OPTICAL ARTICLE HAVING ANTIREFLECTION LAYER

Patent Number:

JP10123301

Publication date:

1998-05-15

Inventor(s):

ISHIMURA KEI

Applicant(s)::

NIKON CORP

Requested Patent:

□ JP10123301

Application Number: JP19960282279 19961024

Priority Number(s):

IPC Classification:

G02B1/11; B32B7/02; B32B9/00; C08L101/00; C09D1/00; G02B1/10

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance optical article which is not degraded in performance, such as antireflection property, weatherability, wear resistance and impact resistance, in spite of a change in various conditions, such as use purposes, use environment and kinds of base materials.

SOLUTION: This optical article has the base material consisting of a synthetic resin, a hard coating layer consisting of an org. silicon compd. formed on the base material and many layers of antireflection films formed thereon. The first layer of these antireflection films comprises a layer consisting essentially of titanium oxide or zirconium oxide, the second layer comprises a layer consisting essentially of silicon oxide, the third layer comprises a layer consisting essentially of titanium oxide or zirconium oxide and the fourth layer comprises a layer consisting essentially of silicon oxide.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-123301

(43)公開日 平成10年(1998)5月15日

(51) Int.Cl.*		識別記号		FΙ					
G02B	1/11			G 0 2 1	В	1/10		Α	
B 3 2 B	7/02	103		B 3 2 1	В	7/02		103	
	9/00					9/00		Α	
C08L1	01/00			C 0 8 1	L 10	01/00			
C09D	1/00			C 0 9 1	D	1/00			
			審查請求	未請求	東求リ	頃の数15	OL	(全 17 頁)	最終頁に続く
(21)出願番号		特顧平8−282279		(71) HI	苗人	000004	112		
() [[]		13447		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	株式会		ン	
(22)出顧日		平成8年(1996)10月24日						- 区丸の内3丁	日2番3号
,,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(72)発	明者	石村			
				(1-7)	<i>,</i> , , ,			区丸の内3丁	目2番3号 株
						式会社			,
				(74) fe	理人	弁理士		-	
				(1.27)		71.			

(54) 【発明の名称】 反射防止層を有する光学物品

(57)【要約】

【課題】 使用目的、使用環境、基材の種類等の各種条 件の変化によっても、反射防止性、耐候性、耐摩耗性、 耐衝撃性等の性能が低下しない高性能光学物品を提供す

【解決手段】 合成樹脂からなる基材、この基材上に形 成される有機ケイ素化合物からなるハードコート層と、 その上に形成される多層の反射防止膜を有し、反射防止 膜は、第1層が酸化チタンまたは酸化ジルコニウムを主 成分とする層、第2層が酸化ケイ素を主成分とする層、 第3層が酸化チタンまたは酸化ジルコニウムを主成分と する層、第4層が酸化ケイ素を主成分とする層により構 成される。

1

【特許請求の範囲】

【請求項1】 合成樹脂からなる基材と、前記基材上に 形成され有機ケイ素化合物からなるハードコート層と前 記ハードコート層上に形成される多層の反射防止膜を有 する光学物品であって、前記反射防止膜が前記ハードコ ート層側から空気側に向かって、第1層が酸化チタンま たは酸化ジルコニウムを主成分とする層、第2層が酸化 ケイ素を主成分とする層、第3層が酸化チタンまたは酸 化ジルコニウムを主成分とする層、第4層が酸化ケイ素 を主成分とする層である光学物品。

【請求項2】 設計波長を入。としたとき、前記反射防止膜の光学的膜厚が

第1層: n, d, = 0. 03~0. 08 λ。 第2層: n, d, = 0. 06~0. 14 λ。 第3層: n, d, = 0. 40~0. 60 λ。 第4層: n, d, = 0. 22~0. 27 λ。

 (n_1, n_2, n_3, n_4) は設計波長 λ 。 に対する第1層、第2層、第3層、第4層の屈折率であり、 d_1 、 d_2 、 d_3 、 d_4 は第1層、第2層、第3層、第4層の物理的膜厚である)で表される n_1 d_1 、 n_2 d_2 、 n_3 d_3 、および n_4 d_4 の値を有することを特徴とする請求項1の光学物品。

【請求項3】 前記ハードコート層は、下記一般式 R', R', Si(OR'), (1.16)

(なお、ことで、R¹ およびR² は、アルキル基と、アルケニル基と、アリール基と、ハロゲン基、エポキシ基、グリシドキシ基、アミノ基、メルカプト基、メタクリルオキシ基、またはシアノ基を有する炭化水素基とから独立して選ばれる有機基であり、R³ は、炭素数1~8のアルキル基、アルコキシアルキル基、アシル基、ま30たはアリール基であり、aは0または1、bは0または1である。)で表される有機ケイ素化合物/およびまたはその加水分解生成物であることを特徴とする請求項1または2の光学物品。

【請求項4】 前記ハードコート層が、酸化スズのコロイド粒子を核にその周辺を酸化スズ-酸化タングステンの複合体のコロイド粒子が取り囲んだ二重構造を有する平均粒子径が1~300μmである変成ソルを5~80重量%含む有機ケイ素化合物であることを特徴とする請求項1ないし3のいずれかの光学物品。

【請求項5 】 前記ハードコート層が平均粒子径が $1 \sim 300 \mu m$ の二酸化ケイ素微粒子を $5 \sim 80 重量%含む 有機ケイ素化合物であることを特徴とする請求項<math>1$ ないし3のいずれかの光学物品。

【請求項6】 前記合成樹脂がポリウレタン系樹脂またはジエチレングリコールビスアリルカーボネートの重合体であることを特徴とする請求項1ないし5のいずれかの光学物品。

【請求項7】 前記ポリウレタン系樹脂がm-キシリレンジイソシアネートと、ペンタエリスリトールテトラキ 50

ス(3-メルカプロプトビオネート)とを重合して得られる樹脂、m-キシリレンジイソシアネートと、1、2ービス { (2-メルカプトエチル)チオ} メルカプトプロパンとを重合して得られる樹脂、または4-メルカプトメチル-3、6-ジチア-1、8-オクタンジチオールおよびその重合度5以下の脱水素縮合物の混合物であり、4-メルカプトメチル-3、6-ジチア-1、8-オクタンジチオールを75~90重量%を含む混合物と、ジシクロヘキシルメタン-4、4′-ジイソシアネートとを重合させて得られる樹脂である請求項6の光学物品。

