SUBJECT INDEX

in nervous system, 255-61 protein interactions. Acetylcholine receptors (AChRs), 254-55 Bcl-x and, 249, 251, 259-61 429-51 new RNA and protein synthesis high postsynaptic density, 429-31 and, 246-47 synthesis of reactive oxygen species and, neuregulin and, 442-44 251 Acetylcholinesterase, 69 Apoptosis-inhibitory proteins, 248 Acetylcholine (ACh) vesicular Arcuate nuclei, 376 transport, 126, 128-29 Arcuate sulcus, 26 bioenergetics, 128-29 Area 7a, 305-7, 318 eye gain fields, 306 function, 130-34 molecular analysis, 146-48 head gain fields, 306-7 pharmacology, 130-34 saccades and, 305-6 ARIA, 429-52 Acoustic cues, 331-32, 342-49 Actin, 585 cytoplasmic domains, 440 EGF-like domain of, 435-38 Activin, 45-46, 48, 50 Adenosine triphosphate (ATP), glial growth factor and, 435 heparin-binding, 432 127-28 Adenosine triphosphate molecular cloning of, 432-33 (ATP)-sensitive potassium nerve-derived, 431 regulation of AChR synthesis, channels, 103-4 Adenovirus early region complex, 442-44 spacer domain, 440 280 Ascending activation Adrenal cortex hypothalamic control of sleep/wake cycles and, 185-86, 207-11 Geoffrey Harris and establishment of, 542-45 candidate systems, 207 Adrenocorticotrophic hormone Astrocytes, 375, 378 Attention, 303, 321 (ACTH), 537, 557 posterior parietal cortex and, Affective disorders monoamine hypothesis of, 126 303, 321 (See also Bipolar disorder, Auditory cortex, 334 primary, 334, 336, 348 Manic depressive illness) Alzheimer's disease secondary, 334 apoptosis in, 256 Auditory system, 331-49 (See Amine vesicular transport, 126, also Speech perception) animal studies, 332, 346-48 129-34 bioenergetics, 129 auditory cortex, 304 function, 130-34 primary, 334, 336, 348 pharmacology, 130-34 secondary, 334 Amphetamines, 126, 140-42 Broca's area, 336-38 vesicular efflux and, 140-42 Brodmann's area, 337-48 monoamine, 141 cerebral laterality, 341 Aniridia right-ear advantage, 341, Pax-6 mutation, 510-11 344 cochlea, 334, 336 Anoxia, 91 Anticipation (of disease), 365 electrophysiological recording Antidepressants studies, 343-46 plasma membrane transport inferior colliculus, 334, 336

inhibition, 126 Apoptosis, 245-61

Alzheimer's disease and, 256

Bcl-2 and regulation of, 249-61

medial geniculate nucleus, 334,

neuroimaging studies, 332, 343-46

336, 340

superior temporal gyrus, 334, 344
bilateral activation during phonemic discrimination task, 344
temporal coding within, 336–37
tonotopic mapping throughout primary ascending stations, 336
tympanic membrane, 334
Wernicke's area, 334, 336–38

B

B1 antigen, 69 Basal lamina, 378 Basic fibroblast growth factor (bFGF), 17 Bcl-2 family of proteins, 245, 249-61 cell death regulation, 245, 249-61 protein interactions and, 254-55 in nervous system, 255-61 as neuronal survival factor, 249, 251, 256-57 postnatal maintenance of neuronal populations, 258-59 Bcl-x, 245, 249, 251, 259-61 cell death regulation by, 249 cell protection from, 249, 251 distribution in nervous system, 259-60 Behavior (See Brain-behavior interactions) Bipolar disorder, 356, 358-59, 365 prevalence, 358 risk, 358-59 (See also Affective disorders, Manic depressive illness) Bone morphogenetic proteins (BMPs), 43, 46, 48-57 as epidermal inducer, 49-50 as neural inhibitor, 49-50 Brain-behavior interactions encoding of task-relevant information, 217-40 canonical discriminant analyses, 226-29, 232 cross-correlation analysis of individual neural spike

trains, 221

hippocampus and spatial representation, 231 linear discriminant analyses, 225-26, 229 multivariate population statistics, 223-25 patterns of firing, 221-22, 232-34 population tuning, 222-23 potential neuronal linkages, 221-22 predicting behavioral outcomes, 220-21 synfire chains of neurons. topographical mapping of neural activation, 230-31 Brain stem ascending activation system in. 185-86 Broca's area, 336-38, 344 phonemic discrimination task PET measurements during, 344 Brodmann's area, 337-48

C

Bromocriptine, 131

431

125 I-α-Bungarotoxin (BTX), 429,

Ca2+/calmodulin-dependent kinase II (CaMKII), 160 Ca2+ current low-threshold, 188-95, 197-99 Ca2+-sensitive kinases, 164 Caenorhabditis elegans, 517-19, 567, 569 ciliated mechanosensory neurons of, 578-79 Pax-6 expression in, 517-19 touch sensitivity in, 569-78 Calbindin, 71 cAMP-responsive element (CRE), cAMP-responsive element-binding protein (CREB), 166, 169 Cap-binding complex, 273 Carbamazepine, 357 Carbon monoxide, 165-66 Carcinoma cell line P19, 54 Cell death, 245-61 apoptosis, 245-61 distinguished from necrotic cell death, 246, 256 conserved families of cell proteins, 247-48 cysteine proteases and, 248

excitotoxicity, 256, 258 ischemic brain injury, 256 nervous system, 255-61 Cell fate, 1-19 migration, 2, 4-6 neurogenesis, 2, 6-7, 19 plasticity, 4, 13, 15 tangential parcelation, 6-11, 17-19 Central sulcus, 26 Cerebellum, 61-86, 160-61, 170-79 agenesis of, 61 anatomy, 62-68 development, 63-66 associative eyeblink conditioning and, 173-75 compartmentalization, 61-86 anterior-posterior, 64, 74-85 bilateral symmetric slab arrangement, 68-69 medial-lateral, 64, 68-69, 73, 81-85 molecular markers, 69-70 saggital arrangement of bands, 68-69, 71, 73 discrete motor learning, 172-78 LTD and, 172-75 fine motor control, 62 folding pattern functional significance of, 74-75 gene expression, 65-86 higher cognitive functions, 62 inputs to 63 lineage studies, 65 motor coordination, 172-78 climbing fibers and, 175-78 discrete motor learning and, 175-78 motor planning, 63 spinocerebellar function, 63 synaptic plasticity, 160-61, 170-79 vestibular function, 63 vestibulo-ocular reflex, 172 Cerebral cortex, 1-19, 185, 198, 206 cytoarchitectonic development, 10-11 developing, 1-19 generation of spike-and-wave seisures, 206 histogenesis, 2-4 limbic system-associated membrane protein (LAMP), 8, 12, 16-17 lineage-dependent induction of

area-specific phenotypes, 7

organization, 2-4 progenitor cells, 2-3, 12 projection patterns, 10-11 radial movement of cells, 7-8. 17-19 regionalization, 1-19 mechanisms of, 17-19 migration, 2, 4-8 neuraxis, 4-5 phenotype studies, 7 timing, 6-7 transplantation studies, 11-15 spindle waves, 198 stem cells, 2 Cerebral laterality speech perception and, 341 Chemiosmotic hypothesis, 127 Chordin, 43, 51-52 Chromosome 18 manic depressive illness linkage to, 355, 359-67 mitochondrial inheritance, 364-65 replication, 363-64 statistics, 362 technology, 362 Climbing fibers, 63, 160, 175-78 role in motor coordination, 175-78 Co-articulation, 334 Cocaine plasma membrane transport inhibition, 126 Cochlea, 334, 336 Collagen type IV, 16 Compartmentalization cerebellar, 61-62, 66-86 embryonic and perinatal markers, 71, 73 molecular markers, 69-70 saggital bands of, 68-69, 71,73 slablike arrangement of circuits in, 68-69 Zebrin antibodies, 70, 73, 76, 80-81, 85-86 hindbrain, 67 rhombomeres, 67 Cortical rotation, 43-44 Cyclic AMP (See cAMP) Cyclic GMP-dependent protein kinase (cGK), 71 Cyclic GMP-gated potassium channels, 106 Cyclothymia, 356 Cysteine proteases, 248 cell death mediation, 248 Cysteine sulfinic acid

neurogenesis, 2, 6-7, 19

decarboxylase (CSADcase), 69

Cytochrome oxidase, 69

D

Default model of neural induction, 43-57 in amniotes, 53-54 bone morphogenetic proteins and, 46, 48-57 chordin and, 51 dominant negative type II activin receptor and, 45-48 follistatin and, 43, 48-49, 52 noggin and, 52 Δ1XAR1, 46, 54 neuralization induced by, 46, 49 Delta waves, 185-86, 203-5 Degenerein, 567, 573 Dense core vesicles, 125 Depression, 356 Derepression, 43 Diacylglycerol (DAG), 605-7 Diencephalon, 5 Dominant negative type II activin receptor, 45-46, 54 Dopamine toxicity Parkinson's disease and, 138-40 Dopamine transport MPP+ accumulation and, 136 Dorsal blastopore lip, 44-45, 47 Dorsal premotor cortex attentional signals and, 33-34 frontal projections to, 32 gaze signals and, 33 inferior parietal lobule projection to, 31 motor signals and, 35-36 superior parietal lobule projections to, 25, 28-31 visual signals, 33-35 nonspatial, 34-35

visually guided movement, 36–39 Dorso-ventral axis, 43 Drosophila melanogaster embryogenesis, 61, 66–68 bithhorax, 67 en/en mutant, 67 postbothorax, 67 Pax-6 expression in, 514, 516–17, 519–20, 526

spatial, 33-34

Dugesia tigrina
Pax-6 expression in, 514
Dyslexic brain, 339–40, 347
atypical patterns of cerebral
lateralization, 339–40
magnocellular anomalies, 347

Dysthmia, 356

E

Ectoderm

competence, 55 neural induction, 43-57 Ensemble information coding, 217-40 multineuronal recording, 217-18, 229-40 cross-correlation histograms, 234-37 hippocampus and spatial representation, 231-32 neural network models, 240 nonlinear autoregressive modeling techniques, 239-40 patterns of firing, 232-34 topographical mapping of neural activation, 230-31 serial single-neuron recording, 218-29 behavioral outcomes. 220-21 canonical discriminant analyses, 226-28, 232 cross-correlation analysis of individual spike trains, linear discriminant analyses, 225-26 multivariate population statistics and, 223-25 population tuning, 222-23 potential neuronal linkages, 221-22 synfire chains of neurons, Epidermal growth factor (EGF), 16, 432 Epidermal growth factor receptor (EGFR), 429, 435 Epidermal growth factor-related receptors (erbBs), 429, 431, 433-36, 440-41, 447-48 Epidermal specification, 43, 45-48 Epilepsy spindle wave perversion and, 205-6 Episodic ataxia/myokymia syndrome, 92 erbB family of receptors, 429, 431.

433-36, 440-41, 447-48

osmoregulation in, 368

genetic testing for manic

Escherichia coli

Ethics

depressive illness, 355. 367-70 coercive sterilization and, 369-70 early intervention and, 368 eugenics and, 369 health insurance and, 369 Excitotoxicity, 260, 262 kainate-induced, 262 Exocytosis, 125 Extrastriate visual cortex, 25 movements, 303-328 gain field mechanism, 306, 310-20, 327 saccadic, 304, 310, 319 smooth pursuit, 313 Pax-6 expression in, 503-505 developing vertebrate, 518-19 evolution of eye and, invertebrate development, 513-18 mutations, 505-13

F

17, 48, 52-53 basic, 17 FGF-7.9 Fibroblast growth factor-related ligands (FRLs), 53 Fimbrin, 585-86 Follistatin, 43, 48-49, 52 neural inducing activity of, 48-49 Forebrain cellular mechanisms of sleep-wake alterations in, early regionalization of, 5 Pax-6 expression in, 501 prosomeres, 5 Formants, 332 Frontal cortex, 25-39 Frontal lobes, 320 Fronto-parietal network visually guided movement and,

Fibroblast growth factor (FGF), 9,

G

GABA vesicular transport, 126, 129–34 bioenergetics, 129–30 function, 130–34 pharmacology, 130–34 Gain fields, 306–7, 310–20, 327

25, 32-39

eye, 306, 310, 314-19 head, 306-7, 310, 314-19 y-aminobutyric acid (See GABA) Gastrulation, 43-44 Gaze, 222-23 Gene expression cerebellar compartmentalization and, 65-86 anterior-posterior, 74-85 anterior-posterior patterns of inherited neuropathology, 77-79 embryonic and perinatal markers, 71, 73 inherited degeneration, 70-71 medial-lateral boundaries, 73 81_85 molecular markers, 69-76 General odorant-binding proteins (GOBPs), 598-99 Gene targeting, 157-79 cerebellar synaptic plasticity, 160-61, 170-79 hippocampal synaptic plasticity, 161-70, 178-79 glutamate receptors, 165 LTP at Schaffer collateral-CA1 synapses, 164-66 primed LTP studies, 165 NMDA receptors, 159-60 whisker-related neuronal patterns, 159-60 Glial fibrillary acidic protein (GFAP), 171 Glial growth factor, 435 Glutamate receptors, 165 Glutamate vesicular transport, 126, 129-30 bioenergetics, 129-30 function, 130-34 pharmacology, 130-34 Glutamic acid decarboxylase (GAD), 69 Gonadal steroid hormones, 388 G protein activation of potassium channels, 104-6 G-protein-coupled receptors. 399-420 architecture, 400-1 transmembrane-spanning regions, 401 folding and assembly of, 413-17 molecular structure and diversity, 401-4 multiple G-protein receptor coupling, 407-11 Ras/mitogen-activated protein

kinase cascade, 418 receptor-G protein interaction selectivity, 404-6 receptor subtypes and splice variants, 406-7

Homeotic mutations, 67 Hormones gonadal steroid, 388 human growth, 443 Hair cell hypothalamic, 533-62 mechanotransduction by inner pituitary growth, 533 ear, 582-88 thyrotrophic, 537 transduction elements, 585-88 Hox gene, 4-5, 67-68, 74 actin, 585 cluster, 4-5 fimbrin, 585-86 Human growth hormone, 443 myosin, 586-87 Hypoglossal nucleus Harris, Geoffrey, 533-62 tracheosyringeal portion of. H+-ATPase, 127 460-77 Hearing auditory response to, mechanotransduction by inner 463-70 ear, 582-88 Hypothalamo-hypophysial axis, transduction elements, 585-88 533-62 actin, 585 adrenal cortex, 542-46 fimbrin, 585-86 behavior and, 533, 546-48 myosin, 586-87 gonads, 540-42, 546 Heparin, 432, 439 integrated responses to Hepatitis B virus S. 273 environmental inputs and, Hepatocyte growth factor-scatter 561 factor, 53 reproduction and, 540-42 Heptahelical receptors, 399, thyroid, 545-46 411-20 Hypothalamo-neurohypophysial folding and assembly of system (HNS), 376-80 G-protein-coupled function, 378-80 receptors, 413-17 functional plasticity, 389-92 receptor-G protein contact gonadal steroid hormones and, sites, 411-13 388 Heregulin (HRG), 9-10, 431, 434 structural plasticity, 380-89 HERG gene, 99 dendritic, 382-84 Herpes simplex virus thymidine neural lobe, 385-89 kinase, 273 somatic, 380-82 High vocal center (HVC), 460-77 structure, 377-78 auditory responses, 460-65 Hypothalamus developmental changes, 465-70 adrenal cortex and, 542-46 Hindbrain functional plasticity in, 389-92 Pax-6 expression in, 501 gonads, 540-42, 546 Hindbrain segmentation, 4-5, 12 historical perspective of study cell movement and of. 533 rhombomeres of, 4-5 structural plasticity in, 375-92 Hippocampus dendritic, 382-84 ensemble information encoding neural lobe, 385-89 in, 217, 228-29, 231-32 somatic, 380-82 spatial representation and, thyroid, 545-46

231-32

178-79

Histogenesis

cortical. 3

synaptic plasticity in, 161-70,

synaptic potentiation in, 161-62

post-tetanic, 161

short-term, 161-62

long-term potentiation, 162

Importin, 270 Induction linkage-dependent, 7-8 Inferior colliculus, 334, 336 Inferior parietal lobule

HNK-1 antigen, 69, 76, 79

Homeostasis, 399, 561

561

Homeobox-containing genes, 5

Claude Bernard's concept of.

projections to dorsal premotor cortex, 31 Influenza virus NS1 and M1 proteins, 280-81 Inhibin, 49 Inositol-trisphosphate, 602, 605 posterior parietal cortex and, 321-27 Interleukin-1-\(\beta\)-converting enzyme, 252 Intraparietal areas lateral, 28-29, 31 medial, 28-32, 37-39 ventral, 28-29, 31 Introns, 276-77 Ion permeation inwardly rectifying potassium channels, 101-6 inward rectification gating, 101-3 voltage-gated potassium channels, 94-101 activation of, 95-97 inactivation of, 97-99

K

Ischemia, 91

Karyopherin, 270 Ketanserin, 134-35

L

Language (See Speech perception, Language-learning impaired) Language-learning impaired, 339, 345 functional imaging studies in, 345 Lateral geniculate nucleus (LGN), 186–88, 190–94, 198, 200–2 Lateral intraparietal area (LIP), 28–29, 31, 304–7, 318, 321–22, 325–27 eye gain fields, 306

head gain fields, 306-7

"parietal eye field," 304

saccades and, 304, 310
Lateral magnocellular nucleus of
anterior neostriatum (IMAN),
460-77
auditory responses, 463-65
developmental changes, 465-70
regulation of level of

neurotrophins, 473 Lateral sulcus, 26 Latexin, 9, 15 Limbic system-associated membrane protein (LAMP), 8, 12, 16-17 Learning and memory, 167-79 associative eyeblink conditioning, 173-75 cerebellum-dependent, 171-77 discrete motor response learning, 172-77 LTD and, 172-75 hippocampus-dependent memory, 167-70 memory consolidation, 169 spatial and contextual learning, 168-69 CA1 LTP and, 168-69 dentate LTP and, 169-70

169-70
vocal, 459-78
auditory responses, 463-65
axonal connection, 468-70
changes in volume and
number of song-control
nuclei, 465-68
neurotrophins, 459, 473
signaling molecules,
470-72
synaptic remodeling,
468-70

mossy fiber LTP and,

Lineus sanguineus
Pax-6 expression in, 514
Linkage
manic depressive illness and
chromosome 18

caromosome 18
allelic association studies,
366
candidate genes, 366–67
mitochondrial inheritance,
364–65
replication, 363–64
statistics, 362
technology, 362

Lithium, 357

Loligo opalescens

Pax-6 expression in, 513–14

Long-term depression (LTD), 161, 164, 168, 170–78

associative eyeblink

conditioning, 173–75

discrete motor learning, 172–75 vestibulo-ocular reflex, 172 Long-term potentiation (LTP) CA1, 162–65, 168–69, 177–78 memory consolidation and, 169

spatial and contextual learning and, 168-69 dentate, 162-64, 169-70 hippocampal, 161-70 induction, 165

carbon monoxide and. 165 nitric oxide and, 165 late-phase, 163-64 mossy fiber, 162, 164, 166, 169-70 NMDA receptors and, 163, 165-66, 177 Schaffer collateral-CA1 synapses, 164-66 Low-affinity NGF receptor, 69 Luteinizing hormone-releasing factor (LRF) quest for, 557-59 Luteinizing hormone-releasing hormone, 376

M

Manic depressive illness, 355-70 anticipation, 365 complex phenotypes of, 355 creativity associated with, 370 diagnosis, 356 ethics of genetic testing for, 355, 367-70 coercive sterilization, 369-70 eugenics, 369 health insurance, 369 heterogeneity, 365 linkage to chromosome 18, 355, 359-67 identical by descent, 362 RFLPs to short sequence repeat polymorphisms, 362 mitochondrial inheritance, 364-65 morbidity and comorbidity, 356-57 alcoholism and, 357 substance abuse and, 357 nonmendelian inheritance of, 355, 359-62 pharmacotherapy, 357 prevalence, 357-58 risk, 349-59 single locus vs multifactorial models, 359 trinucleotide repeat expansion, 365-66 (See also Affective disorders. Bipolar disorder) Mechanotransduction, 567-89 C. elegans, 569-78 ciliated mechanosensory neurons of, 578-79

touch sensitivity in,

hair cell function and, 582-88

569-78

insect mechanosensory bristles, 579-81 osmoregulation, 567-68 Medial dorsal parietal area, 28, 30, Medial geniculate nucleus, 334, 336, 340 Medial intraparietal area, 28, 30-31, 37-39 Medial superior temporal area (MST), 304-5, 310-16, 327 visual motion processing, 305 visual navigation, 310-12 computing direction of heading, 312-15 Memory (See Learning and memory) N-Methyl-D-aspartate (See NMDA) N-Methyl-4-phenylpyridium (See MPP+) 1-Methyl-4-phenyl-1,2,3,6tetrahydropyridine (See MPTP) Midbrain Pax-6 expression in, 501 Migration, 2, 4-8 radial dispersion, 7-8 Monoamine hypothesis of affective disorders, 126 Monoamine oxidase, 135 conversion to MPP+, 135-36 premature, 136 MPTP toxicity and, 135-36 Monoamine vesicular transport, 126, 129-40 function, 130-34 molecular analysis, 142-46 MPTP and, 135-40 pharmacology, 130-34 Mood disorder complex phenotypes of, 355 (See also Affective disorders, Bipolar disorder, Manic depressive illness) Mossy fibers, 63 Motilin, 69 Motor neurons, 429 MPP+, 125-26, 128, 135-36 monoamine transport and, 135-40 toxicity glutamate receptor antagonists and, 140 Parkinson's disease and, 135, 140 Multineuron recording, 217-18, 229-40

cross-correlation histogenesis,

234-37

hippocampus and spatial representation, 231–32 neural network models, 240 nonlinear autoregressive modeling techniques, 239–40 patterns of firing across neurons, 232–34 topographical mapping of neural activation, 230–31

Muscle-specific tyrosine kinases, 451–52 Myeloblastic cell line, 252 Myogenic regulatory factors, 444 Myosin, 586–87

N

Navigation (See Visual navigation) Nerve growth factor (NGF), 17 Neu differentiation factor (NDF). 431, 434 Neural cell adhesion molecules (NCAMs), 46, 519 Pax-6 expression in, 519 Neural computation, 220 Neural fate specification, 43-57 Neural induction default model of, 43-57 in amniotes, 53-54 bone morphogenetic proteins and, 46, 48-57 chordin and, 51 dominant negative type II activin receptor and, 45-48 follistatin and, 43, 48-49, noggin and, 52 inhibitory control of, 50-51 signaling molecules of, 43, 45-53 Neural lobe, 378, 385-89 axonal-glial-vascular interactions, 385-87 Neural network models, 240 Neural tube homeotic genes of, 4 subdivisions of, 4 Neuraxis regionalization, 4-5

Neuregulin, 429, 431, 433-52

cytoplasmic domain, 440

gene expression, 444-47

N-terminal domain, 438-39

receptors (erbBs), 429, 431

glial growth factor, 435

EGF-like domain, 435-38

ARIA, 433-52

Schwann cell proliferation. 449-51 sodium channel regulation, 448-49 spacer domain, 440 Neurodegeneration, 70-71, 127, inherited patterns in cerebellum, 70-71 Neuroectoderm specification of, 43-57 Neuroendocrinology brain as gland, 560 Geoffrey Harris and the science of, 533-62 his orical perspective of, 533-62 Neuromuscular junction, 442-52 ARIA and, 442-52 Neuronal cell death apoptosis, 245-61 Alzheimer's disease and, 256 distinguished from necrotic cell death, 246 in nervous system, 255-61 new RNA and protein synthesis and, 246-47 protein interactions, 254-55 reactive oxygen species and, 251 Bcl-2 regulation of, 245, 249-61 Bcl-x and, 259-61 proteins, 247-48 cysteine proteases and, 248

onserved families of cell death proteins, 247-48 cysteine proteases and, 248 Neuronogenesis, 1-2, 6-8, 17-19 cerebral cortex lineage-dependent induction, 7-8 patterns of migration, 2, 7-8

Neuron-restrictive silencer factor (NRSF), 54 Neurotransmitter storage

behavior and, 126 neural plasticity and, 126 Neurotransmitter transport, 125-49

> activity regulation neural degeneration and, 126–27 bioenergetics, 127–30

membrane, 126, 129, 136 vesicular, 125–49

Neurotransmitter transporters functional differences, 130–34 pharmacology, 130–34 psychoactive drugs and, 126 Nitric oxide, 165-66, 177, 610 CA1 LTP and, 165-66, 177 NMDA receptors, 159-60, 165-66, 177 NR subunits of, 160, 165 periphery-related neural patterns and, 160 whisker-related neuronal patterns, 159-60, 177 N-methyl-D-aspartate (See NMDA) Noggin, 43, 52 Nonmendelian inheritance manic depressive illness, 355, 359-62 Nuclear export signal (NES), 275 Nuclear localization sequences, 270 receptor, 270 Nuclear pore complexes (NPCs), 269, 271-77 proteins, 276-77 5'-Nucleotidase, 69

Neurotrophins, 455, 469

0

Odogen, 601 Odorant-binding proteins, 597-99 Olfaction, 595-622 antennae, 596-99 olfactory receptor cells and second-messenger systems, 606 second-messenger pathway mediation, 603-605 Olfactory binding protein, 595 Olfactory bulb, 595 Olfactory glomeruli, 595, 610-22 odor stimulation odotopic pattern, 618-20 Olfactory receptors, 595-618 G-protein-coupled receptors, 599-601 molecular receptor range of (MRR), 606-12 topographical organization of projections of subsets, 614-18

Osmoregulation, 567–68
E. coli, 568
Oxidative stress, 138–42
cytoplasmic oxidation of

dopamine, 141–42 Oxytocin, 375, 376–79, 386, 389, 537, 542

p53, 251

Pancreas Pax-6 expression in, 505 Parallel fibers, 160, 171, 175-78 mono-innervation by climbing fibers motor coordination and, 175-78 Paracentrotus lividus Pax-6 expression in. 513 Paraventricular nucleus, 377 Parietal cortex extrastriate visual cortex and, 25 posterior parcellation of, 28 Parieto-occipital area, 28, 31, 37 Parkinson's disease, 135-41, 338 cytoplasmic oxidation of dopamine, 141 dopamine metabolism and, 140 dopamine toxicity and, 138-41 MPTP toxicity and, 135, 140 oxidative stress and, 138-39

Pax-6, 483-556 alternative spliced forms, 490-91

Drosophila ectopic expression, 519 eye-specific genes, 520 phylogeny, 521 evolution

of eye, 522–25 of nervous system, 525 expression eye, 503–526

forebrain, 501

hindbrain, 501 midbrain, 501 nose, 505 pancreas, 505 pituitary, 505 regulation in central nervous system, 502–3 spinal cord, 502 promise organization, 471

genomic organization, 471 homeodomain, 496 invertebrate development, 513-17

mutations, 505-13 paired domain DNA binding, 493 vertbrates

vertbrates in lens crystallins, 518–19 in neural cell adhesion molecules, 519 PEP 19, 71

Peters' anomaly
Pax-6 mutation and, 511-13
Phallusia mammillata
Pax-6 expression in, 513

Phoneme, 334

Pheromone-binding protein, 598-99 Pheromones, 598-99 Pituicytes, 378, 386-87

Pituitary historical perspective of study of, 533-62

Pax-6 expression in, 505 Pituitary growth hormones, 533 Plasticity

of cerebral cortex, 4, 13, 15 functional, 389–92 hypothalamus, 375–92 regulation of transmitter storage and, 126

structural, 380–89 vocal learning, 459–78 auditory responses,

auditory responses, 463–65 axonal connection, 468–70 changes in volume and number of song-control nuclei, 465–68 neurotrophins, 459, 473 signaling molecules, 470–72 synaptic remodeling, 468–70

Platelet-derived growth factor, 17 Posterior parietal cortex, 25–39, 299, 328

area 7a, 305–6, 318 eye gain fields, 306 head gain fields, 306–7 attention and, 321

auditory signals and, 307, 310 gain field mechanism, 306, 310-20, 327

intention and, 321–27 lateral intraparietal area (LIP), 28–29, 31, 304–7, 310–22, 325–27 eye gain fields, 306, 314–20 head gain fields, 306–7,

314–20 medial dorsal parietal area, 28, 30, 37–39

medial intraparietal area, 28-32, 37-39 medial superior temporal area (MST), 304-5, 310-16,

(MST), 304–5, 310–16, 327 multimode spatial representation in, 304–5,

310-12 parcellation of, 28 ventral intraparietal area, 28-29, 304-5 visual navigation, 310-12

Post-tetanic potentiation, 161

Potassium channels, 91-119 ATP-sensitive, 103-4 calcium-activated, 97 evolution, 91 inwardly rectifying, 91-93, 101-6 ATP-sensitive, 103-4 G-protein activation of, 104-6 inward rectification gating, 101-3 putative membrane segments, 92-93 yeast, 109-10 mutations, 92 prokarvotic, 110-13 regulation, 91, 95, 97, 100-1, 103-6, 113 hormones, 91 membrane potential, 91, 95, 97, 100-1 metabolic state, 91, 103-4, 113 transmitters, 91, 104-6 voltage-gated, 91-101 activation, 95-97 β subunits, 99-100 inactivation, 97-99 ion permeation, 94-99 metazoan, 106-8 plant, 108-9 putative membrane segments, 92, 100 regulation, 100-1 Path antigen, 69 Premotor cortex, 25-26 dorsal (See Dorsal premotor cortex) Primary motor cortex, 26, 37-39 Proencephalon, 5 Prosomere, 5 Protein kinase A, 166-67 regulatory subunit isoform of. 166 Protein kinase C v isoform of temporal pattern of expression, 161, 171, 177 Purkinje cell-specific glycoprotein, 71

R

Ras/mitogen-activated protein kinase cascade, 418 Reactive oxygen species apoptosis and, 251 Receptor conformation, 399 Receptor-G protein interaction, 399–420 diversity, 406-11 multiple G protein-receptor coupling, 407-11

