to predict x, need to know

- -what factors influence x (and how so (positively/negatively))
- -which factors affect more than others

confirmation bias - too small of a sample size to accurately represent the rule (infinitely many patterns to match sample), rules may change over time

positive examples - examples that follow hypothesis (assuming my hypothesis is true, x will follow) negative examples - examples that do not follow hypothesis (under the hypothesis, x will be false) = tendency to choose positive examples, need to use negative examples to prove hypothesis = rule

unsupervised learning - finding structure/patterns in data (linear algebraic properties, what does it tell about the data) supervised learning - making predictions on data

2/3	
X - [X1 X1 X1 Y TOV = data point	
$X = \begin{bmatrix} X_{11} & \cdots & X_{1p} & \cdots & x_{1p} \\ \vdots & \ddots & \ddots & \vdots \\ X_{n1} & \cdots & X_{np} & \cdots & \vdots \\ & & & & & & & & & & & & & & & & &$	
L data set with a data points with an features each	
C PAIN SET DITH IN DOTA POINTS WITH IM TEATURES EACH	
feature space = Rn of X (# of ind cols)	
. 11 .1	
comparing data points	
Dissimilarity funct ontputs: 1 if dissimilar U if similar	Similarity funes: 1 if similar, L if dissimilar
- distance function: all must $d(i,j)=0$ iff $i=j$ d(i,j)=d(j,i) true $d(i,j)\leq d(i,k)+d(k,j)$	5 1 15 1 1 1 15 (1) 5 1x xyl
$\frac{-1151011(E-THRC)(DN-1-1045)}{1+46} = \frac{1}{2}(i,j) \leq 1(i,k) + 1(k,j)$	- Jaccard Similarity: $\int Sim(x,y) = \frac{1x - y!}{1x - y!}$: $\int Dist(x,y) = 1 - \int Sim(x,y)$ * use if data points are mostly similar/small difference is significant
	* use if rata points are mostly similar/small difference is significant
- Minkowski Pistance: Lp(x,y)= (\frac{1}{2}1\times-\times-101P)\times for d amount of x,y points p\geq 1, but dieset have to be a whole #	
p≥1, but diesent have to be a whale #	- Cosine Similarity: s(x,y)=cos(0) st 0=angle between x and y
P=1 > Man hattan dist 🕒	cos=1 -> proportiona
p=2-> Enclidian dist L	cos=0 > orthogonal (perpindicular/right angle) to get corresponding dissim func: cos=-1 > opposite d(x,y)=\frac{1}{5}(x,y) \text{ or } k-s(x,y)
aka Ip Norm	$cos > 1 \Rightarrow apposite$ $d(x,y) = \overline{s(x,y)} \text{or} k = s(x,y)$
	*use when direction is more important than magnitude for some t
vec5 U V	
- J(A, B) = A-B , J(O, X) = X	
Made with North 350me reference to distance, but all dist tunes create a Norm	

