CSS.414.1: Polynomial Methods in Combinatorics

Instructor: Mrinal Kumar
TIFR 2024, Aug-Dec

SCRIBE: SOHAM CHATTERJEE

SOHAMCHATTERJEE999@GMAIL.COM Website: sohamch08.github.io

CONTENTS

Section 1	Introduction and Targets	PAGE 3
SECTION 2	JOINTS PROBLEM	PAGE 4
SECTION 3	Combinatorial Nullstellensatz	PAGE 4
3.1	Chevally-Warning Theorem	4
SECTION 4	Sum Sets	Page 4
4.1	Sum Sets over Finite Fields	4
1.1	4.1.1 Cauchy-Davenport Theorem	4
4.2	Restricted Sum Sets	4
	4.2.1 Erdös-Heilbronn Conjecture	4
Section 5	Arithmetic Progression Free Sets in \mathbb{F}_3^n	Page 4
5.1	3AP Free sets in \mathbb{F}_q	4
SECTION 6	3-Tensors and Slice Rank	Page 4
6.1	Rank	4
6.2	Generalization to 3-Dimension	4
6.3	Slice Rank of Diagonal 3D Tensor	4
Section 7	Kakeya and Nikodym Problem	PAGE 4
7.1	Lower Bound on Nikodym Sets	1 AGE 4
7.1	Lower Bound on Kakeya Sets	4
	······································	

7.2.1 Hasse Derivative

1 Introduction and Targets

The content of this course will be the following	gs:
--	-----

- Polynomial Methods in Combinatorics/Geometry
 - 1. Kakeya/Nikodym Problem over finite fields
 - 2. Joints Problem
 - 3. Combinatorial Nullstellensatz (CN)
 - 4. CN proof of Cauchy-Devenport, Erdös-Heilbronn Conjecture
- Polynomial Methods in Algebraic Algorithms
 - 1. Noisy Polynomial Interpolation (Sudan, Guruswami-Sudan)
 - 2. Multiplicative noise (Von zur Gathen-Shparlinski)
 - 3. Coppersmith's Problem (Given an univariate $f(x)\mathbb{Z}[x]$, compute all 'small' integer roots modulo a composite)
- Polynomial Methods in Circuit Complexity
 - 1. Razborov-Smolensky (Lower Bound for constant depth AND, OR, NOT, mod p gates)
 - 2. Algorithmic consequences (all pairs shortest paths)
 - 3. Upper bounds on matrix rigidity (Alman-Williams '2015, Dvir-Edelman '2017)
- Polynomial in Property Testing: Polischuk-Speilman Lemma/Variants
- Weil Bounds (Stepanov, Schmidtm Bombieri)
- Rational Approximations of Algebraic Numbers (Thue[1907] Siegel Roth[1954])

- 2 Joints Problem
- 3 Combinatorial Nullstellensatz
- 3.1 Chevally-Warning Theorem
- 4 Sum Sets
- 4.1 Sum Sets over Finite Fields
- 4.1.1 Cauchy-Davenport Theorem
- 4.2 Restricted Sum Sets
- 4.2.1 Erdös-Heilbronn Conjecture
- 5 Arithmetic Progression Free Sets in \mathbb{F}_3^n
- 5.1 3AP Free sets in \mathbb{F}_q
- 6 3-Tensors and Slice Rank
- 6.1 Rank
- 6.2 Generalization to 3-Dimension
- 6.3 Slice Rank of Diagonal 3D Tensor
- 7 Kakeya and Nikodym Problem

Definition 7.1: Kakeya Sets

In a finite field \mathbb{F}_q , $K \subseteq \mathbb{F}^n$ is a Kakeya Set if $\forall a \in \mathbb{F}^n$, $\exists b \in \mathbb{F}^n$ such that

$$L_{a,b} = \{b + at \colon t \in \mathbb{F}_q\} \subseteq K$$

i.e. informally it has a line in every direction

Now notice that we can take the whole \mathbb{F}_q^n as the Kakeya Set. We can also remove a point from \mathbb{F}_q^n and it will still be a Kakeya Set. Having defined the Kakeya sets the biggest question which is studied is:

Question .1

How small can a Kakeya Set be?

- 7.1 Lower Bound on Nikodym Sets
- 7.2 Lower Bound on Kakeya Sets
- 7.2.1 Hasse Derivative