PH 301 ENGINEERING OPTICS

Lecture_Optical Sources_17

LASER definition

L: LIGHT

A: AMPLIFICATION by

S: STIMULATED

E: EMISSION of

R: RADIATION

Laser Inventors

Invention: 1960 Nobel Prize: 1964

Charles Hard Townes 28.07.1915 – 27.01.2015 USA

Nicolay Gennadiyevich Basov 14.12.1922 – 01.07.2001 Russia

Alexander Prokhorov 11.07.1916 – 08.01.2000 Russia

Light sources

Light source	Light Power	Power density
Sun	10 ²⁶ Watt	5 x 10 ² W/cm ²
100 W Filament-lamp	3 Watt	10 ⁻² W/cm ²
He-Ne- Laser	1 mWatt	4 x 10 ⁴ W/cm ²
CO ₂ Laser	60 Watt	5 x 108 W/cm ²
Pulsed Laser	1 GWatt	10 ¹⁴ W/cm ²

Properties of LASER light

Monochromaticity:

Nearly monochromatic light

Example:

He-Ne Laser	Diode Laser
$\lambda_0 = 632.5 \text{ nm}$	$\lambda_0 = 900 \text{ nm}$
$\Delta \lambda = 0.2 \text{ nm}$	$\Delta \lambda = 10 \text{ nm}$

Comparison of the wavelengths of red and blue light

Properties of LASER light

Directionality:

Conventional light source

Properties of LASER light

Coherence:

Incoherent light waves

Coherent light waves

Coherence

Dictionary meaning:

- Quality or state of cohering or sticking together, especially a logical, orderly, & aesthetically consistent relationship of parts.
- ☐ Property of being coherent, as of waves. Constant phase difference in two or more waves over time.
- ☐ Existence of correlation between phases of two or more waves.
- Property of moving in unison.
- Logical or natural connection or consistency.

Properties of laser light

Laser light cannot:

- · be perfectly monochromatic
- · be perfectly directional
- · have perfect coherence

However...

Laser light is far more coherent than light from any other source.

History of LASER

- Invented at Bell Laboratories, USA.
- Based on Einstein's idea of "particle wave duality" of light, more than 30 years earlier.
- Originally called MASER (Microwave Amplification by Stimulated Emission of Radiation).
- MASER is similar to LASER but produces only microwaves.
- First patent in 1958.

Wave-Particle Duality of Light

Evidence for Wave Nature of Light

Diffraction & Interference

Evidence for Particle Nature of Light

Photoelectric effect & Compton effect

When UV light is shone on a metal plate in a vacuum, it emits charged particles (Hertz 1887), which were later shown to be electrons by J.J. Thomson (1899).

In 1923 Prince Louis de Broglie postulated that ordinary matter can have wave-like properties, with wavelength λ related to momentum p in same way as for light.

Particles have a momentum

The momentum can be also classified by the wavelength

Louis de Broglie(1923):

$$\lambda = \mathbf{h}/\mathbf{m} \cdot \mathbf{v} = \mathbf{h}/\mathbf{p}$$

Almost all electronic transitions that occur in atoms that involve photons fall into one of three categories:

$$\Delta E = hf$$

Spontaneous emission

Energy of the emitted photon = $kf = \Delta E$

Stimulated emission

1 Photon with $\Delta E = hf$ produces two photons with the same energy

The frequency of the emitted photon going from Level 2 to 1 is given by:

$$\nu = \frac{E_2 - E_1}{h}$$

Defining Ni as the electron population of level i and considering the Boltzman equation which describes the relation between the electrons in level 1 and 2 at thermal equilibrium:

$$N_2 - N_1 = \exp\left(-\frac{E_2 - E_1}{k_B T}\right)$$

$$(k_B = \text{Boltzman constant})$$

giving that $E_2 > E_1$ and $T > 0 \Rightarrow N_1 > N_2$!

To amplify light, the stimulated emission must by stronger than the absorption $(N_2>N_1)...$ but how is this possible???

An electromagnetic wave with frequency ν traveling in z-direction through the media with 2 atom levels is normally exponentially absorbed:

$$I = I_0 \exp(-\mu z)$$

 $\mu > 0$ is the lineal Absorption coefficient.

It can be demonstrated that $\mu \sim N_1 - N_2 > 0$

The amplification of light is only possible if N_1 - $N_2 < 0 (=> \mu < 0)$

That means... THE MEDIA IS ACTIVE!

Inversion of energy levels

$$N_2 - N_1 = \exp\left(-\frac{E_2 - E_1}{k_B T}\right)$$

 $N_2 - N_1 < 0$

$$\Delta N = N_2 - N_1 > 0$$

$$\Delta E = h\gamma = hc/\lambda$$

Inversion of energy levels

One solution to this problem is to use three energy levels (example He-Ne laser):

Stimulated emission

Now $N_2 > N_1$, however... we must amplify the intensity of our beam!

→ We must build a LASER resonator!

Mirror 1 Mirror 2

However, with this set-up the intensity will grow up to infinite!

What can we do to obtain the LASER beam?

Elements of a laser

Types of Lasers

Gas Lasers

Solid State Lasers

Semiconductor Lasers

Excimer Lasers

etc etc

Solid State Lasers

Nd:YAG Laser:

 $\lambda = 1.064 \, \mu \text{m}$

- YAG = Yttrium-Aluminium-Garnet (Y₃Al₅O₁₂), it is transparent and colourless.
- •Nd:YAG Laser is doped with about 1% Nd3+ ions into the YAG crystal. The crystal color then changed to a light blue color.

Solid State Lasers

Ruby Laser:

 $\lambda = 694.3 \text{ nm}$

- First laser invented (1960).
- Ruby: Al₂O₃ in which some of the Al atoms have been replaced with Cr.
- Cr gives its characteristic red color and is responsible for the lasing behavior of the crystal.
- Cr atoms absorb green and blue light and emit or reflect only red light.

Energy levels of chromium ions in ruby

Kumar Patel with a flowing-gas CO₂ laser in 1967