Cryptography & Network Security Lab-6

In the cellular networks, if the Home Agent (HA) and Foreign Agent (HA) want to communicate with each other they first agree on a **Session-key**. Later, they can use this key for encryption and decryption operations. Implement the public key infrastructure to distribute the shared session-key between HA and FA using **Diffie-Hellman key exchange**. Subsequently, encrypt and decrypt messages between HA and FA using the shared session-key. The steps in Diffie-Hellman key exchange are listed below:

- HA and Fa must agree on two large prime numbers q and α . Where $(\alpha < q)$.
- HA selects a private key H_S ($H_S < q$) and computes the public key $H_P = \alpha^{H_S} \mod q$ then sends the public key to FA
- Subsequently, FA picks a private key F_S (H_S <q) and computes the public key F_P = α^{F_S} mod q then sends the public key to HA
- After that, HA computes the shared session key K_{FH} = F_P^{HS} mod q from FA's public key.
- Similarly, FA computes the shared session key K_{FH}= H_P^{FS} mod q from HA's public key.
- Finally, the shared session key **K**_{FH} is used to encrypt and decrypt the messages between FA and HA.

Expected Output:

Home Agent (HA):	Foreign Agent (FA):
Input primes q and α	Input primes q and α
Select the private key:	Select the private key:
Compute Public key:	Compute Public key:
Receive FA's Public key:	Receive HA's Public key:
Compute session-key: SK	Compute session-key: SK
Enter the plaintext M:	Enter the plaintext:10
Encrypted text C: M+SK mod 26	Decrypted text M: C-SK mod 26