Covariate Analysis

Ricardo Martins-Ferreira

2023-07-24

Example for the "Study" variable

```
libs <- c("Seurat","RColorBrewer","ggplot2","SingleCellExperiment","scater")
suppressMessages(suppressWarnings(sapply(libs, require, character.only=TRUE)))</pre>
```

##	Seurat	RColorBrewer	ggplot2
##	TRUE	TRUE	TRUE
##	SingleCellExperiment	scater	
##	TRUE	TRUE	

The Seurat object corresponding to the total of 64,438 nuclei has been annotated based on the clinicopathological information of each subject.

Check the distribution of the nuclei across the variable

```
table(Seurat@meta.data$Study)

##
## Foloko 2021 Francis 2022 Fulland 2021 Grubman 2019 Jakol 2019
```

##	Feleke	2021	Franjic 202	22 Fullard	2021	Grubman	2019	Jakel	2019
##		9741	1634	12	1060		340		1002
##	Lau	2020	Leng 202	21 Mathys	2019	Morabito	2021	Pappalardo	2020
##		6631	543	32	913		3883		939
##	Schirmer	2019	Thrupp 202	20 Tran	2021	Velmeshev	2019	Yang	2021
##		1480	399	92	3826		3285		2003
##	Zhou	2020							
##		3569							

Visualization of the distribution in the UMAP

```
nb.cols <- 16
mycolors <- colorRampPalette(brewer.pal(8, "Set2"))(nb.cols)

DimPlot(Seurat, reduction = "umap", group.by = "Study", cols = mycolors, pt.size = 0.01)</pre>
```


Calculate the number of nuclei and mean genes per nuclei

```
# subset the Seurat object by study
Mathys<- Seurat[,Seurat@meta.data$Study=="Mathys 2019"]</pre>
Grubman<- Seurat[,Seurat@meta.data$Study=="Grubman 2019"]</pre>
Leng<- Seurat[,Seurat@meta.data$Study=="Leng 2021"]</pre>
Morabito<- Seurat[,Seurat@meta.data$Study=="Morabito 2021"]</pre>
Lau<- Seurat[,Seurat@meta.data$Study=="Lau 2020"]
Zhou<- Seurat[,Seurat@meta.data$Study=="Zhou 2020"]
Pappalardo<- Seurat[,Seurat@meta.data$Study=="Pappalardo 2020"]</pre>
Thrupp<- Seurat[,Seurat@meta.data$Study=="Thrupp 2020"]</pre>
Jakel<- Seurat[,Seurat@meta.data$Study=="Jakel 2019"]</pre>
Schirmer<- Seurat[,Seurat@meta.data$Study=="Schirmer 2019"]</pre>
Velmeshev<- Seurat[,Seurat@meta.data$Study=="Velmeshev 2019"]</pre>
Feleke - Seurat[,Seurat@meta.data$Study=="Feleke 2021"]
Tran<- Seurat[,Seurat@meta.data$Study=="Tran 2021"]</pre>
Franjic<- Seurat[,Seurat@meta.data$Study=="Franjic 2022"]</pre>
Yang<- Seurat[,Seurat@meta.data$Study=="Yang 2021"]</pre>
Fullard - Seurat[,Seurat@meta.data$Study=="Fullard 2021"]
# apply a loop to calculate the number of nuclei and mean genes in each subset object
main.list <- list(Mathys, Grubman, Leng, Morabito, Lau, Zhou, Pappalardo, Thrupp, Jakel, Schirmer, Velme
my.files <- c("Mathys", "Grubman", "Leng", "Morabito", "Lau", "Zhou",
               "Pappalardo", "Thrupp", "Jakel", "Schirmer", "Velmeshev",
```

```
"Feleke", "Tran", "Franjic", "Yang", "Fullard")

df <- data.frame(Sample=my.files, Nuclei="", Genes="")
number_nuclei= numeric(length(my.files))
number_genes = numeric(length(my.files))

for (i in 1:length(main.list)) {
   number_nuclei[i] <- nrow(main.list[[i]]@meta.data)
   number_genes[i] <- mean(main.list[[i]]]@meta.data$nFeature_RNA)
}

df$Nuclei = number_nuclei
df$Genes = number_genes
df$Genes = format(round(df$Genes, 0))

df$Label <- paste0(df$Nuclei,"(",df$Genes,")")
df <- df[order(df$Nuclei),]</pre>
```

Plot the number of nuclei and mean genes per nuclei

Percentage of variance explained

The percentage of variance explained is calculated with the "RNA" assay.

The Seurat object is first converted to sce.

The output corresponds to Supplementary Figure 3G in the manuscript.