QMC Workshop 2021 Optimization of Pseudopotentials

Week 6 / 9 November 2021

Gani Annaberdiyev, aannabe@ncsu.edu

North Carolina State University

https://github.com/QMCPACK/qmc_workshop_2021

Funding: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.

Conventional ECP Optimization Approaches

For a chosen subset S of atomic spectrum, generate relativistic all-electron (AE) reference states using HF (mean-field). Two main approaches are:

1. Energy-consistency of the atomic spectrum gaps:

$$\mathcal{E}_{\mathrm{HF}}^{2} = \sum_{i \in S} \left(\Delta E_{\mathrm{HF}}^{\mathrm{ECP}} - \Delta E_{\mathrm{HF}}^{\mathrm{AE}} \right)_{i}^{2} \tag{1}$$

2. Shape-consistency:

$$\mathcal{N}^{2} = \sum_{\ell} \left[\left(\epsilon_{\ell}^{\text{ECP}} - \epsilon_{\ell}^{\text{AE}} \right)^{2} + \left(N_{\ell}^{\text{ECP}} - N_{\ell}^{\text{AE}} \right)^{2} + \left(V_{\ell}^{\text{ECP}} - V_{\ell}^{\text{AE}} \right)^{2} + \left(S_{\ell}^{\text{ECP}} - S_{\ell}^{\text{AE}} \right)^{2} \right]$$
(2)

where
$$\epsilon_{\ell}$$
: eigenvalues, $N_{\ell}^{\text{AE}} = \int_{0}^{R_{\ell}} \left(r^{\ell+1} \phi_{\ell}^{\text{AE}}(r) \right)^{2} dr$, $V_{\ell}^{\text{AE}} = \phi_{\ell}^{\text{AE}}(R_{\ell})$, $S_{\ell}^{\text{AE}} = \frac{d}{dr} \phi_{\ell}^{\text{AE}}(r)|_{R_{\ell}}$, R_{ℓ} : cutoff radius $\left(r^{\frac{4}{5}} \phi_{\ell}^{\text{AE}} \right)$.

QMC Workshop 2021

1

Correlation Consistent Effective Core Potentials (ccECP)

A new approach: go beyond mean-field HF, and consider electron-electron correlations.

- 1. AE reference data: scalar relativistic, fully-correlated (CC, CV, VV) CCSD(T).
- 2. Many-body method is used:

$$\mathcal{E}_{\text{CCSD(T)}}^{2} = \sum_{i \in S} \left(\Delta E_{\text{CCSD(T)}}^{\text{ECP}} - \Delta E_{\text{CCSD(T)}}^{\text{AE}} \right)_{i}^{2} + \omega \mathcal{N}^{2}$$
(3)

- 3. Simple form parametrized with few Gaussians.
- 4. More emphasis on testing/transferability, especially on compressed XH and XO bond lengths.

Deviations between AE and ECP atomic spectrum energies

AE Reference: CCSD(T) with all-electrons correlated.

$$MAD = \frac{1}{N_s} \sum_{s=1}^{N_s} \left| \Delta E_s^{ECP} - \Delta E_s^{AE} \right|$$
 (4)

BFD: Burkatzki-Filippi-Dolg DHF ECPs for QMC [4, 5] STU: Stuttgart group DHF ECPs [8]

TN17: Trail-Needs correlated ECPs for QMC [10]

ccECP: New correlation-consistent ECP [2]

UC: is a uncorrelated core CCSD(T)

ccECP shows significant improvement over older ECPs.

Annaberdiyev et al, J. Chem. Phys. 149, 134108 (2018) [2]

- Many states are included: neutral excitations, EA, IPs down to the bare core.
- Accurate in low-lying excitations (LMAD) and for large set of states (MAD).
- Better iso-spectrality in all ccECPs: H-Kr.

 Training data was optimized better. How does this carry to more complicated systems?