Cost function - partition deless include k partitions, such that variance (cost function) is minimized cost function - how "good" a clustering is: high: bad (expressive), low-good (cheap) E. L. d (X, M) X X = Advant: exp1.x.3 1 = Astrone k: # clusters, n: # Astrone points k: exerters = fun1.x.3 1 = Astrone - cont sey lowest cost, bc cost=0 when k:m - k=1, k:n too easy. - if X = R = xt n > 2, very difficult (cont vibrolice) Loyd's alg: Uxandomy pick k data points as centers 2. massign cont points 3. massign cont points 3. massign cont points 4. control of the closest control 4. compare new control of the closest control 4. supporte new control of the closest closest 5. repeat 2-4 until done (centers dand change)		2/5
partitional clustering - partition dalaset into k partitions, such that variance (cost function) is minimized cost function hav "good" a clustering is: high: bad (expensive), hove good (cheap) \(\sum_{\text{x} \text{ despt.}} \sum_{\text{x} \text{ cheaper}} \sum_{\text{cheaper}}		
[05] function - have "good" a clustering is: high: bad (expensive), low: good (cheap) Explicit (keep) Explicit (keep) Explication - have "good" a clustering is: high: bad (expensive), low: good (cheap) Explicit (keep) Expl	- 4	clustering can be ambiguous no 1 correct answer lbut can be wrong ones
[05] function - have "good" a clustering is: high: bad (expensive), low: good (cheap) Explicit (keep) Explicit (keep) Explication - have "good" a clustering is: high: bad (expensive), low: good (cheap) Explicit (keep) Expl		
[05] function - have "good" a clustering is: high: bad (expensive), low: good (cheap) Explicit (keep) Explicit (keep) Explication - have "good" a clustering is: high: bad (expensive), low: good (cheap) Explicit (keep) Expl		partional clustering - partition galasel into k partitions, such that
X= delast= \frac{\(\frac{1}{2}\), \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)		VALIANCE ((US) FUNCTION) IS MINIMIZED
X= delast= \frac{\(\frac{1}{2}\), \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)		cost function - how "good" a clustering is high = bad (expensive), low = good (cheap)
k: # clusters, n: Hotala points neels to be a balance between cost and # clusters - cant say lavest cost, be cost=0 when k=n - k=1, k=n too easy - if X = R" st n>2, very difficult (cant visualize) Lloyd's alg: L vandomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		
k: # clusters, n: Hotala points neels to be a balance between cost and # clusters - cant say lavest cost, be cost=0 when k=n - k=1, k=n too easy - if X = R" st n>2, very difficult (cant visualize) Lloyd's alg: L vandomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		$\sum_{k=0}^{\infty} \int_{\mathbb{R}^{N}} \left(x_{k} \mu_{k} \right)^{2} e^{-\frac{1}{2} \ln \left(\frac{1}{2} + \frac{1}{2} \right)} dz distance$
Lloyd's alg: 1. randomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		
Lloyd's alg: 1. randomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		k: # clusters, n: # data points
Lloyd's alg: 1. randomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		needs to be a balance between cost and # clusters
Lloyd's alg: 1. randomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		- cant say lovest cost, be cost=0 when k=n
Lloyd's alg: 1. randomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		-k=1, k=n Hoo easy
Lloyd's alg: 1. randomly pick k data points as centers 2. unassign all points 3. assign each point in dataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		- it X & K" st n>2, very difficult (cant visualize)
1. randomly pick k data points as centers 2. unassign all points 3. assign each point in clataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)		
2, un assign all points 3, assign each point in clataset to closest center 4, compute new centers as means of each cluster 5, repeat 2-4 until dane (centers dan't change)		Lloyds alg:
		1. randomly pick k data points as centers
		2. un assign all points
		2. assign each point in dataset to classit center
		7. compute new centers as means of each cluster
		7, repeat 2-4 until done Leeulers don't changel
Made with Goodnotes	Ma	ade with Goodnotes

2./10	2/11
Lloyds always converges, but not always at the optimal solution	tags = [string, strings,] mode = Sentence Transformer (Smodel) \(\int LM \)
- centers might be too close	model = Sentence Transformer (Smodel)) ← 41 M
Lsolve by k-means++	feature_vectors = model encode (tags) < for each tag, converts into army where each index is similarly score to a word in dict
pick random centers, but each point has pr of being selected	feature_vectors = model. encode (tags) < for each tag, converts into array where each index is clusters = Kmeans (n_clusters = 3, n_init = 20). fit (teature_vecs), predict (teature_vecs)
pick random centers, but each point has proof being selected proportionate to dist from center (outliers more likely)	runs Kmeans with 3 centers, 20 times equal to fit_predict(feature_vectors)
LP1(x picked)=(d(x))2/ ZO(x))2 = each point gets (dist to center)2 # entries'	
niw to choose k:	
iterate through k to find point of diminshing return -means gotta do many attempts (not always possible) *sometimes, lower cost # best use	for KMeans: The only randomness comes from initial center selection
-menns gotta do many attempts (not always possible)	- same centers = same result
*sometimes, lower cost \$\neq\$ best use	must use mean distance func to correctly cluster
	must use mean distance func to correctly cluster tdiff func vill do something, but not whats intended
clustering wants: k-means only focuses on	
- similar dps in same	
- dissimilar dps in different	
= small inner cluster vidth I distance (a), larger distance between clusters (b)	
= (b-a)/max(a,b): close to 1 when a << or b>>	
Vant	
Silhanette Score	
for each opi: ai=avg dist to neighbor in cluster Made with Goodnotes bi: smallest mean dist to every paint in another cluster	
Made with Goodnotes bi: smallest mean dist to every paint in another cluster	

