

#### **Product Overview**

The QPL7442 is a low noise, high gain single ended MMIC RF amplifier, with 20 dB of flat gain over the entire 50MHz to 4000MHz bandwidth. This IC is designed to support Cable, Satellite and Terrestrial TV applications, Home Gateways, and Cable Modems. The QPL7442 is powered by a single 5 V supply and packaged in a 2x28-pin DFN.



2.0 x 2.0mm 8-lead DFN

### **Functional Block Diagram**



### **Key Features**

- 50 MHz to 4000 MHz Operation
- Low Power Consumption: 5 V, 85 mA
- Gain: 20 dB over the entire BW
- OP1dB: +20 dBm
- Low Noise Figure: 1.2 dB @ 1.2GHz

1.5 dB @ 3.25GHz

• High Linearity OIP3: +33.7 dBm @ 1.2GHz

+31.1 dBm @ 3.25GHz

Adjustable Bias Using External Resistors

### **Applications**

- Cable, Terrestrial, and Satellite LNA
- CATV Amplifiers
- Optical Node
- Cable Modem and Set Top Box
- Single Ended Gain Block

### **Ordering Information**

| Part Number   | Description              |
|---------------|--------------------------|
| QPL7442SB     | Sample bag with 5 pieces |
| QPL7442SR     | 7" Reel with 100 pieces  |
| QPL7442TR7    | 7" Reel with 2500 pieces |
| QPL7442EVB-01 | PCBA                     |
|               |                          |



### **Absolute Maximum Ratings**

| Parameter                         | Rating         |
|-----------------------------------|----------------|
| Supply Voltage (V <sub>DD</sub> ) | +10 V          |
| Supply Current (IDD)              | 120 mA         |
| Maximum Input Level               | 20 dBm         |
| Operating Temperature Range       | -40 to +100 °C |
| Storage Temperature Range         | −65 to +150 °C |
| Maximum Junction Temperature      | +150 °C        |

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

### **Electrical Specifications**

| Parameter                         | Condition (1)                      | Min | Тур  | Max  | Unit |
|-----------------------------------|------------------------------------|-----|------|------|------|
| Supply Voltage (V <sub>DD</sub> ) |                                    |     | 5    |      | V    |
| Supply Current (IDD)              |                                    |     | 90   |      | mA   |
| Frequency Range                   |                                    | 50  |      | 4000 | MHz  |
| Gain                              |                                    |     | 20   |      | dB   |
| Reverse Isolation                 |                                    |     | 23   |      | dB   |
| Input Return Loss                 |                                    |     | 14.8 |      | dB   |
| Output Return Loss                |                                    |     | 15.8 |      | dB   |
| Noise Figure                      |                                    |     | 1.5  |      | dB   |
|                                   | 0.05 – 1.2GHz                      |     | 48.2 |      | dBm  |
| OIP2L <sup>(2)</sup>              | 1.2 – 3.0GHz                       |     | 48.0 |      | dBm  |
|                                   | 3.0 – 4.0GHz                       |     | 46.4 |      | dBm  |
| OIP2H <sup>(2)</sup>              | 0.05 – 1.2GHz                      |     | 40.6 |      | dBm  |
|                                   | 1.2 – 3.0GHz                       |     | 32.2 |      | dBm  |
|                                   | 3.0 – 4.0GHz                       |     | 38.1 |      | dBm  |
|                                   | 0.05 – 1.2GHz                      |     | 33.9 |      | dBm  |
| OIP3(3)                           | 1.2 – 3.0GHz                       |     | 32.0 |      | dBm  |
|                                   | 3.0 – 4.0GHz                       |     | 27.8 |      | dBm  |
| OP1dB                             | 50-3000 MHz                        |     | 20.8 |      | dBm  |
|                                   | 3.0 – 4.0GHz                       |     | 19.3 |      | dBm  |
| Thermal Resistance                | Θ <sub>JC</sub> (Junction to Case) |     | 62   |      | °C/W |

- 1. Typical performance at these conditions: Temp = +25 °C,  $V_{DD}$  = +5 V, 50  $\Omega$  system, Full band unless otherwise noted.
- 2. +5 dBm/tone output, 53 MHz Spacing.
- 3. +5 dBm/tone output, 5 MHz Spacing.

