IMPLEMENTACIÓN Y RENDIMIENTO DE ESTRATEGIAS EVOLUTIVAS BÁSICAS Y HARMONY SEARCH

APLICACIONES DEL SOFT-COMPUTING EN ENERGÍA, VOZ E IMAGEN

Índice

Índice	iError! Marcador no definido
Enunciado	2
Estrategia evolutiva (1+1)-ES	3
Estrategia evolutiva (μ + λ)-ES	3
Búsqueda mediante Harmony Search	4
Resultados	7
Función 1	7
Función 2	8
Función 3	10

Enunciado

Funciones a optimizar:

$$f_1(x) = \sum_{i=1}^{30} x_i^2$$
 , $x_i \in [-100,100]$ ($f_{\min} = 0$)

$$f_2(x) = \sum_{i=1}^{30} -x_i \cdot sen(\sqrt{|x_i|}), \ x_i \in [-500,500], (f_{min} = -12569.5)$$

$$f_3(x) = \sum_{i=1}^{29} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right], \ x_i \in \left[-30,30 \right], \ (f_{\min} = 0)$$

- 1. Comenzad por la implementación de la estrategia evolutiva más simple, la (1+1)-ES. Implementad a continuación la estrategia ($\lambda + \mu$)-ES.
- 2. Implementad una búsqueda mediante Harmony Search, con tamaño de HM= λ .

Comparad los resultados en las 3 funciones de prueba.

Estrategia evolutiva (1+1)-ES

Este algoritmo se basa en la supervivencia del mejor individuo.

Su funcionamiento parte de una solución a la cual vamos aplicando operadores iterativamente (**mutación** a partir de un operador gaussiano) para generar un individuo **hijo**. En el caso de que el resultado de la función objetivo del hijo sea **menor** que la del padre (para el caso de las funciones del ejercicio), el individuo hijo se cambia por el individuo padre.

```
function [allFitness,fitness,hijoMejor] = algoritmo11(vector,gmax,nFuncion,sigma)
   padre = vector;
   minimoActual = evaluarFuncion(padre, nFuncion);
   allFitness = [];
   varianza = sigma;
   for i=1:gmax
       allFitness = [allFitness; minimoActual];
       hijo = generarHijo(padre,varianza,nFuncion);
       minimoHijo = evaluarFuncion(hijo,nFuncion);
       if(minimoHijo<minimoActual) %Si el hijo es mejor que el padre, se sustituye
            minimoActual = minimoHijo;
            hijoMejor = hijo;
            padre = hijo;
            fitness = minimoActual;
       end
   end
end
```

```
function [hijo] = generarHijo(padre,varianza,funcion)
  ruido = 0 + varianza*randn(1,30);
  hijo = padre + ruido;
  hijo = comprobarHijo(hijo,funcion);
end
```

Estrategia evolutiva ($\mu + \lambda$)-ES

Este algoritmo sigue una estrategia elitista, es decir, no se pierde al mejor de la población.

Su funcionamiento parte de un conjunto de soluciones a las cuales vamos aplicando operadores iterativamente (**mutación** a partir de un operador gaussiano) para generar un conjunto de individuos **hijos**, es decir, cada solución padre genera un conjunto concreto de individuos hijos. Si el mejor (**menor** resultado en la evaluación) de los hijos es mejor que su padre, se sustituirá por él.

```
function [allFitness,mejorFitness,solucion] = algoritmoML(vectores,gmax,nFuncion,sigma,nHijos)
    padres = vectores;

valoresPadres = evaluarAux(padres,nFuncion);
    minimoPadres = min(valoresPadres);

allFitness = [];
    varianza = sigma;
    for j=1:gmax
        allFitness = [allFitness;minimoPadres]; %Guardamos el fitness del mejor padre
        padres = obtenerNuevosPadres(padres,nHijos,varianza,nFuncion,valoresPadres);
        valoresPadres = evaluarAux(padres,nFuncion);
        [minimoPadres, posicionMinimo] = min(valoresPadres);
        mejorFitness = minimoPadres;
        solucion = padres{posicionMinimo}; %Mejor padre
    end
end
```

```
function [padres] = obtenerNuevosPadres(padres,nHijos,varianza,nFuncion,valoresPadres)
    nPadres = size(padres);
    for i = 1:nPadres(2)
        hijos = generarHijosAux(padres{i},nHijos,varianza,nFuncion);
        valoresHijos = evaluarAux(hijos,nFuncion);
        [valorHijoMinimo, posicionHijoMinimo] = min(valoresHijos);
        if(valorHijoMinimo<valoresPadres(i))
            padres{i} = hijos{posicionHijoMinimo};
        end
        end
        end
end</pre>
```

