

MODERN SCIENCE ACADEMY CHATHA BAKHTAWAR, ISLAMABAD

18. "ATOMIC AND NULEAR PHYSICS"

Sr.	Statements	Α	В	С	D
1	Isotopes are atoms of same element with different:	atomic mass	atomic number	protons	electrons
2	One of the isotopes of uranium is $^{238}_{92}$ U. The	92	146	238	330
	number of neutrons in this isotopes are:				
3	Which among the following radiation has more	beta particle	alpha particle	gamma ray	all have same
	penetrating power?				penetration
4	What happens to the atomic number of an element	increases by 1	stays the same	decreases by 2	decreases by
_	which emits one alpha particle?	1 16			1
5	The half-life of a certain isotope is 1 day. What is	one half	one quarter	one eighth	none of these
6	the quantity of the isotope after 2 days? When Uranium (92 protons) ejects a beta particle,	20 protons	00 protons	O1 protons	02 protons
0	how many protons are left in the nucleus?	89 protons	90 protons	91 protons	93 protons
7	Release of energy by sun is due to:	nuclear	nuclear	burning of	chemical
'	Release of energy by suff is due to.	fission	fusion	gases	reaction
8	When a heavy nucleus splits into two lighter nuclei,	release nuclear	absorb nuclear	release	absorb
	the process would:	energy	energy	chemical	chemical
		67	67	energy	energy
9	Proton is heavier than electron:	1636 times	1736 times	1836 times	1936 times
10	Atomic mass number can be found by relation:	Z-A	A+N	Z+N	Z+A
11	The number of neutrons in tritium is:	0	1	2	3
12	Number of isotopes of hydrogen:	1	2	3	4
13	A helium nuclei formed if hydrogen atoms	1	2	3	4
	combine?				
14	Beta particle is actually:	neutron	positron	electron	proton
15	Alpha particles are:	electrons	protons	neutrons	helium nuclei
16	Radiations present in atmosphere due to different	cosmic	background	alpha	beta
	radioactive substances are called:	radiations	radiations	radiations	radiations
17	In α-decay, decrease in atomic no & mass no	2,1	4,2	2,2	2,4
18	Safe limit of radiation in exposure is per year.	4 rem	6 rem	5 rem	3 rem
19	α-particles passing through a gas produce:	evaporation	ionization	excitation	all of these
20	The rays used during brain radio therapy are:	alpha	beta	gamma	X-rays
21	Number of neutrons in plutonium $\frac{242}{92}$ Pu ?	92	142	150	242
22	To diagnose the brain-tumor, it is used:	Iodine-131	Phosphorus-32	Cobalt-60	Carbon-14
23	Which one of the three decay processes results in a	only α	only β	only γ	α and β
	new element?	10 .	0 .	0 .	
24	During fission of 1 kg of U-235, energy released is:	67×10 ¹⁰ J	65×10 ⁸ J	60×10 ⁸ J	66×10 ⁹ J
25	No. of neutrons during emission of fission reaction:	2	3	4	5
26	What type of nuclear decay leaves the number of	alpha decay	beta decay	gamma decay	both A & B
27	protons and neutrons unchanged?	alaba dasay	hata dagay	gamma dagay	both B & C
27	What type of nuclear decay most often produces the greatest mass and charge loss?	alpha decay	beta decay	gamma decay	שמוווטע
28					
20	²¹⁴ Po undergoes α-decay to produce a	²¹¹ ₈₂ Pb	²¹⁵ ₈₀ Hg	²¹¹ TI	²¹² Bi
	daughter nucleus that itself undergoes β-decay	82 1 5	80 ' ' 8	81	83
	Which one of the following nuclei is the one				
	that ultimately results?				
29	Radium-226 decays by emitting alpha particle.	Rd	Rn	Bi	Pb
	What is the daughter nucleus?				

Contact Number: 0321-1156826 Manan Nasir (PIEAS)

30	The temperature of sun is:	20million Kelvin	2 million Kelvin	2 million Kelvin	None
31	³⁹ ₁₈ Ar is an isotope with a half-life of 269 years.	134.5 min	134.5 years	269 min	269 years
	It will reduce to half in:				
32	A sample starts with 1000 radioactive atoms. How many half-lives have elapsed when 750 atoms have decayed?	0.25	1.5	2.0	2.5
33	Origin of energy from the sun and stars is:	fission	fusion	carbon dating	radioactivity
34	One of the isotopes of uranium is U-239 having atomic number 92. Its nucleon number is:	239	331	92	147
35	When β-rays are emitted, the nuclear mass:	decreases by 4 units	does not change	increases by 2 units	increases by 1 unit
36	Which particle has large range in air?	α-particles	β-particles	γ-particles	neutrons
37	Gamma rays from cobalt-60 are used for the treatment of:	circulation of blood	cancer	heart attack	thyroid glands
38	Which of these will be absorbed by the paper?	α-particles	β-particles	γ-particles	neutrons
39	If half-life of a radioactive element is one year, percentage of sample decay after two years is:	50%	75%	25%	2%
40	The ionization power of α-particles is:	equal to β-particle	equal to γ-particle	greater than β-particle	less than β-particle
41	In the reaction $X + {}^{17}_{8}O \rightarrow {}^{14}_{7}N + {}^{4}_{2}He, X$ is?	1 ₁ H	² ₁ H	${}^{1}_{0}$ n	_1e

