Introduction

INTRODUCTION TO LLM
INFERENCE SERVING SYSTEMS
CHUHONG YUAN

Outline

- Course Overview
- Syllabus & Logistics
- LLM Inference Basics
- Homework
- Q & A

Course Overview

Instructor

- Chuhong Yuan
- 5th Year Ph.D. Student
- Research focuses on LLM Inference Systems, particularly P-D Disaggregation and Quantization

Course Information

- 6PM to 7PM ET every Tuesday, except on 10/7 (Fall Break)
- Zoom, the link is on Canvas, and it is the same every time
- Assignments are published and submitted through Canvas
- Discussions can be posted on Ed Discussion
- Prerequisite courses
 - Operating System
 - Machine Learning

What Is This Seminar For?

- Topic: LLM inference systems
 - Not for LLM
 - Not for LLM training systems
- Content:
 - Serving infrastructure
 - Single-instance LLM serving optimization
 - Multi-instance LLM serving optimization

What To Learn From This Seminar?

- Basics of LLM inference systems
- Hot topics of research in this area
- System research methodology
- Critical thinking

Syllabus & Logistics

Syllabus

8/19/2025	Introduction	10/14/2025	P-D Disaggregation II
8/26/2025	Serving Infrastructure I	10/21/2025	P-D Disaggregation III
9/2/2025	Serving Infrastructure II	10/28/2025	Quantization
9/9/2025	Serving Infrastructure III	11/4/2025	Sparse Attention
9/16/2025	Single-Instance Serving I	11/11/2025	Multi-Instance Serving I
9/23/2025	Single-Instance Serving II	11/18/2025	Multi-Instance Serving II
9/30/2025	P-D Disaggregation I	11/25/2025	Multi-Instance Serving III
10/7/2025	Fall Break	12/2/2025	Multi-Instance Serving IV

Seminar Format

- 30 40 min paper reading
- 10 20 min homework review
- 10 min Q & A

Homework Format

- Type (links will be published on Canvas)
 - Code reading
 - Paper review
- Format
 - Summary
 - Questions
 - Critical thinking
 - Paper review

Submission & Grading

- Submission
 - No more than 1 page PDF
 - Font: Times New Roman, 12
 - Line spacing: 1.5
 - Only necessary pictures
- Grading
 - The seminar is pass/fail, as long as your submission is completed, it is fine

Homework Integrity

- Please obey Georgia Tech's Academic Honor Code, no plagiarism
- Use of LLM
 - Sending homework questions or papers to LLM is highly unrecommended
 - Refining homework writing with LLM is fine
 - Asking related technical questions to LLM is fine

LLM Inference Serving Basics

Transformer

- Tokenization: raw text to numbers
- Embedding layer: mapping tokens to vectors $-> X \in \mathbb{R}^{L \times d}$
- Linear projection: $Q = XW_Q$, $K = XW_K$, $V = XW_V$, W_Q , W_K , $W_V \in R^{d \times d_h}$
- Attention: $Attention(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d_h}}\right)V$, $output \in R^{L \times d_h}$
- MLP (Multi-Layer Perceptron): refine representations
- Output projection: $h \in R^{1 \times d}$, $W_{vocab} \in R^{d \times V}$, $P(next\ token) = softmax(hW_{vocab})$
- https://poloclub.github.io/transformer-explainer/

LLM Inference Phases

- KV Cache
 - Attention(Q, K, V) = $softmax\left(\frac{QK^T}{\sqrt{d_h}}\right)V$
 - When a new token is added, we only need to compute its $Q \in R^{1 \times d}$, K and V are fixed, so they can be cached
- Prefill
 - Process all input tokens and generate KV Cache
 - Parallelizable, compute-bound
- Decoding
 - Use KV Cache to generate the later tokens one by one
 - Unparallelizable, memory-bound

Challenges in LLM Inference Serving

- Costs
 - Computational cost limit by GPU capacity
 - Memory cost KV Cache, which fluctuates and is unpredictable
- Latency
 - Serving-level objectives (SLOs): TTFT (Time To First Token), TPOT (Time Per Output Token), E2E (End To End)
 - Average, Median (P50), Tail (P90, P95, P99)
- Throughput
 - Tokens per second, different in the two phases
- Tradeoffs
 - Latency vs. Throughput: batching strategies, SLO attainment
 - Cost vs. Gain: scheduling strategies

Homework

Start Learning vLLM!

- vLLM
 - https://docs.vllm.ai/en/latest/design/arch_overview.html
 - https://github.com/vllm-project/vllm
- Task
 - Find the codes that correspond to the Figure showing the class hierarchy of vLLM
 - State how the codes work together

Q&A