SEMAINE 7

ESPACES VECTORIELS NORMÉS, PARTIES CONVEXES

EXERCICE 1:

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ le \mathbb{R} -espace vectoriel des applications continues de [0,1] vers \mathbb{R} , muni de la norme N_{∞} :

$$N_{\infty}(f) = \max_{x \in [0,1]} |f(x)|$$
.

Soit $g \in E$. Pour toute function f de E, on pose $N_g(f) = N_\infty(fg)$.

- 1. Donner une condition nécessaire et suffisante sur la fonction g pour que N_g soit une norme sur E.
- 2. Dans ce cas, à quelle condition sur g les normes N_g et N_∞ sont-elles équivalentes ?

Dans tout l'exercice, on notera $Z_g = \{x \in [0,1] \mid g(x) = 0\}$ l'ensemble des zéros de g.

- 1. L'axiome $N_g(\lambda f)=|\lambda|N_g(f)$ et l'inégalité triangulaire sont toujours vérifiés. Le seul problème vient de l'axiome de séparation $N_g(f)=0 \Longrightarrow f=0$.
 - Si $Z_g \neq \emptyset$ (il existe un intervalle non trivial sur lequel g est la fonction nulle), alors N_g n'est pas une norme : en effet, soit $a \in \overset{\circ}{Z}_g$, on peut supposer $a \notin \{0,1\}$, il existe $\varepsilon > 0$ tel que $[a-\varepsilon,a+\varepsilon] \subset Z_g$; on peut trouver une fonction f de E différente de la fonction nulle mais qui est nulle en dehors du segment $[a-\varepsilon,a+\varepsilon]$ (considérer une fonction continue qui fait un "pic" en a), on a alors $f \neq 0$ mais fg=0, donc $N_g(f)=N_\infty(fg)=0$, ce qui contredit l'axiome de séparation.
 - Si $Z_g = \emptyset$, montrons que N_g est une norme. Si $f \in E$ vérifie $N_g(f) = 0$, alors fg = 0 donc f est nulle en tout point de $[0,1] \setminus Z_g$. Mais $[0,1] \setminus Z_g$ est dense dans [0,1] et f est continue sur [0,1], donc f est la fonction nulle (tout point de (0,1] est limite d'une suite de points où la fonction f est nulle).

En conclusion, N_g est une norme sur E si et seulement si $\overset{\circ}{Z}_g = \emptyset$.

2. • Si la fonction g ne s'annule pas sur [0,1], alors il existe deux réels strictement positifs m et M tels que

$$\forall x \in [0,1] \qquad m \le |g(x)| \le M \ .$$

On a alors $m \cdot N_{\infty}(f) \leq N_g(f) \leq M \cdot N_{\infty}(f)$ pour tout $f \in E$ et les normes N_{∞} et N_g sont équivalentes.

• Si la fonction g s'annule en au moins un point a de [0,1] (on suppose a différent de 0 et de a pour rédiger ce qui suit, mais il est facile d'adapter la démonstration...), donnons-nous a > 0, il existe a > 0 (a < a < a > 0 (a < a >

$$\forall x \in [a - \alpha, a + \alpha] \qquad |g(x)| \le \varepsilon.$$

Soit f une fonction nulle en dehors de l'intervalle $[a-\alpha,a+\alpha]$, affine sur chacun des intervalles $[a-\alpha,a]$ et $[a,a+\alpha]$, prenant la valeur 1 au point a. On a alors $N_{\infty}(f)=1$ et $N_g(f)=N_{\infty}(fg)\leq \varepsilon$. Comme ε peut être choisi arbitrairement petit, les normes N_g et N_{∞} ne sont pas équivalentes.

En conclusion, les normes N_g et N_∞ sont équivalentes si et seulement si la fonction g ne s'annule pas.

EXERCICE 2:

- 1. Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_p(\mathbb{C})$ est dense dans cet espace.
- **2.** Soit $P = X^p + a_{p-1}X^{p-1} + \cdots + a_1X + a_0 \in \mathbb{C}[X]$ un polynôme normalisé de degré p. Montrer que les racines de P sont toutes dans le disque fermé D de centre 0 et de rayon $R = \max\{1, pM\}$, avec $M = \max_{0 \le i \le p-1} |a_i|$.
- 3. En déduire que l'ensemble des polynômes de degré p normalisés et scindés sur \mathbb{R} est un fermé de $\mathbb{R}_p[X]$.
- **4.** Quelle est l'adhérence, dans $\mathcal{M}_p(\mathbb{R})$, de l'ensemble des matrices diagonalisables ?

- 1. Soit $A \in \mathcal{M}_p(\mathbb{C})$ une matrice quelconque. On peut la trigonaliser : $A = PTP^{-1}$ avec P inversible et T triangulaire supérieure, notons $\lambda_1, \dots, \lambda_p$ les coefficients diagonaux de la matrice T (valeurs propres de A). Pour tout $n \in \mathbb{N}^*$, soit la matrice $D_n = \operatorname{diag}\left(\frac{1}{n}, \frac{2}{n}, \dots, \frac{p}{n}\right)$. Alors, pour n assez grand, les $\lambda_i + \frac{i}{n}$ $(1 \le i \le p)$ sont distincts : en effet, l'égalité $\lambda_i + \frac{i}{n} = \lambda_j + \frac{j}{n}$ avec $i \ne j$ ne peut se produire si $\lambda_i = \lambda_j$ et entraı̂ne $n \le \frac{p-1}{|\lambda_i \lambda_j|}$ si $\lambda_i \ne \lambda_j$. Pour n assez grand, la matrice $T + D_n$ est donc diagonalisable, donc aussi la matrice $A_n = P(T + D_n)P^{-1}$ et, comme $\lim_{n \to \infty} D_n = 0$, on a $A = \lim_{n \to \infty} A_n$.
- **2.** Soit $z \in \mathbb{C}$ tel que P(z) = 0. Il faut montrer que $|z| \le 1$ ou $|z| \le pM$. Si on suppose |z| > 1, alors, de $z^p = -(a_{p-1}z^{p-1} + \cdots + a_0)$, on déduit $|z^p| \le |a_{p-1}| |z^{p-1}| + \cdots + |a_0| \le pM|z|^{p-1}$ puisque $|z^k| \le |z^{p-1}|$ pour $k \le p-1$, donc $|z| \le pM$.
- 3. Soit (P_n) une suite de polynômes normalisés de degré p scindés sur \mathbb{R} , notons

 $P_n = X^p + a_{p-1}^{(n)} X^{p-1} + \dots + a_1^{(n)} X + a_0^{(n)}$.

Sur l'espace $\mathbb{R}_p[X]$, de dimension finie, les normes sont toutes équivalentes, choisissons par exemple la norme N définie par $N(P) = \max_{0 \le i \le p} |a_i|$ si $P = \sum_{i=0}^p a_i X^i$. La convergence de la suite (P_n) vers un certain polynôme $P = \sum_{i=0}^p a_i X^i$ équivaut à la condition : $\lim_{n \to \infty} a_i^{(n)} = a_i$ pour tout $i \in [0, p]$.

Supposons donc la suite (P_n) convergente vers $P = \sum_{i=0}^p a_i X^i$ dans $\mathbb{R}_p[X]$. On a donc $a_p = 1$ et le polynôme P est normalisé. Par ailleurs, les p suites $\left(a_i^{(n)}\right)_{n \in \mathbb{N}}$ sont convergentes, donc sont bornées (et ont bien sûr une borne commune) : soit $M \in \mathbb{R}_+^*$ tel que $|a_i^{(n)}| \leq M$ pour tout $i \in [0, p-1]$ et pour tout entier n. Les zéros complexes des polynômes P_n sont alors tous dans le disque fermé D défini dans la question $\mathbf{2}$. Pour tout entier naturel n, notons $Z_n = (z_1^{(n)}, \dots, z_p^{(n)})$ une liste des zéros (supposés réels) du polynôme P_n pris dans un ordre

arbitraire, mais bien sûr comptés avec leurs multiplicités. La suite (Z_n) est à valeurs dans le compact $[-R,R]^p$ de \mathbb{R}^p , donc admet une suite extraite $(Z_{\varphi(n)})$ convergente, de limite $Z=(z_1,\cdots,z_p):z_i=\lim_{n\to\infty}z_i^{(\varphi(n))}$ pour tout $i\in [\![1,p]\!]$.

