Chapter 3. Functions, sequences and relations 함수, 수열, 관계

3.1 Functions

Definition 3.1.1 Let X and Y be sets. A function (함수) from X to Y, $f: X \to Y$ is a subset of the Cartesian product $X \times Y$, such that for each $x \in X$, there exists exactly one $y \in Y$ with $(x, y) \in f$.

- (1) A function $f: X \to Y$ is a rule which assigns for every $x \in X$ unique $y \in Y$: *i.e.*, $\forall x \in X$, \exists unique $y \in Y$, such that $(x, y) \in f$.
- (2) The set X is called the *domain* (정의역) of f and the set Y is called the *co-domain* (공변역) of f.
- (3) When $(x, y) \in f$, y is called the *image* of x.
- (4) The set
- $(3.1) \{y | (x, y) \in f\}$

is called the *range* (3) of f: The range is the set of all images.

(5) A function is called by an *operator* if the domain and co-domain are the same.

Example 3.1 The set $f = \{(1, a), (2, b), (3, a)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$.

← This function can be described as

$$f(1) = a, f(2) = b, f(3) = a$$

- \leftarrow We can depict this function $f: X \to Y$ as shown Fig. 3.1. An arrow from j to x means that we assign the element x in the co-domain to the element y in the domain. Such a picture is known as the *arrow diagram*.
- ← For an arrow diagram to be a function, there should be exactly one arrow from each element in the domain.

Figure 3.1 Arrow diagram of the function defined in Example 3.1

Example 3.2 (a) Set $\{(1, a), (2, a), (3, b)\}$ with $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c\}$

- (b) Set $\{(1,a),(2,b),(3,c),(1,b)\}$ with $X = \{1,2,3\}$ to $Y = \{a,b,c\}$
- (c) Function $f(x) = x^2$ with X = Y = R: $f = \{(x, x^2) | x \in R\}$

Definition If $x \in Z$ and $y \in N$, we define $x \pmod{y}$ to be the *remainder* (나막지), when x is divided by y: *i.e.*, $x = ky + x \pmod{y}$, $0 \le x \pmod{y} < y$, for some integer k.

Example 3.3 (a) $6 \pmod{2}$, $5 \pmod{3}$, $-3 \pmod{4}$

(b) What day of the week will it be 365 days from Wednesday?

Example 3.4 (Pseudo-random numbers: 의사난수) Linear congruential method (선형합동법) requires 4

integers: the modulus m, the multiplier a, the increment c, and the seed s such that

$$2 \le a < m$$
, $0 \le c < m$, $0 \le s < m$

Starting from the initial seed, $x_0 = s$, we generate a sequence of pseudo-random numbers by

$$x_n = (ax_{n-1} + c)(mod m)$$

When m = 11, a = 7, c = 5, and s = 3, we have a pseudo-random sequence defined by

$$x_n = (7x_{n-1} + 5) \pmod{11}$$
, with $x_0 = 3$

and it is

3, 4, 0, 5, 7, 10, 9, 2, 8, 6, 3, ...

- (1) A commonly used pseudo-random sequence makes use of $m=2^{31}-1$ (prime) and $a=7^5$ with c=0.
- (2) One major problem in this method is that it is periodic with period-m.

Definition The *floor* (바닥) of x, denoted [x], is the greatest integer less than or equal to x. The *ceiling* (천장) of x, denoted [x], is the least integer greater than or equal to x.

Example 3.5 [8.3] = 8,
$$[-8.7] = -9$$
, $[4] = 4$, $[1.4] = 2$, and $[-2.5] = -2$

Figure 3.2 Graph of (a) floor and (b) ceiling functions

Theorem 3.1 (Quotient-remainder theorem) If $d \in Z^+$ (divisor) and $n \in Z$, \exists ! integers q (quotient 몫) and r (remainder 나머지) such that

$$(3.3) n = dq + r, \ 0 \le r < d$$

(1) Uniqueness is important: i.e. if $n = dq_1 + r_1$ and $n = dq_2 + r_2$ with $0 \le r_1, r_2 < d$, then $q_1 = q_2$ and $r_1 = r_2$.

(2)
$$\left| \frac{n}{d} \right| = q$$
 and $n \pmod{d} = r$

Types of functions

Definition (a) A function f from X to Y is said to be 1-1 (*one-to-one*, *injective*, 단사), if for each $y \in Y$, $\exists ! x \in X$ with f(x) = y.

- (b) If f is a function from X to Y and range of f is Y (*i.e.*, the co-domain and the range are the same), then f is said to be *onto* (*surjective*, 전사).
- (c) A function that is both one-to-one and onto is called bijection (전단사).

Interpretation of function types

- (1) one-to-one: $\forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$: *i.e.*
- $(3.4) \qquad \forall x_1 \forall x_2 \big((f(x_1) = f(x_2)) \to x_1 = x_2 \big)$
 - (2) onto: $\forall y \in Y$, $\exists x \in X$ such that f(x) = y: *i.e.*
- $(3.5) \qquad \forall y \in Y \ \exists x \in X \ (f(x) = y)$

Example 3.6 (a) $f = \{(1, b), (2, c), (3, a)\}$ with $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$

Figure 3.3 Arrow diagram of the function defined in Example 3.6(a)

- (b) $f = \{(1, a), (2, b), (3, a)\}$ with $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$
- (c) Function $f: N \to N$, f(n) = 2n + 1 is one-to-one.
- (d) Function $f: Z^+ \to Z$, $f(n) = 2^n n^2$ is *not* one-to-one.

Consider the negation of (3.4): i.e.

$$\sim \left(\forall x_1 \forall x_2 \big((f(x_1) = f(x_2)) \to x_1 = x_2 \big) \right) \equiv \exists x_1 \exists x_2 \sim \big((f(x_1) = f(x_2)) \to x_1 = x_2 \big)$$

$$\equiv \exists x_1 \exists x_2 \big((f(x_1) = f(x_2)) \land \sim (x_1 = x_2) \big)$$

(e) $f = \{(1, a), (2, c), (3, b)\}$ with $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$

Figure 3.4 Arrow diagram of the function defined in Example 3.6(e)

- (g) Function $f: R \setminus \{0\} \to R^+$ such that $f(x) = \frac{1}{x^2}$ is onto.
- (h) Function $f: Z^+ \to Z^+$ such that f(n) = 2n 1 is not onto.

Consider the negation of (3.5): i.e.

$$\sim (\forall y \in Y \,\exists x \in X \, (f(x) = y)) \equiv \exists y \in Y \, \forall x \in X, \sim (f(x) = y)$$
$$\equiv \exists y, \forall x \, (f(x) \neq y)$$

Definition (a) If a function f from X to Y is bijection, the function $f^{-1} = \{(y, x) | (x, y) \in f\}$ is called f inverse (역함수).

- (b) Let g be a function from X to Y and let f be a function from Y to Z. The *composition* (합성함수) of f with g, denoted by $f \circ g$ is the function
- $(3.6) \qquad (f \circ g)(x) = f(g(x))$

from X to Z.

Example 3.7 (a) When $f = \{(1, a), (2, c), (3, b)\}$ with $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$, $f^{-1} = \{(a, 1), (c, 2), (3, b)\}$

(b) The function $f(x) = 2^x$ from R to R^+ is one-to-one and onto. Its inverse is $\{(y,x) | y \in R^+, x \in R\}$ with $f^{-1}(y) = x$ or $y = 2^x$. This implies that

$$f^{-1}(y) = x = \log_2 y$$

(c) Given $g = \{(1,a),(2,a),(3,c)\}$, a function from $X = \{1,2,3\}$ to $Y = \{a,b,c\}$ and $f = \{(a,y),(b,x),(c,z)\}$, a function from Y to $Z = \{x,y,z\}$, the composition from X to Z is the function

$$f \circ g = \{(1, y), (2, y), (3, z)\}$$

Definition (a) A function from $X \times X$ to X is called a *binary operator* (이항 연산자) on X.

(b) A function from X to X is called a *unary operator* (단항 연산자) on X.

Example 3.8 Function $f: Z^+ \to Z^+$ such that f(x, y) = x + y

3.2 Sequence 수열

A sequence is a function whose domain is a set of consecutive integers.

Example 3.9 (a) $\{F_n\}_{n=0}^{\infty} = \{1, 1, 2, 3, 5, 8, ...\}$

(b)
$$C_n = 1 + 0.5(n-1), n \ge 1$$

(c)
$$s_n = 2^n + 4 \cdot 3^n$$
, $n \ge 0$
 $s_n = 5s_{n-1} - 6s_{n-2}$, $n \ge 2$

Definition Let $\{s_n\}$ be a sequence defined for $n \ge m$ and let $n_1, n_2, ...$ be an increasing sequence whose values are in the set $\{m, m+1, ...\}$. We call the sequence $\{s_{n_k}\}$ a subsequence (부분수열) of $\{s_n\}$.

Some useful notations

Given a finite sequence $\{a_i\}_{i=m}^n$,

(3.7)
$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

$$(3.8) \qquad \prod_{i=m}^{n} a_i = a_m \cdot a_{m+1} \cdot \cdots \cdot a_n$$

Sometimes the sum and product notations are modified to denote sums and products indexed over an arbitrary set of integers: *i.e.* if S is a finite set of integers (*index set*) and a is a sequence, $\sum_{i \in S} a_i$ and $\prod_{i \in S} a_i$ denote the sum and product of elements $\{a_i \mid i \in S\}$, respectively.

Definition (a) A *string* (\mathbb{Z}^{\times}) over a finite set X is a finite sequence of elements from X.

(b) A string β is a substring (부분 문자열) of the string α if there are strings γ and δ with $\alpha = \gamma \beta \delta$.

Notes on string

- (1) The string with no elements is called the *null string* and is denoted by λ .
- (2) We let X^* denote the set of all string over X, including the null string, and we let X^+ denote the set of all non-null strings over X.
- (3) The *length* of a string α is the number of elements in α and is denoted by $|\alpha|$.
- (4) If α and β are two strings, the string which consists of α followed by β , written as $\alpha\beta$, is called the *concatenation* (연접) of α and β .
- (5) A substring of a string α is obtained by selecting some or all consecutive elements of α .

Example 3.10 (a) "Let's read Rolling Stones."

- (b) 101111
- (c) When $X = \{a, b\}, X^* = \{\lambda, a, b, ab, ba, ..., abab, ..., b^{20}a^5ba, ...\}$
- (d) Let $X = \{a, b, c\}$ and define

$$f(\alpha, \beta) = \alpha \beta$$

where α and β are strings over X, then f is a binary operator on X^* .

(e) Let $X = \{a, b\}$. If $\alpha \in X^*$, let α^R denote α written in reverse order: e.g. if $\alpha = abb$, then $\alpha^R = bba$. Define a function from X^* to X^* as

$$f(\alpha) = \alpha^R$$

Then, *f* is bijection.

(f) Let $X = \{a, b\}$. Define a function from $X^* \times X^*$ to X^* as

$$f(\alpha, \beta) = \alpha \beta$$

Then, f is onto, but not one-to-one. What if we define $g(\alpha) = \alpha ab$?

 \leftarrow Concatenating a string α with the null string λ does not change α .

3.3 Relation 관계

Definition A (binary) *relation* R ((이항) 관계) from a set X to a set Y is a subset of $X \times Y$. If $(x,y) \in R$, we denote xRy and say that x is related to y. If X = Y, we call R be a (binary) relation on X.

- (1) A function $f: X \to Y$ is a special type of relation from X to $Y: \forall x \in X, \exists ! y \in Y ((x, y) \in f)$.
- (2) $(x, y) \in R \equiv xRy$
- (3) As in the function, X is the domain and Y is called the range.

Example 3.11 (a) Given $X = \{2,3,4\}$ and $Y = \{3,4,5,6,7\}$, define a relation from X to Y by $(x,y) \in R$, if x divides y (x) y를 나누어 떨어진다).

Then, we obtain $R = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}$. This relation can be described by a table as shown below.

