La modélisation dynamique en épidémiologie

- 1. Problématique de l'épidémiologie
- 2. Modélisation
- 3. Analyse du système

La modélisation dynamique en épidémiologie

- 1. Problématique de l'épidémiologie
- 2. Modélisation
- 3. Analyse du système

Pourquoi des études en épidémiologie?

- Maladies infectieuses (M.I.): Toujours une cause majeure de mortalité
 - Humaine (14 à 17 millions de morts.an-1)
 - > Animale
- Recrudescence des M.I. depuis 1980
 - Emergence de nouvelles maladies (Grippe Aviaire, Chikungunya...)
 - Réémergence de maladies (Tuberculose...)

M.I. inhérentes à la vie ⇒ relance l'étude sur les M.I.

Objectifs des études en épidémiologie

Comprendre:

- l'apparition des M.I.
- les stratégies des pathogènes
- la dynamique des systèmes hôte-parasite

• afin de:

- prévoir le nombre de malades
- estimer l'efficacité de mesures de contrôle (vaccination...)

Ne peuvent être observés directement ⇒ Modèles mathématiques

La modélisation dynamique en épidémiologie

- 1. Problématique de l'épidémiologie
- 2. Modélisation
- 3. Analyse du système

Hypothèses sous-jacentes et paramétrage du modèle

Spécificité des systèmes hôte-parasite

• Eléments nécessaires à la construction d'un modèle:

- dynamique démographique des hôtes
- dynamique de propagation du parasite

Il faut donc modéliser:

- l'ensemble des entrées et des sorties d'hôtes dans la population au cours du temps
- la transmission du parasite entre les hôtes infectés et les hôtes sensibles au cours du temps
- les éventuels effets et guérison de la maladie

Démarche de modélisation

- Identification de la question biologique impact de la maladie, efficacité de la vaccination...
- Formulation des hypothèses et construction du modèle choix du type de modèle, choix des compartiments, formes de la démographie et de la transmission, mise en équations...
- Exploitation du modèle étude analytique du R₀, des équilibres, de la stabilité des équilibres détermination des valeurs numériques des paramètres...
- Discussion des résultats cohérence des résultats avec la réalité; critique éventuelle du modèle en vue d'une amélioration, formulation de nouvelles questions biologiques...

Un modèle doit être simple, réaliste et généralisable ⇒ **compromis**

Les différents types de modèles mathématiques

- Ils peuvent être:
 - en temps **discret** ou en temps **continu**
 - déterministes (sans fluctuations aléatoires des paramètres et/ou variables) ou stochastiques (avec fluctuations)
- Ici, modèle en temps continu déterministe car:
 - échelle de temps **courte de certains** événements (transmission...)
 - recherche du comportement **moyen** avant de complexifier
 - Modèle en compartiments, très classique en épidémiologie
- ⇒ Le choix des compartiments découle des hypothèses retenues

Modèle en compartiments et équations différentielles (1/2)

• Caractéristiques:

- individus répartis en ≠ classes (compartiments)
- tous les individus d'une classe donnée sont équivalents
- les entrées et sorties des compartiments sont des flux d'individus

• Cas d'un modèle déterministe:

- ici, l'évolution du système dans le temps est complètement déterminée par le système d'équations différentielles et les conditions initiales
 - ⇒ pas d'aléas dans la survenue des événements
- ce modèle est utile dans l'étude du comportement moyen du système

Dynamique de l'infection et choix des compartiments

Ne pas confondre maladie et pathogène pour la dynamique!

Caractéristiques de l'infection

• <u>Virulence</u>

- Aptitude du parasite à provoquer des troubles chez l'hôte :
 - mortalité additive provoquée par l'infection
 - pathologie
 - baisse de la fertilité
 - •
- Caractéristique de l'interaction hôte-parasite
 (« sous-produit » de l'exploitation de l'hôte par le parasite)

Mode de transmission du parasite

- **contagion directe**: horizontale *vs* verticale (de la mère à l'enfant)
- **contagion indirecte**: eau, sol, arthropode non hématophage
- par **vecteur**: arthropode

Modèle en compartiments et équations différentielles (2/2)

• **Vocabulaire:**

- ✔ flux : quantité passant d'un compartiment à un autre, représentée sur nos schémas par une flèche s'exprime ici en nombre d'individus/unité de temps
 - **taux** : pour un flux considéré, proportion du compartiment de départ concernée par unité de temps

ex: taux de mortalité m d'une population de taille N signifie qu'à chaque instant le flux sortant de la population est m.N

temps de séjour moyen dans un compartiment:
c'est l'inverse du taux de sortie de ce compartiment

ex: si m est le taux de mortalité, le temps de séjour moyen dans la population est 1/m. Rem: dans cet exemple, 1/m est donc l'espérance de vie!

