

Packet Tracer - Contrôle de l'adressage IPv4 et IPv6 (7.3.2.5)

Topologie

Table d'adressage

Appareil	Interface	Adresse IPv4	Masque de sous-réseau	Passerelle par défaut
		Préfixe/adresse IPv6		
R1	G0/0	10.10.1.97	255.255.255.224	N/A
		2001:DB8:1:1::1/64		N/A
	S0/0/1	10.10.1.6	255.255.255.252	N/A
		2001:DB8:1:2::2/64		N/A
	Link-local	FE80::1		N/A
R2	S0/0/0	10.10.1.5	255.255.255.252	N/A
		2001:DB8:1:2::1/64		N/A
	S0/0/1	10.10.1.9	255.255.255.252	N/A
		2001:DB8:1:3::1/64		N/A
	Link-local	FE80::2		N/A
R3	G0/0	10.10.1.17	255.255.255.240	N/A
		2001:DB8:1:4::1/64		N/A
	S0/0/1	10.10.1.10	255.255.255.252	N/A
		2001:DB8:1:3::2/64		N/A
	Link-local	FE80::3		N/A
PC1	Carte réseau			
PC2	Carte réseau			

Objectifs

Partie 1 : compléter la table d'adressage

Partie 2 : tester la connectivité à l'aide de la commande ping

Partie 3 : découvrir le chemin en le traçant

Le contexte

La technologie double pile (dual-stack) permet aux adresses IPv4 et IPv6 de coexister sur un même réseau. Dans cet exercice, vous allez étudier une mise en œuvre de type double pile (dual-stack), documenter les configurations IPv4 et IPv6 pour des périphériques finaux, tester la connectivité à la fois pour IPv4 et IPv6 à l'aide de la commande **ping** et tracer un chemin de bout en bout pour IPv4 et IPv6.

Partie 1: Compléter la table d'adressage

Étape 1: Utilisez ipconfig pour vérifier l'adressage IPv4.

- a. Cliquez sur PC1 et sur l'onglet Desktop (bureau) > Command Prompt (invite de commandes).
- b. Saisissez la commande **ipconfig /all** pour obtenir les informations relatives à IPv4. Complétez la **table d'adressage** avec l'adresse IPv4, le masque de sous-réseau et la passerelle par défaut.
- Cliquez sur PC2 et cliquez sur l'onglet Desktop (bureau) > Command Prompt (invite de commandes).
- d. Saisissez la commande **ipconfig /all** pour obtenir les informations relatives à IPv4. Complétez la **table d'adressage** avec l'adresse IPv4, le masque de sous-réseau et la passerelle par défaut.

Étape 2: Utilisez ipv6config pour vérifier l'adressage IPv6.

- a. Sur **PC1**, exécutez la commande **ipv6config /all** pour collecter les informations IPv6. Complétez la **table d'adressage** avec l'adresse IPv6, le masque de sous-réseau et la passerelle par défaut.
- b. Sur **PC2**, exécutez la commande **ipv6config /all** pour collecter les informations IPv6. Complétez la **table d'adressage** avec l'adresse IPv6, le masque de sous-réseau et la passerelle par défaut.

Partie 2: Tester la connectivité à l'aide de la commande ping

Étape 1: Utilisez une requête ping pour vérifier la connectivité IPv4.

- a. À partir de PC1, envoyez une requête ping à l'adresse IPv4 de PC2. La requête a-t-elle abouti ?
- b. À partir de PC2, envoyez une requête ping à l'adresse IPv4 de PC1. La requête a-t-elle abouti ?

Étape 2: Utilisez une requête ping pour vérifier la connectivité IPv6.

- a. À partir de PC1, envoyez une requête ping à l'adresse IPv6 de PC2. La requête a-t-elle abouti ?
- b. À partir de PC2, envoyez une requête ping à l'adresse IPv6 de PC1. La requête a-t-elle abouti ?

Partie 3: Découvrir le chemin en le traçant

Étape 1: Utilisez la commande tracert pour connaître le chemin IPv4.

a. À partir de PC1, tracez la route vers PC2.

PC> tracert 10.10.1.20

Quelles adresses ont été trouvées en chemin?

À quelles interfaces les quatre adresses sont-elles associées ?

b. À partir de PC2, tracez la route vers PC1.

Quelles adresses ont été trouvées en chemin?

À quelles interfaces les quatre adresses sont-elles associées ?

Étape 2: Utilisez la commande tracert pour connaître le chemin IPv6.

a. À partir de PC1, tracez la route vers l'adresse IPv6 de PC2.

PC> tracert 2001:DB8:1:4::A

Quelles adresses ont été trouvées en chemin?

À quelles interfaces les quatre adresses sont-elles associées ?

b. À partir de PC2, tracez la route vers l'adresse IPv6 de PC1.

Quelles adresses ont été trouvées en chemin?

À quelles interfaces les quatre adresses sont-elles associées ?