Mathematic Analysis with Matlab

Lecture 10: Principal Component Analysis

Lecturer: *Dr.* Lian-Sheng Wang

Fall Semester 2022

Contact: lswang@xmu.edu.cn

This material is designed mainly by Wan-Lei Zhao. All rights are reserved by the authors.

Outline

Principal Component Analysis

PCA: the idea (1)

- Let's start with a simple example
- Given a group of 2D data shown in the figure

- We want to reduce their dimension to 1D
- While preserving their relative distances as much as possible

PCA: the idea (2)

- The distribution of the data is apart from the origin
- Let's first move the axis origin to the center of the distribution
- This is done by

- Notice that translation does not change their distance
- Now we want to find out the way how to project the data from 2D to 1D

PCA: the idea (3)

 \bullet Suppose we intuitively know they should be projected either along direction μ or \emph{v}

Which one we should choose?

PCA: the model (1)

 Observation is that data should be projected on the direction that distribution shows largest variances

- Given projection vector is μ
- We should maximize: $(x^T \mu)^2$

PCA: the model (2)

- Given there are m instances/ data items here
- We should maximize following function

Maximize
$$\frac{1}{m} \sum_{i=1}^{m} (x_i^T \mu)^2$$

s.t.
$$\mu^T \mu = 1$$

Above function is rewritten as

$$\begin{aligned} \text{Maximize} \quad & \frac{1}{m} \sum_{i=1}^m \mu^T x_i x_i^T \mu \\ \text{s.t.} \quad & \mu^T \mu = 1 \end{aligned}$$

- This is a typical quadratic optimization problem
- Can be easily solved by **Lagrangian multiplier**

PCA: the model (3)

Given following problem:

$$\begin{aligned} \text{Maximize} \quad & \frac{1}{m} \sum_{i=1}^{m} \mu^{T} x_{i} x_{i}^{T} \mu \\ \text{s.t.} \quad & \mu^{T} \mu = 1 \end{aligned}$$

We define its Lagrangian function as:

$$L = \mu^{T} \left(\frac{1}{m} \sum_{i} x_{i} x_{i}^{T}\right) \mu + \lambda \left[\mu^{T} \mu - 1\right]$$

• Take partial derivative on μ and λ , we have

$$\frac{\partial L}{\partial \mu} = \frac{1}{m} \sum_{i} x_{i}^{T} \mu - \lambda \mu = 0 \quad \frac{\partial L}{\partial \lambda} = \mu^{T} \mu - 1 = 0$$

PCA: the model (4)

• Take partial derivative on μ and λ , we have

$$\frac{\partial L}{\partial \mu} = \frac{1}{m} \sum_{i} x_i x_i^T \mu - \lambda \mu = 0 \quad \frac{\partial L}{\partial \lambda} = \mu^T \mu - 1 = 0$$

• With above results, we have

$$\begin{cases} \frac{1}{m} \sum_{i} x_{i} x_{i}^{T} \mu = \lambda \mu \\ \mu^{T} \mu = 1 \end{cases}$$

- Now it is clear, when μ is the eigenvector of matrix $\frac{1}{m}\sum x_ix_i^T$
- The objective function attains maximum
- $\frac{1}{m}\sum x_i x_i^T$ is nothing more the covariance matrix
- It is semi-definite

PCA: the procedure

- Now we summarize the PCA learning steps:
 - Translate the data by substracting mean
 - 2 Calculate covariance matrix, then take the average
 - 3 Perform eigenvalue decomposition
 - 4 Sort the eigenvalues in descending order
 - 5 Shuffle the eigenvectors accordingly
- Given new data z comes, procedure below performs projection
- Given we reduce the data dimension from D to P
 - 1 Substract mean from the z'=z-mean
 - 2 Take inner-product between z' and the first P eigenvectors
 - 3 The P inner-products are organized as projected vector **w** for input vector **z**

PCA: Matlab commands to be called

- Plots multiple figures on one panel
 - subplot(2, 2, 1);
 - title('Raw data');
 - subplot(2, 2, 2);
 - title('Substracted by Mean');
 - subplot(2, 2, 3);
 - title('Data after PCA projection');
 - subplot(2, 2, 4);
 - title('Data after PCA projection+Whitening');
- Plots 2D points
 - scatter(D(:,1), D(:,2));
- 3 Duplicate a matrix for N times
 - repmat(rand(1,2), N, 1);

