LEARNING TO GENERATE INITIAL GUESSES FOR TRAJECTORY OPTIMIZATION PROBLEM OF ROCKET LANDING

Prayag Sharma, Youssef Nsouli, Yuxuan Zhu

Powered Descent 3-DOF Trajectory Optimization

Powered Descent 3-DOF Trajectory Optimization

- ► Major Challenges:
 - ► Feasible and if possible optimal solution in less than 1 sec
 - ► In real-time
 - ▶ Onboard based on the initial condition
 - ► Limited computation capacity
 - ► Space grade processors

Optimal Control/Optimization Problem

$$\begin{cases} \max_{t_f, T_c(\cdot)} m(t_f) = \min_{t_f, T_c(\cdot)} \int_0^{t_f} \|T_c(t)\| \, \mathrm{d}t \\ \text{State Dynamics:} \\ \dot{r}(t) = V(t) \\ \ddot{r}(t) = g + \frac{T_c(t)}{m(t)} \\ \dot{m}(t) = -\alpha \|T_c(t)\| \\ r, V, T, g \in \mathbb{R}^3, \ m \in \mathbb{R} \end{cases}$$
 Path Constraints:
$$0 < \rho_1 \le \|T_c(t)\| \le \rho_2 \\ \|Sx(t) - v\| + c^T x + a \le 0$$

Path Constraints: Boundary Conditions:
$$0 < \rho_1 \le \|T_c(t)\| \le \rho_2 \\ \|Sx(t) - v\| + c^T x + a \le 0$$
 Boundary Conditions:
$$m(0) = m_{\text{wet}}, \ r(0) = r_0, \ \dot{r}(0) = \dot{r}_0 \\ r(t_f) = 0, \ \dot{r}(t_f) = 0 \\ T_c(0) = \|T_c(0)\| \hat{n}_0, \ T_c(t_f) = \|T_c(t_f)\| \hat{n}_f$$

► There has been a lot of work on proving and formulating these optimal control problems towards guarantee feasible solutions when solved using certain optimization techniques like Trust region methods

Solved Using Successive Convexification of the original non-convex optimization problem

How to Deal with Non-Convexity:

Methods like penalized trust region and discretization techniques can guarantee local minima

Optimal Solution Example

Rocket-landing trajectory

Optimal Solution Example

Proposed Solution: Learning

Motivation

Computationally heavy

Hard to get the solution in realtime

Neural Networks:

Pre-trained, give the input, get the output in real-time

Forward pass is computationally cheap

Use NN to assist in decreasing the computational time of the optimization problem

Objective: Improve time-sensitive performance in rocket trajectory optimization that minimizes fuel consumption

Approach: Model and train two types of Neural Networks

Primary Goal:
Approximate the optimal solution for the convexified optimization problem

Goals and Incentives

Training Data:

- ► 6000 generated trajectories
- Initial conditions based on normal distribution from pseudo-real data

Norm of Thrust vector for 6000 runs.

Thrust Components plotted separately for 6000 runs.

Position plotted separately for 6000 runs.

Norm of Thrust vector for 6000 runs.

Training Data

► **Input** (6,000 Trajectories; 83 time-stamps each)

T_x	T_y	T_z	$\ T\ $	v_x	v_y	v_z	x	y	z	$\log m$	t
:	•	•	•••	•	• • •	•••	• • •	•••	•••	• • •	•••

- $ightharpoonup T_x, T_y, T_z$: Coordinate components of the thrust vector, T.
- $\mid |T||$: The norm of the thrust vector.
- $\triangleright v_x, v_y, v_z$: Coordinate components of the velocity vector, v.
- \triangleright x, y, z: Coordinate components of the position vector.
- ▶ *log m*: The logarithmic value of the rocket's mass.

Model Architecture

DNN

sequence_length=10

LSTM

Model Training

DNN

- Each time step is treated independently
- No explicit modeling of temporal dependencies.
- o Input features for each time step are passed directly to the fully connected network.

N RNN

- Sequential data is provided as input
- With a fixed sequence length used to capture temporal dependencies.
- Each sequence comprises multiple time steps, allowing the model to learn contextual relationships.

$$\mathcal{L}(\mathbf{X}^t, \mathbf{Y}^t) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_i^t - \mathbf{y}_i^t\|_2^2$$

$$\mathbf{X}^t = egin{bmatrix} \mathbf{x}_1^{t op} \ \mathbf{x}_2^{t op} \ \vdots \ \mathbf{x}_n^{t op} \end{bmatrix}, \mathbf{Y}^t = egin{bmatrix} \mathbf{y}_1^{t op} \ \mathbf{y}_2^{t op} \ \vdots \ \mathbf{y}_n^{t op} \end{bmatrix}$$

Training Environment

Training Environment

Model Prediction

DNN

- o Give the initial guess to the model.
- Pass the output of the model iteratively.
- After 82 passes, we get the final state.

NNN

- Give the initial sequential guesses to the model.
- Pass the output of the model iteratively.
- After (82 initial_sequence_length) passes, we get the final state.

