DATA SHEET

MOS INTEGRATED CIRCUIT $\mu PD70320$

V25TM 16/8-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD70320 (V25) is a single-chip microcontroller on which 16-bit CPU, RAM, serial interface, timer, DMA controller, interrupt controller, etc. are all integrated. The μ PD70320 is compatible with the 8/16-bit microprocessor μ PD70108/70116 (V20TM/V30TM) on the software level.

The details of the functions are described in the following User's Manuals. Be sure to read it before starting design.

• V25, V35™ User's Manual — Hardware : IEM-1220

• V25, V35 Family User's Manual — Instructions: U12120J (Japanese version)

FEATURES

- Internal 16-bit architecture and external 8-bit data bus
- Compatible with μPD70108/70116 (in native mode) on software level (some instructions added)
- Minimum instruction cycle : 400 ns/5 MHz (μPD70320)
 250 ns/8 MHz (μPD70320-8)
- On-chip RAM : 256 words × 8 bits
- Input port (port T) with comparator: 8 bits
- I/O lines (input port : 4 bits, input/output port : 20 bits)
- Serial interface (internal dedicated baud rate generator): 2 channels
 Asynchronous mode and I/O interface mode
- Interrupt controller
 - · Programmable priority (8 levels)
 - · Vectored interrupt function
 - Register bank switching function
 - · Macro service function
- DRAM and pseudo SRAM refreshing functions
- DMA controller: 2 channels
- 16-bit timer : 2 channels
- · Time base counter
- · On-chip clock generator
- Programmable wait function
- Standby function (STOP/HALT)

The information in this document is subject to change without notice.

* ORDERING INFORMATION

Part Number	Package	Max. Operating Frequency (MHz)
μPD70320L	84-pin plastic QFJ (1150 × 1150 mils)	5
μPD70320L-8	84-pin plastic QFJ (1150 \times 1150 mils)	8
μ PD70320GJ-5BG	94-pin plastic QFP (20 \times 20 mm)	5
μPD70320GJ-8-5BG	94-pin plastic QFP (20 × 20 mm)	8

Remark The plastic QFJ is a new name of the PLCC.

PIN CONFIGURATION (Top View)

84-Pin Plastic QFJ (1150 \times 1150 mils) μ PD70320L μ PD70320L-8

IC: Internally Connected

Cautions 1. Connect IC pin individually to V_{DD} via a resistor (3 to 10 $k\Omega$).

2 Connect $\overline{\text{EA}}$ pin to GND via a resistor (3 to 10 k Ω).

* 94-Pin Plastic QFP (20 \times 20 mm) μ PD70320GJ-5BG μ PD70320GJ-8-5BG

Cautions 1. Connect IC pin individually to VDD via a resistor (3 to 10 k Ω).

2. Connect $\overline{\text{EA}}$ pin to GND via a resistor (3 to 10 k Ω).

Note Not user-accessible.

CONTENTS

1.	PIN	FUNCTIONS	.7
	1.1	Port Pins	. 7
	1.2	Non-port Pins	. 8
2.	INS	TRUCTION SETS	.9
	2.1	Instructions Added to μ PD70108/70116	. 9
	2.2	Instruction Set Operation	11
	2.3	Instruction Set Table	15
3.	ELE	CTRICAL SPECIFICATIONS4	47
4.	CHA	ARACTERISTIC CURVES	66
5.	PAC	CKAGE DRAWINGS	69
6	RFC	COMMENDED SOLDERING CONDITIONS	71

1. PIN FUNCTIONS

1.1 Port Pins

Pin Name	Input/Output	Port Function	Control Function
P00 to P06	Input & output	8-bit input/output ports, each to	_
P07/CLKOUT	Input & output/output	be specified bit-by-bit	System clock output
P10/NMI	Input	Used as non-maskable interrupt request input (input port)	_
P11/INTP0		Used as both external interrupt	
P12/INTP1		request input and input port	
P13/INTP2/INTAK	Input/input/output		INT acknowledge signal output
P14/POLL/INT	Input & output/input/input	Used as both specifiable input/ output port and POLL input	External interrupt request input
P15/TOUT	Input & output/output	Input/output port specifiable	Timer output
P16/SCK0		bit-by-bit	Serial clock output
P17/READY	Input & output/input		READY input
P20/DMARQ0	Input & output/input	8-bit input/output port specifiable	DMA request input (CH0)
P21/DMAAK0	Input & output/output	bit-by-bit	DMA acknowledge output (CH0)
P22/TC0			DMA end output (CH0)
P23/DMARQ1	Input & output/input		DMA request input (CH1)
P24/DMAAK1	Input & output/output		DMA acknowledge output (CH1)
P25/TC1			DMA end output (CH1)
P26/HLDAK	Input & output/output		HOLD acknowledge output
P27/HLDRQ	Input & output/input		HOLD input
PT0 to PT7	Input	8-bit input port with comparator	_

Remark All port pins become input ports after reset is released.

When using P13/INTP2/INTAK as a INTAK pin, be sure to pull up the pin to avoid a malfunction of external interrupt controller after reset is released.

1.2 Non-port Pins

Pin Name	Input/Output	Function
TxD0	Output	Serial data output
TxD1		
RxD0	Input	Serial data input
RxD1		
CTS0	Input & output	CTS input in asynchronous mode, receive clock input/output in I/O interface mode
CTS1	Input	CTS input
REFRQ	Output	DRAM refresh pulse output
Vтн	Input	Comparator reference voltage input
RESET		Reset signal input
ĒĀ		External memory access (connect to GND via a resistor (3 to 10 kΩ))
X1	Input	Used to connect crystal resonator/ceramic resonator for oscillating system clock.
X2		External clock is entered by entering reverse phase clock to both X1 and X2 pins.
D0 to D7	Input & output	8-bit data bus
A0 to A19	Output	20-bit address output
MREQ		Output used to indicate that memory bus cycle has been started
MSTB		Memory read/memory write strobe output
R/W		Read cycle/write cycle ID signal output
ĪOSTB		I/O read/I/O write strobe output
V _{DD}		Positive power supply pins (all pins should be connected)
GND		GND pins (all pins should be connected)
IC		Internally connected (connect individually to V _{DD} via a resistor (3 to 10 kΩ))

2. INSTRUCTION SETS

The μ PD70320 instruction sets are upward-compatible with those of μ PD70108/70116 in native mode.

2.1 Instructions Added to μ PD70108/70116

The following instructions are newly added to the μ PD70108/70116.

(1) Conditional branch instruction

• BTCLR Bit test instruction used for special function registers

If, when this BTCLR is executed, the target special function register bit status is "1", the bit is reset (0) and the program is branched to short-label described in the operand. If the target bit status is "0", the program is moved to the next instruction. PSW is not changed in this instruction.

(Descriptive format)

		Operand	
Mnemonic	Special Function Register Address	Special Function Register Bit	Branch Address
BTCLR	sfr	imm3	short-label

(2) Interrupt instructions

• RETRBI Return instruction used for register banks

This instruction is used to return the program from the interrupt service routine in which the register bank switching function is used. It cannot be used for returning from vectored interrupt servicing.

(Descriptive format)

Mnemonic	Operand	
RETRBI	None	

FINT This instruction is used to report the interrupt controller that interrupt servicing has ended.
 If an interrupt other than NMI, INT, and software interrupt is used, this instruction must be executed prior to the instruction for returning from interrupt servicing. It should not be used for NMI, INT and software interrupts.

(Descriptive format)

Mnemonic	Operand
FINT	None

(3) CPU instruction

• STOP Instruction for transition to STOP state

(Descriptive format)

Mnemonic	Operand
STOP	None

(4) Register bank switch instructions

• BRKCS Used to switch register banks

A register bank is switched to the register bank indicated by the lower 3 bits in the 16-bit register described in the operand. The program is also branched with this instruction to the address obtained from the PS stored in advance in the new register bank and the vector PC.

The RETRBI instruction is used to return the program from the new register bank.

(Descriptive format)

Mnemonic	Operand
BRKCS	reg16

· TSKSW Used to switch register banks

Just like the BRKCS instruction, this instruction is also executed to select a register bank. The program is branched to the address obtained from the PS stored in advance in the new register bank and the address obtained from the PC save area.

(Descriptive format)

Mnemonic	Operand
TSKSW	reg16

(5) Data transfer instructions

MOVSPA --- Used to transfer SS and SP values

This instruction is executed to transfer both SS and SP values before the register bank is switched to SS and SP of the current (post-switching) register bank.

(Descriptive format)

Mnemonic	Operand
MOVSPA	None

• MOVSPB ··· Used to transfer SS and SP values

This instruction is executed to transfer the SS and SP values of the current (pre-switching) register bank to the SS and SP of the new register bank indicated by the lower 3 bits in the 16-bit register described in the operand.

(Descriptive format)

Mnemonic	Operand	
MOVSPB	reg16	

Some μ PD70108/70116 instructions should be much cared as shown below when used for the μ PD70320.

I/O instruction, primitive I/O instruction
 If PSW IBRK flag is reset (0), an interrupt is generated without executing this instruction. Be sure to set (1) the IBRK flag when using the I/O instruction.

FPO instruction

An interrupt is generated without executing this instruction.

 μ PD70320

2.2 Instruction Set Operation

Table 2-1. Operand Identifier

Identifier	Description
reg	8-/16-bit general register
reg8	8-bit general register
reg16	16-bit general register
dmem	8-/16-bit memory location
mem	8-/16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
sfr	8-bit special function register location
imm	Constant within 0 to FFFFH
imm3	Constant within 0 to 7
imm4	Constant within 0 to FH
imm8	Constant within 0 to FFH
imm16	Constant within 0 to FFFFH
acc	Register AW or AL
sreg	Segment register
src-table	256-byte conversion table name
src-block	Register IX-addressed block name
dst-block	Register IY-addressed block name
near-proc	Procedure in the current program segment
far-proc	Procedure in another program segment
near-label	Label in the current program segment
short-label	Label within end of instruction to -128 to +127 bytes
far-label	Label in another program segment
memptr16	Word including location offset in the current program segment to which control is to be passed
memptr32	Double-word including location offset in another program segment to which control is to be passed and segment base address
regptr16	16-bit general register including location offset in another program segment to which control is to be passed
pop-value	Number of bytes to be abandoned from stack (0 to 64K, normally even number)
fp-op	Immediate value to judge instruction code of external floating point operation chip
R	Register set

Table 2-2. Operation Code Identifier

Identifier	Description							
W	Byte/word specification bit (0: byte, 1: word). However, when s = 1, the sign extended byte data should be 16-bit operand even when W is 1.							
reg	Register field (000 to 111)							
mem	Memory field (000 to 111)							
mod	Mode field (00 to 10)							
s	Sign extension specification bit (0: Sign is not extended, 1: Sign is extended)							
X, XXX, YYY, ZZZ	Data used to judge instruction code of external floating-point operation chip							

Table 2-3. Operation Identifier (1/2)

Identifier	Description
AW	Accumulator (16 bits)
АН	Accumulator (upper byte)
AL	Accumulator (lower byte)
BW	Register BW (16 bits)
cw	Register CW (16 bits)
CL	Register CW (lower byte)
DW	Register DW (16 bits)
SP	Stack pointer (16 bits)
PC	Program counter (16 bits)
PSW	Program status word (16 bits)
IX	Index register (source) (16 bits)
IY	Index register (destination) (16 bits)
PS	Program segment register (16 bits)
DS1	Data segment 1 register (16 bits)
DS0	Data segment 0 register (16 bits)
SS	Stack segment register (16 bits)
AC	Auxiliary carry flag
CY	Carry flag
Р	Parity flag
s	Sign flag
Z	Zero flag
DIR	Direction flag
IE	Interrupt enable flag
V	Overflow flag
BRK	Break flag
MD	Mode flag
()	Contents in memory shown in ()
disp	Displacement (8/16 bits)
ext-disp8	16 bits obtained by extending sign of 8-bit displacement

Table 2-3. Operation Identifier (2/2)

Identifier	Description
temp	Temporary register (8/16/32 bits)
tmpcy	Temporary carry flag (1 bit)
seg	Immediate segment data (16 bits)
offset	Immediate offset data (16 bits)
←	Transfer direction
+	Addition
_	Subtraction
×	Multiplication
÷	Division
%	Modulo
^	AND
V	OR
∀	Exclusive OR
××H	2-digit hexadecimal number
xxxxH	4-digit hexadecimal number

Table 2-4. Flag Operation Identifier

Identifier	Description
(Blank)	No change
0	Cleared to 0
1	Set to 1
×	Set or cleared according to the result
U	Not defined
R	The previously saved value is restored.

Table 2-5. 8/16-Bit General Register Selection

reg	W = 0	W = 1
000	AL	AW
001	CL	CW
010	DL	DW
011	BL	BW
100	АН	SP
101	СН	ВР
110	DH	IX
111	ВН	IY

Table 2-6. Segment Register Selection

sreg	
00	DS1
01	PS
10	SS
11	DS0

The number of clocks, for memory operand, differs among addressing modes. So, use the following values for "EA" items shown in **Table 2-8 Number of Clocks**.

Table 2-7. Number of Clocks for Each Memory Addressing

mod			01		10	
mem	00	Clocks		Clocks	10	Clocks
000	BW + IX	3	BW + IX + disp8	3	BW + IX + disp16	4
001	BW + IY	3	BW + IY + disp8	3	BW + IY + disp16	4
010	BP + IX	3	BP + IX + disp8	3	BP + IX + disp16	4
011	BP + IY	3	BP + IY + disp8	3	BP + IY + disp16	4
100	IX	3	IX + disp8	3	IX + disp16	4
101	IY	3	IY + disp8	3	IY + disp16	4
110	Direct address	3	BP + disp8	3	BP + disp16	4
111	BW	3	BW + disp8	3	BW + disp16	4

[&]quot;T" indicates the number of wait states. Use any number of waits starting at "0" (no wait).

The instruction fetch cycle is not counted as the number of clocks.

There are some branch instructions for which such description as the example below is provided.

The description indicates as follows:

Example 15/8 \cdots 15: the number of clock cycles when branched

8: the number of clock cycles when not branched

2.3 Instruction Set Table

Group	Mnemonic	Onerend	Operation	on Code	Dutos	Operation	Flags						
Data transfer	Operand	7 6 5 4 3 2 1 0	76543210	Bytes	Operation	AC	CY	V	Р	s	Z		
	MOV	reg,reg	1 0 0 0 1 0 1 W	1 1 reg reg	2	reg ← reg							
lialisiei		mem,reg	1 0 0 0 1 0 0 W	mod reg mem	2 to 4	(mem) ← reg							
		reg,mem	1 0 0 0 1 0 1 W	mod reg mem	2 to 4	reg ← (mem)						ĺ	
		mem,imm	1 1 0 0 0 1 1 W	mod 0 0 0 mem	3 to 6	(mem) ← imm							
		reg,imm	1 0 1 1 W reg		2 to 3	reg ← imm			П				
		acc,dmem	1 0 1 0 0 0 0 W		3	When W = 0, AL \leftarrow (dmem) When W = 1, AH \leftarrow (dmem + 1), AL \leftarrow (dmem)			П				
		dmem,acc	1010001W		3	When W = 0, (dmem) \leftarrow AL When W = 1, (dmem + 1) \leftarrow AH, (dmem) \leftarrow AL			П				
		sreg,reg16	10001110	1 1 0 sreg reg	2	sreg ← reg16 sreg : SS, DS0, DS ²			П				
		sreg,mem16	10001110	mod 0 sreg mem	2 to 4	$sreg \leftarrow (mem16)$ $sreg : SS, DS0, DS^2$			П				
		reg16,sreg	10001100	1 1 0 sreg reg	2	reg16 ← sreg							
		mem16,sreg	10001100	mod 0 sreg mem	2 to 4	(mem16) ← sreg							
		DS0,reg16, mem32	11000101	mod reg mem	2 to 4	reg16 ← (mem32) DS0 ← (mem32 + 2)							
		DS1,reg16, mem32	11000100	mod reg mem	2 to 4	reg16 ← (mem32) DS1 ← (mem32 + 2)							
		AH,PSW	10011111		1	AH ← S, Z, F1, AC, F0, P, ĪBRK, CY							
		PSW,AH	10011110		1	S, Z, F1, AC, F0, P, ĪBRK, CY ← AH	×	×		×	×	×	
	LDEA	reg16,mem16	10001101	mod reg mem	2 to 4	reg16 ← mem16							
	TRANS	src-table	1 1 0 1 0 1 1 1		1	AL ← (BW + AL)							
	XCH	reg,reg	1 0 0 0 0 1 1 W	1 1 reg reg	2	reg ↔ reg							
		mem,reg reg,mem	1 0 0 0 0 1 1 W	mod reg mem	2 to 4	(mem) ↔ reg							
		AW,reg16 reg16,AW	1 0 0 1 0 reg		1	AW ↔ reg16							
	MOVSPA Note		00001111	0 0 1 0 0 1 0 1	2	New register bank SS and SP \leftarrow old register bank SS and SP							
	MOVSPB ^{Note}	reg16	00001111	10010101	3	SS and SP of reg16-indicated new register bank ← old register bank							
			1 1 1 1 1 reg			SS and SP						ĺ	

Note These instructions are newly added to the μ PD70108/70116.

Croun			Operation			Fla	gs					
Group	Minemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operation	AC	CY	٧	Р	s	z
Repeat prefix	REPC		01100101		1	Executes the primitive block transfer instruction in the continued byte while $CW \neq 0$, and decrements CW by one. If any interruption is held at this time, it is processed. The program exits the loop when $CY \neq 1$. Same as above.						
	REPNC		01100100		1	The program exits the loop when CY ≠ 0.						Ш
	REP		11110011		1	Executes the primitive block transfer instruction in the continued byte while CW ≠ 0, and decrements CW by one. If any interruption						
	REPE					is held at this time, it is processed. The program exits the loop when the primitive block transfer instruction is CMPBK or CMPM.						Н
REF REF REF REF REF REF rimitive block transfer	REPZ					and when $Z \neq 1$.						
	REPNE		11110010		1	Same as above. The program exits the loop when $Z \neq 0$.						
	REPNZ					When $W = 0$, $(IY) \leftarrow (IX)$						Н
Repeat prefix REPC REPNC REP REPE REPZ REPNE REPNZ Primitive block MOVBK	MOVBK	dst-block,	1010010W		1	$DIR = 0: IX \leftarrow IX + 1, IY \leftarrow IY + 1$						
		src-block				DIR = 1: $IX \leftarrow IX - 1$, $IY \leftarrow IY - 1$ When W = 1, $(IY + 1, IY) \leftarrow (IX + 1, IX)$	-					ıl
						DIR = 0: $IX \leftarrow IX + 2$, $IY \leftarrow IY + 2$ DIR = 1: $IX \leftarrow IX - 2$, $IY \leftarrow IY - 2$						
	СМРВК	src-block,	1 0 1 0 0 1 1 W		1	When W = 0, $(IX) - (IY)$ DIR = 0: $IX \leftarrow IX + 1$, $IY \leftarrow IY + 1$	×	×	×	×	×	×
		dst-block		DIR = 1: $IX \leftarrow IX - 1$, $IY \leftarrow IY - 1$ When W = 1, $(IX + 1, IX) - (IY + 1, IY)$								
						DIR = 0: $IX \leftarrow IX + 2$, $IY \leftarrow IY + 2$ DIR = 1: $IX \leftarrow IX - 2$, $IY \leftarrow IY - 2$						
	СМРМ	dst-block	1010111W		1	When W = 0, AL $-$ (IY) DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY $-$ 1 When W = 1, AW $-$ (IY + 1, IY)	×	×	×	×	×	×
						DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 2 When W = 0, AL \leftarrow (IX)						\vdash
	LDM	src-block	1010110W		1	DIR = 0: $IX \leftarrow IX + 1$; DIR = 1: $IX \leftarrow IX - 1$						
						When W = 1, AW \leftarrow (IX + 1, IX) DIR = 0: IX + 2; DIR = 1: IX \leftarrow IX - 2						ıΙ
	STM	dst-block	1010101W		1	When W = 0, (IY) \leftarrow AL						П
	O TIVI	GOT DIOUR			'	DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY - 1 When W = 1, (IY + 1, IY) \leftarrow AW	4					H
						DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 2						

0			0	Operation	on Code	Dutas	Occupation	Flags						
Group	Mnemo	iemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	СҮ	V	Р	s	Z	
Bit field opera-	INS		reg8,reg8	0 0 0 0 1 1 1 1	00110001	3	16-bit field ← AW							
tion				1 1 reg reg										
			reg8,imm4	0 0 0 0 1 1 1 1	00111001	4	16-bit field ← AW							
				1 1 0 0 0 reg										
	EXT		reg8,reg8	0 0 0 0 1 1 1 1	00110011	3	AW ← 16-bit field							
				1 1 reg reg										
			reg8,imm4	0 0 0 0 1 1 1 1	00111011	4	AW ← 16-bit field							
				1 1 0 0 0 reg										
I/O	IN	Note	acc,imm8	1 1 1 0 0 1 0 W		2	When W = 0, AL ← (imm8) When W = 1, AH ← (imm8 + 1), AL ← (imm8)							
			acc,DW	1 1 1 0 1 1 0 W		1	When W = 0, AL \leftarrow (DW) When W = 1, AH \leftarrow (DW + 1), AL \leftarrow (DW)							
	OUT	Note	imm8,acc	1 1 1 0 0 1 1 W		2	When W = 0, (imm8) \leftarrow AL When W = 1, (imm8 + 1) \leftarrow AH, (imm8) \leftarrow AL							
			DW,acc	1 1 1 0 1 1 1 W		1	When W = 0, (DW) \leftarrow AL When W = 1, (DW + 1) \leftarrow AH, (DW) \leftarrow AL							
Primitive	INM	Note	dst-block,DW	0 1 1 0 1 1 0 W		1	When W = 0, (IY) \leftarrow (DW) DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY - 1							
I/O							When W = 1, $(IY + 1, IY) \leftarrow (DW + 1, DW)$ $DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 2$						\neg	
	OUTM	Note	DW,src-block	0 1 1 0 1 1 1 W		1	When W = 0, (DW) \leftarrow (IX) DIR = 0: IX \leftarrow IX + 1; DIR = 1: IX \leftarrow IX - 1							
							When W = 1, (DW + 1, DW) \leftarrow (IX + 1, IX) DIR = 0: IX \leftarrow IX + 2; DIR = 1: IX \leftarrow IX - 2							

Note When $\overline{\mathsf{IBRK}} = 0$, a software interrupt is generated automatically and the instruction is not executed.

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs	_	
Group	Willemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	٧	Р	s	Z
Addi- tion/	ADD	reg,reg	0 0 0 0 0 0 1 W	1 1 reg reg	2	reg ← reg + reg	×	×	×	×	×	×
subtrac-		mem,reg	0 0 0 0 0 0 0 W	mod reg mem	2 to 4	(mem) ← (mem) + reg	×	×	×	×	×	×
lion		reg,mem	0 0 0 0 0 0 1 W	mod reg mem	2 to 4	reg ← reg + (mem)	×	×	×	×	×	×
		reg,imm	100000sW	1 1 0 0 0 reg	3 to 4	reg ← reg + imm	×	×	×	×	×	×
		mem,imm	1 0 0 0 0 0 s W	mod 0 0 0 mem	3 to 6	(mem) ← (mem) + imm	×	×	×	×	×	×
		acc,imm	0 0 0 0 0 1 0 W		2 to 3	When W = 0, AL \leftarrow AL + imm When W = 1, AW \leftarrow AW + imm	×	×	×	×	×	×
	ADDC	reg,reg	0 0 0 1 0 0 1 W	1 1 reg reg	2	reg ← reg + reg + CY	×	×	×	×	×	×
		mem,reg	0 0 0 1 0 0 0 W	mod reg mem	2 to 4	(mem) ← (mem) + reg + CY	×	×	×	×	×	×
		reg,mem	0 0 0 1 0 0 1 W	mod reg mem	2 to 4	reg ← reg + (mem) + CY	×	×	×	×	×	×
		reg,imm	100000sW	1 1 0 1 0 reg	3 to 4	reg ← reg + imm + CY	×	×	×	×	×	×
		mem,imm	100000sW	mod 0 1 0 mem	3 to 6	(mem) ← (mem) + imm + CY	×	×	×	×	×	×
		acc,imm	0 0 0 1 0 1 0 W		2 to 3	When W = 0, AL \leftarrow AL + imm + CY When W = 1, AW \leftarrow AW + imm + CY	×	×	×	×	×	×
	SUB	reg,reg	0 0 1 0 1 0 1 W	1 1 reg reg	2	reg ← reg − reg	×	×	×	×	×	×
		mem,reg	0 0 1 0 1 0 0 W	mod reg mem	2 to 4	(mem) ← (mem) – reg	×	×	×	×	×	×
		reg,mem	0 0 1 0 1 0 1 W	mod reg mem	2 to 4	reg ← reg − (mem)	×	×	×	×	×	×
		reg,imm	1 0 0 0 0 0 s W	1 1 1 0 1 reg	3 to 4	reg ← reg − imm	×	×	×	×	×	×
		mem,imm	100000sW	mod 1 0 1 mem	3 to 6	(mem) ← (mem) – imm	×	×	×	×	×	×
		acc,imm	0 0 1 0 1 1 0 W		2 to 3	When W = 0, AL \leftarrow AL – imm When W = 1, AW \leftarrow AW – imm	×	×	×	×	×	×
	SUBC	reg,reg	0 0 0 1 1 0 1 W	1 1 reg reg	2	reg ← reg − reg − CY	×	×	×	×	×	×
		mem,reg	0 0 0 1 1 0 0 W	mod reg mem	2 to 4	(mem) ← (mem) – reg – CY	×	×	×	×	×	×
		reg,mem	0 0 0 1 1 0 1 W	mod reg mem	2 to 4	$reg \leftarrow reg - (mem) - CY$	×	×	×	×	×	×
		reg,imm	100000sW	1 1 0 1 1 reg	3 to 4	$reg \leftarrow reg - imm - CY$	×	×	×	×	×	×
		mem,imm	100000sW	mod 0 1 1 mem	3 to 6	(mem) ← (mem) – imm – CY	×	×	×	×	×	×
		acc,imm	0 0 0 1 1 1 0 W		2 to 3	When W = 0, AL \leftarrow AL $-$ imm $-$ CY When W = 1, AW \leftarrow AW $-$ imm $-$ CY	×	×	×	×	×	×

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs		
Group	winemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operation	AC	CY	٧	Р	S	Z
BCD opera-	ADD4S		00001111	00100000	2	dst BCD string ← dst BCD string + src BCD string Note	U	×	U	U	U	×
tion	SUB4S		00001111	00100010	2	dst BCD string ← dst BCD string − src BCD string Note	U	×	U	С	C	×
	CMP4S		00001111	00100110	2	dst BCD string – src BCD string	U	×	U	C	U	×
	ROL4	reg8	0 0 0 0 1 1 1 1	00101000	3	reg Upper Lower Byte Byte						
			1 1 0 0 0 reg									
		mem8	0 0 0 0 1 1 1 1	00101000	3 to 5	Mem Upper Lower Byte Byte						
			mod 0 0 0 mem			Byte						
	ROR4	reg8	0 0 0 0 1 1 1 1	00101010	3	reg Upper Lower						
			1 1 0 0 0 reg			Byte Byte						
		mem8	0 0 0 0 1 1 1 1	00101010	3 to 5	Mem Upper Lower Byte Byte						
			mod 0 0 0 mem			Byte Byte						
Incre- ment/	INC	reg8	11111110	1 1 0 0 0 reg	2	reg8 ← reg8 + 1	×		×	×	×	×
decre- ment		mem	1 1 1 1 1 1 1 W	mod 0 0 0 mem	2 to 4	(mem) ← (mem) + 1	×		×	×	×	×
		reg16	0 1 0 0 0 reg		1	reg16 ← reg16 + 1	×		×	×	×	×
	DEC	reg8	11111110	1 1 0 0 1 reg	2	reg8 ← reg8 − 1	×		×	×	×	×
		mem	1 1 1 1 1 1 1 W	mod 0 0 1 mem	2 to 4	(mem) ← (mem) – 1	×		×	×	×	×
		reg16	0 1 0 0 1 reg		1	reg16 ← reg16 – 1	×		×	×	×	×

n: 1/2 of the number of BCD digits

Note The number of BCD digits is given in the CL register. The value can be set within 1 to 254.

