Institute of Information Technology (IIT)

Jahangirnagar University

Lab Report: 08

Submitted by:

Name: Md. Shakil Hossain

Roll No: 2023

Lab Date: 28/08/2023

Submission Date: 03/09/2023

K-Means Clustering

K-Means Clustering is an Unsupervised Learning algorithm, which groups the unlabeled dataset into different clusters. Here K defines the number of pre-defined clusters that need to be created in the process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on.

"It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a way that each dataset belongs only one group that has similar properties."

It allows us to cluster the data into different groups and a convenient way to discover the categories of groups in the unlabeled dataset on its own without the need for any training.

It is a centroid-based algorithm, where each cluster is associated with a centroid. The main aim of this algorithm is to minimize the sum of distances between the data point and their corresponding clusters.

The k-means clustering algorithm mainly performs two tasks:

- Determines the best value for K center points or centroids by an iterative process.
- Assigns each data point to its closest k-center. Those data points which are near to the particular k-center, create a cluster.

Hence each cluster has datapoints with some commonalities, and it is away from other clusters.

The below diagram explains the working of the K-means Clustering Algorithm:

How does the K-Means Algorithm Work?

The working of the K-Means algorithm is explained in the below steps:

- Step-1: Select the number K to decide the number of clusters.
- Step-2: Select random K points or centroids. (It can be other from the input dataset).
- Step-3: Assign each data point to their closest centroid, which will form the predefined K clusters.
- Step-4: Calculate the variance and place a new centroid of each cluster.
- Step-5: Repeat the third steps, which means reassign each datapoint to the new closest centroid of each cluster.
- Step-6: If any reassignment occurs, then go to step-4 else go to FINISH.
- Step-7: The model is ready.

When using the Kmeans algorithm under normal circumstances, it is because you don't have labels. In this case we will use the labels to try to get an idea of how well the algorithm performed, but you won't usually do this for Kmeans, so the classification report and confusion matrix at the end of this project, don't truly make sense in a real world setting!.

Connectivity-based clustering

- Distance based
- E.g., Hierarchical clustering

Centroid-based clustering

- Represents each cluster by a single mean vector
- E.g., k-means algorithm

Distribution-based clustering

- Modeled using statistical distributions
- E.g., Multivariate normal distributions used by the expectation-maximization algorithm.

Density-based clustering

- Defines clusters as connected dense regions in the data space.
- E.g., DBSCAN

Source of the data

https://www.kaggle.com/datasets/karthikthallam/college-data/code

Import libraries

In [1]:

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt # for data visualization
import seaborn as sns # for statistical data visualization
%matplotlib inline
```

In [3]:

```
df = pd.read_csv('../Resource/College.csv')
```

Exploratory data analysis

In [4]:

df.shape

Out[4]:

(777, 19)

In [5]:

df.head()

Out[5]:

	Unnamed: 0	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergr
0	Abilene Christian University	Yes	1660	1232	721	23	52	2885	5
1	Adelphi University	Yes	2186	1924	512	16	29	2683	12
2	Adrian College	Yes	1428	1097	336	22	50	1036	
3	Agnes Scott College	Yes	417	349	137	60	89	510	
4	Alaska Pacific University	Yes	193	146	55	16	44	249	8
4									>

In [6]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776
Data columns (total 19 columns):
```

#	Column	Non-Null Count	Dtype				
0	Unnamed: 0	777 non-null	object				
-			object				
1	Private	777 non-null	object				
2	Apps	777 non-null	int64				
3	Accept	777 non-null	int64				
4	Enroll	777 non-null	int64				
5	Top10perc	777 non-null	int64				
6	Top25perc	777 non-null	int64				
7	F.Undergrad	777 non-null	int64				
8	P.Undergrad	777 non-null	int64				
9	Outstate	777 non-null	int64				
10	Room.Board	777 non-null	int64				
11	Books	777 non-null	int64				
12	Personal	777 non-null	int64				
13	PhD	777 non-null	int64				
14	Terminal	777 non-null	int64				
15	S.F.Ratio	777 non-null	float64				
16	perc.alumni	777 non-null	int64				
17	Expend	777 non-null	int64				
18	Grad.Rate	777 non-null	int64				
dtyp	es: float64(1), int64(16), ob	ject(2)				
memory usage: 115.5+ KB							

