Processo Seletivo Itaú-Unibanco

Avaliação sobre Aprendizado de Máquina e Ciência de Dados

Observações:

- A interpretação das questões é parte integrante da avaliação.
- Sempre que julgar apropriado, você pode usar softwares (e.g., R, Python, Weka, etc.) para resolver as questões.
- O tempo de realização da prova será usado em sua avaliação. Inicie a prova imediatamente após o recebimento e envie suas respostas o mais rapidamente possível. O tempo máximo de prova é de 3 horas.
- Nas questões de Verdadeiro/Falso, cada questão errada anula uma certa. Em caso de dúvidas deixe em branco.
- Todos os arquivos CSV possuem cabeçalho com o nome das colunas e campos separados por vírgula ",".
- Todas as questões têm pesos iguais e valem 1 ponto.

Módulo 1 – Agrupamento

Questão 1) Considerando os dados presentes no arquivo clus01.csv, execute o algoritmo *K-Means* com o posicionamento inicial dos centroides sendo: [1, 1, 1, 1], [-1, -1, -1, -1] e [1, -1, 1, -1]. Qual é o posicionamento final de cada centroide após 10 iterações?

Questão 2) Assinale as alternativas com V ou F para Verdadeiro ou Falso respectivamente. Atente para o fato que uma questão errada anula uma certa. Em caso de dúvidas deixe em branco. () O número mínimo de grupos no algoritmo *K-Means* é igual à raiz quadrada do número de elementos da base. () Devido à inicialização aleatória, o resultado final do K-Means sempre será o mesmo independentemente do critério de convergência. () O algoritmo K-Median é mais sensível a outliers do que os algoritmos K-Means, K-Mode e K-Medoid. () O algoritmos Single-Linkage, Complete-Linkage e Average-Linkage são exemplos de algoritmos hierárquicos. () Não é possível identificar outliers com algoritmos hierárquicos e, por este motivo, tais algoritmos requerem que os outliers sejam removidos numa etapa necessária de pré-processamento. () Para conjuntos de dados com milhões de linhas é aconselhada a utilização de algoritmos hierárquicos em vez de algoritmos particionais pois aqueles calculam somente uma única matriz de distância. () O Rand Index pode ser utilizado para mensurar a aderência entre o agrupamento obtido e um agrupamento de referência (por exemplo, dado por um especialista do domínio). () O DBScan é um exemplo de algoritmo de agrupamento baseado em densidade. () Para acelerar o tempo de processamento dos algoritmos de agrupamento baseados em densidade, pode-se calcular a distância de cada elemento para o centroide de cada um dos grupos. () O número mínimo de variáveis necessárias para realizar um agrupamento é 1.

Módulo 2 – Classificação

Questão 3) Considerando os dados presentes no arquivo class01.csv, treine o algoritmo *Naive Bayes* Gaussiano utilizando a metodologia de validação cruzada *holdout* (utilize para treino as 350 primeiras linhas e para validação as demais). Qual o valor da acurácia para a base de treino? Qual o valor da acurácia para a base de validação? Faça o mesmo treinamento com a metodologia *Leave-One-Out*. Qual o valor da acurácia média para a base de validação?

Questão 4) Considerando os dados presentes no arquivo class02.csv, treine o algoritmo 10-Nearest Neighbors (KNN com k=10 e distância Euclidiana), utilizando a metodologia de validação cruzada k-fold com 10 folds não estratificados. Considere que a primeira pasta de validação seja formada pelas primeiras 10% linhas do arquivo, que a segunda pasta de validação seja formada pelas 10% linhas seguintes, e assim por diante, até atingir a última pasta, formada pelas 10% linhas finais da base. Qual o valor médio da acurácia para a base de validação?

Questão 5) Assinale as alternativas com V ou F para Verdadeiro ou Falso respectivamente. Atente para o fato que uma questão errada anula uma certa. Em caso de dúvidas deixe em branco. () No método KNN, o melhor valor de k é igual a n (n = número de exemplos), porém dado o custo computacional, valores pequenos de k são preferidos. () As folhas de uma Árvore de Decisão são obtidas objetivando-se minimizar a pureza entre classes. () Uma Árvore de Decisão completa (profundidade máxima possível) tem maior chance de fazer overfitting nos dados do que uma árvore com profundidade limitada. () Para utilizar uma rede neural em um problema multiclasse é necessário o uso de estratégias como One-Vs-One e One-Vs-Rest. () Root Mean Squared Error (RMSE) é uma medida adequada para avaliar classificadores. () Todo algoritmo de classificação possui um viés que dita a forma como cada método explora o espaço de busca pela hipótese que melhor se ajusta aos dados. () O grau do polinômio do algoritmo Support Vector Machine (SVM) deve ser definido para todos os kernels. () Uma vantagem dos algoritmos baseados em árvores é que, em sua maioria, a presença de valores faltantes (missing) não inviabiliza sua execução. () Utiliza-se validação *out-of-time* separando um conjunto de dados de forma aleatória independentemente do tempo. () O Algoritmo MLP (Multi-Layer Perceptron) é conceitualmente baseado em uma visão abstrata e simplificada de um neurônio biológico

Módulo 3 – Regressão

Questão 6) Considerando os dados presentes no arquivo reg01.csv, obtenha um modelo de regressão linear com regularização L1 (*LASSO* com parâmetro de regularização igual a 1) utilizando a metodologia *Leave-One-out*. Qual o valor médio do Root *Mean Squared Error* (*RMSE*) para a base de treino? Qual o valor médio do *RMSE* para a base de validação?

