# 从线性代数到张量计算

Tensor Computations: An Algebraic Perspective

陈新宇

程展鸿

赵熙乐

孙立君

发布时间: 2022 年 11 月 更新时间: 2022 年 12 月

# 目录

| 第一 | ·章  | 代数结构 7                    |
|----|-----|---------------------------|
| 1  | .1  | 向量与矩阵                     |
| 1  | .2  | 张量 7                      |
|    |     | 1.2.1 张量结构                |
|    |     | 1.2.2 高阶张量矩阵化 7           |
| 1  | 3   | 特殊代数结构                    |
|    |     | 1.3.1 循环矩阵                |
|    |     | 1.3.2 卷积矩阵                |
|    |     | 1.3.3 Hankel 矩阵           |
| 第二 | 章   | Kronecker 积与 Kronecker 分解 |
| 2  | 2.1 | Kronecker 积定义             |
| 2  | 2.2 | Kronecker 积基本性质           |
|    |     | 2.2.1 结合律与分配律             |
|    |     | 2.2.2 矩阵相乘 12             |
|    |     | 2.2.3 求逆矩阵                |
|    |     | 2.2.4 向量化                 |
| 2  | 2.3 | Kronecker 积特殊性质           |
| 2  | 2.4 | 朴素 Kronecker 分解           |
|    |     | 2.4.1 定义                  |
|    |     | 2.4.2 引入 permute 概念       |
|    |     | 2.4.3 求解过程 14             |
| 2  | 2.5 | 广义 Kronecker 分解           |
| 2  | 2.6 | 模型参数压缩问题                  |
| 第三 | 章   | 模态积与 Tucker 张量分解          |
| 3  | 3.1 | 模态积定义 19                  |
| 3  | 3.2 | 模态积性质 19                  |
| 3  | 3.3 | 高阶奇异值分解                   |
| 3  | 3.4 | Tucker 分解                 |
| 第四 | 章   | 低秩线性回归 21                 |
| 4  | 1.1 | 低秩线性回归                    |
| 4  | 1.2 | 高维向量自回归                   |
| 4  | 1.3 | 时变低秩向量自回归 21              |

# 前言

在过去的数十年间,随着信号处理、机器学习与数值计算等领域的快速发展,张量计算已 从以线性代数为支撑的矩阵计算中逐步拓展开来,相关研究贯穿信号处理、机器学习等众多 领域。随着大量张量计算算法涌现出来,我们不难发现:这些算法大多建立在张量分解的基础 上。本文以张量计算这一概念为核心,将从线性代数出发,讲述张量计算相关的一系列内容。 为了提高读者的阅读体验,笔者进行了以下尝试:

- **化繁为简**。将线性代数以及张量计算的范畴限定在实空间中。另外,严格来说,向量和 矩阵属于低阶张量,为区分概念,我们默认常提到的张量特指高阶张量(阶数大于或等 于 3)。
- **由浅入深**。从基本的线性代数内容展开,通过循序渐进的方式引出一系列矩阵分解与张量分解技术,使读者体会到线性代数的巨大价值。
- **熟能生巧**。本文在撰写过程中尽可能考虑初学者的学习历程,在全文中设计一系列难度 适中的例题让读者更直观理解一系列理论,并通过练习熟练掌握相应内容。

笔者深感自身才疏学浅,对于线性代数和张量计算的认识具有一定的局限性,请广大读者批评指正。另外,全文内容设置的合理性也有待考究,需要等待读者的检验。尽管如此,笔者愿竭心力,在后续版本中逐步更新与完善本文,如有建议或疑问,请在 GitHub 开源项目https://github.com/xinychen/tensor-book的问答区与笔者进行互动交流。

#### 作者声明:

- 撰写本文的初衷在于传播知识,为感兴趣的读者提供参考素材。
- 禁止将本文放在其他网站上,唯一下载网址为https://xinychen.github.io/books/tensor\_book.pdf。
- 禁止将本文用于任何形式的商业活动。

