A mono/multi-block sparse PLS for heterogeneous data with missing samples

Hadrien Lorenzo¹, Jérôme Saracco², Rodolphe Thiébaut¹

¹SISTM (Inserm, U1219, Bordeaux Population Health and Inria, Talence, France) and Vaccine Research Institute, Creteil, France. ²CQFD (INRIA Bordeaux Sud-Ouest, France), CNRS (UMR5251)

ISPED seminar of biostatistics, July 5, 2018

Context

rVSV-ZEBOV Ebola Vaccine phase I dose escalation trial

First vaccine to show efficiency during the Ebola outbreak [Henao-Restrepo et al., The Lancet, 2017]

Hamburg vaccination dataset content

- 3 types of responses : Antibody response Cellular functionnality Genomic expression
- 18 participants divided in 2 vaccination groups :

$$3 \cdot 10^6 pfu$$
 $20 \cdot 10^6 pfu$

rVSV-ZEBOV Ebola Vaccine phase I datasets

3 families of blocks of longitudinal data

Data analysis: high dimensional problem

 $n = 18, p \in \{129, 18301\}, 8 \text{ blocks } (T = 8)$

T: number of blocks \implies multi-block approach, Variety of technologies \implies heterogeneous data.

Objective

Predict the antibody response (after months) with the immune response (after days). Unfolded analysis: forget temporal structure.

→ See [Rechtien et al., 2017]

Remaining big challenge: the missing values

Missing origins in the Genomic expression dataset

Poor sample qualities in case of :

- Low RNA integrity number (RIN)
- Insufficient library concentration
- Low sequencing depth

		7	5	9	1	15	10	14	4	2	12	17	16	8	18	13	11	3	6
t	1								1										
t	2																		
t	3																		
t.	4																		

Preliminar observations

- 30% of missing samples/values,
- Missing structure, parallel to time structure
- → Interest of a block structure

Existing solutions

Try many methods of imputations such as:

- **Mean** imputation per variable per block,
- **softImpute** [Hastie and Mazumder, 2015], no grouping structure
- missMDA [Josse and Husson, 2016], variable grouping structure

Main problems of those methods:

- No variable selection,
 Not converging,
- Not supervised, Mean is the best in that case.

Today: show you what we got!

A PLS-based method

Do variable selection,

Is supervised,

Converges,

Better than Mean

The PLS approaches, from [Wold father & son, 1983]

Equivalent to a eigen-space problem, or Singular Value Decomposition problem (**SVD**), with deflation. Under the common notations :

- **Weights** or **loadings** or "**poids**" u and v: power given to a variable from X, via u, and from Y, via v.
- Scores or variates of (principal) components Xu and Yv
 projections of X and Y in the sub-spaces defined by u and v.
- \implies Research, by projections, in *X* the information linked to *Y*.

Under the Lagrangian formalism:

$$\max_{u,v,\alpha_x \geqslant 0,\alpha_y \geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x / 2(||u||_2^2 - 1) - \alpha_y / 2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

Regression:

$$\mathbf{Y} \approx \mathbf{XB}$$

 $\mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$

Classification (PLS-DA): LDA on (Xu, Y), u is built on the R successive components.

Under the Lagrangian formalism:

$$\max_{u,v,\alpha_x \ge 0,\alpha_y \ge 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x / 2(||u||_2^2 - 1) - \alpha_y / 2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

Hegression:

$$\mathbf{Y} \approx \mathbf{XB}$$

 $\mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$

Classification (PLS-DA): LDA on (Xu, Y), u is built on the R successive components.

Under the \mathcal{L} agrangian formalism :

$$\max_{u,v,\alpha_x \ge 0,\alpha_y \ge 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x / 2(||u||_2^2 - 1) - \alpha_y / 2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

Regression:

$$\mathbf{Y} \approx \mathbf{X}\mathbf{B}$$

 $\mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$

Classification (*PLS-DA*): LDA on $(\mathbf{X}u, \mathbf{Y})$, u is built on the R successive components.

Under the Lagrangian formalism:

$$\max_{u,v,\alpha_x \geqslant 0,\alpha_y \geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x / 2(||u||_2^2 - 1) - \alpha_y / 2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

Regression:

$$\mathbf{Y} \approx \mathbf{XB}$$

 $\mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$

LDA on (Xu, Y), u is built on the R successive components.

