

Universidad Nacional de Colombia Facultad de Ciencias Topología General Taller II

Nateo Andrés Manosalva Amaris	
ergio Alejandro Bello Torres	

- 1. *a*) Un G_{δ} -conjunto en un espacio X es un conjunto A que es igual a una intersección numerable de conjuntos abiertos de X. Demuestra que en un espacio T_1 de primera numerabilidad, cada conjunto unitario es un G_{δ} -conjunto.
 - b) Existe un espacio familiar en el cual cada conjunto unitario es un G_δ-conjunto, pero que no satisface el axioma de primera numerabilidad. ¿Cuál es?
 La terminología proviene del alemán. La "G" representa "Gebiet," que significa "conjunto abierto," y la "δ" representa "Durchschnitt," que significa "intersección."
- 2. Demuestra que si X tiene una base numerable $\{B_n\}$, entonces toda base $\mathscr C$ de X contiene una base numerable para X. [Sugerencia: Para cada par de índices n,m para los cuales sea posible, elige $C_{n,m} \in \mathscr C$ tal que $B_n \subset C_{n,m} \subset B_m$.]
- 3. Sea *X* un espacio con una base numerable; sea *A* un subconjunto no numerable de *X*. Demuestra que incontablemente muchos puntos de *A* son puntos de acumulación de *A*.
- 4. Demuestra que todo espacio métrico compacto X tiene una base numerable. [Sugerencia: Sea \mathcal{A}_n un recubrimiento finito de X por bolas de radio 1/n.]
- 5. *a*) Demuestra que todo espacio métrico con un subconjunto denso numerable tiene una base numerable.
 - b) Demuestra que todo espacio métrico de Lindelöf tiene una base numerable.
- 6. Demuestra que \mathbb{R}_ℓ e I_0^2 no son metrizables.
- 7. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface S_{Ω} ? ¿Qué ocurre con \bar{S}_{Ω} ?
- 8. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface \mathbb{R}^{ω} con la topología uniforme?
- 9. Sea A un subespacio cerrado de X. Demuestra que si X es Lindelöf, entonces A es Lindelöf. Muestra con un ejemplo que si X tiene un subconjunto denso numerable, A no necesariamente tiene un subconjunto denso numerable.
- 10. Demuestra que si X es un producto numerable de espacios con subconjuntos densos numerables, entonces X tiene un subconjunto denso numerable.
- 11. Sea $f: X \to Y$ una función continua. Demuestra que si X es Lindelöf, o si X tiene un subconjunto denso numerable, entonces f(X) satisface la misma condición.
- 12. Sea $f: X \to Y$ una aplicación continua y abierta. Demuestra que si X satisface el primer o segundo axioma de numerabilidad, entonces f(X) satisface el mismo axioma.
- 13. Demuestra que si *X* tiene un subconjunto denso numerable, entonces toda colección de conjuntos abiertos disjuntos en *X* es numerable.
- 14. Demuestra que si X es Lindelöf y Y es compacto, entonces $X \times Y$ es Lindelöf.

- 15. Considera \mathbb{R}^I con la métrica uniforme, donde I = [0,1]. Sea $\mathscr{C}(I,\mathbb{R})$ el subespacio de funciones continuas. Demuestra que $\mathscr{C}(I,\mathbb{R})$ tiene un subconjunto denso numerable, y por lo tanto una base numerable. [Sugerencia: Considera aquellas funciones continuas cuyos gráficos consisten en un número finito de segmentos de línea con extremos racionales.]
- 16. *a*) Demuestra que el espacio producto \mathbb{R}^I , donde I = [0, 1], tiene un subconjunto denso numerable.
 - b) Demuestra que si J tiene cardinalidad mayor que $\mathscr{P}(\mathbb{Z}_+)$, entonces el espacio producto \mathbb{R}^J no tiene un subconjunto denso numerable. [Sugerencia: Si D es denso en \mathbb{R}^J , define $f: J \to \mathscr{P}(D)$ por la ecuación $f(\alpha) = D \cap \pi_\alpha^{-1}((a,b))$, donde (a,b) es un intervalo fijo en \mathbb{R} .]
- *17. Considera \mathbb{R}^{ω} con la topología de la caja. Sea \mathbb{Q}^{∞} el subespacio que consiste en secuencias de racionales que terminan en una cadena infinita de ceros. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface este espacio?
- *18. Sea G un grupo topológico de primera numerabilidad. Demuestra que si G tiene un subconjunto denso numerable, o es Lindelöf, entonces G tiene una base numerable.
 - [Sugerencia: Sea $\{B_n\}$ una base numerable en e. Si D es un subconjunto denso numerable de G, demuestra que los conjuntos dB_n , para $d \in D$, forman una base para G. Si G es Lindelöf, elige para cada n un conjunto numerable C_n tal que los conjuntos cB_n , para $c \in C_n$, cubran G. Demuestra que cuando G recorre \mathbb{Z}_+ , estos conjuntos forman una base para G.]