Cours Modélisation et vérification des systèmes informatiques **Exercices**

Annotation, Contrat, modélisation et vérification (révision) par Dominique Méry 24 novembre 2023

Exercice 1 Evaluer la validité de chaque annotation dans les questions suivent.

Question 1.1

$$\ell_1: x = 64 \land y = x \cdot z \land z = 2 \cdot x$$

$$Y := X \cdot Z$$

$$\ell_2: y \cdot z = 2 \cdot x \cdot x \cdot z$$

Question 1.2

$$\ell_1 : x = 2 \land y = 4$$

 $Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + X^6$
 $\ell_2 : z = 6 \cdot (x+y)^2$

Question 1.3

$$\ell_1: x = z \land y = x \cdot z$$

$$Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + Y \cdot X \cdot Z \cdot Z \cdot X;$$

$$\ell_2: z = (x+y)^3$$

Exercice 2 Soit l'annotation suivante :

$$\ell_1 : x = 1 \land y = 2$$

$$X := Y + 2$$

$$\ell_2 : x + y \ge m$$

où m est un entier ($m \in \mathbb{Z}$).

Question 2.1 Ecrire la condition de vérification correspondant à cette annotation en upposant que X et Y sont deux variables entières.

Question 2.2 Etudier la validité de cette condition de vérification selon la valeur de m.

Exercice 3

 $\forall x,y,z,x',y',z'.P_{\ell_1}(x,y,z) \ \land \ cond_{\ell,\ell'}(x,y,z) \ \land \ \underbrace{(x',y',z')}_{} = f_{\ell,\ell'}(x,y) \Rightarrow P_{\ell'}(x',y',z')$ $(x',y',\underline{z'}) = f_{\ell,\ell'}(x,y) \Rightarrow P_{\ell'}(x',y',z')$

$$- \begin{vmatrix} \ell_1 : x = 1000 \ \land \ y = z + x \ \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 2000/2 \ \land \ y = x + 2 \cdot 1000 \end{vmatrix}$$

Question 3.2 Soit trois variables x,y,z qui ont Question 3.1 Montrer que chaque annotation des valeurs entières a priori. L'annotation est est correcte ou incorrecte selon les condi-correcte si la propriété suivante est vraie : tions de vérifications énoncées comme suit $\forall x,y,z,x',y',z'.P_{\ell_1}(x,y,z) \land cond_{\ell,\ell'}(x,y,z) \land cond_{\ell,\ell'}(x,y,z)$

$$\ell_1: x = 25 \land z = 2 \cdot c \land y = (z+1)^2$$

 $y:= x+z+1$
 $\ell_2: x = 25 \land z = 2 \cdot c \land y = (c+1)^2$

En utilisant la condition de vérification, déterminer la valeur ou les valeurs de c pour que l'annotation soit correcte.

Exercice 4

Soit l'annotation suivante. On suppose que a et b sont des constantes entières et que x, y, z et t sont des variables entières.

$$\begin{array}{l} \ell_1: x = a \wedge z = x^2 \wedge y = b \cdot b \wedge t = b \\ Y:= X \cdot Z + 3 \cdot Z \cdot T + 3 \cdot X \cdot Y + Y \cdot T \\ \ell_2: y = (t+x)^3 \end{array}$$

Question 4.1 Montrer que l'annotation est correcte ou incorrecte selon les conditions de vérifications énoncées comme suit

 $\forall v, v'. P_{\ell}(v) \land cond_{\ell,\ell'}(v) \land v' = f_{\ell,\ell'}(v) \Rightarrow P_{\ell'}(v')$. Vous devez répondre en énonçant et en démontrant les conditions de vérification c'est-à-dire en indiquant les differents pas de transformation.

Question 4.2 Soit le module suivant qui est à compléter aux points indiqués :

Donner les cinq points à compléter pour vérifier l'annotation avec TLC.

Question 4.3 On propose de vérifier l'annotation en utilisant une traduction via le traducteur d'algorithmes annotés PlusCal en TLA. Ecrire un algorithme PlusCal qui permet de réaliser cette vérification.

Exercice 5

VARIABLES N, V, S, I

$$pre(n_0, v_0, s_0, i_0) \stackrel{def}{=} \left\{ \begin{array}{l} n_0 \in \mathbb{N} \wedge n_0 \neq 0 \\ v_0 \in 0..n_0 - 1 \longrightarrow \mathbb{Z} \\ s_0 \in \mathbb{Z} \wedge i_0 \in \mathbb{Z} \end{array} \right.$$

$$\ell_0 : \begin{pmatrix} pre(n_0, v_0, s_0, i_0) \\ (n, v, s, i) = (n_0, v_0, s_0, i_0) \\ S := V(0) \\ \ell_1 : \begin{pmatrix} pre(n_0, v_0, s_0, i_0) \\ caches = \prod_{k=0}^{0} v(k) \\ (n, v, i) = (n_0, v_0, i_0) \\ I := 1 \\ \ell_2 : \begin{pmatrix} pre(n_0, v_0, s_0, i_0) \\ s = \prod_{k=0}^{i-1} v(k) \land i = 1 \\ (n, v) = (n_0, v_0) \\ while I < NDO \end{pmatrix}$$

