Batch: HO-ML 1 Experiment Number: 01

Roll Number: 16010422234 Name: Chandana Galgali

Aim of the Experiment: Data pre-processing by applying data normalization and data discretization

Program/Steps:

- 1. Identify attribute suitable for normalization and discretization
- 2. Apply Z- score normalization on your dataset.
- 3. Apply discretization using Binning technique

Output/Result:

```
plt.xlabel('Index')
plt.ylabel('Value')
plt.title('Original vs Normalized Data')
plt.legend()
plt.show()
Original Value | Normalized Value
-----
569
              | 0.22
4
              | -1.74
426
              | -0.28
994
              | 1.69
960
              | 1.57
979
              | 1.64
              | -1.40
101
968
              | 1.60
36
              | -1.62
              | 0.33
601
733
              0.78
614
              | 0.37
              | -1.02
211
529
              0.08
357
              | -0.52
317
              | -0.65
578
              | 0.25
              0.80
736
308
              | -0.68
691
              0.64
817
              | 1.08
644
              0.48
531
              0.09
44
              | -1.60
              | 1.66
986
29
              | -1.65
              | -1.36
113
45
              | -1.59
              | 0.37
612
              0.49
649
300
              | -0.71
677
              0.59
486
              | -0.07
              | -0.99
221
651
              0.50
```

KJSCE/IT/TY/SEM V/ML (H) /2024-25

684	1	0.62
290	1	-0.75
362	1	-0.50
844	Ι	1.17
537	ı	0.11
893	ı	1.34
356	i	-0.52
479	i	-0.09
826	i	1.11
344	i	-0.56
382	i	-0.43
501	i	-0.02
300	ï	-0.71
172	•	
		-1.15
29		-1.65
245	!	-0.90
46	!	-1.59
440	1	-0.23
647	ı	0.49
540	ı	0.12
89	ı	-1.44
877	I	1.28
205	I	-1.04
851	1	1.19
907	1	1.39
35	1	-1.63
819	1	1.08
843	1	1.17
914	ı	1.41
283	ı	-0.77
61	ı	-1.54
385	i	-0.42
505	i	-0.00
822	i	1.09
851	i	1.19
577	i	0.25
445	i	-0.21
602	i	0.33
196	ï	-1.07
894	•	1.34
		-0.37
400	1	
575		0.24
451	!	-0.19
894	1	1.34
618	1	0.39
200	1	-1.06
481	I	-0.09

```
277
                | -0.79
982
                | 1.65
767
                0.90
                0.47
643
778
                0.94
623
                0.40
978
                | 1.63
                | -1.60
42
894
                | 1.34
567
                | 0.21
519
                0.04
189
                | -1.10
                | -1.29
132
180
                  -1.13
347
                  -0.55
158
                  -1.20
551
                0.16
760
                0.88
```

Original vs Normalized Data 1000 Original Data Normalized Data 800 600 Value 400 200 0 20 40 80 100 60 Index

```
import random
import numpy as np
import matplotlib.pyplot as plt
data = [random.randint(0, 500) for _ in range(100)]
data.sort()
discretized_data = []
for i in range(0, 501, 25):
```

```
group = [x for x in data if i <= x < i + 25]
if group:
   low = min(group)
   high = max(group)
   percentile_50 = np.percentile(group, 50)
   for x in group:
        discretized_data.append(low if x <= percentile_50 else high)

plt.figure(figsize=(10, 6))
plt.plot(data, label='Original Data')
plt.plot(discretized_data, label='Discretized Data')
plt.xlabel('Index')
plt.ylabel('Value')
plt.title('Original vs Discretized Data')
plt.legend()
plt.show()</pre>
```



```
import random
import matplotlib.pyplot as plt

data = [random.randint(0, 500) for _ in range(100)]

bin_edges = range(0, 551, 50) # Bins: 0-50, 51-100, ..., 451-500

plt.hist(data, bins=bin_edges, edgecolor='black')
plt.xlabel('Value')
```

```
plt.ylabel('Frequency')
plt.title('Histogram of Random Numbers (Binned)')
plt.show()
```


Post Lab Question-Answers:

Explain with example Min-Max normalization technique.

Ans: Min-Max Normalization is a data normalization technique used to scale data values to a fixed range, typically [0, 1]. This technique ensures that all attributes contribute equally to the analysis by transforming the data values into a uniform scale.

Formula:
$$v' = \frac{v - \min(A)}{\max(A) - \min(A)}$$

where:

- v is the original value.
- min(A) is the minimum value of attribute AAA.
- max(A) is the maximum value of attribute AAA.

• v' is the normalized value.

Example: Suppose we have an attribute "Height" with values ranging from 150 cm to 200 cm. To normalize a value of 180 cm:

- 1. Determine the Min and Max Values:
 - \circ Min = 150 cm
 - \circ Max = 200 cm
- 2. Apply the Min-Max Formula:

$$v' = \frac{180 - 150}{200 - 150} = \frac{30}{50} = 0.6$$

Thus, the normalized value of 180 cm is 0.6, which falls within the [0, 1] range.

This normalization method is straightforward and effective for scaling data when the minimum and maximum values are known and when it is crucial to maintain the data within a specific range for uniformity in analysis.

Outcomes: Comprehend basics of machine learning

Conclusion (based on the Results and outcomes achieved):

In this experiment, applying z-score normalization and binning for discretization effectively improved data quality and mining efficiency. Normalization ensured uniformity across attributes, while discretization simplified continuous data into manageable intervals. These pre-processing techniques enhanced the accuracy and computational efficiency of subsequent data mining tasks.

References:

Books/ Journals/ Websites:

1. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition