МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Кафедра теории вероятностей и математической статистики

БОКША ВИКТОР АЛЕКСАНДРОВИЧ

СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИ M/G/1 С ЗАПАСАМИ КАК МОДЕЛЬ УЗЛА БЕСПРОВОДНОЙ СЕНСОРНОЙ ЦЕПИ СО СБОРОМ ЭНЕРГИИ

Курсовой проект студента 4 курса 7 группы

"Допустить к защите"	Руководитель
с предварительной оценкой	<i>Клименок Валентина Ивановна</i> доктор физико-математических наук,
Руководитель работы	профессор
<u>«» 2021</u> г.	

Содержание

1	Mag	тематическая модель	4
	1.1	Описание системы	4
	1.2	Цепь Маркова, описывающая поведение системы	5
2	Усл	овие эргодичности	8
3	Ст	ационарное распределение	11
4	Xap	рактеристики производительности	12
5	Чис	сленные эксперименты	13
	5.1	Эксперимент 1: Зависимость L от λ при различных значениях h	13
	5.2	Эксперимент 2: Зависимость P_{idle} от h при различных интенсивностях ремонта $ au$	15
	5.3	Эксперимент 3: Зависимость L и V от λ при различных коэффициентах корреля-	
		ции c_{cor} во входном потоке	16
	5.4	Эксперимент 4: Зависимость L от h при различных коэффициентах вариации c_{var}	
		времени ремонта	17

введение

1 Математическая модель

1.1 Описание системы

Рассматривается однолинейная система массового обслуживания MAP/G/1. Поступление запросов происходит в марковском входном потоке (MAP), более подробное описание в [1]. Предполагается, что запросы могут поступать в моменты переходов неприводимой ЦМ ν_t , $t \ge 1$.

Рассматривается система массового обслуживания MAP/G/1 с запасами. В этой СМО обслуживание поступающего запроса возможно только при наличии единицы энергии. Единицы энергии хранятся в конечном буфере, в котором помещается K таких единиц. Если запрос прибывает на обслуживание, когда прибор занят или в конечном буфере нет энергии, то он становится в конец очереди бесконечного размера. Запросы выбираются из очереди на обслуживание в соответствии с дисциплиной FIFO «первым пришел - первым ушел». Время обслуживания запроса имеет произвольную функцию распределения B(t) с преобразованием Лапласа-Стилтьеса $\beta(s) = \int\limits_0^\infty e^{-st}dB(t)$ и средним $b_1 < \infty$. Единицы энергии поступают в буфер для энергии в стационарном пуассоновском потоке с интенсивностью γ . Если в момент поступления единицы энергии буфер полностью заполнен (в нем уже есть K единиц энергии), то поступающая единица энергии теряется (возможно, перенаправляется на другой объект). В то же время единица энергии забирается из буфера в момент начала обслуживания запроса на приборе, так как для обслуживания одного запроса требуется одна единица энергии.

1.2 Цепь Маркова, описывающая поведение системы

Пусть в момент t

 i_t – число запросов на орбите, $i_t \ge 0$,

 $n_t = egin{cases} 0, & \text{если основной прибор исправен и свободен} \ 1, & \text{если основной прибор исправен и занят} \ 2, & \text{если основной прибор на ремонте, а резервный свободен} \ 3, & \text{если основной прибор на ремонте, а резервный занят} \end{cases}$

 $\underline{m_t^{(j)}}$ - состояние управляющего процесса обслуживания на j-м занятом приборе, $j=1,2,m_t^{(j)}=$ $\overline{1.}M^{(j)};$

 ϑ_t - состояние управляющего процесса ремонта, $\vartheta_t = \overline{1,R}$;

 ν_t и η_t - состояния управляющих процессов MAP потока запросов и MAP потока поломок соответственно, $\nu_t = \overline{0, W}, \, \eta_t = \overline{0, V}.$

Процесс функционировния системы описывается регулярной неприводимой цепью Маркова ξ_t с пространством состояний

$$X = \{(i,n,\nu,\eta), \ i \geq 0, n = 0, \nu = \overline{0,W}, \eta = \overline{0,V}\}\bigcup$$

$$\{(i,n,\nu,\eta,m^{(1)}), \ i \geq 0, n = 1, \nu = \overline{0,W}, \eta = \overline{0,V}, m^{(1)} = \overline{1,M^{(1)}}\}\bigcup$$

$$\{(i,n,\nu,\eta,\vartheta), \ i \geq 0, n = 2, \nu = \overline{0,W}, \eta = \overline{0,V}, \vartheta = \overline{1,R}\}\bigcup$$

$$\{(i,n,\nu,\eta,m^{(2)},\vartheta), \ i \geq 0, n = 3, \ \nu = \overline{0,W}, \eta = \overline{0,V}, \vartheta = \overline{1,R}, m^{(2)} = \overline{1,M^{(2)}}\}.$$

Далее будем предполагать, что состояния цепи $\xi_t, t \ge 0$, упорядочены в лексикографическом порядке. Подмножество состояний, соответствующих значению i первой (счетной) компоненты, назовем уровнем i. Обозначим через $Q_{i,j}$ матрицу интенсивностей переходов цепи с уровня i на уровень *j*. Введем также следующие обозначения:

- $\bar{W} = W + 1$, $\bar{V} = V + 1$, $a = \bar{W}\bar{V}$;
- \otimes , \oplus символы кронекерова произведения и суммы матриц соответственно;

Лемма 1. Инфинитезимальный генератор ЦМ ξ_t имеет следующий вид:

$$Q = \begin{pmatrix} Q_{0,0} & Q_{0,1} & 0 & 0 & 0 & \dots \\ Q_{1,0} & Q_{1,1} & Q_{1,2} & 0 & 0 & \dots \\ 0 & Q_{2,1} & Q_{2,2} & Q_{2,3} & 0 & \dots \\ 0 & 0 & Q_{3,2} & Q_{3,3} & Q_{3,4} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

