Admitere * Universitatea Politehnica din București 2002 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Fie matricele $A=\left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$ și $B=\left(\begin{array}{cc} a & b \\ 0 & 2 \end{array}\right)$. Să se determine numerele reale a și b dacă AB=BA.
 - a) $a=2,\ b=0;$ b) $a=1,\ b=1;$ c) $a=-2,\ b=0;$ d) $a=2,\ b\in\mathbb{R};$ e) $a=2,\ b=2;$ f) $a\in\mathbb{R},\ b=0.$
- 2. Să se rezolve ecuația $9^x 4 \cdot 3^x + 3 = 0$.
 - a) 0; b) $\ln 3$; c) 1; d) 0 şi 1; e) -1; f) nu are soluții.
- 3. Să se calculeze $\int_0^1 \frac{x}{x^2 + 1} dx.$
 - a) 1; b) 2; c) 0; d) $\frac{1}{2} \ln 2$; e) -1; f) $\ln 2$.
- 4. Să se rezolve ecuația $\sqrt[3]{x} = x$.
 - a) 1; b) 0; c) 0, 1, i; d) 0, 1; e) 1, -1; f) 0, 1, -1.
- 5. Să se calculeze $C_6^4 + A_5^2$
 - a) 35; b) 102; c) 10; d) 15; e) 20; f) 25.
- 6. Să se determine abscisele punctelor de extrem local ale funcției $f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^3 3x$
 - a) 0, -1; b) 0, $\sqrt{3}$, $-\sqrt{3}$; c) 0; d) 1, -1; e) $\sqrt{3}$; f) 1.
- 7. Să se așeze în ordine crescătoare numerele 1, $\ln 2$, $\ln 3$, π .
 - a) $\ln 2$, 1, $\ln 3$, π ; b) 1, $\ln 2$, π , $\ln 3$; c) $\ln 2$, $\ln 3$, 1, π ;
 - d) 1, $\ln 3$, π , $\ln 2$; e) 1, $\ln 2$, $\ln 3$, π ; f) 1, π , $\ln 2$, $\ln 3$.
- 8. Să se determine m real dacă funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 2x + m, & x \leq 1 \\ m^2x + 2, & x > 1 \end{cases}$ este continuă pe \mathbb{R} .
 - a) 2; b) nu există; c) 0 și 1; d) -1; e) 1; f) 0.
- 9. Să se calculeze $\sqrt{a^2-b^2}$ pentru a=242,5 și b=46,5
 - a) 196; b) $\sqrt{46640}$; c) 240,75; d) 283; e) 238; f) 238,25.
- 10. Să se determine m real dacă ecuația $x^2 (m+3)x + m^2 = 0$ are două soluții reale și distincte.
 - a) $m \in (-\infty, 3)$; b) $m \in \mathbb{R}$; c) m = -3;
 - d) $m \in (3, \infty)$; e) $m \in (-\infty, -1)$; f) $m \in (-1, 3)$.
- 11. Fie funcția $f:(-1,\infty)\to\mathbb{R},\quad f(x)=x\cdot\ln(x+1).$ Să se calculeze f(1)+f'(0).
 - a) 0; b) $\ln 2$; c) 1; d) $1 + \ln 2$; e) ∞ ; f) $\ln 3$.
- 12. Să se determine m real dacă $m \cdot \int_{1}^{\sqrt{2}} e^{mx^2 + \ln x} dx = 1$.
 - a) $\ln 2$; b) 2; c) 4; d) $\ln \frac{1}{2}$; e) 1; f) 3.
- 13. Să se calculeze

$$\lim_{n \to \infty} \left(\frac{1^2}{n^3 + 1^2} + \frac{2^2}{n^3 + 2^2} + \dots + \frac{n^2}{n^3 + n^2} \right).$$

- a) nu există; b) 2; c) 1; d) 0; e) ∞ ; f) $\frac{1}{3}$.
- 14. Să se rezolve ecuația $\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = 0.$
 - a) $-\frac{1}{2}$, 1; b) $-\frac{1}{2}$; c) 0; d) 1; e) $\frac{1}{2}$, 1; f) $-\frac{1}{2}$, 0.

15. Să se calculeze
$$\lim_{x\to 3} \frac{x^3 - 5x^2 + 3x + 9}{x^3 - 4x^2 - 3x + 18}$$
.

a)
$$\frac{5}{3}$$
; b) $-\infty$; c) $\frac{4}{5}$; d) 0; e) $\frac{4}{3}$; f) $-\frac{3}{2}$.

16. Să se calculeze valoarea expresiei
$$E=\frac{x_2+x_3}{x_1}+\frac{x_1+x_3}{x_2}+\frac{x_1+x_2}{x_3}$$
, unde $x_1,\ x_2,\ x_3$ sunt soluțiile ecuației $x^3-6x^2+x+2=0$.

a)
$$-3$$
; b) -1 ; c) -6 ; d) 3; e) 0; f) 1.

$$\int_{-1}^{1} (x^2 - a - bx)^2 dx \text{ pentru } a, b \text{ reale.}$$

a)
$$\frac{8}{45}$$
; b) $\frac{1}{45}$; c) $\frac{4}{5}$; d) 1; e) 8; f) $\frac{5}{4}$.

18. Se consideră funcția
$$f:[0,\infty)\to\mathbb{R},\quad f(x)=\mathrm{e}^{\sqrt{x}}+\mathrm{e}^{-\sqrt{x}}.$$
 Să se calculeze

$$\lim_{n \to \infty} \lim_{x \searrow 0} f^{(n)}(x).$$

a) 2; b) 0; c) e; d) 1; e)
$$\frac{\mathrm{e}^2+1}{\mathrm{e}};$$
 f) nu există.