DIAGONALIZATION PART I

DEFINITION

Given a square matrix A, we wanted to know if it is possible to find an invertible matrix P such that

$$P^{-1}AP = D$$
 (a diagonal matrix)

A square matrix A is called diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

In here, matrix P is said to diagonalize A.

EXAMPLE

$$A = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$$

 $A = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$ So A is diagonalizable and P diagonalizes A.

Let $P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Recall that 1 and 0.95 are the eigenvalues of $oldsymbol{A}$ and

Then P is invertible (check) and

$$P^{-1}AP = \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix} \qquad E_{0.95} = \text{span} \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 0.95 \end{pmatrix}$$

$$E_1 = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$$

$$E_{0.95} = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

EXAMPLE

$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

 $\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ So \mathbf{B} is diagonalizable and \mathbf{P} diagonalizes \mathbf{B} .

Recall that $\mathbf{3}$ and $\mathbf{0}$ are the eigenvalues of \mathbf{B} and

Let
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$
.

$$E_{3} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{span}\left\{\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right\} \quad E_{0} = \operatorname{s$$

Then
$$P$$
 is invertible (check) and $P^{-1}BP = \begin{bmatrix} 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} \end{bmatrix}$

EXAMPLE

$$C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
 So C is diagonalizable and P diagonalizes C . Recall that $1 - \sqrt{2}$ and $1 - \sqrt{2}$ are the eigenvalues of C and
$$E_1 = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ \sqrt{2} \\ 1 \end{bmatrix} \right\}$$
 Let $P = \begin{bmatrix} -1 \\ \sqrt{2} \\ 1 \end{bmatrix}$. $E_1 = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ \sqrt{2} \\ 1 \end{bmatrix} \right\}$ $E_{\sqrt{2}} = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ \sqrt{2} \\ 1 \end{bmatrix} \right\}$

$$E_1 = \operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$

$$E_{\sqrt{2}} = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ \sqrt{2} \\ 1 \end{bmatrix} \right\}$$

Let
$$P = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}$.

Then P is invertible (check) and
$$P^{-1}CP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2} \end{bmatrix} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2} \end{bmatrix} \right\}$$

$$\operatorname{an}\left\{ \begin{pmatrix} -1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \right\}$$

What about Me?

EXAMPLE

$$\mathbf{M} = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \quad E_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

We will now show that M is not diagonalizable.

Suppose M is diagonalizable. Then there exists an

invertible matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 such that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

What about Me?

EXAMPLE

$$M = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$
 $E_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ We will now show that M is not diagonalizable.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \Leftrightarrow$$

If
$$a \neq 0$$
, then (1) $\Rightarrow \lambda = 2$

but now (2)
$$\Rightarrow$$
 $a = 0$.

So
$$a = 0, \lambda = 2$$
.

but now (2) $\Rightarrow a = 0$. So $a = 0, \lambda = 2$. Similarly, $b = 0, \mu = 2$.

What

EXAMPLE

about Me?

$$M = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$
 $E_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ We will now show that M is not diagonalizable.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$$
 which is singular, a contradiction.

So *M* is not diagonalizable.

Is there a more efficient way of showing a matrix is not diagonalizable?

THEOREM

Let A be a square matrix of order n. Then A is diagonalizable if and only if A has n linearly independent eigenvectors.

It is important to emphasize the n eigenvectors have to be linearly independent since

 E_{λ} contains ALL the eigenvectors of A associated with λ .

that is, A already has infinitely eigenvectors associated with a particular eigenvalue λ .

AN ALGORITHM

Purpose: Given a square matrix A of order n, we want to determine whether A is diagonalizable.

If A is diagonalizable, find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

Step 1: Solve $\det(\lambda I - A) = 0$ to find all eigenvalues of A $\lambda_1, \lambda_2, ..., \lambda_k$ (suppose A has k distinct eigenvalues, $k \le n$)

Step 2: For each λ_i find a basis S_{λ_i} for the eigenspace E_{λ_i} .

AN ALGORITHM

- Step 1: Solve $\det(\lambda I A) = 0$ to find all eigenvalues of A $\lambda_1, \lambda_2, ..., \lambda_k$ (suppose A has k distinct eigenvalues, $k \le n$)
- Step 2: For each λ_i find a basis S_{λ_i} for the eigenspace E_{λ_i} .
- Step 3: Let $S = S_{\lambda_1} \cup S_{\lambda_2} \cup ... \cup S_{\lambda_k}$ (the union of all bases)
 - (a) If |S| < n, then A is not diagonalizable. |S| = number of
 - vectors in S
 - (b) If |S| = n, say $S = \{u_1, u_2, ..., u_n\}$, then let
 - $P = (u_1 \ u_2 \ \cdots \ u_n)$ to be the matrix that diagonalizes A.
 - (c) If |S| > n, check your working!

SUMMARY

- 1) Definition of a diagonalizable matrix.
- 2) A necessary and sufficient condition for a $n \times n$ matrix to be diagonalizable.
- 3) An algorithm to
 - (a) determine if a matrix \boldsymbol{A} is diagonalizable and if it is
 - (b) find a matrix P that diagonalizes A.