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs		
Group	Willemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operation	AC	CY	٧	Р	s	Z
Multipli- cation	MULU	reg8	11110110	1 1 1 0 0 reg	2	$AW \leftarrow AL \times reg8$ $AH = 0: CY \leftarrow 0, V \leftarrow 0$ $AH \neq 0: CY \leftarrow 1, V \leftarrow 1$	U	×	×	U	U	U
		mem8	1 1 1 1 0 1 1 0	mod 1 0 0 mem	2 to 4	$AW \leftarrow AL \times (mem8)$ $AH = 0: CY \leftarrow 0, V \leftarrow 0$ $AH \neq 0: CY \leftarrow 1, V \leftarrow 1$	U	×	×	U	U	U
		reg16	11110111	1 1 1 0 0 reg	2	DW, AW ← AW × reg16 DW = 0: CY ← 0, V ← 0 DW = 1: CY ← 1, V ← 1	U	×	×	U	U	U
		mem16	11110111	mod 1 0 0 mem	2 to 4	DW, AW ← AW × (mem16) DW = 0: CY ← 0, V ← 0 DW = 1: CY ← 1, V ← 1	U	×	×	U	U	U
	MUL	reg8	1 1 1 1 0 1 1 0	1 1 1 0 1 reg	2		U	×	×	U	U	U
		mem8	11110110	mod 1 0 1 mem	2 to 4		U	×	×	U	U	U
		reg16	11110111	1 1 1 0 1 reg	2	DW, AW \leftarrow AW \times reg16 Extension of DW = AW sign: CY \leftarrow 0, V \leftarrow 0 Extension of DW \neq AW sign: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	U
		mem16	11110111	mod 1 0 1 mem	2 to 4	$\label{eq:decomposition} \begin{split} DW, AW \leftarrow AW \times (mem16) \\ & Extension \ of \ DW = AW \ sign: \ \ CY \leftarrow 0, \ V \leftarrow 0 \\ & Extension \ of \ DW \neq AW \ sign: \ \ CY \leftarrow 1, \ V \leftarrow 1 \end{split}$	U	×	×	U	U	U
		reg16, (reg16,) Note imm8	0 1 1 0 1 0 1 1	1 1 reg reg	3	$ \begin{tabular}{ll} reg16 \leftarrow reg16 \times imm8 \\ Product \leq 16 \ bits: \ CY \leftarrow 0, \ V \leftarrow 0 \\ Product > 16 \ bits: \ CY \leftarrow 1, \ V \leftarrow 1 \\ \end{tabular} $	U	×	×	U	U	U
		reg16, mem16, imm8	0 1 1 0 1 0 1 1	mod reg mem	3 to 5	reg16 ← (mem16) × imm8 Product ≤ 16 bits: $CY \leftarrow 0$, $V \leftarrow 0$ Product > 16 bits: $CY \leftarrow 1$, $V \leftarrow 1$	U	×	×	U	U	U
		reg16, (reg16,) Note imm16	0 1 1 0 1 0 0 1	1 1 reg reg	4	$ \begin{tabular}{ll} reg16 \leftarrow reg16 \times imm16 \\ Product \leq 16 \ bits: \ CY \leftarrow 0, \ V \leftarrow 0 \\ Product > 16 \ bits: \ CY \leftarrow 1, \ V \leftarrow 1 \\ \end{tabular} $	U	×	×	U	U	U
		reg16, mem16, imm16	0 1 1 0 1 0 0 1	mod reg mem	4 to 6	$ \begin{tabular}{ll} reg16 \leftarrow (mem16) \times imm16 \\ Product \leq 16 bits: CY \leftarrow 0, V \leftarrow 0 \\ Product > 16 bits: CY \leftarrow 1, V \leftarrow 1 \\ \end{tabular} $	U	×	×	U	U	U

Note The 2nd operand is omissible. If omitted, the 1st operand is assumed.

			Operati	on Code	D (0			Fla	gs		
Group	Mnemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	٧	Р	S	Z
Unsign- ed division	UVID	reg8	11110110	1 1 1 1 0 reg	2	temp \leftarrow AW When temp + reg8 \leq FFH AH \leftarrow temp%reg8, AL \leftarrow temp + reg8 When temp + reg8 > FFH (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0)	U	U	U	C	U	C
		mem8	11110110	mod 1 1 0 mem	2 to 4	$\begin{split} \text{temp} \leftarrow \text{AW} \\ \text{When temp} + (\text{mem8}) \leq \text{FFH} \\ \text{AH} \leftarrow \text{temp\%(mem8)}, \text{AL} \leftarrow \text{temp} \div (\text{mem8}) \\ \text{When temp} \div (\text{mem8}) > \text{FFH} \\ (\text{SP} - 1, \text{SP} - 2) \leftarrow \text{PSW}, (\text{SP} - 3, \text{SP} - 4) \leftarrow \text{PS} \\ (\text{SP} - 5, \text{SP} - 6) \leftarrow \text{PC}, \text{SP} \leftarrow \text{SP} - 6 \\ \text{IE} \leftarrow 0, \text{BRK} \leftarrow 0, \text{PS} \leftarrow (3, 2), \text{PC} \leftarrow (1, 0) \end{split}$	U	U	U	C	U	U
		reg16	11110111	1 1 1 1 0 reg	2	$\begin{array}{l} temp \leftarrow DW, AW \\ When temp \div reg16 \leq FFFFH \\ DW \leftarrow temp\%reg16, AW \leftarrow temp \div reg16 \\ When temp \div reg16 > FFFFH \\ (SP-1, SP-2) \leftarrow PSW, (SP-3, SP-4) \leftarrow PS \\ (SP-5, SP-6) \leftarrow PC, SP \leftarrow SP-6 \\ IE \leftarrow 0, BRK \leftarrow 0, PS \leftarrow (3, 2), PC \leftarrow (1, 0) \\ \end{array}$	U	U	U	U	U	U
		mem16	11110111	mod 1 1 0 mem	2 to 4	$\begin{split} \text{temp} \leftarrow \text{DW, AW} \\ \text{When temp} + (\text{mem16}) \leq \text{FFFFH} \\ \text{DW} \leftarrow \text{temp\%}(\text{mem16}), \text{AW} \leftarrow \text{temp} + (\text{mem16}) \\ \text{When temp} + (\text{mem16}) > \text{FFFFH} \\ (\text{SP} - 1, \text{SP} - 2) \leftarrow \text{PSW}, (\text{SP} - 3, \text{SP} - 4) \leftarrow \text{PS} \\ (\text{SP} - 5, \text{SP} - 6) \leftarrow \text{PC}, \text{SP} \leftarrow \text{SP} - 6 \\ \text{IE} \leftarrow 0, \text{BRK} \leftarrow 0, \text{PS} \leftarrow (3, 2), \text{PC} \leftarrow (1, 0) \end{split}$	U	U	U	U	U	U

μ
P
D
7
0
3
2
0

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs		
Group	Willemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operation	AC	CY	٧	Р	s	Z
Signed division	DIV	reg8	11110110	1 1 1 1 1 reg	2	$\begin{array}{l} temp \leftarrow AW \\ When \ temp + reg8 > 0 \ and \ temp + reg8 \leq 7FH \ or \\ temp + reg8 < 0 \ and \ temp + reg8 > 0 - 7FH - 1 \\ AH \leftarrow temp\%reg8, AL \leftarrow temp + reg8 \\ When \ temp + reg8 > 0 \ and \ temp + reg8 > 7FH \ or \\ temp + reg8 > 0 \ and \ temp + reg8 < 0 - 7FH - 1 \\ (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS \\ (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 \\ IE \leftarrow 0, \ BRK \leftarrow 0, \ PS \leftarrow (3, 2), \ PC \leftarrow (1, 0) \\ \end{array}$	U	U	U	U	U	U
		mem8	1 1 1 1 0 1 1 0	mod 1 1 1 mem	2 to 4	$\begin{array}{c} temp \leftarrow AW \\ When \ temp + (mem8) > 0 \ and \ temp + (mem8) \leq 7FH \ or \\ temp + (mem8) < 0 \ and \ temp + (mem8) > 0 - 7FH - 1 \\ AH \leftarrow temp\%(mem8), AL \leftarrow temp + (mem8) \\ When \ temp + (mem8) > 0 \ and \ temp + (mem8) > 7FH \ or \\ temp + (mem8) > 0 \ and \ temp + (mem8) < 0 - 7FH - 1 \\ (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS \\ (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 \\ IE \leftarrow 0, \ BRK \leftarrow 0, \ PS \leftarrow (3, 2), \ PC \leftarrow (1, 0) \\ \end{array}$	U	U	U	U	U	U
		reg16	11110111	1 1 1 1 1 reg	2	$\begin{array}{l} temp \leftarrow DW,AW \\ When temp + reg16 > 0 and temp + reg16 \leq 7FFFH or \\ temp + reg16 < 0 and temp + reg16 > 0 - 7FFFH - 1 \\ DW \leftarrow temp\%reg16,AW \leftarrow temp + reg16 \\ When temp + reg16 > 0 and temp + reg16 > 7FFFH or \\ temp + reg16 > 0 and temp + reg16 < 0 - 7FFFH - 1 \\ (SP - 1,SP - 2) \leftarrow PSW,(SP - 3,SP - 4) \leftarrow PS \\ (SP - 5,SP - 6) \leftarrow PC,SP \leftarrow SP - 6 \\ IE \leftarrow 0,BRK \leftarrow 0,PS \leftarrow (3,2),PC \leftarrow (1,0) \end{array}$	U	U	U	U	U	U
		mem16	11110111	mod 1 1 1 mem	2 to 4	$\begin{array}{l} temp \leftarrow DW,AW \\ When temp + (mem16) > 0 and temp + (mem16) \leq 7FFFH or temp + (mem16) < 0 and temp + (mem16) > 0 - 7FFFH - 1 \\ DW \leftarrow temp\% (mem16),AW \leftarrow temp + (mem16) \\ When temp + (mem16) > 0 and temp + (mem16) > 7FFFH or temp + (mem16) > 0 and temp + (mem16) < 0 - 7FFFH - 1 \\ (SP - 1,SP - 2) \leftarrow PSW,(SP - 3,SP - 4) \leftarrow PS \\ (SP - 5,SP - 6) \leftarrow PC,SP \leftarrow SP - 6 \\ IE \leftarrow 0,BRK \leftarrow 0,PS \leftarrow (3,2),PC \leftarrow (1,0) \end{array}$	U	U	U	U	U	U

Crown	Mnomonio	Operand	Operation	on Code	Dutas	Operation			Fla	gs		
Group	Mnemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	٧	Р	S	Z
BCD adjust-	ADJBA		0 0 1 1 0 1 1 1		1	When AL \wedge 0FH > 9 or AC = 1, AL \leftarrow AL + 6 AH \leftarrow AH + 1, AC \leftarrow 1, CY \leftarrow AC, AL \leftarrow AL \wedge 0FH	×	×	U	U	U	U
ment	ADJ4A		0 0 1 0 0 1 1 1		1	When AL \wedge 0FH > 9 or AC = 1, AL \leftarrow AL + 6, AC \leftarrow 1 When AL > 9FH or CY = 1, AL \leftarrow AL + 60H, CY \leftarrow 1	×	×	U	×	×	×
	ADJBS		0 0 1 1 1 1 1 1		1	When AL \wedge 0FH > 9 or AC = 1, AL \leftarrow AL $-$ 6, AH \leftarrow AH $-$ 1, AC \leftarrow 1 CY \leftarrow AC, AL \leftarrow AL \wedge 0FH	×	×	U	U	U	U
	ADJ4S		00101111		1	When AL \wedge 0FH > 9 or AC = 1, AL \leftarrow AL - 6, AC \leftarrow 1 When AL > 9FH or CY = 1, AL \leftarrow AL - 60H, CY \leftarrow 1	×	×	U	×	×	×
Data conver-	CVTBD		1 1 0 1 0 1 0 0	0 0 0 0 1 0 1 0	2	AH ← AL ÷ 0AH, AL ← AL%0AH	U	U	U	×	×	×
sion	CVTDB		1 1 0 1 0 1 0 1	0 0 0 0 1 0 1 0	2	$AL \leftarrow AH \times 0AH + AL, AH \leftarrow 0$	U	U	U	×	×	×
	CVTBW		1 0 0 1 1 0 0 0		1	When AL < 80H, AH \leftarrow 0. In other cases, AH \leftarrow FFH.						
	CVTWL		1 0 0 1 1 0 0 1		1	When AW < 8000H, DW \leftarrow 0. In other cases, DW \leftarrow FFFFH.						
Compare	CMP	reg,reg	0 0 1 1 1 0 1 W	1 1 reg reg	2	reg – reg	×	×	×	×	×	×
		mem,reg	0 0 1 1 1 0 0 W	mod reg mem	2 to 4	(mem) – reg	×	×	×	×	×	×
		reg,mem	0 0 1 1 1 0 1 W	mod reg mem	2 to 4	reg – (mem)	×	×	×	×	×	×
		reg,imm	1 0 0 0 0 0 s W	1 1 1 1 1 reg	3 to 4	reg – imm	×	×	×	×	×	×
		mem,imm	1 0 0 0 0 0 s W	mod 1 1 1 mem	3 to 6	(mem) – imm	×	×	×	×	×	×
		acc,imm	0 0 1 1 1 1 0 W		2 to 3	When W = 0, AL – imm When W = 1, AW – imm	×	×	×	×	×	×
Comple-	NOT	reg	1 1 1 1 0 1 1 W	1 1 0 1 0 reg	2	$reg \leftarrow \overline{reg}$						
ment opera- tion		mem	1 1 1 1 0 1 1 W	mod 0 1 0 mem	2 to 4	(mem) ← (mem)						
1011	NEG	reg	1 1 1 1 0 1 1 W	1 1 0 1 1 reg	2	reg ← <u>reg</u> + 1	×	×	×	×	×	×
		mem	1 1 1 1 0 1 1 W	mod 0 1 1 mem	2 to 4	(mem) ← (mem) + 1	×	×	×	×	×	×