где блоки $Q_{i,j}$ задают интенсивности перехода цепи с уровня i на уровень j и имеют следуюший вид:

$$Q_{i,i-1} = i\alpha \times \begin{pmatrix} O_a & I_a \otimes \boldsymbol{\beta}^{(1)} & O & O \\ O & O_{aM^{(1)}} & O & O \\ O & O & O_{aR} & I_a \otimes \boldsymbol{\beta}^{(2)} \otimes I_R \\ O & O & O & O_{aM^{(2)}R} \end{pmatrix}, \ i \ge 1,$$

$$Q_{i,i} =$$

$$\begin{pmatrix} D_0 \oplus H_0 - i\alpha I_a & D_1 \otimes I_{\bar{V}} \otimes \boldsymbol{\beta}^{(1)} & I_{\bar{W}} \otimes H_1 \otimes \boldsymbol{\tau} & O \\ I_a \otimes \boldsymbol{S}_0^{(1)} & D_0 \oplus H_0 \oplus S^{(1)} & O & I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} \\ I_a \otimes \boldsymbol{T}_0 & O & D_0 \oplus H \oplus T - i\alpha I_{aR} & D_1 \otimes I_{\bar{V}} \otimes \boldsymbol{\beta}^{(2)} \otimes I_R \\ O & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 & I_a \otimes \boldsymbol{S}_0^{(2)} \otimes I_R & D_0 \oplus H \oplus S^{(2)} \oplus T \end{pmatrix}, i \geq 0,$$

$$Q_{i,i+1} = \begin{pmatrix} O_a & O & O & O \\ O & D_1 \otimes I_{\bar{V}M^{(1)}} & O & O \\ O & O & O_{aR} & O \\ O & O & O & D_1 \otimes I_{\bar{V}M^{(2)}R} \end{pmatrix}, i \geq 1,$$

 $r\partial e\ H=H_0+H_1.$

 \mathcal{A} оказательство проводится путем анализа вероятностей переходов ЦМ ξ_t за бесконечно малый интервал времени.

Следствие 1. Цепь Маркова ξ_t принадлежит классу асимптотически квазитеплицевых цепей Маркова (АКТЦМ).

 \mathcal{A} оказательство. Обозначим через $A^{(i)}$ матрицу, диагональные элементы которой совпадают с модулями диагональных элементов матрицы $Q_{i,i}$. Из [1] следует, что рассматриваемая цепь принадлежит классу АКТЦМ, если существуют пределы

$$Y_k = \lim_{i \to \infty} (A^{(i)})^{-1} Q_{i,i+k-1}, k = 0, 2, \tag{1}$$

$$Y_1 = \lim_{i \to \infty} (A^{(i)})^{-1} Q_{i,i} + I \tag{2}$$

и матрица $Y_0 + Y_1 + Y_2$, является стохастической.

Как нетрудно подсчитать, в нашем случае

$$Y_{0} = \begin{pmatrix} O_{a} & I_{a} \otimes \boldsymbol{\beta}^{(1)} & O & O \\ O & O_{aM^{(1)}} & O & O \\ O & O & O_{aR} & I_{a} \otimes \boldsymbol{\beta}^{(2)} \otimes I_{R} \\ O & O & O & O_{aM^{(2)}R} \end{pmatrix},$$
(3)

При нахождении матрицы Y_1 заметим, что каждую их матриц $A^{(i)}, i>0$, можно представить в виде блочной диагональной матрицы $diag\{A_0^{(i)}, A_1, A_2^{(i)}, A_3\}$, где порядок блока с нижним индексом n равен порядку соответствующего диагонального блока матрицы $Q_{i,i}$. С учетом этих обозначений матрица Y_1 будет иметь вид

$$Y_{1} = \begin{pmatrix} O & O & O & O & O \\ A_{1}^{-1}(I_{a} \otimes S_{0}^{(1)}) & A_{1}^{-1}(D_{0} \oplus H_{0} \oplus S^{(1)}) + I & O & A_{1}^{-1}(I_{\bar{W}} \otimes H_{1} \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau}) \\ O & O & O & O & O \\ O & A_{3}^{-1}(I_{a} \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_{0}) & A_{3}^{-1}(I_{a} \otimes S_{0}^{(2)} \otimes I_{R}) & A_{3}^{-1}(D_{0} \oplus H \oplus S^{(2)} \oplus T) + I \end{pmatrix}, \tag{4}$$

а матрица Y_2 запишется как

$$Y_{2} = \begin{pmatrix} O_{a} & O & O & O \\ O & A_{1}^{-1}(D_{1} \otimes I_{\bar{V}M^{(1)}}) & O & O \\ O & O & O_{aR} & O \\ O & O & O & A_{3}^{-1}(D_{1} \otimes I_{\bar{V}M^{(2)}R}) \end{pmatrix}, i \geq 1,$$
 (5)

Сумма матриц Y_k имеет вид

$$Y_0 + Y_1 + Y_2 =$$

$$= \begin{pmatrix} O & I_{a} \otimes \boldsymbol{\beta}^{(1)} & O & O \\ A_{1}^{-1}(I_{a} \otimes \boldsymbol{S}_{0}^{(1)}) & A_{1}^{-1}(D \oplus H_{0} \oplus S^{(1)}) + I & O & A_{1}^{-1}(I_{\bar{W}} \otimes H_{1} \otimes \boldsymbol{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau}) \\ O & O & I_{a} \otimes \boldsymbol{\beta}^{(2)} \otimes I_{R} \\ O & A_{2}^{-1}(I_{a} \otimes \boldsymbol{\beta}^{(1)} \otimes \boldsymbol{e}_{M^{(2)}} \otimes \boldsymbol{T}_{0}) & A_{2}^{-1}(I_{a} \otimes \boldsymbol{S}_{0}^{(2)} \otimes I_{R}) & A_{3}^{-1}(D \oplus H \oplus S^{(2)} \oplus T) + I \end{pmatrix}$$
(6)

и является стохастической матрицей.

Таким образом, пределы (1)-(2) существуют и их сумма (6) есть стохастическая матрица. Это значит, что цепь Маркова ξ_t принадлежит классу АКТЦМ.

