(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年9 月29 日 (29.09.2005)

PCT

(10) 国際公開番号 WO 2005/091315 A1

(51) 国際特許分類⁷: **H01F 10/14**, 1/053

(21) 国際出願番号: PCT/JP2005/005183

(22) 国際出願日: 2005年3月23日(23.03.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-085806 2004年3月23日(23.03.2004) JP

(71) 出願人 (米国を除く全ての指定国について): 独立行政法人科学技術振興機構 (JAPAN SCIENCE AND TECHNOLOGY AGENCY) [JP/JP]; 〒3320012 埼玉県川口市本町 4-1-8 Saitama (JP). 株式会社NEOMAX (NEOMAX CO.,LTD.) [JP/JP]; 〒6180013 大阪府三島郡島本町江川2丁目15番

17号 Osaka (JP). 並木精密宝石株式会社 (NAMIKI PRECISION JEWEL CO.,LTD.) [JP/JP]; 〒1238511 東京都足立区新田3丁目8番22号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 鈴木 俊治 (SUZUKI, Shunji) [JP/JP]; 〒4371216 静岡県磐田郡福田町一色94番地 Shizuoka (JP). 町田憲一(MACHIDA, Kenichi) [JP/JP]; 〒5620023 大阪府箕面市粟生間谷西1丁目4番地グリーンヒル東箕面5棟401号 Osaka (JP). 坂口英二 (SAKAGUCHI, Eiji) [JP/JP]; 〒6210806 京都府亀岡市余部町前川原37番地の11 Kyoto (JP). 中村一也 (NAKA-MURA, Kazuya) [JP/JP]; 〒3350004 埼玉県蕨市中央6-4-28 Saitama (JP).
- (74) 代理人: 西 義之 (NISHI, Yoshiyuki); 〒2350036 神奈 川県横浜市磯子区中原 4-2 6-3 2-2 1 1 西特許 事務所 Kanagawa (JP).

/続葉有/

- (54) Title: R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
- (54) 発明の名称: R-Fe-B系薄膜磁石及びその製造方法

- 1... Nd (MASS %)
- 2... COMPARATIVE EXAMPLE
- 3... PRESENT INVENTION

(57) Abstract: An R-Fe-B based thin film magnet which comprises an R-Fe-B based alloy containing 28 to 45 mass % of an R element (wherein R represents one or more of rare earth lanthanide elements) and is formed into a film by a physical means, wherein the alloy has a composite structure comprising R₂Fe₁₄B crystals having a crystal diameter of 0.5 to 30 μ m and grain boundary phases being present at borders of said crystals and being rich in the R element; and a method for preparing the R-Fe-B based thin film magnet, which comprises heating the film to a temperature of 700 to 1200°C during the above physical film forming and/or in the subsequent heat treatment, to thereby grow crystal grains and form grain boundary phases being rich in the R element. The above R-Fe-B based thin film magnet exhibits improved magnetization characteristics.

(57) 要約: 物理的に成膜された28~45質量%のR元素(但し、Rは希土類ランタニド元素の一種又は二種以上)を含むR-Fe-B系合金において、結晶粒径が0.5~30μmのR₂Fe₁₄B結晶と、該結晶の境界にR元素が富化した粒界相との複合組織を有性の熱の上した。物理的成膜中又は/及びその熱の無において、700~1200℃にあかることによって結晶粒成長とR元素がの熱があることによって結晶粒成長とR元素にの限した粒界相の形成を行うことにより、できる。

WO 2005/091315 A1

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護 が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ,

BY, KG, KZ, MD, RU, TJ, TM), $\exists \neg \neg \neg \lor \land$ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2005/091315 1 PCT/JP2005/005183

明細書

R-Fe-B系薄膜磁石及びその製造方法 技術分野

[0001] 本発明は、マイクロマシンやセンサ、及び小型の医療・情報機器向けに適する高性能な薄膜磁石及びその製造方法に関する。

背景技術

- [0002] 希土類元素RとしてNdを主とする、Nd-Fe-B系の希土類焼結磁石は高い磁気特性を有し、VCM(ボイスコイルモータ)やMRI(磁気断層撮影装置)他、様々な分野で使用されている。これらの磁石は一辺が数一数十mmの大きさであるが、携帯電話用振動モータには外径3mm以下の円筒形状をした磁石が使われ、さらに微小な磁石がマイクロマシンやセンサ分野において要求されている。例えば厚さが1mm以下の平板状磁石は、予め大きめの焼結体ブロックから切断や研磨などの工程を経て製作するが、磁石強度や生産性の問題により0.5mm以下の磁石を得ることが困難である。
- [0003] 一方、最近、スパッタリングやレーザーデポジション等の物理的成膜法により、微小寸法の薄膜磁石が製作されるようになり、磁気特性では200kJ/m³以上の最大エネルギー積が報告されている(例えば、非特許文献1、特許文献1)。これらの製法によれば、磁石合金成分を真空又は減圧空間内で基板や軸上に堆積させて熱処理を施し、各種条件を適切に制御することにより200kJ/m³程度の高性能膜を、焼結法と比べて比較的簡単なプロセスで得ることができる。
- [0004] 一般例として、平板や軸などの基材上に成膜した薄膜磁石の厚さは数~数十μm 程度であり、平板の四辺や軸の直径に対して数十分の1から百分の1となる場合が多い。この薄膜を平板面や軸の周面に対して垂直方向に着磁する際には、反磁界が非常に大きくなって充分な着磁が行われず、従って、薄膜磁石の本来の磁気特性を引き出すことが困難となる。反磁界の大きさは、磁石の着磁方向とその直角方向との寸法比に依存し、着磁方向(=膜厚方向)の寸法が小さいほど大きくなることは、既に一般的に知られている。

