Optimizarea funcțiilor de pierdere. Algoritmul coborârii pe gradient.

Prof. Dr. Radu Ionescu raducu.ionescu@gmail.com Facultatea de Matematică și Informatică Universitatea din București

Clasificator liniar pentru mai multe clase

Pentru 3 exemple de antrenare, 3 clase, și ponderile W, obținem scorurile: f(x, W) = Wx

pisica	3.Z	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (x_i, y_i) unde x_i este vectorul de trăsături și y_i este eticheta asociată (întreg), notând vectorul de scoruri cu: $s = f(x_i, W)$ funcția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Pentru 3 exemple de antrenare, 3 clase, și ponderile W, obținem scorurile: f(x, W) = Wx

Pierderile:

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (x_i, y_i) unde x_i este vectorul de trăsături și y_i este eticheta asociată (întreg), notând vectorul de scoruri cu: $s = f(x_i, W)$ funcția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

=
$$max(0, 5.1 - 3.2 + 1)$$

+ $max(0, -1.7 - 3.2 + 1)$
= $max(0, 2.9) + max(0, -3.9)$
= 2.9 + 0

Pentru 3 exemple de antrenare, 3 clase, si ponderile W, obținem scorurile: f(x, W) = Wx

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1
Pierderile:	2.9	0	

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (x_i, y_i) unde x_i este vectorul de trăsături și y_i este eticheta asociată (întreg), notând vectorul de scoruri cu: $s = f(x_i, W)$ funcția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

=
$$max(0, 1.3 - 4.9 + 1)$$

+ $max(0, 2.0 - 4.9 + 1)$
= $max(0, -2.6) + max(0, -1.9)$
= $0 + 0$

Pentru 3 exemple de antrenare, 3 clase, si ponderile W, obținem scorurile: f(x, W) = Wx

pisică	3.2	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1
Pierderile:	2.9	0	12.9

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (x_i, y_i) unde x_i este vectorul de trăsături și y_i este eticheta asociată (întreg), notând vectorul de scoruri cu: $s = f(x_i, W)$ funcția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1) + \max(0, 2.5 - (-3.1) + 1) = \max(0, 6.3) + \max(0, 6.6)$$

$$= 6.3 + 6.6$$

= 12.9

Pentru 3 exemple de antrenare, 3 clase, și ponderile W, obținem scorurile: f(x, W) = Wx

Pierderile:

pisica	3.Z	1.3	2.2
maşină	5.1	4.9	2.5
broască	-1.7	2.0	-3.1
		_	

Funcția de pierdere pentru SVM multi-clasă:

Fiind dat un exemplu (x_i, y_i) unde x_i este vectorul de trăsături și y_i este eticheta asociată (întreg), notând vectorul de scoruri cu: $s = f(x_i, W)$ funcția de pierdere a clasificatorului SVM are forma:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L = (2.9 + 0 + 12.9)/3$$
$$= 5.27$$

Clasificatorul Softmax (Regresia Logistică Multinomială)

scoruri = log-probabilitățile nenormalizate ale claselor

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 unde $egin{aligned} oldsymbol{s}=f(x_i;W) \end{aligned}$

Vrem să maximizăm the log-probabilitatea, sau (pentru o funcție de pierdere) să mir representatea pierdere) să mir representatea pierdere probabilitatea negativă a clasei corecte:

$$L_i = -\log P(Y = y_i | X = x_i)$$

În concluzie:
$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

pisică 3.2

maşină 5.1

broască -1.7

Clasificatorul Softmax (Regresia Logistică Multinomială)

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

probabilități nenormalizate

Q: Care sunt valorile minime/maxime pe care le poate avea funcție de pierdere L_i?

log-probabilități nenormalizate

probabilități

Clasificatorul Softmax (Regresia Logistică Multinomială)

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Presupunem scorurile: [10, -2, 3] [10, 9, 9] [10, -100, -100] si $u_i = 0$

Q: Dacă perturbăm vectorul de trăsături cu valori mici (schimbând scorurile rezultate), ce se întâmplă cu funcția de pierdere în cele două cazuri?

Optimizarea funcțiilor de pierdere

Până acum avem:

- O mulţime de perechi (x,y)
 - O funcție de atribuire a scorului: s=f(x;W)=Wx
- O funcție de pierdere:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Cu regularizare

Algoritm: Coborârea pe gradient

Algoritm: Coborârea pe gradient

Într-o singură dimensiune, derivata unei funcții este:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

În mai multe dimensiuni, **gradientul** este un vector cu derivate parțiale.

W actual:	W + h (dim 1):	gradientul dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?