2 Условие эргодичности

Обозначим через Y(z) ПФ матриц Y_k :

$$Y(z) = Y_0 + Y_1 z + Y_2 z^2, |z| \le 1.$$

Теорема 1. Достаточным условием эродичности ЦМ ξ_t является выполнение неравенства

$$\lambda < \pi_1 S_0^{(2)} + \pi_2 S_0^{(1)}, \tag{1}$$

где векторы $\boldsymbol{\pi}_1,\,\boldsymbol{\pi}_2$ определяются как

$$\boldsymbol{\pi}_1 = \mathbf{y}_1(\mathbf{e}_{\bar{V}} \otimes I_{M^{(2)}} \otimes \mathbf{e}_R),$$

$$\boldsymbol{\pi}_2 = \mathbf{y}_2(\mathbf{e}_{\bar{V}} \otimes I_{M^{(1)}}),$$

а вектор $\mathbf{y}=(\mathbf{y}_1,\mathbf{y}_2)$ определяется как единственное решение СЛАУ

$$\mathbf{y} \begin{pmatrix} H \oplus (S^{(2)} + \mathbf{S}_0^{(2)} \boldsymbol{\beta}^{(2)}) \oplus T & I_{\bar{V}} \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & H_0 \oplus (S^{(1)} + \mathbf{S}_0^{(1)} \boldsymbol{\beta}^{(1)}) \end{pmatrix} = \mathbf{0}, \ \mathbf{y} \mathbf{e} = 1.$$
 (2)

Eсли неравенство (1) имеет противоположный знак, то ЦМ ξ_t не является эргодической.

Доказательство. При доказательстве эргодичности будем использовать результаты для АКЦМ, полученные в [2]. Согласно [2], достаточным условием эргодичности АКТЦМ $\xi_t, t \geq 0$, является выполнение неравенства

$$[\det(zI - Y(z))]'|_{z=1} > 0.$$
 (3)

В нашем случае матрица Y(z) имеет вид

 $Y(z) = \begin{bmatrix} O_{a} & I_{a} \otimes \boldsymbol{\beta}^{(1)} & O & O \\ zA_{1}^{-1}(I_{a} \otimes \boldsymbol{S}_{0}^{(1)}) & zI + A_{1}^{-1}[zC_{1} + z^{2}(D_{1} \otimes I_{\bar{V}M}^{(1)})] & O & zA_{1}^{-1}(I_{\bar{W}} \otimes H_{1} \otimes \mathbf{e}_{M}^{(1)} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau}) \\ O & O & O_{aR} & I_{a} \otimes \boldsymbol{\beta}^{(2)} \otimes I_{R} \\ O & zA_{3}^{-1}(I_{a} \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M}^{(2)} \otimes \boldsymbol{\tau}_{0}) & zA_{3}^{-1}(I_{a} \otimes \boldsymbol{S}_{0}^{(2)} \otimes I_{R}) & zI + A_{3}^{-1}[zC_{2} + z^{2}(D_{1} \otimes I_{\bar{V}M}^{(2)})] \end{pmatrix}$

где

$$C_1 = D_0 \oplus H_0 \oplus S^{(1)}, C_2 = D_0 \oplus H \oplus S^{(2)} \oplus T.$$
 (4)

Переставим 1-ю и 4-ю блочные строки, а также 1-ый и 4-ый стобец. Получим

Из (3) следует, что для нахождения условия эргодичности рассматриваемой цепи Маркова ξ_t нам нужно прежде всего получить выражение для определителя det(zI-Y(z)). Поскольку матрица $\tilde{Y}(z)$ была получена в результате перестановки блочных рядов матрицы Y(z), то $det(zI-Y(z))=det(zI-\tilde{Y}(z))$ и условие эргодичности (1) можно записать в виде

$$[\det(zI - \tilde{Y}(z))]'|_{z=1} > 0.$$
 (5)

Далее представим матрицу $zI - \tilde{Y}(z)$ в следующем блочном виде:

$$zI - \tilde{Y}(z) = \begin{pmatrix} A(z) & B(z) \\ C & D(z) \end{pmatrix}, \tag{6}$$

где

$$A(z) = -z\mathcal{A}\begin{pmatrix} C_2 + z(D_1 \otimes I_{\bar{V}M^{(2)}R}) & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & C_1 + z(D_1 \otimes I_{\bar{V}M^{(1)}}) \end{pmatrix},$$
(7)

$$B(z) = -z\mathcal{A} \begin{pmatrix} I_a \otimes \mathbf{S}_0^{(2)} \otimes I_R & O \\ O & I_a \otimes \mathbf{S}_0^{(1)} \end{pmatrix}, \tag{8}$$

$$C = -\begin{pmatrix} I_a \otimes \boldsymbol{\beta}^{(2)} \otimes I_R & O \\ O & I_a \otimes \boldsymbol{\beta}^{(1)} \end{pmatrix}, \tag{9}$$

$$D(z) = zI, (10)$$

а матрица \mathcal{A} имеет вид $\mathcal{A} = diag\{A_3^{-1}, A_1^{-1}\}.$

Известно, что определитель (6) блочной матрицы можно преобразовать к виду

$$det(zI - \tilde{Y}(z)) = det\begin{pmatrix} A(z) & B(z) \\ C & D(z) \end{pmatrix} = det[A(z) - B(z)D^{-1}(z)C]detD(z). \tag{11}$$

Подставим в (11) выражения (7)-(10) для матриц A(z), B(z), C, D(z). Тогда получим, что

$$det(zI - \tilde{Y}(z)) = det(z\mathcal{A})det \left[-z \begin{pmatrix} C_2 + z(D_1 \otimes I_{\bar{V}M^{(2)}R}) & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & C_1 + z(D_1 \otimes I_{\bar{V}M^{(1)}}) \end{pmatrix} - \left(\begin{matrix} I_a \otimes \boldsymbol{S}_0^{(2)} \otimes I_R & O \\ O & I_a \otimes \boldsymbol{S}_0^{(1)} \end{matrix} \right) \begin{pmatrix} I_a \otimes \boldsymbol{\beta}^{(2)} \otimes I_R & O \\ O & I_a \otimes \boldsymbol{\beta}^{(1)} \end{matrix} \right) \right].$$
(12)

