as such if the solution contains nitric acid at a concentration of 6 n or greater; the solutions are dark-colored and slowly decompose according to the reaction $4Ag^{++} + 2H_2O = 4Ag^+ + 4H^+ + O_2$. [For a detailed study of the $Ag^+ + O_3$ reaction, see A. A. Noyes, Coryell, Stitt, and Kossiakoff, J. Am. Chem. Soc., 59, 1316 (1937).] Tl+ and Co++ solutions are oxidized to Tl+++ and Co+++ by ozone, but Ni++ does not appear to be affected. Metallic silver is discolored by ozone, the black substance formed being AgO or Ag_2O_3 . Mercury is also readily attacked by ozone, the reaction and the oxide formed preventing the use of mercury manometers in measuring the pressures of gases containing ozone.

Aqueous solutions of ozone and hydrogen peroxide react to give oxygen and water. The over-all reactions are [Rothmund and Burgstaller, *Monatshefte*, **38**, 295 (1917)]

$$2O_3 = 3O_2$$

 $H_2O_2 + O_3 = H_2O + 2O_2$

and it has been shown by Bray [J. Am. Chem. Soc., 60, 82 (1938)] that the ratio of the rates is, as a first approximation,

$$\frac{-d({\rm O_3})/dt}{-d({\rm H_2O_2})/dt} = \frac{1+5.2({\rm O_3})}{({\rm H_2O_2})}$$

Traube and Bray [J. Am. Chem. Soc., 62, 3357 (1940)] have found in a further study that the reactions are chain reactions and that the only mechanism consistent with all experimental results is

$$H_2O_2 + O_3 = HO + HO_2 + O_2$$
 (1)

$$HO_2 + O_3 = HO + 2O_2$$
 (2)

$$HO + O_3 = HO_2 + O_2$$
 (3)

$$HO + H_2O_2 = HO_2 + H_2O$$
 (4)

Reaction (1) is the chain-initiating step. The net result of (2) and (3) is the chain decomposition of ozone. Similarly (2) and (4) constitute a chain process for the reaction between peroxide and ozone. Chloride ion, aliphatic acids (except formic acid), and alcohols are inhibitors for both reactions. The specific rate constant at 0° of the bimolecular reaction (1) was found by independent experiments with the inhibitors acetic acid and chloride ion to be 0.13 and 0.14 liters moles⁻¹ min⁻¹.

Although precise values for the free energies of ozone and superoxides are not known, the following estimates are doubtless of the right order of magnitude. All free-energy values given refer to the monatomic elements at 298.1°K and one atmosphere as the substances from which the compounds are formed; ΔH_0° values refer to the formation at 0°K from the monatomic elements. There are included the data for other compounds as well, in order to render more convenient the calculation of the energy changes for a number of reactions, such as, for example, those given in the above mechanisms A and B.

	$-\Delta H_0^{\circ}$ (kcal)	$-\Delta F_{298}^{\circ}$ (kcal)		−ΔH° (kcal)	$-\Delta F_{298}^{\circ}$ (kcal)
H ₂ (g) O ₂ (g) O ₃ (g) H ₂ O(g) H ₂ O(l)	102 117 141 219	95 110 126 205 207	H ₂ O ₂ (g) H ₂ O ₂ (aq) HO(g) HO ₂ (g)	253 — 104 169	230 237 97 155

Many applications of the oxidizing action of ozone have been sought and tried in the field of medicine and sanitation. In some of these at least, the action on the tissues has been harmful. The use of ozone to purify the air is of doubtful value, although the deodorizing effect appears to have some virtue.

Water

Formation

The formation of water from the elements has been much investigated. Some mixtures of hydrogen and oxygen will not, when heated or ignited, explode; thus a mixture containing 1% or less of hydrogen will not explode even when subjected to an electrical discharge. Mixtures with hydrogen at concentrations higher than 1% will ignite and explode. Equivalent quantities of H2 and O2 at a total pressure of 600 mm or less react at a measurable or zero rate if the temperature does not exceed about 570°; at higher temperatures, explosions occur. In these mixtures explosions will, of course, occur if the gas is ignited. The detailed mechanism of the combination of hydrogen and oxygen has not been established; the fact that surface catalysts (Pt black, Pd black, Os black) and the nature of container surfaces play an important role adds to the complexity. amounts of nitrogen dioxide promote explosions in equivalent mixtures, while larger amounts will inhibit them at a given temperature [Gibson and Hinshelwood, Trans. Faraday Soc., 24, 559 (1928)].

Water is formed in a great variety of reactions such as those involving the reduction of oxides by hydrogen and those in which OH⁻ or an oxide oxygen combines with H⁺.

Physical properties

Two physical constants of water in contact with air, the melting and boiling temperatures, have defined values. The temperature of water boiling under 760.00 mm pressure is defined as 100.000°C; more precisely, the pressure under which boiling is to take place is that due to a column of mercury 760.00 mm high having a mass of 13.5951 g/cc and subject to a gravitational acceleration of 980.665 cm/sec². This pressure corresponds to a 760.00-mm column of pure mercury whose temperature is 0°C, and to a location where q = 980.665 cm/sec² [Burgess, U.S. Bur. Stds. J. Res., 1, 635 (1928); Beattie and Blaisdell, Proc. Am. Acad. Arts and Sci., 71, 361 (1937)]. The temperature of the steam from the boiling water is taken as 100.000° rather than that of the liquid, since the temperature of the latter may fluctuate as a result of momentary superheat-The temperature of melting ice under an external atmospheric pressure of 760.00 mm is defined as 0.000°C; the zero of the centigrade scale is not, therefore, defined for pure water, but rather for a saturated solution of air in water. The triple point of water under its own vapor

pressure of 4.579 mm is 0.0098°C. It is also common, but not desirable, to define the calorie in terms of the specific heat of water; many careful workers prefer to define the calorie as 4.1833 international joules—4.1850 absolute joules—since measurements of electrical quantities can be made with much greater accuracy than those of thermal quantities. Moreover, calorimetry makes much use of measurements of electrical energy.

In the following Table 67 are included data not only for H_2O but also for D_2O , heavy water. Heavy water can be purchased now for two or three dollars per gram, and the price will doubtless be lower in the future. The very important part played by D and D_2O in physics and chemistry cannot be overemphasized.

Ordinary water contains a small amount of heavy water, D₂O, and HDO. The percentage of deuterium is about 0.02% of the total hydro-

		Table 67		
THE	PHYSICAL	PROPERTIES	\mathbf{OF}	WATER

	Melting Point (°C)	Boiling Point (°C)	Heat of Fusion (cal†)	Heat of Vaporization (cal†)	Density (g/cc)
H ₂ O	0 000	100.000	1437 (0°)	10,514 (25°) 9,723 (100°)	0.999841 (0°) .999973 (4°)*
D ₂ O	3.82	101.4	1501 (3.82°)	12,636 (subl. 0°)	. 997044 (25°) 1 . 1079 (25°)

	Heat of Formation (cal)	Free-Energy Formation of Liquid (cal)	Entropy S_{298}° of Gas (cal/deg)	Entropy S_{298}° , Liquid (cal/deg)	Dielectric Constant
H ₂ O D ₂ O	68,313 (25°)	-56,685 (25°)	45.13 47.38	16.74 18.08	$\begin{array}{ccc} 81.50 & (17^{\circ}) \\ 79 & (20^{\circ}) \\ D_2/D_1 = 0.990 & (25^{\circ}) \end{array}$

^{*} At 3.98°C the density of pure water is 0.999973 g/cc or 1.000000 g/ml.

Surface Tension, γ (dynes/cm)

γ	Temperature (°C)	γ
76.4	25	71.97
75.6 73.49	100	67.91 58.9
	76.4 75.6	76.4 25 75.6 50

[†] All energy quantities are for one formula weight of water, and are expressed in defined calories, 1 calorie = 4.1833 international joules.

Ch. 81

Table 67 (Cont.)
Heat Capacities of Liquid Water, H₂O (cal/deg)

t (°C)	C _p	t (°C)	C _p	t (°C)	<i>C</i> _p
0 10 20 30	18.160 18.050 18.006 17.991	40 50 60	17.962 18 001 18 017	70 80 100	18.039 18.069 18.153

Heat Capacities of Ice, H₂O (cal/deg)

T (°K)	C_p	T (°K)	C_{p}
10	0.066	200	6.744
50	1.896	250	8 326
100	3.796	270	8.960

Heat Capacities of D₂O (solid below 276.92°K) (cal/deg)

T (°K)	C p	T (°K)	C_{p}
20	0.532	250	9.842
50	1.977	270	10.54
100	4.047	280	20.15
200	8.050	295	19.78

Vapor Pressures of Solid and Liquid H₂O and D₂O in mm Hg

t (°C)	H ₂ O	D₂O	t (°C)	H ₂ O	D ₂ O
$ \begin{array}{r} -90 \\ -30 \\ 0.0098 \\ \hline \end{array} $	0.000070 .2859 4.579 23.756	3.65 20.63	50 70 90 100	92.51 233.7 525.76 760.0	83.37 215.9 495. 722.3

Free-energy equation for $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$:

$$\Delta F_{\rm T}^{\circ} = -57,410 + 0.94T \log_{\circ} T + 0.00165T^{2} - 3.7 \times 10^{-7}T^{3} + 3.92T$$

gen content of ordinary water. The deuterium in ordinary water may be concentrated by electrolysis of concentrated alkaline solutions of the latter; hydrogen, H, is liberated more rapidly in the electrolysis than is deuterium [Urey and Teal, Rev. Mod. Phys., 7, 34 (1935)]. [For properties of D₂O, see Clusius, Z. phys. Chem., 28B, 167 (1935); Lewis and McDonald, J. Am. Chem. Soc., 55, 3057 (1933); Miles and Menzies, J. Am. Chem. Soc., 58, 1067 (1936); Long and Kemp, J. Am. Chem. Soc., 58, 1829 (1936).]

The behavior of water and ice under pressure has been carefully investigated by Bridgman [Proc. Am. Acad., 47, 440 (1912)]. In Fig. 59

Fig. 59. The Phase Diagram for Ice.

is shown the phase diagram with the regions of existence of the various crystalline modifications of ice properly labeled. The compressibility

Pressure (kg/cm²)	$\frac{\Delta V}{V_0}$ (0°C)	$\frac{\Delta V}{V_0} (22^{\circ}\text{C})$
500 1000 2000 4000 6000 7000 11000	0.0224 .0414 .0735 .1195 .1520 .1644	0.0383 .0679 .1137 .1465 .1600 .2042

of the water at 0° and 22° C may be seen in the table of representative values; V_0 is the volume of liquid at 1 kg/cm². The volume change attending the melting of ice, I, varies with the equilibrium temperature.

The infrared and near-infrared absorption spectrum has been investigated repeatedly, and while there is still some disagreement and uncertainty as to details of the analysis, it can safely be said that we have fairly complete information on

the structure of the water molecule. The experimental results of Mecke, Badger, and others have been employed by Gordon [J. Chem. Phys., 2, 65 (1934)] and by Giauque [e.g., J. Am. Chem. Soc., 79, 560 (1937)] to

evaluate the thermodynamic properties of water vapor. The various energy states of the water molecule are given by empirical formulas in Table 68 [Darling and Dennison, *Phys. Rev.*, **57**, 128 (1940)].

The terms in higher powers of $v + \frac{1}{2}$ are, for the vibrational states, a measure of the non-harmonic nature of the vibrations. The dependence of A, B, and C, the moments of inertia, on v_1 , v_2 , v_3 shows the effect of the vibrational states on the interatomic distances and bond angle. These effects obtain in all polyatomic molecules but have not been as accurately measured as those in water vapor.

The atoms in the water molecule lie, on the average, at the corners of an isosceles triangle, the symmetry axis passing through the oxygen atom and being perpendicular to the line joining the hydrogen atoms. Such a molecule has three principal moments of inertia, and a knowledge of their values permits the calculation of the interatomic distances and bond angles. It is to be noted that in any statistical calculations for the water molecule, the symmetry of the molecule must be taken into account.

Highly accurate moments of inertia have not yet been evaluated, although the rotational spectrum has been analyzed. [Fuson, Randall, and Dennison, *Phys. Rev.* **56**, 982 (1939).] Close values are (in gcm²):

$$A \times 10^{40} = 1.790$$
 $B \times 10^{40} = 3.812$ $C \times 10^{40} = 5.752$

The standard entropy of water vapor, as determined experimentally from heat capacity measurements, is 0.82 cal/deg less than that calculated from spectroscopic data. The reason suggested by Pauling for this result is that the hydrogen atoms or bonds in crystal water (ice) are possessed of a limited randomness in their orientation or position at the

lowest temperatures (15°K) at which heat capacity measurements were made, hence the extrapolated entropy of ice is not zero at 0°K, as would be the case if the arrangement were well ordered; the residual molal entropy of the non-well-ordered crystals is 0.806 cal/deg [Pauling, J. Am. Chem. Soc., 57, 2680 (1935)]. The results of crystal-structure investigations—which show that each oxygen atom in ice is tetrahedrally surrounded by four equivalent oxygen atoms, but that the oxygen-oxygen distance, 2.76 Å, is greater than twice the normal oxygen-hydrogen distance—had previously led Bernal and Fowler to the erroneous hypothesis that the arrangement of the water molecules in the crystal is regular at low temperatures; in reality, ice is a perfect crystal only in that the oxygen atoms are regularly arranged [Bernal and Fowler, J. Chem. Phys., 1, 515 (1933); see also Katzoff, J. Chem. Phys., 2, 841 (1934)]. Two of the four hydrogens nearest to an oxygen atom are "chemically bonded" with O—H =

TABLE 69

THE CALCULATED DISSOCIATION OF WATER VAPOR $H_2O(g) = H_2(g) + \frac{1}{2}O_2(g)$ (Pressures in atmospheres. $\alpha = De$ gree of dissociation. $\Delta E_0^0 = 57,120$ cal.)

O.99 A, and the other two "hydrogen bonded" at 1.77 Å; the four hydrogens lie on lines joining the oxygen atom with its four nearest oxygen atom neighbors. The en-

T (°K)	$\log_{10} \frac{P_{\rm H_2} P_{\rm O_2}^{\frac{1}{2}}}{P_{\rm H_2O}}$	α
1300	-7.070	2.44×10^{-5}
1500	-5.725	1.92×10^{-4}
1800	-4.260	0.00182
2000	-3.525	.00563
2400	-2.417	.0308
2800	-1.614	. 106
3000	-1.290	. 174

chemically bonded with O-H = 0.99 Å, and the other two "hydrogen bonded" at 1.77 Å; the four hydrogens lie on lines joining the oxygen atom with its four nearest oxygen atom neighbors. The entropy of heavy water, D_2O , as determined from heat capacity measurements, is 0.77 less than that calculated, and the difference is given the same explanation as that advanced for H_2O [Long and Kemp, J. Am. Chem. Soc., 58, 1829 (1936)]. The difference is, within the limits of experimental error, the same for D_2O as for H_2O , and this indicates that hydrogen and

deuterium atoms or bonds in ice behave in the same manner. It may be shown that the randomness in orientation or position of H or D in ice requires the addition of $R \log_e \frac{6}{4} (= 0.806)$ to the experimentally determined entropy of H_2O or D_2O .

From the heat of formation of water and spectroscopic data

$$\log_{10} \frac{P_{\rm H_2} P_{\rm O_2}^{\frac{1}{2}}}{P_{\rm H_2O}}$$

has been calculated for a number of temperatures. Representative values are shown in Table 69 [see e.g., Gordon, J. Chem. Phys., 2, 549 (1934)].

Chemical properties

The high dielectric constant, 81, of liquid water indicates a highly polar molecule and the existence of polymers. The Raman spectrum

of water contains a number of lines and is interpreted provisionally as resulting from water molecules coordinated with two or more other water molecules—by hydrogen bonds or bridges; this interpretation does not imply that liquid water consists of well-defined polymers, however [Cross and Leighton, J. Am. Chem. Soc., 59, 1134 (1937)]. The hydrogen bond is pictured as consisting of a proton (and possibly its attendant electron) shared by two oxygen atoms; the positively charged proton attracts two negatively charged oxygens and thus holds the H_2O molecules together. In ice each H_2O is surrounded at tetrahedron corners by four other H_2O , but that this configuration obtains in liquid water does not, of course, follow.

One consequence of the highly polar character of water is its action as a strongly ionizing solvent. It is capable also of combining with many solutes (SO₂, NH₃, P₂O₅, Na₂O, to mention only a few) to form acids and bases. Many reactions may be said to be catalyzed by water, and the intermediates responsible for the catalysis are doubtless often some ion or ions that owe their existence to the presence of water. It does not follow of course that all reactions are between ions. Some reactions are promoted by water by virtue of its wetting action; thus, gold covered by cyanide solutions is oxidized by atmospheric oxygen to Au(CN)₂, but without the solvent the contact and diffusion of a solid cyanide would not be sufficient to result in the formation of much MAu(CN)₂. The role of water in life processes as a carrier of solutes and as a participant itself is an important one.

Water combines with many substances to form hydrates. In such cases the water molecules may often occupy coordination positions in the same manner as does ammonia. In some hydrates the water molecules fill up "holes" in the crystal and are not regarded formally as occupying coordination positions.

Water acts as both an oxidizing and a reducing agent. Thus it oxidizes the alkali and alkaline earth metals, iron, aluminum, Ti⁺⁺, and other strong reducing agents with the evolution of hydrogen. The hydrogen of the water may be regarded as the oxidizing agent. Water will reduce fluorine, chlorine, permanganate, Ag₂O₃, and other strong oxidizing agents, with the evolution of oxygen, the oxide oxygen of water acting as the reducing constituent.

The chemical reactions taking place in heavy water differ somewhat but not greatly from those in ordinary water. Thus, degrees of ionization of weak electrolytes are smaller in heavy water than in ordinary water. Bromine hydrolyzes less in D_2O . Some reaction rates are greater in D_2O (for example, $BrO_3^- + I^-$) than in H_2O [Abel and Fabian, Chem. Abstracts, 31, 2073 (1937)]. The dissociation constant of heavy water is less than that of ordinary water. At 25° the constants for both are

$$H_2O = H^+ + OH^ (H^+)(OH^-) = 10^{-14}$$

 $D_2O = D^+ + OD^ (D^+)(OD^-) = 1.6 \times 10^{-16}$

[Abel, Bratu, and Redlich, Z. phys. Chem., 173A, 353 (1935)]. The ionization constant of heavy acetic acid CH₃COOD in D₂O(l) is less than that of CH₃COOH in H₂O(l), thus calling the acids DAc and HAc [G. N. Lewis and Schutz, J. Am. Chem. Soc., 56, 1002 (1934)],

DAc = D⁺ + Ac⁻
$$\frac{(D^+)(Ac^-)}{(DAc)} = 0.59 \times 10^{-5} \text{ at } 25^{\circ}$$

HAc = H⁺ + Ac⁻ $\frac{(H^+)(Ac^-)}{(HAc)} = 1.84 \times 10^{-5} \text{ at } 25^{\circ}$

The differences are seen to be measurable and of moderate magnitude. The cause of the differences lies for the most part in the mass differences, since the bonds formed by D and H are probably of nearly equal strength.

Sulfur, Selenium, and Tellurium

Preparation

Sulfur occurs in nature in the elementary form, and the product so obtained can be highly purified by simple distillation. It may be found in the form of large, pure or nearly pure crystals or intimately admixed with silica and other siliceous materials. In either case the sulfur is easily soluble in carbon bisulfide and hence is present as the rhombic modification and not as the insoluble or amorphous form. Sulfur is commonly sold as "brimstone," formed by allowing molten sulfur to solidify, and as the very finely divided flowers of sulfur, which results when vapors of sulfur are allowed to condense rapidly. Neither of these products is a single modification; both contain the insoluble or amorphous sulfur together with the soluble form.

Selenium is found ordinarily in the form of selenides; these as well as the impure selenium of commerce can be oxidized readily to selenites with 6 n HNO₃, and the selenites can then be reduced to selenium with H₂SO₃, hydrazine, iodide, and other reducing agents. The principal impurity will be Te, but if the reduction is carried out in 10–12 n HCl, Te will not be precipitated. The selenites can also be converted to SeO₂, and this may be purified by sublimation before it is reduced.

Tellurium occurs in nature in the form of tellurides, for example as gold telluride AuTe. These can be oxidized readily with nitric acid or oxygen to form the dioxide, TeO₂. The dioxide frequently contains copper as an impurity. Elementary tellurium can be precipitated from hot, 2 n HCl solutions of TeO₂ by reduction with H₂SO₃. The preparation of highly purified tellurium requires more labor than is the case with sulfur and selenium, since the impurities selenium and especially

copper are not readily separated. The separation from copper is attained by converting the elementary tellurium to 2TeO_2 ·HNO₃ by the action of strong (d. 1.250) nitric acid at 70°. The basic nitrate can be recrystallized readily from the nitric acid solution by evaporating on a steam bath at 80°; it is then free from copper. Any selenium is removed by treating a warm 10 n HCl solution of TeO₂ (formed by igniting the basic nitrate strongly) with SO₂ [see e.g., Schuhmann, J. Am. Chem. Soc., 47, 356 (1925)]. It is noteworthy that reduction of tetravalent tellurium by sulfurous acid takes place completely in hot 2 n hydrochloric acid; but if the acid is concentrated, 10 n, little if any reduction occurs.

Properties of solid and liquid S, Se, and Te

A number of crystalline forms of sulfur have been identified by their external appearance and optical properties. The forms reported and their suggested order of stability [Korinth, Z. anorg. Chem., 174, 57 (1928)] are:

- S_{θ} (tetrahedral) $\rightarrow S_{\delta}$ (monoclinic) $\rightarrow S_{\eta}$ (monoclinic) $\rightarrow S_{\rho}$ (monoclinic) $\rightarrow S_{\theta}$ (monoclinic)
- S_{γ} (monoclinic) $\rightarrow S_{\beta}$ (the usual monoclinic S) $\rightleftharpoons S_{\alpha}$ (rhombic sulfur) Not classified are S_{ρ} (or S_{ϵ}) (trigonal) and S_{ξ} (triclinic).

Most of these forms have been identified under the microscope after crystallization under special conditions (for example, for S_{γ} , sulfur is heated to 150°C, cooled to 90°, and crystallization initiated by rubbing the beaker; for S_{δ} , sulfur in $(NH_{4})_{2}S$ solution is cooled to 5°; for S_{δ} , sulfur is crystallized from CS_{2} thickened with balsam). The more important forms are S_{ρ} , S_{δ} , and S_{α} , and they are discussed more fully below.

The rhombic crystalline form of sulfur is thermodynamically stable at room temperature. It is a yellow solid with a density of 2.07 g/cm³. An X-ray investigation has shown the crystals to be made up of S₈ molecules, 16 in a unit cell, arranged approximately in layers perpendicular to the c-axis. The molecules are puckered rings with angles of 105° and an S-S distance of 2.12 Å [Warren and Burwell, J. Chem. Phys. 3, 6 (1935)]. When a solution of sulfur in carbon bisulfide is allowed to evaporate, crystals of rhombic sulfur are deposited. rhombic sulfur is heated to 100° or a little less and maintained at that temperature for several hours, the crystals become opaque and consist of aggregates of the monoclinic form; the transition temperature is 95.5°. Monoclinic sulfur is also formed when molten sulfur is allowed to crystallize slowly, beautiful needle-shaped crystals being formed if the liquid, soon after a crust or skin begins to form, is poured into another vessel. The density of monoclinic sulfur is 1.96 g/cm³ and the color is pale The atomic heat of transition is 95 cal [Bronsted, Z. phys vellow.

Chem., 55, 371 (1906)], that is

S (rhombic) = S (monoclinic),
$$\Delta H_{368,6}^{\circ} = 95$$
 cal.

The atomic heat capacities of rhombic and monoclinic sulfur can be represented over a limited range (250 to 368.5°K) by the following empirical formulas [calculated from the experimental data of Eastman and McGavock, J. Am. Chem. Soc., 59, 145 (1937)]:

$$C_p$$
 (rhombic) = 3.493 + 0.00636 T
 C_p (monoclinic) = 3.556 + 0.00698 T

These formulas, taken together with $\Delta H^{\circ}_{368.5}$ and the fact that $\Delta F^{\circ}_{368.5} = 0$, permit the calculation of ΔF°_{T} . If monoclinic sulfur is allowed to stand for a few days at room temperature, it changes into rhombic sulfur, although the monoclinic crystalline form is preserved; each monoclinic crystal consists of an aggregate of minute crystals of rhombic sulfur. At lower temperatures the rate of transition becomes much slower. Ordinary roll sulfur or brimstone and flowers of sulfur consist principally of the rhombic form together with some amorphous sulfur.

Low-temperature studies on the two crystalline forms of sulfur have been made by Eastman and McGavock. The following table contains representative results of their measurements on the atomic heat capacities.

T (°K)	C _p , Rhombic	C_p , Monoclinic	T (°K)	Cp, Rhombic	C_p , Monoclinic			
15 20 30 50 60 80	0 311 .605 1.075 1.772 2.084 2.604	2.091 2.624	100 140 200 260 300 360	3.060 3.795 4.639 5.154 5.412 5.783	3.100 3.882 4.798 5.371 5.662 6.069			

TABLE 70
THE HEAT CAPACITIES OF SULFUR

The atomic entropies of the two forms obtained from the low-temperature experiments are $S_{298.1}^{\circ}$ (rhombic) = 7.624 cal/deg, $S_{368.6}^{\circ}$ (rhombic) = 8.827 cal/deg, $S_{298.1}^{\circ}$ (monoclinic) = 7.78 cal/deg, $S_{368.6}^{\circ}$ (monoclinic) = 9.04 cal/deg. From these results one may calculate the entropy change at 95.5° attending the transition S (rhombic) = S (monoclinic), $\Delta S_{368.6}^{\circ}$ = 0.21. We should obtain the same result from a knowledge of ΔH at the transition temperature, since $\Delta S = \Delta H/T$; actually $\Delta S = 95/368.6 = 0.26$, and within the experimental error this agrees with the third law result.

Both rhombic and monoclinic sulfur are soluble in carbon bisulfide and other organic solvents, the monoclinic form being 1.28 times as soluble as the rhombic at 25.3° and 1.40 times as soluble at 0° in nearly all ents [Brönsted, Z. phys. Chem., 55, 371 (1906)]. Both forms in on bisulfide solution have a molecular weight corresponding to S_8 solubility of rhombic sulfur in 100 g of CS_2 is 50.4 g at 25°, 100.0 g 10° , and 376.1 g at 80°; at -80° the content of rhombic sulfur in a rated solution is 2.53% by weight.

Sulfur monochloride, S_2Cl_2 , is also a very good solvent for sulfur of er the rhombic or monoclinic form. One hundred g of benzol dises about 2 g of sulfur at 25°. The following solubilities, S_m and S_r , in ns per 10.0 cc of solution are due to Brönsted.

SOLUBILIT	LA OF SOLI	FUR IN VARIOU	S SOLVENT	8
Solvent	Temp. (°C)	S _m , Monoclinic	Sr, Rhombie	Ratio S _m /S _r
zol	$ \begin{cases} 18.6 \\ 25.3 \end{cases} $	0.2004 .2335	0 1512 .1835	1.32 1.27
roform	$\begin{cases} 0\\ 40 \end{cases}$.1101 .29	.0788 .24	1.40 1.2
er	$\begin{cases} 0 \\ 25.3 \end{cases}$.0113 .0256	.0080	1.41 1.28
yl bromide	$\left\{\begin{matrix} 0 \\ 25.3 \end{matrix}\right.$. 0852 . 1676	.0611	1.40 1.28
yl formatehol (ethyl)		. 0028 . 0066	.0019 .0052	1.4 1.3

TABLE 71 SOLUBILITY OF SULFUR IN VARIOUS SOLVENTS

Rhombic sulfur melts, if heated rapidly, at 112.8° , and the fact that spoint can be attained is due to the slowness of the transition from mbic to monoclinic sulfur. The monoclinic sulfur melts at 119.0° , the "natural" melting point is a few degrees lower; this difference is to the fact that liquid sulfur at equilibrium is a mixture of two or see molecular species, S_{λ} , S_{μ} , and S_{τ} (or S_{δ} , S_{δ} , and S_{δ}), and some time is uired for the equilibrium between them to be attained. The liquid see resulting from the rapid melting of rhombic or monoclinic sulfur sists of S_{λ} .

Sulfur at 120° is a clear yellow liquid. If the temperature of the 11d is increased, it becomes more and more viscous up to 165–200°, and n the viscosity decreases until at the boiling point, 444.60°, the liquid gain mobile. If the boiling liquid is poured into water, it forms a soft ky mass or threads known as "plastic sulfur." This plastic material dens with time: the higher the temperature at which it is held, the rter the time required for the hardening (1 hour at 100°, several days 25°). When treated with carbon bisulfide, only a part of this hardd sulfur will dissolve; the insoluble material is known as S_{μ} , the solupart as S_{λ} . The equilibrium proportion of S_{μ} in liquid sulfur depends its temperature. By means of carbon bisulfide extraction experi-

ments on the solid that eventually results from the rapid cooling of the liquid, the following proportions of S_{μ} have been found [see Lewis and Randall, J. Am. Chem. Soc., 33, 476 (1911), for a discussion of the experiments of Alexander Smith]:

TABLE 72 THE FRACTION OF S_{μ} IN LIQUID SULFUR

Temperature of Liquid (°K)	Fraction of S _{\mu}	Temperature of Liquid (°K)	Fraction of S _#
393	0.040	473	0.270
423	.067	573	.332
443	.187	718	.341

In addition to S_{λ} and S_{μ} , still another molecular species of sulfur, S_{τ} , is believed to exist both in the liquid and in the rapidly cooled solid; Table 72 does not take account of this third kind of sulfur, it being lumped together with S_{λ} . A study of the third form, S_{τ} , was made by Aten [Z. phys. Chem., 86, 1 (1914); see also Aten, Z. phys. Chem., 88, 321 (1914)], who observed that the solubility in carbon bisulfide and toluol at -80° of what was formerly known simply as S_{λ} depends on the temperature of the liquid sulfur before chilling in cold water. He established the solubility relations at -80° in the two solvents—for example, the per cent by weight, P_{τ} , of S_{τ} in a saturated solution in carbon bisulfide at -80° is given by $P_{\tau} = -2.24 + 0.88P_{\iota}$, where P_{ι} is the per cent of total sulfur in the saturated solution and is never less than 2.53%—and made use of the results in the analysis of the suddenly chilled liquid sulfur. His final results for the composition of molten sulfur, at equilibrium, for a number of temperatures are as follows:

TABLE 73
PERCENTAGE COMPOSITION OF LIQUID SULFUR AT EQUILIBRIUM

Temperature (°C)	S _μ (Per Cent)	S _{\(\lambda\)} (Per Cent)	S_{π} (Per Cent)
120	0.1	96.4	3.5
130	.3	95.4	4.3
140	1.3	93.7	5.0
160	4.1	89.2	6.7
170	13 3	80.9	6.8
180	20 4	73.1	6.5
196	28 6	65.1	6.3
220	32.2	62.7	5.3
445	36.9	59.1	4.0
445	36.9	59.1	4.0

It is noteworthy that the concentration of S_{τ} goes through a maximum at about 170°; it is in this range that the viscosity of the liquid is greatest.

The amount of S_{μ} found depends somewhat on the rapidity of cooling; more rapid cooling from higher temperatures leads to a slightly higher percentage of S_{μ} [Hammick, Cousins, and Langford, *J. Chem. Soc.*, 797 (1928)].

Still another form of sulfur, S_{ρ} , is known and is obtained by extracting an acidified sodium thiosulfate solution with toluol. Molecular weight determinations in boiling carbon bisulfide lead to the following formulas for the known forms of sulfur [see Aten, Z. phys. Chem., 88, 321 (1914)]:

$$\begin{array}{c|cccc} S \text{ (rhombic)} & S \text{ (monoclinic)} & S_{\lambda} & S_{\rho} & S_{\pi} \\ \hline S_{8} & S_{8} & S_{8} & S_{6} & S_{4} \end{array}$$

The melting points of S (rhombie), 112.8°, and S (monoclinic), 119°, given above refer to the change in state $S(s) = S_{\lambda}$. If equilibrium between S_{λ} , S_{μ} , S_{τ} and the solid phase is established, then the "natural" melting points of rhombic and monoclinic sulfur are lower, namely, 110.4° and 114.6°, respectively. The observed melting points are ordinarily carried out rapidly and before the equilibrium $S_{\lambda} = S_{\mu}$ has time to be established; the reaction $S_{\lambda} = S_{\mu}$ is not a rapid one. It is of interest that the rate of the conversion $S_{\lambda} = S_{\mu}$ is greatly increased if NH₃ is bubbled through the liquid. The catalytic effect is so great that, when the liquid sulfur is cooled rapidly by pouring it on ice, only S_{λ} is obtained. If the treatment with NH₃ is followed by treatment with SO₂, the rate of $S_{\lambda} = S_{\mu}$ again becomes very slow, and the rapidly cooled liquid contains the equilibrium amount of S_{μ} . In these mixtures S_{τ} is also present; ammonia and sulfur dioxide appear to act catalytically in the same way on S_{τ} as on S_{μ} .

A number of X-ray investigations of liquid and plastic sulfur have been made with somewhat divergent results. Probably the most reliable study to date is that of Gingrich [J. Chem. Phys., 8, 29 (1940)]. From radial distribution curves he found that in plastic sulfur each atom has 2.0 nearest neighbors at 2.08 Å distance. Liquid sulfur was investigated at temperatures from 124° to 340°. The observed peaks on the microphotometer trace of the film were observed to shift somewhat with temperature with a discontinuity at 157-166°, roughly the temperature of maximum viscosity, but radial distribution curves gave for all temperatures 1.7 nearest neighbors at 2.08 Å within experimental error. A possible interpretation of the 1.7 is that the original S₈ ring is opened. This would give each sulfur an average of 1.75 nearest neighbors. However, this figure could be derived from a number of possible complex mixtures of chains and rings; and the exact structure of neither plastic nor liquid sulfur can be regarded as completely understood.

The boiling point of sulfur is fixed, on the international temperature scale, at 444.60°. The technique involved in attaining this fixed temperature has been investigated very carefully by Beattie, Blaisdell, and

Kaminsky [Proc. Amer. Acad. Arts and Sciences, 71, 327 (1937)]. The liquid-vapor equilibrium temperatures (condensation points) on the international scale are given in terms of the pressure in mm Hg by the empirical equation

$$t = 444.60 + 0.0908028(p - 760) - 0.000047573(p - 760)^{2} + 0.00000004361(p - 760)^{3}$$

As a result of more careful measurements, it is found that the normal sulfur boiling point, 444.60° on the international scale, is about 0.1° lower than it would be on the true thermodynamic scale. The value 444.60° will continue to be accepted as the boiling point until the international committee meets to revise it.

Selenium

Selenium resembles sulfur in its ability to exist in several forms. The finely divided amorphous and the lump or vitreous selenium of commerce are dark red to black in color when large pieces are viewed; thin pieces of it are seen to be red by transmitted light. The lump or vitreous selenium exhibits a conchoidal fracture and, although harder, resembles brittle tar; it is ordinarily obtained by heating selenium above its melting temperature and then allowing it to cool. Vitreous selenium is not a single crystalline modification, but is a mixture in the same sense that $S_{\lambda,\mu}$ is. If these forms of selenium are kept at 150° for several hours, they transform into the hexagonal crystalline form.

The hexagonal form is metallic in nature and is often designated as metallic selenium. In color it is gray with a metallic luster, and is accordingly also known as "gray selenium." Although it is not absolutely certain that it is the stable form at 25°, there is some reason for It is insoluble in carbon bisulfide, and is a conductor believing that it is. of electricity. The electrical conductivity of the metallic form is from three to as much as 200 times as great in the light as in the dark. of 7000 Å wave length appears to be most effective in increasing the conductivity. In general, the conductivity is roughly proportional to the cube root of the light intensity and to the logarithm of the applied potential [Barton, Phys. Rev., 23, 337 (1924); Gudden and Pohl, Phys. Z., 22, 529 (1921); Fournier de Albe, Proc. Roy. Soc., 89, 75 (1913)]. method of preparation and small amounts of impurity affect the resistance sensitivity to light. The melting point of the hexagonal or metallic form of selenium is 217.4°.

When amorphous selenium, such as that obtained when H₂SO₃ reduces H₂SeO₃ solutions, or vitreous selenium is extracted with carbon bisulfide, some, but not all, of it dissolves to give amber to ruby-red colored solutions. If these solutions are evaporated slowly below 72°, red, monoclinic crystals known as alpha monoclinic selenium are deposited. If the

solvent is vaporized at 75° or above, hexagonal selenium results. evaporation or cooling of saturated solutions yields still another red monoclinic form known as beta monoclinic selenium. The beta form will dissolve in a carbon bisulfide solution saturated with the alpha form. When placed in quinoline at 25°, both the alpha and beta monoclinic forms are transformed slowly into the hexagonal form. This fact shows that, although a higher temperature, 75 to 150°, is required to convert dry monoclinic to hexagonal selenium, the hexagonal form is actually the more stable form at the lower temperatures. The rates at which the dry monoclinic seleniums are converted into the hexagonal form are extremely slow at room temperatures. In the presence of solvents and hexagonal crystals, the monoclinic forms will go over into the hexagonal form at room temperature (McCullough, "A Study of the Allotropes of Selenium," Thesis, Cal. Inst. Tech., 1936. X-ray methods were used in this study).

The densities of hexagonal, alpha monoclinic, and beta monoclinic selenium are 4.86, 4.46, and 4.42, respectively, at room temperature. The solubilities of the alpha and beta monoclinic modifications in carbon bisulfide are not known but have been estimated as .05% by weight of solution. Their melting points, if rapidly heated, are around 170–180°.

Less is known about liquid selenium than about liquid sulfur. qualitative manner, the properties of molten sclenium are similar to those of molten sulfur: there is reason to believe that the former, like the latter, consists of two or more molecular species; however, the viscosity decreases steadily with increase in temperature [Chem. Abst... 31, 6072 (1937)]. In a study by Briegleb [Z. phys. Chem., 144, 321, 350] (1929)], molten selenium was rapidly chilled by pouring it on finely divided ice cooled to -180° ; the resulting solid was then extracted with carbon bisulfide until all soluble selenium was removed. No catalysts, negative or positive, were found that would affect the rate of the apparently rapid transformations taking place in the liquid. Consequently, the final results are not as certainly a representation of the true equilibrium state of the liquid as is the case with sulfur. The following table shows the per cent of soluble selenium in the liquid at various tempera-Since liquid selenium may be strongly supercooled, results were obtained for temperatures below the melting point.

t (°C)	Per Cent Soluble Se in Se(l)	t (°C)	Per Cent Soluble Se in Se(l)
120 220 300 400	55 41 30 23	500 600 650	18 15 14

A careful investigation of the boiling point (condensation point) of purified selenium at various pressures near atmospheric was made by M. de Selincourt [*Proc. Phys. Soc.* (London), **52**, 348 (1940)], who found for 760.0 mm pressure, b.p. = $684.8^{\circ} \pm 0.1^{\circ}$, on the international temperature scale. The b.p. changes by 1.08° per cm change in pressure.

Tellurium

Tellurium differs from selenium more than the latter does from sulfur. Sulfur is a nonmetal; selenium has common nonmetallic forms as well as the stable metallic form; tellurium is definitely a metal in appearance and, moreover, does not exhibit markedly nonmetallic forms. The stable crystalline form of tellurium is hexagonal-rhombohedral. It is silvery white in appearance, and has a density of 6.19 to 6.24 g/cm³. Sticks of the metal are very brittle and not very hard. There is some indication that the finely divided brown form, obtained when solutions of TeO₂ are reduced with H₂SO₃, is nonmetallic and amorphous.

The metallic or common form melts at $449.8^{\circ} \pm 0.2^{\circ}$, and the liquid boils at 1390° [Kracek, J. Am. Chem. Soc., 63, 1989 (1941)].

The vapor states of S, Se, and Te

The vapor molecules of sulfur, selenium, and tellurium show a marked tendency to exist in several polymeric forms, a characteristic exhibited to a much lesser extent by oxygen. In sulfur vapor, the molecules S, S₂, S_6 , and S_8 are believed to be in equilibrium with each other. temperatures S₈ predominates and, at some 800°, S₂. At still higher temperatures the concentration of monotomic sulfur becomes appre-Because the vapor consists of several molecular species, vaporpressure formulas are not as significant as they would otherwise be, since, for most thermodynamic calculations one would wish to know the partial pressure of each molecular species in equilibrium with the solid In order to calculate these quantities, not only the total vapor pressure, but also the equilibrium constants involved are necessary. In the following Table 74 are presented representative values for vapor pressures together with other physical data for S, Se, and Te [Preuner and Schupp, Z. phys. Chem., 68, 129 (1909); Preuner and Brockmöller, ibid., 81, 129 (1912); Dodd, J. Am. Chem. Soc., 42, 1579 (1920); Doolan and Partington, Trans. Faraday Soc., 20, 342 (1924); Anderson, J. Am. Chem. Soc., 59, 1036 (1937); Eastman and Gavock, J. Am. Chem. Soc., **59**, 145 (1937); Neumann, Z. phys. Chem., **171A**, 416 (1934); Slansky and Coulter, J. Am. Chem. Soc., 61, 564 (1939)]. Recent electron-diffraction studies have shown that the S₈ molecule is a regular puckered ring with S - S = 2.07 Å and $\angle S - S - S = 105^{\circ} \pm 2^{\circ}$ [C. S. Lu and J. Donohue. J. Am. Chem. Soc., 66, 818 (1944)].

The formulas at the bottom of the table may be used to show that. at the temperatures above 440°K, the proportion of S₂ in sulfur vapor is greater than that of Se₂ in selenium vapor. Below 440°K the reverse is true. It will be noted that no information is given in the table concerning Ses. It is believed that Ses exists at lower temperatures: but, at the temperatures where measurements are possible, Ses is extensively decomposed into Se₆ and Se₂. Vapor-density measurements on tellurium are possible only at quite high temperatures. From 1400° to 2100° the measurements indicate that the gas consists of Te₂ molecules. Electron-diffraction experiments on tellurium vapor at roughly 600° show that mainly Te, molecules are present.

The experiments that were made to establish the nature of the vapors of sulfur and selenium vapor consisted essentially of vapor-

	Table 74					
THE PHYSICAL	PROPERTIES	\mathbf{OF}	S,	Se,	\mathbf{AND}	Те

	Melting Point* (°C)	Boiling Point (°C)	Heat of Fusion at M.P. (cal)§	Heat of Vaporization (cal)†	Atomic Entropy of Solid, \$\mathcal{S}_{295}^{\text{cal/deg}}\$
S	118 95	444.60	350	29,100	{7.624 (r)
Se.	217.4	684 8	1600	(S ₂ , 18°) 29,500	7.78 (m) 10.0
Те	449.8	1390.	4270	(Se ₂ , 18°) 24,000 (Te ₂ , 18°)	11.88

^{*} The liquid phase consists of S_{λ} in the case of S. The information on Se (l) and Te (l) is not complete.

Vapor Pressures

S (Rhombic)		S (Monoclinic)		S(1)	
t (°C)	$p_{ m mm} imes 10^4$	t (°C)	$p_{\rm mm} imes 10^4$	t (°C)	$p_{ m mm}$
60 70 79.9 88.9 95.5	1.0 3.2 8.9 20.7 37.5	95.5 96 2 103.8 111.6 115.4	37.5 40 75 141 192	120 190 260 330 400 444.60	0.040 1.4 16 0 95.0 376 760.0

[§] For one atomic weight of the element.

[†] For 8S (rhombie) = S_8 (g), ΔII° = 24,080 cal 8S (monocl.) = S_8 (g), ΔH° = 23,240 cal

S (monocl.) = S (rhombic), ΔH_{368} s° = 95 cal

	TABLE 74	. (Cont.)	
	Se		Те
t (°C)	$p_{ m mm}$	t (°C)	$p_{ m mm}$
217.4 220	0.0055 0.0062	488 578	0.464 3 34
235	0.0002	671	14 1
390	3 0	1390	760
480	28 0		
620	313 0		
680	760.0	Į.	

 $K = \frac{p_{\text{Nx}}^3}{p_{\text{Ns}}},$ $\log_{10} K_{\text{mm}} = -\frac{14,542}{T} + 21.907$ $K = \frac{p_{\text{Nx}}^4}{p_{\text{Ns}}},$ $\log_{10} K_{\text{mm}} = -\frac{21,348}{T} + 32.910$ $S_6(g) = 3S_2(g),$ $S_8(g) = 4S_2(g),$ $K = \frac{p_{\text{Ne}_2}^3}{n_0}, \quad \log_{10} K_{\text{mm}} = -\frac{13,000}{T} + 18.40$

density measurements, and in the interpretation of the results, each molecular species was assumed to act as a perfect gas, an assumption

TABLE 75 THE MOLAL PARAMAGNETIC SUSCEPTIBILITY OF S2(g)

t (°C)	χm × 104	χm T
590 650 725 760 800	8.3 8.1 7.3 5.7 5 4	0.72 75 .73 .59

that is doubtless justified since the temperatures employed were moderately high [Preuner and Schupp, Preuner and Brockmöller, loc. cit.]. It must be pointed out that, without detracting in the least from the excellent experimental results on S and Se vapors, the measurements may be interpreted on the basis of polymers other than those assumed. In fact, all equilibrium measurements that involve sulfur and selenium vapors do not hang together in a satisfactory

manner. It may well be that some other

interpretation of the vapor-density measurements would be in better accord with other measurements involving sulfur and selenium vapors.

Both solid and liquid sulfur are diamagnetic, but the vapor is paramagnetic. These facts would indicate that the S₂ molecule is responsible for the paramagnetism, since liquid sulfur, $S_{\lambda\mu\pi}$, consists of S_8 , S_6 , and S4 and is diamagnetic. Representative values of the molal susceptibilities of S₂ are given in Table 75 [Neel, Compt. rend., 194, 2035 (1932)]. calculating the values of χ_m from the measurements account was taken of the concentration of S₂ in the sulfur vapor.

The theoretical value of $\chi_m T$ would be 1.00 if two electron spins were responsible for the paramagnetism and 0.375 if only one were involved. Clearly, S_2 does not obey Curie's law exactly, and $\chi_m T$ is less than required by theory for two parallel electron spins. In spite of this difficulty it is believed that the ground state of S_2 , like that of the oxygen molecule, is $^3\Sigma$, and that the lack of agreement between theory and experiment is to be ascribed to experimental difficulties or to lack of accurate knowledge of the kinds of molecules in sulfur vapor. Qualitative experiments have shown selenium vapor to be paramagnetic [Bhatmager, Lessheim, and Khanna, *Proc. Ind. Acad. of Sci.*, **6A**, 155 (1937)]. No measurements are available on Te₂, but in analogy with oxygen and sulfur the ground states of these molecules are assumed to be $^3\Sigma$. The difference in energy between the triplet ground states is, as in oxygen, small.

Sulfur, selenium, and tellurium vapors show absorption bands in the ultraviolet and visible region of the spectrum, and the fluorescent spectra of selenium and tellurium can be excited by radiation from the mercury arc. Studies made by both methods have led to the energy states of the S₂, Se₂, and Te₂ molecules given in Table 76 [Herzberg, *Molecular Spectra*, pp. 492, 494]. The interpretation of the rotational or fine structure of the S₂ absorption bands is still subject to some doubt; indeed, it is not certain but that impurities are responsible for some of the bands observed.

TABLE 76
VIBRATIONAL ENERGY STATES OF S₂, Se₂, AND Te₂
S₂ $\epsilon_{vtb./hc} = 725.8(v + \frac{1}{2}) - 2.85(v + \frac{1}{2})^2 \text{ cm}^{-1}$ S—S distance, 1.89 Å^a , 1.92 Å^b Se₂ $\epsilon_{vtb./hc} = 391.77(v + \frac{1}{2}) - 1.06(v + \frac{1}{2})^2 \text{ cm}^{-1}$ Se—Se distance, 2.16 Å^a , 2.19 Å^b Te₂ $\epsilon_{vtb./hc} = 251.5(v + \frac{1}{2}) - 1.0(v + \frac{1}{2})^2 \text{ cm}^{-1}$ Te—Te distance, 2.59 Å^b

The entropics of gaseous S_2 , Se_2 , and Te_2 may be calculated from the data in Table 76; they are given in Table 77 together with the heats of dissociation of the molecules [Herzberg, *loc. cit.*]. An uncertainty in the heat of dissociation of S_2 prevents accurate calculation of the equilibrium constant for the reaction $S_2(g) = 2S(g)$. Values based on a heat of dissociation of 83,000 cal/mole and the free-energy functions of Montgomery and Kassel [J. Chem. Phys., 2, 417 (1934)] are given in the table.