Etude de l'exemple d'une infection chronique

Hypothèses

- Population hôte close
- Paramètres démographiques de l'hôte : natalité *b*, mortalité *m*
- Transmission directe dont la fonction de transmission est FT = f(S,I,N)
- Pas de guérison, donc pas d'acquisition d'immunité de long-terme
- Surmortalité des individus infectieux au taux α
- *Exemple de maladie rassemblant ces caractéristiques?*

• Schéma du modèle:

Etude de l'exemple d'une infection chronique

• Ecriture du système d'équations différentielles

- Obtenu en écrivant, pour chaque compartiment:
 dérivée de effectif = somme des flux entrants mois somme des flux sortant
- Il traduit l'évolution des effectifs des compartiments au cours du temps
- Il permet d'obtenir la dynamique du système au cours du temps

Dans notre exemple, il est le suivant:

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - m \cdot S - f(S,I,N) \\ \frac{dI}{dt} = f(S,I,N) - (m+\alpha) \cdot I \end{cases}$$

Fonction d'incidence (1/2)

• **Incidence** : c'est le nombre de nouveaux cas d'infection ou de maladie observés par unité de temps

Dans le modèle :

$$S \xrightarrow{f(S,I,N)} I$$

l'incidence vaut f(S,I,N) et f est appelée **fonction d'incidence**.

- Taux individuel de contact efficace λ : $\lambda(N) = c(N).e_c.e_d$, où:
 - ightharpoonup c(N) = fréquence individuelle des contacts à risque
 - \triangleright e_c = proportion des contacts à risque avec un I conduisant à la contamination du S
 - \triangleright e_d = proportion des contaminations aboutissant au développement du virus dans son nouvel hôte

Donc:
$$f(S,I,N)=\lambda(N)$$
. I/N . S^*

Taux de contact efficace

Proportion des contacts se faisant avec un infectieux

Nombre de sensibles pouvant être infectés

Fonction d'incidence (2/2)

Représentation de la transmission de l'agent infectieux :

les 2 types de représentation classiques

Action de masse: $|\lambda(N)| = \beta \cdot N$

$$\lambda(N) = \beta \cdot N$$

Mélange proportionné: $\lambda(N) = \beta$

la fréquence des contacts est proportionnelle à la taille ou à la densité de la population c(N)=c.N

la fréquence des contacts est indépendante de la taille ou de <u>la</u> densité de la population: c(N)=c

$$f(S,I,N)=\beta.S.I$$

$$f(S,I,N)=\lambda(N)$$
. I/N . S

$$f(S,I,N)=\beta.S.I/N$$

$$\begin{vmatrix} \frac{dS}{dt} = -\beta \cdot S \cdot S \\ \frac{dI}{dt} = \beta \cdot S \cdot I \end{vmatrix}$$

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta \cdot S \cdot I}{S + I} \\ \frac{dI}{dt} = \frac{\beta \cdot S \cdot I}{S + I} \end{cases}$$

Choix du modèle de function d'incidence

Mélange proportionné

- MST

Action de masse

- Transmission par aérosol
- Transmises par vecteurs

Mélange des deux

Transmises par contact agressif (à complexifier dans l'idéal)

Règles vaguement générales, à déterminer au cas par cas

La modélisation dynamique en épidémiologie

- 1. Problématique de l'épidémiologie
- 2. Modélisation
- 3. Analyse du système

Étude de la propagation de la maladie (1/2)

• Définition du R₀

R₀ est le nombre d'infections générées par **1 individu** infecté au cours de sa période infectieuse, après son introduction dans une **population totalement sensible**.

Mathématiquement,

 R_0 = (nb d'infections par unité de temps) x (durée moyenne de la maladie)

= (flux entrant en I) / (flux sortant de I), pour I=1 et S=N

R₀ est appelé **le nombre reproductif de base** (*basic reproduction number*)

Étude de la propagation de la maladie (2/2)

• Si $R_0 > 1$

Un infectieux va provoquer plusieurs cas de maladies avant de ne plus être contagieux: il y a **propagation de l'infection**, c'est-à-dire épidémie. Si au contraire R_0 <1, la maladie va s'éteindre.

Mathématiquement, R₀>1 signifie:

(flux entrant en I) / (flux sortant de I)>1 pour
$$I=1$$
 et $S=N$ (flux entrant en I) - (flux sortant de I)>0 pour $I=1$ et $S=N$

or,
$$\frac{dI}{dt}\Big|_{\substack{I=1\\S\approx N}}$$
 =(flux entrant en I) - (flux sortant de I) donc $\frac{dI}{dt}\Big|_{\substack{I=1\\S\approx N}} > 0$

ce qui signifie que le nombre d'infectieux I augmente. Si au contraire $R_0 < 1$, $\frac{dI}{dt}\Big|_{\substack{I=1\\S \approx N}} < 0$ et la fonction I est décroissante.

On retrouve donc $R_0>1$ comme **condition pour qu'il y ait épidémie**.

