Supplemental Instructions

Niklas Gustafsson niklgus@student.chalmers.se

2016-11-22

Underrum, kolumnrum, rang och dimension

1.

- a) Om ni tar fram nollrummet till en godtycklig matris A, vad får ni för något då?
- b) Ta fram nollrummet till matrisen nedanför.

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

- c) Om ni tar fram kolumnrummet till en godtycklig matris A, vad får ni för något då?
- d) Ta fram kolumnrummet till matrisen ovan.
- e) Vad är rangen för A matrisen ovan?

Matrisalgebra

2.

Låt A och B vara matriserna
$$A=\begin{bmatrix}1&4&7\\2&5&8\\3&6&9\end{bmatrix}$$
 och $B=\begin{bmatrix}3&-2&-1\\2&1&9\\3&-3&-1\end{bmatrix}$. Beräkna följande:

- a) A + B
- b) A B
- c) $A \cdot B$
- d) Vad är kravet för att en matris ska kunna kalls för symmetrisk? Är någon av matriserna A eller B symmetriska?

Determinanter

3.

- a) Beräkna determinanaten till matrisen $A=\begin{bmatrix}\vec{a_1} & \vec{a_2}\end{bmatrix}=\begin{bmatrix}1 & 2\\3 & 5\end{bmatrix}$
- b) Är $\vec{a_1}$ och $\vec{a_2}$ vänster eller högerorienterade?
- c) Kluring: Antag att ni har matrisen $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. Kan ni se vad determinanten av den här matrisen kommer att bli utan att beräkna den för hand?
- d) Beräkna $\frac{1}{det(A)}\cdot A$. Multiplicera sedan resultatet med A. Märker ni någonting speciellt med det här resultatet?

4.

- a) Beräkna determinanaten till matrisen $A = \begin{bmatrix} 1 & 5 & 7 \\ 2 & 9 & 8 \\ 3 & 3 & 9 \end{bmatrix}$
- b) Beräkna $\frac{1}{det(A)} \cdot A$. Multiplicera sedan resultatet med A. Märker ni någonting speciellt med det här resultatet?

Area, volym, kryssprodukt

5

Antag att ni har matriserna
$$B=\begin{bmatrix}\vec{b_1}&\vec{b_2}&\vec{b_3}\end{bmatrix}=\begin{bmatrix}3&-2&-1\\2&1&9\\3&-3&-1\end{bmatrix}$$
 och $A=\begin{bmatrix}\vec{a_1}&\vec{a_2}\end{bmatrix}=\begin{bmatrix}-3&2\\7&5\end{bmatrix}$

- a) Beräkna arean av det parallellogram som spänns upp av $\vec{a_1}$ och $\vec{a_2}$.
- b) Beräkna volymen av den parallellpiped som $\vec{b_1}$, $\vec{b_2}$ och $\vec{b_3}$ spänner upp.
- c) En enhetskvadrat är en kvadrat vars sidor har längden 1. I det kartesiska planet har enhetskvadraten sina hörn i (0,0), (1,0), (0,1) och (1,1). Kan ni med hjälp av determinanter bevisa att arean av enhetskvadraten är 1?

6.

- a) Givet två vektorer \vec{u} och \vec{v} , vad blir resultatet av kryssprodukten \vec{u} x \vec{v} ?
- b) Beräkna kryssprodukten av $\vec{u} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ och $\vec{v} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$

- c) Beräkna kryssprodukten av $\vec{v} = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$ och $\vec{u} = \begin{bmatrix} -2 \\ 7 \\ 1 \end{bmatrix}$.
- d) Beräkna kryssprodukten av $e_x=\begin{bmatrix}1\\0\\0\end{bmatrix},\,e_y=\begin{bmatrix}0\\1\\0\end{bmatrix}.$

Kan ni gissa vad resultatet kommer att bli på förhand?

e) Kan ni representera följande vektorer i R^3 och beräkna kryss produkten av dem? $\vec{u}=\begin{bmatrix}1\\3\end{bmatrix},\,\vec{v}=\begin{bmatrix}2\\5\end{bmatrix}$

Linjära ekvationssystem

Repetition är all kunskaps moder!

7.

Lös ekvationssystemet:
$$\begin{cases} 3\cdot x - 1\cdot y + z = 8 \\ -3\cdot x + 2\cdot y - z = 2 \\ 1\cdot x - 5\cdot y + 2\cdot z = 16 \end{cases}$$