

EXAMEN PARCIAL PYTHON

GBI6-2021II: BIOINFORMÁTICA

Apellidos, Nombres <--- CAMBIE POR LOS QUE CORRESPONDA A SUS DATOS

03-08-2022

Color de texto

REQUERIMIENTOS PARA EL EXAMEN

Utilice de preferencia Jupyten de Anaconda, dado que tienen que hacer un control de cambios en cada pregunta.

Para este examen se requiere dos documentos:

- 1. Archivo miningscience.py donde tendrá dos funciones:
- 2. Archivo 2022I_GBI6_ExamenPython donde se llamará las funciones y se obtendrá resultados.

Ejercicio 0 [0.5 puntos]

Realice cambios al cuaderno de jupyter:

- Agregue el logo de la Universidad
- Coloque sus datos personales
- Escriba una tabla con las características de su computador

Ejercicio 1 [2 puntos]

Cree el archivo miningscience.py con las siguientes dos funciones:

- download_pubmed : para descargar la data de PubMed utilizando et ÉNTREZ de Biopython. El parámetro de entrada para la función es el keyword.
- science_plots : la función debe
- utilizar como argumento de entrada la data descargada por download_pubmed
- ordenar los conteos de autores por país en orden ascedente y
- seleccionar los cinco más abundantes. Con esta selección debe graficar un pie_plot. Como guía para el
 conteo por países puede usar el ejemplo de MapO/Science (https://github.com/CSB-https://CSB/binho/master/reapex/solutions/MapO/Science solution ipvnb/
 https://csB.binho/master/reapex/solutions/MapO/Science solution ipvnb/

iii Cree un docstring para cada función.

nost:8888/notebooks/GUTVerintermite-Leades/2022/_GBIb/2022/_GBIb_Examen_Python/2022/_GBIbG01_ExamenPython.ipynb

Escriba aqui su código para el ejercicio 1 handle= Entrezescorch (db="pubmed from 80 Seq import Seq used + "[THe]", use halory="y"] In [1]: Entrez email = admana pujol of est. whom exuse out-handle write (oslo) det dowload-pubmed (Keyword) tron george georges mont conter Pubmed y en out documento que contane los outos de busqueta det ocience plots (data). NS3 + nochart Smy trocimis with open (data) to data enjoys i grove 100 /: *)\.\s" texto) terto= ve sub(r" lals(6), " out handle = open (keyword+"+x+","w") data = handle read () guery-key=guery-key id-list = record L'IdList record = Entre z read (handle) weben v = record ["WebEnv"] 2

2 descargada en el ejercicio 2. rifilice dos veces la función science plots para:

Ejercicio 3 [1.5 puntos]

:[7] uI

λαγοι dne couresbougeα ΚΕΛΜΟΚΟ λ XX 'El número artículos para KEYWORD es: XX' # Que se cargue con inserción de texto o

print (" El número avticulos para Ecador QSAR es: ", len (+1)

print (" [] numero orticulospara Ecacor chagos es:", len (4))

Para cada corrida, imprima lo siguiente:

Descargar la data, utilizando los keyword de su preferencia.

• Guardar el archivo descargado en la carpeta data

(" system vobous 3") benndug-bookundb) = +7

("sopons robows") band uq-bookwob = 7

Escriba aquí su código pana el ejencicio 2

Utilice dos veces la función download_pubmed para:

Ejercicio 2 [2 puntos]

() seols. slose() tail-binnits v

. S oioioreje le ue ebercicio 2.

numero articulos para Ecocdor QSAR es: ", len (+1)

f = download-pubmed ("Enador chagos es:", len (f))

: sieg sace_plots noionul al sece_plots para

Escriba aquí su código para el ejercicio 2

(" SARS D vobous 3") benndug-bookudb) = +7

Ejercicio 3 [1.5 puntos]