Group	Mnemonic	Operand	Operation	on Code	Putos	Operation			Fla	gs		
Group	Willemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	٧	Р	S	Z
Logical	TEST	reg,reg	1 0 0 0 0 1 0 W	1 1 reg reg	2	reg∧reg	U	0	0	×	×	×
opera- tion		mem,reg reg,mem	1000010W	mod reg mem	2 to 4	(mem) ∧ reg	U	0	0	×	×	×
		reg,imm	1 1 1 1 0 1 1 W	1 1 0 0 0 reg	3 to 4	reg ∧ imm	U	0	0	×	×	×
		mem,imm	1 1 1 1 0 1 1 W	mod 0 0 0 mem	3 to 6	(mem) ∧ imm	U	0	0	×	×	×
		acc,imm	1010100W		2 to 3	When W = 0, AL ∧ imm8 When W = 1, AW ∧ imm16	U	0	0	×	×	×
	AND	reg,reg	0 0 1 0 0 0 1 W	1 1 reg reg	2	reg ← reg ∧ reg	U	0	0	×	×	×
		mem,reg	0 0 1 0 0 0 0 W	mod reg mem	2 to 4	(mem) ← (mem) ∧ reg	U	0	0	×	×	×
		reg,mem	0 0 1 0 0 0 1 W	mod reg mem	2 to 4	reg ← reg ∧ (mem)	U	0	0	×	×	×
		reg,imm	1000000W	1 1 1 0 0 reg	3 to 4	reg ← reg ∧ imm	U	0	0	×	×	×
		mem,imm	1 0 0 0 0 0 0 W	mod 1 0 0 mem	3 to 6	$(mem) \leftarrow (mem) \land imm$	U	0	0	×	×	×
		acc,imm	0 0 1 0 0 1 0 W		2 to 3	When W = 0, AL \leftarrow AL \land imm8 When W = 1, AW \leftarrow AW \land imm16	U	0	0	×	×	×
	OR	reg,reg	0 0 0 0 1 0 1 W	1 1 reg reg	2	reg ← reg ∨ reg	U	0	0	×	×	×
		mem,reg	0 0 0 0 1 0 0 W	mod reg mem	2 to 4	$(mem) \leftarrow (mem) \lor reg$	U	0	0	×	×	×
		reg,mem	0 0 0 0 1 0 1 W	mod reg mem	2 to 4	reg ← reg ∨ (mem)	U	0	0	×	×	×
		reg,imm	1000000W	1 1 0 0 1 reg	3 to 4	reg ← reg ∨ imm	U	0	0	×	×	×
		mem,imm	1 0 0 0 0 0 0 W	mod 0 0 1 mem	3 to 6	$(mem) \leftarrow (mem) \lor imm$	U	0	0	×	×	×
		acc,imm	0 0 0 0 1 1 0 W		2 to 3	When W = 0, AL \leftarrow AL \vee imm8 When W = 1, AW \leftarrow AW \vee imm16	U	0	0	×	×	×
	XOR	reg,reg	0 0 1 1 0 0 1 W	1 1 reg reg	2	reg ← reg ∀ reg	U	0	0	×	×	×
		mem,reg	0 0 1 1 0 0 0 W	mod reg mem	2 to 4	$(mem) \leftarrow (mem) \ \forall \ reg$	U	0	0	×	×	×
		reg,mem	0 0 1 1 0 0 1 W	mod reg mem	2 to 4	reg ← reg ∀ (mem)	U	0	0	×	×	×
		reg,imm	1 0 0 0 0 0 0 W	1 1 1 1 0 reg	3 to 4	reg ← reg ∀ imm	U	0	0	×	×	×
		mem,imm	1 0 0 0 0 0 0 W	mod 1 1 0 mem	3 to 6	(mem) ← (mem) ₩ imm	U	0	0	×	×	×
		acc,imm	0 0 1 1 0 1 0 W		2 to 3	When W = 0, AL \leftarrow AL \forall imm8 When W = 1, AW \leftarrow AW \forall imm16	U	0	0	×	×	×

Group	Mnemonic	Operand	Operati	on Code	Bytes	Operation			Fla	igs		
Group	ivinemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operation	AC	CY	٧	Р	S	z
Bit manipu-	TEST1	reg8,CL	00010000	1 1 0 0 0 reg	3	reg8 bit No. CL = 0: $Z \leftarrow 1$ reg8 bit No. CL = 1: $Z \leftarrow 0$	U	0	0	U	U	×
lation		mem8,CL	0 0 0 0	mod 0 0 0 mem	3 to 5	(mem8) bit No. CL = 0: $Z \leftarrow 1$ (mem8) bit No. CL = 1: $Z \leftarrow 0$	U	0	0	U	U	×
		reg16,CL	0 0 0 1	1 1 0 0 0 reg	3	reg16 bit No. CL = 0: $Z \leftarrow 1$ reg16 bit No. CL = 1: $Z \leftarrow 0$	U	0	0	U	U	×
		mem16,CL	0 0 0 1	mod 0 0 0 mem	3 to 5	(mem16) bit No. CL = 0: $Z \leftarrow 1$ (mem16) bit No. CL = 1: $Z \leftarrow 0$	U	0	0	U	U	×
		reg8,imm3	1 0 0 0	1 1 0 0 0 reg	4	reg8 bit No. imm3 = 0: $Z \leftarrow 1$ reg8 bit No. imm3 = 1: $Z \leftarrow 0$	U	0	0	U	U	×
		mem8,imm3	1 0 0 0	mod 0 0 0 mem	4 to 6	(mem8) bit No. imm3 = 0: Z ← 1 (mem8) bit No. imm3 = 1: Z ← 0	U	0	0	U	U	×
		reg16,imm4	1 0 0 1	1 1 0 0 0 reg	4	reg16 bit No. imm4 = 0: $Z \leftarrow 1$ reg16 bit No. imm4 = 1: $Z \leftarrow 0$	U	0	0	U	U	×
		mem16,imm4	1 0 0 1	mod 0 0 0 mem	4 to 6	(mem16) bit No. imm4 = 0: $Z \leftarrow 1$ (mem16) bit No. imm4 = 1: $Z \leftarrow 0$	U	0	0	U	U	×
	NOT1	reg8,CL	0 1 1 0	1 1 0 0 0 reg	3	reg8 bit No. CL ← reg8 bit No. CL						
		mem8,CL	0 1 1 0	mod 0 0 0 mem	3 to 5	(mem8) bit No. CL $\leftarrow \overline{\text{(mem8)}}$ bit No. CL						
		reg16,CL	0 1 1 1	1 1 0 0 0 reg	3	reg16 bit No. CL ← reg16 bit No. CL						
		mem16,CL	0 1 1 1	mod 0 0 0 mem	3 to 5	(mem16) bit No. CL ← (mem16) bit No. CL						
		reg8,imm3	1 1 1 0	1 1 0 0 0 reg	4	reg8 bit No. imm3 ← reg8 bit No. imm3						
		mem8,imm3	1 1 1 0	mod 0 0 0 mem	4 to 6	(mem8) bit No. imm3 ← (mem8) bit No. imm3						
		reg16,imm4	1 1 1 1	1 1 0 0 0 reg	4	reg16 bit No. imm4 ← reg16 bit No. imm4						
		mem16,imm4	1111	mod 0 0 0 mem	4 to 6	(mem16) bit No. imm4 ← (mem16) bit No. imm4						
			2nd byte Note	3rd byte Note	Note	1st byte = 0FH						

	NOT1	CY	1 1 1 1 0 1 0 1		1	$CY \leftarrow \overline{CY}$		×				
--	------	----	-----------------	--	---	-------------------------------	--	---	--	--	--	--

Group	Mnemonic	Operand		Operation	on Code	Bytes	Operation		Fla	ıgs		
Стоир	WITEITIONIC	Орегани	7 6	5 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Dytes	Operation	AC CY	٧	Р	s	Z
Bit manipu-	CLR1	reg8,CL	0 0	0 1 0 0 1 0	1 1 0 0 0 reg	3	reg8 bit No. CL ← 0					
lation		mem8,CL		0 0 1 0	mod 0 0 0 mem	3 to 5	(mem8) bit No. CL ← 0					
		reg16,CL		0 0 1 1	1 1 0 0 0 reg	3	reg16 bit No. CL ← 0					
		mem16,CL		0 0 1 1	mod 0 0 0 mem	3 to 5	(mem16) bit No. CL ← 0					
		reg8,imm3		1 0 1 0	1 1 0 0 0 reg	4	reg8 bit No. imm3 ← 0					
		mem8,imm3		1 0 1 0	mod 0 0 0 mem	4 to 6	(mem8) bit No. imm3 \leftarrow 0					
		reg16,imm4		1 0 1 1	1 1 0 0 0 reg	4	reg16 bit No. imm4 \leftarrow 0					
		mem16,imm4		1 0 1 1	mod 0 0 0 mem	4 to 6	(mem16) bit No. imm4 \leftarrow 0					
	SET1	reg8,CL		0 1 0 0	1 1 0 0 0 reg	3	reg8 bit No. CL ← 1					
		mem8,CL		0 1 0 0	mod 0 0 0 mem	3 to 5	(mem8) bit No. CL ← 1					
		reg16,CL		0 1 0 1	1 1 0 0 0 reg	3	reg16 bit No. CL ← 1					
		mem16,CL		0 1 0 1	mod 0 0 0 mem	3 to 5	(mem16) bit No. CL ← 1					
		reg8,imm3		1 1 0 0	1 1 0 0 0 reg	4	reg8 bit No. imm3 ← 1					
		mem8,imm3		1 1 0 0	mod 0 0 0 mem	4 to 6	(mem8) bit No. imm3 ← 1					
		reg16,imm4		1 1 0 1	1 1 0 0 0 reg	4	reg16 bit No. imm4 ← 1					
		mem16,imm4	,	1101	mod 0 0 0 mem	4 to 6	(mem16) bit No. imm4 ← 1					
			2	and byte Note	3rd byte Note	Not	te 1st byte = 0FH					
	CLR1	CY	1 1	1 1 1 0 0 0		1	CY ← 0	0				
		DIR	1 1	1 1 1 1 0 0		1	$DIR \leftarrow 0$					
	SET1	CY	1 1	1 1 1 0 0 1		1	CY ← 1	1				
		DIR	1 1	1 1 1 1 0 1		1	DIR ← 1					

Craun	Maamania	Operand	Operation	on Code	Dutos	Operation			Fla	gs		
Group	Mnemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	٧	Р	s	Z
Shift	SHL	reg,1	1 1 0 1 0 0 0 W	1 1 1 0 0 reg	2	$CY \leftarrow \text{reg MSB, reg} \leftarrow \text{reg} \times 2$ When reg MSB \neq CY, V \leftarrow 1 When reg MSB = CY, V \leftarrow 0	U	×	×	×	×	×
		mem,1	1 1 0 1 0 0 0 W	mod 1 0 0 mem	2 to 4	$\label{eq:cy} \begin{array}{l} \text{CY} \leftarrow (\text{mem}) \; \text{MSB}, (\text{mem}) \leftarrow (\text{mem}) \times 2 \\ \text{When (mem)} \; \text{MSB} \neq \text{CY}, \text{V} \leftarrow 1 \\ \text{When (mem)} \; \text{MSB} = \text{CY}, \text{V} \leftarrow 0 \end{array}$	U	×	×	×	×	×
		reg,CL	1 1 0 1 0 0 1 W	1 1 1 0 0 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow reg MSB, reg \leftarrow reg \times 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		mem,CL	1 1 0 1 0 0 1 W	mod 1 0 0 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		reg,imm8	1 1 0 0 0 0 0 W	1 1 1 0 0 reg	3	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. CY \leftarrow reg MSB, reg \leftarrow reg \times 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		mem,imm8	1 1 0 0 0 0 0 W	mod 1 0 0 mem	3 to 5	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×

_	
<u>=</u>	
U	
U	
7	
0	
ယ	
Ŋ	
0	

Croun	Mnemonic	Operand	Operation	on Code	Distan	Operation			Fla	gs		
Group	winemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Орегация	AC	CY	٧	Р	S	Z
Shift	SHR	reg,1	1 1 0 1 0 0 0 W	1 1 1 0 1 reg	2	CY ← reg LSB, reg ← reg ÷ 2 reg MSB ≠ bit following reg MSB: V ← 1 reg MSB = bit following reg MSB: V ← 0	U	×	×	×	×	×
		mem,1	1 1 0 1 0 0 0 W	mod 1 0 1 mem	2 to 4	$ \begin{aligned} & \text{CY} \leftarrow (\text{mem}) \text{ LSB, (mem)} \leftarrow (\text{mem}) \div 2 \\ & (\text{mem}) \text{ MSB} \neq \text{bit following (mem) MSB: } \text{ V} \leftarrow 1 \\ & (\text{mem}) \text{ MSB} = \text{bit following (mem) MSB: } \text{ V} \leftarrow 0 \end{aligned} $	U	×	×	×	×	×
		reg,CL	1 1 0 1 0 0 1 W	1 1 1 0 1 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow reg LSB, reg \leftarrow reg \div 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		mem,CL	1 1 0 1 0 0 1 W	mod 1 0 1 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		reg,imm8	1 1 0 0 0 0 0 W	1 1 1 0 1 reg	3	The following operations are repeated while temp ← imm8 and temp ≠ 0. CY ← reg LSB, reg ← reg ÷ 2 temp ← temp − 1	U	×	U	×	×	×
		mem,imm8	1 1 0 0 0 0 0 W mod 1 0 1 mem 3 to 5	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×		
	SHRA	reg,1	1 1 0 1 0 0 0 W	1 1 1 1 1 reg	2	CY \leftarrow reg LSB, reg \leftarrow reg \div 2, V \leftarrow 0 The operand MSB remains the same status.	U	×	0	×	×	×
		mem,1	1 1 0 1 0 0 0 W	mod 1 1 1 mem	2 to 4	$CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2, V \leftarrow 0$ The operand MSB remains the same status.	U	×	0	×	×	×
		reg,CL	1 1 0 1 0 0 1 W	1 1 1 1 1 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow reg LSB, reg \leftarrow reg \div 2 temp \leftarrow temp $-$ 1 The operand MSB remains the same status.	U	×	U	×	×	×
		mem,CL	1 1 0 1 0 0 1 W	mod 1 1 1 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1 The operand MSB remains the same status.	U	×	U	×	×	×
		reg,imm8	1 1 0 0 0 0 0 W	1 1 1 1 1 reg	3	The following operations are repeated while temp ← imm8 and temp ≠ 0. CY ← reg LSB, reg ← reg ÷ 2 temp ← temp − 1 The operand MSB remains the same status.	U	×	U	×	×	×
		mem,imm8	1 1 0 0 0 0 0 W	mod 1 1 1 mem	3 to 5	ne following operations are repeated while temp \leftarrow imm8	U	×	U	×	×	×

			Operation	on Code					Fla	gs		
Group	Mnemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	٧	Р	s	Z
Rotate	ROL	reg,1	1 1 0 1 0 0 0 W	1 1 0 0 0 reg	2	$\begin{array}{c} \text{CY} \leftarrow \text{reg MSB, reg} \leftarrow \text{reg} \times 2 + \text{CY} \\ \text{reg MSB} \neq \text{CY: } \text{V} \leftarrow 1 \\ \text{reg MSB} = \text{CY: } \text{V} \leftarrow 0 \end{array}$		×	×			
		mem,1	1 1 0 1 0 0 0 W	mod 0 0 0 mem	2 to 4	$\begin{array}{l} \text{CY} \leftarrow (\text{mem}) \; \text{MSB}, (\text{mem}) \leftarrow (\text{mem}) \times 2 + \text{CY} \\ (\text{mem}) \; \text{MSB} \neq \text{CY} \colon \; \text{V} \leftarrow 1 \\ (\text{mem}) \; \text{MSB} = \text{CY} \colon \; \text{V} \leftarrow 0 \end{array}$		×	×			
		reg,CL	1 1 0 1 0 0 1 W	1 1 0 0 0 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow reg MSB, reg \leftarrow reg \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
		mem,CL	1 1 0 1 0 0 1 W	mod 0 0 0 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
		reg,imm8	1 1 0 0 0 0 0 W	1 1 0 0 0 reg	3	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. CY \leftarrow reg MSB, reg \leftarrow reg \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
		mem,imm8	1 1 0 0 0 0 0 W	mod 0 0 0 mem	3 to 5	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
	ROR	reg,1	1 1 0 1 0 0 0 W	1 1 0 0 1 reg	2	$CY \leftarrow reg\ LSB, reg \leftarrow reg \div 2$ $reg\ MSB \leftarrow CY$ $reg\ MSB \neq bit\ following\ reg\ MSB:\ V \leftarrow 1$ $reg\ MSB = bit\ following\ reg\ MSB:\ V \leftarrow 0$		×	×			
		mem,1	1 1 0 1 0 0 0 W	mod 0 0 1 mem	2 to 4			×	×			
		reg,CL	1 1 0 1 0 0 1 W	1 1 0 0 1 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow reg LSB, reg \leftarrow reg \div 2 reg MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			
		mem,CL	1 1 0 1 0 0 1 W	mod 0 0 1 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2 (mem) MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			
		reg,imm8	1 1 0 0 0 0 0 W	1 1 0 0 1 reg	3	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. CY \leftarrow reg LSB, reg \leftarrow reg \div 2 reg MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			
		mem,imm8	1 1 0 0 0 0 0 W	mod 0 0 1 mem	3 to 5	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. $CY \leftarrow$ (mem) LSB, (mem) \leftarrow (mem) \div 2 (mem) MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			

