# Neural Variational Inference and Learning

Andriy Mnih



Deep Probabilistic Models Workshop, Sheffield

2 October 2014

#### Introduction

- Training directed latent variable models is difficult because inference in them is intractable.
  - Both MCMC and traditional variational methods involve iterative procedures for each datapoint.
- A promising new way to train directed latent variable models:
  - Use feedforward approximation to inference to implement efficient sampling from the variational posterior.
- We propose a general version of this approach that
  - Can handle both discrete and continuous latent variables.
  - 2. Can handle non-linear dependencies in the variational posterior.
  - Does not require any model-specific derivations beyond computing gradients w.r.t. parameters.

#### High-level overview

- ► A general approach to variational inference based on three ideas:
  - Approximating the posterior using highly expressive feed-forward inference networks (e.g. neural nets).
    - These have to be efficient to evaluate and sample from.
  - 2. Using gradient-based updates to improve the variational bound.
  - 3. Computing the gradients using samples from the inference net.
- Key: The inference net implements efficient sampling from the approximate posterior.

#### Variational inference (I)

Given a directed latent variable model that naturally factorizes as

$$P_{\theta}(x,h) = P_{\theta}(x|h)P_{\theta}(h),$$

▶ We can lower-bound the contribution of *x* to the log-likelihood as follows:

$$\log P_{\theta}(x) \ge E_{Q} [\log P_{\theta}(x, h) - \log Q_{\phi}(h|x)]$$
  
=  $\mathcal{L}_{\theta, \phi}(x)$ ,

where  $Q_{\phi}(h|x)$  is an arbitrary distribution.

▶ In the context of variational inference,  $Q_{\phi}(h|x)$  is called the *variational posterior*.

## Variational inference (II)

- ▶ Variational learning involves alternating between maximizing the lower bound  $\mathcal{L}_{\theta,\phi}(x)$  w.r.t. the variational distribution  $Q_{\phi}(h|x)$  and model parameters  $\theta$ .
- Typically variational inference requires:
  - Variational distributions Q with simple factored form and no parameter sharing between distributions for different x.
  - ▶ Simple models  $P_{\theta}(x, h)$  yielding tractable expectations.
  - ▶ Iterative optimization to compute *Q* for each *x*.
- We would like to avoid iterative inference, while allowing expressive, potentially multimodal, posteriors, and highly expressive models.

## Neural variational inference and learning (NVIL)

- ▶ We achieve these goals by using a feed-forward model for  $Q_{\phi}(h|x)$ , making the dependence of the approximate posterior on the input x parametric.
  - ▶ This allows us to sample from  $Q_{\phi}(h|x)$  very efficiently.
  - ▶ We will refer to *Q* as the **inference network** because it implements approximate inference for the model being trained.
- ▶ We train the model by (locally) maximizing the variational bound  $\mathcal{L}_{\theta,\phi}(x)$  w.r.t.  $\theta$  and  $\phi$ .
  - ▶ We compute all the required expectations using samples from *Q*.

#### Relationship to the existing methods

- Unlike traditional applications of variational inference, NVIL
  - uses a feed-forward network to compute the posterior efficiently,
  - uses sampling to estimate the expectations needed for learning,
  - performs gradient-based updates instead of closed-form ones.
- Unlike the wake-sleep algorithm, NVIL
  - does not require sampling from the model and
  - optimizes a well-defined objective function (the variational bound).

#### Gradients of the variational bound

► The gradients of the bound w.r.t. to the model and inference net parameters are:

$$\begin{split} &\frac{\partial}{\partial \theta} \mathcal{L}_{\theta,\phi}(x) = E_Q \left[ \frac{\partial}{\partial \theta} \log P_{\theta}(x,h) \right], \\ &\frac{\partial}{\partial \phi} \mathcal{L}_{\theta,\phi}(x) = E_Q \left[ \left( \log P_{\theta}(x,h) - \log Q_{\phi}(h|x) \right) \frac{\partial}{\partial \phi} \log Q_{\phi}(h|x) \right]. \end{split}$$

- Note that the learning signal for the inference net is  $I_{\phi}(x,h) = \log P_{\theta}(x,h) \log Q_{\phi}(h|x)$ .
- ► This signal is effectively the same as  $\log P_{\theta}(h|x) \log Q_{\phi}(h|x)$  (up to a constant w.r.t. h), but is tractable to compute.
- The price to pay for tractability is the high variance of the resulting estimates.

#### Parameter updates

- Given an observation x, we can estimate the gradients using Monte Carlo:
  - 1. Sample  $h \sim Q_{\phi}(h|x)$
  - 2. Compute

$$\frac{\partial}{\partial \theta} \mathcal{L}_{\theta,\phi}(x) \approx \frac{\partial}{\partial \theta} \log P_{\theta}(x,h)$$

$$\frac{\partial}{\partial \phi} \mathcal{L}_{\theta,\phi}(x) \approx (\log P_{\theta}(x,h) - \log Q_{\phi}(h|x)) \frac{\partial}{\partial \phi} \log Q_{\phi}(h|x)$$

- ▶ Problem: The resulting estimator of the inference network gradient is too high-variance to be useful in practice.
- It can be made practical, however, using several simple model-independent variance reduction techniques.

