FIG. 1

EBV - Epstein-Barr virus

AHV - Alcelaphine herpesvirus

MHV - Murine herpesvirus 68

HVS - Herpesvirus saimiri

KSHV - Kaposi's sarcoma-associated herpesvirus

RRV - Rhesus rhadinovirus 17577

FIG. 2

Restriction Fragments of the RRV 17577 Genome

Bar	nHI	Eco	oRI	Hin	d III
fragment number	fragment size (bp)	fragment number	fragment size (bp)	fragment number	fragment size (bp)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	17189 15598 15441 12360 8943 7747 7718 7142 6667 6474 6333 3978 3411 3157 3008 2916 2210 1343	1 2 3 4 5 6 7 8 9 10 11. 12. 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	12476 10342 9565 9213 8465 8036 7969 7416 7278 7002 5400 5054 4907 4771 4272 4099 3516 2102 1858 1603 1512 1221 910 624 609 592 584 122 107	1° 2 3 4 5 6 7 8 9 10 11 12 13 14° 15 16 17 18 19	22006 17108 16542 14134 11516 10743 8452 5995 4679 3374 2963 2891 2849 2832 1599 1272 1016 853 811

^{*} Indicates that the fragment size excludes terminal repeat sequences

FIG. 3

99/831300 PCT/US99/26260

WO 00/28040

4/13

FIG. 4

MacVector Output for long unique region of rhesus rhadinovirus 17577

LCCUS §	LONG	UNICU	131634	BP	DS-DNA UPDATED 06/26/98
DEFINITIO	-	•			
ACCESSION	_			•	
REYWORDS	-		•		
SOURCE	-				
FEATURES					Description
. ಇಲ್ಲಾರ					Rl
ವಿಕವಿಗ				(CJ	Similar to HHV8 Orf 2 - dihydrofolate reductase
pept				ı	Similar to HEV8 Orf 4 - complement binding
	•				protein
pept	•			1	Similar to HAV8 Orf 6 - ssDNA binding protein
pept				1	Similar to HHV8 Orf 7 - transport protein
pept				1	Similar to HHV8 Orf 8 - glycoprotein 3
pept					Similar to HAV8 Orf 9 - DEA polymerase
pe pt					Similar to HWS Orf 10
ರ್ವಿ					Similar to HHV8 Orf 11
2¢ad					P2 virel II-6
2¢ad					Similar to FEV8 Orf 70
ರ್ವಿ				(CI	R3 similar to HW8 MP
frag					misc. feature MIP homology, but no initiation
					codon
±5¢					zebest sectionce
±pt				_	repeat sequence
pept				1	Similar to HEV8 Orf 15 - Exl-2 homolog
ည်ဧသင		•			Similar to MHV8 Orf 17 - capsid protein
ಶಿಕ್ರಾಕ				ı	Similar to HHV8 Orf 18
ರ್ವಾ				(CI	Similar to HAV8 Orf 19 - tegument protein
ည်ဧဘုင			•	(C1	Similar to HHV3 Orf 20
ಶೀಶರ				1	Similar to HAV8 Orf 21 - thymidine kinese
ಶಿಕಶಿಕ					Similar to HTV8 Orf 22 - glycoprotein H
ಶಿಕ್ರಾ					Similar to may 0 Orf 23
ಕಿಕ್ಕಾ				(CI	Similar to HRV8 Orf 24
ప ెం ప్				1	Similar to MRV8 Orf 25 - major capsid protein
ಶಿಕಶಿಭ					Similar to MHV8 Orf 25 - capsid protein
Debr.					Similar to HWW Orf 27
ာဧ၃င					Similar to MW8 Orf 28
pept					Similar to HAV8 Orf 295
pept		-			Similar to HHV8 Orf 30
bebs					Similar to HEV8 Orf 31
ಶಿಕಶಿಕ					Similar to HRV8 Orf 32 Similar to HRV8 Orf 33
ಶಿಕಶಿಕ					
್ಲ ಫಲ್ಫಾರ್					Similar to MW8 Orf 29a
ರ್ಭಾಗಿ				1	Similar to HAVE Orf 34
ಧೀಧರ				1	Similar to HAVE Orf.35
ဥဇ၃၃				1	Similar to MAV8 Orf 36 -kinase Similar to MAV8 Orf 37 - alkaline exomunicase
ဥဍေင					
ဥၔၣႄ				٤.	Similar to HAVE Orf 38
pept				(C7	Similar to HTV8 Orf 39 - glycoprotein H
2424				1	Similar to MANN Orf 40 - helicase - primese
ರ್ಧ					Similar to MAV8 Orf 41 - helicase - primase
၁ဇ၃၁				(CI	Similar to HAV8 Orf 42
pept				(C)	Similar to HAVE Orf 43 - capsid protein
- ಶಿಲ್ಲಾಕ	. •				Similar to merva Orf 44 - helicase -primese
pept				(Cl	Similar to MEVS Orf 45

