Лекция 4 Введение в теорию индуктивных функций на последовательностях

(c) Д.Н. Лавров 2017

Обозначения

- Х произвольный алфавит, конечное множество.
- Ω(X) = {x₁ x₂ ...xₙ : n ∈ Z⁺, xᵢ ∈ X, ∀i = 1,...,n} множество всех конечных последовательностей над X . Для упрощения записи будем писать просто Ω.
- ∆ пустая последовательность, не содержащая ни одного элемента. Для этой последовательности верно ∆ ∈ Ω.
- $\Omega_k(X) = \{x_1 \ x_2 \ ... x_n : n \in Z^+, \ n > k, \ x_i \in X\}$ множество конечных последовательностей дины не менее k. Заметим, что $\Omega = \Omega_0 \supset \Omega_1 \supset \Omega_2 \ ...$
- *: Ω × X → Ω операция добавления дописывания элемента в конец последовательности (× операция декартового произведения).
- Таким образом, $x_1 x_2 ... x_n * x = x_1 x_2 ... x_n x$. В частности $\Delta * x = x$. Операция * естественно сужается на $\Omega_k \forall k$

Обозначения

- N множество натуральных чисел.
- Z+ множество неотрицательных целых чисел.
- Z множество целых чисел.
- R⁺ множество неотрицательных действительных чисел.
- R множество действительных чисел.
- \overline{N} множество натуральных чисел с + ∞ и - ∞ .
- Аналогичные определения даются и для других множеств.

Определение ИФ

- Определение. Индуктивная функция
 (ИФ) это отображение F : Ω → Y
 такое, что, зная x и F(ω) можно вычислить
 F(ω * x).
- Строго говоря, если $\exists G: Y \times X \to Y: \forall \omega \in \Omega, \ x \in X, F(\omega *x) = G(F(\omega),x).$

Примеры ИФ

- *F* = «Число элементов последовательности».
- Если $\omega_n = x_1 x_2 \dots x_n$ последовательность длины n, то $F(\omega_n) = n$.
- Действительно $\forall \omega \in \Omega, x \in X$ верно, что $F(\omega * x) = F(\omega) + 1$.
- То есть действительно существует функция G(y,x) = y + 1.
- Эта функция удовлетворяет условию определения индуктивности, следовательно, F – индуктивна.

Примеры ИФ

- Пример. F = «Сумма элементов последовательности». В этом случае
- $G(y,x) = y + x u F(\omega *x) = F(\omega) + x$.

Реализация

- Если найдена функция перехода (действие) *G*, то вычисления F легко организовать. Для этого необходимо определить начальное значение F.
- Как правило, его определяют либо на пустой последовательности $F_0 = F(\omega_0) = F(\Delta)$, либо на последовательности из одного элемента $F_1 = F(\omega_1) = F(x_1)$.
- Далее вычисление производиться по правилу $F(\omega_k) = G(F(\omega_{k-1}), x_k)$.
- Реализовать алгоритм можно следующим Python-кодом, если ω представлен списком или кортежем:

F=F0 # стоим в начале последовательности

for x **in** omega:

$$F=G(F,x)$$

Обсуждение

- Фактически данное понятие это адаптация метода построения цикла с помощью инварианта для последовательности
- Оно еще больше похоже на реализацию метода математической индукции в программировании.
- Что будет в этом случае инвариантом цикла?

Обсуждение

- Шаг итерации $(F(\omega_k), X_{k+1}) = (G(F(\omega_{k-1})), X_{k+1}) = T(F(\omega_{k-1}), X_k)$
- I(x) =«В переменной F на шаге k хранится искомое значение задачи для ω_k »
- $Q(x)=(k=len(\omega))$ условие окончания итерации.
- I(x)&Q(x) => F решение задачи для ω .
- Начальная инициализация тоже корректна $I(x_0)$ =True, так как $F(\Delta)$ решение для пустой последовательности, то $I(F(\Delta),x_1)$ =True.

Критерий индуктивности

- **Теорема**. *Критерий индуктивности*. F — индуктивна ⇔ $\forall a,b \in \Omega$: $F(a) = F(b), \forall x \in X$ верно, что F(a*x) = F(b*x).
- Другими словами F индуктивна тогда и только тогда, когда из равенства значений F на двух возможно разных последовательностях, следует, что равны их значения F после удлинения последовательностей а и b одними и тем же элементом х.

!!! Будете плохо учиться, буду требовать доказательства этой теоремы на экзамене !!!

Доказательство

• Доказательство. Необходимость (=>) немедленно следует из определения индуктивности. Если F — индуктивна, то $\forall a,b \in \Omega \ \forall x \in X$ F(a*x) = G(F(a),x) = G(F(b),x) = F(b*x).

