TD4: Résolution de CSP

Exercice 1. Backtrack

On peut représenter une exécution de l'algorithme de Backtrack vu en cours en développant l'arbre de recherche dont les nœuds représentent une assignation (de plus en plus complète); la racine de l'arborescence représentant l'assignation vide. Chaque niveau de l'arbre est dédié à une variable. Pour faciliter la représentation on se limitera à indiquer sur chaque nœud la valeur assignée à la variable correspondant au niveau courant (l'assignation courante étant donc « lue » en remontant le chemin du nœud courant à la racine). Lorsqu'une assignation viole une contrainte, on indique par un \mathbf{x} que le nœud engendre un « backtrack » en **précisant la** (ou les) **contrainte**(s) **violée**(s). On s'arrête à la première solution trouvée.

- 1) Exécuter l'algorithme Backtrack sur le problème de coloration de carte vu en cours en considérant à chaque choix de variables à assigner l'ordre WA, Q, T, SA, NSW, V, NT et à chaque choix de valeurs l'ordre R, G, B.
- 2) Même question en considérant les variables dans l'ordre WA, NT, NSW, Q, V, SA, T et les valeurs dans l'ordre R, G, B.
- 3) Quel impact l'ordre d'affectation des variables a t'il sur l'arbre de recherche ? Et celui des valeurs ? Discuter de l'importance du choix de ces ordres pour la recherche d'une solution et pour celle de toutes les solutions.

Exercice 2. Arc-consistance

On considère le réseau de contraintes ($X=\{x1, x2, x3\}$, D, $C=\{C1,C2\}$) où :

```
D(x1) = D(x3) = \{0, 1\}

D(x2) = \{0, 1, 2\}
```

C1 exprime la contrainte x1 < x3

C2 exprime la contrainte x3 < x2

- 1- Ce réseau est-il arc-consistant ? Justifiez votre réponse. S'il ne l'est pas admet-il une fermeture arcconsistante ? Justifiez votre réponse
- 2- En prenant l'exemple de la 2-coloration d'un graphe réduit à un triangle (une clique de taille 3), montrer que l'arc-consistance ne garantit pas l'existence d'une solution.

Exercice 3. Les 3-reines

On modélise le problème des 3 reines à l'aide d'un CSP binaire P=(X,D,C) avec :

- $X = \{R1, R2, R3\}$ où Ri représente la colonne de la reine de la ligne i
- $D(R1)=D(R2)=D(R3)=\{1,2,3\}$
- C est un ensemble de 7 (ou 9) contraintes binaires exprimant que :
 - o 3 contraintes exprimant que toutes les reines sont sur des colonnes différentes ;
 - o 2 ou 4 contraintes exprimant que deux reines sur deux lignes consécutives ne doivent pas avoir leurs colonnes consécutives ;
 - 2 contraintes exprimant que les reines des lignes 1 et 3 ne doivent pas avoir leurs colonnes décalées de deux, autrement dit les contraintes sont respectivement : $RI + 2 \neq R3$ et $R3 + 2 \neq R1$
- 1) Donnez l'ensemble des 7 (ou 9) contraintes binaires en extension.
- 2) Dessinez le graphe des contraintes
- 3) Appliquez l'algorithme de backtrack en choisissant *R1,R2,R3* pour l'ordre des variables et 1,2,3 pour les valeurs. Vous indiquerez bien à chaque backtrack les contraintes violées. Précisez l'ensemble de solutions obtenues.
- 4) Ce réseau est-il arc-consistant ? S'il ne l'est pas calculez sa fermeture arc-consistante ?
- 5) Appliquez l'algorithme de Forward Checking (avec un ordre quelconque sur les variable et les valeurs). Vous indiquerez bien à chaque étape comment les domaines de chaque variable évoluent. Précisez l'ensemble de solutions obtenues.