Metodi matematici per l'informatica Corso del professore Carlucci https://sites.google.com/uniroma1.it/mmi2223/home

Lugini Andrea

October 15, 2022

Contents

0.1	Tecniche di conteggio: Matematica combinatoria)
	0.1.1	Principio Moltiplicativo)
	0.1.2	Disposizioni	
	0.1.3	Combinazioni	
	0.1.4	Proprietà del coefficiente binomiale	3
	0.1.5	Principio additivo	1
	0.1.6	Insieme potenza	1
	0.1.7	PIE: Principio di inclusione ed esclusione	

0.1 Tecniche di conteggio: Matematica combinatoria

La matematica combinatoria è la branca della matematica che si occupa dei problemi di conteggio.

Ad esempio il problema del numero di targe automobilistiche disponibili al mondo ricade in questo ambito.

0.1.1 Principio Moltiplicativo

Se scelgo un primo oggetto fra m_1 , un secondo oggetto tra m_2 , ..., un t-esimo oggetto fra m_t oggetti ho $m_1*m_2*...*m_t$ soluzioni.

0.1.2 Disposizioni

Le disposizioni sono sequenze nelle quali l'ordine conta.

Disposizioni con ripetizione di ordine k di n oggetti

$$D_{n,k}^{'}=n^{k}$$

Disposizioni semplici di ordine k di n oggetti

$$C.E. = 1 \le k \le n$$

$$D_{n,k} = \frac{n!}{(n-k)!}$$

Nel caso k = n, parliamo di permutazioni e abbiamo: $P_n = n!$.

Permutazioni con ripetizioni

Presi n elementi, che si **ripetono rispettivamente** $k_1, ..., k_n$ volte, le possibili permutazioni sono:

$$P_n^{k_1,\dots,k_n} = \frac{n!}{k_1! * \dots * k_n!}$$

Permutazioni di n oggetti con q vincoli

$$\frac{P_n}{q!}$$

0.1.3 Combinazioni

Le combinazioni sono sequenze nel quale l'ordine non conta

Combinazioni semplici

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \binom{n}{k} = \frac{n!}{k! * (n-k)!}$$

Combinazioni con ripetizione

$$C_{n,k}^{'} = \binom{n+k-1}{k}$$

0.1.4 Proprietà del coefficiente binomiale

$$\binom{n}{k} = \binom{n}{n-k}$$

Dimostrazione per **doppio conteggio**: con $\binom{n}{k}$ scelgo k oggetti su n, lasciando fuori n-k oggetti. E' quindi equivalente scegliere gli n-k oggetti da lasciare fuori, ovvero $\binom{n}{n-k}$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Dimostrazione per **partizioni**: dato un insieme N di cardinalità n nel quale vogliamo scegliere k oggetti sappiamo che il numero di possibili soluzioni sono $\binom{n}{k}$. Se vogliamo inserire vincoli specifici di scelta, ovvero scegliere k oggetti, tra i quali un oggetto x, nell'insieme n, la totalità dei sottoinsiemi che contengono x è data dalla scelta fissa x* le **combinazioni** dei restanti k-1 oggetti fra n-1 elementi, ovvero $\binom{n-1}{k-1}$. Se invece vogliamo vedere il problema al contrario, ovvero scegliere k oggetti, tra i quali **non vogliamo x**, dobbiamo scegliere k oggetti su n-1 elementi, quindi $\binom{n-1}{k}$. Per partizione abbiamo quindi che la totalità delle scelte è data dall'unione delle scelte che includono x e quelle che non includono x, insiemi **disgiunti**, è quindi è dimostrata la formula.

$$\binom{n}{m} * \binom{m}{k} = \binom{n}{k} * \binom{n-k}{m-k}$$

Dimostrazione per **doppio conteggio**: il primo termine a sinistra sveglie m oggetti su n elementi, e il secondo mi fa scegliere k oggetti fra gli m scelti prima. A destra scegliamo k oggetti su n, e poi scegliamo m-k oggetti sui restanti n-k.

Esempio:

Vogliamo fare una squadra di calcio con 3 portieri e 10 giocatori di movimento, scegliendo fra 30 bambini.

A sinistra scegliamo prima i 13 bambini che giocheranno a calcio e poi sceglieremo i 3 fra questi 13 che faranno i portieri.

A destra invece scegliamo prima i 3 portieri fra i 30 bambini, e poi sceglieremo i 10 giocatori di movimento fra i restanti 30 tolti i 3 portieri bambini.

0.1.5 Principio additivo

Il principio additivo ci permette di risolvere un problema di conteggio **sommando le numerosità** di n sottoinsiemi, detti **partizioni** dell'insieme da contare, se e solo se i sottoinsieme suddividono la collezione in gruppi **esclusivi ed esaustivi**. E' esprimibile come:

$$\forall i \in \{1,...,n\} : A_i \subset A \land$$

$$\forall i,j \in \{1,...,n\} \text{ con } i \neq j : A_i \cap A_j = \emptyset \land$$

$$\forall a \in A : \exists i \in \{1,...,n\} \text{ t.c. } a \in A_i$$

$$\Longrightarrow \#A = \sum_{i=1}^n \#A_i$$

Metodo inverso

Il principio additivo ci permette di dimostrare il metodo inverso. Infatti, preso un sottoinsieme A di T ed il suo complementare \overline{A} in T, definito come $\forall x \in T$ t.c. $x \notin A$, per i quali valgono quindi le proprietà $A \cup \overline{A} = T$ e $A \cap \overline{A} = \emptyset$, è dimostrato quindi il principio additivo, che ci permette di calcolare #T come $\#A + \#\overline{A}$, che implica

$$\#A = \#T - \#\overline{A}$$

.

0.1.6 Insieme potenza

$$\begin{split} P(A) &= \{S|S \subset A\} \\ \#P(A) &= \Sigma_{k=0}^{\#A} \binom{\#A}{k} = 2 * \Sigma_{k=0}^{\#A/2} \binom{\#A}{k} \end{split}$$

Dimostriamo ora per **buona traduzione** che $\#P(A)=2^{\#A}$: prendiamo due linguaggi, L_1 , che rappresenta tutti $S \in P(A)$, ed L_2 , che rappresenta tutte le possibili **stringhe binarie** di lunghezza = #A; se costruiamo queste stringhe ponendo in posizione i 1 se $e \in S$ e 0 in caso contrario, possiamo notare che, poichè ogni $S \in P(A)$ è distinto, anche le corrispondenti stringhe saranno distinte.

Quindi, #P(A) = #stringhe binarie con l = #A, ed è banale contare quante stringhe sono presenti in L_2 : 2 possibili valori, 0 ed 1, per #A posizioni, ovvero $2^{\#A}$, esattamente quello che volevamo dimostrare.

Possiamo inoltre notare che $\binom{n}{k}$ = #stringhe binarie con l = #A con esattamente k "1".

0.1.7 PIE: Principio di inclusione ed esclusione

L'insieme Q dato da tutti gli elementi distinti degli insiemi A e B è esprimibile come $(A \cup B) \cap \overline{A \cap B}$. Quindi:

$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$

Più genericamente,

$$\# (A \cup B \cup ... \cup Z) =$$

$$\# A + \# B + ... + \# Z$$

$$-\# (A \cap B) - \# (A \cap Z) - (B \cap Z) - ...$$

$$+\# (A \cap B \cap Z) + ...$$