Statistical Learning

Clustering

Spring 2024

Unsupervised Learning

Unsupervised Learning

- No response variable Y, only $\{x_i\}_{i=1}^n$.
- Goal: learn patterns in X.
- Examples
 - Estimate the density, covariance, graph (network), etc. of X could be difficult in high-dimensional settings.
 - Cluster analysis: identify multiple regions of the feature space that contain modes of density.
 - Dimension reduction: identify low-dimensional manifold within the feature space $\mathcal X$ that represents high data density.

Cluster Analysis

Cluster Analysis

- Group the dataset into subsets so that those within each subset are more closely related (similar) to each other than those objects assigned to other subsets. Each subset is called a cluster.
- Flat clustering vs. hierarchical clustering: flat clustering divides the dataset into k cluster, and hierarchical clustering arranges the clusters into a natural hierarchy.
- Clustering results are crucially dependent on the measure of similarity (or distance) between the "points" to be clustered.

Distance Metric

- A distance metric or a distance function is a function that defines the similarity of two elements (points, sets, etc.)
- For the distance of two points (with continuous entries), the most commonly used measurement is the <u>Euclidian distance</u>:

$$d(u, v) = ||u - v||_2$$
$$= \sqrt{\sum_{j=1}^{p} (u_j - v_j)^2}$$

For categorical entries, the Hamming distance is usually used

$$d(u,v) = \sum_{j=1}^{p} \mathbf{1}\{u_j \neq v_j\}$$

Distance measures should be defined based on the application.
 There is no universally best approach.

Clustering

- Suppose we have a set of n data points.
- We want to form $K \ll n$ clusters, indexed by $k \in \{1, \dots, K\}$.
- Let C(·) be a cluster index function that assign th ith observation or cluster C(i).
- Consider: search for a function C: {1,...,n} → {1,...,K} to minimize the within cluster distance:

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i),C(i')=k} d(x_i, x_{i'}).$$

Clustering

This is equivalent to maximizing the between cluster distance

$$B(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')\neq k} d_{ii'}$$

Note that the total distance can be broke down into

$$T = \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} d_{ii'} = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \left[\sum_{C(i')=k} d_{ii'} + \sum_{C(i')\neq k} d_{ii'} \right]$$
$$= W(C) + B(C)$$

· The total distance is fixed for a given set of data, hence

minimize
$$W(C) \iff \text{maximize } B(C)$$

Clustering

- Given a specific distance measure $d(\cdot,\cdot)$, several algorithms can be used to find the clusters
 - Combinatorial algorithm
 - K-means clustering
 - Hierarchical clustering

Combinatorial Algorithm

Combinatorial Algorithms

- For small n and K, we could minimize W by brute-force search.
- · However, the number of "tries" needed to complete the search is

$$S(n,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} {K \choose k} k^{n}$$

- This is not feasible for large n and K, since the number of distinct assignments can be extremely large.
- It calls for more efficient algorithms: may not be optimal but a reasonably good suboptimal partition.

· Consider an enlarged optimization problem:

$$\min_{\substack{C, \{m_k\}_{k=1}^K \\ k \neq 1}} \sum_{k=1}^K \sum_{C(i)=k} ||x_i - m_k||^2$$

- · Hence, we are solving both
 - the cluster index function $C(\cdot)$,
 - and also the cluster centers m_k , $k = 1 \dots K$.
- This problem is NP-hard for ≥ 2 dimensions.

- · Combinatorial algorithm is too expensive.
- Instead, consider an algorithm that alternatively updates the two components:
 - · C, the cluster assignments
 - $\{m_k\}_{k=1}^K$: the cluster means
- We will do an iterative update by:
 - 1) Fixing C, find the best $\{m_k\}_{k=1}^K$
 - 2) Fixing $\{m_k\}_{k=1}^K$, find the best C

• Fixing C, we know the cluster label of each subject. For any set $\{i:C(i)=k\}$, finding the mean is

$$m_k = \underset{m}{\arg\min} \sum_{C(i)=k} ||x_i - m||^2.$$

• This is simply finding the mean within cluster k, i.e.,

$$m_k = \frac{\sum_{C(i)=k} x_i}{\sum_i \mathbf{1}\{C(i)=k\}}$$

• Fixing the cluster means $\{m_k\}_{k=1}^K$, to find the new cluster assignments, we simply recalculate the distance from an observation to each of the cluster mean.

$$C(i) = \underset{k \in \{1, \dots, K\}}{\operatorname{arg\,min}} \ d(x_i, m_k)$$

Hence each point will be assigned to the closest cluster mean

- A K-means Clustering algorithm:
 - 1) Randomly split the dataset into K different subsets. Assign each subsets a cluster label. Then iterate between 2) and 3).
 - 2) Given the cluster assignment C, calculate the cluster mean vectors m_1, \ldots, m_K .
 - 3) Given the current set of means $\{m_1, \ldots, m_K\}$, assign each observation to the closest current cluster mean.
- Stop the algorithm when C does not change

Alternative Version: *K***-medoids**

- K-medoids is an alternative version of K-means:
- Replace the second step by searching for the one observation that minimizes the distance to all others in the cluster

$$i_k^* = \underset{i:C(i)=k}{\arg\min} \sum_{C(i')=k} D(x_i, x_{i'})$$

• Use $x_{i_k^*}$ as the "center" of cluster k.

