Colle 17 \sim 8 mars 2016 \sim Colleur : Isenmann \sim MPSI \sim Trinôme :

Planche 1.

Exercice 1. Montrer que $\frac{2n-1}{n+1}\sin(n^2) = O(1)$.

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ décroissante telle que $f(x) + f(x+1) \sim \frac{1}{x}$ en $+\infty$. Trouver un équivalent en $+\infty$.

Planche 2.

Exercice 1. Soit (u_n) une suite convergente. Montrer que $u_n = O(1)$. Est-ce que $u_n = o(1/n)$?

Exercice 2. On pose $u_n = 0! + 1! + \cdots + n! = \sum_{k=0}^n k!$. Montrer que $u_n \sim n!$ en $+\infty$.

Planche 3.

Exercice 1. Trouver $f: \mathbb{R} \to \mathbb{R}$ telle que $e^x = o(f(x))$ et $f(x) = o(e^{x^2})$.

Exercice 2. On pose $S_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que $\ln(1+t) \le t$ et $\ln(1+t) \ge \frac{t}{t+1}$. En déduire que $\ln(n+1) \le S_n \le \ln(n) + 1$. Trouver un équivalent de S_n .

Solutions - Planche 1.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 2.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 3.

Question de cours.

Exercice 1.

Exercice 2.