Wang et al, J. Chem. Phys. 151, 144110 (2019) [11]

Discrepancy between AE and ECP monohydride binding energies (σ bonds)

Annaberdiyev et al, J. Chem. Phys. 149, 134108 (2018) [2]

Wang et al, J. Chem. Phys. 151, 144110 (2019) [11]

Discrepancy between AE and ECP monoxide binding energies (π bonds)

Annaberdiyev et al, J. Chem. Phys. 149, 134108 (2018) [2]

Wang et al, J. Chem. Phys. 151, 144110 (2019) [11]

Various core sizes are available for ccECP

Bennett et al, J. Chem. Phys. 149, 104108 (2018) [3]

Wang et al, J. Chem. Phys. 151, 144110 (2019) [11]

DMC Benchmarks of ccECP

DMC singlet/triplet excitations for Si systems agree well with experiments.

TABLE IV. Si_2H_8 total energies (Ha) and vertical excitation gaps (eV) using various methods. Experimental geometry was used for this molecule. ²²

	$GS(^1A_{1g})$	$\mathrm{EX}\ (^{1}\mathrm{E}_{1\mathrm{u}})$		$\mathrm{EX}(^3\mathrm{A}_{1\mathrm{g}})$	
Method	Total (hartree)	Total (hartree)	Gap (eV)	Total (hartree)	Gap (eV)
CISD/RHF ^a	-11.3287	-10.8183	13.889	-11.0825	6.699
$CISD/CAS(14e^-, 13o)^b$	-11.3400	-11.0623	7.557		
RCCSD(T)/RHF ^c	-11.3766(3)			-11.1308(5)	6.69(2)
CCSDT(Q)/RHF ^d	-11.3782(3)			-11.1336(5)	6.66(2)
DMC/RHF	-11.3708(2)	-11.0855(2)	7.763(8)	-11.1215(2)	6.784(8)
DMC/PBE°	-11.3725(2)	-11.0934(2)	7.595(8)	-11.1248(2)	6.740(8)
Lehtonen et al.			7.61		
Experiment ⁴¹			7.6		≈6.7 ^g
Experiment ³⁹			7.56	J	

DMC Benchmarks of ccECP

DMC IP and EA of variety of molecular systems were tested by an *independent* groups. The molecular systems tested:

System	
-	PH^+
C ⁺	PH
C	PH^-
C-	PH_2^+
N ⁺	PH_2
N	PH_2^-
O ⁺	S+ 2
O	S
O-	s-
OH ⁺	SH ⁺
OH	SH
OH-	SH^-
O_2^+	S_2^+
O_2	S_2
O ₂	S_2^-
Si ⁺	Cĺ+
Si	C1
Si ⁻	$C1^-$
P ⁺	Cl_2^+
P	Cl_2
P-	Cl ₂

FIG. 5. Mean errors in DMC energies using ccECP and BFD potentials with different trial wave functions and nonlocal-treating strategies.

ECP Library: https://pseudopotentiallibrary.org

- The library is hosted on GitHub: https://github.com/QMCPACK/ pseudopotentiallibrary
- AREP ccECPs for H-Kr elements are available now.
- (aug)-cc-p(C)VnZ [n = D 6] basis-sets are available.
- Commonly used formats are available: Molpro, GAMESS, NWCHEM, PYSCF.
- Also, UPF files are available for use in plane wave basis codes.
- Heavier elements with SOC will be added later, attend Week-8 to learn how to run with SOREP.

An example using ccECP: Sc atom via NEXUS

See Week 3 and Week 4 material for introduction to NEXUS.

```
Update workshop example files:
```

```
cd home/apps/qmcpack
git pull
cd home/qmcuser/qmc_workshop_2021
git pull
```