6 目录

# 第一章 代数结构

长期以来,线性代数一直作为机器学习中最为重要的数学工具之一,被人们广泛用于开发各类机器学习算法。线性代数本质上是以向量与矩阵为基本代数结构,本书要讨论的张量分解等模型则主要以张量为基本代数结构。在过去的数十年间,借助线性代数这一基本数学工具,机器学习中涌现出了很多经典的代数模型,这其中不乏矩阵分解、主成分分析,而张量分解在某种程度上可看作是矩阵分解的一种衍生物。

近年来,张量分解在机器学习的众多问题中得到了很好的应用,但关于张量的一些计算与我们所熟悉的线性代数却大相径庭,同时,张量计算相比以矩阵计算为主导的线性代数更为抽象,这使得很多与张量分解相关的内容看起来晦涩难懂。实际上,向量与矩阵都是张量的特例,可以被定义为低阶张量。一般而言,向量是第 1 阶张量,英文表述为 first-order tensor;矩阵是第 2 阶张量,英文表述为 second-order tensor;第 3 阶或者更高阶数的张量被称为高阶张量,英文表述为 higher-order tensor。在各类文献中,通常提到的张量都是特指高阶张量,当然,这在本书的叙述中也不例外。需要注意的是,在各类程序语言中,人们更愿意将张量称为多维数组。

在一个矩阵中,某一元素的位置可以说是"第i行、第j列",即要描述某一元素的位置需用到行和列索引构成的组合 (i,j)。类似地,在一个第3阶张量中,描述某一元素的位置需用到三个索引构成的组合,例如 (i,j,k)。在处理稀疏矩阵或稀疏张量时,用索引来标记元素的位置会节省下一些不必要的存储开支。

## 1.1 向量与矩阵

# 1.2 张量

- 1.2.1 张量结构
- 1.2.2 高阶张量矩阵化

## 1.3 特殊代数结构

#### 1.3.1 循环矩阵

循环矩阵 (circulant matrix) 是一种特殊的代数结构,广泛应用于信号处理等。从定义出发,给定任意向量  $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\mathsf{T}} \in \mathbb{R}^T$ ,其对应的循环矩阵可写作如下形式:

$$C(\boldsymbol{x}) \triangleq \begin{bmatrix} x_1 & x_T & \cdots & x_2 \\ x_2 & x_1 & \cdots & x_3 \\ \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$

$$(1.1)$$

其中, $\mathcal{C}: \mathbb{R}^T \to \mathbb{R}^{T \times T}$  表示循环算子 (circulant operator)。该循环矩阵的第一列为向量  $\boldsymbol{x}$  本身,对角线元素均为  $x_1$ 。

**例 1.** 给定任意向量  $x = (x_1, x_2, x_3, x_4, x_5)^{\mathsf{T}} \in \mathbb{R}^5$ ,试写出其对应的循环矩阵。

 $\mathbf{M}$ . 向量  $\mathbf{x}$  对应的循环矩阵为

$$C(\mathbf{x}) = \begin{bmatrix} x_1 & x_5 & x_4 & x_3 & x_2 \\ x_2 & x_1 & x_5 & x_4 & x_3 \\ x_3 & x_2 & x_1 & x_5 & x_4 \\ x_4 & x_3 & x_2 & x_1 & x_5 \\ x_5 & x_4 & x_3 & x_2 & x_1 \end{bmatrix} \in \mathbb{R}^{5 \times 5}$$

$$(1.2)$$

**例 2.** 给定任意向量  $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\top} \in \mathbb{R}^T$  与  $\mathbf{y} = (y_1, y_2, \cdots, y_T)^{\top} \in \mathbb{R}^T$ ,若两者之间的循环卷积 (circular convolution) 为  $\mathbf{z} = \mathbf{x} \star \mathbf{y} \in \mathbb{R}^T$ ,其中,符号  $\star$  表示卷积运算,则向量  $\mathbf{z}$  的任意元素为

$$z_{t} = \sum_{k=1}^{T} x_{t-k+1} y_{k}, \forall t \in \{1, 2, \dots, T\}$$
(1.3)

