Xiaosai Yao

16 November 2022

Package

epiregulon 1.0.18

Contents

1	Introd	duction	2
2	Instal	lation	2
3	Data	preparation	2
	3.1	Load ArchR project	2
	3.2	Retrieve matrices from ArchR project	5
4	Quick	start	7
	4.1	Retrieve bulk TF ChIP-seq binding sites	7
	4.2	Link ATAC-seq peaks to target genes	7
	4.3	Add TF motif binding to peaks	8
	4.4	Generate regulons	8
	4.5	Calculate TF activity	0
	4.6	Perform differential activity	1
	4.7	Visualize the results	1
	4.8	Geneset enrichment	3
	4.9	Network analysis	4
5	Sessi	ion Info	5

1 Introduction

This tutorial walks through an example of TF activity inference in unpaired scATAC-seq/scRNAseq of parental LNCaP cells treated with DMSO, Enzalutamide and Enza resistant cells. The dataset was taken from Taavitsainen et al GSE168667 and GSE168668.

2 Installation

Epiregulon is currently available on R/dev

```
library(epiregulon)
library(ArchR, quietly = TRUE)
```

Alternatively, you could install from gitlab

```
devtools::install_github(repo='xiaosaiyao/epiregulon')
library(epiregulon)
```

3 Data preparation

Please refer to the full ArchR manual for instructions

Before running Epiregulon, the following analyses need to be completed: 1. Obtain a peak matrix on scATACseq by using addGroupCoverages > addReproduciblePeakSet > addPeakMatrix. See chapter 10 from ArchR manual 2. RNA-seq integration. a. For unpaired scATAC-seq, use addGeneIntegrationMatrix. See chapter 8 from ArchR manual b. For multiome data, use addGeneExpressionMatrix. See multiome tutorial 3. Perform dimensionality reduction from with either single modalities or joint scRNAseq and scATACseq using addCombinedDims

3.1 Load ArchR project

Copy this ArchR project into your own directory

```
archR_project_path <- "/gstore/project/lineage/prostate/GSE168667/OUTPUT/multiome/"
proj <- loadArchRProject(path = archR_project_path, showLogo = F)</pre>
```

We verify that "GeneExpressionMatrix" and "PeakMatrix" are present for this tutorial.

```
getAvailableMatrices(proj)
#> [1] "GeneIntegrationMatrix" "GeneScoreMatrix" "MotifMatrix"
#> [4] "PeakMatrix" "TileMatrix"
```

