Hyperplane

In geometry, a **hyperplane** is a subspace whose <u>dimension</u> is one less than that of its <u>ambient space</u>. If a space is 3-dimensional then its hyperplanes are the 2-dimensional <u>planes</u>, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional <u>lines</u>. This notion can be used in any general <u>space</u> in which the concept of the dimension of a <u>subspace</u> is defined. In <u>machine learning</u>, hyperplanes are a key tool to create <u>support vector machines</u> for such tasks as <u>computer vision</u> and <u>natural language</u> processing.^[1]

In different settings, the objects which are hyperplanes may have different properties. For instance, a hyperplane of an n-dimensional <u>affine space</u> is a <u>flat subset</u> with dimension n - 1. By its nature, it separates the space into two <u>half spaces</u>. A hyperplane of an n-dimensional projective space does not have this property.

The difference in dimension between a subspace S and its ambient space X is known as the <u>codimension</u> of S with respect to X. Therefore, a <u>necessary condition</u> for S to be a hyperplane in X is for S to have codimension one in X.

Two intersecting planes in threedimensional space. A plane is a hyperplane of dimension 2, when embedded in a space of dimension 3

Contents

Technical description

Special types of hyperplanes

Affine hyperplanes
Vector hyperplanes
Projective hyperplanes

Dihedral angles

Support hyperplanes

See also

References

External links

Technical description

In geometry, a **hyperplane** of an \underline{n} -dimensional space V is a subspace of dimension n-1, or equivalently, of \underline{c} codimension 1 in V. The space V may be a \underline{E} uclidean space or more generally an \underline{a} affine space, or a \underline{v} ector space or a \underline{v} projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can be given in coordinates as the solution of a single (due to the "codimension 1" constraint) algebraic equation of degree 1.

If V is a vector space, one distinguishes "vector hyperplanes" (which are <u>linear subspaces</u>, and therefore must pass through the origin) and "affine hyperplanes" (which need not pass through the origin; they can be obtained by <u>translation</u> of a vector hyperplane). A hyperplane in a Euclidean space separates that space into two <u>half spaces</u>, and defines a <u>reflection</u> that fixes the hyperplane and interchanges those two half spaces.

Special types of hyperplanes

Several specific types of hyperplanes are defined with properties that are well suited for particular purposes. Some of these specializations are described here.

Affine hyperplanes

An **affine hyperplane** is an <u>affine subspace</u> of <u>codimension</u> 1 in an <u>affine space</u>. In <u>Cartesian coordinates</u>, such a hyperplane can be described with a single <u>linear equation</u> of the following form (where at least one of the a_i 's is non-zero and b is an arbitrary constant):

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b.$$

In the case of a real affine space, in other words when the coordinates are real numbers, this affine space separates the space into two half-spaces, which are the connected components of the complement of the hyperplane, and are given by the inequalities

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n < b$$

and

$$a_1x_1+a_2x_2+\cdots+a_nx_n>b.$$

As an example, a point is a hyperplane in 1-dimensional space, a line is a hyperplane in 2-dimensional space, and a plane is a hyperplane in 3-dimensional space. A line in 3-dimensional space is not a hyperplane, and does not separate the space into two parts (the complement of such a line is connected).

Any hyperplane of a Euclidean space has exactly two unit normal vectors.

Affine hyperplanes are used to define decision boundaries in many <u>machine learning</u> algorithms such as linear-combination (oblique) decision trees, and perceptrons.

Vector hyperplanes

In a vector space, a vector hyperplane is a <u>subspace</u> of codimension 1, only possibly shifted from the origin by a vector, in which case it is referred to as a flat. Such a hyperplane is the solution of a single linear equation.

Projective hyperplanes

Projective hyperplanes, are used in <u>projective geometry</u>. A <u>projective subspace</u> is a set of points with the property that for any two points of the set, all the points on the line determined by the two points are contained in the set. [3] Projective geometry can be viewed as <u>affine geometry</u> with <u>vanishing points</u> (points at infinity) added. An affine hyperplane together with the associated points at infinity forms a projective hyperplane. One special case of a projective hyperplane is the **infinite** or **ideal hyperplane**, which is defined with the set of all points at infinity.

In projective space, a hyperplane does not divide the space into two parts; rather, it takes two hyperplanes to separate points and divide up the space. The reason for this is that the space essentially "wraps around" so that both sides of a lone hyperplane are connected to each other.

Dihedral angles

The <u>dihedral angle</u> between two non-parallel hyperplanes of a Euclidean space is the angle between the corresponding <u>normal vectors</u>. The product of the transformations in the two hyperplanes is a <u>rotation</u> whose axis is the <u>subspace</u> of codimension 2 obtained by intersecting the hyperplanes, and whose angle is twice the angle between the hyperplanes.

Support hyperplanes

A hyperplane H is called a "support" hyperplane of the polyhedron P if P is contained in one of the two closed half-spaces bounded by H and $H \cap P \neq \emptyset$. [4] The intersection of between P and H is defined to be a "face" of the polyhedron. The theory of polyhedrons and the dimension of the faces are analyzed by the looking at these intersections involving hyperplanes.

See also

- Hypersurface
- Decision boundary
- Ham sandwich theorem
- Arrangement of hyperplanes
- Separating hyperplane theorem
- Supporting hyperplane theorem

References

- 1. "Practical Uses of Hyperplanes" (https://deepai.org/machine-learning-glossary-and-terms/hyperplane). deepai.org.
- 2. "Excerpt from Convex Analysis, by R.T. Rockafellar" (http://www.u.arizona.edu/~mwalker/econ519/RockafellarExcerpt.pdf) (PDF). *u.arizona.edu*.
- 3. Beutelspacher, Albrecht; Rosenbaum, Ute (1998), *Projective Geometry: From Foundations to Applications*, Cambridge University Press, p. 10, ISBN 9780521483643
- 4. Polytopes, Rings and K-Theory by Bruns-Gubeladze
- Charles W. Curtis (1968) *Linear Algebra*, page 62, Allyn & Bacon, Boston.
- Heinrich Guggenheimer (1977) Applicable Geometry, page 7, Krieger, Huntington ISBN 0-88275-368-1.
- Victor V. Prasolov & VM Tikhomirov (1997,2001) *Geometry*, page 22, volume 200 in *Translations of Mathematical Monographs*, American Mathematical Society, Providence ISBN 0-8218-2038-9.

External links

- Weisstein, Eric W. "Hyperplane" (http://mathworld.wolfram.com/Hyperplane.html). *MathWorld*.
- Weisstein, Eric W. "Flat" (http://mathworld.wolfram.com/Flat.html). *MathWorld*.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Hyperplane&oldid=867532072"

This page was last edited on 6 November 2018, at 09:18 (UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use</u> and <u>Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia Foundation</u>, Inc., a non-profit organization.