【請求項8】 前記ハードコート膜と前記反射防止膜との界面の前記ハードコート膜側の表面付近に水素原子が 6×10^{21} ($atoms/cm^3$)以下、存在していることを特徴とする請求項1ないし7のいずれかの光学物品。

【請求項9】 前記ハードコート膜と前記反射防止膜との界面の前記ハードコート膜側の表面付近に不活性元素が存在していることを特徴とする請求項1ないし7のい ずれかの光学物品。

【請求項10】 前記不活性がアルゴンであることを特徴とする請求項9の光学物品。

【請求項11】 請求項1ないし10のいずれかの光学物品を製造する方法であって、合成樹脂性の基材を用意する工程、浸漬法により有機ケイ素化合物または無機微粒子を含有する有機ケイ素化合物を塗布することによりハードコート層を形成する工程、前記ハードコート層の表面をイオンビームクリーニングによる処理を行う工程、前記処理後多層の反射防止膜を真空蒸着法、スパッタリング法またはイオンプレーティング法により形成する工程を有する光学物品の製造方法。

【請求項12】 少なくとも前記第3層と第4層の反射 防止膜の形成時にイオンビームアシストを行う工程を含むことを特徴とする請求項11の光学物品の製造方法。

【請求項13】 前記ハードコート層表面をイオンビームクリーニングを行ない、かつ少なくとも前記第3層と第4層の反射防止膜の形成時にイオンビームアシストすることを特徴とする請求項11の光学物品の製造方法。

【請求項14】 前記イオンビームクリーニングの処理条件をアルゴンまたは酸素またはアルゴンと酸素の混合ガスを使用し、真空槽内の圧力を $1 \times 10^{-4} \, \mathrm{Torr}$ 以下に設定し、イオン電流密度を $0.3 \sim 30 \, \mu \, \mathrm{A/cm}$ に設定することを特徴とする請求項11ないし13のいずれかの光学物品の製造方法。

【請求項15】 前記イオンビームクリーニングの処理において、ビームの照射時間を15~120秒に設定することを特徴とする請求項11ないし14の光学物品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、メガネレンズや カメラレンズ、もしくは光学フィルター等に有用な反射 防止層を有する光学物品に関するものである。

[0002]

【従来の技術】従来より、プラスチックは、ガラスに比 べて軽量で、かつ加工性、耐衝撃性に優れ、染色しやす い等の有用な利点を備えていることから、ガラスに代わ る光学部材として注目されている。たとえば、プラスチ ックレンズは、従来のガラスレンズに比べて軽量である ため、ガラスレンズに代わるものとして、使用目的に応 10 じて改良したプラスチックレンズが次々に提案されてい る。最近では、レンズの薄型化のために、高屈折率、低 色収差のプラスチックレンズが数多く提案されている。 【0003】ただ、一般にプラスチックには、前記のよ うな数多くの有用な利点を有しているが、その反面、硬 度が不十分で傷がつきやすく、溶媒に侵されやすく、帯 電して埃を吸着し、耐熱性が不十分である等の欠点もま た有している。実際に、たとえば、メガネレンズやカメ ラレンズなどの光学部材として使用するには、これらの 欠点によって、ガラスに比べ実用上不満足である。そと 20 水性、耐薬品性、耐候性、耐衝撃性に関する試験を行っ で、通常は、光学部材に用いられているプラスチック基 材の表面には、プラスチック基材の前記のような欠点を カバーするためのコーティングが目的に応じて施されて いる。

【0004】そしてまた、とのような表面コーティング の機能の一つとして、プラスチック基材表面の反射防止 が考慮されてきてもいる。との反射防止についてはこれ までにも様々な改良がなされ、数多くの提案が行われて きている。たとえばその一例として、プラスチックの薄 型化による高屈折率化や非球面化に伴うレンズの曲率の 30 拡大から、反射像が目立つようになってきたことから、 この表面反射を抑止するために、従来のプラスチック基 板に対する反射防止膜よりもさらに表面反射を少なくす るというような多層反射防止膜も提案されている。

【0005】特開昭56-113101、特開昭59-48702、特開昭59-78301、特開昭59-7 8304、特開平4-217203、特開平4-328 501、特開平4-355402、特開平5-3308 49、特開平5-53002、特公平6-85002、 特開平6-11602などに開示されている諸提案であ る。

[0006]

【発明が解決しようとする課題】一方、最近の眼鏡レン ズ等の光学物品に対しては、より反射防止性能、耐擦傷 性、密着性、耐温水性、耐薬品性、耐候性、耐衝撃性の 高いものが要求されている。特に眼鏡レンズは、その使 用目的、使用環境、デザイン等の多用化により、上記の 性能をさらに向上させる必要性が生じている。

【0007】しかしながら、これまでに提案されている

擦傷性、密着性、耐熱性、耐温水性、耐薬品性、耐候 性、耐衝撃性の全てに優れているようなものはなかっ た。また、レンズの薄型化に伴って、基材となる材料の 種類を変化させた場合、基材上に形成するハードコート 膜や反射防止膜等の薄膜の性能が変化してしまい、上記 の各性能が低下することがあるという問題点も生じてい

【0008】そこでこの発明は、以上のとおりの従来の 問題を解消し、使用目的、使用環境、デザイン、基材の 種類等の各種条件が変化しても、反射防止のために必要 とされる表面特性を有し、しかもその性能が低下しな い、より高性能な光学物品を提供することを目的として

[0009]

【課題を解決するための手段】上記の目的を達成すべ く、この出願の発明者は、従来の樹脂基材上に有機ケイ 素化合物からなるハードコート膜を浸漬法により形成 し、さらにその上に無機化合物からなる多層の反射防止 膜を真空蒸着法により形成し、耐擦傷性、密着性、耐温

