MECHANISTIC STUDIES OF Ru (III) AND Ir (III) CATALYSED OXIDATION OF BIOLOGICALLY ACTIVE COMPOUNDS BY (u (II) COMPLEXES

A THESIS

SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OF

BUNDELKHAND UNIVERSITY

JHANSI

IN

CHEMISTRY

BY
ALOK AWASTHI
1991

This is to certify that the thesis entitled "Mechanistic Studies of Ru(III) and Ig(III) catalysed exidation of Biologically active compounds by Cu(II) complexes" submitted for the degree of Doctor of Philosophy of the Bundelkhand University, Jhansi (U.P.) is a record of bonafide research work carried out by Sri Alok Awasthi under my guidance and supervision.

The work embodied in this thesis or a part thereof, has not been submitted for the award of any other degree or diploma. All the help and assistance received during the course of present investigations have been duly acknowledged.

Pic. seece

Raj kishor Shukla

M.Sc. Ph.D.

Chemistry Department Atarra P.G.College Atarra (BANDA)

U.P.

ASKNOWLEDGE VENTS

I would like to express my deep sense of gratitude to Dr. Raj Kishor Shukla, Head of Chemistry Department, Atarra P.G.College, Atarra (Banda) for his able guidance and encouragement.

I am also grateful to Principal, Atarra P.G.College, Atarra (Banda) for extending library and laboratory facilities during the present investigations. I also extend my thanks to Sri Jagapat Singh, Manager of Atarra P.G. College, Atarra for encouraging me in the research programme.

I am grateful to my teachers of the Atarra P.G. College and my all colleagues for their constant interest in my work.

Pinally, I am indebted to my parents for their continuous and all out efforts and encouragement throughout the present investigation. Their blessings have been my source of strength due to which I was able to complete this thesis.

October 20,1991

(Alok Awasthi)

Aawasthi

GUNE IN S

St. NO.	PARTICULARS		\GE <u>5</u>	
GARBRI	IMPRODUCTION	4		12
CHAPTER II	EXPERIMENTAL	13	*	16
	DEFERMINATION OF ORDER OF THE REACTION WITH RESPECT TO COPPER SULPHATE IN Ru (III) CATALYSED OXIDATION OF AMINO ACIDS AND In (III) CATALYSED OXIDATION OF SUGARS	17		49
GAPER IV	DETERMINATION OF ORDER OF THE REACTION WITH RESPECT TO AMINO ACIDS AND SUGARS IN THEIR RU(III) AND In (III) CATALYSED OKIDATION RESPECTIVELY BY ALKALINE COPPER SULPHATE SOLUTION	49		75
CHAPNER V	DETERMINATION OF ORDER OF THE REACTION WITH RESERVE TO RM(LIL) IN OXIDATION OF ANIHO ACIDS AND MITH RESPECT TO I; (III) IN OXIDATION OF SUGARS BY ALKALINE SOLUTION OF COPPER SULPHATE	76		101

SL.NO.	PARTICULARS		940
STAPPER AVA	DETERMINATION OF CRIER OF THE		
and the second s	REACTION WITH RESPECT TO HYDROXYL	r . _p .	
	ions in Ru(III) Cafalysed Oxidati	ON	
	OF GLYCINE AND ALANINE AND IN (III)	
	CATALYSED OXIDATION OF D-GLUCOSE		
	AND D-GALACTOSE BY ALKALINE		
	COPPER SULPHASE	102 -	123
//A/VER V/!	DEFERMINATION OF EFFECT OF		
ikanika daramakan sangan samun sangan sa	ADDITION OF POTABLIUM CHLORIDE		
	ON THE RATE OF OXIDATION OF		
	AMINO ACIDS AND SUGARS BY ALKALIN		
	SOLUTION OF COPIER SULPMATE	124	129
	DEPERMINATION OF EMPECT OF		
GIAPTER VILI	VARIATION OF IONIC STRENGTH OF		
	THE MEDIUM ON THE RATE OF		
	OXIDATION OF AMINO ACIDS AND		
	SUGARS BY ALKALINE COPPER		
	SULPIARE	130	134
	W VALUE WAS IN THE STATE OF THE		
GIARRER IK	DEPERMINATION OF EFFECT OF		
	VARIATION OF TEMPERATURE ON		
	VELOCITY CONSTANT OF REACTIONS		
	involving copper sulphate as		
	OXIDARE AND AMENO ACIDS AND		

SUGARS AS REDUCING SUBSTANCES

DISCUSSION AND INTERPRETATION

OF EXPERIMENTAL RESULTS

Guapaer X

135 - 151

152 - 167

GIATANAN

Marie Mary Co.

IMPRODUCTION

Catalytic processes involving oxidation of organic compounds are useful and have always been in greater demand, Several of such processes were mastered by the common man merely using their powers of observations and analysis. In ceneral the catalytic reactions might be divided into two main groups. The first group is concerned with heterogeneous reactions in which the reactants and catalyst have their different phases. The second group is concerned with homogeneous reactions in which the reactants and catalyst are found in the same phase. Of course, the first group of catalysed reactions have considerable applications in modern chemical industries and have, therefore, been widely subjected to studies and investigations. A survey of literature shows that the studies in the oxidation of organic compounds involving an effective heterogeneous datalyst are also much substantial as compared to homogeneous one. Almost very little indentives appear to have been given to work out the kinetics and mechanism of even well known homogeneously catalysed processes. Apparently, homogeneously catalysed processes have little scope of their being useful in synthetic work, yet these are of equal applicability and involve considerable academic interest from mechanistic point of view.

The homogeneously catalysed biological reactions are still a mysty and put a challenge to the scientists devoted in this field, the enzyme catalysed reactions are a good bet. Inspite of the general incentive required in investigating mechanistic dotails of these processes, the subject matter of the oxidation of organic compounds using either type of the catalyst is far scanty in solution kinetics.

copper(II) - Copper(I) couple was used for the exidation of ethylen to acetaldehyde in the presence of palladium chloride used as a homogeneous catalyst. Direct addition of hydrogen peroxide to elefinic compounds to produce glycols catalysed by various inorganic salts has been described very well by Mugdan and Young. These reactions were used for the synthetic work with no adequate attempt made to the kinetics and mechanism of the reactions which occur in a recent studies. A successful kinetic study was made by Martell and Khan in the metal ion and metal chlorate catalysed oxidation of escorbic acid by molecular oxygen.

The oxidation of organic compounds by Ce(IV) catalysed by chromium(III) salts is an example of homogeneous catalysis. The proposed machanism shows a rapid reaction between chromium(III) and Cerium(IV) followed by a rate determining reaction between the organic substrate and the chromium which is in a valence state greater than three (most likely it is chromium (IV)). This system exemplifies the fact that

oxidation potentials can not be used as a reliable guide to rate of oxidation, since Ce(IV) has a higher oxidation potential than chromium(VI). Several reactions of industrial use are catalysed by vanadium in homogeneous reaction.

Osmium tetroxide has been described a very interesting and effective catalyst for the oxidation of organic compounds in solution. The catalytic actions of the reagent are well known with several comples.

The most thoroughly investigated type of reactions in solution are the electron - transfer reactions between an oxident and a reductant. The study of such reactions, also known as redox reactions, is of great interest because of its vast application in understanding the nature of chemical process involved. An oxidation or reduction will be any reaction that converts one compound to different oxidation state. The most of atoms and free radicals having deficient electron shell are capable of acting as oxidising agents by abstracting electrons from other species and thus becoming ions themselves. The oxidising or reducing depacity of a compound is often determined by its redox potential. The common oxidising agent age higher valent compounds such as heptavalent manganese in the form of permanganate, hexavalent chromium in the form of chromic acid, cerium(IV) sulphate, hexacyanoferrate (III), potassiumiodate, peroxydisulphate and chloramine-P etc.

There are several factors which determine the mechanism of redox reactions in solution such as the order of reaction with respect to both exident and reducing substrate, the effect of solvent and dielectric constant, effect of ioric strength, effect of all etc. The thermodynamic parameters vis energy of activation, free energy of activation, entropy of activation also give some informations about mechanism. In catalysed reactions several short-lived intermediates may he formed with the cetalyst and thus the mechanism of a catalysed reaction may be quite different to that of the uncatalysed one, although the end products in both cases may be the same. There may be a number of intermediate products which are extremely reactive and hence short-lived. The identification of these intermediate products and the meaction products is another important factor which leads to the elucidation of reaction mechanism.

Several cridising and reducing agents have been used for overall as well as step by step exidation and reduction purposes. Kinetics and mechanism of several redex reactions involving potassiumpermanganate, peroxydisulphate, hydrogen peroxide, hexecyanofernate(III), Cerium(IV), platimum(IV), chromium (VI), arsenic (III), cobalt (III), selenium(IV), copper(II), chloramine-I, bromamine-I, N-chlorosuccinimide, N-bromosuccinimide, N-bromosuccinimide, taxions are been studied,

The role of several catalysts viz. vanadium(V). osmium(VIII)*
Ch(III, Co(III), Mo(VI), Ru(III), Rd(II) etc. during such
redox reactions has been studied extensively.

The kinetics of ruthenium(III) catalysed oxidation of aldoses by N-bromosuccinimide in presence of marcuric acetate, sulphuric acid and 10% (V/V) acetic acid have been studied. The reactions were first-order in N-bromosuccinimide in presence and absence of the catalyst. The order in substrate was unity in absence of the catalyst and changes to fractional order in the presence of the catalyst. Increase in H* retarded the reaction rate. The order of reactivity of different aldoses was observed, to be D = arabinose > D = galactose > D = galactose > D = galactose > D = galactose as the reactive species of the substrate has been proposed.

The kinetic studies on the nuthenium(III) catalysed oxidation of amino acids vis. glycine, \angle - alanine, β - alanine, leucine, phenylglycine by N-bromosuccinimide in the presence of mercuric acetate have been investigated. The oxidation products were identified as corresponding alcohyde, ammonia and CO_2 . The order of the reaction in N-bromosuccinimide was always unity. In presence of catalyst the order of reaction in substrate was fractional. The studies on ruthenium(III) catalysed oxidation of acetophenones by

N-bromosuccinimide in the presence of mercuric acctate have also shown a similar kinetics. The order of reactivity observed among different acotophenones was $p=mO_2>$ $m=mO_2>$ p=c1> $m=OCH_3>$ $m=CH_3>$ $p=CH_3>$ $p=CH_3>$ $p=CH_3>$

The kinetics of ruthenium (NII) catalysed oxidation of chroroacetic acids by N-bromosuccinimide (NES) have also been investigated in the presence of sulphuric acid and mercuric acetate, The order of the reaction in MBS was uniter in the presence as well as in absence of the catalyst. However, the order in Substrate in the absence of Ru(III) was unity, which changed to fractional in the presence of ruthenium (III). Increase in [H⁴] getarded the reaction rate. The kinetics of ruthenium (III) catalysed oxidation bensaldehyde and substituted bensaldehyde by MBS in the presence of marcuric acetate have been investigated . The reaction showed a first-order in [MBS] and a fractional order in [substrate] as well in the [catalyst] . A mechanism involving NBS - substrate complex has been proposed ruthenium (III) catalysed oxidation of unsaturated acids viz. maleic acid and fumaric acid by NBS has also shown a similar Minotics.

Earlier, the kinetics of oxidation of propionic acid and isobutyric acid by M-brompacetamide in the presence of

mercuric acetate as scavenger for bromide ion 10 in the presence of acid solution of iridium(III) chloride 11 as homogeneous catalyst have been studied. The first order kinetics in N-brompagetamide at its low concentration has been reported to shift to zero - order at higher concentrations. First order dependence on iridium(III) chloride was reported and zero - order in reducing acids was shown. Iridium(III) chloride in acidic medium was shown to participate in reaction as catalyst with its [InClsH20] 2- species as catalytic species.

Iridium(III) chloride catalysed oxidation of valeric acid 12 by N-bromoacetamide also showed first-order dependence on iridium(III) chloride. The kinetide and mechanism of iridium(III) chloride catalysis in N-bromoacetamide oxidation of some acids vis. lactic acid and glycollic acid in penchloric acid media have been recently reported 13. First order kinetics in N-bromoacetamide, iridium(III) chloride and Hg(II) was observed while inverse first order in H and acetamide was observed. Decreasing effect of added chloride ions was observed. (IrCl₃.H₂0) was taken as catalytic species of iridium(III) chloride. Mercuric acetate used as Br scavenger was found to have catalytic effect. Thus Ir(III) and Hg(II) co - catalyst mechanism was proposed.

Earlier Singh et al 14 studied oxidation kinetics of some reducing sugars by alkaline Cu(III and observed that the

rate of oxidation is independent of Cu(II) concentration and is first-order both with respect to hydroxide ion and reducing Sucars concentrations. They further reported that the reaction has an induction period and shows autocatalysis due to Cu,0 produced in the system. These results were confirmed by Marshall and waters 15 from the oxidation kinetics of D-glucode, bensoin and acetoin by alkaline Cu(II) using various complexing agents and also by Singh et al. from the exidation kinetics of some reducing sugars by alkaline Gu(II) without using any complexing agent. wiberg and Nigh¹⁷ have studied the oxidation of L - hydroxyacetophenone by Cm(II) in aqueous pyridine and they have supported the explanation of Singh 14,16 et al lower concentrations of Cu(II). The essential kinetic features of oxidation of keto sugars by ammoniacal Cu(II) have been studied for the first time. The system becomes homogeneous due to formation of soluble Cu(I) - ammonia complex i.e. [Cu(NHa)] In order to find out whether Cu(II) plays the similar role in the presence of amonia as observed in the role of Ag(I)19 in the presence of amonia or as observed in the role of Cu(XI) in presence of complexing agents such as tartarate, citrate, picolinate and myridine, Singh et. al 20 have studied the kinetics of Cu(II) oxidation of keta sugars viz. D-fructose and L-sorbese by Cu(II) in the presence of ammonia as complexing agent.

Singh et al. 21 have also reported the kinetics of exidation of D-glucode and D-galactose by CR(II) in the presence of ammonium hydroxide, Kinetics data demonstrated sero - order kinetics in Cu(II) and first-order dependence on [OHT] sugar . A general mechanism involving the intermediate emedial anion was proposed fate of emolisation as the rate of exidation of these sugars was evidenced here.

Singh, Sisodia, Parmar, Saxena and Bajpei²² have studied the kinetics and mechanism of exidation of D-frectose by $\left(\operatorname{Cu}\left(\operatorname{CgHgH}\right)_{4}^{42}\right)$ in the presence of free syridine spectrophotometrically, Singh, Parmar, Tiwari, Singh and Gupta²³ have recently resorted the exidation kinetics involving lactose and maltose as reducing sugars and $\operatorname{Cu}(\Pi)$ as exidant in the presence of bisyridyl as complexing agent in alkaline media.

PRESENT WORK

The present investigation includes the study of exidation of some amino acids vis. glycine and alamine by copper sulphate in the presence of alkaline solution of 2,2 - biggridyl as complexing agent, The alkaline solution of Na2CO3 and NaMCO3 has been used. In addition to above. another redox system containing D-glucose and D-galactose as reducing sugars and [Copper (bipyridy1)2 as oxidising reagent in the presence of alkali cooper sulphate elongwith free bipyridyl forms a complex [Cu(bip.),] in a soluble state, when the proposed redox system is studied in alkaline medium, [Cu(bip.) 2+ is reduced to [Cu(bip.)] which is also soluble. Thus the complexing agent 2,2' - binyridyl hains in maintaining homogeneous redox system throughout the investigation. The kinetic parameters collected in the present investigation has helodin proposing the guaction path which could give the rate law as

[Catalyst] = Either [Ru(III)] or [Ir(III)]

S * Amino Acid or Sugar

References

J. Smidt 1. Chem. Ind. (London), 54 (1962). 2. M. Mugdon and J. Chem. Soc., 2988 (1949). D.P.Young M. M. Taquildan and : J. Am. Chem. Soc., 91, 4668 (1969) . 3. A.E. Martell T. Kistayya, M.S.Reddy : Ind. J. Chem. 25A, 905 (1986) . and Sushma Kandlikar P.G. Reddy, T.Kistayya, : Z. Phys. Chem. (Leipzig) 5. J.A. Khan and Sushma 269, 1253 (1988). Kanali Mar 6. T. Kistayya, J.A.Khan : Oxidation Communication 11, and Sushma Kandlikar 295 (1998). P. saroja and Sushma : Indian J. Chem. 27A, 632 (1988). 7. Kandlikar T. Kistayya, P.G.Reddy : 8. Oxidation Communication 9,43 and Sushma Kandlikar (1986) . 9. T. Kistayya, P.G.Reddy, : Acta Cienc. Indica Chem., 13. P.Saroja and S.Kandlikar 173 (1987). 10. P.S.Radhakrishnamurti : Indian J. Chem. 20A, 269 (1981). and N.C.Salm 11. S. Bajpai Doctoral Thesis, Allahabad 2 University, (1982)

12. S. Bajpal

- a Doctoral Thesis, Allahabad University, (19
- 13. M.Saxena, R. Guota, A. Singh. B.Sinch and A.K.Sinch
- : Oxidation Communication 13, 166 (1990).
- 14. M.P.Singh, B.Krishna and S. Chosh
- : Z. Phys. Chem. 204,1 (1955). 205, 285 (1956) , 208, 273 (1956)
- 15. B.A. Morshall and W.A. Weters
- J. Chem. Soc. 2392 (1960) \$ 1379 (1961) .
- and S.V.Sinch
- 16. M.P.Singh, O.C.Samena : J. Am. Chem. Soc. 92,537 (1970) ...
- 17. K.B. wiberg and W.G. Nigh: J. Am. Chem. Soc. 87. 3849
 - (1965).
- William
- 18. B.R. James and R.J.P. : J. Chem. Soc. 2007 (1961).
- 19. M.P.Singh et al.
- : Indian J. Chem. 13, 819 (1975).
- and V.Tripathi
- 20. M. RSingh, A.K. Singh : J. Am. Chem. Soc. 82,1222 (1978).
- V. Tripathi and R.K.Singh
- 21. M.P.Singh, A.K.Singh, : Indian J. Chem. 16A, 205(1978).
- 22. A.K.Singh, A.K.Sisodia, : Nat. Acad. Sci. Lett. 9, 309 A. Parmar, Madhu Saxona and Shalini Bajpai
 - (1986) .
- A.Tiwari, A. Sinch and R. Gusta
- 23. A.K.Singh, A. Parmar, : Proc. Ind. Net. Sci. Acad. 56. 71 (1990).

CHAPTER IX

ESARTHANIAN

EXPERIMENTAL

2.1 MATERIALS EMPLOYED

The samples of D-glucose and D-galactose used were of E.Merck grade. The samples of glycine and alanine were also of E.Merck grade. The solutions of these reducing materials were prepared by dissolving the weights!

Quantity of these samples in doubly distilled water.

The other chemicals used were cupric sulphate,

2,2 - bipyridyl in 25% ethyl alsohol, potassium chloride,
all of A R (8 D H) quality.

