

EM125015763US

1

SEQUENCE LISTING

<110> LU, PATRICK Y.
XIE, FRANK Y.
WOODLE, MARTIN C.
LIU, YIJIN
TANG, QUINN Q.
XU, JUN

<120> TARGETS FOR TUMOR GROWTH INHIBITION

<130> INTM/017

<140> 10/551,667
<141> 2006-07-18

<150> PCT/US04/010059
<151> 2004-04-01

<150> 60/458,948
<151> 2003-08-01

<150> 60/489,504
<151> 2003-07-24

<160> 111

<170> PatentIn Ver. 3.5

<210> 1
<211> 1934
<212> DNA
<213> Homo sapiens

<400> 1
agaaccccg ggggtctgag cagcccagcg tgcccattcc agcgccccgc tccccgcagc 60
atgccgcgccc cccgcctgct ggccgcgtg tgccggcgcc tgctctgcgc ccccagcctc 120
ctcgtcgccc tggatatctg ttccaaaaac ccctgccaca acggtggtt atgcgaggag 180
atttccaag aagtgcgagg agatgtctc ccctcgata cctgcacgtg ccttaagggc 240
tacgcgggca accactgtga gacgaaatgt gtcgagccac tgggcatgga gaatgggaac 300
attgccaact cacagatcgc cgcctcatct gtgcgtgtga ctttcttggg tttgcagcat 360
tgggtcccg agctggccc cctgaaccgc gcaggcatgg tcaatgcctg gacacccagc 420
agcaatgacg ataaccctg gatccaggtg aacctgctgc ggaggatgtg gttaacaggt 480
gtgggtacgc aggggtccag ccgcttggcc agtcatgagt acctgaaggc cttcaagggt 540
gcctacagcc ttaatggaca cgaattcgat ttcatccatg atgttaataa aaaacacaag 600
gagtttgtgg gtaactggaa caaaaacgcg gtgcatgtca acctgttga gaccctgtg 660
gaggctcagt acgtgagatt gtacccacg agctgccaca cggcctgcac tctgcgttt 720
gagctactgg gctgtgagct gaacggatgc gccaatcccc tgggcctgaa gaataacagc 780
atccctgaca agcagatcac ggccctccagc agtacaaga cctggggctt gcatctctc 840
agctggAACCC cctcctatgc acggctggac aagcaggggca acttcaacgc ctgggttgcg 900
gggagctacg gtaacgatca gtggctgcag gtggacctgg gctcctcgaa ggaggtgaca 960
ggcatcatca cccagggggc ccgtaaacctt ggctctgtcc agtttgcgc atcctacaag 1020
gttgcctaca gtaatgacag tgcgaactgg actgagttacc aggaccccg gactggcagc 1080
agtaagatot tccctggcaa ctgggacaac cactcccaca agaagaactt gtttgcacgc 1140
cccatcctgg ctgcgtatgt ggcgcacccg cctgttagcct ggcacaaccg catgccttcg 1200
cgccctggagc tgctgggctg ttatggcca cctgcccaccc ccaggcttc ctgccttc 1260
tggggccgcg ctgccttcgac ttctcagccc cttaaatca ccatagggt gggactggg 1320
gaaggggagg gtgttcagag gcagcaccac cacacagtca cccctccctc cctcttc 1380

accctccacc tctcacggc cctgccccag cccctaagcc ccgtccccata acccccagtc 1440
 ctcactgtcc tgtttctta ggcactgagg gatctgagta ggtctggat ggacaggaaa 1500
 gggcaaagta gggcggtgtgg ttccctgcc cctgtccggc ccgcgcgatcc caggtgcgtg 1560
 tgtctctgtc tctcttagcc cctctctcac acatcacatt cccatggtg cctcaagaaa 1620
 gccccggaaag ccccaggctg gagataaacag cctttgccc gtcggccctg cgtcggccct 1680
 ggggttaccaat gtgccacaac tgctgtgcc ccctgtcccc aagacacttc cccttgtctc 1740
 cctgggttgc tctcttgccc ttgtcctga agccagcga cacagaaggg ggtggggcgg 1800
 gtctatgggg agaaaggag cgaggtcaga ggagccggca tgggttggca gggtgggcgt 1860
 ttggggccct catgctggct tttcacccca gaggacacag gcagcttcca aaatatattt 1920
 atcttcttca cggg 1934

<210> 2
<211> 387
<212> PRT
<213> Homo sapiens

<400> 2
Met Pro Arg Pro Arg Leu Leu Ala Ala Leu Cys Gly Ala Leu Leu Cys
1 5 10 15
Ala Pro Ser Leu Leu Val Ala Leu Asp Ile Cys Ser Lys Asn Pro Cys
20 25 30
His Asn Gly Gly Leu Cys Glu Glu Ile Ser Gln Glu Val Arg Gly Asp
35 40 45
Val Phe Pro Ser Tyr Thr Cys Thr Cys Leu Lys Gly Tyr Ala Gly Asn
50 55 60
His Cys Glu Thr Lys Cys Val Glu Pro Leu Gly Met Glu Asn Gly Asn
65 70 75 80
Ile Ala Asn Ser Gln Ile Ala Ala Ser Ser Val Arg Val Thr Phe Leu
85 90 95
Gly Leu Gln His Trp Val Pro Glu Leu Ala Arg Leu Asn Arg Ala Gly
100 105 110
Met Val Asn Ala Trp Thr Pro Ser Ser Asn Asp Asp Asn Pro Trp Ile
115 120 125
Gln Val Asn Leu Leu Arg Arg Met Trp Val Thr Gly Val Val Thr Gln
130 135 140
Gly Ala Ser Arg Leu Ala Ser His Glu Tyr Leu Lys Ala Phe Lys Val
145 150 155 160
Ala Tyr Ser Leu Asn Gly His Glu Phe Asp Phe Ile His Asp Val Asn
165 170 175
Lys Lys His Lys Glu Phe Val Gly Asn Trp Asn Lys Asn Ala Val His
180 185 190
Val Asn Leu Phe Glu Thr Pro Val Glu Ala Gln Tyr Val Arg Leu Tyr
195 200 205

Pro Thr Ser Cys His Thr Ala Cys Thr Leu Arg Phe Glu Leu Leu Gly
 210 215 220

Cys Glu Leu Asn Gly Cys Ala Asn Pro Leu Gly Leu Lys Asn Asn Ser
 225 230 235 240

Ile Pro Asp Lys Gln Ile Thr Ala Ser Ser Tyr Lys Thr Trp Gly
 245 250 255

Leu His Leu Phe Ser Trp Asn Pro Ser Tyr Ala Arg Leu Asp Lys Gln
 260 265 270

Gly Asn Phe Asn Ala Trp Val Ala Gly Ser Tyr Gly Asn Asp Gln Trp
 275 280 285

Leu Gln Val Asp Leu Gly Ser Ser Lys Glu Val Thr Gly Ile Ile Thr
 290 295 300

Gln Gly Ala Arg Asn Phe Gly Ser Val Gln Phe Val Ala Ser Tyr Lys
 305 310 315 320

Val Ala Tyr Ser Asn Asp Ser Ala Asn Trp Thr Glu Tyr Gln Asp Pro
 325 330 335

Arg Thr Gly Ser Ser Lys Ile Phe Pro Gly Asn Trp Asp Asn His Ser
 340 345 350

His Lys Lys Asn Leu Phe Glu Thr Pro Ile Leu Ala Arg Tyr Val Arg
 355 360 365

Ile Leu Pro Val Ala Trp His Asn Arg Ile Ala Leu Arg Leu Glu Leu
 370 375 380

Leu Gly Cys
 385

<210> 3
 <211> 1164
 <212> DNA
 <213> Homo sapiens

<400> 3

```

atggccgcgcc cccgcctgct ggccgcgtc tgccggcgcc tgctctgcgc ccccagcctc 60
ctcgccgcggcc tggatatctg ttccaaaaac ccctgcccaca acgggtggttt atgcgaggag 120
atttcccaag aagtgcgagg agatgtcttc ccctcgtaca cctgcacgtg ccttaagggc 180
tacgcgggca accactgtga gacgaaatgt gtcgagccac tgggcattgga gaatgggaac 240
attgccaact cacagatcgc cgcctcatct gtgcgtgtga ctttcttggg tttgcagcat 300
tgggtccccgg agctggcccg cctgaaccgc gcaggcatgg tcaatgcctg gacacccagc 360
agcaatgaacg ataacccctg gatccaggtg aacctgctgc ggaggatgtg ggtaacaggt 420
gtggtgacgc aggggtgccag ccgcttggcc agtcatgagt acctgaaggc cttcaagggt 480
gcctacagcc ttaatggaca cgaattcgat ttcatccatg atgttaataa aaaacacaag 540
gagtttggtaactggaa caaaaacgcg gtgcgtgtca acctgtttga gaccctgtg 600
gaggctcagt acgtgagatt gtacccacg agctgccaca cggcctgcac tctgcgttt 660
gagctactgg gctgtgagct gaacggatgc gccaatcccc tgggcctgaa gaataacagc 720
atccctgaca agcagatcac ggcctccagc agtacaaga cctggggctt gcatctcttc 780
agctggAACCC cctccatgc acggctggac aaggcaggca acttcaacgc ctgggttgcg 840
ggagactacg gtaacgatca gtggctgcag gtggacctgg gctcctcgaa ggaggtgaca 900
  
```

ggcatcatca cccagggggc ccgtaacttt ggctctgtcc agtttgc 960
 gttgcctaca gtaatgacag tgcaactgg actgagttacc aggaccccag gactggc 1020
 agtaagatct tccctggcaa ctgggacaac cactcccaca agaagaacctt gtttgagacg 1080
 cccatcctgg ctgcatacg gcgcatacctg cctgttagcct ggcacaaccg catcgccctg 1140
 cgccctggagc tgctggcgtg ttag 1164

<210> 4
<211> 2036
<212> DNA
<213> Homo sapiens

<400> 4
 agaactcagc cagtttcttgc ttccgtgcc cctggttctc ctcacatcg agcccacccc 60
 tcctttccca ctttcagtca cccctagtga actgccccag cgatctctgc tggcttgac 120
 cccgagggtc ttccaccctc gcccgtaccc tggacactgc ccagcttgc ccccaatctt 180
 gtcctggca caatgcctc tagccagcca accttccctc ccccaaccct gggccgc 240
 cagggttcttgc ggcactgtcc tgggtgtact ggcagccctg tccttcctag 300
 agggactgga acctaattctt cctgaggctg agggagggtg gagggtctca aggcaacgct 360
 ggcacccacga cggagtgcga ggacactaa cagtcacccctt agttgtctt ctcctccct 420
 ctttttattt ttcaagttcc tttttatcc tccttgcgtt acaacccctt tcccttcgtc 480
 accactgccc gtacccttac ccggccgc accttcctgc tacccactc ttgaaaccac 540
 agctgttggc agggtccccca gtcacatggca gcctcatctc ctttcttgct agccccc 600
 gggcctccag gcaacatggg gggcccaagtc agagagccgg cactctcgt tgccctctgg 660
 tttagttggg gggcagctct gggggccgtg gcttgcgtt tggctctgtc gaccaacaa 720
 acagagctgc agagcctcag gagagaggtg agccggctgc aggggacagg agggccctcc 780
 cagaatgggg aagggtatcc ctggcagat ctcggcggagc agatccgt tgccctggaa 840
 gcttgggaga gtggggagag atcccgaaa aggagagcag tgctcacca aaaacagaag 900
 aatgactccg atgtgacaga ggtgatgtgg caaccagctc tttagcgtgg gagaggccta 960
 caggcccaag gatatgggtt ccgaatccag gatgctggag tttatctgtc gtatagccag 1020
 gtcctgtttc aagacgtgac tttcaccatg ggtcagggtgg tgtctcgaga aggccaagga 1080
 agcaggaga ctctattccg atgtataaga agtatgcctt cccacccggc cccggccctac 1140
 aacagctgtc atagcgcagg tgccttcattt ttacaccaag gggatattct gagtgtcata 1200
 attccccggg caagggcgaa acttaaccc tctccacatg gaaccccttcc ggggtttgt 1260
 aaactgtgtat tgcgttataa aaagtggctc ccagcttggc agaccagggt gggtacatac 1320
 tggagacagc caagagctga gtatataaag gagagggaaat gtgcaggaac agaggcgtct 1380
 tcctgggtt ggctcccccgt tcctcacttt tccctttca ttcccacccccc ctagacttg 1440
 attttacggc tatcttgctt ctgttccccca tggagctccg aattcttgct tgcgtttaga 1500
 tgagggccgg gggacggccg ccaggcattt tccagacctg gtcggggccc actggaagca 1560
 tccagaacag caccaccatc tagcggccgc tcgagggaaat caccggccgg ttggccgaag 1620
 tccacgaagc cgcctctgc tagggaaaac ccctgggttcc ccatgccaca cctctctca 1680
 ggtgcccttc gcctcttcac cccacaagaa gccttacatc acgtcccttc ctccatctat 1740
 cggaccccaag ttccatcac tatctccaga gatgtgtacta ttatgcgtcc gtctacagg 1800
 ggtgcccgac gatgacggtg ctttcgtactt caaattactt ttccgggtccc aagggttggc 1860
 ttccacgcgc tccattggcc cggcgtggca ggccattcca agcccttccg ggctggaaact 1920
 ggtgtcgag gagcctcggtt gttatcgatc gccctgggtt tgggtttggcc tcactcctt 1980
 gagcttttctt ttctgatcaa gccctgttta aagttaaata aaatagaatg aatgt 2036

<210> 5
<211> 250
<212> PRT
<213> Homo sapiens

<400> 5
 Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro Gly
 1 5 10 15

Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala Leu Trp
 20 25 30

 Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala Met Ala Leu
 35 40 45

 Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg Glu Val Ser Arg
 50 55 60

 Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly Glu Gly Tyr Pro Trp
 65 70 75 80

 Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala Leu Glu Ala Trp Glu Asn
 85 90 95

 Gly Glu Arg Ser Arg Lys Arg Arg Ala Val Leu Thr Gln Lys Gln Lys
 100 105 110

 Lys Gln His Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser Lys
 115 120 125

 Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg Arg
 130 135 140

 Gly Arg Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp Ala
 145 150 155 160

 Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe Gln Asp Val Thr Phe
 165 170 175

 Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu Thr
 180 185 190

 Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala Tyr
 195 200 205

 Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp Ile
 210 215 220

 Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser Pro
 225 230 235 240

 His Gly Thr Phe Leu Gly Phe Val Lys Leu
 245 250

<210> 6
 <211> 2241
 <212> DNA
 <213> Homo sapiens

<400> 6
 cacatggttt aagaagcatc attatggctt ttgtgtgtt tggtgtgtgt ggctgtgaag 60
 ctcaggaaat ttagtttaag cttctgaaaa gcccaccaat atgtattttag aattctgttg 120
 tcccatatct tagtcatctc aatgtttctc atttctaact ttaaaaacatg tcaattaaaa 180
 aaattcagta tatcattaat ttgcgtctaaa atgtcacata aatctctgac ataatttgg 240
 ttttaaacaa taaccaataa tttgggttta tttatgtgat gagaataaca actggtattt 300
 attgtctata cttatgcaat tttatagatg gagtttaac attgaatgcg gagaacacta 360

attatgccta tcaagttcca aacttccata aatgtgaaat ctgtctacta tctttccaa 420
 aagaatccca gtttcaacgc cacatgaggg atcacgagcg aaatgacaag ccacatcgat 480
 gtgaccagtg cccccaaaca ttaatgtt aatcaacct gacacttcat aaatgcaccc 540
 acagcgggga agatcctacc tgccctgtgt gtaacaagaa attctccaga gtggctagtc 600
 tcaaagcgc tattatgcta catgaaaagg aagagaatct catctgttct gagtggtggg 660
 gtgagttac tctgcagagt cagctggccg tgcacatgga ggagcaccgc caggagctgg 720
 ctggAACCCG gcagcatgcc tgcaaggcct gcaagaaaaga gttcgagacc tcctcgagc 780
 tgaaggaaca catgaagact cattacaaaa ttagggtatc aagtacaagg tcttataacc 840
 ggaatatcg aagaatgttca ttacgtt cgtgtccgc ctgtggaaag acgtttcaaa 900
 agccaagcca gttaacgcga cacattagga tacacacagg taaaaggccg ttcaaataatgt 960
 gtgaatgtgg aaaggctttt aaccagaagg gggcactgca gaccacatg atcaagcaca 1020
 caggtgaaaa accccatgcc tggtcctct gtctgcgc cttctctcag aaagggaaatc 1080
 ttcatcgca cgtgcagcga gtccactcag aggtcaagaa tggcttacc tataactgt 1140
 cagaatgttag ttgtgtttaaaa aggtttag gcacgttac cacgcatac agcaagatgc 1200
 atatgggtgg gccacagaat tcaacaagtt ctacagagac tgctcatgtt ttaacggcca 1260
 cacttttca gacgttaccc ttcaacaga cgaaagccc agccacgtcg gcctcaagcc 1320
 agccgagctc ccaggcggg agcgcacgtca tccagcagct cctggagctc tcagagccgg 1380
 cggcgggtgg gtcggggcag tccccgcagc ctgggcagca gctgagcatac acagtgggca 1440
 tcaaccagga cattttacag caagccttag aaaacagtgg gctgtttca attccagctg 1500
 cagcacatcc taatgactcc tgccatgccca agacctctgc accacacgct caaaacccag 1560
 atgtttccag cgtttcaat gagcagacgg accccacaga cgcagagcaa gaaaaagaac 1620
 agaaaagccc ggagaaaactg gataaaaaaaaaaaaaaaag ggccacatgt gctcgagctg 1680
 caggtcgcgg cgcctagact agtctagaga aaaaacctcc cacacctccc cctgaacctg 1740
 aaacataaaa tgaatgcaat tgggttgg aacttggta ttgcagctt taatggttac 1800
 aaataaaagca atagcatcac aaatttccaca aataaagcat ttttttact gcattctagt 1860
 tgggtttgt ccaaactcat caatgtatct tatcatgtct ggatccccgg gtaccgagct 1920
 cgaattaatt cctttccgc ttccctcgctc actgactcgc tgctcggt cggtcggctg 1980
 cggcgagcgg tatcagctca ctcaaaggcg gtaatacggg tattccacaga atcagggat 2040
 aacgcaggaa agaacatgtg agcaaaaaggc cagaaaaagg ccaggaaccg taaaaaggcc 2100
 gcgttgctgg cgtttcca taggctcgc cccctgacg agcatcaca aaatcgacgc 2160
 tcaagtca ggtggcgaac cccgacagga ctataaagat accaggcggtt tccccctgga 2220
 agctccctcg tgctcgatcc t 2241

