線形代数 中間試験 解答

- 1 正しくないものを選んだ場合はひとつにつき 2点減点.
 - (1) \vec{a} との内積が 0 のベクトルは (ウ)
 - (2) ${}^{t}A = -A$ を満たすのは(エ)
 - (3) 行列式の値が 0 でないのは (ウ)
 - (4) (ア)

3 (2)のみ、解が正しくなくても基本変形が数回正しくできていれば1点。

$$\boxed{\mathbf{4}} \quad (1) \det \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} = 1 \times 2 - 1 \times (-2) = \underline{\mathbf{4}}, \qquad (2) \det \begin{pmatrix} 1 & 0 & 0 \\ -2 & 2 & 0 \\ 5 & 2 & 1 \end{pmatrix} = 1 \times 2 \times 1 = \underline{\mathbf{2}}^{*1}.$$

(3)
$$\det \begin{pmatrix} 2 & 0 & 0 & 0 \\ \hline 1 & 1 & -1 & 2 \\ -2 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 \end{pmatrix} = 2 \times \det \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} = 2(1 + 8 - 4 - (-2)) = \underline{14}^{*2}.$$

(4) 置換 φ の置換行列を A_{φ} と表すと, $A_{\varphi}e_i=e_{\varphi(i)}$ である.すると, $A_{\varphi}A_{\psi}e_i=A_{\varphi}e_{\psi(i)}=e_{\varphi(\psi(i))}=e_{\varphi\psi(i)}$ より $A_{\varphi}A_{\psi}=A_{\varphi\psi}$ が成り立つ.このことから, A_{φ} の逆行列は $A_{\varphi^{-1}}$ である(なぜなら, $A_{\varphi}A_{\varphi^{-1}}=A_{\varphi\varphi^{-1}}=A_{1_N}=E$ だから).したがって, A_{φ}^{-1} の求め方は φ の逆置換を求め,その置換行列を求めればよい*3(根拠の説明が足りなかったり,文章がおかしい場合は 1 点のみ.).

^{*1} 三角行列の行列式は対角成分の積に等しい.

^{*2} 補助定理 4.1(教科書 p.70)を利用する.

^{*3} 実際には $A_{\varphi}^{-1}={}^tA_{\varphi}$ である.また, $\det(A_{\varphi})=\mathrm{sgn}(\varphi)$ が成り立つ(行列式の性質から).