$$\int \frac{1}{x^2 + 2x - 24} \, dx$$

Solution

Since the denominator of $\frac{1}{x^2 + 2x - 24}$ factors as $x^2 + 2x - 24 = (x+6)(x-4)$, we set up a partial fraction decomposition:

$$\frac{1}{x^2 + 2x - 24} = \frac{A}{x+6} + \frac{B}{x-4}.$$

Multiply both sides by (x+6)(x-4) to get

$$1 = A(x-4) + B(x+6)$$

- Using the equation above, substituting x = 4, we have 1 = 0 + B(4 + 6), and see that $B = \frac{1}{10}$.
- Reusing the above equation, substituting x = -6, we get $A = -\frac{1}{10}$.

So

$$\frac{1}{x^2 + 2x - 24} = \frac{1}{10} \frac{1}{x - 4} - \frac{1}{10} \frac{1}{x + 6}.$$

Based on all the algebra above,

$$\int \frac{1}{x^2 + 2x - 24} dx = \int \left(\frac{1}{10} \frac{1}{x - 4} - \frac{1}{10} \frac{1}{x + 6} \right) dx$$
$$= \frac{1}{10} \ln|x - 4| - \frac{1}{10} \ln|x + 6| + C,$$

where each of the integrals is evaluated using substitution (either u = x - 4 or u = x + 6).