Seri bahan kuliah Algeo #23

Perkalian Geometri (Bagian 1)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Sumber:

John Vince, Geometric Algebra for Computer Graphics. Springer. 2007

Perkalian Vektor

Perkalian vektor yang sudah dipelajari:

- 1. Perkalian titik (dot product atau inner product): a · b
- 2. Perkalian silang (cross product): $\mathbf{a} \times \mathbf{b}$
- 3. Perkalian luar (outer product): $a \wedge b$

Yang akan dipelajari selanjutnya \rightarrow perkalian geometri: ab

Perkalian Geometri

- Perkalian geometri dioperasikan pada *multivector* yang mengandung skalar, area, dan volume
- Perkalian geometri ditemukan oleh William Kingdom Clifford (1945 1879)

 Perkalian geometri dua buah vektor a dan b didefinisikan sebagai berikut:

$$ab = a \cdot b + a \wedge b$$

skalar bivector

Sifat-sifat Perkalian Geometri

- 1. Asosiatif
 - (i) a(bc) = (ab)c = abc
 - (ii) $(\lambda a)b = \lambda (ab) = \lambda ab$
- 2. Distributif
 - (i) a(b+c) = ab + ac
 - (ii) (b + c)a = ba + ca
- 3. Modulus

$$a^2 = aa = ||a||^2$$

Bukti untuk 3:

Misalkan
$$a = a_1 e_1 + a_2 e_2$$

maka

$$a^{2} = aa = a \cdot a + a \wedge a$$

$$= a_{1}a_{1} + a_{2}a_{2} + (a_{1}e_{1} + a_{2}e_{2}) \wedge (a_{1}e_{1} + a_{2}e_{2})$$

$$= a_{1}^{2} + a_{2}^{2} + a_{1}a_{1}(e_{1} \wedge e_{1}) + a_{1}a_{2}(e_{1} \wedge e_{2}) + a_{2}a_{1}(e_{2} \wedge e_{1}) + a_{2}a_{2}(e_{2} \wedge e_{2})$$

$$= a_{1}^{2} + a_{2}^{2} + 0 + a_{1}a_{2}(e_{1} \wedge e_{2}) + a_{2}a_{1}(e_{2} \wedge e_{1}) + 0$$

$$= a_{1}^{2} + a_{2}^{2} + a_{1}a_{2}(e_{1} \wedge e_{2}) - a_{2}a_{1}(e_{1} \wedge e_{2})$$

$$= a_{1}^{2} + a_{2}^{2} + a_{1}a_{2}(e_{1} \wedge e_{2}) - a_{1}a_{2}(e_{1} \wedge e_{2})$$

$$= a_{1}^{2} + a_{2}^{2} + 0$$

$$= a_{1}^{2} + a_{2}^{2}$$

$$= (\sqrt{a_{1}^{2} + a_{2}^{2}})^{2}$$

$$= ||a||^{2}$$

Contoh 1: Misalkan $a = 3e_1 + 4e_2$ dan $b = 2e_1 + 5e_2$, hitunglah ab dan a^2 Jawaban:

$$ab = a \cdot b + a \wedge b$$

$$= \{(3)(2) + (4)(5)\} + (3e_1 + 4e_2) \wedge (2e_1 + 5e_2)$$

$$= \{6 + 20\} + 6(e_1 \wedge e_1) + 15(e_1 \wedge e_2) + 8(e_2 \wedge e_1) + 20(e_2 \wedge e_2)$$

$$= 26 + (6)(0) + 15(e_1 \wedge e_2) + 8(e_2 \wedge e_1) + (20)(0)$$

$$= 26 + 15(e_1 \wedge e_2) - 8(e_1 \wedge e_2)$$

$$= 26 + 7(e_1 \wedge e_2)$$

$$a^{2} = aa = a \cdot a + a \wedge a = ||a||^{2}$$

$$= (\sqrt{3^{3} + 4^{2}})^{2}$$

$$= 3^{2} + 4^{2}$$

$$= 9 + 16$$

$$= 25$$

Vektor-vektor Ortogonal

$$b \perp a$$

Menurut dalil Phytagoras:

$$||c||^2 = ||a||^2 + ||b||^2$$

$$c^2 = a^2 + b^2 \longrightarrow \text{sifat modulus}$$

$$(a+b)^2 = a^2 + b^2$$

$$a^2 + b^2 + ab + ba = a^2 + b^2$$

$$ab + ba = 0$$

$$ab = -ba$$

... Perkalian geometri tidak bersifat komutatif untuk vektor-vektor yang ortogonal!