Búsqueda mediante Harmony Search

Este algoritmo se basa en el cómo una orquesta de jazz improvisa.

Los pasos del algoritmo son los siguientes:

- HMCR: consiste en la generación de una nueva harmonía (hijo). Cada nota (elemento del hijo) se genera independientemente, de manera que el HMCR es una probabilidad de que dicha nota sea obtenida de la Harmony Memory (matriz de padres). Si es menor la probabilidad aleatoria que la HMCR, entonces la nota se por una nota aleatoria de la misma columna que la Harmony Memory. En caso contrario, se genera una nota aleatoria entre el dominio de la misma columna de la Harmony Memory. En nuestro caso, HMCR es 0.9,
- PAR: consiste en la mutación de la nota en base a una probabilidad. En nuestro caso, la mutación parte de un operador gaussiano, su probabilidad es 0.2.
- **RSR**: algunas notas son reemplazadas por otras de forma aleatoria con una probabilidad RSR. En nuestro caso, la probabilidad RSR es **0.01**.

Finalmente, la nueva armonía se compara con la **peor** del Harmony Memory, y si es mejor que ésta última la **sustituye**.

```
function [hijo] = generarHijoRSR(padres,varianza,nFuncion)
    hijo = [];
    tam = size(padres{1}); tamColumnas = size(padres); tamColumnas = tamColumnas(2);
    [maximo,minimo] = limitesFunciones(nFuncion);
    for i = 1:tam(2)
        prob = rand;
        if(prob<0.9)
            numAleatorioFila = randi(tamColumnas); = padres{numAleatorioFila};
            valor = fila(i);
        else
            valor = minimo + (maximo-minimo)*rand;
        end
        if(prob<0.2)
            ruido = 0 + varianza*rand; = valor + ruido;
        end
        hijo = [hijo,valor];
    end
    tamHijo = size(hijo); probCambio = rand;
    if(probCambio<0.01)</pre>
        for i=1:randi(tamHijo(2))
            posicionAleatoria = randi(tamHijo(2));
            hijo(posicionAleatoria) = rand*(maximo-minimo)+minimo;
        end
    end
end
```

```
function [allFitness,mejorFitness,solucion] = algoritmoHS(vectores,gmax,nFuncion,sigma)
   padres = vectores;
   varianza = sigma;
   valoresPadres = evaluarAux(padres,nFuncion);
   minimoPadres = min(valoresPadres);
   mejorFitness = minimoPadres;
   allFitness = [];
   for j=1:gmax
       allFitness = [allFitness; mejorFitness];
       hijo = generarHijoRSR(padres,varianza,nFuncion);
       valorHijo = evaluarFuncion(hijo, nFuncion);
       [valorPeorPadres, padre]= max(valoresPadres);
       if(valorPeorPadres>valorHijo)
           padres{padre} = hijo;
           valoresPadres = evaluarAux(padres,nFuncion);
            [minimoPadres,posMinimoPadres] = min(valoresPadres);
           mejorFitness = minimoPadres;
           solucion = padres{posMinimoPadres};
       end
   end
end
```

Resultados

El estudio de los algoritmos lo realizaremos ejecutando cada uno **30 veces** y comparándolos en base a su mejor fitness, a la media de los fitness de cada algoritmo y al tiempo de ejecución (en 30 ejecuciones).