09831000.050201 •••99/831300 PCT/US99/26260

FIG. 5

Comparison of Corresponding Repeats in RRV and KSHV

virus	insert name	total length	repeat unit length	G + C content
KSHV	frnk¹	332 bp 292 bp	20 bp 30 bp	80.1% 84.9%
RRV	syko¹	304 bp 1008 bp	26 bp 25 bp	53.3% 79.9%
KSHV	zppa¹	308 bp 244 bp	23 bp 23 bp	74.0% 77.9%
RRV	vrlgo ¹	405 bp 1029 bp	19 bp 32 bp	74.6% 84.4%
virus	insert name	total length	repeat unit length	G + A content
KSHV	mdsk	409 bp	2	75.4%
RRV	brds	196	13 bp	81.6%

¹ KSHV fmk and zppa and RRV syko and vrigo are tandem repeats.

² KSHV mdsk is a complex repeat with no defined unit length.

_	_	_
ι	٢	,
	_	
ľ	•)
_	Ξ	_
L	1	_

	,					<u>· · ·</u>	<u>5/13</u>				, —		·		_
	Rh R13								28.018	58.103 52.964		31.124 25.072		100.000	
	Rh R12							33.038	61.254 50.997	30,364 18,623	33.526 25.723	33.923 23.849	100.000		Alacat Alberta C
	Rh R11	29.972 21.849						50.773	35.693 23.849	28.216 21.577	32.951 23.496	100.000			BACKRANIUDIAN.
KSHVa	Rh R10	33,705 26,184					54.427		31.412 24.207	28.980 18.367	100.000				THE CHAIN THE PROPERTY OF
RRV and	Rh R9						29.918 22.131			100.000					WASOMANE ENERG
of Interferon regulatory elements coded by RRV and KSHVa	Rh RB	28.857 19,427					26.393 -19.062	34.513 26.254	100.000						CHIPERTON
lements	Rh R7	20.291 20.728						100.000							Partition Whom
julatory e	Rh R6	26.044 21.130					100.000 100.000								The state of the s
feron rec	KSHV K11				32.036 21.895	100.000									
n of Inter	KSHV K10.5				100.000 100.000										
Comparison	KSHV K10.1			100.000											
	KSHV K10		100.000 100.000												
	KSHV K9	100.000 100.000													
•			KSHV K9		KSHV K10.1	KSHV K10.5	KSHV K11	Rh R6	Rh R7	Rh R8	Rh R9	Rh R10	Rh R11	Rh R12	Rh R13

. Stank cells backasted na sinnlarity; upper number is percent similarity; lower number is percent Identity.

