Foundation Algebra for Physical Sciences & Engineering (CELEN036)

Homework 1

Topic 1: Composition of functions

1. For the following functions, find $(f \circ g)(x)$ and $(g \circ f)(x)$. Also determine their domains.

(i)
$$f(x) = \sqrt{x-4}$$
, $g(x) = 3x + 2$

(i)
$$f(x) = \sqrt{x-4}$$
, $g(x) = 3x+2$ (ii) $f(x) = \frac{3x}{x-1}$, $g(x) = \frac{2}{x}$

(iii)
$$f(x) = \sqrt{2x+7}$$
, $g(x) = \frac{2x}{x-1}$ (iv) $f(x) = x^2 - 3x$, $g(x) = x+2$

(iv)
$$f(x) = x^2 - 3x$$
, $g(x) = x + 2$

2. For
$$f(x)=x^2-8$$
, $g(x)=x+2$, find $(f\circ g)(5)$.

3. For
$$h(x) = \sqrt{2x+3} - 5$$
 and $f(x) = \sqrt{x} - 5$, find the function g such that $h(x) = (f \circ g)(x)$.

4. For
$$f(x) = 2x - 1$$
, $g(x) = x^2 - 1$, and $h(x) = x + 4$, find $(f \circ g \circ h)(x)$ and $(g \circ f \circ h)(x)$.

5. Given the values of functions f and g in the following tables, find $(f \circ g)(4)$ and $(g \circ f)(4)$.

x	2	3	4
f(x)	-1	2	5

x	3	4	5
g(x)	3	3	0.5

Topic 2: Inverse functions

6. Find the inverse of the following functions:

$$(i) f(x) = \sqrt[3]{x+5}$$

$$(ii) \quad f(x) = \frac{2x}{x+1}, \quad x \neq -1$$

(*iii*)
$$f(x) = \frac{(x-1)^3}{8}$$

(iv)
$$f(x) = x^2 + 3, \quad x \ge 0$$

7. Find: $(g^{-1}\circ f^{-1})(2)$, $(g\circ f^{-1})(-1)$, and $(f^{-1}\circ g^{-1})(3)$ based on the following tables:

x	2	3	4	5	6
f(x)	-1	0	1	2	3

x	-1	2	3	
g(x)	1	3	5	

Topic 3: Sketching graphs of functions

8. Sketch the graphs of the following functions:

(i) $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2, & 1 < x \le 2 \end{cases}$

(ii) $f(x) = (x-3)^2 - 1$

(iii) $f(x) = |x^2 - 4|$

(iv) f(x) = |x - 2| + 1

9. Sketch the graph of $f(x)=(x-1)^2-1,\ x\geq 1.$ Use this information to draw the graph of $f^{-1}(x)$ without finding the inverse function f^{-1} .

	5				
	5				
4	1				
	3				
	2				
	1				
2 -1 () 1	2	3	4	

Topic 4: Modulus inequalities

10. Solve the following inequalities for $x \in \mathbb{R}$:

$$(i) \quad \left| \frac{4x+5}{3} - \frac{1}{2} \right| \le \frac{7}{6}$$

(ii)
$$\frac{|x|}{2} - \frac{5}{6} \ge \frac{1}{3}$$

(*iii*)
$$|3x - 11| + 6 \le 9$$

$$(iv)$$
 $|4-3x|+12>7$

$$(iii) |x-2| \le \frac{x}{2}$$

$$(iv) \quad |3+x| \ge 6x$$

(iii)
$$-\frac{2}{3}|x+1|-5<-7$$

$$(iv) \quad \frac{1}{2}|x-3| + \frac{5}{4} \le \frac{7}{4}$$