Queueing Theory (Part 5)

Jackson Queueing Networks

Network of M/M/s Queues

- The output of an M/M/s queue with $s\mu > \lambda$ in steady-state is a <u>Poisson process</u> at rate λ
 - This result may seem surprising at first glance
 - It is due to the properties of exponential distributions
 - This is called the "equivalence property"

Equivalence Property

Assume that a service facility with s servers and an infinite queue has a Poisson input with parameter λ and the same exponential service-time distribution with parameter μ for each server (the M/M/s model), where sμ>λ. Then the steady-state <u>output</u> of this service facility is also a Poisson process with parameter λ.

Infinite Queues in Series

- Suppose that customers must all receive service at a series of m service facilities in a fixed sequence. Assume that each facility has an infinite queue, so that the series of facilities form a system of *infinite queues in series*.
- The *joint probability* of n_1 customers at facility 1, n_2 customers at facility 2, ..., then, is the *product* of the individual probabilities obtained in this simple way.

$$P\{(N_1, N_2, ..., N_m) = (n_1, n_2, ..., n_m)\} = P_{n_1} P_{n_2} \cdots P_{n_m}$$

What is a Jackson Network?

- A **Jackson network** is a system of m service facilities where facility i (i = 1, 2, ..., m) has
 - 1. An infinite queue
 - Customers arriving from outside the system according to a Poisson input process with parameter a_i
 - 3. s_i servers with an exponential service-time distribution with parameter μ_i .
- A customer leaving facility i is routed next to facility j (j = 1, 2, ..., m) with probability p_{ij} or departs the system with probability q_i where

$$q_i = 1 - \sum_{j=1}^m p_{ij}$$

Jackson Network Diagram

Key Property of a Jackson Network

- Any such network has the following key property
 - Under steady-state conditions, each facility j (j = 1, 2, ..., m) in a Jackson network behaves as if it were an independent $M/M/s_j$ queueing system with arrival rate

$$\lambda_j = a_j + \sum_{i=1}^m \lambda_i p_{ij},$$

where $s_i \mu_i > \lambda_i$.

Jackson Network Example

 To illustrate these calculations, consider a Jackson network with three service facilities that have the parameters shown in the table below.

				p _{ij}			
Facility <i>j</i>	s _j	μ_{j}	a _j	i = 1	i = 2	i = 3	
j = 1	1	10	1	0	0.1	0.4	
j = 2	2	10	4	0.6	0	0.4	
<i>j</i> = 3	1	10	3	0.3	0.3	0	

Jackson Network Example Diagram

• Plugging into the formula for λ_j for j = 1, 2, 3, we obtain

$$\lambda_1 = 1 + 0.1\lambda_2 + 0.4\lambda_3$$

$$\lambda_2 = 4 + 0.6\lambda_1 + 0.4\lambda_3$$

$$\lambda_3 = 3 + 0.3\lambda_1 + 0.3\lambda_2$$

The simultaneous solution for this system is

$$\lambda_1 = 5$$
, $\lambda_2 = 10$, $\lambda_3 = 7\frac{1}{2}$

Jackson Network Excel Template

	A B	С	D	Е	F	G	Н
1 Template for a Jackson Network							
2							
3	Number of facilities, m =	3					
4							
5		P ij					
6		Facility j	aj	<i>i</i> = 1	i = 2	i = 3	
7		<i>j</i> = 1	1.0000	0.0000	0.1000	0.4000	
8		j = 2	4.0000	0.6000	0.0000	0.4000	
9		j = 3	3.0000	0.3000	0.3000	0.0000	
10							
11			λ	5.0000	10.0000	7.5000	
12							

Given this simultaneous solution for λ_i , to obtain the distribution of the number of customers $N_i = n_i$ at facility i, note that

$$\rho_{i} = \frac{\lambda_{i}}{s_{i}\mu_{i}} = \begin{cases} \frac{1}{2} & \text{for } i = 1\\ \frac{1}{2} & \text{for } i = 2\\ \frac{3}{4} & \text{for } i = 3 \end{cases}$$

note that
$$\rho_{i} = \frac{\lambda_{i}}{s_{i}\mu_{i}} = \begin{cases}
\frac{1}{2} & \text{for } i = 1 \\
\frac{1}{2} & \text{for } i = 2 \\
\frac{3}{4} & \text{for } i = 3
\end{cases}$$

$$P_{n_{1}} = \frac{1}{2}\left(\frac{1}{2}\right)^{n_{1}} & \text{for facility 1,} \\
P_{n_{2}} = \begin{cases}
\frac{1}{3} & \text{for } n_{2} = 0 \\
\frac{1}{3} & \text{for } n_{2} = 1 \\
\frac{1}{3}\left(\frac{1}{2}\right)^{n_{2}-1} & \text{for } n_{2} \ge 2
\end{cases}$$

$$P_{n_{3}} = \frac{1}{4}\left(\frac{3}{4}\right)^{n_{3}} & \text{for facility 3.}$$

• The *joint probability* of (n_1, n_2, n_3) then is given simply by the product form solution

$$P\{(N_1, N_2, N_3) = (n_1, n_2, n_3)\} = P_{n_1} P_{n_2} P_{n_3}$$

The expected number of customers L_i at facility i

$$L_1 = 1$$
, $L_2 = \frac{4}{3}$, $L_3 = 3$

• The expected total number of customers in the system

$$L = L_1 + L_2 + L_3 = 5\frac{1}{3}$$

- To obtain W, the expected total waiting time in the system (including service times) for a customer, you cannot simply add the expected waiting times at the respective facilities, because a customer does not necessarily visit each facility exactly once.
- However, Little's formula can still be used for the entire network,

$$W = \frac{L}{a_1 + a_2 + a_3} = \frac{16/3}{1 + 4 + 3} = \frac{2}{3}$$