

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06236452 A

(43) Date of publication of application: 23.08.94

(51) Int. CI

G06K 7/10

(21) Application number: 05040065

(22) Date of filing: 01.03.93

(30) Priority:

18.12.92 JP 04339074

(71) Applicant:

NIPPONDENSO CO LTD

(72) Inventor:

OBATA KENZO NOJIRI TADAO KITAKADO YOSHIMI WATANABE TAKESHI

TERAMAE KOJI

(54) OPTICAL INFORMATION READER

(57) Abstract:

PURPOSE: To accurately read the optical information in quantity larger than the caliber of a reading port without securing a contact between a rading subject and the reading port.

CONSTITUTION: A bar code label 2 is irradiated by the light of a light source 3, and the light reflected on the table 2 is condensed by a lens 6 via a mirror 4 and an iris 5. Then the condensed light forms an image on a line sensor (image sensor) 7 equipped with a shutter. Thus a bar code 1 is read. In such a constitution of an information reader, a wavelength detector 8 is added to detects the wavelength of the reflected light together with an optical guide 9 which irradiates the light spots 9a on the label 2 to show a readable range. Then a touch reading state where a reading port 14 touches the label 2 or a non-touch reading state where the port 14 does not touch the label 2 is decided based on the wavelength of the reflected light detected by the detector 8. Then the emitted light quantity and the shutter speed are controlled so as to secure the optimum quantity of light incident on the sensor 7 based on the deciding result of

reading state and the reflected light intensity acquired by integration of the line sensor output.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-236452

(43)公開日 平成6年(1994)8月23日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

G06K 7/10

N 8623-5L

L 8623-5L

審査請求 未請求 請求項の数10 OL (全 26 頁)

(21)出願番号	特願平5-40065	(71)出願人	000004260
(20) ATT			日本電装株式会社
(22)出願日	平成5年(1993)3月1日	(ma) 7/ mm m	愛知県刈谷市昭和町 1 丁目 1 番地
		(72)発明者	小幡 賢三
(31)優先権主張番号	特願平4-339074		愛知県刈谷市昭和町1丁目1番地 日本電
(32)優先日	平 4 (1992)12月18日		装株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	野尻 忠雄
			愛知県刈谷市昭和町1丁目1番地 日本電
			装株式会社内
		(72)発明者	北角 善美
			愛知県刈谷市昭和町1丁目1番地 日本電
			装株式会社内
		(74)代理人	弁理士 碓氷 裕彦
			最終頁に続く

(54) 【発明の名称】 光学的情報読取り装置

(57)【要約】

読取り対象に読取り口を接触させることな く、読取り口の口径以上の光学的情報を正確に読み取る こと。

【構成】 光源3からバーコードラベル2に対して光を 照射し、その反射光をミラー4、絞り5を介してレンズ 6で集光して、シャッタ付ラインセンサ(イメージセン サ) 7上に結像させることによりバーコード1を読み取 る装置において、反射光の波長を検出する波長検出器 8, ラベル2に読取り可能範囲を表す光スポット9 a を 照射する光ガイド9を設ける。そして、波長検出器8に て検出された反射光の波長から、読取り状態が、読取り 口14をラベル2に接触させたタッチ読みであるか、読 取り口14をラベル2から離した非タッチ読みであるか を判定し、その判定結果とラインセンサ出力を積分して 得られる反射光強度とに基づき、ラインセンサ7への入 射光量が最適値となるよう発光量およびシャッタ速度を 制御する。

【特許請求の範囲】

【請求項1】 光学的情報が記載された読取り対象に光 を照射する光源手段と、

1

前記読取り対象から反射し当該装置の読取り口から入射 してくる所定角度範囲の反射光を集光して、前記光学的 情報を表す情報映像を所定の読取り位置に結像させる結 像用光学系と、

前記読取り位置に配設され、前記情報映像を電気信号に 変換する撮像手段と、

を備えた光学的情報読取り装置において、

前記反射光の強度を検出する光強度検出手段と、

該光強度検出手段の検出結果に基づき、前記撮像手段の 露光時間を制御する制御手段と、

を備えたことを特徴とする光学的情報読取り装置。

【請求項2】 請求項1記載の光学的情報読取り装置に おいて、

前記読取り対象に当該装置が読取り可能な範囲を表すガイド光を照射する光ガイド手段を設けたことを特徴とする光学的情報読取り装置。

【請求項3】 請求項2記載の光学的情報読取り装置に 20 おいて、

前記光ガイド手段と前記光源手段とは一つの光源を兼用 していることを特徴とする光学的情報読取り装置。

【請求項4】 請求項1乃至請求項3いずれか記載の光 学的情報読取り装置において、

前記光源手段又は前記光源手段と前記光ガイド手段と は、発光量を制御可能に構成され、前記制御手段は、前 記撮像手段の露光時間と共に該発光量を制御することを 特徴とする光学的情報読取り装置。

【請求項5】 請求項1乃至請求項4いずれか記載の光 30 学的情報読取り装置において、

当該装置による前記光学的情報の読取り状態が、前記読取り口を前記読取り対象へ接触させた接触読みであるか、前記読取り口を前記読取り対象から離した非接触読みであるかを判定する読取り状態判定手段を備え、

前記制御手段が、前記光強度検出手段の検出結果と前記 読取り状態判定手段の判定結果とに基づき、前記露光時 間又は前記露光時間と前記発光量とを制御することを特 徴とする光学的情報読取り装置。

【請求項6】 請求項5記載の光学的情報読取り装置に おいて、

前記読取り状態判定手段を、

前記光源手段から光を照射した際に前記読取り対象から 反射してくる反射光の波長を検出する波長検出手段と、 該検出された反射光の波長から、該反射光が前記光源手 段が照射した光による反射光であるか、外来光を含む反 射光であるかを判定する波長判定手段と、

により構成してなることを特徴とする光学的情報読取り 装置。

【請求項7】 請求項5記載の光学的情報読取り装置に 50

おいて、

前記読取り状態判定手段が、前記光強度検出手段から、 前記光源手段から光を照射した際の反射光強度と前記光 源手段から光を照射していないときの反射光強度とを各 々読み込み、これら各反射光強度の比に基づき、前記光 学的情報の読取り状態を判定することを特徴とする光学 的情報読取り装置。

【請求項8】 請求項5記載の光学的情報読取り装置に おいて、

10 前記読取り状態判定手段が、前記光ガイド手段が前記ガイド光を照射した際に前記撮像手段から出力される電気信号に基づき、該ガイド光の照射によって生じる反射光の幅を検出する反射光幅検出手段を備え、該検出した反射光の幅に基づき前記光学的情報の読取り状態を判定することを特徴とする光学的情報読取り装置。

【請求項9】 請求項1乃至請求項8いずれか記載の光 学的情報読取り装置において、前記光源手段は、前記読 取り口の幅方向に2列以上に配列された多数の発光素子 からなり、各列における発光素子の光の照射方向を互い に異なる方向に設定してなることを特徴とする光学的情 報読取り装置。

【請求項10】 請求項1乃至請求項9いずれか記載の 光学的情報読取り装置において、

前記読取り口の外壁を、前記結像用光学系が前記反射光 を集光する角度範囲に沿って傾斜させたことを特徴とす る光学的情報読取り装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、バーコード等の光学的 情報が記載された読取り対象から光学的情報を読み取る 光学的情報読取り装置に関する。

[0002]

【従来の技術】従来より、この種の光学的情報読取り装置として、例えば、図25に示すように、バーコード81が印刷されたバーコードラベル82に光を照射するために発光ダイオードをライン状に複数並べた光源83と、バーコードラベル82からの反射光を、ミラー84、絞り85を経由して集光し、後部にバーコードラベル82の映像を結像させるレンズ86と、レンズ86の結像位置に配設されて、バーコードラベル82の映像を電気信号に変換する、電荷結合素子(CCD)をライン状に並べたイメージセンサ(以下、ラインセンサという)87と、手動操作によってバーコード81の読取り指令を入力するためのトリガスイッチ88と、光源83、ラインセンサ87、トリガスイッチ88と、光源83、ラインセンサ87、トリガスイッチ88に接続された電子回路基板89とを、手持用のハウジング80内に一体的に組み込んだバーコード読取り装置90が知られている。

【0003】また電子回路基板89には、図26に示すように、ラインセンサ87から出力される微弱なアナロ

グ映像信号を増幅する増幅回路91、増幅回路91にて増幅されたアナログ映像信号を2値化してデジタル信号に変換する2値化回路92、2値化回路92から出力されるデジタル信号の幅をカウントすることによりバーコード81のバー,スペースの幅を計測するカウント部93、カウント部93からの出力信号に基づきバーコード81を復元(デコード)し、そのデコード結果を外部端子94を介して外部に出力するデコード部95、トリガスイッチ88の操作によってバーコード81の読取り指令が入力されると、光源83を起動してバーコードラベル82を照射させると共に、カウント部93、デコード部95を動作させて、外部端子94からバーコード81のデコード結果を出力させる制御部96、および、これら各部に電源供給を行う電源回路97等が組み込まれている。

