

অধ্যায় ৬

মোলের ধারণা ও রাসায়নিক ধারণা

MAIN TOPIC

এই অধ্যায়ের বিষয়াবলী:

মোলের ধারণা ও রাসায়নিক ধারণা

Concept of Mole and Chemical Counting

পরিমাণগত বিশ্লেষণ পদ্ধতিতে অর্থাৎ পদার্থের পরিমাণ নির্ণয়ের পদ্ধতিতে বিভিন্ন হিসাব নিকাশ করা হয়, এসব হিসাব নিকাশকে একত্রে রাসায়নিক গণনা বলে (chemical counting)। এবং পদার্থের পরিমাণ নির্ণয়ের একক গুলো মোল (Mole) এককে প্রকাশ করা হয়। বন্ধুরা এই অধ্যায় শেষে আমরা জানব :

- মোলের ধারণা ব্যবহার করে সরল গাণিতিক হিসাব।
- নির্দিষ্ট ঘনমাত্রার দ্রবণ প্রস্তুত।
- শতকরা সংযুক্তি নির্ণয়।
- রাসায়নিক সমীকরণ লেখা ও সমতা বিধান।

- বিক্রিয়ক থেকে উৎপাদের পরিমাণ বা উৎপাদ থেকে বিক্রিয়কের পরিমাণ হিসাব।
- লিমিটিং বিক্রিয়ক নির্ণয় ও উৎপাদের শতকরা পরিমাণ।

মোল (Mole)

কিন্তু বন্ধুরা, প্রশ্ন হলো, মোল জিনিসটা কি?

মোল হচ্ছে এককের আন্তর্জাতিক পদ্ধতিতে রাসায়নিক পদার্থের পরিমাণের একক। কোনো পদার্থের যে পরিমাণের মধ্যে 6.023×10^{23} টি অণু, পরমাণু বা আয়ন থাকে, সেই পরিমাণকে ঐ পদার্থের মোল বলা হয়।

রাসায়নিক পদার্থের পারমানবিক ভর অথবা আণবিক ভরকে গ্রাম এককে প্রকাশ করলে যে পরিমাণ পাওয়া যায়, তাকে ঐ পদার্থের এক মোল বলে। যেমন :

$$16~{
m g}~{
m O}=1$$
 মোল ${
m O}$ পরমাণু
$$=6.023{ imes}10^{23}~{
m [} {
m f D}~{
m adm} {
m cm}$$
ন পরমাণু

 $6.023{ imes}10^{23}$ সংখ্যাটিকে অ্যাভোগেড্রোর সংখ্যা বলা হয়।

আশা করি বন্ধুরা, তোমরা বুঝতে পেরেছো।

> অণুর আনবিক ভর নির্ণয় :

অণুতে বিদ্যমান সকল পরমাণুর পারমাণবিক ভর যোগ করলে ঐ অণুর আনবিক ভর পাওয়া যায়। যেমন:

 $CuSO_4.5H_2O$ এর আনবিক ভর = $(1\times Cu$ এর পারমাণবিক ভর) + $(1\times S)$ এর পারমাণবিক ভর) + $(4\times S)$ অক্সিজেনের ভর) + $(5\times S)$ পানির অনুর ভর)

$$= 63.5 + 32 + 64 + 90$$

$$= 249.5 g$$

চলো বন্ধুরা, বিষয়টাকে আরো আয়ত্ত করার জন্য গাণিতিক প্রশ্ন সমাধান করা যাক।

Query-1: 1 g H_2SO_4 এ কতগুলো H_2SO_4 অণু আছে?

সমাধান: আমরা জানি.

1 মোল
$$H_2SO_4 = 98 \text{ g } H_2SO_4$$

$$= 6.023 \times 10^{23} \text{ ট } H_2SO_4 \text{ অণু}$$

$$98 \text{ g H}_2\text{SO}_4$$
 এ আছে = 6.023×10^{23} টি অণু

$$\therefore 1~{
m g}~{
m H_2SO_4}$$
 এ আছে $= {6.023 imes 10^{23} \over 98}$ টি অণু
$$= 6.14 imes 10^{21}~{
m \ddot{b}}~{
m arg}$$

Query-2: 1 g H₂SO₄ এ কতগুলো H, S এবং O প্রমাণু আছে?

সমাধান:

$$H_2SO_4$$
 এর আনবিক ভর = 98 g H_2SO_4 (1×2) - $\therefore 1 \text{ mol } H_2SO_4 = 98 \text{ g}$

$$98\,\mathrm{g}\,\mathrm{H}_2\mathrm{SO}_4$$
 এ H পরমাণু থাকে = $(2{\times}6.023{\times}10^{23})$ টি

$$1 \text{ g H}_2 \text{SO}_4$$
 এ H পরমাণু থাকে $= \frac{(2 \times 6.023 \times 10^{23})}{98}$ টি $= 1.23 \times 10^{22}$ টি

98 g
$$H_2SO_4$$
 এ S পরমাণু থাকে = $(1 \times 6.023 \times 10^{23})$ টি

$$1\,\mathrm{g\,H_2SO_4}$$
 এ S পরমাণু থাকে $=\frac{(1\times6.023\times10^{23})}{98}$ টি $=6.15\times10^{21}$ টি

$$98 \text{ g H}_2\text{SO}_4$$
 এ 0 পরমাণু থাকে = $(4 \times 6.023 \times 10^{23})$ টি

$$1 \text{ g H}_2\text{SO}_4$$
 এ 0 পরমাণু থাকে $=\frac{(4 \times 6.023 \times 10^{23})}{98}$ টি

$$= 2.46 \times 10^{22} \ \hat{\mathbb{b}}$$

গ্যাসের মোলার আয়তন (molar volume of gas)

1 মোল গ্যাসীয় পদার্থ যে আয়তন দখল করে তাকে ঐ গ্যাসের মোলার আয়তন বলে।

- 0°C তাপমাত্রা এবং 1 atm চাপকে একত্রে প্রমাণ তাপমাত্রা ও চাপ (standard temperature and pressure) বা প্রমাণ অবস্থা (standard condition) বলে।
- প্রমাণ অবস্থায় 1 mol গ্যাসের আয়তন 22.4 লিটার। এটা কিন্তু মনে রাখতে হবে বন্ধুরা।

গুরুত্বপূর্ণ সূত্র :

(i) যদি,

n = মোল সংখ্যা

M = আণবিক ভর

W = গ্রাম এককে ভ্র

ধরি, কোন পদার্থের আণবিক ভর = M গ্রাম

= 1 mol

M গ্রাম পদার্থে আছে = 1 mol

∴ 1 গ্রাম পদার্থে আছে = 1 mol

 \therefore W গ্রাম পদার্থে আছে $=\frac{W}{M}$ mol

$$\therefore$$
 n = $\frac{W}{M}$

(ii) যদি,

n = মোল সংখ্যা

V = লিটার এককে আয়তন

আমরা জানি,

প্রমাণ অবস্থায় 1 মোল গ্যাসীয় পদার্থের আয়তন = 22.4 লিটার

22.4 লিটার = 1 mol

 \therefore 1 গ্রাম পদার্থে আছে $=\frac{1}{22.4}$ mol

 \therefore V গ্রাম পদার্থে আছে $=\frac{V}{22.4}$ mol

$$\therefore n = \frac{V}{22.4}$$

(iii) যদি,

n = মোল সংখ্যা

N = অণুর সংখ্যা

আমরা জানি,

1 mol অণুতে $= 6.023 \times 10^{23}$ টি অণু আছে

 6.023×10^{23} টি অণু আছে =1 মোল অণুতে

$$\therefore$$
 1 টি অণু আছে $=\frac{1}{6.023\times 10^{23}}$ মোল অণুতে

$$\therefore$$
 N টি অণু আছে $=\frac{N}{6.023\times 10^{23}}$ মোল অণুতে

$$\therefore n = \frac{N}{6.023 \times 10^{23}}$$

কি মজা ! আমরা এরই মধ্যে তিনটি সূত্র শিখে ফেল্লাম।

চলো বন্ধুরা, এখন সূত্রগুলো প্রয়োগ করা যাক।

আচ্ছা বলতো, আদর্শ তাপমাত্রা ও চাপে 1 লিটার N_2 গ্যাসে কতটি অণু আছে?

সমাধান: আমরা জানি,

$$n = \frac{V}{22.4}$$
$$= \frac{1}{22.4}$$

আবার,
$$n = \frac{N}{6.023 \times 10^{23}}$$

$$N = n \times 6.023 \times 10^{23}$$

$$N = n \times 6.023 \times 10^{23}$$

$$N = \frac{1}{22.4} \times 6.023 \times 10^{23}$$

$$N = 2.69 \times 10^{22}$$
 টি অণু

 \therefore 1 লিটার N $_2$ অণুতে $2.69{ imes}10^{22}$ টি অণু আছে।

এবার বলতো, প্রমাণ অবস্থায় 5 লিটার CH4 গ্যাসে কয়টি H পরমাণু আছে?

সমাধান: আমরা জানি, প্রমাণ অবস্থায়

1 মোল CH4 এর আয়তন = 22.4 লিটার

22.4 লিটার CH_4 এ H পরমাণু = 4 মোল

$$\therefore$$
 1 লিটার $\mathrm{CH_4}$ এ H পরমাণু $=\frac{4}{22.4}$ মোল

$$\therefore 5$$
 লিটার ${
m CH_4}$ এ ${
m H}$ পরমাণু $= {4 \times 5 \over 22.4}$ মোল $= {25 \over 28}$ মোল

$$\therefore \frac{25}{28}$$
 মোল $H = \frac{25}{28} \times 6.023 \times 10^{23}$ টি

 $= 5.38 \times 10^{23} \text{ fb}$

আশা করি তোমরা বুঝতে পেরেছ।

মোল এবং আনবিক সংকেত (mole and molecular formula)

কোনো পদার্থের আণবিক সংকেত থেকে প্রাপ্ত আণবিক ভরকে গ্রাম এককে প্রকাশিত করলে যে পরিমাণ পাওয়া যায় সেই পরিমাণকে 1 মোল বলা হয়। যেমন :

সোডিয়াম ক্লোরাইডের আণবিক সংকেত → NaCl

NaCl এর আনবিক ভর = 23 + 35.5 = 58.8

NaCl গ্রাম আণবিক ভর = 58.8 g

∴ 58.8 g NaCl = 1 mol NaCl

বাহ্! বেশ ইন্টারেস্টিং তো!

এ থেকে প্রাপ্ত তথ্য:

- ✓ NaCl এর নাম লবণ (সোডিয়াম ক্লোরাইড)
- ✓ 1 অণু সোডিয়াম ক্লোরাইডের সংকেত NaCl
- ✓ 1 mol সোডিয়াম ক্লোরাইডের সংকেত NaCl
- ✓ 1 mol সোডিয়াম ক্লোরাইডে 1টি Na ও 1টি Cl পরমাণু আছে।
- √ 1 অণু সোডিয়াম ক্লোরাইডে 1টি Na ও 1টি Cl পরমাণু আছে।
- √ 1 mol NaCl এর Na এর পরমাণু সংখ্যা 6.023×10^{23} টি ও Cl এর পরমাণু সংখ্যা 6.023×10^{23} টি এবং NaCl এর অণুর সংখ্যা 6.023×10^{23} টি
- √ 1 mol NaCl এর ভর 58.5 g

মোলার দ্রবণ (Molar Solution)

একটি নির্দিষ্ট তাপমাত্রায় 1 লিটার দ্রবণের মধ্যে যদি এক মোল দ্রব দ্রবীভূত থাকে, তবে ঐ দ্রবণকে মোলার দ্রবণ বলে।

• 1 লিটার দ্রবণে 0.5 মোল দ্রব দ্রবীভূত থাকলে ঐ দ্রবণকে 0.5 মোলার দ্রবণ বলে।

$$\therefore$$
 মোলার দ্রবণ $= \frac{\mbox{দ্রব (mol)}}{\mbox{দ্রবণ (L)}}$ $= \frac{0.5}{1} \; \mbox{mol/L}$ $= 0.5 \; \mbox{mol/L}$

লঘু দ্রবণ (Dilute Solution): যে দ্রবণে নির্দিষ্ট পরিমাণ দ্রাবকে কম পরিমাণ দ্রব বা নির্দিষ্ট পরিমাণ দ্রব কম পরিমাণ দ্রবক মিশ্রিত থাকে তাকে লঘু দ্রবণ বলে।

গাঢ় দ্রবণ (Concentrated Solution) : যে দ্রবণে নির্দিষ্ট পরিমাণ দ্রাবকের বেশি পরিমাণ দ্রব্য বা নির্দিষ্ট পরিমাণ দ্রবে কম পরিমাণ দ্রাবক মিশ্রিত থাকে তাকে গাঢ় দ্রবণ বলে।

চলো বন্ধুরা এবার বিশেষ তথ্য জানা যাক।

- ✓ যে দ্রবণের মোলারিটি যত বেশি তা ততো বেশি গাঢ়।
- ✓ 1 লিটার দ্রবণের মধ্যে 0.5 মোলার দ্রব দ্রবীভূত থাকলে, ঐ দ্রবণকে সেমিমোলার দ্রবণ বলে।
- √ 1 লিটার দ্রবণের মধ্যে 0.1 মোলার দ্রব দ্রবীভূত থাকলে, ঐ দ্রবণকে ডেসিমোলার দ্রবণ বলে।

বিভিন্ন মোলারিটির দ্রবন প্রস্তুতকরণ :

V মিলিলিটার আয়তনিক ফ্লাক্সে S মোলার M গ্রাম আণবিক ভরের দ্রব্যের দ্রবণ কিভাবে প্রস্তুত করবে?

এখানে, দ্রবের মোলারিটি = S

মিলিলিটার এককে দ্রবণের আয়তন = V

দ্রবের আণবিক ভর = M

ধরি, গ্রাম এককে দ্রব্যের ভর = W

$$\therefore W = \frac{SMV}{1000}$$

[এখানে 1000 দিয়ে ভাগ করার কারণ হলো V কে লিটার এককে প্রকাশের জন্য]

প্রস্তুত প্রক্রিয়া :

চলো প্রস্তুত করা যাক।

- i. প্রথমে একটি নির্দিষ্ট আয়তনিক ফ্লাক্সে W গ্রাম দ্রব্য ওজন করে নিয়ে ফ্লাক্সের ঢালতে হবে।
- ii. তারপর ফ্লাক্সে খানিকটা পানি যুক্ত করে ঝাঁকিয়ে নিতে হবে। এতে পদার্থটির দ্রবণ তৈরি হবে।
- iii. তারপর সাবধানতা অবলম্বন করে একটি নির্দিষ্ট দাগ পর্যন্ত পানি দ্বারা পূর্ণ করলে S মোলার দ্রবণ প্রস্তুত হয়ে যাবে। কি মজা! এখন আমরা বিভিন্ন মোলারিটির দ্রবণ প্রস্তুত করা শিখে গেছি।

চলো বন্ধুরা, এবার আমরা সূত্রটিকে গণিতে প্রয়োগ করার চেষ্টা করি।

200 মিলিলিটার সেমিমোলার Na_2CO_3 দ্রবণ প্রস্তুত করো।

সমাধান : এখানে, দ্রবের মোলারিটি, S=0.5 মোল

দ্রবের গ্রাম আণবিক ভর, M = (23×2) + 12 + (16×3) = 106 g

দ্রবণের মিলিলিটার এককে আয়তন, V = 200 ml

$$\therefore W = \frac{SMV}{1000}$$

$$= \frac{0.5 \times 200 \times 106}{1000}$$

$$= 10.6 \text{ g}$$

প্রথমে একটি $200~\mathrm{ml}$ আয়তনিক ফ্লাক্সে $\mathrm{Na_2CO_3}$ যোগ করে ঝাঁকিয়ে নিয়ে দ্রবণ তৈরি করতে হবে। তারপর নির্দিষ্ট দাগ পর্যন্ত পানি যোগ করে $200~\mathrm{ml}$ দ্রবণের আয়তন করলেই সেমিমোলার দ্রবণ প্রস্তুত হবে।

যৌগে মৌলের শতকরা সংযুক্তি

The Percentage Composition of Elementin Compounds

কোনো যৌগের $100\,\mathrm{g}$ এর মধ্যে যত গ্রাম মৌল থাকে, তা ঐ মৌলের শতকরা সংযুতি বলে।

কোনো যৌগে একটি মৌলের শতকরা সংযুতি
$$= \frac{$$
মৌলের পারমাণবিক ভর $imes$ পরমাণু সংখ্যা $imes 100\%$

চলো সূত্রটিকে বুঝতে একটা অংক করা যাক।

 $H_2 \mathbf{SO}_4$ এর মধ্যে $\mathbf{H}, \, \mathbf{S}, \, \mathbf{O}$ এর শতকরা সংযুতি হিসাব করো।

সমাধান:

 H_2SO_4 এর আনবিক ভর = $(1 \times 2 + 32 \times 1 + 16 \times 4) = 98$ g

এখানে, H এর প্রমাণুর সংখ্যা =2, পারমাণবিক ভর =1

S এর প্রমাণুর সংখ্যা =1, পার্মাণ্টিক ভর =32

O এর পরমাণুর সংখ্যা = 4, পারমাণবিক ভর = 16

$$\therefore$$
 H এর শতকরা সংযুতি $=\frac{1\times2\times100}{98}\%=2.04\%$

$$\therefore$$
 S এর শতকরা সংযুতি $=\frac{1\times32\times100}{98}\%=32.65\%$

$$\therefore$$
 ০ এর শতকরা সংযুতি $=\frac{4 \times 16 \times 100}{98}\%=65.30\%$

শতকরা সংযুতি থেকে যৌগের আণবিক সংকেত নির্ণয়

চলো এবার শতকরা সংযুতি থেকে যৌগের আণবিক সংকেত নির্ণয় করা যাক।

- ✓ প্রথমে যৌগের শতকরা সংযুতি থেকে স্থূল সংকেত নির্ণয় করতে হবে।
- \checkmark তারপর যৌগের আণবিক ভর স্থূল সংকেতের ভরের কত গুণ তা বের করে সেই সংখ্যা দিয়ে স্থূল সংকেতের পরমাণু সংখ্যাকে গুণ করলে আণবিক সংকেত পাওয়া যায়। যেমন : কার্বন ও হাইড্রোজেন দিয়ে গঠিত যৌগের আণবিক ভর/ স্থূল সংকেতের ভর $=\frac{78}{13}=6$ হয়। তাহলে যৌগটির আণবিক সংকেত = $(CH)_6=C_6H_6$.
- ✓ কোনো যৌগের স্থূল সংকেত তার আণবিক ভরের সমান হলে স্থূল সংকেত ও আণবিক সংকেত একই
 থাকবে।

আণবিক সংকেত থেকে স্থূল সংকেত নির্ণয় :

চলো বন্ধুরা, এখন আণবিক সং<mark>কেত</mark> থেকে স্থূল সংকেত নির্ণয় করি।

- ✔ প্রথমে যৌগের অণুতে বিদ্যমান প্রমাণু গুলোর আলাদা আলাদা করে পারমাণবিক সংখ্যা বের করতে হবে।
- ✓ অতঃপর পারমাণবিক সংখ্যাগুলোর অনুপাত বের করে তা নির্দিষ্ট সংখ্যা (যা দ্বারা সবগুলো সংখ্যা বিভাজ্য)
 দিয়ে ভাগ করলে স্থূল সংকেত পাওয়া যাবে। যেমন :

 $C_6H_{12}O_6$ এর পারমাণবিক সংখ্যাগুলোর অনুপাত =6:12:6=1:2:1 $C_6H_{12}O_6$ এর স্থূল সংকেত $=C_1H_2O_1$ $=CH_2O$

শতকরা সংযুতি এবং স্থূল সংকেত

যে সংকেত অণুতে বিদ্যমান পরমাণুগুলোর অনুপাত প্রকাশ করে তাকে স্থূল সংকেত বলে।

বন্ধুরা, তোমরা কি জানো যে শতকরা সংযুতি থেকে স্থূল সংকেত নির্ণয় করা যায়।

শতকরা সংযুতি থেকে স্থূল সংকেত নির্ণয় :

✓ মৌল সমূহের শতকরা সংযুতিকে তাদের পারমাণবিক সংখ্যা দ্বারা ভাগ করতে হবে।

- ✔ ভাগ করার পর ক্ষুদ্রতম ভাগফল দিয়ে প্রাপ্ত ভাগফল গুলোকে পুনরায় ভাগ করতে হবে।
- ✓ প্রাপ্ত সংখ্যাগুলো পূর্ণ সংখ্যা না হলে, পূর্ণ সংখ্যায় পরিণত করতে প্রয়োজনীয় যে কোনো সংখ্যা দিয়ে ভাগ করতে হবে। যেমন : ভাগফল 1.5 আসলে তা 2 দিয়ে গুণ করে 3 (যা একটি পূর্ণ সংখ্যা) এ পরিণত করতে হবে। খেয়াল রাখতে হবে যে 2 দিয়ে যেন সবগুলো ভাগফল গুণ করা হয়।
- \checkmark প্রাপ্ত সংখ্যাগুলোকে মৌলসমূহের প্রতীকের নিচে ডান পাশে লিখলে তৈরি হয়ে যাবে স্থূল সংকেত। যেমন : $H=2,\,S=1,\,O=4$ হলে স্থূল সংকেত $=H_2SO_4$ । এক্ষেত্রে প্রতীকের নিচে ডান পাশে 1 থাকলে তা লেখার প্রয়োজন নেই।

কি সহজ না?

