RÉALISER UN FILETAGE SUR UN TOUR

Sommaire

Initiation

Perfectionnement

V.	Les outils de filetage	5
VI.	Les types de filetage	7
VII.	Mise en œuvre d'un filetage	10
VIII.	Faire un filetage sur un tour	
	à commande numérique	14
IX	Contrôler un filetage	16

I. DOMAINES D'APPLICATION

Les filetages peuvent avoir différentes fonctions :

- pour l'assemblage de deux éléments ;
- pour l'étanchéité (bouchon à gaz) ;
- pour le mouvement (cric de voiture);
- pour le contrôle précis d'un déplacement (machine, outil, vis, tambour gradué).

II. PRINCIPE ET DÉFINITIONS

Le filetage est une opération qui consiste à creuser une ou plusieurs rainures hélicoïdales profilées sur une surface cylindrique (quelquefois conique) extérieure ou intérieure. La partie pleine est appelée « filet » et la partie creuse « sillon ».

INITIATION

Le sens du filetage

Lorsqu'elle est placée verticalement, une vis est à droite si le filet monte vers la droite et à gauche si le filet monte vers la gauche.

Hélice à droite.

Hélice à gauche.

Le pas

C'est la distance comprise entre deux sommets consécutifs.

extrémité d'un Filetage progressif

INITIATIC

III. SÉCURITÉ

Les prises de passe doivent être dégressives de façon à éviter une rupture du bec de l'outil ou un état de surface du filet brouté.

Étant donnée l'importance des efforts de coupe lors d'un filetage intérieur, l'outil devra être sorti au minimum.

Le carter et le port de lunettes sont obligatoires. Il ne faut surtout pas toucher la pièce avec les doigts tant que le filetage n'est pas totalement fini.

IV. VOCABULAIRE

- Pas Vis-mère
- Sardine
- Bague

- Tampon
- Filet
- Profil

V. LES OUTILS DE FILETAGE

1. L'outil à plaquette carbure brasée

2. L'outil à plaquette

Les outils à plaquette présentent tous les avantages pour une réalisation de qualité. En effet une plaquette correspond à un profil très précis de filetage du point de vue de ses angles de coupe et de son inclinaison.

Les caractéristiques sont les suivantes :

- le type de plaquette ;
- la forme du filetage ;
- la nuance de la plaquette ;
- la position et le sens de travail de l'outil.

Plaquette à profil partiel

Avantages : même plaquette pour toute la gamme de filetage.

Réduction du nombre de plaquettes.

Inconvénients: Rayon du bec fragile, réalisation d'un diamètre extérieur assez précis au préalable.

Plaquette à profil complet

Avantages: plaquette plus robuste, profondeur et fond du rayon garantis, profondeur de passe plus importante, pas d'usinage précis au préalable.

Inconvénients: Plaquette spécifique pour chaque pas.

Plaquette multidents

Avantages: similaire à la plaquette à profil complet, avec en plus une réduction du nombre de passes.

Inconvénient: Disponible uniquement pour les pas les plus courants, stabilité du porteplaquette.

VI. LES TYPES DE FILETAGE

1. Le profil métrique ISO

Exigences: bon équilibre entre la limite de charge et le volume de matière.

Code: MM (ISO métrique), UN (Américain UN)

Pour définir les dimensions et les profondeurs théoriques on utilise les formules suivantes :

Pour une vis:

- diamètre de la vis : D 1/20 du pas.
- profondeur de passe pour la vis: 1,226 x pas.

