In [1]:

#importing libraries

import pandas as pd

import numpy as np

import re

import surprise

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

import warnings

warnings.filterwarnings('ignore')

In [3]:

#Data Preperation

data = pd.read_csv('Amazon - Movies and TV Ratings.csv')

data.head()

Out[3]:

	user_id	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Mo
0	A3R5OBKS7OM2IR	5.0	5.0	NaN	NaN	NaN	NaN	NaN	NaN	1
1	AH3QC2PC1VTGP	NaN	NaN	2.0	NaN	NaN	NaN	NaN	NaN	1
2	A3LKP6WPMP9UKX	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	1
3	AVIY68KEPQ5ZD	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	1
4	A1CV1WROP5KTTW	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	1

5 rows × 207 columns

←

In [4]:

data.shape

Out[4]:

(4848, 207)

In [5]:

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4848 entries, 0 to 4847 Columns: 207 entries, user id to Movie206

dtypes: float64(206), object(1) memory usage: 7.7+ MB

In [9]:

```
#Checking which movies having maximum views data.describe().T['count'].sort_values(ascending=False)[:2].to_frame()
```

Out[9]:

	count
Movie127	2313.0
Movie140	578.0

In [11]:

```
#Checking which movies having maximum ratings
data.drop('user_id',axis=1).sum().sort_values(ascending=False)[:2].to_frame()
```

Out[11]:

```
    Movie127
    9511.0

    Movie140
    2794.0
```

In [12]:

```
#Top 5 movies with maximum ratings data.drop('user_id',axis=1).mean().sort_values(ascending=False)[:5].to_frame()
```

Out[12]:

	0
Movie1	5.0
Movie55	5.0
Movie131	5.0
Movie132	5.0
Movie133	5.0

In [13]:

```
#Top 5 movies with the least audience data.describe().T['count'].sort_values(ascending=True)[:5].to_frame()
```

Out[13]:

	count
Movie1	1.0
Movie71	1.0
Movie145	1.0
Movie69	1.0
Movie68	1.0

In [18]:

#Recommendation Model

from surprise import Dataset

df = data.melt(id_vars = data.columns[0],value_vars=data.columns[1:],var_name="Movies",value_name="Rating") df

Out[18]:

	user_id	Movies	Rating
0	A3R5OBKS7OM2IR	Movie1	5.0
1	AH3QC2PC1VTGP	Movie1	NaN
2	A3LKP6WPMP9UKX	Movie1	NaN
3	AVIY68KEPQ5ZD	Movie1	NaN
4	A1CV1WROP5KTTW	Movie1	NaN
998683	A1IMQ9WMFYKWH5	Movie206	5.0
998684	A1KLIKPUF5E88I	Movie206	5.0
998685	A5HG6WFZLO10D	Movie206	5.0
998686	A3UU690TWXCG1X	Movie206	5.0
998687	AI4J762YI6S06	Movie206	5.0

998688 rows × 3 columns

In [24]:

```
from surprise import Reader
rd = Reader()
ds = Dataset.load_from_df(df.fillna(0),reader=rd)
ds
```

Out[24]:

<surprise.dataset.DatasetAutoFolds at 0x2864cd45088>

In [29]:

#Splitting the data into train and test datasets

from surprise.model_selection import train_test_split
trainset, testset = train_test_split(ds,test_size=0.25)

In [30]:

#Building a recommendation model on training data

from surprise import SVD
svd = SVD()

svd.fit(trainset)

Out[30]:

<surprise.prediction_algorithms.matrix_factorization.SVD at 0x2865ecb6808>

In [31]:

#predictions on the test data

pred = svd.test(testset)

In [32]:

from surprise import accuracy

accuracy.rmse(pred)

RMSE: 1.0255

Out[32]:

1.0255192276925031

In [34]:

accuracy.mae(pred)

MAE: 1.0117

Out[34]:

1.011739839945971

In [36]:

```
from surprise.model_selection import cross_validate
cross_validate(svd, ds, measures = ['RMSE', 'MAE'], cv = 3, verbose = True)
```

Evaluating RMSE, MAE of algorithm SVD on 3 split(s).

Fold 1 Fold 2 Fold 3 Mean Std

RMSE (testset) 1.0251 1.0260 1.0272 1.0261 0.0008

MAE (testset) 1.0116 1.0120 1.0125 1.0120 0.0003

Fit time 48.17 43.49 42.18 44.61 2.57

Test time 3.81 3.01 3.46 3.43 0.33

Out[36]:

{'test_rmse': array([1.02514184, 1.02596167, 1.02717048]), 'test_mae': array([1.01162888, 1.01201032, 1.01245434]),

'fit_time': (48.17183303833008, 43.48506188392639, 42.18087077140808), 'test_time': (3.813087224960327, 3.0086162090301514, 3.457048177719116)}

In []: