KRIVOLINIJSKI INTEGRAL

Primeri parametrizacije krive

Parametarski oblik jednačine krive: $x = x(t), y = y(t), t \in [\alpha, \beta]$.

- 1. Odrediti parametarski oblik jednačine duži \overline{AB} zadate sa: $y=2x+1,\,0\leq x\leq 1.$
 - **I Rešenje:** Parametarski oblik jednačine duži \overline{AB} je $x=t,y=2t+1,t\in[0,1]$.
 - II Rešenje: Jednačinu duži \overline{AB} možemo zapisati u parametarskom obliku i na sledeći način: $x = t + 1, y = 2t + 3, t \in [-1, 0].$
 - III Rešenje: Jednačinu duži \overline{AB} možemo zapisati u parametarskom obliku i na sledeći način: $y=t, x=\frac{t-1}{2}, t\in [1,3].$
- 2. Odrediti parametarski oblik jednačine kružnice $k:(x-x_0)^2+(y-y_0)^2=r^2$.

Rešenje: Parametarski oblik jednačine kružnice k je: $x = x_0 + r \cdot \cos t, y = y_0 + r \cdot \sin t, t \in [0, 2\pi].$

Krivolinijski integral I vrste

Neka je $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^2$, neprekidna funkcija na prostoj glatkoj krivoj L, koja je data parametrizacijom $x = x(t), y = y(t), t \in [\alpha, \beta]$, tada važi:

$$\int_{L} f(x,y) dl = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

Ako je L po delovima glatka kriva i $L = L_1 \cup \ldots \cup L_n$, tada:

$$\int_{L} f(x,y) dl = \int_{L_1} f(x,y) dl + \dots + \int_{L_n} f(x,y) dl$$

1. Izračunati $\int_L (xy+y^2) dl$, gde je L rub trougla sa temenima A(-1,-1), B(1,1) i C(-3,1).

Rešenje: Kriva L je unija 3 duži, $L = \overline{AB} \cup \overline{BC} \cup \overline{CA}$.

Odavde sledi da je
$$\int\limits_{L} (xy+y^2) \, dl = \int\limits_{\overline{AB}} (xy+y^2) \, dl + \int\limits_{\overline{BC}} (xy+y^2) \, dl + \int\limits_{\overline{CA}} (xy+y^2) \, dl.$$

Ako je parametrizacija duži $\overline{AB},$

$$\overline{AB} = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = t, t \in [-1, 1]\}$$

onda je x'(t) = 1 i y'(t) = 1. Prema tome

$$\int\limits_{\overline{AB}} (xy+y^2) \, dl = \int\limits_{-1}^1 (t^2+t^2) \sqrt{1^2+1^2} \, dt = 2\sqrt{2} \int\limits_{-1}^1 t^2 \, dt = 2\sqrt{2} \left. \frac{t^3}{3} \right|_{-1}^1 = \frac{2\sqrt{2}}{3} (1-(-1)) = \frac{4\sqrt{2}}{3}.$$

Ako je parametrizacija duži \overline{BC} , $\overline{BC}=\{(x(t),y(t))\in\mathbb{R}^2:x(t)=t,y(t)=1,t\in[-3,1]\}$, onda je x'(t)=1,y'(t)=0. Stoga,

$$\int_{\overline{BC}} (xy + y^2) \, dl = \int_{-3}^{1} (t+1)\sqrt{1^2 + 0^2} \, dt = \int_{-3}^{1} (t+1) \, dt = \left(\frac{t^2}{2} + t\right) \Big|_{-3}^{1} = \frac{1}{2} + 1 - \left(\frac{9}{2} - 3\right) = 0$$

Ako duž \overline{CA} parametrizujemo na sledeći način,

$$\overline{CA} = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = -t - 2, t \in [-3, -1], \text{ onda je } x'(t) = 1, y'(t) = -1. \text{ Stoga, } x'(t) = -1. \text{ Stoga, } x'(t)$$

$$\int_{\overline{CA}} (xy + y^2) \, dl = \int_{-3}^{-1} (t(-t-2) + (-t-2)^2) \sqrt{2} \, dt = \sqrt{2} \int_{-3}^{-1} (-t^2 - 2t + t^2 + 4t + 4) \, dt = \sqrt{2} \int_{-3}^{-1} (2t + 4) \, dt$$
$$= \sqrt{2} \left(2\frac{t^2}{2} + 4t \right) \Big|_{-3}^{-1} = \sqrt{2} (1 - 4 - (9 - 12)) = 0$$

