First-Order Confirmatory Factor Analysis (CFA)

Part 2 of the material is based on the Chapter 3 of the book Byrne, Barbara M. (2012). Structural Equation Modeling with Mplus. It gives a typical example of the **single-group analyses** of SEM: testing the **factorial validity** of a **theoretical construct**.

- ▶ **Hypothesis:** self-concept (SC) is a multidimensional construct composed of four factors:
 - General SC (GSC)Academic SC (ASC)

 - English SC (ESC)Mathematics SC (MSC)
- ▶ **Data:** 16 variables from grade 7 children (N=265)
- ▶ Alternative hypotheses: 1) SC has two factors (GSC, ASC),
 - 2) SC is unidimensional (only one SC factor).

Hypothesized four-factor CFA model (graph)

Fig. 3.1 (p.44) (redrawn)

Hypothesized four-factor CFA model

Assumptions:

- four correlated SC factors
- ▶ 16 observed variables
- each loads on one and only one factor
- residuals of observed variables uncorrelated

The corresponding matrices include three types of parameters:

- ▶ # = parameter to be (freely) estimated
- ▶ 0 = parameter fixed to 0.0 (restrictions to model)
- ▶ 1 = parameter fixed to 1.0 (latent variable scaling, model identification)

Altogether to be estimated:

- ▶ 12 factor loadings (first of each congeneric set fixed)
- ▶ 16 observed variable residual variances
- 4 factor variances
- ▶ 6 factor covariances (two-headed arrows in the graph)
- 38 parameters (+ 16 observed variable intercepts, ignored)

Hypothesized four-factor CFA model (matrices)

1) Factor loadings: (LAMBDA)

		Fact	ors	
	GSC	ASC	ESC	MSC
Variable	(F1)	(F2)	(F3)	(F4)
SDQ2N01	1	0	0	0
SDQ2N13	#	0	0	0
SDQ2N25	#	0	0	0
SDQ2N37	#	0	0	0
SDQ2N04	0	1	0	0
SDQ2N16	0	#	0	0
SDQ2N28	0	#	0	0
SDQ2N40	0	#	0	0
SDQ2N10	0	0	1	0
SDQ2N22	0	0	#	0
SDQ2N34	0	0	#	0
SDQ2N46	0	0	#	0
SDQ2N07	0	0	0	1
SDQ2N19	0	0	0	#
SDQ2N31	0	0	0	#
SDQ2N43	0	0	0	#

2) Factor variance-covariance matrix: (PSI)

GSC #
ASC # #
ESC # # #
MSC # # #

Hypothesized four-factor CFA model (matrices)

3) (Measurement) Error variance-covariance matrix: (THETA)

SI	DQ2N01	#												
	DQ2N13	0	#											
SI	DQ2N25	0	0	#										
SI	DQ2N37	0	0	0	#									
SI	DQ2N04	0	0	0	0	#								
SI	DQ2N16	0	0	0	0	0	#							
SI	DQ2N28	0	0	0	0	0	0	#						
SI	DQ2N40	0	0	0	0	0	0	0	#					
SI	DQ2N10	0	0	0	0	0	0	0	0	#				
SI	DQ2N22	0	0	0	0	0	0	0	0	0	#			
	DQ2N34	0	0	0	0	0	0	0	0	0	0	#		
SI	DQ2N46	0	0	0	0	0	0	0	0	0	0	0	#	
SI	DQ2N07	0	0	0	0	0	0	0	0	0	0	0	0	#
SI	DQ2N19	0	0	0	0	0	0	0	0	0	0	0	0	0
SI	DQ2N31	0	0	0	0	0	0	0	0	0	0	0	0	0
SI	DQ2N43	0	0	0	0	0	0	0	0	0	0	0	0	0