চলো বন্ধুরা, এখন একটা বিশেষ গাণিতিক প্রশ্ন সমাধান করা যাক।

3 গ্রাম কার্বন পরমাণু এবং 8 গ্রাম অক্সিজেন পরমাণু যুক্ত হয়ে যৌগ গঠন করে। সেই যৌগের স্থূল সংকেত বের করো।

সমাধান : যৌগটিতে কার্বনের শতকরা পরিমাণ = $\frac{3}{3+8} \times 100 \%$

যৌগটিতে অক্সিজেনের শতকরা পরিমাণ = $\frac{8}{3+8} \times 100 \%$

$$= 72.73\%$$

প্রথমে প্রমাণুগুলো শতকরা সংযুক্তিকে নিজ নিজ পার্মাণবিক ভর দ্বারা ভাগ করে পাই,

$$C = \frac{27.27}{12} = 2.27$$

$$0 = \frac{72.73}{16} = 4.54$$

ভাগফল গুলোর মধ্যে ক্ষুদ্রতম ভাগফল 2.27 দিয়ে ভাগ করে পাই,

$$C = \frac{2.27}{2.27} = 1 \qquad O = \frac{4.54}{2.27} = 2$$

ঐ মান গুলো ও প্রতীক নিয়ে গঠিত স্থূল সংকেত $= C_1 O_2 = CO_2$

রাসায়নিক বিক্রিয়া ও রাসায়নিক সমীকরণ

সমীকরণের সাহায্যে রাসায়নিক বিক্রিয়া সংক্ষেপে উপস্থাপন করার নিয়ম :

- ✓ রাসায়নিক সমীকরণের বিক্রিয়ক ও উৎপাদের মাঝে (→) তীর চিহ্ন বসাতে হয় এবং (=) চিহ্ন দিলে উভয় পাশে বিক্রিয়ার সমতা বের করতে হবে, য়াকে রাসায়নিক সমীকরণের সমতা বলে।
- ✓ বিক্রিয়াসমূহ ও উৎপাদসমূহ প্রতীক বা সংকেতের মাধ্যমে লেখা হয়। একাধিক বিক্রিয়কসমূহ বা উৎপাদসমূহ থাকলে তাদের মাঝে (+) যোগ চিহ্ন বসাতে হবে।
- ✓ প্রয়োজনে বিক্রিয়ক বা উৎপাদের ভৌত অবস্থা উল্লেখ করতে হয়। পদার্থ কঠিন হলে বন্ধনীর ভেতর (S) লেখা হয়। গ্যাসীয় হলে (g) ও তরল হলে (l) ও জলীয় দ্রবণ হলে (aq) লেখা হয়। যেমন :

$$CaCO_3(s) + HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

- ✓ বিক্রিয়ায় যতোটুকু তাপ উৎপ<mark>ন্ন বা</mark> শোষিত হয় তা দেখাতে হলে বিক্রিয়ার সমতা করতে হয় ও পদার্থের ভৌত অবস্থা দেখাতে হয়। <mark>এবং উৎপন্ন বা শোষিত তাপের পরিমাণ ΔΗ দিয়ে প্রকাশ করা হয়</mark>।

$$2Mg(NO_3)_2(s) \xrightarrow{\Delta} 2MgO(s) + 4NO_2(g) + O_2(g)$$

রাসায়নিক সমীকরণের সমতাকরণ

রাসায়নিক বিক্রিয়ায় বিক্রিয়ক ও উৎপাদ ভরের সংরক্ষণসূত্র মানে বলে বিক্রিয়ক ও উৎপাদের বিভিন্ন মৌলের পরমাণুর সংখ্যা সমান করতে হয়।

চলো বন্ধুরা এবার বিক্রিয়া সমতাকরণ করা শিখে নিই।

- ✓ প্রথমে প্রতীক ও সংকেত এর সাহায্যে বিক্রিয়ক ও উৎপাদ লিখে সমীকরণ লেখা হয়।
- ✓ প্রথমে যৌগিক অণুতে মৌলের পরমাণু সংখ্যা তারপর মৌলিক অণুতে মৌলের পরমাণু সংখ্যা সমান করতে হয়। সমান করার জন্য সমীকরণের উভয় পাশে বিক্রিয়ক এবং উৎপাদকে বিভিন্ন সংখ্যা দিয়ে গুণ করতে হয়।
- \checkmark যখন রাসায়নিক বিক্রিয়ার এক পাশে দ্বিপরমাণু মৌল যেমন N_2 , O_2 থাকে এবং যৌগিক অণুকে প্রয়োজনীয় সংখ্যা দিয়ে গুণ করার পর দেখা যায় দ্বিপরমাণুক মৌল একপাশে বিজোড় অবস্থায় বিরাজ করে তখন আমাদের দ্বিপরমাণুক ভগ্নাংশ দিয়ে গুণ করতে হয়।

$$C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$$

 $\Rightarrow C_6H_{14} + O_2 \rightarrow 6 CO_2 + 7 H_2O$

✓ এখন দেখা যায় যে, ডান পাশে 13 টা অক্সিজেন বিদ্যমান যা 2 দ্বারা বিভাজ্য। এক্ষেত্রে আমাদের ভগ্নাংশ দিয়ে গুণ করতে হবে।

$$C_6H_{14} + \frac{13}{2}O_2 \rightarrow CO_2 + H_2O$$

উভয় পক্ষে 2 দিয়ে গুণ করে পাই,

$$C_6H_{14} + 16O_2 \rightarrow 12 CO_2 + 14 H_2O$$

দেখা যাচ্ছে যে, সমীকরণটির সমতা যথাযথ হয়েছে।

চলো বন্ধুরা, এখন একটা রাসায়নিক বিক্রিয়ার সমীকরণ গঠন করে সমতা করা যাক।

চুনের জলীয় দ্রবণের সাথে সালফিউরিক এসিড বিক্রিয়া করে ক্যালসিয়াম ফসফেট ও পানি উৎপন্ন করে। বিক্রিয়াটির সমতাকরণ কর।

$$Ca(OH)_2 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O$$

প্রথমে ক্যালসিয়াম সমতার জন্য বাম পাশে $\operatorname{Ca}(\operatorname{OH})_2$ এর সাথে 3 গুণ দিব।

$$3 Ca(OH)_2 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + H_2O$$

এবার বাম পক্ষে 1টা ${
m PO_4}^{3-}$ আয়ন থাকলেও ডান পক্ষে তা 2টা। তাই ${
m H_3PO_4}$ কে 2 দিয়ে গুন করলে ${
m PO_4}$ এর সমতা হবে।

$$3 \text{ Ca}(OH)_2 + 2 \text{ H}_3 PO_4 \rightarrow \text{Ca}_3 (PO_4)_2 + \text{H}_2 O$$

এবার বামপক্ষে 12 টা হাইড্রোজেন থাকলেও ডানপাশে কেবল 2টা। তাই $\mathrm{H}_2\mathrm{O}$ এর সাথে 6 গুণ দিতে হবে।

$$3 \text{ Ca(OH)}_{2} + 2 \text{ H}_{3} \text{PO}_{4} \rightarrow \text{Ca}_{3} (\text{PO}_{4})_{2} + 6 \text{ H}_{2} \text{O}$$

🗠 রাসায়নিক বিক্রিয়াটি সমতাকৃত হয়েছে।

মৌল এবং রাসায়নিক সমীকরণ

রসায়নের যে শাখায় বিক্রিয়কের পরিমাণ থেকে উৎপাদের পরিমাণ এবং উৎপাদন পরিমাণ থেকে বিক্রিয়কের পরিমাণ হিসাব করা হয় তাকে স্টয়কিওমিতি (Stoichiometry) বলে।

স্টয়কিওমিতি অনুযায়ী আমরা বলতে পারি কতটি বিক্রিয়ক, কত মোল বিক্রিয়ক ও কত গ্রাম বিক্রিয়ক বিক্রিয়া করে কতটি উৎপাদ, কত মোল উৎপাদ ও কত গ্রাম উৎপাদ তৈরি করে। যেমন :

$$Na_2CO_3(s) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2(g)$$

প্রথমে বিক্রিয়াটি সমতা করে পাই,

$$Na_2CO_3(s) + 2 HCl (aq) \rightarrow 2 NaCl(aq) + H_2O (l) + CO_2(g)$$

সোডিয়াম হাইড্রোক্লোরিক সোডিয়াম পানি কার্বন ডাই-কার্বনেট এসিড ক্লোরাইড অক্সাইড

$$1$$
 মোল Na_2CO_3 2 মোল HCl 2 মোল $NaCl$ 1 মোল H_2O 1 মোল CO_2 অণু অণু অণু

$$1\times6.023\times10^{23}$$
 টি $2\times6.023\times10^{23}$ $2\times6.023\times10^{23}$ $1\times6.023\times10^{23}$ টি $1\times6.023\times10^{23}$ গৈ $1\times6.023\times10^{23}$

$$1 \times 106 = 106 \, g$$
 $2 \times 36.6 = 73 \, g$ $2 \times 58.5 = 117 \, g$ $1 \times 18 = 18 \, g$ $1 \times 44 = 44 \, g$

চলো বন্ধুরা, এবার দুটি প্রশ্নের সমাধান করা যাক।

6 মোল পানি উৎপন্ন করতে কত মোল $oldsymbol{o}_2$ প্রয়োজন?

সমাধান:

$$2 H_2 + O_2 \rightarrow 2H_2O$$

এখানে, 2 মোল H_2 ও 1 মোল O_2 বিক্রিয়া করে 2 মোল H_2O উৎপন্ন করে।

2 মোল H_2O উৎপন্ন করতে O_2 প্রয়োজন =1 মোল

 \therefore 1 মোল $\mathrm{H_2O}$ উৎপন্ন করতে $\mathrm{O_2}$ প্রয়োজন $=\frac{1}{2}$ মোল

 \therefore 6 মোল $\mathrm{H}_2\mathrm{O}$ উৎপন্ন করতে O_2 প্রয়োজন $=\frac{1\times 6}{2}$ মোল

= 3 মোল

প্রমাণ তাপমাত্রা ও চাপে 4 লিটার N_2 থেকে কত লিটার NH_3 পাওয়া যাবে? (এখানে, বিক্রিয়ক ও উৎপাদন সকল পদার্থ গ্যাসীয়)

সমাধান:

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3$$

$$22.4 \quad 3 \times 22.4 = \quad 2 \times 22.4 =$$

লিটার 67.2 লিটার 44.8 লিটার

প্রমাণ তাপমাত্রা ও চাপে,

22.4 লিটার N_2 থেকে NH_3 পাওয়া যায় =44.8 লিটার

 \therefore 1 লিটার N_2 থেকে NH_3 পাওয়া যায় $=\frac{44.8}{22.4}$ লিটার

 \therefore 4 লিটার N_2 থেকে NH_3 পাওয়া যায় $=\frac{44.8\times4}{22.4}$ লিটার

= ৪ লিটার

লিমিটিং বিক্রিয়ক (Limiting Reactant)

রাসায়নিক বিক্রিয়ায় যে বিক্রিয়ক বিক্রিয়া করে শেষ হয়ে যায় তাকে লিমিটিং বিক্রিয়ক (Limiting Reactant) বলে। এবং দেখা যায় অপর বিক্রিয়ক প্রায়ই অবশিষ্ট থেকে যায়।

চলো বন্ধুরা তা একটি গাণিতিক প্রশ্নের মাধ্যমে দেখা যাক।

5 গ্রাম হাইড্রোজেন গ্যাসের মধ্যে 75 গ্রাম ক্লোরিন গ্যাস মিশ্রিত করা হলো, এখানে কোন বিক্রিয়কটি লিমিটিং বিক্রিয়ক? এবং কোন বিক্রিয়াটি বিক্রিয়া শেষে অবশিষ্ট থাকবে?

সমাধান:

$$H_2 + Cl_2 \rightarrow 2 HCl$$

2 গ্রাম $\rm H_2$ এর <mark>সাথে $m Cl_2$ </mark> বিক্রিয়া করে =71 গ্রাম

$$\therefore$$
 1 গ্রাম H_2 এর সাথে Cl_2 বিক্রিয়া করে $=\frac{71}{2}$ গ্রাম

$$\therefore$$
 5 গ্রাম $\mathrm{H_2}$ এর সাথে $\mathrm{Cl_2}$ বিক্রিয়া করে $=\frac{71\times5}{2}$ গ্রাম $=177.5$ গ্রাম $\mathrm{Cl_2}$

কিন্তু প্রশ্নে 75 গ্রাম Cl_2 দেওয়া আছে। সুতরাং বিক্রিয়া শেষ হওয়ার পূর্বেই Cl_2 শেষ হয়ে যাবে। সুতরাং Cl_2 লিমিটিং বিক্রিয়ক।

71 গ্রাম ক্লোরিনের সাথে H_2 বিক্রিয়া করে = 2 গ্রাম

$$\therefore$$
 75 গ্রাম ক্লোরিনের সাথে $\mathrm{H_2}$ বিক্রিয়া করে $=$ $\frac{75\times2}{71}$ গ্রাম

$$\therefore H_2$$
 অবশিষ্ট থাকবে = $(5 - 2.11) = 2.89$ গ্রাম

উৎপাদের শতকরা পরিমাণ হিসাব

(Calculation of the Percentage of Yield)

যে বিক্রিয়ক সবচেয়ে বেশি বিশুদ্ধ তাকে অ্যানালার বা অ্যানালার গ্রেড বলে। রাসায়নিক বিক্রিয়ায় ব্যবহৃত বিক্রিয়কগুলো 100% বিশুদ্ধ না। তবে 99% বিশুদ্ধ করা গেলে তাকে অ্যানালার বলে।

- ✓ কোনো অবিশুদ্ধ পদার্থকে বিশুদ্ধ করার জন্য কেলাসন, পাতন, আংশিক পাতন, ক্রোমাটোগ্রাফি ইত্যাদি

 ব্যবহার করা হয়।
- √ কোনো বিক্রিয়ক 100% বিশুদ্ধ না হলে যতটুকু উৎপাদ হওয়ার কথা তার চেয়ে কম হয়। সেই উৎপাদের

 শতকরা পরিমাণ

 $=rac{$ বিক্রিয়া থেকে প্রাপ্ত প্রকৃত উৎপাদ imes 100% রাসায়নিক সমীকরণ থেকে হিসাবকৃত উৎপাদের পরিমাণ

80 গ্রাম ${
m CaCO_3}$ কে তাপ দিয়ে 39 গ্রাম ${
m CaO}$ পাওয়া গেলে উৎপাদের শতকরা পরিমাণ বের করো।

চলো এটা সমাধান করা যাক।

সমাধান:

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
 $40 + 12 + 40 + 16 = 12 + 16 \times 3 = 100$ 56 গ্রাম $16 \times 2 = 44$ গ্রাম

100 গ্রাম CaCO₃ থেকে CaO পাওয়া যায় = 56 গ্রাম

$$\therefore 80$$
 গ্রাম $CaCO_3$ থেকে CaO পাওয়া যায় $= \frac{56 \times 80}{100}$ গ্রাম $= 44.8$ গ্রাম

কিন্তু বিক্রিয়া হতে উৎপন্ন হয়েছে 39 গ্রাম CaO.

$$\therefore$$
 উৎপাদের শতকরা পরিমাণ $= \dfrac{$ বিক্রিয়া থেকে প্রাপ্ত প্রকৃত উৎপাদ $imes 100\%}{$ রাসায়নিক সমীকরণ থেকে হিসাবকৃত উৎপাদের পরিমাণ $= \dfrac{39{ imes}100\%}{44.8}$ $= 87.05\%$

জ্ঞানমূলক প্রশ্নোত্তর

১. মোলার আয়তন কাকে বলে?

[চ. বো. '১৬; য. বো. '১৫]

এক মোল পরিমাণ পদার্থের আয়তনকে মোলার আয়তন বলে।

২. অ্যানালার এর সংজ্ঞা দাও।

[সি. বো. '১৬]

রাসায়নিক বিক্রিয়ার সময় সবচেয়ে বিশুদ্ধ রাসায়নিক পদার্থকে অ্যানালার বলে।

৩. মোলার দ্রবণ কাকে বলে?

[ঢা. বো. '১৫]

স্থির তাপমাত্রায় কোনো দ্রবণের প্রতি লিটারে এক মোল দ্রব দ্রবীভূত থাকলে তাকে মোলার দ্রবণ বলে।

8. আণবিক সংকেত কাকে বলে?

[রা. বো. '১৫]

কোনো যৌগের অনুস্থিত প্রতিট<mark>ি মৌ</mark>লের পরমাণুগুলোর প্রকৃত সংখ্যাকে প্রতীকের মাধ্যমে সংক্ষিপ্ত রূপে প্রকাশ করাকে যৌগটির আণবিক সংকেত বলে।

৫. মোলারিটি কাকে বলে?

[সি. বো. '১৫; ব. বো. '১৫]

নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত দ্রবের গ্রাম আণবিক ভর বা মোল সংখ্যাকে ঐ দ্রবণের মোলারিটি বলা হয়।

৬. লিমিটিং বিক্রিয়ক কী?

[রাজউক উত্তরা মডেল কলেজ, ঢাকা]

কোনো রাসায়নিক বিক্রিয়ায় প্রয়োজনের চেয়ে কম পরিমাণে থাকা বিক্রিয়ককে লিমিটিং বিক্রিয়ক বলে।

৭. Stoichiometry কী?

[ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা]

রসায়নে অণু, পরমাণু, বিক্রিয়ক, উৎপাদ ইত্যাদির হিসাবনিকাশই stoichiometry.

৮. শতকরা সংযুতি কী?

[গবর্নমেন্ট ল্যাবরেটরি হাইস্কুল, ঢাকা]

কোনো যৌগের 100 গ্রামের মধ্যে কোনো মৌল যত গ্রাম থাকে তাকে ঐ মৌলের শতকরা সংযুতি বলে।

৯. স্থূল সংকেত কী?

যে সংকেত দারা অণুতে বিদ্যমান প্রমাণুর সরল অনুপাত প্রকাশ করে তাকে স্থূল সংকেত বলে।

১০. দ্ৰব কাকে বলে?

দ্রাবকে যে পদার্থ দ্রবীভূত করে দ্রবণ প্রস্তুত করা হয় তাকে দ্রব বলে।

১১. রাসায়নিক বিক্রিয়া কাকে বলে?

যে প্রক্রিয়ায় এক বা একাধিক মৌল বা যৌগ রাসায়নিক পরিবর্তনের মাধ্যমে নতুন এক বা একাধিক মৌল বা যৌগে পরিণত হয় তাকে রাসায়নিক বিক্রিয়া বলে।

১২. কেলাস পানি কাকে বলে?