Pour tout n, le polynôme P_n se factorise en $P_n = \prod_{i=1}^p (X - z_i^{(n)})$. En passant à la limite (les coefficients d'un polynôme sont fonctions continues des racines puisque ce sont les fonctions symétriques élémentaires de ces racines), on obtient, dans $\mathbb{R}[X]$,

$$P = \lim_{n \to \infty} P_{\varphi(n)} = \prod_{i=1}^{p} (X - z_i) ,$$

donc le polynôme P est scindé sur \mathbb{R} .

On a ainsi prouvé que l'ensemble des polynômes normalisés de degré p et scindés sur \mathbb{R} est fermé dans $\mathbb{R}_p[X]$.

- 4. Réponse : c'est l'ensemble des matrices trigonalisables. En effet,
 - si une matrice $A \in \mathcal{M}_p(\mathbb{R})$ est trigonalisable sur \mathbb{R} , on peut l'approcher par des matrices diagonalisables en reprenant le raisonnement de la question 1.
 - si $A \in \mathcal{M}_p(\mathbb{R})$ est limite d'une suite (A_n) de matrices diagonalisables, les coefficients du polynôme caractéristique d'une matrice dépendant continûment de ses coefficients, on a $\chi_A = \lim_{n \to \infty} \chi_{A_n}$; comme chaque χ_{A_n} est scindé sur \mathbb{R} et normalisé de degré p (bon, au signe près...), le polynôme χ_A l'est aussi d'après la question 3, donc A est trigonalisable.

EXERCICE 3:

Soit E un C-espace vectoriel de dimension finie, soit $u \in \mathcal{L}(E)$, soit N une norme sur $\mathcal{L}(E)$.

Déterminer $\lim_{n\to\infty} (N(u^n))^{\frac{1}{n}}$.

1. Si N_1 et N_2 sont des normes sur $\mathcal{L}(E)$, elles sont équivalentes : $cN_1 \leq N_2 \leq c'N_2$ avec 0 < c < c'. Si on obtient $\lim_{n \to \infty} \left(N_1(u^n)\right)^{\frac{1}{n}} = l \in \mathbb{R}_+$, alors, des inégalités $c^{\frac{1}{n}}\left(N_1(u^n)\right)^{\frac{1}{n}} \leq \left(N_2(u^n)\right)^{\frac{1}{n}} \leq c'^{\frac{1}{n}}\left(N_1(u^n)\right)^{\frac{1}{n}}$,

il résulte aussi $\lim_{n\to\infty} \left(N_2(u^n)\right)^{\frac{1}{n}} = l$. Il suffit donc de faire le calcul pour une norme N (en espérant trouver une limite), choisissons désormais pour N la norme subordonnée à une certaine norme $\|\cdot\|$ sur E.

2. Soit λ une valeur propre de u, soit $x \in E$ un vecteur propre associé. On a alors $u^n(x) = \lambda^n x$, donc $\frac{\|u^n(x)\|}{\|x\|} = |\lambda|^n$ et $N(u^n) \ge |\lambda|^n$ pour tout n. On en déduit que, pour tout n

entier naturel,
$$(N(u^n))^{\frac{1}{n}} \ge \rho(u)$$
, où $\rho(u) = \max_{\lambda \in \operatorname{Sp}(u)} |\lambda|$ (rayon spectral de u).

3. Supposons u diagonalisable, soit (e_1,\cdots,e_d) une base de diagonalisation, soient $\lambda_1,\cdots,\lambda_d$ les valeur propres associées. Si $x=x_1e_1+\cdots+x_de_d$, alors

$$||u^n(x)|| = \left\| \sum_{i=1}^d \lambda_i^n x_i e_i \right\| \le \sum_{i=1}^d |\lambda_i|^n |x_i| ||e_i|| \le M \left(\rho(u) \right)^n \left(\sum_{i=1}^d |x_i| \right) ,$$

avec $M = \max_{1 \le i \le d} \|e_i\|$. Les normes sur E étant équivalentes, et $x = \sum_{i=1}^d x_i e_i \mapsto \sum_{i=1}^d |x_i|$ en

étant une, il existe une constante M' telle que

$$\forall x \in E \quad \forall n \in \mathbb{N} \qquad ||u^n(x)|| \le M' \left(\rho(u)\right)^n ||x||,$$

donc $N(u^n) \leq M'\left(\rho(u)\right)^n$ pour tout n et, d'après la minoration obtenue en $\mathbf{2}$, on a

$$\rho(u) \le \left(N(u^n)\right)^{\frac{1}{n}} \le {M'}^{\frac{1}{n}}\rho(u)$$
, donc $\lim_{n \to \infty} \left(N(u^n)\right)^{\frac{1}{n}} = \rho(u)$.

4. Soit $u \in \mathcal{L}(E)$ quelconque, utilisons la décomposition de Dunford $u = \delta + \nu$, avec δ diagonalisable et ν nilpotent qui commutent. Soit r l'indice de nilpotence de ν ($\nu^{r-1} \neq 0$ et $\nu^r = 0$).

Pour
$$n > r$$
, on a $u^n = \sum_{k=0}^r C_n^k \delta^{n-k} \nu^k = \delta^{n-r} \sum_{k=0}^r C_n^k \delta^{r-k} \nu^k$, donc

$$\begin{split} N(u^n) & \leq & N(\delta^{n-r}) \sum_{k=0}^r C_n^k \, N(\delta^{r-k} \nu^k) \\ & \leq & \alpha \, \left(\sum_{k=0}^r C_n^k \right) \, N(\delta^{n-r}) \leq \alpha \, (r+1) \, n^r \, N(\delta^{n-r}) \end{split}$$

en posant $\alpha = \max\{N(\delta^{r-k}\nu^k) \; ; \; 0 \leq k \leq r\}$. On a utilisé le fait que la norme N vérifie $N(uv) \leq N(u) \; N(v)$ pour tous endomorphismes u et v, et on a majoré (grossièrement) $C_n^k = \frac{n(n-1)\cdots(n-k+1)}{k!}$ par n^r pour $k \leq r$.

Or, d'après 3., on a $\lim_{n\to\infty} \left(N(\delta^{n-r})\right)^{\frac{1}{n-r}} = \rho(\delta) = \rho(u)$ car u et δ ont les mêmes valeurs propres, donc

$$(N(\delta^{n-r}))^{\frac{1}{n}} = \left[(N(\delta^{n-r}))^{\frac{1}{n-r}} \right]^{1-\frac{r}{n}} \xrightarrow[n \to \infty]{} \rho(u) .$$

On a donc $\lim_{n\to\infty} \left[\alpha\left(r+1\right)n^r N(\delta^{n-r})\right]^{\frac{1}{n}} = \rho(u)$ et l'encadrement

$$\rho(u) \le \left(N(u^n)\right)^{\frac{1}{n}} \le \left[\alpha \left(r+1\right) n^r N(\delta^{n-r})\right]^{\frac{1}{n}}$$

permet de conclure que $\lim_{n\to\infty} (N(u^n))^{\frac{1}{n}} = \rho(u)$.

EXERCICE 4:

- 1. Soit E un \mathbb{R} -espace vectoriel, soit $N: E \to \mathbb{R}_+$ une application telle que
 - $\forall x \in E \quad N(x) = 0 \iff x = O_E ;$
 - $\forall x \in E \quad \forall \lambda \in \mathbb{R} \qquad N(\lambda x) = |\lambda| N(x) ;$
 - l'ensemble $B = \{x \in E \mid N(x) \le 1\}$ est convexe.

Montrer que N est une norme sur E.

- **2.** Soit E un \mathbb{R} -espace vectoriel de dimension finie, soit K une partie de E. Montrer l'équivalence entre les assertions (1) et (2) ci-dessous :
 - (1): K est compact, convexe, symétrique par rapport à 0_E , et 0_E est intérieur à K;
 - (2): il existe une norme N sur E pour laquelle K est la boule unité fermée :

$$K = \{x \in E \mid N(x) \le 1\}$$
.

Source : François ROUVIÈRE, Petit guide de calcul différentiel, Éditions Cassini, ISBN 2-84225-008-7

1. Il suffit de prouver l'inégalité triangulaire $N(x+y) \leq N(x) + N(y)$. Si $x=0_E$ ou $y=0_E$, c'est évident. Sinon, considérons les vecteurs unitaires associés, c'est-à-dire $u=\frac{x}{N(x)} \in B$

et
$$v = \frac{y}{N(y)} \in B$$
 et posons $w = \frac{x+y}{N(x)+N(y)}$. Alors $w \in B$ car B est convexe et

$$w = \frac{N(x)}{N(x) + N(y)} u + \frac{N(y)}{N(x) + N(y)} v ,$$

donc $N(w) \le 1$, soit $N(x+y) \le N(x) + N(y)$.

- 2. Tout d'abord, l'espace E étant de dimension finie, il admet une unique topologie d'espace vectoriel normé, les notions de "compact" et d'"intérieur" mentionnées dans l'assertion (1) ont donc un sens intrinsèque, c'est-à-dire indépendant du choix d'une norme, ce qui rassure.
 - Montrons $(2) \Longrightarrow (1)$:

Si $K = \{x \in E \mid N(x) \le 1\}$, où N est une norme sur E, alors

 $\triangleright K = N^{-1}([0,1])$ est fermé borné donc compact (dimension finie),

 $\triangleright K$ est convexe grâce à l'inégalité triangulaire : si $x\in K,\,y\in K,\,\lambda\geq 0,\,\mu\geq 0,\,\lambda+\mu=1,$ alors

$$N(\lambda x + \mu y) \le N(\lambda x) + N(\mu y) = \lambda N(x) + \mu N(y) \le \lambda + \mu = 1 \; ,$$

donc $\lambda x + \mu y \in K$;

 $\triangleright K$ est symétrique par rapport à 0_E car N(-x) = N(x);

ightharpoonup $\stackrel{\circ}{K}=\{x\in E\mid N(x)<1\}$ est un voisinage de 0_E inclus dans K, et 0_E est intérieur à K.

• Montrons $(1) \Longrightarrow (2)$:

Pour tout $x \in E$, posons $I(x) = \{k \in \mathbb{R}_+^* \mid kx \in K\}$.

$$\triangleright$$
 si $x = 0_E$, alors $I(0_E) = \mathbb{R}_+^*$ et on pose $N(0_E) = 0$;

- $\triangleright \operatorname{si} x \neq 0_E$, alors
- I(x) est non vide car 0_E est intérieur à K donc, si $\|\cdot\|$ représente une quelconque norme sur E, K contient une boule fermée de centre 0_E et de rayon r > 0 pour cette norme et $\frac{r}{\|x\|} \in I(x)$ puisque $\frac{r}{\|x\|} x \in K$:
- I(x) est majoré, sinon K ne serait pas borné donc pas compact.

Posons alors
$$N(x) = \frac{1}{\sup I(x)} \in \mathbb{R}_+^*$$
.

Remarquons que, de la convexité de K et de $0_E \in K$, il résulte que I(x) est un intervalle qui est soit $\left]0,\frac{1}{N(x)}\right[$, soit $\left]0,\frac{1}{N(x)}\right]$. Mais I(x) est un fermé relatif de \mathbb{R}_+^* car c'est l'image réciproque de K par l'application continue $\mathbb{R}_+^* \to E$, $k \mapsto kx$. Finalement, $I(x) = \left]0,\frac{1}{N(x)}\right]$.

On a bien alors $K = \{x \in E \mid N(x) \le 1\}$ puisque

$$N(x) \le 1 \iff \sup I(x) \ge 1 \iff 1 \in I(x) \iff x \in K$$
.

L'application N ainsi définie va de E vers \mathbb{R}_+ et vérifie l'axiome de séparation $N(x)=0 \iff x=0_E$.

Si $x \in E$ et $\lambda \in \mathbb{R}$, alors $N(\lambda x) = |\lambda| N(x)$:

- c'est évident si $x = 0_E$ ou $\lambda = 0$;
- si $x \neq 0_E$ et $\lambda > 0$, cela résulte de $k \in I(\lambda x) \iff \lambda k \in I(x)$;
- si $x \neq 0_E$ et $\lambda < 0$, cela résulte de la symétrie de K par rapport à 0_E .