【0010】そして、その性能試験の結果と試験後の光 学物品の観察結果からハードコート膜や反射防止膜の材 料や膜厚、製造方法や製造条件についてさらに検討し た。その結果、発明者は、基材とハードコート膜、ハー ドコート膜と反射防止層との構成を特有のものとし、と れらの各界面に着目し、特に基材とハードコート膜の界 面の性能を改善すれば、上記性能を向上させることがで きることを見い出した。

【0011】また、前記界面の改善に加えて、反射防止 膜の製造方法を改善すれば、さらに性能を向上させると とが可能であることも判明した。加えて、この出願の発 明者は、特定のハードコート層の組成における、好まし い製造条件を見い出すことに成功した。そこで、この出 願の発明は、第1には、合成樹脂からなる基材、前記基 材上に形成され有機ケイ素化合物からなるハードコート 層と前記ハードコート層上に形成される多層の反射防止 膜を有する光学物品であって、前記反射防止膜が前記ハ ードコート層側から空気側に向かって、第1層が酸化チ タンまたは酸化ジルコニウムを主成分とする層、第2層 が酸化ケイ素を主成分とする層、第3層が酸化チタンま たは酸化ジルコニウムを主成分とする層、第4層が酸化 ケイ素を主成分とする層である光学物品を提供する。

【0012】また、第2には、設計波長を入。としたと き、前記反射防止膜の光学的膜厚が

第1層: $n, d, = 0.03 \sim 0.08 \lambda$ 。

第2層: $n_1 d_1 = 0.06 \sim 0.14 \lambda_0$

第3層:n,d,=0.40~0.60λ。

第4層: $n_* d_* = 0.22 \sim 0.27 \lambda_*$

反射防止手段については、いずれもが反射防止性能、耐 50 で表されるn, d, 、n, d, 、n, d, およびn, d

、の値を有することを特徴とする光学物品を提供する。 ただし、ここで、n、、n、、n、 n。は設計波長λ 。に対する第1層、第2層、第3層、第4層の屈折率で あり、d₁、d₂、d₃、d₄は第1層、第2層、第3 層、第4層の物理的膜厚である。

【0013】そして、第3には、前記ハードコート層 が、下記一般式

 R^1 , R^2 , $Si(OR^3)_{4-(4-b)}$

(なお、ここで、R¹ およびR² は、アルキル基と、ア ルケニル基と、アリール基と、ハロゲン基、エポキシ 基、グリシドキシ基、アミノ基、メルカプト基、メタク リルオキシ基またはシアノ基を有する炭化水素基とから 独立して選ばれる有機基であり、R³ は、炭素数1~8 のアルキル基、アルコキシアルキル基、アシル基、また はアリール基であり、aはOまたは1、bはOまたは1 である。) で表される有機ケイ素化合物/およびまたは その加水分解生成物であることや、前記ハードコート層 が、酸化スズのコロイド粒子を核にその周辺を酸化スズ -酸化タングステンの複合体のコロイド粒子が取り囲ん だ二重構造を有する平均粒子径が1~300μmである 20 変成ゾルを5~80重量%含む有機ケイ素化合物、また は平均粒子径が1~300μmの二酸化ケイ素微粒子を 5~80重量%含む有機ケイ素化合物であることを特徴 とする光学物品を提供する。

【0014】第4には、前記合成樹脂がポリウレタン系 樹脂またはジエチレングリコールビスアリルカーボネー トの重合体であることや、前記ポリウレタン系樹脂がm ~キシリレンジイソシアネートと、ペンタエリスリトー ルテトラキス (3-メルカプトプロピオネート) とを重 合して得られる樹脂、またはm-キシリレンジイソシア ネートと、1,2-ビス((2-メルカプトエチル)チ オ)メルカプトプロバンとを重合して得られる樹脂、ま たは4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオールおよびその重合度5以下の脱水素縮 合物の混合物であり、4-メルカプトメチル-3、6-ジチア-1,8-オクタンジチオールを75~90重量 %を含む混合物と、ジシクロヘキシルメタン-4,4′ -ジイソアネートとを重合させて得られる樹脂である光 学物品を提供する。

【0015】さらに、この出願の発明は、第5には、前 40 記ハードコート膜と前記反射防止膜との界面の前記ハー ドコート膜側の表面付近に水素原子が6×10¹¹(at oms/cm³)以下、存在していることや、前記ハー ドコート膜と前記反射防止膜との界面の前記ハードコー ト膜側の表面付近に不活性元素が存在していることを特 徴とする光学物品を提供する。

【0016】また、第6には、合成樹脂性の基材を用意 する工程、浸漬法により有機ケイ素化合物または無機微 粒子を含有する有機ケイ素化合物を塗布することにより

表面をイオンビームクリーニングによる処理を行う工 程、前記処理後多層の反射防止膜を真空蒸着法またはス パッタリング法またはイオンプレーティング法により形 成する工程を有する光学物品の製造方法を提供する。

【0017】そして、この方法において、少なくとも前 記第3層と第4層の反射防止膜の形成時にイオンビーム アシストを行う工程を含むことや、前記ハードコート層 表面をイオンビームクリーニングを行い、かつ少なくと も前記第3層と第4層の反射防止膜の形成時にイオンビ 10 ームアシストすること、前記イオンビームクリーニング の処理条件をアルゴンまたは酸素またはアルゴンと酸素 の混合ガスを使用し、真空槽内の圧力を1×10-1To rr以下に設定し、イオン電流密度を0.3~30µA /cm¹に設定すること、前記イオンビームクリーニン グの処理において、ビームの照射時間を15~120秒 に設定することも新たな手段として提供する。

[0018]

【発明の実施の形態】との発明では、上記のとおりの反 射防止膜の構成については、第1層の酸化チタンまたは 酸化ジルコニウムを主成分とする層は、下のハードコー ト層と上の二酸化ケイ素を主成分とする層の双方に対 し、密着性を向上させ、第2層の二酸化ケイ素を主成分 とする層は、第1層と第3層の酸化チタンまたは酸化ジ ルコニウムを主成分とする層に対して密着性を向上させ ると共に、第1層の酸化チタンまたは酸化ジルコニウム を主成分とする層と組み合わせて第3層、第4層と比べ て中間屈折率とするためのものであり、この第1層と第 2層とで全体として中間屈折率の層となる。さらに、第 3層に酸化チタンまたは酸化ジルコニウムを主成分とす る高屈折率の層と、第4層に二酸化ケイ素を主成分とす る低屈折率の層を設けることにより、全体として反射防 止機能を優れたものとする。

