

Laboratorio de Microprocesadores - 86.07

# Timers

| Profesor:                     |          |        | Ing. Guillermo Campiglio                       |  |  |  |  |  |  |  |
|-------------------------------|----------|--------|------------------------------------------------|--|--|--|--|--|--|--|
| Cuatrimestre/Año:             |          |        | 1°/2020                                        |  |  |  |  |  |  |  |
| Turno de las clases prácticas |          |        | Miercoles 19 hs                                |  |  |  |  |  |  |  |
| Jefe de trabajos prácticos:   |          |        | Pedro Ignacio Martos                           |  |  |  |  |  |  |  |
| Docente guía:                 |          |        | Pedro Martos, Fabricio Baglivo, Fernando Pucci |  |  |  |  |  |  |  |
|                               |          |        |                                                |  |  |  |  |  |  |  |
| Autores                       |          |        | Seguimiento del proyecto                       |  |  |  |  |  |  |  |
| Nombre                        | Apellido | Padrón |                                                |  |  |  |  |  |  |  |
| Leonel                        | Mendoza  | 101153 |                                                |  |  |  |  |  |  |  |

| Observaciones: |  |  |  |  |
|----------------|--|--|--|--|
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |

| Fecha | ı de aprob | oación | Firma J.T.P |  |  |  |
|-------|------------|--------|-------------|--|--|--|
|       |            |        |             |  |  |  |

| Coloquio       |  |  |  |  |
|----------------|--|--|--|--|
| Nota final     |  |  |  |  |
| Firma profesor |  |  |  |  |



### 1. Objetivo

El objetivo de este trabajo es manejar los registros de timers, generar interrupciones con eventos del timer, manejo de antirrebote de teclas.

#### 2. Descripción

Se pide hacer un programa que haga parpadear el LED conectado al PB0, en 3 frecuencias distintas o que lo deje ENCENDIDO FIJO, según los valores que haya en las entradas PD0 PD1 según se indica en la siguiente tabla:

| PD0 | PD1 | Estado del LED                  |
|-----|-----|---------------------------------|
| 0   | 0   | Encendido fijo                  |
| 0   | 1   | Parpadea con prescaler CLK/64   |
| 1   | 0   | Parpadea con prescaler CLK/256  |
| 1   | 1   | Parpadea con prescaler CLK/1024 |

Nota: si alguien presiona las teclas mientras está funcionando el micro, los leds deberán cambiar acorde a la tabla. Para resolver esta práctica usarán el Timer1, interrupción por OVERFLOW.

Cuando el LED esté ENCENDIDO FIJO el timer estará apagado.

En los otros 3 casos, el timer contará los pulsos de clock divididos por prescaler 64, 256 y 1024 respectivamente. Cuando se produce un overflow (desborde) deberán cambiar el estado del LED, es decir, si está prendido lo apagan y viceversa.

Calcular la frecuencia o periodo con que se prenderá el LED en los 3 casos, teniendo en cuenta que la frecuencia de un Arduino es de 16 MHz.

En las entradas PD0, PD1 están conectados 2 pulsadores, que como cualquier tecla produce rebotes al ser presionada. Implementar rutinas antirrebote para detectar correctamente las teclas.

#### 3. Diagrama en bloques





## 4. Esquemático



Figura 1: Esquemático del circuito

## 5. Listado de componentes

- Microcontrolador *ATmega328p* y programador USBasp (Arduino UNO) [AR\$ 950]
- 1x LED [AR\$ 10]
- $\blacksquare$  3x Resistencia (220  $\Omega)$  [AR\$ 12]
- $\blacksquare$  1x Pulsador (10  $k\Omega)$  [AR\$ 15]

## 6. Diagrama de Flujo





## 7. Código de programa

```
.include "m328pdef.inc"
; * * * * * * * *
   START MACROS
 * * * * * * * * *
.MACRO SET_SP ; [auxGPR]
    LDI @0, low (RAMEND)
    OUT SPL, @0
    LDI @0, high (RAMEND)
    OUT SPH, @0
.ENDM
.MACRO SET_X ; [LABEL to data memory]
    LDI XL, low(@0)
    LDI XH, high (@0)
.ENDM
.MACRO SET_Y ; [LABEL to data memory]
    LDI YL, low (@0)
    LDI YH, high (@0)
.ENDM
.MACRO SET_Z ; [LABEL to prog memory]
    LDI \ ZL \,, \ low \,(@0 << 1)
    LDI ZH, high (@0 << 1)
.ENDM
   END MACROS
; * * * * * * * * *
.DEF aux = R16
.EQU modeFIX = 0
.EQU \mod 64 = 1
.EQU mode256 = 2
.EQU mode1024 = 3
. CSEG
    .ORG 0X0000
                                  ; En esta direccion escribo la instruccion JMP conf
    JMP conf
    .ORG OVF1addr
    JMP isr_toggle
                                  ; interrupcion del overflow de timer
    .ORG INT_VECTORS_SIZE
                                  ; Direccion donde escribir el codigo
conf:
```