Table 3-1 Table notation for the relation defined in Example 3.11(a)

X	Y
2	4
2	6
3	3
3	6
4	4

(b) Let
$$R$$
 be the relation on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$, if $x \le y$, $x, y \in X$. Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$

A binary relation on a set X can be depicted by a *diagraph* (directed graph, 방향그래프). To draw the diagraph of a relation on a set X, we first draw *vertices* (*node*, 정점/꼭지점) to represent the elements of the set X. Next, if the element (x,y) is in the relation, we draw an *arrow* (called a *directed edge* or *branch*: 간선) from x to y. Figure 3.5 shows a diagraph for the relation defined on Example 3.11(b). Notice that an element of the form (x,x) in a relation corresponds to a directed edge from x to x. Such an edge is called a *loop*.

Figure 3.5 Diagraph of the relation in Example 3.11(b)

Properties of binary relations

- (1) A relation R on a set X is reflective (반사적), if
- $(3.9) (x,x) \in R, \ \forall x \in X$

- ← Every vertex has a loop.
- \leftarrow Not reflexive, if $\exists x \in X$, such that $(x,x) \notin R$
- (2) symmetric (대칭적), if
- $(3.10) \quad \forall x, y \in X, \text{ if } (x, y) \in R, \text{ then } (y, x) \in R$
 - ← Every directed edge is bi-directional.
 - ← Not symmetric, if $\exists x \exists y \sim ((x, y) \in R \rightarrow (y, x) \in R) \equiv \exists x \exists y (((x, y) \in R) \land ((y, x) \notin R))$
 - (3) anti-symmetric (비대칭적), if
- (3.11) $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y
 - ← An edge is bi-directional, only if it is a loop.
 - \leftarrow Equivalently, if $x \neq y$, then $(x,y) \notin R$ or $(y,x) \notin R$.
 - ← Not anti-symmetric, if $\exists x \exists y [((x,y) \in R) \land ((y,x) \in R) \land (x \neq y)]$: *i.e.* if $\exists x \exists y$ such that both (x,y) and (y,x) are in R.
 - (4) transitive (추이적), if
- (3.12) $\forall x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$
 - \leftarrow Whenever there are directed edges (often called branch) from x to y and from y to z, there must be a directed edge from x to z.
 - ← Not transitive, if $\exists x, y, z \in X$, $[((x,y) \in R) \land ((y,z) \in R) \land ((x,z) \notin R)]$
 - (5) partial order (반순서), if it is reflexive, anti-symmetric, and transitive.
 - ← If a relation is partial order, we can order elements in the set.

```
Example 3.12 (a) R = \{(a, a), (b, c), (c, b), (d, d)\} on X = \{a, b, c, d\}.
```

- (b) Relation R on $X = \{1, 2, 3, 4\}$ defined by $(x, y) \in R$, if $x \le y$.
 - \leftarrow To formally verify that this relation is transitive, we can list all pairs of the form (x,y) and (y,z) in R to check that in every case $(x,z) \in R$ as shown in Table 3-2.

Table 3-2 List of pairs in Example 3.12(b)

(x,y)	(y,z)	(x,z)	(x,y)	(y,z)	(x,z)
(1,1)	(1,1)	(1,1)	(2,2)	(2,2)	(2,2)
(1,1)	(1,2)	(1,2)	(2,2)	(2,3)	(2,3)
(1,1)	(1,3)	(1,3)	(2,2)	(2,4)	(2,4)
(1,1)	(1,4)	(1,4)	(2,3)	(3,3)	(2,3)
(1,2)	(2,2)	(1,2)	(2,3)	(3,4)	(2,4)
(1,2)	(2,3)	(1,3)	(2,4)	(4,4)	(2,4)
(1,2)	(2,4)	(1,4)	(3,3)	(3,3)	(3,3)
(1,3)	(3,3)	(1,3)	(3,3)	(3,4)	(3,4)
(1,3)	(3,4)	(1,4)	(3,4)	(4,4)	(3,4)
(1,4)	(4,4)	(1,4)	(4,4)	(4,4)	(4,4)

Note that if x = y or y = z, then the condition for transitive will be automatically satisfied. Suppose, for example, that x = y and (x, y) and (y, z) are in R. Then, $(x, z) = (y, z) \in R$. These cases correspond to shaded area in the table. This leaves only 4 possible combinations to check if it is transitive.

(c) Relation R on X = N defined by $(x, y) \in R$, if $y \pmod{x} = 0$ (i.e. x divides y).

