ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО» ВШ программной инженерии

Расчетное задание №1

по дисциплине «Математические методы в управлении»

Составление рациона животного

Выполнил

Студент гр. 3530202/70201, к. IV

Имхасина И.Х. (i=10)

Преподаватель Суханов А.А.

Санкт-Петербург Осень, 2020 г.

Постановка задачи

Для кормления животного требуется внести в рацион витамины A, B, C. Витамины содержатся в кормовых смесях 1 и 2 в заданных процентных соотношениях (см. табл.1). Даны дневные нормы потребления витаминов и стоимости кормовых смесей.

Таблица 1

	Смесь 1	Смесь 2	Дневная норма
Витамин А	-	0.1 %	0.003 г
Витамин В	0.3 %	(3-i/24)*0.1 %	0.027 г
Витамин С	0.1 %	(2+i/30)*0.1 %	(12+i/2)*0.001 r
Цена	0.1 руб/г	(3+ i-6)*0.015 руб/г	

Здесь і – порядковый номер студента в списке группы (по алфавиту).

Требуется:

- 1. Определить наиболее дешевый рацион питания животного, обеспечивающий дневную норму витаминов
- 2. При какой цене на смесь 1 ее невыгодно (выгодно) использовать в рационе?
- 3. В ответ вывести:
- \boldsymbol{f}^* оптимальное значение функционала
- x_1 , x_2 оптимальное количество смеси 1 и смеси 2
- $\lambda_{\!_1}\,,\;\lambda_{\!_2}\,,\;\lambda_{\!_3}$ двойственные переменные из решения эквивалентной двойственной задачи
- $oldsymbol{C_1^*}$ граничная цена на смесь 1

Ход решения (подставим і=10)

	Смесь 1	Смесь 2	Дневная норма
Витамин А	-	0.1%	0.003 г
Витамин В	0.3%	62/240%	0.027 г
Витамин С	0.1%	70/300%	0.017 г
Цена	0.1 руб/г	0.105 руб/г	-

1)

Запишем условие задачи:

$$f = 0.1 * x_1 + 0.105 * x_2 \rightarrow min$$

$$\begin{cases}
0 * x_1 + 0.001 * x_2 \ge 0.003 \\
0.003 * x_1 + \frac{62}{24000} * x_2 \ge 0.027 \\
0.001 * x_1 + \frac{70}{30000} * x_2 \ge 0.017
\end{cases}, x_i \ge 0$$

Канонический вид:

$$g = -0.1 * x_1 - 0.105 * x_2 \rightarrow max$$

$$\begin{cases}
0 * x_1 + 0.001 * x_2 - x_3 = 0.003 \\
0.003 * x_1 + \frac{62}{24000} * x_2 - x_4 = 0.027 \\
0.001 * x_1 + \frac{70}{30000} * x_2 - x_5 = 0.017
\end{cases}, x_i \ge 0$$

Решим вспомогательную задачу:

$$\begin{cases} 0*x_1 + 0.001*x_2 - x_3 + x_6 = 0.003\\ 0.003*x_1 + \frac{62}{24000}*x_2 - x_4 + x_7 = 0.027\\ 0.001*x_1 + \frac{70}{30000}*x_2 - x_5 + x_8 = 0.017 \end{cases}, \quad x_i \ge 0$$

$$W = x_6 + x_7 + x_8 -> min$$

Начальный базис: (x_6, x_7, x_8)

Построим начальную симплекс таблицу:

$$x_6 = -0.001 * x_2 + x_3 + 0.003$$

$$x_7 = -0.003 * x_1 - \frac{62}{24000} * x_2 + x_4 + 0.027$$

$$x_8 = -0.001 * x_1 - \frac{70}{30000} * x_2 + x_5 + 0.017$$

	x_1	x_2	x_3	x_4	x_5	b
x_6	0	-0.001	1	0	0	0.003
<i>x</i> ₇	-0.003	$-\frac{62}{24000}$	0	1	0	0.027
<i>x</i> ₈	-0.001	$-\frac{70}{30000}$	0	0	1	0.017
W	-0.004	$-\frac{710}{120000}$	1	1	1	0.047

Определяем переменную, которую включим в базис: $max|\Delta_i|$, $\Delta_i<0$. Для данной таблицы \mathbf{x}_2 .