其中,当  $t+1 \le k$  时,则令  $x_{t-k+1} = x_{t-k+1+T}$ 。试根据循环矩阵的定义写出循环卷积。

解. 在这里,循环卷积可写作如下形式:

$$\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} = \begin{bmatrix} x_{1}y_{1} + x_{T}y_{2} + \dots + x_{2}y_{T} \\ x_{2}y_{1} + x_{1}y_{2} + \dots + x_{3}y_{T} \\ \vdots \\ x_{T}y_{1} + x_{T-1}y_{2} + \dots + x_{1}y_{T} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{T} & \dots & x_{2} \\ x_{2} & x_{1} & \dots & x_{3} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T} & x_{T-1} & \dots & x_{1} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{T} \end{bmatrix} = \mathcal{C}(\boldsymbol{x})\boldsymbol{y} \quad (1.4)$$

#### 1.3.2 卷积矩阵

#### 1.3.3 Hankel 矩阵

# 第二章 Kronecker 积与 Kronecker 分解

Kronecker 积是张量计算中非常重要的一种运算规则,不同于常见的矩阵运算规则,给定任意两个矩阵,两者之间进行 Kronecker 积得到的是一个分块矩阵。Kronecker 分解是一种以 Kronecker 积为基础的分解形式,又被称为 Kronecker 积分解、Kronecker 积逼近 (Kronecker product approximation)、最近 Kronecker 积 (nearest Kronecker product)等,它是矩阵计算与张量计算中十分重要的逼近问题。本章首先介绍 Kronecker 积的定义与性质,然后引出 Kronecker 分解的一般形式、优化问题、求解过程等,最后给出以 Kronecker 分解为基础的模型参数压缩问题。

### 2.1 Kronecker 积定义

Kronecker 积是以德国数学家 Leopold Kronecker 的名字命令的运算规则,已广泛应用于各类矩阵计算以及张量计算算法中。从定义出发,给定任意矩阵  $X \in \mathbb{R}^{m \times n}$  与  $Y \in \mathbb{R}^{p \times q}$ ,则两者之间的 Kronecker 积为

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} x_{11}\boldsymbol{Y} & x_{12}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ x_{21}\boldsymbol{Y} & x_{22}\boldsymbol{Y} & \cdots & x_{2n}\boldsymbol{Y} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & x_{m2}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$
(2.1)

其中,符号  $\otimes$  表示 Kronecker 积。这里的 Kronecker 积得到的矩阵大小为  $(mp) \times (nq)$ ,在写法上符合线性代数中对分块矩阵 (block matrix) 的定义,其中,分块矩阵的子矩阵是由矩阵 X 的每个元素与矩阵 Y 相乘得到。

矩阵 X 与 Y 之间的 Kronecker 积存在前后顺序,根据 Kronecker 积的定义,可得到矩阵 Y 与 X 之间的 Kronecker 积为

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} y_{11}\boldsymbol{X} & y_{12}\boldsymbol{X} & \cdots & y_{1q}\boldsymbol{X} \\ y_{21}\boldsymbol{X} & y_{22}\boldsymbol{X} & \cdots & y_{2q}\boldsymbol{X} \\ \vdots & \vdots & \ddots & \vdots \\ y_{p1}\boldsymbol{X} & y_{p2}\boldsymbol{X} & \cdots & y_{pq}\boldsymbol{X} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$

$$(2.2)$$

尽管矩阵  $X\otimes Y$  与矩阵  $Y\otimes X$  大小一致,但两者并不相等,因此,Kronecker 积不存在交换律。

**例 3.** 给定矩阵 
$$m{X}=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 与  $m{Y}=\begin{bmatrix}5&6&7\\8&9&10\end{bmatrix}$ ,试写出两者之间的 Kronecker 积  $m{X}\otimes m{Y}$  与  $m{Y}\otimes m{X}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \\ 3 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 4 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(2.3)

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} 5 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 6 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 7 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ 8 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 9 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 10 & 6 & 12 & 7 & 14 \\ 15 & 20 & 18 & 24 & 21 & 28 \\ 8 & 16 & 9 & 18 & 10 & 20 \\ 24 & 32 & 27 & 36 & 30 & 40 \end{bmatrix}$$
(2.4)

**例 4.** 给定矩阵  $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  与  $\mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$ ,试问等式  $(\mathbf{X} \otimes \mathbf{Y})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}} \otimes \mathbf{Y}^{\mathsf{T}}$  是否成立。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X}^{\top} \otimes \boldsymbol{Y}^{\top} = \begin{bmatrix} 5 & 8 \\ 1 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 2 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} & 3 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 8 & 15 & 24 \\ 6 & 9 & 18 & 27 \\ 7 & 10 & 21 & 30 \\ 10 & 16 & 20 & 32 \\ 12 & 18 & 24 & 36 \\ 14 & 20 & 28 & 40 \end{bmatrix}$$
 (2.5)

