Microcontroladores

Arquitetura - Parte 2

Prof. Guilherme Peron Prof. Ronnier Rohrich Prof. Rubão

Encapsulamentos/Pinagem

AT89S52

AT89C5131A

40-lead PDIP

Outros Fabricantes

???

- No 8051 genérico o pino (FÍSICO) RST é um pino ativo em **ALTO**, devendo ser levado a nível lógico 1 por dois ou mais ciclos de máquina durante a energização do chip.
- No AT89C5131A, o pino \RST é um pino ativo em BAIXO, devendo ser levado a nível lógico 0.

 A operação do *reset* consiste em forçar alguns registradores a estados definidos:

Registrador	Valor Após o Reset
A, B, PSW, DPTR, PC Registros de Temporizadores/Contadores	Zerados
Ports (P0, P1, P2, P3)	FFh
Pilha (SP)	07h
RAM Interna	RESET Forçado - Não altera RESET Alimentação - Aleatório
SCON	00h
SBUF	XXXXXXXb
PCON	0XXXXXXXb HMOS 0XXX0000b CMOS
IE e IP	0XX00000b e XXX0000b

Resumindo...

- Existe um circuito ligado ao pino de RESET (verificar na placa de vocês qual circuito é esse)!
- 2) Quando "o chip é ligado" este circuito é acionado ou por vontade do dono da placa (assim como <u>nóiz faiz</u> quando trava nosso PC)!

- É o relógio interno do microprocessador para execução sequencial de qualquer atividade interna ou externa à máquina.
- A ligação externa pode ser com um cristal ou oscilador.
- Alguns microcontroladores têm frequência mínima de clock para funcionar (por exemplo 3,5MHz)
- Isso é rápido ou devagar??? Pense no seu Computador....

Com cristal oscilador

Com oscilador externo

10

Enquanto isso no AT89C5131A...

Modos Idle e Power-down

• Idle:

- CPU inativa, periféricos funcionando. MDI e SFR são preservados;
- Formas de sair deste modo:
 - Reset;
 - Através de alguma interrupção que esteja habilitada;
- Ativado pelo bit IDL (bit 0) do registrador PCON (87h);
- Icc=6,5mA (AT89S52), Icc=0,3 x F(MHz)+5mA (AT89C5131A).

Power-down

- O gerador de clock é desligado e tudo para;
- MDI e SFR são preservados.
- Forma de sair deste modo:

Reset.

- Ativado pelo bit PD (bit 1) do registrador PCON (87h)
- Icc=50 μA (AT89S52), Icc= 100 μA (AT89C5131A).

PCON	
87h	

SMOD	-	-	-	GF1	GF0	PD	IDL

Curiosidade

"Durante o projeto e execução de Hardware sempre procure posicionar o circuito do cristal e dos capacitores o mais próximo do microprocessador, assim evita-se problemas de oscilação instável"

Ports

Ports

- Capacidade de corrente:
 - P0: (equivalente a 8 x LS TTL), max. 26 mA
 - P1, P2, P3: (equivalente a 4 x LS TTL), max 15 mA
 - Máxima corrente de saída por pino: 10 mA

- Configuração:
 - P0: quase-bidirecional, isto é, precisa de resistores de pull-up
 - P1, P2, P3: bidirecional

Resistor de Pull-up

O que é isso?

Ex: Você tem um pino configurado como entrada. Porém, não tem nada conectado nele, assim a "leitura" dele pode ser incerta (ficará flutuando). Este resistor garante que o pino está em baixo ou alto.

- 8 bits com resistor de "pull-up" interno para I/O
- Fornece/Drena 1 carga TTL (4 LS TTL)

- 8 bits com resistor de "pull-up" interno
- Para I/O ou funções especiais
- Fornece/Drena 1 carga TTL (4 LS TTL)

- 8 bits com resistor de "pull-up" interno
- Para I/O ou MSB do end. mem. ext (A8 a A15)
- Fornece/Drena 1 carga TTL (4 LS TTL)

- 8 bits com dreno/coletor aberto
- Para I/O ou LSB do end. mem. ext (A0 a A7) e os dados (D0 a D7)
- Fornece/Drena 2 cargas TTL (8 LS TTL)

Ports

- Considerações
 - Para programar as portas como entrada, basta escrever "1" no bit correspondente.
 - P0 não tem *pull-up*, flutua quando programado como entrada

- Por exemplo drivers de LEDs
 - Dada a baixa corrente fornecida pelas portas, é recomendável utilizar circuitos que atuem como drivers para estes dispositivos.

- Por exemplo drivers de LEDs
 - Circuitos com transistores
 - Tarefa para casa!!!!
 - Calcular: R_C e R_B
 - Região corte-saturado

	LEDs	
Cor do LED	Tensão em Volts (V)	Corrente em Miliamperes (mA)
Vermelho	1,8V - 2,0V	20 mA
Amarelo	1,8V - 2,0V	20 mA
Laranja	1,8V - 2,0V	20 mA
Verde	2,0V - 2,5V	20 mA
Azul	2,5V - 3,0V	20 mA
Branco	2,5V - 3,0V	20 mA

- Por exemplo drivers de LEDs
 - Circuitos com transistores
 - Calcular: R_c e R_B
 - Região corte-saturado

$$I_{C} = (V_{CC} - V_{LED} - V_{CE})/R_{C}$$

$$I_{B} = I_{C}/\beta$$

$$I_{B}' = 5I_{B}$$

$$R_{B} = (V_{IN} - V_{BE}) / I_{B}'$$

	LEDs	
Cor do LED	Tensão em Volts (V)	Corrente em Miliamperes (mA)
Vermelho	1,8V - 2,0V	20 mA
Amarelo	1,8V - 2,0V	20 mA
Laranja	1,8V - 2,0V	20 mA
Verde	2,0V - 2,5V	20 mA
Azul	2,5V - 3,0V	20 mA
Branco	2,5V - 3,0V	20 mA

Instruções com Ports

Instruções que apenas lêem pinos

Instrução	Exemplo
JB	P1.0, LABEL1
JNB	P2.3, LABEL2
MOV	MOV A, P1

- Instruções do tipo Read-Modify-Write: instruções cujo resultado é colocado no latch do port (leem o Latch)
- Cuidado ao utilizar 👺

Instrução	Exemplo
INC	INC P1
DEC	DEC P3
CPL	CPL P1
JBC	JBC P1.0, #0ABh
DJNZ	DJNZ P1,#0ABh
ANL	ANL P0, A
ORL	ORL P0, A
XRL	XRL P1, #10h

- O clock é o elemento que gera e controla os ciclos de trabalho da máquina. Cada ciclo de oscilação pode ser chamado de pulso (P).
- A cada dois pulsos (P) se caracteriza um estado
 (S)
- Uma sequência de seis estados, S1 a S6 corresponde a um ciclo de máquina.
- Todas as atividades do µC são comandadas por esses pulsos e seus seis estados.

1 Ciclo de Máquina => 6 Estados => 12 Pulsos de Clock

 Todas as instruções do 8051 (padrão) são executadas em 1 ou 2 ciclos de máquina, exceto MUL e DIV que são 4 ciclos

- Eventos que ocorrem em um ciclo de máquina:
 - Obtenção do endereço de memória que contém a instrução;
 - Busca da instrução na MP (Instruction Fetch);
 - Decodificação da instrução;
 - Obtenção do endereço dos operandos;
 - Busca do operando na MP/MD (Operand Fetch);
 - Execução da operação;
 - Armazenamento do resultado na MD/registrador.

- Escrita e leitura nos *ports*:
 - Na escrita, o dado só é escrito no latch do port em P2S6, logo, só está disponível no pino em P1S1 do próximo ciclo.
 - Na leitura, o pino é amostrado em S5 e deve permanecer estável por um período maior do que um ciclo de máquina.

- Velocidade de processamento:
 - Considerando um cristal oscilador de 24 MHz (que é o caso do kit P51USB), o número de instruções (de 1 ciclo de máquina) realizadas por um AT89C5131A é:
 - 24.000.000 Hz/12 = 2.000.000 instruções de 1
 ciclo de máquina cada
 - Estimativa mais realista para programas com instruções de 1 e 2 ciclos de máquina: média de ~1.334.000 instruções/segundo.

O que é isso?

R: É uma técnica de acessar periféricos de E/S como se estivessem em posições de memória. Para isso, é necessário um decodificador para selecionar o periférico na faixa de endereços adequada.

Interligação básica do 8051

Comprometimento dos ports

- Vamos supor que os ports estão comprometidos
 - P0 e P2 para ROM e RAM externa;
 - P3 para periféricos internos;
 - P1 para A/D interno.

 Mas eu gostaria de utilizar um port para um teclado e um display de 7 segmentos.

Comprometimento dos ports

- Vamos supor que os ports estão comprometidos
 - P0 e P2 para ROM e RAM externa;
 - P3 para periféricos internos;
 - P1 para A/D interno.

E agora??

 Utilizar de uma posição da RAM externa, para mapear um periférico, como sendo uma posição realmente.

Em termos mais práticos

 Cada periférico tem um endereço específico e o periférico pode ser do tipo somente entrada, somente saída ou entrada e saída.

• Exemplo: Periféricos de entrada (teclado) e saída (display de 7 seg.)

