Московский Государственный Университет

им. М.В. Ломоносова

Факультет Вычислительной Математики и Кибернетики. Кафедра Суперкомпьютеров и Квантовой Информатики.

Практикум на ЭВМ. Отчет №1: Однокубитные операции.

Постановка задачи.

Задание:

- 1. Реализовать параллельную программу на C++ с использованием MPI и OpenMP, которая выполняет квантовое преобразование n-Aдамар с зашумленными вентилями над вектором Адамар с зашумленными вентилями над вектором состояний длины 2 n , где n количество кубитов.
- 2. Протестировать программу на системе Polus.
- 3. Построить график распределения потерь точности 1-Адамар с зашумленными вентилями над вектором при фиксированной точности е = 0.01 для количества кубитов 24, 25, 26, 27, 28. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом.
- 4. Построить график распределения потерь точности 1-Адамар с зашумленными вентилями над вектором при фиксированном количестве кубитов n = 26 и различных значениях точности: e = 0.1, e = 0.01, e = 0.001. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом.

Формат командной строки:

< /main <n> <k> <mode (1-file \"in.bin\", 2-random)> <numtreads> <eps> <

Формат храненения данных:

Бинарный файл. Сначала инт(n) — количество кубитов, следующие 2^n комплексных чисел — элементы вектора. (комплексное число хранится в виде double re, double im).

Сборка:

make

Результаты.

Количество кубитов	Количество процессов	Количество потоков	Максимальное время работы процесса(сек)
28	1	1	96.2536
		2	58.1212
		4	38.3685
		8	27.3625
	2	1	96.6858

		2	57.6583
		4	35.2146
		8	26.3624
	4	1	48.6358
		2	27.9578
		4	21.8592
		8	16.388

Количество кубитов	Среднее значение потерь точности
24	0.00228469
25	0.002417933
26	0.0023615931833333337
27	0.00248576233
28	0.002467924466666665

Распределение 1 - F, 25 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 26 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 27 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 28 кубитов, 60 запусков, eps = 0.01

e	Среднее значение потерь точности
0.1	0.22779326666666666
0.01	0.0023615931833333337
0.001	2.6096928333333334e-05