Satopaniquea potoma NI

<u>Ткла:</u> Наближене розв'язування нелінійних рівнянь <u>Частина 1</u>: Відокремлення қоренів

Мета: ознайомлення студентів з основними поняттями та алгоритмами відокремлення коренів нелінійних рівнянь; набуття практичних навичок розв'язання таких задач з використанням комп'ютера (з допомогою пакету **MathCad**).

Завдання:

- **1.** Опрацювати теоретичний матеріал [1, сс. 158-163], [2, сс. 10-15], [3].
- **2.** З'ясувати структуру коренів нелінійного рівняння відповідно до свого варіанту та відокремити корені поєднанням трьох методів:

 - **табличним** (уточнити інтервали ізоляції дійсних коренів);
 - **☑** *графічним* (з використанням пакету *MathCad*).

Ochobni oznarenna na ndepomenna

Нехай задано рівняння

$$f(x) = 0, (1)$$

де f(x) - задана функція дійсного або комплексного аргументу, визначена і неперервна на деякій множині X. Ми розглядатимемо випадок *нелінійних рівнянь*, тобто рівнянь вигляду (1), де f(x) - нелінійна функція, яка, зокрема, може бути алгебричним многочленом.

Рис. 1. Класифікація нелінійних рівнянь

<u>Означення 1</u>. Число x^* , при якому $f(x^*) = 0$ називається **коренем** або **розв'язком** рівняння (1).

<u>Означення 2</u>. Якщо $f(x^*) = 0$, $f'(x^*) = 0$, $f''(x^*) = 0$,..., $f^{(n-1)}(x^*) = 0$, а $f^{(n)}(x^*) = 0$, то кажуть, що x^* *n*-кратним коренем рівняння (1).

Рівняння (1) може бути заміною
$$f(x) = f_1(x) - f_2(x)$$
 перетворене до вигляду $f_1(x) = f_2(x)$. (2)

Зрозуміло, що і навпаки, рівняння вигляду (2) можна звести до вигляду (1). Тому надалі розглядатимемо рівняння вигляду (1).

Графічно корені рівняння (1) — це точки перетину графіка y = f(x) з віссю абсцис (рис. 2 а; при цьому x_1^* , x_2^* , x_3^* - прості корені, оскільки при переході через них графік не змінює напрям опуклості, x_4^* , x_5^* - кратні корені: x_4^* - непарної кратності, адже при переході через x_4^* функція змінює знак, а її графік змінює напрям опуклості, x_5^* - парної кратності, адже при переході через x_5^* функція не змінює свій знак і зберігає напрям опуклості). А корені рівняння (2) — це абсциси точок перетину графіків $y = f_1(x)$ та $y = f_2(x)$ (рис. 2 б).

Рис. 2. Графічна інтерпретація коренів нелінійних рівнянь

Якщо функція f(x) у лівій частині рівняння (1) є многочленом n-го степеня

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0,$$
(3)

тобто (1) є алгебраїчним рівнянням вигляду

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 = 0$$
, (4)

Відповідно до класичного результату Галуа алгебраїчне рівняння (4) при n > 5 не має розв'язку в замкненому (формульному) вигляді. Тому корені алгебраїчних (n > 2) та трансцендентних рівнянь зазвичай визначаються наближено із заданою точністю.

Обчислювальні алгоритми наближених методів складаються з таких етапів:

- **П** відокремлення коренів;
- **II)** уточнення наближених коренів.

<u>Означення 3</u>. **Відокремлення коренів рівняння** або **визначення відрізків ізоляції коренів** — це відшукання достатньо малих відрізків $[a_i,b_i]$, що належать області визначення рівняння, у кожному з яких є один і тільки один простий або кратний корінь $x_i^* \in [a_i,b_i]$ рівняння f(x)=0.

Власне, на етапі відокремлення коренів відбувається грубе наближене знаходження коренів вихідного рівняння.

<u>Означення 4</u>. **Уточнення кореня** – це обчислення кореня із заданою точністю, якщо відоме деяке початкове його наближення в інтервалі ізоляції.

Грубе значення кожного кореня, знайдене на кроці відокремлення (ізоляції), уточнюється до заданої точності одним з чисельних методів, в яких реалізуються послідовні наближення.

Відокремлення дійсних коренів нелінійного рівняння грунтується на класичній теоремі аналізу.

