Analiza matematyczna dla informatyków.

Mieczysław Cichoń, ver. 4.2/2023

Mieczysław Cichoń - WMI UAM

Punkty skupienia zbioru.

Definicja. Element $x_0 \in X$ nazywa się punktem skupienia zbioru $A \subset X$ jeżeli w każdej kuli otwartej $K(x_0, r)$ (r > 0) istnieje co najmniej 1 element zbioru A różny od x_0 :

$$\forall_{r>0} \exists_{x\in A, x\neq x_0} x \in (A \cap K(x_0, r))$$

Inaczej mówiąc - x_0 jest punktem skupienia zbioru A jeżeli istnieje ciąg $(x_n) \subset A$ taki, że (x_n) jest zbieżny do x_0 gdy $n \to \infty$.

Oczywiście x_0 nie musi należeć do A. Np. A=(0,1). Wówczas każdy punkt $x\in A$ jest jego punktem skupienia, ale również 0 i 1 są jego punktami skupienia.

Granica funkcji w punkcie.

Niech $f: X \to \mathbb{R}$ i niech x_0 niech będzie punktem skupienia zbioru X.

Definicja. (def. Heinego)

Mówimy, że element y_0 jest granicą funkcji f $x_0 \in X$, jeżeli dla dowolnego ciągu (x_n) elementów $x_n \in X$, $x_n \neq x_0$ oraz $|x_n - x_0| \stackrel{n \to \infty}{\longrightarrow} 0$ odpowiedni ciąg $(f(x_n))$ jest zbieżny do y_0 , czyli $|f(x_n) - y_0| \stackrel{n \to \infty}{\longrightarrow} 0$.

Definicja. (def. Cauchy'ego)

Mówimy, że element y_0 jest granicą funkcji f w punkcie $x_0 \in X$, jeżeli dla dowolnego $\varepsilon > 0$ istnieje taka liczba $\delta > 0$, że dla wszystkich elementów $x \neq x_0 \in X$ takich, że $|x - x_0| < \delta$ zachodzi $|f(x) - y_0| < \varepsilon$

Wówczas piszemy
$$y_0 = \lim_{x \to x_0} f(x)$$
.

Granica funkcji w punkcie a.

Równoważność definicji granicy.

Czyli definicja Cauchy'ego ma postać:

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in X} |x-x_0| < \delta \implies |f(x)-y_0| < \varepsilon.$$

W powyższych definicjach użyliśmy tej samej nazwy: "granica funkcji f" - usprawiedliwia to następujące:

Twierdzenie. Definicje Heinego i Cauchy'ego granicy funkcji f w punkcie x_0 dla funkcji o wartościach rzeczywistych są równoważne tj. element y_0 jest granicą funkcji f w sensie definicji Heinego wtedy i tylko wtedy, gdy jest granicą funkcji f w sensie definicji Cauchy'ego.

$$(C) = (H)$$

Definicje w przypadku funkcji $f : \mathbb{R} \longrightarrow \mathbb{R}, x_0 \in \mathbb{R}$

(def. Heinego)

$$\forall x_n \neq x_0 (\mid x_n - x_0 \mid \underset{n \to \infty}{\longrightarrow} 0) \implies (\mid f(x_n) - y_0 \mid \underset{n \to \infty}{\longrightarrow} 0)$$

(def. Cauchy'ego)

$$\begin{tabular}{ll} \forall & \exists & \forall \\ \varepsilon > 0 & \delta > 0 & x \in \mathbb{R} \end{tabular} & \mid x - x_0 \mid < \delta \implies \mid f(x) - y_0 \mid < \varepsilon \end{tabular}$$

Jeszcze raz podkreślmy: takich definicji **nie można weryfikować na komputerze**, a ponieważ własność posiadania przez funkcje granic w punkcie jest istotna, to **musimy** to weryfikować sami...

A dlaczego istotna? Najważniejsze zastosowanie (nie jest jedyne!) w informatyce to granica ilorazu różnicowego funkcji (= pochodnej, o czym później), a tylko takie fukcje nie sprawią *zbyt wielu* problemów w trakcie obliczeń komputerowych... O innych zastosowaniach - wkrótce...

Granica funkcji w punkcie nie musi istnieć...

Granice jednostronne.

Dla funkcji rzeczywistych $f:P\longrightarrow \mathbb{R}$, gdzie P jest przedziałem można pojęcie granicy nieco uogólnić.

