A Brief Glimpse at Machine Learning

With Demos and Explanations

Christopher Hittner 11 October 2017

What is Machine Learning?

Machine Learning

- Teaching computers to learn without explicit training.
- Making predictions about data.
 - ex: Predicting movie ratings.
- Learning to perform tasks.
 - ex: Game playing AI for games such as Chess, Go, etc.

Notable AI/ML Applications

- Game Playing Al
 - Deep Blue (1997)
 - AlphaGo (2016)
- Natural Language Processing
 - Cleverbot (1997)
 - Eliza (1966)
- Back-end
 - Google: RankBrain
 - Facebook: Facial Recognition

Learning Problems

- Classification
 - Learning to categorize data.
- Regression
 - Learning to represent continuous functions.
 - Representing more precise probability functions.
- Clustering
 - Categorizing data where the categories are unknown.

Types of Learning

- Supervised Learning
 - Given example inputs and outputs, learn to predict/approximate the data.
- Unsupervised Learning
 - Given only input data, learn to classify it.
- Reinforcement Learning
 - Learner receives stimulus while interacting with environment.

Types of Machine Learning

Classification

- Given a set of items with known categories, classify new items.
 - With a given set of item-category pairs, learn a function to match these pairs.
 - Using classifier, categorize new items into categories.
- Naive Bayes
 - Statistical classification method based on Bayes' Theorem
 - For n features $F = \{F_1, F_2, \dots, F_n\}$, we seek k such that

$$\underset{k}{\operatorname{argmax}} P(C_k|F) = P(C_k) \prod_{i=0}^{n} P(F_i|C_k)$$

• If *C* is a continuous set, then P can be replaced with density function p.

Regression

- Given a dataset, we seek a function to fit the data points.
 - Adjust function such that it more accurately represents the data.

• Linear Regression

- Given a system of linear equations, determine a best fit via a system of equations.
- To approximate $X\vec{c} = \vec{y}$, we compute \vec{c} that solves $X^T X \vec{c} = X^T \vec{y}$

Logistic Regression

- Categorical regression model used to predict probability.
- ullet We seek to learn parameter $ec{ heta}$ such that

$$P(x) = \frac{1}{1 + e^{-\vec{\theta}^T \vec{x}}}$$

6

Clustering

- Given a set of data, group it into categories.
 - We seek to determine which items are alike.

• K-Means Clustering

- Centroid clustering algorithm.
- Cluster data into k categories.
- Points belong to category with closest mean.

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- Groups points that are close to one another.
- Can classify non-linearly separable clusters.

Deep Learning/Neural Networks

Deep Learning

- Form of learning meant to learn features.
 - Generally associated with neural networks.
 - Use of gradient descent to train computation layers.
- Neural Network: Computational model consisting of layers of neurons.
 - Feedforward NN
 - Output computed sequentially.
 - Convolutional NN
 - Computing layers from sections of image.
 - Recurrent NN
 - Layer outputs computed recursively.

Neural Networks: Learning Algorithms

Backpropagation

- Using gradient descent across layers to minimize a loss function.
- Hebbian Learning
 - Increase activation due to given inputs to associate data with stimuli.
- Kohonen Self-Organizing Map
 - Network type used for mapping from high dimensional data to lower dimension.

Decision Trees

Decision Trees

- Given a system with rules, we seek to optimize a score.
 - We want to optimize in long term, not only in short term.
 - Furthermore, we recognize that oppsition can exist.
 - With information on the system, we can create trees of all possible evaluations.

Game: Take turns choosing an edge to traverse. One player maximizes, the other minimizes.

Decision Trees

- Minimax Trees
 - Traverse a tree and find the best possible path.
 - Generally bounded due to large search space.
 - Can be pruned to ignore solutions (Alpha-Beta Pruning)

Monte Carlo Trees

- Random search of decision tree to estimate best path.
- Can prioritize unexplored and favorable solutions during search.
- Allows deeper search than minimax due to random search.

Natural Language Processing

Natural Language Processing

- Given some spoken or written information, we seek to deduce new information from it.
 - Detecting meaning in a segment of text.
 - Determining relevance of information.
 - Converting between speech and text.

Word2Vec

- Algorithm for computing similarity between words.
- Given a set of sentences, determine representative vectors such that similarity is equal to dot product.

• Lesk Algorithm

- Predicts approximate definition of word in context.
- Chooses word definition with most overlap with sentence

Genetic Algorithms

Genetic Algorithms

- We seek to determine optimal parameters in a given scenario.
 - Gradient unavailable; 'fitness' function $F(\vec{\theta})$ has non-trivial gradient.
- Solution: Artificial Selection
 - Evaluate samples and select best ones.
 - Use genetic operators to improve genes (mutation, crossover, selection)
 - Breed an optimal 'gene'.

Further Reading

- On the Computational Power of Neural Nets (1995)
- Neural Network Design (1996)
- ImageNet Classification with Deep Convolutional Neural Networks (2012)
- Generative Adversarial Networks (2014)
- Mastering the game of Go with deep neural networks and tree search (2016)