Homework 0

Solution Key

Problem 1

Problem: Let the function f(n), for positive integer n, be defined by the following sum

$$f(n) = \sum_{i=1}^{n} 2^{i}(i+1)$$

Show that the function f(n) has the closed form $n \cdot 2^{n+1}$ by using mathematical induction.

Solution: Let $f(n) = \sum_{i=1}^{n} 2^{i}(i+1)$, where n is a positive integer, as defined in the problem. We will prove the claim that $f(n) = n \cdot 2^{n+1}$, for all integers $n \ge 1$ by induction.

Base Case: For n = 1,

$$f(1) = \sum_{i=1}^{1} 2^{i}(i+1)$$
$$= 2^{1}(1+1)$$
$$= 4$$

Then, if we substitute n=1 into the closed form, we get

$$n \cdot 2^{n+1} = 1 \cdot 2^{1+1} = 4$$

And this is trivially equal to the value we got for f(1). So our base case holds, and $f(n) = n \cdot 2^{n+1}$ is true for n = 1.

INDUCTIVE STEP: Let P(k) be $f(n) = n \cdot 2^{n+1}$ for any $n \leq k$. We must show that $P(k) \implies P(k+1)$. Assume P(k). Then

$$f(k) = k \cdot 2^{k+1}$$

$$f(k) + 2^{k+1}(k+2) = k \cdot 2^{k+1} + 2^{k+1}(k+2)$$

$$\sum_{i=1}^{k} 2^{i}(i+1) + 2^{k+1}(k+2) = 2^{k+1}(2k+2)$$

$$\sum_{i=1}^{k+1} 2^{i}(i+1) = 2^{k+1}(2)(k+1)$$

$$f(k+1) = (k+1)2^{k+2},$$

and thus P(k+1). We have shown that the base case holds and that $P(k) \Longrightarrow P(k+1)$, thus by induction P(k) is true $\forall k \geq 1$. Therefore, by induction, $f(n) = n \cdot 2^{n+1}$, for all integers $n \geq 1$.

Problem 2

The final ordering is $e^{\log \log n}$, n, $6n \log n$, $4n^2$, $7n^3 - 10n$, $n^{8621909}$, $n^{\log n}$, 3^n , n!.

Consider the function $e^{\log \log n}$ (f). Because $e^{\log a} = a$, we have that

$$e^{(\log \log n)} = \log n.$$

Since n (c) grows faster than $\log n$, c grows faster than f.

Next, $6n \log n$ (h) grows faster than n (c) due to the extra factor of $\log n$ in h.

Consider the functions $6n \log n$ (**h**) and $4n^2$ (**b**). Removing the common factor of n from both and noting that n grows faster than $\log n$, we see that **b** must grow faster than **h**.

The polynomial function $7n^3 - 10n$ (a) grows faster than $4n^2$ (b) because the degree of a is greater than the degree of b. By the same argument, d must grow faster than a.

Consider the functions $n^{8621909}$ (**d**) and $n^{\log n}$ (**g**). Observe that for $n > e^{8261909}$, $\log n > 8261909$, and thus **g** must grow faster than **d**.

One way to argue that 3^n (e) grows faster than $n^{\log n}$ (g) is to compare the value after taking the logarithm of both functions. The function in **e** becomes $\log 3^n = (\log 3) \cdot n$ and the function in **g** becomes $\log n^{\log n} = (\log n)(\log n)$, so **e** grows faster than **g**.

Finally, the claim that n! (i) grows faster than 3^n (e) relies on the fact that $n! > 3^n$ for integers $n \ge 7$. This could easily be proven with induction using the facts that $(n+1)! = (n+1) \cdot n!$ and $3^{n+1} = 3 \cdot 3^n$ and noting that thus for $n \ge 3$, the change in i is greater than the change in e.

Problem 3

- 1. Both n! and n^n are the products of n terms. Let t_k be any of the terms in n!, and let t_m be any of the terms in n^n . We know that $t_k \leq t_m$, so we know that $n! \leq n^n$.
- 2. Using a similar approach, we know that n! is the product of all integers between 1 and n. We note that there are at least n/2 terms in the product which are at least n/2. Since the number of such terms and the terms themselves are integers, there are at least $\lceil n/2 \rceil$ terms each at least $\lceil n/2 \rceil$. This means when we multiply all the terms in n! together, we get a product that must necessarily be larger than $\lceil n/2 \rceil$.
- 3. Combining the previous parts, we obtain that $(\lceil n/2 \rceil)^{\lceil n/2 \rceil} \leq n! \leq n^n$. By taking the logarithm of the functions in the inequalities, we get

$$\lceil n/2 \rceil \log \lceil n/2 \rceil \le \log n! \le n \log n$$

Since $\log n!$ is bounded above and below by functions in $\Theta(n \log n)$, $\log n!$ itself must also be in $\Theta(n \log n)$.

4. We cannot use the logic from part 3 because $(\lceil n/2 \rceil)^{\lceil n/2 \rceil}$ is not $\Theta(n^n)$.

Beginning a proof by contradiction, assume that $n! = \Theta(n^n)$. In order for this to be true, there must exist some positive constant c and some positive integer n_0 such that for all $n > n_0$, $cn^n \le n!$. This means that

$$c \le \frac{n!}{n^n} = \frac{1}{n} \cdot \frac{2}{n} \cdot \dots \cdot \frac{n}{n}$$

Each term in the product is at most 1, so the product is less than or equal to any individual term of the product. Thus we have

$$c \leq \frac{1}{n}$$

Since this holds for all $n > n_0$, this implies that c = 0, which is a contradiction. Therefore, n! is not bounded below by n^n , and thus $n! = \Theta(n^n)$ is false.

Problem 4

1. MOTIVATION: First, notice that T(0)=0, T(1)=1, T(2)=3, T(3)=7 ... suggesting $T(n)=2^n-1$.

PROOF: We will prove this by induction.

Base Case: Consider the base case n = 0.

$$T(0) = 0 = 2^0 - 1.$$

INDUCTIVE STEP: Let P(k) be $T(n) = 2^n - 1 \ \forall n \le k$. We must show that $P(k) \implies P(k+1)$. Assume P(k). Then

$$T(k+1) = 2 * T(k) + 1$$

 $T(k+1) = 2(2^k - 1) + 1$ (by the inductive hypothesis)
 $T(k+1) = 2^{k+1} - 1$,

and thus P(k+1). We have shown that the base case holds and that $P(k) \implies P(k+1)$, thus by induction P(k) is true $\forall k \geq 0$.

2. MOTIVATION: Expanding the first few terms yields

$$\begin{split} T(n) &= 2 \cdot T\left(\frac{n}{2}\right) + n \\ &= 4 \cdot T\left(\frac{n}{4}\right) + 2n \\ &= 8 \cdot T\left(\frac{n}{8}\right) + 3n, \end{split}$$

suggesting an alternative formula of $T(n) = 2^k \cdot T(\frac{n}{2^k}) + kn$ for any $k \ge 1$.

PROOF: We will prove this by induction.

Base Case: When k = 1, we get $2^1 \cdot T(\frac{n}{2^1}) + 1 \cdot n$, the original relation.

INDUCTIVE STEP: Let P(k) be $T(n) = 2^l \cdot T(\frac{n}{2^l}) + ln$ for any $l \leq k$. We must show that $P(k-1) \implies P(k)$. Assume P(k-1). Then

$$\begin{split} T(n) &= 2^{k-1} \cdot T\left(\frac{n}{2^{k-1}}\right) + (k-1)n \\ &= 2^{k-1} \left[2 \cdot T\left(\frac{n}{2^{k-1} \cdot 2}\right) + \frac{n}{2^{k-1}}\right] + (k-1)n \qquad \text{(by inductive hypothesis)} \\ &= 2^{k-1} \left[2 \cdot T\left(\frac{n}{2^k}\right) + \frac{n}{2^{k-1}}\right] + (k-1)n \\ &= 2^k \cdot T\left(\frac{n}{2^k}\right) + n + (k-1)n \\ &= 2^k \cdot T\left(\frac{n}{2^k}\right) + kn, \end{split}$$

and thus P(k). We have shown that the base case holds and that $P(k-1) \implies P(k)$, thus by induction P(k) is true $\forall k \geq 1$. Using the alternative form we have proven, when $k = \log_2 n$,

$$T(n) = 2^{\log_2 n} \cdot T\left(\frac{n}{2^{\log_2 n}}\right) + n\log_2 n$$
$$= n \cdot T(1) + n\log_2 n$$
$$= \Theta(n\log n).$$