Questão 7) Considerando os dados presentes no arquivo reg02.csv, treine uma árvore de regressão (sem realizar podas) com quebras baseadas no erro quadrático médio (do inglês MSE - Mean Squared Error) utilizando a metodologia de validação cruzada k-fold com k=10. Qual o valor do Mean Absolute Error (MAE) para a base de treino? Qual o valor médio do MAE para a base de validação?

Qı	(uestão 8) Assinale as alternativas com V ou F para Verdadeiro ou Falso respectivamente. Atente para o
ato que uma questão errada anula uma certa. Em caso de dúvidas deixe em branco.	
() Quando ajustamos um modelo linear, geralmente supomos que os erros tem distribuição normal e são independentes e identicamente distribuídos (i.i.d.).
() Quando ajustamos um modelo de regressão, podemos utilizar os valores preditos e os resíduos do modelo para avaliar se o modelo se adequa bem aos dados.
() O coeficiente de determinação (r^2) indica, em termos percentuais, quanto da variabilidade da variável resposta é explicada pelas covariáveis do modelo.
() Os modelos de regressão não são afetados por observações atípicas (outliers) e valores faltantes.
() Considerando um modelo de regressão simples, temos que o coeficiente associado à covariável representa o grau de inclinação da reta.
() Para efetuarmos regressão com o algoritmo KNN , é aconselhado fazer uma votação simples dos valores dos k vizinhos encontrados.
() Para melhor desempenho da árvore de regressão, pode-se utilizar regressões lineares em suas folhas para previsão do valor final.
() A F1 é uma medida adequada para avaliar algoritmos de regressão.
() Em todos os modelos de regressão, a métrica r^2 é igual ao quadrado da correlação de pearson entre o valor predito e o observado.
() No algoritmo <i>Random Forest</i> , uma possibilidade simplista para obtenção do valor final é calcular a média dos valores encontrados em cada árvore.

Módulo 4 – Estatística

Questão 9.a) Calcule a distância máxima entre as funções de distribuição acumulada empírica das seguintes amostras (5, 3, 3, 11, 8, 7, 1, 5, 4, 9) e (2, 1, 1, 4, 3, 1, 1, 1, 3, 2).

Questão 9.b) Um analista possui as seguintes informações a respeito dos valores de uma amostra de 30 observações:

- A média de todos os valores é igual a 2.96
- A soma dos quadrados dos valores é igual a 268

Calcule o desvio padrão amostral.

Módulo 5 - SQL

Questão 10) Suponha a existência de duas tabelas de dados conforme o Modelo Entidade Relacional (MER) abaixo:

- 1. Assinale a(s) alternativa(s) correta(s) que retornam os 100 clientes que transacionaram mais dinheiro
 - a) SELECT a.* FROM (SELECT cpf, SUM(valor) as acumulado FROM transacoes GROUP BY cpf ORDER BY acumulado DESC) a limit 100;
 - b) SELECT SUM(Transacoes.Valor), clientes.CPF FROM Clientes INNER JOIN Transacoes ON Clientes.CPF=Transacoes.CPF GROUP BY clientes.CPF ORDER BY SUM(Transacoes.Valor) DESC LIMIT 100;
 - c) SELECT cpf, valor FROM transacoes order by cpf limit 100;
 - d) SELECT clientes.cpf, transacoes.valor FROM clientes LEFT JOIN transacoes ON clientes.cpf = transacoes.cpf ORDER BY transacoes.valor DESC LIMIT 100;
- 2. Assinale a(s) alternativa(s) correta(s) que retorna(m) a tabela Clientes com mais uma coluna. Esta coluna contem a marcação 1 para aqueles que transacionaram mais do que R\$10.000,00 ao longo do tempo e 0 caso contrário.
 - a) SELECT clientes.*, case when acumulado is not null then 1 else 0 END as gdes_valores FROM clientes left join (SELECT * FROM (SELECT cpf, sum(valor) as acumulado FROM transacoes group by cpf) trans where acumulado>10000) transf on transf.cpf=clientes.cpf;
 - b) SELECT clientes.CPF, clientes.Nome, CASE WHEN SUM(Transacoes.Valor) > 10000 THEN 1 ELSE 0 END as gdes_valores FROM Clientes INNER JOIN Transacoes ON Clientes.CPF=Transacoes.CPF GROUP BY Clientes.CPF, Clientes.nome;
 - c) SELECT clientes.cpf, clientes.nome, case when valor>10000 then 1 else 0 END as gdes_valores FROM clientes left join transacoes on transacoes.cpf=clientes.cpf;
 - d) SELECT /*+ MAPJOIN(clientes) */ clientes.*, case when acumulado is not null then 1 else 0 END as gdes_valores FROM clientes left join (SELECT * FROM (SELECT cpf, sum(valor) as acumulado FROM transacoes group by cpf) trans where acumulado>10000) transf on transf.cpf=clientes.cpf;