Matrix: ATA

Ls A ∈ R^{nxm}

$$(A^{\mathsf{T}}A)^{\mathsf{T}} = A^{\mathsf{T}}(A^{\mathsf{T}})^{\mathsf{T}} = A^{\mathsf{T}}A$$

2) Es ist
$$Kern(A) = Kern(A^TA)$$

Se:
$$x \in \text{Kern}(A)$$
. Dann is $A^{T}Ax = A^{T} \cdot 0 = 0 \implies x \in \text{Kern}(A^{T}A)$

Sei
$$x \in \text{Kern}(A^TA)$$
. Dann is $0 = A^TAx = x^TA^TAx$
= $(Ax)^T(Ax)$

$$= \|Ax\|_{2}^{2}$$

$$\Rightarrow A_{\times} = 0$$
, also $\times \in \text{Kevn}(A)$

3)
$$A^TA$$
 ist invertierbar \Leftrightarrow Kern(A) = {0}

Se:
$$x \in \mathbb{R}^m \setminus \{0\}$$
. Dann ist $x^T A^T A x = (Ax)^T (Ax) = ||Ax||_z^z \ge 0$.

Ausgleichsvechnung

Motivation: · überbestimmtes (unlösbares) System $A \cdot x = b$, $A \in \mathbb{R}^{n \times m}$ is n>m und rg(A) = m

· $\exists b \in \mathbb{R}^n$, das nicht im Spaltenraum von $A \in \mathbb{R}^{n \times m}$ liegt La Erinnerung: $\operatorname{Bild}(A) \subseteq \mathbb{R}^n$ und $\operatorname{dim}(\operatorname{Bild}(A)) = \operatorname{rg}(A)$

Idee : Bestimme x*, sodass ||r||2 = ||Ax - b||2 minimiert wird

·x* muss so gewählt werden, dass Residuum r orthogonal zu den Spalten von A ist.

 $\vec{a}_i^T (Ax-b) = 0$ for alle $1 \le i \le m$

 $\iff A^{\mathsf{T}}(A_X - b) = 0$

 $(\Rightarrow) A^T A x = A^T b$

Lose also anstatt Ax = b das System $A^{T}Ax = A^{T}b$

- · existiert immer eine Lösung?
- · ist die Lösung eindeutig?

```
Definitheit von Matrizen
   Sei A E 1R<sup>nxn</sup>. Dann unterscheiden wir folgende Begriffe:
       positiv (semi) definit \iff \forall x \neq 0 : x^T Ax > 0 \ (\ge 0)
       negativ (semi) definit \iff \forall x \neq 0 : x^T Ax < 0 \ (\leq 0)
                                    3x,y : xTAx >0 und yTAy <0
       indefinit
    1st A symmetrisch, so gilt:
    positiv (semi) definit: [n+h] · alle EW sind > 0 (20)
                           [n+h] · alle führenden Hauptminoren sind > 0 (für psd zu kompliziert)
                           [ n ] · alle Diagonalelemente sind > 0 (≥0) (auch ohne Symmetrie)
    negativ (semi) definit: [n+h] · alle EW sind < 0 (=0)
                           [n+h] · führenden Hauptminoren sind abwechselnd > 0 und < 0,
                                     wobe: det(a,,) < 0 sein muss (für nsd zu Kompliziert)
                           [ n ] · alle Diagonalelemente sind < 0 (= 0) (auch ohne Symmetrie)
                          [n+h] · es gibt positive und negative EW
    indefinit (sonst):
                           [ h ] · es gibt positive und negative Diagonalelemente (auch ohne Symmetrie)
                            n-> notwendige Bedingung
                            hahinreichende Bedingung
Warum gilt das mit den Diagonalelementen?
    Sei z.B. A positiv definit. Dann gilt insb. für ei e R 0 < e, TAe; = e, Ta; = aii
    Geometrische Interpretation =:y
       Für x \in \mathbb{R}^n gilt: x^T A x = x^T (A x) = x^T y = \langle x, y \rangle_2 = ||x|| \cdot ||y|| \cdot \cos(x)
       Ly die Definitheit hängt also vom Winkel zw. x und Ax ab
              inklusive
                                                                                            exklusive
                                                                    A ist negativ definit
                  A ist positiv semidefinit
                  >> Bereich für Ax, x bel.
                                                                    → Bereich für Ax, x bel.
```

Beispiel: A = 4 -7 - 2 6 7 2 Wive untersuchen die führenden Hauptmingren: det(4) > 0 det(4) = 7 - 0 det(8) = 7 det(8) = 0 Da B sym. ist. folgt. dass B positiv semidefinit ist.
B= 7 2 0 det(4) > 0 det(1/2) = 7 > 0 det(B) = 0 0 0 0 Da B sym. ist, folgt, doss B positiv semidefinit ist.

