Parametric Gröbner bases

GEOMETRY & APPLICATIONS

Andreas Bøgh Poulsen

201805425

Supervisor: Niels Lauritzen

Contents

1	Preliminaries	3
2	Definitions and initial results	3

Introduction

1 Preliminaries

This project will assume familiarity with ring theory, multivariate polynomials over fields. A familiarity with Gröbner bases will be beneficial, but we will introduce the necesary notations and definitions. Let R be a Noetherian, commutative ring and $X = (x_1, x_2, ..., x_n)$ be an ordered collection of symbols. We denote the ring of polynomials in these variables R[X]. Given two (disjoint) sets of variables X and Y, we will use R[X, Y] to mean $R[X \cup Y]$, which is naturally isomorphic to R[X][Y]. A monomial is a product of variables and a term is a monomial times a coefficient. We denote a monomial as X^v for some $v \in \mathbb{N}^n$.

1.1 • Definition (Monomial order, leading term). A monomial order is a total order < on the set of monomials satisfying that $u < v \implies wu < wv$.

Given a monomial order < and a polynomial $f \in R[X]$, the *leading term* of f is the term with the largest monomial w.r.t. < and is denoted by $lt_{<}(f)$. If $lt_{<}(f) = a \cdot m$ for some monomial m and $a \in R$, then we denote $lm_{<}(f) = m$ and $lc_{<}(f) = a$. If < is clear from context, it will be omitted.

These definitions naturally extend to sets of polynomials, so given a set of polynomials $F \subset k[X]$, we denote $\lim_{<} (F) := \{\lim_{<} (f) \mid f \in F\}$. The above definitions work over a general ring (and we will use that), for from here, we'll work over a field k. With this, we can give the definition of a Gröbner basis.

1.2 • Definition (Gröbner basis). Let $G \subset k[X]$ be a finite set of polynomials and < be a monomial order. We say G is a *Gröbner basis* if $\langle lt_{<}(G) \rangle = lt_{<}(\langle G \rangle)$

2 Definitions and initial results

The purpose of this project is to study parametric Gröbner bases, so let's introduce those. The bare concept is rather simple.

2.1 • Definition (Parametric Gröbner basis). Let k, k_1 be fields, U and X be collections of variables and $F \subset k[U,X]$ be a finite set of polynomials. A *parametric Gröbner basis* is a finite set of polynomials $G \subset k[U,X]$ such that $\sigma(G)$ is a Gröbner basis of $\langle \sigma(F) \rangle$ for any ring homomorphism $\sigma: k[U] \to k_1$.

We call such a $\sigma: k[U] \to k_1$ a *specialization*. By the linearity of σ , all such ring homomorphisms can be characterized by their image of U. Thus, we can identify $\{\sigma: k[U] \to k_1 \mid \sigma \text{ is a ring hom.}\}$ with the affine space k_1^m when U has m elements. For $\alpha \in k_1^m$ we'll denote the corresponding map

$$\sigma_{\alpha}(u_i) = \alpha_i \quad \text{for } u_i \in U$$

extended linearly.

When we work with these parametric Gröbner bases, it will be more convenient to have a bit more information attached to them, namely which elements are required for which σ . Since σ is described by an $\alpha \in k_1^m$, we can restrict them using subsets of k_1^m .

2.2 • **Definition (Vanishing sets & algebraic sets)**. Let *E* be a finite subset of k[X]. Then the *vanishing set* of *E* is $V(E) := \{v \in k^n \mid e(v) = 0 \mid \forall e \in E\}$.

An *algebraic set* is a set of the form $V(E) \setminus V(N)$ for two finite subsets E and N of k[X].

- **2.3** Definition (Gröbner system). Let A be an algebraic set and $G \subset k[U,X]$ be a finite set. Then (A,G) is called a *segment of a Gröbner system* if $\sigma_{\alpha}(G)$ is a Gröbner basis of $\sigma_{\alpha}(\langle G \rangle)$ for all $\alpha \in A$. A set $\{(A_1,G_1),\ldots,(A_t,G_t)\}$ is called a *Gröbner system* if each (A_i,G_i) is a segment of a Gröbner system.
- **2.4** Example. Let $X = \{x, y\}$ and $U = \{u\}$ and consider the polynomials $f(x, y, u) = ux^2 + x$ and g(x, y, u) = xy + 1. When $u \neq 0$, a Gröbner basis of $\langle f, g \rangle$ could be (y u, ux + 1), whatever u may be. TODO

Skriv om Kalkbrener

2.5 • Definition (Leading coefficient w.r.t. variables). Let $f \in k[U][X]$. Then the leading term of f is denoted $\operatorname{lt}_U(f)$, the leading coefficient is $\operatorname{lc}_U(f)$ and the leading monomial is $\operatorname{lm}_U(f)$. These notations are also used when $f \in k[U,X]$, just viewing f as a polynomial in k[U][X].

