CSE585/EE555: Digital Image Processing II Spring 2020

Exam #1: Exam Questions

given: 6:15PM — 9:00PM, Wednesday, 18 March 2020.

One $8\frac{1}{2}$ "×11" page of notes, both sides, "allowed." (Effectively open notes.)

Work SEPARATELY! It is not permitted to work with others on this exam.

Give all answers on the <u>ANSWER SHEET</u>.

1.	24 pts
2.	10 pts
 3.	12 pts
 4.	18 pts
5.	20 pts
6.	16 pts
TOTAL	100 pts

Dr. Higgins on call at 814-865-0186 during the exam.

During the exam, stay on CANVAS (Exam #1 tab) and email to receive possible updates.

- 1. (24 pts) Answer each of the following T (true) or F (False). (2 pts each.)
 - **a.** Suppose f is a root of operator $\Psi(f)$; i.e., $\Psi(f) = f$. Then, $\Psi(\cdot)$ is idempotent.
 - **b.** Consider 3-point filter $y_k = f(x_{k-1}, x_k, x_{k+1})$, where f is the exclusive-or function. Then, this filter can be defined as a stack filter and associated positive Boolean function.
 - ____ **c.** Suppose f(x) and g(x) are 1-D gray-scale images satisfying $f(x) \ge g(x)$ for all x. Then, $f(x) \ge g^G(x)$ for all x, where g^G is the closing of g by structuring element G.
 - **____ d.** Suppose for a function f, med(f; A) = f. Then, $med^{\infty}(f; A) = f$.
 - --- **e.** We know that $x \in X \ominus B = \bigcap_{b \in B^s} X_b$. Then, $\forall b \in B^s, x_{-b} \in B$.
 - ___ f. Consider the following statement

$$(X \ominus B_1^s) \oplus B_2^s = B_2 \oplus (X \ominus B_1)$$

where $X \neq \emptyset$, $B_1 \neq \emptyset$, $B_2 \neq \emptyset$, and B^s signifies the symmetrical set of B. The above statement is true if $B_1 = B_1^s$ and $B_2 = B_2^s$.

Consider sets $X \neq \emptyset$ and $Y \neq \emptyset$ and structuring elements $B \neq \emptyset$ and $C \neq \emptyset$.

g. For all sets $X, Y, B \subset \mathbb{R}^n$ and structuring element $B \neq \emptyset$, operator $\Psi_B(X)$ satisfies

$$X \subset Y \Longrightarrow \Psi_B(X) \subset \Psi_B(Y).$$

Then, $Y \subset \Psi(Y)$.

$$\mathbf{h}$$
. $(X \ominus B) \oplus C = (X \oplus C) \ominus B$.

$$\dots$$
 i. $X \ominus (C \oplus B) = (X \ominus B) \ominus C$.

Now, consider gray-scale images f(x) and g(x) defined (i.e., $\neq -\infty$) for $-\infty \leq x \leq \infty$.

___ **j.**
$$U[T(f)] = f$$
.

___ **k.**
$$f \vee g = T(U(f \vee g)).$$

---- **l.**
$$U(f \wedge g) = U[f]) \cap U[g]$$
.

2. (10 pts) Binary Morphology. Consider the 2-point structuring element B and 8×5 image X depicted below. The " \bullet " symbol denotes "1" pixels, "+" denotes the origin of B, and the upper left-hand corner of X denotes X's origin. You may disregard border pixels; i.e., assume pixels outside of X are "0" pixels.

The figures $\Psi_i(X)$, i = 1, 2, 3, represent X after an operation $\Psi_i(\cdot)$ is performed on X. These operations correspond to one of the choices listed below:

- (a) X dilated by B (b) $X \oplus B$ (c) X closed by B
- (d) X eroded by B (c) $X \ominus B$ (e) X opened by B

Specify the choice (a-e) that corresponds to each output $\Psi_i(X)$, i = 1, 2, 3.

You can use the blank figures below to help you arrive at your answers — these will NOT be considered in your answers to the questions above.

