GRAPH OF TRIGONOMETRIC FUNCTIONS TRIGONOMETRIC FUNCTION OF ANGLES

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Graph of Trigonometric Functions

Amplitude and Period of Sine Function

GRAPH OF TRIGONOMETRIC FUNCTIONS

SINE FUNCTION

$f(x) = \sin x$

x	f(x)
0	D
$\pi/6$	0.5
$\pi/4$	0.71
$\pi/3$	0.87
$\pi/2$	1
$2\pi/3$	0.87
$3\pi/4$	0.71
$5\pi/6$	0.5
π	0

x	f(x)
$7\pi/6$	-0.女
$5\pi/4$	-0.71
$4\pi/3$	-0.87
$3\pi/2$	-1
$5\pi/3$	-0.87
$7\pi/4$	-0.71
$11\pi/6$	-0.5
2π	0

Graph of $\sin x$

<u>Domain:</u> All real numbers (-∞, ∞)

<u>Range:</u> [-1,1]

COSINE FUNCTION

$f(x) = \cos x$

х	f(x)
0	1
$\pi/6$	0.87
$\pi/4$	8.71
$\pi/3$	D.5
$\pi/2$	D
$2\pi/3$	-0.5
$3\pi/4$	-0.71
$5\pi/6$	-0.87
π	-1

x	f(x)
$7\pi/6$	-0.87
$5\pi/4$	-0.71
$4\pi/3$	-0.5
$3\pi/2$	0
$5\pi/3$	0.5
$7\pi/4$	0.71
$11\pi/6$	0.87
2π	1

Graph of $\cos x$

<u>Domain:</u> All real numbers (-∞, ∞)

<u>Range:</u> [−1, 1]

TANGENT FUNCTION

$f(x) = \tan x$

x	f(x)
0	70
$\pi/6$	0.58
$\pi/4$	l
$\pi/3$	1.73
$\pi/2$	Ø
$2\pi/3$	- 1.73
$3\pi/4$	-1
$5\pi/6$	-0.58
π	ď

x	f(x)
$7\pi/6$	0.58
$5\pi/4$	1
$4\pi/3$	1.73
$3\pi/2$	<u></u>
$5\pi/3$	-1.73
$7\pi/4$	-1
$11\pi/6$	-0.58
2π	Ø

Graph of $\tan x$

<u>Domain</u>: All real numbers except odd multiples of $\pi/2$

Range: $[-\infty, \infty]$

COTANGENT FUNCTION

$f(x) = \cot x$

x	f(x)
0	8
$\pi/6$	1.73
$\pi/4$	1
$\pi/3$	0.58
$\pi/2$	D
$2\pi/3$	-1.58
$3\pi/4$	-1
$5\pi/6$	-1.73
π	P

x	f(x)
$7\pi/6$	1.73
$5\pi/4$	1
$4\pi/3$	0.58
$3\pi/2$	D
$5\pi/3$	-0.58
$7\pi/4$	-1
$11\pi/6$	-1.73
2π	Ø

Graph of $\cot x$

<u>Domain:</u> All real numbers except integer multiples of π

Range: $[-\infty, \infty]$

SECANT FUNCTION

$f(x) = \sec x$

x	f(x)
0	1
$\pi/6$	1.15
$\pi/4$	1.41
$\pi/3$	2
$\pi/2$	8
$2\pi/3$	-2
$3\pi/4$	-1.41
$5\pi/6$	-1.15
π	-1

f(x)
-1.は
-1.41
-2
<u></u>
2
1.41
1.は
1

Graph of $\sec x$

<u>Domain</u>: All real numbers except odd multiples of $\pi/2$

Range:
$$(-\infty, -1] \cup [1, \infty)$$

COSECANT FUNCTION

$$f(x)=\csc x$$

x	f(x)
0	8
$\pi/6$	2
$\pi/4$	1-41
$\pi/3$	した
$\pi/2$	1
$2\pi/3$	しゅ
$3\pi/4$	1.か
$5\pi/6$	2
π	8

f(x)
-2
-1.41
-1.15
-1
-1.15
-1.41
-2
8

Graph of $\csc x$

<u>Domain:</u> All real numbers except <u>odd</u> multiples of π

Range:
$$(-\infty, -1] \cup [1, \infty)$$

AMPLITUDE AND PERIOD OF SINE FUNCTION

AMPLITUDE

 $f(x) = a \sin x$

Let the amplitude a = 2

x	sin x	$2\sin x$
0	D	D
$\pi/4$	0.71	1.42
$\pi/2$	1	2
$3\pi/4$	0.71	1.42
π	D	0
$5\pi/4$	-0.71	-1.42
$3\pi/2$	-1	-2
$7\pi/4$	-0.71	-1.42
2π	Ø	D

Graph of $2 \sin x$

What would be the graph of $3 \sin x$?

PERIOD

$$f(x) = \sin bx$$

$$\underline{\text{Let }}b=2$$

x	sin x	sin 2x
0	D	Ø
$\pi/4$	0.71	1
$\pi/2$	1	D
$3\pi/4$	0.71	-1
π	D	ð
$5\pi/4$	-0.71	1
$3\pi/2$	-1	D
$7\pi/4$	-0.71	-1
2π	D	ъ

Graph of $\sin 2x$

period =
$$\frac{2\pi}{b}$$
 = $\frac{2\pi}{2}$ = $\frac{1}{2}$

AMPLITUDE AND PERIOD

$$f(x) = a \sin bx$$

$$\underline{\text{Let}} \, \mathbf{a} = 2 \, , b = 10$$

x	sin x	$2\sin 10x$
0	D	Ø
$\pi/4$	0.71	2
$\pi/2$	1	D
$3\pi/4$	0.71	-2
π	D	D
$5\pi/4$	-0.71	2
$3\pi/2$	-1	D
$7\pi/4$	-0.71	-2
2π	D	7

Graph of $\sin 10x$

period =
$$\frac{2\pi}{b} = \frac{2\pi}{b} = \frac{\pi}{5}$$

The average temperature (in °F) at Mould Bay, Canada, can be approximated by the function

$$f(x) = 34 \sin \left[\frac{\pi}{6} (x - 4.3) \right]$$

where x is the month and x = 1 corresponds to January, x = 2 to February, and so on.

