Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3212	К работе допущен
Студент Козаченко Данил Александрович	Работа выполнена
Преподаватель <u>Агабабаев Валентин</u> Александрович	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения времени падения листа бумаги с определённой высоты.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина – результат измерения промежутка времени от момента отпускания листа бумаги с высоты картины до его падения на кровать.

4. Метод экспериментального исследования.

Многократное прямое измерение времени падения листа бумаги и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные.

- $\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \ldots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$ среднее арифметическое всех результатов
- $\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$ максимальное значение плотности распределения. $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2}$ среднеквадратичное отклонение среднего значения.
- $\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$ нормальное распределение, описываемое функцией Гаусса.
- $\Delta_{\overline{t}} = t_{\alpha,N} \cdot \sigma_{(t)}$ доверительный интервал. $m \approx \sqrt{N} = \sqrt{52} \approx 7$ число интервалов для построения гистограммы $\frac{\Delta N}{N \Delta t}$ опытное значение плотности вероятности

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора (Δ _{иt})
1	Секундомер	Цифровой	0 - 5 c	0.01 c

7. Схема установки:

Лист бумаги, расположенный на высоте картины над кроватью и цифровой секундомер, с ценой деления не более 0,01 с. Лист падает на кровать, интервал времени падения до кровати многократно измеряется цифровым секундомером.

8. Результаты прямых измерений и их обработки.

Таблица 1. Результаты прямых измерений

№	t_i , с	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	1,51	-0,06	0,00320
2	1,37	-0,20	0,03863
3	1,66	0,09	0,00874
1	1,74	0,17	0,03009
5	1,64	0,07	0,00540
5	1,37	-0,20	0,03863
7	1,35	-0,22	0,04689
3	1,44	-0,13	0,01601
)	1,70	0,13	0,01781
0	1,68	0,13	0,01287
1	1,49	-0,08	0,00586
2	1,55	-0,08	0,0027
3	1,41	-0,16	0,00027
4	1,51	-0,16	0,00320
5	1,59	0,02	0,00320
.6	1,65	0,02	0,00697
7	1,50	-0,07	0,00697
8	1,63	0,06	0,00443
9	· · · · · · · · · · · · · · · · · · ·	-0,16	0,00403
20	1,41	· · · · · · · · · · · · · · · · · · ·	·
	1,65	0,08	0,00697
21	1,42	-0,15	0,02147
22	1,44	-0,13	0,01601
3	1,66	0,09	0,00874
24	1,58	0,01	0,00018
5	1,55	-0,02	0,00027
26	1,67	0,10	0,01070
27	1,17	-0,05	0,15724
28	1,43	-0,14	0,01864
29	1,59	0,02	0,00055
30	1,37	-0,20	0,03863
31	1,83	0,26	0,06941
2	1,66	0,09	0,00874
33	1,63	0,06	0,00403
4	1,56	-0,01	0,00004
55	1,55	-0,02	0,00027
6	1,53	-0,04	0,00134
7	1,67	0,10	0,01070
8	1,76	0,19	0,03743
9	1,69	0,12	0,01524
10	1,54	-0,03	0,00070
1	1,65	0,08	0,00697
2	1,48	-0,09	0,00749
3	1,67	0,10	0,01070
4	1,59	0,02	0,00055
15	1,56	-0,01	0,00004
16	1,63	0,06	0,00403
17	1,68	0,11	0,01287
18	1,79	0,22	0,04994
19	1,67	0,10	0,01070
50	1,34	-0,23	0,05132

51	1,62	0,05	0,00286
52	1,63	0,06	0,00403
	$\langle t \rangle_N = 1,573 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = -1,710 * 10^{-14} c$	$\sigma_N = 0.119 c$ $\rho_{max} = 3.348 c^{-1}$

• $t_{min} = 1,34 \text{ c}, t_{max} = 1,83 \text{ c}$

9. Расчет результатов косвенных измерений.

- $\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i = 1,573$ с среднее арифметическое всех результатов измерений.
- $\sum_{i=1}^{N} (t_i \langle t \rangle_N) = -1,710 * 10^{-14} \text{ c}$ сумма отклонений $\sum_{i=1}^{N} (t_i \langle t \rangle_N)^2 = 0,724$ сумма квадратов отклонений
- $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2} = 0,119 \text{ c}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma \sqrt{2\pi}} = 3,348 \, \text{c}^{-1}$ максимальное значение плотности распределения.
- $m \approx \sqrt{N} = \sqrt{52} \approx 7 \Rightarrow$ для построения гистограммы возьмём 7 интервалов длиной (t_{max} t_{min}) / 7 = 0,07 c

Таблица 2 Ланные для построения гистограммы

Границы интервалов, с	ΔN	$\Delta N/(N \Delta t)$, c ⁻¹	t, c	ho, c ⁻¹
1,34 1,41	5	1,374	1,38	0,838
1,41 1,48	6	1,648	1,45	1,876
1,48 1,55	8	2,198	1,52	2,971
1,55 1,62	9	2,473	1,59	3,332
1,62 1,69	18	4,945	1,66	2,646
1,69 1,76	3	0,824	1,73	1,488
1,76 1,83	3	0,824	1,80	0,593

Таблица 3 Стандартные доверительные интервалы

	Интервал, с		ΔN	ΔN	D
	ОТ	до	ΔIV	\overline{N}	Γ
$\langle t \rangle_N \pm \sigma_N$	1,45	1,69	36	0,692	0,683
$\langle t \rangle_N \pm 2\sigma_N$	1,33	1,81	51	0,981	0,954
$\langle t \rangle_N \pm 3\sigma_N$	1,22	1,93	52	1,000	0,997

10. Расчет погрешностей измерений

- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2} = 0.017 \, \text{c}$ среднеквадратичное отклонение среднего
- $t_{\alpha,N} \approx 2.01$ коэффициент Стьюдента
- $\Delta_{\overline{t}} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 0.034 \text{ c}$ доверительный интервал.
- $\Delta_t = \sqrt{\Delta_{\overline{t}}^2 + (\frac{2}{3}\Delta_{\text{м}t})^2} = 0.035 \text{ c} \text{абсолютная погрешность}$
- $\varepsilon_t = \frac{\Delta_t}{\langle t \rangle_N} 100\% = 2,2\%$ относительная погрешность

11. Графики

12. Окончательные результаты.

$$t = (1,573 \pm 0,035)$$
c; $\varepsilon_t = 2,2\%$; $\alpha = 0,95$

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы было проведено 52 измерения случайной величины. На графике была построена гистограмма по плотности вероятности в данном промежутке времени. Функция Гаусса характеризует нормальное распределение. При помощи гистограммы и функции Гаусса мы можем заметить, что на результат сильно влияет небольшое количество измерений (при математическом ожидании N должно стремиться к бесконечности). Также на результаты повлияли собственные недочёты в измерении, а именно небольшая задержка при включении секундомера. При этом гистограмма похожа на функцию распределения случайной величины, но с погрешностью на перечисленные выше условия.

14. Дополнительные задания.

15. Выполнение дополнительных заданий.

16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).