$$P 24. D_4 = \langle r, s | r'' = s^2 = (rs)^2 = 4 \rangle$$

$$= \{ 1, r, r^2, r^3, s, rs, r^2s, r^3s \}$$

$$(sr^3 sr^3 sr^3)$$

$$(l) D_4 = \{ 4 \} \cup \{ r, r^3 \} \cup \{ r^2 \} \cup \{ s, r^2s \} \cup \{ rs, r^3s \}$$

$$=: [4] \cup [r] \cup [r] \cup [s] \cup [rs]$$

$$C_1 = 1$$
; $C_2 = r + r^3$; $C_3 = r^2$; $C_4 = g + r^2 g$; $C_5 = r g + r^3 g$

(2)	•	• •	<u>C</u>	Cz	Cı	C+	C.2
• •	•	د د ا	Ċ,	. C2	٠ ح٢	Ch	· · · cs ·
• •	•	. c ₂		20,+24,	C2	2 C5	2C4
• •	•	C	• •	• • •	٠ ٥،٠	· C4 ·	· Cs·
	•	Ch				20,+20,	202
	•	. C5					C5 2C2 2C1+2C3

$$L = \begin{cases} y' & y^2 & y^3 & y' & y'' \\ 2y^2 & y'+y^2 & 2y^2 & 2y^5 & 2y'' \\ y^3 & y^2 & y' & y'' & y'' & y'' \\ 2y^4 & 2y^5 & 2y'' & y'+y' & 2y^2 \\ 2y^5 & 2y'' & 2y'' & 2y'' & y'+y' & y'' &$$

$$\lambda_{a} = y' - 2y^{3} - 2y^{4} - 2y^{5}$$

$$\lambda_{b} = y' + 2y^{2} + y^{3} - 2y^{4} - 2y^{5}$$

$$M_{c} = 2$$

$$\lambda_{c} = y' - 2y^{2} + y^{3} + 2y^{4} - 2y^{5}$$

$$M_{i} = 1$$

$$\lambda_{d} = y' - 2y^{2} + y^{3} - 2y^{4} + 2y^{5}$$

$$M_{i} = 2$$

$$\lambda_{e} = y' + 2y^{2} + y^{3} + 2y^{6} + 2y^{5}$$

$$M_{5} = 2$$

$$\lambda_{\mu} = \frac{1}{n_{\mu}} \frac{1}{1} m_i \chi_{\mu}(CCJ) y^i = 0$$

$$\chi_{\alpha} = n_{\alpha} \left(1, 0, 0, -1, -1, 0, 0 \right)$$

$$\chi_b = \eta_b \left(1, 1, 1, -1, -1 \right)$$

$$\chi_{c} = N_{c}(1, -1, -1, 1, -1, 1)$$
 $\chi_{d} = N_{d}(1, -1, 1, -1, 1)$

$$n_{\mu} = \left[\frac{(Q)}{\sum_{i=1}^{2} m_{i} \left(\frac{X_{\mu}(C_{Ci})}{n_{\mu}} \right)^{2}} \right]^{2} \implies n_{\alpha} = 2$$

$$n_{b} = n_{c} = n_{d} = n_{e} = 1$$

identify
$$[\Gamma] = C_4D$$
, $[\Gamma^2] = C_2(b)$, $[SJ = C_2']$, $[FSJ = C_2']$

We recover the character table,

			Ch	arac	cter 1	table for po	int gro	up D ₄
D ₄	Е	2C ₄ (z)	C ₂ (z)	2C'2	2C"2	linear functions, rotations	quadratic functions	cubic functions
A_1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}, z^{2}$	-
A ₂	+1	+1	+1	-1	-1	z, R _z	-	z^3 , $z(x^2+y^2)$
B ₁	+1	-1	+1	+1	-1	-	x ² -y ²	xyz
B ₂	+1	-1	+1	-1	+1	-	xy	$z(x^2-y^2)$
Е	+2	0	-2	0	0	(x, y) (R _x , R _y)	(xz, yz)	$(xz^2, yz^2) (xy^2, x^2y) (x^3, y^3)$

http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=304&option=4

