Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously presented) A compound of the formula I

wherein:

 A^1 is =N-;

 A^2 is =C(H)-, or =C(R')- wherein R' is halogen, -CN, -Oalkyl, -CO₂alkyl or -SO₂alkyl, wherein the foregoing alkyl moieties are of 1 to 3 carbon atoms;

D is $=C(R^1)$ -, =C(H)-, $=C(SO_2R^1)$ -, $=C(S(O)R^1)$ -, $=C(C(O)R^1)$ -, =C(C(O)H)-, $=C(SR^{1a})$ -, $=C(OR^{1a})$ - or $=C(NHR^{1a})$ -,

wherein R¹ is selected from the class consisting of:

(A) $-R^{100}$, which is:

branched or unbranched alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon atoms or cycloalkyl or cycloalkenyl of 3 to 6 carbon atoms, in which alkyl, alkenyl, cycloalkyl or cycloalkenyl group one or more hydrogen atoms are optionally and independently replaced with:

- (i) halogen,
- (ii) oxo,

- (iii) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more hydrogen atoms of said aryl or heteroaryl group are optionally and independently replaced with:
 - (a) alkyl of 1 to 3 carbon atoms,
 - (b) -COOH,
 - (c) $-SO_2OH$,
 - (d) $-PO(OH)_2$,
 - (e) a group of the formula –COOR⁸, wherein R⁸ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (f) a group of the formula –NR⁹R¹⁰, wherein R⁹ and R¹⁰ are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁹ and R¹⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
 - (g) a group of the formula –CONR¹¹R¹², wherein R¹¹ and R¹² are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹¹ and R¹² constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -S-, S(O)-, SO₂-, -NH-, or –NMe-,

- (h) a group of the formula –OR¹³, wherein R¹³ is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (i) a group of the formula $-SR^{14}$, wherein R^{14} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (j) -CN, or
- (k) an amidino group of the formula

wherein R^{15} , R^{16} and R^{17} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms and wherein two of R^{15} , R^{16} and R^{17} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (l) halogen,
- (m) a group of the formula –NHCONHalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (n) a group of the formula –NHCOOalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (iv) a group of the formula –COOR¹⁸, wherein R¹⁸ is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (v) -CN,
- (vi) a group of the formula –CONR¹⁹R²⁰, wherein R¹⁹ and R²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹⁹ and R²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom

- in said hydrocarbon bridge is optionally replaced by -O-, -S-, S(O)-, SO_2 -, -NH-, or -NMe-,
- (vii) a group of the formula –OR²¹, wherein R²¹ is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety contains 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
- (viii) a group of the formula –SR²², wherein R²² is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂,
- (ix) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms, wherein said one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂,
 - (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
 - (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or
 - (e) a group of the formula $-(CH_2)_nCONHR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms,

(x) a quaternary group of the formula

$$R^{26}$$
 $-N^{+}$
 R^{27} Q^{-}

wherein R^{26} , R^{27} and R^{28} are each, independently, a branched or unbranched alkyl group of 1 to 7 carbon atoms and Q^- is a pharmaceutically acceptable counter ion,

- (xi) a saturated, or partially unsaturated heterocyclic group consisting of 3 to 7 ring atoms selected from N, O, C and S, including but not limited to imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally mono- or polysubstituted with oxo, and
- (xii) a cycloalkyl group of 3 to 7 carbon atoms,
- (B) branched or unbranched carboxylic acid groups of 3 to 6 carbon atoms,
- (C) branched or unbranched phosphonic acid groups of 2 to 6 carbon atoms,
- (D) branched or unbranched sulfonic acid groups of 2 to 6 carbon atoms,
- (E) amidino groups of the formula

wherein r is 2, 3, 4, 5 or 6, and R^{29} , R^{30} and R^{31} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R^{29} , R^{30} and R^{31} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(F) guanidino groups of the formula

$$(CH_2)_s$$
 R^{33}
 R^{34}
 R^{32}
 R^{35}

wherein s is 2, 3, 4, 5 or 6, and R³², R³³, R³⁴ and R³⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R³², R³³, R³⁴ and R³⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (G) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more hydrogen atoms of said aryl or heteroaryl group are optionally and independently replaced with:
 - (i) alkyl of 1 to 3 carbon atoms,
 - (ii) -COOH,
 - (iii) -SO₂OH,
 - (iv) $-PO(OH)_2$,
 - (v) a group of the formula –COOR³⁶, wherein R³⁶ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (vi) a group of the formula –NR³⁷R³⁸, wherein R³⁷ and R³⁸ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R³⁷ and R³⁸ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,

- (vii) a group of the formula –CONR³⁹R⁴⁰, wherein R³⁹ and R⁴⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R³⁹ and R⁴⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -S-, S(O)-, SO₂-, -NH-, or –NMe-,
- (viii) a group of the formula $-OR^{41}$, wherein R^{41} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (ix) a group of the formula $-SR^{42}$, wherein R^{42} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (x) -CN, or
- (xi) an amidino group of the formula

wherein R⁴³, R⁴⁴ and R⁴⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R⁴³, R⁴⁴ and R⁴⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (H) groups of the formula –NR⁴⁶R⁴⁷, wherein R⁴⁶ and R⁴⁷ are each independently a hydrogen atom, phenyl which is optionally mono-or polysubstituted with halogen, or R¹⁰⁰, wherein R¹⁰⁰ is as hereinbefore defined,
- (I) saturated or unsaturated heterocyclic groups consisting of 3 to 7 ring atoms selected from N, O, C and S, or bicyclic heterocyclic groups consisting of 8 to 11 atoms selected from N, O, C and S, including but not limited to imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl,

thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally mono- or poly-substituted with moieties selected from the class consisting of:

- (i) oxo,
- (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein any hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (c) acyl of 1 to 7 carbons, wherein any hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -S-, S(O)-, SO₂-, -NH-, or -NMe-, or
 - (e) $-COOR^{104}$, wherein R^{104} is alkyl of 1 to 7 atoms,
- (iii) -CONR 105 R 106 , wherein R 105 and R 106 are each independently:
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms,
 - (c) benzoyl,
 - (d) benzyl or

- (e) phenyl, wherein said phenyl ring is optionally mono- or polysubstituted with -OR¹¹², wherein R¹¹² is alkyl of 1 to 6 carbon atoms,
- or, wherein R^{105} and R^{106} constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -S-, S(O)-, SO_2 -, -NH-, or -NMe-,
- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms,
- (v) straight or branched alkyl of 1 to 7 carbon atoms, alkenyl or alkynyl of 2 to 7 carbon atoms, or cycloalkyl of 3 to 7 carbons, wherein one or more hydrogen atoms of said alkyl, alkenyl, alkynyl or cycloalkyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,
 - (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
 - (d) -OCOCH₃,
 - (e) $-NH_2$,
 - (f) -NHMe,
 - (g) $-NMe_2$,
 - (h) -CO₂H, and
 - (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or more hydrogen atoms of said acyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) -OH,
 - (b) $-OR^{115}$, wherein R^{115} is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,

- (d) -NHMe,
- (e) $-NMe_2$,
- (f) -NHCOMe,
- (g) oxo,
- (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,
- (i) -CN,
- (i) the halogen atoms,
- (k) heterocycles selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, and
- (l) aryl or heteroaryl selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, pthalaninyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl,

(vii) $-SO_2R^{108}$, wherein R^{108} is:

(a) aryl or heteroaryl which is selected from the group consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more

- moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR 117 (wherein 117 is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁹ (wherein R¹¹⁹ is hydrogen or alkyl of 1 to 6 carbon atoms).