Konačno, imamo
$$\int_{I} (xy + y^2) dl = \frac{4\sqrt{2}}{3} + 0 + 0 = \frac{4\sqrt{2}}{3}.$$

2. Izračunati $\int\limits_{L}x\,dl$, gde je L rub oblasti ograničene sa $y=x+1,\,y=1-x^2$ i x-osom.

Rešenje: Zadata kriva Lje unija tri krive $L = L_1 \cup L_2 \cup L_3$

Parametrizacijom krive $L_1=\{(x(t),y(t))\in\mathbb{R}^2: x(t)=t,y(t)=0,t\in[-1,1]\},$ gde je x'(t)=1,y'(t)=0, dobija se

$$\int_{L_1} x \, dl = \int_{-1}^1 t \sqrt{1^2 + 0^2} \, dt = \int_{-1}^1 t \, dt = \left. \frac{t^2}{2} \right|_{-1}^1 = \frac{1}{2} - \frac{1}{2} = 0.$$

Ako krivu L_2 parametrizujemo na sledeći način $L_2=\{(x(t),y(t))\in\mathbb{R}^2:x(t)=t,y(t)=1-t^2,t\in[0,1]\}$, pri čemu je x'(t)=1,y'(t)=-2t, dobija se

$$\int_{L_2} x \, dl = \int_0^1 t \sqrt{1 + 4t^2} \, dt = \left| \begin{array}{c} \text{integral rešavamo smenom} \\ s = 1 + 4t^2 \end{array} \right| = \dots = \frac{1}{12} \left(5\sqrt{5} - 1 \right)$$

Krivu L_3 parametrizujemo na sledeći način $L_3 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = t + 1, t \in [-1, 0]\}$, pri čemu je x'(t) = 1 i y'(t) = 1, i dobijamo

$$\int_{L_3} x \, dl = \int_{-1}^0 t \sqrt{2} \, dt = \sqrt{2} \left. \frac{t^2}{2} \right|_{-1}^0 = -\frac{\sqrt{2}}{2}.$$

Konačno, imamo da je $\int\limits_{L}x\,dl=\frac{5\sqrt{5}-1-6\sqrt{2}}{12}.$

Dužina luka krive

Dužina
$$\Delta l$$
 krive $L \subseteq \mathbb{R}^2$ je $\Delta l = \int_L 1 \, dl$

3. Izračunati dužinu luka kružnice $x^2+y^2=4$ u prvom kvadrantu.

Rešenje:

Ako krivu L parametrizujemo na sledeći način $L = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = 2\cos t, y(t) = 2\sin t, t \in \left[0, \frac{\pi}{2}\right]\}$, onda je $x'(t) = -2\sin t, y'(t) = 2\cos t$. Prema tome

$$\Delta l = \int\limits_{L} dl = \int\limits_{0}^{\frac{\pi}{2}} \sqrt{(-2\sin t)^2 + (2\cos t)^2} \, dt = \int\limits_{0}^{\frac{\pi}{2}} \sqrt{4\sin^2 t + 4\cos^2 t} \, dt = \int\limits_{0}^{\frac{\pi}{2}} \sqrt{4} \, dt = 2 \int\limits_{0}^{\frac{\pi}{2}} dt = 2 t \big|_{0}^{\frac{\pi}{2}}$$
$$= 2 \frac{\pi}{2} = \pi.$$

4. Izračunati dužinu kraćeg luka kružnice $x^2+y^2=2x$ između tačaka A(0,0) i $B\left(\frac{3}{2},\frac{\sqrt{3}}{2}\right)$.

Rešenje: Zadata kriva L je deo kružnice čija je jednačina $(x-1)^2+y^2=1$.

