TIMESER LAB NOTES

MANAY, Justin Gabrielle A.

02-21-2019

STAGES IN ARIMA MODELING:

• Model Identification

- Check if the series is stationary. From the plot/ACF/PACF, determine if it has a trend or exhibits seasonality. You could also use the Augmented Dickey-Fuller test for stationarity. If it does, apply differencing (if there is a trend) or deseasonalization (if there is seasonality).
- Check if the series is white noise using the Ljung-Box Q-statistic for white noise. If not white noise, check ACF/PACF to determine the correct ARIMA model.

• Parameter Estimation

- Model Diagnostics
 - Check if residuals are white noise using the Ljung-Box Q-statistic for white noise. If not white noise, there are misspecfications in the fitted model.
- Forecast Verification and Reasonableness

As an example, we can take the W1 dataset.

Model Identification

Warning: The value of NLAG is larger than 25% of the series length. The asymptotic approximations used for correlation based statistics and confidence intervals may be poor.

Name of Variable = Defects								
Mean of Working Series	1.766444							
Standard Deviation	0.521012							
Number of Observations	45							

• The number of lags should be $\frac{1}{4}$ of the number of observations. In this case, the number of lags should be $\frac{1}{4}(45) = 11.25$. We round up and choose 12 lags, so SAS issues a warning since $12 > \frac{1}{4}(45)$.

Autocorrelation Check for White Noise											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations							
6	12.61	6	0.0496	0.381	0.233	0.183	0.137	-0.052	-0.057		
12	16.36	12	0.1752	-0.169	-0.085	-0.002	-0.067	-0.147	-0.045		

Using the Ljung-Box Q-statistic for white noise,

H₀: The series is white noise.

H_a: The series is not white noise.

• We reject H_0 since at least one p-value < 0.05. Thus, Defects must not be white noise. Therefore, we proceed with fitting an ARIMA model.

- From the plots, ACF is exponentially decreasing, while PACF is insignificant after lag 1. Thus, we fit an AR(1) model.
- The shaded region determines the 95% confidence interval that the data is a white noise. Since there are values where the ACF/PACF exceeds the shaded region, the series *Defects* is not white noise.
- Note that ACF at lag 0 is always equal to 1 and that ACF at lag 1 is always equal to PACF at lag 1.
- You can alternatively use the IACF (Inverse Autocorrelation Function) plot if the trends in the ACF/PACF are not clear.

Parameter Estimation

Conditional Least Squares Estimation										
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag					
MU	1.75530	0.11673	15.04	<.0001	0					
AR1,1	0.38153	0.14103	2.71	0.0097	1					

Constant Estimate	1.085603
Variance Estimate	0.242863
Std Error Estimate	0.492811
AIC	65.97205
SBC	69.58537
Number of Residuals	45

Note that $\mathsf{MU} = \mu$ $\mathsf{AR1.1} = \phi_1$

Constant Estimate = θ_0

• In general, the resulting equation for an AR(1) model is:

$$(1 - \phi_1 B)Z_t = \theta_0 + a_t$$

$$Z_t = \theta_0 + \phi_1 Z_{t-1} + a_t$$

Taking the expectation of both sides,

$$E[Z_t] = E[\theta_0 + \phi_1 Z_{t-1} + a_t]$$

Thus,

$$\widehat{Z}_t = \widehat{\theta_0} + \widehat{\phi_1} Z_{t-1}$$

• For our model in particular, since all the p-values < 0.05,

$$\widehat{Z}_t = 1.0856 + 0.3815 Z_{t-1}$$

Note that

$$(1-\phi_1)\mu=\theta_0$$

should hold for an AR(1) model. Checking if it does,

$$(1 - 0.382)755 = 1.086$$

• The Akaike Information Criterion (AIC) and Schwarz/Bayesian Information Criterion (SBC) are useful for comparing different models (the lower, the better).

Model Diagnostics

Correlations of Parameter Estimates								
Parameter	MU	AR1,1						
MU	1.000	-0.017						
AR1,1	-0.017	1.000						

• The pairwise correlations are small (-0.017). Thus, there is no significant multicollinearity among the parameters of the AR model (i.e., there is no model redundancy).

	Autocorrelation Check of Residuals											
To Lag	Chi-Square	DF	Pr > Chi Sq	Autocorrelations								
6	2.02	5	0.8462	-0.040	0.061	0.081	0.125	-0.106	0.022			
12	5.28	11	0.9166	-0.165	-0.039	0.064	-0.020	-0.150	-0.002			
18	11.22	17	0.8448	0.081	-0.067	-0.080	-0.096	0.091	-0.210			
24	12.14	23	0.9683	-0.021	0.007	-0.068	-0.064	0.028	-0.013			

- Autocorrelations are small between lags, which can potentially signal that the residuals are white noise.
- Using the Ljung-Box Q-statistic for white noise,

H₀: The residuals are white noise.

 H_{α} : The residuals are not white noise.

• Since the p-values > 0.05, we do not reject H_0 . Thus, the errors must be white noise. Thus, there is no information in the residuals which needs to be included in the model.

• The ACF is insignificant after lag 1, and the PACF is insignificant all throughout since the residuals are white noise.

• The residual white noise test p-values must be large to not reject H₀ and conclude that the residuals are white noise. This plot shows that the p-values are closer to 1, enabling us to not reject H₀ and conclude that the residuals are white noise.

• We want the residuals to be normally distributed. The QQ-plot closely follows the normal line, potentially indicating that the residuals are normal.

Tests for Normality										
Test	Sta	atistic	p Val	ue						
Shapiro-Wilk	W	0.93041	Pr < W	0.0097						
Kolmogorov-Smirnov	D	0.155872	Pr > D	<0.0100						
Cramer-von Mises	W-Sq	0.177979	Pr > W-Sq	0.0096						
Anderson-Darling	A-Sq	1.038387	Pr > A-Sq	0.0091						

- We can also test for the normality of the residuals. Using the different normality tests, Ho: The residuals are normally distributed.
 Ho: The residuals are not normally distributed.
- Since p-value > 0.05, we reject H₀. Thus, the errors must not be normally distributed. REMEDY FOR NON-NORMALITY
- Note that any pattern in the residual ACF, residual PACF and residual plots will also tell you what components must be included that were omitted from the model.

• Note that the estimated mean is

$$\mu = 1.755297$$

and the autoregressive factors are

$$(1 - \phi_1 B) = 1 - 0.38153B$$

Forecast Verification and Reasonableness

	Forecasts for variable Defects										
Obs	Forecast	Std Error	95% Confid	ence Limits	Actual	Residual					
1	1.7553	0.4928	0.7894	2.7212	1.2000	-0.5553					
2	1.5434	0.4928	0.5775	2.5093	1.5000	-0.0434					
3	1.6579	0.4928	0.6920	2.6238	1.5400	-0.1179					
4	1.6732	0.4928	0.7073	2.6390	2.7000	1.0268					
5	2.1157	0.4928	1.1498	3.0816	1.9500	-0.1657					

• The above table is a snippet of the forecast table outputted by SAS. From the forecast equation

$$\widehat{Z}_t = 1.0856 + 0.3815 Z_{t-1}$$

At time 45,

$$\widehat{Z}_{45} = 1.0856 + 0.3815(1.84)$$

= 1.7876

At time 47, there is no previous actual value. Thus, SAS uses the previous forecasted value.

$$\widehat{Z}_{46} = 1.0856 + 0.3815(1.7876)$$

= 1.7676

• To test for overfitting, we can examine the AR(2) model.

Conditional Least Squares Estimation											
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag						
MU	1.74991	0.12982	13.48	<.0001	0						
AR1,1	0.34229	0.15352	2.23	0.0312	1						
AR1,2	0.10422	0.15354	0.68	0.5010	2						

• Note that the p-value for AR1,2 > 0.05. Thus, we drop AR1,2 and only an AR(1) model is needed.

Constant Estimate	0.96855
Variance Estimate	0.245958
Std Error Estimate	0.495942
AIC	67.48304
SBC	72.90302
Number of Residuals	45

- AIC for AR(2) model = 67.48. Compared to the AIC for AR(1) which is 65.97, AR(1) is the better model.
- We can also check if

$$(1 - \phi_1 - \phi_2)\mu = \theta_0$$

holds. Substituting,

$$(1 - 0.34229 - 0.10422)1.74991 = 0.96855$$

• Thus, the model is an AR(1) model, and for Defects, the value in the immediately succeeding period depends only on the value on the immediately previous period.

