

# Virtual Surf or Physical Serve?

Book-buying insights for Amazon and Barnes & Noble

Hua Guo Yanwei Jia Yi Liu Pengfei Liu Fei Cen Lu Chen

Advanced Business Analytics Group 6 Professor Xianjun Geng

The Group 6 of Advanced Business
Analytics for Consumer and Customer
Insight applies a unique, integrated
approach that combines quantitative
and qualitative consumer research
with a deep understanding of
business strategy and competitive
dynamics. The Group's works hit the
best results among all the groups, and
the group got the highest praise of
the professor.

The Advanced Business Intelligence course is for machine learning and business strategy by leading student hands on real world business analysis. The course is the most popular and the hardest course in the Information Technology and Management Department of the University of Texas at Dallas. And the instructor, Professor Geng, is the most popular professor.

## **Executive Summary**

The negative binomial model (NBD) form is more appropriate than the Poisson, for NBD model has a better optimized LL value. NBD model can capture unobserved heterogeneity in variables.

Four variables, education, region, race, and age may have statistical significance for book-buying propensity. Constructed variables, month and day also reflect variance in consumer behavior. Key findings are presented below.

Sales peak in matriculation season



Purchase concentrate in buyers with education level 3



Region 3 counts for the most of the purchase



Purchase hikes from Tuesday to Thursday



Purchase plummets after age 8 but rallies at age 11



Overwhelming majority of purchaser is of ethnic group 1



## **Contents**

| Executive Summary                                                | 1  |
|------------------------------------------------------------------|----|
| Contents                                                         | 2  |
| 1. Preprocess the Dataset                                        | 3  |
| 1.1 Check data type                                              | 3  |
| 1.2 Check missing value                                          | 3  |
| 1.3 Standardize missing value                                    | 4  |
| 1.4 Check dataset properties                                     | 4  |
| 1.5 Impute missing value                                         | 6  |
| 2. Part I. Modeling Count Data                                   | 7  |
| Q1 Count the number of books purchased from BN                   | 7  |
| Q2 NBD Model                                                     | 8  |
| Q3 Reach, Average Frequency and GRPs                             | 9  |
| <b>Q4 Poisson Regression Model</b> optimized LL valueEstimated λ | 13 |
| Variables' parameter estimate  Takeaway                          | 13 |
| Q5 Formula LL for NBD Regression Model                           | 14 |
| Q6 NBD Regression Model                                          | 14 |
| Q7 Difference between Poisson Regression and NBD Regression      | 16 |
| Q8 Compare Poisson Regression and NBD Regression                 | 17 |
| 3. Part II. Improving the Model Compare                          | 17 |
| Q9 Feature selection                                             | 17 |
| Q10 Construct new variables                                      | 19 |
| Q11 Interaction effects                                          | 26 |
| Part III. Why Certain Customers Prefer Amazon Over BN?           | 30 |
| Q12 Consumer purchasing propensity                               | 30 |
| Part IV. Summary                                                 | 32 |

## 1. Preprocess the Dataset

Little has been written about the book-buying behaviors. With consumer behavior changing, forward-looking companies need to create effective strategies for wining its business.

Before beginning, we'll check the data quality to establish analysis strategies.

#### 1.1 Check data type

First, we checked the data type of each features to make sure the data be analyzed is right.

```
*Set a libraby and read the dataset in the library;
libname project2 "C:\ABI";
DATA project2.aba;
INFILE "C:\ABI\aba.sas7bat";
RUN;

*Check datatype to make sure each variable's type is right;
PROC CONTENTS data = project2.aba position;
RUN;
```

Figure 1.1 Data type checking results

|    |           | Variak | oles in | Creation C | Order    |           |  |
|----|-----------|--------|---------|------------|----------|-----------|--|
| #  | Variable  | Type   | Len     | Format     | Informat | Label     |  |
| 1  | userid    | Num    | 8       |            |          | userid    |  |
| 2  | education | Num    | 8       |            |          | education |  |
| 3  | region    | Num    | 8       |            |          | region    |  |
| 4  | hhsz      | Num    | 8       |            |          | hhsz      |  |
| 5  | age       | Num    | 8       |            |          | age       |  |
| 6  | income    | Num    | 8       |            |          | income    |  |
| 7  | child     | Num    | 8       |            |          | child     |  |
| 8  | race      | Num    | 8       |            |          | race      |  |
| 9  | country   | Num    | 8       |            |          | country   |  |
| 10 | domain    | Char   | 18      | \$18.      | \$18.    | domain    |  |
| 11 | date      | Num    | 8       |            |          | date      |  |
| 12 | product   | Char   | 215     | \$215.     | \$215.   | product   |  |
| 13 | qty       | Num    | 8       |            |          | qty       |  |
| 14 | price     | Num    | 8       |            |          | price     |  |

From the above results, we can find that variable domain and product are Char, all the other variables are Num. Here, we'll change the date's format to 'YYMMDD8.' for future analysis.

```
*Change DATE format from num to date;

DATA project2.aba_date;

SET project2.aba;

x = INPUT(PUT(DATE, 8.), YYMMDD10.);

FORMAT x YYMMDD10.;

DROP date;

RENAME x = date;

RUN;
```

#### 1.2 Check missing value

\*Count the nmber of missing value;

```
DATA project2.aba mis (KEEP = totalRecords missing edu missing region
missing age);
SET project2.aba date END = last;
RETAIN totalRecords missing edu missing region missing age 0;
totalRecords+1;
IF education = 99 THEN DO;
  missing edu+1;
END:
IF region ^IN (1,2,3,4) THEN DO;
  missing region+1;
IF age = 99 THEN DO;
  missing age+1;
END;
IF last;
RUN;
PROC PRINT DATA = project2.aba mis;
RUN;
```

Figure 1.1 Missing value checking results

| Obs | totalRecords | missing_edu | missing_region | missing_age |
|-----|--------------|-------------|----------------|-------------|
| 1   | 40945        | 30238       | 46             | 3           |

From above table, we found that variable education contains too many missing value (75%), we can discard this feature because even after imputation, it will not generate accurate estimation. On the other hand, the education variable still has more than 10,000 records. This number is big enough for analyzing. We think any feature cannot be discarded easily, so we may try use the 10,000 + records in the following analysis, and may impute the missing value for comparing analysis results.

#### 1.3 Standardize missing value

We found education, region, and age has missing value in different format, before we go further process, we decided to standardize them for following steps.

```
*Standlize missing value;

DATA project2.aba_stand;

SET project2.aba_date;

IF education = 99 THEN DO;
  education = .;

END;

IF region ^IN (1,2,3,4) THEN DO;
  region = .;

END;

IF age = 99 THEN DO;
  age = .;

END;

RUN;
```

#### 1.4 Check dataset properties

We will check the mean, median, mode and skewness of the data.

```
PROC MEANS mean median mode data = project2.aba_stand;
RUN;
PROC UNIVARIATE data = project2.aba_stand;
inset skewness;
```

Figure 1.4.1 Mean, median and mode

| Variable  | Label     | Mean        | Median      | Mode        |
|-----------|-----------|-------------|-------------|-------------|
| userid    | userid    | 14007010.41 | 14411385.00 | 14648977.00 |
| education | education | 2.7362473   | 2.0000000   | 4.0000000   |
| region    | region    | 2.5436808   | 3.0000000   | 3.0000000   |
| hhsz      | hhsz      | 3.1741116   | 3.0000000   | 2.0000000   |
| age       | age       | 7.1519955   | 7.0000000   | 6.0000000   |
| income    | income    | 4.7151301   | 5.0000000   | 7.0000000   |
| child     | child     | 0.7082672   | 1.0000000   | 1.0000000   |
| race      | race      | 1.0659665   | 1.0000000   | 1.0000000   |
| country   | country   | 0.1559165   | 0           | 0           |
| qty       | qty       | 1.0779094   | 1.0000000   | 1.0000000   |
| price     | price     | 15.9082052  | 10.8500000  | 6.9900000   |
| date      |           | 17349.82    | 17356.00    | 17176.00    |

Figure 1.4.2 Distribution plot of education(left), region(central), and age(right)



From the means procedure and distribution plots, we can found that our data is similar normal distributed. Moreover, our data is more than 40,000, based on central limit theorem we can treat our data as normal distributed.

## 1.5 Impute missing value

Since the missing value of age and value only count for very small fraction of total data, 0.1% or less respectively, we may just drop the data with negligible influence. However, we decide to fill these missing values instead of just drop the data.

Age and Region have every small skewness, and the rounded mean equals to median. The age and region should be integer, so we will fill the missing age by using rounded mean (= median).

**Figure 1.5.1** The UNIVARIATE Procedure Variable: age (age)

|                        | Moments    |                   |            |  |  |  |  |  |  |  |
|------------------------|------------|-------------------|------------|--|--|--|--|--|--|--|
| N                      | 40942      | 40942 Sum Weights |            |  |  |  |  |  |  |  |
| Mean                   | 7.15199551 | Sum Observations  | 292817     |  |  |  |  |  |  |  |
| <b>Std Deviation</b>   | 2.45728081 | Variance          | 6.03822896 |  |  |  |  |  |  |  |
| Skewness               | -0.0962596 | Kurtosis          | -0.8334176 |  |  |  |  |  |  |  |
| Uncorrected SS         | 2341437    | Corrected SS      | 247211.132 |  |  |  |  |  |  |  |
| <b>Coeff Variation</b> | 34.3579747 | Std Error Mean    | 0.01214424 |  |  |  |  |  |  |  |

Figure 1.5.2 The UNIVARIATE Procedure

Variable: region (region)

| Moments                |            |                         |            |  |  |  |  |  |  |  |
|------------------------|------------|-------------------------|------------|--|--|--|--|--|--|--|
| N                      | 40899      | Sum Weights             | 40899      |  |  |  |  |  |  |  |
| Mean                   | 2.54368077 | <b>Sum Observations</b> | 104034     |  |  |  |  |  |  |  |
| <b>Std Deviation</b>   | 1.09351395 | Variance                | 1.19577276 |  |  |  |  |  |  |  |
| Skewness               | -0.1320303 | Kurtosis                | -1.2878173 |  |  |  |  |  |  |  |
| Uncorrected SS         | 313534     | Corrected SS            | 48904.7143 |  |  |  |  |  |  |  |
| <b>Coeff Variation</b> | 42.9894333 | Std Error Mean          | 0.00540714 |  |  |  |  |  |  |  |

```
DATA project2.aba_imp_mean;
SET project2.aba_stand END = last;
IF region ^IN (1, 2, 3, 4) THEN DO;
   region = 3;
END;
IF age = . THEN DO;
   age = 7;
END;
RUN;
```

Education has over 75% missing values, we'll keep it as original for Question 1-3, while we'll use bagged trees to fill the missing values for Question 4.

```
##use caret preprocess to impute the missing value##
library("caret")
book <- read.csv("aba_imp_mean.csv")</pre>
```

```
book_preproc <- preProcess(book,method = c("bagImpute"))
book_impute <- predict(book_preproc,book)

book_impute$education <- round(book_impute$education)
write.csv(book_impute,"aba_imputed.csv")</pre>
```

