FINAL PROJECT - House_Sales_in_King_Count_USA

May 27, 2025

1 House Sales in King County, USA

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Variable	Description				
id	A notation for a house				
date	Date house was sold				
price	Price is prediction target				
$\operatorname{bedrooms}$	Number of bedrooms				
bathrooms	Number of bathrooms				
$sqft_living$	Square footage of the home				
sqft _lot	Square footage of the lot				
floors	Total floors (levels) in house				
waterfront	House which has a view to a waterfront				
view	Has been viewed				
condition	How good the condition is overall				
grade	overall grade given to the housing unit, based on King County grading system				
$sqft_above$	Square footage of house apart from basement				
$sqft_basem$	enSquare footage of the basement				
yr_built	Built Year				
yr_renovate	yr_renovatedYear when house was renovated				
zipcode	Zip code				
lat	Latitude coordinate				
long	Longitude coordinate				
$sqft_living1$	sqft_living15Living room area in 2015(implies—some renovations) This might or might not have				
	affected the lotsize area				
$sqft_lot15$	LotSize area in 2015(implies—some renovations)				

You will require the following libraries:

```
[15]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
```

```
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

2 Module 1: Importing Data Sets

Load the csv:

We use the method head to display the first 5 columns of the dataframe.

```
df.head()
[17]:
[17]:
         Unnamed: 0
                               id
                                                         price
                                                                bedrooms
                                                                           bathrooms
                                               date
                   0
                      7129300520
                                   20141013T000000
                                                      221900.0
                                                                      3.0
                                                                                 1.00
                                                      538000.0
                                                                      3.0
                                                                                 2.25
      1
                   1
                      6414100192
                                   20141209T000000
      2
                      5631500400
                                   20150225T000000
                                                      180000.0
                                                                      2.0
                                                                                 1.00
      3
                   3
                      2487200875
                                                                      4.0
                                   20141209T000000
                                                      604000.0
                                                                                 3.00
      4
                      1954400510
                                   20150218T000000
                                                      510000.0
                                                                      3.0
                                                                                 2.00
         sqft_living
                       sqft_lot
                                  floors
                                           waterfront
                                                           grade
                                                                  sqft_above
      0
                 1180
                            5650
                                     1.0
                                                     0
                                                               7
                                                                         1180
      1
                 2570
                            7242
                                     2.0
                                                     0
                                                               7
                                                                         2170
      2
                                                     0
                                                               6
                  770
                           10000
                                     1.0
                                                                          770
      3
                            5000
                                     1.0
                                                     0
                                                                7
                 1960
                                                                         1050
      4