02-28-2019

NONSEASONAL ARIMA(p, d, q) MODEL

• The ARIMA(p, d, q) model is defined by the following equation:

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d Z_t = \theta_0 + (1 - \theta_1 B - \dots - \theta_q B^q) a_t$$

Taking expectations on both sides,

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d E[Z_t] = \theta_0 + (1 - \theta_1 B - \dots - \theta_q B^q) E[a_t]$$
$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d \mu = \theta_0$$

To simplify, we examine ARMA(p, q). Note that ARMA(p,q) = ARIMA(p,0,q).

$$(1 - \phi_1 B - \dots - \phi_p B^p) \mu = \theta_0$$
$$(1 - \phi_1 - \dots - \phi_p) \mu = \theta_0$$

Again, to simplify, we examine AR(1), AR(2),... and MA(1), MA(2),

AR(1):
$$1 - \phi_1 \mu = \theta_0$$

AR(2):
$$(1 - \phi_1 - \phi_2)\mu = \theta_0$$

. . .

AR(p):
$$(1 - \phi_1 - \phi_2 - ... - \phi_n)\mu = \theta_0$$

Thus, for a pure AR process, the equations relate the AR coefficients with the constant term in the MA model. Note that for a pure AR process, $\mu=0 \iff \theta_0=0$.

MA(1):
$$\mu = \theta_0$$

MA(2):
$$\mu = \theta_0$$

...

MA(q):
$$\mu = \theta_0$$

Thus, for a pure MA process, the constant term is equal to the mean of the series μ .

W3 Dataset

	Autocorrelation Check for White Noise											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations								
6	80.85	6	<.0001	0.735	0.499	0.301	0.212	0.131	0.030			
12	81.33	12	<.0001	-0.009	-0.047	-0.020	-0.032	-0.020	0.032			
18	113.11	18	<.0001	0.103	0.191	0.257	0.284	0.267	0.199			

- Using the Ljung-Box Q-statistic for white noise,
 H₀: The series is white noise.
 H_a: The series is not white noise.
- Since all p-values < 0.05, we reject H_0 . Thus, the series *Blowfly* must not be white noise. Therefore, we proceed with fitting an ARIMA model.
- If the series is a white noise,

$$\widehat{Z}_t = \theta_0$$

where $\theta_0=\mu.$ To confirm this, we use the Augmented Dickey-Fuller test.

Augmented Dickey-Fuller Unit Root Tests												
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F					
Zero Mean	0	-1.5687	0.3834	-0.80	0.3689							
	1	-1.6762	0.3690	-0.85	0.3439							
	2	-1.5710	0.3831	-0.84	0.3518							
Single Mean	0	-21.4770	0.0052	-3.64	0.0068	6.67	0.0016					
	1	-25.2816	0.0017	-3.55	0.0091	6.30	0.0096					
	2	-29.8645	0.0008	-3.48	0.0111	6.05	0.0148					
Trend	0	-24.1958	0.0191	-3.74	0.0249	7.16	0.0324					
	1	-30.8432	0.0033	-3.81	0.0209	7.29	0.0288					
	2	-40.1224	0.0002	-3.86	0.0185	7.45	0.0249					

- The Augmented Dickey-Fuller test is used to test for stationarity.
- Do NOT use the last column since the F-statistic assumes normality. Recall that an F-distributed variable is the ratio of two chi-squared distributed variables, and the chi-squared distribution is itself the square of the normal distribution.
- Thus, we use the tau-statistic.
- The Augmented Dickey-Fuller (ADF) test of stationarity is also called the ADF test of random walk (because as ϕ_1 approaches 1, the series becomes a random walk/non-stationary) or the ADF unit root test.
- Using the ADF test,

 H_0 : A unit root is present (i.e., not stationary)

 H_{α} : There is no unit root (i.e., stationary).

- There are three options: zero mean (i.e., The series is moving up and down around a center of zero), single mean (similar to a random walk with a drift term) and trend (i.e., The series has a linear trend that is deterministic.)
- From the time plot, the movement of the series *Blowfly* is far from zero, so it does not have zero mean.
- All p-values < 0.05 so we reject H₀. Thus, the series is stationary and there is no need for differencing since there is no significant trend.

• From the plots, ACF is exponentially decreasing. PACF is insignificant after lag 1. Thus, we fit an AR(1) model.

	Standard		Annrow	
Estimate	Етог	t Value	Approx Pr > t	Lag
3824.7	386.83442	9.89	<.0001	0
0.75300	0.07520	10.01	<.0001	1
	3824.7	3824.7 386.83442	3824.7 386.83442 9.89	3824.7 386.83442 9.89 <.0001

Constant Estimate	944.6945
Variance Estimate	853637.2
Std Error Estimate	923.9249
AIC	1354.577
SBC	1359.39
Number of Residuals	82

• The equation is:

$$\widehat{Z}_t = 944.69 + 0.7532 Z_{t-1}$$

or

$$(1 - 0.7532B)Z_t = 944.69$$

Correlation: Esti	s of Para mates	ameter
Parameter	MU	AR1,1
MU	1.000	-0.204
AR1,1	-0.204	1.000

• The pairwise correlations are small (-0.204). Thus, there is no significant multicollinearity among the parameters of the AR model.

		Αι	utocorrelatio	n Check	ofRes	iduals			
To Lag	Chi-Square	DF	Pr > ChiSq		ı	uto cor	relation	s	
6	2.73	5	0.7409	0.063	0.018	-0.131	0.025	0.050	-0.082
12	4.78	11	0.9411	0.002	-0.111	0.060	-0.039	-0.062	-0.023
18	10.12	17	0.8983	-0.005	0.072	0.106	0.113	0.127	0.075
24	12.52	23	0.9616	0.032	-0.085	-0.090	-0.015	0.064	0.022

• Using the Ljung-Box Q-statistic for white noise,

H₀: The residuals are white noise.

 H_{α} : The residuals are not white noise.

- All p-values > 0. Thus, we do not reject H₀. Thus, the errors must be white noise. Thus, there is no information in the residuals which needs to be included in the model.
- To check for overfitting, we examine the AR(2) model.

Co	nditional l	Least Squar	es Estima	ation	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	3865.9	357.58585	10.81	<.0001	0
AR1,1	0.81366	0.11272	7.22	<.0001	1
AR1,2	-0.08601	0.11276	-0.76	0.4478	2
	Constant Variance		1052.86 858211.	-	
	Std Error	Estimate	926.397	3	
	AIC		1355.98	3	
	SBC		1363.20	4	
	Number o	f Residuals	8	2	

- AR1,2 is not significant. Thus, we drop it from the model. Thus, an AR(1) model is a better fit for the data.
- AIC is not significantly different from AR(1) but we prefer AR(1) by the principle of parsimony.

W5 dataset

	A	utoc	correlation C	heck fo	r White	Noise			
To Lag	Chi-Square	DF	Pr > ChiSq		А	utocori	relation	15	
6	.338.83	6	<.0001	0.960	0.918	0.878	0.835	0.793	0.751
12	521.51	12	<.0001	0.709	0.666	0.620	0.575	0.531	0.488
18	588.57	18	<.0001	0.446	0.402	0.359	0.318	0.279	0.239

Using the Ljung-Box Q-statistic for white noise,

Ho: The series is white noise.

Ha: The series is not white noise.

• All p-values < 0.05 so we reject H_0 . Thus, the series is not white noise.

	Augm	ented Di	ckey-Fulle	r Unit I	Root Tests		
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	0.6858	0.8472	5.29	0.9999		
	1	0.6701	0.8436	4.36	0.9999		
	2	0.6350	0.8353	2.95	0.9991		
Single Mean	0	-0.9840	0.8847	-1.93	0.3170	21.76	0.0010
	1	-0.8345	0.8981	-1.92	0.3223	16.92	0.0010
	2	-0.7793	0.9027	-1.62	0.4677	8.76	0.0010
Trend	0	-6.4688	0.6915	-1.35	0.8666	2.53	0.6745
	1	-3.7759	0.8942	-0.88	0.9527	2.06	0.7676
	2	-4.9274	0.8170	-0.97	0.9412	1.63	0.8508

- H₀: A unit root is present (i.e., not stationary)
 H_a: There is no unit root (i.e., stationary)
- All p-values (for trend) > 0.05 so we do not reject H₀. Thus, the series is not stationary.

• The time plot shows that the series has a trend, so we use trend.

• Another indication of non-stationarity is an ACF plot which is slowly decreasing.

If we mistakenly fit an AR(1) model,

	Conditiona	I Least Squares	Estimation	on	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	107.76845	3.57563	30.14	< .0001	0
AR1,1	1.00000	0.0048789	204.96	<.0001	1

Constant Estimate	0.000011
Variance Estimate	12.78516
Std Error Estimate	3.575634
AIC	384.3888
SBC	388.9141
Number of Residuals	71

- AR1,1 = 1. However, |AR1,1| < 1 and when AR1,1 = 1, we have a random walk.
- Since the data is not white noise and is non-stationary, we employ differencing on the data; i.e., ARIMA(0, 1, 0)

• At first glance, the data now seems stationary. Also, all of the lags are within the blue band.

		Auto	ocorrelation	Check f	or White	e Noise			
To Lag Chi-Square DF Pr > ChiSq Autocorrela									
6	6.35	6	0.3852	-0.135	0.110	0.150	-0.016	0.068	0.160
12	17.03	12	0.1486	0.042	-0.077	0.061	-0.253	0.005	0.224
18	23.83	18	0.1608	-0.209	0.056	-0.087	-0.103	-0.099	0.018

• From the Ljung-Box Q-statistic, all p-values > 0.05, so we do not reject H_0 , signifying that the data is white noise.

Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	48.3738	<.0001	-5.94	<.0001		
	1	-21.5790	0.0006	-3.32	0.0012		
	2	-9.1685	0.0325	-2.08	0.0367		
Single Mean	0	-80.0712	0.0007	-8.86	0.0001	39.42	0.0010
	1	-64.1872	0.0007	-5.25	0.0001	13.90	0.0010
	2	-34.3883	0.0006	-3.22	0.0231	5.32	0.0322
Trend	0	-82.4550	0.0002	-9.19	<.0001	42.35	0.0010
	1	-70.6827	0.0002	-5.51	0.0001	15.21	0.0010
	2	40.1851	0.0002	-3.48	0.0498	6.23	0.0626

- Furthermore, from the Dickey-Fuller tests, the p-values are < 0.05, so we reject H₀. Thus, the data is now stationary after differencing.
- Thus, after differencing once, the data becomes stationary and is a random walk.
- In general, for a random walk,

$$Z_t = \theta_0 + Z_{t-1} + a_t$$

• We just have to determine if $\theta_0=0$ (stochastic trend) or θ_0 is significantly different from zero (with drift)

CO	munuonai L	.east Squar	CO LOUIII	auvii	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	2.05429	0.33203	6.19	<.0001	0
	Constant	Estimate	2.05428	36	
	Varian ce	Estimate	7.7170	01	
	Std Error	Estimate	2.7779	51	
	AIC		342.684	41	
	SBC		344.932	26	
	Number o	f Residuals		70	

- In this case, $\mu=\theta_0$. Thus, $\theta_0=0 \Longrightarrow \mu=0$ for a random walk with a stochastic trend.
- The drift term is 2.05429, which is the slope of the random walk with a drift. Thus, the equation for this series is

$$\widehat{Z}_t = 2.05 + Z_{t-1}$$

03-05-2019

W6 dataset

	A	utoc	orrelation Cl	heck fo	r White	Noise			
To Lag	Chi-Square	DF	Pr > ChiSq		A	utocon	relation	15	
6	508.22	6	<.0001	0.909	0.880	0.849	0.818	0.798	0.790
12	894.80	12	< 0001	0.771	0.756	0.716	0.697	0.682	0.655
18	1152.37	18	<.0001	0.626	0.616	0.580	0.549	0.521	0.494
24	1303.77	24	<.0001	0.482	0.451	0.429	0.410	0.378	0.364
30	1378.35	30	< .0001	0.356	0.320	0.295	0.265	0.237	0.220

- Using the Ljung-Box Q-statistic for white noise,
 H₀: The series is white noise.
 H_a: The series is not white noise.
- All p-values < 0.05 so we reject H_0 . Thus, the series is not white noise.

	1	ALL STATEMENT OF STREET					
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	-0.6788	0.5310	-0.41	0.5339		
	1	0.0008	0.6814	0.00	0.6814		
	2	0.2337	0.7366	0.25	0.7580		
Single Mean	0	-9.7650	0.1342	-2.41	0.1424	3.07	0.2880
	1	-5.3875	0.3916	-1.87	0.3431	2.08	0.5412
	2	-4.0996	0.5219	-1.71	0.4238	1.96	0.5711
Trend	0	-49.9934	0.0004	-5.43	0.0001	14.88	0.0010
	1	-32.2927	0.0029	-3.60	0.0340	6.76	0.0385
	2	-25.1767	0.0172	-2.91	0.1619	4.60	0.2572

- H₀: A unit root is present (i.e., not stationary)
 H_a: There is no unit root (i.e., stationary)
- Most p-values (for trend) > 0.05 so we do not reject H₀. Thus, the series is not stationary.

- From the time plot, we see that the series yosi is nonstationary in both mean and variance. Thus, we employ both (ordinary) differencing and log transformation. We do log transformation before differencing because negative differences are undefined for the log function.
- After log transformation,

• The series lyosi is now stationary in the variance.

	Augn	nented Die	ckey-Fuller	Unit F	Root Tests		
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	0.1753	0.7223	0.59	0.8416		
	1	0.1828	0.7241	1.07	0.9255		
	2	0.1855	0.7247	1.31	0.9519		
Single Mean	0	-10.7663	0.1041	-2.75	0.0693	4.11	0.0819
	1	-5.3289	0.3969	-2.26	0.1867	3.35	0.2180
	2	-4.4504	0.4837	-2.25	0.1888	3.67	0.1353
Trend	0	-46.5001	0.0004	-5.36	0.0001	14.72	0.0010
	1	-19.6727	0.0615	-2.95	0.1512	5.20	0.1388
	2	-14.5382	0.1816	-2.41	0.3737	4.05	0.3687

- However, from the Augmented Dickey-Fuller test, some p-values (for *trend*) > 0.05, so we also have to do (ordinary) differencing because the series is not stationary in the mean. The time plot for lyosi from earlier supports this.
- After ordinary differencing,

The series is now stationary in both mean and variance.

Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	-168.562	0.0001	-18.34	<.0001		
	1	-241.198	0.0001	-10.86	<.0001		
	2	-422.946	0.0001	-8.66	<.0001		
Single Mean	0	-169.315	0.0001	-18.43	<.0001	169.84	0.0010
	1	-251.498	0.0001	-11.02	<.0001	60.71	0.0010
	2	-566.501	0.0001	-9.06	<.0001	41.02	0.0010
Trend	0	-170.293	0.0001	-18.52	<.0001	171.52	0.0010
	.1	-261.246	0.0001	-11.18	<.0001	62.48	0.0010
	2	-769.364	0.0001	-9.55	<.0001	45.86	0.0010

• From the Augmented Dickey-Fuller test, all p-values (for zero mean) < 0.05, so the series is now stationary.

• Since the ACF is only significant at lag 1 and the PACF is exponentially decreasing, we fit an MA(1) model; i.e., an ARIMA(0, 1, 1) model.

	Condition	al Least Square	es Estimati	on	
Parameter	Estimate	Standard Erro	r t Value	Approx Pr > t	Lag
MU	0.01460	0.004956	7 2.95	0.0039	(
MA1,1	0.68289	0.0706	9.67	<.0001	- 1
	50,000,000	ce Estimate or Estimate	0.026738 0.163519		
	AIC		-86.585		
	SBC		-81.1302		
	Numbe	er of Residuals	113		

- All parameters have a p-value < 0.05, meaning that they are all significant.
- Furthermore, note that for a pure MA model, $\mu=\theta_0$, which is true here.

			Correlation Es	ns of Pa timates		r			
			Parameter	MU	MA1,	1			
			MU	1.000	0.05	7			
			MA1,1	0.057	1.00	0			
To Lag	Chi-Square		Pr > ChiSq	Check	di mana		relation		
6	1.49	5	0.9141	-0.019	0.066	-0.074		-0.026	0.03
12	4.87	11	0.9373	0.093	0.084	0.002	0.028	0.082	-0.06
18	7.24	17	0.9802	0.076	0.074	0.040	0.004	-0.031	-0.06
			000000000000000000000000000000000000000		9922		2.222	727-02-0	2.22
24	8.18	23	0.9981	0.046	-0.038	0.035	-0.008	-0.028	0.03

- The correlation between the parameters is low, indicating non-reduncancy. The residuals are also
 white noise based on the Ljung-Box Q-statistic (can also be checked through ACF/PACF plots of the
 residuals).
- To check, we employ overfitting and try to fit an MA(2) model.

