$\acute{A}lgebra\ Linear\ e\ Geometria\ Analítica$ Ficha de Exercícios - Determinantes

LEI e LSIRC

Ano Letivo 2023/2024

Algumas considerações sobre Determinantes

- 1. São iguais os determinantes associados a matrizes transpostas, isto é, $|A| = |A^T|$;
- 2. Se multiplicarmos todos os elementos de uma fila (uma linha ou uma coluna) de um determinante por um escalar $k \in \mathbb{R}$, o determinante vem multiplicado por esse escalar, isto é, k |A|;
- 3. O valor de um determinante muda de sinal quando trocarmos a posição relativa de duas filas paralelas (duas linhas ou duas colunas);
- 4. É nulo um determinante com duas filas paralelas iguais ou proporcionais;
- 5. É nulo um determinante onde todos os elementos de uma fila (uma linha ou uma coluna) são iguais a zero;
- 6. O determinante associado a uma matriz triangular é igual ao produto dos elementos principais;
- 7. Se dois determinantes têm a mesma ordem e tiverem no máximo uma fila diferente, a soma dos dois determinantes é um novo determinante que mantém as filas que são iguais e só se somam os elementos homólogos da fila diferent;
- 8. Se num determinante somarmos a uma fila uma combinação linear de filas paralelas, o determinante não se altera, por exemplo, $l_i > l_i + kl_j$;
- 9. O determinante do produto de duas matrizes é igual ao produto dos determinantes, isto é, |AB| = |A||B|;
- 10. As filas paralelas de uma matriz são linearmente dependentes se e só se o seu determinante é nulo.
- 11. O menor complementar do elemento a_{ij} da matriz A de ordem n representa-se por M_{ij} e é o determinante de ordem n-1 que se obtém suprimindo a linha i e a coluna j na matriz A;
- 12. O **complemento algébrico** de a_{ij} da matriz A de ordem n representa-se por A_{ij} e é dado por $A_{ij} = (-1)^{i+j} M_{ij}$;
- 13. **Teorema de Laplace**, o determinante da matriz A de ordem n (fixando a linha i) é dado por $|A| = \sum_{k=1}^{n} a_{ik} A_{ik}$;
- 14. A matriz adjunta da matriz A de ordem n é uma nova matriz transposta da matriz dos complementos algébricos da matriz A, isto é, $Adj(A) = A_{ij}^T$;
- 15. A **matriz inversa** da matriz A de ordem n é dada por $A^{-1} = \frac{1}{|A|}Adj(A)$;
- 16. $|A^{-1}| = \frac{1}{|A|}$.

Cálculo de Determinantes

1. Calcule os **determinantes** das seguintes matrizes de ordem 2 e de ordem 3, $t \in \mathbb{R}$.

$$\begin{bmatrix} 6 & 5 \\ 2 & 3 \end{bmatrix}; \qquad \begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix}; \qquad \begin{bmatrix} 4 & -5 \\ -1 & 2 \end{bmatrix}; \qquad \begin{bmatrix} t-5 & 7 \\ -1 & t+3 \end{bmatrix};$$

$$\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{bmatrix}; \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{bmatrix}; \begin{bmatrix} 3 & -2 & -4 \\ 2 & 5 & -1 \\ 0 & 6 & 1 \end{bmatrix}.$$

2. Calcule os determinantes, utilizando apenas o Teorema de Laplace, das seguintes matrizes.

$$\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{bmatrix}; \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{bmatrix}; \begin{bmatrix} 3 & -2 & -4 \\ 2 & 5 & -1 \\ 0 & 6 & 1 \end{bmatrix}.$$

3. Calcule os **determinantes** das seguintes matrizes.

$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & -3 & 7 & -8 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 4 \end{bmatrix}; \begin{bmatrix} 1 & 2 & 0 & 2 \\ 3 & 0 & -4 & 0 \\ -1 & 0 & -2 & 1 \\ 2 & 5 & 1 & 3 \end{bmatrix}; \begin{bmatrix} 1 & 2 & 2 & 3 \\ 1 & 0 & -2 & 0 \\ 3 & -1 & 1 & -2 \\ 4 & -3 & 0 & 2 \end{bmatrix}.$$

4. Utilizando apenas as propriedades dos determinantes, diga qual o valor dos seguintes determinantes:

$$\left| \begin{array}{cc} 0 & 3 \\ 0 & -1 \end{array} \right|; \left| \begin{array}{cc} 2 & 2 \\ 3 & 3 \end{array} \right|; \left| \begin{array}{cc} -1 & -3 \\ 2 & 6 \end{array} \right|; \left| \begin{array}{cc} 2 & 8 \\ 0 & -1 \end{array} \right|.$$

