Statistical Estimation in Algebraically Structured Models

Pan Jing Bin

Final Year Project Midterm Presentation

Outline

- Introduction to Statistical Estimation
- 2 Algebraically Structured Models
- 3 Kullback-Leibler Divergence and Moment Tensors
- 4 Universal Upper and Lower Bounds
- 5 Multi-reference Alignment

General setting: Let P be an **unknown** probability distribution on a sample space Ω . Let X_1, X_2, \dots, X_n be samples that are drawn independently and randomly from Ω according to the probability distribution P.

General setting: Let P be an **unknown** probability distribution on a sample space Ω . Let X_1, X_2, \dots, X_n be samples that are drawn independently and randomly from Ω according to the probability distribution P.

Problem: How to accurately recover the probability distribution P from the samples $X_1, X_2 \cdots, X_n$?

General setting: Let P be an **unknown** probability distribution on a sample space Ω . Let X_1, X_2, \dots, X_n be samples that are drawn independently and randomly from Ω according to the probability distribution P.

Problem: How to accurately recover the probability distribution P from the samples X_1, X_2, \dots, X_n ?

Unrestricted hypothesis space: The space of all probability distributions on Ω is huge!

General setting: Let P be an **unknown** probability distribution on a sample space Ω . Let X_1, X_2, \dots, X_n be samples that are drawn independently and randomly from Ω according to the probability distribution P.

Problem: How to accurately recover the probability distribution P from the samples $X_1, X_2 \cdots, X_n$?

Unrestricted hypothesis space: The space of all probability distributions on Ω is huge!

Restricted hypothesis space: In real world statistical estimation, we already have a rough idea of what the probability distribution P should look like.

Final exam for a large course (\sim 400 students):

Final exam for a large course (\sim 400 students):

The distribution is expected to be approximately normal.

The normal distribution is completely determined by its **mean** and **variance**.

The normal distribution is completely determined by its **mean** and **variance**.

Finding the "best fit" curve on 400 samples is now simply an optimization problem in two parameters.

General setting: Let $\theta \in \mathbb{R}^d$ be an **unknown** vector. Consider two types of corruptions on θ :

$$P_{\theta} \sim G\theta + \xi \tag{1}$$

General setting: Let $\theta \in \mathbb{R}^d$ be an **unknown** vector. Consider two types of corruptions on θ :

$$P_{\theta} \sim G\theta + \xi$$
 (1)

• Additive Gaussian noise:

$$\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d).$$

Used to model many small, independent sources of randomness.

General setting: Let $\theta \in \mathbb{R}^d$ be an **unknown** vector. Consider two types of corruptions on θ :

$$P_{\theta} \sim G\theta + \xi \tag{1}$$

• Additive Gaussian noise:

$$\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d).$$

Used to model many small, independent sources of randomness.

2 Random rotation: G is drawn **uniformly** at random from a compact subgroup G of the orthogonal group O(d) given by

$$O(d) := \left\{ oldsymbol{A} \in \mathsf{Mat}_{d \times d}(\mathbb{R}) \; : \; oldsymbol{A} oldsymbol{A}^T = oldsymbol{I}_d = oldsymbol{A}^T oldsymbol{A}
ight\}.$$

General setting: Let $\theta \in \mathbb{R}^d$ be an **unknown** vector. Consider two types of corruptions on θ :

$$P_{\theta} \sim G\theta + \xi \tag{1}$$

Additive Gaussian noise:

$$\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d).$$

Used to model many small, independent sources of randomness.

2 Random rotation: G is drawn **uniformly** at random from a compact subgroup G of the orthogonal group O(d) given by

$$O(d) := \{ \boldsymbol{A} \in \mathsf{Mat}_{d \times d}(\mathbb{R}) : \boldsymbol{A} \boldsymbol{A}^T = \boldsymbol{I}_d = \boldsymbol{A}^T \boldsymbol{A} \}.$$

Motivation: Image reconstruction (computer vision), molecule structure determination (physics, chemistry), etc.

