AE. 12 – Produire un son

Objectifs:

- Utiliser une chaîne de mesure pour obtenir des informations sur les vibrations d'un objet émettant un signal sonore,
- Mesurer la période et la fréquence d'un signal sonore périodique,
- Utiliser un dispositif comportant un microcontrôleur pour produire un signal sonore.

I. Haut-parleur:

Q1. Quelle partie du haut-parleur fait vibrer l'air?

II. Propagation du son :

Q2. Faire le schéma de l'expérience réalisée par le professeur avec le haut-parleur et les bougies.

Q3. Sur le site de la classe, visionner la vidéo pour le chapitre 7. Décrire le comportement d'une tranche d'air au voisinage de la membrane du haut-parleur en fonctionnement « sinusoïdal ».

Q4. Décrire, puis interpréter, l'expérience réalisée par le professeur avec le buzzer et la cloche à vide.

III. Le diapason:

Détacher le diapason de sa caisse en bois.

Frapper le diapason et l'approcher de l'oreille.

Frapper à nouveau le diapason et toucher une de ses branches.

Q5. Comment le diapason produit-il du son?

Replacer le diapason sur la caisse en bois.

Frapper le diapason.

Q6. Quel est le rôle de cette caisse en bois, appelée caisse de résonance ?

Q7. Où faut-il placer son oreille pour percevoir le son plus fortement ?

Chapitre 7 – Emission et propagation du son

Enregistrer le son du diapason avec Regressi

- Brancher le microphone sur la prise rouge d'enregistrement du PC.Ouvrir le logiciel Regressi.
- Fichier > Nouveau > Son
- Cliquer sur Mode , puis choisir 44100 Hz 16 bits.
- Cliquer sur Enregistrer, puis Stop pour arrêter. Après quelques instants, l'enregistrement apparaît.
- Cliquer sur Traiter Traiter

Mesurer la période T

- Agrandir la fenêtre Graphe.
- Pour zoomer : cliquer suit, , puis tracer un rectangle de sélection sur une petite portion. Zoomer jusqu'à ce que quelques motifs soient visibles.

Mesures:

Q9. Compléter : Si un phénomène se reproduit identiquement toutes les $T = \frac{1}{2}$ s, alors il a lie fois par seconde.

La fréquence est le nombre de fois où le motif se répète en une seconde. Elle s'exprime en Hz

Chapitre 7 – Emission et propagation du son

- La formule liant la période T et la fréquence f :

$$f = \frac{1}{T}$$

- Calculer la fréquence du son produit par le diapason

f =

- Comparer avec le nombre inscrit sur le diapason.

-

IV. Micro:bit: un microcontrôleur pour produire du son:

Relier le microcontrôleur au PC avec la prise USB.

Lancer le logiciel Mu

Commencer par tape deux lignes

from microbit import * from music import *

Attention mettre un espace entre import et *

En langage Python, pour faire jouer une note de fréquence f pendant une durée Δt , il faut utiliser l'instruction pitch(\mathbf{f} , $\Delta \mathbf{t}$) où on remplace f par la valeur de la fréquence de la note en Hz, et Δt par la valeur de la durée en millisecondes.

Exemple: pitch (415, 1500)

Données : fréquence des notes

Note	Do	Do#	Ré	Ré#	Mi	Fa	Fa#	Sol	Sol#	La	La#	Si 3
Fréquence (Hz)	262	277	294	311	330	349	370	392	415	440	466	493

Q10. Écrire, ci-dessous, la ligne à taper dans le programme pour jouer un La d'une durée de 1 s.

Recopier cette ligne dans le logiciel Mu Flasher le programme.

Q11. Modifier le programme pour jouer 2 notes de votre choix. Recopier, ici, les instructions ajoutées :

Données : fréquence des notes

Note	Do	Do#	Ré	Ré#	Mi	Fa	Fa#	Sol	Sol#	La	La#	Si 3
Fréquence	262	277	294	311	330	349	370	392	415	440	466	493
(Hz)												

Chapitre 7 – Emission et propagation du son

Q12. Modifier le programme pour jouer les 2 premières mesures ci-dessous au tempo 1 noire dure 500 ms.

Q13. Flasher le programme. De quel film est extraite cette musique?

EFFACER VOTRE PROGRAMME

PUIS FERMER LE LOGICIEL MU.