Réseaux - Cours 4

 $\label{eq:introduction} IP: introduction\ et\ adressage$

Cyril Pain-Barre

IUT Informatique Aix-en-Provence

version du 18/2/2013

TCP/IP

l'architecture d'Internet

Aperçu de l'architecture TCP/IP

Application
Présentation
Session
Transport
Réseau
Liaison
Physique

OSI

IP: Internet Protocol

ICMP : Internet Control and Error Message Protocol

ARP : Address Resolution Protocol

TCP: Transmission Control Protocol

UDP: User Datagram

TCP/IP

FTP: File Transfer Protocol

SMTP: Simple Mail Transfer Protocol HTTP: HyperText Transfer Protocol

TELNET : Terminal Virtuel

DNS: Domain Name Service

DHCP: Dynamic Host Configuration Protocol

TFTP: Trivial File Transfer Protocol

IPv4:

Internet Protocol version 4

(RFC 791, septembre 1981)

Internet Protocol

- issu des travaux du Department of Defense (DoD) sur ARPANET
- protocole d'interconnexion de réseaux correspondant à la couche 3 (réseau) du modèle OSI
- protocole réseau d'Internet, de fait le plus utilisé de la planète
- o opère par routage de paquets
- laisse une bonne partie de l'intelligence et du contrôle du réseau aux machines terminales (protocole TCP)
- ressources partagées équitablement entre les "clients"
- IPv4 s'accommode mal de l'explosion du nombre de clients, et de l'évolution des usages (ex. multimédia)
- IPv6, son successeur, devrait combler ses lacunes. Il est (lentement) en cours de déploiement

Internet Protocol

- service rendu de type best-effort : non fiable et non connecté (mode datagramme)
 - ⇒ perte, duplication, déséquencement possible des paquets
- le paquet (Protocol Data Unit) IPv4 s'appelle le datagramme IP
- IPv4 assure 3 fonctions élémentaires :
 - adressage uniforme
 - routage
 - fragmentation

et s'adapte aux réseaux physiques sous-jacents (fiables ou non), à leur charge utile (payload)

- fournit des éléments de contrôle du fonctionnement des réseaux avec le protocole ICMP
- et définit un standard d'ordonnancement des données (Network Byte Order)

Réseaux hétérogènes

Hétérogénéité des réseaux

Quelques différences notables entre réseaux :

- adressage physique (MAC) différent :
 - IEEE 802, Ethernet, Token Ring: 6 octets
 - X.25 : 10-14 chiffres décimaux (format X.121)
 - SMDS: 8 octets
 - HDLC, PPP: 1 octet
- champ donnée ou charge utile (payload) maximale :
 - Ethernet: 1 500 octets
 - Token Ring: 4 ou 16 Ko
 - X.25 : 128 octets recommandés (max 255)
 - SMDS: 9 188 octets
 - Frame Relay: 1 600 octets
- mais aussi :
 - supports et interfaces différents
 - PDUs (trames) différents
 - diffusion ou point-à-point
 - mode connecté ou non
 - accès au canal de communication

Les routeurs IP

- interconnectent au moins deux réseaux physiques
- possèdent une interface d'accès (et une adresse MAC) par réseau physique connecté (ports physiques) :

Les routeurs IP

- interconnectent au moins deux réseaux physiques
- possèdent une interface d'accès (et une adresse MAC) par réseau physique connecté (ports physiques) :

tout réseau sur lequel IP s'appuie est considéré comme opérant au niveau 2 (trame) de OSI

- permettent le passage d'un réseau à un autre
- routent les datagrammes IP à travers les réseaux
- adaptent la taille des datagrammes IP à la charge utile du réseau traversé par fragmentation (segmentation)

Interconnexion avec (routeurs) IP

Les routeurs et les stations IP ont des adresses IP et échangent des datagrammes IP, véhiculés dans les données des PDU (trames) des réseaux.

Transfert/routage de datagrammes

Transfert/routage de datagrammes

Routage de datagrammes

- décisions de routage :
 - A a choisi de transmettre à R1
 - R1 a décidé de transmettre à R2
 - sur le dernier réseau, R2 transmet directement à B
- le routage est opération de la couche IP
- qui se base sur l'adresse IP de destination
- cette adresse doit être contenue dans le datagramme

Les adresses IP

(RFC 791 et 3030)

Aperçu

- adresses universelles, codées sur 32 bits, indépendentes des adresses MAC
- une adresse IP est attribuée à un unique hôte (station/routeur)
- pour raccorder un réseau à Internet, l'administrateur doit obtenir une adresse de réseau auprès d'un Registre Internet Régional (RIR) ou d'un représentant
- l'adresse de réseau détermine une plage d'adresses que l'administrateur peut affecter à sa guise aux hôtes de son réseau
- pour un routage efficace, l'adresse IP d'un hôte identifie à la fois :
 - l'hôte, dans Internet et dans son propre réseau
 - le réseau (son adresse) auquel il appartient
 - \Longrightarrow un hôte (ex portable) changeant de réseau doit changer d'adresse IP
- 5 classes d'adressage pour des besoins différents
- certaines adresses IP sont réservées à des usages particuliers

Format des adresses IP : classes A, B et C

L'espace d'adressage IP est découpé en 5 classes et prend en compte la taille et le nombre des réseaux.