## 2. Part I. Modeling Count Data

## Q1 Count the number of books purchased from BN

Process the raw data using SAS to generate a count dataset in a format similar to the raw data in thec"khakichinos.com" example. In other words, for each customer, count the number of books she **purchased from BN** in 2007, and keep the demographic variables. Report your code and print the first 10 records of this dataset.

```
PROC SORT DATA = project2.aba imp mean;
  by userid; *sort the data by userid to make sure it will be okay to
use in data steps later;
RUN;
DATA project2.aba BN (DROP = domain date product qty price);
SET project2.aba imp mean;
by userid;
IF first.userid THEN count = 0; *initialize the number of purchased
book;
IF domain = 'barnesandnoble.com' THEN count+qty; *add the qty purchased
from BN;
IF last.userid; *keep the final sum;
RUN;
PROC PRINT DATA = project2.aba BN (OBS=10);
   TITLE 'Number of books purchased from B&N by all customers (10
observations)';
RUN:
```

Figure 2.Q1.1 Number of books purchased from B&N by all customers (10 observations)

| Obs | userid  | education | region | hhsz | age | income | child | race | country | count |
|-----|---------|-----------|--------|------|-----|--------|-------|------|---------|-------|
| 1   | 6365661 | 5         | 1      | 2    | 11  | 7      | 0     | 1    | 0       | 1     |
| 2   | 6388054 | 2         | 4      | 1    | 6   | 5      | 0     | 1    | 0       | 0     |
| 3   | 6396922 | 2         | 2      | 2    | 8   | 4      | 0     | 1    | 0       | 1     |
| 4   | 6421559 | 5         | 4      | 4    | 5   | 6      | 0     | 1    | 0       | 0     |
| 5   | 6467806 |           | 2      | 2    | 6   | 3      | 0     | 1    | 0       | 0     |
| 6   | 6628110 | 4         | 4      | 5    | 4   | 7      | 1     | 1    | 0       | 0     |
| 7   | 6631403 | 5         | 3      | 1    | 10  | 3      | 0     | 1    | 1       | 0     |
| 8   | 6704851 | 5         | 4      | 1    | 6   | 7      | 0     | 1    | 0       | 0     |
| 9   | 7412556 | 5         | 4      | 3    | 10  | 7      | 0     | 1    | 1       | 0     |
| 10  | 8147707 | 4         | 2      | 3    | 4   | 3      | 1     | 1    | 0       | 0     |

To show B&N's consumer purchasing results, we should add one more if condition as following code:

```
PROC PRINT DATA = project2.aba_BN (OBS=10);
   WHERE count > 0 ;
   TITLE 'Number of books purchased from B&N by B&N customer (10 observations)';
RUN;
```

Figure 2.Q1.2 Number of books purchased from B&N by all customers (10 observations)

| Obs | userid  | education | region | hhsz | age | income | child | race | country | count |
|-----|---------|-----------|--------|------|-----|--------|-------|------|---------|-------|
| 1   | 6365661 | 5         | 1      | 2    | 11  | 7      | 0     | 1    | 0       | 1     |
| 3   | 6396922 | 2         | 2      | 2    | 8   | 4      | 0     | 1    | 0       | 1     |
| 12  | 8999933 | 4         | 3      | 5    | 10  | 3      | 1     | 1    | 0       | 1     |
| 19  | 9573834 |           | 4      | 2    | 10  | 5      | 1     | 1    | 0       | 2     |
| 20  | 9576277 |           | 1      | 3    | 8   | 7      | 1     | 1    | 0       | 5     |
| 22  | 9581009 |           | 2      | 2    | 7   | 5      | 1     | 1    | 0       | 1     |
| 24  | 9595310 | 4         | 2      | 2    | 8   | 2      | 1     | 1    | 0       | 6     |
| 31  | 9611445 | 2         | 4      | 2    | 11  | 6      | 1     | 1    | 1       | 2     |
| 34  | 9663372 | 4         | 4      | 3    | 9   | 7      | 1     | 1    | 0       | 28    |
| 36  | 9752844 | 3         | 4      | 2    | 7   | 3      | 1     | 1    | 0       | 2     |

#### **Q2 NBD Model**

For now ignore the demographic information, and run the **NBD Model**. Report your code and the MLE results (including the optimized LL value, all the estimated parameter values, and the according p-values – same requirement for all MLE estimations in this project). (Hint: you will need to create a new dataset similar to the one on slide 5 in the count model lecture.)

We start with creating new dataset include frequency of book purchase from B&N, with the number of people in each frequency category.

```
PROC SORT DATA = project2.aba_BN;
BY count;
RUN;
DATA project2.aba_BN_NBD (KEEP = count peoplecount rename = (count = bookbought));
*bookbought = the numbers of book purchased,
peoplecount = the numbers of customer who bought particular numbers of books;
SET project2.aba_BN;
BY count;
IF first.count THEN peoplecount = 0;
peoplecount+1;
IF last.count;
RUN;
```

Now, run the NBD model on aba BN NBD dataset.

```
PROC NLMIXED DATA = project2.aba_BN_NBD;
PARMS r=1 a=1;
```

```
ll=peoplecount*log((gamma(r+bookbought)/(gamma(r)*fact(bookbought)))*((
a/(a+1))**r)*(
(1/(a+1))**bookbought));
model peoplecount ~ general(ll);
run;
```

Figure 2.Q2.1 Iteration History

|      |       | Iterati    | on History |          |          |
|------|-------|------------|------------|----------|----------|
| Iter | Calls | NegLogLike | Diff       | MaxGrad  | Slope    |
| 1    | 8     | 10365.2339 | 1089.023   | 1431.815 | -139998  |
| 2    | 13    | 9931.94799 | 433.2859   | 9228.643 | -40215   |
| 3    | 15    | 9301.22895 | 630.719    | 2434.901 | -2738.35 |
| 4    | 24    | 8598.15462 | 703.0743   | 2871.251 | -2926.2  |
| 5    | 29    | 8527.54158 | 70.61304   | 5139.898 | -515.817 |
| 6    | 31    | 8395.14247 | 132.3991   | 2072.149 | -232.63  |
| 7    | 34    | 8384.08461 | 11.05786   | 765.6312 | -47.1141 |
| 8    | 37    | 8382.00768 | 2.076932   | 145.2793 | -7.01831 |
| 9    | 40    | 8381.72574 | 0.281937   | 53.93981 | -0.71981 |
| 10   | 43    | 8381.71073 | 0.015014   | 2.157912 | -0.03132 |
| 11   | 46    | 8381.7107  | 0.000029   | 0.009556 | -0.00006 |

Figure 2.Q2.2 Parameter Estimates

|                                                                            | Parameter Estimates |          |    |       |        |      |         |        |          |  |  |
|----------------------------------------------------------------------------|---------------------|----------|----|-------|--------|------|---------|--------|----------|--|--|
| Parameter Estimate Standard DF t Value Pr >  t  Alpha Lower Upper Gradient |                     |          |    |       |        |      |         |        |          |  |  |
|                                                                            |                     | Error    |    |       |        |      |         |        |          |  |  |
| r                                                                          | 0.09723             | 0.003060 | 46 | 31.77 | <.0001 | 0.05 | 0.09107 | 0.1034 | 0.009556 |  |  |
| а                                                                          | 0.1299              | 0.006121 | 46 | 21.22 | <.0001 | 0.05 | 0.1176  | 0.1422 | 0.006192 |  |  |

Optimized LL value = -8381.7107 as shown in last row of figure 2.Q2.1.

Estimated parameter value for r and a is 0.09723 and 0.1299, respectively.

Each of the parameter has a p-value less than 0.001, meaning they are robust.

#### Q3 Reach, Average Frequency and GRPs

Based on the NBD Model results, report Reach, Average Frequency and GRPs. Show your calculation.

Given r = 0.09723 and a = 0.1299, we have

$$P(X(t) = 0) | r, a) = (a/(a+r))^r = (0.1299/1.1299)^0.09723 = 0.8103$$

$$E(x) = r/a = 0.09723/0.1299 = 0.7485$$

Reach: 1 - P(X = 0) = 1 - 0.8103 = 0.1897

Average Frequency: E(x) / Reach = 0.7485 / 0.1897 = 3.9457

GRPs: 100 \* E(x) = 74.85

#### **Q4 Poisson Regression Model**

Hereafter we will consider consumer demographic information. Run the **Poisson Regression Model** using the provided customer characteristics. Report your code and the MLE results.
Which customer characteristics matter, i.e., what is your managerial takeaway? (Hint: should you "date" in this regression? Why?)

In this step, we'll compare the results of keep original education variable, drop education variable, and imputed education. First, let's see the results.

```
*Keep original education;

PROC NLMIXED DATA = project2.aba_BN;

*m stands for lamdha 1.region 2.hhsz 3.age 4,income 5.child 6.race
7.country 8.education;

PARMS m0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0;

m=m0*exp(b1*region + b2*hhsz + b3*age +b4*income +b5*child + b6*race +b7*country + b8*education);

11 = count * log(m) - m - log(fact(count));

model count ~ general(l1);

RUN;
```

Figure 2.Q4.1 Iteration History (keep education)

| Iter | Calls | NegLogLike | Diff     | MaxGrad  | Slope    |
|------|-------|------------|----------|----------|----------|
| 1    | 7     | 5335.93007 | 68.52481 | 1010.059 | -329719  |
| 2    | 10    | 5236.49234 | 99.43773 | 258.1952 | -8654.18 |
| 3    | 13    | 5229.61869 | 6.873653 | 316.2926 | -518.021 |
| 4    | 16    | 5223.53299 | 6.085698 | 205.7796 | -284.827 |
| 5    | 18    | 5207.38998 | 16.14301 | 196.6932 | -238.166 |
| 6    | 21    | 5206.03328 | 1.356697 | 164.7983 | -83.0562 |
| 7    | 25    | 5200.72074 | 5.312543 | 51.93542 | -13.7424 |
| 8    | 28    | 5200.34785 | 0.37289  | 12.51784 | -2.52062 |
| 9    | 31    | 5200.1984  | 0.149456 | 41.07219 | -0.54748 |
| 10   | 34    | 5200.13719 | 0.06121  | 42.95756 | -0.14437 |
| 11   | 37    | 5200.10726 | 0.029925 | 24.49258 | -0.0239  |
| 12   | 40    | 5200.09918 | 0.008077 | 0.36936  | -0.01882 |
| 13   | 43    | 5200.09907 | 0.000119 | 0.358829 | -0.00023 |
| 14   | 46    | 5200.09906 | 6.817E-7 | 0.001534 | -1.24E-6 |

Figure 2.Q4.2 Parameter Estimates (keep original education)

|           | Parameter Estimates |          |      |         |         |       |         |          |          |  |  |  |  |
|-----------|---------------------|----------|------|---------|---------|-------|---------|----------|----------|--|--|--|--|
| Parameter | Estimate            | Standard | DF   | t Value | Pr >  t | Alpha | Lower   | Upper    | Gradient |  |  |  |  |
|           |                     | Error    |      |         |         |       |         |          |          |  |  |  |  |
| m0        | 1.2246              | 0.1694   | 2537 | 7.23    | <.0001  | 0.05  | 0.8924  | 1.5567   | -0.00018 |  |  |  |  |
| b1        | -0.1886             | 0.02152  | 2537 | -8.76   | <.0001  | 0.05  | -0.2307 | -0.1464  | 0.001534 |  |  |  |  |
| b2        | -0.06638            | 0.02110  | 2537 | -3.15   | 0.0017  | 0.05  | -0.1078 | -0.02500 | -0.00141 |  |  |  |  |
| b3        | 0.03102             | 0.01048  | 2537 | 2.96    | 0.0031  | 0.05  | 0.01046 | 0.05158  | 0.001411 |  |  |  |  |
| b4        | 0.05632             | 0.01285  | 2537 | 4.38    | <.0001  | 0.05  | 0.03112 | 0.08151  | -0.00007 |  |  |  |  |
| b5        | 0.2922              | 0.06630  | 2537 | 4.41    | <.0001  | 0.05  | 0.1622  | 0.4222   | -0.00019 |  |  |  |  |

| b6 | -0.08510 | 0.05723 | 2537 | -1.49 | 0.1371 | 0.05 | -0.1973 | 0.02711  | 0.000277 |
|----|----------|---------|------|-------|--------|------|---------|----------|----------|
| b7 | -0.3970  | 0.06624 | 2537 | -5.99 | <.0001 | 0.05 | -0.5269 | -0.2671  | 0.000382 |
| b8 | -0.1292  | 0.01648 | 2537 | -7.84 | <.0001 | 0.05 | -0.1616 | -0.09693 | 0.000195 |