在这里, 等式  $(X \otimes Y)^{\top} = X^{\top} \otimes Y^{\top}$  是成立的。

**例 5.** 给定向量  $\boldsymbol{x} = (1,2)^{\mathsf{T}}$  与  $\boldsymbol{y} = (3,4)^{\mathsf{T}}$ , 试写出  $\boldsymbol{x} \otimes \boldsymbol{y}$  与  $\boldsymbol{x} \otimes \boldsymbol{y}^{\mathsf{T}}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{x} \otimes \boldsymbol{y} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\ 2 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 (2.6)

$$\boldsymbol{x} \otimes \boldsymbol{y}^{\top} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 & 4 \\ 2 \times \begin{bmatrix} 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (2.7)

在这里,  $x \otimes y^{\top} = xy^{\top}$ , 即向量外积。

# 2.2 Kronecker 积基本性质

### 2.2.1 结合律与分配律

在小学数学中,我们学习了加减乘除的运算规则。以乘法为例,不妨重温一下烙印在我们脑海中的基本概念:

- 乘法结合律:  $x \times y \times z = x \times (y \times z)$
- 乘法分配律:  $x \times z + y \times z = (x + y) \times z$

由于 Kronecker 积本质上也是元素间相乘, 所以同样存在结合律与分配律。对于任意矩 阵  $X \times Y$  与 Z, 结合律可归纳为

$$X \otimes Y \otimes Z = X \otimes (Y \otimes Z) \tag{2.8}$$

分配律可归纳为

$$X \otimes Z + Y \otimes Z = (X + Y) \otimes Z \tag{2.9}$$

例 6. 给定矩阵 
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$  与  $\boldsymbol{Z} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,试写出  $\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z}$  与  $\boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z})$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (2.10)

$$\mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix}$$
 (2.11)

从而, 可得到

可得到
$$\mathbf{X} \otimes \mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix}
5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\
5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\
7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\
7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\
15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\
15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\
21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \\
21 & 21 & 24 & 24 & 28 & 28 & 32 & 32
\end{bmatrix} = \mathbf{X} \otimes (\mathbf{Y} \otimes \mathbf{Z}) \tag{2.12}$$

例 7. 给定 
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$  与  $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,试写出  $X \otimes Z + Y \otimes Z$  与  $(X + Y) \otimes Z$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Z} + \mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(2.13)

$$(\mathbf{X} + \mathbf{Y}) \otimes \mathbf{Z} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(2.14)

#### 2.2.2 矩阵相乘

对于任意矩阵  $X \in \mathbb{R}^{m \times n}$ 、 $Y \in \mathbb{R}^{s \times t}$ 、 $U \in \mathbb{R}^{n \times p}$  与  $V \in \mathbb{R}^{t \times q}$ , 则矩阵  $X \otimes Y \in \mathbb{R}^{(ms) \times (nt)}$  的列数 nt 与矩阵  $U \otimes V \in \mathbb{R}^{(nt) \times (pq)}$  的行数 nt 一致,可进行矩阵相乘,两者相乘得到的矩阵满足:

$$(\boldsymbol{X} \otimes \boldsymbol{Y})(\boldsymbol{U} \otimes \boldsymbol{V}) = \begin{bmatrix} x_{11}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \begin{bmatrix} u_{11}\boldsymbol{V} & \cdots & u_{1p}\boldsymbol{V} \\ \vdots & \ddots & \vdots \\ u_{n1}\boldsymbol{V} & \cdots & u_{np}\boldsymbol{V} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1}\boldsymbol{Y}\boldsymbol{V} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp}\boldsymbol{Y}\boldsymbol{V} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1}\boldsymbol{Y}\boldsymbol{V} & \cdots & \sum_{k=1}^{n} x_{mk}u_{kp}\boldsymbol{Y}\boldsymbol{V} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1} & \cdots & \sum_{k=1}^{n} x_{nk}u_{kp} \end{bmatrix} \otimes (\boldsymbol{Y}\boldsymbol{V})$$

$$= (\boldsymbol{X}\boldsymbol{U}) \otimes (\boldsymbol{Y}\boldsymbol{V}) \in \mathbb{R}^{(ms) \times (pq)}$$