	Prise de passe pour un filetage extérieur ISO (au diamètre)														
Pas	6	5,5	5	4,5	4	3,5	3	2,5	2	1,75	1,5	1,25	1	0,75	0,5
Prof. totale	7,356	6,743	6,13	5,517	4,904	4,291	3,678	3,065	2,452	2,146	1,839	1,533	1,226	0,92	0,613

Pour un écrou

• profondeur de passe dans l'écrou: 1,154 x pas

• diamètre d'alésage dans l'écrou : D - (1,0825 x pas)

	Prise de passe pour un filetage intérieur ISO (au diamètre)														
Pas	6	5,5	5	4,5	4	3,5	3	2,5	2	1,75	1,5	1,25	1	0,75	0,5
Prof. totale	6,924	6,347	5,77	5,193	4,616	4,039	3,462	2,885	2,308	2,02	1,731	1,443	1,154	0,866	0,577

Exercices

Calculez le diamètre et la profondeur de passe pour un écrou M12 ISO normalisé. Calculez le diamètre et la profondeur de passe pour une vis M30 au pas de 2,25.

2. Le profil Whitworth

Le profil Whitworth diffère du profil métrique ISO par l'angle au sommet (55°) et son pas qui est exprimé en filets pour un pouce (valeur anglaise).

Exigences: Capacité à supporter des charges, capacité d'étanchéité (les filets sont souvent coniques).

Code: WH (Whitworth), PT (British Standard), NT NF (American national pipe)

	Prise de passe pour un filetage intérieur whitworth (au diamètre)														
filets au pouce	40	24	20	18	16	14	12	11	10	9	8	7	6	5	4,5
Prof totale en mm	0,813	1,354	1,626	1,805	2,031	2,322	2,71	2,956	3,251	3,612	4,064	4,645	5,418	6,502	7,224

3. Le profil trapézoïdal

Le filet trapézoïdal est utilisé pour fabriquer des machines (type presse).

Exigences: formes symétriques, importantes surfaces de contact, formes robustes

Code: TR (Trapézoïdal), AC (ACME), SA (Stub Acme)

4. Les autres profils

Type de profil	Représentation	Symbole	Utilisations
Profil ISO	60°	М	Filetages courants de visserie métrique. Bon équilibre entre la limite de charge et le volume de matière.
Profil Whitworth	55°	WH	Filetages courants de visserie américaine et anglaise. Capacité à supporter des charges. Capacité d'étanchéité (les filets sont souvent coniques).
Profil trapézoïdal	30°	Tr	Le filet trapézoïdal est utilisé pour fabriquer des machines (type presse)
Profil d'artillerie	30° 3°	S	Comme son nom l'indique, il a été utilisé dans l'artillerie lourde.
Profil en dents de scie à 45°	7550	S	Filetages de presses hydrauliques.
Profil en scie	100 100	Ks	Récipients.
Profil rond	300	Rd	Il est utilisé pour des efforts importants (crochet de wagon, ancrage), pour l'industrie alimentaire (facilite le nettoyage), ainsi que pour les protections contre l'incendie.
Profils électriques		R	Filetages d'ampoules.
Profils en verre	35° 50°	Glasg	Bouteilles et capuchons.
Profil de réservoir sidérurgique	80%	Pg	Réservoirs sidérurgiques.

VII. MISE EN ŒUVRE D'UN FILETAGE

1. Positionnement de l'opération de filetage dans une gamme d'usinage.

Les opérations de filetage doivent être réalisées de préférence en fin d'usinage.

Vu que la vitesse d'avance est synchronisée avec la vitesse de rotation, la reprise d'un filetage est quasiment impossible.

Surtout pour les plaquettes à profil partiel, le filetage doit être réalisé dans la même phase que l'usinage de préparation. Étant donnée la fragilité du filetage, la mise en position ou le serrage dans les mors du mandrin n'est pas envisageable.

Réglage de la perpendicularité de l'outil à l'aide d'une sardine.

Si le filetage ne se réalise pas sur toute la longueur de la pièce, il faut prévoir des dégagements :

- une gorge;
- un dégagement progressif de l'outil sur une longueur équivalente à 2 fois le pas.

2. Réglage de l'outil

L'outil de filetage doit être parfaitement perpendiculaire à l'axe de la pièce. Pour ce faire on dégauchit :

- soit directement sur le corps de l'outil (pour un outil à plaquette) ;
- soit à l'aide d'une sardine, directement sur les arêtes de coupe.