From figure 2.Q4.2, we can see education matters (p-value < 0.0001). Let's see the results of drop education:

```
*Drop education;

DATA project2.aba_BN_DropEdu (DROP = education);

SET project2.aba_BN;

PROC NLMIXED DATA = project2.aba_BN;

*m stands for lamdha 1.region 2.hhsz 3.age 4,income 5.child 6.race 7.country;

PARMS m0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0;

m=m0*exp(b1*region + b2*hhsz + b3*age +b4*income +b5*child + b6*race + b7*country);

11 = count * log(m) - m - log(fact(count));

model count ~ general(l1);

RUN;
```

Figure 2.Q4.3 Iteration History (drop education)

| Iter | Calls | NegLogLike | Diff     | MaxGrad  | Slope    |
|------|-------|------------|----------|----------|----------|
| 1    | 7     | 19131.3561 | 118.2637 | 11148.89 | -4732921 |
| 2    | 10    | 19019.6203 | 111.7358 | 9266.612 | -24720.9 |
| 3    | 13    | 19007.6722 | 11.94811 | 9587.303 | -4739.42 |
| 4    | 16    | 18993.5093 | 14.16297 | 9221.457 | -1209.33 |
| 5    | 18    | 18965.1286 | 28.38068 | 6604.476 | -1653.16 |
| 6    | 22    | 18895.8788 | 69.24975 | 4059.086 | -384.994 |
| 7    | 24    | 18866.5994 | 29.27939 | 3510.019 | -467.328 |
| 8    | 27    | 18851.5934 | 15.00599 | 3529.117 | -159.313 |
| 9    | 29    | 18834.0776 | 17.51585 | 55.73741 | -49.6731 |
| 10   | 33    | 18833.433  | 0.644568 | 175.3987 | -11.1432 |
| 11   | 36    | 18833.3092 | 0.123785 | 17.08166 | -0.22293 |
| 12   | 39    | 18833.2797 | 0.029559 | 18.53352 | -0.02442 |
| 13   | 42    | 18833.2751 | 0.004634 | 3.19224  | -0.00867 |
| 14   | 45    | 18833.275  | 0.000037 | 0.546293 | -0.00009 |

Figure 2.Q4.4 Parameter Estimates (drop education)

|           | Parameter Estimates |          |      |        |         |      |          |          |          |
|-----------|---------------------|----------|------|--------|---------|------|----------|----------|----------|
| Parameter | Estimate            | Standard | DF   | t Valu | Pr >  t | Alph | Lower    | Upper    | Gradient |
|           |                     | Error    |      | е      |         | а    |          |          |          |
| m0        | 0.9533              | 0.07213  | 9451 | 13.22  | <.0001  | 0.05 | 0.8119   | 1.0947   | 0.047886 |
| b1        | -0.1029             | 0.01110  | 9451 | -9.27  | <.0001  | 0.05 | -0.1246  | -0.08111 | 0.115971 |
| b2        | -0.01572            | 0.01108  | 9451 | -1.42  | 0.1561  | 0.05 | -0.03744 | 0.00600  | 0.117042 |
|           |                     |          |      |        |         |      |          | 6        |          |
| b3        | 0.02478             | 0.005009 | 9451 | 4.95   | <.0001  | 0.05 | 0.01496  | 0.03459  | 0.546293 |
| b4        | 0.01522             | 0.006325 | 9451 | 2.41   | 0.0161  | 0.05 | 0.002819 | 0.02762  | 0.300087 |
| b5        | 0.07428             | 0.03202  | 9451 | 2.32   | 0.0204  | 0.05 | 0.01151  | 0.1371   | 0.044482 |
| b6        | -0.2081             | 0.04424  | 9451 | -4.70  | <.0001  | 0.05 | -0.2948  | -0.1214  | 0.016519 |
| b7        | -0.1176             | 0.03374  | 9451 | -3.49  | 0.0005  | 0.05 | -0.1837  | -0.05145 | -0.01508 |

Figure 2.Q4.5 Iteration History (imputed education)

| Iter | Calls | NegLogLike | Diff     | MaxGrad  | Slope    |
|------|-------|------------|----------|----------|----------|
| 1    | 8     | 18952.0361 | 297.5836 | 1481.135 | -5294971 |
| 2    | 11    | 18856.761  | 95.27512 | 1853.863 | -34468   |
| 3    | 15    | 18841.84   | 14.92101 | 1464.537 | -5853.71 |
| 4    | 18    | 18836.2425 | 5.597472 | 1535.224 | -974.663 |
| 5    | 21    | 18830.0917 | 6.150884 | 1464.523 | -398.86  |
| 6    | 24    | 18820.734  | 9.357664 | 1287.688 | -355.756 |
| 7    | 26    | 18805.0467 | 15.68733 | 445.7959 | -67.8507 |
| 8    | 29    | 18801.3277 | 3.718918 | 124.9747 | -12.4967 |
| 9    | 32    | 18800.641  | 0.686751 | 91.5355  | -8.98713 |
| 10   | 34    | 18800.3098 | 0.331161 | 786.7841 | -1.46298 |
| 11   | 36    | 18800.0986 | 0.211233 | 485.7869 | -1.29813 |
| 12   | 38    | 18799.7361 | 0.362475 | 209.9448 | -1.93594 |
| 13   | 40    | 18799.487  | 0.249122 | 32.01242 | -0.41708 |
| 14   | 43    | 18799.3338 | 0.153207 | 38.31138 | -0.23223 |
| 15   | 46    | 18799.3131 | 0.020649 | 13.0633  | -0.02257 |
| 16   | 49    | 18799.3127 | 0.000426 | 3.675301 | -0.00106 |
| 17   | 52    | 18799.3127 | 0.000019 | 0.006934 | -0.00004 |

Figure 2.Q4.6 Parameter Estimates (imputed education)

|           | Parameter Estimates |          |      |         |         |       |          |          |          |
|-----------|---------------------|----------|------|---------|---------|-------|----------|----------|----------|
| Parameter | Estimate            | Standard | DF   | t Value | Pr >  t | Alpha | Lower    | Upper    | Gradient |
|           |                     | Error    |      |         |         |       |          |          |          |
| m0        | 1.3683              | 0.1192   | 9451 | 11.48   | <.0001  | 0.05  | 1.1347   | 1.6019   | 0.001742 |
| b1        | -0.1015             | 0.01111  | 9451 | -9.14   | <.0001  | 0.05  | -0.1233  | -0.07977 | 0.006433 |
| b2        | -0.01489            | 0.01109  | 9451 | -1.34   | 0.1796  | 0.05  | -0.03663 | 0.006856 | 0.005605 |
| b3        | 0.02480             | 0.005014 | 9451 | 4.95    | <.0001  | 0.05  | 0.01497  | 0.03463  | 0.00517  |
| b4        | 0.01754             | 0.006341 | 9451 | 2.77    | 0.0057  | 0.05  | 0.005113 | 0.02997  | 0.006934 |
| b5        | 0.07153             | 0.03207  | 9451 | 2.23    | 0.0257  | 0.05  | 0.008675 | 0.1344   | 0.000716 |
| b6        | -0.2091             | 0.04418  | 9451 | -4.73   | <.0001  | 0.05  | -0.2957  | -0.1225  | 0.002349 |
| b7        | -0.1151             | 0.03374  | 9451 | -3.41   | 0.0007  | 0.05  | -0.1812  | -0.04892 | 0.000282 |
| b8        | -0.1298             | 0.01561  | 9451 | -8.32   | <.0001  | 0.05  | -0.1604  | -0.09924 | 0.005824 |

From figure 2.4.6, we can also found education matters (p-value < 0.0001). So, we cannot drop variable education in granted.

#### optimized LL value

comparing the 3 results, we can found that the optimized LL value (-18799) is very similar between drop education and imputed education (-18833), while the optimized LL value of keep education (-5200) is far different.

#### Estimated λ

Estimated  $\lambda$ (keep education) = 1.2246, with a p-value < 0.001, is very robust. Estimated  $\lambda$ (drop education) = 0.9533, with a p-value < 0.001, is very robust. Estimated  $\lambda$ (imputed education) = 1.3683, with a p-value < 0.001, is very robust.

#### Variables' parameter estimate

We can also discovered that b6 (race) has no statistical significance when we keep education because p-value= 0.1371, greater than 0.05, while b2 (hhsz) has no significant effect when drop education or impute education for their p-value > 0.05 respectively (p(drop education) = 0.1561, p(imputed education)=0.1796).

For SAS is friendly with missing value, we may conclude that by the number of records increasing race increasing its statistical significance while hhsz losing its statistical significance.

More data, more persuasive. In the following analysis, we'll only display the imputed education version.

All the other variables' p-value are less than 0.05, meaning those valuables are statistically significant.

#### Takeaway

The Poisson regression model assume numbers of books bought by individual from B&N in 2007 is distributed follow a Poisson distribution with a parameter  $\lambda$  (mean number of book individual purchased)

The demographic information will influence the  $\lambda$ .

As regression results suggest, household size of customer has no influence on the  $\lambda$ . For region (b1), race (b6), country (b7), and education (b8), move from lowest category to largest category has **negative impact** on the  $\lambda$ . Other variables, include age, income, and child, when move from lowest category to largest category, has **positive impact** on the  $\lambda$ .

We didn't take care of date in this step for the following reasons:

- a) Because in Poisson Regression Model, Yi denote the number of times individual I visits the site in a unit time period, we set the whole year as the time period. So, we dropped data during analysis in this step.
- b) In this step, we only concern the number of books bought by customers. So, each book-buyer should only have one record that indicates how many books she bought in the given time period and other buyer related information. We cannot group all records that have the same userID together as one record by using date.

## **Q5 Formula LL for NBD Regression Model**

For the **NBD Regression Model**, what is the formula for LL? Write it down in your report. Getting this math formula clearly written will help your follow-up coding.