Función 1

Algoritmo	Mejor fitness	Media fitness	Tiempo ejecución
1+1	0.7064	1.2120	0.357371 s
• Sigma = 0.2			
• Iteraciones = 5	000		
	Solu	ción	
-0.12968081597484 0.0273021608837633	0.331025265963762 0.031373 0.108821574564248 0.082033 -0.212065513602559 -0.10764	-0.15275865362390 5141778468 -0.03358244960409 78460338757 -0.19803	36524132858 38876779758 - 9 0.110607274132159 -
μ+λ	0.2337	0.4018	145.667549 s
 Número de para Número de hijo Número de hi	os por padre = 5 000 Solu 0.135461943040777 0.137810 0.00510788015278 -0.0362616675853551 17 -0.05716374541985	0227488488 0.12943278719940 591 0.02446389822004 0.0370283010397925 524 -0.0581339866170 585 -0.06468221830280 -0.0433145952248605	33 - 0.151886192743997 117
НС			
HS • Sigma = 0.01	0.0339	0.1000	307.0733003
• Sigma = 0.01		0.1000	507.0733003
	dres = 50	0.1000	307.0733003
Sigma = 0.01Número de par	dres = 50		307.0733003

0.0158383972259590

Resultados

0.0528015522017463

0.00490285466047729

A la vista de los resultados se puede concluir que:

- La estrategia **1+1** necesita unas 3500 generaciones para converger, consiguiendo un fitness de 0,7.
- En el caso de $\mu + \lambda$ se converge en 1000 iteraciones siendo su mejor fitness 0,2.
- Por último, con **Harmony Search**, se necesita un gran número de iteraciones para converger, pero se obtiene un mejor resultado (mejor fitness 0,03).

Por tanto, la mejor estrategia para la función 1 es $\mu + \lambda$ ya que en un corto número de iteraciones se consigue un fitness adecuado. Sin embargo, con Harmony Search se consigue el mejor fitness, aunque con mucho mayor número de iteraciones.

Función 2

Algoritmo	Mejor fitness	Media fitness	Tiempo ejecución	
1+1	-7.5635e+03	-6.9975e+03	1.541798 s	
• Sigma = 5				
• Iteraciones = 5	5000			
	Solu	ıción		
60.1554533764305 -302.147	922312075 -500 416.858	728567724 410.572467857071	-120.959065583576 -	
123.562527688176 53.68297	794640862 418.374230826444	207.666014468631 414.977	170060992 -	
306.085555415499 -115.468301228431 193.504693022312 -124.824321503297 420.744895091627				
420.726708851338	6.99685444490062 -295.081	466635809 -500 201.049	018225382 -	
309.404963686176 -306.453	792992407 -299.908954130466	5 414.947541165418 -500	416.979237475675	
209.473927731211	421.911414687602 -118.349	9483274227		
μ + λ	-8.6245e+03	-8.2384e+03	397.734137 s	
• Sigma = 5				
 Número de pa 	dres = 50			
Número de hii	os por padre = 5			
•	• •			
Iteraciones = 5000				

A la vista de los resultados se puede concluir que:

- La estrategia **1+1** necesita unas 2000 generaciones para converger, consiguiendo un fitness de alrededor de -7563.
- En el caso de $\mu + \lambda$ se converge en 2500 iteraciones siendo su mejor fitness -8624.
- Por último, con **Harmony Search**, se necesita un gran número de iteraciones para converger, pero se obtiene un mejor resultado (mejor fitness -12503).

Por tanto, la mejor estrategia para la función 2 es Harmony Search ya que su fitness es óptimo, aunque necesita 100 veces más generaciones que las otras estrategias.