- [0005] 一方、上記寸法比の問題とは別の視点で、着磁しやすい磁石材料を製作することができれば薄膜磁石の特性を容易に引き出すことが可能となり、様々な応用デバイスの製作において有益となる。従来のNd-Fe-B系薄膜磁石は、一般に磁石構成成分を原子又はイオン化された状態で基材上に堆積させ、その後の熱処理によって単磁区粒子径に相当する 0.3μ m未満のNd Fe B結晶粒を生成させる手法を採用している(特許文献2、3)。
- [0006] この際に、一般的には結晶粒を小さく抑制して所望の磁気特性を得るのが常套手段であるが(例えば、特許文献4)、結晶粒径と着磁性を議論した文献はほとんどない。なお、結晶粒を0.3 μ m以上に成長させると各結晶粒内が多磁区構造となって保磁力が低下してしまう。
- [0007] 着磁性良否の参考として、図1(a)に、一般焼結磁石の初磁化曲線と減磁曲線を、図1(b)に、従来例の薄膜磁石の初磁化曲線と減磁曲線を示す。図1(a)から明らかなように、焼結磁石は磁界を加えた場合に磁化は急峻に立ち上がり、0.4MA/m程度の低い磁界においても充分に高い磁気特性を示している。
- [0008] 一方、図1(b)の従来例の薄膜磁石の場合には磁化は原点から徐々に増加し、1. 2MA/mの磁界においても飽和傾向が見られない。着磁性に関するこの相違は、 焼結磁石が核発生型の保磁力機構を有しているのに対して、従来例の薄膜磁石が 単磁区粒子型の保磁力発生機構によっているためと推察される。
- [0009] 非特許文献1:日本応用磁気学会誌、27巻、10号、1007頁、2003年

特許文献1:特開平8-83713号公報

特許文献2:特開平11-288812号公報

特許文献3:特開2001-217124号公報

特許文献4:特開2001-274016号公報

発明の開示

発明が解決しようとする課題

- [0010] 本発明は、薄膜磁石の着磁性を向上することを課題とする。 課題を解決するための手段
- [0011] 本発明者等は、薄膜磁石の着磁性を向上することを目的として、組成と結晶組織の

研究を鋭意重ねた結果、焼結磁石と同様の核発生型保磁力機構を有する薄膜磁石 を製作することに成功した。

- [0012] すなわち、本発明は、(1)物理的に成膜された28~45質量%のR元素(但し、Rは 希土類ランタニド元素の一種又は二種以上)を含むR-Fe-B系合金において、結晶 粒径が0.5~ 30μ mのR Fe B結晶と、該結晶の境界にR元素が富化した粒界相 との複合組織を有することを特徴とするR-Fe-B系薄膜磁石、である。
- [0013] また、本発明は、(2)R₂Fe₁₄B結晶の磁化容易軸であるC軸が無配向であるか、あるいは膜面に対して略垂直に配向していることを特徴とする、上記(1)のR-Fe-B系薄膜磁石、である。
- [0014] また、本発明は、(3) 膜厚が0.2~ 400μ mである上記(1) 又は(2) のR–Fe–B系 薄膜磁石、である。
- [0015] さらに、本発明は、(4)R-Fe-B系合金の物理的成膜中又は/及びその後の熱処理において、700-1200℃に加熱することによって結晶粒成長とR元素が富化した粒界相の形成を行うことを特徴とする、上記(1)-(3)のいずれかのR-Fe-B系薄膜磁石の製造方法、である。
- [0016] Nd-Fe-B系薄膜磁石の結晶組織がほとんどR₂Fe₁₄B結晶で構成され、且つその結晶粒径が0.3μmに相当する単磁区粒子径未満である場合には、磁界を加えても各結晶粒の磁化方向は磁界の大きさに対して徐々に回転するため、図1(b)の従来例の薄膜磁石の初磁化曲線に見られる通り充分な着磁をすることが困難である。また、薄膜磁石は微小なデバイスに応用する例が多いために、微小な部位に大きな磁界を加えることが実際面で難しい。
- [0017] 一方、結晶組織が単磁区粒径より大きいR Fe B結晶と、該結晶境界にR元素が富化した粒界相との複合組織から成る本発明磁石の場合に、磁界を加えると、後述する図3の本発明試料(2)の初磁化曲線から推測されるように、各結晶粒内に存在する多数の磁区が、隣接する磁壁を取り払って小さな磁界で一斉に磁界の方向を向き、焼結磁石に類似した充分な着磁が行われる。この着磁性の困難さと容易さについては、従来例の薄膜磁石が単磁区粒子型の保磁力発生機構を有し、一方、本発明による薄膜磁石が核発生型の保磁力発生機構を有するためと推察される。

発明を実施するための最良の形態

[0018] (合金系·結晶組織)