In [7]:

```
df.isnull().sum()
```

Out[7]:

```
Unnamed: 0
               0
Private
               0
               0
Apps
               0
Accept
               0
Enroll
Top10perc
               0
Top25perc
               0
F.Undergrad
               0
P.Undergrad
               0
Outstate
               0
Room.Board
               0
Books
               0
Personal
               0
               0
PhD
Terminal
               0
S.F.Ratio
               0
               0
perc.alumni
               0
Expend
Grad.Rate
               0
dtype: int64
```

In [8]:

```
df.drop(['S.F.Ratio', 'perc.alumni', 'Expend', 'Grad.Rate'], axis=1, inplace=True)
```

In [9]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	777 non-null	object
1	Private	777 non-null	object
2	Apps	777 non-null	int64
3	Accept	777 non-null	int64
4	Enroll	777 non-null	int64
5	Top10perc	777 non-null	int64
6	Top25perc	777 non-null	int64
7	F.Undergrad	777 non-null	int64
8	P.Undergrad	777 non-null	int64
9	Outstate	777 non-null	int64
10	Room.Board	777 non-null	int64
11	Books	777 non-null	int64
12	Personal	777 non-null	int64
13	PhD	777 non-null	int64
14	Terminal	777 non-null	int64
4+,,,,	oc. in+64/12\	object(2)	

dtypes: int64(13), object(2)

memory usage: 91.2+ KB

In [10]:

df.describe()

Out[10]:

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.U
cour	t 777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	7
mea	n 3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	8
st	d 3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	15
mi	n 81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	
259	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	
50 9	6 1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	3
75 %	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	9
ma	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	218
4							

```
In [11]:
df['Unnamed: 0'].unique()
Out[11]:
array(['Abilene Christian University', 'Adelphi University',
       'Adrian College', 'Agnes Scott College',
       'Alaska Pacific University', 'Albertson College',
       'Albertus Magnus College', 'Albion College', 'Albright Colleg
e',
       'Alderson-Broaddus College', 'Alfred University',
       'Allegheny College', 'Allentown Coll. of St. Francis de Sales',
       'Alma College', 'Alverno College',
       'American International College', 'Amherst College',
       'Anderson University', 'Andrews University',
       'Angelo State University', 'Antioch University',
       'Appalachian State University', 'Aquinas College',
       'Arizona State University Main campus',
       'Arkansas College (Lyon College)', 'Arkansas Tech University',
       'Assumption College', 'Auburn University-Main Campus',
       'Augsburg College', 'Augustana College IL', 'Augustana Colleg
е',
       'Austin College', 'Averett College', 'Baker University',
In [12]:
len(df['Unnamed: 0'].unique())
Out[12]:
777
In [13]:
df['Private'].unique()
Out[13]:
array(['Yes', 'No'], dtype=object)
In [14]:
len(df['Private'].unique())
Out[14]:
2
In [15]:
df.drop(['Private'], axis=1, inplace=True)
```

In [16]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 777 entries, 0 to 776
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
		777	-1
0	Unnamed: 0	777 non-null	object
1	Apps	777 non-null	int64
2	Accept	777 non-null	int64
3	Enroll	777 non-null	int64
4	Top10perc	777 non-null	int64
5	Top25perc	777 non-null	int64
6	F.Undergrad	777 non-null	int64
7	P.Undergrad	777 non-null	int64
8	Outstate	777 non-null	int64
9	Room.Board	777 non-null	int64
10	Books	777 non-null	int64
11	Personal	777 non-null	int64
12	PhD	777 non-null	int64
13	Terminal	777 non-null	int64
4+	oc. in+(1/12)	ab = a = + (1)	

dtypes: int64(13), object(1)
memory usage: 85.1+ KB

In [17]:

df.head()

Out[17]:

	Unnamed: 0	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outs
0	Abilene Christian University	1660	1232	721	23	52	2885	537	7
1	Adelphi University	2186	1924	512	16	29	2683	1227	12
2	Adrian College	1428	1097	336	22	50	1036	99	11
3	Agnes Scott College	417	349	137	60	89	510	63	12
4	Alaska Pacific University	193	146	55	16	44	249	869	7
4									•

In [18]:

```
plt.figure(figsize=(10,6))
plt.scatter(df['Apps'],df['Enroll'])
plt.xlabel('Number of Apps')
plt.ylabel('number of Enroll')
plt.title('LIVE Download')
```

Out[18]:

Text(0.5, 1.0, 'LIVE Download')

Declare feature vector and target variable

In [19]:

```
df.head(2)
```

Out[19]:

	Unnamed: 0	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outs
0	Abilene Christian University	1660	1232	721	23	52	2885	537	7
1	Adelphi University	2186	1924	512	16	29	2683	1227	12
4									•

Convert categorical variable into integers

```
In [20]:
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Unnamed: 0'] = le.fit_transform(df['Unnamed: 0'])
```

In [22]:

```
y=df
cols = y.columns
from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()
y = ms.fit_transform(y)
y = pd.DataFrame(y, columns=[cols])
```

In [23]:

```
X = y.values
X[:5] # Show first 5 records only
```

Out[23]:

```
array([[0.
                  , 0.03288693, 0.04417701, 0.10791254, 0.23157895,
        0.47252747, 0.08716353, 0.02454774, 0.26342975, 0.23959647,
        0.15775401, 0.29770992, 0.65263158, 0.71052632],
       [0.00128866, 0.04384229, 0.07053089, 0.07503539, 0.15789474,
        0.21978022, 0.08075165, 0.05614839, 0.51342975, 0.73612863,
        0.29144385, 0.19083969, 0.22105263, 0.07894737,
       [0.00257732, 0.0280549 , 0.03903572, 0.04734938, 0.22105263,
        0.45054945, 0.02847257, 0.00448821, 0.46022727, 0.31052963,
        0.13547237, 0.13969466, 0.47368421, 0.55263158],
       [0.00386598, 0.0069981 , 0.01054917, 0.0160453 , 0.62105263,
        0.87912088, 0.01177628, 0.00283948, 0.54855372, 0.57849937,
        0.15775401, 0.09541985, 0.88421053, 0.96052632],
       [0.00515464, 0.0023327 , 0.00281819, 0.00314614, 0.15789474,
        0.38461538, 0.00349162, 0.03975269, 0.2696281, 0.36885246,
        0.31372549, 0.19083969, 0.71578947, 0.63157895]])
```

Feature Scaling

In [25]:

```
from sklearn.cluster import KMeans
clustering_score = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'random', random_state = 42)
    kmeans.fit(X)
    clustering_score.append(kmeans.inertia_)

plt.figure(figsize=(10,6))
plt.plot(range(1, 11), clustering_score)
plt.scatter(4,clustering_score[3], s = 200, c = 'red', marker='*')
plt.title('The Elbow Method')
plt.xlabel('No. of Clusters')
plt.ylabel('Clustering Score')
plt.show()
```

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

K-Means model with five clusters

In [26]:

```
kmeans= KMeans(n_clusters = 5, random_state = 42)
# Compute k-means clustering
kmeans.fit(X)
# Compute cluster centers and predict cluster index for each sample.
pred = kmeans.predict(X)
pred
```

c:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\sk
learn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_ini
t` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning

super()._check_params_vs_input(X, default_n_init=10)