<u>Теорема 1 (Больцано-Коші</u>). Нехай f(x) - неперервна на відрізку [a,b] функція, що набуває значень різних знаків на кінцях вказаного відрізка (тобто f(a)f(b) < 0). Тоді

всередині інтервалу (a,b) міститься принаймні один корінь рівняння f(x)=0, тобто існує таке $x^* \in (a,b)$, що $f(x^*)=0$.

Більше того, корінь x^* буде єдиним на (a,b), якщо функція f(x) є монотонною на даному інтервалі, тобто f'(x) > 0 (або f'(x) < 0) для всіх a < x < b.

Для відокремлення коренів нелінійних рівнянь ϵ три способи:

- ☑ табличний (табуляція функцій);
- ☑ графічний;
- ☑ аналітичний.

Крім того, ці способи можна комбінувати.

Табличний спосіб (табуляція функції)

Для знаходження проміжків ізоляції коренів рівняння (1) будують таблицю значень функції y = f(x) на достатньо великому проміжку [a,b] області визначення з великим кроком h_1 . Далі з'ясовується, на якому підпроміжку $[a_2,b_2]$ функція f(x) змінює знак. Знову табулюємо її на цьому проміжку з довільним кроком $h_2 < h_1$. На практиці достатньо мати проміжок у межах одиниць, наприклад, [-3,2].

На підставі теореми Больцано-Коші можна записати такий <u>алгоритм</u> <u>знаходження проміжку</u> [a,b].

- **1.** Знайти область визначення функції f(x) з лівої частини рівняння (1).
- **2.** Знайти китичні точки функції f(x) (тобто обчислити похідну f'(x) і знайти точки, в яких похідна не існує або перетворюється в нуль).
- 3. Записати інтервали монотонності.
- **4.** Дослідити знак функції f(x) на кінцях інтервалів монотонності.
- 5. Визначити проміжки ізоляції коренів.
- 6. Звузити ці проміжки, протабулювавши функцію.

Графічний спосіб

Якщо функція f(x) у лівій частині нелінійного рівняння (2) має нескладний вигляд, то знаходяться точки перетину графіка функції y = f(x) з віссю абсцис. Якщо це важко зробити, то, зобразивши ліву частину рівняння (1) у вигляді $f(x) = f_1(x) - f_2(x)$, перепишемо його у вигляді (2):

$$f_1(x) = f_2(x),$$

де $f_1(x)$, $f_2(x)$ - достатньо прості функції, графіки (ескізи графіків) яких легко побудувати. Абсциси точок перетину графіків $y = f_1(x)$ та $y = f_2(x)$ дадуть наближене значення розв'язку рівняння (1).

Аналітичний спосіб

При відокремленні коренів алгебраїчних рівнянь (4) користуються наступними твердженнями.

Теорема 2 (основна теорема алгебри). Кожен многочлен n-го степеня має рівно n коренів, серед яких можуть бути дійсні різні корені, кратні корені та пари комплексно спряжених коренів.

<u>Наслідок 2.1.</u> Алгебраїчне рівняння непарного степеня має принаймні один дійсний корінь.

<u>Теорема 3 (про локалізацію коренів многочлена</u>). Корені многочлена (3) з дійсними чи комплексними коефіцієнтами містяться у кільці

$$\frac{|a_0|}{|a_0|+b} \le |x| \le 1 + \frac{a}{|a_n|},\tag{5}$$

 $\partial e \ a_0 \cdot a_n \neq 0$,

$$a = \max \{ |a_0|, |a_1|, ..., |a_{n-1}| \},$$

$$b = \max \{ |a_1|, |a_2|, ..., |a_n| \}.$$

<u>Теорема</u> 4 (Декарта; про кількість дійсних коренів алгебраїчних рівнянь). Кількість S_1 додатних коренів (з врахуванням їхніх кратностей) алгебраїчного рівняння $P_n(x) = 0$ дорівнює числу змін знаків у послідовності коефіцієнтів a_n , a_{n-1} ,..., a_0 (нульові коефіцієнти не враховуються) многочлена $P_n(x)$ або є меншою від цього числа на деяке парне число.

