Détection d'anomalies de classification dans l'IoT via Machine Learning

Antoine Urban, Yohan Chalier

Projet de filière SR2I Télécom ParisTech

24 juin 2018

Introduction

La détection d'obstacles : un enjeu de sécurité!

Ensemble des capteurs présents dans le véhicule

Attaque par aveuglement des capteurs

Attaque par modification

Objectifs

Proposition d'un modèle de classification multi-classes en réalisant un classeur à partir d'un algorithme d'apprentissage supervisé.

Introduction

000

Paramétrage et résultats

Première implémentation

- Extraction des colonnes largeur et longueur de la base de données
- Suppression des redondances
- Définition de zones de décision arbitraires
- Génération des données malicieuses

validité	intervalle de longueur	intervalle de largeur
non-malicieux	3 à 6,5 mètres	1,4 à 2,4 mètres
malicieux	3 à 4,1 mètres	2,05 à 2,4 mètres
malicieux	5,25 à 6,5 mètres	1,4 à 1,65 mètres

Chargement des bases de données (1/2)

- 1. Pour chaque jeu de données au format CSV
 - 1.1. Lire les colonnes contenant la longueur et la largeur
 - 1.2. Renommer ces colonnes en "length" et "width"
 - 1.3. Supprimer les lignes incomplètes
 - 1.4. Si nécessaire, convertir les données en flottant et en millimètres
 - 1.5. Ajouter une colonne contenant la classe correspondant au jeu de données considéré
 - 1.6. Appliquer un premier filtre sur la longueur ou la largeur pour supprimer les points extrêmes isolés
- 2. Fusionner toutes les matrices précédentes en une seule
- Créer un nouvel objet Detector avec cette matrice en attribut

Chargement des bases de données (2/2)

- 1. Supprimer les éventuels redondances
- 2. Ajouter une colonne "odd" à la matrice, initialisée à False
- 3. Générer les données malicieuses
- 4. Ajouter les données malicieuses à la base de données, en rajoutant la colonne "odd" initialisée à True
- 5. Remplacer les valeurs des classes (originnellement des chaînes de caractères comme "car" ou "human") par des entiers
- 6. Séparer la matrice en un jeu d'entraînement et un jeu de test
- 7. Renvoyer l'objet Detector ainsi initialisé

- Pré-traitement
 - clean
 - append_odd_points
 - format
- Interface scikit-learn
 - classify
 - tune_parameters
 - predict
- Affichage
 - plot
 - plot_decision_boudaries

Méthodes d'évaluation

Matrice de confusion

Classe réelle

Classe prédite

	Positif	Négatif	
Positif	TP	FP	
Négatif	FN	TN	
	TPR	FPR	
	FNR	TNR	

PPV**FDR** FOR NPV

Score F1

Objectif

Maximisation du score F1 comme critère de performance

$$\mathsf{f1\text{-}score} = \frac{2 \times (\mathsf{Recall} \times \mathsf{Precision})}{(\mathsf{Recall} + \mathsf{Precision})} = 2 \times \frac{PPV \times TPR}{PPV + TPR} \tag{1}$$

$$Precision = \frac{TP}{TP + FP}$$
 (2)

$$Recall = \frac{TP}{TP + FN} \tag{3}$$

Recherche exhaustive et validation croisée

- Tests des jeux de paramètres optimaux via la fonction de scikit-learn GridSearchCV
- Utilise la validation croisée
- Utilisation d'une fonction de score personnalisée
 - 1. Classification des éléments du jeu de test
 - Calcul de la matrice de confusion
 - 3. Sauvegarde des paramètres et du score
 - 4. Retour du f1-score
- Export des données en formats exploitables (JSON, CSV)

Paramètres optimaux

Perceptron à couches multiples

- Beaucoup de paramètres à tester (plus de 18 heures de test sur les serveurs InfRes)
- Score F1 moyen maximal de 0.937
- Beaucoup de fluctuations

paramètre	rôle	valeur optimale
learning_rate	taux d'apprentissage	'constant'
alpha	régularisation I_2	10^{-6}
activation	fonction d'activation	'tanh'
solver	descente du gradient	'lbfgs'
hidden_layer_sizes	couches cachées	[28, 28, 28]

Paramétrage et résultats 000000000

Paramètres optimaux AdaBoost

Paramétrage et résultats 0000000000

- Tests relativement rapides
- Scores rapidement bons
- Beaucoup moins de fluctuations

paramètre	valeur optimale
$n_{\tt}estimators$	46
$learning_rate$	0.3
base_estimator	Arbre de décision de profondeur maximale 3

Paramètres optimaux svm

paramètre	valeurs testées	valeurs optimales
$multi_class$	ovr, crammer_singer	crammer_singer
С	$\{10^k \mid k \in \llbracket -2, 3 \rrbracket \}$	100
tol	$\{10^{-k} \mid k \in [3, 6]\}$	0.00001

Comparaison de deux méthodes d'adaptation au multiclasse :

- "One-Versus-the-Rest"
- Méthode directe de Crammer et Singer

Performances des classeurs

MLP AdaBoost SVM R. Forest	TPR	FPR	TNR	FNR	PPV	f1-score
MLP	0.568	0.005	0.995	0.432	0.949	0.711
AdaBoost	0.935	0.010	0.990	0.065	0.941	0.938
SVM	0.966	1.0	0.0	0.034	0.145	0.252
R. Forest	0.917	0.007	0.993	0.083	0.960	0.938

Régions de décision

Prédiction en ligne

- 1. Créer un objet Detector en chargeant les bases de données récoltées
- 2. Entraîner un classeur, dont les paramètres sont ceux résultant de l'optimisation effectuée précédemment, avec ces données
- Attribuer ce classeur en tant que classeur de prédiction pour le Detector
- 4. Sauvegarder la méthode predict

Dans ce travail, nous avons :

- implémenté un algorithme de classification d'obstacles,
- mené une étude de comparative de performances selon le score F1

Résultats

Les algorithmes de Random Forest et AdaBoost atteignent des score F1 supérieurs à 0.93

Travaux futurs

Orienter les recherches sur la sécurité du dispositif

Merci pour votre attention.