Chapitre 3 : Dérivation, convexité et continuité

1. Composer des fonctions

Technique:

- → Chercher l'image 1 par la 2e fonction.
- → Chercher l'image de l'image 1 par la 1ere fonction.

Exemple: Soient u la fonction définie sur \mathbb{R} par $u(x) = x^2$, v la fonction définie sur \mathbb{R} par v(x) = 3x - 1 et w la fonction définie sur $[0; +\infty[$ par $w(x) = \sqrt(x)$.

- 1. Préciser l'ensemble de définition de $u \circ v$, puis déterminer explicitement $(u \circ v(x))$
- 2. Préciser l'ensemble de définition de $v \circ u$, puis déterminer explicitement $(v \circ \sqrt{u}(x))$
- 3. Préciser l'ensemble de définition de $v \circ w$, puis déterminer explicitement $(v \circ w(x))$
- 4. Préciser l'ensemble de définition de $w \circ v$, puis déterminer explicitement $(w \circ v(x))$

Définition:

Soient u et v deux fonctions dont les ensembles de définitions respectifs sont notés \mathcal{Q}_u et \mathcal{Q}_v .

La fonction composée de u par v, notée $v \circ u$, est la fonction définie par $(v \circ \sqrt{u}(x)) = v(u(x))$.

L'ensemble de définition de $v \circ u$ est l'ensemble des réels x appartenant à \mathcal{D}_u dont l'image par u appartient à \mathcal{D}_v .

2. Dériver une fonction composée

Technique:

- \rightarrow Dériver d'abord u (intérieur de la fonction).
- \rightarrow Dériver la fonction de référence v (fonction englobante) prise en u.

Exemple: Dans chaque cas, déterminer l'expression de la dérivée de la fonction g sur l'intervalle f donné.

- 1. g est la fonction définie sur $[2; +\infty[$ par $g(x) = \sqrt{2x-4}; I =]2; +\infty[$. item g est la fonction définie sur \mathbb{R} par $g(x) = (x^2 1)^4; I = \mathbb{R}$.
- 2. g est la fonction définie sur \mathbb{R} par $g(x) = e^{x^2 3}$; $I = \mathbb{R}$.

Propriété:

Soit u une fonction dérivable sur un intervalle I et v une fonction dérivable sur un intervalle J telles que pour tout $x \in I$, $u(x) \in J$.

La fonction $v \circ u$ est dérivable sur I et on a $(v \circ u)' = (v' \circ u) \times u'$.

Cas particuliers:

- La fonction f, définie sur I par $f(x) = e^{u(x)}$, est dérivable sur I et $f'(x) = u'(x)e^{u(x)}$.
- Si, pour tout x de I, u(x) > 0, alors la fonction f définie sur I par $f(x) = \sqrt{u(x)}$ est dérivable sur I et $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$.
- Soit n un entier relatif non nul et f la fonction définie sur I par $f(x) = (u(x))^n$. Si n > 1, alors f est dérivable sur I et $f'(x) = nu'(x)(u(x))^{n-1}$ Si n < -1 et si u ne s'annule pas sur I, alors f est dérivable sur I et $f'(x) = nu'(x)(u(x))^{n-1}$.

3. Déterminer graphiquement la convexité d'une fonction

Technique:

- → Lorsque la tangente à la courbe en un point est au-dessus de la courbe, la fonction est concave.
- → Lorsque la tangente à la courbe en un point est au-dessous de la courbe, la fonction est convexe.

Exemple: Soit f une fonction définie sur l'intervalle [-3;6] dont la représentation graphique \mathcal{C}_f dans un repère orthonormé est donnée ci-dessous.

- 1. Déterminer graphiquement le tableau de variation de la fonction f sur [-3;6].
- 2. Déterminer graphiquement le ou les intervalles où f est convexe et ceux où f est concave.

Définition:

Soit f une fonction définie sur un intervalle I et $\mathscr C$ sa courbe représentative dans un repère.

- f est convexe sur I si la courbe $\mathscr C$ est située **au-dessus** de toutes ses tangentes sur I.
- f est concave sur I si la courbe \mathscr{C} est située **en dessous** de toutes ses tangentes sur I.

4. Déterminer graphiquement l'existence d'un point d'inflexion

Technique:

→ Si la courbe traverse la tangente en 1 point de la courbe.

Exemple: On considère la fonction $f: x \mapsto x^3 - 3x + 2$ définie sur \mathbb{R} et sa représentation graphique \mathscr{C}_f dans un repère orthonormé.

- 1. Tracer la représentation graphique \mathscr{C}_f de la fonction f sur [-2;2].
- 2. Déterminer l'équation de la tangente T_a à la courbe \mathscr{C}_f au point A d'abscisse 0. Tracer T_a .
- 3. En déduire graphiquement l'abscisse d'un point d'inflexion de \mathscr{C}_f .

Définition:

Soit f une fonction définie sur un intervalle I, $\mathscr C$ sa courbe représentative et A un point de $\mathscr C$. A est un **point d'inflexion** de $\mathscr C$ et $\mathscr C$ admet une tangente en A et si $\mathscr C$ traverse cette tangente en A.