【0019】との場合、より好ましい光学膜厚として は、上記のように、設計波長入。が450~600nm の範囲において

第1層: $n_1 d_1 = 0.03 \sim 0.08 \lambda_0$ 第2層: n, d, = 0. 06~0. 14λ。 第3層:n, d, =0.40~0.60 λ 。 第4層: $n_*d_*=0.22\sim0.27\lambda_0$ である。

【0020】そして、この発明では、前記のとおりの、 特定のハードコート層の組成において、反射防止膜との 界面を特徴のあるものとし、かつ、そのための好ましい 製造条件を提案している。実際、この発明に従って、樹 脂基材上にハードコート層を形成した後に、イオンビー ムクリーニングを行い、その上に反射防止膜を形成する と、イオンビームクリーニングを行うことにより、ハー ドコート膜と反射防止膜の界面における、ハードコート 膜側の表面付近に水素原子が6×10¹¹(atoms/ ハードコート層を形成する工程、前記ハードコート層の 50 cm゚)の割合で存在する領域が形成される。また、不

活性ガスでイオンビームクリーニングを行うと、例えば アルゴンガスを用いた場合、ハードコート膜側の表面付 近にはアルゴン元素が存在する領域が形成される。

【0021】 このように、イオンビームクリーニングに より、ハードコート膜と反射防止膜との界面におけるハ ードコート膜側の表面付近の水素原子の含有量を減少さ せることができる。そのため、ハードコート膜表面の内 部応力が減少する。たとえば、アルゴンガスを用いた場 台、アルゴンイオンがハードコート膜の結晶格子間に入 り込み、吸蔵される状態になる。これにより、内部圧縮 10 応力が形成され、例えば基材が熱等により延びようと働 いた場合に、その延長方向に抑止効果が働くことにな る。水素原子の含有量が、例えばアザーフォドバックス キャッタリング法またはSIMS法と呼ばれる質量分析 分光法で定量することができる。

【0022】また、特に有機ケイ素化合物に酸化スズの コロイド粒子を核として、その周囲を酸化スズと酸化タ ングステンの複合体のコロイド粒子が取り囲んだ二重構 造の分散した変成ゾルを添加したハードコート膜をイオ ンビームクリーニングする場合は、1×10-1Torr 以下に減圧した雰囲気中で、アルゴンイオンの電流密度 して、さらに上記性能を向上させるために、反射防止膜 を形成するときにイオンビームアシストを行うことによ り、さらに性能を向上させることができる。

【0023】この発明のハードコート膜となる有機ケイ 素化合物には、上記のように、主に酸化スズのコロイド 粒子を核に、この核の周辺を酸化スズと酸化タングステ ン複合体のコロイド粒子が取り囲んだ二重構造の微粒子 を添加するか、または酸化ケイ素微粒子を添加すること 30 が好ましいが、この他に酸化アンチモン、酸化チタン、 酸化アルミニウム、酸化鉄、酸化スズと酸化インジウム の混合物などの無機微粒子を添加することも可能であ る。特に酸化スズと酸化インジウムの混合物は帯電防止 効果が高い。これらの微粒子を添加することにより、よ り高硬度な帯電防止性に優れほとりの付きにくく、かつ 前記耐久性を兼ね備えたハードコート膜を有する光学物 品が得られる。さらに、基材の屈折率に合わせて選択さ れた前記無機微粒子をハードコート膜に添加することに より、反射防止膜と基材の屈折率の差を調整することも 40 24 λ、 でき、干渉縞の発生を防止することも可能である。

【0024】 これらの微粒子の平均粒径は1~300m μであり、添加量は5~80重量%が好ましい。また、 この発明では、基材としての合成樹脂についても前記の とおりの特有のものを提案している。これらにより、プ ラスチックレンズとしての諸性能は良好となり、この発 明の効果をより優れたものとする。

【0025】以下、実施例を示し、さらに詳しくこの発 明の実施の形態について説明する。もちろん、この発明 は以下の例によって限定されるものではない。

[0026]

【実施例】

[実施例1]図に示した構成として、ジエチレングリコ ールビスアリルカーボネイト(CR39)からなる合成 樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬 化したハードコートを施し、以下に示すように真空蒸着 法により成膜した。レンズを真空層内に設けられた回転 するドームにセットし、真空層内の温度を70度に加熱 し、圧力が1.0×10⁻¹ torrになるまで排気し、 加速電圧500V、加速電流30mA、イオン電流密度 5μA/cm¹ の条件でArイオンビームクリーニング

60秒間を施した後、基材側から順次、 第1層 Ti〇。(屈折率2.30)を光学的膜厚0. 05λ.

第2層 Si〇、(屈折率1.47)を光学的膜厚0. 10λ

第3層 TiO, (屈折率2.30)を光学的膜厚O. 50λ.

第4層 S10.(屈折率1.47)を光学的膜厚0. 24λ

で積層した。

【0027】なお、λは、設計の中心波長で、530n mとした。このようにして得られた光学物品の性能試験 結果を表1に示した。また、反射防止膜の分光反射率特 性を図2に示した。

〔比較例1〕ジエチレングリコールビスアリルカーボネ イト(CR39)からなる合成樹脂基板の上に、シリコ ン樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン ズを真空層内に設けられた回転するドームにセットし、 真空層内の温度を70度に加熱し、圧力が1.0×10 ^{**}torrになるまで排気した後、基材側から順次、 第1層 TiO, (屈折率2.30)を光学的膜厚O. 05λ

第2層 Si〇、(屈折率1.47)を光学的膜厚0. 10 A.

第3層 Ti〇、(屈折率2.30)を光学的膜厚0. 50λ

第4層 Si〇」(屈折率1.47)を光学的膜厚〇.