#### 2.2.3 求逆矩阵

对于任意可逆矩阵  $X \in \mathbb{R}^{m \times m}$  与  $Y \in \mathbb{R}^{n \times n}$ ,由于

$$(\boldsymbol{X} \otimes \boldsymbol{Y}) (\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1}) = (\boldsymbol{X} \boldsymbol{X}^{-1}) \otimes (\boldsymbol{Y} \boldsymbol{Y}^{-1}) = \boldsymbol{I}_m \otimes \boldsymbol{I}_n = \boldsymbol{I}_{mn}$$
 (2.16)

故有

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1} = \boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} \tag{2.17}$$

恒成立。这意味着:若计算  $X \otimes Y$  的逆矩阵,可先对 X 与 Y 分别求逆矩阵,再对得到的 逆矩阵进行 Kronecker 积。

**例 8.** 给定矩阵 
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与  $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ ,试写出  $(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1}$  与  $\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1}$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (2.18)

对该矩阵求逆矩阵, 得到

$$(\mathbf{X} \otimes \mathbf{Y})^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
 (2.19)

对矩阵 X 与 Y 分别求逆矩阵:

$$\boldsymbol{X}^{-1} = \begin{bmatrix} -2 & 1\\ 1.5 & -0.5 \end{bmatrix} \quad \boldsymbol{Y}^{-1} = \begin{bmatrix} -4 & 3\\ 3.5 & -2.5 \end{bmatrix}$$
 (2.20)

再对得到的逆矩阵进行 Kronecker 积, 有

$$\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
(2.21)

#### 2.2.4 向量化

## 2.3 Kronecker 积特殊性质

### 2.4 朴素 Kronecker 分解

#### 2.4.1 定义

一般而言,给定任意矩阵  $X \in \mathbb{R}^{(mp)\times (nq)}$ ,若  $A \in \mathbb{R}^{m\times n}$ , $B \in \mathbb{R}^{p\times q}$  为朴素 Kronecker 分解中的待定参数,则可将分解过程描述为如下优化问题:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2 \tag{2.22}$$

其中,我们建模的目标是寻找最佳的矩阵 A, B 使得损失函数最小化。

为便于理解该优化问题,不妨用一组小矩阵一窥究竟,令 m=3, n=p=q=2,则此时的目标函数为

$$\|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_{F}^{2} = \left\| \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \right\|_{F}^{2}$$

$$(2.23)$$

#### 2.4.2 引入 permute 概念

在这里,我们引入 permute 概念是为了对矩阵的维度按照特定规则进行调整,这一做法最早是由 Van Loan 和 Pitsianis 于 1993 年提出的 $^1$ 。在公式(2.23)中,首先使用分块矩阵表示矩阵  $X \in \mathbb{R}^{6 \times 4}$ :

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \\ X_{31} & X_{32} \end{bmatrix}$$

$$(2.24)$$

<sup>&</sup>lt;sup>1</sup>C. Van Loan, N. Pitsianis (1993). Approximation with Kronecker products. Linear Algebra for Large Scale and Real-Time Applications, 232: 293-314.

其中, 分块矩阵的子矩阵分别为

$$\mathbf{X}_{11} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \quad \mathbf{X}_{12} = \begin{bmatrix} x_{13} & x_{14} \\ x_{23} & x_{24} \end{bmatrix} 
\mathbf{X}_{21} = \begin{bmatrix} x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} \quad \mathbf{X}_{22} = \begin{bmatrix} x_{33} & x_{34} \\ x_{43} & x_{44} \end{bmatrix} 
\mathbf{X}_{31} = \begin{bmatrix} x_{51} & x_{52} \\ x_{61} & x_{62} \end{bmatrix} \quad \mathbf{X}_{32} = \begin{bmatrix} x_{53} & x_{54} \\ x_{63} & x_{64} \end{bmatrix}$$
(2.25)

