ТЕМА 4. СОПРЯЖЕННЫЕ, САМОСОПРЯЖЕННЫЕ, КОМПАКТНЫЕ ОПЕРАТОРЫ

Пусть X,Y – банаховы пространства, $A:X\to Y$ и $A\in\mathscr{B}(X,Y),$ f – линейный ограниченный, определенный на пространстве Y.

Определение 1. Сопряженным оператором $A^*: Y^* \to X^*$ к линейному ограниченному оператору $A: X \to Y$ называется оператор, действующий по формуле

$$f(Ax) = A^*f(x)$$
 для всех $x \in X, f \in Y^*$. (1.1)

Теорема 1. Сопряженный оператор A^* является линейным ограниченным оператором из Y^* в X^* и $||A^*|| = ||A||$.

Свойство 1.
$$(A + B)^* = A^* + B^*; \quad (\alpha A)^* = \alpha A^*.$$

Свойство 2. $||A|| = ||A^*||$.

Свойство 3. Пусть X = Y. Тогда $(AB)^* = B^*A^*$; $I^* = I$.

Свойство 4. Если оператор A имеет ограниченный обратный A^{-1} , то и A^* также обратим, причем $(A^*)^{-1} = (A^{-1})^*$.

Теорема 2. Пусть X, Y – банаховы пространства, оператор $A: X \to Y$ – линейный ограниченный оператор, $\mathcal{R}(A) \subset Y$ – множество его значений. Тогда замыкание $\mathcal{R}(A)$ совпадает с множеством таким $y \in Y$, что f(y) = 0 для всех функционалов $f \in Y^*$, удовлетворяющих условию $A^*f = 0$.

Следствие 1. Для того, чтобы уравнение Ax=y было разрешимо при заданном y необходимо, а если $\mathcal{R}(A)$ замкнуто, то и достаточно, чтобы любой функционал, удовлетворяющий уравнению $A^*f=0$, на заданном y обращался в нуль.

 $Cnedcmeue\ 2.\$ Для того, чтобы уравнение Ax=y было разрешимо для любого $y\in Y$, необходимо, чтобы уравнение $A^*f=0$ имело только нулевое решение.

Следствие 3. Уравнение $A^*f=0$ имеет только нулевое решение тогда и только тогда, когда $\overline{\mathscr{R}(A)}=Y.$

Сопряженные и самосопряженные операторы в гильбертовых пространствах

Определение 2. Пусть H_1 , H_2 – гильбертовы пространства. Сопряженным оператором к оператору $A: H_1 \to H_2$ называется оператор $A^*: H_2 \to H_1$ такой, что для любых $x \in H_1$, $y \in H_2$ выполняется равенство $(Ax,y)_{H_2} = (x,A^*y)_{H_1}$.

Определение 3. Линейный ограниченный оператор $A: H \to H$ называется самосопряженным, если $A = A^*$, т. е. справедливо тождество $(Ax,y)_H = (x,Ay)_H$ для всех $x,y \in H$. Линейный ограниченный оператор называется унитарным, если $A^* = A^{-1}$. Линейный ограниченный оператор называется нормальным, если $A^*A = AA^*$.

 $\Pi p u M e p 1$. В пространстве $L_2[0,1]$ рассмотрим оператор умножения на функцию, т. е.

$$Ax(t) = a(t)x(t).$$

Тогда

$$(Ax,y) = \int_{0}^{1} Ax(t)\overline{y(t)}dt = \int_{0}^{1} a(t)x(t)\overline{y(t)}dt = \int_{0}^{1} x(t)\overline{a(t)}\overline{y(t)}dt.$$

Значит, $A^*y(t)=\overline{a(t)}y(t)$. Следовательно, если a(t) – вещественнозначная функция, то $a(t)=\overline{a(t)}$ и оператор A самосопряженный. Если |a(t)|=1 почти всюду, то $\frac{1}{a(t)}=\overline{a(t)}$ и оператор унитарный. Так как $a(t)\overline{a(t)}=\overline{a(t)}a(t)$, то оператор умножения на функцию нормальный.

