

Nachklausur Mathematik 1. und 2. Semester I07

Prof. Dr. Zimmermann

Matrikeln	ummer:								
	sur ist Bestandtei äuschung wird die			- ~			Prüfu	ngsordnung	. Bei ver-
Zugelasser	ne Hilfsmittel: No	rdakade	emie Ta	schenre	chner.				
-	Taschen, Rucksäck 3. im hinteren Teil		_	_	en Sie b	itte deu	tlich a	ußerhalb Ih	rer Reich-
Überprüfe	en Sie die Anzahl	der Seit	ten. Lie	gen Ihn	en 7 Se	eiten (ol	nne Tit	elseite) vor	?
	usur enthält 6 Au enötigen Sie 50 P	_	Es kön	nen 100) Punkt	e erreic	ht were	den. Zu Bes	tehen der
auf jeden gehörigkei Schreibe	reiben Sie Ihre M Antwortbogen. N it ihrer Antworten n Sie leserlich. ertung der Aufgab	ummeri zu der Schwe	eren Si Aufga	e die Ar ben.	ntworth	ögen uı	nd keni	nzeichnen S	ie die Zu-
	Aufgabe:	1	2	3	4	5	6	Summe:	
Ì	Punktzahl:	5	12	22	8	19	34	100	
	Davon erreicht:								
Datum:		No	te:		Unter	schrift:			

Aufgabe 1 (5 Punkte)

Berechnen Sie die Potenzmenge P(M) der Menge $M = \{\emptyset, 1, \{1, \emptyset\}\}\$

Lösung:

$$P(M) = \{\emptyset, \{\emptyset\}, \{\emptyset, 1\}, \{\emptyset, \{\emptyset, 1\}\}, \{1\}, \{1, \{\emptyset, 1\}\}, \{\{\emptyset, 1\}\}, M\}$$

Aufgabe 2 (12 Punkte)

Betrachten Sie die Aussage:

Seien S, T beliebige Mengen. Dann gilt: $S \cup T \subset T \Rightarrow S \subset T$.

(2.1) (4 Punkte) Geben Sie die formalen Definitionen von \subseteq und \cup wieder.

Lösung:

$$S \subseteq T \Leftrightarrow \forall x \in S : x \in T$$
$$S \cap T = \{x | x \in S \land x \in T\}$$

(2.2) (8 Punkte) Beweisen Sie die Aussage.

Bewertung: Die Aussage ist ein Teil eines besprochenen Satzes. Ihre Lösung darf aber nicht mehr beweisen, als gefordert.

Lösung:

Seien S, T zwei beliebige Mengen mit $S \subseteq T$. Wir sollen zeigen $S \cup T \subseteq T$. Sei dazu $x \in S \cup T$ beliebig. Dann gilt $x \in S \vee x \in T$. Wir machen eine Fallunterscheidung (oder -aus Schluss).

- Ist $x \in S$, dann ist nach der Voraussetzung $S \subseteq T$ und der Definition von $\subseteq x \in T$.
- Ist $x \in T$, gann gilt $x \in T$ sowieso.

In jedem Fall ist also $x \in T$.

Aufgabe 3 (22 Punkte)

(3.1) (7 Punkte) Wir definieren Zahlen g_n für alle $n \in \mathbb{N}$ durch:

$$g_1 = 1$$

$$g_n = \begin{cases} g_{n/2} : n \text{ gerade} \\ g_{3n+1} : n \text{ ungerade} \end{cases}$$

Berechnen Sie $g_2, g_3, g_4, g_5, g_6, g_7$

Warum handelt es sich **nicht** um eine Definition durch vollständige Induktion? Benennen Sie die Ursache des Problems.

Lösung:

1.
$$g_2 = g_1 = 1$$

2.
$$g_3 = g_{10} = g_5 = g_{16} = g_8 = g_4 = g_2 = 1$$

3.
$$q_4 = q_2 = 1$$

4.
$$g_5 = 1$$
 siehe 2.