有了这些子矩阵之后,需要对这些子矩阵进行向量化,得到的向量依次为

$$\operatorname{vec}(\boldsymbol{X}_{11}) = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{12} \\ x_{22} \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{21}) = \begin{bmatrix} x_{31} \\ x_{41} \\ x_{32} \\ x_{42} \end{bmatrix} \quad \cdots \quad \operatorname{vec}(\boldsymbol{X}_{32}) = \begin{bmatrix} x_{53} \\ x_{63} \\ x_{54} \\ x_{64} \end{bmatrix}$$
(2.26)

最后,使用这些向量构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} \operatorname{vec}(\boldsymbol{X}_{11})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{21})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{31})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{12})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{22})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{32})^{\top} \end{bmatrix} \in \mathbb{R}^{6 \times 4}$$

$$(2.27)$$

在这里,将矩阵 X 构造成矩阵  $\tilde{X}$  的过程通常被称为 permute。 由于

$$\operatorname{vec}(\boldsymbol{X}_{11}) = a_{11} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$\operatorname{vec}(\boldsymbol{X}_{21}) = a_{21} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$\vdots$$

$$\operatorname{vec}(\boldsymbol{X}_{32}) = a_{32} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$(2.28)$$

此时, Kronecker 分解的优化问题可写作如下形式:

$$\underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2 = \underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})^\top\|_F^2$$
(2.29)

实际上,向量化之后的待定参数  $\text{vec}(\boldsymbol{A})$  和  $\text{vec}(\boldsymbol{B})$  构成了一个标准的矩阵分解问题。

#### 2.4.3 求解过程

对于公式(2.22)中 Kronecker 分解的优化问题,可根据 Eckhart-Young 定理对如下优化问题进行求解:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\tilde{\boldsymbol{X}} - \text{vec}(\boldsymbol{A})\text{vec}(\boldsymbol{B})^{\top}\|_F^2$$
 (2.30)

若  $\tilde{X}$  的奇异值分解为  $\tilde{X} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$ , 其中,奇异值为  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$ ,则矩阵  $\boldsymbol{A}$  与  $\boldsymbol{B}$  的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}) = \sqrt{\sigma_1} \cdot \boldsymbol{u}_1 \\ \operatorname{vec}(\hat{\boldsymbol{B}}) = \sqrt{\sigma_2} \cdot \boldsymbol{v}_1 \end{cases}$$
 (2.31)

这里的最优解恰好是秩为1的逼近问题。

例 9. 给定矩阵  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  与  $B = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$ ,试写出两者之间的 Kronecker 积  $X = A \otimes B$ ,并求 Kronecker 分解  $\hat{A}$ ,  $\hat{B} = \mathop{\arg\min}_{A \setminus B} \|X - A \otimes B\|_F^2$ 。

 $\mathbf{M}$ . 矩阵  $\mathbf{A}$  与  $\mathbf{B}$  之间的  $\mathbf{K}$ ronecker 积为

$$\boldsymbol{X} = \boldsymbol{A} \otimes \boldsymbol{B} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(2.32)

令分块矩阵 X 由如下 4 个子矩阵构成:

$$\mathbf{X}_{11} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \qquad \mathbf{X}_{12} = \begin{bmatrix} 10 & 12 & 14 \\ 16 & 18 & 20 \end{bmatrix} 
\mathbf{X}_{21} = \begin{bmatrix} 15 & 18 & 21 \\ 24 & 27 & 30 \end{bmatrix} \qquad \mathbf{X}_{22} = \begin{bmatrix} 20 & 24 & 28 \\ 32 & 36 & 40 \end{bmatrix}$$
(2.33)

对这些子矩阵分别进行向量化:

$$vec(\boldsymbol{X}_{11}) = \begin{bmatrix} 5 \\ 8 \\ 6 \\ 9 \\ 7 \\ 10 \end{bmatrix} \quad vec(\boldsymbol{X}_{21}) = \begin{bmatrix} 15 \\ 24 \\ 18 \\ 27 \\ 21 \\ 30 \end{bmatrix} \quad vec(\boldsymbol{X}_{12}) = \begin{bmatrix} 10 \\ 16 \\ 12 \\ 18 \\ 14 \\ 20 \end{bmatrix} \quad vec(\boldsymbol{X}_{22}) = \begin{bmatrix} 20 \\ 32 \\ 24 \\ 36 \\ 28 \\ 40 \end{bmatrix} \quad (2.34)$$

