Bartłomiej Mróz:

Histogram - czyli wykres częstości występowania kolejnych wartości pikseli obrazu. Histogram pokazuje, jak liczne są w obrazie punkty o różnych wartościach jasności. Przyjmuje się, że pierwszy element histogramu ma numer 0, a ostatni Z_{max} , gdzie Z_{max} – zakres maksymalny. Zakładamy, że Z_{max} = 2^n -1, jeżeli barwa jest reprezentowana przez "n" bitów

Obliczenia:

- 1. Ustalenie zakresu jasności lub przyjęcie domyślnego dla danej liczby bitów na piksel;
- 2. Określenie liczby przedziałów;
- 3. Wyznaczenie szerokości przedziałów poprzez podzielnie zakresu przez ich liczbę;
- 4. Obliczenie liczby pikseli o wartościach jasności należących do poszczególnych przedziałów.

Parametry liczone z histogramu:

W oparciu o obliczony histogram obrazu możliwe jest wygenerowanie szeregu parametrów opisujących różne własności histogramu, i obrazu. Zdefiniowano szereg parametrów wykorzystujących obliczony już wcześniej histogram H(b): -

$$\begin{split} &\text{Średnia:} & \overline{x} = \sum_{b=0}^{L-1} \left(p - \frac{p}{2b} \right) b H(b) \\ &\text{Dyspersja:} & \sigma_b^{\ 2} = \sum_{b=0}^{L-1} \left[\left(p - \frac{p}{2b} \right) b - \overline{x} \right]^2 H(b) \\ &\text{Współczynnik} \\ & asymetrii & b_S = \frac{1}{\sigma_b^{\ 3}} \sum_{b=0}^{L-1} \left[\left(p - \frac{p}{2b} \right) - \overline{x} \right]^3 H(b) \end{split}$$

Współczynnik
$$b_K = \frac{1}{\sigma_b^4} \sum_{b=0}^{L-1} \left[\left(p - \frac{p}{2b} \right) - \overline{x} \right]^4 H(b) - 3$$
 Energia $b_N = \sum_{b=0}^{L-1} \left[H(b) \right]^2$ Entropia $b_E = -\sum_{b=0}^{L-1} H(b) \log_2 \left[H(b) \right]$

Gdzie:

H - histogram

p - szerokość przedziału

L - liczba przedziałów

Normalizacja histogramu:

Normalizacja histogramu jest prostą operacją punktową stosowaną w celu poprawy obrazów o złym kontraście.

Załóżmy, iż histogram H(b) posiada niezerowe wartości jedynie w pewnym przedziale [a,b] będącym podzakresem przedziału [0,255], czyli H(b)=0 dla $0 \le b < a$ oraz $b < b \le 255$.

Efektem działania operacji normalizacji jest rozszerzenie przedziału [a,b] na pełen zakres odcienie szarości.

Normalizacja jest opisywana funkcją liniową F o wartościach wzrastających od 0 do 255 w przedziale [a,b]. F = 0 dla b < a oraz F = 255 dla b > b.

Z liczba elementów

$$H_{n}(b) = \frac{H(b)}{LiczbaElementowObrazu}$$

Z liczbą elementów i liczbą przedziałów

$$H_n(b) = \frac{LiczbaPrzedzialow H(b)}{LiczbaElementowObrazu}$$

Normalizacja obrazu ma za zadanie ściągnąć cały zakres do przedziału <0;255>

$$X_{norm} = 255 \frac{X - min(X)}{max(X) - min(X)}$$
 X - macierz danych Xnorm - znormalizowana macierz danych

Dysponują histogramem obrazu możemy określić pozycje i szerokość zakresu w którym znajduje się większość danych. W tym celu wprowadza się próg określający minimalną częstość występowania elementów z lewej i prawej strony histogramu.

$$X_{norm} = 255 \frac{X - X_L}{X_P - X_L}$$
 XL - lewa granica XP - prawa granica

Rozciagniecie histogramu wzdłuż krzywej:

Rozciągnięcie histogramu wzdłuż zadanej krzywej zmienia rozkład jasności pikseli poprzez zmianę ich przyporządkowania do przedziałów histogramu. Przekłada to się na zmianę szerokości przedziałów histogramu:

$$de=f'(b)db$$

gdzie

b – jasność piksela przed rozciągnieciem histogramu;

e – jasność piksela po rozciagnięciu histogramu;

f(b) –funkcja rozciągnięcia histogramu.

