Yu Tian_Mid_Pstat120C

Yu Tian

2022-08-19

```
# package
library(tidyverse)
library(ggplot2)

# set seed
set.seed(0623)

# Read (and import) the full data set into R using read.csv()
data <- read.csv(file = 'data.csv')

# view the data example in R
data</pre>
```

##		${\tt manufacturer}$	model_ye	ear	mpg	weight	${\tt displacement}$	class	horsepower
##	1	Kia	20	015	21.54716	4124.129	178.5575	${\tt Truck}$	237.6715
##	2	Ford	20	007	17.02911	4736.041	236.0139	${\tt Truck}$	236.3425
##	3	Mazda	20	003	19.33781	3777.898	179.4107	${\tt Truck}$	186.9290
##	4	GM	19	986	23.02399	3174.024	190.2972	Car	115.2296
##	5	BMW	20	017	22.54566	4650.112	164.4554	${\tt Truck}$	284.4615
##	6	Kia	Prelim. 20	021	32.38923	3194.868	114.4701	Car	161.8138
##	7	All	20	000	22.51440	3400.909	168.2990	Car	168.2936
##	8	Nissan	20	014	22.18444	4458.683	208.4433	${\tt Truck}$	245.0790
##	9	Mercedes	19	999	21.50476	3879.585	197.3525	Car	222.9132
##	10	Subaru	20	012	27.21958	3450.740	137.7964	Car	170.3608
##	11	WV	19	990	23.73371	2929.358	122.0215	Car	118.9145
##	12	Toyota	19	998	24.57349	3304.248	142.4937	Car	151.3054
##	13	Toyota	20	007	19.09633	4461.215	218.8619	${\tt Truck}$	229.8358
##	14	GM	20	002	15.44052	4987.675	302.1571	${\tt Truck}$	257.2493
##	15	Ford	19	988	16.42429	4357.654	239.6896	Truck	149.6339

Question 1

- 1. Answer the following based on a simple linear regression, predicting mpg(y) with $weight(x_1)$.
- (a) Fit the specified model. Write the model equation, including your estimates.

Answer Fit the simple linear regression model $Y = \beta_0 + \beta_1 x_1 + \epsilon$ to the data.

```
fit = lm(mpg~weight, data=data)
summary(fit)
##
```

```
## Call:
## lm(formula = mpg ~ weight, data = data)
```

```
##
## Residuals:
##
       Min
                1Q Median
## -3.4600 -2.1210 -0.6158 1.6716 7.0659
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 40.267655 5.038457 7.992 2.26e-06 ***
## weight
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.131 on 13 degrees of freedom
## Multiple R-squared: 0.5119, Adjusted R-squared: 0.4744
## F-statistic: 13.63 on 1 and 13 DF, p-value: 0.002709
From the table above, we can get
                                         \hat{\beta}_0 = 40.2677
                                        \hat{\beta}_1 = -0.004678
Thus, the model equations is
                           \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \epsilon = 40.2677 - 0.004678 x_1 + \epsilon
Using the method of least squares,
mean_y = mean(data$mpg)
mean_y
## [1] 21.9043
mean_x1 = mean(data$weight)
mean_x1
## [1] 3925.809
\# n = 15
S_xy = sum(data$weight * data$mpg) - (sum(data$weight) * sum(data$mpg)/15)
S_xy
## [1] -28575.53
S_x = sum((data\$weight)^2) - (sum(data\$weight))^2 / 15
S_x
## [1] 6109018
S_yy = sum((data\$mpg)^2) - (sum(data\$mpg))^2 / 15
S_yy
## [1] 261.1102
B_1 = S_xy / S_xx
B_1
## [1] -0.004677598
B_0 = mean_y - B_1 * mean_x1
B_0
```

[1] 40.26766

So,

$$\bar{y} = 21.9034$$

$$\bar{x}_1 = 3925.809$$

$$S_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^n x_i y_i - \frac{1}{n} \sum_{i=1}^n x_i \sum_{i=1}^n y_i = -28575.53$$

$$S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2 = 610908$$

$$\hat{S}_{xy} = 8575.53$$

Then,

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{8575.53}{610908} = -0.004678$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 40.2677$$

Thus, the model equations is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \epsilon = 40.2677 - 0.004678x_1 + \epsilon$$

(b) Create a scatterplot of mpg and weight. Add a line representing the model, with 95% confidence bands. Does the model appear to fit the data?

Answer

scatterplot of mpg and weight

From the graph above, we can find that the 95% confidence bands covered most data points, but NOT all points are covered. In conclusion, the model appears to fit the data with most data in confidence bands, but it does not fit all data very well.

(c) Test the null hypothesis that the slope of x_1, β_1 , is equal to zero. State the hypotheses, test statistic, rejection region(s), and p-value. Do not interpret the conclusion of this test.

Answer Test of Hypothesis for β_1 :

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

From the question above, we get $\hat{\beta}_1 = -0.0047$, $S_{xx} = 610908$, $S_{xy} = -28575.53$, $S_{yy} = 261.1102$.

Then,

$$SSE = S_yy - B_1 * S_xy$$

 SSE

[1] 127.4454

$$S_2 = (1/(15-2)) * SSE S_2$$

[1] 9.80349

$$S_s = sqrt(S_2)$$

 S_s

[1] 3.131053

$$SSE = S_{yy} - \hat{\beta}_1 S_{xy} = 127.4454$$

 $S^2 = (\frac{1}{n-2})SSE = 9.8035$
 $s = \sqrt{S^2} = 3.1311$

Because we interested in the parameter β_1 , we need the value

$$c_{11} = \frac{1}{S_{TT}} = \frac{1}{610908}$$

Then,

```
t_value = B_1/(S_s*sqrt(1/S_xx))
t_value
```

[1] -3.692481

$$t = \frac{\hat{\beta}_1 - \beta_1}{s\sqrt{c_{11}}} = \frac{-0.0047 - 0}{3.1311 \cdot \sqrt{\frac{1}{610908}}} = -3.6925$$

(Besides, we could get the value of t = -3.692 from the table above.)

SSE is based on df = 15 - 2 = 13. If we take $\alpha = 0.05$, the value of $t_{\alpha/2} = t_{0.025}$ for 13 df is $t_{0.025} = 2.16$, and the rejection region is

reject if
$$|t| >= 2.16$$
.

Since 3.6925 is larger than 2.16, we reject the null hypothesis that $\beta_1 = 0$.

Then

```
p_value = 2*pt(q=-3.6925, df=13, lower.tail=TRUE)
p_value
```

[1] 0.002708503

(Beside, we can get the p-value = 0.00271 from the table above.)

With t = -3.6925, the p-value is 0.002709, which is obviously less than $\alpha = 0.05$, so we reject the null hypothesis that $\beta_1 = 0$.

Question 2

- 2. Answer the following based on a multiple linear regression, predicting mpg with weight (x1) and engine displacement (x2).
- (a) Fit the specified model. Write the model equation, including your estimates.

Answer Fit the multiple linear regression model $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ to the data.

```
fit2 = lm(mpg~weight+displacement, data=data)
summary(fit2)
```

```
##
## Call:
## lm(formula = mpg ~ weight + displacement, data = data)
##
## Residuals:
##
       Min
                 1Q Median
                                  3Q
                                         Max
  -3.1342 -0.9828 -0.6934
                             1.4039
                                      5.0779
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                36.5095516
                             3.8852963
                                          9.397 6.98e-07 ***
                 -0.0003083
                             0.0015820
                                         -0.195
                                                    0.849
## displacement -0.0717513 0.0209294
                                         -3.428
                                                    0.005 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.316 on 12 degrees of freedom
## Multiple R-squared: 0.7534, Adjusted R-squared: 0.7123
## F-statistic: 18.33 on 2 and 12 DF, p-value: 0.0002248
From the table above, we can get
                                         \hat{\beta}_0 = 36.5096
                                        \hat{\beta_1} = -0.0003083
                                         \hat{\beta}_2 = -0.07175
```

Thus, the model equations is

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon = 36.5095 - 0.0003083x_1 - 0.07175x_2 + \epsilon$$

(b) Test the null hypothesis that the slope of x_1 , β_1 , is equal to zero. State the hypotheses, test statistic, rejection region(s), and p-value. Interpret the conclusion of this test at $\alpha = 0.05$.

Answer Test of Hypothesis for β_1 :

$$H_0: \beta_1 = 0$$
$$H_a: \beta_1 \neq 0$$

From the table above, we get $\hat{\beta}_1 = -0.0003083$ and the value of t = -0.195.

Then, since n = 15, k (the number of independent variables in the complete model) = 2, so df (the degrees of freedom) = n - k - 1 = 15 - 2 - 1 = 12.

Thus, based on df = 12. If we take $\alpha = 0.05$, the value of $t_{\alpha/2} = t_{0.025}$ for 12 df is $t_{0.025} = 2.179$.

