

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2022-2023

Name	Pratik Pujari		
UID no.	2020300054	Class:	Comps C Batch
Experiment No.	1		•
	T		and the second transfer of the second second

AIM:	Implem	ent an Intelligent agent. (problem form	nulation and imp	elementation)
		WATER JUG PROBLEM		
FPRMULATION:	Proble	m statement		
	are emp The jugs One can I The task using bo	wo water jugs with capacities X and Y ty. Also given that there is an infinite Y do not have markings to measure so perform the following operations on Fill any of the jugs completely with Y Pour water from one jug to the other empty or full, $(X, Y) \rightarrow (X - d, Y + d)$ Empty any of the jugs Y is to determine whether it is possible of the jugs.	e amount of war maller quantitie the jug: vater. until one of the	ter available. s. jugs is either
	Sr.No	Description of action taken	Condition	Final state
	1.	Fill the j1-litre jug completely	If x <j1< th=""><th>(j1,j2)</th></j1<>	(j1,j2)
	2.	Fill the j2-litre jug completely	if y <j2< th=""><th>(x,j2)</th></j2<>	(x,j2)
	3.	Empty the j1-litre jug	If x>0	(0,y)
	4.	Empty the j2-litre jug	If y>0	(x,0)
	5.	Pour some water from the j2-litre jug to fill the j1-litre jug	If (x+y) <j1+j2< th=""><th>(j1, y-[j1-x])</th></j1+j2<>	(j1, y-[j1-x])

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2022-2023

Class: T.Y.B.Tech Sem.: V Course: AIML

6.	Pour some water from the j1-litre jug to fill the j2-litre jug	If (x+y) <j1+j2< th=""><th>(x-[j2-y],j2)</th><th></th></j1+j2<>	(x-[j2-y],j2)	
7.	Pour all water from j2-litre jug to the j1-litre jug	If (x+y) <j1< td=""><td>(x+y,0)</td><td></td></j1<>	(x+y,0)	
8.	Pour all water from the j1-litre jug to the j2-litre jug	if (x+y) <j2< td=""><td>(0, x+y)</td><td></td></j2<>	(0, x+y)	

Agent: Water-Jug Agent

Action: fill jug, empty jug, transfer from one jug to other Goal: x1 litres water in X jug and y1 litres water in Y jug Environment Type: single agent, partially observable, deterministic, static, Discrete

PEAS Description:

1.Performance measure:

Correctness i.e. successfully reach goal state

2.Environment:

Two jugs and a tap with unlimited water

3. Actuators:

The Pump, to transfer the water

4.Sensors:

Sensor to detect Water level

The agent has sensors to judge when when jug is empty and full.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2022-2023

4 litres jug	3 litres jug	Rule Applied(to get 2 litres)
0	0	Initial State
4	0	1.Fill 4
1	3	6. Pour 4 into 3 to fill
1	0	4. Empty 3
0	1	8. Pour all of 4 into 3
4	1	1. Fill 4
2	3	6.Pour into 3
2	0	Empty 3
	ph (4,0)	(0,0)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2022-2023

```
IMPLEMENTATION:
                        Code:
                       import java.util.ArrayList;
                       import java.util.LinkedList;
                       import java.util.Queue;
                       import java.util.Scanner;
                       class Node {
                          int leftCap, rightCap;
                          String path;
                          public Node(int x, int y, String z) {
                            this.leftCap = x;
                            this.rightCap = y;
                             this.path = z;
                          }
                       public class WaterJugProblem {
                          public static int jugA, jugB, targetA, targetB;
                          public static Queue<Node> queue = new LinkedList<>();
                          public static ArrayList<Node> visited = new ArrayList<>();
                          public static int visitedNodes = 0;
                          public static boolean flag = false;
                          public static void main(String[] args) {
                             Scanner sc = new Scanner(System.in);
                             System.out.print("Enter the Capacity of Jug A: ");
                            jugA = sc.nextInt();
                            System.out.print("Enter the Capacity of Jug B: ");
                            jugB = sc.nextInt();
                            System.out.print("Enter the Target Capacity of Jug A: ");
                             targetA = sc.nextInt();
                             System.out.print("Enter the Target Capacity of Jug B: ");
                             targetB = sc.nextInt();
                             Node root = new Node(0, 0, "");
                             queue.add(root);
                             Node jug;
                             while (!queue.isEmpty()) {
                               visitedNodes++:
```


Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> Information Technology Engineering Department

Academic Year: 2022-2023

```
jug = queue.poll();
       if (jug.leftCap == targetA && jug.rightCap == targetB) {
          System.out.println("The required capacity can be achieved after "
+ (visitedNodes + 1) + " move(s)");
          System.out.println("Number of nodes traversed: " +
visitedNodes);
          System.out.println("The path is: " + generatePath(jug));
         flag = true;
         break:
       Node temp = jug;
       // Fill jug A
       if (jug.leftCap < targetA) {</pre>
          temp = new Node(jugA, jug.rightCap, generatePath(jug));
         if (!visited.contains(temp)) {
            queue.add(temp);
            visited.add(temp);
          }
       }
       // Fill Jug B
       if (jug.rightCap < targetB) {</pre>
          temp = new Node(jug.leftCap, jugB, generatePath(jug));
          if (!visited.contains(temp)) {
            queue.add(temp);
            visited.add(temp);
       }
       // Empty Jug A
       if (jug.leftCap > 0) {
          temp = new Node(0, jug.rightCap, generatePath(jug));
         queue.add(temp);
          visited.add(temp);
       // Empty Jug B
       if (jug.rightCap > 0) {
          temp = new Node(jug.leftCap, 0, generatePath(jug));
         queue.add(temp);
```


Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2022-2023

```
visited.add(temp);
       }
       // Pour from Jug A to Jug B until its full
       if (jug.leftCap > 0 && (jug.leftCap + jug.rightCap) >= jugB) {
          temp = new Node(jug.leftCap - (jugB - jug.rightCap), jugB,
generatePath(jug));
         if (!visited.contains(temp)) {
            queue.add(temp);
            visited.add(temp);
       }
       // Pour from Jug B to Jug A until its full
       if (jug.rightCap > 0 && (jug.leftCap + jug.rightCap) >= jugA) {
         temp = new Node(jugA, jug.rightCap - (jugA - jug.leftCap),
generatePath(jug));
         if (!visited.contains(temp)) {
            queue.add(temp);
            visited.add(temp);
       // Puor all water from 1st to 2nd
       if (jug.leftCap > 0 && (jug.leftCap + jug.rightCap) <= jugB) {
          temp = new Node(0, jug.leftCap + jug.rightCap,
generatePath(jug));
         if (!visited.contains(temp)) {
            queue.add(temp);
            visited.add(temp);
          }
       }
       // Puor all water from 2nd to 1st
       if (jug.rightCap > 0 && (jug.leftCap + jug.rightCap) <= jugA) {
          temp = new Node(jug.leftCap + jug.rightCap, 0,
generatePath(jug));
         if (!visited.contains(temp)) {
            queue.add(temp);
            visited.add(temp);
```


Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2022-2023

Class: T.Y.B.Tech Sem.: V Course: AIML

```
}
    if (!flag)
       System.out.print("\nCannot achieve the required capacity");
    sc.close();
  static String generatePath(Node node) {
    String path = "[ " + node.leftCap + "," + node.rightCap + " ] ";
    return node.path + path;
  static void printVisitedNodes() {
    System.out.println("Visited Nodes: ");
    for (Node node : visited) {
      System.out.print(" [ " + node.leftCap + " " + node.rightCap + " ], ");
  }
}
 C:\Users\HP\Desktop\SPIT Files\AIML>cd "c:\Users\HP\Desktop\SPIT Fi
 Enter the Capacity of Jug A: 4
 Enter the Capacity of Jug B: 3
 Enter the Target Capacity of Jug A: 0
 Enter the Target Capacity of Jug B: 2
 The required capacity can be achieved after 37 move(s)
 Number of nodes traversed: 36
 The path is: [ 0,0 ] [ 0,3 ] [ 3,0 ] [ 3,3 ] [ 4,2 ] [ 0,2 ]
```

CONCLUSION: Solved Water jug Problem using the BFS searching technique.