	Condition	al Least Square	es l	Estimati	on	
Parameter	Estimate	Standard Erro	ır I	t Value	Approx Pr > t	Lag
MU	0.01458	0.005080	7	2.87	0.0049	0
MA1,1	0.69863	0.0954	0	7.32	<.0001	1
MA1,2	-0.02193	0.0969	3	-0.23	0.8214	2
	2000	nt Estimate ce Estimate	-	014583 026965		
	Std Err	or Estimate	.0	0.16421		
	AIC		-8	34.6539		
	SBC		-7	76.4717		
	Numbe	er of Residuals		113		

- MA1,2 has a p-value > 0.05, meaning that we should drop it from the model.
- The AIC and SBC for the MA(2) model are less than those for the MA(1) model. However, the differences are not significant (A rule of thumb is that the AIC and SBC differences are significant if they differ by more than 10) so by the rule of parsimony, we prefer the MA(1) model.
- Thus, the final model is given by:

$$\widehat{Z}_t = 0.01460 + Z_{t-1} + 0.31711a_t$$

03-07-2019

MULTIPLICATIVE

$$(1 - \phi_1 B)(1 - \Phi_{S=4} B^4)$$

$$AR(p = 1, d = 0, q = 0)AR(P = 1, D = 0, Q = 0)$$

ADDITIVE

$$(1 - \phi_1 B - \Phi_4 B^4)$$

• In general, an $ARIMA(p,d,q)(P,D,Q)_S$ model is given by:

$$(1 - \phi_1 B - \dots - \phi_p B^p) (1 - \Phi_s B^s - \dots - \Phi_{ps} B^{ps})$$

$$= \theta_0 + (1 - \theta_1 B - \dots - \theta_q B^q) (1 - \Theta_s B^s - \dots - \Theta_{qs} B^{qs}) a_t$$

Also,

$$\theta_0 = (1 - \phi_1 - \dots - \phi_p)(1 - \Phi_s - \dots - \Phi_{ps})\mu$$

• Determining Seasonality

As an example, we use the AR(1) model.

There is quarterly seasonality if (1) the lags at s = 4 for the ACF plot are exponentially decreasing and (2) if only the first quarterly lag is significant.

W8 Dataset

From the time plot, the series is stationary in the variance but not in the mean.

• Since the ACF is slowly decreasing with increasing lags, we employ differencing.

• The data now looks stationary...

• However, the ACF is slowly decreasing for lags which are multiples of 4. Thus, we employ seasonal differencing. In total, we did differencing twice: one for ordinary differencing and another for seasonal differencing. Ergo,

$$(1-B)(1-B^4)Z_t \text{ or } Z_t(14)$$

• Thus, we fit an ARIMA(-,1,-)(-,1,-) model.

		Aut	ocorrelation	Check f	or Whit	e Noise			
To Lag	Chi-Square	DF	Pr > ChiSq		I	Autocor	relation	s	
6	74.63	6	<.0001	-0.485	0.075	0.217	-0.455	0.163	0.038
12	77.58	12	<.0001	-0.016	0.036	0.076	-0.100	0.035	0.031
18	85.78	18	<.0001	-0.127	0.105	-0.070	-0.019	0.116	-0.078
24	89.16	24	<.0001	0.040	0.036	-0.098	0.073	-0.046	0.023
30	92.35	30	<.0001	-0.003	-0.036	0.081	-0.082	0.059	-0.008
36	95.10	36	<.0001	-0.060	0.056	-0.059	0.063	-0.026	-0.013

• Since the p-values are very small, the series is not white noise.

• The time plot is centered at zero and could have some outliers.

- In the ACF, lag 4 is significant.
- In the PACF, lags 4 and 7 are significant and exponentially decreasing. Lag 7 is significant since this lags "echoes" the succeeding lags (in this case, lag 8).
- Thus, we fit a seasonal MA(1) model.
- All lags below lag 4 are non-seasonal or ordinary lags. For the ACF, only lag 1 is significant
 while for the PACF, the non-seasonal lags are exponentially decreasing. Thus, we fit an
 MA(1) model.

- In total, we fit an $ARIMA(0,1,1)(0,1,1)_4$ model.
- Note that in the ACF/IACF plots, there is a plot for lag 0 while in the PACF plot, there is no such plot.

• This is even clearer in the IACF plot.

Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	0.0058592	0.01236	0.47	0.6363	0
MA1,1	0.73052	0.07435	9.83	<.0001	1
MA2,1	0.72365	0.07441	9.73	<.0001	4
	Std Error I		3.08219 1.75561 549.932	9	
			549.932		
	SBC		558.714	5	
	Number of	f Residuals	13	8	

- $MU = \theta_0$
- MA1,1 = θ_1
- MA2,1 = Θ_4
- Since the p-value for the constant term > 0.05, we drop the constant term.
- Since this is a pure MA model, $\mu = \theta_0$.

Co	nditional Le	east	Squar	esEstim	ati	on	
Parameter			dard Error	t Value		pprox Pr> t	Lag
MA1,1	0.73120	0.07387		9.90		<.0001	1
MA2,1	0.72409	0.0	7352	9.85		<.0001	4
	Variance E	stim	ate	3.06490	03		
	Std Error E	stim	ate	1.75068	37		
	AIC			548.174	16		
	SBC			554.02	91		
* AIC a	Number of				38 eri	minant	
* AIC a	nd SBC do n	not i	nclude	log det		minant	
* AIC a	nd SBC do n	notin ions Estir	nclude of Par mates	log det		minant	
* AIC a	nd SBC do n	notin ions Estir	nclude of Par mates	log det		minant	
* AIC a	Correlati	notii ions Estir ter	of Par mates MA1,1	e log det rameter MA2,1 -0.314		mina nt	
* AIC a	Correlati Paramet MA1,1 MA2,1	not in	of Par mates MA1,1 1.000	MA2,1 -0.314 1.000	eri	mina nt	
* AIC a	Correlati Paramet MA1,1 MA2,1	ions Estir ter Esti	of Parmates MA1,1 1.000 -0.314 s of Paimates	MA2,1 -0.314 1.000	r	mina nt	
* AIC a	Correlati Paramet MA1,1 MA2,1 Correla	ions Estir ter Esti	of Par mates MA1,1 1.000 -0.314 s of Pa imates	MA2,1 -0.314 1.000	r	minant	

- Correlation is relatively low (absolute value less than 0.9), indicating non-multicollinearity
- All parameters have p-value < 0.05, indicating that they are significant.

		Αι	utocorrelatio	n Check	of Res	iduals			
To Lag	Chi-Square	DF	DF Pr > ChiSq Autocorrelations						
6	6.61	4	0.1580	-0.078	0.151	-0.020	-0.115	-0.029	0.054
12	9.06	10	0.5268	0.053	0.082	0.051	-0.046	0.020	0.041
18	11.60	16	0.7712	-0.088	0.031	-0.023	0.069	0.033	0.034
24	13.63	22	0.9142	0.021	0.060	-0.074	0.051	-0.011	0.006
30	15.15	28	0.9768	-0.068	-0.009	-0.012	-0.063	-0.008	-0.005
36	17.14	34	0.9929	-0.073	-0.004	-0.043	0.034	-0.048	-0.006

- p-value > 0.05 for all lags, indicating that the residuals are white noise
- Thus, the final model is

$$(1-B)(1-B^4)Z_t = (1-0.7312B)(1-0.72409B^4)a_t$$

• To check if this is the appropriate model, we employ overfitting and fit an $ARIMA(0,1,3)(0,1,1)_4$.

Parameter	Estimate	Standard Error	t Value	Approx Pr> t	Lag
MA1,1	0.83804	0.09566	8.76	<.0001	1
MA1,2	-0.36123	0.12418	-2.91	0.0042	2
MA1,3	0.27801	0.11757	2.36	0.0195	3
MA2,1	0.66724	0.10032	6.65	<.0001	4
	Variance Std Error		2.94511	-	
	AIC		544.628	32	
	SBC		556.337	'2	
	Number o	f Residuals	13	8	

• The additional parameters MA1,2 and MA1,3 are significant but AIC = 544, a difference of only 5 points from previous AIC = 549. By the principle of parsimony, we choose the simpler ARIMA(0,1,1)(0,1,1)₄ model.

03-12-2019

W9 Dataset

Monthly Employment (in 1000's)

 $n = 132 \Rightarrow nlag = 33$ or 36 to observe 3 seasonal lags

		Aut	ocorrelation	Check f	or Whit	e Noise			
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	126.31	6	< 0001	0.571	0.218	0.224	0.358	0.454	0.400
12	248.32	12	<.0001	0.423	0.303	0.137	0.086	0.341	0.653
18	273.54	18	<.0001	0.291	-0.004	0.001	0.131	0.211	0.144
24	307.72	24	<.0001	0.144	0.016	-0.109	-0.132	0.105	0.386
30	323.63	30	< 0001	0.043	-0.216	-0.188	-0.081	-0.019	-0.063
36	360.88	36	< 0001	-0.032	-0.124	-0.240	-0.267	-0.021	0.246

• All the p-values < 0.05, so we reject H_0 and conclude that the series is not white noise and subsequently fit an ARIMA model.

- From the time plot, the series is non-stationary in mean but not in variance, so we employ differencing. Notice that we need to do differencing because the ACF plots for the seasonal lags (lags 12, 24 and 36) are very slowly decreasing. Thus, we employ seasonal differencing: $Z_t(12)$ or $Z_t=(1-B^{12})Z_t$
- After seasonal differencing,

		Aut	ocorrelation	Check f	or Whit	e Noise				
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	242.88	6	<.0001	0.794	0.657	0.586	0.473	0.410	0.386	
12	282.04	12	< 0001	0.353	0.310	0.224	0.125	0.016	-0.114	
18	285.16	18	<.0001	-0.058	-0.045	-0.084	-0.044	-0.044	-0.077	
24	326.17	24	<.0001	-0.104	-0,191	-0.210	-0.195	-0.257	-0.280	
30	429.37	30	<.0001	-0.283	-0.297	-0.280	-0.341	-0.381	-0.375	
36	516.14	36	< .0001	-0.377	-0.331	-0.288	-0.299	-0.222	-0.207	

• We reject H_0 since all p-values < 0.05, so the series is not white noise.

- The ACF plots of the nonseasonal lags are exponentially decreasing but their PACF plots are signficant only at lag 1.
- The PACF plots of the seasonal logs are exponentially decreasing.
- Thus, we can try to fit a nonseasonal AR(1) and a seasonal MA(1) or an ARIMA(1,0,0)(0,1,1)₁₂; i.e.,

$$(1 - \phi_1 B)(1 - B^{12})Z_t = \theta_0 + (1 - \Theta_{12} B^{12})\alpha_t$$

	Condition	al Least Squares	Estimati	on	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	28.22783	9.27539	3.04	0.0029	0
MA1,1	0.79816	0.06416	12.44	<.0001	12
AR1,1	0.84602	0.05012	16.88	<.0001	1

Constant Estimate	4.346632
Variance Estimate	3170.095
Std Error Estimate	56.3036
AIC	1310.889
SBC	1319.252
Number of Residuals	120

• All the parameters are signficant.

0 -0	.006	0.121
6 1	.000	0.008
	6 1	4

		A	utocorrelatio	n Check	of Res	iduals				
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	6.09	4	0.1927	-0.139	-0.043	0.137	-0.063	0.019	0.070	
12	11.58	10	0.3144	0.147	-0.014	0.101	0.055	-0.081	0.018	
18	14.19	16	0.5848	-0.002	0.074	-0.093	0.044	0.050	-0.002	
24	24.59	22	0.3172	0.145	-0.180	0.005	0.061	-0.101	-0.060	
30	28 33	28	0.4473	-0.035	-0.010	0.032	-0.042	-0.115	-0.077	
36	39.16	34	0.2493	-0.086	-0.061	0.069	-0.205	0.073	-0.025	

- There is no redundancy and the residuals are white noise.
- To check, we can employ overfitting and fit an ARIMA $(2,0,0)(0,1,1)_{12}$.

Parameter	Estimate	Standard Err	or	t Value	Approx Pr > t	Lag
MU	30.24976	10.663	25	2.84	0.0054	0
MA1,1	0.80833	0.064	16	12.60	<.0001	12
AR1,1	0.70576	0.091	97	7.67	<.0001	1
AR1,2	0.16821	0.09215		1.83	0.0705	2
	Consta	nt Estimate	3	3.812425		
	Varian	ce Estimate	3	3109.432		
	Std Err	or Estimate	Ę	55.76228		
	AIC			1309.541		

• AR1,2 is not significant and the difference in AIC and SBC are negligible compared to the first model. Thus, we prefer the first model.

Number of Residuals

1320.69

120

Case 9 (Pankratz)

Monthly freight volume

 $n = 120 \Rightarrow nlag = 30$ or 36 to observe 3 seasonal lags

SBC

• The series is stationary in the variance but non-stationary in the mean. Thus, we employ differencing. From the ACF plot, the seasonal and nonseasonal lags are slowly decreasing. Thus we employ both, doing seasonal differencing first (arbitrary).

After seasonal differencing,

- The series is still nonstationary in the mean and the ACF plots for the nonseasonal lags are slowly decreasing. Thus, we employ ordinary differencing.
- After ordinary differencing,

• The series is now stationary in the mean.

The ACF plot is significant only at lag 1 while the PACF plots are exponentially decreasing.
 Thus, we fit an MA(1) model; i.e. an ARIMA(0,1,1)(0,1,0)₁₂ model given by

$$(1-B)(1-B^{12})Z_t = \theta_0 + (1-\theta_1 B)a_t$$

Parameter	Estimate	Standard Erro	r t Value	Approx Pr > t	Lag
MU	1.73424	4.3163	0.40	0.6887	0
MA1,1	0.62589	0.0762	8.21	< .0001	1
	Std En	Variance Estimate Std Error Estimate			
	SBC	272121122011 21	1326.158 1331.504		
	Numbe	er of Residuals	107		

ullet $heta_0$ is not significant. Thus,

	Condition	al Least Square	es Estimati	on	
Parameter	Estimate	Standard Erro	r t Value	Approx Pr > t	Lag
MA1,1	0.62113	0.07629	9 8.14	<.0001	1
	Varian	ce Estimate	13761.68		
	Std Err	or Estimate	117.3102		
	AIC		1324.32		
	SBC		1326.993		
	Numbe	er of Residuals	107		

	Autocorrelation Check of Residuals											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations								
6	6.05	5	0.3015	0.040	0.061	-0.055	-0.136	-0.152	-0.060			
12	11.10	11	0.4346	0.029	0.049	0.089	0.018	-0.001	-0.173			
18	13,16	17	0.7253	-0.010	-0.056	-0.100	0.046	0.029	-0.003			
24	15.61	23	0.8714	0.035	-0.040	-0.015	-0.048	-0.091	0.064			
30	16.48	29	0.9697	-0.015	0.028	0.069	0.006	-0.012	0.006			
36	19.83	35	0.9816	-0.025	-0.079	0.027	0.065	0.096	-0.004			

- The residuals are white noise.
- Thus, the final model is given by:

$$(1 - B)(1 - B^{12})Z_t = (1 - 0.62113B)a_t$$

03-14-2019

Case 11 (Pankratz)

Monthly crime robberies (Robberies 12)

 $n = 118 \Rightarrow nlag = 29.5$ or 36 to observe 3 seasonal lags

• Because the time plot exhibits non-constant mean and variance, we do both log transformation and differencing.

• Because the time plot still exhibits non-constant mean, we do differencing.

- After differencing, the series now looks stationary.
- Thus, we now have an ARIMA(-,1,-)(-,0,-)₁₂ model.

- The lags overall (ACF is significant at lag 1, PACF is exponentially decreasing) suggest an MA(1) model
- The seasonal lags (lags 12, 24 and 36) (ACF and PACF look alike) also suggest a seasonal ARMA(1,1) model.
- Thus, we try an ARIMA(0,1,1)(1,0,1)₁₂ model, i.e.

$$(1 - \Phi_{12}B^{12})(1 - B)Z_t = \theta_0 + (1 - \theta_1B)(1 - \Theta_{12}B^{12})a_t$$

Co	nditional l	_east Squa	res Estim	ation	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	0.02028	0.01606	1.26	0.2091	0
MA1,1	0.45086	0.08419	5.36	<.0001	1
MA2,1	0.74296	0.19589	3.79	0.0002	12
AR1,1	0.92801	0.13884	6.68	<.0001	12
	Constant	Estimate	0.0014	16	
	Variance	Estimate	0.0342	14	
	Std Error	Estimate	0.18497	71	
	AIC		-58.925	59	

SBC

Number of Residuals

Only the constant term is non-significant.