Under the Lagrangian formalism:

$$\max_{u,v,\alpha_x \ge 0,\alpha_y \ge 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x / 2(||u||_2^2 - 1) - \alpha_y / 2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

System
$$\partial_{\cdot} = 0$$
: Optimization (NIPALS): Deflation:
$$\begin{cases} \partial_{u}.: & \alpha_{x}u = \mathbf{X}^{T}\mathbf{Y}v & 1. \ u \leftarrow \mathbf{X}^{T}\mathbf{Y}v \\ \partial_{v}.: & \alpha_{y}v = \mathbf{Y}^{T}\mathbf{X}u & 2. \ u \leftarrow u/||u||_{2} \\ \partial_{\alpha_{x}}.: & ||u||_{2}^{2} = 1 \\ \partial_{\alpha_{y}}.: & ||v||_{2}^{2} = 1 \end{cases}$$

$$3. \ v \leftarrow \mathbf{Y}^{T}\mathbf{X}u$$

$$4. \ v \leftarrow v/||u||_{2}$$

$$4. \ v \leftarrow v/||u||_{2}$$

$$4. \ v \leftarrow v/||u||_{2}$$

$$\mathbf{B} = \frac{\mathbf{X}\mathbf{B}}{v^T \mathbf{Y}^T \mathbf{X} u} u v^T$$

 $\textbf{Classification} \; (\textit{PLS-DA}) :$

LDA on (Xu, Y), u is built on the R successive components.

Under the Lagrangian formalism:

$$\max_{u,v,\alpha_x \geqslant 0,\alpha_y \geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x / 2(||u||_2^2 - 1) - \alpha_y / 2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then:

System
$$\partial_{\cdot} = 0$$
: Optimization (NIPALS): Deflation:
$$\begin{cases} \partial_{u} : & \alpha_{x} u = \mathbf{X}^{T} \mathbf{Y} v & 1. \ u \leftarrow \mathbf{X}^{T} \mathbf{Y} v \\ \partial_{v} : & \alpha_{y} v = \mathbf{Y}^{T} \mathbf{X} u & 2. \ u \leftarrow u/||u||_{2} \end{cases}$$
 $\mathbf{X} \leftarrow \mathbf{X} - \mathbf{X} u u$

$$\begin{cases} \partial_{u} : & \alpha_{x}u = \mathbf{X}^{T}\mathbf{Y}v & 1. \ u \leftarrow \mathbf{X}^{T}\mathbf{Y}v \\ \partial_{v} : & \alpha_{y}v = \mathbf{Y}^{T}\mathbf{X}u & 2. \ u \leftarrow u/||u||_{2} \\ \partial_{\alpha_{x}} : & ||u||_{2}^{2} = 1 \\ \partial_{\alpha_{y}} : & ||v||_{2}^{2} = 1 \end{cases} \quad 3. \quad v \leftarrow \mathbf{Y}^{T}\mathbf{X}u \\ 4. \quad v \leftarrow v/||v||_{2}$$

$$\mathbf{Y} \approx \mathbf{X}\mathbf{B}$$

$$\mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$$

Classification (
$$PLS$$
- DA):
LDA on (Xu, Y), u is built on the R successive components.

Under the Lagrangian formalism :

$$\max_{u,v,\alpha_x\geqslant 0,\alpha_y\geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x/2(||u||_2^2 - 1) - \alpha_y/2(||v_{\text{lin}}| - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

Hegression:

$$\mathbf{Y} \approx \mathbf{X}\mathbf{B}$$

 $\mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$

Classification (PLS-DA): LDA on (Xu, Y), u is built on the R successive components.

Under the Lagrangian formalism:

$$\max_{u,v,\alpha_x \geqslant 0,\alpha_y \geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x/2(||u||_2^2 - 1) - \alpha_y/2(||v||_2^2 - 1),$$

 $\mathbf{X}_{n \times p}$ and $\mathbf{Y}_{n \times q}$ the sample matrices, centered, of the covariates and of the response, then :

System
$$\partial_{\cdot} = 0$$
: Optimization (NIPALS): Deflation :

$$\begin{cases} \partial_{u} : & \alpha_{x} u = \mathbf{X}^{T} \mathbf{Y} \mathbf{y} \\ \partial_{v} : & \alpha_{y} v = \mathbf{Y}^{T} \mathbf{X} \mathbf{u} \end{cases} & 1. \quad u \leftarrow \mathbf{X}^{T} \mathbf{Y} \mathbf{y} \\ \partial_{\alpha_{x}} : & ||u||_{2}^{2} = 1 \\ \partial_{\alpha_{y}} : & ||v||_{2}^{2} = 1 \end{cases} & 3. \quad v \leftarrow \mathbf{Y}^{T} \mathbf{X} \mathbf{u} \\ 4. \quad v \leftarrow v/||v||_{2} \end{cases} \qquad \mathbf{X} \leftarrow \mathbf{X} - \mathbf{X} u u \mathbf{y}$$

$$\mathbf{Y} \approx \mathbf{XB} \\ \mathbf{B} = \frac{v^T \mathbf{Y}^T \mathbf{X} u}{||\mathbf{X}u||_2^2} u v^T$$

Classification (PLS-DA):

LDA on $(\mathbf{X}u, \mathbf{Y})$, u is built on the R successive components.

Variable selection in PLS → sparse PLS

Principle, interest and actual solutions

- Interest: Limit the number of biological measurements,
- Regularization shrinking \mathcal{L}_1 -norm of the weights, see [Tibshirani, 1996].
 - ⇒ Selection & regularization.

Some sparse PLS

- Lê Cao et al., 2008], 2 para./axis : $\min_{u,v} ||\mathbf{Y}^T \mathbf{X} v u^T||_F^2 + \lambda_x ||u||_1 + \lambda_y ||v||_1$
- [Chun and Keleş, 2010], $M = \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X}$, 3 para./axis: $\min_{w,c} -\kappa w^T M w + (1 \kappa)(c w)^T M (c w) + \lambda_1 ||c||_1 + \lambda_2 ||c||_2$ subi, to $w^T w = 1$.

Variable selection in PLS → sparse PLS

Principle, interest and actual solutions

- Interest: Limit the number of biological measurements,
- Regularization shrinking \mathcal{L}_1 -norm of the weights, see [Tibshirani, 1996].
 - ⇒ Selection & regularization.

Some sparse PLS

- [Lê Cao et al., 2008], 2 para./axis: $\min_{u,v} ||\mathbf{Y}^T \mathbf{X} v u^T||_F^2 + \lambda_x ||u||_1 + \lambda_y ||v||_1$
- [Chun and Keleş, 2010], $M = \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X}$, 3 para./axis: $\min_{w,c} -\kappa w^T M w + (1 \kappa)(c w)^T M (c w) + \lambda_1 ||c||_1 + \lambda_2 ||c||_2$ subi. to $w^T w = 1$,

Variable selection in PLS \rightarrow sparse PLS

Principle, interest and actual solutions

- Interest: Limit the number of biological measurements,
- **Regularization** shrinking \mathcal{L}_1 -norm of the weights, see [Tibshirani, 1996].
 - ⇒ Selection & regularization.

Some sparse PLS

- [Lê Cao et al., 2008], 2 para./axis: $\min ||\mathbf{Y}^T \mathbf{X} - v \mathbf{u}^T||_F^2 + \lambda_x ||\mathbf{u}||_1 + \lambda_y ||\mathbf{v}||_1$
- [Chun and Keles, 2010], $M = \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X}$, 3 para./axis: $\min -\kappa w^T M w + (1 - \kappa)(c - w)^T M (c - w) + \lambda_1 ||c||_1 + \lambda_2 ||c||_2$ subj. to $w^T w = 1$,

dd-sPLS + missing samples + heterogeneous data 8 / 31

Application: Liver Toxicity Dataset via classical sPLS [Lê Cao et al., 2008]

From [Heinloth et al., 2004]. 64 drugged mice and their RNA expression, 10 response variables about liver : $X_{64\times3116}$, $Y_{64\times10}$.

- $\lambda_{y} = f(keep_{y}), keep_{y} = 2 \text{ fixed},$
- Min of error: 12 select. var. in X.

 PB: How many Y var. in the model?

 2?...3?...5?...6?... |keep_y = 2}
- Good prediction : Many errors minimized,
- **Bad selection** : $\geqslant 5$ variables predicted $|keep_v = 2|$.

Application: Liver Toxicity Dataset via classical sPLS [Lê Cao et al., 2008]

From [Heinloth et al., 2004]. 64 drugged mice and their RNA expression, 10 response variables about liver : $X_{64\times3116}$, $Y_{64\times10}$.

- $\lambda_y = f(keep_y), keep_y = 2$ fixed,
- Min of error : 12 select. var. in X. **PB** : How many Y var. in the model ? 2?...3?...5?...6?... $|keep_y = 2|$
- Good prediction : Many errors minimized
- **Bad selection** : $\geqslant 5$ variables predicted $|keep_y = 2|$.

Application: Liver Toxicity Dataset via classical sPLS [Lê Cao et al., 2008]

From [Heinloth et al., 2004]. 64 drugged mice and their RNA expression, 10 response variables about liver : $X_{64\times3116}$, $Y_{64\times10}$.

- $\lambda_{v} = f(keep_{v}), keep_{v} = 2 \text{ fixed},$
- Min of error: 12 select, var. in X. **PB**: How many Y var. in the model? 2?...3?...5?...6?... $|keep_v = 2|$
- Good prediction : Many errors minimized,
- **Bad selection** : ≥ 5 variables

Application: Liver Toxicity Dataset via classical sPLS [Lê Cao et al., 2008]

From [Heinloth et al., 2004]. 64 drugged mice and their RNA expression, 10 response variables about liver : $X_{64\times3116}$, $Y_{64\times10}$.

- $\lambda_y = f(keep_y), keep_y = 2$ fixed,
- Min of error : 12 select. var. in X. **PB** : How many Y var. in the model ? 2?...3?...5?...6?... $|keep_y = 2|$
- Good prediction : Many errors minimized,
- **Bad selection** : $\geqslant 5$ variables predicted $|keep_y = 2|$.

sparse PLS: Resolution of the classical problem

Under the \mathcal{L} agrangian formalism, (β_x, β_y) fixed by the user :

$$\max_{u,v,(\alpha_x,\alpha_y\beta_x,\beta_y)\geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x/2(||u||_2^2 - 1) - \alpha_y/2(||v||_2^2 - 1) - \beta_x ||u||_1 - \beta_y ||v||_1, \ \ \mathbf{(1)}$$

