

CSC3100 Data Structures Lecture 8: Tree, binary tree, binary search tree

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- In this lecture, we will learn
 - Basic concept of trees
 - Binary tree
 - Binary search tree search in O(logN) average time

Tree Definition

- A tree is a finite set of one or more nodes such that
 - Each node stores an element
 - There is a specially node called the root
 - The remaining nodes are partitioned into $n \geq 0$ disjoint sets T_1, \ldots, T_n where each of these sets is a tree
 - We call T_1, \dots, T_n the subtrees of the root

- A tree with N nodes has one root, and N-1 edges
- Every node in the tree is the root of some subtree (recursive definition)

Parent

 Node A is the parent of node B if B is the root of the left or right sub-tree of A

Left (Right) Child

Node B is the left (right) child of node A if A is the parent of B

Sibling

Node B and node C are siblings if they have the same parent

Leaf

A node is called a leaf if it has no children

Definitions

- A path from node n₁ to n_k
 - A sequence of nodes n_1 , n_2 , ..., n_k such that n_i is the parent of n_{i+1} for $1 \le i < k$
- Length of a path
 - The length of this path is the number of edges on the path, namely k-1
 - Notice that in a tree, there is exactly one path from the root to each node

Definitions

- Depth of a node n_i
 - is the length of the unique path from the root to n;
 - the root is at depth 0
- Height of a node n_i
 - The height of n_i is the length of the longest path from n_i to a leaf
 - All leaves are at height 0

Note 1: The height of a tree is equal to the height of the root.

Note 2: The depth of a tree = the depth of the deepest leaf.

Applications - Unix file system

- A binary tree is a tree
 - in which no node can have more than two children (subtrees): T_L and T_R , both of which could possibly be empty

- Full binary tree
 - A binary tree where all the nodes have either two or no children
- Complete binary tree
 - A binary tree where all the levels are completely filled except possibly the lowest one, which is filled from the left

Binary Tree ADT

Operations:

- Create(bintree): creates an empty binary tree
- Boolean IsEmpty(bintree): if bintree is empty return TRUE else FALSE
- MakeBT(bintree1, element, bintree2): return a binary tree whose left subtree is bintree1 and right subtree is bintree2, and whose root node contains the data element
- Lchild(bintree): if bintree is empty return error else return the left subtree of bintree
- Rchild(bintree): if bintree is empty return error else return the right subtree of bintree
- Data(bintree): if bintree is empty return error else return the element data stored in the root node of bintree

Binary Tree Design

Two solutions

- Using pointers
 - More intuitive solution
 - We will see the pseudo-code

Array

- Need more complicated design, and cannot efficiently handle all operations (thus will omit its implementations for each operation)
- Will be used for heap, a special type of complete binary tree

Binary Tree Design

Using pointers

- For each node node, we maintain
 - node.parent: store the address its parent,
 - node.leftchild: store the address of its left child,
 - node.rightchild: store the address of its right child
 - node.element: store the values

Binary Tree: Pointer Implementation

Create(bintree)

```
Algorithm: create(bintree)

1 bintree = NULL
```

isEmpty(bintree)

```
Algorithm: isEmpty(bintree)
```

1 return bintree == NULL

MakeBT(bintree1,element,bintree2)

Algorithm: MakeBT(bintree1, element, bintree2)

```
1  rootNode <- allocate new memory
2  rootNode.element = element
3  rootNode.parent = NULL
4  rootNode.leftchild = bintree1
5  rootNode.rightchild = bintree2
6  if bintree1 != NULL
7  bintree1.parent = rootNode
8  if bintree 2 != NULL
9  bintree2.parent = rootNode
10  return rootNode</pre>
```


Binary Tree: Pointer Implementation

Lchild(bintree)

Algorithm: Lchild(bintree)

- 1 if bintree == NULL
- 2 error "empty tree"
- 3 return bintree.leftchild

Rchild(bintree)

Algorithm: Lchild(bintree)

- 1 if bintree == NULL
- 2 error "empty tree"
- 3 return bintree.rightchild

Data(bintree)

Algorithm: Data(bintree)

- 1 if bintree == NULL
- 2 error "empty tree"
- 3 return bintree.element

Binary Tree Design (ii)

An array representation

- Given a complete binary tree with n nodes, for any i-th node, $1 \le i \le n$,
 - parent(i) is $\lfloor i/2 \rfloor$
 - leftChild(i) is at 2i if $2i \leq n$. Otherwise, i has no left child
 - rightChild(i) is at 2i + 1 if $2i + 1 \le n$; otherwise, i has no right child

Binary Tree Design (ii)

An array representation

- Generalize to all binary trees
- Efficient for complete binary trees
- But inefficient for skewed binary trees
- Inefficient to implement the ADT

full binary tree

- What are the array representation of the following binary trees?
 - Show the content in the array.
 - Hint: first obtain the ID for each node

	[1]	[2]	[3]	[4]	[5]	[6]	[7]
arr							

Traversing Strategy

- Preorder (depth-first)
 - Visit the node
 - Traverse the left subtree in preorder
 - Traverse the right subtree in preorder

Inorder

- Traverse the left subtree in inorder
- Visit the node
- Traverse the right subtree in inorder

Postorder

- Traverse the left subtree in postorder
- Traverse the right subtree in postorder
- Visit the node

When the binary tree is empty, it is "traversed" by doing nothing, otherwise:

Example:

preorder traversal

Visit the root

Traverse the left subtree

Traverse the right subtree

ABDCEGFHI

Result:

- = A (A's left) (A's right)
- = A B (B's left) (B's right = NULL) (A's right)
- = A B (B's left) (A's right)
- = A B D (D's left=NULL) (D's right = NULL) (A's right)
- = A B D (A's right)
- = A B D C (C's left) (C's right)
- = A B D C E (E's left=NULL) (E's right) (C's right)
- = A B D C E (E's right) (C's right)
- = A B D C E G (G's left=NULL) (G's right = NULL) (C's right)
- = A B D C E G (C's right)
- = A B D C E G F (F's left) (F's right)
- = A B D C E G F H (H's left=NULL) (H's right = NULL) (F's right)
- = A B D C E G F H I (I's left=NULL) (I's right = NULL)
- = ABDCEGFHI

Preorder:

+-/+AB*CD*E-FGH

Inorder:

A+B/C*D-E*F-G+H

Postorder:

AB+CD*/EFG-*-H+

Implementation

INORDER-TREE-WALK(x)

- 1. if $x \neq NIL$
- then INORDER-TREE-WALK (left [x])
- 3. print key [x]
- 4. INORDER-TREE-WALK (right [x])

E.g.:

Output: 2 3 5 5 7 9

- Running time:
 - \circ $\Theta(n)$, where n is the size of the tree rooted at x

Reconstruction of Binary Tree from its preorder and Inorder sequences

Example: Given the following sequences, find

the corresponding binary tree:

inorder: DCEBAUZTXY

preorder: ABCDEXZUTY

Looking at the whole tree:

- preorder : ABCDEXZUTY"
 ==> A is the root.
- Then, "inorder : DCEBAUZTXY"

==>

Looking at the left subtree of A:

- "preorder: BCDE"=> B is the root
- Then, "inorder: DCEB"

Reconstruction of Binary Tree from its preorder and Inorder sequences

Example: Given the following sequences, find

the corresponding binary tree:

inorder: DCEBAUZTXY

preorder: ABCDEXZUTY

Looking at the left subtree of B:

- "preorder : CDE"==> C is the root
- Then, "inorder: DCE"

Looking at the right subtree of A:

- "preorder: XZUTY"==> X is the root
- Then, "inorder: UZTXY"

Reconstruction of Binary Tree from its preorder and inorder sequences

Example: Given the following sequences, find

the corresponding binary tree:

inorder: DCEBAUZTXY

preorder: ABCDEXZUTY

Looking at the left subtree of X:

"preorder: ZUT"=> Z is the root

• Then, "inorder: UZT"

But: A binary tree may not be uniquely defined by its preorder and postorder sequences.

Example: Preorder sequence: ABC

Postorder sequence: CBA

We can construct 2 different binary trees:

- Construct a binary tree such that
 - preorder=[3,9,20,15,7]
 - inorder=[9,3,15,20,7]

Binary search tree (BST)

Binary Search Tree (BST) Property

- For every node, T, in the tree
 - the key values in its left subtree are *smaller* than the key value of T
 - the key values in its right subtree are larger than the key value of T

Binary Search Trees

- Support many dynamic set operations
 - find, findMin, findMax, predecessor, successor, insert, delete

- Running time of basic operations on binary search trees
 - On average: ⊕(logn)
 - The expected height of the tree is logn
 - In the worst case: $\Theta(n)$
 - The tree is a linear chain of n nodes

Searching for a Key

- Given a pointer to the root of a tree and a key k:
 - Return a pointer to a node with key k
 if one exists
 - Otherwise return NIL

Idea

- Starting at the root: trace down a path by comparing k with the key of the current node:
 - If the keys are equal: we have found the key
 - If k < key[x] search in the left subtree of x
 - If k > key[x] search in the right subtree of x

- Search for key 13:
 - \circ 15 \rightarrow 6 \rightarrow 7 \rightarrow 13

Searching for a Key

find(x, k)

```
    if x = NIL or k = key [x]
    then return x
    if k < key [x]</li>
    then return find(left [x], k)
    else return find(right [x], k)
```


Running Time: O (h), h is the height of the tree

Finding the Minimum

Goal: find the minimum value in a BST

Following left child pointers from the root, until

a NIL is encountered

findMin(x)

- 1. while left $[x] \neq NIL$
- do $x \leftarrow left[x]$
- 3. return X

Minimum = 2

Running time: O(h)
h is the height of tree

Finding the Maximum

- Goal: find the maximum value in a BST
 - Following right child pointers from the root, until a NIL is encountered

findMax(x)

- 1. while right $[x] \neq NIL$
- do $x \leftarrow \text{right}[x]$
- 3. return X

Maximum = 20

Running time: O(h) h is the height of tree

Def: successor (x) = y, such that key [y] is the smallest key > key [x]

• E.g.: successor (15) = 17 successor (13) = 15 successor (9) = 13

- Case 1: right (x) is non empty
 - successor (x) = the minimum in right (x)
- Case 2: right (x) is empty
 - go up the tree until the current node is a left child: successor (x) is the parent of the current node
 - if you cannot go further (and you reached the root):
 x is the largest element

Successor

successor(x)

- if right $[x] \neq NIL$
- then return findMin(right [x])
- 3. $y \leftarrow p[x]$
- 4. while $y \neq NIL$ and x = right[y]
- 5. do $x \leftarrow y$
- 6. $y \leftarrow p[y]$
- 7. return y

Running time: O (h)
h is the height of the tree

Def: predecessor (x) = y, such that key [y] is the biggest key (x)

E.g.: predecessor (15) = 13
 predecessor (9) = 7
 predecessor (7) = 6

- Case 1: left (x) is non empty
 - predecessor (x) = the maximum in left (x)
- Case 2: left (x) is empty
 - \circ go up the tree until the current node is a right child: predecessor (x) is the parent of the current node
 - if you cannot go further (and you reached the root):
 x is the smallest element