Out[26]:

```
0, 4, 2, 0, 2, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0,
      2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 4, 0, 2, 2, 0,
      0, 0, 0, 4, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2,
      0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0,
      2, 0, 0, 0, 2, 2, 0, 2, 4, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0,
      0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 0,
      0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2,
      4, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0,
      0, 0, 2, 4, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2,
      0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0,
      2, 2, 2, 0, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0,
      0, 0, 0, 0, 2, 4, 2, 0, 0, 0, 4, 0, 0, 4, 2, 4, 0, 0, 0, 2, 2, 0,
      0, 2, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2,
      2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 2, 2, 2,
      2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 3, 2, 4, 2, 2, 3, 0, 3, 2,
      0, 0, 1, 0, 0, 0, 0, 2, 0, 3, 3, 0, 3, 4, 4, 2, 0, 3, 0, 3, 2, 0,
      3, 3, 0, 0, 0, 2, 3, 3, 3, 3, 0, 3, 2, 3, 0, 0, 1, 0, 0, 0, 0, 3,
      3, 2, 2, 0, 2, 3, 3, 3, 2, 2, 2, 1, 0, 1, 3, 3, 4, 3, 1, 3, 3, 3,
      4, 4, 4, 3, 3, 3, 1, 3, 0, 3, 1, 1, 1, 2, 4, 1, 3, 3, 4, 3, 3, 3,
      1, 1, 3, 1, 3, 4, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 4,
      3, 3, 3, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 4,
      1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1,
      3, 3, 3, 3, 4, 1, 1, 3, 3, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 1,
      1, 3, 3, 3, 3, 3, 1, 3, 4, 3, 3, 1, 3, 1, 3, 3, 3, 3, 1, 3, 1,
      1, 3, 3, 3, 3, 3, 1, 1, 3, 1, 4, 4, 4, 4, 3, 3, 3, 3, 3, 1, 3, 3,
      3, 3, 1, 1, 1, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 1, 1, 3, 1,
      1, 3, 1, 1, 3, 3, 3, 1, 3, 3, 4, 4, 1, 4, 3, 1, 4, 4, 1, 3, 4, 1,
      3, 3, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 4, 3, 1, 4,
      3, 1, 4, 3, 4, 1, 3, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 4, 1, 4, 3, 4,
      1, 4, 4, 1, 4, 1, 1, 4, 1, 1, 1, 1, 3, 1, 3, 4, 4, 1, 3, 3, 3, 3,
      1, 4, 3, 4, 4, 3, 1, 1, 1, 4, 1, 1, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3,
      1, 3, 3, 1, 1, 1, 1, 4, 3, 4, 3, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1,
      1, 4, 1, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 3, 3, 3, 1, 4, 3, 3, 4, 3,
      3, 3, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1,
      1, 1, 3, 3, 3, 1, 3])
```

```
In [27]:
```

```
df['Cluster'] = pd.DataFrame(pred, columns=['cluster'] )
print('Number of data points in each cluster= \n', df['Cluster'].value_counts())
df
```

Number of data points in each cluster=

0 226

3 219

2 143

1 111

. 78

Name: Cluster, dtype: int64

Out[27]:

	Unnamed: 0	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	0
0	0	1660	1232	721	23	52	2885	537	
1	1	2186	1924	512	16	29	2683	1227	
2	2	1428	1097	336	22	50	1036	99	
3	3	417	349	137	60	89	510	63	
4	4	193	146	55	16	44	249	869	
772	772	2197	1515	543	4	26	3089	2029	
773	773	1959	1805	695	24	47	2849	1107	
774	774	2097	1915	695	34	61	2793	166	
775	775	10705	2453	1317	95	99	5217	83	
776	776	2989	1855	691	28	63	2988	1726	