<210> 7
 <211> 472
 <212> PRT
 <213> Homo sapiens

<400> 7
 Met Arg Ile Thr Thr Gly Ile Tyr Cys Leu Tyr Leu Cys Asn Phe Ile
 1 5 10 15

Asp Gly Val Leu Thr Leu Asn Ala Glu Asn Thr Asn Tyr Ala Tyr Gln
 20 25 30

Val Pro Asn Phe His Lys Cys Glu Ile Cys Leu Leu Ser Phe Pro Lys
 35 40 45

Glu Ser Gln Phe Gln Arg His Met Arg Asp His Glu Arg Asn Asp Lys
 50 55 60

Pro His Arg Cys Asp Gln Cys Pro Gln Thr Phe Asn Val Glu Phe Asn
 65 70 75 80

Leu Thr Leu His Lys Cys Thr His Ser Gly Glu Asp Pro Thr Cys Pro
 85 90 95

Val Cys Asn Lys Lys Phe Ser Arg Val Ala Ser Leu Lys Ala His Ile
 100 105 110
 Met Leu His Glu Lys Glu Glu Asn Leu Ile Cys Ser Glu Cys Gly Gly
 115 120 125
 Glu Phe Thr Leu Gln Ser Gln Leu Ala Val His Met Glu Glu His Arg
 130 135 140
 Gln Glu Leu Ala Gly Thr Arg Gln His Ala Cys Lys Ala Cys Lys Lys
 145 150 155 160
 Glu Phe Glu Thr Ser Ser Glu Leu Lys Glu His Met Lys Thr His Tyr
 165 170 175
 Lys Ile Arg Val Ser Ser Thr Arg Ser Tyr Asn Arg Asn Ile Asp Arg
 180 185 190
 Ser Gly Phe Thr Tyr Ser Cys Pro His Cys Gly Lys Thr Phe Gln Lys
 195 200 205
 Pro Ser Gln Leu Thr Arg His Ile Arg Ile His Thr Gly Glu Arg Pro
 210 215 220
 Phe Lys Cys Ser Glu Cys Gly Lys Ala Phe Asn Gln Lys Gly Ala Leu
 225 230 235 240
 Gln Thr His Met Ile Lys His Thr Gly Glu Lys Pro His Ala Cys Ala
 245 250 255
 Phe Cys Pro Ala Ala Phe Ser Gln Lys Gly Asn Leu Gln Ser His Val
 260 265 270
 Gln Arg Val His Ser Glu Val Lys Asn Gly Pro Thr Tyr Asn Cys Thr
 275 280 285
 Glu Cys Ser Cys Val Phe Lys Ser Leu Gly Ser Leu Asn Thr His Ile
 290 295 300
 Ser Lys Met His Met Gly Gly Pro Gln Asn Ser Thr Ser Ser Thr Glu
 305 310 315 320
 Thr Ala His Val Leu Thr Ala Thr Leu Phe Gln Thr Leu Pro Leu Gln
 325 330 335
 Gln Thr Glu Ala Gln Ala Thr Ser Ala Ser Ser Gln Pro Ser Ser Gln
 340 345 350
 Ala Val Ser Asp Val Ile Gln Gln Leu Leu Glu Leu Ser Glu Pro Ala
 355 360 365
 Pro Val Glu Ser Gly Gln Ser Pro Gln Pro Gly Gln Gln Leu Ser Ile
 370 375 380
 Thr Val Gly Ile Asn Gln Asp Ile Leu Gln Gln Ala Leu Glu Asn Ser
 385 390 395 400

Gly Leu Ser Ser Ile Pro Ala Ala Ala His Pro Asn Asp Ser Cys His
 405 410 415

Ala Lys Thr Ser Ala Pro His Ala Gln Asn Pro Asp Val Ser Ser Val
 420 425 430

Ser Asn Glu Gln Thr Asp Pro Thr Asp Ala Glu Gln Glu Lys Glu Gln
 435 440 445

Glu Ser Pro Glu Lys Leu Asp Lys Lys Lys Arg Ala Thr Cys
 450 455 460

Ala Arg Ala Ala Gly Arg Gly Arg
 465 470

<210> 8
<211> 1419
<212> DNA
<213> Homo sapiens

<400> 8
atgagaataa caactggat ttattgtcta tacttatgca attttataga tggagttta 60
acattgaatg cggagaacac taattatgcc tatcaagttc caaacttcca taaatgtgaa 120
atctgtctac tatctttcc aaaagaatcc cagttcaac gccacatgag ggatcacgag 180
cgaaatgaca agccacatcg atgtgaccag tgcccccaa catttaatgt tgaattcaac 240
ctgacacttc ataaatgcac ccacagcggg gaagatccta cctgcccgt gtgtacaag 300
aaattctcca gagtggctag tctcaaagcg catattatgc tacatgaaaa ggaagagaat 360
ctcatctgtt ctgagtgtgg gggtagttt actctgcaga gtcagctggc cgtgcacatg 420
gaggaggcacc gccaggagct ggctggaacc cggcagcatg cctgcaaggc ctgcaagaaa 480
gagttcgaga cctcctcggc gctgaagaa cacatgaaga ctcattacaa aattaggta 540
tcaagtacaa ggtcttataa ccggaatatc gacagaagtg gattcacgta ttcgtgtccg 600
cactgtggaa agacgttca aaagccaagc cagttAACgc gacacattag gatacacaca 660
ggtagaaaggc cgttcaatg tagtgaatgt ggaaaggctt ttaaccagaa gggggcactg 720
cagaccacata tgatcaagca cacaggtgaa aaaccccatg cctgtgcctt ctgtcctgcc 780
gccttctctc agaaaggaa tcttcagtcg cacgtgcagc gagtcactc agaggtcaag 840
aatggtccta cctataactg tacagaatgt agttgttat ttaaaagttt aggtagctt 900
aacacgcata tcagcaagat gcatatggg gggccacaga attcaacaag ttctacagag 960
actgctcatg ttttaacggc cacactttt cagacgttac ctcttcaaca gacggaagcc 1020
caagccacgt cggcctcaag ccagccgagc tcccaaggcg tgagcgacgt catccagcag 1080
ctccctggagc tctcagagcc ggcgcccgtg gagtcggggc agtccccca gcctgggcag 1140
cagctgagca tcacagtggg catcaaccag gacattttac agcaagcctt agaaaacagt 1200
gggctgtctt caattccagc tgcagcacat cctaatgact cctgccatgc caagacctt 1260
gcaccacacg ctcaaaaaccc agatgttcc agcgttcaa atgagcagac ggaccccaca 1320
gacgcagagc aagaaaaaga acagggaaagc ccggagaaac tggataaaaa aaaaaaaaaa 1380
agggccacat gtgctcgagc tgcaggtcgc ggccgctag 1419

<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 9 aaccccctgcc acaacggtgg t	21
<210> 10 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 10 aaccccugcc acaacggugg u	21
<210> 11 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 11 aaccactgtg agacgaaatg t	21
<210> 12 <211> 21 <212> RNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 12 aaccacugug agacgaaaug u	21
<210> 13 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 13 aactgccccca gcgatctctg c	21

<210> 14
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 14
aacugccca gcgaucucug c

21

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 15
aacctaattc tcctgaggct g

21

<210> 16
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 16
aaccuaauuc uccugaggcu g

21

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 17
aatgcggaga acactaatta t

21

<210> 18
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 18
aaugcggaga acacuaauua u

21

<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 19
aatgacaagg cacatcgatg t

21

<210> 20
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 20
aaugacaagg cacaucgaug u

21

<210> 21
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 21
aagctggaca ttccctctgc g

21

<210> 22
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 22
aagagcccaag ctccctgcag c

21

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 23
aactgtttag gagcccatgg a 21

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 24
aatctgatga tgaagctgca g 21

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 25
aagagcccaag cttcctgcag c 21

<210> 26
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 26
aagctggaca ttccctctgc g 21

<210> 27
<211> 152
<212> PRT
<213> Homo sapiens

<400> 27
 Ala Leu Arg Asn Trp Gln Val Tyr Arg Leu Val Thr Tyr Ile Phe Val
 1 5 10 15
 Tyr Glu Asn Pro Ile Ser Leu Leu Cys Gly Ala Ile Ile Ile Trp Arg
 20 25 30
 Phe Ala Gly Asn Phe Glu Arg Thr Val Gly Thr Val Arg His Cys Phe
 35 40 45
 Phe Thr Val Ile Phe Ala Ile Phe Ser Ala Ile Ile Phe Leu Ser Phe
 50 55 60
 Glu Ala Val Ser Ser Leu Ser Lys Leu Gly Glu Val Glu Asp Ala Arg
 65 70 75 80
 Gly Phe Thr Pro Val Ala Phe Ala Met Leu Gly Val Thr Thr Val Arg
 85 90 95
 Ser Arg Met Arg Arg Ala Leu Val Phe Gly Met Val Val Pro Ser Val
 100 105 110
 Leu Val Pro Trp Leu Leu Leu Gly Ala Ser Trp Leu Ile Pro Gln Thr
 115 120 125
 Ser Phe Leu Ser Asn Val Cys Gly Leu Ser Ile Gly Leu Ala Tyr Ala
 130 135 140
 His Leu Leu Leu Phe His Arg Pro
 145 150

<210> 28
<211> 152
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 28
 Leu Leu Gln Lys Arg Gln Leu Tyr Glu Ile Ile Thr Tyr Val Thr Leu
 1 5 10 15
 His Leu Ser Met Leu His Ile Val Phe Asn Phe Val Ser Leu Leu Pro
 20 25 30
 Ala Met Ser Gln Phe Glu Lys Lys Gln Gly Thr Leu Ala Cys Ile Leu
 35 40 45
 Val Thr Val Ile Pro Tyr Thr Leu Phe Pro Gly Ile Met His Leu Ile
 50 55 60
 Val Tyr His Phe Phe Leu Arg Lys Asp Tyr Val Ser Ile Ala Gly Leu
 65 70 75 80
 Ser Gly Trp Ala Phe Ala Phe Ile Ser Ala Ser Cys Val His Ser Pro
 85 90 95

Gln Arg Leu Ile Ser Phe Phe Asn Leu Phe Ser Ile Pro Ala Tyr Cys
 100 105 110

Phe Pro Ile Ile Tyr Leu Ile Met Thr Thr Ile Leu Val Pro Lys Ala
 115 120 125

Ser Phe Ile Gly His Ala Ser Gly Ala Val Met Gly Tyr Cys Thr Pro
 130 135 140

Phe Met Leu Gly Ser Ile Pro Leu
 145 150

<210> 29

<211> 145

<212> PRT

<213> Schizosaccharomyces pombe

<400> 29

Pro Arg Ser Leu Glu Gly Leu Arg Gly Ile Val Phe Ala Pro Phe Leu
 1 5 10 15

His Ala Asp Phe Gly His Leu Ile Ala Asn Ser Val Pro Phe Val Val
 20 25 30

Leu Ala Trp Leu Val Met Leu Gln Glu Val Ser Asp Phe Trp Ile Val
 35 40 45

Thr Ile Ile Thr Met Val Val Gly Gly Leu Gly Val Trp Leu Ile Ala
 50 55 60

Pro Pro Asn Thr Val Thr Val Gly Ala Ser Ile Leu Ile Phe Gly Tyr
 65 70 75 80

Leu Gly Phe Leu Leu Phe Arg Gly Trp Phe Gln Lys Asn Leu Ala Ser
 85 90 95

Ile Val Leu Ser Ile Val Val Leu Val Leu Tyr Gly Ser Ala Leu Trp
 100 105 110

Gly Leu Leu Pro Gly Arg Ala Gly Val Ser Trp Gln Gly His Leu Phe
 115 120 125

Gly Phe Ile Gly Gly Ala Ile Ala Ala Trp Leu Ile Ala Arg Glu Lys
 130 135 140

His
 145

<210> 30

<211> 145

<212> PRT

<213> Saccharomyces cerevisiae

<400> 30

Ser Lys Ser Asn Ala Arg Pro Val Val Ala Ile Gly Asp Ser Asp Ile
 1 5 10 15

Tyr Ser Tyr Arg Leu Trp Ser Phe Phe Cys Gln Trp Ile Asn Thr Ile
 20 25 30

Phe Cys Trp Ser Asn Arg Arg Pro Leu Gly Leu Thr Pro Phe Leu
 35 40 45

Leu Leu Tyr Val Leu Ser Gly Val Met Gly Asn Ala Phe Thr Phe Trp
 50 55 60

Leu Thr Pro Glu Thr Val Ala Ala Gly Ala Ser Thr Ser Leu Phe Gly
 65 70 75 80

Leu Phe Ala Ala Ile Val Val Leu Ser Phe Leu Gly Lys Asn Gln Ala
 85 90 95

Leu Lys Asp Leu Gly Lys Ser Tyr Gln Thr Leu Ile Val Val Asn Leu
 100 105 110

Leu Met Asn Leu Phe Met Pro Asn Val Ser Met Ala Gly His Ile Gly
 115 120 125

Gly Val Val Gly Gly Ala Leu Leu Ser Ile Val Phe Pro Thr Lys Met
 130 135 140

Arg
 145

<210> 31
 <211> 156
 <212> PRT
 <213> Homo sapiens

<400> 31
 Pro Glu Lys Arg Glu Glu Ala Trp Arg Phe Ile Ser Tyr Met Leu Val
 1 5 10 15

His Ala Gly Val Gln His Ile Leu Gly Asn Leu Cys Met Gln Leu Val
 20 25 30

Leu Gly Ile Pro Leu Glu Met Val His Lys Gly Leu Arg Val Gly Leu
 35 40 45

Val Tyr Leu Ala Gly Val Ile Ala Gly Ser Leu Ala Ser Ser Ile Phe
 50 55 60

Asp Pro Leu Arg Tyr Leu Val Gly Ala Ser Gly Gly Val Tyr Ala Leu
 65 70 75 80

Met Gly Gly Tyr Phe Met Asn Val Leu Val Asn Phe Gln Glu Met Ile
 85 90 95

Pro Ala Phe Gly Ile Phe Arg Leu Leu Ile Ile Leu Ile Ile Val
 100 105 110

Leu Asp Met Gly Phe Ala Leu Tyr Arg Arg Phe Phe Val Pro Glu Asp
 115 120 125

Gly Ser Pro Val Ser Phe Ala Ala His Ile Ala Gly Gly Phe Ala Gly
 130 135 140

Met Ser Ile Gly Tyr Thr Val Phe Ser Cys Phe Asp
 145 150 155

<210> 32
 <211> 145
 <212> PRT
 <213> Escherichia coli

<400> 32
 Pro Thr Leu Lys Phe Glu Phe Trp Arg Tyr Phe Thr His Ala Leu Met
 1 5 10 15

His Phe Ser Leu Met His Ile Leu Phe Asn Leu Leu Trp Trp Trp Tyr
 20 25 30

Leu Gly Gly Ala Val Glu Lys Arg Leu Gly Ser Gly Lys Leu Ile Val
 35 40 45

Ile Arg Ser Ile Ser Ala Leu Leu Ser Gly Tyr Val Gln Gln Lys Phe
 50 55 60

Ser Gly Pro Trp Phe Gly Gly Leu Ser Gly Val Val Tyr Ala Leu Met
 65 70 75 80

Gly Tyr Val Trp Leu Arg Gly Glu Arg Asp Pro Gln Ser Gly Ile Tyr
 85 90 95

Leu Gln Arg Gly Leu Ile Ile Phe Ala Leu Ile Trp Ile Val Ala Gly
 100 105 110

Trp Phe Asp Leu Phe Gly Met Ser Met Ala Asn Gly Ala His Ile Ala
 115 120 125

Gly Leu Ala Val Gly Leu Ala Met Ala Phe Val Asp Ser Leu Asn Ala
 130 135 140

Arg
 145

<210> 33
 <211> 157
 <212> PRT
 <213> Homo sapiens

<400> 33
 Ser Asn Pro Ala Ser Lys Val Leu Cys Ser Pro Met Leu Leu Ser Thr
 1 5 10 15