Кількість S_2 від'ємних коренів (з врахуванням їхніх кратностей) алгебраїчного рівняння $P_n(x)=0$ дорівнює числу змін знаків у послідовності коефіцієнтів a_n , a_{n-1} ,..., a_0 (нульові коефіцієнти не враховуються) многочлена $P_n(-x)$ або є меншою від цього числа на деяке парне число.

<u>Теорема 5 (Гюа; необхідна умова дійсності усіх коренів алгебраїчних рівнянь</u>). Якщо усі корені алгебраїчного рівняння (4) дійсні, то квадрат кожного не крайнього коефіцієнта є більшим від добутку двох його сусідніх коефіцієнтів, тобто

$$a_k^2 > a_{k-1} \cdot a_{k+1}$$
, (6)
 $k = 1, 2, ..., n-1$

Наслідок. Якщо при деякому k = 1, 2, ..., n-1 виконується нерівність

$$a_k^2 \le a_{k-1} \cdot a_{k+1} \,, \tag{7}$$

то рівняння (4) має принаймні одну пару комплексних коренів.

Spazok pozbezarre nunoboro npukragy

Триклад 1. З'ясувати структуру та відокремити корені рівняння

$$x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3 = 0$$
.

Розв'язання. У заданому рівнянні

$$n = 5$$
, $a_5 = 1$, $a_4 = 2$, $a_3 = -5$, $a_2 = 8$, $a_1 = -7$, $a_0 = -3$.

Застосуємо спочатку <u>аналітичний метод</u>. Згідно з теоремою 2, оскільки n=5, дане рівняння має рівно 5 коренів. Крім того, за наслідком 2.1, рівняння має принаймні один дійсний корінь (оскільки степінь непарний).

Перевіримо умови теореми 5. Для цього порівняємо

$$a_4^2$$
 i $a_5 \cdot a_3$; a_3^2 i $a_4 \cdot a_2$; a_2^2 i $a_3 \cdot a_1$; a_1^2 i $a_2 \cdot a_0$.

Маємо:

$$a_4^2 = 2^2 > 1 \cdot (-5) = a_5 \cdot a_3, \ a_3^2 = (-5)^2 > 2 \cdot 8 = a_4 \cdot a_2,$$

 $a_2^2 = 8^2 > -5 \cdot 1 = a_3 \cdot a_1, \ a_1^2 = (-1)^2 > 8 \cdot (-3) = a_2 \cdot a_0,$

отже, виконуються умови (6), а значить, виконується необхідна умова того, що усі корені даного рівняння дійсні (за теоремою 5). Проте ця умова <u>не є достатньою</u>, тобто корені можуть бути як дійсними (принаймні один, адже n = 5), так і пари комплексно спряжених (не більше двох пар).

Кількість змін знаків коефіцієнтів многочлена $P_5(x) = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$ дорівнює 3, отже, за теоремою 4, кількість додатних коренів $S_1 = 3$ або на деяке парне число

менше від S_1 . Зрозуміло, що оскільки кількість коренів не може бути від'ємною, то єдиним парним числом, на яке може бути меншою кількість додатних коренів — це 2. Таким чином, додатних коренів 3 або 3-2=1.

Запишемо многочлен $P_5(-x)$ і підрахуємо число змін знаків його коефіцієнтів:

$$P_5(-x) = (-x)^5 + 2(-x)^4 - 5(-x)^3 + 8(-x)^2 - 7(-x) - 3 = -x^5 + 2x^4 + 5x^3 + 8x^2 + 7x - 3.$$

Маємо 2 зміни знаків коефіцієнтів. Отже, за теоремою 4, кількість від'ємних коренів $S_2 = 2$ (або на деяке парне число менше від S_2). Аналогічно до попередніх міркувань, від'ємних коренів 2 або 2-2=0.

Далі за формулою (5) знайдемо кільце, в якому містяться усі корені вихідного рівняння. Для цього знайдемо спочатку a і b:

$$\begin{split} a &= \max \left\{ \mid a_0 \mid, \mid a_1 \mid, ..., \mid a_{n-1} \mid \right\} = \max \left\{ \mid -3 \mid, \mid -7 \mid, \; 8, \; \mid -5 \mid, \; 2 \right\} = 8 \;, \\ b &= \max \left\{ \mid a_1 \mid, \mid a_2 \mid, ..., \mid a_n \mid \right\} = \max \left\{ \mid -7 \mid, \; 8, \; \mid -5 \mid, \; 2, \; 1 \right\} = 8 \;. \end{split}$$

Тоді корені рівняння містяться в кільці

$$\frac{|-3|}{|-3|+8} \le |x| \le 1 + \frac{8}{1} \iff \frac{3}{11} \le |x| \le 9$$
.