Vektor-vektor yang tidak bebas linier

.: Perkalian geometri bersifat komutatif untuk vektor-vektor tidak bebas linier

Vektor-vektor yang bebas linier

$$b = b_{\parallel} + b_{\perp}$$

$$ab = a(b_{\parallel} + b_{\perp}) = ab_{\parallel} + ab_{\perp}$$

 $ab_{||}$ bergantungan linier dengan a, atau $b_{||}$ = λ a

$$ab_{\parallel} = a\lambda a = \lambda a^2 = \frac{\lambda \|a\|^2}{\text{skalar}}$$

$$ab_{||} = ab \cos \theta = ||a|| ||b|| \cos \theta = a \cdot b$$

 $ab_{\perp} = ab \sin \theta = a \wedge b$

$$ab = ab_{||} + ab_{\perp} = a \cdot b + a \wedge b$$

Jadi,
$$ab = a \cdot b + a \wedge b$$

• Modulus *ab* dihitung dengan dalil Phytagoras sbb:

$$||ab||^{2} = ||a \cdot b||^{2} + ||a \wedge b||^{2}$$

$$= ||a||^{2} ||b||^{2} \cos^{2} \theta + ||a||^{2} ||b||^{2} \sin^{2} \theta$$

$$= ||a||^{2} ||b||^{2} (\cos^{2} \theta + \sin^{2} \theta)$$

$$= ||a||^{2} ||b||^{2} (\operatorname{sebab} \cos^{2} \theta + \sin^{2} \theta = 1)$$

Jadi,
$$||ab|| = ||a|||b||$$

Kemudian,

$$ab = a \cdot b + a \wedge b$$

$$ba = b \cdot a + b \wedge a = a \cdot b - a \wedge b$$

$$ab - ba = (a \cdot b + a \wedge b) - (a \cdot b - a \wedge b)$$

$$= (a \wedge b) + (a \wedge b) = 2 (a \wedge b)$$
Jadi,
$$(a \wedge b) = \frac{1}{2}(ab - ba)$$

Selanjutnya,

$$ab + ba = (a \cdot b + a \wedge b) + (a \cdot b - a \wedge b) = 2(a \cdot b)$$

Jadi,

$$(a \cdot b) = \frac{1}{2}(ab + ba)$$

Perkalian geometri vektor-vektor basis

• Vektor-vektor basis satuan standard adalah e₁, e₂, e₃, ...

$$e_1e_1 = e_1 \cdot e_1 + e_1 \wedge e_1 = 1 + 0 = 1 \rightarrow e_1e_1 = e_1^2 = 1$$

• Dengan cara yang sama, maka $| e_2 e_2 = e_2^2 = 1 | dan | e_3 e_3 = e_3^2 = 1$

$$e_2 e_2 = e_2^2 = 1$$

$$e_3e_3 = e_3^2 = 1$$

Perkalian geometri e₁ dan e₂:

$$e_1e_2 = e_1 \cdot e_2 + e_1 \wedge e_2 = 0 + e_1 \wedge e_2 = e_1 \wedge e_2 \longrightarrow e_1e_2 = e_1 \wedge e_2$$

Note: $e_1 \wedge e_2$ dapat diganti dengan notasi e_1e_2 atau e_{12}

$$e_2e_1 = e_2 \cdot e_1 + e_2 \wedge e_1 = 0 + e_2 \wedge e_1 = -e_1 \wedge e_2 \rightarrow e_2e_1 = -e_1 \wedge e_2$$

Note: $e_2 \wedge e_1$ dapat diganti dengan notasi $-e_1e_2$ atau $-e_{12}$

Soal Latihan dan Jawaban

(Soal UAS 2019)

Jika diketahui tiga buah vektor:

$$a = 2e_1 + 2e_2 + e_3$$

 $b = 3e_1 + 2e_2 - 2e_3$
 $c = e_1 + 2e_2 - e_3$

Hitunglah:

1).
$$(a+b)c$$

2).
$$(a \wedge b)c$$

3).
$$(a+b) \cdot c$$

1)
$$a + b = (2e_1 + 2e_2 + e_3) + (3e_1 + 2e_2 - 2e_3) = 5e_1 + 4e_2 - e_3$$

 $(a + b)c = (5e_1 + 4e_2 - e_3)(e_1 + 2e_2 - e_3)$
 $= 5 + 10e_{12} - 5e_{13} + 4e_{21} + 8 - 4e_{23} - e_{31} - 2e_{32} + 1$
 $= 14 + (10 - 4)e_{12} + (-4 + 2)e_{23} + (5 - 1)e_{31}$
 $= 14 + 6e_{12} - 2e_{23} + 4e_{31}$