Phe Ser His Phe Ser Leu Phe His Met Ala Ala Asn Met Tyr Val Leu
 20 25 30

Trp Ser Phe Ser Ser Ser Ile Val Asn Ile Leu Gly Gln Glu Gln Phe
 35 40 45

 Met Ala Val Tyr Leu Ser Ala Gly Val Ile Ser Asn Phe Val Ser Tyr
 50 55 60

 Leu Gly Lys Val Ala Thr Gly Arg Tyr Gly Pro Ser Leu Gly Ala Ser
 65 70 75 80

 Gly Ala Ile Met Thr Val Leu Ala Ala Val Cys Thr Lys Ile Pro Glu
 85 90 95

 Gly Arg Leu Ala Ile Ile Phe Leu Pro Met Phe Thr Phe Thr Ala Gly
 100 105 110

 Asn Ala Leu Lys Ala Ile Ile Ala Met Asp Thr Ala Gly Met Ile Leu
 115 120 125

 Gly Trp Lys Phe Phe Asp His Ala Ala His Leu Gly Gly Ala Leu Phe
 130 135 140

 Gly Ile Trp Tyr Val Thr Tyr Gly His Glu Leu Ile Trp
 145 150 155

<210> 34
 <211> 142
 <212> PRT
 <213> Sulfolobus solfataricus

<400> 34
 Tyr Leu Val Ile Lys Gly Tyr Tyr Ser Glu Leu Phe Thr Ser Ile Phe
 1 5 10 15

 Ile Thr Asn Ser Phe Val Asp Phe Ile Phe Asn Phe Ile Ser Leu Tyr
 20 25 30

 Val Ile Tyr Leu Ile Phe Gly Ser Arg Ala Gly Lys His Glu Tyr Gly
 35 40 45

 Ile Phe Ile Leu Ala Gly Ile Leu Gly Asn Leu Leu Thr Val Ile Phe
 50 55 60

 Tyr Ser Pro Phe Thr Leu Ser Ser Gly Ala Ser Gly Gly Ile Phe Gly
 65 70 75 80

 Leu Leu Ser Tyr Tyr Thr Phe Tyr Asp Phe Leu Lys Lys Asp Asn Leu
 85 90 95

 Gly Val Tyr Gly Leu Val Phe Leu Val Ser Val Phe Gly Val Ser Asp
 100 105 110

 Leu Ile Phe Pro Asn Val Asn Val Val Ala His Ile Gly Gly Ile Leu
 115 120 125

 Gly Gly Ile Met Tyr Ala Val Val Tyr Tyr Leu Ile Arg Ser
 130 135 140

<210> 35
<211> 156
<212> PRT
<213> Arabidopsis thaliana

<400> 35
Ile Phe Lys His Lys Asp Leu Lys Arg Leu Phe Leu Ser Ala Phe Tyr
1 5 10 15
His Val Asn Glu Pro His Leu Val Tyr Asn Met Met Ser Leu Leu Trp
20 25 30
Lys Gly Ile Lys Leu Glu Thr Ser Met Gly Ser Ser Glu Phe Ala Ser
35 40 45
Met Val Phe Thr Leu Ile Gly Met Ser Gln Gly Val Thr Leu Leu Leu
50 55 60
Ala Lys Ser Leu Leu Leu Phe Asp Tyr Asp Arg Ala Tyr Tyr Asn
65 70 75 80
Glu Tyr Ala Val Gly Phe Ser Gly Val Leu Phe Ala Met Lys Val Val
85 90 95
Leu Asn Ser Gln Ala Glu Asp Tyr Ser Ser Val Tyr Gly Ile Leu Val
100 105 110
Pro Thr Lys Tyr Ala Ala Trp Ala Glu Leu Ile Leu Val Gln Met Phe
115 120 125
Val Pro Asn Ala Ser Phe Leu Gly His Leu Gly Gly Ile Leu Ala Gly
130 135 140
Ile Ile Tyr Leu Lys Leu Lys Gly Ser Tyr Ser Gly
145 150 155

<210> 36
<211> 10
<212> DNA
<213> Homo sapiens

<400> 36
tggccaataaa 10

<210> 37
<211> 854
<212> PRT
<213> Homo sapiens

<400> 37
Met Ser Glu Ala Arg Arg Asp Ser Thr Ser Ser Leu Gln Arg Lys Lys
1 5 10 15
Pro Pro Trp Leu Lys Leu Asp Ile Pro Ser Ala Val Pro Leu Thr Ala
20 25 30

Glu Glu Pro Ser Phe Leu Gln Pro Leu Arg Arg Gln Ala Phe Leu Arg
 35 40 45

Ser Val Ser Met Pro Ala Glu Thr Ala His Ile Ser Ser Pro His His
 50 55 60

Glu Leu Arg Arg Pro Val Leu Gln Arg Gln Thr Ser Ile Thr Gln Thr
 65 70 75 80

Ile Arg Arg Gly Thr Ala Asp Trp Phe Gly Val Ser Lys Asp Ser Asp
 85 90 95

Ser Thr Gln Lys Trp Gln Arg Lys Ser Ile Arg His Cys Ser Gln Arg
 100 105 110

Tyr Gly Lys Leu Lys Pro Gln Val Leu Arg Glu Leu Asp Leu Pro Ser
 115 120 125

Gln Asp Asn Val Ser Leu Thr Ser Thr Glu Thr Pro Pro Pro Leu Tyr
 130 135 140

Val Gly Pro Cys Gln Leu Gly Met Gln Lys Ile Ile Asp Pro Leu Ala
 145 150 155 160

Arg Gly Arg Ala Phe Arg Val Ala Asp Asp Thr Ala Glu Gly Leu Ser
 165 170 175

Ala Pro His Thr Pro Val Thr Pro Gly Ala Ala Ser Leu Cys Ser Phe
 180 185 190

Ser Ser Ser Arg Ser Gly Phe His Arg Leu Pro Arg Arg Arg Lys Arg
 195 200 205

Glu Ser Val Ala Lys Met Ser Phe Arg Ala Ala Ala Leu Met Lys
 210 215 220

Gly Arg Ser Val Arg Asp Gly Thr Phe Arg Arg Ala Arg Arg Ser Phe
 225 230 235 240

Thr Pro Ala Ser Phe Leu Glu Glu Asp Thr Thr Asp Phe Pro Asp Glu
 245 250 255

Leu Asp Thr Ser Phe Phe Ala Arg Glu Gly Ile Leu His Glu Glu Leu
 260 265 270

Ser Thr Tyr Pro Asp Glu Val Phe Glu Ser Pro Ser Glu Ala Ala Leu
 275 280 285

Lys Asp Trp Glu Lys Ala Pro Glu Gln Ala Asp Leu Thr Gly Gly Ala
 290 295 300

Leu Asp Arg Ser Glu Leu Glu Arg Ser His Leu Met Leu Pro Leu Glu
 305 310 315 320

Arg Gly Trp Arg Lys Gln Lys Glu Gly Ala Ala Ala Pro Gln Pro Lys
 325 330 335

Val Arg Leu Arg Gln Glu Val Val Ser Thr Ala Gly Pro Arg Arg Gly
 340 345 350

Gln Arg Ile Ala Val Pro Val Arg Lys Leu Phe Ala Arg Glu Lys Arg
 355 360 365

Pro Tyr Gly Leu Gly Met Val Gly Arg Leu Thr Asn Arg Thr Tyr Arg
 370 375 380

Lys Arg Ile Asp Ser Phe Val Lys Arg Gln Ile Glu Asp Met Asp Asp
 385 390 395 400

His Arg Pro Phe Phe Thr Tyr Trp Leu Thr Phe Val His Ser Leu Val
 405 410 415

Thr Ile Leu Ala Val Cys Ile Tyr Gly Ile Ala Pro Val Gly Phe Ser
 420 425 430

Gln His Glu Thr Val Asp Ser Val Leu Arg Asn Arg Gly Val Tyr Glu
 435 440 445

Asn Val Lys Tyr Val Gln Gln Glu Asn Phe Trp Ile Gly Pro Ser Ser
 450 455 460

Glu Ala Leu Ile His Leu Gly Ala Lys Phe Ser Pro Cys Met Arg Gln
 465 470 475 480

Asp Pro Gln Val His Ser Phe Ile Arg Ser Ala Arg Glu Arg Glu Lys
 485 490 495

His Ser Ala Cys Cys Val Arg Asn Asp Arg Ser Gly Cys Val Gln Thr
 500 505 510

Ser Glu Glu Glu Cys Ser Ser Thr Leu Ala Val Trp Val Lys Trp Pro
 515 520 525

Ile His Pro Ser Ala Pro Glu Leu Ala Gly His Lys Arg Gln Phe Gly
 530 535 540

Ser Val Cys His Gln Asp Pro Arg Val Cys Asp Glu Pro Ser Ser Glu
 545 550 555 560

Asp Pro His Glu Trp Pro Glu Asp Ile Thr Lys Trp Pro Ile Cys Thr
 565 570 575

Lys Asn Ser Ala Gly Asn His Thr Asn His Pro His Met Asp Cys Val
 580 585 590

Ile Thr Gly Arg Pro Cys Cys Ile Gly Thr Lys Gly Arg Cys Glu Ile
 595 600 605

Thr Ser Arg Glu Tyr Cys Asp Phe Met Arg Gly Tyr Phe His Glu Glu
 610 615 620

Ala Thr Leu Cys Ser Gln Val His Cys Met Asp Asp Val Cys Gly Leu
 625 630 635 640

Leu Pro Phe Leu Asn Pro Glu Val Pro Asp Gln Phe Tyr Arg Leu Trp
 645 650 655

 Leu Ser Leu Phe Leu His Ala Gly Ile Leu His Cys Leu Val Ser Ile
 660 665 670

 Cys Phe Gln Met Thr Val Leu Arg Asp Leu Glu Lys Leu Ala Gly Trp
 675 680 685

 His Arg Ile Ala Ile Ile Tyr Leu Leu Ser Gly Val Thr Gly Asn Leu
 690 695 700

 Ala Ser Ala Ile Phe Leu Pro Tyr Arg Ala Glu Val Gly Pro Ala Gly
 705 710 715 720

 Ser Gln Phe Gly Ile Leu Ala Cys Leu Phe Val Glu Leu Phe Gln Ser
 725 730 735

 Trp Gln Ile Leu Ala Arg Pro Trp Arg Ala Phe Phe Lys Leu Leu Ala
 740 745 750

 Val Val Leu Phe Leu Phe Thr Phe Gly Leu Leu Pro Trp Ile Asp Asn
 755 760 765

 Phe Ala His Ile Ser Gly Phe Ile Ser Gly Leu Phe Leu Ser Phe Ala
 770 775 780

 Phe Leu Pro Tyr Ile Ser Phe Gly Lys Phe Asp Leu Tyr Arg Lys Arg
 785 790 795 800

 Cys Gln Ile Ile Ile Phe Gln Val Val Phe Leu Gly Leu Leu Ala Gly
 805 810 815

 Leu Val Val Leu Phe Tyr Val Tyr Pro Val Arg Cys Glu Trp Cys Glu
 820 825 830

 Phe Leu Thr Cys Ile Pro Phe Thr Asp Lys Phe Cys Glu Lys Tyr Glu
 835 840 845

 Leu Asp Ala Gln Leu His
 850

<210> 38
 <211> 292
 <212> PRT
 <213> Homo sapiens

<400> 38
 Met Asn Leu Asn Met Gly Arg Glu Met Lys Glu Glu Leu Glu Glu
 1 5 10 15

 Glu Lys Met Arg Glu Asp Gly Gly Lys Asp Arg Ala Lys Ser Lys
 20 25 30

 Lys Val His Arg Ile Val Ser Lys Trp Met Leu Pro Glu Lys Ser Arg
 35 40 45

Gly Thr Tyr Leu Glu Arg Ala Asn Cys Phe Pro Pro Pro Val Phe Ile
 50 55 60

Ile Ser Ile Ser Leu Ala Glu Leu Ala Val Phe Ile Tyr Tyr Ala Val
 65 70 75 80

Trp Lys Pro Gln Lys Gln Trp Ile Thr Leu Asp Thr Gly Ile Leu Glu
 85 90 95

Ser Pro Phe Ile Tyr Ser Pro Glu Lys Arg Glu Glu Ala Trp Arg Phe
 100 105 110

Ile Ser Tyr Met Leu Val His Ala Gly Val Gln His Ile Leu Gly Asn
 115 120 125

Leu Cys Met Gln Leu Val Leu Gly Ile Pro Leu Glu Met Val His Lys
 130 135 140

Gly Leu Arg Val Gly Leu Val Tyr Leu Ala Gly Val Ile Ala Gly Ser
 145 150 155 160

Leu Ala Ser Ser Ile Phe Asp Pro Leu Arg Tyr Leu Val Gly Ala Ser
 165 170 175

Gly Gly Val Tyr Ala Leu Met Gly Gly Tyr Phe Met Asn Val Leu Val
 180 185 190

Asn Phe Gln Glu Met Ile Pro Ala Phe Gly Ile Phe Arg Leu Leu Ile
 195 200 205

Ile Ile Leu Ile Ile Val Leu Asp Met Gly Phe Ala Leu Tyr Arg Arg
 210 215 220

Phe Phe Val Pro Glu Asp Gly Ser Pro Val Ser Phe Ala Ala His Ile
 225 230 235 240

Ala Gly Gly Phe Ala Gly Met Ser Ile Gly Tyr Thr Val Phe Ser Cys
 245 250 255

Phe Asp Lys Ala Leu Leu Lys Asp Pro Arg Phe Trp Ile Ala Ile Ala
 260 265 270

Ala Tyr Leu Ala Cys Val Leu Phe Ala Val Phe Phe Asn Ile Phe Leu
 275 280 285

Ser Pro Ala Asn
 290

<210> 39
 <211> .
 <212> PRT
 <213> Homo sapiens

<400> 39
 Met Ser Val Ala His Met Ser Leu Gln Ala Ala Ala Ala Leu Leu Lys
 1 5 10 15

