Indian Institute of Space science and Technology

Valiamala, Thiruvananthapuram-695547, Kerala

Computational Astrophysics - ESA614 / ESA414 Master of Science in Astronomy & Astrophysics

End Semester Examination – Forenoon Session

28 December 2020 Total Marks: 20 Time: 9:30AM - 12:30PM Instructions: Write all the formulae and methods used in numerical coding to the answer sheet along with the results in sequential order in a single pdf file. Upload the codes and the pdf file as a single zip or tar.gz attachment.

1. Consider the differential equation describing the motion of a simple pendulum:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}sin\theta,$$

subject to the initial conditions: $\theta(t=0) = \theta_0$ and $\frac{d\theta}{dt}|_{t=0} = 0$. Assume the length of the pendulum arm is 10 cm.

- i. Write this equation as two coupled first order differential equations. [1]
- ii Solve the equations [i] using simple Euler method for $\theta_0 = 10^\circ$. You may choose the step size $\Delta t = 0.1$ and extend the solution upto five periods. Plot θ vs time. [2]
- iii. Did you notice any problem in the solution [ii]? If yes, explain the reason for the problem. Estimate the average period of the pendulum (*Note: do not use a visual estimation from the plot and clearly write the method of estimation of time period*). [2]
- iv. Solve equations [ii] using RK4 method for $\theta_0 = 10^{\circ}$ and plot the solution. Estimate the average time period for $\theta_0 = 10^{\circ}$, 45° , 90° , 135° , 170° and tabulate the results. [3]
- v. The general expression for the time period of the pendulum is given as $T=4\sqrt{\frac{L}{g}}K(\sin\frac{\theta_0}{2})$, where $K(x)=\int_0^{\pi/2}\frac{dz}{\sqrt{1-x^2\sin^2z}}$. Integrate the function K(x) for different value of θ_0 to estimate the time period and compare the results with [iv] (Note: Indicate the method used for numerical integration).
- 2. Consider a physical process govern by an exponential probability distribution

$$f(x) = \lambda e^{-\lambda x}; \quad x \ge 0$$

- i. Assume n random values $x_1, x_2, ..., x_n$ following f(x) and write down the likelihood function. Derive an analytical expression of the maximum likelihood estimator $(\hat{\lambda})$ for λ . [2]
- ii. Write a Monte Carlo code to generate 1000 samples with $\lambda = 1$ and n = 10 following the distribution f(x). Estimate $\hat{\lambda}$ for each sample and plot a histogram. Also, calculate the mean (λ_m) and variance of $\hat{\lambda}$. (Note: clearly express the method used to generate the random variables) [5]
- iii. Redo [ii] for different values of n=2, 5, 10, 20, 30 and plot λ_m vs n. [2]