# BIMM 143 Class 17

## Anika Bhattacharjya (A15459876)

### 11/23/2021

## **Getting Started**

```
# Import vaccination data
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")</pre>
#head(vax)
     Q1. What column details the total number of people fully vaccinated?
The 9th column that says "persons_fully_vaccinated."
     Q2. What column details the Zip code tabulation area?
The 2nd column labeled "zip_code_tabulation_data."
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
vax$as_of_date <- ymd(vax$as_of_date)</pre>
     Q3. What is the earliest date in this dataset?
vax$as_of_date[1]
## [1] "2021-01-05"
     Q4. What is the latest date in this dataset?
vax$as_of_date[nrow(vax)]
## [1] "2021-11-16"
library(devtools)
## Loading required package: usethis
library(skimr)
skimr::skim(vax)
```

Table 1: Data summary

| Name           | vax   |
|----------------|-------|
| Number of rows | 81144 |

Table 1: Data summary

| Number of columns      | 14   |
|------------------------|------|
| Column type frequency: |      |
| character              | 4    |
| Date                   | 1    |
| numeric                | 9    |
| Group variables        | None |

#### Variable type: character

| skim_variable             | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---------------------------|-----------|---------------|-----|-----|-------|----------|------------|
| local_health_jurisdiction | 0         | 1             | 0   | 15  | 230   | 62       | 0          |
| county                    | 0         | 1             | 0   | 15  | 230   | 59       | 0          |
| vem_source                | 0         | 1             | 15  | 26  | 0     | 3        | 0          |
| redacted                  | 0         | 1             | 2   | 69  | 0     | 2        | 0          |

#### Variable type: Date

| skim_variable | n_missing | $complete\_rate$ | min        | max        | median     | n_unique |
|---------------|-----------|------------------|------------|------------|------------|----------|
| as_of_date    | 0         | 1                | 2021-01-05 | 2021-11-16 | 2021-06-11 | 46       |

## Variable type: numeric

| skim_variable              | n_missin                         | gomplete_         | _r <b>ante</b> an | sd        | p0    | p25     | p50       | p75      | p100      | hist |
|----------------------------|----------------------------------|-------------------|-------------------|-----------|-------|---------|-----------|----------|-----------|------|
| zip_code_tabulation_area   | 0                                | 1.00              | 93665.1           | 11817.39  | 90001 | 92257.7 | 593658.50 | 095380.5 | 6097635.0 |      |
| vaccine_equity_metric_qu   | art <b>410</b> 02                | 0.95              | 2.44              | 1.11      | 1     | 1.00    | 2.00      | 3.00     | 4.0       |      |
| $age12\_plus\_population$  | 0                                | 1.00              | 18895.0           | 418993.94 | 1 0   | 1346.95 | 13685.10  | 031756.1 | 288556.7  |      |
| $age5\_plus\_population$   | 0                                | 1.00              | 20875.2           | 421106.05 | 0     | 1460.50 | 15364.00  | 034877.0 | 0101902.  | 0    |
| persons_fully_vaccinated   | 8256                             | 0.90              | 9456.49           | 11498.25  | 5 11  | 506.00  | 4105.00   | 15859.0  | 071078.0  |      |
| persons_partially_vaccinat | ed 8256                          | 0.90              | 1900.61           | 2113.07   | 11    | 200.00  | 1271.00   | 2893.00  | 20185.0   |      |
| percent_of_population_ful  | lly <u>8</u> 2 <b>56</b> cin     | ated $0.90$       | 0.42              | 0.27      | 0     | 0.19    | 0.44      | 0.62     | 1.0       |      |
| percent_of_population_pa   | rti <b>&amp;12</b> 5 <u>6</u> va | ccinate10         | 0.10              | 0.10      | 0     | 0.06    | 0.07      | 0.11     | 1.0       |      |
| percent_of_population_wi   | th <u>8<b>2</b>56</u> plu        | s_do <b>0e</b> 90 | 0.50              | 0.26      | 0     | 0.30    | 0.53      | 0.70     | 1.0       |      |

Q5. How many numeric columns are in this dataset?

9

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons\_fully\_vaccinated column?

sum( is.na(vax\$persons\_fully\_vaccinated) )

#### ## [1] 8256

Q7. What percent of persons\_fully\_vaccinated values are missing (to 2 significant figures)?

## Working with dates

```
library(lubridate)
today()
## [1] "2021-11-27"
Look at the as_{of}_date column
# Speciffy that we are using the Year-mont-day format
vax$as_of_date <- ymd(vax$as_of_date)</pre>
today() - vax$as_of_date[1]
## Time difference of 326 days
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
## Time difference of 315 days
     Q9. How many days have passed since the last update of the dataset?
today() - vax$as_of_date[nrow(vax)]
## Time difference of 11 days
     Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?
length(unique(vax$as_of_date))
## [1] 46
```

# Working with Zip Codes

"zipcodeR" wouldn't work for me so Professor Grant said to skip this section.

## Focus on San Diego Area

```
# Subset to San Diego county only areas
sd <- vax[ vax$county == "San Diego" , ]
library(dplyr)
##
## Attaching package: 'dplyr'</pre>
```

```
## The following objects are masked from 'package:plyr':
##
##
                 arrange, count, desc, failwith, id, mutate, rename, summarise,
##
                 summarize
## The following objects are masked from 'package:stats':
##
##
                 filter, lag
## The following objects are masked from 'package:base':
##
##
                 intersect, setdiff, setequal, union
sd <- filter(vax, county == "San Diego")</pre>
nrow(sd)
## [1] 4922
sd.10 <- filter(vax, county == "San Diego" &
                                       age5_plus_population > 10000)
           Q11. How many distinct zip codes are listed for San Diego County?
length(unique(sd$zip_code_tabulation_area))
## [1] 107
            Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?
which.max(sd\age12_plus_population)
## [1] 23
sd$zip_code_tabulation_area[23]
## [1] 92154
           Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San
           Diego "County" as of "2021-11-09"?
sd.vax <- filter(vax, county == "San Diego" &
                                  as_of_date == "2021-11-09")
mean(sd.vax$percent_of_population_fully_vaccinated, na.rm=TRUE)
## [1] 0.6727567
           Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution
           of Percent of Population Fully Vaccinated values as of "2021-11-09"?
library(ggplot2)
?ggplot
ggplot(sd.vax) + geom_histogram(aes(x=percent_of_population_fully_vaccinated)) + labs(x = "Percent Fully_vaccinated)) + labs(x = "Per
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 4 rows containing non-finite values (stat_bin).
```



# Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population
```

#### ## [1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area

```
ggplot(ucsd) +
  aes(as_of_date,
      percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) +
  ylim(c(0,1)) +
  labs(x = "Date", y="Percent Vaccinated")
```



# Comparing 92037 to other similar sized areas

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as\_of\_date "2021-11-16". Add this as a straight horizontal line to your plot from above with the geom\_hline() function?

```
ggplot(ucsd) +
  aes(as_of_date,
      percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) + geom_hline(yintercept = 0.66, col = "red") +
  ylim(c(0,1)) +
  labs(x = "Date", y="Percent Vaccinated")
```



Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as\_of\_date "2021-11-16"?

```
## 0% 25% 50% 75% 100%
## 0.3518830 0.5890990 0.6648930 0.7286045 1.0000000

mean(vax.36$percent_of_population_fully_vaccinated)

## [1] 0.6629812

Q18. Using ggplot generate a histogram of this data

ggplot(vax.36) + geom_histogram(aes(x=percent_of_population_fully_vaccinated)) + labs(x = "Percent Fulls")
```

quantile(vax.36\$percent\_of\_population\_fully\_vaccinated)



Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
vax %>% filter(as_of_date == "2021-11-16") %>%
  filter(zip_code_tabulation_area=="92040") %>%
  select(percent_of_population_fully_vaccinated)

## percent_of_population_fully_vaccinated
```

```
## percent_of_population_fully_vaccinated
## 1 0.687763
```

92040 is below average (0.6629812) and 92109 is above.

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5\_plus\_population > 36144.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
```

## Warning: Removed 180 row(s) containing missing values (geom\_path).

### Vaccination rate across California

Only areas with a population above 36k are shown



Q21. How do you feel about traveling for Thanksgiving and meeting for in-person class next Week?

I think it would be better to do it virtually since people won't have time to get properly tested by Tuesday if they come back on Sunday.