Krivu možemo parametrizovati na sledeći način $L=\{(x(t),y(t))\in\mathbb{R}^2: x(t)=1+\cos t, y(t)=\sin t, t\in\left[\frac{\pi}{3},\pi\right]\}$, pri čemu je $x'(t)=-\sin t, y'(t)=\cos t$. Dužinu luka krive računamo na sledeći način

$$\Delta l = \int_{L} dl = \int_{\frac{\pi}{3}}^{\pi} \sqrt{(-\sin t)^2 + (\cos t)^2} dt = \int_{\frac{\pi}{3}}^{\pi} 1 dt = t|_{\frac{\pi}{3}}^{\pi} = \frac{2\pi}{3}.$$

Krivolinijski integral II vrste

Neka je putanja L data parametrizacijom $x=x(t),y=y(t),t\in [\alpha,\beta]$ (i orijentisana od tačke $A(x(\alpha),y(\alpha))$ do tačke $B(x(\beta),y(\beta)))$, i neka su funkcije $P,Q:D\to\mathbb{R}^2$ neprekidne na putanji L, tada važi:

$$\int_{L} P(x,y) dx = \int_{\alpha}^{\beta} P(x(t), y(t)) \cdot x'(t) dt$$

$$\int_{A} Q(x,y) dy = \int_{\alpha}^{\beta} Q(x(t), y(t)) \cdot y'(t) dt$$

Prilikom izračunavanja krivolinijskog integrala II vrste bitna je orijentacija krive.

1. Izračunati $\int\limits_L x\,dy$, gde je L pozitivno orijentisan rub trougla sa temenima $A(2,0),\,B(0,2)$ i C(0,0).

Rešenje:

Kriva L je unija tri duži,

$$L = \overline{AB} \cup \overline{BC} \cup \overline{CA}$$

odakle je

$$\int\limits_{L} x\,dy = \int\limits_{\overline{AB}} x\,dy + \int\limits_{\overline{BC}} x\,dy + \int\limits_{\overline{CA}} x\,dy$$

Duž \overline{AB} parametrizujemo na sledeći način $\overline{AB}=\{(x(t),y(t))\in\mathbb{R}^2:x(t)=t,y(t)=-t+2,t\in[0,2].$ Stoga je

$$\int_{\overline{AB}} x \, dy = \int_{2}^{0} t \cdot (-1) \, dt = -\left. \frac{t^{2}}{2} \right|_{2}^{0} = 2.$$

Duž \overline{BC} parametrizujemo na sledeći način $\overline{BC} = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = 0, y(t) = t, t \in [0, 2]\}.$ Stoga je

$$\int_{\overline{BC}} x \, dy = \int_{2}^{0} 0 \cdot 1 \, dt = 0.$$

Duž \overline{CA} parametrizujemo na sledeći način $\overline{CA}=\{(x(t),y(t))\in\mathbb{R}^2:x(t)=t,y(t)=0,t\in[0,2]\}.$ Stoga je

$$\int_{\overline{CA}} x \, dy = \int_{0}^{2} t \cdot 0 \, dt = 0.$$

Zaključujemo, $\int_{I} x \, dy = 2 + 0 + 0 = 2$.

2. Izračunati integral $\int_L (y+3) dx + (2x-1) dy$ duž krive $L = \{(x,y) \in \mathbb{R}^2 : y=1-x^2, \ 0 \le x \le 1\}$ orijentisane od tačke A(1,0) do tačke B(0,1).

Rešenje:

Ako krivu parametrizujemo na sledeći način $L=\{(x(t),y(t))\in\mathbb{R}^2: x(t)=t,y(t)=1-t^2,t\in\overleftarrow{[0,1]}\},$ onda je x'(t)=1,y'(t)=-2t.

$$\int_{L} (y+3) dx + (2x-1) dy = \int_{1}^{0} ((1-t^2+3) \cdot 1 + (2t-1)(-2t)) dt = \int_{1}^{0} (4-5t^2+2t) dt$$
$$= \left(4t - 5\frac{t^3}{3} + 2\frac{t^2}{2}\right)\Big|_{1}^{0} = 0 - \left(4 - \frac{5}{3} + 1\right) = -\frac{10}{3}.$$

3. Izračunati $\int\limits_L y\,dx-x\,dy$ duž krive $L=\{(x,y)\in\mathbb{R}^2:x^2+y^2=4y,y\geq 2\}$ orijentisane od tačke A(2,2) do tačke B(-2,2).