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

(a) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]fthiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²⁰ (wherein R ¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms),

- (b) a heterocyclic group selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclyl is optionally substituted with one or more halogen, straight or branched alkyl of 1 to 6 carbons, or -OR¹²¹ (wherein R¹²¹ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²² (wherein R ¹²² is hydrogen or alkyl of 1 to 6 carbon atoms),
- (ix) -CHO,
- (x) the halogen atoms, and
- (xi) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl,
- (J) the halogen atoms, and
- (K) -CN and, wherein R^{1a} is R^{100} ;
- X is an oxygen or sulfur atom;
- R^3 is:
 - (A) a hydrogen atom, or

- (B) branched or unbranched alkyl of 1 to 3 carbon atoms or cycloalkyl of 3 to 5 carbon atoms wherein said alkyl or cycloalkyl group is optionally substituted with:
 - (i) a group of the formula $-OR^{48}$, wherein R^{48} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms, or
 - (ii) a group of the formula –NR⁴⁹R⁵⁰, wherein R⁴⁹ and R⁵⁰ are each, independently, a hydrogen atom, alkyl of 1 to 2 carbon atoms, or acyl of 1 to 2 carbon atoms;
- R^4 is a group of the formula - $(CR^{51}R^{52})_x(CR^{53}R^{54})_vR^{55}$, wherein,
 - x is 0 or 1,
 - y is 0 or 1,

 R^{51} , R^{52} and R^{53} are each, independently:

- (A) a hydrogen atom,
- (B) a group of the formula $-OR^{56}$, wherein R^{56} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms, or
- (C) branched or unbranched alkyl of 1 to 3 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,

R⁵⁴ is:

- (A) a group of the formula R^{57} , wherein R^{57} is independently selected from the same class as is R^1 , or
- (B) a group of the formula $-OR^{58}$, wherein R^{58} is independently selected from the same class as is R^1 ;

R⁵⁵ is:

aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl,

napthyridinyl, pteridinyl and quinazolinyl, wherein one or more of the hydrogen atoms of said aryl or heteroaryl group is optionally and independently replaced with:

- (A) R⁵⁹, which is aryl or heteroaryl selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more of the hydrogen atoms of said aryl or heteroaryl group is optionally and independently replaced with:
 - (i) branched or unbranched alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
 - (ii) a group of the formula -COOR⁶⁰, wherein R⁶⁰ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (iii) a group of the formula –NR⁶¹R⁶², wherein R⁶¹ and R⁶² are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁶¹ and R⁶² constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
 - (iv) a group of the formula –CONR⁶³R⁶⁴, wherein R⁶³ and R⁶⁴ are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R⁶³ and R⁶⁴ constitute a saturated hydrocarbon bridge of 3 to 5 carbon

- atoms which together with the nitrogen atom between them form a heterocyclic ring,
- (v) a group of the formula $-OR^{65}$, wherein R^{65} is a hydrogen atom, or an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms,
- (vi) a group of the formula –SR⁶⁶, wherein R⁶⁶ is a hydrogen atom, or an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms,
- (vii) -CN,
- (viii) nitro, or
- (ix) halogen,
- (B) methyl, which is optionally mono- or polysubstituted with fluorine atoms and additionally is optionally monosubstituted with R⁵⁹,
- (C) branched or unbranched alkyl of 2 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
- (D) a group of the formula -COOR⁶⁷, wherein R⁶⁷ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
- (E) a group of the formula –NR⁶⁸R⁶⁹, wherein R⁶⁸ and R⁶⁹ are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁶⁸ and R⁶⁹ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one of R⁶⁸ and R⁶⁹ may additionally be the group R⁵⁹,
- (F) a group of the formula –CONR⁷⁰R⁷¹, wherein R⁷⁰ and R⁷¹ are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R⁷⁰ and R⁷¹ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one of R⁷⁰ and R⁷¹ may additionally be the group R⁵⁹,

- (G) a group of the formula –COR⁷², wherein R⁷² is a hydrogen atom, straight or branched alkyl of 1 to 5 carbon atoms, cycloalkyl of 3 to 5 carbon atoms or R⁵⁹,
- (H) a group of the formula $-OR^{73}$, wherein R^{73} is a hydrogen atom, an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms, or R^{59} ,
- (I) a group of the formula $-SR^{74}$, wherein R^{74} is a hydrogen atom, an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms, or R^{59} ,
- (J) -CN,
- (K) nitro, or
- (L) halogen;
- R⁵ is Cl or trifluoromethyl;
- Z is =N- or =C(R⁶)- wherein R⁶ is a hydrogen, fluorine, chlorine, bromine or iodine atom, methyl or trifluoromethyl; and,
- R⁷ is a hydrogen, fluorine, chlorine, bromine or iodine atom, methyl, -CN, nitro or trifluoromethyl, with the condition that when Z is =N- or =C(H)-, R⁷ is chlorine, trifluoromethyl, -CN or nitro;

or a pharmaceutically acceptable salt thereof.

- 2. (Previously presented) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-:
- A^2 is =C(H)-, or =C(R')- wherein R' is halogen, -CN, -Oalkyl, -CO₂alkyl or -SO₂alkyl, wherein the foregoing alkyl moieties are of 1 to 3 carbon atoms;
- D is $=C(R^1)$ -, =C(H)-, $=C(SO_2R^1)$ -, $=C(S(O)R^1)$ -, $=C(C(O)R^1)$ -, =C(C(O)H)-, $=C(SR^{1a})$ -, $=C(OR^{1a})$ or $=C(NHR^{1a})$ -, wherein R^1 is selected from the class consisting of:
 - (A) -R¹⁰⁰a, which is: branched or unbranched alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon

atoms or cycloalkyl or cycloalkenyl of 3 to 6 carbon atoms, in which alkyl, alkenyl, cycloalkyl or cycloalkenyl group one or more hydrogen atoms are optionally and independently replaced with:

- (i) halogen,
- (ii) oxo,
- (iii) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more hydrogen atoms of said aryl or heteroaryl group are optionally and independently replaced with:
 - (a) alkyl of 1 to 3 carbon atoms,
 - (b) -COOH,
 - (c) $-SO_2OH$,
 - (d) $-PO(OH)_2$,
 - (e) a group of the formula -COOR⁸, wherein R⁸ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (f) a group of the formula –NR⁹R¹⁰, wherein R⁹ and R¹⁰ are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁹ and R¹⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
 - (g) a group of the formula -CONR¹¹R¹², wherein R¹¹ and R¹² are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹¹ and R¹² constitute

a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -S-, S(O)-, SO₂-, -NH-, or -NMe-,

- (h) a group of the formula –OR¹³, wherein R¹³ is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (i) a group of the formula –SR¹⁴, wherein R¹⁴ is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (j) -CN, or
- (k) an amidino group of the formula

wherein R^{15} , R^{16} and R^{17} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms and wherein two of R^{15} , R^{16} and R^{17} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (l) halogen,
- (m) a group of the formula –NHCONHalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (n) a group of the formula –NHCOOalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (iv) a group of the formula $-COOR^{18}$, wherein R^{18} is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (v) -CN,
- (vi) a group of the formula -CONR¹⁹R²⁰, wherein R¹⁹ and R²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl

- of 3 to 6 carbon atoms, or wherein R¹⁹ and R²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -S-, S(O)-, SO₂-, -NH-, or -NMe-,
- (vii) a group of the formula –OR²¹, wherein R²¹ is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety contains 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
- (viii) a group of the formula –SR²², wherein R²² is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
- (ix) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms, wherein said one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
 - (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
 - (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or

- (e) a group of the formula $-(CH_2)_nCONHR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms,
- (x) a quaternary group of the formula

$$R^{26}$$
 $-N^{+}$
 R^{27} Q^{-}

wherein R^{26} , R^{27} and R^{28} are each, independently, a branched or unbranched alkyl group of 1 to 7 carbon atoms and Q^- is a pharmaceutically acceptable counter ion,

- (xi) a saturated, or partially unsaturated heterocyclic group consisting of 3 to 7 ring atoms selected from N, O, C and S, including but not limited to imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally mono- or polysubstituted with oxo, and
- (xii) a cycloalkyl group of 3 to 7 carbon atoms,
- (B) branched or unbranched carboxylic acid groups of 3 to 6 carbon atoms,
- (C) branched or unbranched phosphonic acid groups of 2 to 6 carbon atoms,
- (D) branched or unbranched sulfonic acid groups of 2 to 6 carbon atoms,
- (E) amidino groups of the formula

wherein r is 2, 3, 4, 5 or 6, and R^{29} , R^{30} and R^{31} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R^{29} , R^{30} and R^{31} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon

atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(F) guanidino groups of the formula

$$(CH_2)_s$$
 R^{33}
 R^{34}
 R^{34}
 R^{32}
 R^{35}

wherein s is 2, 3, 4, 5 or 6, and R³², R³³, R³⁴ and R³⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R³², R³³, R³⁴ and R³⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (G) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more hydrogen atoms of said aryl or heteroaryl group are optionally and independently replaced with:
 - (i) alkyl of 1 to 3 carbon atoms,
 - (ii) -COOH,
 - (iii) -SO₂OH,
 - (iv) $-PO(OH)_2$,
 - (v) a group of the formula -COOR³⁶, wherein R³⁶ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (vi) a group of the formula –NR³⁷R³⁸, wherein R³⁷ and R³⁸ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R³⁷ and R³⁸

- constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
- (vii) a group of the formula –CONR³⁹R⁴⁰, wherein R³⁹ and R⁴⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R³⁹ and R⁴⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -S-, S(O)-, SO₂-, -NH-, or –NMe-,
- (viii) a group of the formula $-OR^{41}$, wherein R^{41} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (ix) a group of the formula –SR⁴², wherein R⁴² is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (x) -CN, or
- (xi) an amidino group of the formula

wherein R⁴³, R⁴⁴ and R⁴⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R⁴³, R⁴⁴ and R⁴⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (H) groups of the formula –NR⁴⁶R⁴⁷, wherein R⁴⁶ and R⁴⁷ are each independently a hydrogen atom, phenyl which is optionally mono-or polysubstituted with halogen, or R¹⁰⁰a, wherein R¹⁰⁰a is as hereinbefore defined,
- (I) saturated or unsaturated heterocyclic groups consisting of 3 to 7 ring atoms selected from N, O, C and S, or bicyclic heterocyclic groups consisting of 8 to 11

atoms selected from N, O, C and S, including but not limited to imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally mono- or poly-substituted with moieties independently selected from the class consisting of:

- (i) oxo,
- (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein any hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (c) acyl of 1 to 7 carbons, wherein any hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -S-, S(O)-, SO₂-, -NH-, or -NMe-, or
 - (e) $-COOR^{104}$, wherein R^{104} is alkyl of 1 to 7 atoms,
- (iii) -CONR¹⁰⁵R¹⁰⁶, wherein R¹⁰⁵ and R¹⁰⁶ are each independently:
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms,
 - (c) benzoyl,
 - (d) benzyl or

- (e) phenyl, wherein said phenyl ring is optionally mono- or polysubstituted with -OR¹¹², wherein R¹¹² is alkyl of 1 to 6 carbon atoms,
- or, wherein R^{105} and R^{106} constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -S-, S(O)-, SO_2 -, -NH-, or -NMe-,
- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms,
- (v) straight or branched alkyl of 1 to 7 carbon atoms, alkenyl or alkynyl of 2 to 7 carbon atoms, or cycloalkyl of 3 to 7 carbons, wherein one or more hydrogen atoms of said alkyl, alkenyl, alkynyl or cycloalkyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,
 - (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
 - (d) -OCOCH₃,
 - (e) $-NH_2$,
 - (f) -NHMe,
 - (g) $-NMe_2$,
 - (h) -CO₂H, and
 - (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or more hydrogen atoms of said acyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) -OH,
 - (b) $-OR^{115}$, wherein R^{115} is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,

- (d) -NHMe,
- (e) $-NMe_2$,
- (f) -NHCOMe,
- (g) oxo,
- (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,
- (i) -CN,
- (i) the halogen atoms,
- (k) heterocycles selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, and
- (l) aryl or heteroaryl selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl,

(vii) $-SO_2R^{108}$, wherein R^{108} is:

(a) aryl or heteroaryl which is selected from the group consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more

- moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and $-OR^{117}$ (wherein R^{117} is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁹ (wherein R¹¹⁹ is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

(a) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²⁰ (wherein R ¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms),

- (b) a heterocyclic group selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclyl is optionally substituted with one or more halogen, straight or branched alkyl of 1 to 6 carbons, or -OR¹²¹ (wherein R¹²¹ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²² (wherein R ¹²² is hydrogen or alkyl of 1 to 6 carbon atoms),
- (ix) -CHO,
- (x) the halogen atoms, and
- (xi) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl,
- (J) the halogen atoms, and
- (K) -CN and,
 wherein R^{1a} is R¹⁰⁰a;
- X is an oxygen or sulfur atom;
- R^3 is:
 - (A) a hydrogen atom, or

- (B) branched or unbranched alkyl of 1 to 3 carbon atoms or cycloalkyl of 3 to 5 carbon atoms wherein said alkyl or cycloalkyl group is optionally substituted with:
 - (i) a group of the formula $-OR^{48}$, wherein R^{48} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms, or
 - (ii) a group of the formula –NR⁴⁹R⁵⁰, wherein R⁴⁹ and R⁵⁰ are each, independently, a hydrogen atom, alkyl of 1 to 2 carbon atoms, or acyl of 1 to 2 carbon atoms;
- R^4 is a group of the formula $-CH_2R^{55}$, wherein, R^{55} is:

aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more of the hydrogen atoms of said aryl or heteroaryl group is optionally and independently replaced with:

(A) R^{59a}, which is aryl or heteroaryl selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein one or more of the hydrogen atoms of said aryl or heteroaryl group is optionally and independently replaced with:

- (i) branched or unbranched alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
- (ii) a group of the formula –COOR⁶⁰, wherein R⁶⁰ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
- (iii) a group of the formula –NR⁶¹R⁶², wherein R⁶¹ and R⁶² are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁶¹ and R⁶² constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
- (iv) a group of the formula –CONR⁶³R⁶⁴, wherein R⁶³ and R⁶⁴ are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R⁶³ and R⁶⁴ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
- (v) a group of the formula –OR⁶⁵, wherein R⁶⁵ is a hydrogen atom, or an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms,
- (vi) a group of the formula –SR⁶⁶, wherein R⁶⁶ is a hydrogen atom, or an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms,
- (vii) -CN,
- (viii) nitro, or
- (ix) halogen,
- (B) methyl, which is optionally mono- or polysubstituted with fluorine atoms and additionally is optionally monosubstituted with R^{59a},

- (C) branched or unbranched alkyl of 2 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
- (D) a group of the formula –COOR⁶⁷, wherein R⁶⁷ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
- (E) a group of the formula –NR⁶⁸R⁶⁹, wherein R⁶⁸ and R⁶⁹ are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁶⁸ and R⁶⁹ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one of R⁶⁸ and R⁶⁹ may additionally be the group R^{59a},
- (F) a group of the formula –CONR⁷⁰R⁷¹, wherein R⁷⁰ and R⁷¹ are each, independently, a hydrogen atom, alkyl or fluoroalkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R⁷⁰ and R⁷¹ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one of R⁷⁰ and R⁷¹ may additionally be the group R^{59a},
- (G) a group of the formula –COR⁷², wherein R⁷² is a hydrogen atom, straight or branched alkyl of 1 to 5 carbon atoms, cycloalkyl of 3 to 5 carbon atoms or R^{59a},
- (H) a group of the formula $-OR^{73}$, wherein R^{73} is a hydrogen atom, an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms, or R^{59a} ,
- (I) a group of the formula $-SR^{74}$, wherein R^{74} is a hydrogen atom, an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms, or R^{59a} ,
- (J) -CN,
- (K) nitro, or
- (L) halogen;

- R⁵ is Cl or trifluoromethyl;
- Z is =N- or = $C(R^6)$ wherein R^6 is a hydrogen, fluorine, chlorine, bromine or iodine atom, methyl or trifluoromethyl; and,
- R^7 is a hydrogen, fluorine, chlorine, bromine or iodine atom, methyl, -CN, nitro or trifluoromethyl, with the condition that when Z is =N- or =C(H)-, R^7 is chlorine, trifluoromethyl, -CN or nitro;

or a pharmaceutically acceptable salt thereof.