Definicja. Niech x_0 będzie punktem skupienia przedziału P. Mówimy, że liczba $g \in \mathbb{R}$ jest granicą prawostronną funkcji f w punkcie x_0 jeżeli:

(a) (def. Heinego)

dla dowolnego ciągu (x_n) , $x_n \in P$, $x_n > x_0$ $x_n \xrightarrow[n \to \infty]{} x_0$ ciąg $(f(x_n))$ jest zbieżny do g

(b) (def. Cauchy'ego)

$$\begin{tabular}{lll} \forall & \exists & \forall & 0 < x - x_0 < \delta & \Longrightarrow & |f(x) - g| < \varepsilon \\ \hline \varepsilon > 0 & \delta > 0 & x \in P \end{tabular}$$

Ten fakt oznaczać będziemy: $g = \lim_{x \to x_0 +} f(x)$

Analogicznie definiujemy granicę lewostronną h: w (a) bierzemy ciągi (x_n) takie, że $x_n < x_0$, a w (b) $x \in P$ spełniające warunek $0 < x_0 - x < \delta$.

Oznaczać ją będziemy $h=\lim_{x\to x_0-}f(x)$ (lub $h=f(x_0-0)=f(x_0-)$). Granice także nazywać będziemy łącznie **jednostronnymi.**

Twierdzenie. Jeżeli $\lim_{x\to x_0+} f(x) = \lim_{x\to x_0-} f(x)$, to istnieje granica funkcji f w punkcie x_0 i równa jest wartości tych granic jednostronnych.

W n i o s e k. Jeżeli $\lim_{x\to x_0+} f(x) \neq \lim_{x\to x_0-} f(x)$, to funkcja f nie posiada granicy w punkcie x_0 .

Różne granice w x=-3, w x=2 granice jednostronne równe (ale granica różna od wartości funkcji)...

Granice na komputerze...

Uwaga: na ogół komputer nie pomoże nam w obliczaniu lub nawet oszacowaniu granicy funkcji! Trudnością jest fakt **braku** możliwości sprawdzenia istnienia granicy! *Dlaczego?*

Prezentacja: Skrypt ilustracyjny granic w "Mathematica" - potrzebny darmowy *CDF Player* lub *Mathematica*

Wyznaczanie granic funkcji w punkcie na komputerze może napotkać na *kilka problemów*, które wynikają głównie z niedoskonałości reprezentacji liczb w pamięci komputera oraz z niedoskonałości samej implementacji algorytmów numerycznych:

- 1. Błąd reprezentacji liczby: Komputery nie mogą przechowywać wszystkich liczb rzeczywistych ze względu na ograniczenia pamięci i niedoskonałości reprezentacji liczb w postaci binarnej. Z tego powodu, gdy funkcja ma granicę w punkcie, w którym wartość funkcji zmienia się gwałtownie, może wystąpić błąd reprezentacji liczby, co może prowadzić do błędnych wyników.
- 2. Problemy z numerycznym obliczaniem granicy: Algorytmy numeryczne stosowane do obliczania granic mogą prowadzić do błędów, zwłaszcza gdy funkcja jest skomplikowana lub ma skomplikowaną strukturę. Istnieją różne sposoby obliczania granic, ale żadna z nich nie jest idealna i każda z nich ma swoje ograniczenia.
- 3. Błąd zaokrąglenia: Wiele algorytmów numerycznych wymaga zaokrąglenia wyników do określonej liczby miejsc po przecinku, co może prowadzić do błędów numerycznych. Błędy te mogą się kumulować i prowadzić do nieprecyzyjnych wyników.

Twierdzenie o 3 funkcjach.

Otrzymujemy ważne (analogiczne do granic ciągów):

Twierdzenie. (o trzech funkcjach). Jeżeli funkcje f i g mają tę samą granicę k w punkcie x_0 oraz istnieje liczba a > 0 taka, że

$$f(x) \leqslant h(x) \leqslant g(x)$$

dla $0 < |x - x_0| < a$, to funkcja h ma granicę w punkcie x_0 i wynosi ona również k.

"Jeżeli obywatel h idzie pomiędzy dwoma policjantami f i g idącymi do komisariatu k, to też tam trafi..."

Dla chętnych: aby uwierzyć w siłę tego twierdzenia proszę obliczyć granicę funkcji $f(x) = x^2 \cdot \sin \frac{1}{x^2}$ w x = 0.

Działania na granicach.

A teraz kilka własności działań na granicach:

Twierdzenie. (granica sumy, iloczynu i różnicy). Jeżeli funkcje f i g mają granice w punkcie x_0 , to funkcje f+g, f-g oraz $f\cdot g$ mają też granice w tym punkcie i odpowiednio:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

W szczególności dla f(x) = c = const.

$$\lim_{x\to x_0}(c\cdot g(x))=c\cdot \lim_{x\to x_0}g(x).$$

Ciągłość funkcji w punkcie.

