

Discrete Mathematics 235 (2001) 335-341



www.elsevier.com/locate/disc

# Graph reconstruction from subgraphs

# Václav Nýdl

Department of Applied Mathematics and Informatics, University of South Bohemia, Studentská 13, 370 05 České Budějovice, Czech Republic

### Abstract

The Reconstruction Conjecture asserts that every finite simple undirected graph on 3 or more vertices is determined, up to isomorphism, by its collection of (unlabeled) one-vertex-deleted subgraphs. A more general problem can be investigated if the collection consists of all (unlabeled) subgraphs with a restricted number of vertices. Kelly (Pacific J. Math. 7 (1957) 961–968) first raised the possibility of deleting several points from a graph and Manvel (Discrete Math. 8 (1974) 181–185) offered some basic observations on the problem. Here, we propose a review on the progress made in the last 25 years. Also, discussing the class of all finite trees, we go back to the original Kelly's interest. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 05C60

## 1. Introduction

All graphs considered are finite, simple and undirected. More precisely:  $P_2(X)$  denotes the set of all 2-point subsets of the set X. A graph is a couple G = (X, E), where  $E \subseteq P_2(X)$ ; X = v(G) is the set of vertices of G and E = e(G) is the set of edges of G. The size of graph G is the number of its vertices, i.e. |G| = n = |X| = |v(G)|; we also say that G is a graph on G vertices. If G then we define the *induced graph* G as G as G as G and G as G as G and G as G and G as G as G and G as G as G and G as G and G as G and G as G as G as G and G as G as G as G as G and G as G and G as G

For graphs  $G_1, G_2$  a mapping  $f: v(G_1) \to v(G_2)$  is called a *homomorphism* if for every edge  $\{x, y\} \in e(G_1)$  its image  $\{f(x), f(y)\}$  is an edge in  $e(G_2)$ . In this paper, we deal with special homomorphisms f from  $G_1$  to  $G_2$ :

• if f is a bijection and if both f and  $f^{-1}$  are homomorphisms we call f an *isomorphism*;  $G_1, G_2$  are called isomorphic and denoted by  $G_1 \simeq G_2$ . Especially, an isomorphism from G to G is called an *automorphism* and the number of all automorphisms

E-mail address: nydl@zf.jcu.cz (V. Nýdl).

of G is denoted by aut(G); aut(G) also expreses the number of isomorphisms from G to any other graph isomorphic to G.

- if f is an injection and its restriction  $f: G_1 \to G_2/f(v(G_1))$  is an isomorphism we call f a monomorphism (in a strong sense),
- if for every connectivity component C of G the restriction  $f: C \to G_2/f(v(C))$  is an isomorphism, we call f a semimonomorphism,
- if f is a semimonomorphism and moreover  $f(v(G_1)) = v(G_2)$  we call f a covering semimonomorphism.

In the following series of lemmas we use special counting functions defined for any two graphs H, G:

- frq(H,G) (the *frequency* of H in G) the number of induced subgraphs of G isomorphic to H,
- mon(H, G) the number of monomorphisms from H to G,
- semi(H, G) the number of semimonomorphisms from H to G,
- cov(H,G) the number of covering semimonomorphisms from H to G.

**Lemma 1.** If two graphs R,S have the same number of connectivity components then

- (1) if R and S are not isomorphic then cov(R, S) = 0,
- (2) if R and S are isomorphic then cov(R, S) = aut(R) = aut(S).

**Proof** (outline). Let  $f: v(R) \to v(S)$  be a covering monomorphism. Since f is covering and R and S have the same number of components, f establishes a natural bijection between components of R and components of S and, moreover, the restrictions of S onto these individual components must be isomorphisms. Thus, S is an isomorphism between S and S.  $\Box$ 

**Lemma 2.** Let R,S be two graphs and let  $C_1,...,C_q$  be the connectivity components of graph R. Then

(1) 
$$\operatorname{mono}(R, S) = \operatorname{aut}(R)\operatorname{frq}(R, S)$$
, (2)  $\operatorname{semi}(R, S) = \prod_{i=1}^{q} \operatorname{mono}(C_i, S)$ .

