





# Knowledge Graph Embedding with Hierarchical Relation Structure

Zhao Zhang<sup>1</sup>, Fuzhen Zhuang<sup>1</sup>, Meng Qu<sup>2</sup>, Fen Lin<sup>3</sup> and Qing He<sup>1</sup>

<sup>1</sup>Institute of Computing Technology, Chinese Academy of Sciences, China

<sup>2</sup>Rutgers Business School, Rutgers University, USA

<sup>3</sup>WeChat Search Application Department, Tencent, China

## Outline



- ➤ Introduction to Knowledge Graph Embedding
- ➤ Related Work and Preliminaries

- ➤ Methodology
- Experimental Results and Conclusion







Knowledge graphs are multi-relational directed graphs composed of entities as nodes and relations as edges.

# Knowledge Graph Embedding



➤ Knowledge graphs are comprised of knowledge triples in the form of (h, r, t), e.g. (Beijing, capitalOf, China).



# Applications of KG embeddings



- ➤ Knowledge graph completion
  - (Donald Trump, bornIn, New York) & (New York, cityOf, USA) →
     (Donald Trump, nationality, USA)
- ➤ Knowledge triple classification
  - (Donald Trump, nationality, USA) → True
  - (Donald Trump, nationality, Canada) → False
- Serve as a fundamental step for many other tasks
  - Question Answering
  - Recommender Systems

#### Motivation



- Semantically similar relations are often observed in large-scales KGs.
  - producerOfAFilm and directorOfAFilm
- There are relations that have multiple semantic meanings and can be split into several sub-relations.
  - partOf
    - (New York, partOf, USA), location-related
    - (monitor, partOf, television), composition-related

#### Outline



- ► Introduction to Knowledge Graph Embedding
- ➤ Related Work and Preliminaries

- ➤ Methodology
- Experimental Results and Conclusion

#### Related work



- ➤ Translation-based methods
  - TransE, Bordes et al, 2013
  - TransH, Wang et al, 2014
  - TransR/CTransR, Lin et al, 2015
- ➤ Tensor Factorization based methods
  - DistMult, Yang et al, 2015
  - ComplEx, Trouillon et al, 2016
  - ANALOGY, Liu et al, 2017

# Preliminaries



TransE,  $\mathbf{h} + \mathbf{r} = \mathbf{t}$ 

TransH, 
$$\mathbf{h}_{\perp} + \mathbf{r} = \mathbf{t}_{\perp}$$

DistMult  $score(h, r, t) = \mathbf{h}^{T} \mathbf{M}_{r} \mathbf{t}$ 







## Outline



- ► Introduction to Knowledge Graph Embedding
- ➤ Related Work and Preliminaries

**≻**Methodology

Experimental Results and Conclusion

# Hierarchical Relation Structure



- >Semantically similar relations make up relation clusters.
- ➤ Relations that have multiple semantic meanings are split into several **sub-relations**.



#### Hierarchical Relation Structure



➤ Relation clusters and sub-relations are obtained based on the results of TransE

#### > relation clusters

• We run k-means on all the relation embeddings in the results of TransE

#### >sub-relations

 For each relation and its (h, r, t) triples, we run k-means on all the h - t in the results of TransE

#### Model



- $\triangleright$  Relation Embedding, for each r in (h, r, t),  $\mathbf{r} = \mathbf{r}_c + \mathbf{r}' + \mathbf{r}_s$
- Score function, TransE  $f(h,r,t) = ||\mathbf{h} + \mathbf{r} \mathbf{t}||_{L_n}$

TransE-HRS 
$$f(h,r,t) = ||\mathbf{h} + \mathbf{r}_c + \mathbf{r}' + \mathbf{r}_s - \mathbf{t}||_{L_n}$$

- $\succ$ Loss Function  $L_{Total} = L_{Orig} + L_{HRS}$
- $\Rightarrow \text{HRS Loss} \quad L_{HRS} = \lambda_1 \sum_{\mathbf{r}_c \in C} ||\mathbf{r}_c||_2^2 + \lambda_2 \sum_{\mathbf{r}' \in C} ||\mathbf{r}'||_2^2 + \lambda_3 \sum_{\mathbf{r}_s \in S} ||\mathbf{r}_s||_2^2$

#### Model Variants



➤Top-Middle Model

$$\mathbf{r} = \mathbf{r}_c + \mathbf{r}'$$

$$L_{HRS} = \lambda_1 \sum_{\mathbf{r}_c \in C} ||\mathbf{r}_c||_2^2 + \lambda_2 \sum_{\mathbf{r}' \in C} ||\mathbf{r'}||_2^2$$

➤ Middle Bottom Model

$$\mathbf{r} = \mathbf{r'} + \mathbf{r}_{s}$$

$$L_{HRS} = \lambda_{2} \sum_{\mathbf{r'} \in C} ||\mathbf{r'}||_{2}^{2} + \lambda_{3} \sum_{\mathbf{r}_{s} \in S} ||\mathbf{r}_{s}||_{2}^{2}$$

## Outline



- ► Introduction to Knowledge Graph Embedding
- ➤ Related Work and Preliminaries

- ➤ Methodology
- > Experimental Results and Conclusion

#### Dataset



> We adopt five datasets to conduct experiments.

Table 1: Statistics of the Five Datasets.

| Dataset   | $ \mathcal{E} $ | $ \mathcal{R} $ | #triples in Train/Valid/Test |
|-----------|-----------------|-----------------|------------------------------|
| FB15k     | 14,951          | 1,345           | 483,142 / 50,000 / 59,071    |
| FB15k-237 | 14,541          | 237             | 272,115 / 17,535 / 20,466    |
| FB13      | 75,043          | 13              | 316,232 / 5,908 / 23,733     |
| WN18      | 40,943          | 18              | 141,442 / 5,000 / 5,000      |
| WN11      | 38,696          | 11              | 112,581 / 2,609 / 10,544     |

#### Baselines



- TransE (Bordes et al., 2013)
- ➤TransH (Wang et al., 2014)
- ➤ DistMult (Yang et al., 2015)
- ➤ CTransR (Lin et al., 2015)
- ➤ TransD (Ji et al., 2015):
- ➤ TransG (Xiao et al., 2016):

## Link Prediction



➤ Predict ? in (h, r, ?) or (?, r, t)

|                        | FB15k     |       |              |       | FB15k-237 |            |       |       | WN18  |       |            |       |       |       |       |
|------------------------|-----------|-------|--------------|-------|-----------|------------|-------|-------|-------|-------|------------|-------|-------|-------|-------|
|                        | MR        | MRR   | H10          | Н3    | H1        | MR         | MRR   | H10   | Н3    | H1    | MR         | MRR   | H10   | Н3    | H1    |
| CTransR                | 81        | 0.408 | 0.740        | 0.573 | 0.314     | 279        | 0.298 | 0.469 | 0.301 | 0.198 | 228        | 0.816 | 0.923 | 0.842 | 0.316 |
| TransD                 | 90        | 0.658 | 0.781        | 0.586 | 0.324     | 256        | 0.286 | 0.453 | 0.291 | 0.179 | 215        | 0.823 | 0.928 | 0.851 | 0.336 |
| TransG                 | 101       | 0.672 | 0.802        | 0.591 | 0.322     | 309        | 0.304 | 0.471 | 0.298 | 0.182 | 466        | 0.830 | 0.936 | 0.876 | 0.764 |
| TransE                 | 91        | 0.404 | 0.688        | 0.493 | 0.251     | 375        | 0.207 | 0.377 | 0.227 | 0.125 | 387        | 0.408 | 0.925 | 0.725 | 0.067 |
| TransE-top-middle      | 61        | 0.463 | 0.730        | 0.556 | 0.315     | 286        | 0.258 | 0.440 | 0.286 | 0.170 | 609        | 0.402 | 0.919 | 0.710 | 0.058 |
| TransE-middle-bottom   | 51        | 0.493 | 0.738        | 0.582 | 0.355     | 232        | 0.310 | 0.486 | 0.332 | 0.202 | 474        | 0.496 | 0.945 | 0.890 | 0.112 |
| TransE-HRS             | 49        | 0.510 | 0.767        | 0.610 | 0.361     | <u>230</u> | 0.311 | 0.487 | 0.353 | 0.215 | 477        | 0.490 | 0.943 | 0.883 | 0.106 |
| TransH                 | 63        | 0.394 | 0.713        | 0.519 | 0.210     | 311        | 0.211 | 0.386 | 0.224 | 0.132 | 388        | 0.437 | 0.919 | 0.832 | 0.039 |
| TransH-top-middle      | 65        | 0.477 | 0.737        | 0.561 | 0.308     | 275        | 0.272 | 0.461 | 0.291 | 0.185 | 411        | 0.416 | 0.890 | 0.813 | 0.034 |
| TransH-middle-bottom   | 50        | 0.469 | 0.742        | 0.583 | 0.343     | 271        | 0.269 | 0.466 | 0.286 | 0.191 | 283        | 0.491 | 0.942 | 0.880 | 0.113 |
| TransH-HRS             | <u>47</u> | 0.509 | 0.783        | 0.639 | 0.390     | 243        | 0.309 | 0.491 | 0.346 | 0.216 | 296        | 0.482 | 0.940 | 0.861 | 0.097 |
| DistMult               | 95        | 0.642 | 0.813        | 0.726 | 0.523     | 251        | 0.244 | 0.423 | 0.261 | 0.159 | 261        | 0.806 | 0.931 | 0.904 | 0.713 |
| DistMult-top-middle    | 85        | 0.677 | 0.830        | 0.746 | 0.589     | 243        | 0.286 | 0.461 | 0.291 | 0.192 | 246        | 0.769 | 0.903 | 0.853 | 0.681 |
| DistMult-middle-bottom | 83        | 0.682 | 0.828        | 0.758 | 0.606     | 246        | 0.291 | 0.475 | 0.306 | 0.199 | 226        | 0.912 | 0.947 | 0.913 | 0.879 |
| DistMult-HRS           | 72        | 0.739 | <u>0.846</u> | 0.799 | 0.661     | 232        | 0.315 | 0.496 | 0.350 | 0.241 | <u>206</u> | 0.891 | 0.932 | 0.901 | 0.736 |

# Hierarchical Relation Structure



- >Semantically similar relations make up relation clusters.
- ➤ Relations that have multiple semantic meanings are split into several **sub-relations**.







#### ➤ Examples of Relation Clusters in FB15k

|   | relations                                                                                             |
|---|-------------------------------------------------------------------------------------------------------|
| 1 | /olympics/olympic_athlete/medals_won./olympics/olympic_medal_honor/country                            |
|   | /olympics/olympic_athlete/country./olympics/olympic_athlete_affiliation/country                       |
| 2 | /sports/sports_team/roster./basketball/basketball_roster_position/player,                             |
|   | /basketball/basketball_team/roster./sports/sports_team_roster/player                                  |
|   | /basketball/basketball_team/roster./basketball/basketball_roster_position/player                      |
| 3 | /computer/software/developer, /computer/operating_system/developer,                                   |
|   | /computer/software/developer, /computer/operating_system/developer, /cvg/computer_videogame/developer |





Examples of Sub-relations for Relation '/music/artist/genre' in FB15k

|   | (head, tail)                                                                                       |
|---|----------------------------------------------------------------------------------------------------|
| 1 | (Steve Stills, Rock Music), (Velvet Underground, Rock Music), (Benjamin Chase Harper, Rock Music), |
| 2 | (Justin Beiber, Pop Music), (Natalie Maria Cole, Pop Music), (Peter Thorkelson, Pop Music),        |
| 3 | (Billy Preston, R & B), (Earth Wind Fire, Funk Rap), (Alvin Joiner, Hip-hop),                      |

# Parameter Study



• The Change of Hits@10 with the Value of  $N_1$  Increasing.

• The Change of Hits@10 with the Value of  $N_2$  Increasing.





# Triple Classification

• Predict the label (True or False) given (h, r, t).

| Model        | WN11 | FB13 | FB15k | Avg  |
|--------------|------|------|-------|------|
| CTransR      | 85.7 | -    | 84.4  | -    |
| TransD       | 86.4 | 89.1 | 88.2  | 87.9 |
| TransG       | 87.4 | 87.3 | 88.5  | 87.7 |
| TransE       | 75.9 | 81.5 | 78.7  | 78.7 |
| TransH       | 78.8 | 83.3 | 81.1  | 81.1 |
| DistMult     | 87.1 | 86.2 | 86.3  | 86.5 |
| TransE-HRS   | 86.8 | 88.4 | 87.6  | 87.6 |
| TransH-HRS   | 87.6 | 88.9 | 88.7  | 88.4 |
| DistMult-HRS | 88.9 | 89.0 | 89.1  | 89.0 |



## Conclusion and Future Work



#### **≻**Conclusions

- Leveraging the three-layer hierarchical relation structure is simple but effective for knowledge graph embedding models.
- The technique of utilizing the hierarchical relation structure can be applied to many existing knowledge graph embedding models.

#### ➤ Future Work

- Utilize the embeddings of the three layers in a more sophisticated way instead of sum them together.
- Determine the number of relation clusters and sub-relations automatically instead of manually.

# Thanks!

Contact info:

zhangzhao2017@ict.ac.cn zhuangfuzhen@ict.ac.cn heqing@ict.ac.cn