и
ש
Ų
0
ယ
2
0

Crown	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs		
	Willemonic	Operand	7 6 5 4 3 2 1 0	76543210	bytes	Operation	AC	CY	٧	Р	S	z
Rotate	ROLC	reg,1	1 1 0 1 0 0 0 W	1 1 0 1 0 reg	2	$\begin{split} & \text{tmpcy} \leftarrow \text{CY, CY} \leftarrow \text{reg MSB} \\ & \text{reg} \leftarrow \text{reg} \times 2 + \text{tmpcy} \\ & \text{reg MSB} \neq \text{CY: } \text{V} \leftarrow 1 \\ & \text{reg MSB} = \text{CY: } \text{V} \leftarrow 0 \end{split}$		×	×			
		mem,1	1 1 0 1 0 0 0 W	mod 0 1 0 mem	2 to 4	$\begin{split} & tmpcy \leftarrow CY, CY \leftarrow (mem) MSB \\ & (mem) \leftarrow (mem) \times 2 + tmpcy \\ & (mem) MSB \neq CY: V \leftarrow 1 \\ & (mem) MSB = CY: V \leftarrow 0 \end{split}$		×	×			
		reg,CL	1 1 0 1 0 0 1 W	1 1 0 1 0 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow reg MSB reg \leftarrow reg \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			
		mem,CL	1 1 0 1 0 0 1 W	mod 0 1 0 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow (mem) MSB (mem) \leftarrow (mem) \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			
		reg,imm8	1 1 0 0 0 0 0 W	1 1 0 1 0 reg	3	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow reg MSB reg \leftarrow reg \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			
		mem,imm8	1 1 0 0 0 0 0 W	mod 0 1 0 mem	3 to 5	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow (mem) MSB (mem) \leftarrow (mem) \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs		
Group	winemonic	Operand	7 6 5 4 3 2 1 0	76543210	Bytes	Operation	AC	CY	٧	Р	s	Z
Rotate	RORC	reg,1	1 1 0 1 0 0 0 W	1 1 0 1 1 reg	2	$\begin{split} & \text{tmpcy} \leftarrow \text{CY, CY} \leftarrow \text{reg LSB} \\ & \text{reg} \leftarrow \text{reg} \div 2 \\ & \text{reg MSB} \leftarrow \text{tmpcy} \\ & \text{reg MSB} \neq \text{bit following reg MSB: } V \leftarrow 1 \\ & \text{reg MSB} = \text{bit following reg MSB: } V \leftarrow 0 \end{split}$		×	×			
		mem,1	1 1 0 1 0 0 0 W	mod 0 1 1 mem	2 to 4	$\begin{split} & \text{tmpcy} \leftarrow \text{CY, CY} \leftarrow \text{(mem) LSB} \\ & \text{(mem)} \leftarrow \text{(mem)} \div 2 \\ & \text{(mem) MSB} \leftarrow \text{tmpcy} \\ & \text{(mem) MSB} \neq \text{bit following (mem) MSB: } V \leftarrow 1 \\ & \text{(mem) MSB} = \text{bit following (mem) MSB: } V \leftarrow 0 \end{split}$		×	×			
		reg,CL	1 1 0 1 0 0 1 W	1 1 0 1 1 reg	2	The following operations are repeated while temp \leftarrow CL and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow reg LSB reg \leftarrow reg \div 2 reg MSB \leftarrow tmpcy temp \leftarrow temp $-$ 1		×	U			
		mem,CL	1 1 0 1 0 0 1 W	mod 0 1 1 mem	2 to 4	The following operations are repeated while temp \leftarrow CL and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow (mem) LSB (mem) \leftarrow (mem) \div 2 (mem) MSB \leftarrow tmpcy temp \leftarrow temp \rightarrow 1		×	U			
		reg,imm8	1 1 0 0 0 0 0 W	1 1 0 1 1 reg	3	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. tmpcy \leftarrow CY, CY \leftarrow reg LSB reg \leftarrow reg \div 2 reg MSB \leftarrow tmpcy temp \leftarrow temp $-$ 1		×	U			
		mem,imm8	1 1 0 0 0 0 0 W	mod 0 1 1 mem	3 to 5	The following operations are repeated while temp \leftarrow imm8 and temp \neq 0. $tmpcy \leftarrow CY, CY \leftarrow (mem) LSB \\ (mem) \leftarrow (mem) + 2 \\ (mem) MSB \leftarrow tmpcy \\ temp \leftarrow temp - 1$		×	U			

μ
P
D
7
0
သ
2
0

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation		Fla	gs		
Group	Willemonic	Operand	7 6 5 4 3 2 1 0	76543210	bytes	Operation AC CY V SP - 1, SP - 2) \leftarrow PC, SP \leftarrow SP - 2 PC \leftarrow PC + disp SP - 1, SP - 2) \leftarrow PC, PC \leftarrow regptr16 SP \leftarrow SP - 2 SP - 1, SP - 2) \leftarrow PC, SP \leftarrow SP - 2 SP - 1, SP - 2) \leftarrow PC, SP \leftarrow SP - 2 PC \leftarrow (memptr16) SP - 1, SP - 2) \leftarrow PS, (SP - 3, SP - 4) \leftarrow PC SP \leftarrow SP - 4 PS \leftarrow seg, PC \leftarrow offset SP - 1, SP - 2) \leftarrow PS, (SP - 3, SP - 4) \leftarrow PC SP \leftarrow SP - 4 PS \leftarrow (memptr32 + 2), PC \leftarrow (memptr32) PC \leftarrow (SP + 1, SP) SP \leftarrow SP + 2 PC \leftarrow (SP + 1, SP) SP \leftarrow SP + 2, SP \leftarrow SP + pop-value PC \leftarrow (SP + 1, SP) PS \leftarrow SP + 3, SP + 2) SP \leftarrow SP + 4	٧	Р	s	Z	
Sub- routine	CALL	near-proc	11101000		3	$(SP - 1, SP - 2) \leftarrow PC, SP \leftarrow SP - 2$ $PC \leftarrow PC + disp$					
control		regptr16	11111111	1 1 0 1 0 reg	2	$(SP - 1, SP - 2) \leftarrow PC, PC \leftarrow regptr16$ $SP \leftarrow SP - 2$					
		memptr16	11111111	mod 0 1 0 mem	2 to 4	$(SP - 1, SP - 2) \leftarrow PC, SP \leftarrow SP - 2$ PC \leftarrow (memptr16)					
		far-proc	10011010		5	$(SP-1, SP-2) \leftarrow PS, (SP-3, SP-4) \leftarrow PC$ $SP \leftarrow SP-4$ $PS \leftarrow seg, PC \leftarrow offset$					
		memptr32	11111111	mod 0 1 1 mem	2 to 4	$ \begin{aligned} &(SP-1,SP-2) \leftarrow PS,(SP-3,SP-4) \leftarrow PC \\ &SP \leftarrow SP-4 \\ &PS \leftarrow (memptr32+2),PC \leftarrow (memptr32) \end{aligned} $					
	RET		1 1 0 0 0 0 1 1		1	PC ← (SP + 1, SP) SP ← SP + 2					
		pop-value	1 1 0 0 0 0 1 0		3	$\begin{array}{l} PC \leftarrow (SP+1,SP) \\ SP \leftarrow SP+2, SP \leftarrow SP+pop\text{-value} \end{array}$					
			1 1 0 0 1 0 1 1		1	$PC \leftarrow (SP + 1, SP)$ $PS \leftarrow (SP + 3, SP + 2)$ $SP \leftarrow SP + 4$					
		pop-value	1 1 0 0 1 0 1 0		3	$PC \leftarrow (SP + 1, SP)$ $PS \leftarrow (SP + 3, SP + 2)$ $SP \leftarrow SP + 4, SP \leftarrow SP + pop-value$					

0	M	0	Operation	on Code	Distan	Occupios			Fla	gs		
Group	Mnemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	Bytes	Operation	AC	CY	V	Р	s	Z
Stack	PUSH	mem16	11111111	mod 1 1 0 mem	2 to 4	$(SP-1, SP-2) \leftarrow (mem16)$ $SP \leftarrow SP-2$						
lation		reg16	0 1 0 1 0 reg		1	(SP − 1, SP − 2) ← reg16 SP ← SP − 2		C CY V P				
		sreg	1 1 1 1 1 1 1 1 1 1 1 mod 1 1 0 mem 2 to 4 (SP − 1, SP − 2) ← (mem16) SP ← SP − 2 (SP − 1, SP − 2) ← reg16 SP ← SP − 2 (SP − 1, SP − 2) ← reg16 SP ← SP − 2 (SP − 1, SP − 2) ← sreg SP ← SP − 2 (SP − 1, SP − 2) ← sreg SP ← SP − 2 (SP − 1, SP − 2) ← PSW SP ← SP − 2 (SP − 1, SP − 2) ← pSW SP ← SP − 2 (SP − 1, SP − 2) ← imm8 sign extension SP ← SP − 2 (SP − 1, SP − 2) ← imm8 sign extension SP ← SP − 2 (SP − 1, SP − 2) ← imm8 sign extension SP ← SP − 2 (SP − 1, SP − 2) ← imm16 SP ← SP − 2 (SP − 1, SP − 2) ← imm16 SP ← SP − 2 (SP − 1, SP − 2) ← imm16 SP ← SP + 2 (SP − 1, SP − 2) ← imm16 SP ← SP + 2 (SP − 1, SP − 2) (
Stack manipulation POI		PSW	10011100		1							
		R	0 1 1 0 0 0 0 0		1							
		imm8	0 1 1 0 1 0 1 0		2	SP ← SP - 2		AC CY V P				
		imm16	0 1 1 0 1 0 0 0		3	SP ← SP – 2			Y V P			
	POP	mem16	10001111	mod 0 0 0 mem	2 to 4	(mem16) ← (SP – 1, SP – 2)		C CY V P				
		reg16	0 1 0 1 1 reg		1	reg16 ← (SP – 1, SP – 2)						
		sreg	0 0 0 sreg 1 1 1		1	sreg ← (SP − 1, SP − 2)			Y V F			
		PSW	10011101		1		R	R	R	R	R	R
		R	0 1 1 0 0 0 0 1		1	Pop registers from the stack						
	PREPARE	imm16,imm8	1 1 0 0 1 0 0 0		4	Prepare New Stack Frame						
	DISPOSE		7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 1 1 1 mod 1 1 0 mem 2 0 1 0 1 0 reg 0 0 0 sreg 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1	1	Dispose of Stack Frame							
Stack manipulation P	BR	near-label	11101001		3	PC ← PC + disp						
		short-label	1 1 1 0 1 0 1 1		2	PC ← PC + ext-disp8						
		regptr16	1111111	1 1 1 0 0 reg	2	PC ← regptr16						
		memptr16	1111111	mod 1 0 0 mem	2 to 4	, ,						
		far-label	1 1 1 0 1 0 1 0		5	PC ← offset						
		memptr32	11111111	mod 1 0 1 mem	2 to 4		,					

Group	Mnemonic	Operand -	Operation	on Code	Bytes	Operatio	n			Flag	js		
Group	IVITIETHORIC	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operatio	· · · · · · · · · · · · · · · · · · ·	AC	CY	٧	Р	s	2
Condi- tional	BV	short-label	0 1 1 1 0 0 0 0		2	if V = 1	PC ← PC + ext-disp8						
branch	BNV	short-label	0 0 0 1		2	if V = 0	PC ← PC + ext-disp8						
	BC BL	short-label	0 0 1 0		2	if CY = 1	PC ← PC + ext-disp8						
	BNC BNL	short-label	0 0 1 1		2	if CY = 0	PC ← PC + ext-disp8						
	BE BZ	short-label	0 1 0 0		2	if Z = 1	PC ← PC + ext-disp8						
	BNE BNZ	short-label	0 1 0 1		2	if Z = 0	PC ← PC + ext-disp8						
	BNH	short-label	0 1 1 0		2	if CY ∨ Z = 1	PC ← PC + ext-disp8						
	вн	short-label	0 1 1 1		2	if CY ∨ Z = 0	PC ← PC + ext-disp8						
	BN	short-label	1 0 0 0		2	if S = 1	PC ← PC + ext-disp8						
	ВР	short-label	1 0 0 1		2	if S = 0	PC ← PC + ext-disp8						
	BPE	short-label	1 0 1 0		2	if P = 1	PC ← PC + ext-disp8						
	вро	short-label	1 0 1 1		2	if P = 0	PC ← PC + ext-disp8						
	BLT	short-label	1 1 0 0		2	if S ∀ V = 1	PC ← PC + ext-disp8						
	BGE	short-label	1 1 0 1		2	if S ∀ V = 0	PC ← PC + ext-disp8						
	BLE	short-label	1 1 1 0		2	if (S ∀ V) ∨ Z = 1	PC ← PC + ext-disp8						
	BGT	short-label	1 1 1 1		2	if $(S \forall V) \lor Z = 0$	PC ← PC + ext-disp8						
	DBNZNE	short-label	1 1 1 0 0 0 0 0		2	$CW = CW - 1$ if $Z = 0$ and $CW \neq 0$	PC ← PC + ext-disp8						
	DBNZE	short-label	0 0 0 1		2	CW = CW - 1 if $Z = 1$ and $CW \neq 0$	PC ← PC + ext-disp8						
	DBNZ	short-label	0 0 1 0		2	$CW = CW - 1$ if $CW \neq 0$	PC ← PC + ext-disp8						
	BCWZ	short-label	0011		2	if CW = 0	PC ← PC + ext-disp8						
	BTCLR Note	sfr, imm3, short-label	00001111	10011100	5	When (sfr) bit No. imm3 = 1, PC \leftarrow PC bit No. imm3 \leftarrow 0.	+ ext-disp8 and (sfr)						

Note This instruction is newly added to the μ PD70108/70116.

