

PHILIPS

**Instruction manual
Anleitung
Notice d'emploi**

**10MHz Dual-beam oscilloscope with delay line
10MHz-Zweistrahl-Oszilloskop mit Verzögerungskabel
Oscilloscope à deux faisceaux 10MHz, avec ligne à retard**

PM 3233

9499 440 16502

770105/08/09/10

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate at the bottom of the instrument.

WICHTIG

Bei Schriftwechsel über dieses Gerät wird gebeten, die genaue Typenbezeichnung und die Gerätenummer anzugeben. Diese befinden sich auf dem Leistungsschild an der Unterseite des Geräts.

IMPORTANT

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez TOUJOURS indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques fixée sur la plaque de fond de l'appareil.

Table of contents

English

1.	GENERAL INFORMATION	9
1.1.	Introduction	9
1.2.	Characteristics	10
1.3.	Accessories	14
2.	DIRECTIONS FOR USE	15
2.1.	Installation	15
2.1.1.	Removing and fitting the front cover	15
2.1.2.	Adjusting to the local mains supply and fuses	15
2.1.3.	Supply from an external d.c. source	18
2.1.4.	Earthing	18
2.1.5.	Switching on	18
2.1.6.	From the cold into the warmth	18
2.2.	Operating instructions	19
2.2.1.	Controls and sockets	19
2.2.2.	Preliminary settings	21
2.2.3.	Inputs Y _A and Y _B and their possibilities	21
2.2.3.1.	YT Measurements	21
2.2.3.2.	XY Measurements	21
2.2.3.3.	Influence of the AC-0-DC switch	21
2.2.4.	Triggering	22
2.2.4.1.	General	22
2.2.4.2.	Trigger coupling	22
2.2.4.3.	Trigger level	22
2.2.4.4.	Automatic triggering	22
2.2.4.5.	External triggering	22
2.2.4.6.	Triggering with the mains frequency	22
2.2.4.7.	Triggering with television signals	22
2.2.5.	Time-base magnifier	23
2.2.6.	Z Modulation	23
2.2.7.	The dual-beam tube	23
2.3.	Description of the block diagram	28
2.4.	Brief checking procedure	29
3.	SERVICE DATA	63

List of figures

Fig. 1.1.	Dual-beam oscilloscope PM 3233	9
Fig. 2.1.	Rear view showing sockets	15
Fig. 2.2.	Front view showing controls and sockets	17
Fig. 2.3.	Rear view showing fuse VL802	18
Fig. 2.4.	Block diagram	26
Fig. 3.1.	Vertical amplifier, channel Y _A	65
Fig. 3.2.	Block diagram of the drift-reduction circuit	66
Fig. 3.3.	Trigger unit	68
Fig. 3.4.	Time-base generator	70
Fig. 3.5.	Horizontal amplifier	71
Fig. 3.6.	Cathode-ray tube circuitry	72
Fig. 3.7.	Effect of the focus control	73
Fig. 3.8.	Power supply	74
Fig. 3.9.	Basic diagram of the converter	74
Fig. 3.10.	Adjusting and dismantling	76
Fig. 3.11.	Adjusting and dismantling	86
Fig. 3.12.	Adjusting	86
Fig. 3.13.	Adjusting and dismantling	87
Fig. 3.14.	Adjusting	87
Fig. 3.15.	Knobs	91
Fig. 3.16.	Dismantling	93
Fig. 3.17.	Dismantling	93
Fig. 3.18.	Dismantling	94
Fig. 3.19.	Dismantling	95
Fig. 3.20.	Supply unit swiveled out	95
Fig. 3.21.	Replacing a push-button switch	96
Fig. 3.22.	Front cover	98
Fig. 3.23.	Adapter MP9051	98
Fig. 3.24.	Attenuator probe set PM 9326 (PM 9327)	99
Fig. 3.25.	Adjusting an attenuator probe	100
Fig. 3.26.	Attenuator probe set PM 9336 (PM 9336L)	101
Fig. 3.27.	Probe compensating	102
Fig. 3.28.	Probe set PM 9335	103
Fig. 3.29.	Attenuator probe set PM 9358	105
Fig. 3.30.	Probe compensation	106
Fig. 3.31.	Adapter set PM 9333	107
Fig. 3.32.	Multi-purpose camera PM 9380	107
Fig. 3.33.	Adapter PM 9379	108
Fig. 3.34.	Front view showing item numbers	112
Fig. 3.35.	Top and rear view showing item numbers	112
Fig. 3.36.	Bottom view showing item numbers	113
Fig. 3.37.	Front cover showing item numbers	113
Fig. 3.38.	Lay-out of the AMPL and TIME/cm switches	130
Fig. 3.39.	A and B vertical amplifier unit	133
Fig. 3.40.	Delay line unit	133
Fig. 3.41.	Time-base unit	134
Fig. 3.42.	Power supply unit	134
Fig. 3.43.	Circuit diagram of the complete oscilloscope PM 3233	137

Inhaltsverzeichnis

Deutsch

1. ALLGEMEINE INFORMATIONEN	31
1.1. Einleitung	31
1.2. Technische Daten	32
1.3. Zubehör	36
2. GEBRAUCHSANLEITUNG	37
2.1. Inbetriebnahme	37
2.1.1. Abnehmen und Aufsetzen des Deckels	37
2.1.2. Netzspannungseinstellung und Sicherungen	37
2.1.3. Anschluss an eine externe Gleichspannungsquelle	38
2.1.4. Erdung	38
2.1.5. Einschalten	38
2.1.6. Inbetriebnahme eines unterkühlten Gerätes	38
2.2. Bedienungsanleitungen	39
2.2.1. Bedienungsorgane und Buchsen	39
2.2.2. Grundeinstellungen	41
2.2.3. Eingänge Y_A und Y_B und ihre Möglichkeiten	41
2.2.3.1. Y-T-Messungen	41
2.2.3.2. X-Y-Messungen	41
2.2.3.3. Funktion des Schalters AC-0-DC	41
2.2.4. Triggerung	42
2.2.4.1. Allgemeines	42
2.2.4.2. Triggerkopplung	42
2.2.4.3. Triggerpegel	42
2.2.4.4. Automatische Triggerung	42
2.2.4.5. Externe Triggerung	42
2.2.4.6. Triggerung mit Netzfrequenz	42
2.2.4.7. Triggerung mit Fernsehsignalen	43
2.2.5. Dehnung der Zeitablenkung	43
2.2.6. Helligkeitsmodulation	43
2.2.7. Die Zweistrahlröhre	43
2.3. Beschreibung des Blockschaltbildes	44
2.4. Kurze Prüfanleitung	45
3. SERVICEANLEITUNG (nur auf english)	63

Bildverzeichnis

Abb. 1.1. Zweistrahloszilloskop PM 3233	31
Abb. 2.1. Rückansicht mit Buchsen	37
Abb. 2.2. Vorderansicht mit Bedienungsorganen und Buchsen	17
Abb. 2.3. Rückansicht mit Sicherung VL 802	38
Abb. 2.4. Blockschaltbild	26
Abb. 3.1. Y-Verstärker, Kanal YA	65
Abb. 3.2. Blockschaltbild der Driftkompensation	66
Abb. 3.3. Triggereinheit	68
Abb. 3.4. Zeitablenkgenerator	70
Abb. 3.5. X-Verstärker	71
Abb. 3.6. Schaltung der Elektronenstrahlröhre	72
Abb. 3.7. Effekt der Fokussierung	73
Abb. 3.8. Netzteil	74
Abb. 3.9. Prinzipeschaltung des Spannungswandlers	74
Abb. 3.10. Einstellungen und Ausbau	76
Abb. 3.11. Einstellungen und Ausbau	86
Abb. 3.12. Einstellungen	86
Abb. 3.13. Einstellungen und Ausbau	87
Abb. 3.14. Einstellungen	87
Abb. 3.15. Knöpfe	91
Abb. 3.16. Ausbau	93
Abb. 3.17. Ausbau	93
Abb. 3.18. Ausbau	94
Abb. 3.19. Ausbau	95
Abb. 3.19 Stromversorgungseinheit herausgeklappt	95
Abb. 3.21. Ersatz eines Tastenschalters	96
Abb. 3.22. Frontdeckel	98
Abb. 3.23. Adapter PM 9051	98
Abb. 3.24. Spannungsteiler - Messkopfsätze PM 9326 und PM 9327	99
Abb. 3.25. Abgleich des Spannungsteiler - Messkopfes	100
Abb. 3.26. Spannungsteiler - Messkopfsätze PM 9336 und PM 9336 L	101
Abb. 3.27. Abgleich des Spannungsteiler - Messkopfes	102
Abb. 3.28. Messkopfsatz PM 9335	103
Abb. 3.29. Spannungsteiler - Messkopfsatz PM 9358	105
Abb. 3.30. Abgleich des Spannungsteiler - Messkopfes	106
Abb. 3.31. Messklemmensatz PM 9333	107
Abb. 3.32. Mehrzweck-Registrierkamera PM 9380	107
Abb. 3.33. Adapter PM 9379	108
Abb. 3.34. Frontansicht mit Angabe der Ersatzteile	112
Abb. 3.35. Rück- und Obenansicht mit Angabe der Ersatzteile	112
Abb. 3.36. Ansicht von unten mit Angabe der Ersatzteile	113
Abb. 3.37. Frontdeckel mit Angabe der Ersatzteile	113
Abb. 3.38. Schaltterebenen für Schalter AMPL und TIME/cm	130
Abb. 3.39. Printplatte der Y-Verstärker	133
Abb. 3.40. Printplatte Verzögerungseinheit	133
Abb. 3.41. Printplatte Zeitbasiseinheit	134
Abb. 3.42. Printplatte Versorgungsteil	134
Abb. 3.43. Gesamtschaltbild PM 3233	137

Table des matières

Français

1. GENERALITES	47
1.1. Introduction	47
1.2. Caractéristiques techniques	48
1.3. Accessoires	52
2. MODE D'EMPLOI	53
2.1. Installation	53
2.1.1. Dépose et repose du couvercle frontal	53
2.1.2. Adaptation au secteur et fusibles	53
2.1.3. Alimentation par une source continue externe	54
2.1.4. Mise à la terre	54
2.1.5. Enclenchement	54
2.1.6. Passage d'un endroit froid dans un endroit chaud	54
2.2. Manipulation	55
2.2.1. Commandes et douilles	55
2.2.2. Réglages préliminaires	57
2.2.3. Entrées Y _A et Y _B et leurs possibilités	57
2.2.3.1. Mesures YT	57
2.2.3.2. Mesures XY	57
2.2.3.3. Influence du commutateur AC-0-DC	57
2.2.4. Déclenchement	58
2.2.4.1. Généralités	58
2.2.4.2. Accouplement de déclenchement	58
2.2.4.3. Niveau de déclenchement	58
2.2.4.4. Déclenchement automatique	58
2.2.4.5. Déclenchement externe	58
2.2.4.6. Déclenchement avec fréquence secteur	58
2.2.4.7. Déclenchement avec signaux de télévision	59
2.2.5. agrandisseur de la base de temps	59
2.2.6. Modulation Z	59
2.2.7. Tube à deux faisceaux	59
2.3. Description du schéma synoptique	60
2.4. Bref processus de contrôle	61
3. DOCUMENTATION DE SERVICE (seulement en anglais)	63

Figures

Fig. 1.1.	Oscilloscope à deux faisceaux PM 3233	47
Fig. 2.1.	Vue arrière montrant les douilles	53
Fig. 2.2.	Vue frontale montrant les commandes et douilles	17
Fig. 2.3.	Vue arrière montrant le fusible VL 802	54
Fig. 2.4.	Schéma synoptique	26
Fig. 3.1.	Amplificateur vertical, voie YA	65
Fig. 3.2.	Schéma synoptique du circuit réduction de dérive	66
Fig. 3.3.	Unité de déclenchement	68
Fig. 3.4.	Générateur de base de temps	70
Fig. 3.5.	Amplificateur horizontal	71
Fig. 3.6.	Circuits du tube à rayons cathodiques	72
Fig. 3.7.	Effet de la commande du foyer	73
Fig. 3.8.	Alimentation	74
Fig. 3.9.	Schéma de base du convertisseur	74
Fig. 3.10.	Réglage et démontage	76
Fig. 3.11.	Réglage et démontage	86
Fig. 3.12.	Réglage	86
Fig. 3.13.	Réglage et démontage	87
Fig. 3.14.	Réglage	87
Fig. 3.15.	Boutons	91
Fig. 3.16.	Démontage	93
Fig. 3.17.	Démontage	93
Fig. 3.18.	Démontage	94
Fig. 3.19.	Démontage	95
Fig. 3.20.	Unité d'alimentation pivotée vers l'extérieur	95
Fig. 3.21.	Remplacement d'un commutateur bouton-poussoir	96
Fig. 3.22.	Couvercle frontal	98
Fig. 3.23.	Adaptateur PM 9051	98
Fig. 3.24.	Jeu de sonde atténuateuse PM 9326 (PM 9327)	99
Fig. 3.25.	Réglage d'une sonde atténuateuse	100
Fig. 3.26.	Jeu de sonde atténuateuse PM 9336 (PM 9336L)	101
Fig. 3.27.	Réglage d'une sonde atténuateuse	102
Fig. 3.28.	Jeu de sonde PM 9335	103
Fig. 3.29.	Jeu de sonde atténuateuse PM 9358	105
Fig. 3.30.	Réglage d'une sonde atténuateuse	106
Fig. 3.31.	Adaptateur PM 9333	107
Fig. 3.32.	Appareil de photographie d'oscillogrammes	107
Fig. 3.33.	Adaptateur PM 9379	108
Fig. 3.34.	Vue avant avec numéros de repère	112
Fig. 3.35.	Vue du dessus et arrière avec numéros de repère	112
Fig. 3.36.	Vue du dessous avec numéros de repère	113
Fig. 3.37.	Couvercle frontal avec numéros de repère	113
Fig. 3.38.	Vue d'ensemble des commutateurs AMPL et TIME/cm	130
Fig. 3.39.	Platine imprimée des amplificateurs verticaux	133
Fig. 3.40.	Platine imprimée de l'unité de ligne à retard	133
Fig. 3.41.	Platine imprimée du générateur de base de temps	134
Fig. 3.42.	Platine imprimée de l'unité d'alimentation	134
Fig. 3.43.	Schéma du circuit complet PM 3233	137

1. General information

1.1. Introduction

The 10 MHz Dual-beam Oscilloscope PM 3233 has been designed for general laboratory, service and educational applications.

Both vertical amplifiers are equipped with a drift-reduction circuit and a fully protected field-effect transistor input. All circuits are entirely transistorized and the transistors have been mounted on supports to enable quick servicing.

The instrument features a fully automatic facility which enables triggering on the line and frame sync pulses of a television signal.

The oscilloscope can be supplied from either a.c. mains or external d.c. sources.

The PM 3233 is equipped with a delay unit which provides signal delay to both channels Y_A and Y_B.

Fig. 1.1. Dual-beam oscilloscope PM 3233

1.2. Characteristics

Properties expressed in numerical values with stated tolerance are guaranteed for nominal mains voltages. Numerical values without tolerances are typical values representing the characteristics of an average instrument.

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>ADDITIONAL INFORMATION</i>
1.2.1. C.R.T.		
Type	PHILIPS E14-100	Split-beam tube, mesh type, post-accelerator, metal-backed phosphor
Measuring area	80 mm x 100 mm	
Screen type	P31 (GH) phosphor	For P7 (GM) phosphor, order PM 3233G (ordering number E14-100GM tube in the parts list)
Total acceleration voltage	10 kV	
Overlap of the two systems	100 %	Both in horizontal and vertical direction
Graticule	External, removable	Continuously variable illumination
Engravings	Centimetre divisions with sub-divisions of 2 mm along the central axes. Broken lines indicate 10 % and 90 % of measuring lattice.	Area 80 mm x 100 mm

1.2.2. VERTICAL AMPLIFIERS

1.2.2.1. Response

Frequency range	d.c. ... 10 MHz 2 Hz ... 10 MHz	-3 dB bandwidth d.c. coupled -3 dB bandwidth a.c. coupled
Rise time	35 ns	
Overshoot	2 % at maximum	Test pulse of ≥ 10 ns rise time for 6 cm deflection at 1 MHz

1.2.2.2. Deflection coefficients

2 mV/cm...10 V/cm	Twelve calibrated positions in 1-2-5 sequence. Uncalibrated continuous control 1 : $\geq 2,5$
-------------------	--

1.2.2.3. Error limit

$\pm 3 \%$ $\pm 5 \%$	In range $+5^{\circ}\text{C} \dots +40^{\circ}\text{C}$ In range $-10^{\circ}\text{C} \dots +55^{\circ}\text{C}$
--------------------------	---

1.2.2.4. Maximum permissible input voltage

$\pm 400 \text{ V}$	d.c. + a.c. peak
---------------------	------------------

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>ADDITIONAL INFORMATION</i>
1.2.2.5. Instability of the spot position		
Long-term drift = short-term drift	0,25 cm/hour	Typical value
1.2.2.6. Vertical positioning	16 cm	
1.2.2.7. Dynamic range	24 cm	Peak-to-peak amplitude for sine-wave signals; at 3 MHz negligible distortion
1.2.2.8. Input impedance	1 MΩ/20 pF	
1.2.2.9. Input RC time	0,1 s	Coupling switch to A.C.
1.2.2.10. Visible signal display	≥ 40 nsec	Difference between the channels 0,1 division
1.2.3. X-Y MODE	X via Y_A	x5 magnifier inoperative
Horizontal frequency range	d.c. ... 1 MHz 2 Hz ... 1 MHz	
Phase shift	5° 1°	At 100 kHz At 10 kHz
Additional error for Y_A channel	±2 % ±3 %	In range +5 °C ... +40 °C In range -10 °C ... +55 °C
1.2.4. TIME BASE		
1.2.4.1. Time coefficients	0,5 s/cm...0,2 μs/cm	Twenty calibrated positions in 1-2-5 sequence Uncalibrated continuous control 1 : ≥ 2,5
1.2.4.2. Coefficient error	± 5 %	In range -10 °C ... +55 °C
1.2.4.3. Expansion		
Magnification	5 x	Switched, calibrated
Additional error	± 2 % ± 3 %	In range +5 °C ... +40 °C In range -10 °C ... +55 °C
1.2.4.4. Time-base output signal		
Output voltage	300 mV	With 50 Ω termination
Emf (open output voltage)	6 V _{p-p} (-2 V to +4 V)	The output terminal may be short-circuited without affecting the time coefficients
Internal resistance	1 kΩ	
1.2.4.5. Positioning range		The beginning and the end of the time-base line can be made visible

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>ADDITIONAL INFORMATION</i>
1.2.5. TRIGGERING		
1.2.5.1. Source	Internal: channel Y _A , channel Y _B or mains freq. External	
1.2.5.2. Trigger sensitivity	Internal ≤ 1 cm at 10 MHz External ≤ 1 V _{p-p} at 10 MHz	For sine-wave signals
1.2.5.3. Input impedance	100 kOhm//5 pF	
1.2.5.4. Maximum permissible input voltage	± 400 V	d.c. + a.c. peak
1.2.5.5. Trigger mode	Automatic or normal	
1.2.5.6. Level range	Corresponding to trace height 24 cm 24 V	In the automatic mode In the normal mode External
1.2.5.7. Triggering frequency range	10 Hz ... 10 MHz d.c. ... 10 MHz 20 Hz ... 10 MHz	A.C. coupling D.C. coupling A.C. coupling in the automatic mode
1.2.5.8. Triggering slope	+ or -	
1.2.5.9. Triggering with T.V. signals		Fully automatic; level control switched off.
Mode	Frame	Coupled with positions $50 \mu\text{s}/\text{cm} \dots 0,5 \text{ s}/\text{cm}$
	Line	Coupled with positions $0,2 \mu\text{s}/\text{cm} \dots 20 \mu\text{s}/\text{cm}$
Trigger sensitivity	1 cm sync pulse	
1.2.6. INTENSITY MODULATION		
Blanking voltage	$\geq +20$ V	A.C. coupled
Input resistance	≥ 47 kOhm	
Frequency range	20 Hz ... 1 kHz	
Maximum permissible input voltage	± 400 V	d.c. + a.c. peak
1.2.7. CALIBRATION GENERATOR		
Type	Square-wave generator	
Output voltage	600 mV _{p-p}	
Accuracy	± 1 %	In range $+5^\circ\text{C} \dots +40^\circ\text{C}$
Frequency	approx. 2 kHz	

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>ADDITIONAL INFORMATION</i>
1.2.8. OPERATING CONDITIONS		
1.2.8.1. Supply	a.c. or d.c.	
Nominal voltage range (on mains voltage adaptor)	a.c. 100 V ... 140 V 198 V ... 265 V d.c. 22 V ... 30 V	
Nominal frequency range	46 Hz ... 400 Hz	
1.2.8.2. Ambient temperature		
Rated range of use	+5 °C ... +40 °C	
Limit range of operation	-10 °C ... +55 °C	
Storage and transport conditions	-40 °C ... +70 °C	
1.2.8.3. Operating position	Any	
1.2.9. WARM-UP TIME	5 minutes	At constant ambient conditions (not including recovery time; see also section 2.1.6.)
1.2.10. POWER CONSUMPTION	40 VA at 220 V a.c. 20 W at 24 V d.c.	0,85 A current drain
1.2.11. MAINS INTERFERENCE	The instrument meets the VDE Storgrad K requirement	
1.2.12. MECHANICAL DATA		
Design	Portable	
Dimensions	Depth 503 mm Width 326 mm Height 185 mm	Incl. front cover Incl. handle Incl. feet
Weight	Approx. 9,5 kg	
1.2.13. COOLING	Natural convection	
1.2.14. COMPONENT REPLACEMENTS	Normal production types, transistors plugged in	

1.3. Accessories

1.3.1. STANDARD ACCESSORIES

- 1 Front cover with storage space for two passive probes and two BNC-4 mm adapters
- 2 BNC-4 mm adapters PM 9051
- 1 Manual

1.3.2. OPTIONAL ACCESSORIES

Passive probe sets (10 : 1)	: PM 9326 and PM 9327
Passive probe sets (10 : 1)	: PM 9336 and PM 9336L
Passive probe set (1 : 1)	: PM 9335
2 kV passive probe set (100 : 1)	: PM 9358
Set of miniature probe clips	: PM 9333
Multi-purpose oscilloscope camera	: PM 9380
Adapter (oscilloscope to camera)	: PM 9379

See also chapter 3.5. "Information concerning accessories".

2. Directions for use

2.1. Installation

2.1.1. REMOVING AND FITTING THE FRONT COVER

Removing : — Turn the knob in the centre of the cover a quarter of a turn anti-clockwise
— Take the cover off

Fitting : — Align the key of the locking knob with the slot in the text plate of the instrument
— Fit the cover over the front of the oscilloscope
— Press the knob and turn it a quarter of a turn clockwise

WARNING

This instrument generates high voltages and should not be operated with the covers removed. The mains plug or external voltage source should be removed before attempting any maintenance work, and any relevant high voltage points discharged.

2.1.2. ADJUSTING TO THE LOCAL MAINS SUPPLY AND FUSES

Before switching-on, the instrument must be adjusted to the local mains voltage by means of the voltage adapter at the rear.

It is possible to adjust the instrument to 110 V, 127 V, 220 V and 240 V by means of a screwdriver.

The selected voltage is visible through the opening at the rear.

The instrument can optionnaly (Spec. V) be adapted for 100 V, 127 V, 200 V and 220 V.

The temperature-sensitive fuse is mounted between the mains transformer windings. It can be replaced after having removed the rear cover (3 screws "X", Fig. 2.1.).

Terminals "N" and "1" (see transformer at figures 3.20 and 3.43.) must be unsoldered; in order to remove the fuse, bend the enclosure slightly to the outside so that the locking pin can be disengaged.

A new fuse is removed from its housing in the same way as described before. It is then pushed in the same enclosure as the old one until the locking pin snaps into the hole, the loop pointing to the "N" terminal. After having terminals "N" and "1" soldered, the instrument can be considered as ready for use.

Fig. 2.1. Rear view showing sockets

2.2. Operating instructions

Before switching on, ensure that the oscilloscope has been correctly installed in accordance with chapter 2.1. Installation, and that the precautions outlined have been observed.

2.2.1. CONTROLS AND SOCKETS (Fig. 2.2.)

X POSITION (R1)	Continuously variable control giving horizontal positioning of the display. Incorporates a switch for calibrated 5x magnification of the time base.
MAGN' (SK1)	
TIME/cm (SK2)	Time-coefficient control of the time-base; 21-way switch with a position for external X deflection (X via Y_A).
CAL. - TIME/cm (R2/SK3)	Continuously variable control of the time coefficients. In the CAL. position the time-coefficient is calibrated.
LEVEL (R3)	Continuously variable control to select the level at which the time-base generator starts.
CAL. (BU1)	Outlet for square-wave voltage of 600 mV _{p-p} for calibration purposes.
TRIGGERING (SK4....13)	Controls for trigger source, slope and mode; 10-way push-button switch.
Y_A (SK4)	Internal triggering signal derived from channel Y_A .
Y_B (SK5)	Internal triggering signal derived from channel Y_B .
EXT. (SK6)	Triggering signal derived from a voltage applied to the TRIGG. input socket.
MAINS (SK7)	Triggering signal derived from an internal voltage with mains frequency. This trigger source is inoperative when the instrument is supplied with an external d.c. voltage.
+ (SK8)	Provides for triggering on the positive slope of the signal.
- (SK9)	Provides for triggering on the negative slope of the signal.
AUTO (SK10)	Provides for a free-running time-base in the absence of triggering signals and automatic signal-derived limitation on the LEVEL control range.
AC (SK11)	Triggering with coupling capacitor in triggering-signal path.
DC (SK12)	Direct coupling for triggering on a slowly varying voltage or for full-bandwidth working.
TV (SK13)	Enables triggering on either line or frame pulses of TV signals, as dictated by the position of TIME/cm switch SK2. Triggering on frame pulses in positions 50 μ s/cm to 0,5 s/cm and on line pulses in positions 0,2 μ s/cm to 20 μ s/cm.
TRIGG. (BU2)	Input BNC socket for external triggering signals.
BEAM SELECTOR A (SK 14)	If this push-button is depressed, vertical deflection is achieved by the signal connected to the channel Y_A input.
BEAM SELECTOR B (SK 15)	If this push-button is depressed, vertical deflection is achieved by the signal connected to the channel Y_B input.
	If both switch A (SK 14) and switch B (SK 15) are depressed, vertical deflection is achieved by both the signal connected to the channel Y_A input and the signal connected to the channel Y_B input.
AC-0-DC (SK 16 & 19)	Signal coupling, three position switch. AC : via coupling capacitor 0 : interruption of connection between input socket and input circuit, the latter being earthed. DC : Direct coupling.

AMPL. (SK 17 & 18)	Control of the vertical deflection coefficients, 12-way switch.
CAL. - AMPL. (R4 & 5)	Continuously variable control of the vertical deflection coefficients. In the CAL. position, the deflection coefficient is calibrated.
DC BAL. (R6 & 7)	Continuously variable control of the direct-voltage balance of the vertical amplifier.
ILLUM. (SK 20 & R8)	Continuously variable control of the graticule illumination. Incorporates mains switch.
FOCUS (R9)	Continuously variable control of the electron-beam focusing.
INTENS. (R10)	Continuously variable control of the trace brilliance.
1 M Ω - 20 pF (BU3 & 5)	Input BNC socket for the vertical deflection signals.
POSITION (R11 & 12)	Continuously variable control giving vertical positioning of the display.
$\frac{1}{2}$ (BU4)	Earth socket.

At the rear of the instrument (Fig. 2.1.):

TB OUT (BU6)	Sawtooth output BNC socket.
Z MOD. (BU7)	Input BNC socket for intensity-modulation voltages.
EXT. DC SUPPLY (BU8)	Input socket for d.c. supply.

2.2.2. PRELIMINARY SETTINGS

We recommend to allow a warm-up time of five minutes before you start your measurements. This warm-up time does not include a recovery time when the instrument comes in from the cold (see also section 2.1.6.).

- In case of mains operation:
Check that the mains voltage adapter indicates the local mains voltage. If necessary, set the adapter to the relevant voltage in accordance with 2.1.2.
- Switch on the instrument.
- In case of external d.c. supply:
Check that the external source is properly connected, with the positive terminal to earth.
- Set FOCUS control R9 and INTENS. control R10 to their mid-positions.
- Depress BEAM SELECTOR buttons A SK 14 and B SK 15. Bear in mind that there will be no display if no BEAM SELECTOR button is depressed.
- Select trigger source, slope and mode. If no TRIGG. button has been depressed, the oscilloscope triggers on the Y_A signal, on the positive slope and in an AUTO mode without level range limitation.
- Display the two traces by means of Y POSITION controls R11 and R12.

The oscilloscope is then ready for use. For correction of the d.c. balance, refer to section 3.2.4.2.

2.2.3. INPUTS Y_A AND Y_B AND THEIR POSSIBILITIES

The PM 3233 has been provided with two identical vertical channels which can be used for either YT measurements in combination with the time-base generator, or XY measurements up to frequencies of 1 MHz.

2.2.3.1. YT Measurements

To display one signal, either of the two vertical channels can be selected by operating either BEAM SELECTOR A SK 14 or BEAM SELECTOR B SK 15. When both push-buttons A SK 14 and B SK 15 are depressed, two signals can be displayed simultaneously. The Y deflection coefficient can be individually set for each channel.

2.2.3.2. XY Measurements

If TIME/cm switch SK2 is set to position X via Y_A , the time base generator is switched off. The signal of the Y_A channel is displayed horizontally. The Y_A controls, except the POSITION potentiometer R11, then control the X deflection. Positioning of the trace in horizontal sense is still possible with X POSITION control R1. The x5 MAGNIFIER switch SK 1, however, is inoperative. In this mode, XY measurements can be up to a frequency of 100 kHz.

2.2.3.3. Influence of the AC-0-DC switch

Signals to be studied can be fed to Y_A input socket BU3 and/or Y_B input socket BU5. Depending on the composition of the signal, the AC-0-DC switch should be set to position AC or DC. In position DC, the input is coupled direct to the Y amplifier. Because the Y amplifier is d.c. coupled, the entire bandwidth of the instrument is available. This means that the complete input voltages are fed to the deflection plates, which implies that the d.c. components result in trace shifts on the screen.

This may cause difficulties when a.c. signals superimposed on high direct voltages have to be displayed.

In order to make the a.c. signal visible in those cases, a greater attenuation will be necessary with the result that the a.c. signal will also be strongly attenuated.

In this case the AC-0-DC switch can be set to position AC. Then a blocking capacitor is connected between the input socket and the Y amplifier. As a result of this, d.c. voltages are blocked, but also the lower frequencies are suppressed or attenuated. When square-wave signals of low frequency are displayed, this will result in some pulse droop.

In the 0 position of the AC-0-DC switch it is possible to quickly determine the zero volt d.c. level.

In this position the connection between the amplifier input and the input socket is interrupted, the amplifier input being earthed. At the same time, the blocking capacitor is discharged to prevent damage of the circuit under test by a possible high charge.

2.2.4. TRIGGERING

2.2.4.1. General

In order to obtain a stationary trace, the horizontal deflection must always be started at a fixed point of the signal. The time-base generator is, therefore started by narrow trigger pulses formed in the trigger pulse shaper (Schmitt trigger), controlled by a signal originating from the vertical input signal or an external source.

2.2.4.2. Trigger coupling

- AC If the signal voltage contains a d.c. component triggering can cease when the level potentiometer cannot supply the correct d.c. level for the Schmitt trigger. In this case it is useful to apply a.c. coupling. A.C. Coupling is obtained by inserting a capacitor in the trigger path. This means that the signal can still be d.c. coupled to the Y channels.
- DC D.C. Coupling is useful when the mean value of the signal varies. This sort of signal often occurs in digital systems. With a.c. coupling the trigger point would not be fixed which would give rise to jitter or even loss of triggering.

2.2.4.3. Trigger level

In case of a complicated signal in which a number of non-identical voltage shapes occur periodically, the time axis should always be started with the same voltage shape so as to obtain a stationary trace.

This is possible when one of the details has a deviating amplitude. By means of the LEVEL knob, the trigger level can be set in such a way that only this larger voltage variation passes this level. The LEVEL control is also very useful when two signals must be accurately compared e.g. in phase measurements. By means of the LEVEL control the starting point of the traces can then be shifted exactly on to the central graticule line.

2.2.4.4. Automatic triggering

Automatic triggering, when the AUTO switch is depressed, is most often used on account of its simple operation.

In this mode it is possible to display a large variety of waveforms having different amplitude and shape, without it being necessary to operate any of the trigger controls.

If no triggering signal is present, a time-base line remains visible on the screen. This is useful for zero reference purposes. In this trigger mode the level can be adjusted over the peak-to-peak value of the a.c. component of the signal. If none of the switches AUTO, AC, DC or TV is depressed, the oscilloscope works in the automatic mode, but with the entire level range available. This has the advantage that there is always a trace visible, even when no TRIGG. push-buttons are depressed.