General setting: Let $\theta \in \mathbb{R}^d$ be an **unknown** vector. Consider two types of corruptions on θ :

$$P_{\theta} \sim G\theta + \xi \tag{1}$$

• Additive Gaussian noise:

$$\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d).$$

Used to model many small, independent sources of randomness.

② Random rotation: G is drawn **uniformly** at random from a compact subgroup G of the orthogonal group O(d) given by

$$O(d) := \{ \boldsymbol{A} \in \mathsf{Mat}_{d \times d}(\mathbb{R}) : \boldsymbol{A} \boldsymbol{A}^T = \boldsymbol{I}_d = \boldsymbol{A}^T \boldsymbol{A} \}.$$

Motivation: Image reconstruction (computer vision), molecule structure determination (physics, chemistry), etc.

Given independent samples Y_1, \dots, Y_n drawn from \mathbb{R}^d according to (1), we want to recover the vector θ . This setup is known as an **algebraically** structured model

Problem Setup:

$$Y_i = G\theta + \xi$$

where $\theta \in \mathbb{R}^d$, $G \in \mathcal{G} \subseteq O(d)$ and $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$.

Additional assumption: The observations Y_i are **noisy** (i.e. $\|\theta\|^2/\sigma^2$ is low) and precise estimates are **difficult**.

Problem Setup:

$$Y_i = G\theta + \xi$$

where $\theta \in \mathbb{R}^d$, $G \in \mathcal{G} \subseteq O(d)$ and $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$.

Additional assumption: The observations Y_i are **noisy** (i.e. $\|\theta\|^2/\sigma^2$ is low) and precise estimates are **difficult**.

But the **noise level** σ can be **decreased** with improvements in technology.

Problem Setup:

$$Y_i = G\theta + \xi$$

where $\theta \in \mathbb{R}^d$, $G \in \mathcal{G} \subseteq O(d)$ and $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$.

Additional assumption: The observations Y_i are **noisy** (i.e. $\|\theta\|^2/\sigma^2$ is low) and precise estimates are **difficult**.

But the **noise level** σ can be **decreased** with improvements in technology.

Problem of interest: How does the **performance** (e.g. rate of convergence) of the algorithm depend on σ ?

Problem Setup:

$$Y_i = G\theta + \xi$$

where $\theta \in \mathbb{R}^d$, $G \in \mathcal{G} \subseteq O(d)$ and $\xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_d)$.

Additional assumption: The observations Y_i are **noisy** (i.e. $\|\theta\|^2/\sigma^2$ is low) and precise estimates are **difficult**.

But the **noise level** σ can be **decreased** with improvements in technology.

Problem of interest: How does the **performance** (e.g. rate of convergence) of the algorithm depend on σ ?

To build an abstract framework, we first need some new mathematical tools.

Each vector $\theta \in \mathbb{R}^d$ defines a corresponding **probability distribution** P_{θ} according to

$$G\theta + \xi$$
.

If two vectors θ and ϕ define similar probability distributions, then we expect algorithms to have a hard time distinguishing between them (and vice versa).

Each vector $\theta \in \mathbb{R}^d$ defines a corresponding **probability distribution** P_{θ} according to

$$G\theta + \xi$$
.

If two vectors θ and ϕ define similar probability distributions, then we expect algorithms to have a hard time distinguishing between them (and vice versa).

Question: How to mathematically quantify "the level of similarity" between two probability distributions?

Each vector $\theta \in \mathbb{R}^d$ defines a corresponding **probability distribution** P_{θ} according to

$$G\theta + \xi$$
.

If two vectors θ and ϕ define similar probability distributions, then we expect algorithms to have a hard time distinguishing between them (and vice versa).

Question: How to mathematically quantify "the level of similarity" between two probability distributions?

