Inference and Representation: CTMs, Gibbs Sampling & Markov Chains

Rahul G. Krishnan

New York University

Lab 6, October 12, 2016

Outline

- Correlated Topic Models
- Gibbs Sampling in Ising Models
- Markov Chains

Modeling Correlations in the Simplex

- LDA assumes that per-document topics are drawn from a Dirichlet distribution
- $\theta_d \sim \text{Dir}(\alpha)$
- Instead we will use the logistic normal distribution:
- $\bullet \ \eta \sim \mathcal{N}(\mu; \Sigma) \qquad \theta_d^{(i)} = \frac{\exp(\eta_i)}{\sum_j \exp(\eta_j)}$
- ullet The covariance structure Σ determines how related topics are

Correlated Topic Model (Blei and Lafferty, 2006)

- Goal: model relationships of topics (e.g., "a document about genetics is more likely to be about disease than x-ray astronomy")
- Training data: corpora of documents, just like for LDA
 - 16,351 OCR articles from Science
- Why do this?
- How to do this?

Correlated Topic Model (Blei and Lafferty, 2006)

Replaces Dirichlet prior for θ with the *logistic Normal* distribution:

$$\theta_t = \exp \eta_t / \sum_{t'} \exp \eta_{t'}$$

Inverse Covariance Matrix

- If we learn Σ, the covariance matrix in the prior then we can construct a graph of relationships between topics
- Recall, $p(\eta_d) \propto (\eta_d \mu)^T \Sigma^{-1} (\eta_d \mu)^T$
- The non-zero entries (and off-diagonal) entries in the matrix Σ^{-1} represent relationships between two topics
- Form a graph $\mathcal{G} = (V, E)$ where V are the rows/columns of Σ^{-1} corresponding to topics
- The edges *E* are the set (*ij*) s.t. $\Sigma_{ij}^{-1} \neq 0$

Visualizing the inverse covariance matrix

http://www.cs.cmu.edu/~lemur/science/

Held-out likelihood as a function of number of topics

Recap

- Recall that inference in Markov Random Fields is hard.
- Loopy BP was one algorithm that gave us a way to estimate marginal probabilities in an MRF
- Lets use Gibbs sampling to perform approximate inference

Ising Model

- Under an pairwise Ising model with only edge potentials, we have:
- $p(X_1,\ldots,X_N) \propto \prod_{(ij)\in E} \psi_{ij}(x_i,x_j)$
- Instead of a table of potentials like we familiar with,
- Ising Model Edge Potential: $\psi_{ij}(x_i, x_j) = \exp(Jx_ix_j)$
- J is a number that denotes the edge strength
- $x_i \in \{-1, 1\}$

Gibbs Sampling

- Gibbs sampling proceeds by iteratively sampling from $p(X_i|X_{\neg i})$
- $p(X_i|X_{\neg i}) \propto \frac{p(X_1,...,X_N)}{p(X_{\neg i})}$
- Since we condition on the Markov Blanket (N(i), the neighbors), for a node,
- $p(X_i = x_i | X_{\neg i}) \propto \prod_{i \in N(i)} \psi_{ij}(x_i, x_j)$
- i.e it suffices to consider the set of edge potentials corresponding to the edges between i and N(i)

Deriving the Updates

Assuming \exists assignments $X_j = x_j \in N(i)$

$$p(x_{i} = +1 | x_{\neg i}) = \frac{\prod_{j \in N(i)} \psi_{ij}(X_{i} = +1, x_{j} = x_{j})}{\prod_{j \in N(i)} \psi_{ij}(x_{i} = +1, x_{j}) + \prod_{j \in N(i)} \psi_{ij}(x_{i} = -1, x_{j})}$$

$$p(x_{i} = +1 | x_{\neg i}) = \frac{\prod_{j \in N(i)} \exp(Jx_{j})}{\prod_{j \in N(i)} \exp(Jx_{j}) + \prod_{j \in N(i)} \exp(-Jx_{j})}$$

$$p(x_{i} = +1 | x_{\neg i}) = \frac{\exp(J\sum_{j \in N(i)} x_{j})}{\exp(J\sum_{j \in N(i)} x_{j}) + \exp(-J\sum_{j \in N(i)} x_{j})}$$

Derivation

$$p(x_i = +1|x_{\neg i}) = \frac{\exp(J\sum_{j\in N(i)}x_j)}{\exp(J\sum_{j\in N(i)}x_j) + \exp(-J\sum_{j\in N(i)}x_j)}$$
Denote: $\eta_i := \sum_{j\in N(i)}x_j$

$$p(x_i = +1|x_{\neg i}) = \frac{\exp(J\eta_i)}{\exp(J\eta_i) + \exp(-J\eta_i)}$$
Divide numerator and denominator by $\exp(J\eta_i)$:
$$p(x_i = +1|x_{\neg i}) = \frac{1}{1 + \exp(-2J\eta_i)} = \sin(2J\eta_i)$$

Procedure

- Start with a random assignments x_i for all random variables
- ② For a random variable X_1, \ldots, X_N , sample an assignment $\hat{x_i} \sim \text{sigm}(2J\eta_i)$
- **③** Set $x_i = \hat{x}_i$ and continue sampling other random variables
- Repeat (2)

Recap (from lecture)

- We're interested in evaluating $\mathbb{E}_{p(x)}[f(x)]$
- If we can sample from p(x)
- Then, we can evaluate $\mathbb{E}_{p(x)}[f(x)] = \frac{1}{N} \sum_{i=1}^{N} f(\hat{x}_i) \qquad \hat{x}_i \sim p(x)$
- How do we sample *independently* from p(x)?
- Enter Markov Chains.

What is it?

- A Markov Chain is a stochastic process that operates sequentially, going from one state to the next
- $\bullet \ \ X_0 \to X_1 \to X_2 \to \dots X_k \to \dots X_{k+1} \to \dots, X_K$
- State space: The set of all values of the random variable
- Index/Time: k, the step of the Markov Chain we are currently at
- Markov Property: $p(x_{k+1}|x_k,x_{< k}) = p(x_{k+1}|x_k)$
- Transition Operator: $T(x_k \rightarrow x_{k+1})$
- \bullet *Time Homogenous:* A MC is time homogenous if the ${\cal T}$ stays constant across time

Visualization

- See a visualization of Markov Chains
 http://setosa.io/ev/markov-chains/
- Each state in the visualization A, B etc. corresponds to a different state of the random variable
- We want a way to sample from p(x)
- We're going to build a Markov Chain to visit states of the random variables in a manner such that the number of times A is visited is proportional to p(x = A)
- We use a Markov Chain to form a Monte Carlo approximation to $\mathbb{E}_{p(x)}[f(x)]$. Hence the name Markov Chain Monte Carlo

Properties of Markov Chains

- Irreducibility: For every state of the Markov chain, there is a positive probability of visiting all other states
- Aperiodicity: The chain should not be cyclic. i.e the greatest common denominator of the set of time indices that we visit any state x_i should be one
- Detailed Balance: $\pi(x)\mathcal{T}(x \to x') = \pi(x')\mathcal{T}(x' \to x)$.

Why are these properties relevant?

- Limiting distribution: A distribution π where if we start in any initial distribution π_0 , we eventually converge to π by running the Markov Chain
- Stationary Distribution: A distribution π such that if we start the chain in π , we stay in π
- Proposition: If the Markov Chain is irreducible, aperiodic and satisfies detailed balance, then there exists a limiting distribution.
- Proposition: If the limiting distribution exists, it must be the stationary distribution
- If we run the Markov Chain we construct for long enough, we will be sampling from the stationary distribution.

Tying it all together

- We have some complex, high dimensional, probability distribution $\pi(x)$ of interest
- Direct sampling not possible
- Use MCMC:
 - Construct a Markov Chain $\{X_i\}_{i=1}^{\infty}$ such that $\lim_{i\to\infty} p(X_i = x) = \pi(x)$
 - Simulate this and for large i, take samples $\{x_i, \ldots, x_{i+m}\}$. These are samples from $\pi(x)$
 - Use these samples to form your Monte Carlo estimate

Coming Up

- Key Question: How do we move from one state to the next? What T do we use? How do we guarantee that the Markov Chain that we construct will have the right stationary distribution?
- In upcoming lectures you will learn:
 - Metropolis Hasting: How to construct a valid transition kernel
 - Gibbs Sampling : Sampling from the conditional distribution as one way to perform Metroplis Hastings.