2/12											
\mathcal{D}_{0}	ensity Based (DB Scan) Jensity: I take radius of length & L L if # points within re	Since	* tensily defi	inition* is de	fined, vont pi	ck up on diff	ferently dens	e areas =	mark as out	iers	
	density: I take radius of length &	around point	SE, Smin_poi	ints) 2	Lihas	makes clusters	of the same	density			
	Lif # paints within re	gion > threshold: dense <	, ,					,			
	core point: 5-neighborhood contains = Kmil	n_points)									
	border points in E-neighborhood of core poi	in [†]									
	noise point: neither core or border										
	DF3 method: Literate through dataset										
	DFS method: Literate through dataset 2. if dp is core (has Sm - iterate through neig) - if neighbor is core: re Lelse: neighbor is	in points > rt neighbors within E)									
	-iterate through neigh	hr keed									
	-it neighbr is core: re	pent 2									
	Lelse: heighbor is	burler, add to cluster									
	-continue iterating the	nringh reighborhood									
	- Once no more undiscov	nrough neighborhood ered woles in neighborhood, next undiscovered dp in dataset									
	repeat step I with a	next undiscovered dp in dataset									
Made	with Goodnotes										

Color reduction- reducing image to x	colors, st its still recognizable
- use RGB values of each pixel as co	and male pinls = color space
HSV	ormalize vals
L- lightness A - green-red B - blue-yellov	
1 B - Blue-yellov	
- run kineans on color space - each ce	ntroid is color to
- run kmeans on color space = each ce set all	closest points to
Made with Goodnotes	

2/19	1																																						
																			lo	m yari	hø	Cluste	rilyg s	: Un	sterio	g A	99169	ation	- are	Pdin	ts x	ano	l y	in	He sa	me di	sters	in H	eď
Soft	(uster	ing)	J		1			J	,, ,		- Are Yes	pectiv	e d	uster	, Ng S						
	L	- eacl	Sub	set i	n A	data	grup	\as	differ	en	listri	bu-lion	15							D	isaat	eemeu	1 D	ist: '	ŹI	, (x	(۲۱			,		Loui) for 0	fac	Insterin	g alg			
	<u>_</u> ر	av J	hat	lahels	fir	each	dis	is l	st: }	iv t	ارا ،	Prmin	, W)	\ich	helona	ıs İn	which			-\	(AN	lo min	i wi ize	, ,	x ,y	ric													
	ľ	`')	Lhee): 1:5	اداما	dus d	f par	ار ر	اروا	haw,	A Alas	Dair	٠,	71 00	ر ا							Je Pitte	194120		,حا	ا ار	Pand	C disa	gree on	which	cluster	rs 1, an) y be	long to					
		John	أر ا	4 ()	Or	10 or	ian:	PY):5	P(S) . p	(X)	۷.) ۲.)	., .,		"	which																						
		1		,,	' J''	7 01 7		<i>,</i> (,,	י איניין (מוקייון	<u>ب</u>	,		رزد ۴۷	.11	, ς.																								
M:	turo	D:	stribu	lion.					reyer	110N 01	,	yro	, 01 V	VOR	" /)																								\Box
17	MIC	. yı	711124	n nit ,																																			\Box
			90.4-	1	40.0	410.0	ا ا	ا.ز	11	h //	N.a.	10	ا برار	ļ. 																									
		Ť	going -b	. 1 l	11550 	lire L. J.	taen.	0 (5)	70	.w)	1) 1	91 1	5 m	Minh	.[]																								
				w i	IOW ')	0 00	jei jind	ne m	LEUN	aru ·	olu d	eviaj	[<i>[[</i>]]	OI EN	LH																								
	+												-			+																							\Box
	+												-																										
	+	+		+									-			+																							\vdash
	+	-											-																										\vdash
	+	+											-			+					-																		\vdash
	-												-																										\vdash
													-			-																							
Made	with	Goo	odnot	tes									-							-																			

