Let A be an $n \times n$ matrix.

The eigenvalues of A are the roots of the characteristic polynomial $\det(A - \lambda \operatorname{Id}_{n \times n})$. If an eigenvalue λ_0 corresponds to a root with multiplicity r in this polynomial, meaning that $(\lambda - \lambda_0)^r$ is a factor of the polynomial, then we say that the eigenvalue λ_0 has algebraic multiplicity r. Since the characteristic polynomial is degree n, there are n eigenvalues, counted according to algebraic multiplicity.

If λ_0 is an eigenvalue, then $\operatorname{null}(A - \lambda_0 \operatorname{Id}_{n \times n}) > 0$, i.e. there exists a nonzero vector v such that $Av = \lambda_0 v$. We say that v is an eigenvector for the eigenvalue λ_0 , and $\operatorname{null}(A - \lambda_0 \operatorname{Id}_{n \times n})$ is the eigenspace for eigenvalue λ_0 . The dimension of $\operatorname{null}(A - \lambda_0 \operatorname{Id}_{n \times n})$ is called the geometric multiplicity, and we have

$$1 \leq (\text{geometric multiplicity of } \lambda_0) \leq (\text{algebraic multiplicity of } \lambda_0).$$

The matrix A is diagonalizable if we can write $A = VDV^{-1}$ where V is invertible and D is diagonal. If d_1, \ldots, d_n are the diagonal entries of D, and v_1, \ldots, v_n are the columns of V, this equation is equivalent to asserting that $Av_i = d_iv_i$ for all $i \in \{1, \ldots, n\}$. In other words, this equation says that the v_1, \ldots, v_n are eigenvectors, and v_i has eigenvector d_i . A matrix is diagonalizable if and only if, for each eigenvalue λ_0 , its geometric multiplicity equals its algebraic multiplicity. In particular, a matrix is diagonalizable if it has n distinct eigenvalues, because then the algebraic multiplicities are all equal to 1.

PROBLEMS

(1) Find the eigenvalues, their geometric and algebraic multiplicities, and eigenvectors for the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (2) If the eigenvalues, their geometric and algebraic multiplicities, and eigenvectors for A are known, what are the corresponding data for $A + t \operatorname{Id}_{n \times n}$, where t is a given scalar?
- (3) Find the eigenvalues, their geometric and algebraic multiplicities, and eigenvectors for the matrix

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

- (4) Show that the eigenvalues of A^2 are the squares of the eigenvalues of A, and that this correspondence respects algebraic multiplicity. Does it always respect geometric multiplicity? What about for higher powers of A?
- (5) Diagonalize the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Write down a closed-form expression for A^n . Does there exist B such that $B^2 = A$ and B has real eigenvalues?
- (6) Suppose all eigenvalues of A are equal to r, and A is diagonalizable. Show that $A = r \operatorname{Id}_{n \times n}$.
- (7) Does there exist a 2×2 matrix A such that $(A^n)_{12} = n$ for all $n \ge 1$, and A is diagonalizable?
- (8) Let v_1, v_2 be linearly independent eigenvectors of A. If $v_1 + v_2$ is an eigenvector, what can you conclude about the eigenvalues of v_1, v_2 , and $v_1 + v_2$?

SOLUTIONS

- (1) There is only the eigenvalue $\lambda = 0$, with algebraic multiplicity 4 and geometric multiplicity 1. The corresponding eigenspace is $\begin{cases} \begin{pmatrix} x \\ 0 \\ 0 \\ 0 \end{pmatrix}$ for arbitrary $x \end{cases}$.
- (2) The eigenvalues are modified by adding t, while the other data (multiplicities and eigenspaces) stay the same. This is essentially because

$$(A + t \operatorname{Id}_{n \times n}) - \lambda \operatorname{Id}_{n \times n} = A - (\lambda - t) \operatorname{Id}_{n \times n}.$$

- (3) By (1) and (2), there is only the eigenvalue $\lambda = 3$, with algebraic multiplicity 4 and geometric multiplicity 1. The corresponding eigenspace is $\begin{cases} x \\ 0 \\ 0 \\ 0 \end{cases}$ for arbitrary x.
- (4) Let $P(\lambda)$ be the characteristic polynomial of A. Note that

$$\det(A^{2} - \lambda \operatorname{Id}_{2\times 2}) = \det((A - \sqrt{\lambda} \operatorname{Id}_{2\times 2})(A + \sqrt{\lambda} \operatorname{Id}_{2\times 2}))$$
$$= \det(A - \sqrt{\lambda} \operatorname{Id}_{2\times 2}) \det(A + \sqrt{\lambda} \operatorname{Id}_{2\times 2})$$
$$= P(\sqrt{\lambda}) P(-\sqrt{\lambda}).$$