5. Verifique sem desenvolver, apenas utilizando as propriedades dos determinantes, que os seguintes determinantes são nulos:

6. Adicione, se possível, os seguintes determinantes sem os desenvolver:

$$\left|\begin{array}{ccc|c} 1 & 0 & 1 \\ 5 & -2 & 4 \\ 1 & 5 & 0 \end{array}\right| + \left|\begin{array}{ccc|c} -3 & 0 & 1 \\ 5 & -2 & 4 \\ 4 & 5 & 0 \end{array}\right|; \left|\begin{array}{ccc|c} 2 & 1 & 0 \\ -5 & 4 & -2 \\ 0 & 2 & 5 \end{array}\right| + \left|\begin{array}{ccc|c} -3 & 0 & 1 \\ 5 & -2 & 4 \\ 4 & 5 & 0 \end{array}\right|.$$

7. Considere o seguinte determinante:

$$\left|\begin{array}{ccc} 2 & 6 & 7 \\ 5 & 12 & 4 \\ 3 & 18 & 0 \end{array}\right|,$$

verifique, sem o desenvolver, apenas utilizando as propriedades dos determinantes, que o determinante é múltiplo de 9.

- 8. Sem efectuar o desenvolvimento (utilizando apenas as propriedades dos determinantes), diga quais os valores de $a \in \mathbb{R}$ que anulam o determinante $\begin{vmatrix} 2 & -1 & 2a \\ 2 & -1 & 3 \\ a^2 & -1 & 3 \end{vmatrix}.$
- 9. Diga se é verdadeira ou falsa a proposição, sem desenvolver o determinante

$$\left| \begin{array}{cccc} a & 0 & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 0 & d \end{array} \right| = -abcd.$$

- 10. Sabendo que $\begin{vmatrix} a & 1 & 1 \\ b & 0 & 1 \\ c & 3 & 1 \end{vmatrix} = 1$, calcule o determinante da matriz $A = \begin{bmatrix} m \frac{1}{3} & m & m 1 \\ \frac{1}{3} & 0 & 1 \\ 3a & 3b & 3c \end{bmatrix}$, sem o desenvolver, considerando que a, b, c e $m \in \mathbb{R}$
- 11. Sabendo que $\begin{vmatrix} a & b & c \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{vmatrix} = 1$, determine o valor do determinante da matriz $A = \begin{bmatrix} a & b & c \\ 3a+3 & 3b & 3c+2 \\ a+1 & b+1 & c+1 \end{bmatrix}$, utilizando unicamente as propriedades dos determinantes, isto é, sem o desenvolver, considerando que $a,b,c\in\mathbb{R}$.
- 12. Verifique a igualdade $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (c-b)(c-a)(b-a)$, utilizando exclusivamente as propriedades dos determinantes e considerando que $a, b, c \in \mathbb{R}$.
- 13. Mostre que:

$$\begin{vmatrix} t+3 & -1 & 1\\ 5 & t-3 & 1\\ 6 & -6 & t+4 \end{vmatrix} = (t+2)(t-2)(t+4);$$

$$\begin{vmatrix} t & 1 & 1\\ 1 & t & 1\\ 1 & 1 & t \end{vmatrix} = (t-1)^2(t+2), \text{ com } t \in \mathbb{R}.$$

Cálculo da Matriz Adjunta e da Matriz Inversa

- 14. Considere a matriz $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 8 & 9 \end{bmatrix}$. Determine:
 - (a) o determinante da matriz A, |A|.
 - (b) a matriz adjunta de A, $\mathrm{Adj}(A)$.
 - (c) a matriz inversa de $A,\,A^{-1},$ com base nas alíneas anteriores.
- 15. Considere a matriz $B = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{bmatrix}$.
 - (a) Calcule o determinante da matriz B, |B|.
 - (b) Calcule a matriz adjunta de B, Adj(B).
 - (c) Calcule a matriz inversa de $B,\,B^{-1}$, com base nas alíneas anteriores.
 - (d) Verifique que $|B^{-1}| = 1/|B|$.

SOLUÇÕES

1. 8; 23; 3;
$$t^2 - 2t - 8$$
; 27; -18; 4; -11

4. Todos os elementos da coluna 1 são nulos então o determinante é nulo; Os elementos da coluna 1 são iguais aos elementos da coluna 2 $(C_1 = C_2)$ então o determinante é nulo;

A linha dois é múltipla da linha 2, $L_2 = -2L_1$, então o determinante é nulo; O determinante de uma matriz triangular superior é igual ao produto dos elementos da diagonal principal, então o determinante é igual a -2.