The rather detailed consideration that has been given to the oxygen group elements O, S, Se, and Te is in keeping with their importance. Many of the general properties that they exhibit are much like those observed in such elements as phosphorus, sodium, carbon, and many others. They exist in several crystal modifications, the liquids do not

^a Spectroscopic value [Herzberg, Molecular Spectra].

^b Electron-diffraction value [Maxwell, Hendricks, and Moseley, Phys. Rev., 49, 199 (1936); 57, 21 (1939)].

consist of a single molecular species, and their vapors consist of polymers in equilibrium with each other. Although a chemist is more frequently interested in the reactions between compounds than in the elements themselves, the latter are of interest in that they show rather simply characteristics that are fundamentally the same in compounds but more complicated in nature. The problems encountered in the elementary substances just discussed involve three main factors common to all chemical studies, namely, reaction rates, equilibria, and molecular structure.

TABLE 77
THERMODYNAMIC CONSTANTS OF S₂, Se₂, AND Te₂
The Dissociation of S₂

	Heat of Dissociation at 0°K (cal/mole)	Entropy of Gas, S_{2981}° (cal/deg/mole)
S ₂	83,000	54.42
Se ₂	62,300	60 3
Te ₂	53,100	64.1

$\mathbf{S_2}(\mathbf{g})$	=	2 S	(g)
----------------------------	---	------------	-----

T (°K)	Log ₁₀ P _S ² /P _{S2} *	T (°K)	Log ₁₀ P _S /P _{S2} *
298.1	-55.9	2000	-2.9
600	-24.7	3000	+0.26
1000	-12.3	5000	+2.8

^{*} The pressures P are expressed in atmospheres.

Hydrogen Sulfide, Selenide, and Telluride

Preparation and properties

For most experimental purposes H₂S, H₂Se, and H₂Te are best prepared by the action of acids on metal sulfides, selenides, and tellurides. Thus the reactions of FeS, FeSc, Al₂Se₃, MgSe, and Al₂Te₃ with dilute (6 n) hydrochloric acid or water (FeS requires acid; FeSe requires acid and warming) yield H₂S, H₂Se, and H₂Te. In order to avoid such impurities as AsH₃, synthesized sulfides are preferred to the naturally occurring FeS. Another method of preparation consists in heating mixtures of S or Se with paraffin, naphthalene, or resins. This method has found application in one step in the manufacture of selenium cells, the H₂Se being decomposed to form hexagonal selenium when it comes in contact with a heated plate to be used in the cell. H₂Te (but not,

with good yields, H₂S or H₂Se) may be prepared by the electrolysis of 50% H₂SO₄ or H₃PO₄ solutions with metallic tellurium as a cathode.

The hydrolytic processes of preparation depend on the fact that all three hydrides are weak acids and volatile. Acids are not always necessary for the hydrolysis of metal sulfides; the compounds BaS and CaS react with water or water vapor to form H₂S and the metal hydroxides or oxides. The conversion is not always complete where solutions are involved, since much S⁻ or HS⁻ may be present but only a very small amount of H₂S; for example, solutions of Na₂S and NaHS have very little odor of H₂S above them. The hydrolytic reactions in alkaline solutions come to equilibrium before much H₂S is formed, less and less H₂S being found with increasing alkalinity. Al₂Se₃, MgSe, and Al₂Te₃ yield H₂Se and H₂Te with water alone, although in one method of preparation the powdered material is dropped into 4 n hydrochloric acid. In the method employing the action of steam on FeS, the reaction, FeS + H₂O = FeO + H₂S, is reversible; but the removal of the product results in complete conversion of the metal sulfide to hydrogen sulfide.

The direct combination of the elements has been studied repeatedly with respect to both the rate and the equilibrium state. Qualitatively it may be said that S and Se will react with hydrogen directly, very slowly at ordinary temperatures and more rapidly at high temperatures, but H₂Te is so unstable thermodynamically that its direct synthesis at

TABLE 78 THE PHYSICAL, THERMODYNAMIC, AND STRUCTURAL PROPERTIES OF H₂S, H₂Se, AND H₂Te

	Melting Point (°C)	Heat of Fusion (cal)	Boiling Point (°C)	Heat of Vaporization (cal)
H ₂ S	-659	568.1	-60.33	4,463
H ₂ Se		—	-41.2	4,760
H ₂ Te		—	0.0	5,700

	Heat of Formation, ΔH (cal)	Free Energy of Formation, ΔF_{298}° (cal)	Standard Entropy, S ^o ₂₉₈ (cal/deg)
H ₂ S	-4,800 (25°)	-7,865	49.15
H ₂ Se	18,500 (18°)	2,370	53.
H ₂ Te	34,200 (18°)	31,000	56.

TABLE 78 (Cont.)

Moments of inertia:

$$I_1 = 2.667 \times 10^{-40}, I_2 = 3.076 \times 10^{-40}, I_3 = 5.845 \times 10^{-40} \text{ g cm}^2$$

 $\omega_1 = 1260 \text{ cm}^{-1} \qquad \omega_2 = \omega_3 = 2620 \text{ cm}^{-1}$

T (°K)	C_p (cal/deg)	S° (cal/deg)	T (°K)	C_p (cal/deg)	S° (cal/deg)
298.1 500 700 900	8.121 8.81 9.67 10.49	49.151 53.50 56.60 59.13	1000 1400 1800	10.85 11.94 12.58	60.25 64.09 67.17

t (°C)	K _{atm}	t (°C)	Katm	t (°C)	Katm
254	0.162	324	0.292	405	0.439
274	.205	356	.350	444	.515
301	.258	377	.398	493	.605

$$H_2Se(g) + I_2(s) = 2HI(g) + Se$$
 (amorph.), $\Delta H = 3945$ cal

T (°K)	K _{atm}
273.1	33.68
290.1	22.62
300 0	18.06

readily attainable temperatures is out of the question. The rate of the reaction $H_2(g) + S(g) = H_2S(g)$ in the presence of liquid sulfur is measurable in the range 265-340°, but the measurements do not admit of a satisfying interpretation; in part the reaction is heterogeneous and in part homogeneous, the rate of the former predominating [Norrish and Rideal, J. Chem. Soc., 125, 2070 (1924); Kassel, Kinetics of Homogeneous Gas Reactions, p. 159]. The reaction $H_2 + Se = H_2Se$ is also very slow below about 250°.

In Table 78 are presented data on equilibrium measurements on H₂S and H₂Se, as well as on other important physical properties [Preuner and

Brockmöller, Z. phys. Chem., 81, 129 (1912); Bodenstein, ibid., 29, 429 (1899); I. C. T., Vol. V; Cross, J. Chem. Phys., 3, 168 (1935); Nielsen and others, ibid., 7, 994 (1939); Bichowsky and Rossini, Thermochemistry; Kelley, Bureau of Mines Bull., 406, p. 18 (1937); Giauque and Blue, J. Am. Chem. Soc., 58, 831 (1936)].

It is evident from the table that in an equilibrium mixture of H_2 , Se_2 , and H_2Se ,* the amount of H_2Se increases with the temperature; in an equilibrium mixture of H_2 , S_2 , and H_2S , on the other hand, the amount of H_2S decreases with increasing temperature. The same conclusion is indicated by the heats of formation. Equilibrium measurements show that H_2S will decompose but very little at room temperature; H_2Se and H_2Te are unstable at room temperatures, but their rates of decomposition are slow, H_2Te decomposing more rapidly than H_2Se . The slow decomposition rates make it possible to carry out experiments with H_2Se and H_2Te , although they are thermodynamically unstable with respect to the elements.

Chemical properties

All of the sulfur-group hydrides are moderately and roughly equally soluble in water, and all ionize, but not completely, in this solvent. Solu-

Table 79 SOLUBILITIES IN WATER AND IONIZATION CONSTANTS OF H₂S, H₂Se, AND H₂Te AT 25°

	Solubility	Ionization Constants		
	(moles/liter), $p = 760 \text{ mm}$	$K_1 = \frac{(H^+)(HY^-)}{(H_2Y)}$	$K_2 = \frac{(\mathrm{H}^+)(\mathrm{Y}^-)}{(\mathrm{H}\mathrm{Y}^-)}$	
H ₂ S H ₂ Se H ₂ Te	0.102 .08415 Unknown, > 0.09	$ \begin{array}{c} 1.15 \times 10^{-7} \\ 1.88 \times 10^{-4} \\ 2.27 \times 10^{-3} (18^{\circ}) \end{array} $	$ \begin{array}{c} 10^{-15} \\ \approx 10^{-10} \\ \approx 10^{-5} \end{array} $	

tions of H_2S are least acidic and those of H_2Te the most. The solubilities and ionization constants are given in Table 79 [Lewis and Randall,

^{*}It must be noted that the values of K in the table for the reactions $H_2 + Se_2 = H_2Se$, $H_2 + Se(1) = H_2Se$, and $Se_3 = 3Se_2$ are not consistent with each other. The reason for this is not known, but may involve the assumption of only Se_3 and Se_2 molecules in selenium vapor. There is also a difficulty with regard to the free energy of $H_2Se(g)$. The heat of formation given in the table combined with known and reasonably assumed entropy values lead to $\Delta F_{298}^o = 15,300$ cal for the reaction $H_2(g) + Se(s) = H_2Se(g)$ [Latimer, Oxidation Potentials, p. 75]. On the other hand the equilibrium constants for the reaction $H_2Se(g) + I_2(s) = 2HI(g) + Se(s)$ [Rolla, Gazz. Chim., 42, 432 (1912)] lead to a value $\Delta F_{298}^o = 2,370$ cal for the free energy of formation of $H_2Se(g)$. Here again the discrepancy is large and the reason for it is not evident. A reinvestigation of Rolla's reaction might settle the question.

Thermodynamics; McAmis and Felsing, J. Am. Chem. Soc., 47, 2633 (1925); Bruner, Z. Electrochem., 19, 861 (1913); Hlasko, J. chim. phys., 20, 167 (1923)].

The sulfur-group hydrides all react with oxygen and the halogens to form oxides, the elements themselves, and halides. H2S reacts only slowly if at all with O₂ at room temperatures but will burn if ignited. It is thermodynamically stable at room temperatures and may be stored in liquid form in steel cylinders without difficulty. Dry H2Se does not react with oxygen at room temperatures, but in the presence of moisture. water and elementary selenium are formed; the gas burns with a blue H₂Te dry or moist reacts rapidly with oxygen with the formation of dark-colored deposits of Te. Dry and pure H₂Se and H₂Te can be kept for reasonable periods without decomposition; H2Te is more sensitive to catalysts and decomposes more rapidly than does H₂Se. aqueous solutions both H₂Se and H₂Te are readily oxidized by such weak oxidizing agents as Fe+++ and I2. In solution II2S is also fairly easily oxidizable, such agents as Fe+++, I2, and HVO3 being able to liberate free sulfur quantitatively from it. As has been indicated in the preceding section, H₂Te is the strongest reducing agent and H₂S the weakest of the three analogous compounds.

The three sulfur-group hydrides, being acidic in nature, can combine with bases to form salts analogous to the hydroxides and oxides. When H₂S is passed into a solution of NaOH, there are formed NaSH and Na₂S, or, more precisely, HS⁻ and S⁻. Owing to the weakness of the acid, the salts hydrolyze extensively, so that solutions of both NaHS and Na₂S are alkaline. The corresponding compounds of sclenium and tellurium behave in a similar manner, the extent of hydrolysis not being so great, since H₂Se and H₂Te are stronger acids than H₂S.

Solutions of NaHTe (and H₂Te) are readily oxidized by oxygen, and, indeed, all of the tellurium can be liberated by passing air or oxygen through the solutions. Solutions of NaHSe are also oxidized by oxygen but not as rapidly. The effect of oxygen on NaHS solutions is noticeable, but the rate of liberation of sulfur to form polysulfides is fairly slow; unless air or oxygen is carefully excluded, the solutions soon become orange in color owing to the formation of polysulfide ions.

When S, Se, or Te are added to solutions of their *ide* salts, the polysulfides, selenides, or tellurides are formed. The composition of these substances depends upon the amount of the element added; that is, several ions are present together in equilibrium with each other, for example,

and similarly for selenium and tellurium. The insecticide known as lime-sulfur, prepared by boiling together solutions of lime with sulfur, contains, among other sulfur compounds, calcium polysulfides. The polysulfides are orange to red, the polyselenides red to green, and the polytellurides lavender to dark red in color. When acidified, the polysulfides yield S, H_2S , the liquids H_2S_2 and H_2S_3 , and doubtless compounds containing still more sulfur (see Chap. 11). The polyselenides and tellurides decompose into H_2S_2 and H_2T_2 and the elements when acidified, there being little or no evidence for the existence of hydrides analogous to H_2S_2 and H_2S_3 .

When aqueous solutions of Na₂S, Na₂Se, and Na₂Te are evaporated, the solid salts result, but these are often of uncertain composition. The sulfur-group elements react readily with sodium dissolved in liquid ammonia to form the normal sulfides, sclenides, and tellurides, and on the addition of still more S, Se, or Te the *poly* salts as well. Ammonia can be evaporated readily from these mixtures, leaving behind the solid salts. The polysulfides in aqueous solution react slowly with air or oxygen to form thiosulfate and sulfur; the same reactions are observed in liquid ammonia solutions. Sodium polysclenides and polytellurides in liquid ammonia solutions are oxidized slowly by oxygen with the formation of sclenites, sclenates, tellurites, and tellurates, respectively [McCleary and Fernelius, J. Am. Chem. Soc., 56, 803 (1934)], in addition to free Se and Te.

The polysulfides, selenides, and tellurides are the analogues of the peroxides and higher oxides. In spite of their many interesting properties, comparatively little highly accurate thermodynamic data have been obtained for them. Some of the free energies of formation in the following list are, accordingly, rough estimates or guesses, but are doubtless of she right order of magnitude [Latimer, Oxidation Potentials; Kasarnowtky, Z. anorg. Chem., 128, 15, 33 (1923)].

Ion	ΔF_{298}° keal	. Ion	ΔF_{298}° keal	Ion	ΔF_{298}^{o} kcal
S- S- S- S- S-	23.42 23.1 22.4 20.7	Se− Sc <u>-</u>	35.76 34	Te- Te ₂ -	42.3 38 75

Numerous studies have been made to determine the types of polysulfides, selenides, and tellurides that are capable of existing. Phase diagrams and solubility relations have furnished the most significant information. The fact that all three of the sulfur-group elements react readily with the alkali metals in liquid ammonia solution has simplified the preparation of some of the compounds. In the following list are shown the known compounds [see, e.g., Bergstrom, J. Am. Chem. Soc., 48, 146 (1926); Kraus and Glass, J. Phys. Chem., 33, 984, 995 (1929); Kraus and Zeitfuchs, J. Am. Chem. Soc., 44, 2714 (1922); Klemm, Sodomann, and Langmesser, Z. anorg. Chem., 241, 281 (1939)]:

Na ₂ S Na ₂ Se Na ₂ Te	Na ₂ S ₂ Na ₂ Se ₂ Na ₂ Te ₂	Na ₂ Se ₃	Na ₂ S ₄ Na ₂ Se ₄ (Na ₂ Te ₄)	Na ₂ S ₅	Na ₂ Se ₆ Na ₂ Te ₆
K ₂ S K ₂ Se K ₂ Te	K_2S_2 K_2Se_2	K_2S_8 K_2Se_8	K ₂ S ₄ K ₂ Se ₄	K₂S₅ K₂Se₅	K ₂ S ₆
Rb ₂ S Rb ₂ Se Rb ₂ Te	Rb ₂ S ₂	Rb₂S₃	Rb₂S₄	$\mathrm{Rb}_2\mathrm{S}_5$	Rb ₂ S ₆
Cs ₂ S Cs ₂ Se Cs ₂ Te	Cs ₂ S ₂	$\mathrm{Cs_2S_3}$	Cs ₂ S ₄	Cs ₂ S ₅	Cs ₂ S ₆

A liquid ammonia solution of sodium sulfide or selenide saturated with sulfur or selenium contains at least some Na₂S₆ or Na₂Se₆. With tellurium the saturated solution contains Na₂Te₄ (or a mixture of Na₂Te₂ and Na₂Te₆); the higher telluride is obtained by melting a mixture of Na₂Te and Te of the proper composition. When S, Se, or Te is slowly added to a liquid ammonia solution of an alkali metal, the insoluble *ide* salt, for example K₂Te, K₂S, is formed first; but, with further addition of S, Se, or Te, the precipitate dissolves to form highly and beautifully colored solutions of the poly salts.

CHAPTER 9

The Halides and Oxyhalides of Sulfur, Selenium, and Tellurium

The Halides of Sulfur, Selenium, and Tellurium

Preparation

Sulfur, selenium, and tellurium combine directly with fluorine with considerable evolution of heat to form the following compounds: the hexafluorides SF_6 , SeF_6 , and TeF_6 in greatest proportions; S_2F_{10} , Se_2F_{10} (?), and Te₂F₁₀ in small proportions. These substances are gases or volatile liquids. Sulfur hexafluoride is a remarkably unreactive gas that does not hydrolyze even in boiling water, although there is a strong thermodynamic tendency for it to do so. S₂F₁₀ is also quite unreactive [Denbigh and Whytlaw-Gray, J. Chem. Soc., 1346 (1934)]. hexafluoride hydrolyzes slowly in water to form HF and H₂SeO₄; tellurium hexafluoride hydrolyzes slowly, but at a rate greater than that for SeF₆ does not react with gaseous ammonia (or hydrogen) at room temperatures, but does so at 200°, with the formation of Se and HF. SeF and TeF react with mercury at room temperatures, the products of the reduction being HgF, Se, Te, and possibly mercury selenide [Yost and Claussen, J. Am. Chem. Soc., 55, 885 (1933); Klemm and Henkel, Z. anorg. Chem., 207, 73 (1932)].

By the action of HF on the oxides, or cobaltic fluoride, CoF₃, on the elements, compounds of the formulas S₂F₂ [Centnerszwer and Strenk, Ber., 58, 914 (1925); Trautz and Ehrmann, J. prakt. Chem., 142, 79 (1935)], SF₂, SF₄(?), Se₂F₂, SeF₄, TeF₂, and TeF₄ have been prepared, some in a fairly pure state, others definitely admixed with more or less impurities. Some uncertainty is felt by Sidgwick regarding the existence of SF₄ [Fischer and Jaenecker, Z. angew. Chem., 42, 810 (1929); Sidgwick, Annual Reports, Chemical Soc. Lond., 126 (1933)], but the reasons advanced for its nonexistence depend on the assumption of an "inert pair" of electrons in sulfur, and are not altogether convincing.

Chlorine and bromine, but not iodine, react readily with sulfur to form the liquids sulfur monochloride, S₂Cl₂ (yellow), and bromide, S₂Br₂ (red), of which only the former is capable of dissolving appreciable quantities of sulfur. Chlorine reacts slowly and reversibly with S₂Cl₂ to form the red,

liquid dichloride SCl₂ [Lowry and Jessop, J. Chem. Soc., 323 (1931); Spong, J. Chem. Soc., 1283 (1934) et ante; see also Aten, Z. phys. Chem., 54, 55 (1905)]; at room temperature and with chlorine at atmospheric pressure the dichloride forms, but at about 100° the dichloride decomposes extensively into the monochloride and chlorine. It is believed that S₃Cl₄ is also present in the equilibrium mixture.

At -30° or lower the action of Cl_2 on S, S_2Cl_2 , or SCl_2 leads to sulfur tetrachloride, SCl_4 , a liquid which freezes to a solid melting at -31° . When SCl_4 is at temperatures above the melting point, the equilibrium pressure of the Cl_2 exceeds one atmosphere; the reaction

$$SCl_2(l) + Cl_2(g) = SCl_4(l)$$

is reversible. At atmospheric pressure and room temperature SCl₄ does not exist [see, e.g., Lowry and Jessop, J. Chem. Soc., 1421 (1929); 782 (1930)]. The higher bromides do not appear to exist.

Selenium reacts readily with chlorine or bromine (and, under some conditions, iodine) to form the monochloride or bromide; these are dark red liquids having the formulas Se₂Cl₂ and Se₂Br₂ (and Se₂I₂). Both Se₂Cl₂ and Se₂Br₂ are excellent solvents for selenium. Further addition of chlorine to the monochloride yields the white, solid tetrachloride, SeCl₄; and with bromine the orange-red, solid tetrabromide, SeBr₄, is formed. The tetrachloride sublimes readily, but the vapor consists of a mixture of SeCl₂ and Cl₂ but not SeCl₄. Selenium tetrabromide can also be vaporized without difficulty, the vapor consisting of SeBr₂ and Br₂. So far as is known, the dichloride and dibromide exist only as gases; a liquid mixture whose composition corresponds to SeCl₂ appears to consist of the monochloride and crystals of the tetrachloride.

When a carbon tetrachloride solution of iodine is shaken with selenium, some of the selenium dissolves to form Se_2I_2 in the solution. A similar behavior is observed if the solvent is ethylene bromide, both Se_2I_2 and SeI_4 being formed in the solution. There is no convincing evidence for the existence of solid Se_2I_2 or SeI_4 .

Tellurium does not form compounds analogous to S₂Cl₂ and Se₂Cl₂. It does react with the halogens to form the solid dihalides TeCl₂, TeBr₂, and TeI₂. Tellurium dichloride and dibromide may be melted and vaporized, the vapors having a violet color not easily distinguished from that of iodine vapor. The absorption spectra of TeCl₂(g) and TeBr₂(g) in the visible region consist of many well-defined bands, which have not, however, been subjected to analysis. Tellurium reacts with excess chlorine and bromine to form the solid tetrahalides TeCl₄ and TeBr₄. These substances boil at 414° and 421°, respectively; the gaseous tetrachloride begins to decompose reversibly into TeCl₂(g) and Cl₂ to a measurable extent at 500°. TeBr₄(g) at 740 mm total pressure is 90% decomposed into TeBr₂ and Br₂ at 432° [Simons, J. Am. Chem. Soc, 52.,

3488 (1930); Yost and Hatcher, *ibid.*, **54**, 151 (1932)]. Tellurium tetraiodide is known as a solid, but in the vapor state and at 400° it will doubtless be completely dissociated into TeI₂(g) and I₂.

All of the chlorides and bromides of sulfur, selenium, and tellurium react with water, some—S₂Cl₂, Se₂Cl₂, and Se₂Br₂—slowly, and others—SeCl₄, TeCl₂, TeCl₄, TeBr₂, and TeBr₄—rapidly. The types of hydrolytic reactions are as follows:

$$2Se_2Cl_2 + 3H_2O = H_2SeO_3 + 3Se + 4H^+ + 4Cl^-$$

 $2TeCl_2 + 2H_2O = TeO_2 + 4H^+ + 4Cl^-$
 $SeCl_4 + 3H_2O = H_2SeO_3 + 4H^+ + 4Cl^-$

The hydrolysis of S₂Cl₂ in the presence of considerable water is much more complicated, the resulting solutions containing eventually considerable precipitated and colloidal sulfur, moderate amounts of tri, tetra, and pentathionic acids, and small amounts of H₂SO₃, H₂SO₄, and H₂S, but no thiosulfate.

Physical properties of the halides

From the point of view of chemical equilibria, the sulfur-group halides have been incompletely studied. The fluorides have such great stability that dissociation equilibria would be extremely difficult to attain. Hydrolytic equilibria lie so far in favor of the products of hydrolysis that measurements are, for the most part, out of the question. In the case of the hexafluorides, spectroscopic and electron-diffraction data have made possible the calculation of entropies and free energies. The hexafluoride molecules are octahedral in shape, the S, Se, and Te atoms being at the center and the fluorine atoms at the corners of the octahedra. highly electronegative character of fluorine suggests that bonds with it are to a considerable extent ionic in character; there must be enough covalent character, however, to maintain the well-defined bond directions, since it is known that in some trifluorides (PF₃, AsF₃) the molecular shape is pyramidal and does not correspond to the simple planar structure that would result if the fluoride ions were free to move about the atom to which they are attached.

As remarked above, all of the fluorides have a strong tendency to hydrolyze with water; the reaction is immeasurably slow with SF₆ and S₂F₁₀, and goes at a measurable rate with SeF₆ and TeF₆. S₂F₂ reacts rapidly with water, the products being S, SO₂, and HF [Trautz and Ehrmann, J. prakt. Chem., **142**, 79 (1935)].

Of the chlorides, S_2Cl_2 and SCl_2 have been studied most. Both are of considerable importance in industry, especially in the manufacture of rubber. Chlorine reacts rapidly with sulfur to form the light-yellow, liquid monochloride, S_2Cl_2 . The further reaction to form the dichloride.

SCl₂, is slow and requires several hours before equilibrium is reached. When the liquid dichloride is heated to 100° or higher, the equilibrium is displaced and the concentration of SCl₂ decreases. If this mixture is then cooled rapidly to 0° or room temperature, the recombination of S₂Cl₂ and Cl₂ proceeds slowly and in accord with the rate equation

$$-\frac{d(S_2Cl_2)}{dt} = k(S_2Cl_2)$$
, where $k = 0.0027 \text{ min}^{-1}$ at 0°

Different values of k are found when mixtures of S_2Cl_2 and Cl_2 that do not correspond to the composition SCl_2 are used. The reaction is quite complex, as is indicated by the fact that, for any given mixture of S_2Cl_2 and Cl_2 , the rate of formation of SCl_2 is independent of the concentration of Cl_2 .

The equilibrium constant of the slow, reversible reaction $S_2Cl_2 + Cl_2 = 2SCl_2$ is

$$K = \frac{(\text{Cl}_2)(\text{S}_2\text{Cl}_2)}{(\text{SCl}_2)^2} = 0.013$$

and is independent of the units used for expressing concentrations. The value 0.013 refers, presumably, to room temperature, 18°, but the investigators are not definite on this point [Spong, J. Chem. Soc., 1547 (1933), 1283 (1934); Lowry and Jessop, J. Chem. Soc., 323 (1931)]. There is some evidence for the existence of S₃Cl₄ in equilibrium with SCl₂ and S₂Cl₂,

$$SCl_2 + S_2Cl_2 = S_3Cl_4$$

A substance of this composition has been isolated at low temperatures; it decomposes extensively at room temperatures. The compound S₂Cl₂ is also thought to be present in S₂Cl₂ in small equilibrium amounts,

$$3S_2Cl_2 = S_3Cl_4 + S_3Cl_2$$

although it has never been isolated. In order to explain the boiling point of solutions of S₂Cl₂ in organic solvents, the existence of S₂Cl₄ has been postulated [Patrick and Hackerman, J. Phys. Chem., 40, 679 (1930)].

Recent experiments with radioactive sulfur dissolved in sulfur monochloride show that exchange of sulfur occurs, the rate being very slow at room temperature but conveniently measurable at 100°. It follows from this fact that sulfur monochloride always contains uncombined dissolved sulfur in equilibrium with it. Rate measurements on the exchange are best interpreted by assuming that the slow step in the exchange is the reaction

$$S_8$$
 (in S_2Cl_2) = S_6 (in S_2Cl_2) + S_2 (in S_2Cl_2)

The succeeding rapid reversible step is assumed to be $2S_2Cl_2 = S_2Cl_4 + S_2$ [Cooley and Yost, J. Am. Chem. Soc., 62, 2474 (1940)].

When S₂Cl₂ is distilled, b.p. = 138°, the residue becomes richer in sulfur, thus indicating decomposition. Vapor-density measurements indicate little if any decomposition in the gas phase at temperatures

TABLE 80
THE PHYSICAL PROPERTIES OF THE SULFUR-GROUP FLUORIDES

	Melting Point (°C)	Boiling or Subli- mation Point (°C)	Heat of Vapori- zation ^a (cal)	Heat of Formation (cal)	Atomic Distances (Å)	Frequen- cies of Vibra- tion of Normal Modes ^b (cm ⁻¹)	Standard Molal Entropy, S ²⁹⁸ (cal/deg)
S ₂ F ₂ SF ₄ SF ₆		-40.	5180 5460		S—F, 1.58	775 645 525 363 617	69.6
S_2F_{10} .	(-53)	29	7000	(461,000)	S—S, 2.3 S—F, 1.58	965	
SeF ₄ SeF ₆ .	-13.5 -34 6		6600	246,000	Se—F, 1.70	708 662 405 245 461 787	75 2
TeF ₆	-37.8	-38 9	6740	315,000	TeF, 1 84	701 674 313 165 370	80 6
$Te_2F_{10}\dots$	(-14)	(60)	_		_	752	

^a When the substance has a sublimation pressure of 1 atm. before it melts, the heat of vaporization refers to the change in state A(s) = A(g).

below 300°C. At higher temperatures, 300° to 800°, the decomposition becomes appreciable; the reaction expected is

$$S_2Cl_2 = S_2 + Cl_2$$

but the value of ΔH calculated from the equilibrium data is not in accord with that determined calorimetrically [Barton and Yost, J. Am. Chem. Soc., 57, 307 (1935)]. This fact indicates that the assumed reaction is accompanied by others. By utilizing molecular data and a

^b The degeneracies of the frequencies for the hexafluorides are 1, 2, 3, 3, 3, 3, respectively, reading downward [Yost, *Proc. Ind. Acad. Sci.*, 8, 333 (1938)].

reasonable value for the heat of formation of SCl₂, the data may be interpreted somewhat more satisfactorily on the basis of the reactions

$$S_{2} + Cl_{2} = S_{2}Cl_{2}$$

$${}_{2}^{1}S_{2} + Cl_{2} = SCl_{2}$$

$$3S_{2} = S_{6}$$

$$4S_{2} = S_{8}$$

The value of ΔH calculated in this way agrees well with the thermal value (D. P. Stevenson, unpublished calculations). The equilibrium constants are expressed as a function of the temperature by the formulas,

$$\begin{split} \log_{10} \frac{P_{8,\text{Cl}_1}}{P_{8,P_{\text{Cl}_1}}} &= \frac{7460}{T} - 5.33(760^{\circ}\text{K} < T < 1100^{\circ}\text{K}) \\ \log_{10} \frac{P_{8\text{Cl}_1}}{P_{8}^{19}P_{\text{Cl}_1}} &= \frac{4478}{T} - 2.82(760^{\circ}\text{K} < T < 1100^{\circ}\text{K}) \end{split}$$

where pressures are expressed in atmospheres. However, the runs in which an excess pressure of chlorine was present give results that show a

Fig. 60. The Molecular Structure of S_2Cl_2 . Cl-S=1.99Å; S-S=2.05Å; $\angle Cl-S-S=103^\circ$.

slight systematic deviation from those of the others, and it seems that for a complete treatment some further reaction that would depress even more the chlorine partial pressure must be considered. For this reason, and because some frequencies had to be guessed for SCl_2 and S_2Cl_2 , the equilibrium constants given by the formulas are only approximations and are presented for lack of better values. The molar entropies at 298.1° are estimated to be 67.2 \pm 1.0 cal/deg for $SCl_2(g)$ and 78.4 \pm 2.5 cal/deg for $S_2Cl_2(g)$.

Electron-diffraction experiments show the structure of S₂Cl₂ to

be as shown in Fig. 60. The structure of SCl₂ is simply triangular, the Cl—S—Cl angle being 101° and the S—Cl distance being 1.99 Å. Whether in S₂Cl₂ there is free rotation about the S—S bond, or if the angle between Cl—S—S planes is 97°, has not been determined definitely; if there is no free rotation, the 97° structure is correct and not a cis (0°) or trans (180°) structure [Palmer, J. Am. Chem. Soc., 60, 2360 (1938)].

Selenium monochloride, Se₂Cl₂, decomposes quite extensively when distilled, b.p. > 125°, and in such a way that a residue of selenium remains if the distillation is continued until no further chloride comes

over. Vapor-density measurements must be carried out at the temperature of boiling selenium or above, and at such temperatures decomposition is extensive. There is some evidence for believing that the vapors from Se₂Cl₂ consist of SeCl₂.

When placed in contact with water, Se_2Cl_2 hydrolyzes slowly to give solid selenium and H_2SeO_3 and HCl in solution. The reaction is reversible, for selenium in contact with a strong hydrochloric acid solution of H_2SeO_3 is slowly converted to the dark-red liquid monochloride. Se_2Cl_2 is a good solvent for Se (9.73 parts Se in 100 parts Se_2Cl_2 at 25°), S (48.81 parts in 100 at 25°), and iodine. It does not react with SO_2 , but does react reversibly with SeO_2 to form $SeOCl_2$ and Se [Lehner and Kao, J. Am. Chem. Soc., 48, 1550 (1926)]. The molecular structure of Se_2Cl_2 is doubtless much like that of S_2Cl_2 .

The tetrachloride of selenium, SeCl₄, does not exist as such in the vapor phase but is dissociated completely into SeCl₂ and Cl₂. This conclusion is based on the experimental facts that the vapor density of SeCl₄ is just one-half the formula weight, and that the vapor pressure of SeCl₄(s) is depressed by the presence of excess chlorine. The following results show the second effect [Yost and Kircher, J. Am. Chem. Soc., 52, 4680 (1930)].

Vapor Pressure	of Pure	SeCl ₄	(s)
----------------	---------	-------------------	-----

Temperature (°C)	p (mm)	Temperature (°C)	p (mm)	
109	11 3	161	203	
131	42.6	171	318	
150	117.4	180.5	482	

Vapor Pressure of SeCl₄(s) in Presence of Excess Chlorine

Temperature	Pres. Excess	Pres. SeCl ₄ , p (mm)	Vapor Pressure of
(°C)	Chlorine, p. (mm)		Pure SeCl ₄ (mm)
146	346	20	96
161	358	56	203
171	366	123	. 318
176	370	179	397

SeCl₂ does not appear to exist in the liquid or solid state, mixtures of that composition consisting of Se₂Cl₂ and SeCl₄.

The bromides of S, Se, and Te resemble in many respects the chlorides, but, as is to be expected, are not as stable as the chlorides. S₂Br₂ and Se₂Br₂ have not been studied as extensively as the corresponding chlorides.

SBr₄ does not exist at room temperatures; SeBr₄, like SeCl₄, decomposes, on heating, to SeBr₂(g) and Br₂.

The iodides of sulfur and selenium do not exist under ordinary conditions. When a carbon tetrachloride solution of iodine is shaken with solid selenium until equilibrium is attained, the solution contains the monoiodide, Se_2I_2 , in amounts, at 25°, given by the equilibrium relation $K = (Se_2I_2)/(I_2) = 0.0127$. If the solvent is ethylene bromide, both

TABLE 81
THE PHYSICAL PROPERTIES OF THE SULFUR-GROUP HALIDES

	Melting Point	Boiling Pointa (°C)	Heat of Formation (cal)
AL	-		
S_2Cl_2	-80	138	14,300
S_2Br_2	-46	90 dec.	4,000
SCl ₂	-78	59 dec.	12,000
SCl ₄ .	-31	dec.	13,700
Se_2Cl_2	-85	127 dec.	22,130
$SeBr_{2}(g)$.		227 dec	
$SeCl_2(g)$			10,000
SeBr ₂			,
SeCl ₄		191 subl.	46,120
SeBr ₄	dec		•
$TeCl_{2}^{b}$	175	324	
TeBr₂ [¢]	280	339	
TeI ₂		1	
$\mathrm{TeCl}_{4}{}^{d}\dots$	214	414	77,100
TeBr ₁	380	421	49,300
		ļ	

^a The boiling points are the temperatures at which the total vapor pressure is 760 mm; in most cases the vapor consists of decomposition products along with the original substance. Thus TeBr₄ is about 90 % decomposed at 421° into TeBr₂ and Br₂; SeCl₄ is completely decomposed at 191° into SeCl₂ and Cl₂; SCl₂ vapor consists principally of S₂Cl₂ and Cl₃. TeCl₄ and TeBr₅ are not appreciably decomposed at their B P.

Cl₂. TeCl₂ and TeBr₂ are not appreciably decomposed at their B.P.

^b TeCl₃ in the vapor phase is probably a nonlinear molecule with Te—Cl = 2.36 Å.

^c TeBr₂ in the vapor phase is nonlinear with < Br—Te—Br = 98° and Te—Br = 2.51

Å (R. A Spurr, unpublished experiments).

^d TeCl₄ [Stevenson and Shomaker, J. Am. Chem. Soc., **62**, 1267 (1940)] is not a regular tetrahedral molecule).

Se₂I₂ and SeI₄ are found; at 25°, (Se₂I₂)/(I₂) = 0.0208, and (SeI₄)/(I₂)² = 0.0409, the concentrations being expressed as mole fractions [McCullough and Beckman, Thesis, Calif. Inst. Tech., 1936]. The fact that iodine does not react with solid S or Se is of importance in measurements of the following equilibria [Pollitzer, Z. anorg. Chem., 64, 121 (1909); Rolla, Gazz. Chim., 42, II, 432 (1912)]:

$$S(s, r) + 2HI(g) = I_2(s) + H_2S(g),$$
 $\Delta F_{298}^{o} = -8470 \text{ cal}$
 $Se(s, h) + 2HI(g) = I_2(s) + H_2Se(g),$ $K_{300} \text{ (atm)} = 0.055$

Aside from the melting and boiling points and the fact that the vapors decompose at higher temperatures, little is known about the di- and

tetrahalides of tellurium. Noteworthy is the fact that TeCl₂ and TeCl₄ when molten are good conductors of electricity, their specific conductivities being, respectively, 0.0402 (at 206°) and 0.1145 (at 236°) [Biltz and Voight, Z. anorg. Chem., 133, 297 (1924)]. The value for molten TeCl₄ is approximately that of a 1 n solution of KCl. This high conductivity of TeCl₂ and TeCl₄ is an indication of a salt-like character, and there can be no doubt that these substances in the liquid state are rather highly ionized. The nature of the ions has not been established, but they are probably Cl⁻, Te⁺⁺⁺, TeCl⁺, and TeCl₂⁺⁺.

The Oxyhalides of Sulfur, Selenium, and Tellurium

Preparation

The oxyfluorides are prepared by rather special methods. Thionyl fluoride, SOF₂, results when SOCl₂ (liquid) and AsF₃ (liquid) are mixed and gently warmed. The reaction goes at a moderate rate, the products being SOF₂, SO₂, and SOClF, and rather careful fractionation at low temperatures is necessary to obtain pure thionyl fluoride. The rather inert gas sulfuryl fluoride, SO₂F₂, is best prepared by the thermal decomposition of dry calcium or barium fluosulfonate, Ba(SO₃F)₂, at red heat [Traube, Hoerenz, and Wunderlich, Ber., 52, 1272 (1919); Trautz and Ehrman, J. prakt. Chem., 142, 79 (1935)].

$$Ba(SO_3F)_2 = BaSO_4 + SO_2F_2$$

Sulfuryl chlorofluoride, SO₂ClF, is prepared by heating a mixture of SO₂Cl₂ (365 g), SbF₃ (187 g), and SbCl₅ (40 cc) to 300° in a closed vessel. The final pressure of the reacting mixture becomes over 100 pounds per square inch, but the product is bled off at around 90 pounds pressure. Fractional distillation is necessary to separate the SO₂ClF from the gaseous reaction products [Booth and Herrmann, J. Am. Chem. Soc., 58, 63 (1936)]. The compound hydrolyzes rapidly in water, it has a pungent odor but does not fume in air, and it does not attack dry glass, mercury, or brass.

Thionyl chloride, SOCl2, can be prepared by passing SO2 over PCl5.

$$SO_2 + PCl_5 = SOCl_2 + POCl_3$$

Both SOCl₂ (b.p. 78°) and POCl₃ (b.p. 107°) are liquids at ordinary temperatures, and the mixture of the two must be fractionally distilled in order to recover the thionyl chloride. Inasmuch as thionyl chloride finds application in organic preparations, its manufacture by a more convenient process is desirable. One process consists in passing chlorine into a mixture of SO₃ and S₂Cl₂ heated to 75–80°.

$$SO_3 + S_2Cl_2 = SOCl_2 + S + SO_2$$

 $2S + Cl_2 = S_2Cl_2$

Other processes consist in treating PCl₃ with SO₂Cl₂,

$$SO_2Cl_2 + PCl_3 = POCl_3 + SOCl_2$$

and in passing sulfur dioxide and phosgene, COCl₂, over charcoal heated to 200° or above; the COCl₂ may be replaced by a mixture of CO and Cl₂. Of chemical but not practical interest is the reaction between sulfur and Cl₂O, the latter combining as a whole with sulfur according to the equation

$$S + Cl_2O = SOCl_2$$

With solid sulfur the reaction is rather violent; it proceeds smoothly and efficiently if the chlorine monoxide is passed into S_2Cl_2 containing dissolved sulfur and cooled to -12° .

Sulfur oxybromide or thionyl bromide, SOBr₂, is prepared by treating SOCl₂ with dry HBr (g) at 0°, followed by fractional distillation in vacuo. [Booth, Inorganic Syntheses, McGraw-Hill, New York, 1939, pp. 113 and 151]. It is a yellowish-orange liquid that is rather unstable and that decomposes somewhat into S₂Br₂, SO₂, and Br₂ at room temperature (slow reaction) and much more so (30%) when it is distilled at its normal boiling point of 137° [Mayes and Partington, J. Chem. Soc., 2594 (1926)].

Sulfuryl chloride, SO₂Cl₂ (b.p. 69°), is readily prepared by dissolving camphor in liquid SO₂ and then passing chlorine through the solution. Camphor, at 0°, is capable of dissolving some 300 volumes of SO₂ to form a clear liquid; and when chlorine is passed through this liquid, SO₂Cl₂ is formed and can be distilled from the mixture with little difficulty. The combination also takes place readily in the presence of activated charcoal or silica, if the reaction tube is kept cool and is so shaped that liquid SO₂Cl₂ is always present.

$$SO_2 + Cl_2 = SO_2Cl_2$$

Chlorine and sulfur dioxide in the absence of light or a catalyst react only slowly at room temperature; the rate increases with temperature, but the reverse reaction of decomposition soon predominates, and little or no SO_2Cl_2 is obtained at 200° and higher. Animal charcoal acts as a catalyst, but even in its presence the combination of gaseous SO_2 and Cl_2 is slow at 110–180° [Trautz, Z. Electrochem., 14, 534 (1908)]. The rate of the reaction is greatly increased by irradiation of the gaseous mixture with light that is absorbed by chlorine. The instability of SO_2Cl_2 indicates that the corresponding bromide would be still more unstable; sulfuryl bromide is not known.

When SO₃ is dissolved in cold sulfur monochloride, or if chlorsulfonic acid, HSO₃Cl, is treated with P₂O₅, the pyrosulfuryl chloride, S₂O₅Cl₂ (b.p. 145°), is formed. It is the anhydride of chlorsulfonic acid.

All of the known oxyhalides of sulfur, with the exception of SOBr₂, are colorless.

Selenium oxyfluoride is formed when dry silver fluoride is treated with SeOCl₂. This method of preparation is a general one often used to prepare fluorides from chlorides or bromides. Besides AgF (dry), HgF₂ is used in some cases with considerable success [Henne, J. Am. Chem. Soc., 60, 1569 (1938)]. SeOF₂ is a colorless, fuming liquid with a characteristic odor; it hydrolyzes rapidly with water to form H₂SeO₃ and HF [Prideaux and Cox, J. Chem. Soc., 738, (1928)].

Selenium oxychloride, SeOCl₂, a well-defined compound, is easily prepared by treating a suspension of SeCl₄ in carbon tetrachloride with SeO₂; the SeOCl₂ formed is soluble in carbon tetrachloride and is freed from that solvent by evaporation [Lehner, J. Am. Chem. Soc., 42, 2498 (1920)].

$$SeCl_4 + SeO_2 = 2SeOCl_2$$

Selenium oxychloride, when pure, is an almost colorless liquid miscible in all proportions with CCl₄, CHCl₃, CS₂, and benzol. It is formed in the reversible reaction

$$2Se_2Cl_2 + SeO_2 = 2SeOCl_2 + 3Se$$

and by the action of HCl(g) on a mixture of SeO2 and a dehydrating agent

$$SeO_2(g) + 2HCl(g) = SeO_2 \cdot 2HCl(l)$$

 $SeO_2 \cdot 2HCl = SeOCl_2 + H_2O$

The oxybromide is prepared by warming mixtures of SeO₂ and SeBr₄; it is a yellow crystalline solid. Compounds of the formula SeO₂Cl₂ and SeO₂Br₂ are not known.

Tellurium does not form oxyhalides of the distinctive character observed with sulfur and selenium. The partial hydrolysis of TeF₄, TeCl₄, and TeBr₄ leads to compounds containing oxygen and the halogen, but their preparation free from water is not easy nor does it lead to substances of great interest.

Physical and chemical properties of the oxyhalides

The ordinary physical properties of the oxyhalides are shown in Table 82. They are characterized by being liquids (except SeOBr₂) and, accordingly, more or less volatile.

The compounds SOCl₂ and SeOCl₂ may be looked upon as derivatives of the dioxides. They hydrolyze more or less readily and completely with water in accordance with the reaction

$$YOX_2 + 2H_2O = H_2YO_3 + 2HX$$

where Y stands for S or Se and X for the halogens. The rate of hydrolysis

is most rapid with SOF₂ and SeOF₂ and least with SOCl₂ and SeOCl₂. When the vapors are strongly heated, they decompose into a mixture of the monochloride, dioxide, and halogen, a higher temperature being required to decompose the fluorides than the chlorides and bromides; the sulfur compounds require a higher temperature for decomposition than do those of selenium.

Thionyl chloride reacts with a number of substances. With hot lead formate and oxalate, it is reduced to S₂Cl₂ [Schumb, J. Am. Chem. Soc., 57, 260 (1935)]. It may act as a chlorinating agent or a simple oxidizing

Fig. 61. The Molecular Structures o SOCl₂, SOF₂, SOBr₂, and SeOCl₂.

	А—О	л—х	ZX—A—A	∠X—Λ—0
SOCl ₂ .	1.45Å	2.05Å	97.5°	107.5°
SOF ₂ .		1.6	106(?)	114(?)
SOBr ₂ .	1.45	2.27	96`	108
SeOCl ₂	1.61	1.7	106(?)	114(?)

agent, or, in the case of organic compounds, it can serve to introduce chlorine or —SO groups. Owing to its moderately high dielectric constant, 9.05 at 22°, it is a moderately good ionizing solvent.

Selenyl chloride has a high dielectric constant, a specific conductance of 2×10^5 mhos, and shows interesting properties as an ionizing solvent [Smith, Chem. Rev., 23, 165 (1938)]. Its action on other substances is one of chlorination or oxidation. It is a good solvent for S, Se, Te, Br₂, and I₂, the solvent action being accompanied, in the case of Te, and possibly also in the case of S, by reaction to form TeCl₄ and S₂Cl₂. When mixed with sulfur trioxide, chloride forms a thick, heavy solution with the property of

dissolving such resistant substances as Al₂O₃, Cr₂O₃, and oxides of the rare earths.

The structures of SOF₂, SOCl₂, SOBr₂, and SeOCl₂ have been determined by the electron-diffraction method. As one might expect, the configurations are similar: they are pyramidal and differ only in the interatomic distances and bond angles, as indicated in Fig. 61 [Stevenson and Cooley, J. Am. Chem. Soc., 62, 2477 (1940); Palmer, J. Am. Chem. Soc., 60, 2360 (1938); Stevenson and Beach, unpublished experiments]. The pyramidal structure is characteristic of these molecules; if the bonding were purely ionic, a planar structure would be expected; accordingly, the bonding must be considered to be, in part at least, covalent.

