

KLASIFIKACIJA SLIKA VOĆA - CNN, SVM, KNN

SAVA KATIĆ, SW25-2016

Problem

Klasifikacija slika predstavlja odredjivanje pripadnosti slika srodnim grupama na osnovu njihovih osobina.

Fruits 360 dataset nad kojim se radilo sadrži preko 75 hiljada slika i preko 100 klasa. U ovoj implementaciji dataset je smanjen na 15 klasa kako bi se izbegla prevelika zahtevnost izvršavanja i učitavanja. Sve slike su veličine 100x100.

Zadatak je, uz što veću tačnost odrediti kojoj klasi određena slika pripada, odnosno koje voće se na slici nalazi.

Naziv skupa	Zastupljenost
Trening skup	75%
Validacioni skup	15%
Test skup	10%

Pristupi

K Nearest Neighbors (kNN)

Support Vector Machine (SVM)

3. Konvolutivna neuronska mreža (CNN)

Rezultat

Pristup	Tačnost	Vreme	
kNN	95.96%	431s	
SVM	99.69%	153s	
CNN (jednostavan)	98.81%	43s * 8	
CNN (slozeniji)	99.60%	150s	
CNN augmentacija	99.01%	678s * 6	

Možemo zaključiti da za smanjeni dataset najbolje rezultate postižu SVM i složeniji CNN.

Kada bi se radilo nad celim dataset-om SVM ne uspeva da konvergira, dok CNN zadržava tačnost, ali mu je, naravno, potrebno znatno više vremena da istrenira mrežu.

Pokušano je i menjanje boja u HSV, ali to nije poboljšalo rezultat na bilo koji način.

Slike su u nekim pristupima smanjivane na 32x32 ili 64x64 jer brže dolazimo do konvergencije a ne gubimo tačnost.

Treniranje mreža je plotovano na sledeći način, kako bi se utvrdio željeni broj epoha:

