

Dicionário / definições

População: conjunto de todos os elementos de interesse em estudo

Amostra: subconjunto representativo da população que será estudado para tirar conclusões para a população toda

Variável: toda característica que, observada em uma unidade experimental, pode variar de uma unidade para outra

Parâmetro: medida que descreve alguma característica da população

Estimador ou estatística: medida que descreve alguma característica da amostra

População x Amostra: etapas de uma análise de dados

Para inferir (deduzir) certas características de uma população (pessoas entrevistadas, peças, repetições de um processo, etc...) deve-se trabalhar com uma amostra que seja representativa dessa população.

População Amostra Estatística descritiva Consistência dos dados Interpretações iniciais

Inferência estatística

Estimação de quantidades desconhecidas
Extrapolação dos resultados

3

Estatística descritiva

- Trata-se da organização, apresentação e descrição de um conjunto de dados (para uma ou mais variáveis);
- ✓ Os resumos descritivos podem ser organizados em tabelas, apresentados graficamente ou a partir de <u>estimadores</u> ou estatísticas de <u>parâmetros</u> da população.

Gráficos
e Tabelas

Resumos visuais

Medidas
de posição

São valores calculados que tendem a representar melhor a distribuição de um conjunto de dados em um valor central

Medidas

São medidas que indicam a dispersão dos

dados em torno de algum valor central

Classificação das variáveis

Saber classificar cada tipo de variável auxilia na busca de técnicas estatísticas mais adequadas para o resumo dos dados.

Qualitativa

Exs.: Sexo, Classe social, Qualidade da peça (boa ou defeituosa), Escolaridade, ...

Quantitativa

Exs.: Salário (R\$), № defeitos por peça, Volume (mL), Estatura (m), № filhos,...

Discreta

Ex.: Nº defeitos por peça, Nº de filhos...

Contínua

Ex.: Salário (R\$), Peso (kg), Estatura (m),...

Qualitativa: as respostas desse tipo de variável representam diferentes categorias que se distinguem por alguma característica não numérica.

<u>Quantitativa</u>: as respostas desse tipo de variável consistem em números que representam, em geral, contagem (<u>discretas</u>) ou medidas provenientes de alguma mensuração (<u>contínuas</u>).

5

Exercício: Classifique as variáveis do exemplo abaixo.

De acordo com a Organização Mundial da Saúde, o AVC é a 2ª causa de morte no mundo, responsável por aproximadamente 11% do total de mortes.

O conjunto de dados AVC é usado para prever se um paciente tem probabilidade de desenvolver AVC com base em parâmetros de entrada como sexo, idade, várias doenças e tabagismo. Cada linha nos dados fornece informações relevantes sobre o paciente.

Na <u>planilha</u> AVC do arquivo "Aula02.xlsx" são apresentadas as informações de 5110 pessoas (parte do arquivo é apresentado no quadro abaixo):

* hipertensão, doença cardíaca e avc: 0 – não e 1 - sim

id g	ender	age	hypertension*	heart_disease*	ever_married	work_type	residence_type	avg_glucose_level	bmi	smoking_status	stroke*
9046	Male	67	0	1	Yes	Private	Urban	228,69	36,6	formerly smoked	1
51676 F	emale	61	0	0	Yes	Self-employed	Rural	202,21	N/A	never smoked	1
31112	Male	80	0	1	Yes	Private	Rural	105,92	32,5	never smoked	1
60182 F	emale	49	0	0	Yes	Private	Urban	171,23	34,4	smokes	1
1665 F	emale	79	1	0	Yes	Self-employed	Rural	174,12	24	never smoked	1
						:					

Classificação das variáveis?

id	gender	age	hypertension	heart_disease	ever_married	work_type	residence_type	avg_glucose_level	bmi	smoking_status	stroke
9046	Male	67	0	1	Yes	Private	Urban	228,69	36,6	formerly smoked	1
51676	Female	61	0	0	Yes	Self-employed	Rural	202,21	N/A	never smoked	1
31112	Male	80	0	1	Yes	Private	Rural	105,92	32,5	never smoked	1
60182	Female	49	0	0	Yes	Private	Urban	171,23	34,4	smokes	1
1665	Female	79	1	0	Yes	Self-employed	Rural	174,12	24	never smoked	1
						i					
44873	Female	81	0	0	Yes	Self-employed	Urban	125,2	40	never smoked	0
19723	Female	35	0	0	Yes	Self-employed	Rural	82,99	30,6	never smoked	0
37544	Male	51	0	0	Yes	Private	Rural	166,29	25,6	formerly smoked	0
44679	Female	44	0	0	Yes	Govt_job	Urban	85,28	26,2	Unknown	0
	$\overline{}$				$\overline{}$				$\searrow \hspace{0.5cm} \searrow$	$\smile \smile$	\searrow
?	?	?	?	?	?	?	?	?	?	?	?

7

Classificação das variáveis

Para cada cada tipo de variável existem técnicas estatísticas mais adequadas para o resumo dos dados.

Qualitativa

Exs.: Sexo, Classe social, Qualidade da peça (boa ou defeituosa), Escolaridade, ...

Quantitativa

Exs.: Salário (R\$), № defeitos por peça, Volume (mL), Estatura (m), № filhos,...

Resumos estatísticos que podem ser feitos

- ✓ tabelas com a frequência absoluta de cada categoria
- ✓ tabelas com a frequência relativa (%) de cada categoria
- ✓ construir gráficos de pizza, coluna, barras, ...

Resumos estatísticos que podem ser feitos

- ✓ cálculo de medidas de posição (ou de localização)
- ✓ cálculo de medidas de dispersão (ou variabilidade)
- ✓ construir gráficos: boxplot, histograma, linha, dispersão, ...

Medidas de posição

Estatísticas que tendem a representar melhor a distribuição dos dados de uma variável X em um único valor central. Fornecem uma ideia do "centro de gravidade" dos dados.

✓ Média da amostra (\overline{x})

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

x_i : valor da i-ésima observação da variável X n : tamanho da amostra

✓ Mediana (Md)

É o valor que ocupa a posição central quando os dados estão ordenados

$$Md = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, \text{ se n for impar} \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n+2}{2}\right)}}{2}, \text{ se n for par} \end{cases}$$

$$x_{(1)} \leq x_{(2)} \leq x_{(3)} \leq x_{(4)} \leq x_{(5)} \leq \ldots \leq x_{(n)}$$
 menor valor da variável X maior valor da variável X

✓ Moda (Mo)

É o valor (ou valores) de maior frequência na amostra (OBS.: não tão usada na prática)

Medidas de dispersão (ou variabilidade)

São medidas que indicam a dispersão dos dados em torno de algum valor

Variância amostral (s²)

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1} = \frac{1}{n - 1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \right]$$

Desvio padrão (s)

O desvio padrão é definido pela raiz quadrada positiva da variância: $\left|s=\sqrt{s^2}\right|$

$$s = \sqrt{s^2}$$

Coeficiente de variação (CV_%)

Indica a dispersão de um conjunto de dados em relação à sua média

Não existe um consenso, mas na prática, uma variável com CV_% superior a 30% (ou 40%) é considerada como tendo alta variabilidade

$$CV_{\%} = \frac{s}{\overline{x}} \cdot 100$$

Exercício. Excel: Dados → Análise de dados

De acordo com a Organização Mundial da Saúde, o AVC é a 2ª causa de morte no mundo, responsável por aproximadamente 11% do total de mortes.

O conjunto de dados AVC é usado para prever se um paciente tem probabilidade de desenvolver AVC com base em parâmetros de entrada como sexo, idade, várias doenças e tabagismo. Cada linha nos dados fornece informações relevantes sobre o paciente.

Na planilha AVC do arquivo "Aula02.xlsx" são apresentadas as informações de 5110 pessoas.

- a) Calcule resumos numéricos univariados usando a ferramenta de Análise de Dados do Excel.
- b) Quais são os prós e contras dessa ferramenta?

13

Média x Mediana

Na <u>planilha</u> bônus do arquivo "Aula02.xlsx" são apresentados quatro cenários (A, B, C e D) de valores de bônus de Natal pagos a uma amostra de estagiários. Calcule a média e mediana da variável "bônus de final de ano de estagiário" e compare os resultados dessas duas medidas de posição para cada cenário.

Por que medir a variabilidade de uma variável?

Na <u>planilha</u> bônus do arquivo "Aula02.xlsx" são apresentados quatro cenários (A, B, C e D) de valores de bônus de Natal pagos a uma amostra de estagiários. Calcule o desvio padrão e o coeficiente de variação e avalie em quais situações a variabilidade dos dados é maior.

OBSERVAÇÕES

- Com as fórmulas acima, obtemos a variância e o desvio padrão amostrais de uma variável de interesse;
- O Excel oferece calcular a variância e o desvio padrão populacionais (var.p e desvpad.p, respectivamente). Na prática, não são muito utilizadas;
- Não existe uma fórmula pronta no Excel para calcular o CV.

15

Média e Mediana com Distribuição de Frequências

Quando os dados estão dispostos em uma tabela de frequências com k classes, calcula-se a média amostral pela expressão

$$\overline{x} = \frac{\sum_{i=1}^{k} x_i f_i}{n}$$

não tem fórmula pronta no Excel!!!

	Número de defeitos	Freqüência
(0	13
	1	11
3	2	6
\ \ \ \ \	3	8
5	4	6
	5	1
	6	2

Exercício. Uma amostra de 50 peças foi selecionada pelo controle de qualidade de uma empresa. A variável X de interesse é o número de defeitos por peça. Em média, quantos defeitos por peça há nessa amostra?

 $\bar{x} \cong 1.9$ defeitos

Pense em como calcular a mediana nesse caso. Quanto ela vale?

Md = 2 defeitos

Variância e DP com uma Distribuição de Frequências

	Número de defeitos	Freqüência
	0	13
	1	11
	2	9
\prec	3	8
	4	6
	5	1
	6	2

Exercício. Uma amostra de 50 peças foi selecionada pelo controle de qualidade de uma empresa. A variável X de interesse é o número de defeitos por peça. Quanto vale o desvio padrão de Χ?

 $s \cong 1.7$ defeitos

17

Distribuição de Frequências com Dados Agrupados

Quando os dados estão dispostos em uma tabela de frequências com k classes, porém com valores agrupados, utiliza-se as mesmas expressões apresentadas nos dois *slides* anteriores.

Rendimento Freqüência mensal (%) 0.60 - 0.704 0.70 -0.802 4 0.80 -0.90-1.00

da amostra agora?

Exercício Uma amostra do rendimentos mensais de certa aplicação financeira foi selecionada e os dados foram apresentados consolidados numa tabela de frequência agrupada. Quais os valores da média e do desvio padrão do retorno financeiro? Calcule.

$$\bar{x} \cong 0.783 \%$$

 $s^2 \cong 0.013 \%^2 \implies s \cong 0.115 \%$

Leitura e exercícios recomendados

Fazer eventuais exercícios não finalizados na aula

Cap. 1

Seção 1.1 a 1.5 e seus respectivos exercícios

Cap. 1 e Cap. 6

Seção 6.1 e seus respectivos exercícios