Les adresses des réseaux/hôtes appartiennent aux classes A, B ou C :

• Classe A : réseaux de très grande taille, peu nombreux

• Classe B : réseaux de taille moyenne, plus fréquents

• Classe C : réseaux de petite taille, typique des PME, très nombreux

Notation décimale pointée

- représentation plus mnémonique d'une adresse IP
- 4 nombres décimaux séparés par un point
- 1 nombre décimal par octet de l'adresse
- exemple :

L'adresse IP d'allegro est :

donc 139.124.187.4 en notation décimale pointée

Conventions d'adressage

Certaines combinaisons de bits pour l'id. station et/ou l'id. $r\acute{e}seau$ (en incluant la classe) ont un rôle particulier :

id. réseau	id. station
-	-

- les 32 bits à 0 (adresse 0.0.0.0) indique "cet" ordinateur : utilisée temporairement lorsqu'un hôte ne connaît pas encore son adresse
- id. station tout à 0 est l'adresse du réseau id. réseau. Par exemple, 139.124.**0.0** est l'adresse du réseau d'allegro.
- les 32 bits à 1 (adresse 255.255.255.255) est l'adresse de diffusion limitée (limited broadcast) représentant tous les hôtes du réseau présent. Un hôte peut l'utiliser (comme destination) pour envoyer un message à tous les hôtes (actifs) de son réseau.

L'adresse de diffusion limitée n'est pas routable : un message envoyé à cette adresse ne franchit pas les routeurs et n'atteint que les hôtes du réseau local.

Il n'existe (heureusement) pas d'adresse désignant tous les hôtes d'Internet.

Conventions d'adressage (suite)

id. réseau	id. station
32 bits	

• *id. station* tout à 1 est l'adresse de **diffusion dirigée** (*directed broadcast*) dans le réseau *id. réseau*.

Par exemple, 139.124.**255.255** est l'adresse de diffusion dirigée dans le réseau 139.124.0.0. Dans ce réseau 139.124.0.0, l'adresse 139.124.255.255 a le même rôle que 255.255.255.

Une adresse de diffusion dirigée est routable : depuis l'extérieur d'un réseau, elle permet d'envoyer un message à tous ses hôtes.

• *id. réseau* tout à 0 : utilisée lorsqu'un hôte ne connaît pas encore son *id. réseau* mais connaît son *id. station* (cas rare).

Par exemple, si allegro reçoit un datagramme provenant de l'adresse 0.0.0.3, il doit en déduire qu'il a été envoyé par l'hôte 3 du réseau, c'est à dire 139.124.0.3.

Manipulation d'adresses

• Soit l'adresse d'allegro :

• Des premiers bits du premier octet, on en déduit la classe et donc les bits de l'id. réseau et de l'id. station :

• adresse du réseau d'allegro (id. station tout à 0) :

• adresse de diffusion dans le réseau d'allegro (id. station tout à 1) :

Adresses de rebouclage

- adresses de la forme 127.x.y.z
- 127.0.0.1 est un adresse reconnue localement par tout hôte utilisant TCP/IP, même non connecté à un réseau
- désignent l'interface virtuelle loopback (rebouclage)
- utilité uniquement locale à un hôte :
 - ne peuvent circuler sur un réseau
 - servent à la communication de processus utilisant TCP/IP sur une même machine
- 127.0.0.0 n'est pas une adresse de réseau réel

Plages d'adresses

adresses potentielles de réseaux par classe :

classe	adr. min	adr. max
А	1.0.0.0	126.0.0.0
В	128.0.0.0	191.255.0.0
С	192.0.0.0	223.255.255.0

- pour un réseau donné, comme 139.124.0.0, les adresses des hôtes vont de 139.124.0.1 à 139.124.255.254.
 Elles sont attribuées librement par l'administrateur du réseau 139.124.0.0.
- adresses privées, ne doivent pas circuler sur Internet (RFC 1918/3927) :
 - 10/8 : 10.0.0.0 à 10.255.255.255
 - 172.16/12 : 172.16.0.0 à 172.31.255.255
 - 192.168/16 : 192.168.0.0 à 192.168.255.255
 - 169.254/16 : 169.254.0.0 à 169.254.255.255 (utilisées pour l'autoconfiguration des hôtes)

ordinateur multi-connecté ou routeur

- une adresse IP n'identifie pas seulement un ordinateur mais son interface d'accès au réseau
- une interface réseau active ⇒ une adresse IP
- au moins 2 adresses IP par routeur (1 par interface)

Exemple d'affectations IP

Autres classes d'adresses

Classe D : adresses multicast

- représentent des groupes de stations
- adhésion et résiliation par IGMP (Internet Group Managment Protocol)
- quelques adresses officielles :
 - 224.0.0.1 (All Hosts) : tous les hôtes de ce réseau
 - 224.0.0.2 (All Routers) : tous les routeurs de ce réseau
- Classe E : adresses expérimentales (non exploitables)

