Mateusz Forczmański promotor: dr inż. Agnieszka Debudaj-Grabysz

Politechnika Śląska

7 stycznia 2016

Plan

Wprowadzenie

Wprowadzenie

Maksymalny przepływ

Sieci przepływowe

Algorytmy

Działająca aplikacja

Algorytmy

Działająca aplikacja

Cele pracy inżynierskiej

Działająca aplikacja

Cele pracy inżynierskiej

► Aplikacja edukacyjna

Cele pracy inżynierskiej

- ► Aplikacja edukacyjna
- ► Wprowadzanie własnych sieci

- ► Aplikacja edukacyjna
- ► Wprowadzanie własnych sieci
- ► Kontrola poprawności

Cele pracy inżynierskiej

- ► Aplikacja edukacyjna
- ► Wprowadzanie własnych sieci
- Kontrola poprawności
- Zobrazowanie algorytmów

- Aplikacja edukacyjna
- Wprowadzanie własnych sieci
- Kontrola poprawności
- Zobrazowanie algorytmów
- Śledzenie procesu krok po kroku

Cele pracy inżynierskiej

- Aplikacja edukacyjna
- Wprowadzanie własnych sieci
- Kontrola poprawności
- Zobrazowanie algorytmów
- Šledzenie procesu krok po kroku
- Serializacja sieci

- ► Sieć przepływowa → układ rur i połączeń
- ► Wierzchołek → punkt przerzutowy
- ▶ Łuk → przepustowość i przepływ
- ▶ Źródło s
- ▶ Ujście t

Wyznaczanie maksymalnego przepływu

Wyznaczanie maksymalnego przepływu

Wyznaczanie maksymalnego przepływu

Właściwości sieci przepływowej

Warunek przepustowości

12 / 10

Właściwości sieci przepływowej

Wprowadzenie

Warunek skośnej symetryczności

Warunek zachowania przepływu

Algorytmy

Rysunek: Tworzenie sieci residualnej

Algorytm Dinica

Algorytm MKM

Okno główne

Okno algorytmu Forda-Fulkersona

Okno algorytmu Dinica

Koniec

Wprowadzenie

Dziękuję za uwagę