Asymptotic Analysis

Asymptotic analysis is a technique used to describe the growth rate of an algorithm as the input size increases. Three common notations used in asymptotic analysis are:

• Big-oh (O), big omega (Ω) and big theta (Θ)

Big-oh (0) provides upper bound.

Big omega (Ω) provides lower bound.

Big theta (Θ) provides tight bound.

Upper bound:

f(N) = O(g(N)) if $f(N) \le c * g(n)$ for all values of $n \ge n_0$ where c and n_0 are + ve constants

Lower bound:

 $f(N) = \Omega(g(N))$ if $f(N) \ge c * g(n)$ for all values of $n \ge n_0$ where c and n_0 are + ve constants

Tight bound:

 $f(N) = \Theta(g(N))$ if $c_1 * g(N) \le f(N) \le c_2 * g(n)$ for all $n \ge n_0$ where c and n_0 are +ve constants.

Practice Questions

Q#1:
$$f(N) = \frac{1}{2}N^2 + 3N$$
 Prove that $f(N) = \Theta(N^2)$

Q#2:
$$f(N) = 2N^3 - 7N + 1$$
 Prove that $f(N) = \Omega(N^3)$

Q#3:
$$f(N) = 3N^2 + 2 * 4^N + 3N^3 log N$$
 find closest upper bound.

Q#4: which of the following is true about $f(N) = 2^{N+10}$

- $f(N) = \Theta(2^N)$
- $\bullet \quad f(N) = O(2^N)$
- $f(N) = \Omega(2^N)$

Q#5: which of the following is true about $f(N) = 2^{10N}$

- $f(N) = \Theta(2^N)$
- $\bullet \quad f(N) = O(2^N)$
- $\bullet \quad f(N) = \Omega\left(2^N\right)$

Q#6: which of the following is true about $f(N) = \log_2 N$

- $f(N) = O(\log_8 N)$
- $f(N) = \Omega(\log_8 N)$
- $f(N) = \Theta(\log_8 N)$

Q#7: which of the following is true about $f(N) = N^3 \log_2 N$

- $f(N) = O(N \log_2 N)$
- $f(N) = \Omega(N \log_2 N)$
- $f(N) = \Theta(N \log_2 N)$

Q#8: which of the following is true about $f(N) = 8^N$

- $\bullet \quad f(N) = O(4^N)$
- $f(N) = \Omega(2^{4N})$ $f(N) = \Theta(2^{3N})$