16.
$$x = 3720$$
; $x^* = 0.3704 \times 10^4$

17.
$$x = \frac{1}{8}$$
; $x^* = 0.12 \times 10^0$

18.
$$x = \frac{1}{800}$$
; $x^* = 0.12 \times 10^{-2}$

19.
$$x = -5\frac{5}{6}$$
; $x^* = -0.583 \times 10^1$

20.
$$x = 0.70465$$
; $x^* = 0.70466 \times 10^0$

21.
$$x = 70 \ 465$$
; $x^* = 0.70466 \times 10^5$

22. Derive las fórmulas del renglón 2 de la tabla C.1. [*Sugerencia*: Necesitará la siguiente fórmula que está demostrada en el ejemplo A.3 del apéndice A.]

$$1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- 23. Derive las fórmulas del renglón 3 de la tabla C.1.
- 24. Derive las fórmulas del renglón 4 de la tabla C.1.
- *25. Derive las fórmulas del renglón 5 de la tabla C.1.
 - **26.** ¿Cuántos segundos toma, en promedio, la solución de $A\mathbf{x} = \mathbf{b}$ en una computadora usando eliminación de Gauss-Jordan si A es una matriz de 20×20 ?
 - 27. Resuelva el problema 26 si se usa la modificación descrita en este apéndice.
 - 28. ¿Cuántos segundos tardaría, en promedio, invertir una matriz de 50 × 50?, ¿una matriz de 200 × 200? y ¿una matriz de 10 000 × 10 000?
- 29. Derive la fórmula para el número de multiplicaciones y sumas requeridas para calcular el producto AB donde A es una matriz de $m \times n$ y B una de $n \times q$.