本発明で対象とする薄膜磁石は、希土類元素をRと表記した場合にR-Fe-B系合金から成り、一般的にはNd-Fe-B系合金が用いられる。実際の合金製作においては、薄膜磁石の保磁力を向上させるためR元素としてNdの他にPr, Dy, Tbなどの添加や、安価なCeの添加などが行われる。また、成膜した合金の結晶化温度や結晶粒の大きさを適宜制御するために、Ti, V, Mo, Cu等の各種遷移金属元素やP, Si, Alを添加したり、耐食性を向上するためにCo, Pd, Pt等の各種遷移金属元素を添加したりすることが通常行われる。

- 「0019」 合金中のNd, Pr, Dy, Tb等希土類元素Rの総量は、R $_2$ Fe $_{14}$ B結晶とR元素が富化した粒界相との複合組織を形成するために、28~45質量%とすることが必須であり、32~40質量%とすることがより好ましい。即ち、合金中のR元素含有量はR $_2$ Fe $_{14}$ B組成よりも多くする必要がある。R元素が富化した粒界相は、R元素を50質量%以上含み、Feや他の添加成分を少量含有する、RO $_2$ 若しくはR $_2$ O $_3$ 型酸化物に類似した相と推察される。
- [0020] R元素としてNdを代表例とするNd Fe_{14} Bの化学量論組成においてのNd量は26. 7質量%であり、Ndが富化した粒界相を少量共存させるためには合金中のR元素は少なくとも28質量%とする必要がある。一方、R元素量が多くなると合金中の粒界相の割合が増加して保磁力は向上するが、Nd Fe_{14} B結晶の割合が低下して磁化の減少が著しくなり、高い磁気特性が得られなくなるため45質量%以下とすることが必要である。
- [0021] 合金内部の $\operatorname{Nd}_2\operatorname{Fe}_{14}\operatorname{B}$ 語晶と Nd 富化粒界相の関係については、焼結磁石の場合と同様に前者の結晶の周囲を後者の粒界相がほぼ取り囲んだ組織となっている。粒界相の割合が少ない場合はその厚さは $\operatorname{+nm}$ 程度と薄く、また一部で粒界相が途切れた組織となるために低保磁力で高磁化の傾向となり、割合が多い場合は厚さが数百 nm $\operatorname{-1}\mu$ mとなり高保磁力で低磁化の傾向となる。
- [0022] 結晶粒径については、一般に結晶を多方向から輪切りにした平均寸法から求めるが、膜厚が薄い場合は扁平形状の結晶となるために、本明細書中では膜面内で観

察された結晶の平均寸法を結晶粒径と表現している。この測定法は、具体的には、 平面基板上あるいは軸表面上に成膜したNd-Fe-B系薄膜を硝酸アルコールで微 弱エッチングした試料を、SEM(走査型電子顕微鏡)又は高倍率金属顕微鏡で観察 し、得られた画像写真に1本のラインを引き、そのライン上200 μ mの長さにある結晶 粒径を測長して平均値を算出し、これを結晶粒径とした。

- [0023] Nd Fe $_{14}$ B結晶の粒径は、核発生型の保磁力機構をもたせて磁界に対する磁化の立ち上がりを急峻にするため、 $_{0}$. $_{5}$ $_{30}$ $_{\mu}$ mとすることが必要であり、 $_{3}$ $_{15}$ $_{\mu}$ mがより好ましい。既述したように、 $_{0}$. $_{5}$ $_{\mu}$ m未満では単磁区粒子径の大きさに近くなって初磁化曲線の立ち上がりは緩やかになり、着磁が困難となる。一方、粒径が $_{30}$ $_{\mu}$ mを超えると一結晶内に存在する磁区の数が過多となって磁化が反転しやすくなり、粒界相が形成されていても必要とする保磁力が得られなくなる。
- [0024] 本発明のR-Fe-B系薄膜磁石は、R Fe B結晶の磁化容易軸であるC軸が無配向である、あるいは膜面に対して略垂直に配向している。本発明では、基本的に、C 軸の配向を問わず着磁性が改良される。ただし、C軸が膜面に平行である場合は反磁界の影響が小さく着磁性改良効果が小さくなる。
- [0025] (膜厚·成膜法·基材)

NdーFeーB系膜の厚さは、 $0.2-400\,\mu$ mの範囲であるときに本発明の効果を充分発揮できる。 $0.2\,\mu$ m未満ではNd Fe B結晶粒の体積が小さくなり、Nd富化粒界相との複合組織を形成してもなお単磁区粒子的な挙動が支配的になり、結果的に良好な着磁性を得ることができない。一方、 $400\,\mu$ mを超えると膜の下部と上部で結晶の大きさや配向の乱れが大きくなって、残留磁化が低下してしまう。また、 $400\,\mu$ mを超えて成膜するにはおよそ1日以上の長時間稼働が必要なこと、及び $400\,\mu$ m超の厚さは焼結磁石を切断研磨する方法によって比較的容易に得られることにより、上限膜厚を $400\,\mu$ mとする。

[0026] 成膜方法については、合金を液中から析出させるメッキ、微細な合金粉末粒子を塗布あるいは吹きつけるコーティングやCVD、及び蒸着、スパッタリング、イオンプレーティング、レーザーデポジションなど各種の物理的成膜法を用いることができる。特に、物理的成膜法は不純物混入が少なく良質の結晶質膜が得られるため、Nd-Fe-B