#### Reducing variance (I)

• Key observation: if h is sampled from  $Q_{\phi}(h|x)$ ,

$$(\log P_{\theta}(x,h) - \log Q_{\phi}(h|x) - b) \frac{\partial}{\partial \phi} \log Q_{\phi}(h|x)$$

is an unbiased estimator of  $\frac{\partial}{\partial \phi} \mathcal{L}_{\theta,\phi}(x)$  for any b independent of h.

- ► However, the variance of the estimator does depend on *b*, which allows us to obtain lower-variance estimators by choosing *b* carefully.
- ▶ Our strategy is to choose b so that the resulting learning signal  $\log P_{\theta}(x,h) \log Q_{\phi}(h|x) b$  is close to zero.
- ▶ Borrowing terminology from reinforcement learning, we call *b* a *baseline*.

## Reducing variance (II)

#### Techniques for reducing estimator variance:

- 1. Constant baseline: b = a running estimate of the mean of  $I_{\phi}(x,h) = \log P_{\theta}(x,h) \log Q_{\phi}(h|x)$ .
  - Makes the learning signal zero-mean.
  - Enough to obtain reasonable models on MNIST.
- 2. Input-dependent baseline:  $b_{\psi}(x)$ .
  - ▶ Can be seen as capturing  $\log P_{\theta}(x)$ .
  - An MLP with a single real-valued output.
  - Makes learning considerably faster and leads to better results.
- 3. Variance normalization: scale the learning signal to have unit variance.
  - Can be seen as simple global learning rate adaptation.
  - Makes learning more robust and slightly faster.
- 4. Local learning signals.

## **Experiments**

- Dataset: MNIST
- Models: sigmoid belief networks
- Inference networks: sigmoid belief networks

## Effects of variance reduction (I)

Sigmoid belief network with one hidden layer of 200 units on MNIST.



## Effects of variance reduction (II)

Sigmoid belief network with two hidden layers of 200 units on MNIST.



#### NVIL vs. Wake-sleep

NVIL vs. wake-sleep on binarized MNIST:

| Model | DIM         | TEST NLL |       |
|-------|-------------|----------|-------|
|       |             | NVIL     | WS    |
| SBN   | 200         | 113.1    | 120.8 |
| SBN   | 500         | 112.8    | 121.4 |
| SBN   | 200-200     | 99.8     | 107.7 |
| SBN   | 200-200-200 | 96.7     | 102.2 |
| SBN   | 200-200-500 | 97.0     | 102.3 |
| FDARN | 200         | 92.5     | 95.9  |
| FDARN | 500         | 90.7     | 97.2  |

- Dim is the number of latent variables in each layer, starting with the deepest one.
- NVIL/WS is the training algorithm.
- NLL is the negative log-likelihood for the tractable models and an estimate of it for the intractable ones.

#### Non-factorial inference networks

#### Autoregressive vs. factorial inference networks:

| Model | DIM         | TEST NLL |           |
|-------|-------------|----------|-----------|
|       |             | AUTOREG  | FACTORIAL |
| SBN   | 200         | 103.8    | 113.1     |
| SBN   | 500         | 104.4    | 112.8     |
| SBN   | 200-200-200 | 94.5     | 96.7      |
| SBN   | 200-200-500 | 96.0     | 97.0      |

#### Results on binarized MNIST

| MODEL      | Dім         | TEST NLL |
|------------|-------------|----------|
| SBN        | 200         | 113.1    |
| SBN        | 500         | 112.8    |
| SBN        | 200-200     | 99.8     |
| SBN        | 200-200-200 | 96.7     |
| SBN        | 200-200-500 | 97.0     |
| FDARN      | 200         | 92.5     |
| FDARN      | 500         | 90.7     |
| MoB        | 500         | 137.6    |
| RBM (CD3)  | 500         | 105.5    |
| RBM (CD25) | 500         | 86.3     |
| NADE       | 500         | 88.9     |

## Document modelling results

- Task: model the joint distribution of word counts in bags of words describing documents.
- Models: SBN and fDARN models with one hidden layer
- Datasets:
  - 20 Newsgroups: 11K documents, 2K vocabulary
  - Reuters RCV1: 800K documents, 10K vocabulary
- Performance metric: perplexity

| MODEL      | Dім | 20 News | REUTERS |
|------------|-----|---------|---------|
| SBN        | 50  | 909     | 784     |
| FDARN      | 50  | 917     | 724     |
| FDARN      | 200 |         | 598     |
| LDA        | 50  | 1091    | 1437    |
| LDA        | 200 | 1058    | 1142    |
| REPSOFTMAX | 50  | 953     | 988     |
| DOCNADE    | 50  | 896     | 742     |

#### Conclusions

- NVIL is a simple and general training method for directed latent variable models.
  - Can handle both continuous and discrete latent variables.
  - Can handle non-linear dependencies in the variational posterior.
  - Easy to apply, requiring no model-specific derivations beyond gradient computation.
- Promising document modelling results with DARN and SBN models.
- ► For details, see *Neural Variational Inference and Learning in Belief Networks*, Andriy Mnih & Karol Gregor, ICML 2014.

# Thank you!