【0004】なお、一般に、カウント部93, デコード部95, 制御部96は、CPU, ROM, RAM等を中心とするマイクロコンピュータ(ECU)の一処理として実現される。

[0005]

【発明が解決しようとする課題】しかしながら、こうした従来のバーコード読取り装置は、照射光および反射光の通路となるハウジング80の読取り口80aをバーコードラベル82に当接させてバーコード81を読み取るいわゆるタッチ式のものであるため、読取り口80aをバーコードラベル82から離すと、バーコード81を正確に読み取ることができなかった。

【0006】つまり、こうした従来のバーコード読取り 装置では、読取り口80aをバーコードラベル82に当 接すれば、光源83からバーコードラベル82を経由し てラインセンサ87に至る光路長が一定となり、しかも この光路上に外光が入射することはないので、ラインセ ンサ87に入射する反射光強度は、バーコード81に応 じて変化するものの、略安定している。

【0007】しかし、読取り口80aをバーコードラベル82から離すと、光源83からラインセンサ87に到達する光路長が長くなり、しかもこの光路上には外光が入射するので、この光路上での照射光の減衰および外光による反射光の増加等によって、ラインセンサ87に入射する反射光強度は使用環境によって大きく変化してし40まう。このため、上記従来のバーコード読取り装置では、読取り口80aをバーコードラベル82から離すと、ラインセンサ87が電気信号に変換する反射光量が多すぎたり、少なすぎたりして、バーコード81を正確に読み取ることができなくなるのである。

【0008】また、このように、従来のバーコード読取り装置においては、読取り口80aをバーコードラベル82に当接する必要があるので、読取り口80aの口径W以上の幅を持つバーコードは読み取ることができないといった問題もある。

【0009】本発明は、こうした問題に鑑みなされたもので、バーコード等の光学的情報が記載された読取り対象から読取り口を離して、読取り口の口径以上の光学的情報を正確に読み取ることのできる光学的情報読取り装置を提供することを目的としている。

4

[0010]

【課題を解決するための手段】かかる目的を達成するためになされた請求項1に記載の光学的情報読取り装置は、図1に例示するように、光学的情報が記載された読取り対象に光を照射する光源手段と、前記読取り対象から反射し当該装置の読取り口から入射してくる所定角度範囲の反射光を集光して、前記光学的情報を表す情報映像を所定の読取り位置に結像させる結像用光学系と、前記読取り位置に配設され、前記情報映像を電気信号に変換する撮像手段と、を備えた光学的情報読取り装置において、前記反射光の強度を検出する光強度検出手段と、該光強度検出手段の検出結果に基づき、前記撮像手段の露光時間を制御する制御手段と、を備えたことを特徴としている。

【0011】また、請求項2に記載の光学的情報読取り装置は、図1に一点鎖線で示すように、請求項1に記載の光学的情報読取り装置において、前記読取り対象に当該装置が読取り可能な範囲を表すガイド光を照射する光ガイド手段を設けたことを特徴とし、さらに、請求項3に記載の光学的情報読取り装置は、この請求項2に記載の光学的情報読取り装置において、前記光ガイド手段と前記光源手段とは一つの光源を兼用していることを特徴としている。

【0012】次に請求項4に記載の光学的情報読取り装置は、図1に点線で示すように、請求項1乃至請求項3いずれか記載の光学的情報読取り装置において、前記光源手段又は前記光源手段と前記光ガイド手段とは、発光量を制御可能に構成され、前記制御手段は、前記撮像手段の露光時間と共に該発光量を制御することを特徴としている。

【0013】また次に請求項5に記載の光学的情報読取り装置は、図1に二点鎖線で示すように、請求項1乃至請求項4いずれか記載の光学的情報読取り装置において、当該装置による前記光学的情報の読取り状態が、前記読取り口を前記読取り対象へ接触させた接触読みであるか、前記読取り口を前記読取り対象から離した非接触読みであるかを判定する読取り状態判定手段を備え、前記制御手段が、前記光強度検出手段の検出結果と前記読取り状態判定手段の判定結果とに基づき、前記露光時間又は前記露光時間と前記発光量とを制御することを特徴としており、請求項6に記載の光学的情報読取り装置は、この請求項5に記載の光学的情報読取り装置において、前記読取り状態判定手段を、前記光源手段から光を照射した際に前記読取り対象から反射してくる反射光の30 波長を検出する波長検出手段と、該検出された反射光の

波長から、該反射光が前記光源手段が照射した光による 反射光であるか、外来光を含む反射光であるかを判定す る波長判定手段と、により構成してなることを特徴とし ている。

【0014】また請求項7に記載の光学的情報読取り装置は、請求項5に記載の光学的情報読取り装置において、前記読取り状態判定手段が、前記光強度検出手段から、前記光源手段から光を照射した際の反射光強度と前記光源手段から光を照射していないときの反射光強度とを各々読み込み、これら各反射光強度の比に基づき、前記光学的情報の読取り状態を判定することを特徴とし、さらに請求項8に記載の光学的情報読取り装置において、前記読取り状態判定手段が、前記光ガイド手段が前記ガイド光を照射した際に前記撮像手段から出力される電気信号に基づき、該ガイド光の照射によって生じる反射光の幅を検出する反射光幅検出手段を備え、該検出した反射光の幅に基づき前記光学的情報の読取り状態を判定することを特徴としている。

【0015】また次に、請求項9に記載の光学的情報読取り装置は、請求項1乃至請求項8いずれか記載の光学的情報読取り装置において、前記光源手段は、前記読取り口の幅方向に2列以上に配列された多数の発光素子からなり、各列における発光素子の光の照射方向を互いに異なる方向に設定してなることを特徴としており、さらに請求項10に記載の光学的情報読取り装置は、請求項1乃至請求項9いずれか記載の光学的情報読取り装置において、前記読取り口の外壁を、前記結像用光学系が前記反射光を集光する角度範囲に沿って傾斜させたことを特徴としている。

[0016]

【作用および発明の効果】上記のように構成された請求項1に記載の光学的情報読取り装置においては、光源手段が読取り対象に光を照射し、結像用光学系が、読取り対象から反射してくる反射光を集光して、撮像手段上に、光学的情報を表す情報映像を結像させ、撮像手段が、その情報映像を電気信号に変換する。

【0017】また、結像用光学系は、当該装置の読取り口から入射してくる所定角度範囲の反射光を集光して撮像手段上に情報映像を結像させるため、読取り口と読取り対象とを離せば光学的情報の読取り可能範囲が増大する。

【0018】一方、読取り口と読取り対象とを離すと、その距離や外光等によって撮像手段に入射される反射光強度が大きく変化するが、当該光学的情報読取り装置では、光強度検出手段が反射光の強度を検出し、制御手段がその検出結果に基づき撮像手段の露光時間を制御するため、撮像手段が映像情報を電気信号に変換するための反射光量を常に安定させることができる。

【0019】従って、請求項1に記載の光学的情報読取 50

り装置によれば、読取り口を読取り対象に接触させることなく光学的情報を読み取ることができるようになり、 しかも読取り口と読取り対象とを離せば離すほど光学的 情報の読取り可能範囲を増大できるので、読取り口の口 径に制限されることなく広範囲な光学的情報を読み取る ことができる。

6

【0020】次に、請求項2に記載の光学的情報読取り 装置においては、光ガイド手段が読取り対象にガイド光 を照射する。このため、上記のように読取り口を読取り 対象から離して光学的情報を読み取る際に、使用者に対 して、当該装置が読取り可能な範囲を案内することがで き、操作性を向上できる。

【0021】また、請求項3に記載の光学的情報読取り装置においては、光ガイド手段と光源手段とは一つの光源を兼用しているため、請求項2の光学的情報読取り装置と同様、ガイド光により読取り可能範囲を案内することができるにもかかわらず、装置構成を請求項1の光学的情報読取り装置と同様にすることができる。

【0022】また次に、請求項4に記載の光学的情報読取り装置においては、制御手段が、撮像手段の露光時間と共に、光源手段の発光量、あるいは光源手段と光ガイド手段の発光量を制御する。このため、当該装置によれば、読取り口と読取り対象とを離した際に生じる反射光強度の変化を、光源手段の発光量あるいは光源手段と光ガイド手段との発光量により、直接抑制することができ、撮像手段の露光時間制御だけでは撮像手段が映像情報を電気信号に変換する際の反射光量を安定化させることができないような大きな反射光強度変化が生じた場合にも、反射光量を安定化させることができるようになり、光学的情報を読み取る際の環境条件を拡大することが可能になる。

