Thema: Komplexer Logarithmus, Umlaufzahl, Potenzreihenentwicklungssatz

Abgabe: Donnerstag, 28. November 2019

Besprechung: Dienstag, 3. Dezember 2019

Aufgabe 1. (a) Man gebe die komplexe Zahl $(1+i)^{1+i}$ in der Form $r \cdot e^{i\varphi}$ mit $r, \varphi \in \mathbb{R}$ an.

(b) Man gebe $a, b, c \in \mathbb{C} \setminus (-\infty, 0]$ an, so daß

$$a^b \in \mathbb{C} \setminus (-\infty, 0]$$
 aber $(a^b)^c \neq a^{bc}$.

(c) Sei $\gamma:[0,2\pi]\to\mathbb{C}$ gegeben durch

$$t \mapsto \begin{cases} -1 + e^{2it} & \text{für } t \in [0, \pi], \\ 1 - e^{-2(t - \pi)i} & \text{für } t \in (\pi, 2\pi] \end{cases}.$$

Skizzieren Sie γ und berechnen Sie die Umlaufzahlen

$$\nu_{\gamma}(-1)$$
, $\nu_{\gamma}(1)$ und $\nu_{\gamma}(i)$

von γ um die Punkte -1, 1 und i.

Aufgabe 2. Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph. Weiterhin gebe es $A, B \in \mathbb{R}^{\geqslant 0}$, so daß

$$|f(z)| \leq A|z| + B$$
 für alle $z \in \mathbb{C}$.

Man zeige, daß f von der Form

$$f(z) = az + b$$

ist, mit $a, b \in \mathbb{C}$. (Man sagt auch, f ist affin linear.)

Aufgabe 3. Seien $\alpha \neq \beta \in \mathbb{C}$. Man finde alle Lösungen $z \in \mathbb{C}$ der Gleichung

$$\exp(\alpha z) = \exp(\beta z).$$

Aufgabe 4. Sei Log der Hauptzweig des komplexen Logarithmus. Zeigen Sie für $z \in B_1(0)$ die Gleichung

$$Log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}.$$

Zusatzaufgabe. Sei $k \in \mathbb{N}$, $k \geqslant 2$. Man zeige, daß es keine auf dem Einheitskreis S^1 definierte stetige Abbildung g gibt, so daß

$$(g(z))^k = z$$

für alle $z \in S^1 = \partial B_1(0)$.