AR 기반 공간 소통시스템 개발 (ARS Team)

GPS 기반 랜드마크 인식을 통해 GPS의 불안정성을 개선한, 공간소통 AR SNS 개발. Real Space Social Networking System based on AR

이종법 김대유 박창범

목차

■ 아이디어 개요

제안배경 및 아이디어 제시

■ 개발 설계 및 구현 결과

각 분야별 설계도 구현 결과

■ 성능 평가

성능 평가 결과 및 과정

■ 데모 영상

프로젝트의 결과물 영상

- 개발 배경

주요 관광지를 보면 이미 AR기술로 설명하고 체험하는 서비스는 존재 방문객이 해당 장소에 기록을 남긴다거나 추억을 남겨 공유하고 그 장소에서 다시 보여주는 AR 서비스는 아직 부족 또한, 기존 관광지 낙서로 인해 문화재 훼손 문제가 발생

- 제안 아이디어

이러한 문제를 가상환경으로 다양한 사람들이 추억을 남기고 볼 수 있는 친환경적이고 영구적인 방식을 제공 그래서. 어느 장소에서나 가상의 공간에 추억을 저장하는 서비스를 제안

- 관련 기술

GPS와 휴대폰 tilt 센서를 활용한 방법	SLAM 공간인식을 이용한 Map 생성 방법
GPS 사용 가능시 어디서든 사용할 수 있다는 것이 장점	SLAM은 정확도가 가장 높다는 것이 장점
GPS는 신호강도에 따라 오차가 커져 사용자에게 불편함을 줄 수 있는 것이 단점	공간 매핑과 공간인식은 많은 시간과 비용이 필요
실내에서는 사용이 불가능 하다.	정해진 공간에서만 사용할 수 있다는 것이 단점

- 핵심 기술

+ GPS/Tlit/Compass/Cloud Point

(GPS로 대략적 공간을 인식 후 거리 / Tlit / Compass 값에 따른 공간 지정 및 인식)

실제 공간의 물체를 이용해서, Landmark Localization을 실시 하자!

- 동작 과정

*AR Space란? GPS로 구별한 유저가 속해 있는 지역으로 AR환경을 불러올 수 있는 공간입니다. *랜드마크란? 해당 유저가 속해있는 AR 공간에서, 기준 좌표를 불러올 수 있는 Marker 입니다.

- 1. 유저가 AR Space에 진입
- 2. DB에서 랜드마크 정보 불러오기

3. 랜드마크 Localization을 통해, SNS 시각화

개발 설계

- 시스템 block design

- AR

- AR indicator를 이용해 기준점을 동기화 할 수 있는 기능
- Landmark를 인식해 동일한 기준으로 포스트를 시각화 할 수 있는 기능
- 포스트 내용들과 터치스크린을 통해 상호작용을 할 수 있는 기능
- 공간 인식을 통해 포스트 내용과 3D 오브젝트를 배치할 수 있는 기능

- AR

- AR indicator를 이용해 기준점을 동기화할 수 있는 기능
- Landmark를 인식해 동일한 기준으로 포스트를 시각화 할 수 있는 기능
- 포스트 내용들과 터치스크린을 통해 상호작용을 할 수 있는 기능
- 공간 인식을 통해 포스트 내용과 3D 오브젝트를 배치할 수 있는 기능

- Map

- 사용자 주변의 AR Space를 검색하여 표시하는 기능
- AR Space 시각화 알고리즘
- 사용자의 GPS를 이용한 AR공간 진입 여부 인지 기능
- Indicator를 통한, 위치 안내 기능

- AR Space 생성

주요기능

- 포인트 클라우드 활용, 랜드마크 기준 점 설정
- 기준 이미지 촬영
- 설정된 기준으로 AR Space를 생성

AR Space 생성 버튼

- Backend (AR SNS)

주요기능

- 유저 관리 / 인증 (Firebase Authentication)
- AR 공간별로 SNS 포스트를 등록하는 기능
- Realtime DB로 새롭게 등록되는 SNS 포스트를 실시간으로 동기화하는 기능

DB 흐름도

- Backend (Firebase)

사용 기능

- Firebase Authentication
- Firebase Realtime Database
- Firebase Cloud Storage
- Firebase Cloud Function

함수	트리거
addComment asia-northeast3	요청 https://asia-northeast3-metamong-c173d.cloudfunctions.net/addCommen
setLike asia-northeast3	HTTP 요청 https://asia-northeast3-metamong-c173d.cloudfunctions.net/setLike

