18.06SC Unit 2 Exam

Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^3 . Find all possible values 1 (24 pts.) for these 3 by 3 determinants and explain your thinking in 1 sentence each.

(c) $\det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ times $\det \begin{bmatrix} q_2 & q_3 & q_1 \end{bmatrix} =$

a) | e, 92 e3 =+1 volume of unit cose

b) 119, +9211 = J2

(J2) = 252 volume of color with length 12)

19, 92+93 a3+9,1 + 192 92+93 93+9,7

- 2 (24 pts.) Suppose we take measurements at the 21 equally spaced times $t = -10, -9, \dots, 9, 10$. All measurements are $b_i = 0$ except that $b_{11} = 1$ at the middle time t = 0.
 - (a) Using least squares, what are the best \widehat{C} and \widehat{D} to fit those 21 points by a straight line C+Dt?
 - (b) You are projecting the vector b onto what subspace? (Give a basis.) Find a nonzero vector perpendicular to that subspace.

2a)

$$A = 0$$
 $A = 0$
 $A = 0$

- 3 (9+12+9 pts.) The Gram-Schmidt method produces orthonormal vectors q_1, q_2, q_3 from independent vectors a_1, a_2, a_3 in \mathbb{R}^5 . Put those vectors into the columns of 5 by 3 matrices Q and A.
 - (a) Give formulas using Q and A for the projection matrices P_Q and P_A onto the column spaces of Q and A.
 - (b) Is $P_Q = P_A$ and why? What is P_Q times Q? What is $\det P_Q$?
 - (c) Suppose a_4 is a new vector and a_1, a_2, a_3, a_4 are independent. Which of these (if any) is the new Gram-Schmidt vector q_4 ? (P_A and P_Q from above)
 - 1. $\frac{P_Q a_4}{\|P_Q a_4\|}$ 2. $\frac{a_4 \frac{a_4^T a_1}{a_1^T a_1} a_1 \frac{a_4^T a_2}{a_2^T a_2} a_2 \frac{a_4^T a_3}{a_3^T a_3} a_3}{\|\text{norm of that vector }\|}$ 3. $\frac{a_4 P_A a_4}{\|a_4 P_A a_4\|}$

a) $P_Q = Q(Q^TQ)^TQ^T - P_A = A(A^TA)^{-1}A^T$ $= Q IQ^T$ $= QQ^T$

PQQ = Q. Since Q is already is CCQ), the projection of a matrix onto itself will just return itself.

det Pa=1

c) 2 ×

J 9

4 (22 pts.) Suppose a 4 by 4 matrix has the same entry × throughout its first row and column. The other 9 numbers could be anything like $1, 5, 7, 2, 3, 99, \pi, e, 4$.

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & \text{any numbers} \\ \times & \text{any numbers} \\ \times & \text{any numbers} \end{bmatrix}$$

- (a) The determinant of A is a polynomial in \times . What is the largest possible degree of that polynomial? Explain your answer.
- (b) If those 9 numbers give the identity matrix I, what is det A? Which values of \times give det A = 0?

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & 1 & 0 & 0 \\ \times & 0 & 1 & 0 \\ \times & 0 & 0 & 1 \end{bmatrix}$$

ITX=detA If XI= >3=>4= xo

b)
$$det A = \chi - \chi_{200} + \chi_{200} +$$

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.