Answer: Statistical divergences. The **Kullback-Leibler Divergence** between two probability distributions P_{θ} and P_{ϕ} (with densities f_{θ} and f_{ϕ} respectively) is defined to be

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

Two preliminary observations:

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

Two preliminary observations:

② Otherwise,
$$D(P_{\theta} \parallel P_{\phi}) > 0$$
;

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

Two preliminary observations:

- ② Otherwise, $D(P_{\theta} \parallel P_{\phi}) > 0$;

The distribution P_{θ} represents the **true** distribution and P_{ϕ} represents another probability distribution. In general, the **larger** the KL-divergence, the **easier** it is to distinguish between the two distributions.

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

Two preliminary observations:

- ② Otherwise, $D(P_{\theta} \parallel P_{\phi}) > 0$;

The distribution P_{θ} represents the **true** distribution and P_{ϕ} represents another probability distribution. In general, the **larger** the KL-divergence, the **easier** it is to distinguish between the two distributions.

The KL-divergence has deep connections in many different areas (e.g. information theory, machine learning etc).

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

Two preliminary observations:

- ② Otherwise, $D(P_{\theta} \parallel P_{\phi}) > 0$;

The distribution P_{θ} represents the **true** distribution and P_{ϕ} represents another probability distribution. In general, the **larger** the KL-divergence, the **easier** it is to distinguish between the two distributions.

The KL-divergence has deep connections in many different areas (e.g. information theory, machine learning etc). Many powerful passages

Performance of estimators
$$\longleftrightarrow$$
 $D(P_{\theta} \parallel P_{\phi})$

have already been established.

$$D(P_{\theta} \parallel P_{\phi}) := \int_{\mathbb{R}^d} f_{\theta}(x) \log \frac{f_{\theta}(x)}{f_{\phi}(x)} dx.$$

Two preliminary observations:

- ② Otherwise, $D(P_{\theta} \parallel P_{\phi}) > 0$;

The distribution P_{θ} represents the **true** distribution and P_{ϕ} represents another probability distribution. In general, the **larger** the KL-divergence, the **easier** it is to distinguish between the two distributions.

The KL-divergence has deep connections in many different areas (e.g. information theory, machine learning etc). Many powerful passages

Performance of estimators
$$\longleftrightarrow$$
 $D(P_{\theta} \parallel P_{\phi})$

have already been established.

Gauging the performance of estimators essentially boils down to controlling the quantity $D(P_{\theta} \parallel P_{\phi})$.

Summary Statistics

Instead of looking at the raw data of test results,

Summary Statistics

Instead of looking at the raw data of test results,

we look at simplified representations such as

as well as summary statistics such as

 $\mathbb{E}[X]$, Var(X)

Summary Statistics

Instead of looking at the raw data of test results,

we look at simplified representations such as

as well as summary statistics such as

$$\mathbb{E}[X]$$
, $Var(X)$, $\mathbb{E}[X^3]$, $\mathbb{E}[X^4]$, \cdots

Summary Statistics in Multiple Dimensions

For a (real-valued) random variable X, we have:

$$\mathbb{E}[X]$$
, $Var(X)$, $\mathbb{E}[X^3]$, $\mathbb{E}[X^4]$, \cdots

Summary Statistics in Multiple Dimensions

For a (real-valued) random variable X, we have:

$$\mathbb{E}[X]$$
, $Var(X)$, $\mathbb{E}[X^3]$, $\mathbb{E}[X^4]$, \cdots

For a random vector $\boldsymbol{X}=(X_1,\cdots,X_n)$ with $\text{Cov}(X_i,X_j)=\sigma_{ij},$ we have

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}$$

Summary Statistics in Multiple Dimensions

For a (real-valued) random variable X, we have:

$$\mathbb{E}[X]$$
, $Var(X)$, $\mathbb{E}[X^3]$, $\mathbb{E}[X^4]$, \cdots

For a random vector $\boldsymbol{X}=(X_1,\cdots,X_n)$ with $\text{Cov}(X_i,X_j)=\sigma_{ij},$ we have

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}, \quad \cdots ?$$

How to generalise the higher moments $\mathbb{E}[X^k]$ to the multivariate setting?