- 3. (Previously presented) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-;
- A^2 is =C(H)-;
- D is $=C(R^1)$ -, =C(H)-, $=C(SO_2R^1)$ -, =C(C(O)H)- or $=C(C(O)R^1)$ -, wherein R^1 is selected from the class consisting of:
 - (A) $-R^{100b}$, which is:

branched or unbranched alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon atoms or cycloalkyl or cycloalkenyl of 3 to 6 carbon atoms, in which alkyl, alkenyl, cycloalkyl or cycloalkenyl group one or more hydrogen atoms are optionally and independently replaced with:

- (i) oxo
- (ii) phenyl, wherein one hydrogen atom of said phenyl group is optionally replaced with:
 - (a) alkyl of 1 to 3 carbon atoms,
 - (b) -COOH,
 - (c) $-SO_2OH$,
 - (d) $-PO(OH)_2$,
 - (e) a group of the formula –COOR⁸, wherein R⁸ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (f) a group of the formula -NR⁹R¹⁰, wherein R⁹ and R¹⁰ are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms,

cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R^9 and R^{10} constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,

- (g) a group of the formula –CONR¹¹R¹², wherein R¹¹ and R¹² are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹¹ and R¹² constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or –NMe-,
- (h) a group of the formula $-OR^{13}$, wherein R^{13} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (i) a group of the formula $-SR^{14}$, wherein R^{14} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (j) -CN, or
- (k) an amidino group of the formula

wherein R^{15} , R^{16} and R^{17} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms and wherein two of R^{15} , R^{16} and R^{17} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(l) a group of the formula –NHCONHalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,

- (m) a group of the formula –NHCOOalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (iii) a group of the formula –COOR¹⁸, wherein R¹⁸ is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (iv) a group of the formula –CONR¹⁹R²⁰, wherein R¹⁹ and R²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹⁹ and R²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,
- (v) a group of the formula $-OR^{21}$, wherein R^{21} is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety contains 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
- (vi) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms, wherein said one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
 - (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
 - (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or

(e) a group of the formula –(CH₂)_nCONHR²⁵, wherein n is 0, 1 or 2, and wherein R²⁵ is straight or branched alkyl of 1 to 6 carbon atoms,

(vii) a quaternary group of the formula

$$R^{26}$$
 N^{+}
 R^{27} Q^{-}

wherein R^{26} , R^{27} and R^{28} are each, independently, a branched or unbranched alkyl group of 1 to 7 carbon atoms and Q^- a pharmaceutically acceptable counter ion, or

(viii) a cycloalkyl group of 3 to 7 carbon atoms,

- (B) branched or unbranched carboxylic acid groups of 3 to 6 carbon atoms,
- (C) branched or unbranched phosphonic acid groups of 2 to 6 carbon atoms,
- (D) branched or unbranched sulfonic acid groups of 2 to 6 carbon atoms,
- (E) amidino groups of the formula

wherein r is 2, 3, 4, 5 or 6, and R^{29} , R^{30} and R^{31} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R^{29} , R^{30} and R^{31} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(F) guanidino groups of the formula

$$(CH_2)_s$$
 N
 R^{33}
 R^{34}
 R^{34}

wherein s is 2, 3, 4, 5 or 6, and R³², R³³, R³⁴ and R³⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R³², R³³, R³⁴ and R³⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (G) phenyl, wherein one or more hydrogen atoms of said phenyl group are optionally and independently replaced with:
 - (i) alkyl of 1 to 3 carbon atoms,
 - (ii) -COOH,
 - (iii) -SO₂OH,
 - (iv) $-PO(OH)_2$,
 - (v) a group of the formula -COOR³⁶, wherein R³⁶ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (vi) a group of the formula –NR³⁷R³⁸, wherein R³⁷ and R³⁸ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R³⁷ and R³⁸ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
 - (vii) a group of the formula –CONR³⁹R⁴⁰, wherein R³⁹ and R⁴⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R³⁹ and R⁴⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or –NMe-,
 - (viii) a group of the formula $-OR^{41}$, wherein R^{41} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
 - (ix) a group of the formula –SR⁴², wherein R⁴² is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
 - (x) -CN, or

(xi) an amidino group of the formula

wherein R^{43} , R^{44} and R^{45} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R^{43} , R^{44} and R^{45} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (H) groups of the formula –NR⁴⁶R⁴⁷, wherein R⁴⁶ and R⁴⁷ are each independently a hydrogen atom, phenyl which is optionally mono-or polysubstituted with halogen, or R¹⁰⁰b, wherein R¹⁰⁰b is as hereinbefore defined,
- (I) saturated or unsaturated heterocyclic groups selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally mono- or poly-substituted with moieties independently selected from the class consisting of:
 - (i) oxo,
 - (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein any hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (c) acyl of 1 to 7 carbons, wherein any hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,

- (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-, or
- (e) $-COOR^{104}$, wherein R^{104} is alkyl of 1 to 7 atoms,
- (iii) -CONR¹⁰⁵R¹⁰⁶, wherein R¹⁰⁵ and R¹⁰⁶ are each independently:
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms,
 - (c) benzoyl,
 - (d) benzyl or
 - (e) phenyl, wherein said phenyl ring is optionally mono- or polysubstituted with $-OR^{112}$, wherein R^{112} is alkyl of 1 to 6 carbon atoms,
 - or, wherein R¹⁰⁵ and R¹⁰⁶ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or –NMe-,
- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms .
- (v) straight or branched alkyl of 1 to 7 carbon atoms, alkenyl or alkynyl of 2 to 7 carbon atoms, or cycloalkyl of 3 to 7 carbons, wherein one or more hydrogen atoms of said alkyl, alkenyl, alkynyl or cycloalkyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,

- (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
- (d) -OCOCH₃,
- (e) $-NH_2$,
- (f) -NHMe,
- (g) -NMe₂,
- (h) -CO₂H, and
- (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or more hydrogen atoms of said acyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) -OH,
 - (b) -OR¹¹⁵, wherein R¹¹⁵ is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,
 - (d) -NHMe,
 - (e) $-NMe_2$,
 - (f) -NHCOMe,
 - (g) oxo,
 - (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,
 - (i) -CN,
 - (i) the halogen atoms,
 - (k) heterocycles selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, and
 - (l) aryl or heteroaryl selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl,

indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl,

(vii) $-SO_2R^{108}$, wherein R^{108} is:

- (a) aryl or heteroaryl which is selected from the group consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁷ (wherein R¹¹⁷ is hydrogen or alkyl of 1 to 6 carbon atoms).
- (b) a heterocyclic group selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclic group is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1

to 6 carbons, and $-OR^{119}$ (wherein R^{119} is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

- (a) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²⁰ (wherein R ¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms).
- (b) a heterocyclic group selected from the class consisting of imidazolinyl, imidazolidinyl, pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, azepinyl, tetrahydropyranyl, tetrahydrofuranyl, benzodioxolyl, tetrahydrothiophenyl and sulfolanyl, wherein said heterocyclyl is optionally substituted with one or more halogen, straight or branched alkyl of 1 to 6 carbons, or -OR¹²¹ (wherein R¹²¹ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹²² (wherein R¹²² is hydrogen or alkyl of 1 to 6 carbon atoms),
- (ix) -CHO,
- (x) the halogen atoms, and

- (xi) aryl or heteroaryl which is selected from the class consisting of phenyl, naphthyl, indolyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, imidazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridazinyl, pyrazinyl, triazinyl, indolyzinyl, isoindolyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, benzthiazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, purinyl, quinolizinyl, cinnolinyl, phthalyl, quinoxalinyl, napthyridinyl, pteridinyl and quinazolinyl,
- (J) the halogen atoms, and
- (K) -CN;
- X is an oxygen atom;
- R³ is branched or unbranched alkyl of 1 to 3 carbon atoms;
- R⁴ is a group of the formula –CH₂R⁵⁵, wherein,

R⁵⁵ is:

aryl or heteroaryl which is selected from the class consisting of phenyl, pyridyl, and pyrimidinyl, wherein one or more of the hydrogen atoms of said aryl or heteroaryl group is optionally and independently replaced with:

- (A) R^{59b}, which is aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, and thiazolyl, wherein one of the hydrogen atoms of said aryl or heteroaryl group is optionally replaced with:
 - (i) branched or unbranched alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
 - (ii) -CN,
 - (iii) nitro, or
 - (iv) halogen,
- (B) methyl, which is optionally trisubstituted with fluorine atoms or is optionally monosubstituted with R^{59b},

- (C) branched or unbranched alkyl of 2 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally monosubstituted with halogen or oxo,
- (D) a group of the formula –COOR⁶⁷, wherein R⁶⁷ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
- (E) a group of the formula –COR⁷², wherein R⁷² is a hydrogen atom, straight or branched alkyl of 1 to 5 carbon atoms, cycloalkyl of 3 to 5 carbon atoms or R^{59b},
- (F) a group of the formula $-OR^{73}$, wherein R^{73} is a hydrogen atom, an alkyl, fluoroalkyl or acyl group of 1 to 7 carbon atoms, or R^{59b} ,
- (G) -CN,
- (H) nitro, or
- (I) halogen;

$$R^5$$
 is C1;

Z is
$$=C(H)$$
-; and,

$$R^7$$
 is C1;

or a pharmaceutically acceptable salt thereof.

