Compiladores Aula 13 Análise Sintática LL(1)

Prof. Dr. Luiz Eduardo G. Martins UNIFESP

Estratégia de construção do parser LL(1)

- Estratégia de construção do parser LL(1)
 - A construção da tabela preditiva para gramáticas complexas não é tarefa trivial
 - Para auxiliar na construção da tabela preditiva, adotamos a construção de conjuntos Primeiros (FIRST) e de Seqüência (FOLLOW)
 - Conjuntos FIRST ajudam a escolher as regras gramaticais quando a parte sentencial delas começam com símbolos não-terminais
 - Conjuntos FOLLOW ajudam a saber quais tokens podem suceder apropriadamente um símbolo nãoterminal que pode desaparecer durante a derivação

- Dada uma gramática, deve ser criado um conjunto FIRST para cada símbolo da gramática, terminal ou não-terminal
- Seja X um símbolo gramatical, o conjunto FIRST(X) é composto por terminais, e possivelmente ε, definido da seguinte maneira:
 - Se X for um terminal ou ε, então FIRST(X) = {X}
 - Se X for um não-terminal, então para cada escolha de produção $X \to X_1 X_2 ... X_n$ FIRST(X) contém FIRST(X_1) { ϵ }

- Adicionalmente:
 - Se para algum i < n, todos os conjuntos
 FIRST(X₁),...,FIRST(X_i) contiverem ε, então FIRST(X) conterá
 FIRST(X_{i+1}) {ε}
 - Se todos os conjuntos FIRST(X_1),...,FIRST(X_n) contiverem ε , então FIRST(X) também conterá ε

- Observações sobre a construção dos conjuntos FIRST:
 - O conjunto FIRST é formado apenas por símbolos terminais (e possivelmente ε)
 - A definição dos conjuntos FIRST funciona "à esquerda" das produções
 - Um não-terminal A é anulável (ou seja, pode desaparecer) se e somente se FIRST(A) contiver ε

- Conjuntos FIRST
 - Algoritmo para construção do conjunto FIRST

```
for cada não-terminal A do Primeiro(A) := \{\};

while houver alterações em algum Primeiro(A) do

for cada escolha de produção A \rightarrow X_1X_2...X_n do

k := 1; Continue := true;

while Continue = true and k <= n do

acrescente\ Primeiro(X_k) - \{\epsilon\}\ a\ Primeiro(A);

if \epsilon não pertencer a Primeiro(X_k) then Continue := false;

k := k + 1;

if Continue = true then acrescente\ \epsilon a Primeiro(A);
```

Figura 4.6 Algoritmo para a computação de Primeiro(A) para todos os não-terminais A.

- Conjuntos FIRST
 - Algoritmo para construção do conjunto FIRST

```
for cada não-terminal A do Primeiro(A) := \{\};
while houver alterações em algum Primeiro(A) do
for cada escolha de produção A \rightarrow X_1 X_2 ... X_n do
acrescente Primeiro(X_1) a Primeiro(A);
```

Figura 4.7 Algoritmo simplificado da Figura 4.6 na ausência de ϵ -produções.

- Conjuntos FIRST
 - Exemplo (4.9 Louden):
 - Considere a gramática:

```
exp \rightarrow exp soma termo | termo

soma \rightarrow + | -

termo \rightarrow termo mult fator | fator

mult \rightarrow *

fator \rightarrow (exp) | NUM
```

Conjuntos FIRST

Tabela 4.6 Computação dos conjuntos Primeiros para a gramática do Exemplo 4.9.

Regra gramatical	Passada 1	Passada 2	Passada 3		
$exp \rightarrow exp$ $soma\ termo$					
$exp \rightarrow termo$			Primeiro(exp) = {(, número}		
soma → +	Primeiro(soma) = {+}				
$soma \rightarrow -$	Primeiro(soma) = {+, -}				
$termo \rightarrow termo$ $mult fator$					
$termo \rightarrow fator$		Primeiro(termo) = {(, número}			
$mult \rightarrow *$	Primeiro(mult) = {*}				
$fator \rightarrow (exp)$	Primeiro(fator) = { (}				
$\mathit{fator} o extbf{n\'umero}$	Primeiro(fator) = {(, número}				

for cada não-terminal A do $Primeiro(A) := \{\};$ while houver alterações em algum Primeiro(A) do for cada escolha de produção $A \rightarrow X_1X_2...X_n$ do acrescente $Primeiro(X_1)$ a Primeiro(A);

