UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 15. Sistemas de Ecuaciones

Problema 1. Decida si los sitemas que siguen son incompetibles o compatibles. En el último caso, decida si son determinados o indeterminados; encuentre la solución

$$\begin{array}{rcl}
x & - & y & = & 2 \\
x & + & 2y & = & 8 \\
2x & + & y & = & 10
\end{array}$$

$$x + 2y - z = 1$$

 $2x + y + 2z = 1$
 $3x + 3y - z = 1$

[En práctica (d) y (e)]

Problema 2. Para qué valores de α y β , el sistema que sigue es compatible. Encuentre la solución.

Solución: El sistema es compatible independientemente de α y β .

Problema 3. Resuelva para $x \in y$ (en función de $\alpha y \beta$)

$$\begin{array}{rcl}
\alpha x + \beta y & = & \frac{1}{\alpha} \\
\beta^2 x + \alpha^2 y & = & 1
\end{array}$$

Problema 4. Encuentre condiciones sobre el dato $(a,b,c) \in \mathbb{R}^3$ y también sobre el parámetro $\lambda \in \mathbb{R}$, de modo que el sistema que sigue sea compatible determinado e indeterminado.

$$\lambda x + y + z = a$$

$$x + \lambda y + z = b$$

$$x + y + \lambda z = c$$

[En práctica]

Problema 5. Si
$$(x_0, y_0, z_0)$$
 es una solución del sistema
$$\begin{array}{rcl} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 & = & b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 & = & b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 & = & b_3, \end{array}$$

decida si para $\alpha, \beta, \gamma \in \mathbb{R}$ no nulos, el sistema que sigue es compatible. En caso afirmativo, exhiba una solución.

Solución: El sistema es compatible; (x_0, y_0, z_0) es también solución del nuevo sistema. No podemos determinar si la solución es única.

Problema 6. ¿ Qué condiciones debe imponer sobre $\alpha \in \mathbb{R}$ de modo que el sistema

- (i) sea compatible,
- (ii) sea incompatible? Encuentre la solución cuando corresponda.

Solución:

- (i) Sistema compatible para $\alpha \in \mathbb{R} \{-2\}$.
- (ii) Sistema incompatible para $\alpha = -2$.

Problema 7. Demuestre que $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por f(x,y) = (x-y, x+3y) es biyectiva. [En práctica]

Problema 8. Encuentre condiciones sobre $a, b, c, d \in \mathbb{R}$, de modo que $f : \mathbb{R}^2 \to \mathbb{R}^2$ definida por f(x, y) = (ax + by, cx + dy) sea biyectiva.

Solución: $ad - bc \neq 0$.

Problema 9. Para qué valores de $\alpha \in \mathbb{R}$ el sistema posee solución no trivial.

Solución: Para todo $\alpha \in \mathbb{R}$.