CS-301 Computer Architecture Assignment 3

			Name:															_				
1.			the followin	g binary r	multipl	ica	tio	ns,	ass	umi	ng ι	ınsi	ign€	ed i	integ	gers	:					
	b.	1101	.0 × 1011																			
2.			the followin $00001 \div 10$		divisior	ıs,	ass	sum	ing	uns	signe	ed i	inte	ge	rs:							
	b.	1001	.010010 ÷	1011																		
3. Give two unsigned integers that would produce an overflow when their 8-bit representations are added. Add the two numbers to verify the overflow. Show y							yo	ur v	vorl	ζ.												
4.	-		nt the decim)7 i	n bi	nary	/ us	sing	8-	bit s	igne	ed	ma	 Igni	itud	e,	
						119					-107											
			Signed Ma	gnitude																		
			One's Com	plement					1													

Two's Complement

5. Convert the <u>one's complement</u> binary numbers 01011010 and 111111110 to decimal.

	01011010	01011010
Decimal Value		

6. Convert the two's complement binary numbers 01011010 and 11111110 to decimal.

	01011010	01011010
Decimal Value		

7. Add the following one's complement binary numbers and express the answer in decimal.

- a. 01 + 1011
- b. 11 + 01010101

	01 + 1011	11 + 01010101
Sum in One's Complement		
Sum in Decimal		

8. Add the following <u>two's complement</u> binary numbers and express the answer in decimal.

- a. 01 + 1011
- b. 11 + 01010101

	01 + 1011	11 + 01010101
Sum in Two's Complement		
Sum in Decimal		