- Exemplo:
 - Considere a gramática:

```
exp \rightarrow exp soma termo | termo

soma \rightarrow + | -

termo \rightarrow termo mult fator | fator

mult \rightarrow *

fator \rightarrow (exp) | NUM
```

```
Primeiro(exp) = { (, número }

Primeiro(termo) = { (, número }

Primeiro(fator) = { (, número }

Primeiro(soma) = {+, -}

Primeiro(mult) = {*}
```

Conjuntos FOLLOW

- Necessários para a montagem da tabela preditiva, quando algum conjunto FIRST possui ε
- Dado um não-terminal A, o conjunto FOLLOW(A), composto por terminais e possivelmente \$, é definido como:
 - 1. Se A for o símbolo inicial, então \$ pertence a FOLLOW(A);
 - 2. Se houver uma produção $B \rightarrow \alpha A \gamma$, então FIRST(γ) $\{\epsilon\}$ pertence a FOLLOW(A);
 - 3. Se houver uma produção $B \rightarrow \alpha A \gamma$ tal que ϵ pertença a FIRST(γ), então FOLLOW(A) contém FOLLOW(B);

OBS: o símbolo \$ indica final da entrada (se comporta como se fosse um *token* indicando fim de arquivo)

Conjuntos FOLLOW

- Observações sobre a construção dos conjuntos FOLLOW:
 - O conjunto FOLLOW é formado apenas por símbolos terminais
 - ✓ O símbolo \$ indica final da entrada (se comporta como se fosse um token)
 - ε nunca é um elemento do conjunto FOLLOW
 (ε foi usado nos conjuntos FIRST apenas para marcar as cadeias que podem desaparecer)
 - Os conjuntos FOLLOW são definidos apenas para os símbolos nãoterminais
 - ✓ A definição dos conjuntos FOLLOW funciona "à direita" das produções
 - Regras que não têm não-terminais à direita nada acrescentam à construção dos conjuntos FOLLOW

Conjuntos FOLLOW

```
Seqüência(símbolo-inicial) := {$}; for cada não-terminal A # símbolo-inicial do Seqüência(A) := {}; while houver alterações em algum conjunto de Seqüência do for cada produção A \rightarrow X_1 X_2 ... X_n do for each X_i que for não-terminal do adicione Primeiro(X_{i+1} X_{i+2} ... X_n) - {\epsilon} a Seqüência(X_i) (* Nota: se i=n, então X_{i+1} X_{i+2} ... X_n = \epsilon *) if \epsilon estiver em Primeiro (X_{i+1} X_{i+2} ... X_n) then adicione Seqüência(A) a Seqüência(X_i)
```

Figura 4.8 Algoritmo para a computação de conjuntos de Sequência.

- Conjuntos FOLLOW
 - Exemplo (4.12 Louden)
 - Considere novamente a gramática:

```
exp \rightarrow exp soma termo | termo

soma \rightarrow + | -

termo \rightarrow termo mult fator | fator

mult \rightarrow *

fator \rightarrow (exp) | NUM
```

```
Primeiro(exp) = { (, número }

Primeiro(termo) = { (, número }

Primeiro(fator) = { (, número }

Primeiro(soma) = {+, -}

Primeiro(mult) = {*}
```

Tabela 4.8 Computação de conjuntos de Seqüência para a gramática do Exemplo 4.12.

Regra gramatical	Passada 1	Passada 2
exp → exp soma termo	Seqüência(exp) = {\$, +, -} Seqüência(soma) = {(, número)} Seqüência(termo) = {\$, +, -}	Seqüência(termo) = {\$, +, -, *,)}
$exp \rightarrow termo$		
termo → termo mult fator	Seqüência(termo) =	Seqüência(fator) = {\$, +, -, *,)}
$termo \rightarrow fator$		
$fator \rightarrow (exp)$	Seqüência(<i>exp</i>) = {\$, +, -,)}	

```
Seqüência(símbolo-inicial) := {$}; for cada não-terminal A # símbolo-inicial do Seqüência(A) := {}; while houver alterações em algum conjunto de Seqüência do for cada produção A \rightarrow X_1 X_2 ... X_n do for each X_i que for não-terminal do adicione Primeiro(X_{i+1} X_{i+2} ... X_n) - {\epsilon} a Seqüência(X_i) (* Nota: se i=n, então X_{i+1} X_{i+2} ... X_n = \epsilon *) if \epsilon estiver em Primeiro (X_{i+1} X_{i+2} ... X_n) then adicione Seqüência(A) a Seqüência(X_i)
```

```
Primeiro(exp) = { (, número }

Primeiro(termo) = { (, número }

Primeiro(fator) = { (, número }

Primeiro(soma) = {+, -}

Primeiro(mult) = {*}
```