Tangens kąta nachylenia stycznej funkcji f(b) jest współczynnikiem zmiany szerokości przedziału.

Chodzi oto, ze nową wartości dla piksela liczymy na podstawie równanie (np y=x+b lub y=x^a), przy czym trzeba pamiętać aby później zrobić normalizacje obrazka do przedziału <0;255>

Wyrównywanie histogramu (ang. histogram equalization) ma na celu takie dobranie wartości aby wykres był możliwie "płaski". W praktyce wyrównywanie histogramu sprowadza się do wykonania przekształcenia obrazu przy pomocy odpowiednio przygotowanej tablicy normalizacyjnej. Operacja wyrównywania histogramu pozwala na uwypuklenie tych szczegółów w obrazie, które z uwagi na niewielki kontrast są mało widoczne.

$$sr_{H} = \frac{\sum\limits_{b=1}^{N} H(b)}{N}$$
 • obliczenie średniej wysokości słupków
$$\text{N - liczba przedziałów} \\ \text{H - histogram}$$

Obliczenie nowej szerokości przedziałów

• Obliczanie granic przedziałów i zmiana wartości jasności tak aby znalazły się w odpowiednich przedziałach

Histogram dwuwymiarowy służy do badania statystycznych zależności miedzy sąsiednimi pikselami. Jest szczególnie przydatny w analizie tekstur.

Łukasz Koreń:

Negatyw

$$P'(x, y) = 255 - P(x, y)$$

gdzie

P(x, y) – jasność oryginalnego piksela obrazka;

P'(x, y) – jasność nowego piksela obrazka.

Progowanie binarne

$$a' = \begin{cases} 0 & dla \ a \leq p \\ 1 & dla \ a > p \end{cases}$$

gdzie

a – jasność oryginalnego piksela obrazka;

a' – jasność nowego piksela obrazka;

p – ustalony próg.

Progowanie binarne odwrotne

$$a' = \begin{cases} 0 & dla \ a > p \\ 1 & dla \ a \le p \end{cases}$$

gdzie

a – jasność oryginalnego piksela obrazka;

a' – jasność nowego piksela obrazka;

p – ustalony próg.

Progowanie binarne przedziałowe

$$a' = \begin{cases} 0 & dla \ a < p_1 \lor a > p_2 \\ 1 & dla \ p_1 \leqslant a \leqslant p_2 \end{cases} \quad \text{lub}$$

$$a' = \begin{cases} 0 & dla \ p_1 \le a \le p_2 \\ 1 & dla \ a < p_1 \lor a > p_2 \end{cases}$$

gdzie

a – jasność oryginalnego piksela obrazka;

a' – jasność nowego piksela obrazka;

 p_1 , p_2 – ustalone progi.

Progowanie z zachowaniem poziomów szarości

$$a' = \begin{cases} 0 & dla \ a < p_1 \lor a > p_2 \\ a & dla \ p_1 \le a \le p_2 \end{cases}$$

gdzi

a – jasność oryginalnego piksela obrazka;

a' – jasność nowego piksela obrazka;

 p_1 , p_2 – ustalone progi.

Progowanie obrazu kolorowego z zachowaniem poziomów jasności

$$A' = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad dla \ a_r < p_{r1} \lor a_r > p_{r2} \lor a_g < p_{g1} \lor a_g > p_{g2} \lor a_b < p_{b1} \lor b > p_{b2} \\ A \quad dla \ p_{r1} \leqslant a_r \leqslant p_{r2} \land p_{g1} \leqslant a_g \leqslant p_{g2} \land p_{b1} \leqslant a_b \leqslant p_{b2} \\ \end{bmatrix}$$

gdzie

A – wektor składowych koloru piksela obrazka przed progowaniem;

A' – wektor składowych koloru piksela obrazka po progowaniu;

 p_{r1} , p_{r2} , p_{g1} , p_{g2} , p_{b1} , p_{b2} – ustalone progi dla poszczególnych kolorów.