System:

$$\begin{cases} \partial_{u} : \alpha_{x}u = \mathbf{X}^{T}\mathbf{Y}v - \beta_{x}sign(u) \\ \partial_{v} : \alpha_{y}v = \mathbf{Y}^{T}\mathbf{X}u - \beta_{y}sign(v) \\ \partial_{\alpha_{x}} : ||u||_{2}^{2} = 1 \\ \partial_{\alpha_{y}} : ||v||_{2}^{2} = 1 \end{cases}$$

1.
$$u \leftarrow \mathbf{S}_{\beta_{\mathbf{X}}}(\mathbf{X}^T \mathbf{Y} v)$$

2.
$$u \leftarrow u/||u||_2$$

3.
$$v \leftarrow \mathbf{S}_{\beta_{\mathbf{y}}}(\mathbf{Y}^T\mathbf{X}u)$$

4.
$$v \leftarrow v/||v||_2$$

Flip S_{λ} , a non linear function, and $v \to \mathbf{X}^T \mathbf{Y} v$ and $u \to \mathbf{Y}^T \mathbf{X} u$.

sparse PLS: Resolution of the classical problem

Under the \mathcal{L} agrangian formalism, (β_x, β_y) fixed by the user :

$$\max_{u,v,(\alpha_x,\alpha_y,\beta_x,\beta_y)\geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x/2(||u||_2^2 - 1) - \alpha_y/2(||v||_2^2 - 1) - \beta_x ||u||_1 - \beta_y ||v||_1, \ \ (1)$$

System:

$$\begin{cases} \partial_{u} : \alpha_{x}u = \mathbf{X}^{T}\mathbf{Y}v - \beta_{x}sign(u) \\ \partial_{v} : \alpha_{y}v = \mathbf{Y}^{T}\mathbf{X}u - \beta_{y}sign(v) \\ \partial_{\alpha_{x}} : ||u||_{2}^{2} = 1 \\ \partial_{\alpha_{y}} : ||v||_{2}^{2} = 1 \end{cases}$$

Optimization:

1.
$$u \leftarrow \mathbf{S}_{\beta_{\mathbf{X}}}(\mathbf{X}^T \mathbf{Y} v)$$

2.
$$u \leftarrow u/||u||_2$$

3.
$$v \leftarrow \mathbf{S}_{\beta_{\mathbf{y}}}(\mathbf{Y}^T\mathbf{X}u)$$

4.
$$v \leftarrow v/||v||_2$$

where $t \to S_{\lambda}(t)$ is the soft-thresholding function.

Our idea

Flip S_{λ} , a non linear function, and $v \to \mathbf{X}^T \mathbf{Y} v$ and $u \to \mathbf{Y}^T \mathbf{X} u$, linear functions with a common λ

sparse PLS: Resolution of the classical problem

Under the \mathcal{L} agrangian formalism, (β_x, β_y) fixed by the user :

$$\max_{u,v,(\alpha_x,\alpha_y,\beta_x,\beta_y)\geqslant 0} v^T \mathbf{Y}^T \mathbf{X} u - \alpha_x/2(||u||_2^2 - 1) - \alpha_y/2(||v||_2^2 - 1) - \beta_x ||u||_1 - \beta_y ||v||_1,$$
 (1)

System:

$$\begin{cases} \partial_{u} : \alpha_{x}u = \mathbf{X}^{T}\mathbf{Y}v - \beta_{x}sign(u) \\ \partial_{v} : \alpha_{y}v = \mathbf{Y}^{T}\mathbf{X}u - \beta_{y}sign(v) \\ \partial_{\alpha_{x}} : ||u||_{2}^{2} = 1 \\ \partial_{\alpha_{y}} : ||v||_{2}^{2} = 1 \end{cases}$$

Optimization:

- 1. $u \leftarrow \mathbf{S}_{\beta_{\mathbf{X}}}(\mathbf{X}^T \mathbf{Y} v)$
- 2. $u \leftarrow u/||u||_2$
- 3. $v \leftarrow \mathbf{S}_{\beta_{\mathbf{v}}}(\mathbf{Y}^T\mathbf{X}u)$
- **4.** $v \leftarrow v/||v||_2$

where $t \to S_{\lambda}(t)$ is the soft-thresholding function.

Our idea

Flip S_{λ} , a non linear function, and $v \to \mathbf{X}^T \mathbf{Y} v$ and $u \to \mathbf{Y}^T \mathbf{X} u$, linear functions with a common λ .

sparse PLS: Resolution of the data-driven problem

Optimization:

- 1. $u \leftarrow \mathbf{S}_{\lambda}(\mathbf{X}^T\mathbf{Y}/(n-1))v$
- **2**. $u \leftarrow u/||u||_2$
- 3. $v \leftarrow \mathbf{S}_{\lambda}(\mathbf{X}^T\mathbf{Y}/(n-1))u$
- **4.** $v \leftarrow v/||v||_2$

nterests

- Select on X and on Y with 1 parameter : λ ,
- Interpret λ : correlation threshold if **X** and **Y** standardized.

