Counterfactual Learning with General Logging Policies

Yusuke Narita ¹ Kyohei Okumura ² Akihiro Shimizu ³ Kohei Yata ⁴

¹Yale University

²Northwestern University

³Mercari, Inc.

⁴University of Wisconsin-Madison

Summary

Off-policy evaluation (OPE)

- Predicts the performance of counterfactual policies using log data from a different policy.
- Advantages over A/B test: fast, cheap, and safe.

Problem

 Can we conduct OPE with general logging policies including deficient support logging policies?

Method

- A new OPE estimator based on a modification of the Propensity Score, Approximate Propensity Score (APS).
- Our estimator converges to the true performance of a counterfactual policy as the sample size increases.

Real-World Application

 Apply our method to data from Mercari, Inc. to evaluate coupon targeting policies

Framework: Off-Policy Evaluation

- Logging policy ML generates log data $(Y_i, X_i, A_i)_{i=1}^n$:
- 1. $(Y_i(\cdot), X_i)$ is i.i.d.-drawn from an unknown distrib.
- 2. Action $A_i \in \{1,...,m\}$ is chosen w.p. $ML(A_i \mid X_i)$
- 3. Reward $Y_i := Y_i(A_i)$ is observed.
- ML can be of deficient support, i.e., it is possible that $ML(a \mid x) \in \{0,1\}$ for some action a and context x.

Goal: Estimate the performance $V(\pi)$ of a counterfactual policy π using the log data:

$$V(\pi) := E\left[\sum_{a=1}^{m} Y(a)\pi(a \mid X)\right]$$

Key: Approximate Propensity Score (APS)

Given logging policy ML and a bandwidth $\delta > 0$,

$$p_{\delta}^{ML}(a|X_i) := \frac{\int_{B(X_i,\delta)} ML(a|x^*) dx^*}{\int_{B(X_i,\delta)} dx^*},$$

where $B(X_i, \delta)$ is a p-dimensional ball with radius δ centered at $X_i \in \mathbb{R}^p$.

• APS is the the average probability that the logging policy chooses action a in a neighborhood around X_i .

OPE Estimator

- 1. For a small bandwidth δ , compute APS $p_{\delta}^{ML}(a|X_i)$. Let $q_{\delta}^{ML}(a|X_i) \coloneqq \frac{p_{\delta}^{ML}(a|X_i)}{p_{\delta}^{ML}(a|X_i) + p_{\delta}^{ML}(1|X_i)}$.
- 2. For each a = 2,...,m, minimize the sum of squared errors on the subsample

$$\mathcal{I}(a;\delta) := \{i : A_i \in \{1,a\}, q_{\delta}^{ML}(a|X_i) \in (0,1)\}:$$

$$\min_{(\alpha_a,\beta_a,\gamma_a)} \sum_{i\in\mathcal{I}(a;\delta)} \left(Y_i - \alpha_a - \beta_a 1\{A_i = a\} - \gamma_a q_\delta^{ML}(a|X_i) \right)^2,$$

where $1\{\cdot\}$ is the indicator function.

3. Define our OPE estimator for $V(\pi)$ as:

$$\hat{V}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i + \sum_{a=2}^{m} \hat{\beta}_a (\pi(a|X_i) - ML(a|X_i)) \right).$$

Theorem (Consistency)

Under some assumptions, $\hat{V}(\pi)$ converges in probability to $V(\pi)$ as $n \to \infty$.

Key Assumption

Constant Conditional Mean Reward Differences

For all a, a', E[Y(a)|X = x] - E[Y(a')|X = x] is constant over $x \in \mathcal{X}$.

Real-World Application: Coupon Targeting Policy at Mercari, Inc.

Data

- Y_i : purchase value, # of transaction, or point usage over 18 days after the coupon offer decision.
- X_i: more than 200 features
- $A_i \in \{0,1\}$: whether or not receive coupon

Deficient Support Logging Policy

- 1. Train an uplift model τ using data from a past A/B test.
- 2. Offer a coupon if $\tau(X_i)$ is in the top 80%:

$$ML(1|X_i) := 1\{\tau(X_i) \ge q_{0.2}\}.$$

Coupon Cost Effectiveness Measure:

How much would the total purchase value increase in USD if we increased the cost by 1 USD? — 80–134 USD.