<u>Using this model:</u>

- a. What is the <u>maximum</u> temperature predicted?
- b. What is the period of the temperature cycle?
- c. What is the average temperature in $\underbrace{May}_{\times = \underbrace{\nabla}}$?

$$f(x) = 34 \sin \left[\frac{11}{6}x - \frac{4.3}{x} \right]$$

The average temperature (in °F) at Mould Bay, Canada, can be approximated by the function

$$f(x) = 34 \sin \left[\frac{\pi}{6} (x - 4.3) \right]$$

where x is the month and x = 1 corresponds to January, x = 2 to February, and so on.

<u>Using this model:</u>

- a. What is the <u>maximum</u> temperature predicted?
- b. What is the period of the temperature cycle?
- c. What is the average temperature in \underbrace{May} ?

$$f(x) = 34 \sin \left[\frac{11}{6}x - \frac{4.3}{x} \right]$$

b.
$$bx = \frac{\pi}{6}x$$

$$period = \frac{21}{b}$$

$$Period = \frac{2\pi}{176} \longrightarrow 2\pi \cdot \frac{6}{11}$$

The average temperature (in °F) at Mould Bay, Canada, can be approximated by the function

$$f(x) = 34 \sin \left[\frac{\pi}{6} (x - 4.3) \right]$$

where x is the month and x = 1 corresponds to January, x = 2 to February, and so on.

<u>Using this model:</u>

- a. What is the maximum temperature predicted?
- b. What is the period of the temperature cycle?
- c. What is the average temperature in $\underbrace{May}_{x=t}$?

c.
$$f(5) = 34 \sin \left[\frac{\pi}{6} (5 - 4.3) \right]$$

The light from the moon, in lux, on the night of the day t^{th} of 2016, is

$$L(t) = 0.25 - sin\left(\frac{2\pi(t-2)}{28.5}\right)$$

What is the <u>period</u> of the light from the moon?

$$L(t) = 0.25 - \sin \left[\frac{211}{28.5} t - \frac{411}{28.5} \right]$$

period =
$$\frac{211}{b}$$

period =
$$\frac{21}{21/18.5}$$
 \rightarrow $21 \cdot \frac{28.5}{21}$

The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^2 but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$\Delta S = 0.034S \sin \left[\frac{2\pi (82.5 - N)}{365.25} \right]$$

In this formula, N is the day number covering a fouryear period, where N = 1 corresponds to January 1 of a leap year and N = 1461 corresponds to December 31 of the fourth year.

- a. Calculate ΔS for N=80, which is the spring equinox in the first year.
- b. Calculate ΔS for N=1268, which is the summer solstice in the fourth year.
- c. What is the maximum value of ΔS ?
- d. Find a value for N where ΔS is equal to 0.

The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^2 but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$\Delta S = 0.034S \sin \left[\frac{2\pi (82.5 - N)}{365.25} \right]$$

In this formula, N is the day number covering a fouryear period, where N = 1 corresponds to January 1 of a leap year and N = 1461 corresponds to December 31 of the fourth year. a. Calculate ΔS for N=80, which is the spring equinox in the first year.

$$Ac = 0.034 (1367) \sin \frac{211(82.5-80)}{365.21}$$

The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^2 but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$\Delta S = 0.034S \sin \left[\frac{2\pi (82.5 - N)}{365.25} \right]$$

In this formula, N is the day number covering a fouryear period, where N = 1 corresponds to January 1 of a leap year and N = 1461 corresponds to December 31 of the fourth year. b. Calculate ΔS for N=1268, which is the summer solstice in the fourth year.

$$AS = 0.034 (1367) \sin \left[\frac{211(82.5 - 1268)}{305.21} \right]$$

$$AS = -46.461 \, \frac{W}{m^2}$$

The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^2 but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$\Delta S = 0.034S \sin \left[\frac{2\pi (82.5 - N)}{365.25} \right]$$

In this formula, N is the day number covering a fouryear period, where N = 1 corresponds to January 1 of a leap year and N = 1461 corresponds to December 31 of the fourth year. c. What is the maximum value of ΔS ?

$$a = 0.034 (1367)$$

$$a = 46.478 \text{ W/m2}$$
ans

The solar constant S is the amount of energy per unit area that reaches Earth's atmosphere from the sun. It is equal to 1367 watts per m^2 but varies slightly throughout the seasons. This fluctuation ΔS in S can be calculated using the formula

$$\Delta S = 0.034S \sin \left[\frac{2\pi (82.5 - N)}{365.25} \right]$$

In this formula, N is the day number covering a fouryear period, where N = 1 corresponds to January 1 of a leap year and N = 1461 corresponds to December 31 of the fourth year. d. Find a value for N where ΔS is equal to 0.

$$Sin^{-1}(0) = \frac{2\pi(82.5 - \mu)}{0.7365.25}$$

$$0 = 82.5 - 11$$

SEATWORK