系薄膜の成膜法として好適である。

[0027] 薄膜を形成するための基材は、各種の金属や合金、ガラス、シリコン、セラミックスなどを選択して使用することができる。ただし、所望の結晶組織を得るために高温度での処理を行う必要上、セラミックスや金属基材としてはFe, Mo, Tiなどの高融点金属を選択することが望ましい。また、基材が軟磁性を有する場合は薄膜磁石の反磁界が小さくなることから、Fe, 磁性ステンレス鋼, Niなどの金属や合金が好適である。なお、セラミックス基材を用いると高温処理における耐性は充分であるが、Nd-Fe-B膜との密着性が不足する場合があり、その対策としてTiやCrなどの下地膜を設けることにより密着性を向上することが通常行われ、これら下地膜は基材が金属や合金でも有効の場合がある。

[0028] (熱処理)

スパッタリングなどによって成膜したままの状態では、Nd-Fe-B系膜は通常アモルファスもしくは数十nm程度の微細結晶から成ることが多い。そのため、従来は400~650℃の低温熱処理によって結晶化と結晶成長を促進して1 μ m未満の結晶組織を得ている。本発明では、第一に、従来よりも大きな結晶粒を製作し、第二にNd富化粒界相を共存させるために、700~1200℃の高温熱処理を行うことが必要である。

この高温熱処理の役割は、膜内のNd Fe B結晶の粒成長を促すと同時に、該結晶周辺にNdリッチな粒界相を生成させることにあり、この構造を成すことによって本発明が目的とする核発生型の保磁力機構を有することになる。好ましくは、この高温熱処理に続いて、500~600℃の低温熱処理を実施することにより、上記のNdリッチな粒界相は該結晶を薄く均一に取り囲んだ組織を形成するようになり、結果的に保磁力の向上をもたらす効果がある。

[0029] 好ましくは、成膜中の基材温度を例えば300~400℃とし、成膜後に700~1200 ℃に加熱する。700℃未満では所望とする結晶粒を成長させるのに数十時間を要す るために適切でなく、またNd富化粒界相を生成することが極めて困難である。700℃ 以上になると結晶成長が進み、且つNd, Fe, Bの各種反応を経てNd富化粒界相が 形成されるようになる。しかし、1200℃を超えると合金の一部が融液状態となって薄 膜の形態が崩れること、及び酸化が著しく進行するために不適である。

熱処理時間については、均質な結晶組織を得るために高温と低温のいずれの熱処理においても、10分以下では膜内の結晶粒径の不揃いやNdJッチな粒界相厚さのバラツキを生じ易い。他方、薄膜磁石の体積が焼結磁石と比較して小さいために、十数分から数十分程度で所望の結晶組織や粒界相を得ることが容易であり、1時間以上の処理は酸化の進行を招くことや、これ以上に時間を増加しても結晶組織のへの影響は比較的小さいことから、10分を超え1時間未満の処理時間が好ましい。

- [0030] 熱処理は、成膜後に真空あるいは非酸化性の雰囲気中で行うのが良く、加熱方法としては薄膜試料を電気炉へ装填する方式、赤外線加熱やレーザー照射によって急速な加熱冷却をする方式、及び薄膜に直接通電するジュール加熱方式などを選択採用することができる。
- [0031] 成膜と熱処理を分離して実施した方が膜の結晶性や磁気特性を制御し易いため好ましいが、スパッタリングの最中に基材を高温度に加熱しておく方式や、成膜時の出力を上げることによって成膜中の温度を高温に維持することにより、所望の結晶組織を作りこむことも可能である。なお、Nd-Fe-B系膜はさび易いため成膜後あるいは熱処理後に、NiやTiなどの耐食性保護膜を形成して用いるのが通例である。

実施例1

[0032] 以下実施例に従って本発明を詳細に述べる。

目的とするNd-Fe-B合金のNd含有量より少ない組成のNd-Fe-B合金を溶解 鋳造し、内外周及び平面研削を行い、外径60mm、内径30mm、厚さ20mmの円環 状合金を2個製作した。さらに放電加工によって、円環部に直径6mmの貫通孔を8 個設けてターゲットとし、別途合金組成調整用に直径5.8mm、長さ20mmで純度9 9.5%のNd棒を用意した。また、長さ12mm、幅5mm、厚さ0.3mmの短冊形状を した純度99.9%の鉄板を多数製作し、溶剤脱脂と酸洗をして基板とした。このター ゲットー対を対向させてその中間に高周波コイルを配置させた3次元スパッタ装置を 用い、この鉄基板表面へNd-Fe-B合金を成膜した。

[0033] 実際の成膜作業は以下の手順で行った。スパッタ装置内に取り付けたNd-Fe-B 合金ターゲットの貫通孔に所定数のNd棒を装填し、上記基板を装置内のモータ軸

に直結した治具に取り付け、高周波コイルの中間に置かれるようセットした。スパッタ装置内を 5×10^{-5} Paまで真空排気した後、Arガスを導入して装置内を1Paに維持した。次に、RF出力30WとDC出力3Wを加えて10分間の逆スパッタを行って鉄基板表面の酸化膜を除去した。続いて、RF出力150WとDC出力300Wを加えて基板を6rpmで回転させながら90分間のスパッタを行い、厚さ 15μ mのNd-Fe-B膜を基板両面に形成した。続いて、Nd棒の数を変更して同様のスパッタを繰り返し行い、合計6個の合金組成の異な5Nd-Fe-B膜を製作した。