2.2.4.5. External triggering

External triggering is applied for signals having a strongly varying amplitude, if a signal having a fixed amplitude and equal frequency is available. Even more important is external triggering in case of complex signals and pulse patterns. Then external triggering can be used to avoid double traces.

This obviates the necessity of readjusting the level setting at every variation of the input signal.

2.2.4.6. Triggering with the mains frequency

In this case the triggering signal is a sine-wave with the mains frequency. This trigger source is useful if the frequency of the signal under observation is coupled with the mains frequency.

It is, e.g., possible to recognize the hum component of a signal by triggering on that component.

2.2.4.7. Triggering with television signals

It is possible to trigger on the line or frame sync pulses of television signals. In positions .5 s to 50 μ s of the TIME/cm switch triggering takes place on the frame sync pulses and in positions 20 μ s to .2 μ s on the line sync pulses of the signal.

The position of the trigger slope switches must correspond to the polarity of the video information of the signal.

2.3. Description of the block diagram

2.3.1. Y AXIS

The oscilloscope PM 3233 has two identical, d.c. coupled vertical amplifiers allowing simultaneous display of two signals. Each amplifier comprises an input step-attenuator, a source follower with protection circuitry, a pre-amplifier and a drift reduction circuit, a trigger pick-off stage, a delay line circuit and a final amplifier. Trigger pick-off stage and final amplifier (for both channels, Y_A and Y_B) have been coupled by means of the delay line circuit, which is a part of the circuitry of the delay line unit.

The protection circuitry prevents damage to the input field-effect transistors by too high sensitivity of the amplifier.

The trigger pick-off stage supplies a triggering signal to the trigger pre-amplifier in case of internal triggering, and also couples the signal to the Y final amplifier. In the Y_A channel the signal can also be coupled to the X final amplifier if the instrument is used as an XY oscilloscope. From the Y final amplifier, the signal is fed to the Y deflection plates of the c.r.t.

The delay line has been applied to enable the display of the leading edge of fast phenomena on the screen.

2.3.2. TRIGGERING

A triggering signal can be obtained from either vertical amplifier, from an external source or internally from the mains. The latter signal is not available when the instrument is supplied with an external d.c. voltage. The triggering signal is fed to a trigger pulse shaper which supplies well-defined trigger pulses to start the time-base generator. The trigger unit also comprises a sync separator for television signals so that triggering by means of these signals is also possible.

2.3.3. TIME BASE

The time-base generator is of the constant-current integrator type and supplies two output voltages. A sawtooth voltage which is fed to the X final amplifier and an output socket at the rear of the oscilloscope and a gate pulse which controls the unblanking of the c.r.t. during the sweep.

2.3.4. X AXIS

The X final amplifier receives its input signal from either the time-base generator or from an external source via the Y_A channel. From the X amplifier the signal is fed to the horizontal deflection plates of the c.r.t. of the oscilloscope.

2.3.5. CATHODE-RAY TUBE CIRCUIT

The cathode-ray tube is of the split-beam type with one control for the brilliance of the trace and one for focusing. The cathode of the c.r.t. is a.c. coupled to a socket for external Z modulation.

The high voltages for the c.r.t. are generated by a converter which also delivers the other supply voltages.

2.4. Brief checking procedure

2.4.1. STARTING POSITIONS OF THE CONTROLS

- Push-buttons Y_A SK4, + SK8 and BEAM SELECTOR A SK14 & B SK 15 depressed.
- TIME/cm switch SK2 to .1 ms
- AMPL switches SK 17 & SK 18 to .1 V/cm
- MAGN switch SK 1 to x1
- POSITION potentiometers R1, R11 and R12 to their mid-positions
- INTENS potentiometer R10 fully clockwise
- TIME/cm and AMPL potentiometers R2, R4 and R5 to CAL

Unless otherwise stated, the controls always occupy the same position as in the previous check.

2.4.2. C.R.T. POSITION

- Adjust FOCUS potentiometer R9 and INTENS potentiometer R10 for a well-defined display
- Centre both time-base lines, using POSITION potentiometers R1, R11 and R12
- Check that the time-base line runs exactly in parallel with the horizontal graticule lines.
Correction possible with potentiometer R813 (Fig. 3.11.).

2.4.3. VERTICAL CHANNELS

The check for channel Y_A is described, the relevant controls for Y_B are mentioned in brackets.

- Release BEAM SELECTOR B SK15 (A SK14)
- AC-0-DC switches SK16 & SK19 to 0
- AMPL switch SK17 (SK18) to 2 mV/cm
- Check that the time-base line remains within 4 mm in the centre of the screen. Correction possible with DC BAL potentiometer R6 (R7)
- AC-0-DC switch SK16 (SK19) to DC
- Check that the time-base line has not moved more than 4 mm. Correction possible with potentiometer R126 (R326), Fig. 3.13.
- AMPL switch SK17 (SK18) to .1 V/cm
- Apply a square-wave voltage of $600 \text{ mV}_{\text{p-p}} \pm 0,5 \%$, 2 kHz, to Y_A (Y_B) input socket BU3 (BU5)
- Check that the trace height is 6 cm $\pm 2 \%$
Correction possible with R111 (R311), Fig. 3.13.
- Increase the frequency of the input voltage to 10 MHz.
- Check that the trace height is at least 4,2 cm.

2.4.4. X VIA Y_A

- Depress BEAM SELECTOR A SK 14 and B SK 15
- Set TIME/cm switch SK 2 to X via Y_A
- AC-0-DC switch SK 19 to 0
- Apply a square-wave voltage of $600 \text{ mV}_{\text{p-p}} \pm 0,5 \%$, 2 kHz, to Y_A input socket BU3
- Check that the trace width is 6 cm $\pm 3 \%$
Correction possible with potentiometer R601 (Fig. 3.12.)

2.4.5. TIME-BASE

- Check the time-coefficient in position $20 \mu\text{s}$ of TIME/cm switch SK2 by means of time markers.
Tolerance $\pm 5\%$. Correction possible with potentiometer R534 (Fig. 3.12.).
- Check the other time-coefficients; tolerance $\pm 5\%$.

2.4.6. TRIGGERING

- Apply a sine-wave voltage of $100 \text{ mV}_{\text{p-p}}$, 10 MHz , to Y_A input BU3
- Check that it is possible to adjust LEVEL potentiometer R3 for a stationary display.

1. Allgemeine Informationen

1.1. Einleitung

Der 10-MHz-Zweistrahlo-Szillograf PM 3233 ist für allgemeine Laborarbeiten, den Service und für Unterrichtszwecke vorgesehen.

Beide Y-Verstärker besitzen eine driftarme und voll überlastungsgeschützte Eingangsschaltung mit Feldeffekttransistoren. Alle Schaltungen sind voll transistorisiert. Die Transistoren stecken in Fassungen, damit sie nötigenfalls schnell ersetzt werden können.

Das Gerät besitzt eine vollautomatische Triggerschaltung für Zeilen- und Bildsynchroimpulse eines Fernsehsignals.

Der Szillograf kann mit Netzspannung oder einer externen Gleichspannung betrieben werden.

Der Szillograf PM 3233 ist mit einer Signalverzögerungseinheit ausgerüstet, die für beide Kanäle Y_A und Y_B das Signal verzögert.

Abb. 1.1. Zweistrahlo-Szillograf PM 3233

1.2. Technische Daten

Zahlenwerte mit Toleranzangabe werden bei den nominalen Netzspannungen garantiert. Zahlenwerte ohne Toleranzangabe sind Durchschnittswerte und dienen nur zur Information.

BENENNUNG	BESCHREIBUNG	NAHERE ANGABEN
1.2.1. Elektronenstrahlröhre		
Type	PHILIPS E41-100	Spaltstrahlröhre (split-beam) mit Netz, Nachbeschleunigungselektrode und metallhinterlegtem Leuchtschirm.
Ausnutzbare Schirmfläche Schirmtyp	80 x 100 mm Leuchtschirm P31 (GH)	Für Leuchtschirm P7 (GM), bestelle man PM 3233 G (Bestellnummer für Röhre E14-100GM siehe Ersatzteilliste)
Gesamte Beschleunigungsspannung	10 kV	
Überlappung der beiden Systeme	100 %	Sowohl in horizontaler als auch in vertikaler Richtung
Raster	Extern, abnehmbar	Stufenlos einstellbare Beleuchtung
Gravierung	Zentimetereingeteilung mit Unterteilung von 2 mm an den mittleren Achsen. Gestrichelte Linien bei 10 % und 90 % des Messrasters.	Stufenlos einstellbare Beleuchtung
1.2.2. Y-VERSTÄRKER		
1.2.2.1. Kennlinie		
Frequenzgang	d.c. ... 10 MHz 2 Hz ... 10 MHz	-3 dB, Gleichspannungskopplung -3 dB, Wechselspannungskopplung
Anstiegszeit	35 ns	
Überschwingen	max. 2%	Gemessen mit einem Testimpuls mit einer Anstiegszeit von ≥ 10 ns bei einer Ablenkung von 6 cm und einer Frequenz von 1 MHz.
1.2.2.2. Ablenkkoefizienten	2 mV/cm ... 10 V/cm	Zwölf kalibrierte Stellungen, Folge 1-2-5. Dazwischen stufenlos 1 : $\geq 2,5$ einstellbar
1.2.2.3. Fehlergrenze	$\pm 3\%$ $\pm 5\%$	Im Bereich $+5^{\circ}\text{C} \dots +40^{\circ}\text{C}$ Im Bereich $-10^{\circ}\text{C} \dots +55^{\circ}\text{C}$
1.2.2.4. Maximal zulässige Eingangsspannung	± 400 V	Gleichspannung + Spitzenwert einer Wechselspannung

BENENNUNG	BESCHREIBUNG	NAHERE ANGABEN
1.2.2.5. Instabilität des Leuchtflecks		
Langzeitdrift = Kurzzeitdrift	0,25 cm/h	Typischer Wert
1.2.2.6. Vertikale Strahlverschiebung	16 cm	
1.2.2.7. Dynamischer Bereich	24 cm	Spitze-Spitze-Wert der Amplitude von Sinusspannungen; über 3 MHz vernachlässigbare Verzerrungen
1.2.2.8. Eingangsimpedanz	1 MΩ/20 pF	
1.2.2.9. Eingangszeitkonstante	0,1 s	Kopplungsschalter auf AC
1.2.2.10. Sichtbare Signalverzögerung	≥ 40 ns	Unterschied zwischen den Kanälen: 0,1 Teil
1.2.3. X-Y-BETRIEB	X über Y _A	5fache Dehnung ausser Betrieb
Horizontal	d.c. ... 1 MHz	
Frequenzbereich	2 Hz ... 1 MHz	
Phasenverschiebung	5° 1°	Bei 100 kHz Bei 10 kHz
Zusätzlicher Fehler für Y _A -Kanal	± 2 % ± 2 %	Von +5°C ... +40 °C Von -10 °C ... +55 °C
1.2.4. ZEITABLENKUNG		
1.2.4.1. Ablenkkoefizienten	0,5 s/cm ... 0,2 μs/cm	20 geeichte Stufen, Folge 1-2-5. Dazwischen stufenlos einstellbar 1 : ≥ 2,5.
1.2.4.2. Fehler des Zeitmassstabs	± 5 %	Von -10 °C ... +55 °C
1.2.4.3. Dehnung		
Faktor	5x	Geschaltet, kalibriert
Zusätzlicher Fehler	± 2 % ± 3 %	Von +5 °C ... +40 °C Von -10 °C ... +55 °C
1.2.4.4. Ausgangsspannung des Zeitablenkgenerators		
Ausgangsspannung	300 mV	Mit 50-Ω-Abschluss
EMF (Leerlaufspannung)	6 V _{ss} (-2 V bis +4 V)	Ein Kurzschluss dieser Buchse hat keine Rückwirkungen auf die Ablenkkoefizienten
Innenwiderstand	1 kOhm	
1.2.4.5. Verschiebebereich	Der Anfang und das Ende der Zeitablenklinie können sichtbar gemacht werden.	

BENENNUNG	BESCHREIBUNG	NAHERE ANGABEN
1.2.5. TRIGGERUNG		
1.2.5.1. Triggerquelle	Intern: Kanal Y _A , Kanal Y _B oder Netzfrequenz Extern	
1.2.5.2. Triggerempfindlichkeit	Intern $\leq 1 \text{ cm}$ bei 10 MHz Extern $\leq 1 \text{ V}_{\text{ss}}$ bei 10 MHz	Für Sinusspannungen
1.2.5.3. Eingangsimpedanz	100 k Ω /5 pF	
1.2.5.4. Maximal zulässige Eingangsspannung	$\pm 400 \text{ V}$	Gleichspannung + Spitzenwert einer Wechselspannung
1.2.5.5. Triggerauslösung	Automatisch oder normal	
1.2.5.6. Pegelbereich	Entsprechend oder Strahlhöhe 24 cm 24 V	Bei automatischer Triggerung Bei normaler Triggerung Extern
1.2.5.7. Triggerfrequenzbereich	10 Hz ... 10 MHz d.c. ... 10 MHz 20 Hz ... 10 MHz	Wechselspannungskopplung Gleichspannungskopplung Wechselspannungskopplung bei automatischer Triggerung
1.2.5.8. Triggerflanke	+ oder -	
1.2.5.9. Triggerung mit Fernsehsignalen	Rasterfrequenz Zeilenfrequenz Triggerempfindlichkeit	Vollautomatisch; Pegeleinstellung ausser Betrieb Mit den Stellungen 50 $\mu\text{s}/\text{cm}$... 0,5 s/cm gekoppelt Mit den Stellungen 0,2 $\mu\text{s}/\text{cm}$... 20 $\mu\text{s}/\text{cm}$ gekoppelt 1 cm Synchronisierimpulse
1.2.6. HELLIGKEITSSTEUERUNG		Wechselspannungsgekoppelt
Austastspannung	$\geq +20 \text{ V}$	
Eingangswiderstand	$\geq 47 \text{ k}\Omega$	
Frequenzbereich	20 Hz ... 1 kHz	
Eingangsspannung	max. $\pm 400 \text{ V}$	Gleichspannung + Spitzenwert einer Wechselspannung
1.2.7. KALIBRIERGENERATOR		
Typ	Rechteckgenerator	
Ausgangsspannung	600 mV _{ss}	
Fehlergrenze	$\pm 1 \%$	Von +5 °C ... +40 °C
Frequenz	ca. 2 kHz	

BENENNUNG	BESCHREIBUNG	NAHERE ANGABEN
1.2.8. BETRIEBSBEDINGUNGEN		
1.2.8.1. Stromversorgung	Gleich- oder Wechselstrom	
Nominaler Spannungsbereich (sichtbar auf dem Netzspannungsumschalter)	Wechselspannungen 100 V ... 140 V 198 V ... 265 V Gleichspannung 22 V ... 30 V	
Nominaler Frequenzbereich	46 bis 400 Hz	
1.2.8.2. Umgebungstemperaturen		
Die technische Daten werden eingehalten von	+5 °C ... +40 °C	
Zugelassener Betriebstemperatur- bereich	–10 °C ... +55 °C	
Lagerung und Transport	–40 °C ... +70 °C	
1.2.8.3. Betriebslage	Beliebig	
1.2.9. ANWÄRMZEIT	5 min.	Bei konstanten Umgebungsbedin- gungen (ohne Akklimationszeits; siehe auch Abschnitt 2.1.6.).
1.2.10. LEISTUNGSAUFGNAHME	40 VA bei 220 V~ 20 W bei 24 V=	Stromaufnahme 0,85 A
1.2.11. NETZ-STÖRGRAD	Das Gerät erfüllt die Anforderun- gen nach VDE störgrad K	
1.2.12. MECHANISCHE DATEN		
Ausführung	Transportabel	
Abmessungen	Tiefe 503 mm Breite 326 mm Höhe 185 mm	Einschliesslich Frontdeckel Einschliesslich Handgriffe Einschliesslich Füsse
Gewicht	ca. 9,5 kg	
1.2.13. KÜHLUNG	Natürliche Luftzirkulation	
1.2.14. ERSATZ VON BAUELEMENTEN	Normale Serientypen, Transistoren steckbar	

1.3. Zubehör

1.3.1. STANDARDZUBEHÖR

- 1 Frontdeckel mit Aufbewahrungsraum
für zwei Spannungsteiler-Messköpfe
und zwei Adapter BNC – 4 mm
- 2 Adapter BNC – 4 mm PM 9051
- 1 Anleitung

1.3.2. WAHLZUBEHÖR

Spannungsteiler-Messköpfe (10 : 1)	: PM 9326 oder PM 9327
Spannungsteiler-Messköpfe (10 : 1)	: PM 9336 oder PM 9336L
Messkopf (1 : 1)	: PM 9335
2 kV Spannungsteiler-Messkopf (10 : 1)	: PM 9358
Satz Miniaturmesskopfpinzetten	: PM 9333
Mehrzweck-Registrierkamera	: PM 9380
Adapter (Oszillograf/Kamera)	: PM 9379

Siehe auch Abschn. 3.5. "Information concerning accessories".

2. Gebrauchsanleitung

2.1. Inbetriebnahme

2.1.1. ABNEHMEN UND AUFSETZEN DES DECKELS

- Abnehmen : — Den Knopf in der Mitte des Deckels eine viertel Umdrehung nach links drehen.
— Den Deckel abnehmen.
- Aufsetzen : — Den Verriegelungsstift so ausrichten, dass er in den Schlitz in der Textplatte des Instruments passt.
— Den Deckel an der Vorderseite des Oszillografen befestigen.
— Den Knopf hineindrücken und eine viertel Umdrehung nach rechts drehen.

WARNUNG

In diesem Gerät werden hohe Spannungen erzeugt. Deshalb sollte es niemals in geöffnetem Zustand eingeschaltet werden. Vor Wartungsarbeiten ist der Netzstecker zu ziehen oder die externe Spannungsquelle abzuklemmen und ist dafür zu sorgen, dass alle Hochspannung führende Teile entladen sind.

2.1.2. NETZSPANNUNGSEINSTELLUNG UND SICHERUNGEN

Vor dem Einschalten ist das Gerät mit dem Spannungsumschalter an der Rückseite an die örtliche Netzspannung anzupassen.

Das Gerät kann mit einem Schraubenzieher auf 110 V, 127 V, 220 V und 240 V eingestellt werden.

Die gewählte Spannung ist durch eine Öffnung an der Rückseite des Geräts sichtbar.

Auf Wunsch (Spez. VI) kann das Gerät auch für 100 V, 127 V, 200 V und 220 V geliefert werden.

Die temperaturempfindliche Sicherung befindet sich zwischen den Wicklungen des Netztransformators.

Sie kann nach Abnehmen der Rückwand ersetzt werden (drei Schrauben X, Abb. 2.1.).

Die Anschlüsse "N" und "1" (siehe Abb. 3.20 und 3.43) werden abgelötet. Zum Entfernen der Sicherung ist der Sperrnocken am Sicherungskörper freizulegen, indem man den Mantel etwas auswärtsbiegt.

Auf ähnliche Weise wird die neue Sicherung aus dem Gehäuse entfernt und, während die Schleife dem Anschluss "N" zugewandt ist, eingesetzt. Die Sicherung hineinschieben, bis der Nocken in die Sperröffnung einrastet. Nach Festlöten der Anschlüsse "N" und "1" ist das Gerät betriebsfertig.

Abb. 2.1. Rückansicht mit Buchsen

2.1.3. ANSCHLUSS AN EINE EXTERNE GLEICHSPANNUNGSQUELLE

Das Gerät kann an eine externe Gleichspannung von 22 bis 30 V angeschlossen werden; die Stromaufnahme beträgt 0,85 A. Diese Spannung ist an Buchse BU8 EXT. D.C. SUPPLY anzuschliessen. DER PLUSPOL DER SPANNUNG IST MIT ERDE ZU VERBINDELN WIE ES IN DEM SCHALTBILD AN DER HINTEREN TEXTPLATTE ZU SEHEN IST, DA DER PLUSPOL DER STROMVERSORGUNG MIT DEM CHASSIS VERBUNDEN IST.

Bei einer falschen Polung der Spannungsquelle wird der Oszilloskop nicht beschädigt. Beim Betrieb an einer externen Gleichspannung wird das Gerät von Sicherung VL802 (Abb. 2.3.) geschützt, die sich auf der Stromversorgungsleiterplatte befindet und nach Abnahme der Rückwand zugänglich ist. VL802 hat einen Wert von 1,25 A, träge.

Abb. 2.3. Rückansicht mit Sicherung VL802

2.1.4. ERDUNG

Aus Sicherheitsgründen muss der Oszilloskop über den Erdanschluss an der Rückseite (gekennzeichnet mit) oder über das Netzkabel, wenn das Gerät an eine Schukosteckdose angeschlossen wird, geerdet werden. Es ist auch darauf zu achten, dass die Erdverbindung des Oszilloskops nicht durch ein Verlängerungskabel oder irgendeine andere Vorrichtung unterbrochen wird, die keinen Erdleiter besitzt.

2.1.5. EINSCHALTEN

Bei Netzbetrieb wird das Gerät mit dem Schalter eingeschaltet, der mit der Rasterbeleuchtung gekoppelt ist. Das Netzkabel befindet sich in einem Fach unter dem Gerät. Beim Anschluss an eine externe Gleichspannung ist der Netzschalter ausser Betrieb. Das Gerät ist eingeschaltet, sobald die externe Gleichspannung angeschlossen ist. In beiden Fällen wird der Betriebszustand von der weissen Signallampe angezeigt.

Das Gerät darf in jeder Betriebslage verwendet werden, aber es ist darauf zu achten, dass die freie Luftzirkulation nicht behindert wird. Für die zulässigen Umgebungstemperaturen siehe Abschnitt 1.2.8.2.

2.1.6. INBETRIEBAHME EINES UNTERKÜHLTEN GERÄTES

In Abschnitt 1.2. "Technische Daten" steht, dass das Gerät nach einer Anwärmzeit von 5 Minuten und in einen Temperaturbereich von +5 °C bis +40 °C die garantierten Daten einhält.

Es gibt hierbei aber eine Ausnahme. Wenn man zum Beispiel den Oszilloskop nachts bei Temperaturen unter 0° im Auto lässt und dann am folgenden Morgen in einen Raum mit einer Temperatur von 25 °C bringt, tritt an den einzelnen Bauelementen Kondensation auf.

Die hochohmigen Widerstände des Oszilloskops verlieren durch die Leckströme über die Kondensation ihre Eigenschaften, wodurch der Oszilloskop nicht mehr einwandfrei arbeitet. In diesem Fall ist etwa 2 Stunden zu warten, bis der Oszilloskop akklimatisiert und alle Kondensationsflüssigkeit verdampft ist.

2.2. Bedienungsanleitungen

Vor dem Einschalten ist zu kontrollieren, ob der Oszilloskop Abschnitt 2.1. "Inbetriebnahme" entsprechend angeschlossen ist und die dort beschriebenen Vorsorgemassnahmen beachtet wurden.

2.2.1. BEDIENUNGSORGANE UND BUCHSEN (Abb. 2.2. Seite 17)

X POSITION (R1) MAGN. (SK1)	Stufenlos veränderliche Einstellung der horizontalen Lage des Elektronenstrahls. Mit Schalter für kalibrierte fünffache Dehnung der Seitablenkung.
TIME/cm /SK2)	Einstellung des Zeitmaßstabes; 21 stufiger Schalter mit einer Stellung für externe X-Ablenkung (X über Y _A).
CAL.-TIME/cm (R2/SK3)	Stufenlos veränderliche Einstellung der Zeitmaßstäbe. In Stellung CAL ist der Zeitmaßstab kalibriert.
LEVEL (R3)	Stufenlos veränderliche Einstellung des Pegels, bei dem der Zeitablenkgenerator startet.
CAL. (BU1)	Buchse mit Rechteckspannung von 600 mV _{SS} für Kalibrierzwecke.
TRIGGERUNG (SK4 ... 13)	10fache-Drucktaste für die Einstellung von und Triggerart.
Y _A (SK4)	Triggersignal intern von Kanal Y _A abgenommen.
Y _B (SK5)	Triggersignal intern von Kanal Y _B abgenommen.
EXT. (SK6)	Triggersignal von der Triggereingangsbuchse abgenommen.
MAINS (SK7)	Triggersignal von einer internen Spannung mit Netzfrequenz abgenommen. Diese Triggerquelle ist bei Betrieb mit einer externen Gleichspannung nicht vorhanden.
+ (SK8)	Triggerung auf der positivgerichteten Flanke des Signals.
- (SK9)	Triggerung auf der negativgerichteten Flanke des Signals.
AUTO (SK10)	Freilaufende Zeitablenkung beim Fehlen von Triggersignalen und automatische vom zugeführten Signal abgeleitete Begrenzung des Pegeleinstellbereiches.
AC (SK11)	Triggersignal wird über Trennkondensator zugeführt.
DC (SK12)	Direkte Kopplung des Triggersignals bei einer sich langsam ändernden Spannung, oder wenn die volle Bandbreite erforderlich ist.
TV (SK13)	Triggerung auf Zeilen- oder Bildimpulsen eines Fernsehsignals, je nach Stellung von Schalter SK2 TIME/cm. Triggerung auf Bildimpulsen in den Stellungen 50 µs/cm bis 0,5 s/cm und auf Zeilenumimpulsen in den Stellungen 0,2 µs/cm bis 20 µs/cm.
TRIGG. (BU2)	BNC-Buchse für externe Triggersignale.
BEAM SELECTOR A (SK14)	Wenn diese Taste gedrückt ist, wird das Signal von Kanal Y _A vertikal dargestellt.
BEAM SELECTOR B (SK15)	Wenn diese Taste gedrückt ist, wird das Signal von Kanal Y _B vertikal dargestellt. Wenn Schalter A (SK14) und Schalter B (SK15) gedrückt sind, werden sowohl das Signal von Kanal Y _A als auch das von Kanal Y _B vertikal dargestellt.

AC-0-DC (SK16 & 19)	Dreistellungenschalter für die Signaleinkopplung. AC : über einen Trennkondensator 0 : Eingangsbuchse ist nicht mit der Schaltung verbunden, die Schaltung ist geerdet DC : Gleichspannungskopplung
AMPL. (SK17 & 18)	Einstellung der vertikalen Ablenkkoefizienten, 12stufiger Schalter.
CAL. – AMPL. (R4 & 5)	Stufenlos veränderliche Einstellung der vertikalen Ablenkkoefizienten. In Stellung CAL. sind die Ablenkkoefizienten kalibriert.
DC BAL. (R6 & R7) (Schraubenziehereinstellung)	Einstellung der Gleichspannungssymmetrie der Y-Verstärker.
ILLUM. (SK20 & R8)	Stufenlos einstellbare Rasterbeleuchtung. Ausserdem Netzschatzer.
FOCUS (R9)	Fokussierung des Elektronenstrahls.
INTENS. (R10)	Helligkeitseinstellung des Elektronenstrahls.
1 MOhm – 20 pF (BU3 & 5)	BNC-Eingangsbuchsen für die Y-Verstärker.
POSITION (R11 & 12)	Stufenlose Einstellung der vertikalen Lage des Elektronenstrahls.
⊕ (BU4)	Erdungsbuchse

An der Rückseite des Gerätes (Abb. 2.1.):

TB OUT (BU6)	Sägezahnausgang, BNC-Buchse
Z MOD. (BU7)	Eingang für Helligkeitssteuerung, BNC-Buchse.
EXT. DC SUPPLY (BU9)	Eingangsbuchse für externe Gleichspannung.

2.2.2. GRUNDEINSTELLUNGEN

Wir empfehlen, das Gerät 5 Minuten vor den Messungen einzuschalten. Diese Vorwärmzeit genügt allerdings nicht, wenn das Gerät aus einem kalten Raum kommt und erst akklimatisiert werden muss (siehe auch Abschnitt 2.1.6.).

- Bei Netzbetrieb:

Prüfen, ob der Netzspannungsumschalter auf die vorhandene Netzspannung eingestellt ist. Falls erforderlich, den Umschalter richtig einstellen, wie es in Abschnitt 2.1.2. angegeben ist.

Das Gerät einschalten.

- Bei externer Gleichspannung:

Prüfen, ob die externe Spannungsquelle richtig angeschlossen ist, Pluspol an Erde.

- Die Potentiometer FOCUS und INTENS (R9 und R10) in Mittelstellung drehen.

- Die Tasten BEAM SELECTOR A SK14 und SK15 drücken. Wenn keine dieser Tasten gedrückt wird, erscheint auf dem Schirm kein Bild.

- Triggerquelle, Triggerfalte und Triggerart wählen. Wenn keine dieser Tasten gedrückt ist, triggert der Oszilloskop das Y_A -Signal an der positiven Flanke und automatisch ohne Pegelbegrenzung.

- Die beiden Elektronenstrahlen mit den Knöpfen Y POSITION (R11 und R12) auf dem Schirm abbilden.

Der Oszilloskop ist nun betriebsbereit. Für eine Korrektur der Gleichspannungssymmetrie siehe 3.2.4.2.

2.2.3. EINGÄNGE Y_A UND Y_B UND IHRE MÖGLICHKEITEN

Der Oszilloskop PM 3233 besitzt zwei identische Vertikalkanäle, die entweder zusammen mit dem Zeitablenkgenerator für Y-T-Messungen oder aber für X-Y-Messungen bis 1 MHz verwendet werden können.

2.2.3.1. Y-T-Messungen

Zur Darstellung eines Signals ist einer der beiden vertikalen Kanäle mit BEAM SELECTOR A SK14 oder BEAM SELECTOR B SK15 zu wählen. Wenn beide Tasten A SK14 und B SK15 gedrückt werden, können zwei Signale gleichzeitig abgebildet werden. Der Ablenkkoefizient lässt sich für jeden Kanal getrennt einstellen.

2.2.3.2. X-Y-Messungen

Wenn Schalter SK2 TIME/cm in Stellung X via Y_A steht, ist der Zeitablenkgenerator ausgeschaltet. Das Signal des Y_A -Kanals wird nun horizontal abgebildet. Mit den Bedienungselementen für Y_A , ausgenommen Potentiometer R11 POSITION, wird nun die X-Ablenkung eingestellt. Nur für die Verschiebung des Elektronenstrahls in horizontaler Richtung muss Potentiometer R1 X POSITION verwendet werden. Die fünffache Dehnung mit Schalter SK5 ist jedoch ausser Betrieb.

Bei dieser Einstellung sind X-Y-Messungen bis zu 100 kHz möglich.

2.2.3.3. Funktion des Schalters AC-0-DC

Die zu untersuchenden Signale sind an den Y_A -Eingang BU3 bzw. den Y_B -Eingang BU4 anzuschliessen. Je nach Zusammensetzung des Signal ist der Schalter AC-0-DC in Stellung AC oder DC zu setzen. In Stellung DC ist der Eingang direkt mit dem Y-Verstärker verbunden. Da der Y-Verstärker gleichspannungsgekoppelt ist, steht die ganze Bandbreite des Gerätes zur Verfügung. Das bedeutet, dass das vollständige Eingangssignal an die Ablenkplatten gelangt, einschliesslich einer evtl. Gleichspannungskomponente, die den Strahl auf dem Schirm verschiebt.

Falls kleinere Wechselspannungen hohen Gleichspannungen überlagert sind, kann dies zu Schwierigkeiten führen. Um in solchen Fällen die Wechselspannung sichtbar machen zu können, muss das Eingangssignal stark abgeschwächt werden, wodurch der Wechselspannungsanteil nur sehr klein wiedergegeben wird.

In diesem Fall ist der Schalter AC-0-DC auf AC zu stellen.

Nun liegt ein Trennkondensator zwischen der Eingangsbuchse und dem Y-Verstärker, der Gleichspannungen zurückhält, aber außerdem die sehr tiefen Frequenzen unterdrückt bzw. etwas abschwächt.

Bei Rechtecksignalen mit sehr niedriger Frequenz ist eine Dachschräge der Impulse dabei nicht zu vermeiden. In Stellung 0 des Schalters AC-0-DC kann man schnell den Nullpegel bestimmen. In dieser Stellung ist der Verstärkereingang nicht mit dem Eingangssignal verbunden, sondern geerdet. Gleichzeitig wird der Trennkondensator entladen, damit die zu prüfende Schaltung nicht beschädigt werden kann.

2.2.4. TRIGGERUNG

2.2.4.1. Allgemeines

Um ein stillstehendes Bild zu erhalten, muss die horizontale Ablenkung immer beim selben Punkt des Signals gestartet werden. Deshalb wird der Zeitablenkgenerator von einem kurzen Triggerimpuls gestartet, der in der Triggereinheit geformt und von einem Signal gesteuert wird, das dem vertikalen Eingangssignal oder einer externen Spannungsquelle entnommen wird.