2)
$$(a \wedge b) = (2e_1 + 2e_2 + e_3) \wedge (3e_1 + 2e_2 - 2e_3)$$

 $= (4 - 6)e_{12} + (-4 + 2)e_{23} + (3 + 4)e_{31}$
 $= -2e_{12} - 2e_{23} + 7e_{31}$
 $(a \wedge b)c = (-2e_{12} - 2e_{23} + 7e_{31})(e_1 + 2e_2 - e_3)$
 $= 2e_2 - 4e_1 + 2e_{123} - 2e_{123} + 4e_3 + e_2 + 7e_3 + 14e_{123} + 7e_1$
 $= (-4 + 7)e_1 + (2 + 1)e_2 + (4 + 7)e_3 + (2 - 2 + 14)e_{123}$
 $= 3e_1 + 3e_2 + 11e_3 + 14e_{123}$

3)
$$(a + b) \cdot c = (5e_1 + 4e_2 - e_3) \cdot (e_1 + 2e_2 - e_3)$$

= $(5)(1) + (4)(2) + (-1)(-1)$
= $5 + 8 + 1$
= 14

Sifat-sifat Imajiner Outer Product

Kuadratkan outer product dari vektor-vektor basis satuan:

$$(e_{1} \wedge e_{2})^{2} = (e_{1} \wedge e_{2})(e_{1} \wedge e_{2})$$

$$= e_{1}e_{2}e_{1}e_{2}$$

$$= -e_{1}e_{2}e_{2}$$

$$= -e_{1}^{2}e_{2}^{2}$$

$$= -1^{2}1^{2}$$

$$= -1$$
• Jadi, $(e_{1} \wedge e_{2})^{2} = -1 \rightarrow \text{mirip dengan imajiner } i^{2} = -1$

• Aljabar Geometri memiliki hubungan dengan bilangan kompleks, bahkan juga dengan quaternion, dan dapat melakukan rotasi pada ruang vektor dimensi n.

Pseduoscalar

• Elemen-elemen aljabar di dalam aljabar geometri:

```
skalar \rightarrow grade-0
vektor \rightarrow grade-1
bivector \rightarrow grade-2
trivector \rightarrow grade-3
dst
```

- Di dalam setiap aljabar (aljabar skalar, aljabar vektor, aljabar bivector, dst), elemen paling tinggi dinamakan *pseudoscalar* dan *grade-nya* diasosiasikan dengan dimensi ruangnya.
- Contoh: di R² elemen *pseudoscalar* adalah *bivector* $e_1 \wedge e_2$ dan berdimensi 2.
 - di R³ elemen *pseudoscalar* adalah *trivector* $e_1 \wedge e_2 \wedge e_3$

Rotasi dengan *Pseudoscalar*

- Pseudoscalar dapat digunakan sebagai rotor (penggerak rotasi).
- Misalkan *pseudoscalar* di R² dilambangkan dengan *I*, jadi

$$I = e_1 \wedge e_2 = e_1 e_2 = e_{12}$$

Perkalian vektor satuan e₁ dan e₂ dengan *I*:

$$e_1I = e_1e_{12} = e_1e_1e_2 = e_1^2e_2 = (1)e_2 = e_2$$
 $e_2I = e_2e_{12} = e_2e_1e_2 = e_2(-e_2e_1) = -e_2^2e_1 = -(1)e_1 = -e_1$
 $-e_1I = -e_1e_{12} = -e_1e_1e_2 = -e_1^2e_2 = -(1)e_2 = -e_2$
 $-e_2I = -e_2e_{12} = -e_2e_1e_2 = -e_2(-e_2e_1) = e_2^2e_1 = (1)e_1 = e_1$

• Perkalian vektor $a = a_1e_1 + a_2e_2$ dengan *I*:

$$aI = ae_1e_2$$

$$= (a_1e_1 + a_2e_2)e_1e_2$$

$$= a_1e_1^2e_2 + a_2e_2e_1e_2$$

$$= a_1e_2 - a_2e_2^2e_1 :$$

$$= -a_2e_1 + a_1e_2$$

yang sama dengan memutar vektor sejauh 90 derajat berlawanan arah jarum jam.

• Perkalian vektor *I* dengan $a = a_1e_1 + a_2e_2$:

$$Ia = e_1 e_2 a$$

$$= e_1 e_2 (a_1 e_1 + a_2 e_2)$$

$$= a_1 e_1 e_2 e_1 + a_2 e_1 e_2^2$$

$$= -a_1 e_2 + a_2 e_1$$

$$= a_2 e_1 - a_1 e_2$$

yang sama dengan memutar vektor sejauh 90 derajat searah jarum jam.

• Jadi,

$$aI = -Ia$$

• Perkalian vektor dengan *pseudoscalar* tidak komutatif.