						•															:						
		Putative Function		Dihydrofolate reductase Complement binding protein		ssDNA binding protein	I ransport protein	Glycoprotein B	DIVA polymerase			Thymidylate synthase		Bcl-2 homolog	Capsid protein		Tegument protein	Caccial Acidian AF	Clycoprotein H			Major capsid protein	Capsid protein			Packaging protein	
		% -		54.8% 35.3%	38.6%	53.5%	47.7%	53.1%	62.5% 22.3%	25.5%	07:30	64.6%		21.4%	42.2%	48.8%	46.9%	35.6%	31.7%	%8.50 %8.60	46.8%	67.5%	58.2%	27.1%		62.9%	%6.68 39.9%
FIG. 7A Comparison of RRV, KSHV and HVS ORFs	HVS	% o		65.6% 42.0%	44.0%	65.2%	58.1%	62.4%	71.0%	33.0%	10.5 /o	72.1%		31.4%	49.0%	60.2%	55.5%	43.2%	39.0%	40.5%	56.3%	76.7%	69.1%	35.0%		74.4%	50.5%
		Size aa	i	187 360	287	1128	679	808	1009	40V	5	294		160	475	256	543	303	527	253	731	1371	304	280	93	387	75 208
		% -		46.0% 35.7%		63.3%	51.5%	65.5%	67.0%	34.8%	91.1%	66.1%	32.3%	46.0%	44.3%	28.0%	52.8%	44.7%	44.6%	40.1% 18 5%	58 7%	72.5%	64.3%	25.3%	26.5%	66.4%	38.2% 45.4%
Compar	KSHV	%im		55.1% 40.9%		71.3%	60.1%	73.3%	75.0%	43.5%	41.5%	72.1%	41.9%	58.0%	20.6%	68.1%	61.1%	51.8%	54.0%	50.1%	% 20.0% 80.0%	79.9%	71.8%	33.6%	30.1%	%9'.22	51.3% 56.0%
		Size aa		210 550		1133	695	845	1312	418	404	337	95	175	553	257	549	320	580	30	752	1376	305	290	102	351	77 224
		Size aa	423	188 645	ļ 1	1132	989	829	1014	384	409 207	333	115	187	536	299	547	350	557	40. 40.	402	1378	307	269	91	348	76 217
		Strand	+	• +		+	+	+	+	+	+ •	•	•	+	•	+	•	•	+	+	•	٠ +	+	+	+	•	+ +
:		ORF	R11	Orf 2	!	Orf 6	Orf 7	Orf 8	Orf 9	Orf 10	Orf 11 R21	Orf 70	R33	Orf 16	Off 17	Orf 18	Orf 19	Orf 20	Orf 21	Orf 22	57 50	Of 25	Orf 26	Orf 27	Orf 28	Orf 29b	Off 30

0		\sim
×/	1	ં-ઢ

							•	•	•
	Putative Function	Packaging protein	Kinase Alkaline exonuclease	Glycoprotein M Helicase-primase Helicase-primase	Capsid protein Helicase-primase	Uracil DNA glucosidase Glycoprotein L	Transactivator	dUTPase	DNA replication protein Immediate-early protein
	% -	34.1% 39.1% 49.8%	40.6% 37.4% 28.7% 53.2%	24:0% 57.0% 28.1% 29.1%	38.1% 56.6% 62.6%	59.1% 23.9% 25.8% 23.3%	21.6% 30.4% 28.0%	36.4% 44.4%	43.6% 31.5%
HVS	% v	43.2% 49.1% 57.8%	51.0% 38.4% 63.0%	39.1% 39.1% 37.3%	51.2% 66.4% 71.1%	67.5% 33.3% 34.1% 35.1%	29.7%	46.5% 52.5%	54.0% 40.3%
	Size aa	330 330 303 303	3-6 150 431 483	366 450 161	265 563 781 257	252 141 797 303	535 115 00	287 200	835 416
	% –	41.8% 42.1% 61.2%	46.3% 35.6% 46.1% 63.5%	59.3% 32.7% 26.0%	46.1% 61.6% 66.0% 24.9%	60.1% 27.7% 29.2% 54.2%	37.8% 45.4%	41.0% 55.2%	52.5% 47.1% 21.1% 20.7% 19.4%
KSHV	%im	49.9% 52.1% 66.7%	56.0% 72.4%	73.0% 42.2% 33.5%	56.8% 69.7% 73.9% 31.2%	71.9% 31.9% 36.2% 66.1%	46.6% 58.5%	48.6% 62.9%	61.2% 60.6% 26.0% 28.3% 28.9%
	Size aa	454 312 312	327 151 444 486	399 457 205	278 605 788 407	255 167 402 302	631 131 140	318 227	843 275
	Size aa	464 336 327	327 149 435 480	378 468 203	272 576 790 352	255 169 389 301	514 206 111 139	290 210	828 - 442 415 415 351
RRV	Strand	++++	+ + + + +	+ + + +	+ .		+++ + •	. + .	++ + + + +
	ORF	Orf 33 Orf 33 Orf 29a	0438 0438 0437	Orf 39 Orf 40	Off 42 Off 43 Off 45	Orf 46 Orf 47 Orf 48 Orf 49	Off 50 R41 R51 Off 52	Orf 54 Orf 55	Orf 56 Orf 57 R64 R74 R84

9/13.