2.2.4.2. Triggerkopplung

- AC Wenn das Eingangssignal eine Gleichspannungskomponente enthält, kommt es vor, dass mit dem Pegelpotentiometer nicht der richtige Gleichspannungspegel für den Schmitt-Trigger eingestellt werden kann. In diesem Fall ist mit Wechselspannungskopplung zu arbeiten. Die Wechselspannungskopplung erhält man durch Einfügen eines Kondensators in die Triggerleitung. Dies hat den Vorteil, dass die Gleichspannungskopplung für die Y-Kanäle erhalten bleibt.
- DC Eine Gleichspannungskopplung ist zweckmäßig, wenn der Mittelwert des Signals schwankt. Diese Art von Signalen tritt oft in Digitalsystemen auf. Bei Wechselspannungskopplung würde der Triggerpunkt dann nicht festliegen, wodurch das Oszillogramm zu zittern beginnt oder die Triggerung ganz ausfällt.

2.2.4.3. Triggerpegel

Bei einem komplizierten Signal mit mehreren periodisch auftretenden nicht identischen Spannungsformen muss die Zeitablenkung immer bei derselben Spannungsform gestartet werden, um ein stillstehende Oszillogramm zu erhalten. Dies ist möglich, wenn irgendein Teil des Kurvenzuges eine abweichende Amplitude hat. Mit dem Knopf LEVEL kann der Triggerpegel so eingestellt werden, dass nur diese grösse Spannungsabweichung den eingestellten Pegel überschreitet.

Die Pegeleinstellung ist auch sehr nützlich, wenn zwei Signale genau verglichen werden sollen, z.B. bei Phasenmessungen. Mit der Pegeleinstellung kann der Startpunkt der beiden Kurven so gegeneinander verschoben werden, dass er auf der mittleren Rasterlinie liegt:

2.2.4.4. Automatische Triggerung

Die automatische Triggerung – Schalter AUTO gedrückt – wird wegen der einfachen Bedienung am häufigsten gewählt. Bei dieser Triggerart können die verschiedenartigsten Kurvenformen abgebildet werden, ohne dass irgendeines der Triggerbedienungsorgane eingestellt werden muss. Wenn kein Triggersignal vorhanden ist, bleibt auf dem Schirm eine Nulllinie sichtbar und erleichtert damit den Nullpunktvergleich. Bei dieser Triggerart lässt sich der Pegel über den Spitze-Spitze-Wert der Wechselspannungskomponente des Signals einstellen. Wenn keiner der Schalter AUTO, AC, DC oder TV gedrückt ist, triggert der Oszillograf automatisch, aber über den gesamten zur Verfügung stehenden Pegelbereich. Dies hat den Vorteil, dass immer eine Linie auf dem Schirm zu sehen ist, auch wenn keine der Triggertasten gedrückt ist.

2.2.4.5. Externe Triggerung

Mit externer Triggerung wird bei Signalen mit stark schwankender Amplitude gearbeitet, sofern ein Signal mit konstanter Amplitude und gleicher Frequenz zur Verfügung steht. Noch wichtiger ist die externe Triggerung bei komplexen Signalen und Impulsmustern, um Doppelbilder zu vermeiden.

Man braucht dann nicht bei jeder Änderung des Eingangssignals den Triggerpegel neu einzustellen.

2.2.4.6. Triggerung mit Netzfrequenz

In diesem Falle ist das Triggersignal eine Sinusspannung mit Netzfrequenz. Diese Triggerquelle kann verwendet werden, wenn das zu untersuchende Signal mit der Netzfrequenz gekoppelt ist; z.B. zur Untersuchung der Brummkomponente eines Signals.

2.2.4.7. Triggerung mit Fernsehsignalen

Der Oszillograf kann mit Zeilen- oder Bildsynchrongrößen von Fernsehsignalen getriggert werden. In den Stellungen 0,5 s/cm bis 50 μ s/cm des Schalters TIME/cm werden die Bildsynchrongrößen und in den Stellungen 20 μ s/cm bis 0,2 μ s die Zeilensynchronimpulse des Signals getriggert. Der Schalter für die Triggerflanke ist der Polarität des Videosignals entsprechend einzustellen.

2.2.5. DEHNUNG DER ZEITABLENKUNG

Die Dehnung wird mit einem Schiebeschalter eingestellt. Wenn dieser Schalter sich in Stellung x5 befindet, ist ein 5x schnellerer Zeitmaßstab eingestellt. In dieser Stellung gilt der eingestellte Zeitmaßstab geteilt durch 5.

2.2.6. HELLIGKEITSSTEUERUNG

Soll das Oszilloskop ohne Änderung der Kurvenform eine zusätzliche Information erhalten, kann die Helligkeit des Elektronenstrahls mit einer externen Spannung herabgesetzt werden. Das externe Signal ist hierfür an die Buchse Z MOD an der Rückseite des Oszilloskops anzuschließen. Die für eine sichtbare Helligkeitsmodulation benötigte Spannung hängt von der eingestellten Grundhelligkeit ab. Bei mittlerer Helligkeit des Elektronenstrahls genügt eine Spannung von +20 V_{ss} für eine gut sichtbare Helligkeitssteuerung.

2.2.7. DIE ZWEISTRAHLRÖHRE

In dem Oszilloskop PM 3233 wird eine Zweistrahlröhre verwendet, deren beide Elektronenstrahlen in einer gemeinsamen Elektronenkanone erzeugt, aber unabhängig voneinander abgelenkt werden können. Diese Anordnung ist als Spaltstrahlröhre (split-beam tube) bekannt.

Bei dieser Röhre laufen die beiden Strahlspuren absolut parallel, da sie an einem einzigen Punkt erzeugt und von einem gemeinsamen Horizontalverstärker abgelenkt werden. Weil die beiden Elektronenstrahlen in nur einer Kanone erzeugt werden, sind sie gegeneinander nur gering verzerrt.

Die Spaltstrahlröhre ist vor allem für die Darstellung von Signalen mit einer niedrigen Wiederholungsfrequenz und relativ hohen Ablenkgeschwindigkeiten geeignet, da sie gleichsam als eine Elektronenstrahlröhre betrachtet werden kann, die von einem Elektronenschalter mit unendlich hoher Schaltfrequenz gesteuert wird.

Um die Helligkeit beider Strahlen einander anzugleichen und einstellen zu können sind an der Kathodenstrahlröhre zwei Magnete symmetrisch angebracht. Beide Magnete sind ab Fabrik auf gleiche Helligkeit eingestellt. Mit Hilfe eines Schraubenziehers lässt sich Magnet 2 durch eine Öffnung in die Bodenplatte des Oszilloskops nachjustieren.

2.3. Beschreibung des Blockschaltbildes (Abb. Seite 26)

2.3.1. Y-ACHSE

Der Oszilloskop PM 3233 besitzt zwei identische gleichspannungsgekoppelte Y-Verstärker, mit denen zwei Signale gleichzeitig dargestellt werden können. Jeder Verstärker enthält einen Abschwächer, einen Quellenfolger mit Schutzschaltung, einen Vorverstärker, eine Driftkompensation, eine Triggerentnahmestufe, eine Verzögerungsschaltung und einen Endverstärker.

In diesem Gerät befindet sich die Verzögerungsschaltung (für beide Kanäle Y_A und Y_B) zwischen der Triggerentnahmestufe und dem Endverstärker, welche ein Teil der Verzögerungseinheit ist.

Die Schutzschaltung verhindert eine Beschädigung des Feldeffektransistors in der Eingangsstufe durch zu hohe Eingangsspannungen.

Die Driftkompensationsschaltung reduziert die bei hochempfindlichen Verstärkern unvermeidliche Drift.

Die Triggerentnahmestufe liefert bei interner Triggerung ein Triggersignal an den Triggervorverstärker und koppelt außerdem das Signal an den Y-Endverstärker. Wenn das Gerät als X-Y-Oszilloskop verwendet wird, kann das Signal von Kanal Y_A an den X-Endverstärker angeschlossen werden. Vom Y-Endverstärker gelangt das Signal an die Y-Ablenkplatten der Elektronenstrahlröhre.

Die Verzögerungsschaltung gestattet die Wiedergabe der Vorderflanke schneller Vorgänge auf dem Bildschirm.

2.3.2. TRIGGERUNG

Das Triggersignal kann entweder einem Y-Verstärker, einer externen Quelle oder intern dem Netz entnommen werden. Letzteres ist nicht möglich, wenn das Gerät mit einer externen Gleichspannung betrieben wird. Das Triggersignal kommt an den Triggerimpulsformer, der eindeutige Triggerimpulse zum Starten des Zeitablenkgenerators liefert. Die Triggereinheit enthält außerdem eine Synchronimpulstrennstufe für Fernsehsignale, so dass auch mit diesen Signalen eine Triggerung möglich ist.

2.3.3. ZEITABLENKUNG

Der Zeitablenkgenerator ist ein Konstantstromintegrator und liefert zwei Ausgangsspannungen. Eine Sägezahnspannung für den X-Endverstärker und die Ausgangsbuchse an der Rückseite des Gerätes und einen Torimpuls, der für die Helltafelung der Elektronenstrahlröhre während der Ablenkung sorgt.

2.3.4. X-ACHSE

Der X-Endverstärker erhält sein Eingangssignal entweder vom Zeitablenkgenerator oder über den Y_A -Kanal von einer externen Spannungsquelle. Von X-Verstärker gelangt das Signal an die horizontalen Ablenkplatten der Elektronenstrahlröhre.

2.3.5. SCHALTUNG DER ELEKTRONENSTRAHLRÖHRE

Die Elektronenstrahlröhre ist eine Spaltstrahlröhre mit nur je einer Einstellung für die Helligkeit und die Fokussierung. Die Kathode der Elektronenstrahlröhre liegt über einen Kondensator an der Buchse für externe Helligkeitssteuerung. Die Hochspannungen für diese Röhre werden von einem Spannungswandler erzeugt, der auch die übrigen Speisespannungen liefert.

2.4. Kurze Prüfanleitung

2.4.1. AUSGANGSSTELLUNG DER BEDIENUNGSORGANE

- Die Tasten Y_A SK4 + SK8 und BEAM SELECTOR A SK14 und B SK15 gedrückt.
 - Schalter SK2 TIME/cm in Stellung 0,1 ms/cm.
 - Schalter SK17 und SK18 AMPL in Stellung 0,1 V/cm.
 - Schalter SK1 MAGN in x1.
 - Potentiometer POSITION R1, R11 und R12 in ihre Mittelstellungen.
 - Potentiometer INTENS R10 an den rechten Anschlag.
 - Potentiometer TIME/cm und AMPL R2, R4 und R5 in Stellung CAL.
- Sofern nicht anders angegeben, müssen die Bedienungsorgane sich immer in derselben Stellung wie bei der vorausgegangenen Prüfung befinden.

2.4.2. EINSTELLUNGEN DER ELEKTRONENSTRÄHLRÖHRE

- Mit den Potentiometern FOCUS (R9) und INTENS (R10) eine klare und gut sichtbare Linie einstellen.
- Die beiden Zeitablenklinien mit den Potentiometern POSITION (R1, R11 und R12) zentrieren.
- Prüfen, ob die Zeitablenklinie genau parallel zu den waagerechten Rasterlinien verläuft. Eine Korrektur ist mit Potentiometer R813 möglich (Abb. 3.11.).

2.4.3. Y-KANÄLE

Es wird die Prüfung von Kanal Y_A beschrieben, die für Y_B geltenden Werte stehen in Klammern.

- BEAM SELECTOR B SK15 (A SK14) lösen.
- Schalter AC-0-DC SK16 und SK19 in Stellung 0.
- Schalter AMPL SK17 (SK18) in Stellung 2 mV/cm.
- Prüfen, ob die Zeitbasislinie innerhalb 4 mm von der Schirmmitte bleibt. Korrektur mit Potentiometer DC BAL R6 (R7).
- Schalter AC-0-DC SK16 (SK19) in Stellung DC.
- Prüfen, ob die Zeitbasislinie nicht mehr als 4 mm springt. Korrektur mit Potentiometer R126 (R326), Abb. 3.13.
- Schalter AMPL SK17 (SK18) in Stellung 0,1 V/cm.
- Eine Rechteckspannung von $600 \text{ mV}_{ss} \pm 0,5 \%$, 2 kHz, an die Eingangsbuchse Y_A (Y_B) BU3 (BU5) anschliessen.
- Prüfen, ob die Höhe des Oszilloskopograms 6 cm $\pm 2 \%$ beträgt. Korrektur mit R111 (R311), Abb. 3.13.
- Eine Sinusspannung von $600 \text{ mV}_{ss} \pm 0,5 \%$, an die Eingangsbuchse Y_A (Y_B) BU3 (BU5) anschliessen.
- Prüfen, ob die Höhe des Oszilloskopograms wenigstens 4,2 cm beträgt.

2.4.4. X VIA Y_A

- BEAM SELECTOR A SK14 und B SK15 drücken.
- Schalter TIME/cm SK2 in Stellung X via Y_A .
- Schalter AC-0-DC SK19 in Stellung 0.
- Eine Rechteckspannung von $600 \text{ mV}_{ss} \pm 0,5 \%$, 2 kHz, an Eingang Y_A BU3 anschliessen.
- Prüfen, ob die Breite des Oszilloskopograms 6 cm $\pm 3 \%$ beträgt. Korrektur mit Potentiometer R601 (Abb. 3.12.).

2.4.5. ZEITABLENKUNG

- Den Zeitmaßstab in Stellung $20 \mu\text{s}$ des Schalters TIME/cm SK2 mit Zeitmarken prüfen, Toleranz $\pm 5\%$.
- Korrektur mit Potentiometer R534 (Abb. 3.12.).
- Die übrigen Zeitmaßstäbe prüfen, Toleranz $\pm 5\%$.

2.4.6. TRIGGERUNG

- Eine Sinusspannung von $100 \text{ mV}_{\text{ss}}$ 10 MHz, an Eingang Y_A BU3 anschliessen.
- Prüfen, ob sich mit Hilfe von Potentiometer LEVEL R3 ein stillstehendes Bild einstellen lässt.

1. Généralités

1.1. Introduction

L'oscilloscope PM 3233 10 MHz a été conçu pour l'usage en laboratoire, l'entretien et l'enseignement. Les amplificateurs verticaux sont équipés d'un circuit de réduction de dérive et d'une entrée à transistor à effet de champ complètement protégé contre la surcharge. Tous les circuits sont entièrement transistorisés et les transistors sont montés sur support pour permettre un entretien rapide. L'appareil est pourvu d'un dispositif automatique permettant le déclenchement sur les impulsions de synchronisation (ligne et trame) d'un signal télévision. L'oscilloscope peut être alimenté en alternatif secteur ou en continu externe. Le PM 3233 est équipé d'une unité de ligne à retard qui produit un retard de signal pour les voies Y_A et Y_B.

Fig. 1.1. Oscilloscope à deux faisceau (PM 3233)

1.2. Caractéristiques techniques

Seules les valeurs indiquées avec tolérance sont garanties par l'usine pour les tensions secteur nominales.
Les chiffres sans tolérance ne servent que d'orientation et correspondent aux caractéristiques d'un appareil moyen.

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>INFORMATION SUPPLEMENTAIRE</i>
1.2.1. TUBE A RAYONS CATHODIQUES		
Type	PHILIPS E14-100	Tube split-beam, gaze, post-accélérateur, phosphore doublé de métal
Aire de mesure	80 mm x 100 mm	
Type d'écran	Phosphore P31 (GH)	Pour phosphore P7 (GM) commander PM 3233G (numéro de code pour tube E14-100GH, voir nomenclature des composants)
Tension d'accélération totale	10 kV	
Chevauchement des deux Systèmes	100 %	Dans les sens horizontal et vertical
Graticule	Externe, démontable	Illumination continuellement variable
Gravures	Divisions centimétriques avec subdivisions de 2 mm sur les axes centraux. Les lignes interrompues indiquent 10 % et 90 % de la grille de mesure.	Aire: 80 mm x 100 mm
1.2.2. AMPLIFICATEURS VERTICAUX		
1.2.2.1. Réponse		
Gamme de fréquence	continu à 10 MHz	-3 dB largeur de bande à couplage continu
	2 Hz à 10 MHz	-3 dB largeur de bande à couplage capacitif
Temps de montée	35 ns	
Dépassement	2 % maximum	Impulsion de test de ≥ 10 ns (temps de montée) pour 6 cm de déflexion à 1 MHz
1.2.2.2. Coefficients de déviation		
	2 mV/cm à 10 V/cm	12 positions calibrées en progression 1-2-5 Commande continue non-calibrée 1 : $\geq 2,5$
1.2.2.3. Erreur limite		
	$\pm 3\%$ $\pm 5\%$	dans la gamme +5 °C à +40 °C dans la gamme -10 °C à +55 °C
1.2.2.4. Tension d'entrée maximale admise		
	± 400 V	tension continue + tension alternative crête

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>INFORMATION SUPPLEMENTAIRE</i>
1.2.2.5. Instabilité de la position du spot		
Dérive à long terme = dérive à court terme	0,25 cm/heure	valeur typique
1.2.2.6. Décadrage vertical	16 cm	
1.2.2.7. Gamme dynamique	24 cm	Amplitude crête-à-crête pour signaux sinusoïdaux; distorsion négligeable à 3 MHz
1.2.2.8. Impédance d'entrée	1 MΩ//20 pF	
1.2.2.9. Temps RC d'entrée	0,1 s	Commutateur de couplage en position A.C.
1.2.2.10. Retard de signal visible	≥ 40 ns	Différence entre voies: 0,1 division
1.2.3. MODE X-Y	X par l'intermédiaire de Y_A	L'agrandisseur x5 est hors service
Gamme de fréquence horizontale	continue à 1 MHz 2 Hz à 1 MHz	
Déphasage	5° 1°	A 100 kHz A 10 kHz
Erreurs supplémentaires pour voie Y_A	±2 % ±3 %	dans la gamme +5 °C à +40 °C dans la gamme -10 °C à +55 °C
1.2.4. BASE DE TEMPS		
1.2.4.1. Coefficients de temps	0,5 s/cm à 0,2 μs/cm	20 positions étalonnées en progression 1-2-5 Commande continue non-calibrée 1 : ≥ 2,5.
1.2.4.2. Erreur de coefficient	±5 %	Dans la gamme -10 °C à +55 °C
1.2.4.3. Expansion		
Agrandissement	5 x	commutable, étalonné
Erreurs supplémentaires	±2 % ±3 %	dans la gamme +5 °C à +40 °C dans la gamme -10 °C à +55 °C
1.2.4.4. Signal de sortie de base de temps		
Tension de sortie	300 mV	Terminé par 50 Ω
Force électromotrice (tension en circuit ouvert)	6 V _{CC} (-2 V à +4 V)	La borne de sortie peut être court-circuitée sans affecter les coefficients de temps
Résistance interne	1 kΩ	
1.2.4.5. Gamme de décadrage	Le début et la fin de la ligne de base de temps peuvent être visualisés	

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>INFORMATION SUPPLEMENTAIRE</i>
1.2.5. DECLENCHEMENT		
1.2.5.1. Source	Interne: voie Y_A , voie Y_B ou fréquence secteur Externe	
1.2.5.2. Sensibilité de déclenchement	Interne ≤ 1 cm à 10 MHz Externe ≤ 1 V _{cc} à 10 MHz	Pour signaux sinusoïdaux
1.2.5.3. Impédance d'entrée	100 kOhm//5 pF	
1.2.5.4. Tension d'entrée maximale admise	± 400 V	Tension continue + tension alternative crête
1.2.5.5. Mode de déclanchement	Automatique ou normal	
1.2.5.6. Gamme de niveau	Correspondant à la hauteur de trace 24 cm 24 V	En mode automatique En mode normal Externe
1.2.5.7. Gamme de fréquence de déclenchement	10 Hz à 10 MHz continue à 10 MHz 20 Hz à 10 MHz	couplage capacitif couplage continu couplage capacitif en mode automatique
1.2.5.8. Pente de déclenchement	+ ou -	
1.2.5.9. Déclenchement avec signaux télévision	Mode	Complètement automatique; commande de niveau hors service
	Trame	Couplé avec les positions 50 μ s à 0,5 s/cm
	Ligne	Couplé avec les positions 0,2 μ s à 20 μ s/cm
Sensibilité de déclenchement	Impulsion sync. de 1 cm	
1.2.6. MODULATION D'INTENSITE		couplage capacitif
Tension de suppression du faisceau	$\geq +20$ V	
Résistance d'entrée	≥ 47 kOhm	
Gamme de fréquence	20 Hz à 1 kHz	
Tension d'entrée maximale admise	± 400 V	Tension continue + tension alternative crête
1.2.7. GENERATEUR D'ETALONNAGE		
Type	Générateur d'ondes rectangulaires	
Tension de sortie	600 mV _{cc}	
Précision	± 1 %	Dans la gamme +5 °C à +40 °C
Fréquence	environ 2 kHz	

<i>DESIGNATION</i>	<i>SPECIFICATION</i>	<i>INFORMATION SUPPLEMENTAIRE</i>
1.2.8 CONDITIONS DE FONCTIONNEMENT		
1.2.8.1. Alimentation	alternatif ou continu	
Gamme de tension nominale (lisible sur l'adaptateur de tension secteur)	alternatif 100 V ... 140 V 198 V ... 265 V continu 22 V à 30 V	
Gamme de fréquence nominale	46 Hz à 400 Hz	
1.2.8.2. Température ambiante		
Gamme de référence	+5 °C à +40 °C	
Gamme de fonctionnement	-10 °C à +55 °C	
Température d'emmagasinage et de transport	-40 °C à +70 °C	
1.2.8.3. Position de fonctionnement	N'importe laquelle	
1.2.9. TEMPS DE CHAUFFAGE	5 minutes	A des conditions d'environnement constantes (non compris le temps de rétablissement; voir également section 2.1.6.).
1.2.10. CONSOMMATION	40 VA à 220 V alternatif 20 W à 24 V continu	
1.2.11. INTERFERENCE SECTEUR	L'appareil répond à la norme VDE Störgrad K	
1.2.12. CARACTERISTIQUES MECANIQUES		
Modèle	Portable	
Dimensions	Profondeur 503 mm Largeur 326 mm Hauteur 185 mm	Y compris le couvercle frontal Y compris poignée Y compris pied
Poids	Environs 9,5 kg	
1.2.13. REFROIDISSEMENT	Par circulation naturelle d'air	
1.2.14. REMPLACEMENT DES COMPOSANTS	Type de production normal, transistors enfichables	

1.3. Accessoires

1.3.1. ACCESSOIRES STANDARD

- 1 Couvercle frontal avec plane pour deux sondes passives et deux adaptateurs BNC 4 mm
- 2 Adaptateurs BNC 4 mm PM 9051
- 1 Notice d'emploi

1.3.2. ACCESSOIRES FACULTATIFS

Sondes passives (10 : 1)	: PM 9326 ou PM 9327
Sondes passives (10 : 1)	: PM 9336 ou PM 9336L
Sonde passive (1 : 1)	: PM 9335
Sonde passive 2 kV (100 : 1)	: PM 9358
Pincettes miniatures pour sondes	: PM 9333
Appareil de photographie d'oscillogrammes	: PM 9380
Adaptateur (oscilloscope - PM 9380)	: PM 9379

Voir également chapitre 3.5. "Information concerning accessories".

2. Mode d'emploi

2.1. Installation

2.1.1. DEPOSE ET REPOSE DU COUVERCLE FRONTAL

Dépose: — Tourner le bouton au centre du couvercle d'un quart de tour vers la gauche
— Enlever le couvercle

Repose: — Aligner la clef du bouton de verrouillage avec la fente pratiquée dans la plaque de texte de l'appareil
— Fixer le couvercle à l'avant de l'oscilloscope
— Enfoncer le bouton et le tourner d'un quart de tour vers la droite.

ATTENTION

Cet appareil produit de hautes tensions et ne peut être utilisé avec les couvercles déposés. La fiche secteur ou la source de tension externe doit être déconnectée avant tout entretien et tous les points à haute tension déchargés.

2.1.2. ADAPTATION AU SECTEUR ET FUSIBLES

Avant l'enclenchement, l'instrument doit être réglé sur la tension secteur locale à l'aide de l'adaptateur de tension situé à l'arrière de l'instrument.

Il est possible de régler l'instrument sur 110 V, 127 V, 220 V et 240 V à l'aide d'un tournevis. La tension sélectionnée est visible par l'ouverture à l'arrière.

Le fusible thermique est monté entre les enroulements du transformateur secteur. Il peut être remplacé après démontage du couvercle arrière (3 vis "X", Fig. 2.1.).

Les bornes "N" et "1" (voir figure 3.20. et 3.43.) doivent être dessoudées; afin d'enlever le fusible, courber l'enveloppe légèrement vers l'extérieur de sorte que la goupille d'arrêt soit libérée.

Un nouveau fusible s'extrait de son boîtier de la même façon que décrit précédemment. Il est ensuite poussé au même endroit que l'ancien, jusqu'à ce que la goupille d'arrêt s'adapte dans le trou, la cosse étant dirigée vers la borne "N". Souder ensuite les bornes "N" et "1", l'appareil est alors prêt à l'usage.

Fig. 2.1. Vue arrière montrant les douilles

2.1.3. ALIMENTATION PAR UNE SOURCE CONTINUE EXTERNE

L'appareil peut être alimenté par une source continue externe de 22 V à 30 V; 0,85 A. Cette tension doit être appliquée à la douille BU8 EXT. D.C. SUPPLY.

LA BORNE POSITIVE DE LA SOURCE DE TENSION DOIT ETRE CONNECTEE A LA TERRE ETANT DONNE QUE LA PARTIE POSITIVE DE L'ALIMENTATION EST CONNECTEE AU CHASSIS.

L'appareil est protégé contre la connexion inverse. En cas d'alimentation continue externe, l'appareil est protégé par le fusible VL802 (Fig. 2.3.) sur la platine d'alimentation et accessible après dépose du couvercle arrière. VL802 est un fusible 1,25 à action différée.

Fig. 2.3. Vue arrière montrant le fusible VL802

2.1.4. MISE A LA TERRE

Pour la sécurité l'oscilloscope doit être connecté à la terre par l'intermédiaire de la borne de terre arrière (symbole) ou du cordon secteur à condition que la douille d'alimentation soit équipée d'une connexion de terre.

Faire en sorte que la ligne de terre vers l'oscilloscope ne soit pas interrompue par l'usage d'un câble ou d'un dispositif prolongement non raccordée à un conducteur à la terre.

2.1.5. ENCLENCHEMENT

En cas de branchement au secteur, l'appareil est enclenché par le commutateur secteur de la commande ILLUM.

Le cordon secteur est placé dans un compartiment au fond de l'appareil.

En cas d'alimentation continue externe, le commutateur secteur n'a aucune fonction et l'appareil est enclenché dès que la source externe est connectée. Dans les deux cas, la position enclenchée par la lampe témoin blanche.

L'appareil peut être utilisée dans toutes les positions en tenant compte toutefois de la bonne circulation d'air. Pour les conditions thermiques, voir section 1.2.8.2.

2.1.6. PASSAGE D'UN ENDROIT FROID DANS UN ENDROIT CHAUD

A la section 1.2. il est spécifié que l'appareil fonctionne dans les limites des spécifications après une période de chauffage de cinq minutes et à une température ambiante entre +5 °C et +40 °C.

Il y a cependant une exception. Si, après avoir laissé l'oscilloscope dans sa voiture alors qu'il gèle, on le place le lendemain matin dans une pièce à 25 °C, il y aura condensation sur les composants.

Les résistances à haute impédance perdent leur propriété ohmique du fait des courants de fuite dus à la condensation; dans ce cas, l'oscilloscope ne fonctionne pas selon les spécifications. Il faut alors attendre environ deux heures avant que la condensation soit éliminée et que l'oscilloscope puisse être utilisé.

2.2. Manipulation

Avant l'enclenchement s'assurer que l'oscilloscope a été installé correctement conformément au chapitre 2.1. Installation, et que toutes les précautions ont été prises.

2.2.1. COMMANDES ET DOUILLES (Fig. 2.2. page 17)

X POSITION (R1)	Commande continuellement variable pour positionnement horizontal de la représentation.
MAGN. (SK1)	Cette commande comporte un commutateur pour agrandissement 5x de la base de temps.
TIME/cm (SK2)	Commande de coefficient de temps de la base de temps; commutateur à 21 positions, dont une position pour déviation externe X (X via Y _A).
CAL.-TIME/cm (R2/SK3)	Commande continuellement variable des coefficients de temps. En position CAL. les coefficients de temps sont étalonnés.
LEVEL (R3)	Commande continuellement variable afin de sélectionner le niveau auquel le générateur de base de temps démarre.
CAL. (BU1)	Sortie pour tension rectangulaire de 600 mV _{CC} à des fins d'étalonnage.
TRIGGERING (SK4 ...13)	Commandes pour source, pente et mode de déclenchement; bouton-poussoir à 10 positions.
Y _A (SK4)	Signal de déclenchement interne dérivé du canal Y _A
Y _B (SK5)	Signal de déclenchement interne dérivé du canal Y _B
EXT. (SK6)	Signal de déclenchement dérivé d'une tension appliquée à la douille d'entrée TRIGG.
MAINS (SK7)	Signal de déclenchement dérivé d'une tension interne avec la fréquence secteur. Cette source de déclenchement n'exerce aucune fonction lorsque l'appareil est alimenté par une tension continue externe.
+ (SK8)	Pour déclenchement sur la pente positive du signal.
- (SK9)	Pour déclenchement sur la pente négative du signal.
AUTO (SK10)	Pour base de temps libre en l'absence de signaux de déclenchement et de limitation automatique de la gamme de commande LEVEL.
AC (SK11)	Déclenchement avec condensateur de couplage sur le chemin du signal de déclenchement.
DC (SK12)	Couplage direct pour déclenchement sur une tension variant lentement, ou pleine largeur de bande.
TV (SK13)	Permet de déclenchement sur impulsions de ligne ou de trame des signaux de télévision, en fonction de la position du commutateur SK2. Déclenchement sur les impulsions de trame en positions 50 µs/cm à 0,5 s/cm et sur les impulsions de ligne en positions 0,2 µs/cm à 20 µs/cm.
TRIGG (BU2)	Connecter BNC d'entrée pour signaux de déclenchement externe.
BEAM SELECTOR A (SK14)	Lorsque ce bouton-poussoir est enfoncé, la déviation verticale s'obtient par le signal appliqué à l'entrée de voie Y _A .

BEAM SELECTOR B (SK15)	Lorsque ce bouton-poussoir est enfoncé, la déviation verticale s'obtient par le signal appliqué à l'entrée de voie Y_B . Si les commutateur A (SK 14) et B (SK 15) sont tous deux enfoncés, la deviation verticale par le signal appliquée à l'entrée de voie Y_A et par celui appliquée à l'entrée de voie Y_B .
AC-0-DC (SK 16 et 19)	Commutateur à trois positions pour couplage de signal AC : par l'intermédiaire d'un condensateur de couplage 0 : interruption de la connexion entre la douille d'entrée et le circuit d'entrée, ce dernier étant mis à la terre DC : couplage direct
AMPL. (SK 17 et 18)	Commande des coefficients de déviation, commutateur à 12 positions.
CAL.-AMPL. (R4 et 5)	Commande continuellement variable des coefficients de déviation verticale. En position CAL, le coefficient de déviation est étalonné.
DC BAL. (R6 et 7) (réglage par tournevis)	Commande continuellement variable pour balance de tension continue de l'amplificateur vertical.
ILLUM. (SK20 et R8)	Commande continuellement variable pour illumination du graticule. Comporte le commutateur secteur.
FOCUS (R9)	Commande continuellement variable pour focalisation du faisceau.
INTENS (R10)	Commande continuellement variable pour brillance de trace.
1 M Ω – 20 pF (BU3 et 5)	Connecteur BNC d'entrée pour signaux de déviation verticale.
POSITION (R11 et 12)	Commande continuellement variable pour positionnement vertical de la représentation.
$\frac{1}{2}$ (BU4)	Douille de terre
A l'arrière de l'appareil (Fig. 2.1.):	Connecteur BNC de sortie en dents de scie
TB OUT (BU6)	Connecteur BNC d'entrée pour tension de modulation d'intensité
Z MOD (BU7)	
EXT. DC SUPPLY (BU8)	Douille d'entrée pour alimentation continue

2.2.2. REGLAGES PRELIMINAIRES

Un temps de chauffage de 5 minutes est nécessaire avant de procéder à une mesure. Ce temps n'inclut pas le temps de rétablissement lorsque l'appareil sort d'un endroit froid (voir également section 2.1.6.).

- En cas d'alimentation secteur:
Vérifier si l'adaptateur de tension est réglé sur la tension locale. Si nécessaire, régler l'adaptateur sur la tension correspondante conformément à la section 2.1.2.
- Enclencher l'appareil.
- En cas d'alimentation continue externe:
Vérifier si la source externe est connectée correctement avec borne positive à la terre.
- Mettre la commande FOCUS (R9) et la commande INTENS. (R10) en positions médianes.
- Enfoncer les bouton BEAM SELECTOR A (SK 14) et B (SK 15). Ne pas oublier qu'il n'y a pas de spot tant que le bouton BEAM SELECTOR n'est pas enfoncé.
- Choisir la source, la pente et le mode de déclenchement. Si aucun bouton TRIGG. n'est enfoncé, l'oscilloscope déclenche sur le signal Y_A , sur la pente positive et en mode AUTO sans limitation de gamme de niveau.
- Afficher les deux traces à l'aide des commandes Y POSITION R11 et R12.