আর্দ্র বা সোদক কেলাসের প্রতি অণুতে যুক্ত নির্দিষ্ট সংখ্যক পানির অণুকে কেলাস পানি বলে।

১৩. দ্রবণের ঘনমাত্রা প্রকাশের কয়েকটি রীতির নাম লিখ।

দ্রবণের ঘনমাত্রা প্রকাশের জন্য মোলারিটি, মোলালিটি, নরমালিটি, মোল ভগ্নাংশ প্রভৃতি রীতি ব্যবহার করা হয়।

অনুধাবনমূলক প্রশোত্তর

১. স্থূল সংকেত ও আণবিক সংকেতের মধ্যে দুইটি পার্থক্য লিখ।

[রা. বো. ১৫]

স্থূল সংকেত ও আণবিক সংকেতের পার্থক্য নিম্নরূপ :

স্থূল সংকেত

আণবিক সংকেত

- ১. স্থূল সংকেত হতে যৌগের বিভিন্ন মৌলের পরমাণুসমূহের প্রকৃত সংখ্যা জানা যায় না।
- ২. স্থূল সংকেত কেবল যৌগের ক্ষেত্রে হতে পারে, মৌলের ক্ষেত্রে হয় না।
- ১. আণবিক সংকেত হতে যৌগের বিভিন্ন মৌলের প্রমাণুসমূহের প্রকৃত সংখ্যা জানা যায়।
- ২. আণবিক সংকেত যৌগ ও মৌল উভয়ের ক্ষেত্রে হতে পারে।

২. মোলার দ্রবণ একটি প্রমাণ দ্র<mark>বণ</mark> ব্যাখ্যা কর।

[গবর্নমেন্ট ল্যাবরেটরি হাই স্কুল, ঢাকা]

যে দ্রবণের ঘনমাত্রা সঠিকভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলে। দ্রবণের ঘনমাত্রা প্রকাশের মোলার একক অনুযায়ী, 1 L বা $1 \ dm^3$ দ্রবণে $1 \ mol$ দ্রব দ্রবীভূত থাকলে উৎপন্ন দ্রবণের ঘনমাত্রা $1 \ মোলার হয়। যেহেতু মোলার দ্রবণে দ্রাবকের নির্দিষ্ট আয়তনে দ্রবের উপস্থিতির পরিমাণ সঠিকভাবে জানা থাকে, কাজেই মোলার দ্রবণ একটি প্রমাণ দ্রবণ।$

৩. দ্রবের শতকরা সংযুক্তি দেখাও।

[বরিশাল ক্যাডেট কলেজ, বরিশাল]

দ্রাবকের মধ্যে যে পদার্থ দ্রবীভূত করে দ্রবণ প্রস্তুত করা হয়। তাকে দ্রব বলে।

মৌলের শতকরা সংযুক্তি
$$= rac{n imes A imes 100}{M}$$

এখানে, n= দ্রবের আণবিক সংকেতে মৌলের পরমাণুর সংখ্যা

A = মৌলের পারমাণবিক ভর

M = দ্রবের আণবিক ভর

8. লিমিটিং বিক্রিয়ক বিক্রিয়া নিয়ন্ত্রণ করে ব্যাখ্যা কর।

[ময়মনসিংহ জিলা স্কুল, ময়মনসিংহ]

রাসায়নিক বিক্রিয়ার সময় একাধিক বিক্রিয়কের মধ্যে যে বিক্রিয়ক অবশিষ্ট থাকে না তাকে লিমিটিং বিক্রিয়ক বলে। লিমিটিং বিক্রিয়ক বিক্রিয়া নিয়ন্ত্রণ করে। কারণ একটি বিক্রিয়ায় যখন কোনো একটি বিক্রিয়ক শেষ হয়ে যায় তখন বিক্রিয়াটি আর চলতে পারে না। সুতরাং একটি রাসায়নিক বিক্রিয়া লিমিটিং বিক্রিয়ক এর উপর নির্ভর করে অর্থাৎ লিমিটিং বিক্রিয়ক বিক্রিয়া নিয়ন্ত্রণ করে।

৫. 0.1 M Na₂CO₃ দ্রবণ বলতে কী বুঝ?

[ফেনী সরকারি বালিকা উচ্চ বিদ্যালয়, ফেনী]

 $0.1~{\rm M~Na_2CO_3}$ দ্রবণ দ্বারা ${\rm Na_2CO_3}$ এর ডেসিমোলার দ্রবণকে বোঝায়। নির্দিষ্ট তাপমাত্রায় কোন দ্রবণের প্রতি লিটার আয়তনে $0.1~{\rm mole}$ দ্রব দ্রবীভূত থাকলে, সে দ্রবণকে ঐ দ্রব্যের দশমাংশ মোলার বা ডেসিমোলার দ্রবণ বলা হয়। অর্থাৎ $1~{\rm fin}$ লিটার ${\rm Na_2CO_3}$ এর দ্রবণে $0.1~{\rm mol}$ বা $10.6~{\rm g~Na_2CO_3}$ দ্রবীভূত থাকলে। তাকে $0.1~{\rm M~Na_2CO_3}$ দ্রবণ বলা হয়।

৬. একই স্থূল সংকেত একাধিক <mark>যৌগে</mark>র হতে পারে ব্যাখ্যা কর।

যে সংকেত দ্বারা অণুতে বিদ্যমা<mark>ন প্রমাণুসমূহের ক্ষুদ্রতম পূর্ণ অনুপাত প্রকাশ করে তাকে স্থূল সংকেত বলে। একই স্থূল সংকেত একাধিক যৌগের হতে পারে। যেমন- বেনজিন ও অ্যাসিটিলিন উভয় যৌগের স্থূল সংকেত CH.</mark>

৭. এক মোল \mathbf{CO}_2 বলতে কী বুঝায়? ব্যাখ্যা কর।

কোনো রাসায়নিক পদার্থের যে পরিমাণে অ্যাভোগেড্রো সংখ্যক (6.02×10^{23}) অণু, পরমাণু বা আয়ন থাকে তাকে পদার্থের এক মোল বলে। একে গ্রাম আণবিক ভরও বলা হয়। এক মোল ${\rm CO_2}$ বলতে বুঝায় এতে ${\rm CO_2}$ এর 6.02×10^{23} টি অণু বিদ্যমান। আবার এক মোল ${\rm CO_2}$ বলতে $44 {\rm g~CO_2}$ কেও বুঝানো হয়।

৮, রাসায়নিক বিক্রিয়ায় প্রাপ্ত উৎপাদের পরিমাণ সাধারণত কম হয় কেন?

রাসায়নিক বিক্রিয়ার সময় যে সকল বিক্রিয়ক ব্যবহার করা হয় তা 100% বিশুদ্ধ থাকে না। সর্বোচ্চ 95.5% বিশুদ্ধ পদার্থ ব্যবহার করা হয়। বিক্রিয়ার সময় একাধিক বিক্রিয়কের মধ্যে যে বিক্রিয়ক অবশিষ্ট থাকে না তাকে লিমিটিং বিক্রিয়ক বলে। বিক্রিয়ক থেকে উৎপাদের পরিমাণ হিসাব করার সময় লিমিটিং বিক্রিয়কের পরিমাণ থেকে হিসাব করা হয়। বিক্রিয়কসমূহ 100% বিশুদ্ধ না হওয়ায় উৎপাদের পরিমাণ লিমিটিং বিক্রিয়ক থেকে হিসাবকৃত পরিমাণ থেকে কম হয়।

SOLVED MCQ

- (১) কোনো বস্তুর এক মোলে যত সংখ্যক অণু থাকে সে সংখ্যাকে কী বলা হয়?
 - (ক) অণু সংখ্যা

(খ) পরমাণু সংখ্যা

প্রিঅ্যাভোগেড্রো সংখ্যা

- (ঘ) পারমাণবিক সংখ্যা
- (২) অ্যাভোগেড্রো সংখ্যাকে কোন প্রতীক দ্বারা প্রকাশ করা হয়?
 - (ক) Z

(খ)

(গ) n

- N
- (৩) অ্যাভোগেড্রো সংখ্যা বলতে বোঝায়–
 - (ক) 1 g বস্তুতে অণুর সংখ্যা

- (খ) 1 g বস্তুতে পরমাণুর সংখ্যা
- 1 mole বস্তুতে অণুর সংখ্যা
- (ঘ) 1 litre বস্তুতে প্রমাণুর সংখ্যা
- (৪) 17 গ্রাম অ্যামোনিয়াতে অণুর সংখ্যা হবে–
 - (季) 3.346 × 10²⁰

(ক) 6.023 × 10²²

 6.023×10^{23}

- (ঘ) 17
- (৫) অক্সিজেনের পারমাণবিক ভর কত?
 - (ক) 12

16

(গ) 18

(ঘ) 32

(৬) Na₂CO₃-এর একটি অণুতে কতটি মৌল আছে?

(গ) 6 টি

(খ) 5 টি

(ঘ) 6.023 × 10²³ টি

(৭) এক গ্রাম পানিতে কতটি অণু থাকে?

$$(\overline{\Phi})$$
 $\frac{N}{9}$

 (\mathfrak{I}) $\frac{N}{3}$

 $(\operatorname{\mathfrak{T}})$ $\frac{18}{N}$

(৮) 5 গ্রাম গ্রাফাইটে কতটি পরমাণু থাকে?

 (\mathfrak{N}) $\frac{N}{12}$

(켁)
$$\frac{12}{5N}$$

(ঘ) $\frac{N}{60}$

(৯) H₂SO₄ এর গ্রাম আণবিক ভর কত?

- (季) 80gm
- 198gm

- (খ) 88gm
- (ঘ) 106gm

(১০) CO₂-এর 1 মোলে অণুর সংখ্যা কত?

 6.025×10^{18}

(খ) 6.02 × 10²²

 6.02×10^{23}

(ঘ) 6.085 × 10²⁴

10 MINUTE SCHOOL

(১১) পদার্থের 1 মোল বলতে কী বোঝায়?

(ক) অণুর সংখ্যাকে গ্রামে প্রকাশ

(খ) ভরকে গ্রামে প্রকাশ

(গ) যোজনীকে গ্রামে প্রকাশ

🌃 আণবিক বা পারমাণবিক ভরকে গ্রামে প্রকাশ

(১২) 12 গ্রাম কার্বনে প্রমাণুর সংখ্যা কত?

$$6.02 \times 10^{23}$$

(১৩) া মোল পানির ভর কত?

(ক) 12 গ্রাম

(খ) 16 গ্রাম

18 গ্রাম

(ঘ) 22 গ্রাম

(১৪) 1 মোল CO₂ এর আণবিক ভর কত?

(ক) 32 গ্রাম

(খ) 42 গ্রাম

ধ্য 44 গ্রাম

(ঘ) 52 গ্রাম

(১৫) H₂O- এর একটি অণুর ভর কত গ্রাম?

(ক) 2.19 × 10⁻²³

 (2.99×10^{-23})

(গ) 3.5 × 10⁻²³

(ঘ) 5.8 × 10⁻²³

(১৬) 100 গ্রাম CaCO₃ -এ কয়টি অণু আছে?

$$(6.02 \times 10^{23})$$

(১৭) 10 গ্রাম NaOH-এ পরমাণুর সংখ্যা কয়টি?

(ক)
$$3.12 \times 10^{21}$$

$$1.505 \times 10^{23}$$

(১৮) 1 গ্রাম CO₂ গ্যাসে অণুর <mark>সংখ্যা</mark> কয়টি?

$$(\overline{2})$$
 1.28 × 10²²

$$1.36 \times 10^{22}$$

(১৯) 49 গ্রাম সালফিউরিক এসিড সমান কত মোল?

$$\sqrt{\frac{1}{2}}$$
মোল

(খ)
$$\frac{2}{3}$$
 মোল

(২০) রসায়নবিদরা অণু, পরমাণু ও আয়ন গণনার জন্য একটি বৃহৎ সংখ্যা ব্যবহার করেন। এই সংখ্যার মান কত?

$$6.02 \times 10^{23}$$

(২১) অ্যামেদিও অ্যাভোগেড্রো কোন দেশের বিজ্ঞানী ছিলেন?

(ক) জার্মানির

(খ) ফ্রান্সের

🍎 ইতালির

(ঘ) যুক্তরাষ্ট্রের

(২২) রসায়নে অণু, পরমাণু, বিক্রিয়ক, উৎপাদ ইত্যাদি হিসাব নিকাশ কী নামে পরিচিত?

(ক) Avogadro number

(খ) Geochemistry

(গ) Enthalchemistry

Stoichiometry

(২৩) নিচের কোনটি 1 mole নির্দেশ করছে?

18g H₂O

(খ) 98g CaCO₃

(গ) 106g H₂SO₄

(ঘ) 148g CuSO₄

(২৪) 1 মোল অক্সিজেন অণুতে অক্সিজেন পরমাণুর সংখ্যা কত?

($\overline{\Phi}$) 3.01 × 10⁻²³

(খ) 3.01 × 10²³

(গ) 3.76 × 10²²

 12.04×10^{23}

(২৫) ইথানলের এক মোল সমান কত গ্রাম?

(ক) 40

(1) 46

(গ) 60

(ঘ) 64

10 MINUTE SCHOOL

(২৬) 0.001 মোল নাইট্রিক এসিডে কতগুলো অণু থাকবে?

(ক)
$$6.02 \times 10^{17}$$

$$6.02 \times 10^{20}$$

(২৭) 200 gm CaCO3 এর মোল সংখ্যা কত?

(২৮) 3 × 10²³ CO₂ অণুর ভর কত

(২৯) া মোল হাইড্রোজেন পারঅক্সাইড কত গ্রাম?

(৩০) 18g হীরকে কার্বন প্রমাণুর সংখ্যা হলো-

$$\checkmark 9.03 \times 10^{23}$$

(৩১) কোনো গ্যাসীয় মৌলের আণবিক ভর M এবং অ্যাভোগেড্রো সংখ্যা N হলে ঐ মৌলের ় গ্রামে কতটি পরমাণু আছে?

(ক) 6.02 × 10²³

(뉙) M × N

 (\mathfrak{I}) $\frac{M}{N}$

 $\frac{N}{M}$

(৩২) 32g অক্সিজেন বলতে কী বোঝ?

(ক) 32 মোল O₂ প্রমাণু

(খ) 32 মোল O₂ অণু

(1 মোল O₂

(ঘ) 16 মোল O2

(৩৩) 72g পানিতে কত মোল পানি আছে?

(ক) 1 মোল

4 মোল

(গ) ৪ মোল

(ঘ) 10 মোল

(৩৪) 10 গ্রাম সোডিয়াম কার্বনেটের মোল সংখ্যা কত?

র্কা 0.094 মোল

(খ) 0.123 মোল

(গ) 0.094 মোল

(ঘ) 0.094 মোল

(৩৫) একটি সোডিয়াম প্রমাণুর ভর কত?

10²² हि

(খ) 3.82 × 10⁻²³ টি

(গ) 3.8. × 10⁻²²টি

(ঘ) -3.87 × 10⁻²³ টি

(৩৬) রাসায়নিক পদার্থ পরিমাপের একককে কী বলা হয়?

(ব) মোল

(খ) আয়ন

(গ) অণু

(ঘ) যোজনী

(৩৭) কার্বনের পারমাণবিক ভর কত?

(ক) 4

(খ) ৪

12

(ঘ) 16

(৩৮) পানির আণবিক ভর কত?

(ক) 14

(খ) 16

18

(ঘ) 20

(৩৯) 6.02×10^{23} সংখ্যক পানির অণুকে কী বোঝানো হয়

(ক) এক অণু পানি

(খ) দুই মোল পানি

ধ্য এক মোল পানি

(ঘ) এক পরমাণু পানি

(৪০) া মোল অক্সিজেন অণু সমান কত গ্রাম?

(ক) 2 গ্রাম

(খ) 16 গ্রাম

132 গ্রাম

(ঘ) 44 গ্রাম

10 MINUTE SCHOOL

(8১) কার্বনের অ্যাভোগেড্রো সংখ্যার মান 6.02×10^{23} হলে কার্বনের প্রমাণুর সংখ্যা কয়টি

(ক) 1 টি

(খ) 2 টি

€ 6.02 × 10²³ ਿ

(ঘ) 10 টি

(৪২) এক মোল কার্বনে 6.02×10^{23} টি প্রমাণু থাকলে তার ভর কত?

(ক) 6 গ্রাম

(খ) 10 গ্রাম

街 12 গ্রাম

(ঘ) 6.02 × 10²³ গ্রাম

(৪৩) 1 মোল হাইড্রোজেন প্রমাণু<mark>র ভ</mark>র কত?

(ক) 6.02 × 10²³ গ্রাম

(খ) 1 গ্রাম

(গ) 6.02 × 10²³ গ্রাম

শি 1.008 গ্রাম

(৪৪) পানির আণবিক ভর 18 হলে এক মোল পানিতে কয়টি অণু থাকে?

(ক) ৪ টি

(খ) 12 টি

(গ) 18 টি

€ 6.02 × 10²³ ਿ

(৪৫) এক গ্রাম হাইড্রোজেনে কতটি হাইড্রোজেন পরমাণু আছে?

(ক) 1.66 × 10²⁰ টি

(খ) 1.66 × 10²² টি

€ 6.02 × 10²³ ਿ

(ঘ) 1.204 × 10²⁴ টি

(৪৬) এক মোল অক্সিজেন প্রমাণু সমান কত গ্রাম?

(ক) 2 গ্রাম

16 গ্রাম

(গ) 32 গ্রাম

(ঘ) 44 গ্রাম

(৪৭) মোল বলা হয়-

- (i) পদার্থের 6.02 × 10²³ সংখ্যক অণুকে
- (ii) পদার্থের 6.02×10^{23} সংখ্যক পরমাণুকে
- (iii) পদার্থের 6.02×10^{23} সংখ্যক আয়নকে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- i, ii ও iii

(৪৮) 6.02×10^{23} –সংখ্যক পানির অণু দিয়ে বোঝানো হয়

- (i) এক মোল পানি
- (ii) .18 গ্রাম পানি
- (iii) . 6.02 × 10²³ মোল পানি

নিচের কোনটি সঠিক?

- (ক) i
- ii છ i
- (গ) i ও iii
- (ঘ) i, ii ও iii

(৪৯) অ্যাভোগেড্রো সংখ্যা বলতে বোঝায় 1 mole-

- (i) বস্তুতে অণুর সংখ্যা
- (ii) মৌলে পরমাণুর সংখ্যা
- (iii) আয়নে আয়নের সংখ্যা

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- i, ii ও iii

(৫০) এক মোল পানিতে 6.02×10^{23} টি অণু থাকে যার ভর

- (i) 180 গ্রাম
- (ii) 18 গ্রাম
- (iii) 6.02 × 10²³ গ্রাম

নিচের কোনটি সঠিক?

(ক) i

(গ) ii ও iii (ঘ) I, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ৫১-৫৩ নং প্রশ্নের উত্তর দাও:

2.016 গ্রাম H_2 বা 28 গ্রাম N_2 বা 32 গ্রাম O_2 ev 17 গ্রাম NH_3 বা 44 গ্রাম CO_2 এর মধ্যে অণুর সংখ্যা = 6.02×10^{23}

(৫১) এখানে কত মোল O₂ এ<mark>র কথা বলা হয়েছে</mark>?

1

(খ) 2

(গ) 14

(ঘ) 25

(৫২) ৷ টি অক্সিজেন অণুর ভর কত?

(৫৩) 1 টি হাইড্রোজেন পরমাণুর ভর কত?

নিচের অনুচ্ছেদটি পড় এবং ৫৪ ও ৫৫ নং প্রশ্নের উত্তর দাও:

যেকোনো কিছুর 1 mole পরিমাণ অ্যাভোগেড্রো সংখ্যার সমান অর্থাৎ $6.02 \times 10^{23}\,$ টি কণা।

(৫৪) এখানে কণাটি-

- (i) অণু
- (ii) প্রমাণু
- (iii) আয়ন

নিচের কোনটি সঠিক?

- (ক) i ও ii

- (খ) i ও iii গে) ii ও iii গে, ii ও iii

(৫৫) া মোল পানিতে 6.02×10^{23} টি অণু থাকে । এর ভর কত?

(ক) 16 গ্রাম

18 গ্রাম

(গ) 20 গ্রাম

(৫৬) প্রমাণ তাপমাত্রা ও চাপে 16 গ্রাম অক্সিজেন গ্যাসের আয়তন কত?