Звідси випливає, що від'ємні корені рівняння задовольняють нерівність

$$-9 \le x_i^- \le -\frac{3}{11}$$
,

а додатні - нерівність

$$\frac{3}{11} \le x_i^+ \le 9$$
.

Далі застосуємо <u>табличний метоо</u> для відокремлення (ізоляції) дійсних коренів. Для цього затабулюємо ліву частину рівняння $P_5(x) = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$ на відрізку [-9,9] з кроком $h_1 = 1$.

x_i	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
$f(x_i)$	-41574	-21451	-9852	-3777	-1018	-39	144	83	18	-3
знак $f(x_i)$	ı	ı	ı	ı	ı	1	+	+	+	-
						інтервал ізоляції		інтерва	п ізоляції	

x_i	1	2	3	4	5	6	7	8	9
$f(x_i)$	-4	39	318	1313	3912	9531	20234	38853	69108
знак $f(x_i)$	-	+	+	+	+	+	+	+	+
	інтервал ізоляції								

Поєднуючи інформацію, отриману з допомогою аналітичного та табличного способів, доходимо висновку, що за межами відрізку [-9,9] дійсних коренів немає; 2 прості (однократні) від'ємні корені знаходяться на проміжках (-4;-3), (-1;0), а додатний корінь (непарної кратності) — на проміжку (1;2) (можливо — це один трикратний корінь).

 ϵ можливість, що на інтервалі (2;9) знаходиться дійсний двократний корінь (якщо на проміжку (1;2) корінь однократний), при переході через який многочлен не змінює знак. Для уточнення цього факту слід використати засоби диференціального числення (знайти на інтервалі (2;9) точку x^* локального мінімуму многочлена $P_5(x) = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$, причому таку, яка одночасно ϵ точною перетину його графіка з віссю абсцис, тобто $P_5(x^*) = 0$). Оскільки ця задача не ϵ тривіальною, то перевірку кількості дійсних коренів можна виконати *графічним методом*.

Рис. 3. Графік функції $y = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$

Додатний корінь x_3^+ на проміжку (1;2) є простим (однократним) або непарної кратності (не більше 3), адже при переході через цей корінь многочлен змінює знак (чого не спостерігається при переході через корені парної кратності). З графіка (рис. 3) видно, що при переході через x_3^+ не змінюється напрям опуклості графіка $y = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$, а це можливо лише у випадку, якщо x_3^+ - однократний корінь (корінь непарної кратності більше 1 обов'язково є точкою перегину відповідного графіка). Отже, ми вже відокремили 3 дійсні корені: 2 прості від'ємні корені $x_1^- \in (-4; -3)$, $x_2^- \in (-1;0)$ та один простий додатний корінь $x_3^+ \in (1;2)$. Разом з тим, графік многочлена $y = x^5 + 2x^4 - 5x^3 + 8x^2 - 7x - 3$ перетинає вісь абсцис тричі (кожна точка перетину відповідає відокремленому простому кореню), а коренів має бути рівно 5. Це означає, що решта 2 корені x_4 , x_5 – комплексно спряжені.

<u>Висновок:</u> використовуючи поєднання трьох методів, ми отримали повну характеристику коренів даного рівняння: рівняння має 5 коренів, з них 2 дійсні однократні від'ємні $x_1^- \in (-4; -3)$, $x_2^- \in (-1; 0)$, один дійсний простий додатний $x_3^+ \in (1; 2)$ і пара комплексно спряжених коренів x_4 , x_5 з кільця $\frac{3}{11} \le |x_{4,5}| \le 9$. ◀

Bagari que cauconituoro postezarure

З'ясувати структуру коренів нелінійного рівняння відповідно до свого варіанту та відокремити корені поєднанням трьох методів:

- **□ аналітичним** (встановити наявність дійсних коренів; з'ясувати кількість додатних та від'ємних дійсних коренів; встановити кільце, в якому знаходяться корені рівняння);
- **Т** табличним (уточнити інтервали ізоляції дійсних коренів);
- **☑ графічним** (з використанням пакету MathCad).