L'oscilloscope est prêt à l'usage. Pour la correction de la balance continue, voir section 3.2.4.2.

2.2.3. ENTREES Y_A ET Y_B ET LEURS POSSIBILITES

Le PM 3233 est pourvu de deux voies verticales identiques pouvant être utilisés pour des mesure YT avec le générateur de base de temps ou des mesures XY pour des fréquences allant jusqu'à 1 MHz.

2.2.3.1. Mesures YT

Pour représenter un signal, une des deux voies verticales peut être sélectionnée à l'aide de BEAM SELECTOR A (SK 14) ou BEAM SELECTOR B (SK 15). Lorsque les deux bouton-poussoirs A et B (SK 14 et SK 15) sont enfoncés, deux signaux peuvent être représentés simultanément. Le coefficient de déviation Y peut être réglé individuellement pour chaque voie.

2.2.3.2. Mesures XY

Lorsque le commutateur TIME/cm SK2 est mis en position X via Y_A , le générateur de base de temps est mis hors circuit. Le signal de voie Y_A est représenté horizontalement. Les commandes Y_A (à l'exception du potentiomètre POSITION R11) commandent alors la déviation X. Le positionnement de la trace en sens horizontal est encore possible avec la commande POSITION R1. Le commutateur MAGNIFIER x5 (SK1) est hors service. Dans ce mode, des mesures XY sont possibles jusqu'à une fréquence de 100 kHz.

2.2.3.3. Influence du commutateur AC-0-DC

Les signaux à étudier peuvent être appliqués à la douille d'entrée Y_A (BU3) et/ou à la douille d'entrée Y_B (BU5).

Le commutateur AC-0-DC doit être réglé en position AC ou DC en fonction de la composition du signal. En position DC l'entrée est couplée directement avec l'amplificateur Y. Etant donné que l'amplificateur est couplé en continu, la largeur de bande totale de l'appareil est disponible. Ceci signifie que les tensions d'entrée totales sont conduites aux plaques de déflection, ce qui implique que les composantes continues correspondent à des décadrages de trace sur l'écran.

Ceci peut entraîner des difficultés lorsque des signaux alternatifs superposés à de hautes tensions continues doivent être représentés.

Pour visualiser le signal alternatif dans ces cas, une plus forte atténuation est nécessaire, le signal alternatif étant alors fortement atténué.

Au cas où le commutateur AC-0-DC est en position AC, un condensateur de blocage est connecté entre la douille d'entrée et l'amplificateur Y. De ce fait, les tensions continues sont bloquées, mais les basses fréquences sont supprimées ou atténuées. Lorsque des signaux rectangulaires à basse fréquence sont représentés, on obtient une certaine pente de toit.

En position 0 du commutateur AC-0-DC, il est possible de déterminer rapidement le niveau continu zéro.

Dans cette position, la connection entre l'entrée de l'amplificateur et la douille d'entrée est interrompue. Le condensateur de blocage est également déchargé afin d'empêcher tout endommagement du circuit testé à la suite d'une haute charge éventuelle.

2.2.4. DECLENCHEMENT

2.2.4.1. Généralités

Pour obtenir une trace stationnaire, la déviation horizontale doit toujours être démarrée à un point fixe du signal. Le générateur de base de temps est donc démarré par des impulsions de déclenchement étroites produites dans une unité de déclenchement et contrôlée par un signal provenant du signal d'entrée vertical ou d'une source externe.

2.2.4.2. Accouplement de déclenchement

- AC Lorsque la tension du signal contient un composant continu, le déclenchement peut cesser lorsque le potentiomètre de niveau ne produit plus le niveau requis par le déclencheur de Schmitt. Dans ce cas, il est utile d'appliquer un couplage capacitif. Le couplage capacitif s'obtient en insérant un condensateur sur la piste de déclenchement. Ceci signifie que le signal peut encore être couplé en continu avec les canaux Y.
- DC Le couplage continu est utile lorsque la valeur moyenne du signal varie. Cette sorte de signal apparaît souvent dans des systèmes digitaux.
Avec le couplage capacitif le point de déclenchement n'est pas fixe, ce qui entraînerait l'instabilité de la base de temps ou même une certaine perte de déclenchement.

2.2.4.3. Niveau de déclenchement

En cas de signal compliqué dans lequel un certain nombre de tensions non-identiques apparaissent périodiquement, l'axe de temps doit toujours être démarré avec la même tension, et ce afin d'obtenir une trace stationnaire.

Ceci est possible lorsqu'un des détails a une amplitude différente.

Avec le bouton LEVEL, le niveau de déclenchement peut être réglé de telle sorte que seule cette plus grande variation de tension passe ce niveau. La commande LEVEL est également très utile lorsque deux signaux doivent être comparés exactement, pour des mesures de phase par exemple. La commande LEVEL permet de décaler le point de démarrage des traces exactement sur la ligne de graticule centrale.

2.2.4.4. Déclenchement automatique

Le déclenchement automatique (commutateur AUT enfoncé) est surtout utilisé pour sa simplicité. Dans ce mode il est possible de représenter une grande variété d'impulsions d'amplitude et de forme différentes, et ce sans devoir actionner une des commandes de déclenchement. Lorsqu'aucun signal de déclenchement n'est présent, une ligne de base de temps reste visible sur l'écran. Ceci est utile à des fins de référence du zéro. Dans ce mode de déclenchement, le niveau peut être réglé sur la valeur crête-à-crête du composant alternatif du signal. Si aucun des commutateurs AUTO, AC, DC ou TV n'est enfoncé, l'oscilloscope fonctionne en mode automatique, la gamme de niveau totale étant alors disponible. Une trace est alors toujours visible même lorsqu'aucun bouton-poussoir TRIGG. n'est enfoncé.

2.2.4.5. Déclenchement externe

Le déclenchement externe est appliqué pour des signaux à amplitude fortement variable, lorsqu'un signal d'amplitude fixe et de fréquence égale est disponible. Le déclenchement externe est même plus important en cas de signaux et des courbes d'impulsions complexes.

Le déclenchement externe peut alors être utilisé pour éviter la double trace.

C'est pourquoi il n'est pas nécessaire de rajuster le réglage de niveau à chaque variation du signal d'entrée.

2.2.4.6. Déclenchement avec fréquence secteur

Dans ce cas, le signal de déclenchement est une sinusoïdale à fréquence secteur.

Cette source de déclenchement est utile lorsque la fréquence du signal observé est couplée avec la fréquence secteur. Par exemple, il est possible de reconnaître le composant de bruit d'un signal en déclenchant ce composant.

2.2.4.7. Déclenchement avec signaux de télévision

Il est possible de déclencher sur les impulsions de synchronisation (ligne ou trame) des signaux télévision. En positions .5 s à 50 μ s du commutateur TIME/cm, le déclenchement se fait sur les impulsions de synchronisation, de trame et en positions 2 μ s à .2 μ s sur les impulsions sync de ligne. La position des commutateurs de pente de déclenchement doit correspondre à la polarité de l'information vidéo de signal.

2.2.5. AGRANDISSEUR DE BASE DE TEMPS

Cet agrandisseur est piloté par un commutateur push-pull. Lorsque ce commutateur est en position x5, la vitesse de balayage de la base de temps est agrandie 5 fois. Dans cette position, le temps de balayage est déterminé en divisant par cinq la valeur indiquée par TIME/cm.

2.2.6. MODULATION Z

Afin d'amener des informations supplémentaires à la représentation du t.r.c. sans modifier la forme d'onde, la luminosité de la trace peut être diminuée par une tension externe. Ce signal doit être conduit à la douille Z MOD à l'arrière de l'oscilloscope. La tension requise pour modulation visible de la luminosité dépend de la position de la commande INTENS. Pour une luminosité moyenne de la trace, une tension de +20 V_{cc} suffit à obtenir une modulation Z bien visible.

2.2.7. TUBE A DEUX FAISCEAUX

Le tube à rayons cathodiques utilisé dans l'oscilloscope PM 3233 est un tube à deux faisceau dans lequel deux faisceaux sont engendrés dans un canon et pouvant être déviés indépendamment.

Ce type de tube est également connu sous le nom de tube split-beam.

Dans ce tube, deux lignes de temps sont exactement en parallèle car elles proviennent d'un point et dépendent d'un amplificateur horizontal commun. Etant donné que les deux traces proviennent d'un seul canon, elles présentent peu de distorsions l'une par rapport à l'autre.

Le tube split-beam est approprié pour la représentation de signaux à faible taux de répétition et à vitesses relativement rapides, car sa "fréquence de découpeur" est infiniment haute.

Afin d'égaliser et de pouvoir régler la luminosité des deux faisceaux deux aimants sont montés symétriquement sur le T.R.C. Les deux aimants sont réglés à l'usine sur une luminosité égale.

L'aimant 2 peut être rajusté à l'aide d'un tournevis par une ouverture pratiquée dans la plaque de fond de l'oscilloscope.

2.3. Description du schéma synoptique (Fig. page 26)

2.3.1. AXE Y

L'oscilloscope PM 3233 est composé de deux amplificateurs verticaux identiques à couplage continu permettant la représentation simultanée de deux signaux.

Chaque amplificateur comporte atténuateur à plots d'entrée, une source follower avec circuit de protection, un préamplificateur et un circuit de réduction de dérive, un étage sélectif de déclenchement un circuit de ligne à retard et un amplificateur de sortie. L'étage sélectif de déclenchement et l'amplificateur de sortie (pour canaux Y_A et Y_B) sont couplés à l'aide du circuit de ligne à retard, qui fait partie de l'unité de ligne à retard.

Le circuit de protection empêche d'endommagement des transistors d'entrée à effet de champ à la suite d'une tension d'entrée trop élevée.

Le circuit de réduction de dérive réduit la dérive due à la haute sensibilité de l'amplificateur.

L'étage sélectif de déclenchement fournit un signal de déclenchement au préamplificateur en cas de déclenchement interne et accouple également le signal à l'amplificateur de sortie Y . Dans la voie Y_A le signal peut également être couplé à l'amplificateur de sortie X lorsque l'appareil est utilisé en tant qu'oscilloscope XY.

Le signal est conduit de l'amplificateur de sortie Y aux plaques de déflection Y du tube à rayons cathodiques.

La ligne à retard est appliquée afin de permettre l'affichage du flanc avant de phénomènes rapides sur l'écran.

2.3.2. DECLENCHEMENT

Un signal de déclenchement peut être obtenu à partir de chaque amplificateur vertical, d'une source externe ou du secteur (interne). Le dernier signal n'est pas disponible lorsque l'appareil est alimenté par une tension continue externe. Le signal de déclenchement est conduit au conformateur d'impulsions de déclenchement lesquelles permettent le démarrage du générateur de base de temps. L'unité de déclenchement comprend également un séparateur de synchronisation pour signaux de télévision de sorte que le déclenchement est possible à l'aide de ces signaux.

2.3.3. BASE DE TEMPS

Le générateur de base de temps est du type intégrateur à courant constant et fournit deux tensions de sortie. Une tension en dents de scie conduite à l'amplificateur de sortie X et à une borne de sortie à l'arrière de l'oscilloscope, et une impulsion de porte qui commande le faisceau du tube pendant le balayage.

2.3.4. AXE X

L'amplificateur de sortie X reçoit son signal d'entrée à partir du générateur de base de temps ou d'une source externe par l'intermédiaire de la voie Y_A .

Le signal est conduit de l'amplificateur X aux plaques de déflection horizontale du tube d'oscilloscope.

2.3.5. CIRCUIT DU TUBE A RAYONS CATHODIQUES

Le tube est du type split-beam avec une commande de brillance et une de focalisation. La cathode du tube est couplée en continu à la douille pour la modulation Z externe. Les hautes tensions pour tube sont engendrées par un convertisseur qui fournit également les autres tensions d'alimentation.

2.4. Bref processus de contrôle

2.4.1. POSITIONS DE DEMARRAGE DES ORGANES DE COMMANDE

- Boutons-poussoirs Y_A SK4, + SK8 et BEAM SELECTOR A SK14 & B SK15 enfoncés.
 - TIME/cm SK2 en position .1 ms.
 - Commutateurs AMPL SK17 & SK18 en position .1 V/cm.
 - Commutateur MAGN SK1 en position x1.
 - Potentiomètres POSITION R1, R11 et R12 en position centrale.
 - Potentiomètre INTENS R10 en position extrême droite.
 - Potentiomètres TIME/cm et AMPL R2, R4 et R5 en position CAL.
- Les organes de commande doivent être dans la même position qu'au contrôle précédent, à moins qu'indiqué différemment.

2.4.2. POSITION DU TUBE A RAYONS CATHODIQUES

- Régler les potentiomètres FOCUS R9 et INTENS R10 en position adéquate.
- Centrer les deux lignes de base à l'aide des potentiomètres POSITION R1, R11 et R12.
- Vérifier si la ligne de base de temps est exactement en parallèle avec les lignes de graticule horizontales.
La correction est possible avec R813 (Fig. 3.11.).

2.4.3. CANAUX VERTICAUX

Seul le contrôle du canal Y_A est décrit, les éléments de canal Y_B étant indiqués entre parenthèses.

- Relâcher BEAM SELECTOR B SK15 (A SK14).
- Commutateurs AC-0-DC SK16 & SK19 en position 0.
- Commutateur AMPL SK17 (SK18) en position 2 mV/cm.
- Vérifier si la ligne de base de temps reste au centre de l'écran. La correction est possible avec le potentiomètre DC BAL R6 (R7).
- Commutateur AC-0-DC SK16 (SK19) en position DC.
- Vérifier si la ligne de base de temps n'a pas bougé de plus de 4 mm.
La correction est possible avec le potentiomètre R126 (R326), Fig. 3.13.
- Commutateur AMPL SK17 (SK18) en position .1 V/cm.
- Appliquer une tension rectangulaire de $600 \text{ mV}_{cc} \pm 0,5\%$, 2 kHz à la douille d'entrée Y_A (Y_B) BU3 (BU5).
- Vérifier si la hauteur de trace est de 6 cm $\pm 2\%$.
La correction est possible avec R111 (R311), Fig. 3.13.
- Appliquer une tension sinusoïdale de $600 \text{ mV}_{cc} \pm 0,5\%$, 10 MHz à douille d'entrée Y_A (Y_B) BU3 (BU5).
- Vérifier si la hauteur de trace est d'au moins 4,2 cm.

2.4.4. X VIA Y_A

- Enfoncer BEAM SELECTOR A SK14 et B SK15.
- Mettre le commutateur TIME/cm SK2 en position X via Y_A .
- Mettre le commutateur AC-0-DC SK19 en position 0.
- Appliquer une tension rectangulaire de $600 \text{ mV}_{cc} \pm 0,5\%$, 2 kHz à la douille d'entrée Y_A BU3.
- Vérifier si la largeur de trace est de 6 cm $\pm 3\%$.
La correction est possible avec le potentiomètre R601 (Fig. 3.12.).

2.4.5. BASE DE TEMPS

- Vérifier le coefficient de temps en position $20 \mu\text{s}$ du commutateur TIME/cm SK2 à l'aide des marqueurs de temps. Tolérance: $\pm 5\%$. La correction est possible avec le potentiomètre R534 (Fig. 3.12.).
- Vérifier les autres coefficients de temps; tolérance $\pm 5\%$.

2.4.6. DECLENCHEMENT

- Appliquer une tension sinusoïdale de $100 \text{ mV}_{\text{cc}}$, 10 MHz à la douille d'entrée Y_A BU3.
- Vérifier s'il est possible de régler le potentiomètre LEVEL R3 pour représentation stationnaire.

Contents

3.	SERVICE DATA	65
3.1.	Circuit description	65
3.1.1.	Channel Y _A vertical amplifier	65
3.1.1.1.	General	65
3.1.1.2.	Input coupling	65
3.1.1.3.	Input attenuator	65
3.1.1.4.	Input stage	65
3.1.1.5.	Pre-amplifier	66
3.1.1.6.	Drift-reduction circuit	66
3.1.1.7.	Trigger pick-off stage	68
3.1.1.8.	Delay line circuit	68
3.1.1.9.	Output amplifier	68
3.1.2.	Channel Y _B vertical amplifier	68
3.1.3.	Triggering	68
3.1.3.1.	Trigger pre-amplifier for internal triggering	69
3.1.3.2.	Trigger pre-amplifier for external triggering	69
3.1.3.3.	Long-tailed pair circuit	69
3.1.3.4.	Synchronisation separator	69
3.1.3.5.	Trigger-pulse shaper	69
3.1.4.	Time-base generator	70
3.1.4.1.	Sweep-gating multivibrator and sawtooth generator	70
3.1.4.2.	Hold-off circuit	70
3.1.4.3.	Auto circuit	70
3.1.5.	Horizontal amplifier	71
3.1.6.	Cathode-ray tube circuitry	72
3.1.6.1.	General information	72
3.1.6.2.	C.r.t. circuit	72
3.1.6.3.	Focusing in the split-beam c.r.t.	72
3.1.6.4.	Blanking circuit	73
3.1.7.	Calibration voltage	73
3.1.8.	Power supply	74
3.1.8.1.	Mains transformer	74
3.1.8.2.	Converter and stabilized power supply	74
3.1.8.3.	Illumination circuit	75
3.2.	Checking and adjusting	76
3.2.1.	General information	76
3.2.2.	Power supply	76
3.2.2.1.	Mains current	76
3.2.2.2.	Supply voltage (R823)	76
3.2.3.	Cathode-ray tube circuit	77
3.2.3.1.	Adjustment to display time-base lines	77
3.2.3.2.	Trace rotation (R813)	77
3.2.3.3.	Beam correction	77
3.2.3.4.	Focus and astigmatism (R809, R804)	77
3.2.3.5.	Barrel and pin-cushion distortion	78
3.2.3.6.	Brightness (R711, R801, R802)	78
3.2.3.7.	Focus correction	78
3.2.4.	Vertical amplifiers	78
3.2.4.1.	General information	78
3.2.4.2.	D.C. Balance (R6, R7)	79
3.2.4.3.	Gate current (R126, R326)	79
3.2.4.4.	Pre-amplifier (R64, R99, R264, R299)	79
3.2.4.5.	Sensitivity (R111, R311)	79
3.2.4.6.	Input attenuator	79
3.2.4.7.	Square-wave response (C62, C262, R113, R313, C901, C1001, C902, C1002)	80
3.2.4.8.	Bandwidth of the vertical amplifiers	81
3.2.4.9.	H.F. Deflection and cross-talk	81

3.2.5.	Triggering	81
3.2.5.1.	Trigger pre-amplifier (R414)	81
3.2.5.2.	Long-tailed pair circuit (R424)	81
3.2.5.3.	Trigger slope	82
3.2.5.4.	Level range with external triggering	82
3.2.5.5.	Level and level range	82
3.2.5.6.	Mains triggering	82
3.2.5.7.	Trigger sensitivity	82
3.2.5.8.	TV Triggering	83
3.2.6.	Time-base generator and horizontal amplifier	83
3.2.6.1.	Time coefficients (R534, R539, R618)	83
3.2.6.2.	Magnification and shift (R617)	84
3.2.7.	Mains voltage fluctuations	84
3.2.8.	Beam selection	84
3.2.9.	XY Operation (R601)	84
3.2.10.	Z Modulation	85
3.2.11.	Output sockets	85
3.2.11.1.	Calibration voltage on CAL socket BU1 (R716)	85
3.2.11.2.	Time-base voltage on TB OUT socket BU6	85
3.3.	Dismantling the instrument	91
3.3.1.	Warning	91
3.3.2.	Knobs	91
3.3.3.	Bezel	91
3.3.4.	Cabinet plates	92
3.3.5.	Graticule illumination lamps	92
3.3.6.	Pilot lamp	92
3.3.7.	Text plate of the c.r.t. controls	92
3.3.8.	Time-base unit	92
3.3.9.	Vertical amplifier unit	92
3.3.10.	Main text plate	93
3.3.11.	Cathode-ray tube	94
3.3.12.	Mains transformer	94
3.3.13.	Power supply board	94
3.3.14.	Voltage quintupler	96
3.3.15.	Replacing a switch of the TRIGG push-button unit	96
3.4.	Information for assistance in fault-finding	97
3.4.1.	Mains transformer data	97
3.4.2.	Voltages and waveforms in the instrument	97
3.4.3.	Remark	97
3.5.	Information concerning accessories	98
3.5.1.	Front cover	98
3.5.2.	Adapter PM 9051	98
3.5.3.	Attenuator probe sets PM 9326 and PM 9327	99
3.5.4.	Attenuator probe sets PM 9336 and PM 9336L	101
3.5.5.	1:1 Probe set PM 9335	103
3.5.6.	2 kV Attenuator probe set PM 9358	105
3.5.7.	Set of eagle clips PM 9333	107
3.5.8.	Multi-purpose camera PM 9380	107
3.5.9.	Adapter PM 9379	108
3.6.	List of parts	110
3.6.1.	Mechanical parts	110
3.6.1.1.	Miscellaneous parts	111
3.6.2.	Electrical parts	117
3.6.2.1.	Capacitors	117
3.6.2.2.	Diodes	120
3.6.2.3.	Coils	120
3.6.2.4.	Lamps	120
3.6.2.5.	Resistors	121
3.6.2.6.	Transistors	128
3.6.3.	Parts list of probe sets	129

3. Service data

3.1. Circuit description

3.1.1. CHANNEL YA VERTICAL AMPLIFIER

3.1.1.1. General

The vertical amplifier provides control of the input coupling, Y deflection coefficient and gain. Furthermore, a drift-reduction circuit and a trigger pick-off stage are part of the amplifier circuitry.

Fig. 3.1. Vertical amplifier, channel YA

3.1.1.2. Input coupling

Input signals connected to YA socket BU3 can be a.c. coupled, d.c. coupled or internally disconnected.

In position DC of AC-0-DC switch SK16, the input signal is coupled direct to the step attenuator.

In the AC position, there is a capacitor (C26) in the signal path.

This capacitor prevents the d.c. component of the input signal from being applied to the amplifier.

In position 0, the signal path between the input socket and the amplifier input is interrupted, the latter being earthed.

At the same time, blocking capacitor C26 is discharged via resistor R26, to prevent damage of the circuit under test by a possible high charge.

3.1.1.3. Input attenuator

The input attenuator is a frequency-compensated, high-ohmic voltage divider with twelve positions.

Both attenuator sections contain trimmers which are adjusted for optimum square-wave response and others that maintain the same input capacitance (20 pF) for each position of AMPL. switch SK17.

The input capacitance of both channels can be equalized using trimmer C235.

The attenuator works in conjunction with a gain control in the preamplifier (see also section 3.1.1.5.).

The gain of the pre-amplifier is selected together with the relevant attenuator section, by means of AMPL. switch SK17.

3.1.1.4. Input stage

Input source follower TS51 and emitter follower TS52 provide a high input impedance to the step attenuator and a low-impedance source to the pre-amplifier.

The input source-follower is protected by diodes GR53 and GR54.

If there is a maximum positive-going voltage change, the field-effect transistor can deal with it. If the change goes negative beyond the threshold established by zener diode GR54, diode GR53 starts conducting and the excess is short-circuit to earth.

The non-driven part of the input stage (TS62) is decoupled for high frequencies, by means of capacitor C59. This part of the input stage receives the d.c. balance voltage and the drift-feedback voltage from the drift-feedback amplifier.

3.1.1.5. Pre-amplifier

The pre-amplifier comprises two amplifier stages, one with series feedback (TS53 & TS63) and one with shunt feedback (TS54). The overall gain of the pre-amplifier is chiefly determined by the ratio of the shunt feedback resistance (R97 & R99) and series-feedback resistance (resistance between the emitters of transistors TS53 and TS63). The latter resistance, and thus the overall gain of the pre-amplifier, can be varied by connecting resistors in parallel to resistor R62. These parallel resistors are selected, together with a section of the input attenuator, by means of AMPL. switch SK17. In this way twelve different deflection coefficients are obtained (see also section 3.1.1.3.).

Potentiometers R64 and R99 are pre-set controls for the gain of the pre-amplifier at different settings of AMPL. switch SK17.

3.1.1.6. Drift-reduction circuit

In the event of no drift phenomena in the pre-amplifier, attenuator R102, R40...R44 provides at junction R128-C67 a voltage which is exactly equal to, but in anti-phase with, the voltage at the gate of field-effect transistor TS51 (junction R52-R54). This is true because attenuator R102, R40...R44 is switched over together with the gain switch of the pre-amplifier. Junction R128-R52 will then be on earth level (virtual earth point).

When there is a drift phenomenon, junction R128-R52 carries half the drift voltage. This voltage is amplified by transistors TS71 and TS72 and, in the correct phase, applied to field-effect transistor TS62. The resulting feedback brings the output level of the amplifier back to 0 V. The d.c. level of the feedback is adjusted with DC BAL potentiometer R6.

In order to prevent the base currents of transistors TS71 and TS72 from flowing through high-ohmic resistors R128 and R52, they are compensated for by means of potentiometer R126 and resistors R127 and R129.

Resistors R131 equalizes the base impedances of transistors TS71 and TS72.

Capacitor C59 limits the feedback at approximately 100 Hz.

Therefore, a variation of the value of potentiometers R64 & R99 causes a variation in the top of a l.f. square-wave voltage. When potentiometers R64 and R99 are correctly adjusted, the pulse top is straight.

3.1.1.6.1. Drift reduction

The drift inherent in the sensitive d.c. coupled pre-amplifier is reduced by feedback via a control amplifier. We shall now calculate the effect of the control amplifier with reference to Fig. 3.2. in which A is the gain factor of the pre-amplifier and B that of the control amplifier. Resistors R are equal.

Fig. 3.2. Block diagram of the drift-reduction circuit

We regard the drift voltages from pre-amplifier and control amplifier as being due to d.c. voltage sources at the input (V_{d1} and V_{d2}). We then find:

$$V_1 = \frac{V_i + \frac{V_o}{A}}{2} \quad (1)$$

$$V_2 = -B (V_1 + V_{d2}) \quad (2)$$

$$V_o = A (V_2 - V_i - V_{d1}) \quad (3)$$

It follows from (1) and (3) that:

$$V_1 = \frac{V_i + \frac{A (V_2 - V_i - V_{d1})}{A}}{2} = \frac{V_2 - V_{d1}}{2}$$

Substituting this result in (2) gives:

$$V_2 = -B \left(\frac{V_2 - V_{d1}}{2} + V_{d2} \right) \quad \text{or}$$

$$V_2 \left(1 + \frac{B}{2} \right) = \frac{B}{2} V_{d1} - BV_{d2} \quad \text{or}$$

$$V_2 = \frac{BV_{d1}}{2+B} - \frac{BV_{d2}}{1+\frac{B}{2}}$$

Substituting this result in (3) gives:

$$\frac{V_o}{A} = \left(\frac{B}{2+B} - 1 \right) V_{d1} - \frac{BV_{d2}}{1+\frac{B}{2}} - V_i \quad \text{or}$$

$$-\frac{V_o}{A} = V_i + \frac{2}{2+B} V_{d1} + \frac{B}{1+\frac{B}{2}} V_{d2} \quad \text{or}$$

$$-\frac{V_o}{A} = V_i + \frac{1}{1+\frac{B}{2}} V_{d1} + \frac{2}{1+\frac{2}{B}} V_{d2}$$

The last two terms represent drift voltages which are equivalent to a drift voltage:

$$V_d = \frac{1}{1+\frac{B}{2}} V_{d1} + \frac{2}{1+\frac{2}{B}} V_{d2}$$

at the input.

We see that the drift of the pre-amplifiers is reduced by a factor $(1 + \frac{B}{2})$. On the other hand, we have an extra drift due to the control amplifier, which is given by $\frac{2}{1+\frac{2}{B}} V_{d2} \approx 2V_{d2}$.

The drift of the control amplifier, however, is so low (because of strong thermal coupling of the amplifier transistors, and optimum design) that the term $2V_{d2}$ can be neglected.

3.1.1.7. Trigger pick-off stage

Transistor TS64 serves a twofold purpose. It acts as an amplifier stage for the channel Y_A triggering signal further discussed in section 3.1.3.1., and as an emitter-follower for the signal to be tested.

The test signal is applied to the delay line circuit via AMPL. potentiometer R4 in the emitter circuit of transistor TS64. This potentiometer provides an uncalibrated, continuous control of the deflection coefficients.

3.1.1.8. Delay line circuit

The delay line circuit consists of an assymmetrically driven differential amplifier (TS902 & TS903), which is coupled with emitter followers (TS901, TS904 & TS906) at the input as well at the output.

Emitter follower TS906 serves the symmetry. From resistor R903 in the emitter circuit of transistor TS901 the signal is, via the delay line, applied to the differential amplifier. The delayed test signal is coupled to the output stage via emitter follower TS904, which reduces the effect of the input capacitance of the output stage on the differential amplifier.

The input of the delay line is terminated by R903//R904 and its output by R907.

3.1.1.9. Output amplifier

From the emitter of emitter follower TS904, the signal is applied to the base of transistor TS66 which is part of a differential amplifier. By varying the series feedback of this amplifier by means of potentiometer R111, the overall gain of the Y_A channel can be set. The RC combination R113-C62 corrects the gain factor at high frequencies.

The Y shift voltage derived from POSITION potentiometer R11 is applied to the base of transistor TS67. If BEAM SELECTOR switch SK14 is not depressed, the voltage on the base of TS67 is such that the trace is shifted off the screen and cannot be brought back with the POSITION potentiometer.

From the differential amplifier the signal is fed to the final stage which consists of two single-ended push-pull sections, viz. TS57, 58, 59, 68 and TS69, 73, 74, 76. From these two sections, the signal is applied to the Y deflection plates.

The circuit with transistor TS56 will be discussed together with the c.r.t. circuitry (section 3.1.6.3.).

In position X via Y_A , the signal is fed to the X output amplifier via emitter follower TS75. In this case the channel Y_A output amplifier is inoperative.

3.1.2. CHANNEL Y_B VERTICAL AMPLIFIER

As this channel is identical to channel Y_A with exception of the circuitry for external X deflection, the description of channel Y_A also holds good for channel Y_B . Components are assigned in the 200-299 range (corresponding to numbers in the 1-99 range for channel Y_A), in the 300-399 range (corresponding to range 100-199 in channel Y_A) and in the 1000-1099 range (corresponding to range 900-999 in channel Y_A).

3.1.3. TRIGGERING

The trigger unit comprises the following circuits:

a trigger pre-amplifier, a differential amplifier, a sync separator and a trigger-pulse shaper.

The circuit diagram shows all triggering push-buttons in their released positions.

Fig. 3.3. Trigger unit

3.1.3.1. Trigger pre-amplifier for internal triggering

If Y_A push-button SK4 is depressed, trigger pick-off stage TS64 in the Y_A channel and transistor TS402 form together an amplifier with series and shunt feedback. Y_A push-button SK4 is only a mechanical release for Y_B push-button SK5 and is, therefore, not included in the circuit diagram; thus, SK4 depressed corresponds to SK5 released. The gain of trigger pre-amplifier is determined by the ratio of the shunt feedback resistance R412 and the series-feedback resistance in the emitter circuit of transistor TS64.

If Y_B push-button SK5 is depressed, trigger pick-off stage TS264 in the Y_B channel and transistor TS402 form the trigger pre-amplifier.

3.1.3.2. Trigger pre-amplifier for external triggering

If EXT. push-button SK6 is depressed, transistors TS401 and TS402 form together a similar amplifier with series- and shunt-feedback as described in section 3.1.3.1. Transistor 400 serves as an inverter for the triggering signals so that the next stage is driven in the correct phase. Moreover, this transistor improves the stability of the pre-amplifier. The external trigger input is protected against excessive positive input voltages by means of diodes GR401 and GR402.

3.1.3.3. Long-tailed pair circuit (differential amplifier)

The following description applies to internal triggering.

From the pre-amplifier the triggering signal is fed to the long-tailed pair circuit with transistors TS403 and TS404. The signal is applied to the base of transistor TS403 if + push-button SK8 is depressed and to the base of TS404 if - push-button SK9 is depressed.

This allows triggering on either the positive or negative slope of the signal. The + push-button SK8 is a mechanical release for - button SK9 and is, therefore, not included in the circuit diagram.

A d.c. voltage which is variable with LEVEL potentiometer R3' is applied to the base of the non-driven transistor of the long-tailed pair circuit.

As a long-tailed pair circuit amplifies the difference of the base voltages, the setting of potentiometer R3' determines which part of the signal will be amplified and, thus, the trigger level.

The output signal of the long-tailed pair circuit is fed to emitter follower TS406. If AUTO push-button SK10 is depressed, the a.c. component of the emitter signal of TS406 is applied to the full-wave rectifier with diodes GR404 and GR406. The rectified voltage across LEVEL potentiometer R3'' corresponds to the peak-to-peak value of the a.c. component of the triggering signal. This d.c. voltage is fed to the base of transistor TS404 of the long-tailed pair circuit. The result is that in the auto mode the trigger level range corresponds to the peak-to-peak value of the triggering signal.

3.1.3.4. Synchronisation separator

If T.V. push-button SK13 is depressed, a synchronisation separator for television is inserted into the triggering signal path. The sync separator comprises transistor TS407. The television signal is clipped in such a way that only the synchronising pulses reach the collector of transistor TS407. In positions .2 μ s to 20 μ s (TV LINE) of TIME/cm switch SK2, these pulses are supplied direct to emitter follower TS408.

