Computational Challenges in Mass Spectrometry-Based Spatial Proteomics

Laurent Gatto
University of Cambridge
http://cpu.sysbiol.cam.ac.uk

8 October 2014

	Fraction ₁	Fraction ₂		$Fraction_m$		markers	
$prot_1$	$q_{1,1}$	$q_{1,2}$		q _{1, m}		unknown	
$prot_2$	$q_{2,1}$	$q_{2,2}$		$q_{2, m}$		$organelle_1$	
$prot_3$	$q_{3,1}$	$q_{3,2}$		$q_{3, m}$		unknown	
prot_4	$q_{4,1}$	$q_{4,2}$		$q_{4, m}$		$organelle_2$	
:	:	:	:	:	:	:	:
$\mathrm{prot}_{\mathrm{i}}$	$q_{i,1}$	$q_{i,2}$		$q_{i, m}$		$organelle_k$	
:	:	:	:	:	:	:	:
$\mathrm{prot}_{\mathrm{n}}$	$q_{n,1}$	$q_{n,2}$		$q_{n, m}$		unknown	
	Fraction ₁	Fraction ₂		$Fraction_m$			
	:	:	:	:			

Figure : Spatial proteomics data and meta-data.

Figure: Visualisation, Gatto el al. (2010)

Challenges: resolution vs. missing data

Figure: Gatto el al. (2014)

Challenges: resolution vs. missing data

Figure: Gatto el al. (2014)

Spatial markers

Figure: Sub-cellular diversity: Tan et al (2009) vs. Breckels et al. (2013)

Spatial markers

Figure: Quality of markers: Gatto el al. (2014)

Dual localisation

Figure: Gatto et al. (2014)

Dynamic changes

Figure: Normalisation, Gatto et al. (2014)

Dynamic changes

Figure: Statistics, Gatto et al. (2014)

Conclusions

Conclusions

- ► Mass spectrometry
- Experimental design
- ► Computational tools

- ► Funding: BBSRC and FP7 Prime-XS
- Kathryn Lilley
- Lisa Breckels

Gatto L. et al. Organelle proteomics experimental designs and analysis, Proteomics 2010, 10(22):3957-69 PMID 21080489.

Breckels LM. et al. The effect of organelle discovery upon sub-cellular protein localisation, J Proteomics 2013, 88:129-40 PMID:23523639.

Gatto L. et al. A foundation for reliable spatial proteomics data analysis, Mol Cell Proteomics 2014 13(8):1937-52 PMID:24846987.

Gatto L. et al. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata, Bioinformatics 2014 30(9):1322-4 PMID:24413670.

Gatto L. et al A unifying bioinformatics framework for spatial proteomics Bioconductor 2012 http://www.bioconductor.org/packages/release/bioc/html/pRoloc.html