### **Evaluation Board Schematic**



- 1. L1, C7 tunes input return loss.
- 2. L2, C6 tunes output return loss.
- 3. D1, D2 provide DC bias path with RF isolation from the RF output path.
- C4, C5 provides DC blocking.
- 5. R1, R2 and C3 are pullup/pulldown options that may be added from the input to VDD or to ground to increase linearity or shed power, trading off degraded noise figure and return loss. Device current can only be adjusted through R1 and R2.
- 6. Pin5 is an internal gate voltage and may be left floating.





### **Evaluation Board Bill of Materials**

| Designator        | Description                           | Manufacturer                  | Part Number            |
|-------------------|---------------------------------------|-------------------------------|------------------------|
| PCB               | QPL7442-4001 EVB                      | TTM Technology INC            | QPL7442-4001(A)        |
| U1                | QPL7442                               | Qorvo                         | QPL7442SB              |
| D1, D2            | FER, BEAD, 1.8 KΩ, 5 %, 200 mA, 0402  | TDK                           | MMZ1005A182ET000       |
| C6                | CAP, 0.3 pF, +/-0.05 pF, 25 V, 0402   | AVX Asia                      | 04023J0R3ABWTR         |
|                   |                                       |                               |                        |
| C1, C4, C5        | CAP, 0.01 uF, 10 %, 50 V, X8L, 0402   | Murata Electronics            | GCM155L81E103KA37D     |
| L1, L2            | IND, 1.2 nH, +/-0.1 nH, 0402          | Murata Electronics            | LQG15HS1N2B02D         |
|                   |                                       | Cinch Connectivity Solutions, |                        |
| J3, J4, J6, J7    | 862000-422 CONN, 0.062 RF SMA F, 50 Ω | Inc                           | 142-0701-851           |
| J1, J2            | 862000-055 Solder Turret, 0.062       | Mouser Electronics            | 2533-0-00-44-00-00-07- |
| C2, C3, C7, C10,  |                                       |                               |                        |
| C11, C12, J5, R1, |                                       |                               |                        |
| R2, R3, R4        | Not Populated                         |                               |                        |



### **Evaluation Board Assembly Drawing**



# EVB PCB Material and Stack-up

Board Material: Rogers 4350B, 4450F, 62mil total thickness.

 $\epsilon_r$  = 3.66 Plating: 1.0 oz Copper Board Dimension: 0.810" x 1.450"

| Layer | Name           | Material      | Thickness | Constant |
|-------|----------------|---------------|-----------|----------|
| 1     | Top Overlay    |               |           |          |
| 2     | Top Solder     | Solder Resist | 0.40mil   | 3.5      |
| 3     | Top Layer      | Copper        | 1.40mil   |          |
| 4     | Dielectric1    | Rogers 4350B  | 10.00mil  | 3.66     |
| 5     | Signal Layer 1 | Copper        | 1.40mil   |          |
| 6     | Dielectric 3   | Rogers 4450F  | 42.00mil  | 3.52     |
| 7     | Signal Layer 2 | Copper        | 1.40mil   |          |
| 8     | Dielectric 2   | Rogers 4350B  | 10.00mil  | 3.66     |
| 9     | Bottom Layer   | Copper        | 1.40mil   |          |
| 10    | Bottom Solder  | Solder Resist | O.40mil   | 3.5      |
| 11    | Bottom Overlay |               |           |          |

Total Thickness: 62 mil +/-10%





## **Typical Application Schematic**





### **Performance Data**













- (1)  $V_{DD} = +5 V$ ,  $50 \Omega$  system
- (2) OIP3: +5 dBm / tone output, 5MHz spacing



### Performance Data (cont'd)













#### Notes:

(1) OIP2: 5 dBm/tone output, 53MHz spacing



### **Additional Applications – Bias Resistor Options**

Pullup or pulldown resistors may be used to change the bias current (IDD) for a given bias voltage (VDD). Refer to the EVB schematic on Page 3. IDD must not exceed 120mA and the junction temperature can not exceed 150 °C at the maximum ambient operating temperature. Note that for some cases, return loss may need to be reoptimized by adjusting L1, L2, C7 and C6.