 Exercício: construa os conjuntos First e Follow para a GLC abaixo

```
exp \rightarrow termo \ exp'

exp' \rightarrow soma \ termo \ exp' \mid \epsilon

soma \rightarrow + \mid -

termo \rightarrow fator \ termo'

termo' \rightarrow mult \ fator \ termo' \mid \epsilon

mult \rightarrow *

fator \rightarrow (\ exp ) \mid número
```

```
Primeiro(exp) = {(, número}

Primeiro(exp') = {+, -, \epsilon}

Primeiro(soma) = {+, -}

Primeiro(termo) = {(, número}

Primeiro(termo') = {*, \epsilon}

Primeiro(mult) = {*}

Primeiro(fator) = {(, número}
```

```
for cada não-terminal A do Primeiro(A) := \{\};
while houver alterações em algum Primeiro(A) do
for cada escolha de produção A \to X_1 X_2 ... X_n do
acrescente Primeiro(X_1) a Primeiro(A);
```

Figura 4.7 Algoritmo simplificado da Figura 4.6 na ausência de ε-produções.

• Exercício: construa os conjuntos First e Follow para a GLC abaixo Sequência(símbolo-inicial) := {\$};

```
exp \rightarrow termo \ exp'

exp' \rightarrow soma \ termo \ exp' \mid \epsilon

soma \rightarrow + \mid -

termo \rightarrow fator \ termo'

termo' \rightarrow mult \ fator \ termo' \mid \epsilon

mult \rightarrow *

fator \rightarrow (\ exp ) \mid número
```

```
for cada não-terminal A # símbolo-inicial do Seqüência(A) := { }; while houver alterações em algum conjunto de Seqüência do for cada produção A \rightarrow X_1 X_2 ... X_n do for each X_i que for não-terminal do adicione Primeiro(X_{i+1} X_{i+2} ... X_n) - {\epsilon} a Seqüência(X_i) (* Nota: se i=n, então X_{i+1} X_{i+2} ... X_n = \epsilon *) if \epsilon estiver em Primeiro (X_{i+1} X_{i+2} ... X_n) then adicione Seqüência(A) a Seqüência(X_i)
```

Figura 4.8 Algoritmo para a computação de conjuntos de Seqüência.

```
Primeiro(exp) = {(, número}

Primeiro(exp') = {+, -, \epsilon}

Primeiro(soma) = {+, -}

Primeiro(termo) = {(, número}

Primeiro(termo') = {*, \epsilon}

Primeiro(mult) = {*}

Primeiro(fator) = {(, número}
```

• Exercício: construa os conjuntos First e Follow para a GLC abaixo Sequência(símbolo-inicial) := {\$};

```
exp \rightarrow termo \ exp'

exp' \rightarrow soma \ termo \ exp' \mid \epsilon

soma \rightarrow + \mid -

termo \rightarrow fator \ termo'

termo' \rightarrow mult \ fator \ termo' \mid \epsilon

mult \rightarrow *

fator \rightarrow (\ exp ) \mid número
```

```
Sequencia(simbolo-inicial) := {$}; for cada não-terminal A # símbolo-inicial do Seqüência(A) := {}; while houver alterações em algum conjunto de Seqüência do for cada produção A \rightarrow X_1X_2...X_n do for each X_i que for não-terminal do adicione Primeiro(X_{i+1}X_{i+2}...X_n) - {\epsilon} a Seqüência(X_i) (* Nota: se i=n, então X_{i+1}X_{i+2}...X_n = \epsilon *) if \epsilon estiver em Primeiro (X_{i+1}X_{i+2}...X_n) then adicione Seqüência(A) a Seqüência(X_i)
```

Figura 4.8 Algoritmo para a computação de conjuntos de Sequência.

