## Modélisation statistique

#1.b Théorème central limite

**Dr. Léo Belzile HEC Montréal** 

## Loi nulle

Lorsqu'on effectue un test statistique, on doit connaître son comportement sous l'hypothèse nulle afin de tirer une conclusion (rejeter/ne pas rejeter  $\mathcal{H}_0$ ).

La statistique de test est souvent

- $\bullet$  une statistique de Wald (test-t, estimateur du maximum de vraisemblance)
- racine du test du rapport de vraisemblance

Dans ces cas, sous des hypothèses de régularité et pour n suffisamment grand, la loi nulle qui sert de référence est approximativement normale. Pourquoi?

## Théorème central limite (informel)

Si  $Y_1,\ldots,Y_n$  est un échantillon aléatoire simple d'une population

- lacktriangle d'espérance  $\mu$ ,
- lacktriangle de variance  $\sigma^2$  finie.

Alors la loi de la moyenne empirique  $Y_n$  est approximativement normale centrée en  $\mu$  et de variance  $\sigma^2/n$ .

$$\overline{\overline{Y}}_n \stackrel{.}{\sim} \mathsf{No}(\mu, \sigma^2/n)$$

## Théorème central limite (formel)

Soit  $Y_1,\ldots,Y_n$  des variables aléatoires indépendantes et identiquement distribuées de loi F de variance finie et  $\overline{Y}_n=n^{-1}\sum_{i=1}^n Y_i$ .

Alors, la moyenne empirique converge en distribution pour tout  $y \in \mathbb{R}$ ,

$$\lim_{n o\infty}\mathsf{P}\left(\sqrt{n}rac{\overline{Y}_n-\mu}{\sigma}\leq y
ight)=\Phi(y)$$

où  $\Phi(y)$  est la fonction de répartition de  $\mathsf{No}(0,1)$ .

Représentons graphiquement le théorème central limite en tirant des échantillons de la loi suivante (tronquée à gauche, multimodale, etc.)



Tirons 20 échantillons aléatoires de taille n=10 de cette loi.



Répartition des n=10 observations et moyenne empirique (trait rouge)

Si on augmente la taille de l'échantillon à n=100, la variabilité de la moyenne diminue,



Répartition des n=100 observations et moyenne empirique (trait rouge)

La même chose, avec n=1000 observations par échantillon.



Répartition des n=1000 observations et moyenne empirique (trait rouge)

Si on fait un histogramme des moyennes (traits rouges), qu'est-ce qu'on obtient?



Distribution empirique et approximation normale de la moyenne de n=10 observations.

L'approximation fournie par le théorème central limite est meilleure quand la taille de l'échantillon n augmente.



Distribution empirique et approximation normale de la moyenne de n=100 observations.

La convergence est plus rapide au centre de la loi que dans la queue.



Distribution empirique et approximation normale de la moyenne de n=1000 observations.

La variance de la moyenne  $\overline{Y}_n$  quand  $\mathsf{Va}(Y_i) = \sigma^2$  est  $\sigma^2/n$ .



Approximation normale pour différentes tailles d'échantillons.