Блок

Feature Engineering

Занятие № 5

Feature Selection

- Вспомним методы стастики
- Узнаем про методы декомпозиции данных
- Понять принцип РСА на практике

Цели занятия

Зачем всё это?

ПРОКЛЯТЬЕ РАЗМЕРНОСТИ

ПРОКЛЯТЬЕ РАЗМЕРНОСТИ

Одно измерение - 5 точек

Два измерение - 25 точек

Три измерения - 125 точек

Статистика в отборе признаков

Корреляция

Корреляция

Статистическая зависимость двух и более величин

Т-статистика

$$t = \frac{\hat{\beta}_i - 0}{SE(\hat{\beta}_i)}$$

- Если между x_i и у нет зависимости, то t соответсвует tраспределению с n-2 степенями свободы
- p-value вероятность того, что при известном распределении наблюдаемое значение \geq ltl (при условии, что $\beta_i = 0$)
- Если p-value достаточно маленький (< 1%), то мы можем отклонить H_0

P-value

P-value

Декомпозиция данных

Собственный вектор

$$M\vec{x} = \lambda \vec{x}$$

PCA

Зачем он нужен? Он уменьшает размерность ©

PCA

$$Cov(X_i, X_j) = E\left[\left(X_i - E(X_i)\right) \cdot \left(X_j - E(X_j)\right)\right] = E(X_i X_j) - E(X_i) \cdot E(X_j)$$

$$Var(X^*) = \Sigma^* = E(X^* \cdot X^{*T}) = E\left((\vec{v}^T X) \cdot (\vec{v}^T X)^T\right) =$$
$$= E(\vec{v}^T X \cdot X^T \vec{v}) = \vec{v}^T E(X \cdot X^T) \vec{v} = \vec{v}^T \Sigma \vec{v}$$

LDA

это иерархическая байесовская модель, состоящая из двух уровней: на первом уровне — смесь, компоненты которой соответствуют «темам»; на втором уровне — мультиномиальная переменная с априорным распределением Дирихле, которое задаёт «распределение тем» в документе.

$$p(\theta, , , N \mid \alpha, \beta) = p(N \mid \xi)p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta)p(w_n \mid z_n, \beta).$$

LDA

Сравнение

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

good projection: separates classes well

SVD

SVD

SVD

	Трактористы	Свинарка и пастух	Once Upon a Tractor	Tractor, Love & Rock'n Roll	Babe
Вася	?	3	4	5	2
Пётр	3	5	2	2	5
Валерик	5	5 3 5		4	3
Жанночка	5	5	5		4
Петрович	2	3		2	2

mu: 2.54559533638261

User base: 0.7271 0.1626 0.7139 1.9097 -

0.9677

Item base: 0.8450 0.6593 0.2731 0.7328 0.0354

User features:

user 0: -0.5087 -0.8326

user 1: 1.0220 1.2826

user 2: -0.9509 0.2792

user 3: 0.1031 -0.4814

user 4: 0.6095 0.0557

Item features:

item 0: -0.8368 0.2511

item 1: 1.1101 0.4120

item 2: -0.4159 -0.4073

item 3: -0.3130 -0.9115

item 4: 0.6408 1.2205

ПРАКТИЧЕСКАЯ ЧАСТЬ

ВОПРОСЫ