Rešenje: Kriva L je deo kružnice $x^2 + (y-2)^2 = 2^2$.

Parametrizacijom krive $L = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = 2\cos t, y(t) = 2 + 2\sin t, t \in [0, \pi]\}$, dobija se $x'(t) = -2\sin t$ i $y'(t) = 2\cos t$. Vrednost traženog integrala je

$$\int_{L} y \, dx - x \, dy = \int_{0}^{\pi} ((2 + 2\sin t) \cdot (-2\sin t) - (2\cos t) \cdot 2\cos t) \, dt = \int_{0}^{\pi} (-4\sin t - 4\sin^{2} t - 4\cos^{2} t) \, dt$$
$$= \int_{0}^{\pi} (-4\sin t - 4) \, dt = (4\cos t - 4t)|_{0}^{\pi} = 4\cos \pi - 4\pi - (4\cos 0 - 0) = -8 - 4\pi.$$

Nezavisnost integracije od putanje

Krivolinijski integral $\int P dx + Q dy$ ne zavisi od putanje integracije nad oblašću D ako i samo ako postoji funkcija $V: D \to \mathbb{R}$ takva da je dV = P dx + Q dy, tj. $V_x = P$ i $V_y = Q$, i tada važi

$$\int_{L(AB)} P dx + Q dy = \int_{L(AB)} dV = V(B) - V(A)$$

Navedena funkcija V ovde igra ulogu primitivne funkcije.

Potreban i dovoljan uslov za nezavisnost integrala od putanje integracije: Integral $\int P dx + Q dy$ ne zavisi od putanje integracije ako i samo ako $P_y = Q_x$.

- 4. Odrediti realan parametar a tako da integral $\int ay dx + 3x dy$ ne zavisi od putanje integracije. Zatim, izračunati integral od tačke A(-3, -1) do tačke B(1, 3)
 - (a) duž krive $L = \{(x,y) \in \mathbb{R}^2 : y = -1, -3 \le x \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x = 1, -1 \le y \le 3\};$
 - (b) duž krive L, gde je L je duž koja spaja tačke A i B;
 - (c) pomoću totalnog diferencijala.

Rešenje: Neka je P=ay i Q=3x. Tada je $P_y=a$ i $Q_x=3$. Vrednost integrala ne zavisi od putanje integracije ako i samo ako $P_y=Q_x$, što u ovom slučaju važi za a=3. Integral $\int\limits_{L(AB)} 3y\,dx+3x\,dy$ ne zavisi od putanje integracije i računamo vrednost ovog integrala.

(a)

Kriva L je unije dve krive $L = L_1 \cup L_2$, koje parametrizujemo na sledeći način

$$L_1 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = -1, t \in [-3, 1]\}$$

$$L_2 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = 1, y(t) = t, t \in [-1, 3]\}$$

Koristeći navedenu parametrizaciju računamo traženi integral

$$\int_{L(AB)} 3y \, dx + 3x \, dy = \int_{L_1(AC)} 3y \, dx + 3x \, dy + \int_{L_2(CB)} 3y \, dx + 3x \, dy$$

$$= \int_{-3}^{1} (3 \cdot (-1) \cdot 1 + 3t \cdot 0) \, dt + \int_{-1}^{3} (3t \cdot 0 + 3 \cdot 1) \, dt$$

$$= -3 \int_{-3}^{1} dt + 3 \int_{-1}^{3} dt$$

$$= -3 t \Big|_{-3}^{1} + 3 t \Big|_{-1}^{3} = -3(1 - (-3)) + 3(3 - (-1)) = 0.$$

Duž \overline{AB} je deo prave y=x+2, te je možemo parametrizovati na sledeći način

$$L = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = t + 2, t \in [-3, 1]\}.$$

