GPU-Accelerated Deep Neural Networks in TMVA

Simon Pfreundschuh

Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Outline

Introduction

Implementation

Verification and Testing

Performance

Application to the Higgs Dataset

Summary and Future Outlook

Acknowledgments

Introduction

Motivation

- Deep learning techniques have been revolutionizing the field of machine learning.
- Their success is closely related to the development of massively parallel accelerator devices, which allow for efficient training of machine learning models.
- Deep learning techniques have successfully been applied to problems in HEP¹.

Motivation

- Deep learning techniques have been revolutionizing the field of machine learning.
- Their success is closely related to the development of massively parallel accelerator devices, which allow for efficient training of machine learning models.
- Deep learning techniques have successfully been applied to problems in HEP¹.

Aim

Provide an efficient and easy-to-use implementation of deep neural networks for the HEP community.

TMVA

- Toolkit for Multivariate Data Analysis with ROOT
- Root-integrated machine learning (ML) environment providing a training and test framework for a large number of ML methods.

- A feed forward neural network is defined by a set of layers $l=1,\ldots,n$, each with an associated weight matrix \mathbf{W}_{l} , bias terms θ_{l} and activation function f_{l} .
- Feed forward: Neurons of a given layer / are only connected to neurons of the layer / + 1
- A neural network may be viewed as a function

$$F(\mathbf{x}, \mathbf{W}, \boldsymbol{\theta}) = f_n \left(f_{n-1}(\cdots) \mathbf{W}_{n-1}^T + \boldsymbol{\theta}_{n-2} \right) \mathbf{W}_n^T + \boldsymbol{\theta}_n$$
 (1)

- A feed forward neural network is defined by a set of layers $l=1,\ldots,n$, each with an associated weight matrix \mathbf{W}_{l} , bias terms θ_{l} and activation function f_{l} .
- Feed forward: Neurons of a given layer / are only connected to neurons of the layer / + 1
- A neural network may be viewed as a function

$$F(\mathbf{x}, \mathbf{W}, \boldsymbol{\theta}) = f_n \left(f_{n-1}(\cdots) \mathbf{W}_{n-1}^T + \boldsymbol{\theta}_{n-2} \right) \mathbf{W}_n^T + \boldsymbol{\theta}_n \qquad (1)$$

• Machine Learning: Find parameters $\hat{\mathbf{W}}$, $\hat{\boldsymbol{\theta}}$ so that $F(\mathbf{x}) = F(\mathbf{x}, \hat{\mathbf{W}}, \hat{\boldsymbol{\theta}})$ approximates either a target function $G(\mathbf{x})$ (Regression) or a likelihood measure for a given class (Classification).

Neural Network Training

- **Supervised learning**: The network is trained using a training set consisting of inputs $\mathcal{X} = \mathbf{x}_0, \dots, \mathbf{x}_n$ and outputs $\mathcal{Y} = y_0, \dots, y_n$.
- The **loss function** or **error function** $J(y, \hat{y})$ quantifies the quality of a prediction \hat{y} with respect to the expected output y.
- Learning as a minimization problem:

minimize
$$J_{\mathcal{X}} = \frac{1}{n} \sum_{\mathbf{x}} J(y, \hat{y})$$
 (2)

Neural Network Training (Contd.)

• Use gradient-based minimization methods to minimize the error $\sum_{\mathbf{x} \in \mathcal{X}} J(y, \hat{y})$ over the training set:

$$\mathbf{W} \leftarrow \mathbf{W} - \alpha \frac{dJ_{\chi}}{d\mathbf{W}} \tag{3}$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{dJ_{\mathcal{X}}}{d\boldsymbol{\theta}} \tag{4}$$

- Batch gradient descent: Instead of the whole training set, compute the gradient only for a small subset of it.
- Crucial for scalable training on large data sets.

Forward Propagation:

$$\mathbf{U}_{n} = f_{n} \left(\mathbf{U}_{n-1} \mathbf{W}_{n} + \boldsymbol{\theta}^{T} \right) \tag{5}$$

$$\mathbf{f}_n' = f_n' \left(\mathbf{U}_{n-1} \mathbf{W}_n + \boldsymbol{\theta}^T \right) \tag{6}$$

