운영체제 공통 질문

1. 프로세스와 쓰레드의 차이에 대해 설명해주세요.

- 프로세스는 실행 중인 프로그램을 말하며, 완벽히 독립적이기 때문에 메모리 영역을 다른 프로세스와 공유하지 않습니다. 프로세스는 최소 1개의 쓰레드를 가지고 있습니다.
- 쓰레드는 프로세스 내에서 Stack만 따로 할당 받고, 그 이외의 메모리 영역을 공유하기 때문에 다른 쓰레드의 실행 결과를 즉시 확인 할 수 있습니다. 쓰레드는 프로세스 내에 존재하며 프로세스가 할당 받은 자원을 이용하여 실행됩니다.

2. 멀티 프로세스와 멀티 쓰레드의 특징에 대해 설명해주세요.

- 멀티 프로세스는 하나의 프로세스가 죽어도 독립적이기 때문에 다른 프로세스에 영향을 끼치지 않고 계속 실행된다는 장점이 있지만 멀티 쓰레드보다 많은 메모리 공간과 CPU시간을 차지한다는 단점이 있다.
- 멀티 쓰레드는 멀티 프로세스보다 작은 메모리 공간을 차지하고 Context Switch가 빠르다는 장점이 있지만 하나의 쓰레드에 문제가 생기면 전체 쓰레드가 영향을 받으며 동기화 문제도 있다는 단점이 있다.

3. 멀티 쓰레드의 동시성과 병렬성을 설명해주세요.

- 동시성은 멀티 작업을 위해 싱글 코어에서 여러 개의 쓰레드가 번갈아 실행하는 것을 말한다.(Single Core)
- 병렬성은 멀티 작업을 위해 멀티 코어에서 한 개 이상의 쓰레드를 포함하는 각 코어들을 동시에 실행하는 것을 말한다.(Multi Core)

4. 멀티 쓰레드 환경에서의 주의사항을 설명해주세요.

• 다수의 쓰레드가 공유 데이터에 동시에 접근하는 경우에 상호배제 또는 동기화 기법을 통해 동시성 문제 또는 교착 상태가 발생하지 않도록 주의해야 한다.

5. 데드락에 대해 설명해주세요.

- 둘 이상의 프로세스들이 자원을 점유한 상태에서 서로 다른 프로세스가 점유하고 있는 자원을 요구하며 무한정 기다리는 상황을 말한다.
- 데드락의 4가지 조건
 - ∘ 비선점 : 다른 프로세스의 자원을 뺏을 수 없음
 - 。 순환 대기 : 두 개 이상의 프로세스가 자원 접근을 기다릴 때, 관계가 순환적 구조
 - 。 점유 대기: 공유 자원에 대한 접근 권한을 가진 채로 다른 자원에 대한 접근 권한 요구
 - 。 상호 배제 : 한 번에 한 프로세스만 공유 자원에 접근 가능하며, 접근 권한이 제한적일 경우

6. 콘보이 현상이란 무엇이고, 콘보이 현상이 발생될 수 있는 CPU스케쥴러 알고리즘은 무엇이지 설명해주세요.

- 작업 시간이 긴 프로세스가 먼저 큐에 도착해서 다른 프로세스의 실행 시간이 전부 늦춰져 효율성을 떨어뜨리는 현상을 말한다.
- FCFS 스케줄링은 비선점형으로, 순차적으로 먼저 큐에 들어온 작업부터 실행하므로 콘보이 현상이 발생할 수 있다.

7. 선점형 스케줄링과 비선점형 스케줄링의 차이를 설명해주세요.

- 선점형은 하나의 프로세스가 다른 프로세스 대신에 CPU를 차지할 수 있음
- 비선점형은 하나의 프로세스가 끝나지 않으면 다른 프로세스는 CPU를 사용할 수 없음

8. 동기와 비동기의 차이에 대해 설명해주세요.

- 동기는 순차적, 직렬적으로 테스크를 수행하고, 비동기는 병렬적으로 테스크를 수행합니다.
- 동기는 서버에 데이터를 요청하고 데이터가 응답될 때까지 이후 요청들은 블로킹을 통해 중단이 됩니다.
- 비동기는 서버에 데이터를 요청하고 서버로부터 데이터가 응답될 때까지 대기하지 않고 즉시 다음 작업을 수행 한다.

9. Critical Section(임계영역)에 대해 설명해주세요.

운영체제 공통 질문

- 임계 영역이란 프로세스 간에 공유 자원을 접근하는데 있어 문제가 발생하지 않도록 한번에 하나의 프로세스만 이용하게끔 보장해줘야 하는 영역을 말한다.
- 비선점형은 하나의 프로세스가 끝나지 않으면 다른 프로세스는 CPU를 사용할 수 없음
- 임계 영역 문제를 해결하기 위한 3가지 조건
 - 。 상호 배제: 하나의 프로세스가 임계영역에 들어가 있으면 다른 프로세스는 들어갈 수 없다.
 - 。 진행 : 임계 영역에 들어간 프로세스가 없는 상태에서 들어가려 하는 프로세스가 여러 개라면 어느 것이 들어가야 하는지 결정 해주어 야 한다.
 - 。 한정 대기 : 다른 프로세스의 기아 방지를 위해, 한 번 임계구역에 들어간 프로세스는 다음 번 임계 영역에 들어갈 때 제한을 두어야 한다.

10. 뮤텍스와 세마포어의 차이에 대해 설명해주세요.

- 뮤텍스는 공유 자원에 대한 접근을 제어하기 위한 상호 배제 기법 중 하나로 Lock을 사용해 하나의 프로세스나 스레드를 단독으로 실행한다.
- 세마포어는 동시에 접근 가능한 스레드의 개수를 지정할 수 있다. 세마포어 값이 1이면 이진 세마포어로 뮤텍스와 동일한 역할 을 하고 값이 2 이상이면 동시에 접근 가능한 스레드 수를 제어한다.
- 현재 수행중인 프로세스가 아닌 다른 프로세스가 세마포어를 해제할 수 있고 뮤텍스는 락을 획득한 프로세스가 반드시 그 락을 해제 해야 한다.

11. 페이지 교체 알고리즘에 대해 설명해주세요.

- 페이징 기법으로 메모리를 관리하는 운영체제에서 필요한 페이지가 주기억장치에 적재되지 않았을 시, 어떤 페이지 프레임을 교체할 것인 지 결정하는 방법
- FIFO
 - 。 가장 간단한 알고리즘으로, 메모리에 올라온 지 가장 오래된 페이지를 교체
- 최적 페이지 교체
 - 。 앞으로 가장 오랫동안 사용되지 않을 페이지를 교체하는 알고리즘, 프로세슷가 앞으로 사용할 페이지를 미리 알아야 하므로 구현은 불 가능하고 연구를 주 목적으로 사용 된다.
- LRU
 - 가장 오래 사용되지 않은 페이지를 교체하는 알고리즘
- LFU
 - 참조 횟수가 가장 작은 페이지를 교체하는 알고리즘
- MFU
 - 。 참조 횟수가 가장 많은 페이지를 교체하는 알고리즘

12. 컨텍스트 스위칭이 무엇인지 설명해주세요.

• 멀티프로세스 환경에서 CPU가 어떤 하나의 프로세스를 실행하고 있는 상태에서 인터럽트 요청에 의해 다음 우선 순위의 프로세스가 실행되어야 할 때 기존의 프로세스의 상태 또는 레지스터 값을 저장하고 CPU가 다음 프로세스를 수행하도록 새로운 프로세스의 상태 또는 레지스터 값을 교체하는 작업

운영체제 공통 질문