

WHAT IS CLAIMED IS

1. A compound having the formula

5

or

10

in which:

R₀ is selected from the group consisting of C₁-C₃ alkyl, cyclopropyl, halo, OR₅ and S(O)_mR₅ in which m is 0, 1 or 2;

15 R₁ and R₂ are independently selected from the group consisting of C₂-C₈ alkenyl, phenylcyclopropyl, phenylpropenyl, R₆-X₂-C(R₈)(R₈)-R₇-; and R₆-X₂-N(R₈)-R₇-;

R₃ and R₄ are independently hydrogen, methyl or ethyl;

R₅ is methyl or ethyl;

R₆ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, aryl, W, Y, NH₂, NHCONR₃R₄, NHCOOR₃ and NHSO₂R₉;

20 R₇ is selected from the group consisting of a direct bond, an alkyl group having from 1 to 10 carbon atoms, aryl, -(NH)_p(CH₂CH₂O)_q(NH)_p- in which p is 0 or 1 and q is an integer from 1 to 4, and W;

R₈ is selected from the group consisting of H, Y, OH, -NHCONR₃R₄; -NHCOR₃; -NSO₂R₉, -(CH₂)_rCO₂R₃, and (CH₂)_rCO₂NR₃R₄ in which *r* is an integer from 1 to 3;

R₉ is aryl or C₁-C₆ alkyl;

X₁ is -CH-, -C-hal, -C(CH₃) or -C(C₂H₅), in which *hal* stands for a halogen atom (preferably 5 chloro, fluoro or bromo);

X₂ is selected from the group consisting of a direct bond, -NH-, -N(CH₃)-, -NCONR₃R₄-, - NCOOR₃-, and NSO₂R₉;

W is a saturated carbocyclic or heterocyclic group;

Y is selected from the group consisting of COOH, COOR₃, CONR₃R₄, CONHSO₂R₅,

10 hydroxymethyl, -CH₂COOH, CH₂CONR₃R₄; and 5-tetrazolyl; and

Z is -CH₂-, -CH(CH₃)-, C(CH₃)₂- or -CO-;

and hydrates and salts thereof, and labeled derivatives thereof.

2. A compound of Formula (I) according to claim 1.
3. A compound of Formula (II) according to claim 1.
- 15 4. A compound according to claim 1 in which Y is COOH or COOR₃.
- 5 . A compound according to claims 1 in which R₀ is a C₁- C₃ alkyl group.
- 6 . A compound according to claim 5 in which R₀ is methyl.
7. A compound according to claim 2 in which R₁ is optionally substituted phenethyl.
- 20 8. A compound according to claim 2 in which R₁ is 2-hydroxyethyl.
9. A compound according to claim 2 in which R₂ is n-butyl, phenyl or n-butyrylamido.
10. A compound according to claim 2 in which R₂ is R₆-X₂-C(R₈)(R₈)-R₇- or R₆-X₂-N(R₈)-R₇-, and the group R₆-X₂-C(R₈)(R₈)-R₇- or R₆-X₂-N(R₈)-R₇- is selected from 25 C₃-C₈ alkyl; C₃-C₆ cycloalkyl; C₃-C₈ alkenyl; -(CH₂)_mC₆H₅ where *m* is 0 or an integer from

1-3; -CH₂OC₆H₅, CH₂COC₆H₅, phenyl(C₂-C₄ alkenyl), or analogous moieties having substituted phenyl groups; optionally substituted phenylcyclopropyl; -(CH₂)_sOH, -(CH₂)_sCONH₂ and -(CH₂)_sCOOH where s is an integer from 1 to 3; phenyl; thienyl; and optionally substituted C₃-C₆ cycloalkyl-(C₁-C₃ alkyl).

5 11. A compound according to claim 2 in which R₀ is methyl, R₁ is phenethyl, R₂ is n-butyl, X₁ is -CH, Y is COOH and n is 0.

12. A compound according to claim 2 in which R₀ is methyl, R₁ is 2-hydroxyethyl, R₂ is n-butyl, X₁ is -CH, Y is COOH and n is 0.