5.
$$g_6 = g_3 = 1$$

6.
$$g_7 = g_{22} = g_{11} = g_{34} = g_{17} = g_{52} = g_{26} = g_{13} = g_{40} = g_{20} = g_{10} = 1$$

Es handelt sich nicht um eine Definition durch vollständige Induktion, weil in der Rekursionsformel für g_n nicht auf den direkten Vorgänger (oder zumindest auf ein kleineren Index) zugegriffen wird, sondern mit $3 \cdot n + 1$ auf einen viel größeren Index.

(3.2) (15 Punkte) Die Fibonacci Zahlen sind die Folge von Zahlen f_n , $n \in \mathbb{N}_0$, die den Bedingungen genügen:

1.
$$f_0 = 1$$
 und $f_1 = 1$

2.
$$\forall n \in \mathbb{N}_2 : f_n = f_{n-1} + f_{n-2}$$

Hinweis: Die verwendeten Mengen sind: $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ und $\mathbb{N}_2 = \{2, 3, 4, 5, \ldots\}$ Beweisen Sie durch vollständige Induktion:

$$\sum_{k=0}^{n} f_k = f_{n+2} - 1$$

Tipp: Korrigieren Sie zunächst die "Auslassungen" der Aufgabenstellung.

Lösung:

Behauptung:

$$\forall n \in \mathbb{N}_0 : \sum_{k=0}^n f_k = f_{n+2} - 1$$

Beweis durch vollständige Induktion:

1. Induktionsanfang (n = 0):

Linke Seite:
$$\sum_{k=0}^{0} f_k = f_0 = 1$$

Rechte Seite:
$$f_{0+2} - 1 = f_2 - 1 = 2 - 1 = 1$$

2. Induktionsschluss:

Sein $n \in \mathbb{N}_0$ beliebig aber fest.

2.1 Induktionsvoraussetzung

$$\sum_{k=0}^{n} f_k = f_{n+2} - 1$$

2.2 Induktionsbehauptung

$$\sum_{k=0}^{n+1} f_k = f_{(n+1)+2} - 1$$

2.3 Induktionsschritt

$$\sum_{k=0}^{n+1} f_k = \left(\sum_{k=0}^n f_k\right) + f_{n+1} \tag{1}$$

$$= f_{n+2} - 1 + f_{n+1} \tag{2}$$

$$= f_{n+2+1} - 1 (3)$$

Dabei ist:

- (1) Aufspalten der Summe ist der Tesuji
- (2) Anwenden der Induktionsvoraussetzung
- (3) Anwenden der Definition der Fibonacci Zahlen

Aufgabe 4 (8 Punkte)

Die Firma Fraenkelbräu ist eine andere global vertretene Brauerei. Sei K die Menge aller Kunden, R die Menge der Vertriebsregionen und V die Menge der Vertreibsmitarbeiter. Folgende Prädikate sind in diesem Szenario von Bedeutung: Kunde **gehört zu** Vertriebsregion. Vertriebsmitarbeiter **betreut** Kunde.

- (4.1) (4 Punkte) Übertragen Sie die folgenden Aussagen des Vertriebsleiters Adolf Abraham Halevi Fraenkel in prädikatenlogische Ausdrücke mit Quantoren.
 - 1. Alle Kunden sind einer Vertriebsregion zugeordnet.
 - 2. Jeder Vertriebsmitarbeiter betreut in wenigstens einer Region alle Kunden.

Lösung:

- 1. $\forall k \in K \ \exists r \in R : k \text{ gehört zu } r$
- 2. $\forall v \in V \ \exists r \in R \ \forall k \in K : k \ \text{gehört zu} \ r \Rightarrow v \ \text{betreut} \ k$
- (4.2) (4 Punkte) Negieren Sie die zweite Aussage und schreiben Sie sie so, dass keine Quantoren negiert vorkommen.

Lösung:

 $\exists v \in V \ \forall r \in R \ \exists k \in K : k \text{ gehört zu } r \wedge v \text{ betreut nicht } k$

Aufgabe 5 (19 Punkte)

Themengebiet Ordnungsrelationen.

