

EAST WEST UNIVERSITY

B.Sc. in Computer Science and Engineering Program Final Examination, Fall2021

Course: CSE360 – Computer Architecture, Section-1

Instructor: Dr. Md. Sawkat Ali, Assistant Professor, CSE Department

Full Mark: 25

Time: 1 Hour and 10 Minutes

Note: There are FIVE questions, answer ALL of them. Course outcomes (CO), cognitive levels and marks of each question are mentioned at the right margin.

4	7771	FGO.4 G3
1.	With an example, show the status flag of a microprocessor where maximum flag bits are	[CO4, C3,
	activated.	Mark: 5]
2.	Write an assembly language program for adding three 8 bits numbers, where the data is	[CO4, C4,
	located on the memory 'DS' location. Also, the following points should be added to the	Mark: 5]
	code:	
	1) Consider DS = 20PP H, where 'PP' stands for your last two-digit student ID.	
	2) Source index (SI) will be 15TT H where 'TT' stands for the last two-digit student ID.	
	3) Destination index (DI) address will be 2500 H.	
3.	Consider two instructions (m and m+i) are executed in 6 stages pipelining process where	[CO4, C4,
	the last instruction depends on the previous one. With an example, determine which hazard	Mark: 5]
	will be occurred and what would be the solutions.	
4.	Convert infix into the postfix notation using stack:	[CO3, C2,
	$K + L - (M * N) + (Y\Lambda Z) * W/U/V * T + Q$	Mark: 5]
5.	Based on the following equation, write the programs (using three, two and one address	[CO3, C2,
	instructions), and compare them on the basis of memory access, and the number of	Mark: 5]
	instructions.	
	(a-b)	
	$Z = \frac{(a-b)}{c + (d \times e)}$	