

Mahindra University Hyderabad École Centrale School of Engineering

Minor - 1
Program: B. Tech Branch: CSE/ARI/CAM/ECM Year: II Semester:2
Subject:- Theory of Computation (CS/AI 2204)

Date: 1/03/2024 Time Duration: 1 h 30 m Start Time: 02:00 PM Max. Marks: 50

Instructions:

- · Answer all the questions.
- All the sub-questions belonging to a question should be answered together and in the given order.
- · Write less and write only that is needed.

Q1: (10 M)

Consider the following Finite State Machine:

Answer the following questions:

The rest of the tonowing questions.	
7. Is the given machine a DFA or an NFA? Explain why.	(2)
Z. Does the machine accept the string abbaa? - Yes / No	(2)
3. Does the machine accept the string babaa? - Yes / No	(2)
A. Give a string that starts with an a and is not accepted by the machine.	(2)
5. Give a description of the regular language that is recognized by it.	(2)

Q2:

(10 M)

Let $G = (\Sigma, V, S, P)$ be a formal grammar, where

- The alphabet $\Sigma = \{a, b\}$
- The variables $V = \{S, A, B, C\}$
- The start variable S = S

and the production rules are given as follows:

$$S \rightarrow bA \mid aB$$

$$A \rightarrow aB \mid bA \mid \epsilon$$

$$B \rightarrow aC \mid bB$$

$$C \rightarrow aA \mid bC$$

 χ . Can this grammar generate the string $b^{2030} = b \dots b$? Explain how.

(5)

 \angle . Can this grammar generate the string $(baa)^{2030} = \underline{baa...baa}$? Explain how.

(5)

Q3:

(10 M)

Suppose L_1 and L_2 are two regular languages (over some alphabet Σ). Is it necessary that

$$L_1 - L_2 = \{x \in \Sigma^* | x \in L_1 \text{ and } x \notin L_2\}$$

is also regular? Justify your answer.

Q4:

(10 M)

* Consider the regular grammar G:

$$S \rightarrow aA \mid bB$$

$$A \rightarrow aA \mid bB \mid \epsilon$$

$$B \rightarrow aA \mid bB \mid \epsilon C$$

$$C \rightarrow cC \mid \epsilon$$

Let L be the language that G generates.

1. Give the grammar for the language $\bar{L} = \{x \in \Sigma^* | x \notin L\}$.

- (5)
- 2. Give the grammar for the language $\bar{L} = \{x^R \in \Sigma^* | x \in L\}$, where x^R is the reverse of x.

(5)

Q5:

(10 M)

Design a DFA over the alphabet $\Sigma = \{0, 1\}$ that accepts the language

 $L = \{x \in \Sigma^* | x \text{ is the binary representation of a number divisible by 4} \}$

The machine has to have exactly 3 states. Give semantic meanings to each of them.