dd-sPLS : data driven sPLS on *R* components

$$\mathbf{u} = \underset{\mathbf{u}^T \mathbf{u} = \mathbb{I}_R}{\arg \max} ||S_{\lambda} \left(\frac{\mathbf{Y}^T \mathbf{X}}{n-1} \right) \mathbf{u}||_F^2, \quad \mathbf{v} = \left(\frac{S_{\lambda}(\mathbf{N})^T u^{(r)}}{||S_{\lambda}(N)^T u^{(r)}||_2} \right)_{\mathsf{r} = 1..\mathsf{R}}$$
(2)

Regression : PLS of $(t = \mathbf{X}\mathbf{u}, s = \mathbf{Y}\mathbf{v}) \Longrightarrow \mathsf{scores}(\mathfrak{u}, \mathfrak{v}),$ $\mathfrak{a} = diag(\mathfrak{a}^{(r)})_{r=1..R} |\mathfrak{a}^{(r)}| = \langle sv^{(r)}, t\mathfrak{u}^{(r)} \rangle / ||t\mathfrak{u}^{(r)}||_2^2 \text{ then}$ $\mathbf{Y} \approx \mathbf{X}\mathbf{B}, \quad \mathbf{B} = \mathbf{u}\mathfrak{u}\mathfrak{u}^T\mathbf{v}^T$

sparse PLS: Resolution of the data-driven problem

Optimization:

1.
$$u \leftarrow \mathbf{S}_{\lambda}(\mathbf{X}^T\mathbf{Y}/(n-1))v$$

2.
$$u \leftarrow u/||u||_2$$

3.
$$v \leftarrow \mathbf{S}_{\lambda}(\mathbf{X}^T\mathbf{Y}/(n-1))u$$

4.
$$v \leftarrow v/||v||_2$$

Interests

- Select on X and on Y with **1** parameter : λ ,
- Interpret \(\lambda\) : correlation threshold if \(X\) and \(Y\) standardized.

dd-sPLS : data driven sPLS on *R* components

$$\mathbf{u} = \underset{\mathbf{u}^{T} \mathbf{u} = \mathbb{I}_{R}}{\arg \max} ||S_{\lambda} \left(\frac{\mathbf{Y}^{T} \mathbf{X}}{n-1} \right) \mathbf{u}||_{F}^{2}, \quad \mathbf{v} = \left(\frac{S_{\lambda}(\mathbf{N})^{T} u^{(r)}}{||S_{\lambda}(N)^{T} u^{(r)}||_{2}} \right)_{\mathsf{r}=1..\mathsf{R}}$$
(2)

Regression : PLS of
$$(t = \mathbf{X}\mathbf{u}, s = \mathbf{Y}\mathbf{v}) \Longrightarrow \mathsf{scores}(\mathfrak{u}, \mathfrak{v}),$$

 $\mathfrak{a} = diag(\mathfrak{a}^{(r)})_{r=1..R} |\mathfrak{a}^{(r)}| = \langle sv^{(r)}, t\mathfrak{u}^{(r)} \rangle / ||t\mathfrak{u}^{(r)}||_2^2 \text{ then}$
 $\mathbf{Y} \approx \mathbf{X}\mathbf{B}, \quad \mathbf{B} = \mathbf{u}\mathfrak{u}\mathfrak{u}v^T\mathbf{v}^T$

sparse PLS: Resolution of the data-driven problem

Optimization:

- 1. $u \leftarrow \mathbf{S}_{\lambda}(\mathbf{X}^T\mathbf{Y}/(n-1))v$
- 2. $u \leftarrow u/||u||_2$
- 3. $v \leftarrow \mathbf{S}_{\lambda}(\mathbf{X}^T\mathbf{Y}/(n-1))u$
- 4. $v \leftarrow v/||v||_2$

Interests

- Select on X and on Y with **1** parameter : λ ,
- Interpret \(\lambda\) : correlation threshold if \(\mathbf{X}\) and \(\mathbf{Y}\) standardized.

dd-sPLS: data driven sPLS on R components

$$\mathbf{u} = \underset{\mathbf{u} \in \mathbb{R}^{P \times R} \\ \mathbf{u}^T \mathbf{u} = \mathbb{I}_R}{\text{arg max}} ||S_{\lambda} \left(\frac{\mathbf{Y}^T \mathbf{X}}{n-1} \right) \mathbf{u}||_F^2, \quad \mathbf{v} = \left(\frac{S_{\lambda}(\mathbf{N})^T u^{(r)}}{||S_{\lambda}(N)^T u^{(r)}||_2} \right)_{\mathsf{r}=1..\mathsf{R}}$$
(2)

Regression : PLS of $(t = \mathbf{X}\mathbf{u}, s = \mathbf{Y}\mathbf{v}) \Longrightarrow \mathsf{scores}(\mathfrak{u}, \mathfrak{v}),$ $\mathfrak{a} = diag(\mathfrak{a}^{(r)})_{r=1..R} |\mathfrak{a}^{(r)}| = \langle s\mathfrak{v}^{(r)}, t\mathfrak{u}^{(r)} \rangle / ||t\mathfrak{u}^{(r)}||_2^2 \text{ then}$

$$\mathbf{Y} \approx \mathbf{X}\mathbf{B}, \quad \mathbf{B} = \mathbf{u} \mathbf{u} \mathbf{o} \mathbf{v}^T \mathbf{v}^T$$

dd-sPLS, a few theoretical results

Proposition 1, where $\mathbf{N} = \mathbf{Y}^T \mathbf{X}/(n-1)$:

$$\mathcal{L}: \lambda \to \max\{||S_{\lambda}(\mathbf{N})u||_2^2|u^Tu=1\}$$
, is decreasing on $[0,1]$ and continuous on $[0,1]-\{||\mathbf{N}||_{\infty}\}$.

