Introduction to Linear Algebra

Nie Shicong 1

December 6, 2019

¹thanks to Gilbert Strang

Contents

1	Intr	Introduction to Vectors 2				
	1.1	Vectors and Linear Combinations	2			
	1.2	Lengths and Dot products	2			
	1.3		2			
2	Solv	ving Linear Equations	3			
	2.1	Vectors and linear equations	3			
	2.2	The idea of elimination	3			
	2.3	Elimination using matrices	3			
	2.4	Rules for matrix operations	3			
	2.5	Inverse Matrices	4			
	2.6	Elimination = Factorization: $A = LU$	4			
	2.7	Transposes and Permutations	4			
3	Vector Spaces and Subspaces 5					
	3.1		5			
	3.2	The Nullspace of A: Solving $Ax = 0$ and $Rx = 0$	5			
	3.3	-	6			
	3.4	•	6			
	3.5		6			
4	Orthogonality 8					
	4.1		8			
	4.2		8			
	4.3		9			
	4.4	· · · · · · · · · · · · · · · · · · ·	9			
5	Determinants 10					
	5.1	The Properties of Determinants	0			
	5.2	Permutations and Cofactors	0			
	5.3	Cramer's Rule, Inverses, and Volumes	_			

Introduction to Vectors

1.1 Vectors and Linear Combinations

linear combination = vector addition + scalar multiplication col / row vector three vector representations

1.2 Lengths and Dot products

dot / inner prod.
length / norm of a vector
unit vector
angle between two vectors, cosine formula, perp.
Schwarz Inequlity, Triangle Inequlity; Geometric mean, Arithmatic mean

1.3 $Matrices^1$

Matrix times vector Ax = comb. of cols of A or multiplication a row at a time $Ax = b, x = A^{-1}b$, if A is inv. indep. / dep.

 $^{^{1}\}mathrm{This}$ sec is looking ahead the key ideas, not fully explained yet.

Solving Linear Equations

2.1 Vectors and linear equations

a system of equs	vector equ	mat equ
row pic	col pic	matrix pic
dot prod. with rows	comb. of cols	matrix-vector multiplication

2.2 The idea of elimination

Gauss elimination \rightarrow Upper triangular U pivot, multiplier forward elimination, back substitution, exchange rows #pivots, singular

2.3 Elimination using matrices

elementary (elimination) matrix, permutation matrix augmented matrix matrix multiplication by rows / cols

2.4 Rules for matrix operations

inner (dot) / outer prod. mnp multiplications four ways to matrix multi., the fourth way! The laws of matrix operations powers of A block matrices and block multi., block elimination \rightarrow Schur complement

2.5 Inverse Matrices

inv. def #pivots and invty; if Ax=0 has a nonzero sol'n, then A is not inv. inverse of a prod. of mats Gauss-Jordan elim. \rightarrow rref. diagonally dominant mats are inv.

2.6 Elimination = Factorization: A = LU

Gauss elim. without row exchanges $\to A = LU$ triangular factorization: A = LU or A = LDU, for better symmetry. Here D is the pivot matrix predict zeros in L and U according to the first entry of rows and cols of A L stores the multiplier l_{ij} factor and solve

2.7 Transposes and Permutations

tranpose of sum, prod. and inverses inner prod. and outer prod. with the introduction of tranpose T symmetric mats S, $A^{\top}A$ and AA^{\top} $A = LDU \to \text{symmetric factorization } S = LDL^{\top}$ (with no row exchanges, U is exactly L^{\top}) P^{-1} is also permutation mat if P is a permutation mat; $P^{\top} = P^{-1}$ because both come from the prod. of row exchanges in reverse order

Vector Spaces and Subspaces

3.1 Spaces of Vectors

vector spaces \mathbb{R}^2 , \mathbb{C}^2 , \mathbb{Z} , all real 2 by 2 matrices, all real functions, ... eight rules for vector addition and scalar multiplication a vector space must obey

subspace, linear comb. requirement, every subspace contains the zero "vector" cols of A span the col space C(A), attainable right side **b**

3.2 The Nullspace of A: Solving Ax = 0 and Rx = 0

nullspace N(A) pivot / free cols \rightarrow pivot / free vars \rightarrow special sol'ns s adding extra equs (giving extra rows), imposing more conditions, N(A) certainly cannot go larger; adding extra unknowns (giving extra cols), more dofs., N(A) goes larger (more #components of vector \mathbf{v} in N(A) rref. R reveals pivot cols and free cols, pivot rows and cols contain I with n > m there's at least one free var, then Ax = 0 has nonzero sol'ns every "free col" is a comb. of earlier pivot cols. It's the special sol'ns s that tell us those combinations (with signs reversed) dimension of a vector space, #components of a vector rank r, rank one matrix $A = uv^{\top}$, geometry of rank 1 matrices

3.3 The Complete Solution to Ax = b

particular sol'n x_p (free vars =0) $\to Ax_p = b$ special sol'ns x_n (free vars $=1,0,0,\ldots$) $\to Ax_n = 0$ complete sol'n $\to x = x_p + x_n =$ one particular sol'n + all special sol'ns x_p comes directly from d on the right side, x_n comes from the free cols of R full col rank $r=n \leq m, \ R=\begin{bmatrix}I\\\mathbf{0}\end{bmatrix}=\begin{bmatrix}mxnidentitymatrix\\m-nrowsofzeros\end{bmatrix}, \ A$ is overdetermined, Ax=b has at most one sol'n full row rank $r=m \leq n, \ R=\begin{bmatrix}I&F\end{bmatrix}, \ F$ is the free part of R, A is underdetermined, Ax=b has one or ∞ sol'ns inv mat r=m=n, it always has one sol'n