Group	Mnemonic	Operand	Operation	on Code	Bytes	Operation			Fla	gs		
Group	Minemonic	Operand	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	bytes	Operation	AC	CY	V	Р	s	z
Interrupt	BRK	3	1 1 0 0 1 1 0 0		1	$(SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS,$ $(SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6$ $IE \leftarrow 0, BRK \leftarrow 0$ $PS \leftarrow (15, 14), PC \leftarrow (13, 12)$						
		imm8 (≠ 3)	11001101		2	$\begin{array}{l} (SP-1,SP-2) \leftarrow PSW,(SP-3,SP-4) \leftarrow PS,\\ (SP-5,SP-6) \leftarrow PC,SP \leftarrow SP-6\\ IE \leftarrow 0,BRK \leftarrow 0\\ PS \leftarrow (n \times 4 + 3,n \times 4 + 2),PC \leftarrow (n \times 4 + 1,n \times 4)n = imm8 \end{array}$						
	BRKV		11001110		1	When V = 1, (SP − 1, SP − 2) \leftarrow PSW, (SP − 3, SP − 4) \leftarrow PS, (SP − 5, SP − 6) \leftarrow PC, SP \leftarrow SP − 6 IE \leftarrow 0, BRK \leftarrow 0 PS \leftarrow (19, 18), PC \leftarrow (17, 16)	Operation					
	RETI		11001111		1	$\begin{array}{c} PC \leftarrow (SP+1,SP), \; PS \leftarrow (SP+3,SP+2), \\ PSW \leftarrow (SP+5,SP+4), \; SP \leftarrow SP+6 \end{array}$	R	R	R	R	R	R
	RETRBI ^{Note}		00001111	10010001	2	$PC \leftarrow Save PC, PSW \leftarrow Save PSW$	R	R	R	R	R	R
	FINT Note		0 0 0 0 1 1 1 1	10010010	2	Reports the CPU internal interrupt controller that interrupt service routine operation has ended.				P		
	CHKIND	reg16,mem32	0 1 1 0 0 0 1 0	mod reg mem	2 to 4	When (mem32) > reg16 or (mem32 + 2) < reg16, (SP − 1, SP − 2) \leftarrow PSW, (SP − 3, SP − 4) \leftarrow PS, (SP − 5, SP − 6) \leftarrow PC, SP \leftarrow SP − 6 IE \leftarrow 0, BRK \leftarrow 0 PS \leftarrow (23, 22), PC \leftarrow (21, 20)						
Register bank	BRKCS ^{Note}	reg16	00001111	0 0 1 0 1 1 0 1	3	RB2 – 0 ← lower 3 bits of reg16, IE ← 0, BRK ← 0 Save PSW ← PSW Save PC ← PC PC ← Vector PC						
switch			1 1 0 0 0 reg									
	TSKSW Note	reg16	0 0 0 0 1 1 1 1	10010100	3	RB2 – 0 ← lower 3 bits of reg16, Old register bank Save PSW and Save PC ← PSW and PC,	×	×	×	×	×	×
	$ (SP - 1, SP - 2) \leftarrow PSW, (SP - 3, SP - 4) \leftarrow PS, \\ (SP - 5, SP - 6) \leftarrow PC, SP \leftarrow SP - 6 \\ IE \leftarrow 0, BRK \leftarrow 0 \\ PS \leftarrow (23, 22), PC \leftarrow (21, 20) $ $ BRKCS^{\text{Note}} $	PSW and PC ← New register bank Save PSW and Save PC										

Note These instructions are newly added to the μ PD70108/70116.

Croun	Mnemonic	Operand	Operation	on Code	Dutos	Operation			Flag	js		
Group	winemonic	Operand	7 6 5 4 3 2 1 0	76543210	Bytes	Operation	AC	CY	٧	Р	S	Z
CPU control	HALT		11110100		1	CPU Halt						
CONTROL	STOP Note 2		00001111	10011110	2	CPU Stop						
	POLL		10011011		1	Poll and wait						
	DI		11111010		1	IE ← 0						
	EI		11111011		1	IE ← 1						
	BUSLOCK		11110000		1	Bus Lock Prefix						
	FPO1	fp-op	1 1 0 1 1 X X X	1 1 Y Y Y Z Z Z	2	No Operation						
	Note 3	fp-op,mem	1 1 0 1 1 X X X	mod Y Y Y mem	2 to 4	data bus ← (mem)						
	FPO2	fp-op	0 1 1 0 0 1 1 X	1 1 Y Y Y Z Z Z	2	No Operation						
	Note 3	fp-op,mem	0 1 1 0 0 1 1 X	mod Y Y Y mem	2 to 4	data bus ← (mem)						
	NOP		10010000		1	No Operation						
	Note 1		0 0 1 sreg 1 1 0		1	Segment override prefix						

Notes 1. DS0:, DS1:, PS: and SS:

2. This instruction is newly added to the μ PD70108/70116.

3. In the μ PD70320, an interrupt is generated without executing these instructions.

Table 2-8. Number of Clocks (1/10)

			Byte Pro	ocessing	Word Pr	ocessing
Group	Mnemonic	Operands	On-chip RAM Access Enable	On-chip RAM Access Disable	On-chip RAM Access Enable	On-chip RAM Access Disable
Data	MOV	reg, reg	2	2	2	2
transfer		mem, reg	EA + 4 + T	EA + 2	EA + 6 + 2·T	EA + 2
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T
		mem, imm	EA + 5 + T	EA + 5 + T	EA + 5 + 2·T	EA + 5 + T
		reg, imm	5	5	6	6
		acc, dmem	9 + T	9 + T	11 + 2·T	11 + 2·T
		dmem, acc	7 + T	5	9 + 2·T	5
		sreg, reg16	_	_	4	4
		sreg, mem16	_	_	EA + 10 + 2·T	EA + 10 + 2·T
		reg16, sreg	_	_	3	3
		mem16, sreg	_	_	EA + 7 + 2·T	EA + 3
		DS0, reg16, mem32	_	_	EA + 19 + 4·T	EA + 19 + 4·T
		DS1, reg16, mem32	_	_	EA + 19 + 4·T	EA + 19 + 4·T
		AH, PSW	2	2	_	_
		PSW, AH	3	3	_	_
	LDEA	reg16, mem16	_	_	EA + 2	EA + 2
	TRANS	src-table	10 + T	10 + T	_	_
	XCH	reg, reg	3	3	3	3
		mem, reg/ reg, mem	EA + 10 + 2·T	EA + 8 + 2·T	EA + 14 + 2·T	EA + 10 + 2·T
		AW, reg16/ reg16, AW	_	_	4	4
	MOVSPA		_	_	16	16
	MOVSPB	reg16	_	_	11	11
Repeat	REPC		2	2	2	2
prefix	REPNC		2	2	2	2
	REP/REPE/ REPZ		2	2	2	2
	REPNE/ REPNZ		2	2	2	2
Primitive	MOVKB ^{Note}	dst-block,	20 + 2·T	16 + T	24 + 4·T	20 + 2·T
block		src-block	16 + (16 + 2·T)·n	16 + (12 + T)·n	16 + (20 + 4·T)·n	16 + (12 + 2·T)·n
transfer	CMPKB ^{Note}	dst-block,	23 + 2·T	19 + T	27 + 4·T	21 + 4·T
		src-block	16 + (21 + 2·T)·n	16 + (21 + 2·T)·n	16 + (25 + 4·T)·n	16 + (25 + 2·T)·n

Note $n \ge 1$

Table 2-8. Number of Clocks (2/10)

			Byte Pro	ocessing	Word Pr	ocessing		
Group	Mnemonic	Operands	On-chip RAM Access Enable	On-chip RAM Access Disable	On-chip RAM Access Enable	On-chip RAM Access Disable		
Primitive	CMPMNote 1	dst-block	17 + T	17 + T	19 + 2·T	19 + 2·T		
block		src-block	16 + (15 + T)·n	16 + (15 + T)·n	16 + (17 + 2·T)·n	16 + (17 + 2·T)·n		
transfer	LDMNote 1	src-block	12 + T	12 + T	14 + 2·T	14 + 2·T		
			16 + (10 + T)·n	16 + (10 + T)·n	16 + (12 + 2·T)·n	16 + (12 + 2·T)·n		
	STMNote 1	dst-block	12 + T	10	14 + 2·T	10		
			16 + (8 + T)·n	16 + (6+ T)·n	16 + (10 + 2·T)·n	16 + (6 + 2·T)·n		
Bit field	INS	reg8, reg8	63 to 155 (The pro	cessing differs amo	ong bit lengths.)			
manipula-		reg8, imm4	64 to 156 (The processing differs among bit lengths.)					
tion	EXT	reg8, reg8	reg8 41 to 121 (The processing differs among bit lengths.)					
		reg8, imm4	42 to 122 (The pro	cessing differs amo	ong bit lengths.)			
I/O	INNote 2	acc, imm8	14 + T	14 + T	16 + 2·T	16 + 2·T		
		acc, DW	13 + T	13 + T	15 + 2·T	15 + 2·T		
	OUTNote 2	imm8, acc	10 + T	10 + T	10 + 2·T	10 + 2·T		
		DW, acc	9 + T	9 + T	9 + 2·T	9 + 2·T		
Primitive	INM ^{Note 2}	dst-block, DW	19 + 2·T	17 + 2·T	21 + 4·T	17 + 4·T		
I/O			18 + (13 + 2·T)·n	18 + (11 + 2·T)·n	18 + (15 + 4·T)·n	18 + (11 + 4·T)·n		
	OUTMNote 2	DW, src-block	19 + 2·T	17 + 2·T	21 + 4·T	17 + 4·T		
			18 + (13 + 2·T)·n	18 + (11 + 2·T)·n	18 + (15 + 4·T)·n	18 + (11 + 4·T)·n		
Addition/	ADD	reg, reg	2	2	2	2		
subtraction		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T		
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T		
		reg, imm	5	5	6	6		
		mem, imm	EA + 9 + 2·T	EA + 7 + 2·T	EA + 14 + 4·T	EA + 10 + 4·T		
		acc, imm	5	5	6	6		
	ADDC	reg, reg	2	2	2	2		
		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T		
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T		
		reg, imm	5	5	6	6		
		mem, imm	EA + 9 + 2·T	EA + 7 + 2·T	EA + 14 + 4·T	EA + 10 + 4·T		
		acc, imm	5	5	6	6		

Notes 1. $n \ge 1$

2. When $\overline{IBRK} = 1$

Table 2-8. Number of Clocks (3/10)

			Byte Pro	ocessing	Word Pr	ocessing
Group	Mnemonic	Operands	On-chip RAM	On-chip RAM	On-chip RAM	On-chip RAM
			Access Enable	Access Disable	Access Enable	Access Disable
Addition/	SUB	reg, reg	2	2	2	2
subtraction		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T
		reg, imm	5	5	6	6
		mem, imm	EA + 9 + 2·T	EA + 7 + 2·T	EA + 14 + 4·T	EA + 10 + 4·T
		acc, imm	5	5	6	6
	SUBC	reg, reg	2	2	2	2
		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T
		reg, imm	5	5	6	6
		mem, imm	EA + 9 + 2·T	EA + 7 + 2·T	EA + 14 + 4·T	EA + 10 + 4·T
		acc, imm	5	5	6	6
BCD	ADD4S ^{Note}		22 + (27 + 3·T)·n	22 + (25 + 3·T)·n	_	_
operation	SUB4S ^{Note}		22 + (27 + 3·T)·n	22 + (25 + 3·T)·n	_	_
	CMP4S ^{Note}		22 + (23 + 3·T)·n	22 + (23 + 3·T)·n	_	_
	ROL4	reg8	17	17	_	_
		mem8	EA + 18 + 2·T	EA + 16 + 2·T	_	_
	ROR4	reg8	21	21	_	_
		mem8	EA + 24 + 2·T	EA + 22 + 2·T	_	_
Increment/	INC	reg8	5	5	_	_
decrement		mem8	EA + 11 + 2·T	EA + 9 + 2·T	EA + 15 + 4·T	EA + 11 + 4·T
		reg16	_	_	2	2
	DEC	reg8	5	5	_	_
		mem8	EA + 11 + 2·T	EA + 9 + 2·T	EA + 15 + 4·T	EA + 11 + 4·T
		reg16	_	_	2	2
Multiplica-	MULU	reg8	24	24	_	_
tion		mem8	EA + 26 + T	EA + 26 + T	_	_
		reg16	_	_	32	32
		mem16	_	_	EA + 34 + 2·T	EA + 34 + 2·T

Note n: 1/2 of the number of BCD digits.

