

Data Science and its role in Big Data analytics

WE ALL CAN BE DATA SCIENTISTS NOW!

- I. Properties of Data: What is a Big Data?
- II. What is Data Science?
- III. Data Science Process
- IV. Why Data Science is in a sudden boom?
- V. Who is a Data Scientist?

Kyungwon Kim

Assistant Professor
Department of International Trade
College of Global Political Science and Economics
Incheon National University

WE ALL CAN BE DATA SCIENTISTS NOW! -

- I. Properties of Data: What is a Big Data?
- II. What is Data Science?
- III. Data Science Process
- IV. Why Data Science is in a sudden boom?
- V. Who is a Data Scientist?

Properties of Data: What is Big Data?

→ Big Data vs. Small Data

- Small Data: Getting machines to do what humans are good at.
- Big Data: Feeding an algorithm data to learn and predict something.
- => A Powerful Equation: Real Human Insight = Big Data + Small Data

Properties of Data: What is a Big Data?

> Structured vs. Unstructured Data

- Structured Data: the type of data that fits nicely into a relational database. It's highly organized and easily analyzed. Most IT staff are used to working with structured data.
- **Unstructured Data:** It doesn't fit nicely into a spreadsheet or database. It can be textual or non-textual. It can be human- or machine-generated.

Properties of Data: What is a Big Data?

Quantitative vs. Qualitative Data

- Quantitative Data: Numerical calculations and measurements.
- Unstructured Data: Sensations, feelings, and experiences.

Properties of Data: What is a Big Data?

Output (Y): Labelled vs Unlabelled

Lets say we want to Classify Houses by Size

Given Features or Feature Set

Unsupervised

SIZE is missing! We need to look for similarities in the data and group them into clusters.

Supervised Learning

Use the labels to build a model. Model used to classify new house size based ONLY on the known feature set.

WE ALL CAN BE DATA SCIENTISTS NOW! -

- I. Properties of Data: What is a Big Data?
- II. What is Data Science?
- III. Data Science Process
- IV. Why Data Science is in a sudden boom?
- V. Who is a Data Scientist?

- > The Real World Data Science is not a Kaggle Competition
 - It can be worthwhile to step back a little and realize what exactly your ultimate goal is.
 - The best performance might not be equivalent to a model yielding the best score in real.

> The Real World Data Science

Data Science: Solving Problems with Data (Real Human Insight)

Computer Science,
Data Engineering,
Data Warehouse,
Pattern Recognition,
High Performance

Statistical Learning,
Machine Learning,
Probability,
Numerical Techniques
to derive Insights

Domain/Business
Experience
& Knowledge

Problem and Objectives,
Domain Knowledge,
Business Experience,
Value to the Business

> Computer Science, Science, and Data Science

- Computer Science: The study of the theory and practice of how computers work.
- Science: Focusing on solving problems through the lens of the domain's scientific principles.
- Data Science: Interdisciplinary field involving computer science and statistics.

WE ALL CAN BE DATA SCIENTISTS NOW! -

- I. Properties of Data: What is a Big Data?
- II. What is Data Science?
- III. Data Science Process
- IV. Why Data Science is in a sudden boom?
- V. Who is a Data Scientist?

Data Science Process

→ Getting from Raw Data to Outcomes

Data Science Process

➤ Getting from Standard Framework to Data Science

WE ALL CAN BE DATA SCIENTISTS NOW! -

- I. Properties of Data: What is a Big Data?
- II. What is Data Science?
- III Data Science Process
- IV. Why Data Science is in a sudden boom?
- V. Who is a Data Scientist?

Why use Machine Learning instead of Traditional Statistics?

Traditional Statistics Machine Learning A Data Science Continuum White-box modelling simpler computation, emphasis on introspection, form, causal effects and processes, finding a 'correct' model Machine Learning Black-box modelling high computational complexity, emphasis on speed and quality of prediction, finding a 'performant' model

Bayes Theorem:

Thomas Bayes mid 1700's

Regression:

Legendre, Gauss and Galton early 1800's

Neural Networks:

McCulloch and Pitts early 1940s

➤ Why use Machine Learning instead of Traditional Statistics?

- AI: Getting machines to do what humans are good at
- Machine Learning:
 Feeding an algorithm data
 to learn and predict something
- Deep Learning:

A type of machine learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

> Solution directions to the black box problem

How much is the stock of Samsung Electronics tomorrow?

Regression – Looking for a statistical relationship across variables that may give us an estimate of a particular outcome. (Supervised)

 Are Samsung Electronics and Naver similar business companies?

<u>Clustering</u> – Do not have predefined classes but trying to find groups or sets based upon data at hand. (Unsupervised)

• Will Samsung Electronics' stocks rise or fall tomorrow?

<u>Classification</u> – Similar to regression but looking for separations in the data given predefined classes. (Supervised)

 What are the representatives among all stocks in the KOSPI?

Dimensionality Reduction –

Transformation of data from highdimensional into a low-dimensional space so that it retains some meaningful properties of the origin data. (Unsupervised)

Different types of Machine Learning algorithms explained

Global "Technology" Trends

WE ALL CAN BE DATA SCIENTISTS NOW! -

- I. Properties of Data: What is a Big Data?
- II. What is Data Science?
- III. Data Science Process
- IV. Why Data Science is in a sudden boom?
- V. Who is a Data Scientist?

➤ What should we do?

Marketing@tstillery_com is a group of practitioners in the area of e-commerce marketing. Our fields of expertise include marketing strategy and optimization customer bracking and os-site analytics, predictive analytics and econometrics data warehousing and big data systems: marketing channel insights in Paid Search, SEO, Social, CRM and brand.

> Traditional Specialist of Data Science Team

Data Analyst (DA)

: Assist DS with domain understanding, data preprocessing and problem defining.

Data Scientist (DS)

: Prepares data, engineers features, most valuable skill: training models.

Data Engineer (DE)

: Data acquisition focus. Build data pipelines. Not uncommon to have 5:1 ratio DE:DS

Data Application Architect (DAA)

: Design complete solution; deploy and maintain models in production

> Traditional Specialist of Data Science Team

Data	Analyst	(정통) 기획 및 전략	- 기획서, 보고서, 기초분석, 시각화	
Analyst Data Scientist	Data Analyst	데이터분석 설계	- 데이터 표준 확립, 구조 및 품질관리, 데이터 분석	
	Statistician	(정통) 통계기반 연구	- 결과가 나온 이유를 연구하는 방향	
	Data Scientist	데이터분석 전반 연구	- Why보다 Result 마련/대응/전략/의사결정 방향	
	ML / DL Engineer	응용 및 구현 연구	- 연구결과를 실질적 서비스 및 비즈니스 집중화	
Data Engineer	Database Administrator	데이터베이스 관리자	- 데이터베이스 운영, 관리, 설계	
	Back-end Engineer	(정통) 백엔드 개발자	- 서버 개발, 데이터베이스 시스템 구현 및 관리 - RDB/NOSQL/Hbase/Spark 등	
	Infra Engineer	인프라 엔지니어	- 데이터 파이프라인 구축 및 운영 - Cloud/Spark/Hadoop 등	

> Typical Collaboration of Data Science Project

- Makes data science teams more productive
- Broad support for open source libraries in various languages

Understand Business Objectives

Prepare Data and Build Features

Train, Tune, and Test Models

Deploy and Operationalize Models

Update Models

> What is a Project of Data Science? (Q) (Q) (Q)

TASKS

: In addition to advanced analytic skills, this individuals are also proficient at integrating and preparing large, varied datasets, architecting specialized database and computing environments, and communicating results.

MISSION

: A data scientist may or may not have specialized industry knowledge to aid in modeling business problems and with understanding and preparing data.

TALENT

: Creating value from data requires a range of talents from data integration and preparation, to architecting specialized computing/database environments, to data mining and intelligent algorithms.

RESPONSIBILITY

: An individual responsible for modeling complex business problems, discovering business insights and identifying opportunities through the use of statistical, algorithmic, mining and visualization techniques.

Data Science Roadmap

> We can be the best Data Science team

	Data Analysis Cycle			
Data Analysis	Data Visualization and Communication			•
	Data Wrangling and Intuition			
	Linear Algebra	•	•	•
Mathematics	Numerical Analysis	•		
iviathematics	Optimization	•		
	Multivariate Calculus	•	•	
	Probability and Statistics		•	
Statistics	Experimental Design			
	Statistical Thinking and Algorithms		•	
Artificial	Machine Learning	•		
Intelligence	Deep Learning	•		
	Databases and Distributed Systems	•		
	Programming Tools			
Computation	Algorithmic and Programming	•		
	Software Engineering	•		
	Platform Understanding	•	•	

Not that important

Somewhat important

Very important

Data Science Curriculum

Related 44 Lectures (132 Credits)

➤ The Insights Revolution?

• A **Data Economy** is a global digital ecosystem in which data is gathered, organized, and exchanged by a network of vendors for the purpose of deriving value from the accumulated information.

> The Insights Revolution?

Data Presenters

- User Interface / User Experience / User Engagement
- Investigation and Discovery

Insight Providers

Platform Owners

Data Producers / Data Aggregations / Data Custodians

- Semantic Models: Statistical Development Environment /• Data Normalization for Common Transmission
- Analytics Library: Development Environment for Analytics Data Access / Data Control / Data Collection
- Machine Learning: Algorithm APIs for Connectivity and Dev Heterogeneous Data Collection from Disparate Devices

➤ The Insights Revolution?

Data Presenters

- User Interface / User Experience / User Engagement
- Investigation and Discovery

Insight Providers

Platform Owners

- Semantic Models: Statistical Development Environment /• Data Normalization for Common Transmission
- Analytics Library: Development Environment for Analytics Data Access / Data Control / Data Collection
- Machine Learning: Algorithm APIs for Connectivity and De Heterogeneous Data Collection from Disparate Devices

Hype Cycle for Analytics and Business Intelligence, 2019

THANK YOU