13. A compound according to claim 3 in which R₂ is phenethyl or 2-hydroxyethyl.

14. A compound according to claim 3 in which R₁ is C₃-C₈ alkyl.

15. A compound according to claim 3 in which R₀ is methyl, R₁ is n-pentyl, R₂ is phenethyl, X₁ is -CH and Y is COOH.

16. A probe comprising a compound according to claim 1 and a detectable label.

17. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 1.

20 18. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 2.

25 19. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 3.

20. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 7.

21. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 8.

5 22. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 9.

10 23. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 10.

15 24. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 11.

20 25. A method for inhibiting the functioning of a PDZ domain of a protein comprising contacting the protein with an inhibitory effective amount of a compound according to claim 15.

26. A method according to claim 17 in which the protein is a MAGI protein.

27. A combinatorial library of two or more compounds having the formula

(I)

or

(II)

in which:

R_0 is selected from the group consisting of C_1 - C_3 alkyl, cyclopropyl, halo, OR_5 and $S(O)_mR_5$ in which m is 0, 1 or 2;

5 R_1 and R_2 are independently selected from the group consisting of C_2 - C_8 alkenyl, phenylcyclopropyl, phenylpropenyl,), $R_6-X_2-C(R_8)(R_8)-R_7-$; and $R_6-X_2-N(R_8)-R_7-$;

R_3 and R_4 are independently hydrogen, methyl or ethyl;

R_5 is methyl or ethyl;

10 R_6 is selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, aryl, W , Y , NH_2 , $NHCONR_3R_4$, $NHOOR_3$ and $NHSO_2R_9$;

R_7 is selected from the group consisting of a direct bond, an alkyl group having from 1 to 10 carbon atoms, aryl, $-(NH)_p(CH_2CH_2O)_q(NH)_p-$ in which p is 0 or 1 and q is an integer from 1 to 4, and W ;

15 R_8 is selected from the group consisting of H , Y , OH , $-NHCONR_3R_4$; $-NHOOR_3$; $-NHSO_2R_9$, $-(CH_2)_rCO_2R_3$, and $(CH_2)_rCO_2NR_3R_4$ in which r is an integer from 1 to 3;

R_9 is aryl or C_1 - C_6 alkyl;

X_1 is $-CH-$, $-C-hal$, $-C(CH_3)$ or $-C(C_2H_5)$, in which *hal* stands for a halogen atom (preferably chloro, fluoro or bromo);

20 X_2 is selected from the group consisting of a direct bond, $-NH-$, $-N(CH_3)-$, $-NCONR_3R_4-$, $-NCOOR_3-$, and NSO_2R_9 ;

W is a saturated carbocyclic or heterocyclic group;

Y is selected from the group consisting of $COOH$, $COOR_3$, $CONR_3R_4$, $CONHSO_2R_5$, hydroxymethyl, $-CH_2COOH$, $CH_2CONR_3R_4$; and 5-tetrazolyl; and

Z is $-CH_2-$, $-CH(CH_3)-$, $C(CH_3)_2-$ or $-CO-$;

25 and hydrates and salts thereof, and labeled derivatives thereof.

28. A combinatorial library according to claim 27 in which the compounds are of Formula (I).

29. A combinatorial library according to claim 27 in which the compounds are of Formula (II).

30. A method for screening one or more proteins for PDZ domain activity comprising contacting the one or more proteins with a compound according to claim 1.

5 31. An array for screening for PDZ domain activity or inhibition of the same, or for studying protein-protein interactions comprising two or more compounds according to claim 1.

10 32. A method for treating a cancer in cancerous cells or in a patient comprising contacting the cancerous cells with, or administering to the patient, a therapeutically effective amount of a compound according to claim 1.

33. A method for treating a cancer in a patient comprising administering to the patient a therapeutically effective amount of a compound according to claim 2.

34. A method for treating a cancer in a patient comprising administering to the patient a therapeutically effective amount of a compound according to claim 3.

15 35. A method for treating a cancer in a patient comprising administering to the patient a therapeutically effective amount of a compound according to claim 11.

36. A method for treating a cancer in a patient comprising administering to the patient a therapeutically effective amount of a compound according to claim 15.