Достаточность

- Для доказательства достаточности (<=) построим требуемое отображение
 G: Y ×X → Y такое, что ∀ω ∈ Ω, ∀x ∈ X F(ω *x) = G(F(ω), x). Зададим это отображение формулой
- $G(y,x)=egin{cases} F(\omega*x), & \text{если существует }\omega\in\Omega \text{ такая, что }F(\omega)=y, \\ y, & \text{иначе.} \end{cases}$
- Корректность этого определения вытекает из заданного в условии теоремы свойства функции *F*.
- В самом деле, пусть найдутся две различные цепочки *а* и *b* такие, что F(a) = F(b). Тогда можно гарантировать, что F(a*x) = F(b*x), что и доказывает корректность определения отображения *G*, ибо G(y,x) действительно не зависит от выбора конкретного прообраза элемента *y*.
- Так как $\forall \omega \in \Omega \ \forall x \in X \ F(\omega^*x) = G(F(\omega),x)$ для построенного отображения G, то теорема доказана.

Использование критерия

- Критерий индуктивности часто используют для доказательства неиндуктивности функций.
- Пример F = «Среднеарифметическое элементов последовательности». Можно показать, что данная функция неиндуктивна. Действительно, знаний значения среднего F(ω_{k-1}) для предыдущей последовательности и нового x недостаточно, чтобы вычислить F(ω_{k-1}*x):

$$F(\omega_{k-1}) = \frac{1}{k-1} \sum_{i=1}^{k-1} x_i$$

$$F(\omega_{k-1} * x) = F(\omega_k) = \frac{1}{k} \sum_{i=1}^k x_i = \frac{1}{k} \sum_{i=1}^{k-1} x_i + \frac{1}{k} x_k = \frac{k-1}{k} F(\omega_{k-1}) + \frac{1}{k} x_k,$$

но k- неизвестно, а значить вычислить $F(\omega_k)$, зная лишь $F(\omega_{k-1})$ и x, кажется невозможным.

• Пользуясь критерием индуктивности, легко построить контрпример для индуктивности. Пусть a = [1,2,3], a b = [2,2]. В обоих случаях среднее равно 2: то есть F(a) = F(b) = 2. Пусть x = 5, тогда F(a *x) = 2,75, a F(b *x) = 3, следовательно, F(a*x)! = F(b*x). Критерий индуктивности не выполнен.

Стационарные значения ИФ

• Определение. Стационарным значением индуктивной функции $F: \Omega \to Y$, где её функция перехода $G(\omega, x)$, называется значение $s = F(\omega)$ такое, что G(s, x) = s или более строго, но другими словами $\forall \omega \in \Omega, \forall x \in X, F(\omega) = s \Rightarrow F(\omega * x) = s$.

Применение

- Если у индуктивной функции есть стационарное значение, то дальнейшие вычисления можно остановить, так как дальше значение индуктивной функции изменяться не будет.
- Алгоритм на Python может выглядеть следующим образом:

```
F=F0 # cmoum в начале последовательности
for x in omega:
    if F!=s:
        F=G(F,x)
    else: break
```

• Или даже лучше так (для тех, кто принципиально не использует break):

```
F=F0
i=0
while (i<len(omega)) and (F!=s):
F=G(F,omega[i])
i+=1
```

Пример

- F=«Все элементы последовательности равны 5»
- Определим функцию перехода $F(\omega * x) = G(F(\omega), x) = (F(\omega), ecnu x = 5, uhave False)$
- Очевидно, что значение False является стационарным.
- Доопределим F на пустой последовательности. Нам необходимо, чтобы $F(\Delta * 5) = \text{True } u \ F(\Delta * x) = \text{False}$, если x != 5. Тогда $\text{True} = F(\Delta * 5) = G(F(\Delta), 5) = F(\Delta)$, то есть $F(\Delta) = \text{True}$.
- После небольшого упрощения получаем алгоритм на Python

```
F=True; # инициализация на пустой последовательности

i=0 # в начало последовательности

while (i<len(omega)) and F:

if (omega[i]==5): F=F

else: F=False

i+=1

print(F)

* Избавимся от if внутр

omega=[5,5,1,5,5] # Для в

F=True; # инициализаци

i=0 # в начало последов

while (i<len(omega)) and
```

omega=[5,5,1,5,5] # Для примера

Продолжение примера

• Сравните последнюю версию алгоритма с менее эффективной, но более короткой и понятной предварительно упрощённой версией, не учитывающей наличие стационарных точек:

```
omega=[5,5,1,5,5] # для примера
F=True;
for x in omega:
    F=F and (x==5)
print(F)
```

• Такая версия будет пробегать список до конца, несмотря на то, что ответ уже понятен.

Вопросы