

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

PRODUCTION AND VALUE

OF

MINERAL PRODUCTS IN MICHIGAN

FOR

1915 AND PRIOR YEARS

AND

A REPORT ON MICHIGAN LIMESTONES

TRANSFERRED VO EDLOGICAL SCIENCES LIBRARY

HARVARD UNIVERSITY

LIBRARY

OF THE

TRANSFERDED TO CECUPICAL SCREETS LIBEAT!

MUS. COMP. ZOOL. Library

MAR 2 8 1956 Maryard Markety

.

MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY

Publication 21. Geological Series 17.

MINERAL RESOURCES OF MICHIGAN

WITH

STATISTICAL TABLES OF PRODUCTION AND VALUE OF MINERAL PRODUCTS

FOR

1915 AND PRIOR YEARS.

WITH A TREATISE ON LIMESTONE RESOURCES

R. A. SMITH.

PREPARED UNDER THE DIRECTION OF

R. C. ALLEN

DIRECTOR, MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY

PUBLISHED AS A PART OF THE ANNUAL REPORT OF THE BOARD OF GEOLOGICAL AND BIOLOGICAL SURVEY FOR 1915.

LANSING, MICHIGAN
WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS
1916

5-2622 1223

Harvard College Library
April 16, 1918.
Michigen State Library

MUS. CUMP. ZGOL.
LIBRARY

MAR 2 8 1958

HARVARB
UNIVERSITY

BOARD OF GEOLOGICAL AND BIOLOGICAL SURVEY, 1915.

EX OFFICIO:

THE GOVERNOR OF THE STATE,
HON. WOODBRIDGE N. FERRIS.

THE SUPERINTENDENT OF PUBLIC INSTRUCTION,
HON. FRED L. KEELER.

THE PRESIDENT OF THE STATE BOARD OF EDUCATION, HON. THOMAS W. NADAL.

DIRECTOR,
R. C. ALLEN.

SCIENTIFIC ADVISORS.

- Geologists.—Dr. L. L. Hubbard, Houghton; Prof. W. H. Hobbs, Ann Arbor; Prof. W. H. Sherzer, Ypsilanti.
- Botanists.—Prof. E. A. Bessey, East Lansing; Prof. F. C. Newcomb, Ann Arbor.
- Zoologists.—Prof. W. B. Barrows, East Lansing; Prof. J. Reighard, Ann Arbor; Dr. Bryant Walker, Detroit.

LETTER OF TRANSMITTAL.

To the Honorable, the Board of Geological and Biological Survey of the State of Michigan:

Gov. Woodbridge N. Ferris.

Hon. Thomas W. Nadal.

Hon. Fred L. Keeler.

Gentlemen:—Under authority of act number seven, Public Acts of Michigan, Session of 1911, I have the honor to present herewith Publication 21, Geological Series 17, the fifth of a series of annual statements of the production and value of the mineral products of Michigan, with a special article by R. A. Smith on Limestone Resources.

Very respectfully,

R. C. ALLEN,

Director.

CONTENTS.

	Page
Letter of Transmittal	5
PART I. METALLIC MINERALS.	
Michigan Copper Industry in 1915. Walter E. Hopper	11
Iron Industry	57
Iron Ore Shipments by Districts	58
Marquette District	58 `
Gwinn District	64
Gogebic District	65
Menominee District	66 68
Summary of Iron Ore Shipments by Ranges	72
Iron Ore Shipments by Counties.	73
List of Active Iron Mines	74
Iron Ore Reserves of Michigan	78
Appraised Value of Michigan Iron Mines	78
Value of Michigan Iron Ore Shipments in 1915	80
Costs, Profits, Losses, and Assessments, Iron Mines of Michigan, 1906-15	80
PART II. NON-METALLIC MINERALS.	
Limestones of Michigan, R. A. Smith	101
Miscelianeous Non-Metallic Minerals.	
Coal	315
Limestone	325
Lime	329
Sandstone	330
Grindstones and Scythestones	333
Sand and Gravel	333 334
Cement	340
Gypsum	343
Clay	347
Pottery	348
Brick and Tile Products	350
Sand-Lime Brick	
Mineral and Spring Waters	
Natural Gas	
Petroleum	
Shale	
Graphite	
Quartz	
Mineral Paints	359
Summary Table of Mineral Products in Michigan, 1911-1915	. 360
APPENDIX.	
Directory of Mineral Producers in Michigan for 1915	. 363

THE MICHIGAN COPPER INDUSTRY IN 1915. WALTER E. HOPPER.

GENERAL REVIEW.

The production of the Michigan copper mines during the year 1915 was the largest in the history of the industry. According to the figures of the U. S. Geological Survey, the total refined copper produced amounted to 238,956,410 pounds, as compared with 158,009,748 pounds in 1914 and with 231,112,228 pounds in 1912, the record production previous to 1915.

There was mined and milled in the Lake Superior district 12,334,699 tons of ore-producing concentrates, containing 265,283,378 pounds of copper, or a recovery of slightly above one per cent of copper from the ore. A portion of the concentrates produced was not smelted in 1915.

At an average price of 17.5 cents per pound, the copper output of Michigan in 1915 had a value of about \$41,800,000. The copper mines also produced in 1915, 585,933 ounces of silver, valued at \$297,068.

At the beginning of the year practically all development and exploratory work was in a state of suspension and all the producing mines, with the exception of the Mohawk and Wolverine, were operating on a reduced scale of production and wages. The conditions at the close of the year were in marked contrast to those at the beginning of the year. At the close of 1915 all producing mines were increasing production as rapidly as possible and practically all non-producing mines were again in operation. The large increase in total production and the renewed activity in development and exploratory work were due directly to the large consumption and to the high price received for copper sold.

Among the notable achievements of the year may be mentioned the remarkable increase in yield of refined copper per ton of ore stamped and the decided lowering of the cost per pound of copper produced. Both of these are due to various improvements in mining practice, the introduction of new mining and milling machinery and especially to a closer selection and better sorting of ore underground.

The one-man drill and the Carr bit have doubled the output per miner of a few years ago. A close study of the breaking of ore underground and the introduction of lighter and more efficient drilling machines have resulted during the last five years in a saving of over \$2,000,000 to the mining companies, and, at the same time, the workmen have benefited by over \$1,000,000.

The use of the low-pressure steam turbine has increased and Ahmeek,

Champion and Isle Royale installed this equipment during 1915. Regrinding is now done at many of the mills and steel balls have replaced the flint pebbles in the Hardinge mills. The Calumet & Hecla began the treatment of tailings from its large pile of over 35,000,000 tons of stamp sand and results have been excellent. A large recovery of copper is being made at a very low cost. The leaching plant now in the process of construction will probably be in operation before the close of 1916. At the Copper Range mines the use of waste stamp sand for filling stopes has been increased. This sand fill makes possible a more complete extraction and thorough exploration of the lode.

With improved conditions in the copper market wages were increased until they are now the highest ever known in the district. The mapagements felt that the employees, because of their loyalty and efficiency, should share in the existing prosperity due to the higher price of copper. The employees of the Calumet & Hecla and its subsidiaries received as a premium the wages forfeited under the reduced rate of pay from September 1, 1914 to May 1, 1915. Contract work and bonus systems make it possible for the efficient men underground to earn almost double the basic rate. On May 1 wages at the Quincy mine were restored to the basis existing prior to September 1914, which was the highest rate ever paid employees, but with the advance in the price of copper, wages were increased about seven and one-half per cent December 1, and another advance of seven and one-half per cent will take effect March 1, 1916, making 15 per cent in all.

EXPLORATION AND DEVELOPMENT WORK.

The great demand and high price for copper stimulated interest in exploration and development work during 1915.

The Houghton Copper Company, the South Lake and the New Arcadian sent ore to the mills during 1915. The White Pine has been a steady producer on a limited scale since April. All of these are new producers.

At the northern end of the district Keweenaw continued exploration of the Ashbed lode on the Phoenix property, and a mill test will be made during the summer of 1916.

On the Cliff lands in Keweenaw county seven diamond drill holes were put down to explore the Ashbed lode, the Calumet conglomerate and the Osceola amygdaloid.

Mayflower and Old Colony continued their exploration of the Mayflower lode by diamond drilling and the latter will soon be in a position to start a shaft to develop the mineral deposit which has been so persistent in each hole drilled.

Algomah resumed exploration work in April. The mine was unwatered and sinking of the shaft resumed in June. The shaft is sinking towards the point where the Lake, South Lake and Algomah properties join.

Diamond drilling at the Contact was successful in locating in two holes the Wyandot No. 8 lode. Where cut, the lode possesses all the favorable characteristics of other commercially mineralized beds of the district.

Cherokee resumed exploration work during the summer of 1915. Numerous cross-trenches and pits revealed an amygdaloid lode, showing such promising mineralization, as to warrant the installation of a plant sufficient to sink an exploring shaft to a depth of 500 to 700 feet. This work will probably commence in the spring of 1916.

Indiana carried on an unsuccessful search on the 600 foot level for No. 2 drill hole, which showed a rich deposit of copper. Drifting in search of the deposit is now under way at the 1,150 and 1,400 foot levels.

Naumkeag continued exploratory work and the results show that there is a shoot of copper bearing ground in the northern part of the property which undoubtedly is worthy of development in depth.

North Lake operated continuously throughout the year. Three very promising looking amygdaloid lodes, all carrying copper, were exposed. These probably correspond to the South Lake lodes Nos. 1, 2 and 3. The shaft is now being sunk to the 800 foot level.

New Arcadian continued development work on the New Arcadian lode, and also found No. 8 conglomerate to be well mineralized on the 900 foot level. Results were very encouraging.

Exploratory work at the New Baltic consisted of trenching and diamond drilling for the purpose of definitely locating the outcrop of the New Arcadian lode and No. 8 conglomerate. The results of the diamond drill work were very favorable.

Onondaga resumed exploration of its lands within the Nonesuch basin. A series of drill holes finally located the Nonesuch lode, and further work will consist of drilling to find some mineralized portion of the lode on the company's lands.

The most extensive and perhaps the most interesting exploratory work of the year was done in the Porcupine Mountain district, Ontonagon county. The White Pine Extension was organized in July to explore and develop lands west of the White Pine and Nonesuch mines. An extensive diamond drilling campaign was begun in the spring of the year and results were so encouraging that a shaft is now being sunk to develop a large area of the Nonesuch formation.

The Michigan resumed operations in July after a suspension of all active mining operations for a period of nearly six years.

CONSTRUCTION WORK.

Construction work, which was discontinued throughout the district, in August 1914, was resumed at many of the mines and mills in the spring of 1915.

Work at the Calumet & Hecla leaching plant was resumed in April. The building is enclosed and work on the tank and piping is well under way. Part of the plant probably will be ready for operation in the summer of 1916.

Ahmeek expended \$175,943.29 for construction. The concrete foundation for a new steel shaft and rockhouse at No. 2 shaft was completed and the erection of the steel work will commence in March 1916. At the mill two additional stamps were installed and put in commission during the year.

Allouez spent \$19,037.01 for construction. Two brick fireproof dries are being built, one at each shaft.

Isle Royale rebuilt the stamp-mill at a cost of \$130,987.33 over the \$100,358 insurance collected on the old mill.

Osceola spent \$82,074.22 for new construction at all branches. Of this amount \$15,212.87 was for new work at the stamp-mill.

At the Tamarack recrushing plant the building proper is finished and floors and launders are being put in. All the necessary machinery has been ordered, with the exception of the Hardinge mills. Tamarack expended \$31,791.55 for construction.

At the White Pine considerable work was done on surface and at the stamp-mill and \$351,438.07 was spent for construction.

New construction at the mines and mills of the Copper Range Consolidated cost \$161,587.23 during 1915. The major part of this expense was made to secure greater quantities of power at a favorable cost. A low-pressure turbine was installed at the Champion mill, and a transmission line constructed from the mills to the mines.

Franklin expended \$14,139.92 for construction at mine and mill. Houghton Copper spent \$8,111.49 for construction of a rockhouse and a railroad connection. Quincy spent \$25,382.04 for construction at the mine, and Victoria spent \$9,252.81 for construction at mine and mill.

Total construction work at the Mohawk amounted to \$43,373.44, which includes the cost of a new steel rock-house at No. 5 shaft.

The erection of a modern steel rockhouse was started at the South Lake. Total cost of construction for the year was \$7,779.65.

DIVIDENDS.

Ten companies paid dividends in 1915. Calumet & Hecla paid out \$5,000,000; Champion \$3,100,000; Copper Range \$1,182,003; Ahmeek \$1,650,000; St. Mary's \$1,280,000, and Osceola \$1,057,650. The total amount paid out in dividends during 1915 was \$15,189,653.

Assets were increased in many cases, and only six companies out of a total of 47 ended the year with a balance of liabilities.

MINE CASUALTIES.

The report of the Houghton county mine inspector showed a total of 34 casualties for the year ending Sept. 30, 1915. The total number of men employed was 16,005 and the proportion of casualties was 0.0021. The largest number of casualties was seven, at the Quincy and the Hecla Branch. Accidents from fall of rock appear to be the most numerous, 24 of the 34 being of this nature.

Considerable interest has been shown among mining men during the past year in the question of accidents in mines and their causes. The writer has read carefully the testimony of witnesses and the verdict of the jury in each of the 34 cases, as stated in the county mine inspector's report. In only eight cases out of the total of 34 can the accident be clearly attributed to carelessness on the part of the men killed. In these eight cases of apparent carelessness only two miners were killed, the others being timber-men, trammers and men doing minor jobs underground.

For details of production, costs, dividends, assessments, assets and liabilities see statistical tables.

DETAILS OF OPERATIONS OF THE MINING COMPANIES IN 1915

Ahmeek Mining Company.

Mine location: Ahmeek, Keweenaw county. General Manager: James MacNaughton.

Superintendent: S. Russell Smith.

Controlled by the Calumet & Hecla Mining Co.

During the year 1915 Ahmeek produced 21,800,492 pounds of refined copper, at a total cost per pound of 7.96 cents. This cost includes 0.10 cents per pound for refining anodes to save silver values. Of the 948,914 tons hoisted only 40 tons was discarded in the rock-house, showing a percentage of discard of 0.004. The pounds of refined copper per ton of ore treated was 23.0. The success of the operations for the year is indicated by a total payment to shareholders in dividends of \$1,650,000.00. Assets were increased during the year by \$614,882.15.

Shaft sinking was continued in three of the four operating shafts. The bottom of No. 1 shaft is below the 20th level. The 18th and lower levels will be driven north to No. 2 shaft, with a grade towards No. 1, in order to permit all ground opened by these levels to be trammed to No. 1 shaft, thereby increasing the tonnage tributary to it.

In the No. 2 shaft the mass copper fissure vein north of the shaft is now open for a total distance of 2,105 feet from the 9th to the 18th levels inclusive, with the exception of the 12th level, on which no drifting has been done, as a large mass of copper is being removed from the intersection of the fissure and lode. The recovery during the year from these openings has been 1,488,000 pounds of copper, at an average cost, exclusive of smelting, of $1\frac{1}{2}$ cents per pound. Mules are used for tramming with satisfactory results on several levels in both No. 1 and No. 2 shafts.

The erection of the steel work for a new rock-house at No. 2 shaft will commence in March 1916. This rock-house will be equipped with two 24-inch by 48-inch crushers, a poor rock crusher and a drop-hammer for treating mass copper. With the completion of this new rock-house the present central crushing plant will be used for treating ore from No. 1 shaft only.

Mining operations at shafts Nos. 3 and 4 were resumed in May. On the south side of No. 3 shaft, from the 11th to the 15th levels inclusive, a promising looking fissure vein has been found, but no drifting as yet has been done on it. All openings in No. 4 shaft have shown ore of average quality. Drop switches and transfer cars have been installed at shafts 3 and 4 and are working satisfactorily.

At the stamp-mill two additional stamps, Nos. 5 and 6, went into commission May 31 and August 31 respectively. The regrinding machinery for these units will be completed early in 1916. Stamp foundations and floors for stamps 7 and 8 are completed, the machinery has been ordered and both of these stamps should be in operation during the coming year. The low-pressure turbine is giving good results and, in addition to supplying the necessary power for Nos. 5 and 6 stamps, is selling about 600 kilowatts to the Calumet & Hecla Mining Co.

A dam and reservoir of 3,000,000 gallons capacity has been built above the Hungarian Falls to provide additional fire protection for the Ahmeek, Tamarack, Osceola and Lake Milling companies.

Two diamond drill holes were put down from surface to locate and test the Calumet conglomerate; one in the S. E. $\frac{1}{4}$ of the S. E. $\frac{1}{4}$ of Section 29, T. 57 N., R. 32 W, and the other in the N. W. $\frac{1}{4}$ of the N. E. $\frac{1}{4}$ of Section 32, T. 57 N., R. 32 W. In the first hole the conglomerate was found to consist of two feet of very hard, compact felsite conglomerate

with a few flakes of copper near the top, underlain by one foot of soft, dark-red sediment.

In the second hole drilled the Calumet conglomerate consisted of three feet of shaly sediment above which were two inches of coarse sandstone bearing no copper. This second hole was continued through the Osceola amygdaloid, which was found to be 15 feet thick and carried very little copper at one point.

On May 1 the rate of wages was restored to that existing prior to the cut of September 1, 1914, and in June all employees received as a premium the wages forfeited under the reduced rate of pay from September 1, 1914, to May 1, 1915. On December 31, 1915, it was announced that a premium of 10% would be added to the wages of all employees of the company for the first six months in 1916. The directors felt that the employees, because of their loyalty and efficiency, should share in the existing prosperity due to the higher prices of copper.

Algomah Mining Company.

Mine location: Lake Mine, Ontonagon county.

Superintendent: Thomas Bennett.

After a period of idleness of over a year work was resumed in April, following a sale of delinquent stock which had been bid in by the company for non-payment of assessment.

Two hundred feet of drifting was done on the 40 foot level and a small stope put through to surface, in order to take out some of the ore lying between the first level and surface. This work was discontinued, however, after two months, as it proved unprofitable owing to the difficulty, without a suitable concentrating plant, of selecting by hand ore of sufficiently high grade (18%) to go direct to the smelter. The mine was then unwatered and shaft sinking resumed, which at the end of the year had reached a depth of 478 feet.

Shaft sinking will be continued during 1916. The shaft is sinking towards the point where the Lake, South Lake and Algomah properties join. It is believed by General Manager Edwards that at depth some of the lodes worked in the Lake and South Lake will be encountered on the Algomah property.

During the year 5,005 pounds of copper was sold at 18 cents per pound. The excess of liabilities on December 31, 1915, was \$18,133.65.

Allouez Mining Company.

Mine location: Allouez, Keweenaw county. General Manager: James MacNaughton. Controlled by the Calumet & Hecla Mining Co. Allouez treated 534,705 tons of ore during 1915, and the total production of refined copper was 10,043,459 pounds. The yield of refined copper per ton of ore treated was 18.78, and the total cost per pound was 9.31 cents.

The results of Allouez's operations for 1915 are very interesting when compared with the results of the three years previous to 1915. The total tons of ore treated, the total production of refined copper and the yield per ton of ore treated are all considerably higher than during the other three years. The mining expense per pound was reduced about two cents and the total cost per pound of 9.31 cents is a notable decrease.

The stopes tributary to No. 1 shaft were fully up to the average quality, and No. 2 shaft stopes were a little better than average in quality.

For increase in wages and premiums see Calumet & Hecla Mining Co. Two dividends of \$1.00 a share, amounting to \$200,000.00, were declared during 1915. Assets were increased by \$599,987.98.

Baltic Mining Company.

Mine location: Baltic, Houghton county.

General Manager: F. W. Denton. Superintendent: Albert Mendelsohn.

Controlled by the Copper Range Consolidated Co.

The Baltic's operations for 1915 show a net profit of \$949,965.40. The total production of refined copper was 12,028,947 pounds and this was sold at 17.40 cents per pound. The Baltic has \$336,376.79 worth of copper on hand which is already sold and \$232,939.06 worth of copper has been delivered and not paid for. The surplus of the company Dec. 31, 1915, was \$1,440,576.25.

The improvements in the underground sorting of ore broken resulted in the remarkable yield per ton of ore stamped of 31.79 pounds. The cost per pound was 9.50 cents.

No. 2 shaft was the chief producer during the year 1915 and furnished about half of the total output for the year. The new ground opened in this shaft is good. A total of 54,240 cubic yards of stamp sand was run into the mine for fill.

Improved methods permit breaking and handling much leaner ground, and the sand fill makes possible more complete extraction and thorough exploration of the lode.

Calumet & Hecla Mining Company.

Mine location: Calumet, Houghton county. General Manager: James MacNaughton.

Superintendent: John Knox.

During the year 1915 the C. & H. produced 72,613,320 pounds of refined copper, of which amount 71,030,518 pounds was produced by the mine and 1,582,802 pounds was recovered from the sand bank at Torch Lake. The recovery from 3,188,583 tons of ore treated from the mine was 22.28 pounds per ton. The total cost per pound of mine copper produced was 9.33 cents, and the price received for copper sold averaged 18.11 cents. Four dividends, amounting to \$5,000,000, were paid during the year.

The Calumet conglomerate lode produced 51,738,588 pounds of copper, an average of 29.74 pounds per ton, at a total cost per pound of 8.69 cents. About 51 drills were at work during the year removing shaft pillars and cleaning up arches and the backs of old stopes. A total of 379,201 tons was obtained from this work. Not much change was found in the character of the openings in the Hecla and South Hecla branches.

The Osceola lode produced 19,291,930 pounds of copper, an average of 13.32 pounds per ton, at a total cost per pound of 9.71 cents. The openings on this lode continue to show about the same grade of ore. The product obtained from foot-wall stopes was about $31\frac{1}{2}$ per cent of the total product of this branch.

No work was done on the Kearsarge lode during 1915. No work was done on the lands of the Manitou-Frontenac branch and no work of any kind was done at the St. Louis branch during the year.

At the mills all the 28 stamps are running, 17 on conglomerate and 11 on amygdaloid ore. Both the old and the new recrushing plants were in continuous operation during the year, except for an interruption of about seven weeks in July and August, due to the burning out of the turbine generator.

The results with pebble mills used in the new plant are so far superior to the Chilian mills in the old plant that it is intended to remodel the old plant. When this is completed there will probably be sufficient increased capacity to handle all the mill tailings and thus make all of the new plant available for sand bank tailings.

The comparative results for 1915 from the two plants on mill tailings are as follows:

	No. 1 Plant.	No. 2 Plant.	Both Plants.
Tons coarse tailings crushed Pounds per ton in material treated Pounds copper saved per ton Pounds copper produced Cost per pound, excluding smelting and selling	13.14 4.01 1,352,869	168,461 13.14 4.73 796,858 4.36c	505,704 13.14 4.25 2,149,727 5.72c

The reclamation plant went into commission on a limited scale in June, but was interrupted by power trouble in July and August. Since September it has been running continuously, the number of mills in commission gradually increasing until full capacity was reached in December. At present there are 48 Hardinge mills in this plant regrinding sand bank tailings. This number will be increased by 16 Hardinge mills, now handling stamp-mill tailings, as soon as the old (No. 1) recrushing plant is remodeled to handle all tailings from the stamp-mills.

The reclamation plant consists of three units, namely, dredge, classifying house and conveyor, and No. 2 (new) recrushing plant. With three-quarters of the plant in commission, production at present is at the rate of 5,000,000 pounds of copper annually. The results from the operations of the reclamation plant are as follows:

Tons tailings treated	181,732
Pounds per ton in material treated	21.80
Pounds copper saved per ton	8.71
Pounds copper produced	1,582,802
Cost per pound, excluding smelting and selling	4.02c

Work on the erection of the leaching plant was resumed in April. The building is enclosed and work on the tanks and piping is well under way. The building contains eight sand tanks each 54 feet in diameter by 12 feet high with a capacity of 1,000 tons of sand. The cycle of operations proposed will require approximately 96 hours, so that the capacity of the plant will be 2,000 tons daily. The principal leaching agent will be ammonia and a contract for future requirements has been made with the Semet-Solvay Co. of Syracuse. It is hoped to have part of the plant in operation early in the summer of 1916.

At the smelter a new furnace, equipped with a mechanical pouring device and with a capacity of about 1,750,000 pounds per month, will probably be ready for operation by June 1, 1916.

Owing to improved conditions in the copper market, on May 1 the rate of wages was restored to that existing prior to the cut of Sept. 1, 1914, and in June all employees received as a premium the wages for-

feited under the reduced rate of pay from Sept. 1, 1914 to May 1, 1915. On Dec. 31, 1915, announcement was made that a premium of ten per cent would be added to the wages of all employees of the company for the first six months in 1916, it being considered proper, because of their loyalty and efficiency, that they should share in the existing prosperity due to the higher prices of copper.

The above statement of increased wages also applies to the following C. & H. subsidiaries:—Ahmeek, Allouez, Centennial, Isle Royale, Osceola and Superior.

Centennial Copper Mining Company.

Mine location: Calumet, Houghton county.

General Manager: James MacNaughton.

Controlled by the Calumet & Hecla Mining Co.

The gain from mining operations for the year 1915 was \$142,439.81. Assets were increased by \$248,483.81.

Centennial produced 2,347,500 pounds of refined copper, at a yield of 15.63 pounds per ton of ore treated. The total cost per pound, however, was 12.45 cents, the mining expense per pound being 11.21 cents.

No. 1 shaft is used entirely for transportation of men and material and no stoping or development work was done in that vicinity. To the north of No. 2 shaft openings showed average results. Some exceptionally good ground was encountered on the 31st and 32d levels. The drift on the 37th level which is being driven south to No. 1 shaft has shown copper at various points which warrant further inspection in the future.

No construction work was done during the year.

For increase in wages and premiums see Calumet & Hecla Mining Co.

Champion Copper Company.

Mine location: Painesdale, Houghton county.

General Manager: F. W. Denton.

Controlled by Copper Range Consolidated Company and St. Mary's Mineral Land Company.

Champion made a remarkable record in 1915. The total production was 33,407,599 pounds of copper at a yield of 36.17 pounds per ton of ore stamped. The cost per pound was 6.30 cents and the price received 17.40 cents, giving a profit per pound of 11.10 cents.

The tons of ore stamped, the pounds of copper produced and the yield of copper per ton were all much higher in 1915 than in any other year in the history of the company. After paying \$3,100.000.00 in dividends,

the suplus at the end of the year was \$1,815,868.46, as compared with \$1,206,819.44 at the end of 1914.

All openings made during the year showed average values. The advisability of drilling into the foot and hanging for parallel lodes is clearly proved by the opening of a large area of rich ground between Nos. 2 and 3 shafts, back in what was previously supposed to be the foot-wall.

As at the other Copper Range mines, stamp sand is used for fill, and during the year 220,920 cubic yards was run into the mine for this purpose.

The notable increase in yield per ton of ore stamped is due chiefly to better sorting. The product of the regrinding mills (estimated at about two pounds per ton) is another factor.

General Manager Denton states that the mine is in excellent condition and the outlook favorable.

Cherokee Copper Company.

Location of property: Between the Bohemia and King Philip properties.

Superintendent: H. W. Fesing.

The Cherokee owns about 800 acres of well timbered land. Outcrops are numerous, and a great deal of the overburden is light. The Copper Range Railroad and the Stratton Timber Railroad both traverse the property, making it very accessible.

Exploration work was resumed in the summer of 1915. Work was started in the S. W. 4 of Section 2, T. 51 R. 37. Two amygdaloids were uncovered by cross-trenches but showed nothing of interest.

Work was then started in the N. W. $\frac{1}{4}$ of Section 2. The cross-sections and cores from several holes drilled in the summer of 1911 showed an amygdaloid carrying some heavy copper with a general strike of N. 45° E. A number of pits were sunk on this line of strike and four of these uncovered the amygdaloid.

Two of these pits (Nos. 10 and 18) gave very interesting results. In the S. E. $\frac{1}{4}$ of the N. W. $\frac{1}{4}$ of Section 2 the bed was exposed for a width of 46 feet. The foot was composed largely of a sludge of chrysocolla in which were found many nuggets of metallic copper. For the first 10 feet from the foot the bed carried considerable heavy copper; the rest had copper here and there, with a little stronger showing towards the hanging.

A second pit (No. 18) was started 50 feet southwest of the one described above This was a well timbered pit, eight by nine, and was sunk seven feet in the bed. All the rock from this opening showed

strong mineralization, and this will probably be the site for a deep exploratory shaft.

Boiler, compressor, hoist and pumps will be installed in the spring of 1916. A shaft will be sunk to explore at depth the mineralized lode exposed in the pits and trenches.

Balance of assets Dec. 31, 1915, was \$39,791.62.

Cliff Mining Company.

Location of property: Keweenaw county.
General Manager: James MacNaughton.
Controlled by the Calumet & Hecla Mining Co.

The balance of assets was reduced to \$24,113.49, the sum of \$12,025.64 being expended for exploration and development work during 1915.

No work was done at the temporary shaft. Seven diamond drill holes, totalling 3,686 feet, were put down to complete the cross-section from the Greenstone bluff to the most easterly part of the company's property.

Five holes, totalling 2,141 feet of drilling, were put down in Section 25 T. 58 N. R. 32 W. to explore the Ashbed lode. The lode in these drill holes was found to vary from 25 to 32 feet in thickness, being practically barren in two of the holes and carrying fine copper, not in commercial quantity, in the other three. Just above the Ashbed there is a bed of silicious sandstone varying from one inch to 18 inches in thickness, which also carries a little very fine copper.

The West lode is from six to nine feet thick and is separated from the main Ashbed lode by a bed of trap about 36 feet thick. In character it is very similar to the Ashbed, and carries a little copper. At the top of the West lode there is a well-defined slide.

Two holes, totalling 1,545 feet, were drilled in Section 1, T. 57 N. R. 32 W. to explore the Calumet conglomerate and Osceola amygdaloid lodes. One of these holes cut both lodes. The Calumet conglomerate was found to be a dark red, clayey to shaly sediment, $3\frac{1}{2}$ feet thick and practically barren of copper.

The Osceola amygdaloid in this same hole looked encouraging, being $13\frac{1}{2}$ feet thick, four feet of which carried a little copper. The overburden was too deep for trenching at the outcrop of the lode, so another hole was drilled. This revealed a very poor looking bed, scarcely recognizable as the Osceola, 20 feet thick, with very little copper. The showing was not considered sufficiently good to warrant further work at this point.

Contact Copper Company.

Location of property: Elm River, Houghton county.

Superintendent: George S. Goodale.

The operations of the Contact during 1915 consisted of further exploration of the property by diamond drilling. Four holes were drilled, showing a total of 5,271 feet for the year.

In two of these holes the Wyandot No. 8 lode was definitely located at depths of 450 and 950 feet from the outcrop. The last hole drilled in this preliminary section should cut the lode at about 1,550 feet in depth.

The drilling during 1915 furnished sections of the lode at depth from the outcrop of 450 feet, 950 feet and 1900 feet, corresponding roughly to what would ordinarily be the 3d level, 8th level and 17th level respectively in a shaft.

The lode where cut appears to be a big, strong amygdaloid, at least 50 feet in thickness. Supt. G. S. Goodale states as follows: "The reasonable certainty that we have established the true identification of this bed, and its favorable and promising character for a mineralized formation, taken together with its promising disclosure of mineralization in other underground developments, leads me to feel that the results of our work for the year are very satisfactory."

The company had on hand Jan. 1, 1916, a balance of \$18,948.96 in cash.

Copper Range Consolidated Company.

Mine office: Painesdale, Houghton county.

General Manager: F. W. Denton.

Controls Copper Range Co., Baltic Mining Co., Trimountain Mining Co., and Atlantic Mining Co., and owns half of Champion Copper Co.

Various improvements in mining practice and the introduction of new mining and milling machinery resulted in a yield of copper per ton much higher, and a reduction in cost per pound much lower than ever previously obtained by the company. The total production of 37,035,642 pounds is 3,895,345 pounds larger than the best previous production in the history of the company.

The average yield of copper per ton for 1915 was 32.50 pounds, and the cost per pound 8.06 cents. Both of these are new records for the company. These improvements at the same time prolong the life of the mines; the lode is made more productive per unit of area, and results similar to or better than those of 1915 may be expected under average conditions.

While the great increase in the company's production in 1915 was due chiefly to the increase from the Champion mine, all the properties of the

Copper Range are now in excellent physical condition, and at the close of 1915 the reserves of developed stoping ground in the mines were greater than at the beginning of the year.

A total of \$161,587.23 was spent for new construction at the mines and mills.

The net earnings of the company for 1915 were \$9.00 per share. A dividend of \$3.00 per share was paid on December 15, and the balance added to working capital.

The new sales office in New York, opened Jan. 1, 1915, has been a great success. Savings in commissions have been considerable over the previous arrangement. A surplus of several million pounds of unsold copper and the entire product of 1915 was all disposed of during the first ten months of the year. The average selling price of 17.404 cents per pound does not include the sales made during the last two months of the year.

The New Jersey company, which formerly held the shares of the Copper Range Consolidated operating companies, was dissolved Oct. 8, 1915. It is probable that the Baltic Mining Co. and the Trimountain Mining Co. will also be dispensed with during 1916.

Franklin Mining Company.

Mine location: Demmon, Houghton county.

Superintendent: Enoch Henderson.

During 1915 Franklin produced 1,314,969 pounds of refined copper, which was sold at an average price of 19.83 cents per pound. Production began in April and increased gradually to 250,000 pounds of refined copper in December

Franklin's operations during 1915 were confined to the development of the Allouez conglomerate and the driving of the exploratory crosscut on the 32d level.

Because of the limited openings in the conglomerate it was possible to work only a small number of men during the first half of the year. A crosscut was driven from the No. 1 amygdaloid shaft 540 feet to cut the Allouez conglomerate on the 27th level. This level was connected with the 37th level by a rock chute with a loading bin at its bottom to permit dumping ore on all the conglomerate levels. In August the installation of the electric haulage transfer system to transfer ore from the bottom of the chute in the conglomerate on the 37th level to No. 1 amygdaloid shaft was completed. This electric haulage has a carrying capacity greater than the hoisting capacity of No. 1 amygdaloid shaft which it serves. Drift-stoping on all conglomerate levels was then started and

was continued with a steadily increasing production to the end of the year.

There was no underground selection or sorting of ore as there were no worked out stopes to permit of discard. Out of a total of 151,269 tons hoisted, 29,251 tons was discarded in the rock-house. This discard was principally trap and footwall sandstone.

One of the most interesting points of Franklin's operations during 1915 was the easterly exploratory crosscut on the 32d level. This was driven 2,638 feet to a total distance of 4,000 feet from the hanging of the Pewabic amygdaloid. Two conglomerates, the Calumet and the Kearsarge, and 23 amygdaloids, including the Osceola amygdaloid, were exposed. Both conglomerates, the Osceola amygdaloid and 13 of the others were found to be barren. Seven of the remaining beds carried copper in small quantities and two carried sufficient copper to warrant drifting.

The opening work of the year put in sight new reserves of average value conglomerate ore amounting on Dec. 31, 1915 to 600,000 tons.

Production for 1916 up to 250,000 pounds per month has been sold for better than 25 cents per pound. Every effort is being made towards increasing production, and No. 2 conglomerate shaft will probably be reopened in the summer of 1916.

After remaining idle since July 24, 1913, the Franklin stamp-mill was overhauled and stamping of custom ore was resumed on March 29th. Since the first of August four heads have been in almost constant operation, stamping Franklin ore and custom ore from several other mines.

The surplus at the end of the year was \$30,022.43.

Hancock Consolidated Mining Company.

Mine location: Hancock, Houghton county.

General Manager: John L. Harris.

Mining operations were resumed in March. The Hancock was one of the first companies to suspend operations in August 1914 because of the European war.

The total production of refined copper for the year was 871,124 pounds, of which 443,417 pounds was sold at an average price of 18.578 cents per pound.

The development work of the year was confined principally to drifting on lodes intersected at depth in No. 2 shaft at the 39th, 44th, 49th and 53d levels. Stoping was done in the upper levels on lodes Nos. 3 and 9 and in the lower levels on lodes 4 and 8.

The general average of the ground mined in the upper workings was

low grade. The development work at and below the 39th level exposed more promising copper bearing formations than in the upper workings.

General Manager Harris states that since operations were resumed last March a decided change for the better seems to have taken place in the lower workings, and from present indications further development work should show satisfactory results.

On the 30th level south there seems to be a very heavy slide fault, which north of the main crosscut is on the hanging wall contact which it follows for quite a distance. To the south there is a decided change; the physical appearance is entirely different from that on the north side, although showing copper for practically the entire distance.

Considerable stoping has been done some distance south of the main crosscut on a reddish trap zone from 6 to 8 feet thick, carrying considerable copper in the form of small grains up to walnut size, with occasional small slabs of copper in the seams. There appears to be no well defined foot or hanging wall; the copper occurs in the zone about parallel to the dip of the regular amygdaloid beds.

Considerable interest has been shown in the agreement between the Hancock and the Quincy Mining Co. for the joint operation of the Quincy No. 7 shaft. The details of this agreement as stated by Pres. John D. Cuddihy are as follows:

"An agreement, for five years, was entered into with the Quincy Mining Company in August for the joint operation of their No. 7 shaft, which was, heretofore, sunk to the 71st level to the boundary line of the Hancock property; drifts extended south and rock extracted within its ground up to the boundary line in the lower levels.

"The Pewabic lode in the territory of the Quincy Company south of No. 7 shaft and the territory of the Hancock Company being so accessible to this shaft, it was deemed advisable to join in the operation of the shaft in order to quickly gain access to the ground beyond the Hancock-Quincy boundary, and as it would require several years to sink and equip a subsidiary shaft to our No. 2 shaft into our territory near the Quincy boundary, the advantage to the Hancock Company in gaining access to this ground, at once, enables us to extend openings into our own territory, so that the subsidiary shaft from the bottom of No. 2 shaft to the 71st level can be sunk and raised at the same time from several levels, and, consequently, much time gained and money saved in equipping it to carry on operations in our own territory below the bottom level (71st) tributary to No. 7 shaft.

"About 75 acres of ground in the east half of the S. E. $\frac{1}{4}$ of section 22, and a very small area in the N. E. $\frac{1}{4}$ of the N. E. $\frac{1}{4}$ of section 27 was sold to the Quincy Mining Company for \$191,250.00; also the sale of a

160 foot strip, about 1100 feet long, along the Hancock-Quincy boundary south of No. 7 shaft for \$35,000.00.

"In this ground, a pillar is to be left during the life of the agreement to prevent caving or destruction of the workings of either company.

"We are to have the right to use No. 7 shaft of the Quincy Mining Co. for one-half of the time, or 12 hours each day, and pay one-half the cost of operation and one-half the cost of maintenance, with the provision that it may be increased another one-half upon payment of proportionate increase in rental if the Quincy Company should offer the additional time and Hancock Company is willing to accept it; a division of the cost of operation and maintenance of surface plant, including rock-house hoisting engine, etc.; a fixed charge per ton for transporting rock from rock-house to stamp-mill of the Quincy Company on Torch Lake; lease of one stamp head at the Quincy mill; a provision that the Quincy Company shall operate the head for the benefit of the Hancock Company and charge the Hancock Company for the operation the average cost of operation per stamp head for the entire mill.

"The mineral produced by the Hancock Company through the Quincy mill is to be smelted at the Quincy Smelting Works under a smelting contract agreed upon."

The Hancock has also purchased a sufficient amount of stock in the Lake Milling, Smelting and Refining Co. to entitle it to have ore which will be hoisted from shafts, other than Quincy No. 7, treated in the mills owned by that company.

Houghton Copper Company.

Mine location: North of the Superior mine, Houghton county. Superintendent: R. R. Seeber.

In May a right of way for railroad connections was acquired and early in June a spur connecting the shaft with the tracks of the Superior Copper Co. was finished. Shipments then began from the stock-pile accumulated during development work and continued until September. The stock-pile contained about 8,140 tons, in addition to which 6,517 tons was shipped from underground work. The total product of refined copper was 156,766 pounds and the yield per ton of ore stamped was 10.69 pounds.

The yield of 10.69 pounds per ton was considerably poorer than was anticipated, so it was decided inadvisable at present to sink the shaft any deeper. The shaft-house was equipped with a rock crusher, motor and a small rock-bin, and underground work resumed in September.

Several good bunches of copper were encountered in the drift south of the shaft on the 620 foot level. The winze to the 1,020 foot level was

continued down 92 feet. The first 20 feet of this winze showed a lode well charged with heavy copper; for the next 75 feet a roll of the footwall cut out the lode; below this trap the lode showed considerable heavy copper again. At the 12th level a crosscut will be run to the West lode.

Balance of assets Dec. 31, 1915 was \$24,763.49.

Indiana Mining Company.

Mine location: Indiana, Ontonagon county.

Superintendent: Thomas Bennett.

The work at the Indiana during 1915 was confined almost entirely to an endeavor to locate the "well-known" No. 2 drill hole at the 600 foot level, with the object of exploring it from that point to the bottom and thereby determining the exact position of the rich deposit of copper cut by the drill at 1,441 to 1,492 feet.

A chamber approximately 100 feet in diameter was opened around the theoretical position of No. 2 drill hole at the 600 foot level, but the hole was not found.

Late in the year it was decided to discontinue the search at the 600 foot level and to proceed directly to look for the deposit itself at the 1,150 and 1,400 foot levels. The shaft was unwatered to the bottom and drifting in search of the deposit is now under way at these two levels.

A geological examination of the drill cores and openings was made by Prof. A. C. Lane in August. Prof. Lane's general conclusion is that the much desired deposit lies a short distance east of the shaft at the 1,400 level and is a rather ragged aplite or felsite dike with a steep hade, about 12° to 18° more or less, at right angles to the dip of the beds, and that this dike is heavily charged with copper especially at the contact.

Prof. Lane also advises further exploration above No. 8 conglomerate in the horizon of the South Lake lodes.

The balance of assets at the close of the year was \$14,574.35.

Isle Royale Copper Company.

Mine location: Houghton, Houghton county. General Manager: James MacNaughton.

Superintendent: James E. Richards.

Controlled by the Calumet & Hecla Mining Co.

The operations of the Isle Royale during 1915 resulted in a profit of \$498,277.41. A total of 9,342,106 pounds of refined copper was obtained from the treatment of 680,270 tons of ore, an average of 13.7 pounds per ton. The total cost per pound refined copper was 14.94 cents which

includes the expense of rebuilding the stamp-mill, reopening No. 1 shaft and sinking No. 7 shaft. These extraordinary expenditures totalled \$183,293.35, or nearly two cents per pound. The mining expense was 10.56 cents per pound.

The reopening of No. 1 shaft was resumed in April. Hoisting ore from stopes on the 7th to the 12th levels inclusive started in August. From the 14th level to the bottom the shaft is filled with water which is now being removed. In December two drills were started drifting in the West lode and four stoping on the Isle Royale lode.

At the No. 2 shaft three drifts were extended north of the shaft in the West lode, a little over one-half of the ground opened containing copper. The drifts south of the shaft were in the Isle Royale lode, and about half of the ground contained copper.

At the No. 4 shaft about three-fourths of the ground opened contained copper. The 3d and 10th levels north have been connected to the old Huron mine workings.

At the No. 5 shaft 80 per cent of the ground opened contained copper, and at the No. 6 shaft about two-thirds of the ground developed showed copper.

At No. 7 shaft sinking from surface was resumed in May. The shaft was sunk about 40 feet in the lode by the end of the year. As soon as the concrete shaft-collar is completed, sinking will be resumed.

Isle Royale transported 211,964 tons of Superior ore at seven cents per ton and received \$14,837.48. This reduced the cost of transporting Isle Royale ore over its own tracks to 3.17 cents per ton.

The first unit in the new stamp-mill went into commission June 7, just $5\frac{1}{2}$ months after the old mill was completely destroyed by fire. The second unit was placed in commission July 9 and the third August 26. The mill has been in continuous operation since its completion and is now handling 2,000 tons daily. The cost of rebuilding the stamp-mill was \$130,987.33 over the \$100,358 insurance collected on the old mill.

Wilfley tables have been installed throughout the mill for the finished product and for the slimes. A Hardinge mill is being erected to regrind the richer of the coarse products. A low-pressure steam turbine of 600-kilowatts capacity has been installed and all mill machinery is now motor driven.

Mining operations were not interrupted during the rebuilding of the mill. Most of the ore was sent to the Lake Milling Company's plant at Point Mills, and when the capacity of this mill was exceeded, a part of the ore was handled at the Franklin mill and a part at the Tamarack mill.

Isle Royale invested \$144,035.67 in Lake Milling, Smelting and Re-

fining Company stock and there are two units at the Point Mills plant stamping Isle Royale ore when furnished.

For increase in wages and premiums see Calumet & Hecla Mining Co.

Keweenaw Copper Company.

Location of property: Keweenaw county.

General Manager: W. J. Uren.

No work was done on the lands of this company during 1915.

During the year additional shares of stock of the Phoenix Consolidated Copper Co. were exchanged for shares of the Keweenaw Copper Co.

For statement of mining operations see Phoenix Consolidated Copper Co.

Lake Copper Company.

Mine location: Lake Mine, Ontonagon county.

General Manager: E. W. Walker.

Work at the Lake mine was resumed in April 1915, following a twoyear shut-down on account of labor troubles and the war. The mine was filled with water up to about the 6th level, so bailing was started on May 12 and was continued until June 22, when the 11th level, the lowest in the mine, was reached. The mine was found to be in very good condition and little work was required to resume active mining operations.

Active production began late in July and the total output of refined copper for the year ending April 30, 1916 was 1,581,071 pounds. The yield of refined copper per ton of ore stamped was 26.42, and the price received was 20.149 cents per pound. The ore was treated at the Trimountain mill until that mill was destroyed by fire in March. The ore is now being stamped at the Baltic mill.

Careful sorting has about doubled the yield of copper per ton of ore stamped and the increase in the cost of mining has not been great. The production for the year came from all levels in the mine with the exception of the 11th, where the work was confined to crosscutting in both the hanging and foot walls to locate the copper-bearing portions of the lode and to determine the width of the lode. Most of the ore came from the main Lake lode, with a small amount from the East lode. Supt. E. W. Walker states that "on the whole, the results have been quite satisfactory, and it seems reasonable to expect that the mine can continue to operate at a profit, especially with an increase in output."

Lake Milling, Smelting & Refining Company.

This company now has six heads at mill No. 1, Point Mills, and two heads at mill No. 2, formerly the little Tamarack mill, Hubbell.

An adjustment was made between Allouez and Centennial to make their holdings of stock of this company more nearly conform to their stamping requirements, the Allouez Mining Co. paying the Centennial Copper Mining Co. \$109,516.05 for 10,000 shares of stock of the Lake Milling Co.

The present holdings of Lake Milling stock are as follows:

Allouez Mining Co	36,164 shares
Centennial Copper Mining Co	16,164 shares
Hancock Consolidated Mining Co	10,000 shares
Isle Royale Copper Co	18,836 shares
Superior Copper Co	18,836 shares

At the No. 1 mill, Point Mills, No. 1 head went into commission July 13 and is handling Hancock ore. Very little other construction work was done during the year. Capacity will probably be increased by means of rolls in the near future and additional power will be required.

The No. 2 mill, Hubbell, handles all the Centennial ore in one unit, the other unit being used for Allouez. Construction work for two new heads has been started. One head is to be built south and one north of the present mill and these will be known as Nos. 1 and 4. The stamps will be Norberg Compound and the wash equipment similar to that of the present units.

Additional fire protection has been provided by building a dam and reservoir above Hungarian Falls.

La Salle Copper Company.

Mine location: South of Osceola, Houghton county.

General Manager: James MacNaughton.

Controlled by the Calumet & Hecla Mining Co.

The mine was closed down early in August, 1914, on account of the war. In the spring of 1915 preparations were begun for resuming mining. The water in No. 1 shaft was lowered to below the 15th level and in No. 2 shaft to the bottom. Ore shipments to the Franklin mill began July 13.

At the No. 1 shaft the mining during 1915 consisted of stoping on three levels and a little drifting on one. The copper content of the ground was variable, the average being rather low.

At No. 2 shaft mining operations consisted of driving openings on

both sides of the shaft on three levels and stoping on one to the north. In general the ore is better than at No. 1 shaft. Preparations have been made to resume sinking this shaft, as soon as possible.

On Dec. 31, 1915 it was announced that a premium of 10 per cent would be added to the wages of all employees for the first six months in 1916.

Operations during 1915 resulted in a decrease of assets of \$15,522.25. The total production for the year was 782,493 pounds of refined copper, but the yield of copper per ton of ore treated was only 9.67 pounds.

Mass Consolidated Mining Company.

Mine location: Mass, Ontonagon county.

Superintendent: E. W. Walker.

Mass produced during 1915 a total of 4,638,452 pounds of refined copper, at a total cost per pound of 14.37 cents. The copper was sold at 18.363 cents per pound. The yield of copper per ton of ore stamped was 14.35. The gain in cash assets during the year was \$167,473.95.

The main Butler lode produced 227,628 tons and the Evergreen lode 62,083 tons. The north Butler, south Butler, Ogima, Knowlton and No. 3 lodes were also producers.

Development work was carried on in both "B" and "C" shafts, and there are now sufficient reserves on the Butler lode alone to last for at least three years at the present rate of extraction. Production was increased to the capacity of the mine and milling facilities.

On the 8th level at "B" shaft a crosscut was run in the footwall of the Evergreen lode to intercept the lodes which have been opened up at the South Lake property. Some very good ground was found in places.

Considerable stoping has been done on the Butler footwall lode in some of the lower levels. In several places the mineralization is of commercial value, and it is hoped that at greater depth it may prove to be of still greater value.

The old Evergreen workings above the 6th level are being drained of water, which will make available a considerable amount of very good ground.

Developments throughout the mine during 1915 have shown up ground equal to that of former years and in some instances considerable improvement is shown. Production will be further increased during 1916.

Mayflower Mining Company.

Location of property: East of Kearsarge and Wolverine mines, Houghton county.

Superintendent: George S. Goodale.

The work on the Mayflower property during 1915 was a continuation of the investigation of the geological conditions affecting the Mayflower lode.

One diamond drill was operated in hole No. 41 and the total footage drilled for the year was only 822 feet.

Hole No. 41 is located farther west than the other holes and should intersect the Mayflower lode much deeper than encountered elsewhere. To a depth of 1,857 feet the drill passed through firm and undisturbed ground; from this point to a depth of 2,569 feet a succession of crushed and shattered strata was encountered, which made drilling very difficult and progress slow. Drilling was interrupted for nine months by the loss of the drilling bit.

The St. Louis conglomerate was developed from 1,834 to 1,857 feet and was found to be dipping at a flatter angle at this depth.

Balance of assets Dec. 31, 1915 was \$52,990.74.

Michigan Copper Mining Company.

Mine location: Rockland, Ontonagon county.

Superintendent: Samual Brady.

After a suspension of all active mining operations for a period of nearly six years, work was resumed at the Michigan in July.

An old incline shaft, which had been sunk to a depth of about 225 feet upon the hanging side of the Butler lode, was slected for enlargement from 5 x 8 to 8 x 14, with a view of ultimate enlargement to one 8 x 20 should the results of the explorations justify it. The work of enlarging and sinking this shaft, known as "E" shaft, was started early in September, and it is intended to continue the shaft on a dip of 49° to a depth of 603 feet, from which level it is proposed to crosscut the formation both north and south for extended distances to prove the value of the known copper-bearing lodes of that locality.

Strong lines of shearing were found crossing the formation at acute angles with the general strike and carrying more or less copper in contact with the Butler lode. While the work was in contact with the hanging side of the Butler formation, upon the foot side of the shaft the Butler lode was found to be marked by a crossing some 10 feet wide, which was well charged with barrel copper and stamp rock. This crossing, the strike of which was approximately at a right angle to that of the Butler lode, indicated an entirely different and independent line of mineralization from that following the lines of shearing. At a point near the 5th level where the line of the shaft seemed to penetrate the hanging of the Butler lode for a short distance, the lode was found to be well charged with copper.

Crosscutting and testing the formation from the 603 foot level will probably be started about the middle of May 1916.

Mohawk Mining Company.

Mine location: Mohawk, Keweenaw county.

Superintendent: Theo. Dengler.

Mohawk had a very satisfactory year in 1915. Operations showed an increase of over two pounds of refined copper per ton of ore stamped and a notable decrease in the cost of production, compared with results of 1914. The total product of refined copper was 15,882,914 pounds, at a yield per ton treated of 19.15 pounds. The total cost per pound including construction was 7.48 cents. A total of \$43,373.44 was expended for construction, and two dividends, amounting to \$600,000.00, were made during the year. The net profit for the year was \$1,511,575.73.

At No. 1 shaft efforts are now being directed toward extensive sinking and drifting for increased production to compensate in part for the ultimate elimination of No. 2 shaft. The openings in general in this shaft indicate the necessity of considerable underground selection of many stretches of ground.

No. 2 shaft is in process of elimination. No. 3 shaft was discontinued early in the year.

At No. 4 and No. 5 shafts all drifting during the year showed a very fair mineralization. The new steel rock-house at No. 5 shaft was completed and put into commission December 20.

At. No. 6 shaft the drifting as a whole has shown fair mineralization. Work in this shaft has been directed chiefly toward drifting and sinking in preparation for an ultimate increased capacity to offset the elimination of Nos. 2 and 3 shafts. As this shaft increases in production the operating shafts will be reduced to four in number, the combined output of which will be ample to supply the mill.

The scale of wages was advanced an average of 15 per cent over that in force in January 1915 and since June 1915 all employees have received a bonus of 5 per cent on their earnings. For the month of January 1916 all employees will receive a bonus of 10 per cent on their earnings.

Naumkeag Copper Company.

Mine location: Houghton, Houghton county.

Superintendent: Sidney S. Lang.

The exploratory work of the Naumkeag during 1915 was confined to the workings from the Dakotah Heights adit, which is at the north end of the property, just south of the county road. President J. Park Channing states that "the exploration up to date shows that there is a shoot of copper bearing ground in the northern part of the property which undoubtedly is worthy of development in depth, but this should not be done until the whole possible copper formation has been explored on the adit level."

New Arcadian Copper Company.

Mine location: East of Quincy mine, Houghton county.

General Manager: Robert H. Shields. Mining Engineer: H. W. Fesing.

Development operations were continued without interruption during 1915 and were conducted along the lines of the previous year. Mineralization of the New Arcadian lode has been proven for a depth of 1,250 feet and for a length of 1,100 feet.

During the year three mill tests were made at the Franklin mill. The number of tons of ore treated was 3,845 and the yield 79,209 pounds of refined copper, or 20.62 pounds per ton. The copper was sold at an average price of 17.856 cents per pound.

The development work of the year consisted of sinking No. 1 shaft from the 900 foot level to the 1,250 foot level; continuing the east crosscut on the 900 foot level to expose No. 8 conglomerate; crosscutting east from the shaft to the lode at the 1,050 and 1,250 foot levels; drifting north and south on the 250, 900, 1,050 and 1,250 foot levels, and a limited amount of stoping on the different levels. Work was also started at the proposed site of No. 2 shaft, about 1,850 feet south of No. 1 shaft, where a former exploratory shaft was continued in depth to 50 feet, at which depth crosscuts were driven east and west across the formation.

Mining Engineer H. W. Fesing states that the openings made during the year have shown persistence of mineralization in varying degree, both in lateral openings and in depth, while the points at which the little stoping has been done have shown ground of good grade.

No. 8 conglomerate was intercepted about 380 feet east of the New Arcadian amygdaloid in the east crosscut on the 900 foot level and where cut, the conglomerate was found to be mineralized to such an extent as to warrant further exploration.

In the lower crosscuts east from the shaft the lode was intercepted much sooner than in the levels above, indicating a flattening of the dip with depth. If this condition continues the shaft will cut the lode at a depth of about 2,000 feet.

The various crosscuts east from the shaft to the lode being worked have passed through a number of amygdaloids; one of these, encountered

generally from 12 to 20 feet east of the shaft, is particularly strong looking, of good width and mineralized. In cutting the station at the 1,250 foot level this amygdaloid was found to be heavily mineralized and is worthy of further attention.

Prof. A. C. Lane visited the mine in August and reported as follows: "I am led to the interesting conclusion that your lode is very likely the Isle Royale lode of the Isle Royale mine, though it appears somewhat richer where you have opened it. If it continues as good as is exhibited on the 250 foot and 900 foot levels, I should judge-that by mining the better portion of the lode you should be able to maintain the percentage of mineral shown in your mill runs (31 pounds to 34 pounds per ton).

"On the other hand, and this implies a correction in our previous report, I am sure it has nothing to do with the horizon opened in the old Arcadian, but is probably the horizon of the top of No. 101 (p. 449 of the Arcadian section)* which shows a trace of copper there, in thickness 269 feet, below the horizon then worked, which may now be worth examination.

"Conglomerate 8 seems to be entirely cut out by a slide fault in the Torch Lake section and some of the Oneco holes. The occurrence of a small area of copper rock in conglomerate 8 itself in your 900 foot cross-section raises the question whether to the north or where this fault cuts it off it will prove richest."

A special meeting of the stockholders of the company was held in February and unanimously confirmed the sale of 160 acres of its lands comprising the S. W. ½ of section 9, 55-33, to the New Baltic Copper Co. for the sum of \$40,000 cash and 14,000 shares of the capital stock of that company.

The present hoisting and machinery equipment is entirely inadequate and it has been decided to install a larger equipment which will provide for the exploration of the lode to a depth of at least 2,500 feet.

New Baltic Copper Company.

Location of property: East of Franklin mine, Houghton county. General Manager: Robert H. Shields.

Exploratory work was begun in November on the N. W. $\frac{1}{4}$ of the N. E. $\frac{1}{4}$ of section 16, T. 55 N. R. 33 W., and consisted of trenching and diamond drilling for the purpose of definitely locating the outcrop of the New Arcadian lode and No. 8 conglomerate.

Hole No. 5 was drilled south 45° E. on a dip of 50° and was sunk to a depth of 481 feet, cutting the No. 8 conglomerate at 409 feet. The

^{*}Michigan Geological Survey, Publication 6, Volume 1.

conglomerate was found to be fully 40 feet in width and the core showed mineralization. This is the same conglomerate which the New Arcadian found to be well mineralized some 4,000 feet south in their east crosscut on the 9th level. This hole No. 5 also cut an amygdaloid at a depth of 106 to 116 feet and the core showed considerable fine copper.

Hole No. 6 was started at the same point as No. 5, the dip, however, being vertical, and cut No. 8 conglomerate at a depth of 513 feet, where it was found to be 60 feet wide. The conglomerate was reached at a much shallower depth than was expected, indicating either a fault or a marked change in the dip. This hole passed through an amygdaloid at 203 to 212 feet, over two feet of which was well charged with shot copper.

Hole No. 7 was located 800 feet N. 45 W. of hole No. 5 and was drilled vertically. A well mineralized amygdaloid was cut at 271 feet, continuing for over 16 feet, and showing good mineralization for fully seven feet. Another amygdaloid was cut at a depth of 487 feet, continuing for ten feet, seven feet carrying copper and two feet very rich. This hole will be continued until it reaches No. 8 conglomerate.

The New Baltic purchased from the New Arcadian Copper Co. 160 acres of mineral land, adjoining the New Baltic property to the northwest, for \$40,000.00 in cash and 14,000 shares of the capital stock of the company. This gives the New Baltic an area of about 400 acres on the dip of the New Arcadian lode.

The results of the diamond drilling and the favorable developments at the adjoining New Arcadian mine indicate a bright future for the New Baltic. It is the intention of the management to sink a shaft on the New Arcadian lode as soon as its outcrop is determined, and by lateral openings from this shaft to explore not only the New Arcadian lode but the whole western part of the property, which from the diamond drill explorations, is known to contain a number of mineralized beds, including No. 8 conglomerate.

North Lake Mining Company.

Mine location: Lake Mine, Ontonagon county.

General Manager: R. M. Edwards. Superintendent: Thomas Bennett.

When work was resumed in May 1914 the crosscut at the 300 foot level was continued in order to cut the extension of the lodes being developed on the South Lake property. This crosscut, however, broke through into the overburden at 730 feet and it then became necessary to sink an inclined winze to a greater depth, before going ahead with

the crosscut. The winze was sunk 200 feet on an incline of 30° and crosscutting was resumed at the 400 foot level.

During 1915 this crosscut to the northwest at the 400 foot level was extended 252 feet from the bottom of the winze. Three very promising looking amygdaloid lodes were cut and all three carried copper. It is believed that they probably correspond to the South Lake lodes Nos. 1, 2, and 3.

Only a small amount of opening was done on these lodes because the work again broke through into the overburden.

Shaft sinking was resumed in August and will be continued to the 800 foot level, at which depth the three copper bearing lodes will again be opened up by a crosscut. A crosscut will also be driven southeast at the 800 foot level to explore lodes known to exist in that direction.

Balance of liabilities Dec. 31, 1915 was \$15,556.20.

Old Colony Copper Company.

Location of property: Calumet, Houghton county. Superintendent: George S. Goodale.

The exploratory work on the Old Colony property during 1915 was a continuation of the diamond drill investigations of the Mayflower lode. A total of 8,319 feet was drilled during the year ending November 19, 1915.

Considerable crushed and disturbed ground was encountered in the holes and this condition retarded progress. In two of the holes the Mayflower lode was found to be mineralized with fine copper.

President H. F. Fay states that the company will soon be in a position to start a shaft to develop the mineral deposit which has been so persistent in each hole drilled.

Onondaga Copper Company.

The Onondaga Copper Company was organized April 22, 1912, to acquire and develop the mineral rights underlying about 10,000 acres of land situated in Ontonagon county, west of the Ontonagon river.

Diamond drilling was started in August, 1912, and was carried on continuously until September 21, 1914, when the work was suspended temporarily.

Five holes were drilled in section 14, T. 49 W. R. 42 N. Four of these holes were drilled practically at right angles to the formation and gave a continuous cross-section of the series in section 14 from the southeast corner to a large felsite outcrop in the northwest quarter of the section. The fifth hole was drilled northwesterly under the felsite to determine the contact and the possibility of mineralization at that

point. The hole was drilled to a depth of nearly 2,000 feet, but failed to reach the contact.

The sixth hole was drilled in the S. E. ½ of section 4, 49-42. Holes seven, eight and nine were then drilled, making a complete cross-section from the southeast corner of section 14 to the northwest corner of section 4. With the completion of the ninth hole September 21, 1914, drilling was suspended.

While some of the cores from this cross-section showed copper, none showed copper in commercial quantities.

In the spring of 1915 arrangements were made for the exploration of lands within the Nonesuch basin. Several miles of road were built through the woods to section 34, 50-43, and drilling was started there in July. This drilling was started near the northern boundary of the section and was continued by a succession of drill holes, each hole exploring the territory farther south, until finally a drill hole at the extreme southeast corner of the section passed through the Nonesuch lode at a depth of about 1,100 feet. This hole, however, did not show any copper values.

Pres. R. C. Pryor, who is directing the exploration work, is encouraged by the determination of the location of the lode and hopes by further drilling to find some mineralized portion of the lode on the company's property.

Balance on hand Feb. 1, 1916 was \$46,585.10.

Osceola Consolidated Mining Company.

Mine location: Osceola, Kearsarge and Tamarack, Houghton county General Manager: James MacNaughton.

Superintendent: Frank H. Haller.

Controlled by the Calumet & Hecla Mining Co.

Osceola had a very successful and profitable year in all three branches during 1915. Dividends were declared amounting to \$1,057,650.00 and the assets were increased by \$553,210.20. The total production was 19,731,472 pounds of refined copper, at a yield of 14.5 pounds per ton of ore treated. The total cost per pound refined copper was 10.03 cents. During the year \$82,074.22 was expended for new construction at all branches.

Osceola Branch:

The Osceola branch made a better showing in 1915 than for a long time past, in fact, it made a fair profit for the first time in six years or more. An excellent grade of ore was found in the extreme south work-

ings and the operating cost was lowered considerably. The Osceola branch has a promising future.

The best showing in the mine in recent years was opened up over 2,500 feet south of No. 6 shaft on the 42d level and the three levels above. Development work was pushed on these leve's all through the year and at present half the regular product is obtained from that territory. The ground along the southern boundary will be opened up as rapidly as possible.

A diamond drill hole was started horizontally in the hanging wall of the Osceola lode at a point 2,750 feet south of No. 6 shaft on the 42d level to explore for and determine the character of the Calumet conglomerate lode. The drill passed through the Calumet amygdaloid at 200 feet without showing any copper and continued through various other amygdaloids and traps. The drill hole passed through the Calumet conglomerate at a horizontal distance of 712 feet from the Osceola lode, where it was found to be a dark, fine-grained sandstone only a few feet thick and barren of copper.

The construction work at No. 3 shaft, interrupted in August 1914, was resumed in the spring of 1915. The plant at this shaft was put into condition for service; several of the old levels are being opened up and equipped with tracks and tram cars; some ore is being hoisted for shipment to the mill. If milling facilities permit, No. 3 shaft should yield a substantial product during 1916.

Osceola branch produced 3,882,069 pounds of refined copper at a cost per pound, excluding mill construction, of 12.34 cents.

North Kearsarge Branch:

This branch had a very successful and profitable year and is in good shape to make even a better showing in 1916. When the production from South Kearsarge begins to lessen, North Kearsarge can make up the loss in tonnage. While the ore may not be as rich, tonnage costs will be nearly as low.

The production of refined copper was 7,886,579 pounds and the cost per pound, excluding mill construction, was 10.99 cents.

Improvements in drill steel, drilling machines and methods brought about an increased rate of stoping at No. 4 shaft, which helped to reduce costs quite materially during 1915. It is expected that these improvements will continue to show good results as fast as they can be put into effect elsewhere in the mine, and that the cost per ton in 1916 will be somewhat less than the best showing made thus far.

The new ground opened by drifting in No. 1 shaft is rather above the average for that shaft. The workings at No. 4 shaft are improving with depth. The whole plant and shaft at No. 3 was completely over-

hauled and put in good condition. This shaft could be put in commission on short notice and could be made to produce a substantial tonnage if stamping facilities were available.

South Kearsarge Branch:

This branch made the largest production in its history in 1915. Costs per ton were lower than in any previous year except 1911, when wages were much lower than during 1915. It has not yet become necessary to reduce production because of exhaustion of reserve mining areas, and the recovery of copper per ton of ore treated has not lessened to any great extent.

The production of refined copper was 7,962,824 pounds, at a yield per ton of 16.72 pounds. The cost per pound, excluding mill construction, was 7.77 cents.

Mining the pillars of No. 2 shaft at the bottom level (16th) was started in June. This ground will be mined out rapidly during the next few years and will yield about 250,000 tons. The estimated reserves at this time, exclusive of the shaft pillars, are about 450,000 tons.

In May the upper levels between the two shafts began to cave and continued moving for several months. The surface of the ground over an area of about two acres subsided from two to ten feet and communication between the shafts was blocked all the way down to the 15th level.

For increase in wages and premiums at Osceola Consolidated see Calumet & Hecla Mining Co.

Phoenix Consolidated Copper Company.

Mine location: Between Phoenix and Eagle River, Keweenaw county. General Manager: W. J. Uren.

Development work on the Ashbed lode was continued during 1915. No. 1 shaft was sunk 537 feet and the total depth is now 1,415 feet. Total openings for the year amounted to 8,598 feet.

Drifting along the hanging wall opened up fair copper ground. In April an exploratory crosscut was started southerly across the lode on the 6th level west. The lode is wide and before reaching the footwall good copper ore was found. Drifting along the footwall was started in June and has shown fair to good copper values. Towards the latter part of the year the 7th and 8th levels east reached this footwall portion of the lode and have been in fair to good copper ore.

For drainage and ventilation an old adit about 1,100 feet east of No. 1 shaft was reopened. The mouth of this adit is near the village of Eagle

River, and years ago it was driven south about 3,100 feet to connect with workings on the Ashbed lode.

There are two vertical shafts "A" and "B" on this adit, and in order to connect between the shafts the adit south of "A" shaft was driven to a point 56 feet from the adit north of "B" shaft by the end of the year.

The stamp-mill will be overhauled and a mill test made during the summer of 1916.

Quincy Mining Company.

Mine location: Hancock, Houghton county.

General Manager: Charles L. Lawton.

Quincy produced 22,054,813 pounds of refined copper during 1915, and realized a profit on silver of \$11,829.08. The business income for the year was \$1,873,674.69, and a total of \$880,000.00 was paid in dividends.

The ground developed by the opening work was of about the usual quality and the mine as a whole did very well throughout the year. The extreme north end produced a low grade ore at times but the central portion of the mine, throughout No. 6 shaft workings, was particularly good. The showing of ore at the bottom of the mine in the new openings, with the exception of two low-grade drifts south of No. 2 shaft, is better than for several years.

No. 7 shaft was repaired for the purpose of handling both Quincy and Hancock ore.

No. 2 shaft produced the lowest tonnage and the lowest grade of stamp-rock but the largest amount of mass copper, so that the combined recovery of refined copper per ton of ore stamped was the highest of all the shafts. There are three branches of the Pewabic lode being mined in this shaft, all producing the different grades of ore that make up the general average. When the lode is rich in mass copper and barrel work, the stamp-rock is generally of lower tenor and vice versa.

In the No. 6 or Pewabic shaft, three branches of the Pewabic lode are being mined, and a small amount of work is being done on the Mesnard epidote lode. The openings from this shaft developed copper ground better than the average of the mine as a whole. The extension of some of the old upper levels developed ground that averages with the best stamp rock of the mine.

In the No. 8 or Mesnard shaft, four branches of the Pewabic lode were mined during the year, though only three are active at present. The shaft produced a fair grade of ore throughout the year.

No. 9 shaft, which is bottomed at a depth of about 2,900 feet, has remained idle, except for the pumping of water on the third and fourth levels.

Air blasts were more or less numerous throughout the year, but were not very serious or of great magnitude. Greater attention was paid to building the rock-rib-packs at the top and bottom of the stopes, above and below each level, and these packs have restricted and curtailed the extension and effect of the air blasts, and have permitted a higher extraction from the lode.

At the stamp-mills a great deal of repair and betterment work was done. Twenty-four small type bull jigs were installed in No. 1 mill and 12 have been ordered for No. 2 mill. Three more Sturtevant rolls were installed at No. 1 mill, making four rolls now in operation in each of the mills. Two 36 inch by 8 foot Hardinge ball mills have been ordered, one to be installed in each mill.

The smelter was very busy throughout the year, especially during the latter half, owing to the increase in custom work, and is now running pretty well up to its capacity.

About 80 acres of mineral land was purchased from the Hancock Consolidated Mining Company for \$226,250.00. This ground will be mined at depth from shafts 2 and 7. See Hancock Cons. Mining Co.

On May 1 wages at the mine were restored to the basis existing prior to September 1914, which was the highest rate ever paid employees, but with the advance in the price of copper wages were increased about $7\frac{1}{2}$ per cent December 1, and another advance of about $7\frac{1}{2}$ per cent will take effect March 1, 1916.

South Lake Mining Company.

Mine location: Greenland Junction, Ontonagon county.

General Manager: R. M. Edwards. Superintendent: Thomas Bennett.

During the year 1915 a mill test of $3,993\frac{1}{2}$ tons of ore was made at the Franklin mill. This ore came from the drifts on all the lodes opened and several trial stopes on lodes Nos. 1, 2 and 3. The mineral was smelted at the Michigan Smelter and the net return of refined copper was 61,637 pounds, or 15.4 pounds per ton.

No. 1 lode on the 300 foot level has probably shown the most even mineralization, while lodes Nos. 2 and 4 on the 600 foot level have shown the richest ore.

The long crosscut south on the 600 foot level was continued 428 feet. The crosscut on the 300 foot level was extended north to cut the Butler lode, which overlies No. 1 lode about 300 feet at right angles to the formation.

The Butler lode was encountered at 415 feet from the hanging of No. 1 and the Butler hanging was reached at 506 feet. The Butler

lode was found to be 91 feet thick horizontally and carried good copper values on both foot and hanging sides. Drifting along the hanging also showed good copper. The Butler lode will also probably be reached in the 600 foot crosscut south.

During the summer Prof. A. C. Lane made an examination of the various lodes opened. His conclusions were as follows:

"1st—That the lodes found dipping north in the 300 crosscut north of the shaft are the same as those found dipping south in the 600 crosscut south of the shaft.

"2nd—That one of these lodes, probably No. 2 in the 600 crosscut, or possibly a combination of No. 1 to No. 3, is the same as the lode mined by the Lake Copper Co., commonly known as the Lake lode.

"3rd—That the continuation of the 600 crosscut south should cut the Butler lode dipping south.

"4th—That the lodes south of the shaft are somewhat faulted by two sets of faults, while those north of the shaft are apparently undisturbed."

The erection of a modern steel rock-house will probably be completed by March 1, 1916, when production will begin and will be increased as rapidly as possible.

Excess of quick assets Dec. 31, 1915 was \$16,958.11.

St. Mary's Mineral Land Company.

Agent: F. W. Nichols, Houghton.

St. Mary's enjoyed a very prosperous year in 1915, due to the record production of the Champion mine, half of which is owned by St. Mary's.

A total of \$1,550,000 was received in dividends from the Champion, and St. Mary's distributed \$8.00 per share to its stockholders.

No sales of mineral ground were made during the year. Oak and pine only on 760 acres were sold for \$3,300.00 and surface rights on 20 acres for \$300.00.

The real property of the company Dec. 31, 1915 consisted of 93,012.69 acres, besides the mineral rights to 14,132.96 additional acres.

Superior Copper Company.

Mine location: South of Isle Royale mine, Houghton county.

General Manager: James MacNaughton.

Superintendent: Ocha Potter.

Controlled by the Calumet & Hecla Mining Co.

Superior made a gain of \$245,017.27 from mining operations during 1915. The purchase of 18,836 shares of the Lake Milling, Smelting & Refining Company's stock for \$240,000.00 and the assessment of

\$5,615.17 account the same company, however, resulted in a decrease in assets of \$597.90.

From 212,051 tons of ore treated, 3,866,484 pounds of copper was obtained, an average of 18.23 pounds per ton. The total cost per pound was 12.29 cents.

At No. 1 shaft the ground broken has shown enough copper to warrant shipment to the mill, although the copper is very fine, almost no mass being found.

The only development work on the Superior lode was on the 16th level south, where 216 feet was driven, about half of this distance being in stoping ground of below average quality.

Stoping reserves on the Superior lode were lessened rather than increased during the year. Development work is now being pushed to the limit.

At the No. 2 shaft the 18th level was extended north 580 feet, but no ground worth stoping was found.

For increase in wages and premiums see Calumet & Hecla Mining Co.

Tamarack Mining Company.

Mine location: Calumet, Houghton county. General Manager: James MacNaughton.

Superintendent: John T. Been.

Controlled by the Calumet & Hecla Mining Co.

The operations of the Tamarack for 1915 show a great improvement over those of 1914. As much ore as possible was extracted, to take advantage of the high price of copper, without carrying on development work.

The total production of refined copper was 3,888,150 pounds and the yield per ton 17.9 pounds. The total cost per pound refined copper was 17.07 cents and the price received was 19.10 cents per pound. Assets were increased during the year by \$308,987.72.

The mining operations during the year consisted of 285 feet of drifting on the Osceola amygdaloid in No. 2 shaft and 590 feet of drifting on the 20th level south in No. 3 shaft.

No. 1 shaft was used exclusively for pumping. In No. 5 shaft the 29th level crosscut between this shaft and No. 2 was cleaned out and timbered, it being necessary to keep this line of communication between the two shafts so that it could be used in case of accident. The total depth of No. 5 shaft is 5,308.5 feet from surface.

At the recrushing plant the building proper is finished and floor and launders are being put in. All necessary machinery has been ordered,

with the exception of the Hardinge mills, which have been delayed pending experiments now being made.

Trimountain Mining Company.

Mine location: Trimountain, Houghton county.

General Manager: F. W. Denton. Superintendent: Richard Bowden.

Controlled by the Copper Range Consolidated Co.

Trimountain produced during 1915 a total of 8,302,896 pounds of refined copper at a yield per ton of 23.75 pounds. The total cost per pound was 9.53 cents and the price received was 17.404 cents per pound, giving a profit per pound of 7.88 cents.

Openings made during 1915 showed no marked change from the past two or three years. The higher yield of copper per ton stamped was due to improvement in underground handling of ore broken.

No. 1 shaft, which was abandoned as a working shaft several years ago, will be used as a chute to take waste stamp sand underground for fill.

The management expects further improvement in results.

Victoria Copper Mining Company.

Mine location: Victoria, Ontonagon county.

Superintendent: George Hooper.

Victoria produced 1,499,695 pounds of refined copper in 1915, which is 13,453 pounds better than for the year 1914. No large increase was possible, owing to the limited capacity of the hoist and shaft and the necessary work on the new shaft. The new shaft and the new hoist will more than double the present hoisting capacity. The net profit for the year was \$45,799.80.

On May 16, 1915 wages were again restored to the former scale paid before the reduction in September 1914.

Little development work was done during 1915, due to the low stage of water the first part of the year and the fact that attention was directed to raising the new compartment of the shaft the latter part of the year. In the last six months of the year, however, the copper content of ore was at least one pound per ton better than that of the past eighteen months.

Hoisting from the upper levels of the new compartment with a small temporary hoist, will probably begin in February 1916. This will increase tonnage as well as development, and, at the same time, raise the copper content per ton and decrease the cost of production.

White Pine Copper Company.

Mine location: White Pine, Porcupine Mountain District, Ontonagon county.

General Manager: James MacNaughton. Superintendent: Thomas H. Wilcox.

Controlled by the Calumet & Hecla Mining Co.

Mining operations were carried on in 1915 at the No. 2 temporary vertical shaft and at the inclined shafts Nos. 3 and 4. The openings on the second level west of No. 2 shaft were rather poor. All other openings, when in the lode, showed fair to good values. Stoping was begun in April; about 16 per cent of the lode is left in place for stope pillars.

During the last eight months of the year 114,039 tons of ore was treated, yielding 2,824,145 pounds of refined copper, an average of 24.76 pounds per ton. The total cost per pound including construction was 16.64 cents.

The stamp-mill went into commission in April. The mill is making a recovery of approximately 67 per cent. The tailing losses are excessive, consisting partly of sulphides, but mostly of free flaky particles of native copper. The tailings are being saved and can be rehandled at a later date if it proves profitable to do so.

A railroad about one and three-quarters miles in length was built to connect the mine plant with the Chicago, Milwaukee and St. Paul Railroad.

A premium of ten per cent will be added to the wages of all employees for the first six months of 1916.

During 1915 there was expended for construction work \$351,438.07. White Pine ended the year with a balance of assets of \$139,786.05.

White Pine Extension.

Mine location: S. E. 4 of the N. E. 4 of section 7, T. 50 R. 43.

Post-office: Ontonagon, Ontonagon county.

General Manager: Theo. Dengler. Superintendent: Fred B. Close.

Operations of this new organization began about November 1, 1914, and were reviewed in the report on the Copper Industry for 1914 under the heading "Smith Explorations." The present company was organized in July 1915, and is now under the Stanton management.

The work during the last two months of 1914 was done in the S. E. \(\frac{1}{4}\) of the S. E. \(\frac{1}{4}\) of section 12, T. 50, R. 44. A test shaft was sunk 70 feet, a crosscut made into the formation for 40 feet and 15 feet of drifting

done. The results of this work were very favorable and extensive diamond drilling was planned for the year 1915.

Diamond drilling was started in the early spring of 1915 and during the year a large area of land was explored. This drilling was done in section 7, 50-43 and in sections 12, 13 and 14, 50-44.

The remarkable showing of copper in several of these drill cores and the very satisfactory assays warranted the sinking of a shaft to develop and mine this rich section of the copper district. The sinking of a shaft was started in the S. E. $\frac{1}{4}$ of the N. E. $\frac{1}{4}$ of section 7, 50-43. The shaft is vertical and is sinking in the footwall of Outer Conglomerate.

The Nonesuch formation on the property of the White Pine Extension has a thickness of 550 to 600 feet. The strike is about N. 56½° E., but to the eastward swings more to the east. The dip at the test shaft in section 12 is about 58°. The dip steepens towards the east; at the present sinking shaft it is about 80° to the southeast, and at the east end of the property it is practically vertical.

The Nonesuch formation is composed of gray to black shales and gray grits and sandstone. The upper part is chiefly brown shale; the lower sandstones are coarser and usually conglomeratic. The copper-bearing horizons are in the lower part of the formation and in the two lower shale belts. Between the shale belts there is a sandstone. Some of the shale is carbonaceous, and there is more copper in the darker beds. The values are principally sulphides, chalcocite, with some chalcopyrite and bornite.

The upper lode is a banded shale 20 feet thick. This is a fine silicious rock, and the copper occurs near the bottom of the shale belt where the shale is darker in color. This dark portion is about two feet thick.

Below the banded shale there is usually a thin grit, two to six feet in thickness. Below this grit is No. 1 shale, about six to twenty feet thick. Below the No. 1 shale is a coarse sandstone, No. 1, which varies in thickness from four to ten feet. Below this coarse sandstone is No. 2 shale, usually four to six feet thick. Below the No. 2 shale is No. 2 sandstone which grades down into the Outer Conglomerate. No. 1 and No. 2 sandstone are usually conglomeratic.

Crosscuts will be driven from the shaft to the copper-bearing portions of the formation. Plans are being considered for the erection of a mill in the near future.

Winona Copper Company.

Mine location: Winona, Houghton county.

Superintendent: R. R. Seeber.

Work at the Winona was resumed early in May, when unwatering of the mine was commenced. Some copper was produced in June and

since then production has been gradually increased to about 200,000 pounds of refined copper per month.

The tributing arrangement ran from October 15, 1914 to June 1, 1915, with satisfactory results to the company as well as to the tributors.

The total production of refined copper for 1915 was 1,722,638 pounds. The yield of copper per ton of ore stamped was 16.79 pounds. The average price of copper sold was 17.4 cents per pound, which includes two and one-half months' production of tributors in 1914.

King Philip No. 1 shaft-house, which was destroyed by fire two years ago, is being replaced. This work will probably be completed in May and will enable Winona to increase its output some 35 per cent.

Balance of assets Dec. 31, 1915 was \$223,324.11.

Wolverine Copper Mining Company.

Mine location: Kearsarge, Houghton county.

Superintendent: Theo. Dengler.

Wolverine continued normal output. A total of 7,250,866 pounds of refined copper was produced during the year ending July 1, 1915. The yield per ton stamped was 18.23 pounds and the total cost per pound 8.43 cents. Sales of copper, however, were made while the copper market was low and only 12.81 cents per pound was received. One dividend, amounting to \$240,000.00, was paid in April.

About 44.6 per cent of the total ore hoisted was obtained with Jackhammer machines, cutting out along the foot in old and more recent stopes. Openings during the year showed fair mineralization, but much of the ground will require selection underground.

Supt. Dengler states that "the condition of the property both on surface and underground, as well as at the mill, make it reasonable to assume that operations for the coming year will show little change as compared with the past fiscal year."

Wyandot Copper Company.

Mine location: Winona, Houghton county.

Superintendent: Frank L. Van Orden.

Work at the Wyandot was resumed April 6, 1915. The mine wa unwatered and actual mining started early in July. Drifts were extended north and south on the 9th level. The shaft was sunk to the 10th level and drifting taken up at that point. The results of the stoping were very encouraging and there is now a stockpile of about 2,000 tons which should yield very good returns.

The stoping has demonstrated that the mineralization is not confined

to a narrow zone immediately adjacent to the footwall of the lode but is found in places to be 16 feet wide. The ore is very rich in places.

A stamp-mill test of the stockpile will be made in the spring of 1916, and if the mill test meets present expectations the winze will be converted into a permanent shaft, making a surface connection through the overburden by means of a three-compartment vertical drop shaft.

Treasury assets, including cash and assessments due, are sufficient to continue development work along present lines for another two years.

SUMMARY OF FINANCIAL STATEMENTS OF MICHIGAN COPPER MINING COMPANIES FOR 1915.

	Balance of Assets (+),	Receipts	ipts.	Received in	Pald in	Balance of Assets (+),
	December 31, 1914.	Sale of Copper.	Sale of Silver.	Assessments.	Dividenda.	December 31, 1915.
Adventure Ahmeek Agomah Allouez Atlantic	+\$2,054 58 +968.771 98 +1368.771 98 +363,822 85 +231,330 39	\$3,985,061 98 1,824,534 07	\$14,026 50 35,032 12		\$1,650,000 00	+\$2,245 10 +1,583,654 13 +1,583,654 13 +963,810 83 +246,329 89
Bohemia Baltic Calumet & Hecla Centennial Champion	1+129,454 44 +490,550 85 +6,902,866 46 +24,634 69 +1,206,819 44	2,093,525 52 425,964 21 5,814,279 21			5,000,000 00	+1,440,516 25 +8,256,445 92 +273,118 50 +1,815,868 46
Cherokee Cliff Coliff Copper Range Consolidated Franklin	+44,065 98 +36,379 30 +4,703 36 +1,105,226 21 +117,165 81	9,352,846 00			1,182,003 00	+3,390,463 +3,390,463 +3,390,463 +3,0002
Gratiot Hancock Houghton Indiana Isle Royale	400,833 59 -7,650 05 -29,532 51 +199,815 69	82,379 31 9,875 98 1,716,251 08	38,973 56	\$192,787,00 71,524,00 80,000,00		+24,763 49 +14,574 35 +414,524 88
La Salle Lake Laurium Mass Maydower	+110,158 74 +167,145 22 -14,657 14 +45,887 12 +55,115 64	142,587 00 318,581 72 851,739 84	6,034 90	7,686 00		+94,636 49 +254,164 08 - 19,312 88 +213,361 07 +52,990 74
Michigan Mohawk Mow Arcadian New Baltic North Lake	-156,172 13 +852,208 98 +10,431 95 +869 50 +18,946 84	2,700,843 19 14,143 69		76,727 00 117,463 75 23,754 60	600,000 00	-117,907 16 +1,763,784 71 +66,742 93 +20,360 92 -15,556 20

SUMMARY OF FINANCIAL STATEMENTS OF MICHIGAN COPPER MINING COMPANIES FOR 1915.—Concluded.

	Balance of Assets (+),	Receipts	ipts.	Received in	Paid in	Balance of Assets (+),
	December 31, 1914.	Sale of Copper.	Sale of Silver.	Assessments.	Dividends.	December 31, 1915.
Old Colony Onondaga Osceola Pacific Quincy	+\$56,971 80 +1,613,436 31 +26,087 56 +897,531 77	\$3,589,604 89 3,972,129 42	\$3,589,604 89 \$11,829 08	\$15,982 00	\$1,057,650 00 880,000 00	*+\$35,666 75 *+46,585 10 +2,166,646 51 +26,939 36 +1,664,956 46
Seneca. South Lake St. Mary's Superior	- 166,939 51 - 3,790 64 +115,929 69 +216,872 76	10,120 19	19,404 78	19,404 78	1,280,000 00	-179,702 84 +16,958 11 +289,544 32 +216,274 86
Tamarack Trimountain Union Copper Victoria	+895,993 22 +503,397 61 +1,169 84 +40,624 36	742,733 14 1,445,041 27 193,305 49	742, 733, 14, 445, 041, 27, 193, 305, 49		25,766 00	+1,204,980 94 +1,158,144 13 +13,745 45 +112,280 45
White Pine Winons Wolverine Wyandot	-134, 559 74 +92, 848 62 +829, 109 29 +12, 205 94	518,318 84 185,036 74 929,192 60	518, 318 84 185, 036 74 929, 192 60	18,481 00	380,000 00	6+139,786 05 +223,324 11 6+787,310 67 7+23,733 04
Total. \$17,490,867 12 \$41,775,296 23	\$17,490,867 12	\$41,775,296 23	\$125,300 94	\$685,855 35	\$685,855 35 \$15,309,653 00	\$28,781,496 03

¹For year ending April 30, 1916.

²For year ending Sept. 20, 1916.

²ON year ending Sept. 20, 1916.

²ON is thares of stock were sold for \$8,324.00 for non-payment of assessment, and 20,000 shares were sold at \$5.00 per share.

²ON is thares of stock were sold for \$8,324.00 for non-payment of assessment, and 20,000 shares were sold at \$5.00 per share.

²ON is that is a sold in the sold i

5
916
G COMPANIES IN 191
7
Ħ
Ø
NIE
Z
4
2
Σ
õ
٠
ā
Z
Ξ
Ε
OPPER M
æ
E
ŭ
Ä
ၓ
-
7
G
Ξ
兲
×
Σ
54
m
\sim
Ξ
Z
Ξ
2
BT
ō
80
۲
H
S
Щ
ĸ
OF R
0
_
IAR
≤
3
Σ
₽
32

Price received for copper load.	18 28c 17 40c 17 40c 18 11c 18 145c 17 40c 19 83c 18 57c	22.2c 18.36c 20.149c 18.22c 17.0c 17.856c 18.19c 18.0c	18.125c 19.10c 17.40c 18.353c 17.4c 12.81c	
Total cost per pound.	7.96c 9.31c 9.50c 9.33c 8.69c 9.71c 12.45c 6.30c	14.94c 14.77c 7.48c 10.03c	12.29c 17.07c 9.52c 16.64c	
Cost per pound interest	0.01c	0.22c	0.07c	
Other coats per pound.	0.45c	0.60	0.14c	
Cost per pound smelting, freight, commission and eastern office.	1.67c 1.84c 0.92c 1.16c 0.90c	2.06c 1.31c 0.97c	1.91c 2.11c 1.00c 2.04c 1.30c	
Cost per pound, con- struction.	0.81c 0.19c 0.47c	1.50c 0.40c 0.27c 0.41c	0.82c 5,64c	
Cost per pound at mine excluding construction.	5.48c 7.27c 8.13c 8.13c	10.56c 13.06c 6.24c 8.17c	10.31c 14.04c 8.38c 8.80c 7.13c	
Pounds of refined copper per ton of ore trested.	23 0 18.78 31.79 22.28 29.74 13.32 15.63	10.69 13.7 26.42 9.67 14.35 19.15 20.62	15.4 18.23 17.9 23.75 24.76 16.79 18.23	
Per cent of refined copper in concentrate.	67.50 69.23 77.48	68.05 62.96 65.28 76.749	63 33 74 48	
•				
Pounds of copper copper produced.	21 800,492 10,043,459 12,028,947 12,028,518 51,738,588 19,291,930 2,347,500 33,417,669 13,14,969	156,766 9,342,106 1,581,071 782,493 4,638,452 15,882,914 15,882,914 19,731,472 22,054,813	61,637 3,866,484 3,888,150 8,302,896 1,824,145 2,824,145 1,722,638 7,250,866	325,969,862
Pounds of refined copper obtained.	800 028 028 028 743 871 871 871	156 342 342 158 178 179 170 170 170 170 170 170 170 170 170 170	888 888 302 722 722 250	
Pou CO Droc	,506,440 10,043 10,043 10,043 11,030 10,039,880 2,347 13,147 13,147 13,147 13,147 13,147 13,147 13,147 13,147 13,147	285,900 156 727,832 9.342 511,216 1.581 105,205 4 6838 777,790 19.731 251,765 22,054	139,824 3,866 139,824 3,888 262,244 1,499 032,045 1,725 734,850 7,250	851,850 325,969,
Pounds of ref concentrate colottained proc	26 32,292,325 21,800 336 14,506,440 10,043 71 71 030 13 51 29,880 2,347 76 3 3 029,880 2,347 763 3 629,880 33,417 86 13,141	285,900 156 2,511,216 1,581 7,105,298 4,683 20,705,600 15,822 26,777,790 19,731 34,251,765 22,054	88 3.866. 52 6.139.824 3.886. 8.302. 182 2.262.244 1.499. 182 3.032.045 1.722. 30 9.734.850 7,250.	851,850 325,969,

11,582,802 pounds was recovered by the C. & H. from the sand bank at Torch Lake.
For production of Michigan Copper Mines in prior years see Publication 19, Geological Series 16, Mich. Geol. Survey, 1915.

IRON INDUSTRY, STATISTICAL TABLES.

IRON ORE SHIPMENTS FROM THE MARQUETTE RANGE.

Name of Mine.	1906 and prior years.	1907.	1908.	1909.	
American (Sterling)	113,349	13,764	23,222	90,001	
Ames. Barnum (Cliff Shaft)1	6,298 801,851				
Bay State	16,637				
Bay State					
Bessie	59,097 354,654		.	 	
Beaufort (Ohio) Blue (See Queen Group)	354,654	78,029	61,035	72,987	
Boston (with American)	62,542			· · · · · · · · · · · · · · · · · · ·	
Boston (with American) Braastad Winthrop	136,636				
\ Winthrop	831,445				
Breitung No. 1	 				
Buffalo ²	101,394 217,730	59,667	55,849	129,673	
Cambria	1,679,780	135.145	85,977	136,815	
Champion	4,275,296	135,145 107,577	313	11,199	
Chase	 				
Chester (See Rolling Mill)				• • • • • • • • • • •	
Chicago	9,012 2,806,298		• • • • • • • • • • •	· · · · · · · · · · · · ·	
Cleveland Hematite (Included under	2,000,288				
Cleveland)			• • • • • • • • • • • •	· • • • • • • • • • • • •	
Cleveland Cliffs Group4	12,893,166 94,813	1,030,928	438,379	877,433	
Columbia (Kloman)	94,813				
Curry Dalifba (Phoenix)	10.071	• • • • • • • • • • • •			
Detroit	59,114 140,841				
Dexter	118,512 2,709 76,002				
Dey East Champion East New York	76.002				
East New York	327,604				
Edison	893			· · · · · · · · · · · · · · · ·	
Edwards (See Sampson)					
Empire		40,565	53,537	108,993	
Erie Etna	8,136 1,091				
Fitch	1,091 31,817				
Fosters	171,893			•	
Foxdale	31,447				
Gibson	16,357				
GoodrichGrand Rapids (Davis)	31,447 16,357 49,754 110,736			• • • • • • • • • • •	
	110,100				
Green Bay (See Bay State)	909,744	328,161	278,366	250,680	
Himrod					
Holmes					
Hortense (North Champion)	30,574			• • • • • • • • • • • • •	
Home (P. and L. S.) (Now Volunteer) Humboldt (Washington)	26,022 713,961 157,226				
Humboidt (Washington)	713,961	55,756	48,231	115.478	
Imperial Indiana (See Bay State)	<i>.</i>		40,201	110,476	
Iron Cliffs	1,700,537				
Iron Mountain	393		<u>.</u> 1		
Isabella					
Jackson	3,807,108	61,345		11,060	
Lake10					
Taka Angelina	7 501 979	283,373	220,410	280,298	
Lake AngelineLake Superior	7,501,378 13,646,107	674,066	261,955	349.435	
LillieL	1,597,605	80,545	8,632	349,435 61,708	
Loyd			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
Lucy (McComber)	516,244		1,115	1,672	
Maas	292	32,378	29,036	159,197	
Manganese (Negaunee)	6,359				
	0,000				

See foot notes 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 on page 62.

IRON ORE SHIPMENTS FROM THE MARQUETTE RANGE.

				1	1	
163,290	195,197	122,211	162,253	84,845	87,514	1,055,64
• • • • • • • • •						6,29 801,88 16,63
					::::::	16,6
• • • • • • • •					,	• • • • • • • • • •
	1	.	1	 	1	59,00 613,9
23,427	2,683				21,139	613,9
	:::::::::			1	:::::::	62,5
					,	136,6 831,4
• • • • • • • • •						
	63,497 72,688	57,085 63,995	30,994 83,280	49,590 27,705	174,107 276,620	275,2 785,0 217,7 2,805,4 4,413,1
114,202	72,688	63,995	83,280	27,705	²⁷⁶ ,620	785,0 217 7
150,422 18,746	85,954	69,904	169,153	132,834	159,443	2,805,4
18,746					';	4,413,1
			52,930	19,708	39,059	111,6
• • • • • • • • •						9,0 2,806,2
• • • • • • • • •	1				;	2,800,2
• • • • • • • •		.			· · · · · · · · · · ·	
955,374	514,305	1,032,836	922,005	672,428	≈631,358	19.968.2
						19,968,2 94,8 16,6
· · · · · · · · · ·	• • • • • • • • •				j	16,6
			1			59,1 140,8
					1	
• • • • • • • •						118,5 2,7 76,0
	1		1			76,0
						327,6
• • • • • • • •						•
		. <u></u>				
53,687	16,954	33,124	38,348			345,2
						8,1 1,0 31,8
			j		j	31,8
	1		1	1		171,8
						31,4 16,3 49,7 110,7
• • • • • • • •						16,3
	1:::::::::					110.7
				i		·
183,471		• • • • • • • • • • • • • • • • • • • •				1,950,4 59,1 17,3 30,5
				14,466	444,669	59,1
• • • • • • • •					17,373	17,3
• • • • • • • • •				1		
				1		26,0 713,9 638,5
83,404	86,959	53,943	37,543			713,9 638 5
						.
• • • • • • • •						1,700,5
			1	l	10,807	11,2
• • • • • • • • • • •					10,807 436,255 56,026	11,2 36,2 4,073,4
40,320	22,303	53,559	1,519	20,241	56,026	4,073,4
		: :::::::::::::::::::::::::::::::::::::				
044 000	147 050	151 010	100 700	100 072	10 519	0.000
244,923 271,445 10,121	167,258 167,352 25,597 28,003	151,910 169,326 26,119 44,224	102,762 164,834	128,073 133,519	19,513 199,920	16.037.9
10,121	25,597	26,119	1	1	1	9,099,8 16,037,9 1,810,3 527,1
• • • • • • • •	28,003	44,224	135,746	123,211	195,975	
11,257	16.676	72.724	1	1	1	619.6
208,103	16,676 24,926	72,724 46,664	171,475	55,903	267,190	619,6 994,8
	. 1	. [6,3

See foot notes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 on page 63.

IRON ORE SHIPMENTS FROM THE MARQUETTE RANGE.7—Concluded.

Name of Mine.	1906 and prior years.	1907.	1908.	1909.
Marquette ⁷	152,847			
Mary Charlotte	562,014 16 043	155,633	99,104	240,433
Michigammes	16,043 880,362 4,756			
Miller	4,756			
Milwaukee-Davis	375,451 17,780 68,131		<u>.</u>	
Mitchell	17,780 68 131		11,539	
Morris	l			
National	150,216			
Negaunee Negaunee Construction Works New York (York) New York Hematite	2,821,521 12,708 1,123,071 37,587	196,170	232,219	312,217
Negaunee Construction Works	12,708			
New York (10rk)	37 587		<u>.</u>	
North Champion (See Hortense)				
North Republic	289			
North Republic	23,395			
Northwest	1,687		· · · · · · · · · · · · · · · · · · ·	
Norwood	5,753 986			·····
_	i		1	l
Pascoe	59,806 45,993			1
Palmer	14,172			
Palmer (Cascade) (See Volunteer)	l			
Pioneer	15,409			
Pittsburg & Lake Angeline (See Lake Angeline)				
Angeline) Platt	73,844			
Portland	l 			79,65
Primrose	6,040			
Prince of Wales ²	32,415	1		
Quartz Queen² Queen Group³	180,866			
Queen Groups	4 684 474	309,917	104,098	287 500
Republic	4,664,474 5,778,341	170,554	67,999	237,500 176,578
Republic Reduction Co	47,174 8,261 489,739			
Richards	8,261		60,994	l
Richmond	16 160	35,156	00,994	102,560
Rolling Mill	16,160 344,426	49,204	52,147	133,139
Saginaw	451,424		l	l
Salisbury	686,411		[
Sam Mitchell (See Mitchell)	267 805			
Sampson (Argyle)	267,805 1,261			
	1	1		1
Section 12South Buffalo ²	21,887 245,412	1		
Spurr	245,412 165,244 204,649			
Star West (Wheat)	204,649			
· · · · · · · · · · · · · · · · · · ·		1		
Sterling (See American)	32,970			
Teal Lake (See Cambria)	,			
l'itan	90,371			
Volunteer (See also Home) Washington	1,383,153	10,022	20,625	44,716
<u>-</u>	34,905	1		1
Webster	133.077	1::::::::::::::::::::::::::::::::::::::	l:	l:
wetmore	50,870			
Wheeling	133,077 50,870 433,771 1,335,839			· · · · · · · · · · · · ·
Winthrop ^a . Wheat (See Star West)	1,000,009			[::::::::::::::::::::::::::::::::::::::

See foot notes 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 on page 62.

IRON ORE SHIPMENTS FROM THE MARQUETTE RANGE.—Concluded.

		1912.	1913.	1914.	1915.	Total.
197,522	340,335	250,700	262,431	57,138	•159,817	152,847 2,325,127 16,043
• • • • • • • • • •				,		16,048
• • • • • • • • • • •				1		880,362 4,756
• • • • • • • • • • • • • • • • • • • •	7,781 21,387	11,536 21,141	10,310 15,970	[6,572	411,650
23,428	21,387					111,248 68,131
		1,529	18,394	29,063	80,546	411,650 111,248 68,131 129,532 150,216
348,818	140,040	442,190	327,447	247,484	480,521	
		1		221,202	. 400,021	5,548,627 12,708 1,123,071 37,587
• • • • • • • • • • • • • • • • • • •			I			1,123,071
• • • • • • • • • •		j		[·····	• • • • • • • • • • • • •	
• • • • • • • • •						289 23,395 1,687 5,753 986
• • • • • • • • • •		'				1,687
• • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·				5,753
••••						
• • • • • • • • • • • •		1				59,806 45,993 14,172
• • • • • • • • • • • •				[14,172
• • • • • • • • • • • • • • • • • • •		1:::::::::		[15,499
		1				10,100
49,584				45,324	997,476	73,844 272,036
• • • • • • • • •						272,036 6,040
• • • • • • • • •						32,415 419
• • • • • • • • • •						180.866
230,119 150,732	295,962 113,137	224,862 156,867	235,648 135,879	178,574 52,562	473,961 215,182	6,955,124 7,017,828
						l .
95,772	47.293	117,873	138,394	129,551	•177,304	47,174 8,261 1,394,642 16,160 1,298,674
115,193	96,584	115,784	163,287	98,010	10130,900	16,160
110,193	90,082	115,784	103,287	98,010	19130,900	
• • • • • • • • • • • • • • • • • • •						451,424 686,411
• • • • • • • • • •						1
• • • • • • • • • •		· · · · · · · · · · · · · · · · ·				267,805 1,261
	l					21.887
• • • • • • • • • •						21,887 245,412 165,244 204,649
• • • • • • • • • • • • • • • • • • •						204,649
• • • • • • • • • • •			· · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • •						
• • • • • • • • • • • • • • • • • • •						32,970
• • • • • • • • • •	51 940		· · · · · ¿; · ; ; . · . · . · . · . · . ·	39 420	1118.851	90,371 1,557,932 352,490
96,769	51,240 62,010	9,008 66,540	47,220 60,171	38,438 1,659		352,490
			[34,908 133,077 50,870 433,771 1,335,839
				[133.077
• • • • • • • • • •	:					433,77
						1,335,839
			1	r .		1

See foot notes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 on page 63.

¹Under Iron Cliffs 1890-1895; under Cleveland-Cliffs group after 1895.
¹Under Queen group after 1890.
¹Under Cleveland-Cliffs group after 1883.
¹Includes Cleveland after 1883; includes Barnum, Foster, Iron Cliffs, Michigamme and Salisbury after 1895.
¹Under Iron Cliffs 1891-1895; under Cleveland-Cliffs group after 1895.
¹Under Cleveland-Cliffs group after 1895.
¹Under Winthrop after 1892.
³Includes Buffalo, Prince of Wales, Queen and South Buffalo after 1890.
¹Prior to 1890, see Braastad; includes Marquette after 1892.
¹Included in Cleveland-Cliffs Group.

¹Iron Trade Review reports 152,063 tons shipped in 1915 by Breitung Hamatite No. 1 and

IIron Trade Review reports 152,063 tons shipped in 1915 by Breitung Hamatite No. 1 and No. 2 combined.

See foot note No. 1.

Iron Trade Review reports 634,837 tons shipped in 1915.

Iron Trade Review reports 203,922 tons shipped in 1915 by Mary Charlotte. Figure includes Himrod shipment.

See foot note No. 4.

Isabella shipment not reported by Iron Trade Review.

