beecrowd | 2281

LAB10-C - Função de Ackermann Por Marcello Macarthy, Brazil

Timelimit: 2

A função de Ackermann (porposta pelo matemático alemão Wilhelm Ackermann) é um dos exemplos mais simples de uma função computável que não é recursiva primitiva. Para nós, o que interessa saber é que ela precisa ser implementada de forma recursiva, ou seja, fazendo chamadas para a função dentro dela própria. Uma das variações (com dois argumentos) utilizada para computa-lá é através da função de Ackermann-Péter, A(m, n) apresentada a

$$A(m,n) = \begin{cases} n+1 & \text{se } m=0 \\ A(m-1,1) & \text{se } m>0 \text{ e } n=0 \\ A(m-1,A(m,n-1)) & \text{se } m>0 \text{ e } n>0 \end{cases}$$

Escreva uma função que receba o valor de 'm' e de 'n' e avalie a função de Ackermann-Péter, de acordo com as informações acima retornando o valor calculado. Os valores de m e n devem ser indicados pelo usuário e lidos no programa principal. O resultado da função de Ackermann-Péter também deve ser impresso pelo programa principal.

Atenção: neste problema, mesmo que as saídas sejam todas apresentadas de forma correta e aceitas pelo Beecrowd, o professor vai avaliar se as declarações e chamadas de funções foram implementadas corretamente de acordo com o que pede o enunciado.

Entrar com os valores das variáveis m e n.

Output

Tem-se como resultado a função de Ackermann-Péter A(m,n).

Valores de A(m, n)							
m\n	0	1	2	3	4	n	
0	1	2	3	4	5	n+1	
1	2	3	4	5	6	n+2=2+(n+3)-3	
2	3	5	7	9	11	$2n+3=2\cdot(n+3)-3$	
3	5	13	29	61	125	$2^{(n+3)}-3$	
4	13	65533			$2^{2^{2^{65536}}}-3$	2 ^{2·.²} -3	
	$=2^{2^2}-3$	$=2^{2^{2^2}}-3$	$=2^{2^{2^{2^2}}}-3$	$=2^{2^{2^{3^{2^{2}}}}}-3$	$=2^{2^{2^{3^{2^{2^{2}}}}}}-3$	n+3	

Samples Input	Samples Output
3	125
4	
3	61
3	
1	4
2	
Onde aparece isso aqui?	