In positions 50 μ s to .5 s (TV FRAME) the composite synchronising signal is integrated by means of R439, C412, GR407, R442 and C413 at such a time constant that the frame pulses are separated. The separated pulses are applied to emitter follower TS408.

3.1.3.5. Trigger-pulse shaper

The trigger-pulse shaper comprises transistors TS501 & TS502 in Schmitt-trigger configuration. With a repetitive trigger signal, a square-wave voltage of constant amplitude and width arises at the collector of TS502. This square-wave voltage is differentiated by C502 and R514 into narrow positive and negative pulses. The positive pulses are short-circuited by GR501 so that sweep-gating multivibrator TS503-TS504 receives only negative pulses.

3.1.4. TIME-BASE GENERATOR

The time-base generator comprises a sweep-gating multivibrator, a sawtooth generator, a hold-off circuit and an auto circuit.

Fig. 3.4. Time-base generator

3.1.4.1. Sweep-gating multivibrator and sawtooth generator

The sweep-gating multivibrator comprises transistors TS503 and TS504 in Schmitt-trigger configuration. In the state transistor TS503 cut off and transistor TS504 conducting, transistor TS509 is cut off.

Then the time-base capacitor selected with TIME/cm switch SK2 is charged with a constant current supplied by transistor TS511. The rate of voltage increases which determines the sweep time or time coefficient, is inversely proportional to the capacitance of the selected capacitor and direct proportional to the current through transistor TS511. This current is determined by the base voltage of transistor TS511, the voltage of which can be set by the TIME/cm vernier control R2 and preset by potentiometers R534 and R539.

The charging current is, moreover, determined by the value of the emitter resistors of transistor TS511, which are also switched over by TIME/cm switch SK2.

The sawtooth voltage is taken off by a cascade circuit consisting of emitter followers TS512 and TS513 and applied to both the hold-off circuit and the horizontal amplifier.

Via the hold-off circuit, the sawtooth voltage is fed back to the input of the sweep-gating multivibrator whose input level is preset with stability potentiometer R553. At a certain value of the sawtooth voltage, in the automatic mode, the sweep-gating multivibrator is set to the state transistor TS503 conducting and transistor TS504 cut off. In the other trigger modes the switching over occurs when the sum of sawtooth voltage and trigger pulses reaches a certain value. Then transistor TS509 starts conducting and the time-base capacitor is discharged via this transistor. This cycle is repeated upon arrival of the next trigger pulse.

3.1.4.2. Hold-off circuit

Due to the effect of diode GR504, the charge of the hold-off capacitor selected with TIME/cm switch SK2, cannot follow the decay of the sawtooth voltage.

The capacitor voltage will then decrease with an RC time which is sufficiently large to allow the sawtooth to reach its zero level and to ensure the decay of the switching phenomena. During this RC time, the input level of the sweep-gating multivibrator is so high that incoming trigger pulses have no effect.

3.1.4.3. Auto circuit

The AUTO circuit makes the time-base generator free-running when there are no trigger pulses.

The AUTO circuit works in every trigger mode, except when either AC push-button SK11 or DC push-button SK12 is depressed.

If there are trigger pulses, they are fed to the base of transistor TS506 of the AUTO circuit. As a result of this, the two transistors TS506 and TS508 of the AUTO circuit are conductive until capacitor C506 is discharged. The voltage at the cathode of diode GR502 is then so positive that the latter remains blocked and the working of the sawtooth generator, as described above, is not affected.

As soon as there are no trigger pulses, capacitor C506 will be charged and diode GR502 becomes conductive. The voltage level at the input of the sweep-gating multivibrator TS503-TS504 then drops to such a value that the multivibrator switches over and a sawtooth is formed. This occurs immediately after the drop of the hold-off pulse, i.e., the time-generator is free-running.

3.1.5. HORIZONTAL AMPLIFIER

In the time positions of TIME/cm switch SK2 the sawtooth voltage of the time-base generator is fed to the base of transistor TS603. The sawtooth is also applied, for external purposes, to TB OUT socket BU6 via emitter follower TS516.

Fig. 3.5. Horizontal amplifier

In position X via Y_A of TIME/cm switch SK2, the external X deflection voltage applied to the Y_A channel is fed from transistor TS64 to the base of transistor TS603, via emitter follower TS75 and amplifier TS602. The external X deflection voltage is also applied to TB OUT socket BU6, via emitter follower TS516.

The horizontal output amplifier comprises two stages.

The first one with transistors TS603 and TS604 is provided with series-feedback.

The second one consists of two single-ended push-pull sections TS607-608 and TS609-611 with shunt-feedback. From the latter stage the deflection signal is fed to the c.r.t.

The gain of the output amplifier is determined by the shunt-feedback resistors R628 and R633, and the emitter resistance of transistors TS603 and TS604.

X MAGN switch SK1 allows a gain control in two steps.

If switch SK1 is closed (X MAGN knob pulled out), the series-feedback in the emitter circuit of transistors TS603 and TS604 is decreased in such a way that the gain of the output amplifier is increased by a factor of 5. In the latter mode, the magnified mode, the gain can be preset by means of potentiometer R617 and in the normal mode by means of potentiometer R618.

In position X via Y_A of TIME/cm switch SK2, switch SK1 is bypassed and the output amplifier works in the magnified mode.

The horizontal shift voltage coming from X POSITION potentiometer R1 is supplied to the base of transistor TS604. Transistor TS606 acts as a constant emitter-current source for amplifier stage TS603-TS604.

3.1.6. CATHODE-RAY TUBE CIRCUITRY

3.1.6.1. General information

The c.r.t. circuitry provides control for brightness, focus and astigmatism, and correction possibilities for barrel and pin-cushion distortion and the position of the trace. The blanking circuit is also part of the c.r.t. circuitry.

Fig. 3.6. Cathode-ray tube circuitry

3.1.6.2. C.r.t. circuit

By means of INTENS potentiometer R10 the brightness of the display can be continuously controlled.

The maximum beam current is set by potentiometer R801.

The control range of the INTENS potentiometer can be preset by means of potentiometer R802.

A brightness modulation facility, a.c. coupled, is provided on Z MOD input socket BU7.

The display can be focused by means of FOCUS potentiometer R9. In a split-beam c.r.t. as used in this oscilloscope, focusing has certain consequences.

These consequences and their remedies are discussed in section 3.1.6.3.

Astigmatism is corrected on a low-impedance level by means of potentiometer R809 via emitter follower TS801.

With the aid of potentiometer R812 barrel and pin-cushion distortion is corrected.

Potentiometer R813 provides trace rotation control and allows the time-base line to be accurately aligned with the horizontal graticule lines.

3.1.6.3. Focusing in the split-beam c.r.t.

In the split-beam c.r.t. the electron beam is split into two parts which form the traces of the Y_A and Y_B channel.

Both traces are controlled independently by the controls of both channels. The electron beam is focused, however, before it is split and, therefore, there is only one focus control. This mono-knob control of the focus has the following consequence.

Assume a focus setting as illustrated in Fig. 3.7.1.

Then the focusing point is exactly on the screen.

When the FOCUS potentiometer R9 is rotated, the focusing point is displaced to a point either side of the screen (Figs. 3.7.2. & 3.7.3.) This results in both traces moving away from each other. The more clockwise or anti-clockwise the FOCUS control is turned, the further the traces move apart.

MA 7288

Fig. 3.7. Effect of the focus control

To compensate for this trace shift, an extra shift voltage is fed to the vertical amplifier channels via transistor TS56. The magnitude of this voltage is controlled by potentiometer R9' which is part of FOCUS tandem potentiometer R9. The control is such, that the displacement caused by operation of the FOCUS control is compensated for.

The compensation voltage for channel Y_A is obtained from the emitter of transistor TS56 and that for channel Y_B from the collector.

The compensation is so effective that the maximum displacement of each trace, caused by rotating FOCUS potentiometer R9 from fully anti-clockwise to fully clockwise, does not exceed 2 mm.

3.1.6.4. Blanking circuit

The blanking circuit blanks the c.r.t. during the fly-back of the time-base and unblanks the c.r.t. during the sweep and constantly if TIME/cm switch SK2 occupies position X via Y_A .

The blanking circuit operates on a low voltage level and comprises an a.c. and a d.c. path.

Transistor TS706 is driven by the collector signal of transistor TS504 in the sweep-gating multivibrator.

Transistor TS706 forms together with transistor TS704 a single-ended push-pull circuit.

- **A.C. Path:** The amplified a.c. components of the blanking signal are fed direct to the Wehnelt cylinder of the c.r.t. via H.T. capacitor C707.
- **D.C. Path:** For the d.c. component of the blanking signal, the signal of oscillator TS702 & TS703 is used. The oscillator signal is modulated with the blanking signal. The amplified modulated signal on the collector of transistor TS703 is via capacitor C706 fed to demodulator GR702-R713. After demodulation, also the d.c. component of the blanking signal is available.

The a.c. and d.c. amplifications are equalized by means of potentiometer R711.

3.1.7. CALIBRATION VOLTAGE

The calibration voltage generator consists of free-running multivibrator TS750 & TS751. The generator frequency is approximately 2 kHz. The amplitude of the generated square-wave voltage is kept at a constant value by means of zener diode GR751. The exact value of the calibration is set with the aid of potentiometer R761.

3.1.8. POWER SUPPLY

The power supply comprises the mains transformer, stabilized supply and converter, and the circuit for the graticule illumination.

Fig. 3.8. Power supply

3.1.8.1. Mains transformer

Mains transformer TS801 has three primary windings (S_1 , S_1' and S_1'') which, together with the secondary winding ($S_2//S_3$), can be combined by means of voltage adapter SK21. This combination allows the instrument to be used with mains voltages of 110 V, 127 V, 220 V and 240 V.

The voltage on secondary winding is full-wave rectified. The resulting negative d.c. voltage, or alternatively a negative d.c. voltage on EXT DC SUPPLY input socket BU8, is applied to the voltage stabilizer and converter.

Part of the a.c. voltage on secondary winding of the mains transformer is fed to MAINS trigger source switch SK7, to enable internal triggering on the mains frequency.

3.1.8.2. Converter and stabilized power supply

The converter is a regenerative square-wave generator operating at a frequency of approx. 18 kHz. A basic diagram of the converter is shown in Fig. 3.9.

Fig. 3.9. Basic diagram of the converter

In the converter, transistors TS806 and TS807 function as switches and regulators and alternately connect the negative supply voltage to either end of the primary of L801/802. Assume that transistor TS806 has a slightly higher current gain than TS807. Then the positive voltage from the feedback winding quickly drives transistor TS806 into saturation. The current in the top half of the primary of L801/802 increases linearly at a rate determined by the inductance in the primary. This current increase continues until the iron in transformer coil L801 is saturated.

Then the magnetic lines of flux stop changing and consequently no voltage is induced any longer in the feedback winding. When its base drive ceases, transistor is cut off. This reverses the polarity of the feedback voltage and transistor TS807 is turned hard on. The bottom half of the primary then passes an increasing current until the core is saturated in the opposite direction. The subsequent absence of feedback voltage initiates the switching back to TS806 and the cycle starts again.

The regulation works as follows. When an input voltage is applied to the converter, the negative voltage across Zener diode GR808 turns transistor TS803 fully on, as there is no positive voltage from Zener diode GR811.

Then a bias current starts flowing from earth via transistor TS803 through resistor R826, through the base-emitter junction of transistor TS804 (operating as a diode since diode GR812 interrupts the collector circuit) and from base to emitter of both transistors TS806 and TS807.

As there is then an a.c. voltage across the secondary of L801/802, diodes GR822 and GR824 produce a positive d.c. voltage. This voltage reduces the current through transistors TS803 and TS804 sufficiently to limit the drive to transistors TS806 and TS807 and produce the desired output level. The setting of potentiometer R823 determines the value of the regulated output voltage. Possible differences from the set output voltage are fed back via Zener diode GR811 to transistor TS803 so that the drive of transistors TS806 and TS807 is adapted so as to compensate for the differences. This also applies to mains voltage fluctuations.

After rectifying, the secondary voltages +12 V (reference), -12 V, +20 V, +80 V, +160 V, -1500 V and high voltage +8500 V are obtained. The voltage quintupler which supplies the +8500 V cannot be repaired and must be replaced when it breaks down.

All supply voltage except the +8500 V and the -1500 V can be continuously short-circuited without damage to the components. Resistor R827 limits the maximum base current drive to transistors TS806 and TS807 and thus the maximum power output which can be drawn from the converter.

Resistor R826 limits the collector current when the output is short-circuited and the switching action is stopped, thereby holding the dissipated power in transistors TS806 and TS807 at a safe level. Thus, the power supply of the oscilloscope is fully protected against short-circuits. A short-circuit is indicated either by a squeaking noise coming from the power supply or by the pilot lamp failing to light up.

3.1.8.3. Illumination circuit

The graticule of the c.r.t. can be illuminated by means of bulbs LA1 and LA2. The intensity can be varied with the aid of ILLUM potentiometer R8 which controls the collector current (which is the current through the bulbs) of transistor TS802. The illumination circuit is not short-circuit proof.

3.2. Checking and adjusting

3.2.1. GENERAL INFORMATION

All adjusting elements have been listed in the heading of the various sections.

The tolerances mentioned in the following text apply to newly adjusted instruments only. The values may differ from those given in chapter 1.2. CHARACTERISTICS.

3.2.2. POWER SUPPLY

3.2.2.1. Mains current

- Check that the mains voltage adapter (SK21) has been set to 220 V and connect the instrument to such a voltage (frequency 50 Hz)
- Switch the oscilloscope on and check that the pilot lamp lights up
- Check that the current consumption does not exceed 200 mA (measured with a moving-iron meter)

3.2.2.2 Supply voltages (R823)

- Check that the voltage across capacitor C833 is +12 V, + or -20mV; if necessary, readjust potentiometer R823 (Fig. 3.10).
- Check the supply voltages in accordance with the following table:

Voltage across	Required value	Max. allowable ripple
C833 (Fig. 3.10)	+ 12 V,± 30 mV	4 mV _{p-p}
C836 (Fig. 3.10)	- 12 V,±400 mV	6 mV _{p-p}
C831 (Fig. 3.10)	+ 20 V,±900 mV	40 mV _{p-p}
C829 (Fig. 3.10)	+ 80 V,± 2 V	250 mV _{p-p}
C828 (Fig. 3.10)	+160 V,± 3 V	100 mV _{p-p}

Fig. 3.10. Adjusting and dismantling

- Vary the a.c. voltage to which the instrument is connected between 198 V and 242 V
- Check that the supply voltages do not vary more than 0.5 % and that the ripple voltages do not exceed the values mentioned in the table above.

3.2.3. CATHODE-RAY CIRCUIT

3.2.3.1. Adjustment to display time-base lines

1500 V Use a well-insulated screw-driver to protect both yourself and the circuitry.

3.2.3.1.1. Time-base (R801, R802, R553)

- Turn potentiometers R801 and R802 (Fig. 3.11.) clockwise and potentiometer R553 (Fig. 3.12.) anti-clockwise
- Turn INTENS potentiometer R10 clockwise
- Set X POSITION potentiometer R1 to its mid-position and depress MAGN switch SK1
- Set the POSITION potentiometers R11 and R12 to their mid-positions
- Set TIME/cm switch SK2 to 1 ms
- Depress BEAM SELECTOR switches A SK14 and B SK15
- Set AMPL switches SK17 and SK18 to .1V/cm; there should be a display of two time-base lines
- See for adjusting with components R801 and R802 point 3.2.3.6.

3.2.3.1.2. Time-base stability (R553)

- Depress Y_A switch SK4, + switch SK8, AC switch SK11 and BEAM SELECTOR switch A SK14
- Turn potentiometer R553 (Fig. 3.12.) clockwise until the time-base line disappears
- Depress AUTO switch SK10. A time-base line must become visible. If necessary, readjust potentiometer R553.

3.2.3.2. Trace rotation (R813)

- Depress AUTO switch SK10 and BEAM SELECTOR switch A SK14
- Set AC-0-DC switch SK16 to 0
- Centre the time-base line by means of POSITION potentiometer R11
- Check that the time-base line runs exactly in parallel with the horizontal lines of the graticule.
If necessary, readjust trace rotation potentiometer R813 (Fig. 3.11.)

3.2.3.3. Beam correction

- Depress AUTO switch SK10 and BEAM SELECTOR switches A SK 14 and B SK 15
- Set AC-0-DC switches SK 16 and SK 19 to 0
- Position the traces symmetrically around the centre of the screen using POSITION potentiometer R11 and R12
- Adjust INTENS potentiometer R10 for a low brightness
- Check that both traces are equally bright Magnets 1 and 2 adjusted in the factory to the same brightness. Magnet 2 can be readjusted by means of a screwdriver through an opening in the bottomplate of the oscilloscope.

3.2.3.4. Focus and astigmatism (R809, R804)

- Depress AUTO switch SK10 and BEAM SELECTOR switches A SK14 and B SK15
- Set TIME/cm switch SK2 to .2 ms and TIME/cm potentiometer to CAL
- Set AMPL switches SK17 and SK18 to .1 V and AMPL potentiometers R4 and R5 to CAL
- Set INTENS potentiometer R10 for normal brightness
- Set AC-0-DC switches SK16 and SK19 to DC
- Apply a sine-wave signal of 400 mV_{p-p}, 2 kHz, to Y_A input socket BU3 and Y_B input socket BU5

Use an insulated screw-driver

- Adjust FOCUS potentiometer R9 and astigmatism potentiometer R809 (Fig. 3.11.) for sharp, well-defined traces. Find the setting that gives the best result for both channels
- Set FOCUS potentiometer R9 in mid-stroke position and check for sharp traces. If necessary select a different value for R804.

3.2.3.5. Barrel & pin cushion distortion (R812)

- Set TIME/cm switch SK2 to 1 ms and TIME/cm potentiometer R2 to CAL
- Set AMPL switch SK17 to 10 mV/cm and AMPL potentiometer R4 to CAL
- Depress BEAM SELECTOR switch A SK14
- Set AC-0-DC switch SK16 to DC
- Apply a sine-wave signal of 1 V_{p-p}, 2 kHz, to Y_A input socket BU3

Use an insulated screw-driver. Be careful not to make any short-circuits.

- Check that the displayed vertical lines are straight.
If necessary, readjust potentiometer R812 (Fig. 3.11.)

3.2.3.6. Brightness (R711, R801, R802)

1500 V Use a well-insulated screw-driver to protect both yourself and the circuitry.

- Switch the instrument on at least 15 minutes before starting this check
- Depress Y_A switch SK4, + switch SK8, AUTO switch and BEAM SELECTOR switch A SK14
- Set AC-0-DC switch SK16 to 0
- Set AMPL switch SK17 to .1 V/cm
- Set INTENS potentiometer R10 for low brightness
- Set TIME/cm switch SK2 to 1 ms and TIME/cm potentiometer R2 to CAL
- Check that the time-base line shows a constant brightness over the entire length; if necessary, readjust potentiometer R711 (Fig. 3.12.)
- Check that the brightness remains constant in all other positions of TIME/cm switch SK2
- Depress AC switch SK11
- Set TIME/cm switch SK2 to 1 ms
- Turn INTENS potentiometer R10 fully clockwise
- The spot must just be visible; if necessary, readjust potentiometer R801 (Fig. 3.11.)
- Depress AUTO switch SK10
- Set INTENS potentiometer R10 to 90° from its left-hand stop
- Check that the time-base line is barely visible; if necessary, readjust potentiometer R802 (Fig. 3.11.)

3.2.3.7. Focus correction

- Depress AUTO switch SK10 and BEAM SELECTOR switches A SK14 and B SK15
- Set AC-0-Dc switches SK16 and SK19 to 0
- Set AMPL switches SK17 and SK18 to .1 V/cm and AMPL potentiometers R4 and R5 to CAL
- Shift the time-base lines on to the horizontal central graticule line with the aid of POSITION potentiometers R11 and R12
- Rotate FOCUS potentiometer R9 from fully anti-clockwise to fully clockwise and check that this does not cause the time-base lines to shift more than 2 mm

3.2.4. VERTICAL AMPLIFIERS

3.2.4.1. General information

The adjustments of the vertical amplifier channels Y_A and Y_B are identical. The knobs, sockets and adjusting elements of channel Y_B are shown in brackets after those of channel Y_A.

3.2.4.2. D.C. Balance (R6, R7)

- Depress Y_A (Y_B) switch SK4 (SK5), + switch SK8 and BEAM SELECTOR switch A SK14 (B SK15)
- Set AC-0-DC switch SK16 (SK19) to 0
- Set AMPL potentiometer R4 (R5) to CAL
- Check that the trace does not shift if AMPL switch SK17 (SK18) is switched from .1 V/cm to 2 mV/cm.
If necessary, readjust DC BAK R6 (R7). During the adjustment, the trace must be kept in the centre of the screen by means of POSITION potentiometer R11 (R12)
- Check that the position of the trace is the same in positions 2, 5, 10, 50 and 100 mV/cm of AMPL switch SK17 (SK18); the maximum allowable difference 4 mm

3.2.4.3. Gate current (R126, R326)

- Depress Y_A (Y_B) switch SK4 (SK5), BEAM SELECTOR switch A SK14 (B SK15) and + switch SK8
- Set AMPL switch SK17 (SK18) to 2 mV/cm
- Check that the trace does not jump when AC-0-DC switch SK16 (SK19) is switched from 0 to DC; if necessary, readjust potentiometer R126 (R326); Fig. 3.13. tolerance at final check 4 mm.

3.2.4.4. Pre-amplifier (R64, R99, R264, R299)

- Depress Y_A (Y_B) switch SK4 (SK5), AUTO switch SK10 and BEAM SELECTOR switch A SK14 (B SK15)
- Set TIME/cm switch SK2 to 10 ms and TIME/cm potentiometer R2 to CAL
- Set AC-0-DC switch SK16 (SK19) to DC
- Set AMPL switch SK17 (SK18) to .1 V/cm and AMPL potentiometer R4 (R5) to CAL
- Apply a square-wave voltage of 600 mV_{p-p}, 100 Hz, to Y_A (Y_B) input socket BU3 (BU5)
- Check that the pulse top is straight; if necessary, readjust potentiometer R99 (R299), Fig. 3.13.
- Set AMPL switch SK17 (SK18) to 2 mV/cm
- Decrease the input voltage to 12 mV/_{p-p}
- Check that the pulse top is straight; if necessary, readjust potentiometer R64 (R264), Fig. 3.14
- Check that in the ranges 50, 20, 10 and 5 mV/cm of AMPL switch SK17 (SK18) the top is straight; tolerance 1 %

3.2.4.5. Sensitivity (R111, R311)

- Depress Y_A (Y_B) switch SK4 (SK5), AUTO switch SK10, + switch SK8 and BEAM SELECTOR switch A SK14 (B SK15)
- Set TIME/cm switch SK2 to 2 ms and TIME/cm potentiometer R2 to CAL
- Set AC-0-DC switch SK16 (SK19) to DC
- Set AMPL switch SK17 (SK18) to .1 V/cm and AMPL potentiometer R4 (R5) to CAL
- Apply a voltage of exactly 600 mV_{p-p}, 2 kHz, to Y_A (Y_B) input socket BU3 (BU5)
- Check that the trace height is exactly 6 cm; if necessary, readjust potentiometer R111 (R311), Fig. 3.13.
- Check that the control range of AMPL potentiometer R4 (R5) is 1:2,6 to 1:4

3.2.4.6. Input attenuator (C28, C29, C33, C34, C52, C228, C229, C233, C234, C235, C252)

- Depress Y_A (Y_B) switch SK4 (SK5), AUTO switch SK10, + switch SK8 and BEAM SELECTOR switch A SK14 (B SK15)
- Set TIME/cm switch SK2 to 50 μ s and TIME/cm potentiometer R2 to CAL
- Set AC-0-DC switch SK16 (SK19) to DC
- Connect a square-wave voltage with an amplitude as indicated in the following table, a repetition rate of 10 kHz and a rise time not exceeding 200 ns to Y_A (Y_B) input socket BU3 (BU5).

- Check that no overshoot is visible (maximum pulse top errors 2 %) and also check the trace height; if necessary, correct the pulse top errors with the aid of the trimmers (Fig. 3.14.) mentioned in the following table;

Position AMPL switch SK17 (18)	Signal to Y_A (Y_B) BU3 (5)	Adjust with	Trace height
2 mV/cm	12 mV	C52 (C252)	6 cm + or -2 %
5 mV/cm	30 mV	C52 (C252)	6 cm + or -2 %
10 mV/cm	60 mV	C52 (C252)	6 cm + or -2 %
20 mV/cm	120 mV	C52 (C252)	6 cm + or -2 %
50 mV/cm	300 mV	C52 (C252)	6 cm + or -2 %
.1 V/cm	600 mV	C52 (C252)	6 cm + or -2 %
.2 V/cm	1.2 V	C28 (C228)	6 cm + or -2 %
.5 V/cm	3 V	C28 (C228)	6 cm + or -2 %
1 V/cm	6 V	C28 (C228)	6 cm + or -2 %
2 V/cm	12 V	C33 (C233)	6 cm + or -2 %
5 V/cm	30 V	C33 (C233)	6 cm + or -2 %
10 V/cm	60 V	C33 (C233)	6 cm + or -2 %

- Set AMPL switches SK17 and SK18 to .1 V/cm
- Apply a square-wave voltage of 1.2 V_{p-p}, repetition rate 10 kHz, rise time not exceeding 200 ns, to Y_A , input socket BU3 via a 2:1 dummy measuring probe consisting of a 1 M Ω resistor and a 30 pF trimmer in parallel. If higher voltages are available, a 10:1 attenuator probe may be used.
- Adjust the trimmer of the dummy probe for optimum square-wave response
- Apply the input signal via the dummy probe to Y_B input socket BU5
- Check that the top of the displayed pulse is straight; if necessary, readjust trimmer C235 (Fig. 3.14)
- Connect, via the dummy probe, a square-wave voltage with an amplitude as indicated in the following table, a repetition rate of 10 kHz and a rise time not exceeding 200 ns to Y_A (Y_B) input socket BU3 (BU5)
- Check that neither overshoot nor rounding is visible (maximum pulse top errors 3%) add also check the trace height; if necessary, correct the pulse top errors with the aid of the trimmers (Fig. 3.14.) mentioned in the following table

Position AMPL switch SK17 (18)	Signal to 2:1 dummy	Adjust with	Trace height
.2 V/cm	2.4 V	C29 (C229)	6cm + or -2 %
.5 V/cm	6 V	C29 (C229)	6 cm + or -2 %
1 V/cm	12 V	C29 (C229)	6 cm + or -2 %
2 V/cm	24 V	C34 (C234)	6 cm + or -2 %
5 V/cm	60 V	C34 (C234)	6 cm + or -2 %
10 V/cm	60 V	C34 (C234)	3 cm + or -3 %

3.2.4.7. Square-wave response (C901, C1001, C902, C1002, C62, C262, R113, R313)

- Depress Y_A (Y_B) switch SK4 (SK5), AUTO switch SK10 and BEAM SELECTOR switch A SK14 (B SK15)
- Set TIME/cm switch SK2 to .2 μ s and TIME/cm potentiometer R2 to CAL
- Set AMPL switch SK17 (SK18) to .1 V/cm and AMPL potentiometer R4 (R5) to CAL
- Set AC-0-DC switch SK16 (SK19) to AC
- Apply a square-wave voltage of 600 mV, repetition rate 1 MHz, rise time 1 ns
- Check the square-wave response. The pulse top errors must not exceed 3 %, maximum permissible overshoot is 2%; if necessary, readjust trimmers C901 (C1001), C902 (C1002) and C62 (C262) or select a different value for resistor R113 (R313)
- Set AMPL switch SK17 (SK18) to 0.2 mV/cm
- Decrease the input voltage to 12 mV
- Check that the pulse top errors do not exceed 3 % and the overshoot more than 2 %.

3.2.4.8. Bandwidth of the vertical amplifiers

- Depress Y_A (Y_B) switch SK4 (SK5), AUTO switch SK10 and BEAM SELECTOR switch A SK14 (B SK15)
- Set AMPL switch SK17 (SK18) to .1 V/cm and AMPL potentiometer R4 (R5) to CAL
- Check the bandwidth at a trace height of 6 cm in accordance with the following table

<i>Input sine wave on Y_A (Y_B) socket</i>	<i>Frequency</i>	<i>Required trace height</i>
600 mV _{p-p}	100 kHz	6 cm
600 mV _{p-p}	10 MHz	at least 4.2 cm

3.2.4.9. H.F. deflection and cross-talk

- Depress Y_A (Y_B) switch SK4 (SK5), AUTO switch SK10 and BEAM SELECTOR switches SK14 and SK15
- Set AMPL switch SK17 (SK18) to 50 mV/cm and AMPL potentiometer R4 (R5) to CAL
- Apply a sine-wave voltage of 1.2 V_{p-p}, frequency 3 MHz, to Y_A (Y_B) input socket BU3 (BU5)
- Check that the peaks of the signal can be displayed fairly undistortedly within the graticule, using POSITION potentiometer R11 (R12)
- Set AMPL switches SK17 & SK18 to .1 V/cm and AMPL potentiometers R4 & R5 to CAL
- Apply a sine-wave signal 1.2 V, frequency 3 MHz, to Y_A input socket BU3
- Set AC-0-DC switch SK19 to 0
- Check that the height of the Y_B trace does not exceed 2 mm
- Set AMPL switches SK17 & SK18 to 50 mV/cm and AMPL potentiometers R4 & R5 to CAL
- Apply the input signal to Y_B input socket BU5
- Set AC-0-DC switch SK16 to 0
- Check that the height of the Y_A trace does not exceed 2 mm

3.2.5. TRIGGERING

3.2.5.1. Trigger pre-amplifier (R414)

- Depress Y_A switch SK4, + switch SK8, AC switch SK11 and BEAM SELECTOR switch A SK14
- Set AMPL switch SK17 to .1 V/cm and AMPL potentiometer R4 to CAL
- Set AC-0-DC switch SK16 to AC
- Set TIME/cm switch SK2 to .2 ms and TIME/cm potentiometer R2 to CAL
- Apply a sine-wave signal of 600 mV_{p-p}, frequency 2 kHz, to Y_A input socket BU3
- Set LEVEL potentiometer R3 to such a position that the trace starts at the zero level of the sine-wave
- Depress DC switch SK12
- Check that the trace starts at the same point; if necessary, readjust potentiometer R414 (Fig. 3.12.)
- Decrease the input voltage to 80 mV
- Adjust LEVEL potentiometer R3 for a triggered display
- Check that the display is still triggered when AC switch SK11 is depressed.
- Depress BEAM SELECTOR switch B SK15, Y_B switch SK5 and DC switch SK12
- Apply the 80 mV input signal to Y_B socket BU5
- Set AMPL switch SK18 to .1 V/cm and AMPL potentiometer R5 to CAL
- Adjust LEVEL potentiometer R3 for a triggered display
- Depress AC switch SK11; the starting point of the trace must not move more than 4 mm.

3.2.5.2. Long-tailed pair circuit (R424)

- Depress Y_A switch SK4, — switch SK9, AUTO switch SK10 and BEAM SELECTOR switch A SK14
- Set AMPL switch SK17 to .1 V/cm and AMPL potentiometer R4 to CAL
- Set TIME/cm switch SK2 to .2 ms and TIME/cm potentiometer R2 to CAL
- Set AC-0-DC switch SK16 to AC
- Apply a sine-wave voltage of 80 mV_{p-p}, frequency 2 kHz, to Y_A socket BU3
- Check that the display remains stationary when LEVEL potentiometer R3 is rotated from fully anti-clockwise to fully clockwise; if necessary readjust potentiometer R424 (Fig. 3.12.)

3.2.5.3. Trigger slope

- Depress Y_A switch SK4, AUTO switch SK10, + switch SK8 and BEAM SELECTOR switch A SK14
- Set TIME/cm switch SK2 to .2 ms and TIME/cm potentiometer R2 to CAL
- Set AMPL switch SK17 to .1 V/cm and AMPL potentiometer R4 to CAL
- Apply a sine-wave signal of 600 mV_{p-p}, frequency 2 kHz, to Y_A input socket BU3
- Adjust LEVEL potentiometer R3 for a stationary display
- Check that the display starts with the positive slope of the signal
- Depress — switch SK9
- Check that the display starts with the negative slope of the signal

3.2.5.4. Level range with external triggering

- Depress EXT switch SK6, AC switch SK11, + switch SK8 and BEAM SELECTOR switch A SK14
- Set AMPL switch SK17 to 10 V/cm and AMPL potentiometer R4 to CAL
- Set TIME/cm switch SK2 to .2 ms and TIME/cm potentiometer R2 to CAL
- Apply a sine-wave voltage of 20 V_{p-p}, frequency 2 kHz, to both TRIGG input socket BU2 and Y_A input socket BU3
- Check that the time-base generator cuts out when LEVEL potentiometer R3 is turned fully anti-clockwise and fully clockwise
- Depress — switch SK9 and repeat the check

3.2.5.5. Level and level range

- Depress Y_A switch SK4, AUTO switch SK10, + switch SK8 and BEAM SELECTOR switch A SK14
- Set AMPL switch SK17 to .1 V/cm and AMPL potentiometer R4 to CAL
- Set TIME/cm switch SK2 to .2 ms and TIME/cm potentiometer R2 to CAL
- Apply a sine-wave voltage of 600 mV_{p-p}, frequency 2 kHz, to Y_A input socket BU3
- Check that the starting point of the trace moves upwards when LEVEL potentiometer R3 is turned clockwise
- Check that the starting point of the trace can be shifted over 5 cm by means of LEVEL potentiometer R3
- Depress AC switch SK11
- Set AMPL switch SK17 to 50 mV/cm
- Check that the time-base generator cuts out when LEVEL potentiometer R3 is turned fully anti-clockwise and fully clockwise
- Check AMPL SK17 switch to 20 mV/cm
- Check that the time-base generator does not cut out when LEVEL potentiometer R3 is turned fully anti-clockwise and fully clockwise.