Does not include Gwinn district. Does include west end of range in Baraga county.

Iron Trade Review figure.

Iron Trade Review reports 177,000 tons shipped in 1915.

Ifon Trade Review reports 18,850 tons shipped in 1915.

Total for Marquette range 1915, Iron Trade Review, 3,746,591 tons. See foot note No. 7.

IRON ORE SHIPMENTS FROM THE GWINN DISTRICT. (GROSS TONS)

	1906 and prior years.	1907.	1908.	1909.
(Austin) Gwinn (Princeton) (Swanzy or Chesire) Stegmiller (Stephenson)	1.014.341	195,950 177,863 6,305	111,229 36,033 52,588	125,858 42,934 39,869 64,075
Total	1,014,341	380,118	199,850	272,736

IRON ORE SHIPMENTS FROM THE GOGEBIC RANGE, MICHIGAN.

	1906 and prior years.	1907.	1908.	1909.
Ada (included in Ironton)	622,913 4,569,877	39,495 298,056	35,937 259,611	22,927 259,612
Bessemer Blue Jacket Brotherton Castile Chicago	20,889 1,799 1,448,408 2,108 68,727	104,224 6,157	96,776	103,090 26,982
Colby . Davis (Wisconsin) . Eureka . Federal . First National .	2,127,468 103,961 166,244 36,443 1,997		122,324	115,662
Geneva. Imperial (See Federal). Iron Chief. Iron Chief No. 2. Iron King (See Newport).	1 12.199			
Ironton Jack Pot Meteor (Comet) Mikado New Davis (See Davis)	288,391 99,090 216,367 647,382	190,968	92,932 86,617	277,59 4 99,195
Newport and Bonnie. Norrie-Aurora Group (after 1904) Pabst (Norrie-Aurora Group) Palms. Pike	3,705,799 14,885,276 2,366,583 1,284,489 45,333	551,496 1,109,085 24,922	579,390 773,243 6,303	977,054
Puritan (Ruby) Royal Section 13 South Chicago Sparta Sunday Lake	4,862		111,130	
Tilden. Vaughn (See Aurora) (Norrie-Aurora Group after 1904) Wakefield. Wisconsin (See Davis). Yale (West Colby).	4,510,449	312,496		154,506
Total		3,093,083	2,348,626	3,402,415

Iron Trade Review.
Iron Trade Review reports 112,932 tons shipped 1915. This figure includes 17,692 tons shipped from the Minnewawa (Wisconsin).
Iron Trade Review reports 1,408,516 tons shipped 1915.
Iron Trade Review reports 838,875 tons shipped 1915.
Iron Trade Review reports 442,422 tons shipped 1915.

IRON ORE SHIPMENTS FROM THE GWINN DISTRICT. (GROSS TONS)

1910.	1911.	1912.	1913.	1914.	1915.	Total.
188,588	110,839 230	102,530	107,365	30,493 20,159	57,910	972,852 78,299
89,441 48,842 225,726	54,442 45,122 135,474	143,519 50,963 214,386	53,479 45,431 96,298	13,607 40,972 93,796	40,272 243,458	1,642,830 311,471 1,132,106
552,597	346,107	511,398	302,573	199,027	358,811	4,137,558

IRON ORE SHIPMENTS FROM THE GOGEBIC RANGE, MICHIGAN.

1910.	1911.	1912.	1913.	1914.	1915.	Total.
7,235 231,506	310 151,478 20,569	55,610 211,927 70,239	238 2,635 42,419	5,771 123,702 135,120	744,749 204,622 13,468	835,185 6,203,026 281,815
						3,961,684
						20,889
102,626 20,197	65,015 23,597	148,930 136,703	70,138 57,595	47,662 36,569	107,244 475,596 130,977	1,799 2,294,113 385,504 99,704
194,754	41,673	245,195	305,744	291,947	315,913	3,845,574
41,611	98,609	65,723	14,562	23,430	128,414	103,961 834,493 36,443 1,997
			31,303		34,416	72,827
• • • • • • • • • • • • • • • • • • •						12,199 551
109,025	63,359	173,135	166,123	51,138		1,412,665
52,715			38,111	2,094	1,044 5,434	99,090 216,367 1,086,049 5,434
1,182,324 1,333,006	555,853 888,910	966,435 1,500,758	1,139,666 1,503,451	702,861 985,199	4835,058 41,407,770	11,227,226 25,358,752
3,324		39,152	88,644	173,792	•444,673	2,366,583 2,030,750 102,056
50,019		90,683	64,463 10,659 3,844	58,410 11,686	80,367 8,004 32,356 11,274	453,514 30,349 36,200 1,274
115,486	56,096	155,485	110,374	54,327	136,211	4,862 1,934,954
99,937	188,387	158,191	97,686	114,777	99,516	5,797,129
			15,261	313,050	651,302	979,618
108,253	154,944	76,772	89,482	19,074	42,632	864,330
3,652,918	2,253,800	4,094,938	3,847,398	3,150,609	4,591,040	72,998,96

Iron Trade Review reports 76,702 tons shipped 1915.
Iron Trade Review reports 45,171 tons shipped 1915.
Iron Trade Review reports 40,248 tons shipped 1916.
Total for Gogebic range 1915 Iron Trade Review 4,595,498 tons.
Total for Gwinn district 1915 Iron Trade Review 358,787 tons.

IRON ORE SHIPMENTS FROM THE MENOMINEE DISTRICT, MICHIGAN.

	1906 and prior years.	1907.	1908.	1909.
Antoine Aragon Breen Briar Hill Chapin	1,252,796 4,921,305 55,059 14,981 14,347,841	100,996 441,636 20,366	226,354	246,984
Clifford & Traders. Cornell. Cuff. Cundy. Curry.	49,302 58,419 807,967 416,928		1,410	103,626 5,512
Cyclops Eleanor (Appleton) Emmett Forest Half and Half	286,093 17,042 66,655 11,988 7,524	1,677	· · · · · · · · · · · · · · · · · · ·	
Hamilton Hersel Indiana Keel Ridge Loretto	96,072 955 17,871 93,101 985,274	99,779	13,354	96,613
Ludington	180,708 1,291,352	18,691 46,834 381,128	3,322 27,773 176,211	10,887 23,241 428,004
Perry. Pewabic. Quinnesec. Saginaw (Perkins). Stephenson.	3,138 5,629,150 499,756 417,242 39,350	457,796	365,341 38,669	465,463 3,147 19,994
Sturgeon River	19,404 130,975 346,863 1,668,654 19,089	48,493	10,056	
Total	38,971,702	2,498,784	1,254,110	1,991,108
METROPOLITAN TROUGH. Groveland	26,123 107,027 35,810	13,913	9,123	24,933
Total	168,960	13,913	9,123	24,933
CALUMET TROUGH.	54,486	51,646	15,222	

IRON ORE SHIPMENTS FROM THE MENOMINEE DISTRICT, MICHIGAN.

1910.	1911.	1912.	1913.	1914.	1915.	Total.
241,046	201,269	244,812	230,958	188,765	302,275	1,353,792 7,245,404
						75.425
465,543	357,598	327,999	369,822	341,493	1385,174	14,981 18,430,015
91,081	90,940	74,144	95,311	66,329		521,431 49,302
						58,419
						844,889
	· · · · · · · · · ·					416,928
]			286,093 18,719 66,655 11,988
• • • • • • • • •			<i>.</i>			18,719
						00,000 11 088
						7,524
						06 070
						96,072 955
				1	52,570	70.441
116,048	18,579	135,177	158,257	45,449	68,806	93,101 1,737,336
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>			1,001,518
20,022	18,556 9,303	20,100	18,509	361		387,182
	1	1	1	1		346,490 1,291,352
344,760	377,026	426,743	416,410	214,827	2368,451	6,985,565
380,376	352,598	279,771	364,176	299,228	178,013	3,138 8,771,862
744						503,647
	1	ļ	\			501,985 39,350
					[
						19,404 130,975
14,827	5,971	28,800	27,177			130,975 482,187
14,021	0,0,1	20,000	2.,		::::::	1,668,654
						19,089
1,674,447	1,431,840	1,537,546	1,680,620	1,156,452	1,355,289	53,551,898
26,462	33,758	12,468	9,251			156 031
						156,031 107,027 35,810
••••••						35,810
26,462	33,758	12,468	9,251			298,868
		35,587	18,976			175,917

¹Iron Trade Review reports 384,654 tons shipped 1915. ²Iron Trade Review reports 411,393 tons shipped 1915. Total for Menominee range 1915 Iron Trade Review 1,397,711 tons.

IRON ORE SHIPMENTS FROM THE CRYSTAL FALLS DISTRICT, MICHIGAN.

	1906 and prior years.	1907.	1908.	1909.
AlphaArmina	1,370 274,943	36,665		
BalkanBristol (Claire)	1,252,566	345,676	196,300	396,825
Columbia	942,703 1,619,811	114,158	296	986
DelphicDunnFairbanks	33,770 1,177,654 8,500	141,992	8,829	193,396
Genesee (Ethel) Gibson Great Western Hemlock	366,870 16,357 1,400,744 1,276,322	38,984 234,492 117,181	4,548 124,246 83,834	65,585 36,246 112,747 112,481
Hollister	20,229 4,098 28,530	6,371	10,671	25,842
Judson	513,251	16,224 42,090		
Lee Peck Lincoln Magnate Mansfield	756,120	714 183,532	44,633	1,657
Mastodon. McDonald. Michigan Michigan Monongahela	9.310	39,819	603	1,114
Paint River (Fairbanks)	295,484	75,805		
Sheldon & Shafer (Union) (See Columbia)	8,203			
Tobin	635,646	237,781	161,642	359,668
Total	11,581,923	1,631,484	629,602	1,425,261

IRON ORE SHIPMENTS FROM THE CRYSTAL FALLS DISTRICT, MICHIGAN.

1910.	1911.	1912.	1913.	1914.	1915.	Total.
65,473	51,862 322,729	150,808	83,202	50,501 172,006 51,147	*144,284 *378,831 *284,187	1,370 713,454 144,284 4,147,744 335,334
136,144	232,092	242,304	61,080	52,888	8,304	942,703 1,735,251 33,770 2,254,678 8,500
66,185 45,202 80,709 115,407	25,342 56,528 84,338 107,753	3,342 126,132	50,464 113,201	46,449 8,223	1,184 35,759 •28,172	568,398 158,881 2,126,840 2,126,932 28,452
49,434	5,022		25,251	16,430 6,619	19,533	143,119 28,530 6,619 35,757 558,524
114,357	54,646		190,503			2,844 241,627 6,844 1,462,504 425,708
6,022 17,922	5,240	1,384	16,499 27,917 70,766	9,471 49,308 7,069	*112,721 *116,735 92,807	30,259 321,828 9,310 371,289 255,239 99,876
235,812	308,456	319,318	154,896	65,351	18,624	8,203 2,497,194 46 151,425
1,206,592	1,254,135	1,304,739	1,172,948	535,457	1,241,187	21,983,336

Hron Trade Review reports 378,786 tons shipped 1915.

217 n Trade Review reports 294,088 tons shipped 1915.

3100 Trade Peview reports 116,724 tons shipped 1915.

3100 Trade Peview reports 116,724 tons shipped 1915.

3100 Trade Review reports de Review.

4100 Trade Review reports Lemlock 28,172 tons, Michigan 112,680 tons shipped 1915.

Total for Crystal Fulls district 1915 Iron Trade Review 1,240,946 tons.

IRON ORE SHIPMENTS FROM THE IRON RIVER DISTRICT, MICHIGAN.

	1906 and prior years.	1907.	1908.	1909.
Baker Baltic Bates	676,081			45,003 174,426
Bengal		1		34,295
Beta	4,211 97,453	138,867	102,628	189,023
CottrellChatham-Riverton				68,730
Davidson No. 1 Davidson No. 2 Chicagon Fogarty Forbes		7,949	32,560	77,356
Hiawatha	210,683		. 138,190	136,739
Iron River	904,587	2,360	59,760	90,851
Nanaimo Riverton (Dober and Isabella) Rogers.	832,467	53,778 90,358	305 47,073	171,200
Selden Sheridan Tully	2,092 116,299			
Virgil Warner Wauseca				
WickwireYoungsZimmerman	58,509	92,632	70,094	154,150 10,808
Total	3,287,256	589,946	630,745	1,152,076

^{*}Riverton.

IRON ORE SHIPMENTS FROM THE IRON RIVER DISTRICT, MICHIGAN.

1910.	1911.	1912.	1913.	1914.	1915.	Total.
39,417 171,930	3,290 66,502	100,736	24,286 130,631	113,733 29,206	41,378 10,078 45,171	267,107 1,677,746 45,171
97,999	22,272	33,422	23,259	5,539 23,826	39,615 15,413	68,413 230,667
171,334	165,660	306,914 17,499	295,841 26,823	279,379 15,316	479,083	4,211 2,226,182 59,638 45
51,988	58,054	135,298	107,604	19,455	1132,664	634,502
51,071	215 45,219 108,947 67,616	27,614 98,760 149,619 84,074	115,499 79,948 137,002 124,568 69,435	70,881 51,686 114,849 15,329 77,960	86,103 66,327 2155,411 27,718 299,219	300,312 341,940 665,828 488,241 246,614
128,884	116,633	220,106	160,511	91,370	93,453 102,511	1,296,569 102,511
78,388	50,439	75,702	176,634	73,832	102,294	904,587 710,260 65,192
84,269	200,142	171,493	160,818	176,274 27,081	262,382 53,155	373,765 2,196,476 80,236 2,092
2,726	8,323		16,650	63,411	242,049	116,299 333,159
		3,750	48,395	5,972		58,117
98,399 25,555	749 1,919 89,450 110,084	40,417 83,528 187,584	12,377 40,322 43,649 149,309	25,584 172,720	19,361	46 32,487 108,242: 690,411 765,605
1,001,960	1,115,514	1,736,516	1,943,560	1,453,403	2,181,694	15,092,670

¹Iron Trade Review reports 132,779 tons shipped 1915. ²Iron Trade Review reports 155,711 tons shipped 1915. ²Iron Trade Review reports 99,050 tons shipped 1915. Total for Iron River district 1915, Iron Trade Review 2,182,934 tons.

SUMMARY OF IRON ORE SHIPMENTS FROM MICHIGAN RANGES. (GROSS TONS.)

	1902 and prior years.	1903.	1 904 .	1905.	1906.
Marquette	66,118,824 558,684 29,034,583 7,269,225	2,956,022 84,223 2,528,819 824,461	2,767,242 76,461 1,712,800 917,969	4,086,943 129,079 2,741,169 1,174,366	3,935,293 166,894 2,953,131 1,395,910
Iron RiverGogebic	1,819,306 32,090,545 145,749 38,913	276,785 2,465,263 18,574	284,273 2,042,398 4,737	337,973 3,215,352	568,469 3,113,981 15,773
Total	137,075,729	9,154,147	7,805,880	11,684,432	12,149,451
	1907.	1908.	1909.	1910.	1911.
Marquette	3,907,955 380,118 2,498,784 1,631,484	2,214,782 199,850 1,254,110 629,602	3,983,436 272,736 1,991,108 1,425,261	3,840,129 552,597 1,674,447 1,206,592	2,614,881 346,104 1,431,840 1,254,135
Iron River	589,946 3,093,083 13,913 51,646	630,745 2,348,626 9,123 15,222	1,152,076 3,402,415 24,933	1,001,960 8,652,918 26,462	1,115,514 2,102,322 33,758
Total	12,166,929	7,302,060	12,251,965	11,955,105	8,898,554
,	1912.	1913.	1914.	1915.	Total.
Marquette	3,406,646 510,398 1,538,746 1,304,739	3,487,993 302,573 1,680,620 1,172,948	2,340,326 199,027 1,156,452 535,457	3,778,098 358,811 1,355,289 1,241,187	109,442,876 4,137,558 53,551,898 21,983,336
Iron River Gogebic Metropolitan Calumet	1,736,966 3,883,011 12,468 35,387	1,943,560 3,847,398 9,251 18,976	1,453,403 3,150,609	2,181,694 4,591,040	15,092,670 72,998,961 298,868 175,917
Totals	12,428,361	12,463,319	8,835,274	13,506,119	277,682,084

SHIPMENTS OF IRON ORE FROM MICHIGAN RANGES BY COUNTIES. (GROSS TONS.)

County.	1902 and prior years.	1903.	1904.	1905.	1906.
Gogebic Iron Dickinson Marquette Baraga	32,090,545 9,088,531 29,219,145 66,057,163 610,345	2,465,263 1,101,246 2,547,393 2,905,597 134,648	2,042,398 1,202,242 1,717,537 2,817,195 26,508	3,215,352 1,512,339 2,741,169 4,175,605 39,967	3,113,981 1,964,379 2,968,904 4,097,111 5,076
Total	137,075,729	9,154,147	7,805,880	11,684,432	12,149,451
County.	1907.	1908.	1909.	1910.	1911.
Gogebic	3,093,083 2,221,430 2,564,343 4,154,288 133,785	2,348,626 1,260,347 1,278,455 2,305,366 109,266	3,402,415 2,577,337 2,016,041 3,888,055 368,117	3,652,918 2,208,552 1,700,909 4,236,311 156,415	2,102,322 2,369,649 1,465,598 2,871,116 89,642
Total	12,166,929	7,302,060	12,251,965	11,955,105	8,898,327
County.	1912.	1913.	1914.	1915.	Total.
Gogebic	3,883,011 3,041,705 1,585,601 3,864,101 53,943	3,836,739 3,116,508 1,708,847 3,753,023 37,543	3,150,609 1,988,860 1,156,452 2,494,029 45,324	4,591,040 3,422,881 1,355,289 4,018,294 118,615	72,998,961 37,076,006 54,026,683 111,613,697 1,966,737
Total	12,428,361	12,452,660	8,835,274	13,506,119	277,682,084

LIST OF THE ACTIVE IRON MINES OF MICHIGAN

None of min		Location			di	men loyed	
Name of mine.	County.	Section.	Twp.	Rge.	First ship- ment.	No. of remplo	Depth, 1915 Feet
MARQUETTE RANGE: American and Boston Breitung Hematite No. 1 Breitung Hematite No. 2 Cambria Champion	Marquette Marquette Marquette Marquette Marquette	8 8 35	48 47 47 48 48	28 26 26 27 29	1880 1903 1875 1867	313 148 73 123 Idle	1,620 585 640 978 1,984
Chase Cliff Shaft Empire Gwinn Hartford (Cambria No. 2)	Marquette Marquette Marquette Marquette Marquette	9,10 19 28	47 47 47 45 48	28 27 26 25 27	1913 1887 1907 1914 1889	22 300 Idle 169	351 987 200 1,009
Himrod Imperial Isabella Jackson Lake and Moro	Marquette Baraga Marquette Marquette Marquette		47 48 47 47 47	26 31 26 27 27	1914 1890 1915 1846 1892	60 Idle 94 25 260	435 185 702 208 591
Lake Sally	Marquette Marquette Marquette Marquette	9,10 10 15 6	47 47 47 47 47	27 27 27 27 27 27	1915 1858 1858 1864 1911	. 32	1,080 820 615 808
Lucy (with Jackson)	Marquette Marquette Marquette Marquette Marquette	6,7 31 30 8 1	47 48 47 47 47	26 26 26 26 26 28	1878 1907 1903 1912	87 127 262	281 1,100 506 640 800
Moro (with Lake)	Marquette Marquette Baraga Baraga Marquette	10 5,6 22 26 5	47 47 48 48 48	27 26 31 31 26	1881 1887 1882 1896 1888	266 1 *	1,086 250 1,010
Republic Richmond Rolling Mill Salisbury Volunteer Washington (Barron)	Marquette Marquette Marquette Marquette Marquette	7 28 7 15 30 11	46 47 47 47 47 47	29 26 26 27 26 27 26 29	1872 1896 1872 1872 1871 1865	258 49 140 37 43 Idle	2,050 786 709 505 875
SWANZY DISTRICT: Austin Princeton Stegmiller Stephenson	Marquette Marquette Marquette Marquette	18,20 17 20	45 45 45 45 45	25 25 25 25 25	1907 1872 1909 1907	Idle 17 63 209	364 782 300 562
MENOMINEE RANGE; Aragon. Chapin. Cyclops & Norway (Penn Gr'p) East Vulcan (Penn Group) Indiana.	Dickinson Dickinson Dickinson Dickinson Dickinson		39 40 39 39 40	31,30 29 29 29 30	1889 1880 1878 1877 1915	266 546 631	1,355 1,501 355 1,400 85
Loretto Millie (Hewitt) Munro. Pewabic West Vulcan, Curry & Brier Hil Clifford and Traders.	Dickinson Dickinson Dickinson Dickinson Dickinson Dickinson Dickinson	9,10	39 40 39 40 39 40	28 34 29 30 29 30	1893 1881 1903 1890 1879	125 1 1 259 259	800 312 170 941 1,770 143

^{*}Not reported. †Undeveloped.

1915, WITH LOCATION, OWNERSHIP, ETC.

Number or name of level.	Operators.	Address of Home Office.
20th 9th 6th 5th 33d	American Boston Mining Co Breitung Hematite Mng. Co Breitung Hematite Mng. Co Republic Iron & Steel Co Champion Iron Co	1300 Leader-News Building, Cleveland, Ohio. Marquette, Mich. Marquette, Mich. Youngstown, Ohio. Wolvin Building, Duluth, Minnesota.
3d 10th 2d 8th	Cleveland Cliffs Iron Co	Ishpeming, Mich. Ishpeming, Mich. Rector Building, Chicago, Illinois. Ishpeming, Mich. Youngstown, Ohio.
4th 4th 1st	Mary Charlotte Mng. Co	Marquette, Mich. Ishpeming, Mich. Hibbing, Minn. Ishpeming, Mich. Ishpeming, Mich.
9th	Jones & Laughlin Ore Co Oliver Iron Mining Co Oliver Iron Mining Co Pittsburg & Lake Angeline Iron Co. Cleveland Cliffs Iron Co	Pittsburg, Penn. Wolvin Building, Duluth, Minn. Wolvin Building, Duluth, Minn. Cleveland, Ohio. Ishpeming, Mich.
3d 3d 5th 6th 3d	Cleveland Cliffs Iron Co	Ishpeming, Mich. Ishpeming, Mich. 1400 Alworth Bld., Duluth, Minn. Marquette, Mich. Ishpeming, Mich.
9th 6th Open pit	Cleveland Cliffs Iron Co	Ishpeming, Mich. Ishpeming, Mich. North Tonawanda, N. Y. North Tonawanda, N. Y. Wolvin Bldg., Duluth, Minn.
Open pit 8th 16th 5th 10th	Cleveland Cliffs Iron Co	1300 Leader-News Bldg., Cleveland, Ohio. 3d Ave. & Try St., Pitisburg, Pa. Ishpeming, Mich. 1400 Aiworth Bldg., Duluth, Minn.
6th 6th 2d 5th	Cleveland Cliffs Iron Co	Ishpeming, Mich. Ishpeming, Mich. Western Reserve Building, Cleveland, Ohlo. Ishpeming, Mich.
14th 17th 1st	National Tube Works Co	Frick Bldg., Pittsburg, Pa. Wolvin Bldg., Duluth, Minn. 1703 Morris Bldg., Philadelphia, Pa. 1703 Morris Bldg., Philadelphia, Pa. Milwaukee, Wis.
8th 3d 1st 8th 18th 1st	Loretto Iron Co. Dessau Mining Co. Munro Iron Mining Co. Pewabic Co. Penn Iron Mining Co. Antoine Ore Company.	Care B. J. Clergue, Montreal, Que. 55 Eric Co. Bank Bldg., Buffalo, N. Y. 910 Wells Bldg., Milwaukee, Wisconsin. 1703 Morris Bldg., Philadelphia, Pa.

LIST OF THE ACTIVE IRON MINES OF MICHIGAN,

Name of mine.		Location	•		did-	men	
Name or mine.	County.	Section.	Twp.	Rge.	First ship- ment.	No. of men employed 1915.	Depth, 1915. Feet.
CRYSTAL FALLS DISTRICT: Bristol	Iron Iron Iron Iron Iron Iron Iron	31 29,30,31	43 43 42 43 43	32 32 33 32 32	1892 1914 1887 1902 1882	212 235 75 25	1,060 332 1,723 1,235 1,257
Hemlock. Judson. Michigan (with Hemlock) Ravenna. Tobin. Warner	Iron.Iron	13	44 42 44 43 43 44	33 33 33 32 32 32 33	1891 1914 1893 1911 1901 1915	31 76 49 10 18	1,015 300 1,015 350 1,235 543
IRON RIVER DISTRICT: Baker-Tully. Balkan. Baltic. Bates. Bengal.	Iron Iron Iron Iron	13	43 42 42 43 43	34 33 34 34 35	1909 1915 1901 1915 1913	267 103 55 86 63	548 232 553 450 280
Berkshire Caspian Chatham-Riverton Chicagon Cortland	IronIronIronIronIronIronIronIronIronIronIronIronIronIronIronIronIronIron	1	42 42 43 43 43	34 35 35 34 35	1908 1903 1907 1911 1912	Idle 335 157 117	365 292 925 712 405
Cottrell Davidson No. 1 Davidson No. 2 Fogarty (see Baltic) Forbes	IronIronIronIronIronIronIronIronIronIronIronIron	14	42 43 43 42 43	35 35 35 35 35 35	1915 1912 1912 1907 1913	28 60 56 	265 450 240 365 275
Hiawatha Homer Osana (James) Dober Isabella (Riverton) Rogers	IronIronIronIronIronIronIronIron		43 43 43 42,43 42,43	35 35 35 35 34	1893 1915 1907 1898 1914	98 120 80 202 119	1,029 258 428 1,000 330
Tully (see Baker) Virgil Wauseca. Wickwire Youngs Zimmerman	IronIronIronIronIronIronIronIronIronIronIron.	24 23 35 12	43 43 43 43 42 42	35 35 35 35 35 34	1910 1912 1910 1911 1905 1908	45	438 273 398 313 575 350
GOGEBIC RANGE: Anvil and Keweenaw. Asteroid Ashland Brotherton Castile Colby	Gogebic Gogebic Gogebic Gogebic Gogebic	13 22 9	47 47 47 47 47 47	46 46 47 45 45 46	1887 1906 1885 1886 1906 1884	47 12 171 107 141 429	1,663 1,130 1,900 1,157 1,770 1,259
Davis, Geneva, Royal, Puritan Eureka Ironton (see Colby) Keweenaw (see Anvil) Mikado Newport and Bonnie	Gogebic Gogebic Gogebic	13 17 11 13	46 47 47 47 47 47	47 46 46 46 45 47	1886 1899 1986 1914 1895 1846	131 221 14 745	1.751 1.970 1.074 1,663 1.121 2,163
Norrie-Aurora Group Palms (see Anvil) Puritan (see Davis) Sunday Lake Tilden Wakefield Yale	Gogelie Gogelie Gogelie Gogelie Gogelie	22,23 14 17 10 15 16,17	47 47 47 47 47	46 46 46 46	1001 1910 1910 1901 1013 1001	1.015	1,500 1,604 1,604 1,726 1,726 1,757

1915, WITH LOCATION, OWNERSHIP, ETC .- Concluded.

Number or name of level.	Operators.	Address of Home Office.
11th 1st 14th 12th 16th	Bristol Mining Co	Wade Building, Cleveland, Ohio. 1300 Leader-News Bidg., Cleveland, Ohio. Wickliffe, Ohio. Wickliffe, Ohio. Wickliffe, Ohio.
14th 3d 14th 2d 12th 5th	Hemlock River Mining Co. Judson Mining Co. Hemlock River Mining Co. Hollister Mining Co. Corrigan, McKinney Co. Hemlock River Mining Co.	Cleveland, Ohio, Western Reserve Bldg. First National Bank Bldg., Chicago, Illinois. Cleveland, Ohio, Western Reserve Bldg. 1300 Leader News Bldg., Cleveland, Ohio. Wickliffe, Ohio. Cleveland, Ohio, Western Reserve Bldg.
4th 1st 7th 1st 2d	Corrigan, McKinney Co	Wickliffe, Ohio. Cleveland, Ohio, Western Reserve Bldg. Cleveland, Ohio, Western Reserve Bldg. New York City, 25 Broad St. Cleveland, Ohio, Western Reserve Bldg.
4th 3d 9th 7th 4th	Brule Mining Co. Verona Mining Co. Brule Mining Co. Munro Mining Co. Wickwire Mining Co.	76 Wade Building, Cleveland, Ohio. Cleveland, Ohio, Western Reserve Bldg. 76 Wade Bldg., Cleveland, Ohio. 55 Erie Co. Bank Bldg., Buffalo, N. Y. Buffalo, N. Y.
3d 1st 2d 4th 2d	Oliver Iron Mining Co	Duluth, Minn., Wolvin Bldg. 403 White Bldg., Buffalo, N. Y. 403 White Bldg., Buffalo, N. Y. Western Reserve Bldg., Cleveland, Ohio. 3d Ave. & Try St., Pittsburg, Pa.
9th 1st 4th 10th 1st	Munro Mining Co. Buffalo Iron Mining Co. Mineral Mining Co. Oliver Iron Mining Co. Munro Iron Mining Co.	55 Erie Co. Bank Bldg., Buffalo, N. Y. Buffalo, N. Y., Station B. 910 Wells Bldg., Milwaukee, Wis. Wolvin Bldg., Duluth, Minn. 55 Erie Co. Bank Bldg., Buffalo, N. Y.
3d 2d 4th 4th 5th 4th	Corrigan, McKinney Co. Wickwire Mining Co. Mineral Mining Co. Wickwire Mining Co. Huron Iron Co. Spring Valley Iron Co.	Wickliffe, Ohio. Buffalo, N. Y. 910 Wells Bidg., Milwaukee, Wis. Buffalo, N. Y. Iron River, Mich. Wellston, Ohio, Jackson Co.
11th 12th 25th 21st 17th 14th	Newport Mining Co. Castile Mining Co. Hayes Mining Co. Brotherton Iron Mining Co. Castile Mining Co. Corrigan, McKinney Co.	First National Bank Bidg., Milwaukee, Wis. 76 Wade Bidg., Cleyeland, Ohio. 808 1st National Bank Bidg., San Jose, Cal. Western Reserve Bidg., Cleveland, Ohio. 76 Wade Bidg., Cleveland, Ohio. Wickliffe, Ohio.
18th 19th 19th 11th 16th 19th	Oliver Iron Mining Co. Castile Mining Co. Corrigan, McKinney Co. Newport Mining Co. Verona Mining Co. Newport Mining Co.	riist National Dank Didg., Milwaukoc, wis.
22d 11th 16th 23d 23d 1st	Oliver Iron Mining Co. Dunn Iron Mining Co. Oliver Iron Mining Co. Sunday Lake Iron Co. Oliver Iron Mining Co. Wakefield Iron Co. Lake Superior Iron & Chemical Co.	Wolvin Bldg., Duluth, Minn. First National Bank Bldg., Milwaukee, Wis. Wolvin Bldg., Duluth, Minn. Western Reserve Bldg., Cleveland, Ohio. Wolvin Bldg., Duluth, Minn. 1300 Leader-News Bldg., Cleveland, Ohio. Penobscot Bldg., Detroit, Mich., F. W. Blair, Receiver.

IRON ORE RESERVES

	19	11.1	1913.2		
Range.	Developed. Tons.	Prospective. Tons.	Developed. Tons.	Prospective. Tons.	
Gogebic county	18,296,721	13,308,279	23,813,191	7,754,388	
(Iron River District) (Crystal Falls District)	7,934,687	25,689,155	13,249,683	47,536,233	
Menominee: (Dickinson county)	9,082,750	2,567,700	9,682,994	3,100,458	
(Baraga county) (Marquette county)	36,228,742	56,473,068	34,692,034	51,529,275	
State	71,542,900	98,038,202	81,437,902	109,920,354	
Total	169,581,102 191,3		358,256†		

[†]Of date Jan. 1, 1913 in addition to which there was in stock 4,366,349 tons of ore, making a grand total of 195,724,605 tons.

1Estimated by C. K. Leith for Board of State Tax Commissioners.

1Estimate by C. K. Leith and R. C. Allen for Board of State Tax Commissioners.

APPRAISED VALUE OF

Previous appraisals. Range. 1911. 1912. 1913. 1914. 1915. \$28,338,100 \$27,226,300 \$25,849,873 \$34,667,028 834,377,792 20,978,709 15,018,475 15,359,664 21,275,945 20,856,919 Menominee: Dickinson county . . 7,427,500 7,240,625 6,641,925 6,413,003 5,906,443 Marquette: Baraga county..... Marquette county... 34,745,000 29,063,714 29,216,139 28,616,453 31,270,500 State \$85,529,075 \$81,097,089 \$82,534,221 \$91,572,115 \$89,757,607

^{*}Ten per cent cut from 1911 assessment (approximate figure).

OF MICHIGAN.

1914.2		19	15.*	1916.*		
Developed. Tons.	Prospective. Tons.	Developed. Tons.	Prospective.	Developed. Tons.	Prospective. Tons.	
23,765,158	21,113,192	33,764,457	12,838,990	32,181,415	25,743,175	
13,337,913	45,045,227	19,258,369	42,961,778	17,332,239	40,935,494	
11,062,700	2,129,950	10,134,241	1,701,540	8,035,306	1,671,055	
33,095,467	47,919,718	28,629,708	50,235,260	30,655,677	49,239,115	
81,261,238	116,208,087	91,786,775	107,737,568	88,204,637	117,588,839	
197,469,325*		199,52	24,343 ‡	205,793,476**		

MICHIGAN IRON MINES.1

Assessed value	Total tonnage in mine and	Combined value of	oraisal.	1916 apr
per ton.	in stock Jan. 1, 1916.	mine and ore in stock.	Ore in stock.	Mine.
\$0.57946	59,210,760	\$34,310,394	\$5,915,732	\$28,394,662
.35185	59,347,807	20,881,675	3,368,387	17,513,288
. 55922	10,297,295	5,758,461	1,776,144	3,982,317
.36090	82,546,079	29,790,866	5,570,732	24,220,134
\$0.42923	211,401,941	\$90,741,396	\$16,630,995	\$74,110,401

¹By Board of State Tax Commissioners.

^{*}Estimate by R. C. Allen and O. R. Hamilton for Board of State Tax Commissioners.

*Of date Jan. 1, 1914 in addition to which there was in stock 4,954,830 tons of ore, making a grand total of 202,424,155 tons.

10f date Jan. 1, 1915 in addition to which there was in stock 6,596,195 tons of ore, making a grand total of 206,120.538 tons.

**Of date Jan. 1, 1916 in addition to which there was in stock 5,608,465 tons of ore, making a grand total of 211,401,941 tons.

VALUE OF MICHIGAN IRON ORE SHIPMENTS 1915 FROM REPORT OF APPRAISER OF MINES TO BOARD OF STATE TAX COMMISSIONERS 1915.1

Range.	Gross receipts.	*''Beyond the Mine'' charges.	Net receipts f. o. b. st the mine.	Shipment. Tons. 1915.	Value per ton f. o. b. mine 1915.	Value per ton f. o. b. mine 1914.
Gogebic—Gogebic county Tron River Crystal Falls Menominee—Dickinson county Marquette Marquette Marquette county	\$14,409,870 95 8,559,546 46 3,694,536 00 10,681,925 00	\$4,104,751 83 2,519,175 86 1,003,336 47 2,545,445 89	\$10,305,119 12 6,041,370 60 2,691,199 53 7,536,479 11	4,591,040 3,261,878 1,302,719 3,995,975	\$2 24461 1 85211 2 06583 1 88601	\$2 46 1 80 1 89 2 14
State of Michigan	\$36,745,878 41	\$10,171,710 05	\$26,574,168 36	13,151,612	\$2 02060	\$ 2 14
*Includes: 1. Rall freight. 2. Boat freight. 3. Cargo insurance. 4. Lower lake analyses.	1915 U. S. Production = Valued at		*55.493,100 gross tons. \$101,288,984 or average price of \$1.83 per ton.	rice		
o. Seting Commissions. From report of Appraiser of Mines to Board of State Tax Commissioners 1916. **of which the I Tonnage mined of w	ommissioners 1916 **of which the 1 Tonnage mined of w	missioners 1916. **of which the Lake Superior District produced 46,944,254 tons, or 85 per cent of the total. Tonnage mined during 1915 is green by U. S. G. S. as 55,526,490 gross tons of which Minnesots mined 33,464,660 tons. Michigan mined 12,514,516 tons. Alabama mined 5,309,354 tons. Wisconsin mined 1,505,384 tons.	ict produced 46,94 an by U. S. G. S. s mined 33,464,660 mined 12,514,516 mined 5,309,354 mined 5,309,354	4,254 tons, or 5 55,526,490 tons.	85 per cent c gross tons	if the total.

Wisconsin mined 1,095,388 tons.
New York mined 998,845 tons.
All other states mined 2,143,727 tons.

Total.55,526,490 tons.

costs, profits, losses and assessments, iron mines of the marquette range, marquette county, mich. Compiled by the Apprales of Mines for the Board of State Tax Commissioners from reports by the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
	Cost of Mining.				•		
Τ.	General office expenses	\$0.08148	\$0.11454 .11416	\$0.08125 .08121	\$0.05057 .04739	\$0.05898 .05768	
αį	Fire insurance	. 00075	00044	00564	.00397	00328	
က	Employers liability insurance			00441	.00339	.00500	
4	Твхев	.05630	.06863	08090	.08026	.07564	.15193
ō.	Depreciation			. 09942 . 09942	08060	.05299	
6	Mining	1.33839	1.40609	1.52434	1.50437	1.38899	
7.	Exploration and development $\ldots \ldots $.05708	08228	08838	07166	06095	
œ	Construction	. 08579	10932	02212	.06506	08351	
œ.	Total cost at mine	1.63112	1.79137	1.89756	1.87008	1.72944	
	Beyond the Mine Cost.						
10	Rail freight	26842	27659	29435	29444	29841	23228
Ξ.	Boat freight	49696	48986	44747	46945	48127	35463
12.	Cargo insurance	.00140	00192	00021	90085	88000	00113
13.	Analysis at lower lake ports	00047	00031	00022	69000 0000	66000 0.000	00180
14.	Selling commissions	00915	01198	01629	01873	01852	02815
15.	Total "Beyond the Mine" cost	77640	78066	.75864	.78419	80007	61797
		_	_	_	_		

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE MARQUETTE RANGE, MARQUETTE COUNTY, MICH. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
1	Beyond the mine cost.—Con.						
16.	16. Total cost of delivery	\$2.40752 2,36078	\$2.57203 2.56592	\$2.65620 2.64404	\$2.65427 2.63295	\$2.52951 2.48620	\$2.63020 2.58409
17.	17. Royalties	12239	13238	20704	.18385	20591	.24763
18	18. Total cost of delivery to operator $\left\{ egin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right.$	2.52991	2.70441	2.87361 2.85108	2.83812	2.74753 2.69211	2.87783 2.82445
	Profit and Loss.						
19	19. Receipts from sale of ore	3.37320	3.77856	3.80000	3.51487	3.70991	3.59091
50.	. Profit or loss to operator	89003	1.08027	94892	70448	1.01780	76646
21.	Total profit (opera	. 96568	1.20653	1.24052	.95140	1.23339	1.06035
22	Assessed valuation per ton by Board of State Tax Commissioners.		3 :				.37480
l				-			

a Total of all operations.

b Total of all operations excluding non-producers.

Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.

In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 inclusive and item 19 on tons shipped.

costs, profits, losses and assessments, iron mines of the marquette range, marquette county, mich.—Combudgd.

	1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916. Per ton.
Cost of Mining.					
1. General office expenses $\begin{cases} \mathbf{a} \\ \mathbf{b} \end{cases}$	\$0.09194	\$0.08932 .06680	\$0.07754	\$0.05827	
2. Fire insurance	00388	00357		0343	
Employer's liability insurance	01135	01850	01869	02069	
Taxes	.14140	.12160		13616	
Depreciation	.08597	06817		11265	
Mining	1.46207	1.45000		1.13464	
Exploration and development b	07939	06080		06522	
8. Construction	07912	08205	•	05266	
Total cost at mine	1.95512	1.87401	` 	1.61115	
Beyond the Mine Cost.					
10. Rail freight { h	26284	30700	28232	29318	
11. Boat freight.	29943	38732	31371	32504	
12. Cargo insurance	00191	00117	0000	00127	
13. Analysis at lower lake ports	0000	00465	1111	00375	
14. Selling commissions	.01477	02128	.01749	.01375	
15 Total "Beyond the Mine" oost	.57987	72142	.61854	. 63699	

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE MARQUETTE RANGE, MARQUETTE COUNTY, MICH.—Concluded. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916. Per ton.
	Beyond the Mine Cost.—Con.					
16. 17. 18.	16. Total cost of delivery \$\mathbb{a}\$ 17. Royalties \$\mathbb{a}\$ 18. Total cost of delivery to operator \$\mathbb{a}\$	\$2.53501 2.48616 .19117 .18478 2.72618	22.59543 2.53045 1.9221 1.18469 2.78764 2.71514	\$2.54805 2.42833 2.1773 2.1773 2.76578 2.64555	\$2.24814 2.21098 1.18120 1.17913 2.42934 2.39011	
	Profit and Loss.					
20. 21. 22.	19. Receipts from sale of ore. 20. Profit or loss to operator. 21. Total profit (operator's profit or loss plus royalty and deprecia- b tion) 22. Assessed valuation per ton by Board of State Tax Commissioners.	2.90551 .17933 .23457 .45647 .50505	3.15906 .37142 .44392 .63180 .69664 .34464	2 82446 .05868 .17891 .42552 .53398	2 52302 .09368 .13291 .38753 .42278	06096 08

a Total of all operations.
 b Total of all operations excluding non-producers.
 Note.—All items in 1906 and 1907 figured on basis of lons shipped, tons mined not available.
 In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 inclusive and item 19 on tons shipped.

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE GOGEBIC RANGE, GOGEBIC COUNTY, MICH. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
l	Cost of Mining.						
	1. General office expenses	80 .07006 b .06908	\$0.06827	\$0.07218	9	\$0.05213 05119	\$0.0822
જાં	Fire insurance	a .00226 b .00218	.00256		.00378	00415	0070
ن	Employers' liability insurance	8.0			•	.00664	.0272
	Taxes		05834	06429	07387	07565	1971
5.	Depreciation		80800	12199		12335	1555
6	Mining	a 1.22206	1.37212	1.46021	`-i-	1.32950	1.4303
	evelopment		12328	08133		14909	2002
œ.	Construction	_	22745	24725		08334	12021
6	Total cost at mine	a 1.64646 b 1.63497	1.86100	2.05535	87-	1.82385	2.22039
	Beyond the Mine Cost.						
	10. Rail freight.	a 39625	39142	39280	39047	39285	3732
	11. Boat freight	b 73723	73122	64708	63825	70098	483(
	12. Cargo insurance	st.Q			00240	00319	000
	13. Analysis at lower lake ports	et. 🖸			.00373	00210	00.0
	14. Selling commissions	a 03915 b 03915	03933	04572	05470	04795	03548
	15. Total 'Beyond the Mine' cost		1.16197	1.08580	1.08955	1.14707	0968

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE GOGEBIC RANGE, GOGEBIC COUNTY, MICH. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
	Beyond the Mine Cost.—Con.						
16. 17. 18.	16. Total cost of delivery 8 17. Royalties 9 18. Total cost of delivery to operator 9 18. Total cost of delivery to operator 9 19. Total cost of delivery to operator 9 19. Total cost of delivery to operator 19. Total c	\$2.81909 2.80760 3.8886 3.18714 3.17548	\$3.02297 3.00391 4.3373 4.3373 3.45670 3.43740	\$3.14095 3.13236 43762 43741 3.57857	\$3.10406 3.00438 45323 45323 3.55729 3.43527	2. 97092 2. 96953 4.2660 3. 39742 3. 39521	\$3.11643 3.11643 3.2388 3.42277 3.43920
	Profit and Loss.						
19. 20. 21.	19. Receipts from sale of ore 20. Profit or loss to operator 21. Total profit (operator's profit or loss plus royalty and deprediation) 22. Assessed valuation per ton by Board of State Tax Commissioners.	4.05982 87268 .88433 1.24721 1.25869	4. 73564 1. 27893 1. 29815 1. 72164 1. 74070	3.99683 41826 42706 97787 98646	4. 07636 51907 64109 1. 11784 1. 21752	4. 69212 1. 29470 1. 29691 1. 84455 1. 84594	3.87255 .43224 .43335 .91167 .91167

COSTS, PROFITS. LOSSES AND ASSESSMENTS, IRON MINES OF THE GOGEBIC RANGE, GOGEBIC COUNTY, MICH.—Concluded.

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916. Per ton.
	Cost of Mining.					
ij	1. General office expenses.	\$0.06157		\$0.06841		:
લં	Fire insurance.	00593	00526	00505	00514	
က်	Employer's liability insurance	01913		02667		
4	4. Taxes	13478		14182		
5.	5. Depreciation	11307		09945		
æ	Mining	1.19161		1.18169		
7.	7. Exploration and development $\left\{\frac{a}{b}\right\}$	12864		23965		
œ	8. Construction	04681		18114		
6	9. Total cost at mine	1.70154	2.13690	1.94400	1.77001	
	. Beyond the Mine Cost.					
10.	10. Railfreight.	.38032	44526	.40792	.40970	:
11.	11. Boat freight	46717	55204	40087	43081	
12.	12. Cargo insurance	00075	00132	76000	00136	
13.	13. Analysis at lower lake ports	. 00222	00248	00288	00289	
14.	14. Selling commissions	.04801	.05374	04889	04929	
. 15.	eyond the Mine'' cost	.89847	1.05484	.86083	.89405 .89405	
}			- 	-		

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE GOGEBIC RANGE, GOGEBIC COUNTY, MICHIGAN.—Concluded. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operator.

		1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916. Per ton.
16. 17. 18.	Beyond the Mine Cost.—Con. 8 16. Total cost of delivery 8 17. Royalties 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 8 18. Total cost of delivery to operator 8 18. Total cost of delivery to op	\$2.60001 2.60001 28506 2.8506 2.86507 2.86507	\$3.19174 3.13162 30459 3.49633 3.49633 3.43437	\$2.80563 2.79116 3.1961 3.1862 3.12514 3.10997	\$2 66406 2 66280 2 20208 29154 2 95614 2 95614	
20. 21.	19. Receipts from sale of ore. 20. Profit or loss to operator 21. Total profit (operator's profit or loss plus royalty and depreciation) 22. Assessed valuation per ton by Board of State Tax Commissioners.	3.30027 45520 45520 45531 81333 81333	4.11367 .61734 .67930 1.04837 1,10799	3.32900 20386 21903 62292 63656 75715	3.13869 .18255 .18435 .69757 .69883	\$0.57946

a Total of all operations.
 b Total of all operations excluding non-producers.
 Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.
 In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 and item 19 on tons shipped.

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE MENOMINEE RANGE, DICKINSON COUNTY, MICH.

Compiled by the Appralser of Mines for the Board of State Tax Commissioners from reports of the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
	Cost of Mining.						
_;	1. General office expenses.	\$0.06131	\$0.07640	\$0.08687	\$0.04570		*
જાં	2. Fire insurance	00102	00121	00768	00551		
က်	Employers liability insurance			00341	00143		
4	Taxes	04875	06366	11040	10260		
5	Depreciation	00528	00691	16494	14697		
æ.		98118	1.21721	1.20207	1.21584		
7.	7. Exploration and development $\left\{\begin{matrix} \mathbf{a} \\ \mathbf{b} \end{matrix}\right\}$	07647	08296	13769	09243		ı
œ	8. Construction	14287	16885	19086	10095	07037	
oi.	Total cost at mine	1.31688	1.61720	1.88392	1.71143	1.77209	1.92632
	"Beyond the Mine" Cost.						
	10. Rail freight	32025	31908	30214	32006	30832	31544
Ξ		34010	33683	37593	37786	39260	33087
<u>~</u>	12. Cargo insurance	0008	00063		00207	.00205	00.00
13.	13. Analysis at lower lake ports						000
₹.	ms. •	01403	01336	00820	01645	02251	0221
5.	the Mine'' cost	71259	71345	. 69516	76037	80337	68144
	Unclassified	. 03740	.04355	01322	.04393	04220	.0093

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE MENOMINEE RANGE, DICKINSON COUNTY, MICH.

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operators.

	•	1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
16. 17. 18.	Reyond the Mine Cost.—Con. 8 16. Total cost of delivery	\$2 02947 2 02207 2 22039 2 24246	\$2 2.32987 2.32987 2.8258 2.61325 2.61325 2.61325	22.58441 2.57844 2.23856 2.23856 2.82297 2.81297 2.81287	\$2.47180 2.47180 2.52298 2.72478	\$2.57546 2.57546 30194 30194 2.87740	\$2.60776 2.59942 2.4478 2.4478 2.85254 2.85254
20. 21.	Receipts from sale of o Profit or loss to operate Total profit (operator's clation)	3.13222 .88236 .88975 1.10803 1.11542	3.89632 1.28309 1.28366 1.57258 1.5735	2 93813 11516 12632 15632 51866 52611	3.32263 .59785 .59785 .99780 .99780	3.49099 .61359 .61359 1.05624 1.05624	2.79390 05864 05864 31551 .32266 .63752

a Total of all operations.

b Total of all operations excluding non-producers.

D Total of all operations excluding non-producers.

Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.

In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 inclusive and item 19 on tons shipped.

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE MENOMINEE RANGE, DICKINSON COUNTY, MICH.--Concluded. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operators.

		1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916. Per ton.
	Cost of Mining.					
-	1. General office expenses	\$0.06289 06084	\$0.04758	\$0.06062	\$0.06622	
ei	Fire insurance	.00749	00595	.00763	.00714	
જ	Employers liability insurance	01080	01826	01805	01670	
4	Taxes	18124	16429	17651	.17430	: :
5.	Depreciation	.15657	14460	12758	.14988	
6	Mining	1.54642	1.42418	1.56567	1.55086	
7.	Exploration and development	16598	14462	15022	10856	
œ	Construction	07908	.15735	. 13618	.06971	
œ.	Total cost at mine	2.21059	2.10683	2.24246	2.14317 2.11344	
	"Beyond the Mine" Cost.		-			
10.	10. Rail freight	.28654	.33679	31258	42968	
11.	11. Boat freight.	23712	29436	25476	31703	
12.	12. Cargo insurance	98000	00048	00076	88000	
13.	13. Analysis at lower lake ports	00010	6000	00110	00207	
14.	Selling commissions	.00117	.01677	.01165	02063	
15.	16. Total "Beyond the Mine" cost	.58939	72872	.61438	.77017	
	Oucassing	90200	Ace in .	COSSO.		:

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE MENOMINEE RANGE, DICKINSON COUNTY, MICH.—Concluded.

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operators.

1916. Per ton.	\$\$
1915. Per ton.	\$2.91334 2.88304 1.18853 3.118853 3.07157 2.83601 - 27885 - 27885 - 27885 - 27885 - 72856 - 72
1914. Per ton.	\$2 85684 2 84774 2 84774 1 18070 3 03754 3 02584 3 02584 6 - 53034 - 53034 - 22206 - 22206 - 21296
1913. Per ton.	\$2 83555 2 81081 2 11612 2 1512 3 01406 3 02487 3 08203 03036 05716 3 9108 3 9108 5 9108
1912. Per ton.	\$2 79998 2 75898 1 95813 2 95313 2 95211 2 61715 - 37824 - 37824 - 02826
	Beyound the Mine Cost.—Con. 16. Total cost of delivery 17. Royalties 18. Total cost of delivery to operator 19. Profit and Loss. 19. Receipts from sale of ore 20. Profit or loss to operator 21. Total profit (operator's profit or loss plus royalty and depreciae to ton) 22. Assessed valuation per ton by Board of State Tax Commissioners

a Total of all operations.

b Total of all operations excluding non-producers.

Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.

In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 inclusive and item 19 on tons shipped.

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE IRON RIVER AND CRYSTAL FALLS DISTRICTS, MICH. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

j		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
	Cost of Mining.						
	1. General office expenses	\$0.02142	\$0.03991 .03893	\$0.06483 .06270	\$0.05912 .05847	\$0.07662 .07328	\$0.09376 .08936
еi	Fire insurance	.00502	.00546	.00701	.00367	00494	.00576
જ	Employers liability insurance			00522	.00551	00653	.00626
4;	Taxes	01892	.01942	03521	.02133	02625	.08124
5.	Depreciation	01089	01409	12240	13189	11837	.15102
ø.	Mining	1.00419	1.05856	1.25692	98412	1.17976	1.21722
7.	Exploration and development	26340	34431	22709	. 10502	13150	. 17734
œ	Construction	24753	30177	23143	111833	17559	.10170
6	Total cost at mine	1.57137	1.78346	1.96529	1.42899	1.84706	1.87503
	"Beyond the Mine" Cost.			-			
9 : 9		38136 38134 56819 56814	39229 39229 57313 57313	37714 37714 37474 37474	.38548 .38548 .43736 .00079	38549 38549 47241 47241 00114	36687 35260 32513 30924 00070
13. 13.	12. Cargo insurance 13. Analysis at lower lake ports 14. Selling commissions 15. Total "Beyond the Mine" cost	08732 08732 1 03687 1 03679	06288 06288 1 04830 1 04830		.00079 .00509 .00509 .07241 .07241 .90113	.00114 .00074 .007734 .07734 .07734 .93712	00070 00058 00058 00058 06752 06396 76080

costs, profits, losses and assessments, iron mines of the iron river and crystal falls districts, mich. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.	
l	Beyond the Mine Cost.—Con.	•						
16. 17. 18.	16. Total cost of delivery (a b b b b b b b b b b b b b b b b b b b	22.60824 2.37908 2.0623 .19862 2.81447 2.57770	\$2.83176 2.63193 27628 3.10804 2.90225	2.81573 2.66978 2.25170 24005 3.06743 2.90983	\$2.33012 2.28295 2.28295 2.23845 2.23805 2.56857 2.51497	\$2.78418 2.62454 2.7167 24874 3.05586 2.87328	22. 63583 2.51875 23104 22370 2.86687 2.74245	
	Profit and Loss.					•		
20. 21. 22.	Receipts from sale of ore Profit or loss to operator Total profit (operator's profit or loss plus royalty and depresisation) Assessed valuation per ton by Board of State Tax Commissioners.	3.10194 .28747 .52424 .50459 .73375	3.95240 .84436 1.05015 1.13473 1.33456	3.01281 05462 .10298 .31948 .46416	3.27907 71050 76410 1.08084 1.12735	3.66809 61224 79481 1.00228 1.16192	2.89477 .02790 .15232 .40996 .52654	
"	a Total of all operations. Define the state of all operations excluding non-producers.							

Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.

In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 and item 19 on tons shipped.

COSTH, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE IRON RIVER AND CRYSTAL FALLS DISTRICTS, MICH.—Conduded. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1912. Per ton.	1913. Per toa.	1914. Per ton.	1915. Per ton.	1916. Per ton.
	Cost of Mining.					
9	1. General office expenses	\$0.07995	\$0.08637	\$0.11919	\$0.06907	
2. Fir	Fire insurance	00586	00733		00512	
3. En	Employers liability insurance	01008	02012		01907	
Ta	Taxes	08153	09900		11820	
Ď		11376	12853		.09768	
6. Mi	Mining	1.10252	1.18226		93148	
Ä	7. Exploration and development $\left\{ \begin{array}{ll} \mathbf{\tilde{a}} \\ \mathbf{\tilde{b}} \end{array} \right.$	26915	28649		16197	
Ĉ	8. Construction	19837	30065		08619	
9. To	Total cost at mine $\left\{ egin{align*}{cccccccccccccccccccccccccccccccccccc$	1.86122	2.10865	2.26082	1.48878	
	"Beyond the Mine" Cost.					
R	10. Rail freight	.37014	41676	44558	42991	
Bo	11. Boat freight	23310	27170	26330	27286	
.	12. Cargo insurance	00058	0000	00007	00113	
Αn	13. Analysis at lower lake ports	00046	00227	00319	00302	
8	14. Selling commissions $\begin{bmatrix} \mathbf{\hat{A}} \end{bmatrix}$	06269	. 05675	05355	05622	
٤	15. Total "Beyond the Mine" out	. 66853	78054	70659	.77198	

COSTS, PROFITS, LOSSES AND ASSESSMENTS, IRON MINES OF THE IRON RIVER AND CRYSTAL FALLS DISTRICTS, MICH.—Concluded. Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports by the operators.

		1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916 Per ton.
	Beyond the Mine Cost.—Con.					
16. 17. 18.	16. Total cost of delivery. \$ b 17. Royalties. \$ a 18. Total cost of delivery to operators. \$ a	\$2.52975 2.29283 22019 2170 2.74994 2.50453	22.88919 2.54658 2.28808 3.15817 2.77284	\$3.02741 2.77178 2.28250 25786 3.30991 3.02964	2. 26076 2. 15815 2. 25014 2. 21777 2. 51090 2. 37592	
19	Profit and Loss.	2.61385	3,00108	2.63285	2.62411	
20. 21.		- 13609 10932 19786 43259	22824 26042 26042 57758 34512	67706 39679 25896 01233 35776		\$.35185
1		-	-			

.....

COSTS, PROFITS, LOSSES AND ASSESSMENTS, MICHIGAN IRON MINES.

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from the reports of the operators.

		1906. Per ton.	1907. Per ton.	1908. Per ton.	1909. Per ton.	1910. Per ton.	1911. Per ton.
3	Cost of Mining.						
1. G	1. General office expenses	\$0.08368 06206	\$0.08084	\$0.06619			
2. F	2. Fire insurance	.00190	00200	00579			
ж Н	Employer's liability insurance			00418			
4. T	Taxes	04807	05599	07330			
5. D	Depreciation	00481	00636	12127			
9.	Mining	1.16233	1.29348	1.40644			
7. E	Exploration and development $\left\{ egin{align*}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right.$. 10683	11399	12097			
8. C	8. Construction	14374	18758	15741			
9. T	Total cost at mine	1.54457	1.77037	1.95555	1.78396	1.78824	2.01689 1.98112
	"Beyond the Mine" Cost.						
10. H	10. Rail freight B	.33341	33639	34244	34590	34547	31266
11. B	11. Boat freight	.53102	53428	48688	49555	53537	37108
12. C	12. Cargo insurance	99000	08000	\$000 0.0.0	.00150	.00182	.00159
13. A	13. Analysis at lower lake ports $\left\{ \begin{array}{ll} \mathbf{a} \\ \mathbf{b} \end{array} \right.$	00015	.00012	8600	00239	00114	00100
14. S	14. Selling commissions	03078	03221	03933	04023	03920	03950
15. T	the Mine'' cost	.90564	91318	.87169	.89295	93426	73681
	Unclassined	49605	. 00938	10200	.00788	.01126	.00152

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operators. COSTS, PROFITS, LOSSES AND ASSESSMENTS, MICHIGAN IRON MINES.—Continued.

Seyond the Mine" Cost.—Con. a \$2.45023 \$2.8355 \$2.82724 \$2.67691 \$2.6906 \$2.690	1911. Per ton.	\$2.75370 2.70740 2.50209 2.5755 3.01579 2.96495	3.34723 33144 .38228 .72325 .76535 .76535
Seyond the Mine" Cost.—Con. a \$2.45023 \$2.68356 \$2.82724 ery 2.38976 2.64005 2.74451 ery to operator 2.2256 2.2862 3.0976 ery to operator 2.261810 2.90755 3.29479 Profit and Loss. 3.44813 4.08242 3.56079 sof ore 3.44813 4.08242 3.56079 stor's profit or loss plus royalty and depre- a 1.00271 1.4623 85482 n per ton by Board of State Tax Commissioners b 1.05918 1.44873 88671	1910. Per ton.		3.97701 94952 1.00551 1.35643 1.40243
1906. 1907. 1908. 1907. 1908. 1907. 1908. 1907. 1908. 1907. 1908. 1907. 1908. 1907. 1908	1909. Per ton.	2. 67691 2. 62981 2. 8448 2. 27457 2. 96139 2. 90438	3.59276 63137 68888 1.04006 1.08702
1906. 1906	1908. Per ton.	\$2.82724 2.79451 .30007 .29479 3.12731 3.08930	3.56079 43348 47149 88482 88671
Seyond the Mine" Cost.—Con. ery ery ery to operator Profit and Loss. of ore server to operator baserator aborator aborator aborator aborator aborator aborator aborator aborator baserator aborator aborator aborator aborator baserator aborator aborator aborator aborator baserator aborator aborator aborator baserator aborator aborator baserator aborator abo	1907. Per ton.		4.08242 1.13025 1.17487 1.40523 1.44873
"Beyond the Mine" Cost.—Con. 6. Total cost of delivery 7. Royalties 8. Total cost of delivery to operator Profit and Loss. 9. Receipts from sale of ore 10. Profit or loss to operator 11. Total profit (operator's profit or loss plus royalty and deprediction) 22. Assessed Valuation per ton by Board of State Tax Commissioners	1906. Per ton.	\$2.45023 2.39376 22560 225434 2.67583 2.67583	3.44813 77230 83003 1.00271 1.05918
		"Beyond the Mine" Cost.—Con. 16. Total cost of delivery 17. Royalties 18. Total cost of delivery to operator 2	Profit and Loss. 19. Receipts from sale of ore

a Total of all operations.

b Total of all operations excluding non-producers.

Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.

In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 inclusive and item 19 on tons shipped.

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operators. COSTS, PROFITS, LOSSES AND ASSESSMENTS, MICHIGAN IRON MINES.—Continued.

		1912.	1918.	1914.	1916.	1916.
		Per ton.	Per ton.	Per ton.	Per ton.	Per ton.
l	Cost of Mining.					
H	1. General office expenses	\$0.07639 .07408	•	\$0.08053 .07648	\$ 0.06163	
લં	Fire insurance		.00503		00491	
69	Employer's liability insurance				.01959	
4	Taxes				. 13784	
5.	Depreciation				14570	
9	Mining	1.29084			1.07528	
۲.	Exploration and development	.15305			12305	
œ	8. Construction	. 07357	13872		. 08551	
6	Total cost at mine $\left\{ \begin{array}{llll} \mathbf{b} \end{array} \right.$	1.88779	1.93298	1.95886	1.64699	
	"Beyond the Mine" Cost.	•			•.	
10.	10. Rail freight	.32962	.38361	.36085	.38349	
11.	11. Boat freight	••	39878	32625	34623	
12.	12. Cargo insurance	•	00100	0000	.00120	
13.	13. Analysis at lower lake ports $\left\{ egin{array}{cccccccccccccccccccccccccccccccccccc$.00288	00800	00800 80800	
14.	14. Selling commissions		.03837	.03457	.03683	
15.	15. Total "Beyond the Mine" cost	. 69959	.83669	72382	.77340	
	Unclassified	econn.	60110.	OFFICE.		

Compiled by the Appraiser of Mines for the Board of State Tax Commissioners from reports of the operators. COSTS, PROFITS, LOSSES AND ASSESSMENTS, MICHIGAN IRON MINES.—Concluded.

		1912. Per ton.	1913. Per ton.	1914. Per ton.	1915. Per ton.	1916. Per ton.
16. 17.	"Beyond the Mine" Cost.—Con. 16. Total cost of delivery 2 2 3 4 5 5 5 5 5 5 5 5 5	2. 59303 2. 5156 2. 22255 2. 22255 2. 72860 2. 72860	\$2.88015 2.75963 2.25390 2.35382 2.9546 2.99646	\$2.77818 2.86238 2.26407 2.5783 3.04225 2.94021	\$2 44743 2 41592 2 3872 2 23136 2 6815 2 64728	
19. 20. 21.	Receipts from sale of orverous to loss to operator Total profit (operator's tion)	2 92708 11150 19750 44374 52309	3.41137 27732 41592 64210 75989 43561	2.92249 11976 01772 27001 .36020 .45237	2.79402 .10787 .14674 .49665 .52380	8. 42923

a Total of all operations.

b Total of all operations excluding non-producers.

Note.—All items in 1906 and 1907 figured on basis of tons shipped, tons mined not available.

In all other years items 1 to 9 inclusive figured on tons mined, items 10 to 17 inclusive and item 19 on tons shipped.

PART II. NON-METALLIC MINERALS.

R. A. SMITH.

The second secon

LIMESTONES OF MICHIGAN.

R. A. SMITH.

CONTENTS.

Limestones of Michigan.

Introduction.

CHAPTER I.

Origin of Limestone.	
	Page
Definition	111
Original sources.	112
Organic and inorganic deposits.	112
CHAPTER II.	
Classification and Varieties of Limestones.	٠
Organic and Inorganic Limestones	115
Varieties based on Texture	116
Varieties based on Composition	119
•	
CHAPTER III.	
Uses of Limestone.	
Ad Dom and Domest Viscostons	100
As Raw and Burned Limestone	128
CHAPTER IV.	
Geology of Limestone Formations.	
Geologic Distribution	141
Pre-Cambrian Limestones	141
Paleozoic Limestones	141
Recent Marl Deposits	141
Pre-Cambrian Limestones	141
General Distribution and Character	141
Kona Dolomite	143
Randville Dolomite	148
Saunders Formation	145
Bad River Limestone	146
Paleozoic Limestones	146
Geologic Occurence and Distribution	146
Mari or Bog-lime Deposits	148
Occurrence and Distribution	148
Paleozoic Limestones—Areal Distribution and General Description	149
Beekmantown (Calciferous, Lower Magnesian)	149
Trenton Limestone	149
"Niagara" Limestone	150
Engadine Dolomite	151
Manistique Series	152
Fiborn Limestone	153

	Page
Hendricks Series.	155
Salina Formation.	156
Monroe Formation	156
Lower Monroe, or Bass Island Series	157
Upper Monroe, or Detroit River Series	158
Dundee or Onandago Limestone	159
Traverse (Hamilton and Marcellus) Formation	159
Thunder Bay Series	160
Alpena Limestone	160
Long Lake Series	160
Bayport (Maxville) Limestone	162
CHAPTER V.	
Distribution, Character and Development of Limestone Deposits by Counties.	
Pre-Cambrian Limestones	164
Dickinson county.	164
Gogebic county.	166
Iron county	167
Marquette county	169
Paleozoic Limestones.	171
Alger county	171
Alpena county	172
Arenac county	185
Charlevoix county	190
Cheboygan county	198
Chippewa county	205
Delta county	211
Eaton county	217
Emmet county	219
Huron county	226
Kent county	229
Jackson county	231
Luce county	231
Mackinac county	234
Marquette county	242
Menominee county	242
Monroe county	244
Presque Isle county	249
Schoolcraft county	260
Wayne county	265
Table of analyses by counties	288

LIST OF ILLUSTRATIONS.

PLATES.

		I	Page
Plate	I.	A. Boulder tract of Engadine dolomite near Hessel, Mackinac county	150
Plate		B. A large, weathered boulder of Engadine dolomite near the railroad one	
		mile west of Engadine, Mackinac county	150
Plate		A. Quarry and crushing plant of the Michigan Alkali Company at Alpena.	192
Plate	II.	B. Kilns and crushing plant of the Charlevoix Rock Products Co., Charle-	
		voix, Charlevoix county	192
Plate		A. Plant of the Campbell Stone Co. at Afton, Cheboygan county	198
Plate	III.	B. Quarry of the Petoskey Crushed Stone Co. four miles west of Petoskey, Emmet county	198
Plate	IV.	A. Crushing plants and a portion of the Bayport quarry of the Wallace Stone Co., Bayport, Huron county	236
Plate	IV.	B. Fiborn quarry and crushing plant of the Fiborn Limestone Co., Mackinac	
	`	county	236
Plate		A. Hendricks quarry of the Union Carbide Co., Mackinac county	236
Plate		B. Test pit in the floor of Hendricks quarry	236
Plate		A. Quarry of the Ozark Stone Company at Ozark, Mackinac county	246
Plate	VI.	B. New crushing plant and a portion of the quarry of the France Stone Co., Monroe, Monroe county	246
Plate	VII	A. Quarry of the Michigan Limestone and Chemical Co., Calcite, Presque	240
1 1000	V 11.	Isle county	250
Plate	VII.	B. Plant of the Michigan Limestone and Chemical Co., Calcite, Presque	200
		Isle county	250
Plate	VIII.	A. Middle Bluff, Fayette, Garden Peninsula, Delta county	250
		B. John Bichler quarry, four miles north of Escanaba, Delta county	250
		FIGURES.	
Figure	3 1.	Map of the Kona dolomite. After VanHise, Bayley and Smyth, Mon. 28,	
	_	U. S. Geol. Surv	141
Figure	2 .	Map of the Randville dolomite, northeast of Crystal Falls, Iron county.	140
Figure	e 3.	After Clements and Smyth, Mon. 36, U. S. Geol. Surv	142
T. IE U.	· 0.	districts, Dickinson county. After Smyth and Clements, Mon. 36, U. S.	
		Geol. Surv	143
Figure	a 4.	Map of the Randville dolomite in the Menominee iron-bearing district.	410
		Dickinson county. After W. S. Bayley, Mon. 46, U. S. Geol. Surv	144
Figure	в 5 .	Map of the Saunders formation in the Iron River iron-bearing district.	
•		After R. C. Allen, Pub. 3, Geol. Ser. 2, Mich. Geol. and Biol. Surv	145
Figure	e 6.	Map of the Bad River limestone in the east end of the Gogebic Range.	
_		After VanHise and Irving, Mon. 19, U. S. Geol. Surv	146
Figure	e 7.	Geologic column of Michigan from the St. Peter sandstone to the Pleisto-	
		cene. After Lane	146
Figure	e 8.	Geologic section across the Michigan Basin from Port Rowan, Ontario,	
		northwest to Manistee, Michigan	147
Figure		Outline geologic map of the Palaeozoic formations of Michigan	148
Figur	e 10.	Map of the altered peridotites northwest of Ishpeming. Marquette county.	
		After VanHise, Bayley and Smyth, Mon. 28, U. S. Geol, Surv	170

			Page
Figure	11.	Geologic section from Alpena, Alpena county, north to Lake Huron. After A. W. Grabau	173
Figure	12.	Map of exposures of the Bayport limestone between Omer and Au Gres, Arenac county. After W. M. Gregory	185
Figure	13.	Map of the Bayport limestone in the vicinity of Bayport, Huron county. After Lane.	227
Figure	14.	Geologic section from Donald, Mackinac county, south to Lake Michigan.	234
Figure	15.	Geologic section from Calcite quarry of the Michigan Limestone & Chemical Co., south to section 3, T. 43 N. R. 5 E., Presque Isle county	250

INTRODUCTION.

That Michigan possesses enormous limestone resources has been known for more than a half century yet little was known of the specific or even the general character of many of the beds until recently. A. Winchell,* and C. Rominger,** incidentally have described in various early publications of the Michigan Geological Survey the limestone formations in different localities in connection with the discussion of other geological problems. A. C. Lanet described in detail the limestones of Huron county, W. H. Sherzer†† the limestones of Monroe and Wayne counties, W. H. Sherzer and A. W. Grabau! the limestones of the Monroe Formation, A. W. Grabautt the limestones of the Traverse Formation, and W. M. Gregory & those of Arenac county. Lane studied in more or less detail the limestone deposits in a number of other localities, and in the Annual Report of the Geological Survey for 1901 published a brief report upon the limestones of the whole state. Brief notes by Lane, § Russell,*** and others on limestone were published in some of the other reports. All of the above contributions to the subject, with the exception of the reports on Arenac, Huron, Monroe, and Wayne counties, and on the Monroe formation are out of print and largely out of date.

This report brings together the important facts of the previous reports and adds to these the information afforded by more recent developments, particularly the results of an investigation made by the writer during 1913-14. The economic possibilities of the several limestone formations are presented rather than their geologic relations. The report embraces (1) a discussion of the character origin and classification of limestones, (2) an outline of the geology of the limestone formations of Michigan, (3) their uses, and (4) descriptions of the occurrence, character, development and economic possibilities of the limestone beds of the different counties.

^{*}First Biennial Rept., Mich. Geol. Survey, 1860.

**Geology of Lower Peninsula, Vol. III, Pt. 1, Mich. Geol. Surv., 1869-1873; and Geology of Lower Peninsula, Vol. III, Pt. 1, 1873-1876.

†Geology of Huron County, vol. VII, p. 11, Mich. Geol. Surv., 1896-1900.

†Tieology of Monroe County, vol. VII, p. II, 1896-1900.

†The Monroe Formation, Pub. 2, Geol. Ser. 1, Mich. Geol. and Biol. Surv. 1909.

tiThe Stratigraphy of the Traverse Formation, Ann. Report, Mich. Geol. Surv. for 1901. §Geology of Arenac County, Pub. 11, Geol. Ser. 8, Mich. Geol. and Biol. Surv., 1911. §§Ann Repts., Mich. Geol. Surv. for 1903, 1905, 1907 and 1908.

^{***}A Geological reconnaissance along the north shore of Lakes Huron and Michigan, Ann. Rept., Mich. Geol. Surv. 1904.

The writer wishes to express his sincere appreciation of the courteous treatment and hearty cooperation on the part of the officials of the various companies and of individuals interested in the development of the limestone resources of the state. Special thanks are due to R. N. Wallace of the Wallace Stone Company, Bayport; James McDonnell, Omer; W. M. Smith and other officials of the Huron Portland Cement Company and the Michigan Alkali Company of Alpena; P. F. W. Timm of the Great Lakes Stone & Lime Company, Rockport; C. D. Bradley, of the Michigan Limestone & Chemical Company, Rogers; Merritt Chandler, Onaway; W. G. and L. W. Durrell, of the Cheboygan County Limestone Products Company, Mackinac City; C. A. Campbell, of the Campbell Stone Company, Afton; H. D. Sly, of the Petoskey Crushed Stone Company and the Northern Lime Company, Petoskey; W. E. Smith, Cadillac; R. F. Sloan, of the Charlevoix Rock Products Company, Charlevoix; N. S. Potter, of the Michigan Portland Cement Company, Chelsea; G. R. Burt and F. P. Monaghan, of the Burt Portland Cement Company, Bellevue; J. W. Smith, of the France Stone Company, Monroe; Geo. J. Nicholson, of the White Marble Lime Company, Manistique; John Bichler, Groos; Peter Schultz, Rapid River; W. A. Burnett, Engadine; G. D. Welton, Huntspur; E. W. and J. A. Hough, of the Ozark Limestone Company, Ozark; Wm. Hansen, of the Hendricks Quarry and Joseph Scales, of the Union Carbide Company, Sault Ste. Marie; D. N. McLeod, of the McLeod Lumber Company, Garnet; L. Seaman, Drummond; F. A. Jones, of the Kelley Island Lime Company, Cleveland; and E. S. Beal, Lansing. To many others who furnished information and analyses due credit will be given elsewhere.

The various bulletins and publications of the United States Geological Survey and some of the state geological surveys have been freely drawn upon for material. The writings of F. W. Clarke; E. F. Burchard; W. E. Emley, and E. C. Eckel of the U. S. Geological Survey; and E. Orton, Jr., and S. V. Peppel of the Ohio Geological Survey and H. A. Buehler of the Missouri Geological Survey have been especially valuable. Acknowledgment will be made elsewhere to many other investigators whose writings have contributed to this report.

CHAPTER I.

ORIGIN OF LIMESTONE.

DEFINITION.

According to commercial usage limestone is a rock varying in composition when free from impurities, from pure calcium carbonate to a mixture of 56.35 per cent of calcium carbonate, 45.65 per cent of magnesium carbonate.* In a general sense it is used to denote a rock in which calcium carbonate is the chief ingredient.† In this report, commercial usage has been followed, but the term dolomite is applied to limestones in which the molecular proportions of calcium carbonate to magnesium carbonate approach the ratio of one to one. Descriptive terms are used to distinguish limestones of intermediate composition.

All limestones contain more or less impurities, chemically combined with the lime or magnesia or as separate minerals. The common impurities are iron carbonate, iron oxides and sulphides, silica, alumina, clay, carbonaceous matter, sulphur, and phosphorous. Under the second definition magnesium carbonate is an impurity and generally it is the most abundant.

Calcium carbonate (CaCO₁) is usually present as the mineral calcite, magnesium carbonate as dolomite (CaCO₂, MgCO₂), silica (SiO₂) as sand, chert, quartz, or in combination with clay, ferrous carbonate (FeCO₂) as siderite, iron oxides (Fe₂O₂, (Fe₂O₃, 2H₂O) as hematite and limonite, iron sulphides (FeS₂, FeS) as pyrite or marcasite, alumina (Al₂O₃) as clay or shale. The impurities vary from a mere trace to more than half, when the rock properly is no longer limestone. color of limestone is largely governed by the impurities. blue, buff, yellow, pink, red, and brown tones are due largely to iron oxides and the gray and black to carbonaceous material. Manganese carbonate generally gives a pink or red tinge to limestone.

^{*}According to definition of the National Lime Manufacturers Association. W. E. Emley, Manufacture of Lime, Technologic Papers, U. S. Bur. of Stand., No. 16, 1913, p. 7. †F. W. Clark, Data of Geochemistry, Bull. 616, U. S. G. S., 1914, p. 548. †W. G. Miller, Limestones of Ontario, Bur. Mines, 1903, pt. 2, p. 19. H. A. Buehler, Lime and Cement Resources of Missouri, Vol. VI, 2nd ser., Mo. Geol. Surv.

ORIGINAL SOURCES.

The original source* of limestone is the igneous rocks. Carbon dioxide (CO₂) which is constantly being given off by decaying vegetable and animal matter is readily absorbed by percolating waters and forms a solution of carbonic acid which accelerates the decomposition of the rocks. The carbon dioxide unites with the calcium of the minerals, particularly the lime feldspars and calcium carbonate (CaCO₂), the chief constituent of limestone, is formed. Calcium carbonate is slightly soluble in pure water but is much more so in water charged with carbon dioxide. It combines with water forming calcium bi-carbonate (CaH₂ (CO₂)) which is much more soluble than the normal carbonate.

Upon exposure to the air some of the excess carbon dioxide in the ground water escapes or is removed by various agencies and part of the calcium carbonate is deposited in springs and lakes as travertine, calcareous sinter, marl, tufa, and öolite. All streams, however, carry in solution more or less calcium carbonate and other mineral substances to the sea. Evaporation through the geological ages has tended to concentrate these substances in sea water and owing to the relative insolubility of calcium carbonate, the sea water long ago would have become overcharged with this salt were it not for the fact that various agencies of deposition, chiefly organic, are constantly removing large quantities.

ORGANIC AND INORGANIC DEPOSITS.

Deposits of limestone may be formed through the agency of organisms or directly by precipitation from solutions. The former are termed organic, the latter, chemical deposits. Many of the Michigan limestones are composed of the calcareous remains of animals but others show little or no trace of organic remains. No sharp distinction, however, can be made between limestones of organic and those of purely chemical origin. In the broadest sense all limestones are of chemical origin because the extraction of lime from sea water by living organisms is an organo-chemical process.

Most limestones are formed by accumulation on the sea bottom of the calcareous shells or hard parts of corals, stromatopora, bryozoa, crinoids, and molluscs, which abound in the shallow places of the ocean.

Small or microscopic organisms, chiefly foraminifera, and many other animals and certain plants have also played a smaller though important part in building up calcareous accumulations. Some strata are composed almost wholly of coral, shells, tests of foraminifera, of the hard parts of crinoids or bryozoa, or a mixture of these. The ab-

^{*}F. W. Clarke, Data of Geochemistry, Bull. 616, U. S. G. S., 1916, p. 548.

sence of fossils of lime secreting forms in some limestones is not a proof of inorganic origin. Deformation and thorough recrystallization have obliterated all traces of fossils in most of the pre-Cambrian limestones and in some of later age in areas of extreme metamorphism. absence of fossils in many limestones is due to the breaking up by the waves, particularly in time of storm, of coral reefs. The detached fragments of the reefs as well as rocks and pebbles on shores, dashed about by the waves, become millstones in grinding up the coral rock, shells, crinoids, etc., into sand and powder or rock flour. The resulting lime-sand and lime-mud are washed and sorted by the waves. coarser particles are deposited on the slopes of the coral reefs or shores but the finer material may be carried in suspension for long distances before it sinks to the bottom of the ocean as lime-mud. Around modern reefs the water for many miles is milky from this lime-flour, after severe storms. Deposits of lime-sand and lime-mud are now being formed over large areas of sea bottom, especially around coral reefs growing in the open sea. The same process may be observed along the lake shores of Michigan where limestone is exposed to the attacks of the waves. After severe storms the lake waters in the vicinity of Petoskey, Charlevoix, and also of Garden Peninsula are milky white for miles from the rock flour produced through the grinding by boulders and beach shingle along the shore.

Coral reefs with the flanking strata of lime-sand and lime-mud, now compacted and crystallized into hard limestone, are characteristic of several of the limestone formations of Michigan and adjacent states, particularly of the Niagara and the Traverse formations. In the vicinity of Alpena and Petoskey the reefs generally form isolated mounds and more or less continuous and connecting ridges of corals which in places form very complex systems. These coral reefs are more resistant to erosion than associated strata, which explains their elevation above the general level of the rock surface. In some localities they can be traced for considerable distances. Some of them are 100 feet or more wide and 50 to 80 feet high. The lime-sand strata slope away from the reefs at rather steep angles but at relatively short distances the beds become nearly horizontal, and at greater distances gradually give place to the horizontal beds of lime mud.

On the Paleozoic* reefs the grinding tools were largely the colonies of certain corals and stromatopora which were weakly attached and therefore readily broken loose by the waves. In storms these colonies, some of them two or three feet or more in diameter, were rolled about by the waves, grinding the other corals and especially the shells and

^{*}A. W. Grabau. The Devonic Formations of Michigan, unpublished Mss.

crinoids to powder. The frequent occurrence of overturned masses of coral and stromatopora in these reefs and the worn and broken character of all of these fragments near the margins of the reefs testify to the nature of the grinding tools and their work.

Small pelagic organisms, largely foraminifera, flourish on the surface of the ocean, and their tests, sinking to the bottom are forming in clear water seas, deposits of calcareous ooze. Many of the chalk deposits are composed largely of the small or microscopic tests of foraminiferal organisms, similar to those in modern oozes. Various acquatic plants* are locally important in building up deposits of calcium carbonate. The formation of marl is largely due to various species of *Chara*, mosses and algae. These plants extract carbon dioxide from water, and the soluble calcium bicarbonate, being thus robbed of its extra molecule of carbon dioxide becomes the insoluble normal carbonate and is thrown down. The plants growing on marl beds are generally white from the precipitated calcium carbonate. Shelled animals flourish in such waters and their shells locally form a considerable percentage of the marl deposit.

Deposits of travertine are formed in a similar manner around springs by algae and other water loving plants. Some marine limestones may have been formed by plant agencies but definite proof is lacking. When carbonated water enters the sea, calcium carbonate may be precipitated directly. This requires exceptional conditions of temperature and evaporation and the deposition of calcium carbonate in this way is unusual. At present calcareous deposits are being formed in this manner in the everglades of Florida. According to G. H. Drewt bacteria are responsible for much of the marine precipitation of calcium carbonate.

Great masses of tufa are formed in some of the shallow lakes of semiarid regions where evaporation is rapid and the water is agitated by the winds. Under such conditions the excess carbon dioxide in the water is readily driven off and calcium carbonate is precipitated. The deposition may take place around grains of sand on the lake shores and deposits of öolite sand are thus formed. Evaporation, agitation of the water, and loss of pressure which aid in the escape of carbon dioxide from spring waters are effective agencies in the formation of travertine and sinter around springs, though plants usually play a more or less important role in the process.

^{*}F. W. Clarke, Data of Geochemistry, Bull. 616, U. S. G. S., 1916, p. 550, †Carnegie Institute, Washington, Pub. 182, 1914.

CHAPTER II.

CLASSIFICATION AND VARIETIES OF LIMESTONES.

As noted on a previous page, on the basis of origin, limestones are classed as organic and inorganic. They may also be divided into two general classes on the bases of (1) texture and (2) composition.* The chief varieties of each class according to texture and composition are given below. Many limestones are mixtures of some of these several varieties.

Varieties based upon Texture.

- 1. Compact, dense, fine grained, or lithographic limestone.
- 2. Crystalline limestone (non-metamorphosed).
- 3. Crystalline limestone or marble (metamorphosed).
- 4. Oolite and pisolitic limestone.
- 5. Fossiliferous limestone.
- 6. Shell limestone (fragmental).
- 7. Chalky limestone.
- 8. Conglomeratic limestone (including limestone breccia).
- 9. Cherty limestone.
- 10. Fresh water marl.
- 11. Travertine or calc sinter.
- 12. Stalactitic and stalagmitic limestone and onyx marble.

Since limestones vary in chemical composition from nearly pure calcium carbonate to a mixture or compound containing theoretically 54.35 calcium carbonate and 45.65 per cent of magnesium carbonate, any classification based strictly upon chemical composition must be largely arbitrary. The combined chemical and physical qualities of limes made from different kinds of stone, however, furnish a good basis for classification. The following are important varieties based upon chemical composition. Other varieties based upon conspicuous impurities such as iron oxides and sulphides, bitumen, and carbonaceous matter may be distinguished but these are of minor importance:

^{*}E. F. Burchard and W. E. Emley, Min. Res. U. S. for 1913, pt. 2, pp. 1515-1520.

Varieties based upon composition.

- 1. High calcium limestone.
- 2. Magnesian limestone.
 - (a) Low magnesian.
 - (b) High magnesian.
- 3. Dolomite.
- 4. Argillaceous limestone.
- 5. Arenaceous and siliceous limestone.

Most of these varieties grade into each other or may show characteristics belonging to two or more varieties.

VARIETIES BASED ON TEXTURE.

Dense fine grained limestone. Many of the limestone strata in Michigan are of very fine grain or of lithographic texture, and apparently represent the lime-mud or rock-flour produced on limestone shores or reefs by the waves. Currents carried the mud in suspension into quiet water where it was slowly deposited. Such limestones, however, may have been the result of direct chemical precipitation in shallow water. The Fiborn limestone is a conspicuous example of the fine grained variety. It has a fine lithographic texture but unfortunately it is very brittle and generally contains numerous small disseminated crystals of calcite rendering it unsuitable for lithographic purposes.

Crystalline limestone (non-metamorphosed). Simple crystallization may in many places more or less obliterate all traces of fossils. Crystallization is brought about through the agencies of pressure, heat, and water. However, some very crystalline limestones, are exceptionally fossiliferous. A very coarsely crystalline but extremely fossiliferous limestone occurs near Bolton, Alpena County, in the Traverse formation. Many of the strata in the "Niagara" formation in Michigan are highly crystalline. The other limestone formations also contain thoroughly crystalline beds.

Metamorphosed crystalline limestone (marble). Commercially the term marble is applied rather loosely to almost any granular crystalline limestone or dolomite, or other rocks susceptible of taking a high polish. Technically, marble is a rock which consists mainly of completely crystalline particles of calcite or dolomite, or of both. Recrystallization results from the metamorphic action of pressure, heat, and liquid and gaseous solutions. Though pressure or heat alone is

sufficient to bring about the complete recrystallization of limestone, generally two or all three agencies appear to have played an important role in the transformation.

Marbles are found in regions which have been subjected to mountain making forces, or igneous intrusions.

Metamorphism usually results in the destruction of fossils, bedding planes, fractures, and other secondary characters of the limestone, and in formation of new minerals from the impurities. Microscopically, marble is composed of crystalline plates of calcite or dolomite, many of which show numerous twinning planes. Granular limestone, so-called marble, on the contrary, usually consists of an aggregation of irregular crystalline plates of calcite in which twinning is absent. This is a marked difference* between marble and crystalline limestone.

Deposits of marble generally occur in lenticular masses interbedded with other metamorphosed rocks, and also as metamorphosed zones along the contact of a limestone with an igneous rock. The Paleozoic strata in Michigan are undisturbed, and contain no marble.

The original limestone beds of the pre-Cambrian rocks of Michigan have been greatly metamorphosed and are now largely marble.

Oolitic limestone. Oolitic limestone is composed wholly or partially of small rounded concretionary grains, resembling fish eggs. Oolites are formed by the deposition of successive concentric coats of calcium carbonate about nuclei, such as grains of sand, in shallow water near shore. Large concretionary grains are called pisolites. The well known Bedford limestone of Indiana is a typical öolitic limestone.

Fossiliferous limestone. Fossiliferous limestone contains noticeable quantities of shells and hard parts of organisms. In some strata certain fossils are present almost to the complete exclusion of others, hence the terms "crinoidal," "coralline," etc.

Shell limestone. Shell limestone is a variety of fossiliferous limestone in which shells, shell fragments, and shell sand form an important part of the rock.

Chalky limestone or chalk. Chalky limestone or chalk is a soft fine grained light colored or white limestone composed chiefly of minute shells of foraminifera. No chalk beds occur in Michigan.

Conglomeratic limestone and limestone breccia. Conglomeratic limestone consists of fragments rounded by wave action held together by

^{*}T. Nelson Dale. The Commercial Marbles of Western Vermont, Buil. 521, U. S. G. S., 1912, p 11.

calcium carbonate cement. Limestone breccia consists of angular fragments similarly cemented. Conglomeratic limestone is comparatively rare but, in Michigan, limestone breccias are characteristic of the Monroe formation.

Cherty limestone. Cherty limestone contains nodules and bands of chert or flint. Chert is a general term applied to impure flint, or jasper. It is composed chiefly of silica (SiO₂). From the fact that chert nodules frequently show the presence of organic remains such as radiolarian tests and sponge spicules it is probable that these in many cases were the nuclei around which precipitation of silica took place.

Marl. Fresh water marl or bog lime is a loose earthy material largely composed of amorphous calcium carbonate. Marl, in a loose sense, also includes deposits of mixed amorphous calcium carbonate, clay, and sand. The term has also been applied to the "green" or glauconitic sands of New Jersey which contain no carbonate. In some fresh water lakes marl is precipitated from the lake waters by plants, mosses and algae. In some deposits shells form a considerable portion of the marl. Many of the lake beds in Michigan contain marl and in some of them marl is being formed at the present time. In the Southern Peninsula alone the total area of known marl beds having an average thickness of ten feet or over, is over 26,000 acres.

Travertine and onyx marble. Travertine or calc sinter, often called calcareous tufa, is a massive porous to compact limestone deposited by water around springs or along streams. It occurs on the faces of limestone bluffs and also in crevices in limestone. Travertine deposited in water much agitated is generally porous and spongy and is called tufa. This form usually contains traces of leaves, twigs, and other organic material upon which it was deposited. Though usually white, the color is often some shade of brown, yellow, green, or red due to various impurities such as iron oxide, manganese, mud, etc. In onyx marble, a more compact variety of travertine, the coloring matters have been deposited in alternating bands producing a beautiful effect. Onyx marble is considered to have been formed generally by precipitation from hot spring waters from deep seated sources. Travertine deposits are generally of small extent and importance.

Stalactitic and stalagmitic limestone. Stalactites are icicle-like forms of calcium carbonate suspended from the roofs of caves. They are deposited from dripping water. Stalagmites are the more or less conical masses of calcium carbonate on the floors of caves. Each

stalagmite has a corresponding stalactite above it, and are similarly formed.

Waters, especially those containing much carbon dioxide in percolating down through fractures or joints in limestone strata, take lime carbonate into solution and in this way tend to widen the openings and form cavities. When lime bearings waters enter such cavities the pressure on the water becomes less and carbon dioxide escapes. More or less evaporation takes place and the operation of both of these factors causes the precipitation of calcium carbonate. Part of it is deposited on the roof of the cavern, forming stalactites. The drip from each stalactite carries some of the precipitated calcium carbonate to the floor and this builds up the stalagmite beneath. The splashing of the drops of water probably drives off more of the carbon dioxide and further precipitation of calcium carbonate takes place on the surface of the stalagmite.

Travertine, stalactitic and stalagmitic limestone are closely related deposits since their formation depends upon the same principles.

VARIETIES BASED ON COMPOSITION.

High calcium limestone. High calcium limestone is distinguished by a low content of magnesium carbonate and relative freedom from other impurities such as silica, alumina, and oxides and sulphides of iron. According to Burchard and Emley* high calcium limestone contains from 93 to more than 99 per cent of calcium carbonate. From the viewpoint of the lime manufacturer Peppel† classes limestones containing as low as 85 per cent of calcium carbonate as high calcium. Buehler‡ places the minimum content of calcium carbonate at 90 per cent, which is more nearly in harmony with the general usage and the specifications demanded in Michigan.

Magnesian limestone. From the standpoint of the lime burner, Peppel & classes all limestone containing from 10 to 30 per cent of magnesium carbonate as magnesian limestone, and limestone containing more than 30 per cent as dolomitic limestone. According to Burchard and Emley § § limestones carrying magnesian carbonate in any quantity up to 45.65 per cent are classed as magnesian limestones, thus including normal dolomite.

Dolomite. Dolomite is a mineral or rock composed of the double carbonate of calcium and magnesium, Ca Mg (CO₃)₂. When pure it

^{*}E. F. Burchard and W. E. Emley, Min. Res. U. S. for 1913, Pt. II, p. 1518.
†S. V. Peppel, Technology of the Lime Industry, Bull. 4, Ohio Geol. Surv. 1906, pp. 252-253, †H. A. Buehler, Lime and Cement Resources of Missouri, Vol. VI, 2nd Ser., 1907, p. 17.
†Cit. loc. p. 253.
†Loc. cit. p. 1519.

contains 54.35 per cent of calcium carbonate and 45.65 per cent of magnesium carbonate. The term "dolomite" is sometimes loosely used by geologists to include limestones containing considerable amounts of magnesium carbonate. In common practice limestones carrying 20 per cent or more of magnesium carbonate are called dolomites. Magnesian limestones are generally mixtures of calcite (CaCO₂) and dolomite (CaMg (CO₁)₂) with more or less impurities and the term dolomite should be restricted to the double carbonate which occurs both as a well crystallized mineral and as a massive rock. Owing to impurities it does not generally contain over 44 per cent, and usually somewhat less of magnesium carbonate. In this report limestones containing 40 per cent or over of magnesium carbonate are called dolomites.

The dolomitization of limestones has long been a subject of inquiry and many elaborate experiments have been carried out in order to discover the principles and conditions which might give a plausible explanation of the widespread occurrence of magnesian limestones.

Experimentally dolomite has been formed in a variety of ways but since the conditions under which most of the experiments were conducted cannot reasonably be assumed to have had widespread occurrence in nature, many of the artificial methods of formation are not to be seriously considered in seeking the true explanation. various experiments and from geological evidence it appears that the formation of dolomite from limestone has been largely through the replacement of calcium carbonate by magnesian carbonate. T. Sterry Hunt* held that dolomite is generally a chemical precipitate. This view is not widely held today. His experiments, however, those of F. Hoppe-Seylert and others, and the deposition of natural magnesian travertine around warm or hot springs indicate that temperature! is an important factor in the formation of dolomite. In general, mixtures of the various chemical substances used in the experiments yielded no dolomite at ordinary temperature but when moderate temperature was employed dolomite was formed.

The character of the original substance^{‡‡} is apparently another important factor. Aragonite is the less stable form of calcium carbonate and is abundant in coral reefs. Concentrated magnesium sulphate alone or with other solutions even at ordinary temperatures produces mixtures of magnesium and calcium carbonates but not dolomite. If such mixed products are formed in nature the double salt in time would probably be formed through recrystallization.

^{*}Am. Jour. of Sci., 2nd Se., Vol. 28, 1859, pp. 170, 365; Vol. 42, 1866, p. 49. †Zeitschr. Deutsch. geol. Gesell., Vol. 27, 1875, p. 509. †F. W. Clarke, Data of Geochemistry, Bull. 616, U. S. G. S., 1916, p. 561. †‡F. W. Clarke, loc. cit., p. 562. C. Klement, Bull. Soc. Belge. geol., Vol. 9, Mln. 3, 1895. Min. pet. Mitt. Vol. 14, 1894, p. 526.

The products of organic decomposition—carbon dioxide, ammonium carbonate, and ammonium and hydrogen sulphides, probably play a more or less important part in the process of dolomitization, as shown by Pfaff.* It must be remembered, however, that the tests, shells, and hard partst of marine organisms contain small, though in some cases relatively large quantities of magnesium carbonates. Forchhammer, Gümbel, A. G. Högbom !!!, H. W. Nichols, !!!! and F. W. Clarke and W. C. Wheeler in investigating the composition of recent shells, corals, and algae found that the content of magnesium carbonate in recent coral, shells, crinoids and the hard parts of sea urchins, starfish, and cuttle stars, ranges from a fraction of one per cent to over 13 per cent. Cold water crinoids, sea urchins, and cuttle stars uniformly contain only small quantities of magnesium carbonate. but in the tropical forms the content is high. Högbom found no such temperature relations in the calcareous algae analyzed by him.

The foregoing data shows that the original sediments must contain very considerable quantities of magnesium carbonate. As a general rule the calcareous deposits as we now find them contain proportionately more of it than the original organic remains. As might be expected the fossil forms show no regularity in composition as do living forms. Leaching \(\) and the deposition of foreign substances by infiltrating waters have altered the original ratio of lime to magnesia in the organic forms and have brought about a general relative enrichment of the rock in magnesia. Leaching alone either by sea water or surface water is sufficient to bring about the complete dolomitization of a calcareous deposit through the removal of more soluble calcium carbonate, particularly when in the form of aragonite, which is abundant in coral.

Undoubtedly some dolomites have been formed chiefly through leaching but experimental and geologic evidence indicates that replacement of the calcium carbonate by magnesium carbonate is a much more general process than leaching. Geologic evidence in favor of the replacement process is so strong that it has been commonly accepted as the dominant process in dolomitization. A deep boring in the coral deposits of the island of Funafuti indicates dolomitization near the surface, probably through enrichment by leaching, and shows strikingly gradual dolomitization downward from a depth of about 700 feet. The process was nearly complete at 1114 feet. Judd § § doubtfully ascribes the surface dolomitization to the leaching out of

^{*}F. W. Pfaff, Neus. Yahrb. Beil. Band 9, 1894, p. 485; also Vol. 23, 1907, p. 529. †F. W. Clarke, Data of Geochemistry, Bull. 616, U. S. G. S., 1916, p. 565. †Neus. Yahrb. 1852, p. 854. ††Abhandl. K. Akad. Wiss. Munchen, Vol. II, 1871, p. 26. ††Theus. Yahrb. 1894, Band 1, p. 262. †††Theus. Yahrb. 1894, Band 1, p. 262. †††Theus. Yahrb. 1894, Band 1, p. 262. †††Theus. Yahrb. 1894, Data of Geochemistry, Bull. 616, U. S. G. S., 1916, pp. 566-569. §§The atoll of Funafuti, published by the Royal Soc., London, 1904. For Judd's report on the chemical examination see pp. 362-389.

the calcium carbonate. In a deep boring at Key West, Florida, there is a gradual enrichment down to about 775 feet but the dolomitization is slight as compared with that at Funafuti. Below this depth, however, the rock is only slightly and irregularly dolomitized. Dolomitization can be accomplished by replacement of calcium by magnesium in spring waters, but this process is unimportant as compared with the action of sea water on coral reefs.

Argillaceous limestone. Limestone containing a considerable amount of clay is termed argillaceous limestone. Clay is chiefly the silicate of alumina. If present in the proper proportions it forms hydraulic limestone. Mortar produced by burning hydraulic limestone will set under water. "Natural cements" are made from such limestone, hence the term "cement rock."

Arenaceous and siliceous limestone. Arenaceous limestone contains a noticeable amount of sand, usually silica sand of fine grain. Some limestones contain silica in the form of quartz, deposited by infiltrating water in cavities and seams such as geodes, vugs, and veins. The silica may also be deposited as a cement but more often it is concentrated in fossils. In general, arenaceous and siliceous limestones containing 4 per cent or more of silica are of little commercial importance, though sandy limestone of good texture, makes a satisfactory building stone, or if sufficiently hard it may be crushed for road material and concrete.

GRADATIONS* IN LIMESTONES.

From the foregoing descriptions of classes, varieties, and origin of limestone it is obvious that the criteria for distinguishing different varieties are definite, although there are physical and chemical gradations between them. In any formation, uniformity of composition and texture is not generally to be expected.

From these facts the development of a limestone quarry should not be undertaken until the character of the beds have been carefully ascertained both vertically and horizontally. Generally this can be done best by the core drill.

^{*}E. F. Burchard and W. E. Emley. Min. Res. U. S. 1913, Pt. II, p. 1520.

CHAPTER III.

USES OF LIMESTONE.

A generation ago the uses of limestone were few and simple. The chief uses were for lime, flux, building stone, and road making. The progress of industrial chemistry in the last thirty years has developed a large number of new uses. The more important uses* of limestone in its raw and burned condition are as follows:

Acetate of lime.

Acetic acid.

Agricultural limestone.

Ammonia.

Ammonium sulphote

Morton

Ammonium sulphate. Mortar.

Basic steel. Oil, fat, glycerine and soap manu-

Blast furnace flux. facture.

Bleaching powder. Paints and varnishes.

Bone ash. Paper making. Building stone. Portland cement.

Calcium carbide, calcium cyan- Potassium and sodium dichromates.

imide and calcium nitrate. Pottery glazes.

Carbon dioxide. Refractory bricks.

Chloride of lime. Road material and railway ballast.

Concrete aggregates. Sand-lime brick.

Disinfectant and deodorizer. Soda-ash products, soda, potash and

Dyeing. ammonia.

Fertilizers. Sugar manufacture.

Finishing lime. Tanning.

Gas manufacture. Wood distillation—wood alcohol,

Glass making. acetate of lime.

Water softening and purifying.

BUILDING STONE.

Stone satisfactory for building purposes must be homogeneous in texture, relatively hard, free from parting planes, of pleasing color and texture, and resistant to weathering.

^{*}E. F. Burchard and W. E. Emley. Min. Res. U. S. 1913, U. S. G. S., Pt. II, pp. 1592-1593.

ROAD MATERIAL, CONCRETE, AND RAILROAD BALLAST.

Limestone is widely used in the crushed state for road making, for railroad ballast, and as the aggregate material in concrete mixtures. Limestone for such purposes should be hard and resistant to weathering. A high cementing power is desirable in limestone for road material.

LIME.

No other substance can take the place of lime in the building and chemical industries. It is the cheapest and most easily obtainable of the strongly basic oxides, therefore it is the most widely used in manufacturing chemistry.

Definition of Lime.

In a strict chemical sense lime* is the oxide of calcium. It is made by heating limestone (CaCO₂) to a temperature sufficient to drive off the carbon dioxide (CO₂). Inasmuch as limestones are composed of varying proportions of calcium and magnesium carbonates with minor amounts of impurities, commercial lime is a mixture of calcium and magnesium oxides.

For practical purposes lime may be defined as the material obtained from the calcination of a stone in which calcium carbonate is the chief constituent.

Classification of Limes.

Limestone burns to approximately 44 per cent of its original weight, but the impurities, such as sand, clay, and iron lose very little weight in burning, therefore the percentage of these impurities in the lime is nearly double that in the original limestone.

The chemical and physical qualities of limes vary with the amount of magnesia and impurities. Calcium oxide combines energetically with water to form calcium hydroxide or slaked lime. Magnesium oxide in lime burned at the temperatures usually employed in kilns combines very slowly with water. Magnesium oxide burned at temperatures; below 1100°C, lower than usually employed in ordinary kilns, combines with water more rapidly than it does when burned at temperatures above 1100°C. In general the higher the content of magnesia in limes, the slower and cooler is the slaking process. The high calcium limes are known to the trade as "hot," "quick," "fat"

^{*}W. E. Emley. Technologic Paper No. 16, Manufacture of Lime, U. S. Bur. Stand., 1913, p. 14; also Min. Res. U. S. 1913, Pt. II, p. 1556.
†S. V. Peppel. Technology of the Lime Industry. Ohio Geol. Surv., Bulls. 4 and 5, 4th Ser., 1906, p. 249.
†W. E. Emley. Technologic Paper No. 16, U. S. Bur. Stand., 1913, p. 15.

or "rich" limes and the magnesian as "cool," "mild," or "slow" limes.

If the impurities,—clay, sand, and iron exceed about 5 per cent, they interfere with slaking and generally give a gray or yellow color to the lime.

