Deflection of Beams Using Beam Bending Tables

- Superposition
- Beam Tables

Example

$$V = -\frac{P}{2}$$

$$M = -\frac{P \cdot y}{2}$$

$$2a < y < 3a$$

$$V = P$$

$$M = -(3 \cdot a - y) \cdot P$$

-	BEAM	SLOPE	DEFLECTION	ELASTIC CURVE
	$\frac{L}{2}$ $\frac{P}{Q}$ $\frac{L}{2}$ $\frac{L}{2}$ $\frac{L}{2}$ $\frac{P}{Q}$ $\frac{L}{2}$	$\theta_{\text{max}} = \frac{-PL^2}{16EI}$	$v_{\text{max}} = \frac{-PL^3}{48EI}$	$v = \frac{-Px}{48EI} (3L^2 - 4x^2)$ $0 \le x \le L/2$
	θ_1 θ_2 A	$\theta_1 = \frac{-Pab(L+b)}{6EIL}$ $\theta_2 = \frac{Pab(L+a)}{6EIL}$	$v\Big _{x=a} = \frac{-Pba}{6EIL}(L^2 - b^2 - a^2)$	$v = \frac{-Pbx}{6EIL} (L^2 - b^2 - x^2)$ $0 \le x \le a$
	M_0 θ_1 θ_2 x	$\theta_1 = \frac{-M_0 L}{3 EI}$ $\theta_2 = \frac{M_0 L}{6 EI}$	$v_{\text{max}} = \frac{-M_0 L^2}{\sqrt{243}EI}$	$v = \frac{-M_0 x}{6EIL} (x^2 - 3Lx + 2L^2)$

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

Cantilevered Beam Slopes and Deflections

Hibbeler, R.C., Mechanics of Materials, 4th ed., Prentice Hall, 2000.

Beams - Statically Indeterminate

