This file documents the details of the simulation.

List of functions:

a. 1D Compton-y profile

def battaglia_profile(r, Mvir, z)

Input: radius (Mpc), virial mass (m_{volar}), redshift, ect.

Output: Electron pressure profile (KeV/cm^3)

Library: colossus

Paper: https://arxiv.org/abs/1109.3711 (Battaglia, 2012)

https://arxiv.org/abs/1608.04160 (Vikram, 2016)

https://ui.adsabs.harvard.edu/abs/1986MNRAS.222..323K/abstract (Kaiser,

1986)

https://arxiv.org/abs/astro-ph/0410173 (Voit, 2005)

Steps:

- 1. Calculate ρ_{cri} using Battaglia Eq.1
- 2. Convert M_{vir} to M_{200} & R_{200} using colossus (Concentration: Ishiyama, 2021)
- 3. Calculate P_{200} (Kaiser, 1986; Voit, 2005)
- 4. Calculate p_{th} using Battaglia Eq.10
- 5. Calculate p_e from p_{th} assuming primordial helium mass fraction of 0.24 (Vikram, 2016)

def epp_to_y(profile)

Input: Electron pressure profile (p_e)

Output: Compton-y profile

Paper: https://arxiv.org/abs/1006.1945 (Shaw, 2010)

Steps:

1. Convert from p_e to y using Shaw Eq. 4

b. 2D Compton-y submap

def make proj image new(radius, profile,maxRadius=0.5,pixel scale=0.005,extrapolate=False)

Input: radius, profile (numpy arrays)

Output: image (default to range of $0.5 \, Mpc$)

Steps:

- 1. Meshgrid and calculate distance from center
- 2. Assign amplitude using profile

def Mpc_to_arcmin(r, z)

Input: Distance, redshift

Output: angular scale (arcmin)

Library: astropy

Steps:

1. Set cosmology and use conversion from astropy

c. Convolution with gaussian kernel

def gaussian_kernal(pix_size,beam_size_fwhp)

Input: pixel_size, beam_size, submap

Output: convolved submap

Paper: https://arxiv.org/abs/1106.5065 (Aniano, 2011)

Source: CMB summer school

Steps:

1. Meshgrid and calculate distance from center

2. Construct Gaussian using Aniano Eq.13

def convolve_map_with_gaussian_beam(pix_size, beam_size_fwhp, Map)

Input: pixel_size, beam_size, submap

Output: convolved submap

Library: scipy.signal

Steps:

1. Make gaussian beam

2. Convolution using scipy (FT & IFT)

d. Conversion between Compton-y and ΔT submap

def f_sz(f, T_CMB)

Input: Electron pressure profile (p_e)

Output: Compton-y profile

Paper: https://arxiv.org/abs/2101.08373 (Vavagiakis, 2021)

Steps:

1. Calculate radiation frequency using Vavagiakis Eq.2

2. Calculate temperature decrement using Vavagiakis Eq.1

e. Image output

def generate_img(radius, profile, f, noise_level, beam_size, z, option, s = False, p = None):
Options:

- 1. 1D Compton-y Profile
- 2. 2D Compton-y Submap (unconvolved)
- 3. Gaussian beam
- 4. 2D Compton-y Submap (convolved)
- 5. 2D ΔT submap
- 6. Gaussian Noise
- 7. 2D ΔT submap with noise
- 8. 2D Compton-y Submap with noise
- 9. 2D Compton-y Submap with noise, ring and disk aperture

Note: If AP = True: generate_img returns tSZ signal (disk-ring)

f. Calculation of tSZ signal

def tSZ_signal(z, Map):

Input: redshift, submap

Output: tSZ signal (arcmin)

Library: astropy

Paper: https://arxiv.org/abs/1607.02139 (Calafut et. al., 2021)

https://arxiv.org/abs/2101.08373 (Vavagiakis, 2021)

Steps:

1. Calculate average distance diameter for given z and for z = 0.52. Calculate disk and ring aperture using Calafut Eq. from page 12

3. Meshgrid and calculate distance from center

4. Calculate tSZ signal using Vavagiakis

The simulation contains the following 3 files:

1. generator.ipynb: imports function from the script and data from the yaml file, stores the images in a subdirectory

2. simulation.py: critical functions used to construct the profile and output image

3. config.yaml: specifies the cosmology, telescope

Main inputs: Mass (unit of $10^{13} M_{solar}$), Redshift

Other parameters:

- a. Cosmology (options of Battaglia, Planck 2015, Planck 2018)
- b. Telescope (options of ACT_DR4, ACT_DR5, SPT)
- c. Observation frequency (unit of GHz)

Output:

- a. Final submap: ΔT with noise (option 7)
- b. Other intermediate images (provide sanity check)

Output size: 18 arcmin in diameter (also labeled with Mpc)

Pixel size: 0.5 arcmin (default to Atacama Cosmology Telescope)

Comparison with real data:

ACT 2008:

Data Release: https://lambda.gsfc.nasa.gov/product/act/act-sz-clusters-2008/ Paper: Marriage et al. (2010)

ACT ID	M_{500c} (10 ¹⁴ m_{solar})	Redshift	$\delta T(uk)$ (real)	$\delta T(uk)$ (sim)
ACT-CL J0102-4915	9.9 ± 3.5	0.75	-520 ± 58	-601
ACT-CL J0235-5121	6.2 ± 1.4	0.43	-320 ± 51	-355
ACT-CL J0245-5302	6.6 ± 1.0	0.30	-198 ± 22	-412
ACT-CL J0330-5227	9.7 ± 1.7	0.71	-155 ± 26	-579
ACT-CL J0438-5419	12.1 ± 2.2	0.54	-214 ± 27	-695
ACT-CL J0658-5557	14.0 ± 1.2	0.296	-483 ± 42	-889

Comparison between varying apertures for redshift:

Equation 1:

$$\Theta(z) = 2.1' D_{\!A}(z)/D_{\!A}(z=0.5)$$
 (in the paper)

Equation 2:

$$\Theta(z) = 2.1' D_A(z = 0.5) / D_A(z)$$

The following is based on SPT 150GHz, $5 < M_{vir} < 50~(10^{13} M_{solar})$, 0.1 < z < 4.5: For each mass and redshift, the $\Delta_{retrieve}$ is averaged over 10 instance of random noise

$M_{vir}/10^{13}M_{solar}$	Equation 1	Equation 2
5	54.86	36.28
10	24.33	15.70
15	15.07	10.32
20	10.68	6.61
25	8.00	5.75
30	6.58	4.19
35	4.99	3.48
40	4.60	2.84
45	3.89	2.45
50	3.40	2.19

Visualization:

Each line scaled using the mean over all redshift for a specific mass

Average over all lines (overall trend of $\Delta_{retrieve}$ over redshift)

Both using scaling for Eq.2

Points of intersection: $z = \sim 0.149$, ~ 0.52

Conclusion:

Eq.1 is preferred for range 0.149 < z < 0.52

Eq.2 is preferred for range z < 0.149, z > 0.52

2.1' is an empirical value. Relationship between aperture size and redshift should have an general form of

$$\Theta(z) = m\,x + b$$
 ,where $x = D_{\!A}(z=0.5)/D_{\!A}(z)\,|\,D_{\!A}(z)/D_{\!A}(z=0.5)$

Experiments should be done to determine the value of m and b empirically.