Table 2-8. Number of Clocks (4/10)

			Byte Pr	ocessing	Word Pr	ocessing
Group	Mnemonic	Operands	On-chip RAM Access Enable	On-chip RAM Access Disable	On-chip RAM Access Enable	On-chip RAM Access Disable
Multiplica-	MUL	reg8	31 to 40	31 to 40	_	_
tion		mem8	EA + 33 + T to EA + 42 + T	EA + 33 + T to EA + 42 + T	_	_
		reg16	_	_	39 to 48	39 to 48
		mem16	_	_	EA + 43 + 2·T to EA + 52 + 2·T	EA + 43 + 2·T to EA + 52 + 2·T
		reg16, (reg16,) imm8	_	_	39 to 49	39 to 49
		reg16, mem16, imm8	_	_	EA + 43 + 2·T to EA + 53 + 2·T	EA + 43 + 2·T to EA + 53 + 2·T
		reg16, (reg16,) imm16	_	_	40 to 50	40 to 50
		reg16, mem16, imm16	_	_	EA + 44 + 2·T to EA + 54 + 2·T	EA + 44 + 2·T to EA + 54 + 2·T
Unsigned	DIVU	reg8	31	31	_	_
division		mem8	EA + 33 + T	EA + 33 + T	_	_
		reg16	_	_	39	39
		mem16	<u> </u>	_	EA + 43 + 2·T	EA + 43 + 2·T
Signed	DIV	reg8	46 to 56	46 to 56	_	_
division		mem8	EA + 48 + T to EA + 58 + T	EA + 48 + T to EA + 58 + T	_	_
		reg16	_	_	54 to 64	54 to 64
		mem16	_	_	EA + 58 + 2·T to EA + 68 + 2·T	EA + 58 + 2·T to EA + 68 + 2·T
BCD	ADJBA		17	17	_	_
adjustment	ADJ4A		9	9	_	_
	ADJBS		17	17	_	_
	ADJ4S		9	9	_	_
Data	CVTBD		19	19	_	_
conversion	CVTDB		20	20	_	_
	CVTBW		3	3	_	_
	CVTWL		_	_	8	8
Compare	СМР	reg, reg	2	2	2	2
		mem, reg	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T
		reg, imm	5	5	6	6
		mem, imm	EA + 7 + T	EA + 7 + T	EA + 10 + 2·T	EA + 10 + 2·T
		acc, imm	5	5	6	6

Table 2-8. Number of Clocks (5/10)

			Byte Pro	ocessing	Word Processing		
Group	Mnemonic	Operands	On-chip RAM Access Enable	On-chip RAM Access Disable	On-chip RAM Access Enable	On-chip RAM Access Disable	
Comple	NOT	reg	5	5	5	5	
ment		mem	EA + 11 + 2·T	EA + 9 + T	EA + 15 + 4·T	EA + 11 + 2·T	
operation	NEG	reg	5	5	5	5	
		mem	EA + 11 + 2·T	EA + 9 + T	EA + 15 + 4·T	EA + 11 + 2·T	
Logical	TEST	reg, reg	4	4	4	4	
operation		mem, reg/ reg, mem	EA + 8 + T	EA + 8 + T	EA + 10 + 2·T	EA + 10 + 2·T	
		reg, imm	7	7	8	8	
		mem, imm	EA + 11 + T	EA + 11 + T	EA + 11 + 2·T	EA + 11 + 2·T	
		acc, imm	5	5	6	6	
	AND	reg, reg	2	2	2	2	
		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T	
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T	
		reg, imm	5	5	6	6	
		mem, imm	EA + 9 + T	EA + 7 + T	EA + 14 + 4·T	EA + 10 + 4·T	
		acc, imm	5	5	6	6	
	OR	reg, reg	2	2	2	2	
		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T	
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T	
		reg, imm	5	5	6	6	
		mem, imm	EA + 9 + T	EA + 7 + T	EA + 14 + 4·T	EA + 10 + 4·T	
		acc, imm	5	5	6	6	
	XOR	reg, reg	2	2	2	2	
		mem, reg	EA + 8 + 2·T	EA + 6 + T	EA + 12 + 4·T	EA + 8 + 2·T	
		reg, mem	EA + 6 + T	EA + 6 + T	EA + 8 + 2·T	EA + 8 + 2·T	
		reg, imm	5	5	6	6	
		mem, imm	EA + 9 + T	EA + 7 + T	EA + 14 + 4·T	EA + 10 + 4·T	
		acc, imm	5	5	6	6	
Bit	TEST1	reg8, CL	7	7	_	_	
manipula-		mem8, CL	EA + 11 + T	EA + 11 + T	_	_	
tion		reg16, CL	_	_	7	7	
		mem16, CL	_	_	EA + 13 + 2·T	EA + 13 + 2·T	
		reg8, imm3	6	6	_	_	
		mem8, imm3	EA + 8 + T	EA + 8 + T	_	_	
		reg16, imm4	_	_	6	6	
		mem16, imm4	_	_	EA + 10 + 2·T	EA + 10 + 2·T	
	NOT1	reg8, CL	7	7	_	_	
		mem8, CL	EA + 13 + 2·T	EA + 11 + T	_	_	
		reg16, CL	_	_	7	7	

Table 2-8. Number of Clocks (6/10)

			Byte Pro	ocessing	Word Pr	ocessing
Group	Mnemonic	Operands	On-chip RAM Access Enable	On-chip RAM Access Disable	On-chip RAM Access Enable	On-chip RAM Access Disable
Bit	NOT1	mem16, CL	_	_	EA + 17 + 4·T	EA + 13 + 2·T
manipula-		reg8, imm3	6	6	_	_
tion		mem8, imm3	EA + 10 + 2·T	EA + 8 + T	_	_
		reg16, imm4	_	_	6	6
		mem16, imm4	_	_	EA + 14 + 4·T	EA + 10 + 2·T
	NOT1	CY	2	2	2	2
Bit	CLR1	reg8, CL	8	8	_	_
manipula-		mem8, CL	EA + 14 + 2·T	EA + 12 + T	_	_
tion		reg16, CL	_	_	8	8
		mem16, CL	_	_	EA + 18 + 4·T	EA + 14 + 2·T
		reg8, imm3	7	7	_	_
		mem8, imm3	EA + 11 + 2·T	EA + 9 + T	_	_
		reg16, imm4	_	_	7	7
		mem16, imm4	_	_	EA + 15 + 4·T	EA + 10 + 2·T
	SET1	reg8, CL	7	7	_	_
		mem8, CL	EA + 13 + 2·T	EA + 11 + T	_	_
		reg16, CL	_	_	7	7
		mem16, CL	_	_	EA + 17 + 4·T	EA + 13 + 2·T
		reg8, imm3	6	6	_	_
		mem8, imm3	EA + 10 + 2·T	EA + 8 + T	_	_
		reg16, imm4	_	_	6	6
		mem16, imm4	_	_	EA + 14 + 4·T	EA + 10 + 2·T
	CLR1	CY	2	2	2	2
		DIR	2	2	2	2
	SET1	CY	2	2	2	2
		DIR	2	2	2	2
Shift	SHL	reg,1	8	8	8	8
	Note	mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T
		reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2·n
		mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·
		reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n
		mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·
	SHR	reg, 1	8	8	8	8
		mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T

Note n: Shift count

Table 2-8. Number of Clocks (7/10)

				Byte Pro	ocessing	Word Pr	ocessing
Group	Mnemonic		Operands	On-chip RAM	On-chip RAM	On-chip RAM	On-chip RAM
				Access Enable	Access Disable	Access Enable	Access Disable
Shift	SHR		reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2·n
		Note	mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·n
			reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n
			mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·n
	SHRA		reg,1	8	8	8	8
		Note	mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T
			reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2·n
			mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·n
			reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n
			mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·n
Rotate	ROL		reg,1	8	8	8	8
		Note	mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T
			reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2⋅n
			mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·n
			reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n
			mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·n
	ROR		reg,1	8	8	8	8
		Note	mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T
			reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2·n
			mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·n
			reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n
			mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·n
	ROLC		reg,1	8	8	8	8
		Note	mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T
			reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2·n
			mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·n
			reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n
			mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·n
	RORC		reg,1	8	8	8	8
			mem, 1	EA + 14 + 2·T	EA + 12 + T	EA + 18 + 4·T	EA + 14 + 2·T

Note n: Shift count

Table 2-8. Number of Clocks (8/10)

			Byte Pro	ocessing	Word Pr	ocessing	
Group	Mnemonic	Operands	On-chip RAM	On-chip RAM	On-chip RAM	On-chip RAM	
			Access Enable	Access Disable	Access Enable	Access Disable	
Rotate	RORC	reg, CL	11 + 2·n	11 + 2·n	11 + 2·n	11 + 2·n	
	Note	mem, CL	EA + 17 + 2·T + 2·n	EA + 15 + T + 2·n	EA + 21 + 4·T + 2·n	EA + 17 + 2·T + 2·n	
		reg, imm8	9 + 2·n	9 + 2·n	9 + 2·n	9 + 2·n	
		mem, imm8	EA + 13 + 2·T + 2·n	EA + 11 + T + 2·n	EA + 17 + 4·T + 2·n	EA + 13 + 2·T + 2·n	
Subroutine	CALL	near-proc	_	_	22 + 2·T	18 + 2·T	
control		regptr16	_	_	22 + 2·T	18 + 2·T	
		memptr16	_	_	EA + 26 + 4·T	EA + 24 + 4·T	
		far-proc	_	_	38 + 4·T	34 + 4·T	
		memptr32	_	_	EA + 36 + 8·T	EA + 24 + 8·T	
	RET		_	_	20 + 2·T	20 + 2·T	
		pop-value	_	_	20 + 2·T	20 + 2·T	
			_	_	29 + 4·T	29 + 4·T	
		pop-value	_	_	30 + 4·T	30 + 4·T	
Stack	PUSH	mem16	_	_	EA + 18 + 4·T	EA + 14 + 4·T	
manipula-		reg16	_	_	10 + 2·T	6	
tion		sreg	_	_	11 + 2·T	7	
		PSW	_	_	10 + 2·T	6	
		R	_	_	82 + 16∙T	50	
		imm8	_	_	13 + 2·T	9	
		imm16	_	_	14 + 2·T	10	
	POP	mem16	_	_	EA + 16 + 4·T	EA + 12 + 2·T	
		reg16	_	_	12 + 2·T	12 + 2·T	
		sreg	_	_	13 + 2·T	13 + 2·T	
		PSW	_	_	14 + 2·T	14 + 2·T	
		R	_	_	82 + 16·T	58	
	PREPARE	imm16, imm8	When imm8 = 0, 2		1		
			When imm8 = 1, 3 When imm8 = n , n) + 4.T		
	DISPOSE		When imm8 = n, n > 1, 46 + 19(n - 1) + $4 \cdot T$ — 12 + $2 \cdot T$ 12				
	DIOI OOL				12 1 2-1	12 + 2·T	

Note n: Shift count

Table 2-8. Number of Clocks (9/10)

			Byte Pr	ocessing	Word Pr	ocessing	
Group	Mnemonic	Operands	On-chip RAM Access Enable	On-chip RAM Access Disable	On-chip RAM Access Enable	On-chip RAM Access Disable	
Branch	BR	near-label	_	_	12	12	
		short-label	_	_	12	12	
		regptr16	_	_	13	13	
		memptr16	_	_	EA + 17 + 2·T	EA + 17 + 2·T	
		far-label	_	_	15	15	
		memptr32	_	_	EA + 25 + 4·T	EA + 25 + 4·T	
Conditional	BV	short-label	_	_	15/8	15/8	
branch	BNV	short-label	_	_	15/8	15/8	
	BC/BL	short-label	_	_	15/8	15/8	
	BNC/BNL	short-label	_	_	15/8	15/8	
	BE/BZ	short-label	_	_	15/8	15/8	
	BNE/BNZ	short-label	_	_	15/8	15/8	
	BNH	short-label	_	_	15/8	15/8	
	ВН	short-label	_	_	15/8	15/8	
	BN	short-label	_	_	15/8	15/8	
	BP	short-label	_	_	15/8	15/8	
	BPE	short-label	_	_	15/8	15/8	
	ВРО	short-label	_	_	15/8	15/8	
	BLT	short-label	_	_	15/8	15/8	
	BGE	short-label	_	_	15/8	15/8	
	BLE	short-label	_	_	15/8	15/8	
	BGT	short-label	_	_	15/8	15/8	
	DBNZNE	short-label	_	_	17/8	17/8	
	DBNZE	short-label	_	_	17/8	17/8	
	DBNZ	short-label	_	_	17/8	17/8	
	BCWZ	short-label	_	_	15/8	15/8	
	BTCLR	sfr, imm3, short-label	29/21	29/21	_	_	
Interrupt	BRK	3	_	_	55 + 10·T	43 + 10·T	
		imm8 (≠3)	_	_	56 + 10·T	44 + 10·T	
	BRKV		_	_	55 + 10·T	43 + 10·T	
	RETI		_	_	45 + 6⋅T	37 + 2·T	
	RETRBI		_	_	12	12	
	FINT		2	2	2	2	
	CHKIND	reg16, mem32	_	_	EA + 26 + 4·T	EA + 26 + 4·T	

Table 2-8. Number of Clocks (10/10)

			Byte Pro	ocessing	Word Processing		
Group	Mnemonic	Operands	On-chip RAM	On-chip RAM	On-chip RAM	On-chip RAM	
			Access Enable	Access Disable	Access Enable	Access Disable	
Register	BRKCS	reg16	_	_	15	15	
bank switch	TSKSW	reg16	_	_	20	20	
CPU	HALT		_	_	_	_	
control	STOP		_	_	_	_	
	POLL		_	_	_	_	
	DI		4	4	4	4	
	EI		12	12	12	12	
	BUSLOCK		2	2	2	2	
	FPO1	fp-op	_	_	60 + 10∙T	48 + 10·T	
		fp-op, mem	_	_	60 + 10∙T	48 + 10·T	
	FPO2	fp-op	_	_	60 + 10∙T	48 + 10·T	
		fp-op, mem	_	_	60 + 10∙T	48 + 10·T	
	NOP		4	4	4	4	
_	verride prefix , PS: and SS:)		2	2	2	2	

3. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Parameter	Symbol	Test Conditions	Rating	Unit
Supply Voltage	V _{DD}		-0.5 to +7.0	V
Input Voltage	Vтн		-0.5 to V _{DD} + 0.5	V
	Vı		-0.5 to V _{DD} + 0.5	V
Output Voltage	Vo		-0.5 to V _{DD} + 0.5	V
Output Current Low	Іоь	Each output pin	4.0	mA
		Total	50	mA
Output Current High	Іон	Each output pin	-2.0	mA
		Total	-20	mA
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	T _{stg}		-65 to +150	°C

- Cautions 1. Do not make direct connections of the output (or input/output) pins of the IC product with each other, and also avoid direct connections to VDD, VCC or GND. However, the open drain pins or the open collector pins can be directly connected with each other. For the external circuit designed with the timing specifications so that any collision of the outputs from the pins subject to high-impedance state may be prevented, direct connection can be also made.
 - 2. Product quality may suffer if the absolute maximum ratings are exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded. The normal operation and reliability of the product can be only assured with the specifications and the conditions indicated as the DC and AC characteristics.

* OSCILLATOR CHARACTERISTICS

(Ta = -40 to +85°C, Vdd = +5.0 V \pm 10%, Vss = 0 V, 0 V \leq Vth \leq Vdd + 0.1 V)

Resonator	Recommended Circuit	Parameter	μPD7	70320	μPD70	0320-8	Unit
Resoliator	Recommended Circuit	Farameter	MIN.	MAX.	MIN.	0320-8 MAX. 16 16	Offic
Ceramic or Crystal Resonator	X1 X2 C1 C2	Oscillation frequency (fxx)	4	10	4	16	MHz
External Clock	① X1 X2	X1 input frequency (fx)	4	10	4	16	MHz
	or ②	X1 rise/fall time (txr, txr)	0	20	0	20	ns
	X1 X2 Open HCMOS Inverter	X1 input high-/ low-level width (twxH, twxL)	35	250	20	250	ns

Cautions 1. Mount the oscillation circuit as close to pins X1 and X2 as possible.

2. Do not route other signal lines through the area within the dotted line.

RECOMMENDED OSCILLATOR CONSTANT

Ceramic resonator

Manufacturer	Part Number	Recommended Constants			
Wandacturer	T art Number	C1 [pF]	C2 [pF]		
Kyocera Corp.	KBR-10.0M ^{Note 1}	33	33		
Murata Mfg. Co., Ltd.	CSA7.37MT040Note 2	100	100		
	CSA10.0MTNote 1	47	47		
	CSA11.0MTNote 2				
	CSA16.0MX040Note 1	30	30		
TDK	FCR10.0M2SNote 2	30	30		
	FCR16.0M2SNote 2	15	6		
	FCR16.0M2GNote 2	22	10		

Notes 1. The operating ambient temperature (T_A) is -10° C to $+70^{\circ}$ C when this resonator is used.

