Introduction of Particle Physics

by Chao Qiang Geng

Collapsar

E-mail: matao24@mails.ucas.ac.cn

Contents

1		
	1.1 Ele	ementary Particle Kinematic and Dynamics · · · · · · · · · · · · · · · · · · ·
	1.1.1	Scale
	1.1.2	Units · · · · · · · · · · · · · · · · · · ·
	1.1.3	Kinematics · · · · · · · · · · · · · · · · · · ·
	1.1.4	Particle classification · · · · · · · · · · · · · · · · · · ·

1.1 Elementary Particle Kinematic and Dynamics

1.1.1 Scale

•

$$\left. \begin{array}{l} Atom : \sim 10^{-8} \mathrm{cm} \\ Nucleon : \sim 10^{-12} \mathrm{cm} \\ Proton : 0.8 \times 10^{-14} \mathrm{cm} \end{array} \right\} \; \textbf{Structure}$$

 $Electron :< 10^{-16} \text{cm} \leftarrow \text{point particle}$

1.1.2 Units

Natural units:

$$\hbar = c = 1 \Leftarrow \begin{cases} \hbar = 6.58211 \times 10^{-15} \text{Gev} \cdot \text{Sec} \\ c = 3 \times 10^{10} \text{cm/Sec} \end{cases} \Rightarrow \begin{aligned} & 1 \text{Gev} = (6.6 \times 10^{-25} \text{Sec})^{-1} \approx 1.52 \times 10^{24} \text{Sec}^{-1} \\ \Rightarrow 1 \text{Gev}^{-1} \approx 6.6 \times 10^{-25} \text{s} \\ & 1 \text{Sec} = 3 \times 10^{10} \text{cm} \end{aligned}$$

Dimension:

Dimension			
M^0	velocity	angular momentum	
M^1	mass	energy	momentum
M^{-1}	length	time	
M^{-2}		cross section	

$$\begin{split} m_e &= m_e c = m_e c^2 \approx \frac{1}{2} \text{MeV} \\ &= \frac{1}{\hbar/m_e c} \approx (4 \times 10^{-11} \text{cm})^{-1} \\ &= \frac{1}{\hbar/m_e c^2} \approx (1.3 \times 10^{-21} \text{Sec})^{-1} \end{split}$$

Physical constants

$$\begin{array}{ll} G_F{}^{\oplus}=1.16637(2)\times 10^{-5}{\rm GeV}^{-2} & \text{@ Fermi constant} \\ M_{pl}{}^{@}=G_N^{-1/2}=M_{pl}=1.2\times 10^{19}{\rm GeV} & \text{@ Planck mass} \\ M_W=80.41\pm 0.10{\rm GeV} & \\ M_Z=91.187\pm 0.007{\rm GeV} & \\ M_e=0.51099906(15){\rm MeV} & \\ M_p{}^{@}=938.2723(3){\rm MeV} & \text{@ proton mass} \\ \end{array}$$

1.1.3 Kinematics

Mass

$$E = \frac{m}{\sqrt{1 - v^2}}, \mathbf{p} = \frac{m\mathbf{v}}{\sqrt{1 - v^2}} \Rightarrow E^2 - \mathbf{p}^2 = m^2,$$
 (1.1.1)

here E is energy , \mathbf{P} is momentum, \mathbf{v} is velocity,and m is rest mass.

Experiment unstable particle

Probability density is given by

$$\rho(M) = \frac{\Gamma}{2\pi \left[(M-m)^2 + \frac{\Gamma^2}{4} \right]}$$
(1.1.2)

Fig. 1.1.1 shows Breit-Wigner distribution, where m is the mass, Γ is the width.

Figure 1.1.1. Breit-Wigner distribution

Lifetime, unstable particles—most of particles are unstable.

$$t \to t + \mathrm{d}t, N \to N - \mathrm{d}N$$

$$\mathrm{d}N = -\tau^{-1}N(t)\mathrm{d}t \Rightarrow N(t) = N(0)e^{-\frac{t}{\tau}},$$

here au is lifetime and $\overline{ au=rac{1}{\Gamma}}$.

Proof. QM

Consider a free particle with its wave function being $\psi(x,t)$

$$i\frac{\partial \psi(x,t)}{\partial t} = H\psi(x,t)$$
 Schrödingereq (1.1.3)

Here H is Hamiltionian, which has eigenvalue E ——Energy.

The solution of Schrödinger eq is

$$\psi(x,t) = e^{-iEt}\psi(x) \tag{1.1.4}$$

Normalization condition is

$$\int |\psi(x,t)|^2 d^3x = 1, \tag{1.1.5}$$

and $|\psi(x,t)|$ has the physical meaning of the probability density of the particle at time t and space x.