Backward Propagation:

$$\frac{dJ_{\mathcal{X}}}{d\mathbf{W}_n} = \mathbf{U}_{n-1} \left(\mathbf{f}'_n \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_n} \right) \tag{7}$$

$$\frac{dJ_{\mathcal{X}}}{d\theta_n} = \mathbf{1} \left(\mathbf{f}'_n \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_n} \right) \tag{8}$$

$$\frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{n-1}} = \mathbf{W}_n \left(\mathbf{f}'_n \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_n} \right) \tag{9}$$

$$\mathbf{U}_1 = f_1 \left(\mathbf{X} \mathbf{W}_1^T + \boldsymbol{\theta}_1 \right) \qquad \mathbf{U}_2 = f_2 \left(\mathbf{U}_1 \mathbf{W}_2^T + \boldsymbol{\theta}_2 \right)$$

$$\begin{bmatrix} x_{0,0} & \dots & x_{0,m} \\ x_{1,0} & \dots & x_{1,m} \\ \vdots & & \vdots \\ x_{n,0} & \dots & x_{n,m} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_1 \\ \frac{J_X}{d\mathbf{W}_1} \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\theta}_1 \\ \frac{J_X}{d\mathbf{W}_1} \end{bmatrix}$$

$$\frac{dJ_{\mathcal{X}}}{d\boldsymbol{\theta}_{2}} = \left(\mathbf{f}_{2}' \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{2}}\right)^{T} \mathbf{1}$$

$$\mathbf{U}_1 = f_1 \left(\mathbf{X} \mathbf{W}_1^T + \boldsymbol{\theta}_1 \right) \quad \mathbf{U}_2 = f_2 \left(\mathbf{U}_1 \mathbf{W}_2^T + \boldsymbol{\theta}_2 \right)$$

$$\begin{bmatrix} x_{0,0} & \dots & x_{0,m} \\ x_{1,0} & \dots & x_{1,m} \\ \vdots & & \vdots \\ x_{n,0} & \dots & x_{n,m} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{W}_1 \\ J_{X} \\ d\mathbf{W}_1 \end{bmatrix}$$

$$\theta_1 \\ J_{X} \\ d\theta_1 \end{bmatrix}$$

 $\frac{dJ_{\mathcal{X}}}{d\boldsymbol{\theta}_{1}} = \left(\mathbf{f}_{1}^{\prime} \odot \frac{dJ_{\mathcal{X}}}{d\mathbf{U}_{1}}\right)^{T} \mathbf{1}$

Implementation

- The backpropagation algorithm can be decomposed into primitive operations on matrices:
 - Matrix multiplication and addition
 - Application of activation functions
 - Computing of loss and regularization functionals
- General formulation of the backpropagation algorithm using those primitive matrix operations
- Optimized matrix operations provided by specialized low-level implementations

Low-level Interface

14/40

14/40

14/40

The Low-Level Interface:

- Implemented by architecture classes: TCuda, TCpu, TOpenCL
- Architecture classes provide matrix and scalar types as well as host and device buffer types

The Object Oriented Model:

- Generic neural network implementation: Classes are templated by architecture class.
- The TNet class provides a general implementation of the backpropagation algorithm.
- The TDataLoader takes care of the streaming of data to the device.

Dependencies

CPU Implementation:

- BLAS: quasi-standard, various optimized free-software implementations available, possibility to link againt vendor provided implementation when available
- TBB: Considered using Root's ThreadPool, but lacks block range functionality

Dependencies

CPU Implementation:

- BLAS: quasi-standard, various optimized free-software implementations available, possibility to link againt vendor provided implementation when available
- TBB: Considered using Root's ThreadPool, but lacks block range functionality

CUDA Implementation:

- There exist dedicated neural network libraries developed by NVIDIA but obtaining them requires joining Accelerated Computing Developer Program
- cuBLAS and cuRAND freely available as part of the CUDA Toolkit

Dependencies

OpenCL Implementation:

- cIBLAS: Part of the open-source clMath² libraries
- clRNG: Also part of the clMath libraries
- Encountered portability problems with the cIRNG library.

Verification and Testing

Verification

- Backpropagation algorithm verified using numerical differentiation.
- Weight gradient error for a network with sigmoid activations (foreground) and identity activations (background):
- The code includes a reference low-level implementation based on Root's TMatrix class.
- Generic unit test for all routines in the low-level interface based on the reference implementation.
- Training routines verified by learning full-rank linear mappings.

Performance

Performance Model

Consider a layer l with n_l neurons, n_{l-1} input neurons and a batch size of n_b .

Forward Propagation:

• Multiplication of weight matrix \mathbf{W}_I with activation gradients:

$$n_l n_b (2n_{l-1} - 1)$$
 FLOP

• Addition of bias terms θ_I :

• Application of activation function f_l and its derivatives:

$$2n_In_bc_f$$
 FLOP, $c_f\approx 1$

Performance Model

Consider a layer l with n_l neurons, n_{l-1} input neurons and a batch size of n_b .