LL( $\mathbf{r}, \alpha, \beta$ ) = Sum of Ln ( $P(Y_i = y)$ ) Given that:

$$P(Y_i = y) = \frac{\Gamma(r+y)}{\Gamma(r)y!} \left(\frac{\alpha}{\alpha + \exp(\beta' \mathbf{x_i})}\right)^r \left(\frac{\exp(\beta' \mathbf{x_i})}{\alpha + \exp(\beta' \mathbf{x_i})}\right)^y$$

In SAS, we can write:

```
ll = log(gamma(r+count)) - log(gamma(r)) - log(fact(count)) + r*log(a/(a+expBX)) + count*log(expBX/(a+expBX));
```

#### **Q6 NBD Regression Model**

Run the **NBD Regression Model** using the provided customer characteristics. Report your code and the MLE results. Which customer characteristics matter, i.e., what is your managerial takeaway?

```
PROC NLMIXED DATA = work.aba_BN_imputed;
*1.region 2.hhsz 3.age 4,income 5.child 6.race 7.country 8.education;
PARMS r=1 a=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0;
expBX = exp(b1*region + b2*hhsz + b3*age +b4*income +b5*child + b6*race + b7*country +b8*education);
l1 = log(gamma(r+count)) - log(gamma(r)) - log(fact(count)) +
r*log(a/(a+expBX)) + count*log(expBX/(a+expBX));
model count ~ general(l1);
RUN;
```

Figure 2.Q6.2 Parameter Estimates (NBD Regression Model)

|      | Iteration History |       |            |          |          |          |  |  |
|------|-------------------|-------|------------|----------|----------|----------|--|--|
| Iter |                   | Calls | NegLogLike | Diff     | MaxGrad  | Slope    |  |  |
| 1    |                   | 7     | 11280.0445 | 174.2126 | 2239.299 | -1449616 |  |  |
| 2    |                   | 15    | 9470.57747 | 1809.467 | 8119.057 | -70575.3 |  |  |
| 3    |                   | 21    | 9404.66519 | 65.91228 | 10537.66 | -61622.6 |  |  |
| 4    |                   | 24    | 9375.1607  | 29.50449 | 10475.44 | -977.834 |  |  |
| 5    |                   | 26    | 9277.28341 | 97.87729 | 9313.871 | -1940.08 |  |  |
| 6    |                   | 37    | 8712.25538 | 565.028  | 3380.621 | -7909.4  |  |  |
| 7    |                   | 41    | 8702.58939 | 9.665992 | 4019.83  | -1817.74 |  |  |
| 8    |                   | 45    | 8490.91706 | 211.6723 | 2823.482 | -1003.81 |  |  |
| 9    |                   | 48    | 8433.64351 | 57.27355 | 4903.967 | -627.017 |  |  |
| 10   |                   | 50    | 8393.47299 | 40.17052 | 1148.343 | -325.508 |  |  |
| 11   |                   | 53    | 8377.19649 | 16.2765  | 294.6432 | -27.232  |  |  |
| 12   |                   | 56    | 8375.37006 | 1.826432 | 155.1778 | -3.86248 |  |  |
| 13   |                   | 59    | 8374.44537 | 0.924686 | 130.4013 | -1.48627 |  |  |
| 14   |                   | 62    | 8374.33078 | 0.114592 | 151.7908 | -0.11173 |  |  |
| 15   |                   | 66    | 8372.40972 | 1.921064 | 104.3921 | -0.10961 |  |  |
| 16   |                   | 71    | 8371.14381 | 1.265905 | 323.9334 | -3.32194 |  |  |
| 17   |                   | 73    | 8369.46952 | 1.674288 | 560.9624 | -3.56255 |  |  |
| 18   |                   | 76    | 8368.60254 | 0.866984 | 243.6148 | -3.8597  |  |  |

| 19 | 78 | 8368.23779 | 0.364751 | 420.2127 | -0.79783 |
|----|----|------------|----------|----------|----------|
| 20 | 80 | 8367.69208 | 0.54571  | 151.6247 | -2.3958  |
| 21 | 83 | 8367.48616 | 0.205919 | 15.40133 | -0.29931 |
| 22 | 86 | 8367.44178 | 0.044378 | 20.10581 | -0.0383  |
| 23 | 89 | 8367.42891 | 0.012869 | 5.211488 | -0.02646 |
| 24 | 92 | 8367.42629 | 0.002627 | 4.948225 | -0.00499 |
| 25 | 95 | 8367.42614 | 0.000146 | 1.045264 | -0.00021 |
| 26 | 98 | 8367.42612 | 0.000016 | 0.256857 | -0.00002 |

Optimized LL value = -8367.42612 as shown in the last row of figure above.

Figure 2.Q6.2 Parameter Estimates (NBD Regression Model)

|           | Parameter Estimates |          |      |         |         |       |          |          |          |
|-----------|---------------------|----------|------|---------|---------|-------|----------|----------|----------|
| Parameter | Estimate            | Standard | DF   | t Value | Pr >  t | Alpha | Lower    | Upper    | Gradient |
|           |                     | Error    |      |         |         |       |          |          |          |
| r         | 0.09845             | 0.003107 | 9451 | 31.68   | <.0001  | 0.05  | 0.09236  | 0.1045   | -0.25686 |
| a         | 0.07642             | 0.01877  | 9451 | 4.07    | <.0001  | 0.05  | 0.03962  | 0.1132   | 0.032923 |
| b1        | -0.09987            | 0.03214  | 9451 | -3.11   | 0.0019  | 0.05  | -0.1629  | -0.03686 | -0.01015 |
| b2        | -0.00446            | 0.03334  | 9451 | -0.13   | 0.8935  | 0.05  | -0.06982 | 0.06089  | -0.03466 |
| b3        | 0.02927             | 0.01497  | 9451 | 1.95    | 0.0506  | 0.05  | -0.00008 | 0.05862  | -0.0328  |
| b4        | 0.01764             | 0.01874  | 9451 | 0.94    | 0.3467  | 0.05  | -0.01910 | 0.05438  | -0.0649  |
| b5        | 0.05681             | 0.09215  | 9451 | 0.62    | 0.5375  | 0.05  | -0.1238  | 0.2374   | -0.00523 |
| b6        | -0.2222             | 0.1009   | 9451 | -2.20   | 0.0278  | 0.05  | -0.4200  | -0.02430 | -0.00108 |
| b7        | -0.06879            | 0.09646  | 9451 | -0.71   | 0.4758  | 0.05  | -0.2579  | 0.1203   | -0.00031 |
| b8        | -0.1271             | 0.04766  | 9451 | -2.67   | 0.0077  | 0.05  | -0.2205  | -0.03368 | -0.0226  |

The estimated r = 0.09845 and  $\alpha = 0.07642$ , both with a p-value < 0.0001, are very robust.

For parameter estimate, the only 3 variables that help explain  $\lambda$  is region (b1), race (b6) and education (b8).

```
region (b1) = -0.09987@ p-value = 0.0019;
race (b6) = -0.2222@p-value = 0.0278;
education (b8) = -0.1271@p-value = 0.0077
```

Since both p-value increase compare to what in the Poisson regression model (recall, p-value < 0.0001), their explaining power decrease.

All other demographic variables have very little influence or even irrelevant with book purchase decision, due to their large p-value, which makes the parameter estimate statistically insignificant.

#### Takeaway:

We believe the Poisson regression model in Question 4 only capture the **observed heterogeneity** among individuals (use the observed demographic information), yet there is unobserved heterogeneity not captured by Poisson regression model and lower its explanatory power. We use NBD regression model to capture the **unobserved heterogeneity**.

In NBD regression model, we assume  $\lambda$  vary across population by follow a gamma distribution, with parameter r and  $\alpha$ . Demographic information also influence  $\lambda$ .

Compare with the Poisson regression model, the optimized LL value increase dramatically from -18799.3127 to -8367.42612. This suggest NBD regression model fits the given dataset much better than Poisson regression model.

As regression result suggest, given r = 0.09845 and  $\alpha = 0.07642$ , region, race and education, move from lowest category to largest category has a negative impact on the  $\lambda$ .

Other demographic variables have **no influence** on the  $\lambda$ .

## **Q7 Difference between Poisson Regression and NBD Regression**

Any noticeable difference regarding the managerial takeaways between Poisson Regression and NBD Regression? If yes, what exactly is the difference? (Optional: Any thought on why the difference?)

There is significant difference between the results of the two models.

The differences are analysis below:

In Poisson regression model, the optimized LL value is -18799.3127. And the estimated parameter value of  $\lambda_0$  is 1.3683, with a p-value less than 0.0001. At a 1% level, we found this estimator robust.

In NBD regression model, the optimized LL value is -8367.42612. And the estimated parameter value of r and  $\alpha$  is 0.07642 and 0.09845. With the P-value less than 0.001. The estimators are very robust.

Since the LL increased in NBD regression model compared with Poisson, this suggest NBD regression model fits better for the data.

There are five demographic variables help explain the  $\lambda$  in Poisson regression model.

```
region (b1) = -0.1015@ p-value < 0.0001; age (b3) = 0.02480@ p-value = < 0.0001; income (b4) = 0.01754@ p-value = 0.0057; child (b5) = 0.07153@ p-value = 0.0257; race (b6) = -0.2091@ p-value < 0.0001; country (b7) = -0.1151@ p-value = 0.0007; education(b8) = -0.129@ p-value < 0.0001
```

While in NBD regression model, there are only 3 left, and their explaining power decrease.

```
region (b1) = -0.09987@ p-value = 0.0019;
race (b6) = -0.2222@p-value = 0.0278;
education (b8) = -0.1271@p-value = 0.0077
```

The cause of the difference is due to existence of unobserved heterogeneity in the variables (for instance, people has different buying frequencies). In the Poisson regression, the explanatory variables may not fully capture differences among individuals. But the NBD regression is able to capture unobserved component of differences among the variable.

#### **Q8 Compare Poisson Regression and NBD Regression**

Does NBD Regression fit the data better than Poisson Regression? (Hint: use the LR test – i.e., likelihood ratio test – on slide 29 in the count model lecture.)

LR = -2 (LLNBD – LLPoisson)

If LR > Chi-Squire (0.05, k) NBD Regression performance is not the same with Poisson Regression

Here K = 1 since NBD Regression has 1 more constraints than Poisson Regression model.

LR= -2 (- 8367.42612 - (18799.3127))= 20863.77316

Chi-Squire (0.05, 1) = 3.8415;

We can found that the NBD Regression model is superior to the Poisson Regression model for fitting data much better.

## 3. Part II. Improving the Model Compare

Please try to improve the **NBD Regression Model** using the following three methods. Two hints:

- Note that not all things we try can improve the model in case of no improvement, concisely write down why you think it didn't work.
- Since we are not using any validation dataset, the correct way to compare models is to use the LR test, which you can easily do manually with the LL values reported by SAS for each model and a Chi-squares table (see, e.g., https://www.medcalc.org/manual/chi-square-table.php, the "0.05" column)
- The following questions regarding model improvement are all open questions. For each question, just give a few tries and report your results and your thoughts

#### **Q9** Feature selection

Similar to what you found out in Project 1, not all variables are always useful. Please try feature selection (i.e. selecting only a subset of customer characteristics), and report your findings. (Hint: You can use Enterprise Miner to get some ideas on which variables to keep/remove, or, you can use the built-in variable selection mechanisms in SAS statistical procedures.)

In this question, we'll use the dataset generated in **Question 1**, project2.aba\_BN. Quick recap what we have in question one:

- 1. Filled all the missing values in region variables
- 2. Kept the education variable as original

3. Generated a new variable named count, representing the number of books purchased from BN

From feature selection results from SAS Enterprise Miner, we can found that variable selection method is based on R square. The higher R square, the more impact of the variable. The results show that Region contributes the most to the number of book purchased. Followed by Education, Race, Age, Country, Income, Child, and Hhsz in respectively.



Figure 3.Q9.1 Feature selection results (Histogram) from SAS Enterprise Miner

SAS Enterprise Miner **rejected all the original variables** for those R-Square are too small to have enough impact on count.