Note that $lc_U(f) \in k[U]$, i.e. the leading term is a polynomial in k[U] times a monomial in X.

From this point, we assume that the monomial order on k[U,X] satisfies x > u for all $x \in X$ and $u \in U$. This monomial order restricts to a monomial order on k[X], denoted by $<_X$. Note that this assumption is not too restrictive, as both the lexicographic, reverse lexicographic and graded versions of those satisfies this assumption.

2.6 • Lemma. Let G be a Gröbner basis of an ideal $\langle F \rangle$ w.r.t. \langle , let $\alpha \in k_1^m$ and set $G_\alpha := \{\sigma_\alpha(g) \in G \mid \sigma_\alpha(\operatorname{lc}_U(g)) \neq 0\} = \{g_1, g_2, \dots, g_l\} \subset k_1[X]$. Then G_α is a Gröbner basis of the ideal $\langle \sigma_\alpha(F) \rangle$ w.r.t. $\langle \chi \rangle$ if and only if $\sigma_\alpha(g)$ is reducible to 0 modulo G_α for every $g \in G$.

Proof. To we written after Kalkbrener

We will use this lemma in a slightly different formulation:

2.7 • Lemma. Let $G = \{g_1, g_2, ..., g_k\}$ be a Gröbner basis of an ideal $\langle F \rangle$ in k[U, X] w.r.t \langle and let $\alpha \in k_1^m$. If $\sigma_{\alpha}(\operatorname{lc}_U(g)) \neq 0$ for each $g \in G \setminus (G \cap k[U])$, then $\sigma_{\alpha}(G)$ is a Gröbner basis of $\langle \sigma_{\alpha}(F) \rangle$.

Proof. Let $G_{\alpha} = \{\sigma_{\alpha}(g) \mid \sigma_{\alpha}(\operatorname{lc}_{U}(g)) \neq 0\}$. If there is any $g \in G$, such that $\sigma_{\alpha}(g) \in k_{1} \setminus \{0\}$, then $g \in G \cap k[U]$ since $\sigma_{\alpha}(\operatorname{lc}_{U}(g)) \neq 0$ for all $g \in G \setminus K[U]$. Furthermore, since $g \in \langle F \rangle$, we get that $\langle \sigma_{\alpha}(F) \rangle = k_{1}[X]$ and $\sigma_{\alpha}(G)$ is a Gröbner basis.

If there is no such g, then $\alpha \in V(G \cap k[U])$. Take any $g \in G$. If $\sigma_{\alpha}(g) \in G_{\alpha}$, then $\operatorname{lt}(\sigma_{\alpha}(g)) = \sigma_{\alpha}(\operatorname{lc}_{U}(g)) \cdot \operatorname{lm}_{U}(g)$ since x > u for all $x \in X$ and $u \in U$. Thus, $\sigma_{\alpha}(g)$ is reducible to 0 modulo G_{α} , since it's leading term is divisible by its own leading term. On the other hand, if $\sigma_{\alpha}(g) \notin G_{\alpha}$, then $\sigma_{\alpha}(g) = 0$, so is immediately reducible to zero. Thus $\sigma_{\alpha}(G)$ is a Gröbner basis of $\langle \sigma_{\alpha}(F) \rangle$ by lemma 2.6.

With lemma 2.6 in mind, we can start constructing Gröbner systems. Let G be a reduced Gröbner basis of an ideal $\langle F \rangle \subset k[U,X]$, and let $H = \{ \text{lc}_U(g) \mid g \in G \setminus k[U] \}$. Then $\left(k_1^m \setminus \bigcup_{h \in H} V(h), G \right)$ is a segment of a Gröbner system. Thus, to make a Gröbner system, we need to find segments covering $\bigcup_{h \in H} V(h) = V(\text{lcm}\{h \mid h \in H\})$.

If we take G to be a reduced Gröbner basis, then $h \notin \langle F \rangle$ for any $h \in H$ since then the corresponding leading term would be divisible by a leading term in G. This is not allowed when G is reduced. Hence, we can find a Gröbner basis G_1 of $F \cup \{h\}$, which will then form a segment $(k_1^m \setminus \bigcup_{h \in H_1} V(h), G_1)$ where $H_1 = \{lc_U(g) \mid g \in G_1\}$. Since k[U, X] is Noetherian, this will eventually stop, forming a Gröbner system.

This leads us to the first algorithm.