

Machine Learning

Non structural hierarchical classification

Non-structured hierarchical classification (NSHC)

• Let us revisit a typical labelset appearing during relation extraction:

- If we include a <root> node, we got 3 layers of the hierarchy
- → Let us make use of this information during our classification process!

Non-structured hierarchical classification (NSHC)

 Rethinking your current task, you might even find that your labels do also have some sort of hierarchy

Non-structured hierarchical classification (NSHC)

 We define our problem as a NSHC, if our labelset fulfills the following conditions:

The set of classes C is in a relation \prec The relation \prec is pronounced "IS-A" relation and is **asymmetric**, **anti-reflexive** und **transitive**:

- 1. There is a single biggest element R ("root")
- 2. $\forall c_i, c_i \in C : if c_i \prec c_i then c_i \prec c_i$ (asymmetric)
- 3. $\forall c_i \in C, c_i \prec c_i$ (anti-reflexive)
- 4. $\forall c_i, c_j, c_k \in C$, $c_i \prec c_j$ and $c_j \prec c_k$ implies $c_i \prec c_k$ (transitivity)

→ And we will see, that our solution will work with any arbitrary classifier!

Running Example for NSHC

- Additionally it holds:
 - 1. Each node has exactly one parent and one label ("Single-label NSHC")
 - 2. Classification is done until we reach a leaf node

Different forms of NSHC

- In general we differ between three forms of NSHC:
 - 1. Flat Classification
 - 2. Local Methods
 - 1. Local classifier per node
 - 2. Local classifier per parent
 - 3. Local classification per layer
 - 3. Global Methods
 - Big-Bang approach

Different forms of NSHC: Flat classification

- Classification as you know it
- "Bottom-Up", parent information can be inferred from the leavs
- Ignores the hierarchy information entirely

Forms of NSHC: Flat classification

• Classifier:

A single classifier

• Training data:

All instances, using the label according to the leavs

How to apply:

- Directly predict the most concrete label for every instance
- Parents can be inferred from the leaf label if required

• Problems:

Does not make use of any structural information

- Each node contains a classifier, which decides if the instance gets this label or not
- "Top-Down" approach
- Most prominent approach in the literature (of NSHC)

• Classifier:

One classifier for each label (or node)

• Training:

- Multiple ways of training the individual classifiers (explained in coming slides)
 - 1. Exclusive-Policy
 - 2. Less-Exclusive-Policy
 - 3. Less-Inclusive-Policy
 - 4. Inclusive-Policy
 - 5. Siblings-Policy
 - 6. Exclusive-Siblings-Policy
- Every classifier predicts a binary outcome ("To be or not to be")

How to apply:

- Evaluate all classifier separately and then use a strategy to get the final results!
 - We have shown a strategy where always the highest prediction wins

Problems:

- Requires a strategy to resolve inconsistencies
 - What if it is neither **1** or **2**

• For a local classifier, we can use a different subset of our training data:

1. Exclusive Policy

- Positive Instances
 - Only instance with finest class to be 2.1
- Negative Instances
 - All other instances

• For a local classifier, we can use a different subset of our training data:

2. Less-Exclusive Policy

- Positive Instances
 - Only instance with finest class to be 2.1

- Negative Instances
 - All instances that are no successor of 2.1 and are not labelled with 2.1

• For a local classifier, we can use a different subset of our training data:

3. Less-Inclusive Policy

- Positive Instances
 - All instances with label 2.1 or any successor (2.1.1 or 2.1.2)

- Negative Instances
 - All other instances

• For a local classifier, we can use a different subset of our training data:

4. Inclusive Policy

- Positive Instances
 - All instances with label 2.1 or any successor (2.1.1 or 2.1.2)

- Negative Instances
 - Alle instances except 2.1 as well as predecessors and successors (not 2.1, 2.1.1, 2.1.2 or 2).

• For a local classifier, we can use a different subset of our training data:

5. Siblings Policy

- Positive Instances
 - All instances with label 2.1 or any successor (2.1.1 or 2.1.2)

- Negative Instances
 - All sibling-instances and their successors (2.2,2.2.1,2.2.2)

• For a local classifier, we can use a different subset of our training data:

6. Exclusive-Siblings Policy

- Positive Instances
 - Only instances with label 2.1
- Negative Instances
 - Only of sibling instances

- One classifier per non-leaf node, that decides which child is more appropriate
- "Top-Down" approach

Classifier:

One classifier for every non-leaf node

• Training:

- Multiple possibilities for the instances:
 - 1. Siblings-Policy
 - 2. Exclusive-Siblings-Policy
- Multiclass prediction with respect to the children