"Important Short Questions"

- 1) What is the difference between atomic number and atomic mass number?
- 2) Define isotopes. Also write the names of isotopes of Hydrogen.
- 3) What is common in isotopes of an element and what is different in them?
- 4) Different isotopes of a given element have different masses but they have the same chemical properties. Explain why chemical properties are unaffected by a change of isotope.
- 5) The atomic number of one particular isotope is equal to its mass number. Which isotope is it?
- 6) What do you mean by term radioactivity? Why some elements are radioactive but some are not?
- 7) What is the unit of radioactivity?
- 8) What are the properties of radiation which are emitted from radioactive elements?
- 9) What are cosmic radiations?
- 10) How can you make radioactive elements artificially? Describe with a suitable example.
- 11) Define nuclear transmutation?
- 12) Which is more likely to expose, a film kept in a cardboard box, α particles or β -particles?
- 13) Write the alpha decay process of $\frac{234}{91}$ Pa.
- 14) It is possible for a form of heavy hydrogen to decay by emitting an alpha particle? Explain.
- 15) It happens that a nuclear radiation emits from an atom of an element, it moves one step ahead in the periodic table? Explain. **OR** Can atomic number increase during nuclear decay? Justify with example.
- 16) β -particle is emitted from the neutron of the nucleus. Write nuclear equation for this reaction.
- 17) Why range of β -particle is greater than α -particle in air with same energy?
- 18) Why ionization power of α -particle is greater than β -particle in solid with same energy?
- 19) What is meant by penetration power? Which rays have highest penetration?
- 20) What do you understand by half-life of a radioactive element?
- 21) What fraction of a radioactive sample has decayed after two half-lives have elapsed?
- 22) What is difference between stable and unstable nuclei?
- 23) Justify that radioactivity is a spontaneous process.
- 24) What is meant by background radiations? Enlist some sources of background radiations.
- 25) Describe two uses of radio-isotopes in medicine, industry or research.
- 26) What do you mean by carbon dating? How can the scientist estimate died tree age by C-14?
- 27) Can Carbon-14 dating give the age of fossil dinosaur skeletons? Explain.

- 28) What are common radiation hazards? Briefly describe the precautions to prevent from them.
- 29) Is it possible for an element to have different types of atoms? Explain.
- 30) Which nuclear reaction would release more energy?
- 31) Define controlled chain reaction.
- 32) What is the difference between fission and fusion reaction?
- 33) Why is energy released when lighter nuclei fuse with heavier nuclei?
- 34) What is meant by radioactive tracers? How these are useful?
- 35) Which has more penetration power, alpha particle or gamma ray photon?
- 36) Some food is treated with gamma radiation to kill bacteria. Why is there not a concern that people who eat such food might be consuming food containing gamma radiation?
- 37) Radioactive α emitters are relatively harmless outside the body, but can be dangerous if ingested or inhaled. Explain.
- 38) What is the difference between natural and artificial radioactivity?
- 39) Why nuclei of atoms with atomic number greater than 82 emit radiations?
- 40) If nuclear radiation is harmful, how it can be used for treatment of diseases?
- 41) How long would likely have to wait to watch any sample of radioactive atoms completely decay?
- 42) How much of a 1g sample of pure radioactive matter would be left un-decayed after four half-lives? **OR** What fraction of a radioactive element will be left after 4 half-lives have elapsed?
- 43) In the nuclear reaction ${}^A_ZX + {}^4_2He \rightarrow {}^{A+3}_{Z+2}Y + W$, what particle does W denote?
- 44) When a nucleus $^{238}_{92}$ U absorbs a slow neutron, it subsequently emits two α -particles. What is the resulting element?

"Important Long Questions"

- 1) Write applications of radioisotopes in medicine, industry and agriculture.
- 2) What do you understand by half-life of a radioactive element? Explain by graph.
- 3) What is nuclear transmutations? Discuss nuclear decays in detail.
- 4) What is nuclear fission and nuclear fusion?
- 5) What are hazards and safety measures of radiation?

Contact Number: 0321-1156826 Manan Nasir (PIEAS)