

Alignment Methods for Attention-based Neural Machine Translation

Arne Nix

arne.nix@rwth-aachen.de

September 26, 2016, Aachen

Human Language Technology and Pattern Recognition Computer Science Department, RWTH Aachen University

Outline

Introduction
Motivation
Related Work

Introduction to Neural Networks

Neural Machine Translation

Alignment Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Motivation

- Statistical Machine Translation:
 - ho Goal: For source sentence $f_1^J:=f_1\dots f_j\dots f_J$ find a translation hypothesis $\hat{e}_1^{\hat{I}}:=\hat{e}_1\dots\hat{e}_i\dots\hat{e}_{\hat{I}}$ such that:

$$\hat{e}_1^{\hat{I}} = rgmax \left\{ Pr(e_1^I|f_1^J)
ight\}$$

- Neural Machine Translation:
 - ho Use recurrent neural network to model $Pr(e_1^I|f_1^J)$
 - Attention-based neural machine translation state-of-the-art on many tasks

Related Work

- I. Sutskever, O. Vinyals, Q. Le [Sutskever & Vinyals⁺ 14]: Sequence to sequence learning with neural networks. *NIPS, December 2014*.
 - Introducing the encoder-decoder model
 - Application to machine translation
- D. Bahdanau, K. Cho, Y. Bengio [Bahdanau & Cho⁺ 15]:
 Neural machine translation by jointly learning to align and translate.

 ICLR, May 2015.
 - Introducing an attention mechanism to neural machine translation
 - State of the art for neural machine translation

Related Work

- J. Chorowski, D. Bahdanau et al. [Chorowski & Bahdanau⁺ 15]:
 Attention-Based Models for Speech Recognition.

 NIPS, December 2015.
 - Applies the attention mechanism to ASR
 - Introduces convolutional alignment feedback
- W. Chen, E. Matusov et al. [Chen & Matusov⁺ 16]:
 Guided Alignment Training for Topic-Aware Neural Machine
 Translation.
 - Extends standard network error by additional alignment error

Related Work

Z. Tu, **Z.** Lu et al. [Tu & Lu⁺ 16]:

Modeling coverage for neural machine translation. *ACL, August 2016*.

- First empirical alignment analysis of attention-based alignments
- Introduces SAER measure to evaluate soft alignments
- Extends attention models by coverage vector

B. Zhang, D. Xiong, J. Su [Zhang & Xiong⁺ 16]:

Recurrent Neural Machine Translation

- Replaces attention-mechanism by a RNN that computes the context vector
- Recurrent over the source representation
- ► Slower by a factor of 3

Outline

Introduction

Introduction to Neural Networks Convolutional Neural Networks Recurrent Neural Networks

Neural Machine Translation

Alignment Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Neural Networks

Feed forward neural network

► Activation of layer *l*:

$$egin{aligned} oldsymbol{y}^{(l)} &= oldsymbol{\sigma}^{(l)} \left(\underbrace{oldsymbol{W}^{(l)} \cdot oldsymbol{y}^{(l-1)} + oldsymbol{b}^{(l)}}_{=: oldsymbol{z}^{(l)}}
ight) \ oldsymbol{y}^{(0)} &= oldsymbol{x} \end{aligned}$$

Common activation functions:

$$\sigma_{\mathsf{sigmoid}}(z) = rac{1}{1 + \exp(-z)}$$
 $\sigma_{\mathsf{tanh}}(z) = anh(z) = rac{\exp(2z) - 1}{\exp(2z) + 1}$

Output normalization:

$$p_{ heta}(c|x) = rac{\exp(y_c^{(L)})}{\sum_k \exp(y_k^{(L)})} \, orall c = 1, \ldots, N^{(L)}$$

Convolutional Neural Networks

lacktriangle Apply $M^{(l)}$ filters of width $D^{(l)}$:

$$y^{(l)} = \sigma(W^{(l)} * y^{(l-1)})$$

where $W^{(l)} \in \mathbb{R}^{M^{(l)} imes D^{(l)}}$ and $D^{(l)} = 2 \cdot k^{(l)} + 1$

ightharpoonup Activation of neuron j in layer l:

$$y_j^{(l)} = \sigma(\sum_{i=j-k^{(l)}}^{j+k^{(l)}} w_{j-i}^{(l)} \cdot y_i^{(l-1)})$$

Recurrent Neural Networks

► Activation of layer *l* for timestep *t*:

$$m{y}^{(l)}(t) = m{\sigma}^{(l)}\left(m{W}^{(l)}m{y}^{(l-1)}(t) + m{U}^{(l)}m{y}^{(l)}(t-1)
ight)$$

RNN with its equivalent unfolded in time for three time steps.

Outline

Introduction

Introduction to Neural Networks

Neural Machine Translation
Attention Based NMT
Analysing Attention-based Alignments

Alignment Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

- lacksquare Bidirectional RNN encodes source sentence f_1^J into \overrightarrow{h}_1^J and \overleftarrow{h}_1^J
- $lackbox{} h_j := [\overrightarrow{h}_j^T; \overleftarrow{h}_j^T]^T$

lacksquare Energies computed through MLP: $ilde{lpha}_{ij} = v_a^T anh(W_a s_{i-1} + U_a h_j)$

 $W_a \in \mathbb{R}^{n imes n}, U_a \in \mathbb{R}^{n imes 2n}, v_a \in \mathbb{R}^n$: weight parameters

lacksquare Attention weights normalized with softmax: $lpha_{ij} = rac{\exp(ilde{lpha}_{ij})}{\sum_{k=1}^{J} \exp(ilde{lpha}_{ik})}$

lacksquare Context vector as weighted sum: $c_i = \sum_{j=1}^J lpha_{ij} h_j$

lacksquare Neural network output: $p(e_i|e_1^{i-1},f_1^J)=g_{\mathsf{out}}(e_{i-1},s_{i-1},c_i)$

 g_{out} : output function

lacktriangle Hidden decoder state: $s_i = g_{\mathsf{dec}}(e_i, c_i; s_{i-1})$

 g_{dec} : gated recurrent unit

IWSLT 2013 De-En

			German	English
train	(full data)	Sentences	4.3	3M
		Running Words	108M	108M
		Vocabulary	836K	792K
train	(in-domain)	Sentences	13	8K
		Running Words	2.6M	2.7M
		Vocabulary	75K	50K
dev		Sentences	88	37
		Running Words	20K	20.1K
		Vocabulary	4.1K	3.3K
		OOVs with full vocabulary (Rate)	468 (2.3%)	197 (0.9%)
		OOVs with 30K shortlist (Rate)	1346 (6.7%)	656 (3.3%)
eval		Sentences	1436	
		Running Words	27.2K	27.6K
		Vocabulary	4.6K	3.7K
		OOVs with full vocabulary (Rate)	449(1.6%)	1110(4.1%)
		OOVs with 30K shortlist (Rate)	1526 (5.6%)	1716 (6.5%)
test		Sentences	15	65
		Running Words	31.6K	32.6K
		Vocabulary	5.0K	3.9K
		OOVs with full vocabulary (Rate)	677 (2.1%)	1377 (4.4%)
		OOVs with 30K shortlist (Rate)	1811 (5.7%)	2000 (6.4%)

WMT 2016 En-Ro

		English	Romanian	
train	Sentences	60)5K	
	Running Words	15.5M	15.8M	
	Vocabulary	92K	128K	
	OOV Rate with 30k short list	0.7%	1.8%	
newsdev2016_1	Sentences	10	000	
	Running Words	24.7K	26.7K	
	Vocabulary	5K	6.4K	
	OOVs (Rate)	938 (3.8%)	1504 (5.6%)	
	OOVs with 30k short list (Rate)	1602 (6.5%)	2987 (11.2%)	
newsdev2016_2	Sentences	999		
	Running Words	25.2K	25.6K	
	Vocabulary	4.7K	6.4K	
	OOVs (Rate)	733 (2.9%)	1296 (5.0%)	
	OOVs with 30k short list (Rate)	1289 (5.1%)	2992 (11.7%)	
newstest2016	Sentences	1999		
	Running Words	48K	49.7K	
	Vocabulary	7.1K	10.3K	
	OOVs (Rate)	1309 (2.7%)	2538 (5.1%)	
	OOVs with 30k short list (Rate)	2368 (4.9%)	5847 (11.7%)	

Europarl De-En

		German	English	
train (full dat	a) Sentences	1.2M		
	Running Words	32M	34M	
	Vocabulary	305K	100K	
align-test	Sentences	s 504		
	Running Words	9.9K	10.3K	
	Vocabulary	2.8K	2.4K	
	OOVs with full vocabulary	6 (0.1%)	1 (0.0%)	
	OOVs with 30K shortlist (Rate)	276 (2.8%)	50 (0.5%)	

Experiment Setup

System configuration:

- ► 30000 most frequent words as source and target vocabulary
- Out-of-vocabulary words are mapped to unknown tokens
- ► Bi-directional encoder with 1000 GRU nodes each
- ▶ GRU based decoder with 1000 nodes
- ► Alignment computation also has an internal dimension of 1000

Training:

- ► IWLST2013: 500000 iterations and in-domain data included twice
- WMT2016: 300000 iterations
- ► Europarl: 250000 iterations
- ► Evaluation after each 10000 iterations on corresponding dev set

Analysing Attention-based Alignments

- How good is the alignment quality of attention-based NMT?
- How can we evaluate attention-based alignments?
- ► How important are attention-based alignments for translation?

Baseline Results: Europarl

Europarl De-En		alignm	ent-test	
Model	BLEU%	TER%	AER%	SAER %
GIZA++	-	-	22.7	28.2
Attention-Based	28.2	57.7	38.1	63.6

► Alignment Evaluation:

$$\mathsf{AER}(S,P;A) = 1 - rac{|A\cap S| + |A\cap P|}{|A| + |S|}$$
 [Och & Ney 03] $\mathsf{SAER}(M_S,M_P;M_A) = 1 - rac{|M_A\odot M_S| + |M_A\odot M_P|}{|M_A| + |M_S|}$ [Tu & Lu $^+$ 16]

Analysing Attention-based Alignments (Europarl)

Compare BLEU to AER, SAER on model with increasing noise on alignment parameters

Analysing Attention-based Alignments (Europarl)

- Attention parameters are robust to noise up to a certain degree
- Alignment quality correlates with translation quality for all evaluation methods

Analysing Attention-based Alignments (IWSLT2013)

- Attention parameters are robust to noise up to a certain degree
- Alignment quality correlates with translation quality for all evaluation methods

Outline

Introduction

Introduction to Neural Networks

Neural Machine Translation

Alignment Feedback
Covolutional Feedback
Bidirectional RNN Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Alignment Feedback

- Standard attention-mechanism: past alignment information disregarded
- ► Linguistic coverage [Tu & Lu⁺ 16]:
 - sum of past alignments
- ► Neural network based coverage [Tu & Lu⁺ 16, Mi & Wang⁺ 16]:
 - separate RNN to compute coverage vector of past alignments
- ▶ Include feedback vector γ_{ij} (similar to coverage vector):

$$ilde{lpha}_{i+1j} = v_a^T anh(W_a s_i + U_a h_j + V_a \gamma_{ij})$$

- lacktriangle Compute γ_{ij} as weighted combination of prior alignments $lpha_{i1}^{J}$
- ightharpoonup Problem: source sentence length J varies
- ► Solution: use shared weights → RNN and CNN

Convolutional Feedback

Introduced by [Chorowski & Bahdanau $^+$ 15] for ASR to encourage monotonicity by convolving M filters of size D

Bidirectional RNN Feedback

$$\overrightarrow{\gamma}_{ij} = \overrightarrow{g_{\mathsf{rec}}}(lpha_{ij}; \overrightarrow{\gamma}_{ij-1}) \ \overleftarrow{\gamma}_{ij} = \overleftarrow{g_{\mathsf{rec}}}(lpha_{ij}; \overleftarrow{\gamma}_{ij+1})$$

Bidirectional RNN Feedback

▶ Use bidirectional RNN over past attention weights to compute γ_{ij}

$$\gamma_{ij} = [\overrightarrow{\gamma}_{ij}^T; \overleftarrow{\gamma}_{ij}^T]^T$$

Results: Alignment Feedback (IWSLT2013)

IWSLT De-En	dev		test		eval11		alignment-test	
Model	BLEU%	TER%	BLEU%	TER%	BLEU%	TER%	AER%	SAER%
Attention-Based	30.5	48.7	29.3	50.6	33.9	46.6	41.8	66.3
+ conv ($D=5$, $M=5$)	30.8	49.0	29.5	50.2	34.3	45.8	41.3	66.6
+ conv ($D=20$, $M=1$)	31.4	49.6	29.5	50.7	33.2	47.1	41.8	67.6
+ bid-feedback	29.6	48.5	28.2	49.8	33.1	44.5	41.9	65.6

- ▶ No significant improvement in alignment quality
- ▶ Bid-feedback not successfull
- ightharpoonup Small improvements for convolutional feedback (D=5,M=5)

Results: Alignment Feedback (WMT2016)

WMT En-Ro	newsdev2016/1		newsdev2016/2		newstest2016	
Model	BLEU%	TER%	BLEU%	TER%	BLEU%	TER%
Attention-Based	19.8	62.0	21.3	58.1	20.3	60.4
+ conv ($D=5$, $M=5$)	21.4	61.5	23.8	56.6	22.0	60.2
+ conv ($D=20$, $M=1$)	21.0	61.4	23.5	56.9	21.4	60.1
+ bid-feedback	19.2	64.4	21.7	60	19.9	63.5

- Bid-feedback not successfull
- Large improvements of up to 2.5 BLEU for convolutional feedback (D=5, M=5 and D=20, M=1) on WMT2016

Outline

Introduction

Introduction to Neural Networks

Neural Machine Translation

Alignment Feedback

Recurrent Attention
Multidimensional Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Recurrent Attention

Include context $ilde{lpha}_{1j}, \dots, ilde{lpha}_{ij}$ by computing alignments through an RNN

$$ilde{lpha}_{i+1j} = v_a^T \cdot g_{\mathsf{rec}}(s_i, h_j; ilde{lpha}_{ij})$$

Multidimensional Attention

- Use context over encoder and decoder time
- Including context $\tilde{\alpha}_{i1}, \ldots, \tilde{\alpha}_{ij-1}, \tilde{\alpha}_{ij+1}, \ldots \tilde{\alpha}_{iJ}$ introduces interdependence between alignments

Multidimensional Attention

▶ Use Multidimensional RNN [Graves & Fernández+ 07]

$$ilde{lpha}_{ij} = v_a^T \cdot [\overrightarrow{lpha_{ij}}^T; \overleftarrow{lpha_{ij}}^T]^T$$

Encoder Time

Multidimensional GRU

Standard one-dimensional GRU

Multidimensional GRU

Results: Recurrent Attention (IWSLT2013)

IWSLT De-En	dev		test		eval11		alignment-test	
Model	BLEU%	TER%	BLEU%	TER%	BLEU%	TER%	AER%	SAER%
Attention-Based	30.5	48.7	29.3	50.6	33.9	46.6	41.8	66.3
+ LSTM attention	30.8	48.0	29.2	49.9	33.3	45.6	33.5	68.1
+ bid-feedback	30.6	49.2	29.7	49.9	33.1	47.3	33.4	67.2
+ MDGRU attention	27.5	51.9	26.0	<i>52.3</i>	29.6	48.2	36.7	70.3

- MD-Attention takes 8 times as long as baseline to train one epoch
- \blacktriangleright MD-Attention results reported after 500000 iterations (< 2 epochs)
- No improvement on IWSLT

Results: Recurrent Attention (WMT2016)

WMT En-Ro	newsdev2016/1		newsdev	/2016/2	newstest2016	
Model	BLEU%	TER%	BLEU%	TER%	BLEU%	TER%
Attention-Based	19.8	62.0	21.3	58.1	20.3	60.4
+ LSTM attention	20.7	60.8	22.0	57.2	21.0	60.2
+ conv ($D=5$, $M=5$)	21.1	61.4	23.7	56.6	21.7	60.0
+ conv ($D=20$, $M=1$)	21.2	61.1	23.3	56.6	21.7	60.3
+ bid-feedback	20.5	61.5	22.8	57.1	21.3	60.1
+ MDGRU attention	20.1	61.0	22.7	56.8	20.4	60.1

- ► LSTM-Attention improves only on WMT by an average of 0.8 BLEU
 - ▶ adding bidirectional alignment feedback: additional 0.3 BLEU
 - combining with convolutional feedback did not improve
- ► MDGRU-Attention improves only on WMT by an average of 0.6 BLEU

Outline

Introduction

Introduction to Neural Networks

Neural Machine Translation

Alignment Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Guided Alignment Training [Chen & Matusov⁺ 16]

- ► Problem: Attention-based alignments are much worse compared to statistical alignments like GIZA-alignments [Och & Ney 03]
- ▶ Idea: Introducing target alignment A as a second objective
- lacktriangle Cross-Entropy cost $\mathcal{L}_{\mathsf{align}}$ between the attention weights lpha and target alignment A

$$\mathcal{L}_{\mathsf{align}}(A, lpha) := -rac{1}{N} \sum_{n} \sum_{i=1}^{I_n} \sum_{j=1}^{J_n} A_{n,ij} \log lpha_{n,ij}$$

- lacksquare Optimize w.r.t. $\mathcal{L}(A, lpha, e_1^I, f_1^J) := \lambda_{\mathsf{CE}} \cdot \mathcal{L}_{\mathsf{CE}} + \lambda_{\mathsf{align}} \cdot \mathcal{L}_{\mathsf{align}}$
 - $\triangleright \mathcal{L}_{CE}$: standard decoder cost function (cross-entropy)
 - $\triangleright \lambda_{align}, \lambda_{CE}$: weights determined through experiments

Results: Guided Alignment Training (IWSLT2013)

IWSLT De-En	dev		test		eval11		alignment-test	
Model	BLEU%	TER%	BLEU%	TER%	BLEU%	TER%	AER%	SAER%
Attention-Based	30.5	48.7	29.3	50.6	33.9	46.6	41.8	66.3
+ GA	31.5	47.2	30.3	49.0	34.3	44.3	35.4	44.2

- ► Improves translation by an average of 0.8 BLEU on IWSLT2013
- **▶** Great improvement in AER and SAER

Results: Guided Alignment Training (WMT2016)

WMT En-Ro	newsdev2016/1		newsdev	/2016/2	newstest2016	
Model	BLEU%	TER%	BLEU%	TER%	BLEU%	TER%
Attention-Based	19.8	62.0	21.3	58.1	20.3	60.4
+GA	21.0	61.1	23.6	56.4	21.8	59.4
+GA + conv ($D=10,M=1$)	21.4	60.1	24.7	55.4	22.3	58.7

- ► Improves translation by an average of 0.8 BLEU on IWSLT2013
- Great improvement in AER and SAER
- ► Improves translation by an average of 1.7 BLEU on WMT2016
 - ▶ Adding convolutional feedback gives an additional 0.6 BLEU on average

Guided Alignment Training vs. Standard Training (IWSLT2013)

- Guided alignment training results in better and more stable in training
- Problem: Still relying on GIZA++ to generate alignments

Outline

Introduction

Introduction to Neural Networks

Neural Machine Translation

Alignment Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Alignment Foresight

▶ Idea: Use knowledge of the target sentence e_1^I to improve the attention

$$ilde{lpha}_{ij} = v_a^T anh(W_a s_{i-1} + U_a h_j + V_a ilde{e}_i) \hspace{1cm} V_a \in \mathbb{R}^{n imes p}$$

Alignment Foresight

Problem in practice:

- ► The network learns to encode the target word in the attention weights Solution:
 - Start by training the attention using guided alignment training

Results: Alignmentment Foresight (Europarl)

Europarl De-En	alignment-test						
Model	BLEU%	TER%	AER%	SAER %			
GIZA++	-	-	22.7	28.2			
Attention-Based	28.2	57.7	38.1	63.6			
+ AF + GA	82.3	8.6	20.0	32.6			
$\lambda_{align} = 5$, $\lambda_{CE} = 1$	02.5	0.0	20.0	32.0			
+ AF + GA	87.2	5.9	19.0	34.9			
$\lambda_{align} = 1$, $\lambda_{CE} = 0.001, \dots, 1.01$	07.2	0.5	13.0	04.5			
+ hard $j o i$	-	-	20.6	25.9			
+ hard $j \leftarrow i$	-	-	23.6	29.0			
+ hard merged $j ightarrow i$, $j \leftarrow i$	-	-	19.0	24.6			
+ GA (GIZA++)	28.7	57.3	29.8	38.0			
+ GA (AF-alignment)	28.3	57.5	28.5	36.7			

Note: Aligment foresight models use knowledge of target word in translation! BLEU and TER are not valid for comparison to standard models!

Outline

Introduction

Introduction to Neural Networks

Neural Machine Translation

Alignment Feedback

Recurrent Attention

Guided Alignment Training

Alignment Foresight

Conclusion and Outlook

Conclusions

Alignment Analysis:

- Attention-based alignment is important for NMT
- ► AER and SAER are meaningful for attention-based alignments
- ► NMT models can outperform GIZA-alignments in AER and SAER

Advanced Attention Methods:

- MD-Attention is too complex to learn on large data sets
- Convolutinal alignment feedback improves translation
- Guided alignment training stabilizes training, improves translation and alignment quality

Outlook

- ► Find a way to use alignment foresight without GIZA++
- Extend convolutional alignment feedback to two-dimensional convolution over decoder time i
- **▶** Dependencies of MD-attention should help:
 - ▶ Try to make learning easier for MD-attention (GA-Training,...)
 - ▶ If this is successful: efficient implementation in CUDA

Thank you for your attention!

Arne Nix

arne.nix@rwth-aachen.de

Multidimensional GRU - Formulas

Reset Gate:

$$r(t,u) = \sigma_{\mathsf{sigmoid}}(W_{xr}x(t,u) + W_{yr}y(t-1,u) + U_{yr}y(t,u-1) + b_r)$$

▶ Update Gate:

$$z(t,u) = \sigma_{\mathsf{sigmoid}}(W_{xz}x(t,u) + W_{yz}y(t-1,u) + U_{yz}y(t,u-1) + b_z)$$

 $\triangleright \lambda$ Gate:

$$\lambda(t,u) = \sigma_{\mathsf{sigmoid}}(W_{x\lambda}x(t,u) + W_{y\lambda}y(t-1,u) + U_{y\lambda}y(t,u-1) + b_{\lambda})$$

Multidimensional GRU - Formulas

Recurrent Information:

$$\overline{y}(t-1,u-1) = \lambda(t,u) \odot y(t-1,u) + [1-\lambda(t,u)] \odot y(t,u-1)$$

Update Candidate:

$$ilde{y}(t,u) = \sigma_{\mathsf{tanh}}(W_{xy}x(t,u) + W_{yy}[r(t,u)\odot \overline{y}(t-1,u-1)] + b_y)$$

Output:

$$y(t,u) = [1-z(t,u)] \odot \overline{y}(t-1,u-1) + z(t,u) \odot \tilde{y}(t,u)$$

Heatmaps: Baseline vs Guided Alignment (Europarl)

- D. Bahdanau, K. Cho, Y. Bengio: Neural machine translation by jointly learning to align and translate. Proc. *ICLR*, May 2015.
- W. Chen, E. Matusov, S. Khadivi, J.T. Peter: Guided Alignment Training for Topic-Aware Neural Machine Translation. Austion, Texas, October 2016. Association for Machine Translation in the Americas.
- J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio:
 Attention-Based Models for Speech Recognition.
 In C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett, editors,
 Advances in Neural Information Processing Systems 28, pp. 577–585.
 Curran Associates, Inc., 2015.
- A. Graves, S. Fernández, J. Schmidhuber: Multi-dimensional Recurrent Neural Networks, pp. 549–558. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

- H. Mi, Z. Wang, A. Ittycheriah:
 Supervised Attentions for Neural Machine Translation.

 arXiv preprint arXiv:1608.00112, Vol., 2016.
- F.J. Och, H. Ney: A Systematic Comparison of Various Statistical Alignment Models. Computational Linguistics, Vol. 29, No. 1, pp. 19–51, 2003.
- I. Sutskever, O. Vinyals, Q.V. Le:
 Sequence to Sequence Learning with Neural Networks.

 Proc. Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 3104–3112, 2014.
- Z. Tu, Z. Lu, Y. Liu, X. Liu, H. Li: Modeling Coverage for Neural Machine Translation. Proc. 54th Annual Meeting of the Association for Computational Linguistics, August 2016.

B. Zhang, D. Xiong, J. Su:
Recurrent Neural Machine Translation.

arXiv preprint arXiv:1607.08725, Vol., 2016.