- Backend (ARSpace DB)

- 랜드마크 데이터를 이용해 AR 공간을 생성하고 등록할 수 있는 기능
- 위도, 경도 좌표를 기준으로 일정 거리 내의 AR 공간들을 조회할 수 있는 기능

Method	URI	Description
GET	/spaces	좌표 주변 공간 조회
POST	/spaces	공간 등록

- 성능 평가 기준

평가항목	평가방법	평가기준	목표치	비중(%)	비고
AR 공간 오차	실제 공간 측정	위치 오차	실내 외 2m 이내	40%	<u>국토지리워 조사</u> , 모바일 GPS는 약 2m 이상의 오차가 발생하는것과 비교.
AR 렌더링 속도	데이터 로드, 렌더링 시간	Android LTE/ 10개 포스트	2초 이내	40%	<u>구글의 조사(2017)</u> , 모바일 웹페이지 로드시간이 3초가 넘으면, 이탈률이 90%가 상승. (LTE 환경 20Mb/s 기준, 2.5Mb 이미지 10개 다운로드에 1.25 초 소요. 0.75초 안에 렌더링 실시.)
백엔드 Scalability	부하 테스트	최대 TPS	5000 이상	10 %	15000명의 동시 접속자 수용, 15000명 동시에 요청 가정, 각 요청이 3초 안에 처리 되기 위해 1초에 5000개의 요청이 처리될 수 있게 함.
APP 안정성 평가	동시 접속 테스트	동시 접속 10명	앱 유지	10 %	데모 영상으로 대체 (실 유저 3명 / 가상환경 3개로 대체)

- AR 공간 오차 (테스트 환경)

** : 차이가 유의하다.

평가항목	평가방법	평가기준	목표치	비중(%)	테스트 결과 평균	테스트 결과 95% 신뢰구간
AR 공간 오차	실제 공간 측정	위치 오차	실내 외 2m 이내	40%	0.6 m	(0.47m, 0.72m) **

같은 장소에서, N = 6개 의자 x (5회 Marker Localization) = 30 회 측정

- AR 렌더링 속도 (테스트 환경)

평가항목	평가방법	평가기준	목표치	비중(%)	테스트 결과 평균	테스트 결과 95% 신뢰구간
AR 렌더링 속도	데이터 로드, 렌더링 시간	Android LTE/ 10개 포스트	2초 이내	40%	1.94 초	(1.66 s, 2.2 s)

10개의 이미지가 있는 ARSpace에서

N = 두가지 안드로이드폰 * 10회씩 렌더링 = 20회

테스트 기기	렌더링 시간 평균(10회)
samsung(LTE)	2.34 초
poco f3(LTE)	1,53 초

성능 개선 사항

- 1. 유저의 시각적 불편함 해소위해, 기준점 설정시 이미지 로드 (구현 완료)
- 2. AR Space 중심점으로 부터 상대거리 가까운 순으로 이미지 로드 (구현 완료)
- 3. Low Resolution 이미지 불러오기 (예정)

- 백엔드 Scalability

	٠	-L	n	ורו	유의	I=LFL	
* *	٠	~1	v	_	TT ~	이니	

평가항목	평가방법	평가기준	목표치	비중(%)	테스트 결과 평균	테스트 결과 95% 신뢰구간
백엔드 Scalability	부하 테스트	최대 TPS	5000 이상	10 %	6290	(5540,6649)**

테스트 환경

- nGrinder 3.5.5
- 가상 유저 15000명
- 5분간 부하 / 5회 테스트 진행

테스트 결과

- Peak TPS 평균 6290
- TPS 평균 4948

- 전체 결과

** : 차이가 유의하다.

평가항목	평가방법	평가기준	목표치	비중(%)	테스트 결과 평균	테스트 결과 95% 신뢰구간
AR 공간 오차	화면 캡쳐 비교	위치 오차	실내 외 2m 이내	40%	0.6 m	(0.47m , 0.72m) **
AR 렌더링 속도	데이터 로드, 렌더링 시간	Android LTE/ 10개 포스트	2초 이내	40%	1.94 초	(2.2 s, 1.66 s)
백엔드 Scalability	부하 테스트	최대 TPS	5000 이상	10 %	6290	(6649,5540)**
APP 안정성 평가	동시 접속 테스트	동시 접속 10명	앱 유지	10 %	데모 영상으로 대체.	

- Demo

Q & A