Interpretation : $\lambda \in [0,1]$, permits to control the information in common to X and Y to put in the model \rightarrow Regularization

Proposition 2, symmetric in u and v:

$$\forall \lambda \in [0,1]$$
, denoting $C_i^{(\lambda)}$ the i^{th} -column of $S_{\lambda}(\mathbf{N})$, $u = (u_i)_{i=1..p}$ sol. of (2) and $v = S_{\lambda}(\mathbf{N})^T u/||S_{\lambda}(N)^T u||_2$ then: $\forall i=1..p: u_i = 0 \iff < C_i^{(\lambda)}, v >= 0.$

Interpretation : The problem implies sparsity and admits **Upper bounds** on u and v cardinalities, decreasing with λ .

dd-sPLS, a question of monotonicity

Is the cardinality monotonically decreasing per component?

No, a counter-example:

$\mathbf{v}^T\mathbf{x}$		<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	X ₅	<i>X</i> ₆	X7	X_8	X9
- A =	Y_1	1.00	-0.06	-0.10	0.07	0.09	0.15	0.16	0.14	0.22
n-1	Y_2	-0.08	0.98	0.29	-0.18	0.25	0.02	0.04	-0.01	-0.03

2 components:

- **EXECUTE:** Close in \mathcal{L}_2 -norm,
- \blacksquare Different in \mathcal{L}_0 -norm.

Reverse order in $\lambda \approx 0.13$. Remark: Ordered through \mathcal{L}_2 -norm while \mathcal{L}_0 -norm is optimized in selection problems.

Application: Back to the Liver Toxicity Dataset

Results of the Cross-Validation

- **a)** : MSEP,
- \blacksquare **b)** : Selection per Y var.

Observations

- **Yia a)**, $\lambda = 0.845$:
 - ? 2 Y var. sel. ?
- - > 1 ≈ 0.9 :

Exactly 2 r var. sel.

Application: Back to the Liver Toxicity Dataset

Results of the Cross-Validation

a) : MSEP,

 \blacksquare **b)** : Selection per Y var.

Observations

Yia a), $\lambda = 0.845$:

? 2 Y var. sel. ?

Via b):

 $\lambda = 0.845$:

3 I val. Sel. Hall till

• $\lambda \approx 0.9$:

Exactly 2 Y var. sel.

Application: Back to the Liver Toxicity Dataset

Results of the Cross-Validation

a) : MSEP,

 \blacksquare **b)** : Selection per Y var.

Observations

Yia a), $\lambda = 0.845$:

? 2 Y var. sel. ?

Via b) :

 $\lambda = 0.845$: 3^{rd} Y var. sel. half times

 $\lambda \approx 0.9$:

Exactly 2 *Y* var. sel.

Liver Toxicity Dataset: Comparison

Selection *X* variables comparison sPLS/dd-sPLS

\	/ariable	A_43_P14131	A_42_P620915	A_43_P11724	A_42_P802628	A_43_P10606	A_42_P675890	A_43_P23376	A_42_P758454	A_42_P578246	A_43_P17415	A_42_P610788	A_42_P840776	A_42_P705413	A_43_P22616	Mean MSEP(LOO)	Min MSEP(LOO)
sPLS	12	-0.6	-0.52	0.17	-0.12	-0.14	-0.18	-0.21	-0.18	-0.14	-0.33	-0.07	-0.26			0.65	0.11
dd-sPLS	1 0 8 ps	-0.6	-0.52	0.17	-0.12	-0.14	-0.18	-0.21	-0.18	-0.14	-0.33	-0.07	-0.26	-0.03	-0.01	0.84	0.13
8	1,09	-0.86	-0.51													0.85	0.17

- **12** X var. sel. for classical sPLS. 15 in the case $\lambda = 0.845$ and 2 for $\lambda = 0.9$.
- Best min and mean errors for classical sPLS method.

Conslusion

dd-sPLS is better to select but worse to predict on that example.

Conclusion on the mono-block dd-sPLS

- Easy and well known problem (SVD),
- \blacksquare Selects X and Y variables with one parameter,
- **Interpretable parameter** : λ :

The minimum level of correlation between one *X* (or *Y*) variable and any of the *Y* (or *X*) variables to potentially get this variable in the model.