| IDD (mA) | 3V     |     | 5V     |       | 6V  |       | 7V  |       | 8V  |       |
|----------|--------|-----|--------|-------|-----|-------|-----|-------|-----|-------|
|          | R1     | R2  | R1     | R2    | R1  | R2    | R1  | R2    | R1  | R2    |
| 100      | 31.6K  | DNP | 280.0K | DNP   | DNP | 97.6K | DNP | 25.5K | DNP | 14.0K |
| 90       | 41.2K  | DNP | DNP    | DNP   | DNP | 33.2K | DNP | 15.4K | DNP | 10.5K |
| 80       | 56.2K  | DNP | DNP    | 60.1K | DNP | 20.0K | DNP | 11.5K | DNP | 7.87K |
| 70       | 82.0K  | DNP | DNP    | 28.0K | DNP | 13.7K | DNP | 9.09K | DNP | 8.06K |
| 60       | 150.0K | DNP | DNP    | 17.4K | DNP | 10.0K | DNP | 6.98K | DNP | 5.49K |
| 45       | DNP    | DNP | DNP    | 10.0K | DNP | 6.98K | DNP | 5.49K | N/A | N/A   |









#### Notes:

(1)  $V_{DD} = +5 V$ ,  $50 \Omega$  system



### Additional Applications, cont'd - Bias Resistor Options













- (1)  $V_{DD} = +5 V$ ,  $50 \Omega$  system
- (2) OIP3: +5 dBm/tone output, 5MHz spacing



### Additional Applications, cont'd - Bias Resistor Options









- (1)  $V_{DD} = +5 V$ ,  $50 \Omega$  system
- (2) OIP2: +5 dBm / tone output, 53MHz spacing



### **Pin Configuration and Description**



| Pin Number      | Label        | Description                                                                                                                          |
|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2               | RF IN        | RF Input, DC blocking capacitor required                                                                                             |
| 1,3,4,6,8       | GND          | Internally Not Connected                                                                                                             |
| 7               | RF OUT / VDD | RF Output – VDD bias                                                                                                                 |
| 5               | VG2          | Gate Voltage bias. Leave as no connect.                                                                                              |
| Backside Paddle | GND          | Ground. Use recommended via pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint. |



### **Package Outline**



- 1. All dimensions in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline confroms to JEDEC standard MO-220, Isse E (Variation VGGC) for thermally enhanced Plastic very thin fine pitch dual flat no lead package (DFN)
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The termianl #1 identifier and termianl numbering conforms to JESD 95-1 SPP-012.



# **Package Marking Dimensions**



### **Recommended Mounting Pattern**



- 1. All dimensions are in millimeters (inches). Angles are in degrees.
- 2. Use 1 oz copper minimum for top and bottom layer.
- 3. Via holes are required under the backside paddle of this device for proper RF / DC grounding and thermal dissipation. We recommend a 0.35 mm diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm.
- 4. All dimensions are in millimeters (inches). Angles are in degrees.



### **Handling Precautions**

| Parameter                        | Rating     | Standard                   |   |
|----------------------------------|------------|----------------------------|---|
| ESD – Human Body Model (HBM)     | 1B (500V)  | ANSI / ESDA / JEDEC JS-001 |   |
| ESD - Charged Device Model (CDM) | C3 (1000V) | ANSI / ESDA / JEDEC JS-002 | 4 |
| MSL-Moisture Sensitivity Level   | MSL3       | IPC / JEDEC J-STD-020      | _ |



### **Solderability**

Compatible with both lead-free (260 °C max. reflow temp.) and tin/lead (245 °C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

### **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- · Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- SVHC Free



### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163
Web: <u>www.qorvo.com</u>

Email: customer.support@gorvo.com

### **Important Notice**

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2021 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### Qorvo:

QPL7442PCK-01 QPL7442SR QPL7442TR7