ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ ΕΡΓΑΣΙΑ Α2

ΠΙΚΡΙΔΑΣ ΜΕΝΕΛΑΟΣ 141291 ΣΤΑΘΑΚΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ 161041

ТМНМА: ПЕМПТН 15:00-17:00

ΑΡΙΘΜΟΣ ΟΜΑΔΑΣ:12

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ

1.	Κανονικές εκφράσεις σε EBNF λεκτικών μονάδων της mini-clips	03
	1.1. Ακέραιοι	03
	1.2. Ονόματα Ορισμών και Άλλων Στοιχειών Μέσα σε Γεγονότα	04
	1.3. Ονόματα Μεταβλητών	04
	1.4. Κρατημένες Λέξεις Πρωταρχικών Συναρτήσεων deffacts, defrule	05
	1.5. Κρατημένες Λέξεις Για Πραγματοποίηση Σύγκρισης και Εκτύπωσης	05
	1.6. Κρατημένες λέξεις τελεστών =, +, -, *, /	06
	1.7. Σχόλια	06
	1.8. Διαχωριστές	07
	1.9. Γενικό Αυτόματο Αναγνώρισης	08
2.	Πίνακας Μεταβάσεων	
3.	Κώδικας FSM	10
4.	Εξαντλητικοί έλεγχοι κώδικα	12
	4.1. Ακέραιοι	12
	4.2. Ονόματα Ορισμών και Άλλων Στοιχειών Μέσα σε Γεγονότα	16
	4.3. Ονόματα Μεταβλητών	18
	4.4. Κρατημένες λέξεις τελεστών =, +, -, *, /	19
	4.5. Σχόλια	
	4.6. Αισγεροματές	22

Κανονικές εκφράσεις σε EBNF λεκτικών μονάδων της mini CLIPS

Ακολουθούν οι κανονικές εκφράσεις μαζί με τις εικόνες των αυτόματων

1η κανονική έκφραση: Ακέραιοι αριθμοί

^((\+|-)[1-9]|[1-9]|(^(0)\$))[0-9]*\$

2η κανονική έκφραση: Ονόματα ορισμών και άλλων στοιχειών μέσα σε γεγονότα

3η κανονική έκφραση: Ονόματα μεταβλητών

4η κανονική έκφραση: Κρατημένες λέξεις πρωταρχικών συναρτήσεων deffacts, defrule

deffacts|defrule

5η κανονική έκφραση: Κρατημένη λέξη συνάρτησης για πραγματοποίηση σύγκρισης test και εκτύπωσης printout

test|printout

6η κανονική έκφραση: Κρατημένες λέξεις τελεστών =, +, -, *, /

7η κανονική έκφραση: Σχόλια

^;.*\$

8η κανονική έκφραση: Διαχωριστές

|\n|\z|\(|\)

ΓΕΝΙΚΟ ΑΥΤΟΜΑΤΟ ΑΝΑΓΝΩΡΙΣΗΣ

ΠΙΝΑΚΑΣ ΜΕΤΑΒΑΣΕΩΝ

	*	/	=	+	-	\s	\n	EOF	()	0	0-9	_1-9	a-z	A-Z	;	?	>	_
INIT	FINA L	FINA L	FINA L	TELE STES	TELE STES	FINA L	FINA L	FINA L	FINA L	FINA L	FINA L		AKAIR AIOI_2	ORIS MOI	ORISM OI	SX OL IA	META BLIT ES		
AKAI RAIOI _1							GOO D						AKAIR AIOI_2						
AKAI RAIOI _2							GOO D				AKAI RAIOI _2	AKAI RAIOI _2							
META VLIT ES							GOO D				META VLIT ES	META VLIT ES	META VLITE S	META VLIT ES	METAV LITES				
ORIS MOI					ORIS MOI		GOO D				ORIS MOI	ORIS MOI	ORIS MOI	ORIS MOI	ORISM OI				ORISM OI
TELE STES							GOO D						AKAIR AIOI_2						
SXOL IA	SXOL IA	SXOL IA	SXOL IA	SXOL IA	SXOL IA		GOO D		SXOL IA	SXOL IA	SXOL IA	SXOL IA	SXOLI A	SXOL IA	SXOLI A	SX OL IA	SXOL IA	SXOL IA	SXOLI A
FINA L							GOO D												
GOO D																			