ব্য 11.2 লিটার

(খ) 22.4 লিটার

(গ) 32.4 লিটার

(ঘ) 44.8 লিটার

(৫৭) কত গ্রাম অক্সিজেনের আয়তনকে অক্সিজেনের মোলার আয়তন বলা হয়?

(**क**) 16g

(খ) 18g

1 32g

(ঘ) 32g

(৫৮) STP-তে 44g কার্বন ডাইঅক্সাইডের আয়তন কত?

(ক) 22.4 লিটার

(খ) 224 লিটার

(গ) 2240 লিটার

(ঘ) 22400 লিটার

(৫৯) STP- তে 10 gm হাইড্রোজেনের আয়তন কত?

(ক) 22.4 লিটার

街 112 লিটার

(গ) 122 লিটার

(ঘ) 224 লিটার

(৬০) আদর্শ তাপমাত্রা ও চাপে 60g অ্যামোনিয়া গ্যাসের আয়তন কত?

(ক) 22.40 লিটার

(খ) 44.80 লিটার

(গ) 60.03 লিটার

📆 79.06 লিটার

(৬১) প্রমাণ চাপ বলতে কী বোঝায়?

(ব) 1 atm বায়ুচাপ

(খ) 2 atm বায়ুচাপ

(গ) 2.5 atm বায়ুচাপ

(ঘ) 5 atm বায়ুচাপ

(৬২) আদর্শ উষ্ণতা ও চাপে 1 Litre অক্সিজেন গ্যাসের ভর কত?

(1.43g

(খ) 1.83g

(গ) 16g

(ঘ) 32g

(৬৩) কোনো গ্যাসের আণবিক ভর M, STP তে উক্ত গ্যসের X গ্রামের আয়তন কত লিটার হবে?

(雨) M × X × 22.4

(খ) X × M/22.4

22.4 × X/M

(ঘ) 22.4 ×M/X

(৬৪) একই তাপমাত্রা ও চাপে সব গ্যাসের মোলার আয়তন-

(ক) দ্বিগুণ

প্রসমান

(গ) এক তৃতীয়াংশ

(ঘ) অর্ধেক

(৬৫) 25°C তাপমাত্রায় ও 1 atm চাপে গ্যাসের মোলার আয়তন কত?

(ক) 20.4L

(খ) 24.4L

₹ 22.4L

(ঘ) 28.4L

(৬৬) 6.02×10^{23} টি CO_2 অণুর STP তে আয়তন-

(**क**) 0.224L

(খ) 2.24L

(গ) 20.444L

(22.4L

(৬৭) নিচের কোন পদার্থের মোলার আয়তন ব্যতিক্রমী?

(**조**) CO₂

NaCl

(গ) NH₃

(ঘ) O₂

(৬৮) 0° সেন্টিগ্রেড ও 1 atm চাপকে কী বলে?

(ক) প্রমাণ তাপমাত্রা

(খ) প্রমাণ চাপ

প্রিমাণ তাপমাত্রা ও চাপ

(ঘ) গ্যাসীয় চাপ

(৬৯) আদর্শ তাপমাত্রা ও চাপে 20gm সালফার ডাইঅক্সাইডের আয়তন কত?

(7 লিটার

(খ) 9 লিটার

(গ) 10 লিটার

(ঘ) 12 লিটার

(৭০) এক মোল পানি সমান -

- (ক) 3g পানি
- 18g পানি

- (খ) 10g পানি
- (ঘ) 20g পানি

(৭১) প্রমাণ তাপমাত্রা ও চাপে 1 মোল গ্যাসের আয়তন—

(ক) 22.004 লিটার

(খ) 22.04 লিটার

1 22.4 লিটার

(ঘ) 22.5 লিটার

(৭২) এক মোল পরিমাণ পদার্থের আয়তনকে কী বলে?

মোলার আয়তন

(খ) মোল

(গ) কেলাস

(ঘ) উৎপাদ

(৭৩) পদার্থের আয়তন কার ওপর নির্ভরশীল?

(ক) ঘনত্ব ও আয়তন

চাপ ও তাপমাত্রা

(গ) ভর ও গাঢ়ত্ব

(ঘ) মোল ও চাপ

(৭৪) তাপমাত্রা বৃদ্ধি করলে কঠিন পদার্থের আয়তন বৃদ্ধি পায় আর চাপ বৃদ্ধি করলে গ্যাসের আয়তন

(ক) বৃদ্ধি পায়

(খ) শূন্য হয়ে যায়

প্রাস পায়

(ঘ) অপরিবর্তিত থাকে

(৭৫) 0.1 মোল পানি কত গ্রামের সমান?

(季) 0.18g

1.8g

(গ) 10g

(ঘ) 180g

(৭৬) মোলার আয়তন বলতে কী বোঝায়?

- (ক) প্রমাণ তাপমাত্রা ও চাপে কোনো বস্তুর গ্রাম যে আয়তন দখল করে
- (খ) কোনো গ্যাসের গ্রাম পারমাণবিক ভর যে আয়তন দখল করে
- ্রাপ এক মোল পরিমাণ পদার্থের আয়তন
- (ঘ) 25°C তাপমাত্রা এবং 1 বায়ুমণ্ডলীয় চাপ

(৭৭) এক মোল অক্সিজেন হচ্ছে –

(ক) 8 গ্রাম

(খ) 16 গ্রাম

(গ) 18.02 গ্রাম

(32 গ্রাম

(৭৮) 1 মোল CO₂ ও 1 মোল O₂ এর মোলার আয়তন কীরূপ হবে?

- (ক) $CO_{2^{-}}$ এর আয়তন $> O_{2^{-}}$ এর আয়তন
- (খ) CO_{2} এর আয়তন $< O_{2}$ এর আয়তন
- \bigcirc \bigcirc \bigcirc এর আয়তন = \bigcirc \bigcirc এর আয়তন
- (ঘ) $CO_{2^{-}}$ এর আয়তন = $2O_{2^{-}}$ এর আয়তন

(৭৯) চাপ হ্রাস করলে গ্যাসের আয়তনের কী রকম পরিবর্তন হয়?

(ক) হ্রাস পায়

প্ বৃদ্ধি পায়

(গ) অপরিবর্তিত থাকে

(ঘ) শূন্য হয়ে যায়

(bo) তাপমাত্রা বৃদ্ধির সাথে গ্যাসের আয়তনের কীরূপ পরিবর্তন

(ক) হ্রাস পায়

💝 বৃদ্ধি পায়

(গ) অপরিবর্তিত থাকে

(ঘ) তরলে পরিণত হয়

(৮১) প্রমাণ অবস্থায় 1.7g অ্যামোনিয়া গ্যাসের আয়তন কত?

(ক) 1.5 লিটার

(1) 2.24 লিটার

(গ) 3.25 লিটার

(ঘ) 4.26 লিটার

(৮২) গ্যাসীয় পদার্থের আয়তন হিসাব করার সময় কী উল্লেখ করা প্রয়োজন?

(ক) ভর ও ঘনত্ব

(খ) গলনাঙ্ক ও স্ফুটনাঙ্ক

(গ) তাপ ও তাপমাত্রা

চাপ ও তাপমাত্রা

(৮৩) তাপমাত্রা ও চাপ দারা মোলার আয়তন প্রভাবিত হয় যেসব পদার্থের-

- (i) $CaCO_3(s)$
- (ii) $H_2O(g)$
- (iii) CO₂(g)

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(ঘ) i, ii ও iii

(৮৪) NO -এর

- (i) তাপমাত্রা বৃদ্ধি করলে <mark>আয়তন</mark> হ্রাস পায়
- (ii) চাপ হ্রাস করলে আয়<mark>তন বৃ</mark>দ্ধি পায়
- (iii) তাপমাত্রা হ্রাস করলে আয়তন হ্রাস পায়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

ii e ii

(ঘ) i, ii ও iii

(৮৫) প্রমাণ তাপমাত্রা ও চাপে

- (i) 16 গ্রাম O₂-এর আয়তন 11.2 লিটার
- (ii) 44 গ্রাম CO₂-এর আয়তন 22.4 লিটার
- (iii) 2 গ্রাম H₂-এর আয়তন 22.4 লিটার

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

i, ii ও iii

নিচের চিত্র থেকে এবং ৮৬ ও ৮৭ নং প্রশ্নের উত্তর দাও:

32g

2g

(৮৬) গ্যাস দুটি একই তাপমাত্রা ও চাপে থাকলে আয়তনের পার্থক্য কত হবে?

(ক) 1 লিটার

(খ) 11.2 লিটার

(গ) 22.4 লিটার

শুন্য

(৮৭) দ্বিতীয় সিলিন্ডারের উপর চাপ বৃদ্ধি করলে-

- (i) এর আয়তন বৃদ্ধি পাবে
- (ii) এর আয়তন হ্রাস পাবে
- (iii) প্রথমে সিলিভারের তাপমাত্রা বৃদ্ধি পাবে

নিচের কোনটি সঠিক?

(ক) i

(গ) i ও iii

(ঘ) i, ii ও iii

নিচের অনুচ্ছেদ পড় এবং ৮৮ ও ৮৯ নং প্রশ্নের উত্তর দাও :

আদর্শ তাপমাত্রা ও চাপে কোনো গ্যাসের 50 গ্রামের আয়তন 25.45 লিটার।

(৮৮) গ্যাসটির মোলার আয়তন কত?

(ক) 11.2 লিটার

쒻 22.4 লিটার

(গ) 25.45 লিটার

(ঘ) 44.0 লিটার

(৮৯) গ্যাসটির আয়তন হিসাব করার সময় আদর্শ তাপমাত্রা ও চাপ উল্লেখ করা প্রয়োজন-

- (i) তাপমাত্রা ও চাপ পরিবর্তনে গ্যাসটির আয়তন পরিবর্তিত হয়
- (ii) আদর্শ তাপমাত্রা ও চাপে গ্যাসটির আয়তন 22.4 লিটার থাকে
- (iii) CO2 গ্যাসীয় পদার্থের কারণে আয়তন পরিবর্তিত হয়ে যায়

নিচের কোনটি সঠিক?

(ক) i

- i ଓ ii
- (গ) i ও iii
- (ঘ) i, ii ও iii

(৯০) কাৰ্বন ডাইঅক্সাইড অণু গ<mark>ঠিত</mark> হয় কীভাবে?

- (ক) কার্বন ও ক্লোরিনের বিক্রিয়ায়
- 3 গ্রাম কার্বন ও ৪ গ্রাম অক্সিজেনের বিক্রিয়ায়
- (গ) কার্বন ও পানির বিক্রিয়ায়
- (ঘ) Ca ও O₂ যুক্ত হয়ে

(৯১) HCI গঠনে 35.5 গ্রাম ক্লোরিন পরমাণুর সাথে কোনটি যুক্ত হয়?

1 গ্রাম হাইড্রোজেন

(খ) 1 গ্রাম কার্বন

(গ) 2 গ্রাম হাইড্রোজেন

(ঘ) 2 গ্রাম মিথেন

(৯২) কোনো একটি পাত্রে ৷ গ্রাম হাইড্রোজেন ও 85 গ্রাম ক্লোরিন একত্রে রাখলে ৷ গ্রাম H_2 -এর সাথে কত গ্রাম ক্লোরিন যুক্ত হয়?

(ক) 1 গ্রাম

() 35.5 গ্রাম

(গ) 42.5 গ্রাম

(ঘ) 85 গ্রাম

(৯৩) ८०₂ এর ক্ষেত্রে কোনটি সত্য?

- (ক) এক মোল কার্বন ও এক মোল অক্সিজেন পরমাণু নিয়ে গঠিত
- (খ) কার্বন ও অক্সিজেন অণু নিয়ে গঠিত
- ধ এক মোল কার্বন ও দুই মোল অক্সিজেন পরমাণু নিয়ে গঠিত
- (ঘ) CO2 একটি কঠিন পদার্থ

(৯৪) আণবিক সংকেত দ্বারা নিচের কোনটি বোঝা যায়?

- (ক) অণুতে বিদ্যমান পরমাণুসমূহের পূর্ণসংখ্যার অনুপাত
- (খ) কেবলমাত্র উপাদানসমূহ
- (গ) রাসায়নিক সংযোগ প্রক্রিয়া
- 🎻 অণুতে বিদ্যমান পরমাণুর সঠিক সংখ্যা

(৯৫) 24 গ্রাম Mg কত গ্রাম O_2 -এর সাথে বিক্রিয়া করবে?

(ক) 12g

(খ) 16g

4 32g

(ঘ) 42g

(৯৬) 20g গ্রাম NaOH এর সাথে বিক্রিয়া করার জন্য কত গ্রাম HCI প্রয়োজন?

(ক) 16.15 গ্রাম

(খ) 17.75 গ্রাম

🚺 18.25 গ্রাম

(ঘ) 35.5 গ্রাম

(৯৭) 20g Mg থেকে কত গ্রাম MgO উৎপন্ন করে?

(ক) 11.2 গ্রাম

(২) 33.3 গ্রাম

(গ) 52 গ্রাম

(ঘ) 68 গ্রাম

(৯৮) CO2-তে কার্বন ও অক্সিজেনের মোল সংখ্যার অনুপাত কত?

(ক) 2:1

(খ) 1:1

(গ) 2:3

1 : 2

(৯৯) প্রমাণ অবস্থায় 22.4 লিটার CO₂ হচ্ছে-

- (i) 2 গ্রাম
- (ii) 22.4 গ্রাম
- (iii) 44 গ্রাম

নিচের কোনটি সঠিক?

- (ক) i
- (뉙)) ii
- iii
- (ঘ) ii ও iii

(১০০) 12 গ্রাম O_2 ও 16 গ্রাম N_2 একটি পাত্রে রাখা হলো, বিক্রিয়া শেষে পাত্রে -থাকবে

- (i) 17.25 গ্রাম NO₂
- (ii) 5.25 গ্রাম O₂
- (iii) 10.75 গ্রাম N₂

নিচের কোনটি সঠিক?

- (ক) i ও ii
- iii છ ii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড়ে ১০১ ও ১০২ নং প্রশ্নের উত্তর দাও :

পরীক্ষা করে দেখা গেল 3 গ্রাম কার্বন 8 গ্রাম অক্সিজেনের সাথে যুক্ত হয়।

(১০১) গঠিত যৌগ -

(뉙) H₂CO₃

(গ) CO₃

(ঘ) CO

(১০২) গঠিত যৌগে -

- (i) C ও O প্রমাণুর ভর যথাক্রমে 3 গ্রাম ও ৪ গ্রাম
- (ii) C ও O এর মোল সংখ্যার অনুপাত 1:2
- (iii) মোলার আয়তন 22.4 লিটার

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

🎁 i, ii ও iii

(১০৩) দ্রব ও দ্রাবক মিশ্রিত করে কী প্রস্তুত করা হয়?

(ক) দ্রাব্যতা

চুবণ

(গ) ঘনমাত্রা

(ঘ) বিক্রিয়ক

(১০৪) দ্রাবক হিসেবে পানি ব্যবহার করে দ্রবণ প্রস্তুত করাকে কী বলা হয়?

(ক) সম্পৃক্ত দ্রবণ

(খ) সার্বজনীন দ্রবণ

ধ জলীয় দ্রবণ

(ঘ) অসম্পৃক্ত দ্রবণ

(১০৫) দ্রবণে যা কম পরিমাণে থাকে তাকে কী বলা হয়?

বৈ দ্ব

(খ) দ্রাবক

(গ) দ্রাব্যতা

(ঘ) দ্ৰবণীয়তা

(১০৬) দ্রবণে যা বেশি পরিমাণে থাকে তাকে কী বলা হয়?

(ক) দ্ৰব

(খ) দ্রাব্যতা

(গ) কলয়েড

পু দ্রাবক

(১০৭) 0.5 M NaOH দ্রবণ বলতে কী বোঝায়?

(ক) 1kg দ্রবণে 40g NaOH দ্রবীভূত আছে (খ) 1kg দ্রবণে 20g NaOH দ্রবীভূত আছে

1L দ্রবণে 40g NaOH দ্রবীভূত আছে (ঘ) 1L দ্রবণে 20g NaOH দ্রবীভূত আছে

(১০৮) 2 লিটার আয়তনের 1M Na₂CO₃ দ্রবণে কত গ্রাম Na₂CO₃ থাকবে?

(ক) 53 গ্রাম Na₂CO₃

(খ) 80 গ্রাম Na₂CO₃

(গ) 106 গ্রাম Na₂CO₃

★ 106 গ্রাম Na₂CO₃

(১০৯) পানিতে NaOH দ্রবীভূত করা হলে দ্রবণটি কী হবে?

(ক) NaOH দ্ৰবণ

(খ) সমসত্ত্ব দ্রবণ

(গ) অসমসত্ত্ব দ্রবণ

🤫 জলীয় দ্রবণ

(১১০) 40 গ্রাম NaOH থেকে কত লিটারের দ্রবণ প্রস্তুত করলে মোলারিটি 0.5 মোলার হবে?

(ক) 1 লিটার

(খ) 2 লিটার

🐔 4 লিটার

(ঘ) 10 লিটার

(১১১) 50 গ্রাম খাবারের লবণ 2 লিটারের দ্রবণে দ্রবীভূত করলে কত মোলার দ্রবণ পাওয়া যাবে?

(ক) 0.4 মোলার

৩.43 মোলার

(গ) 0.80 মোলার

(ঘ) 0.86 মোলার

(১১২) কত লিটার দ্রবণে 40 গ্রা<mark>ম N</mark>aOH উপস্থিত থাকলে তার মোলারিটি 0.1M হবে?

(ক) 1 লিটার

(খ) 4 লিটার

(গ) 5 লিটার

10 লিটার

(১১৩) 25 গ্রাম Na₂CO₃ 100ml দ্রবণে দ্রবীভূত থাকলে দ্রবণের ঘনমাত্রা মোলারিটিতে কত?

(**क**) 2.5M

(약) 2.3M

(গ) 1.8M

1 3.1M

(১১৪) কোনটি দ্রবণের ঘনমাত্রা প্রকাশের একটি রীতি?

(ক) মোল

(খ) আয়তন

শে মোলারিটি

(ঘ) অণু

(১১৫) া মোলার দ্রবণ কাকে বলে?	
ব্য এক লিটার দ্রবণে যখন এক মোল পরিমাণ দ্রব দ্রবীভূত থাকে	
(খ) এক সিসি দ্রবণে যখন এক মোল দ্রব দ্রবীভূত থাকে	
(গ) 1000 গ্রাম দ্রবণে যখন এক মোল দ্রব দ্রবীভূত থাকে	
(ঘ) যখন দ্রবণের ঘনত্ব 1 হয়	
(১১৬) এক লিটার দ্রবণে 2 মোল পরিমাণ দ্রব দ্রবীভূত থাকলে তাকে কী বলে?	
(ক) ৷ মোলার দ্রবণ	র্বা 2 মোলার দ্রবণ
(গ) সেমি মোলার দ্রবণ	(ঘ) কোয়ার্টার মোলার দ্রবণ
(১১৭) দ্রবণের আয়তন কার ওপ <mark>র নি</mark> র্ভরশীল?	
(ক) গাঢ়তা	(খ) ভর
🚮 তাপমাত্রা	(ঘ) চাপ
(১১৮) নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত দ্রবের মোলসংখ্যাকে কী বলা হয়?	
(ক) আয়তন	(খ) ঘনমাত্রা
(গ) মোলালিটি	শ্ৰে) মোলারিটি
(১১৯) দ্রবণের মোলারিটিকে কী দ্বারা প্রকাশ করা হয়?	
₩ M	(뉙) D

(ঘ) X

(গ) Z

(১২০) 2 লিটার দ্রবণে 100 গ্রাম CaCO₃ যোগ করা হলে এটি কত মোলার দ্রবণ?

(ক) 2 মোলার

শে সেমিমোলার

(গ) 1 মোলার

(ঘ) 3 মোলার

(১২১) 26.5 গ্রাম Na₂CO₃ যদি 0.5 লিটার দ্রবণে দ্রবীভূত থাকে তবে দ্রবণের মোলারিটি কত?