Definicja. Funkcję f określoną w $(x_0 - a, x_0 + a)$, a > 0, nazywamy ciągłą w punkcie x_0 , gdy istnieje granica funkcji f w tym punkcie i jest równa wartości funkcji $f(x_0)$:

$$\lim_{x\to x_0} f(x) = f(x_0) .$$

Twierdzenie. Niech $f:(x_0-a,x_0+a)\longrightarrow \mathbb{R}$. Funkcja f jest ciągła w punkcie x_0 , gdy zachodzi jeden z równoważnych warunków:

$$\begin{array}{cccc}
\forall & \exists & \forall & |x-x_0| < \delta & \Longrightarrow & |f(x)-f(x_0)| < \varepsilon, \\
& & \forall & (x_0-a,x_0+a) & & \Longrightarrow & (f(x_n) \underset{n \to \infty}{\longrightarrow} f(x_0)).
\end{array}$$

Analogicznie, jak dla granic, definicje te nazywa się odpowiednio ciągłością funkcji f w punkcie x_0 w sensie Cauchy'ego oraz w sensie Heinego.

Przykłady.

(1)
$$f(x) = 1$$
 dla $x \neq 0$ i $f(0) = 0$.

Zauważmy, że $\lim_{x\to 0} f(x)=1$ (sprawdzenie tego oczywistego faktu pozostawiamy Czytelnikowi). Niemniej

$$\lim_{x \to x_0} f(x) = 1 \neq 0 = f(0).$$

Funkcja nie jest ciągła.

- (2) Niech $g(x) = \sin \frac{1}{x}$ dla $x \neq 0$, g(0) = a. Jak wiemy, nie istnieje granica funkcji g w punkcie $x_0 = 0$. Co więcej dla jakiejkolwiek wartości a nie można uzyskać równości $\lim_{x\to 0} g(x) = a$, a tak można postąpić w przykładzie (1) kładąc wartość funkcji w punkcie 0 jako f(0) = 1.
- (3) I jeszcze jeden przypadek $h(x) = \frac{1}{x^2}$ dla $x \neq 0$ oraz h(0) = 0. Tu $\lim_{x\to 0} h(x) = +\infty$, a więc $\lim_{x\to x_0} h(x) \neq h(0)$.

Rodzaje punktów nieciągłości.

Punkty nieciągłości funkcji f w punkcie x_0 można podzielić na ważne przypadki:

Definicja. Niech $f:(x_0-a,x_0+a)\longrightarrow \mathbb{R}$ i niech f będzie nieciągła w punkcie x_0 . Mówimy, że:

- (10) funkcja f ma nieciągłość I rodzaju o ile istnieją granice jednostronne $\lim_{x\to x_0-} f(x)$ i $\lim_{x\to x_0+} f(x)$; jeżeli przy tym istnieje $\lim_{x\to x_0} f(x)$ to nieciągłość nazywamy usuwalną, a jeżeli nie nieusuwalną,
- (2⁰) funkcja f ma nieciągłość II rodzaju, o ile nie istnieje choć jedna z granic jednostronnych $\lim_{x\to x_0-} f(x)$, $\lim_{x\to x_0+} f(x)$.

Punkty nieciągłości.

Nieciągłości I rodzaju (nieusuwalne) w x=1 i x=3 (usuwalna w x=0).

Funkcja z przykładu (1) ma więc nieciągłość I rodzaju usuwalną, a funkcja $f(x) = \operatorname{sgn} x$ nieciągłość I rodzaju nieusuwalną (tzw. skok). W pozostałych przykładach są nieciągłości II rodzaju.

Zadanie: zbadaj ciągłość i określ typ nieciągłości, o ile funkcje są w pewnych punktach nieciągłe:

(a)
$$f(x) = [\sin x]$$
,

(b)
$$f(x) = x^2 \cdot ([x])^2$$
,

(c)
$$f(x) = x^2 \cdot e^{\frac{1}{x}} .$$

(uwaga: [x] = Ent(x) to funkcja "entier", czyli część całkowita liczby x)

Wykresy funkcji na różnych przedziałach

Badanie nieciągłości za pomocą komputera.

Badanie ciągłości (lub nie) jest akurat jedną z czynności, których komputer (programista) zbyt łatwo nie wykona.

Mamy sporo trudności do pokonania: skrypt ilustracyjny problemu ze sprawdzaniem nieciągłości nawet w "Mathematica" - potrzebny darmowy *CDF Player* lub *Mathematica*

Dla chętnych (trochę przed czasem - bo temat funkcji wielu zmiennych nie mieści się już w programie "Analizy 1"!!): skrypt ilustracyjny pokazujący problem z funkcjami wielu zmiennych - POLECAM!

Własności funkcji ciągłych I.