The rejection region is

reject if
$$|t| >= 2.179$$

Since 0.195 is smaller than 2.179, we fail to reject the null hypothesis that $\beta_1 = 0$.

Then.

```
p_value = 2*pt(q=-0.195, df=12, lower.tail=TRUE)
p_value
```

```
## [1] 0.8486555
```

(Beside, we can get the p-value = 0.849 from the table above.)

With t = -0.195, the p-value is 0.8487, which is obviously larger than $\alpha = 0.05$, so we fail to reject the null hypothesis and conclude that the slope is of x_1 , β_1 is equal to zero. This means there is not a statistically significant relationship between weight and mpg.

(c) Consider $x_1^* = 3000$ and $x_2^* = 150$. Calculate a 95% confidence interval for $E[Y|x_1 = x_1^*, x_2 = x_2^*]$. Calculate a 95% prediction interval for y_i , given $x_1 = x_1^*$ and $x_2 = x_2^*$. Interpret both of these intervals in context.

Answer

• Confidence interval:

```
new_data = data.frame(weight=3000,displacement=150)
confidence_interval = predict(fit2,newdata = new_data, interval='confidence', level=0.95)
confidence_interval
```

```
## fit lwr upr
## 1 24.82209 22.35674 27.28745
```

By calculation,

```
# Y
Y = data$mpg
# Y'
Y_{transpose} = t(Y)
x0 = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
X = cbind(x0,data$weight,data$displacement)
# X'
X_{transpose} = t(X)
# the inverse of X'X
XX_inverse = solve(X_transpose%*%X)
\# beta_hat = (X'X)^-(1)X'Y
beta_hat = XX_inverse %*% X_transpose %*% Y
\# SSE = Y'Y - (beta hat)'X'Y
SSE2 = Y_transpose%*%Y - t(beta_hat)%*%X_transpose%*%Y
\# S^2=SSE/[n-(k+1)]
n = 15
k = 2
S2 = SSE2/(n-(k+1))
S = sqrt(S2)
```

```
# a and a'
a = c(1,3000,150)
a_transpose = t(a)
\# t_{alpha/2}
t = 2.179
# confidence interval
CI1 = a_transpose%*%beta_hat + t*S*sqrt(a_transpose%*%XX_inverse%*%a)
CI2 = a_transpose%*%beta_hat - t*S*sqrt(a_transpose%*%XX_inverse%*%a)
CI1
##
            [,1]
## [1,] 27.28766
CI2
##
            [,1]
## [1,] 22.35653
```

Thus, a 95% confidence interval

$$a'\hat{\beta} + t_{\frac{\alpha}{2}}S\sqrt{a'(X'X)^{-1}a} = 27.2876$$

 $a'\hat{\beta} - t_{\frac{\alpha}{2}}S\sqrt{a'(X'X)^{-1}a} = 22.3565$

From the output (from function) above, a 95% confidence interval for $E[Y|x_1 = x_1^*, x_2 = x_2^*]$ the fitted mpg with (weight) $x_1^* = 3000$ and (distance) $x_2^* = 150$ is about 24.8221. The confidence interval of (22.3567, 27.2875) signifies the range in which the true mpg lies at a 95% level of confidence.

• Prediction Interval:

```
prediction_interval = predict(fit2,newdata = new_data, interval='prediction', level=0.95)
prediction_interval

## fit lwr upr
## 1 24.82209 19.20524 30.43895

# prediction interval

PI1 = a_transpose%*%beta_hat + t*S*sqrt(1+a_transpose%*%XX_inverse%*%a)
PI2 = a_transpose%*%beta_hat - t*S*sqrt(1+a_transpose%*%XX_inverse%*%a)
PI1

## [,1]
## [1,] 30.43943
PI2
```

[,1] ## [1,] 19.20476

Thus, a 95% prediction interval

$$a'\hat{\beta} + t_{\frac{\alpha}{2}}S\sqrt{1 + a'(X'X)^{-1}a} = 30.4394$$
$$a'\hat{\beta} - t_{\frac{\alpha}{2}}S\sqrt{1 + a'(X'X)^{-1}a} = 19.2048$$

From the output (of function) above, a 95% prediction interval for y_i , given $x_1 = x_1^*$ and $x_2 = x_2^*$, the fitted mpg with (weight) $x_1^* = 3000$ and (distance) $x_2^* = 150$ is about 24.8221. The prediction interval of (19.2052, 30.4389) signifies the range in which the next mpg lies at a 95% level of prediction. Notice the fitted value is the same as before, but the interval is wider. Since the prediction interval must take into account the variability of the estimators for μ and σ , the interval will be wider.

