# Optimizing Cryptographic Strength of Substitution Layers in Symmetric-Key Cryptosystems

Christopher A. Wood

May 17, 2012

### Agenda

- 1 Motivation
- 2 Security Measurements
- 3 Optimization Problem Formulation
- 4 Optimization Solution
- 5 Final remarks

### Motivation

### Cryptographic algorithm security is measured by:

- Levels of confusion and diffusion
  - Confusion Complexity of the relationship between the secret-key and ciphertext
  - Diffusion Influence of single bit changes in the plaintext on the ciphertext
- Resilience to common cryptanalytic attacks
  - Linear cryptanalysis
  - Differential cryptanalysis

## The substitution layer

A S-box is a common source for nonlinearity in symmetric-key cryptographic algorithms. It can be defined as function  $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ , where n is the number of bits needed to represent each element in the field.



### S-box design

Which S-box configurations yield the highest measures of diffusion and confusion?

## **Security Measurements**

- Branch number
  - Measures lower bound on susceptibility to differential cryptanalysis
- Avalanche number
  - Measures the total number of bit changes for a single bit change in the input to the S-box
- Nonlinearity degree
  - Measures how much nonlinear "behavior" the S-box exhibits by counting the number of output elements that are directly proportional to its input.

# Known optimal values

| Security Measurement        | Theoretical Optimal Value |
|-----------------------------|---------------------------|
| Branch number $(B_N)$       | n                         |
| Avalanche number $(A_N)$    | $n^2 2^{n-1}$             |
| Nonlinearity degree $(P_S)$ | 1*                        |

 $<sup>^*</sup>P_S \le$  2 indicates that the function is "almost perfectly nonlinear", which is also a good value

### Exhaustive search for 2-bit S-box



### Branch number problem formulation

#### **Branch Number - Minimize**

$$B'_N(X) = -B_N(X) = -\min_{i,j \neq i} (\operatorname{wt}(i \oplus j) + \operatorname{wt}(X(i) \oplus X(j))),$$

subject to the constraints

$$0 \le X(i) \le 2^n - 1$$

where n is the number of bits needed to represent the design variables.

# Avalanche number problem formulation

#### **Avalanche Number - Minimize**

$$A'_{N}(X) = -A_{N}(X) = -\sum_{i=0}^{n-1} \sum_{x \in \mathbb{F}_{2}^{n}} \operatorname{wt}(f(x) \oplus f(x \oplus 2^{i}))$$

subject to the constraints

$$0 \le X(i) \le 2^{n} - 1$$
  
$$\min_{i,j \ne i} (\operatorname{wt}(i \oplus j) + \operatorname{wt}(X(i) \oplus X(j))) - n2^{n-1} \le 0$$

where n is the number of bits needed to represent the design variables.

### Nonlinearity degree problem formulation

### **Degree of Nonlinearity - Minimize**

$$P_S(X) = \max_{0 \neq a,b} |\{x \in \mathbb{F}_2^n : S(x+a) - S(x) = b\}|,$$

subject to the constraints

$$0 \leq X(i) \leq 2^n - 1,$$

where n is the number of bits needed to represent the design variables.

## Finding a shared solution

- Create a linear combination of each objective function
- Assign variable weights that correspond to the overall influence of each objective function

$$f(X) = w_1 A'_N(X) + w_2 B'_N(X) + w_3 P_S(X)$$

### MINLP algorithms

- Traditional MINLP methods
  - Branch and Bound (and all derivative) algorithms
- Evolutionary methods
  - Genetic algorithm optimization

### Avalanche number for 4-bit S-box



### Branch number for 4-bit S-box



## Nonlinearity degree for 4-bit S-box



### Multi-objective solution for 4-bit S-box



# Solution Analysis

| Measurement         | Results                                  |
|---------------------|------------------------------------------|
| Branch number       | Exponentially less effective with higher |
|                     | order S-boxes                            |
| Avalanche number    | Logarithmically less effective with      |
|                     | higher order S-boxes                     |
| Nonlinearity degree | Consistently effective with all order S- |
|                     | boxes                                    |
| Multi-objective     | Ineffective                              |

### Conclusions

- Evolutionary optimization algorithms are appropriate for cryptographic applications
  - Effectively finds solutions for some discontinuous and instable functions
  - Not effective at finding solution for multi-objective problems
- Difficult to find optimal S-box configurations with high security assurances
  - Does not replace hardened proofs of security