有了这些向量之后,构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} vec(\boldsymbol{X}_{11})^{\top} \\ vec(\boldsymbol{X}_{21})^{\top} \\ vec(\boldsymbol{X}_{12})^{\top} \\ vec(\boldsymbol{X}_{22})^{\top} \end{bmatrix} = \begin{bmatrix} 5 & 8 & 6 & 9 & 7 & 10 \\ 15 & 24 & 18 & 27 & 21 & 30 \\ 10 & 16 & 12 & 18 & 14 & 20 \\ 20 & 32 & 24 & 36 & 28 & 40 \end{bmatrix}$$
(2.35)

由此, Kronecker 分解的优化问题等价于

$$\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}} = \underset{\boldsymbol{A}, \boldsymbol{B}}{\operatorname{arg \, min}} \| \tilde{\boldsymbol{X}} - vec(\boldsymbol{A})vec(\boldsymbol{B})^{\top} \|_F^2$$
(2.36)

对矩阵  $\tilde{X}$  进行奇异值分解,则矩阵  $\hat{A}$  与  $\hat{B}$  分别为

$$\hat{\mathbf{A}} = \begin{bmatrix} -1.85471325 & -3.7094265 \\ -5.56413975 & -7.418853 \end{bmatrix}$$

$$\hat{\mathbf{B}} = \begin{bmatrix} -2.69583452 & -3.23500142 & -3.77416832 \\ -4.31333523 & -4.85250213 & -5.39166904 \end{bmatrix}$$
(2.37)

在这里, 矩阵  $\hat{A}$  与  $\hat{B}$  的所有元素均为负数, 可将这些元素全部写成相反数。

# 2.5 广义 Kronecker 分解

在《Convolutional neural network compression through generalized Kronecker product decomposition》中,作者给出了一种广义 Kronecker 分解。形式上说,给定任意矩阵  $X \in$ 

 $\mathbb{R}^{(mp)\times(nq)}$ ,若  $A_r \in \mathbb{R}^{m\times n}$ , $B_r \in \mathbb{R}^{p\times q}$ , $r=1,2,\ldots,R$  为广义 Kronecker 分解中的待定参数,则可将分解过程描述为如下逼近问题:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2$$
(2.38)

其中,我们的建模目标是寻找最佳的矩阵  $\{\boldsymbol{A}_r, \boldsymbol{B}_r\}_{r=1}^R$  使得损失函数最小化。

与朴素 Kronecker 分解类似,可先将广义 Kronecker 分解的逼近问题写作如下形式:

$$\underset{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R}{\operatorname{arg\,min}} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2 = \underset{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R}{\operatorname{arg\,min}} \left\| \boldsymbol{X} - \sum_{r=1}^R \operatorname{vec}(\boldsymbol{A}_r) \operatorname{vec}(\boldsymbol{B}_r)^\top \right\|_F^2$$
(2.39)

其中, 矩阵 X 是由矩阵 X 进行 permute 构造得到。

根据 Eckhart-Young 定理对上述优化问题进行求解,若矩阵  $\tilde{\boldsymbol{X}}$  的奇异值分解为  $\tilde{\boldsymbol{X}} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathsf{T}}$ ,其中,奇异值为  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$ ,则矩阵  $\boldsymbol{A}_r$  和  $\boldsymbol{B}_r$  的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}_r) = \sqrt{\sigma_r} \boldsymbol{u}_r \\ \operatorname{vec}(\hat{\boldsymbol{B}}_r) = \sqrt{\sigma_r} \boldsymbol{v}_r \end{cases}$$
 (2.40)

### 2.6 模型参数压缩问题

Kronecker 分解的一个重要用途是压缩模型参数。以多元线性回归 (multivariate linear regression) 为例,给定输入、输出数据为  $\mathcal{D} = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), \cdots, (\boldsymbol{x}_N, \boldsymbol{y}_N)\} \in \mathbb{R}^{nq} \times \mathbb{R}^{mp}$ ,则多元线性回归的优化问题为

$$\min_{\mathbf{W}} \ \frac{1}{2} \sum_{n=1}^{N} \| \mathbf{y}_n - \mathbf{W} \mathbf{x}_n \|_2^2$$
 (2.41)

