EE5340

INTRODUCTION TO QUANTUM COMPUTING AND PHYSICAL BASICS OF COMPUTING

Overview

Solving A Problem Using a Computer ...

VS.

http://archives.library.illinois.edu

EE5340

Quantum vs. Classical Computing

- Fundamentally different computing paradigm
- Can potentially solve classically "intractable" problems
 - Complements classical computing
 - Examples
 - Molecular dynamics simulation
 - ...
 - Encryption (factoring large numbers)

What is Quantum Computing?

- Study of information processing tasks performed using quantum mechanical systems
- Quantum Mechanics (QM):
 - Mathematical set of rules for the construction of physical theories

- Classical computers cannot efficiently simulate QM
- Build computers based on QM principles? [Feynman, 1982]
- What other problems can QCs solve faster than classical computers?
 - Unknown
 - Q-algorithm design is challenging
 - QM is "unintuitive"
 - The algorithm should be "better" than any classical counterpart

Quantum Bits: qbits

- Mathematical "objects"
- Have "state":
 - Two observable basis states: | 0> and | 1>
 - Forming "basis" states
 - >: Dirac notation, standard notation for states in QM
 - vs. 2-state (0 or 1) classical bits
 - qbits can be in any state form by linear combinations (superpositions) of basis states

$$|\psi\rangle = a|0\rangle + b|1\rangle = a\begin{bmatrix}1\\0\end{bmatrix} + b\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a\\0\end{bmatrix} + \begin{bmatrix}0\\b\end{bmatrix} = \begin{bmatrix}a\\b\end{bmatrix}$$

- State of a single qubit: $|\Psi\rangle = a|0\rangle + b|1\rangle$
 - $|a|^2$ Probability that the qbit will be observed in the state |0>
 - |b|2 Probability that the qbit will be observed in the state | 1>
- Without direct observation, the state of a single qbit spans [a,b]^T

Physical Realization Example

Ulya Karpuzcu

How much information can be represented per qbit?

- Infinite number of points on the sphere (infinite binary expansion for angles)?
- However, measurement can give only 0 or 1

EE5340

Ulya Karpuzcu

Current Status

- Small and intermediate scale quantum computers prototyped
- NISQ: Noisy Intermediate Scale Quantum Machines [Preskill]
 - 20-1000 qubits
 - Insufficient resources for noise tolerance (error correction)

Current State: Algorithms to Machines Gap

Open Questions

- What are quantum systems good at?
 - Quantum algorithm development
- How to build quantum systems?
 - Qbit technologies

Coordinates

- https://canvas.umn.edu/courses/461083
- Instructor
 - Ulya Karpuzcu: ukarpuzc @ umn
 - Office hours: TBA
- Grading Mechanics
 - Assignments & Machine Problems 50%
 - Quizzes 50%
- References
 - Lecture notes & reading material on course website

Quiz

- 1. Academic background (major/minor) & area of research (if applicable)
- 2. Have you taken any physics classes?
- 3. Have you taken any hardware design/computer architecture classes?
- 4. Have you taken any theory of computing/algorithms classes?
- 5. Describe briefly:
 - 1. Von Neumann Machine
 - 2. Turing Machine
 - 3. Quantum Mechanics
 - 4. Entropy
 - 5. Transistor
 - 6. Schrödinger's Cat
 - 7. Adiabatic

Bibliography

- Next Steps in Quantum Computing: Computer Science's Role, Martonosi et al., CCF Report, November 2018
- Nielsen & Chuang, Chapter I

EE5340

INTRODUCTION TO QUANTUM COMPUTING AND PHYSICAL BASICS OF COMPUTING

Overview