Функция $\varphi(x,y) = (Ax,y)$ называется билинейной формой, порожденной оператором A. Билинейная форма линейна по первой переменной и антилинейна по второй. По аналогии, $\kappa вадратичной$ формой оператора A будем называть числовую функцию $\varphi(x) = (Ax,x)$.

Определение 4. Оператор $A \in \mathcal{B}(H)$ называется неотрицательным, если порожденная им квадратичная форма неотрицательна, т. е. $(Ax,x) \geqslant 0$ для всех $x \in H$. Неотрицательный оператор обозначается следующим образом: $A \geqslant 0$. Если $A - B \geqslant 0$, то говорят, что $A \geqslant B$.

Теорема 3. Пусть A – самосопряженный оператор в H. Тогда

1) квадратичная форма принимает только вещественные значения;

2)
$$||A|| = \sup_{||x|| \le 1} |(Ax,x)|.$$

Пусть в H задано подпространство $L \subset H$. Согласно теореме о разложении в прямую сумму гильбертова пространства имеем $H = L \oplus L^{\perp}$ или $x = y + z, \ y \in L, \ z \in L^{\perp}$. Тогда каждому элементу $x \in H$ можно поставить в соответствие единственный элемент $y \in L$ проекцию элемента x на подпространство L. Тем самым определяется отображение или оператор, который называется *ортопроектором* и y = Px.

 $Ceoйcmeo\ 5.$ Каждый проектор P является всюду определенным в H линейным оператором со значениями в H.

Свойство 6. $P \in \mathcal{B}(H)$, причем ||P|| = 1, если $L \neq \{0\}$.

Свойство 7. $P^2 = P$.

Свойство 8. $P = P^*$.

Свойство 9. Оператор проектирования положителен, т. е. $(Px,x) \geqslant 0$ для всех $x \neq 0$.

Свойство 10. $x \in L$ тогда и только тогда, когда ||Px|| = ||x||.

Свойство 11. $(Px,x) \leqslant ||x||^2$ для любого $x \in H$. $(Px,x) = ||x||^2$ тогда и только тогда, когда $x \in L$.

Теорема 4. Пусть A – самосопряженный оператор в H, причем $A^2=A;$ тогда A – проектор на некоторое подпространство $L\subset H$.

Компактные операторы

Определение 5. Пусть X и Y – банаховы пространства. Линейный оператор $A:X\to Y$ называется компактным, если он отображает всякое ограниченное множество пространства X в предкомпактное множество пространства Y.

Совокупность всех компактных операторов, действующих из X в Y, обозначим символом $\mathcal{K}(X,Y)$.

Определение 6. Линейный оператор $A: X \to Y$ называется компактным, если для любой последовательности $(x_n) \subset B[0,r] \subset X$ последовательность образов (Ax_n) содержит фундаментальную подпоследовательность.

Определение 7. Линейный оператор $A: X \to Y$ называется компактным, если образ A(B) любого шара $B[0,r] \subset X$ является вполне ограниченным в Y множеством.

 $\Pi p \, u \, m \, e \, p \, 2$. Пусть Y — конечномерное банахово пространство, $A: X \to Y, \, A \in \mathcal{B}(X,Y)$. Тогда, A(B) — образ шара B[0,r] пространства X будет ограниченным в Y множеством, и, следовательно, вполне ограниченным.

 $\Pi p \, u \, m \, e \, p \, 3$. Оператор $A \in \mathscr{B}(X,Y)$ называется оператором конечного ранга, если $\dim \mathscr{R}(A) < \infty$, т. е. множество его значений есть конечномерное подпространство пространства Y. В этом случае A(B) является ограниченным множеством в конечномерном пространстве, поэтому предкомпактным, т. е. $A \in \mathscr{K}(X,Y)$.

Таким образом, любой линейный ограниченный оператор конечного ранга компактен. Примером такого оператора служит интегральный оператор Фредгольма с вырожденным ядром, действующий в пространстве C[a,b].