(5.1) (6 Punkte) Geben Sie die formalen Definitionen für eine Ordnungsrelation in der Menge M und größte und maximale Elemente einer Teilmenge $A \subseteq M$.

Lösung:

 $R \subseteq M \times M$ ist Ordnungsrelation, falls

- 1. R reflexiv ist: $\forall x \in M : (x, x) \in R$
- 2. R antisymmetrisch ist: $\forall x, y \in M : (x, y) \in R \land (y, x) \in R \Rightarrow x = y$
- 3. R transitiv ist: $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$

Für beliebiges $A \subseteq M$ heisst

g größtes Element von A $\Leftrightarrow g \in A \land \forall a \in A : (a,g) \in R$ m maximales Element von A $\Leftrightarrow m \in A \land \forall a \in A : (m,a) \in R \Rightarrow m = a$

(5.2) (5 Punkte) Eine Ordnungsrelation sei durch das folgende Hasse Diagramm gegeben.

Geben Sie ein Beispiel für eine Menge mit mindestens zwei maximalen Elementen. Gibt es in dieser Menge ein größtes Element? Wenn ja, welches?

Lösung:

 $A = \{c, d\}$ hat die maximalen Elemente c, d aber kein größtes Element.

(5.3) (8 Punkte) Beweisen Sie die Aussage.

Gegeben sei eine Ordnungsrelation in einer Menge M und eine Teilmenge $A \subseteq M$. Es gibt höchstens ein größtes Element in A.

Lösung:

Seien g_1 und g_2 größte Elemente von A. Dann gilt $(g_2, g_1) \in R$ da g_1 größtes Element ist und $g_2 \in A$. Ebenso gilt $(g_1, g_2) \in R$ da g_2 größtes Element ist und $g_1 \in A$. Aus der Antisymmetrie von R folgt $g_1 = g_2$.

Aufgabe 6 (34 Punkte)

Die Aufgabe beschäftigt sich mit der mathematisch exakten Konstruktion von Brüchen aus natürlichen Zahlen. Es kommen Techniken aus dem Bereich der Äquivalenzrelationen und der Gruppen zur Anwendung.

(6.1) (3 Punkte) Geben Sie die Definition einer Äquivalenzrelation formal wieder.

Lösung:

 $R \subseteq M \times M$ ist Ordnungsrelation, falls

- 1. R reflexiv ist: $\forall x \in M : (x, x) \in R$
- 2. R symmetrisch ist: $\forall x, y \in M : (x, y) \in R \Rightarrow (y, x) \in R$
- 3. R transitiv ist: $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$
- (6.2) (2 Punkte) In der Menge $\mathbb{N} \times \mathbb{N}$ ist die folgende Relation definiert:

$$\forall (z_1, n_1), (z_2, n_2) \in \mathbb{N} \times \mathbb{N} : (z_1, n_1) \equiv (z_2, n_2) \Leftrightarrow z_1 \cdot n_2 = z_2 \cdot n_1$$

(Tipp: z steht für Zähler und n für Nenner)

Welche der folgenden (in Infix Notation geschriebenen) Beziehungen ist richtig?

- 1. $(2,3) \equiv (4,6)$
- $2. (6,9) \equiv (2,3)$
- $3. (2,3) \equiv (8,12)$
- 4. $(2,3) \equiv (3,4)$
- 5. $(6,9) \equiv (8,12)$

Lösung:

- 1. $(2,3) \equiv (4,6)$ wahr
- 2. $(6,9) \equiv (2,3)$ wahr
- 3. $(2,3) \equiv (8,12)$ wahr
- 4. $(2,3) \equiv (3,4)$ falsch
- 5. $(6,9) \equiv (8,12)$ wahr
- (6.3) (5 Punkte) Beweisen Sie, dass \equiv eine Äquivalenzrelation ist.