Ras/mitogen-activated protein kinase cascade, 418 selectivity, 404–6 signal processing via receptor

subtypes and splice variants, 406–7

Receptor tyrosine kinases, 431, 433

Recurrent unipolar disorder (RUP), 356, 349, 363 Regionalization

in vitro manipulations, 15-17 in vivo manipulations, 11-15 Reserpine

vesicular transport inhibition, 126, 131, 134, 137 RE1-silencing transcription factor,

54
Retinoic acid, 54
Rev proteins, 278–80
Rex proteins, 278–80
Rhombomeres, 4, 67–68
cell movement and, 4

RNA transport, 269–94
messenger (mRNA), 271–82
adenovirus early region
protein complex, 280
cap structure and 3' end,
273
GTPase cycle proteins, 277
heterogenous nuclear

RNA-binding proteins, 274–75 influenza virus NS1, M1 protein, 280 nuclear export of, 271–82 nuclear pore complex proteins, 276–77 Rev and Rex proteins, 278–80 splicing signals and introns, 272–73 trans-acting factors, 274–77

viral pre-mRNA processing, 278 viral RNA nuclear export, 281–82

ribosomal RNA (rRNA), 286–90 small nuclear RNA (smRNA), 282–86

nuclear export, 284–86 nuclear import, 284 transfer RNA (tRNA), 286–90 cis-acting and trans-acting factors, 291–92 nuclear export, 290–92 Robus nucleus of the archistriatum (RA), 460–77 auditory responses, 463–65 developmental changes, 465–70 neurotrophins, 473

S

Saccades, 304, 310, 319 lateral parietal area and, 304, 310 Saccharomyces cerevisiae mutants, 271 Schaffer collateral-CA1 synapes LTP at. 164-66 Schizoaffective disorders, 356 Schizophrenia, 356 Schwann cells, 449-51 Schwannoma-derived growth factor (SDGF), 433 Sensory and motor neuron-derived factor (SMDF), 445 Serial single-neuron recording, 218-29, 237-39 canonical discriminant analyses, 225-26 cross-correlation analysis of individual spike trains, 221 linear discriminant analyses. 225-26 multivariate population statistics and, 223-25 pattern detection, 221-22 population tuning, 222-23 predicting behavioral outcomes, 220-22 synfire chains of neurons, 222 Sex differences, 459, 473-78 learning, 473 neurotrophins and, 473 steroid hormones and, 474-78 zebra finch vocal learning male-typical song circuit, 459, 473-78 Sexual differentiation, 459, 473-78, 550 vocal learning and, 459, 473-78 Short-term potentiation, 161-62 Signal transduction, 399-420 G-protein mediated, 399-420 heptahelical receptors and, 411-20 receptor-G protein contact sites, 411-13 Skeletal muscle, 429 Sleep corticothalamocortical rhythms,

203-5

EEG-synchronized, 186-88, head position and, 306-7 190, 205, 209-11 intention, 321-27 REM, 186-87, 191, 206 visual navigation, 310-12 (See also Sleep/wake cycles) Speech perception, 331-49 Sleep/wake cycles, 185-211 Broca's area and, 335, 337-38, ascending activating system in 344 brain stem, 185-86, Brodmann's area and, 337-48 207-11 categorical, 342-43 delta waves, 185-86, 203-5 cerebral laterality and, 341, 344 LGNd relay neurons and, right-ear advantage, 341, 186-87 344 low-thresholdd Ca2+ current, co-articulation, 334 188-95, 197-99 electrophysiological recording spindle waves, 185-86, during, 343-46 197-206 phoneme, 334 thalamocortical rhythmic burst 'speech module," 342-43, 346 firing and, 188-92 temporal organization within transition from sleep to waking, primary auditory stations, 206-11 336-37 (See also Sleep) unique processing of speech in Slow waves, 219 humans (not), 343, 346, Somatosensory system Wernicke's area and, 334, ventral parietal area and, 304-5 Songbirds, 459-78 336-38, 344 (See also Auditory system) male-typical song circuit, 459 sexually dimorphic Spermidine, 101-2 development, 459, 473-78 Spermine, 101-2 vocal learning Spike and wave seisures, 205-6 auditory responses, 463-65 Spinal cord axonal connectivity, Pax-6 expression in, 501 468-70 Spindle waves, 185-86, 197-206 changes in volume and cerebral cortex and, 198 number of song-control epilepsy, 205-6 nuclei, 465-68 propagation, 200-2 neurotrophins, 459, 473 refractory period generation, 202-3 signaling molecules, 470-72 thalamocortical-thalamic synaptic remodeling, reticular cell interactions 468-70 and, 197-203 (See also Song-control system) thalamus and, 186 Splicing signals, 272-73 Song-control system, 459-78 auditory responses, 463-65 Steroid hormones, 474-78 developmental changes vocal learning in songbirds and, axonal connectivity and 474_78 synaptic remodeling, Sulcus, 26, 28, 345 arcuate, 26 468-70 neurotrophins, 459, 473 central, 26 number and volume of intraparietal, 28 song-control nuclei, superior precentral, 26 465-68 superior temporal, 345 signaling molecules, Sulfonylureas, 103 470-72 Superior parietal lobe, 25, 28-31 projections to dorsal premotor (See also Songbirds) Spatial representation cortex, 25, 28-31 posterior parietal cortex and, Superior precentral sulcus, 26 303-328 Superior temporal gyrus, 334, 344 attention, 321 bilateral activation during

auditory signals, 307, 310

gain field mechanism, 306,

eve position and, 305-6

310-20, 327

Suprachiasmatic nuclei, 376 Supraoptic nucleus hypothalamo-neurohypophsial system plasticity and, 377, 380-92 Synaptic plasticity, 157-79 cerebellar, 160-61 experience-dependent, 159-60 hippocampal, 161-70, 178-79 NMDA and, 159-60 (See also Plasticity) Synaptic vesicles, 125 Synaptophysin, 69 Synfire chains of neurons, 222

Tangential parcelation cerebral cortex, 6-11 Telencephalon segregation of, 5 Temporal processing (See Auditory system, Speech perception) Tetrabenazine, 126, 134-35 vesicular transport inhibition, 126 Thalamic reticular nucleus corticothalmic inputs, 196 perigeniculate nucleus, 190, 193 rhythmic burst firing in, 190-92 synaptic interactions with thalamocortical cells, 193, 195-206 Thalamus, 3, 186-206 ascending neurotransmitter systems, 207-11 h-current, 189-90 low-threshold Ca2+ current in, 188-95, 197-99 rhythmic burst firing in, 188-90 sleep rhythm generation, 186-206 cellular mechanisms in forebrain, 187 spindle waves generated in, 186, 197-206 Thyrotrophic hormone, 537 Thyrotrophic hormone releasing factor, 557 Thyrotropin-releasing hormone, 401 Touch, 567, 569-81 C. elegans ciliated mechanosensory

neurons of, 578-79 touch sensitivity of, 569-78 insect mechanosensory bristles,

579-81

phonemic discrimination

task, 344

Superior temporal sulcus, 345

Supplementary motor area, 26

Transcription factors
cortex-specific, 5–6
Transforming growth factor
α, 116
β, 46, 48, 51–52, 55–59
Transplantation
cerebral cortex regionalization
studies, 11–15
Trinucleotide repeat expansion
as source of genetic variability
in manic depressive illness,

365-66

Tympanic membrane, 334

Tyrosine hydroxylase, 76, 79

Tropomyosin, 4

V

Valinomycin, 134
Valproic acid, 357
Vasopressin (VP), 375–76,
378–79, 386, 391, 537
Venom
potassium channel function and,
92, 95
Ventral intraparietal area (VIP),
28–29, 31, 304–5
somatosensory system, 304–5
Vesamicol, 133–34
Vesicular efflux, 140–42

Vesicular transport, 125–49 ACh, 126, 128–34, 146–48 amine, 126, 129–34 amino acid, 126, 129–34 GABA, 126, 129–34 glutamate, 126, 129–34 molecular cloning of proteins, 142–49 Vestibulo-ocular reflex, 172 Viral ribonucleoproteins (vRNPs),

280–81 Vision fronto-parietal network and, 25,

35–39
Visual navigation, 310–12
Visually guided movement dorsal premotor cortex and, 25, 32–39

Visuomotor control fronto-parietal cortex and, 25 Vitamine D—dependent CaBP, 71 Vocal learning, 459–78 auditory responses, 463–65 axonal connectivity, 468–70 changes in volume and number of song-control nuclei, 465–68 neurotrophins, 459, 473

neurotrophins, 459, 473 sexual differentiation and, 459, 473–78 signaling molecules, 470–72 song-control system, 459 synaptic remodeling, 468–70 zebra finch, 459–65 Vomeronasal organ, 601

W

Wernicke's area, 334, 336–38, 344 functional magnetic resonance imaging of, 344 Whisker movements, 230–31 Whisker-related neuronal patterns, 159–60 NMDA receptors and, 159–60

Z

Zebra finch, 459–65 auditory responses in neural song-control circuits, 463–65 brain-behavior system in, 460 sexually dimorphic development, 459 song system of, 459–65 Zebrin, 70, 73, 76, 80–81, 85–86 antibodies, 70 antigens, 73

CUMULATIVE INDEXES

CONTRIBUTING AUTHORS, VOLUMES 11-20

A

Abraham WC, 19:437–62 Allendoerfer KL, 17:185–218 Amara SG, 16:73–93 Andersen RA, 12:377–403; 20:303–30 Andersen DJ, 16:129–58 Arbas EA, 14:9–38 Armstrong RC, 16:17–29 Arnold AP, 20:459–81 Asheroft FM, 11:97–118 Ashley CT Jr, 18:77–99

B

Bal T, 20:185-215 Bandtlow CE, 16:565-95 Banker G. 17:267-310 Barbe MF, 20:1-24 Barchi RL, 11:455-95 Barde Y-A, 19:289-317 Bargmann CI, 16:47-71 Barlow H, 13:15-24 Barres BA, 13:441-74 Bate M. 19:545-75 Baylor DA, 12:289-327 Bear MF, 19:437-62 Bellugi U, 13:283-307 Bernard CCA, 17:247-65 Biel M, 17:399-418 Bina KG, 13:387-401 Bloom GS, 14:59-92 Borrelli E, 11:353-72 Bothwell M, 18:223-53 Bottjer SW, 20:459-81 Boussaoud D. 20:25-42 Bowe MA, 18:443-62 Bradley DC, 20:303-330 Brainard MS, 18:19-43 Broadie K, 19:545-75 Brodin L, 14:169-99 Brown TH, 13:475-511 Brunken WJ, 12:205-25 Buck LB, 19:517-44 Bullock TH, 16:1-15