【0023】一方、請求項5に記載の光学的情報読取り装置においては、読取り状態判定手段が、当該装置による光学的情報の読取り状態が、読取り口を読取り対象へ接触させた接触読みであるか、あるいは読取り口を読取り対象から離した非接触読みであるかを判定し、制御手段が、光強度検出手段の検出結果とこの読取り状態判定手段の判定結果とに基づき、撮像手段の露光時間や、発光手段あるいは発光手段と光ガイド手段との発光量を制御する。従って、反射光強度が略安定した接触読みの場合と、反射光強度が大きく変化する非接触読みの場合とで、制御手段の制御動作を切り換えることができ、撮像手段が映像情報を電気信号に変換する際の反射光量を効率よく制御することができる。

【0024】つまり、接触読みの場合、反射光強度は安定しているため、露光時間や発光量は当該装置の特性に応じた所定値に制御すればよく、反射光強度の検出、露光時間の算出、発光量の算出といった制御動作は不要であるが、請求項1乃至請求項4の光学的情報読取り装置では、光学的情報の読取り状態を判定できないため、常

にこうした制御動作を実行しなければならない。

【0025】しかし、当該光学的情報読取り装置では、 読取り状態判定手段が光学的情報の読取り状態を判定す るため、接触読みである場合に、反射光強度の検出,露 光時間の算出,発光量の算出といった制御動作を行うこ となく、露光時間や発光量を設定することができる。こ のため、当該光学的情報読取り装置によれば、光学的情報の読取り状態が接触読みである場合の制御動作を簡素 化して、光学的情報の読取り速度を向上することができ るのである。

【0026】次に、請求項6乃至請求項8の光学的情報 読取り装置は、請求項5における読取り状態判定手段を より具体化したものであり、請求項6に記載の装置で は、波長検出手段が、光源手段から光を照射した際に読 取り対象から反射してくる反射光の波長を検出し、波長 判定手段が、その検出波長から、反射光が、光源手段が 照射した光による反射光であるか、外来光を含む反射光 であるかを判定する。

【0027】つまり、光学的情報の読取り状態が接触読みであれば、反射光は光源手段が照射した光の波長と一 20 致し、逆に光学的情報の読取り状態が非接触読みであれば、反射光は光源手段が照射した光と異なる波長を含むため、請求項6に記載の装置では、反射光の波長が光源手段が照射した光の波長と一致しているか否かによって光学的情報の読取り状態を判定するのである。

【0028】また請求項7に記載の装置では、光強度検 出手段から、光源手段から光を照射した際の反射光強度 と光源手段から光を照射していないときの反射光強度と を各々読み込み、これら各反射光強度の比に基づき、光 学的情報の読取り状態を判定する。

【0029】つまり、光学的情報の読取り状態が接触読みであれば外光の影響をほとんど受けないため、上記光源手段から光を照射していないときの反射光強度は略0となり、各反射光強度の比は無限大となるが、光学的情報の読取り状態が非接触読みであれば、外光の影響を必ず受け、上記各反射光強度の比は、接触読みの場合より必ず小さくなるため、請求項7に記載の装置では、上記各反射光強度の比が一定値以上か否かによって光学的情報の読取り状態を判定するのである。

【0030】従って、請求項7に記載の装置によれば、請求項6に記載の装置のように波長検出手段を設ける必要がなく、装置構成を簡素化できる。また次に、請求項8に記載の装置では、反射光幅検出手段によって、光ガイド手段がガイド光を照射した際に撮像手段から出力される電気信号に基づき、ガイド光の照射によって生じる反射光の幅を検出し、その検出した反射光の幅に基づき光学的情報の読取り状態を判定する。

【0031】つまり、本発明の光学的情報読取り装置では、読取り口を読取り対象から離せば離すほど、光学的情報の読取り可能範囲を拡大できるが、この場合、光ガ 50

イドから照射したガイド光も読取り対象上で拡がる。従って、撮像手段上に結像される映像情報の内、ガイド光に対応した反射光強度の高い部分は、接触読みの場合と非接触読みの場合とで異なり、非接触読みの方が広くなる。そこで、請求項8に記載の装置では、このガイド光に対応した反射光強度の高い部分の幅を撮像手段から出力される電気信号に基づき検出して、その幅が接触読みの場合の幅(一定幅となる)と一致しているか否かを判定することにより、光学的情報の読取り状態を判定する

8

【0032】従って、この請求項8に記載の装置においても、請求項6に記載の装置のように波長検出手段を設ける必要がなく、装置構成を簡素化できる。なお、光学的情報の読取り状態は、請求項6乃至請求項8に記載の装置以外でも判定できる。

【0033】つまり、例えば、読取り口の先端に読取り 対象に接触した際に導通するスイッチを設け、このスイ ッチのオン・オフ状態を判定するようにしても、光学的 情報の読取り状態を判定できる。

【0034】また、例えば、光強度検出手段から一定強度の光を照射させ、その時の反射光強度を検出して、反射光強度が所定範囲内にあるか否かを判定することによっても、光学的情報の読取り状態を判定することができる。即ち、接触読みの場合には、反射光強度は光学的情報により変化するものの、略安定した所定範囲内となり、逆に非接触読みの場合には、反射光強度はこの所定範囲内から大きく外れるため、単に反射光強度が所定範囲内にあるか否かを判定することによっても、光学的情報の読取り状態を判定することはできる。

【0035】また次に、請求項9に記載の光学的情報読取り装置においては、光源手段が前記読取り口の幅方向に2列以上に配列された多数の発光素子からなり、各列における発光素子の光の照射方向が互いに異なる方向に設定されている。このため、当該装置によれば、照射光の読取り対象への入射角度を各列毎に変化させることができ、鏡面反射が生じる読取り対象からでも光学的情報を正確に読み取ることができる。

【0036】つまり、一つの列の発光素子からの照射光 が鏡面反射したとしても、他の列の発光素子からの照射 光によって光学的情報を読み取ることができるため、鏡 面反射による読取り性能の低下を防止することができる のである。

【0037】また次に請求項10に記載の光学的情報読取り装置においては、読取り口の外壁を、結像用光学系が反射光を集光する角度範囲に沿って傾斜させている。このため、使用者は、非接触読取り時にこの読取り口の外壁に沿って読取り対象を見ることにより、光ガイドを使用することなくおおよその読取り範囲を知ることができる。

[0038]

分は、使用者が保持点Aを保持した場合にヘッド部11 が上方に向き易くなるよう、ヘッド部11と保持部12 の重量比が同じか、保持部12の方が重くなるようにされている。

10

【実施例】以下に本発明の実施例を図面と共に説明す る。図2に示すように、本実施例のバーコード読取り装 置は、図25に示した従来の装置と同様、バーコード1 が印刷されたバーコードラベル2に光を照射するための 光源3、バーコードラベル2からの反射光を、ミラー 4、絞り5を経由して集光し、後部にバーコードラベル 2の映像を結像させるレンズ6、レンズ6の結像位置に 配設されて、バーコードラベル2の映像を電気信号に変 換するラインセンサ7、および信号処理用の電子回路基 板10を備える他、当該装置をバーコードラベル2に接 10 触させてバーコード1を読み取る接触読み(以下, タッ チ読みという)でも、またバーコードラベル2から離し て読み取る非接触読み(以下、アンタッチ読みという) でも、バーコード1を正確に読み取ることができるよう に、バーコードラベル2からの反射光に含まれる光の波 長を検出する波長検出器8、およびバーコードラベル2 にバーコード1の読取り可能範囲を示すガイド光を照射 する光ガイド9を備えている。そしてこれら各部は、ハ ウジング20内に一体的に組み込まれている。

【0043】つまり本実施例のように、ハウジング20をヘッド部11と保持部12とから首曲り形状にした場合、バーコードラベル2が水平に配設されている状態では、タッチ読みでもアンタッチ読みでも操作性は変わらないが、バーコードラベル2が垂直に配設されている状態では、アンタッチ読みを行う際に、ハウジング20を保持しながら、読取り口14を手首を曲げて対象物に向ける必要があり、読取り口14をバーコードラベル2に当接できるタッチ読みに比べて操作性が悪いため、本実施例では、保持点Aを中心とする重量配分を上記のように設定することにより、読取り口14が垂直方向に向き易くなるようにしている。