The standard solution of cupric sulphate was prepared by dissolving an exact amount of (SDH) AR grade sample in double distilled water.

The solutions of sodium cambonate and sodium bicarbonate were also prepared by dissolving their weighted samples in doubly distilled water and standardised with the help of standard solution of hydrochloric acid.

Standard solution of potassium chloride was also prepared by dissolving an exact amount of NCL (AR, NOM).

Solutions of ruthenium trichloride and iridium trichloride were also prepared by dissolving their 1 gm samples (Johnson & Matthey) in 100 ml HCl solution (0.1M) and then making up these solutions to 500 ml.

Solution of potassium dichrome was prepared by exact weighing of its sample in dissolving the weighed amount is designed volume of water.

2.2 s PROCEDURE

The kinetic studies involving glycine alanine,

D-glucose and D-galactose as reducing materials and

copper (II) as exident have been made in alkaline media

in the presence of 2,2 bibyridyl as complexing agent.

The system remains homogeneous due to soluble [Cu(Bip.) 2)

and [Cu(Bip) 2 complexes throughout the course of reaction.

The meastion minture was propured by mixing the requisite volume of Cu(XI), 2,2% - biggridyl and alkali solutions (Na₂CO₃ and NaHCO₃), ruthenium(XXI) chloride (in case of glycine and alanine) and inidium(XXI) chloride (in case of D-glucose and D-galactose) and potassium chloride solution. The geaction mixture was taken in a meaction bottle which was placed in an electrically experated thermostat(± 0,10). In another bottle requisite volume of sugars or amino acid solution was also placed in the same thermostate to attain the termal equilibrium, when both the bottles had attained the desired temperature, then the requisite volume of sugar or amino acid was mixed with the reaction mixture of another bottle vigorously to initiate the reaction. Immediately time was noted for

mediately taken out and titrated against standard solution of potassium dichromate, Af different time intervals Gu(I) produced in the reaction mixture (5 ml) was titrated and readings were recorded. These recorded values helped in calculating he values from which he (standard sero-order rate constant) values were calculated by the formula

where s is strength of titrant (i.e. K2 Gy 0,) and W is 5 ml.

The order of the reactions with respect to Cu(II) is determined by keeping reducing sugers or amino acids concentration in large excess as compared to that of Cu(II). Under such condition the velocity of the reaction will mainly be determined by the change in the concentration of Cu(II) ion. It has been observed that in each experiment there has not been much change in k_0 i.e. ($^{D\times}/\Delta t$) values. Thus in each kinetic runs sero-order kinetics in Cu(II) ion is followed.

The order of the reaction with respect to any other reactive species has been determined by the formula

CHAPAGE

DEFERMINATION OF ORDER OF THE REACTION WITH RESPECT TO COFFER SULPHATE IN Ru(III) GATALYSES CXIDATION OF AMINO ACIDS AND IN (III) CAPALYSED OXIDATION OF SUBARE DETERMINATION OF ORDER OF THE REACTION WITH RESPECT
TO COPPER SULPHATE IN Ru(III) CATALYSED OXIDATION
OF AMINO ACIDS AND IT (III) CATALYSED OXIDATION OF
SUCARS

In this chapter an attempt has been made to study the dependence of the reaction between Cu (II) and amino acids on cooper sulphate and determination of order of the reaction between Cu(II) and sugars with respect to copper sulphate. Copper sulphate - amino acids system has been studied in alkaline solution of nuthenium (III) chloride in the presence of 2,2 " - binyridyl as complexing meagent while copper sulphate - sugars redox system has been investigated in the presence of alkaline solution of iridium(III) chloride using again 2-2 - bipyridyl as complexing reagent, Alkaline nature of the reaction mixture has been maintained with solutions of Na, CO, and MaHCO1. The results of various experiments performed et different concentrations of comper sulphate but at fixed concentrations of all other reactants have been given in tables 3.1 + 3.6, tables 3.7 - 3.12, tables 3.13 - 5.18 and tables 3.19 - 3.24 for the oxidation of glycine. alanime, D-glucous and D-galactose respectively under the isolation conditions of experiments. It has been observed that both the redox systems follow similar kinetics with

respect to copper sulphate. Zero order rate constant

i.e. kg has been calculated by the formula kg ** ko x s

where ko is A x/A t given in 3rd column of each table.

S is the strength of potassium dichromate used as titrant

to estimate Cu(I) produced at different time intervals and

V is volume (5 ml here in present case) of the reaction

mixture taken out at different time intervals for

estimation. In each table 2 = 2° bipyridyl has been written

as free bip for the sake of simplicity and convenience.

Similarly Ru(III) or Ir(III) have been written for Ru(III)

chloride and Ir(III) chloride respectively.

77.01.8 3 A

$$[\text{Cuso}_4] = 1.00 \times 10^{-3} \text{M}, \quad [\text{Glycine}] = 10.00 \times 10^{-3} \text{M}$$
 $[\text{Free Bip.}] = 5.00 \times 10^{-3} \text{M}, \quad [\text{Ru}(\text{EXX})] = 4.00 \times 10^{-5} \text{M}$
 $[\text{MagCo}_3] = 5.00 \times 10^{-2} \text{M}, \quad [\text{MaNCO}_3] = 2.00 \times 10^{-3} \text{M}$
 $[\text{ECl}] = 1.00 \times 10^{-3} \text{M}, \quad \text{pH} = 10.8, \quad \text{Temp. 30°C}$
 $[\text{M} = 17.50 \times 10^{-2} \text{M}]$

Time (min_)	Volume of K201207 (m/2000) in ml	
0	0.00	
20	0.62	6.20
20	1.26	6.40
30	1.87	6810
40	2.47	6.00
50	3.10	6.30
60	3.72	6.20
70	4.30	5.80
	4.90	6.00
90	5.49	5.90
1.00	6.14	6.50

Average $k_0 = 6.14 \times 10^{-2} \text{ ml min}^{-1}$ $k_0 \text{ (zero-order rate constant)} = 6.14 \text{ sk0}^6 \text{ mol } 1^{-1} \text{ min}^{-1}$

where $k_0 = k_0 \times 8/v$, a is strength of the titrant i.e. $\kappa_3 c_{1/2} 0_{\gamma}$ solution and v is the volume of reaction mixture estimated with $\kappa_2 c_{1/2} 0_{\gamma}$ solution used here as titrant

PADLE 3.2

[Cuso₄] 1.25x10⁻³ M, [Glycine] = 10.00x10⁻² M, [Free Bip.] = 5.00x10⁻³ M, [Ru(XXX)] = 4.00x10⁻⁴ M [Me₂CO₃] = 5.00x10⁻² M, [MeHCO₃] = 2.00x10⁻³ M, [RC1] = 1.00x10⁻³ M, pH = 10.8 and Temp. 30^oC

10² kg = 4 3 Volume of Kadyo, Mario (min.) Δ 🍖 (N/2000) in ml ml / min 0 0.66 0.66 6.60 10 1,28 6,20 20 30 1.88 6.00 2.52 40 6.40 3.10 5.80 50 60 3.70 6.00 80 4.96 6.30 100 6,20 6.20 120 7.40 6.00 140 0.68 6.40

Average No = $6*19 \times 10^2$ ml min⁻¹

k₀ = 6.19 ×10⁻⁶ mol 1⁻⁶ min⁻¹

CARLE 3.3

$$[\text{Cuso}_4] = 2.00 \times 10^{-3} \text{M}, [\text{Glycine}] = 10.00 \times 10^{-2} \text{M}$$
 $[\text{Free Bio}_3] = 5.00 \times 10^{-3} \text{M}, [\text{Ru}(\text{XIX})] = 4.00 \times 10^{-4} \text{M}$
 $[\text{MagCo}_3] = 5.00 \times 10^{-2} \text{M}, [\text{Marco}_3] = 2.00 \times 10^{-3} \text{M}$
 $[\text{RCI}_3] = 1.00 \times 10^{-3} \text{M}, \text{pH} = 10.8 \text{ Temp. } 30^{-3} \text{C}$
 $[\text{M} = 17.50 \times 10^{-2} \text{M}]$

		Δ
Time (min.)	(n/2000) in mi	
	0.00	
20	0.58	5.00
20	1.13	6.00
30	1.78	5-80
40	2,33	6.20
50	3.02	6.40
60	3 - 64	6.20
80	4.94	6.00
100	6.12	6.40
130	8,10	6,60
1.60	10.02	6.40

Average $k_0 = 6.18 \times 10^{-2} \text{ ml min}^{-1}$ $k_0 = 6.18 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

PARMS SIA

Time (min.)	(n/\$50) in mi	10° λ . Δ × Δ
0	0.00	
5	1.08	21.16
10	1.18	2.00
20	1.40	2,20
30	1.62	2,20
40	1.86	2.40
60	2.32	2.30
(6)	3.22	2.25
40	4.08	2.15
	4.98	2.25
220	5.82	2.10
260	6,62	2,00

N = 6.71×10⁻⁶ mol 1 min⁻¹

* This value is neglected

= 2,18:40⁻² x .N...

TABLE 3.5

Tine	Volume of K2 G2 G7	10 ² kg = \triangle *
(md.n.)	(11/5000) in 11	△ t. mi/min
0	0.50	
5	1.68	33.60*
45	1.84	1.60
	2.00	1.60
45	2.30	1.50
75	2,76	1.53
100	3,746	1.60
130	3.64	1.60
160	4.10	2.53
200	4.76	1.65
240	5.36	1.50

Average k_0 (excluding *) = 1.56 × 10⁻² ml min⁻¹ $k_0 = 6.24 \times 10^{-6}$ mol 1⁻¹ min⁻¹

PARLE 3.6

Time (mig.)	(m/500) in ml	to ² to = \(\triangle \) \(
•	3.00	40%
10	1.80	18.00°
20	1.96	3.60
30	2.12	1.60
50	2.42	1.50
30	2.98	1.53
220	3 .52	1.80
160	4.12	1.50
290	4.74	3.35
240	5.38	1.60
280	5.90	4.30

Average No 9 excluding *) = 1.54 \times 10⁻² ml min⁻¹ $R_{\rm S}$ = 6.16 \times 10⁻⁶ mol 1⁻¹ min⁻¹

TABLE 3.7

[Cuso ₄] = 1.00x10 ⁻³ m, [Alanine] = 10.00x10 ⁻² m
[Free Bip.] = 5.00x10 ⁻³ M, [RL(LTX)] = 4.00x10 ⁻⁶ M
$[\text{Nelico}_3] = 5.00 \text{ alo}^{-2} \text{M}, [\text{Nelico}_3] = 2.00 \text{ alo}^{-3} \text{M}$
[RCl] = 1.00x10 4, pH = 10.8 and Temp. 30 C
$m = 17.50 \times 10^{-2} M$

Time:	Volume of K2G207	
(min.)	(0.50mle ⁻³ m) in ma	△ t. mi. / min
0	0.00	
30	0.42	4.20
20	0.86	4.40
30	1.26	4.00
	1.90	4.26
60	2.56	4.40
80	3.40	4.20
100	4.22	4.10
120	5.02	4.00
1.60	5.86	4.20
160	6.68	4.10

Average $k_0 = 4.18 \times 10^{-2}$ ml min⁻¹ $k_0 = 4.18 \times 10^{-6}$ mol 1⁻¹ min⁻¹

PABLS 3KS

$$[\text{Cuso}_4] = 1.25 \times 10^{-3} \text{M}, [\text{Alanige}] = 10.00 \times 10^{-2} \text{M}$$
 $[\text{Free Bip.}] = 5.00 \times 10^{-3} \text{M}, [\text{Ru}(\text{XII})] = 4.00 \times 10^{-6} \text{M}$
 $[\text{HeacO}_3] = 5.00 \times 10^{-2} \text{M}, [\text{NestCO}_3] = 2.00 \times 10^{-3} \text{M}$
 $[\text{KGI}] = 1.00 \times 10^{-3} \text{M}, \text{pH} = 10.8 \text{ and Temp. 30°C}$
 $[\text{M} = 17.50 \times 10^{-2} \text{M}]$

Time (min.)	Volume of K2G207	102 10 - 0 -	
	(0.50 x 10 ⁻³ n) in ml	ni/min	
•	0.00		
10	0.40	4-00	
20	0.82	4.20	
30	1.26	4.40	
4.5	1.69	4,20	
60	2.50	4.10	
	3,34	4,20	
100	4.14	4.00	
1.20	4.98	4.20	
140	5.94	4,30	
160	6.66	4.10	

Average $k_0 = 4.17 \times 10^{-2}$ ml min⁻¹ $k_0 = 4.17 \times 10^{-6}$ mol 1⁻¹ min⁻¹

PARIE 3.9

Time	Volume of Kg Gg Og	10 ² 1 ₀
(mLn.)	(0.5 × 10 ⁻³ N) in mi.	mil/mile
0	0.00	
10	0.44	4.40
20	0.86	4.20
40	1.66	4.00
60	2,48	4.10
80	3.32	4.20
200	4.12	4.00
125	5.12	4.00
	6.22	4.40
175	7.28	4.24
200	8.30	4.40

Average $k_0 = 4.19 \times 10^{-2} \text{ ml min}^{-1}$ $k_0 = 4.19 \times 10^{-6} \text{ mol 1}^{-1} \text{ min}^{-1}$

TABLE 3.10

[Cuso₄] = 3.00×10⁻³ M, [Alanine] = 10.00×10⁻² M [Eree Bip.] = 5.00×10⁻³ M, [Ru(III)] = 4.00×10⁻⁴ M [Ne₂CO₃] = 5.00×10⁻² M, [NeHCO₃] = 2.00×10⁻³ M [KCl] = 1.00×10⁻³ M, pH = 10.8 and Temp. 30⁻⁶ C

Time (min.)	Volume of K ₂ Gr ₂ O ₇ (1.54x10 ⁻³ m) in ml	10 ² ka = <u>()</u> *	
0	0.00		
10	1.34	13.40	
20	1.46	1.40	
40	1.72	1.30	
70	2,16	1.46	
100	2.58	1.40	
140	3.12	1.35	
1.50	3.68	1.40	
	4,22	1.35	
260	4.74	1.30	
300	5.28	1.35	

Average k_0 (excluding *) = 1.37 × 10^{-2} ml min⁻¹ $k_0 = \frac{1.37 \times 10^{-2} \times 1.54 \times 10^{-3}}{5} = 4.22 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

TABLE 3.14

Time (min.)	Volume of K ₂ G ₂ G ₇ (2.00×10 ⁻³ m) in ma	
	0.00	
10	1,48	14.90°
25	1.64	1.06
50	1.98	0.96
7.5	2.14	1.04
100	2.40	1.04
140	2.90	1.00
4.00	3.22	1.05
220	3.66	1.10
260	4.08	1.05
300	4.50	1.05
350	5.04	1.08

Average k_0 (excluding *) = 1.04 × 10⁻² ml min⁻¹ k_0 = 4.16 × 10⁻⁴ mol 1⁻¹ min⁻¹

20318 3.12

	Volume of Kaco, (2.00x10 ⁻³ n) in ml	다 스	
	0.00		
1.0	1.50	15.00°	
25	1,66	1.06	
50	1.92	1.04	
75	2.16	0.96	
100	2.40	0.96	
150	2.90	1.00	
300	3,42	1.04	
250	3,96	1.09	
300	4.48	1.04	
350	5.00	1.04	

Average k_2 (excluding *) = 1.03 × 10^{-2} ml min⁻¹ $k_8 = 4.12 \times 10-6$ mol 1^{-1} min⁻²

TABLE 3.13

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ m) in ml		
0	0,00		
	1.00	20.00*	
1.0	1.50	10.00	
1.5	2.02	10.40	
20	2.50	9.60	
30	3,50	10.00	
40	4.48	9,80	
50	5.50	10.20	
60	6.50	10.00	
70	7.48	9.90	
80	8.50	10,20	

Average No (excluding *) = 10.00×10^{-2} ml min⁻¹ No = 10.00×10^{-6} mol 1⁻¹ min⁻¹

WARLS 3.14

[Cuso₄] = 1.25×10⁻³N, [D-glucose] = 5.00×10⁻³M [Free Bip.] = 5.00×10⁻³M, [X₂(XXX)] = 5.00×10⁻⁶M [Ma₂CO₃] = 5.00 × 10⁻²M, [NaHCO₃] = 2.00×10⁻³M [KCl] = 2.00 × 10⁻³M, $_{2}$ M = 10.8 and Temp. 30⁻³C

n = 17.50 x 10⁻²H

Time (mig.)	Volume of K2G20-7 (0.50x10 ⁻³ N) in ml	
0	0.00	
	1.02	20.40*
10	1.50	9.60
15	2.00	10.00
20	2,52	10.40
30	3.52	10.00
40	4.50	9.90
50	5.52	10.20
60	6.52	10.00
70	7.52	10.00
	8.52	10.00

Average k_0 (excluding *) = 10.00×10^{-2} ml min⁻¹ $k_0 = 10.00 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 315

$$[Cuso_4] = 2.00 \times 10^{-3} \text{M}, [D-glucose] = 5.00 \times 10^{-2} \text{M}$$
 $[Free Bio.] = 5.00 \times 10^{-3} \text{M}, [Ig (III)] = 5.00 \times 10^{-6} \text{M}$
 $[Ma_2Co_3] = 5.00 \times 10^{-2} \text{M}, [Marco_3] = 2.00 \times 10^{-3} \text{M}$
 $[KCl] = 2.00 \times 10^{-3} \text{M}, pH = 10.8 and Temp. 30^{\circ}\text{C}$
 $[RCl] = 2.00 \times 10^{-3} \text{M}, pH = 10.8 and Temp. 30^{\circ}\text{C}$

Q:mo	Volume of Ko(50,	10 ² km = △ 1.	
(min.)	(8.50×10 m) in m	Δ.	
0	0.00	**	
3.0	2.06	20.40*	
20	3.04	10.00	
30	4.02	9.80	
40	5.02	10.00	
50	6.04	10.20	
60	7.04	10.00	
80	9.02	9.90	
100	11.04	10.10	
120	13.04	10.00	
140	15.06	10.00	

Average k_0 (excluding *) = 10.00x40⁻² ml min⁻¹ $k_0 = 10.00x40^{-6}$ mol 1⁻¹ mln

ARLS 3,16

Time.	Volume of K2G207	102 kg as A M
(mi.n.)	(1.50x10 ⁻³ n) in al.	mil/rota
Ö	0.00	100 NO
5	1.00	20.00*
10	1.16	3.20
20	1.50	3,40
40	2.20	3,50
60	2.98	3.40
80	3,56	3.40
100	4.28	3.60
120	4.96	3 .40
140	5.62	3,30
160	6.26	3.20

Average k_0 (excluding *) = 3.38x10⁻² ml min⁻¹ $k_0 = 10.14 \times 10^{-6}$ mol 1^{-1} min⁻¹

