Lezione 12

Derivate

introduzione

$$\text{sid} \in (a,b), \text{sid} \times_{e}(a,b), \text{sid} \text{heB} \in \{e\}: \times_{e}\text{th} \in (a,b)$$

si detinisce rapports incrementale centrato in x con invocemento h:

$$f(x_0+h)-f(x_0)=f(x_0+h)-f(x_0)=\Delta y$$
 x_0+h-x_0

$$f(x_0)=m$$
 della relta tongente al grafico di $f(x)$ con equolisione $(x_0)=f(x_0)=f(x_0)=f(x_0)$

edrema relazione tra derivabilità e continuità

isotesi: sia f: (a,b) EB ->B, sia xoE(a,b), sia f derivabile in xo

tesi: Fè continua in xo

dimostrazione:

$$\lim_{X \neq X_0} f(x) = \lim_{X \neq X_0} \left[f(x) - f(x_0) + f(x_0) \right] = \lim_{X \neq X_0} \left[\frac{f(x) - f(x_0)}{X - X_0} \left(X - X_0 \right) + f(x_0) \right] = \lim_{X \neq X_0} f(x_0)$$

OSSERVAZIONE: F continua in x # Fderivabile in x (contro esempio F(x)=|x|)

Derivata destra e sinistra

sid
$$F:(a,b)\subseteq B \rightarrow B$$
, six $x_0\in(a,b)$, six F derenable in x_0

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = f_{+}(x_0) \qquad \left(\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}\right)$$

$$\left(h \to 0^-\right) \qquad \left(f_{-}(x_0)\right) \qquad \left(x \to x_0^+\right)$$

Derivabilita i) f è derivabile in X => esistano F, (xo) e F'(xo) e sono uguali ii) se f: [a,b) allora f è derinabile se esiste finits lim f(xoth)-f(xo) ii) se f: (a, b) allora f e dérivabile se esiste finité lim f(x0 +b)-f(x0) in generale F'ICIA-IB è derivabile su I se f è derivabile VX. EI Punti di hon derivebalidità Puhto di flesso a tangente Verticale sia F; I ER -TR, sua xoEI so si dice punto a tangente verticale se f(x)= VX (xoth) - f(xo) - ta (h 70 de x, i estremo destro di I) 670 de X à estruma sinistro di I)

punto angolare

sid FIIGH-TH, six X, E I

F si dice punto angolare se vale almeno una tra:

i)
$$\exists f_{+}(x_{o})$$
 $!$ $\exists f_{-}(x_{o})$ $\land can f_{+}(x_{o}) \neq f_{-}(x_{o})$

punto auspidale

sid FIIETH TR, sid XOET

$$f(x) = \sqrt{|x|}$$

Derivate funzioni elementari

$$\cdot f(x) = k, f(x) = 0$$
 con $A = R, A = R$

$$\cdot$$
 $f(x) = x^2$, $\dot{f}(x) = x^2 \times 1$ con $A = \text{dipende da} x^2$, $A = \text{dipende da} x^2 - 1$

$$\cdot f(x) = e^{x}, f(x) = e^{x}$$
 Con $A = r_{3}, A = r_{3}$

$$\cdot f(x) = \log x | f(x) = \frac{7}{x} | \cos A = (0, +\infty) | A = (0, +\infty)$$

$$-f(x) = log_{\alpha} \times f(x) = \frac{1}{x log_{\alpha}} con A = (0, +\infty) | A = (0, +\infty)$$

$$\cdot f(x) = sen x, f(x) = con x con A = B, A = B$$

$$F(x) = \frac{1}{1000} \times F(x) = \frac{1}{1000} \times 1000 \quad A = x \neq \frac{11}{2} + k\pi, \quad A = x \neq \frac{11}{2} + k\pi$$

$$\cdot f(x) = arcsenx$$
, $f(x) = \frac{1}{\sqrt{1-x^2}}$ con $A = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $A = \begin{pmatrix} -7 \\ 1 \end{pmatrix}$

•
$$f(x) = auccos x, f(x) = -\frac{1}{\sqrt{1-x^2}}$$
 com $A = [-1, 1], A = (-1, 1)$

•
$$f(x) = axctan(x, f(x)) = \frac{1}{1+x^2}$$
 /con $A = n_3$, $A = n_3$

Operazioni con le derivate

siano F e 8 derivabili in I, sid X EI

$$\cdot \left(f \pm g \right) (\times) = f'(\times) \pm g'(\times)$$

$$(f \cdot g)(x) = f(x) \cdot g(x) + f(x) \cdot g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x) \cdot g(x) - f(x) \cdot g(x)}{(g(x))^2}$$
 con $g(x) \neq 0$

$$\left(\frac{1}{g}\right)(x) = -\frac{g(x)}{(g(x))^2}$$

derivata della composta

sid $F:(a,b)\subseteq R\to R$, sid $X_s\in(a,b)$, sid F derivabile in X_s , sid F non contante in $V(x_s)$, sid $g:(a,b)\subseteq R\to R$ derivabile in $F(x_s)$

gof è dérivabile in x, e vale (Fog)(X)=f(g(x)).g(X)

legrema di deravibilità della funzione inversa

ipatesi

- · sia f: [a, b] EB-BR continua e invertibile su [a, b]
- · six f derivolbile in $x \in [a, b]$ con $f(x_0) \neq 0$
- $+e_{5j}$: f è derivabile in $7_0=f(x_0)$ e vale $(\bar{f}^1)(7_0)=\frac{1}{f(x_0)}=\frac{1}{f(x_0)}$

edrema

ipotesi

· sid f: (a, b) EB >B

· α $x \in (\alpha, b)$,

six & continued in

· sid f décivabile in (d, b) \ {X}

+esi: lim f(x) = lim f(x) - f(xo) $x \neq x_o = x \neq x_o$

Derivate successive

Dia F:A⊆R→R l Dia F:À⊆R→R

si chiama derivata seconda di f'la punzione (f') con à= {x ∈ An f'(A)}

la notazione f'indica la derivata n-esima f=f, f = f

