Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

The following set of claims replaces all the previous set of claims.

1. (Currently Amended) A compound of Formula (I):

$$R_3$$
 R_4
 R_5
 R_6
 R_8
 R_8
 R_8
 R_8
 R_9
 R_6

wherein,

 $R_1 \text{ is}[[:]] -C(O)R_{10}$, wherein R_{10} is

(i) hydrogen; or

(ii) SO₂R₁₀,

(iii) wherein R₁₀ is:

halo; hydroxy; OR_{11} ; OR_{12} ; amino; NHR_{11} ; $N(R_{11})_2$; NHR_{12} ; $N(R_{12})_2$; aralkylamino; or

 C_1 - C_{12} alkyl optionally substituted with halo, hydroxy, oxo, nitro, OR_{11} , OR_{12} , acyloxy, amino, NHR_{11} ; $N(R_{11})_2$; NHR_{12} ; $N(R_{12})_2$, aralkylamino, mercapto, thioalkoxy,

2

 $S(O)R_{11}$, $S(O)R_{12}$, SO_2R_{11} , SO_2R_{12} , $NHSO_2R_{11}$, $NHSO_2R_{12}$, sulfate, phosphate, cyano, carboxyl, $C(O)R_{11}$, $C(O)R_{12}$, $C(O)OR_{11}$, $C(O)NH_2$, $C(O)NHR_{11}$, $C(O)N(R_{11})_2$, C_3 - C_{10} eyeloalky containing 0-3 R_{13} , C_3 - C_{10} heterocyclyl containing 0-3 R_{13} , C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_5 - C_{10} -cycloalkenyl, C_5 - C_{10} -heterocycloalkenyl, C_6 - C_{20} -aryl containing 0-3 R_{14} , or heteroaryl containing 0-3 R_{14} ; or

 C_3 - C_{10} cycloalkyl, C_3 - C_{10} heterocyclyl, C_5 - C_{10} cycloalkenyl, or C_5 - C_{10} heterocycloalkenyl optionally substituted with one or more halo, hydroxy, oxo, OR_{14} , OR_{12} , acyloxy, nitro, amino, NHR_{14} , $N(R_{14})_2$, NHR_{12} , $N(R_{12})_2$, aralkylamino, mercapto, thioalkoxy, $S(O)R_{14}$, $S(O)R_{12}$, SO_2R_{14} , SO_2R_{12} , $NHSO_2R_{14}$, $NHSO_2R_{12}$, sulfate, phosphate, cyano, carboxyl, $C(O)R_{14}$, $C(O)R_{12}$, $C(O)OR_{14}$, $C(O)NH_2$, $C(O)NHR_{14}$, $C(O)N(R_{14})_2$, alkyl, haloalkyl, C_3 - C_{10} cycloalkyl containing 0-3 R_{13} , C_3 - C_{10} heterocyclyl containing 0-3 R_{13} , C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_5 - C_{10} cycloalkenyl, C_5 - C_{10} heterocycloalkenyl, C_6 - C_{20} aryl heteroaryl containing 0-3 R_{14} , or C_6 - C_{20} heteroaryl containing 0-3 R_{14} ; or

 C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, aryl, or heteroaryl optionally substituted with one or more halo, hydroxy, OR_{11} , OR_{12} , acyloxy, nitro, amino, NHR_{11} , $N(R_{14})_2$, NHR_{12} , $N(R_{12})_2$, aralkylamino, mercapto, thioalkoxy, $S(O)R_{11}$, $S(O)R_{12}$, SO_2R_{11} , SO_2R_{12} ,

- (iii)_-C(O)R₁₀, wherein R₁₀ is defined as above; or
- (iv) $-C(R_{10})_2(R_{15})$, wherein R_{10} is defined as above; R_{15} is hydrogen, R_{10} , or R_{15} and R_2 taken together forms a double bond between the carbon and nitrogen atoms to which they are attached; or
- (v) R₁ and R₂ taken together forms a heterocyclyl of 3-10 ring atoms optionally substituted with R₁₀;

R₂ is hydrogen, or R₂ and R₁₅ taken together forms a double bond between the carbon and nitrogen atoms to which they are attached, or R₂ and R₁ taken together forms a heterocyclyl of 3–10 ring atoms optionally substituted with R₁₀;

 R_3 , R_4 , R_5 , R_6 and R_7 are each independently hydrogen, C_1 - C_6 -alkyl, C_6 - C_{12} aralkyl, or C_1 - C_6 -acyl;

 R_8 is $-(CH_2)_x CH_3$;

 R_9 is a linear or branched C_3 - C_{100} alkyl;

R₁₁-is C₁-C₂₀-alkyl optionally substituted with halo, hydroxy, alkoxy, amino, alkylamino, dialkylamino, sulfate, or phosphate;

R₁₂ is aryl optionally substituted with halo, haloalkyl, hydroxy, alkoxy, nitro, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R₁₃ is independently halo, halo alkyl, hydroxy, alkoxy, oxo, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R₁₄ is independently halo, halo alkyl, hydroxy, alkoxy, nitro, amino, alkyl amino, dialkylamino, sulfate, or phosphate; and

x is 1-100.

