Schwerependel

Michael Goerz, Anton Haase

Physikalische Grundlagen

Harmonische Schwingung des Schwerependels:

In Analogie zu F= un a giet bei Dehbewegungen M = I · if wobei M das

Drehmonnent und I das Trägheits moment
ist. Brim Schwerependel wirkt das

Michtreiben de Drehmonnent Mr = ungesimpl,

mit der Währung sin parp für hleine Winkel

ergibt sich die Differential gleichung

I - mg. I p = 0

mit dem Exponentialamsatz erhält man

mit den Exponentialansatz erhålt man eine harmonische Schwingeneg mit co = \mangel

Ist die dus lan hung zu groß, als dass mit der Näherung sind = p gerechnet werden könnte, erweitert sich die Ditteratial gleichung zu p- mail [p- 13 + 15 - ...] = 0

Diese Glidung ist nidt mehr linear und

schwer zu lösen. Es ergist sich, dass T abhängig ist von d,

$$T = T_0 \left[1 + \frac{4}{4} \sin^2 \frac{\frac{1}{2}}{2} + \left(\frac{1.3}{2.4} \right)^2 \sin^4 \frac{\frac{1}{2}}{2} + \dots \right]$$
gendlent
$$T = T_0 \left[1 + \frac{1}{4} \cos^2 \frac{1}{2} + \dots \right]$$

Bei der Boredinung des Trägheitsmannats tür die Pendelstange wendet man den Steinersden Setz an. De die Stange millt genan an ihren Ende aufgehängt ist, betrachtet man sie zweigeteilt

Perersions pondel:

Bin Merersionspardel wird die Betrachtung des Trägheitsmommats Zur Vereintenchung der Messung benntzt. Man sucht zwei Schwerpunkts abstände l= 51,52 mit der gleichen Schwing-Zeit:

$$\frac{1}{2m} = \frac{1}{m} + \frac{1$$

für 5, + 52.

$$S_{2} = \frac{I_{s} + mS_{1}^{2}}{2 m s_{1}} + \sqrt{\frac{I_{s} + mS_{1}^{2}}{2 m s_{1}}^{2} - \frac{I_{s}}{m}}$$

$$= \frac{I_{s} + mS_{1}^{2}}{2 m s_{1}} + \sqrt{\frac{(I_{s} + mS_{1}^{2})^{2}}{2 m s_{1}^{2}} - \frac{4I_{s} mS_{1}^{2}}{4 m^{2} \cdot S_{1}^{2}}}$$

$$= \frac{I_{s} + w s_{1}^{2} + \sqrt{(I_{s} + w s_{1}^{2})^{2} - 4I_{s} w s_{1}^{2}}}{2 w s_{1}}$$

$$= \frac{I_{s} + w s_{1}^{2} + \sqrt{I_{s}^{2} - 2I_{s} w s_{1}^{2} + w^{2} s_{1}^{4}}}{2 w s_{1}}$$

$$= \frac{I_{s} + w s_{1}^{2} + \sqrt{I_{s}^{2} - 2I_{s} w s_{1}^{2} + w^{2} s_{1}^{4}}}{2 w s_{1}}$$

$$= \frac{I_{s} + w s_{1}^{2} + \sqrt{I_{s}^{2} - 2I_{s} w s_{1}^{2} + w^{2} s_{1}^{4}}}{2 w s_{1}}$$

$$= \frac{I_{s} + w s_{1}^{2} + \sqrt{I_{s}^{2} - 2I_{s} w s_{1}^{2} + w^{2} s_{1}^{4}}}{2 w s_{1}}$$

$$= \frac{I_{s} + w s_{1}^{2} + \sqrt{I_{s}^{2} - 2I_{s} w s_{1}^{2} + w^{2} s_{1}^{4}}}{2 w s_{1}}$$

Sz ist also genan dei vertionet reduziente Rendellânce von Sp

Ant gaben

- 1) Messing der Schwingungszeit sines Schwerepondels (Pandel ohne Zusatzmassen) in Abhängig heit von den Amplituden
- 2) Messing der Fallbeschlennigung mach der Reversionsmedhode (Pandel mit aufgesetzten Zusatzmassen)

