

Data Sheet Issue 04/2013

BYK-1791

Aromatic-free, polymer-based defoamer (silicone-free) for radiation curing systems (wood and industrial coatings, printing inks and adhesives) that has a spontaneous defoaming effect as well as high transparency and low cratering tendency.

Product Data

Composition

Solution of foam-destroying polymers, silicone-free

Free from aromatic compounds

Typical Properties

The values indicated in this data sheet describe typical properties and do not constitute specification limits.

Density (68 °F): 6.69 lbs/US gal

Non-volatile matter (10 min., 302 °F): 40,5 % Solvents: Isoparaffins Flash point: 99 °F

Food Contact Legal Status

For the current food contact legal status, please contact our product safety department or visit www.byk.com for further information.

Applications

Coatings and Printing Inks

Special Features and Benefits

BYK-1791 has a spontaneous defoaming effect combined with high transparency and low cratering tendency. It is recommended for solvent-borne and solvent-free systems, particularly for radiation curing wood and industrial coatings, printing inks and overprint varnishes.

Recommended Levels

0.1-1.5 % additive (as supplied) based upon total formulation.

The above recommended levels can be used for orientation. Optimal dosage levels are determined through a series of laboratory tests.

Incorporation and Processing Instructions

Due to its high incompatibility, the defoamer must be incorporated at high shear forces (in the mill base) to ensure good distribution. Otherwise defects may occur in the system.

BYK-1791

Data Sheet Issue 04/2013

Adhesives & Sealants

Special Features and Benefits

BYK-1791 is recommended for the defoaming of solvent-free, radiation curing (UV and ESH) adhesives.

Recommended Levels

0.1-1.5 % additive (as supplied) based upon total formulation.

The above recommended levels can be used for orientation. Optimal levels are determined through a series of laboratory tests.

Incorporation and Processing Instructions

Due to its high incompatibility, the defoamer must be incorporated at high shear forces (in the mill base) to ensure good distribution. Otherwise defects may occur in the system.