                 1680
                            8080
                                     1.0
                                                                8
                                                                         1680
         sqft_basement
                         yr_built
                                    yr_renovated
                                                   zipcode
                                                                  lat
                                                                          long
      0
                              1955
                                                      98178
                                                             47.5112 -122.257
      1
                    400
                              1951
                                             1991
                                                      98125 47.7210 -122.319
      2
                      0
                              1933
                                                0
                                                      98028 47.7379 -122.233
      3
                    910
                              1965
                                                0
                                                      98136 47.5208 -122.393
      4
                      0
                              1987
                                                      98074 47.6168 -122.045
         sqft_living15
                          sqft_lot15
      0
                   1340
                                5650
      1
                   1690
                                7639
      2
                                8062
                   2720
      3
                                5000
                   1360
                   1800
                                7503
```

[5 rows x 22 columns]

2.0.1 Question 1

Display the data types of each column using the function dtypes, then take a screenshot and submit it, include your code in the image.

[18]: df.dtypes

Г18]:	Unnamed: 0	
	id	
	date	ii obj
	price	float64
	bedrooms	float64
	bathrooms	float64
	sqft_living	int64
	sqft_lot	int64
	floors	float64
	waterfront	int64
	view	int64
	condition	int64
	grade	int64
	sqft_above	int64
	sqft_basement	int64
	<pre>yr_built</pre>	int64
	<pre>yr_renovated</pre>	int64
	zipcode	int64
	lat	float64
	long	float64
	sqft_living15	int64
	sqft_lot15	int64
	dtype: object	

We use the method describe to obtain a statistical summary of the dataframe.

[19]: df.describe()

[19]:		Unnamed: 0	id	price	bedrooms	bathrooms	\
	count	21613.00000	2.161300e+04	2.161300e+04	21600.000000	21603.000000	
	mean	10806.00000	4.580302e+09	5.400881e+05	3.372870	2.115736	
	std	6239.28002	2.876566e+09	3.671272e+05	0.926657	0.768996	
	min	0.00000	1.000102e+06	7.500000e+04	1.000000	0.500000	
	25%	5403.00000	2.123049e+09	3.219500e+05	3.000000	1.750000	
	50%	10806.00000	3.904930e+09	4.500000e+05	3.000000	2.250000	
	75%	16209.00000	7.308900e+09	6.450000e+05	4.000000	2.500000	
	max	21612.00000	9.900000e+09	7.700000e+06	33.000000	8.000000	
		sqft_living	sqft_lot	floors	waterfront	view	\
	count	21613.000000	2.161300e+04	21613.000000	21613.000000	21613.000000	
	mean	2079.899736	1.510697e+04	1.494309	0.007542	0.234303	
	std	918.440897	4.142051e+04	0.539989	0.086517	0.766318	

min	290.000000	5.200000e+02	1.000000	0.000000	0.000000	
25%	1427.000000	5.040000e+03	1.000000	0.000000	0.000000	
50%	1910.000000	7.618000e+03	1.500000	0.000000	0.000000	
75%	2550.000000	1.068800e+04	2.000000	0.000000	0.000000	
max	13540.000000	1.651359e+06	3.500000	1.000000	4.000000	
	gra	de sqft_above	sqft_basemen	t yr_bu:	ilt \	
count	21613.0000	00 21613.000000	21613.00000	0 21613.000	000	
mean	7.6568	73 1788.390691	291.50904	5 1971.005	136	
std	1.1754	59 828.090978	442.57504	3 29.373	411	
min	1.0000	00 290.000000	0.00000	0 1900.000	000	
25%	7.0000	00 1190.000000	0.00000	0 1951.000	000	
50%	7.0000	00 1560.000000	0.00000	0 1975.000	000	
75%	8.0000	00 2210.000000	560.00000	0 1997.000	000	
max	13.0000	00 9410.000000	4820.00000	0 2015.000	000	
	$yr_renovated$	zipcode	lat	long	sqft_living15	\
count	21613.000000	21613.000000 2	1613.000000 2	1613.000000	21613.000000	
mean	84.402258	98077.939805	47.560053	-122.213896	1986.552492	
std	401.679240	53.505026	0.138564	0.140828	685.391304	
min	0.000000	98001.000000	47.155900	-122.519000	399.000000	
25%	0.000000	98033.000000	47.471000	-122.328000	1490.000000	
50%	0.000000	98065.000000	47.571800	-122.230000	1840.000000	
75%	0.000000	98118.000000	47.678000	-122.125000	2360.000000	
max	2015.000000	98199.000000	47.777600	-121.315000	6210.000000	
	sqft_lot15					
count	21613.000000					
mean	12768.455652					
std	27304.179631					
min	651.000000					
25%	5100.000000					
50%	7620.000000					
75%	10083.000000					
max	871200.000000					

[8 rows x 21 columns]

3 Module 2: Data Wrangling

3.0.1 Question **2**

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True

