19.1 Condensador Ideal Percorrido por uma Corrente Constante.

$$i_{C}(t) = I = C \cdot \frac{d[u_{C}(t)]}{dt} \Rightarrow \frac{d[u_{C}(t)]}{dt} = \frac{I}{C} (V/s)$$

Se $\mathbf{u}_{\mathbf{C}} = \mathbf{0}$ num dado instante $\mathbf{t}_{\mathbf{0}}$, então

$$tg(\alpha) = \frac{d[u_C(t)]}{dt} = \frac{I}{C}$$

João Sena Esteves

Universidade do Minho

19.2 Circuitos RC de 1^a ordem

 Um circuito de 1^a ordem possui apenas um condensador ou uma bobina, originando uma equação diferencial de 1^a ordem.

- Um circuito RC é um circuito com resistências e condensadores, mas sem bobinas.
- Um circuito RC de 1^a ordem pode ter várias resistências mas possui apenas um condensador.

Exemplo:

$$\begin{cases} i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} \\ \\ i_{C}(t) = C \cdot \frac{d[u_{C}(t)]}{dt} \end{cases} \Rightarrow \frac{\left[\frac{d[u_{C}(t)]}{dt} + \frac{1}{RC} \cdot u_{C}(t) = \frac{u(t)}{RC}\right]}{dt}$$

Universidade do Minho João Sena Esteves

19.2.1 Primeiro caso particular

Nota: E e R podem ser a Tensão de Thévenin e a Resistência de Thévenin de um circuito mais complexo.

$$\begin{aligned} & \begin{cases} u(t) = E & \Rightarrow & \frac{d \big[u_C(t) \big]}{dt} + \frac{1}{RC} \cdot u_C(t) = \frac{E}{RC} \\ \\ u_C(t) = 0 \text{ em } t = t_0 \\ \\ k \text{ \'e fechado em } t = t_0 \end{aligned}$$

$$\begin{aligned} u_{C}(t) &= \underbrace{E}_{\substack{\text{Estado} \\ \text{Permanente}}} \underbrace{-E \cdot e^{-\frac{1}{RC} \cdot (t - t_{0})}}_{\substack{\text{Estado} \\ \text{Transitório}}} \\ \\ i_{C}(t) &= \underbrace{u_{R}(t)}_{R} = \underbrace{u(t) - u_{C}(t)}_{R} = \underbrace{E - u_{C}(t)}_{R} = \underbrace{E}_{\substack{\text{C} \\ \text{Estado} \\ \text{Transitório}}} \underbrace{E_{\text{Stado}}}_{\substack{\text{Transitório}}} \end{aligned}$$

Regime permanente:
$$\begin{cases} u_C(t \to \infty) = E \\ \\ i_C(t \to \infty) = 0 \end{cases}$$

Constante de tempo do circuito: $\tau = RC$ (s)

João Sena Esteves Universidade do Minho

<u>58</u> Análise de Circuitos I

$t - t_0 = \tau$	$u_{C}(t) = E - E \cdot e^{-1} = 0,632 \cdot E$		
$t - t_0 = 3\tau$	$u_{C}(t) = E - E \cdot e^{-3} = 0,950 \cdot E$		
$t - t_0 = 5\tau$	$u_{C}(t) = E - E \cdot e^{-5} = 0,993 \cdot E$		

$t-t_0=\tau$	$i_C(t) = \frac{E}{R} \cdot e^{-1} = 0.368 \cdot \frac{E}{R}$
$t - t_0 = 3\tau$	$i_C(t) = \frac{E}{R} \cdot e^{-3} = 0,049 \cdot \frac{E}{R}$
$t - t_0 = 5\tau$	$i_{C}(t) = \frac{E}{R} \cdot e^{-5} = 0,007 \cdot \frac{E}{R}$

Universidade do Minho João Sena Esteves

19.2.2 Segundo caso particular

Nota: R pode ser a Resistência de Thévenin de um circuito passivo mais complexo.

$$\begin{aligned} & u(t) = 0V & \Rightarrow & \frac{d \big[u_C(t) \big]}{dt} + \frac{1}{RC} \cdot u_C(t) = 0 \\ & \\ & U_C(t) = U_0 \text{ em } t = t_0 \\ & \\ & k \text{ \'e fechado em } t = t_0 \end{aligned}$$

Resposta natural do circuito RC

$$\begin{aligned} u_{C}(t) &= \underbrace{U_{0} \cdot e^{\frac{1}{RC}(t-t_{0})}}_{Estado} \\ t &\geq t_{0} \quad \Rightarrow \\ i_{C}(t) &= \underbrace{\frac{u(t) - u_{C}(t)}{R}}_{Estado} = \underbrace{\frac{0 - u_{C}(t)}{R}}_{R} = \underbrace{\frac{U_{0}}{R} \cdot e^{\frac{1}{RC}(t-t_{0})}}_{Estado} \end{aligned}$$

Regime permanente:
$$\begin{cases} u_{\rm C}(t\to\infty) = 0 \\ \\ i_{\rm C}(t\to\infty) = 0 \end{cases}$$

Constante de tempo do circuito: $\boxed{\tau = RC}$ (s)

João Sena Esteves Universidade do Minho

$t-t_0=\tau$	$u_C(t) = U_0 \cdot e^{-1} = 0.368 \cdot U_0$			
$t - t_0 = 3\tau$	$u_C(t) = U_0 \cdot e^{-3} = 0.049 \cdot U_0$			
$t - t_0 = 5\tau$	$u_C(t) = U_0 \cdot e^{-5} = 0,007 \cdot U_0$			

$t-t_0=\tau$	$i_C(t) = -\frac{U_0}{R} \cdot e^{-1} = -0.368 \cdot \frac{U_0}{R}$
$t - t_0 = 3\tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-3} = -0.049 \cdot \frac{U_{0}}{R}$
$t - t_0 = 5\tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-5} = -0.007 \cdot \frac{U_{0}}{R}$

Universidade do Minho João Sena Esteves

Exemplo: Preencha os quadros anexos à figura.

K₁ aberto

K₁ fechado	K ₂ aberto	K	s fechado
Tensão de Thévenin do circuito ligado ao condensador			
Resitência de Thévenin do circuito ligado ao condensador			
Constante de tempo do circuito			
Valor de uc em regime permanente			

ligado ao conde	1100001		
-	-	ľ	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
-	-	r	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

K₂ aberto

Resitência de Thévenin do circuito

K₃ fechado

K₁ aberto	K₂ fechado	K:	₃ fechado
			-
Tensão de Thévenin do circuito ligado ao condensador			
Resitência de Thévenin do circuito ligado ao condensador			
Constante de tempo do circuito			
Valor de u _c em regime permanente			

K₁ fechado	K ₂ fechado	K ₃ fechado			
Tensão de Thévenin do circuito ligado ao condensador					
Resitência de Thévenin do circuito ligado ao condensador					
Constante de tempo do circuito					
Valor de u c em i	regime permanente				

- Condições iniciais:
 K₁ aberto, K₂ aberto, K₃ fechado e u_C = 0.
 K₁ é fechado no instante t₀ e aberto 250ms depois.
 K₂ é fechado no instante t₀ + 500ms.
 K₃ é aberto no instante t₀ + 600ms e fechado quando u_C atinge 20V.
- Valor máximo efectivamente atingido por u_c Valor de u_c no instante t_0 + 51ms

 Instante em que u_c atinge pela segunda vez o valor 15V

 Valor de I tal que K_3 permaneça aberto 50ms

João Sena Esteves Universidade do Minho