Пример 4. Рассмотрим оператор

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \,ds$$
 (1.2)

как оператор, действующий из пространства C[a,b] в пространство C[a,b], ядро которого $\mathcal{K}(t,s)$ непрерывно по совокупности переменных. Покажем, что A(B) предкомпактно в C[a,b]. По теореме Арцела-Асколи мы должны проверить условия равномерной ограниченности и равностепенной непрерывности функций $y(t) = Ax(t) \subset A(B)$.

$$||y||_C = \max_{a \leqslant t \leqslant b} |Ax(t)| = \max_{a \leqslant t \leqslant b} |\int_a^b \mathcal{K}(t,s)x(s) \, \mathrm{d}s| \leqslant$$

$$\leq \max_{a \leq t \leq b} \int_a^b |\mathcal{K}(t,s)x(s)| \, \mathrm{d}s \cdot ||x|| \leq M(b-a)$$
, где $M = \max_{a \leq t, s \leq b} |\mathcal{K}(t,s)|$.

$$|y(t_1) - y(t_2)| \leqslant \int_a^b |\mathcal{K}(t_1, s) - \mathcal{K}(t_2, s)| \, \mathrm{d}s \cdot ||x|| \leqslant \varepsilon(b - a),$$

так как в силу равномерной непрерывности функции $\mathcal{K}(t,s)$ на компакте $[a,b] \times [a,b]$ для любого $\varepsilon > 0$ найдется $\delta(\varepsilon) > 0$ такое, что для всех $t_1,t_2 \in [a,b]: |t_1-t_2| < \delta$ следует, что

$$|\mathcal{K}(t_1,s) - \mathcal{K}(t_2,s)| < \varepsilon.$$

Таким образом, интегральный оператор Фредгольма с непрерывным ядром компактен.

 $\Pi p \, u \, m \, e \, p \, 5$. Тождественный оператор $I: X \to X$ является компактным тогда и только тогда, когда $\dim X < \infty$.

Теорема 5. Пусть $A: X \to Y$ – компактный оператор. Тогда область его значений $\mathcal{R}(A) \subset Y$ сепарабельна.

Теорема 6. Пусть $A_1, A_2 \in \mathcal{K}(X,Y)$. Тогда операторы $A_1 + A_2$, αA_1 , где α – произвольная постоянная, также компактны.

Теорема 7. Пусть $(A_n)_{n=1}^{\infty}$ – последовательность компактных операторов, действующих из X из Y, $(A_n)_{n=1}^{\infty}$ равномерно сходится κ оператору A. Тогда $A \in \mathcal{K}(X,Y)$.

Замечание 1. Если $(A_n)_{n=1}^{\infty} \subset \mathcal{K}(X,Y)$ – последовательность, сходящаяся в каждой точке $x \in X$, то предельный оператор A может оказаться не компактным.

Теорема 8. Пусть $A, B \in \mathcal{B}(X)$. Если хотя бы один из операторов является компактным, то компактным будет и их произведение.

 ${\it Cледствие}\ {\it 4}.\ {\it B}\ {\it бесконечномерном}\ {\it банаховом}\ {\it пространстве}\ {\it X}\ {\it ком-$ пактный оператор ${\it A}$ не может иметь ограниченного обратного.

Теорема 9. Пусть X,Y – банаховы пространства, $A \in \mathcal{K}(X,Y)$. Тогда сопряженный оператор $A^* \in \mathcal{K}(X^*,Y^*)$.

Теорема 10. Пусть H – сепарабельное гильбертово пространство, $A \in \mathcal{B}(H)$. Для того, чтобы $A \in \mathcal{K}(H)$ необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал номер $n = n(\varepsilon)$ и такие линейные операторы A_1 и A_2 : A_1 – n-мерный, $\|A_2\| < \varepsilon$, что

$$A = A_1 + A_2. (1.3)$$

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u \mathsf{M} e p \ 6$. Пусть $X = Y = \ell_2$ над полем \mathbb{C} . Пусть $x \in \ell_2$ и

$$Ax = (0, \dots, 0, \alpha_1 x_1, \alpha_2 x_2, \dots),$$

где $(\alpha_i)_{i=1}^{\infty}$ – ограниченная последовательность в \mathbb{C} . Построить сопряженный оператор.

Решение. Применяя теорему Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве, получим

$$f(Ax) = (Ax,y)_{\ell_2} = \sum_{i=1}^{\infty} \alpha_i x_i \overline{y_{i+k}} = \sum_{i=1}^{\infty} x_i \alpha_i \overline{y_{i+k}} = A^* f(x) = (x,z)_{\ell_2},$$

где $z = A^*y$ $z_i = \overline{\alpha_i}y_{i+k}$. Следовательно,

$$A^*y = (\overline{\alpha_1}y_{k+1}, \overline{\alpha_2}y_{k+2}, \ldots).$$

Здесь мы заменили пространство функционалов изоморфным ему пространством, а именно, пространством ℓ_2 .

 $\Pi p u M e p$ 7. Рассмотрим в пространстве $L_2[a,b]$ интегральный оператор Фредгольма с ядром $\mathcal{K}(t,s)$, удовлетворяющим условию

$$\int_{a}^{b} \int_{a}^{b} |\mathcal{K}(t,s)|^{2} dt ds < \infty.$$
 (1.4)

Построить сопряженный оператор.

Решение. Поступим, как в предыдущем случае, заменим пространство $(L_2[a,b])^*$ на ему изоморфное $L_2[a,b]$. Получим

$$f(Ax) = (Ax,y)_{L_2[a,b]} = \int_a^b Ax(t)y(t)dt = \int_a^b \left(\int_a^b \mathcal{K}(t,s)x(s)ds\right)y(t)dt =$$

$$= \int_{a}^{b} x(s) \left(\int_{a}^{b} \mathcal{K}(t,s) y(t) dt \right) ds = \int_{a}^{b} x(s) z(s) ds = (x,z) = A^* f(x),$$

где

$$z(t) = A^* y(t) = \int_a^b \mathcal{K}(s, t) y(s) ds.$$
 (1.5)

В цепочке равенств мы использовали теорему Фубини о перемене порядка интегрирования по t и s. Формула (1.5) говорит о том, что сопряженным к интегральному оператору Фредгольма является интегральный оператор с ядром $\mathcal{K}(s,t)$ – транспонированным к исходному $\mathcal{K}(t,s)$.

 $\Pi p \, u \, m \, e \, p \, 8$. В пространстве $L_2[0,1]$ построим сопряженный оператор к интегральному оператору Вольтерра с непрерывным ядром по переменным t и s

$$Ax(t) = \int_{0}^{t} t^{2} sx(s) \, \mathrm{d}s.$$

Построить сопряженный оператор

Решение. По определению сопряженного оператора имеем

$$f(Ax) = (Ax,y)_{L_2[0,1]} = \int_0^1 Ax(t)y(t)dt = \int_0^1 \left(\int_0^t t^2 sx(s)ds\right)dt =$$

$$= \int_{0}^{1} x(s) \left(\int_{s}^{1} t^{2} sy(t) dt \right) ds = \int_{0}^{1} \left(\int_{t}^{1} s^{2} ty(s) ds \right) x(t) dt = (x, A^{*}y).$$

Откуда

$$A^*y(t) = \int_{t}^{1} ts^2 y(s) \, \mathrm{d}s.$$

 $\Pi p u M e p 9$. Рассмотрим интегральное уравнение

$$x(t) - \int_{0}^{1} 4t^2 sx(s) ds = t - a.$$

Выясним, при каких значениях параметра a уравнение разрешимо.

Решение. Запишем сопряженное однородное уравнение

$$u(t) - \int_{0}^{1} 4ts^{2}u(s)ds = 0.$$

Это уравнение с вырожденным ядром и его решением будет функция u(t)=ct, где c – произвольная постоянная. Таким образом, сопряженное однородное уравнение имеет одно линейно независимое решение u(t)=t. Условие разрешимости уравнения примет вид

$$\int_{0}^{1} (t-a)t dt = 0.$$

Отсюда видим, что при $a=\frac{2}{3}$ условие разрешимости выполнено, а при $a\neq\frac{2}{3}$ условие не выполнено, и уравнение решения не имеет.