0.5 মোলার

(খ) 1 মোলার

(গ) 2 মোলার

(ঘ) 0.25 মোলার

(১২২) সেমিমোলার দ্রবণ হলো

- (i) 40 গ্রাম NaOH 2 লিটার দ্রবণে
- (ii) 50 গ্রাম CaCO₃ 1 লিটার দ্রবণে
- (iii) 12 গ্রাম Na₂CO₃ 2 লিটার দ্রবণে

নিচের কোনটি সঠিক?

- i s i
- (খ) i ও iii (গ) ii ও iii
- (ঘ) i, ii ও iii

(১২৩) মোলার দ্রবণ বলতে বোঝায়

- (i) 2 লিটারে 200 গ্রাম CaCO3
- (ii) 1 লিটারে 106 গ্রাম Na₂CO₃
- (iii) 2 লিটারে 40 গ্রাম NaOH

নিচের কোনটি সঠিক?

- i s i
- (খ) i ও iii (গ) ii ও iii
- (ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ১২৪ ও ১২৫ নং প্রশ্নের উত্তর দাও :

শরাফাত A যৌগটির 1M দ্রবণ তৈরি করার জন্য 117gm ব্যবহার করল। A যৌগটির আণবিক ভর 58.5।

(১২৪) A যৌগটি কী হতে পারে?

(ক) HgCl₂

(খ) HCI

NaCl

(ঘ) CaCl₂

(১২৫) প্রাপ্ত দ্রবণ থেকে 250cm³ আয়তন নেওয়া হলে উক্ত আয়তনে A যৌগটির কী পরিমাণ উপস্থিতি থাকে?

(ক) 17.75g

1 29.25g

(গ) 47.5g

(ঘ) 55.5g

নিচের অনুচ্ছেদটি পড় এবং ১২<mark>৬ ও ১</mark>২৭ নং প্রশ্নের উত্তর দাও :

নয়ন একটি আধা লিটার, একটি এক লিটার ও একটি 4 লিটার দাগাঙ্কিত কাচপাত্রে যথাক্রমে 100 গ্রাম চুনাপাথর, 80 গ্রাম NaOH ও 234 গ্রাম খাবার লবণ যোগ করে দ্রবণ প্রস্তুত করে।

(১২৬) 4 লিটার দ্রবণটির মোলারিটি কত?

(1)

(খ) 2

(গ) 3

(ঘ) 4

(১২৭) প্রাপ্ত দ্রবণে

- (i) আধা লিটারের দ্রবণটি সেমিমোলার
- (ii) এক লিটারের দ্রবণটি 2 মোলার
- (iii) 4 লিটারের দ্রবণটি 1 মোলার

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- iii છ ii
- (ঘ) i, ii ও iii

(১২৮) যৌগের মোট ভরের মধ্যে কোনো নির্দিষ্ট মৌলের শতকরা ভরকে কী বলে?

(ক) ভরসংখ্যা

(খ) পরমাণু

সংযুতি

(ঘ) সংঘর্ষ

(১২৯) হাইড্রোজেন ক্লোরাইডের আপেক্ষিক ভর কত?

(ক) 35.6

36.5

(গ) 36.6

(ঘ) 37.5

(১৩০) HCI এর শতকরা সংযুতিতে H = 2.74% হলে CI এর শতকরা সংযুতি কত?

(季) 81.26%

(খ) 79.62%

97.26%

(ঘ) 100%

(১৩১) শতকরা সংযুতি $C \cup SO_4.5H_2O$ যৌগের শতকরা সংযুতিতে কেলাস পানি = $36.07\%.5H_2O$, S = 12.83%; O = 57.72% আছে। $C \cup \omega$ র কত?

- 25.45%
- (গ) 61.52%

(ঘ) 97.23%

(১৩২) ক্লোরিনের আপেক্ষিক পারমাণবিক ভর কত?

(35.5)

(খ) 35.6

(গ) 36.5

(ঘ) 36.6

(১৩৩) HCI-এ H এর শতকরা সংযুতি কত?

(2.74%

(খ) 4%

(গ) 25.45%

(ঘ) 97.26%

(১৩৪) তুঁতে যৌগে কত অণু কেলাস পানি সংযুক্ত থাকে?

(ক) 2

(খ) 3

(গ) 4

5

(১৩৫) তুঁতের আণবিক সংকেত কোনটি?

(क) FeSO₄

(1) CUSO₄.5H₂O

(গ) MgSO₄.7H₂O

(ঘ) Fe₂(SO)₃.24H₂O

(১৩৬) HCI-এ H ও CI- এ শতকরা সংযুতির সমষ্টি কত?

(ক) 11.11

(খ) 78

(গ) 97.26

100

(১৩৭) H_2O -তে অক্সিজেনের শতকরা সংযুতি কত?

(ক) 11.11%

(খ) 12.48%

(গ) 35.28%

1 88.89%

(১৩৮) NaOH-এ Na এর শতকরা সংযুতি কত?

(季) 25.1%

(뉙) 42.5%

57.5%

(ঘ) 83.2%

(১৩৯) পারক্লোরিক এসিডে (HCIO₄) ক্লোরিনের শতকরা পরিমাণ কত?

(ক) 0.05%

17%

(গ) 35.3%

(ঘ) 63.68%

(১৪০) কোনো যৌগের শতকরা <mark>সংযু</mark>তি হিসাব করা যায় কী জানা থাকলে?

(ক) মৌলের ভর সংখ্যা

- ্বিমৌলের পারমাণবিক ভর
- (গ) মৌলের পারমাণবিক সংখ্যা
- (ঘ) মৌলের আণবিক সংকেত

(১৪১) মৌলের শতকরা সংযুতি প্রকাশ করা যায় নিচের কোন সমীকরণ দ্বারা?

- (ক) যৌগের পরমাণু সংখ্যা×১০০ যৌগের আণবিক ভর
- শৌলের পরমাণুসমূহের মোট ভর×১০০ যৌগের আণবিক ভর
- (গ) $\frac{$ ্যৌগের পরমাণুসমূহের ভর $\times \frac{5}{500}$
- (ঘ) $\frac{$ মৌলের পরমাণুসমূহের ভর $\times \frac{5}{500}$ যৌগের আণবিক ভর

(\$8২) CUSO₄. 5H₂O যৌগে-

- (i) S-এর শতকরা সংযুতি 12.83%
- (ii) C∪-এর শতকরা সংযুতি 25.45%
- (iii) O-এর শতকরা সংযুতি 36.07%

নিচের কোনটি সঠিক?

ii v i 👣

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

(১৪৩) NH₄CI যৌগে--

- (i) N-এর শতকরা সংযুতি 26.17%
- (ii) H-এর শতকরা সংযুতি 7.48%
- (iii) CI-এর শতকরা সংযুত<mark>ি 66</mark>.36%

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ১৪৪ ও ১৪৫ নং প্রশ্নের উত্তর দাও:

NaCl এর একটি অণুতে 1 টি সোডিয়াম পরমাণু এবং 1 টি ক্লোরিন পরমাণু আছে। সোডিয়াম এবং ক্লোরিনের পারমাণবিক ভর যথাক্রমে 23 এবং 35.5।

(১৪৪) উক্ত যৌগে Na-এ সংযুতি কত?

(季) 32.34%

39.32%

(গ) 60.68%

(ঘ) 74.25%

(১৪৫) NaCl-এর Cl-এর সংযুতি কত?

(季) 32.34%

(খ) 39.32%

10.68%

(ঘ) 74.25%

নিচের অনুচ্ছেদটি পড় এবং ১৪৬ ও ১৪৭ নং প্রশ্নের উত্তর দাও:

গ্লুকোজ যৌগে C ও H এর শতকরা সংযুতি যথাক্রমে 40 ও 6.67|

(১৪৬) এর আণবিক ভর 180| এর অপর মৌলের শতকরা সংযুতি কত

(季) 6.67%

(খ) 40%

53.33%

(ঘ) 54.33%

(১৪৭) গ্লুকোজের ক্ষেত্রে প্রযোজ্য-

- (i) স্থূল সংকেত CH₂O
- (ii) আণবিক সংকেত C₆H₁₂O₆
- (iii) স্থূল সংকেত আণবিক <mark>সংকে</mark>ত একই

নিচের কোনটি সঠিক?

i s i

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

(১৪৮) HO-এর স্থূল সংকেত থেকে কী বোঝা যায়?

- 📢 যৌগের অণুতে হাইড্রোজেন ও অক্সিজেন বিদ্যমান এবং তাদের পরমাণু সংখ্যা সমান
- (খ) যৌগের অণুতে কয়টি পরমাণু বিদ্যমান
- (গ) যৌগের অণুতে হাইড্রোজেন ও অক্সিজেন বিদ্যমান এবং পরমাণু সংখ্যা অসমান
- (ঘ) যৌগে শতকরা সংযুতি সমানভাবে বিন্যস্ত

(১৪৯) ইথেনের আণবিক সংকেত C_2H_6 এর স্থূল সংকেত কোনটি?

(ক) OH

(CH

(গ) CH₂

(ঘ) C₆H₆

(১৫০) নিচের কোনটির স্থূল সংকেত ও আণবিক সংকেত একই রূপ?

(খ) H₂O₂

(গ) C₆H₆

(ঘ) C₄H₁₀

(১৫১) নিচের কোন যৌগের স্থূল সংকেত ও আণবিক সংকেত একই রূপ?

(খ) C₆H₆

(গ) C₆H₁₂O₆

(ঘ) C₂H₂

(১৫২) গ্লুকোজের স্থূল সংকেত কোনটি?

(**क**) CHO

(켁) 2CHO

CH₂O

(ঘ) C₂H₂O₂

(১৫৩) বেনজিনের আণবিক সংকেত C_6H_6 । এর স্থূল সংকেত কোনটি?

(**क**) C₆H₆

(I) CH

(গ) 2CH

(ঘ) CH₄

(১৫৪) একটি যৌগে C = 92.3%, H = 7.7%; যৌগটির স্থূল সংকেত কত?

CH

(뉙) C₂H₂

(গ) C₂H₄

(ঘ) C₆H₆

(১৫৫) মৌলের সংযুতি নির্ণয়ের সূত্র কী?

(১৫৬) মৌলের সংযুতি = $n \times A \times 100/M\%$; এখানে n প্রকাশ করছে

(ক) আপেক্ষিক পারমাণবিক ভর

(খ) আপেক্ষিক আণবিক ভর

ি মৌলের পরমাণুর সংখ্যা

(ঘ) মৌলের শতকরা সংযুতি

(১৫৭) যে সংকেত অণুতে বিদ্য<mark>মান</mark> প্রমাণুসমূহের অনুপাত প্রকাশ করে, তাকে কী বলে?

(ক) আণবিক সংকেত

🚺 স্থূল সংকেত

(গ) পারমাণবিক সংকেত

(ঘ) পরমাণুর সংকেত

(১৫৮) একটি যৌগে 32.4% সোডিয়াম, 22.5% সালফার ও 45.1% অক্সিজেন আছে। যৌগটির স্থূল সংকেত কোনটি?

Na₂SO₄

(খ) Na₂SO₃

(গ) NO₂SO

(ঘ) NaSO₃

(১৫৯) যৌগের স্থূল সংকেত নির্ণয় করতে জানা প্রয়োজন কোনটি?

(ক) আণবিক ভর

(খ) আণবিক সংকেত

শৃতকরা সংযুতি

(ঘ) মৌলের যোজনী

(১৬০) হাইড্রোজেন পারঅক্সাইডের স্থূল সংকেত কোনটি?

(ক) H₂O

₩) HO

(গ) H₃O

(ঘ) HO₂

(১৬১) পানির অণূতে হাইড্রোজেনের শতকরা সংযুতি কত?

(ক) 100%

(খ) 92.31%

(গ) 88.89%

11.11%

(১৬২) পানির অণুতে অক্সিজেনে<mark>র শ</mark>তকরা সংযুতি কত?

(ক) 11.11%

88.89%

(গ) 7.69%

(ঘ) 92.3%

(১৬৩) CH স্থূল সংকেতবিশিষ্ট যৌগে C ও H এর অনুপাত কত?

(ক) 2:1

(খ) 2:3

1:1

(ঘ) 3:2

(১৬৪) কোন যৌগে অক্সিজেনের শতকরা সংযুতি ৪৪-৪9% এবং হাইড্রোজেনের শতকরা সংযুতি 11-11% হলে, যৌগটির স্থূল সংকেত কোনটি?

(ক) HO

(뉙) HO₂

(গ) H₃O

H₂O

(১৬৫) স্থূল সংকেত-

- (i) যৌগে বিদ্যমান মৌলসমূহের একটি অনুপাত
- (ii) নির্ণয় করতে মৌলের পারমাণবিক ভর ও আণবিক ভর জানার দরকার হয়
- (iii) যৌগের বেলায় প্রযোজ্য

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- i, ii ও iii

(১৬৬) স্থূল সংকেত-

- (i) যৌগের হতে পারে
- (ii) যৌগের অণুতে বিদ্যমান পরমাণুর সংখ্যা প্রকাশ করে
- (iii) আণবিক সংকেতের সমান বা সরল গুণিতক হয়

নিচের কোনটি সঠিক?

(ক) i

(গ) i ও iii

(ঘ) i, ii ও iii

(১৬৭) কোনগুলোর স্থূল সংকেত একই?

- (i) C₆H₆
- (ii) C₂H₂
- (iii) CH₄

নিচের কোনটি সঠিক?

i s i

(খ) i ও iii (গ) ii ও iii

(ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ১৬৮ ও ১৬৯ নং প্রশ্নের উত্তর দাও:

একটি যৌগের শতকরা সংযুতি হচ্ছে N = 36.8%; O = 63.2%|

(১৬৮) যৌগটিতে নাইট্রোজেন ও অক্সিজেনের পরিমাণ কত?

(季) 36.8%

(খ) 63.2%

(গ) 99%

100%

(১৬৯) যৌগের স্থূল সংকেত হচ্ছে-

(季) NO

N₂O₃

(গ) NO₅

(ঘ) N₂O₅

(১৭০) যৌগের আণবিক সংকেত তার স্থূল সংকেতের-

সরল গুণিতক

(খ) নিৰ্দিষ্ট অনুপাত

(গ) বিপরীত অনুপাত

(ঘ) ব্যস্তানুপাত

(১৭১) একটি যৌগের স্থূল সংকেত হচ্ছে $N_2 O_3$ যদি এর প্রকৃত আণবিক ভর 76 হয়। তাহলে এর সংকেত হবে-

(ক) N₂O₆

(খ) NO₃

N₂O₃

(ঘ) N₂O₅

(১৭২) কোনো যৌগের বিভিন্ন মৌলের পরমাণুসমূহের প্রকৃত সংখ্যা কী থেকে জানা যায়?

(ক) স্থূল সংকেত

(খ) প্রতীক

্য আণবিক সংকেত

(ঘ) যোজনী

(১৭৩) কোনো যৌগের স্থূল সংকেত CH ও আণবিক ভর 78 হলে, আণবিক সংকেত হবে কোনটি?

(**क**) CH

1 C₆H₆

(গ) CH₄

(ঘ) C₂H₂

(১৭৪) যৌগের আণবিক সংকেত নির্ণয় করতে এর সংযুতির সাথে সাথে আর কী জানতে হবে?

(ক) আণবিক ওজন

্য আণবিক ভর

(গ) যোজনী

(ঘ) সংকেত

(১৭৫) একটি যৌগের আণবিক ভর 180 এবং এর স্থূল সংকেত CH_2O যৌগটির সঠিক আণবিক সংকেত কোনটি?

(क) CH₄O

√ C₆H₁₂O₆

(গ) C₂H₆O

(ঘ) H₂CO₃

(১৭৬) কোনো যৌগের স্থূল সংকেত C_3H_8 ও আণবিক ভর 44 হলে আণবিক সংকেত কী হবে?

(<u>क</u>) CH

(C₃H₈

(গ) C₂H₄

(ঘ) CH₄

(১৭৭) যৌগের আণবিক সংকেত নির্ণয় করতে প্রয়োজন হয়-

- (i) শতকরা সংযুতি
- (ii) পারমাণবিক ভর
- (iii) আণবিক ভর

নিচের কোনটি সঠিক?

(ক) i

- (খ) i ও ii (গ) i ও iii

i, ii ও iii

(১৭৮) বেনজিনের ক্ষেত্রে

- (i) স্থূল সংকেত CH
- (ii) আণবিক ভর 78
- (iii) পারমাণবিক ভর 60

নিচের কোনটি সঠিক?

(ক) i

- i s ii
- (গ) i ও iii
- (ঘ) i, ii ও iii

(১৭৯) গ্লুকোজের ক্ষেত্রে

- (i) এর আণবিক সংকেত C₆H₁₂O₆
- (ii) এর পারমাণবিক ভর 160g
- (iii) এর আণবিক ভর 180g

নিচের কোনটি সঠিক?

(ক) i

- (খ) і ও іі
- iii છ i
- (ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ১৮০ ও ১৮১ নং প্রশ্নের উত্তর দাও : একটি যৌগে কার্বন 92.3% এবং হাইড্রোজেন 7.7%। (১৮০) যদি আণবিক ভর 26 হয় তাহলে আণবিক সংকেত কী হবে? C_2H_2 (**季**) C₆H₆ (ঘ) C₆H₁₂O₆ (গ) CH₄ (১৮১) কার্বনের পারমাণবিক ভর কত? (ক) 1 (খ) 8 12 (গ) 9 নিচের অনুচ্ছেদটি পড় এবং ১৮২ ও ১৮৩ নং প্রশ্নের উত্তর দাও : একটি যৌগের স্থল সংকেত CH এবং আণবিক ভর 78| (১৮২) যৌগের আণবিক সংকেত হলো-M C₆H₆ (ক) CH (গ) C₂H₆ (ঘ) CH₄ (১৮৩) যৌগের এই আণবিক সংকেত নির্ণয়ে দরকার লাগে-(i) স্থূল সংকেত (ii) আণবিক ভর (iii) ইলেক্ট্রন বিন্যাস নিচের কোনটি সঠিক?

(গ) i ও iii

(ক) i

i s ii

(ঘ) i, ii ও iii

(১৮৪) কোন বাক্যটি সঠিক?

- (ক) সমীকরণের উভয় দিকে মৌলের অণু সংখ্যা সমান
- সমীকরণের উভয় দিকে মৌলের পরমাণুর সংখ্যা সমান
- (গ) সমীকরণের বামদিকে উৎপাদসমূহ লিখতে হয়
- (ঘ) সমীকরণের ডানদিকে বিক্রিয়কসমূহ লিখতে হয়

(১৮৫) 3Fe + 4H $_2$ O \rightarrow Fe $_3$ O $_4$ + 4H $_2$ এ সমীকরণে কী উৎপন্ন হয়

- (ক) হাইড্রোজেন ও ফেরাস অক্সাইড
- ফেরোসোফেরিক অক্সাইড ও হাইড্রোজেন
- (গ) হাইড্রোজেন ও পানি
- (ঘ) ফেরাস ও হাইড্রোজেন

(১৮৬) রাসায়নিক বিক্রিয়াকে সংক্ষেপে উপস্থাপনের জন্য কী ব্যবহার করা হয়?

স্মীকরণ

(খ) বিক্রিয়া

(গ) বিক্রিয়ক

(ঘ) উৎপাদ

(১৮৭) যেসব বস্তু কোনো রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে তাদের কী বলে?

(ক) উৎপাদ

(খ) উৎপন্ন দ্রব্য

🚺 বিক্রিয়ক

(ঘ) বিক্রিয়া

(১৮৮) রাসায়নিক বিক্রিয়া কোন নীতি অনুসরণ করে?

ভর সংরক্ষণ নীতি

(খ) আয়তন সংরক্ষণ নীতি

(গ) ভর বিভাজন নীতি

(ঘ) আয়তন বিভাজন নীতি

(১৮৯) সমীকরণ লেখার সময় বিক্রিয়কসমূহ কোন দিকে থাকে?

্য বাম দিকে

(খ) ডান দিকে

(গ) উপরের দিকে

(ঘ) নিচের দিকে

(১৯০) রাসায়নিক বিক্রিয়া শেষে যেসব নতুন পদার্থ উৎপন্ন হয় সেগুলোকে কী বলে?