Función 3

Algoritmo	Mejor fitness	Media fitness	Tiempo ejecución
1+1	27.8317	34.8855	0.766062 s

- Sigma = 0.05
- Iteraciones = 10000

Solución

0.954354914708236 0.963730565468008 0.881836448597192 0.820058503698483 0.707689830214779 0.550548178065436 0.252156691910398 0.0189608608887349 -0.0202229620175474 -0.00995295792862828 0.00588836969060202 -0.0118251915500112 0.0891525090715560 0.0653941468179941 0.0815021652149698 8.39609590128736e-05 0.000866655329245450 -0.0572847883162223 0.00986612917723414 0.00361342100561988 3.58310484406543e-05 0.0583265932718849 -0.0419963786813847 0.0681820337206138 -0.00346353973115265 0.0309389104983075 0.0161973380861787 0.00632309645955144 0.0390927024255986 0.0651801263571747

26.7915 $\mu + \lambda$ 25.1875 159.458217 s

- Sigma = 0.05
- Número de padres = 50
- Número de hijos por padre = 5
- Iteraciones = 3000

Solución

0.980778047669939 1.02611211288598 1.02045558640896 0.986352448648526 0.978395134385911 $0.923248146220712 \ \ 0.855799363196166 \ \ 0.709630623779873 \ \ 0.496287124051024 \ \ 0.242831808118867$ 0.0435918774507155 0.0400371342675929-0.108597344599813 -0.0107846858770300 0.0121974728938804 0.0234701049182273 0.0589340799995347 0.0490483111381294 0.0604869523856815 0.0845370822374556 0.000568586626853336 0.0710677320859009 0.0506994504437761 0.0449617397945302 0.0179069948402289 -0.00306018103926581 0.105331717081392 0.0349386930387363 HS 5.5250 38.2326 930.257418 s

- Sigma = 0.005
- Número de padres = 50
- Iteraciones = 1000000

Solución

1.01011730129917 1.02082790810912 1.03411079867230 1.02878766770476 1.03225580420157 $1.03778065967955 \quad 1.03515932439818 \quad 1.04712589501706 \quad 1.02908369515702 \quad 1.02113470781025$ 1.01491800131540 1.01091071562931 1.01320090044219 1.01706804352220 1.02397056082531 1.03541136887877 1.04581791825027 1.04143666412745 1.02096485240026 1.00316937284562 $0.982830889518838 \ \ 0.949870018210043 \ \ 0.894899923219380 \ \ 0.798675587164365 \ \ 0.629025194413160$ 0.399749654586761 0.158082604132531 0.0445645380966351 0.0140268422138243 0.00642716158334595

Resultados

A la vista de los resultados se puede concluir que:

- La estrategia **1+1** necesita unas 3000 generaciones para converger, consiguiendo un fitness de 27,83.
- En el caso de $\mu + \lambda$ se converge en 1000 iteraciones siendo su mejor fitness 25,18.
- Por último, con **Harmony Search**, se necesita un gran número de iteraciones para converger, pero se obtiene un mejor resultado (mejor fitness 5,52).

El mejor fitness conseguido para esta función ha sido con $\mu + \lambda$ con 10000 iteraciones y sigma = 0.05. El resultado obtenido es:

```
0.00497773184755093
                          0.0105134097502678
                                                    0.0201331107668091
                                                                              0.0320960732895464
        0.0413821189063304
                                  0.0299064839108819
                                                             0.00172641800465991
0.0132656898435302
                         -0.0137717926206546
                                                   -0.0138749516462330
                                                                              -0.0109086334365759
        -0.0249564868455399
                                  0.0378198245436189
                                                            0.0214764015393114
0.0118098438078180
                        0.0216310304409008
                                                  -0.00163236522128882
                                                                              -0.0111691606632729
        0.0141630795919596
                                  0.0305164349921451
                                                             -0.00282795870423269
        0.00856987102980609
                                  0.0258550244052130
                                                             0.00874347775432418
                                                   0.00212470778565953
                                                                              0.0109293053974563
0.0144264330276408
                        0.0435231656915743
        -0.0285616989522280
                                  -0.0138730163746071
```

En este caso y en general, a pesar de que **Harmony Search** necesita un gran número de iteraciones para converger, consigue obtener los mejores resultados.