Взяв производную в точке z=1 в (12) и учитывая, что $det \mathcal{A}>0$ и матрица в квадратных скобках при z=1 есть инфинитезимальный генератор, определитель которого равен нулю, получим следующий вид неравенства (5):

$$[\det(zI - \tilde{Y}(z))]'|_{z=1} = \det \mathcal{A} \left\{ \det \left[-z \begin{pmatrix} C_2 + z(D_1 \otimes I_{\bar{V}M^{(2)}R}) & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & C_1 + z(D_1 \otimes I_{\bar{V}M^{(1)}}) \end{pmatrix} - \left[\begin{pmatrix} I_a \otimes \boldsymbol{S}_0^{(2)} \otimes I_R & O \\ O & I_a \otimes \boldsymbol{S}_0^{(1)} \end{pmatrix} \begin{pmatrix} I_a \otimes \boldsymbol{\beta}^{(2)} \otimes I_R & O \\ O & I_a \otimes \boldsymbol{\beta}^{(1)} \end{pmatrix} \right] \right\}_{z=1}' > 0.$$

$$(13)$$

Следуя доказательству теоремы 2 в [2], можно показать, что неравенство (11) эквивалентно следующему неравенству:

$$[\det(zI - \tilde{Y}(z))]'|_{z=1} = \mathbf{x} \left[z \begin{pmatrix} C_2 + z(D_1 \otimes I_{\bar{V}M^{(2)}R}) & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & C_1 + z(D_1 \otimes I_{\bar{V}M^{(1)}}) \end{pmatrix} \right]'_{z=1} \mathbf{e} < 0, (14)$$

где вектор х есть единственное решение СЛАУ

$$\mathbf{x} \begin{bmatrix} C_2 + D_1 \otimes I_{\bar{V}M^{(2)}R} & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & C_1 + D_1 \otimes I_{\bar{V}M^{(1)}} \end{bmatrix} +$$

$$+ \begin{pmatrix} I_a \otimes \mathbf{S}_0^{(2)} \otimes I_R & O \\ O & I_a \otimes \mathbf{S}_0^{(1)} \end{pmatrix} \begin{pmatrix} I_a \otimes \boldsymbol{\beta}^{(2)} \otimes I_R & O \\ O & I_a \otimes \boldsymbol{\beta}^{(1)} \end{pmatrix} = \mathbf{0}, \ \mathbf{xe} = 1.$$
 (15)

Взяв производную в (14) и подставив в (14)-(15) выражения (4) для матриц C_1, C_2 , после преобразований получим неравенство

$$\mathbf{x} \begin{pmatrix} D_1 \otimes I_{\bar{V}M^{(2)}R} + I_a \otimes S^{(2)} \otimes I_R \\ D_1 \otimes I_{\bar{V}M^{(1)}} + I_a \otimes S^{(1)} \end{pmatrix} \mathbf{e} < 0.$$
 (16)

где вектор \mathbf{x} есть единственное решение СЛАУ

$$\mathbf{x} \begin{pmatrix} D \oplus H \oplus (S^{(2)} + \mathbf{S}_0^{(2)} \boldsymbol{\beta}^{(2)}) \oplus T & I_a \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \mathbf{T}_0 \\ I_{\bar{W}} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & D \oplus H_0 \oplus (S^{(1)} + \mathbf{S}_0^{(1)} \boldsymbol{\beta}^{(1)}) \end{pmatrix} = \mathbf{0}, \ \mathbf{xe} = 1.$$
 (17)

Представим вектор x в виде

$$\mathbf{x} = (\boldsymbol{\theta} \otimes \mathbf{y}_1, \, \boldsymbol{\theta} \otimes \mathbf{y}_2), \tag{18}$$

где векторы \mathbf{y}_1 и \mathbf{y}_2 подлежат определению. Вектор \mathbf{y}_1 имеет размерность $\bar{V}M^{(2)}R$, а вектор \mathbf{y}_2 – размерность $\bar{V}M^{(1)}$. Обозначим $\mathbf{y}=(\mathbf{y}_1,\,\mathbf{y}_2)$.

С учетом представления (18) система (17) сводится к следующей системе

$$\mathbf{y}\begin{pmatrix} \boldsymbol{\theta} \otimes (H \oplus (S^{(2)} + \boldsymbol{S}_0^{(2)} \boldsymbol{\beta}^{(2)}) \oplus T) & \boldsymbol{\theta} \otimes I_{\bar{V}} \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \boldsymbol{T}_0 \\ \boldsymbol{\theta} \otimes H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} & \boldsymbol{\theta} \otimes (H_0 \oplus (S^{(1)} + \boldsymbol{S}_0^{(1)} \boldsymbol{\beta}^{(1)})) \end{pmatrix} = \mathbf{0}, \ \mathbf{y}\mathbf{e} = 1,$$

или

$$\mathbf{y} \begin{pmatrix} H \oplus (S^{(2)} + \mathbf{S}_0^{(2)} \boldsymbol{\beta}^{(2)}) \oplus T \end{pmatrix} \quad I_{\bar{V}} \otimes \boldsymbol{\beta}^{(1)} \otimes \mathbf{e}_{M^{(2)}} \otimes \mathbf{T}_0 \\ H_1 \otimes \mathbf{e}_{M^{(1)}} \otimes \boldsymbol{\beta}^{(2)} \otimes \boldsymbol{\tau} \qquad H_0 \oplus (S^{(1)} + \mathbf{S}_0^{(1)} \boldsymbol{\beta}^{(1)}) \end{pmatrix} = \mathbf{0}, \ \mathbf{y} \mathbf{e} = 1.$$
 (19)

Теперь подставим вектор **y** в неравенство (16). Учитывая, что **ye** = 1 и $\theta D_1 \mathbf{e} = \lambda$, получим эквивалентное неравенство

$$\lambda + \mathbf{y}_1(\mathbf{e}_{\bar{V}} \otimes S^{(2)}\mathbf{e} \otimes \mathbf{e}_R) + \mathbf{y}_2(\mathbf{e}_{\bar{V}} \otimes S^{(1)})\mathbf{e} < 0.$$

Учитывая свойства кронекерового произведения, запишем последнее неравенство в виде

$$\lambda + \mathbf{y}_1(\mathbf{e}_{\bar{V}} \otimes I_{M^{(2)}} \otimes \mathbf{e}_R)S^{(2)}\mathbf{e} + \mathbf{y}_2(\mathbf{e}_{\bar{V}} \otimes I_{M^{(1)}})S^{(1)}\mathbf{e} < 0,$$

или, принимая во внимание, что $S^{(k)}\mathbf{e} = -\mathbf{S}_0^{(k)}, k = 1, 2,$

$$\lambda < \mathbf{y}_1(\mathbf{e}_{\bar{V}} \otimes I_{M^{(2)}} \otimes \mathbf{e}_R) \mathbf{S}_0^{(2)} + \mathbf{y}_2(\mathbf{e}_{\bar{V}} \otimes I_{M^{(1)}}) \mathbf{S}_0^{(1)}$$

$$\tag{20}$$

Замечание 1. Неравенство (1) имеет следующий физический смысл: вектор π_k задает распределение фаз процесса обслуживания на k-м приборе в условиях перегрузки СМО, k=1,2. Тогда правая часть (1) есть интенсивность выходящего потока в условиях перегрузки, в то время как правая часть этого неравенства есть интенсивность входящего потока. Интуитивно понятно, что система имеет стационарный режим (ЦМ эргодична), если интенсивность входного потока меньше интенсивности выходящего потока.

