Tidy Time Series & Forecasting in R

2. Time series graphics

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Quarterly Australian Beer Production

```
beer <- aus_production ▷
  select(Quarter, Beer) ▷
  filter(year(Quarter) ≥ 1992)
beer ▷ autoplot(Beer)</pre>
```


Quarterly Australian Beer Production

vic_elec

```
# A tsibble: 52.608 x 5 [30m] <Australia/Melbourne>
###
      Time
                          Demand Temperature Date
                                                        Holiday
###
      <dttm>
                           <dbl>
                                       <dbl> <date>
                                                        <lql>
    1 2012-01-01 00:00:00
                           4383.
                                        21.4 2012-01-01 TRUE
##
   2 2012-01-01 00:30:00
                           4263.
                                        21.0 2012-01-01 TRUE
###
###
   3 2012-01-01 01:00:00
                           4049.
                                        20.7 2012-01-01 TRUE
##
   4 2012-01-01 01:30:00
                           3878.
                                        20.6 2012-01-01 TRUE
   5 2012-01-01 02:00:00
                                        20.4 2012-01-01 TRUE
###
                           4036.
###
   6 2012-01-01 02:30:00
                           3866
                                        20.2 2012-01-01 TRUE
###
   7 2012-01-01 03:00:00
                           3694
                                        20.1 2012-01-01 TRUE
   8 2012-01-01 03:30:00
                                        19.6 2012-01-01 TRUE
###
                           3562.
   9 2012-01-01 04:00:00
                                        19.1 2012-01-01 TRUE
###
                           3433.
  10 2012-01-01 04:30:00
                           3359.
                                        19.0 2012-01-01 TRUE
  # ... with 52.598 more rows
```

Q2

Q1

Q3

Time

Q4

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

Australian holidays

4 ACT

5 ACT

6 ACT

7 ACT

###

##

###

###

###

1998 04 170.

1999 Q1 108.

1999 Q2 125.

1999 Q3 178.

```
holidays <- tourism ▷
 filter(Purpose = "Holiday") ▷
 group_by(State) ▷
  summarise(Trips = sum(Trips))
## # A tsibble: 640 x 3 [10]
## # Key:
              State [8]
   State Quarter Trips
###
   <chr> <atr> <dbl>
###
###
   1 ACT 1998 Q1 196.
   2 ACT 1998 Q2 127.
###
   3 ACT 1998 Q3 111.
##
```

13 8 ACT 1999 04 218. ## 9 ACT 2000 01 158

Australian holidays

```
holidays ▷ autoplot(Trips) +
ylab("thousands of trips") + xlab("Year") +
ggtitle("Australian domestic holiday nights")
```


Seasonal plots

```
holidays ▷ gg_season(Trips) +
ylab("thousands of trips") +
ggtitle("Australian domestic holiday nights")
```


Seasonal subseries plots

```
holidays ▷

gg_subseries(Trips) + ylab("thousands of trips") +

ggtitle("Australian domestic holiday nights")
```


Calendar plots

```
library(sugrrants)
vic elec ▷
 filter(year(Date) = 2014) ▷
 mutate(Hour = hour(Time)) ▷
 frame_calendar(x = Hour, y = Demand, date = Date, nrow = 4) >
 qqplot(aes(x = .Hour, y = .Demand, qroup = Date)) +
 geom line() \rightarrow p1
prettifv(p1.
 size = 3.
 label.padding = unit(0.15, "lines")
```

- frame_calendar() makes a compact calendar plot
- facet_calendar() provides an easier ggplot2 integration.

Calendar plots

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 3

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- tourism ▷
filter(Region = "Snowy Mountains")</pre>
```

- Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?
- Produce a calendar plot for the pedestrian data from one location and one year.

Outline

- 1 Seasonal plots
- 2 Lab Session
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session

Trend pattern exists when there is a long-term increase or decrease in the data.

Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
aus_production ▷
filter(year(Quarter) ≥ 1980) ▷
autoplot(Electricity) + ylab("GWh") +
ggtitle("Australian electricity production")
```



```
aus_production ▷
  autoplot(Bricks) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
```



```
us_employment ▷
filter(Title = "Retail Trade", year(Month) ≥ 1980) ▷
autoplot(Employed / 1e3) +
ggtitle("Retail employment, USA") + ylab("Million people")
```



```
gafa_stock ▷
  filter(Symbol = "AMZN", year(Date) ≥ 2018) ▷
  autoplot(Close) +
  ggtitle("Amazon closing stock price") +
  xlab("Day") + ylab("$")
```



```
pelt D
  autoplot(Lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```


Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Example: Beer production

```
new_production <- aus_production ▷
  filter(year(Quarter) ≥ 1992)
new_production</pre>
```