(d) Which model constitutes the "complete" model and which the "reduced" model? Can x_2 be dropped from the model without losing predictive information? Test at the $\alpha = 0.05$ significance level.

Answer The "complete" model is (question 2(a))

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon = 36.5095 - 0.0003083x_1 - 0.07175x_2 + \epsilon$$

and the "reduced" model is (question 1(a))

$$Y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \epsilon = 40.2677 - 0.004678x_1 + \epsilon$$

Test of Hypothesis for β_2 :

$$H_0: \beta_2 = 0$$
$$H_a: \beta_2 \neq 0$$

```
F_test = anova(fit, fit2)
F_test
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ weight
## Model 2: mpg ~ weight + displacement
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 13 127.445
## 2 12 64.386 1 63.06 11.753 0.005002 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

From the table above, we get $SSE_R = 127.445$, $SSE_C = 64.386$, and F = 11.753.

Thus, the F-statistic is

$$F = \frac{(SSE_R - SSE_C)/(k-g)}{(SSE_C)/(n-(k+1))} = \frac{(127.445 - 64.386)/(2-1)}{(64.386)/(15-(2+1))} = 11.753$$

The tabulated F-value for $\alpha = 0.05$ with v = 2 - 1 = 1 numerator df and v2 = 15 - (2 + 1) = 12 denominator df is 4.7472.

Since 11.753 > 4.7472, so $F > F_{\alpha}$, which is the appropriate rejection region, so we reject the null hypothesis $H_0: \beta_2 = 0$.

From the table above, we can get the p-value is 0.005002, which is obviously smaller than $\alpha = 0.05$, so we reject the null hypothesis and conclude that the slope is of x_2 , β_2 is not equal to zero. Thus, x_2 can NOT be dropped from the model without losing predictive information. This means there is a statistically significant relationship between displacement and mpg.

Question 3

3. Consider your answers to the previous questions, then answer the following. Suppose that the true population relationship is given by:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

Further suppose that there is a relationship between x_1 and x_2 , given by:

$$x_2 = \gamma_0 + \gamma_1 x_1 + \delta$$

where γ_1 and β_2 are non-zero.

(a) Find the expected values of β_0 and β_1 if the independent variable x_2 is omitted from the regression.

Answer Given

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

Since

$$x_2 = \gamma_0 + \gamma_1 x_1 + \delta$$

so

$$y = \beta_0 + \beta_1 x_1 + \beta_2 (\gamma_0 + \gamma_1 x_1 + \delta) + \epsilon$$

= \beta_0 + \beta_1 x_1 + \beta_2 \gamma_0 + \beta_2 \gamma_1 x_1 + \beta_2 \delta + \epsilon
= (\beta_0 + \beta_2 \gamma_0) + (\beta_1 + \beta_2 \gamma_1) x_1 + \beta_2 \delta + \epsilon

Thus, the expected values of β_0 is

$$E[\beta_0] = \beta_0 + \beta_2 \gamma_0$$

and the expected values of β_1 is

$$E[\beta_1] = \beta_1 + \beta_2 \gamma_1$$

(b) Calculate the bias (if any) of β_0 and β_1 when x_2 is omitted.

Answer According to the definition of the bias,

bias of
$$\beta_0 = E[\beta_0] - \beta_0 = \beta_0 + \beta_2 \gamma_0 - \beta_0 = \beta_2 \gamma_0$$

bias of
$$\beta_1 = E[\beta_1] - \beta_1 = \beta_1 + \beta_2 \gamma_1 - \beta_1 = \beta_2 \gamma_1$$

(c) What values of γ_1 and β_2 would result in β_0 and β_1 remaining unbiased?

Answer From 3(b), we get bias of $\beta_0 = \beta_2 \gamma_0$ and bias of $\beta_1 = \beta_2 \gamma_1$.

To make β_0 and β_1 remain unbiased, which means the bias of β_0 and the bias of β_1 are all equal to zero. Thus,

$$\beta_2 = 0$$

and

$$\gamma_1 = 0$$

- (d) In light of the above:
- i. What assumption of linear regression is being violated in Question 1? Is this assumption met in Question 2?
- ii. In Question 1, are the estimates of β_0 and β_1 BLUE? Why or why not?

Answer

- i. The assumption of $E[\epsilon] = 0$ is being violated in Question 1. This assumption is met in Question 2.
- ii. No, the estimates of β_0 and β_1 are NOT BLUE, since NOT all assumptions are satisfied.