Cholesky - Zerlegung

Sei A & Rnxn symmetrisch und positiv (semi-) definit.

Dann heißt A=L·LT for eine D-Matrix L die Choleskyzerlegung von A.

Gibt es so eine Zerlegung auch, wenn $A \neq A^T$?

Us Nein, denn $(LL^T)^T = LL^T$ ist symmetrisch

Gibt es so eine Zerlegung auch för Matrizen, die nicht p(s) d sind? Ly Nein, denn $x^T A x = x^T L L^T x = (L^T x)^T (L^T x) = ||L^T x|| \ge 0$ för alle $x \in \mathbb{R}^n \setminus \{0\}$

Algorithmus zur Berechnung von L

$$\ell_{i,j} = \begin{cases} \sqrt{a_{i,i} - \sum\limits_{k=1}^{i-1} \ell_{i,k}^2} & \text{falls } i = j \\ \frac{1}{\ell_{j,j}} \left(a_{i,j} - \sum\limits_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right) & \text{sonst} \end{cases}$$

Berechnungsreihenfolge

$$l_{1,2} = \sqrt{a_{2,2}} = 7$$

$$l_{z,\gamma} = \frac{1}{l_{12}} \cdot \alpha_{z,\gamma} = \frac{\gamma}{\gamma} \cdot (-\gamma) = -\gamma$$

$$\ell_{2,2} = \sqrt{a_{2,2} - \ell_{2,2}^2} = \sqrt{5 - (-7)^2} = \sqrt{4^7} = 2$$

$$\ell_{3,7} = \frac{7}{\ell_{1,7}} \cdot a_{3,7} = \frac{7}{7} \cdot 3 = 3$$

$$\ell_{3,2} = \frac{1}{\ell_{2,2}} \cdot (a_{3,2} - \ell_{2,7} \cdot \ell_{3,7}) = \frac{1}{2} (-7 - (-7) \cdot 3) = -2$$

$$\ell_{3,3} = \sqrt{a_{3,3} - \ell_{3,7}^2 - \ell_{3,2}^2} = \sqrt{14 - 3^2 - (-2)^2} = \gamma$$

L hat positive Diagonaleintrage \Leftrightarrow A ist positive definition per Konstruktion ist L^T eine Matrix in ZSF.

1) sind Diagonal elemente in ZSF alle
$$\neq 0$$
, dann $rg(L) = rg(L^T) = n$
 $L > x^T A x = x^T L L^T x = ||L^T x||_2^2 > 0$ for alle $x \neq 0$, da L^T inverties $a = x^T A = x^T L L^T x = ||L^T x||_2^2 > 0$

2) gibt es 0en auf Hauptdiagonalen, dann ist bekanntlich
$$rg(L) = rg(L^T) < n$$
L> $\exists x \in \mathbb{R}^n \setminus \{0\} : L^T x = 0 \Rightarrow Ax = LL^T x = L \cdot 0 = 0$
und damit A nicht pd .

	Dav	aus	er	halt	en	wir e	line e	erste	wick	ntige	An	wer	ndu	ng										
		Д	ic L	000	4:	de t	+ \-\	Δ۱۵	jorithm	جا ءين	i r.1	dus	، ما	ınd	1	hat	Mu	DVc. _T	ا مین):aa-	mala	مرماه	010 10	
		71	13 T	Pozi	TIV	uetini	T (-)	7119	JUPITPIM	145 10	lu _† T	uure	.n (inu		VIU I	VIUV	PUSIT	ive j	Diago	mure	: lem	еите	
, .						.,				^ "														
Wo	Ka	nn	der	AI	gori	thmu	s sch	neite	у и, .	t alls	A	NiC	ht	pd	ist	ĻĻ								
	1)	Bei	Ве	evec	hnu	ng de	v Die	agon	alelew	nente	· w	ird	Au	sdri	uck	un	ter	der c	√uv ze	l ne	gati	v		
		Ls	ist	ge	nau	dann	dev	Fal	l we	nn A	q ⁽¹⁾ =	(a _k	ر (ب	≤ K,£	<u>c</u> ;	nic	ht	psd i	st.					
	- \	D	В									. 1			^									
	۷)					_			en Ei Has			ist	⊥ (i,:	=	U									
			131	,,	pu,	C COPIN	ρūs	SICVI		77,00														
	A١	so:	Α	Igo.	au	s de	, VL	Kai	nn be	ei ps	d- 1	Matr	izev	, s	chei:	tern								
			Ls	fi	ן על	od M	latvix	fu	ınktio	on; ev t	er	imr	ner											
Wie	e v	erh	en(den	ωi	r Cl	nolesl	СУ	für d	las	Lõs	en 1	von	Α	x =	b 7								
	۵۱	D			,	1	1		LT	0	(3	1		•	_									
	1)	βe	vec	hne	L	mit	/1	= L	L	U	(и) 4	ie	bei	Ga	uss								
	2)	Lō	se	A	x =	b <=	:) L	L ^T x	c = b	in	Z	Sch	vitt	en										
									Vorwi															
		· Da	ทท		L ^T x	= y	du	rch	Rùck	wart:	sein	setz	en		0(n²)								
	3)	نده	V	kān	иРи	LL	τ τ	Gr V	iersch	n:ede.	10	vocl	ate	ςe	:10,	, h	1+20	מי						
	-								. C/ 3c-	newe.		, ес,	,,,	<u> </u>	116		A, C							

