

BÁO CÁO THỰC HÀNH #03

LAB-03: ĐẶC TRƯNG CỤC BỘ

Họ và Tên : Võ Văn Quân

MSSV: 1712698

Såt: 0932442811

Mail: quan.vovan0209@gmail.com

I. Cài đặt chương trình

Môi trường lập trình : visual studio 2019

Ngôn ngữ: C++

- Phiên bản openCV: 2.4.9

II. Giải thuật và Kết quả chạy.

1. Phát điểm đặc trưng dựa vào thuật toán Harris

a. Giải thuật:

Bước 1: chuyển ảnh RGB thành ảnh xám sau đó khử nhiễu bằng mặt nạ

Gauss 5x5

Bước 2: Tính đạo hàm bậc 1 bằng sobel lx,ly

Bước 3: Tính độ tương quan giữa các đạo hàm (Nhân ma trận), xây dựng

ma trận M cho mỗi cửa sổ điểm ảnh

A = Ix^2

B = Ix * Iy

• C = Iy^2

Bước 4 : tính corner response R = det(M) - k * Trace(M)

Bước 5: loại bỏ điểm không cực đại (non-maximum suppression) để thu được các điểm góc

b. Tên hàm : Mat detectHarrist(Mat srcImg, int blockSize, float k, float Threshold, vector<KeyPoint>& keypoint);

Trong đó:

- srclmg: ảnh truyền vào muốn phát hiện đặc trưng
- blockSize : kích thước cửa số để tìm cực trị
- k:
- threshold :
- keypoint : vector lưu các điểm đặc trưng và kích thước của nó.

c. Chay command line

<tenchuongtrinh> <duongdantaptinanh> <duongdananhsauxuly><malenh><thamso>

1712698_lab03.exe ./TestImages/01.jpg ./OutImages/harris_01.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/02.jpg ./OutImages/harris_02.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/03.jpg ./OutImages/harris_03.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/04.jpg ./OutImages/harris_04.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/05.jpg ./OutImages/harris_05.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/06.jpg ./OutImages/harris_06.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/07.jpg ./OutImages/harris_07.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/08.jpg ./OutImages/harris_08.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/09.jpg ./OutImages/harris_09.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/09.jpg ./OutImages/harris_09.jpg --harris 5 100000.0 1712698_lab03.exe ./TestImages/10.jpg ./OutImages/harris_10.jpg --harris 5 100000.0

Kết quả chạy:

2. Phát điểm đặc trưng dựa vào thuật toán Blob

a. Giải thuật

Chọn sigma gồm 7 giá trị được khởi tạo : $s_i = e^{1,8+i\cdot 0,2}$

Bước 1: tính đạo hàm bậc 1 với bộ lọc gausian với sigma

Bước 2 : Laplacian là đạo hàm bậc 2 của Gaussian nên lấy kết quả trên nhân với

sigma^2

Bước 3: tính đạo hàm bậc 2 với Laplacian

Bước 4 : Tìm cực trị địa phương => (Point(x,y),scale)

Tập keypoint (Point(x,y),scale) chính là các blob cần tìm, mỗi blob gồm các thông tin về vị trí và thông tin về tỷ lệ (scale)

b. **Tên hàm**: Mat detectBlob(Mat srcImg, int ksize, vector<KeyPoint> &keypoint);

Trong đó:

- srclmg: ảnh truyền vào muốn phát hiện đặc trưng

- ksize : kích thước của kernel

keypoint : vector lưu các điểm đặc trưng và kích thước của nó.