Определяем переменную, которую исключим из базиса: $\min_{a_{ik}<0}(-\frac{b_i}{a_{ik}})$. Для данной таблицы x_6 .

$$x_2 = 1000 * x_3 - 1000 * x_6 + 3$$

$$x_7 = -0.003 * x_1 - \frac{31}{12}x_3 + \frac{31}{12} * x_6 + x_4 + \frac{77}{4000}$$

$$x_8 = -0.001 * x_1 - \frac{7}{3} * x_3 + \frac{7}{3} * x_6 + x_5 + \frac{1}{100}$$

Новая симплекс таблица:

	<i>x</i> ₁	<i>x</i> ₆	<i>x</i> ₃	x_4	<i>x</i> ₅	b
x_2	0	-1000	1000	0	0	3
<i>x</i> ₇	-0.003	31 12	$-\frac{31}{12}$	1	0	77 4000

<i>x</i> ₈	-0.001	$\frac{7}{3}$	$-\frac{7}{3}$	0	1	$\frac{1}{100}$
W	-0.004	$\frac{71}{12}$	$-\frac{59}{12}$	1	1	$\frac{117}{4000}$

Аналогично определяем переменные, которые включим и исключим в базисе. Исключаем x_8 и включаем x_3 .

$$x_3 = -\frac{3}{7000} * x_1 - \frac{3}{7} x_8 + x_6 + \frac{3}{7} x_5 + \frac{3}{700}$$

$$x_2 = -\frac{3}{7} * x_1 - \frac{3000}{7} x_8 + \frac{3000}{7} x_5 + \frac{51}{7}$$

$$x_7 = -\frac{53}{28000} * x_1 + \frac{31}{28} x_8 - \frac{31}{28} x_5 + x_4 + \frac{229}{28000}$$

Новая симплекс таблица:

	x_1	x_6	<i>x</i> ₈	x_4	x_5	b
x_2	$-\frac{3}{7}$	0	$-\frac{3000}{7}$	0	3000 7	51 7
<i>x</i> ₇	$\frac{-53}{28000}$	0	$\frac{31}{28}$	1	$-\frac{31}{28}$	229 28000
x_3	$-\frac{3}{7000}$	1	$-\frac{3}{7}$	0	$\frac{3}{7}$	$\frac{3}{700}$
W	$\frac{-53}{28000}$	1	$\frac{59}{28}$	1	$-\frac{31}{28}$	$\frac{229}{28000}$

Аналогично определяем переменные, которые включим и исключим в базисе. Исключаем x7 и включаем x1.

$$x_{1} = \frac{28000}{53} * x_{4} - \frac{31000}{53} x_{5} - \frac{28000}{31} x_{7} + \frac{31000}{53} x_{8} + \frac{229}{53}$$

$$x_{3} = -\frac{12}{53} * x_{4} + \frac{252}{7 * 53} * x_{5} + x_{6} + \frac{12}{53} x_{7} - \frac{252}{53 * 7} x_{8} + \frac{903}{53 * 7000}$$

$$x_{2} = -\frac{12000}{53} * x_{4} - \frac{36000}{53} x_{5} + \frac{12000}{53} x_{7} + \frac{810000}{7 * 53} x_{8} + \frac{2016}{7 * 53}$$

	<i>x</i> ₅	<i>x</i> ₆	x_8	x_4	<i>x</i> ₇	b
x_2	36000 53	0	$\frac{-810000}{7*53}$	$-\frac{12000}{53}$	12000 53	$\frac{2016}{7*53}$

x_1	$\frac{-31000}{53}$	0	31000 53	28000 53	$-\frac{28000}{31}$	229 53
x_3	252 7 * 53	1	$\frac{-252}{53*7}$	$-\frac{12}{53}$	12 53	903 53 * 7000
W	0	1	1	0	1	0

Значения W неотрицательны, достигли оптимума.

	x_5	x_4	b
x_2	36000 53	$-\frac{12000}{53}$	2016 7 * 53
x_1	<u>-31000</u> 53	28000 53	229 53
g	680 53	1540 53	51380 53 * 7 * 1000

$$x_1 = \frac{28000}{53} * x_4 - \frac{31000}{53} x_5 + \frac{229}{53}$$

$$x_2 = -\frac{12000}{53} * x_4 - \frac{36000}{53} x_5 + \frac{2016}{7 * 53}$$

$$f = 0.1 * x_1 + 0.105 * x_2$$

$$f = 0.1 * \frac{229}{53} + 0.105 * \frac{2016}{7 * 53} = \frac{371980}{7 * 53 * 1000}$$

$$f = \frac{371980}{7 * 53 * 1000} \approx 1.00264$$

$$x_1 \approx 4.32075$$

$$x_2 \approx 5.43396$$

Графическое представление

Двойственная задача

Исходная задача:

$$f = 0.1 * x_1 + 0.105 * x_2 \rightarrow min$$

$$\begin{cases}
0 * x_1 + 0.001 * x_2 \ge 0.003 \\
0.003 * x_1 + \frac{62}{24000} * x_2 \ge 0.027 \\
0.001 * x_1 + \frac{70}{30000} * x_2 \ge 0.017
\end{cases}$$