											, 1.															
	Putative Function							DNA replication protein	Ribonucleotide reductase,	small	Ribonucleotide reductase,	large Assembly / DNA maturation	Tegument protein	Tegument protein	Capsid protein		Tegument protein	Glycoprotein			Flip homolog	Cyclin D homolog	Immediate-early gene		G-protein coupled receptor	Tegument protein / FGARAT
	% -						29.5%	32.7%	62.4%		53.3%	41.9%	34.6%	29.4%	33.1%	32.3%	51.4%	44.3%	49.0%		15.1%	29.2%	20.8%		32.1%	34.4%
HVS	% w						39.9%	40.7%	71.0%	;	64.4%	53.8%	43.4%	39.2%	41.0%	43.6%	28.6%	53.5%	57.5%		25.3%	37.5%	29.0%		41.1%	43.2%
	Size aa						357	368	305	!	191	330	833	2469	139	435	253	436	261		167	254	407		321	1299
		••																								
	% -		26.2%	21.8%			38.2%	51.8%	%0:02	:	61.7%	26.5%	42.6%	40.2%	38.6%	46.4%	64.7%	44.8%	65.5%		30.9%	38.6%	16.8%	31.2%	41.1%	44.0%
KSHV	%im		33.7%	30.0%			45.2%	60.3%	78.2%		69.3%	64.4%	51.8%	49.6%	48.2%	51.9%	%9.69	53.2%	73.1%		38.8%	49.8%	23.6%	35.2%	51.6%	52.2%
	Size aa						357	396	302		792	331	927	2635	170	429	271	545	225		139	257	1162	348	342	1296
	Size aa	253	385	390	355	364	360	394	314		788	331	939	2548	169	448	224	457	297	228	174	254	447	253	342	1298
RRV	Strand		1	•	•		•	•			٠	•	+	+	•		•	+	+	•	•		•	+	+	•
	ORF	R94	R104	R114	R124	R134	Orf 58	Orf 59	Orf 60		Orf 61	Orf 62	Orf 63	Orf 64	Orf 65	Orf 66	Orf 67	Orf 68	Orf 69	R141	Orf 71	Orf 72	Orf 73	R155	Orf 74	Orf 75

% Sim., percent similar; % Id., percent identical; ssDNA, single-stranded DNA; FGARAT, N-formalglycinamide ribotide amidotransferase; 1, no similarity found; 2, compared to HVS ORF 4a and 4b; 3, compared to KSHV R4; 4, compared to KSHV R9; 5, compared to KSHV K14.