Progowanie wielopoziomowe

$$a' = \begin{cases} 0 & dla \ a \leq p_1 & b_4 \\ b_1 & dla \ p_1 < a \leq p_2 \\ b_2 & dla \ p_2 < a \leq p_3 \\ \vdots & b_1 \\ b_{N-1} & dla \ p_{N-1} < a \leq p_N \end{cases} \quad b_2$$

gdzie

a – jasność oryginalnego piksela obrazka;

a' – jasność nowego piksela obrazka;

b₁,b₂,...b_N – ustalone poziomy szarości;

 $p_1,p_2,..,p_N$ – ustalone progi.

Dodawanie obrazów

Dwa lub więcej obrazów możemy połączyć wykonując prostą operację sumowania macierzy:

$$O' = \frac{O_1}{w_1} + \frac{O_2}{w_2} + \dots + \frac{O_N}{w_N}$$

gdzie

 $O_1,O_1,...O_N$ – obrazki sumowane;

O' – obrazek powstały w wyniku zsumowania;

 $w_1, w_2,...w_N$ – współczynniki normalizujące (wagi).

Na ogół współczynniki normalizujące powinny spełniać warunek:

$$\frac{1}{w_1} + \frac{1}{w_2} + \cdots + \frac{1}{w_N} = 1$$

Splot dwóch funkcji f i g można zapisać następująco:

$$h(x) = \int_{-\infty}^{\infty} f(x')g(x-x')dx'$$

Splot liniowy

Splotem liniowym y[n] dwóch sygnałów czasu dyskretnego $x_1[n]$ i $x_2[n]$ nazywamy sumę:

$$y[n] = \sum_{k=0}^{n} x_1[k]x_2[n-k] = \sum_{k=0}^{n} x_1[n-k]x_2[k]$$

Splot kołowy

Dla dwóch ciągów x[n] i h[n] o identycznej długości N splot kołowy definiujemy jako:

$$h[n] \otimes x[n] = \sum_{k=0}^{N-1} h[k]x[(n-k) \mod N]$$
 $n = 0, 1, ... N-1$

Splot sektorowy

Dwuwymiarowa filtracja splotowa

Problem elementów skrajnych

1. Pominiecie elementów skrajnych

2. Powielenie elementów skrajnych

0	0	4	1	
0	0	4	1	
5	5	6	2	
4	4	4	1	

3. Dynamiczny rozmiar maski

Filtr splotowy uśredniający (dolnoprzepustowy)

W filtrze tym wartość piksela wyznaczana jest na podstawie uśrednienia jego najbliższego otoczenia. Stopień uśrednienia a zarazem pewnego rozmycia obrazu zależy od wielkości analizowanego otoczenia. W przypadku gdy konieczne jest osłabienie działania filtru elementom centralnym można nadać wartości większe od zera. Wartość normalizacyjna jest sumą wszystkich elementów maski. Efektem działania filtru uśredniającego jest wygładzenie obrazu i usunięcie szumu o niewielkiej amplitudzie. Maski:

1	1	1
1	1	1
1	1	1
norm = 9		

1	1	1	
1	2	1	
1	1	1	
norm = 10			

Filtr splotowy wyostrzający (górnoprzepustowy)

Filtr górnoprzepustowy wykorzystywany jest do wzmacniania szczegółów o dużej częstotliwości występujących w obrazie. W filtrach tych środkowe elementy maski są zazwyczaj bardzo duże, a pozostałe są niewielkimi liczbami ujemnymi lub zerami. Po filtracji zwiększa się ostrość i kontrast obrazu, ale ujemnym efektem jest wzmocnienie również szumu. Często filtry górnoprzepustowe stosuje się po silnej filtracji uśredniającej, aby przywrócić ostrość obrazu. Maski:

Filtr splotowy konturyzacyjny

Po filtracji obszary o jednolitym kolorze maja wartość zero, a obszary gdzie jasność zmieniała sie mocno (czyli głównie brzegi obiektów) mają bardzo duże wartości (dodatnie lub ujemne) Filtr ten służy do przekształcenia obrazów do postaci wektorowej.

przykładowe maski:

Modyfikacje filtru splotowego – **efekt wiatru-** pozwala ona na rozmycie obrazu w wybranym kierunku i daje wrażenie jakby zdjęcie było zrobione w ruchu lub ze zbyt krótkim czasem naświetlania. Efekt wiatru uzyskujemy przekształcając obraz za pomocą wzoru:

przekształcając obraz za pomocą wzoru.
$$\sum_{i=1}^{N} (N+1-i)P(x-i,y-i) \quad \text{gdzie: } N-\text{liczba powtórzeń,}$$

$$P'(x,y) = P(x,y) + \frac{\sum_{i=1}^{N} (N+1-i)P(x-i,y-i)}{wsn*N} \quad wsp - \text{współczynnik.}$$

Modyfikacje filtru splotowego - pikselizacja

Filtry statyczne- Służą przede wszystkim do usuwania zakłóceń losowych (szumów) na obrazie, nie zmieniają one przy tym użytecznych informacji.

• filtr medianowy-przepisujemy określoną liczbę pikseli(wymiar maski) i sortujemy rosnąco, a następnie zapisujemy w wyjściowym obrazie wartość środkową naszej listy. Istnieją 2 wersje: mocna- gdy obliczony piksel zastępuje nam wejściowy, i bierze udział w obliczaniu sąsiednich pikseli, oraz wersja słabsza, kiedy obliczone piksele są zapisywane w innym miejscu.

• filtr minimalny i maksymalny: w zależności od wielkości maski, badamy wartość jasności w pikseli w obrębie naszej wybranej kropki, i zastępujemy ją największą lub najmniejszą wartością (w tym przypadku 0 dla filtru minimalnego i 6 dla maksymalnego).

• filtr różnicowy- w zależności o wielkości maski, od wartości pikseli w badanym obszarze odejmujemy wartości maski, obliczamy wartość bezwzględna i sumujemy- wynik zapisujemy w miejsce badanego piksela.

Tomasz Waligóra:

KONTURYZACJA

Relief

Mamy obraz . Robimy z niego negatyw, a następnie robimy przesunięcie tego negatywu (np. o 1 piksel, o 2 piksele itd.). Następnie sumujemy obraz oryginalny z obrazem negatywu po przesunięciu. Otrzymany obraz

normalizujemy.

Konturyzacyjny filtr korelacyjny

Konturyzacyjny filtr korelacyjny definiuje maskę filtru splotowego:

$$M = \begin{bmatrix} \rho_C \rho_R & -\rho_C (1 + \rho_R^2) & \rho_C \rho_R \\ -\rho_R (1 + \rho_C^2) & (1 + \rho_C^2) (1 + \rho_R^2) & -\rho_R (1 + \rho_C^2) \\ \rho_C \rho_R & -\rho_C (1 + \rho_R^2) & \rho_C \rho_R \end{bmatrix}$$

Gdzie:

 ρC i ρR – współczynniki korelacji między punktami obrazu; M – maska filtru splotowego.

Współczynniki ρC i ρR obieramy sami, wtedy np. dla

 $\rho C = 0$ i $\rho R = 0$ mamy maske: 0 0 0

010 0.00

a dla $\rho C=1$ i $\rho R=1$, maskę

-2 4 -2

1 -2 1

Filtr konturyzacyjny Gaussa

Funkcja Macleoda:

$$M(x,y) = \exp\left\{-\frac{1}{2}\left(\frac{y}{t}\right)^{2}\right\} \left[\exp\left\{-\frac{1}{2}\left(\frac{x-p}{p}\right)^{2}\right\} - \exp\left\{-\frac{1}{2}\left(\frac{x+p}{p}\right)^{2}\right\}\right]$$

Gdzie:

p i t – współczynniki podające wpływ elementów obrazu na wyliczaną wartość; n i m – rozmiary maski.

$$x \in \left\langle -\frac{n}{2}; \frac{n}{2} \right\rangle \qquad y \in \left\langle -\frac{m}{2}; \frac{m}{2} \right\rangle$$

Filtr Robertsa

Do realizacji tego filtru wystarczy jedynie skorzystać ze wzoru:

$$o_{w}(j,k) = \sqrt{\left[o(j,k) - o(j+1,k+1)\right]^{2} + \left[o(j,k+1) - o(j+1,k)\right]^{2}}$$

lub:

$$o_{w}(j,k) = |o(j,k) - o(j+1,k+1)| + |o(j,k+1) - o(j+1,k)|$$

O_w – obraz wynikowy

O – obraz źródłowy

Filtr Sobela

W tym przypadku poruszamy się po obrazie podobnie jak w filtracji splotowej. Przesuwamy się kolejno od lewego górnego rogu do prawego dolnego i wycinamy z obrazu maski o rozmiarze 3x3. Maski takie przedstawiają się następująco:

A _o	A ₁	A ₂
A ₇	o(j,k)	A ₃
A ₆	A ₅	A ₄

Następnie dokonujemy obliczeń:

$$X = (A_2 + 2 A_3 + A_4) - (A_0 + 2 A_7 + A_6)$$

 $Y\!=\!\!\left(A_0\!+\!2\,A_1\!+\!A_2\right)\!-\!\left(A_6\!+\!2\,A_5\!+\!A_4\right)\quad \text{Po obliczeniu wartości X oraz Y podstawiamy je do obrazu wynikowego według wzoru :}$

$$o_w(j,k) = \sqrt{X^2 + Y^2}$$

Filtr Kirscha

Tutaj podobnie jak w filtrze Sobela wyznaczamy kolejne maski obrazu :

A ₀	A ₁	A ₂
A ₇	o(j,k)	A ₃
A ₆	A ₅	A ₄

Następnie trzeba obliczyć kolejne wartości S_i oraz T_i:

$$\begin{split} S_i &= A_i + A_{i+1} + A_{i+2} \\ T_i &= A_{i+3} + A_{i+4} + A_{i+5} + A_{i+6} + A_{i+7} \end{split}$$

pamiętając przy tym, że

 $i \in \langle 0; 7 \rangle$, a indeksy zmieniają się modulo 8.

Po obliczeniu wartości S_i oraz T_i, podstawiamy wszystko do obrazu wynikowego według wzoru :

$$o_w(j, k) = max \left\{ 1, \max_{i \in \langle 0; 7 \rangle} |5S_i - 3T_i| \right\}$$

Wektoryzacja konturu rastrowego - metoda najbliższego sąsiada

Aktualnie znaleziony punkt zaznaczamy jako bieżący, usuwamy go z tablicy I, a następnie szukamy jego najbliższego sąsiada. Oznacza to, że wszystkie punkty o jednakowej odległości od punktu bieżącego, znajdują się na obrzeżu kwadratu, o środku w tym punkcie.

- 1. Start. Szukamy punktu początkowego, zapamiętujemy go i ustawiamy jako bieżący.
- 2. Ustalamy bok kwadratu na 3.
- 3. Sprawdzamy czy są jakieś punkt na obwodzie kwadratu.
- 4. Jeśli są to wybieramy ten o najmniejszej odległości

od punktu bieżącego. Jeśli nie ma to skaczemy do pkt. 3 i zwiększamy bok kwadratu o 2.

5. Zapamiętujemy punkt i ustawiamy go jako bieżący. Przechodzimy do pkt 3. Cały proces powtarzamy do momentu aż nie przekroczymy ustalonego rozmiaru kwadratu.

Filip Przybysz

1. Aproksymacja obrazu wieloma obrazami

Obraz można przedstawić jako sumę ważoną innych obrazów (z błędem). Polega na podziale obrazu na bloki odpowiadające rozmiarom obrazów z bazy (nimi będziemy przybliżać) fragmenty skrajne mniejsze od obrazów bazy należy odrzucić.

współczynniki aproksymacji dla każdego fragmentu według wzoru:

wsp. aproksymacji (korelacji) mówią nam jak podobne są do siebie dwa obrazy, przyjmuje wart. Od -1 do 1, 0 oznacza max niepodobieństwo, wart. Skrajne to max podobieństwo.