で積層した。

【0028】 λは、設計の中心波長で、530nmとし た。このようにして得られた光学物品の性能試験結果を 同様に表1に示した。

[比較例2] ジエチレングリコールビスアリルカーボネ イト(CR39)からなる合成樹脂基板の上に、シリコ ン樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン ズを真空層内に設けられた回転するドームにセットし、 50 真空層内の温度を70度に加熱し、圧力が1.0×10

9

** torrになるまで排気した後、基材側から順次、 第1層 SiO, (屈折率1.47)を光学的膜厚0.

07λ

第2層 TiO, (屈折率2.30)を光学的膜厚0.

0.5 λ

第3層 SiO, (屈折率1.47)を光学的膜厚O.

10λ,

第4層 TiO, (屈折率2.30)を光学的膜厚0.

50λ,

*第5層 SiO, (屈折率1.47)を光学的膜厚O. 24 λ、

で積層した。

【0029】 λ は、設計の中心波長で、530nmとした。このようにして得られた光学物品の性能試験結果を同様に表1に示した。

[0030]

【表1】

		_		
実施例、 比較例番号	クラック 発生温度	耐擦傷性 1	耐擦傷性 2	密 着 性
実施例1	100℃	A	A	A
比较例 1	90℃	A	В	A
比較例 2	90℃	A	В	А
実施例 2	1 3 0 °C	A	A	A

【0031】(表1の試験方法)

(1) クラック発生温度

成膜後、60℃の温風オーブンの中に入れ、温度を10℃上昇させる毎に目視により確認した。

(2)耐擦傷性1

スチールウール(#0000番)を用い、回塗膜表面を 摩擦し、傷のつきにくさを調べた。

【0032】判定は次のように行った。

A:傷がつかない

B:少し傷がつく

C:かなり傷がつく

(3)耐擦傷性2

砂消しゴムを用い、塗膜表面を摩擦し、傷のつきにくさを調べた。

【0033】判定は次のように行った。

A:全く傷がつかない

B:ほとんど傷がつかない

C:傷がつく

(4)密着性

1 c m² 内に碁盤目を10×10個作りセロファン粘着 テープにより、剥離試験を10回繰り返し行った。

[0034]

A:全く剥がれない。

B:2回以上8回以下で剥がれた。

C:1回で剥がれた。

【比較例3】ジェチレングリコールビスアリルカーボネ 電流30mA、イオン電流密度5μA/cm²の条件でイト(CR39)からなる合成樹脂基板の上に、シリコ Arイオンビームクリーニング60秒間を施した後、同ン樹脂とシリカ微粒子を加熱硬化したハードコートを施 50 じ条件でイオンビームアシストを行いながら、基材側か

し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた回転するドームにセットし、真空層内の温度を70度に加熱し、圧力が1.0×10⁻⁵torrになるまで排気した後、基材側から順次、

第1層 SiO, (屈折率1.47)を光学的膜厚O. O6λ、

第2層 Zr〇、(屈折率2.00)を光学的膜厚0.

30 13λ,

第3層 SiO、(屈折率1.47)を光学的膜厚0.

05λ.

第4層 ZrO, (屈折率2.00)を光学的膜厚0.

25λ,

第5層 SiO, (屈折率1.47)を光学的膜厚0. 24 λ、

で積層した。

[0035] λは、設計の中心波長で、530nmとした。 このようにして得られた反射防止膜の分光反射率特 40 性を図3に示した。

[実施例2] ジエチレングリコールビスアリルカーボネイト (CR39) からなる合成樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬化したハードコートを施し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた回転するドームにセットし、真空層内の温度を70度に加熱し、圧力が1.0×10 つ t o r r になるまで排気し、加速電圧500 V、加速電流30 m A、イオン電流密度5 μ A / c m² の条件でA r イオンビームクリーニング60秒間を施した後、同じ条件でイオンビームアシストを行いながら、基材側か

ら順次、

第1層 Ti〇、(屈折率2.30)を光学的膜厚0.

第2層 SiO, (屈折率1.47)を光学的膜厚0. 1.0λ .

第3層 TiO, (屈折率2.30)を光学的膜厚0.

第4層 SiO, (屈折率1.47)を光学的膜厚O. 2.4λ

で積層した。

【0036】なお、λは、設計の中心波長で、530n mとした。このようにして得られた光学物品の性能試験 結果を表1に示した。試験方法は表1の場合と同じであ る。また、反射防止膜の分光反射率特性を図4に示す。 〔実施例3〕 ジエチレングリコールピスアリルカーボネ イト(CR39)からなる合成樹脂基板の上に、一般 式: R', R', Si (OR'), (3.16), で表される有 機ケイ素化合物中に、酸化スズのコロイド粒子を核にそ の周辺を酸化スズー酸化タングステン複合体のコロイド トを施し、以下に示すように真空蒸着法により成膜し た。レンズを真空層内に設けられた回転するドームにセ ットし、真空層内の温度を70度に加熱し、圧力が1. 0×10⁻, torrになるまで排気し、加速電圧500 V、加速電流30mA、イオン電流密度5μA/cm² の条件でAェイオンビームクリーニング60秒間を施し た後、基材側から順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0. 0.5λ

第2層 SiO, (屈折率1.47)を光学的膜厚O.

第3層 Ti〇、(屈折率2.30)を光学的膜厚0.

第4層 SiO₂ (屈折率1.47)を光学的膜厚0. 24λ.

で積層した。

【0037】λは、設計の中心波長で、530nmとし た。このようにして得られた光学物品の性能試験結果を 表2に示した。また、反射防止膜の分光反射率特性を図

〔比較例4〕 ジエチレングリコールビスアリルカーボネ イト(CR39)からなる合成樹脂基板の上に、実施例 3と同様の有機ケイ素化合物中に、酸化スズのコロイド 粒子を核にその周辺を酸化スズー酸化タングステン複合 体のコロイド粒子が取り囲んだ二重構造の変性ゾルを含 むハードコートを施し、以下に示すように真空蒸着法に より成膜した。レンズを真空層内に設けられた回転する ドームにセットし、真空層内の温度を70度に加熱し、 圧力が1.0×10-1torrになるまで排気した後、 基材側から順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0. 05λ.

第2層 Si〇」(屈折率1.47)を光学的膜厚0. 10 09λ,

第3層 Ti〇、(屈折率2.30)を光学的膜厚0. 50 λ.