Many widely different classifications of limes have been made on the basis of differences in composition and in the chemical and physical properties. Some are very simple, others very elaborate. Most of them do not meet the requirements of the trade and only two or three are used in specifications or in technical works. To meet the needs of lime manufacturers, the National Lime Manufacturers' Association adopted the following classification based upon composition:

- 1. High-calcium lime, 0 to 5 per cent magnesia:
- 2. Magnesian lime, 5 to 25 per cent magnesia.
- 3. Dolomitic lime, 25 to 45 per cent magnesia.
- 4. Super-dolomitic lime, over 45 per cent magnesia.

This classification does not harmonize well with the classification given by Burchard* which conforms closely to the more generally accepted uses of the terms,† viz., high calcium lime, made from limestone containing 93 per cent or more of calcium carbonate; magnesium lime from limestone containing 7 per cent or more of magnesium carbonate; and dolomitic lime, a special grade of magnesian lime, in which the ratio of calcium oxide to magnesium oxide is very nearly 8 to 5. If magnesian limestones are distinguished as "low" and "high" magnesian and the term dolomite is reserved for limestone containing calcium and magnesium carbonates nearly in the ratio of 1 to 1, the limes and the limestones approximately corresponding are as follows:

High calcium lime (0 to 5% MgO) = High calcium limestone (93% or over of CaCO₃).

Low magnesian lime (5 to 30% MgO) = Low magnesian limestone (7 to 30% MgCO₃).

High magnesian or dolomitic lime (30% or over MgO) = High magnesian limestone (30 to $40\% \text{ MgCO}_2$) and dolomite (over $40\% \text{ MgCO}_2$).

Since all classifications are based upon more or less arbitrary distinctions, uniformity of opinion or practice is not to be expected.

Hydraulic limes. The above classifications do not take into account limes containing relatively large amounts of impurities. Limes burned

^{*}E. F. Burchard. Min. Res. U. S. 1913, U. S. G. S., Pt. II, p. 1519. †W. E. Emley. Min. Res. U. S. 1913, U. S. G. S., Pt. II, p. 1556.

from limestone containing 5 to 10 per cent of sandy and clayey matter,* slake readily without further treatment and harden under water. Limes containing under about 5\% of impurities are generally white, but those containing more than about 5 per cent of impurities are usually gray. On the basis of this physical difference Peppel classifies limes as "white" and "gray." This is not a satisfactory classification because any limestone with 3 to 5 per cent of iron will produce a gray or yellow lime. † Limes made from limestone containing from 10 to 30 per cent of sandy and clayey matter and which will not slack until finely ground are called natural or Roman cements. Such limes solidify under water much more quickly than hydraulic limes and are much harder.

USES OF LIME. I

The main uses of lime are classified as follows:

- Building lime, for use in plastering and stone work.
- Finishing lime, for the white coat of plaster. 2.
- Agricultural lime, for use as a soil amendment or rectifier.
- Chemical lime, used in various chemical industries.

Building Lime.

Mortar. Lime mortar is composed of mixtures of sand and lime varying usually from three to one, to five to one. Pure lime mortar will not harden under water and should be used only where exposed to the air. Used alone, slaked lime shrinks and cracks on drying, but when mixed with a large volume of sand to form mortar it will not crack and is the most valuable material for wall plaster and brick work. Cement mortars are much stronger than lime mortars but they are rather unsatisfactory substitutes for lime mortar, because they lack plasticity and do not work easily.

The kind of lime best suited for making mortar depends upon the cost of labor, the experience of the workmen available, the volume of mortar which a given lime produces, the ease with which the mortar can be worked, and the strength of the mortar when set. High calcium or "hot" lime sets quickly, magnesian or "cool" lime slowly. first is unsuitable where much time is required for finishing and the latter in cases where the longer time of setting interferes with building operations. In general high calcium lime is preferred for all rough or

^{*}S. V. Peppel. Technology of the Lime Industry, Bulls. 4 and 5, Ohio Geol. Surv. 1906,

p. 253.
†H. A. Buehler. Lime and Cement Resources of Missouri, Vol. VI, 2nd ser., Mo. Bur.
†W. E. Emley. Min. Res. U. S. 1913, U. S. G. S., Pt. II, p. 1581.
S. V. Peppel. Limestones and Lime Industry of Ohio, Bulls. 4 and 5, Ohio Geol. Surv.,
pp. 254-260.
H. A. Buehler. Lime and Cement Resources of Missouri, Mo. Bur. Geol. and Mines, Vol.
VI, 2nd ser., p. 20.

heavy work and high magnesian lime for finishing, though many contractors prefer magnesian lime for the first coat in plastering, because it sets slowly and permits the covering and finishing of large surfaces in one operation. Magnesian lime is generally whiter than high calcium lime, a reason for its preference for final as well as rough coats. Dry hydrate of magnesian lime is much used by the manufacturers of hard wall plasters. Mortar made from hot lime is at first more plastic and easier to work than that from magnesian lime, and is usually preferred for stone and rough brick work. In laying front brick, where much care must be exercised, magnesian lime is generally preferred.

High calcium lime when properly slaked yields a greater amount of putty or paste than magnesian lime, and the paste will carry a greater amount or "load" of sand, therefore the yield of mortar from hot lime is materially greater than from cool lime. The proper slaking of hot limes, however, requires more care and intelligence, and results are often unsatisfactory. The higher the percentage of calcium oxide, the hotter the lime and the greater is the danger of burning in slaking, especially with unskilled labor. Burning decreases the yield of paste, makes it lumpy and decreases its sand holding capacity. Correspondingly the yield of mortar is less and of poorer quality. These two factors are important cost items and form two reasons why hydrated lime is rapidly coming into general use.

It has been found that addition of hot lime to magnesian lime improves the working qualities of the latter and the addition of magnesian lime to hot lime gives a mortar much slower in setting. From this it follows that mixtures of magnesian and high calcium limes would be the most satisfactory for general purposes. For small amounts of mortar this is not practicable but it is commonly done with large amounts of mortar, particularly when mixing machines are used. In such cases the mixtures can be easily varied to produce a mortar suited to the purpose for which it is to be used.

Finishing Lime.

The putty produced when lime is slaked is used directly as a finishing coat on plaster. The putty must work easily under the trowel, must not pop or pit in the wall, and must be nearly white. According to Emley* putty from magnesian limes works better under the trowel and most of them are whiter than high calcium limes. The magnesian limes, therefore, are to be preferred to the high calcium even though the latter give a greater amount of putty. When hot lime is "burned" through

^{*}W. E. Emley. Tests of Commercial Limes, Nat. Lime Mnf. Assoc. Trans., 1913.

improper slaking the lumps contain fine particles of unslaked lime. If used in a finishing coat these particles slowly take up water, expand and fall out, leaving pin holes in the wall. This is called popping* or pitting. On account of the lack of skilled labor for slaking lime it is safer to use commercially prepared hydrated lime.

Agricultural Lime.

Liming of soils. The application of calcium in the form of calcium carbonate, calcium oxide, or calcium hydroxide to soils is termed 'liming.'

Apparently the Romans two thousand years ago practiced liming of soils. Long before the value of lime in agriculture was generally known in America the liming of soils was practiced in European countries. Marl has been and still is extensively used in certain parts of Germany in maintaining the productivity of soils. Schultz of Lupitz demonstrated the value of marl as a fertilizer of the sand soils of northern Germany. Ruffin as early as 1818 called attention to the use of lime as a fertilizer and in 1832 published his well known work on "Calcareous manures."

The subject has been and still is being widely investigated by the U. S. Department of Agriculture, the various agricultural colleges and experiment stations. The experimental work has included all forms of lime and almost every variety of soil, soil conditions, and plants. The investigations show that the productivity of most soils is increased by the judicious use of some form of lime. Large areas of lean soils can be made productive with proper application of lime and other fertilizers.

CHEMICAL USES OF LIMESTONE AND LIME.

Soda Ash and Caustic Soda.

Limestone is used for the production of calcium oxide and carbon dioxide in the manufacture of soda ash and related products. The process may be described as follows: Brine is first saturated with ammonia and then carbon dioxide is passed into the resulting solution. Two substances are formed: sodium hydrogen carbonate (NaHCO₃) or bicarbonate of soda, and ammonium chloride (NH₄Cl). The bicarbonate of soda is but sparingly soluble and is thrown down. This is common baking soda. When heated in a retort this compound breaks up into sodium carbonate or sal soda, carbon dioxide, and water. Sal soda is used extensively for softening water and in the manufacture

^{*}S. E. Young. On the popping of lime. Amer. Ceramic Soc. Trans., 1913. †H. J. Wheeler. The Liming of Soils. Farmers' Bull. No. 77, U. S. Dept. Agriculture, 1915.

of glass, and many chemicals. Since ammonia is expensive the mother liquor containing ammonium chloride is treated with lime which replaces ammonia in its compounds and sets free the gas. The ammonia is then distilled off and recovered for further use. Calcium chloride is the end product. When heated under certain temperature conditions it becomes a valuable drying agent because of its great attraction for water.

Magnesium oxide apparently should be as effective in breaking up the compounds of ammonia as calcium oxide but according to Lunge,* magnesian limestone is not suitable for use in soda ash manufacture.

When sodium carbonate is dissolved in water and treated with calcium hydrate, sodium hydroxide or caustic soda and calcium carbonate is formed. The latter being insoluble settles, leaving a clear solution of caustic soda, which is largely used for the manufacture of soap. Magnesia takes no part in the reaction. The impurities form a gelatinous precipitate which does not settle clear, and are therefore undesirable. Quick lime is preferable to hydrated lime since the heat generated in slaking hastens the reaction.

Bleaching Powder.

When moist slaked lime is treated with chlorine, an oxychloride of lime, the bleaching powder of commerce is formed. The bleaching agent is chlorine and since magnesia and impurities in the powder lower the amount of chlorine per unit of weight they are objectionable. Magnesia is especially objectionable because it forms magnesium chloride which absorbs moisture from the air and makes the powder sticky and hard to handle. In this process hydrated lime is preferable to quick lime on account of its greater freedom from impurities and the ease of manipulation.

Soda ash, caustic soda, bleaching powder, and calcium chloride are produced on a large scale in the vicinity of Detroit. The value of these products is more than five-sixths of the total value of the chemical products of the state.

Calcium Carbide.

Calcium carbide (CaC₁), the source of acetylene, is made by fusing a finely ground mixture of lime and coke in an electric furnace. Calcium oxide is the only substance in lime used, therefore all other impurities are objectionable on account of the heat wasted in their fusion. Limestone or hydrated lime could be used but since these must be

^{*}Geo. Lunge, Manufacture of Sulphuric Acid and Alkali. 2nd ed., Vol. III, p. 37, 1891-1896.

reduced to the oxide before fusion and electric power is expensive, lime is preferable.

Calcium Cyanamide and Calcium Nitrate.

The discoveries of the commercial processes for the manufacture of calcium cyanamide and calcium nitrate were made only a few years ago. These substances owe their importance to the fact that they represent two methods of obtaining a commercial supply of nitrogen for plant food from the air. This is of the utmost importance in view of the facts that the commercial supply of combined nitrate will soon be exhausted and that the demand for nitrogen in farm practice and for explosives will then be greater than the means of supply, without resource to these or other new sources.

Calcium cyanamide was first prepared in Europe as a commercial fertilizer. One kind manufactured in Italy was called lime-nitrogen and another kind made in Saxony, Germany, was called nitrogen lime. Calcium cyanamide contains from about 15 to 23 per cent of nitrogen. It is made by heating finely powdered calcium carbide, or lime and coke in an electric furnace at a temperature of about 1100°C and treating the mixture in closed retorts with nitrogen. The product is calcium cyanamide and free carbon, the latter being disseminated throughout the cyanamide and giving it a black color. The nitrogen for the process may be obtained by passing air over heated copper or by the fractional distillation of liquid air.

As in the manufacture of calcium carbide only the calcium oxide is used, hence lime containing the highest percentage of calcium oxide is the most economical. The manufacture and reduction of limestone or hydrated lime to the oxide simply entail unnecessary expense.

Nitric oxide is made by passing air through an electric arc. The nitric oxide (NO) is passed through milk of lime to produce calcium nitrate. This substance, yellowish white in color, is easily soluble in water but deliquesces rapidly in air. This trouble can be avoided if an excess of lime is used in the manufacture or by melting the product, then grinding it fine and packing in sealed containers. The commercial product contains from about 9 to 13 per cent of nitrogen in form a available for plants.

The heat required varies between 2500° and 3000°C. This is much higher than that necessary for calcium cyanamide and the cost is governed directly by the cost of the electricity. With the great possibilities for the production of electricity in this country from water power the manufacture of calcium nitrate may become an industry of the greatest importance.

In this process the actions of the oxides of calcium and magnesium are similar, hence either high calcium or magnesian lime can be used, but, because the continued use of a fertilizer high in magnesia may result in an excess of magnesia in the soil, high calcium or low magnesian lime on the whole is preferable. The impurities are of little importance. Since milk of lime is required, quick lime or hydrated lime is the most economical form for use.

Sugar.

Sugar, like soda-ash products, requires in its manufacture, both calcium oxide and carbon dioxide.

The juice from sugar beets and sugar cane contains various impurities. Some of these discolor the sugar and some change it to glucose. When the juice is heated almost to the boiling point and treated* with an excess of milk of lime, the lime neutralizes the organic acids, breaks up organic compounds, and coagulates the albumen and mucus. In addition it forms an insoluble compound with the sugar, hence carbon dioxide is forced into the liquid to break up this combination. All of the lime is precipitated as calcium carbonate which settles, carrying with it all of the matter in suspension and leaving a clear solution of sugar.

Only calcium oxide is useful in sugar making and the impurities, especially magnesia, are liable to cause mechanical difficulties. Magnesium carbonate, being more soluble in sugar solutions than calcium carbonate, remains in the solution to be deposited later on the tubes in the evaporating pans. Silica forms a gelatinous precipitate which clogs the cloth in the filter presses. Sugar manufacturers usually specify that the content of magnesium carbonate in limestone shall not exceed 2 per cent and the silica 1 per cent.

Michigan is a large producer of beet sugar and demands considerable stone suitable for sugar manufacture. Some quarry companies find it worth while to produce sugar stone by sorting exceptionally high calcium rock from the quarry run. However, the purest calcium stone cannot be economically used for sugar manufacture if it has unsatisfactory burning qualities.

Distillation of Wood.

The primary products† produced from the destructive distillation

of wood are wood gas, pyroligneous acid, tars and oils, and charcoal, *Manufacture of sugar. Internat. Lib. of Technology, sec. 50, p. 36, Internat. Textbook Co., Scranton, Pa., 1902.
†J. R. Withrow. The Chemical Engineering of the Hardwood Distillation Industry. Chem. Engr., Jan. 1916.
S. F. Acru, Chem. Engr., Jan. 1916.
W. E. Emley, Manufacture and Use of Lime, Min. Res. U. S., 1913, Pt. II, p. 1590.

of which charcoal is of least commercial importance. Pyroligneous acid is of chief importance to the lime manufacturer because wood or methyl alcohol, acetic, acid and acetone are derived from it. The manufacture of these products requires the use of lime.

Paper.

Wood pulp used for the manufacture of paper is prepared by three different processes,—mechanical, soda, and sulphate. Lime or limestone is used only in the last two. In the soda process,* or alkali process, lime is used to causticise sodium carbonate, thus recovering the caustic soda used in cooking the wood. Calcium oxide is the only useful substance in lime in the soda pulp industry, hence the purest high calcium lime is most desirable. The magnesia and impurities are merely inert substances. Lump lime is preferred to hydrated lime on account of the heat generated in slacking which hastens the chemical reaction with the soda.

In the sulphite or acid process, "bisulphite liquor" is used for dissolving the cementing substances of wood. The liquor may be prepared by subjecting limestone to the solvent action of sulphur dioxide and water or milk of lime may be treated by sulphur dioxide. Since magnesium sulphite is much more soluble than calcium sulphite, a much stronger liquor, fundamental to the economic success of the process, can be prepared. In addition a high magnesian liquor gives a better color to the pulp, makes it softer, and this results in better felting qualities when it is made into paper. Impurities are not injurious.

Sand-Lime Brick.

Sand-lime brick are manufactured from a mixture of fine grained sand and hydrated high calcium lime. The brick are pressed into form and then subjected to high pressure steam. The lime combines with a part of the sand, forming a calcium silicate which acts as a cement to bind the sand grains together. Complete hydration of the lime is necessary or the subsequent hydration and expansion will cause the brick to swell or crack. For most purposes the complete hydration of lime is not necessary, hence most of the commercial hydrated lime contains small amounts of unslaked lime. For this reason sand-lime brick manufacturers buy quick-lime and do their own hydrating or have it hydrated according to certain specifications.

Magnesian lime is not well adapted for use in this industry because of the difficulty of completely hydrating† the magnesia and also be-

^{*}W. E. Emley, Min. Res. U. S., 1913, Pt. II, p. 1590. †S. V. Peppel, Sand-Lime Brick, Bull. 5, p. 38, Ohio Geol. Surv., 1906.

cause the magnesia reduces the strength of the resulting product. The impurities, especially silica or clay owing to their fluxing qualities, are beneficial if they are not present in excessive amounts.

Glass Making.

The essential raw materials* of the common varieties of glass are lime, sand (silica), soda ash (sodium carbonate), and salt cake (sodium sulphate). Red lead (lead oxide) may be used instead of lime and potassium carbonate may replace soda ash. Small amounts of other substances such as carbon, arsenic, etc., are also used to secure certain physical and optical properties. Sand composes from 52 to 65 per cent of the mixture of raw materials. In mixtures for plate glass, limestone equals by weight about one-fourth of the sand, for window glass about two-fifths, and for green bottle glass about one-third. Calcium oxidet is a necessary constituent of these varieties of glass and also of much of the pressed and blown glass. It acts as a flux. Magnesia, on the contrary, makes the mixture of raw materials more difficult to melt, thus more heat is consumed than would otherwise be necessary. It is used, however, when certain optical properties are desired.

For bottle and window glass ground limestone is used but for plate and flint glass ground lime is much more preferable. When ground limestone is used the bubbling or foaming of the viscous half fused mixture, due to the evolution of the carbon dioxide, necessitates the use of much larger glass pots, which are very expensive. The manufacturer of window and bottle glass uses large tank furnaces in which the evolution of gases gives rise to no physical difficulties.

For the manufacture of common bottle and window glass the impurities commonly present in limestone are of little importance, but for white glass the iron oxide in the stone should be less than 0.3 per cent. When present in amounts much above one-half per cent it detracts markedly from the brilliancy, clearness, and transparency of the finished product.

Water Softening.

In many parts of the state, particularly in limestone regions, well waters are very hard, being unfit for boiler or laundry purposes. In many cases most of the hardness is only "temporary." This "temporary hardness'' is due to calcium carbonate which, though only

^{*}E. B. Mathews and J. S. Grasty. The limestones of Maryland, p. 234, Md. Geol. Surv.,

^{1910.}W. G. Miller, The limestones of Ontario, XIIIth Rept. Bur. Mines, 1904, Pt. II, p. 5.
E. F. Burchard, The requirements of sand and limestone for glass making, Bull. 285n, p. 452,
U. S. G. S., 1906.
†W. E. Emley. Manufacture and use of lime. Min. Res. U. S., 1913, Pt. II, p. 1586, U. S.
G. S.
4S. V. Peppel, Bull. 4, Limestones and lime industry of Ohlo, p. 242, Ohio Geol. Surv., 1906.

slightly soluble in pure water, is held in solution by carbon dioxide in the form of calcium bicarbonate. When the carbon dioxide is removed, this becomes insoluble calcium carbonate, which is precipitated. Carbon dioxide may be driven out by boiling but neutralization with · lime is more practicable and cheaper. Lime combines with the carbon dioxide to form calcium carbonate which, together with the original calcium carbonate in the water, is precipitated. Since magnesium oxide and impurities are inert substances, the purest high calcium lime is preferred. The lime is usually carefully slaked* to a cream and fed into the main body of the water in an automatically regulated stream. From the fact that well burned high calcium lime produces not only the greatest quantity but also the best quality of cream, it is the most satisfactory and economical.

Gas Purification.

Gas manufactured by the distillation of coal contains a number of objectionable substances such as carbon dioxide and hydrogen sulphide. These may be removed by passing the gas through layers of moist slaked lime. Calcium oxide is the only useful constituent in lime but magnesium oxide and the impurities are not injurious. For this reason the purest high calcium lime is the most economical. drated lime is the most convenient form because it is already prepared and easier to handle.

By-Products of Coal Distillation.

The chief supply of ammonia is obtained from crude coal gas. ammonia is removed by washing the crude gas before it reaches the The resulting solution contains free and combined lime purifiers. ammonia. The free gas is distilled off and collected. The addition of lime breaks up the ammonia compounds thus liberating free ammonia, which similarly can be recovered by distillation. According to Peppel both high calcium or magnesian lime may be used but Lunge asserts that magnesian lime is not suitable for this purpose. Hydrated and quick lime appear to give equally satisfactory results.

Paints.

Ground lime, air slaked lime, levigated chalk (natural whiting) and chemically precipitated calcium carbonate are extensively used in

^{*}W. E. Emley, Manufacture and use of lime. Min. Res. U. S. 1913, Pt. II, p. 1587. S. V. Peppel, Uses of limestone in Ohio. Bull. 4, p. 244, Ohio Geol. Surv. 1906. †W. E. Emley, Manufacture and use of lime. Min. Res. U. S. 1913, Pt. II, p. 1588. ‡Chas. Hunt, Gas. Lighting, p. 136, 1900. §S. V. Peppel. Manufacture and Use of Lime. Bull. 4, p. 244, Ohio Geol. Surv., 1906.

paint and pigment industries. One of the most essential qualities is fineness of grain, though color or chemical composition may be equally important. Because limestone is rarely white and is difficult to grind sufficiently fine to meet the requirements of the paint manufacturer, air slaked lime and hydrated lime are the more preferable materials.

Cold water paints* consist essentially of mixed hydrated lime and casein. Obviously, quick lime cannot be used with such substances. Magnesian hydrate is probably preferable to high calcium hydrate on account of its superior spreading qualities.

Glycerine, Lubricants, and Soaps.

Soap and glycerine manufacturers use considerable quantities of lime. Most common fats are compounds of glycerine with various When fats are heated with lime and water under pressure organic acids. lime replaces the glycerine in the compounds, thus liberating the glycerine. Most of the glycerine produced in the United States is made from fats and oils extracted from garbage. When the "lime soaps" formed in this process are mixed with heavy petroleum oils they make valuable lubricants or greases, especially for heavy machinery and for use at high temperatures. Much of the "lime soap," however. is treated with sulphuric acid to liberate the fatty acids for use in the manufacture of soap and related products. For the manufacture of these products lime is again needed to convert sodium or potassium carbonate into the caustic or hydroxide form. For these purposes calcium oxide is the only useful constituent in the lime, therefore pure high calcium lime gives the most satisfactory results. Magnesia and the impurities, however, are not injurious. Either slaked lime or quicklime can be used, though quicklime may be preferable because the additional heat of slaking tends to hasten the reactions.

Tanning.

In the process of tanning leather† lime softens and loosens the hair and adhering particles of fat and flesh so that they can be readily removed by scraping. It also causes an expansion of the pores, called "plumping," which permits of a larger absorption of oil and tallow. This gives greater weight and solidity to the leather. High calcium limes are desired for most tanning operations, though for some varieties of leather such as morocco the presence of magnesia is desirable. Magnesia and clay are injurious‡ because they not only diminish the amount

^{*}W. E. Emley, Manufacture and Use of Lime, Min. Res. U. S. 1913, Pt. II, p. 1591. †S. V. Peppel. The Uses of Limestone in Ohio. Bull. 4, p. 245, Ohio Geol. Surv. 1906. †H. R. Proctor. Principles of Leather Manufacture, p. 121, Spon & Chamberlain, New York, 1903.

of calcium oxide but make the lime more difficult to slake. Iron oxides, becoming mechanically fixed in the grain of the leather, may cause stains. The trouble incident to the slaking of magnesian lime may be avoided through the use of hydrated lime. Since hydrated lime needs no preparation and is easier to handle it is the more preferable form.

Insecticides.

Lime is an important ingredient in many insecticides. Calcium oxide is the only useful constituent, though magnesia and the impurities are not injurious. The material is usually applied in liquid form by some form of atomizer. Either slaked or hydrated lime can be used with water or other liquid. It is very difficult to slake lump lime to a cream free from coarse particles. These are apt to clog the spraying apparatus, therefore hydrated lime screened to the desired fineness should be much more satisfactory.

Furnace Linings.

Pure lime is a most refractory substance.* It fuses only at the high temperatures of the electric furnace.

Theoretically high calcium lime should be a satisfactory materialt for lining open hearth furnaces, but the rapidity with which it slakes upon exposure to air makes this substance valueless for this purpose. Upon reheating, the driving off of the moisture reduces the lime to powder, therefore it has little durability. Calcined dolomite (CaCO₃, MgCO₃) slakes very slowly upon exposure to air and is much less liable to crack with changes of temperature but calcined magnesite (MgCO₂) is far superior to the purest dolomite in these respects and is now always used for the original bottoms in openhearth furnaces. Its high first cost, however, has until recently prevented its general use. As a consequence dolomite, on account of its cheapness, has been commonly used for the working linings and the repairing of basic furnaces and in some cases for the whole lining. It is impossible to set a dolomite bottom as dense and vitreous as magnesite, hence portions of the bottom from time to time will break loose and float even with the most watchful care.

The permanent lining of the furnace is usually built of basic brick, generally magnesite brick, chromite, etc. A working lining of crushed basic material, dolomite or a mixture of dolomite and magnesite with a binding material such as tar or molasses to hold it in place, is then

^{*}E. B. Mathews and J. S. Grasty. The Limestones of Maryland, Vol. VIII, Pt. III, p. 234 Md. Geol. Surv. 1910.
†Harbison-Walker Refractories Co. A Study of the Open Hearth, p. 22, Pittsburg, 1912.

tamped upon the permanent lining to the depth of two or three feet. Formerly it was thought necessary to use lime but at present crushed limestone is found to give just as satisfactory results since the stone is calcined to lime during the operation of the furnace.

The stone must be low in silica and alumina because these materials fuse readily with lime, thus tending to destroy the lining. A stone suitable for openhearth lining should contain less than 1 per cent of silica and 1.5 per cent of alumina and iron, and not less than 35 per cent of magnesium carbonate, though in practice stone considerably short of these specifications is often used.

Blast Furnace Flux.

Iron ores generally carry considerable impurities or gangue material such as silica, alumina, etc. The gangue material is generally acid* in nature and not readily fusible. To remove this relatively infusible material its composition must be so changed that fusibility will be increased. This may be brought about by supplying a suitable base to unite with the acid material. Limestone furnishes the cheapest and most active of the bases, namely calcium oxide, hence its universal use as a flux in the smelting of iron ores or other metallic ores containing acid gangue material.

The quantity of limestone necessary for smelting iron ore depends upon the amount of acid material present to be neutralized,—in general, the greater the acid impurities the greater the amount of base required. In some iron ores the gangue includes a considerable percentage of basic material which will neutralize an equivalent amount of the acid material. In such cases only enough limestone is added to flux the excess acid material in the ore and in the ash of the fuel. In 1914 approximately 15,300,000 tons of limestone were used in smelting approximately 40,600,000 tons of iron ore or about three-eighths tons of limestone to one ton of ore.

It follows that the value of a limestone for fluxing purposes depends upon the amount of available bases present. This consists of that portion of the stone remaining after the carbon dioxide, the silica, alumina, and other acid impurities, and the portion of the base required to flux the acid impurities have been deducted.

High calcium limestone is generally preferred for blast furnace work yet practical tests indicate that dolomite or magnesian limestone can be used for flux in part or whole with satisfactory results.† Small quantities of magnesia do not appreciably affect the behavior of the

^{*}R. Forsythe. The Blast Furnace and the Manufacture of Pig Iron, p. 86, D. Williams & Co., New York, 1913.

[†]R. Forsyth. The Blast Furnace and the Manufacture of Pig Iron, p. 88, D. Williams Co., New York, 1913.

flux but when present with calcium in considerable amount it makes the slag more fusible. According to Mathews and Grasty* magnesia has less affinity for sulphur and phosphorus than calcium oxide, hence its presence is undesirable.

In openhearth work,† however, high calcium, low silica-alumina limestone is demanded. The specifications usually required are that the silica must be under 1 per cent, the alumina under 1.50, and the magnesia under 5 per cent.

Hydraulic Limes and Cements.

Hydraulic limes. Lime burned from limestone, either high calcium or magnesian, containing 5 to 10 per cent! of sand and clayey material are termed hydraulic lime. Hydraulic limes will slake as they come from the kilns without further treatment. If the sandy and clavey material in the limestone exceeds about 10 per cent, the resulting lime fails to slake without first being finely ground and is a hydraulic cement.

No hydraulic limes are produced in Michigan, though many strata in the Traverse formation and the Trenton limestone apparently have the desired composition.

Hydraulic Cements. There are three principal classes § of hydraulic cements, viz., (1) Portland cement, (2) natural, or Roman, and (3) Puzzolan.

Natural Cements. Natural cement is made by grinding finely the calcined product from burning at a temperature below 1000-1100°C to incipient vitrification an argillaceous limestone containing over 10 per cent of siliceous and argillaceous matter. The limestones from which the commercial natural cements in the United States are made contain from 13 to 35 per cent §§ of clayey material of which 10 to 22 per cent is silica. Natural cement is usually yellow or brown. It sets more rapidly than Portland cement and has lower specific gravity and tensile strength.

Portland Cement. Portland cement is made by finely pulverizing the clinker produced by burning to incipient fusion an intimate mixture §§§ of finely pulverized and properly proportioned argillaceous and calcareous materials with the addition of such other substances, not to

^{*}Mathews and Grasty, loc. cit.
†E. B. Mathews and J. S. Grasty. The Limestones of Maryland, Vol. VIII, Pt. III, p. 249, Md. Geol. Surv., 1910.

1S. V. Peppel. The Uses of Limestone in Ohio, Bull. 4, p. 252, Ohio Geol. Surv. 1906.
§II. A. Buehler. The Lime and Cement Resources of Missouri, Vol. VI, 2nd ser., p. 18, Mo. Bur. Geol. & Mines, 1907.

§§E. C. Eckel. Cement, Limes and Plasters, Chapter XVII.
§§E. F. Burchard. Cement, Min. Res. U. S. 1914, Pt. II, p. 222, U. S. G. S.

exceed 3 per cent, as may be necessary to control certain properties. The proportions of the mixture are approximately three parts of calcium carbonate to one part of silica, alumina, and iron oxide. Portland cement is made from carefully proportioned mixtures and is burned at a temperature (approaching 3000°F) sufficient to fuse or clinker.

The raw calcareous ingredients are limestone, marl, and chalk, and the argillaceous and siliceous ingredients, clay, shale, and slate. Blast furnace slag, which is mainly fused lime, alumina, and silica, contains all of the ingredients of Portland cement, though not in the prescribed proportions.

Formerly 4 per cent of magnesia was considered the maximum permissible in Portland cement. To secure such a product only pure high calcium limestone may be used. Incomplete results of an important investigation carried on by the U.S. Bureau of Standards* indicate that satisfactory cement can be made with a magnesia content in the finished cement of about 7.5 per cent. If more thorough tests substantiate the preliminary tests the range of raw materials will be greatly extended and many quarries containing beds relatively high in magnesia may be operated without sorting necessary under the present specifications for raw materials.

Puzzolan Cement. Puzzolan cement is a finely ground mechanical mixture of siliceous and aluminous materials such as blast furnace slag or volcanic ash, and slaked lime. Slag cement is made extensively at a number of the larger blast furnaces in the United States. The hot slag is granulated in cold water, dried, and then ground with slaked Puzzolan cements are generally light bluish in color and of lower specific gravity and less tensile strength† than Portland cement, and are considered better adapted for use under water than in air.

Miscellaneous Uses of Limestone and Lime.

Limestone and lime are used for many other purposes, among which may be mentioned the manufacture of dichromates, magnesia, bone ash, glue, and varnish; as the refining and purifying agent in the distillation of mercury; in the clarification of grain, in refining fats, greases, butter, linseed oil, and petroleum; in preserving eggs, and as a general disinfectant and deodorizing agent; as a filter in the paper,

^{*}P. H. Bates. Progress Report. The properties of Portland cement having a high magnesia content: Concrete-Cement Age, Cement Mill section, Mar. 1914, pp. 29-33, 38. See also extract, E. F. Burchard, Min. Res. U. S. 1914, Pt. II, pp. 245, 246, U. S. G. S. †E. C. Eckel. Portland cement materials and industry of the United States, U. S. Geol. Surv. Bull. 22, p. 18, 1913.

‡E. F. Burchard, Production of Lime in 1911, Min. Res. of U. S. for 1911, U. S. Geol. Surv., Pt. II, pp. 645-718.

See also W. E. Emley, Manufacture and Use of Limestone, Min. Res. U. S. for 1913, U. S. G. S. 1502

G. S., p. 1592.

textile, linoleum, and rubber industries; as a mordant in dyeing; as an abrasive in polishing; in the manufacture of calcium light pencils, and of magnesium for flash-light powders; as lime water in medicine; for the recovery of potassium cyanide used in extracting gold and silver from ores; to neutralize the sulphuric acid used in pickling steel, and for a great variety of minor purposes.

CHAPTER IV.

GEOLOGY OF LIMESTONE FORMATIONS.

GEOLOGIC DISTRIBUTION.

Limestone occurs in rocks of all ages from the Archean to the Recent. In Michigan it occurs in Algonkian and Paleozoic rocks. Marl or bog lime occurs in the inland lakes.

ALGONKIAN LIMESTONES.

Algonkian limestones occur only in the Lower Huronian group of the iron bearing districts of the Northern Peninsula. In the Marquette iron bearing district the limestone formation is called Kona dolomite; in the Crystal Falls, Menominee, Sturgeon River, and Felch Mountain districts, the Randville dolomite; in the Iron River district, the Saunders formation; and in the Gogebic district, the Bad River limestone. They are heavily magnesian, generally approaching normal dolomite in composition. Locally there are thick pure beds but generally these formations contain interbedded slate or quartzite, and in most places abundant cherty and argillaceous impurities and silicate minerals. These impurities occur in bands parallel to the bedding,

Figure 1. Map showing distribution of Kona dolomite. (After Van Hise, Bayley and Smyth, Monograph 28, U. S. Geological Survey).

in irregular seams and masses, and intimately intermingled with the dolomite. In some places the color is white, in others it varies from white to pink, red, buff and brown, and even light and deep blue. The generally siliceous character (see analyses) of the Lower Huronian dolomites makes them unsuitable for most purposes, except for crushed stone, hence they are of little economic importance.

Figure 2. Map showing distribution of Randville dolomite northeast of Crystal Falls. (After Clements and Smyth, Monograph 36, U. S. Geological Survey).

Kona dolomite. The Kona* dolomite (fig. 1) forms a westward facing-U in the eastern part of the Marquette iron district, the arms of which terminate near Teal Lake on the north and Goose Lake on the south. The exposures are usually in the form of sharp and abrupt cliffs cut by ravines or separated by drift filled valleys. The Kona formation is dominantly dolomite with interstratified layers of shale,

Figure 3. Map showing distribution of Randville dolomite in the Felch Mountain and Sturgeon River district. (After Smyth and Clements, Monograph 36, U. S. Geological Survey).

graywacke and quartzite. The dolomite beds are from a few inches to many feet thick, but even the purest beds contain thin cherty layers and clastic material. The color varies from pink and red to dark brown. The total thickness of the Kona formation ranges from about 200 or 250 feet to apparently 600 or 700 feet.

Owing to folding and consequent metamorphism the dolomite is finely shattered and the siliceous and argillaceous impurities are altered to quartzite, schist, and slate. Locally the graywacke, quartz, and cherty quartz layers are brecciated. The Kona formation grades upward into the Wewe slate and downward into the Mesnard quartzite.

Randville dolomite. The Randville dolomite† occurs in the Crystal Falls, Menominee, Felch Mountain, Calumet and Sturgeon River districts.

^{*}C. R. VanHise and C. K. Leith. The Geology of the Lake Superior District, Mon. LII, U. S. Geol. Surv. 1911, p. 258.
†C. R. VanHise and C. K. Leith. Geology of the Lake Superior District, Mon. LII, U. S. Geol. Surv. 1911, pp. 293, 300, 302, 333.

Figure 4. Map of the Randville dolomite in the Menominee district. (After W. S. Bayley, Monograph 46, U.S. Geological Survey).

In the Crystal Falls district (fig. 2) it has a maximum thickness of about 1500 feet. It varies from coarselycrystalline marble, in places very pure, but usually filled with silicate minerals, to fine grained, little altered limestone, locally grading into dolomitic sandstone and shale. The color is generally white, but various shades of pink, light and deep blue, and pale green are not uncommon.

The Randville dolomite underlies a large part of the Felch Mountain district (fig. 3) and is very thick.

In the Menominee district (fig. 4) it occupies three separate belts extending in a more or less east and west direction. The formation, though dominantly dolomite, is composed of heterogeneous beds including siliceous dolomite, calcareous quartzite, argillaceous and cherty

Figure 5. Map of the Saunders formation in the Iron River iron bearing district. (After R. C. Allen, Michigan Geological Survey, Publication 3).

quartz rocks. It grades downward into the Sturgeon River quartzite. The predominant phase is homogeneous, fine grained white, pink, blue, or buff dolomite. The beds vary in thickness from a few inches up to many feet. Thin veins of quartz running parallel to the bedding, anastomosing, or running irregularly through the rock mass are characteristic. The argillaceous material is in the form of light or dark gray slate and to a small extent, black slate.

Saunders formation. The Saunders* formation (fig. 5) extends across

^{*}R. C. Allen. The Iron River District, Mon. LII, U. S. Geol. Surv. 1911, pp. 310, 311.

the southern part of the Iron River district. It is composed mainly of cherty dolomite and quartzite. Associated with these are massive white and pink dolomite, impure calcareous and talcose slates. The formation is locally much brecciated. The thickness is believed to be great but owing to folding it cannot be closely determined.

Bad River limestone. The Bad River limestone* occurs in limited areas on the Gogebic iron range (fig. 6). It is heavily magnesian and

Figure 6. Map showing distribution of Bad River limestone in the east end of the Gogebic iron range. (After Van Hise and Irving, Monograph 19, U. S. Geological Survey).

locally it is nearly normal dolomite. Generally it is very siliceous, the siliceous content being in the form of chert and quartz, and to less extent silicate minerals. In places the free silica is intermingled with the dolomite and at other points it is in bands varying from a fraction of an inch in thickness to many feet.

PALEOZOIC LIMESTONES.

Geologic Occurrence.

Limestone formations occur in all of the Paleozoic systems of Michigan, except the Cambrian and Pennsylvanian. The chief limestone formations are the Beekmantown (Calciferous) including the Hermansville limestone, and the Trenton limestone of the Ordovician; the "Niagara" or Guelph and Lockport limestones, and the Monroe and Salina formations of the Silurian, the Dundee limestone, and the Traverse formation of the Devonian, and the Bayport limestone at the top of the Mississippian. Limestone horizons of minor importance occur at other points in the geological column as the Manitoulin limestone in the Cincinnati series of the upper Ordovician and the

^{*}C. R. VanHise and C. K. Leith. The Geology of the Lake Superior District, Mon. LII, U. S. Geol. Surv. 1911, p. 228.

the s chert white form great

 $B_{
m o}$ areas

TATE IN THE

Figure ir

local.
silice
tent
the c
of ar

Lingan, form mans the 'and Trav the toccur li-

Clinton of the lower Silurian. Lenses of limestone also occur in the Michigan series in the upper portion of the Mississippian and locally in the Coal Measures of the Pennsylvanian, but these are of little or no importance.

As may be seen from the following geologic column (fig. 7) the great bulk of the limestone occurs in the lower two-thirds of the Paleozoic.

RELATION OF GEOLOGIC STRUCTURE TO AREAL DISTRIBUTION.

The Paleozoic formations in Michigan form a gigantic nest of very broad, shallow, warped basins, whose diameters decrease regularly from the bottom upward (fig. 8). Were the rocks uncovered by removing the loose surface deposits and draining the Great Lakes the rims of these basins would form concentric belts around the Coal Measures (fig. 9).

The Michigan Basin is a geologic province including the Southern Peninsula, the eastern part of the Northern Peninsula, the western part of Ontario, the eastern part of Wisconsin, and northern parts of Illinois, Indiana, and Ohio. The average diameter of the Basin is about 500 miles. The deepest part appears to be in Midland and Isabella counties near the geographical center of the Southern Peninsula. The total depression or depth apparently is over 7000 feet, but this is so small in comparison with the diameter that the inclination of the formations toward the center of the Basin is usually between 25 and 50 feet per mile, and rarely exceeds 60 feet.

The basin-like structure and the occurrence of the bulk of the limestone in the lower part of the rock column determine the areal distribution of the limestone formations in concentric belts near the margin of the Basin. The only extensive limestone regions in the Southern Peninsula are in the extreme northern and southeastern portions.

MARL OR BOG LIME DEPOSITS.

Many of the glacial lakes in Michigan, northern Indiana and western New York contain marl deposits. Many swamps, formerly the sites of glacial lakes, also contain marl. In some of the lakes marl formation is still being formed. Marl deposits vary in extent from a few acres up to several hundred, and in thickness from a few feet to 50 feet or more.

Marl is known to occur in 22 different counties in the Southern Peninsula, and the total area of proven deposits of workable size is over 26,000 acres.

ion.

h apparently inirface throughout
h-northeast from
inee County into
veers toward the
part of Schoolounties, crossing
l. It is exposed
alger county and

ermansville lime-

white dolomite ses from one to ce of dolomitic l rounded color-lle limestone of Beekmantown.

dottone with an pure dolomite, in many places ariable, due to be Hermansville on the tops of

ne dolomite in It is of little

lerlies a broad lay and Little ounty and the ower through River. The lower courses on St. Marys

id high magnerally argillaceous. Locally it is very argillaceous and bituminous. Thin seams of shale are common and fine wavy laminae of shaly or bituminous matter are characteristic. In the Northern Peninsula the Trenton has three phases,* viz., (1) an upper granular, crystalline, high magnesian limestone with alternating blue and buff or brown layers terminating at the base in a dark or black bituminous limestone, (2) a middle portion of sandy or cherty layers, and (3) a basal member of blue shale and limestone, the latter being locally dark or black. In the southern part of the state where it has been penetrated in deep wells it has four well marked divisions, viz., (1) an upper, thin, dark grayish, buff and brown, high magnesian portion, (2) a thick, white to light buff, low magnesian limestone series, (3) a thick, dark, buff and brown argillaceous and bituminous series of limestones, and (4) a lower, very thick, dark gray and brown, argillaceous and bituminous series. The generally shaly and argillaceous character of the Trenton formation makes most of it unsuitable for most purposes except rough building block and crushed stone.

The thickness in the Northern Peninsula ranges from about 250 feet along Green Bay to 100 feet or less on St. Marys River. In southeastern Michigan the formation is much thicker, averaging about 850 feet.

"Niagara" Limestone.—Guelph and Lockport. The "Niagara" limestone is composed of an upper whiter and more crystalline portion called the Guelph dolomite, and a lower darker and generally less crystalline portion called the Lockport limestone, which is the Niagara proper. Since the two formations have not yet been certainly differentiated in Michigan and since quarrymen, lime burners, and lime users are habituated to the use of the term "Niagara", the name is retained in this report to include both the Guelph and the Lockport.

The Niagara limestone comes to the surface only in the Northern Peninsula. It underlies a broad belt skirting the northern shores of Lake Michigan and Lake Huron from the southern end of Garden Peninsula, Delta County, to the eastern side of Drummond Island, Lake Huron. Throughout large areas it is at or near the surface. The exposures are numerous, and owing to the hard and massive character of many of the rock layers and the gentle inclination of the strata they are usually in the form of escarpments or cuestas with steep or precipitous slopes toward the north and gentle slopes toward the south. Swamps occupy most of the depressions between the escarpments. The escarpments afford unusually favorable conditions for quarrying. The long slopes in many cases correspond to the in-

^{*}A. C. Lane, Geological Section of Michigan, Ann. Rept. 1908, Mich. Geol. Surv., p. 48.

A. BOULDER TRACT OF ENGADINE DOLOMITE NEAR HESSEL, MACKINAC COUNTY.

These massive boulders are of characteristic occurrence in regions underlain by the Engadine dolomite.

B. A LARGE WEATHERED BOULDER OF ENGADINE DOLOMITE NEAR THE RAILROAD ONE MILE WEST OF ENGADINE, MACKINAC COUNTY.

The massive character of the boulders and the numerous drusy cavities with the peculiar concentric structures about them are characteristic of the Engadine dolomite.

clination of the beds which varies from about 40 to 60 feet per mile. The gentle lakeward dip of the strata results in shallow water for long distances off shore and an absence of good harbors. This forms a serious obstacle in the development of the numerous high grade limestone beds of the Niagara which occur some miles back from the shore

The whole formation, excepting near the base, is characterized by an absence of shaly or argillaceous material. The content of both iron and alumina is generally below one per cent, and in many beds less than one-half of one per cent. Silica, in the form of quartz sand, seams and nodules of chert, and silicified fossils, is much more abundant. Some beds are extremely cherty and siliceous, though in most of them the silica does not exceed $1\frac{1}{2}$ or 2 per cent. In the Engadine dolomite at the top of the formation the total impurities are in many places less than one per cent.

The Niagara limestone is composed of at least four distinct and easily recognized members which the writer has provisionally named and defined as (1) Engadine dolomite, (2) Manistique series, (3) Fiborn limestone and (4) Hendricks series.

Engadine dolomite. The Engadine dolomite is the name proposed for the upper member of the Niagara. It is best exposed in the vicinity of Ozark, Mackinac County, but because this name was already preoccupied in geologic literature the member was named from the village of Engadine, where it is exposed over a large area about one mile west of the village. The Engadine dolomite is an extremely massive, hard, and very crystalline dolomite, distinctly bluish or mottled and streaked with blue. It is also characterized by numerous druse cavities more or less completely filled with crystals of dolomite or pearl spar. The stone is very poorly and massively bedded, and except where greatly weathered shows very few distinct bedding planes. The joint systems are generally poorly developed and very irregular. It forms a strong, though broken, northward facing escarpment nearly the entire distance from Seoul Choix Pt., Schoolcraft County, to St. Marys River. Areas where this formation is exposed or near the surface are covered with great boulders as at Ozark, Engadine, Hessel and Garnet. (Pl. I. A and B).

Owing to its highly crystalline character and bluish colorations the Engadine dolomite is known locally as marble. This resemblance to marble resulted in considerable core drilling near the mouth of Bulldog River, Schoolcraft County, in an attempt to prove up a marble deposit. The color, however, is not permanent. Upon exposure to the weather for a year or two the bluish color changes to a light buff or brown. The writer has seen stone in which the color had been completely.

altered to the depth of more than an inch, though the stone had been quarried but two years. Those parts of the stone which are free from druse cavities undoubtedly would make good building block, but it would be an unsatisfactory substitute for marble.

The Engadine beds are uniformly normal dolomite, almost free from impurities. The exceptional purity of the dolomite makes it especially adapted for basic linings in open hearth furnaces and for paper manufacture with the sulphite process.

The dark argillaceous dolomites of the Monroe-Salina apparently overlie the Engadine dolomite but nowhere have the two been seen in contact. The contact with fossiliferous beds of the underlying Manistique series is sharp and well exposed along a high bluff about two miles north of Ozark. At this point the thickness, which is the maximum observed anywhere, is about 54 feet. The surface of the bluff has suffered severe glacial erosion, therefore the normal thickness of the formation is presumably considerably more than this.

In southeastern Michigan and southwestern Ontario the same bluish, highly crystalline dolomite occurs directly beneath very dark argillaceous dolomite apparently belonging to the base of the Salina. The thickness of the bluish crystalline dolomite in the H. R. Ford well at Dearborn, Wayne County, is about 95 feet.

Manistique series. The Manistique series is a thick succession of dolomite and high magnesian limestones extending from the base of the Engadine dolomite downward to the top of the Fiborn limestone.

It comprises a great variety of dolomites and generally high magnesian limestones, differing greatly in color, texture, and structure. The color varies from pure white, light gray and buff to blue, dark gray, and buff or brown, the texture from earthy or finely crystalline to coarsely crystalline. Some of the strata are massive but others are thin bedded. The jointing varies from regular to very irregular. Many of the beds are very fossiliferous but some contain no fossils. Favosites, Halysites, and Syringopora are conspicuous among the corals, though many other forms are abundant. *Pentamerus oblongus* is a most conspicuous form among the brachiopods. Two to three miles north of Engadine the beds are extremely fossiliferous. Some are a mass of corals and bryozoa and others a mass of brachiopods. Apparently this region was the site of extensive reef building in Niagaran time.

Many of the beds are very dense, finely banded or laminated, and break with a pronounced conchoidal fracture. The fine banding is beautifully brought out through weathering and the term "ribbon limestone" is often given to such rock. Some beds are very granular and resemble sandstone.

The percentage of iron and alumina, though generally higher than in the Engadine dolomite, is usually low. The silica, however, is apt to be high and some of the beds are extremely cherty and siliceous.

Formerly the limestones of this series were much used for burning lime, but now they are utilized for lime only at Manistique. Some of the stone is burned only with great difficulty. The great difference in chemical composition and physical qualities between the different beds in most quarries generally necessitate hand sorting. The hardness and toughness of much of the stone, combined with ease of access, lend value to this formation for road making and concrete.

The series is widely exposed, particularly in the vioinity of Manistique and along the west side of Garden Peninsula where there are bluffs rising nearly vertically from 100 to over 230 feet above Big Bay de Noc, also near Gould City, north of Engadine, southeast of Trout Lake, at Rockview, and at many places on Drummond Island. From Manistique northwest to Indian Lake and beyond there is an almost continuous succession of small roughly parallel and nearly E-W escarpments facing north with gentle back slopes toward the south. The northern limit of the exposures of this series, like that of the Engadine dolomite, is generally marked by a pronounced though much broken escarpment. In places the escarpment rises 100 to 150 feet or more above the level of the swamps to the north.

The thickness of the series is uncertain but it is over 250 feet as shown by the section at Burnt Bluff, Garden Peninsula. The contact with the Engadine dolomite above is well exposed at several places but the contact with the Fiborn limestone below was observed only in the Hendricks quarry where in places five or six feet of light colored magnesian limestone rests directly on the Fiborn.

Fiborn limestone. In practically all of the geological literature the Niagara limestone is described as a dolomite formation. Rominger* who made an early study of the Niagara found only very thin and insignificant beds of high calcium stone. Some time prior to 1901, Dr. A. C. Lane† visited some caves in limestone on sections 15, 16, 21 and 22, T. 44 N., R. 7 W. This limestone proved to be low in magnesia and some years later quarrying operations were begun at the site of the present Fiborn quarry. Deposits of high calcium limestone were discovered at other places to the west and two other quarries, now known as the Blaney and Hendricks were opened.

In 1913 the writer found that the Fiborn limestone is exposed at many places in several areas of considerable size in an arcuate belt (fig. 9) which extends from a point (cen. S. line of sec. 2, T. 42 N., R. 14 W.)

^{*}C. Rominger, Paleozoic rocks, Vol. I, Pt. III, p. 37, Mich. Geol. Surv., 1869, †Ann. Rept. Mich. Geol. Surv. 1905, Limestone, p. 20.

four miles north of Whitedale, Schoolcraft County, eastward to Gould City, Mackinac County, thence northeast to Hendricks quarry (sec. 1, T. 44 N., R. 9 W.) and thence southeast through Fiborn quarry (secs. 16 and 21, T. 44 N., R. 7 W.) to within two or three miles of Trout Lake. Westward from section 11, T. 42 N., R. 14 W., the bed disappears beneath the swamps north of the prominent escarpment of the Manistique series, along the Manistique River and its branches, and the streams running into Indian Lake. Eastward from Trout Lake the bed disappears beneath the lake clays of Mackinac and Chippewa counties. On Lime Island, St. Marys River, the drift is filled with angular fragments of the Fiborn stone, indicating its presence in that immediate vicinity. Apparently the bed crosses Drummond Island from the vicinity of Maxton southeast toward Marblehead. It is possible that a three foot bed of fine grained, ash colored, high calcium* limestone in the lower portion of the Marblehead section is the diminished representative of the Fiborn bed.

The largest area of exposures is in the vicinity of Blaney quarry, Gould City, and the Hendricks and Fiborn quarries. Blaney quarry is located near the west end of an area of almost continuous exposures over a mile in width extending from about the middle of section 4, T. 42 N., R. 13 W., eastward about five miles nearly to Lake Ella. About a mile west of Gould City the area in which Fiborn stone is exposed, or near the surface, is apparently more than a square mile in extent. In the vicinity of Hendricks and Fiborn quarries exposures are said to extend over an area of two to three square miles. The Fiborn bed is exposed, or is at shallow depths, at several other places, notably four miles north of Whitedale, five miles north of Engadine, two or three miles northwest of Trout Lake, and between Fiborn and Hendricks quarries.

The Fiborn limestone beds are buff to grayish buff dense grained to lithographic limestone generally containing small disseminated crystals of calcite. The lithographic texture is very marked in some beds but small crystals of calcite apparently render nearly all of the stone of no value for lithographic purposes. It is possible that certain thin strata may be found sufficiently free from crystals to yield moderate sized slabs suitable for lithographic work.

The stone is mainly massive though locally it is markedly laminated and well bedded. The joint systems are very irregular and poorly developed. The stone is brittle and breaks with a perfect conchoidal fracture, forming fragments with sharp points and edges. The lithographic texture, numerous small calcite crystals, and perfect conchoidal fracture are features which make field identification of the Fiborn

^{*}C. Rominger, Vol. I, Pt. III, p. 35, Mich. Geol. Surv. 1873.

beds easy and unmistakable. Moreover, the stone calcines easily and, wherever forest fires have passed over it, the surfaces of the exposures and field boulders are pure white in contrast to the grayish or yellowish white of partially burned stone from other beds.

The Fiborn bed is very uniform in composition and generally the content of calcium carbonate is between 94 and 97 per cent. The silica varies usually from 0.75 to 1.50 per cent, and the iron and alumina from 0.25 to 0.75 per cent. Magnesium carbonate, except near the bottom of the bed, is usually below 2 per cent, though locally it may exceed 3 or 4 per cent. The bottom portion in most places contains from about 2 per cent to 5 per cent, or even more of magnesium carbonate. Owing to its purity and freedom from magnesia the Fiborn limestone is quarried extensively for blast furnace flux, carbide, sugar manufacture, and hot lime. Though very brittle the stone makes very satisfactory road material on account of its high cementing power.

The thickness of the member varies from 18 to about 30 feet. maximum thickness developed in the Blanev quarry is about 26 feet. Eastward this decreases to only about 18 feet at the Hendricks quarry but still farther east the bed thickens to nearly 30 feet in the Fiborn quarry. If the thin bed of high calcium acicular stone in the Marblehead section, Drummond Island, is the representative of the Fiborn bed it has shrunk to only about three feet in thickness. In one of the Manistique wells 27 feet of "white limestone" was penetrated between 80 and 107 feet in depth and this may be the Fiborn bed. It is a significant fact that although the lower portion (Lockport) of the Niagara is well exposed on Manitoulin Island in Ontario no trace of a high calcium bed has been observed. The same may be said for the western extension of the Niagara in Wisconsin. In the H. R. Ford well at Dearborn which completely penetrated the Niagara, no trace of high calcium stone was found though samples were taken every five feet. This would indicate that the Fiborn bed is a lens in the Niagara and largely confined to the limits of the Northern Peninsula.

Hendricks series. In the floor of the Hendricks quarry of the Union Carbide Company a test pit has been sunk to the depth of about 20 feet and test holes have been drilled in the vicinity of the quarry to the depth of over 145 feet. The beds in the test pit range in composition from high calcium limestone to normal dolomite, and according to the analyses of the drill cores the strata down to 145 feet and perhaps deeper are composed of the same alternating series of high calcium, and low to high magnesian limestones. As far as known none of these strata are exposed anywhere else except in the vicinity of the Manistique lakes and apparently at Marblehead, Drummond Island. The

writer, however, has not visited these localities, hence must rely upon the older descriptions given by Rominger. Other exposures probably occur on some of the islands in St. Marys River and Potagannissing Bay.

The bed immediately underlying the Fiborn limestone at Hendricks quarry is a very white crystalline limestone containing from 2 to 5 per cent of magnesia. In the Blaney quarry of the White Marble Lime Co. this bed is said to contain only about 85 per cent of calcium carbonate. At Fiborn also it contains considerable magnesia. Hendricks quarry the white limestone is directly underlain by one foot of dark lithographic limestone containing only about one per cent of magnesia. The next lower bed, 2 feet thick, is higher in magnesia and the next two, together 8 feet thick, are practically normal dolomite. Next follows one foot of high calcium stone which gives place to heavy magnesian limestone which forms the floor of the pit. According to the analyses of two drill cores from the vicinity of Hendricks quarry the magnesian zone below the Fiborn bed is between 13 and 14 feet thick, therefore the floor of the test pit must be near the bottom of the The magnesian zone is followed by a series of high calcium limestones 30 to 50 feet in thickness. Below this there are low magnesian limestones down to 145 feet, the bottom of the deeper hole.

According to Rominger the exposures on Manistique lakes are highly magnesian and also most of the strata at Marblehead, Drummond Island.

The writer has provisionally termed the series of limestones and dolomites from the base of the Fiborn limestone down to the Rochester shale, the *Hendricks series*. Further field work and faunistic studies, however, may show that the Fiborn limestone should be included in this series. The belt underlain by the Hendricks series lies directly north of the belt of Fiborn exposures and almost wholly in a heavily drift covered area, hence the conditions for detailed study are very unfavorable.

The thickness of the Hendricks series is uncertain but it is certainly over 100 feet as shown by the drill holes near Hendricks quarry.

Salina formation. The Salina formation has not been definitely recognized in outcrops in Michigan. In St. Ignace peninsula it may be some part of what is now mapped and described as the Monroe formation.

Monroe formation. The Monroe formation is exposed in south-eastern Michigan and in St. Ignace peninsula and adjacent islands. In Monroe county the following subdivisions are now recognized*:

^{*}W. H. Sherzer and A. W. Grabau. The Monroe Formation, Pub. 2, Geol. Ser. 1, Mich. Geol. and Biol. Surv. 1909, pp. 27-54.

		Lucas dolomite	200	ft.+
1.	Upper Monroe or	Amherstburg dolomite		
]	Detroit River series.	Anderdon limestone	40	ft.
		Flatrock dolomite	60	ft.
2.	Sylvania sandstone	and dolomite.		
	•	Raisin River dolomite	200	ft.
3.	Lower Monroe or	Put-in-Bay dolomite	100	ft.
	Bass Island series.	Tymochtee shale	90	ft.
		Greenfield dolomite	100	ft.

These subdivisions, however, have not been recognized in the Monroe formation in St. Ignace peninsula and adjacent islands and apparently the three primary divisions are clearly developed only in southeastern Michigan in Monroe County and along Detroit River. North and northwest from this region the Sylvania sandstone grades into dolomite, though here and there in the state borings show the presence of a sandstone at about the horizon of the Sylvania.

Lower Monroe or Bass Island series. The Lower Monroe series is composed chiefly of gray argillaceous dolomite with some shale, gypsum, and celestite. Only the upper member, the Raisin River dolomite, is exposed in Monroe County. It is composed of gray, fine grained argillaceous dolomite and subordinate amounts of öolite. The dolomites are generally thin bedded, in places bituminous and more or less shattered and brecciated. There are several öolitic beds, each being underlain by a peculiar bed of fine grained, blotched, mottled, and streaked dolomite. The markings are of a distinct bluish cast, but where weathered they are rusty brown, indicative of the presence of iron. The more massive blue portions near the bottom of this bed are very shaly.

The brecciation of the Monroe dolomite is a very general characteristic. The most conspicuous occurrences are in St. Ignace peninsula, on Mackinac Island, and in the vicinity of Monroe, Monroe County. Brecciated horizons have been struck in many wells penetrating the Monroe in different parts of the state.

The brecciation is of two types.* The first is a complete shattering of the formation, producing a breccia, the fragments of which are firmly held in a matrix of finer materials completely cemented. The second is more local and affects individual beds only. The blocks in this type are locally more or less disturbed but only slightly displaced, where in the first type the breccia is composed of a mixture of fragments of several different beds showing considerable displacement.

^{*}W. H. Sherzer and A. W. Grabau. The Monroe Formation, Pub. 2, Geol. Ser. 1, Mich. Geol. and Biol. Surv. 1909, p. 29.

The cause of the brecciation is a mooted question. Lane* ascribes the regional type to the inrush of great tides across shallow flats, but Grabau† argues that it represents the talus breccia produced on an extensive land surface of post Monroe time and that this talus was incorporated into the lower Onondaga on the resubmergence of this region by the sea, or that it was produced by solar fluxion. The local brecciation is apparently due to buckling produced by some expansional force such as might arise when anhydrite by chemically combining with water is transformed into gypsum.

The Raisin River dolomite is exposed at many places in eastern Monroe County, particularly in the vicinity of the river from which the member takes its name. In the early days the stone was extensively burned for lime but owing to its argillaceous character, the exhaustion of suitable fuel, and competition of limes of better quality, the industry in this region ceased many years ago. Many small quarries were formerly operated, supplying Detroit with crushed stone chiefly for concrete and macadam, but now only two or three quarries are in operation. The stone is too impure and highly magnesian for chemical purposes and the argillaceous content or its brecciated character makes it locally unfit even for concrete, macadam or ballast.

Upper Monroe or Detroit River series. The Upper Monroe or Detroit River series is exposed along Detroit River and at several places in the western part of Monroe County.

The Flat Rock, Amherstburg, and Lucas members are high magnesian limestones or dolomites, but the Anderdon is a very pure high calcium limestone. The dolomites are gray to brown, argillaceous or bituminous, and locally brecciated. Formerly several quarries were operated in the Upper Monroe dolomites, but during the past few years only two or three have been in operation and these but intermittently. The argillaceous and highly magnesian character of much of the stone makes it unsuitable for most purposes. The Anderdon limestone is exposed in the Anderdon quarry on the Ontario side of Detroit River and also in the lower part of Sibley quarry where, due to erosion of the Lucas and Amherstburg dolomites, it directly underlies the Dundee and is quarried with it. The Anderdon is present only in patches, having been largely removed by erosion.

In places the Anderdon limestone is practically pure calcium carbonate and its generally low content of magnesium carbonate makes it particularly suitable for chemical purposes.

In the St. Ignace peninsula and adjacent islands the Monroe formation

^{*}A. C. Lane, Vol. V, Mich. Geol. Survey 1895, pt. 2, p. 27.
†A. W. Grabau. The Monroe Formation, Pub. 2, Geol. Ser. 1, Mich. Geol. and Biol. Surv. 1909, p. 29.

is characterized by much brecciation and contains beds of gypsum. The argillaceous and magnesian character of the breccias and their tendency to disintegrate under weathering, make them valueless. Formerly they were utilized locally for burning lime.

Dundee (Onondaga) limestone. The Dundee limestone is a wide-spread formation and underlies nearly all of the Southern Peninsula, but it comes to the surface only in a narrow belt in the southeastern part of the Peninsula and along the shore of Lake Huron from Mackinac City, Cheboygan County, to Presque Isle, Presque Isle County. Its outcrop elsewhere is buried under surface deposits or lies beneath the waters of Lake Michigan and Lake Huron.

The Dundee is chiefly high calcium limestone with some magnesian beds near the base of the formation where it rests directly on the Monroe dolomites. It is generally gray to buff or brown, crystalline, bituminous, and locally very fossiliferous. Locally some of the beds average over 98 per cent of calcium carbonate. Its purity and freedom from magnesia renders the Dundee limestone especially valuable for chemical purposes, soda ash products, flux, carbide, etc. It is quarried very extensively near Detroit and Rogers City. The bituminous content renders much of the stone unsuitable for lime burning.

The Dundee formation averages about 100 feet thick in the southeastern portion of the Southern Peninsula and over 200 feet in the northern part. In the central part where penetrated by borings it is over 250 feet thick, but on the western side of the state it is very thin and in places, as at Muskegon, perhaps absent.

Though the areal extent of the exposures of the Dundee is small in comparison with most of the other limestone formations, it is one of the most economically important and furnishes nearly half of the annual output of limestone.

Traverse (Hamilton and Marcellus) formation. The Traverse formation is widely exposed throughout a curving belt extending from Little Traverse Bay, Lake Michigan, to Thunder Bay, Lake Huron. Southwest from Little Traverse Bay to Benzie County the formation is generally deeply drift covered. It occupies a narrow belt in southeastern Michigan but it is not exposed there. Generally speaking, it is a series of limestones and shales with a heavy shale (Bell or Marcellus) at the base. In the southern part of the state the formation is dominantly shale. In the Alpena district, however, limestone is dominant and in the Little Traverse Bay region the formation is almost wholly limestone, containing only a few relatively thin beds of shale, excepting the Bell shale at the base. The limestone varies

greatly in color, texture, and composition. The color varies from pure white to gray, buff, brown, and black, and the texture from very fine grained or lithographic to coarsely crystalline. Some of the strata are very thin bedded, others massive. In general the jointing is very regular. The formation as a whole is richly fossiliferous, many strata being composed of a mass of brachiopods, corals or bryozoans. In the Alpena district large reefs of corals, many of them chiefly of Acervularia, are characteristic. The limestone varies in composition from practically pure calcium carbonate to heavy magnesian limestone or normal dolomite. There are also all gradational phases between Most of the shale is very calcareous and generally limestone and shale. very soft. Under the drill it churns up into a "soapy" mass, hence it is generally reported by drillers as "soapstone." The gray color is generally due to the argillaceous content and the black color to a large amount of bituminous matter. Some of the shaly limestone is also extremely cherty. Along Little Traverse Bay much of the limestone is yellow, buff, or brown, which is due to the oxidation of the iron content. The limestone here is generally much more magnesian than elsewhere.

In the Alpena district the Traverse has been subdivided by Grabau* into the following members:

- 1. Thunder Bay series.
- 2. Alpena limestone.
- 3. Long Lake series.
- 4. Bell shale.

The Long Lake series is chiefly shale and thin bedded limestone, some of the limestone being very argillaceous. This series forms a belt extending from Stony and Partridge points northwest along Thunder Bay river. Owing to its generally shaly or argillaceous character the series apparently is of little value except for manufacture of cement.

The Alpena limestone is chiefly high calcium limestone and is characterized by the presence of an extensive system of coral reefs. The reefs, being more resistant to erosion than associated strata, form a network of low ridges on the surface in the vicinity of Alpena. The Alpena limestone as a whole is more massive and resistant than the Thunder Bay series above or the Long Lake series below and forms an elevated tract several miles wide extending northwest from the head of Thunder Bay between Long Lake and the North Fork of Thunder Bay river into Presque Isle county. Apparently the elevated tract extending through Metz and Larocque toward

^{*}A. W. Grabau. The Stratigraphy of the Traverse Formation, Ann. Rept. 1901, Mich. Geol. Surv., pp. 163-196.

Onaway is also due to this hard limestone series. The reef limestone is generally very free from magnesia and impurities. In some places the calcium carbonate averages over 99 per cent. Locally, however, the reefs have been heavily dolomitized. These areas are known as dolomite or magnesian "chimneys." The beds dip away from the reefs at rather steep angles but at a relatively short distance they become practically horizontal. The beds extending horizontally between the reefs are chiefly high calcium limestone with some magnesian limestone, shale, and shaly chert, and very bituminous limestone. In large quarrying operations the presence of these undesirable beds generally results in a large percentage of waste in the quarry product. At Alpena the Huron Portland Cement Company utilize this waste product in the manufacture of Portland cement.

According to Grabau* the Alpena Limestone is only 35 feet thick, but in the quarry of the Michigan Alkali Company, Alpena, the high calcium strata and coral reefs have been quarried to the depth of 80 feet or more. Several drill holes northwest of Alpena also show that the thickness of the high calcium strata is much greater than that given by Grabau. Since by definition the name refers to the "Middle Limestone'' lying between the shales and limestones of the Thunder Bay series above and of the Long Lake series below, the term should include the entire limestone series exposed in the Michigan Alkali quarry down to the argillaceous limestone beneath. This would give a thickness of about 80 feet for the Alpena or "Middle" limestone. Due to its generally high calcium content and its numerous exposures the Alpena limestone is of much more economic importance than the other members of the Traverse formation in northeastern Michigan. The many large exposures with favorable quarrying conditions form an immense reserve of high calcium limestone. Only those in the vicinity of Alpena near cheap water transportation have been developed successfully.

In the Little Traverse Bay region exposures are largely confined to a double line of bluffs along the south shore of the bay. The first line of bluffs is close to the shore and varies in height from 10 to 40 feet or more. The second line is generally from a few hundred feet to a half mile from the shore and varies from a few feet to about 50 feet in height.

Quarrying operations and well borings show that in this region the Traverse formation is almost wholly limestone down to depths of 350 to 475 feet. An upper bed of shale 6 to 10 feet thick has been encountered in some of the quarries and another bed has been struck in wells at about 250 feet. Thin partings of shale from a fraction of an inch up to 6 inches, however, are characteristic of much of the lime-

^{*}A. W. Grabau, Ann. Rept. 1901, Mich. Geol. Surv., p. 174.

stone exposed in the quarries. Thus the formation changes from an alternating series of limestone and shale in the Alpena district to almost solid limestone in the Little Traverse Bay region. As exposed along the shore of the bay the series consists of an upper, yellow to brown, friable, high calcium limestone 15 feet or more thick, a middle, yellow to brown, friable and more or less completely dolomitized limestone about 40 feet thick, and a lower, gray, dense grained or lithographic to crystalline, high calcium limestone, apparently more than 40 feet thick.

The Traverse formation is widely exposed in Presque Isle county and exposures are also numerous in the central portion of Cheboygan county. The limestone is generally high calcium though there are some highly magnesian beds. Many of the strata are shaly, bituminous, and fossiliferous. The texture varies from dense grained or lithographic to very crystalline. The subdivisions of the Traverse easily recognizable in the Alpena district do not appear to be clearly defined in Cheboygan county and the western part of Presque Isle county. Apparently these limestones represent the transition from the limestones and shales of the Alpena district to the solid limestone of the Little Traverse Bay region.

In the northern and central parts of the state the Traverse averages from 600 to 650 feet thick, including 50 to 80 feet of shale at the base. Along St. Clair River it is only about 300 feet thick and in the extreme southern and southwestern portions of the state it is generally less than 100 feet thick.

The Traverse probably contains a larger amount of high calcium limestone than any of the other formations within the state and, owing to the number of and extent of its exposures, it also contains a larger amount of available high calcium limestone. Unfortunately the exposures are all in the northern part of the state and largely inland. Only in the vicinity of Thunder and Little Traverse bays are deposits of the higher grade limestone near cheap water transportation. Moreover, the limestone contains interbedded shales or shaly limestones and magnesian strata, which make development difficult and uncertain. Notwithstanding these unfavorable factors the Traverse formation is second only to the Dundee in economic importance and the inland deposits of high calcium stone form an enormous reserve for future use.

Bayport (Maxville) limestone. The Bayport limestone is the upper member of the Grand Rapids group of the Mississippian system. It underlies a belt around the central Coal Basin excepting on the southeast where it has been largely removed by erosion. The chief areas of exposures are in the vicinity of Bayport in Huron county, in Arenac County, and near Bellevue, Eaton county. In Jackson county the Bayport limestone forms a capping on many of the pre-Coal Measure hills.

The formation consists of white to light gray and bluish limestone, locally very cherty and sandy, very calcareous sandstone and pure sandstone. The limestone varies from high calcium to high magnesian. Owing to its cherty or sandy character much of the limestone is suitable only for concrete or road metal. The high calcium beds are thin and only locally are sufficiently thick and pure to warrant development. At Bellevue, Eaton county, a high calcium bed from 12 to 15 feet thick, is utilized with the underlying shale for the manufacture of Portland cement.

CHAPTER V.

DISTRIBUTION, CHARACTER, AND DEVELOPMENT OF LIMESTONE DEPOSITS BY COUNTIES.

PRE-CAMBRIAN LIMESTONES,

Dickinson County.

The Menominee Iron District of Michigan extends across the southern portion of Dickinson county. The Randville dolomite (Fig. 4) forms three distinct* belts roughly parallel with the longer axis of the district. The northern belt extends from section 11, T. 40 N., R. 30 W., southeast into section 10, T. 39 N., R. 28 W., where it is buried under Cambrian sandstone,—a distance of about 12 miles. The dolomite is exposed at only a few places. The middle belt begins just north of Lake Antoine in section 20, T. 40 N., R. 30 W., and extends east-southeast between Indiana and Cuff mines to Iron Hill in section 33, T. 40 N., R. 29 W., a distance of nearly seven miles. The exposures in this belt are large and very numerous. The southern belt extends from the Menominee River to Waucedah, at the east end of the district,—a distance of over eighteen miles. From Menominee River east to Sturgeon River the dolomite forms a range of high hills broken only at a few points. The tops of the higher hills are capped with Cambrian sandstone. Some of the exposures in the belt are very large. East of Waucedah the Randville dolomite is covered by Paleozoic rocks.

The Felch Mountain range† (fig. 3) is a belt, usually less than a mile wide, which extends in an E-W direction through the southern portion of T. 42 N., Rs. 28, 29, and 30 west, a distance of over 13 miles. The Randville dolomite underlies a large part of the range. The formation is well exposed in the vicinity of Randville, from which it takes its name and also in the vicinity of Felch Mountain.

In section 26, T. 42 N., R. 28 W., at the extreme eastern end of the range, the Northern Michigan Marble Company made an unsuccessful

^{*}C. R. VanHise and C. K. Leith. Geology of the Lake Superior Region. Mon. LII, Geol. Surv. 1911, pp. 333-334.
†Mon. LII, U. S. Geol. Surv. 1911, p. 302; also H. L. Smyth, The Felch Mountain Range Mon. 36, U. S. Geol. Surv., 1899, pp. 374-426.

attempt to quarry marble. The Commissioner of Mineral Statistics of Michigan describes the deposit as follows: "Some of it is pure white, some variegated, shading from white to pink, green, gray, and purple, making beautiful slabs for wainscoting and interior work. It is somewhat granitic in nature; sufficiently so that the tests given foreign and New England marbles will not tarnish the highest polish. It is susceptible of a polish almost equal to onyx."

The Sturgeon River district* (fig. 3) occupies the western portion of T. 42 N., R. 27 W., and the central and northern portions of T. 42 N., Rs. 28, 29, and 30 W. The area of Randville dolomite occurs on the opposite limbs of a syncline which pitches to the northwest. The north arm extends from the western part of section 2, T. 42 N., R. 28 W., northwest into sec. 23, T. 43 N., R. 29 W., a distance of over six miles. The south arm extends slightly south of west into sections 9 and 16, T. 42 N., R. 30 W., a distance of over 14 miles. Exposures are few in number and both limbs of this fold disappear beneath a thick drift cover.

Character. The Randville formation is dominantly dolomite but contains a variety of other beds, including quartzite, slate, cherty quartz rocks, and corresponding gradational phases. The Randville grades downward into the underlying Sturgeon River quartzite. It is also cut by veins of quartz.

The dominant phase of the Randville dolomite is massive, homogeneous, fine grained, white, pink, blue, and buff dolomite, but even the purest beds contain interstratified siliceous quartzite and vein quartz. The abundance of vein quartz indicates extensive fracturing and crushing, followed by cementation resulting in many places in a breccia of dolomite fragments with a siliceous matrix. Owing to its generally siliceous and argillaceous character the dolomite is unsuitable for most purposes excepting crushed stone and building stone.

Locally the dolomite has been more or less completely altered to marble and attempts have been made to exploit it for this purpose but apparently the impurities and the unfavorable jointing renders it unsatisfactory.

An analysis by Geo. Steiger† of the ferruginous phase of the Randville dolomite from Hamburg Hill in Dickinson County is given below:

^{*}Mon. LII, U. S. Geol. Surv. 1911, p. 300. †Bull. 591, U. S. Geol. Surv. Analysis of Rocks and Minerals from the Laboratory of the U. S. Geol. Surv. 1880 to 1914, p. 236.

Analysis of Randville dolomite.

	No. 1.
8102	36.71
AlgOs	5.34
Fe ₃ O ₃	. 35
FeO	3.37
CaO	15.11
MgO	10.78
Na ₂ O	.12 2.40
K ₅ O H ₅ O	.55
N ₂ O +	1.61
TiO ₂ .	27
CO ₂	23.22
P ₂ O ₆	.05
MnO	. 23

The following test made by the Office of Public Roads, Department of Agriculture, Washington, D. C., shows that it is considerably harder than the average limestone but lower in toughness and cementing value:

Locality.	Weight lbs. per cu. ft.	Absorption lbs. per cu. ft.	Per cent of wear.	French coeffi- cient of wear.	Hard- ness.	Tough- ness.	Cement- ing value.
Iron Mountain	178	0.40	4.06	8.6	19	8	25

Gogebic County.

Distribution. The Gogebic Iron Range extends from the Wisconsin line eastward to Gogebic Lake. The Bad River limestone* (fig. 6) is present only in a narrow belt from the northeastern corner of section 15, T. 47 N., R. 45 W., about one mile east of Sunday Lake, E-SE to section 22, T. 47 N., R. 44 W., a distance of about six miles.

Character. The Bad River limestone is heavily magnesian and locally approaches normal dolomite. It contains impurities in the form of silicate minerals such as tremolite, chlorite, and sericite, and free silica, in the form of quartz and chert. The free silica is partly intermingled with the dolomite and partly occurs in bands varying in thickness from a fraction of an inch up to many feet. The siliceous bands stand out in relief on weathered surfaces. The entire formation has been metamorphosed and thoroughly recrystallized. The texture ranges from fine† to coarse, and the color, from white to gray. The dolomite has no present industrial value. The following analysis by W. F. Hildebrand of the U. S. Geological Survey shows the siliceous and heavy magnesian character of the limestone.

^{*}C. R. Van Hise and C. K. Leith. Geology of the Lake Superior District, Mon. LII, U. S. Geol. Surv. 1911, p. 228.
†R. D. Irving and C. R. Van Hise. The Penokee Iron Bearing Series of Michigan and Wisconsin, U. S. Geol. Surv. 1892, p. 130.

Analysis No.	Location.	SiO ₂ .	Fe ₂ O ₃ .	F	eO.	CaC	Oa.	CaO.	MgCO ₃ .
2	Sunday Lake S. E. 1, Sec. 18, T. 47 N., R. 44 W	3.07	. 09		.86			29.72	ļ
Analysis No.	Location.	MgO.	H ₂ O.		co)2.	•	Cl.	Total.
2	Sunday Lake, S. E. 1, Sec. 18, T. 47 N., R. 44 W	19.95	.3	0	48	5.31		trace	99.45

Analysis of Bad River Limestone.

Iron County.

Distribution. In the Iron River Iron District the limestone formation is known as the Saunders formation and in the Crystal Falls Iron District, the Randville dolomite.

In the Iron River District the Saunders formation* (fig. 5) occurs in a belt of varying width across the southern part of the district in a general direction a little north of west. It is well exposed at Sheridan Hill in sec. 20, T. 42 N., R. 35 W. and vicinity. The belt owes its altitude to the more resistant character of the Saunders formation.

Character. Cherty dolomite is dominant but the formation also includes beds of massive white and pink dolomite, quartzose dolomite, impure carbonate slates, quartzites, and talcose slates. The rock is exceedingly brecciated in the vicinity of Sheridan Hill and crushed and fractured cherty fragments are imbedded in the greatest confusion in secondary infiltrated silica and carbonate, silica being dominant. In the Saunders ridge masses of almost pure quartz are associated with pure massive white dolomite and banded chert and cherty dolomite. Due to their more resistant character, the chert bands stand out prominently on weathered surfaces and give a ribbed appearance to the rock. Every gradation from dolomite to pure silica may be observed but generally when the chert content becomes important it shows a tendency to segregate from the dolomite in bands.

Analysis No. 3 by Prof. A. C. Clark of the Michigan Agricultural College is of the purer phase of the dolomite and No. 4 is of a typical specimen from the ferruginous dolomitic slate phase.

^{*}R. C. Allen, The Iron River District. Monograph LII, U. S. Geol. Surv. 1911, p. 310; also Publication 3, Geol. Ser. 2, Michigan Geol. Surv. 1910, The Iron River Iron Bearing District of Michigan, pp. 36-44.

																													3.	•							4.		
8102.																															6	. 1	10					25	
Fe ₂ O: Al ₂ O:																									}							. 4	19	-	{			3. 3.	
FeO. CaO				 													 						 	1.	٠.		•		٠.	2	ġ	. ;	33		•			2. 7.	
MgO				 								 					 						 	1						1	9	. 8)Š	-				7. tra	8
MnO CO2																	 						 	1						4	3	٤.	90	1				4.	5(
Na:0 K:0.																																						2	
N₁Ŏ. H.O.										•					٠		 						 	1		0	7	(1	Bt	1	0	5	°)		}			2.	0-

Analyses of Saunders Dolomite.

Distribution. In the Crystal Falls district the Randville dolomite (fig. 2) completely surrounds a large oval or dome like anticline of Archean rocks northeast of the city of Crystal Falls. The longer diameter of the oval has a general N-NW direction. The formation is exposed on the east side of this fold in the vicinity of Michigamme Mountain, sec. 10, T. 43 N., R. 31 W., and northwest into sec. 19, T. 46 N., R. 32 W., a distance of nearly 18 miles. On the west side of the fold the dolomite is not well exposed. On the east the belt is about a half mile wide and the thickness of the dolomite is about 1500 feet.

Character. The formation ranges from coarse "sugary" marbles, in places very pure, but usually filled with secondary silicate minerals, to fine grained, little altered limestones, which locally grade into dolomitic sandstones and shales. The usual colors are white but various shades of pink, light and deep blue, and pale green are not uncommon. Some of the varieties are oolitic.

Analyses No. 5, 6, and 7, by R. J. Forsyth, are of Randville dolomite from the Michigamme Mountain region. Nos. 8, 9, and 10, by G. B. Richardson are of samples from localities unknown. No. 8 represents the pure dolomite, Nos. 5 and 6 the slaty phases, and No. 10 siliceous dolomite.

	5	6.	7.	8.	9.	10.
Insoluble in HCl	14.25	9.34		2.0	9.7	29.1
Fe ₂ O ₁	11.15	12.57	5.38	1.2 1	2.1	2.1
CaCO ₁	47.18 18.48	45.98 19.22	36.60 16.36	53.2 42.3	48.9 38.0	39.3 27.7
Total			·	98.7	98.7	98.3

Analyses of Randville dolomite.

This formation is suitable only for road metal and ballast.

Marquette County.

Distribution. The Kona dolomite* of the Marquette Iron District takes its name from the Kona hills east of Goose Lake. It forms a westward facing U (fig. 1) in the eastern part of the district with the northern arm ending near Teal Lake and the southern arm on the south side of Goose Lake. The northern very narrow arm extends from Mt. Mesnard, in section 35, T. 48 N., R. 25 W., about three miles south of the city of Marquette nearly due west for a distance of about 10 miles. The southern arm, due to transverse folding, is much wider and very irregular in outline and extends southwest to the foot of Wewe hills, a distance of over seven miles. The exposures are usually in the form of sharp and abrupt cliffs, cut by ravines and drift filled valleys, and are abundant in the vicinity of Kona Hills in sections 15, 17, 23, T. 47 N., R. 25 W.

Character. The formation is cherty dolomite containing interstratified layers of slate, graywacke, and quartzite, and gradational phases between the various mechanical sediments and the pure dolomite. The dolomite beds vary in thickness from a few inches to many feet thick and locally form only a third to a half of the formation. The purest of the dolomite beds contain thin cherty layers mingled with mechanical sediments. The texture of the dolomite varies from very dense grained to very coarsely crystalline, approaching marble. The color varies from nearly pure white to pink and red or dark brown. The layers of siliceous and argillaceous material also show a wide variation in color, hence the rock ledges differ greatly in appearance.

The dolomite has been greatly fractured and brecciated, though in most cases the fracturing is so minute as not to be recognizable except under the microscope. The brecciation in the layers of quartz, slate, and graywacke is much coarser. After brecciation the fragments were cemented together by coarsely crystalline quartz or dolomite, or both together. The bands and fragments of siliceous material stand out as ridges or nodules on weathered surfaces giving a very rough and jagged appearance.

Composition. The purer phases of the rock are heavily magnesian, generally approaching normal dolomite. The abundance of siliceous, argillaceous, and ferruginous impurities renders it of little value except for road metal, ballast, and rough building stone.

Trap rock, owing to its superior hardness, toughness, and high cementing value makes the best known road material. Because of

^{*}C. R. VanHise and C. K. Leith. The Marquette Iron District, Mon. LII, U. S. Geol. Surv. 1911, p. 258; also C. R. VanHise, The Marquette Iron Bearing District, Mon. XXVIII, U. S. Geol. Surv. 1897, p. 240-256.

its fire resisting qualities, it is also much superior to limestone as an aggregate in concrete mixtures. Marquette county has an abundance of trap rock, hence the beds of dolomite probably will never be of much economic value as a source of crushed stone.

Numerous projects have been started for developing the marble-like phases of the Kona and Randville dolomites, but thus far nothing has come of them. The vari-colored crystalline portions when polished are said to be very beautiful, but it is probable that the impurities would result in a large amount of waste in quarrying. Moreover, many of the layers of argillaceous and siliceous material are schistose or slaty, thus tending to produce parting planes. For these reasons it is doubtful that the pre-Cambrian dolomites are susceptible of development for marble or building stone.

Figure 10. Map showing the distribution of the peridotites northwest of Ishpeming, Marquette county. (After Van Hise, Bayley and Smyth, Monograph 28, U. S. Geological Survey).

Verde antique marble. There are, however, in Marquette county certain peridotite rocks,* composed chiefly of olivine, now largely altered to serpentine and dolomite, to which the name verde antique marble has been applied. Northwest of Ishpeming a belt of altered peridotite (fig. 10) about $4\frac{1}{2}$ miles in length extends from the southern part of sec. 21, T. 48 N., R. 27 W., southwest into the southeastern part of sec. 35, T. 48 N., R. 28 W. There are a number of separate exposures, the larger ones being from 1 to 3 miles long.

In some places the rock is almost wholly dolomite, in others it is a calcareous or dolomitic serpentine. The serpentine phase predominates.

^{*}C. R. VanHise. The Marquette Iron Bearing District, Mon. XXVIII, U. S. Geol. Surv. 1897, pp. 183-186.

The dolomite generally occurs as veins cutting the serpentine and in ill-defined bands bordering cracks and joint planes. The serpentine varies in color from light to dark green with shades of olive but the dolomite is generally white. The rock takes a high polish and the intricate veining of dolomite produces very beautiful effects.

The rock is said to be very massive and the numerous cliffs and knoblike exposures afford very favorable quarrying conditions. gan Verde Antique Company, Ishpeming, Michigan, is opening a quarry in sec. 30, T. 48 N., R. 27 W., about five miles northwest of Ishpeming. Polished slabs of stone from this quarry are beautifully veined and colored, equal or superior in polish or coloration to much of the verde antique marble now on the market.

Analyses Nos. 15 to 17, made by Whitney* in 1859, are partial analyses of serpentine from Presque Isle and No. 18 of peridotitet from the vicinity of Opin Lake, 1220 paces north, 500 paces west of the southeast corner, section 27, T. 48 N., R. 27 W.

	No. 15.	No. 16.	No. 17.	No. 18.
01		37.25		39. 4.
1901	16.50	6.75 14.14	12.90 19.52	4. 9.
\$OgOnO	. 33.07	28.67	14.82	3. 26.
O				
iO O NO				tri
;O		1.16		
O, below 110° O, above 110° Os	. []			7
02				

Analyses of Serpentine and Peridotite.

PALEOZOIC LIMESTONES.

Alger County.

Distribution and Character. The Beekmantown (Calciferous) sandstone forms a sinuous belt across the central portion of Alger county from the southwest to the northeast. It is well exposed in the vicinity of Chatham, Alger county, especially along the upper course of Au It is also exposed south of Munising. Analyses Nos. Train River.

^{*}J. D. Whitney, Notice of new localities and interesting varieties of minerals in the Lake Superior region, Am. Jour. Sci., Vol. XXVIII, 1859, p. 18.

[†]C. R. VanHise. The Marquette Iron Bearing District, Mon. XXVIII, U. S. Geol. Surv. 1897, p. 186.

19 to 23 show that locally it is a very sandy dolomite. In places the sand content is low and quite possibly in some places it is sufficiently pure for use as a basic lining of furnaces. The stone is sufficiently massive and durable for use as building stone, but its distance from markets and the abundance of other stone equally suitable for building purposes nearer good markets make it of no present importance for such purposes.

Alpena County.

Distribution. The Traverse* formation (figs. 9 and 11) occupies the northeastern half of Alpena county and the Antrim shale, the slightly smaller southwestern half. Rock is at or near the surface over most of the northeastern half except near the western margin. The Long Lake, or Lower Traverse series, the Alpena, or "Middle" limestone, and the Thunder Bay or Upper Traverse series form three roughly parallel belts extending in a general northwest-southeast direction across the eastern half of the county. The limestones and shales of the Long Lake series cross the northeastern corner from the vicinity of Misery or Little Thunder Bay into Presque Isle county and they can be definitely traced as far northwest as Rogers City and Black Lake. The Alpena series forms a belt between 4 and 5 miles wide extending from North Point, Thunder Bay peninsula, into Presque Isle county and across the central part of Presque Isle county in the vicinity of Onaway into the central portion of Cheboygan county. The Upper Traverse shales and limestones occupy the southwestern belt, apparently 6 miles or more in width, which extends from Partridge Point northwest into Presque Isle county.

Long Lake Series. The Long Lake group consists of alternating beds of limestone and shale. Most of the limestone is more or less argillaceous, and some of it is more nearly shale than limestone.

The shale is generally very calcareous and almost every variety of rock from pure limestone to pure shale may be found. Many of the beds of limestone are also very bituminous and fossiliferous. Most of the black limestones are locally extremely fossiliferous. The most notable of these fossiliferous beds occurs at the base of the series and lies directly over the Bell shale. At Rockport (see Rockport quarry) this bed is 25 to 30 feet thick.

Some of the limestones are very massive and resistant to erosion and give rise to roughly parallel lines of prominent escarpments facing northeast with long gentle slopes on the southwest.

The shales and more argillaceous and thin bedded limestones occupy the valleys between the lines of escarpments. The bottoms of some of

^{*}See previous chapter for general description of the formation.

the valleys are occupied by lakes and swamps. The numerous escarpments afford very favorable opportunities for quarrying but unfortunately the argillaceous character of much of the limestone and the occurrence of seams and beds of shale make most of the beds of little economic value. It is possible, however, that some of the argillaceous limestones may be found suitable for the manufacture of natural cement.

The Alpena Portland Cement Co. obtained their supply of shale from an exposure in section 18, T. 32 N., R. 9 E. Several shale beds from a few inches to 18 feet thick and considerable argillaceous limestone was struck in test holes in the western part of sections 20, 30, 31, and 32 of the same township. Shale and argillaceous limestone was also encountered in test holes just across the line in southeastern Presque Isle County. Very argillaceous limestones are exposed at Beck's Mill at the falls of Hell Creek in section 23, T. 32 N., R. 8 E., and along the highways to the south and east of Long Lake, on Thunder Bay Island, at El Cajon Beach (sec. 10, T. 31 N., R. 9 E.), and Misery or Little Thunder Bay, and at many other places. It must not be inferred, however, that none of the exposures contain pure limestone. On the contrary in many of the exposures there are massive beds of high calcium limestone under very favorable conditions for quarrying, but the relatively thin sections of marketable limestone in most of these exposures do not permit of quarrying operations on a large scale. There are numerous deposits of pure limestone sufficiently large to supply the needs of lime burners or the local demands for crushed stone, etc. The day of the small operator and crude methods, however, is past and it is only under favorable local conditions that small operators can compete with the many limestone products companies now operating on a large scale with the most efficient methods and equipment.

Quarries and Localities.

Rockport. At Rockport, the Great Lakes Stone & Lime Company have recently opened a large quarry in the thick, massive and extremely fossiliferous bed at the base of the Long Lake series. The bed is from 25 to 30 feet or even more thick and forms an almost continuous bluff extending from the north line of section 6, T. 32 N., R. 9 E., southeast along the shore of Lake Huron for more than a mile. The bed rests directly on the soft blue Bell shale, the bench between the lake and the bluff being formed largely of the shale. From the top of the bluff the surface rises gently to the west for about a third of a mile where there is a second terrace. Farther inland there are other terraces.

These upper terraces are composed of higher lying beds of the Long Lake series and undoubtedly include beds of shale and argillaceous limestone.

The Rockport Limestone is essentially stromatopora, coral, etc., with a matrix of dark or black crystalline and very bituminous limestone. The stone contains from about 94 to nearly 98 per cent of calcium carbonate. Analyses Nos. 24 to 29 show the general character of the stone. It is said to be especially well adapted for flux. Owing to its very bituminous character, however, it does not burn well. The bituminous pieces are apt to have a dark carbonaceous core but the white masses of stromatopora, coral, etc., burn well and make excellent chemical lime.

A natural escarpment parallel to the lake shore and relatively thin overburden afford exceptional advantages for development. Due to the presence of a transverse drift filled ravine the quarry face has been developed only along the northern portion of the bluff. Later it is planned to extend the workings to the southeast beyond the ravine. A harbor has been dredged, docks erected, and a modern crushing plant has just been completed with a rated capacity of over 1000 tons per hour.

The floor of the quarry is formed of the soft blue shales of the Bell member. At the top of this there is a thin, very fossiliferous bed. Below this the shale is apparently non-fossiliferous and homogeneous and probably will be found suitable for various brick and tile products. With the progress of quarrying operations a large supply of shale will become available under exceptionally favorable quarrying conditions.

El Cajon Beach. At El Cajon Beach (sec. 10, T. 37 N., R. 9 E.) dark argillaceous limestones form a prominent flat topped bluff along the Lake Huron shore 40 to 50 feet above the water. There is practically no overburden on the top of the bluff, which faces a beautiful bay about a half mile wide. The bay is almost land locked by a barrier beach. About 15 years ago the El Cajon Portland Cement Company planned to build a plant for the manufacture of cement from the argillaceous limestones. A quarry was opened and hydraulic lime or cement was burned for making the foundations of a large plant. The company failed and the project was abandoned. The foundations are now crumbling to decay.

The favorable quarrying conditions here and a good harbor afford exceptional advantages for development.

The lower beds are covered with talus from the bluff. The visible beds are dark and argillaceous, containing over 6 per cent of alumina and iron and nearly 33 per cent of silica. The magnesia, however, is low. Analysis No. 42 was made from a composite sample and shows the argillaceous character of the beds.

Misery (Little Thunder) Bay. At the head of this inlet there is a large sink hole known as the "bottomless hole," from which strong springs arise. The western wall of this sink is a vertical cliff composed of thin bedded limestones separated by shale partings. Large masses are continually breaking off and falling into the bay. At present there is a large crevice from a few feet to 10 feet wide extending roughly parallel to and at a short distance from the shore for several hundred yards. In this crevice alternating beds of pure limestone and argillaceous limestone, typical of the Long Lake series, are exposed. Were the stone of commercial grade the favorable quarrying conditions and the deep natural harbor would invite development.

Exposures of the Long Lake series are very numerous throughout much of the belt and are characteristically shaly and argillaceous. Analysis 90 is of a compact gray limestone* near the top of the series, exposed on the Long Lake road along the east line of sec. 27, T. 31 N., R. 8 E.

So far as known the Rockport limestone at the base of the series is the thickest bed, free from shale and argillaceous matter. It is probable that exposures of this bed in Alpena county are confined to the vicinity of Rockport. Northwest in Presque Isle county the bed apparently comes to the surface some distance west of Grand Lake.

Alpena Limestone. The Alpena limestone is a group of very massively bedded gray and buff crystalline high calcium strata characterized in the Alpena region by reefs of white coral. The group includes some interbedded shale and shaly limestone, locally very cherty and bituminous. Some of the upper beds contain more or less magnesia and locally the reef limestone contains magnesian or dolomite "chimneys."

Michigan Alkali Company quarry. The Alpena limestone is best exposed in the vicinity of Alpena, particularly in the large quarry (Pl. II A) of the Michigan Alkali Company in the eastern part of the city. This quarry consists of a roughly circular opening, the area of which is said to be between 60 and 70 acres. Quarrying is conducted on two levels. The face on the upper level varies from about 40 to nearly 50 feet. The lower level was just being developed in 1914 and the working face was then only about 30 feet and wholly below lake level. A sump, however, had been excavated below the floor of the

^{*}A. W. Grabau. Stratigraphy of the Traverse formation, Ann. Rept. 1901, Mich. Geol. Surv., p. 179.

lower quarry so that the height of the exposure was between 80 and 90 feet. The great size and depth of the quarry affords exceptional opportunity for study of the reefs and intervening beds. The reefs are mounds and ridges of very white coral limestone. Some of the mounds are more or less connected, others are isolated. More commonly they are united and form more or less continuous and anastomosing system of ridges. The mounds and ridges can be traced for considerable distances in the vicinity of Alpena.

The beds dip away from the reefs at rather steep angles but at short distances they flatten out and become nearly horizontal. Many of the beds are continuous from one reef to the next. The fossil materials of the reefs interfinger with the beds and locally masses of reef material occur between the beds at some distance from the parent reef.

The following is a section of the southeastern side of the upper quarry midway between two coral reefs and represents only the massive crystalline and less fossiliferous beds:

Section in Upper Quarry.

No. of Bed.		Thickness, ft.	Depth, ft.
1.	Hard buff crystalline limestone	4+	4+
2.	Grayish buff crystalline limestone	2	6
3.	Hard grayish buff crystalline limestone with some bituminous streaks	9	15
4. 5.	Anal. No. 31.	2 4	17 21
6. 7.	Anal. No. 32.	3+ 3	24 27
8.	Dark gray crystalline limestone with shaly streaks and chert nodules	4 2	31 33
9. 10.	Buff crystalline limestone. Grayish buff crystalline limestone similar to No. 2 CaCO ₁ 94.78% Anal. No. 34.	6+	33 39 +

The following is a continuation of the section in the	lower	quarry.
There is a gap between the two sections of 6 to 10 feet.		

No. of Bed.		Thickness, ft.	Depth,
1,	Missing. Dark crystalline and crinoidal limestone	10+	49 52
11.	Dark crystalline and crinoidal limestone	3	52
12. 13.	Dark bituminous limestone with interbedded coral masses. Dark gray massive limestone with scattered heads of	7	59
10.		ا ہ	67
14.	Crystalline limestone, with stylolitic structure	. 8	72
17.	(CaCO ₂ 96.40%)	. 3	12
15.	Dark fine grained bituminous limestone	4	76
16.	Argillaceous (?) limestone or limestone of inferior quality.		

The reefs vary from about 50 to nearly 100 feet wide, though measured from the extremities of some of the interfingering masses of coral which extend outward from the reefs the width is much greater.

The reef rock is generally very pure, in places, containing over 99 per cent of calcium carbonate. (Anal. No. 49). Locally there are heavily magnesian areas in the reefs, called magnesian or dolomite "chimneys." Generally the stone in such areas is more or less stained yellow by iron and is extremely porous or sponge-like. Owing to its extreme porosity the magnesian stone is in great demand by paper manufacturers using the sulphite method.

The composition of the beds between the reefs varies vertically from bed to bed and horizontally in the individual beds. The upper beds in the Michigan Alkali quarry contain considerable percentages of magnesia (Anal. No. 30) and some of the middle ones are very siliceous or argillaceous. The interbedded shale and argillaceous limestone ordinarily would result in much waste material but this, together with the "fines" or limestone screenings is utilized for the manufacture of Portland cement by the Huron Portland Cement Company, whose plant is located on Thunder Bay a short distance from the quarry. Excepting the upper beds, the Alpena limestone is dominantly high calcium. The magnesian stone causes little trouble because in the process of quarrying it is mixed with so much of the exceptionally high calcium stone that its effect is barely noticeable in the quarry product.

Analyses Nos. 30 to 34 show the general character of the crystalline limestones on the southeast side of the upper quarry and No. 35 the limestone in the lower quarry. No analyses were made of the beds of shale and argillaceous and cherty limestone. Analyses Nos. 36 to 41 are of hand specimens from different beds in the quarry.

A large part of the select stone is shipped by boat to Wyandotte and Ford City for the manufacture of soda ash, bleach, caustic, etc. A

large amount of stone, including the "fines" or argillaceous screenings is also used in the manufacture of Portland cement. The remainder of the quarry product is disposed of for a variety of purposes.

Alpena Portland Cement quarry. The abandoned plant and quarries of the Alpena Portland Cement Company are near the shore of Thunder Bay about three-fourths of a mile east of the quarry of the Michigan Alkali Company, but at a lower level. On the occasion of the writer's visit the quarries were full of water and only the upper beds were accessible. Probably these beds are to be correlated with those in the lower quarry of the Michigan Alkali Company. The south face of the quarry is composed of reef limestone and other beds dipping away from it.

The prevailingly high calcium character of the stone is shown by analyses Nos. 43 to 62.

Richard Collins quarry. This is a small quarry operated for lime burning about two miles north of the Michigan Alkali Company's quarry. The opening is in dense, light gray, fragmental reef-limestone, in every way similar to the fragmental portions of reefs in or about the quarries of the Alpena Portland Cement Company and the Michigan Alkali Company. The high quality of the stone is indicated by analyses Nos. 63 to 65.

Owen Fox's quarry. This quarry is located about two miles north and slightly west of the Michigan Alkali Company quarry. The general dip* of the strata is 4 degrees to the south. In the eastern end the dip increases from 8 to 18 degrees, the steepest dip being in the easternmost portion where the abundance of corals indicate the neighborhood of a reef. On the southwest these beds are overlain by dark shaly limestones and bituminous shales with a rich coral and brachiopod fauna. Analyses Nos. 66 and 69 show the great purity of the unaltered Acervularia and Stromatopora limestone. The upper beds contain only 1.33 per cent of magnesia, but the lower ones 4.20 per cent.

^{*}A. W. Grabau, The Stratigraphy of the Traverse Formation, Ann. Rept. Mich. Geol. Surv. for 1901, p. 176.

Analysis of Drill Core, Hole No. 38, Alpena.

On the East $\frac{1}{2}$ of section 12, T. 31 N., R. 8 E.

B. H. Taylor, Carnegie Steel Co., Pittsburgh, Pa., 1909.

No. Anal.	Depth.	SiO ₂ .	Al ₂ O ₃ .	Fe.	CaCO ₃ .	CaO.	MgCO ₃ .	MgO.	Sul.	Phos.
93 94 95 96 97	6-11 ft 11-16 ft 16-21 ft 21-26 ft 26-31 ft	5.72 3.88 2.90 3.72 1.80	2.97 1.96 1.45 2.30 1.45	.36 .56 .30 .32	87.6 89.4 93.0 90.8 93.6	49.11 50.63 52.11 50.94 52.58	*2.40 2.26 1.96 2.11 1.80	1.15 1.08 .94 1.01	.193 .187 .123 .183 .217	.019 .018 .017 .019
98 99 100 101 102	31-36 ft 36-41 ft 41-46 ft 46-51 ft 51-56 ft	.50 .48 1.28 6.10 1.96	.54 .65 1.07 3.54 1.62	.46 .40 .32 .45	90.0 92.0 94.4 87.6 93.4	50.51 51.55 52.95 49.04 52.34	7.82 6.02 2.24 2.21 3.18	3.74 2.88 1.07 1.06 1.52	.143 .207 .250 .385 .188	.005 .006 .019 .041 .020
103 104 105 106 107	56-61 ft 61-66 ft 66-71 ft 71-76 ft 76-81 ft	6.16 4.42 2.36 .58 .34	3.44 4.37 2.81 .90 .50	.57 .36 .35 .24 .23	85.7 86.6 90.0 96.0 97.0	48.13 48.56 50.33 53.86 54.41	3.80 1.98 1.88 1.96 1.80	1.82 .95 .90 .94 .86	.484 .876 .320 .259 .155	.038 .030 .010 .009 .007
	Average Anal	2.81	1.98	.37	91.2	51.14		1.37	.278	.018
108 109 110 111	81-86 ft 86-91 ft 91-96 ft 96-98 ft	1.58 3.18 12.78 12.28	.78 1.91 7.91 7.39	.66 .57 .72 .74	91.8 90.3 73.7 74.8	51.48 50.51 41.30 41.91	4.70 3.48 5.01 5.43	2.25 1.64 1.44 1.64	.242 .242 .488 .426	.006 .010 .021 .018

^{*}Figures in italics are calculated from original analyses.