$$\begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} X_1, X_1 \end{pmatrix} & \begin{pmatrix} X_2, X_1 \end{pmatrix} & \cdots & \begin{pmatrix} X_n, X_1 \end{pmatrix} \\ \begin{pmatrix} X_1, X_2 \end{pmatrix} & \begin{pmatrix} X_2, X_2 \end{pmatrix} & \cdots & \begin{pmatrix} X_n, X_2 \end{pmatrix} \\ \begin{pmatrix} X_n, X_2 \end{pmatrix} & \begin{pmatrix} X_1, X_2 \end{pmatrix} & \begin{pmatrix} X_2, X_2 \end{pmatrix} & \cdots & \begin{pmatrix} X_n, X_n \end{pmatrix} \end{bmatrix}^{-1} \begin{bmatrix} \begin{pmatrix} A, X_1 \end{pmatrix} \\ \begin{pmatrix} A, X_2 \end{pmatrix} \\ \dots \\ \begin{pmatrix} A, X_n \end{pmatrix} \end{bmatrix}$$

Po obliczeniu współczynników odtwarzamy każdy wg wzoru:

$$A = c_1 X_1 + c_2 X_2 + ... + c_n X_n$$

 $X_1...X_n$ - obrazy bazowe $c_1...c_n$ - wsp. aproksymacji

4. Przybliżanie sygnału innym sygnałem

$$f(t) = c*g(t)+Ve(t)$$
 z tego:

$$c = \frac{\int_{t_1}^{t_2} f(t) * g(t) dt}{\int_{t_1}^{t_2} g^2(t) dt}$$

dla obrazu:

$$c = \frac{\sum_{t} f(t) * g(t)}{\sum_{t} g^{2}(t)}$$

5. Przybliżanie dla wielu sygnałów:

$$c_{i} = \frac{\int_{t_{1}}^{t_{2}} f_{i}(t) * g_{i}(t) dt}{\int_{t_{1}}^{t_{2}} g_{i}^{2}(t) dt}$$

Konrad Gorczyca:

- 1) Porównywanie obrazów:
 - Punkt po punkcie

Cała metoda polega na porównaniu kolejnych pikseli obrazów. Wzór:

 $a = \frac{h * w * n}{100}$, gdzie a – ilość tych samych pikseli, h – wysokość obrazka, w – szerokość obrazka, n – wartość podobieństwa.

średnia RGB z kwadratu

Występuje wzór jak wyżej oraz:

$$r = 256 - \frac{256 \cdot n}{100}$$
, r – różnica

Każdy obraz jest dzielony na mniejsze obrazy, przy pomocy siatki, następnie:

 $c = \frac{R + G + B}{3}$, gdzie c – średnia koloru w danym kwadracie, RGB – wartości składowych danego piksela,

2) Kompresja

Składa się z 4 etapów:

Transformata cosinusowa:

$$\begin{cases} c(k,l) = \frac{2}{64}\alpha(k)\alpha(l)\sum_{m=0}^{7} \left(\sum_{n=0}^{7} x(m,n)\cos\left(\frac{(2n+1)l\Pi}{16}\right)\right)\cos\left(\frac{(2n+1)k\Pi}{16}\right) \\ x(m,n) = 2\sum_{m=0}^{7} \left(\sum_{n=0}^{7} \alpha(k)\alpha(l)c(k,l)\cos\left(\frac{(2n+1)l\Pi}{16}\right)\right)\cos\left(\frac{(2n+1)k\Pi}{16}\right) \end{cases}$$

Gdzie:

x(m,n) – wartość piksela obrazu początkowego

c(k,l) – współczynnik transformaty

$$\alpha(k) = \begin{cases} \frac{1}{\sqrt{2}}; k, l \equiv 0\\ 1; k, l = 1, 2, \dots 7 \end{cases}$$

Kwantowanie:

$$\begin{cases} \hat{C}(k,l) = C(k,l)/(k*l) \\ \hat{C}(k,l) = C(k,l)/V \end{cases}$$
Gdzie V>>1 lub \equiv C(1,1)

Kodowanie obrazów:

Kod Hoffmana działa na zasadzie wyliczania częstości występowanie danej jasności

3) Składowa wektorów wzdłuż innych wektorów

$$A = c_1 X_1 + c_2 X_2 + ... + c_n X_n$$

4) Przybliżanie obrazów innymi obrazami

Sprowadza się do znalezienia wektora c współczynników z ww. równania

5) Rozbarwienie

Dodanie do każdego X pewnej stałej, przesuwającej kolor.