**Proof** (outline). (1) For every  $Y \subseteq v(S)$  such that  $S/Y \simeq R$  there are exactly aut(R) monomorphisms f from R to S for which f(v(R)) = Y.

(2) For a semimonomorphism f from R to S its restriction to each component  $f:C_j\to S$  is a monomorphism which can be denoted by  $f_j$ . This establishes a natural one-to-one correspondence between the set of all semihomomorphisms from R to S and the set of all q-tuples  $[f_1,\ldots,f_q]$  of monomorphisms  $f_j:C_j\to S$ .  $\square$ 

**Lemma 3.** Let  $I = I_1 \cup I_2 \cup \cdots \cup I_m \cup \cdots$  be a set and let  $\{R_i; i \in I\}$  be a family of graphs satisfying

- (A) if  $i \in I_m$  then the graph  $R_i$  has exactly m components,
- (B) for every graph G there exists exactly one  $i \in I$  such that  $G \simeq R_i$ .

Then for every two graphs H, G there is

$$semi(H, G) = \sum_{i \in I} cov(H, R_i) frq(R_i, G)$$

**Proof** (outline). First, let us remark that the above sum has only finite number of non-zero summands. Especially, if H has less components than  $R_i$  then  $\operatorname{cov}(H,R_i)=0$ . For an arbitrary semimonomorphism  $f:H\to G$  find  $i_f\in I$  such that  $G/f(v(H))\simeq R_{i_f}$ . Then the restriction  $f:H\to G/f(v(H))$  is a covering semimonomorphism. The rest of the proof is a matter of grouping of semimonomorphisms over the indices  $i_f$ .  $\square$ 

# 2. Function rec

**Definition 1.** Let k be a natural number. Two graphs  $G_1, G_2$  are called k-congruent  $(G_1 \sim^k G_2)$  if for every graph H on k vertices the equality  $frq(H, G_1) = frq(H, G_2)$  holds.

**Remark.** The well-known Reconstruction Conjecture [38] asserts that any two graphs on  $n \ge 3$  vertices that are (n-1)-congruent must be isomorphic. The conjecture was verified for many important classes of graphs the progress in results reached and techniques employed can be viewed in papers [1-4,8-11,14,19,21,23,28,36,37]. But the question of its validity for the class of all graphs still remains open.

We are interested in a more general problem. Namely, for which values of k any two graphs on n vertices being k-congruent must be isomorphic.

**Definition 2.** Let  $\mathscr{A}$  be a class of graphs. We define the function  $\operatorname{rec}_{\mathscr{A}}$  as follows:

$$\operatorname{rec}_{\mathscr{A}}(n) = \min\{k; \forall G_1, G_2 \in \mathscr{A}((|G_1| = |G_2| = n \land G_1 \sim^k G_2) \Rightarrow G_1 \simeq G_2)\}\$$
  
= 0 if the minimum above does not exist.

We will use the symbol rec instead of  $rec_{\mathscr{A}}$  if it is clear what class  $\mathscr{A}$  we are talking about.

**Example.** Let us consider the class of all graphs. The following table indicates some known results from a computer research by McKay (see [25]) and the author

| n      | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  |
|--------|---|---|---|---|---|---|----|----|
| rec(n) | 1 | 1 | 2 | 3 | 4 | 4 | ≤6 | €7 |

As we already mentioned, it is not clear if for all large values of n the inequality  $rec(n) \le n - 1$  holds. On the other hand, Manvel (1974) in [22] gave the first lower bound for rec(n). Our best estimate (see [32]) is that for each real number  $\varepsilon > 0$  the inequality  $n(1 - \varepsilon) < rec(n)$  holds for all sufficiently large values of n.

Let us also remind a result by Müller (see [27]). He has shown that, given  $\varepsilon > 0$ , there exists a class  $\mathscr{A}$  containing asymptotically the most graphs such that  $\operatorname{rec}_{\mathscr{A}}(n) \leq (n/2)(1+\varepsilon)$  for all large values of n.

The investigation of function rec has two aspects. If for some class of graphs  $\mathscr{A}$  the Reconstruction Conjecture is rejected, i.e. it is proved that there exists an arbitrarily large n such that  $\operatorname{rec}_{\mathscr{A}}(n) = n$ , then one can try to find a subclass  $\mathscr{B} \subseteq \mathscr{A}$  such that for all large values of n the inequality  $\operatorname{rec}_{\mathscr{B}}(n) \leq n-1$  holds.

