- 1. Consider the following problem: we are given a parameter k, n red strings r_1, \ldots, r_n and n blue strings b_1, \ldots, b_n , and want to find i and j such that the Hamming distance between r_i and b_j is at most k. The strings are binary and of length $d = \omega(\log n)$. Show that, assuming SETH, this cannot be solved in $\mathcal{O}(n^{2-\epsilon})$ time, for any $\epsilon > 0$.
- (2 points) 2. Consider two strings a[1..n] and b[1..m]. Show how to construct in linear time two new strings a'[1..N] and b'[1..M] such that $N = \mathcal{O}(n)$, $M = \mathcal{O}(m)$, and the edit distance between a and b can be obtained with a simple formula from the LCS of a' and b'.
 - 3. Design an algorithm that computes the LCS of a[1..n] and b[1..m] in $\mathcal{O}((n+m^2)\log n)$ time.
- (2 points) 4. Consider two Boolean matrices A[1..N][1..N] and B[1..N][1..N] and let C[1..n][1..n] be their (Boolean) product. Show how to construct a text t[1..n] and a pattern p[1..m] (over a possibly large alphabet) with n and m being O(N²) such that every C[i][j] can be obtained from the number of mismatches between some t[i..(i+m-1)] and p[1..m]. What does this say about the complexity of pattern matching with mismatches?