We will use the joint reduced Dims - "LSI_Combined" and joint embeddings - "UMAP_Combined"

```
head(getReducedDims(proj, reducedDims = "iLSI_Combined"))
#>
                                      LSI1
                                                 LSI2
                                                            LSI3
                                                                        LSI4
#> SRR13927735#TTATGTCTCCAGGTAT-1 -2.713935 -0.3677949 -0.4484238 -0.30645138
#> SRR13927735#TATTGCTCATCAGAAA-1 -2.642781 -0.2767556 -0.9142714 -0.19675812
#> SRR13927735#TTCGATTGTAGGGTTG-1 -2.322865 -0.1543080 -1.4106049 -0.08891276
#> SRR13927735#CATTCATTCGGATGTT-1 -2.572976 -0.1917188 -1.0464294 -0.12660121
#> SRR13927735#ACGTTAGGTCAACTGT-1 -2.478552 -0.1776639 -1.1037295 -0.22976613
#> SRR13927735#AAATGCCCAGCAATGG-1 -2.595352 -0.3803464 -0.7770309 -0.52431765
#>
                                         LSI5
                                                     LSI6
                                                                 LST7
                                                                            LST8
#> SRR13927735#TTATGTCTCCAGGTAT-1 -0.046845365 -0.14806535 0.36102164 0.46297594
#> SRR13927735#TATTGCTCATCAGAAA-1 0.075746940 -0.06852359 0.14803384 0.27287412
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.019873276 0.47366272 -0.15422837 0.09187684
#> SRR13927735#CATTCATTCGGATGTT-1 0.009947438 0.03001987 0.16610446 0.12911657
#> SRR13927735#ACGTTAGGTCAACTGT-1 -0.150097539 0.37821625 -0.05693471 0.09996632
#> SRR13927735#AAATGCCCAGCAATGG-1 -0.243074591 0.12202430 0.38184389 0.20992437
                                        LSI9
                                                 LSI10
                                                             LSI11
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.01682013 0.29611278 0.07657745 0.03883701
#> SRR13927735#TATTGCTCATCAGAAA-1 0.07502874 0.40427598 0.05240523 0.12557032
#> SRR13927735#TTCGATTGTAGGGTTG-1 -0.07306421 0.35186116 -0.08342128 0.16843772
#> SRR13927735#CATTCATTCGGATGTT-1 0.02916821 0.20807871 0.22959596 0.10711768
#> SRR13927735#ACGTTAGGTCAACTGT-1 -0.03435258 0.40627666 -0.26857174 0.04646805
#> SRR13927735#AAATGCCCAGCAATGG-1 0.25086864 0.04358147 0.19340922 0.11899600
                                      LSI13
                                               LSI14
                                                         LSI15
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.2018137 0.20558422 0.1023789 0.2195854
#> SRR13927735#TATTGCTCATCAGAAA-1 0.2429284 0.12608854 0.1715782 0.1731747
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.3813882 0.15746515 0.2877341 0.1183476
#> SRR13927735#CATTCATTCGGATGTT-1 0.4454115 0.09955226 0.1430440 0.1260116
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.3875503 0.08277628 0.3739350 0.1719490
#> SRR13927735#AAATGCCCAGCAATGG-1 0.2244726 0.20214931 0.1344259 0.1370816
                                                  LSI18
                                      1 ST17
                                                              1 ST19
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.19996628 0.10875713 0.24293288 0.1112905
#> SRR13927735#TATTGCTCATCAGAAA-1 0.13061765 0.11369220 0.17366568 0.1901134
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.05806227 -0.02644245 -0.02346502 0.2238800
#> SRR13927735#CATTCATTCGGATGTT-1 0.28125398 -0.14020962 0.21664823 0.2432303
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.26310264 0.02246457 0.13454621 0.1528337
#> SRR13927735#AAATGCCCAGCAATGG-1 0.09861403 0.17826822 0.23243879 0.1685854
                                     LSI21
                                                 LSI22
                                                            LSI23
                                                                     LSI24
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.1810559 0.06416606 0.09047377 0.1716186
#> SRR13927735#TATTGCTCATCAGAAA-1 0.1737929 0.15944153 0.13163950 0.1482455
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.3598573 -0.11920835 0.34153417 0.1523253
#> SRR13927735#CATTCATTCGGATGTT-1 0.2018985 0.06210571 0.06702196 0.3012980
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.2882480 0.10880791 0.27567952 0.2035930
#> SRR13927735#AAATGCCCAGCAATGG-1 0.1869793 0.14358246 0.21654445 0.1749158
                                     LSI25
                                                  LSI26
                                                           LSI27
                                                                       LSI28
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.1403622 0.175519412 0.1355804 0.12816113
#> SRR13927735#TATTGCTCATCAGAAA-1 0.1801719 0.184515106 0.1700654 0.13060154
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.3049924 0.151665898 0.2127343 0.15963237
#> SRR13927735#CATTCATTCGGATGTT-1 0.2559221 -0.004725876 0.1544931 0.08703268
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.1753307 0.211852608 0.2488278 0.13749527
#> SRR13927735#AAATGCCCAGCAATGG-1 0.1892084 0.195339053 0.2198201 0.15207755
#>
                                      LSI29
                                               LSI30
                                                          LSI1
                                                                     LSI2
```

```
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.1609296 0.1389944 -2.209204 -0.4032802
#> SRR13927735#TATTGCTCATCAGAAA-1 0.2074106 0.1374118 -2.209137 -0.3309160
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.1912926 0.2498970 -2.209636 -0.5382591
#> SRR13927735#CATTCATTCGGATGTT-1 0.2797500 0.2088381 -2.202239 -0.3678359
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.2089094 0.1208387 -2.202195 -0.5524992
#> SRR13927735#AAATGCCCAGCAATGG-1 0.1855635 0.1594068 -2.212632 -0.4745915
                                      LSI3
                                              LSI4
                                                         LST5
                                                                     LST6
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.1854419 0.1286875 0.5048250 0.07524760
#> SRR13927735#TATTGCTCATCAGAAA-1 0.1323689 0.1268916 0.6162274 0.07814090
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.3150100 0.1307959 0.4933786 0.08463096
#> SRR13927735#CATTCATTCGGATGTT-1 0.1696307 0.1317155 0.5964244 0.07006297
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.4028122 0.1425672 0.1999717 0.12659465
#> SRR13927735#AAATGCCCAGCAATGG-1 0.3222372 0.1335688 0.2225833 0.12202483
                                        LSI7
                                                 LSI8
                                                              1519
#> SRR13927735#TTATGTCTCCAGGTAT-1 -0.35785473 0.4817790 -0.05664032 0.03204436
#> SRR13927735#TATTGCTCATCAGAAA-1 -0.33266771 0.4738935 -0.05501021 0.05411872
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.06296525 0.2133872 0.09193898 0.08350961
#> SRR13927735#CATTCATTCGGATGTT-1 -0.23863574 0.4141768 -0.02025247 0.06031304
#> SRR13927735#ACGTTAGGTCAACTGT-1 -0.15761402 0.3717331 0.04228017 0.07367151
#> SRR13927735#AAATGCCCAGCAATGG-1 -0.32839556 0.4796359 -0.02417076 0.05700212
                                      LSI11
                                              LSI12
                                                         LSI13
                                                                     LSI14
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.08595580 0.1109641 0.2561409 -0.3478001
#> SRR13927735#TATTGCTCATCAGAAA-1 0.09405159 0.1003529 0.2892364 -0.4078682
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.08640174 0.1015529 0.3230336 -0.5319555
#> SRR13927735#CATTCATTCGGATGTT-1 0.09162578 0.1095239 0.3242656 -0.4718060
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.10927919 0.1199679 0.3302774 -0.5167105
#> SRR13927735#AAATGCCCAGCAATGG-1 0.10083782 0.1319900 0.2948185 -0.4510144
                                     LSI15
                                               LSI16
                                                          LST17
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.1419596 0.05441494 0.05018115 0.09520132
#> SRR13927735#TATTGCTCATCAGAAA-1 0.1151644 0.07613093 0.06766369 0.09468311
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.1244211 0.05123131 0.04831037 0.11283007
#> SRR13927735#CATTCATTCGGATGTT-1 0.1179657 0.06305818 0.07729603 0.08787124
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.1436639 0.06566479 0.08390887 0.12688689
#> SRR13927735#AAATGCCCAGCAATGG-1 0.1567464 0.07526364 0.07965473 0.11700643
                                      LSI19
                                                LSI20
                                                          LSI21
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.08324288 0.3892976 0.08381601 0.11539127
#> SRR13927735#TATTGCTCATCAGAAA-1 0.08070564 0.2933891 0.10302506 0.06988481
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.11299285 0.2832497 0.08539803 0.07264449
#> SRR13927735#CATTCATTCGGATGTT-1 0.07341707 0.3523934 0.06983856 0.04895783
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.11725370 0.3079927 0.10094968 0.11564471
#> SRR13927735#AAATGCCCAGCAATGG-1 0.12183265 0.2742798 0.11723113 0.13268959
                                       LSI23
                                                   LSI24
                                                             LSI25
                                                                           1 ST26
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.09745417 -0.002162669 -0.04688207 0.008186978
#> SRR13927735#TATTGCTCATCAGAAA-1 0.08886289 0.017777285 0.03437342 0.072836804
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.07610108 0.044337563 0.04797779 0.085051746
#> SRR13927735#CATTCATTCGGATGTT-1 0.07687693 0.040649380 0.06753790 0.106114526
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.11329027 0.007616145 0.00301091 0.064081736
#> SRR13927735#AAATGCCCAGCAATGG-1 0.11257099 0.002192787 -0.02552127 0.029155362
                                       LSI27
                                                 LSI28
                                                              LSI29
#> SRR13927735#TTATGTCTCCAGGTAT-1 0.08678964 0.12048334 0.114421880 0.1218968657
#> SRR13927735#TATTGCTCATCAGAAA-1 0.11431432 0.10840706 0.032296813 0.0008020251
```

```
#> SRR13927735#TTCGATTGTAGGGTTG-1 0.15082590 0.08956411 -0.030534956 -0.0611557294
#> SRR13927735#CATTCATTCGGATGTT-1 0.14092826 0.10458593 -0.025202526 -0.0692581235
#> SRR13927735#ACGTTAGGTCAACTGT-1 0.15699428 0.11138111 0.003277357 -0.0117534629
#> SRR13927735#AAATGCCCAGCAATGG-1 0.12282663 0.12647146 0.098017281 0.0856883114
head(getEmbedding(proj, embedding = "UMAP_Combined"))
                                 iLSI_Combined#UMAP_Dimension_1
#> SRR13927735#TTATGTCTCCAGGTAT-1
                                                       -9.622903
#> SRR13927735#TATTGCTCATCAGAAA-1
                                                      -9.360211
#> SRR13927735#TTCGATTGTAGGGTTG-1
                                                      -8.617347
#> SRR13927735#CATTCATTCGGATGTT-1
                                                       -9.285448
#> SRR13927735#ACGTTAGGTCAACTGT-1
                                                      -8.809260
#> SRR13927735#AAATGCCCAGCAATGG-1
                                                      -9.261216
                                 iLSI_Combined#UMAP_Dimension_2
#> SRR13927735#TTATGTCTCCAGGTAT-1
                                                      -0.2908237
                                                     -0.2892935
#> SRR13927735#TATTGCTCATCAGAAA-1
#> SRR13927735#TTCGATTGTAGGGTTG-1
                                                     -0.2154103
#> SRR13927735#CATTCATTCGGATGTT-1
                                                     -0.3267481
#> SRR13927735#ACGTTAGGTCAACTGT-1
                                                      -0.2168703
#> SRR13927735#AAATGCCCAGCAATGG-1
                                                      0.3200356
```

