Lösungsskizzen zur Wiederholungsklausur Grundlagen der Informatik (GDI)

8. Mai 2012

Name:	
Vorname:	
Matrikelnummer:	
Studiengang:	

Hinweise:

- Tragen Sie zuerst auf allen Blättern (einschließlich des Deckblattes) Ihren Namen, Ihren Vornamen und Ihre Matrikelnummer ein. Lösungen ohne diese Angaben können nicht gewertet werden.
- Schreiben Sie die Lösungen jeder *Teil*aufgabe auf das jeweils vorbereitete Blatt. Sie können auch die leeren Blätter am Ende der Heftung nutzen. In diesem Fall ist ein Verweis notwendig. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
- Hilfsmittel sind *nicht* zugelassen.
- Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit dieses Teils der Abschlussklausur beträgt 90 Minuten.
- Stellen Sie sicher, dass Ihr Mobiltelefon ausgeschaltet ist. Klingelnde Mobiltelefone werden als Täuschungsversuch angesehen und der/die entsprechende Student/in wird von der weiteren Teilnahme an der Klausur ausgeschlossen!

Bewertung:

1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	11)	12)	13)	$oldsymbol{\Sigma}$	Note

Wiederholungsklausur

Grundlagen der Informatik (GDI)

8.5.2012 Dr. Christian Baun

Aufgabe 1 (7 Punkte)

- a) Geben Sie zu jedem der folgenden Netzwerkgeräte, Protokolle und Adressierungen die **Namen** der passenden Schicht im **OSI-Referenzmodell** an.
 - Transmission Control Protocol
 - Repeater
 - File Transfer Protocol
 - Manchester-Code
 - Physische Adressen
 - Router
 - Zyklische Redundanzprüfung
 - Brigde
 - User Datagram Protocol
 - Switch
 - Secure Shell
 - Internet Protocol
 - Non-Return to Zero
 - Logische Adresse

Aufgabe 2 (3+3 Punkte)

Überprüfen Sie mit Hilfe des **Hamming-Abstands**, ob die folgenden Nachrichten korrekt übertragen wurden und betreiben Sie gegebenenfalls Fehlerkorrektur.

- a) 010110001100
- b) 010100001100

Aufgabe 3 (3+3 Punkte)

- a) Beschreiben Sie in wenigen Worten die Eigenschaften von Simplex, Duplex und Halbduplex.
- b) Nennen Sie zu Simplex, Duplex und Halbduplex jeweils mindestens ein Anwendungsbeispiel.

Aufgabe 4 (2+2+2 Punkte)

Bei Shared Media unterscheidet man zwischen zwei Zugriffsverfahren.

- a) Geben Sie die Namen der beiden Zugriffsverfahren an.
- b) Beschreiben Sie in wenigen Worten die herausragenden Eigenschaften und Unterschiede der beiden Zugriffsverfahren.
- c) Nennen Sie zu jedem der beiden Zugriffsverfahren mindestens ein Anwendungsbeispiel.

Aufgabe 5 (3 Punkte)

Zu jedem IP-Paket gehört eine Empfängeradresse (\Longrightarrow IP-Adresse), die angibt, wohin das Paket geschickt werden soll. Eine IP-Adresse kann einen einzelnen Empfänger oder eine Gruppe von Empfängern bezeichnen. Geben Sie in der Abbildung die drei in der Vorlesung behandelten Bezeichnungen an.

Aufgabe 6 (2+1+2+2 Punkte)

- a) Aus was besteht ein Socket?
- b) Zu welcher Schicht im OSI-Referenzmodell gehören Sockets?
- c) Welche beiden Arten von **Sockets** unterscheidet man?
- d) Welchen beiden Protokollen sind die beiden Arten von Sockets zugeordnet?

Aufgabe 7 (3+3 Punkte)

Drei Arten von Kontextinformationen speichert das Betriebssystem.

- a) Geben Sie die Namen der drei Arten von Kontextinformationen an.
- b) Geben Sie zu jeder der drei Arten von Kontextinformationen in wenigen Worten an, um welche Informationen es sich handelt.

Aufgabe 8 (2+2+2 Punkte)

Geräte an Computersystemen werden bezüglich der kleinsten Übertragungseinheit unterschieden.

- a) Geben Sie die Namen der beiden Arten von Geräten an.
- b) Beschreiben Sie in wenigen Worten die herausragenden Eigenschaften und Unterschiede der beiden Arten von Geräten.
- c) Nennen Sie zu jeder der beiden Arten von Geräten mindestens ein Anwendungsbeispiel.

Aufgabe 9 (2+2 Punkte)

Zwei Faktoren sind für die Zugriffszeit einer Festplatte verantwortlich.

- a) Geben Sie die Namen der beiden Faktoren an.
- b) Beschreiben Sie in wenigen Worten diese beiden Faktoren.