- [0034] 次に、6個の成膜された基板を長さ方向1/2に切断し、一方をグローブボックス内に設置した電気炉に装填し、酸素濃度を2ppm以下に維持したAr雰囲気中で、一段目を850℃で20分間、2段目を600℃で30分間の2段熱処理を行った。ここで得られた試料を、Nd組成に従って本発明試料(1)〜(4)、及び比較例試料(1)〜(2)とした。他方を、600℃で30分間の1段熱処理のみを行い、比較例試料(3)〜(8)とした。
- [0035] 代表例として、Nd含有量が同じで、最も高い(BH) max値が得られた本発明試料(2)と比較例試料(4)については、エネルギー分散型質量分析器(EDX)を備えた走査型電子顕微鏡(SEM)を用いて結晶組織の観察を行った。観察画像から測長して求めた本発明試料(2)の結晶粒径は3ー 4μ mであり、また、2次電子像観察からは各結晶粒の間にNdとOが高濃度に分布した厚さが 0.2μ m以下の粒界相が見られた。一方、比較例試料(4)の結晶粒径は 0.2μ m以下であり明瞭な粒界相は認められなかった。
- [0036] また、Nd-Fe-B結晶の磁化容易軸であるC軸の方向を調べるため、本発明試料(2)と比較例試料(4)については成膜面に対して垂直と水平の2方向の磁気測定を行った。その結果、前者試料の残留磁化は水平と比較して垂直方向に測定した場合に1.6倍であることから、明らかに膜面に垂直方向にC軸が配向していると推察され、さらに、この試料のX線回折パターンを測定した結果、Nd Fe B結晶に起因する(006)面の回折線強度が著しいことから、上述のC軸配向が再確認された。一方、後者試料の残留磁化も方向によって差異があり、水平と比較して垂直方向に測定した場合に1.25倍であったが、結晶粒が小さすぎるためにC軸の配向性は前者試料と比較して1.25倍であったが、結晶粒が小さすぎるためにC軸の配向性は前者試料と比較し

てやや劣っていた。

- [0037] 各試料の磁気特性は振動試料型磁力計を用いて測定し、膜面に垂直方向に磁界を1.2MA/m加えた場合と2.4MA/m加えた場合の測定をした。次に、上記温度で熱処理をした成膜前のFe基板の測定を行って測定値を減算処理後、Nd-Fe-B膜の磁気特性を求めた。また、一部の試料はさらに初磁化曲線の測定も行い、いずれの場合も反磁界係数の補正は考慮しなかった。
- [0038] 薄膜の合金組成分析においては、通常利用されるICP分析法では膜を酸溶解する際にFe基板の溶出による誤差を生じるため、ここではEPMA分析によって膜中のNd含有量を算出した。その結果、比較例試料(1)のNd質量%が25.7、本発明試料(1)が29.4、本発明試料(2)が34.5、本発明試料(3)が39.2、本発明試料(4)が44.1、比較例試料(2)が47.8であった。なお、上記と熱処理条件が異なる比較例試料(3)~(8)は、熱処理の違いによるNd質量%の変化がないため、上記質量%の結果に相応した値を用いた。Nd質量と熱処理条件をまとめて表1に示す。[表1]

:	Nd組成	熱処理温度
	(質量%)	(\mathcal{C})
比較例試料(1)	25. 7	850
本発明試料(1)	29.4	850
本発明試料(2)	34.5	850
本発明試料(3)	39. 2	850
本発明試料(4)	44.1	850
比較例試料(2)	47.8	850
比較例試料(3)	25.7	600
比較例試料(4)	29.4	600
比較例試料(5)	34.5	600
比較例試料(6)	39.2	600
比較例試料(7)	44.1	600
比較例試料(8)	47.8	600

[0039] 図2に、本発明試料(1)〜(4)及び比較例試料(1)〜(8)の、最大エネルギー積(BH) maxを示す。ここで、1.2MA/mの低磁界を加えて測定したものを(BH)

max/1.2とし、2.4MA/mの高磁界を加えたものを(BH)max/2.4と表記した。

- [0040] 図2から明らかなように、(BH) maxは全試料ともにNd量に依存しており、Nd質量が28%以上45%以下の本発明試料(1)~(4)において、最大エネルギー積(BH) max/1.2及び(BH) max/2.4ともに約150kJ/m³以上の高い値が得られた。また、(BH) max両者の差異は小さく、低い着磁磁界によって比較的高い特性が得られることが分った。Nd質量%が少なすぎる比較例試料(1)は、結晶組織内にαFeの析出が認められたために保磁力が低く、従って高い(BH) maxが得られず、また、Nd質%が多すぎる比較例試料(2)は、残留磁化が著しく低下するために高い(BH) maxが得られなかった。
- [0041] 一方、比較例試料(3)~(8)は(BH)max/1.2と(BH)max/2.4の差異が大きく、着磁磁界を大きくしなければ高い値が得られず、比較例試料(5)において高磁界を加えた場合にのみ150kJ/m³の値が得られた。この理由は、図3の本発明試料(2)と比較例試料(4)の初磁化曲線と減磁曲線に示すように、前者は磁化の立ち上がりが急峻であるのに対して後者は緩やかであるためであり、結晶組織の違いがその原因と推察されている。