(

Callaerts P, 20:483-532 Callaway EM, 15:31-56 Caminiti R, 20:25-42 Campos-Ortega JA, 14:399-420 Cannon SC, 19:141-64 Caramazza A, 11:395-421 Caron MG, 12:67-83: 16:299-321 Carr CE, 16:223-43 Cawthon R, 16:183-205 Cepko CL, 12:47-65 Chambers KC, 13:373-85 Chen C, 20:157-84 Chiba A. 19:545-75 Chiu C-YP, 16:159-82 Choi DW, 13:171-82 Christie BR, 19:165-86 Chun LLY, 13:441-74 Ciaranello AL, 18:101-28 Ciaranello RD, 18:101-28 Cinelli AR, 15:321-51 Clapham DE, 17:441-64 Cleveland DW, 19:187-217 Cline HT, 13:129-54 Colamarino SA, 18:497-529 Colbert CM, 19:165-86 Connor JA, 18:319-57 Constantine-Paton M, 13:129-54 Corey DP, 13:441-74; 20:567-94 Corwin JT, 14:301-33 Cotman CW, 11:61-80 Craig AM, 17:267-310 Crenshaw EB III, 11:353-72 Curran T, 14:421-51

D

Damasio AR, 13:89-109 Damasio H, 13:89-109 Davies AM, 13:61-73 Davis M. 15:353-75 Daw NW, 12:205-25; 16:207-22 Deadwyler SA, 20:217-44 DeArmond SJ, 17:311-39 Debski E, 13:129-54 Deckwerth TL, 16:31-46 DeLuca NA, 19:265-87 DePaulo JR, 20:355-73 Desimone R, 18:193-222 Dethier VG, 13:1-13 Dodd J, 13:227-55 Douglas R, 18:255-81 Dreyfuss G, 20:269-301 Dudai Y, 11:537-63

du Lac S, 18:409-41 Duncan J, 18:193-222

E

Eagleson KL, 20:1–24 Edwards RH, 20:125–56 Eipper BA, 15:57–85 Eisen JS, 17:1–30 Elfvin L-G, 16:471–507 Emeson RB, 19:27–52 Evans RM, 11:353–72

F

Fallon JR, 18:443-62 Fawcett JW, 11:289-327; 13:43-60 Feng TP, 11:1-12 Fernald RD, 15:1-29 ffrench-Constant C. 12:517-34 Fields HL, 14:219-45 Fiez JA, 16:509-30 Finch CE, 13:75-88 Fink DJ, 19:265-87 Fischbach GD, 20:429-58 Fischbeck KH, 19:79-107 Fischer U, 20:269-301 Fisher LJ, 18:159-92 Fitch RH, 20:331-53 Flanders M, 15:167-91 Flockerzi V, 17:399-418 Fox K, 16:207-22 Froehner SC, 16:347-68

(

Gage FH, 18:159–92 Ganong AH, 11:61–80 Garbers DL, 15:193–225 García-Añoveros J, 20:567–94 Gehring WJ, 20:483–532 Georgopoulos AP, 14:361–77 Gerfen CR, 15:285–320 Getting PA, 12:185–204 Gingrich JA, 16:299–321 Glass JD, 19:1–26 Glorioso JC, 19:265–87 Gluck MA, 16:667–706 Goins WF, 19:265–87 Goodkin HG, 15:403–42 Goodman CS, 19:341–77 Goodman RH, 13:111–27 Granger R, 16:667–706 Gray CM, 18:555–86 Greenberg ME, 19:463–89 Grillner S, 14:169–99 Grote E, 16:95–127 Gudermann T, 20:399–427

H

Halder G, 20:483-532 Hall JC, 11:373-93 Hamburger V, 12:1-12 Hampson RE, 20:217-44 Harris KM, 17:341-71 Harris WA, 13:155-69 Harris-Warrick RM, 14:39-57 Hasan Z, 11:199-223 Hatten ME. 18:385-408 Hatton GI, 20:375-97 Hawkins RD, 16:625-65 Heiligenberg W, 14:247-67 Heinemann S, 17:31-108 Heinricher MM, 14:219-45 Heintz N, 18:385-408 Hemmati-Brivanlou A, 20:43-60 Herrup K, 11:423-53; 20:61-90 Hess P. 13:337-56 Heyman R, 11:353-72 Highstein SM, 17:465-88 Hildebrand JG, 20:595-631 Hofmann F, 17:399-418 Hökfelt T. 16:471-507 Hollmann M, 17:31-108 Holt CE, 13:155-69 Hopkins CD, 11:497-535 Housman DE, 14:503-29 Hoy RR, 12:355-75 Hsiao SS, 15:227-50 Hubel DH, 14:1-8 Hynes MA, 13:227-55

1

Ikenaka K, 14:201-17 Ip NY, 19:491-515 Ito M, 12:85-102

J

Jackson H, 12:205–14 Jahn R, 17:216–46 Jamison KR, 20:355–73 Jan LY, 20:91–123 Jan YN, 14:399–420; 20:91–123 Jessell TM, 13:227–55 Johnson EM Jr, 16:31–46 Johnson KO, 15:227–50 Johnson PB, 20:25–42 Johnson RT, 19:1–26 Johnston D, 19:165–86 Julius D, 14:335–60

K

Kaas JH, 14:137-67 Kairiss EW, 13:475-511 Kandel ER, 16:625-65 Kapfhammer JP, 16:565-95 Kater SB, 17:341-71 Katz L. 15:31-56 Kauer JS, 15:321-51 Keating JG, 15:403-42 Keenan CL, 13:475-511 Kelley DB, 11:225-51 Kelly RB, 16:95-127 Keshishian H, 19:545-75 Keynes R, 13:43-60; 17:109-32 Kimmel CB, 16:707-32 Kintner C, 15:251-84 Klima ES, 13:283-307 Knudsen EI, 18:19-43 Kobilka B, 15:87-114 Kopin IJ, 11:81-96 Korsmeyer SJ, 20:245-67 Krumlauf R, 17:109-32 Krupa DJ, 17:519-49 Kuemerle B, 20:61-90 Kuhar MJ, 16:73-93

T

Land MF, 15:1-29 Landis DMD, 17:133-51 Lansner A, 14:169-99 Lee MK, 19:187-217 Lefkowitz RJ, 12:67-83 Levine M, 13:195-225 Levine RB, 13:183-94 Levitan IB, 11:119-36 Levitt P. 20:1-24 Lewin GR, 19:289-317 Linden DJ, 18:319-57 Lindh B, 16:471-507 Linial M, 14:93-122 Linsker R, 13:257-81 Lira SA, 11:353-72 Lisberger SG, 18:409-41 Liu Y, 20:125-56 Loeb GE, 13:357-71 Logothetis NK, 19:577-621 Lumsden A, 13:61-73 Lund JS, 11:253-88

M

Macagno E, 13:195-225 Macdonald RL, 17:569-602 MacKinnon DF, 20:355-73 Madison DV, 14:379-97: 17:153-83 Magee JC, 19:165-86 Maggio JE, 11:13-28 Mahowald M, 18:255-81 Mains RE, 15:57-85 Malenka RC, 14:379-97 Malicki DM, 18:283-317 Mandel G, 16:323-45 Marder E, 14:39-57 Markey SP, 11:81-96 Mason P. 14:219-45 Matthews G, 19:219-33 Matus A. 11:29-44 Maunsell JHR, 16:369-402 Mays LE, 13:309-36 McConnell SK, 14:269-300 McCormick DA, 20:185-215 McGaugh JL, 12:255-87 McKinnon D, 16:323-45 Mead C, 18:255-81 Meinertzhagen IA, 14:9-38 Melton D, 20:43-60 Menzel R, 13:403-14; 19:379-404 Merigan WH, 16:369-402 Merry DE, 20:245-67 Michael WM, 20:269-301 Mikoshiba K, 14:201-17 Miller A, 17:247-65 Miller RH, 12:517-34 Miller S, 20:331-53 Miyashita Y, 16:245-63 Monaghan DT, 11:61-80 Montminy MR, 16:17-29 Morgan DG, 13:75-88 Morgan JI, 14:421-51 Moschovakis AK, 17:465-88 Müller U, 19:379-404

N

Nakanishi S, 14:123–36 Nakielny S, 20:269–301 Nestler EJ, 18:463–95 Nicoll RA, 14:379–97 Nishizuka Y, 17:551–67

0

Ochsner KN, 16:159–82 O'Dowd BF, 12:67–83 Okano H, 14:201–17 Oksenberg JR, 17:247–65 O'Leary DDM, 17:419–39 Olsen RW, 17:569–602 Oppenheim RW, 14:453–501 Parkinson D, 12:205–25 Parks TN, 12:405–14 Paulson HL, 19:79–107 Pearson KG, 16:265–97 Peroutka SJ, 11:45–60 Petersen SE, 13:25–42; 16:509–30 Poizner H, 13:283–307 Posner MI, 13:25–42 Prusiner SB, 17:311–39

R

Raff MC, 12:517-34 Raisman G, 20:533-66 Ranganathan R, 18:283-317 Ray J. 18:159-92 Raymond JL, 18:409-41 Reeke GN Jr, 16:597-623 Reichardt LF, 14:531-70 Rescorla RA, 11:329-52 Rittenhouse AR, 12:415-61 Robinson DA, 12:33-45 Roper SD, 12:329-53 Rosbash M. 11:373-93 Rose EA, 14:503-29 Rosen KM, 20:429-58 Rosenfeld MG, 11:353-72; 15:139-65 Roses AD, 19:53-77 Rothman SM, 13:171-82 Rubin GM, 17:373-97

Rusak B, 13:387-401

.