W actual:	W + h (dim 2):	gradientul dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[-2.5, ?, ?, ?, ?, ?, ?, ?,

Evaluarea gradientului

1) Metoda numerică Alegem un h pozitiv aproape de 0 și folosim formula:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- Obţinem o valoare aproximativă
- Foarte încet de calculat
- 2) Metoda analitică Folosim analiza numerică pentru a determina formula gradientului în funcție X și W

Evaluarea gradientului (Python)

```
def f(x):
  y = 0.5 * (x**4) - 2 * (x**2) + x + 5
  return y
# 1) Metoda numerică
h = 0.001
gradient = (f(x + h) - f(x)) / h
# 2) Metoda analitică
def f prime(x):
  y prime = 2 * (x**3) - 4 * x + 1
  return y prime
gradient = f prime(x)
```

W actual: gradientul dW: [0.34,[-2.5,-1.11, 0.6, 0.78, dW = ...0, 0.12, (o funcție de x și W) 0.2, 0.55, 0.7, 2.81, -0.5, -3.1, 1.1, -1.5, 1.3, 0.33,...-2.1,...] loss 1.25347

În concluzie:

=>

- Gradientul numeric: aproximativ, încet, ușor de scris
- Gradientul analitic: exact, rapid, înclinat spre greșeli

În practică: Folosim întotdeauna gradientul analitic, dar verificăm implementarea cu gradientul numeric. Acest proces se numește verificarea gradientului (gradient checking)

Algorimtul coborârii pe gradient (Python)

```
def GD(W0, X, goal, learningRate):
 perfGoalNotMet = true
 W = W0
 while perfGoalNotMet:
   gradient = eval_gradient(X, W)
   W \text{ old} = W
   W = W - learningRate * gradient
   perfGoalNotMet = sum(abs(W - W old)) > goal
```


direcția negativă a gradientului

Coborârea pe gradient cu mini-batch

Utilizăm doar o mică parte a mulțimii de antrenare pentru a calcula gradientul:

. . .

while perfGoalNotMet:

```
X_batch = select_random_subsample(X)
gradient = eval_gradient(@loss, X_batch, W)
. . .
```

Mărimea mini-batch-ului este de obicei formată din 64/128/256 exemple e.g. AlexNet (Krizhevsky ILSVRC ConvNet) folosește 256 exemple

Exemplu de progres al optimizării în timpul antrenării unei rețele neuronale.

(Funcția de pierdere calculată pe mini-batch-uri scade în timp)

Varietatea intra-clasă

Poziția camerei

Iluminare

Deformare

Ocluzie

Background confuz

Variație intra-clasă

Similaritatea inter-clasă

De la extragere "manuală" către învățare

vector ce descrie statistici despre imagine, e.g. baq-of-visual-words

Privim algoritmul ca un graf computațional

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$ $y = 5$

vrem:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

q = x + y

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

q = x + y

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

vrem:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

q = x + y

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

vrem: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem:

Regula de înlănțuire:

$$\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

vrem:

Regula de înlănțuire:

$$\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

 ∂x

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned} \qquad egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

funcția sigmoidă

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = \left(1-\sigma(x)\right)\sigma(x)$$

Tipare ce apar în propagarea înapoi a gradientului

Poartă add: distribuie gradientul

Poartă max: rutează gradientul

Poartă ori: comută gradientul

Atunci când se ramifică, gradienții se adună

Propagare înainte/înapoi pentru poarta ori (Python)

Gradienții pentru cod vectorial

Operații vectoriale

$$\frac{\partial L}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial L}{\partial f}$$

matricea Jacobiană

Vector de input 4096-dimensional f(x) = max(0,x)(pe componente)

Q: care este mărimea matricii Jacobiene? [4096 x 4096] Vector de output 4096-dimensional

Operații vectoriale

În practică procesăm un întreg mini-batch (e.g. 100) de exemple la un pas:

Vector de input 4096-dimensional f(x) = max(0,x)(pe componente) Vector de output 4096-dimensional

Astfel, matricea Jacobiană ar avea [409,600 x 409,600] elemente

Până acum...

- Rețelele neuronale vor fi foarte mari: nici o speranță să scriem formula de mână pentru toți parameterii (folosim gradientul analitic)
- Backpropagare = aplicarea recursivă a regulii de înlănţuire (chain rule) de-a lungul unui graf computaţional pentru calcularea gradienţilor parametrilor / intrărilor
- Implementările menţin o structură de graf în care nodurile implementează funcţiile forward() / backward()
- forward: calculează rezultatul unei operații și salvează în memorie intrările / rezultatele intermediare necesare la calcularea gradientului
- backward: aplicarea regulii de înlănţuire pentru calcularea gradientului funcţiei de pierdere în raport cu intrările

Rețele neuronale: din punct de vedere matematic

(Înainte) Funcție liniară de scoring: f=Wx

(**Acum**) Rețea neuronală cu 2 nivele: $f = W_2 \max(0, W_1 x)$

Rețele neuronale: fără paralela cu neurologia

(Înainte) Funcție liniară de scoring: f=Wx

(**Acum**) Rețea neuronală cu 2 nivele: $f = W_2 \max(0, W_1 x)$

sau cu 3 nivele:

 $f=W_3\max(0,W_2\max(0,W_1x))$

Antrenarea unei rețele cu două niveluri necesită ~11 linii de cod (Python)

```
X = \text{np.array}([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
Y = np.array([[0,1,1,0]]).T
W0 = 2 * np.random.random((3,4)) - 1
W1 = 2 * np.random.random((4,1)) - 1
for i in range(5000):
  # forward pass
  I1 = 1 / (1 + np.exp(-np.matmul(X, W0)))
  12 = 1 / (1 + np.exp(-np.matmul(11, W1)))
  # backward pass
  delta I2 = (Y - I2) * (I2 * (1 - I2))
  delta I1 = np.matmul(delta I2, W1.T) * (I1 * (1 - I1))
  # gradient descent
  W1 = W1 + np.matmul(I1.T, delta I2)
  W0 = W0 + np.matmul(X.T, delta 11)
```

Arhitectura rețelei cu două niveluri implementată anterior