【0039】次に、ハウジング20は、図3に示すように、ヘッド部11と保持部12とから首曲り形状になっている。そして、ハウジング20のヘッド部11は、先端が読取り口14として開口されており、その上面には、バーコード1の読取り結果等を表示する表示パネル15や、使用者に対して各種警告を与えるための警告ランプや警告ブザーを備えた警告装置16が設けられ、その側面には、電源スイッチ17や、読取り指令を入力するためのトリガスイッチ18が設けられている。またハウジング20の保持部12の上面には、バーコード1の読取り条件等を入力するための操作パネル19が設けられている。

【0044】次に、このハウジング20内に設けられた上記各部の構成および動作について説明する。まず、光源3は、発光波長が660nmのチップ状の発光ダイオード(例えばシチズン電子(株)製の発光ダイオード「商品名:CL-170UR」)を複数個(例えば8個)、読取り口14の両端側を密にして一列に並べることによって構成されている。なお、読取り口の両端側を密にするのは、レンズ6を介してラインセンサ7に入射される反射光強度が、レンズ6のCOS4法則によって、その両側程に低くなるので、これを補正するためである。

【0040】またこのハウジング20は、アンタッチ読みを行う際に、バーコードラベル2と読取り口14との距離や読取り口14の方向を、バーコード1の大きさに合わせて目視で設定できるように、ヘッド部11の外壁が、レンズ6がミラー4および絞り5を介して集光可能な角度範囲、つまりラインセンサ7にてバーコード1を読取り可能な角度範囲に沿って傾斜されており、その周囲からは、目視を妨げることのないように、突起が取り除かれている。

【0045】次にミラー4は、バーコードラベル2からの反射光を絞り5の方向に導くためのものである。つまり、本実施例のバーコード読取り装置は、ヘッド部11と保持部12とにより首曲り形状になっているので、このミラー4によって光路を変換するのである。

【0041】またこのハウジング20は、上記のようにヘッド部11と保持部12とから構成されているが、この2つの部位を分ける部分(図2に示す保持点A)は、他の部分と比較して著しく細く形成されている。これは、使用者がハウジング20を保持してバーコード1の読取り作業を行う場合に、使用者が、保持点Aにて、手掌側の母指基節部と手掌側の指指基節部とで簡単にハウジング20を保持することができ、また自然にその点を保持するようにするためである。

【0046】また、絞り5は、ミラー4によって光路変換された反射光量を絞ってレンズ6に導くためのものであるが、本実施例のバーコード読取り装置は、タッチ読みとアンタッチ読みとを合わせて行うため、レンズ6の焦点深度を深くする必要がある。そこで、本実施例では、そのスリット形状を、幅0.6mm、長さ1.7mmの縦長に設定している。つまり、焦点深度を深くするには、スリット形状を細くすればよいが、単にスリット形状を細くして絞りを強くしただけでは、通過光量が減少して、ラインセンサ7への入射光量が低下し、読取りり性能に悪影響を及ぼすため、本実施例では、スリット形状を縦長にすることで光量の低下を補っているのである。

【0042】そして、この保持点Aを基準とした重量配 50

【0047】またこの絞り5は、図4に示すように、上 記のような縦長のスリット5aを、厚さ0.3mmで黒 く着色された黄銅のフィルムに形成し、ABS等の樹脂 で形成したケーシング5bに装着することにより構成さ れている。つまり本実施例では、スリット5a部分の厚 みを、図4に点線で示す従来装置の厚みに比べて薄く設定している。このため、図4に一点鎖線で示すように、スリット5 a の通過光量を、点線で示す従来装置に比べて増加させることができ、図5に示すように、バーコード1 の読み取りを θ α , あるいは θ β の傾きで行っても、ラインセンサ 7 への入射光量を確保でき、良好な読取りができるようになる。

【0048】次にラインセンサ7には、バーコード1を 読み取る目的から、縦長の画素を幅方向に並べたイメー ジセンサが使用されている。そしてラインセンサ7の画 素の波長に対する感度特性は、光源3の照射光に対応し て赤色が最も高くなるように調整されている。なお、こ のラインセンサ7は、自然光に対しても感度は低下する ものの実用上問題無い感度特性を持っている。

【0049】また、ラインセンサ7は、各画素の光電変換効果により生じた電荷の蓄積量を時間で制御することのできるシャッタ機能を備えている。つまり、ラインセンサ7は、光が入射すると、各画素の光電効果により入力光量に応じた電荷が生成され、電荷生成は入射時間に比例する。そして従来のタッチ式バーコード読取り装置 20において使用されているラインセンサでは、この電荷を、ラインセンサに組み込まれたシフトレジスタや電荷転送回路によって順次転送し、外部に出力する。

【0050】しかし、この転送は一定の速度でなされるため、本実施例のようにアンタッチ読みを行う場合には、外光強度が大きいとき、外光によって、転送時間内に画素の電荷が飽和してしまい、その出力信号は意味の無いものとなってしまう。そこで本実施例では、ラインセンサ7に外部からの制御信号によって、各画素の走査インタバルの開始時には電荷が放電するような回路を閉じておいて、ある時間(すなわちシャッタ制御時間)が経過したら同回路を開き、電荷生成を開始させることのできる、いわゆるシャッタ機能付のラインセンサを使用するのである。

【0051】なお、こうしたイメージセンサとしては、例えば、長さ 200μ m, ピッチ 14μ mのホトダイオードからなり、画素数2048bitの、日立(株)製のイメージセンサ「商品名: HE98144」等を使用することができる。

【0052】次に、波長検出器8は、図6に示すように、R(赤),G(緑),B(青)の各波長毎に図7に示すようなピーク感度を持つ3つのフォトダイオードDR,DG,DBからなるカラーセンサ(例えばシャープ(株)製のカラーセンサ「商品名:PD170V1」)8 aと、各フォトダイオードDR,DG,DBからの出力信号を補正する3つの対数圧縮回路8bとから構成されており、図2に示すように、絞り5の下方に配設されている

【0053】なお、対数圧縮回路8bは、各フォトダイオードDR、DG、DBの検出感度が、図7に示すよう 50

に、入射光強度に対して指数関数的に変化するので、その検出信号を入射光強度に対応した電圧値に補正するために設けられており、図6(b)に示すように、帰還経路にトランジスタTR1が接続されたオペアンプOP1により構成されている。

12

【0054】次に、光ガイド9は、例えば発光波長が660nm, 光強度が700mcdの一対の高輝度発光ダイオード(例えば東芝(株)製発光ダイオード「商品名: TLRA190P)からなり、図2に示すように、出射したガイド光がバーコードラベル2上でバーコード1の読取り可能範囲の両端で円状の光スポット9aを形成するように、光軸を調整して絞り5の両側に固定されている。即ち、この光ガイド9は、アンタッチ読みを行う際の読取り有効範囲を光スポット9aにて知らせるために設けられている。

【0055】次に、電子回路基板89には、図8に示す ように、ラインセンサ7から出力される微弱なアナログ 映像信号を増幅する増幅回路22、増幅回路22にて増 幅されたアナログ映像信号を、例えば浮動 2 値化法等に より2値化してデジタル信号に変換する2値化回路2 4、2値化回路24から出力されるデジタル信号の幅を カウントすることによりバーコード1のバー, スペース の幅を計測するカウント部26、カウント部26からの 出力信号に基づきバーコード1を復元(デコード)し、 そのデコード結果を外部端子28を介して外部に出力す るデコード部30、増幅回路22にて増幅されたアナロ グ映像信号を、ラインセンサ7の1走査周期毎に積分し てその平均受光光量を検出する積分回路32、積分回路 32からの平均受光光量を表す検出信号をデジタルデー タに変換するA/D変換器34、波長検出器8からの検 出信号をデジタルデータに変換するA/D変換器36、 A/D変換器36のA/D変換結果に基づきバーコード 1の読取り状態がタッチ読みであるかアンタッチ読みで あるかを判定する判定部38、光源3および光ガイド9 の発光量とラインセンサ7のシャッタスピードとを制御 する光源制御部40と、判定部38の判定結果およびA /D変換器34のA/D変換結果に基づき光源制御部4 0の制御量を演算する演算部42、トリガスイッチ18 の操作によってバーコード1の読取り指令が入力される と上記各部を起動してデコード部30からデコード結果 を出力させると共に、デコード結果に異常がある場合に は、警告装置16を動作させて使用者にその旨を報知す る操作制御部44、上記各部に電源供給を行う電源回路 46等が組み込まれている。

【0056】そして、カウント部26,デコード部30,A/D変換器34,A/D変換器36,判定部38,光源制御部40,演算部42および操作制御部44は、CPU,ROM,RAM等を中心とするマイクロコンピュータ(ECU)の一処理として実現される。なお、このマイクロコンピュータ(ECU)には、例えば