 $\Pi p \, u \, m \, e \, p \, 10.$ Выяснить, является ли компактным оператор $A: C[0,1] \to C[0,1],$ если

$$Ax(t) = \int_0^1 \frac{x(s)}{\sqrt{(t-s)^2}} ds.$$

Решение. Оператор A задан не на всем пространстве C[0,1]. Действительно, если рассмотреть функцию $x(t)\equiv 1, \forall t\in [0,1]$, то $Ax(t)=\int_0^1 \frac{\mathrm{d}s}{|t-s|}$ и интеграл является расходящимся. Оператор A поэтому не является ограниченным и, следовательно, компактным как отображение из C[0,1] в C[0,1].

 $\Pi p u m e p$ 11. Выяснить, является ли компактным оператор а) $A:C[0,1]\to C[0,1];$ б) $A:L_2[0,1]\to L_2[0,1],$ действующий по формуле

$$Ax(t) = \int_0^1 x(s^2) \, \mathrm{d}s.$$

P е ш е н и е. а). Оператор A является линейным ограниченным ($\|A\|=1$) оператором конечного ранга, следовательно, A – компактным оператор.

б). Исследуем оператор A в пространстве $L_2[0,1]$.

$$\int_0^1 x(s^2) ds = \begin{bmatrix} s^2 = t \\ 2s ds = dt \end{bmatrix} = \int_0^1 \frac{x(t)}{2\sqrt{t}} dt.$$

Покажем, что оператор A неограничен. Рассмотрим последовательность функций $x_n(t)=\frac{t^{1/2n-1/2}}{\sqrt{n}}, t\in[0,1],$ из пространства $L_2[0,1].$ Имеем

$$\int_0^1 \frac{x_n(t)}{2\sqrt{t}} dt = \int_0^1 \frac{t^{1/n-1}}{\sqrt{n}} dt = \sqrt{n} \Rightarrow ||Ax_n|| = \sqrt{n}, \forall n \in \mathbb{N}.$$

Оператор A неограничен и поэтому A не является компактным.

 $\Pi p \, u \, {\it m} \, e \, p \, 12$. Будет ли компактным оператор дифференцирования Ax(t) = x'(t) , если он действует из $C^{(2)}[0,1]$ в C[0,1] .

Решение. Покажем, что A компактный оператор. Пусть $M\subset C^{(2)}[0,1]$ – произвольное ограниченное множество, т. е. $\exists \beta>0,$ что

$$\forall x(t) \in M \Rightarrow ||x||_{C^2[0,1]} = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |x'(t)| + \max_{0 \le t \le 1} |x''(t)| \le \beta,$$

тогда $\max_t |x'(t)| \leqslant \beta$ и $\max_t |x''(t)| \leqslant \beta, \, \forall x \in M$.

Рассмотрим множество $A(M)=\{x'(t)|x(t)\in M\}$. Тогда каждая функция из A(M) непрерывно дифференцируема и как показано выше A(M) равномерно ограничено. Докажем, что A(M) равностепенно непрерывно. Пусть $\varepsilon>0$ задано, выберем $\delta=\varepsilon/\beta$. Тогда для $\forall t_1,t_2\in[0,1]$, удовлетворяющих неравенству $|t_1-t_2|<\delta$, имеем

$$|x'(t_1) - x'(t_2)| = |x''(\tau)| \cdot |t_1 - t_2| < \beta \delta \leqslant \varepsilon \, (\tau \in [t_1, t_2] \subset [0, 1]).$$

По теореме Арцела множество A(M) предкомпактно, поэтому оператор A компактен.

 $\Pi p \, u \, m \, e \, p \, 13.$ Рассмотрим оператор $A:\ell_2 \to \ell_2,$ определенный с помощью формулы

$$Ax = (\alpha_1 x_1, \alpha_2 x_2, \ldots), \quad x = (x_1, x_2, \ldots) \in \ell_2,$$

где $(\alpha_i)_{i=1}^{\infty}$ — заданная числовая последовательность. Какой должна быть эта последовательность, чтобы оператор A был компактным?