FIG. 8

10502.050201

PCT/US99/26260

WO 00/28040

11/13

	PE	Ls			LNI	ЛСs	
8483	18503	0540	18570	18483	18503	18540	18570

RhKSHV MIP

β-globin

FIG. 9

FIG. 10

atg Met 1	ttc Phe	cct Pro	gtc Val	tgg Trp 5	ttc Phe	gtc Val	ttg Leu	ttt Phe	tac Tyr 10	ctg Leu	tcg Ser	tgt Cys	tgg Trp	gcg Ala 15	gcc Ala	48
agc Ser	cct Pro	acg Thr	ctg Leu 20	gcg Ala	cct Pro	ccc Pro	ccg Pro	act Thr 25	gcc Ala	gct Ala	gga Gly	att Ile	aac Asn 30	gtt Val	ctc Leu	96
ccc Pro	cag Gln	tgg Trp 35	gcc Ala	ggc	aac Asn	cgc Arg	gcc Ala 40	tct Ser	ctt Leu	gac Asp	agg Arg	acc Thr 45	agg Arg	ejy aaa	cgc Arg	144
ctg Leu	tct Ser 50	gaa Glu	gtg Val	ely aaa	tta Leu	aac Asn 55	ata Ile	cag Gln	cgc Arg	tgg Trp	ttc Phe 60	gtt Val	tac Tyr	ctg Leu	tgc Cys	192
cac His 65	cac His	tcc Ser	act Thr	ctc Leu	tgt Cys 70	cgg Arg	gtg Val	cgt Arg	gag Glu	tac Tyr 75	ccg Pro	cgc Arg	atc Ile	atg Met	tcg Ser 80	240
ttt Phe	gtt Val	cac His	ttc Phe	cct Pro 85	ata Ile	ttg Leu	atg Met	tct Ser	aac Asn 90	gtt Val	gag Glu	tgc Cys	cag Gln	cgc Arg 95	cgc Arg	288
gag Glu	ttt Phe	cgc Arg	100 GJA 888	gcc Ala	gag Glu	tgt Cys	atg Met	aac Asn 105	Ala	atg Met	gtt Val	cgc Arg	999 Gly 110	ctc Leu	cgg Arg	336
gcc Ala	tac Tyr	gag Glu 115	agt Ser	tac Tyr	ctg Leu	acg Thr	cga Arg 120	ctg Leu	agg Arg	atg Met	ctg Leu	ctg Leu 125	gac Asp	gac Asp	gcg Ala	384
ccc Pro	130 Gly 999	gac Asp	gcg Ala	gac Asp	gcc Ala	gcg Ala 135	gcc Ala	att Ile	Gly	tcc Ser	gcg Ala 140	gtg Val	acc Thr	gtg Val	gtg Val	432
ctg Leu 145	tcc Ser	gcc Ala	ctc Leu	gac Asp	tct Ser 150	cta Leu	att Ile	gag Glu	gag Glu	ctt Leu 155	ccc Pro	gta Val	aat Asn	aac Asn	aag Lys 160	480
ata Ile	ggt Gly	ggc Gly	gcg Ala	gag Glu 165	tct Ser	aat Asn	gaa Glu	aaa Lys	acc Thr 170	gtg Val	cgt Arg	gcg Ala	ttg Leu	gga Gly 175	01 A 23 3	528
cag Gln	agc Ser	ccc Pro	cgg Arg 180	gac Asp	gtt Val	gtt Val	ctc Leu	agc Ser 185	gcg Ala	ttt Phe	cgc Arg	ata Ile	ctg Leu 190	gaa Glu	tat Tyr	576
cta Leu	cag Gln	atg Met 195	ttt Phe	ttg Leu	cgg Arg	gac Asp	999 Gly 200	cgc Arg	yrg cgc	gca Ala	ata Ile	gct Ala 205	atg Met	atg Met	taa.	624

FIG. 11

atg Met 1	agg Arg	ggc	ctt Leu	ttc Phe 5	gtg Val	tgc Cys	gtt Val	ttt Phe	Phe 10	gcg Ala	gtg Val	ttc Phe	gcg Ala	tgt Cys 15	gta Val	48
gtt Val	gat Asp	tat Tyr	gcc Ala 20	ttt Phe	cct Pro	atg Met	Gly	tcc Ser 25	atg Met	agc Ser	gga Gly	ccc Pro	gcg Ala 30	ccc Pro	gaa Glu	96
ctc Leu	tgc Cys	tgt Cys 35	ttg Leu	ejà aaa	tat Tyr	gta Val	act Thr 40	cat His	ctg Leu	ccg Pro	cca Pro	ccc Pro 45	ggt Gly	tta Leu	gtg Val	144
gtc Val	tct Ser 50	tac Tyr	tcc Ser	cac His	acc Thr	tcg Ser 55	tcg Ser	cag Gln	tgc Cys	tcg Ser	gtg Val 60	gac Asp	gcc Ala	gtg Val	ata Ile	192
tta Leu 65	aac Asn	act Thr	cgc Arg	cgc Arg	ggt Gly 70	aaa Lys	aag Lys	ctg Leu	tgt Cys	gcc Ala 75	aat Asn	ccc Pro	G] À 888	gac Asp	gac Asp 80	240
gca Ala	gtg Val	aag Lys	aaa Lys	ctg Leu 85	ctt Leu	cag Gln	gcg Ala	gtg Val	gac Asp 90	aag Lys	cgt Arg	ccc Pro	aaa Lys	aag Lys 95	ggc	288
aga Arg	aga Arg	acc Thr	cgg Arg 100	cgc Arg	agc Ser	ctg Leu	att Ile	gac Asp 105	gat Asp	tcc Ser	gaa Glu	gag Glu	ggc Gly 110	ctt Leu	ggc Gly	336
_	Gly 999		tag													348