2. The operating ambient temperature (T_A) is -20° C to $+80^{\circ}$ C when this resonator is used.

Crystal resonator

Manufacturer	Part Number	Recommended Constants			
Warraraotaro	T dit Number	C1 [pF]	C2 [pF]		
Kinseki Co., Ltd.	HC-49/U(KR-100)	22	22		
	HC-49/U(KR-160)	22	22		

Remark For more details on the characteristics of the resonators, please contact the manufacturer.

CAPACITANCE (TA = 25° C, VDD = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Cı	fc = 1 MHz			10	pF
Output Capacitance	Со	Unmeasured pins returned to 0 V.			20	pF
Input/output Capacitance	Сю				20	pF

DC CHARACTERISTICS (T_A = -40° C to $+85^{\circ}$ C, V_{DD} = +5.0 V $\pm 10\%$)

Parameter	Symbol	Test (Conditions	MIN.	TYP.	MAX.	Unit
Input Voltage Low	VIL			0		0.8	V
Input Voltage High	V _{IH1}	Except RESET, P1	0/NMI, X1, X2	2.2		V _{DD}	V
	V _{IH2}	RESET, P10/NMI,	X1, X2	0.8Vpd		V _{DD}	V
Output Voltage Low	VoL	IoL = 1.6 mA				0.45	V
Output Voltage High	Vон	Iон = −0.4 mA		V _{DD} - 1.0			V
Input Current	lı	\overline{EA} , P10/NMI; $0 \le V_I \le V_{DD}$				±20	μΑ
Input Leakage Current	lu	Except EA, P10/NMI; 0 ≤ Vı ≤ VDD				±10	μΑ
Output Leakage Current	ILO	$0 \le V_0 \le V_{DD}$				±10	μΑ
Vтн Current	Ітн	0 V ≤ V _{TH} ≤ V _{DD}			0.5	1.0	mA
VDD Supply Current	I _{DD1}	Operating mode	μPD70320		50	100	mA
			μPD70320-8		65	120	mA
	I _{DD2}	HALT mode	μPD70320		20	40	mA
			μPD70320-8		25	50	mA
	IDD3	STOP mode	•		10	30	μΑ

\star AC CHARACTERISTICS (Ta = -40 to +85°C, Vdd = +5.0 V $\pm 10\%$)

Parameter	Symbol	Test Conditions	μPD70		0320 μPD7032		Unit	
raiametei	Symbol	Test Conditions	MIN.	MAX.	MIN.	MAX.	J III	
X1 Input Cycle Time	tcyx		98	250	62	250	ns	
X1 Input High-/Low-Level Width	twxH, twxL		35		20		ns	
X1 Input Rise/Fall Time	txr, txr			20		20	ns	
CLKOUT Output Cycle Time	t cyk	fx/2, T = tсук	200	2000	125	2000	ns	
CLKOUT Output High-/Low-Level Width	twkh, twkL		0.5T – 15		0.5T – 15		ns	
CLKOUT Output Rise/Fall Time	tkr, tkf			15		15	ns	
Input Rise/Fall Time	tir, tif	Except RESET, NMI,		20		20	ns	
		X1 and X2						
	tirs, tifs	RESET, NMI		30		30	ns	
Output Rise/Fall Time	tor, tor	Except CLKOUT		20		20	ns	

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Address Delay Time from CLKOUT	t DKA			90	ns
Data Input Delay Time from Address	tDADR			(n + 1.5)T - 90	ns
Data Delay Time from MREQ ↓	tomrd			(n + 1)T - 75	ns
Data Delay Time from MSTB ↓	tomso			(n+ 0.5)T - 75	ns
MSTB ↓ Delay Time from MREQ ↓	tomrms		0.5T - 35	0.5T + 35	ns
MREQ Low-Level Width	twmrl		(n + 1)T - 30	(n + 1)T + 30	ns
Address Hold Time (from MREQ ↑)	tнма		0.5T - 30		ns
Data Input Hold Time (from MREQ ↑)	thmdr		0		ns
Control Signal Recovery Time	trvc		T – 25		ns
Data Output Delay Time from Address	tdadw			0.5T + 50	ns
Address Setup Time (to MREQ ↓)	t DAMR		0.5T - 30		ns
Address Setup Time (to MSTB ↓)	tDAMS		T - 30		ns
MSTB Low-Level Width	twmsL		(n + 0.5)T - 30	(n + 0.5)T + 30	ns
Data Output Setup Time (to MSTB ↑)	tsрм		(n + 1)T - 50		ns
Data Output Hold Time (from MSTB ↑)	thmdw		0.5T - 30		ns
Address Setup Time (to IOSTB ↓)	tDAIS		0.5T - 30		ns
Data Delay Time from IOSTB ↓	toiso			(n + 1)T - 90	ns
IOSTB Low-Level Width	twist		(n + 1)T - 30		ns
Address Hold Time (from IOSTB ↑)	thisa		0.5T - 30		ns
Data Input Hold Time (from IOREQ ↑)	thisdr		0		ns
Data Output Setup Time (to IOSTB ↑)	tsdis		(n + 1)T - 50		ns
Data Output Hold Time (from IOSTB ↑)	thisdw		0.5T - 30		ns
DMARQ Setup Time (to MREQ ↓)	tsdadq	Demand release mode		1T	ns
DMARQ Hold Time (from DMAAK ↓)	thdadq	Demand release mode	0		ns
DMAAK Output Low-Level Width	twdmrl	Read mode	(n + 1.5)T - 30		ns
TC ↓ Delay Time from DMAAK ↓	t DDATC			0.5T + 50	ns
TC Low-Level Width	twtcl		2T – 30		ns
DMAAK Output Low-Level Width	twdmwl	Write mode	(n + 1)T - 30		ns
Address Setup Time (to REFRQ ↓)	t DARF		0.5T - 30		ns
REFRQ Low-Level Width	twrfl		(n + 1)T - 30		ns
Address Hold Time (from REFRQ ↑)	thrfa		0.5T - 30		ns
RESET Low-Level Width	twrsL1	STOP mode release/ power-ON reset	30		ms
	twrsl2	System reset	5		μs
READY Setup Time	tscry0	n ≥ 2		T – 100	ns
(to $\overline{MREQ} \downarrow$, $\overline{IOSTB} \downarrow$)	tscry	n ≥ 3		(n - 1)T - 100	ns

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
READY Hold Time	thcry0	n = 2	1T		ns
$(from \overline{MREQ} \downarrow, \overline{IOSTB} \downarrow)$	thcry	n ≥ 3	(n - 1)T		ns
	thcry1	n ≥ 3	(n – 2)T		ns
HLDRQ Setup Time (to CLKOUT ↑)	tsнак		30		ns
HLDAK ↓ Delay Time from CLKOUT ↑	t dkha			80	ns
HLDAK ↓ Delay Time from Bus Float	t CFHA		1T – 50		ns
Bus Output Delay Time from HLDAK↑	t DHAC		1T – 50		ns
HLDAK ↑ Delay Time from HLDRQ ↓	t dhqha			3T + 160	ns
Bus Output Delay Time from HLDRQ \downarrow	tрнас		3T + 30		ns
HLDRQ Low-Level Width	twhqL		1.5T		ns
HLDAK Low-Level Width	twhal		1T		ns
INT, DMARQ Setup Time (to CLKOUT ↑)	t siqk		30		ns
INT, DMARQ High-/Low-Level Width	twiqh, twiql		8T		ns
POLL Setup Time (to CLKOUT ↑)	t splk		30		ns
NMI High-/Low-Level Width	twnih, twnil		5		μs
CTS Low-Level Width	twcTL		2T		ns
INT Setup Time (to CLKOUT ↑)	tsirk		30		ns
$\overline{INTAK} \downarrow Delay \ Time \ from \ CLKOUT \downarrow$	t DKIA			80	ns
INT Hold Time (from $\overline{\text{INTAK}}\downarrow$)	thiaiq		0		ns
INTAK Low-Level Width	twial		2T – 30		ns
INTAK High-Level Width	twiah		1T – 30		ns
Data Delay Time from $\overline{INTAK} \downarrow$	t DIAD			2T – 130	ns
Data Hold Time (from INTAK ↑)	thiad		0	0.5T	ns
SCK0 Cycle Time	t cytk		1000		ns
SCK0 High-/Low-Level Width	twsth, twstL		450		ns
TxD Delay Time from SCK0 ↓	t DTKD			210	ns
TxD Hold Time (from SCK0 ↓)	tнткр		20		ns
CTS0 Cycle Time	t CYRK		1000		ns
CTS0 High-/Low-Level Width	twsrh, twsrl		420		ns
RxD Setup/Hold Time (to/from CTS0 ↑)	tsrdk, thkrd		80		ns

Remark n indicates the number of wait states. No wait is "n = 0".

COMPARATOR CHARACTERISTICS (T_A = -40° C to $+85^{\circ}$ C, V_{DD} = +5.0 V $\pm 10\%$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Comparator Accuracy	Vасомр				±100	mV
Threshold Voltage	Vтн		0		V _{DD} + 0.1	V
Compare Time	tсомр		64		65	t cyk
PT Input Voltage	VIPT		0		V _{DD}	V

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA HOLDING CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Data Hold Supply Voltage	VDDDR		2.5	5.5	V
V _{DD} Rise/Fall Time	trvd, trvd		200		μs

DATA HOLDING TIMING

AC TEST INPUT WAVEFORM (Except RESET, NMI, X1 and X2)

AC TEST INPUT WAVEFORM (RESET, NMI, X1 and X2)

AC TEST OUTPUT TEST POINTS

Output load condition: 100 pF

CLOCK TIMING

POLL INPUT TIMING

CTS0 AND CTS1 INPUT TIMING

INTERRUPT INPUT/DMA INPUT TIMING

Note INTP0 to INTP2, DMARQ0 to DMARQ1

RESET INPUT TIMING

When STOP mode is released/at power-on reset:

Note CLKOUT signal is output after CLKOUT output is set.

★ When system is reset:

Note CLKOUT output is set to input port by RESET input.

READY TIMING

When 2 wait states are inserted:

When (n-2) extra wait states are inserted $[n \ge 3]$:

Notes 1. In case of memory cycle

2. In case of I/O cycle

SERIAL OPERATION

When transmitting data in I/O interface mode

When receiving data in I/O interface mode

READ OPERATION

WRITE OPERATION

I/O READ TIMING

I/O WRITE TIMING

DMA (I/O \rightarrow MEMORY) TIMING

DMA (MEMORY \rightarrow I/O) TIMING

REFRESH TIMING

HOLD REQUEST/ACKNOWLEDGE TIMING

Normal mode

Releasing HOLD mode at refreshing time

Note A19 to A0, D7 to D0, MREQ, MSTB, IOSTB, R/W

EXTERNAL INTERRUPT REQUEST/ACKNOWLEDGE TIMING

4. CHARACTERISTIC CURVES

System Clock Frequency fclk (MHz)

System Clock Frequency fclk (MHz)

NEC μ PD70320

5. PACKAGE DRAWINGS

84 PIN PLASTIC QFJ (□1150 mil)

NOTE
Each lead centerline is located within 0.12
mm (0.005 inch) of its true position (T.P.) at
maximum material condition.

P84L-50A3-2 ITEM MILLIMETERS INCHES 30.2 ± 0.2 1.189±0.008 В 1.153 29.28 С 29.28 1.153 D 30.2±0.2 1.189±0.008 $0.076\substack{+0.007 \\ -0.006}$ Е 1.94±0.15 F 0.024 G 4.4 ± 0.2 $0.173^{+0.009}_{-0.008}$ Н 2.8 ± 0.2 $0.110^{+0.009}_{-0.008}$ 0.9 MIN. 0.035 MIN. J 3.4 0.134 K 1.27 (T.P.) 0.050 (T.P.) М 0.40±0.10 $0.016^{+0.004}_{-0.005}$ Ν 0.12 0.005 Р 28.20 ± 0.20 $1.110^{+0.009}_{-0.008}$ Q 0.15 0.006 Т R 0.8 R 0.031 U $0.20\substack{+0.10 \\ -0.05}$ $0.008\substack{+0.004 \\ -0.002}$

94 PIN PLASTIC QFP (\square 20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

detail of lead end

ITEM	MILLIMETERS	INCHES
Α	23.2±0.4	$0.913^{+0.017}_{-0.016}$
В	20.0±0.2	0.787+0.009
С	20.0±0.2	0.787+0.009
D	23.2±0.4	0.913 ^{+0.017} _{-0.016}
F ₁	1.6	0.063
F2	0.8	0.031
G1	1.6	0.063
G2	0.8	0.031
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	3.7	0.146
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	4.0 MAX.	0.158 MAX.

S94GJ-80-5BG-3

NEC μ PD70320

***** 6. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met when soldering this product.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Please consult with our sales office when using other soldering process or under different soldering conditions.

Table 6-1. Surface Mount Type Soldering Conditions

(1) μ PD70320L : 84-pin plastic QFJ (1150 \times 1150 mils) μ PD70320L-8 : 84-pin plastic QFJ (1150 \times 1150 mils)

Soldering Process	Soldering Conditions	Symbol
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or less, Number of reflow processes: 1 Exposure limit: 2 days ^{Note} (16 hours pre-baking is required at 125°C afterwards)	VP15-162-1
Partial heating method	Pin temperature: 300°C or below, Flow time: 3 seconds or less (per side of device)	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25°C and relative humidity at 65% or less.

(2) μ PD70320GJ-5BG : 94-pin plastic QFP (20 × 20 mm) μ PD70320GJ-8-5BG : 94-pin plastic QFP (20 × 20 mm)

Soldering Process	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or less, Number of reflow processes: 3 or less Exposure limit: 7 days ^{Note} (36 hours pre-baking is required at 125°C afterwards)	IR35-367-3
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or less, Number of reflow processes: 3 or less Exposure limit: 7 days ^{Note} (36 hours pre-baking is required at 125°C afterwards)	VP15-367-3
Wave soldering	Package peak temperature: 260°C, Reflow time: 10 seconds or less, Number of reflow processes: 1 Pre-heating temperature: 120°C max. (package surface temperature) Exposure limit: 7 days ^{Note} (36 hours pre-baking is required at 125°C afterwards)	WS60-367-1
Partial heating method	Pin temperature: 300°C or below, Flow time: 3 seconds or less (per side of device)	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25°C and relative humidity at 65% or less.

Caution Use of more than one soldering process should be avoided (except for partial heating method).

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC μ PD70320

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810

Fax: 011-6465-6829

J97. 8

NEC μ PD70320

Related documents V25, V35 User's Manual — Hardware IEM-1220

V25, V35 Family User's Manual — Instructions U12120J (Japanese version)

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

V20, V25, V30, and V35 are trademarks of NEC Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5