$$\ell_3: \left(\begin{array}{c} pre(n_0, v_0, s_0, i_0) \\ s = \prod\limits_{k=0}^{i-1} v(k) \land i \in 1..n-1 \\ (n, v) = (n_0, v_0) \\ S := S \cdot V(I) \\ \ell_4: \left(\begin{array}{c} pre(n_0, v_0, s_0, i_0) \\ \end{array}\right)$$

$$I := I+1 \ell_5 : \begin{pmatrix} (n,v) = (n_0, v_0) \\ I := I+1 \\ pre(n_0, v_0, s_0, i_0) \\ (n,v) = (n_0, v_0) \end{pmatrix}$$

$$\ell_{5} : \begin{cases} pre(n_{0}, v_{0}, s_{0}, i_{0}) \\ (n, v) = (n_{0}, v_{0}) \end{cases}$$

$$OD;$$

$$\ell_{6} : \begin{cases} pre(n_{0}, v_{0}, s_{0}, i_{0}) \\ s = \prod_{k=0}^{n-1} v(k) \land i = n \\ (n, v) = (n_{0}, v_{0}) \end{cases}$$

Question 5.1 Compléter les annotations incomplètes ℓ_1 , ℓ_4 et ℓ_5 .

Question 5.2 Vérifier les conditions de vérification associées aux transitions suivantes :

Question 5.3 Donner et vérifier les points pour assurer la correction partielle de cet algorithme.

Question 5.4 Que faut-il faire pour vérifter que cet algorithme est bien annoté et qu'il est partiellement correct en utilisant TLA+? Expliquer simplement les éléments à mettre en œuvre et les propriétés de sûreté à vérifier.

Question 5.5 Ecrire un module TLA⁺ permettant de vérifier l'algorithme annoté à la fois pour la correction partielle et l'absence d'erreurs à l'exécution.

On rappelle que la condition de vérification $\forall v.P_{\ell_1}(v) \land cond_{\ell_1,\ell_2}(v) \land (v') = f_{\ell_1,\ell_2}(v) \Rightarrow P_{\ell'}(v')$ et correspond à une instruction de la forme

$$\ell_1 : P_{\ell_1}(v)
V := f_{\ell_1,\ell_2}(V)
\ell_2 : P_{\ell_2}(v)$$

Exercice 6 (6 points)

Evaluer la validité de chaque annotation dans les questions suivent.

Question 6.1

$$\ell_1: x = 64 \land y = x \cdot z \land z = 2 \cdot x$$

$$Y:= X \cdot Z$$

$$\ell_2: y \cdot z = 2 \cdot x \cdot x \cdot z$$

Question 6.2

$$\ell_1 : x = 2 \land y = 4 Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + X^6 \ell_2 : z = 6 \cdot (x+y)^2$$

Question 6.3

$$\ell_1: x = z \land y = x \cdot z$$

$$Z := X \cdot Y + 3 \cdot Y \cdot Y + 3 \cdot X \cdot Y \cdot Y + Y \cdot X \cdot Z \cdot Z \cdot X;$$

$$\ell_2: z = (x+y)^3$$

Exercice 7 (2 points)

Soit l'annotation suivante :

$$egin{aligned} \ell_1: x=1 \wedge y=2 \ X:=Y+2 \ \ell_2: x+y \geq m \end{aligned}$$
 où m est un entier ($m \in \mathbb{Z}$).

Question 7.1 Ecrire la condition de vérification correspondant à cette annotation en upposant que X et Y sont deux variables entières.

Question 7.2 Etudier la validité de cette condition de vérification selon la valeur de m.

Exercice 8 Dans l'algorithm 8, on calcule le maximum d'une suite de valeurs entières. On vous demande :

- de définir la précondition et la postcondition.
- d'annoter cet algorithme
- de vérifier les conditions de vérification pour la correction partielle
- de vérifier les conditions pour l'absence d'erreurs à l'exécution

```
 \begin{aligned} \textbf{Variables} &: \textbf{F,N,M,I} \\ \textbf{Requires} &: \begin{pmatrix} n_0 \in \mathbb{N} \land \\ n_0 \neq 0 \land \\ f_0 \in 0 \dots n_0 - 1 \rightarrow \mathbb{N} \end{pmatrix} \\ \textbf{Ensures} &: \begin{pmatrix} m_f \in \mathbb{N} \land \\ m_f \in ran(f_0) \land \\ (\forall j \cdot j \in 0 \dots n_0 - 1 \Rightarrow f_0(j) \leq m_f) \end{pmatrix} \\ M &:= F(0); \\ I &:= 1; \\ \textbf{while} \ I < N \ \textbf{do} \\ & \quad | \textbf{if} \ F(i) > M \ \textbf{then} \\ & \quad | L \ M := F(I); \\ & \quad | \vdots \\ & \quad | I + + ; \\ & \quad | \vdots \end{aligned}
```

Algorithme 1: Algorithme du maximum d'une liste non annotée