Name: Chitwan Goel Roll No. 210295

# CS610 Assignment 2

## 1 Problem 1

Performance Bugs Identified:

## **False Sharing**

The struct tracker has word\_count array whose size is equal to the number of threads. In the execution of the statement tracker.word\_count[thread\_id]++; (Line 142 in reference.cpp), false sharing is present which is clear from the code as well as from the generated PERF report.

To remove this false sharing, padding was done in the word\_count array and its size was made equal to NUM\_THREADS × 8 and instead of accessing the index thread\_id, thread\_id\*8 was accessed by thread having tid equal to thread\_id. This multiplication by 8 ensured that the memory location accessed by each thread is on separate cache line (8 uint\_64 of 8 Bytes each take 64 Bytes, which is equal to the cache line size) and thus false sharing is minimised. The source file padded.cpp has these modifications.

### True Sharing

Taking and releasing lock for every word and line of the input file caused true sharing and was the cause of large number of HITMs (Lines 144-146 and 133-135 in reference.cpp). This was reduced by keeping thread-private variables for the words and line counts of each thread, and then later reducing them with the count in tracker struct, thus taking lock only once. This reduced the HITMs to nearly zero. The source file improved.cpp has these modifications. Also we have removed the redundant mutex line\_count\_mutex since the mutex in struct tracker is sufficient for the synchronisation needed.

| HITM<br>Shared                   | S           | tore Re | fs                   | Data addr      | ess |        |                |          | - cycles - |      | Total   | сри |                              |
|----------------------------------|-------------|---------|----------------------|----------------|-----|--------|----------------|----------|------------|------|---------|-----|------------------------------|
| Num RmtHitm LclH<br>Object       | Source      | :Line   | Node{cpu list        | t}             |     | PA cnt | Code address   | rmt hitm | lcl hitm   | load | records | cnt | Symb                         |
|                                  |             |         |                      |                |     |        |                |          |            |      |         |     |                              |
| Θ Θ 3                            | 954 0       | 0       | Θ                    | 0x5d23dcb17380 |     |        |                |          |            |      |         |     |                              |
| 0.00% 10.<br>eference.out thread |             |         | 0.00%<br>0{4.8-10.15 | 0x0            | 0   | 1      | 0x5d23dcb134d1 | Θ        | 190        | 169  | 473     | 5   | [.] thread_runner(void*)     |
|                                  | 43% 0.00%   | 0.00%   |                      | 0x8            | 0   | 1      | 0x5d23dcb134d1 | 0        | 207        | 163  | 459     | 6   | [.] thread_runner(void*)     |
|                                  | 0.00%       | 0.00%   |                      | 0x10           | Θ   | 1      | 0x5d23dcb134d1 | Θ        | 199        | 159  | 482     | 5   | [.] thread_runner(void*)     |
|                                  | 40% 0.00%   | 0.00%   |                      | 0x18           | 0   | 1      | 0x5d23dcb134d1 | 0        | 214        | 178  | 468     | 6   | [.] thread_runner(void*)     |
|                                  | 38% 0.00%   | 0.00%   |                      | 0x20           | 0   | 1      | 0x5d23dcb134d1 | 0        | 190        | 161  | 434     | 4   | [.] thread_runner(void*)     |
|                                  | 40% 0.00%   | 0.00%   |                      | 0x28           | 0   | 1      | 0x5d23dcb1332a | 0        | 187        | 131  | 257     | 11  | [.] thread_runner(void*)     |
| 0.00% 10.<br>Ference.out thread  | 12% 0.00%   | 0.00%   | 0.00%                | 0x30           | 0   | 1      | 0x5d23dcb134de | Θ        | 225        | 154  | 1886    | 11  | [.] thread_runner(void*)     |
| 0.00% 16.                        |             | 0.00%   |                      | 0x38           | Θ   | 1      | 0x75eaf4e99aa4 | 0        | 462        | 92   | 2905    | 11  | [.] pthread_mutex_unlock@@GL |
| 0.00% 13.                        | 52% 0.00%   | 0.00%   | 0.00%                | 0x38           | 0   | 1      | 0x75eaf4e97f40 | Θ        | 389        | 192  | 2746    | 11  | [.] pthread_mutex_lock@@GLIE |
| 0.00% 5.                         |             |         | 0{0,3-4,6,8<br>0.00% | 0x38           | Θ   | 1      | 0x75eaf4e91294 | Θ        | 263        | 102  | 331     | 11  | [.]GIlll_lock_wait           |
|                                  | ellock.c:42 |         | 0{0,3-4,6,8·         | -12,14-15}     |     |        | 0x75eaf4e912a3 |          | 346        | 138  | 1716    |     | [.]GIlll_lock_wait           |