TABLE 82
THE PHYSICAL PROPERTIES OF THE SULFUR-GROUP OXYHALIDES

	Melting Point (°C)	Boiling Point (°C)	Density of Liquid	Heat of Vaporization (cal)	Heat of Formation (cal)
SOF ₂	-110	-30	3.0		
SOCl ₂		78.8	1.656 (14.5°)	7,480	50,200
SOBr ₂	-50	137	2 67 (25°)	10,400	
SO ₂ F ₂ *	-136 7	-55.4	(20)	4,790	
SO ₂ ClF	-124.7	7.1	1.623 (0°)	6,340	
SO ₂ Cl ₂	-54.1	69.1	1.667 (20°)	6,700	92,900
S ₂ O ₅ Cl ₂	-37.5	153	1.837	13,200	166,500
SeOF ₂		124	2.67		
SeOCl ₂	8 5	176.4	2.424 (22°)		
SeOBr ₂	41.7		3.38 (50°)		

Dielectric	Constants	;]	Entropies
SeOCl ₂	20° 10° 22°	46.2 51.00 9.05	SOCl ₂ (g)	S ₂₉₈ (cal/deg/mole)
			$SO_2Cl_2(g)\dots$. 74.34

^{*} The values for SO₂F₂ were recently determined by H. Russell, Jr. (unpublished). For the vapor pressures, $\log_{10} p_{\text{mm}} = 23.38463 - \frac{1584.12}{T} - 5.65871 \log_{10} T$.

The Raman spectrum of SeOCl₂ is not known. The spectra of SOF₂ and SOCl₂ are given here for purposes of comparison to show the effect of replacing chlorine by fluorine; the fact that the S—F bond is stronger than the S—Cl bond, and the additional fact that fluorine is lighter than chlorine, lead to higher frequencies for SOF₂ than for SOCl₂ for those modes of vibration in which the S—F and S—Cl bonds undergo appreciable changes in length or orientation [Yost, *Proc. Ind. Acad. Sci.*, 8, 333 (1938)].

ABLE 83						
	RAMAN	FREQUENCIES	OF SOCl2	AND SOF2		
SOCl ₂			192 282	343 443 488	1229 cm^{-1}	
SOF ₂			326 395	529 720 795	1312 cm ⁻¹	

Sulfuryl fluoride, SO₂F₂, resembles the hexafluoride, SF₆, in inertness. SO₂F₂ is not decomposed appreciably in iron vessels at incipient red heat;

it does not hydrolyze rapidly in water. In warm dilute alkali (about 0.5 n), it hydrolyzes rapidly, almost quantitatively, according to the equation,

$$SO_2F_2 + 2OH^- = SO_3F^- + F^- + H_2O$$

The fluosulfonate ion is further hydrolyzed to sulfate and fluoride ions on heating in strongly acid or alkaline solutions (see Chapter 10, p. 347). It will react with ammonia to form sulfamide, SO₂(NH₂)₂ [Traube and Reubke, Ber., 56, 1662 (1923)].

Fig. 62. The Molecular Structure of SO_2Cl_2 . S-O=1.43 Å; S-Cl=1.99 Å; $\angle O-S-O=120^\circ$; $\angle Cl-S-Cl=111^\circ$; $\angle Cl-S-O=106.5^\circ$.

Sulfuryl chloride, SO₂Cl₂, hydrolyzes readily in water to form sulfuric and hydrochloric acids, and for this reason it was once employed as a component in smoke-producing mixtures; it is less satisfactory for this purpose, however, than a number of other compounds, for example, HSO₃Cl, HSO₃Cl + SO₃, SO₃, and TiCl₄, and in this application it no longer finds use. Bottles of sulfuryl chloride, if not kept tightly stoppered, absorb moisture slowly from the air to form H₂SO₄ and HCl. The compound may be looked upon as a derivative of SO₃ in which one oxygen atom has been replaced by two chlorine atoms.

When heated to 280° or above, gaseous sulfuryl chloride decomposes at a measurable rate into SO₂ and chlorine,

$$SO_2Cl_2 = SO_2 + Cl_2$$

Measurements of the rate indicate that while the decomposition may be partly homogeneous, it is strongly affected by catalysts. The sulfuryl chloride prepared through the use of camphor decomposes more rapidly, at the same temperature, than does that prepared with a silica catalyst [Ramsperger, unpublished results, 1930. See Kassel, Kinetics of Homogeneous Gas Reactions, p. 235].

Inasmuch as sulfuryl chloride decomposes completely into SO₂ and Cl₂ at around 300°, and since SO₂ and Cl₂ can be caused to combine at room temperature, equilibrium will be attained at intermediate temperatures with all three compounds present in measurable amounts. Trautz found that the rate of attainment of equilibrium is immeasurably slow in the temperature range 100–200°; however, with animal charcoal as a catalyst, equilibrium is reached in a reasonable time [Trautz, Z. Electrochem., 14, 534 (1908)]. The measurements of Trautz and of others [Landolt Börnstein, Tabellen, 3rd Erg Bd., Vol. 3, p. 2605 (1936); 1st Erg. Bd., Vol. 2, p. 1418 (1923)] are not altogether satisfactory, since

there is some indication that equilibrium was not reached. This is apparent in the following table, which contains results calculated by Dr. D. P. Stevenson from equilibrium and molecular data. Energy values are expressed in kilocalories per mole. The drift in ΔH_0° indicates a lack

TABLE 84
EQUILIBRIUM CONSTANTS FOR THE REACTION $SO_{2}Cl_{2}(g) = SO_{2}(g) + Cl_{2}(g)$ $K_{atm} = \frac{P_{SO_{2}}P_{Cl_{2}}}{P_{SO_{2}}Cl_{2}}$

Temp. (°K)	$K_{ m atm}$	$rac{\Delta F^{\circ}}{T}$	$\Delta H_{m 0}^{m \circ}$
303 313 323 375 432 464	0.0288 .0506 .0837 2.37 8.9	7.05 5 93 4.93 -1.71 -4.34 -5.10	12.8 12.9 13.1 12.8 13.7

of consistency between equilibrium and molecular data. An approximate value of ΔH° for the reaction is 12,900 cal; calorimetric measurements lead to $\Delta H^{\circ}=14,400$ cal. It would be of interest to find a catalyst so that more careful measurements could be made in the range 25–100°; bromine or iodine might act catalytically, since it is not uncommon to find that BrCl and ICl are more reactive than chlorine alone. Equilibrium is established more readily in the presence of anhydrous aluminum chloride owing to the formation of the intermediate AlCl₃·SO₂. A film of sulfuric acid on the walls of a glass reaction vessel has been found to act catalytically in the combination reaction.

Sulfuryl chloride acts as an oxidizing and chlorinating agent as well as a substance useful for introducing the —SO₂ group into other compounds. When it is mixed with ammonia in benzol solution, sulfimide, (SO₂NH)₃. is formed together with several other chain-like compounds.

CHAPTER 10

The Oxides and Oxyacids of Sulfur, Selenium, and Tellurium

The Oxides of Sulfur, Selenium, and Tellurium

Formation and properties of the monoxides

When sulfur, selenium, or tellurium is heated in oxygen, the dioxide is formed. With excess oxygen and a catalyst, SO₂ combines with more oxygen to form SO₃, but SeO₃ and TeO₃ are not formed in this way to any appreciable extent. It is possible, by special methods, to obtain the monoxides of sulfur and tellurium. Elementary tellurium dissolves in liquid sulfur trioxide to form a red mixture which decomposes when heated to give vapors of SO₃ and a residue of TeSO₃ (softening point, 30°); this residue decomposes further to give sulfur dioxide and a black solid which appears to be TeO, an oxide corresponding to the well-known dihalides.

When a mixture of SO_2 and sulfur vapor is passed at from 1 to 10 mm pressure through an electric discharge (3,000-20,000 volts), sulfur monoxide, SO, is formed. This substance is known only in the gas phase, and in this state it can be kept without extensive decomposition for several days. When the gas is condensed at liquid-air temperatures to a solid (orange red) and the latter allowed to melt, decomposition into sulfur dioxide and sulfur takes place completely and rapidly. If an alkali solution is poured onto the solid, the resulting mixture at room temperature is found to contain hyposulfite, $S_2O_4^{\bullet}$. Sulfur monoxide is not the anhydride of hyposulfurous acid, $H_2S_2O_4$; its hydrolysis must yield both sulfur and hyposulfite.

$$3SO + H_2O = H_2S_2O_4 + S$$

Gaseous sulfur monoxide does not react with oxygen at room temperatures. Sulfur monoxide can be formed also in a purely chemical way by heating thionyl chloride (and SOBr₂) with Na (100°), Ag (150°), Sn (200°), Mg (400°), or Al (450°).

The detection of sulfur monoxide depends on characteristic absorption bands extending from 3130 Å to shorter wave lengths. The emission spectrum was known before the gas was prepared in workable quantities.

The preparation and properties of SO are due to Schenk. [See Schenk, Z. anorg. Chem., 233, 385 (1937) et ante.] The gas is presumably paramagnetic, since the ground state of the molecule is $^3\Sigma$. The energy levels, both rotational and vibrational, are given in cm⁻¹ by the empirical formula

$$\frac{\epsilon}{hc} = (.70894 - .00562(v + \frac{1}{2}))J(J+1) + \frac{1123.73(v + \frac{1}{2}) - 6.116(v + \frac{1}{2})^2}{}$$

This information, together with the spectroscopic data for S_2 and O_2 (Herzberg, $Molecular\ Spectra$), has been used to calculate equilibrium constants for the reactions

$$\frac{1}{2}S_2(g) + \frac{1}{2}O_2(g) = SO(g)$$
$$\frac{1}{2}S_2(g) + SO_2 = 2SO(g)$$

A few representative values of $\log_{10} K$ are given in the following table [unpublished calculations by D. V. R. Golding]. The older calculations by Montgomery and Kassel [J. Chem. Phys., 2, 417 (1934)] were based on incorrect values for the dissociation energies of S_2 and SO.

Table 85 EQUILIBRIUM CONSTANTS FOR THE REACTIONS $\frac{1}{2}S_2(g) + \frac{1}{2}O_2(g) = SO(g)$ $\frac{1}{2}S_2(g) + SO_2(g) = 2SO(g)$

	202(g) 002(g) = 200(g)						
	Pressures in Atmospheres						
7' (°K)	$\left[K_{1} = \frac{\log_{10} K_{1}}{(S_{2})^{\frac{1}{2}}(O_{2})^{\frac{1}{2}}}\right]$	$\left[K_{2} = \frac{(SO)^{2}}{(S_{2})^{\frac{1}{2}}(SO_{2})}\right]$					
298 1 500 1000 1500 2000	-5 45 -3.14 -1 43 86 58	-71.52 -40.32 -17.98 -10.54 - 6.84					
	1	1					

$$D_0$$
 (e.v.)*. $\frac{S_2}{3.6}$ $\frac{O_2}{5.082}$ $\frac{SO}{4.002}$ $\frac{SO_2(g)}{\Delta E_0^0 = 3.725 \text{ e.v.}}$

From the results shown in the last column, it is evident that only a very small equilibrium concentration of SO can be attained in a gaseous mixture of S₂ and SO₂ even at 2000°. The fact that SO is produced from

^{*} Dissociation energy in electron volts per molecule.

S₂ and SO₂ in an electrical discharge must depend on the presence of activated molecules having greater energies than are possible in the equilibrium mixture obtaining at 2000°K.

Preparation of dioxides

The dioxides of sulfur, selenium, and tellurium may be prepared simply by heating the elements with oxygen. Sulfur burns readily in air, with the formation of the dioxide and small amounts (up to 3.6%) of SO₃; large amounts of the dioxide are formed in the process of roasting sulfide ores in the presence of air.

$$MS + \frac{3}{2}O_2 = MO + SO_2$$

Sulfur dioxide can be easily prepared in small quantities for experimental purposes by treating sulfites or bisulfites with sulfuric, hydrochloric, or other strong acids. In the liquid form, it is now furnished at low cost in steel cylinders.

The preparation of selenium dioxide by the direct combination of selenium and oxygen is not always the most convenient method for obtaining the substance. The rate of oxidation by oxygen is more rapid if the oxygen is first passed through fuming nitric acid before passing it rapidly over molten selenium [Jul. Meyer, Ber., 55, 2082 (1922)]. In the more common method of preparation, black selenium of commerce is treated with nitric acid (6 n or stronger); upon heating the mixture, red fumes of nitrogen dioxide are given off and the selenium dissolves as H_2SeO_3 . The solution is evaporated to dryness, and the resulting white solid, which is first H_2SeO_3 and on further heating SeO_2 , is used as such or is purified by sublimation.

Tellurium dioxide is also best prepared by treating elementary tellurium with 6 n nitric acid. The resulting solution may be evaporated to dryness and the white residue, 2TeO₂·HNO₃, then ignited, or, if the acid solution is neutralized, the white, solid TeO₂ will precipitate out. obtain a very pure product, it is best to recrystallize the basic nitrate, 2TeO₂·HNO₃, from 6 n HNO₃. In this operation the nitric acid solvent is heated to 70° so that as much as possible of the basic nitrate dissolves; the solution is then either cooled and the basic nitrate allowed to precipitate out, or the acid solution is evaporated at 80°. If the solution is heated too strongly, the basic nitrate decomposes into the dioxide. This method of purification is an effective one for obtaining tellurium free from the common impurity, copper. If selenium is also present, the tellurium dioxide is dissolved in 10 n hydrochloric acid and the resulting solution saturated with sulfur dioxide and heated to boiling when all of the selenium and a small amount of tellurium is precipitated. This mixture is filtered and the filtrate diluted to five times its original volume and again

saturated with sulfur dioxide. The grey precipitate that comes down consists of metallic tellurium, and it may be converted to the dioxide by the nitric acid treatment already described above [Schuhmann, J. Am. Chem. Soc., 47, 356 (1925); Norris, Fay, and Edgerly, Am. Chem. J., 23, 107 (1900)]. Tellurium dioxide also results when tellurium or the tellurides are burned in air or oxygen; the flame has a bluish color.

Trioxides

The trioxides of sulfur, selenium, and tellurium have all been prepared, but the preparation of the two latter presents difficulties.

Sulfur trioxide is formed in the first step of the contact process for the manufacture of sulfuric acid in which sulfur dioxide and oxygen are heated together in the presence of a catalyst. The reaction is immeasurably slow at room temperature; at temperatures at which the uncatalyzed reaction is at all rapid, the equilibrium is so far displaced toward the $SO_2 + O_2$ side that the yield of the trioxide is very small. The rate of the reaction is greatly increased if the mixture of sulfur dioxide and air is led over finely divided or spongy platinum (best), nickel and cobalt sulfates, or the oxides of vanadium, tungsten, molybdenum, chromium, or iron. The optimum temperature with respect to rate of reaction and vield is around 665°; in some cases the gases are passed over the catalyst at this temperature and then over the same catalyst at 450-500°, the yield being thereby increased. Small amounts of arsenic "poison" the catalysts, and they then become ineffective. Arsenic occurs in many sulfides, and when roast gases are used as a source of sulfur dioxide, the difficulties with the contact process may be considerable if the arsenious oxide formed is not removed. Too much and too little moisture in the reaction mixture decreases the yield of the trioxide; if the SO₂-air mixture is first passed through concentrated sulfuric acid, the optimum moisture content is attained.

The reaction leading to the formation of sulfur trioxide has been thoroughly studied by several groups of investigators, and their results agree remarkably well [Bodenstein and Pohl, Z. Electrochem., 11, 373 (1905); Taylor and Lehner, Z. phys. Chem., Bodenstein Festb., 30 (1931); and Kapustinsky and Shamovsky, Acta Physchim., U.S.S.R., 4, 791 (1936)]. This agreement is shown by combining the $(F^{\circ} - H_{0}^{\circ})/T$ functions for SO₃, SO₂, and O₂, calculated from molecular data, with the experimental $\Delta F^{\circ}/T$ values, and noting the constancy of the values of ΔH_{0}° . The consistency is unusually good, as may be seen in the following table (D. P. Stevenson, unpublished calculations). The free-energy equation given by Lewis and Randall [Thermodynamics]

$$SO_2(g) + \frac{1}{2}O_2(g) = SO_3(g)$$

 $\Delta F^{\circ} = -22,600 + 21.36T$

agrees closely with the more recent values given in the table. Below 400°C sulfur trioxide is seen to be only slightly decomposed, but above 900°C the decomposition is extensive.

 $\label{eq:table 86} \text{Table 86}$ ΔF° and ΔH°_{0} for the reaction $SO_{2}+\frac{1}{2}O_{2}=SO_{3}$

Ref.	T (°K)	log. Katm	$\frac{\Delta F^{\circ}}{T}$ (cal/mole)	−ΔH° (kcal/mole)
B & P	801	3.442	-6.84	22.85
	852	2.625	-5 21	22 95
	900	1.880	-3.73	22 95
	953	1.173	$-2 \ 33$	22.95
	1000	0.616	-1.22	23.02
	1062	-0.046	0 09	23.05
	1105	-0.465	0.93	23.10
	1170	-1.028	2 04	23.20
				Ave. $23 \ 01 + 0.0$
T & L	933	1.451	-2.88	23.00
	936	1.386	-2.75	22.95
	943	1.274	-253	22 92
	945	1.249	-2.48	22 93
	945	1.274	-253	22.97
				Ave. 22.95 ± 0 0
K & S	850	2.567	-5 10	22.80
	852	2.502	-4.96	22 75
	876	2.311	-459	23 05
	876	2.240	-4.45	22.95
	902	1 882	-3.74	23 00
	919	1.528	-3.03	22 80
	941	1.378	-272	23.05
	954	1 212	-241	23 05
	965	0 981	-1.95	22.90
	1001	0.625	-1 24	23.06
	1001	0 643	-1 28	23 10
				Ave. 22.96 ± 0.1

ΔΗ	$\Delta H_0 = -22,970 \text{ cal/mole}$						
t (°C)	ΔF° (cal/mole)	Katm					
25 526.9 926.9	-16,960 $-5,630$ $+3,290$	$\begin{array}{c} 2.57 \times 10^{12} \\ 3.45 \times 10 \\ 2.50 \times 10^{-1} \end{array}$					

The problems attending the formation of SO₂ from SO₂ and O₂ are of historical interest in that progress in its manufacture followed closely

the advances in chemical thermodynamics. Furthermore, sulfur trioxide is necessary in the convenient preparation of strong sulfuric acid (oleum), and this substance made possible many rapid and remarkable developments in synthetic organic chemistry; advances in theories of molecular structure were greatly influenced by the variety of organic compounds that chemists found it possible to prepare. Perhaps no other substances have influenced pure science and industry as much as have sulfur trioxide and sulfuric acid.

Sulfur trioxide can be prepared by heating anhydrous ferric sulfate, $\text{Fe}_2(\text{SO}_4)_3$, to some 600–700°, and this process was at one time its principal source. The following table shows the total equilibrium pressure, p, in millimeters of SO_3 , SO_2 , and O_2 above $\text{Fe}_2(\text{SO}_4)_3$ - Fe_2O_3 at a few temperatures; the fraction of the total pressure due to SO_3 is a function of the temperature and may be calculated from the free-energy equation given above. The dry distillation of other sulfates has been suggested

Table 87 DISSOCIATION PRESSURES OF Fe₂(SO₄)₃ Fe₂(SO₄)₃(s) = Fe₂O₃(s) + $3SO_4(g)$; SO₃(g) = SO₂(g) + $\frac{1}{2}O_2(g)$

Temperature (°C)	p (mm)	Temperature (°C)	p (mm)
550 600 650	6 26 107	700 721	445 750

 $p = p_{SO_3} + p_{SO_2} + p_{O_2}$

for the same purpose, but, with the exception of sodium pyrosulfate and a few others of little practical importance, the decomposition temperatures are so high that SO₂ and O₂ rather than SO₃ results. When convenient to do so, SO₃ may be prepared readily and pure by allowing SO₂ and ozone, O₃, to come together at room temperature. Still another reaction that produces SO₃ is that between NO and SO₂ at high pressures, 500 atm, of NO and at room temperatures. The rate is said to be conveniently rapid [Briner and Wroczynski, J. chim. phys., 9, 105 (1911)]. The reaction is

$$NO + SO_2 = SO_3 + \frac{1}{2}N_2$$

Nitrogen dioxide in the absence of moisture does not react readily with sulfur dioxide at room temperatures; and even when heated, the reaction yields, in addition to sulfur trioxide, other sulfur-containing compounds. In a moist atmosphere, nitrosyl bisulfate, NOHSO₄, and sulfuric acid are formed from mixtures of the dioxides of sulfur and nitrogen, and the reaction is the basis for the well-known lead-chamber process for the manufacture of sulfuric acid.

All attempts to prepare selenium trioxide from mixtures of H₂SeO₄ and P₂O₅ have met with failure. Efforts by Worsley and Baker [J. Chem. Soc., 123, 2870 (1923)] to make it by the action of ozone on selenium dissolved in SeOCl₂ appear at first sight to have been successful, but this method failed in the hands of others [Meyer and Pawletta, Ber., 60, 985 (1927); Hoffman and Lehner, J. Am. Chem. Soc., 51, 3177 (1929); Smith and Mehltretter, J. Am. Chem. Soc., 53, 3562 (1931)]. A successful method for its preparation in an impure form consists of oxidation of elementary selenium by oxygen in a glow discharge excited by some 20,000 volts. The selenium is fused on a glass rod and placed between the electrodes, and oxygen at 1-5 mm is passed through the discharge tube. A white, solid mixture of SeO2 and SeO3 collects on the walls of the tube and on the aluminum electrodes. The percentage of SeO₃ in the mixture depends on the oxygen pressure, on the location of the deposit, and doubtless on geometrical factors. Some mixtures contain as low as 7.5% and others as high as 57% of selenium trioxide [Kramer and Meloche, J. Am. Chem. Soc., 56, 1081 (1934)].

Tellurium trioxide results from heating telluric acid strongly enough to drive off the water, the final temperature required being 300° to 360°. The trioxide so prepared is an orange-yellow solid that does not dissolve in water, dilute acids, or dilute alkali. When it is boiled with concentrated hydrochloric acid, chlorine is set free. Hot, concentrated alkalis dissolve TeO₃ to form tellurates.

At least two other oxides of sulfur exist, namely, S₂O₃ and SO₄ (and S_2O_7 [Maisin, Bull. soc. chim. Belg., 37, 326 (1928)]). The sesquioxide is formed in an energetic fashion when well-dried, powdered sulfur is added to liquid sulfur trioxide at about 15° (2-3 g S, 20 cc SO₃). The mixture forms two layers; the lower layer is a blue to blue-green solid and the upper layer is clear or has only a trace of blue color. The upper liquid layer of SO₃ can be poured off or vaporized, leaving the blue S₂O₃ in a moderately pure state. On standing at 15°, the blue sesquioxide slowly decomposes into SO₃, SO₂, and sulfur, the rate of decomposition being greater at higher temperatures; the blue color changes, as the decomposition proceeds, to green and then to brown. Sulfur sesquioxide is insoluble in SO₃, but it dissolves with a blue color if the trioxide contains some H₂SO₄ [Vogel and Partington, J. Chem. Soc., 127, 1514 (1925); Wöhler and Wegwitz, Z. anorg. Chem., 213, 129 (1933)]. A violent reaction takes place between the sesquioxide and water with the formation of H₂SO₄, H₂SO₃, polythionic acids, and sulfur.

Sulfur tetroxide, SO₄, is formed when a silent electrical discharge (6500-8000 volts) is passed through a mixture of SO₂ and O₂. The gas mixture at a total pressure of about 0.5 mm is passed through the discharge region, and the solid (white) oxide deposits on the sides of the discharge tube. Dry oxygen and sulfur dioxide are essential to prevent

subsequent decomposition. The white solid varies in composition from $SO_3 \cdot SO_4$ through $SO_3 \cdot 2SO_4$ to SO_4 , the pure tetroxide being the limiting substance obtainable. The SO_3 — SO_4 mixture is decomposed by heat $(SO_3 + O_2)$, and dissolves slowly in water. The pure or nearly pure tetroxide melts with decomposition at about 3°. It dissolves in concentrated sulfuric acid without immediate decomposition, and in this solvent the molecular weight corresponds to SO_4 . In dilute sulfuric acid the substance decomposes slowly with the evolution of oxygen, and the fresh solutions react slowly with I⁻ to liberate iodine. Strangely enough, the aqueous solutions give no reactions indicating the presence of peroxyacids; no orange-yellow color is observed with TiO^{++} under conditions favorable for the formation of hydrogen peroxide from a peroxysulfuric acid. Further studies of the properties of SO_4 are to be desired [Meyer, Baileul, and Henkel, Ber., 55, 2923 (1922); Schwarz and Achenbach, Z. anorg. Chem., 219, 271 (1934)].

Physical properties of the oxides of S, Se, and Te

The physical properties of sulfur monoxide, SO, have already been given in the section on its preparation.

Sulfur dioxide is a substance of such importance that its properties have been investigated rather extensively. It is a colorless gas at room temperatures and pressures, but with continuous ultraviolet radiation discontinuous absorption bands are observed [Watson and Parker, Phys. Rev., 37, 1013 (1931); Price and Simpson, Proc. Roy. Soc., 165, 272 (1938)]. The region of absorption extends from 3950 Å to far into the ultraviolet. Selenium dioxide is a beautiful white solid (monoclinic crystals) which sublimes on moderate heating to give a greenish-yellow vapor, the color being due to SeO₂ and not to any free selenium, as is demonstrated by the fact that the color does not change when oxygen is present [Yost and Hatcher, J. Am. Chem. Soc., 54, 151 (1932)].

Tellurium dioxide is a white solid which does not vaporize until the temperature reaches some 450°. The dioxides of sulfur and selenium are quite soluble in water, while that of tellurium is only sparingly so. Some of the physical constants of these oxides are shown in the following table [Giauque and Stephenson, J. Am. Chem. Soc., 60, 1389 (1938); Meyer and Jannek, Z. anorg. Chem., 83, 57 (1913)]. All thermodynamic quantities given refer to one mole of sulfur dioxide.

The stability of the sulfur-group dioxides is indicated by the large free energies or heats of formation; it requires temperatures above 2000° to bring about detectable decomposition of sulfur dioxide. The vapors of sulfur and selenium dioxide consist of SO₂ and SeO₂ molecules, and not polymers of these. The structures indicated for all three dioxides have in common the feature that the gaseous molecules are not linear and that

TABLE 88 THE PHYSICAL CONSTANTS OF SO₂, SeO₂, AND TeO₂

					01 0	· · · z,			, <u>, , , , , , , , , , , , , , , , , , </u>
	Melting Point (°C)	S	Hear Fus (ca	ion	Boilin Poin (°C)	ť	Heat of Vaporiza- tion (cal)	:	Density
SO ₂ SeO ₂	-75.46 340. (under own pres.)		170	59 -	-10.0 315. (sublim		5960 21,600 (subl.)		4 (l, 0°) (solid, 15°)
TeO ₂	Dull-red h	eat	_	-	_			5.67	(solid, 15°)
	Heat of Formation, (18°), (cal)	End For	Free ergy of mation (cal)	En (cal	indard itropy l/deg), S ² 288		Molecular Size and Shape	•	Fundamen- tal Fre- quencies (cm ⁻¹)
SO ₂	70,920	-6	69,660	59.4	0 (gas)	{S-	—0, 1.46 Å <0—8—0, 1	20°	$\begin{cases} 525 \\ 1152 \\ 1361 \end{cases}$
SeO ₂	56,360			62.5	(gas)	{So	e—O, 1.61 Å CO—Se—O,	120°	$ \begin{cases} (310) \\ 663 \\ 790 \end{cases} $
TeO ₂	77,580	-6	34, 32 0	17 4	(solid)				-

Vapor Pressures

$$SO_2(1) = SO_2(g)$$
 $log_{10} p_{em} = -\frac{1867.52}{T} - 0.015865T + 0.000015574T^2$
 $SeO_2(s) = SeO_2(g)$

t (°C)	$p_{ m mm}$	t (°C)	<i>p</i> _{mm}		
20	0	210	54.0		
70	12.5	260	112.7		
94	20.2	311	610.9		
124	25.5	315	760.		

Molal Heat Capacity of SO₂(l)

T (°K)	C _p (cal/deg)	T (°K)	C_p (cal/deg)
200 210 220 230	20.97 20.91 20.86 20.81	240 250 260	20.76 20.71 20.66

	Table	88	(Cont.)		
Heat	Capacity	and	Entropy	of	$SO_2(g)$

				- -	
T (°K)	C_p (cal/deg)	S_{298}° (cal/deg)	T (°K)	$C_{\mathfrak{p}}$ (cal/deg)	S ^o ₂₉₈ (cal/deg)
298 1 400. 500. 700.	9.51 10 35 11.08 12.11	59.40 62.32 64.72 68.62	1000 1500 1800	12.90 13.42 13.56	73.09 78.44 80.90

SO₂ ...
$$P = \frac{RT}{v - b} - \frac{a}{v^2}$$
 $a = 6.707 \times 10^6 \text{ atm cm}^6$ $b = 56.39 \text{ cm}^3$

the sulfur-oxygen bond is not single but semidouble. The so-called "resonance phenomenon" is believed to enter in such a way that in the two structures O—S=0 and O=S—O the double bond oscillates rapidly from one S—O bond to the other. On the average one would expect a bond, but it turns out that other factors enter (ionic and triple-bond effects) to modify this simple picture appreciably.

Of the other sulfur-group oxides, the physical properties of SO₃ are

the only ones readily determin-Tellurium trioxide is an involatile solid that decomposes into TeO2 and O2 on heating to a few hundred degrees. nium trioxide shows no decomposition at room temperatures, but whether or not it is thermodynamically stable with respect to SeO₂ and O₂ at these temperatures is not known. It dissolves readily in water to form H2SeO4, but tellurium trioxide will dissolve only when heated with concentrated alkali.

Fig. 63. The Molecular Structure of SO_3 . $S-O = 1.43\text{\AA}$.

Vapor-density experiments with sulfur trioxide show that monomeric molecules only are present in the gas phase. Electron-diffraction investigations show the molecules to be planar equilateral triangles with the sulfur atom at the center (Fig. 63) [Palmer, J. Am. Chem. Soc., 60, 2360 (1938)]. Liquid sulfur trioxide, on the other hand, consists of a mixture of SO_3 and S_3O_9 molecules and perhaps others. Equilibrium between the two or more molecular species is attained very slowly at room temperatures, if the trioxide has been carefully dried by passing the vapors repeatedly through P_2O_5 . A trace of moisture and high temperatures favor more rapid attainment of equilibrium. The Raman spectrum of

the liquid indicates that the monomer, SO₃, increases in concentration with increase in temperature [Bhagarantam, Ind. J. Phys., 5, 59 (1930)]. The complexity of the liquid with the attendant slow transformations of one molecular species into another finds more than its match when the solid forms are reached. Not only does one find different solid modifications, but each modification has properties that depend on its previous history.

The solid modifications fall into three classes: first, the α or icelike modification; second, the β or low-melting asbestos-like modification; and finally, the γ or high-melting asbestos-like form. It must not be supposed that the α , β , and γ forms have the simple properties usually associated with allotropic modifications. For example, the α form will, ordinarily, melt over a range of temperatures and not isothermally. The same is true of the γ form and doubtless of the β form as well, although in this case it has not been possible to study the phenomenon thoroughly with highly dried material.

If highly dried sulfur trioxide is vaporized at room temperatures and the vapors condensed at about -80° , the resulting solid consists of the α (If not highly dried, the condensed vapors consist of both the α and the β form, the latter constituting about three-fourths of the total material.) The vapor pressure of the highly dried α form increases with temperature until melting begins (about 11.5°) and then decreases until all of the material has melted, the latter point being around 17°, Curve I, Fig. 64. If the liquid is now kept at 18° for about 18 hours and then cooled to 0°, the resulting solid has, at the same temperatures, lower vapor pressures than those found in the first experiment. liquid is again kept at 18° for 40 hours, then cooled to 0° and the vapor pressures determined once more, Curve III is obtained, the vapor pressures being lower than those found in the second experiment. some of the liquid or solid is distilled off, the residue would show a vaporpressure curve such as IV, V, or VI. These curves were obtained by distilling off successive portions and determining the vapor pressure of the residue in each case.

These results for the α form may be explained by assuming that the liquid phase contains at least two molecular species (polymers) of the trioxide, say $(SO_3)_m$ and $(SO_3)_n$, and that the solid is a solid solution of these in still another species, $(SO_3)_{m+n}$. It must be assumed further that the reaction $n(SO_3)_m = m(SO_3)_n$ is slow but reversible and that one of the polymers is more volatile than the other. Also, in the solid phase the slow reversible reactions $(SO_3)_{m+n} = (SO_3)_m + (SO_3)_n$ and $n(SO_3)_m = m(SO_3)_n$ must be supposed possible. In the highly dried material the reactions are so slow that they can be regarded, for practical purposes, as not taking place at all, and those in the liquid phase would require weeks for equilibrium to be attained. If a catalyst is present, such as a trace

of moisture, equilibrium is attained much more rapidly and the limiting vapor-pressure curve is obtained. For this equilibrium, solid and liquid, the triple point is sharp and lies at 16.8°; that is to say, when the constituent molecular species in the solid, liquid, or solid-liquid mixture are in equilibrium with each other, then sulfur trioxide behaves like more

Fig. 64. Curves Showing the Vapor Pressure of Highly Dried Sulfur Trioxide and How It Varies with Aging and Partial Evaporation of the Sample. Between the measurements represented by the curves I and II, and II and III, the molten material was allowed to stand 18 and 40 hours, respectively. Between III and IV, IV and V, and V and VI, portions of the sample were distilled away. [Smits and Schoenmaker, J. Chem. Soc., 125, 2554 (1924).]

familiar substances (e.g., water and ice). When equilibrium conditions do not obtain, the liquid acts like a solution of two components, and the solid behaves like a solid solution [see G. N. Lewis, J. Am. Chem. Soc., 45, 2836 (1923), for the theory of such systems].

The β form is obtained only with difficulty from highly dried sulfur trioxide. When ordinary sulfur trioxide is distilled and the receiver

cooled so that the solid collects, both the α form and the β form result. The more volatile α form may be distilled off from the mixture, and the less volatile residue that remains consists of the β form. Since this material is not highly dried, equilibrium between the various molecular species is attained with little difficulty. The equilibrium β form melts at 32.5°. The fact that the vapor pressures of the equilibrium β form are lower than those of the α form shows that the former is the more stable at room temperatures, and this is in accord with the fact that, at room temperatures, the liquid trioxide containing a trace of moisture eventually solidifies with the formation of the β form. The additional fact that some α form is found along with the β form indicates, possibly, that the water catalyst goes into the solid β form until the liquid is too dry to come to equilibrium rapidly.

The γ form is prepared by allowing sulfur trioxide vapors to condense at liquid-air temperatures. The vapor pressure of the solid is much lower than that of the α or β form at the same temperature. γ form is not simple is shown by the fact that at 50° the vapor pressure becomes constant only after ten months, during which time the pressure rises from 15 cm and approaches 65 cm asymptotically. When melting begins, equilibrium is attained much more rapidly in the liquid phase than Indeed, if the solid is warmed up at a moderate rate to about 95°, the vapor pressure can change, when melting begins, from three to nine atmospheres in a short interval of time. Such an experiment is accordingly accompanied by some danger. When heated up under equilibrium conditions, the melting point of the γ form of sulfur trioxide is 62.2°. The careful investigation of carefully dried sulfur trioxide is due to Smits and Shoenmaker [J. Chem. Soc., 129, 1108 (1926) et ante]. Further experiments on the ordinary liquid were made by Grau and Roth [Z. anorg. Chem., 188, 173 (1930)].

The nature of the molecular species present in liquid and solid sulfur trioxide has not been fully investigated; the Raman spectrum of the liquid indicates that at higher temperatures, $\sim 100^{\circ}$, SO₃ is the predominant substance and at lower temperatures, $\sim 20^{\circ}$, S₃O₉ is present at appreciable concentration [Gerding, Nijveld, and Muller, Z. phys. chem., B 35, 193 (1937)].

The physical properties of sulfur trioxide are shown in Table 89. The vapor pressures presented refer to the limiting or equilibrium states. For non-equilibrium states, Fig. 64 may be consulted.

The structure of the SO₃ molecule in the gaseous state is, as remarked above, simple, the oxygen atoms being at the corners and the sulfur atom at the center of an equilateral triangle. On the basis of the octet theory of valency, the S—O bonds would be three in number, each consisting of a single electron pair. It turns out, however, that the bonds have some ionic character: and as a result of this and other effects not

TABLE 89
THE PHYSICAL PROPERTIES OF SULFUR TRIOXIDE
Vapor Pressures (Equilibrium)

Soli	d, α	Liqu	ıid, α
t (°C)	$p_{ m mm}$	t (°C)	$p_{ m mm}$
0 15	45.5	17.6	166 4
5.0	66 0	22.5	225.9
10.2	85.5	35.0	460.7
		40.5	603.9
		45.0	777.2
	1	74.0	2964.0

Heat of sublimation (16.8°), 11,900 cal. Heat of evaporation (16.8°), 10,000 cal. Heat of fusion (16.8°), 1800 cal.

Solid, $oldsymbol{eta}$		Liqu	ıid, β
t (°C)	$p_{ m mm}$	t (°C)	$p_{ m mm}$
0 2 5 1 10 1	33.0 49.2 72.3	20.3 30.3 35.0 45.0 74.0	162.8 334 1 460.7 777.2 2964 0

Heat of sublimation (32.5°) , 13,000 cal. Heat of evaporation (32.5°) , 10,100 cal. Heat of fusion (32.5°) , 2900 cal.

$\operatorname{Solid}, \gamma$		Liqu	ıid, γ
t (°C)	$p_{ m mm}$	t (°C)	$p_{ m mm}$
30 40 50	120 290 650	65.4 74.0 80.9 90.2	2441.0 2964 0 3985.5 5794 0

Heat of sublimation (62 2°), 16,300 cal. Heat of evaporation (62.2°), 10,100 cal. Heat of fusion (62.2°), 6200 cal.

TABLE	89 (Cont.)
Liquid (Equil.) (Roth)

t (°C)	$p_{ m mm}$	t (°C)	$p_{ m mm}$
15.00 20.00 25.00 30.00	153.0 208.5 272.0 355.0	35.00 40.00 44.5	466.5 605.5 770.0

Heat of vaporization, 10,160 cal. Heat of vaporization (Exp.), 10,000 cal.

Density	Surface Tension (l) (dynes/cm)	Dielectric Constant (1)	Heat of Formation (cal)	Free Energy of Formation, ΔF_{298}° (cal)	Standard Entropy, S ^o ₂₉₈ (cal/deg)
1.904	34.17 (19°)	3.64(19°)	93,900(g) 106,000(α) 105,200(β)	-85,890(g)	61.19(g)

Fundamental frequencies (cm $^{-1}$), 1068, 1330, 530, 560(2); 560(2) doubly degenerate.

Structure S—0, 1.43 Å. O—S—0 angle = 120° .

well understood, the S—O distance is smaller than would be predicted for a single bond [Palmer, loc. cit.].

Chemical properties

Sulfur dioxide acts as an excellent reducing agent and its applications often depend on this fact. Most of the reducing reactions of interest take place in aqueous solution. Its gaseous or gas-solid reactions are typified by those with the halogens, $SO_2 + X_2 = SO_2X_2$. But it may also act as an oxidizing agent, as in the reactions

$$\begin{array}{l} 2{\rm SO_2(g)} + 4{\rm H_2(g)} = {\rm S_2(g)} + 4{\rm H_2O(g)} \\ 2{\rm SO_2(g)} + 4{\rm CO(g)} = {\rm S_2(g)} + 4{\rm CO_2(g)} \end{array}$$

which take place at 1000° or higher. Sulfur dioxide at low temperatures readily forms solid complex salts with solid iodides or thiocyanates. With potassium iodide the red compounds KI(SO₂)₂ and KI(SO₂)₄ are known, while with thiocyanates bright-yellow complexes containing $\frac{1}{2}$ SO₂ or one SO₂ per thiocyanate ion have been prepared [Ephraim and Kornblum, Ber., 49, 2007 (1916)]. Sulfur dioxide is more soluble in alcohol, camphor, formic acid, acetone, and concentrated sulfuric acid

than in water, the approximate volumes absorbed at 25° being, respectively, 84.2, 300, 351, 589, 6, and 30 at atmospheric pressure. Elementary sulfur will not dissolve in liquid SO₂.

Selenium dioxide, in contrast to sulfur dioxide, is a good oxidizing agent. The solid exposed to air eventually becomes pink to red in color as the result of its reduction to elementary selenium by organic dust particles. As a reducing agent it is not strong, and only fluorine is able to oxidize it to ScO₂X₂. Substances such as concentrated H₂O₂, molten Na₂O₂, and KMnO₄ are able to oxidize the dioxide to selenates. When the dry dioxide is left exposed to the atmosphere, it absorbs water to form the white crystalline acid H₂SeO₃. The dioxide dissolves readily in water to form solutions of selenious acid. H₂SeO₃.

Tellurium dioxide is comparatively unreactive. It may be reduced to elementary tellurium by hydrogen at elevated temperatures. When heated with strong (30%) H₂O₂ and sulfuric acid, it is converted to telluric acid.

Sulfur trioxide is very reactive indeed. It reacts with organic matter to form sulfonic acid derivatives or to form carbon and sulfur dioxide; intermediate stages of oxidation of organic substances are common. Sulfur trioxide reacts with some solid halides to liberate the free halogen, this being especially the case with iodides. In the liquid form it combines directly with NO₂ to form oxynitrososulfuric anhydride, (NO₂SO₃)₂, a white solid which on heating gives up oxygen to form (NO)₂S₂O₇. The reactivities of the α and β forms of solid sulfur trioxide are not the same. Thus, with PCl₅ the α form reacts to give SO₂, Cl₂, POCl₃, and S₂O₅Cl₂, but the β form yields POCl₃ and S₂O₅Cl₂ alone. Carbon tetrachloride reacts rapidly with the α and slowly with the β form, the reaction being

$$2SO_3 + CCl_4 = S_2O_5Cl_2 + COCl_2$$

Sulfur trioxide reacts energetically with basic oxides to form sulfates. With water the reaction is so vigorous that solution is accompanied by a hissing noise and a large evolution of heat. It combines with water in all proportions to form a series of hydrates of sulfuric acid and solutions of the latter in water.

The reactivity of selenium trioxide has not been much investigated. It is hygroscopic and dissolves readily in water to form selenic acid. The orange-yellow tellurium trioxide is slow to react with water and is dissolved only by boiling with strong alkalis. It decomposes into TeO_2 and O_2 when heated to a few hundred degrees.

The Oxyacids of Sulfur, Selenium, and Tellurium

When the oxides of the sulfur-group elements dissolve in water, acids are formed, that is, substances that ionize to give hydrogen ion H⁺ or

H₂TeO₄

proportions,

hydronium ion H_3O^+ . Some of the oxides are known as acid anhydrides, these being substances which react with water reversibly as follows:

Anhydride + Water = Acid

Other oxides, S₂O₃, for example, do not appear to be acid anhydrides, since the products of their reaction with water are not simply acids, but nonacidic substances as well. Conversely all oxyacids are not formed from anhydrides and water; indeed, the anhydride may not exist. Thus there are no known anhydrides of dithionic, thiosulfuric, and the polythionic acids.

The sulfur-group oxides that are definitely acid anhydrides are SO₂, SO₃, SeO₂, SeO₃, TeO₂, and TeO₃, and they form, respectively, the acids:

This list does not by any means contain all of the known oxyacids of sulfur, selenium, and tellurium. Moreover, there are salts for which the corresponding acid does not exist; thus normal tellurates, for example, K₂TeO₄, are known, but it is doubtful if other than the free orthotelluric acid, H₅TeO₆, exists, although the so-called allotelluric acid may be (H₂TeO₄)_a. The following list contains all of the definitely established oxyacids of S, Se, and Te. In the cases where the free acid is not known but only the salts of it, the fact is indicated by giving the formula of a known salt of the acid in parentheses. In each case a method of preparation of the acid or a salt of it is stated after the name of the acid.

THE OXYACIDS OF S, Se, AND Te

```
S
        H<sub>2</sub>SO<sub>2</sub>
                            (ZnSO<sub>2</sub>) Sulfoxylic. SO<sub>2</sub>Cl<sub>2</sub> + Zn in ether solution.
        H2S2O4
                            Hyposulfurous. NaHSO<sub>1</sub> (aq) + Zn.
        H<sub>2</sub>SO<sub>3</sub>
                            Sulfurous. SO<sub>2</sub> + water.
                            (K<sub>2</sub>S<sub>2</sub>O<sub>5</sub>) Pyrosulfurous
                                                                      From soln. KHSO<sub>3</sub> + SO<sub>2</sub>.
        H2S2Os
        H<sub>2</sub>S<sub>2</sub>O<sub>6</sub>
                            Dithionic. SO<sub>2</sub> + aq. suspension MnO<sub>2</sub>.
                           Sulfuric. SO_3 + water.
Pyrosulfuric. SO_4 + H<sub>2</sub>SO<sub>4</sub> (100 %). Salts, e.g., Na<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, formed by
        H<sub>2</sub>SO<sub>4</sub>
        H2S2O7
                           strongly heating NaHSO4.
        H2S2O3
                           (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) Thiosulfuric. Na<sub>2</sub>SO<sub>3</sub> + S.
        H<sub>2</sub>SO<sub>5</sub>
                           Peroxymonosulfuric. 30 % H<sub>2</sub>O<sub>2</sub> + conc. H<sub>2</sub>SO<sub>4</sub>
        H_2S_2O_8
                            Peroxydisulfuric. Electrolysis of KHSO<sub>4</sub> solns.
        H<sub>2</sub>S<sub>n</sub>O<sub>6</sub>
                           Polythionic, n = 3, 4, 5, 6. In Wackenroder's soln., SO<sub>2</sub> + H<sub>2</sub>S
                            + water.
Se
        H<sub>2</sub>SeO<sub>3</sub>
                           Selenious. SeO<sub>2</sub> + water.
                           Selenic. H_2SeO_3 + Cl_2; Ag_2SeO_3 + Br_2 + H_2O.
        H<sub>2</sub>SeO<sub>4</sub>
Te
        H<sub>2</sub>TeO<sub>3</sub>
                           Tellurous. TeO2 only slightly soluble in water. Acid is very weak.
                           Orthotelluric. Reflux TeO2, conc. H2SO4 and 30 % H2O2.
        H<sub>6</sub>TeO<sub>6</sub>
                           Purify HoTeOs by crystallization.
        H<sub>x</sub>Te<sub>y</sub>O<sub>s</sub>
                           Polytelluric. Salts, e.g., K<sub>2</sub>Te<sub>4</sub>O<sub>13</sub>, by heating K<sub>2</sub>H<sub>4</sub>TeO<sub>6</sub>.
```

(?) Allotelluric. Melt H₆TeO₆. Sirupy and soluble in water in all

Sulfurous, selenious, and tellurous acids

The oxyacids for which acid anhydrides are well known are more commonly encountered and are of greater practical importance than the others, although not necessarily more interesting. It is convenient to discuss this group of acids first, if for no other reason than that their properties have been investigated more thoroughly.

Sulfur dioxide dissolves readily in water to form solutions of H_2SO_3 . When the partial pressure of the gas above the solution is 760 mm, the concentration is 1.34 m at 25°; at 0° the saturated solution is 3.55 m and at 40° 0.84 m. The acid is weak and the second hydrogen ionizes less freely than the first. As a result of this fact, both normal and acid salts may be prepared. The two ionization constants are as follows [Sherrill and Noyes, J. Am. Chem. Soc., 48, 1861 (1926); Kolthoff, Chem. Weekblad, 16, 1154 (1919); Tartar and Garretson, J. Am. Chem. Soc., 63, 808 (1941)]:

$$H_2SO_3 = H^+ + HSO_3^ (H_2SO_3^-) = 0.0172 \text{ at } 25^{\circ}$$

 $HSO_3^- = H^+ + SO_3^ (H_2SO_3^-) = 6.24 \times 10^{-8} \text{ at } 25^{\circ}$

The free acid H₂SO₃ has not been prepared; when a concentrated solution of sulfurous acid is cooled strongly, crystals of the hydrate SO₂·7H₂O separate out.

