Comparison of network complexity meausres

Yipei Zhao

Student number: 170145594
A thesis presented for the degree of
Master of Science Data Analytics
Supervised by Jens Christian Cluassen
October 2021

Contents

Co	ntent	üS	1				
1	1.1 1.2 1.3 1.4 1.5	Random graphs	2 2 3 3 4 5				
2	Methods						
	2.1 2.2 2.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 9				
3	Result 1						
	3.1	Complexity measures on small random graphs	10				
	3.2	BA,WS and NW model	12				
		3.2.1 Configuration model	15				
	3.3	Complexity correlation	16				
	3.4	Complement graphs	17				
	3.5 3.6	Applying MA_{RI} on real networks	17 19				
4	Con	clusion and further study	22				
A	Red	undancy and mutual information[11]	22				
В	utilities.py						
C	C Complexity.py						
D	D figure_generator.py						
E	rewiring_simulation.py						
F	configuration_model.r and R_functions.py						
G	Refe	erences	56				

1 Introduction

In my literature review[1], several complexity measures were introduced, includes the theory and the difference between them. To further study the nature and uniqueness of each complexity measure, simulations and experiments are performed in this project. Firstly, we want to specify what type of graph we are working on:

- Undirected. No edge has direction. If the graph is originally directed, it will be turned into a undirected graph.
- Unweighted. All the edges are fairly recognized and no weights are assgined.
- No multi-edges. There will be at most one edge between two nodes.
- No self-links. Nodes are not allowed to connect to themselves.

In order to evaluate different complexity measures, we need to introduce some graph models that are commonly used to model real world problems.

1.1 Random graphs

We have many real networks in the actual world, but defining or observing all of them is not feasible. For simulations and comparisons, network scientists introduced the idea of random networks. They are also known as Erdős-Rényi network in honour of two mathematicians: Paul Erdős and Alfréd Rényi. They have important contributions to understand the properties of a random network[2].

There are two definitions of a random network:

- G(n,p) network. A network with n nodes will be initialised, there will be at most (n)(n-1)/2 edges. Each edge will be instantiated with probability p. This approach brings a randomness property to the graph; number of edges m. The expectation of m is equal to p(n)(n-1)/2.
- G(n,m) or G(n,L) network. A graph with n nodes will be initialised, m or L edges will be connected from a random node to another random node. Due to the non-randomness of G(n,m) networks, they are used to simulate the behaviour of a random network in this thesis. They will be also referred to random network/random graph in this report unless stated otherwise.

In the literature review[1], we introduced the idea of clustering coefficient and average distance. For a given random graph, the clustering coefficient and average distance can be calculated using formulas.[3] The average clustering coefficient of a random graph is p, or 2m/((n)(n-1)) (number of instantiated edges divided by total number of possible edges). Clustering coefficient is used to illustrate the ratio between connected links and possible links between a node's neighbours. If there are k neighbours of a node, there can be at most k(k-1)/2 edges between the neighbours. In these k(k-1)/2 edges,

only p of them will be instantiated. Thus, the ratio of connected edges and possible edges becomes $\frac{pk(k-1)/2}{k(k-1)/2}=p$. Additionally, average distance of a random graph $L_r\approx \frac{ln(n)}{ln(k)}\approx \frac{ln(n)}{ln(2m/n)}$. To be noticed, both parameters are expectation/approximated, they won't be exact for a random graph.

1.2 Rewiring

Except random graphs, network scientists desire more techniques to allow them to add more variables to a netowk. Network scientists would use a technique called rewiring to change the properties and parameters of a network, and monitor the change of parameters respect to the rate of rewiring.[4] In this report, we are going to introduce two simple rewiring techniques: single link rewiring and pairwise rewiring.

- Starting with an edge (u, v); with starting node u and ending node v. Single link rewiring will look for a node w that hasn't yet been connected to node u. Once w is found, edge (u, v) will be removed and a new edge (u, w) will be added to the network.
- Starting with two edges (u, v) and (x, y). Pairwise rewiring will remove both edges, and two new edges will be added: (u, y) and (x, v).

Single link rewiring tends to give higher randomness to the network, and pairwise rewiring preserves the degree distribution. Both rewiring techniques require a parameter p, which is the probability of rewiring for each edge. If p=1, using single link rewiring will cause the network to become a random network. However, since pairwise rewiring preserves the degree detribution, p=1 will not cause the network to become completely random.

1.3 Small-world

About 50 years ago, a famous study was carried out by Standley Milgram[5] in the interest of this question: how many intermediates are needed to pass a message between two irrelevant or distnaced person? This is known as the small-world problem. As counterintuitive as it may seem, the medium number of intermediates needed is only 5(an average of 6). This is not a fair and undoubtable experiment and it is almost impossible to determine the actual number of intermediates needed in modern world. Nevertheless, this number would be smaller than most peoples' expectation. Mathematically, the small world problem is the study of graphs with small average distance, since network scientists believe that in real world networks, the average distance is small. Previously, we introduced the formula to calculate the average distance L_r of a random graph. Thus, if a graph has $L/L_r < 1$, this graph has less average distance than random graphs. If the ratio L/L_r is relatively small, we can classify it as a small-world

Figure 1: A demonstration of WS model(top) and NW model(bottom). The parameters are: n = 20, k = 4, p = 0, 0.1, 0.5.

network.

A small-world network can be generated using a Watts-Strogatz(WS) model[6] or a Newman-Watts(NW) model(a variant of the WS model)[7]. Both models require three parameters: number of nodes n, number of connected closest neighbours k and rewiring probability p. The key of both model is rewiring(single link rewiring). The graph starts with n nodes, each node is connected to k(k-1) if k is odd) nearest neighbours; nk/2 edges will be created. For each edge, there is a proabbility p that this edge will be performed a single link rewiring. While rewiring, the WS model removes the edge (u, v) and add a new edge (u, w). Thus, the number of edges stays the same. However, the NW model maintains the edge (u, v) and adding the new edge (u, w), causing the expectation of number of edges after rewiring to be nk/2 + pnk/2. Rewiring will add short path to the networks, and cause the average distance to be exceptionally smaller. Suggested by Barabási[3], to obtain both high clustering and low average distance(properties of a small-world network), p should be between 0.001 and 0.1.

1.4 Scale-free network

A controversial topic of network science is wether real networks are usually scale-free[8][9]. To state the definition of scale-free, we need to scope into the degree distribution of graphs.

Suggested by Barabási[3], the degree distribution of a random graph is expected to fol-

Figure 2: Degree distribution of a G(n, m) graph with n = 1000, m = 5000 and a graph generated using Barabási-Albert model with n = 1000, m = 5.

low a binomial distribution. However, binomial distribution is not the ideal distribution of a real network. A controversial idea that hasn't yet been proven in network science community is: are real networks' degree distribution follows a power-law distribution? A power-law distribution follows: $P(k) \sim k^{-\gamma}$, the parameter γ is typically in the range $2 < \gamma < 3$. If the degree distrution of a graph follows power-law distribution, the graph is said to be a scale-free network. Even though there are counter-examples, many network scientists still believe that real networks are scale-free. In order to further simulate the behaviour of real networks, Barabási introduced the Barabási-Albert(BA) model to create scale-free networks.[3].

The BA model requires two parameters: n and m. Initally, only one node is created. Whenever a node is added into the network, it will connect to m nodes. The logic of connection is the key of this model. Nodes are more likely to connect to nodes with more edges than nodes with less edges. For instance, a node has been added to the network, it is more likely to connect to a node with 7 edges than a node with 3 edges. This logic of connection is called preferential attachment. Essentially, like in real world, nodes are more likely to connect to another node that has more impact on the network.[10] The BA model ensures most of the nodes have low degree, whereas only a few nodes have exceptionally high degree, as shown in figure 2. An ideal way to fit the power-law distribution is using a linear regression to fit the data in log-log scale.

1.5 Generating graphs

All graph generators are utilized as below(unless specified):

- G(n,m) random graphs/networks or random graphs/networks. With given n, m will be randomly selected between n-1 to n(n-1)/2.
- \bullet For WS and NW graphs, three parameters are required. Given parameter n, k

will be randomly selected between 1 and (n-1) to give a larger range of m. p is also randomize, within the range 0.01 and 0.1 to simulate small-world network as mentioned in section 1.3.

• Two parameters are needed for BA graphs, given n, m will be randomize between 1 and (n-1), so we can generate samples with different number of edges.

2 Methods

2.1 Implemeted methods

In the literature review[1], 9 methods were introduced, 7 methods were successfully implemented and tested with a new method MAri based on the idea of MAg. The implemented methods are:

- Subgraph measures:
 - $-C_{1e,st}$
 - $-C_{1e,spec}$
 - $-C_{2e,spec}$
- Product measures:
 - -MAg
 - -MAri
 - -Cr
 - -Ce
- OdC (Entropy measure)

$2.2 \quad MA_{RI}$

The MAg measure is a product measure, which distributes higher complexity to graphs with medium number of edges and lower complexity at both tails. Using the product of redundancy R and mutual information I, with normalisation, MAg is defined as[11]:

$$R = \frac{1}{m} \sum_{i,j>i} \ln(d_i d_j)$$

$$I = \frac{1}{m} \sum_{i,j>i} \ln(\frac{2m}{d_i d_j})$$
(1)

$$MA_{R} = 4\left(\frac{R - R_{path}}{R_{clique} - R_{path}}\right)\left(1 - \frac{R - R_{path}}{R_{clique} - R_{path}}\right)$$

$$MA_{I} = 4\left(\frac{I - I_{clique}}{I_{path} - I_{clique}}\right)\left(1 - \frac{I - I_{clique}}{I_{path} - I_{clique}}\right)$$

$$MA_{g} = MA_{R} * MA_{I}$$

$$(2)$$

I can be written as:

$$I = \frac{1}{m} \sum_{i,j>i} ln(\frac{2m}{d_i d_j})$$

$$I = \frac{1}{m} (\sum_{i,j>i} ln(2m) - \sum_{i,j>i} ln(d_i d_j))$$

$$I = \frac{1}{m} \sum_{i,j>i} ln(2m) - \frac{1}{m} \sum_{i,j>i} ln(d_i d_j)$$
(3)

$$I = ln(2m) - R \tag{4}$$

 $R_{path}, R_{clique}, I_{path}$ and I_{clique} represent the lowest redundacy, highest redundancy, highest mutual information and lowest mutual information of graphs with fixed m and n respectively. The equations can be found in appendix A. Kim and Wilhelm suggested that network scientists may use $C = (R - R_{path})(I - I_{clique})$ as a complexity meassure, however, the upper bound cannot be found to normliase the complexity. From our study, an upper bound of C can be calculated analytically.

