Roots of a Polynomial – Related Expressions

Our aim is to rewrite expressions in α , β , γ , δ in terms of the coefficients of the polynomial. You should know (or be able to quickly derive) the following:

Reciprocals

Quadratic: $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ Cubic: $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha \beta + \alpha \gamma + \beta \gamma}{\alpha \beta \gamma}$ Quartic: $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta}{\alpha\beta\gamma}$

Products of Powers

Quadratic: $\alpha^n \beta^n = (\alpha \beta)^n$ • Cubic: $\alpha^n \beta^n \gamma^n = (\alpha \beta \gamma)^n$ • Quartic: $\alpha^n \beta^n \gamma^n \delta^n = (\alpha \beta \gamma \delta)^n$

Sums of Squares

- Quadratic: $\alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta$
- Cubic: $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 2(\alpha\beta + \alpha\gamma + \beta\gamma)$ Quartic: $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$

In all three cases, this may be summarised as: $\sum (\alpha^2) = (\sum \alpha)^2 - 2\sum \alpha\beta$

Sums of Cubes

- Quadratic: $\alpha^3 + \beta^3 = (\alpha + \beta)^3 3\alpha\beta(\alpha + \beta)$
- $\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 3(\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \alpha\gamma) + 3\alpha\beta\gamma$ Cubic:
- DON'T NEED TO KNOW FOR A LEVEL! Quartic:

e.g.
$$x^3+3x^2-2x-1=0$$
 has roots α,β,γ . Find $\alpha^3+\beta^3+\gamma^3$
$$\sum \alpha=-3 \qquad \qquad \sum \alpha\beta=-2 \qquad \qquad \sum \alpha\beta\gamma=1$$

$$\alpha^3 + \beta^3 + \gamma^3 = (-3)^3 - 3(-3)(-2) + 3(1) = -42$$

e.g.
$$2x^2 - 3x + 5 = 0$$
 has roots α, β . Find $(\alpha^2 + 1)(\beta^2 + 1)$.

$$\alpha + \beta = \frac{3}{2} \qquad \qquad \alpha\beta = \frac{5}{2}$$

$$(\alpha^2 + 1)(\beta^2 + 1) = \alpha^2 \beta^2 + (\alpha^2 + \beta^2) + 1 = \left(\frac{5}{2}\right)^2 + \left(\left(\frac{3}{2}\right)^2 - 2\left(\frac{5}{2}\right)\right) + 1 = \frac{9}{2}$$