第4層 Si〇、(屈折率1.47)を光学的膜厚0. 24λ .

で積層した。

【0038】 λは、設計の中心波長で、530 n m とし た。このようにして得られた反射防止膜の分光反射率特 性を表えに示した。

〔比較例5〕 ジエチレングリコールビスアリルカーボネ 粒子が取り囲んだ二重構造の変性ゾルを含むハードコー 20 イト(CR39)からなる合成樹脂基板の上に、実施例 3と同様の有機ケイ素化合物中に、酸化スズのコロイド 粒子を核にその周辺を酸化スズー酸化タングステン複合 体のコロイド粒子が取り囲んだ二重構造の変性ゾルを含 むハードコートを施し、以下に示すように真空蒸着法に より成膜した。レンズを真空層内に設けられた回転する ドームにセットし、真空層内の温度を70度に加熱し、 圧力が1. 0×10^{-3} torrになるまで排気した後、 基材側から順次、

> 第1層 Si〇、(屈折率1.47)を光学的膜厚0. 30 07λ,

第2層 TiO, (屈折率2.30)を光学的膜厚0. 07λ.

第3層 SiOぇ(屈折率1.47)を光学的膜厚0. 10λ

第4層 TiO, (屈折率2.30)を光学的膜厚O.

第5層 Si〇、(屈折率1.47)を光学的膜厚0. 24λ,

で積層した。

【0039】λは、設計の中心波長で、530nmとし た。このようにして得られた光学物品の性能試験結果を 表2に示した。

[0040]

【表2】

14

13					
実施例、	クラック	II oc Mi Ad	耐擦傷性 2	密着性	
比較例番号	発生温度	耐療傷性1	阿豫物性 4	E 43 E	
実施例 3	100°C	A	A	A	
比較例 4	90℃	Α	В	A	
比較例 5	90℃	Λ	В	A	
実施例 4	1 3 0 ℃	A	A	A	

【0041】 [比較例6] ジエチレングリコールビスア リルカーボネイト(CR39)からなる合成樹脂基板の 上に、実施例3と同様の有機ケイ素化合物中に、酸化ス ズのコロイド粒子を核にその周辺を酸化スズー酸化タン グステン複合体のコロイド粒子が取り囲んだ二重構造の 変性ゾルを含むハードコートを施し、以下に示すように 真空蒸着法により成膜した。レンズを真空層内に設けら 20 50λ、 れた回転するドームにセットし、真空層内の温度を70 度に加熱し、圧力が1. 0×10⁻¹ torrになるまで 排気した後、基材側から順次、

第1層 Si〇、(屈折率1.47)を光学的膜厚0. 06λ,

第2層 ZrO, (屈折率2.00)を光学的膜厚0.

第3層 Si〇、(屈折率1.47)を光学的膜厚0. 05λ

第4層 2 r O (屈折率2.00) を光学的膜厚0.

第5層 SiO、(屈折率1.47)を光学的膜厚O. 24λ .

で積層した。

【0042】 \(\lambda\) は、設計の中心波長で、580 n m とし た。このようにして得られた反射防止膜の分光反射率特 性を図6に示した。

〔実施例4〕 ジエチレングリコールピスアリルカーボネ イト(CR39)からなる合成樹脂基板の上に、一般 式: R¹ 、R² 、Si(OR³) 、 で表される有 40 機ケイ素化合物中に、酸化スズのコロイド粒子を核にそ の周辺を酸化スズー酸化タングステン複合体のコロイド 粒子が取り囲んだ二重構造の変性ゾルを含むハードコー トを施し、以下に示すように真空蒸着法により成膜し た。レンズを真空層内に設けられた回転するドームにセ ットし、真空層内の温度を70度に加熱し、圧力が1、 0×10⁻¹ t o r r になるまで排気し、加速電圧500 V、加速電流30mA、イオン電流密度5μA/cm² の条件でArイオンビームクリーニング60秒間を施し た後、同じ条件でイオンビームアシストを行いながら、

基材側から順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0.

第2層 SiO,(屈折率1.47)を光学的膜厚0. 0.9λ

第3層 Ti〇、(屈折率2.30)を光学的膜厚0.

第4層 SiO、(屈折率1.47)を光学的膜厚0. 24λ,

で積層した。

【0043】λは、設計の中心波長で、530nmとし た。このようにして得られた光学物品の性能試験結果を 表2に示した。また、反射防止膜の分光反射率特性を図 7に示した。

〔実施例5〕m-キシリレンジイソシアネートとペンタ エリスリトールテトラキス(3-メルカプトプロビオネ 30 ート)の化合物からなる合成樹脂基板の上に、シリコン 樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン ズを真空層内に設けられた回転するドームにセットし、 真空層内の温度を70度に加熱し、圧力が1.0×10 - * t o r r になるまで排気し、加速電圧500V、加速 電流30mA、イオン電流密度5μA/cm²の条件で Ar イオンビームクリーニング60秒間を施した後、同 じ条件でイオンビームアシストを行いながら、基材側か ら順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0. 05λ,

第2層 SiO、(屈折率1.47)を光学的膜厚0. 10λ,

第3層 TiO, (屈折率2.30)を光学的膜厚O. 50λ,

第4層 Si〇、(屈折率 1.47)を光学的膜厚0. 24λ,

で積層した。

【0044】 λは、設計の中心波長で、530nmとし 50 た。このようにして得られた光学物品の性能試験結果を 表3に示した。試験方法は、表1の場合と同様とした。 また、反射防止膜の分光反射率特性を図8に示した。

15

〔実施例6〕m‐キシリレンジイソシアネートとペンタ エリスリトールテトラキス(3-メルカプトプロビオネ ート)の化合物からなる合成樹脂基板の上に、シリコン 樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン ズを真空層内に設けられた回転するドームにセットし、 真空層内の温度を70度に加熱し、圧力が1.0×10 - * t o r r になるまで排気し、加速電圧5 0 0 V 、加速 10 第2層 T i O 、(屈折率2 . 3 0)を光学的膜厚0 . 電流30mA、イオン電流密度5μΑ/cm゚の条件で Ar イオンビームクリーニング60秒間を施した後、基 材側から順次、

第1層 TiO₂ (屈折率2.30)を光学的膜厚0. 05λ.