三菱電機(株)製のA/Dコンバータ内蔵型ワンチップマイクロコンピュータ「商品名:M37700」等が使用できる。

【0057】また、上記2つのA/D変換器34,36 は、実際には、マイクロコンピュータに内蔵された一つ のA/D変換器を時分割して使用することによって実現 される。なお本実施例において、このA/D変換器は、 8~12bitの分解能があれば良い。

【0058】次に、積分回路32は、増幅回路22にて増幅されたアナログ映像信号をラインセンサ7の1走査 10周期に積分してその平均受光光量を検出するためのものであるため、ラインセンサ7の1走査周期時間に対応した時定数を持った、抵抗RとコンデンサCからなるLPF(ローパスフィルタ)が使用されている。なお、この積分回路32には、オペアンプを使用したアクティブフィルタ等を使用することもできる。

【0059】また一般に、マイクロコンピュータに内蔵されるA/D変換器は、その分解能からいっても逐次比較型のA/D変換器であることが多く、こうした逐次比較型のA/D変換器は、その変換動作中に入力レベルが20変動した場合に変換データを保証できないため、高速に走査されるラインセンサ7の平均受光光量をA/D変換するA/D変換器34の前段には、サンプルホールド回路として知られる電圧保持回路を設けることが多いが、本実施例ではA/D変換器34の前段にこうしたサンプルホールド回路を設けていない。

【0060】これは、A/D変換器34には、積分回路32がバーコードによって変動する信号を平均化しているため、サンプルホールド回路と似たような作用を行っており、A/D変換器34の変換速度が十分に速いもの30であればサンプルホールド回路を必要としないからである。従って、A/D変換器34の変換速度が遅い場合には、その前段にサンプルホールド回路を設ける必要がある

【0061】次に、上記のようにマイクロコンピュータ (ECU) の一処理として実現される上記各部の動作に ついて、図9乃至図15を用いて説明する。まず図9 は、マイクロコンピュータ (ECU) にてバーコード1 の読み取りのために繰返し実行されるメインルーチンを 表すフローチャートである。

【0062】図9に示すように、このメインルーチンが 起動されると、まずステップ110にて、トリガスイッ チ18がオンされたか否か、つまり使用者がバーコード 1の読取り指令を入力したか否かを判断し、トリガスイッチ18がオンされるまでの間はこのステップ110を 繰返し実行する。

【0063】そして、ステップ110において、トリガスイッチ18がオンされたと判断されると、続くステップ120に移行して、光源3および光ガイド9の発光量(光源光量)とラインセンサ7のシャッタスピードとを 50

共に最大値に設定する初期化の処理を行い、続くステップ130にて、光源3を上記設定した発光量にて点滅させる処理を行い、続くステップ140にて、光源3の消灯時に光ガイド9を上記設定した発光量にてフラッシュさせる処理を行う。なお、このように光源3および光ガイド9を交互に発光させるのは、消費電力を抑えるためである。

14

【0064】こうして光源3および光ガイド9の交互点滅駆動を開始すると、続くステップ150に移行して、バーコード1の読取り状態を判定して当該装置の動作モードを自動設定するモード設定処理を行い、続くステップ160にて、その設定された動作モードに従い、光源3、光ガイド9の発光量およびラインセンサ7のシャッタスピードを制御する光量制御処理を行う。そして、最後に、ステップ170にて、2値化回路24からの出力信号に基づき、バーコード1をデコードするデコード処理を行い、再度ステップ110に移行する。

【0065】次に、図10は、ステップ150で実行されるモード設定処理を表すフローチャートである。図10に示すように、このモード設定処理では、まずステップ210にて、波長検出器8からA/D変換器36を介して入力されるバーコードラベル2からの反射光の各色(赤、緑、青)のレベルを表す色データ(Rデータ、Gデータ、Bデータ)を入力する。そして、続くステップ220にて、この入力した各色データを用いて、光源3の照射光に対応したRデータに対するGデータおよびBデータの比率X1、X2(=G/R、B/R)を算出し、続くステップ230にて、この算出結果X1、X2を、補正係数を乗じることにより補正する。

【0066】つまり、波長検出器8は、図7に示した分 光感度特性図からも判るように、各波長に対する相対感 度にばらつきがあるため、このステップ230におい て、上記求めた比率X1, X2に予め設定された補正係 数(例えば、比率X1 に対して0.25)を乗じるこ とにより、R(赤)の入射光強度に対するG(緑), B (青)の入射光強度の比率X1, X2 を正確に求め る。

【0067】こうしてステップ230にて上記各比率X1,X2が補正されると、今度は、これら各比率X1,X2のいずれかが予め設定された所定値(例えば0.3)未満であるか否かを判断する。そして、このステップ240にて、肯定判断された場合には、反射光は外光の影響を受けていないと判断して、続くステップ250に移行し、上記ステップ210で入力したRデータから、反射光のR(赤)レベルは大きいか否かを判断する。

【0068】そして、このステップ250にて、R (赤)レベルが大きいと判断されると、バーコード1の 読み取りがタッチ読みにより行われていると判断して、 ステップ260にて、動作モードとしてTモードを設定

して当該処理を終了する。

【0069】また逆に、ステップ250にて、R(赤) レベルが小さいと判断されると、バーコード1の読み取りが、外光の影響を受けない薄暗い場所で、アンタッチ 読みにより行われていると判断して、ステップ270にて、動作モードとしてSモードを設定し、当該処理を終了する。

【0070】一方、ステップ240にて、否定判断された場合には、反射光に外光が含まれており、バーコード1の読み取りが外光の影響を受ける明るい場所でアンタッチ読みにより行われていると判断して、ステップ280にて、動作モードとしてNモードを設定し、当該処理を終了する。

【0071】次に図11は、上記モード設定処理にて、 Tモードが設定された場合に実行される光量制御処理を 表している。図11に示すように、この処理が開始され ると、まずステップ310にて、Tモードではバーコード1の読み取りがタッチ読みにより行われており、光ガイド9による読取り可能範囲の案内は不要であるため、 光ガイド9を消灯させる。次にステップ320では、タ20 ッチ読みの場合、反射光強度は略一定であるため、ラインセンサ7のシャッタスピードを予め設定された標準値に設定する。そして、続くステップ330では、上記ステップ310にて光ガイド9を消灯しており、消費電力抑制のために光源3を点滅させる必要はないので、光源3を予め設定された標準の発光量にて連続発光させ、当該処理を終了する。

【0072】また次に図12は、上記モード設定処理にて、Sモードが設定された場合に実行される光量制御処理を表している。図12に示すように、この処理が開始30されると、まずステップ410にて、Sモードでは薄暗い場所でのアンタッチ読みが行われているため、光ガイド9をフラッシュさせ、続くステップ420にて、ラインセンサ7にて光電変換される光量を増大させるためにシャッタスピードを低下させて、続くステップ430にて光源3を点滅させる。

【0073】なお、このようにSモードでは、光ガイド9と光源3とを交互に動作させるので、ステップ430にて、光源3を点滅する際には、その点灯タイミングをラインセンサ7の走査タイミングと同期させることによ40り、ラインセンサ7において光源3から光を照射した際にバーコードラベル2から反射してくる反射光を電気信号に変換できるようにしている。

【0074】また本実施例では、上記ステップ410の 処理によって、光ガイド9をフラッシュさせているが、 Sモードの場合、薄暗い場所でバーコード1の読み取り を行っているため、光源3による光量のみでも、光ガイ ド9としての機能を果たすことができる。従って、Sモ ードの場合には、光ガイド9は必ずしもフラッシュさせ る必要はなく、上記ステップ410の処理を実行しない 50 ようにしてもよい。

【0075】一方図13は、上記モード設定処理にて、Nモードが設定された場合に実行される光量制御処理を表している。図13に示すように、この処理が開始されると、まずステップ510にて、上記ステップ130およびステップ140の処理と同様に、光源3および光ガイド9を交互に点滅させる。なお、このステップ510では、光源3は最小の発光量にて点滅させ、光ガイド9は最大の発光量にてフラッシュさせる。また光源3の点灯タイミングは、ラインセンサ7の走査タイミングと同期させている。

【0076】次にステップ520では、積分回路32からA/D変換器34を介して、ラインセンサ7の平均受光光量を入力し、続くステップ530では、ステップ520で入力したラインセンサ7の平均受光光量が所定値以上か否かを判断し、所定値以上であれば当該処理を終了する。なお、この処理が開始された直後には、光源3の発光量は最小に設定され、しかもラインセンサ7のシャッタスピードは最大に設定されているため、ラインセンサ7が飽和することはなく、ステップ530では必ず否定判断される。