- 4. (Original) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-;
- A^2 is =C(H)-;
- D is $=C(R^1)$ -, =C(H)-, $=C(SO_2R^1)$ -, =C(C(O)H)- or $=C(COR^1)$ -, wherein R^1 is selected from the class consisting of:
 - (A) $-R^{100c}$, which is:

branched or unbranched alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon atoms or cycloalkyl or cycloalkenyl of 3 to 6 carbon atoms, in which alkyl, alkenyl, cycloalkyl or cycloalkenyl group one or more hydrogen atoms are optionally and independently replaced with:

(i) oxo,

- (ii) phenyl, wherein one hydrogen atom of said phenyl group is optionally replaced with:
 - (a) alkyl of 1 to 3 carbon atoms,
 - (b) -COOH,
 - (c) $-SO_2OH$,
 - (d) $-PO(OH)_2$,
 - (e) a group of the formula –COOR⁸, wherein R⁸ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
 - (f) a group of the formula –NR⁹R¹⁰, wherein R⁹ and R¹⁰ are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R⁹ and R¹⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
 - (g) a group of the formula –CONR¹¹R¹², wherein R¹¹ and R¹² are each independently a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹¹ and R¹² constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or –NMe-,
 - (h) a group of the formula –OR¹³, wherein R¹³ is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
 - (i) a group of the formula $-SR^{14}$, wherein R^{14} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
 - (j) -CN, or

(k) an amidino group of the formula

wherein R^{15} , R^{16} and R^{17} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms and wherein two of R^{15} , R^{16} and R^{17} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (l) a group of the formula –NHCONHalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (m) a group of the formula –NHCOOalkyl, wherein the alkyl moiety contains 1 to 3 carbon atoms,
- (iii) a group of the formula –COOR¹⁸, wherein R¹⁸ is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (iv) a group of the formula –CONR¹⁹R²⁰, wherein R¹⁹ and R²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹⁹ and R²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,
- (v) a group of the formula $-OR^{21}$, wherein R^{21} is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety contains 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂,

- 45 -

- (vi) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms, wherein said one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
 - (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
 - (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or
 - (e) a group of the formula –(CH₂)_nCONHR²⁵, wherein n is 0, 1 or 2, and wherein R²⁵ is straight or branched alkyl of 1 to 6 carbon atoms,
- (vii) a quaternary group of the formula

$$R^{26}$$
 N^{+}
 R^{27} Q^{-}
 R^{28}

wherein R^{26} , R^{27} and R^{28} are each, independently, a branched or unbranched alkyl group of 1 to 7 carbon atoms and Q^- is a pharmaceutically acceptable, or

(viii) a cycloalkyl group of 3 to 7 carbon atoms,

- (B) branched or unbranched carboxylic acid groups of 3 to 6 carbon atoms,
- (C) branched or unbranched phosphonic acid groups of 2 to 6 carbon atoms,
- (D) branched or unbranched sulfonic acid groups of 2 to 6 carbon atoms,

(E) amidino groups of the formula

wherein r is 2, 3, 4, 5 or 6, and R^{29} , R^{30} and R^{31} are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R^{29} , R^{30} and R^{31} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(F) guanidino groups of the formula

$$(CH_2)_s$$
 N
 R^{33}
 R^{34}
 R^{32}
 R^{35}

wherein s is 2, 3, 4, 5 or 6, and R³², R³³, R³⁴ and R³⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R³², R³³, R³⁴ and R³⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (G) phenyl, wherein one or more hydrogen atoms of said phenyl group are optionally and independently replaced with:
 - (i) alkyl of 1 to 3 carbon atoms,
 - (ii) -COOH,
 - (iii) -SO₂OH,
 - (iv) $-PO(OH)_2$,
 - (v) a group of the formula –COOR³⁶, wherein R³⁶ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,

- (vi) a group of the formula –NR³⁷R³⁸, wherein R³⁷ and R³⁸ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms or acyl of 1 to 7 carbon atoms, or wherein R³⁷ and R³⁸ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring,
- (vii) a group of the formula –CONR³⁹R⁴⁰, wherein R³⁹ and R⁴⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R³⁹ and R⁴⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or –NMe-,
- (viii) a group of the formula $-OR^{41}$, wherein R^{41} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (ix) a group of the formula $-SR^{42}$, wherein R^{42} is a hydrogen atom, or an alkyl or acyl group of 1 to 7 carbon atoms,
- (x) -CN, or
- (xi) an amidino group of the formula

wherein R⁴³, R⁴⁴ and R⁴⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R⁴³, R⁴⁴ and R⁴⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(H) groups of the formula –NR⁴⁶R⁴⁷, wherein R⁴⁶ and R⁴⁷ are each independently a hydrogen atom, phenyl which is optionally monosubstituted with halogen, or R¹⁰⁰c, wherein R¹⁰⁰c is as hereinbefore defined,

- (I) saturated or unsaturated heterocyclic groups selected from the class consisting of pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic groups are optionally mono- or polysubstituted with moieties independently selected from the class consisting of:
 - (i) oxo,
 - (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein any hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (c) acyl of 1 to 7 carbons, wherein any hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or -NMe-, or
 - (e) $-COOR^{104}$, wherein R^{104} is alkyl of 1 to 7 atoms,
 - (iii) -CONR¹⁰⁵R¹⁰⁶, wherein R¹⁰⁵ and R¹⁰⁶ are each independently:
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms,
 - (c) benzoyl,
 - (d) benzyl or
 - (e) phenyl, wherein said phenyl ring is optionally mono- or polysubstituted with -OR¹¹², wherein R¹¹² is alkyl of 1 to 6 carbon atoms,

- or, wherein R¹⁰⁵ and R¹⁰⁶ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or –NMe-,
- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms,
- (v) straight or branched alkyl of 1 to 7 carbon atoms, alkenyl or alkynyl of 2 to 7 carbon atoms, or cycloalkyl of 3 to 7 carbons, wherein one or more hydrogen atoms of said alkyl, alkenyl, alkynyl or cycloalkyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,
 - (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
 - (d) -OCOCH₃,
 - (e) $-NH_2$,
 - (f) -NHMe,
 - (g) -NMe₂,
 - (h) -CO₂H, and
 - (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or more hydrogen atoms of said acyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) -OH,
 - (b) -OR¹¹⁵, wherein R¹¹⁵ is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,
 - (d) -NHMe,
 - (e) $-NMe_2$,
 - (f) -NHCOMe,

- (g) oxo,
- (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,
- (i) -CN,
- (j) the halogen atoms,
- (k) heterocycles selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and
- (l) aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl and oxazolyl,

(vii) $-SO_2R^{108}$, wherein R^{108} is:

- (a) aryl or heteroaryl which is selected from the group consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl thiazolyl and pyrazolyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁷ (wherein R¹¹⁷ is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic group is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁹ (wherein R¹¹⁹ is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

(a) aryl or heteroaryl which is selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl,

thiazolyl and pyrazolyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹²⁰ (wherein R¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms),

- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclyl is optionally substituted with one or more halogen, straight or branched alkyl of 1 to 6 carbons, or -OR ¹²¹ (wherein R ¹²¹ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹²² (wherein R¹²² is hydrogen or alkyl of 1 to 6 carbon atoms),
- (ix) -CHO,
- (x) the halogen atoms, and
- (xi) aryl or heteroaryl which is selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl and imidazolyl,
- (J) the halogen atoms, and
- (K) -CN;
- X is an oxygen atom;
- R³ is branched or unbranched alkyl of 1 to 3 carbon atoms;
- R^4 is a group of the formula $-CH_2R^{55}$, wherein,

R⁵⁵ is:

phenyl, which is optionally substituted at the 4-position with:

- (A) R^{59c}, which is aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl and furyl, wherein one of the hydrogen atoms of said aryl or heteroaryl group is optionally replaced with:
 - (i) branched or unbranched alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
 - (ii) -CN,
 - (iii) nitro, or
 - (iv) halogen,
- (B) methyl,
- (C) branched or unbranched alkyl of 2 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally monosubstituted with halogen or oxo,
- (D) a group of the formula –COOR⁶⁷, wherein R⁶⁷ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
- (E) a group of the formula –COR⁷², wherein R⁷² is a hydrogen atom, straight or branched alkyl of 1 to 5 carbon atoms, or cycloalkyl of 3 to 5 carbon atoms,
- (F) a group of the formula $-OR^{73}$, wherein R^{73} is a hydrogen atom, an alkyl, or fluoroalkyl or acyl group of 1 to 7 carbon atoms,
- (G) -CN,
- (H) nitro, or
- (I) halogen;

 R^5 is C1:

Z is =C(H)-; and,

 R^7 is C1;

or a pharmaceutically acceptable salt thereof.