Table 8.1

Туре	Products in \mathbb{R}^2		
	Product	Absolute Value	Notes
inner	$e_1 \cdot e_1$	1	$\mathbf{e}_2 \cdot \mathbf{e}_2 = \mathbf{e}_1 \cdot \mathbf{e}_1$
outer	$e_1 \wedge e_1$	0	$e_2 \wedge e_2 = e_1 \wedge e_1$
geometric	e_1^2	1	$e_2^2 = e_1^2$ $e_1 I = -I e_1$
inner	$e_1 \cdot e_2$	0	$\mathbf{e}_2 \cdot \mathbf{e}_1 = \mathbf{e}_1 \cdot \mathbf{e}_2$
outer	$e_1 \wedge e_2$	1	$\mathbf{e}_1 \wedge \mathbf{e}_2 = -(\mathbf{e}_2 \wedge \mathbf{e}_1)$
geometric	e_1e_2	1	$e_{12} = -e_{21}$
			$e_{12} = I$ $I^2 = -1$
inner	$a \cdot a$	$ a ^2$	
outer	$a \wedge a$	0	
geometric	a^2	$ a ^2$	
inner	$a \cdot b$	$ a b \cos\theta$ $a_1b_1 + a_2b_2$	$a \cdot b = \frac{1}{2}(ab + ba)$
outer	$a \wedge b$	$ a b \sin \theta$ $a_1b_2 - a_2b_1$	$a \wedge b = \frac{1}{2}(ab - ba)$ $a \wedge b = (a_1b_2 - a_2b_1)e_1 \wedge e_2$
geometric	ab	a b	$ab = a \cdot b + a \wedge b$ $aI = -Ia$

Hubungan antara vektor, bivector, dan bilangan kompleks

• Diberikan vektor $a = a_1e_1 + a_2e_2$ dan $b = b_1e_1 + b_2e_2$ di R², maka

$$ab = (a_1e_1 + a_2e_2)(b_1e_1 + b_2e_2)$$

$$= a_1b_1e_1^2 + a_1b_2e_{12} + a_2b_1e_{21} + a_2b_2e_2^2$$

$$= a_1b_1 + a_2b_2 + a_1b_2e_{12} - a_2b_1e_{12}$$

$$= (a_1b_1 + a_2b_2) + (a_1b_2 - a_2b_1)e_{12}$$

$$= (a_1b_1 + a_2b_2) + (a_1b_2 - a_2b_1)I$$
skalar bivector

Perhatikan bahwa

$$ab = (a_1b_1 + a_2b_2) + (a_1b_2 - a_2b_1)I$$

ekivalen dengan bilangan kompleks Z = p + qi.

• Jadi, kita dapat membentuk bilangan yang ekivalen dengan bilangan kompleksZ yang dibentuk dengan mengkombinasikan skalar dengan bivector:

$$Z = a_1 + a_2 e_{12} = a_1 + a_2 I$$

yang dalam hal ini a_1 adalah bagian riil dan a_2 bagian imajiner.

• Vektor a dapat dikonversi menjadi bilangan kompleks Z sebagai berikut. Diberikan vektor a adalah $a = a_1e_1 + a_2e_2$, maka

$$e_1 a = e_1 (a_1 e_1 + a_2 e_2) = a_1 e_1^2 + a_2 e_1 e_2 = a_1 + a_2 I$$

Jadi,

$$e_1 a = Z$$

Kalau urutan perkaliannya dibalik sebagai berikut:

$$ae_1 = (a_1e_1 + a_2e_2)e_1 = a_1e_1^2 + a_2e_2e_1 = a_1 - a_2I$$

maka hasilnya adalah bilangan kompleks sekawan (conjugate) $ar{Z}$.

$$ae_1 = \overline{Z}$$

Soal Latihan Mandiri

1. (Soal UAS 2018)

Diberikan tiga buah vektor:

$$a = 2e_1 + e_2 + e_3$$

 $b = 3e_1 + 5e_2 - 2e_3$
 $c = -e_1 + 2e_2 - e_3$

hitunglah:

1).
$$a(b \wedge c)$$
 2). $a \cdot (b \wedge c)$ 3). $a(b+c)$

2. (Soal UAS 2019)

Jika $I_n = e_{123...n}$, adalah pseudoscalar di \mathbb{R}^n , tuliskan ekspresi berikut dalam bentuk yang paling sederhana:

- 1). $I_1I_2I_3$ 2). $e_1I_2I_3I_4I_5$ 3). $(I_3)^4(I_2)^2I_3I_2$

3. (Soal UAS 2018)

Misalkan a adalah sebuah vektor $5e_1 - 2e_2$. Bagaimana cara merotasikan vektor a searah jarum jam sebesar 90° dengan pseudo-scalar. Tentukan bayangan a (misalkan a').