Tuesday, 24 September 2024 11:37 PM

$$a = bq + r$$
 $|ef x = g(d(a_1b))|$
 $= x + b$
 $= x + b$

=> x | r - 0

\$ q is integer

$$a = bq + r$$
 from equation $a = bq + r$

$$= r < b < a - C$$

From () and (2)

If exist
$$y = \gcd(b,r) > x = \gcd(a,b)$$

$$=> y | (b+r)$$

$$=> y | (b+a-bq)$$

$$=> y | (b(1-q)+a)$$

$$=> \gcd(a,b) = y$$

From (3) we know if exist
$$g(d(b,r)=y)$$
 and $y > x$, $y | (b(1-q) + a)$ $g(d(a,b))$ will become y , and $g(d(a,b))$ will become y , and from (2) we know $r < b < a$, so if exist $g(d(b,r))$ will also same as $g(d(a,b))$