Na osnovu date parametrizacije, računamo integral

$$\int_{L(AB)} 3y \, dx + 3x \, dy = \int_{-3}^{1} (3(t+2) \cdot 1 + 3t \cdot 1) \, dt = \int_{-3}^{1} (6t+6) \, dt = \left. \left(6\frac{t^2}{2} + 6t \right) \right|_{-3}^{1}$$
$$= 3 + 6 - (27 - 18) = 0.$$

(c) Kako dati integral ne zavisi od putanje integracije, možemo ga izračunati pomoću funkcije V takve da je $dV=3y\,dx+3x\,dy$. Dakle, tražimo funkciju V takvu da je $V_x=3y$ i $V_y=3x$. Stoga

$$V = \int V_x dx = \int 3y dx = 3xy + \varphi(y)$$

Odakle je $V_y=3x+\varphi'(y)$. Kako tražimo funkciju V takvu da je $V_y=3x$, dobijamo da mora da važi $\varphi'(y)=0$, odakle je $\varphi(y)=\int \varphi'(y)\,dy=\int 0\,dy=0+C=C$. Tražena funkcija je V=3xy+C, te je vrednost integrala

$$\int_{L(AB)} 3y \, dx + 3x \, dy = V(B) - V(A) = 3 \cdot 1 \cdot 3 + C - (3 \cdot (-1) \cdot (-3) + C) = 0.$$

Formula Grina

Neka je $\sigma \subset \mathbb{R}^2$ zatvorena oblast ograničena zatvorenom putanjom L. Ako su funkcije P,Q,P_y,Q_x neprekidne nad nekom otvorenom oblasti koja sadrži σ i ako je kriva L pozitivno orijentisana, tada važi

$$\oint_{L} P dx + Q dy = \iint_{\sigma} (Q_x - P_y) dx dy$$

5. Primenom formule Grina, izračunati vrednost krivolinijskog integrala $\oint_L xy \, dx + (x+y) \, dy$ ako je kriva $L = \{(x,y) \in \mathbb{R}^2 : y = x^2, 0 \le x \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x = 1, 0 \le y \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : y = 0, 0 \le x \le 1\}$ pozitivno orijentisana.

Rešenje:

Neka je P = xy i Q = x + y. Tada je $P_y = x$ i $Q_x = 1$. Kriva L je zatvorena pozitivno orijentisana kriva. Kako je oblast

$$\sigma = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le x^2\}$$

ograničena krivom L i funkcije P,Q,P_y i Q_x neprekidne nad $\sigma \subset \mathbb{R}^2$, ispunjeni su uslovi teoreme Grina i sledi

$$\oint_{L} xy \, dx + (x+y) \, dy = \iint_{\sigma} (Q_x - P_y) \, dx \, dy = \iint_{\sigma} (1-x) \, dx \, dy = \int_{0}^{1} dx = \int_{0}^{x^2} (1-x) \, dy$$

$$= \int_{0}^{1} (1-x) \, y \Big|_{0}^{x^2} \, dx \int_{0}^{1} (1-x)x^2 \, dx = \int_{0}^{1} (x^2 - x^3) \, dx = \left(\frac{x^3}{3} - \frac{x^4}{4}\right) \Big|_{0}^{1}$$

$$= \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

6. Primenom formule Grina, izračunati vrednost krivolinijskog integrala $\int_L -y^3 dx + x^3 dy$, ako je kriva L duži luk kružnice $x^2 + y^2 = 2^2$ od tačke A(2,0) do tačke $B(1,\sqrt{3})$.

Rešenje:

Kriva L nije zatvorena. Ako na krivu L dodamo krivu L_1 dobijamo novu krivu $L^\star = L \cup L_1$, koja je zatvorena i negativno orijentisana, te je kriva $-L^\star$ zatvorena, pozitivno orijentisana kriva.