今

$$\boldsymbol{X} = \begin{bmatrix} | & & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_N \\ | & & | \end{bmatrix} \in \mathbb{R}^{nq \times N}$$
 (2.42)

$$\boldsymbol{Y} = \begin{bmatrix} | & & | \\ \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_N \\ | & & | \end{bmatrix} \in \mathbb{R}^{mp \times N}, \tag{2.43}$$

则此时多元线性回归的等价优化问题为

$$\min_{\mathbf{W}} \frac{1}{2} \|\mathbf{Y} - \mathbf{W}\mathbf{X}\|_F^2 \tag{2.44}$$

不妨假设这里的系数矩阵  $\mathbf{W} \in \mathbb{R}^{(mp) \times (nq)}$  存在一个广义 Kronecker 分解,且由 R 个成分构成,则基于广义 Kronecker 分解的多元线性回归可写作如下形式:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \boldsymbol{X} \right\|_F^2$$
(2.45)

将优化问题改写为如下形式即可得到一个标准的广义 Kronecker 分解:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} \boldsymbol{X}^{\dagger} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \right\|_F^2$$
(2.46)

从而可根据广义 Kronecker 分解的求解方法对该多元线性回归问题进行求解。

**例 10** (矩阵自回归模型<sup>2</sup>). 对于多维时间序列 (multidimensional time series), 若任意时刻 t 对应的观测数据为矩阵  $X_t \in \mathbb{R}^{M \times N}$ , 则矩阵自回归的表达式为

$$X_t = AX_{t-1}B^{\top} + E_t, t = 2, 3, \dots, T$$
 (2.47)

其中, $\mathbf{A} \in \mathbb{R}^{M \times M}$  与  $\mathbf{B} \in \mathbb{R}^{N \times N}$  为自回归过程的系数矩阵 (coefficient matrix); 矩阵  $\mathbf{E}_t \in \mathbb{R}^{M \times N}$  为自回归过程的残差矩阵 (residual matrix)。若令  $\mathbf{x}_t = vec(\mathbf{X}_t)$  与  $\mathbf{\epsilon}_t = vec(\mathbf{E}_t)$ ,试写出与矩阵自回归等价的向量自回归表达式。

解. 根据 Kronecker 积性质, 矩阵自回归等价于如下向量自回归:

$$vec(\boldsymbol{X}_{t}) = vec(\boldsymbol{A}\boldsymbol{X}_{t-1}\boldsymbol{B}^{\top}) + vec(\boldsymbol{E}_{t})$$

$$= (\boldsymbol{B} \otimes \boldsymbol{A})vec(\boldsymbol{X}_{t-1}) + vec(\boldsymbol{E}_{t})$$

$$\implies \boldsymbol{x}_{t} = (\boldsymbol{B} \otimes \boldsymbol{A})\boldsymbol{x}_{t-1} + \boldsymbol{\epsilon}_{t}$$

$$(2.48)$$

在这里,矩阵自回归的待定参数数量为  $M^2 + N^2$ ,若对观测数据进行向量化且不对系数矩阵进行 Kronecker 分解,则向量自回归的待定参数数量为  $(MN)^2$ ,容易引发过参数化 (over-parameterization) 问题。

<sup>&</sup>lt;sup>2</sup>http://www.stat.rutgers.edu/home/rongchen/publications/20JoE\_Matrix\_AR.pdf

# 第三章 模态积与 Tucker 张量分解

3.1 模态积定义

例 11 (矩阵自回归模型).

- 3.2 模态积性质
- 3.3 高阶奇异值分解
  - 3.4 Tucker 分解

# 第四章 低秩线性回归

线性回归是机器学习中的一个基本模型,常用于各类回归问题,其建模思路是采用线性方程对给定的变量建立线性关系。本章以线性回归模型为基础,将介绍低秩线性回归模型、低秩自回归模型、时变低秩自回归模型等,这些模型的核心是借助矩阵分解或张量分解对模型参数进行压缩。

- 4.1 低秩线性回归
- 4.2 高维向量自回归
- 4.3 时变低秩向量自回归