Figure 3.Q9.3 Feature selection results from SAS Enterprise Miner

Figure 3.Q9.3 Feature selection results (R-Square) from SAS Enterprise Miner

| The DM | INE Procedure  |            |            |              |
|--------|----------------|------------|------------|--------------|
|        | R-Squares      | for Target | Variable:  | count        |
| Effect |                | DF         | R-Squar    | e            |
| A0V16: | age            | 10         | 0.00185    | 1            |
| Class: | race*region    | 15         | 0.00131    | 7            |
| Group: | race*region    | 4          | 0.00129    | 3            |
| Class: | country*region | 7          | 0.00117    | 5            |
| Group: | country*region | 4          | 0.00116    | 8            |
| Class: | child*region   | 7          | 0.00101    | 9            |
| Group: | child*region   | 4          | 0.00100    | 5            |
| Class: | region         | 3          | 0.00082    | 8            |
| Group: | region         | 2          | 0.00082    | 4            |
| A0V16: | income         | 6          | 0.00059    | 0            |
| A0V16: | education      | 5          | 0.00057    | 6            |
| Var:   | education      | 1          | 0.00048    | 2 R2 < MINR2 |
| A0V16: | hhsz           | 5          | 0.00047    | 2 R2 < MINR2 |
| Class: | country*race   | 7          | 0.00047    | 1 R2 < MINR2 |
| Group: | country*race   | 3          | 0.00046    | 8 R2 < MINR2 |
| Class: | child*race     | 7          | 0.00035    | 4 R2 < MINR2 |
| Group: | child*race     | 4          | 0.00035    | 1 R2 < MINR2 |
| Class: | child*country  | 3          | 0.00028    | 8 R2 < MINR2 |
| Class: | race           | 3          | 0.00026    | 7 R2 < MINR2 |
| Group: | race           | 2          | 0.00026    | 7 R2 < MINR2 |
| Var:   | age            | 1          | 0.00021    | 7 R2 < MINR2 |
| Class: | country        | 1          | 0.00011    | 8 R2 < MINR2 |
| Var:   | income         | 1          | 0.00008675 | 7 R2 < MINR2 |
| Class: | child          | 1          | 0.00006062 | 9 R2 < MINR2 |
| Var:   | hhsz           | 1          | 0.00000401 | 5 R2 < MINR2 |

Since SAS Enterprise Miner suggested reject all the original variables. We'll try to check LL and log likelihood by dropping variables.

Figure 3.Q9.3 Optimized LL values by dropping variables

| Dropped Variable        | Optimized LL value | -2 Log Likelihood |
|-------------------------|--------------------|-------------------|
| Region                  | -8372.26175        | 16745             |
| Hhsz                    | -8367.435          | 16735             |
| Age                     | -8369.34099        | 16739             |
| Income                  | -8367.86781        | 16736             |
| Child                   | -8367.61562        | 16735             |
| Race                    | -8369.60011        | 16739             |
| Country                 | -8367.67755        | 16735             |
| Education               | -8371.02347        | 16742             |
| Income, Child, and hhsz | -8367.91261        | 16736             |
| NO drop                 | -8367.42612        | 16735             |

From the results above, we can found that

- 1) keep all the 8 original variables has the best result.
- 2) Drop any variable(s) the results only get worse very slightly

Here, we conclude that we could not improve the performance of NBD regression model by using variable selection.

#### **Q10** Construct new variables

10. You can also construct some variables on your own (e.g. convert date to weekday/weekend, or to holiday/non-holiday, or to seasons, construct percentage of weekend purchases, degree of

loyalty to BN etc. -- totally your call and just try 2-3 ideas). Report your code (including the code for constructing the new variables) and the MLE results. Which newly constructed variables matter, i.e., what is your new managerial takeaway?

In this question, we'll construct 3 new variables: BuyDay, Holiday, and Month

BuyDay: 1 to 7 (represent Monday to Sunday) Holiday:

- 1 : 4 days before and 4 days after NEWYEAR
- 2 : 4 days before and 4 days after USINDEPENDENCE
- 3 : 4 days before and 4 days after LABOR
- 4 : 4 days before and 4 days after THANKSGIVING
- 5 : 4 days before and 4 days after CHRISTMAS

Month: 1,2,3,4,5,6,7,8,9,10,11,12 (calendar month)

In this step, we'll use the aba\_imputed dataset, because we already imputed missing values, and change the date type.

```
DATA work.aba constructed (DROP = product price dday);
set work.aba imputed;
*Set the Holiday variable;
DATA work.aba constructed (DROP = domain product qty price dday sum qty
avg price day holidays or not weekday or not );
set work.aba imputed2;
*Set the Holiday variable;
if (DATE => (holiday('NEWYEAR', 2007)-4) and DATE <=
(holiday('NEWYEAR', 2007)+4))
   then Holiday=1;/*NEWYEAR 4 days before and 4 days after*/
   else if (DATE => (holiday('USINDEPENDENCE', 2007)-4) and DATE <=</pre>
(holiday('USINDEPENDENCE', 2007)+4))
      then Holiday=2; /*USINDEPENDENCE 4 days before and 4 days after */
   else if (DATE => (holiday('LABOR', 2007)-4) and DATE <=
(holiday('LABOR', 2007)+4))
      then Holiday=3;/*LABOR 4 days before and 4 days after*/
   else if (DATE => (holiday('THANKSGIVING', 2007)-4) and DATE <=
(holiday('THANKSGIVING', 2007)+4))
      then Holiday=4;/*thanksgiving 4 days before and 4 days after*/
   else if (DATE => (holiday('CHRISTMAS', 2007)-4) and DATE <=
(holiday('CHRISTMAS', 2007)+4))
      then Holiday=5;/*CHRISTMAS 4 days before and 4 days after*/
   else Holiday=0;
*Set the variable of Month;
   if DATE => "01Jan2007"d and DATE <= "31Jan2007"d then Month=1;
   else if DATE => "01Feb2007"d and DATE <= "28Feb2007"d then Month=2;
   else if DATE => "01Mar2007"d and DATE <= "31Mar2007"d then Month=3;
   else if DATE => "01Apr2007"d and DATE <= "30Apr2007"d then Month=4;
   else if DATE => "01May2007"d and DATE <= "31May2007"d then Month=5;
  else if DATE => "01Jun2007"d and DATE <= "30Jun2007"d then Month=6;
  else if DATE => "01Jul2007"d and DATE <= "31Jul2007"d then Month=7;
   else if DATE => "01Aug2007"d and DATE <= "31Aug2007"d then Month=8;
   else if DATE => "01Sep2007"d and DATE <= "30Sep2007"d then Month=9;
   else if DATE => "010ct2007"d and DATE <= "310ct2007"d then Month=10;
```

```
else if DATE => "01Nov2007"d and DATE <= "30Nov2007"d then Month=11;
else if DATE => "01Dec2007"d and DATE <= "31Dec2007"d then Month=12;

/*Set the variable of Weekend*/
    dday=weekday(DATE);
    if dday =1 then BuyDay=7;
    if dday =2 then BuyDay=1;
    if dday =3 then BuyDay=2;
    if dday =4 then BuyDay=3;
    if dday =5 then BuyDay=4;
    if dday =6 then BuyDay=5;
    if dday =7 then BuyDay=6;

Run;</pre>
```

Now, we'll use we constructed dataset with new variables to check consumers book-buying behavior. If the quantity of books a customer bought from holiday, weekend or a given day more than what they bought from other days, we'll treat them as holiday/weekend customer.

```
Proc Sort Data = work.aba constructed;
   By userid;
Run;
data work.aba constructed Hcount(drop=Holiday BuyDay Month
total H times count BN times domain qty);
   set work.aba constructed;
   by userid;
   if first.userid then do;
      total H times=0; count BN times=0; count BN qty=0;
      /*count BN qty: the total quantity buy from BN;
      count times: the total times buy from BN;
      total H times: total times buy from holiday*/
end;
count BN times+1;
   if holiday^=0 then total H times+1;
   if domain='barnesandnoble.com' then count BN qty + qty;
   if last.userid then averageho=round(total H times/count BN times);
   if last.userid;
run:
proc genmod data = work.aba constructed count;
  model count BN qty = region hhsz age income child race country
education averageho
   /dist=NB link=log type1 type3;
run;
```

The results show below:

Figure 3.Q10.1 Criteria For Assessing Goodness of Fit-Holiday

| Criteria For Assessing Goodness Of Fit |      |            |          |  |  |  |  |
|----------------------------------------|------|------------|----------|--|--|--|--|
| Criterion                              | DF   | Value      | Value/DF |  |  |  |  |
| Deviance                               | 9441 | 4237.8366  | 0.4489   |  |  |  |  |
| Scaled Deviance                        | 9441 | 4237.8366  | 0.4489   |  |  |  |  |
| Pearson Chi-Square                     | 9441 | 15587.4210 | 1.6510   |  |  |  |  |
| Scaled Pearson X2                      | 9441 | 15587.4210 | 1.6510   |  |  |  |  |
| Log Likelihood                         |      | 1431.9806  |          |  |  |  |  |
| Full Log Likelihood                    |      | -8366.6392 |          |  |  |  |  |
| AIC (smaller is better)                |      | 16755.2784 |          |  |  |  |  |

| AICC (smaller is better) | 16755.3064 |
|--------------------------|------------|
| BIC (smaller is better)  | 16833.9710 |

Figure 3.Q10.2 LR statistics for type 1-Holiday

|           | LR Statistics For Type 1 Analysis |            |            |        |  |  |  |  |  |
|-----------|-----------------------------------|------------|------------|--------|--|--|--|--|--|
| Source    | 2*LogLikelihood                   | Chi-Square | Pr > ChiSq |        |  |  |  |  |  |
| Intercept | 2833.8182                         |            |            |        |  |  |  |  |  |
| region    | 2844.2912                         | 1          | 10.47      | 0.0012 |  |  |  |  |  |
| hhsz      | 2844.3699                         | 1          | 0.08       | 0.7791 |  |  |  |  |  |
| age       | 2848.5274                         | 1          | 4.16       | 0.0415 |  |  |  |  |  |
| income    | 2849.5897                         | 1          | 1.06       | 0.3027 |  |  |  |  |  |
| child     | 2850.0252                         | 1          | 0.44       | 0.5093 |  |  |  |  |  |
| race      | 2854.0955                         | 1          | 4.07       | 0.0436 |  |  |  |  |  |
| country   | 2855.1926                         | 1          | 1.10       | 0.2949 |  |  |  |  |  |
| education | 2862.3873                         | 1          | 7.19       | 0.0073 |  |  |  |  |  |
| averageho | 2863.9612                         | 1          | 1.57       | 0.2096 |  |  |  |  |  |

Form type 1 results, we can found region, age, race and education have stats significance for their p-value <.05. Averageho has no statistical significance. This means the new variable we constructed, holiday, is not appropriate by the data.

Figure 3.Q10.3 LR statistics for type 3-Holiday

| LR Statistics For Type 3 Analysis |    |            |            |  |  |  |  |
|-----------------------------------|----|------------|------------|--|--|--|--|
| Source                            | DF | Chi-Square | Pr > ChiSq |  |  |  |  |
| region                            | 1  | 9.28       | 0.0023     |  |  |  |  |
| hhsz                              | 1  | 0.03       | 0.8689     |  |  |  |  |
| age                               | 1  | 3.87       | 0.0492     |  |  |  |  |
| income                            | 1  | 0.84       | 0.3589     |  |  |  |  |
| child                             | 1  | 0.35       | 0.5550     |  |  |  |  |
| race                              | 1  | 4.21       | 0.0403     |  |  |  |  |
| country                           | 1  | 0.53       | 0.4677     |  |  |  |  |
| education                         | 1  | 7.22       | 0.0072     |  |  |  |  |
| averageho                         | 1  | 1.57       | 0.2096     |  |  |  |  |

Form type 3 results, we can found region, age, race and education have stats significance for their p-value >.05. Type 3 also demonstrated that the new variable, holiday, is not fit better.