Решение. Мы показывали ранее, что оператор A является ограниченным тогда и только тогда, когда последовательность $(\alpha_n)_{n=1}^{\infty}$ ограничена, т. е. $\exists L>0$, что $|\alpha_i|\leqslant L, \forall i$. Докажем, что оператор A является компактным тогда и только тогда, когда $\lim_{n\to\infty}\alpha_n=0$. Пусть $\lim_{n\to\infty}\alpha_n=0$ и пусть $M\subset l_2$ ограничено, т. е. $\exists \beta>0$, что

$$||x||_{l_2} = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2} \leqslant \beta, \ \forall x \in M.$$

В этом случае оператор A ограничен, т. е. он отображает ограниченное множество $M \subset \ell_2$ в ограниченное множество $A(M) \subset \ell_2$.. Пусть $\varepsilon > 0$, тогда из условия $\lim_{n \to \infty} \alpha_n = 0$ следует, что

$$\exists n_0 : \forall n > n_0 \Rightarrow |\alpha_n| < \frac{\sqrt{\varepsilon}}{\beta}.$$

Поэтому для $\forall x = (x_1, x_2, \ldots) \in M$ имеем

$$\sum_{j=n_0}^{\infty} |Ax_i|^2 = \sum_{j=n_0}^{\infty} \alpha_i^2 x_i^2 \leqslant \frac{\varepsilon}{\beta^2} \sum_{j=n_0}^{\infty} x_i^2 \leqslant \varepsilon,$$

т. е. согласно критерию предкомпактности в ℓ_2 множество A(M) предкомпактно. Пусть теперь A компактный оператор, тогда он ограничен и, следовательно, последовательность $(\alpha_i)_{i=1}^{\infty}$ также ограничена. Рассмотрим для каждого $n \in N$ вектор $l_n = (0, \dots, 0, 1, 0, ldots) \neq 0, Al_n = \alpha_n l_n$. Следовательно, все числа α_n являются собственными значениями компактного оператора A. Поэтому, $\lim_{n\to\infty} \alpha_n = 0$.

Задание 1. Найти сопряженный оператор A^* к оператору $A: L_2[0,1] \to L_2[0,1]$, действующему по следующим формулам:

$$\begin{aligned} &1.1. \ Ax(t) = \int\limits_{0}^{t^{2}} tx(s) \mathrm{d}s - \int\limits_{0}^{t} t^{2} sx(s) \mathrm{d}s; \\ &1.2. \ Ax(t) = \left\{ \begin{array}{l} x(t), \ 0 \leq t \leq \lambda \\ 0, \lambda < t \leqslant 1, \\ 1.3. \ Ax(t) = x(t^{\alpha}) - 2 \sin tx(t); \\ 1.4. \ Ax(t) = \int\limits_{0}^{t} \cos t s^{4} x(s) \mathrm{d}s - \int\limits_{t^{2}}^{t} \sin t sx(s) \mathrm{d}s; \\ 1.5. \ Ax(t) = \int\limits_{0}^{t} \sin t + 1 s^{5} x(s) \mathrm{d}s - \int\limits_{t^{2}}^{t} \sin t \sqrt{s} x(s) \mathrm{d}s; \\ 1.6. \ Ax(t) = \int\limits_{0}^{t} \ln t + 1 s^{5} x(s) \mathrm{d}s - \int\limits_{t^{2}}^{t} (t+1) sx(s) \mathrm{d}s; \\ 1.7. \ Ax(t) = \int\limits_{0}^{t} t s^{3} x(s) \mathrm{d}s - \int\limits_{t^{2}}^{t} t^{4} s^{3} x(s) \mathrm{d}s; \\ 1.8. \ Ax(t) = \int\limits_{0}^{t} t s^{3} x(s) \mathrm{d}s - \int\limits_{0}^{t^{2}} t^{5} \cos sx(s) \mathrm{d}s; \\ 1.9. \ Ax(t) = \int\limits_{0}^{t} t s^{2} x(s) \mathrm{d}s - \int\limits_{t^{3}}^{t} t^{2} sx(s) \mathrm{d}s; \\ 1.10. \ Ax(t) = \int\limits_{0}^{t} t s^{5} x(s) \mathrm{d}s - \int\limits_{t^{3}}^{t} t^{2} sx(s) \mathrm{d}s; \\ 1.11. \ Ax(t) = \int\limits_{0}^{t} t sx(s) \mathrm{d}s - \int\limits_{t^{2}}^{t} t sx(s) \mathrm{d}s; \\ 1.12. \ Ax(t) = \int\limits_{t^{3}}^{t} t^{2} x(\sqrt[3]{s}) \, \mathrm{d}s + \int\limits_{0}^{t^{2}} t sx(s) \mathrm{d}s; \\ 1.13. \ Ax(t) = \int\limits_{t}^{t} t^{2} x(s) \mathrm{d}s - \int\limits_{0}^{t} \cos t sx(s) \mathrm{d}s; \\ 1.14. \ Ax(t) = \int\limits_{t}^{t} t x(s) \mathrm{d}s - \int\limits_{0}^{t} \cos t sx(s) \mathrm{d}s; \\ 1.15. \ Ax(t) = \int\limits_{t}^{t} t x(s) \mathrm{d}s - \int\limits_{0}^{t} \sin t s^{2} x(s) \mathrm{d}s. \end{aligned}$$