3 Стационарное распределение

Для нахождения стационарного распределения необходимо решить систему уравнений равновесия в виде

$$pQ = 0, pe = 1.$$

Она, вообще говоря, является бесконечной СЛАУ и решить ее известными классическими методами, вроде метода производящих функций, не удается. Поэтому мы будем применять адаптированный на случай блочного трехдиагонального генератора алгоритм, разработанный в [2] для АКТЦМ общего вида.

АЛГОРИТМ

1) Находим матрицу G как единственное минимальное неотрицательное решение уравнения

$$G = Y_0 + Y_1G + Y_2G^2$$
.

Замечание 1. Это матричное уравнение можно решать методом итераций

$$G^{(n+1)} = (I - Y_1)^{-1} [Y_0 + Y_2(G^{(n)})^2],$$

где $G^0=I$. Останавливаемся, когда становится $\|G^{(n+1)}-G^{(n)})\|<\epsilon_G$.

2) Находим матрицы $G_i, i \geq 0$, из уравнения обратной рекурсии:

$$G_i = (-Q_{i+1,i+1} - Q_{i+1,i+2}G_{i+1})^{-1}Q_{i+1,i},$$

При реализации этого шага мы используем факт существования предела $\lim_{i\to\infty}G_i=G$ (этот факт следует из асимптотических свойств рассматриваемой цепи), чтобы найти начальное условие для уравнения обратной рекурсии. Для этого выбираем некоторое число i_0 , полагаем $G_{i_0+1}=G$, вычисляем по уравнению G_{i_0} и проверяем условие $\|G_{i_0}-G\|<\epsilon_G$. Если условие выполняется, то полагаем все матрицы G_i для $i\geq i_0$ равными G. Остальные матрицы G_i находим из уравнения обратной рекурсии. Если условие не выполняется для этого i_0 , то по какому-то алгоритму выбираем новое (большее) значение i_0 .

3) Вычисляем матрицы $\bar{Q}_{i,i}, \bar{Q}_{i,i+1}$ по формулам

$$\bar{Q}_{i,i} = Q_{i,i} + Q_{i,i+1}G_i, \ i \ge 0,$$

 $\bar{Q}_{i,i+1} = Q_{i,i+1}, \ i > 0.$

4) Находим матрицы F_i из рекуррентных соотношений:

$$F_0 = I, F_i = F_{i-1}\bar{Q}_{i-1,i} \left(-\bar{Q}_{i,i}\right)^{-1}, i \ge 1.$$

5) Вычисляем вектор \mathbf{p}_0 как единственное решение СЛАУ:

$$\mathbf{p}_0(-\bar{Q}_{0,0}) = 0, \ \mathbf{p}_0 \sum_{i=0}^{\infty} F_i \mathbf{e} = 1.$$

6) Вычисляем векторы \mathbf{p}_{i} по формулам $\mathbf{p}_{i} = \mathbf{p}_{0}F_{i}, i \geq 0$.

Замечание 2. При выполнении шагов 3-6 как-то нужно выбрать значение i, при котором мы заканчиваем счет. Чтобы это сделать, мы должны понимать, что при возрастании i норма матриц F_i убывает. Нам надо, чтобы эта норма была очень малой. Поэтому в качестве предельного значения i, при котором мы заканчиваем счет, берем такое, при котором уже будет выполняться неравенство $||F_i|| < \epsilon_F$.

4 Характеристики производительности

ullet Вероятность того, что в произвольный момент времени на орбите i заявок

$$p_i = \mathbf{p}_i \mathbf{e}$$
.

• Среднее число запросов на орбите

$$L = \sum_{i=1}^{\infty} i p_i.$$

• Дисперсия числа запросов на орбите

$$D = \sum_{i=1}^{\infty} i^2 p_i - L^2.$$

• Вероятность пребывания основного прибора в состоянии ремонта, вычисляется как

$$P_{repair} = \sum_{i=0}^{\infty} \mathbf{p}_i \begin{pmatrix} \mathbf{0}_{a(1+M^{(1)})}^T \\ \mathbf{e}_{aR(1+M^{(2)})} \end{pmatrix}.$$

• Вероятность того, что основной прибор исправен

$$P_{fault-free} = 1 - P_{repair}$$
.

• Вероятность того, что основной прибор свободен и исправен

$$P_{idle}^{(1)} = \sum_{i=0}^{\infty} \mathbf{p}_i \begin{pmatrix} \mathbf{e}_a \\ \mathbf{0}_{a(M^{(1)} + R + RM^{(2)})}^T \end{pmatrix}.$$

• Вероятность того, что основной прибор на ремонте, а резервный свободен

$$P_{idle}^{(2)} = \sum_{i=0}^{\infty} \mathbf{p}_i \begin{pmatrix} \mathbf{0}_{a(1+M^{(1)})}^T \\ \mathbf{e}_{aR} \\ \mathbf{0}_{aRM^{(2)}}^T \end{pmatrix}.$$

• Вероятность того, что поступившая первичная заявка сразу пойдет на обслуживание основным прибором

$$P_{imm}^{(1)} = \frac{1}{\lambda} \sum_{i=0}^{\infty} \mathbf{p}_i \begin{pmatrix} I_{\bar{W}} \otimes \mathbf{e}_{\bar{V}} \\ I_{\bar{W}} \otimes \mathbf{0}_{\bar{V}(M^{(1)}+R+RM^{(2)})}^T \end{pmatrix} D_1 \mathbf{e}.$$

