Tópicos de Matemática Discreta

— prova escrita — 2 de novembro de 2013 — duração: 2 horas — —

- **1.** [3 valores] Considere as fórmulas $\varphi : \neg (p_0 \wedge p_1) \to (p_0 \to p_1)$ e $\psi : p_2 \vee (\neg p_3 \to p_2)$ do Cálculo Proposicional da Lógica Clássica.
 - (a) Diga, justificando, se a fórmula φ é uma tautologia.
 - (b) Justifique se a seguinte afirmação é verdadeira ou falsa: se a fórmula ψ toma o valor lógico verdadeiro então p_2 também toma o valor lógico verdadeiro.
- 2. [3,25 valores] Considerando que p representa a proposição $\forall_{a \in A} \exists_{b \in B} (a^2 = b \lor a + b = 0)$,
 - (a) Verifique se p é verdadeira para $A = \{-2, 0, 1, 2\}$ e $B = \{-1, 0, 4\}$. Justifique.
- (b) Indique em linguagem simbólica, sem recorrer ao símbolo de negação, uma proposição equivalente à negação de p.
- 3. [2 valores] Seja n um número natural ímpar. Mostre que $n^2 + 8n 1$ é múltiplo de 4.
- 4. [4,25 valores] Considere os conjuntos

$$A = \{\{1,3\},1,4\}, B = \{-3,1,3\} \in C = \{x \in \mathbb{Z} : 2|x| + 1 \in B\}.$$

- (a) Determine $A \setminus B$. Justifique.
- (b) Determine $\mathcal{P}(A \cap C)$. Justifique.
- (c) Verifique se $\{-1,3\} \subseteq C \cup B$. Justifique.
- (d) $\{1,3\} \in A \cap \mathcal{P}(A)$? Justifique.
- 5. [3 valores] Dê exemplo de ou justifique que não existem conjuntos A, B e/ou C tais que
 - (a) $(1, 2, 1) \in A \times B \times C$.
 - (b) $A \cup B = A \cap B$.
 - (c) $B \subseteq C \in A \cap \overline{C} \not\subseteq A \cap \overline{B}$.
- **6.** [4,5 valores] Sejam A, B e C subconjuntos não vazios de um conjunto X. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) Se $A \subseteq C$ ou $B \subseteq C$ então $A \cup B \subseteq C$.
 - (b) Se $A \cap B = \emptyset$ então $A \subseteq \overline{B}$.
 - (c) $(C \setminus A) \cap (A \cup B) = C \setminus B$.