Answer the questions in the boxes provided on the question sheets. If you run out of room for an answer, add a page to the end of the document.

Related Readings: http://pages.cs.wisc.edu/~hasti/cs240/readings/

Name:	Wisc id:
Logic	
	show the equivalence of the following statements.
(a) $P \vee (\neg P \wedge Q)$	$P \lor Q$
(b) $\neg P \lor \neg Q \equiv \neg$	$(A \wedge Q)$

(0)	$\neg P \lor P \equiv \text{true}$
(4)	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
(a)	$P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee R)$

Sets

2. Based on the definitions of the sets A and B, calculate the following: $|A|, |B|, A \cup B, A \cap B, A \setminus B, B \setminus A$.

(a) $A = \{1, 2, 6, 10\}$ and $B = \{2, 4, 9, 10\}$

(b) $A = \{x \mid x \in \mathbb{N}\}$ and $B = \{x \in \mathbb{N} \mid x \text{ is even}\}$

Relations and Functions

3. For each of the following relations, indicate if it is reflexive, antireflexive, symmetric, antisymmetric, or transitive.

(a) $\{(x,y) : x \le y\}$

(b) $\{(x,y): x > y\}$

	(c)	$\{(x,y): x < y\}$
	(d)	$\{(x,y): x=y\}$
4.	injec	each of the following functions (assume that they are all $f: \mathbb{Z} \to \mathbb{Z}$), indicate if it is surjective (onto) etive (one-to-one), or bijective. $f(x) = x$
	()	
	(b)	f(x) = 2x - 3
	(c)	$f(x) = x^2$
5.	Shov	w that $h(x) = g(f(x))$ is a bijection if $g(x)$ and $f(x)$ are bijections.

Induction

6. Prove the following by induction.

(a) $\sum_{i=1}^{n} i = n(n+1)/2$

(b) $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$

(c) $\sum_{i=1}^{n} i^3 = n^2(n+1)^2/4$

Graphs and Trees

7. Give the adjacency matrix, adjacency list, edge list, and incidence matrix for the following graph.

- 8. How many edges are there is a complete graph of size n? Prove by induction.

raw all possi					
ow by induc	ction that, for a	all trees, $ E =$	= V - 1.		
low by induc	etion that, for a	all trees, $ E =$	= V - 1.		
ow by induc	ction that, for a	all trees, $ E =$	= V - 1.		
ow by induc	etion that, for a	all trees, $ E =$	= V - 1.		
ow by induc	etion that, for a	all trees, $ E =$	= V - 1.		
ow by induc	etion that, for a	all trees, $ E =$	= V - 1.		
ow by induc	etion that, for a	all trees, $ E =$	= V - 1.		
ow by induc	ection that, for a	all trees, $ E $ =	= V — 1.		
ow by induc	etion that, for a	all trees, $ E =$	= V - 1.		
ow by induc	ction that, for a	all trees, $ E $ =	= V - 1.		
now by induc	etion that, for a	all trees, $ E $ =	= V - 1.		
now by induc	etion that, for a	all trees, $ E =$	= V - 1.		
now by induc	etion that, for a	all trees, $ E $ =	= V - 1.		
now by induc	etion that, for a	all trees, $ E =$	= V - 1.		

Counting

11. How n	nany 3 digit pin codes are there?
12. What	is the expression for the sum of the i th line (indexing starts at 1) of the following:
1	
2 3	
456 789	
:	
and a	ndard deck of 52 cards has 4 suits, and each suit has card number 1 (ace) to 10, a jack, a queen, king. A standard poker hand has 5 cards. For the following, how many ways can the described e drawn from a standard deck.
(a) A	royal flush: all 5 cards have the same suit and are 10, jack, queen, king, ace.
(b) A	straight flush: all 5 cards have the same suit and are in sequence, but not a royal flush.
(c) A	flush: all 5 cards have the same suit, but not a royal or straight flush.
	Only one pair (2 of the 5 cards have the same number/rank, while the remaining 3 cards all have ifferent numbers/ranks):

Proofs

14.		That $2x$ is even for all $x \in \mathbb{N}$. By direct proof.
	(b)	By contradiction.
	,	
15.	For a	all $x, y \in \mathbb{R}$, show that $ x + y \le x + y $. (Hint: use proof by cases.)

Program Correctness (and invariants)

16. For the following algorithms, describe the loop invariant(s) and prove that they are sound and complete.

```
Algorithm 1: findMin
         Input: a: A non-empty array of integers (indexed starting at 1)
         Output: The smallest element in the array
         begin
             min \leftarrow \infty
             for i \leftarrow 1 to len(a) do
(a)
                 if a[i] < min then
                  min \leftarrow a[i]
                 \quad \mathbf{end} \quad
             \mathbf{end}
             {\bf return}\ min
         end
```

```
Algorithm 2: InsertionSort
         Input: a: A non-empty array of integers (indexed starting at 1)
         Output: a sorted from largest to smallest
         \mathbf{begin}
              for i \leftarrow 2 to len(a) do
                  val \leftarrow a[i]
                  for j \leftarrow 1 to i-1 do
                      if val > a[j] then
(b)
                          shift a[j..i-1] to a[j+1..i]
                           a[j] \leftarrow val
                        break
                       \mathbf{end}
                  \mathbf{end}
              \quad \mathbf{end} \quad
              {f return} \ a
         \quad \mathbf{end} \quad
```

Recurrences

17. Solve the following recurrences.

(a) $c_0 = 1$; $c_n = c_{n-1} + 4$

(b) $d_0 = 4; d_n = 3 \cdot d_{n-1}$

(c)	T(1) = 1; T(n) = 2T(n/2) + n (An upper bound is sufficient.)
(d)	$f(1) = 1; f(n) = \sum_{1}^{n-1} (i \cdot f(i))$ (Hint: compute $f(n+1) - f(n)$ for $n > 1$)

Coding Question

Most assignments will have a coding question. You can code in C, C++, C#, Java, or Python. You will submit a Makefile and a source code file.

Makefile: In the Makefile, there needs to be a build command and a run command. Below is a sample Makefile for a C++ program. You will find this Makefile in assignment details. Download the sample Makefile and edit it for your chosen programming language and code.

```
#Build commands to copy:
#Replace g++ -o HelloWorld HelloWord.cpp below with the appropriate command.
#Java:
        javac source_file.java
#Python:
        echo "Nothing to compile."
#C#:
        mcs -out:exec_name source_file.cs
#C:
        gcc -o exec_name source_file.c
#C++:
        g++ -o exec_name source_file.cpp
build:
        g++ -o HelloWorld HelloWord.cpp
#Run commands to copy:
#Replace ./HelloWorld below with the appropriate command.
#Java:
        java source_file
#Python 3:
        python3 source_file.py
#C#:
        mono exec_name
#C/C++:
        ./exec_name
run:
        ./HelloWorld
```

HelloWorld Program Details The input will start with a positive integer, giving the number of instances that follow. For each instance, there will be a string. For each string s, the program should output Hello, s! on its own line.

A sample input is the following:

3 World Marc Owen

The output for the sample input should be the following:

Hello, World!
Hello, Marc!

Hello, Owen!