16.305

McSprotdell McChael Goarz, Anton Haase Tutor: Enrico Schierle

16.3.05 Begin 1000 Ende 1200

Corate:

Pandelstange, Länge = (1,6700 ± 0,0005) m Schneidenabstand L= (0,9941 ± 0,0002) m

Schneiden symmatrisch

Masse der Pondolstangen

m_ = (1, 260 ± 0,002) kg

m= = (1,254 ± 0,002) has

g= 9,81278 m/s2

za Anty. 1 Mossung der Schwingseit

		Stoppeler			
٧	\$(cm)	t (1 sec)	t (sec)		
10	6 ±0,3	1970	19,5 ±0,5		
10	6	0561	19,9		
10	9	19 70	19, 8		
10	1	1970	19,8		
ಒ	C	3936	39,3		
20	C	38 PE	39,5		
20	9	3935	39,5		
20	٩	393.7	3,9,6		
ひ	12	3939	39,5		
to	12	3942	39,5		
20	15	3944	39,5		
70	15	3944	39,6		
70	18	3945	39,6		
76	18	3945	39,6		
20	21	3947	39,6		
ી૦	71	3947	39,6		
20	24	3949	3915		
70	24	3949	39,5		
Co	27	3950	39,5		
70	77	39 49	39,5		
70	30	3953	39,6		
20	30	3957	39,7		
ļ					

Zu dutas 2

1)	Mass	7	unten ab	Position o x
	$n = \ell(1)$ $\dot{\phi} = 1$			vico ot
	×	T A.Mes	T 2.nos	_
	要 1	3868	3867	1000
	2	3865	3864	X+i
	4	3862	3865	(Agae
	د ۽ ا	3863	3863	×
	8	3868	3868	1 She leter = 7 am
	16	3877	3877	& generate 10 m
	12	3892	3891	& genione /www
	14	3910	3910	
	16	3935	3934	
	18	39.65	3965	
	२०	4001	4 061	
	عرح	4043		
	24	4092	·	

×	T
24	40,99
77	4049
70	4000
18	3952
16	3907
14	3863
12	3825
10	3789
B	3756
(3778
4	3705
2	3488
	36 82

×+1

16. C3. C5

Auswortung.

Antyche 1, theoretische Betrachtung Zum Vergleich mit der Messung komm das Trägheitsmannent und die Schwingengsdauer berechnet werden

Allamin gilt für einen andimensionalen Stabs der länge I und der trasse un die Beziohung I= m - l2

Im vorliegenden Fall muss das Traqueitsmount getreunt auf beide Seiten der Authängeng betrachtet werden (mit dem

Steinerschen Sutz)

Die Masson der Teilstäbe der Länge & und le verhalten sich zueinander wie die längen Sellst

$$m_{\lambda} = m \frac{l_{\lambda}}{l_{\lambda} + l_{z}}$$

$$m_{\lambda} = m \frac{l_{z}}{l_{\lambda} + l_{z}}$$

$$\vdots l_{\lambda} + l_{z} = l \quad m_{\lambda} + m_{z} = m$$

Damit gill dann

$$\vec{x} = \frac{m_1}{12} l_1^2 + m_1 \left(\frac{l_1}{2}\right)^2 + \frac{m_2}{12} l_2^2 + m_2 \left(\frac{l_2}{2}\right)^2$$

$$= \frac{m}{3} \left(l_1^2 - l_1 l_2 + l_2^2\right)$$

Mit
$$l_1 = (0,33795 \pm 0,00027)$$
 m
 $l_2 = (1,33705 \pm 0,00027)$ m
 $m = (1,260 \pm 0,002)$ kg

orgabl side I = (96041 ± 0,0077) kg m2

and
$$\overline{C}_0 = 2\pi \sqrt{\frac{\Gamma}{m \cdot q \cdot s}} = (1,9700 \pm 0,0253) s$$

$$mit s = \frac{1}{2} \left(\text{Schw-pouldsabstand} \right)$$

Veragleich der Messmethoden:

Die Messung der Schwingungsdauer wurde Linnal mit der Handstoppuler und einmal mit der Lichtschraube gemessar. Die Stoppula erlandt eine Messung aut to see, mit einem Realitionszeitfolder von 9,55 Innohalb des Felilers weren alle gemessenen Zeiten identisch Die nessung hiefort also kine Aussage Dungegontiber erlandt die Lichtschaunke sine Messung auf 100 sec mit einen Feliler von Idigit. Die Reproduzierbarkeit (hontrollmessung) war dabei recht hoch, sodass von einer guten Genamigheit ausgegangen verden hann.

graphisale Inswertung:

Für die graphische Auswertung muss die horizontale Auslenkung in Radian un geredmet werden

p= Arcton (x), wobsi I die lange des Pendels gemessen ab der Anthångung ist.