3.2.5.6. Mains triggering

- Depress EXT switch SK6, + switch SK8, AUTO switch SK10 and BEAM SELECTOR switch A SK14
- Set TIME/cm switch SK2 to 20 ms and TIME/cm potentiometer R2 to CAL
- Apply a voltage with the mains frequency to Y_A input socket BU3; trace height 1 cm
- Check that the oscilloscope displays a moving sine wave
- Depress MAINS switch SK7
- Check that the display is stationary

3.2.5.7. Trigger sensitivity

- Set AC-0-DC switches SK16 and SK19 to DC
- Set LEVEL potentiometer R3 to obtain a stationary display
- Set TIME/cm switch SK2 so that a reasonable number of cycles is displayed
- Check the trigger sensitivity in accordance with the following table

<i>Input signal to</i>	<i>Frequency (sine wave)</i>	<i>Depress source switch</i>	<i>Depress mode switch</i>	<i>Depress BEAM SELECTOR</i>	<i>Triggering at</i>	
Y_A BU3	20 Hz	Y_A SK4	AUTO SK10	A SK14	8 mm	
	10 MHz				8 mm	
	20 Hz		AC SK11		8 mm	
	10 Hz		DC SK12		8 mm	
	5 Hz				8 mm	
	10 MHz				8 mm	
Y_B BU5	20 Hz	Y_B SK5	AUTO SK10	B SK15	8 mm	
	10 MHz				8 mm	
TRIGG BU2 & Y_B BU5	20 Hz	EXT SK6		B SK15	0.8 V	
	10 MHz				0.8 V	

3.2.5.8. TV Triggering

- Depress Y_A switch SK4, TV switch SK13, + switch SK8 and BEAM SELECTOR switch A SK14
- Set AMPL switch SK17 to .1 V and AMPL potentiometer R4 to CAL
- Apply a television signal of 240 mV, positive video, French system, to Y_A input socket BU3
- Check that the display starts with a frame sync pulse in positions .5 s to 50 μ s of TIME/cm switch SK2 and with a line sync pulse in positions 20 μ s to .2 μ s
- Replace the input signal by a similar signal with negative video information
- Depress — switch SK9
- Set TIME/cm switch SK2 to 50 μ s and TIME/cm potentiometer R2 to CAL
- Check that the display starts with a frame sync pulse
- Set TIME/cm switch SK2 to 20 μ s
- Check that the display starts with a line sync pulse

3.2.6. TIME-BASE GENERATOR AND HORIZONTAL AMPLIFIER

3.2.6.1. Time coefficients (R534, R539, R618)

- Depress Y_A switch SK4, + switch SK8, AUTO switch SK10, X MAGN switch SK1 and BEAM SELECTOR switch A SK14
- Set TIME/cm potentiometer R4 to CAL
- Set LEVEL potentiometer R3 to its mid-position
- Set TIME/cm switch SK2 to .5 ms
- Check that the length of the time-base is 10 to 10,5 cm; if necessary, readjust potentiometer R618 (Fig. 3.12.)
- Set TIME/cm switch SK2 to 20 μ s
- Apply a time marker voltage with a repetition time of 20 μ s to Y_A input socket BU3
- Check that the 8 centre periods have a total width of 8 cm; if necessary readjust potentiometer R534 (Fig. 3.12.)
- Set TIME/cm switch SK2 to 20 ms
- Change the repetition time of the input signal to 20 ms
- Check that the 8 centre periods have a total width of 8 cm; if necessary, readjust potentiometer R539 (Fig. 3.12.)
- Check that in the other positions of TIME/cm switch SK2 the 8 centre periods have a total width of 8 cm + or - 4 % (the repetition time of the input signal must always correspond to the setting of TIME/cm switch SK2)
- Check that the length of the time-base line is 10 to 12 cm in all positions of TIME/cm switch SK2
- Check that the control range of TIME/cm potentiometer R2 is 1:2,6 to 1:5

3.2.6.2 Magnification and shift (R617)

- Depress Y_A switch SK4, + switch SK8, AUTO switch SK10 and BEAM SELECTOR A SK14
- Set TIME/cm switch SK2 to $20 \mu s$ and TIME/cm potentiometer R2 to CAL
- Apply a time marker voltage with a repetition time of $20 \mu s$ to Y_A input socket BU3
- Pull X MAGN switch SK1 to $\times 5$
- Shift every cycle on to the screen by means of X POSITION potentiometer R1 and check that each cycle has a width of 5 cm + or -2 %; if necessary, readjust potentiometer R617 (Fig. 3.12.)
- Check that with X POSITION potentiometer R1 the beginning and the end of the time-base line can be displayed within the graticule
- Set TIME/cm switch SK2 to $.2 \mu s$
- Change the repetition time of the input signal to $.2 \mu s$
- Check that the widths of all periods are equal within + or -2 %

3.2.7 MAINS VOLTAGE FLUCTUATIONS

- Vary the mains voltage + and -10 % with respect to the nominal mains voltage as indicated by the voltage adapter
- Check that the vertical and horizontal deflection are not affected and that the brightness does not change

3.2.8 BEAM SELECTION

- Depress AUTO switch SK10
- Set TIME/cm switch SK2 to 1 ms
- Set AMPL switches SK17 and SK18 to $.1 \text{ V/cm}$
- Depress BEAM SELECTOR switch A SK14
- Check that only the channel Y_A time-base line is visible
- Release BEAM SELECTOR switch A SK14 and depress B SK15
- Check that only the channel Y_B time-base line is visible

3.2.9 X-Y OPERATION (R601)

- Depress AUTO switch SK10, X MAGN SK1 and BEAM SELECTOR SWITCHES A SK14 and B SK15
- Set TIME/cm switch SK2 to 5 ms
- Set AMPL switch SK17 to $.1 \text{ V/cm}$ and AMPL potentiometer R4 to CAL
- Set POSITION potentiometer R11 to its mid-position
- Set AC-0-DC switch SK16 to AC
- Set X POSITION potentiometer R1 to such a position that the time-base lines start at the beginning of the measuring graticule
- Centre the Y_B time-base line by means of POSITION potentiometer R12
- Set TIME/cm switch SK2 to position X via Y_A
- Check that the spot is displayed in the centre of the screen; tolerance + or -5 cm
- Check that no Y_A trace is visible, also when POSITION potentiometer R11 is rotated
- Apply a sine-wave voltage of $800 \text{ mV}_{\text{p-p}}$, frequency 2 kHz, to Y_A input socket BU3
- Centre the trace by means of X POSITION potentiometer R1
- Check that the trace width is 8 cm + or -5 %; if necessary, readjust potentiometer R601 (Fig. 3.12.)
- Increase the frequency of the input voltage to 1 MHz
- Check that the trace width is at least 6 cm

3.2.10. Z MODULATION

- Depress Y_A switch SK4, + switch SK8, AUTO switch SK10 and BEAM SELECTOR switch A SK14
- Apply a positive-going square-wave voltage of 20 V, repetition rate 100 Hz, to Z MOD socket BU7
- Apply a signal which is synchronous with the former square-wave voltage to Y_A input socket BU3
- Check that the trace is blanked during the positive pulse

3.2.11. OUTPUT SOCKETS

3.2.11.1. Calibration voltage on CAL socket BU1 (R761)

- Check, with the aid of an accurate peak-peak voltmeter, that the voltage on CAL socket BU1 has a value of 600 mV_{p-p} + or -0.7 %; if necessary, readjust potentiometer R761 (Fig. 3.12.)
- Check that the pulse does not show overshoot and that the repetition frequency is 2 kHz + or -20 %.

3.2.11.2. Time-base voltage on TB OUT socket BU6

- Depress AUTO switch SK10
- Set TIME/cm switch SK2 to 2 ms
- Check that the amplitude of the sawtooth voltage on TB OUT socket BU6 is 6 V + or -20 %.

Fig. 3.11. Adjusting and dismantling

Fig. 3.12. Adjusting

Fig. 3.11. Adjusting and dismantling

Fig. 3.13. Adjusting and dismantling

Fig. 3.12. Adjusting

Fig. 3.14. Adjusting

Seite 88 - 90 leer

3.3. Dismantling the instrument

3.3.1. WARNING

The opening of parts of the instrument or the removal of covers is likely to expose live conductors. The instrument must, therefore, be disconnected from all voltage sources before any opening of parts or removal of covers is started. If the E.H.T. connector of the c.r.t. is disconnected, both connector and c.r.t. must be discharged immediately by shortening them to earth.

3.3.2. KNOBS

3.3.2.1. Knobs of Y POSITION potentiometers R11 & R12 and AC-0-DC switches SK16 & SK19

These knobs can be pulled off the shaft.

3.3.2.2. Single knobs (Fig. 3.15.)

- Remove cap A
- Slacken screw B
- Pull the knob off the shaft

3.3.2.3. Double knobs (Fig. 3.15.)

- Remove cap A
- Slacken screw B
- Pull the inner knob off the shaft
- Slacken nut C
- Pull the outer knob off the shaft

Fig. 3.15. Knobs

3.3.3. BEZEL

- Slightly lift the lower part of the bezel and swivel it upwards
- Subsequently mask, contrast filter and measuring graticule can be removed

3.3.4. CABINET PLATES

Top and bottom cabinet plates can be taken off after removing four screws for each plate.

3.3.5. GRATICULE ILLUMINATION LAMPS

- Remove the bezel with graticule, filter and mask
- Squeeze lamp holder flanges slightly inwards and push the lamp holder out of the frame. Be careful not to mechanically load the soldering tags of the lamp holder, as they break easily.
- The bulb is then accessible:

To refit:

- Push the lamp holder back in its opening until the hooks on the flanges snap over the frame.

IMPORTANT: Take care that the sign on the lamp holder points towards the top of the oscilloscope in order to avoid short circuits (Fig. 3.18.)

3.3.6. PILOT LAMP

The pilot lamp is removed in the same way as the graticule illumination lamps.

3.3.7. TEXT PLATE OF C.R.T. CONTROLS

- Remove the bezel with graticule filter and mask
- Remove the knobs of the ILLUM, FOCUS and INTENS potentiometers
- Remove the fixing nuts around the shafts of the ILLUM and INTENS potentiometers

3.3.8. TIME-BASE UNIT

- Remove the X POSITION, TIME/cm and LEVEL knobs
- Unplug all connectors on the time-base board (a few connectors can be unplugged at the vertical amplifier board)
- Remove two screws A (Fig. 3.16.)
- Remove two screws B (Fig. 3.16.)
- Remove two screws and nuts C (Fig. 3.16.)
- Lift the unit out of the instrument
- When refitting the unit, make sure that the screening plate between time-base and vertical amplifier unit clicks into place over the cross bars of the frame.

Note:

In order to maintain the mechanical strength of the oscilloscope, the time-base unit and the vertical amplifier unit must not be removed at the same time.

3.3.9. VERTICAL AMPLIFIER UNIT

- Remove the AC-0-DC, AMPL and POSITION knobs
- Set the AC-0-DC switches SK16 & 19 to 0
- Remove all connectors on the amplifier board
- Remove two screws D (Fig. 3.17.)
- Remove two screws E (Fig. 3.13.)
- Remove two screws C (Fig. 3.16.)
- Lift the unit out of the instrument
- When refitting the unit, make sure that the AC-0-DC switches are in 0 position and that the screening plate between time-base and amplifier unit clicks into place over the cross bars of the frame

Fig. 3.16. Dismantling

Fig. 3.17. Dismantling

3.3.10. MAIN TEXT PLATE

- Remove all knobs except those of the c.r.t. controls
- Set the AC-0-DC switches SK16 & 19 to 0
- Remove the time-base unit
- Remove the earth connector BU4
- Remove the retaining clips of the bearings for the X POSITION and the LEVEL potentiometer, and the bearings themselves
- Unplug the connector of the CAL socket
- Remove the retaining clip of the CAL socket, and the CAL socket itself
- Take the text plate out of the front panel

3.3.11. CATHODE-RAY TUBE

- Remove the bezel with graticule, filter and mask
- Loosen the 2 adjusting screws F (Fig. 3.18.)
- Remove the EHT connector (discharge connectors and c.r.t. immediately by shortening them to earth)
- Unplug both wires G (Fig. 3.18.)
- Slacken screws I (Fig. 3.11.)
- Push the c.r.t. out of the front side of the oscilloscope (be careful not to damage the soldering tags on the trace rotation coil)
- Remove the valve holder
- Refitting of the c.r.t. is done in the reverse order (take due care that the sleeve H fits properly around the screening tube), but some mechanical adjustments can be made:
- Slacken the two screws K (Fig. 3.11.) and move the end of the tube in such a way that the tube face is flush with the front of the oscilloscope.
- Retighten screws K (Fig. 3.11.)
- Adjust screws F (Fig. 3.18.) in such a way that the tubes face fits optimally in the mask
- Secure the screws F by means of the nuts F

Fig. 3.18. Dismantling

3.3.12. MAINS TRANSFORMER

- Remove the rear cover (three screws X, Fig. 2.1.)
- Unsolder and unplug the relevant connections (two plugs and the mains cable connections)
- Remove the four screws L (when refitting the transformer do not forget the earth wire of the voltage quintupler), Fig. 3.19
- Take the transformer with voltage adapter and capacitor out of the instrument

3.3.13. POWER SUPPLY BOARD

If only the components on the board must be made accessible, proceed as follows:

- Remove the rear cover (three screws X, Fig. 2.1.)
- Remove the rear panel with the sockets, by removing the three screws and spacers M (Fig. 3.10)
- Unplug all connectors on the power supply board
- If necessary, remove the valve holder of the c.r.t.
- Remove the five screws N (Fig. 3.10.)
- Swivel the board out of the instrument (Fig. 3.20.)

If the wiring board must be replaced, also unsolder the remaining connection wires along the sides of the board, including the connection of the mains cable to the ILLUM potentiometer and the connections to the valve holder of the c.r.t.

Note: When replacing the board, make sure that the shafts of the ILLUM, FOCUS and INTENS potentiometers fit properly in the coupling bushes Ø (Fig. 3.11.)

Fig. 3.19. Dismantling

Fig. 3.20. Supply unit swiveled out

3.3.14. VOLTAGE QUINTUPLER

- Remove the rear cover (three screws X, Fig. 2.2.)
- Remove the E.H.T. plug of the c.r.t. and discharge the connector and c.r.t. immediately by shortening them to earth.
- Unsolder the E.H.T. lead at point P on the supply unit (Fig. 3.10.)
- Unsolder the earth wire of the quintupler
- Slightly squeeze the quintupler flanges inside the cable compartment together and pull the quintupler out

3.3.15. REPLACING A SWITCH OF THE TRIGG PUSH-BUTTON UNIT

- Remove the time-base unit in accordance with section 3.3.8.
- Straighten the 4 retaining lugs of the relevant switches as shown in Fig. 3.21.
- Break the body of the relevant switch by means of a pair of pliers and remove the pieces. The soldering pins are then accessible.
- Remove the soldering pins and clean the holes in the printed-wiring board (e.g. with a suction soldering iron)
- Solder the new switch onto the printed-wiring board
- Bend the 4 retaining lugs back to their original positions

N.B.: The Y_A and + switch are not soldered, so it is sufficient to just straighten the 4 retaining lugs to remove them.

Fig. 3.21. Replacing a push-button switch

3.4. Information for assistance in fault-finding

3.4.1. MAINS TRANSFORMER DATA

The available unloaded voltage tappings and the number of turns per winding are listed in the circuit diagram in the form of a table.

3.4.2. VOLTAGES AND WAVEFORMS IN THE INSTRUMENT

The d.c. voltage levels at the electrodes of the transistors and the voltage waveforms in the time-base generator are shown at the relevant points on the circuit diagram.

The waveforms have been measured under the following conditions:

- Input signal on Y_A socket BU3: 2 kHz sine-wave voltage for 6 cm deflection
- LEVEL potentiometer R3 in mid-position
- TIME/cm switch SK2 to .2 ms and X MAGN switch SK1 to $\times 1$
- Y_A , + and AUTO push-buttons SK4, SK8 and SK10 depressed
- AMPL switch SK17 to 1 V/cm

The voltage values are typical and may slightly differ per instrument.

3.4.3. REMARK

In case of a defect it is always possible to apply to the world wide PHILIPS Service Organization.

When the instrument is to be sent to a PHILIPS Service Workshop for repair, the following points should be observed:

- Attach a label with your name and address to the instrument
- Give a complete description of the faults found
- Use the original packing, or, if this is no longer available, carefully pack the instrument in a wooden crate or box
- Send the instrument to the address obtained after consultation with the local PHILIPS Organization.

3.5. Information concerning accessories

3.5.1. FRONT COVER

This is a plastic cover to protect the oscilloscope front during transport. The cover contains storage space for two passive probes and two BNC to 4 mm adapters. This storage space is accessible after the cover plate has been removed. To this end, bend the lugs A (Fig. 3.22.) slightly outwards and lift off the cover plate.

Fig. 3.22. Front cover

3.5.2. ADAPTER PM 9051

This is an adapter to make a BNC socket suitable for the connection of two 4 mm banana plugs.

Fig. 3.23. Adapter PM 9051

3.5.3. ATTENUATOR PROBE SETS PM 9326 and PM 9327 (Fig. 3.24.)

These passive probe sets are equal but for the length of the probe cable, which is 1,15 m for the PM 9326 and 2 m for the PM 9327.

The sets consist of:

1 probe cable	Fig. 3.24. item 1
1 earth lead 15 cm	Fig. 3.24. item 2
1 earth lead 30 cm	Fig. 3.24. item 3
1 measuring probe 1:1 (black)	Fig. 3.24. item 4
1 test pin	Fig. 3.24. item 5
1 test hook	Fig. 3.24. item 6
1 attenuator probe 1:10 (grey)	Fig. 3.24. item 7
1 test clip	Fig. 3.24. item 8
1 box	Fig. 3.24. item 9

The measuring probe and the earth lead can be simply pulled from the cable. The test clip, test pin and test hook are screwed on to the measuring probe.

For ordering numbers of these parts, see list 3.6.3.1.

Fig. 3.24. Attenuator probe set PM 9326 (PM 9327)

3.5.3.1. Technical data

Attenuation	$1:10 \pm 3\%$
Input impedance	$10 \text{ MOhm}/10 \text{ pF}$
Max. permissible input voltage	$1000 \text{ V}_{\text{p-p}}$

Maximum d.c. component 500 V with the blocking capacitor included into the circuit.

3.5.3.2. Adjustment (Fig. 3.25.)

- Unscrew the probe locking nut by turning it anti-clockwise
- Rotate the probe body to change the capacitance while watching the display for the desired waveform
- When compensation is completed, carefully turn the locking nut clockwise, to lock it without disturbing the adjustment

The attenuator probe causes distortion if it has not been properly adjusted.

Fig. 3.25. Adjusting an attenuator probe

3.5.4. ATTENUATOR PROBE SETS PM 9336 and PM 9336L

The PM 9336 is a 10x attenuator probe, designed for oscilloscopes up to 25 MHz, having a BNC input jack and 10 to 35 pF input capacitance, paralleled by $1\text{ M}\Omega$. The PM 9336L is a similar probe with a cable length of 2.5 m.

The set consist of:

- | | |
|---------------------------|-------------------|
| 1 probe assembly | Fig. 3.26. item 1 |
| 5 soldering terminals | Fig. 3.26. item 2 |
| 1 test hook | Fig. 3.26. item 3 |
| 2 spare test hook sleeves | Fig. 3.26. item 4 |
| 1 protective cap | Fig. 3.26. item 5 |
| 1 probe holder | Fig. 3.26. item 6 |
| 2 probe tips | Fig. 3.26. item 7 |
| 1 earthing cord | Fig. 3.26. item 8 |
| 1 box | item 9 |

For ordering numbers of these parts, see list 3.6.3.2.

Fig. 3.26. Attenuator probe set PM 9336 (PM 9336L)

3.5.4.1. Technical data

Attenuation	1:10 \pm 3 %		
Input resistance	PM 9336	10 M Ω	\pm 2 %
	PM 9336L	10 M Ω	\pm 2 %
Input capacitance	PM 9336	11 pF	\pm 1 pF
	PM 9336L	14 pF	\pm 1 pF
Maximum allowable input voltage	500 V (D.C. + A.C. peak)		

3.5.4.2. Adjustment

The measuring probe has been adjusted and checked by the factory. However, to match the probe to your oscilloscope, the following manipulation is necessary.

Connect the measuring pin to socket CAL of the oscilloscope.

A trimmer can be adjusted through a hole in the compensation box to obtain optimum square-wave response.

See the following examples

Fig. 3.27. Probe compensation

MA 9329

3.5.5. 1:1 PROBE SET PM 9335

The PM 9335 is a passive probe without signal attenuation for use with oscilloscope, counters and voltmeters having a high input impedance and a BNC input socket.

The cable design is such that the reflections due to the instrument's capacitive load are absorbed.

The useful frequency range of this probe is restricted to d.c. and I.f. applications (up to 10 MHz).

The set consist of:

1 test hook	Fig. 3.28. item 1
2 spare test hook sleeves	Fig. 3.28. item 2
2 spare probe tips	Fig. 3.28. item 3
1 protective cap	Fig. 3.28. item 4
1 earthing lead	Fig. 3.28. item 5
1 probe holder	Fig. 3.28. item 6
1 probe assembly	Fig. 3.28. item 7
1 box	item 8

For ordering numbers of these parts, see list 3.6.3.3.

Fig. 3.28. Probe set PM 9335

3.5.5.1. Technical data

Attenuation	1:1	
Input resistance	1 MΩ	
Input capacitance	45 ± 5 pF + input cap. of measuring instrument	
Max. allowable input voltage		
D.C.	500 V	
A.C. peak-to-peak	500 V divided by frequencies in MHz or 500 V whichever is smaller	
A.C. peak + D.C.	500 V	
Dimensions	L W H	
Probe body	105	mm
Cable	1.5	m
Box	230 104 24 mm	

3.5.6. 2 KV ATTENUATOR SET PM 9358

The PM 9358 is a 100x attenuator probe which can handle signals up to 2 kV_{rms}. The probe has been designed for use with oscilloscopes having a bandwidth up to 150 MHz, a BNC input jack and an input impedance of 1 MΩ paralleled by 14 to 21 pF.

The set consist of:

- | | |
|--------------------------|-------------------|
| 1 probe assembly | Fig. 3.29. item 1 |
| 5 soldering terminals | Fig. 3.29. item 2 |
| 1 test hook | Fig. 3.29. item 3 |
| 1 spare test hook sleeve | Fig. 3.29. item 4 |
| 1 protective cap | Fig. 3.29. item 5 |
| 1 insulating cap | Fig. 3.29. item 6 |
| 1 probe holder | Fig. 3.29. item 7 |
| 2 spare test pins | Fig. 3.29. item 8 |
| 1 earthing cord | Fig. 3.29. item 9 |
| 1 box | item 10 |

For ordering numbers of these parts, see list 3.6.3.4.

Fig. 3.29. Attenuator probe set PM 9358

3.5.6.1. Technical data

Attenuation	1:100 ± 2 %
Input resistance	20 MOhm ± 3 %
Input capacitance	2 pF ± 0.3 pF
Max. allowable voltage DC or AC _{rms}	
Continuous	2 kV
Under pulsed conditions	2 kV
	{ Duty cycle 50 - 100 % dv/dt ≤ 1000 V/ns Pulse rep. frequency ≤ 1 MHz
3 kV	{ Duty cycle 25 - 50 % dv/dt ≤ 500 V/ns Pulse rep. frequency ≤ 1 MHz Max. pulse duration 100 ms
4 kV	{ Duty cycle 0 - 25 % dv/dt ≤ 200 V/ns Pulse rep. frequency ≤ 1 MHz Max. pulse duration 20 ms
Sine waves continuous	5.6 kV _{p-p}
	For frequencies up to 1 MHz

3.5.6.2. Adjustment

The measuring probe has been adjusted and checked by the factory. However, to match the probe to your oscilloscope, the following manipulation is necessary. Connect the measuring pin to socket CAL of the oscilloscope. A trimmer can be adjusted through a hole in the compensation box to obtain optimum square-wave response.

See the following examples:

Fig. 3.30. Probe compensation

3.5.7. SET OF EAGLE CLIPS PM 9333

PM 9333 Set of eagle clips especially designed to probe difficult to reach signal sources, all types of wrapped wiring etc.

Each set contains:

10 eagle clips fitting the probes PM 9335, PM 9336 and PM 9336L

10 adapter pieces fitting the probes PM 9326 and PM 9327

10 adapter pieces fitting the micro-miniature probe PM 9352

Fig. 3.31. Adapter set PM 9333

3.5.8. MULTI-PURPOSE CAMERA PM 9380 (Fig. 3.26.)

Camera PM 9380 has been designed to photograph oscilloscope displays in a quick and simple way. It incorporates the Polaroid instant photographic process which has the advantage that you can see the picture a few moments after you took it.

Fig. 3.32 Multi-purpose camera PM 9380

3.5.9. ADAPTER PM 9379 (Fig. 3.27)

This adapter forms the connection between camera PM 9380 and oscilloscope PM 3233. The dimensions of the adapter are such, that the camera automatically focussed when the camera-adapter combination is held against the front of the oscilloscope.

NOTE

Together with this adapter, supplementary lens PM 9373 must be used.

Fig. 3.33. Adapter PM 9379

3.6. List of parts

3.6.1. MECHANICAL PARTS

<i>Item</i>	<i>Fig.</i>	<i>Qty</i>	<i>Ordering number</i>	<i>Description</i>
1	3.34	1	5322 268 14052	Calibration terminal BU 1 compl.
2	3.34	1	5322 268 10031	Calibration contact pin BU 1
3	3.34	1	5322 325 84011	Grommet for BU 1
4	3.34	1	5322 492 60799	Spring for BU 1
5	3.34	1	5322 532 54198	Insulating ring for BU 1
6	3.34	8	5322 414 34119	Control knob (R1, R2, R3, R4, R5, R8, R9, R10)
7	3.34	7	5322 414 74014	Cover for control knob (grey)
8	3.34	3	5322 414 74016	Cover for control knob (blue)
9	3.34	3	5322 414 34081	Switch knob (SK3, SK17, SK18)
10	3.34	7	5322 276 14101	Push-button switch (SK4...SK12)
11	3.34	3	5322 276 14102	Push-button switch (SK13)
12	3.34	10	5322 414 24846	Knob for SK4...SK13
13	3.34	1	5322 455 84028	Text plate, front
14	3.34	5	5322 267 10004	BNC socket (BU2, BU3, BU5, BU6, BU7)
15	3.34	5	5322 506 14001	Nut for BNC socket
16	3.34	3	5322 532 24319	Padding ring for BU2, BU3, BU5
17	3.34	2	5322 276 14103	Push-button switch (SK14, SK15)
18	3.34	2	5322 414 24845	Knob for SK14, SK15
19	3.34	2	5322 277 14047	Lever switch (SK16, SK19)
20	3.34	1	5322 498 54046	Carrying handle
21	3.34-35	2	5322 500 14152	Screw
22	3.34	1	5322 462 54067	Tilting-bracket
23	3.34	2	5322 462 44067	Hinge for tilting-bracket
24	3.34-36	4	5322 462 40252	Foot
25	3.34	1	5322 535 80523	Earthing terminal (BU4)
26	3.34	1	5322 505 14178	Nut for BU4
27	3.34	2	5322 414 34108	Control knob (R11, R12)
28	3.34	2	5322 492 64377	Clamping spring for R11, R12
29	3.34	1	5322 381 10152	Lens
30	3.34	1	5322 455 84025	Text plate
31	3.34	1	5322 450 14001	Graticule
32	3.34	1	5322 480 34034	Contrast filter (grey)
32a	3.34	1	5322 480 34091	Contrast filter (blue)
33	3.34	1	5322 480 34043	Contrast filter (amber)
34	3.34	1	5322 451 34001	Mask
35	3.34	1	5322 451 34002	Bezel
36	3.35	1	5322 526 14009	Cylindrical magnet
37	3.35	1	5322 255 70159	Valve socket for CRT
38	3.35	1	5322 462 44127	Rubber sleeve for CRT
39	3.35	1	5322 466 85168	Earthing terminal
40	3.35	1	5322 405 94046	Clamp for earthing terminal
41	3.35	1	5322 267 40127	Socket 6-cont. (BU8)
42	3.35	1	5322 455 84026	Text plate, rear
43	3.35	1	4822 272 10079	Voltage adaptor
		1	5322 447 94299	Front cast
		1	5322 447 94298	Rear cast

Item	Fig.	Qty	Ordering number	Description
44	3.35	6	5322 255 40038	Transistor socket
45	3.35-36	75	5322 255 40089	Transistor socket
46	3.35-36	3	5322 255 24015	Lamp holder for La1, La2, La3
47	3.36	2	5322 532 34079	Coupling piece for R4, R5
48	3.36	2	5322 462 70715	Plastic cap
49	3.36	2	5322 255 40106	S Clip (insulated)
49	3.36	2	5322 255 44053	S Clip (non-insulated)
50	3.36	1	5322 321 10071	Mains flex
51	3.36	3	5322 532 24321	Coupling piece for R8, R9, R10
52	3.37	1	5322 447 94091	Front cover
53	3.37	1	5322 414 34086	Key
54	3.37	1	5322 492 54152	Compression spring
55	3.37	1	5322 455 84009	Plate
56	3.36	1	5322 216 54075	High tension unit
57	3.36	1	5322 216 54111	Printed wiring board of vertical amplifier unit, complete with components (incl. att. switches, delay line unit and delay line)
58	3.36	1	5322 216 54091	Delay line unit
59	3.35	1	5322 218 64034	Printed wiring board of time-base unit, complete with components (incl. time-base switch)
60	3.35	1	5322 216 54088	Printed wiring board of power supply unit, complete with components
61	3.36	2	5322 105 34008	Attenuator switch, complete (SK17, SK18)
62	3.35	1	5322 105 34009	Time-base switch, complete (SK2)

3.6.1.1. Miscellaneous parts

Item	Ordering number	Description
B1	5322 131 24024	C.R.T. type E14-101GM
B1	5322 131 24032	C.R.T. type E14-101GH
LA1	5322 134 40268	Lamp 28 V, 40 mA (Type 387)
LA2	5322 134 40268	Lamp 28 V, 40 mA (Type 387)
LA3	5322 134 40268	Lamp 28 V, 40 mA (Type 387)
VL1	5322 252 20007	Thermal fuse (125 °C)
VL802	4822 253 30022	Fuse, 1.25 A delayed action
T801	5322 146 24087	Mains transformer

