

Shortest Paths

Paths in graphs.

A **shortest path** from u to v is a path of minimum weight from u to v.

The **shortest-path** weight from u to v is defined as:

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Dijkstra's algorithm

$$d[s] \leftarrow 0$$

for each $v \in V - \{s\}$
 $do d[v] \leftarrow \infty$
 $S \leftarrow \emptyset$
 $Q \leftarrow V$ $\triangleright Q$ is a priority queue maintaining $V - S$, keyed on $d[v]$

Let us review the process of Dijkstra with an example

```
S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v) relaxation

then d[v] \leftarrow d[u] + w(u, v) step

Implicit Decrease-Key
```


S: { *A* }

10

Analysis of Dijkstra

Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$ **Total** $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ array binary $O(|E/\lg|V/)$ $O(\lg |V|)$ $O(\lg |V|)$ heap $O(|E| + |V| \lg |V|)$ $O(\lg |V|)$ Fibonacci amortized amortized worst case heap

The heap-optimized
Dijkstra algorithm is far better than the naive
Dijkstra algorithm in most cases

However, for dense graph ($m \approx n^2$), naïve Dijkstra algorithm works better.

Bellman-Ford algorithm

• (-) Slower than Dijkstra's algorithm

Dijkstra can't handle negative edges because it's based on greedy, and the "current best" may not be the "final best" with negative edges.

- (+) Can handle negative edge weights.
 - Can be useful if you want to say that some edges are actively good to take, rather than costly.
 - Can be useful as a building block in other algorithms.

Basic idea:

Instead of picking the u with the smallest d[u] to update, just update all of the u's simultaneously.

Bellman-Ford algorithm

Bellman-Ford(G,s):

- $d[v] = \infty$ for all v in V
- d[s] = 0
- **For** i=0,..., |V|-1:
 - **For** u in V:*
 - **For** v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))

Instead of picking u cleverly,

just update for all of the u's.

Compare to Dijkstra:

- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))
 - Mark u as sure.

Bellman-Ford algorithm

- We are actually going to change this to be less smart.
- Keep n arrays: d⁽⁰⁾, d⁽¹⁾, ..., d⁽ⁿ⁻¹⁾

Bellman-Ford*(G,s):

- $d^{(i)}[v] = \infty$ for all v in V, for all i=0,..., |V|-1
- $d^{(0)}[s] = 0$
- **For** i=0,..., |V|-2:
 - **For** u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$
- Then dist(s,v) = $d^{(n-1)}[v]$

Slightly different than the original Bellman-Ford algorithm, but the analysis is basically the same.

Pros and cons of Bellman-Ford

- Running time: O(|V|/E|) running time
 - For each of |V| steps we update m edges
 - Slower than Dijkstra
- However, it's also more flexible in a few ways.
 - Can handle negative edges
 - If we constantly do these iterations, any changes in the network will eventually propagate through.

How Bellman-Ford deals with negative cycles

- If there are no negative cycles:
 - Everything works as it should.
 - The algorithm stabilizes after |V|-1 rounds.
 - Note: Negative *edges* are okay!!
- If there are negative cycles:
 - Not everything works as it should...
 - it couldn't possibly work, since shortest paths aren't well-defined if there are negative cycles.
 - The d[v] values will keep changing.
- Solution:
 - Go one round more and see if things change.
 - If so, return NEGATIVE CYCLE ⊗

Shortest Path

Single-source shortest paths

- Nonnegative edge weights
 - *Dijkstra's algorithm: $O(|E| + |V| \lg |V|)$
- General
 - *Bellman-Ford algorithm: O(|V|/E|)

All-pairs shortest paths

- Nonnegative edge weights
 - *Dijkstra's algorithm |V| times: $O(|V|/E| + |V|^2 \lg |V|)$
- General
 - ***** Floyd-Warshall algorithms: $\Theta(/V/3)$.

Dynamic Programming

Dynamic Programming

• Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.

 Like divide and conquer, DP solves problems by combining solutions to sub-problems.

- Unlike divide and conquer, sub-problems are not independent.
 - Sub-problems may share sub-sub-problems.

Two Ways to Think and Implement DP

- Top down:
- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 etc..
- The difference from divide and conquer:
 - Keep track of what small problems you've already solved to prevent resolving the same problem twice.
 - Aka, "memoization"

- Bottom up:
- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
- ...
- Then bigger problems
 - fill in F[n-1]
- Then finally solve the real problem.
 - fill in F[n]

The Process of Applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest co Let us review the LCS problem as an example.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Longest Common Subsequence

- Subsequence:
 - BDFH is a subsequence of ABCDEFGH
- If X and Y are sequences, a **common subsequence** is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - ...is a common subsequence that is longest.
 - The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.

Recipe for applying Dynamic Programming

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Step 1: Optimal substructure

Prefixes:

Our sub-problems will be finding LCS's of prefixes to X and Y.

Notation: denote this prefix ACGC by Y₄

```
• Let C[i,j] = length_of_LCS( X<sub>i</sub>, Y<sub>j</sub> )

Examples: C[2,3] = 2
C[4,4] = 3
```

Recipe for applying Dynamic Programming

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

• Write C[i,j] in terms of the solutions to smaller sub-problems

Two cases

- Then C[i,j] = 1 + C[i-1,j-1].
 - because $LCS(X_i, Y_j) = LCS(X_{i-1}, Y_{j-1})$ followed by

Two cases

- Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
 - either $LCS(X_i,Y_i) = LCS(X_{i-1},Y_i)$ and \top is not involved,
 - or $LCS(X_i,Y_i) = LCS(X_i,Y_{i-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or").

Recursive formulation of the optimal solution

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.

- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

- LCS(X, Y):
 - -C[i,0] = C[0,i] = 0 for all i = 0,...,m, j=0,...n.
 - **For** i = 1,...,m and j = 1,...,n:
 - **If** X[i] = Y[j]: -C[i,i] = C[i-1,j-1] + 1
 - Else:
 - $-C[i,j] = \max\{C[i,j-1],C[i-1,j]\}$
 - Return C[m,n]

Running time: O(nm)

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

The End

Jing Tang DSA | HKUST(GZ) 36