Analysis of Drill Core, Hole No. 1, Alpena.

N. $\frac{1}{2}$ of sec. 13, T. 31 N., R. 8 E.

B. H. Taylor, Carnegie Steel Co., Pittsburgh, Pa., 1909.

No. Anal.	Depth.	SiO ₂ .	Al ₂ O ₃ .	Fe.	CaCO ₃ .	CaO.	MgCO ₃ .	MgO.	Sul.	Phos.
112 113 114 115 116	2- 7 ft 7- 12 ft 12- 17 ft 17- 22 ft 22- 27 ft	.42 1.00 2.94 2.68 2.12	.46 .46 1.49 2.27 1.84	.42 .66 .44 .38	96.5 96.2 93.2 93.5 93.5	54.05 53.93 52.24 52.47 52.47	1.84 1.50 1.13 .84 1.96	.88 .72 .54 .40	.015 .075 .091 .067	.020 .022 .013 .014 .015
117 118 119 120 121	27- 32 ft 32- 37 ft 37- 42 ft 42- 47 ft 47- 52 ft	.68 .86 1.66 3.42 3.42	.52 .49 1.37 2.07 2.55	.32 .34 .36 .30 .36	95.7 95.7 94.1 91.3 90.8	53.57 53.57 52.78 51.26 50.95	1.90 1.96 1.73 1.65 1.50	.91 .94 .83 .79 .72	.042 .071 .097 .150	.018 .019 .018 .017 .020
122 123 124 125 126	52- 57 ft 57- 62 ft 62- 67 ft 67- 72 ft 72- 77 ft	2.36 3.12 .84 .76 .94	1.58 1.81 .79 .21	.24 .34 .26 .40 .34	93.5 93.8 94.6 94.4 96.8	52.47 52.49 53.00 52.96 54.24	1.50 1.50 1.50 3.62 1.50	.72 .72 .72 1.73 .72	.110 .158 .150 .116 .116	.017 .015 .020 .012 .008
127 128 129 130 131	77- 82 ft 82- 87 ft 87- 92 ft 92- 97 ft 97-102 ft	2.72 3.74 2.00 1.98 2.28	1.17 2.28 2.29 1.45 1.99	.34 .32 .36 .44 .40	96.8 91.2 93.5 92.0 93.4	54.24 51.03 52.36 51.51 52.29	1.96 1.50 1.50 2.88 1.69	.94 .72 .72 1.38 .81	.166 .232 .197 .280 .333	.005 .040 .022 .025 .015
132 133 134 135 137	102-107 ft 107-112 ft 112-117 ft 117-122 ft 122-125 ft	.44 .36 .68 1.50 .54	.04 .19 .22 1.01 .21	.28 .26 .24 .36 .22	97.6 96.0 96.4 94.0 97.6	54.72 54.36 54.00 52.60 54.72	1.61 1.61 1.71 1.96 1.50	.77 .77 .82 .94 .72	.100 .167 .146 .247 .107	.006 .005 .005 .008 .005
	Average	1.74	1.17	.35	94.4	52.95	· <u>·</u>	.83	.138	.015
138	117-125 ft. Cuttings.	1.54	1.96	.52		52.36	 	.72	.240	.016

Gilbert Olson's quarry. This is a very small opening in S. E. ½ S. W. ½ sec. 18, T. 31 N., R. 9 E., formerly operated for lime burning. The stone is a light gray, dense grained, fragmental reef limestone similar to that in the Collins and Alpena Portland Cement quarries. The exposure forms a low mound adjacent to a swamp. Across the road the surface is much higher and limestone is exposed at many places in the S. W. ½ sec. 18.

Other localities. The Alpena limestone is at the surface or under very light cover over large areas north and northeast of Alpena in sections 6, 7, and 18, T. 31 N., R. 9 E., and sections 1, 2, 11, and 12, T. 31 N., R. 8 E. Analyses Nos. 70 to 75 are from various exposures in this vicinity, the exact location of which are not known. Analyses 93 to 138 are of cores from two test holes in sections 12 and 13, T. 31 N., R. 8 E. In hole No. 1, which is in the vicinity of the Michigan Alkali quarry the limestone, to the depth of 125 feet, averages 94.4 per cent

calcium carbonate. In hole No. 38 many of the beds are siliceous, argillaceous and comparatively low in calcium carbonate, though the magnesia exceeds 2 per cent in but three analyses. From 91 to 98 feet the silica and alumina form nearly 20 per cent of the rock.

The high average purity of the rock in the first hole may be due to its nearness to reef limestone and the relative impurity of the stone in the other to its greater distance from reef limestone. The bottom beds in hole No. 38 apparently belong to the Long Lake series. depth of the pure limestone in hole No. 1 indicates that the Alpena stone is thicker than apparent in the Michigan Alkali quarry. It is obvious, however, that in the vicinity of Alpena, due to the great horizontal variation in the composition of many of the beds, drill holes do not always furnish conclusive evidence of the precise character of the limestone beds. Exposures are abundant north and northwest of Alpena along the elevated tract to the Presque Isle County line. miles north of Alpena on the Long Lake road near the southwest corner of sec. 35, T. 31 N., R. 8 E., there is an exposure of a highly fossiliferous limestone consisting chiefly of stems and joints of crinoids and of various bryozoa. Analysis No. 89 shows that it contains considerable One mile north in a well drilled by E. S. Beal in the S. E. corner section 26, T. 31 N., R. 8 E., over 54 feet of solid limestone was penetrated.

Reef limestone is exposed in the N. E. corner of section 4, T. 31 N., R. 8 E., but, one-half mile east, light blue argillaceous limestone was encountered in a shallow well on the Chas. Allen farm near the S. ½ post of sec. 33, T. 32 N., R. 8 E. On the Leon Mainville farm S ½ S. E. ½ sec. 29, T. 32 N., R. 8 E., reef limestone is exposed over a large area and according to Mr. E. S. Beal, a man of wide experience in drilling, 154 feet of good limestone was penetrated in a well across the road near the S. W. corner section 28, the hole ending in black shale. The Alpena series is well exposed in numerous sinks in the vicinity of Bolton. The following section is exposed in a sink in the N. W. corner of section 14, T. 32 N., R. 7 E.:

	Feet.
Crinoidal limestone	1
Massive gray limestone	2
Acervularia limestone	4
Dark crystalline limestone.	4
Very shaly and bituminous limestone	l o e
Shale seam	Z.0
Gray crystalline limestone	ă.v
Talus	50

A similar series of beds is exposed in another sink about 120 rods east and slightly south. Mr. E. S. Beal drilled a well with a core drill 137 feet in depth near the northwest corner of section 16, T. 32 N., R.

8 E. Four feet of black shale was struck at 54 feet, all the rest of the rock being limestone.

The sections exposed in the sinks and penetrated in the wells indicate that the Alpena limestone series is thicker to the northwest or that the upper portion of the Long Lake series becomes less shaly west of Long Lake. No analyses were made of the cores from the wells, but if the stone is low in magnesia there is a large reserve of high grade limestone in the northern portions of Alpena and Maple Ridge townships.

M. J. Griffin quarries. These quarries, now abandoned, are about one and a half miles northwest of Bolton, near the Detroit and Mackinac railroad in the S. E. ½ section 5, T. 32 N., R. 7 E. The quarries are small and only about 8 feet of stone is exposed. Near the top the beds are extremely fossiliferous. The top bed is composed of a mass of crinoid stems. At the bottom of this bed there is a 6 inch stratum composed almost entirely of brachiopods. Near the bottom of the section the beds are dark and contain argillaceous and bituminous material. The stone is very pure and well suited for chemical and fluxing purposes as indicated by analyses Nos. 76 to 88.

Numerous exposures of the Alpena series occur in the vicinity of Bolton on the side of the valley of Thunder Bay river. Reef limestone occurs in the N. E. ½ section 20, T. 32 N., R. 7 E., a mile and a half south of the station. This evidently belongs to the upper portion of the series since the shaly Upper Traverse series occupy the valley of the Thunder Bay river to the southwest.

Summary. The Alpena series in Alpena County is essentially high calcium limestone containing reefs of great purity and beds of massive crystalline gray to buff limestone with some interbedded shale and argillaceous and cherty limestone. The elevated tract extending from Thunder Bay peninsula northwest into Presque Isle County is underlain chiefly by the Alpena series and contains an enormous reserve of easily accessible high calcium limestone under very favorable quarrying conditions. The inland situation, however, of most of the deposits is a factor unfavorable to their immediate development. The extensive beds of high calcium limestone in the vicinity of Alpena located near cheap water transportation are sufficient to last for a great many years.

Thunder Bay or Upper Traverse Series.* The Upper Traverse series is not so well exposed as the middle and lower series. It consists of shale and limestone, much of the latter very argillaceous.

^{*}A. W. Grabau. Stratigraphy of the Fraverse Formation. Ann. Rept. Mich. Geol. Series for 1901, p. 192.

Quarries and localities.

Dock Street, Alpena. A bed of clay about 6 feet in depth occurs in a test well on Dock street, Alpena, overlying the Alpena limestone. Above the clay is a bed of limestone only a few inches thick.

Fletcher Dam. Limestone is exposed at many places along Thunder Bay river, especially along the upper branches. At Fletcher Dam, section 7, T. 31 N., R. 8 E., formerly the location of Broadwells sawmill and dam, reef limestone occurs in the bed of the river. This is now concealed by the dam. Below the dam 6 feet of limestone and calcareous shale are exposed. Analysis No. 138 of this so called "hydraulic limestone" was made by N. H. Winchell about 1870. According to Winchell's unpublished field notes there are numerous exposures chiefly in sinks and cracks in T. 32 N., Rs. 6 and 7 E. In section 2. T. 31 N., R. 7 E. hydraulic cement was burned by a man named Trowbridge. The Boom Company's dam on Thunder Bay river in section 2, T. 31 N., R. 7 E., was formerly the site of Trowbridge's mill. A cliff of shale 15 feet in height occurs along the east bank. The lower part is very calcareous. Above the shale there is about a foot of subcrystalline limestone, apparently identical with the thin limestone above the Dock street clay in Alpena. Below the dam on the right bank of the river 6 feet of very calcareous shale is exposed.

Warner brick yard. Calcareous shales with thin bands of argillaceous limestone are exposed at Warner's old brick yard in the southwestern part of Alpena. The following analysis shows the calcareous nature of the lower blue portion of the exposures:

						•		
No. Anal.	SiO ₂ .	Fe ₂ O ₂ .	Al ₂ O ₃ .	CaCO ₃ .	CaO.	MgCO3.	MgO.	CO ₂ , organ., Alk., and loss.
140	54.46	4.66	17.26	11.79*	6.60	5.92*	2.82	14.20

*Analysis Warner's Brick Yard Clay.

Stony Point. A cliff of limestone and shale 12 feet in height is exposed at this place. The upper 4 or 5 feet is composed of limestone with shaly partings and the lower portion of shale with thin bedded calcareous layers. The top bed of the Upper Traverse series is a brownish granular dolomite.

Summary. The foregoing data indicates that the Upper Traverse series is too shaly and argillaceous to be of much commercial importance

^{*}Calculated from original analysis.

as a source of limestone. It is possible, however, that locally the argillaceous limestones and shales may be adapted for making natural cement.

Arenac County.

Distribution. The Grand Rapids series occupies the northeastern half of the county. The Lower Grand Rapids, or Michigan series, underlies that portion of the county north of a line drawn from the mouth of Au Gres river west-northwest to the point where the river intersects the north county line. The Upper Grand Rapids or Bay Port (Maxville) forms a belt from about 2 to 4 miles wide extending from Point Au Gres on Saginaw Bay to the northwest corner of the county. The western half of the county is heavily drift covered, hence exposures of limestone are confined to the eastern port!on.

Figure 12. Map showing the distribution and the chief areas of exposures of the Bayport limestone in Arenac county. Black triangles indicate quarries.

The principal exposures of the Bayport limestone are along a low broad ridge (fig. 12) extending from Point Au Gres northwest into the southeast portion of section 34, T. 20 N., R. 5 E. Exposures of the Michigan series are almost entirely confined to a broad low ridge in Ts. 19 and 20 N., R. 20 E., lying between Lake Huron and Au Gres River and extending south-southwest roughly parallel to the lake shore.

The Bayport formation* in Arenac County is composed of limestone, generally very sandy or cherty, thin bedded, and full of fossils, and hard gray or white sandstone. The thickness of the member at Omer is apparently about 45 feet and the high calcium layers form only a small fraction of this.

^{*}W. M. Gregory. Geology of Arenac County. Pub. 11, Geol. Ser. 8, Mich. Geol. and Biol. Surv., 1911, pp. 47-52.

Quarries and Localities.

Pt. Au Gres. An 8 foot bluff of limestone extends along the lake shore at Pt. Au Gres for a half mile. The upper 5 feet is sandy and contains traces of green shale and the lower 3 feet is light gray, very brittle limestone with nodules of chert and fossils. The stone was formerly quarried for building stone and it has proven very resistant to weathering. To the northwest of Point Au Gres limestone is exposed under light overburden in several places in sections 27, 28, 35, and 36, T. 19 N., R. 6 E. In section 27, as shown by the schoolhouse well, the limestone is only 5 inches thick and is underlain by 3 to 4 feet of brown sandstone and 7 feet of dark grayish limestone with sandy streaks.

Duck Lake quarries. Limestone is a'so reported to occur south of Duck Lake and on the west side of the lake. In sections 16 and 17, T. 19 N., R. 6 E., it forms a low flat ridge in which two or three small quarries have been opened for building stone. The Omsted quarries are in the southeast corner of section 17 where there are about 8 acres of limestone under light drift cover. The quarries consist of two small openings. In the one near the road a face of about 4 feet of very cherty limestone is exposed. In the other, located some 20 rods southeast, the upper 3 feet is very cherty. This is underlain by one foot of very shaly limestone, a 4 inch layer of fossils, and an 8 inch layer of dark lithographic limestone. Analysis No. 141 shows that the stone is a siliceous dolomite. The generally sandy, cherty, and magnesian nature of the limestone in this vicinity makes it unsuitable for most purposes excepting building stone or crushed stone for road making, concrete and ballast.

McDonnell quarry. The Jas. McDonnell quarry is located in the southeast corner of section 1, T. 19 N., R. 5 E., about 3 miles northeast of Omer at the southeastern end of a ridge of limestone which extends northwest into section 2. The quarry is operated for burning hot lime. The stone is obtained from a 3 foot layer of high calcium limestone underlain by 6 inches of argillaceous sandstone. The upper bed is a very hard dense grained white to light gray limestone. It is much fractured and disturbed by glacial action and tree roots, and stained by infiltrated clayey matter.

In 1902 Thomas Burt, former owner of the quarry, made a test boring in the bottom of the quarry, penetrating the following strata:

	Feet.	Inches.
Arenaceous limestone		
andstonelue limestone	100	
erk shaleypsum	10	

The overburden consists of a thin covering of loam and clay which is removed by shovels. The stone is pried out by bars and picks, loaded by hand on cars and drawn to the top of the kiln by horses. Wood is used for fuel. The lime is of good quality and is sold chiefly for chemical purposes and to supply the local needs.

The area underlain by the high calcium stone is unknown but it appears that it extends northwest across the adjoining property of Geo. Averill. In such case the area of available high calcium stone is between 20 and 25 acres. Analyses Nos. 141 and 142 show that it contains less than 2 per cent of magnesium carbonate. The relatively high silica content of the first analysis is due largely to the infiltrated clay and sand.

M. J. Griffin quarry. This quarry is located about three-fourths of a mile northwest of the McDonnell quarry near the opposite end of the same ridge. The quarry was operated largely for supplying crushed stone for paving and road ballast, but it has been abandoned for many years. The openings cover several acres but are shallow, varying from 4 to 6 feet in depth. The following section shows the general character of the beds:

Section in M. J. Griffin quarry.

	•	Feet.	Inches.
1. 2.	Gray to buff thin bedded limestone with some chert or flint nodules. Buff gray and gray very sandy and very cherty limestone. The bed contains many nodules of chert and flint irregularly distributed	2	
3. 4.	contains many nodules of chert and flint irregularly distributed and 15 to 20 per cent of fine quartz sand. Black or dark limestone with shaly seams. Gray limestone.	3 0 1+	2 to 6

Very cherty limestone is also exposed in an old quarry just across the road in section 2 where lime was formerly burned in an old set kiln.

Analysis No. 143 is of the purest stone in the quarry. The abundance of chert and sand in most of the beds and its magnesian character renders this limestone of little value except for building stone, road metal, concrete, and ballast.

Locally the chert or flint nodules are very abundant in some of the

beds in the Bayport limestone in Arenac County, and it is possible they may prove satisfactory for use in pebble mills used in grinding Portland cement clinker. Practically the entire supply of flint pebbles is imported at the present time. Flint pebbles are expensive and it is possible that where chert and flint nodules are abundant their recovery may be a source of considerable profit.

Sections 34 and 35, T. 20 N., R. 5 E. The ridge of limestone in which the McDonnell and Griffin quarries are located is interrupted in the eastern part of section 2, T. 19 N., R. 5 E., but it reappears again in the southwestern part of section 35 and southeastern part of sec. 34, T. 20 N., R. 5 E. Hard, light gray thin bedded limestone similar to that in the McDonnell quarry is reported at several places over an area of about 150 acres. Owing to the surface covering the thickness of the stone could not be determined, but according to Gregory* it is thinner than in the McDonnell quarry and is underlain by a ripple marked sandstone. According to Mr. Tyler, part owner, an analysis made by the German Sugar Co. showed an average of about 95 per cent of calcium carbonate. Analysis No. 144, from the northeast corner of section 3, T. 19 N., R. 5 E., according to W. M. Gregory, is apparently from the sections adjoining on the north. This part of section 3 is low and swampy and the ridge of limestone lies wholly in the sections on the north. Though a high calcium stone the silica is also high, which renders it unsatisfactory for the manufacture of sugar.

White Stone Point. At White Stone Point† low ledges of grayish limestone are exposed along the lake shore and extend out under the lake for a short distance. The stone is brittle, fine grained and free from sand.

In sec. 23, T. 20 N., R. 7 E., limestone is exposed over a considerable area, terminating on the north in a low cliff or steep terrace. Formerly Harmon and Crowell operated a small quarry in this deposit for lime burning. The stone contains an abundance of chert nodules and these finally caused the abandonment of the enterprise. The section exposed is as follows:

^{*}W. M. Gregory. Geology of Arenac County. Pub. 11, Geol. Ser. 8, Mich. Geol. & Biol. Surv. 1911, p. 51.
†Loc. Cit. p. 134.

	Feet.	Inches.
Boulder clay	6	11 6
Gray limestone with abundant chert nodules in upper portion 2 to 3 inches in diameter	9	

Section in Harmon and Crowell quarry.

Limestone was also obtained for burning from a small exposure in section 24 on the lake shore. The bed is only $1\frac{1}{2}$ feet thick and is covered with shale.

The limestone ridges in which the above quarries were opened begin near the southeast corner of section 13, T. 20 N., R. 7 E., and extend southwest into section 23. Analysis No. 145 said to be from the top layer shows that it is a high calcium limestone.

Many of the limestone strata in T. 20 N., R. 7 E., resemble those of the Bayport, northeast of Omer, and it is possible that they belong to this formation rather than to the Michigan or gypsum bearing series. Due to the extremely flat dip (about 15 feet per mile) of the strata to the southwest in Arenac county, the Bayport limestone may exist in the northeastern part of the county as a thin capping over the higher portions of the rock ridges.

Summary. The limestone resources of Arenac County are relatively The beds of high calcium stone are thin and associated with sandy, cherty, or magnesian limestone and shale, hence the greater portion of the quarry products is adapted only for building stone, concrete, road making, and ballast. The beds, however, are situated in a low flat clay region of the Saginaw Valley practically without other sources of suitable material for road making, therefore they are of very considerable local importance. The rapid settlement of the fertile clay lands in the eastern part of the county and the necessity for good roads will undoubtedly cause the early development of many of the deposits. Quite probably the developments will lead to the discovery of beds of high calcium limestone which, due to the scarcity of such stone in the central and larger portion of the Southern Peninsula, will be of importance to some of the sugar, chemical, and other industries dependent upon high calcium limestone. The cherty or flinty limestone may also become valuable as a source of pebbles for use in the manufacture of Portland cement. In brief the limestone resources of Arenac County, due to their isolated position and peculiar local conditions, have an economic importance out of proportion to their relative magnitude.

Charlevoix County.

Distribution. The northwestern portion of Charlevoix county is underlain by the Traverse formation which in the Little Traverse Bay region is chiefly limestone. The strata dip to the southeast and in the southeastern part of the county are overlain by the black shales of the Antrim formation.

The principal exposures are in the vicinity of the lake shore along high terraces cut by the glacial lakes formerly occupying the basin of Lake Michigan and standing at much higher levels than the present lake. The only considerable area of easily accessible limestone is in the vicinity of Charlevoix. The other exposures are chiefly in the form of narrow benches along the lake shore.

The Traverse is composed of alternating beds of high calcium and high magnesian limestones, as in the vicinity of Petoskey (see Emmet county). The thickness and precise character of all of the different beds and their relations, however, are not well determined.

Quarries and Localities.

Charlevoix. The largest and probably the most important area of limestone in the Little Traverse Bay region occurs in sections 28, 29, 32, and 33, T. 34 N., R. 8 W., just west of the city limits of Charlevoix. The area in which limestone is exposed or under light cover totals several hundred acres: On the east, the area is cut off by a deep valley partially occupied by Pine Lake. The limestone forms a table land generally from 20 to 60 feet or more above lake level between this rock valley on the east and Lake Michigan on the west.

The strata are locally very much disturbed. The general inclination of the beds is southward but it varies greatly in amount and direction from place to place. In one place, the dip is over five degrees to the north and an eighth of a mile distant over 22 degrees to the south. The rock series includes an upper horizon of high calcium limestone with a thin shale bed, a middle thick shale bed, and a lower series of limestones, apparently high calcium in composition but with some siliceous and argillaceous beds. Due to the general southward inclination, successively lower beds are exposed in passing from south to north across the area. The strike of the beds is in a general east and west direction but this is considerably modified locally by the sharp variations in dip. The limestone area is divided into two parts. The northern or smaller one includes Pine River Point and is separated from the much larger southern part by a narrow belt underlain by the middle shale.

Charlevoix Rock Products Company quarry. The Charlevoix Rock Products Company's quarry (Pl. II B) and limekilns are located a short distance northwest of the City of Charlevoix in the SE. ½ SE. ½ of section 28, T. 34 N., R. 8 W. At the time of the writer's visit in 1914, Quarry No. 1, located at the plant, was an irregular opening about 400 feet in greatest diameter and about 23 feet in greatest depth. The following section was exposed in the workings:

Section in Charlevoix Rock Products Co. quarr	Section	ock Products Co. qu	arry.
---	---------	---------------------	-------

	Feet.	Inches.
Surface or overburden about Light buff, friable, and sandy appearing limestone. Top portion much fractured and disturbed	1 18 1 2 0	6 6 6 8 to 10
position	10	6

The beds dip gently southward. Toward the west, however, the dip of the beds locally becomes discordant and much steeper as shown in a small quarry located about a quarter of a mile west-southwest of the plant.

The beds of limestone, though rather massively bedded toward the top of the quarry, are so completely traversed by an irregular system of joint planes that the stone is won by steam shovel without blasting. The shale beneath the quarry is so soft that a 10 inch layer of limestone is left above the shale as a floor to support the tracks and steam shovel.

The beds in the quarry average over 97 per cent of calcium carbonate, less than 1.5 per cent of magnesium carbonate and 1 per cent of silica. Analysis No. 146 is fairly representative of the average composition of the stone in the quarry excluding the top broken portion. Analyses No. 147 and 148 are apparently from this quarry, although the exact location is not given.

Due to its low percentage of silica, magnesia, or other objectionable impurities the stone is especially adapted for use in the manufacturing of special steels, sugar, and paper, as well as for general fluxing and chemical purposes.

Quarry No. 2 of the Charlevoix Rock Products Company is situated about one-fourth of a mile slightly south of west from Quarry No. 1. It consists of a narrow arcuate opening about 200 feet long extending in a general east-northeasterly direction and varying from a few feet up to 9 feet in depth. In this quarry the dip of the beds is abnormal in amount and direction. At the east end the dip is 18 degrees in a

direction S. 65° E., at the center 22 degrees S. 37° E., and at the west end 5 degrees S. 15° W. On the north the floor of the quarry begins at the surface and extends downward parallel to the beds, hence the face is wholly on the south side of the opening and parallel to the strike of the beds. Due to the steep southward inclination and a gentle northward slope of the surface the edges of underlying beds are exposed on the north side of the quarry. The following section is exposed:

Section in Quarry No. 2, Charlevoix Rock Products Co.

	•	Thickness, feet.
	Surface	0 to 1
1.	Yellow friable, earthy and fossiliferous limestone, much weathered, CaCO ₁ , 89	
	per cent	3+ 1+
2.	Shale, very fossiliferous, and yellow where weathered	
3.	Hard gray to buff gray very crystalline limestone. CaCO ₂ , 95.94 per cent.	
	Said to be especially adapted for sugar manufacture	
4.	Dense white laminated limestone, the floor of the quarry	1 ≠
5.		
	pora. Bed said to contain over 95 per cent of calcium carbonate	14

Bed No. 5 is said to be directly underlain by the yellow friable limestones exposed in quarry No. 1 at the plant, hence at this point there is about 45 feet of limestone above the heavy shale bed exposed in the bottom of quarry No. 1.

Analysis No. 149 indicates that the top bed, where fresh and unweathered is probably a high calcium limestone. The sample was taken from the exposed margin of the bed and probably farther south in the direction of the dip the stone is less weathered and of better quality. Analysis No. 150 is of a representative set of samples from the crystalline bed below the shale seam. No analyses are available showing the character of beds Nos. 4 and 5, but according to R. F. Sloan, general manager of the company, they contain over 95 per cent of calcium carbonate.

City quarry. Formerly the city of Charlevoix operated a small quarry near the northwest corner NW. ½ NE. ½ section 33, T. 34 N., R. 8 E., about one-eighth of a mile south of quarry No. 2 of the Charlevoix Rock Products Company. The section is apparently the same in both quarries with the exception that bed No. 3 is much thicker than in quarry No. 2. The stone was used for paving and road making.

A similar abnormal inclination of the beds occurs in this quarry. Apparently a small plunging anticline extends into the quarry from the southwest. The dip varies from 2 or 3 degrees to the northwest to about 7 degrees slightly east of north and directly toward quarry No. 1 of the Charlevoix Rock Products Company. Almost directly south the dip decreases to only 2 or 3 degrees. The dip is about 11 degrees south from quarry No. 1 and 7 degrees north from the city quarry, hence there must be a very pronounced trough or syncline in the strata

A. QUARRY AND CRUSHING PLANT OF THE MICHIGAN ALKALI COMPANY AT ALPENA, ALPENA COUNTY.

The lower quarry is shown at the right center and a portion of the new steel crushing plant at the extreme right.

B. KILNS AND CRUSHING PLANT OF THE CHARLEVOIX ROCK PRODUCTS COMPANY AT CHARLEVOIX, CHARLEVOIX COUNTY.

A portion of the quarry is faintly shown at the lower right.

المثيا

.

between the two quarries. Since the southeastward dip in quarry No. 2 is about 20 degrees, the syncline apparently plunges to the east. South of quarry No. 1, the dip of the beds is said to be very gentle, therefore the abnormal dips noted above must flatten out quickly to the eastward.

Wolverine Lime Co. quarry. A small quarry has been opened in the S. $\frac{1}{2}$ SE. $\frac{1}{4}$ sec. 29, T. 34 N., R. 8 W., in the western part of the Charlevoix limestone area. The Wolverine Lime Company owns or controls this and adjacent limestone properties and proposed to erect a modern lime plant. According to reports the enterprise did not materialize.

The quarry was about 7 feet in depth and the stone is apparently similar in character to that in the city quarry and quarry No. 2 of the Charlevoix Rock Products Company.

Analysis No. 150 is of a representative set of samples from the quarry. Analyses Nos. 152-154 were furnished by E. S. Stacks, a member of the company. These analyses show that the stone averages nearly 97 per cent calcium carbonate and less than 1 per cent of magnesium carbonate.

Lake shore. Due to the southward inclination of the beds in the Charlevoix area and the very considerable elevation of much of the area above lake level, a number of beds below the heavy shale bed of quarry No. 2 of the Charlevoix Rock Products Company are exposed at the surface northward from the quarries and along the lake shore to Pine River Point. Some of the beds are dark fine grained or lithographic in texture, others crystalline and fossiliferous. Apparently the lower series is in general low in magnesia, as indicated by analyses Nos. 155 to 159, which are supposed to be of stone from the vicinity of Pine River Point. Possibly analyses Nos. 147 and 148 are also from The striking feature of the first set of analyses is the the lower series. high silica, alumina, and iron which together average about 8 per cent. The evidence, though of doubtful nature, indicates that the character of the limestone deposits in the immediate vicinity of Pine River Point should be carefully investigated before developments are attempted.

Along the lake shore on the west, limestone is exposed at various places near water level from Pine River Point to Norwood. Close to the shore sand dunes conceal the rock. Farther inland and south of Charlevoix it is drift covered, exposures being few and small. South of Charlevoix near the west shore of Pine Lake there is an exposure of dolomite but no analyses are available. This lies above the high calcium series of the Charlevoix area but its exact position has not been determined.

From the foregoing data a generalized section of the strata exposed in the vicinity of Charlevoix is as follows:

	Feet.
Heavy magnesian limestone exposed south of the Charlevoix limestone area near Pine Lake: Series of high calcium limestones with a thin shale bed. Exposed in the various	7
Series of high calcium limestones with a thin shale bed. Exposed in the various quarries and at many places from the Charlevoix Rock Products Co. quarry	
westward to the lake shore	45
Soft blue shale. Exposed in the bottom of the Charlevoix Rock Products Co.	10
quarry No. 1. Series of high calcium limestones with some very siliceous and argillaceous beds. Exposed north of Charlevolx Rock Products Co. quarries along lake shore and on	10
Exposed north of Charlevoix Rock Products Co. quarries along lake shore and on Pine River Pt.	40 ±
This made I to	40 T

Norwood. North of Norwood, limestone is exposed along the shore on old terraces 40 to 60 feet or more above the water. The exposures or areas of easily accessible limestone are relatively small, being confined to the narrow terraces. Inland the overburden becomes excessive. Immediately south of Norwood the limestone is overlain by the black shales of the Antrim formation.

One mile north of the dock at Norwood, sec. 34, T. 33 N., R. 9 W., heavy magnesian limestone is exposed in a low bluff near the lake shore. Analysis No. 160, made by Rominger in 1869, shows that it is practically dolomite.

About $1\frac{1}{6}$ miles northeast of Norwood, NE. $\frac{1}{4}$ section 26, T. 33 N., R. 9 W., high calcium limestone is exposed in a number of places along the top of one of the upper terraces and at the base of a series of ancient sand dunes. The area of the terrace at this point is considerable but the area of accessible limestone could not be determined. Apparently it is at least several acres. About 5 feet of light gray dense grained to lithographic limestone was exposed in two small openings formerly operated for lime burning. Other openings are reported in this vicinity but these were not discovered. Nothing could be learned as to the probable thickness of this bed. Analysis No. 161 from a composite of several representative samples is indicative of its high average purity. It is possible that a considerable acreage of this high calcium stone could be developed in this locality.

Bay Shore. A double line of terraces or old lake beaches extends along the south shore of Little Traverse Bay. The lower terrace ranging from a few feet up to 40 feet or more in height is generally very close to shore. The upper terrace of equal height is usually from a few hundred feet to a half mile distant. Due to wave cutting by the present lake, limestone cliffs occur at many places in the lower terrace from Bay View, Emmet county, westward to Charlevoix and beyond. The upper terrace has but few exposures, being largely drift covered.

At Bay Shore cliffs of friable or sugary yellow brown limestone varying from a few feet to 40 feet or more in height extend continuously

along the shore for a considerable distance. Here the lower terrace is several hundred feet wide but the overburden is relatively thick in most places.

Northern Lime Co. quarry. Bay Shore or Standard Plant. The Northern Lime Co. of Petoskey operates a number of quarries along Little Traverse Bay for lime burning. Their plant at Bay Shore is called the Bay Shore or Standard Plant. The quarry is double, consisting of an eastern and western portion with a battery of four kilns midway between. At the time of the writer's visit the western opening was the smaller and shallower but plans were then under way for cutting through the neck separating the quarries. The developed face in the smaller quarry ranges in height from 15 to 25 feet but in the other it is 35 to 40 feet. The overburden is relatively thick, varying from 3 to about 10 feet, the thickness increasing away from the shore.

Locally the strata show very discordant dips. The general dip is slight and almost due south yet in the smaller quarry it averaged 5 degrees N. 45° W., resulting in a pronounced inclination of the quarry floor. Larger dips were observed but these were not maintained throughout the quarry. In the eastern quarry the dip, though not measured, was strongly to the northwest as in the smaller quarry. A quarter of a mile west of the quarry the dip is about 10° in the same direction. At Kawgachewing Point two miles farther west apparently corresponding strata are higher than at Bay Shore, therefore a marked syncline is indicated between these two places.

The following section was exposed in the western quarry:

Section in Bay Shore quarry, west end.

		reet.
	Surface	3 to 6+
1.	Light gray to white dense grained limestone, harder than the strata below	3 +
	Very yellow and ferruginous limestone, worthless and rejected for lime burning.	ĭ '
3.	Yellow to brown laminated limestone	2
4.	Massive yellow limestone, very soft in upper portion	3
5.	Banded yellow limestone with bituminous bands	2+
٠.	Panada Joseph Himotone with Distantions Canada	- '

In the eastern quarry bed No. 1 is overlain by 2 to 3 feet of gray crystalline magnesian and siliceous limestone, resembling at a little distance, gray granite and so termed by the quarrymen. The bed is rejected for burning. The remainder of the section is similar to that in the western quarry, but a much greater thickness of the lower, yellow, sugary limestones is exposed, the working face of the quarry being from 35 to 40 feet.

On the northeastern side of the quarry the strata down to and into the yellow limestone is cut out by a "horse of sandstone." It is a massively bedded yellow sandy appearing lime-sandstone said to contain only about 56 per cent of calcium carbonate and to be worthless for lime. This so-called "horse of sandstone" apparently represents an eroded channel in the limestone filled with lime-sand. The presence of this stone has stopped further quarrying on that side of the quarry.

Bed No. 1 is said to be "good" limestone, but No. 2, the ferruginous bed, is worthless. The yellow, "sugary" limestones below this bed are largely magnesian but are said to burn well and make very satisfactory commercial lime, containing from about 75 to 85 per cent of calcium oxide. Analysis No. 162 is of a representative set of samples from the usable stone in the quarry and indicates the general magnesian character of the beds. As at Petoskey and Superior (2 mi. west of Bay Shore) the percentage of calcium carbonate increases downward though irregularly.

Determinations of calcium carbonate were made for eight strata from top to bottom with the following results:

	No. analysis.	No. of bed.	CaCO ₃ .
167 168		2. 3.	63.0 82.4 79.7 92.4
171 172		5. 6. 7. 8.	88.3 97.9 93.3 63.7

Analyses of limestone beds at Bay Shore.

Analysis No. 163 is said to be from a high calcium bed near the base of the quarry. Analyses 164 and 165 are of commercial lump lime. The low content of silica, alumina, and iron in the stone as quarried is noteworthy. Analysis No. 174 is by Rominger from dark lithographic limestone about one mile east of Bay Shore and presumably from near the water edge. Very probably these lithographic beds are but a short distance below the bottom of the Bay Shore quarry as they are exposed on either side along the shore.

Owing to the soft friab e nature of the stone it is not adapted for concrete, roadmaking, or ballast.

Superior. At Superior, about 2 miles west of Bay Shore, the yellow sugary limestones form the upper terrace, the base of which is between 30 and 40 feet above the lake. The general character of the beds in the lower terrace is not known, but near the top there is a bed of blue shale and shaly limestone, and at the bottom slightly above and also below water level, there is a light gray lithographic bed overlain

by gray, dense grained to crystalline and fossiliferous limestone. These lower beds are high calcium limestones according to the local lime burners and apparently they belong to the series of high calcium lithographic limestones exposed at a number of places along the lake shore near water level from Petoskey westward nearly to Bay Shore.

Northern Lime Company, Superior Plant. The Northern Lime Company operates a quarry in the upper terrace of sugary limestones for burning lime. The quarry has been developed parallel to the face of the terrace or bluff and is about 600 feet long. The working face varies from 30 to 35 feet in height. The overburden is largely sand and stony gravel and varies from 2 to 10 feet thick. Apparently it is relatively thin over a considerable area back from the lake. The quarry supplies stone for a battery of three continuous kilns. Owing to its soft friable nature the stone is not suitable for concrete, road making, and ballast.

The section exposed in the quarry is as follows:

Section in Superior quarry.

		reet.
	Surface sand and gravel	2 to 10
1.	Yellowish white dense grained to earthy limestone	
2.	Clayey or shall light yellow limestone disintegrated and "rotten"	2 `
3.	Earthy limestone with light yellow and gray mottlings and streaks. More	
	crystalline toward the bottom	10
4.	Massive earthy yellow limestone	7
5.	Banded brownish "sugary" limestone with bituminous bands. Bottom of this	
	bed forms the floor of the quarry	
6.	Blue very shaly limestone weathering yellow	1+

The beds, though magnesian, are much less so than at Bay Shore as shown by analysis No. 175. According to Mr. Zipp, superintendent of the Superior and Bay Shore plants, lime averaging 85 per cent calcium oxide can be obtained by sorting the stone. Analysis No. 176 by Rominger in 1869 is from one of the dark lithographic beds near the bottom of the lower terrace and indicates that they are exceptionally high in calcium carbonate. The stone, however, is not adapted for lime burning on account of its tendency to "pop" or break to pieces in the kiln, thus choking the draft.

West of Superior and Kawgachewing Point cliffs of limestone similar in character to that at Superior occur at one or more points along the lake shore but the extent of the accessible limestone is uncertain. Generally ancient sand dunes and glacial deposits limit the quarryable areas to small narrow benches near the shore.

Summary. The limestone resources of Charlevoix county are chiefly confined to relatively small areas along the lake shore in the form of narrow benches, the inland portions of the county generally being

heavily drift covered. The largest and most important area occurs between the city of Charlevoix and Lake Michigan. The limestone in this area is high calcium but that eastward along the lake shore from Charlevoix is largely low to high magnesian. An area of high calcium stone occurs north of Norwood but its extent and importance is uncertain.

Cheboygan County.

Distribution. Three limestone formations underlie Cheboygan county. The Monroe formation skirts the lake shore on the north, the Dundee limestone forms a narrow parallel belt immediately south, and the Traverse formation occupies the whole central portion of the county. The Antrim and the Coldwater shales underlie the southern portion.

The rock surface is cut by a system of deep valleys partly drift filled and partly occupied by lakes. The deepest and largest extends from Cheboygan southwest to Little Traverse Bay and is occupied by Mullet, Burt, and other lakes. Black Lake occupies a branch of this valley extending southeast from Cheboygan. Due to the deep valleys and the irregular deposition of the drift, the exposures of limestone are chiefly on the sides of river valleys or along old glacial lake beaches and are usually of limited extent. The numerous drift filled channels locally makes the development of limestone deposits uncertain and hazardous.

The Monroe formation is doubtfully exposed near the water's edge on the lake shore east of Mackinaw City. The Dundee limestone forms the upper terrace along the lake shore from section 30, T. 39 N., R. 3 W., eastward across Private Claim No. 334, a distance of about three miles. Exposures occur along the lower course of Mill Creek which flows across the claim. The Traverse formation is exposed in numerous bluffs along river valleys in the vicinity of Afton, Legrand, and Tower.

The Dundee limestone as exposed in Cheboygan county is essentially a high calcium formation with a magnesian base. The Traverse formation is less shaly than in Alpena county but more so than in the vicinity of Little Traverse Bay.

Quarries and Localities.

Afton quarry. At Afton in NW. ¼ NE. ¼ section 36, T. 35 N., R. 2 W., the Campbell Stone Company operates a quarry (Pl. III A) both for lime burning and for crushed stone products. The quarry has been opened in the upper part of a high bluff on the east side of Pigeon River valley. The quarry is a more or less oval opening several hundred feet long and 30 to over 40 feet in depth.

The area of easily accessible stone was not determined but it is large

A. PLANT OF THE CAMPBELL STONE COMPANY AT AFTON, CHEBOYGAN COUNTY.

B. QUARRY OF THE PETOSKEY CRUSHED STONE COMPANY FOUR MILES WEST OF PETOSKEY, EMMET COUNTY.

Pronounced undulations of the beds as shown at the left are characteristic of the Traverse formation along Little Traverse Bay.

since a half mile to the north limestone is at or near the surface. The ridge, which forms a bluff along the river valley, extends eastward past the village of Afton for a considerable distance.

The section exposed in the quarry is as follows:

Section in Afton quarry.

		Feet.
1. 2.	Glacial drift. Light gray dense grained to crystalline limestone. CaCO ₁ , 97.32% Black bituminous limestone with masses of cup corals. Much of the stone re-	0 to 2 +
	jected though high in calcium carbonate. CaCO ₃ , 92.6%. Organic matter 2.61%. Light gray crystalline limestone. Very pure and burns easily. Used chiefly	6
3.	for paper manufacture by the soda process, CaCO ₂ , 96.97%	4+
4.	Disintegrated limestone. Falls to pieces in quarrying	1 -
5.	Very bituminous, banded, thin bedded limestone with bitu-	
6.	minous bands. Parts readily along bituminous bands. Similar to No. 5, but less bituminous. More bituminous CaCO ₃ , 98.04%	21
٠.	near top.	5}
7.		-,
• •	into fine pieces in quarrying	2
8	Very porous vesicular limestone. Openings due to solution.	_
٠.	Stone breaks up badly, resulting in much waste.	4
9.	Timbs was a buff fine grained lineartene, main querre hade	-
	Stone used for lime obtained largely from this bed. CaCO ₂ , 95.75%	10
10.	Light gray to grayish buff limestone with thin shale parting	
	at top	2
11.	Vesicular limestone, the floor in part of the quarry	ī+

A core drilling* near the quarry gave the following section:

Core Drilling, Afton Quarry.

l	Thickness, feet.	Depth, feet.
Clay, sand and broken rock	38	4 42
fact that this conspicuous bed was not noted in the record in- dicates that the hole was near the south edge of the bluff, hence the 38 feet of light colored limestone probably does not include beds No. 1 and No. 2). Brown rock, soft. (This is probably the soft vesicular limestone	-	
which forms the bottom of the quarry). Light limestone, hard Dark limestone, soft	6 i	48 54 55
Dark limestone, sort	i '	56 56
Blue shale, soft	5	61
Black limestone, hard	1	62
Light limestone, soft	2	64 65
Light limestone, soft	î	66
Mixed dark and light limestone, hard	13	79
Light limestone, hard	4	83
Gray limestone, hard	5	88
Mixed dark and light limestone, hard	7	95 100

Several other holes drilled in the vicinity of the quarry show practically the same section. Undoubtedly the holes located farthest north show the presence of beds No. 1 and No. 2, which were encountered farther up the bluff during the progress of quarrying in this direction.

^{*}A. C. Lane, Appendix Annual Report, 1908, Michigan Geological Survey, p. 91.

Character. The quarry beds vary greatly in color, structure and texture but all are very high in calcium and correspondingly low in magnesia. The black limestone owes its color to 2% to 3% of organic matter. As a rule, all but the more fossiliferous and less bituminous portions of this bed are rejected. The vesicular structure is apparently due to solution from water. In portions of some of the beds, the solution channels are so numerous that the stone literally crumbles to pieces under the heel. Blasting reduces this stone to an unsalable mass of small fragments. The percentage of fine material is exceptionally large and ordinarily would be wholly waste. Lime is burned in a rotary kiln and the stone must be crushed into small fragments, hence much of the fine material can be directly utilized for lime.

Bed No. 3, on account of its exceptionally low percentage of impurities, particularly silica and magnesia, is especially adapted for sugar and paper making. It burns very easily and makes a most excellent lime, but owing to the demand by paper and sugar manufacturers for stone from this bed most of the stone used for lime is obtained from beds Nos. 8, 9 and 10, which burn less easily, though making an excellent hot lime.

The percentage of calcium carbonate in the different beds in the quarry ranges from about 93% to over 98% (bed No. 3) and the silica from a minimum of .24% in the upper beds to 1.75% for the lower beds as shown by analyses Nos. 177 to 181. The average of analyses (No. 184) made from every two feet of core, the top 38 feet of "light colored" limestone (below beds Nos. 1 and 2) gave 96.52 per cent of calcium carbonate and 2.10 per cent of silica. Below this depth the silica and magnesia increase, a similar average of analyses (No. 185) gave 3 to 5 per cent of silica and 6 to 9 per cent of magnesia. Analysis No. 182, said to be of black limestone, shows a surprisingly small amount of organic matter as compared with analysis No. 178 of bed No. 2.

The presence of the bituminous and the vesicular beds in the quarry requires hand sorting and loading. The product is burned for lime, and sold for a variety of purposes requiring high calcium limestone.

Black Lake Quarry. A number of years ago the Onaway Limestone Co. opened a quarry in sec. 2, T. 35 N., R. 1 E., in a bluff along the south side of Black Lake about 6 miles north of Onaway. The following section is exposed:

Section in Black Lake quarry.

		Thickness, feet.
1.	Dark bituminous, crystalline, and very fossiliferous beds, containing masses of corals and an abundance of brachiopods. The beds are present only at	
2.	the east end of the quarryLight gray dense grained limestone with small disseminated calcite crystals	0-6 + 8 + 7
3.	Dense grained gray limestone with but few crystals of calcite	7
4. 5.	Gray dense grained limestone with many small calcite crystals Dense grained gray to lithographic limestone with many small crystals of	9
	calcite. Lighter than beds Nos. 3 and 4	4
6. 7.	Very fine grained, dark bituminous limestone	1-
8.	Dense grained limestone with bituminous bands	1 }
9. 10.	Dense grained limestone with calcite crystals and dense cavities Dark argillaceous bituminous and fossiliferous limestone with druse cavities.	Í
10.	Apparently the top of the Long Lake series	1+

The dip is strongly to the southeast and the light gray fine grained beds of the quarry are overlain on the east by gray fossiliferous and more argillaceous beds.

An analysis, No. 186a, of a set of samples from the light gray fine grained beds gave 96.84 per cent of calcium carbonate, 2.03 per cent of magnesium carbonate and less than 1 per cent of impurities. The beds weather to a distinct buff or brown, indicative of the presence of iron. The stone was sold for sugar manufacture but apparently the percentage of magnesium is slightly too high. The low percentage of impurities make the stone suitable for blast furnace flux and for use in the chemical industries.

Legrand quarry. About three-fourths of a mile southeast of Legrand in the SE. ½ sec. 28, T. 35 N., R. 1 W., the Campbell Stone Company opened a test quarry in a prominent ridge of limestone. The ridge extends in northwest-southeast direction and terminates on the north in a cliff or bluff, from 10 to 40 feet or more in height, along which exposures of limestone occur. The overburden at the brow of the cliff is thin but apparently it is much thicker to the south. The strata exposed in the quarry dip strongly to the south. The Legrand branch of the Detroit and Mackinac railroad passes directly in front of the quarry and affords favorable transportation facilities.

The section exposed in the quarry is identical with that at Afton, though the two places are nearly four miles apart, hence description of the beds is unnecessary. The section exposed is about 32 feet.

To the northwest the ridge is broken by a small stream but is continued in sec. 19, T. 35 N., R. 1 W. The record of a core drilling made on the SW. $\frac{1}{4}$ SE. $\frac{1}{4}$ of this section is as follows:

Core da	rilling l	Sec. 19,	T. 36	δN.,	R. 1	W.
---------	-----------	----------	-------	------	------	----

	Thickness, feet.	Depth, feet.
urface	2	2
ight colored limestone		7
ight colored limestone	8 6 in.	15 6 ir
hite coral limestone	16 in.	17
ight limestone		ôi
Thite count limestone	2 6 in.	23 6 i
Thite coral limestone	20 m.	25 6 1
ight limestone	2	
Thite coral limestone	6 in.	26
ight limestone	4 6 in.	30 6 i
ark limestone	2	32 6 i
ight limestone	66 in.	39
ark rock	1	40
lue shale		48 6 i
ray shale		50 6 1

An average (Anal. No. 186) of analyses made every two feet to the depth of 30 feet 6 inches gave 94.20 per cent calcium carbonate and 3.40 per cent of silica. Other core drillings were made on SW. \(\frac{1}{4}\) NE. \(\frac{1}{4}\) sec. 25, T. 35 N., R. 2 W., also on NW. \(\frac{1}{4}\) SW. \(\frac{1}{4}\) and SW. (?) \(\frac{1}{4}\) SW. \(\frac{1}{4}\) of sec. 13, T. 34 N., R. 2 W., and the results were very similar to those of the two records given above.

Marion Stone Co. quarry. Formerly the Marion Stone Company operated a small quarry in the S. $\frac{1}{2}$ NE. $\frac{1}{4}$ sec. 7, T. 35 N., R. 1 W., on the south side of a prominent ridge of limestone extending roughly in a NW-SE direction across the section and terminating on the southwest in a steep slope toward a small branch of Pigeon river. Rock is exposed along the brow of the ridge in a number of places. The overburden in the vicinity of the quarry varies from 1 to 3 feet. A branch of the Michigan Central railroad passes close to the quarry and affords ready facilities for marketing the product.

The opening is 300 to 400 feet long and very narrow. The beds dip strongly to the southeast and unfortunately quarrying was developed nearly in the direction of the dip. This made bad drainage conditions and a very rough floor. As quarrying progressed a 6-foot black bituminous limestone was encountered which contained so much organic matter and other impurities as to be unmarketable. These adverse conditions finally caused the abandonment of the quarry.

The section exposed is as follows:

Section in Marion Stone Co. quarry.

		feet.
	Surface: Densely crystalline limestone, fossiliferous in places	1-3
1.	Densely crystalline limestone, fossiliferous in places	4
2.	Very fossiliferous limestone with bands of very fine grained limestone, showing	
	'ribbon' structure on weathered surface	3 }
3.	Dense grained to crystalline limestone with abundance of corals and brachio-	
	pods in places	5
	Gray crystalline limestone	1 }
5.	Light gray densely crystalline and fossiliferous limestone	4
6.	Black bituminous limestone with scattering cup corals. Burns hard and	
	larger pieces generally have a black carbonaceous core	6
7.	Vesicular limestone. Cavities due to solution. Lowest bed exposed in quarry	21+

According to analysis No. 187 made from a representative set of samples from the various beds with the exception of the black limestone, the average content of calcium carbonate is nearly 97 per cent. The vesicular beds when below the water table yield large quantities of water. For this reason quarrying operations must be confined largely to the bluffs where the strata are self draining.

Limestone is exposed on numerous ridges and hills in the vicinity of Afton and Legrand and apparently there are large areas where limestone is under very favorable conditions for quarrying.

Tower. At Tower, limestone is exposed in a series of ledges in the channel of Black river, giving rise to rapids. Twelve feet of dark gray, nodular to massive, crystalline and fossiliferous limestone resembling the Long Lake series of the lower Traverse are exposed on the south side of the stream. The area of limestone under light cover is apparently small. No analyses are available.

Durrell or Mill Creek quarry. Four miles southeast of Mackinaw City, in Private Claim No. 334, the Dundee limestone is exposed along the lower course of Mill Creek and old lake terraces rising about 80 feet above Lake Huron. The upper terrace is covered with drift from 4 to 30 feet or more in depth. Mill Creek has carved a relatively wide valley in the drift on the terrace and a very narrow one in the limestone below, thus exposing the limestone in the creek bed in narrow benches on the sides of the lower valley. Limestone is also exposed along the base of the upper terrace parallel to the lake shore.

The Cheboygan County Limestone Products Company have recently opened a small quarry near the mouth of the creek. The following section is exposed:

Section in Durrell quarry, Mill Creek.

		Thickness, feet.
	Surface clay	
1.	Surface clay	
	16.97 per cent	1-2
2.	Buff to gray bituminous crystalline limestone with some very fossiliferous (Coralline) beds and bands of black bituminous limestone, CaCO ₂ 98.45	
	per cent. MgCO ₂ 1.24 per cent	12
3.	per cent, MgCO ₂ 1.24 per cent	
	cent	3 ±
4.	Buff to gray bituminous and crystalline limestone with bituminous and fossili-	
_	ferous bands. CaCO: 98.61 per cent, MgCO: 1.18 per cent	91
5.	Buff to gray limestone CaCO, 96 = per cent. Analyses available only from a	10
	portion of this section. Floor of quarry	10
0.		
	with gray crystalline spots. Locally very fossiliferous. Basal magnesian beds of the Dundee limestone. CaCO: 69.40 to 75.80 per cent. Thickness	
	above lake level about	25
	above take teres about	20

The area of limestone exposed or under light cover in Mill Creek valley and on the lower terrace is relatively small. Test holes indicate that the surface of the limestone is cut by valleys and gullies hence the total area of easily accessible high calcium stone is uncertain. The thickness of the stone above the basal magnesian beds is variable, ranging from nothing to probably over 50 feet. The average is probably between 30 and 40 feet.

The beds are characteristically gray to buff in color and very bituminous. Where fresh the stone is gray and crystalline, but where weathered it has a yellow or brown sugary appearance. Locally there are dark to black bituminous streaks. Most of the beds are sparingly fossiliferous but some are a mass of fossils, cup corals predominating. Locally the rock is fractured and the cracks are filled with bright red clay apparently the result of infiltration from the red surface deposits.

Analyses have been made of a large number of samples taken from the numerous exposures along the banks of Mill Creek from drill cores and from the quarry face and these show that most of the upper 45 feet averages over 98 per cent calcium carbonate with very little silica, iron and alumina or magnesia. The exceptional purity of these beds is shown by analyses Nos. 188, 190-193, 195-211, 213-216 and 218-227z. There are, however, magnesian bands, one near the top of the quarry and one near the middle as shown by analyses Nos. 194, 212, and 217. The basal beds of the Dundee, however, contain from considerable to large percentages of magnesia as shown by analyses Nos. 189 and 228.

On account of its exceptional purity, the stone is especially adapted for general fluxing purposes and for the manufacture of Portland cement, sugar, carbide and for use in the soda ash and chemical industries. The stone in the upper crystalline bed is generally hard and is suitable for road making, concrete and ballast.

The Michigan Central railroad runs directly in front of the quarry, affording favorable shipping facilities.

Limestone is exposed at various points along the high terraces to the northwest to McGulpins Pt. west of Mackinaw City. About two miles south of Mackinaw City in secs. 29 and 30, T. 39 N., R. 3 W., low ledges of Dundee limestone are exposed in the fields. Formerly lime was burned in small kilns at a number of places. The upper beds about 10 feet thick belong to the high calcium series at Mill Creek. Test holes show, however, that the basal magnesian limestone of the Dundee occurs at very shallow depths in the vicinity of the exposures. The upper lake terrace in these sections has in most places a heavy cover of drift.

Summary. Exposures of the Traverse formation are numerous in the central part of Cheboygan county in the form of relatively flat topped bluffs and ridges along river valleys. The extent of the accessible limestone is uncertain but apparently large. Test borings indicate that shale is very subordinate in amount and that the beds of limestone are uniformly high in calcium carbonate. Exposures of the Dundee limestone are small and limited to the narrow valley of Mill Creek and to the lake terraces between McGulpins Pt. and the mouth of Mill Creek.

Chippewa County.

Distribution. Chippewa county is underlain by three limestone formations, viz.: Beekmantown (Calciferous), Trenton, and Niagara. The Beekmantown is exposed only in the vicinity of Neebish Island, the Trenton on St. Mary's river, Carp river south of Waiska bay, and in the hills extending northwest-southeast through Ts. 45 and 46 N., R. 1 W. The Niagara is exposed over large areas on Drummond Island, in the southeastern peninsula, and along the southern margin in the western part of the county.

Beekmantown (Calciferous) formation. Ledges of Beekmantown formation are exposed on the west shore of Neebish Island. The rock is described by Rominger* as a hard crystalline dolomite in beds 6 to 12 inches thick divided by vertical fissures into almost rectangular blocks. Apparently it would make a durable building stone. Analysis No. 229 by Rominger indicates that it is practically a normal dolomite, though siliceous. Exposures also occur on St. Joseph and Encampment d'Ours islands on the Ontario side of the river where limestone was formerly quarried on a small scale. The exposures of the Beekmantown are of little economic importance in this county.

Trenton Limestone. The exposures of the Trenton limestone are all

^{*}C. Rominger, Vol. I, Pt. 3, p. 76, 1869-1873, Michigan Geological Survey.

on the Canadian side of the river, on St. Joseph, Encampment d'Ours, and Sulphur Islands. About 60 feet of shales and limestones belonging to the Trenton are exposed on Encampment d'Ours island. The lower portion is largely sandy calcareous shales, the middle part is thin bedded nodular limestone with shaly streaks, and the upper part is light colored brittle limestone with a conchoidal fracture. Analysis No. 230 by Rominger* indicates that the upper limestone though low in magnesia is siliceous. The beds exposed in the spur forming the northeast end of St. Joseph island are identical with those of Encampment d'Ours. Analysis No. 231 is from the blue middle argillaceous limestone and analysis No. 233 from the lower blue sandy portion.

Niagara Limestone. Exposures of all four members of the Niagara limestone, viz., the Engadine dolomite, the Manistique series, the Fiborn limestone, and the Hendricks series occur in Chippewa county. The principal exposures of the Engadine dolomite are in the northern third of T. 44 N., Rs. 4 and 5 W., the southwestern corner of T. 43 N., R. 1 E., the southern part of T. 43 N., R. 3 E., and in T. 42 N., Rs. 2, 3 and 4 E. This member caps most of the high bluffs, hence exposures of the underlying Manistique series are numerous along the basal portions of the bluffs. The most extensive exposures of the Manistique series are on Drummond Island. Exposures of the Fiborn limestone are doubtful but the Hendricks series is well exposed at Marble Head on the eastern shore of the island and also on some of the islands in St. Mary's river. The Fiborn limestone is exposed or under light cover at several places west of Trout Lake in the western part of T. 44 N., R. 6 W. Elsewhere the Fiborn limestone and Hendricks series are deeply buried under glacial drift.

Quarries and Localities.

Marble Head, Drummond Island. This locality was not visited by the writer, hence its description must rest upon the authority of Rominger† who has described it in detail. Marble Head is a promontory at the eastern end of Drummond Island rising about 100 feet above lake level. Its sides are steep with occasional vertical cliffs. Owing to the southward inclination of the beds, lower lying beds are brought to the surface on the north side of the hill along the shore. The following is the section as given by Rominger:

^{*}C. Rominger, Vol. I, Pt. 3, pp. 64-68, Michigan Geological Survey. †C. Rominger, Vol. III, pt. 3, pp. 33-36, Michigan Geological Survey.

Section at Marble Head, Drummond Island.

		Thickness, feet.	Depth, feet.
1.	Light colored irregularly bedded crystalline magnesian lime-		0.5
2.	stone. Massive light cream colored obscurely bedded coarsely crystalline dolomite, filled with casts of Pentamerous ob-	25	25
	longus	15	40
3.	longus	4	44
4.	Drift covered	10	54
5.	Dark gray highly crystaltine limestone with siliceous veins containing many fossils. Top of quarry.	6	60
6.	- 1700 EXELEV UPUL COINTER IXINIDALER HIDESTONE DECOMING NON- (• ;	
	fossiliferous toward the bottom	15	75
7.	Dark gray crystalline limestone becoming earthy toward		
	bottom of quarry	8	82
8.	Dark gray bituminous dolomites of nodular and unhomo-	- 1	
	genous structure. Seams of black carbonaceous matter		
	wind about in the rock mass	10	92
9.	Flaggy layers, in various shadings of color and with nodular	,	
	surface	6	98
10.	Ash colored fine grained acicular limestone in beds 4 to 8	7 1	
	inches thick, some of which are full of fissure-like cavities	1	
	extending in all directions. Cavities apparently once oc-		
	cupied by tabular crystals of calcite CaCO: 95 per	ŀ	
	cent. (This may be the diminished representative of the	į	
	Fiborn limestones)	3	101
l1.	Dull earthy limestone, druse cavities filled with calc-spar or		
	quartz. Some of the beds quarried on a small scale, but		
	apparently do not resist the weather very well	8	109
l2.	Dark gray bituminous and nodular limestone. The nodules	ĺ	
	are coated with a black film of bituminous shaly matter.	5	114
13.	Light colored absorbent limestones, separating in thin slabs		
	with uneven conchoidal surface. This exposure is one-	i	
	fourth mile from Pirate Harbor	10	124

Beds Nos. 5 to 9 inclusive were exposed in an old quarry at Marble Head, analyses Nos. 234 to 236 by Rominger show that they approach normal dolomite. Bed No. 11, the acicular limestone below the floor of the quarry and the light colored absorbent limestones at the bottom of the section are high in calcium carbonate, as shown by analyses Nos. 237 and 238. Analyses No. 239 is from loose slabs thrown up by the water on the west side of Sitgreaves bay. These slabs are apparently from just above the Cincinnati (Hudson River) group.

Further exploration inland to the northwest along the strike of the beds might result in the discovery of important exposures of the high calcium beds.

Drummond. A double series of high terraces or bluffs occurs along the north shore of Drummond Island in the vicinity of Drummond. Limestone is exposed at several places in vertical cliffs. The upper terrace, 10 to 40 feet in height, is composed of an alternating series of buff crystalline and fossiliferous high magnesian limestone, and dense grained, thin bedded dolomite without fossils. The lower terrace, 30 to 40 feet in height, is composed of buff to gray, finely crystalline and massively bedded dolomite. Vertical fracture systems almost at right angles to each other result in natural rectangular blocks of large size.

Due to this fact and to the hardness of the rock large quarries have been operated for block stone for use in constructing the earlier ship canals at the "Soo" and in building breakwaters and piers on the Great Lakes. Formerly these dolomites were used extensively in burning magnesian lime one mile east of Drummond on the lake shore. According to local residents the stone burned hard and produced a gray lime, not well suited for ordinary purposes.

The area of easily accessible natural block stone is limited to a narrow bench from a few rods to several hundred feet in width between the lake shore and the upper terrace. The area underlain by the fossiliferous and non-fossiliferous limestones of the upper terrace is very large. Exposures are numerous at many places in the vicinity of Drummond.

The following section is exposed in the L. Seaman quarry and on the bluffs immediately back of the quarry:

Surface.

1. Light grayish buff crystalline and fossiliferous magnesian limestone. Abundant casts of Pentamerus oblongus. Only about 4 feet of rock exposed; basal portions of bed concealed by talus.

2. Similar rock composed largely of casts of Pentamerus forms. Only about 3 ft. of stone exposed; other beds may be present between this and the next succeeding.

3. Similar, but fossils less numerous and the stone less crystalline. Only about 5 ft. of rock exposed. Other beds may be present.

4. Buff very dense grained and thinly bedded dolomite, resembling novaculite and having a prominent conchoidal fracture. Much like some of the dense grained finely crystalline dolomites in the quarry below. Only upper 6 feet exposed. Other beds may be present. Top of quarry.

5. Buff to gray cherty, and massively fossiliferous dolomite.

6. Hard light gray to buff massive and crystalline dolomite, separated from No. 7 by a parting of very thin bedded dolomite.

7. Hard light buff massive and crystalline dolomite similar to No. 6.

8. Hard buff densely crystalline dolomite—conchoidal fracture prominent in lower part of bed.

9. Dark buff crystalline dolomite with a drusy fossiliferous zone in the center of the bed.

10. Hard light gray to buff finely crystalline banded dolomite with prominent bedding planes.

11. Hard bluish fine grained dolomite weathering to a pronounced blue color. Lowest bed quarried and floor of quarry is apparently a part of the same bed and just above lake level.

2 +

Section in L. Seaman quarry, Drummond.

A similar section is exposed in a large quarry on Quarry Point about one mile west of the above. This quarry, like the Seaman quarry, was formerly operated for block stone. The massive crystalline beds in the lower terrace are dolomite as shown by analysis No. 240.

Old Fort Drummond. In the vicinity of Old Fort Drummond at the southwest extremity of Drummond Island there are numerous exposures

of magnesian limestones belonging to the upper part of the Manistique series and probably the tops of some of the higher elevations are capped with Engadine dolomite. Large exposures of the Manistique series occur along the south shore of the island as at the head of Huron Bay and on the peninsulas between Huron Bay and Scammon's Cove.

Lime Island, St. Marys River. A few hundred feet north of the Pittsburgh Coal Co. docks on Lime Island a quarry was operated many years ago for burning lime. The stone was obtained from a narrow bench which rises 30 feet above the river level. Apparently hard rock forms part of an upper terrace rising 25 or 30 feet higher. The stone is white to buff finely crystalline normal dolomite as indicated by analysis No. 241. According to statements of local residents the stone burned hard and produced a gray slow setting lime not well suited for ordinary uses.

In digging a trench for the steam mains from the engine house to the company quarters many pieces of limestone identical in physical characteristics with the Fiborn limestone were observable in the drift. The angular uneven character of the fragments indicates the close proximity of this member and it is possible that it forms a portion of the upper terrace. The fact that the white to buff dolomites of the quarry in the lower terrace resemble those which occur beneath the Fiborn limestone in the Hendricks quarry in Mackinac County also tends to support such a possibility. No exposures, however, could be found.

Detour. Large exposures of Engadine dolomite occur in and about the village of Detour. Quarrying and transportation facilities are exceptionally favorable at this place. The dolomite is massive and coarsely crystalline and where fresh shows the peculiar bluish mottlings and streaks so characteristic of this member. Where weathered the rock is white. In the northern part of the village a small quarry was formerly operated for lime burning. The low percentage of silica, iron and alumina in analysis No. 242 made by Rominger in 1873 is characteristic of this dolomite.

Gatesville. Prominent ridges of bare limestone occur between Gatesville and Point Detour. The ridges are capped by Engadine dolomite, but the bases are formed of the upper very fossiliferous dolomite beds of the Manistique series. The high ridge of dolomite just east of Gatesville extends north almost to Raber on St. Marys River.

Rockview. Rockview is at the top of high northward facing bluffs capped with the typical bluish mottled and streaked and coarsely

crystalline dolomite of the Engadine member. The fossiliferous, thin bedded dolomites of the Manistique series form the base of the bluffs and are extensively exposed. Owing to the gentle southward dip of the strata the capping of Engadine dolomite extends southward to Cedarville, Mackinac County, on the lake shore.

Sec. 8, T. 43 N., R. 2 E. Ledges of very massive coarsely crystalline dolomite with the characteristic mottling and bluish colorations of the Engadine dolomite occur here and there in this and adjacent sections. Large tracts are covered with great boulders of this dolomite Analysis No. 243 shows the characteristic purity of this stone.

Haff P. O. (Dick). At Haff a line of limestone bluffs 10 to 80 feet or more in height extends south nearly to Kenneth, Mackinac County and eastward for many miles. The tops of the bluffs generally have only a light cover of drift and tracts covered with great boulders are characteristic. The upper 40 to 50 feet of the bluffs is composed of Engadine dolomite, extremely massive, coarsely crystalline, and mottled and streaked with blue. The base is composed of the thin bedded and very fossiliferous dolomites of the Manistique series.

The area underlain by easily accessible dolomite in the vicinity of Haff and in the southern portions of T. 44 N., Rs. 4 and 5 W., is apparently several square miles. Analysis No. 246 was made from a set of samples taken from the property of L. O. Poquin at Haff and may include samples from the underlying Manistique dolomites. The content of iron and alumina indicates this. Analyses Nos. 244 and 245 are respectively from the lower and upper parts of a 50 foot exposure of Engadine dolomite three-fourths of a mile south of Haff, where the road from Trout Lake to Ozark crosses the bluffs. Both of these analyses are characteristically low in silica, iron and alumina. Owing to the low percentage of these impurities this stone is particularly adapted for lining open hearth furnaces. Its porosity as well as purity also adapts it for use in the manufacture of paper by the sulphite process.

Sec. 19, T. 44 N., R. 6 E. About three miles west of Trout Lake in section 19 and adjoining sections, T. 44 N., R. 6 E., exposures of Fiborn limestone are reported. The writer found many boulders of lithographic limestone similar in every particular to the Fiborn limestone, but could not determine whether or not some very small ledges were actually in place. The Fiborn member occurs just across the county line to the west in Mackinac County, therefore it is probable that further search might result in the discovery of quarryable areas of this stone.

Summary. Large areas along the southern margin and in the southeastern part of Chippewa county are underlain by thick beds of exceptionally pure dolomite belonging to the Engadine member. Quarrying conditions are very favorable at many places. The stone on account of its purity is especially suitable for lining open hearth furnaces. Its purity and porous character also make it particularly adapted for paper manufacture. The supply of this stone is practically inexhaustable.

The beds of dolomite on Drummond Island are of great extent but they are less pure than those on the mainland. Further exploration between Maxton and Marble Head may result in the discovery of considerable, or even large areas of high calcium limestone, similar to that exposed immediately north of Marble Head.

Delta County.

Distribution. The Trenton limestone underlies the western part of the county, the Niagara formation the eastern part and the Cincinnati group the central part. The Trenton is well exposed in a narrow belt along the Ford and Escanaba rivers and widely exposed in the valley of Rapid River. In Garden Peninsula the Niagara limestone forms a series of high bluffs or an escarpment from Garden to the southern end of the peninsula. Limestone is also exposed at many places along the low eastern shore and in the interior of the peninsula. The Cincinnati group forms the prominent bluffs on the west side of the peninsula separating Little Bay de Noc and Big Bay de Noc.

Character. The exposures of the Trenton limestone are characteristically shaly or argillaceous, usually containing from 5 to 10 per cent of silica, iron, and alumina. The upper beds are generally dolomite but the lower ones are usually low magnesian limestone. As far as known all of the exposures of the Niagara belong to the Manistique series.

Though typically shale the Cincinnati group in Delta county also contains much argillaceous limestone and very calcareous shale.

Quarries and Localities.

John Bichler quarry, Groos. The Trenton limestone is exposed at various places along the lower course of the Escanaba River for a distance of about six miles. About four miles north of Escanaba, in the vicinity of Groos, limestone is exposed in the river channel and forms narrow benches on either side flanked by high hills of glacial drift. For a number of years John Bichler has been operating a quarry (Pl.

8 B) on the narrow bench on the west side of the river, chiefly for crushed stone and rough building block. The quarry consists of an upper and a lower bench. The maximum depth at the time of the writer's visit was about 23 feet. The depth of the upper portion was from 4 to 11 feet. Most of the limestone is bluish, argillaceous, and crystalline with thin wavy laminae and bands of blue and black shale and thin beds of very fossiliferous limestone. Some of the limestone is very thin bedded and some massively bedded. The more massive beds are used for rough building block but most of the stone is crushed for road making, concrete and ballast. Formerly the stone was burned locally for lime but it is said to burn hard and produce an inferior product. Analyses Nos. 247 and 248 are indicative of the argillaceous and low magnesian character of the beds. Analysis No. 249 by Rominger is from the highest exposed beds near the mouth of Escanaba River and shows that these, allowing for the impurities, are practically normal dolomite. The exposure from which Rominger obtained his sample is on the east bank of the river near the power plant and apparently almost directly across from Bichler's quarry. Analysis No. 250, also by Rominger, is from the "wedge-shaped" limestones directly below the dolomites. It is probable that these "wedgeshaped'' limestones of Rominger belong to the group of low magnesian limestones exposed in Bichler's quarry.

According to Rominger* the "wedge-shaped" limestone series is underlain by very shaly and sandy dolomitic limestone containing over 20 per cent of silica. Analysis No. 251 by Rominger is from a ledge exposed in the river channel about six miles above its mouth.

The following test on the wearing quality of this stone was made by the Division of Tests, Office of Public Roads, U. S. Department of Agriculture, Washington, D. C., to determine its qualifications as a road material:

Specific gravity	2.80
weight ber cu. It	175.00
water absorbed per cu. it	0.39
Per cent of wear	3.40
French co-efficient of wear	11.60
Hardness	16.50
Toughness	12.09
Cementing power	good

The sample was a "dolomite of average hardness, slightly above the average in resistance to wear for dolomite and with good cementing value. Suitable for use on medium traffic roads." L. W. Page, Nov. 2, 1906.

Masonville. Trenton limestone is exposed one mile southwest of Masonville along Day's River for a half mile or more. Many years

^{*}C. Rominger, Vol. III, Pt. III, pp. 58, 59.

ago a small quarry located on the east bank of the river about 600 paces from the "Soo Line" railroad was operated for burning lime. The quarry consists of an excavation about 250 feet long, 150 feet wide and 6 feet in depth to the level of the water in the stream adjacent. The stone is buff to gray crystalline and fossiliferous limestone. Analysis No. 252 is typical in that it shows the usual argillaceous character of the Trenton limestones. According to local residents, the lime was gray, slow setting, i. e., hydraulic, and did not keep well.

Rapid River. Exposures of the Trenton limestone are almost continuous from the village of Rapid River northward for six or seven miles along the west side of the valley of the stream of the same name. The exposures are in the form of low ridges of no particular orientation. though those having a northeast-southwest direction apparently. predominate. The exposures are buff to gray, crystalline, fossiliferous low magnesian limestone with an argillaceous content characteristic of the Trenton limestone, as shown by analysis No. 253. Analysis No. 254 by Rominger is from an exposure of coarsely crystalline dolomite of the Upper Trenton above the mill pond near the mouth of Whitefish River. According to Rominger* Whitefish River flows over ledges of similar dolomite and dolomitic limestone as far north as section 2, T. 43 N., R. 20 W. It is probable, however, that many of the more northerly exposures are low magnesian limestone rather than dolomite. The lower course of Whitefish River is largely through swamps and the exposures along the channel of the river are under very unfavorable quarrying conditions.

Bark River. Trenton limestone is exposed in the vicinity of Bark River and recently a quarry has been opened to supply crushed stone for local road building. Judging from hand samples the stone is similar in every way to the Trenton as exposed elsewhere in the county.

Garden Peninsula. As previously stated the Manistique series of the Niagara formation is exposed at many places on Garden Peninsula, especially along the west shore where it forms bluffs or cliffs from 10 to over 200 feet in height. Of the three most conspicuous bluffs, the most northerly is known as Garden Bluff, the central as Middle Bluff, and the most southerly as Burnt Bluff.

Middle Bluff. At Fayette the cliffs rise vertically to heights 70 to 90 feet above lake level. The upper receding portion carries the height probably to between 125 and 150 feet above the water. These cliffs are known as Middle Bluff. The old Jackson Furnace Co. was

^{*}C. Rominger, Vol. I, Pt. III, pp. 62-64.

located here and used the limestone in smelting iron until the available supplies of wood were exhausted. The following section is exposed at the old quarry:

Section at Middle Bluff, Garden Peninsula.

		Feet.
	Surface	0-3 +
1.	Thin bedded densely crystalline dolomite	15 +
2.	Buff fossiliferous high magnesian limestone or dolomite with druse cavities.	-
	The line of separation between No. 1 and No. 2 was concealed by talus	4+
3.	Very hard buff to gray thin bedded cherty dolomite	9
4.	Hard, thin-bedded, and very cherty dolomite. Many seams and nodules of	
	chert or flint similar to the chert horizons at Manistique	10
5.	Hard light bluish densely crystalline dolomite	2
6.	Very massive, fossiliferous and high magnesian limestone, with wavy lamina-	
_	tions and druse cavities. Weathered into nodular masses	16
7.	Bluish very thin bedded densely crystalline dolomite	8
8.	Buff massive, fossiliferous and high magnesian limestone, with druse cavities.	5
9.	Hard buff massive dolomite with a parting of very thin bedded and densely	6
10.	crystalline dolomite in the center	0
10.	distributed more or less parallel to the bedding	3
11.	Light colored, hard, very thin bedded, and densely crystalline dolomite.	•
11.	Breaks into very thin plates and weathers bluigh	4
12.	Breaks into very thin plates and weathers bluish	•
	is the lowest bed exposed in the quarry	1
13.	is the lowest bed exposed in the quarry Buff very massive, very fossiliferous (coral) and high magnesian limestone	5
14.	Bluish hard thin bedded and densely crystalline dolomite	4 —
15.	Alternating series of massive crystalline and densely crystalline layers of high	
	magnesian limestone and dolomite. Weathers bluish	11
16.	Buff thin bedded densely crystalline and finely laminated dolomite	3 —
17.	Buff sandy appearing dolomite with dark buff and brown streaks, very brittle	
	and breaks with a very pronounced but granular conchoidal fracture. A	
	thin but extremely persistent bed easily traceable for a long distance along	_
	the lake shore	1
18.	Buff, massive, fossiliferous and high magnesian limestone with druse cavities	3 -
19.	Hard bluish, thin bedded, and densely crystalline dolomite	2
20.	Buff, massive high magnesian limestone with druse cavities	1 3 - 2 1 1
21. 22.	Hard light buff thin bedded densely crystalline dolomite	1
ZZ.	Dun massive, rossimerous (corai), neavy magnesian imiestone with druse	5
23.	cavities. Hard crystalline and high magnesian limestone with bluish stripes. This ledge	0
40.	occurs beneath the water	3 1
		0 T

Bed No. 12 is the lowest exposed at the quarry but owing to the gentle southeasterly dip of the strata beds Nos. 14 to 23 are brought above lake level at the north end of the bluff about a half mile north of the quarry.

At Fayette a reef of limestone 15 to 30 feet in height extends out into Big Bay de Noc in the shape of a fish hook, forming a small but very deep nearly landlocked harbor. The height and extent of the exposure and the presence of a natural harbor give exceptionally favorable conditions for development, but unfortunately the stone is not of the quality now demanded for general fluxing or chemical purposes. Many of the beds undoubtedly would burn easily and make very good mild lime. The finely crystalline beds, however, generally burn very hard.

Burnt Bluff. Burnt Bluff is on the lake shore about three miles southwest of Middle Bluff. This is the largest and highest of the bluffs. It rises about 235 feet above the water and extends along the shore for about two miles. In places it has a sheer face of 60 feet or more. The surface of the bluff gradually slopes southeastward in the

general direction of the dip of the strata and it is only lightly covered with drift, rock ledges being exposed at numerous places in the fields.

The strata are essentially buff to gray, crystalline to densely crystalline, heavy magnesian limestones and dolomites very similar to those of Middle Bluff at Fayette. The section as given by Rominger* is as follows:

Section at Burnt Bluff, Garden Peninsula.

		Feet.
1.	Siliceous (high magnesian) limestones with nodules of hornstone and many	
	silicified but poorly preserved fossils. Top of hill	20-30
2.	Even-bedded (high magnesian) limestones. Top of the vertical cliffs	15-20
3.	Thick-bedded crystalline dolomite alternating with thin and unevenly bedded	
	nodular limestones. Several of the layers contain silicified corals	20?
4.	Cellulose brecciated limestone with the rock fragments incrusted with yellow	
	calc and dolomite spar	2
5.	Thick-bedded crystalline and fossiliferous dolomites containing spherical masses	
	of Stromatopora and lenticular masses of snow white calc spar	10
6.	Thin-bedded dolomitic limestones with smooth conchoidal fracture	50

Analysis No. 254 by Rominger in 1873 was made from the lower 60 feet of Burnt Bluff and is indicative of the high magnesian character of these beds.

Near the south end of Burnt Bluff at Sac Bay bed No. 4, the cellulose, brecciated limestone 60 feet above the water at the north end of the bluff is at water level. The nominal dip is apparently 40 to 50 feet per mile to the south-southeast hence the dip along the strike of the beds is due to local undulations, which may be observed at many places in the Niagara in the Northern Peninsula. Cliffs of similar limestone also form most of the shore of Summer island at the south end of Garden Peninsula.

Garden Bluff. This bluff is at the entrance to Garden Bay about four miles north of Middle Bluff. Vertical cliffs of limestone, 20 to 40 feet in height, occur along the shore for a mile or more. The exposed beds are buff to gray crystalline to densely crystalline, high magnesian limestones and dolomites very similar to those at Middle and Burnt bluffs.

Point Detour. This locality was not visited by the writer but according to Rominger† the cliffs at Point Detour are about 8 feet high and are composed of the same massive beds of crystalline dolomite which forms Seoul Choix and Epoufette points. Crystalline dolomite of the Engadine member of the Upper Niagara is typically exposed on Seoul Choix Point, therefore it should occur at Point Detour and probably at other places on the eastern shore of Garden Peninsula, if Rominger's correlation is correct.

^{*}C. Rominger. Vol. I, Pt. III, p. 47, 1869-1873. †C. Rominger, Vol. I, Pt. III, p. 46, 1869-1873.

Rominger considered the massive dolomite at Detour and Seoul Choix points as lying below the fossiliferous beds on the higher western portion of Garden Peninsula, but it is unquestionably on top of them instead of below them.

Stonington. The bluffs in the vicinity of Stonington on the east side of Little Bay de Noc are formed of strata belonging to the Cincinnati series of shales, which at this place are very calcareous as shown by the following partial analyses made by Prof. G. A. Koenig of the Michigan College of Mines:

Analyses of beds near Stonington.

Analysis number.	Number of sample.	Per cent CaCO ₂ .	Thickness of bed in inches.
255	1 2 3 4 5	42.4 50.4 63.3 52.8 40.0	30
260. 261. 262. 262. 263.	6 7a 7b 8a 8b	50.8 57.3 46.0 49.6 49.6	4
265	8c 9 10 11 12a	51.6 66.4 42.4 45.2 50.4	5 spotter 5 spotter 3 6 10
270	12b 13 14 15a	43.2 44.0 54.0 42.0	6 8 13
274	15b 16a 16b 16c	44.0 42.0 43.6 40.0	30
778	, 16d 17 18 18	40.0 34.0 36.0 32.0	7 30

It is possible that these argillaceous limestones and calcareous shales may be adapted for the manufacture of cement though the variable composition would require careful mixing in order to produce a uniform product.

Alton Postoffice. Extremely fossiliferous limestone is exposed in a bluff 70 to 80 feet in height along a small stream one and a half miles west of Alton, section 10, T. 40 N., R. 21 W. Black bituminous shale with thin and extremely fossiliferous beds of limestone is exposed in the creek bed. The soil is filled with masses of Stromatopora; a stone

fence 10 to 15 feet wide and several feet high is composed chiefly of masses of fossils. These fossiliferous beds apparently belong to the Cincinnatti group. The siliceous character of the upper beds and the shaly character of the lower ones make them of little or no commercial importance.

Summary. The extensive exposures of Trenton limestone in the western part of the county are chiefly of very argillaceous low magnesian character; the upper beds in some of the exposures are argillaceous dolomite. The limestone is unsuitable for most purposes, excepting crushed stone for road making, concrete, and railway ballast.

The very large exposures of the Manistique series of the Niagara formation are all heavily magnesian limestones and dolomites. Some of the beds burn easily and make very good mild lime. Other beds are burned with difficulty. As a whole the beds are more impure than those of the overlying Engadine dolomite, hence are less satisfactory for paper manufacture, or for use as a basic lining in open hearth furnaces. Their generally hard and resistent character make them suitable for road metal, concrete, and railroad ballast. In brief, the limestone resources of Delta county, though of great extent, are unimportant as compared with Schoolcraft and Mackinac counties.

Eaton County.

Distribution. The Bayport limestone occupies a narrow belt along the west side of Eaton county but it is exposed only at Bellevue. The area of limestone under light drift cover is probably not above 200 acres. It lies along the south side of Battle Creek just southwest of the village. The exposures are in the form of low bluffs, but limestone is said to occur beneath the low level bench along the creek. The limestone is relatively thin and in many places it has been completely removed by erosion.

Quarries.

Bellevue. At a very early date small quarries were opened for burning lime at Bellevue. Due to the exhaustion of wood fuel these were abandoned many years ago. At present the Burt Portland Cement Co. is operating a quarry and using the limestone and underlying shale in the manufacture of cement. The following is a more or less generalized section by Rominger* of the beds as formerly exposed in the old quarries now more or less filled with debris:

^{*}C. Rominger, Vol. III, Pt. I, pp. 112-114.

Section in old quarries at Bellevue. 1. Light colored thin-bedded limestone. (Present only on the highest rock elevations). 2. Brown ferruginous dolomite either in continuous layers wedging out at both ends or in seams of irregular shaped septaria surrounded by calcareous shale. (Present only on the higher rock elevations). 3. Light colored (high calcium) limestones with smooth, conchoidal fracture in beds of variable thickness. 4. Brown ferruginous dolomite (MgCO₂, 23 per cent) with a dull earthy fracture. 5. Light colored limestone (CaCO₃, 96 per cent) with a smooth conchoidal fracture in beds of variable thickness, interlaminated with concretionary seams of limestone (CaCO₃, 96 per cent) with a smooth conchoidal fracture in beds of variable thickness, interlaminated with concretionary seams of limestone (Chert or flint); fossils not generally abundant, but certain seams are crowded with them over widely extended areas. 6. Greenish white calcareous sandstone (SiO₂, 69 per cent; CaCO₃, 30 per cent) grading upward into pure limestone but with occasional thin seams of quartz sand. Locally this strata is brecclated. (Disconformity between the Bayport and the Michigan series below.

The section exposed in the Burt Portland Cement Co. quarry is as follows:

Section in the Burt Portland Cement Co. quarry, Bellevue.

Thickness

		feet.
	Surface	2-3
1.	White, light gray, and yellowish gray high calcium (CaCO ₁ , 94.78 per cent) limestone with a smooth conchoidal fracture and containing pockets and	
	seams of yellow ferruginous sand and red clay. In one part of the quarry this bed contains a thin lens of gray sandstone	12
2.	Blue and green argillaceous (Al ₂ O ₂ , 4.04 per cent) limestone of variable thickness and with a breccia of limestone and sandstone. This represents the	
	disconformity between the Bayport limestone and the Michigan Series	1-4
3.	Soft greenish blue calcareous (CaO, 13.45 per cent) shale or clay	2+

The limestone and shale are blasted down together, and loaded by steam shovel into tram cars which are hauled by steam power to the crushers. The occurrence of the shale and limestone together is a great advantage in the manufacture of cement. A part of the necessary mixing of the shale and limestone is done in the quarry; about ten parts of the upper white limestone is taken to one of the blue shale and argillaceous limestone beneath.

Analysis No. 282, made from a representative set of samples from the high calcium bed in the Burt quarry, and also analyses Nos. 283 to 286 are indicative of its average composition. Analysis No. 287 by Rominger is of the brown, ferruginous, magnesian limestone locally present in the vicinity of Bellevue.

Most of the area of quarryable limestone in the vicinity of Bellevue is owned by the Burt Portland Cement Co., but A. J. Zipp of Bay Shore has a deposit about a mile southwest of Bellevue on the south side of the Grand Trunk railroad. Formerly a quarry was operated in this deposit for burning lime and plans are reported to be under way to reopen the quarry for crushed stone products and for ground limestone for agricultural purposes. The hardness and general purity of the limestone makes it very suitable for such purposes. Quarrying conditions and shipping facilities are favorable.

Summary. The limestone deposits of Eaton county though of insignificant size in comparison with those of other counties in the northern part of the state are of very considerable economic importance on account of their high calcium character and the absence of other deposits of commercial size and similar grade in central and western Michigan.

Emmet County.

Distribution. The Dundee limestone underlies the extreme northern part of the county but, so far as the writer is aware, it is not exposed. The Traverse formation occupies the remainder of the county with the exception of a narrow belt across the western part underlain by the Antrim black shale. The Traverse limestone is exposed in a double line of bluffs or lake terraces on the south side of Little Traverse Bay from Kegomic westward into Charlevoix county. The principal exposures are along the lower bluff close to the water's edge. This bluff apparently averages between 40 and 50 feet in height. The upper terrace is of similar height but in places, owing to the uneven surface of both the rock and the glacial deposits, it is considerably higher. Due to surface deposits there are but few exposures along the upper bluff.

Quarries and Localities.

Kegomic. Formerly a quarry was operated at Kegomic in the SE. ½ SW. ½ section 27, T. 35 N., R. 5 W. The writer did not visit this quarry but the following is a section from a description and a set of samples furnished by Mr. W. E. Smith of Cadillac, Michigan:

	Thickness, feet.	Inches.
Dark gray crystalline and argillaceous limestone. ''Rotten' shale. Dark bituminous crystalline and very fossiliferous (brachiopods) limestone. Blue shale. Buff and gray coarsely crystalline limestone. Gray and buff very fossiliferous coarsely crystalline (brachlopods) limestone.	2 2 0 2 2 ± 2+	6 10

Petoskey. At Petoskey the lower terrace is between 40 and 50 feet in height and varies in width from a few hundred feet to a quarter of a mile or more. The upper terrace is nearly as high but, owing to the irregular surface of the glacial drift at the top, it is much more variable in height.

Northern Lime Co. quarries. In the eastern part of the city the Northern Lime Co. operate three closely connected quarries in the

lower terrace close to the lake shore for burning lime. Only a narrow strip is available for quarrying, due to the encroachment of buildings. The following is a section of Quarry C located farthest west:

Section in Quarry C.

		Thickness, feet.
	Sand	46
1.	Dark friable "sandy" magnesian limestone. Not used	6
2.	Very white earthy magnesian limestone. Burns black; not usable	24
3.	White friable magnesian limestone. Usable but not of very good quality	3
4.	Gray earthy limestone with bands and mottlings of lithographic limestone.	
	Beds apparently much alike but becoming less magnesian toward the	
	bottom (MgCO ₂ , 16.30 per cent)	22
5.	Buff porous friable and extremely coralline limestone. Floor of quarry	1
6.	Dark earthy "magnesia" stone	1
7.	Dark earthy "magnesia" stone	
. •	(CaCO ₂ , 96.36 per cent) with bituminous streaks. Smells strongly of	
	bitumen when struck with the hammer. Thickness to lake level	8

In Quarry B, only about 250 paces east of C, the section is considerably different.

Section in Quarry B.

	• •	Thickness, feet.
	Surface	3-6+
1.	Mass of white Stromatopora and coral in a matrix of buff friable sugary mag-	
	nesian limestone. Burned for common lime. (MgCO ₁ , 36.41 per cent)	15-20
2.	Buff semi-crystalline limestone with dark crystalline streaks	5
3.	Dark, brittle and laminated limestone. Breaks up into a fine mass when	
	blasted	2
4.	Bluish dense grained limestone. Very good quality	3
5.	"Sandy" limestone. Poor quality	3
6.	Bluish dense grained limestone. Very good quality. "Sandy" limestone. Poor quality. Densely crystalline to earthy limestone. Burned for chemical lime (CaCO ₂ ,	
	94.78 per cent)	7 —
7.	94.78 per cent)	3
8.	Buff, soft, and very porous coralline limestone. Too soft for lime; left for	
	floor of quarry	1+

Quarry A, a short distance farther east, was not in operation but the beds are more or less similar in character and composition to those of quarry B.

The beds in the upper part of all three quarries are more or less completely dolomitized, but in general the magnesia decreases downward though not regularly. The beds near lake level are very pure high calcium limestone. This is illustrated by the following partial analyses of the stone in Quarry C from the top downward:

 $Quarry\ C.$ Analysis of beds from top down.

Number analysis.	Number of bed.	CaCO ₃ .	CaO.	MgCO3.	MgO.
288 289 290 291 291 292 293 294	1 2 3 4 5 6 7	69.04 66.88 92.36 89.50 90.96 89.04 97.36	38.66 37.45 51.72 50.12 50.94 49.86 54.52	30.85 32.23 6.92 8.05 5.65 9.47 1.69	14.75 15.41 3.31 3.84 2.70 4.53

A. H. Koch, Michigan College of Mines, Sept. 20, 1913.

The same general decrease downward is also shown by analyses Nos. 295 to 197. In Quarry B, however, the magnesia increases slightly nearly to the bottom of the quarry where it suddenly drops to less than 2 per cent.

 $\label{eq:Quarry B.} Quarry \ B.$ Analysis of beds at east end of quarry from top down.

Number analysis.	Number of bed.	CaCO ₃ .	CaO.	MgCO ₃ .	MgO.
298	1	89.00	49.84	8.93	4.27
299	2	88.04	49.30	10.56	5.05
300	3	87.64	49.08	10.50	5.02
301	4	84.82	47.50	13.24	6.33
302	5	94.57	52.96	3.99	1.91

Analysis No. 303 was made from a representative set of samples from the lower 22 feet (bed No. 4) of grav earthy limestone in Quarry C. This analysis and also Nos. 293 to 297 show the magnesian character of the stone in the lower part of the quarry and also the low content of siliceous and argillaceous impurities. Analysis No. 304 is from the high calcium lithographic beds exposed in a test pit in the bottom of Quarry C. These beds are very pure but are not used for lime on account of their tendency to "pop" or break to pieces in the kiln, thus clogging the draft. Analysis No. 305 made from samples from all of the beds in Quarry B except No. 5 gave 16.30 per cent of magnesian carbonate. Analysis No. 306 shows the high ca'cium character of bed No. 7, which is sorted out for burning chemical lime. The top coralline and stromatoporoid bed, according to analysis No. 307, is a high magnesian limestone. The analyses in general indicate that the composition of the beds is variable horizontally as well as vertically. Analysis No. 308 is apparently from the dark lithographic beds near lake level, No. 309 from the upper beds of the quarry, and No. 310 from the lower beds. Owing to the variable character and composition of the beds hand sorting is necessary. The company burns a large amount of both commercial and chemical lime, and also grind limestone for agricultural purposes. Owing to the soft friable character of the stone it is unsuitable for crushed stone purposes.

Antrim Lime Co. quarry. The quarry of the Antrim Lime Co. is the only one operating in the upper terrace in the vicinity of Petoskey. The floor of the quarry is said to be 85 feet above lake level, or about 40 feet above the highest beds exposed in the lower bluff. Since the section in the quarry has a maximum thickness of about 25 feet, the top

of the highest exposed ledge in the vicinity of Petoskey is apparently about 110 feet above lake level. The overburden, largely of sand, is becoming very thick, averaging from 8 to 10 feet or more and the area of easily quarryable stone is apparently small. It is owing chiefly to the high average purity of much of the stone and its easy burning qualities that profitable operation is possible.

The following section is exposed in the quarry:

Section in Antrim Lime Co. quary.

	•	feet.
	Sand and gravel	8+
1.	More or less broken ledges of light buff or white sugary limestone. Parting of	· ·
	shale at the base	3
2.	White earthy and very brittle limestone. Parting of black bituminous and	
	laminated shale at the base	8
3.	White earthy limestone with darker laminations toward the base	7
4.	Buff porous earthy and coralline limestone	1 —
5.	Buff sugary and laminated limestone	2
6.	Buff dense grained limestone. Bottom bed quarried	1
7.	Buff sugary and laminated limestone Buff dense grained limestone. Bottom bed quarried Dark buff limestone with numerous fine dark bituminous bands. Floor of	
	quarry	1+

The upper 12 feet of white earthy limestone contains (Anal. No. 311) over 97 per cent of calcium carbonate but the lower 12 feet of white and buff limestone contains (Anal. No. 212) over 11 per cent of magnesium carbonate, and is similar to the buff sugary limestones in the upper part of the lower bluff.

By a comparison of the sections in the different quarries it appears that in the vicinity of Petoskey there are an upper high calcium horizon as exposed in the Antrim Lime Co. quarry, a middle very thick (75 feet) magnesian horizon, and a lower darker colored high calcium one extending from just above lake level to an unknown depth below. These horizons appear to extend westward into Charlevoix County. The differences in the character of the stone in the different quarries in the lower bluff westward from Petoskey apparently is due largely to undulations along the strike of the beds. At one point the lower darker high calcium beds are elevated above lake level, forming the lower bluff, but at another they are depressed, bringing the upper yellow or buff magnesian horizon down to or even below lake level.

Petoskey Crushed Stone Co. quarry. There are numerous quarries along the lake shore westward from Petoskey but all are idle or abandoned except that of the Petoskey Crushed Stone Co., located about four miles west of Petoskey (S. E. ½ Sec. 2, T. 35 N., R. 6 W.) This company has opened a large quarry (Pl. III B) in the lower terrace which at this point is a quarter of a mile in width. Most of the limestone is hard, crystalline, and high calcium in contrast to that in the Petoskey quarries. As a consequence it is largely disposed of for Portland cement, flux, road metal, concrete, ballast, etc., for which it is said to be very suitable. The uniformity in the character of the beds

permits the use of steam shovels and locomotives in handling the quarry product. There are two quarries separated by the Pere Marquette railroad, but only one is operated. In the larger northern quarry about 10 acres of stone had been quarried at the time of the writer's visit, to depths varying from 8 to 25 feet. A second bench had been started on the east side of the quarry at practically lake level. The maximum height of the two benches was about 40 feet.

The area of stone under light overburden in the vicinity of the quarry, though of uncertain extent, is considerable. On the west, however, the stone is cut out by a drift filled ravine.

The following is a more or less generalized section of the stone exposed near the east end of the quarry:

Section at east end of Petoskey Crushed Stone Co. quarry.

		feet.
	Surface	0-3
1.	Coralline and Stromatoporoid limestone with a buff crystalline matrix	6
2.	Hard tough gray crystalline high calcium limestone	2 -
3.	Dark lithographic high calcium limestone adapted for sugar manufacture	3
4.	Hard tough gray crystalline high calcium limestone. Said to average above	
	90 per cent calcium carbonate. Lower ledges concealed by a heavy blast of	
	stone	25 +

Analysis No. 313, from the upper 12 feet gave 93 per cent calcium carbonate and nearly 5 per cent of magnesium carbonate. The lower beds were concealed and representative samples could not be obtained.

W. E. Smith quarry. Immediately on the west of the property of the Petoskey Crushed Stone Co. in sections 9 and 10, T. 34 N., R. 6 W., W. E. Smith, et. al., own about 210 acres of limestone land of which about 150 acres is under light overburden. The property lies chiefly on the lower terrace which has a maximum width of about a third of a mile. At the edge of the terrace near the lake the rock surface is from about 15 to 35 feet above lake level, but it gradually rises away from the lake until at the base of the upper terrace it is from 65 to 75 feet above the lake.

Near the west end of the property the Petoskey Stone & Lime Co formerly operated a small quarry and lime kiln. The section exposed is as follows:

Section in W. E. Smith, et. al., quarry.

		Thickness, feet.	Inches.
	Surface The quarry is located along a narrow high ridge of sand and	0–10	
1.	gravel. Broken ledge of light buff gray magnesian (MgCO ₃ , 14.38 percent) limestone. Buff to dark buff gray crystalline limestone. Fossiliferous	3–4	
2. 3.	Buff to dark buff gray crystalline limestone. Black shalv	4	
4. 5.	parting in the middle. Black and extremely fossiliferous shale filled with brachiopods. Dark gray finely crystalline limestone.	2 0 2	6
6. 7. 8.	Dark bituminous and fossiliferous shale Dark lithographic to finely crystalline limestone. Dark gray densely crystalline limestone with many large	0 3 ±	6
	heads of Stromatopora and corals. Owing to the fossil masses the contact between No. 7 and No. 8 is very wavy	3 ±	
9. 10.	Dark lithographic and very brittle high calcium limestone Crystalline to dense grained fossiliferous (coral, brachlopods)	1	
11.	limestone. Bottom bed quarried. Dark lithographic brittle high calcium limestone. The base of the bed is concealed. Average analyses of beds Nos. 2,	1 –	
12.	3, 5, 7-11 inclusive gave 93.96 per cent CaCO ₃ . Gray earthy to crystalline thin bedded magnesian (MgCO ₃ , 14.84 per cent) limestone.	2+ 1	
13.	rine grained earthy magnesian (MgCO ₂ , 14.84 per cent)	3	
14.	limestone. Exposed at the foot of the trestle. Next lower beds concealed by talus but at a little distance lakeward from the quarry dark lithographic and dark gray crystalline limestones are exposed in low ledges just above		
	lake level	?	

Beds Nos. 1, 12, and 13 contain (Anal. Nos. 314 and 316) between 14 and 15 per cent of magnesium carbonate, but beds Nos. 2, 3, 5, 7-11 inclusive contain (Anal. No. 315) nearly 94 per cent of magnesium carbonate.

Similar beds are exposed along a dry run a short distance to the southeast and also in a test pit 6 feet deep on the east end of the property as shown by the following section:

Section in Test Pit near S. 1 post of sec. 3, T. 35 N., R. 6 W.

		feet.
	Surface	2
1.	Surface	
	part. This shale seam at base of the bed	2
2.	Hard light gray dense grained limestone	2
3.	Dark crystalline and fossiliferous (corals and brachiopods) limestone. Bottom	
	of pit filled with rubble	1+

An analysis (No. 317) of a composite of samples taken about one foot apart in the test pit gave nearly 95 per cent of calcium carbonate and only about 2 per cent of magnesium carbonate.

It is to be noted that none of the white and buff sugary limestones quarried at Petoskey appear to be present on this property or in the quarry of the Petoskey Crushed Stone Co., and that the dark lithographic and gray crystalline beds are similar to those exposed near

mbi-lan-

lake level in the test pit in the bottom of Quarry C of the Northern Lime Co. at Petoskey. Westward from Petoskey, due to an undulation, this series is brought above lake level and forms all of the lower terrace for a considerable distance in sections 1, 2, and 10, T. 34 N., R. 6 W.

The W. E. Smith property apparently contains the largest area of easily quarryable limestone in the vicinity of Petoskey. From lake level to bed No. 1 in the old quarry the stone is chiefly high calcium. Higher beds are exposed in a gulley southeast of the quarry and they are similar in general appearance and probably in composition to the lower beds. The highest beds, probably 25 to 30 feet in thickness, occur in front of the upper terrace but are not exposed and little is known of their physical or chemical characteristics.

Bell quarry. About one-half mile west of the W. E. Smith property (N. $\frac{1}{2}$ N. $\frac{1}{2}$ sec. 9, T. 34 N., R. 6 W.) there is an old quarry and kiln, known locally as the Bell quarry and formerly operated by the Elk Cement & Lime Co. It fronts directly on Little Traverse Bay and is composed of an upper and a lower portion. The working face in the upper is about 25 feet and the lower about 20 feet. The section is as follows:

Section in Bell quarry

		Thickness,
		feet.
	Surface	1-3+
1	Dense grained gray limestone	5
2.	Dense grained gray limestone	ŭ
Z.	brachiopods and crystals of gypsum. Talus concealed the lower portion	
	brachiopods and crystais of gypsum. I saus conceased the lower portion	
_	of the shale but its thickness is said to be about	6
3.	Dark gray to buff gray crystalline to dense grained fossiliferous limestone	
	with cup corals and heads of Stromatopora and Acervularia and other	
	corals. Bottom of bed concealed by talus. Floor of upper quarry	13 ±
4.	Dark gray dense grained to finely crystalline and fossiliferous limestone, con-	
	taining cup corals, heads of Acervularia, and brachiopods	2
5	Dark buff gray lithographic limestone containing disseminated calcite crystals	
υ.	and with heads of Acervularia and Stromatopora at the bottom	2
6.	Dense grained buff dark gray limestone with mottlings and with a black bi-	-
U.	tuminous fossiliferous phase at the top and a shale parting at the bottom	41
~		*5
7.	Dark bituminous and lithographic limestone with a few corals. Black bi-	
_	tuminous shale parting at the bottom	3
8.		_
	ing at the bottom	1
9.	Light gray lithographic limestone with a very thin shale parting at the bottom	1
10.	Gray to buff dense grained to crystalline and fossiliferous (brachiopods) lime-	
	stone with a lithographic texture and a thin shale parting at the base	2
11.	Gray to buff limestone, lithographic near the top and crystalline and fossili-	
	ferous near the bottom. Bottom of the exposed portion of this bed is	
	practically at lake level	3 ∔
	practically at lanc level	• 1

No analyses of the stone in this quarry are available but according to persons acquainted with the quarry most of the stone is high calcium, especially the lithographic stone of the lower bench. The dark gray crystalline or lithographic character of the beds indicates that they are to be correlated with similar beds occurring near water level at Petoskey. Toward the west, however, the strata descend so that at Bay Shore, Charlevoix county, about two miles distant, the upper buff to yellow, friable limestone of the Petoskey section extends below

the level of the bay. The last exposure of the dark lithographic beds according to Rominger's description is apparently about one mile east of Bay Shore and consists of two ledges extending from water level to 6 or 8 feet above. The stone as analyzed (Anal. No. 174) by him contains 98 per cent of calcium carbonate.

