Domande a risposta multipla

	1	2	3	4	5	6	7	8	9	10	11	12
a												
b												
С												
d												

- 1. Analizzando un circuito contenente un diodo ideale, si è fatta l'ipotesi che il diodo sia OFF. Per verificare che l'ipotesi sia corretta, detta v_D la tensione tra anodo e catodo e i_D la corrente che scorre da anodo a catodo, bisogna verificare che:
 - (a) $i_D = 0$
 - (b) $i_D < 0$
 - (c) $v_D \le 0$
 - (d) $v_D > 0$
- 2. In un transistore nMOS in regione di triodo
 - (a) $v_{GS} > V_{TH} e v_{DS} < v_{GS} V_{TH}$
 - (b) $i_D = 0$
 - (c) per $v_{DS} \rightarrow 0$, la porta drain-source si comporta come una resistenza proporzionale a $v_{GS} V_{TH}$
 - (d) $i_D = \frac{\beta}{2} (v_{GS} V_{TH})^2 (1 + \lambda v_{DS})$
- 3. Per analizzare un circuito contentente transistori MOS in condizioni di piccolo segnale (indicare quale delle seguenti affermazioni è errata):
 - (a) è necessario conoscere il punto di funzionamento a riposo dei transistori
 - (b) si spengono i generatori di tensione e corrente costanti
 - (c) non si può utilizzare il principio di sovrapposizione degli effetti
 - (d) l'ampiezza dei segnali deve essere tale da non portare i transistori al di fuori della regione di funzionamento nominale
- 4. Nel modello a doppio bipolo di un amplificatore di tensione, la resistenza di ingresso
 - (a) è infinita se cambiando il valore della resistenza interna del generatore di tensione, la tensione di uscita non cambia
 - (b) è sempre nulla
 - (c) è nulla se cambiando il valore del carico, la tensione di uscita non cambia
 - (d) è sempre infinita
- 5. In un amplificatore di tensione descritto dai parametri A_v , R_{in} , R_{out} , tutti finiti e non nulli, l'ingresso e l'uscita sono stati erroneamente scambiati ed è applicato un segnale v_s alla porta l'uscita, lasciando la porta d'ingresso in circuito aperto. La tensione alla porta d'ingresso è:
 - (a) $v_{in} = 0$
 - (b) $v_{in} = \frac{v_s}{A_v}$
 - (c) $v_{in} = v_s$
 - (d) $v_{in} = A_v v_s$

- 6. In uno stadio amplificatore source comune, descritto dai parametri A_v , R_{in} , R_{out} :
 - (a) è sempre $A_v < 0$ (stadio invertente)
 - (b) è sempre $|A_v| < 1$
 - (c) a parità di transconduttanza del transistore MOS, $|A_v|$ è inversamente proporzionale alla resistenza R tra drain e potenziale di riferimento
 - (d) l'ingresso è applicato al terminale di source e l'uscita è prevelata al terminale di drain del transistore
- 7. In un amplificatore di transconduttanza, per evitare effetti di carico per qualsiasi possibile sorgente o carico deve essere:
 - (a) $R_{in} = 0, R_{out} \to \infty$
 - (b) $R_{in} \to \infty, R_{out} \to \infty$
 - (c) $R_{in} \to \infty$, $R_{out} = 0$
 - (d) $R_{in} = 0, R_{out} = 0$
- 8. In uno stadio amplificatore con A_v , R_{in} , R_{out} finiti e non nulli, un generatore di segnale con resistenza interna R_s è accoppiato in AC alla porta d'ingresso tramite un condensatore C collegato in serie:
 - (a) il condensatore C limita superiormente la banda dell'amplificatore
 - (b) il condensatore C dà luogo ad un polo nell'origine nella funzione di trasferimento $\frac{V_{out}}{V_{\cdot}}$
 - (c) il punto di funzionamento a riposo dello stadio è influenzato dalla resistenza interna della sorgente R_s
 - (d) il condensatore C limita inferiormente la banda dell'amplificatore
- 9. Un amplificatore è costituito da tre stadi identici in cascata, ciascuno con amplificazione in banda A>1. Detto $\overline{n_0^2}$ il valor quadratico medio del rumore in banda in ingresso e $\overline{n^2}$ il valor quadratico medio del rumore in banda complessivo in uscita:
 - (a) $\overline{n^2} < A^6 \overline{n_0^2}$, se si tratta di un amplificatore a basso rumore
 - (b) il contributo del rumore generato dall'ultimo stadio su $\overline{n^2}$ è dominante rispetto a quello dagli altri due stadi, perchè è sommato direttamente sull'uscita
 - (c) il contributo del rumore generato dai tre stadi su $\overline{n^2}$ è identico, perchè presentano identiche caratteristiche
 - (d) il contributo del rumore generato dal primo stadio su $\overline{n^2}$ è dominante rispetto a quello dagli altri due stadi, perchè è amplificato dai due stadi successivi
- 10. In un amplificatore invertente basato su operazionale ideale:
 - (a) R_{in} è finita e non nulla, $R_{out} = 0$
 - (b) $R_{in} \to \infty$, $R_{out} \to \infty$, come in un amplificatore di tensione ideale
 - (c) $R_{in} \to \infty$, $R_{out} = 0$, come in un amplificatore di tensione ideale
 - (d) $R_{in} \rightarrow \infty$ ed R_{out} è finita e non nulla
- 11. In un amplificatore di tensione non invertente basato su operazionale con amplificazione differenziale A_d finita, rispetto al caso di operazionale ideale
 - (a) l'amplificazione di tensione è maggiore
 - (b) la resistenza d'uscita è minore
 - (c) la resistenza d'uscita è maggiore o uguale
 - (d) la resistenza d'ingresso è strettamente maggiore
- 12. In un amplificatore di tensione non invertente basato su operazionale:
 - (a) la dinamica della corrente d'uscita dell'operazionale non è mai d'interesse, essendo l'uscita in tensione
 - (b) la dinamica d'ingresso per il modo comune dell'operazionale deve includere la dinamica del segnale d'ingresso
 - (c) la dinamica della tensione in ingresso dipende dall'amplificazione di modo comune dell'operazionale
 - (d) la dinamica della tensione in ingresso può essere più ampia della dinamica della tensione d'uscita