Corrigé 7 du mardi 1er novembre 2016

Exercice 1 (* A rendre).

Soit $f:D\to\mathbb{R}$ une fonction croissante définie au voisinage de $x_0\in\mathbb{R}$. Démontrer que

$$\lim_{\substack{x \to x_0 \\ > x}} f(x)$$
 et $\lim_{\substack{x \to x_0 \\ < x}} f(x)$ existent.

Il existe $\delta > 0$ tq f est définie et croissante sur $[x_0 - \delta, x_0[\cup]x_0, x_0 + \delta]$. Et donc, pour x dans $[x_0 - \delta, x_0[\cup]x_0, x_0 + \delta]$, on a $f(x_0 - \delta) \leq f(x) \leq f(x_0 + \delta)$ ce qui signifie que f est borné sur $[x_0 - \delta, x_0[$ et sur $]x_0, x_0 + \delta]$.

 $[x_0 + o]$. $[x_0 + o]$. 1°) Puisque $f|_{[x_0 - \delta, x_0[}$ est bornée, il existe $\ell \in \mathbb{R}$ tel que $\ell = \sup_{x \in]x_0 - \delta, x_0[} f(x)$.

Pour tout $\epsilon > 0$ donné, il existe $\alpha \in]x_0 - \delta, x_0[$ tel que

$$\ell \ge f(\alpha) \ge \ell - \epsilon$$
.

Et puisque $f|_{[x_0-\delta,x_0[}$ est croissante, on a

$$\ell \ge f(x) \ge f(\alpha) \ge \ell - \epsilon, \ \forall x \in [\alpha, x_0[$$

Par suite $|f(x) - \ell| \le \epsilon$ pour tout $x \in [\alpha, x_0]$. On obtient donc, puisque ϵ est quelconque,

$$\lim_{\substack{x \to x_0 \\ <}} f(x) = \ell.$$

2°) Puisque $f|_{]x_0,x_0+\delta[}$ est bornée, il existe $m\in\mathbb{R}$ tel que $m=\inf_{x\in]x_0,x_0+\delta[}f(x)$.

Pour tout $\epsilon > 0$ donné, il existe $\beta \in]x_0, x_0 + \delta[$ tel que

$$m \le f(\beta) \le m + \epsilon$$
.

Et puisque $f|_{[x_0,x_0+\delta[}$ est croissante, on a

$$m \le f(x) \le f(\beta) \le m + \epsilon, \ \forall x \in]x_0, \beta[$$

ce qui prouve que $|f(x) - m| \le \epsilon$, $\forall x \in]x_0, \beta[$ et par suite

$$\lim_{x \to x_0} f(x) = m.$$

Exercice 2.

Cherchons pour quelles valeurs de $\alpha \in \mathbb{R}$, on a l'existence de la limite suivante

$$\lim_{x \to \alpha} \frac{x^4 + \alpha x^3 - 8\alpha x}{\sin(\alpha^4 - x^4)}.$$

1) (Existence) Puisque (*) $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$, sous reserve d'existence de ces limites, on a

$$\lim_{\substack{x \to x \\ \neq 0}} \frac{x^4 + \alpha x^3 - 8\alpha x}{\sin(\alpha^4 - x^4)} = \lim_{\substack{x \to x \\ \neq 0}} \frac{x^4 + \alpha x^3 - 8\alpha x}{\alpha^4 - x^4}.$$

Mais puisqu'à la limite le dénominateur tend vers 0, cette limite ne peut exister que si α est racine du numérateur, i.e.

$$\alpha^4 + \alpha \alpha^3 - 8\alpha \alpha = 0 \Leftrightarrow 2\alpha^2(\alpha^2 - 4) = 0 \Leftrightarrow \alpha = 0 \text{ ou } \alpha = \pm 2.$$

- 2) (Limites)
 - Si $\alpha = 0$, la limite se ramène à

$$\lim_{\substack{x \to 0 \\ x \neq \emptyset}} \frac{x^4}{\sin(-x^4)} \stackrel{=}{\underset{(*)}{=}} -1.$$

• Si $\alpha = 2$, la limite se ramène à

$$\lim_{\substack{x \to 2 \\ \neq 2}} \frac{x(x-2)(x^2+4x+8)}{(4+x^2)(2+x)(2-x)} = -\lim_{\substack{x \to 2 \\ \neq 2}} \frac{x(x^2+4x+8)}{(4+x^2)(2+x)} = -\frac{40}{32} = -\frac{5}{4}.$$

• Si $\alpha = -2$, la limite se ramène à

$$\lim_{\substack{x \to -2 \\ \neq \neq}} \frac{x(x+2)(x^2-4x+8)}{(4+x^2)(-2-x)(-2+x)} = -\lim_{\substack{x \to -2 \\ \neq \neq}} \frac{x(x^2-4x+8)}{(4+x^2)(x-2)} = -\frac{40}{32} = -\frac{5}{4}.$$

Exercice 3.

Soient I un intervalle et $f: I \to \mathbb{R}$ une fonction telle que pour tout triplet $x \leq y \leq z$ de I on a

$$(f(y) - f(x))(f(y) - f(z)) \le 0.$$

Montrons que f est monotone.

Démonstration :

On commence par une remarque. Supposons que $\alpha, \beta \in \mathbb{R}$ vérifient $\alpha\beta \leq 0$. Si, de plus, on a $\alpha \geq 0$, on peut conclure ainsi:

- si $\alpha > 0$, alors β doit être ≤ 0 ,
- si $\alpha = 0$, on ne peut rien dire sur β .

En conclusion, des relations $\alpha\beta \leq 0$ et $\alpha \geq 0$ on ne peut rien dire sur β .

- 1.) On considère tout d'abord un intervalle fermé I = [a, b] avec a < b.
 - Si f(a) = f(b) = C, on a, pour tout $t \in I$:

$$(f(t) - f(a)) (f(t) - f(b)) \le 0 \quad \Leftrightarrow \quad (f(t) - C)^2 \le 0$$
$$\Leftrightarrow \quad f(t) = C, \quad \forall t \in I.$$

• Si f(a) < f(b) on va montrer que f est croissante.

Prenons c tel que $a \le c \le b$. On a

$$(f(c) - f(a)) (f(c) - f(b)) \le 0.$$
 (1)

De plus

$$\begin{split} f(a) < f(b) &\iff -f(a) > -f(b) \\ &\Leftrightarrow & (f(c) - f(a)) > (f(c) - f(b)) \,. \end{split}$$

Par (1), (f(c) - f(a)) et (f(c) - f(b)) ne peuvent être tous deux > 0. Le plus petit de ces deux nombres, soit (f(c) - f(b)), est donc ≤ 0 , d'où on tire $f(c) \leq f(b)$.

De plus, (f(c) - f(a)) ne peut être < 0, sinon (f(c) - f(a)) et (f(c) - f(b)) seraient tous les deux < 0 ce qui contredirait (1). On a donc $(f(c) - f(a)) \ge 0$ et ainsi $f(a) \le f(c)$.

Finalement, on a $f(a) \le f(c) \le f(b)$.

Prenons maintenant d tel que $c < d \le b$. Par le même raisonnement, appliqué cette fois à l'intervalle [c,b], on a $f(c) \le f(d) \le f(b)$.

On a ainsi montré que pour tous c,d tels que $a \le c < d \le b$, on a $f(c) \le f(d)$. La fonction f est donc croissante sur [a,b].

- Si f(a) > f(b), on montre la monotonie en remplaçant f par -f dans le raisonnement ci-dessus.
- 2.) Si I est un intervalle quelconque on montre la monotonie en raisonnant par l'absurde. Supposons que f ne soit pas monotone sur I, alors il existe 4 éléments $a_1 < b_1$ et $a_2 < b_2$ de I tels que $f(a_1) < f(b_1)$ et $f(a_2) > f(b_2)$.

On pose alors $a = \min\{a_1, a_2\}$ et $b = \max\{b_1, b_2\}$ et on remarque que la fonction f n'est pas monotone sur [a, b], ce qui contredit la partie 1.).

Corollaire: Si f n'est pas monotone sur I, alors il existe un triplet $x < y < z \in I$, tel que

$$(f(y) - f(x))(f(y) - f(z)) > 0.$$

Exercice 4.

Soit $f:[0,\infty[\to\mathbb{R} \text{ born\'ee. On d\'efinit la fonction }g:[0,\infty[\to\mathbb{R} \text{ par }g(x)=\sup\{f(y):y\in[0,x]\}.$

- 1.) Montrer que g est croissante.
 - Si $0 \le x_1 < x_2$, alors $[0, x_1] \subset [0, x_2]$ et on a $g(x_1) \le g(x_2)$.
- 2.) Montrer que si f est continue, g l'est aussi.

Si f est continue, alors le sup est un max. Soit x>0 et montrons que g est continue à x.

On a $g(x) \ge f(y), \forall y \in [0, x].$

Soit $\epsilon > 0$. Par continuité de f en x, il existe $\delta > 0$ tq $y - x < \delta \Rightarrow |f(x) - f(y)| < \epsilon$ et donc $f(y) < f(x) + \epsilon$.

Montrons que si $y - x < \delta$ on a $g(y) \le g(x) + \epsilon$.

 $g(y) = \max_{z \in [0,y]} f(z)$. Si $z \in [0,x]$ alors $g(x) \ge f(z)$. Si $z \in [x,y]$ alors $f(z) < f(x) + \epsilon \le g(x) + \epsilon$.

Donc si $z \in [0, y]$ on a $f(z) \le g(x) + \epsilon$ ou encore $g(y) \le g(x) + \epsilon$. Ainsi g est continue à x.