Vérification (HAI603I)

Licence Informatique Département Informatique Faculté des Sciences de Montpellier Université de Montpellier

TD/TP N°3: Types inductifs

Exercice 1 (Fonctions et preuves inductives sur les entiers)

- 1. Écrire la fonction mult sur les entiers naturels \mathcal{N} .
- 2. Démontrer que : $\forall n \in \mathcal{N}.mult(2, n) = plus(n, n)$.
- 3. Démontrer que : $\forall n \in \mathcal{N}.mult(n,2) = plus(n,n)$.

Exercice 2 (Fonctions et preuves inductives sur les listes)

- 1. Écrire la fonction rev qui inverse les éléments d'une liste.
- 2. Démontrer que : $\forall l \in \mathcal{L}. \forall e \in \mathcal{A}. rev(app(l, [e])) = e :: rev(l).$
- 3. Démontrer que : $\forall l :\in \mathcal{L}.rev(rev(l)) = l$.

Exercice 3 (Type inductif des formules en logique)

- 1. Définir le type des formules en logique propositionnelle.
- 2. Écrire la fonction sub, qui rend l'ensemble des sous-formules d'une formule F.
- 3. Écrire la fonction nbc, qui rend le nombre de connecteurs d'une formule F.
- 4. Écrire le schéma d'induction structurelle des formules.
- 5. Démontrer que : $|sub(F)| \leq 2 \times nbc(F) + 1$, pour toute formule F.

Exercice 4 (Relations inductives sur les listes)

- 1. Spécifier la relation « être une permutation de » pour deux listes.
- 2. Démontrer que la liste [1; 2; 3] est une permutation de [3; 2; 1].
- 3. Spécifier la relation « être triée » pour une liste.
- 4. Démontrer que la liste [1; 2; 3] est triée.

Exercice 5 (Preuves en Coq)

Faire les exercices 1, 2 et 4 en Coq.

Exercice 6 (Preuves en Coq)

- 1. Écrire la relation inductive is _even (vue en cours).
- 2. Écrire une tactique qui démontre des buts de la forme $is_even(n)$.
- 3. Écrire une tactique qui démontre des buts de la forme $\neg is_even(n)$.
- 4. Écrire une tactique qui démontre les buts précédents indifféremment.
- 5. Écrire la fonction f_{is_even} qui teste si un entier est pair.
- 6. Démontrer que la fonction f_{is_even} est correcte vis-à-vis de la relation is_even .