Moment Tensors

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}$$

$$oldsymbol{\mu} = egin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad oldsymbol{\Sigma} = egin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}$$

The mean vector is a $n \times 1$ vector and the covariance matrix is a $n \times n$ matrix. Hence we expect the mth moment to be a $\underbrace{n \times n \times \cdots \times n}_{}$ array.

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}$$

The mean vector is a $n \times 1$ vector and the covariance matrix is a $n \times n$ matrix. Hence we expect the mth moment to be a $\underbrace{n \times n \times \cdots \times n}_{}$ array.

Recall that

$$\sigma_{ij} = \mathsf{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])].$$

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}$$

The mean vector is a $n \times 1$ vector and the covariance matrix is a $n \times n$ matrix. Hence we expect the mth moment to be a $\underbrace{n \times n \times \cdots \times n}$ array.

Recall that

$$\sigma_{ij} = \text{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])].$$

Let $Y_i = X_i - \mathbb{E}[X_i]$. The covariance matrix can be written in the form

$$\mathbb{E}\left[\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} (Y_1, \cdots, Y_n)\right]$$

$$\boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix}$$

The mean vector is a $n \times 1$ vector and the covariance matrix is a $n \times n$ matrix. Hence we expect the mth moment to be a $\underbrace{n \times n \times \cdots \times n}$ array.

Recall that

$$\sigma_{ij} = \mathsf{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])].$$

Let $Y_i = X_i - \mathbb{E}[X_i]$. The covariance matrix can be written in the form

$$\mathbb{E}\left[\begin{pmatrix}Y_1\\\vdots\\Y_n\end{pmatrix}\left(Y_1,\cdots,Y_n\right)\right]=\mathbb{E}[\boldsymbol{Y}\otimes\boldsymbol{Y}]$$

For a random vector $\mathbf{X} = (X_1, \dots, X_m)$, the mth moment should be an m-tensor

$$\mathbb{E}\big[\underbrace{\boldsymbol{\mathcal{X}}\otimes\boldsymbol{\mathcal{X}}\otimes\cdots\otimes\boldsymbol{\mathcal{X}}}_{m\text{ times}}\big]=\mathbb{E}\big[(\boldsymbol{\mathcal{X}})^{\otimes m}\big].$$

The (i_1, i_2, \dots, i_m) -entry is given by

$$\mathbb{E}\big[X_{i_1}X_{i_2}\cdots X_{i_m}\big].$$

For a random vector $\mathbf{X} = (X_1, \dots, X_m)$, the mth moment should be an m-tensor

$$\mathbb{E}\big[\underbrace{\boldsymbol{\mathcal{X}}\otimes\boldsymbol{\mathcal{X}}\otimes\cdots\otimes\boldsymbol{\mathcal{X}}}_{m\text{ times}}\big]=\mathbb{E}\big[(\boldsymbol{\mathcal{X}})^{\otimes m}\big].$$

The (i_1, i_2, \dots, i_m) -entry is given by

$$\mathbb{E}\left[X_{i_1}X_{i_2}\cdots X_{i_m}\right].$$

Returning to our setting, the *m*th moment tensor between two vectors $\theta, \phi \in \mathbb{R}^d$ is defined to be

$$\Delta_m := \mathbb{E} \big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big].$$

Our goal is to establish upper and lower bounds on $D(P_{\theta} \parallel P_{\phi})$.

Our goal is to establish upper and lower bounds on $D(P_{\theta} \parallel P_{\phi})$.

Bandeira-Rigollet-Weed (2017)

Let $\theta, \phi \in \mathbb{R}^d$ be vectors satisfying some technical conditions. For any $k \geq 1$, there exist constants \underline{C} and \overline{C} such that

$$\underline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3}\sigma)^{2m}m!}\leq D(P_{\theta}\parallel P_{\phi})$$

Our goal is to establish upper and lower bounds on $D(P_{\theta} \parallel P_{\phi})$.

Bandeira-Rigollet-Weed (2017)

Let $\theta, \phi \in \mathbb{R}^d$ be vectors satisfying some technical conditions. For any $k \geq 1$, there exist constants \underline{C} and \overline{C} such that

$$\underline{C}\sum_{m=1}^{\infty}\frac{\|\Delta_m\|^2}{(\sqrt{3}\sigma)^{2m}m!}\leq D(P_{\theta}\parallel P_{\phi})\leq \overline{C}\sum_{m=1}^{\infty}\frac{\|\Delta_m\|^2}{\sigma^{2m}m!}.$$

We have both an upper bound and lower bound on the KL divergence in terms of the same quantity.

Our goal is to establish upper and lower bounds on $D(P_{\theta} \parallel P_{\phi})$.

Bandeira-Rigollet-Weed (2017)

Let $\theta, \phi \in \mathbb{R}^d$ be vectors satisfying some technical conditions. For any $k \geq 1$, there exist constants \underline{C} and \overline{C} such that

$$\underline{C}\sum_{m=1}^{\infty}\frac{\|\Delta_m\|^2}{(\sqrt{3}\sigma)^{2m}m!}\leq D(P_{\theta}\parallel P_{\phi})\leq \overline{C}\sum_{m=1}^{\infty}\frac{\|\Delta_m\|^2}{\sigma^{2m}m!}.$$

We have both an upper bound and lower bound on the KL divergence in terms of the same quantity.

This allows us to extend the passageway:

Performance of
$$\longleftrightarrow D(P_{\theta} \parallel P_{\phi})$$
 Estimators

Our goal is to establish upper and lower bounds on $D(P_{\theta} \parallel P_{\phi})$.

Bandeira-Rigollet-Weed (2017)

Let $\theta, \phi \in \mathbb{R}^d$ be vectors satisfying some technical conditions. For any $k \geq 1$, there exist constants \underline{C} and \overline{C} such that

$$\underline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3}\sigma)^{2m}m!}\leq D(P_{\theta}\parallel P_{\phi})\leq \overline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{\sigma^{2m}m!}.$$

We have both an upper bound and lower bound on the KL divergence in terms of the same quantity.

This allows us to extend the passageway:

$$\begin{array}{c} \mathsf{Performance} \ \mathsf{of} \\ \mathsf{Estimators} \end{array} \longleftrightarrow D(P_\theta \parallel P_\phi) \longleftrightarrow \big\{ \parallel \! \Delta_m \! \parallel \ : \ m \in \mathbb{Z}_{\geq 1} \big\}.$$

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

However, the action of the orthogonal group O(d) on \mathbb{R}^d is **highly complicated**.

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

However, the action of the orthogonal group O(d) on \mathbb{R}^d is **highly complicated**.

• Direct integration of O(d):

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

However, the action of the orthogonal group O(d) on \mathbb{R}^d is **highly complicated**.

• Direct integration of O(d): Involves $\frac{d^2-d}{2}$ parameters.

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

However, the action of the orthogonal group O(d) on \mathbb{R}^d is **highly complicated**.

- Direct integration of O(d): Involves $\frac{d^2-d}{2}$ parameters.
- ② Subgroups of O(d):

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

However, the action of the orthogonal group O(d) on \mathbb{R}^d is **highly** complicated.

- Direct integration of O(d): Involves $\frac{d^2-d}{2}$ parameters.
- ② Subgroups of O(d): Every finite group is a subgroup of O(d) for some $d \in \mathbb{Z}_{\geq 1}$.

If we are able to understand how the family of moment tensors

$$\Delta_m = \mathbb{E}\big[(G\theta)^{\otimes m} - (G\phi)^{\otimes m} \big]$$

varies with θ and ϕ , it should give us a better understanding of the **fundamental difficulty** of solving the algebraically structured model.

However, the action of the orthogonal group O(d) on \mathbb{R}^d is **highly complicated**.

- Direct integration of O(d): Involves $\frac{d^2-d}{2}$ parameters.
- ② Subgroups of O(d): Every finite group is a subgroup of O(d) for some $d \in \mathbb{Z}_{\geq 1}$.

Further simplifications are needed to make the problem **tractable**.

Define

$$\mathcal{G}:=\big\{R_\ell\ :\ 0\leq\ell\leq d-1\big\}.$$

where

$$R_{\ell}((\theta_1,\cdots,\theta_d)) := (\theta_{1+\ell},\theta_{2+\ell},\cdots,\theta_{d+\ell}).$$

This setup is known as the **Multi-reference Alignment** model.

Define

$$\mathcal{G}:=\big\{R_\ell\ :\ 0\leq\ell\leq d-1\big\}.$$

where

$$R_{\ell}((\theta_1,\cdots,\theta_d)) := (\theta_{1+\ell},\theta_{2+\ell},\cdots,\theta_{d+\ell}).$$

This setup is known as the Multi-reference Alignment model.

Greatly simplified but still mathematically interesting.

Define

$$\mathcal{G}:=\big\{R_\ell\ :\ 0\leq\ell\leq d-1\big\}.$$

where

$$R_{\ell}((\theta_1,\cdots,\theta_d)) := (\theta_{1+\ell},\theta_{2+\ell},\cdots,\theta_{d+\ell}).$$

This setup is known as the Multi-reference Alignment model.

Greatly simplified but still mathematically interesting.

The **Discrete Fourier Transform** $\hat{\theta}$ of a vector $\theta \in \mathbb{R}^d$ is given by

$$\hat{ heta}_j := rac{1}{\sqrt{d}} \sum_{k=1}^d \mathrm{e}^{rac{2\pi i j k}{d}} heta_k, \qquad -\lfloor d/2
floor \leq j \leq \lfloor d/2
floor.$$

The Fourier Domain

By passing through the passage

$$\theta \longleftrightarrow \widehat{\theta},$$

The Fourier Domain

By passing through the passage

$$\theta \longleftrightarrow \widehat{\theta},$$

we obtain **explicit formulas** for the moment tensors:

$$\mathbb{E}ig[(\widehat{G} heta)ig]_i = egin{cases} \widehat{ heta}_0 & ext{if } i=0, \ 0 & ext{otherwise.} \end{cases}$$
 $\mathbb{E}ig[(\widehat{G} heta)^{\otimes 2}ig]_{ij} = egin{cases} |\widehat{ heta}_i|^2 & ext{if } i+j=0, \ 0 & ext{otherwise.} \end{cases}$

$$\mathbb{E}\big[(\widehat{G\theta})^{\otimes m}\big]_{i_1\cdots i_m} = \begin{cases} \widehat{\theta}_{i_1}\widehat{\theta}_{i_2}\cdots\widehat{\theta}_{i_m} & \text{ if } i_1+\cdots+i_m=0,\\ 0 & \text{ otherwise.} \end{cases}$$

$$\underline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3}\sigma)^{2m}m!}\leq D(P_{\theta}\parallel P_{\phi})\leq \overline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{\sigma^{2m}m!}.$$

Key Idea: If the first k-1 moments match, then $D(P_{\theta} \parallel P_{\phi})$ is of order $O(\sigma^{-2k})$.

