Conjuntos

- Los conjuntos sun una de las fundaciones de la matematica.
- No se intentaran de definir, se intentara entenderlos.
- Para entender un conjunto, hay que entender que elementos son miembros y cuales no.
- Los conjuntos se representan con:
 - Listas de elementos: $\{a, b, c\}$
 - Describir los elementos en base a una propiedad: {x|xtienelapropiedadP}
 - Mencionando la pertenencia: $a \in S$ ó $b \notin S$
 - Axioma: Todos los elementos que podemos escribir existen.
 - Es importante diferenciar objetos de su representación.

Relaciones entre Conjuntos

- igualdad: $(A \equiv B) : \Leftrightarrow (\forall x. x \in A \Leftrightarrow x \in B)$
- subconjunto: $(A \subseteq B : \Leftrightarrow (\forall x. x \in A \Rightarrow x \in B)$
- subconjunto propio: $(A \subset B) : \Leftrightarrow (A \subseteq B) \land (A \not\equiv B)$
- superconjunto: $(A \supseteq B : \Leftrightarrow (\forall x. x \in B \Rightarrow x \in A)$
- subconjunto propio: $(A \supset B) : \Leftrightarrow (A \supseteq B) \land (A \not\equiv B)$

Operaciones con Conjuntos

- union: $A \cup B := \{x | x \in A \lor x \in B\}$
- union sobre una colección: Sea I un conjunto y S_i una familia de conjuntos con indices I, entonces $\bigcup_{i \in I} S_i := \{x | \exists i \in Ix. \in S_i\}$
- intersección: $A \cap B := \{x | x \in A \land x \in B\}$
- intersección de una colección: Sea I un conjunto y S_i , una familia de conjuntos con indices pertenecientes a I, entonces $\bigcap_{i \in I} S_i := \{x | \forall i \in I.x \in S_i\}$
- diferencia de conjuntos: $A \setminus B := \{x | x \in A \land x \notin B\}$
- conjunto de subconjuntos: $\mathcal{P}(A)$ o $\{\}^A := \{S | S \subseteq A\}$
- el conjunto vacio: $\forall x.x \notin \emptyset$

Operaciones en Conjuntos (cont.)

- Producto cartesiano: $A \times B := \{ \langle a, b \rangle | a \in A \land b \in B \}$. $\langle a, b \rangle$ es una pareja
- Producto cartesiano orden n:

$$A_1 \times \ldots \times A_n := \{ \langle a_1, \ldots, a_n \rangle | \forall i.1 \leq i \leq n \Rightarrow a_i \in A_i \}$$

• Espacio cartesiano *n*-dimensional:

- **Definicion:** se escribe $\bigcup_{i=1}^n S_i$ para el conjunto $\bigcup_{i \in \{i | 1 \le i \le n\}}$
- **Definicion:** se escribe $\bigcap_{i=1}^n S_i$ para el conjunto $\bigcap_{i \in \{i | 1 \le i \le n\}}$

Tamaños de Conjuntos

- Definición: El tamaño (#A) de un conjunto A es el numero de elementos en el conjunto.
- Conjetura:
 - $\#\{a,b,c\}=3$
 - $\#\mathbb{N} = \infty$
 - $\#(A \cup B) \le \#A + \#B$
 - $\#(A \cap B) \le \min(\#A, \#B)$
 - $\#(A \times B) = \#A * \#B$
- ¿Como demostramos estas propiedades?
- A todo esto, ¿Que significa "numero de objetos"?
- Idea: Es necesario asignarle a cada elemento de un conjunto un numero natural unario
- ¿Como asociamos elementos de un conjunto a elementos de otros conjuntos?

Los conjuntos son impresionantes

- Los conjuntos parecen simples, pero son poderosos
- Hay conjuntos muy grandes. e.j. "El conjunto ${\cal S}$ de todos los conjuntos":
 - Contiene el conjunto Ø
 - Para todo objeto O, tenemos que $\{O\}, \{\{O\}\}, \{O, \{O\}\}, \ldots \in \mathcal{S}$
 - Contiene todas las uniones, intersecciones y conjuntos de conjuntos
 - ullet Se contiene a si mismo $\mathcal{S} \in \mathcal{S}$

El conjunto ${\cal S}$

- **Propuesta**: El conjunto S' de todos los conjuntos que no se contienen a si mismo
- Pregunta: $iS' \in S'$?
 - Supongamos que si, entonces $\mathcal{S}' \not\in \mathcal{S}'$ ya que \mathcal{S}' solo contiene objetos que no se contienen a si mismos
 - Supongamos que no, entonces $\mathcal{S}' \in \mathcal{S}'$ ya que \mathcal{S}' contiene a los conjuntos que no se contienen a si mismo
- De cualquier forma, tanto $\mathcal{S}' \in \mathcal{S}'$ y $\mathcal{S}' \not\in \mathcal{S}'$ son ciertos, lo cual es una contradicción

Jerga Matematica

- ¿Nos proteje la jerga matematica?
- No: $S' := \{m | m \notin m\}$
- La *jerga matematica* nos permite construir enunciados contradictorios que son "gramaticalmente" validos
- Hay que tener cuidado al construir conjuntos!