Corso di Laurea in Informatica - Fisica A ${\rm AA}\ 2018/19$

Esercitazione 2

Esercizi svolti in aula

- 1. Tre cariche puntiformi $Q_1 = 5$ nC, $Q_2 = -3$ nC e $Q_3 = 6$ nC si trovano, rispettivamente, nei punti P1(0, 0), P2(0, - d_2), P3(d_3 , 0), con $d_2 = 10$ cm e $d_3 = 30$ cm. Scrivere in forma vettoriale:
 - il campo elettrico generato da Q_2 e Q_3 in P1;
 - la forza agente sulla carica Q_1 .

$$[\mathbf{E}(0,0) = (-0.599\mathbf{i} - 2.70\mathbf{j}) \text{ kN/C}; \mathbf{F} = (-2.99\mathbf{i} - 13.5\mathbf{j}) \mu \text{N}]$$

2. Tre cariche q_1 , q_2 e q_3 sono disposte rispettivamente nei punti $P_1(-a, 0)$, $P_2(a, 0)$ e $P_3(0, b)$, con a = 4 m e b = 5 m (figura 1). I valori delle cariche sono $q_1 = q_2 = 1$ mC e $q_3 = -3$ mC. Calcolare il campo elettrico nel punto P(0,-a).

Figure 1: problema 2

- 3. Un elettrone che viaggia lungo l'asse x con una velocità $v_0 = 5 \times 10^6$ m/s entra con in una regione dello spazio dove è presente un campo elettrico del valore di 10^3 N/C, parallelo e concorde alla velocità dell'elettrone.
 - Dopo quanto tempo l'elettrone inverte il suo moto?
 - Quale è lo spazio percorso dall'elettrone prima di invertire il moto?
 - Quale potenza bisognerebbe fornire dall'esterno all'elettrone per far sì che continui a muoversi in linea retta con la stessa velocità v_0 ?
 - Rispondere alla domanda precedente nel caso in cui la velocità iniziale formi un angolo di 30° con il campo elettrico.

$$[2.8 \times 10^{-8} \text{ s}; 71 \text{ mm}; 8.0 \ 10^{-10} \text{ W}; 6.9 \ 10^{-10} \text{ W}]$$

Altri esercizi

- **4.** Due cariche q_1 e q_2 si trovano, rispettivamente, nelle posizioni $\mathbf{x}=0$ e $\mathbf{x}=d$ (d>0).
 - Scrivere l'espressione E(x) del campo elettrico in un punto generico sull'asse x.
 - Se $q_1 = 1 \mu C$, $q_2 = 3 \mu C$ e d = 10 cm calcolare il valore di x, diverso dall'infinito, per cui il campo elettrico si annulla.

$$\begin{split} [\mathrm{E}(\mathbf{x}) &= -q_1/4\pi\epsilon_0 x^2 - q_2/4\pi\epsilon_0 (x+d)^2 \text{ per } \mathbf{x} < 0 \\ \mathrm{E}(\mathbf{x}) &= q_1/4\pi\epsilon_0 x^2 - q_2/4\pi\epsilon_0 (d-x)^2 \text{ per } 0 < \mathbf{x} < \mathrm{d} \\ \mathrm{E}(\mathbf{x}) &= q_1/4\pi\epsilon_0 x^2 + q_2/4\pi\epsilon_0 (x-d)^2 \text{ per } \mathbf{x} > \mathrm{d}; \\ \mathrm{x} &= 3.7 \text{ cm}] \end{split}$$