39. Тригонометрические суммы. Критерий Вейля для р.р. (mod 1) (формулировка). Последовательность αn при иррациональном α является р.р. (mod 1). Что происходит при рациональном α ?

Тригонометрическая сумма - сумма вида $\sum_{k=1}^N e^{2i\pi kx}$ **Критерий Вейля**. x_n р.р. mod 1 тогда и только тогда, когда:

$$\forall h \in \mathbb{Z} \setminus \{0\} : \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h x_n} \to 0$$

 $x_n = \alpha n$ при $\alpha \in \mathbb{Q}$ принимает ограниченное количество значений \Rightarrow быть p.p. mod 1 не может.

 $\alpha \notin \mathbb{Q}$. Применим критерий Вейля:

$$\forall h \in \mathbb{Z} \setminus \{0\} : \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h\alpha n} = \frac{1}{N} e^{2i\pi h\alpha} \frac{e^{2i\pi h\alpha N} - 1}{e^{2i\pi h\alpha} - 1}$$

Знаменатель не равен нулю в силу иррациональности α ; по формуле Эйлера $(e^{ix} = cos(x) + isin(x))$ числитель не превышает 2, следовательно, это значение стремится к нулю; критерий Вейля выполняется \Rightarrow последовательность равномерно распределена по модулю 1.