3. Réglage du pas

Sur un tour traditionnel le mouvement d'avance est donné par la vis-mère du tour sur laquelle se referment deux demi-écrous solidaires du traînard.

La gamme des pas sur les tours modernes permet la réalisation de tous les filetages courants normalisés. On note deux types de pas.

3.1 Le pas débrayable

Ils regroupent les pas égaux ou sous-multiples du pas de la vis-mère. L'outil retombe obligatoirement dans la rainure hélicoïdale précédemment creusée, quelle que soit la position du traînard lorsque l'on embraye la vis-mère.

3.2 Le pas non-débrayable

Pas multiple ou sans rapport avec le pas de la vis-mère. Dans ce cas-là, soit on ne débraye jamais, soit on utilise une roue dentée (35 ou 36 dents) pour retomber dans le pas (appelé aussi « indicateur de retombée »).

4. Les étapes d'usinage d'un filetage

4.1 Choix et optimisation des conditions de coupe

Pour un filetage l'avance est toujours égale au pas (Avance = Pas).

Si on veut optimiser le temps d'usinage, il faut faire varier la profondeur de passe.

Plus l'outil pénètre dans la matière et plus la longueur engagée de l'outil dans le filet augmente. Il faut donc réduire au fur et à mesure la profondeur de passe.

Des tableaux de constructeurs de plaquettes nous donnent les profondeurs de passe à choisir pour chaque pas.

Données de coupe Sandvik

				Plaquettes négatives T-MAX P								Plaquettes Positives T-MAX U					
ISO	НВ	Matière	Application	Géométrie	Nuance	Types de plaquettes	Rayon de bec	a _p ,mm	f _{n.} mm/tr	v _o m/min	Géométrie	Nuance	Rayon de bec	а _{р,} тт	f _{n,} mm/tr	v _c , m/min	
Р	150	Acier au carbone non allié	Super-finition Finition Semi-finition Ebauche légère Ebauche Ebauche lourde	QF PM PR PR H	4015 4015 4025 4025 4025 4025	G G G M M	04 08 08 12 12 16	0,5 0,4 3,0 4,0 5,0 10,0	0,12 0,2 0,3 0,4 0,5 0,8	430 395 325 290 260 205	UF UM UR	4015 4025 4025	04 08 08	0,5 1,25 2,0	0.1 0,25 0,3	442 333 312	
	180	Acier faibl. allié	Super-finition Finition Semi-finition Ebauche légère Ebauche Ebauche lourde	5 F M R R R	4015 4015 4025 4025 4025 4025	GGGGM	04 08 08 12 12	0,5 0,4 3,0 4,0 5,0	0,12 0,2 0,3 0,4 0,5 0,8	465 415 330 290 265 210	UF UM UR	4015 4025 4025	04 08 08	0,5 1,25 2,0	0,1 0,25 0,3	380 273 256	
	200	Acier fort. allié	Super-finition Finition Semi-finition Ebauche légère Ebauche Ebauche lourde	G F M R R R	4015 4015 4025 4025 4025 4025	GGGGMM	04 08 08 12 12	0,5 0,4 3,0 4,0 5,0	0,12 0,2 0,3 0,4 0,5 0,8	340 295 220 195 180 145	UF UM UR	4015 4025 4025	04 08 08	0,5 1,25 2,0	0,1 0,25 0,3	352 232 219	
M	180	Acier inoxydab le, austéniti que	Finition Semi-finition Ebauche légère Ebauche Ebauche lourde	MM M M G E	2015 2025 2025 4035 4035	G G G M M	08 12 12 16 16	0,4 3,0 3,0 5,0 10,0	0,2 0,3 0,35 0,5 0,8	250 180 165 135 95	UF UM UR	1025 2025 2025	04 08 12	0,5 1,25 2,0	0,1 0,2 0,3	247 196 175	
K	260	Fonte grise	Finition Semi-finition Ebauche	KF KM KR	3005 3015 3015	GGA	08 12 16	0,5 3,0 4.0	0,2 0,35 0,55	250 225 190	UF UM UK	3005 3025 3025	04 08 12	0,5 1,2 2,0	0,1 0,25 0.3	280 170 145	
	90	Alliages d'alumini um	Finition Semi-finition Ebauche	-23	H13A	G	12	3,0	0,35	2000	.CMW AL AL	CD10 CD810 H10	04 08 12	0,5 1,5 1,5	0.1 0.3 0.3	2000 2000 2000	

Remarque: Type de plaquette

La quatrième lettre de la référence des plaquettes indique le type de plaquette.