Ako je $P=-y^3$ i $Q=x^3$, onda je $P_y=-3y^2$ i $Q_x=3x^2$. Kako je oblast $\sigma=\{(x,y)\in\mathbb{R}^2:x^2+y^2=2^2\}$ ograničena krivom $-L^\star$ i funkcije P,Q,P_y,Q_x su neprekidne nad σ , kriva $-L^\star$, funkcije P,Q,P_y,Q_x i oblast σ zadovoljavaju uslove teoreme Grina i važi

$$\int_{-L^*} -y^3 dx + x^3 dy = \iint_{\sigma} (Q_x - P_y) dx dy = \iint_{\sigma} (3x^2 + 3y^2) dx dy. \text{ Odakle je}$$

$$\int_{L^*} -y^3 dx + x^3 dy = -\iint_{\sigma} (3x^2 + 3y^2) dx dy. \text{ Dalje, kako je } L^* = L \cup L_1, \text{ sledi}$$

$$\int_{L} -y^3 dx + x^3 dy = -\iint_{\sigma} (3x^2 + 3y^2) dx dy - \int_{L_1} -y^3 dx + x^3 dy.$$

Dvostruki integral nad σ računamo uvodeći smenu polarnim koordinatama $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $\rho \in [0, 2]$, $\varphi \in [0, 2\pi]$, odakle sledi

$$\iint_{\sigma} (3x^2 + 3y^2) \, dx \, dy = \int_{0}^{2\pi} d\varphi \int_{0}^{2} 3\rho^2 \cdot \rho \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{2} \rho^3 \, d\rho = 3 \int_{0}^{2\pi} \frac{\rho^4}{4} \Big|_{0}^{2} \, d\varphi = 3 \int_{0}^{2\pi} 4 \, d\varphi = 12 \int_{0}^{2\pi} d\varphi = 24\pi.$$

Ako krivu L_1 parametrizujemo na sledeći način $L_1 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = 2 \cos t, y(t) = 2 \sin t, t \in [0, \frac{\pi}{3}] \}$, onda je

$$\int_{L_1} -y^3 dx + x^3 dy = \int_{\frac{\pi}{3}}^{0} (-(2\sin t)^3 \cdot (-2\sin t) + (2\cos t)^3 \cdot (2\cos t)) dt = \int_{\frac{\pi}{3}}^{0} (16\sin^4 t + 16\cos^4 t) dt$$

$$= 16 \int_{\frac{\pi}{3}}^{0} ((\sin^2 t)^2 + (\cos^2 t)^2) dt = 16 \int_{\frac{\pi}{3}}^{0} \left(\left(\frac{1 - \cos 2t}{2} \right)^2 + \left(\frac{1 + \cos 2t}{2} \right)^2 \right) dt$$

$$= 16 \cdot \frac{1}{4} \int_{\frac{\pi}{3}}^{0} (1 - 2\cos 2t + \cos^2 2t + 1 + 2\cos 2t + \cos^2 2t) dt = 4 \int_{\frac{\pi}{3}}^{0} (2 + 2\cos^2 2t) dt$$

$$= 8 \int_{\frac{\pi}{3}}^{0} (1 + \cos^2 2t) dt = 8 \int_{\frac{\pi}{3}}^{0} \left(1 + \frac{1 + \cos 4t}{2} \right) dt = 8 \int_{\frac{\pi}{3}}^{0} \left(\frac{3}{2} + \frac{1}{2}\cos 4t \right) dt$$

$$= 12 \int_{\frac{\pi}{3}}^{0} dt + 4 \int_{\frac{\pi}{3}}^{0} \cos 4t dt = 12 t \left| \frac{1}{3} + 4 \cdot \frac{1}{4} \sin 4t \right|_{\frac{\pi}{3}}^{0}$$

$$= 12 \left(0 - \frac{\pi}{3} \right) + \sin 0 - \sin \frac{4\pi}{3} = -4\pi + \frac{\sqrt{3}}{2}.$$

Prema tome.

$$\int_{L} -y^3 dx + x^3 dy = -\iint_{\sigma} (3x^2 + 3y^2) dx dy - \int_{L_1} -y^3 dx + x^3 dy = -24\pi - \left(-4\pi + \frac{\sqrt{3}}{2}\right) = -20\pi - \frac{\sqrt{3}}{2}.$$

7. Primenom formule Grina, izračunati vrednost krivolinijskog integrala $\int_L -2y \, dx + x \, dy$ ako je kriva L duži luk kružnice $x^2 + y^2 = 4x$ od tačke A(4,0) do tačke B(2,2).