On the other hand, if for some class of graphs  $\mathscr A$  the Reconstruction Conjecture is proved then this fact can initiate seeking lower and upper bounds for rec, i.e. some estimations of the form  $l_n < \operatorname{rec}_{\mathscr A}(n) \leqslant u_n$ . Especially, to find an integral lower bound  $l_n$  means to construct in  $\mathscr A$  a family of couples of non-isomorphic graphs  $G_1, G_2$  (on arbitrarily large number of vertices n) such that  $G_1 \sim^{l_n} G_2$ . In these constructions we exploit the following lemma first proved in [29].

**Main lemma.** Let  $G_1, G_2$  be two graphs on n vertices and let  $k \le n$  be a natural number. The following three statements are equivalent

- (i)  $G_1 \sim^k G_2$ ,
- (ii)  $frq(H, G_1) = frq(H, G_2)$  for every graph  $H, |H| \le k$ ,
- (iii)  $frq(H, G_1) = frq(H, G_2)$  for every connected graph  $H, |H| \le k$ .

**Proof.** The implications (ii)  $\Rightarrow$  (i) and (ii)  $\Rightarrow$  (iii) are evident. The implication (i)  $\Rightarrow$  (ii) is the well-known Kelly's lemma (cf. [3], for example).

The proof of (iii)  $\Rightarrow$  (ii):

Let  $I, I_m, R_i$  be the same as in Lemma 3. We prove by induction for every  $m \le k$  the validity of proposition

$$A(m)$$
: if  $q \in I_m$  and  $|R_a| \leq k$  then  $frq(R_a, G_1) = frq(R_a, G_2)$ .

 $\langle m=1 \rangle$  A(1) is true because of the assumption (i.e. for connected graphs which are in  $I_1$ ),

 $\langle m-1 \to m \rangle m \geqslant 2$  and  $A(1), \ldots, A(m-1)$  are supposed to be true; let  $q \in I_m$  and  $|R_q| \leqslant k$ ; denote  $M = I_1 \cup \cdots \cup I_{m-1}$  and also denote

$$s = \sum_{i \in M} \operatorname{cov}(R_q, R_i) \operatorname{frq}(R_i, G_1) = \sum_{i \in M} \operatorname{cov}(R_q, R_i) \operatorname{frq}(R_i, G_2).$$

According to Lemmas 1 and 3 we have

$$\operatorname{semi}(R_q, G_1) = \sum_{i \in I} \operatorname{cov}(R_q, R_i) \operatorname{frq}(R_i, G_1) = s + \operatorname{aut}(R_q) \operatorname{frq}(R_q, G_1),$$

$$\operatorname{semi}(R_q, G_2) = \sum_{i \in I} \operatorname{cov}(R_q, R_i) \operatorname{frq}(R_i, G_2) = s + \operatorname{aut}(R_q) \operatorname{frq}(R_q, G_2).$$

But by Lemma 2 we have  $semi(R_q, G_1) = semi(R_q, G_2)$ . Thus,

$$s + \operatorname{aut}(R_a)\operatorname{frq}(R_a, G_1) = s + \operatorname{aut}(R_a)\operatorname{frq}(R_a, G_2)$$

which yields  $frq(R_a, G_1) = frq(R_a, G_2)$ .

**Corollary.** Let  $\mathcal{G}[r]$  be the class of all graphs with at least r components. Then  $\operatorname{rec}_{\mathcal{G}[r]}(n) \leq n - r + 1$  for every  $n \geq r$ .

**Proof** (outline). In any graph on n vertices with at least r components every component has at most n - r + 1 vertices. Apply the Main lemma (cf. also [5]).  $\square$ 

**Remark.** Using the Main lemma we also found in [30] some bounds of reconstructability in the class of all finite equivalences (i.e. sums of complete graphs).