Voir le code de désignation. EX : CNMG G= plaquette reversible avec brise copeaux M= plaquette non reversible avec brise copeaux

4.2 Angle de pénétration de l'outil

4.2.1 Attaque radiale

C'est la méthode la plus courante dans les matériaux à copeaux courts. Avec les matériaux à copeaux longs, il est difficile de casser ou de contrôler le copeau, car il subit un effort de cisaillement des flans du filet. Cette méthode d'attaque génère une température importante qui a pour conséquence l'usure prématurée du rayon de l'outil.

4.2.2 Attaque sur le flanc

La pénétration est angulaire et de même angle que celui du flanc du filet. Bien que la chaleur générée par cette méthode soit réduite, la face arrière de la plaquette n'enlève que très peu de matière, ce qui peut provoquer une trempe dans certains matériaux et un état de surface non satisfaisant sur le flanc arrière du filetage. On l'utilise sur un tour traditionnel (en inclinant le chariot) pour les filetages de gros calibre.

4.2.3 Attaque modifiée sur le flanc

Utilisée seulement sur les machines CNC, cette méthode consiste en une avance angulaire modifiée pour générer plus d'enlèvement de matière par l'arête de coupe arrière de la plaquette. Et ce, tout en maintenant une bonne formation de copeau, avec réduction de la température au niveau du rayon de l'outil. Elle est recommandée pour la plupart des matériaux. Cependant, l'angle d'attaque doit être réduit dans les matériaux les plus abrasifs afin d'éviter la trempe. Plage recommandée : 27 - 10°.

4.2.4 Attaque alternative sur les flancs

C'est une excellente méthode pour optimiser la durée de vie de l'outil. La plupart des machines CNC récentes possèdent ces cycles en sous-programme et leur utilisation est fortement recommandée dans presque tous les matériaux. Le seul inconvénient peut être une moins bonne maîtrise du copeau dans certaines matières.

4.3 Étapes pendant l'usinage

Une gorge peut être réalisée au préalable afin de permettre la débouche de l'outil (c'est préférable).

On peut lubrifier à l'huile de coupe pure ou à l'aide d'un lubrifiant.

Étant donnée l'importance des efforts de coupe lors de filetages intérieurs, l'outil devra être sorti au minimum.

Tangenter sur la face et mettre le repère X à 0.

Effectuer la première passe en effleurant le diamètre intérieur ou extérieur.

Vérifier la valeur du pas à l'aide du pied à coulisse, d'un réglet (pour plus de précision effectuer ce contrôle sur plusieurs filets) ou d'un calibre à filet.

Les prises de passe doivent être dégressives de façon à éviter une rupture du bec de l'outil ou un état de surface du filet brouté.

Contrôle et fin du filetage.

VIII. FAIRE UN FILETAGE SUR UN TOUR COMMANDE NUMÉRIQUE

Cycle de filetage G33 X... Z... K... EA... EB... R... P...Q...F... S... avec :

X et Z :Ce sont les coordonnées suivant les axes X et Z de la fin du filetage.

EA: C'est l'angle de la conicité.

Par défaut EA = 0 (filetage cylindrique).

Si -45° < A < 45° => Z axe de filetage.

X axe de pénétration.

Si $A > 45^{\circ}$ ou si $A < -45^{\circ} = > Z$ axe de pénétration.

X axe de filetage.

EB: C'est l'angle de pénétration entre le flanc de pénétration et l'axe de pénétration droite.