		Aı	utocorrelatio	n Check	of Res	iduals			
To Lag	Chi-Square	DF	Pr > ChiSq		Autocorrelations				
6	3.95	3	0.2674	0.062	-0.118	-0.010	-0.080	0.070	-0.055
12	11.99	9	0.2140	-0.205	0.106	-0.015	-0.096	-0.012	0.021
18	16.62	15	0.3420	0.036	0.090	-0.124	-0.088	-0.011	-0.036
24	20.45	21	0.4930	-0.026	0.020	-0.069	0.106	-0.023	-0.092
30	25.32	27	0.5563	0.025	0.072	-0.069	-0.116	-0.077	0.035
36	29.17	33	0.6582	0.066	0.042	-0.048	0.023	0.097	0.068

-47.8772

• The residuals of the model are white noise.

Correlations of Parameter Estimates					
Parameter	MU	MA1,1	MA2,1	AR1,1	
MU	1.000	-0.007	-0.004	-0.014	
MA1,1	-0.007	1.000	0.066	0.071	
MA2,1	-0.004	0.066	1.000	0.938	
AR1,1	-0.014	0.071	0.938	1.000	

• There is suspected redundancy since the correlation between MA2,1 and AR1,1 are highly correlated.

Conditional Least Squares Estimation					
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MA1,1	0.42787	0.08485	5.04	<.0001	1
MA2,1	0.72493	0.18776	3.86	0.0002	12
AR1,1	0.92328	0.13039	7.08	<.0001	12
	Variance Estimate		0.03436	64	
	Std Error	Estimate	0.18537	75	
	AIC		-59.384	18	
	SBC		-51.098	33	
	Number of Residuals		11	17	

• The AIC and SBC improved.

Alternatively, we can fit an ARIMA($(2,1,0)(1,0,1)_{12}$ model with no constant term, i.e. $(1 - \phi_1 B - \phi_2 B^2)(1 - \Phi_{12} B^{12})(1 - B)Z_t = \theta_0 + (1 - \Theta_{12} B^{12})a_t$

Conditional Least Squares Estimation					
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MA1,1	0.68768	0.18508	3.72	0.0003	12
AR1,1	-0.34144	0.09188	-3.72	0.0003	1
AR1,2	-0.24174	0.09175	-2.63	0.0096	2
AR2,1	0.90156	0.12896	6.99	<.0001	12
	Variance Estimate Std Error Estimate		0.03433	31	
			0.18528	37	
	AIC		-58.526	69	
	SBC		-47.478	32	
	Number of Residuals		11	17	

• The AIC and SBC decreased (but not significantly). Also, the previous model is more parsimonious. Thus, we prefer the ARIMA $(0,1,1)(1,0,1)_{12}$ model.

Correlations of Parameter Estimates					
Parameter	MA1,1	AR1,1	AR1,2	AR2,1	
MA1,1	1.000	-0.074	-0.037	0.921	
AR1,1	-0.074	1.000	0.277	-0.101	
AR1,2	-0.037	0.277	1.000	-0.041	
AR2,1	0.921	-0.101	-0.041	1.000	

• However, the high correlation persists; this time between MA1,1 and AR2,1.

Case 10 (Pankratz)

Quarterly profit margins (Profit4)

$$n = 80 \Rightarrow nlag = 20$$

 Because the time plot exhibits constant mean and variance, we do not do any transformation/differencing.

- The lags overall (ACF is exponentially decreasing, PACF is significant at lag 1) suggest an AR(1) model
- Thus, we fit an ARIMA(1,0,0) model, i.e.,

$$(1 - \phi_1 B) Z_t = \theta_0 + a_t$$

Conditional Least Squares Estimation										
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag					
MU	4.62825	0.18536	24.97	<.0001	0					
AR1,1	0.85587	0.05960	14.36	<.0001	1					

Constant Estimate	0.667089
Variance Estimate	0.088076
Std Error Estimate	0.296777
AIC	34.64071
SBC	39.40477
Number of Residuals	80

- \bullet Both the constant term and AR1,1 are significant.
- The equation is:

$$\widehat{Z}_t = 0.667 + 0.855 Z_{t-1}$$

		Aı	utocorrelatio	n Check	of Res	iduals			
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	7.89	5	0.1623	0.077	-0.053	0.167	-0.158	-0.100	0.141
12	10.66	11	0.4720	0.010	-0.146	-0.035	-0.043	0.046	0.058
18	22.15	17	0.1790	-0.027	0.138	-0.141	-0.155	0.220	-0.025
24	38.32	23	0.0235	-0.064	0.107	-0.230	-0.274	-0.033	0.007

• Not all p-values < 0.05. However, for lag 24, the p-value is close enough to 0.05 that we can conclude that the residuals are probably white noise.

	Augmented Dickey-Fuller Unit Root Tests										
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F				
Zero Mean	0	-0.1408	0.6485	-0.25	0.5943						
	1	-0.1237	0.6523	-0.21	0.6064						
	2	-0.1151	0.6542	-0.22	0.6033						
Single Mean	0	-12.0516	0.0716	-2.53	0.1116	3.21	0.2633				
	1	-14.5681	0.0362	-2.67	0.0833	3.58	0.1710				
	2	-13.3562	0.0502	-2.42	0.1391	2.93	0.3327				
Trend	0	-12.1838	0.2766	-2.55	0.3061	3.32	0.5203				
	1	-14.6958	0.1674	-2.69	0.2431	3.73	0.4399				
	2	-13.4375	0.2159	-2.44	0.3559	3.09	0.5646				

 \bullet p-values > 0.05. Thus, the series must have a unit root, and the series is not stationary. Thus, we conduct differencing.

• Now, the series look more stationary.

		Aut	ocorrelation	Check f	or Whit	e Noise			
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	8.60	6	0.1972	0.008	-0.116	0.118	-0.201	-0.131	0.125
12	11.69	12	0.4710	-0.001	-0.156	-0.039	-0.049	0.049	0.056
18	23.94	18	0.1571	-0.027	0.143	-0.139	-0.148	0.241	-0.015

• p-values < 0.05. Thus, the differenced series must be white noise.

	Augn	nented Die	ckey-Fuller	Unit F	Root Tests		
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	-77.3598	<.0001	-8.69	<.0001		
	1	-96.4143	<.0001	-6.83	<.0001		
	2	-65.5498	<.0001	-4.72	<.0001		
Single Mean	0	-77.3570	0.0008	-8.63	<.0001	37.23	0.0010
	1	-96.4089	0.0007	-6.78	<.0001	22.99	0.0010
	2	-65.4939	0.0007	-4.68	0.0003	10.99	0.0010
Trend	0	-77.6028	0.0002	-8.60	<.0001	36.94	0.0010
	1	-97.4678	0.0002	-6.76	<.0001	22.85	0.0010
	2	-67.7683	0.0002	-4.71	0.0015	11.10	0.0010

• p-values < 0.05. Thus, the differenced series must be stationary.

• All lags are within the blue band. Thus, this confirms that the series is white noise.

Co	nditional L	east Squar	es Estima	ation	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	0.0012658	0.03454	0.04	0.9709	0
	Constant I		0.00126	_	
	Std Error I	Estimate	0.30696	8	
	AIC		38.5858	7	
	SBC		40.9553	2	
	Numbero	f Residuals	7	9	

• The constant term is not significant. Thus, this model is a random walk with a stochastic trend, i.e.,

$$(1-B)Z_t = a_t$$

- Further note that AIC and SBC are slightly higher than before. Thus, in terms of AIC and SBC and in terms of intuitive appeal, the AR(1) model is preferred.
- The equation is:

$$\widehat{Z}_t = Z_{t-1}$$

		Αι	utocorrelatio	n Check	of Res	iduals			
To Lag	Chi-Square	DF	Pr > Chi Sq	Autocorrelations					
6	8.60	6	0.1972	0.008	-0.116	0.118	-0.201	-0.131	0.125
12	11.69	12	0.4710	-0.001	-0.156	-0.039	-0.049	0.049	0.056
18	23.94	18	0.1571	-0.027	0.143	-0.139	-0.148	0.241	-0.015
24	37.70	24	0.0372	-0.059	0.122	-0.214	-0.241	0.008	0.042

• Further note that the residuals are white noise.

Case 15 (Pankratz)

Quarterly exports (Exports4)

$$n = 42 \Rightarrow nlag = 12$$

 Because the time plot exhibits non-constant mean, we do differencing.

• Because all ACF lags decrease slowly, we do ordinary differencing.

- For the non-seasonal lags, lags 1-3 are significant in the ACF but are exponentially decreasing in the PACF. Thus, we first fit an ARIMA(0, 1, 3)/MA(3) model.
- PACF seasonal lags are exponentially decreasing. ACF seasonal lag is significant only at lag = 4.