3.2 Retrieve matrices from ArchR project

Retrieve gene expression and peak matrix from the ArchR project

```
GeneExpressionMatrix <- getMatrixFromProject(</pre>
    ArchRProj = proj,
    useMatrix = "GeneIntegrationMatrix",
    useSegnames = NULL,
    verbose = TRUE,
    binarize = FALSE,
    threads = 1,
    logFile = "x"
#> 2022-11-16 23:14:49 : Organizing colData, 1.367 mins elapsed.
#> 2022-11-16 23:14:49 : Organizing rowData, 1.369 mins elapsed.
#> 2022-11-16 23:14:49 : Organizing rowRanges, 1.369 mins elapsed.
#> 2022-11-16 23:14:49 : Organizing Assays (1 of 1), 1.369 mins elapsed.
#> 2022-11-16 23:14:55 : Constructing SummarizedExperiment, 1.467 mins elapsed.
#> 2022-11-16 23:14:58 : Finished Matrix Creation, 1.514 mins elapsed.
PeakMatrix <- getMatrixFromProject(</pre>
    ArchRProj = proj,
    useMatrix = "PeakMatrix",
    useSeqnames = NULL,
    verbose = TRUE,
    binarize = FALSE,
    threads = 1,
    logFile = "x"
```

```
#> 2022-11-16 23:15:57 : Organizing colData, 0.981 mins elapsed.
#> 2022-11-16 23:15:57 : Organizing rowData, 0.983 mins elapsed.
#> 2022-11-16 23:15:57 : Organizing rowRanges, 0.983 mins elapsed.
#> 2022-11-16 23:15:57 : Organizing Assays (1 of 1), 0.984 mins elapsed.
#> 2022-11-16 23:16:00 : Constructing SummarizedExperiment, 1.04 mins elapsed.
#> 2022-11-16 23:16:21 : Finished Matrix Creation, 1.383 mins elapsed.
```

Convert gene expression matrix to SingleCellExperiment object

```
GeneExpressionMatrix <- as(GeneExpressionMatrix, "SingleCellExperiment")
assayNames(GeneExpressionMatrix) <- "logcounts"
assayNames(PeakMatrix) <- "counts"</pre>
```

Transfer cell and gene information and embeddings from ArchR project to singleCellExperiment

Visualize singleCellExperiment by UMAP

4 Quick start

4.1 Retrieve bulk TF ChIP-seq binding sites

First, we retrieve the information of TF binding sites collected from Cistrome and ENCODE ChIP-seq, which are hosted on Genomitory. Currently, human genomes HG19 and HG38 and mouse mm10 are available.

```
grl <- getTFMotifInfo(genome = "hg38")</pre>
#> redirecting from 'GMTY162:hg38_motif_bed_granges@REVISION-4' to 'GMTY162:hg38_motif_bed_granges@24c22e4f4.
head(grl)
#> GRangesList object of length 6:
#> $`5-hmC`
#> GRanges object with 24048 ranges and 0 metadata columns:
          segnames ranges strand
                           <IRanges> <Rle>
#>
              <Rle>
       [1]
                      10000 - 10685
13362 - 13694
               chr1
       [2] chr1
       [3] chr1
                        29631-29989
       [4] chr1
                      40454-40754
#>
             chr1
        [5]
                       135395 - 135871
#>
    [24044] chrY 56864377-56864627
    [24045]
              chrY 56876124-56876182
#>
    [24046] chrM
                     84-2450
                        13613-14955
    [24047] chrM
   [24048] chrM
                         15134 - 16490
    seqinfo: 25 sequences from an unspecified genome; no seqlengths
#>
#> <5 more elements>
```

