Homework 1

Quantum Mechanics

August 29th, 2022

CLAYTON SEITZ

Problem 1. Problem 1.3 from Sakurai

Solution.

Let $A = S_x$ and $B = S_y$. The variance $\langle (\Delta S_x)^2 \rangle$ in state $|+\rangle_x$ must be zero since $|+\rangle_x$ is an eigenvector of S_x

$$\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle - \langle S_x \rangle^2$$

$$= \langle +|_x S_x^2 |+\rangle_x - (\langle +|_x S_x |+\rangle_x)^2$$

$$= \frac{\hbar^2}{4} - \frac{\hbar^2}{4} = 0$$

Therefore, the LHS of the above inequality is zero. The commutator $[S_x, S_y] = i\hbar S_z$ and

$$\langle S_z \rangle = \langle +|_x S_z |+\rangle_x = 0$$

Clearly the inequality is satisfied since both sides are zero. Now let $A = S_z$ and $B = S_y$. Since the state is prepared in $|+\rangle_x$, the variance $\langle (\Delta S_z)^2 \rangle$ is

$$\langle (\Delta S_z)^2 \rangle = \langle S_z^2 \rangle - \langle S_z \rangle^2$$

= $\langle +|_x S_z^2 |+\rangle_x - (\langle +|_x S_z |+\rangle_x)^2$

$$S_z |+\rangle_x = \frac{\hbar}{2} (|+\rangle \langle +|-|-\rangle \langle -|) \frac{1}{\sqrt{2}} (|+\rangle + |-\rangle)$$
$$= \frac{\hbar}{2\sqrt{2}} (|+\rangle - |-\rangle) = \frac{\hbar}{2} |-\rangle_x$$

and it can be shown by applying it again that $S_z^2 |+\rangle_x = \left(\frac{\hbar}{2}\right)^2 |+\rangle_x$. Also, in general, $\langle +|_x S_z |+\rangle_x = 0$ which gives us

$$\langle (\Delta S_z)^2 \rangle = \left(\frac{\hbar}{2}\right)^2$$

and the variance must be the same for S_y

The commutator $[S_z, S_y] = -i\hbar S_x$ and $\langle S_x \rangle = \frac{\hbar}{2}$. The inequality then reads

$$\left(\frac{\hbar}{2}\right)^2 \left(\frac{\hbar}{2}\right)^2 \ge \frac{1}{4} |\langle [S_z, S_y] \rangle|^2$$

$$= \frac{\hbar^2}{4} |\langle S_x \rangle|^2$$

$$= \left(\frac{\hbar}{2}\right)^2 \left(\frac{\hbar}{2}\right)^2$$

which is satisfied by the equality.

Problem 2. Problem 1.4 from Sakurai

Solution.

$$\operatorname{Tr}(X) = \operatorname{Tr}(a_0) + \operatorname{Tr}\left(\sum_k a_k \sigma_k\right)$$

= $2a_0$

$$\operatorname{Tr}(\sigma_k X) = \operatorname{Tr}\left(\sigma_k a_0 + \sigma_k \sum_j a_j \sigma_j\right)$$
$$= \operatorname{Tr}\left(\sigma_k a_0 + \sum_j a_j \sigma_k \sigma_j\right)$$
$$= \operatorname{Tr}\left(\sum_j a_j \sigma_k \sigma_j\right)$$

We can write out the equation $X = a_0 + \sigma \cdot a$ explicitly

$$X = \begin{pmatrix} a_0 + a_3 & a_1 - ia_3 \\ a_1 + ia_2 & a_0 - a_3 \end{pmatrix}$$

Thus we have four equations involving X_{ij} 's and a_k for k = (1, 2, 3). We can manipulate those four equations to show that

$$a_0 = \frac{X_{11} + X_{22}}{2}$$

$$a_1 = \frac{X_{12} + X_{21}}{2}$$

$$a_2 = i\frac{X_{12} - X_{21}}{2}$$

$$a_3 = \frac{X_{11} - X_{22}}{2}$$

Problem 3. Problem 1.5 from Sakurai

Solution.

To simplify the notation, let $\theta = \phi/2$. The matrix exponential can be expanded as a power series

$$\exp(i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})\theta) = I + i\theta(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}) + \frac{(i\theta(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}))^2}{2!} + \frac{(i\theta(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}))^3}{3!} + \dots$$

$$= I + i\theta(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}) - \frac{\theta^2}{2!} + \frac{\theta^3(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})}{3!} + \dots$$

$$= \left(I - \frac{\theta^2}{2!} + \dots\right) + i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}) \left(\theta - \frac{\theta^3}{3!} + \dots\right)$$

$$= \cos\theta I + i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}) \sin\theta$$

and similarly $\exp(-i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}})\theta) = \cos\theta I - i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}})\sin\theta$. We can use this result to write $\exp(\pm i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}})\theta)$ out more explicitly:

$$\exp(i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})\theta) = \begin{pmatrix} \cos\theta + in_z \sin\theta & (-in_x + n_y) \sin\theta \\ (in_x - n_y) \sin\theta & \cos\theta - in_z \sin\theta \end{pmatrix}$$

$$\exp(-i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}})\theta) = \begin{pmatrix} \cos\theta - in_z\sin\theta & (-in_x - n_y)\sin\theta\\ (-in_x + n_y)\sin\theta & \cos\theta + in_z\sin\theta \end{pmatrix}$$

Now, we were given the transformation

$$\sigma \cdot a' = \exp\left(\frac{i\sigma \cdot \hat{n}\phi}{2}\right)\sigma \cdot a\exp\left(-\frac{i\sigma \cdot \hat{n}\phi}{2}\right)$$

and would like to show that

$$\det(\boldsymbol{\sigma} \cdot \boldsymbol{a}') = \det(\boldsymbol{\sigma} \cdot \boldsymbol{a})$$

To see this, notice that the determinant of $\det(\boldsymbol{\sigma} \cdot \boldsymbol{a}')$ can be written as a product of three determinants. The two determinants coming from terms $\exp(\pm i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})\theta)$ will multiply to unity

$$\det(\exp(i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}})\theta))\cdot\det(\exp(-i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{n}})\theta))=1$$

Leaving only $\det(\boldsymbol{\sigma} \cdot \boldsymbol{a})$. In the case that $\hat{\mathbf{n}} = \hat{\mathbf{z}}$, the matrices $\exp(\pm i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})\theta)$ reduce to

$$\exp(i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{z}})\theta) = \begin{pmatrix} \exp(i\theta) & 0\\ 0 & \exp(-i\theta) \end{pmatrix}$$

$$\exp(-i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{z}})\theta) = \begin{pmatrix} \exp(-i\theta) & 0\\ 0 & \exp(i\theta) \end{pmatrix}$$

Now using these matrices above in some simple matrix operations and substituting back $\phi = 2\theta$, we can show that the pure states on each axis transform as

$$\exp(i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{z}})\theta)\ \sigma_z\ \exp(-i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{z}})\theta) = \sigma_z$$

$$\exp(i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{z}})\theta)\ \sigma_x\ \exp(-i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{z}})\theta) = \sigma_x\cos\phi - \sigma_y\sin\phi$$

$$\exp(i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{z}})\theta)\ \sigma_y\ \exp(-i(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{z}})\theta) = \sigma_x\sin\phi + \sigma_y\cos\phi$$

which means that $a'_z = a_z$, $a'_y = a_x \sin \phi + a_y \cos \phi$, and $a'_x = a_x \cos \phi - a_y \sin \phi$. This is a rotation about $\hat{\mathbf{z}}$ by an angle ϕ .

Problem 4. Problem 1.8 from Sakurai Solution.

$$A(|i\rangle + |j\rangle) = i|i\rangle + j|j\rangle$$

If we have degenerate eigenvalues i.e., i = j then

$$A(|i\rangle + |j\rangle) = i(|i\rangle + |j\rangle)$$

and $|i\rangle + |j\rangle$ is also an eigenvector of A

Problem 5. Problem 1.10 from Sakurai

Solution. We will make use of the following outer-product representations of the spin operators

$$S_x = \frac{\hbar}{2} (|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_y = \frac{i\hbar}{2} (-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_z = \frac{\hbar}{2} (|+\rangle \langle +|-|-\rangle \langle -|)$$

$$[S_x, S_y] = \frac{i\hbar^2}{4} (|+\rangle \langle -|+|-\rangle \langle +|) (-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$-\frac{i\hbar^2}{4} (-|+\rangle \langle -|+|-\rangle \langle +|) (|+\rangle \langle -|+|-\rangle \langle +|)$$

$$= \frac{i\hbar^2}{4} (|+\rangle \langle +|-|-\rangle \langle -|) + \frac{i\hbar^2}{4} (|+\rangle \langle +|-|-\rangle \langle -|)$$

$$= \frac{i\hbar^2}{2} (|+\rangle \langle +|-|-\rangle \langle -|)$$

$$= i\hbar S_z$$

Flipping the order of the commutator always flips the sign of the result i.e. $[S_i, S_j] = -[S_j, S_i]$. Thus for $[S_y, S_x]$ we would get $-i\hbar S_z$.