ΚΩΔΙΚΑΣ FSM

START=INIT INIT: ***** -> FINAL \/ -> FINAL = -> FINAL \s -> FINAL \n -> FINAL **EOF** -> **FINAL** (-> FINAL) -> FINAL 0 -> FINAL + -> TELESTES - -> TELESTES 1-9 -> AKERAIOI_2 a-z -> ORISMOI A-Z -> ORISMOI ; -> SXOLIA ? -> METAVLITES **AKERAIOI 1:** 1-9 -> AKERAIOI_2 \n -> GOOD **AKERAIOI 2:** 0-9 -> AKERAIOI_2 \n -> GOOD **METAVLITES:** 0-9 -> METAVLITES a-z -> METAVLITES **A-Z -> METAVLITES** \n -> GOOD ORISMOI: a-z -> ORISMOI A-Z -> ORISMOI 0-9 -> ORISMOI - -> ORISMOI _ -> ORISMOI \n -> GOOD

```
1-9 -> AKERAIOI 2
\n -> GOOD
SXOLIA:
0-9 -> SXOLIA
a-z -> SXOLIA
A-Z -> SXOLIA
; -> SXOLIA
? -> SXOLIA
+ -> SXOLIA
- -> SXOLIA
() -> SXOLIA
* -> SXOLIA
/ -> SXOLIA
= -> SXOLIA
> -> SXOLIA
 -> SXOLIA
\n -> GOOD
FINAL:
\n -> GOOD
GOOD(OK):
```

ΣΗΜΕΙΩΣΗ:

Μετάβαση ΑΚΕΡΙΑΙΟΙ_1 & ΑΚΕΡΑΙΟΙ_2. Οι ακέραιοι χωρίζονται σε δύο διαφορετικές μεταβάσεις λόγω του μηδενός και των πρόσημων. Λόγω της ιδιαιτερότητας του μηδενός, δηλαδή το γεγονός πως δεν έχει πρόσημο, έπρεπε να διαχωριστεί ο κώδικας σε δύο παρακλάδια. Στην πρώτη περίπτωση (Μετάβαση ΑΚΕΡΑΙΟΙ_1), αν δοθεί ως όρισμα ένας εκ των τελεστών «+» ή «-» τότε ο αριθμός που θα ακολουθεί ΔΕΝ μπορεί να είναι ο «0». Μπορεί να είναι όμως οποιοσδήποτε εκ των 1-9, άρα αυτοί θα είναι μέσα στην Μετάβαση ΑΚΕΡΙΑΙΟΙ_1 μαζί με τον χαρακτήρα new_line (\n) φυσικά. Στην Μετάβαση ΑΚΕΡΙΑΙΟΙ_2 υπάρχουν όλοι οι αριθμοί διαθέσιμοι μαζί με τον χαρακτήρα new_line (\n).

ΕΞΑΝΤΛΗΤΙΚΟΙ ΕΛΕΓΧΟΙ ΚΩΔΙΚΑ

ΕΛΕΓΧΟΣ ΑΚΕΡΑΙΩΝ

ΟΡΙΣΜΑ: 0

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ "0" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΉ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΑΚΕΡΑΙΟΥΣ ΑΡΙΘΜΟΎΣ ΚΑΙ ΕΙΔΙΚΌΤΕΡΑ ΓΙΑ ΤΟΝ ΑΡΙΘΜΌ "0".

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
0
init 0 -> final
final \n -> good
^Z
[14]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΓΙΑΤΙ ΤΟ ΜΗΔΕΝ ΟΡΙΖΕΤΑΙ ΩΣ ΜΗ ΠΡΟΣΗΜΑΣΜΕΝΟΣ ΑΚΕΡΑΙΟΣ ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: +0

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ "0" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΉ ΤΟΥ ΑΥΤΟΜΑΤΟΎ ΓΙΑ ΤΟΎΣ ΑΚΕΡΑΙΟΎΣ ΑΡΙΘΜΟΎΣ ΚΑΙ ΕΙΔΙΚΌΤΕΡΑ ΓΙΑ ΤΟΝ ΑΡΙΘΜΌ "0".