4.2 Link ATAC-seq peaks to target genes

Next, we compute peak to gene correlations using the addPeak2GeneLinks function from the ArchR package. The user would need to supply a path to an ArchR project already containing peak and gene matrices, as well as Latent semantic indexing (LSI) dimensionality reduction.

```
#> 2022-11-16 23:17:13 : Identified 498 Groupings!, 0.096 mins elapsed.
#> 2022-11-16 23:17:13 : Getting Group RNA Matrix, 0.097 mins elapsed.
#> 2022-11-16 23:20:51 : Getting Group ATAC Matrix, 3.726 mins elapsed.
#> 2022-11-16 23:24:23 : Normalizing Group Matrices, 7.272 mins elapsed.
#> 2022-11-16 23:24:32 : Finding Peak Gene Pairings, 7.409 mins elapsed.
#> 2022-11-16 23:24:32 : Computing Correlations, 7.419 mins elapsed.
#> 2022-11-16 23:24:42 : Completed Peak2Gene Correlations!, 7.576 mins elapsed.
head(p2q)
#> idxATAC chr start end idxRNA target Correlation distance
#> 1
        15 chr1 912762 913262
                               7 NOC2L
                                              0.5467220 46297 2.268176e-38
         15 chr1 912762 913262
                                   8 KLHL17
                                             0.5165395 47575 1.150334e-33
         25 chr1 920261 920761
                                 7 NOC2L 0.6494254 38798 1.161988e-58
         25 chr1 920261 920761
                                                        40076 5.991862e-56
                                 8 KLHL17
                                             0.6377107
         32 chr1 927728 928228
                                  7 NOC2L
                                                          31331 5.010307e-50
                                              0.6102405
         32 chr1 927728 928228
                                   8 KLHL17 0.5500926
                                                          32609 6.302048e-39
```

4.3 Add TF motif binding to peaks

The next step is to add the TF motif binding information by overlapping the regions of the peak matrix with the bulk chip-seq database loaded in 2. The user can supply either an archR project path and this function will retrieve the peak matrix, or a peakMatrix in the form of a Granges object or RangedSummarizedExperiment.

```
overlap <- addTFMotifInfo(archR_project_path = archR_project_path, grl = grl, p2g = p2g)
#> Successfully loaded ArchRProject!
#> Computing overlap...
#> Success!
```

4.4 Generate regulons

A long format dataframe, representing the inferred regulons, is then generated. The dataframe consists of three columns:

- tf (transcription factor)
- target gene
- peak to gene correlation between tf and target gene

```
regulon <- getRegulon(p2g = p2g, overlap = overlap, aggregate = FALSE)
head(regulon)
      idxATAC idxTF
                                             tf chr start
                                                                              end idxRNA target
                                                                                                                         corr distance
                                         AG01 chr1 912762 913262 8 KLHL17 0.5165395
                 15
                         10

      10
      AG01 chr1
      912762
      913262
      7
      NOC2L
      0.5467220

      22
      AML1-ET0
      chr1
      912762
      913262
      8
      KLHL17
      0.5165395

      22
      AML1-ET0
      chr1
      912762
      913262
      7
      NOC2L
      0.5467220

      32
      ARID4A
      chr1
      912762
      913262
      8
      KLHL17
      0.5165395

#> 2
                 15 10
                                                                                                                                        46297
                 15
                                                                                                                                        47575
                15
                                                                                                                                        46297
                 15
                                                                                                                                        47575
                                     ARID4A chr1 912762 913262
                            32
                                                                                            7 NOC2L 0.5467220
                                                                                                                                        46297
                        FDR
#> 1 1.150334e-33
#> 2 2.268176e-38
```

```
#> 3 1.150334e-33
#> 4 2.268176e-38
#> 5 1.150334e-33
#> 6 2.268176e-38
pruned.regulon <- pruneRegulon(expMatrix = GeneExpressionMatrix,</pre>
                                peakMatrix = PeakMatrix,
                                peak_assay = "counts",
                                regulon = regulon[regulon$tf %in% c("AR", "FOXA1"),],
                                clusters = GeneExpressionMatrix$Sample,
                                prune_value = "pval",
                                regulon_cutoff = 0.05,
                                BPPARAM = BiocParallel::MulticoreParam(progressbar = TRUE))
#> pruning network with binom tests using a regulon cutoff of pval<0.05</pre>
#> binarizing matrices
#> pruning regulons
#>
                                                                               50%
```

