1 Vector Calculus

Below, $\mathbf{x} \in \mathbb{R}^d$ means that \mathbf{x} is a $d \times 1$ (column) vector with real-valued entries. Likewise, $\mathbf{A} \in \mathbb{R}^{d \times d}$ means that \mathbf{A} is a $d \times d$ matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$. In the following questions, $\frac{\partial}{\partial \mathbf{x}}$ denotes the derivative with respect to \mathbf{x} , while $\nabla_{\mathbf{x}}$ denote the gradient with respect to \mathbf{x} . Compute the following:

(a)
$$\frac{\partial \mathbf{w}^T \mathbf{x}}{\partial \mathbf{x}}$$
 and $\nabla_{\mathbf{x}} (\mathbf{w}^T \mathbf{x})$

(b)
$$\frac{\partial (\mathbf{w}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$
 and $\nabla_{\mathbf{x}} (\mathbf{w}^T \mathbf{A} \mathbf{x})$

(c)
$$\frac{\partial (\mathbf{w}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{w}}$$
 and $\nabla_{\mathbf{w}} (\mathbf{w}^T \mathbf{A} \mathbf{x})$

(d)
$$\frac{\partial (\mathbf{w}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{A}}$$
 and $\nabla_{\mathbf{A}} (\mathbf{w}^T \mathbf{A} \mathbf{x})$

(e)
$$\frac{\partial (\mathbf{x}^T \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$
 and $\nabla_{\mathbf{x}} (\mathbf{x}^T \mathbf{A} \mathbf{x})$

(f)
$$\nabla_{\mathbf{x}}^2(\mathbf{x}^T \mathbf{A} \mathbf{x})$$

2 Eigenvalues

- (a) Let **A** be an invertible matrix. Show that if **v** is an eigenvector of **A** with eigenvalue λ , then it is also an eigenvector of \mathbf{A}^{-1} with eigenvalue λ^{-1} .
- (b) A square and symmetric matrix **A** is said to be positive semidefinite (PSD) ($\mathbf{A} \succeq 0$) if $\forall \mathbf{v} \neq 0$, $\mathbf{v}^T \mathbf{A} \mathbf{v} \geq 0$. Show that **A** is PSD if and only if all of its eigenvalues are nonnegative.

Hint: Use the eigendecomposition of the matrix A.

Spring 2018

1 Trace Derivatives

- (a) Let **P** be a $p \times q$ matrix and **Q** be a $q \times p$ matrix. Compute $\frac{\partial \text{trace}(\mathbf{PQ})}{\partial \mathbf{P}}$.
- (b) Let **P** be a $p \times q$ matrix and **Q** be a $q \times q$ matrix. Compute $\frac{\partial \operatorname{trace}(\mathbf{PQP}^{\top})}{\partial \mathbf{P}}$ at $\mathbf{P} = \mathbf{U}$.

2 Unitary invariance

- (a) Prove that the regular Euclidean norm (also called the ℓ^2 -norm) is unitary invariant; in other words, the ℓ^2 -norm of a vector is the same, regardless of how you apply a rigid linear transformation to the vector (i.e., rotate or reflect). Note that rigid linear transformation of a vector $\mathbf{v} \in \mathbb{R}^d$ means multiplying by an orthogonal $\mathbf{U} \in \mathbb{R}^{d \times d}$.
- (b) Now show that the Frobenius norm of matrix \mathbf{A} is unitary invariant. The Frobenius norm is defined as $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2} = \sqrt{tr(\mathbf{A}^\top \mathbf{A})}$.
- 3 Least Squares (using vector calculus)
 - (a) In ordinary least-squares linear regression, we typically have n > d so that there is no w such that $\mathbf{X}\mathbf{w} = \mathbf{y}$ (these are typically overdetermined systems too many equations given the number of unknowns). Hence, we need to find an approximate solution to this problem. The residual vector will be $\mathbf{r} = \mathbf{X}\mathbf{w} \mathbf{y}$ and we want to make it as small as possible. The most common case is to measure the residual error with the standard Euclidean ℓ^2 -norm. So the problem becomes:

$$\min_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

Where $\mathbf{X} \in \mathbf{R}^{n \times d}$, $\mathbf{w} \in \mathbf{R}^d$, $\mathbf{y} \in \mathbf{R}^n$. Derive using vector calculus an expression for an optimal estimate for \mathbf{w} for this problem assuming \mathbf{X} is full rank.

- (b) How do we know that $\mathbf{X}^{\top}\mathbf{X}$ is invertible?
- (c) What should we do if **X** is not full rank?