Sanes JR, 12:491–516 Sargent PB, 16:403–43 Schacter DL, 16:159–82 Scheller RH, 14:93–122 Schlaggar BL, 17:419–39 Schöneberg T, 20:399–427 Schultz G, 20:399–427 Schuman EM, 17:153–83 Schwab ME, 16:565–95 Schwarzschild MA, 12:415–61 Segal RA, 19:463–89 Sejnowski TJ, 18:409–41 Selkoe DJ, 12:463-90: 17:489-517 Selverston AI, 16:531-46 Shatz CJ, 17:185-218 Shaw SR, 14:9-38 Sheinberg DL, 19:577-621 Shepherd GM, 20:595-631 Siegelbaum SA, 16:625-65; 19:235-63 Simpson L, 19:27-52 Singer W, 18:555-86 Skene JHP, 12:127-56 Sladek JR Jr. 13:415-40 Snipes GJ, 18:45-75 Snyder LH, 20:303-30 Soechting JF, 15:167-91 Soriano P, 18:1-18 Sparks DL, 13:309-36 Sporns O, 16:597-623 Squire LR, 16:547-63 Stein PSG, 16:207-22 Steindler DA, 16:445-70 Steinman L, 17:247-65 Stoffers DA, 15:57-85 Strittmatter WJ, 19:53-77 Stuart DG, 11:199-223 Südhof TC, 17:219-46 Sutcliffe JG, 11:157-98

Self DW. 18:463-95

Т

Suter U, 18:45-75

Swanson L, 11:353-72

Takahashi JS, 18:531–53
Tallal P, 20:331–53
Tallal P, 20:331–53
Tamura T, 14:201–17
Tanaka C, 17:551–67
Tanaka K, 19:109–39
Tees RC, 15:377–402
Tessier-Lavigne M, 18:497–529
Thach WT, 15:403–42
Thompson RF, 17:519–49
Tomaselli KJ, 14:531–70
Tonegawa S, 20:157–84
Tranel D, 13:89–109
Treacy MN, 15:139–65
Trimble WS, 14:93–122
Tsien RY, 12:227–53

Tuttle R, 17:419-39

11

Udin SB, 11:289-327

V

Vallee RB, 14:59-92 Viskochil D, 16:183-205

W

Walicke PA, 12:103–26 Wallen P, 14:169–99 Warchol ME, 14:301–33 Warren ST, 18:77–99 Weeks JC, 13:183–94 Wehner R, 13:403–14 Weinberger NM, 18:129–58 Werker JF, 15:377–402 Wexler NS, 14:503–29 White FJ, 19:405–36 White R, 16:183–205 Williams RW, 11:423–53 Wise RA, 19:319–40 Wise SP, 20:25–42

X

Xing J, 20:303-30

Y

Yancopoulos GD, 19:491–515 Yau K-W, 12:289–327 Yuen PST, 15:193–225 Yurek DM, 13:415–40

7

Zagotta WN, 19:235–63 Zigmond RE, 12:415–61 Zimmer A, 15:115–37 Zipursky Sk, 17:373–97 Zola-Morgan S, 16:547–63; 18:359–83 Zucker RS, 12:13–31 Zuker CS, 18:283–317

CHAPTER TITLES, VOLUMES 11-20

AUTONOMIC NERVOUS SYSTEM The Chemical Neuroanatomy of Sympathetic		
Ganglia	L-G Elfvin, B Lindh, T Hökfelt	16:471-507
BASAL GANGLIA		
Ion Channels in Vertebrate Glia	BA Barres, LLY Chun, DP Corey	13:441-74
CEREBRAL CORTEX		
Development of Local Circuits in Mammalian		
Visual Cortex	LC Katz, EM Callaway	15:31-56
The Role of NMDA Receptors in Information		
Processing	NW Daw, PSG Stein, K Fox	16:207-22
Inferior Temporal Cortex: Where Visual		
Perception Meets Memory	Y Miyashita	16:245-63
Localization of Brain Function: The Legacy of		
Franz Joseph Gall (1758–1828)	S Zola-Morgan	18:359-83
Visual Feature Integration and the Temporal		
Correlation Hypothesis	W Singer, CM Gray	18:555-86
Inferotemporal Cortex and Object Vision	K Tanaka	19:109-39
Patterning and Specification of the Cerebral		
Cortex	P Levitt, MF Barbe, KL Eagleson	20:1-24
Sleep and Arousal: Thalamocortical		
Mechanisms	DA McCormick, T Bal	20:185-215
Multimodal Representation of Space in the Posterior Parietal Cortex and Its Use in		
	DA Anderson I U Saudes DC	20:303-30
Planning Movements	RA Andersen, LH Snyder, DC Bradley, J Xing	20:303-30
CIRCADIAN AND OTHER RHYTHMS		
Mutations and Molecules Influencing Biological		
Rhythms	JC Hall, M Rosbash	11:373-93
Molecular Neurobiology and Genetics of		*******
Circadian Rhythms in Mammals	JS Takahashi	18:531-53
,		
CLINICAL NEUROSCIENCE		
MPTP Toxicity: Implications for Research in		
Parkinson's Disease	IJ Kopin, SP Markey	11:81-96
Biochemistry of Alterted Brain Proteins in Alzheimer's Disease	DJ Selkoe	12:463-90
RNA and Protein Metabolism in the Aging Brain	CE Finch, DG Morgan	13:75-88
Face Agnosia and the Neural Substances of	CE Filicii, DG Morgan	13.73-00
Memory	AR Damasio, D Tranel, H Damasio	13:89-109
The Role of Glutamate Neurotoxicity in	AR Damasio, D Tranci, 11 Damasio	13.09-109
Hypoxic-Ischemic Neuronal Death	DW Choi, SM Rothman	13:171-82
Dopamine Cell Replacement: Parkinson's	Div Choi, biri Monthian	13.171 02
Disease	DM Yurek, JR Sladek Jr	13:415-40
Molecular Approaches to Hereditary Diseases of		
the Nervous System: Huntington's Disease as		
a Paradigm	NS Wexler, EA Rose, DE Housman	14:503-29
The Neurofibromatosis Type 1 Gene	D Viskochil, R White, R Cawthon	16:183-20

The Epigenetics of Multiple Sclerosis: Clues to		
Etiology and a Rationale for Immune Theory	L Steinman, A Miller, CCA Bernard, JR Oksenberg	17:247–65
Normal and Abnormal Biology of the		
β-Amyloid Precursor Protein Biology and Genetics of Hereditary Motor and	DJ Selkoe	17:489-517
Sensory Neuropathies Triplet Repeat Expansion Mutations: The	U Suter, GJ Snipes	18:45-75
Example of Fragile X Syndrome	ST Warren, CT Ashley Jr	18:77-99
The Neurobiology of Infantile Autism	AL Ciaranello, RD Ciaranello	18:101-28
Molecular Mechanisms of Drug Reinforcement	AL Claration, RD Claration	10.101-20
and Addiction	DW Self, EJ Nestler	18:463-95
Human Immunodeficiency Virus and the Brain	JD Glass, RT Johnson	19:1–26
Apolipoprotein E and Alzheimer's Disease	WJ Strittmatter, AD Roses	19:53-77
Trinucleotide Repeats in Neurogenetic Disorders	HL Paulson, KH Fischbeck	19:79-107
Sodium Channel Defects in Myotonia and		
Periodic Paralysis	SC Cannon	19:141-64
Addictive Drugs and Brain Stimulation Reward	RA Wise	19:319-40
The Role of Vesicular Transport Proteins in Synaptic Transmission and Neural		
Degeneration	Y Liu, RH Edwards	20:125-56
Genetics of Manic Depressive Illness	DF MacKinnon, KR Jamison,	20:355-73
	JR DePaulo	
COMPARATIVE NEUROSCIENCE		
Evolution in Nervous Systems	EA Arbas, IA Meinertzhagen, SR Shaw	14:9–38
Processing of Temporal Information in the Brain	CE Carr	16:223-43
Patterning the Brain of the Zebrafish Embryo	CB Kimmel	16:707-32
COMPUTATIONAL APPROACHES		
Behaviorally Based Modeling and	CN P	16.507 (22
Computational Approaches to Neuroscience Computational Models of the Neural Bases of	GN Reeke Jr, O Sporns	16:597–623
Learning and Memory	MA Gluck, R Granger	16:667-706
CYTOSKELETON AND AXONAL TRANSPORT		
Microtubule-Associated Proteins: Their		
Potential Role in Determining Neuronal		
Morphology	A Matus	11:29-44
Mechanisms of Fast and Slow Axonal Transport	RB Vallee, GS Bloom	14:59-92
Neuronal Polarity	AM Craig, G Banker	17:267-310
Neuronal Intermediate Filaments	MK Lee, DW Cleveland	19:187-217
DEVELOPMENTAL NEUROBIOLOGY		
Formation of Topographic Maps	SB Udin, JW Fawcett	11:289-327
The Control of Neuron Number	RW Williams, K Herrup	11:423-53
Novel Neurotrophic Factors, Receptors, and		
Oncogenes	PA Walicke	12:103-26
Axonal Growth-Associated Proteins Ontogeny of the Somatosensory System:	SJHP Skene	12:127–56
Origins and Early Development of Primary		
Sensory Neurons	AM Davies, A Lumsden	13:61-73
Patterned Activity, Synaptic Convergence, and		
the NMDA Receptor in Developing Visual	M Constanting Potent LFF Clina	12.120 54
Pathways	M Constantine-Paton, HT Cline, E Debski	13:129-54
Early Events in the Embryogenesis of the		
Vertebrate Visual System: Cellular Determination and Pathfinding	WA Harris, CE Holt	13:155-69
Postembryonic Neuronal Plasticity and Its	WA FIGHTS, CE HOIL	13.133-09
Hormonal Control During Insect		
Metamorphosis	JC Weeks, RB Levine	13:183-94
		10.100.71