Hypothesized four-factor CFA model (input file)

```
ASC7TNDM.TNP
TITLE: CFA of Academic SC Structure for Grade 7 Adolescents
        (Byrne 2012, p. 56)
DATA:
   FILE IS "ASC7INDM.DAT";
  FORMAT IS 40F1.0, X, 6F2.0;
VARIABLE:
NAMES ARE
SPPCN08 SPPCN18 SPPCN28 SPPCN38 SPPCN48 SPPCN58 SPPCN01 SPPCN11
SPECN21 SPECN31 SPECN41 SPECN51 SPECN06 SPECN16 SPECN26 SPECN36
SPPCN46 SPPCN56 SPPCN03 SPPCN13 SPPCN23 SPPCN33 SPPCN43 SPPCN53
 SDO2N01 SDO2N13 SDO2N25 SDO2N37 SDO2N04 SDO2N16 SDO2N28 SDO2N40
 SDQ2N10 SDQ2N22 SDQ2N34 SDQ2N46 SDQ2N07 SDQ2N19 SDQ2N31 SDQ2N43
MASTENG1 MASTMAT1 TENG1 TMAT1 SENG1 SMAT1;
HISEVARIABLES ARE
SDO2N01 SDO2N13 SDO2N25 SDO2N37 SDO2N04 SDO2N16 SDO2N28 SDO2N40
 SDO2N10 SDO2N22 SDO2N34 SDO2N46 SDO2N07 SDO2N19 SDO2N31 SDO2N43;
ANALYSIS:
   TYPE IS GENERAL:
   ESTIMATOR IS MI.;
   ITERATIONS = 1000;
  CONVERGENCE = 0.00005;
MODEL:
F1 by SDO2N01-SDO2N37;
```

F2 by SDO2N04-SDO2N40;

F3 by SDO2N10-SDO2N46; F4 by SDO2N07-SDO2N43;

OUTPUT: SAMPSTAT MODINDICES STANDARDIZED TECH1;

Some comments and points of the analysis (p.64–)

Assessment of the model

- primary interest: the extent to which a model fits the data
- several criteria for a) model as a whole, b) parameter estimates

Model fitting

- Let Σ be the population covariance matrix, \mathbf{S} the sample covariance matrix and θ the vector of model parameters.
- Now, $\Sigma(\theta)$ is the restricted covariance matrix implied by the model (the specified structure).
- Null hypothesis $H_0: \Sigma = \Sigma(\theta)$, i.e., the postulated model holds in the population
- ▶ We hope *not* to reject H_0 (cf. traditional procedures).

Statistical significance

- As always, merely a starting point, not a result as such!
- Practical significance is important (values of estimates, effect sizes, confidence intervals etc.)

SUMMARY OF ANALYSIS

Number of groups Number of observations	1 265
Number of dependent variables	16
Number of independent variables	0
Number of continuous latent variables	4

Observed dependent variables

Continuous					
SDQ2N01	SDQ2N13	SDQ2N25	SDQ2N37	SDQ2N04	SDQ2N16
SDQ2N28	SDQ2N40	SDQ2N10	SDQ2N22	SDQ2N34	SDQ2N46
SDQ2N07	SDQ2N19	SDQ2N31	SDQ2N43		

Continuous	latent	variables	
F1	F2	F3	F4

Estimator	ML
Information matrix	OBSERVED
Maximum number of iterations	1000
Convergence criterion	0.500D-04
Maximum number of steepest descent iterations	20

TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 159.112 Degrees of Freedom 98 P-Value 0.0001 Chi-Square Test of Model Fit for the Baseline Model Value 1703.155 Degrees of Freedom 120 P-Value 0.0000 CFI/TLI CFI 0.961 0.953 TIT Loglikelihood HO Value -6562.678 H1 Value -6483 122 Information Criteria Number of Free Parameters 54

Akaike (AIC) 13233.356 Bayesian (BIC) 13426.661 Sample-Size Adjusted BIC 13255.453 (n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation) Estimate 0.049 90 Percent C.I. 0.034 0.062 Probability RMSEA <= .05 0.556

SRMR (Standardized Root Mean Square Residual) Value 0.045

Some comments and points of the analysis

Estimation process

lacktriangle minimize the discrepancy (residual) between $oldsymbol{\mathcal{S}}$ and $oldsymbol{\mathcal{L}}(heta)$

The goodness-of-fit statistics

Chi-Square Test of Model Fit

- \blacktriangleright traditional Likelihood Ratio Test statistic, expressed as a chi-square (χ^2) statistic
- ▶ p-value represents the likelihood of obtaining a χ^2 value that exceeds the χ^2 value when H_0 is true, so the higher the p, the closer the fit.
- always reported but rarely used as the sole index of model fit

Here, $\chi^2=159.112$, with 98 degrees of freedom (df) and a p-value of less than 0.0001 suggests that the fit of the data to the model is not adequate and H_0 should be rejected. However, χ^2 is quite sensitive to sample size (it is based on large sample theory) and nonnormal data. It is still important in model comparisons.

Some comments and points of the analysis

Chi-Square Test of Model Fit for the Baseline Model

- ▶ Usually the so called "null model", but in Mplus a slight difference: in addition to the variances, also the means of the observed items are included (although they may not be relevant in the model).
- In any baseline case, the observed items are assumed uncorrelated (no structure). The point: χ^2 value of the H_0 is much less than the value for the baseline, that is, the model is superior to the unstructured baseline model. (But this is not a remarkable or surprising result, it is just a good start.)

Some comments and points of the analysis (p.69–)

Alternative (subjective) indices of fit: more pragmatic approach, e.g. Comparative Fit Index (CFI), Tucker–Lewis Fit Index (TLI), Akaike's Information Criterion (AIC), Bayes Information Criterion (BIC). First two represent the most typical incremental indices measuring the proportionate improvement in fit with *nested* models. The latter two are predictive or parsimony-corrected criteria for *non-nested* models.

A careful consideration of these is essential when fitting models. Use of multiple indices highly recommended. Here, only four, perhaps the most typical ones. **Warning:** model may fit well, and still be incorrectly specified! These are merely giving information on the model's lack of fit. Researcher must know if the model is plausible or not.

Therefore the assessment of model adequacy must be based on multiple criteria that take into account a) theoretical, b) "statistical, and c) practical considerations!

Some comments and points of the analysis

- CFI:
 - ▶ compares the hypothesized (H) and the baseline model (B): $CFI = 1 [(\chi_H^2 \mathrm{df}_H)/(\chi_B^2 \mathrm{df}_B)]$
 ▶ range: [0,1], well-fitting models have CFI > 0.95
- ► TLI:
 - ▶ quite similar as CFI, but nonnormed (may extend [0,1]): ▶ $TLI = [(\chi_B^2/\operatorname{df}_B) (\chi_H^2/\operatorname{df}_H)]/[(\chi_B^2/\operatorname{df}_B) 1]$ ▶ includes a penalty function for overly complex models (H) ▶ well-fitting models have TLI close to 1

The Loglikelihood values (H0 for H, H1 for B) are used in computation of information criteria AIC and BIC. AIC is the more commonly used one in SEM (they are quite similar):

AIC = -2(loglikelihood) + 2a

where loglikelihood refers to the H_0 value and a is the number of estimated parameters (again including observed item intercepts in Mplus). Smaller value indicates a good fit when comparing across •different models or samples.

Some comments and points of the analysis (p.72–)

The last two fit indices are RMSEA and SRMR, both absolute ones, sometimes termed "absolute misfit indices". They do not compare models, but depend only on determining how well the model fits the data. Therefore these decrease as the fit improves. Values of RMSEA less than 0.05 indicate good fit, 0.08 to 0.10 mediocre/reasonable fit, and greater than 0.10 poor fit.

RMSEA is sensitive to the number of estimated parameters (model complexity). Routine use of RMSEA is strongly recommended in literature. Here: 0.049 (with a 90 % C.I. [0.034, 0.062]), indicating a good precision.

SRMR represents the average residual value of the fit (standardized, i.e., range [0,1]). In well-fitting models, it will be small, less than 0.05. Here: 0.045, that is, model explains the correlations to within an average error of 0.045.

RMSEA: Root Mean Square Error Of Approximation SRMR: Standardized Root Mean Square Residual

Some comments and points of the analysis (p.77–)

Assessment of parameter estimates

- 1) appropriateness, 2) statistical significance
 - ► Parameter estimates should exhibit the correct sign and size, and be consistent with the underlying theory.
 - ▶ Any estimates falling outside the admissible range indicate that a) model is wrong or b) input matrix lacks sufficient information.
 - Standard errors of parameters should not be excessively large or small.
 - Assuming that the sample size is adequate, nonsignificant parameters (except the error variances) should be deleted from the model.