Epiregulon computes weights using either correlation, linear regression, mutual information, log fold change or wilcoxon rank sum test. In this case, we chose logFC and set tf_re.merge = TRUE because the drug enzalutamide acts to alter chromatin accessibility of AR but less so AR expression.

```
regulon.w <- addWeights(regulon = pruned.regulon,</pre>
                expMatrix = GeneExpressionMatrix,
                exp_assay = "logcounts",
                peakMatrix = PeakMatrix,
                peak_assay = "counts",
                clusters = GeneExpressionMatrix$Sample,
                method = "logFC",
                tf_re.merge = TRUE,
                BPPARAM = BiocParallel::SerialParam(progressbar = TRUE))
#> adding weights using logFC
#> binarizing matrices...
#> computing weights...
head(regulon.w)
     idxATAC idxTF tf chr start
                           end idxRNA target
                                          corr distance
#> 357
       #> 358
        #> 1429
       74 25 AR chr1 1080041 1080541 26 UBE2J2 0.5412880 193594
       #> 1430
        76 25 AR chr1 1109628 1110128 26 UBE2J2 0.6634661 164007
#> 2147
#> 2148
```

```
pval_all pval_SRR13927735 pval_SRR13927736
#> 357 3.000898e-36 3.627978e-13
                                  1.0000000
                                                 1.00000000
#> 358 8.644608e-38 3.879655e-09
                                   0.7781537
                                                 0.69204769
#> 1429 1.730885e-37 5.694933e-17
                                  1.0000000
                                                1.00000000
#> 1430 1.000312e-47 3.238105e-10
                                  0.4203787
                                                0.02189775
#> 2147 4.520046e-62 9.114956e-18
                                   1.0000000
                                                 1.00000000
                              1.0000000
#> 2148 2.485338e-66 5.873488e-14
                                                1.00000000
      pval_SRR13927737 pval_SRR13927738 stats_all stats_SRR13927735
#> 357
         0.451586331 5.889244
#> 358
          0.518345846
                                                   -0.2817258
#> 1429
         0.242611928
                        0.006095821 8.371376
                                                  0.0000000
#> 1430
         0.137275483
                        0.369133167 6.286927
                                                  -0.8057645
                        0.032141910 8.584604
                                                   0.0000000
#> 2147
          1.000000000
         0.576153708
                        0.876455453 7.510872
                                                   0.0000000
#> stats_SRR13927736 stats_SRR13927737 stats_SRR13927738 padj_all
#> 357
         0.0000000 2.7481272 0.8091305 9.711373e-09
            0.3960777
#> 358
                            -0.6458973
                                           -0.7527730 1.007857e-04
#> 1429
            0.0000000
                           1.1684832
                                            2.7425821 1.544181e-12
           2.2921368
                            1.4860138
                                           -0.8980983 8.492579e-06
#> 1430
#> 2147
            0.0000000
                           0.0000000
                                            2.1426413 2.478083e-13
            0.0000000
                            0.5590117
                                            0.1554641 1.577443e-09
#> padj_SRR13927735 padj_SRR13927736 padj_SRR13927737 padj_SRR13927738
#> 357
        1
                                 1
                                                1
#> 358
                  1
                                  1
                                                 1
                                                                1
#> 1429
                  1
                                  1
                                                1
                                                                1
#> 1430
                   1
                                  1
                                                 1
                                                                1
#> 2147
                  1
                                 1
                                                1
                                                               1
                                 7
                                                 7
                                                                7
#> 2148
         weight
#> 357 0.06266724
#> 358 0.05482771
#> 1429 0.08591384
#> 1430 0.07151088
#> 2147 0.19433566
#> 2148 0.19032049
```

4.5 Calculate TF activity

Finally, the activities for a specific TF in each cell are computed by averaging the weighted expressions of target genes linked to the TF.

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i * weight_i$$

where y is the activity of a TF for a cell n is the total number of targets for a TF x_i is the log count expression of target i where i in $\{1,2,\ldots,n\}$ $weight_i$ is the weight of TF and target i

4.6 Perform differential activity

Take the top TFs

```
markers.sig <- getSigGenes(markers, topgenes = 5 )
#> Using a logFC cutoff of 0 for class SRR13927735
#> Using a logFC cutoff of 0 for class SRR13927736
#> Using a logFC cutoff of 0 for class SRR13927737
#> Using a logFC cutoff of 0 for class SRR13927738
```

4.7 Visualize the results

First visualize the known differential TFs by bubble plot

Then visualize the most differential TFs by clusters

```
plotBubble(activity_matrix = score.combine,
    tf = markers.sig$tf,
    clusters = GeneExpressionMatrix$Sample)
```


Visualize the known differential TFs by violin plot.

Visualize the known differential TFs by UMAP

```
dimtype = "UMAP_Combined",
label = "Sample",
point_size = 1,
ncol = 2,
nrow = 2)
```


4.8 Geneset enrichment

Sometimes we are interested to know what pathways are enriched in the regulon of a particular TF. We can perform geneset enrichment using the enricher function from clusterProfiler.