3. (12 pts) Skeletonization. Consider the morphological skeleton sk(X) of a 2-D digital object X, based on structuring element B. Some helpful general relations related to sk(X) appear below:

$$sk(X) = \bigcup_{0 \le n \le N} S_n(X) \quad \text{where:}$$

$$S_n(X) = (X \ominus nB) - (X \ominus nB)_B \quad n^{th} \text{ skeletal component}$$

$$nB = \underbrace{(B \oplus B \oplus B \oplus \ldots \oplus B)}_{n B's} \quad n^{th} \text{-order homothetic of } B$$

$$\text{where } n = 0, 1, 2, \ldots, N, \quad N = \max\{k : X \ominus kB \neq \emptyset\}$$

$$skf(x,y) = \begin{cases} n, & (x,y) \in S_n(X) \\ \text{undefined , otherwise} \end{cases}$$

$$X_{kB} = \bigcup_{n=k}^{N} (S_n(X) \oplus nb)$$

Let $B=3\times 3$ square centered about (0,0). We are told the following about a specific $X\neq\emptyset$: i.) $X_B=X$; ii.) $X_{2B}\subset X_B$; iii.) $X_{2B}\neq\emptyset$, but $X_{3B}=\emptyset$. Answer the following questions.

- (a) (4 pts) Which skeletal components $S_n(X)$ do not equal the empty set?
- (b) (3 pts) What is skf(x,y) when $(x,y) \in S_2(X)$?
- (c) (5 pts) X_B can be written as the union of select components $S_n(X) \oplus nB$. Precisely define this union by only including components $\neq \emptyset$.

4. (18 pts) Size distribution and pattern spectrum. $U(n) = \text{area}[X_{nB}]$ and $f(n) = \frac{U(n) - U(n+1)}{\text{area}(X)}$ denote the size distribution and pattern spectrum of an object X relative to 3×3 square structuring element B. Also, we know

a.)
$$U(n) = \begin{cases} 50, & \text{if } n = 0\\ \text{unknown}, & \text{if } n = 1\\ 30, & \text{if } n = 2\\ 0, & \text{if } n > 2 \end{cases}$$

b.)
$$f(1) = 0.36$$

Answer the following questions.

(a) (4 pts) What is area(X)?

(b) (14 pts) Give the complete size distribution and pattern spectrum of X in the table below.

n	0	1	2	3
U(n)				
f(n)				

5. (20 pts) Order-statistics filtering. A 1-D gray-scale image x_k passes through a 3-point minimum filter given by

 $y_k = f(x_{k-1}, x_k, x_{k+1})$ to produce output y_k , where $x_k \in Q = \{0, 1, 2, 3\}$. For the situation shown below, we know the following:

- 1. The input x_k is known for $1 \le k \le 6$, while x_k is unknown at k = 0 and k = 7.
- 2. The output y_k is known at k = 1 and k = 6.
- 3. Per our class convention, $T_i(\cdot)$ denotes the threshold set at value i, while $f(T_i(\cdot))$ denotes the filtered version of $T_i(\cdot)$.
- 4. "X" values in the output signify points NOT to process.
- 5. "minimum" and "binary min" denote that minimum filter applied to gray-scale and binary data, respectively.

$\underline{ ext{INPUT}}$								<u>OUTPUT</u>												
<i>k</i> :	0	1	2	3	4	5	6	7			<i>k</i> :	0	1	2	3	4	5	6	7	
x_k :	a	2	3	0	3	1	3	b	\rightarrow	minimum	\rightarrow	X	1					1	X	y_k
		ı	1	-	I		l	l								l	l		J	
$T_3(\cdot)$:									\rightarrow	binary min	\rightarrow	X							X	$f\left(T_3(\cdot)\right)$
$T_2(\cdot)$:									\rightarrow	binary min	\rightarrow	X							X	$f\left(T_2(\cdot)\right)$
$T_1(\cdot)$:									\rightarrow	binary min	\rightarrow	X							X	$f\left(T_1(\cdot)\right)$

(a) (8 pts) What are the possible values of "a" and "b"?

(b) (14 pts) Fill in the table above. In particular, be sure to define output y_k , threshold sets $T_i(\cdot)$, and filtered threshold sets $f(T_i(\cdot))$. If "a" or "b" can take on more than one value, pick a value for your results.

6. (16 pts) Stack filter. We know that a stack filter

$$y_k = S_f(x_{k-1}, x_k, x_{k+1})$$

is defined by positive Boolean function $B.\ B=1$ is when both (a.) and (b.) below are true:

a.)
$$x_k = 1$$

b.)
$$x_{k-1} = 1$$
 or $x_{k+1} = 1$.

Derive the positive Boolean function for this filter. In particular, use the answer sheet to give a truth table for this filter and to give your final positive Boolean function.

Note: feel free to write terms such as x_{k-1} as x(k-1) when giving your answer.