Wednesday Warm Up: Unit 4, Circular Motion

Prof. Jordan C. Hanson

October 23, 2024

1 Memory Bank

- $\Delta s = r\Delta \theta$
- $\omega = \frac{\Delta \theta}{\Delta t}$... Definition of angular velocity
- $v = r\omega$... Relationship between tangential velocity and angular velocity a distance r from the center
- $a_C = v^2/r = r\omega^2$... Centripetal acceleration
- $\omega = (2\pi)/T$... The orbital period, T, if ω is constant.
- Force of Gravity: The force of gravity between two objects of masses m_1 and m_2 separated by a distance r is

 $F_G = G \frac{m_1 m_2}{r^2} \tag{1}$

In Eq. 1, $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

2 Newton's Law of Gravity

1. The mass of the Moon is estimated to be 7.35×10^{22} kg, and orbits the Earth at a distance of 384,000 km. Assuming that the centripetal force is provided by Eq. 1, solve for the orbital period of the moon.

2. Suppose astronauts measured $g=1.625~\mathrm{m~s^{-2}}$ near the surface of the Moon. We know the mass of the Earth is $5.97\times10^{24}~\mathrm{kg}$, and that the radius of the Earth is 6371 km. We also know that the radius of the Moon is 1737 km. What is the mass of the Moon?

Figure 1: The tides of the Earth as they relate to the position of the Moon.

Figure 2: The spring and neap tides as they relate to the orientation of the Earth, Moon, and Sun.

- 3. Explain in your own words why the high tides of the Earth's oceans orient themselves as in Fig. 1. Recall that Newton's Law of Gravity depends on $1/r^2$.
- 4. The spring tides are the highest high tides, and the neap tides are the lowest high tides. Explain why this is the case using Fig. 2 and Newton's Law of Gravity.