Mendoza, Leonel



```
SET\_SP
             aux
    LDI
              aux, 0x01
    OUT
             DDRB, aux
    CLR
              aux
    OUT
             PORTB, aux
    OUT
             DDRD, aux
    LDI
                           ; compare A & B disabled, WGM11/10 normal
             aux, 0
    STS
             TCCR1A, aux
    LDI
              aux, 0
                           ; Input Capture Noise Cancel 0, Input Capture Edge 0,
    STS
             TCCR1B, aux ; WGM13/12 normal, CS no clock source
    LDI
                         ; Input Capture Int disabled, Compares Int disabled,
    STS
             TIMSK1, aux; Overflow int enabled
    SEI
main:
    IN
              aux, PIND
    ANDI
              aux, 0x03
    CPI
              aux, modeFIX
    BREQ
              mfix
    \operatorname{CPI}
              aux, mode64
    BREQ
             m64
    CPI
              aux, mode256
              m256
    BREQ
    CPI
              aux, mode1024
    BREQ
              m1024
         Delay de 5 ms para evitar pulsos espurios del pulsador
             R18, 104
    LDI
    LDI
             R19, 229
L1: DEC
             R19
    BRNE
              L1
    DEC
              R18
    BRNE
             L1
    RJMP
              main
mfix:
              \operatorname{aux}\,,\ \operatorname{TCCR1B}
    LDS
              \mathrm{aux}\,,\ 0\,\mathrm{b}11111000
                                     ; mask TCCR1B
    ANDI
    STS
             TCCR1B, aux
    SBI
             PORTB, PB0
    RJMP
              main
m64:
              aux, TCCR1B
    LDS
    ANDI
              aux, 0b111111000
                                     ; mask TCCR1B
    ORI
              aux, 0b00000011
                                     ;CS presc 64 (011)
    STS
             TCCR1B, aux
    RJMP
              main
m256:
    LDS
              aux, TCCR1B
    ANDI
              aux, 0b111111000
                                     ; mask TCCR1B
    ORI
              aux, 0b00000100
                                     ;CS presc 256 (100)
    STS
             TCCR1B, aux
    RJMP
              _{\mathrm{main}}
```



```
m1024:
    LDS
             aux, TCCR1B
    ANDI
             aux, 0b111111000
                                   ; mask TCCR1B
    ORI
             aux, 0b00000101
                                   ;CS presc 1024 (101)
    STS
             TCCR1B, aux
    RJMP
             main
isr_toggle:
             PORTB, PB0
    SBIC
    RJMP
             led_off
    SBI
             PORTB, PB0
end:
    RETI
led_off:
    CBI
             PORTB, PB0
    RJMP
             end
```

#### 8. Resultados

Se logro controlar la frecuencia de parpadeo del LED mediante uso de timers, fue necesario cambiar las resistencias de  $10~k\Omega$  por otras de  $220~\Omega$ , ya que presentaban una caída de tensión considerable y no se leían los valores de tensión esperados (LOW). En el caso de PDO (Rx), la tensión en el pin era de 4,45~V cuando se esperaba una tensión de OV, esto indica que la corriente que sale del pin es de  $I_o = \frac{4,45}{10k}~A = 445~\mu A$ . De la misma forma en PD1 (Tx), la tensión medida fue de 1,04~V, con una corriente de  $I_o = 104~\mu A$ . Una posible explicación luego de consultar con los profesores del curso es que **estaba siendo alimentado mediante el puerto serie** y este esta conectado al programador y directamente a Tx y Rx, y probablemente sea **necesario garantizar esa corriente en los pines**.

#### 9. Conclusiones

Mediante la configuración de los timers, se pudo variar la frecuencia de parpadeo de un LED. Además se observó que al alimentar el arduino mediante USB, los pines Tx y Rx tienen comportamientos que dependen del programador (otro ATmega dentro del arduino que se encarga de programar el microcontrolador) y seria recomendable no usarlos si se quiere probar codigo mediante alimentacion USB.