If E is real ,the probability finding the particle is independent of time $|\psi(x,t)|^2 = |\psi(x)|$. To introduce an exponential decay of a state ,a small imaginary part is added to the energy

$$E = m - \frac{1}{2}i\Gamma,\tag{1.1.6}$$

here m, Γ is real ,and the factor is chosen for convenience. Then we have

$$\psi(x,t) = e^{-i(m - \frac{1}{2}i\Gamma)t}\psi(x) = \psi(x)e^{-imt}e^{-\frac{\Gamma}{2}t} \Rightarrow |\psi(x,t)|^2 = |\psi(x)|^2e^{-\Gamma t}.$$
 (1.1.7)

At the same time, we have

$$N(t) = N(0)e^{-\frac{t}{\tau}},\tag{1.1.8}$$

then $\Gamma \tau = 1$.

Use Fourier transformation to descerbe the wave function in terms of energy instead of time. Consider a function f(x,t)

$$f(x,t) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} dM g(x,M) \exp(-iMt)$$
 (1.1.9)

$$g(x,M) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} dt f(x,t) \exp(+iMt) = \frac{f(x,t) = \psi(x,t)}{t < 0, \psi(x,t) = 0}$$
(1.1.10)

$$\frac{1}{(2\pi)^{1/2}} \int_0^\infty \mathrm{d}t \psi(x) \exp\left(i(M-m+\frac{1}{2}i\Gamma)t\right) \tag{1.1.11}$$

$$= \frac{\psi(x)}{(2\pi)^{1/2}} \frac{i}{M - m + i\Gamma/2}.$$
(1.1.12)

The probability density $\rho(M)$ of finding the particle with mass M

$$\rho(M) = c \int d^3x |g(g,M)|^2 \xrightarrow{\int d^3x \psi(x) = 1} \frac{c}{2\pi} \frac{1}{(M-m)^2} + \frac{\Gamma^2}{4} = \frac{\Gamma}{2\pi} \frac{1}{(M-m)^2 + \Gamma^2/4},$$
(1.1.13)

where we use the formula

$$\int_{-\infty}^{\infty} f(M)dM = 1 \Rightarrow C = \Gamma. \tag{1.1.14}$$

The measurement on the mass of unstable parcels is uncertain

$$\tau\Gamma = 1 \longrightarrow \tau\Gamma = h \quad (\Delta t \Delta E \geqslant \hbar).$$
 (1.1.15)

Some common particles have the following masses,

• photon: $\tau_{\gamma} = \infty$

• electron: $\tau > 2 \times 10^{23} \mathrm{yr}$

• muon: $\tau = 2.19703(4) \times 10^{-6} \text{ s}$

• π^{\pm} : $\tau = 26029(23) \times 10^{-8} \text{ s}$

• π^0 : $\tau = (84 \pm 06) \times 10^{-17}$ s

• N : $\tau = (896 \pm 10)$ s

• Proton: $\tau > 10^{32} y_r$

Electric charge

$$e = 1.60217733(49) \times 10^{-11} \text{C}$$

$$\frac{|q_p| - |q_e|}{|q_e|} < 10^{-21} \quad \leftarrow |q_n| = |q_p| = |q_e| \Rightarrow q_n = 0$$

Why the electric charge of particle is quantized?

Spin

• $Fermon: 1/2, 3/2, 5/2, \cdots$

• $Boson: 0, 1, 2, \cdots$

The spins of common particles are as follows:

Example	H	γ	e	μ	π	p	n	W	\overline{Z}
Spin	0	1	1/2	1/2	0	1/2	1/2	1	1

Table 1.1. The spins of common particles

1.1.4 Particle classification

In the standard model

- (1). Gauge bosons: $\gamma, W^{\pm}, Z, g(8 \text{ gluons})$ ——Spin 1
- (2). Scale boson: Higgs boson H ——Spin=0
- (3). Fermions: leptons + quarks ——Spin =1/2

Leptons:

\overline{l}	Q	l_e	l_{μ}	$l_{ au}$
$e \\ \nu_e$	$-1 \\ 0$	1 1	0	0
$\mu \\ \nu_{\mu}$	$-1 \\ 0$	0 0	1 1	0 0
τ ν_{τ}	$-1 \\ 0$	0	0 0	1 1

Table 1.2. Lepton Table

There are also six antileptons with all the signs reversed position $Q = 1, l_e = -1$. Lepton are conserved!

$$e^{-} + e^{+} \not\to \pi^{+} + \pi^{-}$$

Quarks:

Q	B
-1/3	1/3
2/3	1/3
-1/3	1/3
2/3	1/3
-1/3	1/3
2/3	1/3
	-1/3 2/3 -1/3 2/3 -1/3

Table 1.3. Quark Charges and Baryon Numbers

Here B=Baryon, which is also conserved.

$$p \not\to e_0^+ + \pi_0^0$$

Observed particles

- (1). Gauge bosons: γ, W^{\pm}, Z
- (2). Leptons: $e, \mu, \tau, \nu_e, \nu_\mu, \nu_\tau$
- (3). Hadrons (强子, strong interaction)
 - Mesons(介子):spin=0,1,..., B=0
 - Bargons(重子):spin=1/2, 3/2, B=1