

MARIADB Community Server 10.5

Max Mether, VP of Server Product Management, MariaDB Corporation Todd Stoffel, Product Manager, MariaDB Corporation Rob Hedgpeth, Developer Relations, MariaDB Corporation

Agenda

- Analytics for all
- MariaDB ColumnStore 1.5
- Hybrid Transactional/Analytical Processing
- Demo
- The best Community Server yet

Modern applications

- Transactional
- Customer-facing
- Incorporate real-time analytics and historical data
- Provide customers with...
 - Helpful insights
 - Personalized recommendations
 - Compelling opportunities
 - Better experiences

The Power of MariaDB

- OLTP Data stored as rows on block storage
 - Fast and persistent, same as others
- OLAP Data stored as columns on object storage
 - Low-cost and unlimited capacity, same innovators like Snowflake
- Smart OLTP Data replicated from row/block storage to columnar/object storage
 - Transaction queries against row/block storage
 - Analytical queries against columnar/object storage
 - Any database instance can transactional queries, analytical queries or both
 - It's all transparent to the application

MariaDB ColumnStore 1.5

MariaDB storage engines

MariaDB ColumnStore

- Columnar format
 - Stores data by column rather than row
 - File per column vs. file per table
- Up to 90% data compression
- Extremely fast data import via cpimport utility
- Low cost cloud-native storage
- No need for indexes
- SQL

Why columnar storage?

SELECT AVG(col9) FROM my_tbl

200 bytes per row, 1B rows

col1	col2	 	col9
r1col1	r1col2	r1coln	r1col9
r2col1	r2col2	r2coln	r2col9
r3col1	r3col2	r3coln	r3col9
r4col1	r4col2	r4coln	r4col9

SELECT AVG(col9) FROM my_tbl

200 bytes per row, 1B rows **200GB of disk IO**

SELECT AVG(col9) FROM my_tbl

4 byte column, 1B rows

SELECT AVG(col9) FROM my_tbl

4 byte column, 1B rows **4GB of disk IO**

Storage architecture – extent map

- The data for a column is stored in a partition
- A partition contains multiple segments (i.e., files)
- A segment contains multiple extents
- An extent contains 8 million rows

Partition 1									
Segment 1 (file)				Segment 2 (file)					
Extent 1 (1st 8M rows)		Extent 2 (2nd 8M rows)		Extent 1 (3rd 8M rows)					
Block 1	Block 2	Block n	Block 1	Block 2	Block n	Block 1	Block 2	Block n	

SELECT *
FROM my_table
WHERE COL1
BETWEEN 220 AND 250

Column 1

Column 2

Extent 1
Min: 1

Max: 100

Extent 2 Min: 101 Max: 200

Extent 3 Min: 201 Max: 300

Extent 4 Min: 301 Max: 400 Extent 1 Min: 1

Max: 10000

Extent 2 Min: 10001

Max: 20000

Extent 3 Min: 20001 Max: 30000

SELECT *
FROM my_table
WHERE COL1
BETWEEN 220 AND 250

Column 1

Column 2

Extent 1 Min: 1

Max: 100

Extent 2

Min: 101

Max: 200

Extent 3 Min: 201 Max: 300

Extent 4 Min: 301 Max: 400

1 Extent 1 Min: 1

Max: 10000

Extent 2

Min: 10001 Max: 20000

Extent 3

Min: 20001 Max: 30000


```
SELECT *
FROM my_table
WHERE
COL1 BETWEEN 220 AND 250 AND
COL2 < 10000
```

Column 1

Column 2

Extent 1
Min: 1

Max: 100

Extent 2 Min: 101 Max: 200

Extent 3 Min: 201 Max: 300

Extent 4 Min: 301 Max: 400 Extent 1 Min: 1

Max: 10000

Extent 2 Min: 10001 Max: 20000

Extent 3 Min: 20001 Max: 30000


```
SELECT *
FROM my_table
WHERE
COL1 BETWEEN 220 AND 250 AND
COL2 < 10000
```

Column 1

Column 2

Extent 1
Min: 1

Max: 100

Extent 2

Min: 101 Max: 200

Extent 3 Min: 201 Max: 300

Extent 4 Min: 301 Max: 400 Extent 1 Min: 1

Max: 10000

Extent 2

Min: 10001

Max: 20000

Extent 3 Min: 20001

Max: 30000

The Future of Analytics

- ✓ Data will continue to grow
- Customer expectations continue to grow

Modern problems require modern solutions

MariaDB HTAP

Hybrid Transactional/Analytical Processing

Traditional approach

Solutions Powered by HTAP

Customer-facing applications

Archive data

Internal BI and analytics

Data warehouse (OLAP)

Analytics
(columnar)

Cross-Engine Queries

Ultimate flexibility

OLTP

MariaDB Community Server

Row

OLAP

MariaDB Community Server

Columnar

Smart OLTP

MariaDB Community Server

Row

Columnar

DEMO

So much more!

- Embracing the MariaDB name
 - With MariaDB Community Server 10.5, binaries are now 'mariadb'-named
 - Server error messages changed to only use MariaDB
- Multiple SQL enhancements
- New Data Type Plugin API
 - New Plugin API to create custom data types via plugins
 - New Data type as example implementation (INET/4, INET/6)

- Enhancements to temporal tables
 - WITHOUT OVERLAP for application-time period tables
 - Configurable start date/time for interval partitioned history of system versioned tables
 - Automatic creation of history partitions when partitions are defined
- Security updates
 - New privileges as subset of the SUPER privilege
 - SUPER still acts as an alias for all of the above where needed
 - Server enforced TLS encrypted connections

- InnoDB refactoring
 - Optimized tablespace handling
 - New InnoDB thread pool for background tasks
 - Redo log changed to a more efficient format
 - InnoDB internal foreign key parser removed
 - Deprecated InnoDB system and status variables removed
 - Cleanup of InnoDB Data Scrubbing code
 - Several variables from SHOW ENGINE INNODB STATUS added to SHOW GLOBAL STATUS

- Replication and binary logging
 - SQL statements for controlling the replication now allow the use of the term REPLICA instead of SLAVE.
 - Default slave_parallel_mode changed from "conservative" to "optimistic"
 - New parameter binlog_row_metadata for adding meta information to the binary log file
- System information and tracing
 - Information schema updates
 - ANALYZE for statements shows the time spent for checking the WHERE clause
 - Performance Schema has been refactored

- Galera
 - Enforcement to allow DDL for engines supported by Galera
 - Cluster now has full MariaDB GTID support
 - Inconsistency voting protocol
- Information about pre-10.0 temporal data types
 - always displayed with a /* mariadb-5.3 */ comment in:
 - SHOW CREATE TABLE
 - DESCRIBE
 - INFORMATION_SCHEMA.COLUMNS.COLUMN_TYPE
- Increase Aria and S3 index length limit from 1000 to 2000 bytes

Q&A

Thank you!

https://mariadb.com/downloads/

https://hub.docker.com/r/mariadb/columnstore

Open Source Developer Examples

https://github.com/mariadb-corporation/developer-examples

