Epidemiological analysis

MLST - Multi-Locus Sequence Typing

Serotype - Serotype analysis

Gene identification – Drug resistance genes

Core genome construction

Molecular clock analysis

Prokka annotation

Bayesian clustering

MLST - Multi-Locus Sequence Typing

MLST allelic profiles and sequences

This page contains download links to alleles and profiles that define classic MLST schemes. Where these are hosted on PubMLST, they represent a small subset of the data hosted, all of which is available via the application programming interface (API). A few of the schemes are hosted at Pasteur and the links point to their API. This list is not being maintained for new schemes - all data are available via the API and this is the recommended way to retrieve data programmatically.

Download

The information in this table is available in XML format for automated parsing.

https://pubmlst.org/data

ST type and housekeeping gene information (official website order) are retained, and redundant columns are deleted

>aroA 1

>aroA 2

>aroA 3

1898

The housekeeping gene sequence was copied into the same fa file in order (official website order)

Housekeeping genes

名称	修改日期	类型	大小
GCF_000014305_1.fna	2023/12/13 13:35	Audio Shark	2,073 KB
GCF_000014325_1.fna	2023/12/13 13:35	Audio Shark	2,073 KB
GCF_000018185_1.fna	2023/12/13 13:35	Audio Shark	2,016 KB
GCF_000026725_1.fna	2023/12/13 13:35	Audio Shark	2,073 KB
GCF_000026745_1.fna	2023/12/13 13:35	Audio Shark	2,147 KB
GCF_000091905_1.fna	2023/12/13 13:35	Audio Shark	1,986 KB
GCF_000168355_3.fna	2023/12/13 13:35	Audio Shark	2,152 KB
GCF_000186405_1.fna	2023/12/13 13:35	Audio Shark	2,114 KB
GCF_000204625_1.fna	2023/12/13 13:35	Audio Shark	2,007 KB
🐖 genomad_2.fna	2024/2/26 19:46	Audio Shark	4,197 KB
💶 genomad_5.fna	2024/2/26 20:57	Audio Shark	8,342 KB
💶 genomad_10.fna	2024/2/26 20:57	Audio Shark	16,684 KB
🐖 genomad_15.fna	2024/2/26 20:58	Audio Shark	25,026 KB
💶 genomad_20.fna	2024/2/27 22:23	Audio Shark	33,368 KB

Input folder: Put all fa files into the same folder

MLST - Multi-Locus Sequence Typing

Serotype - Serotype analysis

represents the strain number, and the second represents the

Click this button to display the table

Gene identification – Drug resistance genes

Core genome construction

Core genome construction

https://www.ncbi.nlm.nih.gov/datasets/taxonomy/1307/

Take Streptococcus suis as an example. Download the genome of Streptococcus suis from the following website for reference, and then annotate it with prokka to obtain the ffn file

Result

All_core_genes_aln.fasta	2025/7/7 13:33	FASTA 文件	8 KB
All_isolates_core_genes.fna	2025/7/7 12:41	Audio Shark	14,066 KB
▼ core_gene_list.out	2025/7/7 12:41	OUT 文件	35 KB
Core_genome.aln	2025/7/7 13:33	ALN 文件	8 KB
▼ Isolates_gene_number.out	2025/7/7 12:41	OUT 文件	1 KB

- 1. All_core_genes_aln.fasta: please ignore the intermediate files of the software operation
- 2. All_isolates_core_genes.fna: the fa file of the core gene
- 3. core_gene_list.out : the entry of the core gene,'::' is followed by the length of the core gene
- 4. Core_genome.aln: The file with all core genes aligned for each isolate is used to build an evolutionary tree
- 5. Isolates_gene_number.out: The number of genes in each isolate

Molecular clock analysis

Rate=5.69e+00,MRCA=1970.26,R2=0.63,p<1.00e-04

5.687598428429542

Showing 1 to 1 of 1 entries

Molecular temporal signal

Intercept

1970.259237453201

P_val

1968.119994107951

Molecular dating by BactDating

"Rate" represents a temporal signals Molecular dating tree

Panel

Input file 1: Tree file (newick)

Input file 2: date.csv "id" represents the name of the isolate

id	time	
1	1998.5	
2	1999.5	
3	1998.5	
4	1987.5	
5	1994.5	
6	1996.5	
7	1982.5	
8	2000.5	
9	1996.5	
10	1996.5	
7 8 9	1982.5 2000.5 1996.5	

Prokka annotation

The interpretation of the results, please reference prokka:

https://github.com/tseema nn/prokka

Bayesian clustering

BAPs cluster table

Bayesian clustering at different levels

Select the visual clustering level