Suppose for notational simplicity that A is 2×2 . Then we can write $P(\lambda) = (\lambda - \lambda_0)(\lambda - \lambda_1)$, and the preceding expression equals

$$(\sqrt{\lambda} - \lambda_0)(\sqrt{\lambda} - \lambda_1)(-\sqrt{\lambda} - \lambda_0)(-\sqrt{\lambda} - \lambda_1)$$

= $(\lambda - \lambda_0^2)(\lambda - \lambda_1^2)$.

Therefore, the eigenvalues of A^2 are the squares of the eigenvalues of A, and algebraic multiplicity is preserved. The general $n \times n$ case is identical.

Squaring the matrix doesn't always preserve geometric multiplicity. Look at the matrix $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. The geometric multiplicity of $\lambda = 0$ is 1, but the geometric multiplicity of $\lambda = 0$ for A^2 is 2, because A^2 is the zero matrix.

Similar conclusions apply for A^3 , A^4 , and so on. Instead of using a 'difference of squares' factorization, one uses the factorizations

$$a^n - b^n = (a - b)(a - \zeta b) \cdots (a - \zeta^{n-1})$$

where $\zeta = e^{\frac{2\pi i}{n}}$ is a primitive *n*-th root of unity.

(5) We have $A = VDV^{-1}$ where

$$V = \begin{pmatrix} 2 & 2\\ \frac{3+\sqrt{33}}{2} & \frac{3-\sqrt{33}}{2} \end{pmatrix}$$
$$D = \begin{pmatrix} \frac{5+\sqrt{33}}{2} & 0\\ 0 & \frac{5-\sqrt{33}}{2} \end{pmatrix}.$$

Using that

$$V^{-1} = -\frac{1}{2\sqrt{33}} \begin{pmatrix} \frac{3-\sqrt{33}}{2} & -2\\ \frac{-3-\sqrt{33}}{2} & 2 \end{pmatrix},$$

and the fact that $A^n = VD^nV^{-1}$, we find that

$$A^{n} = -\frac{1}{2\sqrt{33}} \begin{pmatrix} (3-\sqrt{33})(\frac{5+\sqrt{33}}{2})^{n} + (-3-\sqrt{33})(\frac{5-\sqrt{33}}{2})^{n} & -4(\frac{5+\sqrt{33}}{2})^{n} + 4(\frac{5-\sqrt{33}}{2})^{n} \\ -3(5+\sqrt{33})^{n} + 3(5-\sqrt{33})^{n} & (-3-\sqrt{33})(\frac{5+\sqrt{33}}{2})^{n} + (3-\sqrt{33})(\frac{5-\sqrt{33}}{2})^{n} \end{pmatrix}.$$

Note that one of the eigenvalues of A is negative. Therefore, (4) implies that the desired matrix B doesn't exist.

- (6) We can write $A = VDV^{-1}$ where $D = r \operatorname{Id}_{n \times n}$. This implies that $A = r \operatorname{Id}_{n \times n}$.
- (7) No. Suppose such an A exists, and write $A = VDV^{-1}$. Then $A^n = VD^nV^{-1}$ for all $n \ge 1$. If $D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$, then each entry of A^n can be expressed as $c_1d_1^n + c_2d_2^n$ for some scalars c_1, c_2 . (The solution to (5) gives an example of this.) There do not exist scalars c_1, c_2, d_1, d_2 such that $c_1d_1^n + c_2d_2^n = n$ for all $n \ge 1$. This gives the contradiction.
- (8) Suppose $v_1, v_2, v_1 + v_2$ have eigenvalues $\lambda_1, \lambda_2, \lambda_3$, respectively. Note that

$$\lambda_1 v_1 + \lambda_2 v_2 = A v_1 + A v_2$$

= $A(v_1 + v_2)$
= $\lambda_3 v_1 + \lambda_3 v_2$.

Since v_1, v_2 are linearly independent, we conclude that $\lambda_1 = \lambda_2 = \lambda_3$.