Gly Arg Ser Val Leu Asp Ala Thr Gly Gln Arg Cys Arg Val Val Lys
 20 25 30

Arg Ser Phe Ala Phe Pro Ser Phe Leu Glu Glu Asp Val Val Asp Gly
 35 40 45

Ala Asp Thr Phe Asp Ser Ser Phe Phe Ser Lys Glu Glu Met Ser Ser
 50 55 60

Met Pro Asp Asp Val Phe Glu Ser Pro Pro Leu Ser Ala Ser Tyr Phe
 65 70 75 80

Arg Gly Ile Pro His Ser Ala Ser Pro Val Ser Pro Asp Gly Val Gln
 85 90 95

Ile Pro Leu Lys Glu Tyr Gly Arg Ala Pro Val Pro Gly Pro Arg Arg
 100 105 110

Gly Lys Arg Ile Ala Ser Lys Val Lys His Phe Ala Phe Asp Arg Lys
 115 120 125

Lys Arg His Tyr Gly Leu Gly Val Val Gly Asn Trp Leu Asn Arg Ser
 130 135 140

Tyr Arg Arg Ser Ile Ser Ser Thr Val Gln Arg Gln Leu Glu Ser Phe
 145 150 155 160

Asp Ser His Arg Pro Tyr Phe Thr Tyr Trp Leu Thr Phe Val His Val
 165 170 175

Ile Ile Thr Leu Leu Val Ile Cys Thr Tyr Gly Ile Ala Pro Val Gly
 180 185 190

Phe Ala Gln His Val Thr Thr Gln Leu Val Leu Arg Asn Lys Gly Val
 195 200 205

Tyr Glu Ser Val Lys Tyr Ile Gln Gln Glu Asn Phe Trp Val Gly Pro
 210 215 220

Ser Ser Ile Asp Leu Ile His Leu Gly Ala Lys Phe Ser Pro Cys Ile
 225 230 235 240

Arg Lys Asp Gly Gln Ile Glu Gln Leu Val Leu Arg Glu Arg Asp Leu
 245 250 255

Glu Arg Asp Ser Gly Cys Cys Val Gln Asn Asp His Ser Gly Cys Ile
 260 265 270

Gln Thr Gln Arg Lys Asp Cys Ser Glu Thr Leu Ala Thr Phe Val Lys
 275 280 285

Trp Gln Asp Asp Thr Gly Pro Pro Met Asp Lys Ser Asp Leu Gly Gln
 290 295 300

Lys Arg Thr Ser Gly Ala Val Cys His Gln Asp Pro Arg Thr Cys Glu
 305 310 315 320

Glu Pro Ala Ser Ser Gly Ala His Ile Trp Pro Asp Asp Ile Thr Lys
 325 330 335

 Trp Pro Ile Cys Thr Glu Gln Ala Arg Ser Asn His Thr Gly Phe Leu
 340 345 350

 His Met Asp Cys Glu Ile Lys Gly Arg Pro Cys Cys Ile Gly Thr Lys
 355 360 365

 Gly Ser Cys Glu Ile Thr Thr Arg Glu Tyr Cys Glu Phe Met His Gly
 370 375 380

 Tyr Phe His Glu Glu Ala Thr Leu Cys Ser Gln Val His Cys Leu Asp
 385 390 395 400

 Lys Val Cys Gly Leu Leu Pro Phe Leu Asn Pro Glu Val Pro Asp Gln
 405 410 415

 Phe Tyr Arg Leu Trp Leu Ser Leu Phe Leu His Ala Gly Val Val His
 420 425 430

 Cys Leu Val Ser Val Val Phe Gln Met Thr Ile Leu Arg Asp Leu Glu
 435 440 445

 Lys Leu Ala Gly Trp His Arg Ile Ala Ile Ile Phe Ile Leu Ser Gly
 450 455 460

 Ile Thr Gly Asn Leu Ala Ser Ala Ile Phe Leu Pro Tyr Arg Ala Glu
 465 470 475 480

 Val Gly Pro Ala Gly Ser Gln Phe Gly Leu Leu Ala Cys Leu Phe Val
 485 490 495

 Glu Leu Phe Gln Ser Trp Pro Leu Leu Glu Arg Pro Trp Lys Ala Phe
 500 505 510

 Leu Asn Leu Ser Ala Ile Val Leu Phe Leu Phe Ile Cys Gly Leu Leu
 515 520 525

 Pro Trp Ile Asp Asn Ile Ala His Ile Phe Gly Phe Leu Ser Gly Leu
 530 535 540

 Leu Leu Ala Phe Ala Phe Leu Pro Tyr Ile Thr Phe Gly Thr Ser Asp
 545 550 555 560

 Lys Tyr Arg Lys Arg Ala Leu Ile Leu Val Ser Leu Leu Ala Phe Ala
 565 570 575

 Gly Leu Phe Ala Ala Leu Val Leu Trp Leu Tyr Ile Tyr Pro Ile Asn
 580 585 590

 Trp Pro Trp Ile Glu His Leu Thr Cys Phe Pro Phe Thr Ser Arg Phe
 595 600 605

 Cys Glu Lys Tyr Glu Leu Asp Gln Val Leu His
 610 615

<210> 40
<211> 404
<212> PRT
<213> Homo sapiens

<400> 40
Met Gly Glu His Pro Ser Pro Gly Pro Ala Val Ala Ala Cys Ala Glu
1 5 10 15
Ala Glu Arg Ile Glu Glu Leu Glu Pro Glu Ala Glu Glu Arg Leu Pro
20 25 30
Ala Ala Pro Glu Asp His Trp Lys Val Leu Phe Asp Gln Phe Asp Pro
35 40 45
Gly Asn Thr Gly Tyr Ile Ser Thr Gly Lys Phe Arg Ser Leu Leu Glu
50 55 60
Ser His Ser Ser Lys Leu Asp Pro His Lys Arg Glu Val Leu Leu Ala
65 70 75 80
Leu Ala Asp Ser His Ala Asp Gly Gln Ile Gly Tyr Gln Asp Phe Val
85 90 95
Ser Leu Met Ser Asn Lys Arg Ser Asn Ser Phe Arg Gln Ala Ile Leu
100 105 110
Gln Gly Asn Arg Arg Leu Ser Ser Lys Ala Leu Leu Glu Glu Lys Gly
115 120 125
Leu Ser Leu Ser Gln Arg Leu Ile Arg His Val Ala Tyr Glu Thr Leu
130 135 140
Pro Arg Glu Ile Asp Arg Lys Trp Tyr Tyr Asp Ser Tyr Thr Cys Cys
145 150 155 160
Pro Pro Pro Trp Phe Met Ile Thr Val Thr Leu Leu Glu Val Ala Phe
165 170 175
Phe Leu Tyr Asn Gly Val Ser Leu Gly Gln Phe Val Leu Gln Val Thr
180 185 190
His Pro Arg Tyr Leu Lys Asn Ser Leu Val Tyr His Pro Gln Leu Arg
195 200 205
Ala Gln Val Trp Arg Tyr Leu Thr Tyr Ile Phe Met His Ala Gly Ile
210 215 220
Glu His Leu Gly Leu Asn Val Val Leu Gln Leu Leu Val Gly Val Pro
225 230 235 240
Leu Glu Met Val His Gly Ala Thr Arg Ile Gly Leu Val Tyr Val Ala
245 250 255
Gly Val Val Ala Gly Ser Leu Ala Val Ser Val Ala Asp Met Thr Ala
260 265 270

Pro Val Val Gly Ser Ser Gly Gly Val Tyr Ala Leu Val Ser Ala His
 275 280 285
 Leu Ala Asn Ile Val Met Asn Trp Ser Gly Met Lys Cys Gln Phe Lys
 290 295 300
 Leu Leu Arg Met Ala Val Ala Leu Ile Cys Met Ser Met Glu Phe Gly
 305 310 315 320
 Arg Ala Val Trp Leu Arg Phe His Pro Ser Ala Tyr Pro Pro Cys Pro
 325 330 335
 His Pro Ser Phe Val Ala His Leu Gly Gly Val Ala Val Gly Ile Thr
 340 345 350
 Leu Gly Val Val Val Leu Arg Asn Tyr Glu Gln Arg Leu Gln Asp Gln
 355 360 365
 Ser Leu Trp Trp Ile Phe Val Ala Met Tyr Thr Val Phe Val Leu Phe
 370 375 380
 Ala Val Phe Trp Asn Ile Phe Ala Tyr Thr Leu Leu Asp Leu Lys Leu
 385 390 395 400
 Pro Pro Pro Pro

<210> 41
 <211> 379
 <212> PRT
 <213> Homo sapiens

<400> 41
 Met Ala Trp Arg Gly Trp Ala Gln Arg Gly Trp Gly Cys Gly Gln Ala
 1 5 10 15

Trp Gly Ala Ser Val Gly Gly Arg Ser Cys Glu Glu Leu Thr Ala Val
 20 25 30

Leu Thr Pro Pro Gln Leu Leu Gly Arg Arg Phe Asn Phe Phe Ile Gln
 35 40 45

Gln Lys Cys Gly Phe Arg Lys Ala Pro Arg Lys Val Glu Pro Arg Arg
 50 55 60

Ser Asp Pro Gly Thr Ser Gly Glu Ala Tyr Lys Arg Ser Ala Leu Ile
 65 70 75 80

Pro Pro Val Glu Glu Thr Val Phe Tyr Pro Ser Pro Tyr Pro Ile Arg
 85 90 95

Ser Leu Ile Lys Pro Leu Phe Phe Thr Val Gly Phe Thr Gly Cys Ala
 100 105 110

Phe Gly Ser Ala Ala Ile Trp Gln Tyr Glu Ser Leu Lys Ser Arg Val
 115 120 125

Gln Ser Tyr Phe Asp Gly Ile Lys Ala Asp Trp Leu Asp Ser Ile Arg
 130 135 140

Pro Gln Lys Glu Gly Asp Phe Arg Lys Glu Ile Asn Lys Trp Trp Asn
 145 150 155 160

Asn Leu Ser Asp Gly Gln Arg Thr Val Thr Gly Ile Ile Ala Ala Asn
 165 170 175

Val Leu Val Phe Cys Leu Trp Arg Val Pro Ser Leu Gln Arg Thr Met
 180 185 190

Ile Arg Tyr Phe Thr Ser Asn Pro Ala Ser Lys Val Leu Cys Ser Pro
 195 200 205

Met Leu Leu Ser Thr Phe Ser His Phe Ser Leu Phe His Met Ala Ala
 210 215 220

Asn Met Tyr Val Leu Trp Ser Phe Ser Ser Ser Ile Val Asn Ile Leu
 225 230 235 240

Gly Gln Glu Gln Phe Met Ala Val Tyr Leu Ser Ala Gly Val Ile Ser
 245 250 255

Asn Phe Val Ser Tyr Leu Gly Lys Val Ala Thr Gly Arg Tyr Gly Pro
 260 265 270

Ser Leu Gly Ala Ser Gly Ala Ile Met Thr Val Leu Ala Ala Val Cys
 275 280 285

Thr Lys Ile Pro Glu Gly Arg Leu Ala Ile Ile Phe Leu Pro Met Phe
 290 295 300

Thr Phe Thr Ala Gly Asn Ala Leu Lys Ala Ile Ile Ala Met Asp Thr
 305 310 315 320

Ala Gly Met Ile Leu Gly Trp Lys Phe Phe Asp His Ala Ala His Leu
 325 330 335

Gly Gly Ala Leu Phe Gly Ile Trp Tyr Val Thr Tyr Gly His Glu Leu
 340 345 350

Ile Trp Lys Asn Arg Glu Pro Leu Val Lys Ile Trp His Glu Ile Arg
 355 360 365

Thr Asn Gly Pro Lys Lys Gly Gly Ser Lys
 370 375

<210> 42
 <211> 315
 <212> PRT
 <213> Homo sapiens

<400> 42
 Met Gln Arg Arg Ser Arg Gly Ile Asn Thr Gly Leu Ile Leu Leu Leu
 1 5 10 15

Ser Gln Ile Phe His Val Gly Ile Asn Asn Ile Pro Pro Val Thr Leu
 20 25 30

Ala Thr Leu Ala Leu Asn Ile Trp Phe Phe Leu Asn Pro Gln Lys Pro
 35 40 45

Leu Tyr Ser Ser Cys Leu Ser Val Glu Lys Cys Tyr Gln Gln Lys Asp
 50 55 60

Trp Gln Arg Leu Leu Ser Pro Leu His His Ala Asp Asp Trp His
 65 70 75 80

Leu Tyr Phe Asn Met Ala Ser Met Leu Trp Lys Gly Ile Asn Leu Glu
 85 90 95

Arg Arg Leu Gly Ser Arg Trp Phe Ala Tyr Val Ile Thr Ala Phe Ser
 100 105 110

Val Leu Thr Gly Val Val Tyr Leu Leu Leu Gln Phe Ala Val Ala Glu
 115 120 125

Phe Met Asp Glu Pro Asp Phe Lys Arg Ser Cys Ala Val Gly Phe Ser
 130 135 140

Gly Val Leu Phe Ala Leu Lys Val Leu Asn Asn His Tyr Cys Pro Gly
 145 150 155 160

Gly Phe Val Asn Ile Leu Gly Phe Pro Val Pro Asn Arg Phe Ala Cys
 165 170 175

Trp Val Glu Leu Val Ala Ile His Leu Phe Ser Pro Gly Thr Ser Phe
 180 185 190

Ala Gly His Leu Ala Gly Ile Leu Val Gly Leu Met Tyr Thr Gln Gly
 195 200 205

Pro Leu Lys Lys Ile Met Glu Ala Cys Ala Gly Gly Phe Ser Ser Ser
 210 215 220

Val Gly Tyr Pro Gly Arg Gln Tyr Tyr Phe Asn Ser Ser Gly Ser Ser
 225 230 235 240

Gly Tyr Gln Asp Tyr Tyr Pro His Gly Arg Pro Asp His Tyr Glu Glu
 245 250 255

Ala Pro Arg Asn Tyr Asp Thr Tyr Thr Ala Gly Leu Ser Glu Glu Glu
 260 265 270

Gln Leu Glu Arg Ala Leu Gln Ala Ser Leu Trp Asp Arg Gly Asn Thr
 275 280 285

Arg Asn Ser Pro Pro Pro Tyr Gly Phe His Leu Ser Pro Glu Glu Met
 290 295 300

Arg Arg Gln Arg Leu His Arg Phe Asp Ser Gln
 305 310 315

<210> 43
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 43
Gly Leu Ser Ala Pro His Thr Pro Val
1 5

<210> 44
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 44
Gly Met Gln Lys Ile Ile Asp Pro Leu
1 5

<210> 45
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 45
Lys Met Ser Phe Arg Ala Ala Ala Ala
1 5

<210> 46
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 46
Leu Thr Ala Glu Glu Pro Ser Phe Leu
1 5

<210> 47
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 47
Ser Gln His Glu Thr Val Asp Ser Val
1 5

<210> 48
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 48
Gly Val Tyr Glu Asn Val Lys Tyr Val
1 5

<210> 49
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 49
Tyr Val Gln Gln Glu Asn Phe Trp Ile
1 5

<210> 50
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 50
Leu Leu Pro Phe Leu Asn Pro Glu Val
1 5

<210> 51
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 51
Arg Gly Arg Ala Phe Arg Val Ala Asp Asp Thr Ala Glu Gly Leu Ser
1 5 10 15
Ala Pro His Thr Pro Val Thr Pro Gly Ala Ala Ser Leu Cys
20 25 30

<210> 52
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 52
Val Lys Tyr Val Gln Gln Glu Asn Phe Trp Ile Gly Pro Ser Ser Glu
1 5 10 15
Ala Leu Ile His Leu Gly Ala Lys Phe Ser Pro Cys Met Arg
20 25 30

<210> 53
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 53
Pro Val Arg Cys Glu Trp Cys Glu Phe Leu Thr Cys Ile Pro Phe Thr
1 5 10 15
Asp Lys Phe Cys Glu Lys Tyr Glu Leu Asp Ala Gln Leu His
20 25 30

<210> 54
<211> 28
<212> DNA
<213> Artificial Sequence

<220>		
<223> Description of Artificial Sequence: Synthetic		
primer		
<400> 54		
caggaattcc atgagtgagg cccgcagg		28
<210> 55		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
primer		
<400> 55		
ccctgggatc ctggtggcag acagag		26
<210> 56		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
primer		
<400> 56		
ccggcgtcga ctcagtgag ctgagcgtc		29
<210> 57		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
primer		
<400> 57		
caccaggatc ccagggtgtg tgatga		26
<210> 58		
<211> 6559		
<212> DNA		
<213> Homo sapiens		
<400> 58		
tcaatattgg ccattagcca tattattcat tggttatata gcataaatca atattggcta 60		
ttggccattt catacggtgt atctatatca taatatgtac atttatattt gctcatgtcc 120		
aatatgaccc ccatgttggc attgattatt gactagttat taatagtaat caattacgg 180		
gtcatttagtt catagcccat atatggagtt ccgcgttaca taacttacgg taaatggccc 240		
gcctggctga ccgccccaaacg acccccccatttgcgtca ataatgacgt atgttccat 300		