Lösung:

- Reflexivität: Sei $(x,y) \in \mathbb{N} \times \mathbb{N}$ beliebig, dann gilt $x \cdot y = x \cdot y$ also $(x,y) \equiv (x,y)$.
- Symmetrie: Seien $(x_1, y_1), (x_2, y_2) \in \mathbb{N} \times \mathbb{N}$ beliebig mit $(x_1, y_1) \equiv (x_2, y_2),$ dann gilt $x_1 \cdot y_2 = x_2 \cdot y_1$ also auch $x_2 \cdot y_1 = x_1 \cdot y_2$ also $(x_2, y_2) \equiv (x_1, y_1).$
- Symmetrie: Sei $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{N} \times \mathbb{N}$ beliebig mit $(x_1, y_1) \equiv (x_2, y_2)$ und $(x_2, y_2) \equiv (x_3, y_3)$, dann gilt $x_1 \cdot y_2 = x_2 \cdot y_1$ und $x_2 \cdot y_3 = x_3 \cdot y_2$. Bildet man das Produkt erhält man also $x_1 \cdot y_2 \cdot x_2 \cdot y_3 = x_3 \cdot y_2 \cdot x_2 \cdot y_1$. Da $x_2 \cdot y_2 \neq 0$ ist, kann man den Term auf beiden Seiten wegkürzen und erhält $x_1 \cdot y_3 = x_3 \cdot y_1$. Das bedeutet $(x_1, y_1) \equiv (x_3, y_3)$.
- (6.4) (4 Punkte) Geben Sie die Definition einer Äquivalenzklasse an und bestimmen Sie ? in

$$[(2,3)]_{\equiv} = \{(2,3),?,?,?,?,...\}$$

Lösung:

$$[(2,3)]_{\equiv} = \{(2,3), (4,6), (6,9), (8,12), (10,15), \ldots\}$$

(6.5) (5 Punkte) Zeigen Sie, dass die Definition des Produkts von zwei Brüchen

$$\forall (z_1, n_1), (z_2, n_2) \in \mathbb{N} \times \mathbb{N} : [(z_1, n_1)]_{\equiv} \odot [(z_2, n_2)]_{\equiv} = [(z_1 \cdot z_2, n_1 \cdot n_2)]_{\equiv}$$

sinnvoll ist.

Lösung:

Wir müssen die Unabhängigkeit vom Repräsentanten zeigen.

Seien $(z_1, n_1), (z_2, n_2), (z'_1, n'_1), (z'_2, n'_2) \in \mathbb{N} \times \mathbb{N}$ beliebig mit $(z_1, n_1) \equiv (z'_1, n'_1)$ und $(z_2, n_2) \equiv (z'_2, n'_2)$. Wir müssen zeigen: $(z_1 \cdot z_2, n_1 \cdot n_2) \equiv (z'_1 \cdot z'_2, n'_1 \cdot n'_2)$.

Die Voraussetzung besagt: $z_1 \cdot n_1' = z_1' \cdot n_1'$ und $z_2 \cdot n_2' = z_2' \cdot n_2'$. Multipliziert man diese beiden Gleichungen erhält man: $z_1 \cdot n_1' \cdot z_2 \cdot n_2' = z_1' \cdot n_1' \cdot z_2' \cdot n_2'$. Nach Umsortieren der Faktoren ist das genau die zu beweisende Behauptung.

Zusatzaufgabe: (7 Extrapunkte) Zeigen Sie, dass auch die Definition der Addition von zwei Brüchen

$$\forall (z_1, n_1), (z_2, n_2) \in \mathbb{N} \times \mathbb{N} : [(z_1, n_1)]_{\equiv} \oplus [(z_2, n_2)]_{\equiv} = [(z_1 \cdot n_2 + z_2 \cdot n_1, n_1 \cdot n_2)]_{\equiv}$$
sinnvoll ist.

- (6.6) (6 Punkte) Geben Sie die Definition einer Gruppe wieder.
- (6.7) (9 Punkte) Beweisen Sie, dass die Menge der Äquivalenzklassen mit der Verknüpfung ⊙ eine Gruppe ist.

Viel Erfolg