The alkali metal sulfites and acid sulfites are, with the exception of NaHSO₃, moderately soluble in water. The solubility of sodium sulfite increases with temperature up to 33°, after which it decreases. Because of the weakly acid character of sulfurous acid, the salts are hydrolyzed in solution; an alkali sulfite solution is basic, an acid sulfite (bisulfite) solution is slightly acid. Accordingly one would predict, and experiment shows, that when an acid sulfite solution is boiled, sulfur dioxide comes off until the solution contains mostly SO₃. Nice crystals of alkali sulfites may be obtained by warming bisulfite solutions. The alkaline earth sulfites are only slightly soluble, but they dissolve readily on the addition of a strong or moderately strong acid and even in sulfurous acid itself. This effect is due to the formation of the soluble weak acid H₂SO₃.

$$MgSO_3 + 2H^+ + SO_4^- = H_2SO_3 + Mg^{++} + SO_4^{-}$$

The solid, alkaline earth bisulfites have never been prepared; they undoubtedly exist in solution, since the solubilities of the sulfites are greatly increased by dissolving SO₂ in their saturated solutions. In solution the sulfites of trivalent chromium, aluminum, indium, gallium, and other weakly basic substances are strongly hydrolyzed, and as a

consequence only basic sulfites are obtained on the evaporation of the solutions.

$$Al^{+++} + SO_3^- + H_2O = AlO^+ + HSO_3^- + H^+$$

Sulfites form complexes (coordination compounds) or weak electrolytes with many of the heavy metal salts. Thus when H₂SO₃ is added to a dilute sulfuric acid solution of Fe⁺⁺⁺, the almost colorless solution becomes red in color owing to the formation of a complex ion or weak salt; with time the intensity of the color decreases as a result of the reduction of the ferric to ferrous iron. With gold the salts M₃Au(SO₃)₂ and M₅Au(SO₃)₄ are known, each sulfite radical occupying one coordination position. The same coordination number is shown in the compound Na₅Fe(CN)₅SO₃, which is derived from Na₄Fe(CN)₆ by replacing a cyanide by a sulfite radical. On the other hand, in some platinum compounds, for example, K₃PtCl₃SO₃, K₄PtCl₂(SO₃)₂, and K₃PtCl(SO₃)₂, the sulfite radical occupies sometimes one and sometimes two coordination positions, since bivalent platinum has, in general, a coordination number of four.

Sulfurous acid and its salts act as excellent and cheap reducing agents. Oxygen itself oxidizes them slowly, and as a consequence solutions of the acid or its salts always contain sulfates unless care is exercised to exclude air. In the presence of some reducing agents, for example, Fe⁺⁺ and AsO₃, sulfites are much more rapidly oxidized by oxygen than in the absence of these substances. If a mixture of air and sulfur dioxide is bubbled into a dilute solution of 0.05 m ferrous or ferric sulfate or chloride, sulfuric acid is formed, and in the course of a few hours concentrations of the acid exceeding one molal may be attained. The mechanisms of these reactions are not well understood. Since two reducing agents are essential, it must be that oxygen combines with both simultaneously to form a reactive intermediate. In mixtures of sulfite and arsenite, both are simultaneously oxidized by oxygen and the mixture is oxidized much more rapidly than either component when present alone.

$$\begin{vmatrix}
AsO_3^{=} \\
SO_3^{-}
\end{vmatrix} + O_2 =
\begin{vmatrix}
AsO_3O^{=} \\
SO_3O^{-}
\end{vmatrix} = AsO_4^{-} + SO_4^{-}$$

Whether these intermediates are peroxyacids or not is not known, but it would be worth while to settle the question one way or the other.

There are other substances that *inhibit* the oxidation of sulfites by oxygen; for example, small concentrations of phenol, glycerine, mannitol, benzaldehyde, and especially stannous chloride will greatly decrease the rate of conversion to sulfate.

The halogens oxidize sulfurous acid or sulfite solutions quantitatively and rapidly to sulfate. The reactions are not so simple in the case of the oxidizing agents Fe^{+++} , RuO_4 , MnO_2 , $KMnO_4$, and doubtless many others; along with sulfate, dithionate is also formed with these agents. Since the relative amount of dithionate formed is dependent on concentrations and temperature, it is not possible to use some oxidizing agents, for example, $KMnO_4$ and H_2O_2 , for the quantitative estimation of sulfites. In the case of MnO_2 the equation for the reaction is MnO_2 (aq. susp.) $+ 2H_2SO_3 = S_2O_6^- + Mn^{++} + 2H_2O$, although it must be understood that sulfate is also formed at the same time by the reaction

$$MnO_2 + H_2SO_3 = Mn^{++} + SO_4 + H_2O$$

A striking lecture experiment involving the oxidation of sulfites, and one that delights even the old hands at chemistry, is that offered by the Landolt reaction. In acid solution sulfites are oxidized by iodates, the products of the reaction being iodide and sulfate.

$$3H_2SO_3 + IO_3^- = 3SO_4^- + I^- + 3II_2O$$

Iodate also reacts fairly rapidly with iodide in acid solution to form iodine,

$$1O_3^- + 5I^- + 6H^+ = 3I_2 + 3H_2O$$

but the liberated iodine reacts at a very rapid rate with sulfite.

$$II_2SO_3 + I_2 + H_2O = SO_4^- + 2I^- + 4H^+$$

This last reaction is so rapid that no color of iodine is observed until all of the sulfite has been oxidized. At that point, especially if a little starch has been added, the solution suddenly becomes blue. Since the time necessary for the blue color to appear is a function of temperature and concentrations, the reaction may be used as a clock. Landolt found that the time in seconds from the time of mixing to the time of appearance of color can be represented empirically by the following formula [Landolt, Ber., 20, 745 (1887)],

$$T_{\text{acc}} = \frac{906.05 - 23.01t + 0.1888t^2}{C_{\text{-}}^{0.904}C_{\text{-}}^{1.642}}$$

where C_n and C_1 are the concentrations of H_2SO_3 and HIO_3 expressed in moles per cubic meter of solution, and t is the temperature in degrees centigrade.

Sulfurous acid may also act as an oxidizing agent. Thus in Wackenroder's solution H₂S is oxidized to elementary sulfur by H₂SO₃; in addition to this reaction there are a number of side reactions leading to the formation of thiosulfate and polythionates. In acid solutions iodides are oxidized slowly to iodine,

$$4I^{-} + H_{2}SO_{3} + 4H^{+} = 2I_{2} + S + 3H_{2}O$$

but since aqueous iodine and sulfurous acid react rapidly to form sulfate

and iodide ions, the net effect is the catalytic decomposition of sulfurous acid.

$$3H_2SO_3 = 4H^+ + 2SO_4^- + S + H_2O$$

The sulfur does not precipitate immediately but remains in solution as either a yellow colloidal sulfur or as a complex ion formed with the iodide or sulfite or both. Sulfurous acid is also reduced by zinc. When a solution of H_2SO_3 is poured through a Jones reductor (a glass tube provided with a stopcock at the lower end and filled with granulated zinc), the resulting unstable solution has an intense yellow color and acts as a very strong reducing agent. The yellow solution contains, among other substances, hyposulfurous acid, $H_2S_2O_4$.

The ability of sulfurous acid to act as a reducing agent and to fill coordination positions in inorganic and organic compounds is doubtless a factor in its action as an agent for killing bacteria and yeasts. Sulfur dioxide, from burning sulfur, is sometimes used as a fumigant. In the manufacture of wine, the addition of a small amount of SO₂ to the must serves to kill bacteria, molds, and wild yeasts without materially retarding the multiplication of yeasts that are effective in the alcoholic fermentation. From 75 to 270 grams of SO₂ per thousand liters of must is the quantity usually used [Joslyn and Cruess, Circular 88, Cal. Agr. Ext. Serv., 1934]. The effect of sulfurous acid or sulfur dioxide on the lungs appears to be one such that resistance to bad colds is decreased; those susceptible to colds should avoid breathing the gas.

Selenium dioxide absorbs water to form the solid, white, selenious acid, H₂SeO₃. The reaction is readily reversible at ordinary temperatures, as the following dissociation pressures show.

TABLE 90 THE DISSOCIATION PRESSURES OF H_2SeO_3 $H_2SeO_3(s) = SeO_2(s) + H_2O(g)$

Temp (°C)	Press. of H ₂ O(g) (mm)	Temp. (°C)	Press. of H ₂ O(g) (mm)
20	0 8	50	10.5
30	2 0	60	21 2
40	4.6	70	44 6

These results explain why solid selenious acid loses water on hot, dry days.

Selenious acid, H₂SeO₃, is remarkably soluble in water. The follow ing table contains the molal concentrations of H₂SeO₃ in saturated solutions in equilibrium with H₂SeO₃(s) [Ishikawa and Abe, *Sci. Papers Inst Phys. Chem. Res. Japan*, 34, 775 (1938)]. Above 70° the solid phase changes to SeO₂(s).

	SOLUBILITY OF N2SeO3(8) IN WATER					
Temp. (°C)	Conc. Moles H ₂ SeO ₃ per 1000 g H ₂ O	Temp. (°C)	Conc. Moles H ₂ SeO ₃ per 1000 g H ₂ O			
20 30 40	(20) 33.5 44.5	50 60 70	53.7 89.1 176.3			

TABLE 91 SOLUBILITY OF H₂SeO₃(s) IN WATER

Selenious acid is weaker than sulfurous acid [Blane, J. chim. phys., 18, 28 (1920); Hagisawa, Bull. Inst. Phys. Chem. Res. (Tokyo), 18, 648 (1939)], but much stronger than the more common acetic, benzoic, and carbonic acids.

$$H_2SeO_3 = H^+ + HSeO_3^ \frac{(H^+)(HSeO_3^-)}{(H_2SeO_3)} = 2.4 \times 10^{-3} \text{ at } 25^{\circ}$$
 $HSeO_3^- = H^+ + SeO_3^ \frac{(H^+)(SeO_3^-)}{(HSeO_3^-)} = 4.8 \times 10^{-9} \text{ at } 25^{\circ}$

Both the normal and the acid salts can be prepared readily. The alkali metal sclenites and acid sclenites are moderately soluble. Of interest is the rather insoluble silver sclenite, Ag₂SeO₃, which forms when a soluble silver salt is added to a sclenite solution. It is soluble in strong acids and is somewhat soluble in sclenious acid itself; when treated with bromine or chlorine water, it is converted into H₂SeO₄ and insoluble AgBr or AgCl.

Selenious acid is an oxidizing agent but not a very strong one. It oxidizes iodide ion to iodine, but has no effects on bromide or chloride ion. The reaction with iodide ion is reversible [Schott, Swift, and Yost, J. Am. Chem. Soc., 50, 721 (1928)].

$${
m H_2SeO_3 + 4H^+ + 4I^- = Se(s) + 2I_2(s) + 3H_2O}$$

 $K = {1 \over {({
m H^+})^4({
m I}^-)^4({
m H_2SeO_3})}} \qquad {1 \over K} = 1.46 \times 10^{-14} {
m ~at ~ 25^o}$

In this equilibrium expression, (H⁺) and (I⁻) represent the activities of these ions and not simply their concentrations. It is evident from the value of K that when, for example, (H⁺) = (I⁻) = 0.1, the concentration of H₂SeO₃ is very small indeed. Accordingly, in acid iodide solutions, the reaction may be made the basis for the volumetric estimation of selenious acid or selenium. There is no compound formed when iodine and selenium are mixed alone or in the presence of aqueous solutions at room temperatures; but there is evidence for compound formation, Se₂I₂,

in carbon tetrachloride solution when this solvent is shaken with a mixture of selenium and iodine.

Selenious acid solutions are readily reduced to elementary selenium when treated with sulfurous acid. The precipitated selenium is red in color. On heating, the filtered precipitate becomes black in color and shows an inclination to exist in a viscous liquid state until freed from contaminating substances. There is an indication that the precipitate contains sulfuric or sulfurous acid. This is driven off by heat. The latter phenomenon is more noticeable with concentrated solutions than with dilute ones. The precipitation of selenium from dilute solutions of H₂SeO₃ with H₂SO₃ forms the basis of an analytical procedure in which the selenium is weighed as such.

In dilute hydrochloric acid solution, selenious acid shows no tendency to form chlorides. Concentrated hydrochloric acid solutions of it contain appreciable concentrations of the tetrachloride or oxychloride. When such solutions are boiled, the selenium-chlorine compound volatilizes and the whole of it may be distilled out. When strong hydrochloric acid solutions of selenious acid are shaken with elementary selenium, a red liquid settles out until equilibrium is established; the red liquid is, presumably, Se₂Cl₂.

Since tellurium dioxide is only sparingly soluble in water, only the solid H₂TeO₃ or very dilute solutions can be prepared. Alkali tellurites are known, and solutions of them are easily prepared by dissolving the dioxide in an alkali such as sodium or potassium hydroxide. Tellurium dioxide dissolves in strong acids to form the positive ion TeOOH⁺ [Schuhmann, J. Am. Chem. Soc., 47, 356 (1925)]. The acidic and basic ionization constants at 25° are [see also Blanc, J. chim. phys., 18, 28 (1920)],

$$H_2 TeO_3 = H^+ + H TeO_3^ K_1 = 2 \times 10^{-3}$$

 $H TeO_3^- = H^+ + TeO_3^ K_2 = 10^{-8}$
 $H_2 TeO_3 = TeOOH^+ + OH^ K = 10^{-11}$
 $TeO_2 + H^+ = TeOOH^+$ $K = 8.9 \times 10^{-3}$

The oxidation potential of acid solutions of tellurium dioxide is, in accordance with the statement regarding the ion present, represented as follows [Schuhmann, loc. cit.],

$$Te(s) + 2H_2O = TeOOH^+ + 3H^+ + 4E^-, E_{298}^{\circ} = -0.559 \text{ volts}$$

Inasmuch as the common reducing agents H₂SO₃ and Sn⁺⁺ have appreciably higher oxidation potentials, they will reduce TeOOH⁺ to metallic tellurium. The halogens and Fe⁺⁺⁺, on the other hand, will oxidize elementary tellurium to TeOOH⁺ in the presence of strong acids.

Sulfuric, Selenic, and Telluric Acids

Preparation of sulfuric acid

There are two important processes by which sulfuric acid is prepared commercially. In the first and most important, the contact process, nearly dry, hot oxygen and sulfur dioxide are caused to combine in the presence of a vanadium pentoxide catalyst to form sulfur trioxide, as described in a previous section. The sulfur trioxide is dissolved in 98% sulfuric acid to obtain 99.5% acid, or the fuming acid known as "oleum." H₂SO₄·SO₃. The sulfur dioxide used is obtained either by burning brimstone or as a by-product from the roasting of sulfide ores (ZnS, PbS). After removing smoke particles of arsenic trioxide and other solids in a Cottrell electrical precipitator, the sulfur dioxide-air mixture (5 to 7% SO₂) is heated finally to some 600° in heat interchangers and is then caused to pass through a converter of parallel tubes containing the vanadium catalyst. As much as eleven tons of catalyst may be contained in a single converter. The heat of the reaction $SO_2 + \frac{1}{2}O_2 = SO_3$ is employed in the heat interchangers to heat the incoming gases.

The high concentration acid formed from sulfur trioxide varies in strength depending on the purpose for which it is meant. If used in fertilizer manufacture, the 99.5% acid is diluted to 93% strength and then either treated with synthetic ammonia to form ammonium sulfate or used to convert phosphate rock to phosphoric acid [Cobleigh, Ind. Eng. Chem., 24, 717 (1932)].

The second or lead-chamber process depends upon the fact that nitric oxide acts as a catalyst for the reaction between sulfur dioxide, oxygen, and water vapor to yield eventually dilute sulfuric acid. From a chemical point of view, the reactions in the contact process are simple, but those in the lead-chamber process are complex, and there is not unanimity of opinion concerning their mechanisms. The lead-chamber process produces cheaply dilute sulfuric acid of 62 to 77% strength; if stronger acid is desired, a rather costly evaporation must be carried out. The latter is effected most easily and economically with dilute acids of any origin by bubbling hot gases from an oil burner through a succession of tanks of the acid, the last tank containing the weakest acid [Spangler, Ind. Eng. Chem., 21, 417 (1929)].

In the lead-chamber process, the sulfur dioxide-air mixture obtained by burning brimstone or iron pyrites is passed in succession upward through the Glover tower, through two or more large lead chambers, and finally upward through the Gay-Lussac tower, as indicated in Fig. 65. The Glover tower is 20 to 25 feet high and is partly filled with acid-resisting rocks, through which passes acid sprayed in at the top of the tower; the acid used comes from the bottom of the Gay-Lussac tower. The Gay-Lussac tower is 40 to 50 feet high and is filled with pieces of coke or acid-resisting rock, over which trickles acid sprayed in at the top; this acid comes from the bottom of the Glover tower. The sulfuric acid entering the Glover tower contains nitrosyl bisulfate (nitrosyl sulfonic

Fig. 65. The Lead Chamber Process. A, sulfur of pyrite burners; B, the nitre pot for the introduction of oxides of nitrogen (this is now generally replaced by an ammonia oxidation unit); C, the Glover tower; D, the lead chambers; E, the Gay-Lussac tower.

acid), ONHSO₄; and when this meets the sulfur dioxide-air mixture, the following reaction takes place:

$$20NHSO_4 + SO_2 + 2H_2O = 3H_2SO_4 + 2NO$$

 $2NO + 2SO_2 + \frac{2}{3}O_2 + H_2O = ONHSO_4$

Some 16% of the total acid formed in the lead-chamber process is produced in the Glover tower. The reactive gases that enter the lead chambers consist of SO₂, O₂, NO, and NO₂, and here they are mixed with steam or a spray of water; this mixture reacts according to the equations¹

$$NO + \frac{1}{2}O_2 = NO_2$$

 $2SO_2 + 3NO_2 + H_2O = 2ONHSO_4 + NO$
 $2ONHSO_4 + H_2O = 2H_2SO_4 + NO + NO_2$

The spent gases containing NO, NO2, and O2 now enter the Gay-Lussac

¹ Sulfur dioxide reacts very slowly with nitrogen dioxide at ordinary temperatures to form the solid, colorless compound $S_2N_2O_9$; the structural formula of this compound has not been established, but in composition it corresponds to the anhydride of NOHSO₄, that is, ONSO₄OO₃SNO. The reaction $2SO_2(g) + 3NO_2(g) = S_2N_2O_9(s) + NO$ is catalyzed by platinized asbestos. When heated at 400° to 500°, $S_2N_2O_9(s) + NO$ decomposes reversibly into S_2NO_7 and NO_2 [Briner, Lunge, and van der Wijk, Helv. Chim. Acta, 11, 1125 (1928); see also Jones, Price, and Webb; J. Chem. Soc., 312 (1929)].

tower, where the following reaction takes place with the acid trickling through it:

$$2H2SO4 + NO + NO2 = 2ONHSO4 + H2O$$

This reaction is the reverse of one of the reactions taking place in the lead chambers, and in order that the absorption of the NO and NO₂ may be complete, the sulfuric acid in the Gay-Lussac tower must be fairly concentrated; ordinarily it is from 78 to 82% in H₂SO₄. It is this 78 to 82% acid containing ONHSO₄ that is pumped to the top of the Glover tower, where it eventually reacts with the incoming sulfur dioxide-air mixture as already described. The lead-chamber process is therefore cyclic in nature; the nitrogen oxides act as catalysts and are not, in principle, consumed. Actually there is some loss due to incomplete absorption in the Gay-Lussac tower, and this loss is made up by adding nitrogen oxides obtained by burning ammonia at the surface of a platinum gauze catalyst (Parsons catalyst).

Still another reaction of importance takes place in the Gay-Lussac tower, namely,

$$H_2SO_4 + N_2O_4 = ONHSO_4 + HNO_3$$

The nitric acid reacts, in the Glover tower, with sulfur dioxide to form nitrogen oxides or nitrosyl bisulfate and hence is not lost.

The temperatures prevailing in the lead chambers vary from 65° to 30° and are not constant throughout any one chamber. In the Glover tower, the temperature is permitted to reach about 130°, which suffices to concentrate the acid to the 78 to 82% strength necessary in the Gay-Lussac tower.

The acid produced in the lead-chamber process is drawn off from the bottoms of the lead chambers and the Glover tower. It contains about 77% H₂SO₄ and in addition small amounts of impurities, mainly nitric and nitrous acid, arsenious oxide, selenious acid, and lead sulfate, together with smaller amounts of iron, copper, zinc, mercury, and antimony. some applications these impurities are not harmful; in others, for example, storage batteries, they are harmful and must be removed. 77% acid is not sufficiently concentrated for many purposes (petroleum products purification requires 98-93 % acid), and consequently it must be subjected to evaporation to obtain a stronger article. However, it does serve for the manufacture of fertilizers; and since the contact process will eventually serve for the manufacture of all sulfuric acid, there appears little need for considering purification and concentration further. developments up to 1929 and 1932, see Spangler, Ind. Eng. Chem., 21, 417 (1929); Cobleigh, Ind. Eng. Chem., 24, 717 (1932). For a more detailed treatment of the lead-chamber process, see Abegg, Auerbach, and Koppel, Handbuch der Anorganischen Chemie, Hirzel, Leipzig, 1927, Vol. IV, part 1, p. 417.]

Sulfuric acid

Pure 100% sulfuric acid, H₂SO₄, is a colorless liquid whose melting point is 10.31°. When the liquid is heated, it gives off SO₃ and begins to boil at 290°, but the boiling temperature increases rapidly until it reaches 317°; at this point the liquid contains 98.54% H₂SO₄. The following table presents the temperatures at which sulfuric acid of various concentrations begins to boil; if boiling continues, the composition of the liquid changes and with it the boiling temperature [Knietsch, Ber., 34, 4106 (1901)].

Table 92 INITIAL BOILING POINTS OF SULFURIC ACID SOLUTIONS AND OLEUM Pressure = 750-759 mm (All concentrations are expressed in terms of SO₃ content. 100% H₂SO₄ contains 81.6% SO₃.)

Weight	Boiling	Weight	Boiling
Per Cent SO ₃	Point (°C)	Per Cent SO ₃	Point (°C)
50.36 57.88 66 44 72.84 78.56 80.44 81.56	140 162 202 240 292 317 273	82 3 83.4 86.45 89.5 93.24 99.5	212 170 125 92 60 43

Dilute solutions of sulfuric acid will become more concentrated, and the SO₃ content of oleum will decrease as boiling continues; the constant boiling mixture contains 98.5% H₂SO₄ (80.4% SO₃) and boils at 317° [326°, according to Lewis and Randall, *Thermodynamics*, p. 554].

The vapors of 100% sulfuric acid consist of H₂SO₄ at ordinary and moderate temperatures, but at about 300° dissociation into SO₃ and H₂O becomes measurable. Bodenstein and Katayama [Z. phys. Chem., 69, 26 (1909)] have determined the equilibrium constants for the reaction

$$H_2SO_4(g) = SO_3(g) + H_2O(g)$$

over the temperature range 325° to 483° and have expressed their results by means of the empirical equation,

$$\log_{10} K = -\frac{22850}{4.571T} + 0.75 \log_{10} T - 0.00057T + 4.086$$

$$K = \frac{(\text{H}_2\text{O})(\text{SO}_3)}{(\text{H}_2\text{SO}_4)}$$
 (Units are moles of vapor per liter.)

At atmospheric pressure and 350°, the dissociation of 100% H₂SO₄ is 50%.

Table 93 The physical properties of sulfuric acid and its hydrates (0°C = 298.1°K)

١			İ	2	5 6	-
/	Heat Capacity in cal/deg/mole	Temperature (°K):	300	32.7	50.66	91.7
			290	32.33(1)	50.54(1)	
			280	22.66	29.45 60.97	91.71
			260	21.47	27.62 60.34	91.47(1)
			240	20.29	25.79 59.45(I)	46.51
			220	19.02	23.98 29.32	43.00
			200	17.66(s)	22.22(s) 27.27(s)	39.58(s)
	Entropy of Liquid, 298.1°K (cal/deg/ mole)			37.56	50.13 66.15	99.48
	Heat of Fusion (cal/mole)			2561	4630	7360
	Melting Point (°C)			36 10.31	8.47	-28.25
	Hydrate			H ₂ S ₂ O ₇ H ₂ SO ₄	H,SO,·H,O	H2SO4.4H20

Free Energy of Hydration from Vapor-Pressure Data $H_3SO_4.H_3O + H_1O = H_2SO_4.2H_3O$ $\Delta F_{248,1} = -2884 \text{ cal}$ $H_3SO_4.2H_2O + 2H_3O = H_3SO_4.4H_3O$ $\Delta F_{248,1} = -3535 \text{ cal}$

In the system SO₃—H₂O, the following five hydrates have been observed [Pfanndler and Schnegg, Wien. Ber., 71, 351 (1875); Pickering, J. Chem. Soc., 57, 331 (1890); Knietsch, Ber., 34, 4106 (1901); Giran, Compt. rend., 157, 221 (1913); T. R. Rubin, J. Am. Chem. Soc., to be published; Brönsted, Z. phys. Chem., 68, 693 (1910); Hülsman and Biltz, Z. anorg. Chem., 218, 369 (1934)]:

Hydrate	Melting Point (°C)
II ₂ S ₂ O ₇	36 10.31 8 47 -39 46 -28.25

The physical properties of sulfuric acid are given in Table 93; the complete phase diagram is shown in Fig. 66. A solution containing 36.5%

Fig. 66. Phase Diagram for the System II₂O-SO₃.

 $\rm H_2SO_4$ forms a eutectic mixture melting at -72.4° , the solid phases being $\rm H_2O(s)$ and $\rm H_2SO_4\cdot 4H_2O$; Hülsman reports the octahydrate as existing in this mixture. The compound $\rm H_2S_2O_7$ is known as pyrosulfuric acid; its salts are formed by heating certain bisulfates, for example, KHSO₄, but both the salts and the free acid hydrolyze rapidly in water to form sulfate and bisulfate ions and sulfuric acid. They differ in this behavior from the pyrophosphates, which hydrolyze slowly in water.

Other physical properties of sulfuric acid are shown graphically in Figs. 67, 68, and 69.

Aqueous sulfuric acid is a dibasic acid which ionizes to a different extent in the two steps

$$H_2SO_4 = H^+ + HSO_4^-$$

$$HSO_4^- = H^+ + SO_4^-$$

As a result of the comparative weakness of the second ionization, both the normal and the acid salts of sulfuric acid form. At concentrations up to 0.05 formal, the first step in the ionization may be assumed complete. The bisulfate

Fig. 67. The Specific Conductance of Sulfuric Acid Solutions at 18°C.

ion does not ionize completely, as the values of the ionization constants in the following table show [Sherrill and Noyes, J. Am. Chem. Soc., 48, 1861 (1926)]. The values of both

$$P = \frac{(\mathrm{H^+})(\mathrm{SO_4^-})}{(\mathrm{HSO_4^-})}$$
 and $K = \frac{\alpha_{\mathrm{H}} \times \alpha_{\mathrm{SO_4^-}}}{\alpha_{\mathrm{HSO_4^-}}}$,

where (ion) represents the concentration of the ion in question and α its activity, are included in the table to show the effect of activity in an ionization reaction which is extensive (52-67%) and which involves doubly charged ions.

TABLE 94
THE IONIZATION CONSTANT OF
BISULFATE ION IN SULFURIC ACID
SOLUTIONS AT 25°

0 00025 1.18 1 05 .001 1.3 1 05			
.001 1.3 1.05	• • • •	$P \times 10^2$	$K \times 10^2$
.00625 1.75 1 13 .0125 2.08 1.19 .025 2.60 1.30 .050 3.52 1 48	.001 .005 .00625 .0125 .025	1.3 1.68 1.75 2.08 2.60	1 05 1.12 1 13 1.19 1.30

 $K = 1.15 \times 10^{-2}$ is best value.

It is evident that P varies considerably, while K is as constant as could be expected when the experimental data (conductance and transference numbers) for such dilute solutions are considered.

For higher concentrations of sulfuric acid, any calculations of a thermodynamic nature must make use of a table of experimentally determined activity coefficients. The following were determined by

Fig. 68. The Specific Conductance of Sulfuric Acid Solutions at 18°C.

Harned and Hamer [J. Am]Chem. Soc., 57, 27 (1935)] from careful electromotiveforce measurements in the range 0.001 m to 4.0 m and by Shankman and Gordon [J. Am. Chem. Soc., 61,2370 (1939)] from accurate vapor-pressure measurements in the range 4.0 m to 16.0 m. In the latter range, electromotive-force measurements give results deviating somewhat from the vapor-pressure values.

but the latter are considered more reliable. The values above 16.0 m were calculated by Dr. T. R. Rubin from the vapor-pressure data given by Collins [J. Phys. Chem., 37, 1191 (1933)] and by the International

Fig. 69. The Vapor Pressure-Temperature-Composition Diagram for the System SO₃—H₂O. Temperatures are °C.

Critical Tables [Vol. 3, p. 303]; owing to the low accuracy of the data, these calculations are to be considered as useful approximations only. For purposes of comparison, the activity coefficients of sodium, magne-

sium, and zinc sulfates are included in the table [Harned and Hecker, J. Am. Chem. Soc., **56**, 650 (1934); Robinson and Jones, *ibid.*, **58**, 961 (1936); Randall and Scott, *ibid.*, **49**, 647 (1927)]. It will be noted that a minimum value of the activity coefficient γ for sulfuric acid is reached at about 2 m; the minimum value of γ for hydrochloric acid comes at about 0.5 m.

Table 95
ACTIVITY COEFFICIENTS OF SULFURIC ACID AND SOME OF ITS SALTS

Concentration	Activity Coefficient			
(moles/1000 g H ₂ O)	H ₂ SO ₄	Na ₂ SO ₄	MgSO ₄	ZnSO.
0 001 002 .005 .01 .02 .05 .1 .2 .5 1.0 2.0 3.0 4.0 6.0 8.0 10 0 12 0 14.0 16.0 20.0 24 0 28 0 32 0 36.0 40 0 45 0 50.0 55.0	0.830 .757 .639 .544 .453 .340 .265 .209 .154 .130 .124 .141 .171 .254 .385 .557 .763 1.008 1.288 1.97 2.82 3.71 4.38 5.09 5.51 5.96 6.25 6.47	0.887 .847 .778 .714 .641 .53 .45 .36 .27 .20		0.70 .61 .48 .39 .15 .11 .065 .045 .064 .044

Sulfurous acid is readily oxidized to dilute sulfuric acid by even weak oxidizing agents, as the following free-energy equations show:

$$\begin{array}{llll} & \text{H}_2\text{SO}_3 + \text{I}_3^- + \text{H}_2\text{O} = 4\text{H}^+ + \text{SO}_4^- + 3\text{I}^- & \Delta F_{298}^0 = -15,584 \text{ cal} \\ & \text{H}_2\text{SO}_3 + \text{Br}_3^- + \text{H}_2\text{O} = 4\text{H}^+ + \text{SO}_4^- + 3\text{Br}^- & \Delta F_{298}^0 = -39,339 \\ & \text{H}_2\text{SO}_3 + \text{Cl}_2(\text{aq}) + \text{H}_2\text{O} = 4\text{H}^+ + \text{SO}_4^- + 2\text{Cl}^- & \Delta F_{298}^0 = -55,165 \\ & \text{H}_2\text{SO}_3 + 2\text{Fe}^{+++} + \text{H}_2\text{O} = 4\text{H}^+ + \text{SO}_4^- + 2\text{Fe}^{++} & \Delta F_{298}^0 = -26,435 \\ & \text{H}_2\text{SO}_3 + \frac{1}{2}\text{O}_2(\text{g}) = 2\text{H}^+ + \text{SO}_4^- & \Delta F_{298}^0 = -47,565 \end{array}$$

But it is well known that the first, second, and fourth reactions go to the left in concentrated sulfuric acid; consequently, the activity coefficients of both concentrated sulfuric acid and the two halogen acids in it must be very large indeed. Concentrated sulfuric acid may not be used in the distillation of hydrobromic and hydroiodic acids from their salts.

Sulfuric acid forms salts with most metals; the following table shows the solubilities of a number of typical sulfates in water at 25°.

TABLE 96
SOLUBILITIES OF SOME SULFATES IN WATER AT 25°
(The solubility S is in grams of anhydrous salt per 100 grams of water. Formulas are those of solid phases in equilibrium with the saturated solution.)

Salt	S	Salt	S	Salt	S
	28.0 12.04 51.5 50.9	SrSO ₄	8344 .2086 .0134 .000223	MgSO ₄ ·7H ₂ O ZnSO ₄ ·7H ₂ O CdSO ₄ · ⁸ / ₈ H ₂ O† Hg ₂ SO ₄ Tl ₂ SO ₄ La ₂ (SO ₄) ₃ ·9H ₂ O	57.45 76.79

^{*} At 32.38° (International Temp. Scale) the decahydrate is in equilibrium with the anhydrous salt and a saturated solution (Transition Temperature).

† The solubility of CdSO₄· 8_3 H₂O varies but little with the temperature; thus, at 0° $S = 75.51 \text{ g}/100 \text{ g H}_2\text{O}$.

Because of the importance of sulfuric acid and the sulfates, reliable values for their free energies have been determined; in Table 97 are presented the free energies of formation of sulfuric acid and its ions, along with values for other common oxyacids of sulfur [Latimer, Oxidation Potentials].

TABLE 97
FREE ENERGIES OF FORMATION OF SULFUR ACIDS AND IONS AT 25° $(\Delta F_{298}^{\circ} [\text{cal/mole}])$

		1	
$SO_2(g)$	-71,735	so -	-176,100
H ₂ SO ₃	-128,535	$S_2O_8^{-}$	-257,000
HSO ₃	-125,905	$H_2S(aq)$	-6,520
SO ₃	-116,400	HS	2,950
S ₂ O ₄	-143,400	s	23,420
$HS_2O_4^-$	-133,300	H ₂ O(l)	-56,690
$S_2O_6^-\dots$	-248,000	ОН	-37,585
$S_2O_3^{-}$	-124,000		

Selenic acid

Selenic acid, H_2SeO_4 , may be prepared simply by dissolving SeO_3 in water, but since the preparation of the trioxide has so far been effected only in a low-pressure electric discharge $(O_2 + Se)$, the simple method for preparing the acid is not yet a practical one. A common method for the preparation makes use of one or the other of the two following reversible reactions [Sherrill and Izard, J. Am. Chem. Soc., 50, 1665 (1928)]:

$$Br_{2} + H_{2}SeO_{3} + H_{2}O = 3H^{+} + HSeO_{4}^{-} + 2Br^{-}$$

$$K = \frac{(H^{+})^{3}(HSeO_{4}^{-})(Br^{-})^{2}}{(Br_{2})(H_{2}SeO_{3})} = 0.88 \text{ at } 25^{\circ}$$

$$Cl_{2} + H_{2}SeO_{3} + H_{2}O = 3H^{+} + HSeO_{4}^{-} + 2Cl^{-}$$

$$K = 1.42 \times 10^{9} \text{ at } 25^{\circ}$$

The equilibrium constants are expressed in terms of activities. Both reactions are slow, about one week being required to reach equilibrium with the chlorine reaction and two months with the bromine reaction. For preparative purposes it is desirable to have the reactions go to completion and eventually to be free of halogen. This is accomplished by the addition of silver oxide, Ag₂O, to the reaction mixture or, better still, by treating a suspension of Ag₂SeO₃ with aqueous bromine [Dennis and Koller, J. Am. Chem. Soc., 41, 949 (1919)]. The net reaction is then

$$Ag_2SeO_3(s) + Br_2 + H_2O = H_2SeO_4 + 2AgBr(s)$$

which goes practically completely to the right. Excess bromine is removed by passing air through the warmed solution, and the silver promide can be filtered off, preferably with an asbestos or sintered glass ilter. Any unoxidized selenious acid may be removed by treating the solution with hydrogen sulfide and then filtering. The resulting pure solution of H₂SeO₄ may be concentrated by evaporation, the acid itself being, like sulfuric acid, relatively involatile; but when heated above 210°, the concentrated acid (89%) decomposes into selenious acid and exygen. It is better, indeed, not to evaporate the solution at much above 150°; the acid then contains about 80% selenic acid.

A second useful method of preparation is that of Meyer and Moldenauer [Z. anorg. Chem., 116, 193 (1921)], in which selenious acid is oxidized with chloric acid, HClO₃, at the temperature of a water bath. The chloric acid is added in small portions until the oxidation is complete, and, after filtering through asbestos, the solution is freed from chlorine compounds by heating to 160–170°. The yield is from 90 to 95%. An electrolytic method of preparation has also been described [Manchot and Wirzmuller, Z. anorg, Chem., 140, 47 (1924)].

Still a third method of preparation is to be recommended in view of the present-day cheapness of the reagents used. Selenium dioxide (150 g) is added to 30% hydrogen peroxide (500 g) and the solution is allowed to stand 24 hours; the mixture is then refluxed in an all-glass apparatus for 12 hours. Additional hydrogen peroxide and further refluxing may be necessary for a complete reaction. The resulting solution is evaporated under reduced pressure on a steam bath, and finally dried air at 4-6 mm pressure is passed through the acid at 150-160° to remove the last traces of moisture. The product contains about 99% H₂SeO₄[McCrosky and Huff, J. Am. Chem. Soc., 51, 1457 (1929); Gilbertson and King, ibid., 58, 180 (1936)].

The most concentrated solutions obtainable by evaporation under a vacuum contain about 99% H₂SeO₄. The pure H₂SeO₄ is obtained by crystallization at room temperature, a "seed," prepared by freezing a small portion in solid carbon dioxide, being necessary to start crystallization [Macallan and Cameron, *Chem. News*, **59**, 207 (1889)].

Selenic acid forms two hydrates, H₂SeO₄·H₂O and H₂SeO₄·4H₂O, whose melting points are as follows:

The same hydrates are known for sulfuric acid, but it forms additional ones as well.

Aqueous solutions of selenic acid resemble, in their physical proper-

TABLE 98
THE SPECIFIC GRAVITIES, 20°/4°,
OF SULFURIC AND SELENIC ACIDS

Per Cent	Sp. Gr.,	Per Cent	Sp. Gr.,
H ₂ SO ₄	20°/4°	H ₂ SeO ₄	20°/4°
4 10 19 29 37 53 66 79 90 95	1.0250 1.0661 1.1318 1.2104 1.2769 1.4249 1.5646 1.7159 1.8144 1.8337 1.8342	3.62 9.82 18.44 28.58 37.34 52.98 65.90 79.28 90.10 94.64 99.04	1.025 1.075 1.150 1.250 1.350 1.350 1.550 1.800 2.100 2.400 2.500 2.500

ties, those of sulfuric acid. centrated selenic acid is viscous, quite dense, and has a strong affinity for water. At 100° the vapor pressure of pure H₂SeO₄ is 15.8 mm; at 140°, 28.3 mm; and at 210°, 37.0 mm. If a dilute solution is evaporated at atmospheric pressure until the temperature reaches 205°, only water is given off and the composition of the residue corresponds to the monohydrate, H₂SeO₄·H₂O. the accompanying table are presented the specific gravities of both selenic and sulfuric acid for a large range of concentrations for

purposes of comparison [Diemer and Lehner, J. Phys. Chem., 13, 505 (1909)].

Aqueous selenic acid, like sulfuric acid, ionizes in two steps. At low concentrations the ionization of the first hydrogen is complete.

$$H_2SeO_4 = H^+ + HSeO_4^-$$

But the second hydrogen comes off with greater difficulty [Sherrill and Lyons, J. Am. Chem. Soc., **54**, 979 (1932)],

$${
m HSeO_4^- = H^+ + SeO_4^-} \ K = {({
m H^+)(SeO_4^-)} \over ({
m HSeO_4^-})} = 1.15 \times 10^{-2} {
m at } 25^{\circ}$$

the equilibrium constant here being expressed in terms of activities. In a 0.01 m solution of H_2SeO_4 , the $HSeO_4^-$ is about 67% and in a 0.1 m solution 25% ionized. The ionization constant for the biselenate ion is the same as that for bisulfate ion. That the two acids are nearly identical in their ionizing properties was shown by Sherrill and Lyons, who found the emf of the cells Pt, $Quinhydrone\ H_2SO_4\ (C\ formal)\ Quinhydrone\ Pt$, to be essentially zero over the concentration range C=0.0100 to 0.8000 formal.

Sclenic acid solutions are more rapidly reduced than are those of sulfuric acid. The 0.8% acid does not oxidize iodide ion, but more concentrated solutions react slowly with it with the formation of iodine and elementary (red) sclenium. With sclenic acid of moderate to high concentrations, hydrobromic and hydrochloric acids react slowly and reversibly to form the elementary halogen and sclenious acid. Sulfurous acid reacts slowly with $\rm H_2SeO_4$ to give elementary sclenium and sulfuric acid. When dilute $\rm H_2SeO_4$ in hydrochloric acid is treated with hydrazine at 60°, elementary sclenium is quantitatively precipitated [Dennis and Koller, J. Am. Chem. Soc., 41, 949 (1919)].

A still clearer and more quantitative expression for the oxidizing power of selenic acid is provided by the following molal free energies of formation; the values for the corresponding sulfur acids are included for the sake of comparison [Latimer, Oxidation Potentials]. The difference

~ ~~~	ΔF_{298}°		ΔF_{298}°
HSO ₄ HSO ₄ SeO ₄ SO ₄	-107,840 -178,820 -105,120 -176,100	H ₂ SeO ₃ H ₂ SO ₃ HS ₂ O ₃ ⁻ SeO ₃ ⁻ SO ₃ ⁻	-101,361 -128,535 - 97,850 - 87,890 -116,400

between the ΔF_{298}° for a selenate and that for a selenite is much smaller than the corresponding difference for a sulfate and sulfite, and, consequently, selenates are much stronger oxidizing agents than are the sulfates.

Selenic acid forms normal and acid salts whose properties frequently bear a close resemblance to the corresponding sulfates. For example, the salt Na₂SeO₄·10H₂O undergoes a transition to Na₂SeO₄ at 30.3°; the corresponding transition between Na₂SO₄·10H₂O and Na₂SO₄ takes place at 32.38°. The following solubilities, S, in grams of the anhydrous salt per 100 grams of water at 25°, of both selenates and sulfates show the similarities and the differences of the salts formed. The formulas indicate the solid phase in each case. It is evident that the selenates and

SOLUBILITIES OF SELENATES AND SULFATES AT 25°					
	S		S		
CaSeO ₄ ·2H ₂ O BaSeO ₄	29.87 (8°)	CaSO ₄ ·2H ₂ O BaSO ₄	.000223 36.4		

TABLE 99 SOLUBILITIES OF SELENATES AND SULFATES AT 25°

43

CuSeO.5H2O.....

sulfates of the same element are quite similar; in most cases the crystals are isomorphous [see the many papers by Tutton on the subject in *J. Chem. Soc.* and *Proc. Roy. Soc.*]. The selenates are more soluble in water than are the corresponding sulfates.

The structure of the sulfate and selenate ions in crystals of their salts is tetrahedral; the sulfur or selenium atom occupies the center and the four oxygen atoms the corners of a regular tetrahedron. The approximate interatomic distance S—O is 1.51 Å and Se—O is 1.61 Å as estimated from the results of X-ray crystal-structure studies made on a number of sulfates and selenates.

Fluosulfonic, chlorsulfonic, and chlorselenic acids, HSO₃F, HSO₃CI, and HSeO₃CI

Fluosulfonic acid is prepared either by the action of concentrated hydrofluoric acid on sulfur trioxide or, usually more conveniently and very nearly quantitatively, by distilling it from a mixture of calcium fluoride and fuming sulfuric acid (60% SO₃) in an iron vessel [Ruff, Ber., 47, 652 (1914); Traube and Lange, Ber., 57, 1038 (1924)]. It is also a by-product in the preparation of anhydrous hydrogen fluoride from CaF₂ and ordinary concentrated sulfuric acid. Meyer and Schramm [Z. anorg. Chem., 206, 24 (1932)] prepared the acid by adding KHF₂, (20 g) slowly and with stirring, to well-cooled (ice-salt) fuming sulfuric acid (40 cc) in a platinum dish. After heating the resulting viscous mass slowly to 100° to volatilize any excess SO₃ and HF, it is transferred to a

^{*} At 25° the hexahydrate is the solid phase; $S = 37.93 \text{ g}/100 \text{ g H}_2\text{O}$.

glass vessel and distilled until the temperature reaches 250°; the distillate consists of nearly pure fluosulfonic acid.

Fluosulfonic acid is a colorless liquid with a disagreeable odor; it boils at 162.6° and its freezing point is not known. The acid does not attack glass or most of the common metals at ordinary temperatures. Mercury is oxidized slowly and organic materials (cork, wood, and rubber) are charred by HSO₃F. There is no tendency toward decomposition of the vapors of HSO₃F even at 900°. When fluosulfonic acid is dissolved in water, a slow hydrolysis takes place according to the equation.

$$HSO_8F + H_2O = H_2SO_4 + HF$$

and this reaction is reversible, as is witnessed by the fact that concentrated H₂SO₄ and HF react to give fluosulfonic acid. In dilute aqueous solution the hydrolysis, at equilibrium, is practically complete. No investigations of the rate of hydrolysis have been made, but the equilibrium has been studied [Lange, Z. anorg. Chem., 215, 321 (1933)]. Because the equilibrium mixture is not simple, that is, because the activities of the H₂SO₄, HF, HSO₃F, and H₂O in the concentrated acid mixture are not known, the evaluation of true equilibrium constants has not been attained; the mass action function reported by Lange for 24° probably has little relation to the true equilibrium constant.

Salts of fluosulfonic acid may be prepared by adding the fluoride to sulfur trioxide or fuming sulfuric acid. Thus if dry ammonium fluoride, NH₄F, (65 g) is gradually dissolved in 150 g of cooled (0°) fuming sulfuric acid (79% SO₃) in an enameled iron vessel, a vigorous reaction takes place and a pasty mass results. This mass is treated with ammoniacal methyl alcohol, which dissolves most of the ammonium fluosulfonate but not ammonium fluoride or sulfate. The alcoholic solution is then evaporated to obtain the colorless crystals of ammonium fluosulfonate, NH₄-SO₂F. m.p. 245°. If this ammonium salt is distilled with concentrated sulfuric acid, the distillate consists of fluosulfonic acid. fluosulfonate dissolves readily in water without appreciable hydrolysis even after long standing [Traube, Hoerenz, and Wunderlich, Ber., 52, 1272 (1919)]. It may be used as the starting material for the preparation of other salts; for example, LiSO₃F·3H₂O (m.p. 61°) may be crystallized as long, shining needles from an aqueous mixture of LiOH and NH₄SO₃F. For the most part the fluosulfonates are readily soluble in water (CsSO₃F, 2.23 g/100 cc soln. at 0°), but nitron fluosulfonate is so sparingly soluble that it may be made the basis for a gravimetric method of analysis. Some of the fluosulfonates, notably Ba(SO₃F)₂, decompose on heating to give SO₂F₂. A number of more complex salts have been prepared by Wilke-Dörfurt, Balz, and Weinhardt [Z. anorg. Chem., 185, 417 (1930)].

Chlorsulfonic acid, HSO₃Cl, may be prepared by reacting dry hydrogen chloride directly with sulfur trioxide or with fuming sulfuric acid (70% SO₃) [Sanger and Riegel, Z. anorg. Chem., 76, 79 (1912)]. It may also be obtained by adding sodium chloride (1 mole) to fuming sulfuric acid (H₂SO₄ (1 mole) + SO₃ (2 mole)). A number of other chlorides, for example, PCl₃, PCl₅, POCl₃, and CCl₄, react with fuming sulfuric acid to form chlorsulfonic acid. In all of these methods of preparation, the chlorsulfonic acid is distilled from the reaction mixture as a colorless, fuming liquid having a very disagreeable odor. Liquid chlorsulfonic acid boils, with some decomposition into HCl and SO₃, at 152°, and the solid melts at about -80° ; the density of the acid is 1.753 at 20°.

That the reaction $SO_3(g) + HCl(g) = HSO_3Cl(g)$ is reversible there is no reason to doubt, but owing to its slowness and complications arising out of side reactions, such as the formation of SO_2 , Cl_2 , H_2O , or even SO_2Cl_2 , no reliable measurements of the equilibrium have been made [see, e.g., Sanger and Riegel, loc. cit.]. At 184° the vapor density of HSO_3Cl is 2.4 compared with air as unity, while the calculated value, assuming no dissociation, is 4.04.

Chlorsulfonic acid reacts readily with water to form a solution of sulfuric and hydrochloric acid; the reaction is rapid, in contrast with the corresponding hydrolysis of fluosulfonic acid. Since HSO₃Cl fumes in air, it has found application as a smoke-producer in military operations, although here a mixture of sulfur trioxide and HSO₃Cl (sp. gr. 1.91, m.p. -30°) has been found more effective for the purpose [Prentiss, Chemicals In War, p. 238]. The most useful applications of HSO₃Cl are in organic chemistry, where it serves as a valuable sulfonating agent. Salts of chlorsulfonic acid have been prepared, notably NaSO₃Cl, by the addition to it of a dry chloride; the sodium salt reacts with pyrosulfuric acid to form HSO₃Cl and sodium pyrosulfate. With water NaSO₃Cl hydrolyzes rapidly to form sodium, hydrogen, sulfate, and chloride ions.

When fuming sulfuric acid is refluxed with carbon tetrachloride over a water bath, the following reaction takes place:

$$2SO_3 + CCl_4 = COCl_2 + S_2O_5Cl_2$$

and the yield of the pyrosulfuryl chloride, $S_2O_5Cl_2$, varies from zero, if pure H_2SO_4 is used, to 31.5% with $H_2S_2O_7$ and to 100% with SO_3 alone. After the reaction is complete (Note: Phosgene is formed. Danger), the mixture is distilled and the middle fraction coming off at 130–160° is collected and further fractionated; the portion coming off above 130° contains most of the $S_2O_5Cl_2$. In order to remove any HSO_3Cl , the $S_2O_5Cl_2$ -rich fraction is treated with dry NaCl.

$$HSO_3Cl + NaCl = NaSO_3Cl + HCl$$

The resulting mixture is warmed to expel the HCl, and it is then distilled

to obtain the S₂O₅Cl₂ as the distillate. Pyrosulfuryl chloride, the anhydride of HSO₃Cl, is a colorless, mobile liquid boiling at 152° and having a density of 1.872 at 0°. The melting point of the solid is -37°. The vapors are quite stable toward decomposition, as is shown by the fact that the average vapor density at 184° is 7.4 (air unity), which is in accord with the calculated value 7.49 [Sanger and Riegel, Z. anorg. Chem., 76, 79 (1912)]. At higher temperatures a somewhat complicated decomposition doubtless takes place. The heat of vaporization of the liquid is 7550 cal/mole. Liquid S₂O₅Cl₂ fumes slightly, if at all, in air, and it reacts only slowly with water but readily with aqueous alkali to form sulfate and chloride ions. It reacts slowly with Au, Pt, and Hg (above 60°) and more rapidly with the less noble metals to form the chlorides. With organic substances it acts as a chlorinating agent.

No attempt to prepare fluoselenic acid appears to have been made. Chlorselenic acid, $HSeO_3Cl$, has been reported by Worsley and Baker [J. Chem. Soc., 123, 2870 (1923)] as resulting from the action of HCl on SeO_3 (O_3 + Se (in $SeOCl_2$)) at 0°. It is described as a nearly colorless, fuming liquid having a density of 2.26 and freezing at -46°. It decomposes slowly at room temperature to form Se, SeO_2 , and HCl (and, presumably, O_2 or Cl_2); on heating, the decomposition is more rapid. It dissolves in water (H_2SeO_4 + HCl) with the evolution of considerable heat, but does not react with ether, benzene, chloroform, or CCl_4 .

Telluric acid, HaTeOa

Probably the simplest method for the preparation of telluric acid is that of Gilbertson [J. Am. Chem. Soc., 55, 1460 (1933)], in which metallic tellurium or tellurium dioxide is refluxed with a mixture of 30% hydrogen peroxide (two volumes) and concentrated sulfuric acid (one volume) until all of the metal or the dioxide has dissolved and active effervescence has ceased. The resulting solution is filtered through asbestos, and the filtrate is evaporated until crystals just begin to appear. Concentrated nitric acid is then added to bring down the colorless crystals of orthotelluric acid, H₆TeO₆. After filtering the resulting mixture through asbestos, the crystals are heated sufficiently to drive off any adhering nitric acid and are then recrystallized from their hot solution in water.

In order to indicate the strength of the oxidizing agents necessary to convert TeO₂ into telluric acid, two further methods for the preparation of H₆TeO₅ may be described only briefly. Boiling nitric acid solutions of TeO₂ may be oxidized to H₅TeO₅ by the slow addition of just the right amount of chromium trioxide, CrO₃ [Standenmaier, Z. anorg. Chem., 10, 218 (1895)]. When a hot hydrochloric acid solution of tetravalent tellurium is treated with chloric acid, HClO₃, the oxidation to telluric acid is effected [Meyer and Moldenhauer, Z. anorg. Chem., 119, 132 (1921)].

In both of these methods the H_6 TeO₆ is eventually crystallized from an aqueous solution and then purified by recrystallization.

Orthotelluric acid in the solid state is usually obtained as fine, snowwhite crystals consisting of H_6TeO_6 , if the crystallization from water is carried out above 10°, and of $H_6TeO_6\cdot 4H_2O$ if crystallized below this temperature. The anhydrous acid exists in two allotropic modifications, the α or cubic form being obtained by crystallizing from concentrated nitric acid, and the thermodynamically stable (at room temperatures) β or monoclinic form by crystallization from water or dilute acid solutions. When heated, the cubic form goes over into the monoclinic, but the transition temperature, if one exists for atmospheric pressures, is not known.

When H₆TeO₆ is strongly heated, it loses water and is converted first into the so-called allotelluric acid, then into the yellowish TeO₃, and finally into TeO₂ and oxygen. If the acid is heated at 140° for 24 hours in a sealed tube, it melts to a light-yellow, sirupy, viscous liquid which, on cooling, is soluble in all proportions in water to give, at times, milky solutions. This acid is known as allotelluric acid and is believed to be complex and possibly not unlike the complex tungstic or molybdic acids; freezing-point experiments indicate three tellurium atoms per molecule. It is a stronger acid than H₆TeO₆, since its conductance is 28 times greater. The aqueous solutions hydrolyze slowly (two to three days) to orthotelluric acid, H₆TeO₆; in alkaline solutions the hydrolysis is rapid [Pascal and Patry, Compt. rend., 200, 708 (1935); Patry, Compt. rend., 200, 1597 (1935); Bull. soc. chim., 3, 845 (1936)].

The solubility of H₆TeO₆ and H₆TeO₆·4H₂O in water has been determined over the temperature range from 0° to 110° by Mylius [Ber., 34, 2208 (1901)], and his results, recalculated to a more rational basis, are presented in the following table.

TABLE 100
THE SOLUBILITY, S, OF ORTHOTELLURIC ACID IN WATER
(S is expressed in g of H₆TeO₆ per 100 g of water.)

H ₆ TeO ₆ ·4H ₂ O		H ₆ TeO ₆	
Temperature (°C)	S (g/100 g H ₂ O)	Temperature (°C)	S (g/100 g H ₂ O)
0	19.9 27.0 45.2 64.1	10	42.9 65.7 104.5 158.0 260.8 386.5

Aqueous solutions of orthotelluric acid are only weakly ionized, as is shown by the following freezing-point and conductance data [Gutbier, Z. anorg. Chem., 29, 23 (1902); Rosenheim and Jander, Koll. Z., 22, 23 (1918)].

TABLE 101
FREEZING-POINT AND CONDUCTANCE DATA FOR ORTHOTELLURIC
ACID
Formula weight = 229.66.

H ₆ TeO ₆ (g/100 g H ₂ O)	-ΔT (°C)	Molecular Weight (calc.)	H ₆ TeO ₆ (liters/mole)	Conductance (Ohm ⁻¹ mole ⁻¹ at 25°)
1.610 4.327 2.288 1.694	0.140 .385 .190 .160	218.5 213.8 228.7 201.4	4 8 16 32 128 513	0.1902 .1984 .2029 .2119 .2611 .4460 .6913

It is evident from the freezing points that the ionization is small, although the experimental errors appear to be appreciable and do not permit of a reliable estimate of an ionization constant. The molal conductances are quite small and are a more accurate indication of the weakness of the acid. Attempts to determine the ionization constants by indicator methods have been made by Rosenheim and Janders and by Blanc [J. chim. phys., 18, 28 (1920)], but since their results are not in accord with each other, it is not certain which values are correct.

$$\frac{(\mathrm{H}^{+})(\mathrm{H}_{6}\mathrm{TeO_{6}})}{(\mathrm{H}_{6}\mathrm{TeO_{6}})} = K_{1} = 6.8 \times 10^{-7}$$

$$K_{2} = 4.1 \times 10^{-11}$$
(Blanc)
$$K_{1} = 1.6 \times 10^{-9}$$
 (Rosenheim and Janders)

In Blanc's experiments, only two inflections were observed in the neutralization curve; this fact, together with the fact that the known alkali metal salts of orthotelluric acid have the forms MH₅TeO₆ and M₂H₄TeO₆, show the acid to be primarily dibasic. Experiments with the glass electrode might yield more satisfactory results for the ionization constants.

The structure of the cubic form of $H_6\text{TeO}_6$ as determined by X-ray methods is that of a regular octahedron with the tellurium atom at the center and six OH groups at the corners [Pauling, Z. Krist., 91, 367 (1935); Passerini and Rollier, Atti. accad. Lincei., 21, 364 (1935)]. This structure indicates the reason for the dibasic character of the acid, that is, that the nearness of the OH groups to each other inhibits more than two hydrogens from ionizing readily.

Telluric acid is a good oxidizing agent, as is shown by its oxidation potential

$$4H_2O + TeO_2(s) = H_6TeO_6(s) + 2H^+ + 2E^ E^{\circ} = -1.02 \text{ volts}$$

and by its action on other substances. Thus at 45°, chlorine is liberated from a concentrated hydrochloric acid solution, with the formation of TeO₂; both Te and TeO₂ result from mixing solutions of H₆TeO₆ and HI; and Te and Br₂ are formed when hydrobromic acid solutions of H₆TeO₆ are boiled. Hydrogen sulfide reduces H₆TeO₆ slowly even at 100° to tellurium sulfides (TeS2 and TeS) and Te, and sulfurous acid reacts more slowly still with the formation of Te [Benger, J. Am. Chem. Soc., 39, 2179 (1917)]. When solutions of H₆TeO₆ are heated with Te, Se, or S, slow reduction to TeO2 with the two former and to Te with the last Hydrazine or hydroxylamine in ammoniacal solution will reduce telluric acid quantitatively to elementary tellurium. Hot, and sometimes cold, solutions of telluric acid will attack the metals Ag, Hg, Pb, Bi, Cu, Zn, As, Sb, Sn, Al, Cd, and Ni. When an alkaline solution of a tellurate and a cupric salt is heated, a brown solution results which is a sensitive test for tellurium [Feigl and Uzel, Mikrochem., 19, 132 (1936)]. With a freshly prepared solution of [Cr(NH₃)₆](NO₃)₃, a hot ammoniacal tellurate solution produces a colored precipitate of [Cr(NH₃)₆]₂(H₄TeO₆)₃ with even 0.16 mg of tellurium in 10 cc of solution [Bersin, Z. anal. Chem., 91, 170 (1932)].

The salts of telluric acid differ considerably from those of sulfuric and When telluric acid solutions are treated with more than two equivalents of NaOH and then heated for a short time, colorless crystals of Na₂H₄TeO₆ are obtained that are soluble in water to the extent of 0.7 g/100 g soln. at 25° and 1.1 g/100 g soln. at 50°; these solubilities do not correspond, apparently, to an equilibrium condition, since they have not been found to be reproducible [Rosenheim and Jander, Koll. Z., 22, 23 (1918)]. The potassium salts $K_2H_4TeO_6$, $K_2H_4TeO_6 \cdot 3H_2O_6$ K₂H₄TeO₆·3½H₂O, and K₂H₄TeO₆·5H₂O can be obtained by slowly evaporating a solution containing excess KOH; the evaporation is carried out in a desiccator containing sulfuric acid. The more common K₂H₄TeO₆·3H₂O is much more soluble, about 60 g/100 g H₂O at room temperature, than the sodium salt; the results of solubility experiments indicate that both the sodium and potassium salts undergo slow but marked changes when dissolved in water, since with an ultramicroscope colloidal particles are observed. Just what the composition of the solutions is, is not known. A silver salt, Ag₂H₄TeO₆, can be obtained as yellow crystals by allowing a mixture of aqueous silver nitrate and concentrated potassium tellurate containing a little free acetic acid to stand for several hours [Hutchins, J. Am. Chem. Soc., 27, 1157 (1905)]; exposure to light causes the crystals to darken. On evaporation of more dilute mixtures of silver nitrate and potassium tellurate (containing a little nitric acid), ruby red monoclinic crystals of another tellurate of silver, Ag₃H₃TeO₆, are formed. It is evident from the methods of preparation that neither of these silver salts is sparingly soluble in water, but the solubilities are not known. When solutions of mercurous nitrate and telluric acid are mixed, a bright-yellow precipitate forms which, in the presence of excess telluric acid, slowly changes to colorless triclinic crystals of HgH₅TeO₆·H₂O. The mercuric salts Hg₃TeO₆ (yellow, insoluble), HgTeO₄ (amorphous, white), and HgH₄TeO₆ (colorless) are known, and zinc forms Zn₃TeO₆ (colorless, insoluble). In general, the ortho acid tellurates are the most common, and neither they nor the other known tellurates are isomorphous with the corresponding selenates. Because telluric acid is weak, its salts are usually soluble in strong acids. Both the chemical and physical properties of telluric acid and its salts differ considerably from those of the selenates and sulfates.

Sulfoxylic, Dithionous, and Dithionic Acids

We come now to three oxyacids of sulfur that do not possess anhydrides and that structurally and chemically are different from the polythionic acids. Sulfoxylic acid, H_2SO_2 , if it exists, may be looked upon as the simplest sulfone, of which there are many organic derivatives, and as a possible handy intermediate to use in explaining the complexities of Wackenroder's solution. Dithionous and dithionic acids, $H_2S_2O_4$ and $H_2S_2O_6$, are characterized, structurally, by the presence of two equivalent sulfur atoms bound together, and this sulfur-sulfur bond gives the compounds properties quite distinct from those exhibited by thiosulfates and the polythionates.

Sulfoxylic acid, H2SO2

Free sulfoxylic acid is not known, but two of its salts have been reported, namely, Na₂SO₂ and ZnSO₂. The former is described by Vogel and Partington [J. Chem. Soc., 127, 1514 (1925)] as resulting from the action of S₂O₃ (from S + SO₃) on sodium ethylate. The mixture is allowed to stand overnight and is then acidified with dilute sulfuric acid, whereupon a white crystalline precipitate of Na₂SO₂ comes down. The salt is relatively stable toward heating and is only moderately soluble in water; it is insoluble in alcohol. It is a strong reducing agent [see Bassett and Durant, J. Chem. Soc., 1401 (1927), for a critique of the results of Vogel and Partington]. The zinc salt, ZnSO₂, is believed by Fromm and Palma [Ber., 39, 3317 (1906)] to have resulted from the reaction between zinc dust and an ether solution of sulfuryl chloride. Whether or not these salts of sulfoxylic acid have, in reality, been prepared is not certain, but the stable organic sulfones, R₂SO₂, are well known. For example,

"mustard gas," (ClC_2H_4)₂S, is readily oxidized by hypochlorite to (ClC_2H_4)₂SO₂, a compound that resists further oxidation under ordinary conditions. Other organic sulfones, e.g., (C_2H_6)₂SO₂, are such stable substances that they are hydrolyzed only by strong alkalis at somewhat elevated temperatures. Sulfoxylic acid is frequently assumed as an intermediate to explain some of the complicated reactions taking place in Wackenroder's solution.

Dithionous (hyposulfurous) acid, H₂S₂O₄

When an aqueous solution of sulfurous acid, H₂SO₃, is poured through a Jones reductor, the resulting mixture is yellowish in color, acts as a very strong reducing agent, and contains hyposulfurous acid. These solutions ordinarily contain some acid and are not very stable; they decompose according to the equation

$$2S_2O_4^- + H_2O = S_2O_3^- + 2HSO_3^-, \qquad \Delta F_{298}^0 = -59,100 \text{ cal}$$

The rate of the reaction is increased if further acid is added; the presence of acid brings about the further decomposition of the thiosulfate to sulfite and sulfur, so that the over-all reaction becomes

$$S_2O_4^{-} + H_2O = H_2SO_3 + S$$

Solutions of the alkali metal salts of hyposulfurous acid decompose at a slow but measurable rate at ordinary temperatures $(0-60^{\circ})$, but the free acid in aqueous solutions cannot exist for an appreciable length of time. On acidifying solutions of the salts, they become orange to orange-yellow in color, but there is some doubt whether the color is due to $H_2S_2O_4$ or to the elementary sulfur that is formed [Bassett and Durant, J. Chem. Soc., 1401 (1927)]. Since the acid is so unstable, and since the sodium salt is of considerable importance, the discussion will be confined mainly to the latter substance.

Sodium hyposulfite is an article of commerce and is used as a reducing agent in the dye industry. It is prepared by stirring a solution of NaHSO₃ with zinc dust for about two hours at 30–40°. Milk of lime is then added and the mixture is filtered; the filtrate is warmed to 50–60° and an easily soluble sodium salt (NaCl, NaNO₃, NaCH₃CO₂, or NaOH) added to precipitate the sodium hyposulfite, Na₂S₂O₄·2H₂O. The Na₂S₂O₄·2H₂O is filtered off and dried to the anhydrous salt by heating to 60–70° in a vacuum or by extracting with absolute alcohol. Oxygen must be excluded in all operations, and the solutions must be kept alkaline to prevent decomposition [see, e.g., Badische Analin and Soda Fabrik patent, D.P. 148125 (1902); Jellinek, Z. anorg. Chem., 70, 93 (1911)]. The presence of a small amount of starch or gum in the dried salt acts to protect it to some extent from atmospheric oxidation. The alcoholdried salt can be obtained nearly pure, the purity ranging from 96 to

98%; the commercial product is ordinarily about 80% pure. Reducing agents other than zinc have been used in the preparation; among these may be mentioned sodium amalgam, suspensions of metallic sodium in alcohol-ether mixtures, and zinc amalgam. Hyposulfites may also be prepared electrolytically [Jellinek, Z. phys. Chem., 93, 325 (1919)], but the process has not yet become of industrial importance.

Anhydrous sodium hyposulfite reacts much less rapidly with oxygen than does the dihydrate, and for this reason the former is the salt ordinarily manufactured. Aqueous solutions of Na₂S₂O₄ absorb oxygen very rapidly according to the reaction [Nicloux, Compt. rend., 196, 616 (1933)],

$$S_2O_4^- + O_2 + H_2O = HSO_4^- + HSO_3^-$$

and the dihydrate, Na₂S₂O₄·2H₂O, is oxidized rapidly to pyrosulfite.

$$Na_2S_2O_4\cdot 2H_2O + \frac{1}{2}O_2 = Na_2S_2O_5 + 2H_2O$$

The physical properties of sodium hyposulfite have received moderate attention. At 20° the solubility of $Na_2S_2O_4 \cdot 2H_2O$ is 21.8 g per 100 g of water; at 1°, 100 g of saturated solution contains 12.85 g of $Na_2S_2O_4$. At 52° both the dihydrate and the anhydrous salt are present in equilibrium with the solution, which contains 2.8 mole per cent of salt. There is an eutectic at -4.58° where solution, ice, and the dihydrate are present together.

Measurements of the freezing-point lowering show the true formula of the hyposulfite ion to be $S_2O_4^-$ [see Jellinek, Z. anorg. Chem., 70, 119 (1911)]. That the experimental values of the molecular weight are not constant and are less than the formula weight is probably due to imperfections of the solutions. The molal conductances were also measured by Jellinek, who found $\Lambda_{\infty} = 240$ at 25°.

Na ₂ S ₂ O ₄ (g/100 g H ₂ O)	Freezing Temperature (°C)	Molecular Weight (calc.)
1.05	-0 28	139
3.19	84	140
5.04	-1.30	144
11.23	-2.66	156
17.67	-4.17	157
19.27	-4.48	159

Formula weight $Na_2S_2O_4 = 174$.

The ionization constants of $H_2S_2O_4$ were determined by Jellinek by the device of adding equivalent amounts of HCl to solutions of $Na_2S_2O_4$ and then measuring the conductance of the resulting mixture. The first hydrogen ionizes practically completely, and for the second

$$\frac{(H^+)(S_2O_4^-)}{(HS_2O_4^-)} = 3.5 \times 10^{-3} \text{ at } 25^\circ$$

It has been remarked that solutions of sodium hyposulfite decompose slowly according to the equation

$$2S_2O_4^- + H_2O = 2HSO_3^- + S_2O_3^-$$

The rate of this reaction was studied by Jellinek [Z. phys. Chem., 93, 325 (1919)] both in the absence and in the presence of added bisulfite. At 60°, solutions containing only $Na_2S_2O_4$ (5 g/100 g H_2O) decomposed according to a second-order rate equation:

$$-\frac{d(S_2O_4^{-})}{dt} = k'(S_2O_4^{-})^2$$
$$k' = 0.40 \text{ mole}^{-1} \text{ min}^{-1} \text{ at } 60^{\circ}$$

In the presence of added bisulfite ion, the rate of the decomposition could be measured at lower temperatures (0-32°), and under these conditions the rate equation takes the form:

$$-\frac{d(S_2O_4^-)}{dt} = k(S_2O_4^-)^2(HSO_3^-)^2$$

This relation suggests that the ion $\mathrm{HS}_2\mathrm{O}_4^-$ is the reactive species, but further analysis of Jellinck's results and additional experiments will be required before a satisfactory mechanism can be given.*

The hydrosulfites are noteworthy for their strength as reducing agents. An alkaline solution of Sb^{III} , Bi^{III} , or Pb^{II} containing some KCN will, on adding $Na_2S_2O_4$ and warming, precipitate the metals. Cupric copper is reduced to metallic copper, and solutions of Ag^I give metallic silver with hyposulfites. Iodine and iodate in neutral solution bring about oxidation to the sulfate stage, but permanganate produces some dithionate as well as sulfate. For analytical purposes, an excess of cupric ammonia sulfate solution is added to the hyposulfite; and after solution and reaction (rapid) are complete, the excess $Cu(NH_3)^{++}_4$ is titrated with standard $Na_2S_2O_4$ until the blue solution becomes colorless [Jellinek, Z. anorg. Chem., 70, 98 (1911)]. The reaction involved is:

$$2Cu(NH_2)_4^{++} + S_2O_4^{-} + 2H_2O = 2Cu^+ + 2SO_3^{-} + 4NH_4^+ + 4NH_3$$

Methylene blue may be used as an additional indicator in this method, since it is decolorized by hyposulfites. Knecht and Hibbert [Ber., 40,

^{*} Preliminary experiments by Mr. Malcolm Mason at the California Institute indicate that the reaction is first-order with respect to dithionite and to bisulfite and is independent of the sulfite ion concentration.

3819 (1907)] have devised an ingenious method of analysis in which an excess of standard methylene blue is added to the hyposulfite and the excess dye then determined with titanous chloride or sulfate. Still another analytical method depends on the reduction of ferricyanide to ferrocyanide, an outside indicator of Fe⁺⁺ being used to determine the endpoint. Iodimetric methods for the estimation of hyposulfites have also been used.

In turn, sodium hyposulfite solutions may be used as analytical reducing agents; they may also be used in gas analysis for the absorption of oxygen.

Hydrogen peroxide is reduced to water by hyposulfites. HNO₂, but not alkaline nitrites, react to form NO, NO₂, and H₂O; HAsO₂, in acid or alkaline solution, is reduced to metallic arsenic. The reaction with titanium compounds appears to be reversible:

$$2\text{TiO}^{++} + \text{S}_2\text{O}_4^- = 2\text{Ti}^{+++} + 2\text{SO}_3^-$$

The reaction between $S_2O_4^-$ and H_2S is said to take place rapidly according to the equation:

$$S_2O_4^- + H_2S = S_2O_4^- + S + H_2O_4^-$$

With regard to the structure of the hyposulfite ion, there is little doubt but that the two sulfur atoms are bonded together and that each sulfur atom is bonded to two oxygen atoms.

But further structural details await crystal-structure determinations.

The name "dithionous acid" has been suggested to replace the more common term "hyposulfurous acid" in order to conform to the customary rule of applying the name "hypo... ous" to that acid in which each atom of the acid-forming element is less oxidized by two valency stages than the corresponding atoms in the acid to which the name ending in "-ous" is given (compare chlorous with hypochlorous acid; nitrous with hyponitrous acid). The prefix "hypo" (from the Greek prefix for under) does not, however, always indicate an oxidation number lower by two. For example, phosphorus in hypophosphoric acid, $H_4P_2O_6$, has a valency one less than in phosphoric acid, H_4PO_4 [see the report of the Committee for Inorganic Chemical Nomenclature, J. Am. Chem. Soc., 63, 889 (1941)].

Dithionic acid, H₂S₂O₆

Since aqueous solutions of free dithionic acid tend to decompose slowly if heated, it is customary to carry out the preparations of the salts rather than that of the acid itself. An electrolytic method has been investigated by Essin [Z. Electrochem., 34, 78 (1928)] in which a solution containing Na₂SO₃ and not more than 0.1% NH₄F is electrolyzed between previously ignited platinum electrodes. The current yield does not exceed 50% and is more often around 40%, the remainder of the current being consumed in the oxidation of sulfite to sulfate.

The usual chemical method of preparation consists in passing sulfur dioxide into an aqueous suspension of manganese dioxide; the addition of SO₂ is continued until nearly all of the manganese dioxide is dissolved. Best results are obtained if the mixture is agitated frequently or continuously and if it is initially cool; the yield drops off if the mixture is warmed. Both sulfate and dithionate are formed in the reaction, which is approximately expressed by the equation:

$$2MnO_2 + 3SO_2 = MnSO_4 + MnS_2O_6$$

In reality, two main reactions appear to take place simultaneously, one producing dithionate and the other sulfate. A low temperature, around 0°, favors the formation of dithionate, and yields of over 90% are obtainable [compare J. Meyer and Schramm, Z. anorg. Chem., 132, 226 (1924)]. The ions present in the filtered reaction mixture are Mn⁺⁺, S₂O₆, SO₄, and some H₂SO₃, and the first of these can be removed by the addition If Ba(OH)₂ is the alkali used, the manganese, sulfate, and sulfite are precipitated, and the filtered solution contains then only Ba⁺⁺, S₂O₆, and OH⁻. Excess barium hydroxide is removed by treating with just enough sulfuric acid and filtering. The resulting solution may be crystallized to obtain the colorless, soluble salt, BaS₂O₆·2H₂O. barium salt may be converted to the salts of other metals by well-known methods. Aqueous solutions of the acid result when the barium salt in solution is treated with an equivalent amount of sulfuric acid. preparation of the sodium salt can be made somewhat more direct in that one needs only to shake a mixture of aqueous NaHSO₃ and finely powdered MnO₂ until reaction is complete and then evaporate the filtered solution until the colorless Na₂S₂O₆·2H₂O crystallizes out [Sihvonen, Z. phys. Chem., 20, 276 (1923)].

A number of other oxidizing agents will convert sulfurous acid solutions partially to dithionate, among the important agents being KMnO₄, Fe(OH)₃, Fe⁺⁺⁺, Co(OH)₃, Ni(OH)₃, Ce(SO₄)₂, Ru(SO₄)₂, and H₂O₂, but this does not close the list. Indeed, an oxidizing agent that will not produce at least traces of dithionate is rare, and it is for this reason that a number of apparently attractive oxidimetric methods for the analysis of sulfites fail to yield quantitative results.

The solutions of dithionic acid are strongly acidic, there being no indication that the acid is in any way weak. The equivalent conductance at infinite dilution is $\Lambda_{\infty}=437.3$ ohm⁻¹ at 25°, while that for a 0.025 n

solution is 392 ohm⁻¹ and for a 0.5 n solution is 360 ohm⁻¹ [Ostwald, Z. phys. Chem., 1, 106 (1887); Hertlein, Z. phys. Chem., 19, 287 (1896); for the conductivity of Na₂S₂O₆ solutions, see Watkins and Jones, J. Am. Chem. Soc., 37, 2629 (1915)]. Moreover, no acid salts of the dithionates are known. Until further evidence to the contrary appears, it must be assumed that both hydrogens in dithionic acid ionize freely and to about the same extent, and that, therefore, the acid is strong and dibasic. Measurements of the freezing-point lowering in solutions of barium and sodium dithionate [J. Meyer, Ber., 34, 3606 (1901)] throw little light on the ionization of dithionic acid; indeed, one can only conclude that the acid is dimeric and not monomeric, (HSO₃), a point that remained in doubt at one time. (Cf. the few but significant experiments of Hägg [Z. phys. Chem., 18B, 199 (1932)], who could find no inflections in the electrometric titration curves for dithionates, and in addition confirmed the dibasic character of the acid by freezing-point experiments with dilute solutions of K2S2O6.)

Dilute solutions of dithionic acid do not decompose at room temperatures at an appreciable rate; but when attempts are made to concentrate the acid, decomposition according to the reaction

$$H_2S_2O_6 = H_2SO_4 + SO_2$$

prevents the preparation of solutions having a specific gravity much greater than 1.347. Stamm and Adolf [Ber., 67, 726 (1934)] evaporated solutions at 25° and 15 mm pressure and obtained a $1 H_2 S_2 O_6 + 15 H_2 O_6$ mixture.

If dilute solutions of acidified dithionates are warmed to about 50° or higher, the rate of decomposition becomes measurable. The experimentally determined rate equation is [Yost and Pomeroy, J. Am. Chem. Soc., 49, 703 (1927)]:

$$-\frac{d(S_2O_6^-)}{dt} = k(H^+)(S_2O_6^-), \qquad k = 0.16 \text{ at } 80^\circ \qquad k \approx 0.003 \text{ at } 50^\circ$$

the time being expressed in minutes and concentrations in moles per liter of solution. At high acid concentrations $(H_2S_2O_6+HCl\ or\ HClO_4),$ $(\Sigma H^+)>0.6$ n, the rate of decomposition becomes considerably greater than that predicted by this equation. The mechanism of the decomposition at all acidities is not at all certain, but for low acid concentrations one may consider as reasonable that the ion $HS_2O_6^-$ is the reactive species; and since its (low) concentration is determined by the (H^+) , the rate equation found by experiment would be a consequence.

$$H^+ + S_2O_6^- = HS_2O_6^-$$
 (rapid and reversible)
 $HS_2O_6^- + H_2O = H_2SO_3 + HSO_4^-$ (rate-determining step)

This kind of mechanism is favored by Stamm and Adolf [Ber., 67, 726 (1934)] and by J. Meyer [Z. anorg. Chem., 222, 337 (1935)], but, while considered, was not completely accepted by Yost and Pomeroy because the validity of the mass law, in the solutions of strong electrolytes present at rather high concentrations, seemed doubtful.

Dithionic acid reacts but slowly, if at all, with most oxidizing agents. It has been shown that at 50° the rate-determining step in the oxidation by dichromate, bromate, and iodate is the decomposition discussed above, the H₂SO₃ formed then reacting rapidly with the oxidizing agent [Yost and Pomeroy]. At room temperatures, KMnO₄, HClO, Cl₂, Br₂, I₂, and many other strong or moderately strong oxidizing agents have no effect on dilute dithionate solutions. Any apparent oxidation takes place as a consequence of the decomposition reaction. Both dithionic acid and its salts also resist reduction, as is evidenced by the fact that arsenites and stannous tin do not react with them. Zinc or sodium amalgam brings about reduction to sulfite and, eventually, to hyposulfite.

The salts of dithionic acid are quite stable and do not decompose on heating until a temperature of about 200° is reached. The decomposition then takes place quantitatively according to the equation [Litterscheid and Lowenheim, *Chem. Ztng.*, **48**, 881 (1924)]:

$$Na_2S_2O_6 = Na_2SO_4 + SO_2$$

Aqueous solutions of the salts do not decompose even on continued boiling; but on heating for several hours at 150-180° in a closed tube, complete decomposition takes place, with the formation of sulfate, sulfur dioxide, and sulfur.

All of the known salts of dithionic acid are soluble in water. The following table shows the solubilities of some of the more important salts at 20° in g of anhydrous salt per 100 g of solution [de Baat, Rec. trav. chim., 45, 237 (1926)].

TABLE 102 SOLUBILITIES OF SOME DITHIONATES IN WATER AT 20°

	Sol.		Sol.
Na ₂ S ₂ O ₆ ·2H ₂ O	15.12 (100 g H ₂ O)	CaS ₂ O ₆ 4H ₂ O	20 25
$K_2S_2O_6$ Ba S_2O_6 ·2 II_2O	6.23	MgS ₂ O ₆ 6H ₂ O Ag ₂ S ₂ O ₆ ·2H ₂ O	33.91 ≈ 50

CHAPTER 11

Hydrogen Peroxide, Hydrogen Persulfides, and the Peroxyacids. Metallic Peroxides and Superoxides. Polythionic Acids

Preparation of hydrogen peroxide

Solutions of hydrogen peroxide may be conveniently prepared in any one of the following ways. (1) Barium oxide is heated at 500-600°C in an atmosphere of oxygen, whereupon the reversible reaction

$$2BaO + O_2 = 2BaO_2$$

takes place [Hildebrand, J. Am. Chem. Soc., 34, 246 (1912)]. The barium peroxide is then decomposed with an acid, and this results in the formation of a solution of hydrogen peroxide and a barium salt. If sulfuric or carbonic acid is used, the barium sulfate or carbonate precipitates, and the peroxide alone remains in solution. When carbonic acid is used, the procedure consists in stirring powdered BaO₂ with water and passing a rapid stream of carbon dioxide into the stirred mixture. To ensure that the hydrogen peroxide solutions are free from impurities, the first solution should be distilled off; the distillate contains the hydrogen peroxide. Solutions of hydrogen peroxide may be concentrated to some 30% H₂O₂ by fractional distillation at atmospheric pressure. (2) Sodium peroxide, prepared by passing oxygen over heated metallic sodium or by heating sodium monoxide, Na₂O, in dry air, is slowly added in equivalent amount to cooled (0°), 20% sulfuric acid, and, after decanting from the precipitated Na₂SO₄·10II₂O, the solution is distilled under reduced pressure. (3) A strong solution of ammonium or potassium bisulfate, KHSO₄, containing hydrofluoric acid (20%) or small amounts of K4Fe(CN)6, is electrolyzed. The resulting product consists of solid and dissolved potassium peroxydisulfate, K₂S₂O₈, but this may be decomposed to peroxymonosulfuric acid, H₂SO₅, and eventually hydrogen peroxide by the addition of sulfuric acid. The resulting solution is distilled as before.

Pure, anhydrous hydrogen peroxide is somewhat more difficult to prepare than the dilute or concentrated solutions. As noted above, fractional distillation at atmospheric pressure yields a product containing at most 30% H₂O₂, since continued distillation is accompanied by extensive decomposition and loss of peroxide. By carrying out the fractionation on the 30% product at low pressures, about 10 mm Hg, and low

temperatures, 60°, solutions containing 90% or more of peroxide can be obtained. It is essential in this operation that impurities be absent and that the glassware used be carefully cleaned before undertaking the distillation. It is said to be helpful to "acidify" the glass by passing a stream of dry HCl followed by dry air through the apparatus, but experience has shown that this is not necessary with Pyrex glass. The ordinary impurities, HCl, K_2SO_4 , and HNO₃, are removed by making the 30% peroxide slightly alkaline and then distilling; the distillate will, by this procedure, be freed from any non-volatile salts. This distillate is fractionated at low pressure and temperature, 60°, and the less volatile hydrogen peroxide is recovered at concentrations of 90% or greater.

The 90% solution can, to be sure, be further concentrated by distillation, but a point is reached (about 98%) where the rate of decomposition is large, so that further concentration becomes impracticable or impossible. Further purification is attained by fractional crystallization. The 90% (or more concentrated) solution is cooled to the freezing point (about -15°), when crystals of hydrogen peroxide separate out. By separating the crystals, melting, and partially freezing again, a product is eventually obtained which is pure or very nearly pure hydrogen peroxide. The method of fractional crystallization for the purification of hydrogen peroxide was worked out by Maass and Hatcher [J. Am. Chem. Soc., 42, 2548 (1920)], and by properly and systematically combining mother liquors and solids they were able to attain good yields of the anhydrous material.

A modified peroxysulfate method has been used by Fehér [Ber., 72B, 1789 (1939)] to prepare small amounts of concentrated D₂O₂ (99.7%). Heavy water vapor, D₂O, is passed into a mixture of D₂SO₄ and K₂S₂O₈ maintained at 70–90°. A mixture of D₂O and D₂O₂ distills over and is fractionated. The distillate is passed back into the D₂SO₄ and K₂S₂O₈ mixture, where its D₂O₂ concentration is enriched. By this cyclic process the expensive heavy water is fully utilized.

Preparation of hydrogen persulfide

The method of preparation of hydrogen persulfide, H₂S₂, is similar to the chemical methods for the preparation of hydrogen peroxide, in that a polysulfide is decomposed with a strong acid. In both cases the principle of the methods depends on the fact that the substances are weak acids; consequently, when a stronger acid is added to the salt, the undissociated persulfide or peroxide is formed.

$$Na_2S_2 = 2Na^+ + S_2^-$$

 $S_2^- + 2H^+ = H_2S_2$

In fact, the acids H₂S₂ and H₂O₂ are so weak that their salts hydrolyze extensively, and aqueous solutions of them are quite alkaline.

The preparation of hydrogen persulfide has been investigated by Butler and O. Maass [J. Am. Chem. Soc., 52, 2184 (1930)], and they find that the yields depend on the composition of the sodium polysulfide used; a mixture of the composition corresponding to Na₂S_{2.5} gives the highest yields. Their method of preparation is as follows: a mixture of 150 g of flowers of sulfur, 725 g of solid Na₂S, and 500 cc of distilled water is heated on a water bath until solution is complete, when 1300 cc of additional distilled water are added. One liter of the final solution is added slowly from a dropping funnel to 1500 cc of 1.19 c.p. hydrochloric acid; the acid is maintained at -15° and is stirred continually during the addition of the sulfide. The hydrogen persulfide forms an emulsion with the acid mixture, but this separates into two liquid layers after three hours' standing, the hydrogen persulfide being in the lower, oil-like. yellow layer. The yellow oil is washed with distilled water, solid phosphorus pentoxide is added, and after filtering, the oil is fractionally distilled at 120° under a pressure of 10 mm; the yellow oil consists of H₂S₂ and H₂S₃, and these two substances are separated in the distillation. Even at this temperature of distillation there is appreciable decomposi-

Table 103 THE PHYSICAL PROPERTIES OF $\rm H_2S$, $\rm H_2S_2$, $\rm H_2O$, AND $\rm H_2O_2$

Substance	Melting Point (°C)	Boiling Point (°C)	Heat of Evaporation (cal) ^a (Trouton's Constant)	Heat of Fusion (cal)	Density of Liquid		
H_2S	-85.49	-60.33	4,463 (b.p.) (21.0)	568.1	0.964(-60°)		
H_2S_2	-89.6	70.7 ± 5	8,544 (24 9)	1800	1 3339 (20°)		
H ₂ O	0.00	100.0	9,730 (b.p.) (26.1)	1437	.9982 (20°)		
H ₂ O ₂	-0.89	151.4	11,610 (27 4)	2500	1 4418 (20°)		
			!				

Substance	Viscosity	Surface Tension (dynes/cm)	Heat Capac- ity of Liquid (cal/mole/ deg)	Dielectric Constant	ΔF_{298}° of Formation (cal)	
H ₂ S H ₂ S ₂ H ₂ O H ₂ O ₂	0.01054 (18°) .01310 (18°)	28.2 (b.p.) 38.1 (b p.) 75.5 (0°) 78.7 (0°)	16 32 (b.p.) 22.1 (b.p.) 18.0 (18°) 19.7 (18°)	8.37 (-78.7°) 	-7,865 -56,693 -28,230	

^c All thermochemical and thermodynamic constants refer to one formula weight of the substance in question.

tion of the persulfides into H_2S and sulfur. The yield is 36% H_2S_3 and 11% H_2S_2 when calculated from the amount of yellow oil distilled. The trisulfide may be decomposed ("cracked") slowly in the temperature range 75° to 125°, and by this procedure about one-half of the original trisulfide is recovered in the form of the disulfide.

The disulfide is further purified by distilling from P_2O_5 under vacuo in "acidified" quartz vessels. Glass apparatus may be used if "acidified," but the least decomposition results if quartz is employed.

Other persulfides of hydrogen !

The hydrogen trisulfide H_2S_3 , which is obtained as a by-product in the preparation of H_2S_2 , is a mobile, yellow, oily liquid with an odor

Fig. 70. The Vapor Pressure-Composition Diagram for the System $\rm H_2O-H_2O_2$ at 30° and $60^\circ \rm C$.

similar to that of camphor and sulfur monochloride. It solidifies to a glass at about -50° ; attempts to distill it without decomposition, even at low pressures, have been unsuccessful [Walton and Parsons, J. Am. Chem. Soc., 43, 2539 (1921)]. The action of anhydrous formic acid on crystals of pure ammonium pentasulfide yields a thin, clear, yellow oil which has the composition H₂S₅. The molecular weight found in benzene solution was 152.5 (formula weight, 162); the oil could not be distilled without decomposition [Mills and Robinson, J. Chem. Soc., 2326, (1928)]. All the persulfides dissolve sulfur readily. From a break in the solubility curve in both H₂S₂ and H₂S₃. Walton and Whitford concluded that the compound H₂S₆ exists

below -1.45° [J. Am. Chem. Soc., 45, 601 (1923)]. The persulfides all dissolve readily in organic solvents such as benzene, chloroform, and ether, although impurities catalyze the decomposition. Their instability has so far prevented any accurate measurements of physical properties.

Physical properties of H₂O₂ and H₂S₂

The physical properties of hydrogen persulfide and peroxide are best exhibited together and along with those of hydrogen sulfide and water.

Tables 103 and 104 and Figures 70 and 71 contain the known data [H₂S₂, Butler and Maass, J. Am. Chem. Soc., 52, 2184 (1930); H₂O₂, references in the table; H₂S and H₂O, see Chapter 8].

The O—O distance in hydrogen peroxide has been found by electron diffraction to be 1.47 Å IP. A. Giguere and V. Schomaker, unpublished

THE PHYSICAL PROF		ous H ₂	O2	Во				E (extrap.)	
t(°C)		-10	,	C)	10		20	
ρ (g/cc)			1.475		1.4649		52	1.442	
Density of solid, ² 1.643 g/cc (-4 Vap	to -8°	•	Liq	ıid³					
t(°C)	0 25	40	5	0	60	70	80	90	
p _{mm} 0.8 1.	5 2.1	5.7	10	0.4 18.1		29.7	47.4	7.4 71.5	
$\log_{10} p_{\mathrm{m}}$	ım = -	2534.7 T	+ 8	.853		<u> </u>	!		
	Visco	osity,² η	1						
t(°C)			0.04		11.90		20	19.60	
η (centipoise)	1.8	1.828		456	1.4	47	1.272		
	Surface	Tensio	n,² γ	,		-'			
t(°C)	0.2	6.	2	11.0		13.9		18 2	
γ (dynes/cm)	78.73	77.	79	77	. 51	76.	47	75.94	

Specific heat, 2 liquid, 0.579 cal/g (0-18°); solid, 0.470 cal/g

Heat of vaporization, 2 326 cal/g. Heat of fusion, 4 79 cal/g

Heat of decomposition, 5 $H_2O_2(l) = H_2O(l) + \frac{1}{2}O_2(g, 1 \text{ atm})$, $\Delta H = -23,450 \text{ cal at } 20^\circ$ Dipole moment, 4 2.1 \times 10⁻¹⁸ e.s.u.

Dielectric constant, 5 93.7 at 0°C

Refractive index, 2 1.4139 at 22°C

Magnetic susceptibility, $6 - 0.88 \times 10^{-6}$ cgs units

Moments of inertia, 7 2.78 \times 10⁻⁴⁰ g cm², smallest; 33.9 \times 10⁻⁴⁰ g cm², harmonic mean of other two.

TABLE 104 (Cont.) Aqueous Solutions of H₂O₂

	Aquec	ous So	iution	8 0	I II 3	J ₂					
% H ₂ O ₂	00	10	20	30	40	50	60	70	80	90	100
Mole fraction H ₂ O ₂	0.00	. 055	117	185	. 265	.346	. 443	. 553	. 679	. 826	1.00
	1	Densit	ies² a	t 18)°	•					
% H ₂ O ₂			0.00)	22.33	56.	70 7	3.44	90.	42 1	00.00
ρ, g/cc			0.998	36 1	.081	5 1.22	270 1	. 3071	1.39	953 1	. 4442
		Boili	ng Poi	nt8							
Mole fraction H ₂ O ₂	0.0	0.1	0.2		0.3	0.4	0.5	0.	6	0.7	0.8
Boiling point (extrap.) (°C).	0.9	102.5 1.00 150.5	1	6 10	09.7	114.5	120.	1 126	5.1 13	32.8	139 2

¹ Cuthbertson, Matheson, and Maass, J. Am. Chem. Soc., 50, 1120 (1928)

- ² Maass and Hatcher, *ibid.*, **42**, 2548 (1920)
- ³ Maass and Hiebert, *ibid.*, **46**, 2693 (1924)
- ⁴ Linton and Maass, Can. J. Res., 7, 81 (1932)
- ⁵ Matheson and Maass, J. Am. Chem. Soc., 51, 674 (1929)
- ⁶ Maass and Hatcher, ibid., 44, 2472 (1922)
- ⁷ Zumwalt and Giguere, J. Chem. Phys., 9, 458 (1941)
- ⁸ Giguere and Maass, Can. J. Res., 18B, 181 (1940)

research]. Calculations and spectroscopic studies have shown that there is one hydrogen on each oxygen and that the molecule cannot be linear; both the O—O—H angle and the angle between the O—O—H planes are about 100° [Penney and Sutherland, J. Chem. Phys., 2, 492 (1934); Fehér, Ber., 72B, 1778 (1939); Zumwalt and Giguere, J. Chem. Phys., 9, 458 (1941)]. In H₂S₂ the S—S distance has been found to be 2.05 Å. This value is in good agreement with the value 2.08 Å expected for a S—S single bond and in poor agreement with the value 1.90 Å expected for a double bond. The hydrogens are thus most probably on different sulfur atoms; the angles would be about the same as for H₂O₂ [Stevenson and Beach, J. Am. Chem. Soc., 60, 2872 (1938)].

Both hydrogen peroxide and persulfide are characterized by a large thermodynamic tendency to decompose into water and hydrogen sulfide and free oxygen and sulfur, respectively. In both cases, and in the absence of other catalysts, the decomposition is more rapid in the presence of alkalis than in an acidic environment. This explains why, in the preparation, the vessels employed must be "acidified." Pure hydrogen peroxide will decompose with explosive violence if dropped into a vessel heated to 153° or greater; at lower temperatures the decomposition proceeds more or less quietly.

The fact that pure hydrogen peroxide has properties much like those of water suggests that it may act as an ionizing solvent. It turns out that some salts, NaF, KCl, and K₂SO₄, are more soluble in pure hydrogen peroxide than in water, and the equivalent conductances (in tin vessels) of KCl solutions are of the same order of magnitude in both solvents. At 0° potassium chloride does not react with pure hydrogen peroxide and

Fig. 71. The Phase Diagram for the System H₂O—H₂O₂. The dashed lines show the average composition of the solid phase (which is a solid solution) when approximately 20% of the melt has been crystallized.

 $\Lambda_0=65.5$, the value in aqueous solution at the same temperature being 81.5. The degree of dissociation of KCl is nearly the same in both solvents at the same concentrations. The difference in Λ_0 for potassium chloride in the two solvents is in accord with the difference in their viscosities; in fact, $65.5 \times 0.0131 = 0.858$ and $81.5 \times 0.0105 = 0.855$ (see Table 104 for viscosities)—that is, Walden's Rule, $\Lambda'_0\eta_1 = \Lambda''_0\eta_2$, applies in this case, although it is deemed to be strictly valid only for ions of large diameters.

Hydrogen persulfide is doubtless characterized by a low dielectric constant, and hence it will probably be a good solvent only for non-polar compounds; any salts that dissolve in it will probably ionize but little. Characteristic of hydrogen persulfide is its ability to dissolve sulfur: 60.9 g of sulfur will dissolve in 100 g H₂S₂ at 22.7°, and the solution is not accompanied by the formation of any H₂S₃.

The chemical properties of H₂O₂

Hydrogen peroxide is a weak acid. The pure substance has for its ionization constant $(H^+)(HO_2^-) = K \approx 1.55 \times 10^{-12}$; that is, the concentration of hydrogen ion is about 12 times that in pure water and is about 0.06 of that in dilute solutions of boric acid. It is doubtless due to its acidic nature that such compounds as $NH_3 \cdot H_2O_2$ are formed when ammonia is added to pure hydrogen peroxide. With some of the organic amines, oil-like compounds are formed having the formula $RNH_2 \cdot 2H_2O_2$ [Matheson and Maass, J. Am. Chem. Soc., 51, 674 (1929)].