How to apply:

Query the classifier top-down and follow their most likely prediction

• Probleme:

- (Potentially) requires an N-Ary classifier instead of just binary classifier
- Might never reach the most appropriate classifier

Formen von NSHK: Lokale Klassifikatoren pro Ebene

- Each layer has a distinct N-ary classifier
- Least used (in NSHC literature)
- Top-Down approach

Forms of NSHC: Local classifier per Layer(LCL)

• Classifier:

One classifier per layer

• Training:

- Again different possibilities for the training
 - 1. Siblings-Policy
 - 2. Exclusive-Siblings-Policy
- Multiclass prediction at every layer.

• How to apply:

- E.g. Apply top-down and follow their predictions
- Or find the path with the highest score

• Problems:

• Local inconsistencies

Forms of NSHC: Local classifier per Layer(LCL)

Forms of NSHC: Global Methods Big-Bang Approach

- A single classifier for the entire problem
- Makes fully use of the structure

Forms of NSHK: Global methods: Big-Bang approach

Classifier:

- A single classifier:
 - Structured Perceptron
 - Conditional Random Fields

• Training:

Instances have to be modelled according to the classifier

Application:

Convert an instance appropriately and query the classifier

• Problem:

Needs dedicated algorithms!

Big Bang: Example

• Let us dissect our tree of labels into sequences

We basicly renamed our 6 leaflabels into "path-labels"

Textmining 28

Big Bang: Example

• But we can then score more appropriately:

$$\underset{S \in valid \ Sequences}{arg max} p(S|x) = \frac{\exp(\sum_{features:i} \lambda_i \cdot f(S, x))}{\sum_{S' \in valid \ Sequences} \exp(\sum_{features:i} \lambda_i \cdot f(S', x))}$$

 This means we can integrate features for every node on the path, similar to "back-off features" that we introduced for CRFs

Further typical application scenarios

- 1. Music-Genre Prediction
- 2. Protein-function-prediction
- 3. Text classification
- 4. Object Detection
- 5. Predictions of Phonemes
- 6. ... → in any case a lot more than just relation classification!

Which NSHC is the best?

No general answer, you probably have to try it!

Approach	Work	Result when compared against					
		Flat	LCN	LCPN	LCL	GC	
LCN	Brecheisen et al. (2006a)	~					
	D'Alessio et al. (2000)	↑					
	Liu et al. (2005)	↑					
	Cesa-Bianchi et al. (2006a,b)	↑	↑				
	Cesa-Bianchi and Valentini (2009)	↑					
	DeCoro et al. (2007)	↑					
	Guan et al. (2008)	↑					

https://link.springer.com/content/pdf/10.1007/s10618-010-0175-9.pdf

→ LCN seems to outperform flat classification

Which NSHK should I use?

Approach	Work	Result when compared against					
		Flat	LCN	LCPN	LCL	GC	
LCPN	Koller and Sahami (1997)	~					
	Burred and Lerch (2003)	~					
	Chakrabarti et al. (1998)	↑					
	McCallum et al. (1998)	↑					
	Dumais and Chen (2000)	↑					
	Ruiz and Srinivasan (2002)	↑					
	Kriegel et al. (2004)	↑					

https://link.springer.com/content/pdf/10.1007/s10618-010-0175-9.pdf

→ LCPN seems to outperform flat classification

Which NSHK should I use?

Approach	Work	Result when compared against					
		Flat	LCN	LCPN	LCL	GC	
GC	Dekel et al. (2004a,b)	1		1			
	Wang et al. (2001)	↑					
	Peng and Choi (2005)	↑					
	Rousu et al. (2005, 2006)	↑					
	Blockeel et al. (2006)	↑					
	Cai and Hofmann (2004, 2007)	↑					
	Wang et al. (1999)	↑					
	Kiritchenko et al. (2005, 2006)	↑		~			

https://link.springer.com/content/pdf/10.1007/s10618-010-0175-9.pdf

→ GC seems to outperform flat classification

Recap NSHC

- Applicable, if the labels are ordered in a hierarchy.
- Local Approaches
 - One classifier per node (LCN)
 - One classifier per parent node (LCPN)
 - One classifier per layer (LCL)
 - → Easy to apply, since any classifier can be used, but some approaches need strategies to resolve inconsistencies.
- Global Approaches
 - Big-Bang approach
 - → Classifier has to be able to deal with the structure
 - → Makes use of the entire hierarchy
- Results from literature show, that NSHC outperforms flat classification, but there is no clear winner!