Für die Größe p² sind die Felile in der graphischen Auswertung micht tele vant iluter Vernachlässigung der Ausreißer ergibt sich demn für die Ausgleichsgerade Steigung C, 1408 Achsenaloschnitt 1,96884

und für die Grentgerade Steigung 0, 2008 Achsendosdmitt 1,96864

Es wurde also $T_0 = (1,9698 \pm 0,0022)$ s und die relative Steigung $\frac{T_0}{a}$ wit $a = (13,99 \pm 5,97)$

Antiquese 2

Mit Hilte dor graphischen Answertung hann
die Periodendauer To ermittelt werden, die für
beide Anthängungen gleich ist
Im Breich des Schnittpunkts wird damn linear
approximiert: Der Schnittpunkt der beiden tus

Gleichsgeraden ist

70 To = (40,270 ± 0,004) s

Da die reduziate landellänge vorgegeben ist als (0,9941 ± 0,0002) m, lässt sich

umstellen :
$$\overline{b} = 2a \sqrt{\frac{L}{9}} \iff \underline{\frac{L}{2\pi}}^2$$

Einseten ergibt g = (9,68 ± 0,01) m/2

Period. T	Fehler	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	IĒ.	1.969	1.968	1.970	1.972	1.973	1.974	1.975	1.973	1.976
hwingzeit Per	Fehler (s)	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
) gemittelt F	39.370	39.360	39.405	39.440	39.450	39.470	39.490	39.450	39.525
chwingzeit So) Mess.2 (s	39.38	39.37	39.42	39.44	39.45	39.47	39.49	39.4	39.52
Schwingzeit Sc	s) Mess.1 (s	39.36	39.35	39.39	39.44	39.45	39.47	39.49	39.5	39.53
	ehler	0.00002	0.00002	0.00002	0.00003	0.00003	0.00004	0.00004	0.00004	0.00005
hi^2	m^2) F	0.00202	0.00454	0.00804	0.01249	0.01788	0.02415	0.03127	0.03919	0.04787
	ehler (0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Phi			0.0674	0.0897	0.1118	0.1337	0.1554	0.1768	0.1980	0.2188
	Fehler (0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Ausl.	(cm)		6	12		18				
	Schwing.	20	20	20	20	20	20	20	20	20

25 24 23 Zu Aufgabe 2 - Ausschnitt 22 20 19 48 39.4 40.6 40.2 39.8 39.6 40.8 40.4 40 4 s / T 0S

In Antigabe A hounte der erwartete Eusammen. hang voll bestätigt verden. Der gemessene lidet für To ist identisch mit dem brechneten. Auch die Steigung von To wude identisch ogenessen, allerdings nit recht großem Fehberintervall. Insgesamt hat sich due Linearität, in Bezug auf fe, wenn auch mit the dus reißen, bestätigt. Dank der Messung mit der Lindsol ranke war die Genanigheit wellt zur frieden. Stelland.

In Antgabe 2 wurde leider ein Signi filmt unterschiedlicher Wert für die Feelbeschleunigung gemessen, abwahl dei Messagenamigkeit wie im Antg. 1 augusetzen ist. Es muss von systematischen Feldern ausgegangen werden. Der To genadratisch im Neunar steht, haben Felder hier einen relatio großen Einfluss. Die lineare Approximation liefert eine Quello Lür Felder, allerduge hamm ausgeschad, um das Erzebnis zu verbossen.
Tanne höherer Ordnung durch die Auslandung Spieden eleenfalls hene holle. Merhwürdig ist, das To zu hoch gemessen wurde, sodass der Fehler nicht auf Neibung zurück zu führen ist.