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
+0
init + -> akeraioi_1
fsm: in META_1.fsm, state 'akeraioi_1' input 0 not accepted
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΓΙΑΤΙ ΤΟ ΜΗΔΕΝ ΟΡΙΖΕΤΑΙ ΩΣ ΜΗ ΠΡΟΣΗΜΑΣΜΕΝΟΣ ΑΚΕΡΑΙΟΣ ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ.

ΟΡΙΣΜΑ: -0

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ "0" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΉ ΤΟΥ ΑΥΤΟΜΑΤΟΎ ΓΙΑ ΤΟΎΣ ΑΚΕΡΑΙΟΎΣ ΑΡΙΘΜΟΎΣ ΚΑΙ ΕΙΔΙΚΌΤΕΡΑ ΓΙΑ ΤΟΝ ΑΡΙΘΜΌ "0".

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
-0
init + -> akeraioi_1
fsm: in META_1.fsm, state 'akeraioi_1' input 0 not accepted
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΓΙΑΤΙ ΤΟ ΜΗΔΕΝ ΟΡΙΖΕΤΑΙ ΩΣ ΜΗ ΠΡΟΣΗΜΑΣΜΕΝΟΣ ΑΚΕΡΑΙΟΣ ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ.

ΟΡΙΣΜΑ: ΜΗ ΠΡΟΣΗΜΑΣΜΕΝΟΣ ΑΡΙΘΜΟΣ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΕΝΑΝ ΤΥΧΑΙΟ, ΧΩΡΙΣ ΠΡΟΣΗΜΟ, ΑΡΙΘΜΟ ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΑΚΕΡΑΙΟΥΣ ΑΡΙΘΜΟΥΣ ΚΑΙ ΕΙΔΙΚΟΤΕΡΑ ΓΙΑ ΤΟΥΣ ΜΗ ΠΡΟΣΗΜΑΣΜΕΝΟΥΣ ΑΡΙΘΜΟΥΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
123456789
init 1 -> akeraioi_2
akeraioi_2 2 -> akeraioi_2
akeraioi_2 3 -> akeraioi_2
akeraioi_2 4 -> akeraioi_2
akeraioi_2 5 -> akeraioi_2
akeraioi_2 6 -> akeraioi_2
akeraioi_2 7 -> akeraioi_2
akeraioi_2 8 -> akeraioi_2
akeraioi_2 9 -> akeraioi_2
akeraioi_2 y -> akeraioi_2
akeraioi_2 h -> good
^Z
[16]+ σταματημένο ./fsm -trace META 1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟΝ ΑΚΕΡΑΙΟ ΑΡΙΘΜΟ ΩΣ ΜΗ ΠΡΟΣΗΜΑΣΜΕΝΟ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: ΑΡΝΗΤΙΚΑ ΠΡΟΣΗΜΑΣΜΕΝΟΣ ΑΡΙΘΜΟΣ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΕΝΑΝ ΤΥΧΑΙΟ, ΜΕ ΑΡΝΗΤΙΚΌ ΠΡΟΣΗΜΟ, ΑΡΙΘΜΌ ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΑΚΕΡΑΙΟΎΣ ΑΡΙΘΜΟΎΣ ΚΑΙ ΕΙΔΙΚΌΤΕΡΑ ΓΙΑ ΤΟΥΣ ΠΡΟΣΗΜΑΣΜΕΝΟΎΣ ΑΡΙΘΜΟΎΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
-1023456789
init - -> telestes
akeraioi_1 1 -> akeraioi_2
akeraioi_1 0 -> akeraioi_2
akeraioi_2 2 -> akeraioi_2
akeraioi_2 3 -> akeraioi_2
akeraioi_2 4 -> akeraioi_2
akeraioi_2 5 -> akeraioi_2
akeraioi_2 6 -> akeraioi_2
akeraioi_2 7 -> akeraioi_2
akeraioi_2 7 -> akeraioi_2
akeraioi_2 7 -> akeraioi_2
akeraioi_2 7 -> akeraioi_2
akeraioi_2 N -> good
^Z
[18]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟΝ ΑΚΕΡΑΙΟ ΑΡΙΘΜΟ ΩΣ ΑΡΝΗΤΙΚΑ ΠΡΟΣΗΜΑΣΜΕΝΟ,ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: ΘΕΤΙΚΑ ΠΡΟΣΗΜΑΣΜΕΝΟΣ ΑΡΙΘΜΟΣ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΕΝΑΝ ΤΥΧΑΙΟ, ΜΕ ΘΕΤΙΚΟ ΠΡΟΣΗΜΟ, ΑΡΙΘΜΟ ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΑΚΕΡΑΙΟΥΣ ΑΡΙΘΜΟΥΣ ΚΑΙ ΕΙΔΙΚΟΤΕΡΑ ΓΙΑ ΤΟΥΣ ΠΡΟΣΗΜΑΣΜΕΝΟΥΣ ΑΡΙΘΜΟΥΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
+1023456789