Rešenje:

Kriva L nije zatvorena. Ako na krivu L, dodamo krive L_1 i L_2 dobijamo krivu $L^* = L \cup L_1 \cup L_2$, koja je zatvorena, negativno orijentisana kriva. Stoga, kriva $-L^*$ je zatvorena, pozitivno orijentisana kriva i oblast σ je ogranična krivom $-L^*$.

Funkcije $P=-2y,\,Q=x,\,P_y=-2$ i $Q_x=1$ su neprekidne nad $\sigma,$ te su zadovoljeni uslovi Grinove teoreme i važi

$$\int_{-L^*} -2y \, dx + x \, dy = \iint_{\sigma} (Q_x - P_y) \, dx \, dy = \iint_{\sigma} (1 - (-2)) \, dx \, dy = 3 \iint_{\sigma} dx \, dy$$
$$= 3 \cdot P(\sigma) = 3 \cdot \frac{3}{4} \cdot 2^2 \pi = 9\pi.$$

Odakle je $\int_{L^*} -2y \, dx + x \, dy = -9\pi$. Kako je $L^* = L \cup L_1 \cup L_2$, važi

$$\int_{L} -2y \, dx + x \, dy = -9\pi - \int_{L_1} -2y \, dx + x \, dy - \int_{L_2} -2y \, dx + x \, dy$$

Krivu L_1 parametrizujemo na sledeći način $L_1 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = 2, y(t) = t, t \in [0, 2]\}$ i dobijamo

$$\int_{L_1} -2y \, dx + x \, dy = \int_{2}^{0} (-2t \cdot 0 + 2 \cdot 1) \, dt = 2 \int_{2}^{0} dt = 2 t |_{2}^{0} = -4.$$

Krivu L_2 parametrizujemo na sledeći način $L_2 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = 0, t \in [2, 4]\}$ i dobijamo

$$\int_{L_2} -2y \, dx + x \, dy = \int_2^4 (0+0) \, dt = 0.$$

Konačno, vrednost traženog integrala je $\int_{L} -2y \, dx + x \, dy = -9\pi - (-4) - 0 = 4 - 9\pi$.

Dodatni zadaci za vežbu:

1. Izračunati integral $\int_L dx + y \, dy$ duž pozitivno orijentisane krive $L = \{(x,y) \in \mathbb{R}^2 : y = 0, 0 \le x \le \sqrt{2}\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 2, 1 \le x \le \sqrt{2}, y \ge 0\} \cup \{(x,y) \in \mathbb{R}^2 : y = \sqrt{x}, 0 \le x \le 1\}.$

Rešenje: Kriva L je unija tri krive $L = L_1 \cup L_2 \cup L_3$.

$$\int\limits_{L} \, dx + y \, dy = \int\limits_{L_{1}} \, dx + y \, dy + \int\limits_{L_{2}} \, dx + y \, dy + \int\limits_{L_{3}} \, dx + y \, dy$$

Krivu L_1 možemo parametrizovati na sledeći način

 $L_1 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = 0, t \in [0, \sqrt{2}], \text{ pri čemu je } x'(t) = 1, y'(t) = 0. \text{ Stoga,}$

$$\int_{L_1} dx + y \, dy = \int_{0}^{\sqrt{2}} (1 \cdot 1 + 0 \cdot 0) \, dt = \int_{0}^{\sqrt{2}} 1 \, dt = \sqrt{2}.$$

