1 Partie 1

On s'intéresse au système du réplicateur à 2 gènes :

$$\begin{cases} z_1' = z_1(a_{12}z_2 - (a_{12} + a_{21})z_1z_2) \\ z_2' = z_2(a_{21}z_2 - (a_{12} + a_{21})z_1z_2) \end{cases}$$

avec $z_i(0) = z_i^0 > 0$ qui vérifient $z_1^0 + z_2^0 = 1$.

- 1. Justifier que $z_1(t)$ et $z_2(t)$ restent positives pour tout temps.
- **2.** Calculer $(z_1 + z_2)'$. Montrer que si $z_1(t) + z_2(t) = 1$ alors $(z_1 + z_2)'(t) = 0$. En déduire que l'ensemble $z_1 + z_2 = 1$ est invariant pour le système.

dans toute la suite on suppose que $z_1(t) + z_2(t) = 1$ pour tout t. ainsi z_1 et z_2 representent des fréquences. Typiquement, ces fréquences modélise les variations de proportion de deux gènes G_1 et G_2 dans une population donnée.

- 3. Déduire des deux questions précédente que les solutions sont bornées et existent en tout temps.
- 4. En utilisant le fait que $z_1 + z_2 = 1$, réécrire ce système comme un système de dimension 1 avec uniquement la variable z_1 .
- **5.** Quelles sont les états d'équlibre positifs ou nuls possibles en fonction des paramètres a_{12} et a_{21} ?
- 6. Simuler ce système de dimension 1 à l'aide d'une méthode d'euler explicite et à l'aide d'une méthode d'euler implicite.
- 7. conjecturer les dynamiques en temps long possible pour ce système.

2 Partie 2

On s'intéresse au système du réplicateur à 3 gènes :

$$\begin{cases} z_1' = z_1(a_{12}z_2 + a_{13}z_3 - q(z_1, z_2, z_3)) \\ z_2' = z_2(a_{21}z_1 + a_{23}z_3 - q(z_1, z_2, z_3)) \\ z_3' = z_3(a_{31}z_1 + a_{32}z_2 - q(z_1, z_2, z_3))) \end{cases}$$

où $q(z_1, z_2, z_3) = (a_{12} + a_{21})z_1z_2 + (a_{13} + a_{31})z_1z_3 + (a_{23} + a_{32})z_2z_3$ et avec $z_i(0) = z_i^0 > 0$ qui vérifient $z_1^0 + z_2^0 + z_3^0 = 1$.

On admet que les z_i sont définie pour tuot temps, sont toujours positives et que $z_1(t) + z_2(t) + z_3(t) = 1$ pour tout t.

C'est un modèle décrivant l'évolution de la fréquences de 3 gènes G_1 , G_2 et G_3 dans une population.

- 8. En écrivant $z_3 = 1 z_1 z_3$, réécrire ce système comme un système de dimension 2.
- 9. On note $A = (a_{ij})_{i,j}$ avec $a_{ii} = 0$. Écrire une fonction Replicator3G(A, Z0, T, h) prenant en argument la matrice A, la condition initiale $Z_0 = (z_1^0, z_2^0, z_3^0)$, le temps maximal T et donnant une approximation en suivant la méthode dEuler avec un pas de temps h.
- 10. Explorer les dynamiques pour diverses matrice A et diverses conditions initales. Pour chaque jeux de paramètres, on pourra proposer 2 graphes l'un avec la dynamique des z_i en

fonction du temps, l'autre avec la dynamique de q en fonction du temps. On pourra notamment regarder les cas

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad A = -\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & -1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & -1 & 0 \end{pmatrix}.T$$