Enter week 6 example directory:

```
cd\ week6\_ecps\_and\_observables/02\_ccECP\_slides\_runs/Sc\_atom/workstation/
```

```
ls
geom.xyz pseudo runs scf_template.py workflow.py

ls runs/
c4q gs_noj optJ12 optJ123 qmc_no qmc_v0 qmc_v1 scf

ls pseudo/
download.sh Sc.ccECP.xml

vim pseudo/download.sh
```

```
1 @!/usr/bin/env bash
2
3 atoml="Sc"
4
5 wget https://pseudopotentiallibrary.org/recipes/${atoml}/ccECP/${atoml}.ccECP.xml
```

vim geom.xyz

1 1 2 3 Sc 0.0000 0.0000 0.0000

vim scf_template.py

```
3 import sys. os
 4 from pyscf import scf, gto
 5 import numpy as np
6 from urllib.request import urlretrieve
8 ### Set the current working directory
9 cwd = os.getcwd()
pplib = "http://pseudopotentiallibrary.org/recipes"
11 pptype = "ccECP"
13 ### Retrieve basis and ECP files from pseudopotentiallibrary.org
  atom1 = "Sc"
15 bastype1 = "cc-pVTZ"
16 basfile1 = "{0}.{1}.nwchem".format(atom1,bastype1)
  ecpfile1 = "{0}.{1}.nwchem".format(atom1,pptype)
18 xmlfile1 = "{0}.{1}.xml".format(atom1.pptvpe)
19 urlretrieve("{6}}/{1}/{2}}/{3}".format(pplib,atom1,pptype,basfile1), filename=basfile1)
21 urlretrieve("{6}}/{1}/{2}/{3}".format(pplib,atom1,pptype,ecpfile1), filename=cpfile1)
21 urlretrieve("{6}/{1}/{2}/{3}]".format(pplib,atom1,pptype,xmlfile1), filename=xmlfile1)
25 # Nexus expands this with Mole info
 6 $system
   with open(os.path.join(cwd,basfile1)) as f:
       bas1 = f.read()
  with open(os.path.join(cwd,ecpfile1)) as f:
       ecp1 = f.read()
  mol.basis = {atom1: qto.basis.parse(bas1)}
  mol.ecp = {atom1: gto.basis.parse ecp(ecp1)}
  mol.build()
```

```
21 <sup>2</sup>D<sub>3/2</sub>

SC

Scandium

44.955912

[Ar]3d4s<sup>2</sup>

6.5615
```

```
35
36 #---Run Hf on molecule----
37 mf = scf.ROHF(mol)
38 mf.irrep nelec = {
39 'Ag': (3,2), # s, dz^2, dx^2-y^2
40 'B3u': (1,1), # x 1
41 'B1u': (1,1), # z 0
42 'B2u': (1,1), # y -1
43 'B2g': (0,0), # xz 1
44 'B3g': (0,0), # xz -1
45 'B3g': (0,0), # xy -2
46 'Au': (0,0) # xy -2
46 'Au': (0,0) # xy -2
47 }
48 mf.max cycle=100
49 mf.chkfile='scf.chkfile'
50 en=mf.kernel()
51 mf.analyze()
52
```

vim workflow.pv

```
1 #!/usr/bin/env python3
3 from nexus import settings.job.run project.obi
4 from nexus import generate physical system
5 from nexus import generate pyscf
6 from nexus import generate convert4gmc
7 from nexus import generate gmcpack.loop.linear.vmc.dmc
10 import os
 cores = os.cpu count()
 settings(
     pseudo dir
                  = 'pseudo'.
     results
                   = 'runs'.
     status only = 0.
     generate only = 0.
     sleen
                  = 10.
     machine
                = 'ws'+str(cores).
 system = generate physical system(
     structure = 'geom.xvz'.
                = 11. # 11 valence electrons
     net spin = 1.
     net_charge = 0.
```

```
sims = []
## Perform SCE
scf = generate pyscf(
    identifier = 'scf', # Log output goes to scf.out
              = 'scf', # Directory to run in
    path
              = job(serial=True,app='python3'),
    job
    system
              = system.
    template = 'scf template.py', # pyscf template file
    mole
              = obi(
        verbose = 4.
        symmetry = 'D2h',
    save qmc = True,
sims.append(scf)
###### convert orbitals to OMCPACK format
c4g = generate convert4gmc(
    identifier = 'c4g'.
    path
                = 'c4a'.
    iob
                = iob(cores=1).
    no jastrow = True.
    dependencies = (scf, 'orbitals'),
sims, append(c4g)
orbdeps = [(c4q,'particles'), # pyscf changes particle positions
           (c4g, 'orbitals' ).l
```

```
python workflow.py
...
ls runs/scf/
Sc.ccECP.nwchem Sc.ccECP.xml Sc.cc-pVTZ.nwchem scf.chkfile scf.err
scf.h5 scf.out scf.py scf.sbatch.in scf.struct.xyz sim_scf
```

