

$$V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad V_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\omega_5 \theta = \frac{-1}{V_2} = \frac{-V_2}{2}$$
 $\theta = \frac{3\pi}{4} = 135^{\circ}$

We observe that us and us lie in the horizontal plane (since the third component is zeros)

Thus $v_3 = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$ is orthogonal to both y and v_2

3. Show that every vector $V \in \mathcal{R}(A)$ is orthogonal to every vector $V \in \mathcal{N}(A)$, when $A^TA = AA^T$. Hint. Use the fact that $\mathcal{R}(A) = \mathcal{R}(AA^T)$.

let $V \in \mathcal{R}(A) = \mathcal{R}(AA^T)$, then $V = AA^T y$ for some y let us compute $V^T W = y^T A^T W = y^T A^T A W = y^T A^T O = 0$ A cosmol = 0 g. R.d.