

SARNET-21 Workshop - Semantic Addressing and Routing Impact on Future Networks

Workshop Panel

Panelist: Mohamed Faten Zhani, ETS Montreal, Canada

Thursday 10th June 2021 (15:30 CET- 16:50 CET)

- Do the challenges that drive consideration of semantic addressing and routing also drive/be driven by a new Internet architecture (and what is it)?
 - How do the limitations of traditional routing approaches translate to shortcomings in network capabilities?
 - Not adapted to the applications' requirements which are different and changing over time
 - There is no perfect nor a one-fit-all solution
 - Lack of semantic
 - Mobility not assured
 - Is it appropriate to overload existing protocol fields to achieve an engineering result?
 - We don't need a particular protocol \rightarrow we need an Internet architecture or Framework that could allow to support easily any protocol customized to the needs of the application
 - What are the key expected new developments in networking (e.g., programmability, management, etc.) requiring changes in addressing and/or routing.
 - Virtual Network Functions, software defined networking, programmable data planes, dedicated hardware (GPU, NPU, etc.) are the key to program the network and easily change and adapt adderessing and routing

- Do the challenges that drive consideration of semantic addressing and routing also drive/be driven by a new Internet architecture (and what is it)?
 - What are the key few research and development challenges and their rationale for the next 5 years period in Semantic Addressing and Routing
 - Major revolution: Virtualisation and Slicing → each slice could have each own semantic addressing and routing
 - What kind of addressing? Semantic?
 - → Not restricted to IPv4 or IPv6 addressing or routing
 - → Fully flexible header, addressing, routing customized for each slice (promoted by the FleXNGIA architecture <u>www.FlexNGIA.net</u>)
 - What are the impact and benefits in changing addressing and /or routing?
 - Adressing and routing customized to the applications running on the slice (see FleXNGIA architecture <u>www.FlexNGIA.net</u>)
 - Do new routing and forwarding techniques need to interoperate or co-exist with current mechanisms?
 - Yes, Isolated slices → all routing and forwarding techniques should be internal to the slice and isolated!

- How to define efficiently "Limited Domains" (i.e., factory network, CDN network, IoT network, etc.) and what you consider is their role in the Internet?
 - Domain → Yes, but also Slice
 - A Slice is defined by a technology, routing and addressing schemes, network functions, performance requirements
- To what extent should we aim for a generic solution, and to what extent should we focus on specific solutions for specific environments? Where is the trade-off?
 - A generic solution for the Internet architecture (see FlexNGIA)
 - A specific solution for each slice
 - → The Internet is hosting several technologies that can be customized and isolated in each slice and that can co-exist and live simulatanouesly

- What would be the approach to funnel more research ideas into SDOs?
 - What are the expected standardisation actions for the next period?
 - We need a standard for a novel Internet that allows permissionless innovation by allowing isolated and fully customized slices
 - Should we enable "permissionless innovation", or is there a need for standards and mutual review?
 - FlexNGIA allows permissionless innovation by allowing isolated and fully customized slices
 - What are the key expected new developments in networking requiring changes in standards for addressing/routing?
 - We have already made several steps to such Internet thanks to the trends of softwarization, slicing, data programmability → A fully flexible and programmable Internet artchitecture

Future Internet Infrastructure and Services

Service

Physical

Slice/Service Function Chain (SFC)

- Multiple connected network functions
- Multiple sources and destinations
- Made out from Network Functions
- Defines, for each network function, the type, software, input/output packet format, expected processing delay, buffer size
- Defines customized addressing and routing scheme
- Defines performance requirements (e.g., throughput, packet loss, end-to-end delay, jitter)

FlexNGIA Project Fully-Flexible Next-Generation Internet Architecture

FlexNGIA

Computing resources

Business model

Customized Addressing and Routing

Application-Aware Network functions

Flexible headers

- In-NetworkComputing: any functionanywhere
- Multiple source destinationService FunctionChains
- Stringent performance requirements

- Customized algorithms and protocols tailored to each application
- In-Network Computing
- Stringent performance and reliability guarantees

- Advanced functions tailored to applications
- App-aware traffic engineering

Tailoredto theapplication

Looking for More Details?

• FlexNGIA Project and Papers: www.FlexNGIA.net