agtaacgcca atagggactt tccattgacg tcaatgggtg gagtattac ggtaaaactgc 360
 ccacttggca gtacatcaag tgtatcatat gccaagtccg cccccttattg acgtcaatga 420
 cgttaaatgg cccgcctggc attatgccc gtacatgacc ttacggact ttcctacttg 480
 gcagtagatc tacgtattag tcatacgat taccatggtg atgcggttt ggcagtagac 540
 caatggcggt ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt 600
 caatggaggt ttgtttggc accaaaatca acgggacttt ccaaaatgtc gtaataaccc 660
 cggccccgttg acgcaaatgg gcggtaggcg tgtaacggtg gaggctata taagcagagc 720
 tcgttttagtg aaccgtcaga tcactagaag ctttattgcg gtatgttac acagttaat 780
 tgctaacgca gtcagtgcct ctgacacaac agtctcgaac ttaagctgca gaagttggc 840
 gtgaggcact gggcaggtaa gtatcaaggt tacaagacag gtttaaggag accaatagaa 900
 actgggcttg tcgagacaga gaagacttt gcgttctga taggcaccta ttggcttac 960
 tgacatccac tttgccttgc tctccacagg tgcgttactcc cagttcaatt acagctctta 1020
 aggctagagt acttaataacg actcaactata ggcttagcctc gagaatttcca tgagttaggc 1080
 cccgcaggac agcacgagca gcctgcagcg caagaagcca ccctggctaa agctggacat 1140
 tcctctgctg gtcggccctga cggcagaaga gcccagcttc ctgcagcccc tgaggcgaca 1200
 ggcttcttg aggagtgtga gtatgccagc cgagacagcc cacatcttt caccctcacca 1260
 tgagctccgg cggccgggtgc tgcaacgcga gacgtccatc acacagacca tccgcagggg 1320
 gaccgcgcac tgggttggag tgagcaagga cagtgcacgc acccagaaat ggcagcgcac 1380
 gagcatccgt cactgcagcc agcgtcacgg gaagctgaag ccccagggtcc tccggaggt 1440
 ggacctgccc agccaggaca acgtgtcgct gaccagcacc gagacgcac cccactcta 1500
 cgtggggcca tgccagctgg gcatgcagaa gatcatagac cccctggccc gtggccgtgc 1560
 ctccctgtgt gcagatgaca ctgcggaaagg cctgagtgcc ccacacactc cctgcacgc 1620
 ggtgtctgcc tccctctgtc ctttctccag ctcccgtca gttttccacc ggctccccgcg 1680
 gccgcgaag cgagactcggt gggccaaat gagttccgg gccggccgcg cgctgtatgaa 1740
 agggcgctcc gttagggatg gcaccttgc ccgggcacgg cgtcgaagct tcactccagc 1800
 tagctttctg gaggaggaca caactgattt ccccgatgag ctggacacat ctttctttgc 1860
 cccggaaaggat atcctccatg aagagctgtc cacataccgg gatgaagttt tcgagtcccc 1920
 atcggaggca ggcgttaaagg actggggagaa ggcacccggag caggcggacc tcaccggcgg 1980
 gcccctggac cgcagcgcgc ttgagcgcag ccacctgtatg ctgccttgg agcgaggctg 2040
 gccgaagcag aaggaggcgc ccgcagcccc gcagcccaag gtgcggctcc gacaggaggt 2100
 ggtgagcacc gcggggccgc gacggggcca gcgtatcgcg gtgcgggtgc gcaagcttt 2160
 cggccggggag aagccggcgt atgggtctgg catgggtggga cggctcacca accgcaccta 2220
 ccgcaagcgc atcgacagct tcgtcaagcg ccagatcgag gacatggacg accacaggcc 2280
 ctcttcacc tactggctta ctttcgtca ctgcgtcgcc accatccttag ccgtgtgcat 2340
 ctatggcattc gcccgttgc gcttctcgca gcatgagacg gtggactcggt tgctgcggaa 2400
 ccgcgggggtc tacgagaacg tcaagttacgt gcagcaggag aacttctgga tcggggccca 2460
 ctcggaggcc ctcatccacc tgggcgcaca gtttgcgtcc tgcacgcgc accgacccgc 2520
 ggtgcacagc ttcatcgct cggcgcgcga gcgcgagaag cactccgcct gtcgcgtgcg 2580
 caacgacagg tcgggctgcg tgcatcgatc ggaggaggag tgctcgatcca cgctggcagt 2640
 gtgggtgaag tggccatcc atcccagcgc cccagagctt gcccggccaca agagacagtt 2700
 tggctctgtc tgccaccagg atcccagggt gtgtatgag ccctccctcg aagaccctca 2760
 ttagtggcca gaagacatca ccaagtgcgc gatctgcacc aaaaacagcg ctgggaacca 2820
 caccaaccat cccacatgg actgtgtcat cacaggacgg ccctgcgtca ttggcaccaa 2880
 gggcaggtgt gagatcacct cccggggatg ctgtacttc atgaggggct acttccatga 2940
 ggaggccacg ctctgcgtc aggtgcactg catggatgat gtgtgtggc ttctgccttt 3000
 tctcaacccc gaggtgcctg accagttca ccgcctgtgg ctatcccttc ttctgcacgc 3060
 cgggatcttg cactgcctgg tgcgtatcg ctccagatg actgtctgc gggacctgg 3120
 gaagctggca ggctggcacc gcatagccat catctacctg ctgagtggtg tcaccggccaa 3180
 cctggccagt gccatcttcc tgccataccg agcagagggt ggtcctgcgt gctcccgagg 3240
 cggcatccgt gcctgccttc tcgtggagct ctccagagc tggcagatcc tggcgcggcc 3300
 ctggcggtgc ttcttcaggc tgctggctgt ggtgcgttcc ctcttcaccc ttgggctgct 3360
 gccgtggatt gacaacttt cccacatctc ggggttcatc agtggcttc ttctctccctt 3420
 cgccttcttg ccctacatca gcttggca gttcgacctg taccggaaac gtcgcacat 3480
 catcatctt caggtggct tcctggccct cttggctggc ctgggtgtcc ttctctacgt 3540
 ctatccgtc cgctgtgagt ggtgtgagtt cctcacctgc atccccttca ctgacaagg 3600
 ctgtgagaag tacgaactgg acgctcagct ccactgagtc gacccggccg ggcgttgc 3660
 gcagacatga taagatacat ttagtggatggt ggacaaacca caactagaat gcaatggaaa 3720
 aaatgctta ttgtgaaat ttgtatgtat attgtttat ttgttaaccat tataagctgc 3780

aataaacaag ttaacaacaa caattgcatt catttatgt ttcaggttca gggggagatg 3840
 tggagggtt tttaaagcaa gtaaaacctc tacaatgtg gtaaaatcgta taaggatccg 3900
 ggctggcgta atagcgaga ggccgcacc gatcgccctt cccaacagtt gcgcagccctg 3960
 aatggcgaaat ggacgcgccc ttagcgccg cataaagcgc ggcgggtgtg gtggttacgc 4020
 gcaagcgtgac cgctacactt gccagcccc tagcgcccg tccttcgct ttcttccctt 4080
 ccttcctcgcc cacgttcgcc ggcttcccc gtaagctct aaatcgggg ctccctttag 4140
 gttccgatt tagagctta cggcacctcg accgaaaaa acttgattt ggtgatgggt 4200
 cacgtgtgg gccatcgccc tgatagacgg ttttcgccc tttgacgtt gagtccacgt 4260
 tcttaatag tggactctt gtcacaaactg gaacaacact caaccctatc tcggctatt 4320
 ctggattt ataaggatt ttggcattt cgccctattt gttaaaaat gagctgattt 4380
 aacaaatatt taacgcgaat tttaacaaaa tattaacgtt tacaatttcg cctgatgccc 4440
 tatttcctcc ttacgcattt gtgcggattt tcacaccgca tatgggtgcac tctcagtaca 4500
 atctgctctg atgcccata gttaaagccag ccccgacacc cgccaaacacc cgctgacgcg 4560
 ccctgacggg cttgtctgtt cccggcatcc gcttacagac aagctgtgac cgtctccggg 4620
 agctgcattt gtcagagggtt ttccacgtca tcaccgaaac gcgcgagacg aaaggccctc 4680
 gtgatacgcc tattttata gtttaatgtc atgataataa tggtttctt gacgtcagg 4740
 ggcacttttcc gggaaaatgt ggcggaaacc cctatttttttta aatacattca 4800
 aatatgtatc cgctcatgag acaataaaccc tgataaatgc ttcaataata ttgaaaaagg 4860
 aagagtatga gtattcaaca ttccctgtc gcccttattt ccttttttgc ggcattttgc 4920
 cttcctgttt ttgctcaccc agaaacgcgt gtaaagtaa aagatgctga agatcagg 4980
 ggtgcacgag tgggttacat cgaactggat ctcacacagcg gtaagatcct tgagagttt 5040
 cggcccgaaag aacgtttcc aatgtatgac actttaaag ttctgtatg tggcgccgtt 5100
 ttatcccgta ttgacgccc gcaagagacaa ctccgtcgcc gcatacacta ttctcagaat 5160
 gacttggttt agtactcacc agtcacagaa aagcatctt cggatggcat gacagtaaga 5220
 gaattatgca gtgctgccc aaccatgagt gataacactg cggccaaactt acttctgaca 5280
 acgatcggag gaccgaagga gctaaccgtt ttttgcaca acatgggggta tcatgttaact 5340
 cgccttgcgtt gttggaaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc 5400
 acgatgcctg tagcaatggc aacaacgtt cgcacaaactat taactggcgta actacttact 5460
 ctagcttccc ggcaacaatt aatagactgg atggaggcggtt ataaagttgc aggaccactt 5520
 ctgcgtcgcc cccttccggc tggctggttt attgctgata aatctggagc cggtagcgt 5580
 gggctcgccgtt gtatcattgc agcaactggg ccagatggta agccctcccg tattctgtt 5640
 atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata 5700
 ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatacttttag 5760
 attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgataat 5820
 ctcatgacca aaatcccttta acgtgaggtt tcgttccact gagcgtcaga ccccgtagaa 5880
 aagatcaaag gatcttctt agatcctttt tttctgcgcg taatctgctg cttgcaaaaca 5940
 aaaaaaccac cgctaccagc ggtggttgt ttggccgatc aagagctacc aactctttt 6000
 ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtcccttct agttagccg 6060
 tagttaggcc accactcaa gaactctgtt gcaaccgccta cataccctcg tctgctaattc 6120
 ctgttaccag tggctgctgc cagtgccgtt aagtctgtc ttaccgggtt gactcaaga 6180
 cgatagttac cggataaggc gcagcggcgtt ggctgaacgg ggggttcgtt cacacagccc 6240
 agcttggagc gaacgaccta caccgaactt agatacctac agcgtgagct atgagaaagc 6300
 gccacgcttc ccgaaggggag aaaggcggac aggtatccgg taagcggcag gtcggaaaca 6360
 ggagagcgcac cgaggggagct tccagggggaa aacgccttgtt atctttatag tcctgtcggtt 6420
 ttgcgcacc tctgacttgc gctgtcattt ttgtgatgtt cgtcaggggg gggggaccta 6480
 tggaaaaacg ccagcaacgc ggcctttta cggttccctgg ccttttgc gccttttgc 6540
 cacatggctc gacagatctt 6559

<210> 59
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 59
ccctggtcga ctcacacctgg atcctggtg

29

<210> 60
<211> 5653
<212> DNA
<213> Homo sapiens

<400> 60
tcaaatattgg ccattagcca tattattcat tggttatata gcataaaatca atattggcta 60
ttggccattt catacggtgt atctatatca taatatgtac atttatattt gctcatgtcc 120
aatatgaccg ccatgttggc attgattatt gacttagtt taatagtaat caattacggg 180
gtcatttagtt catagccccat atatggagtt ccgcgttaca taacttacgg taaaatggccc 240
gcctggctga ccggcccaacg accccccccccccatttacgtca ataatgacgt atgttcccat 300
agtaacgcca ataggactt tccattgacg tcaatgggtg gagtatttac ggttaactgc 360
ccacttggca gtacatcaag tgtatcatat gccaagtcgg cccccctattt acgtcaatga 420
cggttaatgg cccgccttggc attatgcaca gtacatgacc ttacgggact ttcctactt 480
gcagtagacatc tacgtatttag tcacatgtat taccatgggtg atgcgggtttt ggcagtagac 540
caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt 600
caatgggagt ttgttttggc accaaaaatca acgggactttt cccaaatgtc gtaataaccc 660
cgccccgttg acgcaaatgg gcggtagggc tgtagctgttgg gaggtctata taagcagagc 720
tcgttttagtg aaccgtcaga tcactagaag ctttatttgcg gtatgttatac acagttaat 780
tgctaacgca gtcagtgctt ctgacacacaac agtctcgaaac ttaagctgca gaagttggc 840
gtgaggcact gggcaggtaa gtatcaaggt tacaagacag gtttaaggag accaatagaa 900
actgggcttg tcgagacaga gaagactttt gcgtttctga taggcaccta ttggctttac 960
tgacatccac tttgccttcc tctccacagg tgccacttcc cagttcaattt acagctctta 1020
aggctagagt acttaataacg actcaactata ggctagcctc gagaatttcca tgagtggc 1080
ccgcaggggac agcacgagca gcctgcagcg caagaagcca ccctggctaa agctggacat 1140
tccctctgca gtgcccctga cggcagaaga gcccagcttcc ctgcagcccc tgaggcgaca 1200
ggctttccctg aggagtgtga gtatgccagc cgagacagcc cacatctt cacccttacca 1260
tgagctccgg cggccgggtc tgcaacgcca gacgtccatc acacagacca tccgcagggg 1320
gaccggccgac tgggttggag tgagcaagga cagtgacagc acccagaaat ggcagcgcaa 1380
gagcatccgt cactgcagcc agcgctacgg gaagctgaag ccccagggtcc tccggagact 1440
ggacctgccc agccaggaca acgtgtcgct gaccacgacc gagacgccac ccccaactcta 1500
cgtggggcca tgccagctgg gcatgcagaa gatcatagac cccctggccc gtggccgtgc 1560
cttccgtgtg gcagatgaca ctgcggaaagg cctgagtgcc ccacacactc ccgtcacgccc 1620
gggtgctgcc tccctctgct ctttctccag ctcccgctca gttttccacc ggctcccg 1680
gcggcgcaag cgagactcggtggccaaatgat gagttcccg gggcccgag cgctgatgaa 1740
aggccgctcc gtttagggatg gcaccttccg ccggggcacgg cgctgaagct tcactccac 1800
tagctttctg gaggaggaca caactgatttt ccccgatgag ctggacacat ctttcttgc 1860
ccgggaaggt atcctccatg aagagctgtc cacatacccg gatgaagttt tcgagttcccc 1920
atcgaggcga gcgctaaagg actggggatgg ggcacccggag caggccgacc tcaccggcg 1980
ggccctggac cgcagcgagc ttgagcccg ccacctgtat ctgccttgg agcgaggctg 2040
gcggaaaggcag aaggaggggcg ccgcagcccc gcagcccaag gtgcggctcc gacaggaggt 2100
ggtgagcacc gcggggccgc gacggggccca gcgtatcgcc gtgcgggtgc gcaagcttt 2160
cgccccggag aaggccgtt atgggttggg catgggtggg cggctccacca accgcaccta 2220
ccgcaagcgc atcgacagct tcgtcaagcg ccagatcgag gacatggacg accacaggcc 2280
cttcttccacc tactggctt ctttctccatg ctcgtccgtc accatcttag ccgtgtgc 2340
ctatggcattt cgcggccgtgg gtttctccatg gcatgagacg gtggactcggtgg 2400
ccgcgggggtc tacgagaacg tcaagtgacgt gcagcaggag aacttcttgg tccggccca 2460
ctcggaggcc ctcatccacc tggggccaaatggccatcc gtttctccatg tgcgtccatcc 2520
ggtgacagc ttcatcgctt cggccgcgcg ggcggccaca agagacatgtt 2580
caacgacagg tggggcttgcg tgcagacactt ggaggaggag tgctgtccatcc 2640
gtgggtgaag tggccatcc atcccacgcgc cccagagctt gggggccaca agagacatgtt 2700
tgctctgtc tgccaccagg atcccacgcgc agtgcacccgc ggcggccgt tcgagcagac 2760
atgataagat acattgtatgaa gtttggacaa accacaacta gaatgcagtg aaaaaatgtc 2820
tttatttggatgaaatggatgaa tgcattttgttgc ttatgttgc ccattataag ctgcaataaa 2880

caagttAACa acaacaattt cattcatttt atgtttcagg ttcaggggga gatgtgggag 2940
 gtttttaaaa gcaagtaaaa cctctacaaa tgggttaaaa tcgataagga tccgggctgg 3000
 cgtaatagcg aagaggcccgc acccgatcgc ccttccaaac agttgcgcag cctgaatggc 3060
 gaatggacgc gcccgttagc ggccatcaa gcgcggcggg tgggtgggt acgcgcagcg 3120
 tgaccgctac acttgccagc gcccgttagc ccgccttcc cgccttcc cttcccttc 3180
 tcgcacgtt cgccggctt cccgtcaag ctctaaatcg ggggctccct ttagggttcc 3240
 gatttagagc ttacggcac ctgcaccgca aaaaacttga tttgggtgat gttcacgt 3300
 gtgggcacatc gcccgtatag acggttttc gcccgttagc gttggagtcc acgttcttta 3360
 atagtggact ctgttccaa actggaaacaa cactcaaccc tatctcggtc tattctttt 3420
 attataagg gatttgcgc atttcggcctt attggtaaa aaatgagctg atttaacaaa 3480
 tatttaacgc gaattttaac aaaatattaa cgtttacaat ttgcctgtat ggggtatttt 3540
 ctcccttacgc atctgtgcgg tatttcacac cgcatatggt gcactctcag tacaatctgc 3600
 tctgtatgcgg catagttaa ccagccccga caccggccaa caccggctga cgcgcctgt 3660
 cgggcttgcg tgctcccgcc atccgttac agacaagctg tgaccgtcgc cgggagctgc 3720
 atgtgtcaga ggttttccatcgtcatcaccg aaacgcgcga gacgaaaggg cctcgtgata 3780
 cgccttatttt tataggtaa tgcgtatgata ataatggttt cttagacgtc aggtggcact 3840
 ttccgggaa atgtgcgcgg aacccttattt tgcgtatgata tctaatacata ttcaaatatg 3900
 tatccgtca tgagacaata accctgatata atgcgttcaat aatattgaaa aaggaagagt 3960
 atgagtttccatc aacatttccg tgcgtccctt attccctttt ttgcgtcatt ttgccttc 4020
 gtttttgcctc aaccagaaac gctggtaaa gtaaaagatg ctgaagatca gttgggtgca 4080
 cgagtgggtt acatcgaaact ggatctcaac agcggtaaga tccttgagag tttcgc 4140
 gaagaacgtt ttccaatgtat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 4200
 cgtattgacg cccggcaaga gcaactcggt cgccgcatac actatctca gaatgacttg 4260
 gttgagttact caccagtac agaaaagcat cttacggatg gcatgacagt aagagaatta 4320
 tgcagtgtcg ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 4380
 ggaggaccga aggagctaac cgcttttttgc cacaacatgg gggatcatgt aactcgcctt 4440
 gatcggtggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgt 4500
 cctgtagcaa tggcaacaac gttgcgc当地 ctattaactg gctaactact tactctagct 4560
 tcccgcaac aattaataga ctggatggag gcccggccaa gttcaggacc acttctgc 4620
 tcggcccttc cggctggctg gtttattgtc gataatctg gagccgtga gcgtgggtct 4680
 cgcgttatca ttgcagcaact ggggccagat ggttaagccct cccgtatcg agttatctac 4740
 acgacggggaa gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 4800
 tcactgttactt agcattggta actgtcagac caagtttact catatatact ttagattgt 4860
 ttaaaaacttc atttttaatt taaaaggatc taggtgaaga tccttttgc taatctcatg 4920
 accaaaatcc cttaacgtga gttttccatc cactgagcgt cagacccgt agaaaaagatc 4980
 aaaggatctt cttagatcc ttttttctg cgcgtatct gctgcttgc当地 aaaaaaaaaa 5040
 ccaccgtac cagcggttgtt ttgtttcccg gatcaagagc taccaactct tttccgaag 5100
 gtaactggct tcagcagagc gcagatacca aatactgtcc ttcttagtgc gccgtagtt 5160
 ggcaccact tcaagaactc tgcgtatcg cctacatacc tcgcctgtct aatctgtta 5220
 ccagtggctg ctgcgtatgg cgataagtgc tgcgtatcg ggttgactc aagacgatag 5280
 ttaccggata aggcgcagcg gtcggctga acgggggggtt cgtgcacaca gcccagctt 5340
 gagcgaacgca cctacaccga actgagatac ctacagcgtg agctatgaga aagcgcac 5400
 cttcccgaaaggg ggggggggggg ggggggggggg ggggggggggg ggggggggggg 5460
 cgcacgggggg agcttccagg ggggggggggg tggatctttt atagtctgt cgggtttc 5520
 cacctctgac ttgagcgtcg atttttgc当地 tgctcgtcag ggggggggggg cctatggaaa 5580
 aacgcccacca acgcggccctt ttacgggtc ctggccctt gctggccctt tgctcacatg 5640
 gctcgacaga tct 5653