実施例 2

- [0042] 3次元スパッタ装置の前室に、実施例1で製作したNd-Fe-B合金ターゲットー対に各3本のNd棒を装填し、後室に同寸法のTiターゲットを取り付けた。基板には、外径10mm、内径0.8mm、厚さ0.2mmの表面研磨したアルミナを用いた。モータ軸に直結した治具に差し込んだ直径0.5mm、長さ60mmの波型加工をしたタングステン線に、上記アルミナ基板を一回のスパッタ作業につき各5枚を7mmずつ離して取り付けた。
- [0043] スパッタ装置内を真空排気した後、Arガスを導入して装置内を1Paに維持して基板を6rpmで回転させた。最初に、RF出力100WとDC出力10Wを加えて10分間の逆スパッタを行い、次にRF100WとDC150Wを加えて10分間のスパッタを行って、基板の両面にTiの下地膜を形成した。続いてこのTi成膜基板を装置の前室に移送して、RF200WとDC400Wを加え80分間のスパッタを行って、上記基板両面にNdーFe-B膜を形成した。さらに、これら基板をArガス雰囲気中に置かれた電気炉に装

填して600~1250℃で30分間加熱した後炉冷して、熱処理温度の違いによって結晶粒径の違いを生じた各種の試料、すなわち、本発明試料(5)~(9)、及び比較例試料(9)~(10)とした。

[0044] 成膜された各膜の厚さは、事前に基板の一部をマスキングして同一スパッタ条件で成膜し、表面粗さ計によって測定した結果、Ti膜が $0.15\,\mu$ m、NdーFeーB膜が $20\,\mu$ mであった。また、NdーFeーB膜中のNd量は33.2質量%であった。熱処理後の試料はすべてEDX分析機能を備えたSEM装置を用いて観察し、その画像からNd Fe B結晶粒径を求めた。2次電子像観察からは本発明試料(5)~(9)では各結晶粒の間にNdとOが高濃度に分布した厚さがおよそ $0.1\,\mu$ mの粒界相が見られた。一方、比較例試料(9)~(10)では、明瞭な粒界相は認められなかった。

[0045] 表2に、各試料の熱処理温度と結晶粒径、及び膜面に垂直方向に1.2MA/mの 低磁界を加えた場合の残留磁化Br/1.2と保磁力Hcj/1.2の値を示す。

[0046] [表2]

A INVAR	熱処理温度	結晶粒径	Br/1.2	Hcj/1.2
試料名	(℃)	$(\mu \mathrm{m})$	(T)	(MA/m)
比較例試料(9)	600	0.2	0.58	1.18
本発明試料(5)	700	0.7	0.83	1.22
本発明試料(6)	800	3.1	1.03	1.15
本発明試料(7)	900	9.2	1.18	1.12
本発明試料(8)	1000	18	1.19	0.93
本発明試料(9)	1200	28	1.16	0.74
比較例試料(10)	1250	35	0.87	0.38

[0047] 表2から明らかなように、熱処理温度が700℃以上の場合に単磁区粒子径0.3 μ mを超える結晶粒径が得られ、高温度になるに従って結晶が成長して粒径が大きくなる。比較例試料(9)は、結晶粒径が小さいため保磁力は大きいが、着磁性が悪いために残留磁化が低い。比較例試料(10)は、結晶粒径が過大であるために保磁力が著しく低下して残留磁化の低下を招き、さらに合金成分が一部融液となって膜の表面が凹凸状態を生じた。

[0048] さらに、図4に各試料の結晶粒径と(BH)max/1.2及び(BH)max/2.4の関係を示す

実施例3

- [0049] Nd-Fe-B合金ターゲットー対に各2本のNd棒と各1本のDy棒を装填し、実施例1で用いたFe基板2枚を治具に密着固定して、それぞれスパッタ装置に取り付けた。装置内を0.5Paに維持して基板を6rpmで回転させ、最初に、RF出力30WとDC出力4Wを加えて10分間の逆スパッタを行い、RF200WとDC500Wを加えて0.5分~24時間のスパッタを行って、上記2枚の基板片面にNd-Dy-Fe-B膜を形成した。一方の基板は膜厚測定に使用し、他方を熱処理に用いた。熱処理は、これら基板を真空中で赤外加熱することにより820℃まで急速昇温させ、10分間保持後冷却した。得られた試料はそれぞれ膜厚に従って、0.15μmの比較例試料(11)、0.26μmの本発明試料(10)~374μmの本発明試料(16)、及び455μmの比較例試料(12)とした。
- [0050] 各試料の組成分析の結果は、Nd-Dy-Fe-B膜中のNd量は29.8質量%でDyが4.3質量%であり、希土類量の合計は34.1質量%であった。また結晶粒径はすべて $5-8\mu$ mの範囲であった。また、2次電子像観察からは各試料とも各結晶粒の間にNdとOが高濃度に分布した厚さが 0.2μ m以下の粒界相が見られた。
- [0051] 図5に、各試料の膜厚と(BH) max/1.2及び(BH) max/2.4の関係を示す。図5から 明らかなように、膜厚0.15μmの比較例試料(11)は膜厚が薄すぎるために結晶の 体積が小さく、従って単磁区粒子的な保磁力機構の挙動が支配的となって着磁性が 悪く、結果として(BH) max/1.2と(BH) max/2.4の差異が大きい。また、比較例試料(12)は膜が厚過ぎるために結晶の垂直配向性の乱れが大きくなって(BH) maxが低 下する傾向を示した。従って、高いエネルギー積を得るには膜の厚さを0.2から400μmとすることが適切であることが明らかになった。

