6.1 Continued

Theorem 6.1.3

Let: I be an interval containing the point c

Assume: $f: I \longrightarrow \mathbb{R}$

f is differentiable at c

iff

for every sequence $\{\mathbf x_n\}$ in I st $\mathbf x_n \longrightarrow \mathbf c$ as $\mathbf n \longrightarrow \infty$ with $\mathbf x_n \ne \mathbf c \ \forall \ \mathbf n \in \mathbb N$,

the sequence

$$\frac{f(x_n) - f(c)}{x_n - c}$$

converges.

Furthermore, if f is differentiable at c, then the sequence of quotients converges to f(c).

(this looks weird, haven't we already proved it?

they're just saying it to be specific, emphasizing the p iff q and not p iff not q part)

Proof.

 \longrightarrow

Assume: f'(c) exists

Then $\lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right) = f'(c)$.

By Theorem 5.1.8, if $\{x_n\}$ lies in I, $x_n \neq c \ \forall \ n \in \mathbb{N}$, and $x_n \longrightarrow c$ as $n \longrightarrow \infty$, then

$$\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} = f'(c)$$

 \leftarrow

Conversely,

Assume: $\{x_n\}$ lies in $I, x_n \neq c \ \forall \ n \in \mathbb{N}$, and $x_n \longrightarrow c \ as \ n \longrightarrow \infty$

Then,

$$\lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c}$$

exists.

Then, by the negation of Theorem 5.1.10,

$$\frac{f(x) - f(c)}{x - c}$$

has a limit at x = c.

Hence, result.

Example 6.1.4

a. Let: f(x) = |x| = x if $x \ge 0$, -x if x < 0. Prove that f is not differentiable at x = 0.

Solution:

Let:
$$\mathbf{x}_n = \frac{(-1)^n}{n} \ \forall \ \mathbf{n} \in \mathbb{N}$$

Notice that if

$$\lim_{x \to 0} \frac{f(x_n) - f(0)}{x_n - 0}$$

exists, then f is differentiable and

$$\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0}$$

exists.

Also, notice that $\mathbf{x}_n \neq 0 \ \forall \ \mathbf{n} \in \mathbb{N}$, $\mathbf{x}_n \ \longrightarrow 0$ as $\mathbf{n} \ \longrightarrow \infty$ and

$$s_n = \frac{f(x_n) - f(0)}{x_n - 0} = \frac{\left|\frac{(-1)^n}{n}\right| - |0|}{\frac{(-1)^n}{n}} = \frac{\frac{1}{n}}{\frac{(-1)^n}{n}} = \frac{1}{(-1)^n}$$

Since $s_n = -1, 1, -1, 1, -1, 1, ..., \{s_n\}$ does not converge.

So by Theorem 6.1.3, f is not differentiable at x = 0.

b. Let: $f(x) = 3x^2 + 1$ if x < 1, $2x^3 + 2$ if $x \ge 1$. Prove that f is differentiable at x = 1.

Solution: We must prove that

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

exists.

We know that:

 $\lim_{x\to c}\,\mathrm{g}(\mathrm{x}) \text{ exists iff } \lim_{x\to c^-}\,\mathrm{g}(\mathrm{x}) = \lim_{x\to c^+}\,\mathrm{g}(\mathrm{x}) = \mathrm{L}$

Left hand side limit:

$$\lim_{x \to 1-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1-} \frac{3x^2 + 1 - 4}{x - 1} = \lim_{x \to 1-} \frac{3(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1-} 3(x + 1) = 6$$

Right hand side limit:

$$\lim_{x \to 1+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1+} \frac{2x^3 + 2 - 4}{x - 1} = \lim_{x \to 1+} \frac{2(x^3 - 1)}{x - 1} = \lim_{x \to 1+} \frac{2(x - 1)(x^2 + x + 1)}{x - 1} = \lim_{x \to 1+} 2(x^2 + x + 1) = 6$$

Hence,

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 6$$

Practice 6.1.5

Let: $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = x \sin(\frac{1}{x})$ if $x \neq 0$ and 0 if x = 0Solution:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin \frac{1}{x} - 0}{x - 0}$$

 $\begin{array}{ll} \textbf{Let:} & \mathbf{x}_n = \frac{2}{n\pi} \; \forall \; \mathbf{n} \in \mathbb{N} \\ \text{Then } \mathbf{x}_n \neq 0 \; \forall \; \mathbf{n} \in \mathbb{N} \; \text{and} \; \mathbf{x}_n \; \longrightarrow 0 \; \text{as} \; \mathbf{n} \; \longrightarrow \infty \; . \end{array}$

However,

$$\frac{f(x_n) - f(0)}{x_n - 0} = \sin \frac{1}{x_n} = \sin \frac{n\pi}{2}$$

Since $\sin(\frac{n\pi}{2}) = 1, 0, -1, 0, 1, 0, -1, ...,$

by Theorem 6.1.3, f is not differentiable at x = 0.

Theorem 6.1.6

If $f: I \longrightarrow \mathbb{R}$ is differentiable at a point $c \in I$, then f is continuous.

Proof.

Recall:

 $\lim_{x \to 0} f(x) = f(c)$ is saying 3 things:

The limit exists, the function is defined at c, and that they're equal to each other.

(you can't say undefined = undefined)

Let: $x \in I$ with $x \neq c$

Then

$$f(x) = \left(\frac{f(x) - f(c)}{x - c}\right)(x - c) + f(c) \longrightarrow f(c)$$

as $x \longrightarrow c$.

by Theorem 5.1.13.

Thus, by Theorem 5.2.21(d)(a), f is continuous.

Theorem 6.1.7

Assume: $f: I \longrightarrow \mathbb{R}$ and $g: I \longrightarrow \mathbb{R}$ are differentiable at $c \in I$. Then,

a. If
$$k \in \mathbb{R}$$
, then $(kf)'(c) = k * f'(c)$

b.
$$(f + g)'(c) = f'(c) + g'(c)$$

c.
$$(fg)'(c) = f(c)g'(c) + f'(c)g(c)$$

d. If
$$g(c) \neq 0$$
, then $(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}$

There's no homework this week, but make sure you know how to prove a, b, and c on your own.

Proof.

(d):

Let: $x \in I, x \neq c$

Then,

$$\frac{(\frac{f}{g})(x) - (\frac{f}{g})(c)}{x - c} = \frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} = \frac{f(x)g(c) - f(c)g(x)}{[g(x)g(c)](x - c)}$$

We have a problem. What if g(x) - g(c) = 0?

Since $g(c) \neq 0$ and g is differentiable at c, we know that g is continuous at c by 5.2 HW problem 11 on 213. Recall:

$$|a| - |b| \le ||a| - |b|| \le |a - b|$$

 $|b| \ge |a| - |a - b|$

so,

$$|g(x)| \ge g(c) - |g(c)| - g(x)| > \frac{|g(c)|}{2} > 0$$

Hence,

 $\exists \delta > 0 \text{ st}$

$$-|g(c) - g(x)| > \frac{-|g(c)|}{2}$$

where $|x - c| < \delta$

So we know that:

 \exists an interval $J \subset I$ st $c \in J$ and if $x \in J$, then $g(x) \neq 0$.

Thus,

$$(\frac{f}{g})(x) - (\frac{f}{g})(c) = \frac{f(x)g(c) - f(c)g(c) \times f(c)g(c) - f(c)g(x)}{g(x)g(c)(x - c)} = \frac{g(c)[f(x) - f(c)]}{g(x)g(c)(x - c)} - \frac{f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)}$$

$$= \frac{g(c)f'(c) - f(c)(g'(c))}{[g(c)]^2}$$