ELE32 Introdução a Comunicações LAB 4 – Comparação justa

ITA manish@ita.br

Comparando canais BSC com valores diferentes de E_b/N₀

Energia por bit de informação

- Dado um código de bloco que codifica k bits de informação em n bits da palavra código, a taxa é R = k/n
- Se cada bit é transmitido com energia E_b , quanta energia estamos gastando por bit de informação?
- \blacksquare E_i = energia por bit de informação
- \blacksquare $E_i = E_b/R$

Comparação justa

- Um sistema não codificado utiliza $E_b/N_0 = 10$ dB
- Um sistema codificado com taxa ½ utiliza o mesmo valor de E_b/N₀
- A comparação não é justa pois no primeiro sistema E_i = E_b e no segundo sistema E_i = 2E_b
- Uma comparação justa seria deve ter o mesmo valor de E_i para ambos os sistemas, isto é, o mesmo E_i/N₀:
- Uma forma de deixar a comparação justa é usar para o sistema não codificado o valor de $E_b/N_0 = 13$ dB, o que deve melhorar o seu desempenho
- Outra forma de deixar a comparação justa é usar $E_i/N_o = 10$ dB para o sistema codificado, o que implica em usar $E_b/N_o = 6.9$ dB
- A comparação justa envolve deslocar o desempenho do sistema codificado em cerca de 3dB para a direita do gráfico em função de E_b/N₀, ou seja, apresentar todos osdesempenho em função do mesmo E_i/N₀

Atividades

- 1. Obtenha um gráfico da probabilidade de erro em função de E_i/N_0 comparando os seguintes sistemas:
 - 1. Sistema BPSK não codificado (não precisa ser simulado);
 - 2. Código de Hamming do primeiro laboratório;
 - 3. Desempenho do código LDPC com $N \approx 1000$ utilizando o algoritmo bit-flipping do segundo laboratório;
 - 4. Desempenho do código LDPC com $N \approx 1000$ utilizando o algoritmo que usa LLRs do terceiro laboratório
 - 5. Um novo código LDPC projetado por você, com *N* ≈ 1000 utilizando o algoritmo que usa LLRs do terceiro, com desempenho necessariamente melhor do que os outros. A taxa e os outros parâmetros do sistema são livres. Cabe a você definir o que quer dizer desempenho melhor.
- 2. Compare a RSR necessária para se atingir probabilidade de erro de bit menor do que 10⁻⁴ nos sistemas acima da seguinte forma:
 - 1. Obtenha a RSR em que cada um dos 5 sistemas acima tem o desempenho desejado. Esta é a RSR operacional
 - 2. Obtenha a taxa (em bits de informação por uso de canal) com a qual cada um dos sistemas opera
 - 3. Obtenha o valor da RSR mínima exigida para que a capacidade do canal Gaussiano seja igual à taxa do item anterior
 - 4. Calcule a diferença entre a RSR exigida e a operacional de cada um dos sistemas.
- 3. Com base na comparação do item anterior, declare o melhor código do semestre.

Não é necessário simular novamente os sistemas dos laboratórios anteriores, mas devemos traduzir o valor de p do canal BSC para o valor de E_i/N_0 correto. **Atenção**: É necessário "corrigir" o valor de E_i/N_0 pois o parâmetro p do canal BSC correspondente depende de E_h/N_0 (note o subscrito _b ao invés de _i).

Entregáveis

- O gráfico final
- A tabela solicitada
- O grafo do novo código projetado por vocês, entregado novamente no formato .csv do último teste. Seu desempenho será verificado

Exemplo: CCSDS 130x1g3

Recomendação para uso espacial