init + -> telestes

akeraioi_1 1 -> akeraioi_2

akeraioi_2 2 -> akeraioi_2

akeraioi_2 3 -> akeraioi_2

akeraioi_2 4 -> akeraioi_2

akeraioi_2 5 -> akeraioi_2

akeraioi_2 5 -> akeraioi_2

akeraioi_2 7 -> akeraioi_2

akeraioi_2 7 -> akeraioi_2

akeraioi_2 7 -> akeraioi_2

akeraioi_2 8 -> akeraioi_2
```

```
akeraioi_2 9 -> akeraioi_2
akeraioi_2 \n -> good
^Z
[18]+ σταματημένο ./fsm -trace META 1
```

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟΝ ΑΚΕΡΑΙΟ ΑΡΙΘΜΟ ΩΣ ΘΕΤΙΚΑ ΠΡΟΣΗΜΑΣΜΕΝΟ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑΤΑ: ΛΑΝΘΑΣΜΕΝΑ ΟΡΙΣΜΑΤΑ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑΤΑ ΤΥΧΑΙΕΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΑΚΕΡΑΙΟΥΣ ΑΡΙΘΜΟΥΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
+12as0985qjhkjqfASDFHJGKLHDF2134563
init + -> telestes
akeraioi 1 1 -> akeraioi 2
akeraioi 2 2 -> akeraioi 2
fsm: in META_1.fsm, state 'akeraioi_2' input a not accepted
-121345(*&^%$^&*()5676896*&%$
init - -> telestes
akeraioi 1 1 -> akeraioi 2
akeraioi_2 2 -> akeraioi_2
akeraioi 2 1 -> akeraioi 2
akeraioi 2 3 -> akeraioi 2
akeraioi_2 4 -> akeraioi_2
akeraioi_2 5 -> akeraioi_2
fsm: in META 1.fsm, state 'akeraioi 2' input ( not accepted
8765432asdfjhgkhg(*&#@!#$%^()_dfszghjkj1234563789
init 8 -> akeraioi 2
akeraioi 2 7 -> akeraioi 2
akeraioi 2 6 -> akeraioi 2
akeraioi_2 5 -> akeraioi_2
akeraioi 2 4 -> akeraioi 2
akeraioi 2 3 -> akeraioi 2
akeraioi_2 2 -> akeraioi_2
fsm: in META_1.fsm, state 'akeraioi_2' input a not accepted
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΑ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΙΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ ΩΣ ΜΗ ΑΚΕΡΑΙΟΥΣ ΑΡΙΘΜΟΥΣ, ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ.

ΕΛΕΓΧΟΣ ΟΡΙΣΜΩΝ

ΟΡΙΣΜΑ: mA98-78_nQk

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ "ma98-78_nqk" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΟΡΙΣΜΟΥΣΚΑΙ ΕΙΔΙΚΟΤΕΡΑ ΓΙΑ ΤΟΥΣ ΜΙΚΡΟΥΣ ΛΑΤΙΝΙΚΟΥΣ ΧΑΡΑΚΤΗΡΕΣ, ΑΚΟΛΟΥΘΟΥΜΕΝΟΙ ΜΕ ΟΤΙ ΣΥΜΒΟΛΟ, ΑΡΙΘΜΟ ΚΑΙ ΓΡΑΜΜΑ ΜΠΟΡΟΥΝ ΝΑ ΔΕΧΤΟΥΝ ΩΣ ΟΡΙΣΜΑ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
mA98-78_nQk
init m -> orismoi
orismoi A -> orismoi
orismoi 9 -> orismoi
orismoi 8 -> orismoi
orismoi 7 -> orismoi
orismoi 8 -> orismoi
orismoi 0 -> orismoi
orismoi 0 -> orismoi
orismoi 1 -> orismoi
orismoi 1 -> orismoi
orismoi 2 -> orismoi
orismoi 2 -> orismoi
orismoi 4 -> orismoi
orismoi λ -> orismoi
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΓΙΑΤΙ Ο ΚΩΔΙΚΑΣ ΑΝΑΓΝΩΡΙΣΕ ΟΛΟΚΛΗΡΟ ΤΟ ΟΡΙΣΜΑ ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: MA98-78 nQk

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ "MA98-78_nQk" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΟΡΙΣΜΟΥΣΚΑΙ ΕΙΔΙΚΟΤΕΡΑ ΓΙΑ ΤΟΥΣ ΜΙΚΡΟΥΣ ΛΑΤΙΝΙΚΟΥΣ ΧΑΡΑΚΤΗΡΕΣ, ΑΚΟΛΟΥΘΟΥΜΕΝΟΙ ΜΕ ΟΤΙ ΣΥΜΒΟΛΟ, ΑΡΙΘΜΟ ΚΑΙ ΓΡΑΜΜΑ ΜΠΟΡΟΥΝ ΝΑ ΔΕΧΤΟΥΝ ΩΣ ΟΡΙΣΜΑ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

MA98-78 nQk

