ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΠΑΡΟΥΣΙΑΣΗ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

ΘΕΜΑ: ΥΛΟΠΟΙΗΣΗ CRC

Κυκλικοί κώδικες (Cyclic Redundancy Check, CRC)

- ο Για κάθε μπλοκ δεδομένων D των k bits, ο μεταδότης δημιουργεί μια ακολουθία ελέγχου σφάλματος F των n-k bits (Frame Check Sequence, FCS),
 - τέτοια ώστε η συνολική ακολουθία Τ των n bits που προκύπτει να διαιρείται ακριβώς με κάποιον προκαθορισμένο αριθμό P των n-k+1 bits.
- ο Όταν η ακολουθία Τ των n bits φθάσει στον αποδέκτη,
 - τότε η ορθότητά της ελέγχεται διαιρώντας την με τον προκαθορισμένο αριθμό.
 - **Αν από τη διαίρεση αυτή δεν προκύψει υπόλοιπο**, τότε το πλαίσιο γίνεται <u>αποδεκτό</u>.
 - **Αν προκύψει υπόλοιπο**, τότε συνάγεται ότι το πλαίσιο έχει αλλοιωθεί και ζητείται η επαναμετάδοσή του.

- Αξίζει να σημειωθεί ότι για τον υπολογισμό του FCS καθώς και για την εξακρίβωση της ορθότητας του ληφθέντος πλαισίου χρησιμοποιείται αριθμητική modulo-2.
 - Δηλαδή δυαδική αριθμητική στην οποία όμως δεν υπάρχουν κρατούμενα ή δανεικά.

ο Λόγοι χρησιμοποίησης αριθμητικής modulo-2

- η απλότητα που χαρακτηρίζει την αριθμητική αυτή και η συνεπαγόμενη ευκολία στην υλοποίησή της.
- Η διαίρεση modulo-2 αφήνει υπόλοιπο κατά 1 bit μικρότερο σε σχέση με την κανονική διαίρεση
 - γεγονός που οδηγεί σε ελαφρά μείωση των μεταδιδόμενων bits
 ελέγχου σφαλμάτων που επιβαρύνουν το επικοινωνιακό σύστημα.

ΚΩΔΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΟΣ modulo-2 αριθμητική

- ο Δυαδική πρόσθεση/αφαίρεση χωρίς κρατούμενο
 - Ουσιαστικά πρόκειται για την πράξη ΧΟΒ

1111	1111	11001
+1010	-1010	x11
0101	0101	11001
		11001
		101011

ΚΩΔΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΟΣ Υπολογισμός CRC

ο Έστω:

- D η προς μετάδοση ακολουθία δεδομένων των k bits,
- F η ακολουθία FCS των n-k bits,
- Τ η ακολουθία των n bits που πρόκειται να μεταδοθεί
- P ο προκαθορισμένος αριθμός των n-k+1 bits με τον οποίο θα πρέπει να είναι διαιρέσιμη η ακολουθία Τ.
 - ο Θα πρέπει προφανώς πρώτο και τελευταίο bit του να είναι 1
- ο Η ακολουθία **T** μπορει να γραφτεί ως: $T = 2^{n-k} D + F$
 - Πριν μεταδοθεί η ακολουθία Τ πρέπει να υπολογιστεί ακολουθία ελέγχου F.

ΚΩΔΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΟΣ Υπολογισμός CRC

- Για τον υπολογισμό της ακολουθίας ελέγχου σφάλματος F
 χρησιμοποιείται ο παρακάτω αλγόριθμος:
 - Τοποθετούμε n-k μηδενικά στα δεξιά του D έτσι ώστε να προκύψει το 2^{n-k} D
 - Διαιρούμε το 2^{n-k} D με τον P
 - Χρησιμοποιούμε ως **F** το **υπόλοιπο R** της παραπάνω διαίρεσης

$$\frac{2^{n-k}D}{P} = Q + \frac{R}{P}$$

$$T = 2^{n-k}D + R$$

ΚΩΔΙΚΕΣ ΑΝΙΧΝΕΥΣΗΣ ΣΦΑΛΜΑΤΟΣ Υπολογισμός CRC

ΠΑΡΑΔΕΙΓΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΤΟΥ FCS ΣΤΟ ΜΕΤΑΔΟΤΗ ΚΑΙ ΕΛΕΓΧΟΥ ΟΡΘΟΤΗΤΑΣ ΣΤΟΝ ΑΠΟΔΕΚΤΗ

Έστω:

$$D = 1010001101 (10 \text{ bits})$$

 $P = 110101 (6 \text{ bits})$

$$n = 15, k = 10$$
 $(n - k) = 5.$

ΜΕΤΑΔΟΤΗΣ: ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ R (5 bits) ΩΣΤΕ ΝΑ ΧΡΗΣΙΜΟΠΟΙΗΘΕΙ ΩΣ ΑΚΟΛΟΥΘΙΑ ΕΛΕΓΧΟΥ ΣΦΑΛΜΑΤΟΣ **F**

ΥΠΟΛΟΓΙΣΜΌΣ ΤΟΥ FCS ΣΤΟ ΜΕΤΑΔΟΤΗ

ΕΛΕΓΧΟΣ ΣΤΟΝ ΑΠΟΔΕΚΤΗ

ΕΚΦΩΝΗΣΗ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

- Στα πλαίσια της εργασίας, καλείστε να υλοποιήσετε τον αλγόριθμο ανίχνευσης λαθών CRC.
- Κατασκευάστε ένα πρόγραμμα στη γλώσσα προγραμματισμού της επιλογής σας, το οποίο θα περιλαμβάνει τις εξής λειτουργίες:
 - Δημιουργία τυχαία επιλεγμένων δυαδικών μηνυμάτων τών k bits, στο μεταδότη (μπλοκ δεδομένων των k bits, σε κάθε bit των οποίων, το 0 και το 1 έχουν ίση πιθανότητα εμφάνισης).
 - Υπολογισμός του CRC (FCS) που αντιστοιχεί σε κάθε μήνυμα. Ως πρότυπο για τον υπολογισμό του CRC θα χρησιμοποιηθεί ένας δυαδικός αριθμός P που θα δινει ο χρήστης.
 - Μετάδοση του μηνύματος και του CRC μέσω ενός ενόρυβου καναλιού με Bit Error Rate BER και παραλαβή του «αλλοιωμένου» μηνύματος στον αποδέκτη.
 - Έλεγχος του CRC στον αποδέκτη.

ΕΚΦΩΝΗΣΗ ΕΡΓΑΣΙΑΣ

- ο Παραδοτέα: Αναφορά η οποία θα περιλαμβάνει:
 - ο α) Το πρόγραμμα που κατασκευάσατε, παραδείγματα λειτουργίας του και σύντομη περιγραφή των σημαντικότερων σημείων στο κώδικα σας.
 - ο β) Για *k*=20, *P*=110101 και *BER*=10⁻³, να υπολογίσετε:
 - Το ποσοστό των μηνυμάτων που φθάνουν με σφάλμα (στο block δεδομένων ή στο CRC) στον αποδέκτη.
 - Το ποσοστό των μηνυμάτων που ανιχνεύονται ως εσφαλμένα από το CRC.
 - Το ποσοστό των μηνυμάτων που φθάνουν με σφάλμα στο αποδέκτη και δεν ανιχνεύονται από το CRC.

Συμβουλή: Για να έχετε αξιόπιστα αποτελέσματα, δημιουργήστε όσο το δυνατό μεγαλύτερο αριθμό μηνύμάτων.