Multiblock PLS, called MBPLS

Formulation

Wold in 1984 [Wold, 1984] and Wangen & Kowalski [Wangen and Kowalski, 1989] consider T blocks indexed \mathbf{X}_t of predictors that can be bound to a response matrix \mathbf{Y} . Recalled weights u_t and scores $t_t = \mathbf{X}_t u_t$ for block \mathbf{X}_t , weight v and score $s = \mathbf{Y}v$ for \mathbf{Y} and finally super-weights $\mathbf{b} = (b_t)_{t=1..T}$ and super-score $\mathbf{t} = \sum_{t=1}^{T} \mathbf{X}_t u_t b_t$ such as the 1^{st} component of the

super-score $\mathbf{t} = \sum_{t=1}^{t} \mathbf{X}_t u_t b_t$ such as the 1^{st} component of the classical **MBPLS** maximizes :

$$cov^2(t,s) = (\sum_{t=1}^T v^T \mathbf{Y}^T \mathbf{X}_t u_t b_t)^2$$
, subj. to $v^T v = u_t^T u_t = \mathbf{b}^T \mathbf{b} = 1$ (3)

Then deflation of X_t 's and Y and solves (3) anew, loop R times, R fixed by the user.

MBPLS and mdd-sPLS

The deflation question

Component-wise method : solve sequential **MBPLS** with 2 cases of deflation in [Westerhuis and Smilde, 2001] :

- On each score : Poor prediction results,
- On the super-score : Better prediction results but mixing intra-block information.
- → Problem of variance restraining by outer axes. Thought shared with **François Husson** and **Arthur Tenenhaus**. **missMDA** [Josse and Husson, 2016] with no deflation and **RGCCA**, from [Tenenhaus and Tenenhaus, 2011], talk about a deflation-free solution.

→ No use of a deflation-based method.

mdd-sPLS: model definition

An (inter/intra)-blocks separable problem with no global iteration!

$$\underset{(u_{t}^{(r)},\beta_{t}^{(r)})\in\mathbb{R}^{p_{t}}\times\mathbb{R}}{\arg\max} \sum_{r=1}^{R} \sum_{t=1}^{T} \beta_{t}^{(r)^{2}} ||S_{\lambda} \left(\frac{\mathbf{Y}^{T}\mathbf{X}_{t}}{n-1}\right) u_{t}^{(r)}||_{2}^{2} \quad \text{subj. to } \forall r,s | r \neq s \underset{u_{t}^{(r)}}{u_{t}^{(r)}} \underset{u_{t}^{(s)}=0}{\overset{u_{t}^{(r)}}{u_{t}^{(s)}}} = 1 \\ \sum_{t=1}^{T} \beta_{t}^{(r)^{2}} = 1 \end{aligned} \tag{4}$$

Inter-block: T independent dd-sPLS problems

$$\mathbf{u}_t = (u_t^{(1)}, \cdots, u_t^{(R)}) = \underset{\mathbf{u} \in \mathbb{R}^{P_t \times r}}{\operatorname{arg max}} ||\mathbf{M}_t(\lambda)\mathbf{u}||_F^2, \text{ subj. to } \mathbf{u}^T \mathbf{u} = \mathbb{I}_R$$
 (5)

Intra-block: R SVD problems

$$\beta^{(r)} = \underset{\beta \in \mathbb{P}^T}{\arg\max} ||z^{(r)}(\lambda)\beta||_2^2, \text{ subj. to } \beta^T\beta = 1$$
 (6)

Missing data estimation: The Koh-Lanta algorithm

- The Tribe Stage: train dataset imputation using mdd-sPLS prediction on s and λ. Using selected variables of global model: Koh-Lanta way of selection. Iterative process reestimating global model
- **The Reunification Stage**: **test** dataset imputation, using mdd-sPLS prediction on t_{train} for non missing blocks and λ , on selected variables of main model. Non iterative process. Estimate \mathbf{Y}_{test} reunifying all info.

Simulations

Build T-blocks data-set +Y matrix:

- Inter-block correlations : ρ_t ,
- Intra-block correlations : ρ_i ,
- Predictor/Response correlations : ρ_t .

In each case define groups of variables with different sizes. Half of the blocks not linked to the response.

Chosen parameters

T=10 blocks, 3 groups of variables, 40 variables per group & variable number of variables correlated to Y.

Baseline methods & question

2 step methods:

- Imputation: missMDA, softImpute, Mean, nipals (mixOmics solution),
- Prediction: mdd-sPLS, Lasso classical sPLS (for nipals imputation).

All-in-One method: [Che et al., Scientific reports, 2018], dealing with classification problems. Challenging recurrent neural networks. Huge *n*.

Simulation questions

- Robustness to increasing number of missing values?
- **Solution** Robustness to low n and n << p?
- Robustness to low inter-block correlations?

Robustness to increasing number of missing values?

20 samples of **100** individuals for **10** blocks of **40** variables each with **3** principal directions where only **1** is correlated with the univariate response. $\rho_i = \rho_t = 0.9$. Mean Square Error (MSE).

The answer seems to be Yes.

Robustness to low n and n << p?

The answer seems to be Yes.

Robustness to Robustness to low inter-block correlations?

$$\rho_{\rm i} = 0.9, \rho_{\rm t} = 0.2$$
. MSE error

Hard for the all methods Another type of simulations?

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 5	Day 56		Day 84		Day 180	
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Final model : dd-sPLS with Koh-Lanta for $\lambda = 0.8653761$

Gueckedou

Gueckedou₁₈₀

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Comparaison Koh-Lanta/Mean imputation for dd-sPLS model

	Day 28		Day 56		Day 84		Day 180		Mean
	Error	#	Error	#	Error	#	Error	#	Error
Mean $\lambda \approx 0.863$	1.058	2	0.3985	18	1.084	6	1.059	0	0.8711
Koh-Lanta $\lambda \approx 0.865$	1.056	4	0.3796	18	0.9147	17	1.060	1	0.8318
Rel. gain (%)	0.19		4.7		16		-0.094		4.5

Conclusion

dd-sPLS:

- Easy and well known problem (SVD),
- \blacksquare Selects X and Y variables with one parameter,
- Interpretable parameter : λ :

The minimum level of correlation between one X (or Y) variable and any of the Y (or X) variables to potentially get this variable in the model.

mdd-sPLS+Koh-Lanta:

- # + dd-sPLS,
- Ok according to simulations,
- Works on real data,

Futur work:

- Test on new datasets,
- Publish + Finish package+vignette
- Create kernel dd-sPLS,

Thank you!

References I

Zhengping Che et al. "Recurrent neural networks for multivariate time series with missing values". In: *Scientific reports* 8.1 (2018), p. 6085.

Hyonho Chun and Sündüz Keleş. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 72.1 (2010), pp. 3–25.

T Hastie and R Mazumder. "softImpute: Matrix Completion via Iterative Soft-Thresholded SVD". In: *R package version* 1 (2015).

Alexandra N Heinloth et al. "Gene expression profiling of rat livers reveals indicators of potential adverse effects". In: *Toxicological Sciences* 80.1 (2004), pp. 193–202.

Ana Maria Henao-Restrepo et al. "Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)" In: *The Lancet* 389.10068 (2017), pp. 505–518.

Julie Josse and François Husson. "missMDA: a package for handling missing values in multivariate data analysis". In: *Journal of Statistical Software* 70.1 (2016), pp. 1–31.

References II

Kim-Anh Lê Cao et al. "A sparse PLS for variable selection when integrating omics data". In: *Statistical applications in genetics and molecular biology* 7.1 (2008).

Anne Rechtien et al. "Systems Vaccinology Identifies an Early Innate Immune Signature as a Correlate of Antibody Responses to the Ebola Vaccine rVSV-ZEBOV". In: *Cell reports* 20.9 (2017), pp. 2251–2261.

Arthur Tenenhaus and Michel Tenenhaus. "Regularized generalized canonical correlation analysis". In: *Psychometrika* 76.2 (2011), p. 257.

Robert Tibshirani. "Regression shrinkage and selection via the lasso". In: *Journal of the Royal Statistical Society. Series B (Methodological)* (1996), pp. 267–288.

LE Wangen and BR Kowalski. "A multiblock partial least squares algorithm for investigating complex chemical systems". In: *Journal of chemometrics* 3.1 (1989), pp. 3–20.

Johan A Westerhuis and Age K Smilde. "Deflation in multiblock PLS". In: *Journal of chemometrics* 15.5 (2001), pp. 485–493.

S Wold. "Three PLS algorithms according to SW". In: *Proc.: Symposium MULDAST (multivariate analysis in science and technology).* 1984, pp. 26–30.

mdd-sPLS: Regression model

Objective and problem

$$\mathbf{\hat{Y}} = \sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{B}_{t},$$

Only $(\mathbf{X}_t \leftrightarrow \mathbf{Y})$ relations used :

 \implies No adequacy between block components.

 \implies Re-order components taking all info.

Solution: classical PLS solution on the super-scores

Denoting $\mathbf{b}_t = diag(eta_t^{(1)}, \cdots, eta_t^{(R)})_{(R imes R)}$ the super-weights for

each block,
$$\mathbf{t} = (\sum_{t=1}^{T} \mathbf{X}_t u_t^{(r)} \boldsymbol{\beta}_t^{(r)})_{r=1..R}$$
 and $\mathfrak{s} = (\mathbf{Y} v^{(r)})_{r=1..R}$:

$$\mathbf{B}_{t} = \mathbf{u}_{t} \mathbf{b}_{t} \mathbf{u} \mathbf{a} \mathbf{v}^{T} \mathbf{v}^{T} \qquad \begin{cases} (\mathbf{u}, \mathbf{v}) & : \text{ Weights of PLS}(t, \mathbf{s}) \\ \mathbf{a} & = \big(\frac{< \mathbf{s} \mathbf{v}^{(r)}, t \mathbf{u}^{(r)} >}{||t \mathbf{u}^{(r)}||_{2}^{2}} \big)_{r=1..R} \end{cases}$$

Regularization path for rVSV-ZEBOV on mdd-sPLS