実施例 4

[0052] ターゲットは実施例3と同じくし、基材は直径0.3mm、長さ12mmのSUS420系ステンレス鋼製の軸を使用した。装置内を1Paに維持して基材を10rpmで回転させながら、RF出力20WとDC出力2Wを加えて10分間の逆スパッタを行い、RF200WとDC500Wを加えて4時間のスパッタを行って、基材軸の表面に46μmのNd-Dy-Fe-B膜を形成したものを2個製作した。次に、成膜した軸を電気炉に装填して、一方を800℃で他方を550℃で各30分間保持して炉冷し、前者を本発明試料(17)、後者を比較例試料(13)とした。

各試料の組成分析の結果は、Nd-Dy-Fe-B膜中のNd量は30.6質量%でDyが4.4質量%であり、希土類量の合計は35.0質量%であった。また、本発明試料(17)の結晶粒径は3~ 7μ mであり、2次電子像観察からは各結晶粒の間にNdとOが高濃度に分布した厚さが 0.2μ m以下の粒界相が見られた。一方、比較例試料(13)は、結晶粒径は約 0.2μ mであり、明瞭な粒界相は認められなかった。

- [0053] 磁気特性の測定は、成膜した軸の直角方向に磁界を0.8~2.4MA/m加えて行い、実施例1と同様に成膜前の軸を同一温度で熱処理した試料の特性を差し引いた後、Nd-Dy-Fe-B膜の磁気特性を求めた。なお、軸と平行方向に磁界を加えて測定した結果を上記結果と比較した場合に、残留磁化の値は同等レベルであったため、本例試料では磁気的に等方的な膜が得られたと推測される。
- [0054] 図6に、本発明試料(17)と比較例試料(13)についての、磁界に対する最大エネルギー積の関係を示す。図6から明らかなように、比較例試料(13)と比較して本発明 試料(17)は、磁界の大きさに対する最大エネルギー積の差異が小さく、低い磁界で高い値が得られることが分った。

産業上の利用可能性

[0055] R含有量と結晶粒径を制御したR-Fe-B系薄膜磁石において、R₂Fe₁₄B結晶とR 元素が富化した粒界相との複合組織を形成させることにより、従来薄膜磁石と比較して優れた着磁性を有する薄膜磁石を製作することができた。これにより、狭い空間に強大な磁界を発生することが困難なマイクロマシンやセンサ、及び小型の医療・情報機器向け薄膜磁石を、充分に着磁することが可能となり、各種機器の高性能化に貢献するものである。

図面の簡単な説明

[0056] [図1]焼結磁石(a)と従来例の薄膜磁石(b)の、初磁化曲線と減磁曲線である。

[図2]本発明試料と比較例試料の、Nd量と(BH)maxの関係図である。

[図3]本発明試料(2)と比較例試料(4)の初磁化曲線と減磁曲線である。

[図4]本発明試料と比較例試料の、結晶粒径と(BH)maxの関係図である。

[図5]本発明試料と比較例試料の、膜厚と(BH)maxの関係図である。

[図6]本発明試料(17)と比較例試料(13)の、磁界と(BH)maxの関係図である。

請求の範囲

- [1] 物理的に成膜された28~45質量%のR元素(但し、Rは希土類ランタニド元素の一種又は二種以上)を含むR-Fe-B系合金において、結晶粒径が0.5~30 μ mのR₂Fe₁₄B結晶と、該結晶の境界にR元素が富化した粒界相との複合組織を有することを特徴とするR-Fe-B系薄膜磁石。
- [2] R Fe B結晶の磁化容易軸であるC軸が無配向であるか、あるいは膜面に対して略 垂直に配向していることを特徴とする、請求項1記載のR-Fe-B系薄膜磁石。
- [3] 膜厚が0. 2~400 µ mである請求項1又は2記載のR-Fe-B系薄膜磁石。
- [4] R-Fe-B系合金の物理的成膜中又は/及びその後の熱処理において、700~120 0℃に加熱することによって結晶粒成長とR元素が富化した粒界相の形成を行うことを特徴とする、請求項1~3のいずれかに記載のR-Fe-B系薄膜磁石の製造方法。

(a)

[図2]

- 〇 (BH) max/2.4 比較例(1)~(2)、本発明(1)~(4)
- □ (BH) max/1.2 比較例(1)~(2)、本発明(1)~(4)
- ◆ (BH) max/2.4 比較例(3)~(8)
- ▲ (BH) max/1.2 比較例(3)~(8)

2/3

[図3]

[図4]

3/3

[図5]

[図6]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/005183

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ H01F10/14, 1/053

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) Int.Cl 7 H01F10/14, 1/053

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 2002-164238 A (Hitachi Metals, Ltd.), 07 June, 2002 (07.06.02), Claims; Par. Nos. [0012], [0016], [0025] to [0029]	1,2,4
X Y	JP 7-283016 A (TDK Corp.), 27 October, 1995 (27.10.95), Claims; Par. Nos. [0005], [0026] to [0027], [0050] to [0058]	1,2,4 3
Х	JP 7-201623 A (TDK Corp.), 04 August, 1995 (04.08.95), Par. Nos. [0036] to [0044], [0050] to [0053], [0065] to [0067], [0082]	1,2,4 3