### 3. Trees

Let us denote by  $\mathscr{T}$  the class of all finite trees. It was the first class investigated in connection with the Reconstruction Conjecture. Kelly already in 1957 [13] proved  $\operatorname{rec}_{\mathscr{T}}(n) \leqslant n-1$  for every  $n \geqslant 2$ , and later on (in 1976) Giles gave in [6]  $\operatorname{rec}_{\mathscr{T}}(n) \leqslant n-2$  for every  $n \geqslant 5$ . According to [4] (we have no other source of this information) Giles in his preprint to [7] he even showed that for every natural q there is  $\operatorname{rec}_{\mathscr{T}}(n) \leqslant n-q$  if n is sufficiently large.

On the other hand, in [31] we described a simple family of counterexamples which implies that  $\lfloor n/2 \rfloor + 1 \le \text{rec}_{\mathcal{F}}(n)$  (for every  $n \ge 4$ ). We also exhibited the following table which gives the first ten values of  $\text{rec}_{\mathcal{F}}(n)$ 

| n                      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------------------------|---|---|---|---|---|---|---|---|---|----|
| $rec_{\mathscr{T}}(n)$ | 1 | 1 | 1 | 3 | 3 | 4 | 4 | 5 | 5 | 6  |

We had conjectured that  $rec_{\mathcal{T}}(n) = \lfloor n/2 \rfloor + 1$  (for every  $n \ge 4$ ).

# 4. Related results

There are more generalizations possible of our approach to the reconstruction problem. One is the question of determining some characteristics of a graph from the collection of all its cardinality restricted subgraphs. For example, Taylor in [35] investigates the possibility of reconstructing degree sequence of a graph from k-vertex deleted subgraphs.

Another direction is based on the idea that also for other structures than graphs the concept of induced substructure makes sense. Stockmayer [34], Ramachandran [33], Ille [12], and Lopez and Rauzy [20] investigated binary relations (especially tournaments, for example). Kocay and Lui gave some basic results on non-reconstructibility of hypergraphs [15,16] while Kratsh and Rampon exhibited in [18] a counterexample about poset reconstruction. Some bounds of reconstructibility of sequences from subsequences were given by Manvel et al. in [24] and then improved by Krasikov and Roditty (cf. [17]). Recently, Miller [26] investigates matroid reconstruction.