- 5. (Original) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-;
- A^2 is =C(H)-;
- D is =C(H)-, $=C(SO_2R^1)$ or $=C(C(O)R^1)$ -, wherein R^1 is selected from the class consisting of:
 - (A) $-R^{100d}$, which is:

branched or unbranched alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon atoms or cycloalkyl or cycloalkenyl of 3 to 6 carbon atoms, in which alkyl, alkenyl, cycloalkyl or cycloalkenyl group one or more hydrogen atoms are optionally and independently replaced with:

- (i) oxo,
- (ii) a group of the formula –COOR¹⁸, wherein R¹⁸ is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (iii) a group of the formula –CONR ¹⁹R²⁰, wherein R ¹⁹ and R ²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R ¹⁹ and R ²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,
- (iv) a group of the formula $-OR^{21}$, wherein R^{21} is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety contains 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂,
- (v) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,

- (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms, wherein said one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂.
- (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
- (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or
- (e) a group of the formula –(CH₂)_nCONHR²⁵, wherein n is 0, 1 or 2, and wherein R²⁵ is straight or branched alkyl of 1 to 6 carbon atoms,
- (vi) a quaternary group of the formula

$$R^{26}$$
 N^{+}
 R^{27} Q^{-}
 R^{28}

wherein R^{26} , R^{27} and R^{28} are each, independently, a branched or unbranched alkyl group of 1 to 7 carbon atoms and Q^- is a pharmaceutically acceptable counter ion, or

- (vii) a cycloalkyl group of 3 to 7 carbon atoms,
- (B) branched or unbranched carboxylic acid groups of 3 to 6 carbon atoms,
- (C) branched or unbranched phosphonic acid groups of 2 to 6 carbon atoms,
- (D) branched or unbranched sulfonic acid groups of 2 to 6 carbon atoms,
- (E) amidino groups of the formula

wherein r is 2, 3, 4, 5 or 6, and R^{29} , R^{30} and R^{31} are each, independently, a

hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R^{29} , R^{30} and R^{31} may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

(F) guanidino groups of the formula

$$(CH_2)_s$$
 R^{33}
 R^{34}
 R^{32}
 R^{35}

wherein s is 2, 3, 4, 5 or 6, and R³², R³³, R³⁴ and R³⁵ are each, independently, a hydrogen atom or alkyl of 1 to 3 carbon atoms, and wherein two of R³², R³³, R³⁴ and R³⁵ may additionally constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom(s) between them form a heterocyclic ring,

- (G) groups of the formula –NR⁴⁶R⁴⁷, wherein R⁴⁶ and R⁴⁷ are each independently a hydrogen atom, phenyl which is optionally monosubstituted with halogen, or R¹⁰⁰d, wherein R¹⁰⁰d is as hereinbefore defined,
- (H) saturated or unsaturated heterocyclic groups selected from the class consisting of pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic groups are optionally mono- or polysubstituted with moieties independently selected from the class consisting of:
 - (i) oxo,
 - (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein any hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂.

- (c) acyl of 1 to 7 carbons, wherein any hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
- (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or -NMe-, or
- (e) -COOR¹⁰⁴, wherein R¹⁰⁴ is alkyl of 1 to 7 atoms,
- (iii) $-CONR^{105}R^{106}$, wherein R^{105} and R^{106} are each independently:
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms,
 - (c) benzoyl,
 - (d) benzyl or
 - (e) phenyl, wherein said phenyl ring is optionally mono- or polysubstituted with -OR 112 , wherein R 112 is alkyl of 1 to 6 carbon atoms,
 - or, wherein R¹⁰⁵ and R¹⁰⁶ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,
- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms,
- (v) straight or branched alkyl of 1 to 7 carbon atoms, alkenyl or alkynyl of 2 to 7 carbon atoms, or cycloalkyl of 3 to 7 carbons, wherein one or more hydrogen atoms of said alkyl, alkenyl, alkynyl or cycloalkyl group is

optionally replaced with a moiety independently selected from the class consisting of:

- (a) oxo,
- (b) -OH,
- (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
- (d) -OCOCH₃,
- (e) $-NH_2$,
- (f) -NHMe,
- (g) $-NMe_2$,
- (h) -CO₂H, and
- (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or more hydrogen atoms of said acyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) -OH,
 - (b) -OR¹¹⁵, wherein R¹¹⁵ is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,
 - (d) -NHMe,
 - (e) $-NMe_2$,
 - (f) -NHCOMe,
 - (g) oxo,
 - (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,
 - (i) -CN,
 - (j) the halogen atoms,
 - (k) heterocycles selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and
 - (l) aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl and oxazolyl,
- (vii) $-SO_2R^{108}$, wherein R^{108} is:

- (a) aryl or heteroaryl which is selected from the group consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl thiazolyl and pyrazolyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁷ (wherein R¹¹⁷ is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic group is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁹ (wherein R¹¹⁹ is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

- (a) aryl or heteroaryl which is selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl and pyrazolyl, wherein said aryl or heteroaryl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹²⁰ (wherein R¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclyl is optionally substituted with one or more halogen,

- straight or branched alkyl of 1 to 6 carbons, or $-OR^{121}$ (wherein R^{121} is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹²² (wherein R¹²² is hydrogen or alkyl of 1 to 6 carbon atoms),
- (ix) -CHO,
- (x) the halogen atoms, and
- (xi) aryl or heteroaryl which is selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl and imidazolyl, and
- (I) the halogen atoms,
- X is an oxygen atom;
- R³ is branched or unbranched alkyl of 1 to 3 carbon atoms;
- R^4 is a group of the formula $-CH_2R^{55}$, wherein,

R⁵⁵ is:

phenyl, which is optionally substituted at the 4-position with:

- (A) R^{59d}, which is aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl and furyl, wherein one of the hydrogen atoms of said aryl or heteroaryl group is optionally replaced with:
 - (i) branched or unbranched alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally mono- or polysubstituted with halogen or oxo,
 - (ii) -CN,
 - (iii) nitro, or
 - (iv) halogen,
- (B) methyl,

- (C) branched or unbranched alkyl of 2 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, which alkyl or cycloakyl group is optionally monosubstituted with halogen or oxo,
- (D) a group of the formula –COOR⁶⁷, wherein R⁶⁷ is straight or branched alkyl of 1 to 5 carbon atoms or cycloalkyl of 3 to 5 carbon atoms,
- (E) a group of the formula –COR⁷², wherein R⁷² is a hydrogen atom, straight or branched alkyl of 1 to 5 carbon atoms, or cycloalkyl of 3 to 5 carbon atoms,
- (F) a group of the formula $-OR^{73}$, wherein R^{73} is a hydrogen atom, an alkyl, or fluoroalkyl or acyl group of 1 to 7 carbon atoms,
- (G) -CN,
- (H) nitro, or
- (I) halogen;

R⁵ is Cl;

Z is =C(H)-; and,

R⁷ is Cl;

or a pharmaceutically acceptable salt thereof.

