

Programación Orientada a Objetos 1

Práctica Calificada 1

Pregrado 2021-I

Profesor: Rubén Rivas

Lab. 1.01

Indicaciones específicas:

- Esta evaluación contiene 6 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en su correspondiente par de archivos, cabecera y fuentes, con el número de la pregunta. Por ejemplo:
 - 1. p1.cpp, p1.h
 - 2. p2.cpp, p2.h
 - 3. p3.cpp, p2.h
- Deberás subir estos archivos, individuales o comprimidos en un archivo **ZIP**, directamente a www.gradescope.com.

Competencias y criterios de desempeño:

• Para los alumnos de la carrera de Ciencia de la Computación

Aplica conocimientos de computación apropiados para la solución de problemas definidos y sus requerimientos en la disciplina del programa. (nivel 2)

Diseña, implementa y evalúa soluciones a problemas complejos de computación. (nivel 2)

Crea, selecciona, adapta y aplica técnicas, recursos y herramientas modernas para la práctica de la computación y comprende sus limitaciones. (nivel 2)

• Para los alumnos de las carreras de Ingeniería

Capacidad para aplicar conocimientos de matemática. (nivel 2)

Capacidad para diseñar un sistema, un componente o un proceso para satisfacer las necesidades deseadas dentro de restricciones realistas. (nivel 2)

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	7	
2	7	
3	6	
Total:	20	

1. (7 points) Ecuación Cuadrática

Crear un programa que reciba 3 valores del tipo double (a, b y c) y que calcule las raíces de una ecuación cuadrática $ax^2 + bx + c$ y que retorne la raíz de mayor valor, en caso las raíces sean imaginarias el programa retornará "no hay raíces reales".

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Listing 1: Input Format

1 -2 1

• El ingreso de los valores no requiere utilizar etiquetas (std::cout)

Listing 2: Output Format

1

Algunos ejemplos de diálogo de este programa serían:

Ejemplo 1

-1 4 -2

Output

3.41421

Ejemplo 2

2 4 3

Output

no hay raices reales

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo y	El algoritmo y código	Es preciso, finito y	Hace menos de la mi-
Código	es preciso y finito y	hace la mitad o más de	tad de lo que el enun-
	hace exactamente lo	lo que el enunciado re-	ciado requiere (0pts).
	que el enunciado re-	quiere. (2pts)	
	quiere. (4pts)		
Sintaxis	No existen errores	Existen algunos er-	El código no compila
	sintácticos o de	rores sintácticos o de	(Opts).
	compilación (2pts)	compilación. (1pts).	
Optimizacion	El código es óptimo y	El codigo es optimiz-	El codigo es redun-
	eficiente (1pts)	able en algunas partes	dante y/o no es op-
		(0.5pts).	timo (Opts).

2. (7 points) Números triangulares

Un número triángulo es aquel número que se obtiene de la suma de los \mathbf{n} primeros números de naturales, asi por ejemplo 6 es un número triangular formado por la suma de $\mathbf{1} + \mathbf{2} + \mathbf{3}$ ó el número triangular $\mathbf{10} = \mathbf{1} + \mathbf{2} + \mathbf{3} + \mathbf{4}$. Escribir un programa que solicite un **numero** y una función que permita verificar si el número ingresado es triangular o no, el programa debe de retornar si el número es triangular o no.

Listing 3: Input Format

630

• El ingreso de los valores no requiere utilizar etiquetas (std::cout)

Listing 4: Output Format

triangular

Algunos ejemplos de diálogo de este programa serían:

Ejemplo 1

500

Output

no triangular

Ejemplo 2

406

Output

triangular

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Código	Ha implementado fun-	Existen algunos er-	El diseño y la imple-
	ciones en forma cor-	rores menores en	mentacion del código
	recta y lógica (4pts)	la implementación	no son correctos
		(2pts)	(Opts).
Sintaxis	No existen errores	Existen algunos er-	El código no compila
	sintácticos o de	rores sintácticos o de	(0pts).
	compilación (2pts)	compilación. (1pts).	
Optimizacion	El código es óptimo y	El código es optimiz-	El código es redun-
	eficiente (1pts)	able en algunas partes	dante y/o no es
		(0.5pts).	óptimo (Opts).

3. (6 points) Número piramidal cuadrado

Escribir una **función recursiva** cuyo nombre sea **eliminar_vocales** que reciba como parámetro un valor del tipo **std::string** que definirá un **texto** de entrada y a partir del generar un nuevo texto que remueva todas las vocales del texto original, el nuevo texto debera ser devuelto en el valor de retorno de la función.

Listing 5: Input Format

Este texto tiene vocales

• El ingreso de los valores no requiere utilizar etiquetas (std::cout)

Listing 6: Output Format

st txt tn vcls

Algunos ejemplos de diálogo de este programa serían:

Ejemplo 1

Murcielago

Output

Mrclg

Ejemplo 2

Universidad de Ingenieria y Tecnologia - UTEC

Output

nvrsdd d ngnr y Tcnlg - TC

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Código	Ha implementado	Existen algunos er-	El diseño y la imple-
	funciones recursivas	rores menores en	mentacion del código
	en forma correcta y	la implementación	no son correctos
	lógica (4pts)	(2pts)	(0pts).
Sintaxis	No existen errores	Existen algunos	El código no compila
	sintácticos o de	errores sintácticos	(0pts).
	compilación (1.0pts)	o de compilación.	
		(0.5pts).	
Optimizacion	El código es óptimo y	El código es optimiz-	El código es redun-
	eficiente (1pts)	able en algunas partes	dante y/o no es
		(0.5pts).	óptimo (Opts).