#### Code for BuyDay

```
*BuyDay;
data work.aba_constructed_Dcount(drop=Holiday BuyDay Month
total_H_times count_BN_times domain qty);
  set work.aba_constructed;
  by userid;
  if first.userid then do;
    total_D_times=0; count_BN_times=0; count_BN_qty=0;
    /*count_BN_qty: the total quantity buy from BN;
    count_times: the total times buy from BN;
    total_H_times: total times buy from BuyDay*/
end;
count_BN_times+1;
total_D_times+BuyDay;
  if domain='barnesandnoble.com' then count_BN_qty + qty;
```

```
if last.userid then averageBDay =
round(total_D_times/count_BN_times);
  if last.userid;
run;

proc genmod data = work.aba_constructed_Dcount;
  class averageBDay;
  model count_BN_qty = region hhsz age income child race country
education averageBDay
  /dist=NB link=log type1 type3;
run;
```

Results as below: Figure 3.Q10.4 Criteria For Assessing Goodness of Fit-BuyDay

| Criteria For Assessing Goodness Of Fit |      |            |          |  |  |  |  |  |  |
|----------------------------------------|------|------------|----------|--|--|--|--|--|--|
| Criterion                              | DF   | Value      | Value/DF |  |  |  |  |  |  |
| Deviance                               | 9436 | 4249.3712  | 0.4503   |  |  |  |  |  |  |
| Scaled Deviance                        | 9436 | 4249.3712  | 0.4503   |  |  |  |  |  |  |
| Pearson Chi-Square                     | 9436 | 14526.8998 | 1.5395   |  |  |  |  |  |  |
| Scaled Pearson X2                      | 9436 | 14526.8998 | 1.5395   |  |  |  |  |  |  |
| Log Likelihood                         |      | 1456.8895  |          |  |  |  |  |  |  |
| Full Log Likelihood                    |      | -8341.7303 |          |  |  |  |  |  |  |
| AIC (smaller is better)                |      | 16715.4605 |          |  |  |  |  |  |  |
| AICC (smaller is better)               |      | 16715.5182 |          |  |  |  |  |  |  |
| BIC (smaller is better)                |      | 16829.9226 |          |  |  |  |  |  |  |

Figure 3.Q10.5 LR statistics for type 1-BuyDay

|             | LR Statistics For Type 1 Analysis |    |            |            |  |  |  |  |  |
|-------------|-----------------------------------|----|------------|------------|--|--|--|--|--|
| Source      | 2*LogLikelihood                   | DF | Chi-Square | Pr > ChiSq |  |  |  |  |  |
| Intercept   | 2833.8182                         |    |            |            |  |  |  |  |  |
| region      | 2844.2912                         | 1  | 10.47      | 0.0012     |  |  |  |  |  |
| hhsz        | 2844.3699                         | 1  | 0.08       | 0.7791     |  |  |  |  |  |
| age         | 2848.5274                         | 1  | 4.16       | 0.0415     |  |  |  |  |  |
| income      | 2849.5897                         | 1  | 1.06       | 0.3027     |  |  |  |  |  |
| child       | 2850.0252                         | 1  | 0.44       | 0.5093     |  |  |  |  |  |
| race        | 2854.0955                         | 1  | 4.07       | 0.0436     |  |  |  |  |  |
| country     | 2855.1926                         | 1  | 1.10       | 0.2949     |  |  |  |  |  |
| education   | 2862.3873                         | 1  | 7.19       | 0.0073     |  |  |  |  |  |
| averageBDay | 2913.7790                         | 6  | 51.39      | <.0001     |  |  |  |  |  |

Form type 1 results, we can found region, age, race, education, and averageBDay have stats significance for their p-value <.05. This means the new variable we constructed, BuyDay, would be appropriated by the data.

Figure 3.Q10.6 LR statistics for type 3-BuyDay

| LR Statistics For Type 3 Analysis |    |            |            |  |  |  |  |  |
|-----------------------------------|----|------------|------------|--|--|--|--|--|
| Source                            | DF | Chi-Square | Pr > ChiSq |  |  |  |  |  |
| region                            | 1  | 9.97       | 0.0016     |  |  |  |  |  |
| hhsz                              | 1  | 0.01       | 0.9316     |  |  |  |  |  |
| age                               | 1  | 3.88       | 0.0489     |  |  |  |  |  |
| income                            | 1  | 0.92       | 0.3384     |  |  |  |  |  |
| child                             | 1  | 0.14       | 0.7060     |  |  |  |  |  |

| race        | 1 | 5.52  | 0.0188 |
|-------------|---|-------|--------|
| country     | 1 | 0.08  | 0.7708 |
| education   | 1 | 4.16  | 0.0415 |
| averageBDay | 6 | 51.39 | <.0001 |

Form type 3 results, we can found region, age, race, education, and averageBDay have stats significance for their p-value <.05. Type 3 result also demonstrates that the new variable we constructed, BuyDay, would be appreciated by the data.

Figure 3.Q10.7 Maximum Likelihood Parameter Estimates-BuyDay

|             |   |    | Analysis O | f Maximum Lik | elihood Parar | neter Estimat | es        |            |
|-------------|---|----|------------|---------------|---------------|---------------|-----------|------------|
| Parameter   |   | DF | Estimate   | Standard      | Wald 95%      | Confidence    | Wald Chi- | Pr > ChiSq |
|             |   |    |            | Error         | Lin           | nits          | Square    |            |
| Intercept   |   | 1  | -0.2476    | 0.2698        | -0.7763       | 0.2811        | 0.84      | 0.3587     |
| region      |   | 1  | -0.1015    | 0.0322        | -0.1645       | -0.0384       | 9.95      | 0.0016     |
| hhsz        |   | 1  | 0.0028     | 0.0332        | -0.0623       | 0.0680        | 0.01      | 0.9317     |
| age         |   | 1  | 0.0293     | 0.0149        | 0.0001        | 0.0584        | 3.87      | 0.0490     |
| income      |   | 1  | 0.0179     | 0.0187        | -0.0187       | 0.0545        | 0.92      | 0.3372     |
| child       |   | 1  | 0.0348     | 0.0922        | -0.1458       | 0.2154        | 0.14      | 0.7058     |
| race        |   | 1  | -0.2513    | 0.1007        | -0.4486       | -0.0540       | 6.23      | 0.0126     |
| country     |   | 1  | -0.0281    | 0.0963        | -0.2169       | 0.1606        | 0.09      | 0.7703     |
| education   |   | 1  | -0.0969    | 0.0477        | -0.1905       | -0.0034       | 4.13      | 0.0422     |
| averageBDay | 1 | 1  | -0.0275    | 0.1656        | -0.3522       | 0.2971        | 0.03      | 0.8679     |
| averageBDay | 2 | 1  | 0.1523     | 0.1539        | -0.1493       | 0.4539        | 0.98      | 0.3224     |
| averageBDay | 3 | 1  | 0.6194     | 0.1472        | 0.3309        | 0.9079        | 17.70     | <.0001     |
| averageBDay | 4 | 1  | 0.5902     | 0.1467        | 0.3027        | 0.8776        | 16.19     | <.0001     |
| averageBDay | 5 | 1  | 0.4588     | 0.1522        | 0.1605        | 0.7572        | 9.09      | 0.0026     |
| averageBDay | 6 | 1  | 0.6809     | 0.1640        | 0.3594        | 1.0023        | 17.24     | <.0001     |
| averageBDay | 7 | 0  | 0.0000     | 0.0000        | 0.0000        | 0.0000        |           |            |
| Dispersion  |   | 1  | 9.9325     | 0.3151        | 9.3338        | 10.5697       |           |            |

We can find more detailed information in the above table: Wednesday, Thursday, Friday and Saturday have statistical significance.

#### Code for Month:

```
*Month;
data work.aba constructed Mcount(drop=Holiday BuyDay Month
total H times count BN times domain qty);
   set work.aba constructed;
  by userid;
   if first.userid then do;
      total M times=0; count BN times=0; count BN qty=0;
      /*count BN qty: the total quantity buy from BN;
     count times: the total times buy from BN;
      total M times: total times buy from Month*/
end;
count BN times+1;
total M times+Month;
   if domain='barnesandnoble.com' then count BN qty + qty;
   if last.userid then
averageMonth=round(total M times/count BN times);
  if last.userid;
run;
```

```
proc genmod data = work.aba_constructed_Mcount;
   class averageMonth;
   model count_BN_qty = region hhsz age income child race country
averageMonth
   /dist=NB link=log type1 type3;
run;
```

Figure 3.Q10.8 Criteria For Assessing Goodness of Fit-Month

| Criteria For Assessing Goodness Of Fit |      |            |          |  |  |  |  |  |
|----------------------------------------|------|------------|----------|--|--|--|--|--|
| Criterion                              | DF   | Value      | Value/DF |  |  |  |  |  |
| Deviance                               | 9431 | 4251.4780  | 0.4508   |  |  |  |  |  |
| Scaled Deviance                        | 9431 | 4251.4780  | 0.4508   |  |  |  |  |  |
| Pearson Chi-Square                     | 9431 | 13823.9496 | 1.4658   |  |  |  |  |  |
| Scaled Pearson X2                      | 9431 | 13823.9496 | 1.4658   |  |  |  |  |  |
| Log Likelihood                         |      | 1458.7577  |          |  |  |  |  |  |
| Full Log Likelihood                    |      | -8339.8621 |          |  |  |  |  |  |
| AIC (smaller is better)                |      | 16721.7241 |          |  |  |  |  |  |
| AICC (smaller is better)               |      | 16721.8221 |          |  |  |  |  |  |
| BIC (smaller is better)                |      | 16871.9555 |          |  |  |  |  |  |

Compared with the base NBD regression model:

```
LR = -2 (LLNBD – LLPoisson)
```

LLNBD = -8367.42612

LR (Holiday) = -2(-8367.42612 - (-8366.6392)) = 1.57384

LR (BuyDay) = -2(-8367.42612 - (-8341.7303)) = 51.39164

LR (Month) = -2(-8367.42612 - (-8339.8621)) = 55.12804

Chi-Square (0.05, 1) = 3.8415

From the results above, we can find that the new variable BuyDay and Month fits better than the original model for their LRs> Chi-Square, while Holiday fit worse than the original model for LR < Chi-Square.

Figure 3.Q10.9 LR statistics for type 1-Month

|              | LR Statistics For Type 1 Analysis |    |            |            |  |  |  |  |  |
|--------------|-----------------------------------|----|------------|------------|--|--|--|--|--|
| Source       | 2*LogLikelihood                   | DF | Chi-Square | Pr > ChiSq |  |  |  |  |  |
| Intercept    | 2833.8182                         |    |            |            |  |  |  |  |  |
| region       | 2844.2912                         | 1  | 10.47      | 0.0012     |  |  |  |  |  |
| hhsz         | 2844.3699                         | 1  | 0.08       | 0.7791     |  |  |  |  |  |
| age          | 2848.5274                         | 1  | 4.16       | 0.0415     |  |  |  |  |  |
| income       | 2849.5897                         | 1  | 1.06       | 0.3027     |  |  |  |  |  |
| child        | 2850.0252                         | 1  | 0.44       | 0.5093     |  |  |  |  |  |
| race         | 2854.0955                         | 1  | 4.07       | 0.0436     |  |  |  |  |  |
| country      | 2855.1926                         | 1  | 1.10       | 0.2949     |  |  |  |  |  |
| education    | 2862.3873                         | 1  | 7.19       | 0.0073     |  |  |  |  |  |
| averageMonth | 2917.5154                         | 11 | 55.13      | <.0001     |  |  |  |  |  |

Form type 1 results, we can found region, age, race, education, and averageMonth have stats significance for their p-value <.05. This means the new variable we constructed, Month, is appreciated by the data.