Model Prediction

Testing

- **▶** Targets
 - The ground truth final state (12 features)
- Predictions
 - The predicted final state (12 features)
- Metrics
 - Mean Squared Error (MSE)
 - Mean Absolute Error (MAE)
 - Root Mean Squared Error (RMSE)

Testing

$$MSE = \frac{1}{\text{n_trajectories}} \sum_{i=1}^{\text{n_trajectories}} (\mathbf{x}_i^{\top} - \mathbf{y}_i^{\top})^2$$

$$\text{MAE} = \frac{1}{\text{n_trajectories}} \sum_{i=1}^{\text{n_trajectories}} |\mathbf{x}_i^\top - \mathbf{y}_i^\top|$$

$$RMSE = \sqrt{MSE}$$

DNN Results

DNN Visualization

Results

Data Characteristics:

The dataset might not exhibit complex temporal dependencies that LSTMs are designed to capture.

Model Complexity:

The added complexity of LSTMs requires more computational resources and may struggle in scenarios where temporal dependencies are not dominant.

Possible Reasons for the Bad Performance of LSTM's

Realized data from rocket sensors

Warm-Starting the Mathematical Solver

Warm-Starting the Mathematical Solver

Time Gains

On average, twice as fast!

Future Work:

Recent research papers show better results using Transforms but require data of the order of 50,000 trajectories to train.

Future Work

- ► Complete 6-DOF modelling for more challenging space missions.
- ► (Open problem <1 Sec)

Q/A

- ▶ Behcet Acikmese and Scott R. Ploen. Convex programming approach to powered descent guidance for mars landing. Journal of Guidance, Control, and Dynamics, 30(5):1353–1366, 2007. doi:10.2514/1.27553. https://doi.org/10.2514/1.27553
- Lars Blackmore, Behcet Acikmese, and Daniel P. Scharf. Minimum-landing-error powered-descent guidance for mars landing using convex optimization. Journal of Guidance, Control, and Dynamics, 33(4):1161–1171, 2010. doi: 10.2514/1.47202. https://doi.org/10.2514/1.47202
- Julia Briden, Trey Gurga, Breanna J. Johnson, Abhishek Cauligi, and Richard Linares. Improving Computational Efficiency for Powered Descent Guidance via Transformer-based Tight Constraint Prediction. 2024. doi: 10.2514/6.2024-1760. https://arc.aiaa.org/doi/abs/10.2514/6.2024-1760
- John M. Carson, Michelle M. Munk, Ronald R. Sostaric, Jay N. Estes, Farzin Amzajerdian, James B.Blair, David K. Rutishauser, Carolina I. Restrepo, Alicia M. Dwyer-Cianciolo, George Chen, and Teming Tse. The SPLICE Project: Continuing NASA Development of GN&C Technologies for Safe and Precise Landing. doi: 10.2514/6.2019-0660. https://arc.aiaa.org/doi/abs/10.2514/6.2019-0660
- Matthew Fritz, Javier Doll, Kari C. Ward, Gavin Mendeck, Ronald R. Sostaric, Sam Pedrotty, ChrisKuhl, Behcet Acikmese, Stefan R. Bieniawski, Lloyd Strohl, and Andrew W. Berning. Post-Flight Performance Analysis of Navigation and Advanced Guidance Algorithms on a Terrestrial Suborbital Rocket Flight. doi: 10.2514/6.2022-0765. https://arc.aiaa.org/doi/abs/10.2514/6.2022-0765

References

- Abhinav G. Kamath, Purnanand Elango, Yue Yu, Skye Mceowen, Govind M. Chari, John M. Carson III, and Behcet Acıkmese. Real-time sequential conic optimization for multiphaserocket landing guidance. IFAC-Papers OnLine, 56(2):3118–3125, 2023. ISSN 2405-8963. doi:https://doi.org/10.1016/j.ifacol.2023.10.1444. https://www.sciencedirect.com/science/article/pii/S24058963230 18529 22nd IFAC World Congress.
- Ping Lu. Propellant-optimal powered descent guidance. Journal of Guidance, Control, and Dynamics, 41(4):813–826, 2018. doi: 10.2514/1.G003243. https://doi.org/10.2514/1.G003243
- National Academy of Engineering. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium. National Academies Press, 2017. ISBN 9780309450393. https://books.google.com/books?id=tCFCDgAAQBAJ
- Taylor P. Reynolds, Michael Szmuk, Danylo Malyuta, Mehran Mesbahi, Behcet Acıkmese, and John M. Carson. Dual quaternion-based powered descent guidance with state-triggered constraints. Journal of Guidance, Control, and Dynamics, 43(9):1584–1599, 2020. doi: 10.2514/1.G004536. https://doi.org/10.2514/1.G004536
- Daniel P. Scharf, Behcet Acıkmese, Daniel Dueri, Joel Benito, and Jordi Casoliva. Implementation and experimental demonstration of onboard powered-descent guidance. Journal of Guidance, Control, and Dynamics, 40(2):213–229, 2017. doi: 10.2514/1.G000399. https://doi.org/10.2514/1.G000399
- > Zhipeng Shen, Shiyu Zhou, and Jianglong Yu. Real-time computational powered landing guidance using convex optimization and neural networks. arXiv preprint arXiv:2210.07480, 2022.

References