## Week 9 - Rotational Motion and Equilibrium

## After this you can

- discuss the connection between translational motion and rotational motion.
- discuss the new quantities that describe rotational motion and calculate them.

Translational Motion

displacement, AX

 $V docity, V = \frac{\Delta x}{\Delta t}$ 

acceleration, a = Av

mass (inertia)

SF = First = Ma Loudetion for traveletion

W=FcxDDX

K= +mv2

Rotation Motion

avegular displacement, AD

angular velocity,  $W = \frac{\Delta \Theta}{\Delta t}$ 

augular acceleration,  $\alpha = \frac{\Delta \omega}{\Delta t}$ 

rotational inertia, I

ST=The = I. & Newton's 2nd for

W = 7-00

Kr= LIW2

$$\vec{p} = \vec{m} \vec{\lambda}$$

$$\Delta \vec{p} = \vec{F} \Delta t$$

$$\vec{p}_i = \vec{p}_f$$

congular

consumation

f angular

momentum

## After this you can

- define torque and calculate it under any conditions.
- discuss Newton's second law for rotations.
- calculate rotational inertia for a range of shapes or combinations of shapes.

T.X



view from above



often 6=90° 51-90° = I

121 = 11-11-1

smalled F angle between

magnitude torque (2 | = (F (Smot )

companed of F that is perpendent to moment arm

[7] = [Nm]



F<sub>2</sub>

CW ->720

F<sub>4</sub>

to odd torques we need to consider the direction

of the torque

Zc = Tret = + F, r, + FzcinDrz - F3r3 - F4r4

What does INET cause? -> rotational acceleration





rotational inertia

Lo depends on

Mass, and

distribution of

Mass around the

Caxis of rotation

| Table 8.1 Rotational Inertia for Uniform Objects with Various Geometrical Shapes             |          |                                                |                          |                                         |   |                                                                                                     |                       |
|----------------------------------------------------------------------------------------------|----------|------------------------------------------------|--------------------------|-----------------------------------------|---|-----------------------------------------------------------------------------------------------------|-----------------------|
| Shape                                                                                        |          | Axis of<br>Rotation                            | Rotational<br>Inertia    | Shape                                   |   | Axis of<br>Rotation                                                                                 | Rotational<br>Inertia |
| Thin hollow<br>cylindrical<br>shell (or<br>hoop)                                             | R        | Central axis<br>of cylinder                    | $MR^2$                   | Solid sphere                            | R | Through center                                                                                      | $\frac{2}{5}MR^2$     |
| Solid<br>cylinder<br>(or disk)                                                               | R        | Central axis<br>of cylinder                    | $\frac{1}{2}MR^2$        | Thin hollow<br>spherical<br>shell       | R | Through center                                                                                      | $\frac{2}{3}MR^2$     |
| Hollow<br>cylindrical<br>shell or<br>disk                                                    | Top view | Central axis<br>of cylinder                    | $\frac{1}{2}M(a^2+b^2)$  | Thin rod (or rectangular plate)         |   | Perpendicular<br>to rod<br>through end<br>(or along<br>edge of<br>plate)                            | $\frac{1}{3}ML^2$     |
| Rectangular<br>plate                                                                         | a b      | Perpendicular<br>to plate<br>through<br>center | $\frac{1}{12}M(a^2+b^2)$ | Thin rod (or<br>rectangu-<br>lar plate) |   | Perpendicular to<br>rod through<br>center<br>(or parallel<br>to edge of<br>plate through<br>center) | 12                    |
| Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. |          |                                                |                          |                                         |   |                                                                                                     |                       |

Smaller rotational inertia

largur d

Same torque



somaller of

Rule of Thumb for Rotational Ivertien:
the farther the mess is from the
oxis of rotation, the larger the
rotational inerties

## After this you can

- define the conditions for an object or system to be in equilibrium.
- use the conditions of equilibrium to solve a balance problem for an unknown quantity.



$$\Sigma F = 0$$

$$F_{n} + F_{n} - mg = 0$$

$$2F_{n} = mg$$

$$F_{n} = mg$$

$$2$$

2F=0 22 70

So equilibrium:  $\Sigma F = 0 + \Sigma \tau = 0$ 



Euro:

$$M_{b} = 10 \log \qquad F_{1} = 7$$
 $M_{c} = 10 \log \qquad F_{2} = 7$ 
 $\sum F = 0$ 
 $\sum T = 0$ 

98 Nm - 137.2 Nm + (2)F2 = 0

$$(2m)F_2 = 285.2 \text{ Nm}$$
  
 $F_2 = 117.6 \text{ N}$