Figure 3.Q10.9 LR statistics for type 3-Month

| LR Statistics For Type 3 Analysis |    |            |            |  |  |  |  |  |
|-----------------------------------|----|------------|------------|--|--|--|--|--|
| Source                            | DF | Chi-Square | Pr > ChiSq |  |  |  |  |  |
| region                            | 1  | 9.81       | 0.0017     |  |  |  |  |  |
| hhsz                              | 1  | 0.06       | 0.8023     |  |  |  |  |  |
| age                               | 1  | 2.76       | 0.0967     |  |  |  |  |  |
| income                            | 1  | 0.14       | 0.7094     |  |  |  |  |  |
| child                             | 1  | 0.42       | 0.5149     |  |  |  |  |  |
| race                              | 1  | 3.89       | 0.0486     |  |  |  |  |  |
| country                           | 1  | 0.10       | 0.7561     |  |  |  |  |  |
| education                         | 1  | 7.17       | 0.0074     |  |  |  |  |  |
| averageMonth                      | 11 | 55.13      | <.0001     |  |  |  |  |  |

Form type 1 results, we can found region, race, education, and averageMonth have stats significance for their p-value <.05. This means the new variable we constructed, BuyDay, is appreciated by the data.

Figure 3.Q10.10 Maximum Likelihood Parameter Estimates-Month

|              |    |    | Analysis | Of Maximum Lik | elihood Param | eter Estimates |           |            |
|--------------|----|----|----------|----------------|---------------|----------------|-----------|------------|
| Parameter    |    | DF | Estimate | Standard       | Wald 95%      | Confidence     | Wald Chi- | Pr > ChiSq |
|              |    |    |          | Error          | Lin           | nits           | Square    |            |
| Intercept    |    | 1  | 0.1579   | 0.2677         | -0.3668       | 0.6826         | 0.35      | 0.5552     |
| region       |    | 1  | -0.1003  | 0.0321         | -0.1631       | -0.0375        | 9.79      | 0.0018     |
| hhsz         |    | 1  | 0.0083   | 0.0333         | -0.0569       | 0.0735         | 0.06      | 0.8024     |
| age          |    | 1  | 0.0249   | 0.0150         | -0.0045       | 0.0542         | 2.76      | 0.0969     |
| income       |    | 1  | 0.0070   | 0.0188         | -0.0298       | 0.0438         | 0.14      | 0.7091     |
| child        |    | 1  | 0.0601   | 0.0922         | -0.1205       | 0.2407         | 0.43      | 0.5144     |
| race         |    | 1  | -0.2103  | 0.1014         | -0.4090       | -0.0115        | 4.30      | 0.0381     |
| country      |    | 1  | -0.0300  | 0.0963         | -0.2188       | 0.1588         | 0.10      | 0.7555     |
| education    |    | 1  | -0.1259  | 0.0473         | -0.2186       | -0.0333        | 7.10      | 0.0077     |
| averageMonth | 1  | 1  | -0.3053  | 0.1728         | -0.6441       | 0.0334         | 3.12      | 0.0773     |
| averageMonth | 2  | 1  | -0.3295  | 0.1756         | -0.6736       | 0.0146         | 3.52      | 0.0606     |
| averageMonth | 3  | 1  | -0.0659  | 0.1786         | -0.4160       | 0.2842         | 0.14      | 0.7120     |
| averageMonth | 4  | 1  | 0.2301   | 0.1761         | -0.1151       | 0.5753         | 1.71      | 0.1914     |
| averageMonth | 5  | 1  | 0.3867   | 0.1700         | 0.0535        | 0.7198         | 5.18      | 0.0229     |
| averageMonth | 6  | 1  | 0.2075   | 0.1627         | -0.1114       | 0.5264         | 1.63      | 0.2021     |
| averageMonth | 7  | 1  | 0.5659   | 0.1604         | 0.2516        | 0.8803         | 12.45     | 0.0004     |
| averageMonth | 8  | 1  | 0.1453   | 0.1607         | -0.1697       | 0.4602         | 0.82      | 0.3660     |
| averageMonth | 9  | 1  | -0.0310  | 0.1662         | -0.3568       | 0.2948         | 0.03      | 0.8521     |
| averageMonth | 10 | 1  | 0.1079   | 0.1761         | -0.2372       | 0.4530         | 0.38      | 0.5399     |
| averageMonth | 11 | 1  | -0.1468  | 0.1788         | -0.4973       | 0.2038         | 0.67      | 0.4119     |
| averageMonth | 12 | 0  | 0.0000   | 0.0000         | 0.0000        | 0.0000         |           |            |
| Dispersion   |    | 1  | 9.9120   | 0.3147         | 9.3141        | 10.5484        |           |            |

We can find that May and July have statistical significance.

### **Q11** Interaction effects

11. Researchers often try to improve a model by considering interaction effects (e.g., age\*income) in the regression. Try 2-3 interaction effects you think are likely. Report your findings.

From the results of SAS Enterprise Miner in question 9 (Figure 3.Q9.1, Figure 3.Q9.1), we can find the R-Square and suggested interaction effects that are (GI\_Region\* Race), (CI\_Country \* Race), and (GI\_Child \* Region). In this question, we'll try to simple combine those variables to see their

effects. The 3 interaction effects we are trying are (Region\* Race), (Country \* Race), and (Child \* Region).

In this step, we'll use the Work.aba\_bn\_imputed dataset we used in question 4. This dataset has imputed education, region and age, and a generated count variable.

```
*Region*Race;
proc genmod data=Project2.aba_bn_imputed;
model count= region hhsz age income child race country region*race
/dist=NB link=log type1 type3;
Run;
```

Figure 3.Q11.1 Criteria For Assessing Goodness of Fit- Region\* Race

| Criteria For Assessing Goodness Of Fit |      |            |          |  |  |  |  |  |  |
|----------------------------------------|------|------------|----------|--|--|--|--|--|--|
| Criterion                              | DF   | Value      | Value/DF |  |  |  |  |  |  |
| Deviance                               | 9442 | 4236.2570  | 0.4487   |  |  |  |  |  |  |
| Scaled Deviance                        | 9442 | 4236.2570  | 0.4487   |  |  |  |  |  |  |
| Pearson Chi-Square                     | 9442 | 16266.4252 | 1.7228   |  |  |  |  |  |  |
| Scaled Pearson X2                      | 9442 | 16266.4252 | 1.7228   |  |  |  |  |  |  |
| Log Likelihood                         |      | 1429.2047  |          |  |  |  |  |  |  |
| Full Log Likelihood                    |      | -8369.4150 |          |  |  |  |  |  |  |
| AIC (smaller is better)                |      | 16758.8301 |          |  |  |  |  |  |  |
| AICC (smaller is better)               |      | 16758.8534 |          |  |  |  |  |  |  |
| BIC (smaller is better)                |      | 16830.3689 |          |  |  |  |  |  |  |

LR (Month) = -2(-8367.42612 - (-8369.4150)) = -3.97776Chi-Square (0.05, 1) = 3.8415

We can find that with the new variable, Region \* Race, the log likelihood decreased slightly from – 8367.42612 to – 8369.4150. But get a worse LR. This shows the new variable fit data not better than the original NBD regression model.

Figure 3.Q11.2 LR statistics for type 1- Region\* Race

| LR Statistics For Type 1 Analysis |                 |    |            |            |  |  |
|-----------------------------------|-----------------|----|------------|------------|--|--|
| Source                            | 2*LogLikelihood | DF | Chi-Square | Pr > ChiSq |  |  |
| Intercept                         | 2833.8182       |    |            |            |  |  |
| region                            | 2844.2912       | 1  | 10.47      | 0.0012     |  |  |
| hhsz                              | 2844.3699       | 1  | 0.08       | 0.7791     |  |  |
| age                               | 2848.5274       | 1  | 4.16       | 0.0415     |  |  |
| income                            | 2849.5897       | 1  | 1.06       | 0.3027     |  |  |
| child                             | 2850.0252       | 1  | 0.44       | 0.5093     |  |  |
| race                              | 2854.0955       | 1  | 4.07       | 0.0436     |  |  |
| country                           | 2855.1926       | 1  | 1.10       | 0.2949     |  |  |
| region*race                       | 2858.4095       | 1  | 3.22       | 0.0729     |  |  |

Figure 3.Q11.3 LR statistics for type 3- Region\* Race

| LR Statistics For Type 3 Analysis |    |            |            |  |  |
|-----------------------------------|----|------------|------------|--|--|
| Source                            | DF | Chi-Square | Pr > ChiSq |  |  |
| region                            | 1  | 0.36       | 0.5466     |  |  |
| hhsz                              | 1  | 0.07       | 0.7925     |  |  |
| age                               | 1  | 3.49       | 0.0618     |  |  |
| income                            | 1  | 0.91       | 0.3396     |  |  |
| child                             | 1  | 0.47       | 0.4940     |  |  |
| race                              | 1  | 0.51       | 0.4741     |  |  |
| country                           | 1  | 1.21       | 0.2714     |  |  |
| region*race                       | 1  | 3.22       | 0.0729     |  |  |

From the LR results of type 1 and type 3, we can see the p-value of region\*race are greater than .05, demonstrating the region\* race variable has no statistical significance. We can conclude that the region\*race variable is not appropriate to the dataset.

```
*Country*Region;
proc genmod data=Project2.aba_bn_imputed;
model count= region hhsz age income child race country country*region
/dist=NB link=log type1 type3;
Run;
```

Figure 3.Q11.4 Criteria For Assessing Goodness of Fit- Country \* Region

| Criteria For Assessing Goodness Of Fit |      |            |          |  |  |
|----------------------------------------|------|------------|----------|--|--|
| Criterion                              | DF   | Value      | Value/DF |  |  |
| Deviance                               | 9442 | 4235.5637  | 0.4486   |  |  |
| Scaled Deviance                        | 9442 | 4235.5637  | 0.4486   |  |  |
| Pearson Chi-Square                     | 9442 | 16276.6536 | 1.7239   |  |  |
| Scaled Pearson X2                      | 9442 | 16276.6536 | 1.7239   |  |  |
| Log Likelihood                         |      | 1427.5991  |          |  |  |
| Full Log Likelihood                    |      | -8371.0206 |          |  |  |
| AIC (smaller is better)                |      | 16762.0413 |          |  |  |
| AICC (smaller is better)               |      | 16762.0646 |          |  |  |
| BIC (smaller is better)                |      | 16833.5801 |          |  |  |

LR (Month) = -2(-8367.42612 - (-8371.0206)) = -7.18896Chi-Square (0.05, 1) = 3.8415

We can find that with the new variable, Region \* Race, the log likelihood decreased slightly from – 8367.42612 to – 8371.0206. But get a worse LR. This shows the new variable fit data not better than the original NBD regression model.