【0077】次にステップ530にて、ラインセンサ7の平均受光光量が所定値以上でないと判断された場合には、ステップ540にて、ラインセンサ7のシャッタスピードは所定値以下となっているか否かを判断する。そしてシャッタスピードが所定値以下になっていなければ、ステップ550にて、シャッタスピードを所定速度だけ減少させ、再度ステップ520に移行する。また、逆にシャッタスピードが所定値以下であれば、ステップ560にて、光源3の発光量を所定量だけ増加させて、再度ステップ520に移行する。

【0078】すなわち、Nモードでは、バーコード1の 読み取りが、反射光に外光が含まれる明るい場所で、ア ンタッチ読みにより行われているため、反射光強度の幅 (ダイナミックレンジ)が非常に大きい。このため、ラ インセンサ7にてバーコード1を正確に読み取るには、 ラインセンサ7のシャッタスピードと光源3の発光量と を連動させて、ラインセンサ7が光電変換する受光光量 を最適値に制御する必要がある。

【0079】そして、積分回路32から出力されるラインセンサ7の受光光量を表す検出信号(電圧)V o は、光源3の駆動電流 i x に対してその発光量がどのように変化するかを表す照射光光量関数L f (i x) と、光ガイド9の駆動電流 i g に対してその発光量がどのように変化するかを表す発光光量関数G f (i g) と、ラインセンサにおける光一信号変換定数 δ と、バーコードラベルの反射率B pcs と、外光(自然光)照度N 1 と、光の伝達損失率H と、シャッタスピード t に対する遮光関数S f (t) とから、以下の数式1 のように記述でき、

[0080]

【数1】

 $Vo = \delta \times Sf(t) \times Bpcs \times H^2(Lf(ix) + Gf(ig)) + N1$

(但し、Sf(t)は反比例、Lf(ix), Gf(i g) は正比例)

しかも本実施例では、ラインセンサ7の読み取り走査時 に光ガイド9を消灯しているので、検出信号(電圧)V oを最適値に制御するには、照射光光量関数 Lf(i x)と遮光関数Sf(t)とを制御すればよいことにな

【0081】そこで本実施例では、上記Nモードの光量 10 制御処理において、ラインセンサ7にて適切な出力を得 るために、シャッタスピードtと光源3の発光量(具体 的には駆動電流ix)を制御しているのである。

【0082】なお、図14に示す順電流-発光強度特性 から明かなように、光源3の発光量とその駆動電流 i x とは直線比例せず、指数関数的に変化するため、上記ス テップ560で光源3の発光量を制御する際には、この 照射光光量関数 L f (ix)を線形近似したマップを用 いて光源3の駆動電流ixを制御している。

【0083】また、この制御にでは、シャッタスピード 20 制御を優先的に行い、シャッタスピードが所定値以下に なった場合にのみ、光源3の発光量を増加させている が、これは、消費電力を抑えるためである。またこの場 合、シャッタスピードを最小値にしないのは、例えば照 射光量不足によりシャッタスピードを最小値にすると (つまりラインセンサにおける電荷蓄積時間を長くする と)、手の振れ等の影響を受ける可能性があり、この影 響を受けた場合、ラインセンサ7上に結像したバーコー ドの情報映像がぼけてしまい、読取り性能の低下を招く ためである。

【0084】次に、図15は、上述のステップ170で 実行されるデコード処理を表すフローチャートである。 図15に示すように、このデコード処理では、まずステ ップ610にて、2値化回路24からの出力信号をカウ ントすることにより、バーコード1のバー, スペースの 幅を計測し、その計測した幅の組み合わせからバーコー ド1の情報を復元 (デコード) するといった手順で、複 数回バーコード1をデコードする。そして、続くステッ プ620にて、そのデコード結果が所定の n 回以上一致 しているか否かを判断することにより、バーコード1を 40 正確に読み取ったか否かを判断する。

【0085】そして、このステップ620にて、バーコ ード1を正確に読み取ったと判断すると、ステップ63 0に移行して、外部端子28からそのデコード結果を表 すデータを出力して、当該処理を終了し、逆にバーコー ド1を正確に読み取ることができなかったと判断する と、ステップ640に移行して警告装置16に警告指令 を出力して、当該処理を終了する。

【0086】以上説明したように、本実施例のバーコー ド読取り装置においては、バーコード1の読取り状態を 50 ラインセンサ7が光電変換を行う受光光量を絞りによっ

判定して、動作モードを設定し、各動作モードに応じ て、ラインセンサ7が光電変換を行う受光光量が最適値 となるように、光源3、光ガイド9、およびラインセン サ7のシャッタスピードを制御している。

【0087】このため、本実施例のバーコード読取り装 置においては、読取り口14をバーコードラベル2から 離してバーコード1を読み取るタッチ読みを実現でき、 図2に示すように、読取り口14の口径Wよりも大きな 幅W1のバーコード1を読み取ることができるようにな

【0088】また、本実施例では、バーコード1のタッ チ読みを行う場合に、光ガイド9をフラッシュさせて、 バーコード1の読取り可能範囲をバーコードラベル2に 表示するため、使用者は読取り可能範囲を簡単に知るこ とができ、操作性を向上できる。

【0089】またさらに、本実施例では、ヘッド部11 の外壁を読取り可能な角度に沿って傾斜させているた め、光ガイド9が照射したガイド光が見難くなるような 極めて明るい場所で読取り作業を行う際にも、そのヘッ ド部11の照準効果によって、読取り口14を所望の位 置に配設することができる。

【0090】ここで上記実施例では、光源3に、LED チップを一列に並べたものを使用したが、例えば図16 (a) に示すように、複数のLEDチップ52を2列に 配設し、図16(b)に示すように、各列のLEDチッ プ52の光軸が異なるようにすれば、バーコードラベル 2において一方の列からの照射光が鏡面反射したとして 30 も、他方の列からの照射光によりバーコード1を読み取 ることができるようになり、読取り性能をより向上する ことができる。

【0091】なお、この場合、LEDチップ52の総数 は1列配置の場合と比較して、増やしても良いし、ある いは1列あたりのLEDチップを半減させ、全体で1列 配置の場合と同じにしても良い。また各列のLEDチッ プ52は、列毎に交互に発光させてもよく、同時に発光 させてもよいが、鏡面反射の影響をより確実に防ぐに は、列毎に交互に発光させることが望ましく、またデコ ード処理も、各列毎に行った方がよい。

【0092】また、次に、上記実施例においては、絞り 5に、スリット幅が固定されたものを使用したが、例え ば図17に示すように、2枚の絞り板55a, 55b と、これら各絞り板55a, 55bをスリット56の幅 方向に移動させる圧電素子57a, 57bと、これら各 部を一体的に収納するホルダ58とから構成された可変 絞り59を使用することもできる。

【0093】この場合、圧電素子57a, 57bを駆動 することにより、スリット56の幅を可変できるので、

て制御でき、バーコード1の読取り性能をより向上することが可能になる。つまり、上記実施例では、タッチ読みを行うために焦点深度を深くとる必要から、絞り量を大きくしたが、これは受光光量を低下させることになり、薄暗い場所でタッチ読みを行うSモードの場合に、ラインセンサ7に充分な光量が確保できない場合が生じる。しかし、こうした可変絞り59を使用すれば、絞りを解放方向に制御することにより、光量を確保することができるため、バーコード1の読取り性能をより向上できるのである。

19

【0094】また次に、上記実施例では、光ガイド9に 光源3と同様の波長の光を照射するものを使用している ため、例えば消費電力を犠牲にして、光源3と光ガイド 9とを同時に点灯するようにすれば、光スポット9aに より、バーコード1の両端を照射することができるた め、レンズ6のCOS⁴ 法則によるバーコード1両側の 受光量低下を補うことができる。

【0095】また、こうしたレンズ6のCOS4 法則による影響から逃れるために、例えば図18に示すように、読取り口14から絞り5に到達する反射光の光路上 20に、COS4 法則に従うような遮光特性の遮光板60を配設するようにしてもよい。この場合、ラインセンサ7に入射する光量が、その中心から端に行くに従って大きくなるように遮光されるため、ラインセンサ7に一定した反射光を入射させることができるようになる。

【0096】また次に、光源3に高輝度LEDを使用し、その発光形状を図19(a)に示すようにライン状に設定すれば、光ガイド9と光源3とを兼用させることができる。この場合、図19(b)に示すように、照射光はライン状になるため、使用者はその形状からバーコード1の読取り可能範囲を知ることができ、しかもハウジング20内部に光源3と光ガイド9とを収納する必要がないので、組み付け作業や配線を簡素化することができる。

【0097】またさらに、上記実施例では、光ガイド9に、光スポット9aが円状になる高輝度LEDを使用したが、例えば、図20(a)に示すように、ビーム形状が三角形の高輝度LED62を使用すれば、図20