উৎপাদ

(খ) বিক্রিয়ক

(গ) বিক্রিয়া

(ঘ) রিঅ্যাকট্যান্ট

(১৯১) রাসায়নিক বিক্রিয়ার সময় পরমাণুসমূহের কী ঘটে?

(ক) উৎপাদ

পুনর্বিন্যাস

(গ) পরমাণুকরণ

(ঘ) বিক্রিয়ক

(১৯২) রাসায়নিক সর্টহ্যান্ড কাকে বলা হয়?

্য রাসায়নিক বিক্রিয়া

(খ) রাসায়নিক প্রক্রিয়া

(গ) রাসায়নিক সমীকরণ

(ঘ) রাসায়নিক ভৌত অবস্থা

(১৯৩) রাসায়নিক বিক্রিয়ায় একাধিক বিক্রিং করা হয়–	য়ক এবং একাধিক উৎপাদ থাকলে তাদের কী চিহ্ন দিয়ে প্রকাশ
(ক) (=) চিহ্ন দিয়ে	(খ) (-) চিহ্ন দিয়ে
(+) চিহ্ন দিয়ে	(ঘ) (×) চিহ্ন দিয়ে
(১৯৪) বিক্রিয়ক এবং উৎপাদের ভৌত অবস্থ	া যৌগের ডানপাশের কোন বন্ধনীর মধ্যে লেখা হয়?
্র্য প্রথম	(খ) দ্বিতীয়
(গ) তৃতীয়	(ঘ) রেখা
(১৯৫) কার্বন বা কয়লাকে বা <mark>য়ুর অ</mark> ক্সিজে একটি গ্যাস উৎপন্ন হয়। এ গ্যাস <mark>টির না</mark> ম কী	নের উপস্থিতিতে দহনের সময় বায়ু দূষণে ভূমিকা রাখে এমন ो?
্ কার্বন ডাইঅক্সাইড	(খ) নাইট্রিক অক্সাইড
(গ) মিথেন	(ঘ) অ্যামোনিয়া
(১৯৬) C(s) + O ₂ (g) → CO ₂ (g) এই	বিক্রিয়ায় উৎপাদ হল—
(<u></u> 주) C	CO ₂
(গ) O ₂	(ঘ) СО
(১৯৭) CaCO ₃ (s) + 2HCl(aq) ——> হল–	CaCl ₂ (aq) + CO ₂ (g) + H ₂ O(I) এই বিক্রিয়ায় বিক্রিয়ক
(क) CaCl ₂ , CO ₂ ,H ₂ O	CaCO ₃ , 2HCl
(গ) CaCO ₃	(ঘ) CaCl ₂ , H ₂ O

(১৯৮) $CaCO_3(s) + 2HCI(aq) \longrightarrow CaCI_2(aq) + CO_2(g) + H_2O(I)$ এই বিক্রিয়ায় কঠিন পদার্থ হল—

CaCO₃

(খ) 2HCI

(গ) CaCl₂

(ঘ) CO₂

(১৯৯) দহন বিক্রিয়ার উদাহরণ—

(i)
$$C(s) + O_2(g) \longrightarrow CO_2(g)$$

(ii)
$$Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(s) + H_2(g)$$

(iii)
$$CaCO_3(s) + 2HCI(aq) \longrightarrow CaCI_2(aq) + CO_2(g) + H_2O(I)$$

নিচের কোনটি সঠিক?

i

(뉙) ii

(গ) i ও ii

(ঘ) i, ii ও iii

(২০০) সঠিক উক্তি হল_

(i) বিক্রিয়ায় একাধিক বিক্রিয়ক এবং উৎপাদ থাকতে পারে

(ii) রাসায়নিক বিক্রিয়ায় যেসব পদার্থ নিয়ে শুরু করা হয় তাদের উৎপাদ বলা হয়

(iii) সমীকরণের উভয় দিকে মৌলের পরমাণুর সংখ্যা সমান হতে হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

iii છ i

(গ) ii ও iii

(ঘ) i, ii ও iii

নিচের সমীকরণগুলো লক্ষ কর এবং ২০১ ও ২০২ নং প্রশ্নের উত্তর দাও:

a. $CaO(s) + CO_2(g) \longrightarrow CaCO_3(s)$

b. $H_2(g) + I_2(g) \longrightarrow 2HI(g)$

(২০১) a বিক্রিয়ায় উৎপাদের সাধারণ নাম কী?

(ক) কাপড় কাচা সোডা

খাবার সোডা

(গ) চুনের পানি

(ঘ) চুনাপাথর

(২০২) উদ্দীপক থেকে বলা যায়-

- (i) রাসায়নিক সমীকরণে যৌগের ভৌত অবস্থা প্রকাশ পেয়েছে
- (ii) a বিক্রিয়ায় বিক্রিয়ক পদার্থের ঋণাত্মক আয়নের যোজনী 2
- (iii) b বিক্রিয়ায় বিক্রিয়ক একটি এসিড

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

i, ii ও iii

নিচের বিক্রিয়ার আলোকে ২০৩ ও ২০৪ নং প্রশ্নের উত্তর দাও:

$$CaCO_3(s) + 2HCI(aq) \longrightarrow CaCI_2(aq) + CO_2(g) + H_2O(l)$$

(২০৩) উপরের বিক্রিয়ায় বিক্রি<mark>য়ক হলো</mark>-

CaCO₃, 2HCI

(켁) CaCl₂, CO₂, H₂O

(গ) CaCO₃

(ঘ) CaCl₂, CO₂

(২০৪) সমীকরণটির উৎপাদে মোট পরমাণুর সংখ্যা কত?

(ক) 7

(খ) ৪

19

(ঘ) 10

(২০৫) Al_2O_3 + XHCl = $YAlCl_3$ + ZH_2O সমীকরণটি সমতাকরণের জন্য X, Y ও Z এর মান কত হবে?

(6, 2, 3

(খ) 3, 4, 3

(গ) 3, 2, 3

(ঘ) 2, 4, 4

(২০৬) সমতাকৃত সমীকরণ কোনটি?

$$(\overline{\Phi})$$
 CaCO₃ + HCl = CaCl₂ + CO₂

(*)
$$CaCO_3 + 2HCI = CaCl_2 + H_2O + CO_2$$

$$CaCO + HCI = CaCl_2 + H_2O$$

(ঘ)
$$CaCO_3 + HCI = Ca(OH)_2 + H_2O$$

(২০৭) 2AI + = 2AICI₃ + 3H₂ সমীকরণটি থেকে লবণ তৈরিতে কত অণু X বিক্রিয়ক প্রয়োজন হবে?

(ঘ) 1/2X

(২০৮) রাসায়নিক বিক্রিয়ায় বি<mark>ক্রিয়ক</mark> ও উৎপাদ কোন সূত্র মেনে চলে?

(ক) ভরের সমপ্রসারণ সূত্র

ভরের সংরক্ষণ সূত্র

(গ) শক্তির নিত্যতার সূত্র

(ঘ) জুলের তাপ উৎপাদন সূত্র

(২০৯) রাসায়নিক বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের পরমাণুর সংখ্যা সমান থাকে কেন?

- (খ) বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মাঝে যোগ (+) চিহ্ন ব্যবহৃত হয় বলে
- (গ) বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মাঝে সমান (=) চিহ্ন ব্যবহৃত হয় বলে
- (ঘ) বিক্রিয়ায় বিক্রিয়ক ও উৎপাদে বিভিন্ন ভৌত অবস্থা উল্লিখিত থাকে বলে

(২১০) Mg(s) + 2HCl(aq) \longrightarrow MgCl₂(s) + H₂(g); এই বিক্রিয়ায় HCl-কে 2 দ্বারা গুণন করা হয় কেন?

(ক) অণুর সংখ্যা সমতার জন্য

(খ) আয়ন সংখ্যা সমতার জন্য

প্রমাণু সংখ্যা সমতার জন্য

(ঘ) অ্যানায়ন সংখ্যা সমতার জন্য

(২১১) সমতাকৃত সমীকরণ কোনটি?

$$(\overline{\Phi})$$
 2Fe(s) + 3H₂O(g) \longrightarrow Fe₃O₄(s) + 2H₂(g)

(학)
$$Fe(s) + H_2O(g) \longrightarrow Fe_3O_4(s) + 2H_2(g)$$

$$3Fe(s) + 4H2O(g) \longrightarrow Fe3O4(s) + 4H2(g)$$

(되)
$$6Fe(s) + 2H_2O(g) \longrightarrow Fe_3O_4(s) + H_2(g)$$

(২১২) কোন যৌগটির ভৌত অবস্থা কঠিন?

(খ) HCI

(গ) H₂O

(ঘ) CO2

(২১৩) কোন যৌগটির ভৌত অবস্থা গ্যাসীয়?

(গ) H₂O

(ঘ) AgNO₃

(২১৪) Al_2O_3 (s) + $HCl(aq) \longrightarrow এই বিক্রিয়ায় কী উৎপাদ তৈরি হয়?$

$$(\Phi)$$
 3AIH + O₂ + Cl₂

(학)
$$AICI_3(g) + H_2O(g)$$

(গ)
$$Al_2O_3(s) + HCl(aq)$$

$$M = 100 \text{ AICI}_3(s) + H_2O(l)$$

10 MINUTE SCHOOL

(২১৫) কোন রাসায়নিক বিক্রিয়াটি অশুদ্ধ?

$$(\overline{\Phi})$$
 Al₂O₃(s) + 6HCl(aq) \rightarrow 2AlCl₃(s) + 3H₂O(l))

(*)
$$Mg(NO_3)_2(s) MgO(s) + NO_2(g) + O_2(g)$$

$$Mg(s) + 2HCI(aq) \longrightarrow MgH_2(s) + CI_2(g)$$

$$(\overline{y}) \text{ Na}_2\text{CO}_3(s) + \text{HCI}(aq) \longrightarrow \text{NaCI}(aq) + \text{H}_2\text{O}(l) + \text{CO}_2(g)$$

(২১৬) সমতাকরণের দিক থেকে সঠিক সমীকরণ–

(i)
$$Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(s) + 3H_2O(l)$$

(ii)
$$Na_2CO_3(s) + HCI(aq) \rightarrow NaCI(aq) + H_2O(I) + CO_2(g)$$

(iii) Mg(s) + 2HCl(aq)
$$\rightarrow$$
 MgCl₂(s) + H₂(g)

নিচের কোনটি সঠিক?

(ঘ) i, ii ও iii

নিচের বিক্রিয়াটি ব্যবহার করে ২১৭ ও ২১৮ নং প্রশ্নের উত্তর দাও :

$$Al_2O_3(s) + HCI(aq) \longrightarrow AICI_3(s) + H_2O(l)$$

(২১৭) প্রদত্ত সমীকরণের সমতা বিধানে কোন সমন্বয়টি প্রযোজ্য?

(২১৮) উদ্দীপকের বিক্রিয়ায়-

- (i) বিক্রিয়ক ও উৎপাদের পরমাণু সংখ্যা সমান
- (ii) সঠিক সংকেত ব্যবহৃত হয়েছে
- (iii) পূর্ণ সংখ্যার গুণকের উপস্থিতি বিদ্যমান

নিচের কোনটি সঠিক?

(ক) i

(গ) i ও ii

(ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ২১৯ ও ২২০ নং প্রশ্নের উত্তর দাও :

জলিলকে শ্রেণিশিক্ষক একটি রাসায়নিক সমীকরণের সমতাকৃত রূপ দেখাতে বললে জলিল বোর্ডে নিচের সমীকরণটি লেখে-

 $Na_2CO_3 + AHCI \longrightarrow X + BH_2O + CO_2$

তার শ্রেণিশিক্ষক বললেন বিক্রিয়াট<mark>ি সম্পূ</mark>র্ণ হয়নি, পরে তিনি বিক্রিয়াটি সম্পূর্ণ করেন।

(২১৯) জলিলের বিক্রিয়াটিতে

- (i) A = 1
- (ii) B = 1
- (iii) X = 2NaCl

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

ii s ii

(ঘ) i, ii ও iii

(২২০) শিক্ষক কীভাবে বিক্রিয়াটি সম্পূর্ণ করেন?

(ক) উৎপাদের সংখ্যা কমিয়ে

(খ) বিক্রিয়কের পরিমাণ কমিয়ে

(গ) মৌল স্থানান্তর করে

্বি ভৌত অবস্থার উল্লেখ করে

10 MINUTE SCHOOL

(২২১) রসায়নের যে শাখায় বিক্রিয়াকৃত বিক্রিয়ক এবং উৎপাদের পরিমাণ হিসাব করা হয় তাকে কী বলে?

(ক) Gravimetry

Stoichiometry

(গ) lidometry

(ঘ) Cromatography

(২২২) 48 গ্রাম Mg কত গ্রাম O₂-এর সাথে বিক্রিয়া করবে?

(ক) 16 গ্রাম

(খ) 12 গ্রাম

1 32 গ্রাম

(ঘ) 42 গ্রাম

(২২৩) 20 গ্রাম Mg থেকে কত গ্রাম MgO উৎপন্ন হবে?

(ক) 11.2 গ্রাম

(খ) 52 গ্রাম

() 33.3 গ্রাম

(ঘ) 68 গ্রাম

(২২৪) $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$ এ বিক্রিয়ায় 2 মোল Mg-এর সাথে কত মোল O_2 বিক্রিয়া করে?

1

(খ) ৪

(গ) 16

(ঘ) 32

(২২৫) $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$ এ বিক্রিয়ায় 48 গ্রাম Mg এর সাথে 32 গ্রাম O_2 বিক্রিয়া করে কত গ্রাম MgO উৎপন্ন করে?

(ক) 40 গ্রাম

1 80 গ্রাম

(গ) 92 গ্রাম

(ঘ) 112 গ্রাম

(২২৬) 5 গ্রাম ম্যাগনেসিয়াম ধাতু কত গ্রাম অক্সিজেনের সাথে বিক্রিয়া করে?

(ক) 0.3 গ্রাম

1 3.33 গ্রাম

(গ) 33.3 গ্রাম

(ঘ) 330.3 গ্রাম

(২২৭) 2 গ্রাম ম্যাগনেসিয়াম ধাতু থেকে কত গ্রাম ম্যাগনেসিয়াম অক্সাইড উৎপন্ন হয়?

🔰 3.33 গ্রাম

(খ) 4.40 গ্রাম

(গ) 33.3 গ্রাম

(ঘ) 44.0 গ্রাম

$(22b) C + O_2 \longrightarrow CO_2$; এখানে C = 48 গ্রাম বিক্রিয়াটিতে-

- (i) O₂ প্রয়োজন 128 গ্রাম
- (ii) CO2 উৎপন্ন হবে 176 গ্রাম
- (iii) O2 প্রয়োজন 32 গ্রাম

নিচের কোনটি সঠিক?

i s i

- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

(২২৯) $2SO_2 + O_2 \longrightarrow 2SO_3$; এখানে $O_2 = 32$ গ্রাম হলে–

- (i) 128 গ্রাম SO₂ বিক্রিয়া করবে
- (ii) 85 গ্রাম SO3 উৎপন্ন হবে
- (iii) 1 mole অক্সিজেন বিক্রিয়া করবে

নিচের কোনটি সঠিক?

(ক) i ও ii

- iii છ ii
- (গ) ii ও iii (ঘ) i, ii ও iii

10 MINUTE SCHOOL

নিচের বিক্রিয়া থেকে ২৩০ ও ২৩১নং প্রশ্নের উত্তর দাও :

$$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$$

(২৩০) প্রদত্ত সমীকরণে বিক্রিয়ক ও উৎপাদের মোল সংখ্যার ক্ষেত্রে কোন সমন্বয়টি প্রযোজ্য?

(ক) 1, 2, 2

2, 1, 2

(গ) 1, 2, 3

(ঘ) 1, 2, 3

(২৩১) উদ্দীপকের বিক্রিয়ায়-

- (i) 2 অণু Mg, এক অণু O_2 এর সাথে বিক্রিয়া করে 2 অণু MgO উৎপন্ন করে
- (ii) 2 মোল MgO-তে 2×6.02 ×10²³ টি Mg প্রমাণু আছে
- (iii) 48g Mg, 32g O_2 এর সাথে বিক্রিয়া করে 80g MgO উৎপন্ন করে

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ২৩২ ও ২৩৩ নং প্রশ্নের উত্তর দাও :

রিয়াজ একদিন পরীক্ষাগারে গিয়ে দেখে সেখানে 52 গ্রাম ম্যাগনেসিয়াম আছে। তার সর্বমোট 100 গ্রাম MgO উৎপাদন করতে হবে।

(২৩২) রিয়াজ উপস্থিত ম্যাগনেসিয়াম থেকে কত গ্রাম MgO উৎপাদন করতে পারবে?

(ক) 52.18 গ্রাম

(খ) 80 গ্রাম

1 86.67 গ্রাম

(ঘ) 92 গ্রাম

(২৩৩) রিয়াজের আরও কত গ্রাম ম্যাগনেসিয়াম প্রয়োজন?

() ৪ গ্রাম

(খ) 18 গ্রাম

(গ) 52 গ্রাম

(ঘ) 60 গ্রাম

10 MINUTE SCHOOL

(২৩৪) $H_2 + Cl_2 \rightarrow HCl + Cl_2$ লিমিটিং বিক্রিয়ক কোনটি?

() H₂

(খ) Cl₂

(গ) HCI

(ঘ) Cl

(২৩৫) MgO উৎপন্ন করার জন্য 4 অণু Mg ও 10 অণু O₂ নেয়া হলে লিমিটিং বিক্রিয়ক কোনটি?

Mg

(খ) O₂

(গ) Mg

(ঘ) Mg ও O₂

(২৩৬) 64 গ্রাম O_2 হতে Na_2O উৎপাদনের জন্য 46 গ্রাম Na যোগ করা হলে অবশিষ্ট O_2 -এর পরিমাণ কত?

(ক) 32 গ্রাম

(খ) 48 গ্রাম

(ব 35 গ্রাম

(ঘ) ৪1 গ্রাম

(২৩৭) NH_3 উৎপাদনের জন্য 8 গ্রাম H_2 ও 28 গ্রাম N_2 নেয়া হলে লিমিটিং বিক্রিয়ক কোনটি?

(ক) NH₃

(ক) H₂

 N_2

(ঘ) O₂

(২৩৮) বিক্রিয়ার সময় একাধিক বিক্রিয়কের মধ্যে যে বিক্রিয়ক অবশিষ্ট থাকে না তাকে কী বলে?

(খ) উৎপাদ

(গ) ফিনিশিং বিক্রিয়ক

(ঘ) এনডিং বিক্রিয়ক

(২৩৯) বিক্রিয়ক থেকে উৎপাদের পরিমাণ হিসাব করার সময় কী থেকে তা হিসাব করা হয়?

(ক) মোট ভর থেকে

ি লিমিটিং বিক্রিয়কের পরিমাণ থেকে

(গ) তুল্য ওজন থেকে

(ঘ) রাসায়নিক বিক্রিয়া থেকে

(২৪০) $2H_2 + O_2 \longrightarrow 2H_2O$, $H_2 = 2$ গ্রাম, $O_2 = 32$ গ্রাম বিক্রিয়াটিতে—

- (i) O2 লিমিটিং বিক্রিয়ক
- (ii) 10 গ্রাম H₂ অবশিষ্ট থাকে
- (iii) 6 গ্রাম O2 অবশিষ্ট থাকে

নিচের কোনটি সঠিক?

i છ ii

(খ) i ও iii

(গ) ii ও iii (ঘ) i, ii ও iii

(২৪১) লিমিটিং বিক্রিয়ক-

- (i) বিক্রিয়ার সময় যে বিক্রিয়ক <mark>অব</mark>শিষ্ট থাকে না
- (ii) বিক্রিয়ার সময় যে বিক্রি<mark>য়ক</mark> অবশিষ্ট থেকে যায়
- (iii) উৎপাদের পরিমাণ হিসাব করতে ব্যবহৃত হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

iii છ i

(গ) ii ও iii

(ঘ) i, ii ও iii

নিচের ছবিটি লক্ষ কর এবং ২৪২ ও ২৪৩ নং প্রশ্নের উত্তর দাও :

(২৪২) উৎপন্ন যৌগের সংকেত কোনটি?