Aufgabe 10 (3+6 Punkte)

Der **Hauptprozessor** ist das Herzstück moderner Computersysteme und besteht aus mindestens drei **Komponenten**.

- a) Geben Sie die Namen der drei Komponenten an.
- b) Beschreiben Sie in wenigen Worten die Aufgaben und Funktionsweise der drei Komponenten.

Aufgabe 11 (2+2+2+2+2 Punkte)

Die sequentielle Arbeitsweise des Von-Neumann-Rechners besteht aus fünf Phasen (Von-Neumann-Zyklus). Beschreiben Sie in wenigen Worten die Aufgaben jeder der fünf Phasen.

Aufgabe 12 (3+6+1 Punkte)

Die Komponenten eines modernen Rechnersystems sind durch drei digitale **Busse** verbunden.

- a) Geben Sie die Namen der drei digitalen Busse an.
- b) Beschreiben Sie in wenigen Worten die Aufgaben und Funktionsweise der drei digitalen Busse.
- c) Was versteht man unter dem **Systembus**?

Aufgabe 13 (3+3+2+2 Punkte)

Berechnen Sie schriftlich (Gesucht ist das Ergebnis im Dualsystem und der Rechenweg!):

- a) $111001_2 + 10110_2$
- b) $1000100_2 10011_2$
- c) $1111_2 * 10101_2$
- d) $11111111001_2:1110001_2$

Name: Vorname: Matr.Nr.:

Aufgabe 1)

Punkte:

- Transmission Control Protocol = Transportschicht
- Repeater = Bitübertragungsschicht
- File Transfer Protocol = Anwendungsschicht
- Manchester-Code = Bitübertragungsschicht
- Physische Adressen = Sicherungsschicht
- Router = Vermittlungsschicht
- Zyklische Redundanzprüfung = Sicherungsschicht
- Brigde = Sicherungsschicht
- User Datagram Protocol = Transportschicht
- Switch = Sicherungsschicht oder Vermittlungsschicht
- Secure Shell = Anwendungsschicht
- Internet Protocol = Vermittlungsschicht
- Non-Return to Zero = Bitübertragungsschicht
- Logische Adresse = Vermittlungsschicht

Name: Vorname: Matr.Nr.:

```
Aufgabe 2)
```

Punkte:

a)

Die Prüfbits sind Position 1, 2, 4 und 8

```
empfangene Daten: 1 2 3 4 5 6 7 8 9 10 11 12 0 1 0 1 1 0 0 0 0 1 1 0 0
```

```
0101 Position 5
1001 Position 9

XOR 1010 Position 10
----
0110 Prüfbits berechnet

XOR 0110 Prüfbits empfangen
-----
= 0000 => Korrekte Übertragung
```

b)

Die Prüfbits sind Position 1, 2, 4 und 8

```
empfangene Daten: 1 2 3 4 5 6 7 8 9 10 11 12 0 1 0 1 0 0 0 0 0 1 1 0 0

1001 Position 9

XOR 1010 Position 10
```

0011 Prüfbits berechnet

XOR 0110 Prüfbits empfangen
----= 0101 => Wert der Position 5 => Bit 5 ist falsch!

Für jeden korrekte Teilaufgabe gab es 2 Punkte.

Name: Vorname: Matr.Nr.:

Aufgabe 3)

Punkte:																				
i amino.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

• Simplex

- Der Informationstransfer funktioniert nur in einer Richtung
- Nach dem Ende der Übertragung kann der Kommunikationskanal von einem anderen Sender verwendet werden
- Beispiel: Pager, Radio, Fernsehen

• Duplex (Vollduplex)

- Der Informationstransfer funktioniert in beide Richtungen gleichzeitig
- Beispiel: Netzwerke mit Twisted-Pair-Kabel (hier gibt es separate Leitungen für Senden und Empfangen)

• Wechselbetrieb (Halbduplex)

- Der Informationstransfer funktioniert in beide Richtungen, aber nicht gleichzeitig
- Beispiel: Glasfaserkabel, Netzwerke mit Koaxialkabel (hier gibt es nur eine Leitung für Senden und Empfangen)

Aufgabe	4)	
---------	----	--

Punkte:

• Deterministisches Zugriffsverfahren

- Der Zugriff erfolgt zu einem bestimmten Zeitpunkt in Übereinstimmung mit den anderen Teilnehmern
- Es ist garantiert, dass jeder Teilnehmer nach einer bestimmten Wartezeit, deren maximale Dauer vorhersehbar ist, Daten senden darf
- Beispiel: Token-Passing-Verfahren bei Token Ring und FDDI