2/24	
SVD-single value decomposition	
- want to look for factor, such that changing it	
only changes the outcome and not another factor	
- want to look for factor, such that changing it only changes the outcome and not another factor Llikely not pressible	
- want to eliminate linear relationship between variables	
- vant to eliminate linear yelationship between variables L so changing one var usually doesn't change another	
try to narrow down data set (via eliminating vars) so that the remaining data follows the same general pattern lyariance	
the remaining data follows the same general pattern/variance	L
	L
reduce Raak = faster computations	
- reduce matrix such that it contains similar dafa, but all cols linearly independent - same amount of data points, less variables L= remove redundant into	L
- same amount of data prints, less variables	L
L= remove redundant info	
- once cols linearly and, vary intensity of each point to distinguish them	L
	L
	L
	L
	L
ade with Goodnotes	

3/19	- Classification																														
	Lunderstan	d relation	wsh.p.	e ween	factor	that r	esnH in	antput						400)	set	ı, İ	predi	ctors:													
	4 understan Jepenting on			predic	lors /fea	ures		(ass)						J		choo	se f	catures	. } ht	ave re	aled }	o cla	ss, not	relat	9 6	each o	ther				
	depending on	data: mo	Miple	hi an	swers																										
	• •	2,	and b	e lack	of date	incaree	f featur	es, or sim	المناداة	nessib le				dis	ول (cific	alian	()	est v	ا ما	ed in a	lean	niha S	t mem	cr aile	.)					
				C page	. , , , ,	,	., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9, 11, 7,11	<i>y . y</i>) •//·• IC				J	-40], ,	in	la tra	inina /	l Jecli	AG	,	J	ء موا	ne i fi c	ال دا					
	no correct an	ICHIOCC = A	k mia	انان الم	را ا	£1									ار ا	i baiu	, ,,,,	مرا ام	מג לאים	اداب	ا کا	aick.	nverf	Hina .	1 11	اربر اربی ا	o	f data			
	TO COLLECT WA	י לוזאנו	r, my	וינק יא	i de viși	2741									مولون	SHi.	9 - Mari	J. L.	simo		. 05	1154	44(-),	VIR9)	AI SM &	5(1 %	1 04 191			
															Airel) (I) (I)	y - 1141	NEI 20	o sim) le											
	اسلالما د																														
got	d predictors: - distinct	: 1:4.	1 1	1.1		L.																									
	() (57) 1427	IVE DISTY	'i bu'i ion	peywe	ен риеви	: १वा ५																								+	
	1		4	1,,	7 MJ	(ټ	ī	i = mean of	featur	e																				-	
	- correladi	on·r=	15	- 1 <i>)</i> (-	2715	1 -72	.)	ange : -1	, ,	130	= heg co	rr																			
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(MYZ	(y;-y)	/ r	ange: 1	2rs	ילרי.	- pos cor	r																		-	-
		r=0 ±	-no rela	tionship)																								_	-	\rightarrow
		\ (1.	1 (1	1 [1			jn.	ap to	0 = ho	. 17	1																-	
	j+ t	eafures co	nt invol	hs but	class:	. distinc	t lash a	t were of	X + how	ر بمال		פורו	EWANT HE	presion															_	-	
			y= ?	yes, h	15 -n	ominal -) liffer	among each	val of	ا کران معالمه																				-	
		'	y= {	ok, goi	d, had}	= ordingl	> fan g	ive numeric	al vals	Lift set.																					
	Correlation =	increase x	, expec	+, }	increa	ise																									
		4 could be	due :	Lo hidde	en fado	r, or cou	nterexample	ı																							
	causalion = re	enites sp	pecific	testing	رال مالان	ndrol gra	Ap 1																								
Made wit	Goodnotes) '				J	•																								