Lineare Regression

Gegeben seien Punkte (xi, yi), 7 = i = n

Dann suchen wir eine Funktion &, die die Punkte approximiert

4 (xi) ≈ yi , wobe: Approximation "optimal" sein soll

Beispiel:

Betrachte die Punkte (1,1), (2,2), (3,2)

Wir suchen $\beta_0, \beta_1 \in \mathbb{R}$, sodass $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \beta_1 \times + \beta_0$ die Punkte (optimal) approximiert. Perfekt wäre $f(x_i) = y_i$, also als LGS dann

$$\begin{bmatrix}
7 & \times_1 & \begin{bmatrix}
1 & 1 \\
1 & \times_2 & \\
1 & X_3 & \end{bmatrix} & \begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix} = \begin{bmatrix}
1 & \begin{bmatrix}
1 & 1 \\
2 & \vdots \\
2 & \vdots \\
3 & \end{bmatrix}$$

$$\begin{bmatrix}
\beta_0 \\
\beta_1
\end{bmatrix} = \begin{bmatrix}
2 & \vdots \\
2 & \vdots \\
3 & \vdots \\$$

Dieses System hat Keine Lösung, denn... ?

Wir wollen also (β_0, β_1) so wahlen, dass $|y_i - f(x_i)|$ minimal wird Also wollen wir $r := y - A\beta$ bzw. $||r|| = ||y - A\beta||$ minimieren $||y - A\beta||$ winimieren

Wir lösen also $A^TAB = A^Ty$ und erhalten

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 3 & 6 \\ 6 & 74 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 5 \\ 17 \end{bmatrix} \implies \begin{bmatrix} \beta_0 = \frac{2}{3} \\ \beta_3 = \frac{7}{2} \end{bmatrix}$$

hat genau eine Lōsung, da Spalten von A lin. unabh. ^Ls warum dos i.A. so ist, werden wir uns im Kapitel zu Interpolation angucken

(da die Wurzel monoton ist, spielt sie hier Keine Rolle)

Welchen Fehler minimieren wir?

Wir hätten auch eine andere Funktion f wählen können!

(1)
$$f(x) = \beta_2 x^2 + \beta_7 x + \beta_0$$

$$A = \begin{bmatrix} 1 & x_1^1 & x_1^2 \\ 1 & x_2^1 & x_2^2 \\ 1 & x_3^1 & x_3^2 \end{bmatrix} \quad \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_2 \end{bmatrix} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Für unsere Punkte erhalten wir z.B.

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
2
\end{bmatrix}$$

· hat dieses System schon eine (eindeutige) Lösung?

Lis brauchen wir hier ATAB = ATy?

Was passiert, wenn wir das betrachten?

Graphische Darstellung der erhaltenen Funktionen

 $f(x) = \frac{1}{2}x + \frac{2}{3}$

 $f(x) = -\frac{1}{2}x^2 + \frac{5}{2}x - 7$

Kann man auch etwas anderes als Polynome betrachten?

Ja, aber man muss darauf achten, dass die Bilder der

Stützstellen unter den gewählten Bosisvektoren lin. unabh. sind!

Lo sonst verliert man die Eindeutigkeit der Lösung (Klar?)

Be: unserem Bsp. ginge z.B. auch problemlos $f(x) = B_1 \cdot e^x + B_0 \cdot e^{zx}$, da

$$\begin{bmatrix} e^{1} \\ e^{2} \end{bmatrix} \quad \begin{bmatrix} e^{2} \\ e^{4} \end{bmatrix} \quad \text{lin. unabh. sind.}$$

$$\begin{bmatrix} e^{3} \\ e^{6} \end{bmatrix}$$