27<u>0010</u> 8 3 7

Time (min.)	Volume of (1.50x10 ⁻³ n)	in mi	Δ*
0		0.00	
5		1.02	20.40
10		1.20	3.60
20		1.54	3.40
40	**************************************	2.24	3.50
60		2.92	3,40
05		3.78	3.44
110		4.70	3.68
140		5.72	3.40
190		7.00	3.20
220		8,40	3.50
de anterior de la companie de la com		日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	

Average k_0 (excluding *) = 3.46 x 10^{-2} ml min⁻¹ $k_0 = 10.39 \times 10^{-6}$ mol 1^{-1} min⁻¹

DABLE 3.18

Time (min.)	Volume of K ₂ G ₂ G ₇ (2.00x10 ⁻³ N) in ma		
0	0.00		
	1.04	20.80*	
10	1.18	2.80	
20	1.44	2.60	
40	1.94	2.50	
60	2.42	2.40	
	2.68	2.30	
110	3.60	2.40	
140	4.34	2.46	
180	5.34	2.50	
220	6.40	2.65	

Average k_0 (excluding *) = 2.51 x 10^{-2} ml min⁻² $k_0 = 10.04 \times 10^{-6}$ mol 1^{-1} min⁻³

NAME 3 . 10

[Cu SO ₄] = 1.00x10 ⁻³ N, [D-galactose] = 5.00x	16 2 H
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Ig(III)] = 5.00	
$[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, [NaHCO_3] = 2.00 \times 10^{-3}$	M
$[KC1] = 2.00 \times 10^{-3} M$, pH = 10.8 and Temp.	30°C
$M = 17.50 \times 10^{-2} M$	

	Timo	Volume of K2 On2 Og	102 Δ.
36 Merconomen	(min.)	(0.50 × 10 ⁻³ N) in ml	m/min
and the second s	0	0.00	**
	5	1.02	20.40
	10	1.64	12,40
	20	2.84	12.00
	30	4.06	12.20
	40	5.26	12.00
	50	6.48	12.22
	60	7.66	11.80
	70	9.82	11.60
	80	9.98	11.60

Average k_0 (excluding *) = 11.97 x 10⁻² ml min⁻¹ $k_0 = 11.97 \times 10^{-6}$ mol l⁻¹ min⁻¹

TABLE 3,20

Time (min.,)	Volume of K ₂ Gr ₂ O ₉ (0.50x10 ⁻³ m) in ml	Δ Δ M Δ
0	0.00	
5	1.02	30 -40 ⁸
10	1.62	12,00
15	2.24	12,40
20	2.98	12,80
25	3,49	12.00
30	4.10	12.40
40	5.30	12.00
	6.32	12.20
60	7.54	12,20
	9.74	12,00
80	9.96	12,20

Average k_0 (excluding *) = 12,22 × 10⁻² ml min⁻¹ $k_0 = 12422 \times 10^{-6}$ mol 1^{-1} min⁻¹

20013 3-21

Time (mdn.)	e of K ₂ Gi ₂ O ₇	
0	0.00	
	1.04	20 .80
20	1.64	12.00
20	2.84	12.00
30	4,06	12,20
40	5.30	12.24
50	6.50	1.2.00
60	7.74	12.40
70	8,24	12.00
. 80	10,16	12.20
90	11.36	12,00
100	12.60	12.40

Average k_0 (excluding *) = 12.14 \times 10⁻² ml min⁻¹ $k_0 = 12.14 \times 10^{-6}$ mol 118^{-1} mln⁻¹

EVOID BAY

$[Cu so_4] = 3.00 \times 10^{-3} N$, $[D-galactose] = 5.00 \times 10^{-2} M$	
$[\text{Free Blp.}] = 5.00 \times 10^{-6} \text{M.} [\text{In}(\text{III})] = 5.00 \times 10^{-6} \text{M}$	
$[100_{3}^{\circ}] = 5.00240^{-2}M$, $[100100_{3}] = 2.00240^{-3}M$	
[KCl] = 2.00 \times 10 ⁻³ M, pH = 10.8 and Temp. 30°C	
$M = 17.50 \times 10^{-2} M$	

Time	Volume of K2 Ch2 On	△
(min.)	(1.50x10 ⁻³ n) in mi	
	0.30	-
	1.06	21.20 ⁶
20	3.26	4,00
	1.48	4.40
20	1.68	4.00
30	2.10	4,20
40	2.52	4.20
60	3.36	4.20
80	4.16	4.00
100	5.00	4.20
120	5,90	4.00
140	6.62	4,10

Average k_0 (excluding *) = 4.13 \times 10⁻² ml min⁻¹ $k_0 = 12.39 \times 10^{-6}$ mol lik⁻¹ min⁻¹

VANDAS DEPE

	volume of K2 C72 O7	10 ² lo = Δx
(min.)	(2.00mic ⁻³ m) in all	mi/min
0	0.00	**
	1.04	20.90*
10	1.20	3,20
1.5	1,39	3,60
20	1.52	2.90
30	1,92	3.00
40	2,12	3.00
60	2.72	3.00
90	3 .64	3.06
130	4.94	3,00
180	6.44	3.33
240	8.24	3.00

Average he (excluding *) = 3.09 × 102 ml min 1)

ks = 12,36 × 10⁻⁶ mol 1⁻¹ min⁻¹

TABLE 3.24

Time (min.)		of K ₂ G ₂ O ₇	
0		0.00	
3		1.04	20,00 *
10		1.20	3.20
20		2.50	3.00
30		1.82	3.20
40		2.12	3.00
50		2.44	3.20
75		3.20	3.04
200		3.98	3,12
140		5.20	3.05
180		6.44	3.10
220	en de la companya de	7.74	3.25

Average k_0 (excluding *) = 3.12 × 10^{-2} ml min⁻¹ $k_0 = 12.48 \times 10^{-6}$ mol 1^{-2} min⁻¹ The kinetic results obtained and recorded in tables 3.1 - 3.6 and tables 3.7 - 3.12 in exidation of glycine and alanime by Gu(II) in the presence of alkaline solution of ruthenium(III) chloride have been summarised in tables 3.25 and 3.26 respectively. The kinetic data reported in tables 3.13 - 3.18 and tables 3.19 - 3.24 in Ir(III) catalysed oxidation of D-glucose and D-galactose by Gu(II) in alkaline media have been summarised in tables 3.27 and 3.23 respectively.

2.32.3

$[Glycine] = 10.00 \times 10^{\circ}$	'an, [Ru(III)] =	1.00x10 ⁻⁶ M
$[Na_2^{CO_3}] = 5.00 \times 10^{-2} \text{M}$	$[NeHCO_3] = 2.00$	0x10 ⁻³ M
$[KC1] = 1.00 \times 10^{-3} M$	pH = 10.8, [Free	Bip.] =5.00x10-3
/a = 17.50 × 10 ⁻² M	and Tomo. 30°	

[Cu so ₄] x 10 ³ N	$k_{\rm g} \times 10^6 \; \rm mol \; 1^{-1}$	m&n ⁻⁴
1.00	6.34	
1.25	6.19	
2.00	6.19	
3.00	6, 73.	
4.00	5.24	
5.00	6,16	

PAGE SAIS

[Alanine] =
$$10.00 \times 10^{-2} \text{M}$$
, [Ru(III)] = $4.00 \times 10^{-6} \text{M}$
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Na₂CO₃] = $5.00 \times 10^{-2} \text{M}$
[NaHCO₃] = $2.00 \times 10^{-3} \text{M}$, [RCl] = $1.00 \times 10^{-3} \text{M}$,
pH = 10.3 Temp. 30° C and

[cu so ₄] × 10 ³ n	k _s × 10 ⁶
1.00	4.18
1.25	4.17
2.00	4.19
3.00	4.22
4.00	4.16
5.00	4.32

TABLE 3.27

[Cu so ₄] = 10 ³ H	k ₀ × 10 ⁶ mol 1 ⁻¹ min ⁻¹
1.00	10.00
1.25	10.00
2,00	10.00
3.00	10.14
4.00	10.38
5.00	10.04

TARE 3,28

[D - galactome] = 5.00 \times 10 M, [I (III)] = 5.00 \times 10 M [Na2CO₃] = 5.00 \times 10 M, [NaHCO₃] = 2.00 \times 10 M [NCI] = 2.00 \times 10 M, pH = 10.8 [Free Bip] = 5.00 \times 16⁻³ M

	[Cu so ₄] x 16 ³ m	* *	10 ^d nol 1 ⁻¹	
and comment of the control of the co	2.00		11.97	
	1,25		12,22	
	2.00		12.14	
	3.00		12.39	
	4.00		12,36	
	5.00		12.48	

An examination of kinetic data reported in tables 3.25 and 3.26 in a summarised manner in the oxidation of glycine and alanime respectively by cooper sulphate in the presence of 2.2° bipyridyl and alkaline solution of guthenium (RII) chloride clearly indicates that both the presence follow sero - order kinetics in cooper sulphate at different concentrations of cooper sulphate.

sulphate has also been observed in iridium(III) chloride cata yeed exidation of D-glucose and D-galactose by alkaline solution of copper sulphate in the presence of 2,2 bipyridyl as ks values at different concentrations of copper sulphate have been observed to be nearly constant. Thus order of all the reactions with respect to copper sulphate is sero.

CHARLES N.

DETERMINATION OF ORDER OF THE REACTION WITH RESPECT TO AMINO ACIDS AND SUGARS IN THEIR RM (III) AND I. (III) CATALYSED OXIDATIONS RESPECTIVELY BY ALKALINE COPPER SULPHATE SOLUTION

4 * DETERMINATION OF ORDER OF THE REACTION MITH RESPECT
TO AMINO ACIDS AND SUGARS IN THEIR OXIDATIONS
CATALYSED BY Ru(III) AND I. (III) RESPECTIVELY BY
BY ALKALINE SOLUTIONS OF COPPER SULPHATE

In this chapter an effort has been made to determine the order of the reaction with respect to amino acids viz. divcine and alanine in their oxidations with cooper sulphate in the presence of alkaline solution of ruthenium (NII) chloride as homogeneous catalyst. Similarly an attempt has also been made to aspertain the order of the meaction with respect to sugars viz. D-glucose and D-galactose in their oxidations with alkaline solution of copper sulphate using iridium(III) chloride as homogeneous catalyst. In this chapter all the experiments have been carried out under isolation conditions i.e. the concentrations of all the reducing substrate have been maintained larger as compared to that of copper sulphate. The results of all the experiments have been recorded in tables 4.1 - 4.5, and tables 4.6 - 4.10 in exidation of divcine and alanime, respectively and in tables 4.11 - 4.15 and tables 4.16 - 4.20 in oxidation of D-glucose and D-galactose respectively. The value

of standard zero order rate constant i.e.

he has been calculated as usual by

multiplying he value with S/V where S and V

have their usual meanings as described in

provious chapter. In the bottom of each

table the values of he at different

concentrations of substrate have been given.

PARILE 4.1

 $[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, \quad [Glycine] = 2.50 \times 10^{-2} \text{M}$ $[Pree Bipyridyl] = 5.00 \times 10^{-3} \text{M}, \quad [Ru(III)] = 4.00 \times 10^{-6} \text{M}$ $[Na_2Co_3] = 5.00 \times 10^{-2} \text{M}, \quad [NaNCO_3] = 2.00 \times 10^{-3} \text{M}$ $[XCl] = 1.00 \times 10^{-3} \text{M} \quad \text{pH} = 10.8 \text{ and } \text{Temp. } 30^{\circ}\text{C}$

Time	Volume of K ₂ G ₂ O ₂ (0.50×10 ⁻³ N) in ML	
	0.00	600 660
3	1.02	20.40 ^b
15	1.10	1.60
40	1.60	1,68
	2.20	1,50
120	2.84	1.60
160	3.46	1.55
200	4.06	1.50
250	4.88	1.64
300	5.68	1.60
350	6.48	1.60

Average kg (excluding *) = 1.58×10^{-2} ml min⁻¹ kg = 1.58×10^{-6} mol 1^{-1} min⁻¹

WARRE (AV)

$$[\text{Cu so}_{4}] = 1.25 \times 10^{-3} \text{M}, [\text{Glycine}] = 5.00 \times 10^{-2} \text{M}$$
 $[\text{Free Bio.}] = 5.00 \times 10^{-3} \text{M}, [\text{Ru}(\text{ZZ})] = 4.00 \times 10^{-4} \text{M}$
 $[\text{MagCo}_{3}] = 5.00 \times 10^{-2} \text{M}, [\text{NaHCO}_{3}] = 2.00 \times 10^{-3} \text{M}$
 $[\text{RCl}] = 1.00 \times 10^{-3} \text{M}, \text{pH} = 10.8 \text{ and Temp. 30}^{\circ}\text{C}$

	volume of K2 G2 47	10 ² lo = .0 ×
(min.)	(0.5 x 10 ⁻³ m) in m.	△ t
	0.00	
•	1.04	20.80
	1.36	3.20
30	1.496	3,33
45	2,34	3,20
60	2.82	3.20
90	3.72	3.00
1.20	4.72	3.33
1.60	5,94	3.05
200	7.24	3,25
250	8,88	3,28

Average k_0 (excluding *) = 3.20 × 10^{-2} ml min⁻¹ $k_0 = 3.20 \times 10^{-6}$ mol 1^{-1} min⁻¹

2001E 6.3

[Gu SO₄]=4.25x10⁻³M. [Glycine] = 7.50x10⁻³M [Exec Bio.] = 5.00x10⁻³M. [Ru(XXX)] = 4.00x10⁻⁴M [Na₂CO₃] = 5.00x10⁻³M. [NeHCO₃] = 2.00x10⁻³M [NCl] = 1.00x10⁻³M. gH = 10.8 and Temp. 30⁻⁶C

Time (min.)	Volume of K ₂ O ₂ O ₇ (0.50x10 ⁻³ N) in ml	
	0.20	***
5	1.00	20,000
Ĺ5	1.50	5.00
25	1,98	4,90
40	2.74	5.06
60	3.74	5.00
80	4.64	4.50
100	5.68	5.05
120	6,58	4,50
140	7.50	4.60
190	8.44	4.70

Average k_0 (excluding *) = 4.80 x 10^{-2} ml/min⁻¹ $k_0 = 4.80 \times 10^{-6}$ mol 1" min⁻¹

PARTY AND

Time (ml.n.)	Volume of K ₂ C ₂ O ₇ . (0.50×10 ⁻⁸ N) in ml	
and de la singue la de que de des la singue de la singue d	0.00	•
	3.02	20.40
15	3. 82	8.00
25	2.59	7.60
40	3.76	7.46
60	5,36	9.00
	5.06	7.50
200	7.38	7.60
120	8.98	7.50
	10,42	7.70

Average k_0 (excluding *) = 7.60x10⁻² ml min⁻¹ $k_0 = 7.68x10^{-6}$ mol 1⁻¹ min⁻¹

Thole 4.5

Time (mi.m.)	Volume of K ₂ C ₂ O ₇ (0.50x10 ⁻³ N) in mi	
	0.00	***
5	1.00	20.00
15	1.94	9.40
25	2.90	9,60
40	4.32	9.46
55	5.68	9.01
70	7.08	9.33
85	8.50	9.46
100	9.98	9.86
120	11.98	10.00

Average k_0 (excluding *) = 9.52 × 10⁻² ml min⁻¹ $k_0 = 9.52 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 4.6

$[Cu SO_4] = 1.00 \times 10^{-3} H$, [Alamige] = 2.50 $\times 10^{-2} H$	
[Free Bip.] = 5.00:d0 M, [Ru(III)] = 4.00:d0 N	Manage M
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaNCO_3] = 2.00 \times 10^{-3} M$	
[KCl] = 1.00cl0 N, pH = 10.8 and Temp. 30°C	

2200	Volume of K2Cu0,	102	\triangle
(min+)	(0.50×10 ⁻³ N) in ml		ml/mln
Ö	0.00		
5	1.00		20.00°
20	1.16		1.06
35	1.34		1,20
60	1.60		1.04
100	2.00		1.00
150	2.56		1.12
200	3,16		1,20
250	3.72		1.12
300	4.30		1.16
360	4.96		1,10
420	5.60		1.08

Average k_0 (excluding *) = 1.11x10⁻² ml min⁻¹ $k_0 = 1.11x10^{-6}$ mol 1^{-1} min⁻¹

TABLE 4.7

[Na ₂ CO ₃] = 5	= 5.00×10 ⁻³ M, [Ru(III)] i.00×10 ⁻² M, pH = 10.8 i.00×10 ⁻³ M, [RCl]= 1.00×	and Temp. 30°C
Time (min.)	Volume of K2G207 (0.50x10 ⁻³ N) in ml	10 ² ko · · · · · · · · · · · · · · · · · ·
0	0.00	
3	1.00	30*00*
15	1,22	2.20
30	1.56	2,36
45	1.88	2,13
60	2,22	2,26
80	2.63	2.30
100	3,12	2.20
140	3.94	2.05
1.80	4.90	2.15
220	5.60	2.00
260	6.44	2.10

DANKE 4.8

 $[Cu SO_4] = 1.00 \times 10^{-3} N$, $[Alanine] = 7.50 \times 10^{-2} M$ $[Free Bip.] = 5.00 \times 10^{-3} M$, $[Ru(XXX)] = 4.00 \times 10^{-6} M$ $[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$ $[RCL] = 1.00 \times 10^{-3} M$, pH = 10.8 and $Temp. 30^{\circ}C$

Time (min.)	Volume of K_2 G_2 G_7 $(0.50 \times 10^{-3} \text{ M})$ in ml	10 ² % = Δ*
0	0.00	
5	1.02	20.40*
15	1.36	3.40
35	1.70	3.40
35	2.02	3.20
50	2.52	3.23
65	3.06	3.60
90	3.54	3.20
300	4,22	3.40
120	4.88	3,30
140	5,59	3,50
1.50	6.26	3.40

Average k_0 (excluding *) = 3.37x10⁻² ml min⁻¹ $k_0 = 3.37 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 4.9

[0	n so ₄] =	1.00x40 ⁻³ N.	Nanin] = 12.	50x10 ⁻² M
	ree Bip.	= 5.00x10"	3 _{M,} [Ru()	(II)] =	4.00×10-4M
	a ₂ co ₃] =	5.00:40-2	M. [NEE 0.] == 2.0	10×10 ⁻³ 11
	a] = 1.	00x10 ⁻³ M.		.8 ami :	10 to

Time (min.)	Volume of K ₂ C ₂ C ₇ (0.50:d.0 ⁻³ N) in m3.	10 ² k ₀ = Δ * Δ * Δ * Δ *
0	0.00	
5	1.04	20.80
15	1.58	5.40
25	2.14	5.60
35	2,66	5.20
50	3,46	5.33
70	4.56	5.50
90	5.60	5.20
110	6.66	5,30
130	7.76	5.50
150	8,94	5.40
170	9.94	5.30

Average ko (excluding *) = 5.39×10^{-2} ml min⁻¹ $k_0 = 5.39 \times 10^{-6}$ mol 1⁻¹ min⁻²

