#### **EEG/MEG** source localisation

Théo Papadopoulo

Cronos
UCA, INRIA Sophia Antipolis

Msc DSAI

Application of ML to MRI, electrophysiology and brain computer interfaces

#### Theoretical results / Practice

- III-posed problem
  - Non existence.
  - Non uniqueness → Silent sources.
  - Non continuity.
- Several cases where uniqueness can be proved.
  - Linear combination of isolated dipoles.
  - Surfacic distribution (up to a constant).
- This is with continuous measurements.
   In practice, we only have a finite number of them.

#### Measurement model

$$\mathbf{M} = \mathbf{\Sigma} \; \mathbf{G}(\mathbf{r}_{\mathrm{i}}) \; \mathbf{J}_{\mathrm{i}} + \mathbf{\epsilon}$$
  $\mathbf{M} = \mathbf{G} \; \mathbf{J} + \mathbf{\epsilon}$ 

# Source models (J)

- Continuous vs isolated dipoles.
   We can model continuous distributions over a surface or a volume or just keep a finite number of single dipoles.
- Decrease number of parameters (often needed).
  - Known location
  - Cortical patches.
  - Constrain moments.

### Source models (constraining moments)

Moving dipole: position and moment can change (6 parameters r, q).

Rotation dipole: position is fixed only the moment can change (3 parameters).

• Fixed dipole: position and moment direction are fixed, only the strength of the moment can change (1 parameter).

$$\mathbf{q} = \lambda \mathbf{n}$$

# Dipole fit

• Find the dipole(s) position(s) and moment(s) that best fit the measurements.

$$\mathbf{J}_{ ext{sol}} = egin{array}{c} ext{minimize} \ ext{dipole(s)} \ \mathbf{J} \end{array} \| \mathbf{M} - \mathbf{G} \, \mathbf{J} \|_F^2$$

- Works when the number of (isolated) dipoles is low.
- Non-linear problem (in position), linear (in moment) → Solved by gradient descent.

# Dipole fit (example of solution)



$$\sigma_{scalp}/\sigma_{skull}=20$$



 $\sigma_{\rm scalp}/\sigma_{\rm skull}=40$ 



 $\sigma_{\rm scalp}/\sigma_{\rm skull}=80$ 

# Dipole fit

#### Advantages

- Very simple method.
- No assumption on dipole positions.

#### Drawbacks

- Depends on initialization.
- More complex when the number of dipole increases.
- Choice of the right number of dipoles?
- Local minima.

# Imaging method

- Opposite view of dipole fit.
- Place dipole everywhere and evaluate their strengths.
- Very often used with "Fixed dipole paradigm".
- Add regularization to remove "spurious" solutions.

# **Imaging method**

Data attachment

$$C_{\lambda}(\mathbf{J}) = \|\mathbf{M} - \mathbf{G}\mathbf{J}\|^2 + \lambda \|\mathbf{J}\|^2$$
.

$$\mathbf{J}_{sol} = \mathbf{J}_{\lambda} = \underset{\mathbf{J}}{\operatorname{minimize}} \ C_{\lambda}(\mathbf{J})$$

Smoothness / regularisation.

#### Solution:

$$\mathbf{J}_{\lambda} = \left(\mathbf{G}^{T} \mathbf{G} + \lambda \mathbf{I}\right)^{-1} \mathbf{G}^{T} M$$

$$= \mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} + \lambda \mathbf{I}\right)^{-1} M \quad \bullet \quad \text{More efficient.}$$

# **Imaging method (L-curve)**

How to find a proper value for  $\lambda$ .



The best compromise between "smoothness" and "data attachment".

# Imaging method (Leave one out)

How to find a proper value for  $\lambda$ .

- With multiple trials for the same task.
- Keep one sample as a test-set. Use the others for finding the solution  $\mathbf{J}_{\lambda}$
- Select the value of  $\lambda$  that minimizes the reconstruction error (data attachment) over all choices of the "leaved out" sample.

### Imaging method (examples of solution)











Simulated data (10% of noise).

# **Imaging methods**

#### Advantages

- Very simple method.
- Problem with unique solution.
- No need to choose a number of dipoles.
- Efficient (closed-form) solutions.