Hierarchical Clustering

Hierarchical Clustering

- Choosing the number of clusters K can be difficult.
- · A hierarchical representation which
 - at the lowest level, each cluster contains a single observation.
 - at the highest level there is only one cluster containing all observations.
- Use dendrogram to display the clustering result.

Hierarchical Clustering

• Suppose we have a set of 6 observations

Dendrogram

- A typical dendrogram from hierarchical clustering
- · How to construct this?

Algorithm

- · An agglomerative algorithm is a "bottom up" approach:
 - · Begin with every observation representing a singleton cluster.
 - At each step, merge two "closest" clusters into one cluster and reduce the number of clusters by one.
 - · Stop when all observations are in the same cluster.
- How to choose which two clusters to merge?
- · This requires:
 - A distance measure between any two observations $d(x_i, x_{i'})$
 - A distance measure between any two sets of observations d(G, H)

Distance Measures

- Distance d(G, H) between two clusters G and H can be defined in different ways:
 - Complete linkage (default of hclust()): the furthest pair

$$d(G, H) = \max_{i \in G, i' \in H} d_{ii'}$$

Single linkage: the closest pair

$$d(G, H) = \min_{i \in G, i' \in H} d_{ii'}$$

Average linkage: average dissimilarity

$$d(G, H) = \frac{1}{n_G n_H} \sum_{i \in G} \sum_{i' \in H} d_{ii'}$$

· Different choices may result in different hierarchical structures

Distance Matrix

- To perform a hierarchical clustering, a matrix of all the pairwise distances is sufficient
- We don't have to know the values of the original observations
- This is an $n \times n$ matrix: the (i, i')'s element represents the distance between x_i and $x_{i'}$
- This matrix is also called a dissimilarity matrix.
 - symmetric
 - · diagonal elements are zero

Spectral Clustering

Similarity Graph

- In some applications, we do not have the value of each data point, instead, we have the similarities between data points.
- Note: for similarity measures, larger means more similar, while for distance measures, larger is further away.
- A nice way to represent the data is the Similarity Graph G=(V,E) an undirected graph
 - V is a set of vertices: $\{x_1, x_2, \ldots, x_n\}$
 - E is the set of edges: $\{(i,j)\}_{ij}$

Similarity Graph

For our case, this graph is weighted by an adjacency matrix

$$\mathbf{W}_{n\times n} = \{w_{ij}\}_{ij}$$

- · You can define W in many different ways
- Each w_{ij} is the similarity between vertices i and j
- W is symmetric: $w_{ij} = w_{ji}$
- We also define the degree matrix D as a diagonal matrix

$$diag(d_1,\ldots,d_n)$$

where the d_i is the degree of vertex i:

$$d_i = \sum_{j=1}^n w_{ij}$$

Graph Laplacian

- There are many different ways to define a graph Laplacian matrix. We give a few examples.
- · Unnormalized graph Laplacian

$$L = D - W$$

Normalized graph Laplacians

$$\begin{split} \mathbf{L}_{\text{sym}} &= \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2} \\ \mathbf{L}_{\text{rw}} &= \mathbf{D}^{-1} \mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{W} \end{split}$$

· Each of them have some unique properties.

Unnormalized graph Laplacian

ullet For the unnormalized graph Laplacian, we have, for any f

$$f'\mathbf{L}f = f'\mathbf{D}f - f'\mathbf{W}f = \sum_{i=1}^{n} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left\{ \sum_{i} d_{i}f_{i}^{2} - 2\sum_{i,j} f_{i}f_{j}w_{ij} + \sum_{j} d_{j}f_{j}^{2} \right\}$$

$$= \frac{1}{2} \sum_{ij} w_{ij}(f_{i} - f_{j})^{2}$$

- · We also have:
 - · L is positive semi-definite
 - The smallest eigen-value is 0, with eigen-vector 1
 - The number of 0 eigen-values depends on the number of connected components

Algorithm

- The spectral clustering is very simple:
 - Construct a weighted adjacency matrix W, using e.g.,

$$w_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

- Compute the Laplacian L (or normalized versions L_{sym} , L_{rw})
- Compute the smallest k eigenvectors, denote them collectively as $\mathbf{V}_{n \times k}$
- Treat $V_{n \times k}$ as the matrix of the observed data, and perform k-means clustering
- Output the k cluster labels