Summary. The limestone resources of Emmet county are of relatively small extent, being confined chiefly to narrow terraces along the shore of Little Traverse Bay. The total thickness of the section exposed along the lake shore is apparently about 135 feet.

The upper white earthy limestones 15 to 20 feet in thickness are high calcium, the middle buff to gray sugary limestones about 75 feet in thickness range in composition from low to high magnesian, and the lower dark crystalline to lithographic limestones 40 feet or more in thickness are largely high calcium. In the vicinity of Petoskey, the middle magnesian portion forms all of the lower and the base of the upper terrace. Westward the dark crystalline and lithographic beds exposed near the level of the bay at Petoskey, gradually rise and, four or five miles west of the city, form most of the lower terrace. Farther west they descend until at Bay Shore they are below lake level. The three different horizons and the undulations of the beds along the lake shore are very vital factors in determining the commercial possibilities of deposits in Emmet county.

Huron County.

Distribution. The Bayport limestone forms several relatively small areas in the western part of Huron county and is exposed or near the surface in two oval shaped areas (fig. 13) southeast of Bayport and on some of the islands in Saginaw Bay. One of the ovals extends southeast from Bayport for about three miles into the eastern part of section 5, T. 16 N., R. 10 E. The other extends from the southeastern part of section 8 southeast into the northwestern part of sec. 15, T. 16 N., R. 10 E., a distance of about two miles. The ovals, especially the larger, are marked on the northeast side by a prominent ridge and low bluffs.

Quarries and Localities.

Bayport quarry. This quarry (Pl. IV A) though commonly referred to as the Bayport quarry, is located about three miles southeast of Bayport in section 5, T. 16 N., R. 10 E., and near the southeast end of the larger oval. It is a large quarry operated by the Wallace Stone Co. chiefly for crushed stone, the general hardness and toughness of the stone adapting it for road metal, concrete and ballast. The quarry,

Figure 13. Map showing distribution of the Bayport limestone in the vicinity of Bayport, Huron county. Double hachured areas indicate thinly drift covered areas.

which has been in operation for over thirty years, consists of two openings, 8 to 12 feet in depth and with a combined area of over 80 acres. This, however, is only a small fraction of the area of easily quarryable stone remaining. The section below was exposed in the quarry:

Section in Bayport quarry.

		feet.
_	Surface	1 -2
1.	Thin bedded fossiliferous limestone. Locally weathered to a soft yellowish mass at the top. Hard and sandy near the bottom. Mass of corals in lower	
		3
2.	part of bed	_
	bottom. Upper and lower part suitable for lime but hand sorting is necessary. Chert nodules numerous in upper portion of the bed	31
3.		
	Samples apparently from No. 2 and No. 3 together gave 14.5 per cent MgCO:	
4	and 20.85 per cent SiO ₂	3 0‡
5.	Dark gray lithographic limestone with a smooth conchoidal fracture. Former-	03
٠.	ly used for building stone	1 -

Formerly there was an upper high calcium layer which was burned for lime but this bed, according to Mr. R. N. Wallace, manager of the Wallace Stone Co., has disappeared with the progress of quarrying. Most of the lower beds are sandy or cherty and magnesian and this unfits them for lime burning or for fluxing and chemical purposes. Except where locally weathered at the surface the stone is hard and, being situated in the broad flat belt of lake clays of eastern Michigan, almost wholly lacking in suitable road or concrete materials, it is used extensively for road building and concrete. The section below the floor of the quarry is composed largely of very sandy limestones and calcareous sandstones.

An analysis, (No. 318) from the upper high calcium bed formerly present, gave over 91.5 per cent of calcium carbonate and shows that it was similar in composition to the Bayport limestone in Arenac (see analyses Nos. 141-144) county on the western side of Saginaw Bay. Analysis No. 319 is indicative of the sandy and magnesian character of the lower beds.

The following tests were made by the Office of Public Roads, U. S. Department of Agriculture, Washington, D. C.:

Number of test.	Rock.	Weight lbs. per cu. ft.	Absorption lbs. per cu. ft.	Per cent of wear.	French coeffi- cient of wear.	Hard- ness.	Tough- ness.	Cement- ing value.
1287	Limestone Dolomitic	165	1.34	2.7	14.8	15.1	12	49
4063	limestone Limestone	165 165	1.35	3.3	12.0	15.3 15.4	12 11	50 48

A test* made at the Water Town Arsenal by Capt. Butler gave a crushing strength of 26 110 lbs. This is very high for limestone. The specimen tested was 2.61 inches thick with a compression surface of 29.65 square inches.

A quarry has been opened near the southeast end of the smaller oval in the N. W. ½ sec. 15, T. 16 N., R. 10 E., Windsor Township, for road material. At the time of the writer's visit the quarry was about 150 feet in length and 8 to 10 feet in depth. The area of stone under light cover is apparently two to three hundred acres. The beds exposed were very similar to those of the Wallace or Bayport quarry as may be seen from the following section:

		Thickness, feet.
	Surface	1-2 +
	Hard grayish buff fine grained limestone with numerous cup corals at top and	
2.	bottom. Hard grayish buff dense grained to finely crystalline limestone with some chert nodules. Suitable for lime. According to Mr. R. N. Wallace, Manager of the Wallace Stone Co., this bed contains about 65 per cent of CaCO.	9
3.	Black bituminous shaly limestone "Black shell"	0.6 in.
4.	Hard light gray dense grained to finely crystalline limestone with many small crystals of pyrite	2

^{*}A. C. Lane, Geology of Huron County, Vol. VII, Pt. II, 1900, p. 215.

Charity Islands. The Bayport limestone is exposed on Charity Islands, North, and Stony (or Heistermann) islands and according to Winchell's*, Rominger's†, and Lane's† descriptions the exposures are in the form of low ledges near the water level and the beds, characteristic of the Bayport, are sandy or cherty or are replaced by sandstone. On North Island a small quarry was formerly operated many years ago. The beds are cherty and very fossiliferous.

The limestone resources of Huron county are confined largely to a ridge extending southeast from Bayport for five or six miles. Quarrying conditions are most favorable in the oval areas, one at the northeast end of the ridge and the other at the southeast The thickness of the commercial stone is small, being generally from 8 to 16 feet. Most of the stone is hard, siliceous, and magnesian and is chiefly adapted for road making, concrete, and railroad ballast. Owing to their location in a region largely devoid of other suitable material for such purposes, the deposits are of large local importance.

Jackson County.

The Bayport limestone is present largely as a capping Distribution. on the tops of pre-Coal Measure hills. The deposits are generally very thin and small. The coal deposits more or less completely fill up the valleys between the hills and lap upon the edges of the Bayport limestone. During the Pleistocene, portions of the hills were dislodged, carried away by the ice, and buried in the glacial debris. According to Rominger & there are many of these large masses of Bayport limestone, with attached portions of the underlying shaly Michigan series, more or less completely buried in the drift in Jackson county. These masses simulate exposures of the rock in place but generally the uptilted position of the beds betray their character.

As in Arenac, Eaton, and Huron counties, the Bayport limestone is generally cherty, sandy, or magnesian and the proportion of high calcium stone in the formation is small.

Quarries and Localities.

Formerly many small quarries were operated in Jackson county for burning lime but these, due to the exhaustion of suitable wood or to the siliceous character of the beds, have been abandoned for many years. Some of the quarries are being reopened for road material.

^{*}A. Winchell, First Biennial Report, 1860, p. 102. †C. Rominger, Vol. III, 1873-1876, p. 119. †A. C. Lane, Vol. VII, Pt. II, 1900, p. 105. ‡C. Rominger, Vol. III, Pt. I, 1873-1876, p. 114.

Parma. About a mile northeast of Parma in sections 29 and 30, T. 2 S., R. 3 W., the Bayport limestone* underlies an area of probably about 300 acres. Several quarries were once operated in this deposit. The upper bed† is a brown ferruginous dolomite and the lower a dark, bluish, high calcium limestone full of sparry and siliceous veins. The upper bed contains (Anal. No. 320) about 18 per cent of iron and alumina and 11 per cent of magnesium carbonate, the lower bed from nearly 3 to 14 per cent of silica (Anal. Nos. 321-2).

South of Parma in Spring Arbor township (T. 3 S., R. 2 W.) there are many small exposures of Bayport limestone. A quarry was operated in section 17 in the early 30's for burning lime. The upper bed in the old quarry, as at Parma and Bellevue, is a brown ferruginous magnesian The lower bed 8 to 10 feet in thickness is high calcium limestone. Analysis No. 323 is from a small exposure of high calcium limestone along the road in section 11 or 12 of this township. Analysis No. 324 is from a small exposure of dolomite, probably the upper bed, on the road between sections 24 and 25. Analysis No. 325 is of another small exposure of high calcium limestone, the location of which is given by Rominger as "three miles south of Jackson on Mr. Shoemaker's farm." At this place the high calcium bed is overlain by 4 or 5 feet of brown ferruginous dolomite. All of the above exposures are directly underlain by green sandy shales and sandstones of the Michigan series. Analysis No. 326 is from a mass of drift limestone in a railroad cut about 3 miles south of Jackson on the Cincinnatii and Northern Railroad.

Portage River. A prominent east and west ridge of Bayport limestone occurs about four miles north of Jackson on the north side of Portage River in sections 1 and 2, T. 2 S., R. 1 W., and section 6, T. 1 S., R. 1 E. The limestone forms a more or less continuous capping along the top of the ridge for more than a mile. Several small quarries were formerly operated in this ridge. On the east side of section 2, T. 2 S., R. 1 W., an old quarry has been reopened for road material. The upper four or five feet in the quarry is a light gray dense grained high calcium limestone. This is underlain by a conglomerate of limestone and sandstone pebbles and boulders in a matrix of green sandy This undoubtedly represents the disconformable contact between the Bayport limestone and the Michigan series. From 8 to 10 feet of light gray, dense grained, high calcium limestone similar to that at Bellevue, Eaton County, is exposed in an old quarry in the SE. 1 SW. ½ section 1, T. 2 S., R. 1 W., five to six feet in another quarry in the NE. ½ SE. ½ of the same section, and about seven feet in a third

^{*}C. Rominger, Vol. III, Pt. I, 1873-1876, pp. 114, 115. †C. Rominger, Vol. III, Pt. I, 1873-1876, pp. 114, 115.

quarry in the NW. ½ SW. ½ section 6, T. 2 S., R. 1 E. This limestone contains (Anal. Nos. 327-332) from about 92 to 97 per cent of calcium carbonate, 1.25 to 2.80 of silica and but very little magnesium carbonate.

Summary. Jackson county contains numerous small areas of Bayport limestone which generally caps hills and ridges. The high calcium beds are thin, more or less sandy and cherty, and are associated with ferruginous dolomite or sandy green shale. The resources are of little economic value except as a source of road material, concrete, etc., for local use.

Kent County.

Distribution. The Bayport limestone and the Michigan series underlie a large portion of Kent county but the formations are deeply buried under glacial drift except along the valley of Grand River from Grand Rapids to Grandville. Formerly the Bayport limestone was exposed along the river banks in Grand Rapids but now most of the exposures are concealed by dams and buildings.

Luce County.

Distribution. The Trenton limestone, the Beekmantown (Calciferous), and the Niagara formations occupy parallel belts across the southern part of Luce county. Exposures of the first two are few and unimportant. The Niagara is exposed along a high bluff extending through the extreme southern part of the county in section 31, T. 45 N., R. 8 W., and section 36, T. 45 N., R. 9 W.

D. N. McLeod Lumber Co. quarry. At the time of the writer's visit (1913) a railroad spur along the base of the bluff was under construction preliminary to the opening of a quarry. The bluff, apparently 80 to 100 feet in height, is about a half mile north of Hendricks quarry and is composed of similar beds. (See Hendricks quarry, Mackinac county). The upper portion of the bluff is formed by the Fiborn limestone, which on the weathered surfaces shows the presence of numerous fossils. The lower part of the bluff is largely concealed by talus but the beds belong to the Hendricks series.

A number of core drillings were made by the Union Carbide Co. of Sault Ste. Marie in section 36, T. 45 N., R. 9 W., and also in the sections adjoining on the south. The analyses of the core from the deepest hole in section 36 is given below:

Test Hole North of Hendrick's Quarry.

	Rетатка.	Fiborn Limestone. Bed No. 3 of section in Hendricks quarry. Upper part of bed No. 4?	Lower part of bed No. 4? Compare beds Nos. 4 to 9 in test pit in bottom of quarry.	Lower high calcium horizon.	
Carbon de-oxide	and water. CO+HrO.	45.48 43.99 44.17 44.72	44.09 45.73 45.08 43.82 44.31	43.76 44.76 44.45 44.38	43.83 45.01
Magnesium	M.	0.00 0.059 0.059 0.09	1.99 4.17 11.69 10.16	3.66 0.97 0.51 3.51	9.01 12.89 6.87
Magnesium	MgCOs.	000044	4000 27.440 24.400	7.68 7.08 7.08 4.07 4.07 4.07	18.84
Calcium	CaO.	52.08 53.08 54.27 54.21	51.10 . 49.91 38.78 44.29 50.17	51.34 48.44 51.91 54.51 51.01	45.07 34.97 45.07
Calcium	CaCO.	98.07 94.71 96.84 95.94	91.18 89.06 69.20 79.03 89.52	91.80 86.43 92.68 97.86	80.48 62.40 80.48
Iron-	Feror Alroi.	0.25 0.23 0.35 0.35	0.23 0.41 0.76 0.45	0.34 0.25 0.21 0.14	0.23
Silica.	810s. %	1.51 1.96 0.78 0.52 1.14	2.59 1.78 3.79 1.28	0.90 5.57 1.82 0.49 0.93	1.47 6.76 2.68
je.	Depth, feet.	5′- 8″ 11′- 8″ 14′- 6″ 20′- 9″	27'- 6" 33'- 9" 38'- 0" 41'-10" 45'- 0	48'- 6" 54'- 6" 62'- 6" 75'- 8"	81'- 0" 93'- 8" 103'- 6"
Cor	Thickness, feet.	1'- 8' 6'- 0' 2'-10' 4'- 3' 2'- 0'	6. 9° 6. 3° 3. 10° 3. 2°	3′- 6″ 6′- 0″ 8′- 0″ 7′- 3″ 5′-11″	5'- 4" 12'- 8" 9'-10"
.oV	Sample	-0.004·0	8 8 10	122243	172
.oV	Analysis	334 335 337 338	339 340 341 343	344 345 346 347 348	349 350 351

Note.-Numbers in italics are calculated from origina, analyses.

Summary Analysis* Covering Limestone Deposit in Townsnip 45, Sec. 36, N. Range 9 West.

Laboratory	Union	Carbide	Co	Sault	Ste.	Marie.	Mich.

Number of analysis.	Sample number.	SiO ₂ .	Fe ₂ O ₂ +Al ₂ O ₂ .	CaCO ₂ .	CaO. %	MgCO ₃ .	MgO. %
352	1 2 3 4 5	2.70 3.49 1.39 .93 2.03	.44 .41 .34 .62	92.96 94.74 96.87 95.88 96.76	52.00 53.09 54.29 53.72 54.23	1.21 1.32 1.14 1.14 1.22	. 58 . 63 . 54 . 54
357 358 359 360 361	6 7 8 9 10	4.62 1.61 3.25 .87 1.66	.41 .61 .37 .24 .34	91.21 91.64 92.66 97.03 91.05	51.18 51.35 51.93 54.38 51.03	3.54 6.53 2.32 .91 6.27	1.69 3.11 1.11 .43 3.00
362 363 364 365 366	11 12 13 14 15	3.37 2.03 2.18 3.07 .84	.62 .55 .55 .46 .41	90.96 95.35 93.67 92.36 97.92	50.98 53.44 52.49 51.76 54.87	3.99 1.14 2.59 3.19	1.91 .54 1.24 1.55
367 368 369 370 371	16 17 18 19 20	.85 1.75 2.35 2.46 3.09	.48 .78 .91 .52	97.92 95.77 92.15 94.80 94.46	54.87 53.67 51.81 53.13 52.94	.98 1.46 2.91 1.80 1.51	.47 .70 1.88 .86
372	21 22 23 24 25	2.28 1.82 2.39 2.74 2.51	.48 .55 .50 .54	95.91 96.55 95.51 92.72 95.02	53.75 54.11 53.53 51.98 53.25	1.37 1.41 1.85 3.62 1.32	.61 . 6 7 .88 1 .73
377	26 27 28 29 30	2.23 2.46 3.24 2.76 2.73	.66 .34 .32 .18 .09	95.44 93.03 93.91 95.60 95.98	53.49 52.14 52.63 53.58 53.79	1.41 3.80 2.70 1.26 1.30	.67 1 .88 1 .88 .60
382	31 32 33 34 35	1.98 1.80 3.30 3.53 1.55	.43 .27 .30 .45	96.50 96.80 93.73 92.93 96.63	54.08 54.25 52.53 52.08 54.15	1.04 1.24 2.82 3.05 1.20	. 50 . 58 1 . 38 1 . 46
387	36 37 38 39	9.67 7.57 1.82 1.43	.50 .20 .71 .42	88.11 89.42 95.93 97.26	49.38 50.11 53.76 54.51	1.04 2.55 1.23 .99	. 50 1 . 22 . 58 . 47
391	40 41 42 43	2.25 2.02 2.30 4.05	.30 .36 .48 .25	95.80 95.10 96.56 93.77	53.69 53.30 54.11 52.55	1.37 2.48 2.48 1.06	.68 1.18 - 1.18 51

*Analyses furnished by D. N. McLeod Lumber Co., Garnet. Figures in italics are calculated from original analyses.

Analyses Nos. 352 to 394 are the summary of results from the shallow holes in section 36 which penetrated only to the bottom of the Fiborn limestone. According to these analyses the content of calcium carbonate generally is between 91 and 97 per cent, the magnesian carbonate between 1 and 4 per cent, and the silica between 1 and 3 per cent.

The analyses of the core from the deep test hole show that the Fiborn limestone extends to the depth of about 27 feet. It is underlain by about 14 feet of magnesian limestone which is followed by 35 feet or more of high calcium limestone. Beds belonging to this horizon are

not exposed anywhere as far as known. A nearly complete section of the magnesian horizon above, however, is exposed in a test pit in bottom of Hendrick's quarry a half mile to the south. (See section in Hendrick's quarry, Mackinac county.)

The height of the bluff on the north is from 80 to 100 feet, hence conditions are favorable for quarrying down to the bottom of the lower high calcium horizon

Summary. The high calcium limestone resources of Luce county are confined to a very narrow strip along the southern edge of the county, chiefly in section 31, T. 45 N., R. 8 W., and section 36, T. 45 N., R. 9 W.

Mackinac County.

Distribution. The Hendricks series and Fiborn limestone of the lower Niagara underlie the northwestern part of the county, the Manistique series and the Engadine dolomite of the upper Niagara the remainder of the county (fig. 14) with the exception of St. Ignace peninsula

Figure 14. Section from Donald, Mackinac county, south to Lake Michigan.

and adjacent islands, which are underlain by the Monroe-Salina series. Exposures of all of the members of the Niagara limestone, with the exception of the Hendricks series, are very large and numerous. The Engadine dolomite forms a prominent though broken northward facing escarpment extending from east to west across the county. The Fiborn limestone also terminates on the north in an escarpment, though much less prominent and continuous. It is exposed or is under light drift cover in several large areas throughout a belt extending from the west side of Lake Ella northeast to Hendricks quarry and then southeast through Fiborn quarry into Chippewa county, where it disappears beneath thick deposits of lake clay. The most important areas of exposures are on the west side of Lake Ella, near Gould City, and in the vicinity of Hendricks and Fiborn quarries. A large exposure is reported to occur between these quarries. The Fiborn limestone is near the surface about one mile south of Donald but the extent of the

area is uncertain. The Engadine dolomite is widely exposed from its escarpment south to the shores of lakes Michigan and Huron. Very large exposures of the Monroe-Salina formation occur in the vicinity of St. Ignace and on the adjacent islands.

Character. The Hendricks series is composed of a variety of limestones ranging in composition from high calcium to high magnesian. They are not well exposed in the county and knowledge concerning their general character has been gained largely from a shallow test pit in Hendricks quarry and from drill cores in its vicinity. The thickness of the series is unknown but it is certainly over 100 feet. limestone, 18 to 30 feet in thickness, is uniformly a buff to dark gray lithographic to densely crystalline high calcium limestone breaking with a perfect conchoidal fracture and generally containing an abundance of small calcite crystals. The Manistique series, probably over 275 feet in thickness, is composed of a variety of limestones varying greatly in texture, structure, and composition. The series, however, is largely high magnesian limestone or dolomite. The Engadine dolomite is everywhere an extremely massive very crystalline bluish or white dolomite with mottlings and streaks of distinct blue and containing many druse cavities. It is generally very pure, the impurities usually being less than 2 per cent. The Monroe-Salina is composed chiefly of argillaceous and siliceous dolomites with intercallated beds of gypsum.

Quarries and Localities.

Fiborn quarry. The Fiborn Limestone Co. have a large quarry in section 16. This quarry (Pl. IV B) was formerly known as the Osborn quarry and was the first to be opened in the Fiborn limestone. In this vicinity limestone is exposed in sections 15, 16, 21, and 22, T. 44 N., R. 7 W. In 1901 A. C. Lane described* some caves in section 16 and incidentally made reference to the purity of this bed. In a later report† he published the following section:

Section in Fiborn Quarry.	
	Thickness, feet.
"Limestone with Orthoceras, a loose Favositid, a small gastropod, but most abundant fragments of heads of Stromatoporoids. Greenish sandy looking limestone with greenish tubes running into each other	3
(anastomosing), with corals and Stromatoporoids which show well on the	
green surface Very massive Mottled brown and light with Stromatopora heads	· 1
Finely banded mud rock (calcilutite) with quite persistent bands of holes, empty gastropod cavities half way down. These have calcite crystals lining them. A leperdita and stylolitic suture occur and this lower part has a more porcelanic and less sugary appearance than the upper part containing the coral and Stroma-	
toporoid heads. A notable thing is the absence of Pentamerus''	9
*Ann. Report, Mich. Geol. Surv., 1901, p. 146. †Ann. Rept., Mich. Geol. Surv., 1907, p. 20.	

The Fiborn limestone has been traced from a point two or three miles west of Trout Lake nearly to Manistique River, a distance of about 50 miles. Fragments identical with the Fiborn limestone are abundant in the drift on Lime Island (St. Marys River), indicating its eastward extension from Trout Lake.

The thickness of the bed in the quarry is variable but the maximum is about 30 feet. The average height of the quarry face is probably about 25 feet. A large acreage of stone has been quarried out but this is only a small fraction of the area of easily quarryable stone. The stone is stripped and handled by steam shovel. The stripping is generally thin but locally it is several feet in thickness.

The beds in the quarry are, on the whole, gray to buff gray, lithographic to dense grained, high calcium limestone, very brittle and breaking with a smooth conchoidal fracture and generally containing small disseminated calcite crystals. Locally the stone is finely banded and free from calcite crystals. All of the stone is high calcium but near the bottom of the bed the percentage of magnesia is slightly higher. The floor of the quarry is white or light colored crystalline limestone containing more or less magnesia.

An analysis (No. 395) of a representative set of samples of the Fiborn limestone gave 55.19 per cent of calcium oxide and 1.12 per cent of magnesia. An analysis (No. 396) of a sample from the magnesian basal portion of the bed gave 51.46 per cent of calcium oxide and 4.30 per cent of magnesia. Analyses Nos. 397 to 399 are of the marketable product. These analyses indicate the high average purity of the limestone which is extensively used for flux, chemical lime, the manufacture of calcium carbide, sugar, etc., and for road material, concrete, and railway ballast.

Hendricks quarry. A large area of Fiborn limestone occurs in sections 1 and 2, T. 44 N., R. 9 W., and portions of adjoining sections. The portion of the area extending into the sections on the north is terminated by a bluff 80 to 100 feet in height (see McLeod Lumber Co. quarry, Luce county.) The Union Carbide Co. have opened a large quarry (Pl. V A) at Hendricks near the eastern end of the area in the edge of section 6, T. 44 N., R. 8 W.

The quarry at the time of the writer's visit was an elongated opening over an eighth of a mile in length and from 8 to 25 feet in depth. The section exposed in the quarry and in a test pit (Pl. V B) in the floor of the quarry is as follows:

A. CRUSHING PLANTS OF THE BAYPORT QUARRY OF THE WALLACE STONE AR BAYPORT, HURON COUNTY.

Worked out portion. w ... the foreground. The present quarries are beyond the crushing plants.

B. FIBORN QUARRY AND CRUSHING PLANT OF THE FIBORN LIMESTONE COMPANY, MACKINAC COUNTY.

The Fiborn limestone has a maximum thickness of nearly 30 feet in this quarry.

A. HENDRICKS QUARRY OF THE UNION CARBIDE CO., MACKINAC COUNTY.

The Fiborn limestone in this quarry averages about 18 feet in thickness.

B. TEST PIT IN THE FLOOR OF HENDRICKS QUARRY, SHOWING THE UPPER BEDS OF THE HENDRICKS SERIES.

	•		I

Section in Hendricks quarry.

		Thickness, feet.
1.	Hard light gray, porous and thin-bedded magnesian limestone. Stone badly leached. Bed present only in places. Not used	4
	Hard white to light gray, crystalline to dense grained, porous, cherty, and magnesian limestone. Bed not used. (Anal. No. 400 of beds Nos. 1 and 2	
3.	gave 12.71 per cent of MgO). Gray to grayish buff lithographic to dense grained high calcium limestone with a smooth conchoidal fracture and with small disseminated calcite crystals.	31
	Top portion is light gray, well bedded and crystalline. (CaO, 55.05 per cent; MgO, 0.81 per cent; Anal. No. 401)	18
	Test pit in bottom of quarry.	
4.	Hard white dense grained to finely crystalline high calcium limestone, becoming more magnesian toward the base (CaO, 53.89 per cent; MgO, 1.35	
5.	per cent. Anal. Nos. 403-4)	. 8
6.	MgO, 1.05 per cent. Anal. No. 405). Hard white thin-bedded high calcium limestone (CaO, 51.39 per cent; MgO,	1
7.	4.19 per cent. Anal. No. 406). Hard white crystalline dolomite (MgO, 20.46 per cent. Anal. No. 407)	2 2
8.	Brownish crystalline dolomite with drusy cavities. (MgO, 20.15 per cent. Anal. No. 408). Yellowish earthy high calcium limestone (CaO, 55.75 per cent. Anal. No. 409)	6
₽.	renowish earthy mgit calcium innestone (CaO, 55.75 per cent. Anal. No. 409)	

As may be noted from the above section the Fiborn limestone is locally overlain by beds of light colored magnesian limestone. These beds were encountered only in the southwestern portion of the quarry. The rock suface is more or less corroded and eroded and apparently these magnesian beds are present only in the higher places in the vicinity of the quarry. Some of the corrosion hollows are very deep extending nearly to the bottom of the Fiborn limestone. The hollows or "pockets" are filled with drift and give more or less trouble in stripping.

The thickness of the Fiborn member averages about 18 feet which is considerably less than in the Fiborn quarry, Mackinac county, or in the Blaney quarry, Schoolcraft county. The stone, however, is very similar in character and composition in all of the quarries. Analysis No. 400 indicates that magnesian character of the white limestone overlying the Fiborn limestone on the south. An analysis (No. 401) of a set of samples from the Fiborn limestone gave 55.05 per cent calcium oxide and only 0.81 per cent of magnesian oxide. Generally the basal portion is more magnesian but analysis No. 402 from near the bottom of the bed gave 55.29 per cent of calcium oxide and 0.82 per cent of magnesium oxide. The white underlying limestone, which, in the Fiborn and Blaney quarries is magnesian, also is low in magnesia. Analyses Nos. 403 to 409 are of the beds exposed in the test pit and these show that the beds range in composition from very pure high calcium limestone to heavy magnesian limestone or dolomite.

A number of core drillings were made in the vicinity of the quarry and the following analyses are of the core from one over 145 feet in depth:

Test Hole Near Hendrick's Quarry.

, Sault Ste.	
 ion Carbide Co	
, Supt. Un	
seph Scales	
rnished by Jo	
Analyses fu	rie, Mich.
County.	Z
ac C	E
ac C	5
9 W., Mackinac C	W

ş	Kembrks.	Compare beds Nos. 1 and 2 of section in Hendrick's	one.	compare beds Nos. 4-9 of test pit in bottom of	Lower high calcium horizon.	,
Carbon di-oxide	and water. COr-H ₂ O.	$43.81 \atop 43.81 \Bigr\}$	44.12	44.30	44.99 44.30 45.06	44.98 44.39 44.36 44.21
Magnesium oxide.	Mgo.	5.87	0.50	3.18	2.53 0.14 1.79	2.25 1.92 13.18 11.89
Magnesium carbonate.	MgCO ₃ .	12.27	1.05	8.65	5.29	445.8 445.4 01.0.7 01.0.8
_	CaO.	47.06	54.19 52.65	50.96 41.17	51.02 53.43 51.31	48.74 51.50 37.28 36.47
Calcium	CaCO.	88.97 84.56	98.69	90.93	91.04 95.34 91.55	86.97 91.09 86.52 66.07
Iron- Alumina	Fe ₂ O ₁ -Al ₂ O ₁ .	$\frac{1.10}{0.45}$	$0.17 \\ 0.26$	0.16	0.44	0.57 0.40 1.27 1.71
Silica.	Oz. S	2.16	1.02	1.40	1.57	2.04 5.391 5.72
Core.	Depth, feet.	23'- 0" 34'- 0"	39'- 6'	55′- 9° 62′- 0°	71'- 0" 84'- 6" 96'- 6"	116'- 0" 121'- 6" 134'- 0" 145'-10"
ŭ	Thickness, feet.	9'- 6' 11'- 0'				19'- 6" 5'- 6" 12'- 6" 11'-10"
.oV	Sample	-8	∞4	د ه	r-00 00	3222
.0X 8	dsylanA	410	412	414	416 417 418	419 420 421 422

Note.—Numbers in italics are calculated from original analyses.

The exact location of this hole is not given but judging from the magnesian character of the top 20 feet (13 ft. 6 in. to 34 ft.) it is south of the quarry where the overlying white magnesian limestones (Beds Nos. 1 and 2) should be expected. Core samples Nos. 3 and 4 (34 ft. to 49 ft. 6 in.) represent the Fiborn bed but it is probable that a part of the bed is included in samples Nos. 2 and 5. Samples Nos. 5 to 7 (49 ft. 6 in. to 62 ft.) represent the magnesian series exposed in the test pit. Samples Nos. 8 to 11 are of a lower high calcium bed or beds 35 to 50 feet in thickness and comparable in purity with the Fiborn limestone above.

The name Hendricks series has been provisionally given to this series of high calcium and magnesian limestones below the Fiborn limestone. It is possible, however, that the Hendricks series should also include the Fiborn limestone. A large section of this series would be exposed along the high bluff a half mile to the north if the base of the bluff was not covered by debris.

A large part of the quarry product is used by the Union Carbide Co. at Sault Ste. Marie for the manufacture of calcium carbide. The remainder of the product is disposed of for a variety of purposes.

Donald. The Fiborn limestone is near the surface in section 29, T. 44 N., R. 10 E. It is exposed at the depth of about five feet in a shallow open well on the farm of August Wandtland near the center of the section. It was also found at depth of 28 inches in holes dug for telephone poles in the road along the east side of the section. The overburden, however, appears to be heavy in most places and the area of easily quarryable stone is very uncertain. An analysis (No. 423) of a sample blasted from the well on the Wandtland farm gave only 47.72 per cent of calcium oxide and 5.93 per cent of magnesium oxide. The percentage of magnesia is higher than is usual for the Fiborn limestone.

Gould City. Just north and west of Gould City the Fiborn limestone is exposed or near the surface in sections 30 and 31, T. 43 N., R. 11 W., also in the eastern part of sections 25 and 36, T. 43 N., R. 12 W. Fire has removed the timber and soil mold exposing a large area of bare rock on each side of the road. The area of easily quarryable stone is uncertain but apparently it is several hundred acres.

The stone is a light gray, lithographic, high calcium limestone, very brittle, breaking with a smooth conchoidal fracture and containing small disseminated calcite crystals. An analysis (No. 424) of sample taken from a small pit near the road in section 31 gave 54.30 per cent of calcium oxide and 1.63 per cent of magnesium oxide. The light

drift cover and the nearness to the Minneapolis and St. Paul railroad make very favorable conditions for development.

Hunt Spur. Two miles north of Hunt Spur the Fiborn limestone is exposed over an area of several square miles in extent. Fire has removed much of the timber and original soil mold, and exposures are numerous from the vicinity of Lake Ella westward into section 4, T. 42 N., R. 13 W., Schoolcraft county, a distance of about six miles. This is the largest area of exposures of the Fiborn limestone. principal exposures in Mackinac county are in sections 5 and 6, T. 42 N., R. 12 W., and in sections 31 and 32, T. 43 N., R. 12 W. The rock surface is generally flat but locally there are rock ridges from 4 to 20 feet in height. The thickness of the Fiborn limestone in the eastern portion of the area is variable but uncertain, but in the Blaney quarry at the west end it is at least 26 feet. Quarrying conditions are favorable in much of the area but drainage in some portions would be difficult. An analysis (No. 425) of limestone from a rock ridge 15 to 20 feet in height in section 6, T. 42 N., R. 12 W., was made by the Lake Superior Iron & Chemical Co. and this gave 53.70 per cent of calcium oxide and 1.74 per cent of magnesium oxide. Other analyses from the western portion of the area also show the high average quality of the limestone.

Another area of exposures is reported to occur between Fiborn and Hendricks quarries. About four miles northwest of Trout Lake in section 24, T. 44 N., R. 7 W., small exposures of the Fiborn limestone occur and it is probable that with further search and exploration a considerable area of high calcium limestone may be developed. Most of the locality is covered by morainic deposits, therefore the areas of limestone under light overburden may be small.

Ozark quarry. The Ozark Stone Co. has opened a quarry (Pl. VI A) at Ozark in the edge of the prominent escarpment of Engadine dolomite which extends northward to Haff postoffice (Dick) in Chippewa County. This dolomite is exposed or is at shallow depth in many places in an area of many square miles in extent east and north of Ozark. The amount of available dolomite in this area alone is practically inexhaustible. The dolomite is distinctly bluish with mottlings and streaks of blue, very crystalline, massively but poorly bedded, and very porous, locally containing many druse cavities, apparently the molds of a large species of Pentamerus. The jointing is very irregular and upon blasting the stone breaks into large irregular masses. At the time (1913) of the writer's visit, the quarry was about 100 feet in length and 20 feet in depth but the bottom of the bed had not been reached. The rock surface is very uneven and the thickness of the bed is variable

and uncertain. Three or four miles north, however, it is over 50 feet. The stone is very pure dolomite, suitable for use as a basic lining in open hearth furnaces and for the manufacture of paper by the sulphite process. Analysis No. 426 indicates that at Ozark the impurities average less than one-half per cent.

Kenneth. Exposures of Engadine dolomite occur at and in the vicinity of Kenneth and formerly a small quarry was operated here for burning lime. The dolomite is similar to that at Ozark, though judging from analysis No. 428 it is slightly less pure, containing 1.40 per cent of impurities.

Large areas of Engadine dolomite occur in the eastern part of the county, especially in T. 42 N., R. 1 W., and 43 N., R. 2 W. The northern limit of these areas is generally marked by high rock bluffs.

Caffey. A considerable area of Engadine dolomite occurs a mile southeast of Caffey. Dolomite is exposed in a number of places and quarrying conditions are favorable.

Garnet. A small exposure of Engadine dolomite occurs at the top of a low elevation a short distance north of the railroad at Garnet, but judging from the great number of large boulders the dolomite is near the surface in an area of at least two or three hundred acres.

Engadine. About one mile west of Engadine the Minneapolis, St. Paul and Sault Ste. Marie railroad crosses a large exposure of bluish very crystalline extremely massive and poorly bedded dolomite, locally containing numerous druse cavities, apparently the molds of a large Pentamerus. Exposures extend for two miles south of the railroad and apparently southwestward for several miles. The rock surface slopes gently to the south, apparently in accordance with the general southward dip of the beds, but north of the railroad the area terminates in a series of low bluffs. About one mile south of the railroad there is an east and west valley locally bordered by perpendicular rock walls 8 to 12 feet in height on the north and south. One mile north of the railroad the massive dolomite terminates in a high bluff with an exposure at the base of very fossiliferous and thin bedded magnesian limestone, belonging to the underlying Manistique series. The name Engadine dolomite has been given to this massive dolomite from its prominent and extensive exposures west of the village of Engadine.

According to analyses Nos. 429 to 431 the rock is a normal dolomite containing about 1.25 per cent of impurities. The amount of available dolomite in the Engadine area is practically inexhaustible but unfortunately dolomite finds but limited use in the industries. The large

area of exposures, a natural face, and the proximity to railroad transportation offer especial advantages for development.

St. Ignace. Large exposures of the Monroe dolomites occur in the vicinity of St. Ignace, on Mackinac Island and other adjacent islands. Formerly the dolomite was burned for lime at a number of places. Due to the exhaustion of suitable fuel and to the impure character of the dolomite these quarries and kilns were abandoned many years ago. Much of the Monroe dolomite in the vicinity of St. Ignace and on Mackinac Island is brecciated.

Summary. Mackinac county contains several of the largest areas and also the largest reserves of high calcium limestone in the Northern Peninsula, but unfortunately most of these are located in the north-western part of the county at considerable distance from trunk line railroads. Only two of the areas have been developed, though the limestone is suitable for almost every purpose for which high calcium limestone may be used. The county has also practically inexhaustible supplies of the purest dolomite, much of which is near railroad transportation. The exceptional purity of the dolomite makes it especially adapted for use as the basic lining in open hearth furnaces and for use in paper manufacture by the sulphite process.

Murquette County. Exposures of the Trenton limestone and the Beekmantown (Calciferous) sandstone occur along the Escanaba River in the extreme southern part of the county. Analyses Nos. 437 to 439 are indicative of the sandy character of the Beekmantown and Nos. 440 and 441 of the siliceous and argillaceous character of the Trenton limestone.

Menominee County.

Distribution. The Trenton limestone underlies the much larger eastern portion of Menominee county and the Beekmantown (Calciferous) forms a narrow belt along the western side. The Trenton is exposed about 2 miles north of Menominee and also in the bed of Menominee River near its mouth. The Beekmantown sandstone is exposed in the vicinity of Hermansville and along the Grand rapids on Menominee River. Rominger* gives the following section from this place:

^{*}C. Rominger, Paleozoic Rocks of the Upper Peninsula, Vol. I, Pt. III, p. 72, 1869-1873.

Section of the Calciferous sandstone at Grand rapids, Menominee River.

		Thickness, feet.
1.	Fine grained crystalline even-bedded limestone with argillaceous partings.	
_	(SiO:, 18 per cent, Anal. No. 442). Nodular limestone of peculiar concentrically laminated structure much re-	4
2.	Nodular limestone of peculiar concentrically laminated structure much re-	
	sembling irregularly contorted nodular masses of Stromatopora	3
3.	Compact dolomites, partly arenaceous, partly of colitic structure	2
4.	Fine grained argillaceous arenaceous limestones banded with red stripes or	
	variegated with irregular blotches in thin and even bedded layers. (SiO,	
	23 per cent, Anal. No. 443). Hard dolomitic limestones and colite beds mixed with a greater or smaller	3
5.	Hard dolomitic limestones and colite beds mixed with a greater or smaller	_
	proportion of quartzose sand granules	4
6.	proportion of quartzose sand granules	-
٠.	ceous shales. Numerous angular fragments of limestone and pieces of shale	
	in-the upper layers	5
	in the apper augusts	·

The siliceous, argillaceous, and magnesian character of the limestone beds is indicated by the analyses by Rominger, No. 442 of the upper bed, No. 443 of bed No. 4, and No. 444 of bed No. 5.

Hermansville. Sandy limestone belonging to the Beekmantown (Calciferous) is exposed in the vicinity of Hermansville, Iron Mountain, and Waucedah, and has been locally designated* by Rominger as the Hermansville limestone. Its general character as described by him is "that of a coarse grained sandstone with abundant calcareous cement in alternation with pure dolomite or sometimes öolitic beds." It is of little economic importance, the stone apparently being suitable only for road material, concrete, common building stone, etc.

The principal exposure of the Trenton limestone is about 2 miles north of Menominee where a small quarry has been opened by the Menominee Stone Crusher Co. The area of easily quarryable stone is apparently only 10 or 15 acres but perhaps further exploration may result in the development of a considerable larger area.

The stone is a buff to gray, argillaceous, low magnesian stone weathering to bluish color. The argillaceous matter is chiefly in very fine wavy laminations more or less parallel with the bedding. Only four or five feet of rock were exposed but according to the foreman of the quarry the rock is similar to the depth of about 34 feet. The rock is used chiefly for concrete paving and for road making in the vicinity of Menominee.

Analysis No. 445 is indicative of the argillaceous and low magnesian character of the beds in the quarry. Analysis No. 446 from the field notebook of N. H. Winchell is apparently from the upper dolomite beds, the so-called "Menominee marble," exposed along Menominee river. The impurities, however, in this bed are abnormally low for the Trenton limestone.

Summary. Menominee county apparently has limited limestone

^{*}C. Rominger, Paleozoic Rocks, Mich. Geol. Surv., Vol. I, Pt. III, 1873, p. 81.

resources and these are generally siliceous, argillaceous, and magnesian. The limestone is adapted chiefly for road making, concrete, railroad ballast, or rough building stone.

Monroe County.

Distribution. The Monroe formation and the Dundee limestone occupy all but the extreme southwestern portion of the county. In Monroe county the Monroe formation consists of three divisions, viz., the Lower Monroe or Bass Island series, the Middle Monroe or Sylvania sandstone, and the Upper Monroe or Detroit River series. The members of the Monroe formation and the Dundee limestone form parallel belts extending across the county in a northeast-southwest direction. The Lower Monroe occupies the southeastern belt along Lake Erie and the others follow in order to the northwest.

Character. The Lower Monroe is composed of argillaceous and locally bituminous dolomite, anhydrite, celestite, and native sulphur; the Sylvania, of white sandstone and sandy dolomite; the Upper Monroe, chiefly of argillaceous dolomite with anhydrite, celestite, and sulphur; the Dundee, high calcium and magnesian limestone. The dolomite of the Monroe is locally much brecciated.

Quarries and Localities.

The surface deposits are generally thin in the eastern part of the county and gradually increase in thickness westward. Because of this, exposures decrease in number from near the lake westward. The lower Monroe dolomite of the eastern belt is exposed at many places but the Dundee limestone of the western belt is exposed at but three places.

Lower Monroe.

Monroe quarries. Formerly numerous limestone quarries were operated in the eastern portion of Monroe county but only three quarries are now in operation and these are at Monroe.

The quarry of the Shore Line Stone Company is about one mile north of the city near the Shore Line Railroad. The following section was exposed:

		Thickness, feet.	Inches.
-	Stiff lake clay	4-6	•
1.	Stiff lake clayBlue and buff dolomite	2-4	
2.	Dark gray, buff, brown, bituminous, argillaceous and mas-		
_	sively bedded dolomites	18	
3.	dolomitic öolite	1+	
4.	Light to dark gray and dense grained brittle dolomite with bluish mottlings and streaks resembling castile soap. The		
	upper 8 to 10 inches has a gnarled pattern, the middle 6		
	inches is mottled, and the lower 3 or 4 feet streaked. The	5	İ
5.	lower portion is very argillaceous	ย	
٥.	ous laminations	2	l
6.	ous laminations. Buff very earthy argillaceous and massively bedded dolomite.	2 3 2	
7.	Dark grav densely crystalline dolomite	2	
8. 9.	Thin seam of collitic dolomite Brittle light colored dolomite with black mottlings and	U	6
9.	streaks and a blue shale seam at the bottom	1	6
10.	Dark buff gray crystalline and sandy appearing dolomite	•	•
	with a shale seam at the bottom	2	
11.	Thin seam of colitic dolomite	0	46
12.	Brittle fine grained light colored argillaceous dolomite with		
	bluish streaks and mottlings. Lower portion very ar-		
	gillaceous	1 +	

Much of the dolomite is argillaceous though analyses (Nos. 447-449) of samples taken at 2, 7, and 10 feet from the top of the quarry gave an average of only 0.75 per cent iron and alumina and 1.35 per cent of silica. The sulphur is locally high and the generally impure character of the dolomite unfits it for general fluxing and chemical purposes. In the early days it was used for lime burning and building stone but now it is used chiefly for road making, concrete, and railroad ballast.

The quarry of the France Stone Co., formerly the Monroe Stone Co., is on the southeast side of Plum Creek in the southern part of Monroe. This is the largest quarry in the county and the company have recently installed a modern crusher plant (Pl. VI B). The area of available stone is said to be about 90 acres. The section exposed is as follows:

Section	in	the	France	Stone	Ço.	quarry.

		Thickness.
		feet.
	Surface	0-4+
1	Surface. Light yellowish earthy dolomite with brown mottlings with öolite at the top	3 '
ŝ.	Light bluish gray densely crystalline dolomite	ž
ã.	Buff gray very fine grained, laminated and bituminous dolomite	5
4.	Dark gray bituminous and densely crystalline dolomite with drusy cavities.	ž
3.	Magaire over delemite	õ
5.	Massive gray dolomite	. 0
6.	Massive gray dolomite	
	interstitial openings partially filled with dolomite spar and large crystals	
	and masses of calcite or dog-tooth spar	6
7.	Buff sandstone	2
8.	Brittle yellowish white and buff dolomite with mottlings and streaks	
9.	Dark buff gray dense grained to crystalline and bituminous dolomite with	
	druse cavities	2
10.	Dolomite breccia, fragments very small	1
11.	Massive crystalline dolomite resembling brown sugar	1+

The maximum depth of the quarry is about 40 feet but a complete section could not be obtained at any place on account of a large blast of limestone. Some of the beds are much brecciated. In some places the brecciation is confined to one bed, in others it extends through all. The brecciation is of two types, one in which rearrangement of the fragments has occurred and one in which it has not. In the first type the fragments are large and are inclined at all angles. In the second type they are generally small and are difficult of recognition. Usually a very hackley fracture of the stone is indicative of this type of brecciation.

Many of the beds are argillaceous and bituminous. An average of five analyses (No. 450) of the gray dolomite beds gave 3.08 to 6.08 per cent of impurities. The stone is crushed for concrete, road making and railroad ballast.

Immediately north of the France quarry on the opposite side of Plum Creek there is a small quarry operated by J. Morris for rough building stone, concrete, and road material. The beds are similar to those in the France quarry.

According to Sherzer* stone was formerly quarried near Newport Center and Brest, claim No. 529, south of Swan Creek, in the bed of the River Raisin for three or four miles above Monroe, a half mile south of Plum Creek quarries, in the bed of Otter Creek for a mile up stream from the Pere Marquette railroad bridge, along the south branch of Otter Creek in sec. 20, T. 7 S., R. 8 E., along Muddy Creek in secs. 29, 32, and 33 of the same township, in secs. 1 and 12, T. 8 S., R. 7 E., in sec. 15 in the vicinity of Little Lake, in secs. 10, 16 and 21 of the same township, in sec. 25, T. 8 S., R. 6 E., and sec. 4, T. 9 S., R. 6 E. Nearly all of these quarries were small and were operated for building stone for local use. Lime, however, was burned at some. All of the quarries are abandoned or idle and full of water. The area of easily quarryable stone is reported to be considerable in some of the localities. The beds are chiefly gray argillaceous dolomite with öolitic horizons, similar in general character to the beds exposed in the Monroe quarries.

Upper Monroe.

The exposures of the Upper Monroe are numerous and many small quarries have been opened at one time or another, chiefly for building stone. Lime was burned but much of the dolomite is too sandy or impure for this purpose.

Woolmith† quarry. The Woolmith quarry is between Maybee and Scofield and is the largest in the Upper Monroe. The quarry is full of water but according to Sherzer the section formerly exposed was as follows:

^{*}W. H. Sherzer, Geology of Wayne Co., Vol. VII, Pt. I, pp. 92-100, Mich. Geol. Surv., 1900. †W. H. Sherzer, Geology of Monroe County, Vol. VII, Pt. I, 1900, pp. 78-82.

i al. the type

A. QUARRY OF THE OZARK STONE COMPANY AT OZARK, MACKINAC COUNTY.

The massive bedding and the irregular jointing are characteristic of the Engadine dolomite.

B. NEW CRUSHING PLANT OF THE FRANCE STONE COMPANY, MONROE, MONROE COUNTY.

The beds belong to the Raisin River dolomite of the Lower Monroe and are locally much brecciated.

		Thickness, feet.
	Blue boulder clay	2-8+
Α.	Light colored finely laminated dolomite blotched and streaked with brown	2-8+ 2-4
A. B. C.	Dolomitic folite with small cavities containing celestite, calcite, and sulphur. Drab to brown dolomite with the upper surface very hummocky with cavities	3}
٠.	containing celestite, calcite, and sulphur. A thin seam of impure as-	
	phaltum is at the top and bottom of this bed	1-3
D.	Dark brown to gray dolomite more or less impregnated with oil	1-3 1-5
Ĕ.	Brown porous dolomite impregnated with oil and containing cavities with	
E.	celestite, calcite, and sulphur. "Sulphur bed"	1-3
F.	Sandy bluish dolomite and bituminous limestones blotched with brown to-	
	ward the bottom	2-3
G.	Gray very sandy dolomite	2–3 3–4
Ħ.	Light gray sandy and massive dolomite with streaks of "glass sand" and iron	
	oxide. (Insoluble residue 24.4 per cent, chiefly white sand). Used for building blocks.	16
T.	Compact gray and massively bedded dolomite. This bed rests on the	
•	Sylvania sandstone	15

Most of the beds are very sandy and portions of the lower beds are pure sandstone. The dolomite also contains sulphur. It is suitable chiefly for rough building stone, road material, concrete, and railroad ballast. Blocks of almost any size may be quarried from the 16 ft. bed. Analyses Nos. 451-452 are indicative of the siliceous character of the beds.

There are six old quarries in the vicinity of Raisinville. The exposed beds correspond to the lower beds in the Woolmith quarry. Lime was burned at one of the quarries. Analysis No. 453 is indicative of the general character of the beds.

Lulu quarry. This quarry is located in the NW. ½ NW. ½ sec. 16, T. 7 S., R. 7 E. The beds include both sandstone and gray dolomite more or less mottled and streaked with blue. Building stone was quarried here more than 75 years ago. Analysis No. 454 by Rominger is from one of the beds of dolomite and No. 455 from a sandy stratum.

Little Sink quarry. In Little Sink quarry, SE. \(\frac{1}{4}\) SE. \(\frac{1}{4}\) sec. 2, T. 8
S., R. 6 E., 6 to 8 feet of gray dolomite overlies pure white sandstone. The beds were quarried for building stone and for burning
lime.

Ottawa Lake quarries. Several small quarries were formerly operated near the north end of Ottawa Lake for building stone, lime, and road material. The beds formerly exposed are as follows:

	,	Thickness, feet.
<u>A</u> .	Compact buffish brown siliceous dolomite	0-?
n.	Cherry dolonine	1 11
C.	Compact dominite similar to A but blue in color	0.1
ν.	Buff to gray compact dolomite with carbonaceous films.	2

Ida quarries. In some quarries one and one-half miles west of Ida there are two beds of gray dolomite. The upper is oolitic and has a gashed or acicular structure. Analysis No. 457 is from the upper bed. The gashed structure is apparently due to tabular crystals of celestite which have been leached out.

Analysis No. 456 is from material from a drill hole in the Upper Monroe dolomite just north of Carleton.

Dundee Limestone.

Quarries have been opened in the Dundee limestone at Dundee and near the mouth of Macon River about 2 miles northeast of Dundee.

Dundee quarry. This quarry is located on the north bank of the River Raisin back of the National Hotel. It consists of a rectangular opening about 90 feet wide and 240 feet long, and is only a few feet above normal river level. It is abandoned and full of water. According to local residents all of the available stone has been removed. The section as determined by Sherzer* is as follows:

		feet.
B. C.	Gray fossiliferous limestone impregnated with oil. Grayish brown limestone, weathering bluish Dark brown and bituminous limestone, cherty toward the bottom. A massively bedded bluish limestone, lighter colored toward the bottom	21 41 61 5

Macon quarry. The Macon quarry has been known at various times as the Christiancy, Nogard, and Bullock quarry, corresponding with its various owners. It is near the mouth of Macon River and in the former channel of the river, from which the water has been deflected by an embankment. It extends for a considerable distance along the north bank of the stream. It is now abandoned and full of water, hence its description rests upon the authority of Sherzer†.

		Thickness, feet.
8	urface	4-6+
A.	burface. Gray fossiliferous limestone. (CaCO ₂ , 90.80 to 98.10 per cent; MgCO ₂ , 6.87 to 0.63 per cent; Anal. Nos. 458 and 463)	1-2
В.		
	86,80 per cent; MgCO ₂ , 11.60 per cent; Anal. No. 459)	4-4
C.	Soft dark gray limestone. (CaCO ₂ , 77.60 per cent; MgCO ₂ , 17.41 per cent; Anal. No. 460)	7-8
D.	Similar but higher in calcium carbonate. (CaCO ₃ , 95 per cent; MgCO ₃ , 3.86 per cent; Anal. No. 461)	8

The area under relatively thin drift is apparently between 100 and 200 acres but definite data is lacking though the property has been more or less completely tested by the drill. The area of thin overburden lies between the Macon and River Raisin on the southwest and Saline river on the east and northeast. The surface is only a few feet above the level of these streams which are subject to floods, especially in the spring. To control the flood waters of the Macon a canal from 4 to 6 feet in depth was cut out of solid limestone from the mouth of the

^{*}W. H. Sherzer, Geology of Monroe County, Vol. VII, Pt. I, pp. 77-78, Mich. Geol. Surv. 1901.
†W. H. Sherzer, Geology of Monroe County, Vol. VII, Pt. I, pp. 75-76, Mich. Geol. Surv., 1900.

stream up for a half mile or more. This will doubtless lessen the violence of the floods but it is very probable that flood waters will give more or less trouble in quarrying operations. Beds A and B and a portion of C are well exposed along the banks of the canal.

In composition Beds A and D are high calcium containing from about 90 to 98 per cent of calcium carbonate, (Anal. Nos. 458 and 463) but B and C contain from about 10 to over 17 per cent (Anal. Nos. 459, 460, 462) of magnesium carbonate.

Petersburg. Stone has been removed from the bank of Raisin River and in digging ditches, though no real quarry has been developed. Limestone is said to have been struck at a depth of 4 or 5 feet on the river flats in the SE. \(\frac{1}{4}\), NW. sec. 4 (T. 7 S., R. 6 E.) and at 15 to 24 inches in NW. \(\frac{1}{4}\) NW. \(\frac{1}{4}\) sec. 31. Apparently the limestone at the latter place is highly magnesium.

Summary. In Monroe county there are numerous exposures and areas of easily quarryable stone in the belts underlain by the Upper and Lower Monroe dolomites. The dolomite is generally more or less argillaceous and siliceous, and locally brecciated and contains much sulphur. The harder beds are quarried for rough building stone and crushed for road making, concrete, and railway ballast. The Dundee limestone is exposed or near the surface in only a few places and apparently the most important of these is at the mouth of the Macon river. The beds include both high calcium and low magnesium lime. stone.

Presque Isle County.

Distribution. In Presque Isle county, the Dundee limestone underlies a belt skirting the shore of Lake Huron from False Presque Isle northwest into Cheboygan county. The Bell shale, the Long Lake series, the Alpena limestone and the Upper Traverse or Thunder Bay series of the Traverse formation form belts parallel to the Dundee limestone and occupy the remainder of the county excepting the southwestern corner. The Dundee is extensively exposed in the vicinity of Rogers City and Adams Point. The Long Lake series forms a belt of prominent but broken escarpments across the county more or less parallel to the shore of Lake Huron.

The Alpena limestone forms a broad broken ridge extending from the vicinity of Onaway southeast into Alpena County. The exposures are very numerous and many of them very large. The Upper Traverse series is buried under the thick drift deposits of the southwestern portion of the county.

Quarries and Localities.

Dundee Limestone.

Rogers City. The largest and most important exposures of the Dundee limestone occur in the vicinity of Rogers City. The chief exposure is a high ridge of limestone extending parallel to the shore of Lake Huron from near Swan river west-northwest to beyond Rogers City, a distance of about 5 miles. The eastern portion of the ridge is thinly drift covered and rock is exposed over considerable areas. In places, there are old lake beaches of sand and gravel. The west end of the ridge is partially covered by drift.

A prominent bluff extends along the shore. The top of the bluff is from 50 to 80 feet above the lake. The surface rises gradually toward the south to the maximum height of 160 feet or more at the distance of a little more than a mile. The surface then slopes into a valley on the south parallel to the ridge. The slope is apparently more or less in accordance with the inclination of the beds which is about 40 feet per mile toward the south-southwest. According to the records of wells the bottom of the valley is underlain by shale apparently the Bell shale. Limestone, typical of the Lower Traverse, is exposed in shallow wells on the south side of the valley in sections 2 and 3, T. 34 N., R. 5 E.

Limestone breccias occur at several places along the lake shore at and below water level. These belong to what Grabau* has termed the Mackinac limestone. These breccias were formerly included in the Monroe formation. The section of the Dundee limestone extends from water level to a height reported to be 160 feet above Lake Huron. If allowance is made for a dip of 40 feet per mile, the total thickness would be approximately 200 feet. The maximum thickness is probably greater than this for the top of the ridge has suffered considerable erosion. Figure 15 shows the general geological relations in the vicinity of Rogers City.

Figure 15. Cross section, Calcite quarry, Presque Isle county to section 3, T. 43 N., R. 5 E.

^{*}A. W. Grabau. The Devonian Formations of Michigan. Unpublished Mss.

A. QUARRY OF THE MICHIGAN LIMESTONE AND CHEMICAL COMPANY AT CALCITE, PRESQUE ISLE COUNTY.

This is probably the largest quarry in the world. The quarry face is more than a mile in length and in places fifty feet in height.

B. PLANT OF THE MICHIGAN LIMESTONE AND CHEMICAL COMPANY AT CALCITE, PRESQUE ISLE COUNTY.

This is one of the largest and most modern plants in the world.

A. MIDDLE BLUFF, FAYETTE, GARDEN PENINSULA, DELTA COUNTY.

The bluff, about 125 feet in height, is composed of heavy magnesian limestone of the Manistique series. Formerly the Jackson Iron Company utilized the limestone in smelting iron. The old quarry face is shown at the right center and the tops of old charcoal kilns in the foreground.

B. JOHN BICHLER QUARRY, FOUR MILES NORTH OF ESCANABA, DELTA COUNTY.

The beds exposed belong to the Trenton formation and are low magnesian argillaceous limestones.

Calcite quarry. The Michigan Limestone and Chemical Co. of Rogers has opened a very large quarry (Pls. VII A and B) in the eastern portion of the ridge at Calcite. The quarry was developed in the bluff along the lake. It extends from Calcite westward for more than a mile.

The floor of the quarry is from 30 to 35 feet above the lake and the working face is from 30 to over 50 feet in height. The face increases in height as quarrying progresses toward the south because of the increase in the elevation of the rock surface and, at the distance of about a mile from the present face, will be more than a hundred feet high, the floor of the quarry remaining at the present elevation. The quarry is one of the largest, if not the largest, and most modernly equipped quarries in the world.

The beds of the Dundee are dark gray to buff, or "chocolate colored," very bituminous and crystalline, high calcium limestone. Most of them are exceptionally pure. Mr. C. D. Bradley, General Manager, kindly placed at the disposal of the writer a large number of analyses of cores from test holes in the vicinity of Rogers City. The average (see Anal. No. 464) of 235 analyses of the upper 50 feet of cores gave 97.85 per cent of calcium carbonate, 1.26 per cent of magnesium carbonate and 0.34 per cent of silica. Certain thin beds however contain from 3 to 10 per cent of magnesium carbonate and locally the percentage of magnesia for a series of beds is from 3 to 6 per cent. The basal beds of the Dundee contain from 5 to 13 per cent or more of magnesium carbonate (Anal. Nos. 486-7, 527, 594-597 and 664).

Hole No. 5.

1350' N. 50' W. of S. 1 post Sec. 23, T. 35 N., R. 5 E.
Elevation 86.2 feet above Lake Huron.

No. of Anal.	Depth.	CaÇO ₃ .	SiO ₂ .	MgCO ₃ .	FeAl ₂ O ₂ .	CaSO ₄ .
469	5- 8 ft	98.30	0.32	1.11	0.16	trace
470	8-11 ft	97.81	0.26	1.42	0.32	trace
471	11-14 ft	97.50	0.53	1.59	0.31	trace
472	14-17 ts	96.92	0.45	1.98	0.25	.057
473	17-22 ft	96.78	0.35	2.61	0.18	.080
474	22-24 ft.	97.28	0.36	1.46	0.63	trace
475	24-31 ft.	97.12	0.41	2.28	0.15	.073
476	31-37 ft.	96.47	0.46	2.59	0.20	.061
477	37-40 ft.	96.14	0.87	3.33	0.15	.075
478	40-48 ft.	89.30	0.41	9.80	0.21	.060
479	48-52 ft.	95.33	0.37	3.87	0.19	.061
480	52-55 ft.	91.56	0.45	7.57	0.22	.061
481	55-61 ft.	95.36	0.23	4.16	0.16	.061
482	61-63 ft.	93.11	0.13	5.37	0.15	.050
483 484 485	Average 0-40' Average 40-58' Average 0-58' Washings.	97.09 92.55 95.29	0.39 0.33 0.37		0.23	
486	70- 80 ft.	86.54	3.40	7.34	0.99	.200
487	80- 90 ft.	81.25	3.02	13.88	0.64	.160
488	90-100 ft.	62.70	2.64	32.98	0.62	.190
490	90-100 ft.	68.54	2.85	26.54	0.81	.220

Drill Hole No. 6.

Calcite quarry, Michigan Limestone and Chemical Co., Rogers City, Presque Isle Co. S. ½ post of Sec. 23, T. 35 N., R. 5 E. Elevation 105.4 ft. above Lake Huron.

No. of Anal.	Depth.	CaCO ₃ .	SiO2.	MgCO ₃ .	FeAl ₂ O ₂ .	CaSO4.
491 492 493 494 495	Surface rock. 6-8 ft. 8-10 ft. 10-12 ft. 12-14 ft. 14-16 ft.	98.76 98.82 97.50 97.37 98.39 97.23	0.01 0.24 0.17 0.26 0.21 0.25	0.98 1.11 0.94 0.98 0.94 0.94	0.15 0.17 0.13 0.11 0.11	0.022 0.010 0.040 0.050 0.040 0.040
496	16-18 ft.	98.46	0.21	1.21	0.22	0.015
497	18-20 ft.	98.49	0.33	0.96	0.21	0.029
498	20-22 ft.	98.77	0.08	0.95	0.11	0.050
499	22-24 ft.	98.56	0.13	1.06	0.16	0.060
500	24-26 ft.	98.42	0.17	1.11	0.20	0.070
501	26-28 ft	98.77	0.12	1.06	0.19	0.070
502	28-30 ft	98.47	0.08	1.25	0.11	0.060
503	30-32 ft	98.02	0.22	1.43	0.16	0.070
504	32-34 ft	98.27	0.22	1.04	0.17	0.060
505	34-36 ft	98.13	0.34	1.06	0.12	0.070
506	36-38 ft	98.49	0.26	1.13	0.15	0.070
507		98.54	0.25	1.04	0.16	0.080
508		95.76	0.38	3.16	0.31	0.070
509		97.39	0.29	1.70	0.19	0.070
510		97.89	0.28	1.21	0.20	0.150
511	46-48 ft	97.47	0.23	1.08	0.16	0.060
512	48-50 ft	97.82	0.27	1.38	0.13	0.050
513	50-52 ft	97.68	0.27	1.51	0.17	0.060
514	52-54 ft	97.71	0.34	1.13	0.12	0.070
515	54-56 ft	96.16	0.25	1.13	0.12	0.050
516	56-58 ft	90.58	0.67	7.21	0.30	0.070
517	58-60 ft	97.06	0.47	1.34	0.17	0.050
518	60-62 ft	97.54	0.43	1.02	0.12	0.070
519	62-64 ft	97.37	0.30	0.87	0.08	0.080
520	64-66 ft	97.41	0.35	1.44	0.16	0.090
521	66-72 ft.	97.32	0.34	1.55	0.14	0.060
522	72-76 ft.	95.05	0.36	3.80	0.20	0.050
523	76-82 ft.	93.00	. 0.32	6.56	0.19	0.060
524	82-88 ft.	88.43	0.22	10.89	0.24	0.080
525	88-104 ft.	90.95	0.23	7.70	0.34	0.050
526	Average 82'	97.18	.27	1.93	.16	loss .46
527	Average 82-104'	90.26	.23	8.57	.31	86.76
528	Average 104'	94.85	.26	3.47	.19	91.26

Drill Hole No. 7.

On section line 1320' E. of S. W. cor. Sec. 23, T. 35 N., R. 5 E. Elevation 110 ft. above Lake Huron.

			1			
No. of Anal	Depth.	CaCO ₃ .	SiO ₂ .	MgCO3.	FeAl ₂ O ₂ .	CaSO ₄ .
529	4- 6 ft.	98.21	0.34	1.13	0.18	0.03
530	6- 8 ft.	98.30	0.27	1.08	0.16	0.04
531	8-10 ft.	98.23	0.30	1.04	0.17	0.05
532	10-12 ft.	98.42	0.29	1.00	0.14	0.05
534	12-14 ft.	98.21	0.19	0.87	0.09	0.05
535	14-16 ft.	96.92	0.16	2.12	0.09	0.07
536	16-18 ft.	97.68	0.20	0.98	0.15	0.05
537	18-20 ft.	98.48	0.18	0.72	0.11	0.05
538	20-22 ft.	98.13	0.20	0.95	0.24	0.12
539	22-24 ft.	98.64	0.11	0.95	0.17	0.06
540	24-26 ft	98.08	0.18	1.23	0.13	0.08
541	26-28 ft	98.39	0.23	0.78	0.09	0.11
542	28-30 ft	98.39	0.27	1.02	0.12	0.06
543	30-32 ft	97.41	0.27	1.44	0.11	0.09
544	32-34 ft	97.14	0.26	1.48	0.13	0.10
-545	34-36 ft	97.14	0.53	1.17	0.17	0.09
546	36-38 ft	98.02	0.20	1.42	0.10	0.07
547	38-40 ft	98.35	0.24	1.32	0.10	0.10
548	40-42 ft	98.45	0.23	1.19	0.11	0.09
549	42-44 ft	98.06	0.46	1.06	0.13	0.08
550	44-46 ft	97.66	0.33	1.15	0.15	0.09
551		97.61	0.28	1.17	0.19	0.09
552		97.55	0.46	1.40	0.16	0.11
553		97.89	0.27	1.34	0.13	0.07
554	Average	98.00	. 27	1.16	. 14	. 075

Drill Hole No. 8.

On west side of section 26, T. 35 N., R. 5 E. Elevation 130 ft. above Lake Huron.

No. of Anal.	Depth.	CaCO ₂ .	SiO ₂ .	MgCO ₃ .	FeAl ₂ O ₃ .	CaSO ₄ .
555 55 6	0-20 ft	96.32 96.57	. 22	1.68 1.68	.36 .34	

Drill Hole No. 9.

Near S. 1 post, sec. 22, T. 35 N., R. 5 E. Elevation 94 ft. above Lake Huron.

No. of Anal.	Depth.	CaCO ₃ .	SiO ₂ .	MgCO ₂ .	FeAl ₂ O ₃ .	CaSO4.
557 558 559 560 561	0- 9 ft. 9-11 ft. 11-13 ft. 13-15 ft.	98.36 98.56 98.17 98.20 98.63	0.14 0.26 0.33 0.27 0.20	1.40 1.36 0.95 1.46 1.34	0.12 0.13 0.17 0.17 0.16	0.05 0.06 0.07 0.07 0.04
562	17-19 ft.	98.67	0.16	1.22	0.19	0.05
563	19-21 ft.	98.70	0.17	1.08	0.16	0.05
564	21-23 ft.	98.78	0.18	1.02	0.16	0.05
565	23-25 ft.	98.57	0.15	1.21	0.20	0.05
566	25-27 ft.	98.93	0.13	0.83	0.11	0.05
567	27-29 ft	98.79	0.19	0.91	0.14	0.07
568	29-31 ft	98.84	0.30	0.79	0.12	0.05
569	31-33 ft	98.88	0.39	0.72	0.13	0.08
570	33-35 ft	98.82	0.31	0.87	0.11	0.06
571	35-37 ft	98.52	0.40	0.98	0.20	0.08
572 573 574 575 576	37-39 ft 39-41 ft 41-43 ft 43-45 ft 45-47 ft	98.48 98.29 98.78 98.61 98.46	0.37 0.57 0.24 0.44 0.44	0.87 0.98 0.85 0.79 0.85	0.20 0.27 0.16 0.16 0.15	0.07 0.08 0.07 0.07
577	47-49 ft	98.17	0.36	1.32	0.15	0.06
578	49-51 ft	98.34	0.21	1.25	0.10	0.07
579	51-53 ft	98.20	0.33	1.31	0.14	0.08
580	53-55 ft	98.46	0.22	1.17	0.18	0.06
581	55-57 ft	98.21	0.47	0.95	0.14	0.05
582	57-59 ft	96.65	0.41	2:72	0.19	0.07
583	59-81 ft	90.85	0.60	8:02	0.28	0.08
584	61-63 ft	97.81	0.32	0:91	0.16	0.07
585	63-65 ft	97.81	0.39	0:98	0.21	0.08
586	65-67 ft	98.26	0.25	1:28	0.17	0.07
587	67-69 ft	97.99	0.24	1.70	0.10	0.07
588	69-71 ft	98.12	0.35	1.57	0.14	0.06
589	71-73 ft	98.48	0.30	0.91	0.13	0.06
590	73-75 ft	97.86	0.34	1.36	0.12	0.06
591	75-77 ft	98.48	0.31	1.13	0.15	0.06
592	77-79 ft.	98.12	0.31	1.24	0.15	0.06
593	79-84 ft.	97.85	0.38	1.51	0.15	0.06
594	84-86 ft.	92.23	0.16	6.88	0.19	0.06
595	86-88 ft.	91.34	0.14	7.91	0.21	0.05
596	88-90 ft.	94.55	0.11	4.65	0.13	0.04
597	90' 5'-102' 6'	86.43	0.75	12.14	0.34	0.17
598	Average 84'	98 14	0.33	1.16	0.16	0.06
599		97.77	0.31	1.51	0.16	0.06

MINERAL RESOURCES OF MICHIGAN.

Shot Drill Hole No. 11.

Elevation 90 ft. above Lake Huron.

No. of Anal.	Depth.	CaCO ₃ .	SiO2.	MgCO ₃ .	FeAl ₂ O ₃ .	CaSO ₄ .
600 601 602 603 604	0-4' 6". 4' 6".8' 6". 8' 6"-12 ft. 12-15 ft.	97.20 98.18 98.45 98.34 97.80	0.49 0.30 0.30 0.11 0.38	1.46 1.47 1.13 1.19 1.34	0.62 0.33 0.40 0.27 0.31	trace trace 0.09 0.09 trace
605 606 607 608 609	18-20 ft. 20-24 ft. 24-28 ft. 28-32 ft. 32-37 ft.	98.25 98.03 96.11 91.64 96.11	0.29 0.22 0.45 0.30 0.32	1.13 1.78 2.50 7.87 3.34	0.12 0.20 0.41 0.36 0.33	trace 0.09 0.23 0.27 0.29
610 611 612 613 614 615	37-40 ft. 40-44 ft. 44-56 ft. 56-60 ft. 60-63 ft. 77-79 ft.	95.61 97.82 96.80 97.80 95.35 98.03	0.25 0.28 0.41 0.22 0.33 0.18	3.97 2.19 2.16 2.04 3.82 1.76	0.34 0.34 0.42 0.43 0.33 0.50	0.35 0.12 trace 0.07 0.09 0.05
616 617	Average79-85 ft	96.79 62.58	0.32 0.37	2.48 38.02	0.35 0.50	

SHOT DRILL HOLE NO. 12.

Property of Michigan Limestone and Chemical Co. Near section line about 1600' W., S. E. cor. Sec. 23, T. 35 N., R. 5 E. Elevation 100 ft. above Lake Huron.

Number of analysis.	Depth.	CaCO ₃ .	SiO ₂ .	MgCO:	FeAl ₂ O ₂ .	CaSO ₄ .
618 619 620 621 622	0- 4 ft. 4- 6 ft. 6- 8 ft. 8-10 ft.	97.99 98.38 97.81 98.38 98.10	0.27 0.42 0.32 0.31 0.37	2.07 1.23 2.49 1.65 1.23	0.37 0.29 0.11 0.27 0.13	trace trace trace trace trace
623 624 625 626 627	12-14 ft. 14-16 ft. 16-18 ft. 18-20 ft. 20-22 ft.	97.81 97.02 98.24 97.10 96.61	0.35 0.59 0.14 0.14 0.19	2.49 2.49 2.07 2.30 , 2.10	0.22 0.41 0.24 0.14 0.19	trace trace trace trace
628 629 630 631 632	-22-24 ft. 24-26 ft. 26-28 ft. 28-30 ft. 30-32 ft.	96.61 98.90 97.70 97.01 97.70	0.11 0.11 0.10 0.31 0.24	2.30 2.10 2.10 2.32 2.52	0.11 0.11 0.10 0.31 0.24	trace trace trace trace
633 634 635 636 637	32-34 ft. 34-36 ft. 36-38 ft. 38-40 ft. 40-42 ft.	97.10 97.10 97.60 97.60 98.10	0.32 0.41 0.35 0.31 0.26	2.73 1.57 1.89 1.47 1.47	0.32 0.74 0.52 0.48 0.46	trace trace trace trace
638 639 640 650 651	42-44 ft. 44-46 ft. 48-48 ft. 48-50 ft. 50-52 ft.	98.45 97.75 97.45 97.85 95.87	0.28 0.24 0.26 0.23 0.42	0.52 1.26 1.68 1.47 3.16	0.35 0.39 0.52 0.55 0.27	trace trace trace trace 0.27
652 653 654 655 656	52-54 ft. 54-56 ft. 56-58 ft. 58-60 ft. 60-62 ft.	96.12 96.37 94.25 96.12 96.12	0.29 0.20 0.11 0.26 0.25	2.09 2.72 1.88 1.88	0.25 0.33 4.56 0.35 0.25	0.33 0.13 0.07 0.25 0.29
657 658 659 660	62-66 ft	97.60 92.62 97.11 92.13	0.25 0.33 0.42 0.35	1.67 5.87 1.89 6.51	0.22 0.25 1.00 0.80	0.16 0.25 trace trace
661 662 663 664	78-80 ft	91.13 97.61 92.88 92.62	0.08 0.05 0.18 0.37	5.25 1.68 4.20 4.83	3.94 1.30 1.50 1.17	trace trace trace trace
665 666 667	Average 60-92' Average 92' Average 92-100'	94.53 96.32 65.99	0.26 0.27 0.34	3.77 2.59 33.40	1.04 0.64 1.16	0.06 0.044

The amount of magnesian limestone above the basal beds, however, is insignificant as compared with the amount of high calcium limestone, and does not appreciably affect the average composition of the quarry product. According to Mr. Bradley, the average of cargo analyses (Anal. No. 465) for 1914 gave 97.38 per cent of calcium carbonate and only 1.81 per cent of magnesium carbonate. The above core analyses (Nos. 469-667) show the exceptional purity of the Dundeè

limestone in the vicinity of Rogers City. Analyses of cores from a number of relatively shallow holes gave similar results.

Exposures of the Dundee limestone occur at several points along the lake for fifteen miles eastward from the Calcite quarry. The most important are in the vicinity of Adams Point. Exposures also occur near Thompsons Harbor. The extent of the areas of Dundee limestone under thin drift cover, however, has not been fully determined in the region east of Calcite.

The exceptionally high average content of calcium carbonate and the low content of silica make the Dundee limestone in the vicinity of Rogers City especially adapted for flux and for general use in the chemical industries.

Traverse Formation.

Long Lake Series.

Exposures of the Long Lake or Lower Traverse series are very large and numerous in the northern part of the county where they commonly occur in the form of prominent bluffs, ridges and hills. A discontinuous line of bluffs extends from sec. 6, T. 33 N., R. 8 E., on the west side of Grand Lake, northwest through sections 19 and 20, T. 34 N., R. 7 E., to the vicinity of Liske, sec. 16, T. 34 N., R. 6 E. Apparently this line of bluffs reappears about 3 miles south of Rogers. A parallel line of bluffs extends from section 10, T. 33 N., R. 7 E., northwest of Long Lake toward Hagensville. Detached areas of the Long Lake series occur on the east side of Grand Lake. Some of the beds are very pure but the series is more or less argillaceous and bituminous and contains seams and beds of shale and magnesian limestone. Development of exposures of Long Lake limestones should be preceded by careful testing with the drill.

Limestone is exposed in a gorge of the East Branch of Rainy river, (S. E. \(\frac{1}{4}\) sec. 26, T. 35 N., R. 2 E.) and is near the surface over a considerable area adjacent. The section exposed is as follows:

Section on E. Branch of Rainy river.

	, ,	Thickness, feet.
1.	Gray fossiliferous limestone containing numerous Atrypa and Gypidulas	2
	Very dark bituminous and fossiliferous limestone with an abundance of	_
	Acervularia, Stromatopora, and crinoid stems	3
3.	Dark gray crystalline limestone	- Ā
4.	Gray argillaceous and fossiliferous limestone with many Atrypa and Gypidulas.	2+

An analysis of a set of samples from this exposure gave 92.97 per cent of calcium carbonate, 2.84 per cent of silica, 1.65 per cent of iron and alumina, and 2.27 per cent of magnesium carbonate.

Dark gray crystalline and bituminous limestone is also exposed a half mile north at the falls of Rainy river back of the schoolhouse in sec. 25.

At the falls of the Ocqueoc river in S. W. 1, S. E. 1, sec. 22, T. 35 N., R. 3 E., the following section is exposed:

	Section at Ocqueoc Falls.	
No	o. of bed.	Thickness,
1. 2.	Gray crystalline magnesium limestone. A mass of cup corals and Stromatopora in a matrix of dark bituminous lime-	feet.
3.	stone Massive dark crystalline and bituminous magnesium limestone Banded dark bituminous and crystalline magnesium limestone with Acer-	1 34
2 .	vularia near the top. Banded dark bituminous and mottled and streaked magnesium limestone	4
5.	sanded dark bituminous and mottled and streaked magnesium limestone with numerous cavities, very fossiliferous in the upper portion	8

An analysis of a set of samples from the section gave 34.74 per cent of magnesium carbonate. The very bituminous and magnesian character of the limestone apparently makes it of little economic value.

Grand Lake. A bluff of limestone about 40 feet in height occurs on the west side of Grand Lake in N. E. ½ sec. 6, T. 33 N., R. 8 E. The following section is exposed:

		feet.
	Drift	0-2+
1.	Drift. Dark bituminous and fossiliferous limestone with crinoid stems, acervularia, and brachlopods.	2 i
2.	and brachiopodsGray to dark bituminous limestone with scattered corals and crinoid stems	6
3.	Dark beds of bituminous limestone alternating with seams of coral, Stromato-	
	_ pora	10
4.	Talus.	15+

The lower part of the bluff is covered with talus but according to reports shale was struck in a core drilling at 35 feet. The thickness of the shale is unknown but the Bell shale forms the floor of the deeper portions of the lake.

Core drillings put down east of Thompson's harbor in secs. 11, 12, 13, and 14, T. 34 N., R. 7 E., penetrated more or less magnesian limestone. Shale, apparently the Bell, was struck at shallow depths in a number of core drillings near the south end of Grand Lake in sec. 11, T. 33 N., R. 8 E.

Alpena Limestone.

The exposures of the Alpena limestone are large and very numerous from the south end of Black Lake southeast into Alpena county. A series of limestone ridges cross the road from Onaway north to Black Lake. The upper beds are generally gray, crystalline and fossiliferous with some very dark bituminous beds. The lower beds, as exposed in

Black Lake quarry (see Cheboygan county), are light gray, fine grained to lithographic limestone, locally with small disseminated calcite crystals. A nearly continuous bluff extends from Black Lake for several miles along the south bank of Rainy river.

Numerous exposures also occur in the vicinity of Posen. Their character has not been carefully investigated but most of the limestone is high calcium and probably of commercial grade.

Summary. Presque Isle county has large limestone resources but they have been carefully investigated, only in the vicinity of Rogers City, Black Lake, Thompsons Harbor, and on the east and west sides of Grand Lake. The exposure of the Dundee limestone at Rogers City is the largest, purest and most important of any in the state.

Schoolcraft County.

Distribution. The Engadine dolomite underlies the extreme southeastern part of Schoolcraft county along the shore of Lake Michigan-The Manistique series forms a belt extending from Garden Peninsula E-NE across the county. The Fiborn limestone and the Hendricks series form successive belts north of the Manistique series. The Cincinnati shales and the Trenton limestone cross the northern and northwestern parts of the county.

Exposures of limestone are very large and numerous in the southern part and rock is thinly drift covered over large areas. The exposures of the Engadine dolomite are usually in the form of bold cliffs. Those of the Manistique series are in a succession of ridges and small escarpments usually extending in a general E-W direction. At or near the northern limit, the series terminates in bluffs 20 to 90 feet in height. The Fiborn limestone is exposed over an area of two or three square miles in the eastern part of the county but westward it is drift covered. The Hendricks series lies almost wholly within the area of deep drift in the northern and western portions of the county.

Quarries and Localities.

Engadine dolomite.

Mouth of Bull Dog river. Massive beds of Engadine dolomite are exposed in bluffs near the mouth of Bull Dog river and form the lake bottom for a considerable distance off shore. The dolomite is very massive, crystalline and bluish white with mottlings and streaks of blue where fresh. Where altered the mottlings have become yellow

and brown. The crystalline character and bluish colorations led to considerable core drilling near the mouth of the river a number of years ago in an attempt to prove up a marble deposit.

The dolomite probably would make common building stone. The color is not permanent. Exposure to the weather for a few years is generally sufficient to alter the color to white, yellow, or brown.

Bluffs of Engadine dolomite occur on Seoul Choix Pt. and north of McDonald and Gulliver lakes. The bluff north of the lakes is near the Minneapolis, St. Paul & Ste. Marie Railroad.

Manistique. The Manistique series is exposed in the bed of Manistique river in a bluff in the eastern part of Manistique and at many places northwest from Manistique to "Big Hill" bluff in secs. 21 and 22, T. 42 N., R. 16 W., a distance of about five miles. The name of the series was taken by the writer from Manistique because of the numerous exposures in its vicinity.

Manistique quarry. The White Marble Lime Co. has operated a quarry in the bluff in the eastern part of Manistique for many years. Quarrying began near the south end of the bluff in very cherty limestone. Later operations were begun farther north where these beds are absent. The section exposed in the old and new quarries is as follows:

Section in Manistique quarries.

	Old quarries.	Thickness, feet.
1. 2. 3.	Sand and gravel Light buff crystalline, thin bedded magnesian limestone with many seams of chert nodules 2 to 6 inches in thickness. Light buff massive magnesian limestone. Light buff crystalline, thin bedded and magnesian limestone with many nearly continuous seams of chert.	0-3 9-12 1 8 in.
	New quarry.	
	Hard bluish dense grained well bedded dolomite used chiefly for road material, concrete, and railroad ballast	10 6 in.
5. a	Soft yellowish to white limestone very free from impurities. Used for burning lime. Light yellowish to buff cherty limestone similar to beds Nos. 1 and 3, but	1 8 in.
	thicker bedded. Used for burning lime. The chert is chiefly in two beds	7 6 in.
	and is readily sorted out. Hard, very massive bluish and fine grained dolomite. Used chiefly for road making, concrete, etc.	4 6 in.
8.	Buff crystalline magnesian limestone with some chert and dense cavities. Used for burning lime	8

Experience has shown that the bluish dense grained dolomites generally burn hard and that the light colored crystalline and fossiliferous limestones burn easily.

The stone is blasted down, loaded by hand, and trammed by horse power to the foot of an incline where it is hauled to the crushing plant by cable. The better quality of stone is burned for magnesian lime and the inferior is used for road making, concrete and railroad ballast. Much of the stone for lime burning is obtained from other quarries operated by the company.

All of the beds are either dolomite or high magnesian limestone. Analysis No. 671 and probably No. 672 are from the upper blue dolomite in the new quarry, Nos. 673-4 from the beds (Nos. 5, 6, and 8) burned for lime.

Marblehead quarry. Marblehead quarry is located about 6 miles northeast of Manistique in S. E. ½ sec. 35, T. 42 N., R. 15 W. The quarry is opened along the southeastern side and near the top of a ridge. The workings at the time of the writer's visit (1913) were about 2000 feet long and the face about 8 feet in height. The beds are bluish and very crystalline and resemble the Engadine dolomite. The floor of the quarry is composed of soft yellowish, earthy, fossiliferous and very cherty limestone. It is locally termed "rotten" limestone and is of little value for any purpose.

The upper bed is a pure dolomite as shown by analyses Nos. 675-679. It is burned for lime and is adapted for paper manufacture.

A bluish dense grained dolomite forms the cap rock on a hill about 40 rods east of Marblehead quarry and is underlain by a light yellowish, cherty, "rotten" limestone as in the Marblehead quarry. The blue dolomite is quite different in physical qualities from that in the latter quarry. It can not be satisfactorily burned for lime.

For several miles north and east from Marblehead ridges of limestone are exposed in the fields and in road cuts. The exposures show the same alternating series of bluish, fine grained dolomites and white or light buff, crystalline, magnesian limestones, locally very cherty and fossiliferous as at Manistique. The northern edge of this area of exposures terminates in a line of bluffs on the south side of Manistique river.

"Ninety-foot" Bluff. The highest portion of this line of bluffs is in sec. 8, T. 42 N., R. 14 W., and is locally called the "Ninety-foot" bluff. The section exposed is as follows:

Section at "Ninety-foot" Bluff.

		feet.
	Surface	0-1+
1.	Surface. Light colored coarsely crystalline magnesian limestone. Thickness not de- terminable because of talus.	4 =
2.	Light buff porous, finely crystalline magnesian limestone	6+
3.	Light buff porous finely crystalline magnesian limestone similar to bed No. 2	12 ≟
4.	Hard light buff gray densely crystalline and delicately banded dolomite, breaking with a smooth conchoidal fracture	· 6 📥
5. 6.	Buff gray nodular and fossiliferous limestone, containing cup corals, favosites Light buff finely crystalline magnesian limestone	5 8+

Thiolenone

The lower 30 or 35 feet of the bluff is concealed by talus.

Similar but higher beds are exposed in another bluff called the "Sixty-Foot" bluff near the west quarter post of section 9, T. 42 N., R. 14 W. Analysis No. 700 is from white crystalline dolomite at the top, No. 701 from thin-bedded, light gray, crystalline dolomite 20 feet below, and No. 702 from light gray massive crystalline, dolomite 30 feet from the top. The lower 30 feet of the bluff is drift covered.

"Big Hill" Bluff. "Big Hill" bluff extends through secs. 14 and 15, T. 42 N., R. 16 W., and forms the northern limit of exposures of the Manistique series in this township. The following section was exposed:

Section at "Big Hill" Bluff.

4. Buff nodular magnesian limestone with fossils, coral and drusy cavities. Bed partially concealed by talus. 8
5. Hard brittle buff gray thin-bedded, densely crystalline dolomite. 7
6. Hard buff thin-bedded, densely crystalline limestone with a smooth conchoidal fracture. The centre of the bed was concealed by talus. 14
7. Soft crystalline magnesian limestone resembling brown sugar. 3
8. Buff earthy to crystalline magnesian limestone with druse cavities and fossils, chiefly corals. Weathers to a nodular mass. 5
9. Hard gray, porous crystalline and laminated magnesian limestone 8

The lower 25 feet of the bluff is drift covered.

Cooks Station. Similar facies of magnesian limestone and dolomite are exposed at many places for several miles northeast of Cooks Station. Formerly lime was burned in this locality. The stone used was from the densely crystalline beds and was said to burn hard.

Analysis No. 698 is from the upper, densely crystalline, beds used for burning lime and No. 699 from the underlying white, coarsely crystalline beds.

A quarry was opened for local building purposes in a low bluff near the center of sec. 28, T. 42 N., R. 17 W. The section exposed was as follows:

	•	feet.
	Surface	0-6+
1.	Cherty very fossiliferous (cup corals) limestone	2
2.	Hard buff gray finely crystalline limestone with some fossils in the upper part	
_	and many fossils, chiefly cup corals and Stromatopora in the lower part	21
3.	Hard buff gray finely to densely crystalline and very fossiliferous (cup corals)	
	limestone	1+

Limestone is exposed at many places in the northeastern part of Garden Peninsula. The beds are similar in general character to those on the west shore of the peninsula (see Delta County.)

Fiborn Limestone.

Blaney quarry. The White Marble Lime Co. of Manistique operates a quarry located in section 3, T. 42 N., R. 13 W., on the Blaney and Southeastern Railroad. It is near the west end of low flat ridge of Fiborn limestone, nearly a mile in width. The ridge extends eastward through sections 1 and 2 into Mackinac county. The overburden is absent or very thin over much of the area. This is the largest area of Fiborn limestone under thin drift cover in the state.

The Fiborn limestone in the Blaney quarry has a maximum thickness of 26 feet. The stone is poorly bedded. It is gray to buff, very brittle, dense grained to lithographic, high calcium limestone, with a smooth conchoidal fracture, and containing numerous small crystals of calcite. The content of calcium carbonate generally is between 95 and 98 per cent (Anal. Nos. 680-8) and the magnesium carbonate between 1 and 2 per cent. Locally the basal portion of the bed contains more than 2 per cent of calcium carbonate.

The floor of the quarry is a white, coarsely crystalline, heavy magnesian (Anal. No. 689) limestone.

Analyses Nos. 690-1 are from a ridge about 4 feet in height in the S. W. $\frac{1}{4}$, S. W. $\frac{1}{4}$ sec. 1, and Nos. 692-3 from a cave near the center of this section.

Whitedale. A small exposure of buff to gray fine grained to lithographic, high calcium limestone occurs about five miles north of Whitedale in the road 40 rods west of the N. E. cor. of sec. 11, T. 42 N., R. 14 W. It is similar in every respect to the Fiborn limestone. Small exposures occur in the fields adjacent. The bed is overlapped on the south by gray, crystalline dolomite of the Manistique series which is exposed at a higher level in the fields and in a shallow quarry about 60 rods southeast. The exposures are only a few feet above the level of a swamp and apparently the area of this stone under favorable quarrying conditions is small. An analysis (No. 695) of a hand specimen of the buff lithographic limestone gave 55.35 per cent of calcium oxide and only 1.24 per cent of magnesian oxide.

Several small quarries have been opened north of Whitedale by the local highway officials for road material. The largest of these is in a ridge in the S. E. ½ sec. 6, T. 42 N., R. 13 E. The quarry is about 14 feet in depth. The beds here are white crystalline limestone. The top stratum is poorly bedded but the lower ones are well bedded. The bottom bed is laminated. The area of quarryable stone could not be ascertained because of heavy timber.

The beds resemble the white crystalline low magnesian beds below

the Fiborn limestone in Hendricks quarry, Mackinac county. Analysis No. 696 is of a composite sample from the upper 8 feet and No. 697 of the laminated portion at the bottom.

Summary. Schoolcraft has almost inexhaustible reserves of high magnesian limestone and dolomite. It also has very large reserves of high calcium limestone in the eastern part of the county.

Wayne County.

Distribution. The Dundee limestone occupies that portion of Wayne county south of a line drawn from Detroit southwest to the southwestern corner of the county with the exception of a small area in the southeastern corner which is underlain by the Monroe formation. There are only a few exposures, most of the county being heavily drift covered.

Quarries and Localities.

Monroe Formation.

Gibralter quarry. A knoll of Upper Monroe dolomite occurs about a mile northeast of Gibralter in sec. 35, T. 4 S., R. 10 E. For a number of years a quarry was operated at this place for building stone, road material, concrete, and railroad ballast. The quarry is about 20 feet* in depth but was full of water at the time of the writer's visit in 1913. According to Lane† all but the upper bed contain crystals of strontium sulphate. They are similar in general character to the Upper Monroe beds in Monroe county as shown by analyses Nos. 703 to 706.

Formerly a quarry was operated near the south end of Grosse Isle. Exposures also occur on Stony Island. A large amount of dolomite from the Upper Monroe series has been removed from Detroit river at Lime Kiln Crossing by the United States government in deepening the river channel. Stone companies utilize this stone for road making, concrete and railroad ballast.

Dundee limestone.

Sibley quarry. A knoll of Dundee limestone occurs at Sibley. is the only exposure of the Dundee in Wayne county. A large quarry is operated at this place by the Solvay Process Co. of Detroit. The section! exposed in the quarry is as follows:

^{*}W. H. Shuzer and A. W. Grabau, The Monroe Formation, Pub. 2, Geol. Ser., p. 52, Mich. Geol. & Biol. Surv., 1909.
†A. C. Lane, Ann. Rept.
†W. H. Sherzer, Geology of Wayne Co. Pub. 12 Geol. Ser. 9, p. 202 Mich. Geol & Biol. Surv. 1911.

Section in Sibley quarry.

	•	Thickness,
1	Yellow brown to gray thin bedded and very fossiliferous limestone (CaCO ₁ .	feet.
4.	91%: MgCO. 2.52%: Anal. No. 707)	6
2.	91%; MgCO, 2.52%; Anal. No. 707)	•
_	No. 708)	7
3.	No. 708) Compact gray very fossiliferous limestone (CaCO ₁ , 94.50%; MgCO ₂ , 3.36%;	•
4.	Anal. No. 709) Compact crystalline limestone, bluish where weathered	2 5
5.	Compact gray to blue fossiliferous limestone (CaCO ₂ , 87%: MgCO ₂ , 9.45%:	J
	Anal. No. 711)	6
6.	Anal. No. 711). Brittle bluish gray cherty limestone with some fossils. Locally termed the	
7.	"14-inch flint" bed	1 2 in.
٠.	10.29%: Anal. No. 712)	6
8.	10.29%; Anal. No. 712)	ž
9.	Compact heavily bedded blue to gray fossiliferous limestone (CaCO ₂ , 93.50%:	_
10	MgCO ₂ , 2.73%; Anal. No. 714)	9
10.	Oily compact heavily bedded blue to gray magnesian limestone. Less fossiliferous than No. 9. Locally called the "6-foot magnesian" bed	
	(CaCO ₂ , 74%; MgCO ₂ , 20.58%; Anal. No. 715)	6
11.	Thin bedded gray fossiliferous limestone (CaCO ₂ , 87%; MgCO ₂ , 9.66%;	-
	Anal. No. 716)	8
12 .	Light to dark gray fossiliferous and magnesian limestone "12-foot lower magnesian" bed	12
13.		7
		•

Two core drillings were made at Sibley quarry. The following analyses are of the core from the drilling on the west side of the quarry where beds No. 1 to 8 inclusive are absent.

Analysis of drill core, hole No. 2, Sibley quarry.

Number of analysis.	Depth, feet.	Silica. SiOa.	Iron-Alumina. FerOr-AlrOs.	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Remarks.
725	0- 5	1.98	1.67	87.63	49.11	8.72	4.17	Bed 9. Quarry beds 1-8 not represented
726	5-10	1.90	1.82	87.26	48.90	9.02	4.31	in hole. Bed 10. Bed 11. Bed 11. Fossils.
727	10-16	2.78	1.67	83.99	47.07	11.56	5.53	
728	16-20	2.39	1.89	81.08	45.44	14.63	6.99	
729	20-25	0.73	1.19	93.26	52.26	4.82	2.30	
730	25-27	2.21	1.96	81.81	45.84	14.02	6.70	Base of Dundee.
731	27-33	8.16	0.72	75.99	42.58	15.13	7.23	
732	33-35	7.24	0.99	82.72	46.35	9.06	4.33	
733	35-40	2.63	0.66	92.54	92.54	4.17	1.99	
734	40-42	9.50	0.22	87.79	49.20	2.49	1.19	Anderdon. Differences mainly alumina, iron, and organic matter.
735	42-45	2.89	1.57	79.99	44.82	15.45	7.39	
736	45-48	4.95	0.06	87.08	48.80	7.91	3.78	
737	48-53	1.50	6.50	68.38	38.32	23.64	11.30	
738	53-55	0.96	5.01	70.54	39.53	23.49	11.23	
739 740 741 742 743 744 745	55-58 38-62 62-65 65-70 70-78 78-80 80-83	0.54 0.49 0.29 0.68 0.22 1.05 0.31	3.76 2.21 4.01 2.87 2.54 1.92 0.56	59.99 64.72 62.36 59.45 54.27 59.15 58.09	33.63 36.27 34.94 28.51 30.41 33.15 32.55	35.70 32.57 33.34 37.00 43.04 37.88 40.04	17.07 15.58 19.94 17.19 18.12 19.15	Flat Rock (?)

A large amount of stone has been removed. Most of the thinly drift covered area has been quarried and the overburden—locally is becoming very heavy.

The high calcium stone is used largely in the manufacture of soda ash and related products. It is also used for sugar and paper manufacture, flux, and agricultural purposes. The more magnesian and impure stone is used for concrete, road making, and railroad ballast.

Summary. The Dundee limestone at Sibley quarry is the only exposure of high calcium limestone in Wayne county. The areas of Upper Monroe dolomite under thin drift are small and of little commercial importance at present.

Analyses¹ of Michigan ALGER

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
19	Near Chatham, Alger Co.	Calciferous sandstone.	Hand specimen	Mich. Agri. Coll. Exp.
20	Mud Lake 3 mi. S. of Autrain River falls.	Sandy dolomite	Hand specimen	
21 22	Falls of Autrain Coaling Sta. No. 3 of Mu- nising Fur- nace, Grand	Sandy dolomite Slightly sandy dolo- mite. Top strata on hills.	Hand specimen Hand specimen	*Rominger*
23	Island Bay, Near Munising Furnace, Gd. Island Bay,		Hand specimen	*Rominger

^{*}Vol. I, Pt. III, p. 78, Mich. Geol. Surv.

ALPENA

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
24	Rockport quarry, Great Lakes Stone & Lime Co.,	Rockport limestone. Quarry beds from top to bottom. Dark bituminous lime- stone filled with white masses of coral, stromatopora, etc.	Composite of hand specimens.	R. C. Banks, Univ. of Mich. Lab., 1915.
25	Same as above.		Same as above	Diamond Alkali Co
26	Same as above.		Same as above	Geo. F. Harris, Mich. Limestone & Chem- ical Co.
27 28 29	Same as above. Same as above. Same as above.	Near floor of quarry Near top of bluff Carbonaceous matter in seams and around fossils.	Same as above Same as above Same as above	Same as above
30	Michigan Alk- ali Co. quar- ry, sec. 13, T. 31 N., R. 8 E.	Upper beds'Nos. 1 and 2 S. E. side of quar- ry. Hard buff crys- talline limestone 8 ft. thick.	Composite of hand specimens taken at top and bottom of beds.	R. C. Banks, Lab. Univ. of Mich. 1915.
31	Same as above.		Composite of hand specimens 1 ft. apart.	Same as above
32	Same as above.		Same as above	Same as above

¹Figures in italics calculated from original analyses.

COUNTY.

Silica. SiOs.	Iron. FerOs.	Alumina. Al ₂ O ₃ .	Calcium carbonate. CaCOs.	Calctum oxide. CaO.	Magnesium carbonate. MgCOs.	Magnestum oxide. MgO.	Miscellaneous.	Remarks.
35.00 †23.00			32.00 42.00					Water and organic matter 6 per cent. Residue siliceous, finer comminuted dust.
†15.00 †3.70	2. 4.	00 00	47.00 53.00			17. 82 18.66		Residue of quartz sand. Residue of quartz sand.
†6.00	5.0	00	49.00	27. 46	40.00	19.18		Residue of quartz sand.

[†]Insoluble in HCl.

COUNTY.

Silica. SiOs.	Iron. FerOs.	Alumina. Al ₂ O ₄ .	Calcium carbonate.	CaCOs.	Calcium oxide.	CaO.	Magnesium carbonate.	MgCOs.	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
0.19	‡0. ¹	77 .	97	. 25	54	. 60	1.	.84	0.88		Samples collected by R. A. Smith, Mich. Geol. Surv., 1914.
1.18 1.51	1.0		94 93	. 75 . 5 0		. 10 . 3 6		. 55 . 90		Org+	Collected by Mr. Marsters. Collected by Mr. Marsters.
0.54 0.86	1.0	07 51		. 73 . 50		. 61 . 48 	2 2 	.65 .12	1.27 1.01	1.47	Collected by Mr. Hollister. Volatile matter 20.50 per cent. Combustible matter 22.80 per cent
0.41	*0.	90	90	. 43	50	. <i>6</i> 8	8	. 31	3.97		Samples taken by R. A. Smith, Mich. Geol. Surv., 1914.
1.13	*0.	75	94	. 54	52	.98	2	.61	1.25		Same as above.
4.03	*1.	78	92	.38	51	.77	1	.80	.86		Same as above.

^{*}R₂O₂=Iron, alumina, etc.

Analysis¹ of Michigan ALPENA

_				
Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
33	Same as No. 30.	Bed No. 7. Light buff crystalline lime- stone 3 ft. thick.	Same as above	Same as above
34	Same as above.	Beds Nos. 9 and 10. Grayish buff to buff crystalline 1 i mestone 8 ft. thick. Lowest beds in upper quarry.	Same as above	Same as above
35	Same as above.	Lower quarry beds, Nos. 11 to 14 inc. Dara massive, crystalline & fossiliferous lime- stones, 28 ft. thick.	Composite of hand specimens.	
36	Same as above.	{	Hand specimen	H. H Hindshaw
37	Same as above.	Different beds in	Hand specimen	H. H. Hindshaw
38 39 40 41	Same as above. Same as above. Same as above. Same as above.	quarry.	Hand specimen Hand specimen Hand specimen	H H Hindehen
42	El Cajon Ptld. Cem. Co., quarry, El Cajon Beach, sec. 10, T. 32 N. R. 9 E.	Long Lake beds. Shaly fossiliferous (brachiopods) lime- stones. 3 beds, 6 ft. section in quarry.	3 hand specimens	H. H. Hindshaw H. H. Hindshaw R. C. Banks, Lab. Univ. of Mich., 1915.
43	Alpena Port- land Cement Co. quarries, Alpena.	Compact limestone from quarry opposite cement plant.	<u> </u>	*F. Brady, Illinois Steel Co.
44	Same as above.	Fragment of Favosites with cavities filled by infiltration.	Hand specimen	Same as above
45	Same as above.	Quarry beds	Hand specimen	*8. H. Ludlow, Alpens Ptld. Cem. Co.
46 47	Same as above. Same as above.	Bluish coralline lime- stone with a flinty texture.	Hand specimen Same as above	Same as above
48 49	Same as above.	"Sugar stone" Reef of coral lime- stone.	Hand specimen	Same as above
50	Same as above.	Lower part of Alpena limestone. Sample from well of cement company, depth 32 ft.	Hand specimen	Same as above
51	From Alpena quarries.	Traverse limestone, quarry product as shipped to Alma Sugar Co.	Composite · sample from car lots.	†A. N. Clark, Alms Sugar Co., 1902.
52	Alpena Ptld. Cement Co.	Alpena limestone, quarry beds and beds penetrated in a well near plant.		‡W. H. Sherzer

¹Figures in italics calculated from original analyses.