	Segmentation and Segmental Differentiation in the Development of the Central Nervous		
	Systems of Leeches and Flies Carbohydrates and Carbohydrate-Binding	M Levine, E Macagno	13:195-225
	Proteins in the Nervous System The Generation of Neuronal Diversity in the	TM Jessell, MA Hynes, J Dodd	13:227-55
	Central Nervous System Cell Death During Development of the Nervous	SK McConnell	14:269-300
	System The Biosynthesis of Neuropeptides: Peptide	RW Oppenheim	14:453-501
	α-Amidation	BA Eipper, DA Stoffers, RE Mains,	15:57-85
	Manipulating the Genome by Homologous Recombination in Embryonic Stem Cells	A Zimmer	15:115-37
	Molecular Bases of Early Neural Development in Xenopus Embryos	C Kintner	15:251-84
	Voltage-Sensitive Dyes and Functional Activity in the Olfactory Pathway	AR Cinelli, JS Kauer	15:321-51
	The Role of the Amygdala in Fear and Anxiety Molecular Mechanisms of Developmental	M Davis	15:353–75
	Neuronal Death Molecular Control of Cell Fate in the Neural	EM Johnson Jr, TL Deckwerth	16:31-46
	Crest: The Sympathoadrenal Lineage Inhibitors of Neurite Growth	DJ Anderson ME Schwab, JP Kapfhammer, CE Bandtlow	16:129–58 16:565–95
	Development of Motoneuronal Phenotype Hox Genes and Regionalization of the Nervous	JS Eisen	17:1-30
	System The Subplate, A Transient Neocortical Structure: Its Role in the Development of Connections	R Keynes, R Krumlauf	17:109–32
	between Thalamus and Cortex Determination of Neuronal Cell Fate: Lessons	KL Allendoerfer, CJ Shatz	17:185–218
	From the R7 Neuron of <i>Drosophila</i> Specification of Neocortical Areas and	SL Zipursky, GM Rubin	17:373-97
	Thalamocortical Connections	DDM O'Leary, BL Schlaggar, R Tuttle	17:419-39
	Creating a Unified Representation of Visual and Auditory Space in the Brain	EI Knudsen, MS Brainard	18:19-43
	Isolation, Characterization, and Use of Stem Cells from the CNS	FH Gage, J Ray, LJ Fisher	18:159–92
	Mechanisms of Neural Patterning and Specification in the Developing Cerebellum	ME Hatten, N Heintz	18:385-408
	The Role of the Floor Plate in Axon Guidance Mechanisms and Molecules that Control Growth	SA Colamarino, M Tessier-Lavigne	18:497–529
	Cone Guidance The Drosophila Neuromuscular Junction: A Model System for Studying Synaptic	CS Goodman	19:341-77
	Development and Function	H Keshishian, K Broadie, A Chiba, M Bate	19:545-75
	Vertebrate Neural Induction Pax-6 in Development and Evolution	A Hemmati-Brivanlou, D Melton P Callaerts, G Halder, WJ Gehring	20:43-60 20:483-532
(GLIA, SCHWANN CELLS, AND EXTRACELLULA Extracellular Matrix Molecules that Influence		
	Neural Development The Macroglial Cells of the Rat Optic Nerve	JR Sanes RH Miller, C ffrench-Constant, MC Raff	12:491–516 12:517–34
	Extracellular Matrix Molecules and Their Receptors: Functions in Neural Development Glial Boundaries in the Developing Nervous	LF Reichardt, KJ Tomaselli	14:531-70
	System	DA Steindler	16:445-70
	The Early Reactions of Non-Neuronal Cells to Brain Injury	DMD Landis	17:133-51

ION CHANNELS		
Adenosine 5'-Triphosphate-Sensitive Potassium Channels	FM Ashcroft	11:97-118
Modulation of Ion Channels in Neurons and Other Cells	IB Levitan	11:119-36
Probing the Molecular Structure of the Voltage-Dependent Sodium Channel	RL Barchi	11:455-95
Calcium Channels in Vertebrate Cells	P Hess	13:337-56
Ion Channels in Vertebrate Glia	BA Barres, LLY Chun, DP Corey	13:441-74
Molecular Basis for CA ²⁺ Channel Diversity	F Hofmann, M Biel, V Flockerzi	17:399-418
Direct G Protein Activation of Ion Channels? Structure and Function of Cyclic	DE Clapham	17:441-64
Nucleotide-Gated Channels Cloned Potassium Channels from Eukaryotes	WN Zagotta, SA Siegelbaum	19:235-63
and Prokaryotes	LY Jan, YN Jan	20:91-123
LANGUAGE		
Some Aspects of Language Processing Revealed Through the Analysis of Acquired Aphasia:		
The Lexical System Biological Foundations of Language: Clues	A Caramazza	11:395-421
from Sign Language The Processing of Single Words Studied with	H Poizner, U Bellugi, ES Klima	13:283-307
Positron Emission Tomography	SE Petersen, JA Fiez	16:509-30
LEARNING AND MEMORY		
Topography of Cognition: Parallel Distributed	DC C-11 D-11-	11 127 66
Networks in Primate Association Cortex Behavioral Studies of Paylovian Conditioning	PS Goldman-Rakic RA Rescorla	11:137-56
Involvement of Hormonal and Neuromodulatory	RA Rescotta	11:329-52
Systems in the Regulation of Memory Storage Hebbian Synapses: Biophysical Mechanisms	JL McGaugh	12:255-87
and Algorithms The Organization and Reorganization of Human	TH Brown, EW Kairiss, CL Keenan	13:475-511
Speech Perception	JF Werker, RC Tees	15:377-402
Implicit Memory: A Selective Review	DL Schacter, C-YP Chiu, KN Ochsner	16:159-82
Neuroanatomy of Memory	S Zola-Morgan, LR Squire	16:547-63
Organization of Memory Traces in the Mammalian Brain	RF Thompson, DJ Krupa	17:519-49
Learning and Memory in Honeybees: From		
Behavior to Neural Substrates	R Menzel, U Müller	19:379-404
Neurobiology of Speech Perception	RH Fitch, S Miller, P Tallal	20:331-53
MISCELLANEOUS		
An Urge to Explain the Incomprehensible:		
Geoffrey Harris and the Discovery of the Neural Control of the Pituitary Gland	G Raisman	20:533-66
MOLECULAR NEUROSCIENCE mRNA in the Mammalian Central Nervous		
System	JG Sutcliffe	11:157-98
Transgenic Mice: Applications to the Study of	70 Sutchife	11.137-96
the Nervous System	MG Rosenfeld, EB Crenshaw III, SA Lira, L Swanson, E Borrelli, R Heyman, RM Evans	11:353-72
RNA and Protein Metabolism in the Aging Brain	CE Finch, DG Morgan	13:75-88
Regulation of Neuropeptide Gene Expression Stimulus-Transcription Coupling in the Nervous	RH Goodman	13:111–27
System: Involvement of the Inducible		
Proto-Oncogenes fos and jun Neurotransmitter Transporters: Recent Progress	JI Morgan, T Curran SG Amara, MJ Kuhar	14:421-51 16:73-93

	Miles In Projection 10 of the Company		
	Molecular Basis of Neural-Specific Gene Expression	G Mandel, D McKinnon	16.202 45
	Prion Diseases and Neurodegeneration	SB Prusiner, SJ DeArmond	16:323-45 17:311-39
	The Protein Kinase C Family for Neuronal		
	Signaling Functional Interactions of Neurotrophins and	C Tanaka, Y Nishizuka	17:551-67
	Neurotrophin Receptors	M Bothwell	18:223-53
	The Role of Agrin in Synapse Formation	MA Bowe, JR Fallon	18:443-62
	RNA Editing	L Simpson, RB Emeson	19:27-52
	Physiology of the Neurotrophins Intracellular Signaling Pathways Activated by	GR Lewin, Y-A Barde	19:289-317
	Neurotrophic Factors	RA Segal, ME Greenberg	19:463-89
	The Neurotrophins and CNTF: Two Families of		
	Collaborative Neurotrophic Factors	NY Ip, GD Yancopoulos	19:491-515
	RNA Transport	S Nakielny, U Fischer, WM Michael, G Dreyfuss	20:269-301
	ARIA: A Neuromuscular Junction		
	Neuregulin	GD Fischbach, KM Rosen	20:429-58
MC	OTOR SYSTEMS Animal Solutions to Problems of Movement		
	Control: The Role of Proprioceptors	Z Hasan, DG Stuart	11:199-223
	Integrating with Neurons	DA Robinson	12:33-45
	Learning Arm Kinematics and Dynamics	CG Atkeson	12:33-43
	Signal Transformations Required for the	CG Atkeson	12:137-83
	Generation of Saccadic Eye Movements	DI Santa LE Maria	12.200 26
	Higher Order Motor Control	DL Sparks, LE Mays	13:309-36
		AP Georgopoulos	14:361-77
	Moving in Three-Dimensional Space: Frames of	IF C I.C MFI	15 165 01
	Reference, Vectors, and Coordinate Systems The Neostriatal Mosaic: Multiple Levels of Compartmental Organization in the Basal	JF Soechting, M Flanders	15:167–91
	Ganglia	CR Gerfen	15:285-320
	Cerebellum and Adaptive Coordination of Movement	WT Thach, HG Goodkin, JG Keating	15:403-42
	The Anatomy and Physiology of Primate		
	Neurons that Control Rapid Eye Movements Learning and Memory in the Vestibulo-Ocular	AK Moschovakis, SM Highstein	17:465-88
	Reflex	S du Lac, JL Raymond, TJ Sejnowski, SG Lisberger	18:409-41
	Premotor and Parietal Cortex: Corticocortical Connectivity and Combinatorial		
	Computations	SP Wise, D Boussaoud, PB Johnson,	20:25-42
		R Caminiti	
M	YELIN		
	Structure and Function of Myelin Protein Genes	K Mikoshiba, H Okano, T Tamura, K Ikenaka	14:201-17
N.11	CLIDAL MEMBRANIES		
INI	EURAL MEMBRANES Protein Targeting in the Neuron	RB Kelly, E Grote	16:95-127
	Protein raigeting in the Neuron	RB Relly, E Glote	10.93-127
NI	EURAL NETWORKS		
	Emerging Principles Governing the Operation of	PA C ···	10 105 00
	Neural Networks	PA Getting	12:185-20
	Perceptual Neural Organization: Some		
	Approaches Based on Network Models and	n	
	Information Theory	R Linsker	13:257-81
	Modulation of Neural Networks for Behavior Neuronal Network Generating Locomotor	RM Harris-Warrick, E Marder	14:39–57
	Behavior in Lamprey: Circuitry, Transmitters,	ocin nwar in	14100 00
	Membrane Properties, and Simulation	S Grillner, P Wallén, L Brodin, A Lansner	14:169–99

Modeling of Neural Circuits: What Have We		
Learned?	AI Selverston	16:531-46
Neuromorphic Analogue VLSI The Significance of Neuronal Ensemble Codes	R Douglas, M Mahowald, C Mead	18:255-81
During Behavior and Cognition	SA Deadwyler, RE Hampson	20:217-44
NEUROETHOLOGY		
Sexually Dimorphic Behaviors	DB Kelley	11:225-51
Neuroethology of Electric Communication	CD Hopkins	11:497-535
Startle, Categorical Response, and Attention in		
Acoustic Behavior of Insects	RR Hoy	12:355-75
Do Insects Have Cognitive Maps?	R Wehner, R Menzel	13:403-14
The Neural Basis of Behavior: A	NV NV-191	14.049 79
Neuroethological View	W Heiligenberg	14:247-67
Developmental Plasticity in Neural Circuits for a Learned Behavior	CW Passian AB Amald	20.450 91
Learned Benavior	SW Bottjer, AP Arnold	20:459-81
NEUROGENETICS		
Mutations and Molecules Influencing Biological		
Rhythms	JC Hall, M Rosbash	11:373-93
Neurogenetic Dissection of Learning and		
Short-Term Memory in Drosophila	Y Dudai	11:537-63
Genetic and Molecular Bases of Neurogenesis in Drosophila melanogaster	IA Common Orders Walliam	14.200 420
Genetic and Cellular Analysis of Behavior in	JA Campos-Ortega, YN Jan	14:399-420
C. elegans	CI Bargmann	16:47-71
Gene Targeting in ES Cells	P Soriano	18:1-18
The Compartmentalization of the Cerebellum	K Herrup, B Kuemerle	20:61-90
Bcl-2 Gene Family in the Nervous System	DE Merry, SJ Korsmeyer	20:245-67
NEUDONAL DI ACTIONNI		
NEURONAL PLASTICITY Short-Term Synaptic Plasticity	RS Zucker	10.12.21
Long-Term Depression	M Ito	12:13-31 12:85-102
Plasticity of Sensory and Motor Maps in Adult	W NO	12.03-102
Mammals	JH Kaas	14:137-67
Mechanisms Underlying Long-Term	211 11000	14.157 07
Potentiation of Synaptic Transmission	DV Madison, RC Malenka,	14:379-97
	RA Nicoll	
Learning to Modulate Transmitter Release:	DD II11 ED V - 1-1	16 600 60
Themes and Variations in Synaptic Plasticity	RD Hawkins, ER Kandel, SA Siegelbaum	16:625-65
Dynamic Regulation of Receptive Fields and	SA Siegelbaum	
Maps in the Adult Sensory Cortex	NM Weinberger	18:129-58
Long-Term Synaptic Depression	DJ Linden, JA Connor	18:319-57
Active Properties of Neuronal Dendrites	D Johnston, JC Magee, CM Colbert,	19:165-86
	BR Christie	
Molecular Genetic Analysis of Synaptic		
Plasticity, Activity-Dependent Neural		
Development, Learning, and Memory in the		
Mammalian Brain	C Chen, S Tonegawa	20:157-84
Function-Related Plasticity in Hypothalamus	GI Hatton	20:375-97
NEUROPEPTIDES		
Tachykinins	JE Maggio	11:13-28
Acute Regulation of Tyrosine Hydroxylase by		
Nerve Activity and by Neurotransmitters via		
Phosphorylation	RE Zigmond, MA Schwarzschild, AR Rittenhouse	12:415-61
	AN KITTERHOUSE	
NEUROSCIENCE TECHNIQUES		
Immortalization of Neural Cells via	Cl. Co-los	10 10 65
Retrovirus-Mediated Oncogene Transduction Fluorescent Probes of Cell Signaling	CL Cepko RY Tsien	12:47-65 12:227-53
radicacent riddes of Cen alguaning	N I 15/EII	12.221-33

Spider Toxins: Recent Applications in		
Neurobiology Common Principles of Motor Control in	H Jackson, TN Parks	12:405-14
Vertebrates and Invertebrates Gene Transfer to Neurons Using Herpes	KG Pearson	16:265-97
Simplex Virus-Based Vectors	DJ Fink, NA DeLuca, WF Goins, JC Glorioso	19:265-87
OLFACTION/TASTE		
The Cell Biology of Vertebrate Taste Receptors A Neural Model for Conditioned Taste Aversions	SD Roper KC Chambers	12:329-53 13:373-85
Information Coding in the Vertebrate Olfactory System	LB Buck	19:517-44
Mechanisms of Olfactory Discrimination: Converging Evidence for Common Principles		
Across Phyla	JG Hildebrand, GM Shepherd	20:595-631
PREFATORY CHAPTER		
Looking Back, Looking Forward	TP Feng	11:1-12
The Journey of a Neuroembryologist	V Hamburger	12:1-12
Chemosensory Physiology in an Age of	1100	
Transition	VG Dethier	13:1~13
The Mechanical Mind	H Barlow DH Hubel	13:15-24 14:1-8
Are We Willing to Fight for Our Research? Integrative Systems Research on the Brain:	DH Hubei	14:1-8
Resurgence and New Opportunities	TH Bullock	16:1-15
RECEPTORS AND RECEPTOR SUBTYPES		
5-Hydroxytryptamine Receptor Subtypes Structure of the Adrenergic and Related	SJ Peroutka	11:4560
Receptors	BF O'Dowd, RJ Lefkowitz, MG Caron	12:67-83
Peripheral Nerve Regeneration	JW Fawcett, RJ Keynes	13:43-60
Mammalian Tachykinin Receptors	S Nakanishi	14:123-36
Molecular Biology of Serotonin Receptors Adrenergic Receptors as Models for	D Julius	14:335-60
G Protein-Coupled Receptors	B Kobilka	15:87-114
Expression of a Family of Pou-Domain Protein Regulatory Genes During Development of the		
Central Nervous System	MN Treacy, MG Rosenfeld	15:139-65
Guanylyl Cyclase-Linked Receptors	PST Yuen, DL Garbers	15:193-225
Recent Advances in the Molecular Biology of		
Dopamine Receptors Regulation of Ion Channel Distribution at	JA Gingrich, MG Caron	16:299-321
Synapses	SC Froehner	16:347-68
The Diversity of Neuronal Nicotinic		
Acetylcholine Receptors	PB Sargent	16:403-43
Cloned Glutamate Receptors	M Hollmann, S Heinemann	17:31-108
GABA _A Receptor Channels Functional and Structural Complexity of Signal Transduction via G-Protein-Coupled	RL Macdonald, RW Olsen	17:569–602
Receptors	T Gudermann, T Schöeneberg, G Schultz	20:399-427
SOMATOSENSORY SYSTEM		
Neuroethology of Electric Communication	CD Hopkins	11:497-535
The Evolution of the Eyes	MF Land, RD Fernald	15:1-29
Neural Mechanisms of Tactual Form and Texture	real Ladid, RD Fernald	13.1-67
Perception	KO Johnson, SS Hsiao	15:227-50
SYNAPSES		
Cellular and Molecular Biology of the		
Presynaptic Nerve Terminal	WS Trimble, M Linial, RH Scheller	14:93-122

Transsynaptic Control of Gene Expression	RC Armstrong, MR Montminy	16:17-29
Synaptic Vesicles and Exocytosis	R Jahn, TC Südhof	17:216-46
Dendritic Spines: Cellular Specializations		
Imparting Both Stability and Flexibility to		
Synaptic Function	KM Harris, SB Kater	17:341-71
Neurotransmitter Release Synaptic Regulation of Mesocorticolimbic	G Matthews	19:219-33
Dopamine Neurons	FJ White	19:405-36
Long-Term Depression in Hippocampus	MF Bear, WC Abraham	19:437-62
Long tom Depression in Hisportanipus	The areas, the recommendation	12.121 02
TRANSMITTER BIOCHEMISTRY		
Excitatory Amino Acid Neurotransmission:		
NMDA Receptors and Hebb-Type Synaptic		
Plasticity	CW Cotman, DT Monaghan, AH Ganong	11:61-80
The Role of Glutamate Neurotoxicity in		
Hypoxic-Ischemic Neuronal Dea	DW Choi, SM Rothman	13:171-82
Neurotransmitters in the Mammalian Circadian		
System	B Rusak, KG Bina	13:387-401
Neurotransmitters in Nociceptive Modulatory	IN PART MARKET AND DAY	14.010 46
Circuits	HL Fields, MM Heinricher, P Mason	14:219-45
Nitric Oxide and Synaptic Function	EM Schuman, DV Madison	17:153-83
VISION AND HEARING		
The Attention System of the Human Brain	MI Posner, SE Petersen	13:25-42
Signal Transformations Required for the		
Generation of Saccadic Eye Movements	DL Sparks, LE Mays	13:309-36
Cochlear Prosthetics	GE Loeb	13:357-71
Auditory Hair Cells: Structure, Function,	TO LATENALI	14.701 22
Development, and Regeneration The Molecules of Mechanosensation	JT Corwin, ME Warchol J García-Añoveros, DP Corey	14:301-33 20:567-94
The Molecules of Mechanosensation	J Garcia-Anoveros, Dr Corey	20:307-94
VISUAL SYSTEM		
Anatomical Organization of Macaque Monkey		
Striate Visual Cortex	JS Lund	11:253-88
Integrating with Neurons	DA Robinson	12:33-45
The Function of Synaptic Transmitters in the	MILE WILL I DO I	10 005 05
Retina	NW Daw, WJ Brunken, D Parkinson	12:205-25
Cyclic GMP-Activated Conductance of Retinal Photoreceptor Cells	V W Ven DA Denler	12.200 227
Visual and Eye Movement Functions of the	K-W Yau, DA Baylor	12:289-327
Posterior Parietal Cortex	RA Andersen	12:377-403
The Macroglial Cells of the Rat Optic Nerve	RH Miller, C ffrench-Constant,	12:517-34
The macrogan Cens of the Mar Optic Merve	MC Raff	12.317-34
How Parallel Are the Primate Visual Pathways?	WH Merigan, JHR Maunsell	16:369-402
Neural Mechanisms of Selective Visual		
Attention	R Desimone, J Duncan	18:193-222
Signal Transduction in Drosophila		
Photoreceptors	R Ranganathan, DM Malicki, CS Zuker	18:283-317
Visual Object Recognition	NK Logothetis, DL Sheinberg	19:577-621

