ENR-325/325L Principles of Digital Electronics and Laboratory

Xiang Li Fall 2025

Hamming codes can be done in the EE way

Before that, we need to acquire some basic skillsets.

Pre-step: Data forms

Step 1: Data manipulation

Step 2: Information storage

Step 3: Interface

3.1 Information flow

3.2 Physical contacts (better stuff to talk about in PCB designs)

Understanding SR latch with truth table and timing diagram

SR latch

SR latch truth table

	Output (Q)	R	S
(HOLD)	Previous State	0	0
	0	1	0
	1	0	1
	0 (Invalid)	1	1

SR Latch Timing Diagram (NOR Gates)

A latch with a "single" input

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

D latch truth table

D	Е	Output (Q)
X	0	Previous State
0	1	0
1	1	1

A gated D latch

A latch with a "single" input

A gated D latch

Also known as: D latch/data latch

Gated D latch

A clocked D latch

Timing diagram code:

Rising edge-triggered flip flops: synchronizing (timed trigger) achieved

Also known as: Master-slave D type flip flop

Rising edge-triggered flip flops: synchronizing (timed trigger) achieved

Falling edge-triggered flip flops: synchronizing (timed trigger) achieved

Also known as: Master-slave D type flip flop

Timing diagram is in HW#7.

One more application with D flip-flops

So, this is a (4 bit) shift register

- Serial In (SI), Serial Out (SO)
- How about SIPO, PISO, and PIPO?

Dynamic discipline: handling the interface between logics and time

- A clock signal (with its edges if it's a flip-flop) to define transitions.
- Stable inputs during that transition window. (So, some setup time t_{su} and some hold time t_h)
- Thus, guaranteed viable output other than its own switching delays.

Dynamic discipline: handling the interface between logics and time

• Unlike propagation delay (t_{pd}) and contamination delay (t_{cd}) , the setup time t_{su} and some hold time t_{h} are intentional.

So, the final time constraint for sequential logics is:

Minimum clock period: $T_c \geq \Sigma t_{pd} + t_{su}$

Minimum delay constraint: $\Sigma t_{cd} \geq t_h$

Dynamic discipline:

Timing Requirements (Over Recommended Operating Free-air Temperature Range (unless otherwise noted)) (see Figure 2)

			SN54LVTH16646			S	N74LV				
		V _{cc} = : ± 0.3	And the second s	V _{cc} = 2.7 V		V _{cc} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			150		150		150		150	MHz
t _w	Pulse duration, CLK high or low		3.3		3.3		3.3		3.3		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	Data high	1.2		1.5		1.2		1.5		ne
		Data low	2		2.8		2		2.8		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	Data high	0.5		0		0.5		0		ns
		Data low	0.5		0.5	_	0.5		0.5		115

Figure 14. Example Timing-Requirements Section