Enfin, l'inégalité triangulaire résulte de la question 1.

EXERCICE 5:

1. Soient $x_1, ..., x_k$ des éléments de \mathbb{R}^n , avec k > n + 1. Montrer l'existence de réels $a_1, ..., a_k$ non tous nuls tels que

$$\sum_{i=1}^{k} a_i = 0 \quad \text{et} \quad \sum_{i=1}^{k} a_i x_i = 0.$$
 (*)

- 2. Théorème de Carathéodory. Soit A une partie de \mathbb{R}^n . On note $\mathcal{E}(A)$ l'enveloppe convexe de A ("plus petit" convexe contenant A: c'est l'ensemble des barycentres à coefficients positifs des familles finies de points de A). Montrer que tout point de $\mathcal{E}(A)$ est barycentre à coefficients positifs d'une famille de n+1 points de A.
- **3. Théorème de Helly.** Soient $A_1, A_2, ..., A_k$ des parties convexes de \mathbb{R}^n , avec k > n+1. On suppose que toute sous-famille de n+1 parties choisies parmi $A_1, ..., A_k$ a une intersection non vide.

Démontrer que $\bigcap_{i=1}^k A_i \neq \emptyset$.

positifs d'une famille de k points de A).

Source: Marcel BERGER, Géométrie 2, Éditions Nathan, ISBN 209-191-731-1.

- 1. L'application $F: \mathbb{R}^k \to \mathbb{R} \times \mathbb{R}^n$ définie par $F(a_1, \dots, a_k) = \left(\sum_{i=1}^k a_i, \sum_{i=1}^k a_i x_i\right)$ est linéaire et ne peut être injective, compte tenu des dimensions des espaces de départ et d'arrivée.
- 2. Soit x un élément de $\mathcal{E}(A)$. On peut écrire $x = \sum_{i=1}^k \lambda_i x_i$ avec $k \in \mathbb{N}^*$, les x_i appartenant à A, les λ_i étant des réels positifs ou nuls tels que $\sum_{i=1}^k \lambda_i = 1$ (x est barycentre à coefficients

Supposons k > n+1 et prouvons que x est barycentre à coefficients positifs d'une sous-famille stricte de (x_1, \ldots, x_k) , ce qui achévera la démonstration.

Soient a_1, \ldots, a_k des réels non tous nuls vérifiant (*), l'un au moins des a_i est strictement positif. Posons alors

$$C = \min \left\{ \frac{\lambda_i}{a_i} \; ; \; i \in \llbracket 1, k \rrbracket \; , \; a_i > 0 \right\} \; .$$

De $\sum_{i=1}^{k} a_i x_i = 0$, on déduit que $x = \sum_{i=1}^{k} (\lambda_i - Ca_i) x_i$. On vérifie que les coefficients $\lambda_i - Ca_i$

sont positifs ou nuls et que leur somme vaut 1 (conséquence de $\sum_{i=1}^{\kappa} a_i = 0$); mais l'un au moins de ces coefficients est nul, ce qui prouve que x est barycentre à coefficients positifs de k-1 points de A.

Conséquence. Si A est compact, alors $\mathcal{E}(A)$ est compact : en effet, l'ensemble

$$K = \{(\lambda_1, \dots, \lambda_{n+1}) \in (\mathbb{R}_+)^{n+1} \mid \sum_{i=1}^{n+1} \lambda_i = 1\}$$

est un compact de \mathbb{R}^{n+1} et $\mathcal{E}(A)$ est l'image du compact $K \times A^{n+1}$ par l'application continue

$$((\lambda_1,\ldots,\lambda_{n+1}),x_1,\ldots,x_{n+1})\mapsto \sum_{i=1}^{n+1}\lambda_ix_i$$
.

3. Montrons d'abord le résultat suivant : si k > n+1, si A_1, A_2, \ldots, A_k sont des convexes de \mathbb{R}^n tels que k-1 quelconques d'entre eux aient une intersection non vide, alors $\bigcap_{i=1}^k A_i \neq \emptyset$.

Pour cela, choisissons un $x_i \in \bigcap_{j \neq i} A_j$ pour tout $i \in [1, k]$.

Soient a_1, \ldots, a_k des réels non tous nuls vérifiant (*). Posons

$$I = \{i \in \llbracket 1, k \rrbracket \mid a_i \geq 0\} \quad \text{et} \qquad J = \llbracket 1, k \rrbracket \setminus I = \{j \in \llbracket 1, k \rrbracket \mid a_j < 0\} \;.$$

On a
$$\sum_{i \in I} a_i x_i = -\sum_{j \in J} a_j x_j$$
. Posons $s = \sum_{i \in I} a_i = -\sum_{j \in J} a_j$ (on a $s > 0$).

Soit enfin
$$x = \frac{1}{s} \sum_{i \in I} a_i x_i = \frac{1}{s} \sum_{j \in J} (-a_j) x_j$$
.

Alors x est barycentre à coefficients positifs des $x_i, i \in I$. Or, si on fixe un indice $j \in J$, alors $\forall i \in I$ $x_i \in A_j$; comme A_j est convexe, on en déduit que $x \in A_j$ et ceci pour tout $j \in J$.

De même, x est barycentre à coefficients positifs des $x_j, j \in J$. Or, si on fixe un indice $i \in I$, alors $\forall j \in J$ $x_j \in A_i$; comme A_i est convexe, on en déduit que $x \in A_i$ et ceci pour tout $i \in I$.

Finalement,
$$x \in \bigcap_{i=1}^{k} A_i$$
.

Soit maintenant k > n+1 et soient A_1, \ldots, A_k des parties convexes de \mathbb{R}^n tels que toute sous-famille de n+1 parties ait une intersection non vide. On en déduit que toute sous-famille de n+2 parties a une intersection non vide, puis toute sous-famille de n+3 parties... Bref, par une récurrence finie, on montre que la famille (A_1, \ldots, A_k) a une intersection non vide.

EXERCICE 6:

Soit E un espace euclidien, soit A une partie de E. On dit qu'un hyperplan affine H est un **hyperplan d'appui** de A si $H \cap A \neq \emptyset$ et si la partie A est entièrement contenue dans l'un des deux demi-espaces fermés délimités par H.

Dans la suite de l'exercice, C est un convexe fermé non vide de E.

- 1. Soit $a \in E \setminus C$. Montrer qu'il existe un unique point x de C tel que ||x a|| = d(a, C) (le point x est appelé le **projeté de** a **sur** C). Montrer qu'il existe un hyperplan d'appui de C passant par x.
- **2.** Soit x un point de la frontière du convexe C. Montrer que, par le point x, il passe au moins un hyperplan d'appui.

Source: Marcel BERGER, Géométrie 2, Éditions Nathan, ISBN 209-191-731-1.

1. • Posons $\delta = d(a,C) = \inf_{c \in C} \|c-a\|$. Il existe alors $c \in C$ tel que $\|c-a\| \le \delta+1$. En notant B la boule fermée de centre a et de rayon $\delta+1$, il est clair que $\delta = \inf_{c \in C} \|c-a\| = \inf_{c \in C \cap B} \|c-a\|$. Comme $C \cap B$ est fermé borné, c'est un compact, donc cette borne inférieure est atteinte (comme la tarte), ce qui prouve l'existence d'un élément x de C tel que $d(a,C) = \|x-a\|$.

• Supposons que deux points distincts x et y de C réalisent ce minimum : $||x-a|| = ||y-a|| = \delta$. Posons $z = \frac{x+y}{2}$. Comme C est convexe, on a $z \in C$, mais

$$||z - a|| = \left\| \frac{x + y}{2} - a \right\| = \frac{1}{2} \left\| (x - a) + (y - a) \right\| < \frac{1}{2} (||x - a|| + ||y - a||) = \delta$$

(l'inégalité est stricte car le cas d'égalité signifierait que les vecteurs $\overrightarrow{ax} = x - a$ et $\overrightarrow{ay} = y - a$ sont colinéaires et de même sens, donc égaux puisqu'ils ont la même norme, donc que x = y), on a ainsi obtenu une absurdité. Cela prouve l'unicité du "projeté de a sur le convexe fermé C". Ce projeté x appartient bien sûr à la frontière de C.