4.9 Network analysis

We can visualize the genesets as a network

differential networks

5 Session Info

```
sessionInfo()
#> R version 4.2.0 (2022-04-22)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.6 LTS
#> Matrix products: default
#> BLAS: /usr/local/lib/R/lib/libRblas.so
#> LAPACK: /usr/local/lib/R/lib/libRlapack.so
#> Random number generation:
#> RNG: L'Ecuyer-CMRG
#> Normal: Inversion
#> Sample: Rejection
#>
#> locale:
                              LC_NUMERIC=C
#> [1] LC_CTYPE=en_US.UTF-8
#> [3] LC_TIME=en_US.UTF-8
                                LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8
                              LC_NAME=C
                        LC_TELEPHONE=C
#> [9] LC_ADDRESS=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#> attached base packages:
#> [1] parallel grid
                          stats4 stats
                                            graphics grDevices utils
#> [8] datasets methods base
```

```
#> other attached packages:
#> [1] nabor_0.5.0
                                  rhdf5_2.42.0
#> [3] Rcpp_1.0.9
                                  Matrix_1.5-3
#> [5] data.table_1.14.6
                                 stringr_1.4.0
#> [7] plyr_1.8.8
                                 magrittr_2.0.3
#> [9] gtable_0.3.1
                                  gtools_3.9.3
#> [11] gridExtra_2.3
                                 ArchR_1.0.2
#> [13] msigdbr_7.5.1
                                 epiregulon_1.0.18
#> [15] scater_1.26.1
                                  ggplot2_3.4.0
#> [17] scuttle_1.8.0
                                  scRNAseq_2.12.0
#> [19] SingleCellExperiment_1.20.0 SummarizedExperiment_1.29.1
#> [21] Biobase_2.58.0
                      GenomicRanges_1.50.1
#> [23] GenomeInfoDb_1.34.3
                                IRanges_2.32.0
#> [25] S4Vectors_0.36.0
                                BiocGenerics_0.44.0
#> [27] MatrixGenerics_1.10.0 matrixStats_0.62.0
#> [29] dorothea_1.10.0
                                 BiocStyle_2.26.0
#> [31] rmarkdown_2.18
#> loaded via a namespace (and not attached):
#> [1] rappdirs_0.3.3
                                    rtracklayer_1.58.0
#> [3] tidyr_1.2.1
                                     bit64_4.0.5
#> [5] knitr_1.40
                                    irlba_2.3.5.1
#> [7] DelayedArray_0.24.0
                                    KEGGREST_1.38.0
#> [9] RCurl_1.98-1.9
                                    AnnotationFilter_1.22.0
#> [11] generics_0.1.3
                                    GenomicFeatures_1.50.2
#> [13] ScaledMatrix_1.6.0
                                  cowplot_1.1.1
#> [15] RSQLite_2.2.18
                                    shadowtext_0.1.2
#> [17] artificer.mae_1.3.4
                                    base64url_1.4
                                    enrichplot_1.18.0
#> [19] bit_4.0.5
#> [21] gp.cache_1.7.1
                                    xml2_1.3.3
#> [23] httpuv_1.6.6
                                    genomitory_2.1.6
#> [25] assertthat_0.2.1
                                    viridis_0.6.2
#> [27] xfun_0.31
                                    hms_1.1.2
                                    evaluate_0.18
#> [29] babelgene_22.9
#> [31] promises_1.2.0.1
                                    fansi_1.0.3
#> [33] restfulr_0.0.15
                                    progress_1.2.2
#> [35] dbplyr_2.2.1
                                    Rgraphviz_2.42.0
                                    DBI_1.1.3
#> [37] igraph_1.3.5
#> [39] purrr_0.3.5
                                    ellipsis_0.3.2
#> [41] dplyr_1.0.10
                                    backports_1.4.1
#> [43] bookdown_0.30
                                    annotate_1.76.0
#> [45] biomaRt_2.54.0
                                    sparseMatrixStats_1.10.0
#> [47] artificer.matrix_1.3.7
                                    vctrs_0.5.1
#> [49] Cairo_1.6-0
                                     ensembldb_2.22.0
#> [51] dsdb.plus_1.3.2
                                     cachem_1.0.6
#> [53] withr_2.5.0
                                     ggforce_0.4.1
#> [55] HDO.db_0.99.0
                                     checkmate_2.1.0
#> [57] metacommons_1.9.0
                                     GenomicAlignments_1.34.0
#> [59] treeio_1.22.0
                                    MultiAssayExperiment_1.24.0
#> [61] prettyunits_1.1.1
                                    scran_1.26.0
#> [63] cluster_2.1.3
                                     DOSE_3.23.3
```

```
#> [65] BiocBaseUtils_1.1.0
                                      ExperimentHub_2.6.0
#> [67] ape_5.6-2
                                      lazyeval_0.2.2
#> [69] crayon_1.5.1
                                      edgeR_3.40.0
