第1回模試テロ

- 【1】(1) i を虚数単位とする. x の方程式 $x^2 + (2k-i)x + 8 + 2i = 0$ が実数解をもつように、実数 k の値を定めよ.
 - (2) \triangle ABC において、AB = 4、BC = 6、CA = 8 とする. \triangle ABC の内接円の半径 r を求めよ.
- 【2】a を正の定数とする. x の方程式

$$8^x - 3a \cdot 4^x + 4a = 0$$

の異なる実数解の個数を調べよ.

- 【3】 \triangle OAB において、OA = 3、OB = 5、 \cos \angle AOB = $\frac{3}{5}$ とする. また、B を中心とする半径 $\sqrt{10}$ の円を K とする.
 - (1) $\angle AOB$ の二等分線と辺 AB の交点を C とする. \overrightarrow{OC} を \overrightarrow{OA} , \overrightarrow{OB} を用いて表せ.
 - (2) $\angle AOB$ の二等分線と円 K の交点を P とする. \overrightarrow{OP} を \overrightarrow{OA} , \overrightarrow{OB} を用いて表せ.
- 【4】 x と y の連立不等式 $x^2 + y^2 \le 1$, $y \ge x$ が表す領域を D とする.
 - (1) 領域 D を xy 平面上に図示せよ.
 - (2) 領域 D 内を点 P(x, y) が動くとき, x-2y の最大値と最小値を求めよ.
- 【5】不定方程式 2x + 3y + z = 13 を満たす自然数 (x, y, z) の組の個数を求めよ.