#### References

- N. Alon, Y. Caro, I. Krasikov, Y. Roditty, Combinatorial reconstruction problems, J. Combin. Theory Ser. B 47 (1989) 153–161, MR 92a:05 092.
- [2] J.A. Bondy, The reconstruction of graphs, preprint University of Waterloo, 1983.
- [3] J.A. Bondy, A graph reconstructor's manual, Proceedings of 13th British Combinatorial Conference Guilford/UK 1991, London Mathematical Society, Lecture Note Series, Vol. 166, 1991, pp. 221–252, MR 93e:05 071.
- [4] J.A. Bondy, R.L. Hemminger, Graph reconstruction a survey, J. Graph Theory 1 (1977) 227–268, MR 58:372.
- [5] G. Chartrand, V. Kronk, S. Schuster, A technique for reconstructing disconnected graphs, Colloq. Math. 27 (1973) 31–34, MR 42:103.
- [6] W.B. Giles, Reconstructing trees from two-point deleted subtrees, Discrete Math. 15 (1976) 325–332, MR 53:10 652.
- [7] W.B. Giles, Reconstructing trees from k-point deleted subtrees, preprint, 1976.
- [8] D.L. Greenwell, Reconstructing graphs, Proc. Amer. Math. Soc. 30 (1971) 431-433, MR 44:3908.
- [9] D.L. Greenwell, R. Hemminger, Reconstructing graphs, in: G. Chartrand, S.F. Kapoor (Eds.), The Many Facets of Graph Theory, Lecture Notes in Mathematics, Vol. 110, Springer, Berlin, 1969, pp. 91–114, MR 40:5479.
- [10] F. Harary, On the reconstruction of a graph from a collection of subgraphs, in: M. Fiedler (Ed.), Theory of Graphs and Its Applications, Czechoslovak Academy of Sciences, Prague, 1964, pp. 47–52, MR 30:5296.
- [11] F. Harary, A survey of the reconstruction conjecture, in: R. Bari, F. Harary (Eds.), Proceedings of the Capital Conference on Graph theory and Combinatorics, Lecture Notes in Mathematics, Vol. 406, Springer, New York, 1973, pp. 1–9, MR 50:12 818.
- [12] P. Ille, The reconstructability of binary relations, C. R. Acad Sci. 306 (1988) 635–638, MR 89f:04 002.
- [13] P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957) 961-968, MR 19:442.
- [14] W.L. Kocay, Some New Methods in Reconstruction Theory, Lecture Notes Mathematics, Vol. 952, Springer, New York, 1982, pp. 89–114.
- [15] W.L. Kocay, A family of non-reconstructible hypergraphs, J. Combin Theory B 42 (1987) 46-63, MR 87m:05 130.
- [16] W.L. Kocay, Z.M. Lui, More non-reconstructible hypergraphs, Discrete Math. 72 (1988) 213–224, MR 90a:05 140.
- [17] I. Krasikov, Y. Roditty, On a reconstruction problem for sequences, J. Combin. Theory A 77 (1997) 344–348.
- [18] D. Kratsch, J.-X. Rampon, A counterexample about poset reconstruction, Order 11 (1994) 95-96.
- [19] J. Lauri, Graph reconstruction some techniques and new problems, Ars Combin. 24B (1987) 35-61, MR 89f:05 128.
- [20] G. Lopez, C. Rauzy, Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4, and *n*–1, I. and II., Z. Math. Logic Grundlagen Math. 38 (1992) 27–37, 157–168.
- [21] B. Manvel, On reconstruction of graphs, in: G. Chartrand, S.F. Kapoor (Eds.), The Many Facets of Graph Theory, Lecture Notes in Mathematics, Vol. 110, Springer, New York, 1969, pp. 207–214, MR 41:3313
- [22] B. Manvel, Some basic observations on Kelly's conjecture for graphs, Discrete Math. 8 (1974) 181–185, MR 51:278.
- [23] B. Manvel, Reconstruction of graphs: progress and prospects, Congr. Numer. 63 (1988) 177–187, MR 90c:05 154.
- [24] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, P. Stockmayer, Reconstruction of sequences, Discrete Math. 94 (1991) 209–219, MR 92h:05 089.
- [25] B.D. McKay, Computer reconstruction of small graphs, J. Graph Theory 1 (1977) 281–283, MR 57:2987.
- [26] W.P. Miller, Techniques in matroid reconstruction, Discrete Math. 171 (1997) 173-183.
- [27] V. Müller, Probabilistic reconstruction from subgraphs, Comment. Math. Univ. Carolinae 17 (1976) 709–719, MR 56:184.

- [28] C.St.J.A. Nash-Williams, The reconstruction problem, in: L.W. Beineke, R.L. Wilson (Eds.), Selected Topics in Graph Theory, Academic Press, New York, 1978, pp. 205–236, MR 81e:05 059.
- [29] V. Ný dl, Some results concerning reconstruction conjecture, Rend. Circ. Mat. Palermo, II. Ser. 6 (1984) 243–246, MR 86f:05 095.
- [30] V. Nýdl, Reconstructing equivalences, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 11 (1985) 71–75, MR 88f:05 086.
- [31] V. Nýdl, A note on reconstructing finite trees from small subtrees, Acta Univ. Carol. Math. Phys. 31 (1990) 71-74, MR 92c:05 111.
- [32] V. Ný dl, Finite undirected graphs which are not reconstructible from their large cardinality subgraphs, Discrete Math. 108 (1992) 373–377, MR 93h:05 118.
- [33] S. Ramachandran, On digraph reconstruction, Indian J. Pure Appl. Math. 20 (1989) 782–785, MR 90h:05 089.
- [34] P.K. Stockmayer, The falsity of the reconstruction conjecture for tournaments, J. Graph Theory 1 (1977) 19–25, MR 56:11846.
- [35] R. Taylor, Reconstructing degree sequences from k-vertex deleted subgraphs, Discrete Math. 79 (1990) 207–213, MR 90k:05 110.
- [36] B.D. Thatte, Some results and approaches for reconstruction conjectures, Discrete Math. 124 (1994) 193–216.
- [37] W.T. Tutte, All the king's horses. A guide to reconstruction, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 15–33, MR 81a:05 096.
- [38] S.M. Ulam, A collection of Mathematical Problems, Wiley, New York, 1960, MR 22:10884.