COUNTY .- Con.

	11. 00%.					
Silica. 8103.	Iron. Fe ₅ O ₅ . Alumine. Al ₅ O ₅ .	Calcium carbonate. CaCO ₃ . Calcium oxide.	Magnesium carbonate. MgCOs.	Magnestum oxide. MgO.	Miscellaneous.	Remarks.
1.46	*0.75	95.58 53.6	6 2.11			Same as above.
2.09	*0.66	94.78 53.1	2.45	1.17		Same as above.
1.05	*1.02	96.40 54.0	1.52	. 75		Same as above.
0.61	0.28	93.15 52.1	0 3.72	1.77	CaSO ₄ None	
7.05	2.97	84.95 47.6	1		1	Sample taken by H. H. Hindshaw.
3.63 6.51 0.91 0.48 32.85	1.07 1.50 0.32 0.30 6.27	90.96 87.79 97.59 97.14 59.00 33.6	9 1.42 4 2.10	1.14 .68	trace	Same as above. Samples by R. A. Smith, Mich. Geol. Survey, 1914.
0.70	0.30 0.76	96.90 54.5	1.30	0.62	S. 0.022 P ₂ O ₅ . 0.020	Samples collected by A. W. Grabau, 1901.
0.38	0.19 0.21	98.69 55.5	0.52	0.24	0.009 0.004	
0.82	0.55	98.23 55.0	0.98	0.47	·	
	0.73 0.34	95.16 53.3 98.62 55.3	3.91 27 1.04	1.87 0.50	\$::::: :::::	SiO ₂ included in Fe ₂ O ₂ — Al ₂ O ₃ .
		98.32 55.1 99.33 55.6	0.21	0.10	, 	Large blast of limestone. A later blast analyzed 99.63
0.40	1.00	97.16 55.4	1.06	0.50	·····	CaCO _a :
	1.30	97.60 54.3	1.09	0.52		SiO ₂ included in Fe ₂ O ₃
${ $	0.13 to 1.21	89.10 49.4 to to 98.37 55.1	to	to	: 1	Range in composition of quarry beds.
		<u> </u>				<u> </u>

^{*}R₇O₂=iron, alumina, etc.

Analyses* of Michigan ALPENA

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
54	Alpena Ptld. Cement Co., quarries, sec. 18, T. 31 N., R. 9 E.	Top shell; removed in stripping; 1 to 2 ft. thick.	Hand specimen	*F. M. Haldeman, 1900.
55	Quarry C. Alpena limestone series.	Top strata 2 ft. thick. (Below top shell).	Hand specimen	Same as above
56 57 58 59 60 61 62	Quarry F. Alpena limestone series.	2nd strata, 2 ft. thick. 3rd strata, 4 ft. thick. 4th strata, 2 ft. thick. 1st strata, 2 ft. thick. 2nd strata, 1 ft. thick. 3rd strata, 2 ft. thick. 4th strata, 6 ft. thick. quarry.	Hand specimen	Same as above
63	Richard Collins quarry N. E. of Alpena.	Alpena limestone series. Fragmental semi-porous limestone consisting of ground up organic remains.	Hand specimen	*F. M. Brady, Illinois Steel Co.
64	Richard Collins quarry, sec. 12, T. 31 N., R. 8 E.	Quarry beds, fossilifer- ous limestone with- out distinct bedding.	Composite of hand specimens.	R. C. Banks, Lab. Univ. of Mich.
65	Same as above.	Limestone dipping away from coral reef. Upper layer rather blue and shaly.		*A. N. clark
66	Owen Fox quarry, across road from Collins quarry, Alpena.	Alpena limestone ser-	Hand specimen	*F. M. Brady, Illinois Steel Co.
67	Same as above.	Lower quarry beds. Compact light crystalline limestone.	Hand specimen	Same as above
68	Same as above.	Upper quarry beds. Dark crystalline limestone.		Same as above
69	Same as above.	Fragment of unaltered Stromatopora.	Hand specimen	Same as above
70	Near Lake Huron, north of Alpena.	(D-1		†A. N. Clark, Alma Sugar Co.
70b	Same as above.	Traverse E		Same as above
71	Same as above.	limestones A		Same as above
72	Same as above.	D-2	1	Same as above
73 74	Same as above.			Same as above
74 75	Same as above. Isaacson property, N. E. of Alpena Ptld. Cem. Co.	Two ft. below surface.		Same as above *S. H. Ludlow, Alpens Ptld. Cem. Co.
76	quarry. M. J. Griffin quarry, 1 mi N. W. of Bol- ton, S. 1 sec. 5, T. 32 N., R. 7 E.	Quarry beds very crin- oidal at top but shaly, bituminous, and crystalline near bottom.	hand specimens.	R. C. Banks, Lab Univ. of Mich.

COUNTY .- Con.

	1		1 1	188	
8. StO ₂ .	Iron. Fe ₂ O ₃ . Alumina. Al ₂ O ₃ .	Carcium carbonate. CaCOs. Calcium oxide. CaO.	Magnesium carbonate. MgCOs. Magnesium oxide. MgO.	Miscellaneous	Remarks.
Silica.	Iron.	Carcium Carbon CaCO ₂ Calcium Oxide. CaO.	M Mag	Mise	
0.36	0.13	95.91 53.75	3.63 1.74		
1.77	0.35	89.10 49.93	8.67 4.15		
0.33 0.38 1.38 1.64 1.46 0.42 0.68	0.18 0.19 1.21 0.27 0.54 0.18 0.26	98.37 55.13 98.03 54.94 96.35 54.00 96.50 54.08 96.92 54.38 98.14 55.00 98.03 54.94	0.92		All samples show traces of sulphates and phosphates.
0.42	0.19 0.45	98.04 54.94	0.88 .42	8. 0.014	Samples collected by A. W. Grabau, 1901.
1.07	‡0.77	96.84 54.27	1.09 0.58		Samples collected by R. A. Smith.
{	Insoluble 1.10	95.40 53.46	1.76 0.84		Samples collected by A. C. Lane.
0.24	0.16 0.26	98.88 55.42	0.45 0.81	0.006	
0.32	0.29 0.33	94.83 53.15	4.20 8.01	0.020	
1.18	0.31 1.79	95.29 53.40	1.33 0.64	0.089	
0.24	0.16 0.32	98.84 55.89	0.43 0.20	0.007	
2.80	0.40	96.13 53.87	0.68 0.32	Undet.	1
1.25 8.60 1.61 1.75 0.40 0.79	0.40	96.47 54.06 88.86 49.80 94.77 53.11 97.70 54.75 96.36 54.00 96.75 54.22	1.28 0.61 0.60 0.29 3. 1.45	0.76 2.34 0.24	SiO _k =insol. matter in HCl.
1.11	‡1.21	95.02 53.25	2.27 1.08	3	Sample taken by R. A Smith, Mich. Geol. Surv. 1914.

^{*}A. W. Grabau, Stratigraphy of the Traverse Group, Ann. Rept. 1901, Mich. Geol. Surv., pp-179-183.
†A. C. Lane, Ann. Rept. 1902, Mich. Geol. Surv., p. 173.
†R₁O₃=Alumina, iron, etc.

Analyses of Michigan ALPENA

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
77	Same as No. 76.	Railroad cut, at sur-	Lime as burned	*E. J. Schneider
78	Same as above.	iace.		*E. J. Schneider
79	Same as above.	1st quarry on suface of subterranean pas- sage.	Lime as burned	*E. J. Schneider
80	Same as above.		1	*E. J. Schneider
81	Same as above.	1st quarry, top layer 5 ft. from surface.	Lime as burned	*E. J. Schneider
82	Same as above.			*E. J. Schneider
83	Same as above.	1st quarry, top layer 8 ft. from surface.	Lime as burned	*E. J. Schneider
84	Same as above.	37		*E. J. Schneider
85	Same as above.	New quarry, top layer from surface.	Lime as burned	*E. J. Schneider
86	Same as above.	m 1 1	* /	*E. J. Schneider *E. J. Schneider
87	Same as above.	Top layer } mile from new (?) quarry	Lime as burned	
88	Same as above.			*E. J. Schneider
89	2 mi. N. of Al- pena, S. W. cor. sec. 5, T. 31 N., R. 8 E.	Rock outcrops on road side. Highly fossili- ferous (crinoid stems and brachiopods) limestone.	surface.	*F. M. Brady, Illinios Steel Co.
90	3 mi. N. of Alpens, S. E. 1 sec. 27, T. 31 N., R. 8 E.	Compact gray lime- stone overlying Stro- pheodonta shales. Long Lake beds.	Hand specimen	Same as above
91	Alpena (exact location not given).	Specimen from Alpena limestone.	Hand specimen	*W. M. Curtis
92	R. Collins quarry, N. E. of Alpena.	Quarry beds		*8. H. Ludlow, Alpena Ptld. Cem. Co.
93	(See text).]	
to				
138	i	1		

ARENAC

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
140	Omsted quarry, S.E. 1 sec. 17, T. 19 N., R. 6 E.			†W. M. Gregory
141	Jas. McDonnell (formerly Thos. Burt) quarry, 3 mi. NE of Omer. SELSELSec. 1, T. 19 N.,	crystalline to dense grained limestone, stained with iron and organic matter.	hand specimens.	R. C. Banks, Lab. Univ. of Mich.
142	R. 5 E. Same as above.	Top stratum		†Dow Chem. Co

^{*}A. W. Grabau, Stratigraphy of the Traverse group, Ann. Rept. 1901, Mich. Geol. Surv., pp. 179-183.
†Lane, Limestone; Ann. Rept. 1903, Mich. Geol. Surv., p. 173.

'limestones by counties.—Con.

COUNTY .- Con.

Silica. SiOs.	Iron. Fe ₂ O ₂ . Alumina. Alto,	Calcium carbonate. CaCOs. Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
\begin{cases} 1.81 \\ 1.2 \\ 0.16 \end{cases}	1.54 0.9 1.32	93.44 94.4 95.89		1.6		Calculated as limestone.
0.2 1.67	0.8 1.42	95.5 53.58 96.96	0.6	0.8 0.49		Calculated as limestone.
1.0 1.39	0.8 2.56	97.6 54.70 94.48	0.6	0.2 0.14		Calculated as limestone.
0.8 2.85	1.5 1.10	97.5 64.64 93.51	0.2			Calculated as limestone.
1.54 1.39	0.63 1.49	95.7 <i>53.65</i> 95.53	2.13			Calculated as limestone.
(1.8	0.9	97.9 54.87	3.20	1.53	Sul.	Calculated as limestone.
4.62	0.45 1.15	92.38 51.77	1.36	0.65		Samples by A. W. Grabau.
4.54 1.318 0.62	0.50 1.36 0.536 1.159 0.33 0.60	95.231 68.57	0.946	0.80 0.4 5 .58	Sul	Water, 0.3%; organic matter, 1.51%; chlorine, slight traces; alkalies, traces.

COUNTY.

Silica. SiOs.	Iron. FegOs.	Alumina. AlrOs.	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
3.94 4.78	0.38 ‡1.52	0.78	53.50 92.53	51.86	41.33 1.00			Samples by R. A. Smith, Mich. Geol. Surv., 1914.
1.92	0.23	0.25	95.00	53.24	1.94	.928		

‡R₂O;—iron, alumina, etc. Nors: Numbers in italics calculated from original analyses.

Analyses of Michigan ARENAC

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
143	quarry near Wi post sec. 1, T. 19 N., R. 5 E., i mi. NW of Mc- D o n n e l l	dules and irregular masses.	Hand specimen from clearest stone.	Dow Chem. Co
144	quarry. Apparently from SE sec. 34 and SW sec. 35, T. 20 N., R. 5 E.	stone. Small ex-		W. M. Gregory
145		Top stratum, 11 ft. thick.	Hand specimen	Crane & Co., Chicago Ill.

CHARLEVOIX

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
146	Charlevoix Rock Products Co., main quarry, SE½ SE½ sec. 28, T. 34 N., R. 8 W.	Quarry beds Nos. 1-3. Bed No. 1 light buff friable "sandy" looking limestone. Bed. No. 2 earthy, and No. 3 banded buff to dark gray. Section 20 ft.	Composite of hand specimens.	R. C. Banks, Lab. Univ. of Mich.
147	Charlevoix quarries, probably secs 28 & 29, T. 34 N., R. 8 W. Same as above.	Traverse limestone		Omega Ptld. Cem. Co., Jonesville.
148	Bame as above.	Traverse imestone		
149	Charlevoix Rock Products Co. quarry No. 2, SW 1 SE 1 sec. 28, T. 34 N., R. 8 W.	Top bed or No. 1. Yellow, friable earthy and very fossiliferous limestone, 3 ft. thick.	Hand specimen	R. C. Banks, Lab. Univ. of Mich., 1915
150	Same as above.	Bed No. 3. Hard, gray, crystalline limestone, 4 ft. thick.	Composite of hand specimens.	Same as above
151	Wolverine Lime Co., Charle- voix. Quarry in Si SE i sec 29, T. 34 N., R. 8 W.	Small quarry 7 ft. deep, gray crystalline lime- stone similar to bed		Same as above

COUNTY .- Con.

Sinca. SiOr.	Iron. Fe ₂ O ₃ .	Alumina. Al ₂ O ₃ .	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
0.90	0.24	0. 44	96.60	54.14	1.78	.851		
5.90	0.12	0.36	92.30	51.72	1.32	. 631		
3.24	1.74		93.57	52.4 5	1.68	. 803		•
	•					.555		

‡R₂O=iron, alumina, etc.

COUNTY.

Silica. SiOs.	Iron. FerO ₃ . Alumina. Algos.	Calcium carbonate. CaCOs.	CaO.	Carbonate. MgCOs.	Magnesium Oxide. MgO.	Miscellaneous.	Remarks.
0.29	0.51	97.46	54.62	1.44	0.69		
0.18	0.22	98.76 5	56.35	0.71	0.34	SO ₂	Analysis furnished by Andrew Dougherty.
0.66	0.44		54.62 50.19	1.32	0.63	{ SO ₁	Same as above. Stone much weathered.
1.21	1.40	95.94 5	i s .77	1.24	{	phos	
0.82	0.40 0.45	97.05 5	4.39	1.05		Sul. Mn. 0.039 0.00	

Note: Numbers in italics calculated from original analyses.

Analyses of Michigan CHARLEVOIX

				CHARLEVOIX
Analysia No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
152 153	Same as above. Wolverine Lime Co., Charle- voix, secs. 29 and 32, T. 34 N., R. 8 W.	Traverse limestones. Some or all of samples probably from quarry noted above.	Probably hand specimens.	D. H. Stacks, 1912.
154 155	Same as above. Charlevoix quarries, probably secs. 28 and 29, T. 34 N., R. 8	Traverse limestones		
156 157 158 159 160	Same as above. Same as above. Same as above. Same as above. Norwood, low bluff on lake shore 1 ml. N., NE1 sec. 34, T. 33 N., R. 9 W.	Traverse limestones		R. E. Doolittle, 1903 R. E. Doolittle, 1903 *Rominger
161	Norwood, old quarry 1 mi. N-NE. near NW.cor.NE. } sec. 26, T. 33 N., R. 9 W	Light gray lithographic to dense grained limestone with many small crystals of calcite. Thickness exposed 5 ft		R. C. Banks, Lab. Univ. of Mich., 1915
162	Northern Lime Co., Bayshore or"Standard" quarry, S; S; sec. 6, T. 34 N., R. 6 W.	posed 5 ft. W. end of quarry bed. White to light gray limestone at top; beds 3, 4, and 5; soft yellow "sugary" limestones. Section about 15 ft. Bed No. 2 worthless— not sampled.	Same as above	Same as above
163	Bayshore Lime Co., Bay- shore quarry. (Now North- ern Lime Co., "Standard" plant).	High calcium beds, lower part of quarry.		W. G. Banks, 1902
164	Northern Lime Co., Bay- shore or "Standard" quarry.	Lime as burned from quarry.	Lump lime	Ashland Steel & Iron Co., 1902.
165	Same as above.	Same as above	Lump lime	Elk Rapids Portland Cement Co.
(166- 174	E on lake shore. (3 mi. E Khagas- hewing Point.—	Dark lithographic limestones at and just above lake level. 2 beds, upper 6-8 ft. thick.	Hand specimens	*Rominger
175	Rominger. Northern Lime C o. "S u- perior" plant 2 ml. W. of Bayshore, S ₁ sec. 2, T. 35 N., R. 7 W.	Quarry beds Nos. 1-5; E. end. Yellowish white to yellow earthy limestones, laminated bitumi- nous bed at bottom. Section 25 ft.		R. C. Banks, Lab. Univ. of Mich., 1915
176	Khagashewing Point, old quarry.	Apparently the brownish sugary dolomites just below the light yellowish white earthy limestone seen in the Superior quarry of No. Lime Co.		*Rominger

COUNTY .- Con.

COUN	TY.—Con.					
Silica. SiOs.	Iron. Fe ₂ O ₂ . Alumina. Al ₂ O ₃ .	Calcium carbonate. CaCO ₃ .	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
0.64 0.58	0.80 0.77 0.60 0.63	96.85 96.72 54.2			S. Mn. 0.050 0.00 0.073 0.00	Analyses furnished by É. S. Stacks, Wolverine Lime Co.
1.52 5.20	0.55 0.72 2.60	96.54 54.1 88.97 49.8	ł	1	0.00	Analysis furnished by Andrew Dougherty.
5.20 5.04 5.10 5.58 Insol.	3.12 3.14 2.48 2.68	90.93 50.9 88.64 49.6 91.42 51.2 90.75 50.8	2.06 0 0.92 2 1.56	.98 .44 .75		
1.28	2.80 0.75	96.70 54.1				Sample by R. A. Smith, Mich. Geol. Surv.
0.16	0.55	79.16 44.5	20.03	9.58		
3.37	2.57	91.77 51.4	3 1.04	0.50	80: 0.60	Diff. 0.38 per cent.
Insol. 0.77	0.77	78.8	6	15.54	CO ₂ + H ₂ O 4.06	
Insol.	1 .12	73.4		19.09		
0.44	0.36	98.00 <i>54.9</i> 89.39 <i>50.1</i>				Approximate average analysis. Samples by R. A. Smith, Mich. Geol. Surv.
Insol. 0.50	1.50	58.00 38.5	98.00	18.18		

*Vol. III, Pt. I, pp. 58-60, Mich. Geol. Surv., 1869-1873. Norz: Numbers in italics calculated from original analyses.

Analyses of Michigan CHEBOYGAN

				OMEDOTGAN
Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
177	Campbell Stone Co., Afton quarry. Sec. 36, T. 35 N., R. 2 W.	Top bed, light gray dense grained to crystalline limestone, 0-5 ft. thick. (cup corals).	Hand specimen	R. C. Banks, Lab. Univ. of Mich., 1915
178	Same as above.	Bed No. 2 from top. Black bituminous	Hand specimen	Same as above
179	Same as above.	limestone, 6ft. thick. Bed No. 3. "Paper stone" bed. Light gray crystalline lime- stone, 4ft. thick	Composite of hand specimen.	Same as above
180	Same as above.	Beds Nos. 5 & 6. Both beds very bitumin-	Same as above	Same as above
181	Same as above.	No. 5, 21 ft. thick; No. 6, 51 ft. thick. Beds 8, 9 and 10— lower 12 ft. of quarry	Same as above	Same as above
182	Same as above.	Light colored stone	Hand specimen	C. R. Lindfors, Mich. Sugar Co., 1907.
183	Same as above.	Black bituminous limestone, (Bed No.	Hand specimen	Same as above
184	Campbell Stone Co., Afton. NW 1 NE. 1 sec. 36, T. 35 N., R. 2 W	2?). Drill core 4 to 42 ft. Present quarry section. 4 ft. of surface.	Drill core, average analyses (m a d e every 2 ft.).	Campbell Stone Co. 1907.
185	Same as above.	Drill core 42 to 100 ft.	Same as above	Same as above
186	Campbell Stone Co., Afton. SW 1 SE 1 sec. 19, T. 35 N., R. 1 W. Black Lake	0 !	Same as above	Same as above
186a	Black Lake quarry, 6 mi. N. of Onaway sec. 12, T. 35 N., R. 1 E.	limestone with cal-	Hand specimens	R. C. Banks, Lab Univ. of Mich., 1915
187	Marion Stone Co., Afton, N El sec. 7, T. 34 N., R. 1 W.	Quarry beds 1 to 5, and No. 7. Gray dense grained to crystal- line limestone, fos- siliferous in places. Section 21 ft.	Composite of hand specimens.	Same as above
188	W. G. Durrell property. Private claim 334.	Dundee limestone. Buff to gray bitumi- nous limestone.	-	Prof. Stebbins
189 190	Same as above.	Same as above	Hand specimens Hand specimens	Prof. Stebbins
191	Same as above.	Same as above	Hand specimens	Prof. Stebbins
192 193	Same as above.		Hand specimens	Prof. Stebbins
194	Same as above.	Same as above	Hand specimens	Prof. Stebbins
195	Same as above.	Same as above	Hand specimens	Prof. Stebbins
196 197	Same as above.		Hand specimens Hand specimens	Prof. Stebbins
198	Same as above.	Same as above	Hand specimens	Prof. Stebbins
199 200	Same as above.		Hand specimens Hand specimens	Prof Stabbing
201	Same as above.	Same as above	Hand specimens	Prof. Stebbins
202 203	Same as above.		Hand specimens	Prof. Stebbins
203 204	Same as above.	Same as above	Hand specimens	Prof. Stebbins
205	Same as above.	Same as above	Hand specimens	Prof. Stebbins
206 207	Same as above.		Hand specimens	Prof. Stebbins
201	Transcate above.	Came as above	opocimens	- LON DECORPTION

COUNTY.

Silica. SiOa.	Iron. Fe ₇ O ₃ . Alumina. AlyO ₃ .	Calcium carbonate. CaCO ₃ .	oxide.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
0.54	0.45	97.32 5.	4.54	1.08	0.52		Samples by R. A. Smith, Mich. Geol. Surv.
0.63	0.62	92.60 5	1 . 90	2.56	1.22	Org. 2.61	Same as above.
0.24	1.44	96.97	4.34	0.12	0.05		Same as above.
0.28	0.37	98.04 5	4.94	1.07	0.51		Same as above.
1.75	0.64	95.75 5	3 .66	1.24	0.59	1	Same as above.
1.00 1.09	0.14 0.24	97.68 5 97.33 5	4.74	1.05 1.11	0.50 0.53	Org. 0.05 0.19	Insol SiO. Inscr. and SiO.
2.10	0.34	96.52 5			1		0.03%; moisture 0.04%.
3. to 5.00 3.40	0.38	94.20 5	i ž . 79	6. to 9.00 1.80	2.87 to 4.30 .86		Similar analyses for cores from SW 1 NE 1 sec. 25, T. 35 N., R. 2 W., also from NW 2 SW 2 sec. 13, T. 34 N., R. 2 W., and NW 1 SW 2 sec. 14, T. 34 N., R. 2 W., and NW 2 SW 2 sec. 15 SW 2 sec. 15 SW 2 sec. 16 SW 2
0.39	0.52	96.84	14.27	2 03	.97		SW1 of same section. Samples by R. A. Smith, Mich. Geol. Surv., 1914.
0.80	0.55	96.88	54. <i>2</i> 8	1.24	. 58		Same as above.
•••••	Undet.	94.63	53 . 03	2,90	1.88		
	Undet.	96. 24 8 92.16 8 97. 49 8 83 8 94.59 4 97. 10 4 96.96 18 92.19 4 94.91 4 94.91 4 94.91 4 97.70	38 .89 53 .93 51 .65 54 .63 55 .38 55 .38 55 .88 56 .38 56 .38 57 .88 58 .78 58 .78 58 .78 58 .78	2 6 7 00 27 1 2 1 7 1 2 2 1 1 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 1 1 4 1 5 5 5 5	1.20 3.33 3.33 3.32 3.32 3.33 8.9.32 7.7.44 1.55 8.66 8.86 8.66 8.81 1.55 8.66 1.77 1.55 8.66 8.77 8.77 8.77 8.77 8.77 8.77 8.77	45	Analyses of samples from exposures on Mill Creek, numbered in order from mouth of creek up stream for about 1200 ft.

Nora: Numbers in italics calculated from original analyses.

Analyses¹ of Michigan CHEBOYGAN

				CHEBUIGAN
Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
208 209 209a 210 211 211a 211b 211c 211d 211e 211f 211f 211f 211h 211h	Same as 207. Same as above	Same as above.	Hand specimens	Drof Stabbing
2111j 211k 211k 211m 211n 211p 211p 211t 211t 211t 211t 211t 211t	Same as above Mame as above	Same as above.	Hand specimens	Inst. Cincinnati, Came as above. Same as above.
213 214 215 216	Private claim No. 334. Same as above Same as above Same as above Same as above	At 7 ft	Hand specimens Hand specimens Hand specimens Hand specimens	Same as above Same as above Same as above Same as above
217 218 219 220 221 222 223 224 226	Same as above	Average 3-26 ft Grayish buff crystal- l i n e bituminous	Hand specimens Hand specimens Hand specimens Hand specimens Hand specimens Hand specimens	Same as above. R. C. Banks, Lab. Univ. of Mich.
227 228	Same as above.	limestone, E. bank of Mill Creek 250 ft. from highway; 22 ft. section. Same as above Basal magnesian beds of the Dundee. Soft light to dark buff "sugary" limestone, bituminous. Test hole 6 ft. deep.	Same as above Composite of several hand specimens.	G. F. Harris, Mich. Limestone & Chem- ical Co., Rogers. A. R. Todd and W. B. Scovill, Dept. State Dairy and Food.

¹Norm: Numbers in italics are calculated from original analyses.

COUNTY .- Con.

SiO ₂ .	FerO3.	Ina.	alcium carbonate. CaCO3.	Sem)	Magnesium carbonate. CaCOs.	esium Ie. O.	Miscellaneous	Remarks.
Silica. Iron. Alumir	Alumina. AirOs.	Calcium carbor CaCO	Calcium oxide. CaO.	Magn cart CaC	Magnesium oxide. MgO.	Misce		
	Unce Unce Unce Unce Unce Unce Unce Unce	let. let. let. let. let. let. let. let.	97.44 97.64 97.63 98.21 98.43 97.63 98.07 99.07 97.06 96.43 98.11 99.76	54.44 54.72 55.04 55.04 55.83 55.58 54.71 53.83 55.58 54.04 54.04 54.08 55.92	0.39 0.90 0.96 0.17 0.36 0.99 0.26 0.12 0.13 0.90 2.70 2.40 trace none	.18 .43 .46 .08 .17 .47 .12 .05 .06 .43 1 .29 1 .15		
0.16	1 0 1 1 0 1 1 0 1 1 1 0 2 2	45 36 247 544 41 16 79 223 888 71 308 882	98.55 99.22 98.55 98.67 98.53 98.46 99.77 98.53 97.84 99.21 98.12 98.22 98.87 97.18 82.62	55 60 55 23 55 80 55 81 55 81 55 81 55 81 55 81 55 83 55 90 55 90 56 90	trace none trace none trace none trace trace trace none trace none trace	8.11		Same as No. 207.
0.24 0.16 0.12 0.08	Und Und Und Und	iet. iet.	98.83 98.28 98.83 97.84	55.08	0.69 1.36 1.01 1.92	.33 .65 .48 .92	******* ******* ******	Samples collected by F. A. Jones Mgr. Operations, Kelley Is- land Lime & Trans. Co., 1915.
0.44 0.16 0.20 0.32 0.32 0.12 0.20 1.67	Und Und Und Und Und Und Und *0.	let. let. let. let. let. let. let.	93.43 98.77 98.60 98.55 98.83 96.63 98.028 95.28	55.25 55.23 55.38 55.10 54.14 54.93	5.98 1.03 1.08 1.17 1.27 1.27 3.02 1.678 2.11	2.86 .49 .52 .56 .61 .61 1.44 .80 1.00		Samples collected by Mich. Geol.
1.10	0.:	20	96.52	54.05	2.00	0.96	*****	Same as above.
1.97	* 0.	90	75.80	42.48	†21.33	10.20		Samples taken in 1915 by L. W. Durrell and C. B. Fleming.

^{*}R₂O=iron, alumina, etc.
†Magnesium carbonate by difference, not weighed.
‡Includes silica, iron, and alumina.

Analyses¹ of Michigan CHIPPEWA

				
Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
229	West Neebish Rapids, St. Marys River.	Hard crystalline dolo- mite with some sand.	Probably hand speci- mens.	
230	NE. cor. of En- campment d'Ours Is- land.	Light colored brittle fossiliferous lime- stone; top beds.	Composite of 2 hand specimens.	*C. Rominger.
231	NE. cor. St. Joseph Island	Blue thin bedded no- dular limestones with shale partings; middle strata.	Same as above	*C. Rominger
232	Same as above.	Bluish or greenish very s andy limestone with shale streaks. Lowest exposed beds at water's edge.	Same as above	*C. Rominger
233	Sulphur Island.	Sandy dolomite, top stratum on island.	Same as above	*C. Rominger
234	Marblehead quarry, Drummond Island, sec. 31, T. 42 N., R. 7 E.	6 ft. bed at top of quarry, 36 ft. above Lake Huron. Dark gray very crystalline dolomite.		*C. Rominger
235	Same as above.	9 ft. bed below the 6 ft. bed. Yellowish white earthy frac- turing dolomite.	Rock specimen	*C. Rominger
236	Same as above.	Lower beds of quarry; crystalline dolomite.	Rock specimen	*C. Rominger
236a	Drummond Is- land, exact location not given.	Niagara dolomite, sili- ceous and argillac- eous.		W. G. Miller, Geol. Surv. Can.
237	Marblehead, Drummond Island. Out- crop short distance N. of quarry.	Ash colored acervularia limestone 3 ft. thick near lake level.		*C. Rominger
238	Same as above.	5 ft. drak gray bi- tuminous nodular limestone, 30 ft. be- low acervularia bed.	Rock specimen	*C. Rominger
238a	Same as above.	Lowest beds in the Marbiehead section.	Rock specimen	*C. Rominger
239	W. side Sit- greaves bay, Drummond Island.	Loose slabs just above the Hudson River group.	Rock specimen	*C. Rominger
240	Ludlow Seaman q u a r r y, Drummond Island.	Upper 19 ft. of quarry. Hard finely crystal- line dolomite.	4 pieces, 1 from each bed.	L. C. Nodell and C. K. Wirth, Univ. of Mich., 1914.
240a	Quarry Pt., W. side Drum- mond Island.	Quarry stone, lami- nated beds.	Rock specimen	*C. Rominger
240b		ry, more crystalline than the laminated beds.	Rock specimen	*C. Rominger
241	Lime Island, old quarry just north of Pittsburg Coal Co., St. Mary's River.	Hard buff to white finely crystalline dolomite beds, 10 to 28 ft. above river level.	Composite sample, 4 rock specimens.	L. C. Nodell and C. K. Wirth, Univ. of Mich., 1914.

¹Figures in italics calculated from original analyses. *Vol. I, Pt. III, pp. 48 and 78.

limestones by counties.

COUNTY.

Silica. SiOr.	Iron. FerOs.	Alumina. AlrOs.	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnestum oxide. MgO.	Miscellaneous	Remarks.
†6.00	2.	00	52.00	29.14	40.00	19.13		Residue of quartz sand.
†8. 00	1.0	00	89.00	49.87	2.00	.95		Insoluble residue, quartzose.
†13.00	1.	50	82.00	45.95	3.00	1.43	 	Insoluble residue, argillaceous.
†4.06	1,0	60	47.30	26.51	2.50	1.19		Residue chiefly of coarse quarts
†12.00	3.	00	47.00	26.34	38.00	18.18		Residue of quartz sand.
†8.00	2.	00	62.00	34.75	33.00	15.78	 	Cloudy bituminous residue with some quartz granules.
†2.00	‡4.	00	54 .00	3 0. 2 6	39.00	18.65		Bituminous and siliceous residue
†7.00	· 2.	00	58.00	32.50	32.00	15.31		Residue silicio-argillaceous.
4.33	4.	14	51.18	28.6 8	39.38	18.84		Iron and alumina exceptionally high, probably from lower Lockport.
†2.00	2.	00	95.00	53.24	1.00	. 48		
†2.00	1.0	00	94.00	52 .68	2.00	.96		Residue bituminous with some quartz granules.
†9.00	2.	00	52.00	29.14	35.00	16.74		Silicio-argillaceous residue.
†6.00	3.	00	52.00	29.14	38.00	18.18		Siliceous residue.
1.71	**0.	67	55.47	31.09	45.78	21.90		Block stone quarried for con struction purposes.
†1.00	1.	00	60.00	33.62	32.00	15.30		Same as above.
†1.00	1.	00	59.00	33.06	38.00	18.17		Siliceous residue.
1.25	** 0.	76	38.40	31.61	44.55	21.31		Stone formerly burned for lime.

^{**}R_{*}O_{*}=alumina, iron, etc. †Insoluble in HCl. ‡Chiefly alumina.

Analyses of Michigan CHIPPEWA

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
242	Point Detour, 8 t. Marys River.	Engadine dolomite. Light gray crystal- line dolomite.	Rock specimen	*C. Rominger
243	Outcrop on logging rail- road, sec. 8, T. 42 N., R. 2	Engadine dolomite. Blue coarsely crys-		L. C. Nodell and C. K. Wirth, Univ. of Mich., 1914.
244	mi. S. of Haff P. O. (Dick) sec. 29, T. 44 N., R. 5 W., on Trout Lake-Ozark road.	lower 20 ft. bed. Bluish coarsely crys-	Rock specimen	Same as above
245	Same as above.	Engadine dolomite, upper 30 ft. bed. Bluish gray coarsely crystalline dolomite, 20 ft. from bottom of bed.	•	Same as above
246	Haff P. O. (Dick), sec. 20, T. 44 N., R. 5 W., N. side of high bluff. Property of L. O. Poquin.	Engadine (?) dolomite or fossiliferous beds beneath.	Several rock speci- mens.	Dr. A. H. White, Mich. Univ. Lab.

DELTA

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
247	John Bichler quarry, Groos P. O., 4 mi. N. of Escanaba.	Bluish argillaceous limestone. Top 11 ft.		L. C. Nodell and C. K. Wirth, Lab. Univ. of Mich., 1914.
248	Same as above.	Bluish argillaceous and fossiliferous limestone. Lower beds in quarry.	specimens.	Same as above
249	East bank Escanaba River 1 mi. above mouth.	Bluish argillaceous and siliceous dolomite,		*C. Rominger
25 0	Escanaba River 1 mi. above mouth.	Wedge-shaped silice-		*C. Rominger
250a		Trenton limestone.		*C. Rominger.

^{*}Vol. I, Pt. III, pp. 48 and 78. †Insol. in HCl.

COUNTY .- Con.

Silica. SiOs.	Iron. Fe ₂ O ₃ .	Alumins. AlrOs.	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
†1.00	trace	18.	56.00	31.38	43.00	20.57		
0.39	**0.22		56.24	31.52	43.06	22.60		Typical specimen.
0.47	**0.23		55. 94	31.35	42.77	20.46		Bed very uniform in general character from top to bottom
0.32	**0.33	• • • • • •	56.31	31.56	43.23	20.68		Same as above.
0.80	0.32	0.71	52.97	29.76	44.22	21.16		Sample dried at 105°-107°. Sample furnished by L. O. Poquin.

COUNTY.

Silica. SiOs.	Iron. Fe ₂ O ₃ . Alumina. Al ₂ O ₃ .	Calcium carbonate. CaCO ₂ .	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
4.73	**2.71	73.80 41	.36 17.70	8.51		Sample collected by Mich. Geol. Surv.
4.85	**2.55	79.92 44	.79 18.20	6.34		Same as above.
†5.50	3.00	52.00 89	.14 38.50	18.42		Insoluble residue, silicio-argillac- eous.
16.40	1.00	88.,00 49	.32 4.00	1.91		Insoluble residue, siliceous.
7.00	2.50	51.00	38.00) 		Quartzoze residue.

[†]Chiefly alumina. **R_{*}O₃==alumina, iron, etc. Note.—Numbers in italics are calculated from original analyses.

Analyses of Michigan

DELTA

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
251	Lower Falls of Escanaba River, 6 mi. above mouth.	stones below the		*C. Rominger
252	Old quarry on N. bank of Days River, NE. sec. sec. 3, T. 40 N., R. 22 W.	Buff gray crystalline limestone. 6-ft. ex-	2 hand specimens	L. C. Nodell and C. K. Wirth, Lab. Univ. of Mich., 1914.
253	Road cut 1 mi. NW. Rapid River NE. cor. sec. 19, T. 41 N., R. 21 W.		Hand specimen	Same as above
254	Burnt Bluff, sec. 24, T. 38 N., R. 19 W.	Thin bedded dolomites lower 60 ft. of bluff.	Hand specimen	*C. Rominger
255	to 281, see text.			

EATON

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
282	Burt Portland Cement Co. quarry, Bellevue.	Main quarry beds, white to light gray limestone 12 ft. thick, east side of quarry.	Hand specimen,	R. C. Banks, Lab. Univ. of Mich.
283	Same as above.	White limestone, main quarry beds.		C. H. Denman, Burt Ptld. Cem. Co.
284	Bellevue quarries.	Light colored lime- stone with smooth conchoidal fracture,		†C. Rominger
285	Burt Portland Cement Co. quarries, Bellevue.	White to light gray limestones. Anal.		H. R. Brown
286	Same as above.			
287	Same as above.	Brown dolomite stratum near top of quarry beds; 1 foot		†C. Rominger
288	to 294, see text.	thick.		

^{*}Vol. I, Pt. III, pp. 48 and 78, Mich. Geol. Surv. †Vol. III, Pt. I, p. 113.

COUNTY .- Con.

Silica. SiOr.	Iron. Fe ₂ O ₃ . Alumina. Al ₂ O ₃ .	Calcium carbonate. CaCO ₃ .	Calcium oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Miscellaneous.	Remarks.
‡20 .80	2.40	55.8	31.27	21.00	10.00		Insoluble residue of quartz sand and some clay.
6.81	†2.96	82.49	46.79	4.24	2.03		Samples collected by Mich. Geol. Surv.
5.14	†2.51	81.98	45.95	10.56	4.96		Same as above.
‡2 .50	1.00	56.60	\$1.72	39.00	18.65		
						<u> </u>	

COUNTY.

Silica. SiO1.	Iron. Fe ₇ O ₃ . Alumina. Al ₇ O ₃ .	Calcium carbonate. CaCOs. Calcium	Magnesium carbonate. CaCO ₃ .	Magnesium oxide. MgO.	Remarks.
2.56	R ₂ O ₂ 1.59	94.78 53.1		0.492	
1.30 { Insol. 1.50	0.99 0.66 { Hyd. { 0.50	95.98 53.7 96.00 53.8		0.975	Cement Co.
Sol. 0.1208	(0.2093 0.1008	95.10 53.3	1.009	ł	
{ Insol. 1.984	0.369	37.47 0.2	1		Sulphur as pyrites 0.175; organic matter 0.1334; diff. 0.145.
{ Insol. 9.00	5.50	56.00 31.3	8 23.00	11.00	

[†]R_rO₂=iron, alumina, etc. ‡Insoluble in HCl. Norz:—Figures in italics calculated from original analysis.

Analyses of Michigan EMMET

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
295	No. Lime Co., quarry C, (W. quarry) Petoskey. Formerly Mich. Lime. Co. In bluffs along Little Traverse Bay	Top 15 feet		E. D. Campbell, Lab. Univ. of Mich., 1901
296	Same as above.	Next 10 feet		Same as above
297 298	Same as above. to 302, see text.	Next 6 feet		Same as above
303	No. Lime Co., Petoskey, quarry C.	Gray earthy limestone with streaks of litho- graphic s t o n e. Lower 22 ft. of main	specimens.	R. C. Banks, Lab. Univ. of Mich., 1915
304	No. Lime Co., Petoskey, Test pit next the office in quarry C.	quarry. Gray lithographic to dense grained earthy limestone. Lower beds with bitumi- nous laminae. Sect. about 8 ft.		Same as above
305	No. Lime Co., Petoskey, quarry B.	Beds Nos. 2, 3, 4, 7 and 8 from top.		
306	Same as above.	crystalline to earthy limestone. Burned for chemical lime; 6	(I	
307	Same as above.	Bed No. 1. Top coral- line and stromato- poroid dolomitic limestone. Mass of fossils in matrix of buff friable "brown sugary" limestone; 15-20 ft. thick.	Hand specimens	Same as above
308	Petoskey, quarry uncer- tain.	Dark fine grained bi-	 	A. N. Clark, Alma Sugar Co., 1902.
309	Same as above.	"Stratum 1"	Keg of samples	Same as above
310	Same as above.	"Stratum 2"	Keg of samples	Same as above
311	Antrim Lime Co., Petos- key. Western part of city.	Upper 12 ft. of quarry. White earthy lime- stone.	Composite of hand specimens.	R. C. Banks, Lab. Univ. of Mich., 1915
312	Same as above.	Lower 12 ft. of quarry; upper beds white and earthy; lower buff laminated earthy to druse grained.	Same as above	Same as above

COUNTY.

Silica. SiOr.	Iron. Fe ₂ O ₃ .	Alumina. Al ₇ O ₃ .	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnes.um oxide. MgO.	Miscellaneous.	Remarks.
0.29	0.04	1.79	56.51	31.67	42.65	2 0.40		
0.10	Aver. 0.01	0.83	71.42 92.23	40.03 51.69	27.89 6.00	13.34 2.87	1	Analyses furnished by No. Lime Co.
0.68	O	0.00	82.50	46.24	16.30	7.80		Samples by R. A. Smith, Mich. Geol. Surv.
0.26	. 0	0.32	96.36	54.00	2.58	1.23		Same as above.
0.22	c	.23	86.14	47. 2 8	13.11	6.27		Same as above.
0.26	C	.28	94.78	53.12	4.18	2.00		Same as above.
0.09	c	0.46	62.86	3 5.23	36.41	17.42		Same as above.
{ Insol. 0.44	C). 43	96.58	54.13	2.00	.95		Bed uncertain but probably from bituminous laminated beds in test pit in quarry C, Northern Lime Co., Petoskey.
{ Insol.	C	0.80	83.05	46.54	15.11	7.23		
lnsol.	c	.70	90.62	50.79	7.47	3.57		
1.21	C	. 29	97.40	54.59	2.15	1.03		Samples by R. A. Smith, Mich. Geol. Surv., 1914.
0.87	C	. 58	87.14	48.84	11.33	5.42		Same as above.

Note: Figures in italics calculated from original analyses.

Analyses of Michigan

EMMET

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
313	Petoskey Crushed Stone Co. Quarry 4 mi. W. of Petos- key, sec. 11, T. 34 N., R. 6 W.	tough crystalline beds at east end of quarry, used for road metal. Sect. about 35 ft., upper	Same as above	Same as above
314	W. E. Smith, et. al. property 4½ mi. W. of Pet os key. (Old quarry of Petoskey Stone & Lime Co.) NE½ N E½ sec. 9, T. 34 N., R. 6 W		Same as above	Same as above
315	Same as above.	Quarry beds Nos. 2, 3, 5, 7, 8, 9, 10, and 11, Sect. about 20 ft.	Same as above	Same as above
316	Same as above.	Lowest exposed beds at foot of trestle and below quarry floor. Beds Nos. 12 and 13 white earthy limestone. Thickness exposed 4 ft.		Same as above
317	W. E. Smith, et. al., property 4½ ml. W. of Pet oskey. Test pit on Eend near S½ post, sec. 3, T 34 N., R. 6	Test pit beds. Gray lithographic 1 im estone with fossils and calcite crystals. Bottom bed fossiliferous and crystalline. Section 5 ft.	Same as above	Same as above

HURON

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
318	Co., Bayport quarries, N	stone 3 ft. thick. Formerly burned for		*Prof. Langley
319	E. Same as above.			*A. C. Benedict,

^{*}Vol. VII, Pt. II., pp. 214 and 216, Mich. Geol. Surv., 1900.

COUNTY .-- Con.

Silica. SiOr.	Iron Fe ₂ O ₃ . Alumina. Al ₃ O ₃ .	Calctum carbonate. CaCO ₂ . Calctum oxide. CaO.	Magnesium carbonate. MgCO3. Magnesium oxide. MgO.	Remarks.
1.00	0.81	93.00 52.12	44.96 2.37	Same as above.
0.75	0.63	83.90 47.08	14.38 6.88	Same as above.
0.71	0.41	93.96 52.66	4.65 2.22	Same as above.
2.50	1.74	80.88 45.33	14.84 7.10	Same as above.
1.77	1.20	94.68 <i>53.06</i>	2.02 .96	Same as above.

COUNTY.

Slica. SlO3.	Iron. FesOs.	Alumina. AlrOs.	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Remarks.
3.330		1.334	91.538	51.29	0.944	.451	Stratum now quarried away.
20.85 {	FeS: 0.1	5 2.04	61.52	34 .48	14.50	6.93	Silica is free sand.

Note: Figures in italics calculated from original analyses.

Analyses of Michigan JACKSON

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
320	Old quarries N E of Parma, probably in sec. 29, T. 2 S., R. 2 W.	Brown cellulose dolo- mite, argillaceous and ferruginous; up- per stratum.		*C. Rominger
321	S., R. 2 W. One mi. NE of Parma in road on N side sec. 30, T. 2 S., R. 2 W.		Hand sample	Mich. Ptld. Cem. Co., Chelsea, 1915.
322 323	Same as above. Secs. 11 and 12, T. 3 S., R. 2 W., on main r o a d from Jackson to		Hand sample	Same as above
824	In road between secs. 24 and 25, T. 3 S., R. 2 W.		Hand sample	Same as above
825	Old Shoemaker farm 3 mi. 8 of Jackson, possibly in secs. 15 or 16, T. 3 S., R. 1	Light colored lime- stone bed below 4 or 5 ft. of brown fer-		*C. Rominger
326	3 mi. S. of Jack- son in rail- road cut, Cin- cinnati& Northern Ry.	Light gray fine grained limestone, 4 to 6 ft. deep.	Hand sample	Same as above
327	Old quarry, Allen farm El SEl sec. 2, T. 2 S., R.	Light gray fine grained limestone 4 to 5 ft. thick.	Crusher run sample	Mich. Ptld. Cem. Co., Chelsea, 1915
328 829	Same as above. Old quarry, Allenfarm, Ei SEi sec. 2, T. 28., R.	Same as above Light gray fine grained limestone 4 to 6 ft. thick.	Crusher run sample Hand sample	Same as above
330 331	Same as above. Old quarry on Haar f a r m, SE i SW i sec. 1. T. 2 S., R. 1 W.	Same as above Light gray fine grained limestone 8 to 10 ft. thick.	Hand sample	Mich. Ptid. Cem. Co., Chelses, 1915.
832	Old quarry near center sec. 1, T. 2 S., R. 1 W.	Light gray fine grained limestone 4 to 6 ft.	Hand sample	Same as above
883	Old quarries about 3 mi. N of Jackson on N. side of Portage river sec. 1, T. 18., R. 1 E., and SWł sec. 6, T. 1 S., R. 2.	Light colored "smooth," compact, "brittle" limestone, 0-9 ft. thick.		*C. Rominger
334	E. to 394, see text.			

^{*}Vol. III, Pt. I, pp. 115, 116, 117, Mich. Geol. Surv., 1873-1876.

COUNTY.

COUNTI	•			
Silica. SiO.	Iron, Fe _r O ₁ . Alumina. AlsO ₁ .	Calcium carbonate. CaCOs. Calcium oxide. CaO.	Magnesium carbonate. MgCOs. Magnesium oxide. MgO.	Remarks.
{ Insol. 2.90	18.40	63.70 35.70	11.4 5.45	
2.74	1.26	94.32 52.86	trace	
14.08 9.04	2.56 0.80	81.58 45.72 85.89 48.14	not det 1.71 0.82	Analyses furnished by N. S. Potter, Jr., V. P. and Gen'l. Mgr. Mich. Ptld. Cem. Co., Chelsea, Mich.
4.22	1.68	29.80	43.38 20.75	• '
4.00	1.00	94.00 34.63	1.00 .478	Silica is quartz sand.
6.72 2.80	5.26 0.78	71.16 39.88 53.22	16.43 7.86 0.00	· }
. 1.28	0.56	54.70		
2.50	0.88	96.96 54.34	0.00	Analysis furnished by N. S. Potter, Jr., V. P. and Gen'l. Mgr., Mich. PtId. Cem. Co., Chelsea, Mich.
2.30 1.60	0.94 2.00	96.53 90.75 50.86	0.00 0.37	
3.20	1.94	93.21 52.24	1.90 0.91	·
{ Insol. 1.40	0.70	96.90 70.62	1.00 .478	

Nors:—Figures in italics calculated from original analyses.

Analyses of Michigan MACKINAW

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
39 5	Fiborn quarry, sec. 20 and 28 T. 44 N., R. 7 W.	Fiborn limestone 18 to 30 ft. thick. Mas- sive buff gray litho- graphic limestone lo- cally filled with dis- seminated calcite	3 rock specimens	Lab. Univ. of Mich., 1916.
396	Same as above.	crystals. Fiborn limestone, bottom magnesium stratum, 1-2 ft. thick.	Hand specimen →	Same as above:
397 398	Same as above. Same as above.	Same as above Fiborn limestone. Lithographic limestone with disseminate calcite crystals.	Hand specimen Lime burned from Fi- born limestone.	Bachtenkircher, L. D. Frauenfeider
399 400	Same as above. Hendricks quarry, Union Car- bide Co., sec. 6, T. 44 N., R. 9 W.	Same as above	Hand specimens	Fiborn Limestone Co. L. C. Nordell & C. K. Wirth, Lab. Univ. of Mich., 1914.
401	Same as above.	Fiborn limestone. Bed No. 3, 18 ft. thick. Grayish buff litho- graphic limestone with disseminated	Hand specimens	Same as above
402	Same as above.	NO. 3, 18 Jt. tmck.	Hand specimens	Same as above
408	Same as above.	Bottom of bed. Test pit, Bed No. 4, upper part, 4 ft. thick. From floor of main quarry.	Hand specimens	Same as above
404	Same as above.	Test pit, Bed No. 4,1 lower part, hard white crystalline limestone, 4 ft. thick	Hand specimens	Same as above
405	Same as above.	Test pit, Bed No. 5, dark buff gray dense grained limestone, 1 ft. thick.	Hand specimens	Same as above
406	Same as above.	Test pit, Bed No. 6, hard white thinly hedded crystalline	Hand specimens	Same as above
407	Same as above.	limestone, 2 ft. thick Test pit, Bed No. 7, hard white crystal- line dolomite 2 ft. thick.	Hand specimens	Same as above
408	Same as above.	Test pit, Bed No. 8, brownish and drusy dolomite 6 ft. thick.	Hand specimens	Same as above
409	Same as above.	Test pit 20 ft. deep in floor of main quarry. Bed No. 9, earthy limestone 1 ft. thick just above floor of pit.	Hand specimens	Same as above
423	to 422, see text. 5 mi. N. of Engadine, ce n. sec. 29, T. 44 N., R. 10 W., dug well of Aug. Wand- land.	Fiborn limestone; gray to buff lithographic limestone with dis- seminated calcite crystals, 6 ft. thick.	2 rock specimens blast- ed from well.	Same as above

limestones by counties.

COUNTY.

Silica. SiO.	Iron. FerOs.	Alumins. Al ₂ O ₃ .	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Remarks.
0.58	†0	.46	94.95	53.19	8.34	1.12	Samples collected by R. A. Smith, Mich. Geol. Surv.
1.10	†0	. 35	92.71	51.46	8.99	4.30	Same as above.
1.60 1.10	‡8	.60 .80	94.95 95.35	53.21 53.43	5.22 1.55	2.50 0.74	Commercial analysis. Commercial anaylsis.
1.13 0.66	0 †0	.37 .57	95.59 75.55	53.46 42.34	3.05 26.57	1.46 12.71	Samples collected by R. A. Smith, Mich. Geol. Surv.
1.00	†0	. 34	98.22	55.05	1.69	0.81	Same as above.
0.73	†0	. 29	89.65	55.29	1.71	0.82	Same as above.
0.83	†0	. 4 6	96.16	53.89	2.82	1.35	Same as above.
0.55	†0	. 55	90.89	50.89	8.69	4.16	Same as above.
0.36	†0	.36	98.65	55.29	£.19	1.05	Same as above.
0.49	†0	. 18	91.69	51.39	8.76	4.19	Same as above.
1.61	†0	.82	57.63	32.30	42.77	20.46	Same as above.
2.51	†0	.86	56.87	31.87	42.12	20.15	Same as above.
0.71	†0	. 16	99.47	55.75	1.46	0.70	Same as above.
2.84	†0	.91	85.15	47.72	18.59	5.93	Samples collected by Mich. Geol. Surv., 1913.

 $\dagger R_2O_3$ —iron, alumna, etc. Note: Figures in italics calculated from original analyses.

Analyses of Michigan MACKINAW

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
424	11 mi. W of Gould City, Secs. 30 and 31, T. 43 N., R. 11 W.	Fiborn limestone, gray to buff lithographic limestone with dis- seminated calcite crystals; exposure 4 ft.	crevice.	Same as above
425	Bluff 1 mi. N. Hunt Spur, sec. 6, T. 42 N., R. 12 W.	Fiborn limestone: gray	-	Union Carbide Co
426	Ozark, Ozark L i m estone Co. quarry.	Engadine dolomite. Coarsely crystalline dolomite, motile d and streaked with blue and filled with drusy cavities.	duct.	1916.
427 428	Same as above. Kenneth, prop- erty of Mr. Ross.	Same as above Engadine dolomite	Same as above	Algomah Steel Co Minnesota Testing Lab., Duluth, Minn
429	1 mi. W. of En- gadine on the railroad near the summit of	Upper bed, massive bluish crystalline dolomite, 8 ft. +	near top of ledge.	L. C. Nodell & C. K Wirth, Lab. Univ. of Mich., 1914.
430	the grade. 1 mi. W. of Engadine under railroad culvert.	lower bed. Massive		Same as above
431	1 mi. W. of Engadine on railroad.	Engadine dolomite	Rock specimens	L. D. & D. E. Frauen- felder, Supt. Iron & Chem. Co.
432	Point Aux Chenes gyp- sum quarries.	terbedded gypsum and siliceous and ar- gillaceous matter		*C. Rominger
433	Bed of Carp River, 1 mi. from mouth.	the Monroe-Salina group.		*C. Rominger
484	St. Martins Is- land, Lake Huron.	Variegated marl from gypsum bearing por- tion of the Monroe- Salina group.		*C. Rominger
435	Mackinac I s- land, "Blan- chart's farm"	Fossiliferous dolomitic limestone, upper part of Monroe formation.		*C. Rominger
436	East side of Mackinac Is- land, near water level.			*C. Rominger

^{*}Vol. I, Pt. III, p. 78, Mich. Geol. Surv.

COUNTY .-- Con.

00011.—0m.							
Silica. SiO1.	Iron. Fe ₂ O ₃ . Alumina. Al ₃ O ₃ .	Calcium carbonate. CaCO ₃ .	Calcium oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Remarks.	
0.77	†0.53	96.89	54 .30	8.41	1.63	Same as above.	
1.20	†0.24	96.82	53.70	3.64	1.74	Analyses furnished by Guy D. Welton, Hunt Spur, Mich.	
0.26	0.11	54.02	30.28	42.83	20.49	Analysis furnished by F. W. Hough, owner of quarry.	
0.56 0.40	1.65 0.77 0.23		30.09 30.67	42.68 43.89	20.41 20.99	Same as above.	
0.87	†0.32	56.35	31.58	44.85	21.44	Samples collected by Mich. Geol. Surv., 1913.	
1.03	†0.28	54.38	30.48	48.88	22.32	Samples collected by Mich. Geol. Surv., 1913.	
0.70	0.55	54.81	30.71	43.71	20.91	Average of 2 analyses furnished by G. J. Nicholson, White Marble	
‡30.0 0	10.00	46.00	28.78	14.00	6.69	Lime Co., Manistique. Silicio-argillaceous matter, residue.	
2.00	1.00	53.00	29.70	44.00	21.04	Residue of crystals of sulphate of baryta and bituminous substances.	
80.00	7.00	41.00	22.97	22.00	10.50	Residue chiefly siliceous sand.	
8.00	2.00	68.00	38.10	22.00	10.52	Residue silicio-argillaceous matter.	
	•••••	55.00	30.82	44.00	19.61	Residue of iron, alumina and bituminous matter.	

[†]R₂O₅—iron, alumins, etc. ;Insoluble in HCl. Nors: Figures in italics calculated from original analyses.

Analyses of Michigan MARQUETTE

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
437	Near junction of east and west bran- ches of Es- canaba river.	Sandy dolomite	Hand specimens, probably.	*C. Rominger
438	. Same as above.	Brecciated dolomites, lowest exposed beds.	Same as above	*C. Rominger
439	Bed of E. branch of Escanaba River above junc. with West branch.	Sandy dolomite with Lingula antique boulder from bed be- low the brecciated dolomites.	Same as above	*C. Rominger
441	Sec. 16, T. 42 N., R. 24 W., on Escanaba River.	Light colored brittle limestone with con-		*C. Rominger
442	Foot of Grand Rapids, Me- n o m i n e e R i v e r, Me- nominee.	Fine grained thin bedded crystalline sandy dolomite with shale partings. Highest exposed		*C. Rominger
443	Grand Rapids, Me- nominee	Variegated dolomite banded or mottled with red. Bed 3 ft. thick.		*C. Rominger
444	Head of Grand Rapids, Me- nominee River.	Hard dolomite and oolite beds. Thickness 4 ft.		*C. Rominger

^{*}Vol. I, Pt. III, p. 78, Mich. Geol. Surv.

MENOMINEE

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
445	Robt. Rick quarry, Me- nominee, NE 1 sec. 14, T. 32 N., R. 26 W.	and crystalline with thin limestones of clayey matter; 4 ft.	Composite sample of two hand specimens.	L. C. Nodell & C. K. Wirth, Lab. Univ. of Mich., 1914.
446	Menominee, Menominee Co.	Bed uncertain but probably upper Trenton strata; "Menominee Marble."	,	N. H. Winchell

COUNTY.

Silica. SiOt.	Iron. Fe ₂ O ₂ . Alumina. Al ₂ O ₂ .	Calctum carbonate. CaCO ₃ .	Calcium oxide. CaO.	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Remarks.
†15.00	0.80	47.00	26.34	37.00	17.70	Residue of quartz sand.
†15.00 †14.00	2.50 2.00	49.00 50.00			1	Residue siliceous. Residue of quartz sand.
†4.60	1.00	90.00	50.43	3.00	1.44	Insoluble residue, siliceous.
†18.00	2.00	45.00	25.22	35.00	16.74	Insoluble residue, siliceous.
†23.00	1.00	42.00	23.54	53.60	25.64	Insoluble residue of siliceous sand with dark bituminous sediment.
†2.00	1.00	54.00	3 0 . 2 6	42.00	2 0.09	Insoluble residue, siliceous.

†Insoluble in HCl.

COUNTY.

Silica. SiO1.	Iron. FerOs. Alumina.	Calcium carbonate. CaCO ₂ .	Calctum oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Remarks.
3.59	‡2.72	52.05	29.16	41.99	20.09	Samples collected by Mich. Geol. Surv.
‡0. 4 72	0.365	54.621	30.61	43.932	20.01	Analysis from N. H. Winchell's field notes, 1869-70.

‡R₂O₃=iron, alumina, etc. Note: Figures in italics calculated from original analyses.

Analyses of Michigan MONROE

				
Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
447	Shore Line Stone Co., quarry, Claim 64, 2 mi. N. of Monroe, for- merly Mon- roe Stone Co.	Dark drab dolomite 2 ft. from top of quarry.		K. J. Sundstrum
448	Same as above.	Dark drab dolomite 7 ft. from top of		K. J. Sundstrum
449	Same as above.	quarry. Dark drab dolomite 10 ft. from top of quarry.		K. J. Sundstrum
450	The France Stone Co., Monroe.	Dark gray dolomites of the middle portion of the quarry face.	Average of 5 analyses.	*W. H. Sherzer
451	Woolmith quarry, NE;, SE; sec. 21, T. 5 S., R. 8 E.	Dolomite, top 4 ft. of quarry beds.		†Prof. McDermott
452	Same as above.	Dark brown porous petroliferous dolo- mite with black blotches; 3 ft. thick and directly above the Sylvania sand- stone.		†Prof. McDermott
4 53	Grape quarries, N. bank of Raisin river, Claim 516, T. 6 S., R. 7 E., Monroe.	Buff gray compact dolomite with no- dules and masses of chert. Thickness 12 ft.		J. D. Pennock of Solvay Process Co., Detroit.
454	Lulu quarry, NW 1 NW 1 sec. 16, T. 7 S., R. 7 E.	Compact gray dolo- mites more or less streaked and mot- tled with blue like castile soap. Thick- ness 8-9 ft. Lower part of quarry.		**C. Rominger
455	Same as above.	Dolomitic sandstone, lower 3 ft. of quarry beds.		**C. Rominger
456	Drill core NE ₁ SW ₁ sec. 8, T. 5 S., R. 9 E.	Dolomite		S. T. Crapo, Gen. Mgr. Pere Marquette R. R.
4 57	1½ mi. W. of Ida, cen. sec. 4, T. 7 S., R. 7 E.	Light gray "gashed" or acicular dolomite.		**C. Rominger
458	Christiancy quarry near mouth of Macon river, SW. cor sec. 5, T. 6 S., R. 6 E.			
459	Same as above.	Bed B, brownish lime- stone 4 to 4 ft. 6 in. thick.		
460	Same as above.	Bed C, soft dark gray limestone 7 to 8 ft. thick.		G. A. Kirschmeier
461	Same as above.			
462 463	Same as above. Same as above.	Bed A, as above		K. J. Sundstrum K. J. Sundstrum

^{*}Pub. 2, Geol. Ser. 1, The Monroe Formation, Mich. Geol. and Biol. Surv., 1909, p. 37. †W. H. Sherzer, Geol. Rept. on Monroe Co., Mich. Geol. Surv., Vol. VII, Pt. I, 1900, pp. 82, 83, 92, 95.

limestones by counties.

COUNTY.

8. SiOs.	. Fe ₃ O ₃ .	lumins. AlsOs.	Calcium carbonate. CaCOs.	ium ide. \$0.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Remarks.
Silica.	Iron.	Ala	Calc Selection	Calcium oxide. CaO.	Mag M	Mag OX M	
2.00	0	.70	54.54	30.56	42.75	20.45	·
0.74	0	.98	54.47	30.52	43.59	20.85	
1.33	0	. 58	54.94	30.79	42.84	20.49	
3.08	to	6.08	∫ 50.92 to	}	41.39 to		
6.19	. 0	. 45	53.50 50.12	28.08	44.77 43.53	20.82	
3.05	0	.31	5 2 .72	29.54	44.59	21.33	
3.45	0	.20	51.69	28.96	4 5.01	21.53	
‡ 4 .00		•••••	54.00	30.26	42.00	20.09	
‡ 54 .00			46.00	25.78		. ,	The calcium carbonate is undoubt- edly in part magnesium carbonate.
‡2. 32	0	. 48	55.03	30.84	42.17	20.17	Residue chiefly sılica with some other insoluble matter.
			59.00	33.06	39.00	18.65	Insoluble residue not weighed.
0.48	0	. 16	90.80	50.88	6.87	3.28	
1.10	0	.12	86.80	48.64	11.60	5.81	
2.78	0	.56	77.60	43.49	17.41	8.32	
0.81	0	. 41	95.00	53.24	3.86	1.84	
1.86 0.70		. 62	86.96 98.10	48.73 54.97	10.08 0.63	4.82 .30	

^{**}Rominger, Mich. Geol. Surv., Vol. III, Pt. I, 1873, pp. 28, 29, 31. ††Residue insol. in HCl.
Note: Figures in italics calculated from original analyses.

Analyses of Michigan PRESQUE ISLE

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
464	Secs. 22, 23, 24, 25, 26, T. 35 N., R. 5 E., Rogers and Calcite.	Dundee limestone, up- per 50 ft.	Drill cores	Mich. Limestone & Chemical Co.
465	Calcite quarry, Michigan Limestone & Chem. Co.	Quarry product as		C. D. Bradley, July 20, 1915.
466	Rogers, Pres- que Isle Co.	Dundee limestone	Composite of 27 hand specimens from surface.	*Arthur Uddenburg
467	Calcite quarry, Mich. Lime- stone & Chem. Co.	1		G. F. Harris, Mich. Limestone & Chem. Co.
468 469	Rogers to 667, see text.	Dundee limestone		J. G. Dean
668	At lake level near old brewery, Cal- cite quarry, Mich. Lime- stone & Chem. Co.	Top of Monroe (?) for- mation just at water level.	Hand specimens	Geo. F. Harris, Mch. Limestone & Chem. Co.
669	Gorge on E. branch Rainy River, SE; sec. 26, T. 35	fossiliferous l i m e-	1 :	R. C. Banks, Lab Univ. of Mich., 1915
67 0	Falls of Ocqueoc River, SWiSEisec. 22, T. 35 N., R. 3 E.	tuminous limestone		Same as above

^{*}Ann. Rept. 1904, Mich. Geol. Surv., p. 124.

SCHOOLCRAFT

Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
671	quarry,		Anhydrous lime	White Marble Lime Co.
672	White Mar- ble Lime Co.		Rock sample	Lake Superior Iron &
0.2	Same as as 5000.	strata?	20002 00	Chemical Co.
673	Same as above.	Lowest bed quarried. Light buff very crystalline and fossiliferous dolomite with drusy cavities; 8 ft.	-	U. S. Geol. Surv., 1909
674	Same as above.	thick. Same as above	Rock sample	L. C. Nodell & C. K. Wirth, Lab. Univ. of Mich., 1914.

limestones by counties.

COUNTY.

Silica. SiOr.	Iron. Fe ₅ O ₃ . Alumina. Also.	Calcium carbonate. CaCO ₂ .	Calcfum oxide. CaO.	Magnesium carbonate. MgCOs.	Magnesium oxide. MgO.	Remarks.
0.34		97.85	54.84	1.26	.60	Average of 235 analyses of drill cores from an area of about 2 sq. miles.
0.51	0.38	97.38	54.52	1.81	0.81	Analyses furnished by C. D. Bradley, Gen. Mgr. Mich. Limestone & Chem. Co.
	• • • • • • • • • • • • • • • • • • • •	97.83	54.85	1.29	.62	Data furnished by F. D. Larke, Rogers, Mich.
0.50	0.40	97.54	54.62	1.55	.75	Analysis furnished by Mich. Lime- stone & Chem. Co.
0.62	0.20	98.34	55.11	0.45	.21	
0.30	0.30	91.38	51.17	8.01	3.83	Samples collected by G. F. Harris, Sept. 14, 1914.
2.84	1.65	92.97	52 .10	2.27	1.08	
0.33	1.44	63.52	\$5.60	34.74	16.62	

COUNTY.

Siltes. SiOs.	Iron. Fe ₂ O ₃ . Alumina. Al-O ₃ .	Calcium carbonate. CaCOs.	Calcium oxide. CaO.	Magnesium carbonate. MgCO ₂ .	Magnesium oxide. MgO.	. Remarks.
1.14	0.54	57.00	31.94	39.87	19.07	Analysis furnished by Geo. J. Nicholson, Jr., White Marble Lime Co.
2.10	0.40	64.72	36.27	33.75	16.14	
1.92	0.30 0.0	3 54.04	30.29	43.81	20.96	
0.93	0.51	54.85	30.73	45.45	21.74	Sample collected by Mich. Geol. Survey, 1913.

Note: Figures in italics calculated from original analyses.

Analyses of Michigan SCHOOLCRAFT

			· - ·	
Analysis No.	Location of quarry or deposit.	Name, thickness, and character of bed.	Kind of sample.	Analyst or authority.
675	Marblehead quarry, secs. 35 and 36, T. 42 N., R. 15 W., White Marble Lime Co.	Massive yellowish white to bluish gray mottled crystalline dolomite much like the Engadine dolomite; 8 ft. thick.	Rock sample	U. S. Geol. Surv., 1909
676	Same as above.	Same as above	Rock sample	White Marble Lime Co., Manistique.
677 678 679	Same as above. Same as above. Same as above.	Same as above Same as above	Rock sample Rock sample Rock sample	Same as above Same as above L. C. Nodell & C. K. Wirth, Lab. Univ. of Mich., 1914. Same as above
680	Blaney quarry 2 mi. N. of Blaney Jc., sec. 3, T. 42 N., R. 13 W., White Mar-	Fiborn limestone, gray to buff lithographic limestone with dis- seminated calcite crystals, 26 ft. thick.	Composite sample of 5 rock specimens.	Same as above
681	ble Lime Co. Same as above.	Fiborn limestone, gray to buff lithographic limestone with small disseminated calcite crystals. Upper 10 ft., five different beds.	Rock specimens	Lake Superior Iron & Chemical Co., ‡ 1906
682 683 684 685 686	Same as above. Same as above. Same as above. Same as above. Same as above.	Same as above Same as above Same as above Fiborn limestone. up-	Rock specimens Rock specimens Rock specimens Rock specimens Rock specimens	Same as above Same as above Same as above U. S. Geol. Surv., 1900.; D. E. Frauenfelder,
687	Same as above.	per 10 feet. Fiborn limestone, first 8 ft.	Anhydrous lime	D. E. Frauenfelder, Lake Superior Lime & Chem. Co., 1910.
688	Same as above.	Fiborn limestone, second 10 ft. from top of quarry.	Anhydrous lime	Same as above
689	Same as above.	Floor of quarry. White coarsely crystalline dolomite, 3 ft. thick, not quarried.	Rock specimens	L. C. Nodell & C. K. Wirth, Lab. Univ. of Mich., 1914.
690	Ridge 2 mi. N W. Hunt Spur SW 1 SW 1 sec 1, T. 42 N., R. 13 W. Guy D. Welt on property.	Fiborn limestone gray to buff lithographic limestone with dis- seminated calcite crystals, 5 ft. ter- race.	Rock specimens	Same as above
691	Same as above.	Fiborn limestone	Rock specimens	L. D. Frauenfelder Lake Superior Iron & Chemical Co.
692	Cave 2 mi. NW of Hunt Spur	Fiborn limestone gray to buff lithographic limestone with dis- seminated calcite crystals, 12—ft.		Union Carbide Co
693	Same as above.	Fiborn limestone	Rock specimens	L. D. Frauenfelder, Lake Superior Iron & Chemical Co.
694	Ridge 2 mi. NW of Hunt Spur	Fiborn limestone	Rock specimens	Same as above
695	Road cut 5 mi. N. of White-dale, 40 rods W. of SE. cor. sec. 2, T. 42. N., R. 14 W.	Fiborn (*) limestone. Gray to buff litho- graphic limestone, 1 ft. exposure.	Weathered rock speci- mens.	L. C. Nodell & C. K. Wirth, Lab. Univ. of Mich., 1914.

limestones by counties.

COUNTY .- Con.

			1 1	· · · · ·	1 -	1]	
SiO ₃ .	Fe ₃ O ₃	gi .	Calctum carbonate. CaCOs.	g	Magnesium carbonate. MgCO ₃ .	fagnesium oxide. MgO.	Remarks.
Silica.	Iron.	lumina. AlgO3.	lctur CaC	Calcium oxide. CaO.	agne carb MgC	agne oxide MgC	
	Ĕ I	<u> </u>	రో	<u>చ</u> ో	X	X	
0.56	0.20	0.06	55.00	30.82	44.31	21.19	
†0.05	0.16	3	57.28	32.10	39.86	19.07	Analysis furnished by Geo. J. Nicholson, Jr., White Marble
1.80 1.50	0.90 0.40		52.40 55.24	29.37 30.96	44.65 41.02	21.36 19.62) Line Co., Manistique.
1.83	*0.84		54.76	30.69	1		Stone solid blue in color. Samples collected by Mich. Geol.
0.77	*0.91	L	95.87	53.73	3.76	1.80	Surv., 1913. Same as above.
0.60	0.61	Į.	95.98	53.79	2.70	1.29	
1.40	trac	e	97.50	54.64	1.00	. 48	
0.25	0.36 0.26 0.28	3	97.93 94.73 93.00 94.38	54.88 53.09	0.38 3.82	1.83	
0.56 1.30 1.23	0.50	0.19	94.38	52.12 52.89	3.74	2.46 1.79	
1.50	0.94	ŀ		94.92		1.70	This and the following analysis fur- nished by Geo. J. Nicholson, Jr., White Marble Lime Co.
1.60	1.16	3	 .	92.16		1.91	Same as above.
0.72	*0.50)	59.58	33.39	41.66	19.93	Samples collected by Mich. Geol. Surv., 1913.
					İ		
1.66	*0.29	•	97.28	51.90	1.61	0.77	Analysis furnished by Guy D. Wel- ton, Hunt Spur, Mich.
0.86	0.70	,	97.92	54.87	1.36	.65	Analysis furnished by Gao I Nich-
0.00	0.10	,	31.52	04.07	1.00	.00	olson, Jr., White Marble Lime Co., Manistique.
1.64	*0.37	7	97.07	51.90	1.88	0.90	Analysis furnished by Guy D. Welton, Hunt Spur, Mich.
1.28	0.66	3	95.26	53.3 8	22.55	1.22	olson. White Marble Lime Co.,
0.40	0.26	3	97.92	54.87	1.12	. 53	Manistique. Same as above.
0.67	*0.40)	89.76	55.35	2.59	1.24	Samples collected by Mich. Geol. Surv., 1913.

^{*}R₇O₃==iron, alumina, etc. †Insoluble in HCl. Norz: Figures in italics calculated from original analyses.

Analyses of Michigan SCHOOLCRAFT

Analysis No.	Location of quarry or deposit.	Name, thickness and character of bed.	Kind of sample.	Analyst or authority.
696	Quarry 5 m N, 2 mi. E. of Whitedale, sec. 6, T. 42 N., R. 12 W.	stone, 6 to 8 ft. thick	Rock specimens	Same as above
697	Same as above.	White crystalline laminated limestone, lowest bed quarried, 2 - ft. thick.	Rock specimens	Same as above
698	Cooks, near cen sec. 20, T. 41 N., R. 17 W.	Yellowish to bluish	Hand specimens	Same as above
699	11 mi. N. Cooks SW cor. sec. 17, T. 41 N., R. 17 W.	White very crystalline dolomite. Low ledge	Hand specimens	Same as above
700	Bluff 60 ft. high W 1 cor. sec. 9, T. 42 N., R. 14 W.	dolomite 12 ft. thick	Hand specimens	Same as above
701	Same as above.	Thin bedded light gray crystalline dolomite 20 ft. from top of bluff.	Hand specimens	Same as above
702	Same as above.		Hand specimens	Same as above

limestones by counties.

COUNTY .- Con.

Silica. SiO.	Iron. Fe ₅ O ₅ . Alumina. Al ₅ O ₅ .	Calcium carbonate. CaCO ₃ .	Calctum oxide. CaO.	Magnesium carbonate. MgCO ₃ .	Magnesium oxide. MgO.	Remarks.
1.45	*0.81	73.08	40.96	26.21	12.54	Same as above.
1.74	0.54	89.87	50.37	5.23	2.50	Same as above.
0.66	*0.21	54.44	30.51	45.63	21.83	Samples collected by R. A. Smith, Mich. Geol. Surv., 1913.
2.3 4	*0.41	54.15	30.35	45.74	21.88	Same as above.
0.45	0.62	58,35	32.70	44.11	21.10	Same as above.
1.54	1.33	54.05	30.29	45.10	20.62	Same as above.
1.13	1.31	54.79	30.71	45.61	21.82	Same as above.

*R₇O:=alumina, iron, etc.
Note: Figures in italics calculated from original analyses.

Analyses of Michigan

WAYNE

Analysis No.	Location of quarry or deposit.	Name, thickness and character of bed.	Analyst or authority.
703	Gibraltar quarry, NW; SE; sec. 35. T. 4 S., R. 10 E.	Dolomite. Top 2 ft	G. F. Ranson
704 705 706	Same as above. Same as above. Same as above.		Geo. F. Ranson Geo. F. Ranson Geo. F. Ranson
707	Sibley quarry, Solvay Pro- cess Co.		K. J. Sundstrum, Sib- ley Quarry Co.
708 709 710	Same as above. Same as above. Same as above.	2. 7-ft. Thin bedded, gray to bluish 3. 2-ft. Compact, gray, rich in fossils 4. 5-ft. Compact, crystalline, blue where fresh.	Same as above Same as above Same as above
711	Same as above.	5. 6-ft. Compact, gray to blue, fossil fragments abundant. 6. 14-in. "Flint." Bluish gray chert, some fossils.	Same as above
712	Same as above.	7. 6-ft. Gray to bluish, more heavily bedded.	Same as above
713	Same as above.	8. 2-ft. "Fint." Very brittle impure	Same as above
714	Same as above.	chert, some fossils. 9. 9-ft. Compact, heavily bedded, blue to gray. Locally contains over 98 per cent CaCO ₃ .	Same as above
715	Same as above.		Same as above
716	Same as above.	 8-ft. Gray, thin bedded, fossiliferous. 12. 12-ft. "Lower Magnesian." Light to dark gray, fossiliferous. 7-ft. "Siliceous." Thin bedded, firm, 	Same as above
717	Sibley quarry, Solvay Pro- cess Co.		Same as above
718 719 720 721 722 723 724	Same as above. Same as above. Same as above. Same as above. Same as above. Same as above. Same as above.	7. As above. "Kiln bed"	Same as above

limestones by counties.

COUNTY.

Silica. SiOs.	Iron. Fe ₂ O ₃ . Alumina. Al ₂ O ₃ .	Calcium carbonate. CaCO ₂ . Calcium oxide. CaO.	Magnesium carbonate. MgCO ₃ . Magnesium oxide. MgO.	Remarks.
*0.56	0.44	54.72 30.66	44.18 21.13	
*4.07 0.80 0.76	0.85 0.54 0.56	52.88 29.62 56.68 31.76 56.00 31.38	40.00 19.13	Insoluble residue. Crystals of celestite (SrSO ₄) very noticeable in all but top beds.
1.82	0.34	91.75 51.42	2.52 1.20) .
1.92 1.04 1.08	0.28 trace trace	92.00 51.56 94.50 52.96 93.50 52.40	3.36 1.60	
2.24	0.58	87.00 48.75	9.45 4.52	
2.56	0.20	85.75 48.05	10.29 4.92	Beds in Sibley quarry from top down.
30.87	3.45	53.50 29.98	12.18 5.82	
0.64	1.12	93.50 52.40	2.73 1.30	
3.74	0.74	74.00 41.47	20.58 9.84	
1.62	0.16	87.00 48.75	9.66 4.62	
0.91	1.86	94.00 52.68	2.10 1.00	-
2.96 1.08 1.06 2.00 2.88 2.29	traces 2.90 2.85 2.50 2.71 6.60	92.60 51.89 94.40 52.90 91.15 51.08 89.70 50.27 86.79 48.64 80.36 45.03 81.95 45.92	2.18 1.04 4.87 2.32 4.80 2.29 6.80 3.25 14.05 6.72	Dried sample.

^{*}Insoluble in HCl.

Coal mining began in Michigan as early as 1835 but no records of production were kept until 1860, when Michigan was credited with an output of 2,320 tons. Ten years later the production reached 28,150 tons. In 1880, it was 100,800 tons and for the two following years it exceeded the 100,000 ton mark. A sharp decline began in 1883 and in 1884 the production fell to only 36,712 tons and it was not until 1895 that the production again exceeded 100,000 tons. In 1897 the Saginaw and Bay county coal fields were opened and the production reached 223,592 tons. After this the industry grew rapidly, the production in 1901 being 1,241,241 tons. The maximum production of 2,035,858 tons was attained in 1907. Since that year the production has gradually fallen until in 1915 it was only 1,069,672 tons.

Most of the coal is produced in Bay and Saginaw counties, these two counties in 1915 producing respectively 503,002 and 511,184 tons or together 94.5 per cent of the total output of the state. The decrease is chiefly due to competition from higher grade and more cheaply mined coals from Ohio, Pennsylvania and West Virginia. The average cost of mining coal in Michigan, (see table) from 1910 to 1914 inclusive ranged from \$1.89 to \$1.99 per ton. The cost in Ohio averages less than \$1.00 per ton. The Michigan operator is protected by differential freight rates varying from \$.75 to \$1.40 per ton for coals from Ohio and about \$.25 additional for coals from West Virginia. The lower cost of mining, however, enables the Ohio and West Virginia operators to deliver coal at most points in the southern part of the Southern Peninsula at prices ruinous to the Michigan operators. In addition the Ohio coals are of higher average quality.

The markets of the Michigan operators are largely restricted to the central and northern portions of the state. Prior to 1903, less than 10 per cent of the coal was mined by coal cutting machines. Five years later, the percentage had increased to 29.2 per cent, in 1910 to 45.5 per cent, in 1914 and 1915 to 77.8 per cent and 76.1 per cent respectively.

Up to 1904, the coal cutting machines were chiefly of the pick or puncher type. The chain breast machines were then introduced but this type was not so widely used as the pick or puncher type for it is

^{*}For a more complete report of the coal industry in Michigan see Publication 19 (Geol. Ser. 16), Mineral Resources of Michigan for 1914.

not well adapted to the thin coal seams and the weak roofs which obtain in Michigan. The so-called short wall machine was introduced in 1910 with such success that it threatens to displace all other types.

The problem of the Michigan operators is to reduce mining costs. In 1915 the average cost per ton of coal mined was \$1.77, or \$.22 less than in 1914. This decrease is said to be due largely to the introduction of more efficient types of the short wall coal cutting machines.

915.
61
9
8
Ξ.
Z
Ξ
5
Ξ
IN MICHIG
4
7
VO
ಶ
Œ,
0
E
ដ
AND VALUE OF COAL
Ξ
Ħ
7
rħ
ž
5
Σ
Ē
COST OF MININ
$\mathbf{s}_{\mathbf{T}}$
õ
٠.
Z
2
PRODUCTION
3
ā
2
PH

Profit made per ton.	\$0.096 .007 .287 .400	. 117 . 274 . 134 . 143	. 103 . 004
estate price price per per per per per per per per per pe	\$1.483 1.412 1.714 1.979 1.806	1.705 1.803 1.708 1.811 1.793	1.909 1.891 1.989 1.993 1.99
***Total value of coal mined.	\$1,259,683 1,753,064 1,653,192 2,707,527 2,424,935	2,512,697 2,427,404 3,680,833 3,322,904 3,199,351	2,930,771 2,791,461 2,399,451 2,455,227 2,559,786
Average cost per ton. ***Total tone of coal mined. ***Total value of coal mined.	849,475 1,241,241 964,718 1,367,619 1,342,840	1, 473, 211 1, 346, 338 2, 035, 858 1, 835, 019 1, 784, 692	1, 534, 967 1, 476, 074 1, 201, 230 1, 231, 786 1, 283, 030
Average cost per ton.	\$1.387 1.419 1.427 1.579 1.609	1.588 1.529 1.655 1.677 1.650	1.796 1.887 1.869 1.977 1.99
Total cost of coal	\$1,209,228 1,442,415 1,284,342 2,529,027 2,266,098	2, 244, 434 2, 090, 489 3, 162, 837 3, 089, 759 2, 865, 083	2, 626, 342 2, 623, 244 2, 170, 076 2, 250, 559 1, 929, 386
Average number employees per month. **Average dally wage. Total tons of coal mined.	871,388 1,016,496 899,967 1,601,984 1,408,375	1,413,307 1,367,385 1,911,201 1,842,778 1,736,573	1, 462, 276 1, 389, 585 1, 160, 768 1, 138, 163 1, 153, 869 1, 069, 798
**Average dally wage.	23 23 24 24 24 25 10	22222 24222 24222	3 07 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Average number employees per month.	1.676 1.847 1.616 3.014 2.733	2,776 2,106 2,897 3,115 2,907	2,471 2,539 1,886 2,076 2,146 1,942
*Number active mines.	334 334 334 334 334	38 338	428428
YEAR.	1900 1901 1902 1903 1904	1905 1907 1907 1908	1910 1911 1912 1913 1914

*Compiled and adapted from reports of State Coal Mine Inspector, Ann. Repts. State Department of Labor. **For year beginning Dec. 1 and ending Nov. 30. ***From Mineral Resources of United States, U. S. G. S.

MINERAL RESOURCES OF MICHIGAN.

PRODUCTION OF COAL BY COUNTIES, 1899-1915.

	Bay.	Eaton.	Ingham.	Jackson.	Saginaw.	Shia- wassee.	Tuscola.	Other counties.
	Tons.	Tons.	Tons.	Tons.	Tons.	Tons.	Tons.	Tons.
* 1915	503,002	а	2	2	511.184	2		55.612
*1914 .	540.319	82	1.376	1.257	545,165	903	†45.195	
*1913	579.123	155	2.953	457	521.848	2.170	31.480	453
*1912	607.740	374	3.874		459,198	4.532	59.252	
1911	766,470	100			667.282	13.000	66.427	19.000
1910	766,470	100			667,282			101,215
1909	822,577	558		1,500	859,434			100,623
1908	782,503	2.256		5.539	999.338			45,353
1907	962 574	5.982		5,645	1.047.927			13,730
1906	481 398	18.507		8,658	835,475			2,300
1905	544,154	4.058		9.196	915,803			
1904	410.634	9.057		16.860	906.289			
1903	325,021	7.393		23.307	1,011,898			
1902 '	248,645	8,800		23,889	670.304			13,400
1901	253,821	4.803		20,288	938.042			24,284
1900	190,814	4.530			601,112			
1899 i	104.588	3.421			455,607			39.492

^{*}Compiled from Annual Report of State Department of Lahor. †Incomplete returns, tonnage approximate.
(a) Included in other counties.

PRODUCTION OF COAL IN MICHIGAN, 1860-1915, INEHORT TONS.

Quantity. Tons.	1,342 840 1,473 211 1,346,338 2,035,858 1,835,019 1,534,692 1,534,692 1,456,074 1,464,973 1,188,639 1,283,030 1,069,798
Year.	1904 1905 1906 1906 1908 1910 1911 1912 1914 *1915
Quantity. Tons.	45,979 70,022 112,322 92,882 223,592 223,592 624,708 1,846,476 1,841,241 1,367,619
Year.	1893 1894 1895 1896 1897 1899 1900 1900 1900
Quantity. Tons.	135, 339 71, 296 71, 296 60, 434 60, 434 71, 461 81, 407 74, 977 77, 990
Year.	1882 1884 1884 1885 1886 1889 1890 1890 1890
Quantity. Tons.	33, 000 33, 600 56, 000 66, 500 66, 100 66, 100 68, 100 68, 100 110, 800 110, 800 110, 800
Year.	1871 1872 1873 1874 1875 1877 1879 1879 1879
Quantity. Tons.	28.55.55.55.55.55.55.55.55.55.55.55.55.55
Year.	1860 1862 1862 1863 1864 1865 1866 1866 1869 1870

*Report of State Coal Mine Inspector, State Department of Labor.

PRODUCTION OF COAL, COST OF MINING, ETC., IN MICHIGAN BY COUNTIES AND MONTHS FOR 1915.

January.

Total cost of out- put.	\$100,167 01 74,865 64	11,780 94	\$186,713 59	
Атегаgе сояt рег ton.	\$1 98 1 85	1 92	\$1 92	
Total number of tons of coal mined.	50,411	6,010	96,844	
Number of tons of machine coal mined.	35,040 25,029	4,463	64,532	
Number of tons of picked coal mined,	15,371 15,394	1,547	32,312	
Number of kegs	991	157	1,908	
Number of mines using powder.	∞∞	1	15	
Aggregate amount paid in wages.	\$73,019 16 54,085 66	14,300 80	\$141,405 62	February.
Average daily wages.	\$3 81 3 40	3 22	\$3 58	
Average number of days worked per month.	19.2 17.0	22.2	18.5	
Average number of hours worked per day.	7.8	8.0	7.9	
Number of em-	997	200	2,131	
Number of active mines.	ဇာတ	9	20	
County.	Bay. Saginaw. Calhoun.	Eaton Genesee Ingham Jackson Tuscola	Total	

\$73,650 53 62,386 32	10,321 46	\$146,358 31
\$2 03 1 75	1 98	
1		=
36,217 35,539	5,223	76,979 \$1 90
27,052 22,860	3,790	53,702
9,165	126 1,433 3,790	23,277
. 763 576	126	1,465
72	1	13
\$53,747 94 47,115 53	15,527 28	7.9 17.3 \$3.43 \$116,390 75 13 1,465 23,277 53,702
\$3 3 24 3 24	3 24	\$ 3 43
16.3	23.3	17.3
7.9	8.0	7.9
893 858	205	17 1,956
201-	τĊ	
Bay. Saginaw. Calhoun.	Eaton	Total

'Adapted from the Report of the State Coal Mine Inspector, Ann. Rept. State Department of Labor for 1915.

						March.								
BayCalhoin	7	1,014	7.7	17.7	\$3 67 3 17	\$55,423 50 51,858 93	7	581 659	7,295	33,703 24,728	40,998 36,874	\$1 87 1 93	\$76,717 73 71,388 59	
Genesee Ingham. Tuscola	4	194	8.0	21.6	3 24	13,571 40	H	101	854	3,587	4,441	1 98	8,821 25	
Total	16	2,059	7.9	17.3	\$ 3 39	\$120,853 83	13	1,344	20,295	62,018	82,313	\$1 81	\$156,927 57	
						April.								
Bay. Saginaw	rů rů	690 764	8.7	18.1	\$3 71 3 26	\$46,351 10 37,170 31	410	620 489	5,512 8,484	29,124 18,320	34,636	\$1 77 1 87	\$61,447 64 50,134 27	
Genesse Ingham Tuscola	က	186	8.0	19.5	3 23	11,755 58	-	83	888	1,970	2,658	1 93	5,147 86	
Total	13	1,640	7.9	16.8	\$3 45	\$95,276 99	10	1,191	14,684	49,414	64,098	\$1 82	\$116,729 77	
						May.	-							
Bay. Saginaw	12:00	729 845	7.9	14.9	\$3 79 3 33	\$41,248 46 43,361 91	49	466 590	7,529 5,662	23,538 26,311	31.067 31,973	\$1 84 1 85	\$57,366 46 57,404 79	
Genesee Ingham Tuscola	4	180	8.0	21.6	3 23	12,554 50	-	36	883	1,199	2,082	1 86	3,878 17	
Total	15	1,754	7.9	15.8	\$3 50	\$97,164.87	=	1,092	14,074	51,048	65,122	\$1 85	\$120,649 42	

PRODUCTION OF COAL, COST OF MINING, ETC., IN MICHIGAN BY COUNTIES AND MONTHS FOR 1915.—Continued.

June.

46 75 8 25 67 55 53 \$60,887 62,868 022 \$131,778 8,126 \$131,910 494 'and Total cost of out-. 88. 37 86 5 73 35 8 ·uo1 Average cost per ¥ 25-₹ 44,140 ,214 4,294 93,739 4.384 566 266 tons of coal mined. 328 69 Total number of 980 683 916 372 993 mined. 4 Number of tons of machine coal 38, ď 3.8 43, 92 17,698 ,842 64x 803 1,611 1,391 Number of tons of picked cost r-`∞ 25, 5,7 125 1,190 553 512 1,103 395 610 8 Number of kegs used. Number of mines using powder. 4 0 4.0 Ξ Ξ 202 38 82 July. 80 14 8 \$40,072 44,930 14,995 657 15,981 804 \$99,997 Aggregate amount paid in wages. \$102, 50,5 45 88 72 37 31 2 wages. **2** 00 daily Average က က 8 က္ကလ 83 9 6 'n Average number of days worked 120 8 17 12 18 17 **∞** Φ 8.0 66 7.9 œ 0 Average number of hours worked per day. œ 1-1-~~ 801 878 215 ,694 595 875 230 82. ployees. -me to redmin 4 9 5 4 9 S 12 15 mines. Number of active Bay Saginaw Calhoun Genesee Ingham Shiawassee Tuscola County, Total. Total.

	•
٠	2
2	9
Ċ	7
Q	Ψ
7	3
è	4

							_						
BaySaginaw.GeneseeShiawassee	ကတ လ	817 877 245	7.9 7.9 8.1	19.5 17.3 22.7	\$3 51 3 47 8 41	\$56,071 80 52,780 94 18,975 00	1	648 586 92	11,841 8,826 1,197	27,813 33,140 3,170	39,654 41,966 4,367	\$2 01 1 74 1 86	879,817 04 73,054 97 8,132 72
Total	14	1,939	8.0	18.9	\$ 3 4 8	\$127,827 74	12	1,326	21,864	64,123	85,987	\$1 87	\$161,004 73
						September	į.						
Bay	ರ. ಕ	856 891 246	7.9 7.8 8.0	19.5 21.3 21.2	\$3 50 3 31 3 51	\$58,423,44 62,737,38 17,826,30	1	733 757 85	10,858 8,721 1,413	29,605 40,820 3,980	40,463 49,541 5,393	\$1 96 1 61 1 92	\$79,376 09 80,045 55 10,369 50
Total	15	1,993	7.9	20.4	\$3 41	\$138,987 12	13	1,590	20,992	74,405	95,397	\$1.77	\$169,791 14
						October.	_						
Bay	ස අප	898 894 237	6.7 8.0	20.7 21.3 21.7	\$3 50 3 10 3 25	\$64,963 56 59,042 74 16,692 90	69 1	696 729 73	10,669 7,700 1,149	33,117 43,069 3,907	43,786 50,769 5,056	\$2 02 1 65 1 89	\$87,661 52 84,055 06 9,598 12
Total	14	2,029	8.0	21.1	\$3 28	\$140,699 20	12	1,498	19,518	80,093	99,611	\$1 82	\$181,314 70

PRODUCTION OF COAL, COST OF MINING, ETC., IN MICHIGAN BY COUNTIES AND MONTHS FOR 1015. -Compleid.

November.

Total cost of out-	\$100,198 70 01,075 35	10,474 00	8202,746 14		\$120,169 67 03,523 64	08 202 80	\$223,461.20	\$1,920,885 57
Average cost per ton.	 	1 80	2 X		81 1 50 1 50	1 58	. 22	8 1 76
Total number of last of coal mined.	51,671	5, 533	111,120	• •	64,893 58,814	6,167	129,374	1,060,798
Sumber of tons of machine coal mined.	41,004	4,207	92,062		48.621 52,336	4.662	103,619	814,429
Number of tons of picked coal mined.	10,667	1,326	19,058		6,478	1,505	25,755	255,369
Number of kegs used.	937 719	92	1,732		1.070	156	2,029	17,468
Number of mines using powder.	92	,	7		91-	83	7	
Aggregate amount paid in wages.	876,052 01 68,842 81	13,737 89	\$159,568 71	December.	\$92,431 83 73,800 89	19,350 70	\$185,583 42	11,526,560 36
Average dally wages.	\$3 73 3 45	2 85	\$3 51		83 62 3 44	3 24	\$3 48	\$3 4.5
Average number of days worked per month.	19.9	8.02	20.6		25.0	25.1	24.3	18.7
Average number of hours worked per day.	7.9	8.0	7.9		8.0	0.8	7.9	7.9
Number of em- ployees.	1.024	247	2,206	,	1,029	238	2,206	1,942
Number of active	40	ĸ	18		7.0	4	17	
County.	Bay Saginaw Eaton	Genesee Ingham Shiawassee Tuscola	Total		Bay. Saginaw Eaton.	Genesee Ingham Shiawassee Tuscola	Total	Grand total.

GROWTH OF LIMESTONE INDUSTRY.

The limestone industry in Michigan made a relatively rapid growth after 1899, but the period of most rapid growth was after 1904. In 1899 the total value of the product including lime was only \$281,769, while in 1915 the total value exclusive of lime, which amounted to \$349,979, was \$828,766. The total value of lime and limestone products in 1915 was 7.7 times that in 1899. The gain, exclusive of lime, in 1915 was \$370,805, or 25.4 per cent.

The chief increases were in stone for blast furnace flux, the manufacture of soda ash and allied products, and for concrete and railway ballast. The production of flux stone in 1910 was only 341,027 tons valued at \$186,046; in 1915 it was 2,254,984 tons valued at \$763,029. The increase for five years was 561 per cent in quantity and 310 per cent in value. The large increase in flux stone in 1915 was due to the general industrial prosperity and the development of large deposits of high grade limestone in the northern part of the state very suitable for blast furnace use. This stone is successfully invading the flux stone markets formerly dominated by limestone from other states.

The chief decreases were in crushed stone for roadmaking and stone for sugar manufacture.

Twenty-six quarries were in operation in 1915. Some quarries, chiefly small ones, were idle but the loss was compensated by the opening of new or the reopening of old quarries. The Great Lakes Stone & Lime Co. completed their crushing plant at Rockport and began active operation in 1915. Their stone is high calcium limestone, bituminous, and very fossiliferous. The Cheboygan Limestone Products Co. opened a quarry near Mackinac City in high calcium beds belonging to the Dundee limestone.

Owing to the purity and favorable situation of the limestone deposits near water, in which the more recent and larger quarries have been opened, it is very probable that the limestone industry in Michigan will continue to make a steady and rapid growth. With the return of more normal conditions in the iron industry, the season of 1915 proved to be the greatest in the history of the limestone industry in Michigan.

PRODUCTION AND VALUE OF LIMESTONE IN MICHIGAN, BY USES, 1899-1915.

stone.	naking.	Value.	\$31 605 \$6.265 \$6.265 \$6.342 \$6.38 \$6.38 \$6.317 \$6.316 \$6.	\$2,068,865
Crushed stone.	Road making.	Tons.	\$224 307 603 553 532 311 505 133 482 262	
i i	Kuprap.		\$1,111 \$799 \$799 \$700 \$1,405 \$1,504 \$1,504 \$1,504 \$1,504 \$1,504 \$3,615 \$	\$28,854
174.6	Kubbie. Value.		2,55,098 2,101 2,101 1,55,009 1,55,009 1,55,009 1,55,009 1,65,009 1,65,009 1,65,009 1,65,009 1,65,009 1,65,009 1,65,009	\$44,674
5	r lagging. Value.		\$386 200 5, 150 100	
1	Value.		\$488 250 160 75	
1	Value.		\$62,815 105,266 49,000 37,665 56,500 10,825	
Dressed	building. Value.		** ** \$805 (41 100 7 445	
Rough	building. Value.		\$30, 299 32, 362 32, 362 47, 785 36, 528 17, 276 1,	\$329,055
	Year.		1809 1901 1902 1902 1904 1906 1906 1909 1910 1911 1912 1913	Total

*Included in total for year.

PRODUCTION AND VALUE OF LIMESTONE IN MICHIGAN, BY USES, 1899-1915.—Continued.

		Crushed stone	i stone.		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		To sugar	To alkali
Year.	Railroad ballast	ballast.	Conc	Concrete.	ror plast jurnace nux	ITIBICS DUX.	factories.	works.
	Tons.	Value.	Tons.	Value.	Tons.	Value.	Value.	Value.
1899 1900 1900 1904 1906 1906 1907 1910 1911 1911 1911 1911	91 713 54 327 116,000 38,000 60,159	\$18,200 \$18,200 \$100 \$100 \$100 \$100 \$100 \$100 \$100 \$	306.385 185.423 292.616 362.209 398,948	#75 643 49 549 48 549 48 549 60 745 107 396 61 852 61 852 73 200 112 839 117 285 137 285 145 965 146 965	341 027 341 027 295 941 1, 202 817 1, 604 240 2, 254, 984	\$27,512 3,200 13,206 13,246 15,502 109,883 109	222 222 222 223 322 25,502 25,603 26,04 26	\$508,04 320,961 269,087 481,759
Total		\$615,766		\$1,630,490		\$2,850,662	\$630,596	

PRODUCTION AND VALUE OF LIMESTONE IN MICHIGAN, BY USES, 1899-1915.—Conduded.

Total.	Value.	\$281.769 \$30.847 \$30.847 \$429.771 \$429.771 \$431.148 \$66.238 \$66.238 \$66.038 \$750.589	813,411,546
Rank of	Value.	112 113 110 110 111 111 111 111 111 111 111	
<u> </u>	burners.	8157 657 65,000 136,173 98,000 132,600 180,683 9,380	
	ригровев.	\$2.875 124,220 101,399 68,104 4,747 14,747 142,790 253,990 327,671 299,305 440,887 11,529 39,523 31,528 31,528	\$2,529,560
Fertilizer.	Value.	\$3 008 3 447 7 048 11 104 9,746	834,358
Fert	Tons.	\$12,588 \$3 000 10 10 10 10 10 10 10 10 10 10 10 10	
To paper	Value.	\$12,558 \$12,558 10,728 10,728 8,307 8,620	\$48,358
To carbonic	Value.	\$12 558 \$150 \$150 \$150 \$150 \$10,007	
	Yеаг.	1899 1900 1901 1904 1906 1906 1910 1912 1912 1914 1915 1916 1916 1916 1916 1917 1918 1918 1919 1919 1919 1919 1919	Total

*Included in total.

GROWTH OF LIME INDUSTRY.

In the last ten years the lime industry in Michigan has made very little growth in comparison with the limestone industry. This is due to several causes, viz.: (1) the growing scarcity of cheap wood fuel for burning lime, (2) the substitution of concrete for stone and lime mortar in construction work, (3) the rapidly growing use of gypsum wall plaster and plaster substitutes, and (4) the unfavorable location of suitable limestone deposits. Formerly, owing to the abundance of wood fuel, lime was burned at many localities in the state, but now lime is produced only at Menominee, Manistique, Marblehead, and Rexton in the Northern Peninsula, and at Alpena, Afton, Petoskey, Bay Shore, and Charlevoix, and near Omer. No lime is burned in the southern half of the Southern Peninsula. Most of the exposures of limestone are in the northern part of the state relatively distant from large markets and the consequent high transportation charges make it difficult for Michigan operators to compete with lime producers in Ohio, Indiana, and Illinois, situated near cheap coal fuel supplies.

Concrete mortar is more easily and rapidly handled than stone and lime mortar and has largely replaced these materials in the building trades. For similar reasons, gypsum plasters and plaster board have replaced sand lime mortar for plastering.

Most of the lime produced is of the "hot" variety, but considerable mild magnesian lime is burned at Manistique, Marblehead, Petoskey, and Bay Shore. Hydrated lime is produced at Afton, Charlevoix, and Manistique.

The total production in 1915 was 81,359 tons valued at \$349,979 as compared with 66,507 tons valued at \$287,648 in 1914. This represents a gain of 22.3 per cent in quantity and 21.7 per cent in value. The average price in 1915 was \$4.29 per ton, or \$.04 less per ton than in 1914.

	Total lime	burned.	Average	No. of	Rank of
Year.	Quantity, Tons.	Value.	price per ton.	plants operating.	state. Production.
1904 1905 1906 1907 1908	63,601 48,089 68,133 65,822 68,050 83,108	\$256,955 192,844 281,465 276,534 282,023 354,135	\$4 04 4 01 4 13 4 20 4 14 4 26	13 12 10 12	16 15 13
1910 1911 1912 1913	72,345 80,709 74,720 77,088 66,507	303,377 352,608 311,448 331,852 287,648	4 19 4 37 4 17 4 05 4 33	10 14 11 10	14 14 16 14

PRODUCTION AND VALUE OF LIME IN MICHIGAN, 1904-1915.

SANDSTONE.

349.979

4 29

îŏ |......

81.359

The value of the annual production of sandstone in Michigan decreased from \$188,073 in 1902 to only \$12,983 in 1911. In 1912 and 1913 there were slight increases, the total value of the output in each of these years being \$16,438 and \$19,224 respectively. In 1914 there was but one operator and in 1915, two, hence no figures on production and value are given.

The decline of the sandstone industry in Michigan may be ascribed (1) to the poor quality of much of the sandstone, (2) to the substitution of concrete in construction work and, (3) to the greater use of brick and artificial stone.

Quarries were formerly operated in Coal Measure sandstones near Ionia and Grand Ledge and at many places in the Marshall sandstone in Calhoun, Hillsdale, Jackson, and Huron Counties. Most of the sandstone in these formations, upon exposure to the weather for a few years, alters uniformly or in spots to an unsightly yellow color. The sandstone near Ionia, however, though soft and friable is streaked and mottled with red, orange, and yellow and makes a pleasing appearance in buildings. Some rubble and riprap incidentally are produced from the Lower Marshall by the Wallace Co. near Port Austin, Huron county.

The production of sandstone for 1915 was derived from the Jacobsville formation, apparently the local equivalent of the Lake Superior or Upper Cambrian sandstone, and from the Lower Marshall. Extensive quarrying operations have been carried on for a number of years near Jacobsville, Houghton county, but the Portage Entry Redstone Co. is now the only active operator. The "redstone" or "brownstone" of the Jacobsville sandstone is well cemented, permanent in color and pleasing in appearance, but the great distance of the beds from markets is a serious obstacle to their development.

Formerly much sandstone was quarried for foundations but now concrete has largely replaced stone for such purposes because of the cheapness of concrete and the rapidity and ease with which it can be handled. Front and fancy brick are relatively cheap and very artistic effects may be obtained by their use. They have largely supplanted stone as a building material, and very probably the sandstone industry in Michigan will not regain its former importance.

*PRODUCTION AND VALUE OF SANDSTONE IN MICHIGAN, 1899-1915.

Rough	Dressed	1	1	O.A.FIG	G	Crushed stone	stone.	Į,	E CO
building. Value.	building. Value.	Value.	Value.	Value.	Aprap.	Road making. Value.	Concrete. Value.	Value.	Value.
20.2 12.8 12.8 12.8 12.8 13.6 13.6 13.5 13.3 13.3 13.3 13.3 13.3 13.3 13.3	\$51,682 58,800 10,360 10,360 10,360 10,360 10,918 10,918 116,813 116,8	8 106	at	226.519 27.393 10.657 10.632 10.433 1	\$800 \$800 770 96 1,140 3,127 d	#22,050 11,400	25 460 400 400 400 400 400	\$23,800 19,000 12,700 12,700	\$176,038 174,428 174,428 174,428 171,350 121,350 123,123 103,935 112,335 112,335 112,985 112,985 112,985 112,985 112,985 112,985 112,985 112,985 112,985 113,234 114,886 115,224 116,224
		\$109					\$3,850		

a Included under curbing.

Included under rubble.

Included in total.

Krigures not given—less than three operators.

*Exclusive of sandstone made into grindstones and scythestones.

GRINDSTONES AND SCYTHESTONES.

Although Michigan ranks second to Ohio in the production of grindstones and scythestones, the latter state produces about eight times as much as Michigan. The "grit" or "grindstone" occurs in the lower part of the Marshall formation in Huron county. The Wallace Company of Port Austin and the Cleveland Stone Company operate quarries at Eagle Mills and Grindstone City respectively, where the gritstone occurs in low-lying and thinly drift covered ledges near the shore of Lake Huron. The surface deposits are removed by stripping, and the stone is cut by channelling machines into square blocks eight feet or more in thickness. These are split with wedges along the bedding planes into thinner slabs which are loaded on cars by derricks, then taken to the mills for sawing into grindstones. The grindstones vary in size from very small ones a foot in diameter up to those seven feet in diameter with a 14-inch face. The broken stone is worked up into various grades of scythestones.

As there are but two producers no tables of production and value can be given.

SAND AND GRAVEL.

Michigan has very large sand and gravel resources. The most important deposits occur in the form of ridges known as "hogbacks" or eskers, in irregular hills, called kames, in out-wash plains and deltas, and in old beach ridges, features resulting from the last glacial invasion. Only a small portion of the sand and gravel resources have been developed. The chief developments are in the vicinity of cities, in river channels, and along the shores of the Great Lakes where means of transportation are favorable. Large pits are locally developed in building state award roads. The chief localities and counties in order of importance are: Detroit and St. Clair rivers and Kent, Washtenaw, Macomb, Ingham, Livingston, Manistee, Oakland, Berrien, Jackson, Kalamazoo, and Calhoun counties.

In 1915 Michigan produced 3,776,726 tons of sand and gravel valued at \$1,036,739. This represents a gain of 18,747 tons and a loss of \$107,032 in value. The chief increases in quantity were in glass and molding sand, engine sand, and gravel and the chief losses in building sand and paving sand. There were but two producers of glass sand in 1915, hence figures of production and value are not given.

PRODUCTION AND VALUE OF SAND AND GRAVEL IN MICHIGAN, 1904-1915.

	Glass sand. M		Moldin	Molding sand.		g sand.	Fire sand.		Engine sand.	
Year.	Quan- tity.	Value.	Quan- tity.	Value.	Quan- tity.	Value.	Quan- tity.	Value.	Quan- tity.	Value,
	Tons.		Tons.		Tons.		Tons.		Tons.	
1904			167,147	\$76,299	69,656	\$30,898				
1905	600		19,382			148,065	5,000	\$2,500		
1906	600	\$3,000	61,387						4,000	
1907	4.300	8,600	54,172							
	17,000					228,395			1,991	319
	65,000				1,090,419					
	16,212	25,675			1,151,588			3,000		
1911		- 4	68,878					*	25,392	
1912	- 2		152,433						18,575	
WAG		20 500	50,763		1,326,016					
	26,035	32,593			1,088,650				6,357	
1915			82,666	25,998	843,887	236,956	4,001	5,751	70,077	2,794
Totals.	- 61448		861,851	\$325,616	8,898,899	\$2,918,985			167,058	\$18,265

Year.	Furnace	sand.	Paving	sand.	Other sand.		
rear.	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	
1904	Tons.		Tons.		Tons.		
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1914		\$2,500 3,133 3,828 3,660	152,144 68,453 533,261 320,322 131,466	\$29,650 16,898 108,328 74,866	50,187 51,005 173,724 29,187 295,612 372,880 114,801 130,624 113,318	\$14,476 12,140 12,187 6,850 50,953 57,385 52,005 54,748 20,342 107,392	
Totals			1,205,646	\$249,763			

	Railroad	Railroad ballast.		vel.	То	tal.	Rank.	
Year.	Quan- tity.	Value.	Quantity.	Value.	Quantity.	Value.	Quan- tity.	Value.
1906 1907 1908 1909 1910 1911 1912 1913		\$781	76,625 72,598 329,407 312,262 695,902 1,197,791 935,072 1,409,180 3,928,874 2,140,359 2,457,094	\$32,321 25,614 81,182 94,081 200,523 364,841 203,218 407,925 915,205 530,338	1,024,641 842,591 2,219,757 2,862,738 2,185,165 2,681,821 6,422,818 3,757,979	210,609 197,699 289,595 370,365 685,632 816,337 565,969 818,603 1,528,892 1,143,771	12 10 8 8 7 9 9	11 13 11 9 8 8 10 8 5
Total			13,555,164	\$3,527,218	27,123,337	\$7,771,408		

^{*}Included under other sand. †Included under fire sand.

SALT.

The amount and value of salt produced in Michigan in 1915 were greater than any previous year. The total quantity produced in 1915 was 12,588,788 barrels or 917,812 barrels more than in 1914. The value in 1915 was \$4,304,731 or nearly \$1,015,726 more than in 1914. The large gain was due not only to the increase in production but to a considerably higher average price per barrel. The average price in 1915 was \$0.342 per barrel or \$0.039 more than in 1914. Since 1905 the average price per barrel has risen from \$0.196 per barrel to \$0.342 per barrel.

From 1880 to 1892, Michigan held first rank in the United States in amount of production. In 1893, New York took first rank and held it continuously, with the exception of 1901, until 1905 when Michigan regained the leadership. Michigan has since held first rank with the exception of the years 1910 and 1911.

The center of the salt industry in Michigan thirty years ago was in Saginaw valley, especially along Saginaw river from Saginaw to Bay City. The industry was carried on in connection with the saw mills. More than 100 mills utilized their waste steam and fuel in evaporating natural brine obtained from the Upper Marshall sandstone. With the decline of the lumber industry in Saginaw valley, the salt industry has become relatively unimportant.

The chief salt producing districts are along the Detroit-St. Clair rivers and at Ludington and Manistee. In these districts artificial brines are obtained by forcing water through casings down to the salt beds and then back to the surface.

In 1915, Wayne county produced 6,977,500 barrels of salt valued at \$1,088,507, or less than \$0.16 per barrel. Much of the brine is used directly in the manufacture of soda ash, black caustic, etc., and this accounts for the abnormally low price of the salt per barrel. In 1915, St. Clair county produced 2,429,889 barrels of salt valued at \$1,899,712, or over \$0.78 per barrel. In this county, a large part of the product is table and dairy salt and this accounts for the abnormally high average price.

Rock salt is mined by the Detroit Rock Salt Co. at Oakwood, a small suburb on the west side of Detroit. The salt is obtained from a 20-foot bed at the depth of 1,040 feet. Much of the product is used in curing meats, fish, hides, and in the manufacture of ice cream.

In the Manistee-Ludington district, salt is made at Manistee and Filer City, Manistee county and at Ludington, Mason county. In this district, the salt is still made largely by the waste steam from lumber mills.

In 1915, this district produced 2,725,533 barrels of salt valued at \$1,109,237 or about \$0.246 per barrel. Most of the product is of the common fine and common coarse grades. Only one company produces table and dairy salt.

Bromine and bromides are produced from natural brines from the Marshall formation at Midland and Mt. Pleasant, and calcium chloride at Mt. Pleasant and Saginaw.

PRODUCTION AND VALUE OF SALT IN MICHIGAN AND UNITED STATES, 1860-1915.

	U. S.	Michigan	production.	Per cent			Mich	igan.
Year.	manduction	State Salt Inspectors.* Quantity, bbls.	U. S. G. S.† Quantity, bbls.	of total. Mich- igan.	Quantity	Value. Michigan.	Rank Value.	Price, bbl.
1860 . 1861 . 1862 . 1863 . 1864 .		4,000 125,000 243,000 466,000 529,073			: : : :			
1865. 1866. 1867. 1868. 1869.		477,200 407,997 474,721 555,690 561,288				\$734,395 840,255 1,028,027 786,835		\$1.80 1.77 1.85 1.58
1870. 1871. 1872. 1873. 1874.						820,185 1,063,135 1,057,742 1,127,984 1,220,094		1.32 1.46 1.46 1.37 1.19
1877. 1878.		1,081,856 1,482,729 1,660,997 1,855,884 2,058,040				1,190,042 1,556,865 1,411,847 1,577,501 2,099,200		1.10 1.05 0.85 0.85 1.02
1880. 1881. 1882. 1883. 1884.	5,961,060 6,200,000 6,412,373 6,192,231 6,514,937	2,676,588 2,750,299 3,037,317 2,894,672 3,161,806	2,485,177 3,037,317 2,894,672 3,161,806	41.69 44.35 47.36 46.74 48.53	1 1 1 1	2,271,931 2,418,171 2,126,122 2,344,684 2,392,648		0.75 0.85 0.70 0.81 0.757
1885. 1886. 1887. 1888. 1889.	7,038,653 7,707,081 8,003,962 8,055,881 8,005,565	3,297,403 3,667,257 3,944,309 3,866,228 3,846,979	3,297,403 3,667,257 3,944,309 3,866,228 3,856,929	46.84 47.58 49.17 47.99 48.17	1 1 1 1	2,967,663 2,426,989 2,291,842 2,261,743 2,088,909		0.900 0.661 0.581 0.585 0.541
1890. 1891. 1892. 1893. 1894.		3,838,637 3,927,671 3,812,504 3,514,485 3,138,941	3,838,632 3,966,748 3,829,478 3,057,898 3,341,425	43.72 39.52 32.81 25.70 26.53	1 1 2 2	2,302,579 2,037,289 2,046,963 888,837 1,243,619		0.600 0.513 0.523 0.283 0.374
1895. 1896. 1897. 1898. 1899.	13,669,649 13,850,726 15,973,202 17,612,634	3,529,362 3,336,242 3,622,764 4,171,916 4,732,669	3,343,395 3,164,238 3,993,225 5,263,564 7,117,382	24.46 22.89 24.99 29.88 36.14	2 2 2 2 2	1,048,251 718,408 1,243,619 1,628,081 2,205,924		0.31 0.22 0.31 0.31 0.30
1900 . 1901 . 1902 . 1903 . 1904 .	20,869,342 20,566,661 23,849,231 18,968,089	4,738,085 5,580,101 4,994,245 4,387,982 5,390,812	7,210,621 7,729,641 8,131,781 4,297,542 5,425,904	34.55 37.58 34.10 22.65 24.62	2 1 2 2 2	2,033,731 2,437,677 1,535,823 1,119,984 1,579,206	2 1 2 2 2 2	0.282 0.328 0.184 0.266 0.30
1905 . 1906 . 1907 . 1908 . 1909 .	28,172,380 29,704,128 28,822,062	5,671,253 5,644,559 6,298,463 6,247,073 6,055,661	9,492,173 9,936,802 10,786,630 10,194,279 9,966,744	35.24 36.31 35.39 35.34 33.10	1 1 1 1 1	1,851,332 2,018,760 2,231,129 2,458,303 2,732,556	2 2 2 1 1	0.190 0.200 0.200 0.241 0.274
1910 1911 1912 1913 1914 1915	31,183,968 33,324,808 34,393,2271 34,402,772	5,597,276	9,452,022 10,320,074 10,946,739 11,528,800 11,670,976	31.18 33.10 32.84 33.52 33.92	2 2 1 1 1	2,231,262 2,633,155 2,974,429 3,293,032 3,299,005 4,304,731	2 1 1 1 1	0.23 0.25 0.27 0.28 0.28 0.34

^{*}Office of State Salt Inspector abolished in 1911. †In cooperation with the Michigan Geological Survey after 1909. ‡Includes production of Porto Rico.

PRODUCTION AND VALUE OF SALT IN MICHIGAN BY GRADES, 1906-1915.

	Table an	d dairy.		Pack	ers.	•
Year.			Commo	on fine.	Common	coarse.
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
	Barrels.		Barrels.		Barrels.	
1906 1907 1908 1909 1910 1911 1912 1913 1913 1914 1915	509,905 657,509 584,452 585,370 798,434 817,486 905,593 1,028,000 1,092,344 1,233,117	\$362,368 392,641 620,647 732,907 565,653 742,702 920,782 1,037,402 1,025,164 1,420,382	2,927,478 3,601,270 3,454,062 3,530,303 2,216,181 2,362,075 2,225,337 2,704,936 2,668,989 3,096,644	\$757,470 914,154 968,617 1,125,095 734,828 698,203 645,692 852,135 911,016 1,181,337	2,021,287 1,743,840 2,020,956 2,103,719 1,992,465 2,070,745 2,086,492 2,259,164 2,380,378 2,265,352	\$618,727 471,378 610,286 647,878 596,301 745,720 835,673 896,521 870,715
	Paci	kers.	· Other re	ock, etc.	Brine and	other.*
Year.	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
1906	Barrels. 91,098 119,459 134,726 93,357 92,426 105,401 223,866 50,557	\$33,733 48,455 53,669 3,983 43,942 45,421 84,638 25,371	576,595 763,908 727,364 712,530		Barrels. 4,387,043 4,664,552 3,991,083 3,648,395 4,104,934 4,387,772 4,737,7038 4,756,779 4,816,735 5,073,940	\$246.462 235.729 205,084 185,051 211,317 219,244 236,852 237,431 240,086 380,491

	То	tal.
Yеаг.	Quantity.	Value.
!	Barrels.	
1906 1907 1908 1909 1910 1911 1912 1913 1914	9,936,802 10,786,630 10,194,270 9,966,744 9,452,022 10,320,074 10,946,739 11,528,800 11,670,976 12,588,788	\$2,018,760 2,062,357 2,458,303 2,732,566 2,231,262 2,633,155 2,974,429 3,293,032 3,299,005 4,304,731

^{*}Brine only after 1910. †See common fine and common coarse after 1913.

PRODUCTION AND VALUE OF SALT IN MICHIGAN BY COUNTIES IN 1915.

	Table	and dairy			Pac	kers.	
County.				Com	non fine.	Commo	n coarse.
	Barrels.	Value		Barrels.	Value.	Barrels.	Value.
Bay	*		*	974,236	\$362,185	734,763	\$338,933
Manistee	956,117 237,597	\$1,251, 138,	** 436 581	382,763 394,809 934,394 410,445	184,473	589,986 9,210 497,728 433,665	258,824 4,438 234,906 164,066
Total, barrels.	1,233,117	\$1,420,	382	3,096,64	\$1,181,337	2,265,352	\$1,001,167
Tons	172,636			433,53		317,149	
County.	Other	grades.		Roc	ck salt.	Bı	rine.
	Barrels.	Value		Barrels.	Value.	Barrels.	Value.
Bay	37,650	\$10,	824			*	•
Manistee	10,754 22,428		1,440 8,309			*	
Total, barrels	113,148	\$32,	806			5,073,940	\$380,491
Tons	15,841			,		710,352	
				То	tal.		1
Cou	inty.		F	Barrels.	Value.	Quantity, per cent.	Value, per cent.
Bay Isabella Mason Midland		·····}	1	,786,027	\$742,247	12.18	11.78
Manistee			2 6	980,377 414,995 ,429,889 ,977,500	383,639 190,626 1,899,712 1,088,507	8.92 3.40 19.00 56.50	12.80 5.79 42.88 26.75
Total, barrels			12	,588,788	\$4,304,731		
Tons			1	,762,430			

^{*}Included in total.

CEMENT.

Growth of Industry.

Less than 1,000,000 barrels of Portland cement were made in the United States in 1895, a little more than a fifth of the present production of Michigan. In 1895, the rotary kiln, using powdered coal as a fuel, was successfully introduced, and inaugurated the present era of concrete construction. Growth from 1895 to 1907 was phenomenal, the production in the latter year nearly reaching 48,000,000 barrels. The financial depression of 1907 caused a temporary check, but growth was resumed the following year and continued almost uninterruptedly up to 1913 when the maximum of 88,689,377 barrels were produced. Over production in 1913 followed by general business depression in 1914 caused decreases in production for 1914 and 1915, the total production being respectively 86,437,956 and 85,914,907 barrels.

A vertical kiln plant was erected near Kalamazoo, Michigan, as early as 1878 for manufacturing cement from marl and clay. The enterprise failed in 1892 because of the high cost of production. The Peerless Portland Cement Co., in 1896, erected a vertical kiln plant at Union City, Branch county, and began the successful manufacture of cement from marl and shale. By 1902, however, rotary kilns replaced the old vertical types. In 1897 the Bronson Portland Cement Co. erected a plant at Bronson, Branch county, and next year the Coldwater Portland Cement Co., now the Wolverine Portland Cement Co., built a plant at Coldwater and Quincy, also in Branch county.

The "boom" years of the Portland Cement industry in Michigan were between 1899 and 1901, twenty companies being organized in this period for the manufacture of cement from marl. Some companies made very elaborate plans but never got beyond that stage. Only ten reached the productive stage and but five are now in operation. Since 1896, thirty-four different cement plants have been projected or built in Michigan. Twelve are now in operation.

Raw Materials.

In Michigan, the principal raw materials for the manufacture of Portland cement are marl and limestone, and clay and shale. A small quantity of gypsum is also used. The early companies planned to use marl and clay or shale. Limestone has been substituted for marl by some of the companies on account of the great increase in kiln capacity secured through its use. Of eleven plants, seven are using marl and clay and four limestone and shale or clay.

The following table shows that Michigan produced 4,765,295 barrels

in 1915 as compared with 4,285,345 barrels in 1914, an increase of 479,949 barrels. Shipments increased from 4,218,429 barrels in 1914 to 4,727,768 barrels in 1915, a gain of 509,339 barrels. Both production and shipments were the largest in the history of the industry in Michigan. The value of cement sold in 1915 was \$4,454,608, as against \$4,064,781 in 1914, a gain of \$389,827. The average price in 1915 was \$0.942 per barrel or \$0.022 per barrel lower than in 1914.

<u>6</u>
1915
6
188
Ξ.
8
E
Ţ
D STATES, 1896-19
Ü
Ξ
Z
Б
ρ
z
7
7
Ö
Ξ
2
Z
z
, OF PORTLAND CEMENT IN MIC
E
Œ
\mathbf{E}
CE
A
Z
Y
E
S
ሗ
Ŧ
Ö
ETC
Œ
, VALUE
>
ż
NO.
Ľ
5
DUCT
Ö
PH

U. S., вчетаке ргісе рет раттеl.	\$1.57 1.61 1.62 1.43	0.99 0.88 0.94	1.13 1.11 0.85 0.813 0.891	0.843 0.813 1.005 0.927 0.86
Michigan, average price per barrel.	\$1.75 1.75 1.747 1.492 1.25	1.10 1.353 1.367 1.052 1.053	1.284 1.227 0.883 0.815 0.916	0.82 0.861 1.036 0.964 0.942
Michigan, stock on hand Dec. 31. Bbls.				506,758 370,956 473,563 538,846 576,222
Michigan, per cent of value.	86.20 86.36 96.36 96.36	9.0 10.2 10.1 8.7	08744 21-800	4.56 4.55 4.77 5.11
U. S., Cement shipped. Value.	\$2,424,011 4,315,891 5,970,773 8,074,371 9,280,525	12,532,360 20,864,078 27,713,319 23,355,119 33,245,867	52,466,186 53,992,551 43,547,679 52,858,354 68,205,800	66,248,817 69,109,800 88,689,377 86,437,956 86,891,681
Michigan, Cement shipped. Value.	\$7,000 26,250 134,750 513,849 830,990	1, 128, 290 2, 134, 396 2, 674, 780 2, 365, 656 2, 921, 507	4,814,965 4,384,731 2,556,215 2,619,259 3,378,940	3,024,676 3,145,001 4,228,879 4,064,781 4,454,608
Michigan, Cement shipped. Bbls.				3,651,094 4,081,281 4,218,429 4,727,768
*Change per cent cement made.	275.0 413.3 346.2 93.4	54.1 53.7 23.9 14.9	35.5 -4.6 -19.0 11.6	-0.03 -5.21 19.79 2.37
Michigan, per cent made.	0.25 0.56 2.11 6.1	9.0 7.88.7 7.55.7	81-7:44 0.8:6:28	4 4 4 4 69 12 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
U. S., Cement made. Bbla.	1,543,023 2,677,775 3,602,284 5,652,266 8,482,020	12,711,225 17,230,644 22,342,973 26,505,881 35,246,812	46, 463, 424 48, 785, 390 51, 072, 612 64, 991, 431 76, 549, 951	78, 528, 637 82, 438, 096 92, 097, 131 88, 230, 170 85, 914, 907
Michigan, Cement made. Bbla.	4,000 15,000 77,000 343,566 664,750	1,025,718 1,577,006 1,955,183 2,247,160 2,773,283	3,747,525 3,572,668 2,892,576 3,212,751 3,687,719	3,686,716 3,494,621 4,186,236 4,285,345 4,765,294
Daily capacity. Bbls.				22.400 19.450 19.900 19.100 20,800
No. of kilns, Rotary.			: : : : :	983
Місһіgan Rank.	4.01	ಬಬಬ 4₁೮	441-1-00	∞∞∞r-v
No. of plants in operation.	-0040	00239	44255	======================================
Year.	1896 1897 1898 1899 1900	1901 1902 1903 1904 1905	1906 1907 1908 1909 1910	1911 1912 1913 1914

*Minus sign indicates decrease.

GYPSUM.

The annual production of gypsum in Michigan from 1868 to 1890 never reached 75,000 tons. The growth of the industry began in 1891, and the production reached 139,557 tons in 1892. The financial depression in the United States in 1892-3 caused a decrease in the production to only 66,519 tons in 1895. Growth was resumed the following year and in 1899 the production reached 144,776 tons. From 1899 to the present the growth has been almost uninterrupted. The maximum production of 423,896 tons was attained in 1913. The production decreased to 393,006 in 1914, and to 389,791 in 1915.

The growth of the industry is chiefly due to the invention of wall plaster, plaster board, fire-proofing, calcimines, and various cements, From 1869 to 1887, more than 50 per cent of the mine product was ground for land plaster. Since 1887, the grinding of land plaster has become relatively unimportant in comparison with the manufacture of other gypsum products. Land plaster formed but 2.5 per cent of the total production in 1915.

In 1915 there were 8 mines and 8 mills in operation. Seven mines and mills were located near Grand Rapids and one mine and mill at Alabaster, Arenac county.

Three gypsum beds are worked in Kent county. The two upper beds, respectively 6 and 12 feet in thickness, are near the surface. The first is quarried and the second is both quarried and mined. The third bed about 22 feet thick, is about 60 feet below the second, and is mined. At Alabaster, the gypsum bed is from 18 to 23 feet thick and is quarried on an extensive scale.

A higher bed has been discovered south of Alabaster in the vicinity of Turner, Twining, and the deserted village of Harmon City, Arenac county. It is from 50 to 100 feet above the Alabaster bed. This bed is known as the Turner bed and appears to be from 5 to 22 feet thick. Test holes north of Alabaster show the presence of a number of deeper gypsum beds from 5 to 25 feet in thickness. Thick gypsum beds are reported by well drillers at Ionia, Ionia county, and near Cass City, Tuscola county. Beds 6 to 12 feet in thickness were struck in shallow wells at Bellevue and Eaton Rapids, Eaton county. Gypsum was formerly quarried on the west side of St. Ignace peninsula.

Gypsum also occurs on the east side of the peninsula and on St. Martin's Island.

For a more complete report on the gypsum industry in Michigan, the reader is referred to Publication 19, (Geol. Ser. 16) Mineral Resources for 1914.

PRODUCTION OF GYPSUM IN MICHIGAN, 1868-1915.

Year.	Ground into land plaster.	Gypsum calcined into	Sold crude. Tons.	Total production.	Total value.	Ra	nk.
	Tons.	plaster. Tons.	Tons.	Tons.	· 	Quan- tity.	Value.
Before 1868. 868	132,043 28,837 29,996	14,285 6,244 7,355		146,328 35,081 37,351	\$671,022 165,298 178,824 191,718		
870 871	31,437 41,126	8,246 8,694		39,683 49,820	191,718 234,054		
872 873 874 875	43,536 44,972 39,126 27,019 39,131	10,673 14,724 14,723 10,914 11,498		54,209 59,696 53,849 37,933 50,629	259,524 297,678 274,284 195,386 248,504		
877 1878 1879 1880	40,000 40,000 43,658 49,570 33,178	9,819 8,634 9,070 18,929 20,145		49,819 48,634 52,728 68,499 53,323	238,550 229,070 247,192 349,710 293,872		
1882	37,821 40,082 27,888 28,184 29,373	24,136 28,410 27,959 25,281 27,370		61,957 68,492 55,847 53,465 56,748	344,374 377,567 335,382 286,802 308,094		<i></i>
1887 1888 1889 1890	28.794 22.177 19.823 12.714 15,100	30,376 35,125 36,800 47,163 53,600	15,000	59,170 57,302 56,623 74,877 97,700	329,392 347,531 353,869 192,099 223,725		
1892 1893 1894 1895	14,458 16,263 11,982 9,003 6,582	77,599 77,327 47,976 51,028 60,352	47,500 31,000 20,000 6,488 700	139,557 124,590 79,958 66,519 67,634	306,527 303,921 189,620 174,007 146,424		
1897 1898 1899 1900	7,193 13,345 17,196 10,354 9,808	71,680 77,852 88,315 86,972 129,256	16,001 1,984 39,266 33,328 46,086	94,874 93,181 144,776 129,654 185,150	193,576 204,310 283,537 285,119 267,243	2 1	
1902	13,022 18,409 18,294 20,285 30,220	158,320 198,119 185,422 203,313 208,715	68,885 52,565 34,669 24,284 27,517	240,227 269,093 238,385 247,882 341,716	459,621 700,912 541,197 634,434 753,878	1 1 1 1 1	
1907 1908 1909 1910	15,500 11,414 11,890 7,097 15,548	197,666 192,403 344,171 240,905 206,299	36,543 40,324 45,781 64,566 79,050	317,261 327,810 394,907 357,174 347,296	681,351 491,928 1,213,347 667,199 523,926	3 1 2 2 2 3	
1912 1913 1914 1915	10,103 9,604 9,322 9,799	243,656 278,368 249,648 245,484	63,819 60,706 61,227 69,572	384,297 423,896 393,006 389,791	621,547 721,325 705,841 686,309	2 3 3	
Totals	1,242,276	4,431,119	997,861	7,284,367	\$18,931,620		

PRODUCTION OF GYPSUM IN MICHIGAN, 1911-1915.

		Crude				Gypsum s	Gypsum sold crude.			
Year.	ı,	mined.	To Portland	To Portland cement mills.	As land	As land plaster.	For other purposes.	purposes.	Total sold crude.	d crude.
		Quantity.	Quantity.	Value.	Quantity.	Value.	Quantity.	Vaiue.	Quantity.	Value.
1911 1913 1914 1916		Tons. 347, 296 384, 297 423, 896 393, 006 389, 791	Tons. 63,489 53,711	\$69,497 52,420 *	Tons. 15,548 10,103 9,604 9,322 9,799	\$15,706 9,375 10,222 10,761 9,894	Tons. 13 5 10,320	\$53 \$00 \$0,011	Tons. 79,050 63,819 60,706 61,227 69,572	\$85,255 61,845 55,969 51,243 63,236
					Gypsum sold calcined	calcined.				
Year.	As mixed w	ed wall plaster.	As plaster of Paris, etc.	f Paris, etc.	As stucco.	neco.	As dental plaster	l plaster.	To plate glass works.	ass works.
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
1911 1913 1918 1916 1916	Tons. 146,920 146,099 166,711 163,972 165,861	\$381,362 368,676 437,720 426,433	Tons. 47,989 937 8*	\$88, 168 3, 229 *	Tons. 82,010 95,402 83,780 80,172	\$168,734 202,675 173,172 177,317	Tons. 20 3 **	# 110 120 14 * * *	Tons. 11,370 6,214	\$19 031 8,078

*Included in total.

7, 1911-1915.—Concluded.
MICHIGAN
IN MI
JF GYPSUM
PRODUCTION (

	_	Gypsum sold calcined	ld calcined.			Vottler in mill		Daily	Shifts run	Shifts run by mills		
Year.	For other	purposes.	Total sold calcined	calcined.	Total value.	venies		of mill.	during	year.	No. mines and quarries.	No. mills.
	Quantity.	Value.	Quantity.	Value.		No.	Size.	24 hгя.	Total No.	Hrs. in shift.		
	Tons.		Tons.					Tons.				
1911 1912 1913 1914	8,393 9,897 1,811	\$10,973 15,850 5,433	206, 299 243, 656 278, 368 249, 648 245, 484	\$488,671 559,702 665,356 654,599 623,073	\$573,926 621,547 721,325 705,841 686,309	688888	8888 8888 8888 1000 1000	2,200 + 2,140 1,785 1,860	1,850 1,368 2,043	===	00 00 -1 CD 30	ac ac ac ac ao

*Included in total.

CLAY.

The clays of Michigan are of three general classes, viz.: (1) morainic or drift clays (2) lake clays and (3) river silts. Deposits of kaolin or china clays are not known in Michigan and the chances for the occurrence of commercial deposits of such clavs appear to be small. Deposits of kaolin have been reported at various places in the Northern Peninsula, but these as far as investigated, proved to be white or calcareous lake clays of the slip variety. The morainic clays-boulder and till clays, are always calcareous, some of them being very high in lime. The lake clays are generally less calcareous but locally, as in limestone areas, they may contain a large percentage of lime. river silts are the least calcareous but they are usually gritty. On account of the high content of lime most of the clavs burn white. many beds, however, there is an upper portion relatively free from lime which burns red, and a lower one very high in lime which burns white or cream color. The absence of lime in the upper portion is due to leaching.

The morainic or drift clays contain pebbles, and boulders hence the name "boulder clay," and locally lime concretions. Screening and washing have been resorted to in some cases but the extra expense is generally prohibitive except in districts where good clays are wanting or where the clays possess exceptional burning qualities. The lake clays are comparatively free from pebbles and coarse sand but some contain much very fine grit. These clays are generally suitable for making common brick and tile. There are inexhaustible supplies of such clays in the eastern portion of the Southern Peninsula from Arenac county south to the Ohio boundary. Large areas of lake clays also occur in Chippewa and Ontonagon counties.

The morainic or boulder clays have been developed for the manufacture of common brick and tile at many places in the state but generally on a small scale. The lake clays in the vicinity of West Detroit have been developed very extensively for making common brick. Important developments have also been made near Paines and West Saginaw, Saginaw county, and at numerous places in Lenawee, Monroe, and Macomb counties.

In Ontonagon county some of the clays are of the slip variety and are suitable for glazing pottery. A deposit of slip clay is also reported near Harriette, Wexford county.

Most of the surface clays in Michigan are low grade and generally the mining of such clays is merely incidental to the manufacturing of common brick and tile. Nearly all of the clay sold as clay in Michigan is slip clay. It is mined chiefly near Rockland, Ontonagon county, and shipped to potteries in Ohio and other states for glazing. The great distance of the beds from the centers of the pottery industry is an effective obstacle in retarding development. In some years a small amount of clay is sold for medicinal purposes.

77	Slip o	elay.	Brick	clay.	Miscellane	ous clay.	Tot	al.
Year.	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
	Tons.		Tons.		Tons.		Tons.	
1910 1911 1912 1913 1914 1915	1,744 2,034 1,710	\$3,889 5,090 6,164 6,504 4,572 3,805	60 18	\$105 32	1 2 9	\$400 150 9	1,424 1,764 2,043 1,710 1,463 3,142	\$4,394 5,272 6,173 6,504 4,572 5,605

PRODUCTION OF CLAY IN MICHIGAN, 1910-1915.

POTTERY.

11,546

\$32,520

From 1899 to 1904, the development of the pottery industry in Michigan was erratic, the total value increasing from \$29,741 in 1899 to \$83,098 in 1902 and then decreasing to only \$40,621 in 1904. Since then the industry has made a substantial growth every year and the value in 1915 was the largest in the history of the industry. In 1909, the total value was \$95,439 and in 1915, \$521,989, or over five times that of 1909. The largest gain was made in 1915, the value increasing from \$265,194 to \$521,989, a gain of 96.7 per cent.

The products are chiefly flower pots, white ware, and porcelain electrical supplies. Of six firms, three, the Detroit Flower Pot Co., Anton Hupprich of Detroit, and the Ionia Pottery Co., manufacture flower pots almost exclusively. The Jeffery-DeWitt Co., of Detroit, manufactures various porcelain products—sanitary ware, insulators, tumbling jars, crucibles, etc. The Mount Clemens Pottery Co., Macomb county, manufactures decorated ware.

The clays used for the manufacture of flower pots are obtained from Michigan but those used for porcelain electrical supplies and white ware are imported from other states or countries.

^{*}Included in total.

VALUE OF POTTERY PRODUCTS IN MICHIGAN, 1899-1915.

	11,011,11111111111111111111111111111111	11111
Per cent. of total product in U. S.	1177 1177 1177 1177 1177 1177 1177 117	:
Gain per cent.	60004 60004 600000 600000 600000 600000 600000 600000 600000 600000 6000000 600000 600000 600000 600000 60000000 6000000 600000 600000000	
Total value.	\$20,741 34,317 34,317 44,865 48,098 48,098 43,098 43,697 110 62,499 113,490 1130,490	\$2,047,537
Miscel- laneous, value.	382 400 39 (000 60 (000 7 7 100 3 4 550 13 4 550 13 4 550	
C. C. ware, value.	001	
Porcelain electrical supplies, value.	*****	
Red earthen- ware, value.	25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2	
No. firms.	44544456886666666	
Rank of state.	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Year.	1899 1900 1900 1900 1900 1900 1900 1900	Totals

*Included in the total.

BRICK AND TILE PRODUCTS.

Raw materials. Most of the surface clays (see Clay) in Michigan are of low grade and of three general classes, (1) morainic or drift clays, (2) lake clays, and (3) river silts. The morainic clays are usually calcareous, generally containing from 10 to 15 per cent of lime. They also contain sand, pebbles and boulders, hence the name boulder clay. Due to their sandy or calcareous nature, most of the clays are adapted for making common brick and tile or low grade pottery. The high lime content causes most of the clays to burn white or cream colored. In some places, leaching has removed the lime to the depth of a few feet and clay from this surface portion burns red.

Exposures of clay or shale beds suitable for the manufacture of fire, vitrified and front brick, vitrified tile, fire-proofing and other higher grade products are not abundant. Near Rockland, Ontonagon county, some of the lake clays belong to the slip varieties and are used for glazing pottery. At Grand Ledge, Jackson, Corunna, near Bay City and Flushing, shales belonging to the coal measures have been utilized for vitrified and front brick, vitrified tile, sewer pipe, conduits, fire-proofing, etc. A project for the manufacture of front brick from Coal Measure shales is now under way at Williamston. The Baker Clay Products Co., at Grand Ledge have a modern plant equipped with continuous kilns and have begun the manufacture of front brick.

Production. In 1915, the value of brick and tile products in Michigan was \$2,248,068, exclusive of pottery, as compared with \$2,434,872 in 1914. This represents a decrease of \$186,804 or 7.6 per cent. The quantity of common brick increased from 269,154,000 in 1914 to 277,-399,000 in 1915, a gain of 3.7 per cent. The value however, decreased from \$1,633,216 in 1914 to \$1,461,188, a loss of \$172,028 or 10.5 per cent. The average price of common brick in 1915 was only \$5.23 as against \$6.07 in 1914. The value of drain tile decreased from \$421,941 in 1914 to \$305,156, a loss of \$126,785 or 30 per cent. The cause of the decreases in many of the smaller plants was the abnormally wet season, which prevented operation.

The manufacture of common brick has made great development in the vicinity of Detroit where extensive beds of suitable lake clays occur.

In 1915, of a total of 277,399,000 common brick, 225,015,000 were made in Wayne county. Drain tile is next to common brick in importance with a reported value of \$305,156. Sewer pipe is manufactured on a large scale at Grand Ledge and Jackson, but there are only two producers, hence no figures of production and value are given. Grand Ledge is also the chief center in the state for the pro-

duction of drain tile. The manufacture of front brick in Michigan is in its infancy but with one new plant in operation at Grand Ledge and another being promoted at Williamston, the industry bids fair to become an important one. This will meet a great need in the state, since large quantities of front brick are annually imported from bordering states.

ANNUAL PRODUCTION OF BRICK AND TILE PRODUCTS IN MICHIGAN, 1899-1915.

Average	per M.	\$13 00 19 37 10 05 10 05 11 7 78 16 41 19 78	
brick.	Value.	****	:
Fire	Quantity.	****	
Average	per M.	\$6.00	:
brick.	Value.	\$81,706 \$81,706 \$1,814 94,630 129,283 116,283 116,283 116,002 126,062	
Vitrifled	Quantity.	6.112,000 7,919,000 7,919,000 6.165,000 10,473,000 6.597,000 6.597,000 6.507,000	
Average	per M.	\$13 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	
brick.	Value.	\$58,920 48,411 42,792 19,000 19,000 19,000 19,000 19,000 19,406 1	
Front	Quantity.	4, 290,000 8,421,000 9,476,000 1,080,000 1,080,000 1,000 1,000 1,488,000 1,488,000 1,488,000 1,488,000 1,488,000 1,488,000	
Average	per M.	### ##################################	
brick.	Value.	\$933,176 863,250 1,095,254 1,331,752 1,16,714 1,16,714 1,16,714 1,16,714 1,250,787 1,363,787 1,626,283 1,626,283 1,638,216 1,638,216 1,638,216 1,638,216 1,638,216 1,638,216 1,638,216 1,638,216 1,638,216	
Соттоп	Quantity.	200,144,000 180,892,000 237,254,000 215,791,000 201,796,000 201,558,000 200,817,000 181,049,000 232,551,000 271,189,000 271,189,000 273,571,000 273,571,000 273,571,000 273,571,000	3,851,269,000
Voor	. 1691	1899 1900 1900 1902 1903 1904 1906 1906 1909 1910 1911 1913	Totals

*Concealed; less than three producers.

ANNUAL PRODUCTION OF BRICK AND TILE PRODUCTS IN MICHIGAN, 1899-1915.—Concluded.

Total value.		\$1,254,256 1,147,378 1,147,378 1,680,142 1,680,442 1,670,892 1,793,867 1,793,867 1,793,867 1,947,059 2,083,525 2,183,442 2,451,242 2,451,242 2,448,069	\$31,327,549
No. of firms	operating.	196 180 180 178 178 178 178 178 178 178 178 178 178	
Rank of	91816	113 144 144 144 144 144 144 144 144 144	
Per cent of total	n U. s.	1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Hollow building tile or	Value.	96 000 000 000 000 000 000 000 000 000 0	
Miscellan- eous.	Value.	\$22,709 637 637 1,500 40,100 66,128 225,459 350,000 234,280 49,755	
Tile (not drain.)	Value.	***	
Fire- proofing.	Value.	\$5,900 2,350 1,880 3,290 4,100 4,100 4,100 3,752 10,850	
Sewer pipe.	Value.	\$50.300 67,910 67,910 84,44	
Drain tile.	Value.	\$140 171 114 747 114 747 98 972 98 972 208 088 208 465 205 465 205 465 205 465 207 630 384 006 388 205 387 945 415 543 421 941 305 156	\$4,480,560
Stove linings.	Value.	\$3.97 <u>1</u>	
Year.		1889 1800 1900 1902 1903 1904 1906 1909 1910 1910 1911 1911 1911 1911	. Totals

*Concealed under miscellaneous; less than three producers.

ANNUAL PRODUCTION AND VALUE OF SAND-LIME BRICK IN MICHIGAN AND UNITED STATES, 1904-1916.

ı	1	!		
Rank.		Value.		
Ra		Production,	######################################	
-01q	. S.	Per cent of tol duction of U.	######################################	:
	-	Total value United States.	\$463,128 972,064 1,226,065 1,029,699 1,150,580 1,169,153 897,684 1,238,325 1,058,512 1,058,512	
	1	Сhange рег сеп Місhigan.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
		Total value Michigan.	\$69,765 169,302 172,840 172,840 138,809 218,226 220,001 310,001 321,245 255,784 286,948	\$2,575,222
	brick.	Value.	\$497 526 520 20 ++	:
	Fancy	Quantity, (thousands).	22 24 24 24 24 24 24 24 24 24 24 24 24 2	
	19	Average price p thousand.	\$9 02 8 17 6 69 7 117 7 7 6 97 6 97 8 52 8 27	:
ction.	brick.	Value.	\$5,234 12,893 14,232 14,234 6,982 17,777 9,626	
Michigan production.	Front	Quantity, (thousands).	1,5780 1,5787 1,5787 1,7987 1,798 1,798 1,188	
Michig	19	Average price p thousand.	86 80 80 80 80 80 80 80 80 80 80 80 80 80	\$6 11
	Common ·brick.	Value.	\$64.034 155,883 165,883 168,606 131,827 207,082 218,224 307,106 315,882 315,882 315,882 315,882 248,113	\$2,443,272
		Quantity, (thousands).	9.886 27,281 27,281 27,281 21,907 34,217 37,217 48,129 48,129 41,456 41,456 41,456	399,718
sum	g s	No. of operating.—J—.gnirioger	7488947474747474747474747474747474747474	:
rins	g B Lich	No. of operating.—A	11221112211	:
		Year.	1904 1905 1906 1906 1908 1910 1911 1913 1914	Total

*Estimated. †Included in total.

SAND LIME BRICK.

The growth of the sand lime brick industry has been in the average output of the plants rather than in the number of plants. In 1904 ten plants were in operation and in 1915, eleven. In 1904, ten plants produced 9,886,000 common brick and in 1915, eleven plants produced 46,513,000 or over 4½ times as many. The average price of common brick in 1904 was \$6.64 per thousand, but in 1910 it had fallen to only \$5.81 per thousand. The price in 1915 was \$6.04 per thousand.

MINERAL AND SPRING WATERS.

The amount and value of mineral and spring waters produced in Michigan fluctuate greatly from year to year. The principal factors affecting the production are (1) general business conditions, (2) local conditions affecting municipal supplies. The largest decreases in production in Michigan occurred in the general business depression of 1906 and 1907 and of 1914. The municipal water supplies in certain cities are unsafe or unpalatable, and consequently a thriving business of vending spring waters has grown up in these cities. During the past three or four years, the quality of the supplies has been greatly improved through the installation of filtration plants or the development of new sources.

A general though intermittent decrease in the production of mineral and spring waters in Michigan has occurred since 1902, the production falling from 8,653,690 gallons in that year to only 884,893 gallons in 1913. The production in 1914 and 1915 was respectively 931,343 gallons and 913,765 gallons.

PRODUCTION AND VALUE OF MINERAL WATERS IN MICHIGAN, 1900-1915.

Year.	Ra	nk.	prings	Total.		Total.		Total. Medicinal Table.		
1 ear.	Quan- tity.	Value.	No. of Springs active.	Quantity. Gals.	Value.	Value.	Value.	price per gal.		
1900	2 1 7 4 13 8	4 9 9 13 4 23 15 16 16 17 24 19 24	28 28 28 19 19 17 19 24 19 27 23 17 20 22 18	3,398,996 7,019,168 8,653,690 6,919,107 3,385,675 2,684,800 902,528 1,472,679 2,004,433 2,760,604 1,454,020 1,713,401 1,420,465 884,893 931,343 913,765	\$411,935 1,195,614 275,763 200,668 118,422 277,188 73,357 127,133 88,910 104,454 69,538 72,253 75,611 52,642 70,310 72,711		\$238, 288 92, 042 82, 915 98, 355 69, 438 60, 097 74, 834 49, 037 58, 058 67, 546	\$0.121 0.170 0.032 0.029 0.035 0.100 0.081 0.044 0.035 0.048 0.042 0.053 0.059 0.075		
Total				46,519,567	\$3,286,509	\$114,140	\$890,610	\$0.071		

^{*}Figures subject to revision.

NATURAL GAS.

Michigan produces very little natural gas, and most of this is produced in the southeastern part of the state in Macomb, Oakland, and St. Clair counties. Gas also occurs in Manistee county. In Oakland and Manistee counties the supply is obtained from the surface deposits. The gas usually occurs in small volume and under low pressure. The source of the gas is presumably the bituminous and petroliferous Devonian formations which underlie these counties. The wells are usually sufficient only for a family or two and usually last for a number of years. Some wells "play out" in a few weeks, others last for many years. In Oakland and Macomb counties 25 or 30 of such wells are utilized by farmers for heating and lighting. According to reports the gas wells in the vicinity of Warren and Royal Oak in these counties have been declining rapidly in volume and pressure during the past two years.

There are many artesian wells around Portage Lake, Manistee county, which yield considerable gas. In 1913, a gas well was struck near Onekama on the north side of the lake. It yielded a large volume of gas under a pressure of nearly 190 pounds per square inch. Some of the other wells yield sufficient quantities of gas for heating and lighting one or more dwellings.

In the Port Huron oil field, oil is obtained from the Dundee limestone at depths varying from about 500 to 710 feet and many of the wells yield gas along with the oil. The wells of the G. B. Stock Xylite Grease & Oil Co. yield gas more than sufficient for pumping the wells. A number of the wells of the Michigan Central Oil & Gas Co. are reported to yield from 20,000 to 40,000 cubic feet of gas per day under pressures varying from 125 to over 250 pounds per square inch. A project was under way for utilizing the gas in lighting a small suburb of Port Huron. A number of other wells in and about the city bored for oil or water also yield more or less gas, which has been utilized for domestic and industrial purposes.

At Mt. Clemens, some of the mineral wells yield gas nearly sufficient for heating the boilers used in pumping.

The following table shows the production of natural gas for the past five years:

	No. of	Dom	estic.	stic. Industrial.		Other.		Total.	
Year.	pro- ducers.	Quan- tity.	Value.	Quan- tity.	Value.	Quan- tity.	Value.	Quan- tity.	Value.
		M. cu. ft.		M. cu. ft.		M. cu. ft.		M. cu. ft.	
1911 1912 1913	22 17	930	\$930 1,020	900	\$450	800	\$400	1,730 900 1,805	\$1,330 1,470 1,405
1914 1915	16	960	960		· · · · · · · · · · · · · · · · · · ·	1,100	550	2,442 2,060	1,442 1,510
Total.		1			l			8,937	\$7,357

PRODUCTION OF NATURAL GAS IN MICHIGAN, 1911-1915.

PETROLEUM.

Oil has been found in small quantities at many places in Michigan, notably at Port Huron, Allegan, and Saginaw. At Port Huron there are about thirty productive wells, but they are very small, the average yield being about one half barrel per day. The depth to the oil horizon in the vicinity of Port Huron is from about 500 to 650 feet. All of the wells yield gas which is utilized in operating the wells. A part of the oil is used by G. B. Stock Xylite Grease and Oil Co. in the manufacture of lubricants. The oil horizon at Allegan is about 1,300 feet in depth and at Saginaw 2,300 to 3,000 feet. The flows of oil were similar in quantity to those obtained at Port Huron but the greater depth made operation impracticable. There are but two producers of oil, hence figures of production are not given.

The reader is referred to Publication 14 (Geol. Ser. 11), Occurrence of Oil and Gas in Michigan. Publication 19, (Geol. Ser. 16) Mineral resources of Michigan for 1914, contains a history of the developments in the Port Huron oil field up to 1915.

TRAP ROCK.

There are inexhaustible resources of trap rock in the western half of the Northern Peninsula, chiefly in the iron and copper bearing districts. Trap rock is quarried at Marquette and Negaunee, Marquette county. Large quantities of amygdaloidal trap is produced incidentally in copper mining. The trap rock from Marquette county is harder, tougher, and less altered than that from the copper mines. The inferior wearing qualities of the amygdaloidal trap however is partially compensated by superior cementing power.

Most of the quarry product is crushed for road material and con-

crete. In some years a small amount is sold for rip rap. The great distance from markets is a serious obstacle to the development of the trap rock resources of the state.

THOSE COLOR MILE CHECK OF THE TOOL IN MILETING TOOL	PRODUCTION	AND	VALUE	\mathbf{or}	TRAP	ROCK	IN	MICHIGAN,	1911-1915.
---	------------	-----	-------	---------------	------	------	----	-----------	------------

			Crushe	d stone.				
Year.	No. of producers.	Road m	Road making.		Concrete.		Total. Value.	Rank. Value.
		Quantity.	Value.	Quantity.	Value.			
1911 1912 1913 1914 1915	3 5 5 6	Tons. 21,805 24,920 25,690 28,262	\$18,366 23,369 24,863 29,764	Tons. 45,250 11,355 * 4,448 18,775	\$38,429 9,340 * 4,771 22,047	\$8,500 *	\$51,000 36,206 92,201 34,406 105,855	8 8 10 12
Total		100,677	\$96,362				\$319,368	

^{*}Included in total.

SHALE.

Shale is quarried in Michigan for use in making Portland cement and vitrified and front brick, sewer pipe, conduit and vitrified tile. It is quarried for Portland cement near Coldwater, at Paxton, Alpena county, and in Charlevoix county, and for the manufacture of ceramic products at Grand Ledge, (Eaton county), Jackson, Corunna (Shiawassee county), and Flushing, (Genesee county). A project is now under way for the development of shale beds at Williamston for the manufacture of front brick.

Excellent exposures of Coldwater shale occur at Richmondville, Sanilac county, and along the shore of Lake Huron from Forestville to White Rock in Sanilac and Huron counties. Numerous exposures also occur near Coldwater, Union City, Quincy, and Bronson, Branch county. A number of exposures of Antrim black shale occur in Charlevoix, Cheboygan and Alpena counties. Exposures of the blue Bell shale of the Traverse formation occur near Rockport, Alpena county and near Bell, Presque Isle county.

GRAPHITE.

Graphitic slate is quarried about 9 miles from L'Anse, Baraga county, by the Northern Graphite Works and the Detroit Graphite Company of Detroit. The graphitic material is ground for paint. The mines have not been operated during the past three years.

QUARTZ.

Vein quartz is mined near Ishpeming by the Michigan Quartz Silica Co. of Milwaukee and ground chiefly for wood filler and paint. Some of the product is used in making polishes. The quartz rock is practically pure silica. The mills are located at Ishpeming, Michigan, and at Milwaukee, Wisconsin. There is but one producer hence figures of production are not given.

MINERAL PAINTS.

Certain iron ores are mined in Iron county by Pickands Mather Co. of Cleveland, Ohio, for the manufacture of paint. The Acme White Lead & Color Co. of Detroit, manufactures a large amount and a variety of mineral paints. These are the only producers of mineral paints, hence figures of production and value cannot be given.

MINERAL RESOURCES OF MICHIGAN.

SUMMARY TABLE OF THE PRODUCTION AND VALUE OF

Mineral Products.	19	11.	1912.		
Mineral Floquets.	Quantity.	Value.	Quantity.	Value.	
Brick and tile products, number of brick. Brick, sand-lime, number of brick. Bromine. Calcium chloride. Cement, Portland; bbls. made, value cement shipped.	(a) (a)	\$1,953,442 210,001 (a) (a) (a) 3,024,676	281,741,000 49,292,000 (a) (a) 3,651,094	\$2,350,606 316,732 (a) (a) 3,145,001	
Clay, tons. Coal, tons. Copper, lbs. Graphite. Grindstones, tons.	2,202 1,476,074 218,185,836	5,437 2,791,461 27,273,155 (a) (a)	2,043 1,206,230 218,138,408	6,173	
Gypsum and gypsum products, tons mined . *Iron ore, long tons	304,654	573,926 23,808,935 (b)4,672,799 352,608	384,297 12,649,296 459,975 74,720	621,547 29,003,163 (b)6,579,048 311,448	
Limestone Mineral paints Mineral and spring waters, gallons sold Natural gas, M. cu. ft Petroleum	1,713,401	1,001,535 (a)		1,139,560 (a) 75,611	
Pottery Precious stones Quartz †Salt, bbls Sand and gravel, tons	10,320,074	130,490		194,892	
Sandstone Silver, fine oz. Troy Trap rock Miscelianeous	507,700	12,985 274,100 51,000		16,438 324,999 36,206 522,141	
Total		\$ 65,077,232		\$79,931,757	

^{*}Figures from Iron Trade Review.
†Exclusive of bromine and calcium chloride.
(a) Included under miscellaneous.
(b) Excluded from total, covered by iron ore.
(c) Estimated.
(d) Copper sales.

MINERAL PRODUCTS IN MICHIGAN, 1911-1915.

19	13.	19	1914. 1915.		15.
Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
282,664,000 50,065,000 (a) (a)	\$2,451,242 321,245 (a) (a)	278,384,000 42,465,000 (a) (a)	\$2,434,872 255,784 (a) (a)	281,819,000 47,285,000 600,325 10,558	\$2,248,068 286,948 494,271 74,670
4,081,281	4,228,879	4,218,429	4,064,781	4,765,294	4,454,608
$\substack{1,710\\1,231,786\\183,853,409}$	6,504 2,455,227 28,442,806	1,463 1,231,786 158,009,748	4,572 2,455,227 21,426,122	3,142 1,069,798 238,956,410	5,605 (c) 2,139,596 (d) 41,775,296
•••••	(a)		(&)		(a) (a)
423,896 12,677,466	721,325 31,947,214	393,006 8,835,274	705,841 18,965,058	389,791 13,151,612	686,309 26,574,168
447,188 77,098	(b)6,568,920 331,852 1,408,708 (a)	379,619 66,507	(b) 5,229,948 287,648 1,457,961 (a)	(b) 486,106 81,359	6,624,559 349,979 1,828,766 (a)
884,893 1,805	52,642 1,405	931,343 2,442	70,310 1,442	913,765 2,060	72,711 1,510
• • • • • • • • • • • • • • • • • • • •	222,883		265, 194		521,989
11,528,800 6,424,168	(a) 3,293,032 1,529,142	11,670,976 3,647,790	(a) (a) 3,299, 0 05 1,118,978	12,588,788 3,776,726	(a) (a) 4,304,731 1,036,739
295,173	19,224 178,284 92,201 540,626	413,500	(a) 228,665 34,406 565,147	585,933	(a) 297,068 105,855 119,905
	\$77,860,192		\$57,641,013		\$94,003,349

APPENDIX.

DIRECTORY OF THE PRODUCERS OF NON-METALLIC MINERALS IN MICHIGAN, 1915.

. .

BRICK AND TILE MANUFACTURERS, 1915.

Operators.	Office.	Works.
Allegan County: Allegan Brick Works	AlleganZeeland	Allegan. Zeeland.
Barry County: Leonard, Wm	Delton	Delton.
Bay County: Michigan Vitrified Brick Co	Bay City	Bay City.
Berrien County: Mamer Brick Co	Benton Harbor	Benton Harbor
Branch County: Reynolds & Son, Lorenzo D	Quincy	Algansee.
Charlevoix County: Boyne City Brick Co East Jordan Clay Products Co Northern Brick Co.	Boyne City	Boyne City. East Jordan. Boyne Falls.
Chippewa County: Rudyard Brick Works	Rudyard	Rudyard.
Dickinson County: Vulcan Brick Works	Vulcan	Vulcan.
Eaton County: American Sewer Pipe CoBaker Clay CoGrand Ledge Clay Products Co	Broad St., Akron, Ohio Grand LedgeGrand Ledge	Grand Ledge. Grand Ledge. Grand Ledge.
Emmet County: De Arment, C. A	Petoskey	Petoskey.
Genesee County: Gale Bros. Oliff, Thomas Duffield Brick & Tile Works. McCann, Fred'k W Sharp, Frank. Flint Clay Products Co.	Atlas Clio Duffield Gaines R. D. No. 1, Linden	Atlas. Clio. Duffield. Gaines. South Mundy.
Gladwin County: Korkoske, Christ	Gladwin	Gladwin.
Grand Traverse County: Traverse City Brick Co	Traverse City	Keystone.
Gratiot County: Ashley Tile Co. Stevenson & Sons, David. Ithaca Brick & Tile Yards. Lee, Chas. Peet. C. D. Lyle G. Smith & Fred Bernard. Riverside Brick & Tile Co. St. Louis Tile Co.	North Star	Ashley. Ashley. Ithaca. North Star. North Star. St. Louis. Sumner. St. Louis.
Hillsdale County: Jerome Brick & Tile Co Gish & Connor		Jerome. Waldron.
Ingham County: Clippert, Spaulding & Co	Lansing	Lansing.
Ionia County: Brown, AlbertVan Der Heyden, Fred H	Saranac	Saranac. Ionia.

BRICK AND TILE MANUFACTURERS, 1915 .- Continued.

Operators.	Office.	Works.
Isabella County: Kane Bros	Mt. Pleasant	Mt. Pleasant.
Jackson County: Simpson, Nathan F., Warden Michigan State Prison American Sewer Pipe Co	Jackson	Jackson. Jackson.
Kalamazoo County: Zeeland Brick Co		Brownell.
Kent County: Grand Rapids Brick Co Sparta Clay Works	Mich. Ave. and Fuller St., Grand RapidsSparta	Grand Rapids. Sparta.
Lenawee County: Laurenson & Saunders Wilt, C. H Britton Pressed Brick Co Atkin, Wm. T Woodford & Son, B. F Ellis, G. D American Brick & Tile Co Comfort, Albert A	Addison Blissfield Ann Arbor Deerfield Jasper Macon Morenci R. D. Tecumseh	Blissfield. Britton. Deerfield. Jasper
Macomb County: Hartsig, Jacob. Hacker, Frank G. Gass, East. Mt. Clemens Brick & Tile Co. Warren Brick & Tile Works. New Baltimore Brick & Tile Co.	Warren Mt. Clemens R. D. No. 2, Washington Mt. Clemens Warren New Baltimore	Centerline. Clinton. Davis. Mt. Clemens. Warren. New Baltimore.
Manistee County: Kujawske, Joseph	Oakhill	Oakhill.
Mecosta County: Nehmer, Wm. F	Big Rapids	Big Rapids.
Midland County: Rilett & Herwig, J. W	R. D. No. 3, Coleman	Coleman. Midland.
Monroe County: Meyer Bros. Linenfelser Brick & Tile Co. Angerer Clay Products Co. Strong & Son, John	Azalia Maybee Scofield South Rockwood	Azalia. Maybee. Scofield. South Rockwood.
Muskegon County: Holton Brick Co	Muskegon	Holton.
Newaygo County: Stevens & Sons, Wm	R. D., Grant	Grant.
Ottawa County: Zeeland Brick Co	Zeeland	Zeeland.
Saginaw County: Parker-Lohmann Brick & Tile Co Sperry Bros. Day, James. Day, Thomas. Saginaw Paving Brick Co	R. D. No. 10, Saginaw, W. S Paines. R. D. No. 8, Saginaw. R. D. No. 3, Saginaw. 1850 S. Jefferson Ave., Saginaw.	Saginaw, W. S. Paines. Saginaw. Saginaw. Saginaw.
St. Clair County: Belknap & Phillips	Bell River Road, St. Clair	St. Clair.
Sanilac County: Croswell Brick Co Sandusky Brick & Tile Co	Croswell	Croswell. Sandusky.

BRICK AND TILE MANUFACTURERS, 1915.—Concluded.

Operators.	Office.	Works.	
Shiawassee County: Detroit Vitrified Brick Co	Box 289, Corunna	Corunna.	
Tuscola County: Thompson & Son, John	TuscolaCass City		
Wayne County: Daniel & Bro. Brick Co., Jacob Haggerty, John S	291 Clippert Ave., Detroit 1815 Dime Sav. Bk. Bldg.,	Detroit.	
Lonyo, Harsha Brick Co	Detroit. 644 Humboldt Ave., Detroit 707 Hammond Bidg., Detroit 66 Buhl Block, Detroit Flat Rock. 1960 Michigan Ave., Detroit 1960 Michigan Ave., Detroit 308 Hammond Bidg., Detroit Michigan Ave. and Lonyo Road,	Detroit. Detroit. Springwells Detroit. Flat Rock. Springwells. Springwells. Springwells.	
Lonyo Bros. Porath Bros. Sass Bros. & Stuve. Springwells Brick Co. Wolf Brick Co., F. H. Pewablc Pottery & Tile Co.	Detroit	Springwells. Springwells. Springwells. Springwells. Springwells. Detroit. Detroit.	

SAND-LIME BRICK PRODUCERS, 1915.

Operators.	Office.	Works.
Genesee County: Flint Sandstone Brick Co	Flint	Flint.
Houghton County: Lake Superior Stone Brick Co	Calumet	Ripley.
Huron County: Sebewaing Sandstone Brick Co	Sebewaing	Sebewaing.
Jackson County: Jackson-Lansing Brick Co	Rives Junction	Rives Junction.
Kalamazoo County: South Michigan Brick Co	Kalamazoo	Kalamazoo.
Kent County: Grande Brick Co	Kalamazoo Ave., Grand Rapids	Grand Rapids.
Menominee County: Menominee Brick Co	Menominee	Menominee.
Oakland County: Rochester Brick & Sand Co	Rochester	Rochester.
Saginaw County: Saginaw Brick Co	321 N. Hamilton St., Saginaw	Saginaw.
Wayne County: Michigan Pressed Brick Co	Cor. Lawton Ave., and M.	Datusti
Church Brick CoFairview Brick Co		Detroit. Sibley. Detroit.

MINERAL RESOURCES OF MICHIGAN.

CEMENT PRODUCERS, 1915. .

Operators.	Office.	Works.
Huron Portland Cement Co	Bellevue Cooley Block, Jackson Chelsea	Alpena. Bellevue. Cement City. Four Mile Lake. Coldwater and Ouincy.
New Aetna Portland Cement Co. Omega Portland Cement Co. Newaygo Portland Cement Co. Peerless Portland Cement Co. Wyandotte Portland Cement Co. Ezyptian Portland Cement Co.	Detroit	Fenton. Mosherville. Newaygo. Union City. Wyandotte.

LIST OF MICHIGAN COAL MINES, LOCATION BY COUNTY, NAMES OF MANAGERS AND SUPERINTENDENTS.

Address.	Bay City. Bay City. Bay City. Bay City. Bay City.	Bay City. Grand Ledge. Bay City. Williamston. St. Charles.	Saginaw. Swan Creek.	Saginaw Swan Creek. Saginaw. Saginaw. Saginaw.	Saginaw. Saginaw. Corunna. Akron.
Superintendent.	H. C. Lewis John Coryell John Coryell Alex Liddie Alex Liddie	Alex Jeffreys Eben Wright Alex Jeffreys. Thos. M. Jenkins. Richard Jenkins.	John E. Evans $\{ \mid$	Jos. Skillcorn	: : : : : : : : : : : : : : : : : : :
Address.	Bay City Bay City Saginaw Saginaw	Bay City Albion Grand Ledge Bay City Williamston Bay City	Saginaw	Saginaw Swan Creek Saginaw Saginaw Saginaw	Saginaw Geo. Theily. Saginaw Fred Johnsto Detroit. Bay City (W. S.)
Manager.	Chas. Coryell Chas. Coryell R. M. Randall R. M. Randall	E. B. Foss. Chas. Butler E. Be Wright E. Be Foss. Thos. M. Jenkins Chas. Coryell	John T. Phillips	Wm. B. Carmichael (R. M. Randall R. M. Randall R. M. Randall	John Dagan Ed. Savage Wm. Brooks Wm. McAvoy Chas. Handy
County.	Bay Bay Bay Bay Bay	Bay. Calhoun. Eaton. Genesee. Ingham. Saginaw.	Saginaw	SaginawSaginawSaginaw	Saginaw Saginaw Shiawassee Shiawassee Tuscola
Name of mine.	A Robert Gage Coal Co. No. 6. Robert Gage Coal Co. No. 7. Beaver Coal Company. Wolverine Coal Mining Company No. 3.	What Cheer Coal Mining Company No. 1. Calbour County Coal Co Eben Wright Mining Company No. 2. What Cheer Coal Mining Company No. 2. Robert Gage Coal Company No. 2.	Bliss Coal Mining Company	Banner Coal Mining Company. Shiawassee Coal Mining Company. Pers Marquette Coal Company No. 3. Chappell and Fordney No. 2.	Calerlonia Coal Mining Company No. 3. Savage Coal Mining Company Nodyvarine Brick Co. Wodyvarine Brick Co. McAvoy Coal Co. Akron Coal Mining Company

Hon. Thomas Canary, State Coal Mine Inspector, Saginaw, Michigan.

CLAY MINERS, 1915.

Operators.	Office.	Mine.
Ontonagon County: Emmond, Wm. F. Robinson Clay Products Co Vogtlin, W. P. Jeffs, F. A Jeffs Land Co., Ltd.	Akron Ohio	Rockland. Rockland. Rockland. Rockland.
Wayne County: Geo. H. Clippert & Bro. Brick Co		
Wexford County: Stanley & Son, J. Z	Harriette	Harriette.

COKE PRODUCERS, 1915.

Operators.	Address.	Location of plant.	No. of ovens.	County.
Michigan Alkali Co Semet-Solvay Co	Wyandotte Syracuse, N. Y	Plant No. 2	30 175	Wayne. Wayne.

NATURAL GAS PRODUCERS, 1915.

Operator.	Address.
Bensie County: Gordon & Conklin	Beulah.
Hillsdale County: DeWitt, C. M	Osseo.
Macomb County: Hanekow, Mrs. Wm. H. Hartsig, Wm. L. Jacobs, Edward and Otto Elwart, Franz	Warren, R. F. D. No. 2. Warren, R. F. D. No. 2.
Oakland County: Landau, Ed. McClelland, James	Royal Oak, R. D. Redford.
St. Clair County: Haas, H. G. Michigan Central Oil, Gas and Mineral Co. Michigan Development Co. Stevens, H. Leroy. Stock Co., G. B., Xylite Grease and Oil Co. Mason, F. H. Howe, Geo. W. Lawrence, Gillett. May, Henry. Rowe, John A. Stevens, H. Leroy.	Port Huron. Port Huron. Port Huron. Port Huron. Port Huron, 2478 Military St. Port Huron, 4008 Military St. Port Huron. Port Huron. Marysville.
Washtenaw County: Harmon, H. E	Willis.
Wayne County: Becker, Irving	

GRAPHITE PRODUCERS, 1915.

Name.	Address.	Quarry.
Detroit Graphite Co	10, 12th St., Detroit L'Anse	L'Anse. L'Anse.

GRINDSTONE AND SCYTHESTONE PRODUCERS, 1915.

Operator.	Office.	Quarry.
Huron County: Cleveland Stone Co. The Wallace Co. Cleveland Stone Co.	Cleveland, Ohio Port Austin Cleveland, Ohio	Grindstone City. Eagle Mills. Port Austin.

PRODUCERS OF GYPSUM PRODUCTS, 1915.

Operator.	Office.	Name of plant.	Location of mine.
United States Gypsum Co United States Gypsum Co Acme Cement Plaster Co Michigan Gypsum Co American Cement Plaster Co Grand Rapids Plaster Co	Chicago, Ill. Chicago, Ill. St. Louis, Mo. Grand Rapids Lawrence, Kas. 427 Mich. Trust Bidg., Gd. Rapids	Mill No. 5	Beverly. Grand Rapids. Grand Rapids.

LIMESTONE AND LIME PRODUCERS, 1915.

Operators.	Office.	Quarry.
Alpena County: Collins, R. (also lime)	151 Water St., Alpena	Alpena. Wyandotte. Rockport.
Arenac County: McDonnell, Jas. (lime)	Twining	Omer.
Charleroix County: Northern Lime Co. (lime) Charlevoix Rock Products Co. (also lime)	Petoskey	Bay Shore. Charlevoix.
Cheboygan County: Campbell Stone Co. (also lime) Cheboygan Limestone Products Co	Indian River	Afton. Mill Creek.
Delta County: Delta Contracting Co Bichler Bros. Bichler, John	EscanabaGladstoneGroos	Escanaba (Hyde). Pine Ridge. Groos.
Dickinson County: Metronite Co., The	Milwaukee, Wis	Felch.
Emmet County: Antrim Lime Co. (lime) Northern Lime Co. (also lime) Petoskey Crushed Stone Co	912 Mich. Trust Bldg., Grand Rapids Petoskey Petoskey	Petoskey. Petoskey. Petoskey.
Mackinac County: Ozark Stone Quarry Union Carbide Co Fiborn Limestone Co	Ozark	Ozark. Hendricks Quarry. Fiborn Quarry.
Marquette County: City of Negaunee	Negaunee	Negaunee.
Menominee County: Menominee Stone Crusher	Menominee	Menominee.
Monroe County: Shore Line Stone Co The France Stone Co	Monroe	Frenchtown.
Chas. Angerer, Jr Presque Isle County: Michigan Limestone & Chemical Co	Maybee	Scofield. Calcite.
Schoolcraft County: The White Marble Lime Co Delta Contracting Co	Manistique(Also lime) Escanaba	Blaney, Manistique and Marbiehead. Manistique.
Wayne County: Solvay Process Co Dunbar Stone Co	Syracuse, N. Y	Trenton and Sibley. Mouth of Detroit River.

MINERAL PAINT PRODUCERS, 1915.

Operator.	Pigment.	Office.	Location of plant.
Acme White Lead & Color Works. Ditzler Color Co. Metronite Co. Pickands, Mather & Co	White lead, red lead, litharge, orange mineral Whiting (paint filler) Met. Paint	Detroit Detroit Milwaukee, Wis. Cleveland, Ohio.	Detroit. Detroit. Dickinson Co. Iron county.

MINERAL AND SPRING WATER PRODUCERS, 1915.

Operators.	Office.	Spring.
Arctic Spring Water Co	412 Ottawa Ave.,	A-ada
Dailor Marrol Springs Co	Grand Rapids Bellaire	Arctic. Alden
Bailey Marvel Springs Co		Beaver.
Willis, J. L	Bangor	Bromo-Hygeia.
Charlevoix Mineral Water Co	Charlevoix	Charlevoix.
	35 No. Division St	Charlevoix.
Crystal Spring Water, Fuel & Ice Co		Countal Courts
Pastman Smringer Co	Grand Rapids Benton Harbor	Crystal Spring. Eastman.
Eastman Springs Co		
Mt. Clemens Crystal Springs Water Co.	Marquette	Lake Superior Mineral Spring
Occupant Spring Water Co.		Mt. Clemens Crystal Spring.
Ogemaw Spring Water Co	Bay City	Ogemaw. Osseo.
Dewitt, C. M	Osseo	Ponce de Leon.
Pike, Lute H	Topinabee	Sanitas.
Charlest Chag	Mt. Clemens	Victory.
Shorkey, Chas & Bath Co Ypsilanti Mineral Water & Bath Co	Ypsilanti	Moorman Well.
Magnetic Spring Water Co	Saginaw. W. S	Andrew's Magnetic Mineral.
Beard Hill Mineral Spring Co	105 E. Bancroft St	Andrew & Magnetic Mimeral.
Deard IIII Mineral Spring Co	Toledo, Ohio	Avoca.
Charbeneau, Jno. H	Mt. Clemens	Maple Leaf Springs.
Preussel, Frank W	47 Crocker Ave	Maple Dear opings.
a rounder, a runder **	Mt. Clemens	Panacea.
Oliver Co		Welcome Island.
Wall, W. J	South Haven	Crystal.
Jackson, Roger	Crystal Falls	Sterling.
Sutton, Geo	Hartford	Sultana.
Silver Springs Water Co	Detroit	Northville.
Eureka Bottling Co	Mt. Clemens	Eureka.

PETROLEUM PRODUCERS, 1915.

Operators.	Address.
Michigan Central Oil & Mineral Co	807 Pine St., Port Huron. Port Huron.

PIG IRON PRODUCERS, 1915.

Operator.	Office.	Name of furnace.	Location of furnace.
Lake Superior Iron & Chemical CoLake Superior Iron & Chemical CoMitchell-Diggins Iron CoDetroit Furnace Co.	Detroit	Chocolay	Chocolay. Cadillac.
Detroit Iron & Steel Co East Jordan Furnace Co	149 Jefferson	A & B	Detroit.
Cleveland Cliffs Iron Co	Marquette	Antrim Carp River	Antrim. Near Marquette.
Charcoal Iron Co. of America. Charcoal Iron Co. of America. Charcoal Iron Co. of America. Charcoal Iron Co. of America. Charcoal Iron Co. of America. New Process Metal Co.	Detroit Detroit Detroit	Elk Rapids Manistique Newberry	Chocolay. Boyne City. Elk Rapids. Manistique. Newberry. Marquette.

POTTERY PRODUCERS, 1915.

Operator.	Office.	Works.
Ionia County: Ionia Pottery Co	Ionia	Ionia.
Macomb County: Mt. Clemens Pottery Co	Mt. Clemens	Mt. Clemens.
Wayne County: Detroit Flower Pot Co. Jeffery-Dewitt Co. Hupprich, Anton. Pewabic Pottery & Tile Co.	490 Howard St., Detroit	Detroit. Detroit. Detroit. Detroit.

QUARTZ PRODUCERS, 1915.

Operator.	Office.	Mine.
Marquette County: Michigan Quartz Silica Co	Milwaukee, Wis	Ishpeming.

SALT PRODUCERS, 1915.

Operators.	Office.	Works.
Bay County: Hine Lumber Co	Sta. A., Bay City	W. Bay City.
Isabella County: Van Schaack & Sons, Peter	118 Lake St., Chicago, Ill	Mt. Pleasant.
Manistee County: Peters Salt & Lumber Co., R. G Filer & Sons, Vacuum Pan Salt Wks. The Buckley & Douglass Lumber Co., Sands Salt & Lumber Co., Louis	Fast Lake. Filer City. 381 River St., Manistee. Manistee	Manistee.
Mason County: Anchor Salt Co Stearns Salt & Lumber Co	LudingtonLudington	Ludington. Ludington.
Midland County: The Dow Chemical Co	Midland	Midland.
Saginaw County: Mershon, Eddy, Parker & Co Bliss & Van Auken Lumber Co Eastman Flooring Co., S. L. Estate of Edward Germain	Saginaw	Carrollton. Saginaw. Saginaw.
Saginaw Plate Glass Co	Saginaw, E. S. Saginaw, W. S. 430 Shearer Bldg., Bay City Saginaw.	Saginaw. Saginaw W. S. St. Charles. Saginaw.
St. Clair County: Michigan Salt Works. Morton Salt Co. Diamond Crystal Salt Co. Marine City Salt Co.	Marine City	Marine City. Port Huron. Port Huron. Marine City.
Wayne County: Inland Delray Salt Co. Solvay Process Co. Detroit Rock Salt Co. Mulkey Salt Co. Kay Salt Co. Worcester Salt Co. Michigan Alkali Co. Pennsylvania Salt Mfg. Co.	Detroit Detroit. Scranton, Pa. 610 Equity Bldg., Detroit Charleston, W Va. 168 Duane St., New York, N. Y Wyandotte. 115 Chestnut St., Philadelphia, Pa.	Delray. Delray. Detroit. Oakwood. Ecorse. Ecorse. Wyandotte. Wyandotte.

SANDSTONE PRODUCERS, 1915.

Operator.	Office.	Quarry.
Houghton County: Portage Entry Redstone Co	Jacobsville	Jacobsville.
Huron County: Cleveland Stone Co	Cleveland, Ohio	Grindstone.
Monroe County: Strouse, J. D		i .

SAND AND GRAVEL PRODUCERS, 1915.

Operator.	Office.	Pit.
Alcona County: Jas. Bell & Co	Greenbush	Greenbush.
Allegan County: Sutler, Fred W Wiest, Peter Terpstra, Geo Kool, Henry Pierce, Myron Powell, J. C. Craine, W. C Hilaski, Stanley Fry, W. G Purdy, P Gray, Tom C Dendel, M Stuby, J. F.	Byron Center Dorr, R. F. D. 2 Dunningville, R. F. D. 1 New Richmond Otsego Plainwell Douglass Hopkins, R. F. D. 3 South Haven, R. F. D. 6 Fennville Fennville, R. F. D. 2 Allegan, R. F. D. 5 Moline	New Richmond.
Alpena County: Riley & Monkman	501 State St., Alpena	Alpena.
Antrim County: Hilton, Robert. Sissons, F. E. McPherson, Guy. Campbell, W. Swan, Guy. Burch, A. O.	Bellaire, R. F. D. 1. Central Lake, R. F. D. 1. Eastport Mancelona Mancelona Central Lake	Bellaire. Central Lake. Eastport. Mancelona. Mancelona. Central Lake.
Arenac County: Wells, A. H. Daniels, Wm. Rogers, Sidney. Mayor of Omer City.	Standish, R. F. D. 2. Sterling, R. F. D. Twining.	Standish. Sterling. Twining. Omer.
Barry County: Woolston, Chas. Hitt, Geo Renkes, Fred Dunham, P. O Clever, Daniel Hinckley, C. G	Hastings Woodland Hastings Nashville Nashville Hastings	Hastings. Woodland. Hastings. Grove Center. Nashville. Hastings.
Bay County: Hayward, R. Histed, C. D. Whitney, Geo. A.	Bay City, R. F. D. 3 Munger Bentley	Bay City. Munger. Bentley.
Benzie County: Huddleston, Wm Betsey River Orchards, Ben Newhall & Co	Bendon, R. F. D. 1 840 Ohio Bldg., Chicago, or Thompsonville, Mich	Bendon. Thompsonville.
Berrien County: Edgecombe, Geo. W	439 Main St., Benton	Renten Herber
Warren, Paul E Benton Harbor Sand Co American Sand & Gravel Co Garden City Sand Co Kerlikowske Bros Brown, H. C Brewer, Frank Thar, Anton Broderick Bros Brant, Mrs. Rebecca Swank, Wm Mettger, Henry	Benton Harbor Riverside St. Joseph Berrien Springs Galien Coloma, R. F. D. 3	Benton Harbor. Lakeside. Benton Harbor. Benton Harbor. Riverside. St. Joseph. Baroda. Galien. Riverside. Riverside. Bridgeman. Galien. Oronoka.
Branch County: Werner, Jake F. Barnes, Mrs. J. M. Brehm, Jno. H. Clark, Oliver. Wilkins, W. H.	Bronson Montgomery Kinderhook Kinderhook, R. F. D. 1 Coldwater, R. F. D. 3	Kinderhook.

Operator.	Office.	Pit.
Calhoun County: March, Andrew. Young, Willard A. Blowers, N. A. Funk, F. J. Hiscock, Seth Grosbeck, Fred Adrian, John Crystal Sand & Gravel Co.	Union City, R. F. D. 5 Albion	Albion. Athens. Battle Creek. Battle Creek. Butlington. Battle Creek.
Brownlee Park & Material Co Michigan United Traction Co Prince, Wm. A Phillips, L. W Van Sickles, Elmer	Creek Battle Creek Jackson Ceresco Burlington	Brownlee Park.
Cass County: La Grange Twp. Crandall, Lester Blanchard, A. G. Graham, H. A.	CassopolisCassopolis	Cassopolis. Cassopolis. Niles. Union.
Charlevoix County: Healy, Chas	East Jordan, R. F. D. 2	East Jordan.
Cheboygan County: Charpointiar, Jos	Cheboygan, R. F. D. 2	Cheboygan.
Chippewa County: Belanger, Louis Rye, Jas.	Sault Ste. Marie	Sault Ste. Marie. Sault Ste. Marie.
Clare County: Littlefield, J. L	Farwell	Farwell.
Clinton County: Parmenter, Geo. Gleason, S. B. Allen, Frank Keys, Hiram Wilhelm, Noah Mich. United Traction Co. Stowell, Elmer Coats, Lewey.	Shepardsville. Ovid. Elsie. St. Johns. Bath, R. D. Jackson. Ovid.	Shepardsville. Ovid. Elsie. St. Johns. Bath. DeWitt. Ovid. Ovid.
Crawford County: Latham, Nathan J	Grayling	Grayling.
Delta County: Potvin, Louis	Garden Chicago Escanaba Escanaba Gladstone	Garden. Escanaba. Escanaba, Flat Rock. Escanaba. Gladstone.
Dickinson County: Chicago & N. W. R. R. Vulcan Brick Works	Chicago	Iron Mountain and Loretto. Vulcan.
Eaton County: Palmiter, S. J. Hull Bros. Johnson, A. C. LaRock, Hiram Gates, Burton Kent, V. M. Saier, H. E. Wells, C. E.	Bellevue, R. F. D. 4	Laton Danida
Genesee County: Bird, Jos. Burns, Ed. Farnham, Henry. Flint Sandstone Brick Co. Reid, Alfred. Scott, F. D. Boston, H. W.	Davison Duffield Farnham, R. F. D. 3 Filint Filint	Davison. Duffleld. Fenton.

Operator.	Office.	Pit.
Genesee County:—Con.		
Otino Martin	Goodrich	Goodrich.
Bowles, E	Linden	
Hogan, Daniel	Linden	Linden.
Brown, D	Duffield	Duffield.
Johnson Ernie	Duffield	Swartz Creek.
Knov. Wm	Linden	Argentine.
Goodrich Wm P	Goodrich	Goodrich.
Bowles, E. Hogan, Daniel Brown, D. Johnson, Ernie Knox, Wm Goodrich, Wm. P. Bigelow, Edna H.	Grand Blanc	Grand Blanc.
Grand Traverse County: Koch, John	Mayfield	Mayfield.
Tratiot County:		
Church, J. H	Alma	Alma.
Church, J. H	Alma Breckenridge	Breckenridge.
Lippert, Jacob	Elwell	Elwell.
Curtis, C	Ithaca, R. F. D. 6	Ithaca.
Haas Bros	Northstar, R. F. D. 3	Northstar.
Lippert, Jacob. Curts, C Haas Bros. Tomlin, A		Sumner.
Wiles, Wm	Sumner, R. F. D. 2	Sumner.
Hilledale County: Crowl, A. Morgan, H. C. Sholfield, H. C. Thompson, L. W. Wolcott, C. Nelson E. Kline, H. N.	Camden	Camden.
Morgan H C	Camdon D F D 27	Camden.
Sholfield H C	CamdenCamden, R. F. D. 37	Camden.
Thompson I W	Waldron	Pittsford. Waldron.
Welsen C. Nelsen F	Titled-le	Walufon.
Wolcott, C. Nelson E	Hillsdale	Hillsdale.
	Camden	Camden.
Youghton County: Winona Copper Co	Winona	Winona.
Huron County: Conkey Sam	Caseville	Caseville.
Conkey, Sam	Pigeon	Pigeon.
Welless Co. The	Port Austin	Port Austin.
Wallace Co., The	Port Austin	Port Austin.
ngham County:		
Artz, Joe	Leslie	Sec. 23, Bunker Hill Twp.
Atkinson, Mr	Mason	S. W. Cor. Sec. 16, Vevay Tw
Artz, Joe Atkinson, Mr Bell, O. E.	Mason or Lansing	Sec. 36, Delhi Twp.
Bunker, Chas	Mason Mason or Lansing Leslie or Stockbridge	Sec. 35, Bunker Hill Twp.
Bunker, Chas Corwin, W. L. Couch, Chas	Williamston	Sec. 23, Bunker Hill Twp. S. W. Cor. Sec. 16, Vevay Tw Sec. 36, Delhi Twp. Sec. 25, Bunker Hill Twp. Sec. 2, Wheatfield Twp. Sec. 25, Aurelius Twp. N. E. Cor. Sec. 21, Wheatfield Twp.
Couch, Chas.	Mason	Sec. 25. Aurelius Two.
Curtiss, Bert	Williamston	N E Cor Sec 21. Wheatfle
January , 2000000000000000000000000000000000000		Twp.
Potts. W. S	Mason, R. F. D. 1	Mason.
Potts, W. S	Leslie	Sec 28 Bunker Hill Twn
Frost, A. J. Frost, J. F. Holbrook & Skinner	Williamston	Sec. 28, Bunker Hill Twp. Sec. 22, Wheatfield Twp. Sec. 26, Wheatfield Twp. Lansing (Holt). Sec. 15, Wheatfield Twp.
Frost, J F	Williamston	Sec 26. Wheatfield Twn
Holbrook & Skinner	Lansing	Lansing (Holt)
		Sec. 15. Wheatfield Two
Saier H E	WilliamstonLansing, R. F. D. 6	Lansing.
Saler, H. E. Stockman, F. M. Shortwell, E. F. Campbell, Hugh. Nice, Geo. Okobock, Dennis. Potts, Walter F.	Tancing, It. F. D. U	I ancine
Chartuall E F	Lansing	Lansing. Sec. 35, Bunker Hill Twp.
Campbell Hugh	Leslie (or Stockbridge) 1516 6th St., Bay City	Megon
Nice Co.	Mason	Mason. Sec. 6, Vevay Twp. Sec. 5, Vevay Twp.
Nice, Geo	Mason	sec. o, vevay Twp.
DAGOOCK, Dennis	Mason. Mason, R. F. D. 1. Lansing or E. Lansing	rec. 5, vevay Twp.
Potts, Walter F	wason, R. F. D. 1	Mason.
карре, А	Lansing or E. Lansing	Sec. 16, Meridian Twp. Sec. 34, Williamston Twp.
Porter	Williamston	Sec. 34, Williamston Twp.
Sheltraw, A. E	Saginaw	Mason.
Smith, Geo	Mason	Sec. 10, Vevay Twp.
Stevens, F. B	Mason	Sec. 5, Vevay Twp.
Victory, Ward	Mason	Mason. Sec. 10, Vevay Twp. Sec. 5, Vevay Twp. Sec. 36, Bunker Hill Twp. Sec. 25. Delhi Twp. Mas
Porter Sheltraw, A. E. Smith, Geo Stevens, F. B. Victory, Ward Michigan United Traction Co.	Jackson	Sec. 25, Delhi Twp., Mas
Warner, Mr	Mason	Sec. 25, Delhi Twp., Mass and Haslett. N. W. Cor. Sec. 36, Aureli Twp. Sec. 35, Williamston Twp. Sec. 25, Bunker Hill Twp.
Williams, C. W	Williamston	Sec. 35, Williamston Twp.
	7 11	C OF D I TIME
Winters, J. P	Leslie or Stockbridge Williamston	Williamston.

Operator.	Office.	Pit.
Ionia County: Crawford, Geo. W Ionia Cement Products Co. Miller, Henry. Normington, Frank Knapp, A. M. Trowbridge, Forest P. Soper, Frank Hazelitt, J. I. Dansinger, Samuel. Gillmore, Niel. Fellows, Jas. M. Hauserman, Herman. Millard, Seymour. Ronald Twp. Gravel Pit. Grieves, Mrs. Keyser, Chas.	Ionia, R. F. D. 3 Ionia East Main St., Ionia Ionia, R. F. D. 1 Ionia, R. F. D. 7 Ionia Ion	Ionia. Ionia. Ionia. Ionia. Ionia. Ionia. Ionia. Muir. Palo. Saranac. Shiloh. Lake Odessa. Lake Odessa. Palo. Palo. Saranac. Saranac.
Iosco County: Boomer & Son, Jno	Tawas City	Tawas City.
Iron County: Kimball, Ray. Chicago, Milwaukee & St. Paul R. R.	Crystal Falls	Crystal Falls. Crystal Falls.
Isabella County: Winans, Frank. Coughlin, Will. Dexter, James.	Blanchard Shepherd, R. F. D. 1 Shepherd	Blanchard. Shepherd. Shepherd.
Jackson County: Greenville Gravel Co. Cooper, Fred. Winters, J. P. Blackmarr, Chas. Blake, Wm Emmons, Wm. P. Meyers, Albert. Watts, C. R. Berm, C. E. Mich. Central R. R. Co. Mich. United Traction Co. Hunn, G. L. The Greenville Gravel Co.	Greenville, O	Jackson. Jackson. Jackson. Jackson. Jackson. Jackson. Jackson. Jackson. Bloomerville. Michigan City
Kalamazoo County: Mich. United Traction Co. Miller, J. B. Balch, Wm. A. Balch, Uriel K. Buurma, Sam'l H. Haas Bros. Huff, Archie. Klepper, Jacob. Molhock, Peter. Owens, Michael. Russell, Jas. T. So. Mich. Brick Co. Mich. United Traction Co. Mich. United Traction Co. Mich. Railway Engineering Co. Gunn, J. W.	Augusta. Kalamazoo Kalamazoo Kalamazoo Kalamazoo Kalamazoo Kalamazoo Kalamazoo Kalamazoo Kalamazoo	Augusta. Augusta. Kalamazoo. Kalamazoo. Kalamazoo. Kalamazoo. Kalamazoo.
Kalkaska County: Anderson, Lind	KalkaskaSouth Boardman	Kalkaska. South Boardman.
Kent County: Holt, C. E. Deiss, Jos. Reed, Percy. Brewer, Earl Battjes Fuel & Bldg. Mat. Co. Bunker Co., G. W. Harrison Land Co., Ltd. Carpenter Construction Co. Pinyon, S. G. Valley City Stone & Gravel Co.	Ada, R. F. D. 42	Ada. Alpine.

· Operator.	Office.	Pit.
Kent County —Con.		
Kent County.—Con. Ide, D. K	Grandville	Grandville.
Maloney, Pat	Harvard R K I) 40	Harmard
Holmgren, E. A	Kent City	Kent City.
Kriger, M	Kent City	Kent City.
Ryno, M. J	Ross, R. F. D	Ross.
Farnam, Reuben	Kent City Kent City Ross, R. F. D Sand Lake	Sand Lake.
Kriger, M. Ryno, M. J. Farnam, Reuben Standard Builders Supply Co Kloote Sand and Gravel Co	Grand Rapids	Grand Rapids. Grand Rapids.
ake County: Saunders & Co., G. W	Chase	Chase.
	Onaso	Oliado.
Appear County: Hallock, Roy P Miteen, Fred	Almont	Almont.
Miteen, Fred	Goodrich	Goodrich.
Caley, M	Metamora	Hunters Creek.
selanau County: Bronson, Margaret	Maple City, R. F. D. 1	Maple City.
	Maple Oity, it. 1. D. I	Maple City.
Shannon, F. J. Smith, Porter C. Fuller, Charles. Lockwood, Sam	Adrian	Adrian.
Smith, Porter C	Clinton	Clinton.
Fuller, Charles	Hudson	Hudson.
Lockwood, Sam	Hudson Hudson Hudson	Hudson.
	Hudson	Hudson.
Evans, Geo	N. Morenci	N. Morenci.
Gillispie, R. P	Tecumsen	Tecumsen.
Evans, Geo. Gillispie, R. P. Wilson, Ira. Tecumseh Gravel Co.	N. Morenci Tecumseh Tecumseh, R. F. D. 3 Tecumseh	Tecumsen. Tecumseh.
ivingston County:		
Ohio & Michigan Sand & Gravel	1025 Nicholas Bldg.,	
Co	Toledo, Ohio	Chilson.
Coles, Ben	Toledo, Ohio	Fowlerville.
Arnold, O. B	Gregory	
Butler, Dwight	Hamburg	Hamburg.
Co Coles, Ben Arnold, O. B. Butler, Dwight Hosby, E. B. Thomas, Henry.	HoweliOak Grove	Howell. Oak Grove.
Macomb County:		32 2 273.11
Horning Gravel Co	412 Weadock Bldg.,	A
9		Armada.
	Saginaw	A mone de
	Armada	Armada.
	Saginaw Armada Memphis Mt Clamens	Armada. Memphis.
Pratt, Ben J	Armada	Richmond
Pratt, Ben J	Armada	Richmond
Pratt, Ben J Chapman, Jas Lake Side Ice & Coal Co Harder, Henry Wacker, H. Jacob	Armada	Richmond. Mt. Clemens.
Pratt, Ben J. Chapman, Jas Lake Side Ice & Coal Co. Harder, Henry Wacker, H. Jacob.	Armada	Richmond. Mt. Clemens.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co.	Armada	Richmond
Pratt, Ben J Chapman, Jas Lake Side Ice & Coal Co Harder, Henry Wacker, H. Jacob Savedore, Jos Detroit Sand & Gravel Co Superior Sand & Gravel Co Anistee County:	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit	Richmond. Mt. Clemens. Utica. Utica. Utica.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris.	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Utica. Manistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris.	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Utica. Utica. Manistee. Manistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris.	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Wanistee. Manistee. Manistee. Manistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Anistee County: Hansen, Chris. Hubbell Sand Co.	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee.
Pratt, Ben J Chapman, Jas Lake Side Ice & Coal Co Harder, Henry Wacker, H. Jacob Savedore, Jos Detroit Sand & Gravel Co Superior Sand & Gravel Co Innistee County: Hansen, Chris Hubbell Sand Co	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee.
Pratt, Ben J Chapman, Jas Lake Side Ice & Coal Co Harder, Henry Wacker, H. Jacob Savedore, Jos Detroit Sand & Gravel Co Superior Sand & Gravel Co Janistee County:	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit Manistee Manistee Manistee Manistee Manistee Onekama Chief, R. F. D. 2 Chief.	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Onekama. Chief.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hunbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Marquette County: Chicago & N. W. R.	Armada. Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Onekama. Chief.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Marquette County: Chicago & N. W. B. R. Mason County:	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit Manistee Manistee Manistee Manistee Manistee Manistee Mishistee Manistee Monistee M	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Mistee. Manistee. Mistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Marquette County: Chicago & N. W. B. R. Mason County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Mistee. Manistee. Mistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Marquette County: Chicago & N. W. B. R. Mason County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Mistee. Manistee. Mistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Marquette County: Chicago & N. W. B. R. Mason County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Mistee. Manistee. Mistee.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Manistee County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Marquette County: Chicago & N. W. B. R. Mason County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Ministee. Ministee. Ministee. Ministee. Ministee. Michigamme. Custer. Freesoil. Freesoil. Ludington. Ludington.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Innition of County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Iarquette County: Chicago & N. W. B. R. Isson County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Ministee. Ministee. Ministee. Ministee. Ministee. Michigamme. Custer. Freesoil. Freesoil. Ludington. Ludington.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Innition of County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Iarquette County: Chicago & N. W. B. R. Isson County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Ministee. Ministee. Ministee. Ministee. Ministee. Michigamme. Custer. Freesoil. Freesoil. Ludington. Ludington.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Innition of County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Iarquette County: Chicago & N. W. B. R. Isson County: Hail, Ed.	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Mt. Clemens. Utica. Utica. Utica. Utica. Manistee. Manistee. Manistee. Manistee. Manistee. Manistee. Ministee. Ministee. Ministee. Ministee. Ministee. Michigamme. Custer. Freesoil. Freesoil. Ludington.
Pratt, Ben J. Chapman, Jas. Lake Side Ice & Coal Co. Harder, Henry. Wacker, H. Jacob. Savedore, Jos. Detroit Sand & Gravel Co. Superior Sand & Gravel Co. Inistee County: Hansen, Chris. Hubbell Sand Co. Miller Bros. & Co. Summerfield, Porter M. Farr, M. A. McMartin, Chas. Johnson, John Iarquette County: Chicago & N. W. B. R. Iason County:	Armada Memphis Mt. Clemens Richmond Mt. Clemens Utica, R. F. D. 2 34 McGraw Bldg., Detroit Detroit. Manistee Manistee Manistee Manistee Manistee Manistee Manistee Conekama Chief, R. F. D. 2 Chicago	Richmond. Mt. Clemens. Utica. Utica. Utica. Wanistee. Manistee. Manistee. Manistee. Manistee. Mistee. Manistee. Mistee. Mistee. Mistee. Mistee. Mistee. Mistee. Mistee. Mistee. Mistee. Mister. Chief. Michigamme. Custer. Freesoil. Freesoil. Ludington. Ludington. Ludington. Tallman. Tallman.

Operator.	Office.	Pit.
Mecosta County: Conklin, Wm	Big Rapids, R. F. D. 5 Milibrook, R. F. D. 2	Big Rapids. Millbrook.
Midland County: Troyer, D. J. Gehoski, Mike	Brier	Brier. Midland.
Missaukee County: Pickering, O. L	Lake City	Lake City. McBain.
Monroe County: Falmstock, Emerson Stoeckert, Wm National Silica Co	Carlton	Carlton. Monroe. Steiner.
Montcalm County: Belknap Cement Products Co. Boerwinkle, Wm. Matz, Chas. Tissue, Lenn. Sinkey, Mrs. L. M. Larsen, Geo. Williams, E. O.	Greenville. Pierson. Stanton, R. F. D. 1. Carson City. Greenville, R. F. D. 3. Edmore.	Greenville. Pierson. Pierson. Stanton. Carson City. Greenville. Edmore.
Muskegon County: Bettls, Phil. Homer, Wm. Valley, Edw.	Ravenna, R. F. D	Ravenna. Ravenna. Twin Lakes.
Newaygo County: Wentland, Mrs. Johanna. Hall, A. E. Nieboer, J. Raymond, R. J.	Woodville Newaygo Grant	Woodville. Newaygo. Grant.
Oakland County: Park & Son, A. H. Mich. Portland Cement Paving Co. Ely, C. Rice, E. J. Campbell, John. Detroit Oxford Cravel & Stone	Birmingham, R. F. D. 2 Griswold St., Detroit Farmington New Hudson Ortonville, R. F. D. 2	Birmingham. Clarkston. Farmington. New Hudson. Ortonville.
Detroit-Oxford Gravel & Stone Co. Bartlett, C. S. & A. S. Kemp, W. H. Rockwell, C. L. Slater Construction Co. Heal, Geo. Rochester Sand & Brick Co. Boomer Sand & Gravel Co. Packham, H. H. Adams & Cummings.	Oxford. Pontiac. Pontiac. Pontiac. Pontiac. Pontiac. 669 Baker St., Detroit. Detroit. 520 Forest St. E., Detroit. 1715 Dime Bk. Bldg., Detroit. 1105 Kresge Bldg., Detroit	Oxford. Pontiac, 2 miles E. Pontiac. Pontiac. Pontiac. Rochester. Rochester. Rochester.
Oceana County:	1103 Kresge Blug., Detroit	New Hudson.
Aldrich, A. O	Hart	Crystal Valley. Mears. Hesperia. Rothbury. Rothbury.
Ogemaw County: Brooks, H. F	Rose City	Rose City. West Branch.
Osceola County: Carmichael, Ed. White & Day Stone, Chas. E. Hoogerhide, Jno Marvin, Seymour	Evart, R. F. D. 1 Evart. Hersey, R. F. D. 1 Reed City, R. F. D. 6 Tustin, R. F. D. 1	Evart. Evart. Hersey. Reed City. Tustin.

Operator.	Office.	Pit.
Ottawa County: Holthrop, Jno Graham, Mrs. T. Walsma Van Toll Co. Van Weelden & Co., J.	Ferrysburg	Ferrysburg. Grand Haven. Bass River. Grand Haven.
Presque Isle County: Kroll, Andrew	Posen	Posen.
Roscommon County: Campbell Gravel Co	Roscommon	Roscommon.
St. Clair County: Armitage, Sidney Kinney, Chester Snyder, Wm Kitchen, Cyrenius McGennett, Jas Westrick & Son, C. A. Caldwell Transit Co Jacques & Sons, E.	Marine City. 1805 Dime Bk. Bldg., Detroit	Atkins. Atkins. Atkins. Goodells. Smiths Creek. Marine City. St. Clair River and Lake.
Marine Contracting Co	Minn 211 Quay St., Port Huron.	Port Huron. Port Huron.
St. Joseph County: Hill, S	Colon	Colon. White Pigeon. St. Joseph.
Sanilac County: McKillen, David. Swaffer, Chas. Buck, C. J. Gilbert, Geo. Mills, Henry. Dawson & Son.	Brown City. Deckerville. Marlette. Melvin, R. F. D. 6. Minden City. Sandusky.	Brown City. Deckerville. Marlette. Melvin. Minden City. Sandusky.
Shiawassee County: Graham, John Shannon, A. E. Schultz, A. A. Hibbard, Joseph	Laingsburg	Byron. Byron. Laingsburg. Byron.
Tuscola County: Hill, Tom	Caro	Caro. Kingston. Kingston. Millington. Silverwood.
Van Buren County: Burger, F. A. Hoppin, A. D. Shine, John McKee, Jr., Darwin Orr, James. Sherburn, John Otis, L. L. Wright, J. E. Fry, W. G.	Decatur	Bangor. Bangor. Decatur. Decatur.
Washtenaw County: City Concrete & Coal Co Eddie, Geo Fiegel, Fred Pease, Wm Youngs, Ed Crane, Mortimer R Elsifor, S. A Washed Clean Sand & Gravel Co	1015 Dime Bank Bldg., Detroit	Delhi. Ann Arbor. Ann Arbor. Saline. Sysilane. Ypsilanti. Ann Arbor. Dexter.

SAND AND GRAVEL PRODUCERS, 1915.—Concluded.

Operator.	Office.	Pit.
Wayne County: Detroit United Fuel & Supply Co. Wabash R. R. Co., American Silica Co. Thompson, W. R. Pryor, R. C.	Detroit, Free Press Bldg Rockwood Detroit, 606 Kress Bldg Detroit, 933 Dime Bank Bldg	Utica and Detroit. Rockwood. Detroit. 14 miles E. of Rockwood.
Wexford County: Selma Twp. Pit. Fewless, John	Cadillac	Boon. Manton.

TRAP ROCK PRODUCERS, 1915.