第2層 SiO, (屈折率1.47)を光学的膜厚0. 10λ,

第3層 TiO, (屈折率2.30)を光学的膜厚0.

第4層 SiO₂ (屈折率1.47)を光学的膜厚0. 24λ

で積層した。

【0045】 λは、設計の中心波長で、530nmとし た。このようにして得られた光学物品の性能試験結果を 表3に示した。

〔比較例7〕m‐キシリレンジイソシアネートとペンタ エリスリトールテトラキス(3-メルカプトプロピオネ ート)の化合物からなる合成樹脂基板の上に、シリコン 樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン 30 第1層 SiO, (屈折率1.47)を光学的膜厚0. ズを真空層内に設けられた回転するドームにセットし、 真空層内の温度を70度に加熱し、圧力が1.0×10 - torrになるまで排気した後、基材側から順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0. 05λ,

第2層 SiO, (屈折率1.47)を光学的膜厚O. 10λ,

第3層 TiO, (屈折率2.30)を光学的膜厚0.

第4層 SiO、(屈折率1、47)を光学的膜厚0. 24λ,

で積層した。

【0046】 λは、設計の中心波長で、530nmとし た。このようにして得られた光学物品の性能試験結果を 表3に示した。

〔比較例8〕m-キシリレンジイソシアネートとペンタ

エリスリトールテトラキス(3-メルカプトプロビオネ ート)の化合物からなる合成樹脂基板の上に、シリコン 樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン ズを真空層内に設けられた回転するドームにセットし、 真空層内の温度を70度に加熱し、圧力が1.0×10 - torrになるまで排気した後、基材側から順次、

16

第1層 SiO, (屈折率1.47)を光学的膜厚O. 07λ.

05λ,

第3層 SiO, (屈折率1.47)を光学的膜厚O. 10λ.

第4層 TiO, (屈折率2.30)を光学的膜厚0. 50λ,

第5層 Si〇、(屈折率1.47)を光学的膜厚0. 24λ.

で積層した。

【0047】λは、設計の中心波長で、530nmとし 20 た。このようにして得られた光学物品の性能試験結果を 表3に示した。

〔比較例9〕m - キシリレンジイソシアネートとペンタ エリスリトールテトラキス(3-メルカプトプロピオネ ート)の化合物からなる合成樹脂基板の上に、シリコン 樹脂とシリカ微粒子を加熱硬化したハードコートを施 し、以下に示すように真空蒸着法により成膜した。レン ズを真空層内に設けられた回転するドームにセットし、 真空層内の温度を70度に加熱し、圧力が1.0×10 こ。torrになるまで排気した後、基材側から順次、

06λ.

第2層 Zr〇。(屈折率2.00)を光学的膜厚0. 13λ.

第3層 SiO, (屈折率1.47)を光学的膜厚O. 05λ.

第4層 2 r O, (屈折率2.00)を光学的膜厚0. 25λ .

第5層 SiO, (屈折率1.47)を光学的膜厚O. 24λ,

40 で積層した。

【0048】 λは、設計の中心波長で、580nmとし た。このようにして得られた光学物品の性能試験結果を 表3に示した。また、反射防止膜の分光反射率特性を図 9に示した。

[0049]

【表3】

実施例、 比較例番号	クラック 発生温度	耐擦傷性1	耐擦傷性2	密着性
実施例 5	130℃	A	A	A
実施例6	100℃	Α	Α	Α
比較例 7	90℃	А	В	A
比較例 8	90℃	A	В	A
比較例 9	90℃	Α	A	A

【0050】〔実施例7〕ジシクロヘキシルメタンー4、4′ージイソシアネートと、4ーメルカプトメチルー3、6ージチアー1、8ーオクタンジチオール(75~90%)とその脱水素縮合物(重合度5以下)との化20合物からなる合成樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬化したハードコートを施し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた回転するドームにセットし、真空層内の温度を70度に加熱し、圧力が1.0×10-1torrになるまで排気し、加速電圧500V、加速電流30mA、イオン電流密度6μA/cm²の条件でArイオンビームクリーニング60秒間を施した後、基材側から順次、

第1層 TiO₂ (屈折率2.30)を光学的膜厚0.05 λ、

第2層 SiO₂ (屈折率1.47)を光学的膜厚0. 10 λ

第3層 TiO₂ (屈折率2.30)を光学的膜厚0. 50λ、

第4層 SiO₂ (屈折率1.47)を光学的膜厚0. 24 A、

で積層した。

【0051】 \(\lambda\) は、設計の中心波長で、530nmとした。このようにして得られた光学物品の性能試験結果を表4に示した。試験方法は、表1の場合と同様とした。第1層また、反射防止膜の分光反射率特性を図10に示した。(比較例10】 ジシクロヘキシルメタンー4、4′ージ第2層イソシアネートと、4ーメルカプトメチルー3、6ージの5入、チアー1、8ーオクタンジチオール(75~90%)と第3層その脱水素縮合物(重合度5以下)との化合物からなる合成樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬化したハードコートを施し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた第5層回転するドームにセットし、真空層内の温度を70度に5024入。

加熱し、圧力が 1.0×10^{-3} torrになるまで排気した後、基材側から順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0. 0 05λ、

第2層 SiO, (屈折率1.47)を光学的膜厚0. 10 λ、

第3層 TiO, (屈折率2.30)を光学的膜厚0. 50λ、

第4層 SiO, (屈折率1.47)を光学的膜厚O. 24 λ、

で積層した。

【0052】 λは、設計の中心彼長で、530nmとした。このようにして得られた光学物品の性能試験結果を30 表4に示した。

【比較例11】ジシクロヘキシルメタン-4、4′-ジイソシアネートと、4-メルカプトメチル-3、6-ジチア-1、8-オクタンジチオール(75~90%)とその脱水素縮合物(重合度5以下)との化合物からなる合成樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬化したハードコートを施し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた回転するドームにセットし、真空層内の温度を70度に加熱し、圧力が1.0×10⁻³ torrになるまで排気した後、基材側から順次、

第1層 SiO, (屈折率1.47)を光学的膜厚O.07λ、

第2層 TiO₁ (屈折率2.30)を光学的膜厚0.05 λ、

第3層 SiO, (屈折率1.47)を光学的膜厚O. 10 λ、

第4層 TiO, (屈折率2.30)を光学的膜厚0.50λ.