Le flanc de pénétration est déterminé par le signe de B :

Si B > 0 on a une pénétration dans le sens d'exécution.

Si B < 0 on a une pénétration en sens inverse du sens d'exécution.

Par défaut B = 0 (pénétration droite).

R: C'est la longueur du cône de dégagement.

Par défaut R = 0 (pas de cône de dégagement).

F: C'est le nombre de filets (maxi 9 filets).

Par défaut F = 1 (un filet).

S: C'est le nombre de passes (passe de finition non comprise).

Par défaut S = 1.

P: C'est la profondeur totale du filet (exprimée au rayon).

Q: C'est la profondeur de la dernière passe (incluse dans P).

Par défaut, il n'y a pas de passe de finition.

 $Q = 0 \rightarrow passe à vide (permet de palier le problème de flexion de l'outil).$

K: C'est le pas du filetage (avec une valeur maximum de 250 mm).

Pour un profil Whitworth il faut convertir le pas anglais en pas métrique. On utilise pour cette formule : pas métrique = 25,4 / nombre de filets.

Exercice

Calculer la valeur de K pour un filetage Whitworth 1/4 20 filets au pouce.

Tableau indicatif des valeurs courantes pour des filetages en commande numérique

	Filetage ext	érieur à 60°		Filetage intérieur à 60°						
Pas du filet	Hauteur du filet	Nombre de passes	Passe de finition	Pas du filet	Hauteur du filet	Nombre de passes	Passe de finition			
K	Р	S	Q	K	Р	S	Q			
0,5	0,307	2	0,056	0,5	0,289	2	0,053			
0,6	0,368	2	0,068	0,6	0,346	2	0,064			
0,7	0,429	3	0,058	0,7	0,404	3	0,074			
0,75	0,460	3	0,062	0,75	0,433	3	0,058			
0,8	0,491	3	0,066	0,8	0,462	3	0,062			
1	0,613	4	0,065	1	0,577	4	0,061			
1,25	0,767	5	0,065	1,25	0,722	5	0,063			
1,5	0,920	6	0,067	1,5	0,866	6	0,064			
1,75	1,073	7	0,068	1,75	1,010	7	0,065			
2	1,226	8	0,069	2	1,155	8	0,066			
2,5	1,533	10	0,070	2,5	1,443	10	0,067			
3	1,840	12	0,071	3	1,732	12	0,068			
3,5	2,147	15	0,072	3,5	2,021	14	0,069			
4	2,454	17	0,068	4	2,309	16	0,069			
4,5	2,760	19	0,070	4,5	2,598	18	0,069			
5	3,067	21	0,071	5	2,886	20	0,070			

IX. CONTRÔLER UN FILETAGE

1. Les tampons et les bagues

Méthode très répandue qui consiste à jauger manuellement le jeu entre le filetage et un étalon.

2. Les piges

Elles sont utilisées surtout pour les gros filetages. Cette technique permet un contrôle précis sur les flancs de la vis (lorsque le palmer à piges ne le permet plus). On peut également se servir de billes pour les filetages intérieurs.

Cette technique nécessite un micromètre ordinaire, ou un pied à coulisse digital, et trois piges.

(Ø des piges
$$\approx 2/3 \times pas$$
)
 $M = d - (1,515 \times pas) + 3 \times E$

Les piges, dont le diamètre est en fonction du pas et de l'angle du profil, doivent être calibrées. Elles doivent aussi être à l'axe du filetage à mesurer.

Exercice

Calculez la cote sur pige pour un filetage M250 au pas de 6 avec des piges Ø 5.

3. Micromètre de filetage

Filet à 60° : D = $(d - 0.6495 \times pas)$. Trapézoïdal à 30° : D = $(d - 0.5 \times pas)$.

Filet à 55° : D = (d - 0.6403 x pas). Trapézoïdal acmé à 29° : D = (d - 0.5 x pas).

4. Le calibre à filet

Cet outil de contrôle est utilisé surtout pour un contrôle grossier du pas et de l'angle.