• Вероятность того, что поступившая первичная заявка сразу пойдет на обслуживание резервным прибором

$$P_{imm}^{(2)} = \frac{1}{\lambda} \sum_{i=0}^{\infty} \mathbf{p}_i \begin{pmatrix} I_{\bar{W}} \otimes \mathbf{0}_{\bar{V}(1+M^{(1)})}^T \\ I_{\bar{W}} \otimes \mathbf{e}_{\bar{V}R} \\ I_{\bar{W}} \otimes \mathbf{0}_{\bar{V}RM^{(2)}}^T \end{pmatrix} D_1 \mathbf{e}.$$

• Вероятность того, что поступившая первичная заявка сразу пойдет на обслуживание

$$P_{imm} = P_{imm}^{(1)} + P_{imm}^{(2)}.$$

5 Численные эксперименты

5.1 Эксперимент 1: Зависимость L от λ при различных значениях h

В данном эксперименте мы будем исследовать зависимость среднего числа запросов на орбите L от интенсивности входящего потока заявок и потока поломок. Для этого будем изменять λ при иных фиксированных параметрах системы.

Для наглядности будем строить три кривые, соответствующие различным интенсивностям потока поломок. В силу быстрого роста кривых вблизи предельного значения условия эргодичности, разобьем график на два: один для $\lambda \in (0.8; 8)$, второй для $\lambda \in (8; 10)$.

Возьмем следующие входные данные.

Интенсивность повторных попыток $\alpha = 1.5$.

Входной МАР-поток задается следующим образом:

$$D_0 = \begin{pmatrix} -1.349076 & 1.09082 \times 10^{-6} \\ 1.09082 \times 10^{-6} & -0.043891 \end{pmatrix}.$$

$$D_1 = \begin{pmatrix} 1.340137 & 0.008939 \\ 0.0244854 & 0.0194046 \end{pmatrix}.$$

Этот MAP имеет $c_{var}^2 = 9.621426$, $c_{cor} = 0.407152$, $\lambda = 1$. В ходе эксперимента для получения требуемой интенсивности входного потока будем умножать матрицы D_0 и D_1 на соответствующие интенсивности λ .

МАР-поток поломок характеризуется матрицами

$$H_0 = \begin{pmatrix} -8.6 & 0.001 \\ 0.002 & -0.276 \end{pmatrix},$$

$$H_1 = \begin{pmatrix} 8.5 & 0.099 \\ 0.02 & 0.254 \end{pmatrix}.$$

Для этого MAP $c_{var}^2=9.61425623$, $c_{cor}=0,407152089$, h=1.77522951. При проведении расчетов мы, аналогично случаю MAP-потока входящих заявок, будем изменять интенсивность MAP-потока путем домножения матриц H_0 и H_1 на необходимую интенсивность, предварительно их пронормировав.

PH распределения времен обслуживания на двух приборах будем обозначать как $PH_1^{(serv)}$, $PH_2^{(serv)}$.

 $PH_1^{(serv)}$ -обслуживание на 1-м приборе — распределение Эрланга 2-го порядка с $c_{var}^2=0.5$ — характеризуется следующим вектором и матрицей:

$$\boldsymbol{\beta}^{(1)} = (1,0), \ S^{(1)} = \begin{pmatrix} -20 & 20 \\ 0 & -20 \end{pmatrix}.$$

 $PH_2^{(serv)}$ -обслуживание на 2-м приборе — распределение Эрланга 2-го порядка с $c_{var}^2=0.5$ — характеризуется следующим вектором и матрицей:

$$\boldsymbol{\beta}^{(2)} = (1,0), \ S^{(2)} = \begin{pmatrix} -2 & 2 \\ 0 & -2 \end{pmatrix}.$$

 $PH_1^{(repair)}-$ времени ремонта прибора 1 — гиперэкспонента 2 порядка с $c_{var}^2=25.07248$ — характеризуется следующим вектором и матрицей:

$$\boldsymbol{\tau}^{(1)} = (0.05, \, 0.95), \, \, T^{(1)} = \left(\begin{array}{cc} -1.86075 & 0 \\ 0 & -146.9994 \end{array} \right).$$

λ	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0			
	h = 0.0001										
ρ	0.100010	0.200020	0.300030	0.400037	0.500050	0.600055	0.700064	0.800073			
L	0.114426	0.537211	1.454372	3.218525	6.549572	13.00189	25.99305	54.52236			
$P_{imm}^{(1)}$	0.866741	0.734645	0.605065	0.480508	0.365331	0.266108	0.187609	0.124905			
$P_{imm}^{(2)}$	$2.7 \cdot 10^{-5}$	$1.45 \cdot 10^{-5}$	$9.08 \cdot 10^{-6}$	$5.78 \cdot 10^{-6}$	$3.67 \cdot 10^{-6}$	$2.35 \cdot 10^{-6}$	$1.52 \cdot 10^{-6}$	$9.35 \cdot 10^{-7}$			
				h = 0.01	1						
ρ	0.100907	0.201814	0.302721	0.403628	0.504535	0.605443	0.706350	0.807257			
L	0.159978	0.730418	1.865266	3.949571	7.781240	15.09563	29.80779	62.91471			
$P_{imm}^{(1)}$	0.857910	0.726097	0.596883	0.472837	0.358354	0.259965	0.182167	0.119732			
$P_{imm}^{(2)}$	0.002589	0.001378	0.000853	0.000537	0.000337	0.000212	0.000133	$7.77 \cdot 10^{-5}$			
				h = 0.1	=						
ρ	0.107277	0.214553	0.321830	0.429107	0.536384	0.643660	0.750937	0.858214			
L	0.471260	2.129538	5.061223	10.19181	19.68883	38.89958	82.54994	206.1645			
$P_{imm}^{(1)}$	0.799505	0.669633	0.543076	0.422841	0.313427	0.220492	0.146389	0.084624			
$P_{imm}^{(2)}$	0.018984	0.009486	0.005455	0.003158	0.001814	0.001038	0.000580	0.000294			

Таблица 1: Данные, полученных в ходе эксперимента 1, для рис. 2.

