Khrystian Clark

CS-225 Discrete Structures in CS

Homework 6

- 1. Use iteration to guess an explicit formula for the sequence $e_k = 3e_{k-1} + 2$, for all integers $k \ge 2$, where $e_1 = 3$ (using the formulas from <u>summation formula updated.pdf</u> to simplify your answers whenever possible). (tower of Hanoi example?)
 - Given $e_1 = 3$, $e_k = 3e_{k-1} + 2$, for all int $k \ge 2$.
 - $e_1 = 3$
 - $e_2 = 3e_1 + 2 = 3^1(3) + 2(3^0) = 3^2 + 3^0(2) = 11$
 - $e_3 = 3e_2 + 2(1) = 3(3^2 + 3^0(2)) + 3^0(2) = 3^3 + 3^1(2) + 3^0(2) = 35$
 - $e_4 = 3e_3 + 2(1) = 3(3^3 + 3^1(2) + 3^0(2)) + 2(3^0) = 3^4 + 3^2(2) + 3^1(2) + 3^0(2) = 98$
 - $e_n = 3^n + 2(3^{n-2} + 3^{n-3} + \dots + 3^2 + 3^1 + 3^0)$
 - $e_n = 3^n + 2\sum_{i=0}^{n-2} 3^i$

$$e_n = 3^n + 2\left(\frac{3^{n-2+1} - 1}{3-1}\right) \equiv 3^n + \left(\frac{(2(3^{n-1}) - 2)}{2}\right) \equiv 3^n + 3^{n-1} - 1 \text{ [ans]}$$

- 2. Use mathematical induction to verify the correctness of the formula you obtained in the above problem.
 - $e_1 = 3$, $e_k = 3e_{k-1} + 2$ [for all integers $k \ge 2$]
 - $P(n) \equiv e_n = 3^n + 3^{n-1} 1$, to prove for all integers $n \ge 1$, P(n) is true
 - Basis Step: *P*(1) *is true*.

1.
$$e_1 = 3^1 + 3^0 - 1 \equiv 3 + 1 - 1 = 3$$

- 2. We are given $e_1 = 3$, hence P(1) is true.
- Inductive hypothesis: P(k) is true for all integers $k \ge 1$

1.
$$P(k) \equiv e_k = 3^k + 3^{k-1} - 1$$

• Inductive step: P(k+1) is true, for all integer $k \ge 1$.

1. Show that
$$P(k+1) \equiv e_{k+1} = 3^{k+1} + 3^{k+1-1} - 1 \equiv 3^{k+1} + 3^k - 1$$

2.
$$e_{k+1} = 3e_k + 2$$
, from the given terms

3.
$$e_{k+1} = 3(3^k + 3^{k-1} - 1) + 2 \equiv 3^{k+1} + 3^k - 3 + 2$$

- 4. $e_{k+1} = 3^{k+1} + 3^k 1$, as was to be shown
- 5. Hence, P(k+1) holds.
- 3. Use iteration to guess an explicit formula for the sequence $t_k = t_{k-1} + 3k + 1$, for all integers $k \ge 1$, where $t_0 = 0$ (using the formulas from summation formula updated.pdf to simplify your answers whenever possible).
 - Given: $t_k = t_{k-1} + 3k + 1$, for all integers $k \ge 1$
 - Given: $t_0 = 0$
 - $t_1 = t_0 + 3(1) + 1 = 0 + 3 + 1 = 4$
 - $t_2 = t_1 + 3(2) + 1 = (0 + 3 + 1) + 3(2) + 1 = 3^1(3) + 3^0(2) = 11$
 - 1. $3^2 + 3^0(2)$ [my guess is $t_{\frac{n}{2}} = 3^n + n$]
 - $t_3 = t_2 + 3(3) + 1 = (3^2 + 2) + 3^2 + 1 = 3^2(2) + 3^1 = 21$
 - 1. $3^{2}(2) + 3$ [my guess = $t_{n} = 3^{2}(n-1) + 2(n-2) + n^{0}(n-(n-1))$]
 - $t_4 = t_3 + 3(4) + 1 = (3^2(2) + 3) + 3(4) + 1 = 3^2(2) + 3(5) + 1$
 - 1. $= 3^{2}(2) + (3(3) + 3(2)) + 1 = 3^{2}(3) + 3^{1}(2) + 3^{0}$
 - 2. So $\sum_{i=0}^n$

$$t_n = for \ every \ n \ge 0.$$

- 4. Give a recursive definition of the set of all integers (both negative and positive) that are multiples of 3.
 - Define the set: S is a set of all integers (negative and positive).
 - Recursion:
 - 1. $(r \in S \land 3 \in S) \rightarrow 3r \in S$, for any integer $r \in S$.
 - 2. any r in S is divisible by 3.
- - Base: a) $a \in S$, b) $b \in S$, c)
 - Recursion: *If* $u \in S$, then
 - 1. $(a)aua \in S$, $(b)bub \in S$, $(c)aub \in S$, $(d)bua \in S$
 - 2. All string in S have an odd amount of characters.
 - 3. By our recursion the aforementioned strings are \in S
 - 4. a and b are spelled the same forward and backward