• Montrons que $\forall c \in C \quad (x-a|x-c) \leq 0$. En effet, si $c \in C$, le segment [x,c] est inclus dans C, donc $\forall \lambda \in [0,1] \quad (1-\lambda)x + \lambda c \in C$, donc

$$\forall \lambda \in [0,1] \qquad \left\| (1-\lambda)x + \lambda c - a \right\|^2 \ge \|x - a\|^2 = \delta^2$$

ou encore

$$\forall \lambda \in [0,1]$$
 $\|(1-\lambda)(x-a) + \lambda(c-a)\|^2 \ge \|x-a\|^2 = \delta^2$

(bref, on prend a comme origine). En développant, on obtient

$$\forall \lambda \in [0, 1] \qquad \lambda^2 \|c - a\|^2 + \lambda(\lambda - 2) \|x - a\|^2 + 2\lambda(1 - \lambda) (x - a|c - a) \ge 0.$$

Notons $f(\lambda)$ le premier membre de l'inégalité ci-dessus, la fonction $f:[0,1]\to\mathbb{R}$ est dérivable (c'est un polynôme du second degré), on a f(0)=0 et $f(\lambda)\geq 0$ pour tout $\lambda\in[0,1]$, donc $f'(0)\geq 0$, ce qui donne

$$-2||x-a||^2 + 2(x-a|c-a) \ge 0$$
, ou encore $(x-a|c-x) \ge 0$.

Notons alors H l'hyperplan affine passant par x et de vecteur normal $\overrightarrow{\nu} = \overrightarrow{ax} = x - a$. Les deux demi-espaces fermés délimités par cet hyperplan sont

$$E_+ = \{c \in E \mid (\overrightarrow{xc}|\overrightarrow{xa}) \geq 0\} = \{c \in E \mid (c-x|a-x) \geq 0\} \quad \text{et} \quad E_- = \{c \in E \mid (c-x|a-x) \leq 0\}$$
 (le premier contenant le point a). On a prouvé que $C \subset E_-$, donc H est un hyperplan d'appui de C .

2. Soit $x \in \operatorname{Fr}(C)$ (frontière de C), alors $x \notin \overset{\circ}{C}$, donc x appartient à l'adhérence du complémentaire $E \setminus C$; il existe donc une suite (a_n) de points de $E \setminus C$ convergeant vers x. Notons x_n le projeté du point a_n sur le convexe C et posons $\overrightarrow{\nu_n} = \frac{\overrightarrow{a_n x_n}}{\|\overrightarrow{a_n x_n}\|} = \frac{x_n - a_n}{\|x_n - a_n\|}$. Pour tout entier naturel n, l'hyperplan H_n passant par x_n et de vecteur normal $\overrightarrow{\nu_n}$ est un hyperplan d'appui de C, donc

$$\forall c \in C \quad \forall n \in \mathbb{N} \qquad (\overrightarrow{x_n c} \mid \overrightarrow{\nu_n}) = (c - x_n \mid \overrightarrow{\nu_n}) \ge 0.$$
 (*)

On a $\lim_{n \to +\infty} x_n = x$ car $||x_n - x|| \le ||x_n - a_n|| + ||a_n - x||$ et $\lim_{n \to +\infty} ||a_n - x|| = 0$ et $||x_n - a_n|| = d(a_n, C) \le ||a_n - x|| \xrightarrow[n \to \infty]{} 0$. La suite $(\overrightarrow{\nu_n})$, à valeurs dans la sphère unité (compacte) admet une valeur d'adhérence $\overrightarrow{\nu} = \lim_{n \to +\infty} \overrightarrow{\nu_{\varphi(n)}}$. En passant à la limite dans (*) suivant l'extraction φ , on obtient

$$\forall c \in C \qquad (\overrightarrow{xc} \mid \overrightarrow{\nu}) = (c - x \mid \overrightarrow{\nu}) \ge 0$$

donc l'hyperplan H passant par x et de vecteur normal $\overrightarrow{\nu}$ est un hyperplan d'appui de C passant par x.