vim runs/scf/scf.py

```
###~~~~ Build the molecule ~~~~
27 ### generated system text ###
28 from pyscf import gto as gto loc
29 mol = ato loc.Mole()
30 \text{ mol.verbose} = 4
31 mol.atom
                       0.00000000
                                     0.00000000
                                                  0.00000000
34 mol.unit
                = 'A'
35 mol.charge
                = 0
36 mol.spin
                = 1
37 mol.symmetry = 'D2h'
38 mol.build()
39 ### end generated system text ###
```

```
68
69 ### generated conversion text ###
70 from PyscfToQmcpack import savetoqmcpack
71 savetoqmcpack(mol,mf,'scf')
72 ### end generated conversion text ###
73
```

vim runs/scf/scf.out

```
164 Gycle= 15 E= -46.121844325316 delta E= 2.48e-06 |g|= 0.0001 |ddm|= 0.0232
   HOMO(Ag) = -0.0512860808024703 LUMO(Blu) = 0.0212213370518054
 6 cycle= 16 E= -46.1218430105355 delta E= 1.31e-06 |g|= 0.000361
                                                                    |ddm| = 0.0316
   HOMO (Aq) = -0.051165418814432 LUMO (Blu) = 0.021223988441713
   cycle= 17 E= -46.1218430689892 delta E= -5.85e-08 |g|= 0.000251
                                                                     |ddm| = 0.00115
  | HOMO| (Ag) = -0.0511178095270498 | LUMO (Blu) = 0.0212239829283067
  cycle= 18 E= -46.1218430876165 delta E= -1.86e-08 |g|= 0.000204
                                                                     |ddm|= 0.00084
   HOMO(Ag) = -0.0509412957047003 LUMO(Blu) = 0.0212268278098667
   cycle= 19 F= -46.1218431223565 delta F= -3.47e-08 |g|= 4.31e-05
                                                                     |ddm| = 0.00101
   HOMO(Ag) = -0.0508978866963989 LUMO(Blu) = 0.021226681589223
   cycle= 20 E= -46.1218431246405 delta E= -2.28e-09 |g|= 3.64e-06
                                                                     |ddm|= 0.00103
   HOMO(Ag) = -0.0508900896655348 LUMO(Blu) = 0.0212268078866954
 76 cycle= 21 E= -46.1218431242121 delta E= 4.28e-10 |q|= 5.44e-06
                                                                    |ddm| = 0.00042
   HOMO(Ag) = -0.0508976447814269 + UMO(Blu) = 0.0212266453759735
 8 Extra cycle E= -46.1218431242235 delta E= -1.14e-11 |g|= 4.05e-06 |ddm|= 1.69e-05
   converged SCF energy = -46.1218431242235
   **** SCE Summaries ****
                                          -46.121843124223474
   Total Energy =
   Nuclear Repulsion Energy =
                                           0.0000000000000000
   One-electron Energy =
                                          -76.798902125225936
   Two-electron Energy =
                                           30.677059001002462
   Wave-function symmetry = Ag
   occupancy for each irrep:
                                 Aa Bla
                                         B2q
                                                    Au B1u B2u B3u
   double occ
   single occ
   **** MO energy ****
                             Roothaan
                                                 alpha
                                                                      beta
   MO #2
   MO #3
   MO #4
   MO #5
   MO #6
   MO #7
   MO #10 (Ag #4) energy= 0.0638801098953974
   MO #11 (B2g #1 ) energy= 0.0642676989705254 [
```

```
(B3u #9 ) energy= 2.38408239635703
MO #63 (Ag #16) energy= 5.42588680466658
 ** Mulliken pop on meta-lowdin orthogonal AOs **
 ** Mulliken pop **
pop of 0 Sc 3s
                       1 99988
pop of 0 Sc 4s
                       1.99833
pop of 0 Sc 5s
                       0.00000
pop of 0 Sc 6s
                       0.00000
pop of 0 Sc 7s
                       0.0000
pop of 0 Sc 3px
                       1.99781
pop of 0 Sc 3pv
                       1.99781
pop of 0 Sc 3pz
                       1.99833
pop of 0 Sc 4px
                       0.00083
pop of 0 Sc 4pv
                       6 00083
pop of 0 Sc 4pz
                       0.00063
pop of 0 Sc 5px
                       0.00114
pop of 0 Sc 5pv
                       0.00114
pop of 0 Sc 5pz
                       0.00091
pop of 0 Sc 6px
                       0.00006
                       0.00006
pop of 0 Sc 6py
pop of 0 Sc 6pz
                       0.00007
pop of 0 Sc 7px
                       0.00003
pop of 0 Sc 7py
                       6 00003
non of 0 Sc 7nz
                       0.00002
pop of 0 Sc 3dxy
                       0.00000
pop of 0 Sc 3dvz
                       0.00000
non of 0 Sc 3dz^2
                       0.00145
pop of 0 Sc 3dxz
                       0.00000
                        0.92126
pop of 0 Sc 3dx2-v2
pop of 0 Sc 4dxy
                       0.00000
                       0.00000
pop of 0 Sc 4dyz
pop of 0 Sc 4dz^2
                       0.00029
pop of 0 Sc 4dxz
                       0.00000
pop of 0 Sc 4dx2-v2
                        0.06730
                       0.00000
pop of 0 Sc 5dxy
pop of 0 Sc 5dvz
                       0.00000
pop of 0 Sc 5dz^2
                       0.00004
                       0.00000
pop of 0 Sc 5dxz
```

vim workflow.py

```
gs_noj = generate_qmcpack(
   identifier = 'qs noj',
    path
                  = 'as noi'.
                  = job(cores=cores),
    job
    system
                  = system.
                 = ['Sc.ccECP.xml'],
    pseudos
    iastrows
                  = [].
    calculations = [
        vmc(
             `
walkers
             warmupsteps = 20,
             blocks
             steps
                          = 50.
             substeps
             timestep
                          = 0.7,
    dependencies = orbdeps,
sims.append(qs noi)
```

```
cd runs/gs noi/
    qmca -q ekpvar -e 3 --sac *.scalar.*
gs noj series 0
 LocalEnergy
                                -46.12177 +/-
                                                      0.00072
                                                        0.024
 Variance
                                    4.493 +/-
 Kinetic
                                  18.7966 +/-
                                                       0.0027
 LocalPotential
                                 -64.9184 +/-
                                                       0.0028
 AcceptRatio
                                 0.498003 + / -
                                                     0.000029
SCF energy = -46.121843 Ha
```

```
linopt1 = linear(
    energy
                         = 0.0.
    unreweightedvariance = 1.0.
    reweightedvariance
    samples
                         = int(3e3).
    substeps
    steps
                         = 20.
    blocks
    nonlocalpp
    usedrift
    minmethod
                         = 'OneShiftOnly',
    minwalkers
                         = 1e-3.
    timestep
linopt2 = linopt1.copy()
linopt2.minwalkers = 0.10
linopt2.samples = linopt1.samples*2
linopt3 = linopt2.copv()
linopt3.unreweightedvariance = 0.0
linopt3.reweightedvariance = 0.10
linopt3.energy = 0.90
linopt3.minwalkers = 0.30
linopt3.samples = linopt2.samples*2
optJ12 = generate gmcpack(
    identifier
                   = 'optJ12'.
                   = 'optJ12'.
    path
    iob
                   = iob(cores=cores).
    system
                    = system.
    J1 rcut
    12 rcut
                   = ['Sc.ccECP.xml'].
    pseudos
    calculations
                   i =
                loop(max=5, gmc=linopt1).
                loop(max=5, qmc=linopt2),
                loop(max=5, gmc=linopt3).
    dependencies = orbdens.
sims.append(opt112)
```

```
cd runs/optJ12
qmca -q ev -e 1 --sac *.scalar.*
```

```
ratio
opt.112 series 0 -46.138778 +/- 0.002003
                                                  3.076381 +/- 0.006039
                                                                                 0.0667
                 -46.419171 +/- 0.001346
                                                  0.606835 +/- 0.002252
optJ12
      series 2 -46.452039 +/- 0.000896
                                                  0.625210 +/- 0.003446
                                                                           1.0
                 -46.458866 +/- 0.000884
                                                  0.654501 +/- 0.005287
       series 3
                                                                           1.0
                                                  0.663231 +/- 0.005007
                                                                                 0.0143
                 -46 461309 ±/- 0 001270
       series 5 -46.464978 +/- 0.000693
                                                  0.665643 +/- 0.003202
                                                                            1.0
                                                                                 0.0143
       series 6 -46.466492 +/- 0.000964
                                                  0.670662 +/- 0.004712
                                                                                 0.0144
                 -46.467072 +/- 0.000584
                                                  0.669408 +/- 0.003340
                                                                            1.0
                                                                                 0.0144
                                                  0.686031 +/- 0.013676
                                                                                 0.0148
       series 8 -46.469110 +/- 0.000763
                                            1.0
       series 9 -46.469448 +/- 0.000838
                                                  0.680276 +/- 0.005176
                                                                                 0 0146
       series 10 -46.468701 +/- 0.000573
                                                   0.675707 +/- 0.002290
                                                                            1.4
                                                                                  0.0145
                  -46.469053 +/- 0.000484
                                                   0.678638 +/- 0.002415
                                                                             1.0
                                                                                  0.0146
opt312 series 12 -46.469395 +/- 0.000546
                                                   0.676652 +/- 0.001945
                                                                             1.0
                                                                                  0.0146
optJ12 series 13 -46.469334 +/- 0.000357
                                                   0.680689 +/- 0.003857
                                                                                  0.0146
optJ12 series 14 -46.470180 +/- 0.000619
                                                   0.683609 +/- 0.007195
```