Establish upper bounds: Construct two vectors θ and ϕ such that the first k moments cancel out.

$$\underline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{(\sqrt{3}\sigma)^{2m}m!}\leq D(P_{\theta}\parallel P_{\phi})\leq \overline{C}\sum_{m=1}^{\infty}\frac{\left\|\Delta_{m}\right\|^{2}}{\sigma^{2m}m!}.$$

Key Idea: If the first k-1 moments match, then $D(P_{\theta} \parallel P_{\phi})$ is of order $O(\sigma^{-2k})$.

Establish upper bounds: Construct two vectors θ and ϕ such that the first k moments cancel out.

Establish lower bounds: Show that no such cancellation is possible.

$$\begin{split} \mathsf{DC:} & & \mathbb{E}\big[\big(\widehat{G}\widehat{\theta}\big)\big]_i = \begin{cases} \widehat{\theta}_0 & \text{if } i = 0 \\ 0 & \text{otherwise.} \end{cases} \\ \mathsf{Power spectrum:} & & \mathbb{E}\big[\big(\widehat{G}\widehat{\theta}\big)^{\otimes 2}\big]_{ij} = \begin{cases} |\widehat{\theta}_i|^2 & \text{if } i+j=0 \\ 0 & \text{otherwise.} \end{cases} \\ \mathsf{Bispectrum:} & & \mathbb{E}\big[\big(\widehat{G}\widehat{\theta}\big)^{\otimes 3}\big]_{ijk} = \begin{cases} \widehat{\theta}_i\widehat{\theta}_j\widehat{\theta}_k & \text{if } i+j+k=0, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Most of the tensor entries vanishes.

$$\begin{aligned} & \quad \mathbb{E}\big[\big(\widehat{G}\widehat{\theta}\big)\big]_i = \begin{cases} \widehat{\theta}_0 & \text{if } i = 0 \\ 0 & \text{otherwise.} \end{cases} \\ & \quad \mathbb{E}\big[\big(\widehat{G}\widehat{\theta}\big)^{\otimes 2}\big]_{ij} = \begin{cases} |\widehat{\theta}_i|^2 & \text{if } i+j=0 \\ 0 & \text{otherwise.} \end{cases} \\ & \quad \mathbb{E}\big[\big(\widehat{G}\widehat{\theta}\big)^{\otimes 3}\big]_{ijk} = \begin{cases} \widehat{\theta}_i\widehat{\theta}_j\widehat{\theta}_k & \text{if } i+j+k=0, \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Most of the tensor entries **vanishes**. The remaining non-vanishing terms are special quantities in **signal processing**.

$$\begin{split} \mathsf{DC:} & & \mathbb{E}\big[(\widehat{G}\theta)\big]_i = \begin{cases} \widehat{\theta}_0 & \text{if } i = 0 \\ 0 & \text{otherwise.} \end{cases} \\ \mathsf{Power spectrum:} & & \mathbb{E}\big[(\widehat{G}\theta)^{\otimes 2}\big]_{ij} = \begin{cases} |\widehat{\theta}_i|^2 & \text{if } i+j=0 \\ 0 & \text{otherwise.} \end{cases} \\ \mathsf{Bispectrum:} & & \mathbb{E}\big[(\widehat{G}\theta)^{\otimes 3}\big]_{ijk} = \begin{cases} \widehat{\theta}_i \widehat{\theta}_j \widehat{\theta}_k & \text{if } i+j+k=0, \\ 0 & \text{otherwise.} \end{cases} \\ \end{split}$$

Most of the tensor entries **vanishes**. The remaining non-vanishing terms are special quantities in **signal processing**.

We extend the passageway by one more step:

Performance of Estimators
$$\longleftrightarrow D(P_{\theta} \parallel P_{\phi}) \longleftrightarrow \left\{ \|\Delta_m\| \right\}_{m=1}^{\infty} \longleftrightarrow \begin{array}{c} \text{Support of} \\ \hat{\theta} \text{ and } \hat{\phi} \end{array}$$

The End

Thank you for your attention.

