Thermodynamics: An Engineering Approach 8th Edition

Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015

CHAPTER 1 INTRODUCTION AND BASIC CONCEPTS

Objectives

- Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts to form a sound foundation for the development of the principles of thermodynamics.
- Review the metric SI and the English unit systems.
- Explain the basic concepts of thermodynamics such as system, state, state postulate, equilibrium, process, and cycle.
- Review concepts of temperature, temperature scales, pressure, and absolute and gage pressure.
- Introduce an intuitive systematic problem-solving technique.

THERMODYNAMICS AND ENERGY

- Thermodynamics: The science of energy.
- Energy: The ability to cause changes.
- The name thermodynamics stems from the Greek words therme (heat) and dynamis (power).
- Conservation of energy principle:
 During an interaction, energy can change from one form to another but the total amount of energy remains constant.
- Energy cannot be created or destroyed.
- The first law of thermodynamics: An expression of the conservation of energy principle.
- The first law asserts that energy is a thermodynamic property.

FIGURE 1-1

Energy cannot be created or destroyed; it can only change forms (the first law).

- The second law of thermodynamics: It asserts that energy has quality as well as quantity, and actual processes occur in the direction of decreasing quality of energy.
- Classical thermodynamics: A macroscopic approach to the study of thermodynamics that does not require a knowledge of the behavior of individual particles.
- It provides a direct and easy way to the solution of engineering problems and it is used in this text.
- Statistical thermodynamics: A microscopic approach, based on the average behavior of large groups of individual particles.
- It is used in this text only in the supporting role.

FIGURE 1–2 Conservation of energy principle for the human body.

FIGURE 1–3 Heat flows in the direction of decreasing temperature.

Application Areas of Thermodynamics

The design of many engineering systems, such as this solar hot water system, involves thermodynamics.

Refrigerator
© McGraw-Hill Education, Jill Braaten

Boats
© Doug Menuez/Getty Images RF

Aircraft and spacecraft

© PhotoLink/Getty Images RF

© Malcolm Fife/Getty Images RF

All activities in nature involve some interaction between energy and matter; thus, it is hard to imagine an area that does not relate to thermodynamics in some manner.

Human body
© Ryan McVay/Getty Images RF

Cars
© Mark Evans/Getty Images RF

Wind turbines © F. Schussler/PhotoLink/Getty Images RF

Food processing Glow Images RF

A piping network in an industrial facility.

Courtesy of UMDE Engineering Contracting and Trading. Used by permission

IMPORTANCE OF DIMENSIONS AND UNITS

- Any physical quantity can be characterized by dimensions.
- The magnitudes assigned to the dimensions are called units.
- Some basic dimensions such as mass m, length L, time t, and temperature T are selected as primary or fundamental dimensions, while others such as velocity V, energy E, and volume V are expressed in terms of the primary dimensions and are called secondary dimensions, or derived dimensions.
- Metric SI system: A simple and logical system based on a decimal relationship between the various units.
- English system: It has no apparent systematic numerical base, and various units in this system are related to each other rather arbitrarily.

TABLE 1-1

The seven fundamental (or primary) dimensions and their units in SI

Dimension	Unit
Length Mass Time Temperature Electric current Amount of light	meter (m) kilogram (kg) second (s) kelvin (K) ampere (A) candela (cd)
Amount of matter	mole (mol)

TABLE 1-2

Standard prefixes in SI units

Multiple	Prefix
10 ²⁴	yotta, Y
10 ²¹	zetta, Z
10 ¹⁸	exa, E
10^{15}	peta, P
10 ¹²	tera, T
10 ⁹	giga, G
10 ⁶	mega, M
10 ³	kilo, k
10 ²	hecto, h
10^{1}	deka, da
10^{-1}	deci, d
10^{-2}	centi, c
10^{-3}	milli, m
10^{-6}	micro, μ
10^{-9}	nano, n
10^{-12}	pico, p
10^{-15}	femto, f
10^{-18}	atto, a
10^{-21}	zepto, z
10 ⁻²⁴	yocto, y

Some SI and English Units

$$1 \text{ lbm} = 0.45359 \text{ kg}$$

$$1 \text{ ft} = 0.3048 \text{ m}$$

$$Force = (Mass)(Acceleration)$$

$$F = ma$$

$$1 N = 1 \text{ kg} \cdot \text{m/s}^2$$
$$1 \text{ lbf} = 32.174 \text{ lbm} \cdot \text{ft/s}^2$$

Work = Force
$$\times$$
 Distance
1 J = 1 N·m
1 cal = 4.1868 J
1 Btu = 1.0551 kJ

FIGURE 1–6

The SI unit prefixes are used in all branches of engineering.

FIGURE 1–8

The relative magnitudes of the force units newton (N), kilogram-force (kgf), and pound-force (lbf).

FIGURE 1–9
A body weighing 150 lbf on earth will weigh only 25 lbf on the moon.

W weight
m mass
g gravitational
acceleration

The weight of a unit mass at sea level.

Specific weight γ : The weight of a unit volume of a substance.

$$\gamma = \rho g$$

FIGURE 1-11

A typical match yields about one Btu (or one kJ) of energy if completely burned.

Dimensional homogeneity

All equations must be dimensionally homogeneous.

Unity Conversion Ratios

All nonprimary units (secondary units) can be formed by combinations of primary units.

Force units, for example, can be expressed as

$$N = kg \frac{m}{s^2}$$
 and $lbf = 32.174 lbm \frac{ft}{s^2}$

They can also be expressed more conveniently as unity conversion ratios as

$$\frac{N}{\text{kg} \cdot \text{m/s}^2} = 1 \quad \text{and} \quad \frac{\text{lbf}}{32.174 \text{ lbm} \cdot \text{ft/s}^2} = 1$$

Unity conversion ratios are identically equal to 1 and are unitless, and thus such ratios (or their inverses) can be inserted conveniently into any calculation to properly convert units.

Always check the units in your calculations.

FIGURE 1-15

Every unity conversion ratio (as well as its inverse) is exactly equal to one. Shown here are a few commonly used unity conversion ratios.

A quirk in the metric system of units.

SYSTEMS AND CONTROL VOLUMES

- System: A quantity of matter or a region in space chosen for study.
- Surroundings: The mass or region outside the system
- Boundary: The real or imaginary surface that separates the system from its surroundings.
- The boundary of a system can be fixed or movable.
- Systems may be considered to be closed or open.
- Closed system (Control mass): A fixed amount of mass, and no mass can cross its boundary

System, surroundings, and boundary.

FIGURE 1-19

Mass cannot cross the boundaries of a closed system, but energy can.

boundary.

An open system (a control volume) with one inlet and one exit.

- Open system (control volume): A properly selected region in space.
- It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle.
- Both mass and energy can cross the boundary of a control volume.
- Control surface: The boundaries of a control volume. It can be real or imaginary.

A control volume can involve fixed, moving, real, and imaginary boundaries.

(a) A control volume (CV) with real and imaginary boundaries

(b) A control volume (CV) with fixed and moving boundaries as well as real and imaginary boundaries

PROPERTIES OF A SYSTEM

- Property: Any characteristic of a system.
- Some familiar properties are pressure P, temperature T, volume V, and mass m.
- Properties are considered to be either intensive or extensive.
- Intensive properties: Those that are independent of the mass of a system, such as temperature, pressure, and density.
- Extensive properties: Those whose values depend on the size or extent—of the system.
- Specific properties: Extensive properties per unit mass.

$$(v = V/m) \qquad (e = E/m).$$

FIGURE 1-23

Criterion to differentiate intensive and extensive properties.