(b) に示すように、バーコード1の読取り可能範囲をより判り易く案内できる。なお、こうした高輝度LEDとしては、文献「微小発光径を有する660nm GaInP高出力LED, 応用物理学会, 平4春29-P-R-14予稿集」に開示されている、OMRON(株)製の高輝度LEDを使用すればよい。

【0098】また、このようにバーコード1の読取り可能範囲をより判り易く案内するために、光ガイド9が照射するガイド光の波長を、光源3の照射光の波長と異なる値(例えば緑色の波長)に設定してもよい。

【0099】また、さらに、上記実施例では、一対の光 ガイド9を絞り5の左右に設け、左側の光ガイド9から 50 は読取り可能範囲の左端を、右側の光ガイド9からは読取り可能範囲の右端を各々照射するように光軸を調整したが、例えば図21に示すように、左側の光ガイド9からは読取り可能範囲の右端を、右側の光ガイド9からは読取り可能範囲の左端を各々照射するように、各光ガイド9の光軸を交差させるようにしてもよい。

【0100】また、上記実施例では、タッチ読みとアンタッチ読みとを識別するために、波長検出器8としていわゆるカラーセンサを使用したが、例えば図22に示す10ように、ラインセンサ7の端に、R(赤),G(緑),B(青)に対応したカラーフィルタ64を装着し、ラインセンサ7の端の受光素子を波長検出器8として使用すれば、カラーセンサを特別に設けることなく、波長検出を行うことができる。なおこの場合、ラインセンサ7の分光特性が大きく影響するが、カラーフィルタ64の特性を合わせ込むことにより使用できる。またラインセンサ7の端部の画素自体に、波長検出器8と同様の特性を持たせてもよい。

【0101】そして、ラインセンサ7からは、同センサを駆動するクロックジェネレータの信号に対応してシリアルのアナログ信号として出力されるため、上記のようにカラーフィルタ等を用いて、ラインセンサ7自体に波長検出器8としての機能を持たせた場合には、例えば図23に示すように、そのクロックジェネレータ66からの信号に基づきラインセンサ7の走査タイミング制御用の信号を発生するタイミング生成回路67から、対応する画素の出力タイミング信号を取り出し、そのタイミング信号で増幅回路22からの出力信号をサンプルホールドするサンプルホールド回路68を設け、このサンプルホールド回路68にてホールドした各色に対応する信号をA/D変換器36に入力するようにすればよい。

【0102】一方、タッチ読みとアンタッチ読みとを識別するためには、必ずしも反射光の波長を検出する必要はなく、例えばモード設定処理を図24に示すように実行することによっても実現できる。

【0103】すなわち、図24に示すように、まず光源3をオフして(ステップ710)、積分回路32からラインセンサ7の平均受光光量VOFを読み込み(ステップ720)、次に光源3をオンして(ステップ730)、積分回路32からラインセンサ7の平均受光光量VONを読み込む(ステップ740)。そして次に、上記各平均受光光量VON, VOFの比率Bを算出し(ステップ750)、その比率Bが基準値REF1より大きいか否かを判断して(ステップ760)、その比率Bが基準値REF1より大きければ、動作モードとしてTモードを設定する(ステップ770)。

【0104】また次に、上記比率Bが基準値REF1以下であれば、光源3のオフ時(オン時でもよい)の平均受光光量VOFが基準値REF2を越えているか否かを判断し(ステップ780)、平均受光光量VOFが基準値R

EF2を越えていなければ、動作モードとしてSモードを設定し(ステップ790)、平均受光光量VOFが基準値REF2を越えていれば、動作モードとしてNモードを設定する(ステップ800)のである。

【0105】つまり、タッチ読みの場合には、光源3のオフ時の平均受光光量は略0となるため、比率Bは非常に大きく(略無限大)なるが、アンタッチ読みの場合には、薄暗くても外光の影響を受けるため、比率Bはタッチ読みの場合に比べて必ず小さくなる。また、周囲が薄暗い場合のタッチ読みと、周囲が明るい場合のタッチ読みとは、平均受光光量VOF(VONでもよい)の大きさで判定できる。従って、上記のように比率Bと平均受光光量VOF(又はVON)とからでも、タッチ読みとアンタッチ読み、および外光の強さを判定でき、T, S, Nの各動作モードを設定することができるのである。

【0106】また上記実施例では、図3に示すように、ヘッド部11および保持部12の周囲には、ゴム、ナイロン等の柔らかい部材からなる衝撃吸収部98a、98b、98c、98d、98e、98f、98gが設けられており、バーコード読取り装置を床面等に落としてしまった場合でも、当該装置に与える衝撃を吸収できるよう、当該装置の形状からして最も早く床面に衝突しそうな部位に設けられている。

【0107】なお、当該装置底面に設けられたベルト99は、操作パネル19を操作する際に操作者の手に当該装置を保持させるためのものであり、衝撃吸収部98a、98bは、上記のような衝撃吸収部材として用いられるばかりでなく、このベルト99を当該装置に取り付けるためのリングとしても用いられ、この共用化により部品点数を削減している。

【0108】さらに、絞り5の縦長スリット5aの形状としては、上述した図4に示すもの以外に、例えば図33に示すように、スリットの先端が光の出射側にのみ切り欠かれた切り欠き部を有する縦長スリット5a′であってもよい。

【0109】次に、光ガイド9の点消灯制御について説明する。上記実施例では、Tモード、Nモードの光量制御の中で光ガイド9の点消灯を制御する点について述べたが、上記に限らず、光ガイドの点灯、消灯を以下のようにして行うようにしてもよい。

【0110】すなわち、第1例として、例えば図27に示すように、ステップ1000においてトリガスイッチ18がオンされたか否かを判定し、トリガスイッチ18がオンされているならばステップ1010により光ガイド9を点灯し、オフされたならばステップ1020により光ガイド9を消灯する。

【0111】このようにトリガスイッチ18のオン,オフタイミングに同期して光ガイド9を点灯,消灯するようにしてもよい。また、第2例として、例えば図28に示すように、ステップ1100においてトリガスイッチ

22

18がオンされたか否かを、トリガスイッチ18がオンされるまで繰り返し判定する。そして、トリガスイッチ18がオンされると、ステップ1110において光ガイド9を点滅駆動する。そして、ステップ1120では、ECU内のデコード部30においてデコードが終了したか否かを判定し、終了していればステップ1140で光ガイド9を消灯して、ステップ1100に戻り、トリガスイッチ18がオンされるまで待機状態となる。

【0112】しかし、ステップ1120でデコード処理中であると判定された場合には、ステップ1130に進んで、デコード処理時間が所定の必要時間以上(タイムアウト)であるか否かを判定する。この判定の結果、所定の必要時間内であればステップ1120に進んで再度上述した判定を行い、所定の必要時間以上経過していれば、デコード失敗ということになるため、ステップ1140に進んで光ガイド9を消灯させてステップ1200に戻り、トリガスイッチ18がオンされるまで待機状態となる。

【0113】このようにバーコード1のデコードタイミ ングに同期して光ガイド9を点灯、消灯するようにして もよい。この第2例の変形例として、例えば図29に示すように、ステップ1200においてトリガスイッチ1 8がオンされたか否かを、トリガスイッチ18がオンされると、ステップ1210において光ガイド 9を点灯する。続いてステップ1210において光ガイド 9を点灯する。続いてステップ1220では、デコード 処理を開始させ、ステップ1230では、ECU内のデコード部30においてデコードが終了したか否かを判定し、終了していればステップ1240で光ガイド9を消 灯して、ステップ1200に戻り、トリガスイッチ18がオンされるまで待機状態となる。

【0114】しかし、ステップ1230でデコード処理中であると判定された場合には、ステップ1250に進んで、デコード処理時間が所定の必要時間以上(タイムアウト)であるか否かを判定する。この判定の結果、所定の必要時間内であればステップ1220に進んで再度上述した判定を行い、所定の必要時間以上経過していれば、デコード失敗ということになるため、ステップ1260に進んで光ガイド9を消灯させる。そして、ステップ1270で再度デコード処理を行わせる。

【0115】この変形例では、バーコード1のデコードタイミングに同期して光ガイド9を点灯、消灯すると共に、光ガイド9を点灯させ、その反射光がノイズとなってデコード処理に支障をきたす場合を考慮して、光ガイド9点灯時にデコード処理が失敗した場合には、光ガイド9を消灯させた上で、再度デコード処理を行うようにしたものである。