W związku z własnościami granic mamy oczywiście:

Twierdzenie. (o ciągłości ilorazu) Jeżeli f i g są ciągłe w punkcie x_0 , to funkcie f+g, f-g, $f \cdot g$ oraz $a \cdot f$ ($a \in \mathbb{R}$) są ciągłe w x_0 , a jeżeli ponadto $g(x_0) \neq 0$ to także funkcja $\frac{t}{\sigma}$ jest ciągła w x_0 .

Twierdzenie. (o ciągłości funkcji złożonej) *Niech funkcja g* będzie ciągła w punkcie x₀ i niech funkcja f będzie ciągła w punkcie $y_0 = g(x_0)$. Wtedy funkcja złożona $(f \circ g)(x) = f(g(x))$ iest ciagła w punkcie x_0 .

Twierdzenie. (o ciągłości funkcji odwrotnej) Załóżmy, że funkcja f : $(a,b) \longrightarrow \mathbb{R}$ jest ściśle monotoniczna w tym przedziale i ciągła w każdym punkcie tego przedziału oraz niech $m = \inf_{x \in (a,b)} f(x) \leqslant M = \sup_{x \in (a,b)} f(x)$. Wtedy funkcja odwrotna $f^{-1}:(m,M)\longrightarrow \mathbb{R}$ jest ściśle monotoniczna w (m,M)i ciągła w każdym punkcie przedziału (m, M).

Ciągłość jednostronna.

Definicja.

- (1⁰) Funkcję $f: [x_0, x_0 + a) \longrightarrow \mathbb{R}$ (a > 0) nazywamy prawostronnie ciągłą w pukcie x_0 , gdy istnieje $\lim_{x \to x_0 +} f(x)$ oraz $\lim_{x \to x_0 +} f(x) = f(x_0)$.
- (20) Funkcję $f:(x_0-a,x_0]\longrightarrow \mathbb{R}$ (a>0) nazywamy lewostronnie ciągłą w punkcie x_0 , gdy istnieje $\lim_{x\to x_0-}f(x)$ oraz $\lim_{x\to x_0-}f(x)=f(x_0)$.

Asymptoty.

Ważną konsekwencją zastosowania pojęcia granicy funkcji w badaniach jej przebiegu jest możliwość wykorzystania tzw. asymptot funkcji.

Definicja. Jeżeli funkcja f jest ciągła w przedziale $(x_0-\varepsilon,x_0)$ $[(x_0,x_0+\varepsilon)]$ dla pewnego $\varepsilon>0$ oraz

$$\lim_{x\to x_0-}\mid f(x)\mid=+\infty$$

to mówimy, że prosta $x = x_0$ jest **prawostronną [lewostronną]** asymptotą pionową funkcji f.

Na ogół nie będziemy precyzować czy prosta $x=x_0$ jest prawo- czy lewostronną asymptotą pionową i jeśli zajdzie choć jeden z tych przypadków, to będziemy po prostu mówić o asymptocie pionowej funkcji f. Oczywiste jest, że funkcja f może mieć wiele asymptot pionowych np. $f(x)=\operatorname{tg} x$ ma nieskończenie wiele asymptot pionowych (obustronnych !).

Asymptoty pionowe.

a) - lewostronna, b) - prawostronna, c) - dwustronna

a) funkcja prawostronnie ciągła w x_0

Asymptoty ukośne.

Definicja. Jeżeli istnieje $M \subset \mathbb{R}$ taka, że f jest ciągła w przedziale $(M, +\infty)$ $[(-\infty, M)]$, oraz istnieje prosta y = mx + n taka, że

$$\lim_{x \to +\infty} [f(x) - (mx + n)] = 0 ,$$
 odpowiednio:
$$[\lim_{x \to -\infty} [f(x) - (mx + n)] = 0]$$

to tę prostą nazywamy **asymptotą ukośną funkcji** f przy $x \to +\infty$ [przy $x \to -\infty$]. W sytuacji, gdy m=0 asymptotę nazywamy czasami poziomą. Jest widoczne, że funkcja może mieć co najwyżej 2 asymptoty ukośne.

Przykład asymptot.

oraz

gdyż

Funkcja
$$f(x) = \mid x \mid$$
 ma 2 asymptoty ukośne
$$y = x \qquad \text{przy} \quad x \to +\infty \; ,$$

$$y = -x \qquad \text{przy} \quad x \to -\infty \; ,$$

$$\lim_{x \to +\infty} (\mid x \mid -x) = \lim_{x \to +\infty} (x - x) = 0 \; ,$$

$$\lim_{x \to -\infty} (\mid x \mid -(-x)) = \lim_{x \to -\infty} ((-x) - (-x)) = 0 \; .$$

A teraz pytanie: co z funkcją $f(x) = \sqrt{1 + x^2}$? Samodzielnie...