7 TD7

7.1 Bayésien hiérarchique, formule de calcul successif

Dans le modèle $\mathcal{P} = \{P_{\theta}, \ \theta \in \mathbb{R}\}$, on propose la loi a priori hiérarchique suivante sur θ

$$\theta \mid \alpha \sim \Pi_{\alpha},$$
 $d\Pi_{\alpha}(\theta) = g_{\alpha}(\theta)d\theta$
 $\alpha \sim Q,$ $dQ(\alpha) = q(\alpha)d\alpha.$

On se place dans le cadre bayésien $X \mid \theta \sim P_{\theta}$ et $\theta \sim \Pi$.

- 1. Déterminer la densité a priori $\pi(\theta)$ puis la densité a posteriori, que l'on notera $\pi(\theta \mid X)$.
- 2. Donner la densité marginale m(X) de X et montrer qu'elle peut s'écrire

$$\int m(X \mid \alpha) q(\alpha) d\alpha, \quad \text{avec} \quad m(X \mid \alpha) = \int p_{\theta}(X) g_{\alpha}(\theta) d\theta.$$

3. On pose

$$\pi(\theta \mid \alpha, X) = \frac{p_{\theta}(X)g_{\alpha}(\theta)}{m(X \mid \alpha)} \quad \text{et} \quad \pi(\alpha \mid X) = \frac{m(X \mid \alpha)q(\alpha)}{m(X)}.$$

Exprimer $\pi(\theta \mid X)$ comme une intégrale faisant intervenir $\pi(\theta \mid \alpha, X)$ et $\pi(\alpha \mid X)$.

4. Interpréter le résultat précédent à la lumière des différentes quantités introduites.

7.2 Convergence

On considère le modèle fondamental $\mathcal{P} = \{P_{\theta}^{(n)}, \ \theta \in \mathbb{R}\}$, pour lequel

$$P_{\theta}^{(n)} = P_{\theta}^{\otimes n}, \qquad P_{\theta} = \mathcal{N}(\theta, 1).$$

On dispose de n observations $X = (X_1, \ldots, X_n)$ et on se place dans le cadre bayésien

$$X \mid \theta \sim P_{\theta}^{(n)}$$

 $\theta \sim \Pi.$

On forme la loi a posteriori $\Pi[\cdot | X]$, la loi de $\theta | X$. On étudie cette loi du point de vue fréquentiste : on suppose qu'il existe une 'vraie' valeur $\theta_0 \in \mathbb{R}$ du paramètre θ et on étudie $\Pi[\cdot | X]$ en probabilité sous $X \sim P_{\theta_0}^{(n)}$. On note E_{θ_0} l'espérance sous cette loi.

Partie A. Dans cette partie, on choisit $\Pi = \mathcal{N}(a, 1)$, où a est un réel fixé.

1. Montrer que, pour \overline{X} la moyenne empirique des X_i ,

$$\Pi[\cdot \mid X] = \mathcal{N}\left(\overline{\theta}, \frac{1}{n+1}\right), \qquad \overline{\theta} = \frac{n\overline{X} + a}{n+1}.$$

2. A partir de l'expression explicite ci-dessus de la loi a posteriori, démontrer directement que, quand $n \to \infty$, pour tout $M_n \to \infty$

$$E_{\theta_0}\Pi\left[\left.\{\theta:|\theta-\theta_0|\leq \frac{M_n}{\sqrt{n}}\}\right|X\right]\to 1.$$

3. De même toujours à partir de l'expression explicite montrer que pour tout $m_n \to 0$,

$$E_{\theta_0}\Pi \left[\left\{ \theta : |\theta - \theta_0| \le \frac{m_n}{\sqrt{n}} \right\} \mid X \right] \to 0.$$

4. Interpréter les résultats de 2. et 3. du point de vue des vitesses de convergence. Si le modèle et la loi a priori ne sont plus gaussiens, peut-on retrouver les résultats précédents?

PARTIE B. Dans cet partie, on choisit $\Pi = \text{Unif}[0,1]$. Par ailleurs, on appelle loi normale tronquée sur l'intervalle J = [a,b] une loi de densité sur \mathbb{R} proportionnelle à

$$\varphi_{\mu,\sigma^2}(x)\mathbb{1}_J(x),$$

pour φ_{μ,σ^2} la densité d'une $\mathcal{N}(\mu,\sigma^2)$.

- 1. Montrer que la loi a posteriori $\Pi[\cdot\,|\,X]$ est une loi gaussienne tronquée.
- 2. On étudie maintenant le comportement de $\Pi[\cdot \mid X]$ sous $P_{\theta_0}^{(n)}$.
 - (a) Dans cette question $\theta_0 \in (0,1)$. La loi a posteriori est-elle consistante?
 - (b) On suppose $|\theta_0 1/2| > 1/2$. La loi a posteriori est-elle consistante?
 - (c) Si $\theta_0 \ge 1$, montrer que pour tout $\varepsilon > 0$, quand $n \to \infty$,

$$E_{\theta_0}\Pi[A_{\varepsilon} \mid X] \to 1$$
, où $A_{\varepsilon} := \{\theta, 1 - \varepsilon \le \theta \le 1\}$.

(d) Si $\theta_0 = 0$ ou $\theta_0 = 1$, la loi a posteriori est-elle consistante?

7.3 Intervalles de crédibilité, intervalle de confiance

Soit $X = (X_1, ..., X_n)$ avec X_i i.i.d. de loi de Bernoulli $Be(\theta)$. On met une loi a priori Beta(a, b) sur θ , avec a > 0 et b > 0. On donne

$$\mathrm{E}[\mathrm{Beta}(a,b)] = \frac{a}{a+b}, \qquad \mathrm{Var}[\mathrm{Beta}(a,b)] = \frac{ab}{(a+b)^2(a+b+1)}.$$

- 1. Donner la loi a posteriori $\Pi[\cdot | X]$. On notera m_X sa moyenne et v_X sa variance.
- 2. Construire un intervalle $I^T(X)$ de crédibilité au moins $1-\alpha$, $(\alpha>0)$, centré en m_X , en utilisant l'inégalité de Tchébychev.
- 3. Montrer que $I^T(X)$ est un intervalle de confiance asymptotique sous P_{θ_0} , dont on minorera le niveau en fonction de α .
- 4. En utilisant le théorème BvM, montrer que la loi a posteriori converge en variation totale (vers quelle loi?) sous P_{θ_0} .
- 5. Soit $I^B(X) = [a_n(X), b_n(X)]$ l'intervalle défini par les quantiles $\alpha/2$ et $1 \alpha/2$ de la loi a posteriori. Donner l'expression asymptotique de $a_n(X)$ et $b_n(X)$ sous P_{θ_0} .
- 6. Comparer I^T et I^B . Quel autre type d'inégalité aurait-on pu utiliser à la question 2. ?