vim workflow.py

```
###### optimize 3-body Jastrow
optJ123 = generate gmcpack(
   identifier
                   = 'optJ123',
   path
                   = 'optJ123'.
   iob
                   = iob(cores=cores).
   system
                   = system,
   J3 rcut
                   = 12.0.
                   = ['Sc.ccECP.xml'].
   pseudos
   calculations
                loop(max=10, gmc=linopt3).
   dependencies
                   = orbdeps+[(optJ12,'jastrow')],
sims.append(optJ123)
```

cd runs/optJ123

```
qmca -q ev -e 1 --sac *.scalar.*
```

```
Variance
          -46.467934 +/- 0.000419
                                            0.672600 +/- 0.002882
                                                                           0.0145
          -46.489434 +/- 0.000408
                                            0.578860 +/- 0.008589
                                                                           0.0125
          -46.490477 +/- 0.000430
                                            0.656540 +/- 0.029653
                                                                            0.0141
          -46 491878 +/- 0 000578
                                            0.656817 +/- 0.006533
                                                                            0.0141
                                            0.681497 +/- 0.012269
                                                                            0.0147
          -46 492373 +/- 0 000553
                                            0.673054 +/- 0.008965
                                                                            0.0145
                                                                            0.0143
                                            0.666388 + / - 0.008933
                                            0.683002 +/- 0.008520
                                                                            0.0147
series 8 -46.493760 +/- 0.000440
                                            0.682064 +/- 0.015371
                                                                           0.0147
series 9 -46.493525 +/- 0.000588
                                            0.680150 +/- 0.005577
                                                                            0.0146
```