• Nicht-deterministisches Zugriffsverfahren

- Alle Teilnehmer stehen (bzgl. Medienzugriff) in direktem Wettbewerb
- Die Wartezeit des Zugriffs auf das Übertragungsmedium und die Datenmenge, die nach einem bestimmten Zeitpunkt übertragen werden kann, sind nicht vorhersagbar
- Dauer der Wartezeit und Datenmenge hängen von der Anzahl der Teilnehmer und der Datenmenge ab, die die einzelnen Teilnehmer versenden
- Beispiel: CSMA/CD bei Ethernet

Name: Vorname: Matr.N:

Aufgabe 5)

Punkte:

Broadcast

Name:	Vorname:	Matr.Nr.:

Aufgabe 6)

Punkte:

- a) Ein Socket besteht aus einem Port mit einer IP-Adresse
- b) Sockets sind Teil der Transportschicht
- c) Man unterscheidet zwischen Stream Sockets und Datagram Sockets

d

- Stream Sockets \Longrightarrow TCP
- Datagram Sockets \Longrightarrow UDP

Au	fgabe	7)
	O	• /

Punkte:																					
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- Benutzerkontext
 - Daten des Prozesses im zugewiesenen Adressraum (virtuellen Speicher)
- Hardwarekontext
 - Register in der CPU und Seitentabelle
- Systemkontext
 - Informationen, die das Betriebssystem über einen Prozess speichert

Aufgabe 8)

Punkte:																				
i unikuc.	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	•

• Zeichenorientierte Geräte

- Bei Ankunft/Anforderung jedes einzelnes Zeichens wird immer mit dem Prozessor kommuniziert
- Beispiele: Maus, Tastatur, Drucker, Terminals und Magnetbänder

• Blockorientierte Geräte

- Datenübertragung findet erst statt, wenn ein kompletter Blocks (z.B. 1-4 KB) vorliegt
- Beispiele: Festplatten, CD-/DVD-Laufwerke und Disketten-Laufwerke

Aufgabe 9)

Punkte:																				
i unikuc.	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	•

- Suchzeit (Average Seek Time)
 - Die Zeit, die der Schwungarm braucht, um eine Spur zu erreichen
- Zugriffsverzögerung durch Umdrehung (Average Rotational Latency Time)
 - Verzögerung der Dreh
geschwindigkeit bis der Schreib-/Lesekopf den gewünschten Block erreicht
 - Dieser Wert ist ausschließlich von der Drehgeschwindigkeit der Scheiben abhängig

Name: Vorname: Matr.Nr.:

Aufgabe 10)

Punkte:																					
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- \bullet Rechenwerk bzw. Arithmetic Logic Unit (ALU)
 - Manipulation von Daten und Adressen
 - Führt alle logischen und mathematischen Operationen aus
- Steuerwerk bzw. Leitwerk bzw. Befehlswerk (Control Unit)
 - Interpretiert Befehle, koordiniert der anderen CPU-Komponenten, steuert die Ein-/Ausgabe-Einheiten und den Steuerbus
 - Enthält das Befehlsregister (Instruction Table), das alle Befehle enthält, die die CPU ausführen kann
- Registersatz (Daten- und Spezialregister)
 - Speicherzellen (Register) für die kurzfristige Speicherung von Operanden und Adressen

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 11)

Punkte:																					
i umito.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

- **FETCH**: Abzuarbeitenden Befehl aus dem Speicher in das Befehls-Register der CPU laden
- **DECODE**: Steuerwerk löst den Befehl in Schaltinstruktionen für das Rechenwerk auf
- **FETCH OPERANDS**: Parameter (Operanden) für den Befehl aus dem Speicher holen
- EXECUTE: Rechenwerk führt die Operation aus
- UPDATE INSTRUCTION POINTER: Befehlszähler wird erhöht. Zyklus beginnt von vorne und der nächste Befehl wird ausgeführt

:
:

Aufgabe 12)

Punkte:																					
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

a) Steuerbus Adressbus und Datenbus

b)

- Über den bidirektionalen **Datenbus** werden Daten zwischen Prozessor, Arbeitsspeicher und Peripherie übertragen
- Der unidirektionale **Adressbus** ist nur für die Übertragung von Speicheradressen zuständig
- Der bidirektionale **Steuerbus** koordiniert exklusive Lese- und Schreibanweisungen auf den Daten- und Adressbus und damit zwischen den Komponenten des Computersystems
- c) Steuerbus, Adressbus und Datenbus zusammen sind der Systembus oder Fron Side Bus (FSB)

Name: Vorname: Matr.Nr.:

Aufgabe 13)

Punkte:

- a) $111001_2 + 10110_2 = 1001111_2$
- b) $1000100_2 10011_2 = 110001_2$
- c) $1111_2 * 10101_2 = 100111011_2$
- $\mathrm{d})\ 11111111001_2:1110001_2=1001_2$