PARKE 4.40

Time (min.)	Volume of K ₂ G ₂ G ₇ (0.50×10 ⁻³ m) in ml	∆
	0.00	AND SIGN
5	2.02	20.40
1.5	1.70	6.90
	2,36	6.60
35	3,04	6.80
45	3.68	6.40
60	4.68	6,66
75	5,70	6.80
	6.68	6.53
130	7.64	6.40
1.60	8,66	6.80

Average k_0 (excluding *) = 6.58 x 10^{-2} ml min⁻¹ $k_0 = 6.58 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

200E 4.11

$[Cu SO_4] = 1.25 \times 10^{-3} N, [D-glucose] = 2.50 \times 10^{-2} M$	
$[Free Bip.] = 5.00x10^{-3}M. [I_{E}(III)] = 5.00x10^{-6}M$	and the same
$[\text{Ne}_2\text{CO}_3] = 5.00 \times 10^{-2} \text{M}, [\text{NENCO}_3] = 2.00 \times 10^{-3} \text{M}$	
[KCl] = 2.00x10 ⁻³ M, pH = 10.3 and Temp. 30°C	

eine (min.)	Volume of R ₂ C _{n2} O _y (O.50×10 ⁻³ N) in ml	
	0.00	***
	1.04	20.80
	1.56	5.20
25	2,20	5.40
35	2,60	5.00
45	3.12	5.20
60	3.89	5.06
	4.66	5.20
90	5.43	5,06
	6.42	5.00
330	7.44	5.40
150	8.44	5.00

Average k_0 (excluding *) = 5.12 × 10⁻² ml mln⁻¹ $k_0 = 5.12 \times 10^{-6}$ mal 1^{-1} min⁻¹

TABLE 4.12

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{M}, [D-glucose] = 7.50 \times 10^{-2} \text{M}$$
 $[Pres Bip.] = 5.00 \times 10^{-3} \text{M}, [T_{8}(XIX)] = 5.00 \times 10^{-6} \text{M}$
 $[NO_2CO_3] = 5.00 \times 10^{-2} \text{M}, [NOFICO_3] = 2.00 \times 10^{-3} \text{M}$
 $[KGl] = 2.00 \times 10^{-3} \text{M}, pH = 10.8 and Temp. 30^{\circ}C$

rine (min.)	Volume of E ₂ C ₁₂ C ₇ (0.50x10 ⁻³ m) in ml		
0	0.00		
	1.02	20.40	
	2.48	14.60	
23	4.00	15,20	
	5.50	15.00	
45	7.53	15.20	
55	9.00	14.90	
65	10,44	14.40	
75	11.96	15.00	

Average k_0 (excluding *) = 14.98×10⁻² ml min⁻¹ $k_0 = 14.98 \times 10^{-6}$ mol 1⁻³ min⁻¹

NEW A.L

[Cu so₄] = 1.25×10⁻³N, [D-glucose] = 10.00×10⁻²M
[Free Bip.] = 5.00×10⁻³M,
$$[I_{X}(XIX)] = 5.00×10^{-6}M$$

[NG₂CO₃] = 5.00×10⁻²M, [MSHCO₃] = 2.00×10⁻³M
[KGl] = 2.00 × 10³M, pH = 10.8 and Temp. 30⁻⁶C

rime (min.)	Volume of K ₂ G ₁₂ O ₇ (0.50:40 ⁻³ N) in ml	
	1.02	20.40*
10	2.02	20.00
**	3.04	20.40
20	4.04	20.00
25	5,08	20.80
30	5.06	19.60
3.5	7.06	20.00
40	3.08	20.40
45	9.10	20,40
50	10.10	20.00

Average $k_0 = 20.20 \times 10^{-2}$ ml min⁻¹ $k_0 = 20.20 \times 10^{-6}$ mol 1⁻¹ min⁻¹

THE A.M.

$$[Cu SO_4] = 1.25 \times 10^{-3} N$$
, $[D=glucose] = 12.50 \times 10^{-2} M$
 $[Free Bip.] = 5.00 \times 10^{-3} M$, $[I_{II}(III)] = 5.00 \times 10^{-4} M$
 $[NegCo_3] = 5.00 \times 10^{-2} M$, $[NeHCo_3] = 2.00 \times 10^{-3} M$
 $[NC1] = 2.00 \times 10^{-3} M$, pH = 10.8 and Temp. 30°C

Time	Volume of K, Ch, O,	10 ² k = △*
(min.)	(0.50x10 ⁻³ H) in ml	ml/min
•	0-00	•
5	1.02	20.40
10	2.26	24.80
15	3.52	25,20
20	4.78	25.20
25	6.02	24.90
30	7,26	24.80
35	9,52	25.20
40	9.78	25,20
45	11.00	24,40
50	12,26	25,20

Average k_0 (excluding *) = 24.98×10⁻² ml min⁻¹ $k_0 = 24.98 \times 10^{-6}$ mol l^{-1} min⁻¹

TABLE 4,15

$$[Cu SO_4] = 1.25 \times 10^{-3} N$$
, $[D - glucose] = 15.00 \times 10^{-2} M$
 $[Pree Bip.] = 5.00 \times 10^{-3} N$, $[I_{Z}(III)] = 5.00 \times 10^{-6} M$
 $[Na_2CO_3] = 5.00 \times 10^{-2} N$, $[NaHCO_3] = 2.00 \times 10^{-3} M$
 $[RCI] = 2.00 \times 10^{-3} N$, $MI = 10.8$ and $Temp. 30^{-3} C$

Time (mi.n.)	Volume of K ₂ C ₁₂ O ₇ (0.50×20 ⁻³ N) in ml		
0	0.00	1000 · 4000	
5	1.00	20.00	
10	2.50	30.00	
15	4.00	30.00	
20	5.46	29.20	
25	7.00	30.90	
30	8.48	29,60	
35	10.00	30,40	
40	31.50	30.00	

Average k_0 (excluding *) = 30.00x10⁻² ml min⁻¹ $k_0 = 30.00 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

TABLE 4.16

 $[Cu SO_4] = 1.00 \times 10^{-3} \text{N}$ $[D-gclactose] = 2.50 \times 10^{-3} \text{N}$ $[Free Bip.] = 5.00 \times 10^{-3} \text{M}$, $[I_R(CIX)] = 5.00 \times 10^{-3} \text{M}$ $[MagCO_3] = 5.00 \times 10^{-3} \text{M}$, $[MaHCO_3] = 2.00 \times 10^{-3} \text{M}$ $[KCI] = 2.00 \times 10^{-3} \text{M}$, $[RCI] = 2.00 \times 10^{-3} \text{M}$, $[RCI] = 10.8 \text{ and } Tomp. 30^{\circ}\text{C}$

Time (min.)	volume of R ₂ G ₂ G ₇ (0.50x10 ⁻³ n) in mi		
0	0.00		
5	1.02	20.40*	
13	1.62	6.00	
25	2.24	6.20	
35	2.04	6.00	
45	3.43	6.40	
55	4.00	6.00	
65	4.63	6.00	
75	5,30	6.20	
90	6.30	6.00	
110	7.44	6.20	

Average ky (excluding *) = 6.11×10^{-2} ml min⁻¹ No = 6.11×10^{-6} mol 1⁻¹ min⁻¹

TEBLE 4.17

[Cu SO₄] = 1.00×10⁻³N, [D=galactose] = 7.50×10⁻³M
[Free Bip.] = 5.00×10⁻³M,
$$[I_{R}(III)]$$
 = 5.00×10⁻⁶M
[Ne₂CO₃] = 5.00×10⁻²M, [NaHCO₃] = 2.00×10⁻³M
[NC1] = 2.80×10⁻³M, pH = 10.8 and Temp.30^oC

Timo (min.)	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in ml	10 ² t
Ó		400
5	1.00	20.00
10	1.90	18.00
	2.82	18.40
20	3.72	18.00
25	4.64	18.40
30	5.52	17,60
35	6.42	18.00
40	7.34	18.40
45	8.28	19.90
50	9,18	19.00

Average k_0 (excluding *) = 19.36 × 10⁻² ml min⁻¹ $k_0 = 13.36 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TANKS 4.19

$$[Cu SO_4] = 1.00 \times 10^{-3} M$$
, $[D-galactose] = 10.00 \times 10^{-2} M$
 $[Free Bip.] = 5.00 \times 10^{-3} M$, $[I_2(III)] = 5.00 \times 10^{-6} M$
 $[Ne_2CO_3] = 5.00 \times 10^{-3} M$, $[MaHCO_3] = 2.00 \times 10^{-3} M$
 $[NC3] = 2.00 \times 10^{-3} M$, $pH = 10.3$ and $Temp. 30^{-6} C$

Time (min.)	Volume of K ₂ C ₁₂ O ₇ (0.50x10 ⁻³ x) in ml	
5	1.00	20.00°
10	2,20	24.00
15	3,22	24,40
20	4.40	23.60
25	5.60	24.00
30	6.82	24.40
	8.00	23,60
40	9.22	24.40

Average k_0 (excluding *) = 24.05×10^{-2} ml min⁻¹ $k_0 = 24.05 \times 10^{-6}$ mol 1^{-1} min⁻¹

TABLE 4.19

$$[Cu SO_4] = 1.00 \times 10^{-3} \text{M}.$$
 $[D=\text{gelectose}] = 12.50 \times 10^{-2} \text{M}$ $[Free Bio] = 5.00 \times 10^{-3} \text{M}.$ $[I_2 (IXX)] = 5.00 \times 10^{-6} \text{M}$ $[NasiOo_3] = 5.00 \times 10^{-2} \text{M}.$ $[NasiOo_3] = 2.00 \times 10^{-3} \text{M}$ $[KCil] = 2.00 \times 10^{-3} \text{M}.$ $[NasiOo_3] = 10.8 \text{ and } Temp. 30^{\circ}\text{C}$

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50x40 ⁻³ N) in ml	
0	0.00	•
\$	3.00	20.00°
10	2.50	30.00
25	4.00	30.00
20	5.48	29.60
25	7.00	30.40
30	3,46	29.20
35	10.96	30,00

Average to (excluding *) = 29.86×10^{-2} ml min⁻¹ $k_0 = 29.96 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 4.20

[Cu SO₄] = 1.00×10⁻³N, [D-galactose] = 15.00×10⁻²N [Free Blp.] = 5.00×10⁻³M, [I₂(III)] = 5.00×10⁻⁶M [Na₂CO₃] = 5.00×10⁻³M, [MaNCO₃] = 2.00×10⁻³M [KCl] = 2.00×10⁻³M, pH = 10.8 and Temp. 30°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in ml	Δ · Δ · Δ · Δ · Δ · Δ · Δ · Δ · Δ · Δ ·
	0.00	**
5	1.00	20.00°
8	2.09	35.00
12	3.52	36,00
15	4.62	36.66
18	5.70	36.00
	6.80	36.66
24	7.90	36,66
27	8.98	36.00
30	9.98	33 .33

Average k_0 (excluding *) = 35.91 × 10^{-2} ml min⁻¹ $k_0 = 35.91 \times 10^{-6}$ mol 1^{-1} mln⁻¹ The kinetic data collected in tables 4.1 - 4.5 and tables 3.2, tables 4.6 - 4.10 and table 3.7, tables 4.11 - 4.15 and table 3.14 and tables 4.16-4.20 and table 3.19 have been summarised in tables 4.21, 4.22, 4.23 and table 4.24 respectively.

TABLE 4.21

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, [Free Bip.] = 5.00 \times 10^{-3} \text{M}$$
 $[Ru(IIX)] = 4.00 \times 10^{-6} \text{M}, [RC3] = 1.00 \times 10^{-3} \text{M}$
 $[Na_2Co_3] = 5.00 \times 10^{-2} \text{M}, [NaNCo_3] = 2.00 \times 10^{-3} \text{M}$
 $[RI = 10.8 \text{ and Temp. } 30^{\circ}\text{C}$

[Glycine] x 10 ²	mol 1 ⁻¹ min ⁻¹	k ₁ × 10 ⁵
2.50	1.50	6.32
5.00	3.20	6.40
7.50	4.80	6.40
1.0.00	6.19	6,19
12.50	7.68	6.14
15.00	9.52	6.35

PARTE: 4,22

 $[Cu SO_6] = 1.00 \times 10^{-3} \text{N}, \quad [Ru(III)] = 4.00 \times 10^{-6} \text{N}$ $[Pree Bip.] = 5.00 \times 10^{-3} \text{M}, \quad [RGI] = 1.00 \times 10^{-3} \text{M}$ $[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, \quad [NBHCO_3] = 2.00 \times 10^{-3} \text{M}$ pH = 10.8 and $Temp. 30^{\circ}C$

[Alanine] x 10 ²	k ₀ × 10 ⁶ mol 1 ⁻² min ⁻¹	N X 10 ⁵
2.50	1.41	4.40
5.00	2.16	4.32
7.50	3.37	4.40
10.00	4.19	4.10
12.50	5.39	4.32
15.00	6.58	4.38

78015 4 6 E

 $[\text{Cu SO}_{4}] = 1.25 \text{mis}^{-3} \text{H}, \quad [\text{I}_{2}(\text{III})] = 5.00 \text{mis}^{-6} \text{H}$ $[\text{Free Bip.}] = 5.00 \text{mis}^{-3} \text{H}, \quad [\text{MCI}] = 2.00 \text{mis}^{-3} \text{H}$ $[\text{Na}_{2}\text{CO}_{3}] = 5.00 \text{mis}^{-2} \text{H}, \quad [\text{MarcO}_{3}] = 2.00 \text{mis}^{-3} \text{H}$ $[\text{PH} = 10.8 \text{ and Temp. } 30^{\circ}\text{C}]$

	[D-glucose] x 10 ²	k ₂ × 10 ⁶ mol 1 ⁻¹ min ⁻¹	k ₁ x 10 ⁴
4	2,50	5.12	2.04
	5.00	10.00	2.00
	7.50	14.99	1.98
	10.00	20.20	2.02
	12.50	24.98	1.99
	15.00	30.00	2.00

PABLE 4.24

[Cu SO ₄] =	1.00:10 ⁻³ N,	[Free Bip.] = $5.00 \times 10^{-3} M$
[IF (III)] *	5.00:40 ⁻⁶ M,	$[KC1] = 2.00 \times 10^{-3} M$
[Na2CO3] *	5,00x10 ⁻² N,	[NeHCO ₃] = 2.00×10 ⁻³ M
	and temp	. 30°C

 -galactose] x 102	k _a x 10 ⁶	h ₃ = 10 ⁴
M.		
2,50	6.11	2.44
5.00	11.97	2.39
7.50	19.36	2.44
10.00	24.05	2.41
12.50	29.86	2,39
15.00	35.91	2.39

FIG. 4.1: PLOT BETWEEN K, AND [SUBSTRATE] AT 30°C

[CUS04] = 1.25(A) AND 1.00(B) x 10³M, [Ru(IIV] = 4.00 x 10⁻⁶M,

[FREE BIPYRIDYL] = 5.00 x 10⁻³M, [Na₂CO₃] = 5.00 x 10⁻²M,

[Na HCO₃] = 2.00 x 10⁻³M, [K(l] = 1.00 x 10⁻³M, pH = 10.80

FIG. 4.2: PLOT BETWEEN KS AND [SUBSTRATE] AT 30°C LCUSO4J = 1.5 c(A) AND $1.00(B) \times 10^{-3} M$, $[I_r(III)] = 5.00 \times 10^{-6} M$, $LFREE BIPYRIDYLJ = 5.00 \times 10^{-3} M$, $[K(L)] = 2.00 \times 10^{-3} M$, $p^H = 10.80$ $[Na_2CO_3] = 5.00 \times 10^{-2} M$ AND $[NaHCO_3J] = 2.00 \times 10^{-3} M$

A close examination of data of tables 4.21, 4.22, 4.23 and 4.24 clearly indicates that on increasing the concentration of reducing amino acids and sugars the corresponding values of k, also increase in direct proportionality showing thus first - order in amino acids and sugars. This is also obvious from constant k, values in each tables described above.

A straight line with slope equal to k values is obtained in each case when k values are plotted against concentration of each of glycine, alenine, D-glucose and D-galactose (Fig. 4.1 & 4.2). Thus fair degree of closeness in k value and corresponding slope in oxidation of each of glycine, alanine, D-glucose and D-galactose confirms first - order kinetics in reducing amino acids and sugars.

SHAPER V

DESTRUCTION OF ORDER OF THE REACTION WITH
RESPECT TO RM (III) IN OXIDATION OF AMINO ACIDS
AND WITH RESPECT TO I, (III) IN CHIDATION OF
SUGARS BY ALKALINE SOLUTION OF COPPER SULHMATE

5 DETERMINATION OF ORDER OF THE REACTION WITH RESPECT
TO RU(III) IN OXIDATION OF AMINO ACIDS AND WITH
RESPECT TO I. (III) IN OXIDATION OF SUGARS BY ALKALINE
SOLUTION OF COPPER SULMATE

The main aim of various experiments performed here in this chapter is to determine the order of oxidation of amino acids and sugars by copper sulphate with respect to catalyst i.e. Rn(III) and Ig (III) respectively. In order to do so, various experiments with wazying concentrations of Ru(III) in oxidation of emino acids vis., glycine and alamine and similarly a set of experiments containing different concentrations of Ir (III) am oxidation of sugars i.e. D-glucose and D-galactose but at fixed concentrations of all other reactants have been performed. The results of such experiments have been recorded in tables 5.1 - 5.5. and tables 5.6 -5.10 in oxidation of glycine and alanine respectively and in tables 5.11 - 5.15 and tables 5.16 - 5.20 in oxidation of D-glucose and D-galactose, respectively. Here also the value of (-dc/d+) i.e. standard sero order rate constant (kg) has been determined by following the same procedure as described in 3rd chapter.