Problem 5

1. The sum of matrices

$$\begin{bmatrix} 1 & 0 & 5 \\ 2 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 6 & 2 \\ 1 & 7 & 4 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 7 \\ 3 & 9 & 5 \\ 0 & 3 & 4 \end{bmatrix}$$

2. The product of matrices

(a)
$$\begin{bmatrix} 2 & 1 & 0 \\ 4 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 1 & 3 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 7 & 6 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 1 & 7 & 4 & 2 & 6 \\ 2 & 1 & 1 & 1 & 9 \\ 100 & 99 & 98 & 97 & 96 \\ 0 & 10 & 5 & 2 & 1 \\ 10 & 1 & 19 & 28 & 33 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 97 \\ 2 \\ 28 \end{bmatrix}$$

3. The transpose of the matrix

$$\begin{bmatrix} 1 & 2 \\ 0 & 6 \\ 3 & 2 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 6 & 2 \end{bmatrix}$$

4. Find the inverse of the following matrices where possible. If it is impossible, say why it is impossible.

(a)
$$\begin{bmatrix} 1 & 3 & 5 \\ 8 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -0.1 & 0.1 & 0.3 \\ -0.3 & -0.2 & 1.9 \\ 0.4 & 0.1 & -1.2 \end{bmatrix}$$

- (b) This is impossible because the determinant of the matrix is 0.
- 5. (a) $[7 \ 0] = 3 \cdot [3 \ 1] + (-1) \cdot [2 \ 3]$
 - (b) $\{\begin{bmatrix}3&1\end{bmatrix},\begin{bmatrix}2&3\end{bmatrix}\}$ is a basis of a vector space which contains the vector $\begin{bmatrix}7&0\end{bmatrix}$. We can represent $\begin{bmatrix}7&0\end{bmatrix}$ in the space as $3\cdot\begin{bmatrix}3&1\end{bmatrix}+(-1)\cdot\begin{bmatrix}2&3\end{bmatrix}$.
 - (c) The vector representing the coefficients of the linear combinations of $\begin{bmatrix} 7 & 0 \end{bmatrix}$ in terms of $\begin{bmatrix} 3 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 3 \end{bmatrix}$ is

$$\begin{bmatrix} 7 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -1 \end{bmatrix}$$

Problem 6

Figure 1: $1 + \sqrt{3}$ in polar coordinates

- 1. Magnitude of $1 + \sqrt{3}i$ is $\sqrt{1^2 + \sqrt{3}^2} = 2$ and the angle is $\tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}$.
- 2. The complex conjugate of 3 + 2i is 3 2i, by definition.

3. The reciprocal of 3 + 2i is $\frac{1}{3+2i} \cdot \frac{3-2i}{3-2i} = \frac{3-2i}{3^2+2^2} = \frac{3}{13} - \frac{2i}{13}$

Figure 2: 3 + 2i and its reciprocal and conjugate

- 4. Given two complex numbers (r_1, θ_1) and (r_2, θ_2) , the product of both numbers is $(r_1 \cdot r_2, \theta_1 \cdot \theta_2)$.
- 5. The k-th power of the complex number (r, θ) is $(r^k, k\theta)$.
- 6. Solving for $z^6 = 1$: suppose that $z = (r, \theta)$, then

$$(r^6, 6\theta) = (1, 0 \mod 2\pi)$$

That is, $r^6 = 1$ and $6\theta = 0 \mod 2\pi$. Therefore, r = 1 and $\theta = \frac{2\pi k}{6} = \frac{\pi k}{3}$ for $k = 0, 1, \dots, 5$. Therefore, all complex numbers whose 6th power is 1 are $z = (r, \pi k/3)$ for $k = 0, 1, \dots, 5$.