Nome	Descrizione	Param	PMF or PDF	E(X)	Var(X)
Bern	X~Bern(p) se X può assumere solo due valori 0,1 e P(X=1)=p, P(X=0)=1-p	р	P(X=1)=p, P(X=0)=q=1-p	р	pq
Bin	X~Bin(n,p) con X=# di successi in n prove Bern(p) indipendenti CON REIMMISSIONE	n,p	$\binom{n}{k} p^k q^{n-k}$ per $k \in [0,, n]$	np	npq
Geom MEMORYLESS	X~Geom(p) con X=# di fallimenti fino al primo successo (ESCLUSO) in una serie indipendente di tentativi Bern(p)	p	$q^k p$ per k $\in [0,1,2,]$	q/p	q/p^2
NegBin (Pascal)	X~NegBin(r,p) con X=# di tentativi fino all'r-esimo successo (ESCLUSO) in una serie indipendente di tentativi Bern(p)	r,p	$\binom{r+n-1}{r-1}p^rq^n\operatorname{con} n\in[0,1,2,\ldots]$	rq/p	rq/p ²
HyperGeom	X~HGeom(w,b,n) con X=# di elementi appartenenti a gruppo w su un sample di n elementi presi SENZA REIMMISSIONE da una popolazione totale=w+b	w,b,n	$\frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{n}} \operatorname{per} k \in [0,1,2,\ldots,n]$	$\mu = \frac{nw}{w+b}$	$\left(\frac{w+b-n}{w+b-1}\right)n\frac{\mu}{n}\left(1-\frac{\mu}{n}\right)$
Poiss	X~Pois(λ) con X=# di successi successivi indipendenti in un intervallo di tempo	λ parametro di scala	$\frac{e^{-\lambda}\lambda^k}{k!}\operatorname{per} k \in [0,1,2,\ldots]$	λ	λ
Unif	X~Unif(a,b) con la probabilità di X direttamente proporzionale alla lunghezza del segmento ab	a <b< td=""><td>$\frac{1}{b-a}\operatorname{per} \mathbf{x} \in (a,b)$</td><td><u>a+b</u> 2</td><td>$\frac{(b-a)^2}{12}$</td></b<>	$\frac{1}{b-a}\operatorname{per} \mathbf{x} \in (a,b)$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$
Normal(standard)	X~N(0,1)			0	1
Normal(general)	X~N(μ , δ ²)	μ , δ^2	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	μ	δ^2
LogNormal	$X=e^N \sim \log \varkappa(\mu, \delta^2)$ sse N=logX ~ N(μ, δ^2)	μ , δ^2		$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$
Logistic	La sua distribuzione assomiglia a quella Normale ma con code "più pesanti" (cioè meno appiattite ai limiti)				

Weibull	Usata per descrivere tempi di guasto/attesa. La distribuzione esponenziale è un suo caso specifico con a=1	λ,а	$f(x) = a \lambda^{a} x^{a-1} e^{-(\lambda x)^{a}} \text{ per x>=0,}$ =0 altrimenti	$\frac{1}{\lambda}\Gamma\left(1+\frac{1}{a}\right)$	$\frac{1}{\lambda^2} \left(\Gamma \left(1 + \frac{2}{a} \right) - \Gamma \left(1 + \frac{1}{a} \right)^2 \right)$
Expo MEMORYLESS	X~Expo(λ)	λ	$\lambda e^{-\lambda k}$ per x>0	1/λ	$1/\lambda^2$
Gamma		a,λ	$\Gamma(a)^{-1}(\lambda x)^a e^{-\lambda x} x^{-1}$ per x>0	<i>a</i> / λ	a / λ^2
Beta	X~Beta(a,b) generalizzazione della Uniforme (sempre continua e limitata) ma la PDF non è necessariamente piatta	a,b	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}\operatorname{per 0< x< 1}$	$\mu = \frac{a}{a+b}$	$\frac{\mu(1-\mu)}{a+b+1}$
Chi-square	Caso speciale funzione Γ. Usata per stimare varianze	n	$\frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2-1} e^{-x/2} \text{ per x>0}$	n	2n
Student-t	Se Z~N(0,1) e Y~ χ^2 sono indipendenti allora $\frac{z}{\sqrt{Y/n}}$ ha distribuzione student-t	n	$\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+x^2/n)^{-(n+1)/2}$	0 se n>1	$\frac{n}{n-2}$ se n>2
Cauchy	Caso speciale della distribuzione student-t con n=1				