```
init M -> orismoi
orismoi A -> orismoi
orismoi 9 -> orismoi
orismoi 8 -> orismoi
orismoi - -> orismoi
orismoi 7 -> orismoi
orismoi 8 -> orismoi
orismoi _ -> orismoi
orismoi n -> orismoi
orismoi n -> orismoi
orismoi Q -> orismoi
orismoi k -> orismoi
orismoi k -> orismoi
orismoi \n -> good
^Z
[19]+ σταματημένο ./fsm -trace META_1
```

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΓΙΑΤΙ Ο ΚΩΔΙΚΑΣ ΑΝΑΓΝΩΡΙΣΕ ΟΛΟΚΛΗΡΟ ΤΟ ΟΡΙΣΜΑ ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑΤΑ: ΛΑΝΘΑΣΜΕΝΑ ΟΡΙΣΜΑΤΑ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΩΝ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΜΙΑ ΤΥΧΑΙΑ ΣΥΜΒΟΛΟΣΕΙΡΑ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΟΡΙΣΜΟΥΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
-aAQ+)*z
init - -> akeraioi_1
fsm: in META_1.fsm, state 'akeraioi_1' input a not accepted
_aAQ+)*z
fsm: in META_1.fsm, state 'init' input _ not accepted

aA*&yt
init a -> orismoi
orismoi A -> orismoi
fsm: in META_1.fsm, state 'orismoi' input * not accepted
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΑ ΕΠΕΙΔΗ ΔΕΝ ΑΝΑΓΝΩΡΙΣΕ ΤΙΣ ΣΥΜΒΟΛΟΣΕΙΡΑΕΣ ΩΣ ΟΡΙΣΜΑΤΑ ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ. **ΣΗΜΕΙΩΣΗ:** ΣΤΑ ΠΡΩΤΑ ΔΥΟ ΤΡΕΞΙΜΑΤΑ ΕΔΩΣΑ ΤΑ ΣΥΜΒΟΛΑ ΤΑ ΟΠΟΙΑ ΕΠΙΤΡΕΠΟΝΤΑΙ ΣΤΑ ΟΡΙΣΜΑΤΑ, ΟΜΩΣ ΕΝΑ ΟΡΙΣΜΑ ΔΕΝ ΜΠΟΡΕΙ ΝΑ ΞΕΚΙΝΑ ΜΕ ΑΥΤΑ. ΟΠΟΤΕ ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΟΛΙΚΑ ΗΤΑΝ ΟΡΘΟ.

ΕΛΕΓΧΟΣ ΜΕΤΑΒΛΗΤΩΝ

ΟΡΙΣΜΑ: ?a89zB3

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ ΣΥΜΒΟΛΟ "?" ΑΚΟΛΟΥΘΟΎΜΕΝΟ ΑΠΌ ΜΙΑ ΤΥΧΑΊΑ ΣΥΜΒΟΛΟΣΕΙΡΑ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΆΞΗ ΤΟΥ ΑΥΤΌΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΉΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
?a89zB3
```

