

Juin 2018

Antoine GROSNIT et Yassin Hamaoui

1 UNE MODÉLISATION SIMPLIFIÉE

1.1 Prix négatifs

1.1.1 • Simulation par un Monte-Carlo naïf

inf P<0 On commence par un modèle simple où on simule M processus de Poisson associés à notre modèle. On détermine ensuite $P_{est} = \mathbb{P}(\inf_{t \leq T} P_t < 0)$ par un Monte-Carlo naïf qui consiste à utiliser l'estimateur : $P_{est} = \frac{1}{M} \sum 1_{\inf_{t \leq T} P_t < 0}$

Pour obtenir un intervalle de confiance, on utilise le résultat qui affirme que : $\sqrt{M}(\frac{1}{M}\sum 1_{\inf_{t\leq T}P_t<0} - \mathbb{P}(\inf_{t\leq T}P_t<0)) \Rightarrow N(0,\mathbb{P}(\inf_{t\leq T}P_t<0)(1-\mathbb{P}(\inf_{t\leq T}P_t<0))$

Alors un intervalle de confiance à 0.95 est donné par : $[P_{est} - 2*P_{est}(1-P_{est}); P_{est} + 2*P_{est}(1-P_{est})]$. On regroupe les résultats pour différents paramètres dans le tableau suivant :

Tableau : P0; i = 0ou3; $M = 10^6$; Pest; Intervalled econf

1.1.2 • Simulation par changement de loi

Il s'agit maintenant d'utiliser une méthode qui permet d'évaluer correctement la probabilité quand l'évènement est rare et que le résultat donné par un Monte-Carlo naïf n'est plus pertinent (ce qui est ici le cas pour $P_0=35$. On va alors procéder à un changement de loi via la transformation d'Esscher. L'idée de cette technique est de modifier les probabilités de manière à rendre l'évènement étudiée moins rare. Dans ce cas, on veut que le prix diminue. Il faut donc que les sauts négatifs soient privilégiés.

DESCRIPTION DE LA TRANSFORMATION DESSCHER

On choisit θ qui minimise la variance de l'estimation de la probabilité. Pour cela, on commence par tracer P_{est} en fonction de θ . On obtient le graphique suivant :

INSERER GRAPHIQUE.

On note alors un plateau dans la région A COMPLETER. On cherche dans un deuxième temps le θ de cette région qui minimise la variance de l'estimation. On obtient $\theta = ACOMPLETER$ TABLEAU DE RESULTAT