Odvodi

f(x)	f'(x)
x^n	nx^{n-1}
a^x	$a^x \ln(x)$
e^x	e^x
$\ln x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x}$
$\cot x$	$-\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$
$\operatorname{sh} x$	$\cosh x$
$\operatorname{ch} x$	$-\sin x$
$\operatorname{th} x$	$\frac{1}{\cosh^2 x}$
$\operatorname{cth} x$	$-\frac{1}{\sinh^2 x}$
$\operatorname{arsh} x$	$\frac{1}{\sqrt{x^2+1}}$
$\operatorname{arsh} x$	$\frac{1}{\sqrt{x^2-1}}$

Integrali

f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1}(n \neq 1)$
$\frac{1}{x}$	$\ln x $
$e^{\overline{x}}$	e^x
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\frac{1}{\cos^2 x}$	$\tan x$
$\frac{1}{\sin^2 x}$	$-\cot x$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{1+x^2}$	$\arctan x$

Per Partes

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx$$
$$\int udv = uv - \int vdu$$

Racionalne funkcije

$$\int \frac{p(x)}{q(x)} dx$$
, $p(x)$, $q(x)$ sta polinoma

- 1. Če je $st(p(x)) \le st(p(x))$ polinoma delimo
- 2. q(x) razdelimo na linearne in kvadratne faktorje
- 3. Izraz pod integralom razcepimo na parcialne ulomke
- 4. Integriramo vsakega zase

$$\begin{aligned} k \geq 2 & st(p(x)) \leq 2k-1 \\ st(q(x)) \leq 2k-3 & (ax^2+bx+c) & \text{nerazcepen v } \mathbb{R} \\ I = \int \frac{p(x)}{(ax^2+bx+c)^k} = \int \frac{Ax+B}{ax^2+bx+c} + \frac{q(x)}{(ax^2+bx+c)^{k-1}} \end{aligned}$$

 $\mathbf{A}, \mathbf{B}, \, q(x)$ poiščemo tako da enačbo odvajamo.

Korenske funkcije

1.
$$\int f(\sqrt{ax+b})dx$$
 $t = \sqrt{ax+b}$

2.
$$\int f(\sqrt{ax^2+bx+c})dx$$

- a $\int \frac{dx}{\sqrt{ax^2+bx+c}}$ ga prevedemo na oblike:
 - Če je a < 0: $\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x$
 - Če je a > 0 : $\int \frac{dx}{\sqrt{x^2 + c}} = \ln |x + \sqrt{x^2 + c}|$

b
$$\int \frac{p(x)}{\sqrt{ax^2+bx+c}} = q(x)\sqrt{ax^2+bx+c} + A\int \frac{dx}{\sqrt{ax^2+bx+c}}$$
 $st(p(x))-1=st(q(x))$ A, q(x) poiščemo z odvanjanjem

Kotne funkcije

$$\cos^2 x = \frac{\cos 2x + 1}{2} \quad \sin^2 x = \frac{1 - \cos 2x}{2}$$