λ	8.0	8.28	8.56	8.84	9.12	9.4	9.68	9.96		
h = 0.0001										
ρ	0.800073	0.828076	0.856079	0.884081	0.912084	0.940086	0.968088	0.996091		
L	54.52236	68.76271	88.62788	118.1433	166.4527	259.7569	516.0435	4486.657		
$P_{imm}^{(1)}$	0.124906	0.108768	0.092828	0.076845	0.060532	0.043496	0.025080	0.003605		
$P_{imm}^{(2)}$	$9.35 \cdot 10^{-7}$	$7.98 \cdot 10^{-7}$	$6.68 \cdot 10^{-7}$	$5.43 \cdot 10^{-7}$	$4.21 \cdot 10^{-7}$	$3.00 \cdot 10^{-7}$	$1.74 \cdot 10^{-7}$	$2.70 \cdot 10^{-8}$		
				h = 0.01	Ĺ					
ρ	0.807257	0.835511	0.863765	0.892019	0.920273	0.948527	0.976781	-		
L	62.91471	80.00339	104.5593	142.7184	209.8073	356.1149	876.8379	-		
$P_{imm}^{(1)}$	0.119732	0.103577	0.087570	0.071456	0.054922	0.037529	0.018497	-		
$P_{imm}^{(2)}$	$7.78 \cdot 10^{-5}$	$6.46 \cdot 10^{-5}$	$5.21 \cdot 10^{-5}$	$4.02 \cdot 10^{-5}$	$2.90 \cdot 10^{-5}$	$1.86 \cdot 10^{-5}$	$9.06 \cdot 10^{-6}$	-		
				h = 0.1						
ρ	0.858214	0.888252	0.918289	0.948327	0.978364	-	-	-		
L	206.1645	285.6259	424.3457	725.0222	1859.633	=	-	-		
$P_{imm}^{(1)}$	0.084624	0.068050	0.051276	0.033909	0.015286					
$P_{imm}^{(2)}$	0.000294	0.000232	0.000174	0.000117	$5.74 \cdot 10^{-5}$	-	-	-		

Таблица 2: Данные, полученных в ходе эксперимента 1, для рис. 3.

На рисунках ?? - ?? изображены графики зависимости среднего числа запросов L и P_{imm} от интенсивности входного потока λ при различных интенсивностях потока поломок: h=0.1, h=0.01, h=0.0001. Видно, что с увеличением интенсивности потока поломок h увеличивается и скорость роста кривой, характеризующей зависимость L от λ , а также уменьшается правое граничное значение интенсивности входного потока λ , при котором выполняется условие эргодичности. Уменьшение интервала, на котором для системы выполняется условие эргодичности связано с тем, что с увеличением интенсивности потока поломок растет и P_{repair} , то есть основной прибор чаще находится в состоянии ремонта.

основной прибор чаще находится в состоянии ремонта. С ростом интенсивности h уменьшаются $P_{imm}^{(1)}$ и $P_{imm}^{(2)}$, так как основной прибор все чаще находится в состоянии ремонта.

Для этого и последующих экспериментов условимся, что пропуски в ячейках таблицы означают нарушение условия эргодичности для системы при соответствующих параметрах.

Значения P_{repair} зависят только от h и au, так как процессы ремонта и прихода поломок протекают вне зависимости от остальных процессов, происходящих в системе. Приведем полученные значения P_{repair} для рассматриваемых h.

$$P_{repair} = 9.995755 \cdot 10^{-5}, h = 0.0001.$$

 $P_{repair} = 0.009597, h = 0.01.$
 $P_{repair} = 0.072421, h = 0.1.$

5.2 Эксперимент 2: Зависимость P_{idle} от h при различных интенсивностях ремонта τ

Будем исследовать, как интенсивности поломок h влияют на $P_{idle}^{(1)}$ и $P_{idle}^{(2)}$ при интенсивностях ремонта: $\tau=4, \tau=10, \tau=50$. Из 1-ого эксперимента возьмем MAP-поток поломок и PH-распределения времен обслуживания и ремонта. $\lambda=7, \alpha=1.5$.

При нулевой интенсивности поломок h имеем систему M/PH/1 с повторными вызовами, для которой $P_{idle}^{(1)}=1-\frac{\lambda}{\mu_1}$. С увеличением интенсивности поломок h стремится к нулю и вероятность $P_{idle}^{(1)}$, так как начинает возрастать P_{repair} . $P_{idle}^{(2)}$ первое время возрастает, так как интенсивность ремонта основного прибора позволяет ему справляться с потоком поломок без особого накопления заявок на орбите. После достижения точки максимума, происходит спад, так как основной прибор все хуже справляется с потоком заявок и поломок, а среднее время пребывания заявки в обработке резервным прибором до переключения на основной прибор начинает увеличиваться, вплоть до того, что переключение не происходит, то есть нарушается условие эргодичности.

h	0.1	3.1	6.1	9.1	12.1	15.1	18.1	21.1		
au=4										
ρ	0.716560	0.949254	-	-	-	-	-	-		
P_{repair}	0.022663	0.262109	=	-	-	=	-	-		
$P_{fault-free}$	0.977336	0.737890	-	-	-	-	-	-		
$P_{idle}^{(1)}$	0.277304	0.038079	-	-	-	-	-	-		
$P_{idle}^{(1)}$ $P_{idle}^{(2)}$	0.001825	0.002726	-	-	-	-	-	-		
				$\tau = 10$						
ρ	0.707990	0.848606	0.937855		-	-	-	-		
P_{repair}	0.009597	0.155525	0.230118	-	-	-	-	-		
$P_{fault-free}$	0.990402	0.844474	0.769881	-	-	-	-	-		
$P_{idle}^{(1)}$	0.289287	0.127969	0.048048	-	_	-	_	-		
$P_{idle}^{(1)}$ $P_{idle}^{(2)}$	0.001110	0.007112	0.003683	-	-	-	-	-		
				$\tau = 50$						
ρ	0.703054	0.773731	0.821526	0.859158	0.891692	0.921429	0.949527	0.976620		
P_{repair}	0.001983	0.049781	0.083858	0.110770	0.133359	0.153067	0.170710	0.186789		
$P_{fault-free}$	0.998016	0.950219	0.916141	0.889229	0.866641	0.846932	0.829289	0.813210		
$P_{idle}^{(1)}$ $P_{idle}^{(2)}$	0.296350	0.212994	0.160927	0.122746	0.091740	0.064919	0.040779	0.018499		
$P_{idle}^{(2)}$	0.000314	0.004811	0.006024	0.005897	0.005080	0.003871	0.002448	0.000992		

Таблица 3: Таблица данных, полученных в ходе эксперимента 2.

