2.6.1(a). Show that f can be written in the form f = g + r where $g \in I$ and no term of r is divisible by any element of LT(I).

Proof. Let $G = \{g_1, \dots, g_t\}$ be a Gröbner basis for I. By the division algorithm, we can divide f by g and obtain an expression

$$f = q_1g_1 + \cdots + q_tg_t + r$$

where no term of r is divisible by any of $LT(g_1), \ldots, LT(g_t)$. Since $g_1, \ldots, g_t \in I$ and I is an ideal, we know that $g = q_1g_1 + \cdots + q_tg_t \in I$. Also, since r is a Gröbner basis, we know that $\langle LT(I) \rangle = \langle LT(g_1), \ldots, LT(g_t) \rangle$. Since no term of r is divisible by any of the $LT(g_i)$, we also know that no term of r is divisible by any element of LT(I).

(b). Suppose f = g + r and f = g' + r' are two expressions as in part (a). Prove that r = r' and g = g'.

Proof. Observe that g + r = g' + r'. Moving terms around, we see that

$$r-r'=g'-g$$
.

Since $g, g' \in I$ and I is an ideal, we have $g' - g \in I$, so $r - r' \in I$.

We want to show that r=r', so suppose for a contradiction that $r\neq r'$, which means that r-r' is a nonzero element of I. Then $LT(r-r')\in LT(I)$. But LM(r-r') must be a monomial of either r or r', and we know that no term of either r or r' is divisible by any element of LT(I). This means that LT(r-r') is both an element of LT(I) and not divisible by any element of LT(I), which is of course a contradiction. Thus r=r'.

Now, since
$$g + r = g' + r'$$
 and $r = r'$, we see that $g = g'$ as well.

Discussion. Suppose $\{g_1, g_2\}$ is a Gröbner basis for an ideal I. If you take a polynomial f and divide it by (g_1, g_2) , you get some expression of the form

$$f = q_1q_1 + q_2q_2 + r$$

where no term of r is divisible by any element of LT(I). We can set $g = q_1g_1 + q_2g_2$ to get an element of I such that f = g + r.

On the other hand, if we divide f by (g_2, g_1) , we might get different quotients as you showed in exercise 2.6.2. In other words, you get some expression of the form

$$f=q_1^{\,\prime}g_2+q_2^{\,\prime}g_1+r^{\prime}$$

where no term of r' is divisible by any element of part LT(I), where the quotients are different. But, even though the quotients are different, the polynomial $g' = q'_1g_2 + q'_2g_1$ will be the same as the polynomial g that we computed the first time around! This is what the uniqueness assertion of 2.6.1(b) is saying.

More concretely, in 2.6.2, we have $g_1 = x + z$ and $g_2 = y - z$ and f = xy. If we do the division in the order (g_1, g_2) , we get

$$f = \underbrace{y}_{q_1} \cdot (x+z) \underbrace{-z}_{q_2} \cdot (y-z) \underbrace{-z^2}_{r}$$

so we have $g = y(x + z) - z(y - z) = xy + z^2$. On the other hand, if we do the division in the other order (g_2, g_1) , we get

$$f = \underbrace{x}_{q'_1} \cdot (y - z) + \underbrace{z}_{q'_2} \cdot (x + y) \underbrace{-z^2}_{r'}$$

so we have $g' = x(y - z) + z(x + z) = xy + z^2$, which is the same as g. Notice also that r = r'.