init ? -> metavlites
metavlites a -> metavlites
metavlites 8 -> metavlites
metavlites 9 -> metavlites
metavlites z -> metavlites
metavlites B -> metavlites
metavlites 3 -> metavlites
metavlites \(n -> good \)
^Z
[20]+ σταματημένο ./fsm -trace META 1

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΗΝ ΣΥΜΒΟΛΟΣΕΙΡΑ ΩΣ ΜΕΤΑΒΛΗΤΗ ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑΤΑ: ΛΑΝΘΑΣΜΕΝΑ ΟΡΙΣΜΑΤΑ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "?" ΑΚΟΛΟΥΘΟΥΜΕΝΟ ΑΠΟ ΜΙΑ ΤΥΧΑΙΑ ΣΥΜΒΟΛΟΣΕΙΡΑ, Η ΟΠΟΙΑ ΠΕΡΙΕΧΕΙ ΣΥΜΒΟΛΑ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
?A=>B-G+D^90
init ? -> metavlites
metavlites A -> metavlites
fsm: in META_1.fsm, state 'metavlites' input = not accepted
?z=>B-G+D^90
```

init ? -> metavlites
metavlites z -> metavlites
fsm: in META_1.fsm, state 'metavlites' input = not accepted
?5=>B-G+D^90
init ? -> metavlites
metavlites 5 -> metavlites
fsm: in META_1.fsm, state 'metavlites' input = not accepted

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΑ ΕΠΕΙΔΗ ΔΕΝ ΑΝΑΓΝΩΡΙΣΕ ΤΙΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ ΩΣ ΜΕΤΑΒΛΗΤΕΣ ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ.

ΕΛΕΓΧΟΣ ΤΕΛΕΣΤΩΝ

ΟΡΙΣΜΑ: =

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "=" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

=
init = -> final
final \n -> good
^Z
[21]+ σταματημένο ./fsm -trace META 1

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ "=" ΩΣ ΤΕΛΕΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: +

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ ΣΥΜΒΟΛΟ "+" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΆΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΎ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΉΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

init + -> telestes

```
telestes \n -> good
^Z
[22]+ σταματημένο ./fsm -trace META_1
```

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ "+" ΩΣ ΤΕΛΕΣΤΗ,ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: -

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "-" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
-
init - -> telestes
telestes \n -> good
^Z
[22]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ "-" ΩΣ ΤΕΛΕΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: *

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "*" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
*
init * -> final
final \n -> good
^Z
[21]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ "*" ΩΣ ΤΕΛΕΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: /

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "/" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
/
init / -> final
final \n -> good
^Z
[21]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ "/" ΩΣ ΤΕΛΕΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑΤΑ: ΛΑΝΘΑΣΜΕΝΑ ΟΡΙΣΜΑΤΑ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑΤΑ ΤΟ ΣΥΜΒΟΛΑ ΤΩΝ ΤΕΛΕΣΤΩΝ ΑΚΟΛΟΥΘΟΥΜΕΝΑ ΑΠΟ ΤΥΧΑΙΕΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
=3EP
init = -> final
fsm: in META_1.fsm, state 'final' input 3 not accepted

-a67z
init - -> telestes
fsm: in META_1.fsm, state 'telestes' input a not accepted

+A45y
init + -> telestes
fsm: in META_1.fsm, state 'telestes' input A not accepted

*h56#^((*
init * -> final
fsm: in META_1.fsm, state 'final' input h not accepted

/x67)(*&
init / -> final
fsm: in META_1.fsm, state 'final' input x not accepted
```

ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΑ ΕΠΕΙΔΗ ΔΕΝ ΑΝΑΓΝΩΡΙΣΕ ΤΙΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ ΩΣ ΤΕΛΕΣΤΕΣ ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ.