5.3 Эксперимент 3: Зависимость L и V от λ при различных коэффициентах корреляции c_{cor} во входном потоке

Целью данного эксперимента является исследование влияния коэффициента корреляции входного потока на среднюю длину очереди системы. Будем рассматривать следующие три MAP-потока, которые будем обозначать как MAP_1, MAP_2, MAP_3 .

 ${\bf MAP}_1$. Стационарный пуассоновский поток интенсивности λ ($D_0=-\lambda,\,D_1=\lambda$). Поток имеет следующие характеристики $c_{cor}=0,\,c_{var}=1.$

 ${\bf MAP}_2$. Данный поток задан матрицами

$$D_0 = \begin{pmatrix} -6.34080 & 1.87977 \times 10^{-6} \\ 1.87977 \times 10^{-6} & -0.13888 \end{pmatrix},$$
$$D_1 = \begin{pmatrix} 6.32140 & 0.01939 \\ 0.10822 & 0.03066 \end{pmatrix}.$$

MAP-поток характеризуется величинами $c_{var} = 3.5, c_{cor} = 0.1.$

 ${\bf MAP}_3$. В качестве данного потока возьмем MAP из Эксперимента 1. Согласно расчетам, рассматриваемый MAP-поток имеет $c_{var}^2=9,621425623,$ $c_{cor}=0,407152089.$

Из первого эксперимента также возьмем MAP-поток поломок и PH-распределения времен обслуживания и ремонта.

На рис. ?? изображен график, который показывает, как изменяется среднее число заявок в системе в зависимости от интенсивности поступления заявок. Также на рис. ?? изображена зависимость дисперсии числа заявок в системе в зависимости от интенсивности входного потока.

Из рисунка следует, что с ростом корреляция входящего потока заявок увеличивается скорость роста средней длины очереди и дисперсия.

λ	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5			
	MAP_1										
ρ	0.050454	0.151361	0.252268	0.353175	0.454083	0.554990	0.655897	0.756805			
L	0.023757	0.283329	0.872220	1.887896	3.561776	6.344786	11.22790	20.89522			
V	0.029953	1.931401	13.18716	40.78577	95.68375	200.7942	413.4910	924.9525			
				MAF	2						
ρ	0.050453	0.151361	0.252268	0.353176	0.454082	0.554990	0.655897	0.756805			
L	0.028492	0.338251	1.041419	2.310721	4.524159	8.478676	16.08849	32.81431			
V	0.039286	2.865901	16.96038	50.36719	117.8927	254.1400	560.2516	1456.275			
				MAF	9						
ρ	0.050454	0.151361	0.252268	0.353176	0.454083	0.554990	0.655897	0.756805			
L	0.033293	0.389347	1.209491	2.752555	5.570013	10.83261	21.12884	42.67658			
V	0.051067	3.719671	19.94419	57.99212	137.4796	310.5667	751.1739	2192.453			

Таблица 4: Данные, полученные в ходе эксперимента 3.

5.4 Эксперимент 4: Зависимость L от h при различных коэффициентах вариации c_{var} времени ремонта

Исследуем, как различные распределения времени ремонта влияют на среднее число заявок в системе при различных интенсивностях поступления поломок.

Будем использовать следующие входные данные:

Входной MAP-поток, MAP-поток поломок и PH-распределения времени обслуживания возьмем такие же, как в эксперименте 1.

Возьмем три различных РН-распределения

PH₁. *PH*-распределение времени ремонта основного прибора – распределение Эрланга 4-го порядка – характеризуется следующим вектором и матрицей:

$$m{ au} = (1, \, 0, \, 0, \, 0), \; T = \left(egin{array}{cccc} -4 & 4 & 0 & 0 \ 0 & -4 & 4 & 0 \ 0 & 0 & -4 & 4 \ 0 & 0 & 0 & -4 \end{array}
ight).$$

С параметром $c_{var}^2 = 0.25$.

 ${\bf PH}_2$. Это экспоненциальное время ремонта с интенсивностью 0.05 и $c_{var}^2=1$.

PH₃. *PH*-распределение времени ремонта основного прибора – гиперэкспонента 2 порядка – характеризуется следующим вектором и матрицей:

$$\tau = (0.05, 0.95), T = \begin{pmatrix} -0.003101265209245752 & 0 \\ 0 & -0.2450002015316405 \end{pmatrix}.$$

Для данного потока $c_{var}^2 = 25$.

Потоки изменим таким образом, чтобы интенсивность ремонта была равна 1.

h	0.001	0.02	0.04	0.06	0.08	0.1				
PH_1										
ρ	0.700660	0.712465	0.723533	0.733474	0.742493	0.750749				
L	26.09463	29.29846	34.33535	41.80023	51.71597	62.88528				
	PH_2									
ρ	0.700658	0.712420	0.723448	0.733355	0.742346	0.750580				
L	26.10141	29.43898	34.61978	42.18855	52.10857	63.20273				
	PH_3									
ρ	0.700652	0.712323	0.723321	0.733289	0.742442	0.750938				
L	26.32083	34.16306	44.47051	56.56711	69.55053	82.54994				

Таблица 5: Таблица данных, полученных в ходе эксперимента 4.

Из графика видно, что с увеличением вариации PH-распределения времени ремонта растет и среднее число запросов на орбите.

Список литературы

- [1] Вишневский В.М., Дудин А.Н., Клименок В.И. Стохастические системы с коррелированными потоками. Теория и применение в телекоммуникационных сетях. Москва: ТЕХНОСФЕ-РА, 2018. С.193-198, С.304-318.
- [2] В.И.Клименок, В.М. Вишневский. Стационарные характеристики ненадежной системы массового обслуживания с марковским потоком и резервным прибором // Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN—2016), 21—25 November, 2016, Moscow, Russia – T. 1. C.93-100.
- [3] Ю. С. Харин, Н. М. Зуев, Е. Е. Жук. Теория вероятностей, математическая и прикладная статистика. Минск: БГУ, 2011. C.213-226