(뉙) O₂

MgO

(ঘ) MgO₂

(২৪৩) উপরের ছবিতে-

- (i) ম্যাগনেসিয়াম অক্সাইড উৎপাদ
- (ii) অক্সিজেন লিমিটিং বিক্রিয়ক
- (iii) ম্যাগনেসিয়াম লিমিটিং বিক্রিয়ক

নিচের কোনটি সঠিক?

(ক) i ও ii

iii છ ii

(গ) ii ও iii (ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ২৪৪ ও ২৪৫ নং প্রশ্নের উত্তর দাও :

2 পরমাণু কার্বনের সাথে 1 অণু অক্সিজেন বিক্রিয়া করে CO_2 উৎপন্ন করা হলো। অর্থাৎ, $2C + O_2 \rightarrow CO_2$

(২৪৪) নিচের কোনটি লিমিটিং বিক্রিয়ক?

(<u>क</u>) C

(গ) 2C

(২৪৫) বিক্রিয়া শেষে পাওয়া যাবে-

- (i) পরমাণু C
- (ii) অণু O₂
- (iii) 1 অণু CO₂

নিচের কোনটি সঠিক?

(ক) i ও ii

নিচের অনুচ্ছেদটি পড় এবং ২৪৬ ও ২৪৭ নং প্রশ্নের উত্তর দাও:

একটি আবদ্ধ পাত্রে 12 গ্রাম H_2 এর সাথে 28 গ্রাম N_2 যোগ করা হলো। উপযুক্ত পরিবেশে পাত্রে X যৌগ উৎপন্ন হলো।

(২৪৬) নিচের কোনটি লিমিটিং বিক্রিয়ক?

(ক) H₂

N₂

(গ) X

(ঘ) NH₃

(২৪৭) পাত্রে অবশিষ্ট থাকবে-

- (i) 6 গ্রাম H₂
- (ii) 34 গ্রাম X
- (iii) 14 গ্রাম N₂

নিচের কোনটি সঠিক?

i s i

(খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii

(২৪৮) 100 গ্রাম বিশুদ্ধ CaCO3 কে কী বলে?

(ক) Compiter

(খ) Alanar

(গ) Amalgum

(২৪৯) Analar NaCl শতকরা কতভাগ বিশুদ্ধ হবে?

95.5%

(খ) 98%

(গ) 99.5%

(ঘ) 100%

(২৫০) NaOH যদি 100% বিশুদ্ধ না হয় তবে তা থেকে উৎপন্ন NaCl-এর পরিমাণ কীরূপ হবে?

- (ক) হিসাবকৃত পরিমাণের সমান
- (খ) হিসাবকৃত পরিমাণের বেশি
- হিসাবকৃত পরিমাণের কম
- (গ) হিসাবকৃত পরিমাণের অনুপাতের সমান

(২৫১) সবচেয়ে বিশুদ্ধ রাসায়নিক পদার্থকে কী বলা হয়?

(ক) লিমিটিং বিক্রিয়ক

) অ্যানালার

(গ) রিএজেন্ট

(ঘ) এক্রাইলিক

(২৫২) 80 গ্রাম CaCO3 কে তাপ দিয়ে 39 গ্রাম CaO পাওয়া যায়। উৎপাদের শতকরা পরিমাণ কত?

(季) 63.08%

87.5%

(গ) 91.51%

(ঘ) 95.5%

(২৫৩) অ্যানালার-

- (i) সবচেয়ে বিশুদ্ধ রাসায়<mark>নিক</mark> পদার্থ
- (ii) প্রায় 95.5% বিশুদ্ধ
- (iii) গবেষণার সময় বিশ্লেষণীয় কাজে ব্যবহৃত হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) ાં હાંાં (જા) ાં હાંાં 🎁 i, ii હાાં

নিচের অনুচ্ছেদটি পড় এবং ২৫৪ ও ২৫৫ নং প্রশ্নের উত্তর দাও :

200 গ্রাম KCIO $_3$ কে তাপ দিয়ে 100 গ্রাম KCI পাওয়া গেলো।

(২৫৪) উৎপাদের শতকরা পরিমাণ কত?

(季) 77.4%

82.32%

(গ) 87.05%

(ঘ) 95.5%

(২৫৫) উদ্দীপকের বিক্রিয়ায়-

- (i) 244.5 গ্রাম KCIO₃ থেকে KCI পাওয়া যায় 148.5 গ্রাম
- (ii) KCIO3 এর আণবিক ভর 122.5
- (iii) বিক্রিয়াটি হলো $2KCIO_3$ \longrightarrow $2KCI+3O_2$

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

i, ii ও iii

(২৫৬) ব্লু-ভিট্রিয়লের অণুতে কত অণু কেলাস পানি থাকে?

(ক) 2

(খ) 4

5

(ঘ) 10

(২৫৭) ব্লু-ভিট্রিয়লের সংকেত কী?

- (季) C∪SO₄.10H₂O
- CuSO₄. 5H₂O

- (খ) C∪SO₄
- (ঘ) ZnSO₄. 7H₂O

(২৫৮) পানিবিহীন C∪SO4-এর বর্ণ কেমন?

(ক) কালো

সাদা

(গ) লাল

(ঘ) নীল

(২৫৯) কপার সালফেট দিয়ে কাজ করার পর ভালোভাবে হাত পরিষ্কার করতে হয় কেন?

্ৰ এটি বিষাক্ত পদাৰ্থ বলে

(খ) এটি হাতে লেগে থাকে বলে

(গ) এর দ্রবণীয় গুণ আছে বলে

(ঘ) এটি ক্ষারীয় বলে

(২৬০) া মোল তুঁতের ভর কত?

(ক) 60 গ্রাম

(খ) 90 গ্রাম

159.5 গ্রাম

(ঘ) 249.5 গ্রাম

(২৬১) ব্লু-ভিট্রিয়লের ক্ষেত্রে প্রযোজ্য –

- (i) আণবিক ভর 249.5
- (ii) কেলাস পানির শতকরা সংযুতি 36.07%
- (iii) জলীয় দ্রবণ অম্লধর্মী

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (뉙) i ଓ iii

- (গ) ii ও iii
- i, ii ও iii

(২৬২) 249.5 গ্রাম ব্ল ভিট্রিয়লকে উত্তপ্ত করে 159.5 গ্রাম সাদা পাউডার পাওয়া গেল; এক্ষেত্রে –

- (i) সাদা পাউডারটি C∪CO₃
- (ii) উৎপাদের শতকরা পরিমাণ 94%
- (iii) ব্লু-ভিট্রিয়লের সংকেত $C \cup SO_4$. $5H_2O$

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii

- (ঘ) i, ii ও iii

নিচের অনুচ্ছেদটি পড় এবং ২৬৩ ও ২৬৪ নং প্রশ্নের উত্তর দাও:

পানিবিহীন কপার সালফেটে কয়েক ফোঁটা পানি যোগ করা হলো।

(২৬৩) উৎপন্ন পদার্থের বর্ণ কীরূপ হবে?

(ক) সাদা

নীল

(গ) লাল

(ঘ) বেগুনি

(২৬৪) পানিযুক্ত কপার সালফেটের-

- (i) নির্দিষ্ট মোল থাকবে
- (ii) আরেক নাম ব্লু ভিট্রিয়ল
- (iii) ভর 249.5 গ্রাম

নিচের কোনটি সঠিক?

- (ক) i ও ii (খ) i ও iii

- ্য i ও iii (ঘ) i, ii ও iii

SOLVED CQ

প্রশ্ন নং: ১

🔲 নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

কোন যৌগে C = 60%; H = 13.33% এবং O = 26.67% | যৌগটির আণবিক ভর 60 |

- ক) রিডক্স বিক্রিয়া কাকে বলে?
- খ) রাসায়নিক বিক্রিয়ায় তা<mark>পের</mark> পরিবর্তন হয় কেন- ব্যাখ্যা কর।
- গ) যৌগটির আণবিক সংকেত নির্ণয় কর।
- ঘ) যৌগটি থেকে একই কার্বনবিশিষ্ট অ্যালকেন তৈরি করা সম্ভব কিনা রাসায়নিক বিক্রিয়াসহ যুক্তি দাও।

১ নং প্রশ্নের উত্তর

ক) রিডক্স বিক্রিয়া কাকে বলে?

যে বিক্রিয়ায় বিক্রিয়কের একাধিক মৌলের মধ্যে ইলেকট্রন আদান-প্রদান বা স্থানান্তর হয় তাকে রিডক্স বিক্রিয়া বলে।

খ) রাসায়নিক বিক্রিয়ায় তাপের পরিবর্তন হয় কেন- ব্যাখ্যা কর।

রাসায়নিক বিক্রিয়ায় বন্ধন ভাঙা ও নতুন বন্ধন গঠনে শক্তির পরিবর্তন হয় বলে তাপের পরিবর্তন হয়। রাসায়নিক বিক্রিয়া সম্পন্ধ হওয়ার সময় বিক্রিয়ক পদার্থ উৎপাদে পরিণত হয়, একইসাথে উৎপন্ধ পদার্থ বিক্রিয়কে রূপান্তরিত হতে পারে। পদার্থে বিদ্যমান পরমাণুসমূহের মধ্যবর্তী বন্ধন ভাঙা এবং নতুন বন্ধন গঠনের মাধ্যমে রাসায়নিক বিক্রিয়া সম্পন্ধ হয়। রাসায়নিক বন্ধন মূলত একপ্রকার শক্তি। বন্ধন ভাঙা এবং নতুন বন্ধন গঠনে শক্তির পরিবর্তন হয়, যা তাপ হিসেবে অনুভূত হয়। তাই, রাসায়নিক বিক্রিয়ায় তাপের পরিবর্তন হয়।

গ) যৌগটির আণবিক সংকেত নির্ণয় কর।

উদ্দীপকে উল্লিখিত যৌগটির-

C এর শতকরা সংযুতি = 60%

$$H$$
 " = 13.33%

যৌগটিতে C, H ও O এর মোট সংযুতি = (60 + 13.33 + 26.67)% = 100% স্তরাং, যৌগটিতে আর কোনো মৌল নেই।

এখন, C, H ও O এর শতকরা সংযুতিকে তাদের নিজ নিজ পারমাণবিক ভর দ্বারা ভাগ করে পাই, $C = \frac{60}{12} = 5$

$$H = \frac{13.33}{1} = 13.33$$

$$H = \frac{13.33}{1} = 13.33$$

$$O = \frac{26.67}{16} = 1.67$$

প্রাপ্ত ভাগফলসমূহের মধ্যে ক্ষুদ্রতম ভাগফল 1.67 দ্বারা সবগুলো ভাগফলকে ভাগ করে পাই।

$$C = \frac{5}{1.67} = 2.99 \sim 3$$

$$H = \frac{1.67}{1.67} = 8$$

$$0 = 1$$

∴ যৌগটির স্থল সংকেত = C₃H₈O|

ধরি, যৌগটির আণবিক সংকেত $= (C_3H_8O)_n$

দেওয়া আছে, যৌগটির আণবিক ভর = 60

সুতরাং
$$(C_3H_8O)_n = 60$$

$$\vec{a}$$
, $(12 \times 3 + 1 \times 8 + 16 \times 1)n = 60$

$$\boxed{4}, \quad (36 + 8 + 16)n = 60$$

বা,
$$n = \frac{60}{60}$$

$$\therefore$$
 n = $\frac{1}{2}$

অতএব, যৌগটির আণবিক সংকেত = C₃H₈O

$$= C_3H_7OH$$

ঘ) যৌগটি থেকে একই কার্বনবিশিষ্ট অ্যালকেন তৈরি করা সম্ভব কিনা রাসায়নিক বিক্রিয়াসহ যুক্তি দাও।

উদ্দীপকে উল্লিখিত যৌগটি হলো C3H7OH বা প্রোপানল যা থেকে একই কার্বনবিশিষ্ট অ্যালকেন তৈরি করা সম্ভব।

 C_3H_7OH যৌগটিতে তিনটি কার্বন রয়েছে। তিনটি কার্বনবিশিষ্ট অ্যালকেন হলো প্রোপেন (C_3H_8) । নিচে C_3H_7OH থেকে C_3H_8 তৈরির উপায় বর্ণনা করা হলো।

(i) প্রোপানলকে অ্যালুমিনিয়াম অক্সাইডের উপস্থিতিতে উত্তপ্ত করলে বা সালফিউরিক এসিড দ্বারা নিরুদিত করলে পানি অপসারিত হয়ে প্রোপিলিন বা প্রোপিন উৎপন্ন করে।

$$CH_3CH_2CH_2OH \frac{H_2SO_4}{-H_2O}CH_3 - CH = CH_2$$

$$\mathrm{CH_3CH_2CH_2OH} \frac{\mathrm{Al_2O_3}}{-\mathrm{H_2O}} \, \mathrm{CH_3} - \mathrm{CH} = \mathrm{CH_2}$$
 (প্রোপিন)

(ii) উৎপন্ন প্রোপিন আবার ধাতব প্রভাবকের (Ni) উপস্থিতিতে 180-200°C তাপমাত্রায় হাইড্রোজেনের সাথে বিক্রিয়া করে প্রোপেন অর্থাৎ অ্যালকেন উৎপন্ন করে।

$$CH_3 - CH = CH_{2(g)} \frac{180^{\circ} - 200^{\circ}}{Ni} CH_3 - CH_2 - CH_3$$
(খোপেন)

দেখা যাচ্ছে যে, উৎপন্ন অ্যালকেনেও তিন অণু কার্বন বিদ্যমান যা উদ্দীপকে উল্লিখিত যৌগ প্রোপানল এর সমান কার্বন বিশিষ্ট।

অতএব, উদ্দীপকে উল্লিখি<mark>ত যৌ</mark>গটি থেকে একই কার্বনবিশিষ্ট অ্যালকেন তৈরি করা সম্ভব।

প্রশ্ন নং: ২

□ নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

জনৈক রসায়ন বিজ্ঞানের শিক্ষক তাঁর এক ছাত্রকে কয়েকটি রাসায়নিক বিক্রিয়া লিখতে বললেন। সে কয়েকটি বিক্রিয়া লিখল- (i) Na + Cl₂ → NaCl

- (ii) $Al_2O_3 + HCl \rightarrow AlCl_3 + H_2O$
- (iii) Al + HCl \rightarrow AlCl₃ + H₂
- ক) একমুখী বিক্রিয়া কাকে বলে?
- খ) যোজনী ও জারণ সংখ্যা <mark>এক</mark> নয় কেন? ব্যাখ্যা কর।
- গ) (ii) ও (iii) কে কীভাবে সমতা সাধন করবে, লেখ।
- ঘ) (i) নং বিক্রিয়ায় জারণ বিজারণ এক সাথে সংঘটিত হয়- বিশ্লেষণ কর।

২ নং প্রশ্নের উত্তর

क) একমুখী বিক্রিয়া কাকে বলে?

যে বিক্রিয়ায় উৎপন্ন পদার্থসমূহ বিক্রিয়া করে পুনরায় বিক্রিয়কে পরিণত হয় না, তাকে একমুখী বিক্রিয়া বলে।

খ) জৈব যৌগের অসম্পৃক্ততা কীভাবে নির্ণয় করা হয়?

যোজনী ও জারণসংখ্যাকে আপাতদৃষ্টিতে এক মনে হলেও প্রকৃতপক্ষে এক নয়।
যোজনী হলো কোনো মৌলের অন্য মৌলের সাথে যুক্ত হওয়ার ক্ষমতা। যৌগ গঠনের সময় কোনো
মৌল যত সংখ্যক ইলেকট্রন বর্জন করে ধনাত্মক আয়ন উৎপন্ন করে অথবা যত সংখ্যক ইলেকট্রন
গ্রহণ করে ঋণাত্মক আয়ন উৎপন্ন করে তাকে মৌলের জারণ সংখ্যা বলে। নিরপেক্ষ বা মুক্ত অবস্থায়
মৌলের যোজনী 1,2,3,4 ইত্যাদি হয়ে থাকে কিন্তু জারণ সংখ্যা শূন্য (0) ধরা হয়। এসব কারণেই
যোজনী ও জারণ সংখ্যা এক নয়।

গ) (ii) ও (iii) কে কীভাবে সমতা সাধন করবে, লেখ।

এখানে, (ii) নং বিক্রিয়ায় অ্যালুমিনিয়াম অক্সাইড হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে আ্যালুমিনিয়াম ক্লোরাইড ও পানি উৎপন্ন করে।

$$Al_2O_3(s) + HCl(aq) \longrightarrow AlCl_3(s) + H_2O(l)$$

আলুমিনিয়ামের পরমাণু সংখ্যা সমান করার জন্য উৎপাদ $AlCl_3$ -এর সাথে 2 দ্বারা, ক্লোরিনের পরমাণু সংখ্যা সমান করার জন্য বিক্রিয়ক HCl-এর সাথে 6 দ্বারা এবং হাইড্রোজেন ও অক্সিজেনের পরমাণু সংখ্যা সমান করার জন্য উৎপাদ H_2O এর সাথে 3 দ্বারা গুণন করা হয়। বিক্রিয়ার সমতাকৃত সমীকরণ নিম্নরূপ :

$$Al_2O_3(s) + 6HCl(aq) \longrightarrow 2AlCl_3(s) + 3H_2O(l)$$

(iii) নং বিক্রিয়ায় অ্যালুমিনিয়াম ধাতু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে অ্যালুমিনিয়াম ক্লোরাইড ও হাইড্রোজেন গ্যাস উৎপন্ন করে।

$$Al(s) + HCl(aq) \longrightarrow AlCl_3(s) + H_2(g)$$

এই বিক্রিয়া সমতাকরণে প্রথমে ক্লোরিন পরমাণু সংখ্যা সমতার জন্য বিক্রিয়ক HCl-এর সাথে 6 দ্বারা গুণন করা হয়। এতে অন্যান্য মৌলের পরমাণু সমান হয়। বিক্রিয়ার সমতাকৃত সমীকরণ নিম্নরূপ :

$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$$

অতএব, (ii) ও (iii) কে সম<mark>তা</mark> সাধন করা হলো।

ঘ) যৌগটি থেকে একই কার্বনবিশিষ্ট অ্যালকেন তৈরি করা সম্ভব কিনা রাসায়নিক বিক্রিয়াসহ যুক্তি দাও।

(i) নং বিক্রিয়াটি হলো:

$$Na + Cl_2 \longrightarrow NaCl$$

এ বিক্রিয়ায় জারণ ও বিজারণ এক সাথে সংঘটিত হয়েছে। আধুনিক সংজ্ঞানুযায়ী, যে বিক্রিয়ায় কোনো রাসায়নিক সত্তা (অণু, পরমাণু, মূলক বা আয়ন) ইলেকট্রন প্রদান করে, তাকে জারণ এবং যে বিক্রিয়ায় কোনো রাসায়নিক সত্তা ইলেকট্রন গ্রহণ করে তাকে বিজারণ বলা হয়। যেমন : সোডিয়াম ও ক্লোরিনের বিক্রিয়ায় সোডিয়াম ক্লোরাইড উৎপন্ন হয়।

$$2Na + Cl_2 = 2NaCl$$

এ বিক্রিয়ায় সোডিয়াম প্রমাণুর সাথে তড়িৎ ঋণাত্মক ক্লোরিন সংযুক্ত হয়েছে; সুতরাং সোডিয়ামের জারণ সংঘটিত হয়েছে। আবার ক্লোরিনের সাথে তড়িৎ ধনাত্মক সোডিয়াম সংযুক্ত হওয়ায় ক্লোরিনের বিজারণ হয়েছে। অপরদিকে, রাসায়নিক বন্ধনের ইলেকট্রনীয় তত্ত্ব মতে সোডিয়াম পরমাণু একটি ইলেকট্রন দান করেছে এবং ক্লোরিন পরমাণু সেটিকে গ্রহণ করেছে। এ দুটো বক্তব্যকে একত্রিত করলে জারণ বিজারণের আধুনিক সংজ্ঞা বুঝা যায়।

$$Cl_2 \rightarrow 2ClNa \rightarrow Na^+ + e^-$$
 (ইলেকট্রন দান বা জারণ) ----- (২)

$$Cl + e^- \rightarrow Cl^-$$
 (ইলেক্ট্রন গ্রহণ বা বিজারণ) ----- (৩)

উপরের ২য় ও ৩য় সমীকরণকে ২ দ্বারা গুণ করার পর ১নং সমীকরণের সাথে যোগ করার পর পাওয়া যায়।

প্রশ্ন নং: ৩

🗅 নিচের বিক্রিয়া দুইটি লক্ষ্য কর এবং প্রশ্নগুলোর উত্তর দাও :

- (i) $H_2 + O_2 \rightarrow H_2O$
- (ii) $CaCO_3 CaO + CO_2$

ক) অ্যানালার কী?