Figure 1: PERF Report of Reference Version - Large number of HITMs in the thread\_runner function

| Shar            | ed Cach | e Line Di | stributio          | n Pareto  |                |                               |           |      |        |                             |          |          |      |         |     |                                |
|-----------------|---------|-----------|--------------------|-----------|----------------|-------------------------------|-----------|------|--------|-----------------------------|----------|----------|------|---------|-----|--------------------------------|
| #<br>#<br>Share |         | TM        |                    | Store Ref | s              |                               | Data addı | ess  |        |                             |          | cycles - |      | Total   | сри |                                |
|                 | RmtHitm | LclHitm   | L1 Hit<br>Source:L | L1 Miss   | N/A<br>cou lis | t}                            | 0ffset    | Node | PA cnt | Code address                | rmt hitm | lcl hitm | load | records | cnt | Symbol                         |
|                 |         |           |                    |           |                |                               |           |      |        |                             |          |          |      |         |     |                                |
| #               |         |           |                    |           |                |                               |           |      |        |                             |          |          |      |         |     |                                |
| 0               | 0       | 695       | 0                  | 0         | 0              | 0x580b                        | ff9154c0  |      |        |                             |          |          |      |         |     |                                |
| naddod ou       |         |           | 0.00%              |           |                | .11-12.14}                    | 0x0       | Θ    | 1      | 0x580bff911325              | 0        | 391      | 277  | 228     | 8   | [.] thread_runner(void*)       |
| •               | 0.00%   | 0.58%     | 0.00%              | 0.00%     | ´ ′0.00%       |                               | 0x8       | Θ    | 1      | 0x580bff9114d6              | 0        | 356      | 373  | 1830    | 8   | [.] thread_runner(void*)       |
|                 | 0.00%   | 10.65%    | 0.00%              | 0.00%     | 0.00%          |                               | 0x10      | Θ    | 1      | 0x77236b097 <del>f</del> 40 | Θ        | 794      | 399  | 2078    | 8   | [.] pthread_mutex_lock@@GLIBC_ |
| libc.so.6       | 0.00%   | 5.04%     | 0.00%              | 0.00%     | 0.00%          |                               | 0x10      | Θ    | 1      | 0x77236b099aa4              | 0        | 404      | 23   | 1987    | 8   | [.] pthread_mutex_unlock@@GLIB |
| libc.so.6       | 0.00%   | 2.88%     | 0.00%              | 0.00%     | 0.00%          |                               | 0x10      | Θ    | 1      | 0x77236b0912a3              | 0        | 575      | 221  | 306     | 8   | [.]GIlll_lock_wait             |
| libc.so.6       | 0.00%   | 1.29%     | 0.00%              | 0.00%     | 0.00%          | ,11-12,14}<br>;<br>1-12,14}   | 0x10      | Θ    | 1      | 0x77236b091294              | 0        | 302      | 405  | 22      | 7   | [.]GIlll_lock_wait             |
| libc.so.6       | 0.00%   | 0.29%     | 0.00%              | 0.00%     | ΄ ΄Θ.ΘΘ%       |                               | 0x18      | 0    | 1      | 0x77236b097f4a              | 0        | 345      | 369  | 1851    | 8   | [.] pthread_mutex_lock@@GLIBC_ |
|                 | 0.00%   | 0.43%     | 0.00%              | 0.00%     | 0.00%          |                               | 0x1c      | Θ    | 1      | 0x77236b097f60              | 0        | 388      | 367  | 1807    | 8   | [.] pthread_mutex_lock@@GLIBC_ |
|                 | 0.00%   | 0.14%     | 0.00%              | 0.00%     | 0.00%          |                               | 0x1c      | Θ    | 1      | 0x77236b099a8c              | 9        | 735      | 7    | 852     | 8   | [.] pthread_mutex_unlock@@GLIB |
| libc.so.6       | 0.00%   | 65.18%    | 0.00%              | 0.00%     | 0.00%          |                               | 0x20      | Θ    | 1      | 0x77236b097ef4              | 0        | 402      | 398  | 1990    | 8   | [.] pthread_mutex_lock@@GLIBC_ |
|                 | 0.00%   | 0.43%     |                    | 0.00%     | 0.00%          |                               | 0x20      | 0    | 1      | 0x77236b099a74              | 0        | 465      | 365  | 1836    | 8   | [.] pthread_mutex_unlock@@GLIB |
|                 | 0.00%   | 0.43%     | 0.00%              | 0.00%     | 0.00%          |                               | 0x20      | 0    | 1      | 0x77236b099a97              | 0        | 702      | 383  | 1648    | 8   | [.] pthread_mutex_unlock@@GLIB |
| libc.so.6       | 0.00%   | 0.14%     | 0.00%              | 0.00%     | 0.00%          | ,11-12,14}<br>;<br>,11-12,14} | 0x20      | Θ    | 1      | 0x77236b097f22              | 0        | 166      | 393  | 2037    | 8   | [.] pthread_mutex_lock@@GLIBC_ |
| CIDC.SO.C       | peni    | eau_mutex |                    | 4 010     | 74,0,0-9       | ,11-12,143                    |           |      |        |                             |          |          |      |         |     |                                |

