Optical Methods in Diagnosis

Homework #5 – Grid structure

We will develop a grid structure to store photon absorption information in space. Given $\mu_a=6~cm^{-1},~\mu_s=414~cm^{-1},~g=0.91,~Henyey-Greenstein~phase~function,~n_0(air)=1,\\ n_1(tissue)=1.37,~tissue~thickness=1.5~mm.$

Develop a grid (overall 3 mm wide, 1.5 mm deep) for your model. Let $\Delta r = \Delta z = 0.1$ mm. Use an infinitely narrow beam normally incident at the origin as the source and variable weight photons for 5 sets of 10,000 photons. Calculate reflectance R and transmittance T, and calculate the means and standard deviations. R should be about 0.22 ± 0.002 and T should be 0.0145 ± 0.0004 . Plot the fluence rate (1/cm²) of scattered photons as a function of r and z. Note that it is necessary to separate the absorption due to the first photon-tissue interaction from that of subsequently scattered photons.

Anisotropic scattering(g=0.91), photon_num=10000, run_1

Anisotropic scattering(g=0.91), photon_num=10000, run_2

Anisotropic scattering(g=0.91), photon_num=10000, run_3

Anisotropic scattering(g=0.91), photon_num=10000, run_4

Anisotropic scattering(g=0.91), photon_num=10000, run_5

