MAC0209 - Modelagem e Simulação - 2022S1

Avaliação P1

Utilize caneta azul ou preta e preencha completamente a quadrícula, como por exemplo: \blacksquare .

Não use símbolo X assim: ⊠.

← Marque as quadrículas ao lado para formar o seu número USP e escreva seu nome completo em letra legível na linha pontilhada abaixo. Se seu número possui menos que 8 dígitos complete com zeros à esquerda.

0000000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3 3 3 3 3 3 3
44444444
5 5 5 5 5 5
666666
7777777
8888888
99999999

Nome:
Sabaira Avanjo da Silva 12566182

O Departamento de Ciência da Computação considera qualquer forma de plágio e outros comportamentos antiéticos uma infração disciplinar inadmissível. Na ocorrência de tais casos, o Departamento recomenda que os alunos envolvidos sejam reprovados na disciplina em questão, e que o ocorrido seja relatado à CG para as demais providências.

Estou ciente. Assinatura: fabuna franjo

Leia todas as questões antes de começar, pois a ordem das questões é aleatória entre os alunos. Como algumas questões podem ter relação com outras, é importante para você planejar a resolução da prova.

Esta prova tem duração de 100 minutos. Não desmonte a prova.

QcompleteEuler Uma partícula se move com aceleração dada por

$$a(t) = \frac{d^2x}{dt^2} = 2t$$

sendo v(0) = -3 e x(0) = 0. Crie um programa Python que simule a posição dessa partícula usando o método de Euler para $0 \le t \le 0.5$, dt = 0.25.

$$v(\tilde{t} + \Delta t) = v(t) + \alpha(t)$$

 $x(t + \Delta t) = x(t) + v(t)$

de	f ma	in():		
	L1			
	L2			
	L3			
	L4			
	L5	/		
	L6			
	L7			
	L8			
		L9		
		L10		
		L11		
		L12		
		L13		
	L14			
ma	in()			

Rascunho		
t = 10		
th= 0,5		
t= 0 th= 0,25		
V = -3		
v = -3 x = 0		

Para cada um dos itens a seguir, correspondendo às lacunas no código acima, assinale a única resposta que torna o programa acima correto. As endentações do código correspondem a blocos do Python. Cada linha do programa corresponde a uma questão abaixo. Não tente montar o programa testando as combinações possíveis pois não vai dar tempo. Escreva primeiro seu programa e depois procure analisar as opções abaixo depois. Isso é melhor do que tentar advinhar o programa combinatoriamente olhando todas as alternativas. A cada opção errada que for selecionada, poderá ser descontada nota do exercício. Observe que o comando para imprimir NDA (nenhuma das alternativas) indica que aquela linha é desnecessária no algoritmo.

1/1	Questão 1:	L1: $t = v = -3$ $t = input()$ $t += v += -3$ $t = 0$
1/1	Questão 2:	L2: tf = t + 1.5 tf = 0.5 tf = v = 0 tf = v = -1
1/1	Questão 3:	L3:
1/1	Questão 4:	LA:
1/1	Questão 5:	L5: v = x * dt v = -3 v = -4 v += x * dt
1/1	Questão 6:	L6: print('NDA: comando desnecessario')
1/1	Questão 7:	L7: vxe=[v] vxe = [v] vxe = [v]
1/1	Questão 8:	L8:
1/1	Questão 9:	L9: vxe.append(x) vxe.append(v) vxe.append(x-1) vxe.reverse(v)
1/1	Questão 10:	L10: $x = x + v * dt$ $x = x * (1 + a * v * dt)$ $x + x * (1 + a * v * dt)$ $x = x + a * dt$
1/1	Questão 11:	L11: print('NDA: comando desnecessario')
1/1	Questão 12:	L12: v = v + a * dt

1/1	Questão 13:	L13:	a += t**2	t = t + c	it	a = t**2
1/1	Questão 14:	L14:	print("Euler", x +	vxe*dt)	<pre>print("Euler", vxe[]) print("Euler", x + vxe*dt)</pre>	print("Euler", vxe)

 $\mathbf{Qex2Sin}$ Um modelo financeiro indica que a velocidade v de mudança do índice iBovespa x tem variação dada pelo modelo diferencial

$$\frac{d^2x}{dt^2} = 50\sin(4t)$$

sendo v(0) = -12.5 e x(0) = 100. Crie um programa Python que simule o índice iBovespa usando o método de Euler para $0 \le t \le 2\pi$, dt = 0.1.

de	def main():				
	L1				
	L2				
	L3				
	L4				
	L5				
	L6				
	L7	1			
	L8				
		L9			
		L10 .			
		L11			
		L12			
		L13			
		L14			
	L15				
ma	in()				

D 1	
Rascunho	- W.
V = -12.5	t= 2m1
$\infty = 700$	
dt = 0,1/	
t = 0	
a=[x,v,t]	

Para cada um dos itens a seguir, correspondendo às lacunas no código acima, assinale a única resposta que torna o programa acima correto. As endentações do código correspondem a blocos do Python. Cada linha do programa corresponde a uma questão abaixo. Não tente montar o programa testando as combinações possíveis pois não vai dar tempo. Escreva primeiro seu programa e depois procure analisar as opções abaixo depois. Isso é melhor do que tentar advinhar o programa combinatoriamente olhando todas as alternativas. A cada opção errada que for selecionada, poderá ser descontada nota do exercício. Observe que o comando para imprimir NDA (nenhuma das alternativas) indica que aquela linha é desnecessária no algoritmo.