The reactions involving hydrogen peroxide in aqueous solutions are very large in number and of considerable interest; they may be classified as follows: (1) reactions in which H_2O_2 is formed, (2) reactions of H_2O_2 to form complex substances (peroxyacids), (3) oxidation reduction reactions.

1. Hydrogen peroxide appears to be formed by the reduction of elementary oxygen and not by the oxidation of oxide oxygen (exceptions: BaO $+\frac{1}{2}O_2$, Na₂O $+\frac{1}{2}O_2$, and electrolysis of KHSO₄ solutions). That is to say, we may expect to find peroxide formed only in reactions of the type:

Reducing agent
$$+ O_2 = peroxide$$

Thus, when the alkali metals react with oxygen, when metals such as zinc are shaken with water containing dissolved oxygen, and when some reducing agents in aqueous solutions, for example, TiCl₃, are exposed to the action of air or oxygen, peroxide is formed. The reaction with titanous chloride solutions is very striking. The solutions are initially purple, the natural color of titanous ion; and when shaken vigorously in an atmosphere of oxygen, the intensity of the color diminishes, because TiO⁺⁺, a colorless ion, is formed in the oxidation reaction. When the purple color just vanishes, the solution suddenly becomes orange-yellow in color as the result of the formation of peroxytitanic acid, H₂TiO₄. The yellow color does not appear until after all of the titanous ion has disappeared, because hydrogen peroxide is rapidly reduced by that substance. The reactions are:

$$2\text{Ti}^{+++} \text{ (purple)} + O_2 + 2\text{H}_2\text{O} = 2\text{TiO}^{++} \text{ (colorless)} + \text{H}_2\text{O}_2 + 2\text{H}^+ \\ \text{ (slow)} \\ 2\text{Ti}^{+++} + \text{H}_2\text{O}_2 = 2\text{TiO}^{++} + 2\text{H}^+ \\ \text{TiO}^{++} + \text{H}_2\text{O}_2 + \text{H}_2\text{O} = \text{H}_2\text{TiO}_4 \text{ (yellow-orange)} + 2\text{H}^+ \text{ (rapid, reversible)} \\ \end{aligned}$$

Reactions of this sort are very suggestive in that they raise the following question: Do all reactions involving the reduction of elementary oxygen

give rise in the first step to the formation of peroxides? The answer is that peroxide is formed in some cases but not in others. Thus, the absorption of oxygen by the hemoglobin of the blood does not seem to be accompanied by the formation of any detectable peroxide. On the other hand, when benzaldehyde is exposed to the action of oxygen, a peroxide is known to be formed. The formation of peroxide in oxygen reduction reactions must, therefore, always be considered as a possibility, but it is not to be regarded invariably as an intermediate. The possibility that peroxide is a transitory intermediate and present, during the reduction of oxygen, at very small concentrations, must, naturally, be subjected to experimental test when feasible. Oxygen reactions are of great interest and importance in all fields of chemistry and deserve any attention given them.

2. When hydrogen peroxide is added to a solution of titanyl ion, TiO⁺⁺, the solution becomes yellow or yellowish-orange in color. The composition of the colored substance is not definitely known, but it is probably H₂TiO₄, peroxytitanic acid. Similarly, when hydrogen peroxide is added to acidified dichromate solutions, beautiful blue solutions result, and the blue substance may be extracted with ether, the ether solution also having a blue color of considerable beauty. The peroxychromic oxide formed has the formula CrO₅ [Schwartz and Giese, Ber., 65B, 871 (1932)]. Still another peroxyacid results when hydrogen peroxide is added to an acid solution of vanadic acid. Peroxyvanadic acid solutions have a pleasing red color, and the red compound has the formula HVO₄ [see T. Slater Price, Peracids, and Their Salts; W. Machu, Das Wasserstoffperoxyd und die Perverbingdungen].

The elements which form the complex peroxyacids are B, C, Ti, Zr, Sn, N, P, V, Cb, Ta, S, Cr, Mo, W, and U, that is, elements which are found only in the third to sixth groups of the periodic system. Simple peroxides are formed by several of the elements of the first and second groups.

In a number of cases, the structures of the peroxyacids are rather simple and may be regarded as oxyacids in which one or more oxide oxygens have been replaced by a peroxide group O—O— or —O—O—; that is, they are simply coordination compounds, and the central atoms are not to be regarded as in higher valence states than correspond to their position in the periodic system. Thus, for peroxyvanadic acid, the reaction can be written:

The formal structures of the peroxysulfuric acids would be:

and that of peroxyuranic acid, H2UO5:

The peroxychromic acids and salts do not appear to have such simple structures as those given above. One might expect them to have such formulas as H₂CrO₅ and H₂Cr₂O₈, corresponding to the peroxysulfates, but the molecular weights obtained for the substances C,H,NCrO, and (NH₄)₃CrO₈ indicate that the simplest compounds have the formulas CrO₅ and possibly H₃CrO₈ [Riesenfeld, Ber., 41, 3941 (1908)]. Thus, the molecular weight of C₅H₅NCrO₅ in the non-ionizing solvent benzene is found to be 211 ± 5, the formula weight being 211. Recent investigations by Schwartz and Giese [Ber., 65B, 871 (1932)] have established that the formula of the blue peroxychromate formed in acid solution may be represented simply by CrOs and that the formula HCrOs appearing in the older literature is incorrect. The compound formed when CrO₅ in ether solution is reacted with pyridine is C₅H₅N·CrO₅ and not C5H5NH·CrO5, as was formerly supposed. The blue ether solutions appear to contain the complex (C₂H₅)₂O·CrO₅. Magnetic susceptibility measurements on C5H5N·CrO5 show it to be paramagnetic with values of $\chi_{\rm m}$ ranging from 160×10^{-6} to 330×10^{-6} cgs units at 20° , these variable values being less than correspond to even a single unpaired electron spin (1300×10^{-6}) [Klemm and Werth, Z. anorg. Chem., 216, 127 (1933)]. It is believed that the small paramagnetism is due to chromium impurities (trivalent chromium) and that pure C₅H₅N·CrO₅ would be diamagnetic; in this event, hexavalent chromium is indicated, and the structural formula for CrO5 would be:

When ice-cold solutions of ammonium dichromate are treated with 30% hydrogen peroxide and potassium or thallium salts, the compound Tl₂Cr₂O₁₂ or K₂Cr₂O₁₂ separate out. The latter is diamagnetic [Klemm and Werth, *loc. cit.*], which suggests that the chromium is hexavalent in this compound also. The structural formula of the negative ion is probably:

In acid solution, the addition of peroxide to dichromates leads to the formation of the blue peroxychromic acids which have just been discussed. When 30% hydrogen peroxide is added to a cooled, alkaline chromate solution (50 cc of 25% ammonia solution, 25 cc of 50% chromic acid solution, and 75 cc of water are mixed, and to the mixture is added dropwise 25 cc 30% H₂O₂), a reddish-yellow solution that eventually becomes brownish-black is formed. On standing one or two hours, reddish-brown crystals separate which, after washing with alcohol and then ether, are found to be well crystallized and to have the composition corresponding to (NH₄)₈CrO₈. The sodium and potassium salts have also been prepared. These salts and their alkaline solutions are known as the red peroxychromates [see Riesenfeld, Wohlers, and Kutsch, Ber., 38, 1885 (1905); Riesenfeld, Z. anorg. Chem., 74, 48 (1912); Spitalsky, Ber., 43, 3187 (1910)]. According to the measurements of Tjabbes [Z. anorg. Chem., 210, 385 (1933)], the red peroxychromates are paramagnetic, the value of χ_m being 1182×10^{-6} cgs units at room tempera-This fact indicates that pentavalent chromium is present in these compounds.

Another fundamental type of peroxychromic acid is formed when the mixture, solution and crystals, obtained in the preparation of $(NH_4)_3CrO_8$ is heated to 50° and then cooled to 0°. Long, brown crystals of CrO_4 -3NH₃ separate out, and it has been established that the ratio of hydrogen to nitrogen is 3:1. This compound presents no structural difficulty. From chromium trioxide, CrO_3 , one may formally derive CrO_4 by replacing an oxide oxygen with a peroxide group. The three ammonias are thought to be bound as in ordinary coordination compounds [Riesenfeld, Ber., 41, 3536 (1909)]:

By reacting hydrogen peroxide in ethylacetate at 0° with an excess of CrO₃, a blue solution is obtained from which, on addition of ammonia,

unstable tan crystals of the composition $H_2CrO_5\cdot 2NH_3$ are precipitated [Nicholson, J. Am. Chem. Soc., 58, 2525 (1936)]. This may be still another type of peroxychromic compound, but it is likely that it is similar to the chromium tetroxide triammine of the preceding paragraph.

The peroxychromic acids in and out of solution are unstable and decompose slowly with the evolution of oxygen. This fact presents a stumblingblock in the way of closer investigation of these substances. The solid salts and coordination compounds are frequently explosive or inflame spontaneously in air.

Peroxymonosulfuric acid is formed when 30% hydrogen peroxide is added to concentrated sulfuric acid at room temperature. The reaction is reversible but somewhat slow. Preliminary measurements of the equilibrium constant have been made, but no accurate value can be given because of the uncertainties in the values of the activity coefficients of the reactants. The value $K = (H_2SO_4)(H_2O_2)/(H_2SO_5)(H_2O) \approx \frac{1}{3}$ was obtained by Ahrle [J. prakt. Chem., 79, 129 (1909)]. The reaction is

$$H_2O_2 + H_2SO_4 = H_2SO_5 + H_2O$$

Dilute solutions of H₂SO₅ decompose slowly at room temperatures and more rapidly at higher temperatures into hydrogen peroxide and sulfuric acid. The peroxymonosulfuric acid is distinguished, in sulfuric acid solution, from hydrogen peroxide by the reaction with permanganate; hydrogen peroxide is readily oxidized, while the peroxymonosulfuric is not affected. H₂SO₅ also reacts much more rapidly with iodide than does hydrogen peroxide [see, e.g., Price, J. Chem. Soc., 89, 54 (1906); Willstatter and Hauenstein, Ber., 42, 1839 (1909)].

Anhydrous peroxydisulfuric acid is formed when chlorsulfonic acid, HSO₃Cl, and anhydrous hydrogen peroxide are mixed [D'Ans and Friedrich, Z. anorg. Chem., 73, 345 (1912)].

$$2\mathrm{HSO_3Cl} + \mathrm{H_2O_2} = \mathrm{H_2S_2O_8} + 2\mathrm{HCl}$$

The anhydrous acid forms small white crystals which melt at 65° with decomposition. H_2SO_5 is also formed in the reaction and is a beautifully crystalline solid melting without decomposition at 45° . When kept dry, both of the anhydrous peroxysulfuric acids decompose only slowly; but when decomposition is once started, the rate increases.

Peroxydisulfuric acid solutions are commonly prepared by the electrolysis of bisulfates, the best yields being obtained with the ammonium and potassium salts. It is supposed that the HSO₄ is discharged at the

anode to form, momentarily, HSO_4 , and this combines immediately with another discharged ion to form $H_2S_2O_8$. This mechanism may be a helpful aid to the memory, but it cannot be regarded as having been established. For reasons not well understood, the yield of peroxydisulfates is increased nearly twofold if hydrofluoric or hydrochloric acid or K_4Fe -(CN)₆ is added to the electrolyte. The yield also increases with overvoltage, and the added substances promote high overvoltages. High current densities lead to high yields, at least in the electrolysis of ammonium bisulfate; 300 amp/cm² will result in a current yield of 70%, providing the electrolyte is kept acid. Bright platinum electrodes lead to higher yields than do platinized ones, the difference in overvoltage again being responsible for the difference in yield.

Potassium peroxydisulfate is only moderately soluble in water, $4.08 \text{ g/100 g H}_2\text{O}$ at 40° , and consequently this salt precipitates out as it forms in the electrolytic process. The salt is crystalline and, at room temperatures, does not decompose. It is an article of commerce. Its aqueous solutions are neutral, and the acid itself is therefore strong. On heating to 70° or higher, aqueous solutions of the acid or the salt slowly decompose. The rate of decomposition in solution has been measured and found to be first-order with respect to peroxydisulfate ion, that is,

$$S_2O_8^- + H_2O = 2HSO_4^- + \frac{1}{2}O_2$$

 $-\frac{d(S_2O_8^-)}{dt} = k(S_2O_8^-)$

Temp. (°C)	!	70	80	90	
k (min ⁻¹)	 	0 0016	0 0055	0 0161	

The rate of decomposition increases with the acid concentration of the solutions [Green and Masson, J. Chem. Soc., 97, 2083 (1910)].

The ammonium salt is much more soluble than the potassium salt, the solubility of the former being 58.2 g/100 g H₂O at 0°. At room temperatures the ammonium salt does not decompose; it too is an article of commerce. On heating it or its solutions, there result both decomposition and the oxidation of the ammonium ion to nitrogen and oxides of nitrogen.

In strong sulfuric acid solutions, peroxydisulfuric acid or its salts hydrolyze to give the monoacid

$$S_2O_8^- + H_2O = SO_5^- + SO_4^- + 2H^+$$

The rate of hydrolysis increases with increase in temperature. On dilution of the concentrated sulfuric acid, the monoacid in turn hydrolyzes

extensively to hydrogen peroxide and sulfuric acid, and the former may be distilled from the solution. The series of reactions, electrolysis of bisulfates, hydrolysis to the monoacid and then to hydrogen peroxide, followed by distillation, form the basis of a commercial method for the manufacture of hydrogen peroxide solutions.

Peroxydisulfates are very strong oxidizing agents, the normal electrode potential being about two volts. Notwithstanding this great oxidizing strength, many of the oxidation reactions are slow, a characteristic that is another good illustration of the fact that reactions may have a strong tendency to take place while their rates may be slow. All oxidation reactions of peroxydisulfates are not slow, however; for example, the reaction with ferrous iron

$$S_2O_8^- + 2Fe^{++} = 2SO_4^- + 2Fe^{+++}$$

is so rapid that measurements of its rate are difficult; the reaction is second-order [Saal, Rec. trav. chim., 47, 385 (1928)].

$$-\frac{d(S_2O_8^-)}{dt} \approx 500 \ (S_2O_8^-)(Fe^{++})$$
 (13°C; conc. in moles/liter)

The reaction with cyanide ion is moderately rapid, and, if excess ammonia is present, just 75% of the cyanide is oxidized to carbamide; the reaction is useful in the quantitative estimation of cyanides.

Thiosulfate ion is oxidized slowly to tetrathionate if the peroxydisulfate is present in excess; if thiosulfate is in excess, trithionates are also formed. This statement is true only for concentrated solutions; if the solutions are dilute, only tetrathionate is formed. In dilute solutions, the rate of the reaction

$$S_2O_8^- + 2S_2O_3^- = 2SO_4^- + S_4O_6^-$$

is independent of the concentration of thiosulfate and first-order with respect to $S_2O_8^-$ [King and Steinbeck, J. Am. Chem. Soc., 52, 4779 (1930)].

$$-\frac{d(S_2O_8^-)}{dt} = k(S_2O_8^-)$$

The value of k depends on the purity of the water and the chemicals used in making up the solutions, a fact that suggests that the reaction is catalyzed. Several substances do act as catalysts for the reaction; for example, Cu⁺⁺ has a strong effect, Fe⁺⁺⁺ somewhat less, and I⁻ less still. The mechanism of the catalyzed reactions is as follows: the thiosulfate reduces the catalyst, cupric ion, for example, to Cu⁺, and this ion, or the complex ion Cu(S₂O₃), is oxidized to cupric ion by the peroxydisulfate

$$S_2O_8^- + 2Cu^+ = 2SO_4^- + 2Cu^{++}$$
 (slow)
 $2Cu^{++} + 2S_2O_3^- = 2Cu^+ + S_4O_6^-$ (rapid)

The reaction catalyzed by iodine is of the same type,

$$S_2O_8^- + 2I^- = 2SO_4^- + I_2$$
 (slow)
 $I_2 + 2S_2O_3^- = 2I^- + S_4O_6^-$ (rapid)

From the results of measurements, it is possible to determine the rates of the rate-determining steps. Both are found to be second-order, that is,

$$-\frac{d(S_2O_8^-)}{dt} = k(S_2O_8^-)(Cu^+)$$
$$-\frac{d(S_2O_8^-)}{dt} = k(S_2O_8^-)(I^-)$$

The above chemical equations do not express the detailed mechanism of the slow steps. In the case of the iodide catalysis, the mechanism is probably expressed by

$$S_2O_8^- + I^- + H_2O = 2SO_4^- + HIO + H^+$$
 (slow)
 $HIO^- + H^+ + I^- = I_2 + H_2O$ (rapid)

or

$$\begin{array}{lll} S_2O_8^{-} + I^- = S_2O_8I^{-} & \text{(rapid, reversible)} \\ S_2O_8I^{***} + I^- = 2SO_4^{-} + I_2 & \text{(slow)} \end{array}$$

The liberated iodine then acts to oxidize thiosulfate ion rapidly to tetrathionate ion.

The reaction between $S_2O_8^-$ and S_2O_8 catalyzed by ferric salts is complicated by the fact that the ferric ion hydrolyzes if the solutions are neutral, and the thiosulfate decomposes if the solutions are acid.

Table 105 contains representative data for the uncatalyzed reaction and the catalyzed reaction between peroxydisulfate and thiosulfate for the case in which the added catalyst is iodide ion [King and Steinbeck, J. Am. Chem. Soc., 52, 4779 (1930)].

Table 105 KINETICS OF THE REACTION BETWEEN $8_20_3^-$ AND $8_20_3^-$ AT 25°

$$-\frac{d(S_2O_8^-)}{dt} = k_0(S_2O_8^-)$$

$$K_2S_2O_8 = 0.01 \text{ m}$$

$$Na_2S_2O_3 = 0.02 \text{ m}$$
(no added catalyst)

Redistilled Water Used in Making up Solutions

Conc. of added KCl	0.0 m	0.02 m	0.06 m
k ₀ *	.000182	0.000262 .000270 .000283	0.000427 .000443 .000480

Γ	ABLE	105	(Co	nt.)		
Ordinary Distilled	Water	Used	in	Making	up	Solutions

Conc. of added KCl	0.0 m	0.02 m	0.06 m
k ₀	0.000357	0.000444	0.00132
60	.000341	.000437	.00106
60	.000255	.000424	
ko	.000595	.000171	
ko	.000606	000733	l

 $^{^{}a}$ The variation in k_{0} in each column indicates the extent of reproducibility of the rate measurements.

$$-\frac{d(S_2O_8^-)}{dt} = k_2(I^-)(S_2O_8^-) + k_0(S_2O_8^-) \quad \text{(catalyst, I-, added)}$$

$$k_2(I^-) + k_0 = k_1$$

Redistilled Water Used in Making up Solutions

$$K_2S_2O_3 = 0.01 \text{ m}$$
 $Na_2S_2O_3 = 0.02 \text{ m}$
 $KCl + KI = 0.02 \text{ m}$

Cone. KCl	Conc. KI	<i>k</i> ₁	k ₂
0.016 m .012 .008 .004	0.004 m .008 012 .016	0 000954 .00159 00229 00294	0 173 .162 166 .167
.0	.02	.00361	. 167

KCl + KI = 0.06 m

Conc. KCl	Conc. KI	k_1	k ₂
0.056 m	0.004 m	0.00125	0.203
.048	012	.00294	.208
04	02	.00477	216

The same reaction when catalyzed by copper sulfate is considerably more rapid than when catalyzed by iodide. Thus, at 25° and with concentrations of CuSO₄ (added) varying between 0.05×10^{-5} m and 2.5×10^{-5} m, the results shown in Table 106 were obtained. It is of interest that accurate values of the constant k_3 for a very rapid reaction are obtained here through measurements on a slow reaction.

The rates of both the catalyzed and uncatalyzed oxidations of thiosulfate depend on the ionic strength of the solutions. The dependence in the case of the iodide ion-catalyzed reaction is in qualitative agreement

TABLE 106 KINETICS OF THE REACTION BETWEEN S2O, AND S2O, CATALYZED BY CuSO, AT 25°

$$-\frac{d(S_2O_6^-)}{dt} = k_8(Cu^+)(S_2O_6^-) + k_0(S_2O_6^-)$$

$$k = k_0 + k_8(Cu^+)$$

$$K_2S_2O_8 = 0.01 \text{ m} \quad Na_2S_2O_8 = 0.02 \text{ m}$$

$$Cu^+ = 0.05 \times 10^{-5} \text{ to } 2.5 \times 10^{-5} \text{ m}$$

Redistilled Water Used in Making up Solutions

Cone. KCl	0.0	0 02	0 06
k ₃	458	527	717

with the predictions of the Brönsted theory, since the rate constant k_2 increases with ionic strength. The fact that the uncatalyzed reaction has a "salt effect" is strong evidence for the belief that a small amount of negative ion is present as an impurity and is acting as a catalyst. This is shown by the increase in k_0 with ionic strength. It would appear that both distilled water and the solutions to which Cu⁺⁺ was added contained a negatively charged ion which reacted with S2O8 in the first or primary step in the reaction. The nature of this negative ion is not known; but since thiosulfate ions form complexes readily with metal ions, it is to be supposed that a complex substance of the general formula $M_m^+(S_2O_3^-)_n$ and having a net negative charge is present in the solutions. The metal ion M+ would be Cu+, for the most part, when copper salts are added to the reaction mixture (cf. Table 106). In the case of simply distilled water, the nature of M+ cannot be stated without further experimental evidence.

Iodide ion is slowly oxidized to iodine by S₂O₈, and the reaction has been carefully studied by King and Jacobs [J. Am. Chem. Soc., 53, 1704 (1931)] with special reference to the effect of the ionic strength, μ , of the reacting mixture. The rate is given by the differential equation

$$-\frac{d(S_2O_8^-)}{dt} = k(S_2O_8^-)(I^-)$$

and the mechanism is believed to be that given above, or

$$S_2O_6^- + I^- + H_2O = 2SO_4^- + HIO + H^+$$
 (slow)
 $HIO + H^+ + I^- = I_2 + H_2O$ (rapid)

According to the Brönsted theory of reaction rates in solution, the value of k should increase with the ionic strength, and the results in Table 105 are in complete accord with this prediction. The older measurements of Price (see Peracids and Their Salts) and others at moderate concentrations led to

$$-\frac{d(S_2O_8^-)}{dt} = k(S_2O_8^-)(I^-)$$

with k=0.13 to 0.19 at room temperature, the larger value corresponding to the highest concentrations, that is, to high ionic strengths; $\mu=\frac{1}{2}\Sigma C_iZ_i^2$, where C_i is the concentration and Z_i the charge of the i^{th} ion. In general, in presence of added univalent salts, $\log_{10} k=1.075+2\sqrt{\mu}$, and $k_0=0.0841$, where k_0 now refers to the limiting case $\mu=0$.

The results shown in Table 105 were published by King and were obtained with solutions containing thiosulfate so that no free iodine was ever present in detectable amounts; that is, $(I^-) = \text{constant during a run.}$ When $S_2O_8^-$ and I^- alone are mixed, iodine accumulates and is present as I_3^- . Two reactions appear then to be taking place simultaneously, namely, that between $S_2O_8^-$ and I^- and I_3^- , so that,

$$-\frac{d(S_2O_8^-)}{dt} = k_1(S_2O_8^-)(I^-) + k_2(S_2O_8^-)(I_3^-)$$
$$= k_1(I^-) + k_2(I_3^-)(S_2O_8^-)$$

At 25° with $K_2S_2O_8 = 0.005$ m, and KI = 0.01 m, $k_1 = 0.125$ and $k_2 = 0.0645$; with added KNO₃ = 0.10 m, $k_1 = 0.265$ and $k_2 = 0.129$ [Jette and King, J. Am. Chem. Soc., 51, 1035 (1929)]. Time is expressed in minutes and concentrations in moles per liter of solution. Both k_1 and k_2 increase with ionic strength, and this is to be expected for the reactions postulated.

Of great interest is the effect of silver ion on the rates of a number of reactions involving peroxydisulfate. For example, at room temperature, peroxydisulfate does not oxidize manganous ion, chromic ion, vanadyl ion, oxalic acid, hydrazine, or ammonia; but if silver nitrate is added to the solutions, these substances are slowly oxidized to permanganate and manganese dioxide, dichromate, vanadate, carbon dioxide, nitrogen, and some nitric oxide or nitric acid, respectively. The mechanism of these reactions was first established by Yost and found to consist of two principal steps,

$$S_2O_8^- + Ag^+ = 2SO_4^- + Ag^{+++} \qquad (slow) \\ Ag^{+++} + Reducing \ agent = Ag^+ + Oxidized \ form \ of \ reducing \ agent \qquad (rapid)$$

If no reducing agent (other than silver ion) is present, a black precipitate of Ag_2O_3 is slowly formed; this precipitate slowly decomposes to black AgO and eventually to Ag_2O_3 , or Ag^+ if the solution is acid. (In concentrated HNO₃, the Ag_2O_3 is soluble.) It is easily shown by experiment

that Ag_2O_3 is capable of rapidly oxidizing any of the reducing agents mentioned. Accordingly, both from a study of reaction rates and from experiments on the nature of the Ag_2O_3 , the mechanism of the silver-catalyzed reactions seems well established. The rate equation of the slow reaction is

$$-\frac{d(S_2O_8^-)}{dt} = k(Ag^+)(S_2O_8^-)$$

That is, the rate is independent of the concentration of reducing agent, Mn^{++} , Cr^{+++} , VO^{++} , and so forth, and this is in accord with experiment. The mechanism stated requires that k should be independent of the reducing agent present; the following Table 107 shows this to be true for several reducing agents [Dekker, Lévy, and Yost, J. Am. Chem. Soc., 59, 2129 (1937)], the values of k being, at equal ionic strengths, very nearly equal.

Table 107
REACTIONS OF $S_2O_8^-$ CATALYZED BY SILVER ION AT 25° $-\frac{d(S_2O_8^-)}{dt} = k(Ag^+)(S_2O_8^-)$

).234 0.34 .485 .31
.0595 .57 .587 .33
1.930 .20 0.0990 .49 .570 .26
1.899 .21 0.200 .55 .945 .34

^a Time is expressed in minutes and concentrations in moles per liter of solution.

In some cases, the values of k are quite different from those given in Table 107. For example, oxalate ion is much more rapidly oxidized by $S_2O_8^- + Ag^+$ than would be expected if one judged solely from the results of the measurements cited in the table. Also, the oxidation of ammonia is several times more rapid than the hydrazine, chromic ion, or vanadyl ion oxidations. The explanation is to be found in the state of the catalyst, silver ion. In the ammonia solution, silver is present mainly as Ag-(NH₃)¹₂, and this reacts with $S_2O_8^-$ at a different rate than does Ag^+ .

$$S_2O_8^- + Ag(NH_3)_2^+ = 2SO_4^- + Ag^{+++} + 2NH_3$$
 (slow)
 $S_2O_8^- + Ag^+ = 2SO_4^- + Ag^{+++}$ (slower)

$$-\frac{d(S_2O_8^-)}{dt} = k_1(S_2O_8^-)(Ag(NH_3)_2^+) + k_2(S_2O_8^-)(Ag(NH_3)_3^+) = \{k_1(Ag(NH_3)_2^+) + k_2(Ag(NH_3)_3^+)\}(S_2O_8^-)$$

But

$$Ag(NH_3)_2^+ + NH_3 = Ag(NH_3)_3^+$$
 (rapid, reversible)
 $(Ag(NH_3)_3^+) = K(Ag(NH_3)_2^+)(NH_3)$

Hence,

$$-\frac{d(S_2O_8^-)}{dt} = \{k_1 + k_2K(NH_3)\}(Ag(NH_3)_2^+)(S_2O_8^-)$$

and the rate constant for each run, $k = k_1 + k_2K(\mathrm{NH_3})$, is a linear function of the ammonia concentration. At 25°, $k_1 = 3.70$ and $k_2K = 23.0$ are representative values. When these are compared with the rate constants in Table 107, it is immediately seen that, with ammonia as the reducing agent, the rate is ten or more times as rapid as is the case when the reducing agent does not form a complex ion with silver.

The important principle exemplified by these results is that the nature of the reacting ion can have a large effect on the rate of the reaction in which it takes part. A common example of this is the action of oxygen on ferrous iron; in acid solution, the reaction is much slower than in alkaline solution. That is, the rate of $O_2 + Fe^{++}$ is slower than that of $O_2 + Fe(OH)_2$.

The properties of other peroxyacids are not so striking as those of H_2TiO_4 , HVO_4 , $HCrO_5$, H_3CrO_8 , H_2SO_5 , and $H_2S_2O_8$. Some, K_2CO_4 or $K_2C_2O_5$ and $NaBO_3$, are articles of commerce; in solution they decompose extensively into hydrogen peroxide and the oxyacid. Peroxynitric acid, HNO_4 , appears to result from the action of pure H_2O_2 on N_2O_5 [D'Ans, Z. Electrochem., 17, 850 (1911)]; the compound is unstable and explosive. HNO_4 appears to be formed also when sodium nitrite solutions are mixed with acidified hydrogen peroxide. The peroxytantalates and columbates are fairly stable and may be prepared in solution by warming a mixture of acidified peroxide and the pentoxide Ta_2O_5 or Cb_2O_5 . They are colorless.

As stated at the beginning of this section, the peroxyacids may be regarded as complex compounds derived from oxyacids by replacing an oxide oxygen by the peroxide group. Another way of looking at them is as follows: when an acid anhydride combines (reversibly) with water, an oxyacid results. For example,

$$H_2O + SO_3 = H_2SO_4$$

If, on the other hand, the anhydride reacts with hydrogen peroxide, a peroxyacid is formed, for example,

$$H_2O_2 + SO_3 = H_2SO_5$$
, and $H_2O_2 + 2SO_3 = H_2S_2O_8$

In any event, the peroxyacids are not to be regarded as compounds containing the central atom in a higher oxidized state.

3. The reactions in which hydrogen peroxide acts as an oxidizing or reducing agent are large in number, and only a few representative examples can be mentioned here. In some cases hydrogen peroxide acts simply as a reducing agent; for example, at room temperature and in acid solution, permanganate is quantitatively reduced to manganous ion, and the reaction forms the basis for the quantitative estimation of hydrogen peroxide. Manganese dioxide is also reduced by H_2O_2 if the solution is acid; but $Mn(OH)_2$, on the other hand, is oxidized to MnO_2 if the solution is neutral or alkaline.

The most common reaction in which H_2O_2 acts as an oxidizing agent is that with iodide ion. Iodine is liberated. This reaction is often used as a test for peroxide, but unfortunately it is not a satisfactory one, in spite of its common use. TiO^{++} in acid solution will give an orange-yellow color with H_2O_2 . This test is sensitive and much more reliable than the iodine test. Many substances liberate iodine from iodides; only a few, if any, give the orange-yellow color with TiO^{++} . The peroxide-iodide reaction is not always a simple reduction of peroxide; the peroxide can also act as a reducing agent under some conditions. In acid solution, the reaction

$$H_2O_2 + 3I^- + 2H^+ = I_3^- + 2H_2O$$

takes place; and if the concentration of H^+ is about 0.2 n or greater, the reduction of H_2O_2 is quantitative. (At higher (H^+) , and in the presence of oxygen, the side reaction $4I^- + O_2 + 4H^+ = 2I_2 + 2H_2O$ gives rise to serious errors in iodimetric determinations.) The rate equation is

$$-\frac{d(H_2(I_2))}{dt} = \{k_1 + k_2(H^+)\}(H_2(I_2)(I^-) \begin{cases} k_1 = 0.60 \\ k_2 = 16 \end{cases} \text{ at } 25^{\circ}$$

The rate-determining reactions are

$$H_2O_2 + I^- = IO^- + H_2O$$
 at low (H+)
 $H^+ + H_2O_2 + I^- = HIO + H_2O$ at high (H+)

At low acid concentrations, two reactions contribute measurably to the oxidation of H_2O_2 ; namely,

$$H_2O_2 + HIO = O_2 + I^- + H^+ + H_2O$$
 $k_3 = 3.3 \times 10^5 \text{ at } 25^{\circ}$ $H_2O_2 + IO^- = O_2 + I^- + H_2O$ $k_4 = 1 \times 10^{11} \text{ at } 25^{\circ}$

When the rate of disappearance of H₂O₂ through these two reactions is the same as that through the two reactions of reduction above, we have, as a net result, the catalytic decomposition of hydrogen peroxide.

Ordinarily the hydrolytic reaction

$$I_2 + H_2O = H^+ + I^- + HIO$$

is considered very rapid, so that the only rate-determining reactions in the decomposition of H_2O_2 would be the two sets above. It turns out, however, that the situation is not so simple as this. In fact, Abel [Z. physik. Chem., 136, 161 (1928)] was forced to assume, in order satisfactorily to explain his results, that another rate-determining step is the hydrolytic reaction. Indeed, he concluded that for

$$I_{\perp} + H_{2}O = HIO + H^{+} + I^{-}, \qquad -\frac{d(I_{2})}{dt} = k(I_{2}) \qquad k = 0.25 \text{ at } 25^{\circ}$$

Since the equilibrium constant is $K = 3 \times 10^{-13}$, the rate constant for the reverse reaction will be 0.8×10^{12} [see Bray, Chem. Rev., 10, 161 (1932)]. Now if hydrogen peroxide and potassium iodide solutions are mixed, the conditions for the catalytic decomposition are realized; that is, the solution is nearly neutral, and both the oxidation and the reduction of peroxide occur simultaneously. From what has been said above, the general nature of the catalysis is understandable. In all of its details, the peroxide-acid-iodide kinetic system is not simple, however, and account must be taken of other factors if a complete explanation of the experimental facts is desired. For further details, the reader is referred to the papers of Abel and Bray.

Another reaction in which peroxide is reduced is that with iodine alone. If dilute acid solutions of iodine and hydrogen peroxide are mixed, the slow formation of iodate results.

$$I_2 + 5H_2O_2 = 2H^+ + 2IO_3^- + 4H_2O$$

The rate has been measured at 0° by Liebhafsky and Bray [J. Am. Chem. Soc., 53, 2074 (1931)]. Although the rate is, under some conditions, independent of the concentration of H_2O_2 and IO_3^- , it is complicated in that if iodate is not present initially, there is a long induction period; and, furthermore, the rate does depend somewhat on both the concentration of peroxide and that of iodate. Under some conditions, the rate of disappearance of iodine is given by

$$-\frac{d(I_2)}{dt} = k_1(I_2) - k_2(H^+)(I^-)(HIO)$$

This is the rate expression for the hydrolysis of iodine; the peroxide does not, as one might wish to believe at first sight, react directly and rapidly with the HIO to produce iodate. The tentative mechanism is the more complicated one given by the following equations:

$$I_2 + H_2O = H^+ + I^- + HIO$$

$$IO_3^- + I^- + 2H^+ = H_2I_2O_3$$

$$H_2I_2O_3 + H_2O_2 = 2HIO_2 + H_2O$$

$$HIO_2 + HIO = H_2I_2O_3$$

$$HIO_2 + H_2O_2 = IO_3^- + H^+ + H_2O$$

As a result of his study of this reaction and others, Liebhafsky concluded that k_1 is greater than 0.6 at 25°, and is not equal to 0.25, as Abel reported; he could not, unfortunately, put an upper limit on k_1 .

The catalytic decomposition of hydrogen peroxide by hydrobromic acid is an example of a reaction that is not attended by the many complications shown by the peroxide-iodine reaction. As a result of a careful study of the hydrobromic acid catalyses [Bray and Livingston, J. Am. Chem. Soc., 45, 1251 (1923); 45, 2048 (1923); 50, 1654 (1928)], the mechanism has been established. The main reactions are

$$H_2O_2 + 2H^+ + 2Br^- = Br_2 + 2H_2O$$

 $H_2O_2 + Br_2 = O_2 + 2H^+ + 2Br^-$

the second reaction being quite rapid. At the steady state, that is, at the state where the rate of disappearance of H_2O_2 is the same for the two reactions, the rate equation is

$$-\frac{d({
m H_2O_2})}{dt} = k({
m H_2O_2})({
m H^+})({
m Br^-})$$

At some distance from the steady state, the rate of formation and the rate of disappearance of bromine are given by

$$\frac{d(Br_2)}{dt} = k_1(H_2O_2)(H^+)(Br^-)$$
$$-\frac{d(Br_2)}{dt} = \frac{k_2(H_2O_2)(Br_2)}{(H^+)(Br^-)}$$

When, at the steady state, these two rates are equal,

$$\frac{(Br_2)}{(H^+)^2(Br^-)^2} = \frac{k_1}{k_2} = R$$
, a constant

R is known as the *steady state* function. The rate of reduction of bromine is quite rapid, and a flow method was used to measure it. If (H^+) and (Br^-) are not the concentrations of these ions but are their activities, then $k_1 = 0.022$, $k_2 = 0.018$, and R = 1.2 to 1.7 at 25°. Time is expressed in minutes and concentrations in moles per liter of solution.

The form of the two rate equations suggests the following mechanism:

$$H_2O_2 + H^+ + Br^- = HBrO + H_2O_2$$

 $H_2O_2 + HBrO = H^+ + Br^- + H_2O + O_2$

The rate equation corresponding to the second reaction would be

$$-\frac{d(H_2O_2)}{dt} = k'(H_4O_2)(HBrO)$$

but when the rapid reversible reaction,

$$Br_2 + H_2O = H^+ + Br^- + HBrO$$

is taken into consideration,

$$-\frac{d(H_2O_2)}{dt} = -\frac{d(Br_2)}{dt} = \frac{k_2(H_2O_2)(Br_2)}{(H^+)(Br^-)}$$

and this is the same as the rate equation established experimentally.

This reaction is of importance not only as a special case, but also for the suggestion that all catalytic reactions may consist of a set of compensating reactions. Thus, although the mechanism of the catalytic decomposition of hydrogen peroxide by manganese dioxide has not been investigated, the fact that acid solutions containing $MnO_2(s)$ oxidize, and neutral solutions of Mn^{++} or $Mn(OH)_2$ reduce H_2O_2 , suggests that these compensating reactions are involved in the catalytic action of MnO_2 on H_2O_2 . Other couples have been found which bring about the catalytic decomposition of H_2O_2 . The mechanisms are frequently more complicated than those described above. As examples of these couples we may cite

Fe⁺⁺⁺, FeO₂H⁺⁺, or FeO₄ [Bohnson and Robertson, J. Am. Chem. Soc., **45**, 2493 (1923); Bray, Chem. Rev., **10**, 161 (1932)]

Cr⁺⁺⁺, Cr₂O₇, or CrO₄ [Spitalsky, Z. anorg. Chem., **69**, 179 (1910). et ante]

VO++, HVO₃, and HVO₄ [Yost, unpublished experiments]

It has been possible to consider here only a few of the many reactions in which hydrogen peroxide takes part. There are a large number of isolated cases of oxidation or reduction which are of interest in connection with preparations or analysis (e. g., aqueous solutions of ClO₂ may be reduced to chlorite, ClO₂, by BaO₂(s); metallic and lower-valence forms of rhenium are readily oxidized to perrhenate ion, ReO₄, by H₂O₂ solutions) about which information is best sought in the handbooks or the chemical literature. The reactions described above serve as important examples of the dual role played by hydrogen peroxide; it can act readily as either an oxidizing agent or a reducing agent.

Metallic peroxides and superoxides

The two most common peroxides of metals are sodium peroxide, Na₂O₂, and barium peroxide, BaO₂. The former was, at one time, manufactured by allowing dry air to pass over metallic sodium, but the present-day method makes use of a two-step process in which the following reactions take place:

2Na (mixed with Na₂O) +
$$\frac{1}{2}$$
O₂ = Na₂O (First step)
Na₂O + $\frac{1}{2}$ O₂ = Na₂O₂ (Second step)

Ch. 11)

It is noteworthy that the second reaction has a very strong tendency to take place; decomposition of Na_2O_2 into Na_2O and oxygen does not take place until the temperature is above the melting point (460°; b.p. 660°). In neither step is the temperature very high. The resulting compound is orange-yellow in color and dissolves in water with the evolution of considerable heat and the formation of extensively hydrolyzed solutions of sodium peroxide. Since the first ionization constant of H_2O_2 is [Kargin, Z. anorg. Chem., 183, 77 (1929)]

$$\frac{(\mathrm{H^+})(\mathrm{HO_2^-})}{(\mathrm{H_2O_2})} = 1.55 \times 10^{-12} \; \mathrm{at} \; 20^{\circ}$$

it is to be expected that the second ionization constant would be still smaller (10^{-25}), and that, accordingly, the hydrolysis of Na₂O₂ would be extensive. The solutions are strongly alkaline and are strong oxidizing agents, E° for $3OH^{-} = HO_{2}^{-} + H_{2}O + 2E^{-}$ being -0.87 volt [Latimer, Oxidation Potentials, p. 39].

Sodium peroxide finds a number of uses as an oxidizing agent and as a starting material for the preparation of hydrogen peroxide.

Barium peroxide, a faintly yellow-colored compound, is formed when BaO is heated in air. The reaction is reversible [Hildebrand, J. Am. Chem. Soc., 34, 246 (1912)]:

$$BaO + \frac{1}{2}O_2 = Ba_2O_2$$

and, before methods for the fractional distillation of air were developed, it was utilized in the commercial preparation of oxygen. Barium peroxide may be used for the preparation of chlorites, Ba(ClO₂)₂, by reacting an aqueous solution of ClO₂ with solid BaO₂ [Smith, Pitzer, and Latimer, J. Am. Chem. Soc., **59**, 2640 (1937)].

Less well known are lithium peroxide, Li₂O₂, strontium peroxide, SrO₂, and calcium peroxide, CaO₂. The methods of preparation in these cases consist of heating the metal or oxide in oxygen or precipitating the anhydrous peroxide from the concentrated solution of the metal ion by the addition of hydrogen peroxide [Riesenfeld and Nottebohm, Z. anorg. Chem., 89, 408 (1914)]. The peroxides do not form readily; even on heating the oxide in oxygen under pressure under the most favorable conditions (for SrO, 400° and O₂ press. of 100 kg/cm²), only about 15% yield is obtained [Fischer and Ploetze, Z. anorg. Chem., 75, 10 (1912)].

Potassium peroxide is a white to cream-colored compound which is formed when the metal dissolved in liquid ammonia is reacted with oxygen at -50° to -60° [Kraus and Parmenter, J. Am. Chem. Soc., 56, 2384 (1934)]. It is not a common substance, mainly because it reacts violently with oxygen to form the superoxide, KO₂, or a mixture of K₂O₂ and KO₂. Caesium and rubidium also show strong tendencies to form

the superoxides CsO₂ and RbO₂, and, therefore, the peroxides are obtained only when the metals are reacted with oxygen under special conditions.

The superoxides KO_2 , RbO_2 , and CsO_2 may be prepared by treating liquid ammonia solutions of the metals with oxygen, a very pure product being obtained if the temperature is maintained at about -50° [Kraus and Parmenter, loc. cit.]. The product formed at higher temperatures is contaminated with some nitrite and nitrate. A better method for the preparation of the alkali superoxides consists in burning the vapors in air or oxygen; the product is obtained as a fluffy, orange-yellow powder.

Sodium superoxide is not known.

Since potassium superoxide is the most common of the superoxides, its properties will serve best as examples of those of the group. KO₂ reacts with water vapor to form, rapidly, oxygen and KOH. With liquid water the reaction is

$$2KO_2 + H_2O = 2K^+ + OH^- + HO_2^- + O_2$$

With some organic compounds, such as oil, ignition and fire may result, although with others no reactions are observed under ordinary conditions.

When KO_2 is heated, reversible decomposition into oxygen and a mixture of K_2O_2 and KO_2 takes place, the solid phase becoming dark in color with loss of oxygen. Because the solid phase consists of a solid or molten solution, the oxygen pressures do not represent equilibrium pressures for a simple three-phase, two-component system [see, e.g., Kraus and Whyte, J. Am. Chem. Soc., 48, 1781 (1926); Centnerszwer, B. Acad. Polon., A, 504 (1933)].

The structure of KO_2 has been the subject of some dispute [Klein and Sodemann, Z. anorg. Chem., 225, 273 (1935)], but the difference in opinion has been resolved. The compound is paramagnetic [Neuman, J. Chem. Phys., 2, 31 (1934)], the susceptibility corresponding to one unpaired electron spin. Moreover, the crystal structure shows the potassium and superoxide ions, O_2^- , to be arranged in a simple cubic array [Helms and Klemm, Z. anorg. Chem., 241, 97 (1939)]. Accordingly, the formula KO_2 is indicated rather than the older K_2O_4 . Helms and Klemm also measured the magnetic susceptibilities of the alkali superoxides, with the following results [see also Klemm and Sodomann, loc. cit.]. The X-ray

	KO2	RbO ₂	CsO ₂
Specific susceptibility χ × 10 ⁶ : 90° K	=	42.2 13.0	27.3 9.3
calc. from χ at 90°K		1.89 1.89	1.91 1.89

crystal-structure studies showed the oxide having the empirical formula K_2O_3 to be a mixture of K_2O_2 and KO_2 .

The following table summarizes the present information as to the simpler properties of the alkali superoxides [Ca(O₂)₂ is the only alkaline earth superoxide definitely established].

Property	KO ₂	RbO₂	CsO ₂
Color of crystals (cold) Color of crystals (hot) Color of molten material Crystalline form $-\Delta H(2M + 2O_2 = 2MO_2)$ (in kilocal.) Melting point (°C) Density	Orange Black Cubic 133.74 380°	Yellow Dark orange Brownish black Plates 137.6 412° 3.06	Yellow Reddish yellow Black Needles 141.46 432° 3.8

TABLE 108
PROPERTIES OF THE ALKALI SUPEROXIDES

The thionic acids and their salts

Attention has already been called to the similarity between the per- or polysulfides and the peroxides. It is natural to suppose that the peroxyacids have sulfur analogues, and, indeed, this is found to be the case. But sulfur proves capable of forming the polythionic radicals, which contain more sulfur atoms bound together than there are oxygen atoms bound together in the peroxyacids.

The simple oxyacids of sulfur are H_2SO_2 , sulfoxylic acid [known only as salts, $ZnSO_2$, and organic derivatives or addition products, $(C_6H_5-CH_2)_2SO_2$ and R-CH(OH)(OSONa)], $H_2S_2O_4$, hyposulfurous acid (the salts are well known), H_2SO_3 , sulfurous acid, and H_2SO_4 , sulfuric acid. When sulfur dioxide is passed into an aqueous suspension of MnO_2 , there is formed $H_2S_2O_6$, dithionic acid, a sulfur acid which resembles more the simple oxyacids than the thio acids which are to be discussed. The thio acids are more complicated than the simple oxyacids and fall, with respect to their chemical properties and structures, into a class by themselves.

Thiosulfuric acid

When sodium sulfite solutions are heated with elementary sulfur, the familiar sodium thiosulfate, $Na_2S_2O_4$, is formed and can be crystallized out in very pure state. In neutral solutions, thiosulfates are quite stable. The structure of the thiosulfate ion, S_2O_3 , has received considerable attention and is now fairly well established to be the following:

The close relation between the thiosulfate and sulfate ions is clearly brought out by these structural formulas. Evidence for this structure of thiosulfate ion is found in the reaction

$$SO_3^- + S = S_2O_3^-$$

and most strikingly in the fact that radioactive sulfur may be added to sulfite and then removed (by acidifying the thiosulfate formed), the resulting sulfite containing little or no radioactive sulfur [Libby, J. Am. Chem. Soc., 59, 2474 (1937); Anderson, Z. phys. Chem., B32, 237 (1936)].

$$SO_3^- + S^* = SS^*O_3^-$$

 $SS^*O_3^- + 2H^* = H_2SO_3 + S^*$

The symbol S^* stands for radioactive sulfur. This experiment proves that the two sulfur atoms in $S_2O_3^-$ are not equivalent. If they had been equivalent, then half of the radioactive sulfur would have remained in the sulfite and the other half precipitated as elementary sulfur. The structure given above for the thiosulfate ion is not, of course, the only one that can be written down having two nonequivalent sulfur atoms; but, taken together with our general notions of atomic structure and the qualitative nature of the reactions of thiosulfate, it is regarded as the most probable one. Looked at from the rather vague notions of valence, one would say that the central sulfur atom is a sulfate sulfur, the outer one a sulfide sulfur. The two sulfur atoms, notwithstanding the fact that they are bound together, are not regarded as forming a persulfide group.