 $x_i \ge 0$

Получаем двойственную задачу:

$$F = 0.003 * \lambda_1 + 0.027 * \lambda_2 + 0.017 * \lambda_3 \rightarrow max$$

$$\begin{cases} 0.003 * \lambda_2 + 0.001 * \lambda_3 \le 0.1 \\ \lambda_1 + \frac{62}{24000} * \lambda_2 + \frac{70}{30000} * \lambda_3 \le 0.105 \end{cases}$$

$$\lambda_i \ge 0$$

Канонический вид:

$$F = 0.003 * \lambda_1 + 0.027 * \lambda_2 + 0.017 * \lambda_3 \rightarrow max$$

$$\begin{cases}
0.003 * \lambda_2 + 0.001 * \lambda_3 + \lambda_4 = 0.1 \\
\lambda_1 + \frac{62}{24000} * \lambda_2 + \frac{70}{30000} * \lambda_3 + \lambda_5 = 0.105
\end{cases}$$

Строим симплекс таблицу:

$$\lambda_4 = 0.1 - 0.003 * \lambda_2 - 0.001 * \lambda_3$$

$$\lambda_5 = 0.105 - \lambda_1 - \frac{62}{24000} * \lambda_2 - \frac{70}{30000} * \lambda_3$$

	λ_1	λ_2	λ_3	b
λ_4	0	-0.003	-0.001	0.1
λ_5	-1	$-\frac{62}{24000}$	$-\frac{70}{30000}$	0.105
F	0.003	0.027	0.017	0

Включим λ_2 , исключим λ_4 .

$$\begin{split} \lambda_5 &= \frac{17}{900} - \lambda_1 - \frac{53}{36000} * \lambda_3 + \frac{31}{36} * \lambda_4 \\ \lambda_2 &= \frac{100}{3} - \frac{1000}{3} * \lambda_4 - \frac{1}{3} * \lambda_3 \end{split}$$

	λ_1	λ_3	λ_4	b
λ_2	0	$\frac{-1}{3}$	$\frac{-1000}{3}$	$\frac{100}{3}$
λ_5	-1	$-\frac{53}{36000}$	31 36	17 900
F	0.003	$\frac{8}{1000}$	-9	$\frac{9}{10}$

Включим λ_3 , исключим λ_5 .

$$\begin{split} \lambda_3 &= \frac{680}{53} - \frac{36000}{53} * \lambda_1 + \frac{31000}{53} * \lambda_4 + \frac{36000}{53} * \lambda_5 \\ \lambda_2 &= \frac{4620}{159} + \frac{1200}{53} \lambda_1 - \frac{84000}{3 * 53} * \lambda_4 + \frac{12000}{53} * \lambda_5 \end{split}$$

λ_1	λ_4	λ_5	b

λ_2	1200 53	$-\frac{84000}{3*53}$	12000 53	$\frac{4620}{159}$
λ_3	$-\frac{36000}{53}$	$\frac{31000}{53}$	36000 53	680 53
F	$-\frac{287841}{53000}$	$-\frac{229}{53}$	8 * 36 53	5314 5300

Достигли оптимума.

$$\lambda_1 = 0$$

$$\lambda_2 = 4620/159 \approx 29.0566$$

$$\lambda_3 = 680/53 \approx 12.8302$$

$$F = 0 + 0.027 * \frac{4620}{159} + 0.017 * \frac{680}{53} = \frac{53140}{53000} \approx 1.0026$$

2) Определим при какой цене на смесь 1 ее невыгодно (выгодно) использовать в рационе.

Исходя из графического представления:

$$\binom{c_1^*}{0.105} \sim \binom{0.003}{\frac{62}{24000}}$$

$$C_1^* = \frac{0.105 * 0.003}{\frac{62}{24000}} \approx 0.1219$$

Ответ (i = 10):

$$f^* = 1.0026$$

$$x_1 \approx 4.3208$$

$$x_2\approx 5.43396$$

$$\lambda_1 = 0$$

$$\lambda_2 = 29.0566$$

$$\lambda_3 = 12.8302$$

$$c_1^* = 0.1219$$