<210> 61
 <211> 4964
 <212> DNA
 <213> Homo sapiens

<400> 61
 tcgactcgag cggccgc当地 gtgactgact gacgatctgc ctgcgc当地 tcgggtatga 60
 cgtgaaaac ctctgacaca tgcagctccc ggagacggc acagttgtc tgtaagcgaa 120
 tcggccggagc agacaagccc gtcaggccgc gtcagcgggt gttggccgggt gtcggccgc当地 180

gcacatcccc	cttcgcccag	ctggcgtaat	agcgaagagg	cccgaccgaa	tgcaccttcc	3720
caacaggttgc	gcagcctgaa	tggcgaatgg	cgtttgcct	ggttccggc	accagaagcg	3780
gtgccgaaa	gctggctgga	gtgcgatctt	cctgaggccg	atactgtcg	cgtccctca	3840
aactggcaga	tgcacggta	cgatgcgccc	atctacacca	acgtaaccta	tcccattacg	3900
gtcaattccgc	cgtttgttcc	cacgagaat	ccgacgggtt	gttactcgct	cacatttaat	3960
gtttagaaaa	gctggctaca	ggaaggccag	acgcgaatta	ttttgtatgg	cgttgaatt	4020
agcttatcga	ctgcacggtg	caccaatgct	tctggcgtca	ggcagccatc	ggaagctgtg	4080
gtatggctgt	gaaggtcgta	aatcaactgca	taattcgtgt	cgctcaaggc	gcactcccgt	4140
tctggataat	gttttttgcg	ccgacatcat	aacggttctg	gcaaataattc	tgaaatgagc	4200
tgttgacaat	taatcatcg	ctcgataat	gtgttggaaatt	gtgagcggat	aacaatttca	4260
cacagggaaac	agtattcatg	tcccctatac	taggttattt	gaaaattaag	ggccttgc	4320
aaccactcg	acttctttt	gaatatctt	aagaaaaata	tgaagagcat	ttgtatgagc	4380
gcgatgaagg	tgataaatgg	cgaaacaaaa	agtttgaatt	gggtttggag	tttcccaatc	4440
ttcccttatta	tattgtatgg	gatgttaat	taacacagtc	tatggccatc	atacgttata	4500
tagctgacaa	gcacaacatg	ttgggtggtt	gtccaaaaga	gcgtgcagag	atttcaatgc	4560
ttgaaggagc	ggttttggat	attagatacg	gtgtttcgag	aattgcata	agtaaagact	4620
ttgaaactct	caaagtgtat	tttccttagca	agctaccta	aatgtctgaaa	atgttgcgaa	4680
atcgtttatg	tcataaaaaca	tatttaatg	gtgatcatgt	aaccctatcct	gacttcatgt	4740
tgtatgacgc	tcttgatgtt	gtttataca	tggacccta	gtgcctggat	gcgttcccaa	4800
aatttagttt	ttttaaaaaaa	cgtattgaag	ctatcccaca	aattgataag	tacttgaat	4860
ccagcaagta	tatagcatgg	ccttgcagg	gctggcaagc	cacgtttgg	ggtggcgacc	4920
atcctccaaa	atcggatctg	atcgaaggtc	gtgggatccc	cagg		4964

<210> 62
<211> 6633
<212> DNA
<213> *Homo sapiens*

ctagtttct ggaggaggac acaactgatt tccccatga gctggacaca tccttcttg 1740
 cccggaaagg tatttcctcat gaagagctgt ccacataccc gcatggat ttcgagtccc 1800
 catcgaggc agcgtaaaag gactggaga aggacccgga gcaggcggac ctcaccggcg 1860
 gggccctgga ccgcagcgag cttagcgca gccacctgat gctgccctg gagcgaggct 1920
 ggcggaaagca gaaggaggc gccgcagccc cgacggccaa ggtgcggctc cgacaggagg 1980
 tggtgagcac cgccccggc cgacggggcc agcgatcgc ggtgccgtg cgcaagctct 2040
 tcgccccggga gaagcggccg tatgggtgg gcatgggtgg acggctcacc aaccgcacct 2100
 accgcaagcg catcgacagc ttctgtcaagc gccagatcga ggacatggac gaccacaggc 2160
 ctttcttcac ctactggctt accttcgtgc actcgctcgt caccatccta gccgtgtgca 2220
 tctatggcat cgccccgtg ggcttctcgca agcatgagac ggtggactcg gtgctgcgga 2280
 acccgggggtt ctacgagaac gtcaagtacg tgcaagcagga gaacttctgg atcggggcca 2340
 gctcgaggc cctcatccac ctgggcgcca agtttcgccc ctgcattgcgc caggaccgc 2400
 aggtgcacag cttcattcgc tcggcgcgcg agcgcgagaa gcaactccgccc tgctgcgtgc 2460
 gcaacgcacag gtcgggctgc gtgcagaccc cggaggagga gtgctcgtcc acgctggcag 2520
 tgggtgtgaa gtggccatc catccccggc ccccagagct tgccggccac aagagacagt 2580
 ttggctctgt ctgcaccagg gatcccagg gatcgactc gagcggccgc atcgactcg 2640
 actgacgatc tgcctcgccg gtttcggtga tgacgggtaa aaccttcgtac acatgcagct 2700
 cccggagacg gtcacagctt gtctgttaacg ggtgcgggg agcagacaag cccgtcaggg 2760
 cgcgtcagcg ggtgttggcg ggtgtcgggg cgccagccatg acccagtac gtagcgatag 2820
 cggagtgtat aattttgaa gacgaaaggc cctcgtgata cgcctatccc tataggttaa 2880
 tgtcatgata ataatggttt ctttagacgtc aggtggact tttcggggaa atgtgcgcgg 2940
 aacccttattt tgtttatttt tctaaataca ttcaaataatg tatccgctca tgagacaata 3000
 accctgataa atgctcaat aatattgaaa aaggaagagt atgagattc aacatttcg 3060
 tgtcgccctt attccctttt ttgcggcatt ttgccttcct gttttgtct acccagaaac 3120
 gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaaact 3180
 gnatctcaac agcggtaaga tccttgagag tttcggccccc gaagaacgtt ttccaatgat 3240
 gagcactttt aaagttctgc tatgtggcg ggtattatcc cgtgttgacg cccggcaaga 3300
 gcaactcggt cgccgcatac actattctca gaatgactt gttgagttact caccagtac 3360
 agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgtc ccataaccat 3420
 gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac 3480
 cgctttttt cacaacatgg gggatcatgt aactcgcctt gatcggtggg aaccggagct 3540
 gaatgaagcc ataccaaacg acgagcgtga caccacgtg cctgcagcaa tggcaacaac 3600
 gttgcgcaaa ctattaactg gcaactact tactctagct tcccggcaac attaataga 3660
 ctggatggag gcggataaaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg 3720
 gtttattgtc gataaatctg gagccggta gcgtgggtct cgcggatc ttgcagact 3780
 gggggccagat ggttaagccct cccgtatctg agttatctac acgacggggaa gtcaggcaac 3840
 tatggatgaa cgaaatagac agatcgctga gataaggtgcc tcactgatta agcattggta 3900
 actgtcagac caagtttact catataact ttagattgtat taaaacttc attttaatt 3960
 taaaaggatc taggtgaaga tccttttga taatctcatg accaaaatcc cttaaatgtga 4020
 gttttcgttc cactgagcgt cagacccgt agaaaagatc aaaggatctt ttgcagatcc 4080
 ttttttctg cgcgtaatct gctgttgca aaaaaaaaaa ccaccgtac cagcgggtgt 4140
 ttgtttgcgg gatcaagagc taccaactt tttccgaaag gtaactggct tcagcagagc 4200
 gcagatacca aataactgtcc ttcttagtgc gccgttagtta ggccaccact tcaagaactc 4260
 ttagcaccg cctacatacc tcgctctgt aatctgtta ccagtggctg ctgccagtg 4320
 cgataagtgc tgcgttaccg ggttggactc aagacgatag ttacccgata aggccgcagcg 4380
 gtcgggctga acgggggggtt cgtgcacaca gcccagctt gagcgaacga cctacaccga 4440
 actgagatac ctacagcgtg agctatgaga aagccgcacg ttcccgaaag ggagaaaggc 4500
 ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggc agcttccagg 4560
 gggaaacgcc tggtatctt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 4620
 attttgtga tgctcgtcag gggggcggag cctatggaaa aacgcacaca acgcggccctt 4680
 ttacggttc ctggcccttt gctggccctt tgctcacatg ttctttctg cgttatcccc 4740
 tgattctgtg gataaccgtt ttaccgcctt tgagtggact gataccgtc gccgcagccg 4800
 aacgaccgag cgcagcgagt cagtggactc ggaagcggaa gagcgcctga tgcgttattt 4860
 ttccttacg catctgtgcg gtatttccaca ccgcataaat tccgacacca tcaaatgggt 4920
 caaaacctt cgcggatgg catgatagcg cccggaaagag agtcaattca gggtgggtgaa 4980
 tggaaacca gtaacgttat acgatgtcgc agatgtgcc ggtgtctttt atcagaccgt 5040
 ttcccgctg gtgaaccagg ccagccacgt ttctgcgaaa acgcggaaa aagtggaaac 5100
 ggcatggcg gagctgaatt acattccaa ccgcgtggca caacaactgg cgggcaaaaca 5160

gtcgttgctg attggcggtt ccacacctcag tctggccctg cacgcgcgt cgcaaattgt 5220
 cgcggcgatt aaatctcgcg ccgatcaact gggtgccagc gtgggtgtgt cgatggtaga 5280
 acgaaggcggc gtcgaaggct gtaaaggcggc ggtgcacaat cttctcgcc aacgcgtcag 5340
 tgggctgatc attaactatc cgctggatga ccaggatgcc attgctgtgg aagctgcctg 5400
 cactaatgtt ccggcggttat ttcttgatgt ctctgaccag acaccatca acagtattat 5460
 tttctcccat gaagacgta cgcgactggg cgtggagcat ctggtcgcac tgggtcacca 5520
 gcaaattcgcg ctgttagcggt gcccattaag ttctgtctcg ggcgcgtcgc gtctggctgg 5580
 ctggcataaaa tatctcactc gcaatcaaat tcagccgata gcggAACGGG aaggcgactg 5640
 gagtgccatg tccggtttc aacaaaccat gcaaatgctg aatgagggca tcgttccac 5700
 tgcgtgctg gttgccaacg atcagatggc gctgggcgcac atgcgcgcac ttaccgagtc 5760
 cgggctgcgc gttgggtcggt atatctcggt agtgggatac gacgataccg aagacagctc 5820
 atgttatatc cgcgcgttaa ccaccatcaa acaggatttt cgcctgctgg gcacaaccag 5880
 cttggaccgc ttgctgcaac tctctcaggc ccaggcggtg aaggcaatc agctgttgcc 5940
 cgtctcactg gtgaaaagaa aaaccacccct ggccgcacat acgcaaacccg cctctcccc 6000
 cggcgtggcc gattcattaa tgcaagctggc acgacaggtt tcccgaactgg aaagcgggca 6060
 gtgagcgcaa cgcaattaaat gtgagttgc tcactcatta ggcaccccgacttacact 6120
 ttatgcttcc ggctcgatgt ttgtgtggaa ttgtgagcggtg ataacaattt cacacagggaa 6180
 acagctatga ccatgattac ggattcactg ggccgtcgat tacaacgtcg tgactgggaa 6240
 aaccctggcg ttacccaaact taatcgccct gcagcacatccc ccccttcgc cagctggcg 6300
 aatagcgaag aggcccgac cgcgcgcct tcccaacagt tgccgcgcct gaatggcgaa 6360
 tggcgctttg cctggtttc ggcaccagaa gcgggtccgg aaagctggct ggagtgcgat 6420
 cttcctgagg cgcatactgt cgctgtcccc tcaaactggc agatgcacgg ttacgatgcg 6480
 cccatctaca ccaacgtaac ctatccattt acggtaatc cggcgtttgt tcccacggag 6540
 aatccgacgg gttgttactc gctcacattt aatgttgatg aaagctggct acaggaaggc 6600
 cagacgcgaa ttatTTTGA tggcggttggaa att 6633

<210> 63
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 63
 cccaggaatt cccaggtgca cagttcatt

30

<210> 64
 <211> 6090
 <212> DNA
 <213> Homo sapiens

<400> 64
 agcttatcga ctgcacgggtg caccaatgt tctggcgta ggcagccatc ggaagctgtg 60
 gtatggctgt gcaggcgta aatcactgca taattcggt cgctcaaggc gcactcccg 120
 tctggataat gtttttgcg ccgcacatcat aacggttctg gcaaataattc tgaaatgagc 180
 tggatcaat taatcatcggt ctcgtataat gtgtggatt gtgagcggt aacaatttca 240
 cacaggaaac agtattcatg tcccctatac taggttattt gaaaattaag ggccttgc 300
 aacccactcg acttcttttgcg gaatatcttgc aagaaaaata tgaagagcat ttgtatgagc 360
 gcgatgaagg tgataaaatgg cggaaacaaaa agtggattt ggggttggag tttcccaatc 420
 ttccttatttatttgcgtt gatgttaat taacacatc tatggccatc atacgttata 480
 tagctgacaa gcacaacatg ttgggtgggt gtccaaaaga gcgtgcagag atttcaatgc 540
 ttggaggagc ggtttggat attagatacg gtgttcgcg aattgcataat agtaaagact 600
 ttggaaactct caaagttgtt tttcttagca agtacactga aatgtgaaa atgttcgaag 660
 atcgttttagt tcataaaaaca tatttaatgcgtatgt aaccatcct gacttcatgt 720