Assuming the upper-bound C_{max} can be found, $0 < C/C_{max} < 1$. As suggested in equation 4, I = ln(2m) - R, we can rewrite the complexity equation:

$$C = (R - R_{path})(ln(2m) - R - I_{clique})$$
(5)

$$C = -R^2 + (ln(2m) - I_{clique} + R_{path})R + (-R_{path}ln(2m) + R_{path}I_{clique})$$
 (6)

By observing equation 6, we can conclude that the complexity function is a quadratic function, which means, there is one and only one extreme. Considering the nature of complexity measure, it's safe to assume that the extreme is a maxima. To find the extreme, we can differentiate the function respect to R where the function's slope is 0:

$$\frac{dC}{dR} = -2R_{max} + ln(2m) - I_{clique} + R_{path} = 0$$
 (7)

$$R_{max} = \frac{ln(2m) - I_{clique} + R_{path}}{2} \tag{8}$$

Even without assumption, $d^2C/dR^2 = -2$ implies the extreme is a maxima. We found R_{max} where C reaches its maxima. Substitutes equation 8 into equation 5:

$$C_{max} = (R_{max} - R_{path})(ln(2m) - R_{max} - I_{clique})$$

$$C_{max} = (\frac{ln(2m) - I_{clique} + R_{path}}{2} - R_{path})(ln(2m) - \frac{ln(2m) - I_{clique} + R_{path}}{2} - I_{clique})$$

$$C_{max} = (\frac{ln(2m) - I_{clique} - R_{path}}{2})(\frac{ln(2m) - R_{path} - I_{clique}}{2})$$

$$C_{max} = \frac{(ln(2m) - I_{clique} - R_{path})^{2}}{4}$$
(9)

Thus, using equation 10, we can define a new measure MA_{RI} , which is defined by C/C_{max} :

$$MA_{RI} = \frac{4(R - R_{path})(I - I_{clique})}{(ln(2m) - I_{clique} - R_{path})^2}$$

$$\tag{11}$$

The complexity of MA_{RI} is identical to MA_g , which can be calculated in O(m) time.

Figure 3: MA_g and MA_{RI} complexity of G(n, m) models, where n = 20 and 1000 samples with random m have been generated.

The measure is also implemented in Python using the NetworkX package, see appendix C.

As shown in figure 3, MA_{RI} gives higher coplexity to sparser graphs but less complexity when approaching to medium number of links. Additionally, it decreases almost linearly with m once the peak is reached.

2.3 Potential problems and solutions of different subgraph measures

During the implementation of measures, several problems were found, possible solutions are also given for future discussions.

Different subgraph measures are principally simple, but they are complex to compute, within at least $O(n^2)$ time[11]. This is not the only problem. An upper bound of the complexity $m_{cu}=n^{1.68}-10$ was introduced by Kim and Wilhelm[11] to normalise the complexity. However, from the simulation, we found that this may not be the actual upper-bound of the different subgraph measures.

Figure 4: Different subgraph measure of G(n, m) random graphs, with n = 15.

The complexity is abnormal for graphs with around 90 edges and 15 nodes as shown in figure 4. This could imply that the upper bound assumption m_{cu} is not correct, but there is another possible reason, which is the problem of floating point arithmetic.

On most machines today, numbers are represented in binary system[12]. For example, 0.2 is recorded as 0.001100110011001100110011... in a binary system. This series is infinite, represented by $1*2^{-3}+1*2^{-4}+1*2^{-7}+1*2-8...$ For obvious reasons, computer scientists don't want to work with infinite series, therefore, the series is approximated. On a modern computer, the series is usually approximated to 63 digits with 1 digit represents the sign of the number. After approximation, the error could cause the equal operation to fail in programming languages. A well known example is that for modern programming language or machine that operates this numbering system, 0.2+0.1 does not equal to 0.15+0.15. As a result, the comparison may cause more number of different subgraphs than actual.

The core of different subgraph measure is to compare the $cofactor(C_{1e,st})$ or $spectrum(C_{1e,spec})$ and $C_{2e,spec}$ of a subgraph. Given the fact that the proabbility of a decimal number to appear in the sprectrums is high and the cofactor will also be very large for a large graph. The comparisons will be inaccurate. There are three possible solutions:

• As suggested, errors will be made when approxiamted by the machine. An error threshold can be used when comparing spectrums and cofactors. For example,

two numbers with relative error less than 1% can also be considered as equal numbers. One disadvantage is the increase of complexity, taking more time and effort to compare the spectrums/number of spanning trees.

- Similarly, numbers can be rounded before comparison to avoid error. This is used in the implementation of different subgraph measures, all cofactors and spectrums are rounded to first 10 significant figures. This solution requires less computation time than first solution. The drawback is that similar graphs can be considered as isomorphic graphs, this also applies to the first provided solution, but with higher accuracy for large graphs. This may still gives complexities larger than 1, but it is the best solution considering the effort spent.
- Instead of using m_{cu} as a normalisation parameter, m or n(n-1)/2 can be used for one-edge-deleted subgraph complexity and $\binom{m}{2}$ for two-edges-deleted subgraph complexity. This gurantees the normalisation and avoid the mistake that caused by the first two solutions, but on the other hand, causing the complexity to be different.

A unique problem with $C_{2e,spec}$ is the value is not properly normalised for small graphs.

Figure 5: $C_{2e,spec}$ complexities of G(n,m) graphs for n=6,7,8 respectively.

The upper-bound of $C_{2e,spec}$ is 0.5 while $n \leq 7$. To have an upper-bound at 1, the complexity values have to be scaled by 2. However, scale by 2 will cause the complexity to exceed 1 for larger graphs. Thus, we sticked to the original normalisation and $C_{2e,spec}$ will have an upperbound at 0.5 for $n \leq 7$.

3 Result

3.1 Complexity measures on small random graphs

To test the performance of implemented measures, we tried all measures on G(n, m) random graphs with n = 7 where 50 samples are generated for each m. As shown

in figure 6, we reproduced results as Kim and Wilhelm did in [11]. Except $C_{2e,spec}$, as mentioned in section 2.3, there is a scaling problem. Most of the methods reaches its maximum with medium number of links. Low complexity are given to highly connected graphs and sparse graphs.

Different subgraph measures perform similarly, there is a big difference between the maximum and minimum with same m. Thus, it is very difficult to predict the complexity of a graph with given m and n. The highest complexity is reached at m=15 for $C_{1e,st}$ and $C_{1e,spec}$ and m=14 for $C_{2e,spec}$. There is a miss in the plot: $C_{1e,spec}$ and $C_{2e,spec}$ plot does not contain a data point at (6,0). There is a very small proabbility for G(n,m) model to generate a star graph(n-1 nodes are connected to 1 node, in total of n-1 edges), which will result in 0 complexity using $C_{1e,spec}$ and $C_{2e,spec}$ measure. We recommend to use different subgraph measure for small graphs as it is relatively independent of m, but not for large graphs due to its complexity.

OdC is based on the node-node link correlation matrix of a graph.[13] Thus, it spreads across the space and has little relationship with m. OdC assigns a lot of graphs with 6 edges high complexity than desired. OdC is "hierarchy sensitive", it may not create big difference between graphs when the graphs are considerably small.

All 4 product measures are similar, gives higher complexity value at medium number of edges and less at both tails. There is a very small difference between graphs with same number of edges. Ce and Cr tends to give highest complexity to graphs with exactly n(n-1)/4 edges, and MA_{RI} and MA_g reach their maximum before medium number of edges as expected. Product measure are highly depending on m, one may guess the complexity of a graph solely based on m and n. Network scientists may use machine learning techniques to approximate the complexity of a graph using m and n, to calculate the complexity in an extremly small amount of time. On the other hand, product measure may not be optimal because a complexity measure should not solely based on m and n, but the overall structure of a network.

3.2 BA,WS and NW model

As informed in section 2.3, different subgraph measures have normalisation problem and the complexity would exceed 1.

Surprisingly, diffrent subgraph measures and product measures are struggling to seperate random graphs, WS graphs and NW graphs. Only OdC seperates random graphs and WS,NW model by giving random graphs higher complexity than WS and MW model with fixed m. This is because OdC awards graphs with complicated degree correlation. On the other hand, WS and NW model generate graphs that have small degree difference between each node.

BA graphs give more interesting results. Different subgraph measures assign lower complexity to BA graphs compare to random graphs. This can be caused by the preferential attachment. Preferential attachment ensures most nodes have low degree and builds hubs(nodes with high degree) in the graph. After cutting an edge/two edges between hubs and nodes with small degree, there is a high chance an isomorphic subgraph can be found, thus lower the complexity of the graph. In another word, subgraphs resulted by cutting the edge between hubs and node with small degree are very similar

Figure 6: Complexity of graphs generated using G(7,m) model, 50 samples are generated for each m. Methods from top-left to bottom-right are: $C_{1e,st}$, $C_{1e,spec}$, $C_{2e,spec}$, OdC, MAg, Cr, Cr and MAri.

Figure 7: Complexity of 500 G(n, m) graphs, 100 BA graphs, 100 WS graphs and 100 NW graphs, with n = 20. Graphs are generated according to section 1.5.

and occassionally isormophic.

 MA_g and MA_{RI} perform similarly by assigning BA graphs lower value towards medium number of links. Both measures are depening on the variable $\sum_{i,j>i} d_i d_j$. BA graphs ususally have less $\sum_{i,j>i} d_i d_j$ because they are highly structure, causing less sum than a random graph. Contrarily, Ce and Cr cannot distinguish BA graphs and random graphs. Ce is based on the efficiency of a graph, a highly complex graph should have small average distance with not too much edges simultaneously. BA graph does not perform different than random graphs in Ce measure.

3.2.1 Configuration model

As introduced in section 1.3, a network is said to be scale-free if its degree distribution follows a power law distribution with $2 < \gamma < 3$. To observe how the change of γ would affect the complexity of a network, we need a model that can generate the graph with given γ . A configuration model [14] is able to turn a given degree series into a graph, which has the exact degree distribution as the given degree series. OdC

Figure 8: Complexities of graphs generated using configuration model, n = 50. Results are average of 50 simulations.

and $C_{1e,spec}$ didn't change much by varying γ . MA_{RI} increases slightly as it is very sensitive to the change of degrees of nodes. Overall, varying γ does not impact the complexity by a lot. Due to the exist implementation of codes, we can only generate a degree distribution within the range $2.7 < \gamma < 3.3$, by varying γ in a larger range, and adding a new variable n in the model, it can be more suggestful.

3.3 Complexity correlation

Different type of measures focus on different properties/parameters of a network, monitor the correlation between measures will help us to further understand the behaviour on each measure. Additioanlly, network scientists may use more than one complexity measure on a network to determine whether they are truly "complex" or not. It is vital to be aware that measures are focus on one or a few properties of a network. Combining complexity measures on networks will allow network scientists to comment on the network complexity from different aspect. For these reasons, we choosed three measures $(C_{1e,st},OdC)$ and (MA_{RI}) and monitored their behaviours on random and BA graphs.

Figure 9: Correction of complexity measures on 1000 random graphs and 200 BA graphs with n = 25. Generated according to the rules stated in section 1.5. Colorbar represents change of m: higher the m, darker the datapoints.

As figure 9 suggests, the correlation between complexity measures are difficult to observe, since they are trying to address different things. As C1e, st value increases, OdC also increases. We indicated in section 3.1, m is not an important factor for OdC. On the other hand, $C_{1e,st}$ is, the complexity increases linearly with m, and then complexity drops quickly after reaching the maximum. By constructing a correlation between $C_{1e,st}$ and OdC, we cannot distinguish random graphs and BA graphs.

However, we may be able to seperate random graphs and BA graphs by constructing a correlation between $C_{1e,st}$ and MA_{RI} . Since both complexity measure are heavily depend on m, thus we can observe a linear decreasing trend. We can detect a very unique distribution of the BA graphs: a shape between ellipse and half-moon. This is because both MA_{RI} and $C_{1e,st}$ assign lower complexity values to some of the BA graphs, compare to other BA graphs with same number of edges. Therefore, error will be caused if we try to build a correlation between these 2 measures to seperate random graphs and BA graphs.

The correlation between OdC and MA_{RI} of random graph seems simple: as m decrease, MA_{RI} decrease speedly but OdC change unnoticeably until the graph is highly connected. On the other hand, the correlation between OdC and MA_{RI} on BA graphs

perform slightly different. As suggested, MA_{RI} distributes lower complexity to some BA graphs, and OdC is very consistent. In section 3.2.1, we did not observe a big change of complexity by varying γ . To observe a better result, using larger graph is optimal(for instance n=1000), due to the technical issue(time complexity), they are not used here.

3.4 Complement graphs

Definition of a complement graph is fairly simple: an edge list is created using a set contains all possible edges subtract the edges in the original graph. Analysing the complexity correlation between the original graph and the complement graph give us more inspirations of the measure. We have choose three different measures with different types: OdC, MA_{RI} and $C_{1e,spec}$. OdC seems to be very symmetric with respect to

Figure 10: Complexities of the original graphs and complement graphs with n = 20. There are two types of graphs are generated: 500 G(n, m) random graphs and 100 BA graphs.

m. Since taking the completement graph is reversing the degree distribution, the consistency of node-node link relation is preserved. Causing the complexity value for original graph equal to the complement graph. As mentioned MA_{RI} is highly based on the number of edges, so observing a linear function is not a surprise. This alo applies to BA grapps. Similar to MA_{RI} , $C1_{1e,st}$ is more keen to m, causing another negative correlation between the original graph and the complement graph.

3.5 Applying MA_{RI} on real networks

To test our new measure MA_{RI} , 6 real networks are collected. To ensure comprehensive evaluation, various types of networks are used. To be applicable, we collected and processed bus networks in 6 cities. Bus networks are very different to other real networks. Bus networks contain extraordinary amount of nodes with degree 2. For simplification and general interest, we also inroduced modified bus networks. In modified bus networks, all nodes with k=2 are removed, whereas the edges are preserved. For

instance, node b is only conneted to a and c. Node b will be removed and a new edge (a,c) will be added to the network. This will significantly decrease the distance of bus networks. Moreover, generated graphs are also added to be evaluated and compared. To be mentioned, we will refer these non-bus networks as real networks, for convinience.

Label	Name	Type	n	m	L	L_r	MA_{RI}	OdC			
Real networks											
1	Dolphins[15]	Animal interaction	62	159	3.357	2.524	0.999	0.517			
2	PDZBase [16]	protein interaction	161	209	5.326	5.326	0.824	0.310			
3	Hamsterster[17]	Online social network	874	4003	3.217	3.058	0.963	0.532			
4	Roget's Thesaurus [18]	Thesaurus network	994	3640	4.075	3.466	0.960	0.392			
5	Flight[19]	Public transport	3397	19230	4.103	3.350	0.948	0.525			
6	UK train [20]	UK train network	2490	4377	10.384	6.220	0.664	0.233			
Bus networks											
7	London[20]		8653	12285	32.338	8.687	0.38	0.127			
8	Paris[21]		10644	12309	47.631	11.059	0.173	0.065			
9	Berlin[21]		4316	5869	33.284	8.366	0.358	0.134			
10	Sydney[21]		22659	26720	36.131	11.688	0.173	0.064			
11	Detroit[21]		5683	5946	70.513	11.708	0.062	0.020			
12	Beijing[22]		9249	14058	27.891	8.214	0.441	0.167			
		Modified I	Bus								
13	Lone	don	3417	6018	18.308	6.462	0.553	0.128			
14	Paris		2762	4301	15.386	6.975	0.468	0.106			
15	Berlin		1662	2941	18.36	5.867	0.586	0.149			
16	Sydney		4834	8358	17.665	6.838	0.49	0.089			
17	Detroit		295	483	6.341	4.794	0.643	0.117			
18	Beij	ing	4072	8325	14.864	5.902	0.64	0.195			

Table 1: Label, description and parameters of used networks

After careful consideration, we choosed average distance ratio L/L_r to be the variable showin on x-axis in figure 11. We decided that the average distance is a more important parameter to consider about. As suggested, all the bus networks have significantly higher average distance ratio. Even after modified, the average distance ratios are still relatively high. But higher average distance ratio brings less MA_{RI} complexity. We can suggest a negative correlation between the average distance ratio and the MA_{RI} complexity. There is an exception of real networks, which is the UK train network. Cosidering the similarity between bus networks and train networks, it should not be a big surprise. Generated graphs also behaves similar to standard real networks; low average distance ratio with high complexity, as they are intended to simulate the behaviour of standard real networks. In theory, "Flight" is also a public transport, so it should behave similar to bus networks or the train network. However, the "Flight"

Figure 11: MA_{RI} complexity of real networks, bus networks, modified bus networks and graphs generated by graph models, labelling and description can be found in table 1.

network performs unlike transport networks.

To discuss the cause of increase of MA_{RI} complexity after modified, we need to consider about the parameter MA_{RI} focusing on. $\sum_{i,j>i} d_i d_j$ is the only variable that affects the complexity of a graph. The essence of the measure is calculating the average $d_i d_j$. By removing nodes with degree 2, average $d_i d_j$ will be increased, and leads to an increase of the MA_{RI} complexity.

3.6 Rewiring on real networks

As recommend in section 1.2, rewiring is an important technique to monitor the behaviour of a network. Hence, we rewired real networks and modified bus networks to record their behaviour. Both single link rewiring and pairwise rewiring will be used. The reason we are going to use OdC instead of MA_{RI} is that pairwise rewiring will keep the degree distribution, and MA_{RI} cannot detect unchanged degree. How we rewire graphs:

- The rewiring is done gradually. Initially, graph G will be rewired with probability p=0.05. After recording the results, we rewire it with probability p=0.05 again. This step will be repeated 20 times.
- Both rewiring have been simulated on all graphs more than 10 times("dolphins" and "PDZBase" have been rewired more than 100 times, as they are relatively small), to generate smoother curves/lines.

From figure 12, we can concludes that most real networks behaves similar using rewiring. As mentioned in section 1.2, single link rewiring results in higher randomness, because it destroys the degree distribution. In theory, when p=1, the graph becomes a random network. The OdC decreases significantly with the increase of rewiring probability for real networks, whereas the change of complexity is not large for pairwise rewiring. This is because OdC is highly sensitive to degree correlation, but pairwise rewiring does not change the degree correlation heavily. Also, the error bar for "dolphins" and "PDZBase" is large. This is simply because they are small networks, rewiring will make larger impact than these large graphs.

There is an expection in real networks; the UK train network performs similar to bus networks rather than real networks. As public transportation networks, single link rewiring will cause the complexity to increase. Generally, the increase of complexity becomes small after p=0.4; almost half of the links have been rewired. As shown in table 1, OdC complexities are very low for all the bus networks. As introduced by Claussen[13], OdC assign high complexity to graphs that have no preference for the degree of their neighbours. After destroying the degree correlation using single link rewiring, the OdC complexity will increase.

In contrast, pairwise rewiring will cause the complexity to decrease briefly like real networks, with similar reason.

Figure 12: Change of OdC complexities respect to change of rewiring probaility with an error bar(one standard deviation).

4 Conclusion and further study

In this report, we discussed about the difference between complexity measures. Different complexity measure focuses on different property and parameters of a graph. For example, different subgraph measures focusing on the general structure of subgraphs, which is also the reason why it leads to a high complexity and not feasible to apply difference subgraph measure on large networks. In addition, the floating point algorithmetic is also a big problem when comparing cofactors and eigenvalues. On the other hand, product measures are faily simple in terms of calculation time. Espectiall Cr is the easist complexity measure, which can be calculated in O(n) time[11]. A drawback of product measures is that they are highly based on m. OdC measure can distinguish random graphs and graphs generated using BA,WS and NW model, and within relatively small amount of time. However, the complexity value are spreaded. We suggest you to use the measure that is most suitable for you, depending on which specific parameter or property you want to study.

Additionally, we constructed a new measure MA_{RI} based on the idea of MA_g . MA_{RI} assign higher complexity to sparser graph than MA_g . To be noticed, to calculate MA_{RI} , R_{clique} and I_{path} are not required, but m is involved in the calculation.

We also compare the difference between real networks and bus networks, and we investigated the unique property of bus networks: high average distance with low complexity.

There are more complexity measures[23][24] for further studies and researches. We recommend network scientists to study and apply the measures on different type of graphs and monitor the behaviour of different complexity measures. Further studies on complexity measures could help the network science community to build a comprehensive, robust and applicable complexity measure which everyone can agree on.

We also observed fun facts: degree based measures (OdC, MA_g, MA_{RI}) assign relatively high complexity to very sparse graphs, except Ce. We are not sure whether this is a coincidence or not, but this can be a topic to further discover.

Overall, we are working hard to contribute to the network complexity community. The definition of complexity is already difficult to be properly determined. A good complexity measure should be able to distinguish: random graphs, scale-free graphs and real networks. In addition, distributes highest complexity to graphs with number of edges slightly less than the medium. Our work can be useful to build a optimal complexity measure in the future.

A Redundancy and mutual information[11]

- Highest redundancy: $R_{clique} = 2ln(n-1)$
- Lowest redundancy: $R_{path} = 2(\frac{n-2}{n-1})ln(2)$
- Highest mutual information: $I_{path} = ln(n-1) (\frac{n-3}{n-1})ln2$

• Lowest mutual information: $I_{clique} = ln(\frac{n}{n-1})$

B utilities.py

```
import networkx as nx
import random
from random import randint
import pandas as pd
import numpy as np
import collections
from scipy stats import pearsonr
from itertools import combinations_with_replacement
import math
from math import log
import matplotlib.pyplot as plt
#
    Generates a list of graphs and their corresponding
  parameter.
   Notice the function will only return connected graphs
   , disconnected graphs
    will not be returned. Thus the actual number of
  graphs returned will be less
   than expected.
   Parameters:
#
  n: number of nodes
    use_all_m: if this is true, then the function will
   generates samples using all
   the edge numbers * sample_number
# sample_number: number of samples for each edge if
   use\_all\_m = True
    Otherwise the sample_number defines how many graphs
   will be returned in total
def random_networks(n=7, use_all_m = True, sample_number =
   50):
        Create a list to record all the graphs
    graph_list = []
        Max number of edges.
   m = (n*(n-1))/2
   m = int(m)
        Create a df to store relevant information
    column_names = ["Number_of_edges", "Average_degree",
```

```
"Average_distance",
                "Average_clustering"]
#
    Filling the df with zeros
if use_all_m == True:
    zero_list = [float(0)]*(sample_number*(m+1))
    df = pd. DataFrame (columns = column_names)
    for item in column_names:
        df[item] = zero_list
else:
    zero_list = [float(0)]*(sample_number)
    df = pd. DataFrame (columns = column_names)
    for item in column_names:
        df[item] = zero_list
#
    Creating graphs using different parameters
    count record the actual number of graphs
   generated by the function
count = 0
if use_all_m == True:
    for i in range(m+1):
        for j in range(sample_number):
            temp_graph = nx.gnm_random_graph(n,i)
            if nx.is_connected(temp_graph):
                graph_list.append(temp_graph)
                df["Number_of_edges"][count] = i
                df["Average_degree"][count] = (2*i)/
                df["Average_clustering"][count] = nx.
                   average_clustering(temp_graph)
                df["Average_distance"][count] = nx.
                   average_shortest_path_length(
                   temp_graph)
                count +=1
else:
    for i in range (sample_number):
        edge_number = randint(0,m)
        temp_graph=nx.gnm_random_graph(n,edge_number)
        if nx.is_connected (temp_graph):
            graph_list.append(temp_graph)
            df["Number_of_edges"][count] =
               edge_number
            df["Average_degree"][count] = (2*
```

```
edge_number)/n
                df["Average_clustering"][count] = nx.
                   average_clustering(temp_graph)
                df["Average_distance"][count] = nx.
                   average_shortest_path_length (
                   temp_graph)
                count +=1
    return graph_list, df
    Return a list of subgraphs of the graph G by taking
#
  an edge off the graph
def subgraph_one_edge_deletion(G):
    subgraphs = []
    for edge in list (G. edges):
        temp_graph = G. copy()
        temp_graph.remove_edge(edge[0],edge[1])
        subgraphs.append(temp_graph)
    return subgraphs
    Return the number of spanning trees of a graph.
#
    This calculation is based on the Kirchhoffs theorem,
   which is:
    number\ of\ ST = det(reduced\ Laplacian\ matrix)
   A reduced Laplacian matrix is the Laplacian matrix
   with
    a random row i and column i to be removed
def number_of_ST(G):
    L = nx.laplacian_matrix(G)
    L = L. todense()
    remove_i = randint(0, L. shape[0]-1)
    L = np. delete(L, remove_i, 0)
    L = np. delete(L, remove_i, 1)
    sign , det = np.linalg.slogdet(L)
    det = sign * math.exp(det)
    det = int(det)
    return det
#
    Return number of isomorphic subgraphs of a graph
    After taking all the one-edge-deletion subgraphs,
#
    investigates the number of different ST will remove
#
```

```
isomorphic subgraphs
def isomorphic_graphs(G):
    subgraphs = subgraph_one_edge_deletion(G)
    ST_result = []
    for graph in subgraphs:
        ST_result.append(number_of_ST(graph))
    unique_ST = []
    unique_subgraphs = []
    ST_result = [str(item)[:10] for item in <math>ST_result]
    for i in range(len(subgraphs)):
        if ST_result[i] not in unique_ST:
            unique_subgraphs.append(subgraphs[i])
            unique_ST.append(ST_result[i])
    return unique_ST
#
    Generates a list of BA random graphs
    Parameters:
    n = number of nodes
    sample\_number = Number of samples
def BA_random_graphs(n, sample_number):
    graphs = []
    for i in range(sample_number):
        m=randint(1,n-1)
        temp_graph = nx.barabasi_albert_graph(n,m)
        if nx.is_connected(temp_graph):
            graphs.append(temp_graph)
    return graphs
#
    Generates a list of WS random graphs
#
    Parameters:
    n = number of nodes
    sample\_number = Number of samples
def WS_random_graphs(n, sample_number):
    graphs = []
    for i in range(sample_number):
        p = random.uniform(0.001,0.1)
        k = random.randint(2,n)
        graphs.append(nx.watts_strogatz_graph(n,k,p))
    return graphs
#
    Generates a list of NS random graphs
#
    Parameters:
    n = number of nodes
#
```

```
sample\_number = Number of samples
def NW_random_graphs(n, sample_number):
    graphs = []
    for i in range (sample_number):
        p = random.uniform(0.001,0.1)
        k = random.randint(2,n)
        graphs.append(nx.newman_watts_strogatz_graph(n,k,
           p))
    return graphs
    Return a list of subgraphs by taking two edges off
  from the graph
def subgraph_two_edge_deletion(G):
    subgraphs = []
    remove\_edges = np. linspace(0, len(G. edges) - 1, len(G.
       edges))
    remove_edge_product = combinations_with_replacement(
       remove_edges,2)
    remove_edge_tuple = []
    for x in remove_edge_product:
        remove_edge_tuple.append(x)
    remove_edge_final = []
    for i in range(len(remove_edge_tuple)):
        if remove_edge_tuple[i][0]!= remove_edge_tuple[i
            remove_edge_final.append(remove_edge_tuple[i
               ])
    subgraphs = []
    edge_list = list(G.edges)
    for i in range(len(remove_edge_final)):
        temp_graph = nx.Graph(G)
        edge1 = remove_edge_final[i][0]
        edge1 = int(edge1)
        edge2 = remove_edge_final[i][1]
        edge2 = int(edge2)
        edge1_loc = edge_list[edge1]
        edge2_loc = edge_list[edge2]
        temp_graph.remove_edge(edge1_loc[0],edge1_loc[1])
        temp_graph.remove_edge(edge2_loc[0],edge2_loc[1])
        subgraphs.append(temp_graph)
    return subgraphs
```

```
Check whether a network is empty(no edges)
def empty_check(G):
    if len(G. nodes()) == 0 or len(G. edges()) == 0:
        return True
    else:
        return False
    Convert a dataframe to a network
def df_to_network(df):
    source = [row[0] for index, row in df.iterrows()]
    target = [row[1] for index, row in df. iterrows()]
   G = nx.Graph()
    [G. add_edge(item1, item2) for item1, item2 in zip(
       source, target)]
    return G
    Finding the giant component of a network
def gcc(G):
    Gcc = sorted (nx.connected_components (G), key=len,
       reverse=True)
    G0 = G. subgraph(Gcc[0])
    return GO
     Plotting the degree distribution of a graph
def plot_deg_dist(G):
    degree_sequence = sorted([d for n, d in G.degree()],
       reverse = True)
    degreeCount = collections.Counter(degree_sequence)
    deg, cnt = zip(*degreeCount.items())
    deg = list(deg)
    cnt = list(cnt)
    plt.bar(deg, cnt)
    return 0
    Convert a NetworkX graph object to a dataframe
def network_to_df(G):
    edges = list(G.edges())
    source = [item[0] for item in edges]
    target = [item[1] for item in edges]
    df = pd. DataFrame(data = {"source": source,"target":
       target \})
    return df
```

```
Rewire the network G with given probability prob,
  using pairwise rewiring
def pairwise_rewiring (G, prob):
    rewire_number = int(prob*len(G.edges))
   G1 = G. copy()
    c = 0
    while c != rewire_number:
        edges = list(G1.edges())
        rewire_edges = random.sample(edges, 2)
        source1 = rewire_edges[0][0]
        source2 = rewire_edges[1][0]
        target1 = rewire_edges[0][1]
        target2 = rewire_edges[1][1]
        if len(set([source1, source2, target1, target2]))
            if not G1. has_edge (source1, target2) and not
               G1. has_edge (source2, target1):
                G1.remove_edge(source1, target1)
                G1.remove_edge(source2, target2)
                G1.add_edge(source1, target2)
                G1.add_edge(source2, target1)
                if nx.is_connected(G1):
                     c = c+1
                else:
                    G1.add_edge(source1, target1)
                    G1. add_edge (source2, target2)
                    G1.remove_edge(source1, target2)
                    G1.remove_edge(source2, target1)
    return G1
    Rewire the network G with given probability prob,
  using single link rewiring
def single_link_rewiring (G, prob):
   G1 = G. copy()
    rewire_number = int(prob * len(G1.edges))
    for i in range (rewire_number):
        flag = 0
        while flag ==0:
            source = random.choice(list(G1.nodes()))
            neighbors = list(G1.neighbors(source))
            remove_neighbor = random.choice(neighbors)
            G1.remove_edge(source,remove_neighbor)
            if not nx.is_connected(G1):
```

```
G1.add_edge(source, remove_neighbor)
            else:
                 options = set(list(G1.nodes)) - set(list(
                   G1. neighbors (source)))-set ([source,
                    remove_neighbor])
                 rewire_to = random.choice(list(options))
                G1.add_edge(source, rewire_to)
                 flag = 1
    return G1
    Calculates the mutual information of a graph
def mutual_info(G):
    edges = list(G. edges)
    m = len(edges)
    I = 0
    for item in edges:
        d0 = len(list(G.neighbors(item[0])))
        d1 = len(list(G.neighbors(item[1])))
        I = I + \log(2*m/(d0*d1))
    return I/m
#
    Calculates the redundancy of a graph
def redundancy (G):
    edges = list(G. edges)
    m = len(edges)
    R = 0
    for item in edges:
        d0 = len(list(G.neighbors(item[0])))
        d1 = len(list(G.neighbors(item[1])))
        R = R + \log((d0*d1))
    return R/m
    Return the complement of a graph
def complement_graph(G):
    edges = list(G. edges)
    nodes = list(G. nodes)
    product_list = []
    for i in range(len(nodes)):
        for j in range(i+1,len(nodes)):
            product_list.append((nodes[i],nodes[j]))
    complement = list(set(product_list)-set(edges))
    new_G = nx.Graph()
    for item in complement:
```

```
new_G. add_edge (item [0], item [1])
    if len(G. nodes) == len(new_G. nodes):
        if nx.is_connected(new_G):
            return new G
    return None
    Calculate the L-r of a graph (average distance of a
   random graph with given m and n)
def lr(G):
    n = len(G.nodes)
    k = 2*len(G.edges)/n
    return log(n)/log(k)
C Complexity.py
import numpy as np
import networkx as nx
from math import cos, pi, log
import utilities as ut
from scipy.linalg import eig
import math
    All complexity measure have an optional parameter-
   normalisation
    If normalisation = True(true by default), the
   normalised value will be returned
    Otherwise, the unnormalized form will be returned
#
    Calculates OdC Complexity of a graph
def OdC(G, normalisation = True):
    if ut.empty_check(G) == True:
        return 0
    else:
        #Create a degree correlation matrix, using the
           max degree
        degree_sequence = sorted([d for n, d in G.degree
           ()], reverse=True)
        max_degree = max(degree_sequence)
        degree_correlation = np.zeros((max_degree,
           max_degree))
```

```
for node in list (G. nodes):
             #An array to store all the neighbors degrees
             neighbors_degree = []
             #Getting the degree of the current node
             node_degree = G. degree (node)
             #Stating all neighbors and finding their
                degrees
             neighbors = list(G.neighbors(node))
             neighbors_degrees_tuple=G. degree (neighbors)
             for item in neighbors_degrees_tuple:
                 neighbors_degree.append(item[1])
             #For every occurence, adding one to the
                matrix
             for item in neighbors_degree:
                 if node_degree <= item :</pre>
                      degree_correlation[node_degree -1, item
                        -11 +=1
        \#Calculating \ a_{-}k
        a_k = []
        for i in range (max_degree):
             a_k.append(sum(degree_correlation[i]))
        A = sum(a_k)
        if A !=0:
             for i in range(len(a_-k)):
                 a_k[i] = a_k[i]/A
        #Calculating the complexity
        complexity = 0
        for item in a_k:
             complexity -= item*ln(item)
        #Normalisation
        if normalisation == True:
             complexity = complexity /(\ln(\text{len}(G. \text{nodes}) - 1))
        return complexity
    Calculates ln(x), if x=0, return 0
def ln(x):
    if x == 0:
        return 0
    else:
```

#Building the correlation matrix

```
#
    Calculates Cr complexity of a graph
def Cr(G, normalisation = True):
    if ut.empty_check(G) == True:
        return 0
    else:
        if not nx. is_connected (G):
            return 0
        adj_matrix = nx.adjacency_matrix(G)
        adj_matrix = adj_matrix.todense()
        eigenvalues, eigenvectors = np.linalg.eig(
           adj_matrix)
        r = max(eigenvalues)
        r = r.real
        if normalisation == True:
            n = len(G. nodes)
            c_r_numerator = r-2 * cos(pi/(n+1))
            c_r_denominator = n-1-2*cos(pi/(n+1))
            c_r = c_r numerator / c_r denominator
            Cr_complexity = 4*c_r*(1-c_r)
            return Cr_complexity
        else:
            return r
    Calculates Ce complexity of a graph
def Ce(G, normalisation = True):
    if not nx.is_connected(G):
        return 0
    if ut.empty_check(G):
        return -1
    else:
        E = 0
        nodes = list(G.nodes())
        n=len (nodes)
        for i in range(n):
            for i in range(i+1, n):
                 E = E + 1/nx. shortest_path_length (G, nodes)
                    [i], nodes[j])
        E = 2* E /((n)*(n-1))
        if normalisation ==True:
            E_path = 0
            for i in range (1,n):
```

return np.log(x)

```
E_path = E_path + (n-i)/i
            E_path = E_path *2/((n)*(n-1))
            Ce = 4*(E-E_path)/(1-E_path)*(1-(E-E_path))
               /(1 - E_path)
            return Ce
        else:
            return E
    Calculates C_{-}\{1e, st\} complexity of a graph
#
def Clest(G, normalisation = True):
    n = len(G.nodes)
    mcu = n**1.68-10
    subgraphs = ut.subgraph_one_edge_deletion(G)
    st = []
    for item in subgraphs:
        L = nx.laplacian_matrix(item).toarray()
        L = np. delete(L, 0, axis = 0)
        L = np. delete(L, 0, axis = 1)
        _, logdet = np.linalg.slogdet(L)
        det = math.exp(logdet)
        det = int(det)
        det = round(det, 10)
        if det not in st:
             st.append(det)
    N1est = len(st)
    if normalisation == False:
        return N1est
    else:
        return (N1est-1)/(mcu-1)
    Calculates C_{-}\{le.spec\} complexity of a graph
def Clespec (G, normalisation = True):
    subgraphs = ut.subgraph_one_edge_deletion(G)
    spectra = []; spectra_s = []
    mcu = len(G. nodes()) **1.68-10
    for i in range(len(subgraphs)):
        L = nx.laplacian_matrix(subgraphs[i]).todense()
        A = nx.adjacency_matrix(subgraphs[i]).todense()
        eig_values, = eig(L)
        eig_values = eig_values.real
        eig_values = sorted(eig_values)
        eig_values = [round(item, 10) for item in
```

```
eig_values]
        L = L + A + A
        eig_values_s, = eig(L)
        eig_values_s = eig_values_s.real
        eig_values_s = sorted(eig_values_s)
        eig_values_s = [round(item, 10) for item in]
           eig_values_s]
        if eig_values not in spectra and eig_values_s not
            in spectra_s:
            spectra.append(eig_values)
            spectra_s.append(eig_values_s)
    N1espec = len(spectra)
    if normalisation == False:
        return N1espec
    else:
        return (N1espec -1)/(mcu-1)
    Calculates C_{-}\{2e, spec\} complexity of a graph
def C2espec (G, normalisation=True):
    n = len(G. nodes)
    remove\_edges = []
    for i in range(n):
        neighbours = list (G. neighbors (i))
        for item in neighbours:
            if item < i:
                 remove_edges.append([i,item])
    products = []
    for i in range(len(remove_edges)):
        for j in range(i+1,len(remove_edges)):
            products . append ([ remove_edges [ i ] , remove_edges
               [j]])
    subgraphs = []
    for item in products:
        temp_G = G.copy()
        temp_G. remove_edge(item[0][0], item[0][1])
        temp_G.remove_edge(item[1][0],item[1][1])
        subgraphs.append(temp_G)
```

```
mcu = len(G. nodes()) **1.68-10
    for i in range(len(subgraphs)):
        L = nx.laplacian_matrix(subgraphs[i]).todense()
        A = nx.adjacency_matrix(subgraphs[i]).todense()
        eig_values, = eig(L)
        eig_values = eig_values.real
        eig_values = sorted(eig_values)
        eig_values = [round(item, 10) for item in
           eig_values]
        L = L + A + A
        eig_values_s, = eig(L)
        eig_values_s = eig_values_s.real
        eig_values_s = sorted(eig_values_s)
        eig_values_s = [round(item, 10)] for item in
           eig_values_s]
        if eig_values not in spectra and eig_values_s not
            in spectra_s:
            spectra.append(eig_values)
            spectra_s.append(eig_values_s)
    N2espec = len(spectra)
    if normalisation == False:
        return N2espec
    else:
        C2espec = (N2espec - 1)/(math.comb(int(mcu), 2))
        return C2espec
    Calculates MA_{-}\{g\} of a graph
    Using function mutual_info and redundancy from
   utilities to calcualte I and R
def MAg(G, normalisation = True):
   n = len(G.nodes)
   R = ut.redundancy(G)
    I = ut.mutual_info(G)
    R_{-p} = 2*(n-2)/(n-1)*log(2)
    R_{-}c = 2*log(n-1)
    I_p = \log(n-1) - ((n-3)/(n-1)) * \log(2)
    I_{-}c = \log((n)/(n-1))
```

 $spectra = []; spectra_s = []$

#

```
MAr = 4*((R-R_p)/(R_c - R_p))*(1 - (R-R_p)/(R_c-R_p))
    MAi = 4*((I-I_c)/(I_p-I_c))*(1-(I-I_c)/(I_p-I_c))
    if normalisation == True:
        return MAr * MAi
    else:
        return R*I
    MAr = 4*((R-R_p)/(R_c - R_p))*(1 - (R-R_p)/(R_c-R_p))
    MAi = 4*((I-I_c)/(I_p-I_c))*(1-(I-I_c)/(I_p-I_c))
    if normalisation == True:
        return MAr * MAi
    else:
        return R*I
#
    Calcualtes MA_{-}\{RI\} complexity of a graph
    Using function mutual_info and redundancy from
   utilities to calcualte I and R
def MAri(G, normalisation=True):
    n = len(G.nodes)
    R = ut.redundancy(G)
    I = ut.mutual_info(G)
    R_p = 2*log(2)*(n-2)/(n-1)
    R_{-}c = 2*log(n-1)
    I_p = log(n-1)-log(2)*(n-3)/(n-1)
    I_c = log(n/(n-1))
    m=len (G. edges)
    numerator_1 = (R-R_p)
    numerator_2 = (I-I_c)
    denominator = 0.25*(\log(2*m)-R_p-I_c)**2
    if normalisation == True:
        return numerator_1 * numerator_2 / denominator
    else:
        return R*I
    figure_generator.py
# Following codes generate figure 6:
import networkx as nx
import utilities as ut
import Complexity as cx
import matplotlib.pyplot as plt
import utilities as ut
import numpy as np
```

```
import matplotlib as mpl
from math import log
import pandas as pd
import collections
# Following codes generate figure 4:
clest = [cx.Clest(g)  for g  in graphs]
clespec = [cx.Clespec(g) for g in graphs]
c2espec = [cx.C2espec(g) for g in graphs]
fig , axes = plt. subplots (1, 3, figsize = ([15,5]))
axes [0]. scatter (df["Number_of_edges"], c1est, s=10, color =
   "black")
axes[1]. scatter(df["Number_of_edges"], clespec, s=10, color
   = "black")
axes [2]. scatter (df["Number_of_edges"], c2espec, s=10, color
   = "black")
for item in axes:
    item . set_yticks([0,0.5,1,1.5])
    item . set_xlabel ("m", fontsize =18)
axes [0]. set_ylabel ("$Cle, st$", fontsize= 18)
axes[1]. set_ylabel("$Cle, spec$", fontsize= 18)
axes[2].set_ylabel("$C2e, spec$", fontsize= 18)
fig.savefig("figures/subgraph_measures.eps", format="eps")
# Following codes generate figure 5:
n = [6,7,8]
c2graphs= []; dfs= []
for item in n:
    g, d = ut.random_networks(item, True, 50)
    c2graphs.append(g); dfs.append(d)
c2especs = []
for item in c2graphs:
    temp_result = [cx.C2espec(g) for g in item]
    c2especs.append(temp_result)
fig , axes = plt. subplots (1,3, figsize = (15,5))
for i in range(len(n)):
    axes[i]. scatter(dfs[i]["Number_of_edges"], c2especs[i
       ], s=10, color = "black")
    axes[i]. set_yticks([0,0.5,1])
    axes[i]. set_title ("n="+str(n[i]), fontsize= 18)
    axes[i].set_xlabel("m", fontsize= 18)
```

```
axes [0]. set_ylabel("C_{1e}, st^{0}, fontsize= 18)
axes [1]. set_ylabel("C_{le}, spec)", fontsize = 18)
axes[2].set_ylabel("$C_{2e}, spec}$", fontsize= 18)
fig.savefig("figures/c2espec.eps", format="eps")
# Following codes generate figure 1:
plt. figure (figsize = (15,10))
plt. subplot(2,3,1)
nx.draw_circular(nx.watts_strogatz_graph(20,4,0),
   node_size = 100)
plt. title ("p_==0", fontsize = 18)
plt. subplot (2,3,2)
nx.draw_circular(nx.watts_strogatz_graph(20,4,0.1),
   node_size = 100)
plt. title ("p_= 0.1", fontsize = 18)
plt. subplot (2,3,3)
nx.draw_circular(nx.watts_strogatz_graph(20,4,0.5),
   node_size = 100
plt.title("p_= 0.5", fontsize= 18)
plt. subplot (2,3,4)
nx.draw_circular(nx.newman_watts_strogatz_graph(20,4,0),
   node_size = 100
plt. title ("p_{\perp} = _{\perp} 0", fontsize = 18)
plt. subplot (2,3,5)
nx.draw_circular(nx.newman_watts_strogatz_graph(20,4,0.1)
   , node_size = 100)
plt. title ("p_= 0.1", fontsize = 18)
plt. subplot (2,3,6)
nx.draw_circular(nx.newman_watts_strogatz_graph(20,4,0.5)
   , node_size = 100)
plt. title ("p==0.5", fontsize = 18)
plt.savefig("figures/small_world_network_model.eps",
   format = "eps")
# Following codes generate figure 2:
    def degree_distribution(G):
    degree_sequence = sorted([d for n, d in G.degree()],
       reverse = True)
    degreeCount = collections.Counter(degree_sequence)
    deg, cnt = zip(*degreeCount.items())
```

```
deg = list(deg)
    cnt = list(cnt)
    return deg, cnt
plt. figure (figsize = (15,6))
plt. subplot(1,2,1)
G = nx.gnm_random_graph(1000,5000)
deg, cnt = degree_distribution (G)
cnt = [item/1000 \text{ for } item \text{ in } cnt]
plt.plot(deg,cnt,color = "black",label="$G(n,m)$_model")
G = nx.barabasi_albert_graph(1000,5)
deg1, cnt1 = degree_distribution (G,)
cnt1 = [item/1000 \text{ for } item \text{ in } cnt1]
plt.plot(deg1,cnt1,'--',color = "black",label = "Barabasi
   -Albert_model")
plt.legend(fontsize=12)
plt.scatter(deg,cnt,color = "black",marker = "x")
plt.scatter(deg1,cnt1,color = "black")
plt.xlabel("Degree", fontsize = 18)
plt.ylabel("Probability", fontsize = 18)
plt.title("Degree_distribution", fontsize= 15)
plt. subplot(1,2,2)
log_deg = [log(item) for item in deg]; log_cnt = [log(item)]
   ) for item in cnt]
log_deg1 = [log(item) for item in deg1]; log_cnt1 = [log(item) for item]
   item) for item in cnt1]
plt.scatter(log_deg, log_cnt, marker = "x", color = "grey", s
   =15, label = "G(n,m) model")
plt.scatter(log_deg1, log_cnt1, marker = "o", color = "black
   ", s=15, label = "Barabasi-Albert_model")
plt.legend(fontsize=12)
plt.title("Log-log_plot_of_the_degree_distribution")
plt.savefig("figures/degree_distribution.eps", format = "
   eps")
# Following codes generate figure 3:
n = 20
graphs, df = ut.random_networks(n, False, 1000)
mari = [cx.MAri(g) for g in graphs]
mag = [cx.MAg(g) \text{ for } g \text{ in } graphs]
plt.figure()
```

```
plt.scatter(df["Number_of_edges"], mari, label = "$MA_{RI}$
   ", color = "black", marker = "o", s=10)
plt.scatter(df["Number_of_edges"],mag, label = "$MA_{g}$"
   , color = "grey", marker = "x", s=10)
plt.legend(fontsize=12)
plt.xlabel("m", fontsize= 18)
plt.ylabel("Complexity", fontsize= 18)
plt.savefig("figures/mariandmag.eps", format="eps")
methods = ["Clest", "Clespec", "C2espec", "OdC", "MAg", "MAri"
   ,"Cr","Ce"1
#Generates random graphs and data
n=7
graphs, df = ut.random_networks(n=n, use_all_m = True,
   sample_number = 50
#Find the complexities of the graphs
results = []
for item in methods:
    method = getattr(cx, item)
    temp_result = [method(g) for g in graphs]
    results.append(temp_result)
c = 0
fig , axes = plt. subplots (4, 2, figsize = (10, 16))
xticks = np.linspace (n-1, n*(n-1)/2, 5)
xticks = [int(item) for item in xticks]
for i in range(4):
    for j in range (2):
        axes[i][j]. scatter(df["Number_of_edges"], results[
           c], s=10, color = "black")
        axes[i][i]. set_yticks([0,0.5,1])
        axes[i][j].set_xticks(xticks)
        axes[i][j].set_xlabel("m", fontsize = 18)
        axes[i][j].set_ylabel("$"+methods[c]+"$", fontsize
            = 18)
        c += 1
axes [0][0]. set_ylabel("$C_{\{1e, st\}}$", fontsize= 18)
axes [0][1]. set_ylabel("$C_{\{1e, spec\}}$", fontsize = 18)
axes [1][0]. set_ylabel("C_{2e}, spec}\", fontsize= 18)
plt.savefig("figures/complexities.eps", format="eps")
plt.show()
# Following codes generate figure 9:
n = 25
```

```
corr_use_graphs, df = ut.random_networks(n, False, 1000)
corr_results = []
corr_results.append([cx.Clest(g) for g in corr_use_graphs
  1)
corr_results.append([cx.OdC(g) for g in corr_use_graphs])
corr_results.append([cx.MAri(g) for g in corr_use_graphs
  1)
corr_use_BA = ut.BA_random_graphs(n,200)
corr_results_BA = []
corr_results_BA .append([cx.Clest(g) for g in corr_use_BA
corr_results_BA .append([cx.OdC(g) for g in corr_use_BA])
corr_results_BA . append ([cx.MAri(g) for g in corr_use_BA])
plt. figure (figsize = (22,7))
plt. subplot(1,3,1)
plt.scatter(corr_results[0],
                corr_results[1],
                s=15, c = df["Number_of_edges"], cmap = "
                   binary", label = "G(n,m)\_random_
                   graphs")
plt.scatter(corr_results_BA[0],corr_results_BA[1],color="
  black", marker = "x", label = "BA_Graphs")
plt. xlabel ("C_{1e}, st^{0}, fontsize = 20); plt. ylabel ("OdC
  ", fontsize = 20);
plt. subplot(1,3,2)
plt.scatter(corr_results[0],
                 corr_results[2],
                s=15, c = df["Number_of_edges"], cmap = "
                   binary", label = "G(n,m)\_random_
                   graphs")
plt.scatter(corr_results_BA[0],corr_results_BA[2],color="
  black", marker = "x", label = "BA_Graphs")
plt.xlabel("C_{1e}, st^{0}, fontsize = 20); plt.ylabel("
  MAri, fontsize = 20;
plt.legend(fontsize = 15)
plt. subplot (1,3,3)
plt.scatter(corr_results[1],
                corr_results[2],
                s=15, c = df["Number_of_edges"], cmap = "
                   binary", label = "G(n,m)_random_
```

```
graphs")
plt.colorbar()
plt.scatter(corr_results_BA[1],corr_results_BA[2],color="
   black", marker = "x", label = "BA_Graphs")
plt.xlabel("$OdC$", fontsize = 20); plt.ylabel("$MAri$",
   fontsize = 20);
plt.savefig("figures/complexity_correlation.eps", format =
    "eps")
# Following codes generate figure 7:
#Generates special random graphs
n = 20
randoms, random_df = ut.random_networks(n, False, 500)
BA_graphs = ut.BA_random_graphs(n=n, sample_number = 100)
WS_graphs = ut.WS_random_graphs(n=n, sample_number = 100)
NW_graphs = ut.NW_random_graphs(n=n, sample_number = 100)
#Calculates the complexity of special random graphs
rd_result = []
for item in methods:
    method = getattr(cx, item)
    temp_result = [method(g) for g in randoms]
    rd_result.append(temp_result)
BA_result = []
for item in methods:
    method = getattr(cx, item)
    temp_result = [method(g) for g in BA_graphs]
    BA_result.append(temp_result)
WS_result = []
for item in methods:
    method = getattr(cx, item)
    temp_result = [method(g) for g in WS_graphs]
    WS_result.append(temp_result)
NW_result = []
for item in methods:
    method = getattr(cx, item)
    temp_result = [method(g) for g in NW_graphs]
    NW_result.append(temp_result)
# Calculates the complexities of special graphs
n=20
```

```
c=0
fig, axes = plt.subplots (4,2, figsize = (10,16))
xticks = np.linspace(n-1,n*(n-1)/2,5)
xticks = [int(item) for item in xticks]
for i in range(4):
    for j in range (2):
        axes[i][j]. scatter([len(g.edges) for g in randoms
           ], rd_result[c], s=15, color = "black", alpha =
           0.7, label = "G(n,m)$")
        axes[i][j].scatter([len(g.edges) for g in
           BA_graphs, BA_result[c], s=15, color = "green",
           label = "BA")
        axes[i][j].scatter([len(g.edges) for g in
           WS_graphs], WS_result[c], marker = "x", s=15,
           color = "red",label = "WS")
        axes[i][j].scatter([len(g.edges) for g in
           NW_{graphs}, NW_{result} [c], marker = "s", s=15,
           color = "blue", label = "NW")
        axes[i][j]. set_yticks([0,0.5,1])
        axes[i][j].set_ylabel("$"+methods[c]+"$", fontsize
        axes[i][j].set_xlabel("m", fontsize = 20)
        axes[i][j].set_xticks(xticks)
        c += 1
axes[0][0]. set_ylabel("$C_{1e}, st}")
axes [0][1]. set_ylabel("$C_{\{1e, spec\}}$")
axes[1][0]. set_ylabel("$C_{2e}, spec}$")
axes [0][0]. legend()
plt.legend(fontsize = 12)
plt.savefig("figures/complexities_sp.eps", format="eps")
plt.show()
# Following codes generate figure 10:
#Analyse Complement graphs complexity
graphs, df = ut.random_networks(25, False, 1000)
BA_graphs = ut.BA_random_graphs(25, 100)
complement_graphs = [ut.complement_graph(g) for g in
   graphs]
c = []
g = []
edges = []
for i in range(len(complement_graphs)):
```

```
if complement_graphs[i] !=None:
         c.append(complement_graphs[i])
         g.append(graphs[i])
         edges.append(df["Number_of_edges"][i])
BA_comp = [ut.complement_graph(g) for g in BA_graphs]
ba_c = []
ba_g = []
for i in range(len(BA_comp)):
    if BA_comp[i] !=None:
         ba_c . append (BA_comp[i])
         ba_g.append(BA_graphs[i])
results 1 = [cx.OdC(item) for item in g]
results_c = [cx.OdC(g) \text{ for } g \text{ in } c]
ba_result = [cx.OdC(g) \text{ for } g \text{ in } ba_c]
ba_result_c = [cx.OdC(g) \text{ for } g \text{ in } ba_g]
results2 = [cx.MAri(item) for item in g]
results_c_1 = [cx.MAri(g) for g in c]
ba_result_1 = [cx.MAri(g) for g in ba_c]
ba_result_c_1 = [cx.MAri(g) for g in ba_g]
results 3 = [cx.Clest(item) for item in g]
results_c_2 = [cx.Clest(g) \text{ for } g \text{ in } c]
ba_result_2 = [cx.Clest(g)  for g  in ba_c]
ba_result_c_2 = [cx.Clest(g) \text{ for } g \text{ in } ba_g]
plt. figure (figsize = (18,5))
plt. subplot(1,3,1)
plt.scatter(results1, results_c, c = edges, cmap="gray",
   label = "G(n,m) \subseteq random \subseteq graphs")
plt.colorbar()
plt.scatter(ba_result,ba_result_c,marker = "x",label = "
   BA_graphs")
plt.xlabel("$OdC$_of_original_graph", fontsize = 20)
plt.ylabel("$OdC$_of_complement_graph", fontsize = 20)
plt. xticks ([0, 0.5, 1])
plt. yticks ([0, 0.5, 1])
plt.legend(fontsize = 12)
plt. subplot(1,3,2)
plt.scatter(results2, results_c_1, c = edges, cmap="gray",
   label = "G(n,m) \subseteq random \subseteq graphs")
```

```
plt.colorbar()
plt.scatter(ba_result_1, ba_result_c_1, marker = "x", label
   = "BA_graphs")
plt.xlabel("$MAri$_of_original_graph", fontsize = 20)
plt.ylabel("$MAri$_of_complement_graph", fontsize = 20)
plt. xticks ([0, 0.5, 1])
plt. yticks ([0, 0.5, 1])
plt. subplot(1,3,3)
plt.scatter(results3, results_c_2, c = edges, cmap="gray",
   label = "G(n,m) \subseteq random \subseteq graphs")
plt.colorbar()
plt.scatter(ba_result_2, ba_result_c_2, marker = "x", label
   = "BA_graphs")
plt. xlabel("C_{1e}, st_{0o} original_graph", fontsize = 20)
plt.ylabel("$C_{1e, st}$_of_complement_graph", fontsize =
   20)
plt. xticks ([0, 0.5, 1])
plt. yticks ([0, 0.5, 1])
plt.legend(fontsize = 12)
plt.savefig("figures/complement.eps", format="eps")
# Following codes generate figure 11. Used graphs' descriptions can be found in table
1:
index = ["dolphins", "pdzbase", "hamsterster", "Roget","
   flight", "GBPT_train"]
index_bus = ["london", "paris", "berlin", "sydney", "detroit"
   "beijing"]
load_path = ["real_networks/processed/"+item+".csv" for
   item in index]
load_path_bus = ["bus/processed/"+item+".csv" for item in
    index_bus 1
load_path_bus_m = ["bus/modified/m_"+item+".csv" for item
    in index_bus]
graphs = [ut.df_to_network(pd.read_csv(item)) for item in
    load_path]
bus = [ut.df_to_network(pd.read_csv(item)) for item in
   load_path_bus]
bus_m = [ut.df_to_network(pd.read_csv(item))] for item in
   load_path_bus_m]
1 = [nx.average_shortest_path_length(g) for g in graphs]
l_bus = [nx.average_shortest_path_length(g) for g in bus]
```

```
l_bus_m = [nx.average_shortest_path_length(g) for g in
   bus_m]
lr = [ut.lr(g) \text{ for } g \text{ in } graphs]
lr_bus = [ut.lr(g) \text{ for } g \text{ in } bus]
lr_bus_m = [ut.lr(g) \text{ for } g \text{ in } bus_m]
result_g = [cx.MAri(g)  for g  in graphs]
result_bus = [cx.MAri(g) for g in bus]
result_bus_m = [cx.MAri(g) for g in bus_m]
generated_graphs = [
    nx.gnm_random_graph(875,4000),
    nx. watts_strogatz_graph (875, 10, 0.05),
    nx.newman_watts_strogatz_graph (875,9,0.05),
    nx.barabasi_albert_graph(1000,4)
1
l_gg_ratio = []
for i in range(len(generated_graphs)):
    l_gg_ratio.append(nx.average_shortest_path_length(
       generated_graphs[i])/ut.lr(generated_graphs[i]))
gg_result = [cx.MAri(item) for item in generated_graphs]
plt. figure (figsize = (16,8))
1_{\text{ratio}} = [\text{item0/item1 for item0, item1 in } zip(1, 1r)]
l_ratio_bus = [item0/item1 for item0, item1 in zip(l_bus,
   lr_bus)]
1_ratio_bus_m = [item0/item1 for item0, item1 in zip(
   l_bus_m, lr_bus_m)
plt.scatter(l_ratio, result_g, color = "black", s=50, label =
    "Real_networks")
plt.scatter(l_ratio_bus, result_bus, color = "red", s=50,
   marker = "x", label = "Bus_networks")
plt.scatter(l_ratio_bus_m, result_bus_m, color = "blue",
   marker = "^", s=50, label = "Modified_bus_networks")
plt.scatter(l_gg_ratio, gg_result, color = "green", marker =
    "s", s=50, label = "Generated_graphs")
plt.legend(fontsize = 15)
plt. xlabel ("L/L_r$", fontsize = 20)
plt.ylabel("$MAri$", fontsize = 20)
plt. yticks ([0,0.25,0.5,0.75,1])
for i in range(len(index)):
    if i !=1:
         plt. annotate (str(i+1), (1_ratio[i]+0.02, result_g[i]
            ]+0.02), fontsize = 15, color = "grey")
for i in range(len(index)):
```

E rewiring_simulation.py

This file is used to simulate both rewiring introduced in section 1.2, and generate figure 12:

```
import utilities as ut
import Complexity as cx
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
class rewiring():
    def __init__ (self , name , bus=False , step_prob = 0.05):
        self.name = name
        self.bus = bus
        self.load_network()
        self.step_prob = step_prob
        self.rewired_G = self.G.copy()
        self.result = []
        self.s_n=0
        self.p_n=0
        self.load_result("S")
        self.load_result("P")
    #Load all the networks
    def load_network(self):
        if self.bus == False:
            load_path = "real_networks/processed/"+self.
               name+".csv"
        else:
            load_path = "bus/modified/m_"+self.name+".csv
```

```
df = pd.read_csv(load_path)
    self.G = ut.df_to_network(df)
#Carry out one step of single link rewiring
def single_link_rewiring(self):
    self.rewired_G = ut.single_link_rewiring(self.
       rewired_G, self.step_prob)
#Carry out one step of pairwise rewiring
def pairwise_rewiring(self):
    self.rewired_G = ut.pairwise_rewiring(self.
       rewired_G, self.step_prob)
#Reinstantiate the rewired graph
def clear_rewiring (self):
    self.rewired_G = self.G.copy()
    if cx.OdC(self.rewired_G) != cx.OdC(self.G):
        Exception ("Clearing _ failed")
#Carry out a sample number of rewiring
def continuous_rewiring(self, method):
    self.result = [cx.OdC(self.G)]
    if method == "S":
        niter = int(1/self.step_prob)
        for i in range(niter):
            self.single_link_rewiring()
            self.result.append(cx.OdC(self.rewired_G)
        self.s_n += 1
    elif method == "P":
        niter = int(1/self.step_prob)
        for i in range(niter):
            self.pairwise_rewiring()
            self.result.append(cx.OdC(self.rewired_G)
        self.p_n += 1
    else:
        raise ValueError('Insufficient_method')
#Load the calculated result from the data folder
def load_result(self, method):
    if method =="S":
        try:
            self.s_result = pd.read_csv("result/
               single_link/"+self.name+".csv")
            self.s_n = len(self.s_result.columns)
        except FileNotFoundError:
```

```
self.s_result = pd.DataFrame(data = {"1"
               :[]})
            self.s_n = 0
    if method =="P":
        try:
            self.p_result = pd.read_csv("result/
               pairwise / "+ self . name+" . csv")
            self.p_n = len(self.p_result.columns)
        except FileNotFoundError:
            self.p_result = pd.DataFrame(data = {"1"
               :[]})
            self.p_n = 0
#Store the result in the class variable result
def record_result(self, method):
    if method == "S":
        self.s_result[str(self.s_n)] = self.result
    elif method == "P":
        self.p_result[str(self.p_n)] = self.result
    else:
        raise ValueError('Insufficient_method')
#Save the current result table as a csv file
def write_result(self, method):
    if method == "S" and self.s_n == 0:
        raise Exception ("There is no recorded result"
    if method == "P" and self.p_n == 0:
        raise Exception ("There_is_no_recorded_result"
    if (method == "S+P" or method == "P+S") and (self)
       . s_n == 0 \text{ or } self.p_n == 0):
        raise Exception ("There_is_no_recorded_result_
           for _one / both _of _ the _ methods . ")
    if method == "S":
        self.s_result.to_csv("result/single_link/"+
           self.name+".csv",index = False)
    elif method == "P":
        self.p_result.to_csv("result/pairwise/"+self.
           name+".csv",index = False)
    elif method == "S+P" or method == "P+S":
        self.s_result.to_csv("result/single_link/"+
           self.name+".csv",index = False)
```

```
self.p_result.to_csv("result/pairwise/"+self.
           name+".csv", index = False)
    else:
        raise ValueError('Insufficient_method')
#Carry multiple number of rewiring according to the
   given parameter
def experiment (self, method, sample_number):
    if type(sample_number) != type(int(1)):
        ValueError ("Insufficient _number_of_samples, _
           please_input_an_integer.")
    for i in range(sample_number):
        self.clear_rewiring()
        self.continuous_rewiring(method)
        self.record_result(method)
#Plot the results
def plot_result(self, method):
    if method == "S":
        if self.s_n != 0:
            prob_1ist = np.linspace(0,1,int(1/(self.
               step_prob()+1))
            mean = [np.mean(row) for index, row in]
               self.s_result.iterrows()]
            std = [0.5*np.std(row)] for index, row in
               self.s_result.iterrows()]
            plt.errorbar(prob_list, mean, yerr = std,
               color = "black")
        else:
            raise Exception ("There is no recorded
               result")
    elif method == "P":
        if self.p_n != 0:
            prob_list = np.linspace(0,1,int(1/(self.
               step_prob()+1))
            mean = [np.mean(row) for index, row in]
               self.p_result.iterrows()]
            std = [0.5*np.std(row)] for index, row in
               self.p_result.iterrows()]
            plt.errorbar(prob_list, mean, yerr = std,
               color = "black")
        else:
            raise Exception ("There_is_no_recorded_
               result")
    elif method == "P+S" or method == "S+P":
```

```
prob_1ist = np.linspace(0,1,int(1/(self.
                   step_prob()+1))
                mean = [np.mean(row) for index, row in]
                   self.s_result.iterrows()]
                std = [0.5*np.std(row)] for index, row in
                   self.s_result.iterrows()]
                plt.errorbar(prob_list, mean, yerr = std,
                   color = "black", label = "Single_link_
                   rewiring")
                mean = [np.mean(row) for index, row in]
                   self.p_result.iterrows()]
                std = [0.5*np.std(row) for index, row in
                   self.p_result.iterrows()]
                plt.errorbar(prob_list, mean, yerr = std,
                   color = "blue", label = "Pairwise_
                   rewiring")
                plt.legend()
                plt.xlabel("Rewiring_Probability")
                 plt.ylabel("OdC_Complexity")
                plt.title("Change_of_complexity_after_
                   rewiring")
            else:
                 raise Exception ("There is in or recorded in
                   result_for_one/both_of_the_methods.")
        else:
            raise ValueError('Insufficient_method')
    #Carry out a given number of rewiring, saving the
       result and plotting at the same time.
    def one_stop(self, method, sample_number):
        self.experiment(method, sample_number)
        self.write_result(method)
        self.plot_result(method)
index = ["dolphins", "pdzbase", "GBPT_train",
         "hamsterster", "Roget", "flight"]
index_bus = ["london","paris","berlin","sydney","detroit"
   "beijing"]
real_networks = [rewiring(item) for item in index]
bus_networks = [rewiring(item, bus = True) for item in
  index_bus]
for niter in range(10):
    for item in real_networks:
```

if self.s_n !=0 and self.p_n !=0:

```
item.experiment("P",1)
        item.write_result("P")
        item.experiment("S",1)
        item. write_result("S")
    for item in bus_networks:
        item . experiment ("P", 1)
        item.write_result("P")
        item.experiment("S",1)
        item. write_result("S")
plt. figure (figsize = (20,20))
step_prob = 0.05
prob_1ist = np.linspace(0,1,int(1/(step_prob)+1))
for i in range(len(real_networks)):
    plt. subplot(4,3,i+1)
    mean = [np.mean(row) for index, row in real_networks[
       i].s_result.iterrows()]
    std = [np.std(row) for index, row in real_networks[i
       ]. s_result.iterrows()]
    plt.errorbar(prob_list, mean, yerr = std, color = "black
       ", label = "Single_link_rewiring")
    mean = [np.mean(row) for index, row in real_networks[
       i].p_result.iterrows()]
    std = [np.std(row) for index, row in real_networks[i
       ]. p_result.iterrows()]
    plt.errorbar(prob_list, mean, yerr = std, color = "blue"
       , label = "Pairwise_rewiring")
    plt.title(index[i].capitalize(),fontsize=15)
for i in range(len(real_networks)):
    plt. subplot (4,3,6+i+1)
    mean = [np.mean(row) for index, row in bus_networks[i
       1. s_result.iterrows()]
    std = [np.std(row) for index, row in bus_networks[i].
       s_result.iterrows()]
    plt.errorbar(prob_list, mean, yerr = std, color = "black
       ", label = "Single_link_rewiring")
    mean = [np.mean(row) for index, row in bus_networks[i
       ].p_result.iterrows()]
    std = [np.std(row) for index, row in bus_networks[i].
       p_result.iterrows()]
    plt.errorbar(prob_list, mean, yerr = std, color = "blue"
       ,label = "Pairwise_rewiring")
    plt.title(index_bus[i].capitalize(),fontsize=15)
```

```
plt. subplot(4,3,1); plt. ylabel("SOdCS", fontsize = 18); plt.
  legend (fontsize = 12); plt. title ("Dolphins", fontsize
  =15)
plt.subplot(4,3,2); plt.title("PDZBase", fontsize=15)
plt.subplot(4,3,3); plt.title("UK_train", fontsize=15)
plt.subplot(4,3,4); plt.ylabel("$OdC$", fontsize = 18);
plt.subplot(4,3,5); plt.title("Roget's_thesaurus", fontsize
  =15)
plt. subplot (4,3,7); plt. ylabel ("$OdC$", fontsize = 18)
plt.subplot(4,3,10); plt.xlabel("Rewiring_probability",
  fontsize=18); plt.ylabel("$OdC$", fontsize=18)
plt.subplot(4,3,11); plt.xlabel("Rewiring_probability",
  fontsize = 18)
plt.subplot(4,3,12); plt.xlabel("Rewiring_probability",
  fontsize = 18); plt.legend(fontsize = 12)
plt.savefig("figures/rewiring.eps", format = "eps")
```

F configuration_model.r and R_functions.py

Since there is no package that can implement a connected configuration model in Python, R is used to implement configuration model and simulate the behaviour to produce figure ??.

configuration_model.r:

```
#include necessary libraries, and setting up the
   environment
library ("reticulate")
library ("igraph")
library("plotly")
use_python("/user/python3")
#function1 return the edges list to build the network in
   networkx
#function2 return the graph itself for tespecing in the R
    environment
configuration_model <- function(series){
  g <- sample_degseq(series, method="v1")
  return (as_edgelist(g))
return_graph<- function(series){
  g <- sample_degseq(series, method="vl")
  return(g)
}
```

```
#python functions
source_python("R_functions.py")
#Building the network in python
n = 50
gamma = 3
\operatorname{gamma}_{-1}\operatorname{list} = \operatorname{seq}(\operatorname{gamma}_{-0.3}, \operatorname{gamma}_{+0.3}, 0.01)
mari_results = integer(length(gamma_list))
OdC_results = integer(length(gamma_list))
Clespec_results = integer(length(gamma_list))
graphs = list()
for(niter in 1:50){
for(i in 1:length(gamma_list)){
  series = power_law_series(n,gamma_list[i])
  if (sum (series)\%\%2 !=0) {
     series[1] = series[1] + 1
  }
  edge_list = configuration_model(series)
  g = construct_network(edge_list)
  graphs = append(graphs,g)
  mari_results[i] = mari_results[i]+MAri(g)
  OdC_results[i] = OdC_results[i] + OdC(g)
  Clespec_results[i] = Clespec_results[i]+Clespec(g)
}
mari_results = mari_results/niter
OdC_results = OdC_results/niter
Clespec_results = Clespec_results/niter
dev.new(3,5)
plot (gamma_list, Clespec_results, col="black", pch="*","1"
   , lty=1, ylim=c(0,0.5), ylab="Complexity", xlab="Gamma"
lines (gamma_list , OdC_results , col="blue", lty =2)
lines (gamma_list, mari_results, col="red", lty=3)
legend (3.1,0.45, legend=c(expression(paste('C'["1e,spec"])
   ), "OdC", "MAri"), col=c("black", "blue", "red"), lty=c
   (1,2,3), ncol=1)
R_functions.py:
\#Complexity\ measure\ of\ C_{\{1e,spec\}},\ OdC\ and\ MA_{\{RI\}}\ can
   be found in Complexity.py, please copy and paste them
   here.
def ln(x):
```

G References

- [1] Yipei Zhao. Complexity measures for network. Aston University. 2021.
- [2] Erdős Renyi. "On random graph". In: Publicationes Mathematicate 6 (1959), pp. 290–297.
- [3] A.L. Barabási. Network Science. Cambridge University Press, 2016. ISBN: 9781107076266.
- [4] Jinho Kim et al. "Network rewiring is an important mechanism of gene essentiality change". In: Scientific Reports 2.1 (2012).
- [5] Stanley Milgram. "The small world problem". In: Psychology today 2.1 (1967), pp. 60–67.
- [6] Duncan J. Watts and Steven H. Strogatz. "Collective dynamics of 'small-world' networks". In: Nature 393.6684 (1998), pp. 440–442.
- [7] M.E.J. Newman and D.J. Watts. "Renormalization group analysis of the small-world network model". In: Physics Letters A 263.4 (1999), pp. 341–346.
- [8] Anna D. Broido and Aaron Clauset. "Scale-free networks are rare". In: Nature Communications 10.1 (2019).
- [9] Réka Albert, Hawoong Jeong, and Albert-László Barabási. "Diameter of the world-wide web". In: nature 401.6749 (1999), pp. 130–131.
- [10] Thomas House et al. "Testing the hypothesis of preferential attachment in social network formation". In: EPJ Data Science 4.1 (2015), pp. 1–13.

- [11] Jongkwang Kim and Thomas Wilhelm. "What is a complex graph?" In: Physica A: Statistical Mechanics and its Applications 387.11 (2008), pp. 2637–2652.
- [12] 15. floating point ARITHMETIC: Issues and Limitations. Date accessed:01/09/2021. URL: https://docs.python.org/3.8/tutorial/floatingpoint.html.
- [13] Jens Christian Claussen. "Offdiagonal complexity: A computationally quick complexity measure for graphs and networks". In: Physica A: Statistical Mechanics and its Applications 375.1 (2007), pp. 365–373.
- [14] Mark Newman. Networks: An Introduction. Oxford University Press Inc., 2010. ISBN: 9780199206650.
- [15] Dolphins. http://konect.cc/networks/dolphins/. Accessed: 20/09/2021.
- [16] PDZBase protein-protein interaction network. http://konect.cc/networks/maayan-pdzbase/. Accessed: 20/09/2021.
- [17] Hamsterster online socil network. http://konect.cc/networks/petster-hamster-household/. Accessed: 20/09/2021.
- [18] Roget's Theasures. http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/Roget.htm. Accessed: 20/09/2021.
- [19] Flight network. https://openflights.org/data.html. Accessed: 20/09/2021.
- [20] Riccardo Gallotti and Marc Barthelemy. "The multilayer temporal network of public transport in Great Britain". In: Scientific data 2.1 (2015), pp. 1–8.
- [21] Rainer Kujala et al. "A collection of public transport network data sets for 25 cities". In: Scientific data 5.1 (2018), pp. 1–14.
- [22] Beijing bus network. https://www.mot.gov.cn/sjkf/202005/t20200528_3333174.html. Accessed: 20/09/2021.
- [23] Frank Emmert-Streib and Matthias Dehmer. "Exploring Statistical and Population Aspects of Network Complexity". In: PLoS ONE 7.5 (2012), e34523.
- [24] Matthias Dehmer et al. "A Large Scale Analysis of Information-Theoretic Network Complexity Measures Using Chemical Structures". In: PLoS ONE 4.12 (2009), e8057.