Dag 16

(1) Addition av vektorer. Låt A,B,C,D,E vara hörnen i en regelbunden femhörning. Uttryck vektorn

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA}$$

på enklast möjliga sätt. (Se figur.)

Svar: $= \vec{0}$.

(2) **Multiplicera en vektor med en skalär.** Uttryck vektorn \overrightarrow{EC} i figuren med hjälp av vektorn \overrightarrow{AB} .

Svar:
$$\overrightarrow{EC} = \lambda \overrightarrow{AB}$$
 där $\lambda = \frac{\sqrt{5}+1}{2}$.

(3) **Exempel 1.** I parallellogramen nedan, uttryck vektorn \overrightarrow{AE} med hjälp av \overrightarrow{AB} och \overrightarrow{AD} .

Svar:
$$\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD}$$
.

(4) **Linjära kombinationer.** I parallellogramen ovan, uttryck \overrightarrow{AB} och \overrightarrow{AD} med hjälp av \overrightarrow{AC} och \overrightarrow{BD} .

Svar:
$$\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{BD}, \overrightarrow{AD} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD}.$$

(5) **Exempel 2.** I parallellogramen ovan, uttryck vektor \overrightarrow{AE} med hjälp av \overrightarrow{AC} och \overrightarrow{BD} .

Svar:
$$\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{BD}$$
.

(6) **Tyngdpunkten hos en triangel.** Vektorräkning fungerar lika bra i rummet som i planet. Satsen om medianerna kan generaliseras till en godtycklig tetraeder i rummet genom att visa följande påstående: En rymdmedian är en linje genom ett hörn i tetraedern som också går genom motstående sidas tyngdpunkt. Visa att två rymdmedianer i en tetraeder delar varandra i proportionerna 3:1.

/Boris Shapiro, 210308/