tttatgacgc tcttgatgtt gtttatatac tggacccaat gtgcctggat gcgttcccaa 780
 aattagttt ttttaaaaaa cgtattgaag ctatcccaca aattgataag tacttgaat 840
 ccagcaagta tatagcatgg cctttgcagg gctggcaagc cacgttggt ggtggcgacc 900
 atccctccaaa atcgatctg atcgaaggtc gtggatccc caggaattcc caggtgcaca 960
 gcttcattcg ctcggcgcc gagcgcgaga agcactccgc ctgctgcgtg cgcaacgaca 1020
 ggtcgggctg cgtcagacc tcggaggagg agtgcgtc cacgctggca gtgtgggtga 1080
 agtggcccat ccattcccgac gccccagagc ttgcgggcca caagagacag tttggctctg 1140
 tctgccacca ggatcccagg gtgtgtatg agccctcctc cgaagaccct catgagtggc 1200
 cagaagacat caccaagtgg ccgatctgca ccaaaaacag cgctggaaac cacaccaacc 1260
 atccccacat ggactgtgtc atcacaggac ggcctgtc cattggcacc aagggcaggt 1320
 gtgagatcac ctccccggag tactgtgact tcatgagggg ctactccat gaggaggcca 1380
 cgctctgctc tcagggtcac tgcatggatg atgtgtgtgg gctcctgcct tttctcaacc 1440
 ccgaggtgcc tgaccagttc taccgcctgt ggctatccct cttcctgcac gccgggatct 1500
 tgcactgcct ggtgtccatc tgcttccaga tgactgtcct gcgggacctg gagaagctgg 1560
 caggctggca ccgcatacgcc atcatctacc tgctgagtgg tgcacccggc aacctggcca 1620
 gtgccatctt cctgccatc acagcaggagg tgggtcctgc tggctccag ttcggcatcc 1680
 tggcctgcctt cttcggtggag ctcttccaga gctggcagat cctggcgccg ccctggcggt 1740
 ccttcttcaa gctgtggct gttgtgtct tcctcttccac ctttggctg ctgcgttgg 1800
 ttgacacact tgcccacatc tcgggggtca tcatgtggcct cttcctctcc ttgccttct 1860
 tgcctacat cagctttggc aagttcgacc tgcgttccggaa acgctgccag atcatcatct 1920
 ttcaagggtgtt cttctgggc ctccctggct gcctgggtgt cctcttctac gtctatccctg 1980
 tccgctgtga gtgggtgtgag ttccctcacct gcatccccctt cactgacaaag ttctgtgaga 2040
 agtacgaact ggacgctcag ctccactgag tcgactcgag cggccgcatac gtgactgact 2100
 gacgatctgc ctcgcgcgtt tcgggtatga cggtaaaaac ctctgacaca tgcagctccc 2160
 ggagacgggtc acagcttgcc tgtaagcggg tgccgggagc agacaagccc gtcagggcg 2220
 gtcagcgggt gttggcgggt gtcggggcgcc agccatgacc cagtcaacgt gcgatagcg 2280
 agtgtataat tcttgaagac gaaaggcct cgtatacgc ctatTTTAT aggttaatgt 2340
 catgataata atggtttctt agacgtcagg tggactttt cggggaaatg tgcgcggaaac 2400
 ccctattttt ttatttttctt aaatacatc aaatatgtat ccgctcatga gacaataacc 2460
 ctgataaatc cttcaataat attgaaaaaa gaagagtatg agtattcaac atttccgtgt 2520
 cggcccttattt cccttttttgc cggcattttg cttcctgtt tttgctcacc cagaaacgct 2580
 ggtgaaagta aaagatgtcg aagatcagg gggtaacgta gttgggttaca tgcactgaa 2640
 tctcaacagc ggtaagatcc ttgagagtt tcggggccaa gaacgttttcaatgtatgag 2700
 cactttaaa gttctgttat gtggcgcggg attatcccgt gttgacgccc ggcaagagca 2760
 actcggtcgc cgcatacact attctcagaa tgacttgggt gacttacac cagtcacaga 2820
 aaagcatctt acggatggca tgacagtaag agaattatgc agtgcgtcca taaccatgag 2880
 tgataaacact gcggccaact tacttctgac aacgatcgaa ggaccgaagg agctaaccgc 2940
 tttttgcac aacatggggg atcatgttac tcgccttgcgat cgttggaaac cggagctgaa 3000
 tgaagccata ccaaaccgacg agcgtacac cacatgcct gcagcaatgg caacaacggt 3060
 gcgcaacta ttaactggcg aactactac tctagcttcc cggcaacaat taatagactg 3120
 gatggaggcg gataaaagttc caggaccact tctgcgtcg gcccttccgg ctggctgggt 3180
 tattgtctgat aaatctggag ccggtagcgg tgggtctcgc ggtatcattt cagcaactgg 3240
 gccagatggt aaggccctccc gtatcgatg tacttacacg acggggagtc aggcaactat 3300
 ggtgtacgaa aatagacaga tcgctgatg aggtgcctca ctgattaagc attggtaact 3360
 gtcagaccaa gtttactcat atatacttta gattgattta aaacttcatt ttaattttaa 3420
 aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt 3480
 ttctgtccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccctt 3540
 ttttctgcgc gtaatctgct gcttgcaaac aaaaaaaccac cggctaccag cgggtggttt 3600
 tttggccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca 3660
 gataccaaat actgtccctc tagttagtgc gtagtttaggc caccacttca agaactctgt 3720
 agcaccgcct acatacctcg ctctgtaat cctgttacca gtggctgctg ccagtggcg 3780
 taagtcgtgt ctaccgggt tggactcaag acgatagttt ccggataagg cgcagcggtc 3840
 gggctgaacg ggggggtcg gacacacgac cagcttggag cgaacgaccc acaccgaact 3900
 gagataccta cagcgtgagc tatgagaaag cggccacgctt cccgaaggaa gaaaggcg 3960
 caggtatccg gtaagcggca gggtcggaaac aggagagcgc acgagggagc ttccaggggg 4020
 aaacgcctgg tatctttata gtcctgtcg gtttcggccac ctctgactt aacgtcgatt 4080
 tttgtatgtc tcgtcagggg ggcggagcc atgaaaaaaac gccagcaacg cggccctttt 4140
 acggttccctg gcctttgtc ggccttttgc tcacatgttcc tttcctgcgt tatcccttga 4200

ttctgtggat aaccgttata ccgccttga gtgagctgat accgctcgcc gcagccgaac 4260
 gaccgagcgc agcgagtcag tgagcgagga agcggaaagag cgccctgatgc ggtattttct 4320
 ctttacgcatttgcgtatgtggcat tttcacacccg cataaaattcc gacaccatcg aatggtgcaa 4380
 aacccttcgc ggtatggcat gatagcgccc ggaagagagt caattcagggt tggtgaatgt 4440
 gaaaccagta acgttatacg atgtcgacaga gtatgccgt gtctcttac agaccgttc 4500
 ccgcgtggta aaccaggcca gccacgttc tgcaaaaacg cggaaaaaag tggaaagcgc 4560
 gatggcggag ctgaattaca ttcccaacccg cgtggcacaa caactggcgg gcaaaccatgc 4620
 gttgctgatt ggcgttgcgc cctccagct ggccctgcac gcgcgcgc aaattgtcgc 4680
 ggcgattaaa tctcgccgc atcaactggg tgccagcgtg tggtgtcga tggtagaacg 4740
 aagcggcgtc gaaggctgta aagcggcggt gcacaatctt ctcgcgcacac gctcagtg 4800
 gctgatcatt aactatccgc tggatgacca ggatgccatt gctgtggaaag ctgcctgcac 4860
 taatgttccg gcgttatttc ttgatgtcgc tgaccagaca cccatcaaca gtatttttt 4920
 ctccccatgaa gacggtacgc gactggcggt ggagcatctg gtcgcattgg gtcaccagca 4980
 aatcgcgtc tttagcggcc catatggc tgcgtcgcc cgtctcggtc tggctggctg 5040
 gcataaatat ctcactcgca atcaaatca gccgatagcg gaacggaaag gcgactggag 5100
 tgccatgtcc ggtttcaac aaaccatgca aatgctgaat gagggcatcg ttcccactgc 5160
 gatgctgggt gccaacgatc agatggcgct gggcgcaatg cgcgcatttcccg 5220
 gtcgcgtt ggtgcggata tctcggtagt gggatacgac gataccgaag acagctcatg 5280
 ttatatcccg ccgttaacca ccatcaaca ggatttcgc ctgctggggc aaaccagcgt 5340
 ggaccgcttgc ctcactctt ctcaggccca ggcggtaag ggcaatcgc tggtgcccgt 5400
 ctcactgggt aaaagaaaaa ccaccctggc gccaataacg caaacccgcct ctccccgcgc 5460
 gttggccgat tcattaatgc agctggcactg acaggttcc cgactggaaa gcgggcagtg 5520
 agcgcaacgc aattaatgtg agttagctca ctcatcttgc accccaggct tacacttta 5580
 tgcttcggc tcgtatgtt tggttatttgc tgacgcggata acaatttcac acaggaaaca 5640
 gctatgacca tgattacgga ttcactggcc gtcgttttac aacgtcgtga ctggaaaaac 5700
 cctggcgta cccaaactta tcgccttgc gcacatcccc cttdcgccag ctggcgtaat 5760
 agcgaagagg cccgcaccga tcgccttcc caacagttgc gcagcgttgc tggtgaaatgg 5820
 cgctttgcct ggtttccggc accagaagcg gtggcgaaa gctggctggatgcgtatctt 5880
 cctgaggccg atactgtcgt cgtccctca aactggcaga tgcacggta cgatgcgc 5940
 atctacacca acgttaaccta tcccatttacg gtcaatccgc cgacttttcc cacggagaat 6000
 ccgacgggtt gttactcgct cacatataat gttgatgaaa gctggctaca ggaaggccag 6060
 acgcgaattt ttttgcgtt cggtggaaattt 6090

<210> 65
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 65
 cgccgcattcg atgtggagct gagcgtccag

30

<210> 66
 <211> 6185
 <212> DNA
 <213> Homo sapiens

<400> 66
 taatacgact cactataggga gaattgtgag cgataacaa ttccctctta gacttacaat 60
 ttccatttcgc cattcaggct ggcataactgt tggaaaggcc gatcggtacg ggcctttcg 120
 ctattacgcg agcttgcgaa cggtgggtgc gctgcaaggc gattaagttt ggttaacgc 180
 ggattctccc agtcaacgcg ttgtaaaacg acggccagcg agagatctt attggctacg 240
 agaataattt tggtaactt taagaaggag atataccatg gcgatataccc gggagcttgt 300

gggggctccc tttagggttc cgathtagtg ctttacggca cctcgacccc aaaaaacttg 3840
 attagggtga tggtcacgt agtgggcatt cgccctgata gacggtttt cgcccttta 3900
 cgttggagtc cacgttctt aatagtggac tcttgttcca aactgaaaca acactcaacc 3960
 ctatctcggt ctattcttt gatttataag ggatttgcc gatttcggcc tattggttaa 4020
 aaaatgagct gatttaacaa aaathtaacg cgaattttaa caaatatta acgtttacaa 4080
 tttctggcgg cacgatggca tgagattatc aaaaaggatc ttcacccatg tcctttaaa 4140
 ttaaaaatga agtttaaat caatctaaag tatatatgag taaacctggt ctgacagta 4200
 ccaatgctta atcagtggagg cacctatctc akgatctgt ctatttcgtt catccatagt 4260
 tgccctgactc cccgtcggt agataactac gatacggag ggcttaccat ctggccccag 4320
 tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag caataaaacca 4380
 gccagccgga aggggcgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc 4440
 tattaattgt tgccggaaag ctagagtaag tagtgcgca gttaatagtt tgcgcaacgt 4500
 tggccatt gctacaggca tcgtgggtgc acgctcggt tttggatgg cttcattcag 4560
 ctccgggtcc caacgatcaa ggcgagttac atgatcccc atgttgtgca aaaaagcggt 4620
 tagtccttc ggtcctccga tcgttgcag aagtaagttt gccgcagtgt tattactcat 4680
 ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat gctttctgt 4740
 gactggtag tactcaacca agtcattctg agaatagttt atgcggcgc acggttgcct 4800
 ttggccggcg tcaatacggg ataataccgc gccacatgc agaacttta aagtgcctat 4860
 cattggaaaaa cgttcttcgg ggcgaaaact ctcaggatc ttaccgctgt tgagatccag 4920
 ttcgatgtaa cccactcggt cacccaaactg atcttcagca tctttactt tcaccagcgt 4980
 ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg 5040
 gaaatgttga atactcatac tcttccttt tcaatcatga ccaaaatccc ttaacgtgag 5100
 ttttcgttcc actgagcgtc agacccgtt gaaaagatca aaggatctt ttgagatctt 5160
 tttttctgc gcgtaatctg ctgcttgcac aaaaaaaaaac caccgcattt accgcgtggg 5220
 tgtttgcgg atcaagagct accaactt tttccgaaagg taactggctt cagcagagcg 5280
 cagataccaa atactgtcct tcttagttag ccgttagttag gccaccactt caagaactct 5340
 gtagcaccgc ctacatacct cgctctgta atccgttac cagtggctgc tgccagtggc 5400
 gataagtctgt gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg 5460
 tcgggctgaa cgggggggttc gtgcacacag cccagcttgg agcgaacacg ctacaccgaa 5520
 ctgagatacc tacagcgtga gctatgagaa agcgcacgc ttcccgaaagg gagaaggcg 5580
 gacaggtatc cggtaagcgg cagggctgga acaggagagc gcacgaggaa gcttccagg 5640
 gaaaaacgcct ggtatctta tagtcctgtc gggtttcgac acctctgact tgagcgtcga 5700
 ttttgcgtat gctcgtcagg gggggggagc ctatggaaaa acgcccacaa cgcggcctt 5760
 ttacgggttcc tggccctttt ctggcctttt gctcacatgt tcttcctgc gttatcccct 5820
 gattctgtgg ataaccgtat taccgcctt gagtgagctg ataccgctcg cccgacccga 5880
 acgaccgagc gcagcgagtc agtgagcgg gaagccggcg ataatggct gcttctcgcc 5940
 gaaacgtttt gtggcgggac cagtgcacaa ggcttgagcg agggcgtgca agattccgaa 6000
 taccgcacgc gacaggccga tcatcgctgc gctccagcga aagcggctt cggccaaaat 6060
 gacccagagc gctgccggca cctgtcctac gagttgcattt ataaagaaga cagtcataa 6120
 tgcggcgacg accgggtgaat tgtgagcgtc cacaattctc gtgacatcat aacgtccgc 6180
 gaaat 6185

<210> 67
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 67
 cgccgcacgc atgtccatgt cctcgatctg

<210> 68
<211> 4820
<212> DNA
<213> Homo sapiens

<400> 68

taatacga	cactataggg	gaattgttag	cggataacaa	ttccccccta	gacttacaat	60
ttccattcgc	cattcaggct	gcbcactgt	tggaaaggc	gatcggtacg	ggcctcttcg	120
ctattacgcc	agcttgcga	cggtgggtc	gctcaaggc	gattaagtt	ggtaacgc	180
ggattctccc	agtca	acgac	ttgtaaaac	acggccagc	agagatctt	240
agaataattt	tgtttaactt	taagaaggag	atataccat	gcatatccc	gggagctc	300
ggatccgaat	tccatgagt	aggcccgc	ggacagc	agcagc	agcga	360
gccaccctgg	ctaaagctgg	acattcc	tgccgtgccc	ctgacggc	aagagccc	420
cttcctgcag	cccctgaggc	gacaggctt	cctgaggag	gtgag	atgc	480
agccccacatc	tcttcacccc	accatga	ccggcggcc	gtgctg	caac	540
catcacacag	accatccgca	gggggac	cgactgg	ggagt	gagca	600
cagcacccag	aatggc	gcaagag	ccgtcact	agccagc	gtc	660
gaagccccag	gtcctccggg	agctggac	gcccagcc	gacaac	gtgt	720
caccgagac	ccaccc	tctacgt	gcatg	ctggc	atgc	780
agacccctg	gcccgtggcc	gtgc	tgtgg	gacact	gcgg	840
tgccccacac	actcccgtca	cgccgggtc	tgcc	tgctcc	tttcc	900
ctcagg	tttc	caccggctc	cgccgc	caagc	gagag	960
ccggcggcc	gcagcgt	tgaaagg	ctccgt	tcgg	tgcc	1020
acggcgtcga	agcttca	cagctag	tctggagg	gacaca	actg	1080
tgagctggac	acatcc	ttgccc	aggat	catga	agag	1140
cccgatgaa	gtttcg	ccccat	ggcagc	aaggact	ggg	1200
ggagcaggc	gac	cttcc	gggggc	gagctt	gagc	1260
gatgctgccc	ttggag	gctgg	gcagaagg	ggcgc	ccgc	1320
caaggtgcgg	ctccg	acagg	agg	ccgc	gacgg	1380
cgcgg	gtgc	gcaag	tctc	ggaga	agcgg	1440
ggacggctc	accaacc	cctacc	gcgc	atctcg	atgc	1500
cgaggacat	gacatcg	cg	gcttgc	gcac	agctgt	1560
aagccagcc	gaactcg	ctga	aggac	gagc	accacc	1620
ctaattaa	ttaagt	ggg	cgtt	ata	actcc	1680
agcaattaa	ctgt	ataaa	ctacc	aaag	ctt	1740
gataattctt	gaagac	gggc	cttag	tgata	aaac	1800
gcccgtgtt	cccac	cttgc	actc	aga	acgc	1860
gtagtgtgg	gtct	ccat	gca	gact	gc	1920
gctcagtcg	aagact	cttgc	ttt	atctgt	ttgt	1980
ataggacaa	atcc	gggg	agcgg	tttgc	cgct	2040
cgggcaggac	gccc	ccata	aact	ccagg	cttgc	2100
gatggcctt	ttgc	gtt	aca	actctt	tttgc	2160
gtatccgct	agcaata	act	agcata	accc	cttgc	2220
ttttgtctg	aagg	gaa	tat	atccg	ggc	2280
cattaagcgc	ggcgg	gtgt	tggtt	ac	gcgt	2340
tagcgc	ccgc	tc	tttcc	cctt	tcgc	2400
gtcaagct	aaat	ctcc	tttgc	gttcc	gttcc	2460
acccaaaaaa	actt	gtt	gatgt	tttgc	tttgc	2520
ttttcgc	tttgc	gtgt	gat	ccac	gttgc	2580
gaacaacact	caac	ccat	tttgc	tttgc	tttgc	2640
cggcctattt	gtt	aaaa	tttgc	tttgc	tttgc	2700
tattaacgtt	taca	tttgc	tttgc	tttgc	tttgc	2760
ctagatc	ttaa	tttgc	tttgc	tttgc	tttgc	2820
tttgtctgac	agt	tttgc	tttgc	tttgc	tttgc	2880
tcgttcatcc	atag	tttgc	tttgc	tttgc	tttgc	2940
accatctggc	ccc	tttgc	tttgc	tttgc	tttgc	3000
atcagcaata	aacc	tttgc	tttgc	tttgc	tttgc	3060
cgcctccatc	cagt	tttgc	tttgc	tttgc	tttgc	3120
taat	tttgc	tttgc	tttgc	tttgc	tttgc	