- খ) কপার গাঢ় সালফিউরিক এসিডের সাথে বিক্রিয়া করে কিন্তু লঘু সালফিউরিক এসিডের সাথে বিক্রিয়া করে না কেন- ব্যাখ্যা কর।
- গ) উদ্দীপকের i নং বিক্রিয়া<mark>য় 1</mark>6 গ্রাম হাইড্রোজেন সাথে 32 গ্রাম অক্সিজেন মিশ্রিত করলে কত গ্রাম উৎপাদ পাওয়া যাবে তা নির্ণয় কর।
- ঘ) উদ্দীপকের ii নং বিক্রিয়া অনুসারে 80 গ্রাম চুনাপাথরকে উত্তপ্ত করে 39 গ্রাম CaO পাওয়া গেল। চুনাপাথরের বিশুদ্ধতার শতকরা পরিমাণ নির্ণয় কর।

৩ নং প্রশ্নের উত্তর

ক) অ্যানালার কী?

যেকোনো যৌগের ৯৫.৫% বিশুদ্ধ পদার্থকে অ্যানালার বলে ।

খ) কপার গাঢ় সালফিউরিক এসিডের সাথে বিক্রিয়া করে কিন্তু লঘু সালফিউরিক এসিডের সাথে বিক্রিয়া করে না কেন- ব্যাখ্যা কর।

গাঢ় H_2SO_4 এর জারণ ধর্ম আছে কিন্তু লঘু H_2SO_4 এর জারণ ধর্ম নেই।

গ) উদ্দীপকের i নং বিক্রিয়ায় 16 গ্রাম হাইড়োজেন সাথে 32 গ্রাম অক্সিজেন মিশ্রিত করলে কত গ্রাম উৎপাদ পাওয়া যাবে তা নির্ণয় কর।

উদ্দীপকের (i) নং বিক্রিয়াটি হলো :

$$2H_2 + O_2 \longrightarrow 2H_2O$$

এখানে, হাইড্রোজেনের পরিমাণ = 16 গ্রাম

অক্সিজেনের পরিমাণ = 32 গ্রাম

আমরা জানি.

1 মোল $H_2 = 2$ গ্রাম হাইড্রোজেন

1 মোল O₂ = 32 গ্রাম অক্সিজেন

বিক্রিয়ায় H_2 এর পরিমাণ = $\frac{16 \text{ প্রাম}}{2 \text{ প্রাম}} = 8 মোল$

বিক্রিয়ায় O_2 এর পরিমাণ = $\frac{32 \text{ glin}}{32 \text{ glin}}$ = 1 মোল

কিন্তু 1 মোল O_2 কেবল 2 মোল H_2 এর সাথে বিক্রিয়া করে। অতএব, O_2 এখানে লিমিটিং বিক্রিয়ক। া মোল অক্সিজেন অণু হতে এই বিক্রিয়ায় 2 মোল পানি উৎপন্ন হয়।

2 মোল পানি = 2×18 গ্রাম [] মোল পানি = 18 গ্রাম] = 36 গ্রাম।

. 32 গ্রাম অক্সিজেন অণু <mark>হতে</mark> উৎপন্ন হয় 36 গ্রাম পানি অতএব, উদ্দীপকের (i) নং বিক্রিয়ায় 16 গ্রাম হাইড্রোজেনের সাথ<mark>ে 32</mark> গ্রাম অক্সিজেন মিশ্রিত করলে 36 গ্রাম উৎপাদ পাওয়া যাবে।

ঘ) উদ্দীপকের ii নং বিক্রিয়া অনুসারে 80 গ্রাম চুনাপাথরকে উত্তপ্ত করে 39 গ্রাম CaO পাওয়া গেল। চুনাপাথরের বিশুদ্ধতার শতকরা পরিমাণ নির্ণয় কর।

উদ্দীপকের (ii) নং বিক্রিয়াটি হলো :

 $CaCO_3 \stackrel{\triangle}{\rightarrow} CaO + CO_2$

1 মোল CaCO₃ = (40 + 12 + 3×16) গ্রাম CaCO₃ = 100 গ্রাম CaCO₃

1 মোল CaO = (40 + 16) গ্রাম CaO = 56 গ্রাম CaO

প্রদত্ত বিক্রিয়ায় 1 মোল CaO উৎপন্ন করতে 1 মোল CaCO3 এর প্রয়োজন হয়।

∴ 56 গ্রাম CaO উৎপন্ন করতে প্রয়োজন 100 গ্রাম CaCO₂

 \therefore 1 গ্রাম CaO উৎপন্ন করতে প্রয়োজন $\frac{100}{56}$ গ্রাম CaCO $_3$ \therefore 39 গ্রাম CaO উৎপন্ন করতে প্রয়োজন $\frac{100\times39}{56}$ গ্রাম CaCO $_3$ = 69.64 গ্রাম CaCO $_3$

অতএব, চুনাপাথরের বিশুদ্ধতার পরিমাণ $=\frac{69.64}{80} \times 100\% = 87.05\%$

প্রশ্ন নং: 8

□ নিচের চিত্রটি লক্ষ কর এবং প্রশ্নগুলোর উত্তর দাও :

- ক) সংশ্লেষণ বিক্রিয়া কাকে বলে?
- খ) NaCl এর গলনাম্ব এবং স্ফুটনাম্ব ভিন্ন কেন?
- গ) উদ্দীপকের Y পাত্রে উৎপন্ন গ্যাসের 1gm পদার্থে কতটি অণু বিদ্যমান? নির্ণয় করে দেখাও।
- ঘ) কোন পাত্রের গ্যাস আগে "A" চিহ্নিত বিন্দুতে পৌঁছাবে? যুক্তিসহ কারণ বিশ্লেষণ কর।

৪ নং প্রশ্নের উত্তর

ক) সংশ্লেষণ বিক্রিয়া কাকে বলে?

যে বিক্রিয়ায় দুই বা ততোধিক মৌলিক পদার্থ যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে, তাকে সংশ্লেষণ বিক্রিয়া বলে।

খ) NaCl এর গলনাঙ্ক এবং স্ফুটনাঙ্ক ভিন্ন কেন?

NaCl একটি আয়নিক যৌগ, যা ভৌত অবস্থায় কঠিন পদার্থ। এতে প্রতিটি Na⁺ আয়ন তার বিপরীতধর্মী আধান বিশিষ্ট Cl⁻ আয়নদ্বারা চতুর্দিকে পরিবেষ্টিত থেকে এক বিশেষ ধরনের জালিকা তৈরি করে। ফলে একে গলাতে অনেক তাপ প্রয়োগ করতে হয়। আবার বাষ্পীভূত করতে হলে বিপরীত আধানযুক্ত আয়নের আকর্ষণ পুরোপুরি মুক্ত করতে হয়, ফলে আরো বেশি তাপ প্রয়োগ করতে হয়। এ কারণেই NaCl এর গলনাংক ও স্ফুটনাংক ভিন্ন হয়। NaCl এর গলনাংক ৪০1°C এবং স্ফুটনাংক 1465°C|

গ) উদ্দীপকের Y পাত্রে উৎপন্ন গ্যাসের 1gm পদার্থে কতটি অণু বিদ্যমান? নির্ণয় করে দেখাও।

উদ্দীপকের Y পাত্রে সংঘটিত বিক্রিয়াটি নিম্নরূপ:

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + SO_2(g) + H_2O$$

অর্থাৎ Y পাত্রে উৎপন্ন গ্যাসটি হলো- SO₂|

$$SO_2$$
 এর আণবিক ভর $= 32 + 2 \times 16$
 $= 64$

 SO_2 এর 1 mol এ অণুর সংখ্যা $=6.02 \times 10^{23}$ টি সতবাং

 $64 {
m gm~SO}_2$ এ বিদ্যমান অণুর সংখ্যা $= 6.02 { imes} 10^{23}$ টি

∴ 1gm" " " =
$$\frac{6.02 \times 10^{23}}{64}$$
 $\widehat{\mathbb{b}}$
= 9.4×10^{21} $\widehat{\mathbb{b}}$

সুতরাং, $1 \mathrm{gm} \ \mathrm{SO}_2$ গ্যাসে $9.4{ imes}10^{21}$ টি অণু বিদ্যমান।

ঘ) কোন পাত্রের গ্যাস আগে "<mark>A"</mark> চিহ্নিত বিন্দুতে পৌঁছাবে? যুক্তিসহ কারণ বিশ্লেষণ কর।

উদ্দীপকে X ও Y পাত্রে সংঘটিত বিক্রিয়া দুটি যথাক্রমে নিম্নে লেখা হলো :

- (i) $Zn + H_2SO_4 \rightarrow H_2(g) + ZnSO_4(g)$ (X পাত্রে)
- (ii) $Zn + H_2SO_4 \rightarrow ZnSO_4 + SO_2(aq) + H_2O$ (Y পাত্রে)

সুতরাং X ও Y পাত্রে উৎপন্ন গ্যাস দুটি হলো যথাক্রমে H_2 ও SO_2 ।

উৎপন্ন ${
m H_2}$ এর ভর 2 এবং ${
m SO_2}$ এর ভর $64|{
m SO_2}, {
m H_2}$ এর তুলনায় অধিক ভারী হওয়ায় ${
m H_2}$ এর ব্যাপন ${
m SO_2}$ এর তুলনায় আগে হবে। সুতরাং, ${
m A}$ চিহ্নিত স্থানে ${
m H_2}$, ${
m SO_2}$ এর আগে পৌঁছবে।

প্রশ্ন নং: ৫

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

আনোয়ার উপযুক্ত পরিবেশে 5 গ্রাম হাইড্রোজেন ও 100 গ্রাম ক্লোরিনের মধ্যে বিক্রিয়া ঘটিয়ে হাইড্রোজেন ক্লোরাইড উৎপন্ন করল। সে লক্ষ করল এতে করে একটি মৌলের কিছু পরিমাণ অবশিষ্ট রয়েছে। এর কারণ সম্পর্কে সে রফিক স্যারের কাছে জানতে চাইল।

- ক) অ্যানালার কী?
- খ) রাসায়নিক গণনায় লিমিটিং বিক্রিয়কের গুরুত্ব উল্লেখ কর।
- গ) আনোয়ারের উৎপাদিত যৌগের সংযুতি নির্ণয় কর।
- ঘ) রফিক স্যার আনোয়ারকে বিক্রিয়া শেষে কোন উপাদান কী পরিমাণে অবশিষ্ট থাকবে সে বিষয়ে কী বোঝালেন? গাণিতিক ব্যাখ্যা দাও।

দেনং প্রশ্নের উত্তর

ক) অ্যানালার কী?

সবচেয়ে বিশুদ্ধ রাসায়নিক পদার্থকে অ্যানালার বলে।

খ) রাসায়নিক গণনায় লিমিটিং বিক্রিয়কের গুরুত্ব উল্লেখ কর।

বিক্রিয়ক থেকে উৎপাদের পরিমাণ হিসাব করার সময় লিমিটিং বিক্রিয়কের পরিমাণ থেকে হিসাব করা হয়।

রাসায়নিক বিক্রিয়ার একাধিক বিক্রিয়ক থাকলে, যে বিক্রিয়কটি বিক্রিয়া শেষে অবশিষ্ট থাকে না অর্থাৎ আগে শেষ হয়ে যায়, তাকে লিমিটিং বিক্রিয়ক বলে। যেহেতু লিমিটিং বিক্রিয়ক শেষ হলে আর উৎপাদ উৎপন্ন হওয়া সম্ভব নয়, তাই লিমিটিং বিক্রিয়কের অনুপাতে উৎপাদ পাওয়া যায়। অতএব, উৎপাদ নির্ণয়ে লিমিটিং বিক্রিয়কের গুরুত্ব অপরিসীম।

গ) আনোয়ারের উৎপাদিত যৌগের সংযুতি নির্ণয় কর।

আনোয়ারের উৎপাদিত যৌগ HCI এর আপেক্ষিক আণবিক ভর = (1 + 35.5) = 36.5

H এর আপেক্ষিক পারমাণবিক ভর = 1 এবং Cl এর আপেক্ষিক পারমাণবিক ভর = 35.5

$$\therefore$$
 হাইড্রোজেনের সংযুতি $=\frac{1\times100\%}{36.5}$

$$\therefore$$
 ক্লোরিনের সংযুতি $=\frac{35.5 \times 100\%}{36.5}$

: হাইড্রোজেন ক্লোরাইডে হাইড্রোজেনের সংযুতি 2.74% ও ক্লোরিনের সংযুতি 97.26%

ঘ) রফিক স্যার আনোয়ারকে বিক্রিয়া শেষে কোন উপাদান কী পরিমাণে অবশিষ্ট থাকবে সে বিষয়ে কী বোঝালেন? গাণিতিক ব্যাখ্যা দাও।

রফিক স্যার আনোয়ারকে বোঝালেন যে, হাইড্রোজেন ও ক্লোরিনের বিক্রিয়ায় হাইড্রোজেন ক্লোরাইড উৎপন্ন হয়। বিক্রিয়াটি নিম্নরূপ:

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

H₂ এর আণবিক ভর 2|

 \therefore H_2 এর 1 মোল = 2 গ্রাম

 \therefore 5 গ্রাম হাইড্রোজেন $=\frac{5}{2}$ মোল =2.5 মোল হাইড্রোজেন

100 গ্রাম ক্লোরিন $=\frac{100}{71}$ মোল =1.4 মোল

বিক্রিয়ায় দেখা যায়, 1 মোল হাইড্রোজেন 1 মোল ক্লোরিনের সাথে বিক্রিয়া করে। সুতরাং, 1.4 মোল ক্লোরিন 2.5 মোল হাইড্রোজেনের সাথে বিক্রিয়া করার পর আর ক্লোরিন অবশিষ্ট থাকবে না।

তাই অবশিষ্ট হাইড্রোজেনের মোল সংখ্যা = (2.5-1.4) মোল = 1.1 মোল।

 \therefore অবশিষ্ট হাইড্রোজেনের ভর = (2×1.1) g = 2.2g.

অতএব, বিক্রিয়া শেষে 2.2gm ক্লোরিন অবশিষ্ট থাকবে।

প্রশ্ন নং: ৬

নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও :

আমজাদ পরীক্ষাগারে তুঁতে ও Ca(HCO₃)₂ নিয়ে কাজ করছিল। সে দুটি যৌগের নির্দিষ্ট পরিমাণ নিয়ে পরীক্ষা শুরু করল।

- ক) মোলারিটি বলতে কী বুঝ?
- খ) রাসায়নিক পদার্থের বিশুদ্<mark>ধতা কীসের ওপর নির্ভর করে? ব্যাখ্যা কর।</mark>
- গ) $Ca(HCO_3)_2$ এর সে. মি. মোলার দ্রবণ কীভাবে প্রস্তুত করবে? গাণিতিকভাবে ব্যাখ্যা কর।
- ঘ) তুমি কীভাবে 2 লিটার o.১ মোলার তুঁতের দ্রবণ প্রস্তুত করবে? তুঁত থেকে সম্পূর্ণ পানির অণু অপসারণ পদ্ধতি বর্ণনা কর।

৬ নং প্রশ্নের উত্তর

ক) মোলারিটি বলতে কী বুঝ?

নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত দ্রবের মোল সংখ্যাকে দ্রবণের মোলারিটি বলে।

খ) রাসায়নিক পদার্থের বিশুদ্ধতা কীসের ওপর নির্ভর করে? ব্যাখ্যা কর।

রাসায়নিক বিক্রিয়ায় যে সকল বিক্রিয়ক পদার্থ ব্যবহৃহ হয়, তারা 100% বিশুদ্ধ থাকে না। রাসায়নিক পদার্থের বিশুদ্ধতা তার প্রস্তুতি ও বিশুদ্ধকরণ প্রস্তুতির ওপর নির্ভর করে। সবচেয়ে বিশুদ্ধ রাসায়নিক পদার্থকে অ্যানালার গ্রেড পদার্থ বলে। অ্যানালার গ্রেড পদার্থসমূহ প্রায় 99% বিশুদ্ধ হয়, এদের গ্রেষণার সময় বিশ্লেষণী কাজে ব্যবহার করা হয়।

গ) $Ca(HCO_3)_2$ এর সে. মি. মোলার দ্রবণ কীভাবে প্রস্তুত করবে? গাণিতিকভাবে ব্যাখ্যা কর।

নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে 0.5 মোল পরিমাণ দ্রব দ্রবীভূত থাকলে তাকে সেমি মোলার দ্রবণ বলে।

 $Ca(HCO_3)_2$ এর আণবিক ভর = $40 + (1 + 12 + 16 \times 3) \times 2 = 162$

1L আয়তনের 1 মোলার দ্রবণ তৈরি করার জন্য দ্রব প্রয়োজন 1 মোল

এখন.

প্রথমে 1L আয়তনের একটি পাত্র নিই। হিসাবকৃত দ্রবণের পরিমাণ তথা 81g দ্রবকে নিজির সাহায্যে মেপে ফানেলের মাধ্যমে নির্ধারিত পাত্রে নিই। ফানেলের গায়ে লেগে থাকা দ্রবকে পাত্রিত পানি বা বিশুদ্ধ পানি নিয়ে নির্ধারিত পাত্রে স্থানান্তর করে কিছু পরিমাণ পানি দিয়ে ঝাঁকিয়ে দ্রবণ প্রস্তুত করা হয়। অতঃপর পানি দিয়ে দ্রবণের আয়তন নির্ধারিত মাপ পর্যন্ত পূর্ণ করলে 1L0.5 মোলার $Ca(HCO_3)_2$ দ্রবণ প্রস্তুত হবে।

ঘ) তুমি কীভাবে 2 লিটার O.1 মোলার তুঁতের দ্রবণ প্রস্তুত করবে? তুঁত থেকে সম্পূর্ণ পানির অণু অপসারণ পদ্ধতি বর্ণনা কর।

তুঁতের রাসায়নিক সংকেত = $CuSO_4.5H_2O$

- ∴ তুঁতের আণবিক ভর = 249.5
- । লিটার আয়তনের । মোলার দ্রবণের জন্য তুঁতে প্রয়োজন । মোল
- 2 লিটার আয়তনের 0.1M মোলার দ্রবণে তুঁতে প্রয়োজন হয়

আবার, 1 মোল = 249.5 gm CuSO₄.5H₂O

 $\therefore 2 \times 0.1$ মোল $= 0.1 \times 2 \times 249.5~gm~CuSO_4.5H_2O = 49.9~gm~CuSO_4.5H_2O$ পানিযুক্ত কপার সালফেটের বর্ণ নীল। পানিবিহীন কপার সালফেটের বর্ণ সাদা। নীল বর্ণের কপার সালফেটকে উত্তপ্ত করলে পানি বাষ্পীভূত হয় এবং সাদা বর্ণের কপার সালফেটে পরিণত হয়। তাপ দেয়ার পূর্বে ও পরে কপার সালফেটের ভর পরিমাপ করে উত্তাপে হারানো পানির ভর নির্ণয় করে তুঁতের কেলাস পানির শতকরা পরিমাণ নির্ণয় করা হয়।

$$CuSO_4.5H_2O \xrightarrow{\Delta} CuSO_4$$
নীল বর্ণ $-5H_2O$ সাদা বর্ণ 1 মোল = 249.5 গ্রাম 1 মোল = 159.5 গ্রাম

তত্ত্বীয়ভাবে 1 মোল (249.5 গ্রাম) পানিযুক্ত নীল বর্ণের কপার সালফেটকে উত্তপ্ত করলে 90 গ্রাম পানি অপসারিত হয়ে 159.5 গ্রাম পানিবিহীন সাদা বর্ণের কপার সালফেট উৎপন্ন হয়।