Notes on Charles Pinter's 'A Book Of Abstract Algebra'

Unathi Skosana

These are notes taken while reading Charles Pinter's 'A Book Of Abstract Algebra'

Contents

July 10, 2021

Operations 1

Operations

Question 1. What is an operation on a set A?

Definitions 2 (Informal definition). An operation is any rule which assigns to each ordered pair of elements of A a unique element in A.

Definitions 3 (Formal definition). Let *A* be any set:

An operation * on A is a rule which assigns to each ordered pairs (a, b) of elements of A exactly one a*b in A, such that:

- a * b is defined for *every* ordered pair (a, b) of elements of A. ¹
- a * b must be *uniquely* defined. ²
- If $a, b \in A$, then $a * b \in A$. ³

Definitions 4 (Commutativity). An operation * is said to be *commutative* if it satisfies

$$a * b = b * a \tag{1}$$

for any two elements a and b in A.

Definitions 5 (Associativity). An operation * is said to be *associative* if it satisfies

$$(a*b)*c = a*(b*c)$$
 (2)

for any three elements a, b and c in A.

Definitions 6 (Identity element). The *identity* element e with respect to the operation * has the property that:

$$e * a = a$$
 and $a * e = a$ (3)

is true for every element *a* in *A*.

Definitions 7 (Inverses). The inverse of any element a, item denoted by a^{-1} has the property that:

$$a * a^{-1} = e$$
 and $a^{-1} * a = e$ (4)

is true for all element a in A.

¹ In ℝ, division does not qualify as operation since it does not satisfy this condition. i.e. the ordered pair (a, 0) has undefined quotient a/0.

² If • is defined on (a, b) to be the number whose square is ab. In ℝ, • does not qualify as an operation since 2 • 2 could be either 2, or +2

³ A is closed under the operation *