【0116】さらに、第3例として、例えば図30に示すように、ステップ1300においてトリガスイッチ18がオンされたか否かを、トリガスイッチ18がオンさ

れるまで繰り返し判定する。そして、トリガスイッチ18がオンされると、ステップ1310において光ガイド9を点灯する。

【0117】続いてステップ1320では、トリガスイッチ18がオフされたか否かを、トリガスイッチ18がオフされるまで繰り返し判定し、さらにステップ1330では、トリガスイッチ18がオンされたか否かを、トリガスイッチ18がオンされるまで繰り返し判定する。以上述べた判定の結果、ステップ1340へ進むと、ステップ1340では、光ガイド9を消灯し、その後ステ 10ップ1350においてデコード処理が行われる。

【0118】このように、トリガスイッチ18を1回オンして光ガイド9を点灯させ、トリガスイッチをさらにもう1回オンして光ガイド9を消灯させるという、いわばトリガスイッチ18のオンタイミングに同期して光ガイド9を点灯、消灯するようにしてもよい。

【0119】また、第4例として、例えば図31に示すように、ステップ1400においてトリガスイッチ18がオンされたか否かを、トリガスイッチ18がオンされるまで繰り返し判定する。そして、トリガスイッチ18がオンされると、ステップ1410において光源3を点灯する。続いてステップ1420では、バーを検出したか否かを判定し、バーを検出していると判定された場合には、ステップ1430に進んで読取り作動を実行する。

【0120】しかし、ステップ1420でバーを検出していないと判定された場合には、ステップ1440に進んで、トリガスイッチ18のオン、オフ状態を判定する。この判定の結果、ステップ1400と同様、以前、トリガスイッチ18がオンされ続けた状態、つまりは読 30取り作動を引き続き行わせようとしている場合には、ステップ1450に進んで、デコード処理時間が所定の必要時間以上(タイムアウト)であるか否かを判定する。この判定の結果、所定の必要時間内であればステップ1420に戻って再度上述した判定を行い、所定の必要時間以上経過していれば、デコード失敗ということになるため、ステップ1460に進んで光源3をフラッシュさせる。

【0121】続くステップ1470では、再度バーを検出したか否かを判定し、バーを検出していると判定され 40 た場合には、ステップ1430に戻って読取り作動を実行する。しかし、ステップ1470でバーを検出していないと判定された場合には、ステップ1480に進んでトリガスイッチ18のオン、オフ状態を判定する。この判定の結果、以前、トリガスイッチ18がオンされ続けた状態、つまりは読取り作動を引き続き行わせようとしている場合には、ステップ1490に進んで、デコード処理時間が所定の必要時間以上(タイムアウト)であるか否かを判定する。

【0122】この判定の結果、所定の必要時間内であれ 50

ばステップ1470に戻って再度上述した判定を行い、 所定の必要時間以上経過していれば、デコード失敗とい うことになるため、ステップ1500に進んで光源3を

24

消灯して、ステップ1400に戻り、トリガスイッチ1 8がオンされるまで待機状態となる。

【0123】また、ステップ1440,1480のトリガスイッチ18のオン、オフ状態判定の結果、トリガスイッチ18がオフされた状態、つまりは読取り作動を一旦止めて読取り可能範囲内にバーコード1がはいっているかを確認しようとしている場合には、ステップ1510に進んで光源3を消灯させる。そして、ステップ1520で光ガイド9を点灯し、続くステップ1530でトリガスイッチ18のオン、オフ状態を判定する。

【0124】この判定の結果、トリガスイッチ18がオンの場合、つまりは光ガイド9によってバーコード1が 読取り可能範囲にあることを確認し、読取り作動を再度 行わせようとする場合には、ステップ1410に戻って上述した処理を再度行う。

【0125】しかし、ステップ1530の判定の結果、以前トリガスイッチ18がオフ状態である場合には、光ガイド9の点灯時間が所定時間以上であるか否かを判定し、所定時間内であればステップ1520に戻って上述した処理を再度行い、所定時間以上を経過している場合には、ステップ1550に進んで光ガイド9を消灯させる。

【0126】このように、バーコード1のデコード処理に失敗した場合には、光源3の点灯方法を変化させて再度デコード処理を行わせるばかりでなく、デコード失敗の結果、バーコード1が読取り可能範囲内に入っていないかもしれないという操作者の危惧を解消すべく、トリガスイッチ18をオフすることにより光ガイド9を点灯させ、的確に読取り可能範囲内に照準を定めた上で再度デコード処理を実行させることができる。

【0127】次に、ラインセンサ7の露光時間制御について説明する。図32に示すように、ステップ1600においてラインセンサ7からの出力が過大であるか否かを判定し、過大であると判定された場合には、ステップ1610に進んで露光時間を1/n倍に短縮して、再度ステップ1600に戻る。しかし、ステップ1600においてラインセンサからの出力は過大でないと判定された場合には、ステップ1620に進んで、ラインセンサ7の出力が過小であるか否かを判定する。

【0128】この判定の結果、ラインセンサ7の出力が 過小であると判定された場合には、ステップ1630に 進んで露光時間をm倍に延長して、再度ステップ160 0に戻る。しかし、ステップ1620においてラインセ ンサからの出力は過小でないと判定された場合には、ス テップ1640に進んで、露光時間を±sにて微調整す る。

【図面の簡単な説明】

【図1】本発明の構成を例示するブロック図である。

【図2】実施例のバーコード読取り装置の全体構成を表 す一部破断斜視図である。

【図3】実施例のバーコード読取り装置の外観図であ る。

【図4】実施例の絞りの構成を表す説明図である。

【図5】 実施例の絞りによるバーコードの読取り性能を 説明する説明図である。

【図6】実施例の波長検出器の構成を表す電気回路図で ある。

【図7】実施例の波長検出器に設けられている各フォト ダイオードによる分光感度特性図である。

【図8】 実施例の電子回路基板に組み込まれた信号処理 用の回路構成を表すブロック図である。

【図9】マイクロコンピュータにてバーコード読み取り のために実行されるメインルーチンを表すフローチャー トである。

【図10】メインルーチンのステップ150にて実行さ れるモード設定処理を表すフローチャートである。

【図11】モード設定処理にてTモードが設定された場 20 合に実行される光量制御処理を表すフローチャートであ

【図12】モード設定処理にてSモードが設定された場 合に実行される光量制御処理を表すフローチャートであ

【図13】モード設定処理にてNモードが設定された場 合に実行される光量制御処理を表すフローチャートであ

【図14】光源の発光量(発光強度)とその駆動電流と の関係を表す順電流-発光強度特性図である。

【図15】メインルーチンのステップ170にて実行さ れるデコード処理を表すフローチャートである。

【図16】光源の他の構成例およびその作用を説明する 説明図である。

【図17】絞りの他の構成例を表す概略構成図である。

【図18】バーコードからの反射光の光路上に遮光板を 設けた場合の構成を表す概略構成図である。

【図19】 光源に光ガイドとしての機能を持たせた場合 の構成を表す概略構成図である。

【図20】光ガイドによる光スポット形状を三角形にす 40 る場合の光ガイドの構成およびその作用を説明する説明

図である。

【図21】光ガイドからのガイド光を互いに交差させる 場合の光ガイドの配置状態を表す概略構成図である。

26

【図22】ラインセンサに波長検出器としての機能を持 たせる場合のラインセンサの構成例を表す説明図であ

【図23】ラインセンサに波長検出器としての機能を持 たせる場合の回路構成を表すブロック図である。

【図24】反射光の波長を検出することなくバーコード 10 の読取り状態を判定するためのモード設定処理を表すフ ローチャートである。

【図25】従来のバーコード読取り装置の全体構成を表 す一部破断斜視図である。

【図26】従来の電子回路基板に組み込まれた信号処理 用の回路構成を表すブロック図である。

【図27】光ガイドの点消灯制御の第1例を表すフロー チャートである。

【図28】光ガイドの点消灯制御の第2例を表すフロー チャートである。

【図29】 光ガイドの点消灯制御の第2例の変形例を表 すフローチャートである。

【図30】光ガイドの点消灯制御の第3例を表すフロー チャートである。

【図31】光ガイドの点消灯制御の第4例を表すフロー チャートである。

【図32】 ラインセンサの露光時間制御を表すフローチ ヤートである。

【図33】上記絞りの他の構成を表す説明図である。 【符号の説明】

30 3 光源

4 ミラー

5 絞り

5a スリット

5b ケーシング

6 レンズ

7 ラインセンサ

9 光ガイド

18 トリガスイッチ

30 デコード部

40 光源制御部

DR, DG, DB…フォトダイオード

【図1】

【図2】

【図17】

【図4】

【図7】

【図3】

【図6】

【図5】

【図9】

【図8】

【図33】

【図11】

【図12】

【図10】

【図16】

【図14】

【図15】

【図13】

【図18】 【図22】

【図19】

【図20】

【図30】

【図21】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

【図32】

【図29】

【図31】

フロントページの続き

(72) 発明者 渡辺 武

愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 寺前 浩二

愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内