Fig. 3.34. Front view showing item numbers

Fig. 3.35. Top and rear view showing item numbers

Fig. 3.34. Front view showing item numbers

Fig. 3.36. Bottom view showing item numbers

Fig. 3.35. Top and rear view showing item numbers

Fig. 3.37. Front cover showing item numbers

3.6.2. ELECTRICAL PARTS

<i>Item</i>	<i>Ordering number</i>	<i>Farad</i>	<i>Tol (%)</i>	<i>Volts</i>	<i>Remarks</i>
3.6.2.1. Capacitors					
C26	4822 121 40145	100N	10	630	Polyester foil
C28	5322 125 54027	5,5P		400	Trimmer
C29	5322 125 54027	5,5P		400	Trimmer
C30	4822 122 31191	5,6P	2	500	
C31	4822 122 31202	33P	2	500	
C32	4822 122 31187	2,7P	0,25P	500	Polystyrene
C33	5322 125 54027	5,5P		400	Ceramic plate
C34	5322 125 54027	5,5P		400	Trimmer
C35	4822 120 11043	3,9P	0,5	500	Trimmer
C36	4822 121 50418	390P	5	250	Ceramic
C37	4822 121 41161	100N	10	250	Polystyrene foil
C38	4822 122 31191	5,6P	2	500	Polyester foil
C50	4822 122 31081	100P	2	63	Ceramic plate
C51	5322 121 54086	82P	1	500	Ceramic
C52	5322 125 54027	5,5P		400	Trimmer
C53	4822 122 31067	33P	2	100	Ceramic plate
C54	4822 121 41152	47N	10	250	Polyester foil
C55	4822 121 41152	47N	10	250	Polyester foil
C56	4822 122 31172	180P	10	100	Ceramic plate
C57	4822 124 20468	33M		16	Electrolytic
C58	4822 124 20453	68M		6,3	Electrolytic
C59	4822 121 40313	10N	10	250	Polyester foil
C60	4822 121 41152	47N	10	250	Polyester foil
C61	4822 124 20468	33M		16	Electrolytic
C62	4822 125 50045	22P		100	Trimmer
C63	4822 121 41152	47N	10	250	Polyester foil
C64	4822 122 31178	680P	10	100	Ceramic plate
C66	4822 122 31178	680P	10	100	Ceramic plate
C67	4822 122 31072	47P	2	63	Ceramic plate
C68	4822 122 31175	1N	10	100	Ceramic plate
C69	4822 122 31081	100P	2	63	Ceramic plate
C73	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C74	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C76	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C77	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C78	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C79	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C80	4822 121 41152	47N	10	250	Polyester foil
C81	4822 121 41152	47N	10	250	Polyester foil
C82	4822 124 20473	220		16	Electrolytic
C83	4822 121 40104	150N	10	250	Polyester foil
C84	4822 121 41152	47N	10	250	Polyester foil
C226	4822 121 40145	100N	10	630	Polyester foil
C228	5322 125 54027	5,5P		400	Trimmer
C229	5322 125 54027	5,5P		400	Trimmer
C230	4822 122 31191	5,6P	2	500	
C231	4822 122 31202	33P	2	500	Polystyrene
C232	4822 122 31187	2,7P	0,25P	500	Ceramic plate
C233	5322 125 54027	5,5P		400	Trimmer
C234	5322 125 54027	5,5P		400	Trimmer
C235	5322 125 54027	5,5P		400	Trimmer
C236	4822 121 50418	390P	5	250	Polystyrene foil
C237	4822 121 41161	100N	10	250	Polyester foil
C238	4822 122 31191	5,6P	2	500	
C250	4822 122 31074	56P	2	100	Ceramic plate
C251	5322 121 54086	82P	1	500	Ceramic
C252	5322 125 54027	5,5P		400	Trimmer
C253	4822 122 31067	33P	2	100	Ceramic plate
C256	4822 122 31172	180P	10	100	Ceramic plate
C257	4822 124 20468	33M		16	Electrolytic
C258	4822 124 20453	68M		6,3	Electrolytic
C259	4822 121 40313	10N	10	250	Polyester foil
C261	4822 124 20468	33M		16	Electrolytic
C262	4822 125 50045	22P		100	Trimmer
C263	4822 121 41152	47N	10	250	Polyester foil
C264	4822 122 31178	680P	10	100	Ceramic plate
C266	4822 122 31178	680P	10	100	Ceramic plate

Item	Ordering number	Farad	Tol (%)	Volts	Remarks
C267	4822 122 31072	47P	2	63	Ceramic plate
C273	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C274	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C276	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C277	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C278	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C279	4822 122 31215	0,68P	0,25P	63	Ceramic plate
C281	4822 121 41152	47N	10	250	Polyester foil
C282	4822 124 20473	220M		16	Electrolytic
C283	4822 124 20527	470M		25	Electrolytic
C284	4822 121 40313	10N	10	250	Polyester foil
C285	4822 124 20467	15M		16	Electrolytic
C286	4822 121 41152	47N	10	250	Electrolytic
C400	4822 122 30045	27P	2	63	Ceramic plate
C401	4822 120 11027	1P	0,25P	500	Ceramic
C402	4822 121 41152	47N	10	250	Polyester foil
C403	4822 121 41152	47N	10	250	Polyester foil
C404	4822 122 30114	2,2N	10	100	Ceramic plate
C405	4822 121 41152	47N	10	250	Polyester foil
C406	4822 121 40197	1M	10	100	Polyester foil
C407	4822 121 41152	47N	101	250	Polyester foil
C408	4822 121 40186	470N	10	250	Polyester foil
C409	4822 121 40186	470N	10	250	Polyester foil
C410	4822 124 20466	4,7M		63	Electrolytic
C411	4822 124 20585	0,47M		63	Electrolytic
C412	4822 121 40313	10N	10	250	Polyester foil
C413	4822 121 40313	10N	10	250	Polyester foil
C414	4822 121 41152	47N	10	250	Polyester foil
C415	4822 121 41152	47N	10	250	Polyester foil
C416	4822 124 20467	15M		16	Electrolytic
C417	4822 121 41152	47N	10	250	Polyester foil
C418	4822 122 31168	270P	10	100	Ceramic plate
C501	4822 122 31067	33P	2	100	Ceramic plate
C502	4822 122 31067	33P	2	100	Ceramic plate
C503	4822 122 31067	33P	2	100	Ceramic plate
C504	4822 122 31058	15P	2	100	Ceramic plate
C505	4822 121 41152	47N	10	250	Polyester foil
C506	4822 124 20466	4,7M		63	Electrolytic
C507	5322 122 30115	560P	10	100	Ceramic plate
C508	4822 121 41152	47N	10	250	Polyester foil
C509	4822 122 31175	1N	10	100	Ceramic plate
C510	4822 122 31063	22P	2	100	Ceramic plate
C511	4822 122 31221	1,5N	10	100	Ceramic plate
C513	4822 124 20468	33M		16	Electrolytic
C514	4822 124 20468	33M		16	Electrolytic
C516	4822 124 20468	33M		16	Electrolytic
C521	4822 121 40266	4,7M	10	100	Polyester foil
C522	4822 121 50564	510P	1	250	Polystyrene foil
C523	5322 121 50373	5,6N	1	63	Polystyrene foil
C524	4822 124 20584	2,2M		63	Electrolytic
C526	4822 121 50424	1N	5	125	Polystyrene foil
C601	4822 122 30092	180P	2	100	Ceramic plate
C602	4822 122 31175	1N	10	100	Ceramic plate
C603	4822 122 31052	8,2P	0,25P	63	Ceramic plate
C604	4822 121 41152	47N	10	250	Polyester foil
C606	4822 124 20468	33M		16	Electrolytic
C607	4822 121 41152	47N	10	250	Polyester foil
C608	4822 124 20467	15M		16	Electrolytic
C609	4822 124 20467	15M		16	Electrolytic
C702	4822 124 20467	15M		16	Electrolytic
C703	4822 121 41138	15N	10	250	Polyester foil
C704	4822 121 40104	150N	10	250	Polyester foil
C706	4822 121 40253	1N	10	1600	Polyester foil
C707	4822 121 40253	1N	10	1600	Polyester foil
C708	4822 122 31058	15P	2	63	Ceramic plate
C709	4822 121 40253	1N	10	1600	Polyester foil
C710	4822 121 41152	47N	10	250	Polyester foil
C750	4822 121 41147	33N	10	250	Polyester foil
C751	4822 121 41143	22N	10	250	Polyester foil
C752	4822 121 41161	100N	10	250	Polyester foil
C753	4822 124 20475	10M		25	Electrolytic

<i>Item</i>	<i>Ordering number</i>	<i>Farad</i>	<i>Tol (%)</i>	<i>Volts</i>	<i>Remarks</i>
C754	4822 124 20467	15M		16	Electrolytic
C756	4822 122 31175	1N	10	100	Ceramic plate
C801	4822 121 41152	47N	10	250	Polyester foil
C802	4822 121 41134	10N	10	250	Polyester foil
C803	4822 121 40196	22N	10	1600	Polyester foil
C804	4822 121 41152	47N	10	250	Polyester foil
C805	4822 121 41152	47N	10	250	Polyester foil
C807	4822 121 41152	47N	10	250	Polyester foil
C809	4822 121 40197	1M	10	100	Polyester foil
C810	5322 121 44109	100N	20	250	Polyester foil
C811	4822 121 40197	1M	10	100	Polyester foil
C812	4822 121 40197	1M	10	100	Polyester foil
C813	4822 124 20492	1,5M		63	Electrolytic
C814	4822 124 20492	1,5M		63	Electrolytic
C815	4822 121 41161	100N	10	250	Polyester foil
C816	4822 121 41161	100N	10	250	Polyester foil
C817	4822 124 70226	2x2350M		40	Electrolytic
C818	4822 124 20453	68M		6,3	Electrolytic
C819	4822 124 20453	68M		6,3	Electrolytic
C820	4822 121 41161	100N	10	250	Polyester foil
C821	4822 121 41134	10N	10	630	Polyester foil
C822	5322 122 54004	470P	20	4000	Ceramic disk
C823	5322 122 54004	470P	20	4000	Ceramic disk
C824	5322 122 54004	470P	20	4000	Ceramic disk
C825	4822 124 20462	100M		10	Electrolytic
C826	4822 121 40196	22N	10	1600	Polyester foil
C827	4822 121 40196	22N	10	1600	Polyester foil
C828	4822 124 20313	10M		200	Electrolytic
C829	4822 124 20305	32M		100	Electrolytic
C831	4822 124 20527	470M		25	Electrolytic
C832	4822 124 20468	33M		16	Electrolytic
C833	4822 124 20473	220M		16	Electrolytic
C834	4822 124 20468	33M		16	Electrolytic
C836	4822 124 20473	220M		16	Electrolytic
C837	5322 122 54004	470P	20	4000	Ceramic disk
C838	5322 122 54004	470P	20	4000	Ceramic disk
C901	4822 125 50045	22P		100	Trimmer
C902	4822 125 50045	22P		100	Trimmer
C903	4822 122 31173	220P	10	100	Ceramic plate
C904	4822 121 40313	10N	10	250	Polyester foil
C906	4822 122 31177	470P	10	100	Ceramic plate
C907	4822 124 20483	6,8M		40	Electrolytic
C908	4822 121 41152	47N	10	250	Polyester foil
C1001	4822 125 50045	22P		100	Trimmer
C1002	4822 125 50045	22P		100	Trimmer
C1003	4822 122 31173	220P	10	100	Ceramic plate
C1004	4822 121 40313	10N	10	250	Polyester foil
C1006	4822 122 31177	470P	10	100	Ceramic plate
C1007	4822 120 11054	10P	5	500	Ceramic

<i>Ordering number</i>	<i>Type/Description</i>	
3.6.2.2. Diodes		
GR53	5322 130 34037	BAV45
GR54	5322 130 30759	BZX79-C5V6
GR56	5322 130 30766	BZX79-C6V2
GR57	5322 130 30766	BZX79-C6V2
GR58	5322 130 30766	BZX79-C6V2
GR253	5322 130 34037	BAV45
GR254	5322 130 30759	BZX79-C5V6
GR257	5322 130 30766	BZX79-C6V2
GR401	5322 130 40182	BAX13
GR402	5322 130 40182	BAX13
GR403	5322 130 30759	BZX79-C5V6
GR404	5322 130 30231	AAZ13
GR406	5322 130 30231	AAZ13
GR407	5322 130 40182	BAX13
GR408	5322 130 34069	BZX79-C12
GR409	5322 130 40182	BAX13
GR501	5322 130 30231	AAZ13
GR502	5322 130 40182	BAX13
GR503	5322 130 40182	BAX13
GR504	5322 130 40182	BAX13
GR506	5322 130 30273	BAX16
GR701	5322 130 40182	BAX13
GR702	5322 130 30273	BAX16
GR703	5322 130 34039	BZX79-C24
GR751	5322 130 34167	BZX79-B6V2
GR801	5322 130 34076	BZX79-C18
GR802	5322 130 34168	BZX79-C47
GR803	5322 130 30259	BY127
GR804	5322 130 30259	BY127
GR806	5322 130 30259	BY127
GR807	5322 130 30259	BY127
GR808	5322 130 30759	BZX79-C5V6
GR809	5322 130 34049	BZX75-C2V1
GR810	5322 130 30424	BAX12
GR811	5322 130 30759	BZX79-C5V6
GR812	5322 130 30424	BAX12
GR813	5322 130 34136	BY187
GR814	5322 130 34136	BY187
GR816	5322 130 34136	BY187
GR817	5322 130 34136	BY187
GR818	4822 130 30839	BY206
GR819	5322 130 30605	BAX17
GR820	4822 130 30839	BY206
GR821	5322 130 30424	BAX12
GR822	5322 130 30424	BAX12
GR823	5322 130 30424	BAX12
GR824	5322 130 30424	BAX12
GR826	5322 130 30424	BAX12
GR827	5322 130 30424	BAX12
GR828	5322 130 30605	BAX17
GR829	4822 130 30839	BY206
GR831	5322 130 30259	BY127
GR832	5322 130 34136	BY187
GR833	5322 130 34136	BY187
GR901	5322 130 34174	BZX79-B4V7
GR1001	5322 130 34174	BZX79-B4V7

GR53	5322 130 34037	BAV45
GR54	5322 130 30759	BZX79-C5V6
GR56	5322 130 30766	BZX79-C6V2
GR57	5322 130 30766	BZX79-C6V2
GR58	5322 130 30766	BZX79-C6V2
GR253	5322 130 34037	BAV45
GR254	5322 130 30759	BZX79-C5V6
GR257	5322 130 30766	BZX79-C6V2
GR401	5322 130 40182	BAX13
GR402	5322 130 40182	BAX13
GR403	5322 130 30759	BZX79-C5V6
GR404	5322 130 30231	AAZ13
GR406	5322 130 30231	AAZ13
GR407	5322 130 40182	BAX13
GR408	5322 130 34069	BZX79-C12
GR409	5322 130 40182	BAX13
GR501	5322 130 30231	AAZ13
GR502	5322 130 40182	BAX13
GR503	5322 130 40182	BAX13
GR504	5322 130 40182	BAX13
GR506	5322 130 30273	BAX16
GR701	5322 130 40182	BAX13
GR702	5322 130 30273	BAX16
GR703	5322 130 34039	BZX79-C24
GR751	5322 130 34167	BZX79-B6V2
GR801	5322 130 34076	BZX79-C18
GR802	5322 130 34168	BZX79-C47
GR803	5322 130 30259	BY127
GR804	5322 130 30259	BY127
GR806	5322 130 30259	BY127
GR807	5322 130 30259	BY127
GR808	5322 130 30759	BZX79-C5V6
GR809	5322 130 34049	BZX75-C2V1
GR810	5322 130 30424	BAX12
GR811	5322 130 30759	BZX79-C5V6
GR812	5322 130 30424	BAX12
GR813	5322 130 34136	BY187
GR814	5322 130 34136	BY187
GR816	5322 130 34136	BY187
GR817	5322 130 34136	BY187
GR818	4822 130 30839	BY206
GR819	5322 130 30605	BAX17
GR820	4822 130 30839	BY206
GR821	5322 130 30424	BAX12
GR822	5322 130 30424	BAX12
GR823	5322 130 30424	BAX12
GR824	5322 130 30424	BAX12
GR826	5322 130 30424	BAX12
GR827	5322 130 30424	BAX12
GR828	5322 130 30605	BAX17
GR829	4822 130 30839	BY206
GR831	5322 130 30259	BY127
GR832	5322 130 34136	BY187
GR833	5322 130 34136	BY187
GR901	5322 130 34174	BZX79-B4V7
GR1001	5322 130 34174	BZX79-B4V7

L401	4822 158 10057	COIL 59MUH
L800	5322 150 14015	TRACE ROTATION COIL
L801	5322 156 34009	COIL TYPE R6
L802	5322 148 84007	CONVERTER-COIL
L803	4822 157 50308	CHOKE 140MUH
L804	4822 157 50308	CHOKE 140MUH
L805	5322 158 10308	COIL 68MUH

LA1	5322 134 40268	Type 387 28V 40MA
LA2	5322 134 40268	Type 387 28V 40MA
LA3	5322 134 40268	Type 387 28V 40MA

<i>Item</i>	<i>Ordering number</i>	<i>OHM</i>	<i>Tol (%)</i>	<i>Type</i>	<i>Remarks</i>
3.6.2.5. Resistors					
R1	5322 101 64003	2,2K	20	0,25W	Carbon potm lin + switch
R2	5322 101 44005	10K	20	0,25W	Carbon potm lin + switch
R3	5322 102 34003	2x47K	20	0,1W	Carbon tandem potm
R4	4822 101 20455	1K	20	0,1W	Carbon potm lin
R5	4822 101 20455	1K	20	0,1W	Carbon potm lin
R6	4822 101 20289	22K	20	0,1W	Carbon potm lin
R7	4822 101 20289	22K	20	0,1W	Carbon potm lin
R8	5322 101 44006	22K	20	0,25W	Carbon potm lin + switch
R9	5322 101 24032	470K+4K7		0,25W	Carbon potm lin
R10	4822 101 20305	470K	20	0,25W	Carbon potm lin
R11	5322 101 24045	1K	20	Cp23	Carbon potm lin
R12	5322 101 24045	1K	20	CP23	Carbon potm lin
R26	4822 110 63072	47	5	CR25	Carbon
R27	5322 116 54212	900K	1	MR30	Metal film
R28	4822 110 63072	47	5	CR25	Carbon
R29	5322 116 54856	111K	1	MR30	Metal film
R32	5322 116 54209	992K	1	MR30	Metal film
R33	5322 116 54857	10,1K	1	MR30	Metal film
R36	5322 116 54858	156	0,25	MR34C	Metal film
R37	5322 116 54273	437	0,25	MR34C	Metal film
R38	5322 116 50486	1,11K	0,25	MR34C	Metal film
R39	5322 116 50385	4,75K	0,25	MR34C	Metal film
R40	5322 116 50289	348	0,25	MR34C	Metal film
R41	5322 116 54274	898	0,25	MR34C	Metal film
R42	5322 116 54275	1,89K	0,25	MR34C	Metal film
R43	5322 116 54276	17,2K	0,25	MR34C	Metal film
R44	5322 116 50552	4,27K	0,25	MR34C	Metal film
R51	5322 116 54749	90,9K	1	MR30	Metal film
R52	5322 116 54408	909K	1	MR30	Metal film
R53	4822 110 63072	47	5	CR25	Carbon
R54	4822 110 63072	47	5	CR25	Carbon
R56	4822 110 63072	47	5	CR25	Carbon
R57	4822 110 63103	680	5	CR25	Carbon
R58	4822 110 63127	5,6K	5	CR25	Carbon
R59	4822 110 63072	47	5	CR25	Carbon
R60	4822 110 63129	6,8K	5	CR25	Carbon
R61	4822 110 63132	8,2K	5	CR25	Carbon
R62	5322 116 54277	4,93K	0,25	MR34C	Metal film
R63	4822 110 63094	330	5	CR25	Carbon
R64	4822 100 10038	470	20	0,1W	Carbon trimming potm
R65	4822 110 63056	12	5	CR25	Carbon
R66	4822 110 60077	75	5	CR25	Carbon
R67	4822 110 63132	8,2K	5	CR25	Carbon
R68	5322 116 34011	33	10	0,5W	NTC
R69	4822 110 63081	100	5	CR25	Carbon
R71	4822 110 63134	10K	5	CR25	Carbon
R72	4822 110 63134	10K	5	CR25	Carbon
R73	4822 110 63085	150	5	CR25	Carbon
R74	4822 110 60115	2K	5	CR25	Carbon
R75	4822 110 63121	3,3K	5	CR25	Carbon
R76	4822 110 63161	100K	5	CR25	Carbon
R77	4822 110 63072	47	5	CR25	Carbon
R78	4822 110 63116	2,2K	5	CR25	Carbon
R81	4822 110 53129	6,8K	5	CR37	Carbon
R82	4822 110 53129	6,8K	5	CR37	Carbon
R83	4822 110 63094	330	5	CR25	Carbon
R84	4822 110 53127	5,6K	5	CR37	Carbon
R85	4822 116 20063			VDR	VDR
R86	4822 110 63083	120	5	CR25	Carbon
R87	4822 110 53127	5,6K	5	CR37	Carbon
R88	4822 110 63127	5,6K	5	CR25	Carbon
R89	4822 110 63103	680	5	CR25	Carbon
R91	4822 110 63089	220	5	CR25	Carbon
R92	4822 110 63121	3,3K	5	CR25	Carbon
R93	4822 110 60115	2K	5	CR25	Carbon
R94	4822 100 10038	470	20	0,1W	Carbon trimming potm
R95	4822 110 63081	100	5	CR25	Carbon
R96	4822 110 60131	7,5K	5	CR25	Carbon

Item	Ordering number	OHM	Tol (%)	Type	Remarks
R97	5322 116 54855	5,36K	1	MR30	Metal film
R98	4822 110 63072	47	5	CR25	Carbon
R99	4822 100 10038	470	20	0,1W	Carbon trimming potm
R100	4822 110 63081	100	5	CR25	Carbon
R101	5322 116 54595	5,11K	1	MR25	Metal film
R102	5322 116 54255	17,4K	0,25	MR34C	Metal film
R103	4822 110 60099	510	5	CR25	Carbon
R104	4822 110 63107	1K	5	CR25	Carbon
R106	4822 110 53072	47	5	CR37	Carbon
R107	5322 116 54587	3,65K	1	MR25	Metal film
R108	4822 110 63096	390	5	CR25	Carbon
R109	5322 116 54587	3,65K	1	MR25	Metal film
R111	5322 101 14058	470	20	0,1W	Carbon trimming potm
R112	4822 110 63092	270	5	CR25	Carbon
R113	*		5	CR25	Carbon
R114	4822 110 63152	47K	5	CR25	Carbon
R116	4822 110 63107	1K	5	CR25	Carbon
R117	4822 110 63152	47K	5	CR25	Carbon
R118	4822 110 63096	390	5	CR25	Carbon
R119	4822 110 63107	1K	5	CR25	Carbon
R121	4822 110 63134	10K	5	CR25	Carbon
R122	4822 110 42214	10M	5	VR37	Carbon
R123	4822 110 42207	5,6M	5	VR37	Carbon
R124	4822 110 63132	8,2K	5	CR25	Carbon
R125	4822 110 63116	2,2K	5	CR25	Carbon
R126	4822 100 10038	470	20	0,1W	Carbon trimming potm
R127	4822 110 42214	10M	5	VR37	Carbon
R128	5322 116 54408	909K	1	MR30	Metal film
R129	4822 110 42214	10M	5	VR37	Carbon
R130	4822 110 63141	18K	5	CR25	Carbon
R131	4822 110 60179	510K	5	CR25	Carbon
R132	4822 110 53127	5,6K	5	CR37	Carbon
R133	4822 110 53127	5,6K	5	CR37	Carbon
R134	4822 110 63083	120	5	CR25	Carbon
R135	4822 116 20063			VDR	VDR
R136	4822 110 63094	330	5	CR25	Carbon
R137	4822 110 53129	6,8K	5	CR37	Carbon
R138	4822 110 53129	6,8K	5	CR37	Carbon
R142	4822 110 63054	10	5	CR25	Carbon
R143	4822 110 63043	3,9	5	CR25	Carbon
R144	4822 110 63103	680	5	CR25	Carbon
R145	4822 110 63072	47	5	CR25	Carbon
R146	4822 110 63103	680	5	CR25	Carbon
R147	4822 110 63103	680	5	CR25	Carbon
R226	4822 110 63072	47	5	CR25	Carbon
R227	5322 116 54212	900K	1	MR30	Metal film
R228	4822 110 63072	47	5	CR25	Carbon
R229	5322 116 54856	111K	1	MR30	Metal film
R232	5322 116 54209	992K	1	MR30	Metal film
R233	5322 116 54857	10,1K	1	MR30	Metal film
R236	5322 116 54858	156	0,25	MR34C	Metal film
R237	5322 116 54273	437	0,25	MR34C	Metal film
R238	5322 116 50486	1,11K	0,25	MR34C	Metal film
R239	5322 116 50385	4,75K	0,25	MR34C	Metal film
R240	5322 116 50289	348	0,25	MR34C	Metal film
R241	5322 116 54274	898	0,25	MR34C	Metal film
R242	5322 116 54275	1,89K	0,25	MR34C	Metal film
R243	5322 116 54276	17,2K	0,25	MR34C	Metal film
R244	5322 116 50552	4,27K	0,25	MR34C	Metal film
R251	5322 116 54749	90,9K	1	MR30	Metal film
R252	5322 116 54408	909K	1	MR30	Metal film
R253	4822 110 63072	47	5	CR25	Carbon
R254	4822 110 63072	47	5	CR25	Carbon
R256	4822 110 63072	47	5	CR25	Carbon
R257	4822 110 63103	680	5	CR25	Carbon
R258	4822 110 63127	5,6K	5	CR25	Carbon
R259	4822 110 63072	47	5	CR25	Carbon
R261	4822 110 63132	8,2K	5	CR25	Carbon
R262	5322 116 54277	4,93K	0,25	MR34C	Metal film
R263	4822 110 63094	330	5	CR25	Carbon

Item	Ordering number	OHM	Tol (%)	Type	Remarks
R264	4822 100 10038	470	20	0,1 W	Carbon trimming potm
R265	4822 110 63056	12	5	CR25	Carbon
R266	4822 110 60077	75	5	CR25	Carbon
R267	4822 110 63132	8,2K	5	CR25	Carbon
R268	5322 116 34011	33	10	0,5W	NTC
R272	4822 110 63116	2,2K	5	CR25	Carbon
R276	4822 110 63161	100K	5	CR25	Carbon
R277	4822 110 63072	47	5	CR25	Carbon
R278	4822 110 60115	2K	5	CR25	Carbon
R280	4822 110 63085	150	5	CR25	Carbon
R281	4822 110 53129	6,8K	5	CR37	Carbon
R282	4822 110 53129	6,8K	5	CR37	Carbon
R283	4822 110 60093	300	5	CR25	Carbon
R284	4822 110 53127	5,6K	5	CR37	Carbon
R285	4822 116 20063			VDR	
R286	4822 110 63083	120	5	CR25	Carbon
R287	4822 110 53127	5,6K	5	CR37	Carbon
R288	4822 110 63127	5,6K	5	CR25	Carbon
R289	4822 110 63103	680	5	CR25	Carbon
R291	4822 110 63089	220	5	CR25	Carbon
R292	4822 110 63121	3,3K	5	CR25	Carbon
R293	4822 110 60115	2K	5	CR25	Carbon
R294	4822 100 10038	470	20	0,1W	Carbon trimming potm
R295	4822 110 63069	39	5	CR25	Carbon
R296	4822 110 60131	7,5K	5	CR25	Carbon
R297	5322 116 54855	5,36K	1	MR30	Metal film
R298	4822 110 63072	47	5	CR25	Carbon
R299	4822 100 10038	470	20	0,1W	Carbon trimming potm
R300	4822 110 63081	100	5	CR25	Carbon
R301	5322 116 54595	5,11K	1	MR25	Metal film
R302	5322 116 54255	17,4K	0,25	MR34C	Metal film
R303	4822 110 60099	510	5	CR25	Carbon
R306	4822 110 63072	47	5	CR25	Carbon
R307	4822 110 63123	3,9K	5	CR25	Carbon
R308	4822 110 63096	390	5	CR25	Carbon
R309	4822 110 63123	3,9K	5	CR25	Carbon
R311	5322 101 14058	470	20	0,1W	Carbon trimming potm
R312	4822 110 63092	270	5	CR25	Carbon
R313	*			CR25	Carbon
R314	4822 110 63152	47K	5	CR25	Carbon
R316	4822 110 63107	1K	5	CR25	Carbon
R317	4822 110 63152	47K	5	CR25	Carbon
R318	4822 110 63096	390	5	CR25	Carbon
R319	4822 110 63107	1K	5	CR25	Carbon
R321	4822 110 63134	10K	5	CR25	Carbon
R322	4822 110 42214	10M	5	VR37	Carbon
R323	4822 110 42207	5,6M	5	VR37	Carbon
R324	4822 110 63132	8,2K	5	CR25	Carbon
R326	4822 100 10038	470	20	0,1W	Carbon trimming potm
R327	4822 110 42214	10M	5	VR37	Carbon
R328	5322 116 54408	909K	1	MR30	Metal film
R329	4822 110 42214	10M	5	VR37	Carbon
R331	4822 110 60179	510K	5	CR25	Carbon
R332	4822 110 53127	5,6K	5	CR37	Carbon
R333	4822 110 53127	5,6K	5	CR37	Carbon
R334	4822 110 63083	120	5	CR25	Carbon
R335	4822 116 20063			VDR	VDR
R336	4822 110 60093	300	5	CR25	Carbon
R337	4822 110 53129	6,8K	5	CR37	Carbon
R338	4822 110 53129	6,8K	5	CR37	Carbon
R339	4822 110 63043	3,9	5	CR25	Carbon
R341	4822 110 63081	100	5	CR25	Carbon
R342	4822 110 63054	10	5	CR25	Carbon
R345	4822 110 63072	47	5	CR25	Carbon
R346	4822 110 63103	680	5	CR25	Carbon
R400	4822 110 63196	2,2M	10	CR25	Carbon
R401	5322 116 50725	91K	5	CR37	Metal film
R402	4822 110 63134	10K	5	CR25	Carbon
R403	5322 116 54595	5,11K	1	MR25	Metal film
R404	5322 116 54603	6,49K	1	MR25	Metal film

Item	Ordering number	OHM	Tol (%)	Type	Remarks
R405	4822 110 63072	47	5	CR25	Carbon
R406	4822 110 63098	470	5	CR25	Carbon
R407	4822 110 63098	470	5	CR25	Carbon
R408	4822 110 63132	8,2K	5	CR25	Carbon
R409	4822 110 60124	4,3K	5	CR25	Carbon
R410	4822 110 63134	10K	5	CR25	Carbon
R411	4822 110 63125	4,7K	5	CR25	Carbon
R412	4822 110 60117	2,4K	5	CR25	Carbon
R413	4822 110 60108	1,1K	5	CR25	Carbon
R414	4822 100 10038	470	20	0,1W	Carbon trimming potm
R415	4822 110 63116	2,2K	5	CR25	Carbon
R416	4822 110 63098	470	5	CR25	Carbon
R418	4822 110 60142	20K	5	CR25	Carbon
R419	4822 110 63072	47	5	CR25	Carbon
R420	4822 110 63072	47	5	CR25	Carbon
R421	4822 110 63081	100	5	CR25	Carbon
R422	4822 110 63081	100	5	CR25	Carbon
R423	4822 110 63109	1,2K	5	CR25	Carbon
R424	4822 100 10029	2,2K	20	0,1W	Carbon trimming potm
R426	4822 110 63107	820	5	CR25	Carbon
R427	4822 110 63072	47	5	CR25	Carbon
R428	4822 110 63145	27K	5	CR25	Carbon
R429	4822 110 63107	1K	5	CR25	Carbon
R430	4822 110 63169	220K	5	CR25	Carbon
R431	4822 110 63072	47	5	CR25	Carbon
R432	4822 110 63152	47K	5	CR25	Carbon
R433	4822 110 63143	22K	5	CR25	Carbon
R434	4822 110 63125	4,7K	5	CR25	Carbon
R436	4822 110 63143	22K	5	CR25	Carbon
R437	4822 110 63109	1,2K	5	CR25	Carbon
R438	4822 110 63118	2,7K	5	CR25	Carbon
R439	4822 110 63118	2,7K	5	CR25	Carbon
R440	4822 110 63072	47	5	CR25	Carbon
R441	4822 110 63152	47K	5	CR25	Carbon
R442	4822 110 63194	1,8M	10	CR25	Carbon
R443	4822 110 63072	47	5	CR15	Carbon
R444	4822 110 63161	100K	5	CR25	Carbon
R446	4822 110 60151	43K	5	CR25	Carbon
R447	4822 110 63114	1,8K	5	CR25	Carbon
R448	4822 110 60097	430	5	CR25	Carbon
R449	4822 110 63072	47	5	CR25	Carbon
R501	5322 116 54426	121	1	MR25	Metal film
R502	5322 116 54005	3,32K	1	MR25	Metal film
R503	4822 110 60086	160	5	CR25	Carbon
R504	4822 110 63072	47	5	CR25	Carbon
R506	5322 116 54557	1,21K	1	MR25	Metal film
R507	5322 116 54619	10K	1	MR25	Metal film
R508	4822 110 60091	240	5	CR25	Carbon
R509	4822 110 63103	680	5	CR25	Carbon
R511	4822 110 60128	6,2K	5	CR25	Carbon
R512	4822 110 63109	1,2K	5	CR25	Carbon
R513	4822 110 63121	3,3K	5	CR25	Carbon
R514	4822 110 63107	1K	5	CR25	Carbon
R516	4822 110 60119	3K	5	CR25	Carbon
R517	4822 110 60137	13K	5	CR25	Carbon
R518	4822 110 63129	6,8K	5	CR25	Carbon
R519	4822 110 63156	68K	5	CR25	Carbon
R521	4822 110 63116	2,2K	5	CR25	Carbon
R522	4822 110 63081	100	5	CR25	Carbon
R524	4822 110 63116	2,2K	5	CR25	Carbon
R526	4822 110 63098	470	5	CR25	Carbon
R527	4822 110 63134	10K	5	CR25	Carbon
R528	4822 110 60157	75K	5	CR25	Carbon
R529	4822 110 63094	330	5	CR25	Carbon
R530	4822 110 63072	47	5	CR25	Carbon
R531	4822 110 63103	680	5	CR25	Carbon
R532	4822 116 30018	1,3K	20	1W	NTC
R533	4822 110 63121	3,3K	5	CR25	Carbon
R534	4822 100 10029	2,2K	20	0,1W	Carbon trimming potm
R536	4822 110 60126	5,1K	5	CR25	Carbon