vim workflow.py

```
moves = ['no', 'v0', 'v1']
locality run = {}
MY TARGET WALKERS = 16 # Small number for presentation purposes. Needs to be at least a few thousand walkers
   moves in t moves:
   name = 'gmc ' + moves
   locality run[moves] = generate gmcpack(
       identifier = name.
        path
                    = name
                    = system.
        pseudos
                      I'Sc.ccECP.xml'l.
        iastrows
        calculations = [
                           = int(MY TARGET WALKERS/cores), # Per MPI
               warmupsteps = 20,
               blocks
               substeps = 2.
               timesten = 0.5
           dmc(targetwalkers = MY TARGET WALKERS, # Total walkers
               timesten = 0.02.
               warmupsteps = int(5/0.02).
               blocks = 5.
               steps = int(1.0/0.02).
               nonlocalmoves = moves.
               checkpoint = 5
```

```
dmc(targetwalkers = MY TARGET WALKERS. # Total walkers
               timestep = 0.01.
               warmupsteps = int(2/0.01).
               hlocks = 5
               steps = int(1.0/0.01),
               nonlocalmoves = moves.
               checkpoint = 5
            dmc(targetwalkers = MY TARGET WALKERS, # Total walkers
               timestep = 0.005.
               warmupsteps = int(1/0.005),
               blocks = 5,
               steps = int(1.8/8.885).
               nonlocalmoves = moves.
               checkpoint = 5
            dmc(targetwalkers = MY TARGET WALKERS, # Total walkers
               timestep = 0.0025.
               warmupsteps = int(1/0.0025).
               steps = int(1.0/0.0025).
               nonlocalmoves = moves.
               checkpoint = 5
        dependencies = orbdeps+[(optJ123,'iastrow')].
    sims.append(locality run[moves])
run project(sims)
```

For more info see:

https://qmcpack.readthedocs.io/en/
develop/methods.html#dmc-driver

```
ls runs/
c4q gs_noj optJ12 optJ123
qmc_no qmc_v0 qmc_v1 scf

cd runs/qmc_v1/
```

qmca -q ev -e 3 *scalar*

Sc atom results

Locality Treatment	Execution Time (min)
LA [9]	18.3
T-Moves (2006) [6]	21.0
T-Moves (2010) [7]	26.6

Table 1: Comparison of execution times for various locality treatments. NERSC, 8 KNL nodes.

Checking the results against reference data

Table 17. Most Accurate Total Energies for ccECP[Ne] K—Zn Elements along with Fixed-Node DMC Energies with Single-Reference HF Trial Wave Functions

atom	state	"exact" (Ha)	DMC/HF (Ha)	ϵ (mHa)	η
K	(2S)	-28.25243(25)	-28.2394(2)	13.0(3)	4.1(1)
Ca	(1S)	-36.72897(46)	-36.7055(2)	23.5(5)	6.2(1)
Sc	(^2D)	-46.55704(81)	-46.5202(4)	36.8(9)	8.4(2)
Ti	(^{3}F)	-58.09263(76)	-58.0458(2)	46.8(8)	9.6(2)
V	(4F)	-71.44178(59)	-71.3829(2)	58.9(6)	10.8(1)
Cr	(⁷ S)	-86.64109(33)	-86.5876(2)	53.5(4)	9.03(7)
Mn	(6S)	-103.8919(10)	-103.8260(3)	66(1)	10.2(2)
Fe	(5D)	-123.38804(93)	-123.3100(3)	78(1)	10.5(1)
Co	(4F)	-145.1541(10)	-145.0709(3)	83(1)	10.1(1)
Ni	(^{3}F)	-169.3912(12)	-169.2973(6)	94(1)	10.3(1)
Ni	(^{3}D)	-169.3932(12)	-169.3056(6)	88(1)	9.0(1)
Cu	(^{2}S)	-196.4038(10)	-196.3178(3)	86(1)	8.1(1)
Zn	(1S)	-226.3699(18)	-226.2775(4)	92(2)	8.4(2)

