PROGRAMMABLE LOGIC DEVICES

Fig. 7-13 Basic Configuration of Three PLDs

Fig. 7-9 ROM Block Diagram

Programmable logic devices

- Building circuits with decoders is so easy that programmable logic devices are often based around decoders.
- The diagram below shows a blank read-only memory, or ROM, device.
 - It's just a decoder whose outputs may be sent to several OR gates.
 - The connections between the decoder outputs and the OR gate inputs are "programmable," so different functions can be implemented.
- To program a ROM for some specific functions, you just have to make the right connections.

ROM example

- Here are three functions V2, V1 and V0, implemented with our ROM.
- Blue crosses (X) indicate connections between decoder outputs and OR gates. Empty intersections are not connected.
- This is an 8 × 3 ROM since there are 8 decoder outputs and 3 OR gates.

(b) Array logic symbol

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate

The same example again

 Here is an alternative presentation of the same 8 × 3 ROM, but with some simplified OR gates just to make the diagram neater.

Why is this called a memory?

- You can think of this circuit as performing a computation on the inputs A2A1A0, to produce the outputs V2V1V0.
- Note that if the same inputs are chosen again, this circuit would perform the same calculation again, and produce the same output.
- In a sense, the circuit "remembers" the output for each possible input.

A2	A1	A0	V2	V1	V0
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	0	1	1

Viewing circuits as memories

- So you can also think of this circuit as a memory.
 - It stores eight values of data, each consisting of three bits V2V1V0.
 - A2A1A0 form an address that refers to one of the eight stored values.
- This memory is read-only since you can't modify the data without going through the time-consuming process of re-programming the ROM.

Α	Address			Data	
A2	A1	A0	V2	V1	V0
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	0	1	1

Fig. 7-12 ROM Implementation of Example 7-1

Programmable logic arrays

- A ROM is potentially inefficient since it uses a decoder, which generates all possible minterms. No circuit minimization is done.
- Using a ROM to implement an n-input function requires many gates.
 - An n-to-2 n decoder has n inverters and 2 n n-input AND gates.
 - We also need an OR gate with up to 2ⁿ inputs.
 - The number of gates roughly doubles for each additional ROM input.
- A programmable logic array or PLA makes the decoder part of the ROM programmable too. Instead of generating all possible minterms, you can choose which products (not necessarily minterms) to generate.

A blank $3 \times 4 \times 3$ PLA

- This is a 3 × 4 × 3 PLA (3 inputs, up to 4 product terms, and 3 outputs), ready to be programmed.
- The left part of this diagram replaces the decoder used in a ROM.
- Connections are made within the AND array to produce four arbitrary products.
- Those products are then summed in the OR array.

Regular K-map minimization

- The normal K-map approach is to minimize the number of product terms for each individual function.
- For our three sample functions, this would result in a total of six different product terms.

$$V2 = \Sigma m(1,2,3,4)$$

$$V1 = \Sigma m(2,6,7)$$

$$V1 = \Sigma m(2,6,7)$$

$$V0 = \Sigma m(4,6,7)$$

$$V2 = xy'z' + x'z + x'y$$

$$V1 = yz' + xy$$

$$V0 = xz' + xy$$

PLA minimization

- But for a PLA, what we really want is to minimize the number of product terms in all of the functions.
- We could express V2, V1 and V0 with just four total products instead.

V2 =
$$\Sigma m(1,2,3,4)$$

V1 = $\Sigma m(2,6,7)$

$$V0 = \Sigma m(4,6,7)$$

V2 = x	y'z' +	x'z +	x'yz'
--------	--------	-------	-------

$$V1 = x'yz' + xy$$

$$V0 = xy'z' + xy$$

PLA example

So we can implement these three functions using a 3 × 4 × 3 PLA.

PLA Example

Implement the two functions:

$$F1=\Sigma(0,1,2,4)$$

$$F2 = \Sigma(0,5,6,7)$$

Using a PLA of size 3x4x2

	PLA programming table						
		Outputs					
	Product		(C)	(T)			
	term	A B C	F_1	F_2			
AB	1	1 1 -	1	1			
AC	2	1 – 1	1	1			
BC	3	- 1 1	1	_			
A'B'C'	4	0 0 0	_	1			

Fig. 7-15 Solution to Example 7-2

Fig. 7-14 PLA with 3 Inputs, 4 Product Terms, and 2 Outputs

PLA evaluation

- A k × m × n PLA can implement as many as n functions of k inputs, each
 of which must be expressible with no more than m product terms.
- Unlike ROMs, PLAs allow you to choose which products are generated.
 - This can significantly reduce the fan-in (number of inputs) of gates, as well as the total number of gates.
 - However, a PLA is less general than a ROM. Not every function may be expressible with the limited number of AND gates in a given PLA.
- You can think of PLAs as memories too.
 - A $k \times m \times n$ PLA has k "address" lines, and each of those 2^k addresses references an n-bit data value.
 - But again, not all possible data values can be stored.

PROGRAMMABLE ARRAY LOGIC

Programmable Array Logic (PAL)

- OR plane (array) is fixed, AND plane can be programmed
- Less flexible than PLA
- # of product terms available per function (OR outputs) is limited

PAL Example

PAL-based circuit implementation

$$W = AB'C' + CD$$

 $X = A'BC' + A'CD + ACD' + BCD$
 $Y = A'CD + ACD + A'BD$

Can we implement more complex functions using PALs?

• Yes, by allowing output lines to also serve as input lines in the AND plane.

Example

- Implement the combinational circuit described by the following equations, using a PAL with 4 inputs, 4 outputs, and 3-wide AND-OR structure.
 - $-W(A,B,C,D) = \sum m(2,12,13)$
 - $-X(A,B,C,D) = \sum m(7,8,9,10,11,12,13,14,15)$
 - $Y(A,B,C,D) = \sum m(0,2,3,4,5,6,7,8,10,11,15)$
 - $-Z(A,B,C,D) = \sum m(1,2,8,12,13)$

Example (cont.)

- Use function simplification techniques to derive:
 - -W = ABC' + A'B'CD'
 - -X = A + BCD
 - Y=A'B+CD+B'D'
 - Z=ABC'+A'B'CD'+AC'D'+A'B'C'D = W + AC'D'+A'B'C'D

Example (cont.)

Example (cont.)

Tabular Form Specification of interconnection programming

Product term	AND Inputs						
	A	В	С	D	w	Outputs	
1	1	1	0	9_8	92	$W = AB\overline{C}$	
2	0	0	1	0	63-38	$+\overline{A}\overline{B}C$	
3	-	-	_	 0) 01		
4	1	82—23	_	<u>(4—</u> 3);	-	X = A	
5 6	2 2-2 8	1	1	1	5 5	+BCD	
6	-	13 3	_	 23	9 1 - 1 59		
7	0	1	_	81_ 8	-	$Y = \overline{A}B$	
8	3 <u>5—8</u> 3	<u> </u>	1	1	<u>3—2</u> 7	+ CD	
9	8-8	0	_	0	63-38	$+\overline{B}\overline{D}$	
10	8 1 1 1	(s -1s)		-	1	z = w	
1 1	1	-	0	0	_	$+A\overline{C}i$	
12	0	0	0	0 1		$+\overline{A}\overline{B}\overline{C}$	

Implement the functions given below Using a PLA

• F1 (a,b,c) =
$$\sum$$
 (6,7)

• F2 (a,b,c) =
$$\sum$$
 (4,5,7)

• F3 (a,b,c) =
$$\sum$$
 (3,5)

• F4 (a,b,c) =
$$\sum$$
 (2,6)