Towards a Lossless Conversion for Spiking Neural Networks with Negative Spike Dynamics

This code can be used as the supplemental material for the paper: "Towards a Lossless Conversion for Spiking Neural Networks with Negative Spike Dynamics". (Submitted to *Advanced Intelligent Systems, Wiley*, July, 2023).

Citation:

To be completed.

Features:

This supplemental material gives a reproduction function of ANN training, testing and converted SNN
inference experiments in our paper. Besides, additional results for spiking MLP on FashionMNIST and
VGG-Net (CNN 2) on CIFAR10 are provided.

File overview:

- README.md this readme file.
- MNIST the workspace folder for LeNet on MNIST.
- FashionMNIST the workspace folder for LeNet/MLP on FashionMNIST.
- CIFAR10 the workspace folder for VGG-Net (CNN 1 and CNN 2) on CIFAR10.

Requirements

Dependencies and Libraries:

- python 3.5 (https://www.python.org/ or https://www.anaconda.com/)
- tensorflow_gpu 1.2.1 (https://github.com/tensorflow)
- tensorlayer 1.8.5 (https://github.com/tensorlayer)
- CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
- GPU: Tesla V100

Installation:

To install requirements,

```
pip install -r requirements.txt
```

Datasets:

- MNIST: dataset, preprocessing
- FashionMNIST: dataset, preprocessing

CIFAR10: dataset, preprocessing

ANN Training

Before running:

- Please installing the required package Tensorflow and Tensorlayer (using our modified version)
- Please note your default dataset folder will be workspace/data, such as supplemental material/CIFAR10/CNN 1/data
- Select the index of GPU in the training scripts (0 by default)

Run the code:

for example (training, k=0, CNN1, CIFAR10):

```
$ cd CIFAR10/CNN_1
$ python Quant_CNN1_CIFAR10.py --k 0 --resume False --learning_rate 0.001 --mode
'training'
```

ANN Inference

Run the code:

for example (inference, k=0, CNN1, CIFAR10):

```
$ python Quant_CNN1_CIFAR10.py --k 0 --resume True --mode 'inference'
```

SNN inference

Run the code:

for example (inference, k=0, $noise_ratio=1.0$, spiking CNN1, CIFAR10):

```
$ python Spiking_CNN1_CIFAR10.py --k 0 --noise_ratio 1.0
```

it will generate the corresponding log files including: accuracy.txt, sop_num.txt, spike_collect.txt and spike_num.txt in ./figs/k0/.

Others

 We do not consider the synaptic operations in the input encoding layer and the spike output in the last classification layer (membrane potential accumulation) for both original ANN counterparts and converted SNNs.

 More instructions for running the code can be found in the respective workspace folder (MNIST/README_MNIST.md, FashionMNIST/README_FashionMNIST.md, CIFAR10/README_CIAFR10.md).

Results

Our proposed methods achieve the following performances on MNIST, FashionMNIST and CIFAR10 dataset:

MNIST:

Quantization Level	Network Size	Epochs	ANN	SNN	Time Steps
Full-precision	20C5-P2-50C5-P2-500	150	99.28%	N/A	N/A
k=1	20C5-P2-50C5-P2-500	150	99.32%	99.32%	13

FashionMNIST:

Quantization Level	Network Size	Epochs	ANN	SNN	Time Steps
Full-precision	400-400	150	89.83%	N/A	N/A
k=1	400-400	150	88.79%	88.79%	11
Full-precision	32C5-P2-64C5-P2-1024	100	90.01%	N/A	N/A
k=1	32C5-P2-64C5-P2-1024	100	89.99%	89.99%	17

CIFAR10:

Quantization Level	Network Size	Epochs	ANN	SNN	Time Steps
full-precision	96C3-256C3-P2-384C3-P2-384C3-256C3-P2- 1024-1024	200	92.66%	N/A	N/A
k=1	96C3-256C3-P2-384C3-P2-384C3-256C3-P2- 1024-1024	200	92.77%	92.77%	57
full-precision	128C3-256C3-P2-512C3-P2-1024C3-512C3- P2-1024-512	200	93.20%	N/A	N/A
k=1	128C3-256C3-P2-512C3-P2-1024C3-512C3- P2-1024-512	200	93.35%	93.35%	40

More question:

- There might be a little difference of results for multiple training repetitions, because of the randomization.
- Please feel free to reach out here or email: 2306394264@pku.edu.cn, if you have any questions or difficulties. I'm happy to help guide you.