[cu so ₄] = 1.2!	5x10 ⁻³ 11,	Clycine] =	5.00x10
[Free Bip.] = !	5.00×10 ⁻³ M,	[Ru(XXX)]	$= 2.00 \times 10^{-6} M$
[Na2CO3] = 5.0	ож 10⁻²м, [по	NEO. 2	,00x40 ⁻³ M
[KG1] = 1.00x1	0 ⁻³ M. 7H	= 10.8 a	nd Temp. 30°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ m) in m2	10 ² ko = \triangle * ml/mla
O	0.00	
	1.00	20.00
15	1.16	1.60
	1.32	1.60
40	1,58	1.60
60	1.00	1.50
90	2.38	1.66
140	3.16	1.36
200	4.16	1.66
260	5,12	1,60
320	6.02	1,50
380	6.94	1.53

Average k_0 (excluding *) = 1.58x10⁻² ml min⁻¹ $k_0 = 1.58 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

ww. 5.2

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
Q	0.00	**
	1.02	20.40*
13	1.26	2.40
30	1.60	2.26
50	2.08	2.40
75	2.70	2.48
100	3.30	2.40
140	4.24	2,35
180	5,20	2,40
220	6.18	2.45
290	7.58	2.33
240	9.08	2,50

Average k, (excluding *) = 2.40×10^{-2} ml min⁻¹ $k_s = 2.40 \times 10^{-6} \text{ mol } 1^{-2} \text{ min}^{-1}$

VESTE 5.63

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
Č.	0.00	
	1.00	20.00*
15	1,38	3.90
28	1.78	4.00
40	2,34	3.73
60	3.12	3.90
90	4.28	3.86
120	5.42	3,80
150	6.58	3.86
130	7.70	3.73
210	8.84	3,80
250	10.34	3.75

Average k_0 (excluding *) = 3.92×10⁻² ml min⁻¹ $k_0 = 3.92 \times 10^{-6}$ mol 1⁻¹ min⁻¹

Wille Ski

[cu so ₄] =	1.25:d0 ⁻³ n, [G	Qycine] =	5.00×10 ⁻² M
[Free Bip.]	= 5.00:40 ⁻³ M,	Ru(III)	= 6.00x10 ⁻⁶ M
[Ma2co3] =	5.00x10 ⁻² M,	NOTICO3	2.00×10 ⁻³ M
[mcl] = 1.0	0x10 ⁻³ M, 5H *	* 10.8 and	Temp. 30°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50x40 ⁻³ N) in ml	
0	0.90	*
5	1.00	20,00
15 25 40	1.50 2.00 2.70	5.00 5.00 4.66
60	3.60	4.50
80	4.52	4.60
100	5.46	4.70
120	6.42	4.90
140	7.40	4.90
180	9,30	4.75
220	11,30	5-00

Average k_0 (excluding *) = 4.79 x 10^{-2} mL min⁻¹ $k_0 = 4.79 \times 10^{-6}$ mol 1^{-1} min⁻¹

[Cu SO₄] = 4.25 × 10⁻³ N. [Glycine] = 5.00x10⁻² M [Free Bip.] = 5.00x10⁻³ M. [Ru(XIX)] = 8.00x10⁻⁴ M [Na₂CO₃] = 5.00x10⁻² M. [NaHCO₃] = 2.00x10⁻³ M [KCl] = 1.00x10⁻³ M. pH = 10.8 and Temp. 30°C

2100	Volume	of K	G12 0	10 ²			
(mln.)	(0.50x10 ⁻³	and the state of t			∆t mi/min		
0		0.00					
5		1.02			20.40*		
13		1,62			6.00		
25		2,24			6,20		
35		2,90			6.40		
45		3,50			6.00		
60		6.42			6.13		
75		5,36			6,26		
100		6.80			5.76		
125		0,30			6.00		
150		9.90			6.40		
175		11.4	2		6.09		

Average k_0 (excluding *) = 6.12 x 10^{-2} ml min⁻¹ $k_0 = 6.12 \times 10^{-6}$ mol 1^{-1} min⁻¹

TABLE 5.6

$[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, [Alanine] = 5.00 \times 10^{-2} \text{M}$
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Ru(III)] = $1.50 \times 10^{-6} \text{M}$
$[Na_3CO_3] = 5.00 \times 10^{-2} M$, $[NBHCO_3] = 2.00 \times 10^{-3} M$
[KCl] = 1.00x10 ⁻³ M, pH = 10.8 and Temp. 30°C

Time (min.)	Volume of E ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	10 ² k. * \triangle * \triangle t
0	0.00	
5	1.02	20,40
25	1.49	0.80
60	1.46	0.30
120	1.92	0.77
130	2.36	0.73
240	2.32	0.76
300	3.30	0.30
360	3.76	0.76
420	4.20	0.73
480	4.66	0.76
540	5.12	0.76

Average k_0 (excluding *) = 0.77x40 ml min⁻¹ $k_0 = 0.77 \times 10^{-6}$ mol 2⁻¹ min⁻¹

PAULS 5.7

[cu so ₄]=1	.00×10 ⁻³ N,	[Mani	ne] = !	1x00, 5	0 ⁻² M		
[Free Bip.]	= 5.00x10	-3 _M ,	Ru (II	[]	3-002	10 ⁻⁶ M	
[m ₂ co ₃] =	5.00×10-2		HCO ₃	= 2.00	56.10 T		
[KC1] = 1.	00:20 ⁻³ M,		10.8	and re	mp. 30	ઝિલ	uenikite
Time	Volume	of R,	Giz Oay		3.0 ²		-

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	10° k = Δ * nl./mln
0	0.00	***
	1.00	20.00*
15	1,16	1.60
35	1.46	1.50
60	1.80	1.36
90	2.26	1.53
130	2.36	1.50
180	3,64	1.56
240	4.56	1.53
300	5.46	1,50
360	6.34	1.47
420	7.24	1.50

Average k_0 (excluding *) = 1.51 × 10⁻² ml min⁻¹ $k_0 = 1.51 \times 10^{-6}$ mol 1⁻¹ min⁻¹

17.91E 5.8

$[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, [Alanine] = 5.00 \times 10^{-2} \text{M}$
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$, [Ru(III)] = $5.00 \times 10^{-6} \text{M}$
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$
$[KG1] = 1.00 \times 10^{-3} M$, pH = 10.8 and Temp. 30°C

rime (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁴³ N) in mL	10 ² ko = △ * ml/mln
0	0.00	
	1.02	20.40 ^h
1	1.28	2.60
35	1.82	2.70
60	2.50	2.72
90	3.28	2.60
120	4.08	2.66
150	4.94	2.53
1.90	5.62	2,60
220	6.70	2.70
200	8.30	2.66
340	9.88	2.63

Average k_0 (excluding *) = 2.64×10⁻² ml min⁻² $k_0 = 2.64 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

9.913 5.0

$$[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, [Alanine] = 5.00 \times 10^{-2} \text{M}$$
 $[Free Bip.] = 5.00 \times 10^{-3} \text{M}, [Ru(III)] = 6.00 \times 10^{-6} \text{M}$
 $[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, [NaHCO_3] = 2.00 \times 10^{-3} \text{M}$
 $[KCl] = 1.00 \times 10^{-3} \text{M}, pH = 10.8 and Temp. 30^{\circ} \text{C}$

n a lismo	Volume of K2 G2 07	70 ₅ F°= 🔽 🛪
(mdr.)	(0.50x10 ⁻³ N) in m3.	nl/min A t
	0.00	*
	1.00	20.00*
15	1.32	3.20
35	1.92	3.00
60	2.68	3.04
100	3.96	3.20
140	5.20	3.10
180	6.46	3.15
220	7.74	3.20
260	9.02	3,20

gverage k_0 (excluding *) = 3.14×10⁻² ml min⁻¹ k_0 = 3.14 × 10⁻⁶ mol 1⁻¹ min⁻¹

2030E 5.10

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
	0.00	
5	1.04	20.80
15	2.42	3.80
25	1.73	3.60
35	2.18	4.00
45	2,53	4.00
60	3.16	3.86
90	4.26	3.66
120	5.56	4,33
150	6.76	4.00
180	7.94	3,90

Average k_0 (excluding *) = 3.91 × 10^{-2} ml min⁻¹ k_0 = 3.91 × 10^{-6} mol 1^{-1} min⁻¹

200 S 3.11

[cu so ₄] = 1,	25:20 ⁻⁵ N,	D-glucose]	= 5.00x10 ⁻² M
[Free Bip.]	5.00×10 ⁻³ M	· [x _x (xxx)]	= 1.50×10 ⁻⁶ N
[ma_co3] = 5.	00x10 ⁻² M,	[NeHCO ₃] = 2	.00x10 ⁻³ M
[KC1] = 2.003	до ⁻³ и, рн	= 10.8 and	Temp. 30°c
Chan	Volume of	K2 G2 07	10 ² k ₀ =

	Volume of K2 G2 0,		
(m2 n.)	(0.50x10 ⁻³ N) in ml	△ t	
	0.00	*	
	1.02	20 -40	
15	1.32	3.00	
25	1.66	3.20	
35	1.94	3.00	
45	2,24	3.00	
60	2.70	3.06	
80	3.32	3,10	
100	3,94	3,10	
140	3.14	3.00	
180	5.36	3.05	
220	7.60	3.10	

Avarage k_0 (excluding *) = 3.06 x 10^{-2} ml min⁻¹ $k_0 = 3.06 \times 10^{-6}$ mol 1^{-1} min⁻¹

CABLE 5.12

$[cu so_4] = 1.25 \times 10^{-3} H, [D-glucose] = 5.00 \times 10^{-2} M$
[Free Bip.] = $5.00 \times 10^{-3} \text{H}_{\bullet}$ [Ir(III)] = $3.00 \times 10^{-6} \text{M}_{\odot}$
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaHCO_3] = 2.00 \times 10^{-3} M$
[RC1] = 2.00x10 ⁻³ M, pH = 10.8 and Temp. 30°C

Time (mln.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	10 ² k ₂ * \triangle * \triangle * m1/min
O.	0.00	***
	1.02	20.40*
45	1.62	6.00
	2,24	6,20
3.5	2.84	6.00
45	3.44	6.00
60	4.36	6.01
80	5.58	6.10
100	6.78	5.00
120	8.00	6.10
140	9.24	6.20

Average k_0 (excluding *) = 5.6×10^{-2} ml min⁻¹ $k_0 = 6.07 \times 10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

$[Cu SO_4] = 1.25 \times 10^{-3} N, [D-glucose] = 5.00 \times 10^{-3}$	5 ^M
[Free Bip.] = 5.00×10 ⁻³ M, $[x_x(xx)] = 4.90 \times 10$	-G
$[\text{Ne}_2\text{CO}_3] = 5.00 \times 10^{-2} \text{M}, [\text{NRHCO}_3] = 2.00 \times 10^{-3} \text{M}$	
[RC1] = 2.00x10 ⁻³ M, pH = 10.8 and Temp. 30°C	ri b

	Time (min.)	Volume (0.50:210'-1	of K ₂ G ₂ O ₇	102	
			0.00		
			1,00		20.00
	15		1.62		8.20
	25		2.63		9.00
	36		3.40		7.80
	45		4,20		8.00
	60		5.42		8.13
	7.3		6.60		7.86
	5.)		7.80		8.00
44	120		10.24		8.13

Average k_0 (excluding *) = 8.11 × 10⁻² ml min⁻¹ k_0 = 8.11 × 10⁻⁶ mol 1⁻¹ min⁻¹

	[Cu SO ₄] = 1.25x10 ⁻³ N. [D-glucose] = 5.00x10 ⁻² N [Free Bip.] = 5.00x10 ⁻³ N. [I _X (III)] = 6.00x10 ⁻⁶ N [Na ₂ CO ₃] = 5.00x10 ⁻² N. [NaHCO ₃] = 2.00x10 ⁻³ N [NC1] = 2.00x10 ⁻³ N. [N = 10.8 and Temp. 30°C				
Tiv		Volume of K ₂ G ₂ (0.50×10 ⁻³ N) in	O-y	△ * · · · · · · · · · · · · · · · · · ·	
		0.00			
	8	1.02		20,40	
		1.62		12,00	
1		2,24		12.40	
	•	2,84		12.00	
3	0	4.02		12,20	
4		5.24		12,20	
		6,36		12,20	
	10	7.56		12.00	
	10	9.79		12.20	
		9,90		12.00	

Average k_0 (excluding *) = 12.01 × 10⁻² ml min⁻¹ k_0 = 12.01 × 19⁻⁶ mol 2⁻¹ min⁻¹

Time (min.)	Volume of $K_2 G_2 G_7$ 10 (0.50x10 ⁻³ M) in m.	
0	0.00	•
•	1.00	20.00
	2.50	15.00
	4.02	15.20
35	5.52	15.00
45	7.02	15.00
	8,54	15,20
	10.06	15.20
75	11,56	15.00

Agreeming k_0 (excluding *) = 15.08 × 10⁻² ml min⁻¹ k_0 = 15.08 × 10⁻⁶ mol 1⁻¹ min⁻¹

[cu so4] =	1.25×10 ⁻³ N,	[D-galactose]= 5.00x10	M
Proc Bip.	= 5.00×10 ⁻³ M,	$[I_{\pi}(III)] = 1.50 \times 10^{-6} M$	
[Na,CO3] =	5.00:d0 ⁻² m,	$[Nasco_3] = 2.00 \times 10^{-3} M$	
[KC1] = 2.0	0x10 ⁻³ N, 1981	= 10.8 and Temp. 30°C	

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
0	0.00	
	3.04	20.80
15	1,38	3.40
25	1.74	3.60
40	2,26	3.46
60	3.00	3.70
60 ·	4.12	3.73
120	5.20	3.60
160	6.66	3,65
200	8.10	3.61
250	9.90	3.60

Average k_0 (excluding *) = 3.60×10⁻² ml min⁻¹ $k_0 = 3.60 \times 10^{-6}$ mol 1⁻¹ min⁻¹

$[Cu SO_4] = 1.25 \times 10^{-3} N. [D=galactose] = 5.00 \times 10^{-2} M$
[Prec Bip.] = 5.00x10 ⁻³ M, $[I_{3}(III)] = 3.00x10^{-6}M$
$[\text{Ne}_2\text{CO}_3] = 5.00\text{mlg}^{-2}\text{M}, [\text{NeHCO}_3] = 2.00\text{mlg}^{-3}\text{M}$
[KG1] = 2.00x10 ⁻³ m, pH = 10.8 and Temp. 30°C

Time (mln.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
	0.00	
	3.02	20-40*
15	1.76	7.40
25	2,48	7.20
35	3.22	7.40
45	3.54	7.20
60	\$.00	7.06
75	6.08	7.20
90	7.18	7.33
105	8.26	7.06
220	9,32	7,20
140	30.78	7.30

Average k_0 (excluding *) = 7.24 × 10^{-2} ml min⁻¹ $k_0 = 7.24 \times 10^{-6}$ mol 1^{-1} min⁻¹

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in mi	io ² ko
0	0.00	
5	1.00	20.00
15	1.98	9.80
	2.94	9.60
	3.88	9,40
48	4.86	9.60
60	6.32	9.86
	7.76	9,60
90	8.18	9.46
105	9.62	9.60
120	11.06	9.60

Average ke (excluding *) = 9.61×10^{-2} ml min⁻¹ k_a = 9.61×10^{-6} mel l⁻¹ min⁻¹

PARLE 5,19

The	Volume of K2 G2 0	
(min.)	(0.50×10 ⁻³ N) in ml	nl ml/mln
0	0.00	•
5	1.00	20.00*
10	1.72	34.40
15	2.46	14.90
	3,15	14.00
25	3.88	14.40
30	4.60	14.40
3.5	5.30	14.00
45	6.72	14,20
55	3.12	14.00
65	9.54	14.20
75	10.94	14.00

Average k_0 (excluding *) = 14.24×10^{-2} ml min⁻¹ $k_0 = 14.24 \times 10^{-6}$ mol l⁻¹ min⁻¹

MARILE 5.20

[Cu SO_A] = 1.25m10⁻³N, [D-galactose] = 5.00x10⁻²N [Free Bip.] = 5.00x10⁻²N, [Ir(III)] = 7.50x10⁻⁶N [Na₂CO₃] = 5.00x10⁻²N, [NeNCO₃] = 2.00x10⁻³N [NCI] = 2.00x10⁻²N, pH = 10.8 and Temp. 30⁻²C

Time (min.)	(0.50:d0 ⁻³ N) in ml	10 ² k ₀ = Δ * Δ:
Ö	0.400	<i>i</i>
5	1.00	20.00
10	1.90	19.00
15	2.92	18.90
20	3.92	18.00
25	4.68	17.20
30	5,56	17.60
100	6.44	17.60
35	7.34	19.00
40	8.22	17.60
45	9.10	17.60
50 60	10.84	17.40

Average k_0 (excluding *) = 17.74x10⁻² ml min⁻¹ $k_0 = 17.76 \times 10^{-6}$ mol 3^{-2} min⁻¹ The results of tables 5.1 - 5.55 & table 4.2, tables 5.6 - 5.10 and table 5.7, tables 5.11 - 5.15 & table 3.14 and tables 5.16 - 5.20 & table 3.20 have been summarised in tables 5.21, 5.21, 5.22 and 5.23 respectively.

TABLE 5.21

 $[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, \quad [Glycine] = 5.00 \times 10^{-2} \text{M}$ $[Free Eip.] = 5.00 \times 10^{-3} \text{M}, \quad [Ma_2CO_3] = 5.00 \times 10^{-2} \text{M}$ $[MaHCO_3] = 2.00 \times 10^{-3} \text{M}, \quad [KCL] = 1.00 \times 10^{-3} \text{M},$ $pH = 10.8 \text{ and } Temp. 30^{\circ}C$

[Bu (III)] × 10 ⁶	n k _a x	10 ⁶ mol 1 ⁻¹ min ⁻¹	h mih-4
2.00	en dission accingle i megani segan segan nederal indigen ekindi masi kindigilah sepangah binyadapan en masi me	1.58	0.79
3.00		2.40	0.80
4.00		3.20	0.80
5.00		3.82	0.76
6.00		4.79	0.79
8.00		6.12	0.76

Average $k_1 = 0.79 \text{ min}^{-1}$

MARKE 5.22

$$[Cu SO_4] = 1.00 \times 10^{-3} \text{M}, [Alenine] = 5.00 \times 10^{-2} \text{M}$$
 $[Pree Bip.] = 5.00 \times 10^{-3} \text{M}, [Na_2CO_3] = 5.00 \times 10^{-2} \text{M}$
 $[NaHCO_3] = 2.00 \times 10^{-3} \text{M}, [RCl] = 1.00 \times 10^{-3} \text{M}$
 $[RCl] = 1.00 \times 10^{-3} \text{M}$

[Ru (III)] :	× 10 ⁶	k, min
	1.4 min.4	
1.50	0.77	0.52
3.00	1.5	0.50
4.00	2.16	0.54
5.00	2,64	0.53
6,00	3,14	0.52
7.50	3.91	0.52

Average k₁ = 0.52 min⁻¹

SABLE 5.23

[1, (III)] x 10 ⁶ H	k × 10 ⁶	k, min ⁻¹
	mol 1 ⁻¹ min ⁻¹	
1.30	3.06	2.04
3.00	6.07	2*03
4,00	9,11	2.03
5,00	10.00	2,00
6.00	12.01	2.00
7.50	15.08	2.01
Average k ₁ = 2	.01 ml.r. ⁻¹	

2,36

TABLE 5.24

17.74

Average $k_{\rm p} = 2.39$ min⁻¹

7.50

FIG. 5.1: PLOT BETWEEN KS AND [RU(III)] AT 30° C [CUSO4] = 1.25(A) AND $(1.00(B) \times 10^{3} M, [KCl] = <math>1.00 \times 10^{3} M, [KCl] = 1.00 \times 10^{3$

FIG. 5.2: PLOT BETWEEN Ks AND [I72(11))] AT 30°C [CUSO4] = $1.25 \times 10^{3} N$, [SUBSTRATE] = $5.00 \times 10^{2} M$, $\beta^{H} = 10.80$ [FREE BIPYRIDYL] = $5.00 \times 10^{3} M$, [KCl] = $2.00 \times 10^{3} M$ [Na2CO3] = $5.00 \times 10^{2} M$, [NaHCO3] = $2.00 \times 10^{3} M$

of tables 5.21 - 5.24 that there is direct proportionality between [Ru(III)] and kg values in exidation of glycine and alamine by alkaline copper sulphate, suggesting first-order kinetics with respect to Ru(III). Similarly, kg values increase in direct proportionality with [Ig(III)] which indicates and confirms first-order dependence on Ig(III) in exidation of D-glucose and D-galactose.