Krivu L_2 parametrizujemo na sledeći način

 $L_2 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = \sqrt{2}\cos t, y(t) = \sqrt{2}\sin t, t \in \left[0, \frac{\pi}{4}\right]\}, \text{ pri čemu je } x'(t) = -\sqrt{2}\sin t, y'(t) = \sqrt{2}\cos t. \text{ Prema tome}$

$$\int_{L_2} dx + y \, dy = \int_0^{\frac{\pi}{4}} (1 \cdot (-\sqrt{2}\sin t) + \sqrt{2}\sin t \cdot \sqrt{2}\cos t) \, dt = \int_0^{\frac{\pi}{4}} (-\sqrt{2}\sin t + \sin 2t) \, dt$$
$$= \sqrt{2}\cos t|_0^{\frac{\pi}{4}} - \frac{1}{2}\cos 2t|_0^{\frac{\pi}{4}} = \sqrt{2}\frac{\sqrt{2}}{2} - \sqrt{2} - \frac{1}{2}\cdot(-1) = \frac{3}{2} - \sqrt{2}.$$

Parametrizujmo krivu L_3 na sledeći način $L_3 = \{(x(t), y(t)) \in \mathbb{R}^2 : x(t) = t, y(t) = \sqrt{t}, t \in [0, 1]\},$ pri čemu je $x'(t) = 1, y'(t) = \frac{1}{2\sqrt{t}}$. Tada je

$$\int_{L_3} dx + y \, dy = \int_1^0 (1 + \sqrt{t} \cdot \frac{1}{2\sqrt{t}}) \, dt = \int_1^0 (1 + \frac{1}{2}) \, dt = \frac{3}{2} \, t|_1^0 = -\frac{3}{2}.$$

Konačno,
$$\int_{T} dx + y dy = \sqrt{2} + \frac{3}{2} - \sqrt{2} - \frac{3}{2} = 0.$$

2. Primenom formule Grina, izračunati vrednost krivolinijskog integrala $\int_L x^2 dy$ ako je kriva $L = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 2y, y \ge 1\} \cup \{(x,y) \in \mathbb{R}^2 : y = |x|, -1 \le x \le 1\}$ negativno orijentisana.

Rešenje:

Kriva L je zatvorena, negativno orijentisana kriva, te je -L zatvorena, pozitivno orijentisana kriva. Kako je oblast σ ograničena krivom -L i funkcije $P=0,\ Q=x^2,\ P_y=0$ i $Q_x=2x$ neprekidne nad σ , zadovoljeni su uslovi Grinove teoreme i važi $\int_{r}x^2\,dy=\iint\limits_{\sigma}2x\,dx\,dy$, odakle je $\int x^2 dy = -2 \iint x dx dy$. Oblast σ možemo posmatrati kao uniju dve oblasti $\sigma = \sigma_1 \cup \sigma_2$, odakle

je $\iint x\,dx\,dy = \iint x\,dx\,dy + \iint x\,dx\,dy.$ Vrednost dvostrukog integrala nad σ_1 računamo uvodeći smenu polarnim koordinatama, $x=\rho\cos\varphi,y=1+\rho\sin\varphi,\rho\in[0,1],\varphi\in[0,\pi]$, i dobijamo

$$\iint_{\sigma_1} x \, dx \, dy = \int_0^\pi d\varphi \int_0^1 \rho \cos\varphi \cdot \rho \, d\rho = \int_0^\pi d\varphi \int_0^1 \cos\varphi \rho^2 \, d\rho = \int_0^\pi \cos\varphi \left. \frac{\rho^3}{3} \right|_0^1 d\varphi = \frac{1}{3} \int_0^\pi \cos\varphi \, d\varphi$$
$$= \frac{1}{3} \sin\varphi \Big|_0^\pi = 0.$$

Vrednost dvostrukog integrala nad σ_2 računamo na sledeći način

$$\iint_{\sigma_2} x \, dx \, dy = \int_0^1 dy \int_{-y}^y x \, dx = \int_0^1 \frac{x^2}{2} \Big|_{-y}^y \, dy = \int_0^1 \frac{1}{2} (y^2 - (-y)^2) \, dy = 0.$$

Zaključujemo da je
$$\int\limits_L x^2\,dy = -2\cdot\iint\limits_\sigma x\,dx\,dy = -2\cdot\left(\iint\limits_{\sigma_1} x\,dx\,dy + \iint\limits_{\sigma_2} x\,dx\,dy\right) = -2\cdot(0+0) = 0.$$