Figure 2: PERF Report of Padded Version - Small number of HITMs in the thread\_runner function, majority of them are due to locking



Figure 3: PERF Report of Improved Version - No HITMs

| Version   | HITMs | Time (s) |
|-----------|-------|----------|
| Reference | 5904  | 1.651    |
| Padded    | 1291  | 1.009    |
| Improved  | 0     | 0.070    |

Table 1: Performance Comparison of three versions (Data taken on csews172 with 11 MB files)

### Running the Code

There is a Makefile and a bash script in the code. make generates the executables for three versions. run.sh generates the PERF report for all three versions.

#### make

./run.sh <path to the file which has the names of input files>

The three PERF reports will be generated as perf\_report\_reference.out, perf\_report\_padded.out and perf\_report\_improved.out.

Also, there is a file <code>generate\_input.cpp</code> which takes an integer <code>i</code> as CLI and generates a large random text file <code>inp<i>.txt</code> in the <code>test1</code> directory. <code>generate\_input.out</code> is also generated by the <code>make</code> command. Ensure that <code>test1</code> directory is present before running <code>generate\_input.out</code>.

## 2 Problem 2

The directory problem2-dir contains the source files. Below is the compilation and execution commands -

g++ problem2.cpp -lpthread
./a.out -inp=<input\_path> -thr=<num\_producers> -lns=<lines\_per\_thread> -buf=<shared\_buffer\_size>
-out=<output\_path>

## 3 Problem 3

for 
$$i = 1$$
,  $N - 2$ 
for  $j = i + 1$ ,  $N$ 
A (i,  $j - i$ ) = A (i,  $j - i - 1$ ) - A (i + 1,  $j - i$ ) + A (i - 1,  $i + j - 1$ )

We consider the following pairs and type of dependencies:

1. A(i, j - i) and A(i, j - i - 1)

$$i_0 = i_0 + \Delta i \implies \boxed{\Delta i = 0}$$

$$j_0 - i_0 = j_0 + \Delta j - i_0 - \Delta i - 1 \implies \Delta j = \Delta i + 1 \implies \boxed{\Delta j = 1}$$

Thus the flow dependency is (0,1) or (0,+), which is a valid flow dependency. Since, we have a valid flow dependency, the corresponding anti-dependency would be invalid.

2. A(i, j - i) and A(i + 1, j - i)

$$i_0 = i_0 + \Delta i + 1 \implies \boxed{\Delta i = -1}$$

$$j_0 - i_0 = j_0 + \Delta j - i_0 - \Delta i \implies \Delta j = \Delta i \implies \boxed{\Delta j = -1}$$

The flow dependency is (-1, -1), but it is an invalid dependency since the first non-zero component of the vector is negative. However, there will be an anti-dependency with the vector equal to (1, 1).

3. A(i, j - i) and A(i - 1, i + j - 1)

$$i_0 = i_0 + \Delta i - 1 \implies \boxed{\Delta i = 1}$$

$$j_0 - i_0 = i_0 + \Delta i + j_0 + \Delta j - 1 \implies \boxed{\Delta j = -2i_0}$$

In this case,  $\Delta i$  is positive and  $\Delta j = -2i_0$ . Again since  $i_0$  is always positive,  $\Delta j$  will be always negative. Thus the dependency vector will be (+,-). It is a valid flow dependency and so there is no anti-dependency.

There is no output dependency for any of the memory access pairs.