Ejercicio 1

 $\neg p \lor \neg q \ es \ equivalente \ a$

- $p \rightarrow q$
- $p \rightarrow \neg q$
- \blacksquare $\neg p \rightarrow q$
- $\neg p \rightarrow \neg q$

Ejercicio 2

Sean p, q proposiciones verdaderas y r una proposición falsa y s una proposición arbitraria. El enunciado $(p \land q) \rightarrow (q \lor s)$ es:

- Tautológico
- Contradictorio
- Contingente
- Ninguna

Ejercicio 3

Sea el universo consistente en el conjunto formado por los números enteros Z y sobre dicho universo definimos el predicado p(x,y) como $\exists k \in Z: y = k \cdot x$. Entonces

- Se cumple p(3,3)
- Se cumple p(5,15)
- Se cumple p(15,5)
- Se cumple p(x,0), $\forall x \in Z$

Ejercicio 4

Sean A, B conjuntos tales que |A| = 7 y |B| = 5. Entonces:

- Siempre se cumple |AUB| = 2
- Necesariamente se verifica $|AUB| \le 2$
- Necesariamente se verifica $|AUB| \ge 2$
- Ninguna

Ejercicio 5

Sean A, B conjuntos finitos tales que $|A| \le |B|$ y $f: A \to B$ unas aplicaciones:

- f necesariamente inyectiva
- f necesariamente sobreyectiva
- f necesariamente biyectiva
- Ninguna

Ejercicio 6

¿Cuántos subconjuntos de 4 elementos pueden formarse a partir de un conjunto de 7 elementos?

Indique respuesta []

Sea $f: R \to R^3$ dado por $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{si } x \neq 1 \\ 1 & \text{si } x = 1 \end{cases}$

- $\lim_{x \to 0} f(x) = 1$ $\lim_{x \to 0} f(x) = 2$
- f es continua en x=0
- f es derivable en x=0

Ejercicio 7

¿Cuál es la complejidad del algoritmotmo1(n)?

Algoritmo algoritmo1(n)

for $i \leftarrow to n do$

 $Ci \leftarrow algoritmo2(n) - algoritmo3(i)$

end for

return C

Ejercicio 8

Sea $A \in \mathbb{R}^2$ diagonalizable y tal que det(A) = 0

- A es definida positiva
- A es definida negativa
- A necesariamente es simétrica
- Ninguna

Ejercicio 9

Sea $A \in \mathbb{R}^{n \times n}$

- A siempre es regular
- A siempre es diagonalizable
- El signo de los autovalores de A siempre es el mismo
- det (A) es un entero

Ejercicio 10

¿Cuál de los siguientes conjuntos se corresponde con la representación de un tensor de rango 4 y dim 5

- \blacksquare R^{4x5}
- R^{5x4}
- $R^{4x4x4x4x4}$
- $R^{5x5x5x5}$

Ejercicio 11

Sea $f:]0, +\infty[\to R \ dada \ por \ f(x) = \ln(x) \ y \ g: R \to R \ dada \ por \ g(x) = sen(x)$ Entonces la expresión de $[g \ o \ f)'(x)para \ x \in]0, \infty[$ es:

- $-\cos(\ln(x))$
- cos(1/x)
- $\frac{\cos(\ln(x))}{x}$
- Cos(1/x)ln(x)

Ejercicio 12

Sea $f: R \to R \ dada \ por \ f(x) = x^4 - 6x^2$ ¿Cuál es el valor x de la abcisa que converge el algoritmo del descenso de gradiente para $x_0 = 1$ y ratio de aprendizaje pequeño

Indique respuesta []

Ejercicio 13

 $f: \mathbb{R}^2 \to \mathbb{R} \ dada \ f(x,y) = 3x - y^4$

- (3,0) es un punto crítico de f y mínimo relativo
 - (3,0) es un punto crítico de f y máximo relativo
 - (3,0) es un punto crítico de f y es un punto de silla
 - f no tiene punto crítico

Sea $f: R \to R^3$ de la forma $f(t) = (f_1, (t), f_2, (t), f_3, (t))$ y $g: R^5 \to R$, ¿Valor $[g \ of]'(1)$?

$$f(1) = (-4,3,0), f'_1(1) = -1, f'_2(1) = -5, f'_3(1) = -7$$

$$\frac{\partial g}{\partial x}(-4,3,0) = -2, \frac{\partial g}{\partial y}(-4,3,0) = -7, \frac{\partial g}{\partial z}(-4,3,0) = 4$$

Ejercicio 14

No copiado