Item	Ordering number	OHM	Tol (%)	Type	Remarks
R537	4822 110 63132	8,2K	5	CR25	Carbon
R538	4822 110 60128	6,2K	5	CR25	Carbon
R539	4822 100 10051	22K	20	0,1W	Carbon trimming potm
R541	4822 110 63072	47	5	CR25	Carbon
R542	4822 110 63081	100	5	CR25	Carbon
R543	4822 110 63087	180	5	CR25	Carbon
R544	4822 110 63081	100	5	CR25	Carbon
R547	4822 110 63101	560	5	CR25	Carbon
R549	4822 110 63094	330	5	CR25	Carbon
R551	4822 110 63134	10K	5	CR25	Carbon
R552	4822 110 63127	5,6K	5	CR25	Carbon
R553	4822 100 10029	2,2K	20	0,1W	Carbon trimming potm
R554	4822 110 63136	12K	5	CR25	Carbon
R556	4822 110 63072	47	5	CR25	Carbon
R557	4822 110 63107	1K	5	CR25	Carbon
R558	4822 110 53107	1K	5	CR37	Carbon
R559	4822 110 63125	4,7K	5	CR25	Carbon
R561	4822 110 63063	22	5	CR25	Carbon
R562	4822 110 63063	22	5	CR25	Carbon
R563	4822 110 63063	22	5	CR25	Carbon
R565	4822 110 63107	1K	5	CR25	Carbon
R566	5322 116 54278	576K	1	MR30	Metal film
R567	5322 116 54729	226K	1	MR25	Metal film
R568	5322 116 54279	115K	1	MR25	Metal film
R569	5322 116 54676	56,2K	1	MR25	Metal film
R570	4822 110 63072	47	5	CR25	Carbon
R571	5322 116 50481	22,6K	1	MR25	Metal film
R572	5322 116 50668	11,3K	1	MR25	Metal film
R573	5322 116 54011	5,62K	1	MR25	Metal film
R574	5322 116 54574	2,21K	1	MR25	Metal film
R576	5322 116 50842	1,1K	1	MR25	Metal film
R601	4822 100 10037	1K	20	0,1W	Carbon trimming potm
R602	4822 110 63112	1,5K	5	CR25	Carbon
R603	4822 110 63081	100	5	CR25	Carbon
R604	4822 110 60119	3K	5	CR25	Carbon
R606	4822 110 63132	8,2K	5	CR25	Carbon
R607	4822 110 63136	12K	5	CR25	Carbon
R609	4822 110 63156	68K	5	CR25	Carbon
R610	4822 110 63116	2,2K	5	CR25	Carbon
R611	4822 110 63072	47	5	CR25	Carbon
R612	4822 110 60102	620	5	CR25	Carbon
R613	4822 110 63127	5,6K	5	CR25	Carbon
R614	4822 110 63114	1,8K	5	CR25	Carbon
R615	4822 110 60119	3K	5	CR25	Carbon
R616	4822 110 63072	47	5	CR25	Carbon
R617	4822 100 10038	470	20	0,1W	Carbon trimming potm
R618	4822 100 10035	10K	20	0,1W	Carbon trimming potm
R619	4822 110 63156	68K	5	CR25	Carbon
R621	4822 110 60119	3K	5	CR25	Carbon
R622	4822 110 63129	6,8K	5	CR25	Carbon
R623	4822 110 60119	3K	5	CR25	Carbon
R624	4822 110 63114	1,8K	5	CR25	Carbon
R626	4822 110 63134	10K	5	CR25	Carbon
R627	4822 110 53152	47K	5	CR37	Carbon
R628	4822 110 53152	47K	5	CR37	Carbon
R629	4822 116 20063			VDR	VDR
R631	4822 110 63107	820	5	CR25	Carbon
R632	4822 110 63063	22	5	CR25	Carbon
R633	4822 110 53152	47K	5	CR37	Carbon
R634	4822 116 20063			VDR	VDR
R636	4822 110 63107	820	5	CR25	Carbon
R637	4822 110 53152	47K	5	CR37	Carbon
R638	4822 110 63072	47	5	CR25	Carbon
R639	4822 110 63072	47	5	CR25	Carbon
R701	4822 110 63132	8,2K	5	CR25	Carbon
R704	4822 110 63072	47	5	CR25	Carbon
R705	4822 110 63072	47	5	CR25	Carbon
R706	4822 110 63123	3,9K	5	CR25	Carbon
R707	4822 110 63098	470	5	CR25	Carbon
R708	4822 110 63134	10K	5	CR25	Carbon

Item	Ordering number	OHM	Tol (%)	Type	Remarks
R709	4822 110 63156	68K	5	CR25	Carbon
R710	4822 110 63107	1K	5	CR25	Carbon
R711	4822 100 10029	2,2K	20	0,1W	Carbon trimming potm
R712	4822 110 63112	1,5K	5	CR25	Carbon
R713	4822 110 63187	1M	5	CR25	Carbon
R714	4822 110 63187	1M	5	CR25	Carbon
R715	4822 110 63081	100	5	CR25	Carbon
R716	4822 110 63129	6,8K	5	CR25	Carbon
R717	4822 110 63147	33K	5	CR25	Carbon
R718	4822 110 63161	100K	5	CR25	Carbon
R719	4822 110 63156	68K	5	CR25	Carbon
R720	4822 110 63158	82K	5	CR25	Carbon
R721	4822 116 20063			VDR	VDR
R722	4822 110 63094	330	5	CR25	Carbon
R750	4822 110 63116	2,2K	5	CR25	Carbon
R751	4822 110 63123	3,9K	5	CR25	Carbon
R752	4822 110 63114	1,8K	5	CR25	Carbon
R753	4822 110 63132	8,2K	5	CR25	Carbon
R754	4822 110 63185	820K	5	CR25	Carbon
R756	4822 110 63101	560	5	CR25	Carbon
R757	4822 110 63123	3,9K	5	CR25	Carbon
R758	4822 110 63092	270	5	CR25	Carbon
R759	5322 116 54623	11K	1	MR25	Metal film
R761	4822 100 10037	1K	20	0,1W	Carbon trimming potm
R762	5322 116 50842	1,1K	1	MR25	Metal film
R763	4822 110 63072	47	5	CR25	Carbon
R764	4822 110 63072	47	5	CR25	Carbon
R800	4822 110 60175	360K	5	CR25	Carbon
R801	4822 100 10035	10K	20	0,1W	Carbon trimming potm
R802	4822 100 10107	470K	20	0,1W	Carbon trimming potm
R803	4822 110 20192	1,5M	10	CR68	Carbon
R804	*			CR37	Carbon
R805	4822 110 60117	2,4K	5	CR25	Carbon
R806	4822 110 63178	470K	5	CR25	Carbon
R807	4822 110 42194	1,8M	10	CR68	Carbon
R808	4822 110 23152	47K	5	CR68	Carbon
R809	4822 100 10107	470K	20	0,1W	Carbon trimming potm
R810	4822 110 53185	820K	5	CR37	Carbon
R811	4822 110 63161	100K	5	CR25	Carbon
R812	4822 100 10107	470K	20	0,1W	Carbon trimming potm
R813	5322 103 24005	1,5K	10	1W	Carbon
R814	4822 110 63125	4,7K	5	CR25	Carbon
R815	4822 110 63027	1	5	CR25	Carbon
R816	4822 110 53112	1,5K	5	CR37	Carbon
R817	4822 110 63143	22K	5	CR25	Carbon
R818	4822 110 63096	390	5	CR25	Carbon
R819	4822 110 63121	3,3K	5	CR25	Carbon
R820	4822 110 63101	560	5	CR25	Carbon
R821	4822 110 63152	47K	5	CR25	Carbon
R822	4822 110 63107	820	5	CR25	Carbon
R823	4822 100 10038	470	20	0,1W	Carbon trimming potm
R824	4822 110 63107	820	5	CR25	Carbon
R825	4822 110 63098	470	5	CR25	Carbon
R826	4822 110 63114	1,8K	5	CR25	Carbon
R827	4822 110 63054	10	5	CR25	Carbon
R828	5322 111 50345	8,2M	5	1W	Carbon
R829	4822 110 60144	24K	5	CR25	Carbon
R830	4822 110 63134	10K	5	CR25	Carbon
R831	4822 110 63098	470	5	CR25	Carbon
R832	4822 110 60115	2K	5	CR25	Carbon
R901	4822 110 63187	1M	5	CR25	Carbon
R902	4822 110 63107	820	5	CR25	Carbon
R903	5322 116 54519	402	1	MR25	Metal film
R904	5322 116 50555	1,27K	1	MR25	Metal film
R906	4822 110 63072	47	5	CR25	Carbon
R907	*			CR25	Carbon
R908	4822 110 63107	820	5	CR25	Carbon
R909	4822 110 63098	470	5	CR25	Carbon
R911	5322 116 54541	825	1	MR25	Metal film
R912	4822 110 60122	3,6K	5	CR25	Carbon

<i>Item</i>	<i>Ordering number</i>	<i>OHM</i>	<i>Tol (%)</i>	<i>Type</i>	<i>Remarks</i>
R913	4822 110 60104	750	5	CR25	Carbon
R914	4822 110 60137	13K	5	CR25	Carbon
R916	5322 116 54484	140	1	MR25	Metal film
R917	5322 116 54484	140	1	MR25	Metal film
R918	5322 116 54531	634	1	MR25	Metal film
R919	4822 110 63072	47	5	CR25	Carbon
R921	4822 110 63123	3,9K	5	CR25	Carbon
R922	4822 110 63109	1,2K	5	CR25	Carbon
R923	5322 116 54585	3,48K	1	MR25	Metal film
R924	5322 116 50842	1,1K	1	MR25	Metal film
R1001	4822 110 63187	1M	5	CR25	Carbon
R1002	4822 110 63107	820	5	CR25	Carbon
R1003	5322 116 54519	402	1	MR25	Metal film
R1004	5322 116 50555	1,27K	1	MR25	Metal film
R1006	4822 110 63072	47	5	CR25	Carbon
R1007	*		5	CR25	Carbon
R1008	4822 110 63107	820	5	CR25	Carbon
R1009	4822 110 63098	470	5	CR25	Carbon
R1011	5322 116 54541	825	1	MR25	Metal film
R1012	4822 110 60122	3,6K	5	CR25	Carbon
R1013	4822 110 60104	750	5	CR25	Carbon
R1014	4822 110 60137	13K	5	CR25	Carbon
R1016	5322 116 54484	140	1	MR25	Metal film
R1017	5322 116 54484	140	1	MR25	Metal film
R1018	5322 116 54531	634	1	MR25	Metal film
R1019	4822 110 63072	47	5	CR25	Carbon
R1021	4822 110 63123	3,9K	5	CR25	Carbon
R1022	4822 110 63109	1,2K	5	CR25	Carbon
R1023	5322 116 54585	3,48K	1	MR25	Metal film
R1024	5322 116 50842	1,1K	1	MR25	Metal film

*Choice components

When adjusting the instrument, the values of the choice components should be selected between the following limit values.

The choice components can be recognized in the diagram by the hatching over the components and the lacking of a value indication.

R113	47 ... 4,7 k	R313	47 ... 4,7 k	R804	360 k ... 1M	R907	270 Ω ... 390 Ω
						R1007	270 Ω ... 390 Ω

3.6.2.6. Transistors

<i>Item</i>	<i>Ordering number</i>	<i>Type/Description</i>	<i>Item</i>	<i>Ordering number</i>	<i>Type/Description</i>
TS51	5322 130 40408	BFW11	TS404	5322 130 44216	BC549C
TS52	5322 130 44195	BF494	TS406	4822 130 40964	BC549
TS53	4822 130 40973	BC557	TS407	4822 130 40965	BC547
TS54	5322 130 44154	BF199	TS501	5322 130 44195	BF494
TS56	4822 130 40965	BC547	TS502	5322 130 44195	BF494
TS57	5322 130 44154	BF199	TS503	5322 130 44195	BF494
TS58	5322 130 44154	BF199	TS504	5322 130 44195	BF494
TS59	5322 130 44154	BF199	TS506	4822 130 40973	BC557
TS61	5322 130 44195	BF494	TS508	4822 130 40965	BC547
TS62	5322 130 40408	BFW11	TS509	5322 130 40417	BSX20
TS63	5322 130 40373	BCY71	TS511	4822 130 40963	BC559
TS64	5322 130 40324	BCY70	TS512	4822 130 40964	BC549
TS66	4822 130 40964	BC549	TS513	4822 130 40964	BC549
TS67	4822 130 40964	BC549	TS516	4822 130 40965	BC547
TS68	5322 130 44154	BF199	TS602	5322 130 44195	BF494
TS69	5322 130 44154	BF199	TS603	5322 130 44195	BF494
TS71	5322 130 40144	BC109C	TS604	5322 130 44195	BF494
TS72	5322 130 40144	BC109C	TS606	4822 130 40965	BC547
TS73	5322 130 44154	BF199	TS607	4822 130 40908	BF336
TS74	5322 130 44154	BF199	TS608	4822 130 40908	BF336
TS75	4822 130 40963	BC559	TS609	4822 130 40908	BF336
TS76	5322 130 44154	BF199	TS611	4822 130 40908	BF336
TS251	5322 130 40408	BFW11	TS702	4822 130 40973	BC557
TS252	5322 130 44195	BF494	TS703	5322 130 40321	BSX21
TS253	4822 130 40973	BC557	TS704	5322 130 40308	BF115
TS254	5322 130 44154	BF199	TS706	5322 130 40308	BF115
TS257	5322 130 44154	BF199	TS750	5322 130 44195	BF494
TS258	5322 130 44154	BF199	TS751	5322 130 44195	BF494
TS259	5322 130 44154	BF199	TS800	5322 130 44247	BSS68
TS261	5322 130 44195	BF494	TS801	4822 130 40908	BF336
TS262	5322 130 40408	BFW11	TS802	5322 130 40294	BFY50
TS263	5322 130 40373	BCY71	TS803	4822 130 40973	BC557
TS264	5322 130 40324	BCY70	TS804	4822 130 40965	BC547
TS266	4822 130 40964	BC549	TS806	5322 130 44157	BD183
TS267	4822 130 40964	BC549	TS807	5322 130 44157	BD183
TS268	5322 130 44154	BF199	TS901	5322 130 44216	BC549C
TS269	5322 130 44154	BF199	TS902	5322 130 44195	BF494
TS271	5322 130 40144	BC109C	TS903	5322 130 44195	BF494
TS272	5322 130 40144	BC109C	TS904	4822 130 40964	BC549
TS273	5322 130 44154	BF199	TS906	5322 130 44216	BC549C
TS274	5322 130 44154	BF199	TS1001	5322 130 44216	BC549C
TS276	5322 130 44154	BF199	TS1002	5322 130 44195	BF494
TS400	4822 130 40963	BC559	TS1003	5322 130 44195	BF494
TS401	4822 130 40963	BC559	TS1004	4822 130 40964	BC549
TS402	5322 130 44195	BF494	TS1006	5322 130 44216	BC549C
TS403	5322 130 44216	BC549C			

3.6.3. PARTS LIST OF PROBE SETS

3.6.3.1. Parts of attenuator probe sets PM 9326 and PM 9327 (Fig. 3.24)

<i>Item</i>	<i>Qty</i>	<i>Ordering number</i>	<i>Description</i>
1	1	5322 320 10042	Probe cable 2 m for PM 9327
1	1	5322 321 20087	Probe cable 1.15 m for PM 9326
2	1	5322 321 20096	Earth lead 15 cm
3	1	5322 321 20134	Earth lead 30 cm
4	1	5322 266 20015	Measuring probe 1:1 (black)
5	1	5322 268 10029	Test pin
6	1	5322 268 10039	Test hook
7	1	5322 210 70044	Attenuator probe 1:10 (grey)
8	1	5322 264 20016	Test clip
	1	5322 111 20155	Resistor

3.6.3.2. Parts of attenuator probe sets PM 9336 and PM 9336L (Fig. 3.26)

<i>Item</i>	<i>Qty</i>	<i>Ordering code</i>	<i>Description</i>
1	1	5322 320 14004	Cable assembly PM 9336 (1,5 m)
1	1	5322 320 14013	Cable assembly PM 9336L (2,5 m)
2	1	5322 255 44026	Soldering terminal
3	1	5322 264 20024	Test hook
4	1	5322 264 20028	Test hook sleeve
5	1	5322 532 60535	Protective cap
6	1	5322 256 94034	Probe holder
7	1	5322 268 14017	Probe tip
8	1	5322 321 20223	Earthing cord
9	1	5322 600 34002	Box

3.6.3.3. Parts of probe set PM 9335 (Fig. 3.28)

<i>Item</i>	<i>Qty</i>	<i>Ordering number</i>	<i>Description</i>
1	1	5322 264 20024	Test-hook
2	1	5322 264 20028	Test-hook sleeve
3	1	5322 268 14017	Probe tip
4	1	5322 532 60535	Protective cap
5	1	5322 321 20223	Earth lead
6	1	5322 265 94034	Probe holder
7	1	5322 320 14005	Probe assembly
	1	5322 600 34002	Box

3.6.3.4. Parts of 2 kV probe set PM 9358 (Fig. 3.29.)

Item	Qty	Order number	Description
1	1	5322 320 14004	Cable assembly
2	1	5322 255 44026	Soldering terminal
3	1	5322 264 24008	Test hook
4	1	5322 264 24009	Test hook sleeve
5	1	5322 462 74001	Protective cap
6	1	5322 462 54075	Insulating cap
7	1	5322 256 94034	Probe holder
8	1	5322 264 24011	Test pin
9	1	5322 321 20223	Earthing cord
	1	5322 600 14004	Box

Fig. 3.38. Lay-out of the AMPL. and TIME/cm switches

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY
ASSESSMENT OF T & M INSTRUMENTS
(excl. potentiometric recorders)

131

The information contents of the coded failure description is necessary for our computerized processing of quality data.
Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

① Country	② Day Month Year	③ Typenumber	④ /Version	Factory/Serial no.
3 2	1 5 0 4 7 5	O P M	3 2 6 0 0 2	D O 0 0 7 8 3

CODED FAILURE DESCRIPTION

⑤ Nature of call		Location	Component/sequence no.	Category
Installation		T S 0 6 0 7		5
Pre sale repair		R 0 0 6 3 1		2
Preventive maintenance	0 0 2 1	9 9 0 0 0 1		4
Corrective maintenance				
Other				

⑥

⑦ Job completed
<input checked="" type="checkbox"/>
Working time ⑧
□ 1 2 Hrs

Detailed description of the information to be entered in the various boxes:

①Country: 3 | 2 = Switzerland

②Day Month Year 1 | 5 | 0 | 4 | 7 | 5 = 15 April 1975

③Type number/Version O | P | M | 3 | 2 | 6 | 0 | 0 | 2 = Oscilloscope PM 3260, version 02 (in later oscilloscopes this number is placed in front of the serial no)

④Factory/Serial number D | O | 0 | 0 | 7 | 8 | 3 = DO 783 These data are mentioned on the type plate of the instrument

⑤Nature of call: Enter a cross in the relevant box

⑥Coded failure description

Location	Component/sequence no.	Category
□ □ □ □	□ □ □ □ □ □	□
These four boxes are used to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual). Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet.	These six boxes are intended to pinpoint the faulty component. A. Enter the component designation as used in the circuit diagram. If the designation is alfa-numeric, the letters must be written (starting from the left) in the two left-hand boxes and the figures must be written (in such a way that the last digit occupies the right-most box) in the four right-hand boxes. B. Parts not identified in the circuit diagram: 990000 Unknown/Not applicable 990001 Cabinet or rack (text plate, emblem, grip, rail, graticule, etc.) 990002 Knob (incl. dial knob, cap, etc.) 990003 Probe (only if attached to instrument) 990004 Leads and associated plugs 990005 Holder (valve, transistor, fuse, board, etc.) 990006 Complete unit (p.w. board, h.t. unit, etc.) 990007 Accessory (only those without type number) 990008 Documentation (manual, supplement, etc.) 990009 Foreign object 990099 Miscellaneous	0 Unknown, not applicable (fault not present, intermittent or disappeared) 1 Software error 2 Readjustment 3 Electrical repair (wiring, solder joint, etc.) 4 Mechanical repair (polishing, filing, remachining, etc.) 5 Replacement (of transistor, resistor, etc.) 6 Cleaning and/or lubrication 7 Operator error 8 Missing items (on pre-sale test) 9 Environmental requirements are not met

⑦ Job completed: Enter a cross when the job has been completed.

⑧ Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

□ | 1 | 2 = 1,2 working hours (1 h 12 min.)

Fig. 3.39. A and B vertical amplifier unit

Fig. 3.40. Delay line unit

Fig. 3.41. Time-base unit

Fig. 3.42. Power supply unit

AMPL. SWITCH YA (SK17)

TIME/cm SWITCH (SK2)

AMPL. SWITCH YB (SK18)

Fig. 3.43. Circuit diagram of the complete oscilloscope PM 3233 (small)

Sales and service all over the world

- Alger** : Sadetel; 41 Rue des Frères Mouloud
Alger; tel. 656613-656607
- Argentina** : Philips Argentina S.A., Cassila
Correo 3479, Buenos Aires; Tel. T.E. 70, 7741
al 7749
- Australia** : Philips Scientific & Industrial
Equipment, Centre Court, 25 - 27 Paul
Street, P.O. Box 119, North Ryde,
Sydney 2113 N.S.W.; tel. 88 88222
- Bangla Desh** : Philips Bangla Desh Ltd.
P.O. Box 62; Ramna, Dacca, tel. 28332
- België/Belgique** : M.B.L.E. Philips Bedrijfs-
apparatuur; 80 Rue des Deux Gares, Bruxelles;
tel. 02/513.76.00
- Bolivia** : Industrias Bolivianas Philips S.A.
LA Jón postal 2964 La Paz; tel. 50029
- Brasil** : S.A. Philips Do Brasil; Avenida 9 de
Julho 5229; P.O. Box 8681; Sao Paulo S.P.;
tel. 282 57 22
- Burundi** : Philips S.A.R.L., Avenue de Grèce,
B.P. 900, Bujumbura
- Canada** : Philips Test and Measuring Instruments Inc.; 6 Leswyn Road, Toronto (Ontario);
tel. (416) 789 7188
- Chile** : Philips Chilena S.A., Casilla 2687,
Santiago de Chile; tel. 94001
- Colombia** : Industrias Philips de Colombia
S.A., Calle 13 no. 51-03, Apartado Aereo
4282, Bogota; tel. 473640
- Costa Rica** : Philips de Costa Rica Ltd.,
Apartado Postal 4325, San José; tel. 210111
- Danmark** : Philips Elektronik Systemer A/S
Afd. Industri & Forskning; Strandlodsvæj 4,
P.O. Box 1919, 2300 Kobenhavn S;
tel. (451) AS 2222; telex 27045
- Deutschland (Bundesrepublik)** : Philips
GmbH, Unternehmensbereich Elektronik
für Wissenschaft und Industrie, Postfach
310 320, 35 Kassel-Bettenhausen, Miramstrasse
87; tel. 561-5011
- Ecuador** : Philips Ecuador S.A., Casilla 343,
Quito; tel. 239080
- Egypt** : Ph. Scientific Bureau 1687, 5 Sherif
Str., Cairo - A.R. Egypt P.O. Box 1807;
tel. 78457-57739
- Eire** : Philips Electrical (Ireland) Ltd., New-
stead, Clonskeagh, Dublin 14; tel. 693355
- El Salvador** : Philips de El Salvador, Apartado
Postal 865, San Salvador; tel. 217441
- España** : Philips Iberica S.A.E., Dpto
Aparatos de Medida, Martinez Villergas 2,
Madrid 27; tel. 404-2200/3200/4200
- Ethiopia** : Philips Ethiopia (Priv. Ltd. Co.),
P.O.B. 2565; Ras Abebe Areguay Avenue,
Addis Ababa; tel. 48300
- Finland** : Oy Philips Ab, Kaivokatu 8,
P.O. Box 255, 00101 Helsinki 10;
tel. 35-017271
- France** : Philips Industrie, Division de la S.A.
Philips Industrielle et Commerciale 105 Rue
de Paris, 93 002 Bobigny; tel. 830-11-11
- Ghana** : Philips (Ghana) Ltd., P.O.B. M 14,
Accra; tel. 66019
- Great Britain** : Pye Unicam Ltd., York Street,
Cambridge CB1-2PX; tel. (0223) 58866
- Guatemala** : Philips de Guatemala S.A.,
Apartado Postal 238, Guatemala City;
tel. 64857
- Hellas** : Philips S.A. Hellénique, 54 Avenue
Syngrou, Athens; P.O. Box 153; tel. 230476
- Honduras** : Hasbun de Honduras, Apartado
Postal 83, Tegucigalpa; tel. 2-9121...5
- Hong Kong** : Philips Hong Kong Ltd.,
P.O.B. 2108, St. George's Building, 21st floor,
Hong Kong; tel. 5-249246
- India** : Philips India Ltd., Shivasagar Estate,
Block "A", Dr. Annie Besant Road, P.O.B.
6598, Worli, Bombay 18; tel. 370071
- Indonesia** : P.T. Philips Development Corporation,
Jalan Proklamasi 33, P.O.B. 2287
Jakarta; tel. 51985-51986
- Iran** : Philips Iran Ltd., P.O.B. 1297, Teheran;
tel. 662281
- Iraq** : Philips Iraq W.L.L. Munir Abbas Building
4th floor; South Gate, P.O. box 5749 Baghdad;
tel. 80409
- Island** : Heimilstaeki SF, Saetún 8, Reykjavík;
tel. 24000
- Islas Canarias** : Philips Ibérica S.A.E., Triana
132, Las Palmas; Casilla 39-41, Santa Cruz de
Tenerife
- Italia** : Philips S.p.A., Sezione S&I; Viale
Elvezia 2, 20052 Monza; tel. (039) 361-441/5,
360364/6, 360383/4; telex 35290
- Kenya** : Philips (Kenya) Ltd., P.O.B. 30554,
Nairobi; tel. 29981
- Kuwait** : Delegate Office of Philips Industries
P.O. Box 3801; Kuwait; tel. 33814
- Malaysia** : Philips Malaya Sdn Bhd. P.O. Box
332, Kuala Lumpur; Selangor W. Malaysia;
tel. 774411
- Mexico** : Philips Mexicana S.A. de C.V.,
Durango 167, Col. Roma, Apartado Postal
24-328, Mexico 7 D.F.; tel. 525 15 40
- Nederland** : Philips Nederland B.V., Bosch-
dijk, Gebouw VB, Eindhoven; tel. 793333
- Ned. Antillen** : N.V. Philips Antillana, Post-
bus 523, Willemstad; tel. Curaçao 36222-
35464
- New Zealand** : Philips Electrical Industries
(N.Z.) Ltd., Professional and Industrial Division,
Wakefield Street 181-195, P.O.B. 2097, Lyall Bay
Wellington C1; tel. 873-156
- Nigeria** : Philips (Nigeria) Ltd., 6 Ijora Cause-
way, P.O.B. 1921, Lagos; tel. 45414/7
- Nippon** : Nihon Philips Corporation, Shuwa
Shinagawa Building, 26-33 Takanawa
3-Chome, Minato-Ku, Tokyo 108; P.O. Box. 13;
tel. (03) 448-5611
- Norge** : Norsk A.S. Philips, Postboks 5040,
Oslo 3; tel. 463890
- Österreich** : Oesterreichische Philips Industrie
GmbH, Abteilung Industrie Elektronik, Parttgasse
32, A-1230 Wien; tel. (0222)-831501
- Pakistan** : Philips Electrical Co. of Pakistan
Ltd., El-Markaz, M.A. Jinnah Road, P.O.B.
7101, Karachi; tel. 70071
- Paraguay** : Philips del Paraguay S.A., Casilla
de Correo 605, Asuncion; tel. 8045-5536-6666
- Perù** : Philips Peruana S.A., Apartado Postal
2769, Lima; tel. 326070
- Philippines** : Philips Industrial Development
Inc., 2246 Pasong Tamo, P.O.B. 911, Makati
Rizal D-708; tel. 889453 to 889456
- Portugal** : Philips Portuguesa S.A.R.L., Av.
Eng.º Duarte Pacheco 6, Lisboa 1
- Rwanda** : Philips Rwanda S.A.R.L., B.P. 449,
Kigali
- Saoudi Árabe** : A. Rajab and A. Silsilah
P.O. Box 203 Jeddah - Saudi Arabia;
tel. 5113-5114
- Schweiz-Suisse-Svizzera** : Philips A.G.,
Binzstrasse 15, Postfach 8027, Zürich;
tel. 01-442211
- Singapore** : Philips Singapore Private Ltd.
P.O. Box 1358; Toa Payoh Central Post
Office; Singapore 12; tel. 538811
- South Africa** : South African Philips (Pty)
Ltd., P.O.B. 7703, 2 Herb Street, New Doorn-
fontein, Johannesburg 2000; tel. 24-0531
- S-Korea** : Philips Electronics (Korea) Ltd.,
P.O.Box 3680, Seoul; tel. 737222
- Sverige** : Svenska A.B. Philips, Fack, Liding-
övägen 50, Stockholm 27; tel. 08/635000
- Syria** : Philips Moyen-Orient S.A., Rue Fardoss
79 Immeuble Kassas and Sadate, B.P. 2442,
Damas; tel. 18605-21650
- Taiwan** : Philips Taiwan Ltd., San Min
Building, P.O. Box 22978, Taipei
- Tanzania** : Philips (Tanzania) Ltd., Box 20104,
Dar es Salaam; tel. 29571
- Thailand** : Philips Electrical Co. of Thailand
Ltd., 283 Silom Road, P.O.Box 961, Bangkok;
tel. 36980, 36984-9
- Tunisia** : S.T.I.E.T., 328 15 Rue Ben Ghadhahem,
Tunis; tel. 244268
- Turkey** : Türk Philips Ticaret A.S., Posta
Kutusu 504, Beyoglu, Gümüssüyü Caddesi
78/80 Istanbul 1
- Uganda** : Philips Uganda Ltd. p.o.Box 5300,
Kampala; tel. 59039
- Uruguay** : Industrias Philips del Uruguay S.A.
Avda Uruguay 1287, Casilla de Correo 294,
Montevideo; tel. 915641
- U.S.A.** : Philips Test and Measuring Instruments Inc.; 85, Mc Kee Drive, Mahwah,
New Jersey 07430; tel. (201) 529-3800
- Venezuela** : C.A. Philips Venezolana, Apar-
tado Postal 1167, Caracas; tel. 360511
- Zaire** : Philips S.Z.R.L., B.P. 1798, Kinshasa;
tel. 31887-31888-31693
- Zambia** : Philips Electrical Ltd., Professional
Equipment Division, P.O.B. 553, Kitwe; tel.
2526/7/8; Lusaka P.O. Box 1878

T&M/770516

For information on change of address:
N.V. Philips' Gloeilampenfabrieken
Test and Measuring Instrument Dept.
Eindhoven - The Netherlands

For countries not listed:
N.V. Philips S&I Export Dept.
Test and Measuring Instruments Dept.
Eindhoven - The Netherlands

PHILIPS

SERVICE

Cryogenic Equipment / Electro Chemistry /
Electron Optics / Electronic Weighing /
Industrial Data Systems / Numerical Con-
trol / Philips Pollution Measuring / Rad-
iation Measuring Equipment / Test and
Measuring Equipment / Welding Equip-
ment / X-Ray Analytical Equipment

equipment
for science
and industry

741209

PM 3233/04 and PM 3232/06

Cd852

TEST AND MEASURING INSTRUMENTS

Re: Beam correction, point 3.2.3.3 of the manual.

In order to equalize and to be able to adjust the brightness of both beams, two magnets are mounted symmetrically on the C.R.T. Both magnets are adjusted in the factory to the same brightness. Magnet 2 can be readjusted by means of a screwdriver through an opening in the bottom plate of the oscilloscope (see fig. 1).

Betrifft: Strahlkorrektur, Abschnitt 3.2.3.3 in der Anleitung.

Um die Helligkeit beider Strahlen einander anzugeleichen und einstellen zu können sind an der Kathodenstrahlröhre zwei Magnete symmetrisch angebracht. Beide Magnete sind ab Fabrik auf gleiche Helligkeit eingestellt. Mit Hilfe eines Schraubenziehers lässt sich Magnet 2 durch eine Öffnung in die Bodenplatte des Oszilloskopen (siehe Fig. 1) nachjustieren.

Concerne: Correction de faisceau 3.2.3.3 de la notice d'emploi.

Afin d'égaliser et de pouvoir régler la luminosité des deux faisceaux deux aimants sont montés symétriquement sur le T.R.C. Les deux aimants sont réglés à l'usine sur une luminosité égale. L'aimant 2 peut être rajusté à l'aide d'un tournevis par une ouverture pratiquée dans la plaque de fond de l'oscilloscope (voir Fig. 1).

Fig. 1. Left hand side view

PRINTED IN THE NETHERLANDS

9499 448 07001