#### **Drawbacks**

- Depends on the regularization parameter.
- Complex solution which has to be interpreted by a human.
- Exploration of the solution.

## Scanning method

Intermediate between "Moving dipole" and "Imaging methods":

- As in moving dipole, assume a limited number of dipoles (choice of this number).
- As in imaging methods, possible dipole positions a fixed a priori.

Selection of columns (positions) in the leadfield matrix.

Spatio-temporal methods.

• Two families: MUSIC and beamformers/LCMV (Linear Constrained Minimum Variance).

### Scanning method: MUSIC

**MUltiple Signal Classification** 

- Gain matrix assumption: The G matrix for p dipoles is full rank (i.e. of rank r).

  Source k
- Asynchronous assumption: The correlation matrix  $R_{\mathbf{Q}} = E(\mathbf{Q}_k \mathbf{Q}_k^T)$  matrix for p dipoles is full rank (i.e. of rank r).
- Noise whiteness assumption: The noise is considered additive and temporally and spatially zero-mean white noise with variance  $\sigma^2$ . When a good noise model can be established, a prewhitening phase ensures that this is the case. Additionally the signal and noise are assumed to be uncorrelated.

## Scanning method: MUSIC

Compute the matrix  $\mathbf{F} = E(\mathbf{M}_k \mathbf{M}_k^T)$  or  $\mathbf{F} \approx E(\mathbf{M}_k) E(\mathbf{M}_k)^T$ .

Find the eigenvectors **U** of **F**.

Data for trial k.

Split U between signal and noise spaces  $U = [U_r, U_{m-r}]$ .

$$C(x_i) = \frac{\|\mathbf{U}_{m-r}^T \mathbf{G}_i\|}{\|\mathbf{G}_i\|} = \frac{\|P_{\mathbf{U}_r}^{\perp} \mathbf{G}_i\|}{\|\mathbf{G}_i\|}$$

Find the position(s)  $x_i$  (corresponding to  $\mathbf{G}_i$ ) that minimize(s) the projection  $C(x_i)$  of the measurements on the noise space (i.e. maximize the contribution in the signal space).

## Scanning method: MUSIC

Find the position(s)  $x_i$  (corresponding to  $\mathbf{G}_i$ ) that minimize(s) the projection  $C(x_i)$  of the measurements on the noise space (i.e. maximize the contribution in the signal space).

- Extract the first p maxima (Standard MUSIC).
  - → Problem: close sources often explain the same signal.
- Greedy approach (RAP-MUSIC):
  - 1. Extract the biggest maximum.
  - 2. Remove the contribution of that source to the signal.
  - 3. Re-apply MUSIC on this new signal (p times) to succesive sources.
- Many other variants (TRAP-MUSIC)...

## Scanning method: Beamformers

- the noise N is zero-mean, with covariance  $C_N$ .;
- the sources are decorrelated: if  $i \neq k$ ,  $E\left([J(x_i) \overline{J(x_i)}][J(x_k) \overline{J(x_k)}]^T\right)$  is the  $3 \times 3$  null matrix;
- the noise and the source amplitudes are decorrelated

## Scanning method: Beamformers

Similar ideas as with MUSIC but for the criterion:

$$\widehat{VarJ(x_0)} = \frac{Tr\left((G(x_0)^T C_{\mathbf{M}}^{-1} G(x_0))^{-1}\right)}{Tr\left((G(x_0)^T C_{\mathbf{N}}^{-1} G(x_0))^{-1}\right)}.$$

 $J(x_0)$  is the reconstructed source by applying a filter  $W(x_0)$  to the data. The concept behind beamforming is, for a given spatial position  $x_0$ , to apply a spatial filtering to the measurements, which filters out sources which do not come from a small volume around  $x_0$ . Let  $W(x_0)$  be a  $m \times 3$  matrix representing the spatial filter: the source amplitude in the vicinity of  $x_0$  will be estimated by

$$S(x_0) = W(x_0)^T \mathbf{M}$$
.

 $W(x_0)$  is computed to minimize the strength of the reconstructed source under the constraint that  $W(x_0)\mathbf{G}(x_0)^T = \mathbf{I}$ .