×	Further documents are listed in the continuation of Box C.	×	See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" "L"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is
"O" "P"	document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than	"" " " " " " " " " " " " " " " " " " "	combined with one or more other such documents, such combination being obvious to a person skilled in the art
	the priority date claimed	"&"	document member of the same patent family
Date	of the actual completion of the international search	Date	e of mailing of the international search report
	16 June, 2005 (16.06.05)		05 July, 2005 (05.07.05)
	e and mailing address of the ISA/ Japanese Patent Office	Aut	norized officer
Facs	imile No.	Tele	phone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/005183

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	JP 2003-158006 A (Shin-Etsu Chemical Co., Ltd.), 30 May, 2003 (30.05.03), Claim 1; Par. Nos. [0009] to [0013]	1,4
X	JP 2003-64454 A (Shin-Etsu Chemical Co., Ltd.), 05 March, 2003 (05.03.03), Par. Nos. [0009] to [0016]	1,4
X Y	JP 9-45567 A (Hitachi Metals, Ltd.), 14 February, 1997 (14.02.97), Par. No. [0008]	1 4
Y	JP 7-272929 A (Kobe Steel, Ltd.), 20 October, 1995 (20.10.95), Par. Nos. [0006], [0009] to [0010], [0016]	2,3
Y	JP 11-273920 A (Sumitomo Special Metals Co., Ltd.), 08 October, 1999 (08.10.99), Par. Nos. [0018], [0025] to [0030]	1,2,4
P, X P, Y	JP 2004-120892 A (Hitachi, Ltd.), 15 April, 2004 (15.04.04), Par. Nos. [0023] to [0028]	1,4 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/JP2005/005183

			· · · · · · · · · · · · · · · · · · ·
JP 2002-164238 A	2002.06.07	US 2002/54824 A1	2002.05.09
JP 7-283016 A	1995.10.27	(Family: none)	
JP 7-201623 A	1995.08.04	US 5641363 A1 US 5834663 A1	
JP 2003-158006 A	2003.05.30	EP 1455368 A1 WO 2003/044810 A1	
JP 2003-64454 A	2003.03.05	US 2003/79805 A1 EP 1267365 A2	
JP 9-45567 A	1997.02.14	US 5876518 A1 US 6254694 B1	
JP 7-272929 A	1995.10.20	(Family: none)	
JP 11-273920 A	1999.10.08	US 6511552 B1 US 2003/136469 A1 US 2003/172995 A1 EP 945878 A1	2003.07.24 2003.09.18
JP 2004-120892 A	2004.04.15	(Family: none)	

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl.⁷ H01F10/14, 1/053

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7 H01F10/14, 1/053

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	JP 2002-164238 A(日立金属株式会社)2002.06. 07,特許請求の範囲、段落【0012】、段落【0016】、段落 【0025】-【0029】	1, 2, 4 3
X Y	JP 7-283016 A (ティーディーケイ株式会社) 1995.1 0.27,特許請求の範囲、段落【0005】、段落【0026】- 【0027】、段落【0050】-【0058】	1, 2, 4 3

▼ C欄の続きにも文献が列挙されている。

▼ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 16.06.2005 国際調査報告の発送日 05.7.2005 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区段が関三丁目4番3号 電話番号 03-3581-1101 内線 3565

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	JP 7-201623 A (ティーディーケイ株式会社) 1995.0 8.04, 段落【0036】-【0044】、段落【0050】-【0 053】、段落【0065】-【0067】、段落【0082】	1, 2, 4 3
x	JP 2003-158006 A (信越化学工業株式会社) 2003. 05.30, 請求項1、段落【0009】-【0013】	1, 4
x	JP 2003-64454 A (信越化学工業株式会社) 2003.0 3.05, 段落【0009】-【0016】	1, 4
X Y	JP 9-45567 A (日立金属株式会社) 1997.02.14, 段 落【0008】	1 4
Y	JP 7-272929 A(株式会社神戸製鋼所)1995.10.20, 段落【0006】、段落【0009】-【0010】、段落【001 6】	2, 3
Y	JP 11-273920 A(住友特殊金属株式会社) 1999.10. 08, 段落【0018】、段落【0025】-【0030】	1, 2, 4
P, X P, Y	JP 2004-120892 A (株式会社日立製作所) 2004.04.15, 段落【0023】-【0028】	1, 4
		·

JP 2002-164238 A	2002. 06. 07	US 2002/54824 A1	2002. 05. 09
JP 7-283016 A	1995. 10. 27	ファミリーなし	
JP 7-201623 A	1995. 08. 04		1997. 06. 24
		US 5834663 A1	1998. 11. 10
JP 2003-158006 A	2003. 05. 30	EP 1455368 A1	2004. 09. 08
		WO 2003/044810 A1	2003. 05. 30
JP 2003-64454 A	2003. 03. 05	US 2003/79805 A1	2003. 05. 01
		EP 1267365 A2	2002. 12. 18
JP 9-45567 A	1997. 02. 14	US 5876518 A1	1999. 03. 02
		US 6254694 B1	2001. 07. 03
JP 7-272929 A	1995. 10. 20	ファミリーなし	
JP 11-273920 A	1999. 10. 08	US 6511552 B1	2003. 01. 28
		US 2003/136469 A1	2003. 07. 24
		US 2003/172995 A1	2003. 09. 18
		EP 945878 A1	1999. 09. 29
JP 2004-120892 A	2004. 04. 15	ファミリーなし	