Ph.D. Qualifying Exam, Real Analysis Spring 2011, part I

Do all five problems. Write your solution for each problem in a separate blue book.

Consider ℓ^2 with norm $\|\{a_n\}_{n=1}^{\infty}\|^2 = \sum_{n=1}^{\infty} |a_n|^2$. Let T be the operator on ℓ^2 given by $T(\{a_1,a_2,\ldots\}) = \{a_2,\frac{1}{2}a_3,\frac{1}{3}a_4,\ldots\}$, i.e. $T(\{a_n\}_{n=1}^{\infty}) = \{n^{-1}a_{n+1}\}_{n=1}^{\infty}$. Show that T is compact, and find the spectrum of T. Does T have any eigenvalues?

a. Show that the set of points A at which a function $f:[0,1]\to\mathbb{R}$ is continuous is a G_δ

set (countable intersection of open sets).

b. Give an example of a function $f:[0,1]\to\mathbb{R}$ that is continuous at all the irrationals and is discontinuous at all the rationals.

c. Show that there is no function $f:[0,1] \to \mathbb{R}$ which is continuous at all the rationals and is discontinuous at all the irrationals.

3 Let $\mathbb{T}^n = (\mathbb{R}/(2\pi\mathbb{Z}))^n$ be the *n*-torus, e_j the image of the *j*th unit vector in \mathbb{R}^n in the torus, and let $\mathcal{D}'(\mathbb{T}^n)$ denote the set of distributions on the torus, equipped with the weak-* topology.

a. Show that for all $y \in \mathbb{T}^n$ the map $L_y : C(\mathbb{T}^n) \to C(\mathbb{T}^n)$ defined by $(L_y f)(x) = f(x+y)$ has a unique continuous extension to a map $\mathcal{D}'(\mathbb{T}^n) \to \mathcal{D}'(\mathbb{T}^n)$.

b. If $u \in \mathcal{D}'(\mathbb{T}^n)$ (i.e. u is a distribution on the torus) then for all j, $u_h = h^{-1}(L_{he_j}u - u)$ converges to the distributional derivative $\partial_j u$ as $h \to 0$.

c. For $\phi \in C^{\infty}(\mathbb{T}^{n+m})$ let $\phi_x(y) = \phi(y,x)$, $(y,x) \in \mathbb{T}^n \times \mathbb{T}^m$, so $\phi_x \in C^{\infty}(\mathbb{T}^n)$. Show that if $u \in \mathcal{D}'(\mathbb{T}^n)$ and $\phi \in C^{\infty}(\mathbb{T}^{n+m})$ then the function $f: \mathbb{T}^m \to \mathbb{C}$ defined by $f(x) = u(\phi_x)$ is C^{∞} .

For $E \subset \mathbb{R}$ let $E + E = \{x + y : x, y \in E\}$, and define E - E similarly. Show that if E is a measurable subset of \mathbb{R} of positive Lebesgue measure then E - E and E + E contain non-empty open sets.

5 Let $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$, and for $f\in L^2(\mathbb{T}^n)$ let $\hat{f}(k)=(2\pi)^{-n/2}\int_{\mathbb{T}^n}e^{-ix\cdot k}\,f(x)\,dx,\,k\in\mathbb{Z}^n$, denote the Fourier coefficients of f. For $m\geq 0$, $H^m(\mathbb{T}^n)$ is the subset of $L^2(\mathbb{T}^n)$ consisting $f\in L^2(\mathbb{T}^n)$ with Fourier coefficients satisfying $\sum_{k\in\mathbb{Z}^n}(1+|k|^2)^m|\hat{f}(k)|^2<\infty$, and with norm $\|f\|^2_{H^m(\mathbb{T}^n)}=\sum_{k\in\mathbb{Z}^n}(1+|k|^2)^m|\hat{f}(k)|^2$.

Suppose that $s>r\geq 0,$ $m\geq 0,$ and $P:H^s(\mathbb{T}^n)\to H^m(\mathbb{T}^n)$ is a continuous linear map satisfying

$$||u||_{H^s(\mathbb{T}^n)} \le C(||Pu||_{H^m(\mathbb{T}^n)} + ||u||_{H^r(\mathbb{T}^n)}), \ u \in H^s(\mathbb{T}^n).$$

Show that the nullspace of P is a finite dimensional subspace of $H^s(\mathbb{T}^n)$, and its range is closed in $H^m(\mathbb{T}^n)$.

Ph.D. Qualifying Exam, Real Analysis Spring 2011, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- A projection $P \in \mathcal{L}(X)$ on a Hilbert space X is an operator with $P^2 = P$. Show that such a projection P is an orthogonal projection (i.e. $x P(x) \in (P(X))^{\perp}$ for all $x \in X$) if and only if P is self-adjoint.
- Let X be a vector space over \mathbb{C} , \mathcal{F} a vector space of linear maps $X \to \mathbb{C}$, and equip X with the weakest topology in which all members of \mathcal{F} are continuous. Show that the only continuous linear maps $X \to \mathbb{C}$ are those in \mathcal{F} .
- Suppose X,Y are [reflexive] Banach spaces, $A_n \in \mathcal{L}(X,Y)$ for $n \in \mathbb{N}$. Suppose that for all $x \in X$ and for all $\ell \in Y^*$, $\lim_{n \to \infty} \ell(A_n x)$ exists. Show that there exists $A \in \mathcal{L}(X,Y)$ such that $A_n \to A$ in the weak operator topology. Give an example of A_n satisfying these assumptions such that A_n does not converge to A in the strong operator topology.
- 4 Let $C^{\alpha}([0,1])$, $0<\alpha<1$, denote the space of Hölder continuous functions on [0,1], i.e. continuous functions such that $\|f\|_{\alpha}=\sup|f|+\sup_{x\neq y}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty$, equipped with the norm $\|.\|_{\alpha}$.
 - **a.** Suppose $0 < \alpha < 1$, X is a subspace of $C^{\alpha}([0,1])$, and X is closed as a subspace of C([0,1]). Show that X is finite dimensional.
 - **b.** Suppose that X is a subspace of C([0,1]) and X is closed as a subspace of $L^2([0,1])$ (with the standard norm). Show that X is finite dimensional.
- We say that a sequence $\{a_n\}_{n=1}^{\infty}$ in [0,1] is equidistributed (in [0,1]) if for all intervals $[c,d] \subset [0,1]$, the proportion of elements $a_n \in [c,d]$ for $n \leq N$ converges as $N \to \infty$ to d-c
 - **a.** Show that $\{a_n\} \subset [0,1]$ is equidistributed if and only if the measures $\mu_N = \frac{1}{N} \sum_{1 \leq n \leq N} \delta_{a_n}$ (with δ_{a_n} the unit mass at a_n) converge in the weak-* topology to the Lebesgue measure.
 - **b.** Prove that the sequence $a_n = n\alpha \mod 1$, $n \ge 1$, is equidistributed if and only if α is irrational.