Lösungen Aufgabenblatt 2 Differentialgleichungen

1a)
$$y'' + 1.6y' + y = 0$$
 $a = 0.8, b = 1$

$$a = 0.8, b = 1$$

$$a^2 - b = 0.64 - 1 = -0.36 < 0$$
, also $\omega = 0.6$

$$y = e^{-0.8x} (C_1 \cos 0.6x + C_2 \sin 0.6x)$$

vgl. TI:
$$y = 0.449329^x (\cos 0.6x + \sin 0.6x)$$

b)
$$y'' + 2y' - 3y = \cos x$$
 (*)

homogen:
$$a = 1$$
, $b = -3$, $a^2 - b = 4 > 0$, also $\lambda = 2$
 $y = e^{-x} (C_1 e^{2x} + C_2 e^{-2x}) = C_1 e^x + C_2 e^{-3x}$

inhomogen:
$$y_0 = \alpha_1 \sin x + \alpha_2 \cos x$$

 $y_0' = \alpha_1 \cos x - \alpha_2 \sin x$
 $y_0'' = -\alpha_1 \sin x - \alpha_2 \cos x$
eingesetzt in (*) liefert:
 $-4\alpha_1 - 2\alpha_2 = 0$ und $2\alpha_1 - 4\alpha_2 = 0$, also $\alpha_1 = 0.1$, $\alpha_2 = -0.2$

Lösungsgesamtheit: $y = C_1 e^x + C_2 e^{-3x} + 0.1 \sin x - 0.2 \cos x$

$$y' = C_1 e^x - 3C_2 e^{-3x} + 0.1 \cos x + 0.2 \sin x$$

Mit den Anfangsbedingungen $y(0)=1$ und $y'(0)=0$ folgt:
 $C_1 + C_2 - 0.2 = 1$ und $C_1 - 3C_2 + 0.1 = 0$, also $C_1 = \frac{7}{8}$ und $C_2 = \frac{13}{40}$
 $y = \frac{7}{8}e^x + \frac{13}{40}e^{-3x} + 0.1 \sin x - 0.2 \cos x$

2a)
$$y = f(x) = \frac{b}{a}x - C_1 \frac{1}{a}e^{-ax} + C_2$$
 b) $y = f(x) = -x - e^{-x} + 5$

3a)
$$y1 := y$$
, $y1' = y' = y2$, $y1'' = y2' = -2y2 + 3y1 + \cos t$
 $yi1 = 1$, $yi2 = 0$.
Mit TI Voyage, TABLE folgt $y(1) \approx 2.3698$, $y(5) \approx 129.36$
Vergleich mit den 'exakten' Resultaten als Folge von 1b):
 $y(1) \approx 2.37076$, $y(5) \approx 129.709$

b)
$$y1 = x_1, y1' = x_1' = y2, y3 = x_2, y3' = x_2' = y4$$

 $y1'' = y2' = -2y1 - y3, y3'' = y4' = 3y1 + y3, yi1 = 1, sonst alle yi... = 0$

Resultate:
$$x_1(1) \approx 0.04259$$
, $x_2(1) \approx 1.376$, $x_1(5) \approx 7.4604$, $x_2(5) \approx -19.48$

4. s. http://www.mathematik.ch/klasse6/Stausee.pdf