- 6. (Original) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-;
- A^2 is =C(H)-:
- D is $=C(SO_2R^1)$ or $=C(C(O)R^1)$ -, wherein R^1 is selected from the class consisting of:
 - (A) $-R^{100e}$, which is:

branched or unbranched alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon atoms or cycloalkyl or cycloalkenyl of 3 to 6 carbon atoms, in which alkyl, alkenyl, cycloalkyl or cycloalkenyl group one or more hydrogen atoms are optionally and independently replaced with:

(i) oxo,

- (ii) a group of the formula –COOR¹⁸, wherein R¹⁸ is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (iii) a group of the formula –CONR ¹⁹R²⁰, wherein R ¹⁹ and R ²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R ¹⁹ and R ²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,
- (iv) a group of the formula $-OR^{21}$, wherein R^{21} is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, wherein one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety contains 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂, or
- (v) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms, wherein said one or more hydrogen atoms of said alkyl or acyl group are optionally replaced with a group independently selected from the class consisting of -OH, -Oalkyl (wherein the alkyl moiety is 1 to 6 carbon atoms), -NH₂, -NHMe and -NMe₂,
 - (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
 - (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or
 - (e) a group of the formula $-(CH_2)_nCONHR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms,

- (B) groups of the formula –NR⁴⁶R⁴⁷, wherein R⁴⁶ and R⁴⁷ are each independently a hydrogen atom, phenyl which is optionally monosubstituted with halogen, or R¹⁰⁰e, wherein R¹⁰⁰e is as hereinbefore defined, and
- (C) saturated or unsaturated heterocyclic groups selected from the class consisting of pyrrolinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic groups are optionally mono- or polysubstituted with moieties independently selected from the class consisting of:
 - (i) oxo,
 - (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein any hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (c) acyl of 1 to 7 carbons, wherein any hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by –O-, -NH-, or -NMe-, or
 - (e) $-COOR^{104}$, wherein R^{104} is alkyl of 1 to 7 atoms,
 - (iii) -CONR¹⁰⁵R¹⁰⁶, wherein R¹⁰⁵ and R¹⁰⁶ are each independently:
 - (a) a hydrogen atom, or
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms,
 - or, wherein R^{105} and R^{106} constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between

them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,

- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms,
- (v) straight or branched alkyl of 1 to 7 carbon atoms, alkenyl or alkynyl of 2 to 7 carbon atoms, or cycloalkyl of 3 to 7 carbons, wherein one or more hydrogen atoms of said alkyl, alkenyl, alkynyl or cycloalkyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,
 - (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
 - (d) -OCOCH₃,
 - (e) $-NH_2$,
 - (f) -NHMe,
 - (g) -NMe₂,
 - (h) -CO₂H, and
 - (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or more hydrogen atoms of said acyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) -OH,
 - (b) -OR¹¹⁵, wherein R¹¹⁵ is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,
 - (d) -NHMe,
 - (e) $-NMe_2$,
 - (f) -NHCOMe,
 - (g) oxo,
 - (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,

- (i) -CN,
- (j) the halogen atoms,
- (k) heterocycles selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and
- (l) aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl and oxazolyl,

(vii) $-SO_2R^{108}$, wherein R^{108} is:

- (a) phenyl, wherein said phenyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹¹⁷ (wherein R ¹¹⁷ is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic group is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁹ (wherein R¹¹⁹ is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

- (a) phenyl, wherein said phenyl moiety is optionally substituted with one
 or more moieties selected from the class consisting of the halogen
 atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²⁰
 (wherein R¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms),
- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein

said heterocyclyl is optionally substituted with one or more halogen, straight or branched alkyl of 1 to 6 carbons, or $-OR^{121}$ (wherein R^{121} is hydrogen or alkyl of 1 to 6 carbon atoms), or

- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one or more moieties selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²² (wherein R ¹²² is hydrogen or alkyl of 1 to 6 carbon atoms), and
- (ix) -CHO;
- X is an oxygen atom;
- R³ is branched or unbranched alkyl of 1 to 3 carbon atoms;
- R^4 is a group of the formula $-CH_2R^{55}$, wherein,

R⁵⁵ is:

phenyl, which is optionally substituted at the 4-position with:

- (A) R^{59e}, which is aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl and furyl, wherein one of the hydrogen atoms of said aryl or heteroaryl group is optionally replaced with:
 - (i) methyl,
 - (ii) -CN,
 - (iii) nitro, or
 - (iv) halogen,
- (B) methyl,
- (C) -CN,
- (D) nitro, or
- (E) halogen;

 R^5 is C1:

Z is =C(H)-; and,

 R^7 is Cl;

or a pharmaceutically acceptable salt thereof.

- 7. (Original) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-;
- A^2 is =C(H)-;
- D is $=C(SO_2R^1)$ or $=C(C(O)R^1)$ -, wherein R^1 is selected from the class consisting of:
 - (A) $-R^{100e}$, which is:

branched or unbranched alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, in which alkyl, or cycloalkyl group one to three hydrogen atoms are optionally and independently replaced with:

- (i) oxo,
- (ii) a group of the formula –COOR¹⁸, wherein R¹⁸ is straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 6 carbon atoms,
- (iii) a group of the formula –CONR¹⁹R²⁰, wherein R¹⁹ and R²⁰ are each, independently, a hydrogen atom, alkyl of 1 to 6 carbon atoms or cycloalkyl of 3 to 6 carbon atoms, or wherein R¹⁹ and R²⁰ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,
- (iv) a group of the formula $-OR^{21}$, wherein R^{21} is a hydrogen atom, or a straight or branched alkyl or acyl group of 1 to 7 carbon atoms, or
- (v) a group of the formula $-NR^{23}R^{24}$, wherein R^{23} and R^{24} are each, independently,
 - (a) a hydrogen atom,
 - (b) straight or branched alkyl or acyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbon atoms,
 - (c) a group of the formula $-(CH_2)_mCOOH$, wherein m is 0, 1 or 2,
 - (d) a group of the formula $-(CH_2)_nCOOR^{25}$, wherein n is 0, 1 or 2, and wherein R^{25} is straight or branched alkyl of 1 to 6 carbon atoms, or

- (e) a group of the formula –(CH₂)_nCONHR²⁵, wherein n is 0, 1 or 2, and wherein R²⁵ is straight or branched alkyl of 1 to 6 carbon atoms, and
- (B) saturated heterocyclic groups selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic groups are optionally mono- or di-substituted with moieties independently selected from the class consisting of:
 - (i) oxo,
 - (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein one hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (c) acyl of 1 to 7 carbons, wherein one hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (d) -CONR¹⁰²R¹⁰³, wherein R¹⁰² and R¹⁰³ are each independently a hydrogen atom or alkyl of 1 to 7 atoms, or wherein R¹⁰² and R¹⁰³ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-, or
 - (e) $-COOR^{104}$, wherein R^{104} is alkyl of 1 to 7 atoms,
 - (iii) -CONR 105 R 106, wherein R 105 and R 106 are each independently:
 - (a) a hydrogen atom, or
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms, wherein said alkyl or cycloalkyl group is optionally monosubstituted with -OH, -OR¹²³ (wherein R¹²³ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe, -NMe₂, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl,

or, wherein R¹⁰⁵ and R¹⁰⁶ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,

- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms,
- (v) straight or branched alkyl of 1 to 7 carbon atoms or cycloalkyl of 3 to 7 carbons, wherein one to three hydrogen atoms of said alkyl or cycloalkyl group is optionally replaced with a moiety independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,
 - (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
 - (d) -OCOCH₃,
 - (e) $-NH_2$,
 - (f) -NHMe,
 - (g) $-NMe_2$,
 - (h) -CO₂H, and
 - (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or two hydrogen atoms of said acyl group is optionally replaced with a moiety selected from the class consisting of:
 - (a) -OH,
 - (b) $-OR^{115}$, wherein R^{115} is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,
 - (d) -NHMe,
 - (e) $-NMe_2$,
 - (f) -NHCOMe,
 - (g) oxo,

- (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,
- (i) -CN,
- (j) the halogen atoms,
- (k) heterocycles selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and
- (l) aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl and oxazolyl,
- (vii) $-SO_2R^{108}$, wherein R^{108} is:
 - (a) phenyl, wherein said phenyl moiety is optionally substituted with one moiety selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁷ (wherein R¹¹⁷ is hydrogen or alkyl of 1 to 6 carbon atoms),
 - (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclic group is optionally substituted with one moiety selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹¹⁸ (wherein R ¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms), or
 - (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one moiety selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and –OR¹¹⁹ (wherein R¹¹⁹ is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

(a) phenyl, wherein said phenyl moiety is optionally substituted with one moiety selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR¹²⁰ (wherein R¹²⁰ is hydrogen or alkyl of 1 to 6 carbon atoms),

- (b) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, wherein said heterocyclyl is optionally substituted with one halogen, straight or branched alkyl of 1 to 6 carbons, or -OR¹²¹ (wherein R¹²¹ is hydrogen or alkyl of 1 to 6 carbon atoms), or
- (c) straight or branched alkyl of 1 to 7 atoms, wherein said alkyl moiety is optionally substituted with one moeity selected from the class consisting of the halogen atoms, straight or branched alkyl of 1 to 6 carbons, and -OR ¹²² (wherein R ¹²² is hydrogen or alkyl of 1 to 6 carbon atoms), and
- (ix) -CHO;
- X is an oxygen atom;
- R³ is branched or unbranched alkyl of 1 to 3 carbon atoms;
- R⁴ is a group of the formula –CH₂R⁵⁵, wherein,

R⁵⁵ is:

phenyl, which is optionally substituted at the 4-position with:

- (A) R^{59e}, which is aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl and furyl, wherein one of the hydrogen atoms of said aryl or heteroaryl group is optionally replaced with:
 - (i) methyl,
 - (ii) -CN,
 - (iii) nitro, or
 - (iv) halogen,
- (B) methyl,
- (C) -CN,
- (D) nitro, or
- (E) halogen;

 R^5 is C1;

Z is =C(H)-; and,

Application No. 10/672,412 Amendment After Allowance dated June 17, 2008

 R^7 is Cl;

or a pharmaceutically acceptable salt thereof.

- 8. (Original) A compound of the formula I, as set forth in claim 1, wherein:
- A^1 is =N-:
- A^2 is =C(H)-;
- D is $=C(SO_2R^1)$ -, wherein R^1 is selected from the class consisting of:
 - (A) methyl, and
 - (B) saturated heterocyclic groups selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl wherein said heterocyclic groups are optionally mono- or di-substituted with moieties independently selected from the class consisting of:
 - (i) oxo,
 - (ii) $-OR^{101}$, wherein R^{101} is:
 - (a) a hydrogen atom,
 - (b) alkyl of 1 to 7 carbons, wherein one hydrogen atom of said alkyl group is optionally replaced with –OH, -OR¹¹⁰ (wherein R¹¹⁰ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂, or
 - (c) acyl of 1 to 7 carbons, wherein one hydrogen atom of said acyl group is optionally replaced with -OH, -OR¹¹¹ (wherein R¹¹¹ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe or -NMe₂,
 - (iii) -CONR 105 R 106 , wherein R 105 and R 106 are each independently:
 - (a) a hydrogen atom, or
 - (b) straight or branched alkyl of 1 to 7 atoms or cycloalkyl of 3 to 7 atoms, wherein said alkyl or cycloalkyl group is optionally monosubstituted with -OH, -OR¹²³ (wherein R¹²³ is an alkyl moiety of 1 to 6 carbon atoms), -NH₂, -NHMe, -NMe₂, pyrrolidinyl, piperidinyl, piperazinyl or morpholinyl,

or, wherein R¹⁰⁵ and R¹⁰⁶ constitute a saturated hydrocarbon bridge of 3 to 5 carbon atoms which together with the nitrogen atom between them form a heterocyclic ring, and wherein one carbon atom in said hydrocarbon bridge is optionally replaced by -O-, -NH-, or -NMe-,

- (iv) $-COOR^{107}$, wherein R^{107} is a hydrogen atom, or straight or branched alkyl of 1 to 7 carbon atoms ,
- (v) straight or branched alkyl of 1 to 7 carbon atoms wherein one or two hydrogen atoms of said alkyl group are optionally replaced with moieties independently selected from the class consisting of:
 - (a) oxo,
 - (b) -OH,
 - (c) $-OR^{113}$, wherein R^{113} is alkyl of 1 to 6 carbon atoms,
 - (d) -OCOCH₃,
 - (e) $-NH_2$,
 - (f) -NHMe,
 - (g) -NMe₂,
 - (h) -CO₂H, and
 - (i) -CO₂ R¹¹⁴ wherein R¹¹⁴ is alkyl of 1 to 3 carbon atoms, or cycloalkyl of 3 to 7 carbons,
- (vi) acyl of 1 to 7 carbon atoms, which may be straight, branched or cyclic, and wherein one or two hydrogen atoms of said acyl group is optionally replaced with a moiety selected from the class consisting of:
 - (a) -OH,
 - (b) -OR¹¹⁵, wherein R¹¹⁵ is alkyl of 1 to 6 carbon atoms,
 - (c) $-NH_2$,
 - (d) -NHMe,
 - (e) $-NMe_2$,
 - (f) -NHCOMe,
 - (g) oxo,
 - (h) $-CO_2 R^{116}$, wherein R^{116} is alkyl of 1 to 3 carbon atoms,

- (i) -CN,
- (j) the halogen atoms,
- (k) heterocycles selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl, and
- (l) aryl or heteroaryl selected from the class consisting of phenyl, thiophenyl, pyridyl, pyrimidinyl, furyl, pyrrolyl and oxazolyl,
- (vii) $-SO_2R^{108}$, wherein R^{108} is:
 - (a) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl wherein said heterocyclic group is optionally substituted with one moiety selected from the class consisting of straight or branched alkyl of 1 to 6 carbons, and -OR¹¹⁸ (wherein R¹¹⁸ is hydrogen or alkyl of 1 to 6 carbon atoms),

(viii) -COR¹⁰⁹, wherein R¹⁰⁹ is:

- (a) a heterocyclic group selected from the class consisting of pyrrolidinyl, piperidinyl, piperazinyl and morpholinyl wherein said heterocyclyl is optionally substituted with one halogen, straight or branched alkyl of 1 to 6 carbons, or -OR ¹²¹ (wherein R ¹²¹ is hydrogen or alkyl of 1 to 6 carbon atoms), and
- (ix) -CHO;
- X is an oxygen atom;
- R³ is methyl;
- R^4 is a group of the formula $-CH_2R^{55}$, wherein,

R⁵⁵ is:

phenyl, which is optionally substituted at the 4-position with:

- (A) R^{59e}, which is aryl or heteroaryl selected from the class consisting of phenyl, pyridyl, and pyrimidinyl
- (B) -CN,
- (B) nitro, or
- (C) halogen;

Application No. 10/672,412 Amendment After Allowance dated June 17, 2008

 R^5 is C1;

Z is =C(H)-; and,

 R^7 is C1;

or a pharmaceutically acceptable salt thereof.

9. (Previously presented) A compound of the formula I, in accordance with one of claims 1, 2, 3, 4, 5, 6, 7 or 8, with the absolute stereochemistry depicted below in formula II:

Claims 10 to 16. (Cancelled)

- 17. (Previously presented) A pharmaceutical composition comprising a compound in accordance with claim 1 and a pharmaceutically acceptable carrier or excipient.
- 18. (Original) A compound of the formula

wherein,

R¹ is selected from the class consisting of:

- (A) hydrogen,
- (B) the halogen atoms, and
- (C) $SO_2^-M^+$, wherein M^+ is
 - (i) Li⁺,
 - (ii) Na⁺,
 - (iii) K^+ , or
 - (iv) MgX⁺, wherein X is a halogen; and

R² is selected from the class consisting of:

- (A) the halogen atoms,
- (B) aryl, selected from the class of
 - (i) phenyl,
 - (ii) pyridyl, and
 - (iii) pyrimidyl, and
- (C) CN.
- 19. (Original) In accordance with claim 18, the compound of the following formula:

20. (Original) In accordance with claim 18, the compound of the following formula:

21. (Original) In accordance with claim 18, the compound of the following formula:

22. (new) A compound according to claim 1, which is:

23. (new) A compound according to claim 1, which is:

24. (new) A compound according to claim 1, which is:

25. (new) A compound according to claim 1, which is:

26. (new) A compound according to claim 1, which is:

27. (new) A compound according to claim 1, which is:

28. (new) A compound according to claim 1, which is: