

Show that function $f: \mathbf{R} \to \{x \in \mathbf{R}: -1 < x < 1\}$ defined by $f(x) = \frac{1}{1+|x|}$, $x \in \mathbf{R}$ is one-one and onto function.

Answer

It is given that $f: \mathbf{R} \to \{x \in \mathbf{R}: -1 < x < 1\}$ is defined as $f(x) = \frac{x}{1+|x|}$, $x \in \mathbf{R}$. Suppose f(x) = f(y), where $x, y \in \mathbf{R}$.

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$$

It can be observed that if x is positive and y is negative, then we have:

$$\frac{x}{1+x} = \frac{y}{1-y} \Rightarrow 2xy = x - y$$

Since x is positive and y is negative:

$$x > y \Rightarrow x - y > 0$$

But, 2xy is negative.

Then,
$$2xy \neq x - y$$

Thus, the case of \boldsymbol{x} being positive and \boldsymbol{y} being negative can be ruled out.

Under a similar argument, x being negative and y being positive can also be ruled out

 $\dot{\cdot}\cdot x$ and y have to be either positive or negative.

When x and y are both positive, we have:

$$f(x) = f(y) \Rightarrow \frac{x}{1+x} = \frac{y}{1+y} \Rightarrow x + xy = y + xy \Rightarrow x = y$$

When \boldsymbol{x} and \boldsymbol{y} are both negative, we have:

$$f(x) = f(y) \Rightarrow \frac{x}{1-x} = \frac{y}{1-y} \Rightarrow x - xy = y - yx \Rightarrow x = y$$

 $\therefore f$ is one-one.

Now, let $y \in \mathbf{R}$ such that -1 < y < 1.

If y is negative, then there exists $x = \frac{y}{1+y} \in \mathbf{R}$ such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y.$$

 $x = \frac{y}{1-y} \in \mathbf{R}$ If y is positive, then there exists

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left(\frac{y}{1-y}\right)} = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{y}{1-y+y} = y.$$

 $\therefore f$ is onto.

Hence, f is one-one and onto.

Ouestion 5:

Show that the function $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^3$ is injective.

Answer

 $f: \mathbf{R} \to \mathbf{R}$ is given as $f(x) = x^3$.

Suppose f(x) = f(y), where $x, y \in \mathbf{R}$.

$$\Rightarrow x^3 = y^3 \dots (1)$$

Now, we need to show that x = y.

Suppose $x \neq y$, their cubes will also not be equal.

$$\Rightarrow x^3 \neq v$$

However, this will be a contradiction to (1).

$$x = y$$

Hence, f is injective.

Question 6

Give examples of two functions $f: \mathbf{N} \to \mathbf{Z}$ and $g: \mathbf{Z} \to \mathbf{Z}$ such that $g \circ f$ is injective but g is not injective.

(Hint: Consider f(x) = x and g(x) = |x|)

Answer

Define $f \colon \mathbf{N} \to \mathbf{Z}$ as f(x) = x and $g \colon \mathbf{Z} \to \mathbf{Z}$ as g(x) = |x|.

We first show that g is not injective.

It can be observed that:

$$g(-1) = |-1| = 1$$

$$g(1) = |l| = 1$$

$$g(-1) = g(1), \text{ but } -1 \neq 1.$$

 $\therefore g$ is not injective.

Now, gof: $\mathbf{N} \to \mathbf{Z}$ is defined as gof(x) = g(f(x)) = g(x) = |x|

Let $x, y \in \mathbf{N}$ such that gof(x) = gof(y).

$$|x| = |y|$$

Since x and $y \in \mathbf{N}$, both are positive.

$$|x| = |y| \Rightarrow x = y$$

Hence, gof is injective

Ouestion 7:

Given examples of two functions $f: \mathbf{N} \to \mathbf{N}$ and $g: \mathbf{N} \to \mathbf{N}$ such that $g \circ f$ is onto but f is not onto.

(Hint: Consider
$$f(x) = x + 1$$
 and
$$g(x) = \begin{cases} x - 1 & \text{if } x > 1 \\ 1 & \text{if } x = 1 \end{cases}$$

Answer

Define $f: \mathbf{N} \to \mathbf{N}$ by,

$$f(x) = x + 1$$

And, $g: \mathbf{N} \to \mathbf{N}$ by,

$$g(x) = \begin{cases} x-1 & \text{if } x > 1\\ 1 & \text{if } x = 1 \end{cases}$$

We first show that q is not onto.

For this, consider element 1 in co-domain N. It is clear that this element is not an image of any of the elements in domain N.

 $\therefore f$ is not onto.

Now, gof: $\mathbf{N} \rightarrow \mathbf{N}$ is defined by,

$$gof(x) = g(f(x)) = g(x+1) = (x+1)-1$$
 $\left[x \in \mathbb{N} \Rightarrow (x+1) > 1\right]$

Then, it is clear that for $y \in \mathbf{N}$, there exists $x = y \in \mathbf{N}$ such that gof(x) = y.

Hence, gof is onto.

Ouestion 8:

Given a non empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)?

Justify you answer:

Answer

Since every set is a subset of itself, ARA for all $A \in P(X)$.

∴R is reflexive.

Let $ARB \Rightarrow A \subset B$.

This cannot be implied to $B \subset A$.

For instance, if $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related

: R is not symmetric.

Further, if ARB and BRC, then $A \subset B$ and $B \subset C$.

 $\Rightarrow A \subset C$

 $\Rightarrow ARC$

∴ R is transitive.

Hence, R is not an equivalence relation since it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation *: $P(X) \times P(X) \rightarrow P(X)$ given by $A * B = A \cap B \square A$, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.

Answer

It is given that *: $P(X) \times P(X) \rightarrow P(X)$ is defined as $A * B = A \cap B \ \forall A, B \in P(X)$

We know that
$$A \cap X = A = X \cap A \ \forall \ A \in P(X)$$
.

$$\Rightarrow A * X = A = X * A \forall A \in P(X)$$

Thus Y is the identity element for the given hinary operation *

mus, A is the lucificity element for the given binary operation .

Now, an element $A \in P(X)$ is invertible if there exists $B \in P(X)$ such that

$$A*B = X = B*A$$
. (As X is the identity element) i.e.,

 $A \cap B = X = B \cap A$

This case is possible only when A = X = B.

Thus, X is the only invertible element in P(X) with respect to the given operation*. Hence, the given result is proved.

Question 10:

Find the number of all onto functions from the set $\{1, 2, 3, \dots, n\}$ to itself.

Answe

Onto functions from the set $\{1, 2, 3, \dots, n\}$ to itself is simply a permutation on n symbols $1, 2, \dots, n$.

Thus, the total number of onto maps from $\{1, 2, ..., n\}$ to itself is the same as the total number of permutations on n symbols 1, 2, ..., n, which is n.

Question 11:

Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists.

(i)
$$F = \{(a, 3), (b, 2), (c, 1)\}\ (ii) F = \{(a, 2), (b, 1), (c, 1)\}\$$

Answer

 $S = \{a,\,b,\,c\},\,T = \{1,\,2,\,3\}$

(i) F: $S \rightarrow T$ is defined as:

 $F = \{(a, 3), (b, 2), (c, 1)\}$

 \Rightarrow F (a) = 3, F (b) = 2, F(c) = 1

Therefore, F^{-1} : $T \rightarrow S$ is given by

 $\mathsf{F}^{-1} = \{(3,\,a),\,(2,\,b),\,(1,\,c)\}.$

(ii) F: $S \rightarrow T$ is defined as:

 $F = \{(a, 2), (b, 1), (c, 1)\}$

Since F(b) = F(c) = 1, F is not one-one.

Hence, F is not invertible i.e., F^{-1} does not exist.

Question 12:

Consider the binary operations*: $\mathbf{R} \times \mathbf{R} \to \mathrm{and}$ o: $\mathbf{R} \times \mathbf{R} \to \mathbf{R}$ defined as a * b = |a - b| and $a \circ b = a$, $\Box a$, $b \in \mathbf{R}$. Show that * is commutative but not associative, o is associative but not commutative. Further, show that $\Box a$, b, $c \in \mathbf{R}$, $a * (b \circ c) = (a * b) \circ (a * c)$. [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.

********* FND *******