1/1	Questão 15:	L1: s = 0
-0.5/	Questão 16:	L2: a += 50 * sin (4*t); v += -12.5 print('NDA: comando desnecessario') a = 50 * sin (4*t); v = -12.5 a = 50 * sin (4*t)
0/1	Questão 17:	L3: $v = -12.5$; $x = 100$ $x = 100$ $a=0$ print('NDA: comando desnecessario')
1/1	Questão 18:	L4:
1/1	Questão 19:	L5: dt = 0.1
1/1	Questão 20:	L6: x = 100 print('NDA: comando desnecessario') a = 50 * sin (4*t) a = v * dt
1/1	Questão 21:	L7: print('NDA: comando desnecessario')
1/1	Questão 22:	L8: while (t <= tf*dt) while (s[2] <= tf): if (s[1] <= 50 * sin (4*t)) while (s[1] <= 50 * sin (4*t))
0/1	Questão 23:	L9: vxe.append(v) vxe.append(list(s)) vxe.append(x) print('NDA: comando desnecessario')

0/1 Questão 24:	L10:
-0.5/1 _{Questão} 25:	L11:
0/1 Questão 26:	L12:
-0.5/1 _{Questão} 27:	L13: $s[0] = x \qquad a = v * dt \qquad v = v + a * dt$ $print('NDA: comando desnecessario')$
-0.5/1Questão 28:	Drint('NDA: comando desnecessario') a = v * dt a = 50*np.sin(4*t) a = 50*np.sin(4*s[2])
1/1 Questão 29:	L15: print("Euler", vxe[]) print("Euler", vxe) print('NDA: comando desnecessario') print("Euler", x + vxe*dt)

Questão 30: Uma partícula se move com aceleração dada por $\underline{a(t)=2t}$ sendo $\underline{v(0)=-3}$, $\underline{x(0)=0}$. Calcule os válores de $\underline{x(t)}$ analiticamente, assumindo $\underline{x(0)}=0$, $\Delta t=0.25$, t=0.5. Adote até 3 casas decimais.

0, -0.075, -0.141

0, -0.75, -1.5

x(t)?

Nenhuma das alternativas. 0, -0.745, -1.458

x(0) = 0 $\Delta t = 0.25$ tf = 0.5

V(O) = -3

V = -3 +015,0125

V = - 3 + 0 0, 525

V=2,875

x = x03+ =-0,75 + (2,885,0,25)

-0175-015

Uma partícula se move com aceleração dada por

$$a(t) = \frac{d^2x}{dt^2} = 2t$$

sendo v(0)=-3 e x(0)=0. Qual a solução analítica da equação de movimento x(t) (também chamada Equação Horária) dessa partícula?

$$x(t) = \frac{t^3}{3} - 3t + K$$

$$V(0) = -3$$

 $x(t) = \frac{t^3}{3} - 3t$

$$x(0) = 0$$

$$\alpha = -3t + \frac{2t^3}{2}$$

$$x = -3t + t^3$$

- 0, -0.075, -0.141
- 0, -0.75, -1.5

1/1

- 0, -0.745, -1.458
- Nenhuma das alternativas.

$$v(0) = -3$$

$$O = O$$

$$x(t + \Delta t) = x(t) + v(t)$$

$$v(t + \Delta t) = v(t) + 2t$$

$$\Rightarrow$$
 -3 + 2t = -3 + 0.25.2

Instruções: Para cada questão abaixo, assinale as opções corretas pintando as quadrículas. Considerações: 1. As opções sobre cada item podem conter desde nenhuma opção correta até todas. 2. A cada opção errada que for selecionada, desconta-se nota do exercício.

Questão 33:

Um dos grupos da sala realizou um experimento de movimento e anotou os seguintes dados em posições onde haviam cronômetros:

		$t(segundos) \ 0 \ 3 \ 5.9 \ 8.7 \ x(metros) \ 0 \ 10 \ 20 \ 30$	$\gamma n \mid \mathcal{V}$ (101)
	Assinale todas as opções corretas:		
.5/6	 Os dados permitem calcular a lei horária por meio de um problema inverso. A partícula está acelerando com certeza. 	 Esses dados só podem ser calculados usando o Algoritmo de Euler-Cromer. Os dados representam dx/dt. A partícula provavelmente está 	acelerando. Os dados permitem calcular a lei horária. G Nenhuma das respostas apresentadas está correta.

Questão 34:

4.

3/6

1.5/6

Com base nos dados acima, foram calculados os seguintes valores para a v(t)

$$t(segundos) = 0 = 3 = 5.9 = 8.7$$
 $c_{N} = m / l_{2}^{2}$ $v(metros/segundos) = 0 = 3.33 = 3.44 = 3.57$ (102)

Assinale todas as opções corretas:

de um problema inverso.

G Nenhuma das respostas apresentadas está correta.

Questão 35:

Assinale todas as opções corretas:

O algoritmo de Euler permite calcular a lei horária por meio de um problema inverso.

O algoritmo de Euler é útil para calcular dx/dt se

soubermos a derivada analítica de x(t).

O algoritmo de Euler pode ser adotado com modelos acima de primeira ordem.

O algoritmo de Euler é útil para calcular dx/dt se não soubermos a derivada analítica de x(t).

G Nenhuma das respostas apresentadas está correta.