The above observation regarding dependence of reactions on [Catalyst] is further confirmed on plotting $k_{\rm S}$ values against[Ru(III)] or $[i_{\rm F}({\rm III})]$. A straight line passing through origine (Fig. 5.1 and Fig. 5.2) for each case is obtained. The slope value is in agreement fairly with average $k_{\rm I}$ values given in tables 5.21 - 5.24 for corresponding reducing agents. This shows first-order kinetics in Ru(III) and $i_{\rm F}({\rm III})$.

CHAPTER VI

DETERMINATION OF ORDER OF THE REACTION WITH
RESPECT TO HYDROXYL IONS IN EU(III) CATALYSED
OXIDATION OF GLYCINE AND ALANINE AND I, (III)
CATALYSED OXIDATION OF D-GLUCOSE AND D-GALACTOSE
BY ALKALISE COPER SULFHATE

DETERMINATION OF ORDER OF THE REACTION WITH
RESPECT TO HYDROXYL IONS IN RU(III) CATALYSED

GXIDATION OF GLYCINE AND ALANINE AND I. (III)

CATALYSED OXIDATION OF D-GLUCOSE AND

D-GALACTOSE BY ALKALINE COPPER SULPHATE

In this chapter an attempt has been made to determine the dependence of Ru(III) catalysed oxidation of amino acids and I_R(III) catalysed oxidation of sugars by alkaline copper sulphate on [alkali.] In order to do so, a series of experiments with varying concentrations of sodium bidarbonate at fixed concentrations of all other reactants have been carried out and the results of such experiments have been recorded in tables 6.1 - 6.4, 6.5-6.8, 6.9-6.12 and 6.13 - 6.16 in exidation of glycine, alanine, D-glucose and D-galactose respectively. When sodium bidarbonate concentration is changes, pH also varies and hence concentration of OH is thus varied. All other calculations have been done as in previous chapters.

TARILE Col

 $[Cu SO_4] = 1.25 \times 10^{-3} M$, $[Clycine] = 5.00 \times 10^{-2} M$ $[Free Bip_a] = 5.00 \times 10^{-3} M$, $[Ru(III)] = 4.00 \times 10^{-6} M$ $[Ma_3CO_3] = 5.00 \times 10^{-2} M$, $[MaHCO_3] = 4.00 \times 10^{-3} M$ $[RC1] = 1.00 \times 10^{-3} M$, pH = 10.7 and Temp. $30^{\circ}C$

Time (mkg)	Volume (0,50::30 ⁻³	of K ₂ G ₁₂ O ₇ N) in m	10 ² ko *
0		0.00	
5		1.00	20.00
15		1.25	2.50
25		1,52	2.70
40		1,38	2,40
60		2,40	2,60
90		3.14	2.46
120		3.86	2.40
160		4.86	2.50
200		5.88	2.55
240		6.88	2.50
300		8.38	2.50

Average k_0 (excluding *) = 2.52×10⁻² ml min⁻¹ $k_0 = 2.52 \times 10^{-6}$ mol 1⁻¹ min⁻¹

TABLE 6.2

[Cu SO₄] = 1.25 \times 10⁻³M. [Clycine] = 5.00 \times 10⁻²M [Free Bip.] = 5.00 \times 10⁻³M. [Ru(TII)] = 4.00 \times 10⁻⁶M [Na₂CO₃] = 5.00 \times 10⁻²M. [NaHCO₃] = 8.00 \times 10⁻³M [RCl] = 1.00 \times 10⁻³M. pH = 10.65 and Temp. 30^oC

Time (min.)	Volume of K ₂ G ₁₂ O ₇ (0.50m10 ⁻³ N) in ml	10 ² k
0	0.00	20.40*
\$	1.24	2,20
25	1.48	2,40
40	1.84	2,40
60	2,30	2.30
80	2.74	2,20
1.20	3.66	2.30
1.60	4.62	2,40
200	5.50	2.40
240	6.48	2,20
280	7,36	2,20
320	8.28	2.30

Awerage k_0 (excluding *) = 2.30: 40^{-2} ml min⁻¹ $k_0 \approx 2.30:<math>40^{-6}$ mol l⁻¹ min⁻¹

TABLE GAS

[Gu SO ₄] =	1,25:d0 ⁻³ M,	[Glycine] =	5.00x10 ⁻² M
Pres Bip.	= 5.00x30 ⁻³ M	, [Ru(III)]	= 4.00×10 ⁻⁶ M,
[182,003] =	5.00×10 ⁻² M,	Marico ₃ = 1	10.00×10 ⁻³ M
)0x10 ⁻² N, p	= 10.60 a	nd Temp. 30°C

Time (min.)	Volume of K ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ml	
0	0.00	
5	1,00	20.00*
15	1,20	2,00
25	1,42	2,20
40	1,60	1.74
60	2,06	1,90
80	2,48	2.10
120	3.30	2,00
160	4.08	2,00
200	4,93	2,00
250	5,98	2,20
300	7.00	2,04

Average k_0 (excluding *) = 2.01 x 10^{-2} ml mln⁻¹ $k_0 = 2.01 \times 10^{-6}$ mol 1^{-1} min⁻¹

TABLE 6.4

[Cu SO₄] = 1.25x10⁻³M, [Glycine] = 5.00x10⁻²M [Free Bip.] = 5.00x10⁻³M, [Ru(IXX)] = 4.00x10⁻⁴M [Ne₃CO₃] = 5.00x10⁻²M, [NeNCO₃] = 16.00x10⁻³M [NCI] = 1.00x10⁻³M, pH = 10.45 and Temp. 30^oC

	Volume of K ₂ C ₂ C ₇ (0.50x10 ⁻³ N) in ml	
1383364734	0.00	••
	1.02	20,40
35	1,16	1,40
	1.46	1.30
60	1.82	1.44
100	2,38	1.40
100	3,24	1.43
220	4,09	1.40
	5,22	1.42
300	6,34	1.40
	7,46	1.40

Average & (excluding *) = 1,62 x 10 ml min

PARLE 6.5

$[Cu SO_4] = 1.00 \times 10^{-3} \text{N}, [Alanine] = 5.00 \times 10^{-2} \text{M}$	
[Free Bip.] = 5.00x40 ⁻³ M, [Ru(III)] = 4.00x40 ⁻⁶	М
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaNCO_3] = 4.00 \times 10^{-3} M$	
[KCl] = 1.00x10 ⁻³ M, pH = 10.7 and Temp. 30°C	

94.00	volume of K2 G2 07	
(min.)	(0.50×10 ⁻³ n) in ml	ml/mln
	0.00	
	1,00	20.00*
15	1.16	1.60
3.5	1.34	1.90
45	1.69	1.70
65	2,02	1.70
100	2.62	1.71
140	3.30	1.72
180	4.00	1.75
220	4,70	1.75
200	5,36	1.65

Average k_0 (excluding *) = 1.72 \times 10⁻² ml mln⁻¹ $k_0 + 1.72 \times 10^{-6} \text{ mod 2}^{-1} \text{ mln}^{-2}$

2400 E 6.6

[Cu SO ₄] = 1	L.00x40 N.	Manino] =	5.00::10 ⁻² M
[Free Blp.]	= 5,00×10 ⁻³ H,	Ru(XII)	= 4.00::10 ⁻⁶ M
[Na2CO3] = 1	5.00230 ⁻² 14,	matco ₃] = 8	.00×10 ⁻³ M
[KG1] = 1.00	drio M, gal	= 10.65 a	od remo. 30°c

			of No G-2 0-7	102	Δ :	
	min)	0,50540	n) in mi		ml/min	
		OCCUPACION CONTRACTOR	0.00		***	
	•		1.02		20.40	
	15		1.19		1.60	
	25		1.32		1.40	
	45		1.62		1.50	
	60		2,16		1.54	
•	120		2,76		1.50	
			3.70		1.56	
	240		4.60		1.50	
	300		5.52		1,53	
	360		6,58		1.60	

Average k, (excituding *) = 1.54 = 10 ml min

TABLE 6.7

[Cu SO ₄] = 1.00:40 ⁻³ N,	Alenine = 5.00x10 ⁻² M
[Proc Bip.] = 5.00x40 -3 m.	$[Ru(XII)] = 4.00 \times 10^{-6} M$
[Ne ₂ CO ₃] = 5.00×30 ⁻² M,	$[NeHCO_3] = 10.00 \times 10^{-3} M$
$[KG1] = 1.00 \text{ d} \cdot 0^{-3} \text{ H}, \text{ pH}$	= 10.60 and Temp. 30°C

Sine (miy)	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in M	
	0.00	49900
	1.02	20.40
15	1,16	1,40
35	1.42	1,30
60	1.76	1,36
90	2,16	1,33
130	2.70	1.35
100	3.40	1.40
240	4,18	1,30
300	5.00	1,36
360		1,33
420	6.50	1,30

Average $k_{\rm e}$ (excluding v) = 1.36x10⁻² ml min⁻¹ $k_{\rm e} = 1.35x10^{-6} \, \rm mol \, 2^{-6} \, min^{-6}$

TARLE 6 48

[Cu SO ₄] = 1.00:10 ⁻³ N,	[Alanine] = $5.00 \times 10^{-2} M$
	$M_{\rm M} = 4.00 \times 10^{-6} M$
$[Na_2CO_3] = 5.00 \times 10^{-2} M_{\odot}$	$[NeFiCO_3] = 16.00 \times 10^{-3} M$
[KC1] = 1.00×10 ⁻³ M,	pH = 10.45 and Temp. 30°C

Time (ml.p.)	Volume of K ₂ G ₂ O ₇ (0.50ml0 ⁻³ N) in ml	
0	0.00	
5	1.00	20.00*
	1.10	1.00
35	1.30	1.00
60	1.54	0.96
100	1.92	0.95
1.00	2.50	0.96
2.20	3.10	1.00
2.90	3.66	0.93
360	4.44	0.97
440	5.20	0.95
520	5.92	0,90

Average k_0 (excluding *) = 0.96ct10⁻² ml min⁻¹ $k_0 = 0.96 \times 10^{-6}$ mol 1⁻¹ min⁻¹

20015 6.9

[es so,] =	1.25×10 ⁻³ N,	D-glucose	= 5.00x10 ⁻² M
Free Bip.	= 5.00±10 ⁻³	W II (III	5.00x10 ⁻⁶ M
[He2CO3] =	5.00×10 ⁻² H,	[NeMCO3] =	4.00::10 ⁻³ M
[KC] = 2	.00x10 ⁻³ M,	pH = 10.7	and Temp. 30°C

	Piane min)	Volume of K ₂ G ₂ 0 ₇ (0.50:220 ⁻³ N) in mi	Δ* Δ* Δ*
		0.00	46
	\$	1.02	20.40*
	15	1.70	7.90
4	25	2.58	9.00
	35	3.38	8.00
	45	4,16	7.80
	60	5,34	7.86
	75	6.54	8.00
	90	7.72	7.86
1		8,90	7.96
		10.10	8.00
3		11.30	8,00

Average k_0 (excluding *) = 7.98 x 10^{-2} ml min⁻¹ $k_0 = 7.98 \times 10^{-6}$ mol 1^{-1} min⁻¹

TABLE 6-10

Time (min)	Volume of K ₂ G ₂ O ₇ .50x10 ⁻³ N) in ml	Δ Δ
0	0.00	
5	1.04	20.80
	2.70	7.00
25	2.42	7.20
	3.12	7.00
45	3.32	7.00
	4.38	7.05
75	5.34	7.05
	6.00	7.03
105	7.06	7.05
120	8.14	7.20

Average k_0 (excluding *) = 7.07×10⁻² ml min⁻¹ $k_0 = 7.07 \times 10^{-6}$ mol 3. min⁻²

TABLE 6.11

[Cu so4] = 1.25x10 ⁻³ N, [E	0-glucose = 5.00×10 ⁻² M
[Free Bip.] = $5.00 \times 10^{-3} \text{M}$,	$[I_{R}(III)] = 5.00 d0^{-6} M$
[Na2CO3] = 5.00x40-2M, [Marico ₃] = 10.00×10 ⁻³ M
[KGI] = 2,00m20 ⁻³ H. PH	= 10.60 and Temp. 30°C

0 0.00 1.00 20.00° 1.5 1.64 6.40 2.26 6.20 3.5 2.38 6.20 4.48 6.40 60 4.48 6.40 75 5.42 6.26 90 6.36 6.26 105 7.28 6.13 120 3.24 6.40	Time (mlm.)	Volume of K ₂ G ₂ G ₇ (0.50:40 ⁻³ H) in ml	
1.00 20.00° 15 1.64 6.40 25 2.26 6.20 35 2.88 6.20 45 3.52 6.40 60 4.48 6.40 75 5.42 6.26 90 6.36 6.26		0.00	
1.66 6.20 6.20 6.20 6.20 6.40 6.40 6.40 6.40 6.26 6.26 6.26 6.26 6.26 6.26 6.26 6.2		오른 경험들이 인한 회사를 다 하다 그는 것이다.	20.00
2.26 6.20 3.52 6.40 6.40 75 5.42 6.26 90 6.26 90 6.36 90 6.36 90 6.36 90 6.36 90 6.36 90 6.36		1.64	6-40
		2,26	6.20
	35	2.88	6.20
6.26		3,52	6.40
6.36 6.26 6.33 6.40		4.48	6.40
6.26 7.29 6.13 6.40		5,42	6.26
		6.36	6,26
6.40		7.29	6,13
		3.24	6.40
[- [- [- [- [- [- [- [- [- [-		9.54	6.30

VARIAR GAR

fime (min.)	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ N) in ml	io ² k · · · · · · · · · · · · · · · · · ·
•	0.00	
\$	1.02	20.40 *
25	1.46	4.40
25	1.98	4.20
3.5	2,32	4.40
45	2.74	4.20
60	3.38	4.26
	4,02	4.26
	4.68	4.40
105	5.38	4.66
120	6.06	4.53
	6.76	4.66
	7,44	4.66

Average k_s (excluding *) = 4.42×10⁻² ml min⁻¹ k_s = 4.42 × 10⁻⁶ mol 1⁻⁴ mln⁻¹

TABLE 6.13

	Volume of K2 G2 0,	
(min.)	(0.50×10 ⁻³ n) in ml	ml/min
0	0.00	
5	1.02	20,40*
4	1.98	9.60
	2.92	9.40
	3.86	9.40
	5.20	9.33
65	6.62	9.46
	8.04	9.46
95	9.44	9.33
110	10.86	9.46
125	12.28	9.46

Average k_0 (excluding *) = 9.43×10⁻² ml min⁻¹ $k_0 = 9.43 \times 10^{-6}$ mol 1^{-1} min⁻¹

WWW 6.19

$$[Cu SO_4] = 1.25x10^{-3}N, [D-calactose] = 5.00x10^{-2}N$$
 $[Free Bip.] = 5.00x10^{-3}N, [I_{2}(XIX)] = 5.00x10^{-6}N$
 $[Na_2CO_3] = 5.00x10^{-2}N, [NaHCO_3] = 8.00x10^{-3}N$
 $[KG1] = 2.00x10^{-3}N, pH = 10.65 and Temp. 30^{\circ}C$

Time (min.)	Volume of K ₂ G ₁₂ O ₇ (0.50×10 ⁻³ N) in ml	
	0.00	
5	1.02	20.40*
15	1.88	8.60
25	2.72	9.40
35	3.58	8.60
45	4.42	8.40
60	5.69	8.40
75	6.38	8.00
•	9,12	8.26
205	9,34	8,43
161	10.62	8.53
135	13.98	8.40

Average k_0 (excluding *) = 8.37x10⁻² ml min⁻¹ $k_0 = 8.37x10^{-6} \text{ mol } 1^{-1} \text{ min}^{-1}$

TABLE 6.15

[cu so ₆] =	1,25:40 ⁻³ N,	D-galactose]= 5.00x10 ⁻² H
[Free Blp.	= 5.00×10 ⁻³ M,	[x*(xx)] =	5.00x10-6N
	5.00×10 ⁻² H,	[NeHCO ₃] = 10	.00x10 ⁻³ M
[ECL] = 2.	00:410 ⁻³ 11, pl	= 10.60 and	Temp. 30°C

(mts		10°16
	0.00	
		20.40*
13		7.60
25	2,56	7.80
	3.30	7.40
	4.06	7.60
	5,16	7,33
	6,30	7.60
		7.86
30		7.60
		7,60
,		7.74

Americage $k_{\rm p}$ (excelleding e) = 7.61 \times 10⁻² ml min⁻¹ $k_{\rm p} = 7.68 \times 10^{-6} \, \rm molt \ 3^{-1} \, min^{-2}$

Time (min.)	Volume of K ₂ Cr ₂ O., (0.50x10 ⁻³ N) in ml	
0	0.00	
5	1.02	20.40*
15	1.56	5.40
25	2.09	5.20
35	2.62	5.40
45	3.16	5.40
60	3.94	5.20
73	4.74	5,33
90	5.56	5.46
105	6,38	5.46
120	7.18	5.33
140	8,24	5,30

Average k_0 (excluding *) = 5.35 × 10⁻² ml min⁻¹ k_0 = 5.35 × 10⁻⁶ mal 1⁻¹ min⁻¹ The kinetic observations recorded in tables 6.1 - 6.4 and 4.2, tables 6.5 - 6.8 & 4.7, tables 6.9 - 6.12 & 3.14 and tables 6.13 - 3.16 & 3.20 have been summarised in tables 6.17, 6.18, 6.19 and 6.20 respectively.