6) Usunięcie składowej

Usuniecie czyli zlikwidowanie jednego X z danego równania

7) Wykrywanie kierunków

Wiele metod detekcji krawędzi bazuje na pierwszej pochodnej luminancji - daje to nam stopień przyrostu (gradient) wartości oryginalnych danych. Wykorzystując tą informację możemy szukać ekstremów pierwszej pochodnej luminancji (gradientu luminancji).

Jeśli I(x) odzwierciedla luminancję piksela x, a I'(x) jest pierwszą pochodną (intensity gradient) piksela x, można zapisać :

$$I'(x)=-1/2*I(x-1)+0*I(x)+1/2*(x+1);$$

Andrzej Licznierski – Godziuk

Definicje

Grupa – zdefiniowane mnożenie lączne, element neutralny 1, element odwrotny

Grupa abelowa – mnożenie jest przemienne

Cialo – dodawanie, mnozenie, rozdzielnosc mnozenia względem dodawania

Przestrzen wektorowa – zdefiniowane mnozenie przez skalar; jest grupa abelowa; jest rozdzielność i laczność

Przestrzen prehilbertowska – zdefiniowany iloczyn skalarny (x,y)

Przestrzen unitarna – prehilbertowska + zdefiniowano norme $\sqrt{(x,x)}$

Malowanie jednym pedzlem

Malowanie jednym pedzlem polega na odtworzeniu obrazu w odcieniach jednego koloru – np. piekne odcienie rozowego. Majac dany wektor koloru rozowego C = (255, 128, 128) i piksel obrazka A = (r, g, b) wyliczamy najpierw wspolczynnik skalowania c:

 $c = \frac{(A,C)}{(C,C)}$, a nastepnie skalujemy wektor C o wartosc c – czyli nowa wartosc piksela A' = c·C. Jako bonus, wzor na iloczyn skalarny: $(A,C) = a_1c_1 + a_2c_2 + a_3c_3$.

Filtracja barw

Filtracja barw polega na zmieszaniu obrazu oryginalnego z obrazu "namalowanego jednym pedzlem". Dodajemy obraz oryginalny (z waga np. 0.8) do obrazu monochromatycznego (powiedzmy z waga 0.2). Gotowe.

Laczenie obrazow za pomoca rzutowania kolorow

Jak malowanie jednym pedzlem, tylko kolor pedzla w kazdym pikselu bierzemy z drugiego obrazka.

Filtr Gabora

Filtr Gabora należy do filtrów splotowych. Jego maska to h(x,y)=s(x,y)g(x,y) - powstaje z pomnozenia dwoch filtrow skladowych. Skladowa s to zespolona skladowa sinusoidalna i jej wzor to $s(x,y)=e^{-j2\pi(u_0x+v_0y)}$. Skladowa g to gaussian evenlop (jakkolwiek glupio by to nie brzmialo po polsku) i jej wzor to

$$g(x,y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)}$$

Filtr ten sluzy m.in. do wykrywania skladowych o roznych katach nachylenia. Kat który będziemy wykrywac

 $\omega_0 = \tan^{-1}\left(\frac{v_0}{u_0}\right)$ można wyliczyc ze wzoru . Parametry σ_x , σ_y określają szerokośc pasma przepustowego filtru (lub, jak kto woli, standardowe odchylenie). Można przyjac, ze ich miara sa piksele. Tak wiec, ustawiajac wartosci sigm na odpowiednio 40 i 50 oraz kat na -45°, wypadaloby ustalic rozmiar maski na 128x128!

Składowa wektora wzdłuż innych wektorów wzajemnie ortogonalnych

Wektor A wyrażamy jako kombinację liniową wzajemnie ortagonalnych wektorów X₁...X_n: $\overline{A} = c_1 \overline{X}_1 + c_2 \overline{X}_2 + ... + c_n \overline{X}_n$, gdzie $c_1...c_n$ – skalary.