(lass) fiers	
- instance based = Armining set = model itsself	Model Eval
L search training for Jesting entry, or get similar results, and	build cost matrix: associate cost with correctlineonect prediction
aggregate class to get output distance threshold is	
aggregate class to get output distance threshold is arbitrary, will get varying levels of raighbors	cost Prediction
-K Nearest Neighbors	Yes No fake negatives accuracy: (Ves, yes) + (no, no)
Eget k # of similar lelosest training data aggregiate classes = prediction	Ves No No No No No No No No
L closeness scales based on altributes ex-veigh based on closeness (if I factor has wider scalelyange = dominant, want to scale so all altributes similar)	No 1 0
(if I factor has wider scale/vange=dominant, want to scale so all attributes similar)	L false positive = small penalty
Luse libraries took Lhigh dimensions might cause issues - chouse of dimensionally	
- Decision Trees	how to get accurate estimate model on unseen data
take subject at data a closes: thanks Ala -terminate at x layers	- split into testing dada
List print I had he perfect, ok to generalize Luse validation set to not overfit on testing	- cross validation: continuously train on entire ds-1 output
Lean split binary or multi-split	-nse validation
Lhow to evaluate "andness" of split?	
- 6 INI(f)=1- 2 p(+1j)2 (lov #=better, between 0 and 0.5)	
GINI of sp (+) = \frac{1}{2} \frac{n_+}{2} \text{GINI(+)}	Ensamble methods
	- combine the results loutputs of a bunch of classifiers
Naive Rayos	
P(class result / affribute(s))	- bagging: divide tasting into a hunch of smaller tasting data
predict class that maximizes P(class) { nattributes})	- bossting: each iteration, emphasize dos that prev classitier struggled with
Sunion of Valleibutes	s each classifer has weight
-assume attributes are independent	
-cont attributes -binning (malli-way split	
modewith Goodnotes pot estimation (use N with sample mean, sample varionce)	

	Supp	or t	Vector Vi any E t stre L	r l	lach.	'ne-		٧	τ _X τ b) in	fi a	ibout	l Wi	ers +	mov	ries														
	-//	find	V,	AN	V2 50	nch d	hat '	$\widetilde{v_{i}y_{i}}$	+ 4	2 1/2 *	·b =6	li	ides	+	and	- 5	oints							L	eclo	mnen	<i>y</i> 5					, H	ose !	he w	er ha	, ~	niched	đ	1 1 5	imi l	ar hs	ei	L
	-	for i	any L	u ₂)	plu	g int	o u	: if	resul	t is «	0 = 1	eff,	> 0	= rig	14										_			h	4) \	natch	e/												L
	+	Van	3/10	et }	o be	Q5	far 1	rom (lp's a	s paç	sible													-	-				-	4								+					_
				gut	lrs :	: \ir	1e eq=	.1	ar)	line e	t=	; j nu	Adipl	ying	hy	(ous	vio	ens g	jutter;	5				-	-				+	+								+					_
			L	want	wax	Size	0t 51	•							+														+	+								+					-
																									+																		
		at 0	s a11	nt p	(r)ei	: IPT																							+	+								+					
							L	War	spac	e fi	i jlir w (orrect	nes <i>s</i>		+																							+					
		aı,	c Ov-	Aìn c	July	and	والبيان	tavar.), d	100	ina H	= Cu	phirt	Jec)	ars .																												
		vv .y	tog) togo	J.	, +	, <u>2</u>	and	ر. ز. ن	(+ b	£ -	- √.	(₩:·	χ. + J	,)-1	<u>-0</u>																							Ť					
			wil }L	۰f	stice	} = }	istance	bot	veln	sappi	rt ve	dors																															
																																											_
																																											_
														+						-	_			-	+				-							-							H
														+	-					+	_			-	+				+	-								+					H
													+	+				-						-	+											-		+					-
Ma	ade with	Go	odno	tes																																							