TABLE 6.17

$$[Cu SO_4] = 1.25 \times 10^{-3} N, [Glycine] = 5.00 \times 10^{-6} N.$$
 $[Free Sin.] = 5.00 \times 10^{-3} M, [Ru(EII)] = 4.00 \times 10^{-6} M$
 $[Ma_3CO_3] = 5.00 \times 10^{-6} M, [RCI] = 1.00 \times 10^{-3} M$
 $[Rose Sin.] = 3.00 \times 10^{-6} M, [RCI] = 1.00 \times 10^{-3} M$

[MeHCO ₃] 10 ³		Loh]x 10 ⁴	10 ⁶ kg mol 1 ⁻¹ min ⁻¹	10 ml.n ⁻¹
2,00	10.80	6.31	3,20	5.07
4.00	10.70	5.01	2,53	5,03
8.00	10.65	4.46	2,30	5,23
10.00	10,60	3.98	2.01	5.01
16,00	10,45	2.91	1.42	5.05

TABLE 6.19

$$[Cu SO_4] = 1.00 \text{mto}^{-3} \text{N}, [Alemine] = 5.00 \text{mto}^{-2} \text{M}$$
 $[Proc Bip.] = 5.00 \text{mto}^{-3} \text{M}, [Ru(EII)] = 4.00 \text{mto}^{-6} \text{M}$
 $[Ra_2Co_3] = 5.00 \text{mto}^{-2} \text{M}, [RCL] = 1.00 \text{mto}^{-3} \text{M}$

Temo. 30°C

[NeHCO ₃] x 10 ³		[0i] = 10 ⁴	10 ⁶ k _g	nda ⁻¹
2,00	10,80	6.31	2,16	3.42
4.00	10.70	5.01	1,7%	3.40
9,00	10.65	4.46	1,54	3,45
10.00	10.60	3.98	1.38	3.47
16.00	10 -45	2.91	0.96	3-41

Average $k_1 = 3.43 \times 10^{-3} \text{ min}^{-1}$

TABLE 6-19

[Nefeco ₃] = 10 ³			10 ⁶ kg mol 1 ³ d mln ⁴ d	10 ³ k ₁
2,00	10.00	6.31	30.00	1.50
4,00	10.70	5.01	7.98	1,59
8.00	10.65	4.46	7.07	1.58
10.00	10.60	3.98	6.32	1.56
16,00	10.45	2.8	4,43	1.57

Average $k_1 = 1.57 \times 10^{-3} \text{ min}^{-1}$

<u> 20016 6,20</u>

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{M}, [D-galactose}] = 5.00 \times 10^{-2} \text{M}$$
 $[Free Bip.] = 5.00 \times 10^{-3} \text{M}, [Ig(III)] = 5.00 \times 10^{-6} \text{M}$
 $[IM_2CO_3] = 5.00 \times 10^{-3} \text{M}, [NCI] = 2.00 \times 10^{-3} \text{M}$
 $Temp. 30^{\circ}C$

Merco ₃ × 10 ³	wit .	[OHT] x 10 ⁴	nol 1 min-1	nds 3
2.00	10.30	6.31	12.22	2.622
4.00	10.70	5.01	9.43	1.88
8.00	10.65	4.46	8.37	1.87
10.00	10.60	3.98	7.61	1.91
16.00	10,45	2,81	5.35	8.5%

FIG. 6.1: PLOT BETWEEN KS AND [OH] AT 30°C

[CUSO4] = 1.25(A) AND 1.00(B) x10⁻³ M,

[RU(III)] = 4.00×10⁻⁶M, [KCl] = 1.00 ×10⁻³ M,

[FREE BIPYRIDYL] = 5.00×10⁻³M, [Na2(O3] = 5.00×10⁻²M,

[GLYCINE] = 5.00×10⁻²M(A) & [AL ANINE] = 5.00×10⁻²M(B)

FIG. 6.2: PLOT BETWEEN KS AND [OH] AT 30°C [CUSO4] = $1.25 \times 10^{-3} M$, [Ir(III)] = $5.00 \times 10^{-6} M$ [FREE BIPYRIDYL] = $5.00 \times 10^{-3} M$, [KC] = $2.00 \times 10^{-3} M$ [Na2CO3] = $5.00 \times 10^{-2} M$, [SUBSTRATE] = $5.00 \times 10^{-2} M$

tables that on increasing the concentration of sedium bicarbonate the value of all decreases and thus ultimately concentration of Off decreases. Thus on decreasing the [Off], the value of kg also decreases showing thus positive effect of hydroxide ion on reaction rate constant. It is also clear that kg values are in direct propertionality with [Off], which proves first order in hydroxyl ions.

This is, further, confirmed by plotting a graph between k, and [GHT], which gives a straight line passing through origins (Fig. 6.1) and (Fig. 6.2) whose slope is equal average k, value in each case.

On increasing the concentration of sodium bicarbonate the dissociation of sodium carbonate is gradually suppressed. This causes fall in pH and hence decrease in [off] is observed. This explains why [off] is decreased on increasing sodium bicarbonate concentration.

GHAPPER VAL

DETERMINATION OF EFFECT OF ADDITION OF POPASSIUM CHLORIDE ON THE RATE OF OXIDATION OF AMIND ACIDS AND EUGANS EX ALVALINE SOLUTION OF COPPER SULHATE

7 • DETERMINATION OF REFECT OF ADDITION OF FORASSIUM CHLORIDE ON THE RATE OF OXIDATION OF AMINO ACTOS AND SUGARS BY CE(U) IN ALKALINE MEDIA

the rate of oxidation of amino acids viz. glycine and alanine in the presence of alkaline solution of copper sulphate as oxidant and ruthenium(III) chloride as catalyst and on the rate of oxidation of sugars viz. Deglucose and Degalactose catalysed by iridium(III) chloride with copper sulphate as oxidant has been studied by varying the concentration of potassium chloride; under the same experimental conditions. The results of such experiments have been recorded in the following tables in the summarized form at constant ionic strength of the medium.

9830 S 1/A

[KC1] × 10 ³ M	k _a × 10 ⁶ mol 1 ⁻¹ mar ⁻¹
1.00	3.20
2.00	2.04
3.00	2.66
4.00	2,12
5.00	1.76
6.00	1.44
7.50	1.02

20016-149

$$[Cu SO_4] = 1.00 \times 10^{-3} \text{M}, \quad [Alamine] = 5.00 \times 10^{-2} \text{M}$$
 $[Free Bip.] = 5.00 \times 10^{-3} \text{M}, \quad [Ru (IXI)] = 4.00 \times 10^{-4} \text{M}$
 $[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, \quad [NaHCO_3] = 2.00 \times 10^{-3} \text{M}$
 $pH = 10.80 \quad \text{and} \quad \text{Temp.} \quad 30^{\circ}\text{C}$
 $ph = 17.50 \times 10^{-2} \text{M}$

[K:1] x 10 ³ H	k ₀ = 1	o ⁶ mol 1	
1.00		2,36	
2.00		1.82	
3.00		3.64	
4,00		1,36	
5.00		1.00	
6,00		0.72	
8,00		0.26	

A Y A A	[KC1] # 10 ³ M		k ₀ × 10	one later min
	1.00	alama digina and ne sport adjoint della (quantum ne della ne della della della della della della della della d		10.64
	2.00			10.00
	3,00			9.58
	4.00			9.00
	5.00			3.52
	6,00			7.98
	8.00			7.00

PARTS 7,4

[Cu so ₄] = 1,25	x10 ⁻³ N, [D-galectose]	= 5.00×10 ⁻³ M
[Free Sip.] = 5	.00:40 N. [Ig(III)] =	5.00x10-6
[Na ₂ CO ₃] = 5.0	0240 ⁻² M, [MeHCO ₃] = 2.	00x20 ⁻³ M
per = 10.00	and Temp. 30°C	
*	17.50 x 10 ⁻² m	

[KC1] x 10 ³	X	3 , 2.10	6 mol 1-1	
1.00	kurilendagida ala 100 km digunian kuri engangun kuringan kuringan ala kuringan kuringan kuringan kuringan kuri	e de regionale de Lander de region de la destace	12.86	
2.00			12,22	
3.00			11.66	
4.00			11.00	
5.00			10.46	
3.50			10.00	
10.00			8.86	

results of tables 7.1 - 7.4 that in oxidation of each amino acid and each sugar under investigation here the value of kg i.e. sero order rate constant decreases on increasing the concentration of chloride ions which shows that addition of chloride ion has negative effect on the rate of oxidation of reducing amino acids and sugars employed here. This experimental fact has been used while deciding the catalytic species of ruthenium (III) chloride and iridium(III) chloride in the last chapter.

*/////

DETERMINATION OF EFFECT OF VARIATION OF MONIC STRENGTH OF THE MEDIUM ON THE RATE OF OXIDATION OF ANINO ACIDS AND SUGARS BY ALKALINE COPPER SULPHATE 8 • DETERMINATION OF EFFECT OF VARIATION OF IONIC
STRENGTH OF THE MEDIUM ON THE RATE OF CHIDATION
OF AMINO ACIDS AND SUGARS BY ALKALINE COPPER
SULPHATE

In this chapter main aim has been to describe the influence of variation of ionic strength of the medium on reaction velocity constant. The knowledge of effect of variation of ionic strength indicates the type and nature of reactive species involved in the reaction rate determining step. Hence various experiments with varying ionic strengths affected by addition of different amounts of sodium perchlorate have been performed and the results have been summarised in the following tables for oxidation of each substrate.

TABLE 8.1

[NEGO] R 1	0 ² M Ionic	strength ()1)2	nol 1 ⁻¹ min ⁻¹
1.50		17.50	6.16
3.00		19,00	6.52
5.00		21,00	6.76
10,00		26.00	7.86
20,00		36.00	8.72
30.00		46.00	9.56
40.00		56.00	10.62
50.00		66,00	11.76
60.00		76.00	12.66

TABLE 8.2

[Cu SO₄] = 1.25
$$\times$$
10⁻³M, [Alanine] = 10.00 \times 10⁻²M
[Free Bip.] = 5.00 \times 10⁻³M, [Ru (III)] = 4.00 \times 10⁻⁶M
[Ma₂CO₃] = 5.00 \times 10⁻²M, [NeHCO₃] = 2.00 \times 10⁻³M
[RG1] = 1.00 \times 10⁻³M, pH = 10.80 and Temp. 30⁻³C

- daglasing to appropriate	[NaClO ₄] × 10 ² M	Ionic	Strength (M)::40 ²	k _a zlo ⁶ mol 1 ⁻¹ min ⁻¹
	1.50		17.50		4.18
	4,00		20.00		4.90
	8.00		24,00		5.38
	12,00		28.00		6.06
	20.00		36,00		7.18
	30.00		46.00		8,38
	50.00		66.00		10.59
	60 00		76.00		11.48

TABLE 3.3

[Cu SO₄] = 1.25x10⁻³N, [D-glucose] = 5.00x10⁻³N
[Free Sip.] = 5.06x10⁻³N,
$$[i_{2}(III)]$$
 = 5.60x10⁻⁴N
[Na₂CO₃] = 5.00x10⁻³N, [NaHCO₃] = 2.00x10⁻³M
[RCl] = 2.00x10⁻³N, pH = 10.80 and Temp.

[NeCLO ₄] m	: 10 ² Tonic	Strength (pa) x 10 ²	k _p × 10 ⁶ mol 1 ⁻¹ min ⁻¹
1,30		17,50	10.04
3.00		19.00	10.54
5.00		21.00	10.38
19,00		26-00	12.30
20,00		36.00	12.46
30,00		46.00	13.52
40.00		56.00	14.36
50,00		66.00	15.69
60-00		76,00	16,98

END'S ON

	[HeCLO4] ×	10 ² Ionie	strength (u)x1	0 ² k ₅ × 10 ⁶
*************	11			mod 1 min s
	1,50		17.30	12.40
	3-00		29,00	12.82
	5.00		21.00	13.29
	10.00		26.00	13.86
	20,00		36-00	14.66
	30.00		45.00	15,38
	40.00		56.00	16.52
	50.00		66.00	17.46
	60.00		76,00	19.54

It is clear from the data of tables 8.1 - 8.4 that change in ionic strength has positive effect on the rate of exidation of amino acids and sugars by alkaline solution of copper sulphate.

8111V2H1411

DETERMINATION OF EFFECT OF VARIATION OF TEMPERATURE ON VELOCITY CONSTANT OF REACTIONS INVOLVING COPPER SULPHATE AS OXIDANT AND ANIMO ACIDS AND SUGARS AS REDUCING SUBSTANCES TEMPERATURE ON VELOCITY CONSTANT OF
REACTIONS INVOLVING COPPER SULPHATE AS
OXIDANT AND ANTHO ACIDS AND SUGARS AS
REDUCING SUBSTANCES

Oxidation kinetics of various peactions are generally susciptible to change in temperature and the velocity of reactions increase on increasing the temperature. Resping this aim in mind, the kinetic results at temperatures 35, 40, and 45°C have been collected as kinetic results at 30°C have already been reported in previous chapters. The results at different temperatures are given in the following tables for oxidation of each amino acid and each sugar employed in the present investigation.

Time	Volume of No City Og	30 ² kg =
(mi,n.)	(0,50x40 ⁻³ N) in ml	ml/mtn
0	0.00	* • • • • • • • • • • • • • • • • • • •
	1.02	20,40
1.6	1.92	9,00
25	2.84	9.20
35	3.72	8.40
45	4.62	9,00
60	6,02	9,33
75	7.38	9.06
90	8.76	9,20
110	10.56	9.00

Average ko (excluding *) = 9.27×10^{-2} ml/min kg = 9.17×10^{-6} mol 1^{-2} min⁻²

77.537.3 9.7.

$$[Cu SO_4] = 1.25 \text{ tio}^{-3} \text{ M.} [Glycine] = 10.00 \text{ M}$$
 $[Free Pip.] = 5.00 \times 10^{-3} \text{ M.} [Ru(IXI)] = 4.00 \times 10^{-3} \text{ M}$
 $[Ne_2CO_3] = 5.00 \times 10^{-3} \text{ M.} [NeRCO_3] = 1.00 \times 10^{-3} \text{ M}$
 $[RC1] = 1.00 \times 10^{-3} \text{ M.} \text{ pH} = 10.30, pt = 17.50 \times 10^{-3} \text{ M}$
 $[RC1] = 1.00 \times 10^{-3} \text{ M.} \text{ pH} = 10.30, pt = 17.50 \times 10^{-3} \text{ M}$

	Volume of K2 G2 6.	∆ △
(ml.n.)	(0.50x10 ⁻³ x) in mi	mi/min
0	0.00	*
	1,04	20.80*
10	1.76	14,00
	2,42	13.60
20	3,08	13,20
30	4,38	13,00
40	5.74	13,60
	7.10	13.60
60	8.44	13.40
	9.80	13.60
80	11,14	13.40

Average k_0 (excluding *) = 13.49 × 10⁻² ml/min $k_0 = 13.49 \times 10^{-6}$ mol 1⁻¹ min⁻¹

BABLO 943

$$[Cu SO_4] = 1.25 \times 10^{-3} \text{N}, [Glycine] = 10.00 \times 10^{-2} \text{M}$$
 $[Pree Bio.] = 5.00 \times 10^{-3} \text{M}, [Ru(XIX)] = 6.00 \times 10^{-6} \text{M}$
 $[Na_2CO_3] = 5.00 \times 10^{-2} \text{M}, [NaHEO_3] = 2.00 \times 10^{-3} \text{M}$
 $[RC1] = 1.00 \times 10^{-3} \text{M}, pH = 10.80, pl = 17.50 \times 10^{-2} \text{M}$
 $[RC1] = 1.00 \times 10^{-3} \text{M}, pH = 10.80, pl = 17.50 \times 10^{-2} \text{M}$

	Volume of K2 G2 07	10 10 10 10 10 10 10 10 10 10 10 10 10 1
(min.)	(0.50×10 ⁻³ N) in ml	ml/mlj
0	0,00	
	2.02	20.40
2.0	1,94	13,40
25	2,94	20.00
20	3.90	19.20
25	4.84	10,90
	5.80	19.20
	7,76	19,60
	9.70	19.40
60		19,60

average k_0 (excluding *) = 19.28 × 10^{-2} ml/min k_0 = 19.28 × 10^{-6} mol 1^{-1} min⁻¹

[Cu SO₄] = 1.25×10⁻³ M, [Alamine] = 10.00×10⁻² M
[Free Bip.] = 5.00×10⁻³ M, [Ru(III)] = 4.00×10⁻⁶ M
[Na₂CO₃] = 5.00×10⁻² M, [NaHCO₃] = 2.00×10⁻³ M
[NC3] = 1.00×10⁻³ M, pH = 10.30,
$$\mu$$
 = 17.50×10⁻² M
Temperature 35°C

Time (min.)	Volume of R ₂ G ₂ O ₇ (0.50×10 ⁻³ N) in ma	10 ² h ₀ = △ * △ * △ * △ * ·
0	0.00	
	1.02	20.40
15	1.60	5.80
25		5.60
35	2.76	6.00
50	3,64	5.86
6.5	4.50	5.73
	5,40	6.00
200	6.36	5.80
120	7.74	5.90
140	8,90	5.80

1.6 21822

[Cu SO₄] = 1.25×10⁻³ N, [Alemine] = 10.00×10⁻² M
[Free Bip.] = 5.00×10⁻³ M, [Ru(XXX)] = 4.00×10⁻⁶ M
[Na₂CO₃] = 5.00×10⁻² M, [NaHCO₃] = 2.00×10⁻³ M
[KCl] = 1.00×10⁻³ M, pH = 10.80,
$$\mu$$
 = 17.50×10⁻² M
Temperature 40⁻³ C

Time (min,)	Volume of K ₂ G ₂ G ₇ (0.50ml) in ml	
0	0.00	
	3.02	20-40
	1.90	8,90
25	2.90	9.00
	3.66	8.60
43	4.54	8.80
	5.42	8.80
65	6,32	9.00
75	7.24	9.20
90	8.58	8.93
	9.94	9.06

Average k_0 (excluding *) = 8.91 x 10⁻² ml/min⁻¹ k_0 = 8.91 x 10⁻⁶ mol 1⁻¹ min⁻¹

MADLE 9.6

$$[Cu SO_4] = 1.29 \text{mto}^{-3} \text{N}, [Alamine] = 10.00 \text{mto}^{-2} \text{M}$$
 $[Free Bip.] = 5.00 \text{mto}^{-3} \text{M}, [Ru(XIX)] = 4.00 \text{mto}^{-4} \text{M}$
 $[Ra_2CO_3] = 5.00 \text{mto}^{-2} \text{M}, [NaHCO_3] = 2.00 \text{mto}^{-3} \text{M}$
 $[RC1] = 1.00 \text{mto}^{-3} \text{M}, pH = 10.80, pl = 17.50 \text{mto}^{-2} \text{M}$
Tempo rature 45°C

Time (min.)	volume of R ₂ Gr ₂ O ₇ (0.50mMo ⁻³ N) in mi	
0	0.00	***
	1.02	20,40"
3.0	174	14.40
30	3,36	13 .60
30	4.30	13.40
40	5.36	13,60
50	7.18	13,20
60	8.30	13,20
70	9.86	13,60
80	11.,20	13.40

Average k_0 (excluding *) = 13.55 \pm 10⁻² ml/min $k_0 = 13.55 \pm 10^{-6}$ mol 1⁻¹ min⁻¹

100 E 100 E

$$[Cu SO_{a}] = 1.25 \times 10^{-9} N, [D-glucose] = 5.00 \times 10^{-9} M$$
 $[Free Bip] = 5.00 \times 10^{-9} M, [E_{a}(III)] = 5.00 \times 10^{-9} M$
 $[Na_{a}CO_{3}] = 5.00 \times 10^{-9} M, [NaHCO_{a}] = 2.00 \times 10^{-9} M$
 $[RG3] = 2.00 \times 10^{-9} M, [RG3] = 10.80, R = 17.50 \times 10^{-9} M$
Temperature 35°C

21m	Volume of K ₂ G ₂ O ₇ (0.50x10 ⁻³ n) in ml	302	
0	0.00		•
5	1.00		20,00
10	1.90		16,00
15	2,56		15,20
20	3.34		15.60
25	4.14		26,00
30	4.90		15.60
40	6.44		15-40
50	3.04		16.00
60	9.68		15,80