		Au	tocorrelation	Check	of Res	iduals			
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	8.46	3	0.0374	-0.122	0.086	-0.147	0.342	-0.125	-0.053
12	23.41	9	0.0053	-0.067	0.290	-0.221	0.100	-0.183	0.287
18	37.31	15	0.0011	-0.344	0.031	-0.022	0.120	-0.238	-0.125
24	44.10	21	0.0023	-0.064	0.055	-0.189	0.015	-0.051	0.163

• MA1,2 is insignificant and p-values < 0.05, suggesting that the error is not white noise.

Co	Conditional Least Squares Estimation										
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag						
MU	19.99014	1.15700	17.28	<.0001	0						
MA1,1	0.68397	0.16193	4.22	0.0002	1						
MA1,2	-0.05032	0.19050	-0.26	0.7932	2						
MA1,3	0.36635	0.16254	2.25	0.0302	3						

Constant Estimate	19.99014
Variance Estimate	9748.051
Std Error Estimate	98.73222
AIC	496.7219
SBC	503.5762
Number of Residuals	41

• The seasonal lags (lags = 4, 8, 12) in the residual ACF are slowly decreasing. Thus, we employ seasonal differencing.

• At the PACF, the seasonal lag at lag = 4 is significant while at the ACF, the seasonal lags are exponentially decreasing. At the PACF, the non-seasonal lag at lag = 1 is significant while at the ACF, the non-seasonal lags are exponentially decreasing. Thus, we fit an $ARIMA(1,1,0)(0,1,1)_{12}$, i.e.,

$$(1 - \phi_1 B)(1 - B^4)(1 - B)Z_t = \theta_0 + (1 - \Theta_4 B^4)a_t$$

Conditional Least Squares Estimation										
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag					
MU	6.36142	3.36097	1.89	0.0669	0					
MA1,1	0.98379	0.10128	9.71	<.0001	4					
AR1,1	-0.29357	0.16937	-1.73	0.0921	1					

 Constant Estimate
 8.228937

 Variance Estimate
 9851.402

 Std Error Estimate
 99.25423

 AIC
 448.1015

 SBC
 452.9342

 Number of Residuals
 37

 \bullet p-value > 0.05 for AR1,1 so we can drop it in the model

 \bullet No redundancy and p-value < 0.05, indicating that the residuals are white noise.

03-19-2019

Case 6 (Pankratz)

AT&T Stock Prices (att52)

 $n = 52 \Rightarrow nlag = 13$

			ocorrelatio	276.76							
To Lag	Chi-Squa	ire D	Pr > Ch	iSq		1	lutocon	relat	ions		
6	212	15	<.0	001	0.935	0.862	0.814	0.7	48	0.684	0.62
12	278	08 1	2 <.0	001	0.553	0.493	0.442	0.3	77	0.289	0.21
		Augn	nented Dic	key-	Fuller	Unit R	oot Test	ts			
Тур	e	Lags	Rho	Pr •	Rho	Tau	Pr < Ta	su	F	Pr>	F
Zen	o Mean	0	-0.1530	0	6443	-1.45	0.13	57			
		1	-0.1640	0	.6418	-1.58	0.10	55			
		2	-0.1496	0	6449	-1.71	0.08	18			
Sin	gle Mean	0	-0.7053	0	.9078	-0.38	0.90	41	1.08	0.79	81
		1	-0.8199	0	8981	-0.45	0.89	25	1.30	0.74	48
		2	-0.1914	0	.9437	-0.13	0.94	06	1.44	0.71	06
Tre	nd	0	-19.4120	0	.0496	-3.69	0.03	22	7.08	0.03	44
		- 3	-24.8558	0	.0112	-3.65	0.03	51 (5.83	0.04	76
		2	-29.2310	0	.0029	-3.77	0.02	67	7.47	0.03	28

• The series att52 is not white noise and is non-stationary (refer to single mean and trend).

• From the time plot, the series is non-stationary in the mean but stationary in the variance. Thus, we employ (ordinary) differencing.

• The ACF plots are slowly decreasing, which again necessitates (ordinary) differencing.

• After differencing, the ACF and PACF plots suggest that the differenced series is now white noise.

• The Ljung-Box Q Statistic and the ADF (refer to zero mean, lag = 1) results support this.

	Condition	al Least Square	s Estir	nati	on	
Parameter	Estimate	Standard Erro	r t Va	lue	Approx Pr > t	Lag
MU	-0.17157	0.1201) -1	1.43	0.1593	0
	Consta	nt Estimate	-0.17	157		
	Varian	ce Estimate	0.7	356		
	Std En	or Estimate	0.857	672		
	AIC		130.0	613		
	SBC		131.9	931		
	Numbe	er of Residuals		51		

• After estimating a random walk model, the constant estimate turns out to be insignificant. Thus, the model for the series must be a random walk with a stochastic trend, given by $\widehat{Z_t} = Z_{t-1}$

Case 8 (Pankratz)

Parts Availability – Weekly (Parts52)

$$n = 90 \Rightarrow nlag = 23$$

		Aut	ocorrelatio	n Check f	or Whi	te Noise			
o Lag	Chi-Squar	e DF	Pr > Chis	q		Autocorre	elations		
6	82.6	6 6	<.000	0.370	0.421	0.466	0.374	0.359	0.258
12	98.7	1 12	< .000	0.265	0.151	0.117	0.200	0.078	0.073
18	108.3	1 18	< 000	1 -0.040	-0.049	-0.109	-0.100	-0.167	-0.177
24	155.0	7 24	< 000	1 -0.211	-0.143	-0.282	-0.264	-0.272	-0.308
		24000		Water Street	W. Car				
		Augn	nented Dic	key Fulle	Unit H	oot Tests		poore	
Ty	pe	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr>	E
Ze	ro Mean	0	0.0633	0.6951	0.21	0.746	l.		
		75	0.0251	0.6863	0.15	0.7284	E.		
		2	0.0237	0.6860	0.22	0.7486	5		
Si	ngle Mean	0	-52.6762	0.0009	-5.73	< 000	16.50	0.001	0
		1	-25.1223	0.0019	-3.34	0.0162	5.59	0.024	5
		2	-11.4208	0.0857	-2.13	0.2347	2.30	0.491	5
Tr	end	0	-58.0030	0.0003	-6.19	< .000	19.25	0.001	0
		1	-30.7007	0.0038	-3.78	0.0222	7.31	0.028	3
		2	-15 1544	0.1550	-2.56	0.2978	3.53	0.479	3

• The series Parts52 is not white noise and is stationary (refer to single mean and trend, lag = 0).

• Lags 1 to 3 are significant in the ACF plot. On the other hand, the PACF plots are exponentially decreasing. Thus, we fit an AR(3) model; i.e.,

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3) Z_t = \theta_0 + a_t$$

	Condition	al Least Square	es Estim	atio	on	
Parameter	Estimate	Standard Erro	r t Valu	ıe	Approx Pr > t	Lag
MU	82.29065	0.7178	3 114.	64	<.0001	0
AR1,1	0.15294	0.1084	8 1.4	41	0.1622	1
AR1,2	0.24234	0.1108	5 2	19	0.0315	2
AR1,3	0.34709	0.1109	4 3.	13	0.0024	3
	Consta	nt Estimate	21 2003	31		
	100.15	ce Estimate	3.98711	77.		
	Std Err	or Estimate	1.99677			
	AIC		383.793	34		
	SBC		393.792	26		
	Numbe	er of Residuals	9	90		

• All p-values are significant except for AR1,1. Thus, using the AR(3) model,

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3) Z_t = \theta_0 + a_t$$

Note that since this is a pure AR model,

$$(1 - \phi_1 - \phi_2 - \phi_3)\mu = \theta_0$$

		Correlatio	ons of I	Parame	ter Estin	nates			
		Parameter	MU	AR1,1	AR1,2	AR1,	3		
		MU	1.000	0.053	0.038	0.040	0		
		AR1,1	0.053	1.000	-0.304	-0.286	6		
		AR1,2	0.038	-0.304	1.000	-0.334	4		
		AR1,3	0.040	-0.286	-0.334	1.000	0		
		Autocorr	elation	Check	of Resid	duals			
To Lag	Chi-Square	Control Interest Co.		Check			relation	s	
To Lag 6	Chi-Square	DF Pr > 0	hiSq		А		relation 0.085	s 0.118	-0.002
To Lag 6 12		DF Pr > 0	hiSq	-0 038	А	utocom			-0.002 0.083
6	2.62	DF Pr > 0 3 0 9 0	4532 4991	-0 038 0 040	-0.061 -0.076	utocom	0.085	0.118	-

 Moreover, the parameter estimates are not significantly correlated and the residuals are white noise.