$$[S_{y}, S_{z}] = \frac{i\hbar^{2}}{4} (-|+\rangle \langle -|+|-\rangle \langle +|) (|+\rangle \langle +|-|-\rangle \langle -|)$$

$$-\frac{i\hbar^{2}}{4} (|+\rangle \langle +|-|-\rangle \langle -|) (-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$= \frac{i\hbar^{2}}{4} (|+\rangle \langle -|+|-\rangle \langle +|) - \frac{i\hbar^{2}}{4} (-|+\rangle \langle -|-|-\rangle \langle +|)$$

$$= \frac{i\hbar^{2}}{2} (|+\rangle \langle -|+|-\rangle \langle +|)$$

$$= i\hbar S_{x}$$

$$[S_z, S_x] = \frac{\hbar^2}{4} (|+\rangle \langle +|-|-\rangle \langle -|) (|+\rangle \langle -|+|-\rangle \langle +|)$$

$$-\frac{\hbar^2}{4} (|+\rangle \langle -|+|-\rangle \langle +|) (|+\rangle \langle +|-|-\rangle \langle -|)$$

$$=\frac{\hbar^2}{4} (-|+\rangle \langle -|+|-\rangle \langle +|) - \frac{\hbar^2}{4} (|+\rangle \langle -|-|-\rangle \langle +|)$$

$$=-\frac{\hbar^2}{2} (-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$= i\hbar S_y$$

When i = j we will always have $\{S_i, S_j\} = 2S_i^2 = \frac{\hbar^2}{2}$ since $S_i^2 = I \quad \forall i$. Therefore, for the anticommutator relations, all we need to prove is that $S_i S_j = -S_j S_i$ when $i \neq j$. In fact, this is obvious from the third line of each

of the above expressions. The terms are always identical up to a sign flip, which is why we always get a factor of $\frac{\hbar^2}{2}$ in the fourth line of each of them. Therefore, it is always true that $S_iS_j = -S_jS_i$ for $i \neq j$

Problem 6. Problem 1.11 from Sakurai

Solution.

We would like to find a representation for the state $|\mathbf{S} \cdot \hat{n}; +\rangle$ in the S_z basis. We first write the operator $\mathbf{S} \cdot \hat{n}$ explicitly in this basis

$$\mathbf{S} \cdot \hat{n} = \sin \beta \cos \alpha \ S_x + \sin \beta \sin \alpha \ S_y + \cos \beta \ S_z$$
$$= \frac{\hbar}{2} \begin{pmatrix} \cos \beta & \sin \beta \exp(-i\alpha) \\ \sin \beta \exp(i\alpha) & -\cos \beta \end{pmatrix}$$

As usual, we find the eigenvalues of this operator by solving the characteristic equation:

$$\det (\mathbf{S} \cdot \hat{n} - \lambda I) = \left(\frac{\hbar}{2} \cos \beta - \lambda\right) \left(-\frac{\hbar}{2} \cos \beta - \lambda\right) - \frac{\hbar^2}{4} \sin^2 \beta$$
$$= \lambda^2 - \frac{\hbar^2}{4} = 0$$

Therefore $\lambda = \pm \frac{\hbar}{2}$ as expected. Let ψ_1 and ψ_2 represent the components of the eigenket $|\mathbf{S} \cdot \hat{n}; +\rangle$ of this operator. We then need to solve the following system for the components ψ_1 and ψ_2

$$\psi_1 \cos \beta + \psi_2 \sin \beta \exp(-i\alpha) = \psi_1$$
$$\psi_1 \sin \beta \exp(i\alpha) - \psi_2 \cos \beta = \psi_2$$

The system does not have a real solution. But we can make a lucky guess that $\psi_1 = \cos \frac{\beta}{2}$ and $\psi_2 = \sin \frac{\beta}{2} \exp(i\alpha)$