Operator.	· Office.	Quarry.
Marquette County: Durocher, T. L. The Park Cemetery Stone Co. City of Negaunee. Marquette Trap Rock Co.	Marquette Marquette Negaunee Marquette	Marquette. Marquette. Negaunee. Marquette.
Houghton County: Winons Copper Co	1	

A.	
	Page
Abrasive, use of lime as an	140 17
Accidents in copper mines, causes of	177-179
composition of	268-273
"Acicular" limestone, occurrence of at Marble Head, Drummond Island	207 250
Adams Point, exposures of Dundee limestone in the vicinity of	249
Afton quarry, core drilling near	198-199
general character of Deds insection in	198-199
Agricultural lime	128
Ahmeek Mining Co., construction work by development and exploration work by	16
development and exploration work by	18,19 17,54
dividends paid byincrease in assets of	17
location of mine of	17
officers of	17 17.56
officers of	17,30
Alabaster gypsum bed Alger county, occurrence, character and development of Paleozoic limestone in table of analyses of limestones of	343
Alger county, occurrence, character and development of Paleozoic limestone in	171,172 268, 269
Algoriah Compar Company, exploration by	19
Algomah Copper Company, exploration by location of mine of	19
officers of	19 14,19
officers of	141,142
	141
Allegan, occurrence of oil at. Allen, Chas., occurrence of shale in well of near Alpena.	357
Allouez Copper Co., construction work by the	182 16
dividends of the	
increase of assets of the	20
dividends of the. increase of assets of the. analyses of limestones of. Alpena county, exposures of shale in. limestone deposits of. occurrence and distribution of the Traverse formation in. Alpena limestone, distribution and character of in Presque Isle county. 249 Alpena ("middle limestone"), occurrence and description of. 160 Alpena Portland Cement Co., analyses of limestone from the quarries of the. plant and quarry of.	358
limestone deposits of	159,163
occurrence and distribution of the Traverse formation in	172
Alpena illnestone, distribution and character of in Fresque lale county249,	172 176
Alpena Portland Cement Co., analyses of limestone from the quarries of the	270-273
plant and quarry of shale supply of Alton P. O., Delta county, exposures of probable Cincinnati beds near Amherstburg dolomite, description of Ammonia, use of lime in the manufacture of Analyses of Alpena limestone at Alpena	179
Shale supply of	174 918
Amherstburg dolomite, description of	158
Ammonia, use of lime in the manufacture of	134
Analyses of Alpena limestone at Alpena	268-270
Cincinnati beds at Stonington, Delta county	216
Bad river limestone Cincinnati beds at Stonington, Delta county drill cores. limestones by counties, table of. Pardwills delormites	252-257
limestones by counties, table of	268-311 188 188
Randville dolomite. Rockport limestone. Saunders dolomite	268-269
Saunders dolomite	167-168
Verde antique marble. Anderdon limestone, description and occurrence of	171 158
Anhydrite, occurrence of, in Monroe county	244
Antrim Lime Co., composition of beds in quarry of	222
Anhydrite, occurrence of, in Monroe county Antrim Lime Co., composition of beds in quarry of quarry and plant of. section exposed in quarry of.	221-222 222
Antrim shale, distribution of in Charlevoix county	190
Emmet county	219
exposures of	358 198
occurrence of in Cheboygan county. Appendix, directory of the producers of non-metallic minerals in Michigan, 1915	282
Aragonite, occurrence of in coral reefs	120
Arenac county, analyses of limestones of	274,277
character, distribution and development of limestone denosits of	185-190
Aragonite, occurrence of in coral reefs. Arenac county, analyses of limestones of geological report by W. M. Gregory on character, distribution and development of limestone deposits of occurrence of Bayport limestone in	163,185

		rge
Arenaceous and siliceous limestone, description of		122 123
Argillaceous limestone, description of	•	44
exploration of on Cliff lands in Keweenaw county	14	, 25
exploration of on Cliff lands in Keweenaw county. Au Train Falls, analysis of limestone from Au Train river, exposures of Beekmantown sandstone in the vicinity of	268-	269
Au Train river, exposures of Beekmantown sandstone in the vicinity of		171
- ·		
В.		
Bad River limestone, occurrence and character of in Gogebic county	146.	166
Bad River limestone, occurrence and character of in Gogebic county		20
use of stamp sand by the		20 78
iron ore reserves in		78
occurrence of graphite in	;	258
value of iron ore reserves in		358 80 213
Bark River, exposures of Trenton limestone near		213
Bas Island Series; description and distribution of the page of the manufacture of witrified bylok and the page	157-	350
Bay county medication of sait in		220
Bayport, occurrence of Bayport limestone near	162-	162
Bayport limestone, description and occurrence of	162-	163
distribution and character of in Huron county	226-	$\frac{229}{229}$
iron ore reserves in occurrence of graphite in value of iron ore reserves in Bark River, exposures of Trenton limestone near Bass Island series; description and distribution of Bay City, manufacture of vitrified brick and tile pear Bay county, production of salt in Bayport, occurrence of Bayport limestone near Bayport limestone, description and occurrence of distribution and character of in Huron county distribution and character of in Jackson county erosion of in Jackson county		229
erosion of in Jackson county. exposures of in Eaton county. occurrence and character of in Arenac county. possible occurrence of in the eastern part of Arenac county	217-	219
occurrence and character of in Arenac county		
possible occurrence of in the eastern part of Arenac county		189
reference to		146 228
Bayport quarry, section exposed in	226-	228
Bay Shore, analyses of limestone at.		196
Bayport quarry, section exposed in. Bay Shore, amaiyses of imestone at exposures of limestone in the vicinity of quarries, section in.		194 195
Quartes, section in		110
Beal, E. S., acknowledgment to	182-	183
Beck's Mill, exposures of Long Lake series at		174
Beekmantown, (Calciferous) sandstone, analyses of	268-	269
distribution of in Luce county		231
exposures of in Chippewa county		205
convergence and character of in Almer county		171
occurrence of in Marquette county		242 242
occurrence of in Marquette county occurrence and character of in Menominee county reference to		146
Bell quarry, near Petoskey, section exposed in the. Bell (Marcellus), shale, exposures of occurrence and distribution of in Presque Isle county.	225-	226
Bell (Marcellus), shale, exposures of		358
occurrence and distribution of in Fresque isse county		249 179
occurrence of at Rockport		174
occurrence and distribution of in Presque Isle county occurrence of occurrence of at Rockport probable occurrence of in core drillings at the south end of Grand Lake. Bellevue, Eaton county, old limestone quarries at limestone property of A. J. Zipp at occurrence of Bayport limestone at occurrence of gypsum at. Bichler, John, acknowledgment to.		259
Polleyus Faton county old limestone queriles at		218
ilmestone property of A. J. Zipp at.		218
occurrence of Bayport limestone at		163
occurrence of gypsum at		343
Bichier, John, acknowledgment to	211-	110 212
"Big Hill" bluff northwest of Manistique, section exposed at		263
Bichler, John, acknowledgment to. quarry of at Groos, Delta county "Big Hill" bluff northwest of Manistique, section exposed at Black Lake, occurrence of limestone bluffs along Rainy river from.	000	ñΩΛ
Black Lake quarry	200-	201
cnaracter of Deus In		201
Black limestone, occurrence of 199,	200.	202
Black Lake quarry character of beds in section in Black limestone, occurrence of Blaney quarry, analysis of Fiborn limestone in occurrence of Fiborn limestone in the vicinity of Blast furnace flux, use of limestone for Bleaching powder, use of limestone in the manufacture of Bolton, occurrence of limestone in the manufacture of		264
Occurrence of Fiborn limestone in the vicinity of	154,	204
Bleaching powder, use of limestone in the manufacture of		129
Bolton, occurrence of limestone sinks near		
Bone ash, use of lime in the manufacture of		139
Botton, occurrence of limestone sinks near Bone ash, use of lime in the manufacture of Boom Company, dam site of Boulder tracts of Engadine dolomite, occurrence of Bradley, C. D. acknowledgment to		184 151
Bradley, C. D. acknowledgment to		110
cited		110 257
reference to		251
Receise limestone occurrence of	118	250
Brecciation, occurrence of in Monroe county.	, ,	246
Brest quarries, Monroe county		249
Brick and tile industry, raw materials of	245	35
cited cired	.360-	-361
Brick-sand lime, directory of operators.		867
maduation of	SWV	_RR1

	Page
Broadwell's saw mill. Thunder Bay river, reference to	184
Bromine and bromide, production of	, 360–361
Bronson, exposures of shale near.	358
Bronson Portising Cement Co., reference to	340 110
reference to	119
Broadwell's saw mill, Thunder Bay river, reference to Bromine and bromide, production of	353 261
qualities of	123
Bull Dog river, exposures of Engadine dolomite near the mouth of	260,261
Bullock (Macon, Christiancy, Nogard), quarry	248 110
classification of limes by	125
reference to	119
Burnett, W. A., acknowledgment to	110 214–215
Burt. G. R., acknowledgment to.	110
Burt Portland Cement Co., quarry, Bellevue, Eaton county	217-218
Butler Cant tests of crushing strength of Bayrort limestone by	218 228
Butler footwall lode in Mass mine.	35
Butler lode, occurrence of in the South Lake mine	46,47 139
Butter, use of time in remning	134
Building stone, occurrence of qualities of exposures of Engadine dolomite near the mouth of. Bull Dog river, exposures of Engadine dolomite near the mouth of. Bullock (Macon, Christiancy, Nogard), quarry. Burchard, E. F., acknowledgment to. classification of limes by reference to. Burnett, W. A., acknowledgment to. Burnt Bluff, Garden Peninsula, exposures and section of Manistique series at. Burt Portland Cement Co., quarry, Bellevue, Eaton county section in. Butler, Capt., tests of crushing strength of Bayport limestone by Butler footwall lode in Mass mine. Butler lode, occurrence of in the South Lake mine Butter, use of lime in refining. By-products of coal distillation	
C.	
Caffey, exposures of Engadine dolomite near. Calcareous tufa, description and occurrence of. Calciferous or Beekmantown sandstone, analyses of, distribution of in Luce county, analyses of in Marquette county. exposures of in Chippewa county occurrence and character of. occurence of in Marquette Co section of at Grand Rapids on the Menominee river. Calcimines, gypsum. Calciumes, gypsum. Calcium carbide, manufacture of the Dundee limestone in the. Calcium carbide, manufacture of. Calcium chloride, production of	. 941
Calcareous tufa, description and occurrence of	118
Calciferous or Beekmantown sandstone, analyses of, distribution of in Luce county,	040 040
analyses of in Marquette county	, 200-209 242
exposures of in Chippewa county	205
occurrence and character of	171-172
section of at Grand Rapids on the Menominee river	243
Calcimines, gypsum	343
Calcite quarry, analyses of drill cores from the vicinity of	251-257 257-258
of the Michigan Limestone and Chemical Co	251
Calcium carbide, manufacture of	128
Calcium chioride, production of	.360–361 130
use of	130
Calcium light pencils, use of lime in the manufacture of	140
Use of	130
Calcium oxide, chemical properties of	124
Calc-sinter or calcareous tufa, description and occurrence of	118
construction work by	16
dividends by in 1915	17
erection of leaching plant by the	22 22
installation of new furnace by the	22
installation of the reclamation plant of the	22
operation of the stamp mill of the	21
production of Calumet & Hecla lode of the	21
production of Calumet lode of the	21,22
production of copper by the recrushing plants of the production of copper from tailings by the production of the Osceola lode of the	21,22 21
production of the Osceola lode of the	21
Calumet conglomerate, exploration of in Cliff lands in Keweenaw Co.	14
Calumet district, summary of iron ore shipments from the	72
Campbell, C. A., acknowledgment to	110
quarry of near Legrand	201
Carleton, analysis of material from drill hole north of	248
Carr hit, introduction of	180
Cass City, occurrence of gypsum at.	343
Caustic sods, use of limestone in the manufacture of	128
Cement mortars, reference to	126
Cement operators, directory of	368
Cement (Portland), industry, growth of	340
statistical tables of	340-342
production of	, 360-361
production of the Osceola lode of the production of the Osceola lode of the treatment of stamp sand by Calumet conglomerate, exploration of in Cliff lands in Keweenaw Co. Calumet district, summary of iron ore shipments from the Campbell, C. A., acknowledgment to. Campbell Stone Co., quarry of at Afton. quarry of near Legrand. Carleton, analysis of material from drill hole north of Carnegie Steel Co., reference to. Carr bit, introduction of Cars bit, introduction of Cass City, occurrence of gypsum at Caustic soda, use of limestone in the manufacture of Cement mortars, reference to. Cement mortars, reference to. Cement operators, directory of Cement (Portland), industry, growth of raw materials of statistical tables of production of statistical tables of production of Shipments of Cement rock, reference to.	340,342 122
Consominat Copper straining Co., operations and production and value or copper in	
1915 by	23

	Page
Chaik, or chalky limestone. Champion Copper Co., dividends by in 1915. Champion Copper mine, increase in production of operations and production and value of copper in 1915. Champion will construction work at the	117
Champion Copper Co., dividends by in 1915.	17 26
Champion Copper mine, increase in production of	23-4
Champion mill construction work at the	16
Chandler, Merritt, acknowledgment to	110
Champion mill, construction work at the Chandler, Merritt, acknowledgment to Chara, formation of marl by	114
Charcoal, production of Charity Islands, exposures of Bayport limestone on Charlevoix, area of limestone near Charlevoix county, analyses of limestones of	131 229
Charlevoix, area of limestone near	190
Charlevoix county, analyses of limestones of	275-279
exposures of shale in	000
occurrence, character and development of limestone deposits in	190-198 358
Charlevoly generalized section in the vicinity of	194
quarry of city of	192
Charlevoix Rock Products Co., quarries of	191
section in	191
Chetham analysis of limestons from near	191-192 268-269
exposures of Reekmantown (Calefferous) near	171
Cheboygan county, analyses of limestones of.	280-283
distribution, character and development of limestone deposits in.	198-205
Cheboygan County Limestone Products Co., quarry of on Mill Creek	203-204 204
occurrence, character and development of limestone deposits in occurrence of shale in Charlevoix, generalized section in the vicinity of	159
exposures of shale in	358
exposures of shale in Cherokee Copper Co., discovery of an amygdaloid lode by the resumption of exploration by the Cherty limestone, occurrence of at Manistique "Chimneys," occurrence of magnesian at Alpena Chippewa county, analyses of limestones of distribution, character and development of limestone deposits in occurrence of lake clays in Christiancy (Macon, Nogard, Christiancy) quarry, analyses of beds in section in	18
resumption of exploration by the	15,17,18
Cherry limestone, occurrence of at Manistique	179
Chinnews county, analyses of limestones of	284-287
distribution, character and development of limestone deposits in	208
occurrence of lake clays in	347
Christiancy (Macon, Nogard, Christiancy) quarry, analyses of beds in	248 248
Cincinnation of North and Dellares, North and	000
Cincinnati beds, Stonington, analyses of	216
Cincinnati group, occurrence of between Little Bay de Noc and Big Bay de Noc	211
Clark, A. G., analyses by	167-168
Clarke, F. W., acknowledgment to.	110 121
Cincinnati and Nothern Kaliway, Jackson division, occurrence of Bayport limestone on Cincinnati beds, Stonington, analyses of. Cincinnati group, occurrence of between Little Bay de Noc and Big Bay de Noc. Clark, A. G., analyses by Clarke, F. W., acknowledgment to reference to. Clay miners, directory of. Clay, slip, occurrence of. Clay, table of production of. Use of for the manufacture of Portland cement.	370
Clay, slip, occurrence of	370 347
Clay, table of production of use of for the manufacture of Portland cement 340 Clays, occurrence of in Michigan pottery, occurrence of	348
Use of for the manufacture of Portland cement	,360,361
Dotterv occurrence of	345
varieties of	347,350
pottery, occurrence of varieties of varieties of Cleveland Stone Co., reference to Cliff Mining Co., explorations by the. Clinton limestone, reference to. Coal, growth, production, mining costs, methods of mining statistical tables 317–324 Coal mines, location, names of managers and superintendents, lists of Coke producers, directory of Coldwater, occurrence of shale near. Coldwater Portland Cement Co., reference to. Collins, Richard, quarry, analyses of limestone from ountry of courry of co	333
Clin Mining Co., explorations by the	. 25
Coal growth production mining costs methods of mining	215_216
statistical tables 317–324	.360-361
Coal mines, location, names of managers and superintendents, lists of	369
Coke producers, directory of	370
Coldwater, occurrence of snale near	358
Collins, Richard, quarry, analyses of limestone from	272-279
quarry of	179
Conduits, production of at Grand Ledge. Conglomerate No. 8, absence of in the Torch Lake section. cocurrence in the New Baltic mine.	350
Conglomerate No. 8, absence of in the Torch Lake section.	39 39
Construction work by the conner companies	16
Contact Copper Co., explorations in 1915 by the	26
Contact mine, diamond drilling at	15
locating of Wyandot No. 8 lode at	15
Cooks Station, exposures of fillestone flear	263 263
"Cool" lime, meaning of term.	12
Copper, average price in 1915.	125 13
ore, tons of concentrates in 1915	18
Construction work by the copper companies. Contact Copper Co., explorations in 1915 by the Contact mine, diamond drilling at locating of Wyandot No. 8 lode at Cooks Station, exposures of limestone near section exposures of limestone near "Cool" lime, meaning of term Copper, average price in 1915. ore, tons of concentrates in 1915. pounds of copper from concentrates in 191 value of in 1915. Copper companies, details of operations of in 1915:	18 18
Copper companies, details of operations of in 1915:	16
Copper companies, details of operations of in 1915: Ahmeek Mining Co. Algomah Mining Co. Allouez Mining Co. Baltic Mining Co. Calumet & Hecla Mining Co. Centennial Mining Co. Champion Copper Co. Cherokee Copper Co. Cliff Mining Co. Contact Copper Co.	17
Algomah Mining Co	19
Allouez Mining Co	19
Calumet & Heela Mining Co	20 21
Centennial Mining Co.	21 22 25
Champion Copper Co	23
Cherokee Copper Co	24
Contact Copper Co	25 26
Contact Copper Co	20

Copper companies, Copper Range Consolidated Co Franklin Mining Co. Hancock Consolidated Mining Co. Houghton Copper Co. Islae Royale Copper Co. Islae Royale Copper Co. Lake Copper Co. Lake Milling, Smelting & Refining Co. Lake Milling, Smelting & Refining Co. Lake Salle Copper Mining Co. Mayflower Mining Co. Michigan Copper Mining Co. Mohawk Mining Co. Naumkeag Copper Co. New Arcadian Copper Co. New Arcadian Copper Co. North Lake Mining Co. Old Colony Copper Co. Onondaga Copper Co. Onondaga Copper Co. Onondaga Copper Co. Onondaga Copper Co. Onondaga Copper Co. Osceola Copper Co. Osunt Lake Mining Co. Sit. Mary's Mineral Land Co. Superior Copper Co. Tamarack Mining Co. Trimountain Mining Co. Trimountain Mining Co. White Pine Copper Mining Co. White Pine Copper Co. White Pine Extension Winona Copper Co. Wolverine Copper Co. Wolverine Copper Co. Wolverine Copper Co. Wolverine Copper Co. Wolverine Copper Co. Wolverine Copper Co. Wolverine Copper Co. Wolverine Copper Co. Copper, increase in yield of refined in 1915 production of refined in 1914 production of refined in 1914 production of refined in 1915 production of refined in 1915 Copper Range Consolidated Copper Co., construction work by the dividends by in 1915 improvements in machinery and mining practice by the. dividends by in 1915 improvements in machinery and mining practice by the. coral reefs, at Alpena and Petoskey.	Page
Copper companies, Copper Range Consolidated Co	26
Franklin Mining Co	27
Hancock Consolidated Mining Co	28
Houghton Copper Co	30
Indiana Mining Co	31
Womenaw Control Co	31 33 33
Take Conner Co	33
Lake Milling, Smelting & Refining Co.	34 34
La Salle Copper Co	34
Mass Consolidated Mining Co	35
Mayflower Mining Co	35
Michigan Copper Mining Co	36
Monawk Mining Co.	37 37
Naumkeag Copper Co	38
New Raltie Copper Co	39
North Lake Mining Co	40
Old Colony Copper Co	41
Onondaga Copper Co	41
Osceola Copper Co	42
Phoenix Consolidated Copper Co	44 45
South Take Mining Co.	46
St Mary's Mineral Land Co	46 47 47
Superior Copper Co	47
Tamarack Mining Co	48
Trimountain Mining Co	49
Victoria Copper Mining Co	49
White Pine Copper Co	50 50
Winte Pine Extension.	51
Walterine Copper Co	52
Wyandotte Copper Co	52
Copper, increase in yield of refined	13
industry in 1915	11
lowering of mining costs of	13
production of refined in 1915	13 13
production of refined in 1914	13
production of telline in 1912	360-361
production cost and price of copper by mines.	56
Copper industry, general review of in 1915.	13
Copper Range Consolidated Copper Co., construction work by the	16
dividends by in 1915	17
improvements in machinery and mining	26
new sales office in New York of the	27
Copper, recovery of from tailings	14
tailings, treatment of	14 112
Coral reefs, at Alpena and Petoskey	112
formation of	112 112
structure of	112
Michigan Alkali Co at Almena	178
Core drilling near Legrand Cores, analyses of drill Corunna, development of shale beds at manufacture of vitrified brick and tile at Cost of mining for five years, Gogebic range Iron River and Crystal Falls districts Manufacture of which we have a contraction of the property of the pro	202
Cores, analyses of drill	251,257
Corunna, development of shale beds at	358
manufacture of vitrified brick and tile at	350
Cost of mining for five years, Gogebic range.	85 93
Marquette range	81
	89
Menominee range	97
Crystal Falls and Iron River districts, costs, profits, losses, and assessments for five	
years, of iron mines of	93 78
years, of iron mines of. Crystal Falls district, appraised value of iron mines in	189
distribution and character of Randville dolomive in	78
iron ore shipments from the	168 78 68–69
iron ore shipments from the. list of iron ore shipments from the. summary of iron ore shipments from the	72
summary of iron ore shipments from the	72
occurrence and character of the Randville dolomite in	148
occurrence and character of the Randville dolomite in occurrence of pre-Cambrian "oval" northeast of value of iron ore shipments from	168 80
value of non ore surpments from	01
D.	
Days river, exposures of Trenton limestone on	212-212
old quarry on	213
Days river, exposures of Trenton limestone on old quarry on old quarry on. Delta county, analyses of limestones of distribution, character and development of limestone deposits of	286-286 211-21
Decodorizer, use of lime as a	139 209

•	Page
Detroit, quarrying of Dundee limestone near	159
Detroit Flower Pot Co., reference to	348
Development and exploration on the copper range in 1015	13 14
Dichromates, use of lime in the manufacture of	139
Dick (Haff P. O.), exposures of Engadine dolomite near	240
Dickinson county, appraised value of iron mines in	78
costs, profits, losses and assessment of from mines in	89
stone denosits of	164-165
iron ore reserves of	78
Disinfectant, use of lime as a	139
Distillation of wood, use of limestone in the	131,132
total paid in 1015	17
Dock Street, Alpena, clay bed in.	184
Dolomite, definition of	119,120
formation of	120
Dolomitization of coral reets on the island of Funaruti	120-122
Donald, analysis of Fiborn limestone from near	239
occurrence of Fiborn limestone near	235,239
Drill tile, production of	350-353
Detroit, quarrying of Dundee limestone near. Detroit Flower Pot Co., reference to. Detroit Graphite Co., reference to. Development and exploration on the copper range in 1915. Dichromates, use of lime in the manufacture of. Dick (Haff P. O), exposures of Engadine dolomite near. Dick inson county, appraised value of iron mines in. costs. profits, losses and assessment of iron mines in. distribution, character and development of pre-Cambrian limestone deposits of. Iron ore reserves of. Disinfectant, use of lime as a Distillation of wood, use of limestone in the. Dividends, in 1915 by copper companies total paid in 1915. Dock Street, Alpens, clay bed in. Dolomite, definition of. formation of. Dolomitization of coral reefs on the island of Funafuti. theories of. Donald, analysis of Fiborn limestone from near occurrence of Fiborn limestone near 234- Drain tile, production of. Drummond, exposures of Niagara limestone in the vicinity of. Drummond Island, probable occurrence of Fiborn limestone on. Duck Lake quarries, Arenac county.	207-208
Drummond Island, probable occurrence of Fiborn limestone on	154
Duck Lake quarries, Arenac county	186
Dundee limestone, analysis of drill cores in the vicinity of Calcite quarry	252-257
description and occurrence of	159
distribution of in Emmet county.	219
distribution, character and development of in Monroe county . 244	248-249
distribution and exposures of in Wayne county	265-267
exposures of on Min Creek	198
occurrence and distribution of in Presque Isle county	249-258
reference to	146
thickness of near Rogers City	250
Durrell, L. W. and W. G. acknowledgment to	110
Durrell querry at Mill Creek Chebergen county	203-204
Durien quarry at with Cleek, Cheboygan county	
section in	204
Section in	204 140
Drummond Island, probable occurrence of Fiborn limestone on Duck Lake quarries, Arenac county. Dundee limestone, analysis of drill cores in the vicinity of Calcite quarry basal magnesian beds of description and occurrence of. distribution of in Emmet county distribution, character and development of in Monroe county. 244 distribution and exposures of in Wayne county exposures of on Mill Creek occurrence of in Cheboygan county occurrence and distribution of in Presque Isle county reference to thickness of near Rogers City. Dundee quarry, section in Durrell, L. W. and W. G., acknowledgment to. Durrell quarry at Mill Creek, Cheboygan county section in Dyeing, use of lime in	
E.	
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
E. Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestone from the quarry of.	288-289 217-219 163 343 110 270-271 174-175 270-271
Eaton county, analyses of limestones of distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at. El Cajon Portland Cement Co., analyses of limestone from the quarry of dismantled plant of. Emley, W. E., acknowledgment to reference to. Emmet county, analyses of limestones of distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at dolomite, alteration of analyses of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county distribution of in Schoeleret county.	288-289 217-219 163 343 110 270-271 174-175 270-271
Eaton county, analyses of limestones of distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at. El Cajon Portland Cement Co., analyses of limestone from the quarry of dismantled plant of. Emley, W. E., acknowledgment to reference to. Emmet county, analyses of limestones of distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at dolomite, alteration of analyses of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county distribution of in Schoeleret county.	288-289 217-219 163 343 170-271 174-175 270-271 175 110 290-293 219-226 17 260,261 286-287 241 151-152 234 260 151
Eaton county, analyses of limestones of distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at. El Cajon Portland Cement Co., analyses of limestone from the quarry of dismantled plant of. Emley, W. E., acknowledgment to reference to. Emmet county, analyses of limestones of distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at dolomite, alteration of analyses of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county distribution of in Schoeleret county.	288-289 217-219 163 343 343 170-271 174-175 270-271 175 110 290-293 219-226 250, 261 286-287 241 151-152 260, 261 260, 261 27, 286 287 287 287 287 287 287 287 287 287 287
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. El Cajon Beach, analyses of limestone from. exposures of argillaceous limestones at. El Cajon Portland Cement Co., analyses of limestone from the quarry of. dismantled plant of. Emiey, W. E., acknowledgment to. Emmet county, analyses of limestones of. distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at. dolomite, alteration of. analyses of. description and distribution of. description and distribution of. distribution of an exposures of in Mackinac county. escarpments of. exposures of in Chippewa county. exposures of in the vicinity of Engadine.	288-289 217-219 163 343 117-217 174-175 270-271 175 110 290-293 219-226 241 151-152 284-287 151-152 206 240-241 241 251-252 244 260 260 260 260 260 260 260 260 260 260
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. EI Cajon Beach, analyses of limestone from exposures of argillaceous limestones at. EI Cajon Portland Cement Co., analyses of limestone from the quarry of dismantled plant of. Emley, W. E., acknowledgment to reference to. Emmet county, analyses of limestones of distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at. dolomite, alteration of analyses of description and distribution of. distribution and distribution of. distribution and exposures of in Mackinac county distribution of exposures of in Chippewa county. exposures of in Chippewa county. exposures of in the vicinity of Engadine thickness of exposures of in the vicinity of Engadine	288-289 217-219 163 343 343 310-271 174-175 270-271 175 290-293 219-226 241 151-152 241 151-152 244 240 241 151-152
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. EI Cajon Beach, analyses of limestone from exposures of argillaceous limestones at. EI Cajon Portland Cement Co., analyses of limestone from the quarry of dismantled plant of. Emley, W. E., acknowledgment to reference to. Emmet county, analyses of limestones of distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at. dolomite, alteration of analyses of description and distribution of. distribution and distribution of. distribution and exposures of in Mackinac county distribution of exposures of in Chippewa county. exposures of in Chippewa county. exposures of in the vicinity of Engadine thickness of exposures of in the vicinity of Engadine	288-289 217-219 163 343 170-271 174-175 270-271 175 110 290-293 219-226 151 151-152 260, 261 286-287 241 151-152 206 240-241 151-152 241
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to El Cajon Beach, analyses of limestone from exposures of argillaceous limestones at El Cajon Portland Cement Co., analyses of limestones at El Cajon Portland Cement Co., analyses of limestones at Emiley, W. E., acknowledgment to reference to Emmet county, analyses of limestones of distribution, character, and development of limestones in Employees, in copper mines, total number of Engadine, boulder tract at dolomite, alteration of analyses of definition of description and distribution of distribution and exposures of in Mackinac county distribution and exposures of in Mackinac county exapposures of in the vicinity of Engadine thickness of exposures and character of Engadine dolomite west of Escanaba river, exposures of Trenton limestone along	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25
Eaton county, analyses of limestones of. distribution, character and development of limestones in occurrence of Bayport limestone in. Eaton Rapids, occurrence of gypsum at Eckel, E. C., acknowledgment to. EI Cajon Beach, analyses of limestone from exposures of argillaceous limestones at. EI Cajon Portland Cement Co., analyses of limestone from the quarry of dismantled plant of. Emley, W. E., acknowledgment to reference to. Emmet county, analyses of limestones of distribution, character, and development of limestones in. Employees, in copper mines, total number of. Engadine, boulder tract at. dolomite, alteration of analyses of description and distribution of. distribution and distribution of. distribution and exposures of in Mackinac county distribution of exposures of in Chippewa county. exposures of in Chippewa county. exposures of in the vicinity of Engadine thickness of exposures of in the vicinity of Engadine	288-289 217-219 163 343 110 270-271 174-175 270-271 175 110 290-293 219-226 260,261 286-287 241 151-152 206 240-241 215-152 216 240-241 251-152 241 251-152 25

	Page
Exploration and development work in 1915 by the New Arcadian Copper Co	15
by the New Baltic Copper Co	15
by the North Lake Copper Co	15
by the One Colony Copper Co	14 15
by the South Lake Copper Co	14
by the White Pine Copper Co.	14
by the White Pine Extension Copper Co	15
on the Cliff lands in Keweenaw county	14
Exploratory work, suspension of at the beginning of 1915.	13
Twentypen workings draining of in the Mose mine	13
Exploration and development work in 1915 by the New Arcadian Copper Co. by the New Baltic Copper Co. by the North Lake Copper Co. by the Old Colony Copper Co. by the Onondaga Copper Co. by the South Lake Copper Co. by the South Lake Copper Co. by the White Pine Copper Co. by the White Pine Extension Copper Co. on the Cliff lands in Keweenaw county Exploratory work, suspension of at the beginning of 1915 resumption of at the close of 1915 Evergreen workings, draining of in the Mass mine.	35
F.	
False Presque Isle, occurrence of Dundee limestone near. "Fat" lime, meaning of Fats, use of lime in the refining of Felch Mountain range, occurrence and character of Randville dolomite in Fiborn limestone, analyses of	249
"Fat" lime, meaning of	124
Falsh the of time in the reliming of	139
Fiborn limestone analyses of 238 908-900	208 207
236,290-299, 236,290-299,	153
character and distribution of	264-265
character of in Mackinac county	235
distribution of in Schoolcraft county	264-265
exposures of	234-235
Occurrence of in the drift on Lime Island.	154-208
Fiborn quarry, exposures of Fiborn limestone in the vicinity of section in Filter, use of lime as a. Financial statements of the copper mining companies, summary of Finishing lime, qualifications of Fire brick, production of Fire-proofing, manufacture of. Flash light powders, use of lime in Flat rock dolomite, description of Fletcher dam, exposures of limestone at Flushing, development of shale beds near	235
Filter, use of lime as a.	139,140
Financial statements of the copper mining companies, summary of	54.55
Finishing lime, qualifications of	127,128
Fire brick, production of	352
Fire-proofing, manufacture of	350,353
Flash night powders, use of time in	140 158
Flate foca doubline, description of	184
Flushing, development of shale beds near	358
Flux use of limestone for blest furnece	197
Forchhammer, G., reference to	121
Ford, H. R., well at Dearborn, occurrence of Engadine dolomite in	152
Ford river, exposures of Trenton limestone along	211
Forchammer, G., reference to Ford, H. R., well at Dearborn, occurrence of Engadine dolomite in. Ford river, exposures of Trenton limestone along. Forestyille, occurrence of shale near. Forsyth, R. J., analyses by. Fort Drummond, Old, exposures of Niagara limestone in the vicinity of. Fossiliferous limestone, occurrence of at Rocknort.	358
Fort Drummond Old exposures of Niagara limestone in the vicinity of	208 200
Fossiliferous limestone, occurrence of at Rockport	174
occurrence of	216,217
Fox, Owen, quarry of	179
analysis of limestone from quarry of	272-3
France Stone Co., analyses of beds in the quarry of	045 046
section in query of	240-240
Franklin mine, construction work at the	16
explorations and development at the	28
Franklin Mining Co., development of the Allouez conglomerate by	27
operations and production and value of copper by the	27
Funaluti Island, dolomitization of coral deposits of	121
Fort Drummond, Old, exposures of Niagara limestone in the vicinity of Fossiliferous limestone, occurrence of at Rockport Cocurrence of Fox, Owen, quarry of analysis of limestone from quarry of France Stone Co., analyses of beds in the quarry of brecciation of beds in section in quarry of Franklin mine, construction work at the explorations and development at the Franklin Mining Co., development of the Allouez conglomerate by operations and production and value of copper by the Funafuti Island, dolomitization of coral deposits of Furnace linings, use of lime and limestone in	130
G.	
Class District Control Designation of the Mandathan control	215
Garden Blum, Garden Peninsula, exposures of the Manistique series at Garden Peninsula, bluffs of Manistique series on exposures of the Manistique series on exposures of Engadine dolomite at "Gashed" or acicular dolomite, occurrence of. Gas, natural, production of. Gas purification, use of lime in. Gas wells, occurrence of Gatesville, exposures of limestone near. Gibraiter quarry analyses of beds in.	15
exposures of the Manistique series on	213-210
Garnet, boulder tract at	15
exposures of Engadine dolomite at	24
"Gashed" or acicular dolomite, occurrence of	24
Gas, natural, production of	300-30
Gas wells accorrence of	35
Gatesville, exposures of limestone near	20
Gibralter quarry, analyses of beds in	
Gibralter quarry, analyses of beds in occurrence of strontium sulphate in. Glass, use of lime and limestone in the manufacture of.	26
Glass, use of lime and limestone in the manufacture of	13
Glue, use of lime for the manufacture of. Glycerine, use of lime in the manufacture of. Gogebic county, distribution and character of the Bad River limestone in	139
Gogebic county distribution and character of the Rad River limestone in	186 18
value of iron ore shipments from	8
Gogebic district, appraised value of iron mines in	7
Gogebic district, appraised value of iron mines in iron ore reserves of list of active iron mines in.	7: 7: 7
list of active iron mines in	
	84 8
iron ore shipments by mines from the occurrence and character of Bad River limestone on	64,6 14
summary of iron ore shipments from the	• 7

	Page
Goose Lake, occurrence of Kona dolomite in the vicinity of Gould City, analyses of Fiborn limestone from near 238 exposures of Fiborn limestone near 154,234 Grabau, cited	169
Gould City, analyses of Fiborn limestone from near	⊢24 0,298
exposures of Fiborn limestone near154,234	,239-240
Grabau, cited	250
reference to	109,161 158
Crain use of lime in the elevification of	139
reference to theory of cause of brecciation in Monroe dolomites by Grain, use of lime in the clarification of Grand Lake, core drillings near the south end of limestone bluffs west of	259
limestone bluffs west of	258
section exposed at	259
Grand Ledge, development of shale at manufacture of vitrified brick, face brick, tile and sewer pipe at	358
manufacture of vitrified brick, face brick, tile and sewer pipe at	350-351
Grand Rapids, gypsum miles at.	343 231
Grand Banids of the Manominee river section along	242-243
Graphite, occurrence of in slate in Baraga county	358
Grand Rapids of the Menominee river, section along. Graphite, occurrence of in slate in Baraga county producers, directory of	371
production of	200-201
Gravel (see sand and gravel).	100
Greases, use of lime in reining.	139 110
Great Lakes Stone & Lime Co., acknowledgment to	268-269
quarry of at Rockport	174
Gregory, W. M., reference to	109,188
Gravel (see sand and gravel). Greases, use of lime in refining. Great Lakes Stone & Lime Co., ackowledgment to analyses of limestone from quarry of quarry of at Rockport. Gregory, W. M., reference to. Griffin, M. J., quarries, analyses of limestone from 183	,272-275
quarry, Arenac county section in	187
quarries of in Alpena county	183
Grindstones production of in Michigan 333	360-361
"Gritstone," occurrence of	333
Grosse Isle quarry	265
Gregory, W. M., reference to. Griffin, M. J., quarries, analyses of limestone from	121
Guelph formation, reference to	146,150
Gwinn District, iron ore snipments by countries of the	73 64–65
summary of iron ore shipments from the	72
Gypsum calcimines, production of	343
Gypsum fire proofing	343
Gypsum, industry, growth and development of	343
Gypsum, land plaster	343
occurrence of	343 371
producers directory of	
producers, directory of	.360-361
producers, directory of statistical tables on	,360–361 340
Gümbel, reference to. Guelph formation, reference to. Gwinn District, iron ore shipments by counties of the iron ore shipments by mines from the summary of iron ore shipments from the Gypsum calcimines, production of. Gypsum fire proofing. Gypsum, industry, growth and development of. Gypsum, land plaster. occurrence of producers, directory of statistical tables on. 344–347 use in Portland Cement manufacture.	,360–361 340
producers, directory of	,360–361 340
н.	
н.	
н.	
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
H. Haff, P. O (Dick), exposures of Engadine dolomite near Hagensville, limestone bluffs in the vicinity of Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received	210,240 258 165 28
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of . Hamburg Hill, analyses of Randville dolomite from . Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by . Hancock mine, geological conditions in the exploration and development at the . Hansen, Wm., acknowledgment to . Harmon & Croweil quarry section in . Harmon & Croweil quarry section in . Harriette, occurrence of slip clay at . Hell Creek, exposures of Long Lake beds on . Hendricks quarry, analyses of beds in	210,240 258 165 28 29 28,29 110 343 188 189 347 ,296–297 237–239 234 254
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of . Hamburg Hill, analyses of Randville dolomite from . Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by . Hancock mine, geological conditions in the exploration and development at the . Hansen, Wm., acknowledgment to . Harmon & Croweil quarry section in . Harmon & Croweil quarry section in . Harriette, occurrence of slip clay at . Hell Creek, exposures of Long Lake beds on . Hendricks quarry, analyses of beds in	210,240 258 165 28 29 28,29 110 343 188 189 347 ,296–297 237–239 234 254
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of . Hamburg Hill, analyses of Randville dolomite from . Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by . Hancock mine, geological conditions in the exploration and development at the . Hansen, Wm., acknowledgment to . Harmon & Croweil quarry section in . Harmon & Croweil quarry section in . Harriette, occurrence of slip clay at . Hell Creek, exposures of Long Lake beds on . Hendricks quarry, analyses of beds in	210,240 258 165 28 29 28,29 110 343 188 189 347 ,296–297 237–239 234 254
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received. purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on Hendricks quarry, analyses of beds in analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county.	210,240 258 165 28 30 28,29 110 343 188 347 297-237-234 236-297 237-234 236-257 231 236,237 156,237
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received. purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on Hendricks quarry, analyses of beds in analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county.	210,240 258 165 28 30 28,29 110 343 188 347 297-237-234 236-297 237-234 236-257 231 236,237 156,237
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at. Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county definition of. distribution of in Mackinac county exposures of hermansyille inmestone in the vicinity of.	210, 240 258 165 28 30 28, 29 110 343 188 189 347 1,296-297 237-239 236 231 236, 237 156, 239 156, 239
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at. Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county definition of. distribution of in Mackinac county exposures of hermansyille inmestone in the vicinity of.	210, 240 258 165 28 30 28, 29 110 343 188 189 347 1,296–297 237–239 236 231 236, 237 156, 239 156, 239
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone in the vicinity of definition of distribution of in Mackinac county definition of distribution of hy C. Rominger of the C. Rominger of the C. Rominger of the C. Rominger of the contract of the contract of the C. Rominger of the C. Rominger of the contract of the contract of the C. Rominger of the contract of the contract of the C. Rominger of the contract of the co	210, 240 258 165 28 30 28, 29 110 343 188 189 347 1, 296–297 237–239 236 121 236, 237 156, 239 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone in the vicinity of definition of distribution of in Mackinac county definition of distribution of hy C. Rominger of the C. Rominger of the C. Rominger of the C. Rominger of the contract of the contract of the C. Rominger of the C. Rominger of the contract of the contract of the C. Rominger of the contract of the contract of the C. Rominger of the contract of the co	210, 240 258 165 28 30 28, 29 110 343 188 189 347 1, 296–297 237–239 236 121 236, 237 156, 239 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Croweil quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county. definition of of. distribution of in Mackinac county. exposures of on Drummond Island. Hermansville limestone, analyses of. definition of by C. Rominger. eccurrence and character of in Menominee county. Hessel, boulder tract at	210, 240 258 165 28 30 28 28, 29 110 343 188 189 347 237-239 236 154 231 236, 237 156, 239 156, 239 243 243 243 243 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Croweil quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county. definition of of. distribution of in Mackinac county. exposures of on Drummond Island. Hermansville limestone, analyses of. definition of by C. Rominger. eccurrence and character of in Menominee county. Hessel, boulder tract at	210, 240 258 165 28 30 28 28, 29 110 343 188 189 347 237-239 236 154 231 236, 237 156, 239 156, 239 243 243 243 243 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Croweil quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county. definition of of. distribution of in Mackinac county. exposures of on Drummond Island. Hermansville limestone, analyses of. definition of by C. Rominger. eccurrence and character of in Menominee county. Hessel, boulder tract at	210, 240 258 165 28 30 28 28, 29 110 343 188 189 347 237-239 236 154 231 236, 237 156, 239 156, 239 243 243 243 243 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Croweil quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county. definition of of. distribution of in Mackinac county. exposures of on Drummond Island. Hermansville limestone, analyses of. definition of by C. Rominger. eccurrence and character of in Menominee county. Hessel, boulder tract at	210, 240 258 165 28 30 28 28, 29 110 343 188 189 347 237-239 236 154 231 236, 237 156, 239 156, 239 243 243 243 243 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Croweil quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of. exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone at reference to. section in. Hendricks series, character of in Mackinac county. definition of of. distribution of in Mackinac county. exposures of on Drummond Island. Hermansville limestone, analyses of. definition of by C. Rominger. eccurrence and character of in Menominee county. Hessel, boulder tract at	210, 240 258 165 28 30 28 28, 29 110 343 188 189 347 237-239 236 154 231 236, 237 156, 239 156, 239 243 243 243 243 243 243 243 243
Haff, P. O (Dick), exposures of Engadine dolomite near. Hagensville, limestone bluffs in the vicinity of. Hamburg Hill, analyses of Randville dolomite from. Hancock Consolidated Mining Co., production of copper and average price received purchase of stock in the Lake Milling, Smelting, and Refining Co., by the resumption of operations in 1915 by. Hancock mine, geological conditions in the exploration and development at the. Hansen, Wm., acknowledgment to. Harmon City, Arenac county, occurrence of gypsum near. Harmon & Crowell quarry. section in. Harriette, occurrence of slip clay at Hell Creek, exposures of Long Lake beds on. Hendricks quarry, analyses of beds in. analyses of drill cores from the vicinity of exposures of Fiborn limestone in the vicinity of high bluff north of. occurrence of Fiborn limestone in the vicinity of definition of distribution of in Mackinac county definition of distribution of hy C. Rominger of the C. Rominger of the C. Rominger of the C. Rominger of the contract of the contract of the C. Rominger of the C. Rominger of the contract of the contract of the C. Rominger of the contract of the contract of the C. Rominger of the contract of the co	210, 240 258 165 28 30 28 28, 29 110 343 188 189 347 237-239 236 154 231 236, 237 156, 239 156, 239 243 243 243 243 243 243 243 243

	Page
"Hot" lime, meaning of. Hupprich, Anton, Detroit, manufacture of pottery by. Hunt, T. S., reference to. Hunt Spur, exposures and character of Fiborn limestone north of. Huron county, analyses of limestones of. distribution, character, and development of limestone in geological report on by A. C. Lane. Huron Portland Cement Co., plant of. reference to. Hydraulic cements, classes of. manufacture of. Hydraulic limes, definition of. manufacture physical and chemical properties of	124
Hupprich, Anton, Detroit, manufacture of pottery by	. 348
Hunt, T. S., reference to. Hunt Spur exposures and character of Fiborn limestone north of	120 240
Huron county, analyses of limestones of	292-293 226-229
distribution, character, and development of limestone in	
geological report on by A. C. Lane	109
Huron Portland Cement Co., plant of	178 110,161
Hydraulic cements, classes of	138
manufacture of	138
Hydraulic limes, definition of	125,126
manuracture, physical and chemical properties of	138
•	
I.	
Ida quarries. Monroe county	247
Indiana Mining Co., explorations of the	15,31
Insecticides, use of lime in the manufacture of .	136 343
Ionia, occurrence oi gypsum at-	348
Iron county, appraised value of iron ore reserves in	78
Ida quarries, Monroe county Indiana Mining Co., explorations of the Insecticides, use of lime in the manufacture of. Ionia, occurrence of gypsum at Ionia Pottery Co., reference to. Iron county, appraised value of iron ore reserves in iron ore reserves of. occurrence and character of Randville dolomite and Saunders formation	78
	167
	80
value of iron ore shipments from Iron mines of Gogebic range, costs, profits, losses and assessments of of Iron River and Crystal Falls districts, costs, profits, losses and assess-	85
of Iron River and Crystal Falls districts, costs, profits, losses and assess-	
ments of	93 81
of Menominee range, costs, profits, losses and assessments of	89
of Menominee range, costs, profits, losses and assessments of	74
	243 76
Iron ore reserves of Michigan. shipments by mines from the Crystal Falls District. Gogebic district. Gwinn district.	68 60
Gogebic district	68,69 64-65
Gwinn district	6465
Iron River district	70-71
Iron River district Marquette Range Menominee district	70-71 58-63 66-67
Iron ore shipments, from Baraga county, value of Dickinson county, value of Gogebic county, value of Iron county, value of	80
Dickinson county, value of	80
Iron county value of	80 80
Iron River and Crystal falls districts, value of	
Marquette range, value of	80
Marquette county, value of	80
Michigan ranges by counties	73
of Michigan, value of80	360,361
Marquette range, value of Marquette county, value of Menominee range value of Michigan ranges by counties of Michigan, value of summary of from Michigan ranges Trop River and Crystal Falls districts costs profits lesses and assessment of mines in	72 93
Iron River and Crystal Falls districts, costs, profits, losses, and assessment of mines in Iron River District, appraised value of iron mines in	70
iron ore reserves of	78 78
iron ore shipments by mines from the	70,71
list of active iron mines in	76 145
summary of iron ore shipments from the	72
malan ad imam and abdumanta duam	80
Isaacson property, Alpena, analyses of limestone from the Isabella county, production of salt in Ishpeming, occurrence of quartz near Isle Royale Copper Co., construction work by the	272-273
Ishnening occurrence of quartz near	339 359
Isle Royale Copper Co., construction work by the	16
operations, exploration and construction by the	31-33
isle Royale lode, possible occurrence of in the New Arcadian mine	39
_	
J.	
Jackson county, analyses of limestones of distribution, character, and development of limestone deposits of occurrence of Bayport limestone in	294,295
distribution, character, and development of limestone deposits of	229-231
occurrence of Bayport limestone in	163
manufacture of vitrified tile and sewer nine at	358 350
Jeffery-DeWitt Co., Detroit, pottery products manufactured by the	348
Jeffery-DeWitt Co., Detroit, pottery products manufactured by the. Jones, F. A., acknowledgment to. Judd, reference to.	110
Judd, reference to	121
K.	
Kawgachewing Pt., exposures of limestone near	195
Kegomic, section in old quarry at Kenneth, exposures of Engadine dolomite in the vicinity of	219
nemieta, exposures of Engadine dolomite in the vicinity of	241

	P	age
Kent county, occurrence of Bayport limestone in	:	231
occurrence of gypsum in		343
Kent county, occurrence of Bayport limestone in occurrence of gypsum in Keweenaw Copper Co., resumption of operations by the Key West, dolomitization of limestone in a deep boring at Kilns, introduction of rotary Koch, A. H., analyses of Petoskey limestone by Koenig, G. A., analyses by Kona dolomite, occurrence and description of Kona Hills, exposures of Kona dolomite in the vicinity of		ექ 199
Kilns introduction of rotary		122 240
Koch, A. H., analyses of Petoskey limestone by	220-	$\frac{1}{2}$
Koenig, G. A., analyses by	;	216
Kona dolomite, occurrence and description of	143,	169
Kona Hills, exposures of Kona dolomite in the vicinity of		169
· L .		
Lake clays, occurrence of. Lake Ella, exposures of Fiborn limestone in the vicinity of. Lake Lode, possible occurrence of in the South Lake mine. Lake Milling, Smelting & Refining Co., operations of the. Lake Superior Iron & Chemical Co., analyses by the. Land plaster, production of. Lane, A. C., explanation of brecciation of Monroe dolomite by reference to. report of on lodes in New Arcadian mine in South Lake mine. L'Anse, occurrence of graphite near.		347
Lake Ella, exposures of Fiborn limestone in the vicinity of	234,5	240
Lake Lode, possible occurrence of in the south Lake mine.		47
Lake Mining, Meeting & Remining Co., speakions of the		240
Land plaster, production of	343-	3 4 4
Lane, A. C., explanation of brecciation of Monroe dolomite by	'	158
reference to	109,	229
report of on fodes in New Arcadian infine		47
L'Anse, occurrence of graphite near	:	358
Larocque, Hawks P. O., elevated tract of limestone near	-	161
Lassalle Copper Co., resumption of operations by the	34	,35
report of on fodes in New Arcadian mine. L'Anse, occurrence of graphite near. Larocque, Hawks P. O., elevated tract of limestone near. LaSalle Copper Co., resumption of operations by the. Legrand, core drilling near quarry, description of Letter of transmittal. Lime, classification by National Manufacturers' Association definition of hydraulic impurities of. principal classes of uses of. principal classes of uses of. qualities of high calcium qualities of magnesian slaking of. statistical tables on use of for agricultural purposes. for building, for finishing in building and chemical industries. in extracting gold and silver from ores in glass making in tanning. in the manufacture of calcium carbide calcium nitrate.		202
Tetter of transmittal		201 5
Lime, classification by National Manufacturers' Association		12 5
definition of hydraulic		125
impurities of		125
principal classes of uses of	260_	120 261
qualities of high calcium	000-0	126
qualities of magnesian		126
slaking of	126,	127
statistical tables on		330
for hilding		120 128
for finishing.		127
in building and chemical industries	•	124
in extracting gold and silver from ores.		140
in glass makingin faming	:	133
in tanning. in the manufacture of calcium carbide. calcium nitrate. glycerine. insecticides lubricants sand lime brick. Lime and limestone, for paint manufacture. in gas purification. miscellaneous uses of. use of in open hearth furnaces. in the treatment of by-products from coal distillation. Lime industry, growth of. Lime Island, occurrence of Fiborn limestone in the drift on. old quarries on. Lime Kiln Crossing, Detroit river, removal of limestone by the U. S. government at.		129
calcium nitrate		130
glycerine		135
Insecticaes.		130
sand lime brick		132
Lime and limestone, for paint manufacture		135
in gas purification		135
Inscending one hearth furnaces	126	138 138
in the treatment of by-products from coal distillation	100,	134
Lime industry, growth of	į	329
Lime Island, occurrence of Fiborn limestone in the drift on	154,	209
Lima Kiln Crossing Detroit river removed of limestone by the U.S. government at		209 265
Liming of soils, investigations of		128
"Lime-soaps," manufacture of	•	135
Lime water, use of as a medicine.		140
Argillaceous and siliceous description and occurrence of		137
brecciated	i17-	រំរំន
classification of		115
conglomeratic		117
definition composition and origin	110,	110
description of varieties	117-	122
formation of coral reef		113
fossiliferous crystalline	116,	117
geologic distribution of	:	141
growth of industry	:	325
high calcium limestone, definitions of		119
list of uses of	110	123
Intilographiclow_magnesian	115,	110
Lime industry, growth of Lime Island, occurrence of Fiborn limestone in the drift on old quarries on. Lime Kiln Crossing, Detroit river, removal of limestone by the U. S. government at Liming of soils, investigations of. "Lime-soaps," manufacture of Lime water, use of as a medicine. Limestone, amount of used in United States for blast furnace flux argillaceous and siliceous, description and occurrence of brecciated classification of. conglomeratic. crystalline (non-metamorphosed) definition, composition and origin description of varieties formation of coral reef fossiliferous crystalline geologic distribution of gradations in growth of industry, high calcium limestone, definitions of list of uses of lithographic low-magnesian magnesian, defined marble or metamorphosed crystalline production and value of statistical tables on 328-328, uses of cryshed		119
marble or metamorphosed crystalline	115,	116
production and value of	000	325
statistical tables on	300-	301 194
use of for Portland cornent		340

Limestone, use of for the manufacture of soda-ash and caustic soda	Pa
	12
use of in the manufacture of bleaching powder	19
producers, directory of	37
imestone and marble, distinction between Limestone bluffs, west from Grand Lake, occurrence of	1
Limestone for building nurnoses, qualifications of	2. 1.
Imestone for building purposes, qualifications of Limestone for burning limes, qualities of for concrete mixture, qualifications of	i
for concrete mixture, qualifications of	. 12
imestone formations, occurrence of Paleozoic	146-14
imestone formations, occurrence of Paleozoic for railroad ballast, qualifications of for road metal, qualifications of imestone sinks, occurrence of in the vicinity of Bolton imestones of Michigan	19
imestone sinks, occurrence of in the vicinity of Bolton	1
Imestones of Michigan	. 10
introduction tolist of illustrations	. 10
table of contents of	i
inseed oil, use of lime in refining. inseed oil, use of lime in refining. iske, line of limestone bluffs in the vicinity of ithographic limestone, exposures in the vicinity of Petoskey	. 13
ithographic limestone, exposures in the vicinity of Petoskey 220—	221 . 223-
ittle Lake, Monroe county, limestone quarry near	2
ittle Sink quarry, Monroe county	2
active Traverse Bay, exposures of Traverse ilmestone in the vicinity of	3,161-10
ong Lake, exposures of the Long Lake series in the vicinity of	1 10,1
road from Alpena, exposures along	į į
series, distribution and character of	s , 258–2.
road from Alpena, exposures along	. 244-2
aidficanta, use of time in the marmacure of	. 1.
Aucas dolomite, description of	1
ucae dolomite, description of	. 231-2 3
ulu quarry, Monroe county	. ž
M .	
Connell. Jas., acknowledgment to	. 1
fcDonnell, Jas., acknowledgment to	. 186
Acculping Pt., exposures of Dundee limestone at	. 2
Lumber Co. analyses of cores from property of	. 231-2
Lumber Co., analyses of cores from property of. AcLeod Lumber Co., D. N., opening of quarry by, in Luce Co. Ackinac county, analyses of limestones of. distribution, character, and development of limestone deposits of. Ackinac Island, brecclation of Monroe formation on.	. 231-2
Mackinac county, analyses of limestones of	. 296-2
distribution, character, and development of limestone deposits of.	. 234-2
Mackinac limestone, definition of	. 137,2 . 2
Macomb county, occurrence of gas in	. 3
Macon (Christiancy, Nogard or Bullock) quarry, analyses of beds in	2
section in	. 248-2
	. 1
fagnesium, use of in flash light powders	. 1
Magnesium, use of in flash light powders	. 1
Nagnesium, use of in flash light powders	. 1
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fanistee county, occurrence of gas in production of salt in	. 1 . 1 . 1
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fanistee county, occurrence of gas in production of salt in	. 1 . 1 . 1
Agnesium, use of in flash light powders oxide, chemical properties of. Asinville, Leon, exposures of limestone on farm of. Asinstee county, occurrence of gas in production of salt in. Anistee salt district. Anistique lakes, exposures of magnesian limestone on.	. 1 . 1 . 3 . 3 . 3
Magnesium, use of in flash light powders oxide, chemical properties of Mainville, Leon, exposures of limestone on farm of Manistee county, occurrence of gas in production of salt in. Manistee salt district Asnistique lakes, exposures of magnesian limestone on Manistique quarries, analyses of beds in the	. 1 . 1 . 3 . 3 . 3 . 1
Agenesium, use of in flash light powders oxide, chemical properties of Asinville, Leon, exposures of limestone on farm of Asinstee county, occurrence of gas in production of salt in Asinstee salt district fanistique lakes, exposures of magnesian limestone on Asinstique quarries, analyses of beds in the section exposed in the Asinstique series, charactery in Mackinac county	. 1 . 1 . 3 . 3 . 3 . 1
Agenesium, use of in flash light powders oxide, chemical properties of Asinville, Leon, exposures of limestone on farm of Asinstee county, occurrence of gas in production of salt in Asinstee salt district fanistique lakes, exposures of magnesian limestone on Asinstique quarries, analyses of beds in the section exposed in the Asinstique series, charactery in Mackinac county	. 1 . 1 . 3 . 3 . 3 . 1
fagnesium, use of in flash light powders	. 1 . 1 . 3 . 3 . 3 . 1 . 2 . 2 . 2 . 1
fagnesium, use of in flash light powders	. 1 . 1 . 3 . 3 . 3 . 2 . 2 . 2 . 1 4,260-2
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fanistee county, occurrence of gas in production of salt in fanistee salt district fanistique lakes, exposures of magnesian limestone on fanistique quarries, analyses of beds in the section exposed in the fanistique series, character-of in Mackinac county composition of description and distribution of fanistique wells, probable occurrence of Fiborn limestones in fanitoulin limestone, reference to farble and timestone, reference to	. 1 . 1 . 3 . 3 . 3 . 2 . 2 . 2 . 1 4,260-2 . 1
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fanistee county, occurrence of gas in production of salt in fanistee salt district fanistique lakes, exposures of magnesian limestone on fanistique quarries, analyses of beds in the section exposed in the fanistique series, character of in Mackinac county composition of description and distribution of fanistique wells, probable occurrence of Fiborn limestones in fanitoulin limestone, reference to fanitoulin limestone, reference to farthe and timestone distriction between	. 1 . 1 . 3 . 3 . 3 . 2 . 2 . 2 . 1 4,260-2 . 1
Agenesium, use of in flash light powders oxide, chemical properties of Asinville, Leon, exposures of limestone on farm of Asinistee county, occurrence of gas in production of salt in. Asinistee salt district Asinistique lakes, exposures of magnesian limestone on Asinistique quarries, analyses of beds in the section exposed in the. Asinistique series, characterof in Mackinac county composition of description and distribution of Asinistique wells, probable occurrence of Asrble and limestone, reference to Marble Head Drummond Island, probable occurrence of Asrble Head Drummond Island, probable occurrence of Fiborn limestone at	. 1 . 1 . 3 . 3 . 3 . 2 . 2 . 2 . 2 . 1 . 4,260–2
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fanistee county, occurrence of gas in production of salt in. fanistee salt district fanistique lakes, exposures of magnesian limestone on fanistique quarries, analyses of beds in the section exposed in the fanistique series, characterof in Mackinac county composition of description and distribution of fanistique wells, probable occurrence of farble and limestone, reference to farble and limestone, reference to farble Head Drummond Island probable occurrence of fiborn limestone at	. 1 . 1 . 3 . 3 . 3 . 2 . 2 . 2 . 2 . 1 . 4,260–2
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fanistee county, occurrence of gas in production of salt in fanistique lakes, exposures of magnesian limestone on fanistique quarries, analyses of beds in the section exposed in the fanistique series, character of in Mackinac county composition of description and distribution of fanistique wells, probable occurrence of Fiborn limestones in fanistique wells, probable occurrence of Fiborn limestones in farible and limestone, distinction between farble or metamorphosed crystalline limestone farble Head, Drummond Island, probable occurrence of farble head, Schoolcraft county, exposures of limestone in the vicinity of	. 1 . 1 . 3 . 3 . 3 . 2 . 2 . 2 . 2 . 1 . 4,260–2
lagnesium, use of in flash light powders oxide, chemical properties of. Iainville, Leon, exposures of limestone on farm of. Iainstee county, occurrence of gas in production of sait in Ianistee sait district. Ianistique lakes, exposures of magnesian limestone on. Ianistique quarries, analyses of beds in the. Ianistique quarries, analyses of beds in the. Ianistique series, character of in Mackinac county. composition of. description and distribution of. 152-153,206,23 Ianistique wells, probable occurrence of Fiborn limestones in Ianitoulin limestone, reference to. Iarble and limestone, distinction between Iarble or metamorphosed crystalline limestone Iarble Head, Drummond Island, probable occurrence of. Iarble Head, Schoolcraft county, exposures of limestone in the vicinity of. kilns of the White Marble Lime Co., Schoolcraft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fagnesium, use of in flash light powders oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fainstee county, occurrence of gas in production of salt in fanistee salt district fanistique lakes, exposures of magnesian limestone on fanistique quarries, analyses of beds in the section exposed in the fanistique series, character of in Mackinac county composition of description and distribution of fanistique wells, probable occurrence of Fiborn limestones in farble and limestone, reference to farble and limestone, distinction between farble or metamorphosed crystalline limestone farble Head, Drummond Island, probable occurrence of Fiborn limestone at section at analyses of beds in the farblehead, Schoolcraft county, exposures of limestone in the vicinity of kins of the White Marble Lime Co., Schoolcraft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of oxide, chemical properties of fainville, Leon, exposures of limestone on farm of fainistee county, occurrence of gas in production of salt in. Manistee salt district. Manistique lakes, exposures of magnesian limestone on fainistique quarries, analyses of beds in the section exposed in the fainistique series, characterof in Mackinac county composition of description and distribution of 152–153, 206, 23 Manistique wells, probable occurrence of Fiborn limestones in fairble and limestone, reference to fairble and limestone, distribution between fairble and limestone, distribution between for metamorphosed crystalline limestone occurrence of fiborn limestone at section at analyses of beds in the fairble	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of oxide, chemical properties of oxide, chemical properties of oxide, chemical properties of oxide, chemical properties of oxide, chemical properties of oxide o	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of Mainville, Leon, exposures of limestone on farm of Manistiee county, occurrence of gas in production of salt in. Manistique lakes, exposures of magnesian limestone on Manistique quarries, analyses of beds in the section exposed in the Manistique series, character of in Mackinac county composition of description and distribution of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of Mainville, Leon, exposures of limestone on farm of Manistiee county, occurrence of gas in production of salt in. Manistique lakes, exposures of magnesian limestone on Manistique quarries, analyses of beds in the section exposed in the Manistique series, character of in Mackinac county composition of description and distribution of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of Mainville, Leon, exposures of limestone on farm of Manistlee county, occurrence of gas in Production of salt in. Manistlee salt district Manistique lakes, exposures of magnesian limestone on Manistique quarries, analyses of beds in the section exposed in the. Manistique series, character of in Mackinac county composition of description and distribution of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of Mainville, Leon, exposures of limestone on farm of Manistee county, occurrence of gas in production of salt in Manistee salt district Manistique lakes, exposures of magnesian limestone on Manistique quarries, analyses of beds in the section exposed in the Manistique series, character of in Mackinac county composition of Manistique wells, probable occurrence of Fiborn limestones in Manistique wells, probable occurrence of Fiborn limestones in Marble and ilmestone, distinction between Marble or metamorphosed crystalline limestone Marble Head, Drummond Island, probable occurrence of Fiborn limestone at section at section at Marblehead, Schoolcraft county, exposures of limestone in the vicinity of kilns of the White Marble Lime Co., Schoolcraft Marble quarry, Dickinson county Marion Stone Co., quarry near Afton section in quarry of definition of "green" marl, or glauconitic sands of New Jersey uses of for Portland cement	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium, use of in flash light powders oxide, chemical properties of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	Pag
Marquette, quarrying of trap rock at	35° 300–30°
Marquette, quarrying of tap fock at Marquette county, analyses of limestones of. appraised value of iron mines in distribution and exposures of the Trenton limestone and Beekman	78
distribution and exposures of the Trenton limestone and Beekmantown sandstone in iron ore reserves of occurrence and character of Kona dolomite in of Verde-Antique marble in of trap rock in value of iron ore shipments from Marquette iron district, distribution of Kona dolomite in Marquette Range, appraised value of iron mines of cost, profits, losses, and assessments of iron mines of iron ore reserves of iron ore shipments by mines from the list of active iron mines of	24:
iron ore reserves of Kone dolomite in	78 169–170
of Verde-Antique marble in	170-17
of trap rock in	357
Marquette iron district, distribution of Kona dolomite in	80 143
Marquette Range, appraised value of iron mines of	78
iron ore reserves of	81 78
iron ore shipments by mines from the	58-63
summary of iron ore shipments from	74 72
list of active iron mines of summary of iron ore shipments from value of iron ore shipments from the summary of active of iron ore shipments from the summary of active or shipments from the summary production of active or shipments from the summary production of active or shipments from the summary production of active or shipments from the summary production of active or shipments from the summary production of active or shipments from the summary production of active iron or shipments from the summary production of active iron or shipments from the summary of iron or shipments from the summary	80
Mason county, production of salt in Masonville, exposures of Trenton limestone near. Mass Consolidated Mining Co., operations and developments by. Maxton, possible occurrence of Fiborn limestone near. Mayflower lode, exploration of the Mayflower Mining Co., explorations and developments by the. Menominee county, analyses of limestones of. Menominee, exposures of Trenton limestone north of. distribution, character, and development of limestone deposits of.	212-213
Mass Consolidated Mining Co., operations and developments by	.35
Maxion, possible occurrence of Fiborn limestone near	14.36.41
Mayflower Mining Co., explorations and developments by the	36
Menominee county, analyses of limestones of	300-301 243
Menominee district, iron ore shipments by mines from the	66-67 145,165
summary of iron ore shipments by mines from the	66-67
"Menominee marble," analysis of by N. W. Winchell	243 243
"Menominee marble," analysis of by N. W. Winchell exposures of along Menominee river. Menominee range, appraised value of fron mines of costs, profits, losses, and assessments for five years of iron mines of	78
costs, pronts, losses, and assessments for five years of fron mines of iron ore reserves of	89 78
list of active iron mines in	74
Wenominee river, section at Grand Rapids on the	242.243
Menominee Stone Crusher Co., quarry of in Trenton limestone	243
Metropolitan district, summary of iron ore shipments from	139
Metz, elevated tract of limestone near	161
costs, profits, losses, and assessments for five years of iron mines of iron ore reserves of. list of active iron mines in. value of iron ore shipments from. Menominee river, section at Grand Rapids on the. Menominee Stone Crusher Co., quarry of in Trenton limestone. Mercury, use of lime in the refining of. Metropolitan district, summary of iron ore shipments from. Metz, elevated tract of limestone near Michigamme Mountain, occurrence of Randville dolomite in the vicinity of. Michigan Alkali Co., reference to. quarry, analyses of limestone from. quarry at Alpena. section in. Michigan Basin, description of	168 110.161
quarry, analyses of limestone from	268-271
quarry at Aipenasection in	176-177 177-178
Michigan Basin, description of Michigan Central oil & Gas Co., wells, Port Huron, occurrence of gas in. Michigan Copper Co., resumption of work by and operations of the Michigan Mine, occurrence of Butler lode in the Michigan Quartz Silica Co., reference to Michigan (Lower Grand Rapids) series, exposures of in Arenac county Michigan Verde-Antique Marble Company, quarry of Midland, production of bromine and bromide at Midland county, production of salt in	148
Michigan Central on & Gas Co., wens, Port Huron, occurrence of gas in	356 16,36
Michigan Mine, occurrence of Butler lode in the	36
Michigan (Lower Grand Rapids) series, exposures of in Arenac county	359 185
Michigan Verde-Antique Marble Company, quarry of	171
Midland county, production of salt in	339
Middle Bluff, Garden Peninsula, exposures and section of Manistique series at	213-214
Mill Creek quarry, Cheboygan county	203-204
section in	204
Midland, production of bromine and bromide at Midland county, production of salt in Middle Bluff, Garden Peninsula, exposures and section of Manistique series at "Mild" lime, meaning of term Mill Creek quarry, Cheboygan county section in Mine casualties in 1915 Mineral and spring waters, producers, directory of production of Minerals of Michigan, metallic non-metallic Mineral paint, production of Mineral paint, production of Orders, directory of Mining costs, lowering of copper of copper mines Mining costs on the Marquette range Gogebic range Liver said Crustal Falls district	373
production of	360-361
non-metallic	101
Mineral paint, production of	360-361 372
Mining costs, lowering of copper	13
of copper mines	56 81
Gogebic range	85
Tion triver and Crystal Paus district	85 93 89
of Misery (Little Thunder Bay) exposures of Long Lake series in the vicinity of Mohawk mine, construction work at the	174-175
Mohawk Mining Co., operations of the	16 37
Monaghan, F. P., acknowledgment to.	110
brecciation of Monroe formation in	302-303 157-158
Mohawk Mining Co., operations of the Monaghan, F. P., acknowledgment to. Monroe county, analyses of limestones of brecciation of Monroe formation in distribution, character and development of the limestones of	244-249
quarries in the eastern part of	242
exposures and character of in the vicinity of St. Impace	242

	Page
Monroe formation, brecciation of	157,158
Monroe formation, brecciation of	265
distribution absences and development of in Manros county	244-248
members of	157,244
members of occurrence and description of occurrence of breccias in occurrence of in Cheboygan county occurrence of near Rogers City report on by Sherzer and Grabau Monroe quarries Monroe Stone Co., reference to Mordant, use of lime as a Morris, J., quarry of in Monroe Mortar, composition of reference to cement Mt. Clemens, occurrence of gas in Mt. Clemens, occurrence of gas in Mt. Clemens Pottery Co., reference to Mt. Pleasant, production of bromine, bromides and calcium chloride at Muddy Creek quarries, Monroe county Mud Lake, analysis of limestone from Munising, exposures of Beekmantown (Calciferous) sandstone near Munising Furnace, analyses of limestone from near	156-159
occurrence of breccias in	118
occurrence of in Cheboygan county	198
occurrence of near Rogers City	250
report on by Sherzer and Grabau	109
Monroe quarries	244-246
Monroe Stone Co., reference to	245
Mordant, use of lime as a	140
Morris, J., quarry of in Monroe	246
Mortar, composition of	126
reference to cement	126
Mt. Clemens, occurrence of gas in	356
Mt. Clemens Pottery Co., reference to	348
Mt. Pleasant, production of bromine, bromides and calcium chloride at	336
Muddy Creek quarries, Monroe county	246
Mud Lake, analysis of limestone from	268-269
Munising, exposures of Beekmantown (Calciferous) sandstone near	171
Munising Furnace, analyses of limestone from near	268-269
Natural cements, manufacture, physical and chemical properties of Natural gas producers, directory of Naumkeag Copper Co., exploration by the Neebish Island, exposures of Beekmantown sandstone on Negaunce, occurrence of trap rock at New Arcadian Copper Co., development and operations of the New Arcadia mine, discovery of amygdaloids, in the mineralization of the New Arcadian lode in the New Baltic Copper Co., exploration by the New Baltic Mine, occurrence of Conglomerate No. 8 in the New Jersey "green" marks of	
N.	
Natural coments, manufacture, physical and chemical properties of	120
Natural concurs, manufacture, physical and chemical properties of	270
Naumian gas productors, directory or	3/U 5 27_90
Nashin Taland arrawas at Deckmantown conditions on	.U, 31-38
Nomental Island, exposures of Deckmantown Sandstone on	200
190gaunos, uccurrence of trap fock at	307
New Arcadian Copper Co., development and operations of the	10,38,40
New Arcadia mine, discovery of amyguations, in the control of the little control of the New Arcadian Ledo in the	30
mineralization of the New Arcadian lode in the	JE 20 40
New Battle Copper Co., experience by the	10,08,40
New Baltic Copper Co., exploration by the	110
	118
New Jersey holding company of the Copper Range Consolidated Copper Company,	07
dissolution of the	27
Newport Center, quarries in the vicinity of	246
"Niagara" limestone, distribution and description of	150-156
exposures of in Chippewa county	206
members of	151
New Jersey holding company of the Copper Range Consolidated Copper Company, dissolution of the. Newport Center, quarries in the vicinity of. "Niagara" limestone, distribution and description of exposures of in Chippewa county members of reference to. occurrence of in Luce county. Nichols, H. W., reference to. Nicholson, Geo. J., acknowledgment to. "Ninety-foot" bluft northeast of Manistique, section exposed at. Nogard (Macon, Christiancy, Bullock), quarry, section in. No. 8 Conglomerate in the New Arcadian mine. Nonesuch basin, explorations in by the Onondaga Copper Company. Nonesuch lode, location of by the Onondaga Copper Co. sinking of shaft to by the White Pine Extension Copper Co. Non-metallic minerals.	146
occurrence of in Luce county	231
Nichols, H. W., reference to	121
Nicholson, Geo. J., acknowledgment to	110
"Ninety-foot" bluff northeast of Manistique, section exposed at,	262-263
Nogard (Macon, Christiancy, Bullock), quarry, section in	248
No. 8 Conglomerate in the New Arcadian mine	38
Nonesuch basin, explorations in by the Onondaga Copper Company	42
Nonesuch lode, location of by the Onondaga Copper Co	15
sinking of shaft to by the White Pine Extension Copper Co	15
Non-metallic minerals	101,313
North Island, Huron county exposures of Bayport limestone on	229
old quarry on	229
Non-metallic minerals North Island, Huron county exposures of Bayport limestone on old quarry on North Kearsarge Branch mine of the Osceola Consolidated Mining Co., operations and	
developments at	43,44
North Lake Copper Co., discovery of three amygdaloid lodes by the	15
North Lake Mining Co., resumption of work and explorations by the	40,41
Northern Complies Works and of Spirit Dy Une.	41
Northern Graphite works, reference to	358
Northern Lime Co., analyses of Deus in quarries at Petoskey.	220-221
quarries at Bay Shore, section in	195
quarries in Petoskey, sections exposed in	219-221
North Kearsarge Branch mine of the Osceola Consolidated Mining Co., operations and developments at . North Lake Copper Co., discovery of three amygdaloid lodes by the . North Lake Mining Co., resumption of work and explorations by the . sinking of shaft by the . Northern Graphite Works, reference to . Northern Lime Co., analyses of beds in quarries at Petoskey . quarries at Bay Shore, section in . quarries in Petoskey, sections exposed in . quarry at Superior, section in . Northern Michigan Marble Co., quarry of . Norwood, exposures of Limestone in the vicinity of .	196-197
Normeri Michigan Marole Co., quarry of	164-165
Norwood, exposures of Limestone in the vicinity of	194
О.	
Oakland county, occurrence of gas in	356
Ocqueoc river, section exposed at the falls of the	259
Oakland county, occurrence of gas in Ocqueoc river, section exposed at the falls of the Office of Public Roads, Washington, D. C., tests by the	228
(HI /goa Petroloum)	-20
Oils, production of wood	131
Old Colony Copper Co., diamond drill explorations on the	41
discovery of the Mayflower lode by the	41
Olis, production of wood Old Colony Copper Co., diamond drill explorations on the Olson, Gilbert, quarry of Omsted quarries near Duck Lake.	181
Omsted quarries near Duck Lake	186
Onaway Limestone Co., quarry of	200-201
section in, quarry of	201
Onaway Limestone Co., quarry of section in, quarry of Onekama, occurrence of gas near One-man drill, introduction of One-man drill, introduction of	356
One-man drill, introduction of	13
WARV ARREST MATERIAL ANTI-VALUE VALUE CALLES CONTROL OF THE CONTRO	,

	Page
Onondaga Copper Co., discovrey of the nonesuch lode by theexploration within the Nonesuch lode by the	42 15
	41,42
Ontonagon county, occurrence of lake clays in. occurrence of slip clays in. Onyx marble or travertine, description and occurrence of. Oolite, occurrence of in the Monroe formation. Oolitic dolomite, occurrence of. Oolitic limestone.	347
occurrence of slip clays in	347
Only marble or travertine, description and occurrence of	118 157
Oblitic delonite, occurrence of	247
Oolitic dolomite, occurrence of. Oolitic limestone Orton, E., Jr., acknowldgement to. Osceola amygdaloid, exploration of on Cliff lands in Keweenaw county thickness of in sec. 1 T. 57 N., R. 32 W. Osceola Consolidated Mining Co., construction work by the. production and dividends of the. Osceola branch mine, operations and explorations at the. Ottawa Lake quarries, Monroe county. Ottawa Lake quarries, section in. Otter Creek, Monroe county, quarries in the bed of. Ozark boulder tract at.	117
Orton, E., Jr., acknowldgement to	110
Osceola amygdaloid, exploration of on Clin lands in Keweenaw county	14,25 25
Osceola Consolidated Mining Co. construction work by the	16
production and dividends of the	17,42
Osceola branch mine, operations and explorations at the	42,43
Ottawa Lake quarries, Monroe county	247 247
Ottawa Lake qualities, section in	246
Ozark boulder tract at	151
Ozark, exposures of Engadine dolomite in the vicinity of	240
Ozark Stone Co., quarry of	240
70	
P .	
Page, L. W., test of Trenton limestone for road metal by Paint filler, manufacture of Paint-graphite, manufacture of Paint-mineral, production of Paints, use of lime and limestone in Paleozoic formations, geologic structure Paleozoic formations, relation of geologic structure to areal distribution of	212
Paint filler, manufacture of	359
Paint-graphite, manufacture of	358
Paints we of lime and limestone in	359 134,135
Paleozoje formations peologic structure	148
relation of geologic structure to areal distribution of	148
relation of geologic structure to areal distribution of	149
geologic occurrence of	146
Penar use of limestone in the manufacture of	146 132
Paper, use of indescone in the manuacture of	132
Parma, exposures of Bayport limestone near	230
old quarries near	230
Partridge Point, occurrence of Thunder Bay series on	160 358
Paxton shate quarry. Paparless Portland Coment Correference to	340
list of. Paper, use of limestone in the manufacture of. Paper manufacture, processes of. Parma, exposures of Bayport limestone near old quarries near Partridge Point, occurrence of Thunder Bay series on. Paxton shale quarry Peerless Portland Cement Co., reference to. Peppel, S. V., acknowledgment to reference to. Petersburg, occurrence of Monroe dolomite near. Petoskey Crushed Stone Co., section in quarry of.	110
reference to	119
Petersburg, occurrence of Monroe dolomite near	249
Petoskey Crusned Stone Co., section in quarry of	222-223
lake terraces at	219
Petoskey Crushed Stone Co., section in quarry of Petoskey, generalized section at lake terraces at Petoskey quarries, analyses of beds in sections exposed in variation in composition of beds in Petroleum producers, directory of Petroleum, occurrence and production of use of lime in refining. Pewahic lode accessibility of from Quincy No. 7 shaft	220-221
sections exposed in	220
Patroleum producers directory of	220-221
Petroleum occurrence and production of 357.	360-361
use of lime in refining	139
Pewabic lode, accessibility of from Quincy No. 7 shaft	
Person lode, accessing of from Guiney No. 7 shart development of in the Quincy mine Pfaff, F. W, reference to Phoenix Consolidated Copper Co., development of the Ashbed lode by the. Pickands, Mather Co., reference to	45 121
Phoenix Consolidated Conner Co. development of the Ashbed lode by the	44.45
Pickands, Mather Co., reference to	359
	373
Pig iron, production and value of	360,361
Pigeon quarry, nuron county, exposure of delemits on the west shore of	228-229 193
Pine River Pt. area of Traverse limestone on	190
Pisolites or pisolitic limestone	117
Plaster board, gypsum	343
Plum Creek, Monroe county, quarries along.	245-246 186
Point Detour. Delta county, exposures of Engagine dolomite on	215
Point Epoufette, exposures of Engadine dolomite on	215
Polishes, manufacture of	359
Porcuping Mountain district, exploration in	210
Port Huron, occurrence of oil at	15 357
Pine River Pt., area of Traverse limestone on Pisolites or pisolitic limestone. Plaster board, gypsum. Plum Creek, Monroe county, quarries along. Pt. Au Gres, exposures of Bayport limestone in the vicinity of. Point Detour, Delta county, exposures of Engadine dolomite on. Point Epoufette, exposures of Engadine dolomite on. Polishes, manufacture of. Poquin, L. O. (Haff P. O.), limestone property of. Porcupine Mountain district, exploration in. Port Huron, occurrence of oil at Port Huron oil field, occurrence of gas in. Portage Lake (Manistee county), occurrence of gas near.	356
Portage Lake (Manistee county), occurrence of gas near	356
	230-231
manufacture of at Alnens	138,139 161
production of	340-342
statistical tables	342
Portage river quarries, analyses of limestone in	230-231
Potter N. S. neknowledgment to	260
Futter, N. S., acknowledgment to	110

	Page
Pottery clays occurrence of	348,350
Pottery companies list of	348
Pottery industry, growth and development of	348
Pottery clays, occurrence of . Pottery companies, list of . Pottery industry, growth and development of . producers, directory of .	374
products, directory of	348
products Pre-Cambrian limestones, distribution, character and development of in Dickinson	010
on the	164-166
county. in Gogebic county. in Iron county in Marquette county.	166-167
in Top county	167-168
in Moreoutte country	160-171
Precious stones, production of Presque Isle county, analyses of limestones of distribution, character and development of limestones of occurrence of Dundee limestone in. occurrence of Traverse formation in. Producers of gypsum products directory of	260 261
Program Tale country analyses of livestones of	360-361 304-305
riesque isie county, analyses of innestones of	249-260
distribution, character and development of finestones of	159
occurrence of Distriction in	162
Designation of the second seco	371
Producers of gypsum products, directory of	56
Production of ore, ore concentrates, and renned copper, mining costs, and sale price.	90
Public Roads, Office or, Washington, D. C., test by	212 228
Producers of gypsum products, directory of. Production of ore, ore concentrates, and refined copper, mining costs, and sale price. Public Roads, Office of, Washington, D. C., test by. tests on, Bayport limestone by office of. Publication 14, the Occurrence of Oil and Gas in Michigan, reference to. Puzzolan cement, manufacture of. Pyroligneous acid, production of.	228
Publication 14, the Occurrence of Oil and Gas in Michigan, reference to	357
Puzzolan cement, manufacture of	139
Pyroligneous acid, production of	131
Q.	
•	
Chiarry Point quarry on	208
Quartz accurrence and production of	360 361
Quartz, producers, directory of	374
Quarry Point, quarry on	124
Oniney avnosires of shale near	358
Quincy mine, construction work at the. Quincy Mining Co., construction by the development of the Pewabic lode by the operations of the production and profits of the.	16
Quincy Mining Co construction by the	45,46
daydonment of the Pewerlia lade by the	45
operation of the	45,46
nreduction and profits of the	45
wage increases by the	46
wage increases by the	29
Quincy 140. I share, joint use of by the Hancock and Quincy mining companies	2.,
_	
R.	
Rainy river, occurrence of limestone bluffs a ong the	260
Rainy river, occurrence of limestone bluffs a ong the	258-259
Poleinville querries Monroe county	
waisinvine quarties, wrontoe country	247
Randville dolomite, analyses of	100
distribution and character of in Dickinson county	164-166
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district	164-166 165
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district	164-166 165 143
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district	164-166 165 143
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district	164-166 165 143
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district	164-166 165 143 145 145,168
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district	164-166 165 143 145 145,168
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district	164-166 165 143 145 145,168
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district	164-166 165 143 145 145,168
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district	164-166 165 143 145 145,168
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district	164-166 165 143 145 145,168
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of on the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" Unsetone occurrence of	164-166 165 143 145 145,168 145 166 164 213 14 13
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general	164-166 165 143 145 145,168 145 166 164 213 14 13
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of on the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" Unsetone occurrence of	164-166 165 143 145 145,168 145 166 164 213 14 13
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district. occurrence of occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district. occurrence and character of in the Menominee district. test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by.	164-166 143 145 145,168 145,168 164 213 14 13 152 125
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district. occurrence of occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district. occurrence and character of in the Menominee district. test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by.	164-166 143 145 145,168 145,168 164 213 14 13 152 125
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district. occurrence of occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district. occurrence and character of in the Menominee district. test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by.	164-166 143 145 145,168 145,168 164 213 14 13 152 125
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district. occurrence of . occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district. occurrence and character of in the Menominee district. test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by.	164-166 143 145 145,168 145,168 164 213 14 13 152 125
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district. occurrence of . occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district. occurrence and character of in the Menominee district. test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by.	164-166 143 145 145,168 145,168 164 213 14 13 152 125
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by. Richmondville, occurrence of shale near. Road material, occurrence of. Rockland, mining of slip clay near Rockport limestone, analyses of. character of.	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by. Richmondville, occurrence of shale near. Road material, occurrence of. Rockland, mining of slip clay near Rockport limestone, analyses of. character of.	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by. Richmondville, occurrence of shale near. Road material, occurrence of. Rockland, mining of slip clay near Rockport limestone, analyses of. character of.	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350) 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal Randville, exposures of Randville dolomite in vicinity of Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general "Ribbon" limestone, occurrence of "Rich" lime, meaning of Richardson, G. B., analyses by Richmondville, occurrence of shale near. Road material, occurrence of Rockland, mining of slip clay near Rockport limestone, analyses of character of character of	164-166 145,168 145,168 145,168 166 164 213,3 14,152 125,168 358,262,387 2(3,387,350 268-269,287
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of of the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by. Richmondville, occurrence of shale near. Road material, occurrence of shale near. Rockland, mining of slip clay near Rockport limestone, analyses of. character of. Rockport, occurrence of fossiliferous limestone at. Rockport quarry, analyses of limestone for Rockport quarry of the Great Lakes Stone and Lime Co. Rockview, exposures of Dundee limestone near line of bluffs south of. quarrying of Dundee limestone near Rominger, C., correlation of "Niagara" limestones by generalized section in old quarries at Bellevue by reference to. Royal Oak, occurrence of gas near Roubler, use of lime in the manufacture of.	164-166 143 145 145, 148 145, 168 145, 168 164 1213 152 152 152 168 202, 357 172 208-209 174 209 249-251 258 215-216 258 215-216 258 215-216 2
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district. occurrence of occurrence of in the Felch mountain district. occurrence and character of in the Crystal Falls district. occurrence and character of in the Menominee district. test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by.	164-166 143 145 145, 148 145, 168 145, 168 164 1213 152 152 152 168 202, 357 172 208-209 174 209 249-251 258 215-216 258 215-216 258 215-216 2
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of of the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills. Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by. Richmondville, occurrence of shale near. Road material, occurrence of shale near. Rockland, mining of slip clay near Rockport limestone, analyses of. character of. Rockport, occurrence of fossiliferous limestone at. Rockport quarry, analyses of limestone for Rockport quarry of the Great Lakes Stone and Lime Co. Rockview, exposures of Dundee limestone near line of bluffs south of. quarrying of Dundee limestone near Rominger, C., correlation of "Niagara" limestones by generalized section in old quarries at Bellevue by reference to. Royal Oak, occurrence of gas near Roubler, use of lime in the manufacture of.	164-166 143 145 145, 148 145, 168 145, 168 164 1213 152 152 152 168 202, 357 172 208-209 174 209 249-251 258 215-216 258 215-216 258 215-216 2
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of on the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of. Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by. Richmondville, occurrence of shale near. Road material, occurrence of shale near. Rockland, mining of slip clay near Rockport limestone, analyses of. character of. Rockport, occurrence of fossiliferous limestone at Rockport quarry, analyses of limestone for Rockport quarry of the Great Lakes Stone and Lime Co. Rockview, exposures of Dundee limestone near line of bluffs south of quarrying of Dundee limestone near Rominger, C., correlation of "Niagara" limestones by generalized section in old quarries at Bellevue by reference to. Royal Oak, occurrence of gas near Roubber, use of lime in the manufacture of.	164-166 143 145 145, 148 145, 168 145, 168 164 1213 152 152 152 168 202, 357 172 208-209 174 209 249-251 258 215-216 258 215-216 258 215-216 2
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Menominee district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by Richardson, G. B., analyses by Richmondville, occurrence of shale near Road material, occurrence of shale near Road material, occurrence of. Character of. Rockport limestone, analyses of. Character of. Rockport quarry of the Great Lakes Stone and Lime Co. Rockview, exposures of Engadine dolomite and Manistique series at Rogers City, exposures of Dundee limestone near line of bluffs south of. Rominger, C., correlation of "Niagara" limestones by generalized section in old quarries at Bellevue by reference to. Royal Oak, occurrence of gas near Rubber, use of lime in the manufacture of. Russell, I. C., reference to. 8.	164-166 145 145 145 145 166 164 213 145 166 164 213 152 215 258 268-269 275 268-269 275 272 249-251 258 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218
distribution and character of in Dickinson county distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Menominee district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of. "Rich" lime, meaning of. Richardson, G. B., analyses by Richardson, G. B., analyses by Richmondville, occurrence of shale near Road material, occurrence of shale near Road material, occurrence of. Character of. Rockport limestone, analyses of. Character of. Rockport quarry of the Great Lakes Stone and Lime Co. Rockview, exposures of Engadine dolomite and Manistique series at Rogers City, exposures of Dundee limestone near line of bluffs south of. Rominger, C., correlation of "Niagara" limestones by generalized section in old quarries at Bellevue by reference to. Royal Oak, occurrence of gas near Rubber, use of lime in the manufacture of. Russell, I. C., reference to. 8.	164-166 145 145 145 145 166 164 213 145 166 164 213 152 215 258 268-269 275 268-269 275 272 249-251 258 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218
distribution and character of in Dickinson county. distribution and character of in the Sturgeon river district occurrence of occurrence of in the Felch mountain district occurrence and character of in the Crystal Falls district occurrence and character of in the Menominee district test of for road metal. Randville, exposures of Randville dolomite in vicinity of. Rapid river, exposures of Trenton limestone in the vicinity of Regrinding operations at copper mills Review of copper industry, general. "Ribbon" limestone, occurrence of "Rich" lime, meaning of. Richardson, G. B., analyses by Richmondville, occurrence of shale near Road material, occurrence of shale near Road material, occurrence of of shale near Rockport limestone, analyses of character of Rockport, occurrence of fossiliferous limestone at Rockport quarry of the Great Lakes Stone and Lime Co. Rockview, exposures of Engadine dolomite and Manistique series at Rogers City, exposures of Dundee limestone near line of bluffs south of quarrying of Dundee limestone near Rominger, C. correlation of "Niagara" limestones by generalized section in old quarries at Bellevue by reference to. Royal Oak, occurrence of gas near Rubber, use of lime in the manufacture of Russell, I. C., reference to.	164-166 145 145 145 145 166 164 213 145 166 164 213 152 215 258 268-269 275 268-269 275 272 249-251 258 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218 215-216 218

	Page
St. Clair county, occurrence of gas in	356
occurrence of oil in	357 335,339
St. Ignace, exposures of Monroe dolomites in the vicinity of	242
St. Ignace, exposures of Monroe dolomites in the vicinity of. St. Ignace, peninsula, brecciation of Monroe formation in occurrence of gypsum on	157,242
Occurrence of gypsum on	343 36
St. Martins Island, occurrence of gypsum on	343
St. Mary's Mineral Land Co., dividends in 1915 by the	17,47
holdings of	156
St. Louis conglomerate in the Mayflower mine. St. Martins Island, occurrence of gypsum on. St. Mary's Mineral Land Co., dividends in 1915 by the holdings of. Salina formation, occurrence and description of reference to. Salit deposits, occurrence of	146
Salt deposits, occurrence of	335
Salt—packers, production of	338.339
Salt, production and value of table and dairy 335,338-339	360-361
Salt producers directory of	375
Sand and gravel, occurrence of	333
production and value of	360,361
producers, directory of	376-383
manufacture of	132
Sand-lime brick operators, directory of	367
Salt deposits, occurrence of Salt deposits, occurrence of Salt deposits, occurrence of Salt production and value of table and dairy Salt—packers, production and value of table and dairy Salt producers, directory of Salt—rock, mining of producers, directory of Sand and gravel, occurrence of producers, directory of Sand-lime brick industry, growth of manufacture of Sand-lime brick operators, directory of Sand-lime brick, production of Sand-lime brick, production of Sand-some producers, directory of Sandstone, production and value of Sandstone industry, decline of Sandstone producers, directory of Saunders formation, occurrence and character of in the Iron River district 145, Scales, Jos., acknowledgment to Schoolcraft county, analyses of limestones of	364
Sandstone industry, decline of	330
Sandstone producers, directory of	375
Scales Jos. acknowledgment to	140,167
Scales, Jos., acknowledgment to Schoolcraft county, analyses of limestones of	304-309
distribution and exposures of Engadine dolomite in	200-201
distribution and exposures of the Manistique series in	260 260
	260-265
Seaman, L., acknowledgment to. quarry at Drummond. Seoul Choix Pt., occurrence of Engadine dolomite on. Sewer pipe, manufacture of. Shale, exposures of.	110 208
Seoul Choix Pt., occurrence of Engadine dolomite on	215.260
Sewer pipe, manufacture of	215,260 350-353 174-358
Shale, exposures of	174-358 358
use of for Portland cement	340
Shale, exposures of quarrying of for Portland cement and brick and tile products use of for Portland cement Sherzer, W. H., reference to. Shoemaker farm, Jackson county, analyses of Bayport limestone on the Shore Line Stone Co., analyses of beds in quarry of Stibler, quarry of Solver Process Co	109,246
Shore Line Stone Co., analyses of beds in quarry of	230 245
section exposed in quarry of	244-245
Sibley, quarry of Solvay Process Co. at	265
occurrence of the Anderdon limestone in	266
occurrence of the Dundee limestone at	265-266
Shore Line Stone Co., analyses of beds in quarry of section exposed in quarry of. Sibley, quarry of Solvay Process Co. at. Sibley quarry, analyses of cores from the vicinity of occurrence of the Anderdon limestone in occurrence of the Dundee limestone at section in thickness of glacial drift at. Siliceous limestone, description of Silver, production of in 1915 value of in 1915. "Sinks," exposures of limestone in.	265-266
Siliceous limestone, description of	122
Silver, production of in 1915	360,361
Value of in 1915	182
"Sinks," exposures of limestone in occurrence of near Bolton "Sixty-foot" bluff northeast of Manistique, section exposed at	182
"Sixty-foot" bluff northeast of Manistique, section exposed at	263
Slip clay, occurrence of Sloan, R. F., acknowledgment to "Slow" lime, meaning of term Sly, H. D., acknowledgment to Smith, W. E., acknowledgment to	347 110
"Slow" lime, meaning of term	125
Siy, H. D., acknowledgment to	110 110
	219
Smith, W. E., et. al., composition of beds, exposed on the property of	292-293
section exposed in test pit on property of	223-224 110
Soaps, use of lime in the manufacture of	135 128
Soda ash, use of lime in the manufacture of	128
Smith, W. M., acknowledgment to. Soaps, use of lime in the manufacture of. Soda ash, use of lime in the manufacture of. Solvay Process Co., quarry of at Sibley. South Kearsarge Branch mine of the Osecola Consolidated Mining Co., operations and developments at the	265
developments at the	44,45
developments at the South Lake lodes, Nos. 1, 2 and 3, reference to South Lake rips construction work at the	15
South Lake mine, construction work at the	16 14
production and operations of the	46,47
production and operations of the	355
near	230
Stalactic and stalagmitic limestone	118
stamp sand waste, use of	14 13
Steam turbine, increased use of low pressure	140
Steel pickling, use of lime in. Steiger, Geo., analyses of Randville dolomite by. Stock, G. B., Xylite Grease & Oil Co., oil wells, occurrence of gas in	165
চাতেкে, G. B., Xyiite Grease & Oil Co., oil wells, occurrence of gas in	356

	Page
Stonington, bluffs of Cincinnati group at. Stony Island, Detroit river, exposures on. Stony (Heistermann) Island, Huron county, exposures of Bayport limestone on. Stony Point, exposures of limestone on. Strontium sulphate, occurrence and character of Randville dolomite in. Sugar, use of limestone in the manufacture of. "Sugar, use of production of	216
Stony Island, Detroit river, exposures on.	265 229
Stony (Heistermann) Island, nuron county, exposures of Dayport limestone on	160,184
Strontium sulphate, occurrence of in Gibraltar quarry, Wayne county	268
Sturgeon River district, occurrence and character of Randville dolomite in	165
Sugar, use of limestone in the manufacture of	131 131
Sulphur, occurrence of in the Monroe formation.	244,247
Sulphur, occurrence of in the Monroe formation. Sulphur, occurrence of in the Monroe formation. Summary table of the production and value of mineral products in Michigan, 1911-	200 201
1915. Superior, quarry of Northern Lime Co. at. Superior Copper Co., mining operations of. Swan Creek quarries, Monroe county. Swan river, extent of Dundee imestone westward from.	360-361 196-197
Superior Copper Co., mining operations of	47-48
Swan Creek quarries, Monroe county	246 250
Swam river, extent of Dundee Imestone westward from	54 . 58
Summary of financial statements of copper mining companies for 1915. Summary of iron ore shipments from Michigan ranges. Summary of results obtained by Michigan copper mining companies in 1915. Swanzy district, list of active iron mines in.	54,58 72
Summary of results obtained by Michigan copper mining companies in 1915	56 74
Swanzy district, list of active from mines in	17
T.	
Walle of contents	
Tailings treatment of copper	14
Tamarack mine, construction work at the	16
Tamarack Mining Co., operations, production and profits of the	48,49 135
Table of contents. Tailings, treatment of copper Tamarack mine, construction work at the. Tamarack Mining Co., operations, production and profits of the. Tanning, uses of lime in Tar, production of. Taylor, B. H., analyses by. "Temporary" hardness of water cause of. Tests of Bayport limestone for road metal. Randville dolomite for road metal. Trenton limestone for road metal. Thompson's Harbor, core drillings near.	131
Taylor, B. H., analyses by	180,181
"Temporary" hardness of water cause of	133 22 8
Randville dolomite for road metal	166
Trenton limestone for road metal	212
Thompson's Harbor, core drillings near	259 258
Thompson's Harbor, core drillings near exposures of Dundee limestone in the vicinity of thunder Bay, exposures of Traverse limestones near Thunder bay.	159
Thunder Bay river, exposures of limestone along	183
Thunder Bay (Upper Traverse) series, occurrence and character of	183,184
Tile-vitrified, manufacture of.	350-353
Tower, exposures of Traverse limestone at	203
Trap rock—amygdaloidal, occurrence of in the copper districts	357-358
producers, directory of	383
Thunder Bay, exposures of Traverse limestones near Thunder bay Thunder Bay river, exposures of limestone along. Thunder Bay (Upper Traverse) series, occurrence and character of. Tile-vitrified, manufacture of. Tower, exposures of Traverse limestone at Trap rock—amygdaloidal, occurrence of in the copper districts. Trap rock, occurrence and development of in Michigan producers, directory of. production and value of. Traverse formation, distribution and character of in Presque Isle county geological report by A. W. Grabau on the members of. occurrence and description of. occurrence of in Charlevoix county occurrence of in Charlevoix county Traverse limestone, distribution of in Emmet county. Traverse limestone, distribution of in Emmet county. Travertine and only marble, description and occurrence of. Travertine, formation of.	,360-361
distribution of in Charlevoix county	, 206–200 190
geological report by A. W. Grabau on the	100
members of	160-160
occurrence of in Charlevoix county	190
occurrence of in Cheboygan county	198
reference to	146
Travertine and onyx marble, description and occurrence of	118
Travertine and onyx marble, description and occurrence of Travertine, formation of Trenton limestone, analyses of in Marquette county areal distribution and general description of distribution, character and development of in Delta county exposures of in Luce county exposures of in Chippewa county occurrence and character of in Menominee county reference to	114
Trenton limestone, analyses of in Marquette county	242 149–150
distribution, character and development of in Delta county	211-213
distribution of in Luce county	231
exposures of in Chippewa county	208 242-243
occurrence of in Marquette county	242
reference to	146 49
Trout Lake, exposures of Fiborn limestone west of	154,240
Trowbridges mill, Thunder Bay river, reference to	184
Tufa, description and occurrence of	118 114
Turbine—steam, increased use of	113
Turner gypsum bed, description of	343
Timm, P. F. W. acknowledgment to	110 343
reference to Trimountain Mining Co., production and profits of the Trout Lake, exposures of Fiborn limestone west of Trowbridges mill, Thunder Bay river, reference to Tufa, description and occurrence of formation of. Turbine—steam, increased use of Turner gypsum bed, description of Timm, P. F. W. acknowledgment to Tuscola county, occurrence of gypsum in Twining, occurrence of gypsum near	343
U.	
Union Carbide Co., quarry of	236 155
Sault Ste. Marie, core drilling by on the D. N. McLeod Lumber	
Co. property. Union City, exposures of shale near.	231
Union City, exposures of shale near. Upper Grand Rapids (Bayport), limestone, occurrence and character of in Arenac	358
county	185

Upper Monroe or Detroit River series, quarries in	Page 246-248
Upper Monroe or Detroit River series, quarries in	265 249
v.	
Varnish, use of lime in the manufacture of	139
Verde antique marble, analyses of	170-171 171
quarrying of	171
Verde antique marble, analyses of . occurrence of northwest of Ishpeming . quarrying of . Victoria Copper Mining Co., new shaft of the . production and profits of the . Victoria mine construction work at the .	49 49
Victoria mine, construction work at the	16
w.	
Wage increases by the Quincy Mining Co	46
Wages in 1915	14 110
reference to	227
Wallace Company, reference to	333 227
Wall-plaster, gypsum	343
Wage increases by the Quincy Mining Co. Wages in 1915. Wallace, R. N., acknowledgment to reference to. Wallace Company, reference to . Wallace Stone Co., quarry of near Bayport. Wall-plaster, gypsum. Wandtland, August, occurrence of Fiborn limestone on the farm of . Warner brick-yard clay, analysis of .	239 184
Warren, gas wells near	35 6
Warren, gas wells near. Water softening, use of lime in. Water Town Arsenal, tests of Bayport limestone at. Waucedah, exposures of Hermansville limestone in the vicinity of. Wayne county, analyses of limestones of. Wayne county, distribution, character and development of limestones in.	133 228
Waucedah, exposures of Hermansville limestone in the vicinity of	243
Wayne county, analyses of ilmestones of	310-311 265-267
Welton, G. D., acknowledgment to West Detroit occurrence and development of lake clays at West lode, exploration of by the Cliff Mining Co.	335
West Detroit occurrence and development of lake clays at	110 3 4 7
West lode, exploration of by the Cliff Mining Co	25 347
Wexford county, occurrence of slip clay in Wheeler, W. C., reference to Whitedale (Gulliver P. O.), analyses of limestone from "road" quarry 7 miles northeast of	121
Vasv VI	265
exposures of limestone in the vicinity of	264 154,264
"road" quarries in the vicinity of	264
White Marble Lime Co., quarry and lime kilns of	213 261-262
quarry of at Blaney Quarry or Nicholsonville	264 16
exploration and development by	14
operations of the	50 50
exposures of limestone in the vicinity of occurrence of Fiborn limestone four miles north of Whitefish river, exposures of Trenton limestone along. White Marble Lime Co., quarry and lime kilns of quarry of at Blaney Quarry or Nicholsonville. White Pine Copper Co., construction work by the exploration and development by operations of the new stamp mill of the. White Pine Extension Copper Co., exploration west of White Pine and Nonesuch mines by the new shaft of the	15
new shaft of the	15 51
organization and explorations of	50,51
white Rock, occurrence of shale near	15 358
White Stone Pt., exposures of limestone near	188
Williamston, project for the manufacture of face brick at proposed development of shale beds at Winchell, A., reference to	351 358
Winchell, A., reference to Winchell, N. H., field notes of, reference to.	109,229 184
	51,52
rebuilding of King Philip shaft-house No. 1 by the resumption of operations by the Wolverine Copper Co., production, costs, and dividends of the	52 51,52
Wolverine Copper Co., production, costs, and dividends of the	52
Wolverine Conner Convenient of the	193 52
Wolverine Lime Co., quarry of. Wolverine Portland Cement Co., reference to. Wood-filler, manufacture of.	193 340
Wood-filler, manufacture of	359
	131 247
Woolmith quarry, Monroe county, analyses of beds in	246-247
wyanuor Copper Co., resumption of operations by the	52,53
Z.	
Zipp, A. J., limestone property of near Bellevue, Eaton county	218

SERIAL-DO NOT REMOVE FROM BUILDING

CIRCULATES ONLY TO DEPT. OFFICES

