AI 1103 - Challenging Problem 14

T. Rohan CS20BTECH11064

Download all latex codes from

https://github.com/rohanthota/ Challenging problem/main.tex

1 Problem

(UGC/MATH 2018 (June set-a)-Q.106) Let $X_{ii\geq 1}$ be a sequence of i.i.d. random variables with $E(X_i) = 0$ and $V(X_i) = 1$. Which of the following are true?

1)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 0$$
 in probability

1)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 0$$
 in probability
2) $\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0$ in probability

3)
$$\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \to 0$$
 in probability

4)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 1$$
 in probability

Solution

CONVERGENCE IN PROBABILITY:

Let Y, Y_1, Y_2, \dots be random variables. We say that the sequence $Y_n \to Y$, if

$$\lim_{n \to \infty} \Pr(Y_n \le a) = \Pr(Y \le a) \, \forall a \in \mathbb{R}. \tag{1.0.1}$$

CENTRAL LIMIT THEOREM(CLT):

Let $X_1, X_2, \dots X_n$ be i.i.d. random variables with expected value $E(X_i) = \mu < \infty$ and $0 < V(X_i) =$ $\sigma^2 < \infty$. Then the random variable

$$Z_n = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$
 (1.0.2)

converges in distribution to the standard normal random variable as n goes to infinity, that is

$$\lim_{n \to \infty} \Pr\left(Z_n \le a\right) = \Phi(a) \ \forall a \in \mathbb{R}. \tag{1.0.3}$$

where $\Phi(a)$ is the standard normal CDF.

3) We need to check if $\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \rightarrow 0$ in probability. Writing the random variable Z_n from CLT, for the i.i.d random variables,

$$Z_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma}$$
 (1.0.4)

$$=\frac{X_1 + X_2 + \ldots + X_n}{\sqrt{n}}$$
 (1.0.5)

$$=\frac{1}{n^{1/2}}\sum_{i=1}^{n}X_{i}$$
(1.0.6)

Since $\mu = 0$ and $\sigma = 1$. According to Central limit theorem,

$$Z_n \to Z$$
, where, $Z \sim N(0, 1)$ (1.0.7)

which is not what the option states. Therefore, option 3 is incorrect.