

Olimpiada de Fizică Etapa pe județ 15 februrie 2014 Barem

Pagina 1 din 5

Subject 1	Parţial	Punctaj
1. Barem subject 1	1 di çidi	10
A. a) Oscilațiile centului de masă a scândurii se produc în jurul poziției centrului de		
masă a corpului ce corespunde punctului O din figură, unde		
$F_{el0} = F_{f0}$		0.5p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Am ales situația în care tamburul 1 se rotește în sensul acelor de ceasornic. Din condiția de echilibru la rotație a scândurii în plan vertical:		
$M_{\mathrm{N}_{01}}=M_{\mathrm{G}}$, rezultă: $\mathrm{N}_{01}\mathrm{l=mg}(\frac{1}{2}+\mathrm{x}_{0})$, $\mathrm{N}_{01}\mathrm{=mg}(\frac{1}{2}+\frac{\mathrm{x}_{0}}{1})$.		0.5p
Din $kx_0 = \mu N_{01}, kx_0 = \mu mg(\frac{1}{2} + \frac{x_0}{1}), x_0 = \frac{\mu mg}{2(k - \frac{\mu mg}{1})}$.		0,5p
A. b) Oscilaţia se produce în jurul lui O'. Din desen se vede forţa elastică suplimentară ce produce oscilaţia scândurii. X este deformarea suplimentară a resortului datorată creşterii forţei de apăsare N ₁ .		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Ecuația de mișcare a scândurii în jurul poziției de echilibru O este: $ma=F_f-F_{el}\;, ma=\mu N-k(x_0^{}+x)\;,\;\; iar\;\;N_1\;\; se\;\; determină\;\; din\;\; condiția\;\; de$		0.5p

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 15 februrie 2014

Barem

Pagina 2 din 5

echilibru la rotație a scândurii în plan vertical: $M_{_{\mathrm{N_{1}}}}=M_{_{\mathrm{G}}}$.

0.5p

$$N_1 \! = \! mg(\frac{1}{2} \! + \! \frac{x_0 \! + \! x}{1}), F_f \! = \! \mu \, mg(\frac{1}{2} \! + \! \frac{x_0 \! + \! x}{1}), F_{el} \! = \! k(x_0 \! + \! x) \, .$$

0.5p

Ecuația de oscilație este: ma= μ mg $(\frac{1}{2} + \frac{x_0}{l} + \frac{x}{l}) - k(x_0 + x)$, dar din condiția de echilibru a scândurii pentru x₀ ecuația devine:

0,5p

ma=
$$\mu$$
mg $\frac{x}{1}$ -kx=-(k- $\frac{\mu$ mg}{1}) x, unde expresia din paranteză este constanta

de oscilație a sistemului oscilatoriu, $k_{ech} = (k - \frac{\mu mg}{1})$. Pulsația sistemului

este:
$$m\omega^2 = k_{ech}$$
, $\omega = \sqrt{\frac{k_{ech}}{m}}$, $v = \frac{1}{2\pi} \sqrt{\frac{k}{m} - \frac{\mu g}{l}}$.

0.5p

Pentru situația în care tamburul se rotește în sens invers acelor de ceasornic raționamentul se repetă conform noii configurări prezentate în desen și avem:

$$N_{01}' = mg(\frac{1}{2} - x_0'), N_{01}' = mg(\frac{1}{2} - \frac{x_0'}{1}),$$
 0.5p

$$kx_{0}^{2} = \mu N_{01}^{2}, kx_{0}^{2} = \mu mg(\frac{1}{2} + \frac{x_{0}^{2}}{1}), x_{0}^{2} = \frac{\mu mg}{2(k + \frac{\mu mg}{1})}$$
0.5p

Scriind ecuația de oscilație și identificând ca și în cazul precedent obținem:

$$m\omega^2 = k_{ech}^2$$
, $\omega = \sqrt{\frac{k_{ech}}{m}}$, $v = \frac{1}{2\pi} \sqrt{\frac{k}{m} + \frac{\mu g}{l}}$.

1p

B. Din conservarea energiei rezultă:

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe judeţ 15 februrie 2014 Barem

Pagina 3 din 5	
(M-m)gΔh+ $\frac{1}{2}$ (k ₁ +k ₂)x ² = $\frac{1}{2}$ (M+m)(ωx) ² ; unde Δh=l(1-cosφ), x=lsinφ. Se	1p
obţine: (M-m)gl(1-cos φ)+ $\frac{1}{2}$ (k ₁ +k ₂)l ² φ ² = $\frac{1}{2}$ (M+m) ω ² l ² φ ² ;	1p
$T = 2\pi \sqrt{\frac{l(M+m)}{g(M-m) + l(k_1 + k_2)}}$	1p
Obs. Rezultatul se poate obține aplicând teorema de variație a momentulu	ui
cinetic: $I {\theta} = \sum M$	
$I\ddot{\varphi} = -k_1 l^2 \varphi - k_2 l^2 \varphi + mg l \varphi - Mg l \varphi$	
Oficiu 2	1
2. Barem subject 2 A. $\Delta U=-L$, $U_f-U_i=-\frac{1}{2}kx^2$	10
$vC_{v}(T_{2}-T_{1})=-\frac{1}{2}kx^{2}$ T_{2} k k	0.5р
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}, vR = \frac{\frac{kx}{S}(V_1 + Sx)}{T_2} \text{ unde presiunea } P_2 \text{ este dată de forța de}$ deformare din resort, $T_2 = \frac{kx(l+x)}{vR} \text{ . Se înlocuiește în relația}$	1р
energetică $\frac{1}{2}$ kx²-vC _v (T ₁ -T ₂)=0, $\frac{1}{2}$ kx²-vC _v $\left[T_1 - \frac{kx(l+x)}{vR}\right]$ =0.	0.5p
$x = \frac{31}{8} \left(\sqrt{1 + \frac{16vRT_1}{3kl^2}} - 1 \right)$	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 15 februrie 2014 Barem

Pagina 4 din 5

Pagina 4 din 5		
$x = \frac{3}{8}(\sqrt{9} - 1) = 0,75m$		1p
A R I_2 I_7 $R/2$ I_7 I		1p
$C=M$ \xrightarrow{IOZ} $N=D$		
B. $R_{OBD} = R + \frac{R}{2} = \frac{3}{2}R$, $R_{OD} = \frac{R_{OBD} \frac{R}{2}}{R_{OBD} + \frac{R}{2}}$, $R_{OD} = \frac{3R}{8}$		
$R_{\text{ODC}} = R_{\text{OD}} + \frac{R}{2} = \frac{3R}{8} + \frac{R}{2} = \frac{7R}{8}, R_{\text{OC}} = \frac{R_{\text{ODC}} \frac{R}{2}}{R_{\text{ODC}} + \frac{R}{2}} = \frac{7R}{22}$		
$R_{OCA} = R_{OC} + \frac{R}{2} = \frac{9R}{11}, R_{AO} = \frac{R_{OCA}R}{R_{OCA} + R} = \frac{9R}{20}$		2 p
C. Asupra electronilor se exercită forța Lorentz: $F_L = evB$, care determină deviația		
electronilor și apariția unui câmp electric între fețele plăcii situate la distanța d		
una de alta.		1-
Forța electrică $F_e = eE$.		1p
Electronii de conducție nu vor mai fi deviați atunci când forța Lorentz va deveni		
egală cu forța electrică.		
Tensiunea câmpului electric este $U = Ed = vBd$. Dar $I = neSv$.		1p
		•
Se obține astfel: $U = \frac{BI}{neb}$.		1p
Subject 3	Parţial	Punctaj
Barem subject 3	_	10
a) Ecuația miscării de rotație a masei m , față de punctul O este:		
$I\ddot{\theta} = \sum M$, de unde $ml^2 \cdot \ddot{\theta} = -mg\ell \sin \theta - Cv\ell$.		0.5p
Dar $v = \dot{\theta} \ell$, iar $\sin \theta = \theta$ pentru unghiuri mici.		
$m\ell^2 \ddot{\theta} + C\ell^2 \dot{\theta} + mg\ell \theta = 0,$		1p

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 15 februrie 2014

Barem

Pagina 5 din 5

ragina 3 din 3	
$\ddot{\theta} + \frac{C}{m}\dot{\theta} + \frac{g}{\ell}\theta = 0$	
Notăm: $\frac{C}{m} = 2n$; $\frac{g}{\ell} = p^2$	
$\ddot{\theta} + 2n\dot{\theta} + p^2\theta = 0.$	1p
b) Pendulul are mișcare oscilatorie amortizată a cărei ecuație este de forma: $\theta(t) = C_1 e^{-nt} \sin(p_1 t + \varphi_0)$,	1p
unde $p_1 = \sqrt{p^2 - n^2} = \sqrt{\frac{g}{\ell} - \frac{C^2}{4m^2}}$, cu condiția: $C\langle 2m\sqrt{\frac{g}{\ell}} \rangle$.	
$\theta(t) = C_1 e^{-\frac{C}{2m}t} \sin\left(\sqrt{\frac{g}{l} - \frac{C^2}{4m^2}} t + \varphi_0\right)$	1p
Ținând cont de condițiile inițiale putem scrie:	
$\theta(0) = C_1 \sin \varphi_0 \Rightarrow \sin \varphi_0 = \frac{\theta_0}{C_1}$	
$\dot{\theta}(0) = C_1 \sqrt{\frac{g}{\ell} - \frac{C^2}{4m^2}} \cos \phi_0 = \pi \Rightarrow \cos \phi_0 = \frac{\pi}{C_1 \sqrt{\frac{g}{\ell} - \frac{C^2}{4m^2}}}$	1p
$tg\varphi_0 = 0.0194 \; ; \varphi_0 \cong 1.11^0 \; ; \; \varphi_0 \cong \frac{3\pi}{500} rad \; \Rightarrow \; C_1 = \frac{\theta_0}{\sin \varphi_0} = \frac{\pi}{1.94} \; ;$	
$\theta(t) = \frac{\pi}{1,94} \cdot e^{-\frac{5}{2}t} \sin\left(\frac{\sqrt{15}}{2}t + \frac{3\pi}{500}\right)$, de unde:	
$\theta(t) = 1,61 e^{-2.5t} \sin(1.94t + 0.019)$	1 p
c)În aproximația micilor oscilații:	0.5
$I\ddot{\theta} = -Mg\frac{l}{2}\theta - mgl\theta$	0.5p
$I = \frac{Ml^2}{3} + ml^2$	
	1p
$\omega = \sqrt{\frac{3g}{2l} \cdot \frac{2m + M}{3m + M}}$	1p
Oficiu	1

Subiect propus de:

Prof. Ioan Pop, Colegiul Național "Mihai Eminescu", Satu Mare; Prof. Ion Toma, Colegiul Național"Mihai Viteazul", București.

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.