Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Exercise Sheet 8

1. Analytic maps on \mathbb{D}

- 1.1. Let $f: \mathbb{D} \longrightarrow \mathbb{C}$ be analytic and f(0) = 0. Show that $\sum_{n=0}^{\infty} f(z^n)$ converges almost uniformly on \mathbb{D} .
- 1.2. (a) Let $f \in H(\mathbb{H})$ satisfy $|f(z)| \le 1$, for all $z \in \mathbb{H}$, and f(i) = 0. Find the maximum value of |f(2i)|.
 - (b) Let f be a holomorphic function on the right half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$. Suppose that, $|f(z)| \le 1$, whenever $\operatorname{Re} z > 0$. What is the largest possible value of |f'(1)| under the condition f(1) = 0?
- 1.3. Let $f : \overline{\mathbb{D}} \to \mathbb{C}$ be continuous and $f \in H(\mathbb{D})$. Assume that $|f(z)| \le |e^z|$, whenever |z| = 1. Maximize $|f(\log 2)|$ subject to the condition $f(-\log 2) = 0$.
- 1.4. Let $f: \mathbb{D} \longrightarrow \mathbb{D}$ be a holomorphic function with f(0) = 0.
 - (a) Show that $|f(z) + f(-z)| \le 2|z|^2$, for all $z \in \mathbb{D}$.
 - (b)* Show that, equality occurs in 1.4.a for some $z \neq 0$ if and only if there exists $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that $f(z) = \lambda z^2$.

Hint. Let $f(z) = a_1z + a_2z^2 + ...$ be the power series representation of f on \mathbb{D} . Then for every $z \in \mathbb{D} \setminus \{0\}$, we have

$$\frac{f(z) + f(-z)}{2z} = a_2z + a_4z^3 + a_6z^5 + \dots$$

From this, show that if equality occurs in 1.4.a for some $z \neq 0$, then $|a_2| = 1$ and $a_4 = a_6 = \cdots = 0$. Hence, for some odd function $h \in H(\mathbb{D})$, one has $f(z) = a_2 z^2 + h(z)$, for all $z \in \mathbb{D}$.

1.5.* Let $f \in H(\mathbb{D})$ be such that $|f(z)| \le 1$, for all $z \in \mathbb{D}$, and f(0) = 0. Assume that, there is a number $r \in (0,1)$ satisfying f(r) = f(-r) = 0. Show that, for all $z \in \mathbb{D}$,

$$|f(z)| \le |z| \left| \frac{z^2 - r^2}{1 - r^2 z^2} \right|.$$

Hint. The function $z \mapsto \frac{f(z)}{z}$ is bounded on $\mathbb{D} \setminus \{0\}$, hence it can be redefined to an $f_1 \in H(\mathbb{D})$. Applying Schwarz lemma on $f_1 \circ \varphi_r$, one obtains that $|f_1(z)| \leq |\varphi_r(z)|$, for all $z \in \mathbb{D}$. This shows that the function $z \mapsto \frac{f_1(z)}{\varphi_r(z)}$ is bounded on $\mathbb{D} \setminus \{0\}$. Redefine it to an holomorphic function f_3 on \mathbb{D} . Now applying Schwarz lemma on $f_3 \circ \varphi_{-r}$, we get that $|f_3(z)| \leq |\varphi_{-r}(z)|$, for all $z \in \mathbb{D}$.

1.6. Show that, for any analytic $f: \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$, one has the following for every $z \in \mathbb{D}$:

$$\frac{|f(0)| - |z|}{1 + |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 - |f(0)||z|}.$$

1.7. Let $f : \mathbb{D} \longrightarrow \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ be analytic. Show that, for all $z \in \mathbb{D}$,

$$\frac{1-|z|}{1+|z|}|f(0)| \le |f(z)| \le \frac{1+|z|}{1-|z|}|f(0)|,$$

1

and $|f'(0)| \le |2 \operatorname{Re} f(0)|$.

1.8.* (a) Let $f: \mathbb{D} \longrightarrow \mathbb{D}$ be analytic. Show that,

$$\left| \frac{f(w) - f(z)}{1 - \overline{f(w)}f(z)} \right| \le \left| \frac{w - z}{1 - \overline{w}z} \right|, \ \forall z, w \in \mathbb{D}.$$
 (1.1)

- (b) Suppose that r, M > 0 and $f: D(0; r) \longrightarrow D(0; M)$ is holomorphic. What modification does one need to make in (1.1) in this case?
- (c) In 1.8.b, show further that, for all $z, w \in D(0; r)$ with $z \neq w$,

$$\left|\frac{f(z)-f(w)}{z-w}\right| \leq \frac{r}{M} \cdot \frac{|M^2-\overline{f(w)}f(z)|}{|r^2-\bar{w}z|}.$$

Hint. Consider $g: \mathbb{D} \longrightarrow \mathbb{D}$, $g(z) \stackrel{def}{=} \frac{f(rz)}{M}$.

- (d) Given $w \in D(0; r)$, how large |f'(w)| can be in 1.8.b?
- 1.9. Let $f : \mathbb{D} \longrightarrow \mathbb{D}$ be holomorphic. Show that, if f has at least two distinct points then it must be the identity function.
- 1.10.* Let $f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ be continuous and analytic on \mathbb{D} . Assume that |f(z)| = 1 whenever |z| = 1.
 - (a) Show that f can have at most finitely many zeros.
 - (b) What happens if f has no zero?
 - (c) Let a_1, \ldots, a_n be precisely all distinct zeros of f with order k_1, \ldots, k_n respectively. Consider

$$g(z) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \left(\frac{z - a_j}{1 - \overline{a_j} z} \right)^{k_j}, \forall z \in \overline{\mathbb{D}}.$$

Show that $\frac{f}{g}$ can be redefined to an holomorphic function on \mathbb{D} .

- (d) Show that $\frac{\overset{\circ}{f}}{g}$ is constant on $\mathbb{D} \setminus \{a_1, \ldots, a_n\}$.
- (e) Conclude that, there exists $\lambda \in S^1$ such that,

$$f(z) = \lambda \prod_{j=1}^{n} \left(\frac{z - a_j}{1 - \overline{a_j} z} \right)^{k_j}, \forall z \in \overline{\mathbb{D}}.$$
 (1.2)

Note: (1.2) provides a formula for all continuous functions $f: \overline{D} \longrightarrow \mathbb{C}$ with $f \in H(\mathbb{D})$ and |f(z)| = 1 whenever |z| = 1. The following exercises are easy applications of this.

- 1.11. Let $f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ be continuous, $f \in H(\mathbb{D})$ and |f(z)| = 1 whenever |z| = 1. Assume that f has a zero at $\frac{1+i}{4}$ and a double zero at $\frac{1}{2}$. Can f(0) be $\frac{1}{2}$?
- 1.12. Let $f: \overline{\mathbb{D}} \longrightarrow \mathbb{C}$ be continuous. Let a_1, \dots, a_n be precisely all distinct zeros of f with order k_1, \dots, k_n respectively. Show that, there exists M > 0 such that, for all $z \in \overline{\mathbb{D}}$,

$$|f(z)| \le M \prod_{j=1}^{n} \left| \frac{z - a_j}{1 - \overline{a_j} z} \right|^{k_j}.$$
 (1.3)

What if equality occurs in (1.3) for some $z \in \mathbb{D} \setminus \{a_1, \dots, a_n\}$?

2. Reflection principle

In 2.1.-2.3. and 2.6. and 2.7., we let $U^+ \subseteq_{open} \mathbb{H}$ and ∂U^+ contains an open interval I of \mathbb{R} . Denote $\{\bar{z}: z \in U^+\}$ by U^- . Assume that $U \stackrel{\text{def}}{=} U^+ \cup I \cup U^-$ is an open subset of \mathbb{C} . Suppose that $f: U^+ \cup I \longrightarrow \mathbb{C}$ is

holomorphic on U^+ , continuous on I and, furthermore $f(I) \subseteq \mathbb{R}$. Consider

$$F(z) \stackrel{\text{def}}{=} \begin{cases} f(z) & \text{if } z \in U^+ \cup I \\ \overline{f(\overline{z})} & \text{if } z \in U^-. \end{cases}$$
 (2.1)

2.1. Show that the function F defined as above in (2.1) satisfies the following property:

$$F(z) = \overline{F(\overline{z})}, \ \forall z \in U.$$

- 2.2. Show that F is analytic on $U^+ \cup U^-$ and continuous on I.
- 2.3. Show that the function F is the unique analytic extension of f to U, provided U^+ is connected (note that, this implies U is connected).

Hint. Use Exercise 1.5 of Exercise Sheet 7.

- 2.4. Formulate and prove the analogue of "Schwarz reflection principle" when U^+ is an open subset of the right-half plane and ∂U^+ contains an open segment of the imaginary axis.
- 2.5.* Let $\mathbb{D} \cap \mathbb{H}$, i.e., open upper-half of the unit disc. Suppose that $f: \overline{U} \setminus [-1,1] \longrightarrow \mathbb{C}$ is continuous and holomorphic on U. Assume further that $f(z) \in \mathbb{R}$, whenever $z \in \overline{U}$ and |z| = 1. Show that f admits a unique holomorphic extension to \mathbb{H} .

We now generalize 2.4. and 2.5. to the following. Suppose that $V \subseteq_{open} \mathbb{C}$ is the disjoint union

$$V = V^+ \cup \gamma^* \cup V^{-1},$$

where V^+, V^- are open and γ is a curve. Assume further that there is a bijective holomorphic function $\psi: U \longrightarrow V$ such that $\psi(U^+) = V^+, \psi(U^-) = V^-$ and $\psi(I) = \gamma^*$.

- 2.6. Let $g:V\longrightarrow \mathbb{C}$ be a continuous function such that it is holomorphic on V^+ and V^- . Show that g is holomorphic on V.
- 2.7. Let $g: V^+ \cup \gamma^* \longrightarrow \mathbb{C}$ be a continuous function which is holomorphic on V^+ and real valued on γ^* . Then g has a holomorphic extension on V, and furthermore this extension is unique, provided U^+ is connected.

Hint. For both 2.6. and 2.7., consider $f \stackrel{\text{def}}{=} g \circ \psi$ and use the "Schwarz reflection principle".

Note: The assertion 2.7. may be considered as the *reflection principle across a curve*.