The alkali and alkaline earth thiosulfates are quite soluble $(3K_2S_2O_3-5H_2O, 165 \text{ g}/100 \text{ g} \text{ H}_2O \text{ at } 25^\circ, 155.4 \text{ g}/100 \text{ g} \text{ H}_2O \text{ at } 20^\circ; \text{Na}_2S_2O_3-5H_2O, 74.7 \text{ g}/100 \text{ g} \text{ H}_2O \text{ at } 0^\circ, 301.5 \text{ g}/100 \text{ g} \text{ H}_2O \text{ at } 60^\circ.$ Na $_2S_2O_3-5H_2O$ melts at 48.4°, and the liquid may then be supercooled). When sufficiently concentrated, at 80° to 141°, the calcium salt slowly and reversibly decomposes according to the equation [Bichowsky, J. Am. Chem. Soc., 45, 2225 (1923)],

$$CaS2O3(aq) + H2O = CaSO4·2H2O(s) + S(s)$$

From the equilibrium measurements and other known data, the free energy of formation of $S_2O_3^-$ has been determined to be $\Delta F_{298}^o = -124,800$ cal/mole. (Latimer, Oxidation Potentials, p. 67, believes that the correct value is nearer -124,000 cal/mole.)

Thiosulfate ion forms complex ions with several elements, the most common example being that of the complex silver ion $Ag(S_2O_3)_2$. This complex ion is so stable that AgCl, AgBr, and even AgI will dissolve in a sodium thiosulfate solution, and this fact is utilized in photography, the unaltered AgBr being dissolved out of the gelatin emulsion. Complex ions are also formed with Pb^{++} , Hg^{++} , Bi^{+++} , Cu^+ , Cd^{++} , and trivalent arsenic and antimony. Several of the complex ions have a sweet

Fig. 72. The Time of Appearance of Sulfur in Acidified Sodium Thiosulfate Solutions of Various Thiosulfate and Acid Concentrations. Solid lines are for hydrochloric acid solutions, dashed lines for phosphoric acid solutions. The concentration of thiosulfate is indicated on each curve.

taste. If a solution containing a heavy metal ion (Ag⁺, Pb⁺⁺, or Cu⁺⁺) is heated, sulfides, sulfates, and some trithionate are formed.

The treatment of thiosulfate with mild or slowly reacting oxidizing agents (I₂, $S_2O_8^-$) results in the formation of tetrathionate. Thus,

$$2S_2O_3^- + I_2 = S_4O_6^- + 2I^-$$

a reaction much used in the volumetric determination of iodine. With stronger or more reactive oxidizing agents (I₂ in alkaline solutions, Br₂, Cl₂, MnO₄), sulfate is the end product.

If a sodium thiosulfate solution is treated with a dilute, strong acid, sulfur precipitates out after a short time,

$$S_2O_3^- + 2H^+ = H_2SO_3 + S$$

If a concentrated acid is added in such an amount that the final solution contains a high concentration of acid, sulfur appears after a much longer time; and, indeed, if the solution is about 10 or 12 n in HCl, no sulfur at all appears for some hours. The effect of acid concentration is clearly shown in Fig. 72. The results are due to Bassett and Durant [J. Chem. Soc., 1401 (1927)]. The strongly acid solutions are excellent reducing agents; even methylene blue and indigo are discolored by them, and iodine is reduced as readily as by the neutral thiosulfate. It was suggested by Bassett and Durant that the acid solutions contain the compound $\rm H_2S_4O_5$ formed in the reaction.

$$2S_2O_3^- + 2H^+ = S_4O_5^- + H_2O$$

and that at high acid concentrations and low H_2O activities, this reaction is favored over that producing sulfur and sulfurous acid. However, the evidence for the existence of $H_2S_4O_5$ was indirect and has been questioned by Janickis [Z. anorg. Chem., 234, 193 (1937)], who believes that the undissociated $H_2S_2O_3$ itself is stable. Janickis added 5 ml of 2 n $Na_2S_2O_3$ solution to 90 ml of concentrated HCl cooled to -20° . After the precipitate of NaCl had settled, the solution was warmed to 0° and diluted with concentrated HCl to 100 ml. The solutions remained clear and colorless at 0° for about eight hours. A series of analyses gave the following compositions as a function of the time after the addition of the sodium thiosulfate. The row labeled " $H_2S_2O_3$ " includes any substance which reduces methylene blue. It will be noted that there is a steady decom-

Compositions, in 100 ml of Solution*

Time after preparation	15 1	nin.	1	hr.	2	hr.	4 1	hr.	8 hr. 20) min.
	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.46	2 46	3.61	3.61	4 08	4.08	4 51	4.51	3.36 4.91 0.94	4 91

^{*}In column (a) are given the amounts in millimoles; in column (b) are given the amounts of sulfur in milliatomic weights contained in the compounds. The solutions remained clear, but the presence of colloidal sulfur is not excluded; the amounts of sulfur under (b) for polythionic acids may well include any colloidal sulfur.

position during which increasing amounts of the higher polythionic acids are formed, and it is with these acids and their salts that the remainder of this section is concerned.

The polythionic acids

The polythionates have the general formula $S_nO_6^-$, with n greater than two, and are characterized by having three or more sulfur atoms bound

Their reactions with each other and with other reagents are. together. for the most part, complicated, to say the least. Although a number of investigations have been made, the nature and mechanisms of the reactions are not always clear. In fact, it may be safely said that the chemistry of the thionates and polysulfides, like that of the peroxides, falls in a class by itself, and as such its nature and applications have received insufficient attention to resolve all the problems that have arisen. literature up to 1926 on the polythionates is reviewed in an excellent article by Kurtenacker in Abegg and Auerbach, Handbuch der Anorganischen Chemie, Vol. IV. Part 1, p. 543, 1927; for more recent work, see the numerous articles by Kurtenacker and co-workers in the Zeitschrift für anorganische und allgemeine Chemie.

When sodium thiosulfate is added to cooled hydrochloric acid solutions in which a small amount of arsenious oxide has been dissolved, much higher yields of polythionic acids are obtained than when arsenite is The relative proportions of the various thionic acids formed depend upon the concentration of the acid and the amount of arsenious oxide used; a higher acid concentration leads to more of the higher thionic acids, while a higher arsenite concentration leads to more of the lower acids. Results of typical experiments are given below [Kurtenacker and Matejka, Z. anorg. Chem., 229, 19 (1936)]. The value of n was deter-

	Rea	ctants		Product S _n O _a ,
Na ₂ S ₂ O ₃ ·5H ₂ O	As ₂ O ₃	Conc. HCl	H₂O	Value of n
30 g	0.2 g	40 ml	30 ml	5.5
30 30	.2 .2	50 70	20	7.2 8.2
30*	.2	70	ŏ	10.0
30*	1.5	70	0	5.3

^{*} Anhydrous salt.

mined by utilizing the reactions,

$$S_nO_6^- + S^- = (n-3)S + 2S_2O_3^-$$

 $S_nO_6^- + S^- + (n-3)SO_3^- = (n-1)S_2O_3^-$

which are characteristic of all the polythionic acids. In the first case sodium sulfide is added to the solution, and in the second, sulfide plus The resulting thiosulfate is titrated with iodine. These experiments indicate the existence of S₁₀O₅ if the assumption is made that all the sulfur is bound in a polythionic acid. However, the assumption is probably not justified, since colloidal sulfur interferes in the second reaction by forming thiosulfate with the sulfite. The highest polythionate which has been isolated and characterized is the hexathionate.

The sodium and potassium thionates are the ones usually prepared, and they are soluble, crystalline salts. Polythionic acids are strong, dibasic acids, no alkali acid salts being known, although an acid tetra-and pentathionate of zinc have been prepared; normal salts of cobalt, nickel, zinc, copper, bismuth, and manganese have been prepared also [Deines and Christoph, Z. anorg. Chem., 213, 209 (1933)]. In Table 109 are given the solubilities of some polythionates in water. The heavy metal salts are soluble in alcohol, acetone, and other organic solvents.

TABLE 109
SOLUBILITIES OF THE POLYTHIONATES
(g anhydrous salt/100 g solution)

	0°	20°
Na ₂ S ₄ O ₆ ·3H ₂ O Na ₂ S ₄ O ₅ ·2H ₂ O	37 8 41 3	52.9 50.4
Na ₂ S ₆ O ₆ ·2H ₂ O	32.9	52.0
K ₂ S ₄ O ₆	$8.1 \\ 12.6$	$\frac{18.4}{23.2}$
K ₂ S ₅ O ₆	15 5 26.6	24.8 32.3
BaS ₄ O ₆	20.0	32.3

An elaborate scheme of analysis for the separate determination, to a few per cent, of S, SO_3^- , S-, SO_4^- , S₂O₅, S₃O₆, S₄O₆, S₅O₆, and S₆O₆ in mixtures has been worked out by Kurtenacker and his co-workers [Z. anorg. Chem., 166, 187 (1927); Kurtenacker, Analytische Chemie der Sauerstoffsauren des Schwefels, Stuttgart, 1938]. Some of the reactions utilized which are common to the whole group are given here; other more specific reactions are given in the discussions of the individual compounds.

All of the polythionates react with cyanide, slowly at room temperature in neutral solution but rapidly and quantitatively in hot alkaline solution.

$$S_3O_6^- + CN^- + H_2O = SO_4^- + CNS^- + H_2SO_3$$

 $S_4O_6^- + CN^- + H_2O = S_2O_3^- + SO_4^- + CNS^- + 2H^+$
 $S_5O_6^- + 2CN^- + H_2O = S_2O_3^- + SO_4^- + 2CNS^- + 2H^+$

Another general reaction of the polythionates is that with HgCl₂ in a solution heated to 70°.

$$2S_{n}O_{6}^{-} + 3HgCl_{2} + 4H_{2}O = Hg_{3}S_{2}Cl_{2}(s) + 4SO_{4}^{-} + 4Cl^{-} + 8H^{+} + (2n - 6)S$$

Thiosulfates also react with HgCl₂, hence care must be taken in using the reaction in analyses.

$$2S_2O_3^- + 3HgCl_2 + 2H_2O = Hg_3S_2Cl_2(s) + 2SO_4^- + 4Cl^- + 4H^+$$

The stabilities of the alkali polythionates in water solution have been investigated many times, and some general statements as to their decomposition may be made. In strongly acid solution, all the salts decompose rapidly, the tri- and tetrathionate mainly according to the equation

$$S_nO_6^- = (n-2)S + SO_2 + SO_4^-$$

and the penta- and hexathionate according to the equation

$$2S_nO_6 + 4H^+ = (2n - 5)S + 5SO_2 + 2H_2O$$

The tetra- and pentathionate are much more sensitive than trithionate to hydroxyl ion, but are much more stable than trithionate in acid

Fig. 73. The Decomposition of Polythionates at 50° C. $k=1/t \log [a/(a-x)]$, where a= initial concentration, x= concentration at time t. $pK=-\log_{10} k$. $t_{1/2}=$ time in hours to 50% decomposition.

solution. These relationships are shown in a more quantitative way by the above rough plot (Fig. 73) of the decomposition rates, starting with solutions of single pure salts [Kurtenacker, Mutschin, and Stastny, Z. anorg. Chem., 224, 399 (1935); see this article also for a discussion of the primary products]. The rate constants are given as a function of pH; all runs were at 50°. The $pK = -\log_{10} k$, where

$$k = \frac{1}{t} \log \left(\frac{a}{a - x} \right)$$

a is the amount of constituent initially present, and a - x is the amount present at the time t. The decomposition products are numerous, including other polythionic acids, thiosulfate, sulfite, sulfate, and sulfur. Figs.

74, 75, and 76 indicate the relative amounts of the various constituents; the probable initial products are discussed in the succeeding sections. Decomposition in mixtures of the various salts is even more complicated, but some idea of the process may be gained from Figs. 77 and 78.

Trithionate

This salt is best prepared by the reaction of SO₂ with thiosulfate. Finely powdered Na₂S₂O₃·5H₂O is mixed with a cooled, saturated solution of SO₂ containing a little arsenious oxide. When additional SO₂ gas is passed into the mixture, the thiosulfate goes into solution and Na₂S₄O₆·-2H₂O precipitates out. After the addition of sufficient SO₂, the tetra-

Fig. 74. The Decomposition of $K_2S_1O_6$ in Water.

thionate is filtered off, and the more soluble Na₂S₃O₆ is precipitated by adding alcohol and cooling in an ice-salt bath. The salts are purified by recrystallization from water or acetic acid solution and are dried in a dessicator.

Potassium trithionate is the only polythionate whose structure has been determined by X-ray crystal-structure methods [Zachariasen, *Phys. Rev.*, **37**, 1295 (1931)]; the trithionate ion may be written

the two like sulfur atoms having a tetrahedron of three oxygen atoms

and one sulfur atom about them. The sulfur atom is common to both tetrahedra, and the S—S—S angle is about 100°.

Sodium trithionate hydrolyzes slowly in weakly acid to weakly basic solutions first into thiosulfate and sulfate.

$$S_3O_6^- + H_2O = S_2O_3^- + SO_4^- + 2H^+$$

This reaction is followed by the more rapid reaction,

$$S_2O_3^- + S_3O_6^- + 2H^+ = S_4O_6^- + SO_3H^- + H^+$$

and various other side reactions. In strongly alkaline solutions, the main reaction is

$$2S_3O_5^- + 6OH^- = S_2O_5^- + 4SO_5^- + 3H_2O$$

Neutral solutions hydrolyze only slowly; the experiments of Kurtenacker on the decomposition rates and products are shown graphically in Fig. 74.

When Cu⁺⁺ is added to an acid trithionate solution and the solution heated to 70°, the following reaction results:

$$2H_2O + S_3O_6^- + Cu^{++} = CuS + 2SO_4^- + 4H^+$$

Neither the tetra- nor the pentathionate reacts with Cu⁺⁺ at 70°, and the reaction is useful for the detection of trithionate. Trithionate does not react with sulfite in neutral or weakly acid solution.

Tetrathionate

Sodium tetrathionate is obtained as a by-product in the preparation f the trithionate described above. A more common method of prepara-

of the trithionate described above. tion is by the oxidation of thiosulfate with iodine [Kurtenacker and Fritsch, Z. anorg. Chem., 121, 335 (1922)]. Dry sodium tetrathionate is quite stable. Its structure is not known, but analogy with potassium peroxydisulfate, K₂S₂O₈, whose structure has been determined [Zachariasen, Phys. Rev., 1295 (1931)], it is probable that the four sulfur atoms are bound together in a chain; each end sulfur atom would have a tetrahedral grouping of three oxygen atoms and a sulfur about it, and the two tetrahedra would be joined through the corner sulfur

Fig. 75. The Decomposition of Na₂S₄O₆ in Water.

atoms, the S-S-S angles being about 100°, as in the trithionate ion.

In neutral or weakly acid solutions, tetrathionate ion decomposes slowly,

$$2S_4O_6^- = S_5O_6^- + S_5O_6^-$$

in weakly alkaline solution it hydrolyzes,

$$4S_4O_5^- + 6OH^- = 5S_2O_5^- + 2S_3O_5^- + 3H_2O$$

as well as in strongly alkaline solution, the reaction in this case being,

$$2S_4O_6^- + 6OH^- = 3S_2O_3^- + 2SO_3^- + 3H_2O$$

The products of the hydrolysis in neutral solution are shown in Fig. 75.

Unlike trithionate, the tetra- and pentathionates in neutral or weakly acid solutions react with sulfites. In neutral solutions, the reactions are fairly straightforward and are [Foerster and Centner, Z. anorg., Chem., 157, 45 (1926)]

$$S_4O_6^- + SO_3^- = S_3O_6^- + S_2O_3^-$$

$$-\frac{d(S_4O_6^-)}{dt} = k_4(S_4O_6^-)(SO_3^-), \qquad k_4 = 0.0103/\text{mole min at } 0^\circ$$

$$S_5O_6^- + SO_3^- = S_4O_6^- + S_2O_3^-$$

$$-\frac{d(S_5O_6^-)}{dt} = k_5(S_5O_6^-)(SO_3^-), \qquad k_5 = 0.233/\text{mole min at } 0^\circ$$

The second reaction is followed by the first, much slower reaction. In weakly acid solutions, that is, in HSO₃ solutions, the reactions are much

Fig. 76. The Decomposition of Na₂S₄O₆ + Na₂S₂O₃ in Water.

slower, owing apparently to the fact that only SO3, and not HSO3, is reactive. Some sulfate is formed in the acid solutions. There is some evidence for believing that the reactions are reversible, the equilibrium lying almost completely to the right in neutral solution and less so in acid solution, as is to be expected by virtue of the weakly acid character of HSO3. It is to be noted, however, that the slowness of the reactions with HSO₃ may and probably does result in failure to reach equilibrium, since other side reactions can change the concentrations of the reactants and products at rates greater than those of the reactions considered.

Pentathionate and hexathionate

The reaction between sodium thiosulfate and an acid solution of arsenious acid is the best method for the preparation of fairly large quantities of sodium penta- and hexathionate; the general features of this reaction have already been discussed. For the best yield of the pentathionate, 125 g $Na_2S_2O_3$ · $5H_2O$ is dissolved in 150 ml H_2O , and 2.5 g As_2O_3 , dissolved in as little alkali as possible, added. Then the solution is cooled to -10° , and 200 ml of cooled, concentrated HCl is added. A precipitate of NaCl is quickly filtered off, and the filtrate is allowed to stand overnight. After a precipitate of As_2S_3 is filtered off, the solution

is concentrated to a colorless to light-yellow oily liquid of specific gravity 1.6 by evaporation in a vacuum at 35-40°. The addition of alcohol and an acetic acid solution of potassium acetate causes the sodium pentathionate to precipitate. It may be purified by recrystallization [Kurte-

nacker and Fluss, Z. anorg, Chem... 210, 125 (1933)]. The preparation of sodium hexathionate is similar, except that 400 ml of concentrated HCl is used. The pentathionate formed is less soluble and is precipitated first; further evaporation causes the hexathionate to precipitate [Kurtenacker and Matejka, Z. anorg. Chem., 229, 19 (1936)]. It is reported that a pure H₂S₅O₆ solution results from passing a dry mixture of two moles of H2S to one mole of SO2 into water [Deines and Grassmann, Z. anorg. Chem., 220, 337 (1934)]. Potassium hexathionate may be prepared in another way by the addition of a 1:3 mole mixture of KNO2 and K2S2O3 to a

Fig. 77. The Decomposition of K₂S₆O₆ in Water.

cooled solution of 8 n HCl [Weitz and Achterberg, Ber., 61, 399 (1928)]. In nearly neutral or weakly acid solution, the pentathionate ion decomposes into sulfur and tetrathionate.

$$S_5O_6^- = S_4O_6^- + S$$

A precipitate of sulfur results immediately on the addition of a drop of base to a solution of a pentathionate; this was formerly regarded as a distinctive test for pentathionate, but it is not known that hexathionate undergoes the same reaction. The pentathionate ion in alkaline solution of pH 8.9 hydrolyzes at a measurable rate to thiosulfate.

$$2S_bO_5^- + 6OH^- = 5S_2O_3^- + 3H_2O$$

The initial reactions are followed by various side reactions, as is usually the case in the decomposition of the polythionates. The hexathionate ion decomposes in alkaline, neutral, and not too strongly acid solutions in a relatively clean reaction,

$$S_bO_b^- = S + S_bO_b^-$$

Since the existence of hexathionic acid was in doubt until about 1934, less is known of its properties than of those of the other polythionic acids.

In general, its reactions are similar to those of pentathionic acid, and hexathionate has probably been present in many supposedly pure pentathionate solutions.

Fig. 78. The Decomposition of $K_2S_3O_6 + K_3S_5O_6$ in Water.

Wackenroder's liquid

When H₂S is passed (usually slowly and periodically) into a solution of H₂SO₃, a milky solution results which contains colloidal sulfur, hydrogen sulfide, thiosulfate, sulfite, and considerable quantities of polythionic acids; this solution is known as Wackenroder's liquid. Historically, the polythionates were first known through a study of this liquid. The relative amounts of the various constituents vary markedly according to the exact method of preparation; the ratio of penta- to tetrathionate may vary from 1:6 to 5:6, for example. A mixture of similar complexity is formed by the hydrolysis of sulfur monochloride. This is to be expected, as the hydrolysis may be formally written:

$$S_2Cl_2 + 2H_2O = SO_2 + H_2S + 2HCl$$

and the ingredients of Wackenroder's liquid would be present. This hydrolysis, and especially the reaction between H₂S and SO₂, have been extensively used for the preparation of polythionic acids, although better methods are now available for the individual salts.

In spite of numerous investigations dating from 1850, not a single feature of the mechanism of reaction between H₂S and SO₂ can be said to

be firmly established. The situation is so confused that to undertake a discussion of the many proposed mechanisms would only lead to more confusion. However, one recent investigation has presented a proposed mechanism that warrants presentation, although some facts remain unexplained. Stamm and Goehring [Ber. 71B, 2212 (1938); Z. anora. Chem., 242, 413 (1939)] prepared CH₃OSSOCH₃ from S₂Cl₂ and CH₃ONa in anhydrous ether. On hydrolysis of this ester, a solution is obtained that was shown to exhibit fairly strong oxidizing power immediately after the hydrolysis (I- was oxidized). Investigation showed that subsequently all the products found in Wackenroder's liquid were produced in the solution. The initial intermediate which acted as an oxidizing agent could logically be assumed to be H₂S₂O₂ with one hydroxyl group on each sulfur. Evidence for this structure is found in the structure of the ester that was derived from a study of the Raman spectra and the method of formation from S₂Cl₂, whose structure has been established by Measurements of the rates of formation of the electron diffraction. various constituents gave support to the following postulated mechanism:

Primarily.

$$\begin{aligned} \mathrm{H_2S} + \mathrm{SO_2} &= \mathrm{H_2S_2O_2} \\ \mathrm{H_2S_2O_2} + \mathrm{H_2S} &= 3\mathrm{S} + 2\mathrm{H_2O} \\ \mathrm{H_2S_2O_2} + 2\mathrm{H_2SO_4} &= \mathrm{H_2S_4O_6} + 2\mathrm{H_2O} \end{aligned}$$

Secondarily,

$$\begin{split} H_2S_4O_6 + H_2SO_3 &= H_2S_3O_6 + H_2S_2O_3\\ S + H_2SO_3 &= H_2S_2O_3\\ H_2S_4O_6 + H_2S &= S + 2H_2S_2O_3\\ H_2S_2O_2 + 2H_2S_2O_3 &= H_2S_6O_6 + 2H_2O\\ H_2S_6O_6 &= H_2S_6O_6 + S \end{split}$$

and other reactions of the polythionates.

This mechanism seems to be the best-supported one yet advanced. According to it, tetrathionic acid is the first polythionic acid formed; it is consequently difficult to explain the result of Deines and Grassmann [Z. anorg. Chem., 220, 337 (1934)] that pentathionic acid is formed quantitatively by passing a dry 2:1 molar mixture of H₂S and SO₂ into water. The investigations are, however, an important step toward a modern treatment of a difficult problem.

APPENDIX A

Bibliography of Reference Books

The following bibliography contains the titles of books which are frequently referred to in the text by author and title only. Included in the list are several books which are not specifically referred to in the present volume but which were found to be of special value for gaining clarity on many questions of theory or fact. Chemistry, like the few other fundamental sciences, is subject to continual increase in factual material and change in theoretical framework, and it is, therefore, suggested that the books in the list be not regarded as so authoritative and eternally fixed that a second Roger Bacon would be required to direct attention away from them. It is true, however, that these books, or their equivalent, do present much of our best knowledge of the various phases of inorganic chemistry.

Inorganic Chemistry

- Abegg, R., Fr. Auerbach, and I. Koppel, *Handbuch der Anorganischen Chemie*, Hirzel, Leipzig, 1937.
- Archibald, E. H., The Preparation of Pure Inorganic Substances, John Wiley, New York, 1932.
- Booth, H. S., *Inorganic Syntheses*, Vol. 1, McGraw-Hill, New York, 1939. Curtis, H. A., *Fixed Nitrogen*, Chemical Catalog Co., New York, 1932.
- Emeleus, H. J., and J. S. Anderson, Modern Aspects of Inorganic Chemistry, D. Van Nostrand, New York, 1938.
- Ephraim, F., *Inorganic Chemistry*, translation by P. C. L. Thorne, Gurney and Jackson, London, 1934.
- Franklin, E. C., Nitrogen System of Compounds, Reinhold, New York, 1935.
- Friend, J. N., A Textbook of Inorganic Chemistry, Charles Griffin & Co., London, 1928 et ante.
- Gmelin-Kraut, Handbuch der Anorganischen Chemie, Heidelberg, 1932.
- Kraus, C. A., The Properties of Electrically Conducting Systems, Chemical Catalog Co., New York, 1922.
- Kurtenacker, A., Analytische Chemie der Saurstoffsauren des Schwefels, F. Enke, Stuttgart, 1938.
- Latimer, W. M., Oxidation Potentials,* Prentice-Hall, New York, 1938.

^{*} The title of Professor Latimer's Oxidation Potentials suggests a chemical-thermodynamics character, but he has adopted a predominantly chemical point of view in the presentation. Since the book so admirably serves a double purpose, it is placed under two classifications in the Bibliography.

- Machu, W., Das Wasserstoffperoxyd und die Perverbindung, Julius Springer, Berlin, 1937.
- Mellor, J. W., A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green, London, 1937.
- Morgan, G. T., and F. H. Burstall, Inorganic Chemistry, A Survey of Modern Developments, Chemical Publishing Co. of N. Y., Inc., New York, 1939.
- National Research Council, International Critical Tables, McGraw-Hill, New York, 1929.
- Noyes, A. A., and W. C. Bray, A System of Qualitative Analysis for the Rare Elements, Macmillan, New York, 1927.
- Prentiss, A. M., Chemicals in War, McGraw-Hill, New York, 1937.
- Price, T. S., Peracids and their Salts, Longmans, Green, London, 1912.
- Raschig, F., Schwefel und Stickstoffstudien, Verlag Chemie, Leipzig, 1924.
- Swift, Ernest H., A System of Chemical Analysis, Prentice-Hall, New York, 1939.

Thermodynamics

- Bichowsky, F. R., and F. D. Rossini, *Thermochemistry of Chemical Substances*, Reinhold, New York, 1936.
- Epstein, P. S., Textbook of Thermodynamics, John Wiley, New York, 1937. Fermi, E., Thermodynamics, Prentice-Hall, New York, 1937.
- Guggenheim, E. A., Modern Thermodynamics, Methuen, London, 1933.
- Latimer, W. M., Oxidation Potentials, * Prentice-Hall, New York, 1938.
- Lewis, G. N., and M. Randall, *Thermodynamics*, McGraw-Hill, New York, 1923.
- Noyes, A. A., and M. S. Sherrill, *Chemical Principles*, Macmillan, New York, 1938.

Atomic and Molecular Structure

- Dirac, P. A. M., *Principles of Quantum Mechanics*, Oxford University Press, 2nd ed., 1935.
- Herzberg, G., Molecular Spectra and Molecular Structure, Prentice-Hall, New York, 1939.
- Jevons, W., Report on Band-Spectra of Diatomic Molecules, the Physical Society, London, 1932.
- Lewis, G. N., Valence and the Structure of Atoms and Molecules, Chemical Catalog Co., New York, 1923.
- Millikan, R. A., Electrons (+ and -), Protons, Photons, Neutrons, and Cosmic Rays, University of Chicago Press, 1935.
- Pauling, L., The Nature of the Chemical Bond, Cornell University Press, 1938; 2nd ed., 1940.
- Pauling, L., and E. B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill, New York, 1935.
- Ruark, A. E., and H. C. Urey, Atoms, Molecules and Quanta, McGraw-Hill, New York, 1930.

^{*}See footnote on page 400.

- Sidgwick, N. V., The Covalent Link in Chemistry, Cornell University Press, 1933.
- Thompson, H. W., A Course in Chemical Spectroscopy, Oxford University Press, 1938.
- Van Vleck, J. H., Theory of Electric and Magnetic Susceptibilities, Oxford University Press, 1932.
- Wu, T., Vibrational Spectra and Structure of Polyatomic Molecules, National University of Peking, Kun-ming, China, 1939.

Statistical Mechanics

- Fowler, R. H., and E. A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, 1939.
- Mayer, J. E., and M. G. Mayer, Statistical Mechanics, John Wiley, New York, 1940.
- Tolman, R. C., The Principles of Statistical Mechanics, Oxford University Press, 1938.

Chemical Kinetics

- Hinshelwood, C. N., *The Kinetics of Chemical Change*, Oxford University Press, 1940.
- Kassel, L., Kinetics of Homogeneous Gas Reactions, Chemical Catalog Co., New York, 1932.
- Moelwyn-Hughes, E. A., The Kinetics of Reactions in Solutions, Oxford University Press, 1933.
- Noyes, W. A., Jr., and P. A. Leighton, *Photochemistry of Gases*, Reinhold, New York, 1941.
- Rollefson, G. K., and M. Burton, *Photochemistry*, Prentice-Hall, New York, 1939.

Chemical Engineering

- McCabe, W. L., and W. L. Badger, Elements of Chemical Engineering, McGraw-Hill, New York, 2nd ed., 1936.
- Read, W. T., Industrial Chemistry, John Wiley, New York, 2nd ed., 1938; 3rd ed., 1943.
- Walker, W. H., W. K. Lewis, and W. H. McAdams, Principles of Chemical Engineering, McGraw-Hill, New York, 2nd ed., 1927.

APPENDIX B

General Physical Constants

The following Table I contains chemically relevant values taken mainly from the 1941 list of the general (fundamental) physical constants. The 1941 list is the work of Birge [Rev. Mod. Phys., 13, 233 (1941)], and because, throughout the years, he has given such careful attention to the subject, there can be little doubt as to the current reliability of the values which he has published. [See also Benford, Phys. Rev., 63, 212 (1943); Birge, ibid., 64, 213 (1943).] It will be understood that, as a result of newer experimental data, the values are subject to periodic revision.

TABLE I GENERAL PHYSICAL CONSTANTS

Name	Symbol	Value
Velocity of light	\overline{c}	$2.99776 \times 10^{10} \text{ cm/sec}$
Volume of ideal gas	V_{0}	22.4140 liters/mole
Ice point, 0°C	T_{0}	273.16°K
Faraday constant	$\boldsymbol{\mathit{F}}$	96,501 international cou-
		lombs/chem. equiv.
Electronic charge	e	$4.8025 \times 10^{-10} \text{ esu}$
Specific electronic charge	c/m	$1.7592 \times 10^7 \mathrm{emu/g}$
Specific electronic charge	ec/m	$5.2736 \times 10^{17} \mathrm{esu/g}$
Avogadro's number	$oldsymbol{N}_{oldsymbol{0}}$	$6.0228 imes 10^{23} ext{ mole}^{-1}$
Planck constant	h	$6.6242 \times 10^{-27} \text{ erg. sec}$
Boltzmann constant	\boldsymbol{k}	$1.38047 imes 10^{-16} \mathrm{erg/deg}$
Gas constant	R_{o}	1.98670 cal/deg/mole
International ohm	\boldsymbol{p}	1.00048 absolute ohms
International ampere	\boldsymbol{q}	0.99986 absolute ampere
Calorie*	J	4.1833 International Joules
Calorie*	J	4.1850 absolute Joules
Standard gravitational ac-		
celeration	$oldsymbol{g}$	980.665 cm/sec^2
Standard density of mercury		
at 0°C	ρ_{Hg}	13.59504 g/cm^3
Liter	l	1000.028 cm³
Bohr Magneton	$\mu_0 = he/4\pi m$	$0.9273 \times 10^{-20} \mathrm{erg/gauss}$
Bohr Magneton	$\mu_0 oldsymbol{N_0}$.	5585.2 erg/gauss/mole

^{*} Chemists' defined calorie, now in common use.

The symbols used throughout this book to designate concentrations are either defined in the text or they are used in the more modern physical chemical sense. That is, m or f signifies moles or formula weights per 1000 grams of solvent; the normality, N or n, refers to equivalents or formula weights, as the case may be, per liter of solution.

TABLE II
INTERNATIONAL ATOMIC WEIGHTS*

Element	Sym-	Atomic	Atomic	Element	Sym-	Atomic	Atomic
Element.	bol	Number	Weight	Element	bol	Number	Weight
Aluminum	Al	13	26.97	Molybdenum	Mo	42	95.95
Antimony	Sb	51	121.76	Neodymium	Nd	60	144 27
Argon	A	18	39.944	Neon	Ne	10	20.183
Arsenic	As	33	74.91	Nickel	Ni	28	58.69
Barium		56	137.36	Nitrogen	N	7	14 008
Beryllium	Be	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	0	8	16 0000
Boron	В	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	30 98
Cadmium	Cd	48	112.41	Platinum	Pt	78	195.23
Calcium	Ca	20	40 08	Potassium	K	19	39 096
Carbon	C	6	12.010	Praseodymium.	\mathbf{Pr}	59	140 92
Cerium	Ce	58	140.13	Protactinium	Pa	91	231
Cesium	Cs	55	132.91	Radium	Ra	88	226 05
Chlorine	Cl	17	35.457	Radon	Rn	86	222
Chromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Co	27	58 94	Rhodium	Rh	45	102 91
Columbium	Cb	41	92.91	Rubidium	Rb	37	85 48
Copper	Cu	29	63.57	Ruthenium	Ru	44	101.7
Dysprosium	Dy	66	162 46	Samarium	Sm	62	150.43
Erbium	Er	68	167 2	Scandium	Sc	21	45 10
Europium	Eu	63	152 0	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28 06
Gadolinium	Gd	64	156.9	Silver	Ag	47	107.880
Gallium	Ga	31	69.72	Sodium	Na	11	22 997
Germanium	Ge	32	72.60	Strontium	Sr	38	87 63
$\operatorname{Gold} \ldots$	Au	79	197.2	Sulfur	S	16	32.06
Hafnium	Hf	72	178 6	Tantalum	Ta	73	180 88
Helium	He	2	4.003	Tellurium	Te	52	127.61
Holmium	Ho	67	164.94	Terbium	Tb	65	159.2
Hydrogen	H	1		Thallium	Tl	81	204.39
Indium	In	49	114.76	Thorium	Th	90	232.12
Iodine	I	53	126.92	Thulium	Tm	69	169.4
Iridium	Ir	77	193.1	Tin	Sn	50	118.70
Iron	Fe	26	55.85	Titanium	Ti	22	47.90
Krypton	Kr	36	83 7	Tungsten	W	74	183 92
Lanthanum	La	57	138.92	Uranium	U	92	238 07
Lead	Pb	82	207.21	Vanadium	V	23	50.95
Lithium	Li	3	6.940	Xenon	Xe	54	131.3
Lutecium	Lu	71	174.99	Ytterbium	Yb	70	173 04
Magnesium	Mg	12	24.32	Yttrium	Y	39	88.92
Manganese	Mn	25	54.93	Zinc	Zn	30	65.38
Mercury	Hg	80	200.61	Zirconium	Zr	40	91 22

^{*}G. P. Baxter, J. Am. Chem. Soc., 65, 1443 (1943).

Because the basis for this table is 16.0000 for ordinary oxygen, the values are slightly different from those used and published by physicists. The basis for the physicists' tables is the isotope $O^{16} = 16.00000$; this refinement is essential when mass (energy) balances are being computed.

APPENDIX C

The Periodic System of the Elements

	C	:	28 Zi	Pd 46		Pt 78	
	В		ిస	Rh 45		ır 72	
	¥	I	Fe 26	Ru 44		0s 76	
	VIII	He Ne Ne 10 10 18	Kr 36	Xe 54		Rn 86	
	VII	F C C C C C C C C C C C C C C C C C C C	35	I 53	-	85	
	VII		Mn 25	Ma 43		Re 75	
	ΛΙ'	0 8 8 0 16	34 34	Te 52		%48	i
	IA	i	7 4	Sb 42 51		¥ 7	0 92
	À	N-72	As 33	Sb		83 83	
	۵ ا	;	23 <	4 4 C		Ta 73	Pa 91
	IV	0 9 Si 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	٠ 9	Sn 50	-	Pb 82	Th Pa U 92
	IV			Zr 40		Hf 72	1. 90
	III		Ga 31	In 49	See note	TI 81	
	п' ш	В 13 13	22°	$^{ m Y}_{39}$			Ac 89
	II,		Zn 30	Cd 48		Hg 80	
	I' II	Be Mg 112	ರೆ೩	38 38	Ba 56		88 88
	ľ			Ag 47		Au 79	
	п	11 N 12 N 13 N	X 61	37	S. 55		87

405

Following lanthanum, atomic number 57, are the rare earth elements. They are cerium, 58; praseodymium, 59: neodymium, 60; illinium, 61(?); samarium, 62; europium, 63; gadolinium, 64; terbium, 65; dysprosium, 66; holmium, 67; erbium, 68; thulium, 69; ytterbium, 70: lutecium, 71.

Subject Index

	photocicc
Alkali metals:	reaction o
magnetic susceptibility, 143	solubilitie
solutions in liquid ammonia, 136	stability,
	stability,
Amine disulfonate, 98	theory of,
preparation, 100	vapor pre
salts of, 100	Ammonia p
Amine phosphoric acid, 107	catalysts
Amine sulfinic acids, 106	equilibriu
Amine sulfonate, 98 (see Sulfamic acid)	mechanis
crystal structure of potassium salt, 99	Ammonium
preparation, 101	phori
Amine sulfonates, 98	Ammonium
list of, 98	Ammonium
properties, 103	dissociation
Amine trisulfonate, 98	heat capa
hydrolysis, 99	oxidation
preparation, 99	vapor pre
solubility of salts, 99	Ammonium
Ammonia:	67
heat capacity, 74	Ammonium
manufacture, 73	Apatite, 15
molecular energy states, 132	Apparatus f
molecular structure, 132 physical properties, 74, 132	Atomic weight
physical properties, 74, 132	-
thermodynamic properties, 75, 133	
Ammonia, aqueous solutions, 135	
	Danium ditl
ionization constant, 98, 135	Barium ditl
phase diagram, 136	Barium fluo
physical properties, 135	decompos
reaction with hypochlorite, 113	Barium nitr
Ammonia, liquid, 132	Barium oxid
density, 134	Barium per
heat capacity, liquid and solid, 134	reaction v
ionization, 150	Barium tetr
physical properties, 133	Bisulfate ion
Ammonia, solutions in liquid, 148	Bisulfite io
acid-base properties, 149	ion,
ammonolysis in, 150	1
conductance of salts in, 148	1
	Į.
galvanic cells in, 153	
ionization in, 148	Caesium su
oxidation-reduction in, 151	magnetic
reactions in, 148	physical
solubility of salts in, 149	structure
Ammonia, solutions of metals in liquid,	Calcium car
136	
	Calcium cy
absorption spectra, 138, 148	hydrolysi
color, 136, 138	Calcium flu
complex formation from, 147	Calcium r
conductance of (potassium, sodium,	phat
lithium), 137	Calcium ph
density changes, 145	reaction
magnetic susceptibility, 140, 143, 147	Calcium p
mechanism of conductance, 139	wate
_	

A

Ammonia (Cont.): photoelectric measurements on, 145 of S, Se, Te, and Sn with, 152 cs (Li, Na, K), 146 137 139, 145 ssurés (sodium), 136 rocess (Haber): for, 75 im in, 73 m of, 76 chloride, reaction with phosus pentachloride, 108 fluosulfonate, 347 halides, 248 on, 249 city, 251 by nitric acid, 88 ssures, 249 nitrité, rate of decomposition. salts, heat capacity of, 252 or corrosive gases, 45 ghts, 404

В

Barium dithionate, 358, 360
Barium fluosulfonate, 347
decomposition, 303
Barium nitrite, 58
Barium oxide, 361
Barium peroxide, 385
reaction with acids, 361
Barium tetrathionate, 392
Bisulfate ion, ionization constants of, 339
Bisulfite ion, reaction of, with nitrite
ion, 91, 99

\mathbf{C}

Caesium superoxide:
magnetic susceptibility, 386
physical properties, 387
structure, 386
Calcium carbonyl, 152
Calcium cyanamide, 77
hydrolysis, 77
Calcium fluosulfonate, 347
Calcium metaphosphates (superphosphates), 222
Calcium phosphates, 155
reaction with carbon, 156
Calcium phosphide, reaction of, with
water, 245

Calcium superoxide, 387 Calcium thiosulfate, equilibrium decomposition of, 388 Chile saltpeter, 72 Chloramine, 113 distribution between solvents, 114 Chloraminedisulfonate, 100 Chlorate ion, reaction of, with hydrazine, Chlorine: reaction with aqueous ammonia, 113 reaction with hypophosphorous acid, 194, 196 Chlorselenic acid, 349 Chlorsulfonic acid: preparation, 348 reaction with H₂O₂, 372 reaction with water (smoke), 348 Copper phosphide, anodic oxidation of, Copper pyrophosphates, 225 Crackly phosphoric acid, 213 Cyanamide process, 77 Cyanogen, heat capacities of, 75 Cyanogen azide, 130 Deuterium peroxide, 362 Deuterium sulfate, 362 Deuteroacetic acid, 276 Dichromate ion, reaction of, with hydrazine, 121 Dithionic acid, 353, 357 acid properties, 358 oxidation, 360 preparation, 357 rate of decomposition, 359 solubilities of salts, 360 Dithionite ion, 354 analysis for, 357 molecular weight, 355 name, 357 oxidation by air, 355 rate of decomposition, 356 reactions with various substances, 356 reaction with cupric ammonia ion, 356 structure, 357 Dithionous acid, 353 decomposition, 354 ionization, 354 F Fermi-Dirac distribution law, 141 Ferricyanide ion, reaction of, with hydrazine, 121 Fixed nitrogen compounds: sources, 72 world production and consumption, 71, 72 Fluophosphoric acid, 237

Fluorine nitrate, preparation and proper-

equilibrium reaction with water, 347

ties of, 51 Fluosulfonic acid:

preparation, 346

G

Gay-Lussac tower, 48, 333
Germanium hydride, reaction of, with
Na (in NH₃), 154
Glover tower, 49, 333
Glue, catalyst in hydrazine preparation
of, 113
Graham's salts, 211

H

Haber process, 73 Hexathionate ion: decomposition, 397 salts of, 397 Hydrazine, 113 anhydrous, 116 molecular structure, 122 preparation, 113 properties, 115, 117, 119 reaction with iodine, 118 reaction with sulfur, 117 solubility of salts of, 119 solvent properties, 117 Hydrazine, aqueous: ionization constants, 98, 119 oxidation of, 120, 125 oxidizing action, 120 reaction with NCl., 126 Hydrazine bisulfate: preparation, 114 solubility, 120 Hydrazine hydrate, 115 Hydrazine hydrochloride, 120 Hydrazoic acid, 122 ionization constant, 127 oxidation and reduction of, 128 reaction with $I_2 + S_2O_3$, 129 Hydrogen, reaction of: with nitric oxide, 26 with oxygen, 269 with S and Se, 290 Hydrogen azide (see Hydrazoic acid), 122 decomposition of salts, 128 derivatives of, 129 explosive properties, 126 molecular structure, 123 physical properties, 126 preparation, 124, 126 solvent properties of liquid, 127 vapor pressure, 126 Hydrogen cyanide, 75 Hydrogen peroxide: conductance of salts in, 367 decomposition, 362, 367 ionization of anhydrous, 368 molecular structure, 365 phase diagram for H₂O₂ -H₂O, 367 physical properties, 363, 365 preparation, 361 thermodynamic properties, 363 Hydrogen peroxide, aqueous solutions: analysis for, 381

Hydrogen peroxide, aqueous solutions	Hydroxylamine sulfate, reaction of, with
(Cont.):	sulfur dioxide, 102
catalytic decomposition:	Hydroxylamine sulfonates:
by hydrobromic acid, 383	hydrolysis, 96
by various substances, 384 chemical properties, 368	list of, 90
formation from oxygen, 368	schematic arrangement, 96 Hydroxylamine trisulfonate, 90
ionization of, 385	
reaction rate:	potassium salts, 94
with iodide ion, 381	preparation and properties, 94 Hydroxylammonium sulfate, reaction
with ozone, 268	of, with chlorsulfonic acid, 95
reaction with oxidizing agents, 369, 381	Hyponitrous acid, 52
reaction with titanyl ion, 369	ionization constants, 54
vapor pressures, 364	preparation, 52
Hydrogen persulfide:	rate of decomposition, 54
molecular structure, 366	structure, 57
physical properties, 363, 365, 367	thermodynamic properties, 56
preparation, 362, 364	Hypophosphoric acid, 205
Hydrogen selenide:	analysis for, 209
chemical properties, 291	decomposition rate in solution, 208
molecular structure and energy states,	ionization, 206
290	magnetic susceptibility of salts, 207
physical and thermodynamic proper-	molecular state in solution, 207
ties, 289	preparation, 205
preparation, 288	Hypophosphorous acid, 191
reaction with iodine, 290, 302	analysis for, 197
solubility and ionization, 291	decomposition rate in solution, 192
Hydrogen sulfide:	ionization, 193
chemical properties, 291	oxidation in solution, 193
molecular structure and energy states,	by halogens, 192 by mercuric and cupric chlorides, 197
290	preparation, 191
physical properties, 289, 363	properties, 192
preparation, 288	Hyposulfurous acid, 354 (See Dithionous
reaction with judgments and 200	acid)
reaction with sulfurous acid, 398	formation from sulfur monoxide, 310
solubility and ionization, 291 thermodynamic properties, 289	, , , , , , , , , , , , , , , , , , , ,
Hydrogen telluride:	I
chemical properties, 291	1
physical and thermodynamic proper-	Toni
ties, 289	Ice:
preparation, 288	crystal structure, 274
solubility and ionization, 291	phase diagram, 272 Imidosulfamides, 104
Hydrogen trisulfide, 364	preparation and properties, 104
Hydronitrous acid, 58	Iodine, reaction of:
Hydroxylamine, 90	with hydrazine, 118, 121
chemical properties, 97	with hydrazoic acid, 129
ionization in solution, 98	with hypophosphorous acid, 196
oxidation-reduction in solution, 97	with phosphorous acid, 201
preparation and properties, 97	
preparation of salts, 90	K
Hydroxylamine disulfonate, 90	
acid properties, 91	Vacanta salta 911
decomposition of salts, 92	Knorre's salts, 211 Kurrol's salts, 211
oxidation of, 92	Kullol's saits, 211
rate of hydrolysis, 91	T
reduction to amine disulfonate, 100	L
structure of ion, 92, 95	
Hydroxylamine hydrochloride, 90, 97	Lambda-points, 251
Hydroxylamine isodisulfonate, 90	Landolt reaction, 329
preparation and properties, 95	Lead amide, 150
Hydroxylamine monosulfonate, 90	Lead chamber process, 334
analysis for, 92	Lithium hypophosphate, 207
preparation and properties, 92	Lithium nitrite, 62
reaction with iodine, 92	Lithium peroxide, 385

M

Maddrell's salts, 211
Magnesium sulfate, activity coefficient
of, 341
Mercuric tellurate, 353
Mercurous tellurate, 353
Metaphosphates, 210
equilibria between sodium salts of, 215
highly polymerized sodium salts of, 223
hydrolysis rates, 216, 223
Pascal's salts, 211, 213
polymeric forms, 211
preparation and properties, 211, 213
Methyl azide, molecular structure, 123
Mustard gas, 354

N

Nitramide: preparation and properties, 106 rate of decomposition, 107 Nitrate ion, molecular structure, 87 Nitrates: analysis for, 88 solubilities of, 87 Nitric acid: activity coefficients, 84 decomposition, 80 electrolysis of, 90 entropy, 82, 84 fuming, 84 hydrates of, 81, 84 manufacture, 78 molecular structure, 81 oxidizing properties, 84 phase relations with water, 82 physical properties, 80, 83 reaction with various substances, 87 thermodynamic properties, 81, 85 Nitric oxide: chemical properties, 14 electronic energy states, 22 entropy, 24 gas imperfection, 24, 26 magnetic susceptibility, 22 manufacture, 73 molecular energy states, 22 oxidation of, 79 preparation and properties, 13 reaction: with hydrogen, 26 with oxygen, 29 with sulfur dioxide, 315, 324 with sulfuric acid, 335 thermodynamic properties, 25 Nitrite ion (see Ammonium nitrite): Raman spectrum, 69 reaction rate with iodine, 64 reaction with H₂S, 66 structure of, 69 Nitrites: chemical properties, 63 formation, 63 solubilities, 62