5. O determinante é nulo porque:

$$C_2 = 5C_1;$$

 $C_3 = 2C_1 + C_2;$
 $L_3 = L_1 + L_2.$

6. $\begin{vmatrix} 1-3 & 0 & 1 \\ 5+5 & -2 & 4 \\ 1+4 & 5 & 0 \end{vmatrix} = \begin{vmatrix} -2 & 0 & 1 \\ 10 & -2 & 4 \\ 5 & 5 & 0 \end{vmatrix}$; Não é possível somar.

7.
$$C_2 = 3C_2 e L_3 = 3L_3;$$
 $\begin{vmatrix} 2 & 6 & 7 \\ 5 & 12 & 4 \\ 3 & 18 & 0 \end{vmatrix} = 9 \begin{vmatrix} 2 & 2 & 7 \\ 5 & 4 & 4 \\ 1 & 2 & 0 \end{vmatrix}$

8.
$$a = \{-\sqrt{2}, \sqrt{2}, \frac{3}{2}\}$$

9. $C_2 \leftrightarrow C_3$, Proposição Verdadeira.

$$10. \ |A| = \begin{vmatrix} m - \frac{1}{3} & m & m - 1 \\ \frac{1}{3} & 0 & 1 \\ 3a & 3b & 3c \end{vmatrix} = \begin{vmatrix} L_1 + L_3 & m & m & m \\ \frac{1}{3} & 0 & 1 \\ 3a & 3b & 3c \end{vmatrix} = 3m \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{3} & 0 & 1 \\ a & b & c \end{vmatrix}$$

$$|A| = |A^T|_{3m} \begin{vmatrix} 1 & \frac{1}{3} & a \\ 1 & 0 & b \\ 1 & 1 & c \end{vmatrix} \xrightarrow{= -m} \begin{vmatrix} C_1 \leftrightarrow C_3 \\ -3m \begin{vmatrix} a & \frac{1}{3} & 1 \\ b & 0 & 1 \\ c & 1 & 1 \end{vmatrix} = -m \begin{vmatrix} a & 3 * \frac{1}{3} & 1 \\ b & 3 * 0 & 1 \\ c & 3 * 1 & 1 \end{vmatrix} = -m \begin{vmatrix} a & 1 & 1 \\ b & 0 & 1 \\ c & 3 & 1 \end{vmatrix}$$

- 11. |A| = 1, desdobrar o determinante a partir da L_2 ; um dos determinantes é nulo porque $L_2 = 3L_1$; desdobrar o outro determinante a partir da L_3 ; um dos determinantes é nulo porque $L_1 = L_3$; o determinante final é igual ao dado.
- 12. Fazendo as seguintes operações: $C_3 = C_3 C_2$; $C_2 = C_2 C_1$; desdobrar $(c^2 b^2)(c + b)(c b)$ e $(b^2 a^2)(b + a)(b a)$; colocar em evidência (b a)(c b); $C_3 = C_3 C_2$; aplicar o T. Laplace fixando a L_1 e chega ao resultado ou como a matriz é triangular inferior, o determinante é igual ao produto dos elementos principais;

13. Fazendo as seguintes operações: $C_1 = C_1 + C_2$; colocar (t+2) da C_1 em evidência; $C_3 = C_3 + C_1$; colocar (t-2) da C_2 em evidência; $L_2 = L_2 - L_1$; aplicar o T. Laplace fixando a C_3 e chega ao resultado.

Fazendo as seguintes operações: $C_1 = C_1 - C_2$; $C_3 = C_3 - C_2$; e aplicando o Teorema de Laplace fixando a linha 3, chega ao resultado.

14. (a) |A| = 1.

(b)
$$Adj(A) = \begin{bmatrix} -5 & -1 & 1\\ 2 & 4 & -2\\ 1 & -3 & 1 \end{bmatrix}$$
.

(c)
$$A^{-1} = \frac{1}{|A|} \operatorname{Adj}(A) = -\frac{1}{2} \begin{bmatrix} -5 & -1 & 1 \\ 2 & 4 & -2 \\ 1 & -3 & 1 \end{bmatrix}$$
.

15. (a) |B| = -5.

(b)
$$Adj(B) = \begin{bmatrix} 1 & 4 & 2 \\ 10 & 5 & 0 \\ 7 & 3 & -1 \end{bmatrix}$$
.

(c)
$$B^{-1} = \frac{1}{|B|} \operatorname{Adj}(B) = -\frac{1}{5} \begin{bmatrix} 1 & 4 & 2 \\ 10 & 5 & 0 \\ 7 & 3 & -1 \end{bmatrix}$$
.