777 rows x 15 columns

4

Vizualization

In [28]:

```
plt.figure(figsize=(10,6))
plt.scatter(X[pred == 0, 3], X[pred == 0, 2], c = 'brown', label = 'Cluster 0')
plt.scatter(X[pred == 1, 3], X[pred == 1, 2], c = 'green', label = 'Cluster 1')
plt.scatter(X[pred == 2, 3], X[pred == 2, 2], c = 'blue', label = 'Cluster 2')
plt.scatter(X[pred == 3, 3], X[pred == 3, 2], c = 'purple', label = 'Cluster 3')
plt.scatter(X[pred == 4, 3], X[pred == 4, 2], c = 'orange', label = 'Cluster 4')
plt.scatter(kmeans.cluster_centers_[:,1], kmeans.cluster_centers_[:, 2],s =100, c = 'red
plt.xlabel('num_reactions')
plt.ylabel('num_comments')
plt.legend()
plt.title('Live selling')
```

Out[28]:

Text(0.5, 1.0, 'Live selling')

K-Means model parameters study

In [29]:

```
labels1 = kmeans.labels_
centroids1 = kmeans.cluster_centers_
labels1
```

Out[29]:

```
array([0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0,
       0, 4, 2, 0, 2, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0,
       2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 0, 2, 2, 0,
       0, 0, 0, 4, 2, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2,
       0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0,
       2, 0, 0, 0, 2, 2, 0, 2, 4, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0,
      0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 0,
      0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2,
       4, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0,
      0, 0, 2, 4, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2,
       0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0,
       2, 2, 2, 0, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0,
       0, 0, 0, 0, 2, 4, 2, 0, 0, 0, 4, 0, 0, 4, 2, 4, 0, 0, 0, 2, 2, 0,
       0, 2, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 0, 2, 2,
       2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 2, 2, 2,
       2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 3, 2, 4, 2, 2, 3, 0, 3, 2,
      0, 0, 1, 0, 0, 0, 0, 2, 0, 3, 3, 0, 3, 4, 4, 2, 0, 3, 0, 3, 2, 0,
       3, 3, 0, 0, 0, 2, 3, 3, 3, 3, 0, 3, 2, 3, 0, 0, 1, 0, 0, 0, 0, 3,
       3, 2, 2, 0, 2, 3, 3, 3, 2, 2, 2, 1, 0, 1, 3, 3, 4, 3, 1, 3, 3, 3,
       4, 4, 4, 3, 3, 3, 1, 3, 0, 3, 1, 1, 1, 2, 4, 1, 3, 3, 4, 3, 3, 3,
       1, 1, 3, 1, 3, 4, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 4,
       3, 3, 3, 3, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 4,
       1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1,
       3, 3, 3, 3, 4, 1, 1, 3, 3, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 1,
       1, 3, 3, 3, 3, 3, 1, 3, 4, 3, 3, 1, 3, 1, 3, 3, 3, 3, 1, 3, 1,
       1, 3, 3, 3, 3, 3, 1, 1, 3, 1, 4, 4, 4, 4, 3, 3, 3, 3, 3, 1, 3, 3,
       3, 3, 1, 1, 1, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 1, 1, 3, 1,
       1, 3, 1, 1, 3, 3, 3, 1, 3, 3, 4, 4, 1, 4, 3, 1, 4, 4, 1, 3, 4, 1,
       3, 3, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 4, 3, 1, 4,
       3, 1, 4, 3, 4, 1, 3, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 4, 1, 4, 3, 4,
       1, 4, 4, 1, 4, 1, 1, 4, 1, 1, 1, 1, 3, 1, 3, 4, 4, 1, 3, 3, 3, 3,
       1, 4, 3, 4, 4, 3, 1, 1, 1, 4, 1, 1, 4, 3, 3, 3, 3, 3, 4, 4, 3, 3,
       1, 3, 3, 1, 1, 1, 1, 4, 3, 4, 3, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1,
       1, 4, 1, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 3, 3, 3, 1, 4, 3, 3, 4, 3,
       3, 3, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1,
       1, 1, 3, 3, 3, 1, 3])
```

In [30]:

```
kmeans.inertia_
```

Out[30]:

149.2353098465791