North South University

Programming Assignment 1

Submitted by:

Arka Karmoker

ID: 2112343642

Course: CSE425

Section: 1

Submitted to:

Dr. Md Shahriar Karim [MSK1]

Department of Electrical and Computer Engineering (ECE)

North South University

Date of submission: 23/02/2025

Question 1

Code:

```
#include <stdio.h>
// Global variable
int x = 10;
// Function prototypes
void outer();
void inner();
void inner() {
   // Inner function uses the nearest variable 'x' (which is
global in this case)
   printf("Inside inner(), x = %d\n", x);
}
void outer() {
    int x = 20; // Local variable inside outer()
   printf("Inside outer(), x = %d\n", x);
    inner(); // Call inner() function, which uses the global x due
to static scoping
int main() {
    outer(); // Call outer() function
   printf("Inside main(), x = %d\n", x); // Uses global x
   return 0;
}
// Output:
// Inside outer(), x = 20
// Inside inner(), x = 10
// Inside main(), x = 10
```

Question 2

Control Structures in C

Control structures in C determine the flow of execution of a program. They help in decision-making, looping, and branching, enabling efficient program control. C has three main types of control structures:

- 1. **Sequential Control** Executes statements one after another.
- 2. **Selection (Decision-Making) Control** Executes different code blocks based on conditions (e.g., if, switch).
- 3. **Iteration (Looping) Control** Repeats code blocks until a condition is met (e.g., for, while, do-while).

Syntax of Six Control Statements in C

1. if Statement:

```
if (condition) {
    // Code to execute if condition is true
}

Example:
#include <stdio.h>

int main() {
    int num = 10;

    if (num > 5) {
        printf("Number is greater than 5.\n");
    }

    return 0;
}
Output:
```

2. if-else Statement:

```
if (condition) {
    // Code if condition is true
} else {
    // Code if condition is false
}
```

Number is greater than 5.

Example:

#include <stdio.h>

```
int main() {
  int num = 3;

if (num > 5) {
    printf("Number is greater than 5.\n");
} else {
```

```
printf("Number is not greater than 5.\n");
       }
     return 0;
  }
  Output:
  Number is not greater than 5.
3. switch Statement:
  switch (expression) {
      case value1:
           // Code to execute
           break;
       case value2:
           // Code to execute
          break;
      default:
          // Code if no cases match
   }
  Example:
  #include <stdio.h>
  int main() {
      int day = 2;
      switch (day) {
           case 1:
               printf("Monday\n");
               break;
           case 2:
               printf("Tuesday\n");
               break;
           default:
               printf("Invalid day\n");
       }
     return 0;
  }
  Output:
  Tuesday
4. for Loop:
  for (initialization; condition; update) {
```

```
// Code to execute in each iteration
  }
  Example:
  #include <stdio.h>
  int main() {
      for (int i = 1; i <= 3; i++) {
          printf("Iteration %d\n", i);
     return 0;
  }
  Output:
  Iteration 1
  Iteration 2
  Iteration 3
5. while Loop:
  while (condition) {
     // Code executes as long as condition is true
  Example:
  #include <stdio.h>
  int main() {
      int count = 1;
      while (count <= 3) {</pre>
          printf("Count: %d\n", count);
           count++;
      }
     return 0;
  }
  Output:
  Count: 1
  Count: 2
  Count: 3
6. do-while Loop:
  do {
      // Code executes at least once
```

```
While (condition);

Example:
#include <stdio.h>

int main() {
    int count = 1;

    do {
        printf("Count: %d\n", count);
        count++;
    } while (count <= 3);

    return 0;
}

Output:
Count: 1
Count: 2
Count: 3</pre>
```

These control structures are fundamental to controlling the execution flow in C programs, ensuring efficient and logical execution.

Question 3

Code:

```
#include <stdio.h>
#include <math.h>
#define ROWS 5 // Minimum 5x5 matrix
#define COLS 5
#define FILE NAME "circle data.txt"
// Function to calculate area and perimeter
void calculateCircle(float radius, float *area, float *perimeter)
{
  // Perimeter = 2\pi r
}
int main() {
  int radii[ROWS][COLS];
                            // 2D array to store radius
values
  calculated areas
```

```
calculated perimeters
   FILE *file = fopen(FILE NAME, "w");
   if (file == NULL) {
       printf("Error opening file!\n");
       return 1;
    }
    // Writing column headers with fixed spacing
    fprintf(file, "%-10s %-10s %-15s %-15s\n", "Serial No.",
"Radius", "Area", "Perimeter");
   printf("Enter %d radius values (for a %dx%d matrix):\n", ROWS
* COLS, ROWS, COLS);
   // Taking user inputs and storing in a 2D array
   int serialNo = 1;
    for (int i = 0; i < ROWS; i++) {
       for (int j = 0; j < COLS; j++) {
           printf("Enter radius for [%d][%d]: ", i, j);
           scanf("%d", &radii[i][j]);
           // Calculate area and perimeter
           calculateCircle(radii[i][j], &areas[i][j],
&perimeters[i][j]);
           // Writing results to file with proper formatting
           fprintf(file, "%-10d %-10d %-15.2f %-15.2f\n",
serialNo++, radii[i][j], areas[i][j], perimeters[i][j]);
    }
   fclose(file);
   // Printing the 2D array of radii and areas
   printf("\nStored Radius and Calculated Area Matrix:\n");
   for (int i = 0; i < ROWS; i++) {
       for (int j = 0; j < COLS; j++) {
           printf("%-10d (%.2f)\t", radii[i][j], areas[i][j]);
       printf("\n");
    }
   printf("\nStored Radius and Calculated Perimeter Matrix:\n");
    for (int i = 0; i < ROWS; i++) {
       for (int j = 0; j < COLS; j++) {
```

```
printf("%-10d (%.2f)\t", radii[i][j],
perimeters[i][j]);
       printf("\n");
    }
    printf("\nResults have been saved to '%s'.\n", FILE NAME);
   return 0;
}
// Output:
/*
Enter 25 radius values (for a 5x5 matrix):
Enter radius for [0][0]: 3
Enter radius for [0][1]: 5
Enter radius for [0][2]: 7
Enter radius for [0][3]: 10
Enter radius for [0][4]: 12
Enter radius for [1][0]: 15
Enter radius for [1][1]: 18
Enter radius for [1][2]: 20
Enter radius for [1][3]: 25
Enter radius for [1][4]: 30
Enter radius for [2][0]: 35
Enter radius for [2][1]: 40
Enter radius for [2][2]: 45
Enter radius for [2][3]: 50
Enter radius for [2][4]: 55
Enter radius for [3][0]: 60
Enter radius for [3][1]: 65
Enter radius for [3][2]: 70
Enter radius for [3][3]: 75
Enter radius for [3][4]: 80
Enter radius for [4][0]: 85
Enter radius for [4][1]: 90
Enter radius for [4][2]: 95
Enter radius for [4][3]: 100
Enter radius for [4][4]: 105
Stored Radius and Calculated Area Matrix:
          (28.27)
                      5
                                  (78.54)
(153.94) 10
                                  12
                                               (452.39)
                   (314.16)
```

	(706.86) 25				
	(3848.45)		(5026.55) 55		
	(11309.73) 75				
	(22698.01) 100				
3	ius and Calcu (18.85) (62.83)	5		7	(43.98)
15 (125.66)	(94.25) 25		(113.10) 30		
35 (282.74)	(219.91) 50		(251.33) 55		
60 (439.82)	(376.99) 75		(408.41) 80		
	(534.07) 100				

Results have been saved to 'circle_data.txt'.

Process returned 0 (0x0) execution time : 64.668 s Press any key to continue.

*/

/*
Circle_data.txt:

Serial	No.	Radius	Area	Perimeter
1		3	28.27	18.85
2		5	78.54	31.42
3		7	153.94	43.98
4		10	314.16	62.83
5		12	452.39	75.40
6		15	706.86	94.25
7		18	1017.88	113.10

8	20	1256.64	125.66	
9	25	1963.50	157.08	
10	30	2827.43	188.50	
11	35	3848.45	219.91	
12	40	5026.55	251.33	
13	45	6361.73	282.74	
14	50	7853.98	314.16	
15	55	9503.32	345.58	
16	60	11309.73	376.99	
17	65	13273.23	408.41	
18	70	15393.80	439.82	
19	75	17671.46	471.24	
20	80	20106.19	502.65	
21	85	22698.01	534.07	
22	90	25446.90	565.49	
23	95	28352.87	596.90	
24	100	31415.93	628.32	
25	105	34636.06	659.73	
+ /				