SPSS Tutorial 3: Linear regression

- 1. The dataset for this tutorial is called **impc_data.sav** (a *.sav file is an SPSS dataset, if you want to use other software, you can use **impc_data.txt** instead, though some information will be lost (variable descriptions, variable level definitions, etc.))
- 2. Start by looking at the Pearson correlation coefficient between all pairs of variables. Go to Analyze->Correlate->Bivariate. Move all the available variables into the box on the right side

Press "OK" and look at the resulting correlation matrix.

Correlations										
		Bilirubin (mg/dl)	Creatinine (mg/dl)	Total cholesterol (mg/dl)	Glucose (mg/dl)	Urea (mg/dl)	Mouse body weight (g)	Fat wieght divided by total weight		
Bilirubin (mg/dl)	Pearson Correlation	1	.145**	087**	.147**	224**	177**	045		
	Sig. (2-tailed) N	1471	.000 1471	.001 1471	.000 1471	.000 1471	.000 1471	.085 1471		
Creatinine (mg/dl)	Pearson Correlation	.145**	1	.234**	.472**	.098**	.036	.163*		
	Sig. (2-tailed) N	.000 1471	1471	.000 1471	.000 1471	.000 1471	.173 1471	.000 1471		
Total cholesterol (mg/dl)	Pearson Correlation	087**	.234**	1	.370**	.502**	.532**	.546*		
	Sig. (2-tailed) N	.001 1471	.000 1471	1471	.000 1471	.000 1471	.000 1471	.000 1471		
Glucose (mg/dl)	Pearson Correlation	.147**	.472**	.370**	1	.091**	.086**	.227*		
	Sig. (2-tailed) N	.000 1471	.000 1471	.000 1471	1471	.000 1471	.001 1471	.000 1471		
Urea (mg/dl)	Pearson Correlation	224**	.098**	.502**	.091**	1	.354**	.109*		
	Sig. (2-tailed) N	.000 1471	.000 1471	.000 1471	.000 1471	1471	.000 1471	.000 1471		
Mouse body weight (g)	Pearson Correlation	177**	.036	.532**	.086**	.354**	1	.575*		
	Sig. (2-tailed) N	.000 1471	.173 1471	.000 1471	.001 1471	.000 1471	1471	.000 147		
Fat wieght divided by total weight	Pearson Correlation	045	.163**	.546**	.227**	.109**	.575**			
	Sig. (2-tailed) N	.085 1471	.000 1471	.000 1471	.000 1471	.000 1471	.000 1471	147		

3. Run a multiple linear regression with total cholesterol as the outcome variable and creatinine, glucose, and body weight as the predictor variables.

Then click on the "Statistics" button and make sure "Estimates" and "Confidence Intervals" are checked off.

Next, click on "Plots" and put "ZRESID" as the y-axis variable, and "ZPRED" as the x-axis variable:

Press "Continue" and "OK" to run the regression function.

4. Check the table containing the estimates from the regression function:

regression estimates		Unstandardized Coefficients		Standardized Coefficients		p-values 95.0% Confidence Int		nce Interval for
Mode	el	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-25.400	5.312		-4.782	.000	-35.820	-14.980
	Creatinine (mg/dl)	67.912	19.710	.079	3.446	.001	29.249	106.574
	Glucose (mg/dl)	.139	.011	.289	12.494	.000	.117	.161
	Mouse body weight (g)	3.438	.139	.505	24.738	.000	3.165	3.711

a. Dependent Variable: Total cholesterol (mg/dl)

The residual plot should also appear:

5. Do another multiple regression model with bilirubin as the outcome and glucose, urea, and mouse body weight as predictors. Which of the predictors are significant? What are the relationships between the predictors and the outcome? Does the residual plot look good?