 However, from the time plot, the series is not stationary in the mean. Thus, we can employ (ordinary) differencing.

• After differencing, we note that the data is not white noise and is stationary (refer to single mean and trend, lag = 1).

The ACF plot is significant only at lag = 1 while the PACF plots are exponentially decreasing.
 Thus, we try and fit an MA(1) model.

Parameter	Estimate	Standard Erro	r t Value	Approx Pr > t	Lag
MU	0.04642	0.0590	7 0.7	0.4341	0
MA1,1	0.73359	0.0740	5 9.9	1 < 0001	- 31
	15 maria	ce Estimate or Estimate	4.138964 2.034444 380.9679		
	SBC		385.9452		
	Numbe	or of Residuals	85	1	

- All parameter estimates are significant except the constant estimate. Thus, we drop the constant term from the MA(1) model.
- Note that since this is a pure MA model,

$$\mu = \theta_0$$

		Aı	utocorrelatio	n Check	of Res	iduals				
To Lag	Chi-Square	DF	Pr > ChiSq	Sq Autocorrelations						
6	3.01	5	0.6992	-0.094	-0.009	0.121	0.042	0.069	-0.040	
12	6.96	11	0.8025	0.075	-0.049	-0.047	0.157	0.004	0.063	
18	8.75	17	0.9477	-0.073	-0.021	-0.077	-0.016	-0.061	-0.024	
24	13.11	23	0.9496	-0.034	0.134	-0.097	-0.049	-0.028	-0.071	

• After fitting the MA(1) model with no constant estimate, the residuals are now white noise.

	Condition	al Least Square	es Estimati	on	
Parameter	Estimate	Standard Erro	r t Value	Approx Pr > t	Lag
MA1,1	0.72530	0.0747	9.71	< 0001	1
	Varian	ce Estimate	4.120356		
	Std Err	or Estimate	2.029866		
	AIC		379.584		
	SBC		382.0726		
	Numbe	er of Residuals	89		

• Thus, we are left to choose between the AR(3) and MA(1) model. Given the AIC and SBC, they do not significantly differ from each other, but MA(1) has a slightly lower values for both. By parsimony, MA(1) uses less parameters. Thus, we prefer the MA(1) model.

Case 13 (Pankratz)

Cigarette Consumption – Monthly (Cigar 12)

$$n = 96 \Rightarrow nlag = 24$$

		A	utoc	orrelation	on Cl	neck fo	or Whit	te Noise				
To Lag	Chi-Squ	are	DF	Pr > Ch	ni5q		- 9	Autocorr	elatio	ns		
6	228	.77	6	<.(0001	0.721	0.629	0.575	0.522	0	625	0.587
12	414	.36	12	<.(0001	0.568	0.461	0.448	0.476	0	537	0.67
18	510	79	18	<.(0001	0.469	0.391	0.330	0.290	0	393	0.329
24	567	.38	24	<.(0001	0.316	0.224	0.193	0.218	0	270	0.373
		Au	gme	inted Di	ckey-	Fuller	Unit R	oot Test	s			
Тур	9	Lag	5	Rho	Pr 4	Rho	Tau	Pr < Tai	u .	F	Pra	F
Zero	Mean		0	-1.3653	0	4127	-0.96	0.297	7			
			1	-0.8640	0	4950	-0.85	0.344	8			
			2	-0.7365	0	5191	-0.88	0.331	3			
Sing	jle Mean		0 -	23.1770	0	0035	-3.41	0.013	1 5.8	86	0.01	88
			1 -	13.3518	0	0520	-2.33	0.164	2 2.1	32	0.36	15
			2	-9.5409	0	1400	-1.88	0.339	0 1.5	93	0.58	33
Tren	ıd	3	0 -	71.4651	0	.0003	-7.57	<.000	1 28.0	34	0.00	10
			1 -	83.4495	0	.0003	-6.56	<.000	1 21.	77	0.00	10
			2 -	135.556	. 0	0001	-6.38	<.000	1 20.5	53	0.00	10

• The series Cigar 12 is not white noise and

• The series is non-stationary in the mean. Thus, we employ (ordinary) differencing.

Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	-0.74690	0.32227	-2.32	0.0231	0
MA1,1	0.85473	0.06358	13.44	<.0001	1
MA2,1	0.72520	0.18557	3.91	0.0002	12
AR1,1	0.23239	0.22868	1.02	0.3126	12

Constant Estimate	-0.57333
Variance Estimate	1170.431
Std Error Estimate	34.21156
AIC	825.8498
SBC	835.5251
Number of Residuals	83

Conditional Least Squares Estimation									
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag				
MU	-0.70872	0.32938	-2.15	0.0344	0				
MA1,1	0.84780	0.06341	13.37	< .0001	1				
MA2,1	0.56554	0.10634	5.32	<.0001	12				

Constant Estimate	-0.70872
Variance Estimate	1176.092
Std Error Estimate	34.2942
AIC	825.2943
SBC	832.5508
Number of Residuals	83

Correlations of Parameter Estimates						
Parameter	MU	MA1,1	MA2,1			
MU	1.000	-0.154	-0.218			
MA1,1	-0.154	1.000	-0.147			
MA2,1	-0.218	-0.147	1.000			

		Αι	itocorrelation	Check	of Res	iduals			
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	9.54	4	0.0489	-0.127	0.018	0.190	-0.166	-0.040	0.159
12	20.47	10	0.0251	-0.198	0.089	0.119	-0.103	0.193	0.073
18	30.33	16	0.0163	-0.117	0.155	0.070	-0.118	0.182	0.067
24	41.69	22	0.0068	-0.082	0.154	-0.092	-0.122	0.198	-0.076

	Condition	al Least Squares	Estimati	on	
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag
MU	-0.64159	0.41380	-1.55	0.1250	0
MA1,1	0.87391	0.05790	15.09	<.0001	1
AR1,1	-0.33672	0.10990	-3.06	0.0030	12

Number of Residuals	83
SBC	838.2214
AIC	830.9649
Std Error Estimate	35.48594
Variance Estimate	1259.252
Constant Estimate	-0.85762

Correlations of Parameter Estimates						
Parameter	MU	MA1,1	AR1,1			
MU	1.000	-0.194	0.031			
MA1,1	-0.194	1.000	0.127			
AR1,1	0.031	0.127	1.000			

Autocorrelation Check of Residuals									
To Lag	Chi-Square	DF Pr > ChiSq Autocorrelations					s		
6	10.87	4	0.0281	-0.162	0.040	0.206	-0.177	-0.025	0.143
12	20.89	10	0.0219	-0.180	0.107	0.099	-0.107	0.192	-0.052
18	33.72	16	0.0059	-0.143	0.171	0.071	-0.103	0.225	0.082
24	48.77	22	0.0009	-0.063	0.157	-0.102	-0.138	0.185	-0.192

OUTLIER DETECTION

W8 (with outliers)

- There are two potential additive outliers and one temporary level shift outlier (for around 6 time points).
- From the ACF plot, we need to employ ordinary differencing.
- After ordinary differencing, the PACF plots are exponentially decreasing while the ACF plot is only significant at lag 1. Thus, we can fit an MA(1) model/ARIMA(0,1,1); i.e., (1-B)Z_t = theta_0 + (1-theta_1B)a_t
- Since there are some significant lags still, we can try to do seasonal differencing. Since the plots aren't as good as when we only did ordinary differencing, we stick to that. The significant lags may be due to outliers.
- We fit an ARIMA $(0,1,1)(1,0,1)_4$ model. We also detect outliers.
- tc(5,6,7,8) detects temporary change of 5, 6, 7 and 8 periods.
- We detected 3 outliers one temporary change of 6 periods and 2 additive outliers.
- At time 7, magnitude came up by 73.638 more than the usual
- At time 98 and the 6 time points after, magnitude came up by an average of 81.959 compared to the usual
- However, model is still not adequate because the residuals are still not white noise. Thus, we check the ACF and PAF of the residuals.
- From the ACF and PACF, since the lag at time 16 is significant, we fit a non-hierarchical model. $p = (1)(4 \ 16) \ q = (1)(4 \ 16)$
- MA(16) and AR(16) did not help with the model.
- We again employ seasonal differencing.
- From the ACF and PACF plots, we employ an ARIMA(1,1,1)(0,1,1)₄ model.
- Doing backward elimination, we remove AR(1); i.e., an ARIMA(0,1,1)(0,1,1) $_4$ model
- Only the constant estimate is insignificant. Also, the residuals are now white noise.