Primeiro(exp) = {(, número} Primeiro(exp') = {+, -, ϵ } Primeiro(soma) = {+, -} Primeiro(termo) = {(, número} Primeiro(termo') = {*, ϵ } Primeiro(mult) = {*} Primeiro(fator) = {(, número}

```
Seqüência(exp) = {$, )}

Seqüência(exp') = {$, )}

Seqüência(soma) = {(, número}

Seqüência(termo) = {$, ), +, -}

Seqüência(termo') = {$, ), +, -}

Seqüência(mult) = {(, número}

Seqüência(fator) = {$, ), +, -, *}
```

- Construção da Tabela Preditiva
 - Repetir os dois passos a seguir para cada não-terminal A e escolha de produção $A \rightarrow \alpha$
 - Para cada terminal α em FIRST(α), adicione $A \rightarrow \alpha$ a $M[A, \alpha]$
 - Se ϵ pertencer a FIRST(α), para cada elemento α de FOLLOW(A) adicione $A \rightarrow \alpha$ a $M[A, \alpha]$

Exemplo de construção de tabela preditiva (4.15 – Louden)

```
exp' \rightarrow soma\ termo\ exp' \mid \epsilon
soma \rightarrow + | -
termo \rightarrow fator termo'
termo' \rightarrow mult fator termo' \mid \varepsilon
mult \rightarrow *
fator \rightarrow (exp) \mid número
Primeiro(exp) = \{(, número)\}
Primeiro(exp') = {+, -, \varepsilon}
Primeiro(soma) = \{+, -\}
Primeiro(termo) = \{(, número)\}
Primeiro(termo') = {*, \varepsilon}
Primeiro(mult) = \{*\}
Primeiro(fator) = { (, número)
```

 $exp \rightarrow termo \ exp'$

```
Seqüência(exp) = {$, }}
Seqüência(exp') = {$, }}
Seqüência(exp') = {$, }}
Seqüência(soma) = {(, número)}
Seqüência(termo) = {$, }, +, -}
Seqüência(termo') = {$, }, +, -}
Seqüência(mult) = {(, número)}
Seqüência(fator) = {$, }, +, -, *}
```

```
Primeiro(exp) = {(, n\'umero} Sequência(exp) = {$, )}

Primeiro(exp') = {+, -, \epsilon} Sequência(exp') = {$, )}

Primeiro(soma) = {+, -} Sequência(soma) = {(, n\'umero}

Primeiro(termo) = {(, n\'umero} Sequência(termo) = {$, ), +, -}

Primeiro(termo') = {*, \epsilon} Sequência(termo') = {$, ), +, -}

Primeiro(termo') = {*, t} Sequência(termo') = {$, ), +, -}

Primeiro(termo') = {\tau, t} Sequência(termo') = {$, ), +, -, *}
```

Para cada terminal a em FIRST(α), adicione $A \rightarrow \alpha$ a M[A,a]

Se ε pertencer a FIRST(α), para cada elemento α de FOLLOW(A) adicione $A \rightarrow \alpha$ a $M[A, \alpha]$

Tabela 4.4 Tabela de análise sintática LL(1) para a gramática da Figura 4.4.

M[N,T]	(número)	+	-	* ,	\$
exp	exp → termo exp'	exp → termo exp'					. i *****
exp'			$exp' \rightarrow \varepsilon$	exp' → soma termo exp'	exp' → soma termo exp'		$exp' \rightarrow \varepsilon$
soma				soma → +	soma →		
termo	termo → fator termo'	termo → fator termo'					
termo'			$termo' \rightarrow \epsilon$	$termo' \rightarrow \epsilon$	$termo' \rightarrow \epsilon$	termo' → mult fator termo'	$termo' \rightarrow \epsilon$
mult						$mult \rightarrow *$	
fator	$\begin{array}{c} \textit{fator} \rightarrow \\ \textit{(exp)} \end{array}$	fator → número					

```
exp \rightarrow termo \ exp'

exp' \rightarrow soma \ termo \ exp' \mid \epsilon

soma \rightarrow + \mid -

termo \rightarrow fator \ termo'

termo' \rightarrow mult \ fator \ termo' \mid \epsilon

mult \rightarrow *

fator \rightarrow (\ exp ) \mid número
```

Bibliografia consultada

```
LOUDEN, K. C. Compiladores: princípios e práticas.
São Paulo: Pioneira Thompson Learning, 2004
(Cap. 4)
```

MERINO, M. **Notas de Aulas - Compiladores**, UNIMEP, 2006.