Étude des équilibres: l'endémie est-elle possible?

• L'état du système à un instant *t* est caractérisé par les effectifs dans **chacune** des classes.

Ex: pour un modèle SIR, l'état à t est donné par le **triplet** (S(t),I(t),R(t))

• A l'équilibre, le système n'évolue plus, *i.e.* la variation d'effectif est nulle dans chacun des compartiments, donc toutes les dérivées sont nulles:

(S*,I*,R*) est point d'équilibre ssi
$$\begin{cases} \frac{dS}{dt}(S^*,I^*,R^*) = 0\\ \frac{dI}{dt}(S^*,I^*,R^*) = 0\\ \frac{dR}{dt}(S^*,I^*,R^*) = 0 \end{cases}$$

• Le maintien du pathogène dans la population hôte est possible s'il existe un état d'équilibre endémique, *i.e.* pour lequel $I^* \neq 0$.

Etude de l'exemple d'une infection chronique

• Expression du R₀

Calcul pour I=1 et $S \approx N$:

$$R_0 = \frac{\beta \cdot S \cdot I}{(m+\alpha) \cdot I} \approx \frac{\beta \cdot N \cdot 1}{(m+\alpha) \cdot 1} = \frac{\beta \cdot N}{m+\alpha}$$

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - m \cdot S - \beta SI \\ \frac{dI}{dt} = \beta SI - (m+\alpha) \cdot I \end{cases}$$

Recherche des points d'équilibre

Calcul pour dS/dt=dI/dt=0

Deux points d'équilibre ici, (S=0, I=0) et

$$\left(S^* = \frac{m+\alpha}{\beta}, I^* = \frac{(b-m)\cdot(m+\alpha)}{\beta\cdot(m+\alpha-b)}\right)$$

⇒ Mais le modèle démographique est peu réaliste…: gardez l'esprit critique!

Représentation de la démographie hôte (1/3)

Schéma du modèle:

- Temps continu ⇒ équations différentielles:
- Croissance exponentielle:
 - Exemple d'une population close (sans migrations)
 - \triangleright Soit des taux de natalité b et de mortalité m, alors:

$$\frac{dN}{dt} = bN - mN = (b - m)N = rN$$

En intégrant, on trouve $N=N_0e^{rt}$, la population croît exponentiellement. r est le taux de croissance

Temps

Représentation de la démographie hôte (2/3)

• Croissance logistique:

- en réalité, la croissance n'est pas infinie
- Pelle est ralentie à fortes densités (terme de frein)
- la régulation est densité-dépendante
- \triangleright on définit une capacité d'accueil maximale du milieu (fonction des ressources, abris...), notée K
- i'équation devient $\frac{dN}{dt} = rN \left(1 \frac{N}{K}\right)$

où −*rN/K* est le terme de frein

Représentation de la démographie hôte (3/3)

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - m \cdot S - \beta SI \\ \frac{dI}{dt} = \beta SI - (m+\alpha) \cdot I \end{cases}$$

Introduction de densité dépendance: $m(N) = m_0 + aN$

$$\begin{cases} \frac{dS}{dt} = b \cdot (S+I) - (m_0 + a(S+I)) \cdot S - \beta SI \\ \frac{dI}{dt} = \beta SI - (m_0 + a(S+I) + \alpha) \cdot I \end{cases}$$

Stabilité des équilibres

• L'existence d'un équilibre ne signifie pas qu'on l'atteint nécessairement.

Pour être réaliste biologiquement, *i.e.* une bonne approximation de la réalité, un équilibre doit être **stable**: on vérifie qu'à proximité de cet équilibre on ne s'en éloigne pas trop.

• Pour tester si un équilibre est stable, on calcule la **Jacobienne**, matrice des dérivées partielles. $\begin{cases} dS & \text{(a. 7.7)} \\ \end{pmatrix}$

Ex: ici, dans un modèle SIR:

$$\begin{cases} \frac{dS}{dt} = f(S, I, R) \\ \frac{dI}{dt} = g(S, I, R) \\ \frac{dR}{dt} = h(S, I, R) \end{cases} J = \begin{pmatrix} \frac{\partial f}{\partial S} & \frac{\partial f}{\partial I} & \frac{\partial f}{\partial R} \\ \frac{\partial g}{\partial S} & \frac{\partial g}{\partial I} & \frac{\partial g}{\partial R} \\ \frac{\partial h}{\partial S} & \frac{\partial h}{\partial I} & \frac{\partial h}{\partial R} \end{pmatrix}$$

On regarde ensuite **les signes des valeurs propres de** $J(S^*,I^*,R^*)$, où (S^*,I^*,R^*) est l'équilibre dont on étudie la stabilité :

- si toutes les valeurs propres sont de partie réelle < 0
- si au moins une valeur propre est de partie réelle > 0

 \Rightarrow STABILITE