第5層 SiO, (屈折率1.47)を光学的膜厚O. 24 λ で積層した。

【0053】λは、設計の中心波長で、580nmとした。このようにして得られた光学物品の性能試験結果を表4に示した。

〔比較例12〕ジシクロヘキシルメタン-4、4´ージィソシアネートと、4ーメルカプトメチル-3、6ージチア-1、8ーオクタンジチオール(75~90%)とその脱水素縮合物(重合度5以下)との化合物からなる合成樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬化したハードコートを施し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた回転するドームにセットし、真空層内の温度を70度に加熱し、圧力が1、 0×10^{-3} torrになるまで排気した後、基材側から順次、

第1層 SiO₂ (屈折率1.47)を光学的膜厚0. 06λ、

第2層 ZrO, (屈折率2.00)を光学的膜厚0. 13λ

第3層 SiO₂ (屈折率1.47)を光学的膜厚0.05λ、

第4層 ZrO₂ (屈折率2.00)を光学的膜厚0. 25λ.

第5層 SiO, (屈折率1.47)を光学的膜厚0. 24 λ、

で積層した。

【0054】 λ は、設計の中心波長で、580nmとした。 とのようにして得られた反射防止膜の分光反射率特性を図11に示した。

* 〔実施例8〕ジシクロヘキシルメタン-4、4′-ジイソシアネートと、4-メルカプトメチル-3、6-ジチア-1、8-オクタンジチオール(75~90%)とその脱水素縮合物(重合度5以下)との化合物からなる合成樹脂基板の上に、シリコン樹脂とシリカ微粒子を加熱硬化したハードコートを施し、以下に示すように真空蒸着法により成膜した。レンズを真空層内に設けられた回転するドームにセットし、真空層内の温度を70度に加熱し、圧力が1.0×10⁻¹torrになるまで排気

熱硬化したハードコートを施し、以下に示すように真空 10 し、加速電圧500V、加速電流30mA、イオン電流 蒸着法により成膜した。レンズを真空層内に設けられた 密度5μA/cm² の条件でArイオンビームクリーニ 回転するドームにセットし、真空層内の温度を70度に ング60秒間を施した後、同じ条件でイオンビームアシ 加熱し、圧力が1.0×10⁻³ torrになるまで排気 ストを行いながら、基材側から順次、

第1層 TiO, (屈折率2.30)を光学的膜厚0.05λ、

第2層 SrO, (屈折率1.47)を光学的膜厚0. 10λ.

第3層 TiO, (屈折率2.30)を光学的膜厚0.50 λ 、

20 第4層 SrO₂ (屈折率1.47)を光学的膜厚0. 24λ、

で積層した。

【0055】λは、設計の中心波長で、530nmとした。とのようにして得られた光学物品の性能試験結果を表4に示した。また、反射防止膜の分光反射率特性を図12に示した。

[0056]

【表4】

実施例、 比較例番号	クラック 発生温度	耐擦傷性Ⅰ	耐擦傷性2	密着性
実施例 7	1 0 0 °C	A	A	Α
比較例10	80°C	Α	В	A
比較例11	90°C	A	В	A
実施例8	130℃	Α	A	A

[0057]

【発明の効果】以上のように、この発明の光学物品の場合には、耐擦傷性、密着性、耐熱性、耐温水性、耐薬品性、耐候性、耐衝撃性に優れた性能が得られ、かつ、分光特性が安定で、反射防止性能に優れたものとなる。また、さらに具体的には、この発明では、樹脂基材上に形成したハードコート膜の表面をイオンビームクリーニグにより処理した後に反射防止膜を形成することから、耐擦傷性、密着性、耐熱性、耐温水性、耐薬品性、耐候

性、耐衝撃性に優れ、様々な使用条件、使用環境に適用 できる光学物品が得られる。また、反射防止膜を形成す る時に、イオンビームアシストを行うことにより、更に 耐熱性の面が向上した光学物品が得られる。さらに、ハ ードコート膜となる有機ケイ素化合物に無機微粒子を添 加することにより、より高硬度で帯電防止効果をあわせ もつ、光学物品が得られる。

【0058】さらに、眼鏡レンズの場合、高屈折率の材 50 料で基材を形成すれば、より薄型で、かつ上記耐久性の 優れた眼鏡レンズが得られる。また、基材の屈折率と反射防止膜との屈折率の差異が生じる場合は、ハードコート膜となる有機ケイ素化合物に無機微粒子を添加することにより、屈折率の差に起因する干渉縞の発生を防止することもでき、イオンビームクリーニングによる高耐久性に加えて、干渉縞の発生しない、かつより薄型の光学物品が得られる。

【0059】加えて、眼鏡レンズの場合、レンズ自体の耐久性や薄型が実現できるので、そのデザインに対する制約が少なくなり、より自由な設計が可能となる。 【図面の簡単な説明】

【図1】実施例1における光学物品の構成を例示した概要図である。

【図2】実施例1の分光反射率特性を示した図である。*

*【図3】比較例3の分光反射率特性を示した図である。

22

【図4】実施例2の分光反射率特性を示した図である。

【図5】実施例3の分光反射率特性を示した図である。

【図6】比較例6の分光反射率特性を示した図である。

【図7】実施例4の分光反射率特性を示した図である。

【図8】実施例5の分光反射率特性を示した図である。

【図9】比較例9の分光反射率特性を示した図である。 【図9】比較例9の分光反射率特性を示した図である。

【図10】実施例7の分光反射率特性を示した図であ

10 【図11】比較例12の分光反射率特性を示した図であ ス

【図12】実施例8の分光反射率特性を示した図である

[図2]

[図4]

【図7】

【図8】

WAVE LENGTH (NM)

【図11】

【図12】

フロントページの続き

(51)Int.Cl. [*]					
G 0 2 B	1/10				
// C08L	75/00				

識別記号

F I C 0 8 L 75/00 G 0 2 B 1/10

Z