Part III Local Fields

Based on lectures by Dr C. Johansson

Michaelmas 2016 University of Cambridge

Contents

1 Basic Theory	1
1.1 The p-adic Numbers	. 3
1 Basic Theory	
Definition (Absolute value). Let K be a field. An absolute value on function $ \cdot : K \to \mathbb{R}_{\geq 0}$ s.t.	K is a
$i. x = 0 \iff x = 0$	
$ii. xy = x y \forall x, y \in K$	
$iii. x+y \le x + y $	

Definition (Valued field). A valued field is a field with an absolute value.

Definition (Equivalence of absolute values). Let K be a field and let $|\cdot|$, $|\cdot|^{'}$ be absolute values on K. We say that $|\cdot|$ and $|\cdot|^{'}$ are **equivalent** if the associated metrics induce the same topology.

Definition (Non-archimedean absolute value). An absolute value $|\cdot|$ on a field K is called **non-archimedean** if $|x+y| \leq \max(|x|,|y|)$ (the **strong triangle inequality**).

Metrics s.t. $d(x, z) \le \max(d(x, y), d(y, z))$ are called **ultrametrics**.

Assumption: unless otherwise mentioned, all absolute values will be non-archimedean. These metrics are weird!

Proposition 1. Let K be a valued field. Then $\mathcal{O} = \{x \mid |x| \leq 1\}$ is an open subring of K, called the **valuation ring** of K. $\forall r \in (0,1], \{x \mid x < r\}$ and $\{x \mid x \leq r\}$ are open ideals of \mathcal{O} .

Moreover, $\mathcal{O}^x = \{x \mid |x| = 1\}.$

Proposition 2. Let K be a valued field.

i. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) is Cauchy Assume that K is complete

ii. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) converges

iii. Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges

Definition. Let $R \subseteq S$ be rings. Then $s \in S$ is **integral over** R if \exists monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 3. Let $R \subseteq S$ be rings. Then $s_1, \ldots, s_n \in S$ are all integral over $R \iff R[s_1, \ldots, s_n] \subseteq S$ is a finitely generated R-module.

Corollary 4. let $R \subseteq S$ be rings. If $s_1, s_2 \in S$ are integral over R, then $s_1 + s_2$ and s_1s_2 are integral over R. In particular, the set $\tilde{R} \subseteq S$ of all elements in S integral over R is a ring, called the **integral closure** of R in S.

Definition. Let R be a ring. A topology on R is called a **ring topology** on R if addition and multiplication are continuous maps $R \times R \to R$. A ring with a ring topology is called a **topological ring**.

Definition. Let R be a ring, $I \subseteq R$ an ideal. A subset $U \subseteq R$ is called *I-adically open* if $\forall x \in U \exists n \geq 1 \text{ s.t. } x + I^n \subseteq U$.

Proposition 5. The set of all I-adically open sets form a topology on R, called the I-adic topology.

Definition. Let $R_1, R_2, ...$ be topological rings with continuous homomorphisms $f_n: R_{n+1} \to R_n \ \forall n \geq 1$. The **inverse limit** of the R_i is the ring

$$\lim_{n \to \infty} R_n = \left\{ (x_n) \in \prod_n R_n \mid f_n(x_{n+1}) = x_n \forall n \ge 1 \right\}$$

$$\subseteq \prod_n R_n$$

Proposition 6. The inverse limit topology is a ring topology.

Definition. Let R be a ring, I an ideal. The **I-adic completion** of R is the topological ring $\varprojlim_n R/I^n$ (R/I^n has the discrete topology, and $R/I^{n+1} \to R/I^n$ is the natural map).

There exists a map $\nu: R \to \varprojlim R/I^n$, $r \mapsto (r \mod I^n)_n$ This map is a continuous ring homomorphism when R is given the I-adic topology. We say that R is I-adically complete if ν is a bijection.

If I = xR then we often call the I-adic topology the x-adic topology.

1.1 The p-adic Numbers

Let p be a prime number throughout.

If $x \in \mathbb{Q}\setminus\{0\}$ then $\exists !$ representation $x = p^n \frac{a}{b}$, where $n \in \mathbb{Z}$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{>0}$ and (a, p) = (b, p) = (a, b) = 1.

We define the **p-adic absolute value** on $\mathbb Q$ to be the function $|\cdot|_p:\mathbb Q\to\mathbb R_{\geq 0}$ given by

$$|x|_p = \begin{cases} 0 & \text{if } x = 0\\ p^{-n} & \text{if } x = p^n \frac{a}{b} \ (\neq 0) \text{ as before} \end{cases}$$

Then $|\cdot|_p$ is an absolute value.

Definition. The **p-adic numbers** \mathbb{Q}_p are the completion of \mathbb{Q} w.r.t. $|\cdot|_p$. The valuation ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ is called the **p-adic integers**.

Proposition 7. \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{Q}_p .

Proposition 8. The non-zero ideals of \mathbb{Z}_p are $p_n\mathbb{Z}_p$ for $n \geq 0$. Moreover, $\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}_p/p^n\mathbb{Z}_p$

Corollary 9. \mathbb{Z}_p is a PID with a unique prime element p (up to units).

Proposition 10. The topology on \mathbb{Z} induced by $|\cdot|_p$ is the p-adic topology.

Proposition 11. \mathbb{Z}_p is p-adically complete and is (isomorphic to) the p-adic completion of \mathbb{Z} .

Corollary 12. Every $a \in \mathbb{Z}_p$ has a unique expansion

$$a = \sum_{i=0}^{\infty} a_i p^i$$

with $a_i \in \{0, 1, \dots, p-1\}$