Nitrogen: active, 11 adsorption by charcoal, 9 atmospheric, 1 chemical properties, 8 equation of state, 6 heat capacities, 7 isotopes, 4 molecular and nuclear states, 2 physical properties, 2, 4, 8 preparation, 1 reaction with metals, 10 thermodynamic properties, 4-8 Nitrogen dioxide: absorption rate by water, 79, 81 chemical properties, 17 decomposition and formation rate, 29 equilibrium in, 78-81 formation, 16 magnetic susceptibility, 27 molecular energy states, 27 polymerization rate, 30 reaction with sulfur trioxide, 325 reaction with water, 78 reactivity, 18 structure, 27 thermodynamic properties, 27 Nitrogen disulfide, 39 Nitrogen fixation, 70 alkali cyanide process, 77 arc process, 73 cyanamide process, 77 Haber process, 73 legumes in, 70 Nitrogen oxides: formation and preparation, 12-19 list of, 12 physical and thermodynamic properties, 19 Nitrogen oxyacids, 52 list of, 52 Nitrogen pentasulfide, 38 Nitrogen pentoxide: physical properties, 31 preparation and properties, 18 rate of decomposition, 32 reaction with ozone, 266 vapor pressure, 32 Nitrogen sesquioxide: equilibrium decomposition, 26 phase diagram of N₂O₃-II₂O system, 59 physical properties, 26 properties, 16 Nitrogen sulfides, list of, 33 Nitrogen tetraselenide, 40 Nitrogen tetrasulfide: chemical and physical properties, 35 preparation in ammonia, 34 reaction with hydrogen sulfide, 35 solubility, 37 structure, 38 Nitrogen tetroxide: decomposition rate, 30 molecular energy states, 29 structure, 29

Nitrogen trioxide: o formation, 18 properties, 19 Nitrohydroxylamic acid, 57 Orthophosphoric acid. 227 analysis for, 232 Nitrosisulfonic acid, 50 complex salts, 231 Nitrosyl bisulfate: insoluble salts of, 231 formation and decomposition, 17, 38, ionization, 228 physical and thermal properties, 230 formation from nitric acid, 88, 89 preparation, 227 reactions with various ions (table), 233 in Gay-Lussac tower, 48, 334 in Glover tower, 49, 334 solubility of sodium salts, 231 reactivity, 50 solubility, 49 structure, 50 thermodynamic properties, 228, 232 vapor pressures of solutions, 229 Ortho telluric acid, see Telluric acid Nitrosyl bromide: Osmium tetroxide, reaction of, with hydrazine, 122 formation and preparation, 42 molecular structure, 45 Oxidation, 262 rate of formation and decomposition, Oxygen: 43 adsorption by charcoal, 261 reactivity, 42 chemical properties, 260 thermodynamic properties, 44, 46 dissociation of O2, 257, 311 Nitrosyl chloride: explosive mixtures with hydrogen, 269 equilibrium decomposition, 44 heat capacity, 256 in the atmosphere, 259 formation and decomposition rate, 43 gas imperfections, 45 in thermometry, 258 molecular structure, 45 isotopes, 258 preparation and properties, 41, 46 magnetic susceptibility, 254 reactivity, 42 Nitrosyl disulfonate ion, 90, 93 magnetic susceptibility, 93 molecular electronic states, 255 molecular energy states, 256 physical properties, 254, 258 reduction with iodide, 93 preparation, 254 Nitrosyl fluoborate, 41 reduction by metal ions, 261 Nitrosyl fluoride, 41 Oxynitrosulfuric anhydride, 325 Nitrosyl halides, 41 Nitrous acid: analysis and tests for, 267 activity coefficients, 68 decomposition rate, 265 chemical properties, 63, 66 decomposition and formation rates, 60 equilibrium in HNO₂-HNO₂-NO-H₂O equilibrium dissociation, 264 molecular energy states, 263 physical properties, 263 system, 60 preparation, 262 equilibrium properties, 68 rate of reaction with hydrogen peroxide, formation from nitrites, 58 268 heat capacities, 75 reaction: ionization, 59, 69 with halogens, 266 with N₂O₅, 266 with silver ion, 257 mechanism of decomposition, 61 preparation from N₂O₃ and water, 59 reaction rate: solubility in various solvents, 265 with arsenious acid, 66 thermodynamic properties, 268 with hydrogen peroxide, 65 reaction with silver bromate, 67 reaction with sulfamic acid, 67 Nitrous oxide: Partition functions, 166 molecular energy states, 19 Pentathionate ion, 396 physical properties, 20 preparation, 12 decomposition rate, 397 reaction with sodium amide, 124 with trithionate ion, 398 hydrolysis, 397 structure, 19 preparation of sodium salts, 396 thermal decomposition, 21 reaction rate with sulfite ion, 396 thermodynamic properties, 20 uses, 12 Periodic System, 405–406 Nitryl chloride, 46 Permanganate ion, reaction of, with hydrazine, 121 preparation and properties, 46 rate of decomposition, 47 Peroxides, 384 Nitryl fluoride, 46 Peroxyacids: Nitryl halides, 46 elements forming, 369 Nitryl perchlorate, 48, 50 properties of, 380

300326	
Peroxychromates, 369	Phosphorus (Cont.):
ammonia complexes, 371	molecular structure, 165, 167
magnetic susceptibility, 370	nuclear spin, 166
salts of, 371	oxidation of, 168
structure of, 371	by air, 168
Peroxydisulfate ion:	by oxygen, 168
decomposition rate of, 373	formation of ozone in, 170
hydrolysis of, 373	mechanism of, 173
preparation of salts, 372	rate of, 170–173
reaction:	spectrum of glow in, 169
with ammonia, 379	thermodynamic properties, 166-168
with cuprous ion, 377	Phosphorus, black, 157
with ferrous ion, 374	crystal structure, 164
with iodide ion, 375–378	electrical resistivity, 165
with silver ion, 378	physical properties, 158
with thiosulfate ion, 374, 377	preparation, 164
with various reducing agents, 379	reaction with Br ₂ in CS ₂ , 159
catalysis by silver ion in, 379	vapor pressures, 164
solubility of salts, 373 Peroxynitrous acid, 65	Phosphorus, elementary, 155
Peroxysulfuric acids, 370	allotropic modifications, 157
equilibria, 372	preparation and manufacture, 155 Phosphorus, red:
formation, 380	reaction with sodium hypochlorite, 206
preparation, 372	reaction with water, 232
Peroxytitanic acid, 369	Phosphorus, red or violet, 157
Peroxyvanadic acid, 369	crystal structure, 162
Phospham, 111	mechanism of formation, 161
Phosphates:	physical properties, 158, 162, 164
meta- (see Metaphosphates), 210	preparation from white phosphorus,
poly- (see Polyphosphates)	161
Phosphine, 245	reaction with Br ₂ in CS ₂ , 159
allotropic modifications, 246-248	vapor pressures, 162
equilibrium dissociation, 245	Phosphorus, white or yellow, 157
molecular energy states, 240	effect of pressure on m. p., 161
oxidation of, 245	molecular state in solutions, 161
physical properties, 247	physical properties, 158–160
preparation, 245	reaction with Br ₂ in CS ₂ , 159
thermodynamic properties, 247 Phosphomolybdic acids, 233	solubility, 160 thermodynamic properties, 160
Phosphonium chloride, 250	transformation rate to P (red), 161
Phosphonium halides, 248	transition temperatures (α to β), 160
dissociation, 249	Phosphorus bromonitride, 113
heat capacity of phosphonium iodide,	Phosphorus chlorofluorides, 236, 238
251	molecular structure, 235, 240
physical properties, 249	preparation from PF ₃ and Cl ₂ , 235
preparation, 248	Phosphorus chloronitrides, 108
Phosphoric acid, ortho- (see Ortho-	chemical properties, 111
phosphoric acid)	fluorine derivative, physical properties
Phosphoric acids, 209	of, 112
dimeta-, structure of, 213	higher polymers, 108
meta- (see Metaphosphates)	hydrolysis, 111
pyro- (see Pyrophosphoric acids)	molecular structure, 110
Phosphorous acid, 198	physical properties, 109
acid properties, 199 decomposition, 199	preparation, 108 symmetry properties, 110
oxidation of solutions, 200	Phosphorus halides, 234
physical properties, 198	chemical properties, 242
preparation, 198	molecular energy states, 240
reaction rate:	molecular structure, 240
with bromine, 200	physical properties, 237-240
with iodine, 201-203	preparation, 234
with mercuric chloride, 203-205	reaction with water, 236
salts of, 200	Phosphorus iodides:
structure, 199	formation rate of P ₂ I ₄ , 243
Phosphorus:	preparation and properties, 242
molecular energy states, 165	Phosphorus isocyanate, 235

Phosphorus monoxide, 168, 175 Polyphosphates, phase diagram for so-Phosphorus nitride, 111 dium salts, 224 Polythionate ions: Phosphorus oxides, 168 list of, 175 analysis for, 392 Phosphorus oxyacids, 191 list of, 191 decomposition rate, 393 reaction with cyanide ion, 392 Phosphorus oxychlorides, 234 reaction with mercuric chloride, 392 reaction with ammonia, 108 Polythionic acids, 390 acid properties, 392 formation in Wackenroder's liquid, 398 Phosphorus oxyhalides, 234 molecular energy states, 240 solubilities of salts of, 392 molecular structure, 236 physical properties, 237-240 Potassium amide, solubility of, in liquid ammonia, 149 preparation, 237 Potassium amine disulfonate (see Amine Phosphorus pentachloride: disulfonate) equilibrium decomposition, 240 Potassium amine sulfonate (see Sulfamic molecular structure, 241 acid) reaction with ammonium chloride, 108 Potassium hexathionate, 397 thermodynamic properties, 241 Potassium hydroxylamine sulfonates (see Phosphorus pentafluoride, 238 under Hydroxylamine sulfonates) molecular structure, 241 Potassium hydroxylamine trisulfonate Phosphorus pentasulfide, 187 (see Hydroxylamine trisulfonate) stability, 189 Potassium nitrosyl disulfonate (see Ni-Phosphorus pentoxide: trosyl disulfonate) allotropic modifications, 180 Potassium pentathionate, 392 crystal structure, 181 Potassium peroxide, 385 formation, 174 Potassium peroxydisulfate, 361 molecular structure, 177 Potassium sulfamate (see Sulfamic acid) Potassium superoxide, 152 magnetic susceptibility, 386 physical properties, 179 preparation, 179 reaction with ammonia, 107 physical properties, 387 reaction with water, 182 preparation, 385 thermodynamic properties, 182 reaction with water, 386 Phosphorus sulfides, 182 structure, 386 hydrolysis, 189 Potassium tellurate, 352 Phosphorus sulfohalides, 238 Potassium tetrathionate, 392 molecular structure, 236 Potassium trithionate, 392 Phosphorus sulfoxide, 190 Pyrophosphoric acids: molecular structure, 177 Phosphorus tetroxide, 178 formation from phosphoric acid, 226 preparation of salts, 224 rate of hydrolysis, 225 chemical and physical properties, 178 formation, 174 structure, 228 Pyrosulfuryl chloride, 304, 348 Phosphorus trichloride, 238 reaction with chlorine, 241 reaction with sodium chloride, 348 Phosphorus trifluoride, 237-240 R. Phosphorus trioxide: decomposition, 176 formation, 174 Rubidium superoxide, 386 molecular structure, 177 S oxidation, 176, 178 physical properties, 176 Selenate ion, structure of, 346 preparation, 175 rate of oxidation, 177 Selenates, solubilities of, 346 reaction with ammonia, 108 Sclenic acid: reaction with H₂O, 177 concentrated solutions, 344 Phosphorus vapor, 165 formation from anhydride, 326 equilibria in, 166 hydrates, 344 molecular species in, 165 ionization, 345 physical properties, 344 entropies of, 168 rate of oxidation, 173 preparation, 343 reduction by halide ions, 343, 345 solubilities of salts, 346 thermodynamic properties, 167 Phosphorus, white: Selenide ions, 292 entropy, 168 formation in liquid ammonia, 293 polymerization in PBr₂, 161 reaction rate with I2 in CCl, 243 free energies, 293 salts of, 293

Physical constants, general, 403

Sclenious acid:	Silver hypophosphate, 207–209
analysis for 221	Silver ion, catalytic action with peroxy-
analysis for, 331	
penavior in hydrochioric acid, 332	disulfate ion, 378
dissociation pressures of solid, 330	Silver nitrite, 62
equilibrium in oxidation by halogens,	thermodynamic properties, 63
343	Silver selenite, 331
formation from anhydrides, 326	oxidation of, by bromine, 343
ionization constants, 331	Silver sulfamate, 103
oxidation:	Silver sulfamate, 103 Silver sulfamide, 105
by chloric acid, 343	Silver gulfmide 105
	Silver sulfimide, 105
by hydrogen peroxide, 344	Silver tellurate, 352
oxidation of iodide ion by, 331	Sodium, metallic:
reaction with sulfurous acid, 332	
	reaction with hydrazine, 118
reduction of, 331	solutions in liquid ammonia, 136
solubility in water, 331	Sodium amide:
Selenium:	
allotropic modifications, 282	formation, 137
	reaction:
physical properties, 282	with hydrazine, 118
preparation, 276	
reaction with metal-in-ammonia solu-	with nitrous oxide, 124
	with sodium nitrate, 124
tion, 152	solubility in liquid ammonia, 149
reaction with nitric acid, 276	
vapor pressures, 285	Sodium azide:
	crystal structure, 123
Selenium, liquid, equilibria in, 283	decomposition, 128
Selenium dichloride, 301	
Selenium dioxide:	Sodium carbonyl, 152
	Sodium chlorosulfonate, 348
chemical properties, 325	Sodium cyanide:
molecular structure, 318	
physical and thermodynamic proper-	hydrolysis, 78
	manufacture, 77
ties, 318	Sodium dithionate, 358, 360
preparation, 312	
Selenium halides:	Sodium hexametaphosphates, 211, 215
physical, thermodynamic, and molec-	acid properties, 221
	chemical properties, 220
ular properties, 297, 299, 302	
preparation, 295	complex calcium compounds, 221
reaction with water, 297	hydrolysis, 221, 223
	preparation, 220
Selenium iodides, 302	stability of solutions, 222
Selenium monochloride:	
decomposition, 300	technical uses, 221
	Sodium hydrogen phosphates, equilibria
reaction with water, 301	of, with pyrophosphates and water,
Selenium oxide, 310	
chemical properties, 324	224
Selenium oxyacids, 325	Sodium hypochlorite, reaction with aque-
	ous ammonia, 114
free energies of, 345	
list of, 326	Sodium hypophosphate, 205-208
preparation, 326	Sodium hyposulfite, 354
Selenium oxychloride, 305	solubility in water, 355
molecular structure, 306	Sodium metaphosphates, 211
solvent action, 306	Sodium monoxide, reaction of, with
Selenium oxyhalides, 303	oxygen, 384
	Sodium nitrate:
physical properties, 307	
Selenium tetrachloride, vapor pressure	Chilean, 72
of, 301	reaction with sodium amide, 124
	reduction to nitrite, 61
Selenium trioxide, 316, 325	
Selenium vapor:	Sodium nitrite:
entropy of Se ₂ , 288	preparation and manufacture, 61
equilibria in, 283, 286	preparation from N2O2 and alkali, 62
4: 4:h:li4 907	
magnetic susceptibility, 287	reaction with sulfur dioxide, 91
molecular species in, 285	Sodium orthophosphates, 231
molecular structure and energy states,	Sodium pentathionate, 392, 397
287	Sodium peroxide, 384
physical properties, 285	Sodium plumbide, 152
Silver amide, 150	Sodium pyrophosphates, 224
Silver amine disulfonate, 101	Sodium selenate, 346
Silver azide, 128	Sodium selenide, 152
Silver dithionate, 360	Sodium stannide, 152

Sodium sulfate, 346	Sulfur dioxide (Cont.):
activity coefficients, 341	reaction:
Sodium sulfide, 152	with ammonia, 106
Sodium tellurate, 352	with aqueous suspensions of MnO ₂ ,
Sodium tellurate, 352 Sodium telluride, 152	358
Sodium tetrametaphosphates, 211, 220	with carbon monoxide, 324
Sodium tetrathionate, 392	
	with chlorine, 308
preparation, 395	with hydrazine, 117
Sodium thiosulfate, 387	with hydrogen, 324
reaction with arsenious oxide, 396	with hydroxylamine, 101
Sodium trimetaphosphates, 211, 219	with nitric acid, 315, 334
preparation, 219	with phosphorus pentachloride, 303
properties, 218	with potassium iodide, 324
Sodium trithionate, 392	with sodium nitrite, 91
Sulfamic acid:	with thiocyanates, 324
acid properties, 103	solubility, 324
hydrolysis, 102	Sulfur halides:
in analysis, 102	physical, thermodynamic, molecular
in coordination compounds, 103	properties, 297, 299, 302
preparation, 101	preparation, 295
properties of salts, 101	reaction with water, 291
solubility, 102	Sulfuric acid:
Sulfamide, 104	activity coefficients, 340
hydrolysis, 105	
Sulfate ion, structure of, 346	boiling points, 336 conductance, 339
Sulfates, solubilities of, 342, 346	equilibrium dissociation of vanor 336
Sulfide ions, 292	equilibrium dissociation of vapor, 336
	fuming, 336
formation in liquid ammonia, 293	impurities in, 335
free energies, 293	ionization constants, 339
Sulfimide, 104	manufacture of, 333
properties, 104–106	formation of nitrosyl bisulfate in, 334
Sulfoxylic acid, 353	phase diagram for hydrates of, 338
Sulfur:	physical and thermodynamic proper-
liquid, 279	ties, 337
boiling points, 281	reaction with nitric oxides, 335
equilibria in, 279	reaction with potassium bifluoride, 346
in thermometry, 282	solubilities of salts, 342
molecular structure, 281	solutions of sulfur trioxide in, 336
monoclinie:	specific gravity of solutions, 344
solubility in various solvents, 279	thermodynamic properties, 324
thermodynamic properties, 278	vapor pressures of, 340
transition temperatures, 277	Sulfur monochloride:
physical properties, 285	entropy, 300
preparation, 276	equilibrium dissociation, 299
radioactive, reaction of, with sulfite	equilibrium reaction with chlorine, 298
ion, 388	interchange with sulfur in, 298
reaction:	molecular structure, 300
with hydrazine, 117	reaction rate with chlorine, 298
with liquid ammonia, 36	reaction with water, 398
with metal-in-ammonia solutions,	Sulfur monoxide:
152	molecular structure and energy states,
rhombic, 277	211
crystal structure, 277	preparation and properties, 310
melting temperatures, 281	reaction with water, 310
solubility in various solvents, 279	Sulfurous acid:
thermodynamic properties, 278	catalytic decomposition by iodide ion,
transition temperatures, 277	329
solid, 277	formation from anhydrides, 326
allotropic modifications, 277	in platinum, gold, and iron complexes,
vapor pressures, 285	328
Sulfur dioxide:	in wine manufacture, 330
dissociation energy, 311	ionization, 327
molecular structure, 318	oxidation:
physical and thermodynamic proper-	by halogens, 328, 341
ties, 318	by iodate ion (Landolt reaction), 329
preparation, 312	by various metal ions, 329

Sulfurous acid, oxidation (Cont.):	Sulfuryl fluoride, 303
in presence of various substances,	hydrolysis, 308
328	Superoxides, 384
to dithionate, 329	physical properties, 387
preparation, 329	preparation, 384, 386
reaction with hydrogen sulfide, 398	structure, 386
reaction with selenious acid, 382	Swart's reaction, 234
reduction with zinc, 329	
salts of, 327	T
Sulfur oxides, 310	m n · · · · · · ·
chemical properties, 324	Telluric acid:
physical properties, 318	conductance, 351
Sulfur oxyacids, 325	crystal structure, 351
acid anhydrides of, 325	decomposition, 350
list of, 326 preparation, 326	formation from anhydrides, 326
	ionization constants, 351
thermodynamic properties of, 342, 345 Sulfur oxyhalides, 303	oxidation reactions, 352
physical properties, 307	preparation, 349 reaction with metals, 352
Sulfur sesquioxide, 316	salts of, 352
Sulfur tetroxide, 316	solubility in water, 350
Sulfur trioxide:	Telluride ions, 292
allotropic modifications, 320	formation in liquid ammonia, 293
physical properties, 319	Tellurium:
vapor pressures, 321	allotropic modifications, 284
equilibria in liquid and solid, 319, 322	basic nitrate, 277, 312
from ferric sulfate, 315	physical properties, 284
from sulfur dioxide and nitric oxide,	preparation, 276
315	reaction with metal-in-ammonia solu-
manufacture by contact process, 313	tions, 152
molecular structure, 319, 324	reaction with nitric acid, 276
physical properties of solid and liquid,	separation from copper, 277
323 reaction:	vapor pressures, 285
with ammonia, 100	Tellurium chlorides, electrical conductivity of, 303
with carbon tetrachloride, 325, 348	Tellurium dioxide:
with halide salts, 325	chemical properties, 325
with hydrazine, 100	physical and thermodynamic proper-
with nitrogen dioxide, 325	ties, 318
with phosphorus pentachloride, 325	preparation, 312
with sulfur, 316	reaction with various oxidizing agents,
with sulfur monochloride, 303	349
with water, 325	Tellurium halides:
thermodynamic properties, 313, 324	physical properties, 297, 299, 302
vapor density, 319	preparation, 295
Sulfur vapor:	reaction with water, 297
dissociation of S ₂ , 288	stability and color of vapor, 296 Tellurium oxides, 310
entropy of S ₂ , 288 equilibria in, 285	Tellurium oxyacids, 325
magnetic susceptibility, 286	acid anhydrides of, 325
molecular species in, 284	list of, 326
molecular structures and energy	preparation, 326
states, 287	Tellurium oxyhalides, 303
physical properties, 285	Tellurium trioxide, 316, 325
Sulfuryl chloride:	Tellurium vapor:
chemical properties, 306	entropy of Te ₂ , 288
decomposition rate, 308	molecular species in, 285
entropy, 307	molecular structure and energy
equilibrium decomposition, 304	states, 287
catalysts for, 304, 308	Tellurous acid, 326, 332
in smoke mixtures, 308	Tetraphosphorus decasulfide (see Phos-
molecular structure, 308	phorus pentasulfide), 187 Tatraphorus pentasulfide, 186
Raman spectrum, 307 reaction with ammonia, 309	Tetraphosphorus pentasulfide, 186 Tetraphosphorus tetrasulfide, 186
reaction with phosphorus trichloride,	Tetraphosphorus trisulfide, 183
304	chemical properties, 184

Tetraphosphorus trisulfide (Cont.): in carbon bisulfide, 185 molecular weight in solution, 184 oxidation, 184 preparation, 183 reaction with various substances, 185 Tetrathionate ion: decomposition rate, 395 formation from thiosulfate ion, 389 hydrolysis, 395 reaction rate with thiosulfate ion, 396 Thallous chloride, in liquid ammonia, 149, 154 Thionic acids, 387 Thionyl bromide, 304 molecular structure, 306 Thionyl chloride, 304 entropy, 307 molecular structure, 306 preparation, 304 Raman spectrum, 307 reaction with ammonia, 106 reaction with hydrazine, 117 Thionyl fluoride: molecular structure, 306 Raman spectrum, 307 Thiosulfate ion, 387 complexes with various ions, 389 formation, 387 free energy, 388 reaction: with arsenious oxide, 396 with hydrochloric acid, 389 with iodine, 389 with mercuric chloride, 393 with peroxydisulfate ion, 374, 377 with potassium nitrite, 397 salts of, 388 solubility, 388

Thiosulfate ion (Cont.):
structure, 388
Titanous ion, formation of peroxide in reaction of, with oxygen, 261, 368
Triphosphorus hexasulfide, 187
Trithionate ion:
decomposition, 394
reaction with cupric ion, 395
structure, 394

v

Vanadic acid, reaction of, with hydrazine,

W

Wackenroder's liquid, 398 polythionates in, 398
Water, 269
chemical properties, 274
compressibility, 272
dissociation of vapor, 274
molecular energy states, 273
phase diagram for ice, 272
physical properties, 269, 271
thermodynamic properties, 270, 273
Water, heavy:
chemical properties, 275
molecular energy states, 273
physical properties, 270
thermodynamic properties, 270
wine, 330

\mathbf{z}

Zinc sulfate, activity coefficients of, 341 Zinc tellurate, 353

Name Index

Beach, 306, 366

Α

Abbott, 225, 226 Abe, 330 Abeg, 63, 335, 391 Abel, 12, 53, 54, 60, 61, 66, 67, 68, 75, 78, 275, 276, 382 Achenbach, 18, 317 Acworth, 86 Adams, 63 Adolf, 359, 360 Aharoni, 22 Ahrle, 372 Allison, 71 Anderson, 15, 159. 235. 240, 284 Andress, 221, 224 Angeli, 57, 58 Angus, 50 Aoki, 16 Argo, 138, 148 Armstrong, 86 Arnold, 36, 267 Arny, 88 Ashley, 165, 166 Asmussen, 93 Aten, 280, 281 Audrieth, 127, 129 101, 102, 103, Auerbach, 335, 391 Avogadro, 166, 254, 403

B

de Baat, 360
Babcock, 258
Badger, 11, 20, 272
Bailar, 34, 36, 39, 40
Baileul, 317
Baker, 316, 349
Baley, 4
Baly, 41
Balz, 347
Bancroft, 86
Bansa, 205
Barker, 19, 133
Barnes, 63
Barnett, 213
Barton, 22, 282, 299
Baskervill, 222
Bassett, 353, 354, 390
Bathien, 176, 177
Bauer, 22, 254
Baxter, 6, 234, 404
Bay, 11

Beans, 215, 217, 218, 219 Beattie, 6, 269, 281 Beck, 164 Beckman, 127, 302 Beeli, 185, 186, 189 Beerbower, 51 Beeson, 44 Beja, 264 Bell, 207 Bendixsohn, 263 Benford, 403 Benger, 352 Berger, 50, 200, 202, 203 Bergland, 101 Berl, 50 Bernal, 274 Bersin, 352 Berthoud, 200, 202, 203 Besson, 113 Bhagarantam, 320 Bhatmager, 287 Bichowsky, 4, 56, 159, 182, 230, 251, 291 Biederman, 264 Bijl, 5 Biltz, 147, 303, 338 Birch, 165 Birge, 4, 258, 263, 403 Bitter, 22 Blair, 44 Blaisdell, 269, 281 Blanc, 331, 332, 351 Blanchard, 15 Blach, 141 Blue, 19, 20, 291 Bodenstein, 28, 29, 30, 67, 291, 313, 335 Bohr, 140, 141, 144, 254, 386, 403 Bohson, 384 Bokhorst, 162 Boltzmann, 3, 140, 403 Bomolka, 162 Boncyk, 149 Bonneman, 220 Booth, 235, 237, 242, 303, Bose, 93 Boullé, 215, 216, 219 Bowen, 265 Bowman, 150, 154 Boylston, 234 Brass, 31, 44 Bratu, 276

Bray, 60, 97, 121, 268, 382, 383, 389 Breiner, 29, 30 Brickwedde, 259 Bridgman, 6, 159, 161, 164. 165, 272 Briegleb, 283 Bright, 32 Briner, 264, 315, 334 Brockmöller, 165, 166, 167, 284, 286, 291 Brockway, 51, 123, 240 Broderson, 117, 118, 119 Brodie, 161 Bronnikov, 220 Brönsted, 107, 338, 376, 377 277, 279, Brown, 63 Browne, 116, 124, 125, 129 Brownstein, 97 Bruner, 292 Burdick, 78 Burgess, Burk, 22 Bursick, 75 Burt, 38 Burwell, 277 Busse, 33, 169 Butler, 101, 103, 363, 365

C

Cady, 51 Calvert, 249 Cambi, 58 Cameron, 344 Capel, 22 Cappe, 154 Carney, 136, 146 Carstens, 121 Cath, 258 Centner, 396 Centnerszwer, 159, 169. 295, 386 Chalk, 175 Chambers, 18, 78 Chamot, 88 Chapman, 23 Chittum, 133 Christoph, 392 Chu, 213 Clapeyron, 251, 252, 253 Claus, 90, 99 Claussen, 295 Clayton, 1, 4 Clever, 39

Braunauer, 261

Clusius, 128, 271
Coats, 219
Cobleigh, 333, 335
Coleman, 15
Collins, 340
Cooley, 298, 306
Copson, 222
Corruccini, 116
Coryell, 267
Coulter, 289
Cousins, 281
Cox, 305
Cragoe, 74, 75, 133
Crenshaw, 251
Crist, 19
Cross, 275, 291
Cruess, 330
Cupery, 101
Curie, 140, 254, 255, 287
Cuy, 121

D

Dahr, 86 Dalal, 43 Daniels, 26, 28, 32, 33 D'Ans, 372, 380 Darling, 273 Davis, 34 De Bruyne, 133 Debye, 248 De Decker, 181 Deines, 392, 397, 399 Deinum, 180 Dekker, 379 Deming, 6 Denbigh, 295 Dennison, 132, 273 Dickinson, 127 Diemer, 344 Dirac, 141, 144, 166 Divers, 53, 54, 90, 93, 99. 101, 114 Dodd, 284 Dodge, 73 Donnan, 4 Donohue, 38, 284 Doolan, 284 Doormaal, 176 Downey, 169, 170 Drake, 75 Duhem, 84 Durant, 64, 353, 354, 390 Dvarda, 88

\mathbf{E}

Eastman, 278, 284 Edgerly, 313 Ehrmann, 295, 297, 303 Einstein, 4, 30 Elliot, 50, 88, 135, 154 Emeleus, 169, 170 Emmett, 76, 176, 179, 261 Ensgraber, 231 Ephraim, 100, 101, 104, 105, 117, 324 Epstein, 253 Essin, 358 Eucken, 75, 251 Everett, 135 Eyster, 22, 24, 123, 237

F

Fabian, 275
Faraday, 403
Farkas, 139, 140
Fay, 313
Pchér, 193, 362
Feigi, 352
Felsing, 75, 292
Fermi, 141, 143, 144, 166
Fernelius, 147, 148, 150, 151, 154, 293
Ficquelmont, 109, 110
Finkelnburg, 255
Fischer, 240, 263, 265, 295, 385
Flügel, 100, 101
Fluss, 397
Foerster, 396
Forbes, 235
Forsythe, 79, 80, 81, 83, 85
Fournier de Albe, 282
Fowler, 274

Garner, 154 Garretson, 327 Gauss, 255 Gavock, 284 Gay-Lussac, 49, 333, 334, Geisel, 34, 35, 36, 37, 146 Gerding, 322 Germain, 222 Germann, 242 Germann, 242
Giauque, 1, 4, 13, 14, 19, 20, 24, 27, 29, 79, 80, 81, 83, 85, 132, 133, 246, 258, 272, 291, 317
Gibson, 138, 147, 148, 165, 167, 269
Giese, 369, 370
Giguère, 117, 365, 366
Gilbert, 116, 120
Gilbertson, 344, 349
Gillette, 22, 24, 88, 127
Gingrich, 159, 162, 281
Giran, 330 Giran, 330 Glass, 294 Glen, 129 Glover, 333, 334, 335 Goehring, 399 Golding, 311 Goldstein, 362 Gordon, 48, 272, 274, 340 Graham, 211, 216, 220, 221 Grassman, 397, 399

Grau, 322 Gray, 163 Green, 26, 154, 373 Griffith, 64, 193, 200, 263 Grubb, 133 Gunther, 127 Gurewitsch, 104, 105 Gutbier, 351 Gutman, 130

ŀ

de Haas, 22 Haber, 73 Hackerman, 298 Haga, 90, 93, 95, 99, 101, 114 Hägg, 359 Hagisawa, 331 Hale, 116 Hall, 147 Hamer, 340 Hamick, 281 Hampson, 176, 182 Hantsch, 50, 52, 104, 130 Harder, 152 Harned, 340, 341 Harper, 133 Hart, 130 Hartman, 84 Häsing, 145 Hatcher, 297, 317, 362, 366 Haupt, 75 Hauschulz, 142 Havens, 2, 27 Havenstein, 372 Hayek, 59, 69 Hecht, 35, 36 Hecker, 341 Heglein, 43 Heilmann, 99 Helms, 386 Hempel, 9 Hendricks, 123, 167, 287 Henkel, 295, 317 Henne, 305 Henning, 133 Henry, 8 Herrmann, 303 Herscovici, 183, 186, 187 Hertlein, 359 Herzberg, 4, 165, 257, 287. Hibbert, 356 Hicks, 215, 216, 229 Hieber, 15 Hiebert, 366 Hildebrand, 159, 361, 385 Hilgert, 119 Hill, 215 Hinshelwood, 22, 26, 265, 269 Hittorf, 157, 162 Hlasko, 292 Hodges, 32 Hoeflake, 180

Hocrenz, 303, 347 Hoffman, 15, 316 Hoge, 259 Holl, 104 Hopfield, 4 Howard, 246 Huff, 202, 208, 344 Hughes, 116, 169 Hugill, 36 Hulsman, 36 Hultgren, 159, 162, 164, 165 Hund, 132 Hunt, 133, 148, 149 Hunter, 22 Hurd, 97 Huster, 141, 142, 143, 144 Hutchins, 356 Hutson, 36

Ι

Ipatiew, 246 Ishikawa, 98, 330 Izard, 343

J

Jacob, 156 Jacobs, 158, 163, 377 Jaenecker, 295 Jaffe, 147 Jander, 351, 352 Janecke, 233 Janickis, 390 Jannek, 317 Jawein, 220 Jellinek, 354, 355, 356 Jenkins, 22 Jessop, 296, 298 Jette, 378 Jevons, 257 Johnson, 136, 146, 147, 148, 249 Johnston, 14, 19, 21, 23, 24, 257, 258 Jones, 54, 359, 394 222, 334, 341, Joslyn, 330 Joyner, 113, 114 Jubermann, 240 Jung, 176

\mathbf{K}

Kablukov, 229
Kailan, 225
Kamerlingh, Onnes, 1, 6
Kaminsky, 282
Kao, 301
Kaplan, 11
Kapustinsky, 313
Kargin, 385
Karrer, 14, 32, 262
Kassel, 75, 174, 266, 287, 290, 308, 311
Katayama, 366
Katzoff, 274

Kaufman, 52 Keesom, 5 Kelley, 10, 291 Kemp, 13, 19, 27, 29, 271. $27\tilde{4}$ Ketelaar, 46, 99, 110 Khanna, 287 Kichl, 215, 217, 218, 219, 224'King, 107, 344, 374, 375, 377, 378 Kinoshita, 7 Kipphan, 10 Kircher, 301 Kirmreuther, 103 Kistiakowsky, 30 Klein, 386 Kleist, 50 Klemenc, 19, 59, 69, 80 Klemm, 142, 294, 295, 370, 371, 386 Klinkenberg, 50 Knecht, 356 Knietsch, 336, 338 Knorre, 211, 216, 219, 220 Koch, 99 Kohlransch, 140 Kohlschutter, 171 Kohn, 58 Koller, 343, 345 Kolthoff, 88, 193, 197, 199, 327 Koppel, 335 Korinth, 277 Kornblum, 324 Kossiakoff, 267 Kowalsky, 173 Kowlitowski, 243 Kracek, 284 Kramer, 316 Krase, 77 Kraus, 116, 136, 138, 139, 141, 146, 148, 151, 152, 261, 294, 385, 386 Kruger, 146 Ksarnowsky, 293 Kulkens, 112 Kurrol, 211, 223 Kurtenacker, 391, 392, 393, 395, 397 Kutsch, 371

T

LaMer, 107
Lamm, 221, 223
Landle, 140, 142, 143, 144
Landolt, 329
Lange, 237, 346, 347
Langford, 281
Langmesser, 294
Langseth, 69
Larson, 75
Latimer, 11, 54, 56, 98, 158, 193, 200, 232, 291, 293, 342, 345, 385, 400
Leckie, 50

Lehner, 301, 305, 313, 316, 344 Leighton, 275 Lemoine, 184 Lemon, 59 Lessheim, 287 Leutwyler, 221 Lévy, 379 Lewis, 11, 63, 93, 255, 266, 271, 276, 280, 291, 313, 321, 336 Libina, 90 Liebhafsky, 382, 383 Liebig, 108 Linckh, 14 Linder, 28 Linhart, 204 Linhorst, 32 Linton, 366 Litterscheid, 360 Livingston, 383 Lobry De Bruyn, 97, 115 Loessner, 192 Long, 247, 271, 274 Lotmar, 109 Lowenheim, 360 Lowry, 59, 296, 298 Lu, 38, 284 Lude, 75 Ludlam, 173, 244 Lundstrom, 42 Lunge, 50, 334 Lyons, 345

M

Maass, 362, 363, 365, 366 368Macallan, 344 MacGillavry, 181 Machu, 369 MacKensie, 97 MacRae, 159, 163, 167 Maddrell, 211, 212, 215, 216, 217 Mai, 187 Mailander, 41 Maisin, 316 Malet, 30 Malmgren, 221, 223 Manchot, 14, 343 Manley, 86, 175 Mann, 105 Manning, 132 Manor, 63 Marburg, 184 Marie, 192 Marlies, 107 Marsanez, 263 Mason, 356 Masson, 373 Matejka, 391, 397 Matheson, 366, 368 Maxwell, 3, 27, 81, 167, 287 Mayes, 304

McAmis, 292 McCleary, 293 McCrosky, 344 McCullough, 283, 302 McDonald, 271 McGavock, 278 McKeown, 69, 193, 200 McKinney, 127 McMahon, 133 Mecke, 272 Mehltretter, 316 Mellor, 184 Meloche, 316 Melville, 163, 173 Mentrel, 152 Mentzel, 267 Menzel, 46 Menzies, 271 Merz, 42 Meusen, 37 Meyer, 64, 127, 146, 147, 312, 316, 317, 343, 346, 349, 358, 359, 360 Meyers, 133 Michel, 104 Migeotte, 133 Mihr, 176, 177 Miles, 83, 85, 271 Miller, 177 Milligan, 88 Mills, 364 Mitchell, 193, 195, 197, 200, 201 Moelwyn-Hughes, 265 Moldenhauer, 39, 343, 349 Moles, 74 Monoszon, 150, 153 Montgomery, 287, 311 Mooney, 193 Moore, 234 Morse, 58 Mosley, 27, 81, 167, 287 Mott, 128, 143 Müller, 50, 322 Müller-Skjold, 127 Mulliken, 22 Munter, 222 Murphy, 4 Murthmann, 39 Mutschin, 393 Muus, 225, 226

Naiditch, 92 Nassau, 96 Necl, 286 Neumann, 19, 46, 284, 386 Neusser, 68 Nichols, 58 Nicholson, 372 Nicloux, 355 Nielson, 291 Nijveld, 321 Nimms, 228 Noponén, 88 Nordberg, 33

Norris, 313 Norrish, 290 Nottebohm, 385 Noyes, 267, 327, 339 Nylèn, 214, 219

Oishi, 7

Orlich, 12

Oldershaw, 91

Osborne, 74, 75, 133 Ostwald, 359 Overstreet, 132, 133 P Pal, 65 Palma, 353 Palmer, 46, 300, 306, 317 Pankow, 109 Parker, 317 Parmenter, 152, 385, 386 Parsons, 335, 364 Partington, 53, 175, 284, 304, 316, 353 Partridge, 215, 216, 221, Pascal, 211, 213, 214, 215, 216, 217, 222, 350
Passerini, 351
Patrick, 298
Patry, 350
Paulin, 141
Pauling, 51, 88, 122, 220 Pauling, 51, 88, 123, 239, 240, 255, 273, 274, 351 Pawletta, 316 Pearson, 152 Penney, 263, 366 Pessel, 225, 226 Petrikalen, 169 Pfanndler, 338 Pfeiffer, 30 Phipps, 147 Piccard, 22, 129, 254 Pick, 63 Pickering, 338 Pincas, 66, 125, 129

Pinsher, 206, 207

Piotrowsky, 117

Pleskov, 150, 153 Ploetze, 385 Plyler, 19 Pohl, 282, 313

Piskur, 146 Pitzer, 132

Planck, 403

Platz, 175

Pole, 222

Pratt, 88

Prentiss. 348

Politzer, 302 Polzenius, 77 Pomeroy, 359, 360 Postma, 135 Preuner, 165, 166, 167, 284, 286, 290 Price, 317, 334, 369, 377 Probst, 206, 209 Proisl, 12, 53, 54, 55 Purcell, 169

Raman, 2, 50, 69, 70, 167, 193, 241, 258, 319, 399 Ramsperger, 127, 308
Randall, 63, 133, 273, 280, 291, 313, 336, 341
Raoult, 139 Raschig, 50, 53, 90, 93, 94, 95, 100, 101, 113, 129, 130 Rasetti, 2, 4 Rayleigh, 11 Read, 72 Rèchid, 211, 212 Redfield, 88 Redlich, 84, 276 Reitemeier, 222 Rengade, 152 Rice, 47 Richards, 30 Rideal, 290 Riegel, 348, 349 Riesenfeld, 264, 370, 371, 385 Rigden, 5 Ring, 88 Rinkenbach, 130 Ritchie, 244 Ritter, 251 Robertson, 384 Robinson, 341, 354 Rolla, 291, 302 Rollefson, 91 Rollier, 351 Romer, 108 Roquero, 74 Rose, 220 Rosenberg, 121 Rosenfeld, 84 Rosenheim, 206, 207, 233, 351, 352 Rossini, 4, 56, 159, 230, 257, 291 Roth, 322, 324 Rothmund, 265, 268 Rozhdestvenskii, 237 159, 182, Rubin, 338 Rudolph, 184, 186 Rudy, 219, 221, 224 Rubbe, 308 Ruff, 34, 35, 36, 37, 46, 146 346 Ruheman, 251 Rumelin, 230 Rumpf, 168, 170 Rundle, 117 Rupp, 80 Russell, 171, 307

Rutgers, 180 Rybakow, 65

8

Saal, 374 Sakurai, 103 Salih, 221 Salow, 255 Sanger, 348, 349 Schafranik, 67 Schamager, 175 Scharfenberg, 187, 188 Schartt, 184
Scheffer, 135, 176, 180
Schenk, 34, 108, 161, 175, 176, 177, 311 Schlapp, 256 Schlosser, 219, 221, 224 Schmid, 66, 67, 73 Schmitz-Dumont, 112 Schnegg, 338 Schoenmaker, 321, 322 Schomaker, 20, 110, 302, 365 Schott, 331 Schramm, 346, 350 Schtscherbakow, 90 Schuhmann, 277, 313, 332 Schultz, 115, 178, 179 Schulz, 96 Schumacher, 32, 46, 47, 266 Schumann, 59 Schumb, 306 Schupp, 284, 286 Schutz, 276 Schwartz, 222, 369, 370 Schwarz, 19, 317 Schwarzenbach, 98, 119. 206, 207 Scott, 54, 115, 341 de Selincourt, 289 Semenoff, 173 Seubert, 121 Shah, 53 Shamorsky, 313 Shand, 263, 269 Shankman, 340 Sherrer, 22 Sherrill, 327, 339, 343, 345 Sherwood, 18, 78, 135 Shetterly, 116, 125 Shilow, 65 Shupe, 6 Shutt, 263 Sidgwick, 93, 295 Siekman, 47 Sieverts, 192 Sihvonen, 358 Simon, 193, 251 Simons, 296 Simonson, 251 Simpson, 97, 317 Sisler, 101, 102 Slansky, 284

Sligh, 74, 75 Smith, 103, 215, 216, 224, 249, 280, 306, 316, 385 Smits, 162, 169, 180, 181, 321, 322 Smythe, 133 Sodoman, 294, 386 Sommer, 66, 96, 120, 125, Sone, 22 Spangenberg, 264 Spangler, 333, 335 Spencer, 130 Sperling, 50 Spitalsky, 371, 384 Spong, 296, 298 Sprenger, 32, 46, 47, 266 Spurr, 20, 27, 263, 264 Stamm, 165, 167, 359, 360, Standenmaier, 349 Starkweather, 6 Stastny, 393 Stein, 78 Steinbeck, 374, 375 Steiner, 11, 255 Stephens, 148 Stephenson, 133, 246, 317 Stevenson, 75, 165, 167, 241, 242, 246, 302, 306, 309, 313, 366 Stimson, 74, 75 Stitt, 267 Stock, 133, 162, 165, 167, 183, 184, 186, 187, 188 Stokes, 107, 108 Stosick, 176, 182, 190 Strenk, 295 Stuer, 104 Sugarman, 143, 144, 148 Sugden, 207 Suhrman, 128 Sutherland, 29, 263, 366 Sutthoff, 88 Sveda, 101 Swart, 234 Swift, 88, 331, 401

Tafel, 90
Tammann, 159, 220, 250
Tantar, 116, 126
Tartar, 327
Taube, 268
Taylor, 43, 80, 83, 130, 133, 313
Teal, 271
Teller, 75
Thiel, 188
Thillot, 220
Thode, 141, 146
Thomas, 129, 159, 162
Thompson, 402
Thomson, 192
Thomson, 221

Thorpe, 108, 175, 190

Thum, 56
Tiede, 128
Tilden, 213
Tillmanns, 88
Titoff, 9
Tjabbes, 371
Tolman, 31, 33, 43, 166, 265, 266
Traube, 303, 308, 346, 347
Trautz, 10, 43, 295, 297, 303, 304, 308
Travers, 212
Traxler, 242
Treadwell, 185, 186, 189, 206, 207, 221
Tropsch, 265
Tschudnowsky, 176
Tutton, 108, 175, 190, 346

U

Uhlenbeck, 132 Urey, 4, 271 van Urk, 1, 6 Usher, 33, 39, 40 Uzel, 352

٧

Van der Waals, 181 Van Dusen, 133 Van Name, 202, 208 Van Valkenburgh, 34, 36, 39, 40 Van Vleck, 22, 23 Van Voorhis, 159, 163, 167 Vater, 9 Veley, 86 Venkateswaran, 167 Verhock, 26, 28 Vogel, 316, 353 Voight, 303 Vollmer, 53 Von Bezold, 184, 187, 188 Vosnessensky, 36, 38 Vries, 110

W

Wackenroder. 329. 353. 354, 398, 399 Waddington, 43 Wagner, 83, 85, 235 Walden, 119, 367 Walker, 257 Wallace, 224 Walles, 69 Wallis, 15 Walton, 364 Warburg, 262 Warren, 159, 162, 277 Wartenberg, 11 Watkins, 359 Watson, 317 Watt, 147, 151, 154 Webb, 50, 334

Weber, 50
Wegwitz, 316
Weimer, 21, 24
Weinhardt, 347
Weinhardt, 231
Weintraub, 50
Weiss, 66
Welinsky, 43
Welsh, 117, 118, 119
Werner, 14
Werth, 370, 371
Wertz, 19, 53
West, 127, 178
White, 33, 266
Whitford, 364
Whittaker, 42
Whyte, 152, 261, 386
Whytlaw-Gray, 295
Wiede, 15
Wiersma, 22
Wiese, 120
Wijs, 135

Wilcoxon, 124
Wildt, 1
Wiley, 72
Wilke-Dorfurt, 347
Wilkins, 50
Willey, 11
Willie, 244
Wilstatter, 372
Wilson, 83, 85, 235
Winkelbleck, 97
Wirzmuller, 343
Wislicenus, 124
Wohler, 316
Wohlers, 371
Wolf, 175, 176
Woo, 20
Worsley, 316, 349
Wright, 133
Wroczynski, 315
Wu, 20, 132
Wulf, 32, 262, 265, 266
Wunderlich, 303, 347

Wurst, 221, 224 van der Wyk, 334 Wynne-Jones, 135

Y

Yee, 77 Yost, 44, 51, 75, 92, 154, 159, 165, 167, 241, 242, 246, 295, 297, 298, 299, 301, 307, 317, 331, 359, 360, 378, 379, 384 Young, 159

 \mathbf{z}

Zachariasen, 193, 394, 395 Zagwosol, 229 Zeitfuchs, 294 Zimmerman, 39, 54, 56 Zintl, 58, 152 Zumwalt, 366