Let R be a partial order on a set X:

- (1) This relation is denoted by $(x, y) \in R \equiv x \le y$ and it indicates the relation as an ordering of elements.
- (2) If $x, y \in X$ and either $x \le y$ or $y \le x$, we say that x and y are comparable (비교가능).
- (3) If every pair of elements in X is comparable, then we say R be total order (전순서).

Definition (a) Let R be a relation from X to Y. The inverse of R, denoted by R^{-1} , is the relation from Y to X, defined by

(3.13)
$$R^{-1} = \{(y, x) | (x, y) \in R\}$$

(b) Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted by $R_1 \circ R_2$, is the relation from X to Z, defined by

(3.14)
$$R_1 \circ R_2 = \{(x, z) | (x, y) \in R_1 \text{ and } (y, z) \in R_2\}$$

3.4 Equivalence relation

Theorem 3.2 Let S be a partition of a set X. Define xRy to mean that, for some set $S \in S$, both x and y belong to S. Then, R is reflexive, symmetric, and transitive.

 \leftarrow If $S \in \mathcal{S}$, we can regard the members of S as equivalent in the sense of the relation R.

Definition A relation R that is reflexive, symmetric, and transitive on a set X is called an *equivalence* relation (동치관계) on X.

Example 3.13 (a) Suppose that we have a set X of 10 balls, each of which is either red, blue, or green. If we divide the balls into sets R, B, and G according to color, the family $\{R,B,G\}$ is a partition of X. If we define the relation to be the same color, then this relation is an equivalence relation.

(b) Let $S = \{\{1, 3, 5\}, \{2, 6\}, \{4\}\}$ be a partition of the set $X = \{1, 2, 3, 4, 5, 6\}$. The relation R on X given by Theorem 3.2 is given by

$$R = \{(1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3), (5,5), (2,6), (6,2), (6,6), (4,4)\}$$

Theorem 3.3 Let R be an equivalent relation on a set X. For each $a \in X$, let

$$(3.15) [a] = \{x \in X \mid xRa\}$$

i.e. [a] is the set of all elements in X that are related to a. Then,

(3.16)
$$S = \{[a] \mid a \in X\}$$

is a partition of X.

 \leftarrow The sets [a] are called the *equivalence classes* of X given by the relation R.

Example 3.14 Let $X = \{1, 2, ..., 10\}$. Define xRy to mean that 3 divides x - y: i.e. $(x - y) \pmod{3} = 0$.

- (1) R is an equivalence relation on X.
- (2) There are 3 equivalent classes: [1], [2], and [3].

3.5 Relation matrix 관계 행렬

X에서 Y로의 관계 R을 표시하는 방법 중에 행렬 표현법이 있다. 특히, 행렬 표현법은 컴퓨터에서 관계를 분석할 때 유용하게 사용될 수 있다. 관계행렬에서는 X의 원소들을 행에, Y의 원소들을 열에 배치한다. xRy이면 x행 y열에 1로, 그렇지 않으면 0으로 행렬 값을 지정한다.

Example 3.15 (a) Let $X = \{1, 2, 3, 4\}$, $Y = \{a, b, c, d\}$, and $R = \{(1, b), (1, d), (2, c), (3, b), (3, c), (4, a)\}$.

(b) Let $X = \{2, 3, 4\}$, $Y = \{5, 6, 7, 8\}$, and xRy, if x divides y.

(c) Let $X = \{a, b, c, d\}$ and binary relation $R = \{(a, b), (b, b), (c, c), (d, d), (b, c), (c, b)\}$.

Notes on relation matrix

- (1) 집합 X에서 정의되는 이항관계 R에 대응하는 행렬은 항상 정방행렬(square matrix)이다.
- (2) 이항 관계를 표시하는 행렬 A에서, "A의 모든 주 대각성분(main diagonal entries)이 1이다"는 "관계 R이 반사적이다"의 필요충분조건이다.
- (3) "행렬 A가 대칭적(symmetric: $a_{ij} = a_{ji}$)이다"는 "관계 R이 대칭적이다"의 필요충분조건이다.
- (4) The matrix A is anti-symmetric (i.e., if $a_{ij} = 1$, then $a_{ji} = 0$), if and only if the relation R is anti-symmetric.