ΕΛΕΓΧΟΣ ΣΧΟΛΙΩΝ

OPIΣMA: ;asgjd0985

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ ";" ΑΚΟΛΟΥΘΟΥΜΕΝΟ ΑΠΟ ΜΙΑ ΤΥΧΑΙΑ ΣΥΜΒΟΛΟΣΕΙΡΑ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
;agjd0985?/
init; -> sxolia
sxolia a -> sxolia
sxolia s -> sxolia
sxolia g -> sxolia
sxolia j -> sxolia
sxolia d -> sxolia
sxolia 0 -> sxolia
sxolia 9 -> sxolia
sxolia 8 -> sxolia
sxolia 5 -> sxolia
sxolia ? -> sxolia
sxolia / -> sxolia
sxolia \n -> good
^Z
[23]+ σταματημένο ./fsm -trace META 1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΗΝ ΣΥΜΒΟΛΟΣΕΙΡΑΣ ΣΧΟΛΙΟ ΛΟΓΟ ΤΟΥ ΣΥΜΒΟΛΟΥ ";" ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΣΗΜΕΙΩΣΗ: ΔΕΝ ΜΠΟΡΩ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΟΡΘΟΤΗΤΑ ΤΟΥ ΚΩΔΙΚΑ ΤΩΝ ΣΧΟΛΙΩΝ ΜΕ ΛΑΝΘΑΣΜΕΝΗ ΕΙΣΟΔΟ ΓΙΑ ΤΟΝ ΛΟΓΟ ΟΤΙ ΠΙΣΩ ΑΠΟ ΤΟ ΣΥΜΒΟΛΟ ";", ΠΟΥ ΥΠΟΔΗΛΩΝΕΙ ΤΗΝ ΑΡΧΗ ΣΧΟΛΙΟΥ, ΜΠΟΡΕΙ ΝΑ ΜΠΕΙ ΟΠΟΙΑΔΗΠΟΤΕ ΣΥΜΒΟΛΟΣΕΙΡΑ, ΑΝΕΞΑΡΤΗΤΩΣ ΑΡΙΘΜΟΥ, ΓΡΑΜΜΑΤΟΣ Η ΣΥΜΒΟΛΟΥ, ΕΝΤΌΣ ΤΩΝ ΟΡΙΩΝ ΤΗΣ ΓΛΩΣΣΑΣ ΜΙΝΙ-CLIPS. ΑΡΑ ΕΙΤΕ ΔΕΝ ΘΑ ΒΑΛΩ ΤΟ ΣΥΜΒΟΛΟ ";", Η ΘΑ ΠΡΕΠΕΙ ΝΑ ΞΕΦΥΓΩ ΕΝΤΌΣ ΟΡΙΩΝ ΤΗΣ ΓΛΩΣΣΑΣ ΜΙΝΙ-CLIPS ΩΣΤΕ ΝΑ ΔΩΣΩ ΑΠΟΤΕΛΕΣΜΑ ΜΕ ΛΑΝΘΑΣΜΕΝΗ ΕΙΣΟΔΟ ΚΩΔΙΚΑ.

ΕΛΕΓΧΟΣ ΔΙΑΧΩΡΙΣΤΩΝ

OPIΣMA:KENO (SPACE)

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ ΣΥΜΒΟΛΟ "/" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΆΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΎ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΉΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
init \s -> final
final \n -> good
^Z
[24]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ ΚΕΝΟ ΩΣ ΔΙΑΧΩΡΙΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: (

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΆ ΤΟ ΣΥΜΒΟΛΟ "/" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΆΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΎ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΉΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
(
init ( -> final
final \n -> good
^Z
[26]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ "(" ΩΣ ΔΙΑΧΩΡΙΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ:)

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "/" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
)
init ) -> final
final \n -> good
^Z
[26]+ σταματημένο ./fsm -trace META_1
```

ΕΠΕΞΗΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΚΩΔΙΚΑ:

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ ")" ΩΣ ΔΙΑΧΩΡΙΣΤΗ,ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑ: ENTER (ΑΛΛΑΓΗ ΓΡΑΜΜΗΣ)

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑ ΤΟ ΣΥΜΒΟΛΟ "/" ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

```
init \n -> final
^Z
[27]+ σταματημένο ./fsm -trace META_1
```

ΤΟ ΑΠΟΤΕΛΕΣΜΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΟ ΕΠΕΙΔΗ ΑΝΑΓΝΩΡΙΣΕ ΤΟ ENTER ΩΣ ΔΙΑΧΩΡΙΣΤΗ, ΟΠΟΤΕ Ο ΚΩΔΙΚΑΣ ΜΠΗΚΕ ΣΤΟ ΚΑΤΑΛΛΗΛΟ STATE ΚΑΙ ΕΜΦΑΝΙΣΕ ΣΩΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ.

ΟΡΙΣΜΑΤΑ: ΛΑΝΘΑΣΜΕΝΑ ΟΡΙΣΜΑΤΑ

ΕΠΕΞΗΓΗΣΗ ΟΡΙΣΜΑΤΟΣ:

ΔΙΝΩ ΩΣ ΟΡΙΣΜΑΤΑ ΤΟΥΣ ΔΙΑΧΩΡΙΣΤΕΣ ΑΚΟΛΟΥΘΟΥΜΕΝΑ ΑΠΟ ΤΥΧΑΙΕΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ, ΩΣΤΕ ΝΑ ΕΛΕΓΞΩ ΤΗΝ ΣΥΝΤΑΞΗ ΤΟΥ ΑΥΤΟΜΑΤΟΥ ΓΙΑ ΤΟΥΣ ΔΙΑΧΩΡΙΣΤΕΣ.

ΑΠΟΤΕΛΕΣΜΑ ΚΩΔΙΚΑ:

init \n -> final

```
23246
fsm: in META_1.fsm, state 'final' input 2 not accepted
init \s -> final
final \n -> good
09-876LKNBJHVCG
fsm: in META_1.fsm, state 'good' input 0 not accepted

(0986)
init ( -> final
fsm: in META_1.fsm, state 'final' input 0 not accepted

)(#$%
init ) -> final
fsm: in META_1.fsm, state 'final' input ( not accepted
```

ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΚΩΔΙΚΑ ΕΙΝΑΙ ΟΡΘΑ ΕΠΕΙΔΗ ΔΕΝ ΑΝΑΓΝΩΡΙΣΕ ΤΙΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ ΩΣ ΔΙΑΧΩΡΙΣΤΕΣ ΟΠΟΤΕ ΘΑ ΕΠΡΕΠΕ ΝΑ ΜΟΥ ΕΠΙΣΤΡΑΦΕΙ ΜΗ ΟΡΘΗ ΣΥΝΤΑΞΗ, ΟΠΩΣ ΚΑΙ ΕΓΙΝΕ.

ΣΗΜΕΙΩΣΗ: ΔΕΝ ΞΕΡΩ ΠΩΣ ΝΑ ΕΛΕΓΞΩ ΤΟΝ ΔΙΑΧΩΡΙΣΤΗ "EOF".

Η ΕΡΓΑΣΙΑ ΑΥΤΗ ΠΡΑΓΜΑΤΟΠΟΙΗΘΗΚΕ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΚΩΝΣΤΑΝΤΙΝΟ ΣΤΑΘΑΚΟΠΟΥΛΟ ΚΑΙ ΠΙΚΡΙΔΑ ΜΕΝΕΛΑΟ ΚΑΙ ΑΠΟΤΕΛΕΙ ΠΡΟΙΟΝ ΣΥΝΕΡΓΑΣΙΑΣ ΜΕΤΑΞΥ ΔΥΟ ΦΙΛΩΝ ΚΑΙ ΣΥΝΑΔΕΛΦΩΝ