tagttgcgc aacgttggc ccattgtac aggcatcggt gtgtcacgct cgtcgtttgg 3180
 tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgtat cccccatgtt 3240
 gtcaaaaaaaaa gcggtagt ccttcggcc tccgatcggt gtcagaagta agttggccgc 3300
 agtgttatca ctcatggta tggcagcact gcataattct cttactgtca tgccatccgt 3360
 aagatgctt tctgtgactg gtgagtaact aaccagtca ttctgagaat agtgtatgcg 3420
 gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac atagcagaac 3480
 tttaaaagtg ctcatcattg gaaaacgttc ttccggcga aaactctcaa gatcttacc 3540
 gctgttggaa tccagttcgta tgtaaccac tcgtgcaccc aactgatctt cagcatctt 3600
 tactttcacc agcgttctg ggtgagcaaa aacaggaagg caaatgccc caaaaaagg 3660
 aataaggcgc acacggaaat gttgaataact catactttc cttttcaat catgaccaa 3720
 atcccttaac gtgagtttc gtccactga gctcagacc ccgtagaaaa gatcaaagg 3780
 tcttcggat atccctttt tctgcgcgta atctgctgtc tgcaaaacaaa aaaaccacg 3840
 ctaccagcgg tggtttggg gccggatcaa gagtaccaa ctcttttcc gaaggtaact 3900
 ggcttcagca gagcgcagat accaaataact gtccctctg tggtagccgt gttaggccac 3960
 caactcaaga actctgtac accgcctaca tacctcgctc tgctaactt gttaccagt 4020
 gctgctgcca gtgggataa gtcgtgtctt accgggttgg actcaagacg atagttaccg 4080
 gataaggcgc agcgtcggg ctgaacgggg ggttcgtgca cacagcccg cttggagcga 4140
 acgacactaca cccgaaactgag atacctacag cgtgagctat gagaagcgc cacgcttccc 4200
 gaaggggagaa aggccggacag gtatccggta agccggcaggg tcggaacagg agagcgcacg 4260
 agggagcttc cagggggaaa cgcctggat ctttatagtc ctgtcggtt tcgcccaccc 4320
 tgacttgagc gtcgatttt gtatgtctg tcagggggggc ggagctatg caaaaaacgcc 4380
 agcaacgcgg ccttttacg gttcctggcc ttttgcgttca cttttgctca catgttctt 4440
 cctgcgttat cccctgattc tggataac cgtattaccg ctttgagtg agctgataacc 4500
 gctcggcgc gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc cggcgataat 4560
 ggcctgcttc tcgccgaaac gtttgggtgc gggaccagtg acgaaggctt gagcggaggc 4620
 gtgcaagatt cccgaaatccg caagcgcacag gccgatcatc gtcgcgtcc agcgaagcgc 4680
 gtcctcgccg aaaatgaccc agagcgtgc cggcacctgt cttacgagtt gcatgataaa 4740
 gaagacagtc ataagtgcgg cgacgaccgg tgaattgtga gcgctcacaa ttctcggtac 4800
 atcataacgt cccgcgaaat 4820

<210> 69
 <211> 4736
 <212> DNA
 <213> Homo sapiens

<400> 69

taatacgtact cactataggg gaattgtgag cggataacaa ttccctctta gacttacaat 60
 ttccatttcgc cattcaggct gcgcaactgt tggaaaggc gatcggtacg ggcctttcg 120
 ctattacgccc agcttgcgaa cgggtggc gctgcaaggc gattaagtt gtaacgcaca 180
 ggattctccc agtcacgacg ttgtaaaacg acggccagcg agagatctt attggctagc 240
 agaataattt tgtttaactt taagaaggag atataccatg gcgatataccc gggagctcg 300
 ggatccgaat tcccagggtc acagttccat tcgctcgccg cgcgagcgcg agaagcactc 360
 cgcctgctgc gtgcgcaacg acaggtcggt ctgcgtcag acctcgagg aggagtgc 420
 gtccacgctg gcagttgtgg tgaagtggcc catccatccc agcgcggccag agcttgcggg 480
 ccacaagaga cagttggct ctgtctggca ccaggatccc agggtgtgtg atgagccctc 540
 ctccgaagac cctcatgagt ggccagaaga catcacaag tggccgatct gcaccaaaaa 600
 cagcgctggg aaccacacca accatcccc catggactgt gtcatacacag gacggccctg 660
 ctgcattggc accaaggcga ggtgtgagat cactcccg gagtactgtg acttcatgag 720
 gggctacttc catgaggagg ccacgctctg ctctcagggtg cactgcatgg atgatgtgt 780
 tgggtccctg cttttctca accccgaggt gcctgaccag ttctaccgc tggctatc 840
 cctcttcctg cagccggga tcttgcactg cctgggtgtcc atctgcttcc agatgactgt 900
 cctgcgggac ctggagaagc tggcaggctg gcaccgcata gccatcatct acctgctgag 960
 tgggtcacc ggcaacctgg ccagtgcacat ttccctggca taccgagcag aggtgggtcc 1020
 tgcgttcc cagttcggtc ttctggcctg cctttcggt gactcttcc agagctggca 1080
 gatcctggcg cggccctggc gtgccttctt caagctgtc gctgtgggtc tcttcctt 1140
 caccttggg ctgctggcgt ggattgacaa cttggccac atctgggggt tcatcagttgg 1200
 cctcttcctc ttcttcgcctt catcagctt ggcaagttcg acctgtaccc 1260

gaaacgctgc cagatcatca tctttcaggt ggcttcctg ggcctcctgg ctggccttgt 1320
 ggtcctcttc tacgtctatac ctgtccctcg tgagtgggtg gagttcctca cctgcacccc 1380
 cttcaactgac aagttctgtg agaagtaacga actggacgct cagctccaca tcgatacgcg 1440
 ttcaagctt gcggccgcac agctgtatac acgtgcaagc cagccagaac tcgctcctga 1500
 agacccagag gatctcgagc accaccacca ccaccactaa tgttaattaa gttggcgtt 1560
 gtaatcatag tcataatcaa tactcctgac tgcgttagca atttaactgt gataaactac 1620
 cgcatataaag ctattcgatg ataagctgtc aaacatgata attcttgaag acgaaaggc 1680
 cttaggctgat aaaacagaat ttgcctggcg gcagtagcgc ggtggtccca cctgacccca 1740
 tgccgaactc agaagtggaa cgccgtagcg ccgatggtag tgggggtct cccatgcga 1800
 gagtagggaa ctgccaggca tcaaataaaa cgaaaggctc agtcgaaaga ctgggcctt 1860
 cgttttatct gttgtttgtc ggtgaacgct ctcttgagta ggacaaatcc gccgggagcg 1920
 gatttgaacg ttgcgaagca acggcccgga gggggcggg caggacgccc gccataaact 1980
 gccaggcattc aaattaagca gaaggccatc ctgacggatg gccttttgc gtttctacaa 2040
 actctttgtt ttattttctt aaatacattc aaatatgtat ccgttgagca ataactagca 2100
 taaccccttg gggcctctaa acgggtctt aggggtttt tgctgaaagg aggaactata 2160
 tccggattgg cgaatggac gcgcctgtt gcggcgcatt aagcgcggcg ggtgtgggtt 2220
 ttacgcgcag cgtgaccgct acacttgcca gcgccttagc gcccgcctt ttcgccttt 2280
 tcccttcctt tctcgccacg ttgcggcgct ttccccgtca agctctaaat cgggggctcc 2340
 cttaggggtt ccgatttagt gctttacggc acctcgaccc caaaaaactt gattagggtt 2400
 atggttcagc tagtggccca tcgcctgtat agacggttt tcgcctttt acgttggagt 2460
 ccacgttctt taatagtggc ctcttgcattt aacttggaaac aacactcaac cctatctcg 2520
 tctattcttt tgatttataa gggattttgc cgatttcggc ctatggta aaaaatgagc 2580
 tgatttaaca aaaatttaac gcgaattttt aaaaaatatt aacgttaca atttctggcg 2640
 gcacgatggc atgagattt caaaaaggat cttcacctag atccttttaa attaaaaatg 2700
 aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt accaatgctt 2760
 aatcagttagt gcacccatct cagcgatctg tctatttcgt tcatccatag ttgcctgact 2820
 ccccgctgtg tagataacta cgatacggg gggcttacca tctggcccca gtgctgcaat 2880
 gataccgcga gaccacgct caccggctcc agatttatca gcaataaacc agccagccgg 2940
 aaggcccgag cgccagaatgt gtcctgcaac ttatccgccc tccatccagt ctattaatg 3000
 ttgcccggaa gctagagtaa gtatcgcc agttaatagt ttgcgcaacg ttgttgccat 3060
 tgctacaggc atcggtgtt cacgctcgct gttggatgt gcttcattca gctccgggtc 3120
 ccaacgatca aggccgatcta catgatcccc catgttgc aaaaaagccg ttagctcctt 3180
 cggctcccg atcggtgtca gaagtaagtt ggcggcagtg ttatcactca tggttatggc 3240
 agcaactgcat aattctctta ctgtcatgcc atccgtaaag tgctttctg tgactgggt 3300
 gtactcaacc aagtccattt gagaatagt tatcgccgca ccgagttgtc ttgcggcgc 3360
 gtcataacgg gataataccg cgcacatag cagaacttta aaagtgcgtca tcattggaaa 3420
 acgttctcg gggcgaaaac tctcaagat cttaccgctg ttgagatcca gttcgatgt 3480
 acccaactcg tgcaccaact gatcttcagc atctttact ttcaccagcg tttctgggt 3540
 agcaaaaaca ggaaggcaaa atgcgcacaa aaaggaaata agggcgacac ggaaatgtt 3600
 aataactcata ctcttcctt ttcaatcatg accaaaatcc cttAACGTGA gttttcggtc 3660
 cactgagcgt cagaccccgta agaaaagatc aaaggatctt cttgagatcc tttttctg 3720
 cgcgtaatct gctgcttgca aacaaaaaaaaa ccaccgtac cagcggtgtt ttgttgccg 3780
 gatcaagagc taccaactct tttccgaag gtaactggct tcagcagacg gcaagatcca 3840
 aataactgtcc ttcttagtgc gccgttagta ggcacccact tcaagaactc ttagcaccg 3900
 cctacatacc tcgctctgtc aatcctgtt ccagtggctg ctgccagtgg cgataagtcg 3960
 tgtcttaccg gttggactc aagacgtatc ttaccggata aggcgcagcg gtcgggctga 4020
 acgggggggtt cgtgcacaca gcccagctt gagcgaacga cctacaccga actgagatac 4080
 ctacagcgtg agctatgaga aagcgccacg cttcccgaaag ggagaaaggc ggacaggat 4140
 ccggtaagcg gcagggtcgg aacaggagag cgacacgagg agcttcagg gggaaacgc 4200
 tggtatcttt atagtcctgt cgggtttcgac cacctctgac ttgagcgtcg atttttgta 4260
 tgctcgtaag gggggcgag cctatggaaa aacgcacgc acgcggcatt tttacgggtc 4320
 ctggcctttt gctggcctt tgcgtcacatg ttcttcctg cgttatcccc tgattctgt 4380
 gataaccgtt ttaccggctt tgagtggact gataaccgtc gccgcacccg aacgaccgag 4440
 cgcacgtgact cagtggatc ggaaggccgc gataatggcc tgcttcgc cgaacacgtt 4500
 ggtggcggga ccagtgcacga aggcttgacg gagggcgtgc aagattccga ataccgcaag 4560
 cgacaggccg atcatcgatc cgctccacgc aaagcggtcc tcgcccggaaa tgaccaggag 4620
 cgctgcccggc acctgtccca cgagttgcac gataaagaag acagtataaa gtgcggcgcac 4680
 gaccgggtgaa ttgtgagcgc tcacaatttc cgtgacatca taacgtcccg cgaat 4736

<210> 70

<400> 70
000

<210> 71

<400> 71
000

<210> 72
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 72
aatctgatga tgaagctgca g

21

<210> 73
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 73
aactgtttag gagcccatgg a

21

<210> 74

<400> 74
000

<210> 75

<400> 75
000

<210> 76
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 76
Ala Leu Trp Val Leu Gly Leu Cys Cys
1 5

<210> 77
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 77
Val Leu Gly Leu Cys Cys Val Leu Leu
1 5

<210> 78
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 78
Leu Leu His Val Thr Asp Thr Gly Val
1 5

<210> 79
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 79
Ser Glu Leu Ile Gly Gln Phe Gly Val
1 5

<210> 80
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 80
Ala Asp Asp Glu Val Asp Val Asp Gly Thr Val Glu Glu Asp Leu Gly
1 5 10 15

Lys Ser Arg Glu Gly Ser Arg Thr Asp Asp Glu Val Val Gln
20 25 30

<210> 81
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 81
Ser Ala Phe Leu Val Ala Asp Lys Val Ile Val Thr Ser Lys His Asn
1 5 10 15

Asn Asp Thr Gln His Ile Trp Glu Ser Asp Ser Asn Glu Phe
20 25 30

<210> 82
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 82
Ser Glu Lys Thr Lys Glu Ser Arg Glu Ala Val Glu Lys Glu Phe Glu
1 5 10 15

Pro Leu Leu Asn Trp Met Lys Asp Lys Ala Leu Lys Asp Lys
20 25 30

<210> 83
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 83
Met Met Pro Lys Tyr Leu Asn Phe Val
1 5

<210> 84
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 84
Lys Leu Tyr Val Arg Arg Val Phe Ile
1 5

<210> 85
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 85
Arg Leu Leu Lys Lys Gly Tyr Glu Val
1 5

<210> 86
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 86
Phe Leu Val Ala Asp Lys Val Ile Val
1 5

<210> 87
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 87
Leu Leu His Val Thr Asp Thr Gly Val
1 5

<210> 88
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 88
Lys Glu Ala Glu Ser Ser Pro Phe Val
1 5

<210> 89
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 89
Arg Leu Thr Glu Ser Pro Cys Ala Leu
1 5

<210> 90
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 90
Val Thr Phe Lys Ser Ile Leu Phe Val
1 5

<210> 91
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 91
Ala Leu Trp Val Leu Gly Leu Cys Cys
1 5

<210> 92
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 92
Val Leu Gly Leu Cys Cys Val Leu Leu
1 5

-

<210> 93
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 93
Ser Glu Leu Ile Gly Gln Phe Gly Val
1 5

<210> 94
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 94
Arg Met Leu Arg Leu Ser Leu Asn Ile
1 5

<210> 95
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 95
Leu Gln Gln His Lys Leu Leu Lys Val
1 5

<210> 96
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 96
Tyr Val Trp Ser Ser Lys Thr Glu Thr
1 5

<210> 97
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 97
Leu Glu Leu Asp Thr Ile Lys Asn Leu
1 5

<210> 98
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 98
Phe Ile Thr Asp Asp Phe His Asp Met
1 5

<210> 99
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 99
Lys Thr Leu Asp Met Ile Lys Lys Ile
1 5

<210> 100
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 100
Lys Leu Val Arg Lys Thr Leu Asp Met
1 5

<210> 101
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 101
Tyr Leu Asn Phe Val Lys Gly Val Val
1 5

<210> 102
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 102
Val Gly Phe Tyr Ser Ala Phe Leu Val
1 5

<210> 103
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 103
Lys Asp Glu Leu
1

<210> 104
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide motif

<400> 104
Gly Ala Ser Gly Gly
1 5

<210> 105
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide motif

<400> 105
Gly Asp Ser Gly Gly
1 5

<210> 106
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 106
Trp Leu Thr Phe Val His Ser Leu Val Thr Ile Leu Ala Val Cys Ile
1 5 10 15

Tyr Gly Ile Ala Pro Val Gly
20

<210> 107
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 107
Leu Trp Leu Ser Leu Phe Leu His Ala Gly Ile Leu His Cys Leu Val
1 5 10 15

Ser Ile Cys Phe Gln Met Thr
20

<210> 108
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 108
Leu Ser Gly Val Thr Gly Asn Leu Ala Ser Ala Ile Phe Leu Pro Tyr
1 5 10 15

Arg Ala Glu Val Gly Pro Ala
20

<210> 109
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 109
Trp Arg Ala Phe Phe Lys Leu Leu Ala Val Val Leu Phe Leu Phe Thr
1 5 10 15

Phe Gly Leu Leu Pro Trp Ile
20

<210> 110
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 110
Ile Ser Gly Phe Ile Ser Gly Leu Phe Leu Ser Phe Ala Phe Leu Pro
1 5 10 15

Tyr Ile Ser Phe Gly Lys
20

<210> 111
<211> 23
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 111
Gln Ile Ile Ile Phe Gln Val Val Phe Leu Gly Leu Leu Ala Gly Leu
1 5 10 15

Val Val Leu Phe Tyr Val Tyr
20