```
[20]: df.drop("id", axis = 1, inplace = True)
    df.drop("Unnamed: 0", axis = 1, inplace = True)
    df.describe()
```

[20]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	\
[20].	count	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	`
	mean	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	
	std	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	
	min	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	
	25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	
	50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	
	75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	
	max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	
	man	7.7000000	33.00000	0.00000	10010.00000	1.0010000	
		floors	waterfront	view	condition	grade	\
	count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
	mean	1.494309	0.007542	0.234303	3.409430	7.656873	
	std	0.539989	0.086517	0.766318	0.650743	1.175459	
	min	1.000000	0.000000	0.000000	1.000000	1.000000	
	25%	1.000000	0.000000	0.000000	3.000000	7.000000	
	50%	1.500000	0.000000	0.000000	3.000000	7.000000	
	75%	2.000000	0.000000	0.000000	4.000000	8.000000	
	max	3.500000	1.000000	4.000000	5.000000	13.000000	
		sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	\
	count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
	mean	1788.390691	291.509045	1971.005136	84.402258	98077.939805	
	std	828.090978	442.575043	29.373411	401.679240	53.505026	
	min	290.000000	0.000000	1900.000000	0.000000	98001.000000	
	25%	1190.000000	0.000000	1951.000000	0.000000	98033.000000	
	50%	1560.000000	0.000000	1975.000000	0.000000	98065.000000	
	75%	2210.000000	560.000000	1997.000000	0.000000	98118.000000	
	max	9410.000000	4820.000000	2015.000000	2015.000000	98199.000000	
		lat	long	sqft_living15	sqft_lot15		
	count	21613.000000	21613.000000	21613.000000	21613.000000		
	mean	47.560053	-122.213896	1986.552492	12768.455652		
	std	0.138564	0.140828	685.391304	27304.179631		
	min	47.155900	-122.519000	399.000000	651.000000		
	25%	47.133900	-122.328000	1490.000000	5100.000000		
	50%	47.571800	-122.230000	1840.000000	7620.000000		
	75%	47.678000	-122.125000	2360.000000	10083.000000		
		47.777600	-122.125000	6210.000000	871200.000000		
	max	±1.111000	121.313000	0210.000000	0/1200.000000	•	

We can see we have missing values for the columns bedrooms and bathrooms

```
[21]: print("number of NaN values for the column bedrooms:", df['bedrooms'].isnull().

sum())

print("number of NaN values for the column bathrooms:", df['bathrooms'].

isnull().sum())
```

```
number of NaN values for the column bedrooms : 13 number of NaN values for the column bathrooms : 10
```

We can replace the missing values of the column 'bedrooms' with the mean of the column 'bedrooms' using the method replace(). Don't forget to set the inplace parameter to True

```
[22]: mean=df['bedrooms'].mean()
df['bedrooms'].replace(np.nan,mean, inplace=True)
```

We also replace the missing values of the column 'bathrooms' with the mean of the column 'bathrooms' using the method replace(). Don't forget to set the inplace parameter top True

```
[23]: mean=df['bathrooms'].mean()
df['bathrooms'].replace(np.nan,mean, inplace=True)
```

```
[24]: print("number of NaN values for the column bedrooms:", df['bedrooms'].isnull().

sum())

print("number of NaN values for the column bathrooms:", df['bathrooms'].

sisnull().sum())
```

```
number of NaN values for the column bedrooms : 0 number of NaN values for the column bathrooms : 0
```

4 Module 3: Exploratory Data Analysis

4.0.1 Question 3

Use the method value_counts to count the number of houses with unique floor values, use the method .to frame() to convert it to a dataframe.

```
[25]: df["floors"].value_counts().to_frame()
```

```
[25]: floors
1.0 10680
2.0 8241
1.5 1910
3.0 613
2.5 161
3.5 8
```

4.0.2 Question 4

Use the function boxplot in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers.

[26]: sns.boxplot(x = 'waterfront', y= 'price', data = df)

#The Boxplot for houses without a waterfront view has many more outlier points
#beyond its upper extremes than the boxplot for houses with a waterfront view.

[26]: <AxesSubplot:xlabel='waterfront', ylabel='price'>

4.0.3 Question 5

Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price.

[27]: sns.regplot(x = 'sqft_above', y = 'price', data = df)

#Sqft_above is postiviely correlated with price based on the graph. The

→regression line has a positive slope.

[27]: <AxesSubplot:xlabel='sqft_above', ylabel='price'>

We can use the Pandas method $\operatorname{corr}()$ to find the feature other than price that is most correlated with price.

```
[28]: df.corr()['price'].sort_values()
```

[28]:	zipcode	-0.053203
	long	0.021626
	condition	0.036362
	<pre>yr_built</pre>	0.054012
	sqft_lot15	0.082447
	sqft_lot	0.089661
	<pre>yr_renovated</pre>	0.126434
	floors	0.256794
	waterfront	0.266369
	lat	0.307003
	bedrooms	0.308797
	sqft_basement	0.323816
	view	0.397293
	bathrooms	0.525738
	sqft_living15	0.585379
	sqft_above	0.605567
	grade	0.667434
	sqft_living	0.702035
	price	1.000000

Name: price, dtype: float64

5 Module 4: Model Development

We can Fit a linear regression model using the longitude feature 'long' and caculate the R^2.