N₂	Прізвище, ім'я, по батькові	Рівняння				
Tpyna 341						
1.	Байрамов Алі Мірзабей-огли	$x^4 + 4x^3 + 4x^2 + 4x - 1 = 0$				

№	Прізвище, ім'я, по батькові	Рівняння				
2.	Беленчуқ Олеқсій Ігорович	$x^4 + 4x^3 + 4,8x^2 + 16x + 1 = 0$				
3.	Березний Ігор Васильович	$x^3 + 3x^2 - 24x + 1 = 0$				
4.	Бужақ Андрій Васильович	$x^6 - 3x^2 + x - 1 = 0$				
5.	Бурле Павло Марчелович	$x^3 - x - 1 = 0$				
6.	Волощуқ Назарій Васильович	$x^3 - 3x^2 + 9x - 10 = 0$				
7.	Георгіян Євген Геннадійович	$x^3 - 8x + 2 = 0$				
8.	Григорчуқ В`ячеслав Валерійович	$x^3 + 2x - 11 = 0$				
9.	<i>Денис Фенис Русланович</i>	$x^3 + 10x - 9 = 0$				
10.	<i>Фручуқ Роман Олеқсандрович</i>	$x^5 + 3x^4 - 2x^3 + x^2 - x + 1 = 0$				
11.	<i>Оубець Василь Русланович</i>	$x^4 + 10x^3 - 1 = 0$				
12.	<i>Фуплава Олександр Ігорович</i>	$x^3 - 4x^2 + 10x - 10 = 0$				
13.	Жупниқ Евеліна Михайлівна	$x^5 - 2x^4 - 7x^3 - 33x^2 - 30x - 25 = 0$				
14.	Івасюта Павло Сергійович	$8x^4 - 8x^2 + 32x + 1 = 0$				
15.	Қачуровський Станіслав Тарасович	$5x^3 + 2x^2 - 15x - 6 = 0$				
16.	Қлим Дмитро Іванович	$x^3 - 15x + 10 = 0$				
17.	Козуб Миқола Миқолайович	$x^3 - 3x^2 - 3 = 0$				
18.	Копадзе Олеқсандра Сергіївна	$2x^3 - 3x^2 - 12x + 8 = 0$				
19.	Қостюқ Віталій Іванович	$x^3 - 0, 2x^2 + 0, 5x + 1, 5 = 0$				
20.	Кушнірик Яна Олеқсандрівна	$x^4 - 2x^3 + x - 1,5 = 0$				
21.	Луник Марія Михайлівна	$x^4 - 3x^3 + 8x^2 - 5 = 0$				
22.	Мақсименқо Михайло Сергійович	$x^3 + 0, 4x^2 + 0, 6x - 1, 6 = 0$				
23.	Мінтянський Андрій Петрович	$x^3 - 2x^2 + 7x + 3 = 0$				
24.	Паращук Олексій Іванович	$x^6 - x^2 + 0,5x - 2 = 0$				
25.	Сарай Богдан Васильович	$x^3 + 3x^2 - 1 = 0$				
26.	Фецюқ Денис Мирославович	$x^3 - 2x^2 - 4x + 7 = 0$				
27.	Хмелєвська Анастасія Олександрівна	$x^5 - 3x^2 + 1 = 0$				
28.	Чайқовський Станіслав Валерійович	$x^3 - 9x + 3 = 0$				
Трупа 341-сқ						
1.	Вірстюқ Ігор Олегович	$x^3 - 2x^2 + 2x - 1 = 0$				
2.	<i>Дем'янчуқ Євгеній Миқолайович</i>	$5x^3 - 20x + 3 = 0$				

Mineranyra:

- **1.** Практикум з чисельних методів : Навч. посібник / С.М. Шахно, А.Т. Дудикевич, С.М. Левицька Львів : ЛНУ імені Івана Франка, 2013. 432 с.
- **2.** Чисельні методи розв'язання інженерних задач у пакеті *Mathcad* : курс лекцій та індивідуальні завдання / Л.В. Васильєва, О.А. Гончаров, В.А. Коновалов, Н.А. Соловйова. Краматорськ : ДДМА, 2006. 108 с.
- **3.** Руководство пользователя *Mathcad* 15.0