```
# A tsibble: 74 x 7 [10]
      Ouarter Beer Tobacco Bricks Cement Electricity
##
                                                             Gas
                        <dbl>
                               <dbl>
                                                    <dbl> <dbl>
##
        <qtr> <dbl>
                                       <dbl>
##
    1 1992 01
                 443
                         5777
                                  383
                                        1289
                                                    38332
                                                             117
    2 1992 Q2
                 410
                         5853
                                  404
                                        1501
                                                    39774
                                                             151
##
    3 1992 Q3
                         6416
                                  446
                                        1539
                                                             175
###
                 420
                                                    42246
##
    4 1992 04
                 532
                         5825
                                  420
                                        1568
                                                    38498
                                                             129
    5 1993 Q1
                         5724
                                        1450
##
                 433
                                  394
                                                    39460
                                                             116
##
    6 1993 02
                 421
                         6036
                                  462
                                        1668
                                                    41356
                                                             149
    7 1993 Q3
                 410
                         6570
                                  475
                                        1648
                                                    42949
                                                             163
##
    8 1993 04
                         5675
                                  443
                                        1863
                                                    40974
                                                             138
##
                 512
```

Example: Beer production

new_production ▷ gg_lag(Beer)

Example: Beer production

```
new_production ▷ gg_lag(Beer, geom = "point")
```


Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $ightharpoonup r_1 = Correlation(y_t, y_{t-1})$
 - $ightharpoonup r_2 = Correlation(y_t, y_{t-2})$
 - $ightharpoonup r_3 = Correlation(y_t, y_{t-3})$
 - etc.
- If there is **seasonality**, the ACF at the seasonal lag (e.g., 12 for monthly data) will be **large and positive**.

Autocorrelation

Results for first 9 lags for beer data:

```
new production \triangleright ACF(Beer, lag max = 9)
## # A tsibble: 9 x 2 [10]
       lag acf
##
     <lag> <dbl>
###
     10 - 0.102
## 1
## 2 20 -0.657
## 3 30 -0.0603
## 4
        40 0.869
## 5
        50 -0.0892
## 6
        60 -0.635
## 7
        70 -0.0542
```

Autocorrelation

Results for first 9 lags for beer data:

ACF

Australian holidays

holidays ▷ ACF(Trips)

```
# A tsibble: 152 x 3 [10]
## # Key:
               State [8]
##
     State
            lag
                 acf
   <chr> <lag> <dbl>
###
###
   1 ACT
              10 0.0877
   2 ACT
              20 0.252
##
   3 ACT
         30 -0.0496
              40 0.300
###
   4 ACT
###
   5 ACT
              50 -0.0741
   6 ACT
              60 0.269
##
   7 ACT
              70 -0.00504
###
   8 ACT
              80 0.236
   9 ACT
              90 -0.0953
###
## 10 ACT
             100 0.0750
  # ... with 142 more rows
```

Australian holidays

```
holidays ▷
ACF(Trips) ▷
autoplot()
```


Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

US retail trade employment

```
retail <- us_employment ▷
  filter(Title = "Retail Trade", year(Month) ≥ 1980)
retail ▷ autoplot(Employed)</pre>
```


US retail trade employment

Google stock price

```
google 2015 <- gafa stock ▷
 filter(Symbol = "G00G", year(Date) = 2015) ▷
 select(Date, Close)
google 2015
## # A tsibble: 252 x 2 [!]
                 Close
###
      Date
      <date> <dbl>
###
    1 2015-01-02 522.
###
    2 2015-01-05 511.
###
###
    3 2015-01-06
                  499.
##
    4 2015-01-07
                   498.
###
    5 2015-01-08
                  500.
###
    6 2015-01-09
                  493.
```

Google stock price

Google stock price

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 4

We have introduced the following functions: gg_lag and ACF. Use these functions to explore the four time series: Bricks from aus_production, Lynx from pelt, Close price of Amazon from gafa_stock, Demand from vic_elec. Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

Which is which?

Outline

- 1 Seasonal plots
- 2 Lab Session 3
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn ▷ autoplot(y)</pre>
```



```
wn <- tsibble(t = seq(36), y = rnorm(36), index = t)
wn > autoplot(y)
```


- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not a white noise series**.

Outline

- 1 Seasonal plots
- 2 Lab Session
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 Lab Session 4
- 6 White noise
- 7 Lab Session 5

Lab Session 5

You can compute the daily changes in the Google stock price in 2018 using

```
dgoog <- gafa_stock ▷
  filter(Symbol = "G00G", year(Date) ≥ 2018) ▷
  mutate(diff = difference(Close))</pre>
```

Does diff look like white noise?