Average k_0 (excluding 2 *) = 15.70×10⁻² mL/min k_0 = 15.70×10⁻⁶ mol⁻¹ min⁻¹

EADLS 9.0

[Cu SO₄] = 1.25x10⁻³M, [D-glucose] = 5.00x10⁻³M
[Free Blp.] = 5.00x10⁻³M, [
$$x_{B}(xxx)$$
] = 5.00x10⁻³M
[Na₂CO₃] = 5.00x10⁻³M, [NeFCO₃] = 2.00x10⁻³M
[NC1] = 2.00x10⁻³M, y_{H} = 10.50. y_{L} = 17.50x10⁻³M

Time (mig.)	Volume of R ₂ G ₂ 0, (0.50x10 ⁻³ x) in mi			
•	0.00			
5	1.02	20,40*		
3.0	2,20	24-00		
1	3,44	24-90		
20	4,66	24,40		
25	5.88	24-40		
	7.08	24.00		
35	9,28	24-00		
40	9.50	24.40		
45	10.74	24.90		

Average k_0 (excluding *) = 24.35x10⁻² ml mln⁻¹ $k_0 = 24.35x10^{-6}$ mol 1⁻² min⁻²

(4.5 a) (4.5 a)

[Cu SO₆] = 1.25×10⁻³ H, [D-01ucose] = 5.00×10⁻³ H
[Free Bip.] = 5.00×10⁻³ H. [I₂(XII)] = 5.00×10⁻³ H
[Na₂CO₃] = 5.00×10⁻³ H. [NaHCg] = 2.00×10⁻³ H
[KCI] = 2.00×10⁻³ H. pH = 10.80,
$$\mu$$
 = 17.50×10⁻³ H
Tompo Futuro 45°C

Time (min.)	Volume of K ₂ G ₁₂ O ₁₇ (0.50:40.0.31) in mi	<u>△</u> 3.
	0.00	
	1.00	20.00
	2.60	33.60
	4.38	34.00
	6.04	33,20
	7.68	32.80
80	9.36	33.60
	11.00	32.90
38	12.02	34.00

Average k_0 (excluding *) = 33.40x10⁻² ml/mln k_0 = 33.40x10⁻⁶ mol 1⁻¹ min⁻¹

SEED 9.10

[cu so_a] = 1.25x10⁻³ N, [D-galactose] = 5.00x10⁻³ M
[Free Bip.] = 5.00x10⁻³ M, [X₂(XII)] = 1.50x10⁻³ M
[No₂CO₃] = 5.00x10⁻³ M, [NoHCO₃] = 2.00x10⁻³ M
[RC1] = 2.00x10⁻³ M, pH = 13.80,
$$\mu$$
 = 17.50x10⁻³ M

Time (min.)	Volume of K ₂ G ₂ C ₇ (0.50x10 ⁻³ N) in ml	<u>.</u> △
0	0.00	
	1.02	20.40*
15	1.56	5.40
25	2.12	5.60
35	2.70	5.80
45	3.26	5.60
65	4.38	5.00
	5.52	5.70
	6.92	5.00
340	8.54	5.40

Average k, (excluding *) = 5.59×10^{-2} ml/min k, = 5.59×10^{-6} mol 1^{-1} min⁻¹

Time (min.)	Volume of R ₂ G ₂ 0, (0.502:10 ⁻³ H) in ml	
0	0.400	
8	1,02	20.40*
25	1.92	9.00
25	2.84	9.20
85	3.72	8480
45	4.62	9.00
60	6.62	9,33
78	7,38	9.06
90	8,76	9.20
33.0	10.56	9,00
130	12,32	8.80

Average k_0 (excluding *) = 9.04 × 10⁻² ml/min $k_0 = 9.04 \times 10^{-6}$ mol 1⁻¹ mlm⁻¹

2001S 9,12

[Cu SO₄] = 1.25×10⁻³N, [D-galactose] = 5.00×10⁻³N
[Free Bip.] = 5.00×10⁻³M, [I₂(III)] = 1.50×10⁻⁶M
[KCl] = 2.00×10⁻³M, [Na₂CO₃] = 5.00×10⁻³M
[NaHCO₃] = 2.00×10⁻³M, pH = 10.8,
$$\mu$$
 = 17.50×10⁻³M
Temperature 45°C

Time (mln.)	Volume of K ₂ G ₂ 0 ₇ 30 (0.50:40 ⁻³ N) in ml	
	0.00	
	3.00	20.00*
10	1.00	16.00
15	2.62	16.40
20	3.40	15.60
25	4.20	16.00
49	6.68	16.53
	9.03	16,00
	11.50	16,13

Average k_0 (excluding *) = 16.09x10⁻² ml/min $k_0 = 16.09x10^{-6}$ mol 1⁻¹ min⁻¹

The results of tables 9.1 - 9.3 and table 3.2, tables 9.4 - 9.6 & table 3.8, tables 9.7 - 9.9 & table 3.14 and tables 9.10 - 9.12 & table 5.16 have been summarised in tables 9.13, 9.14, 9.15 and 9.16 respectively.

TABLE 9.51

$[\text{Cu so}_4] = 1.25 \text{ do}^{-3} \text{M}, [\text{Glycine}] = 10.00 \text{ do}^{-2} \text{M}$	
[Free Bip.] = 5.00x10 ⁻³ M, [Ru(III)] = 5.00x10 ⁻⁶ M	
$[Na_2CO_3] = 5.00 \times 10^{-2} M$, $[NaNCO_3] = 2.00 \times 10^{-3} M$	
[RC1] = 1.00×10 ⁻³ M, pH = 10.8 and M = 17.50×10 ⁻² M	Alandi.

			2.06	
° c		es1. 3.		
30			6.19	
35			9.17	
40			13.49	
48			19,28	

Cable 9.14

[Cu so,] = 1,25mle ⁻³ n,	[Alonino] = 10.00x10 ⁻² M
[Free Bio.] = 5.00x10 ⁻³ M,	[Ru(III)]= 4.00×10 ⁻⁶ M
[Na ₂ CO ₃] = 5.00240 ⁻² N,	[NaRCO ₃] = 2.00:230 ⁻³ M
[KC1] = 1.00x10 ⁻³ H,	pH = 10.8 and
ja = 17.50::10 ⁻²)	

			(2013)		X _B X	106	med 1 ⁻³	m3.23	
		Q E							
,		20					4.37		
		35					5.80		
		40					8.91		
		45					13,55		

33,40

. . 4. 4

3) BLEE 9.15

$$[Cu SO_A] = 1.25 \times 10^{15} M, [D-glucose] = 5.00 \times 10^{-15} M$$
 $[Ruse Bir_a] = 5.00 \times 10^{-15} M, [I_{2}(NII)] = 5.00 \times 10^{-15} M$
 $[Na_2CO_3] = 5.00 \times 10^{-2} M, [NaHCO_3] = 2.00 \times 10^{-15} M$
 $[NCI] = 2.00 \times 10^{-15} M, NII = 10.30 and$

Temperature		10 ⁶	mel 1 ⁻¹	min ⁻¹
°c				
30			10.00	
35			15.70	
40			24,35	

45

FIG. 9.1: PLOT BETWEEN logks AND (1/T) [CUSO4]=1.25×10-7, [GLYCINE]=10.00×10-2(A)M, [Ru(III)]=5.00×10-M(A) [ALANINE]=10.00×10-(B)M, [Ru(III)]=4.00×10-M(B), p^{H} 10.80 [Na2CO3]=5.00×10-M, [NaHCO3]=2.00×10-M, [KCl]=1.00×10-M [Free BIPYRIDYL] = 5.00×10-3M, $M = 17.50\times10^{-2}M$

FIG.9.2: PLOT BETWEEN LOGKS AND (1/T)

[CUSO4]= 1-25 ×10³N, [SUBSTRATE] = 5.00×10³ (A → D-GLUCOSE)

AND B→ D-GALACTOSE), [IV(III)] = 5.00 ×10⁶M, M = 17.50×10⁶M

[Na₂CO₃] = 5.00×10⁷M, [NaHCO₃] = 2.00×10³M, pH = 10.80

[FREE BIPYRIDYL] = 5.00×10³M, [KC] = 2.00×10³M

Walter Shift

Tempe rature	lt _E	21.	10 [©]	1101	1	3 ⁻¹	
•					OS PROPERTY.		
30				3,60			
35				5.59			
40				9.04			
45				16.0)		

The results of tables 9.13, 9.14, 9.15 and table 9.16 have been reproduced graphically. A straight line is obtained on plotting log k_s against (1/p). The slape of the line gives the value equal to - \triangle E/2.03R. Thus from the slope (Fig. 9.1A, 9.1B, 9.2A and 9.2B) the value of \triangle E i.e. energy of activation is calculated. The value of \triangle E for the oxidation of glycine, alamine, D-glucose and D-galactose was found to be 14.66, 16.62, 15.26 and 18.32 K cal/mol, respectively.

DISCUSSION AND INTERPRETACION

OF EXPERIMENTAL RESULTS

10 1

This chapter contains the summarised results obtained in the studies of exidation kinetics involving copper sulphate as exident in the presence of 2,2° - bipyridyl and amino acids wis, discine and alamine and sugars vis. D-glucose and D-galactose as reducing materials in the presence of HegCo, and HesCo, buffer solution using Ru(III) chloride and iridium(III) chloride as homogeneous catalyst in oxidation of amino acids and sugars, respectively. These summarised data have been, further, analytically interpreted to elucidate the reaction schemes for the exidation of amino acids and sugars. The gate law has been, thereafter, derived on the basis of proposed reaction steps. In the following section summarised results have been noted in exidation of glycine, alenine, D-glucose and D-galactose by copper sulphate.

10.1 . SUMMARY OF KINETIC RESULES

The following kinetic observations have been noted in Ru(III) catalysed oxidation of glycine and alanine and Ir(III) catalysed exidation of D-glucose and D-galactome by alkaline solution of copper sulphase.

- (1) All the reactions have been found to follow sero-order kinetics in copper sulphate.
- (2) The order of the meaction with respect to all substrates i.e. glycine, elanine, D-glucose and D-galactose is one.
- (3) First order dependence on hydroxide concentration in all cases has been observed.
- (4) In oxidation of glycine and alanine first order kinetics with respect to ruthenium(III)
 chloride has been observed. In oxidation of
 D-glucose and D-galactose also first-order
 dependence on iridium(III) chloride concertration has been observed.
- (5) Successive addition of potassium chloride
 in oxidation of all the substrates decreased
 their oxidation rates, showing thus decreasing

effect of chloride ions on oxidation of all the substrates.

- (6) Ionic strength variation indicated positive effect on the greation rate.
- (7) Increase in temperature increased the velocity constant in all cases significantly showing thus marked effect of temperature variation.

10.2 • REACTIVE SECRES OF RUTHENIUM (III) CHARIDE IN OXIDATION OF AMINO ACIDS BY ALKALINE COPPER SULPHANE

It has been observed experimentally that on increasing the concentration of potassium chloride the value of rate constant degreeses in oxidation of both amino acids i.e. glycine and alamine by alkaline solution of copper sulphate. The degreesing effect of added chloride ions on reaction rate suggests that the following equilibrium exists, and the equilibrium mentioned here has tendency to shift

to right direction. Thus either [RuCl_g] or

[RuCl_gH₂O] may be taken as catalytic species. When

[RuCl_gH₂O] is taken as reactive species, the rate law

requires positive effect of chloride ions contrary

to the observed negative effect Hense it cannot be

taken as reactive species [RuCl_g,H₂O] when

assumed a reactive species, it shows negative effect

of chloride ions and hence [RuCl_g,H₂O] is the

real catalytic species of ruthenium(IXX) chloride.

10.3 * BEACTIVE SPECIES OF IRIDIUM(XIX) CHLORIDE IN OXIDATION OF SUGARS BY ALKALINE SOLUTION OF COPPER SULPHAGE

D-glucose and D-galactose by alkaline copper sulphate catalysed by iridium(III) chloride in the presence of various amounts of potassium chloride shows that on increasingh chloride ions the rate constant decreases. Thus decreasing effect of chloride ions suggests the following equilibrium(1) to exist which has bendency to move to right direction².

Thus association property of chloride ions with
\[\begin{align*} \begin{align*} & \text{to remote. This indicates that } \\ \begin{align*} & \text{cannot be assumed to be reaction species } \\ & \text{indiam(III) chloride because when rate law is derived on its basis, the rate law requires positive effect of chloride ions contrary to the observed regative effect of chloride ions on the reaction rate Hence the next choice is \[\begin{align*} & \begin{align*} & \begin{align*} & \begin{align*} & \begin{align*} & \text{choice is } & \begin{align*} & \begin{align*} & \begin{align*} & \begin{align*} & \text{choice is } & \ext{gath} & \begin{align*} & \begin{alig

ions on rate, Hence [I_GI_S H_0] is the meal catalytic species. Although earlier workers have also reported some different reactive species of iridium(III) chloride but those species are not conforming to the observed kinetics data here.

19.4 * MECHANISM OF CAUDATION OF AMINO ACIDS BY ALKALYNE COPPER SULPHARE CAPALYSED BY Ru(III) CHIORIDE

The following reaction steps are suggested for the title reactions on the basis of kinetic investigations carried out in previous chapters.

Eero-order dependence on copper sulphate suggests that Cu(XI) is involved in a fast step after slow and rate determining step.

$$\begin{bmatrix} a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_$$

where forward reaction of step (3) is slow and rate determining step.

$$C_3 + Cu(II)^* + H_20 - Cu(I)^* + Products + [RuCl_3H_20]^2 - (2v)$$

where AA is amino acid and AA" is its anion, $[Cu(x)^*] = [Cu(x)_2] \quad and [Cu(x)^*] = [Cu(x)_2]$

Now the rate of the reaction can be expressed in terms of rate of loss of $[Cu(II)]^{\frac{1}{2}}$ with the help of above reaction steps as given by expression (1)

The total concentration of muthenium (E I) chloride i.e. [Ru(III)] may be written as eqn (2).

$$\left[\operatorname{Ru}(\mathbf{z}\mathbf{z}\mathbf{z})\right]_{q} + \left[\mathbf{c}_{q}\right] + \left[\mathbf{c}_{q}\right] + \left[\mathbf{c}_{q}\right] \qquad \cdots \qquad (2)$$

From Step (11) we have

From Step (III) we have

where
$$K_3 = k_3/k_{-3}$$
 and $K_3 = K_3/[H_20]$

On substituting the value of $[C_1]$ and $[C_3]$ from eqns (3) and (4) respectively in eqn (2) we have eqn (5)

$$[8m(XII)] = \frac{[c_3][c_3]}{r_3} + [c_3] + r_3 [c_3][AA]$$

or
$$K_2$$
 [Ru(XII)] = [C₂] [Cl⁺]+ K_2 + K_2 K_3 [AN⁺]

$$C = \begin{bmatrix} C_3 \end{bmatrix} = \begin{bmatrix} K_1 & \begin{bmatrix} Rm(XXX) \end{bmatrix} \\ \begin{bmatrix} C_3 \end{bmatrix} + K_2 & \begin{pmatrix} 1 + K_3 & \begin{bmatrix} MA^{-1} \end{bmatrix} \end{pmatrix}$$
(5)

By comparing eqns (1) and (5) we have

From step (1) we have

*** (7)

where K * K/[H20]

On substituting [AA] value from eqn (7) in eqn(6)

Further on assuming 1 $>> K_3$ K_4 AA CH^* the eqn(8) may be written as eqn (9) in the light of above assumption

The rate law (9) fully explains all the observed kinetics in oxidation of clycine and alanine by alkaline copper sulphate.

10.5 * MECHANISM OF OXIDATION OF SUGARS BY ALKALINE COPPER SULPHATE CATALYSED BY IRIDIUM (III) CHLORIDE

given in section 10.1 the following reaction path is suggested for the exidation of sugars viz.

D-glucese and D-galactose by alkaline copper sulphate. It is well known that, in the presence of alkali, reducing sugars undergo a tautomeric change through the formation of an intermediate enadiol anion, since in the present case reaction rate is directly proportional to the [OH*] hence it is the enadiol anion which after interaction with iridium(XII) chloride species forms an intermediate which is being fast exidised by [Cu(Bip)2*] giving the final product and soluble [Cu(Bip)2*]. Hence the reaction scheme is given as following steps.

where forward meaction of step (iii) is slow step.

The rate of the reaction can be written in terms of rate of loss of [Cu(III)] by eqn (1) where [Cu(II)] = [Cu(Bip)2]

The total concentration of iridium(III) chloride i.e.

[Ig(III)] may be written as

$$[x_{2}(xxx)] = [c_{2}] + [c_{2}] + [c_{3}]$$
 ... (2)

Now from step (11) we have

... (4)

or
$$[c_1] = \frac{[c_2][c_2^+]}{c_2^+}$$

Also from step (111)

On substituting the value of $[C_1]$ and $[C_3]$ from eqns (3) and (4) respectively in eqn (2) we have eqn(5).

$$\begin{bmatrix} \mathbf{z}_{\bullet} & (\mathbf{n} \, \mathbf{r}) \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{\bullet} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{\bullet} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{\bullet} \end{bmatrix} + \begin{bmatrix} \mathbf{c}_$$

or
$$[\mathbf{I}_{\mathbf{x}}(\mathbf{x}\mathbf{x})] = [\mathbf{c}_{\mathbf{x}}] \frac{[\mathbf{c}_{\mathbf{x}}]}{\mathbf{x}} + \mathbf{1} + \mathbf{x}_{\mathbf{x}} [\mathbf{s}]$$

... (7)

By comparing eqns (1) and (5) we have

From step (1) we have

Now from eqns (6) and (7) we have eqn (8).

where
$$K_1 = K_1/[H_10]$$

Further on assuming $N_1 > N_2 = N_3/[H_10]$

eqn (8) may be written as eqn (9)

RESPRESE NOR

- 1. J. Helpern, B.R. Jemes, s J. Am. Chem. Soc. 33.
 and A.L. W. Kemp. 4097 (1961).
- 2. J.F.Harrod, S.C.Locone : Can. J. Chem. 39, 1372 (1961).
 and J.Helpern
- 3. G.Gopalkrishnan, B.R.Rai : Indian J. Chem. 198, 293 (1980) and N.Venkatasubramanian
- 4. J.C.Chang and C.S.Garner : Inorg. Chem. 4, 209 (1965) .
- 5. P.A. Cotton and a "Advanced Inorganic Chemistry"
 G. Wilkinson Willey Eastern Ltd., New Delhi
- 6. A.J.P. Domingos, A.M.T.S. b. J. Inorg. Nucl. Chem. 21.

 Domingos and J.M.P. 2563 (1969).

 Gabrel.
- 7. V.I. Kravtov and G.M. 1 Russ. J. Inorg. Chem. 9,552
 Petrova (1964).
- 8. A. Poulsen and C.S.Garner : J.Am. Chem. Soc. <u>84</u>, 2032 (1962).