#> [71] pkgconfig_2.0.3
                                      labeling_0.4.2
#> [73] tweenr_2.0.2
                                      nlme_3.1-160
#> [75] vipor_0.4.5
                                      ProtGenerics_1.30.0
#> [77] rlang_1.0.6
                                      lifecycle_1.0.3
#> [79] artificer.schemas_0.99.2
                                      downloader_0.4
#> [81] filelock_1.0.2
                                      artificer.base_1.3.19
#> [83] BiocFileCache_2.6.0
                                      rsvd_1.0.5
#> [85] AnnotationHub_3.6.0
                                      polyclip_1.10-4
#> [87] GSVA_1.46.0
                                      graph_1.76.0
#> [89] aplot_0.1.8
                                      Rhdf5lib_1.20.0
#> [91] beeswarm_0.4.0
                                      png_0.1-7
#> [93] viridisLite_0.4.1
                                      rjson_0.2.21
#> [95] artificer.ranges_1.3.4
                                      bitops_1.0-7
#> [97] artificer.se_1.3.4
                                      getPass_0.2-2
#> [99] gson_0.0.9
                                      rhdf5filters_1.10.0
#> [101] EnrichmentBrowser_2.28.0
                                      Biostrings_2.66.0
#> [103] blob_1.2.3
                                      DelayedMatrixStats_1.20.0
#> [105] qvalue_2.30.0
                                      gridGraphics_0.5-1
#> [107] beachmat_2.14.0
                                      scales_1.2.1
#> [109] memoise_2.0.1
                                      GSEABase_1.60.0
#> [111] zlibbioc_1.44.0
                                      compiler_4.2.0
#> [113] scatterpie_0.1.8
                                      dqrng_0.3.0
#> [115] tinytex_0.42
                                      BiocIO_1.8.0
#> [117] RColorBrewer_1.1-3
                                      KEGGgraph_1.58.0
#> [119] Rsamtools_2.14.0
                                      cli_3.4.1
                                      patchwork_1.1.2
#> [121] XVector_0.38.0
#> [123] ArtifactDB_1.9.5
                                      MASS_7.3-58.1
#> [125] tidyselect_1.2.0
                                      stringi_1.7.6
#> [127] yaml_2.3.5
                                      GOSemSim_2.24.0
#> [129] BiocSingular_1.14.0
                                      locfit_1.5-9.6
#> [131] ggrepel_0.9.2
                                      bcellViper_1.34.0
#> [133] fastmatch_1.1-3
                                      tools_4.2.0
#> [135] bluster_1.8.0
                                      metapod_1.6.0
#> [137] farver_2.1.1
                                      ggraph_2.1.0
#> [139] digest_0.6.29
                                      BiocManager_1.30.19
#> [141] FNN_1.1.3.1
                                      shiny_1.7.3
#> [143] BiocVersion_3.16.0
                                      later_{-}1.3.0
#> [145] gp.auth_1.7.0
                                      httr_1.4.3
#> [147] AnnotationDbi_1.60.0
                                      colorspace_2.0-3
#> [149] XML_3.99-0.12
                                      splines_4.2.0
#> [151] uwot_0.1.14
                                      yulab.utils_0.0.5
#> [153] statmod_1.4.37
                                      tidytree_0.4.1
#> [155] graphlayouts_0.8.3
                                      ggplotify_0.1.0
#> [157] xtable_1.8-4
                                      jsonlite_1.8.3
#> [159] ggtree_3.6.2
                                      tidygraph_1.2.2
#> [161] ggfun_0.0.8
                                      ShadowArray_1.7.1
#> [163] R6_2.5.1
                                      pillar_1.8.1
#> [165] htmltools_0.5.3
                                      mime_0.12
```

```
#> [167] glue_1.6.2
                                       fastmap_1.1.0
#> [169] clusterProfiler_4.6.0
                                       BiocParallel_1.32.1
#> [171] BiocNeighbors_1.16.0
                                       interactiveDisplayBase_1.36.0
#> [173] codetools_0.2-18
                                       gp.version_1.5.0
#> [175] fgsea_1.24.0
                                       utf8_1.2.2
#> [177] lattice_0.20-45
                                       tibble_3.1.8
#> [179] genomitory.schemas_0.99.0
                                       curl_4.3.2
#> [181] ggbeeswarm_0.6.0
                                       artificer.sce_1.3.4
                                      limma_3.54.0
#> [183] GO.db_3.16.0
#> [185] dsassembly_1.7.6
                                       dsdb.schemas_0.99.1
#> [187] munsell_0.5.0
                                       GenomeInfoDbData_1.2.9
#> [189] HDF5Array_1.26.0
                                       reshape2_1.4.4
```