

Q. What's the din of {Cartan subalg of $sl_n(C)$?? (S) WG [Borel subalg? $\leftarrow \rightarrow$ {Borel subgroup}] \cong G/B \leftarrow [°0] **Finite surj? ** FMaximal torus] \cong G/N(T) G transitive?

Examples of Springer fiber.
$$E_{x_1, x_2} = Springer fiber of J_{x_2} = J_{$$

E2,2.

$$F(s) = E_{s,t,t} \qquad \bigcap$$

$$|P' \vee P' = E_{s,t} \qquad \bigwedge$$

[→] Q: Can we construct an affine paving from this kind of fibration?

Q. How to understand the Weyl group action on Springer fibration?

Define M^{λ} to be the complex vector space with basis the tabloids $\{T\}$ of shape λ , with λ a partition of n.

(3)
$$a_T = \sum_{p \in R(T)} p, \quad b_T = \sum_{q \in C(T)} \operatorname{sgn}(q) q. \quad v_T = b_T \cdot \{T\} = \sum_{q \in C(T)} \operatorname{sgn}(q) \{q \cdot T\}.$$

These elements, and the product

$$c_T = b_T \cdot a_T,$$

Define the **Specht module** S^{λ} to be the subspace of M^{λ} spanned by the elements v_T , as T varies over all numberings of λ .

Proposition 1 For each partition λ of n, S^{λ} is an irreducible representation of S_n . Every irreducible representation of S_n is isomorphic to exactly one S^{λ} .

Proposition 2 The elements v_T , as T varies over the standard tableaux on λ , form a basis for S^{λ} .