```
[29]: X = df[['long']]
Y = df['price']
lm = LinearRegression()
lm.fit(X,Y)
r_squared = lm.score(X, Y)

print("r-squared is: ", r_squared)
```

r-squared is: 0.00046769430149029567

5.0.1 Question 6

Fit a linear regression model to predict the 'price' using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2.

```
[30]: lm = LinearRegression()
   X = df[['sqft_living']]
   Y = df['price']
   lm.fit(X,Y)
   yhat = lm.predict(X)
   r_squared = lm.score(X,Y)

print("r-squared is: ", r_squared)
   print("First few predicted y values: ", yhat[0:5])
```

r-squared is: 0.4928532179037931 First few predicted y values: [287555.06702452 677621.82640197 172499.40418656 506441.44998452 427866.85097324]

5.0.2 Question 7

Fit a linear regression model to predict the 'price' using the list of features:

```
[31]: features =["floors", "waterfront", "lat", "bedrooms", "sqft_basement", "view"

, "bathrooms", "sqft_living15", "sqft_above", "grade", "sqft_living"]
```

Then calculate the R². Take a screenshot of your code.

```
[32]: lm = LinearRegression()
X = df[features]
Y = df['price']
```

```
lm.fit(X, Y)
yhat = lm.predict(X)
r_squared = lm.score(X, Y)

print("r-squared is: ", r_squared)
print("First few predicted y values: ", yhat[0:5])
```

r-squared is: 0.6576951666037495

First few predicted y values: [283270.39007439 662572.30128733 306267.58455133

408476.54986727 532313.80775074]

5.0.3 This will help with Question 8

Create a list of tuples, the first element in the tuple contains the name of the estimator:

'scale'

'polynomial'

'model'

The second element in the tuple contains the model constructor

StandardScaler()

PolynomialFeatures(include_bias=False)

LinearRegression()

```
[33]: Input=[('scale',StandardScaler()),('polynomial',__ 
PolynomialFeatures(include_bias=False)),('model',LinearRegression())]
```

5.0.4 Question 8

Use the list to create a pipeline object to predict the 'price', fit the object using the features in the list features, and calculate the R^2.

```
pipe = Pipeline(Input)  #Pass inputs into piepline constructor

Z = df[features].astype(float) #Z contains all of our needed features in float

form to avoid problems

pipe.fit(Z, Y)  #fit (and normalize & transform) the model

yhat = pipe.predict(Z)  #Get predicted price values

r_squared = pipe.score(Z,Y)  #Calculate the r-squared

print("r-squared is: ", r_squared)

print("First few predicted y values: ", yhat[0:5])
```

r-squared is: 0.751340143833189

First few predicted y values: [349644.125 559088.125 449488.125 393224.125

521702.125]

6 Module 5: Model Evaluation and Refinement

Import the necessary modules:

```
[36]: from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split
```

We will split the data into training and testing sets:

number of test samples: 3242 number of training samples: 18371

6.0.1 Question 9

Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R² using the test data.

```
[38]: from sklearn.linear_model import Ridge
```

```
[39]: RidgeModel = Ridge(alpha = 0.1)
RidgeModel.fit(x_train, y_train)
r_squared = RidgeModel.score(x_test, y_test)
print("r-squared is: ", r_squared)
```

r-squared is: 0.6478759163939116

6.0.2 Question 10

Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, set the regularisation parameter to 0.1, and calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2.

```
[40]: #Do a degree 2 polynomial transformation on training & testing data:

pt = PolynomialFeatures(degree = 2)
x_train_pt = pt.fit_transform(x_train) #Polynomial transform the training data
x_test_pt = pt.fit_transform(x_test) #Polynomial transform the testing data
```

```
#Create & fit a ridge regression object. Find r-squared.

RidgeModel = Ridge(alpha = 0.1)
RidgeModel.fit(x_train_pt, y_train)
r_squared = RidgeModel.score(x_test_pt, y_test)

print("r-squared is: ", r_squared)
```

r-squared is: 0.700274426746305