3.4 Indepence, Basics and Dimension

linear indep / dep: put a sequence of vecs into a mat and consider its shape and rank

row space $C(A^{\top})$ in \mathbb{R}^n , col space C(A) in \mathbb{R}^m span = fill, no need to be indep; basis = span + indep

basis of a space is not unique; every vector of the space is a unique comb. of the basis

find basis from a set of vecs: put them into the rows (cols) of a mat, and eliminate to find the pivot rows of A or R (pivot cols of A, not R) standard basis for \mathbb{R}^n : $n \times n$ I

 $C(A) \neq C(R)$, their bases are different, their dims are the same dimension = #vectors in any and every basis of the space = "dofs" of the space basis and dim for matrix spaces

3.5 Dimensions of the Four Subspaces

The Big Picture, four fundamental subspaces:

```
row space C(A^{\top}) in \mathbb{R}^n r pivot rows col space C(A) in \mathbb{R}^m r pivot cols nullspace N(A) in \mathbb{R}^n n-r special sol'ns left nullspace N(A^{\top}) in \mathbb{R}^m m-r special sol'ns for A^{\top}y=\mathbf{0} or y^{\top}A=\mathbf{0}^{\top}
```

Fundamental Theorem of Linear Algebra, Part I:

• Rank Theorem: $dim(C(A)) = dim(C(A^{\top})) = rank \quad r$

• Counting Theorem: $dim(C(A)) + dim(N(A)) = dim(\mathbb{R}^n) \to r + (n-r) = n$, or replace A for A^{\top} , $dim(C(A^{\top})) + dim(N(A^{\top})) = dim(\mathbb{R}^m) \to m + (m-r) = m$

$A \xrightarrow{elim.} R$:

- $C(A) \neq C(R)$, the cols of A don't often end in zero rows while R does
- $C(A^{\top}) = C(R^{\top})$, every row of A is a comb. of the rows of R, and vice versa
- N(A) = N(R), elim. doesn't change sol'ns

incidence matrix, nodes and edges (ideas in Graph Theory), loops \to dependence, trees \to independence, Kirchhoff's Voltage Law, Kirchhoff's Current Law rank one mats $A = \mathbf{u}\mathbf{v}^{\top} = \mathbf{a}$ basis for $C(A) \times \mathbf{a}$ basis for $C(A^{\top})$. (they are both single vector)

rank two mats = rank one mat + rank one mat

every rank r mat is a sum of r rank one mats. (The original mat A is separated into E^{-1} and R, and the cols of E^{-1} × rows of R get rank one mats, and then sum these mats to recover A)

Orthogonality

4.1 Orthogonality of the Four Subspaces

orthogonal subspaces \mathbf{V} and \mathbf{W} , $\mathbf{v}^{\top}\mathbf{w} = \mathbf{0}$ for all \mathbf{v} in \mathbf{V} and all \mathbf{w} in \mathbf{W} when a vector is in two subspaces, it must be the zero vector $C(A^{\top}) \perp N(A)$, proved using Ax = 0, rows of $A \times x \to 0$ $C(A) \perp N(A^{\top})$, proved using $A^{\top}y = 0$, rows of $A^{\top} \times y \to 0$ orthogonal complements V^{\top} contains every vector that is perp. to V Fundamental Theorem of Linear Algebra, Part II:

- $\bullet \ C(A^{\top})^{\perp} = N(A)$
- $\bullet \ C(A)^{\perp} = N(A^{\top})$

every \mathbf{x} can be split into a row space component $\mathbf{x_r}$ (which goes to the col space, $Ax_r = Ax$), and a nullspace component $\mathbf{x_n}$ (which goes to zero, $Ax_n = 0$) a basis has two properties, when the #vectors is right, one property implies the other

when a matrix has the right #vectors, it's inv.

4.2 Projections

To find projection $p = \hat{x}_1 a_1 + \cdots + \hat{x}_n a_n$:

- 1. certain multiple \hat{x} : $A^{\top}(b-A\hat{x})=0$ or $A^{\top}A\hat{x}=A^{\top}b\Rightarrow \hat{x}=A(A^{\top}A)^{-1}A^{\top}$, A is comb. of a's. We're projecting onto the C(A). When $n=1,\ A=a$, we're projecting onto a line.
 - This normal equation can be derived by geometry (perp.) or by linear algebra (nullspace).
- 2. projection $p: p = A\hat{x}$
- 3. projection matrix $P = A(A^{\top}A)^{-1}A^{\top}$

Projecting b onto a subspace leaves the error vector e = b - p perp. to the subspace. b can be split into two components: p in C(A) and e in $N(A^{\top})$.

 $(I-P)b = b - p = e \Rightarrow I - P$ projects b onto the $C(A)^{\perp}$. Note that $A^{\top}A$ generally cannot be split into $A^{-1} \times (A^{\top})^{-1}$, because there's no A^{-1} if A is rectangular.

 $A_{-}^{\top}A$ is inv. iff A has indep. cols (no need for A to be inv.)

 $A^{\top}A$ has the same nullspace as A $P^{\top}=P;\ P^2=P,\ \text{projecting a second time doesn't change anything.}$

4.3 **Least Squares Approximations**

4.4 Orthogonal Bases and Gram-Schmidt

Determinants

- 5.1 The Properties of Determinants
- 5.2 Permutations and Cofactors
- 5.3 Cramer's Rule, Inverses, and Volumes