Wersja macierzowa oblicze

$$\begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix} = \begin{bmatrix} \left(\overline{X}_1, \overline{X}_1 \right) & 0 & \cdots & 0 \\ & 0 & \left(\overline{X}_2, \overline{X}_2 \right) & \cdots & 0 \\ & & & & \left(\overline{A}, \overline{X}_1 \right) \\ & & & & & \left(\overline{A}, \overline{X}_2 \right) \\ & & & & & \left(\overline{A}, \overline{X}_n \right) \end{bmatrix}$$

Wersja iteracyjna obliczeń:

$$c_r = \frac{\overline{A} \cdot \overline{X}_r}{\overline{X}_r \cdot \overline{X}_r}$$

Ortonormalizacja

Wektory bazy są **ortonormalne** jeśli są wzajemnie ortagonalne (iloczyny skalarne wynoszą 0) oraz unormowane

Ortonormalizacja – przekształcenie wektorów liniowo niezależnych w ortonormalne.

Proces ortonormalizacji **Grama-Schmidta**: dla wektorów wejściowych X₁...X_n, obliczamy wektory wyjściowe (zortonormalizowane) Y₁...Y_n.

Najpierw obliczamy Y₁:

$$\overline{Y}_1 = \frac{\overline{X}_1}{|\overline{X}_1|}$$

Następnie kolejne wektory
$$Y_2..Y_n$$
:
$$\overline{Y}_k = \frac{\overline{X}_k - \overline{V}_k}{|\overline{X}_k - \overline{V}_k|} \text{ gdzie } \overline{V}_k = \sum_{i=1}^{k-1} (\overline{Y}_i \cdot \overline{X}_k) \overline{Y}_i$$

Inny (bardziej czytelny) wzór na obliczanie Y_k to:

$$\overline{Y}_{k} = \overline{X}_{k} - \sum_{i=1}^{k-1} \frac{(\overline{X}_{k}, \overline{Y}_{i})}{\left\|\overline{Y}_{i}\right\|^{2}} \overline{Y}_{i}, \text{ gdzie } (X, Y) - \text{iloczyn skalarny; } \|X\| - \text{norma}$$

Ortogonalność funkcji zespolonych

$$c_r = \frac{\int_{t_1}^{t_2} f(t) g_r^*(t) dt}{\int_{t_1}^{t} g_r(t) g_r^*(t) dt}$$

, gdzie f(t), g(t) to funkcje których ortagonalność badamy; g*(t) – sprzężenie wartości

Funkcje f(t), g(t) są ortagonalne jeśli wartość c jest zerowa.

Szereg trygonometryczny

Chcemy zapisać funkcję f(t) w przedziale $(t_0 < t < t_0 + T)$ jako ciąg współczynników a0, a1, a2, ..., b1, b2, ... Aby "złożyć" wartość funkcji ze współczynników, dokonujemy operacji:

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n \, \omega_0 t + b_n \sin n \, \omega_0 t)_{\text{, gdzie}} n = 1,2,3, \dots, \omega = \frac{2\pi}{T}$$

Współczynniki z funkcji f(t) uzyskuje się następująco:

$$a_0 = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) dt$$

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos n\omega_0 t dt$$

$$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \sin n\omega_0 t dt$$

Szereg wykładniczy

Przedstawiamy funkcję f(t) jako ciąg współczynników F_n , gdzie $n=0,\pm 1,\pm 2,...$ Operacja "złożenia" wartości funkcji ze współczynników:

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$$

Liczenie współczynników F_n:

$$F_{n} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) e^{-jn\omega_{0}t} dt$$

Odpowiedniki dla wersji dwuwymiarowej:

$$f(x,y) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} F(u,v) e^{j(ux\omega_{x0} + vy\omega_{y0})}$$
 $(x_0 < x < x_0 + T_x)$ $(y_0 < y < y_0 + T_y)$ $(y_0 < y < y_0 + T_y)$ $(y_0 < y < y_0 + T_y)$ $(y_0 < y < y_0 + T_y)$

$$F_{u,v} = \frac{1}{T_x T_y} \int_{y_0}^{y_0 + \frac{2\pi}{\omega_{y_0}}} \int_{x_0}^{x_0 + \frac{2\pi}{\omega_{x_0}}} f(x, y) e^{-j(ux\omega_{x_0} + vy\omega_{y_0})} dx dy$$

Transformata Fouriera

 $\textbf{Uwaga:} \ \varpi \ jest \ ciągłe, \ nie-jak \ w \ poprzednich \ transformatach-dyskretne!$

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{j2\pi\omega t} d\omega$$
$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j2\pi\omega t} dt$$

Wersja dwuwymiarowa:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$
$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy$$