Vehkalahti
Kimmo
2023
Models
Equation
Structural
and
Analysis
Factor

DECSINGIN TELOPISIO	HELSINGFORS UNIVERSITET	UNIVERSITY OF HELSINKI
	1	
1	•	Y

000			aa.			040. (
ועט	EL RESULTS					Two-Tailed
		Es	stimate	S.E.	Est./S.E.	P-Value
		(facto	or loading	s)		
F1						
	SDQ2N01	fixed:			999.000	
	SDQ2N13		1.083	0.156	6.939	
	SDQ2N25		0.851	0.125		
	SDQ2N37		0.934	0.141	6.607	0.000
12	BY					
	SDQ2N04		1.000		999.000	
	SDQ2N16		1.279	0.151	8.489	0.000
	SDQ2N28		1.247	0.155	8.022	
	SDQ2N40		1.259	0.159	7.913	0.000
3	BY					
	SDQ2N10		1.000	0.000	999.000	999.000
	SDQ2N22		0.889	0.104	8.561	0.000
	SDQ2N34		0.670	0.148	4.541	0.000
	SDQ2N46		0.843	0.118	7.160	0.000
4	BY					
	SDQ2N07		1.000	0.000	999.000	999.000
	SDO2N19		0.841	0.058	14.447	0.000
	SDQ2N31		0.952	0.048	19.905	0.000
	SDQ2N43		0.655	0.050	13.182	0.000
		(facto	or covaria	nces)		
2	WITH					
	F1		0.415	0.078	5.325	0.000
3	WITH					
	F1		0.355	0.072	4.928	0.000
	F2		0.464	0.080	5.825	0.000
٠4	WITH					
	F1		0.635	0.117	5.437	0.000
	F2		0.873	0.134	6.507	0.000
	F3		0.331	0 100	3 309	0 001

y þ	othesized	ioui-ia	ICLUI		ouei
•	Intercepts				
	SDQ2N01	4.408	0.083	53.312	0.000
	SDQ2N13	5.004	0.083	60.087	0.000
	SDQ2N25	5.098	0.075	67.766	0.000
	SDQ2N37	4.826	0.070	68.758	0.000
	SDQ2N04	4.521	0.086	52.630	0.000
	SDQ2N16	4.649	0.076	61.116	0.000
	SDQ2N28	4.691	0.082	57.419	0.000
	SDQ2N40	4.977	0.083	59.717	0.000
	SDQ2N10	4.623	0.071	65.454	0.000
	SDQ2N22	5.377	0.067	80.384	0.000
	SDQ2N34	3.891	0.104	37.256	0.000
	SDQ2N46	5.268	0.080	66.253	0.000
	SDQ2N07	4.321	0.109	39.560	0.000
	SDQ2N19	4.543	0.104	43.738	0.000
	SDQ2N31	4.740	0.096	49.225	0.000
	SDQ2N43	4.977	0.086	57.961	0.000
	Variances				
	F1	0.613	0.141	4.342	0.000
	F2	0.561	0.126	4.449	0.000
	F3	0.668	0.116	5.744	0.000
	F4	2.307	0.272	8.483	0.000
	Residual Variances	3			
	SDQ2N01	1.198	0.130	9.228	0.000
	SDQ2N13	1.119	0.124	9.000	0.000
	SDQ2N25	1.056	0.109	9.675	0.000
	SDQ2N37	0.771	0.089	8.621	0.000
ž	SDQ2N04	1.394	0.128	10.890	0.000
ES	SDQ2N16	0.616	0.070	8.856	0.000
H.	SDQ2N28	0.896	0.092	9.739	0.000
ž	SDQ2N40	0.952	0.095	10.061	0.000
RSI	SDQ2N10	0.653	0.082	7.926	0.000
UNIVERSITY OF HELSINKI	SDQ2N22	0.657	0.076	8.703	0.000
5	SDQ2N34	2.590	0.233	11.093	0.000
,	SDQ2N46	1.201	0.118	10.164	0.000
/-	SDQ2N07	0.854	0.098	8.729	0.000
,	SDQ2N19	1.228	0.125	9.808	0.000
	SDQ2N31	0.365	0.065	5.581	0.000
	SDQ2N43	0.964	0.093	10.410	0.000

HEISINGIN YLOPISTO HEISINGFORS UNIVERSITET UNIVERSITY OF HEISINKI

Some comments and points of the analysis (p.81–)

Standardized estimates

Mplus offers three types of standardization: STDYX, STDY and STD. These correspond to various ways of conceptualizing standardization (there is no one right choice!). In this respect, SEM programs vary. Hence: check, compare and verify that particular parameter values are consistent with the literature, if you want to replicate some known results! (Here, I follow Byrne and consider only the STDYX option).

Two aspects of standardized values (compared with the unstandardized solution):

- parameters reported earlier as 1.0 have now new values
- ► factor variances are now reported as 1.0 (no matter which STD option is used)

Hypothesized four-factor CFA model (selected output) STANDARDIZED MODEL RESULTS - STDYX Standardization

_						
	STAI	NDARDIZED M	ODEL RESULTS -	STDYX Stand	ardization	-
						Two-Tailed
			Estimate	S.E.	Est./S.E.	P-Value
	F1	BY				
		SDQ2N01	0.582	0.055	10.613	0.000
		SDQ2N13	0.626	0.050	12.426	0.000
		SDQ2N25	0.544	0.056	9.644	0.000
		SDQ2N37	0.640	0.051	12.608	0.000
	F2	BY				
		SDQ2N04	0.536	0.048	11.143	0.000
		SDO2N16	0.774	0.031	24.983	0.000
		SDO2N28	0.703	0.037	19.071	0.000
		SDQ2N40	0.695	0.036	19.043	0.000
	F'3	BY	0.711	0.044	16 167	0.000
		SDQ2N10 SDQ2N22	0.711	0.044	16.167 14.447	0.000
		SDQ2N22 SDQ2N34	0.322	0.046	5.002	0.000
		SDQ2N34 SDQ2N46	0.532	0.054	9.873	0.000
		SDQZN40	0.552	0.034	9.073	0.000
	F4	BY				
		SDQ2N07	0.854	0.020	41.953	0.000
		SDQ2N19	0.755	0.030	24.825	0.000
		SDQ2N31	0.923	0.016	59.292	0.000
		SDQ2N43	0.712	0.033	21.287	0.000
	F2	WITH				
		F1	0.707	0.057	12.421	0.000
	F3					
		F1	0.555	0.072		0.000
		F2	0.758	0.052	14.652	0.000
	F4	WITH				
		F1	0.534	0.061	8.756	0.000
		F2	0.767	0.038	20.291	0.000
		F3	0.266	0.073	3.652	0.000

yΓ	00011031200	ı ioui	lactor	CIT	model
	Intercepts				
	SDQ2N01	3.2	75 0.155	5 21.135	0.000
	SDQ2N13	3.6	91 0.172	2 21.498	0.000
	SDQ2N25	4.1	63 0.191	1 21.798	0.000
	SDQ2N37	4.2	24 0.193	3 21.831	0.000
	SDQ2N04	3.2	33 0.153	3 21.092	0.000
	SDQ2N16	3.7	54 0.174	4 21.544	0.000
	SDQ2N28	3.5	27 0.165	5 21.368	0.000
	SDQ2N40	3.6	68 0.171	1 21.481	0.000
	SDQ2N10	4.0	21 0.185	5 21.718	0.000
	SDQ2N22	4.9	38 0.223	3 22.132	0.000
	SDQ2N34	2.2			
	SDQ2N46	4.0		7 21.746	
	SDQ2N07	2.4			
	SDQ2N19	2.6			
	SDQ2N31	3.0			
	SDQ2N43	3.5	61 0.166	5 21.396	0.000
	Variances				
		xed: 1.0			
	F2	1.0	0.000	999.000	999.000
	F3	1.0			
	F4	1.0	0.000	999.000	999.000
	Residual Varianc				
	SDQ2N01	0.6	61 0.064	4 10.366	
	SDQ2N13	0.6			
	SDQ2N25	0.7			
=	SDQ2N37	0.5			
ž	SDQ2N04	0.7			
Ħ	SDQ2N16	0.4			
Ö	SDQ2N28	0.5			
Ě	SDQ2N40	0.5			
UNIVERSITY OF HELSINKI	SDQ2N10	0.4			
Š	SDQ2N22	0.5			
1	SDQ2N34	0.8			
6	SDQ2N46	0.7			
	SDQ2N07	0.2			
	SDQ2N19	0.4			
	SDQ2N31	0.1	48 0.029	9 5.170	0.000

0.493

0.048

10.351

0.000

SD02N43

Some comments and points of the analysis (p.82–)

R^2 values

When standardized estimates are requested, R^2 values for the dependent variables are reported.

- $ightharpoonup R^2$ is the proportion of variance accounted for by its related factor (*communality* in factor analytic terms).
- ► SDQ2N34 is the weakest indicator ($R^2 = 1 0.896 = 0.104$).

R-SQUARE								
	Observed				Two-Tailed			
	Variable	Estimate	S.E.	Est./S.E.	P-Value			
	SDO2N01	0.339	0.064	5.307	0.000			
	SDQ2N13	0.391	0.063	6.213	0.000			
	SDO2N25	0.296	0.061	4.822	0.000			
	SDQ2N37	0.409	0.065	6.304	0.000			
	SD02N04	0.287	0.051	5.572	0.000			
	SDO2N16	0.598	0.048	12.492	0.000			
	SDO2N28	0.494	0.052	9.535	0.000			
	SDO2N40	0.483	0.051	9.522	0.000			
	SDO2N10	0.506	0.063	8.083	0.000			
	SDQ2N22	0.446	0.062	7.224	0.000			
	SDQ2N34	0.104	0.042	2.501	0.012			
	SDQ2N46	0.283	0.057	4.936	0.000			
	SDQ2N07	0.730	0.035	20.976	0.000			
	SDQ2N19	0.571	0.046	12.412	0.000			
	SDQ2N31	0.852	0.029	29.646	0.000			
	SDQ2N43	0.507	0.048	10.643	0.000			

HELINGIN YLONISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Some comments and points of the analysis (p.82–)

Model misspecification and Modification Indices (MI)

The function of MIs is to identify badly chosen parameter constraints (e.g. those fixed to a value of 0.00).

MIs are used to help answering to these questions:

- "What if a parameter would be freely estimated?"
- ▶ "How much would χ^2 value of the model decrease?"
- "Would the drop be significant?"
- "Would it lead to a better fitting model?"

A clue is given by the corresponding EPC (Expected Parameter Change) values. Again substantive knowledge and reasoning is required.

By default, Mplus reports only those parameters having $Ml \geq 10$.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Some comments and points of the analysis (p.87–)

Here, we have four suggestions: one factor loading and three residual covariances (note: observed variables in CFA are always dependent variables; their (co)variances are not eligible for estimation).

MODEL MO	DIFICATION INDICES	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.			
BY State	ments							
F2	BY SDQ2N07	11.251	-0.563	-0.422	-0.237			
WITH Statements								
SDQ2N25 SDQ2N31 SDQ2N31	WITH SDQ2N01 WITH SDQ2N07 WITH SDQ2N19	17.054 10.696 17.819	0.359 0.305 -0.331	0.359 0.305 -0.331	0.319 0.546 -0.495			

The factor loading (F2 BY SDQ2N07) represents a **cross-loading** that could be added. The problem is that from a substantive perspective, the EPC value has a wrong sign! (The relation should be positive, not negative.) Thus it would be questionable to free this parameter for estimation, no matter the MI and EPC.

Some comments and points of the analysis (p.87–)

Overall: the residual covariances seem to be rather small and not worthy of inclusion in a subsequently specified model. Remember the topic of scientific parsimony: avoid too many parameters and hence too complex models! First of all: model must be substantively meaningful.

In general, model respecification is commonly conducted in SEM. (We will get back to this issue many times!) However, it is important to realize that when we move to so called *Post Hoc* analyses, they will then be framed within *exploratory*, not anymore confirmatory modeling approach! Post hoc model fitting is also called *specification searches* (detection of misfitting parameters in the originally hypothesized model). Combination of 1) substantive and 2) statistical aspects is required (always in this order!).

"When to stop fitting a model?" – a good question...