5. Utiliser la dérivée seconde pour étudier la convexité d'une fonction

Technique:

- → Dériver 2 fois la fonction.
- → Étudier le signe de la dérivée seconde :
 - s'il est positif, la fonction est convexe.
 - s'il est négatif, la fonction est concave.

Exemple: Soit f la fonction polynôme définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 - x^2 + x + 1$. On note \mathscr{C}_f sa courbe représentative dans un repère.

- 1. A l'aide d'une calculatrice, conjecturer la convexité de f et les éventuels points d'inflexion de \mathscr{C}_f .
- 2. Calculer la dérivée seconde de f.
- 3. En déduire la convexité de f.
- 4. Justifier l'existence d'un point d'inflexion de f.

Propriétés:

Soit f une fonction définie et deux fois dérivable sur un intervalle I.

On note f' sa dérivée et f'' sa dérivée seconde.

Les propositions suivantes sont équivalentes :

- f est convexe sur l'intervalle I.
- f'' est positive sur l'intervalle I.
- f' est croissante sur I.

Les propositions suivantes sont équivalentes :

- f est concave sur l'intervalle I.
- f'' est négative sur l'intervalle I.
- f' est décroissante sur I.

6. Relier convexité d'une fonction et sens de variation de sa dérivée

Technique:

- → Le signe de la dérivée seconde donne les variations de la dérivée :
 - Si f'' > 0 alors f' est croissante.
 - Si f'' < 0 alors f' est décroissante.

Exemple: Soit une fonction définie et dérivable sur [0; 4].

On note \mathscr{C}_f sa courbe représentative et $\mathscr{C}_{f'}$ la courbe représentative de sa fonction dérivée f' représentée ci-contre

 \mathcal{C}_f est l'une des trois courbes ci-dessous.

Préciser laquelle en justifiant clairement la réponse.

Propriétés:

Soit f une fonction définie et deux fois dérivable sur un intervalle I, \mathscr{C}_f sa courbe représentative et a un réel appartenant à I.

- Si f' change de sens de variation en a, alors \mathscr{C}_f admet un point d'inflexion au point d'abscisse a.
- Si f'' s'annule et change de signe en a, alors \mathscr{C}_f admet un point d'inflexion au point d'abscisse a.

7. Étudier une fonction définie par morceau

Technique:

- ightharpoonup Tracer chacune des fonctions définies sur un intervalle précis.
- → Vérifier la continuité au point de recouvrement des 2 courbes.

Exemple : Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} -x^2 - 2x & \text{si } x \leq -1 \\ -x & \text{si } x > -1 \end{cases}$

- 1. Tracer la courbe représentative de la fonction f dans un repère.
- 2. Étudier la continuité de la fonction f:
 - (a) sur l'intervalle $]-\infty;-1];$ (b) sur l'intervalle $]-1;+\infty];$ (c) en -1.
- 3. Que peut-on en conclure?
- 1. Voir le graphique ci-dessous.

2.

Définition:

Soit f une fonction définie sur un intervalle I.

- Soit $a \subset l$. On dit que f est continue en a lorsque $\lim_{x \to a} f(x) = f(a)$.
- La fonction f est continue sur I si, pour tout réel a appartenant à I, f est continue en a.

Propriétés:

- Les fonctions affines les fonctions polynômes, la fonction racine carrée et la fonction exponentielle sont continues sur leur ensemble de définition.
- Les sommes, produits, quotients et composées de fonctions continues sont des fonctions continues sur chacun des intervalles formant leur ensemble de définition.

Propriété:

Une fonction dérivable sur un intervalle I est continue sur I.

 $\underline{\text{Remarque}}$: La réciproque est fausse. Par exemple, la fonction valeur absolue est continue sur $\mathbb R$ mais elle n'est pas dérivable en 0.

8. Prouver l'existence et l'unicité d'une solution d'une équation du type f(x)=k

Technique:

- → Déterminer la continuité et la stricte monotonie de la fonction sur cet intervalle.
- → Trouver la solution de l'équation à la calculatrice par encadrements successifs.

Exemple: Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x + x - 2$.

- 1. Tracer la courbe représentative de f dans un repère.
- 2. Démontrer que f est strictement croissante et continue sur \mathbb{R} .
- 3. Démontrer que l'équation f(x) = 0 admet une unique solution dans \mathbb{R} .

4. Déterminer avec la calculatrice un encadrement decimal de α à 10^{-2} près.

Régler	l'interva	lle
	0.41	-0.08318221
	0.42	-0.05803844
	0.43	-0.03274248
	0.44	-0.007292781
	0.45	0.01831219
	0.46	0.04407398

Théorème des valeurs intermédiaires :

Soit f une fonction continue sur un intervalle [a; b].

Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution dans l'intervalle [a;b].

Cas particulier du théorème des valeurs intermédiaires :

Soit f une fonction **continue et strictement monotone** sur un intervalle [a; b].

Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans l'intervalle [a;b].

Cas où f est strictement croissante :

Cas où f est strictement décroissante :