Figure 3.Q11.5 LR statistics for type 1- Country \* Region

| LR Statistics For Type 1 Analysis |                 |    |            |            |  |  |
|-----------------------------------|-----------------|----|------------|------------|--|--|
| Source                            | 2*LogLikelihood | DF | Chi-Square | Pr > ChiSq |  |  |
| Intercept                         | 2833.8182       |    |            |            |  |  |
| region                            | 2844.2912       | 1  | 10.47      | 0.0012     |  |  |
| hhsz                              | 2844.3699       | 1  | 0.08       | 0.7791     |  |  |
| age                               | 2848.5274       | 1  | 4.16       | 0.0415     |  |  |
| income                            | 2849.5897       | 1  | 1.06       | 0.3027     |  |  |
| child                             | 2850.0252       | 1  | 0.44       | 0.5093     |  |  |
| race                              | 2854.0955       | 1  | 4.07       | 0.0436     |  |  |
| country                           | 2855.1926       | 1  | 1.10       | 0.2949     |  |  |
| region*country                    | 2855.1983       | 1  | 0.01       | 0.9402     |  |  |

Figure 3.Q11.6 LR statistics for type 1- Country \* Region

| LR Statistics For Type 3 Analysis |    |            |            |  |  |
|-----------------------------------|----|------------|------------|--|--|
| Source                            | DF | Chi-Square | Pr > ChiSq |  |  |
| region                            | 1  | 9.07       | 0.0026     |  |  |
| hhsz                              | 1  | 0.07       | 0.7847     |  |  |
| age                               | 1  | 3.52       | 0.0605     |  |  |
| income                            | 1  | 0.87       | 0.3504     |  |  |
| child                             | 1  | 0.41       | 0.5228     |  |  |
| race                              | 1  | 3.90       | 0.0484     |  |  |
| country                           | 1  | 0.21       | 0.6439     |  |  |
| region*country                    | 1  | 0.01       | 0.9402     |  |  |

Both the p-value of region \* country in type 1 results and in type 3 results demonstrated a very large p-value, which made us unable to conclude the region\*country variable appropriate for the dataset.

```
*Child*Region;
proc genmod data=Project2.aba_bn_imputed;
model count= region hhsz age income child race country child*region
/dist=NB link=log type1 type3;
Run;
```

Figure 3.Q11.7 Criteria For Assessing Goodness of Fit- Child \* Region

| Criteria For Assessing Goodness Of Fit |      |            |          |  |  |
|----------------------------------------|------|------------|----------|--|--|
| Criterion                              | DF   | Value      | Value/DF |  |  |
| Deviance                               | 9442 | 4235.7611  | 0.4486   |  |  |
| Scaled Deviance                        | 9442 | 4235.7611  | 0.4486   |  |  |
| Pearson Chi-Square                     | 9442 | 16187.2549 | 1.7144   |  |  |
| Scaled Pearson X2                      | 9442 | 16187.2549 | 1.7144   |  |  |
| Log Likelihood                         |      | 1427.9878  |          |  |  |
| Full Log Likelihood                    |      | -8370.6320 |          |  |  |
| AIC (smaller is better)                |      | 16761.2639 |          |  |  |
| AICC (smaller is better)               |      | 16761.2872 |          |  |  |
| BIC (smaller is better)                |      | 16832.8027 |          |  |  |

LR (Month) = -2(-8367.42612 - (-8370.6320)) = -6.41176Chi-Square (0.05, 1) = 3.8415

We can find that with the new variable, Region \* Race, the log likelihood decreased slightly from – 8367.42612 to – 8370.6320. But get a worse LR. This shows the new variable fit data not better than the original NBD regression model.

Figure 3.Q11.8 LR statistics for type 1- Child \* Region

| LR Statistics For Type 1 Analysis |                 |    |            |            |  |  |
|-----------------------------------|-----------------|----|------------|------------|--|--|
| Source                            | 2*LogLikelihood | DF | Chi-Square | Pr > ChiSq |  |  |
| Intercept                         | 2833.8182       |    |            |            |  |  |
| region                            | 2844.2912       | 1  | 10.47      | 0.0012     |  |  |
| hhsz                              | 2844.3699       | 1  | 0.08       | 0.7791     |  |  |
| age                               | 2848.5274       | 1  | 4.16       | 0.0415     |  |  |
| income                            | 2849.5897       | 1  | 1.06       | 0.3027     |  |  |
| child                             | 2850.0252       | 1  | 0.44       | 0.5093     |  |  |
| race                              | 2854.0955       | 1  | 4.07       | 0.0436     |  |  |
| country                           | 2855.1926       | 1  | 1.10       | 0.2949     |  |  |
| region*child                      | 2855.9756       | 1  | 0.78       | 0.3762     |  |  |

Figure 3.Q11.9 LR statistics for type 1- Child \* Region

| LR Statistics For Type 3 Analysis |    |            |            |  |
|-----------------------------------|----|------------|------------|--|
| Source                            | DF | Chi-Square | Pr > ChiSq |  |
| region                            | 1  | 1.09       | 0.2961     |  |
| hhsz                              | 1  | 0.08       | 0.7768     |  |
| age                               | 1  | 3.51       | 0.0609     |  |
| income                            | 1  | 0.81       | 0.3695     |  |
| child                             | 1  | 1.16       | 0.2804     |  |
| race                              | 1  | 3.78       | 0.0519     |  |
| country                           | 1  | 1.10       | 0.2944     |  |
| region*child                      | 1  | 0.78       | 0.3762     |  |

Both the p-value of region \* country in type 1 results and in type 3 results show a large enough p-value to conclude the region\*country variable appropriate for the dataset.

All in all, we constructed the 3 new combined variables are not appropriate for our dataset.

## Part III. Why Certain Customers Prefer Amazon Over BN?

## **Q12** Consumer purchasing propensity

12. Now let's study why certain customers prefer Amazon over BN and vice versa. We will apply the concepts of a choice model – **logistic regression**. For each customer, you need to generate a binary 3 dependent variable indicating whether a user has made a purchase at BN (denote yes as 1 and 0 otherwise). Then use Proc Logistic to run a logistic regression model, report the results and your takeaways. (Optional: Using the data to answer this question: should you do variable selection?)

For this question, we'll apply the logistic regression model. We still use the WORK.aba\_imputed dataset in this step. Quick recap: we imputed missing values of education, region, and age variables in this dataset.

Because we only concern certain consumer prefer Amazon or BN, so we'll drop domain, date, product, qty, price and count variables.

Generate a new variable named NB, representing whether a certain customer purchased book from BN or not.

```
DATA WORK.logistic (DROP = domain date product qty price count);
SET WORK.aba_imputed;
by userid;
IF first.userid THEN count = 0; *initialize the number of purchased book;
IF domain = 'barnesandnoble.com' THEN count+qty; *add the qty purchased from BN;
    IF count > 0 THEN BN=1;
    else BN = 0;
IF last.userid; *keep the final sum;
RUN;
```

Now, run the logistic regression.

```
PROC LOGISTIC DATA = WORK.logistic;
Class education region race country hhsz age income child;
model BN = education region race country hhsz age income child/expb;
RUN;
```

Figure 3.Q12.1 Results of logistic regression

| Type 3 Analysis of Effects |    |            |            |  |  |
|----------------------------|----|------------|------------|--|--|
| Effect                     | DF | Wald       | Pr > ChiSq |  |  |
|                            |    | Chi-Square |            |  |  |
| education                  | 5  | 11.0999    | 0.0494     |  |  |
| region                     | 3  | 31.2289    | <.0001     |  |  |
| race                       | 3  | 2.1303     | 0.5458     |  |  |
| country                    | 1  | 2.0492     | 0.1523     |  |  |

| hhsz   | 5  | 6.2252  | 0.2849 |
|--------|----|---------|--------|
| age    | 10 | 28.7236 | 0.0014 |
| income | 6  | 2.3366  | 0.8863 |
| child  | 1  | 0.8492  | 0.3568 |

From the logistic results, we can find that the education, region, and age variables has a p-value less than .05 respectively. This demonstrates the 3 variables have statistical significance. Other 5 variables would not be appropriate.

Figure 3.Q12.2 Results of logistic regression

| Effect           | Point Estimate | 95% Wald |            |
|------------------|----------------|----------|------------|
|                  |                | Confide  | nce Limits |
| education 0 vs 5 | >999.999       | <0.001   | >999.999   |
| education 1 vs 5 | 1.144          | 0.812    | 1.611      |
| education 2 vs 5 | 1.000          | 0.719    | 1.390      |
| education 3 vs 5 | 1.120          | 0.840    | 1.494      |
| education 4 vs 5 | 1.506          | 1.070    | 2.120      |
| region 1 vs 4    | 0.706          | 0.606    | 0.823      |
| region 2 vs 4    | 0.893          | 0.762    | 1.047      |
| region 3 vs 4    | 1.008          | 0.870    | 1.168      |
| race 1 vs 5      | 0.619          | 0.182    | 2.111      |
| race 2 vs 5      | 0.759          | 0.213    | 2.701      |
| race 3 vs 5      | 0.685          | 0.186    | 2.524      |
| country 0 vs 1   | 1.106          | 0.963    | 1.270      |
| hhsz 1 vs 6      | 0.725          | 0.510    | 1.031      |
| hhsz 2 vs 6      | 0.824          | 0.630    | 1.078      |
| hhsz 3 vs 6      | 0.872          | 0.674    | 1.127      |
| hhsz 4 vs 6      | 0.780          | 0.601    | 1.010      |
| hhsz 5 vs 6      | 0.899          | 0.681    | 1.186      |
| age 1 vs 11      | 1.442          | 0.596    | 3.487      |
| age 2 vs 11      | 1.543          | 0.994    | 2.394      |
| age 3 vs 11      | 1.379          | 1.031    | 1.843      |
| age 4 vs 11      | 1.031          | 0.821    | 1.295      |
| age 5 vs 11      | 1.237          | 0.989    | 1.548      |
| age 6 vs 11      | 0.849          | 0.694    | 1.039      |
| age 7 vs 11      | 1.152          | 0.935    | 1.420      |
| age 8 vs 11      | 1.069          | 0.867    | 1.319      |
| age 9 vs 11      | 0.982          | 0.787    | 1.225      |
| age 10 vs 11     | 1.246          | 0.967    | 1.606      |
| income 1 vs 7    | 0.944          | 0.772    | 1.154      |
| income 2 vs 7    | 1.001          | 0.791    | 1.265      |
| income 3 vs 7    | 0.960          | 0.780    | 1.181      |
| income 4 vs 7    | 0.989          | 0.823    | 1.188      |
| income 5 vs 7    | 0.900          | 0.772    | 1.049      |
| income 6 vs 7    | 0.973          | 0.822    | 1.151      |
| child 0 vs 1     | 1.076          | 0.921    | 1.257      |

The change in the probability of the event as X changes can be answered by Odds ratio. For example, in the above table, the Point Estimate of education 1 VS 5 is 1.144, which means the odds ratio of preferring

**BN** is expected to 14.4% (= (1.144 - 1) \*100%), given the other variables in the model are held constant. While the Point Estimate of race 3 vs 5 is 31.5% (= (1-0.685) \*100%), which means the odds ratio of preferring **Amazon** is expected to 14%, given the other variables in the model are held constant.

From the above table, we can find that people belonging to education 1, 3, 4, region 3, country 0 prefer BN, age 1, 2, 3, 4, 5, ,7, 8, 10, income 2, and child 0 prefer BN, while others prefer Amazon.

## Part IV. Summary Q13 Summary

Summarize what you learned from this project -- it can be key managerial insights you got, BA techniques or SAS skills you learned from this project, new perspective of BA you got by doing hands-on, or anything you feel worthwhile to summarize. Be concise.

First, read data description is very important. Raw data always imperfect for analysis. We should read data description very carefully to check the mistakes in the raw data, such as date type is not the right type for analysis.

Second, data preprocessing is very important. Mistakes and noisy data are obstacle to generate knowledge. Clean data may not generate knowledge, but dirty data is hard to generate valuable knowledge.

Third, clean data may not generate knowledge. Our project 2 for example, the data is clean, however, a large part of variables is not appropriate to generate knowledge. At such scenario, data analyst may try to fitting models, and construct new variable to explore the value concealed in the data.

All in all, data analysis is something like digging gems in a quarry. It's exciting and need to pay more attention.