Backward Propagation

• Hadamard product:

Computation of previous layer activations:

$$n_{l-1}n_b(2n_l-1)$$
 FLOP

• Computation of weight and bias gradients:

$$n_{l-1}n_l(2n_b-1)+n_l(n_b-1)$$
 FLOP

Performance Model

Consider a layer l with n_l neurons, n_{l-1} input neurons and a batch size of n_b .

Total:

$$\sum_{l} 6n_{l}n_{b}n_{l-1} + 4n_{l}n_{b} - n_{l}(n_{l-1}+1) - n_{b}n_{l-1}$$

• Terms involving $n_l n_b n_{l-1}$ dominate complexity for the *hidden* layers.

Benchmarks

- Training Data:
 - Randomly generated data from a linear mapping $R^{20} \mapsto R$
 - 10⁵ input samples
- Computation of the numerical throughput based on the time elapsed for performing 10 training epochs.
- Network structure:
 - 5 hidden layers with 256 neurons
 - tanh activation functions
 - Sqaured error loss

Implementation: Multithreaded OpenBLAS and TBB **Hardware**: Intel Xeon E5-2650, 8×4 cores, 2 *GHz*, estimated peak performance per core: 16 GFLOP/s

Network: 20 input nodes, 5 hidden layers with n_h nodes each, squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance

(double)

Optimization:

- Use compute streams to expose more parallelism to the device.
- Compute gradients for multiple batches in parallel.

Optimization:

- Use compute streams to expose more parallelism to the device.
- Compute gradients for multiple batches in parallel.
- Using 2 streams:

Optimization:

- Use compute streams to expose more parallelism to the device.
- Compute gradients for multiple batches in parallel.
- Using 4 streams:

Network: 20 input nodes, 5 hidden layers with 256 nodes each, squared error loss

 $\textbf{Hardware} \colon \, \mathsf{NVIDIA} \,\, \mathsf{Tesla} \,\, \mathsf{K20}, \, 1.17 \,\, \mathsf{TFLOP/s} \,\, \mathsf{peak} \,\, \mathsf{performance}$

(double)

OpenCL Performance

Network: 20 input nodes, 5 hidden layers with 256 nodes each,

squared error loss

Hardware: AMD FirePro W8100, 2.1 TFLOP/s peak performance

(double)

Summary

Network: 20 input nodes, 5 hidden layers with 256 nodes each, squared error loss

Application to the Higgs Dataset

The Higgs Dataset

• Signal Process:

$$gg \to H^0 \to W^\pm H^\mp \to W^\pm W^\mp h^0 \to W^\pm W^\mp b\bar{b}$$

• Background Process:

$$gg
ightarrow t ar{t}
ightarrow W^\pm W^\mp b ar{b}$$

The Higgs Dataset

Signal Process:

$$gg o H^0 o W^\pm H^\mp o W^\pm W^\mp h^0 o W^\pm W^\mp b \bar b$$

• Background Process:

$$gg o t ar t o W^\pm W^\mp b ar b$$

- 21 **low-level features**: Momenta of one lepton and the four jets, jet b-tagging information, missing transverse momentum
- 7 high-level features: Derived invariant masses of intermediate decay products
- Dataset consisting of 11 million simulated collision events

Shallow vs. Deep Networks

- **Shallow Network**: 1 hidden layer with 256 neurons and *tanh* activation function and cross entropy loss
- **Deep Network**: 5 hidden layers with 256 neurons and *tanh* activation function and cross entropy loss
- Both networks trained once using only low-level features and once using both high-level and low-level features.

Shallow vs. Deep Networks

Deep Networks vs. BDT

- **Deep Network**: 5 hidden layers with 256 neurons and *tanh* activation function and cross entropy loss
- Boosted Decision Trees: 1000 Trees, maximum depth 3
- Both classifiers trained on low- and high-level features

Method	Training Time [h]	Area under ROC Curve
BDT	4.78 h	0.806
DNN	0.969 h	0.873

Deep Networks vs. BDT

Summary and Future Outlook

Results

- Testing and debugging of the prototype implementation of deep neural networks in TMVA.
- Production-ready implementation of parallel training of deep neural networks on CPUs and CUDA-capable GPUs.
- Reproduced Higgs benchmark results.

Future Outlook

- Near Future:
 - Integration of the CPU and CUDA
 - Finish OpenCL implementation
- Analyze performance on different architectures
- Extend neural network functionality: batch normalization, activation functions, AdaGrad, ...

Acknowledgments

Acknowledgments

- Project carried out at CERN within the Google Summer of Code program
- Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Acknowledgments

- Project carried out at CERN within the Google Summer of Code program
- Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Thank You!

