PowerAnalysis.m Guide

Roger Strong Harvard University

General Notes

- PowerAnalysis_tTests.m and PowerAnalysis_ANOVA do most the work, and are called in the example scripts
 - Note that PowerAnalysis_ANOVA currently works for within and mixed-factor designs, but not purely between-subjects designs

• Key Components:

- prefs.data:
 - Name of a CSV file containing your data
 - Top row of CSV contains column headings (used for graphing)
 - Each additional row in CSV file is a trial
 - For t-tests (1 factor designs), you should have 3 columns: Col 1 = sub ID, Col 2 = trial score, Col 3 = condition
 - For ANOVAs (2 factor design), you should have 4 columns: Col 1 = sub ID, Col 2 = trial score, Col 3 = factor 1 names, Col 4 = factor 2 names
- prefs.N_range
 - Range of number of participants to simulate. E.g., 10:10:50 will simulate with 10, 20, 30, 40, and 50 participants. This is TOTAL number of participants (not number of subjects for condition, although these are equivalent for within-subjects designs)
- prefs.trial_range
 - Range of number of trials per condition to simulate. E.g., 8:4:24 will simulate with 8, 12, 16, 20, and 24 trials per condition
- prefs.alpha
 - Significance level to use in simulations (often .05)
- prefs.nSims
 - How many simulations to use for every participant/trial number combination. 10,000 is a decent estimate and runs pretty quickly, 100,000 is slower but a more stable estimate.
- prefs.comps
 - Which comparisons to test for significance. Each row is a comparison, with the condition expected to be higher magnitude listed in the first column, and the condition expected to have lower magnitude in the second column. A study will be classified as "successful" only if all listed comparisons are significant (see examples).
- prefs.condition_allocation
 - Used only for between-subjects designs (ignored otherwise). Ratio of how total number of subjects should be divided between conditions during simulations. Should be a value for each condition in data, and values should sum to 1 (100%). For example, [.5, .5] would divide subjects evenly between two conditions. [.25, .5, .25] would use a 1:2:1 ratio for dividing subjects between 3 conditions.
- prefs.sig_ME1, prefs.sig_ME2, prefs.sig_int
 - For ANOVAs (2-factor designs), whether significant main effects for either factor or a significant interaction is necessary for a successful study design. Note that for mixed-factor design, the between-subjects factor is always considered the first factor.

Example 1: within-subjects t-test

Pilot Data

- 3 columns
- 1 header row, then a row for each trial

	Α	В	С
1	Subject	Accuracy	Condition
2	S1	0	Within
3	S1	1	Across
4	S1	0	Across
5	S1	1	Across
6	S1	1	Within
7	S1	1	Across
8	S1	1	Within
9	S1	0	Across
10	S1	1	Within
n n	~4		

Data_tTest_Within.csv

Power Analysis Output

Simulated power for each N x number or trials per condition combo we specified in settings. From this, I know I could achieve about 95% power by running 90 subjects with 16 trials per condition, for example

Example 2: within-subjects t-test with multiple comparisons

Pilot Data

- 3 columns
- 1 header row, then a row for each trial

	A	В	C
4	1	0	BB
5	1	0	WW
6	1	0	BB
7	1	1	WB
8	1	1	WW
9	1	1	WW
10	1	0	ww
11	1	1	WB
12	1	0	WB
13	1	1	WB
14	1	0	ww
15	1	1	BB
16	1	0	BW

Data_tTest_Within_Multi.csv

Power Analysis Output

Power Simulation Parameters

Percentages in heatmap to right indicate percentage of simulated studies where are all 5 of these comparisons are true

Simulated power for each N x number or trials per condition combo we specified in settings. From this, I know I could achieve about 90% power by running 250 subjects with 20 trials per condition, for example

Example 3: mixed-factors ANOVA

(1 within-subjects factor & 1 between-subjects factor)

Pilot Data

- 4 columns
- 1 header row, then a row for each trial

	Α	В	С	D
1	Subject	Accuracy	Movement Type	Motion Direction
2	1	1	Vertical	Cross
3	1	1	Horizontal	Cross
4	1	1	Vertical	Cross
5	1	1	Horizontal	Cross
6	1	1	Horizontal	Cross
7	1	1	Horizontal	Cross
8	1	0	Vertical	Cross
9	1	0	Vertical	Cross
10	1	1	Vertical	Cross

Data_ANOVA_Mixed.csv

Power Analysis Output

Total # of Subjects

Simulated power for each N x number or trials per condition combo we specified in settings. From this, I know I could achieve about 96% power by running 150 subjects with 32 trials per condition, for example