- 2. (Original) The compound of claim 1 wherein x is 24 and R_9 is *n*-tetradecyl.
- 3-17. (Cancelled)
- 18. (Currently Amended) A The-method of claim 18 stimulating NKT cells comprising contacting an NKT cell with a compound of Formula (I) and a wherein the protein is CD1d protein.
- 19-23. (Cancelled)
- 24. (Currently Amended) A method of making a compound of Formula (I) comprising: (i) converting a compound of Formula (III) to a compound of Formula (IV):

$$R_3$$
 R_8
 R_8
 R_8
 R_8
 R_9
 R_8
 R_8
 R_8
 R_8

$$R_3$$
 R_4
 R_6
 R_8
 R_8
 R_8
 R_8
 R_9
 R_8
 R_8
 R_8

and (ii) contacting a compound of Formula (IV) with R₁-LG to afford a compound of Formula (I), wherein:

 R_1 is[[:]]-C(O) R_{10} , wherein $\underline{R_{10}}$ is

$$(i) SO_2R_{10},$$

wherein R₁₀ is:

halo; hydroxy; OR_{11} ; OR_{12} ; amino; NHR_{11} ; $N(R_{11})_2$; NHR_{12} ; $N(R_{12})_2$; aralkylamino; or

5

 C_3 - C_{10} -cycloalkyl, C_3 - C_{10} heterocyclyl, C_5 - C_{10} cycloalkenyl, or C_5 - C_{10} heterocycloalkenyl optionally substituted with one or more halo, hydroxy, oxo, OR_{11} , OR_{12} , acyloxy, nitro, amino, NHR_{11} , $N(R_{11})_2$, NHR_{12} , $N(R_{12})_2$, aralkylamino, mercapto, thioalkoxy, $S(O)R_{11}$, $S(O)R_{12}$, SO_2R_{11} , SO_2R_{12} , $NHSO_2R_{12}$, sulfate, phosphate, cyano, carboxyl, $C(O)R_{11}$, $C(O)R_{12}$, $C(O)R_{11}$, $C(O)R_{1$

 $C_2 - C_6 \text{ alkenyl, } C_2 - C_6 \text{ alkynyl, aryl, or heteroaryl optionally substituted}$ with one or more halo, hydroxy, OR_{11} , OR_{12} , acyloxy, nitro, amino, NHR_{11} , $N(R_{11})_2, NHR_{12}, N(R_{12})_2, \text{ aralkylamino, mercapto, thioalkoxy, } S(O)R_{11}, \\ S(O)R_{12}, SO_2R_{11}, SO_2R_{12}, NHSOR_{11}, NHSO_2R_{12}, \text{ sulfate, phosphate, cyano, } \\ carboxyl, C(O)R_{11}, C(O)R_{212}, C(O)OR_{11}, C(O)NH_2, C(O)NHR_{11}, C(O)N(R_{11}) \\ 2, \text{ alkyl, halo alkyl, } C_3 - C_{10} \text{ cycloalkyl containing } 0 - 3 - R_{13}, C_3 - C_{10} \text{ heterocyclyl containing } 0 - 3 - R_{13}, C_2 - C_6 \text{ alkenyl, } C_2 - C_6 \text{ alkynyl, } C_5 - C_{10} \text{ cycloalkenyl, } C_5 - C_{10} \text{ heterocycloalkenyl, } C_6 - C_{20} \text{ aryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} \text{ heteroaryl containing } 0 - 3 - R_{14}, \text{ or } C_6 - C_{20} - R_{20}, \text{ or } C_6 - C_{20}, \text{ or } C_6$

(ii) -C(O)R₁₀, wherein R₁₀ is defined as above; or

(iii) -C(R₁₀)₂ (R₁₅), wherein R₁₀ is defined as above; R₁₅ is hydrogen, R₁₀, or R₁₅ and R₂ taken together forms a double bond between the carbon and nitrogen atoms to which they are attached; or

 R_3 , R_4 , R_5 , R_6 , and R_7 are each independently hydrogen, C_1 - C_6 -alkyl, C_6 - C_{12} -aralkyl, or C_1 - C_6 -acyl;

 R_8 is $-(CH_2)_xCH_3$;

 R_9 is a linear or branched C_3 - C_{100} alkyl;

 R_{11} is C_1 - C_{20} alkyl optionally substituted with halo, hydroxy, alkoxy, amino, alkylamino, dialkylamino, sulfate, or phosphate;

R₁₂-is aryl optionally substituted with halo, halo alkyl, hydroxy, alkoxy, nitro, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R₁₃ is independently halo, halo alkyl, hydroxy, alkoxy, oxo, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R₁₄ is independently halo, halo alkyl, hydroxy, alkoxy, nitro, amino, alkylamino, dialkylamino, sulfate, or phosphate;

x is 1-100; and

LG is halo, -OSO₂R₁₆, B(OH)₂, or

 R_{16} is alkyl, halo alkyl or aryl optionally substituted with alkyl, halo or nitro.

- 25. (Original) A pharmaceutical composition comprising a compound of Formula (I) and a pharmaceutically acceptable carrier.
- 26. (New) The compound of claim 1, wherein R₁₀ is CH₃,
- 27. (New) The compound of claim 26, wherein R_9 is C_{14} alkyl.
- 28. (New) The compound of claim 27, wherein R_8 is $-(CH_2)_{24}CH_3$.
- 29. (New) The compound of claim 27, wherein R_8 is $-(CH_2)_{22}CH_3$.
- 30. (New) The compound of claim 1, wherein R_{10} is selected from –(CH₂)₂COOH, –(CH₂)₃COOH, and –(CH₂)₄COOH.