Annaberdiyev et al, J. Chem. Theory Comput. 2020, 16, 3, 1482–1502 [1]

Another reason to use T-Moves: Avoiding instabilities

Figure: FNDMC energies vs number of steps (in time steps of 0.001 Ha^{-1}) for BeH_2 molecule. Be atom is represented by ccECP/[He].

So far, we have only focused on ECPs with *averaged* spin-orbit effects. Calculations with explicit spin-orbit terms will be covered in Week 8.

home/qmcuser/qmc_workshop_2021/week8_spin-orbit_qmc/

References i

A. Annaberdiyev, C. A. Melton, M. C. Bennett, G. Wang, and L. Mitas.

Accurate Atomic Correlation and Total Energies for Correlation Consistent Effective Core Potentials.

Journal of Chemical Theory and Computation, 16(3):1482–1502, Mar. 2020.

A. Annaberdiyev, G. Wang, C. A. Melton, M. C. Bennett, L. Shulenburger, and L. Mitas.

A new generation of effective core potentials from correlated calculations: 3d transition metal series.

The Journal of Chemical Physics, 149(13):134108, Oct. 2018.

M. C. Bennett, G. Wang, A. Annaberdiyev, C. A. Melton, L. Shulenburger, and L. Mitas.

A new generation of effective core potentials from correlated calculations: 2nd row elements.

The Journal of Chemical Physics, 149(10):104108, Sept. 2018.

M. Burkatzki, C. Filippi, and M. Dolg.

Energy-consistent pseudopotentials for quantum Monte Carlo calculations.

The Journal of Chemical Physics, 126(23):234105, June 2007.

References ii

M. Burkatzki, C. Filippi, and M. Dolg.

Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations.

The Journal of Chemical Physics, 129(16):164115, Oct. 2008.

M. Casula.

Beyond the locality approximation in the standard diffusion Monte Carlo method.

Physical Review B, 74(16):161102, Oct. 2006.

M. Casula, S. Moroni, S. Sorella, and C. Filippi.

Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited.

The Journal of Chemical Physics, 132(15):154113, Apr. 2010.

M. Dolg, U. Wedig, H. Stoll, and H. Preuss.

Energy-adjusted ab initio pseudopotentials for the first row transition elements.

The Journal of Chemical Physics, 86(2):866–872, Jan. 1987.

References iii

L. Mitáš, E. L. Shirley, and D. M. Ceperley.

Nonlocal pseudopotentials and diffusion Monte Carlo.

The Journal of Chemical Physics, 95(5):3467–3475, Sept. 1991.

J. R. Trail and R. J. Needs.

Shape and energy consistent pseudopotentials for correlated electron systems.

The Journal of Chemical Physics, 146(20):204107, May 2017.

G. Wang, A. Annaberdiyev, C. A. Melton, M. C. Bennett, L. Shulenburger, and L. Mitas.

A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions.

The Journal of Chemical Physics, 151(14):144110, Oct. 2019.

G. Wang, A. Annaberdiyev, and L. Mitas.

Binding and excitations in SixHy molecular systems using quantum Monte Carlo.

The Journal of Chemical Physics, 153(14):144303, Oct. 2020.

References iv

H. Zhou, A. Scemama, G. Wang, A. Annaberdiyev, B. Kincaid, M. Caffarel, and L. Mitas. A quantum Monte Carlo study of systems with effective core potentials and node nonlinearities.

arXiv:2109.08653 [physics], Sept. 2021.

X. Zhou, H. Zhao, T. Wang, and F. Wang.

Diffusion quantum Monte Carlo calculations with a recent generation of effective core potentials for ionization potentials and electron affinities.

Physical Review A, 100(6):062502, Dec. 2019.