c. Chay command line

<tenchuongtrinh> <duongdantaptinanh> <duongdananhsauxuly><malenh><thamso>

1712698_lab03.exe ./TestImages/01.jpg ./OutImages/blob_01.jpg --blob 5

1712698_lab03.exe ./TestImages/02.jpg ./OutImages/blob_02.jpg --blob 5

1712698_lab03.exe ./TestImages/03.jpg ./OutImages/blob_03.jpg --blob 5

1712698_lab03.exe ./TestImages/04.jpg ./OutImages/blob_04.jpg --blob 5

1712698_lab03.exe ./TestImages/05.jpg ./OutImages/blob_05.jpg --blob 5

1712698_lab03.exe ./TestImages/06.jpg ./OutImages/blob_06.jpg --blob 5

1712698_lab03.exe ./TestImages/07.jpg ./OutImages/blob_07.jpg --blob 5

1712698_lab03.exe ./TestImages/08.jpg ./OutImages/blob_08.jpg --blob 5

1712698_lab03.exe ./TestImages/09.jpg ./OutImages/blob_09.jpg --blob 5

1712698_lab03.exe ./TestImages/10.jpg ./OutImages/blob_10.jpg --blob 5

Kết quả:

- 3. Phát điểm đặc trưng dựa vào thuật toán DoG.
 - a. Giải thuật:

Gần như tương tự với LoG, nhưng thay vì tính đạo hàm bậc 2 của gaussian theo Laplacian thì $D^2(I)$ của ảnh I chính là sự sai khác giữa hai ảnh đã được nhân chập bởi hàm Gaussian ở hai tham số sigma khác nhau.

b. **Tên hàm**: Mat detectDoG(Mat srcImg, int ksize, vector<KeyPoint> &keypoint);

Trong đó:

- srclmg: ảnh truyền vào muốn phát hiện đặc trưng
- ksize : kích thước của kernel
- keypoint : vector lưu các điểm đặc trưng và kích thước của nó.

c. Chay command line

<tenchuongtrinh> <duongdantaptinanh> <duongdananhsauxuly><malenh><thamso>

1712698_lab03.exe ./TestImages/01.jpg ./OutImages/dog_01.jpg --dog 5 1712698_lab03.exe ./TestImages/02.jpg ./OutImages/dog_02.jpg --dog 5 1712698_lab03.exe ./TestImages/05.jpg ./OutImages/dog_04.jpg --dog 5 1712698_lab03.exe ./TestImages/05.jpg ./OutImages/dog_05.jpg --dog 5 1712698_lab03.exe ./TestImages/06.jpg ./OutImages/dog_06.jpg --dog 5 1712698_lab03.exe ./TestImages/07.jpg ./OutImages/dog_07.jpg --dog 5 1712698_lab03.exe ./TestImages/08.jpg ./OutImages/dog_08.jpg --dog 5 1712698_lab03.exe ./TestImages/09.jpg ./OutImages/dog_09.jpg --dog 5 1712698_lab03.exe ./TestImages/09.jpg ./OutImages/dog_09.jpg --dog 5 1712698_lab03.exe ./TestImages/10.jpg ./OutImages/dog_10.jpg --dog 5 Kết quả :

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN 227 Nguyễn Văn Cừ, Phường 4, Quận 5, TP.HCM Điện Thoại: (08) 38.354.266 - Fax:(08) 38.350.096

4. Đối sánh 2 ảnh sử dụng đặc trưng SIFT với thuật toán KNN

a. Giải thuật:

Scale space extreme value	Dựa vào diference of Gaussian(DoG) để
detection	tìm các KeyPoint
KeyPoint	Vị trí các điểm đặc trưng và kích thước
	(bán kính r)
Sự định hướng	Bằng cách tính biểu đồ hướng của vùng
	lân cận cục bộ để tìm điểm chính, tìm
	hướng của giá trị tối đa trong biểu đồ
	làm hướng chính của điểm chính
Feature descriptor	Tìm đỉnh cực đại bằng phép nội suy đa
	thức phù hợp
	Get descriptor = 4 * 4 * 8 = 128

b. Tên Hàm:int matchBySift(Mat img1, Mat img2, int detector, char
 *fileout);

Trong đó:

- Img1, Img2 là 2 ảnh muốn đối sánh
- Detector = [1,2,3] : lựa chọn thuật toán phát hiện điểm đặc trưng, đối với harris
 mặc định bán kính điểm đặc trưng là 5.
- *fileout : đường dẫn để lưu ảnh sau khi chạy chương trình
 Kết quả :

Ånh 01_1 và 01_2:

Ånh 02_1 và 02_3:

