Lecture Notes 2.14 ECS 154A 2018-08-07 Gates, truth tables Summer Session II 2018

- 1. More on gates
 - a. Functionally complete sets a set of gates that can implement any Boolean function
 - i. Less gates, easier fabrication
 - ii. AND, OR, NOT
 - 1. XOR takes five gates: $A \oplus B = A * \sim B + \sim A * B$
 - iii. AND, NOT
 - 1. OR requires four gates to implement DeMorgan's law
 - 2. $A + B = \sim (\sim A * \sim B)$
 - iv. OR, NOT
 - 1. AND requires four gates to implement DeMorgan's law
 - 2. $A * B = \sim (\sim A + \sim B)$
 - v. NAND ↑ is the NAND operator.
 - 1. ~A = A ↑ A
 - 2. $A + B = (A \uparrow A) \uparrow (B \uparrow B)$
 - 3. A * B = $(A \uparrow B) \uparrow (A \uparrow B)$, this requires only 2 NANDS because $(A \uparrow B)$ is used twice
 - 4. $A \oplus B = (A \uparrow (A \uparrow B)) \uparrow (B \uparrow (A \uparrow B))$, just 4 NANDS needed because $(A \uparrow B)$ is used twice
 - vi. NOR \downarrow is the NOR operator.
 - 1. ~A = A ↓ A
 - 2. $A * B = (A \downarrow A) \downarrow (B \downarrow B),$
 - 3. $A \oplus B = ((A \downarrow A) \downarrow (B \downarrow B)) \downarrow (A \downarrow B)$
 - 4. $A + B = (A \downarrow B) \downarrow (A \downarrow B)$, just 2 NOR gates needed
 - b. Implement using transistors
- 2. Truth tables
 - a. Boolean function with n variables has 2^n rows
 - b. Entire set resembles counting upwards in binary, e.g. 000, 001, 010, 011... with 3 variables
 - c. Minterms
 - i. Product term in which each of the *n* variables appears once (in either complemented or uncomplemented term)
 - ii. Minterm results in a 1 for output of a single cell expression, 0s for all other rows in truth table
 - iii. Boolean function can be represented by sum of all minterms for which function is true
 - 1. Sum of products form (SOP)
 - d. Maxterms
 - i. Like minterms, variables can only appear once in complemented or uncomplemented form
 - ii. Maxterm results in a 0 for the output of a single cell expression, 1s for all other rows in truth table
 - iii. The complement of the corresponding row's minterm
 - iv. Boolean function can be represented as product of all maxterms for which function is false
 - 1. Product of sums form (POS)
 - e. SOP easier to work with, more natural, but sometimes POS can lead to simpler logic
 - f. Term indices correspond to binary concatenation of row variable's truth values
 - i. Minterms represented with lower case m, e.g. m₂ for inputs 010
 - ii. Maxterms represented with upper case M, e.g. M₅ for inputs 101
 - g. Example: 3-variable Boolean function true when A is true, B is true, and C is false
 - i. Minterm $m_6 = AB\overline{C}$ (110), maxterm $M_6 = \overline{A} + \overline{B} + C$
 - ii. $m_0 = \overline{ABC}$ (000), and $m_7 = ABC$ (111)
- 3. Synthesizing using Gates
 - a. Boolean function of three variables
 - b. True when either, but not both, of the first two variables is true

c. Truth table below:

Inde x	Α	В	С	f(A, B, C)	Minterm	Maxterm
0	0	0	0	0	$\frac{m_0 =}{ABC}$	$\mathbf{M}_0 = \mathbf{A} + \mathbf{B} + \mathbf{C}$
1	0	0	1	0	$\frac{m_1}{AB}C$	$M_1 = A + B + \overline{C}$
2	0	1	0	1	$\frac{m_2}{\overline{A}B\overline{C}}$	$M_2 = A + \overline{B} + C$
3	0	1	1	1	$m_3 = \overline{A}BC$	$M_3 = A + \overline{B} + \overline{C}$
4	1	0	0	1	$m_4 = A \overline{BC}$	$M_4 = \overline{A} + B + C$
5	1	0	1	1	$m_5 = A \overline{B} C$	$M_5 = \overline{A} + B + \overline{C}$
6	1	1	0	0	$m_6 = AB\overline{C}$	$M_6 = \overline{A} + \overline{B} + C$
7	1	1	1	0	$m_7 = ABC$	$M_7 = \overline{A} + \overline{B} + \overline{C}$

- d. Sum of products
 - i. $f = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A \overline{B} C = m_2 + m_3 + m_4 + m_5$
 - ii. Can simplify using equivalence laws to reduce number of gates

1.
$$f = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A \overline{B} C$$

2. =
$$\overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C)$$
 by distributive law

- 3. = $\overline{A}B + A\overline{B}$ by OR complement law
- e. Product of sums

i.
$$f = (A+B+C) * (A+B+\overline{C}) * (\overline{A} + \overline{B} + \overline{C}) * (\overline{A} + \overline{B} + \overline{C}) = M_0 * M_1 * M_6 * M_7$$

ii. Can also simplify using laws of equivalence

1.
$$f = (A+B+C) * (A+B+\overline{C}) * (\overline{A}+\overline{B}+C) * (\overline{A}+\overline{B}+\overline{C})$$

2. =
$$((A+B)(C+\overline{C}))*((\overline{A}+\overline{B})(C+\overline{C}))$$
 by distributive law

3. =
$$(A + B) * (\overline{A} + \overline{B})$$
 by OR complement law