PCA: results you should achieve

PCA: outlining the codes

- $\mathbf{0}$ avg = mean(Data);
- ② Display raw data and its center
- $\mathbf{4}$ avg = repmat(avg, \mathbb{N} , 1);
- 6 Calculate covariance matrix
- Calculate eigenvalues of the matrix
- $\mathbf{0} \ \mathsf{V} = [\mathsf{v}(:,2) \ \mathsf{v}(:,1)];$
- **8** E = [e(2,2),e(1,1)];
- $9 E = \operatorname{sqrt}(E);$

- $\mathbf{0}$ mData = Data-avg;
- Display raw data after mean substr.
- Perform projection;
- **(b)** prj(:,2) = prj(:,2)/E(2);
- ① Display prj;

PCA: the codes (1)

```
function LPCA(rData)
2
      clf:
      subplot (2, 2, 1);
4
      avg = mean(rData)
5
6
      scatter (avg (1,1), avg (1,2), 'r+');
7
      hold on:
8
      scatter(rData(:,1), rData(:,2), 'k');
      title ('Raw, data');
q
10
      N = max(size(rData));
11
      avg = repmat(avg, N, 1);
12
      covr = (rData-avg)/sqrt(N-1);
13
      covr = covr' *covr;
14
      [v, e] = eig(covr);
15
      V = [v(:,2) \ v(:,1)];
16
      E = [e(2,2),e(1,1)];
17
             = sqrt(E)
18
19
      mData = rData-avg:
      subplot (2, 2, 2);
20
21
      scatter(mData(:,1), mData(:,2), 'b');
      title('Substracted by Average');
22
```

PCA: the codes

```
23
      priV1 = mData*V:
      priV2 = (mData*V);
24
      priV2(:,1) = priV2(:,1)/E(1);
25
      prjV2(:,2) = prjV2(:,2)/E(2);
26
      subplot (2, 2, 3);
27
      scatter(prjV1(:,1),prjV1(:,2), 'g');
28
      title ('After PCA projection');
29
30
31
      subplot (2, 2, 4);
32
      scatter(prjV2(:,1),prjV2(:,2), 'g');
      title ('After PCA projection+Whitening');
33
34 end
```

PCA in another case (1)

$$\begin{cases} \frac{1}{m} \sum_{i} x_i x_i^T \mu = \lambda \mu \\ \mu^T \mu = 1 \end{cases}$$

- Given $A = \frac{1}{m} \sum x_i x_i^T$, we are doing eigenvalue decomposition on $A_{d \times d}$
- Given $x_i \in R^d$, we have m samples $(m \ge d)$
- What if *m* < *d*?

PCA in another case (2)

Let's rewrite the result we have

$$A\mu = \lambda \mu,$$
 (1) where $A = \frac{1}{m} \sum x_i x_i^T$

• A can be written as $A = \frac{1}{m}XX^T$

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(m)} \\ \vdots & \ddots & \ddots & \vdots \\ x_d^{(1)} & x_2^{(2)} & \cdots & x_d^{(m)} \end{bmatrix}.$$

• We are therefore solving $XX^T\mu = \lambda\mu$

PCA in another case (3)

Let's look at Gramian matrix

$$X^T X \mu^* = \lambda \mu^*, \tag{2}$$

where

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(m)} \\ \cdots & \cdots & \cdots & \cdots \\ x_d^{(1)} & x_2^{(2)} & \cdots & x_d^{(m)} \end{bmatrix}.$$

- X^TX is $m \times m$, which is solvable.
- μ^* is the eigenvector of X^TX
- How to relate it to XX^T?

Think about it in two minutes...

PCA in another case (4)

• Let's look at Gramian matrix

$$X^T X \mu^* = \lambda \mu^* \tag{3}$$

- X is $m \times m$, which is solvable.
- μ^* is the eigenvector of X^TX
- How to relate it to XX^T?
- Left-multiplication X to Equation (3), we have

$$(XX^{T})X\mu^{*} = \lambda X\mu^{*} \tag{4}$$

• That means $X\mu^*$ is the eigenvector of XX^T

Q & A

Thanks for your attention!

This material is designed mainly by Wan-Lei Zhao. All rights are reserved by the authors.