Задание 2. Найти сопряженный оператор A^* к оператору $A:\ell_2\to \ell_2$, действующему по следующим формулам. Будет ли A самосопряженным?

2.1.
$$Ax = (x_2, x_3, ...), x = (x_1, x_2, ...) \in \ell_2;$$

2.2.
$$Ax = (0, x_1, x_2, ...), x = (x_1, x_2, ...) \in \ell_2$$
;

2.3.
$$Ax = (0,0,\alpha_1x_1,\alpha_2x_2,\ldots), \alpha_i \in \mathbb{C}, \ x = (x_1,x_2,\ldots) \in \ell_2;$$

2.4.
$$Ax = (x_1, \dots, x_n, 0, \dots), x = (x_1, x_2, \dots) \in \ell_2;$$

2.5.
$$Ax = (\underbrace{0, \dots, 0}_{n-1}, x_1, \dots), x = (x_1, x_2, \dots) \in \ell_2;$$

2.6.
$$Ax = (\alpha_n x_n, \alpha_{n+1} x_{n+1}, \ldots), \alpha_i \in \mathbb{R}, x = (x_1, x_2, \ldots) \in \ell_2;$$

2.7.
$$Ax = (x_1 + x_2, x_2 + x_3, x_3, x_4, \dots), x = (x_1, x_2, \dots) \in \ell_2;$$

2.8.
$$Ax = (x_3, x_1, x_2, x_4, x_5, ...), x = (x_1, x_2, ...) \in \ell_2;$$

2.9.
$$Ax = (-x_1, x_2, -x_3, x_4, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.10.
$$Ax = (0, 0, x_3 + x_4, x_4 - x_3, x_5, x_6, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.11.
$$Ax = (0, 0, x_1, x_2, ...), x = (x_1, x_2, ...) \in \ell_2;$$

2.12.
$$Ax = (x_2 + x_1, x_1 - x_2, x_4, x_3, x_5, x_6, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.13.
$$Ax = (x_1, 0, x_2, 0, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.14.
$$Ax = (x_2, 0, x_3, 0, \ldots), x = (x_1, x_2, \ldots) \in \ell_2$$
.

2.15.
$$Ax = (x_1, 0, x_2, 0, \ldots), x = (x_1, x_2, \ldots) \in \ell_2.$$

Задание 3. Являются ли компактными следующие операторы как отображение E в E ?

3.1.
$$E = C[0,1], \quad Ax(t) = x(0) + tx(\frac{1}{2}) + t^2x(1);$$

3.2.
$$E = C[0,1], \quad Ax(t) = x(t^2);$$

3.3.
$$E = C[-1,1], \quad Ax(t) = \frac{1}{2}(x(t) + x(-t));$$

3.4.
$$E = C[0,1], \quad Ax(t) = \int_{0}^{t} \tau x(\tau) d\tau;$$

3.5.
$$E = C[0,1], \quad Ax(t) = \int_{0}^{1} e^{ts} \tau x(s) ds;$$

3.6.
$$E = L_2[0,1], \quad Ax(t) = \int_0^t \tau x(\tau) d\tau;$$

3.7.
$$E = L_2[0,1], \quad Ax(t) = \int_0^1 \frac{x(s)ds}{|t-s|^{\alpha}};$$

3.8.
$$E = L_2[0,1], \quad Ax(t) = \int_0^1 \frac{x(\sqrt{s})}{s^{5/4}} ds;$$

3.9.
$$E = L_2[0,1], \quad Ax(t) = \int_0^1 \frac{x(s)}{\sin(t-s)} ds;$$

3.10.
$$E = C[0,1], \quad Ax(t) = \int_{0}^{1} (s \sin t + s^{2} \cos t)x(s) ds;$$

3.11. $E = L_{2}[0,1], \quad Ax(t) = \int_{0}^{1} \frac{x(s)}{s - 1/2} ds;$
3.12. $E = C[0,1], \quad Ax(t) = \int_{0}^{1} t^{\alpha} s^{\beta} x(s^{\gamma}) ds, \quad \gamma > 0;$
3.13. $E = L_{2}[0,1], \quad Ax(t) = \int_{0}^{1} t^{\alpha} s^{\beta} x(s^{\gamma}) ds, \quad \gamma > 0;$
3.14. $E = C[0,1], \quad Ax(t) = \int_{0}^{1} t sx(s) ds + \sin tx(1).$
3.15. $E = C[0,1], \quad Ax(t) = \int_{0}^{1} t sx(s) ds + \cos tx(0).$

Задание 4. С помощью сопряженного оператора найти необходимые условия разрешимости уравнения Ax=y, если $A:\ell_2\to\ell_2$

```
4.1 Ax = (x_1 - 3x_2, 3x_2 - x_1, x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.2 Ax = (x_1 + x_2, 3x_2 - x_1, x_3 - 2x_2, x_4 - 2x_3, x_5, x_6, \dots);
4.3 Ax = (x_1 - 3x_2, 3x_2 - x_1, x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.4 Ax = (x_1 - x_3, x_2 - x_1, x_3 - 2x_4, x_4 - 5x_1, x_5, x_6, \dots);
4.5 Ax = (x_1 - x_2 + x_3, 3x_2 - x_1, x_2 - x_3 - x_4, x_4 - x_2, x_5, x_6, \ldots);
4.6 Ax = (x_1 - x_2, 3x_2 - x_1 - x_3, x_3 - 2x_4, x_4 - 2x_1, x_5, x_6, \dots);
4.7 Ax = (x_1 - x_2 + x_3, 3x_2 - x_1 - x_3, x_3 - x_4, x_4 - 2x_2, x_5, x_6, \dots);
4.8 Ax = (x_1 - x_2 + x_4, 3x_2 - x_1 - x_4, x_3 - x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.9 \ Ax = (x_1 + x_2 + x_3, 3x_2 - x_1, x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.10 \ Ax = (x_1 - x_2, x_2 - x_1, x_3 - x_2 - 2x_4, x_4 - 2x_3, x_5, x_6, \ldots);
4.11 Ax = (x_1 + 2x_2, 3x_2 + 5x_1, x_1 - x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.12 Ax = (x_1 + x_2, x_2 + x_1, x_3 - x_4, x_4 - x_3, x_5, x_6, \dots);
4.13 Ax = (x_1 - x_2, x_2 - x_1, x_3 - x_2 - x_4, x_4 - x_3, x_5, x_6, \dots);
4.14 Ax = (x_1, 3x_2 - x_1, x_4 - x_3 - x_2, x_4 - 2x_3, x_5, x_6, \dots)
4.15 Ax = (x_2, 3x_2 - 2x_1, x_4 - x_3 - 2x_2, x_4 - 2x_3, x_5, x_6, \dots)
Задание 5.
```

5.1. В пространстве \mathbb{R}^2 рассмотрим подпространство $L = \{x = (x_1, x_2) | x_1 - 3x_2 = 0\}$ и определим на нем линейный ограниченный функционал вида $f_0(x) = x_2$. Продолжить функционал f_0 на все пространство с сохранением нормы. Рассмотреть случай, когда в пространстве \mathbb{R}^2 задана сферическая, кубическая либо октаэдрическая нормы. Что можно сказать о продолжении?