Лекція 9. Прокол ІР. Адресування комп'ютерів в мережі.

1978 рік. Розробники стеку протоколів ТСР/ІР

Вінт Серф

Роберт Канн

Протокол передачі даних TCP/IP був розроблений Винтом Серфом. У 1974 році, в період роботи в Стенфордському університеті, разом з Робертом Каном він опублікував статтю "A Protocol for Packet Network Intercommunication" ("Протокол для пакетної міжмережевої комунікації"), в якій був описаний протокол передачі даних TCP (transmission-control protocol), що дозволяє передавати дані між різними мережами.

У 1976 році Серф перейшов на роботу в Агентство передових оборонних дослідницьких проектів (DARPA, Defense Advanced Research Projects Agency) міністерства оборони США. У цьому агентстві Серф разом з Каном займався розробкою технологій передачі пакетів даних і безпекою. За його участю в 1978 році розроблений раніше протокол передачі даних був поділений на дві частини - TCP і ІР (Internet protocol). В результаті з'явився стек протоколів TCP/ІР, який до цього дня є стандартом для передачі даних в Інтернеті.

• Мережі, що використовують для передачі даних протокол **IP** відносяться до мереж з комутацією пакетів.

- Повідомлення розбивається на пакети невеликі блоки інформації
- Кожен пакет передається мережею, як незалежне повідомлення До мереж з комутацією пакетів відносяться мережі на основі протоколів:
 - X.25;
 - Frame Relay;

- ATM (Asynchronus Transfer Mode);
- TCP/IP.

Принципи побудови мережі на основі протоколу ІР:

- в мережі немає єдиного центру
- при підключенні нової локальної мережі зміни у структурі глобальної не потрібні
- використовується пакетний обмін даними
- обмін даними здійснюється через спеціальні вузли мережі шлюзи

Протокол IP (Internet Protocol – міжмережний протокол).

Один з основних протоколів мережі Internet. Він ϵ частиною стеку протоколів TCP/IP і працю ϵ на **3-му рівні моделі OSI**.

- Задачею протоколу $IP \in$ доставка пакетів від відправника до одержувача.
- Для рішення цієї задачі пакет протоколу IP містить адресну і керуючу інформацію, що дозволяє передавати **пакети** по визначених маршрутах.

Маршрутизатори

- Просування пакетів мережею реалізується за допомогою спеціальних пристроїв *маршрутизаторів*.
- Маршрутизатор виділяє з пакету заголовок, аналізує адресну інформацію і приймає рішення про подальший шлях просування пакету на основі даних *таблиці маршрутів*.

1986

Первый модульный многопротокольный маршрутизатор Cisco Advanced Gateway Server (AGS) позволил соединить устройства с различными интерфейсами с помощью протокола IP. Устройство содержало оперативную память емкостью 1 Мбайт, могло обрабатывать 200 пакетов в секунду, поддерживало соединения Ethernet, последовательные линии и ARPANET. Тогда же Cisco создает ОС, позднее названную Cisco IOS.

Cisco 2801

Іншою задачею протоколу IP ε розбивка пакетів на фрагменти і наступна їх зборка, що забезпечу ε передачу пакетів канального рівня різної довжини, наприклад, пакетів локальних мереж **Ethernet** і **Token Ring**.

Недоліки протоколу ІР

- Не гарантує доставку пакетів, а також повторну передачу пакета у випадку його перекручування.
- Не відновлює первісну послідовність переданих мережею пакетів.

Адреси комп'ютеру

Кожен комп'ютер у ІР-мережі може мати адреси трьох рівнів:

- фізичну адресу (МАС-адресу)
- мережеву адресу (ІР-адреса)
- доменне ім'я (www.hp.com)

IP-адреса

- Довжина 4 байта = 32 біта IPv4
- Ця адреса використовується на мережевому рівні, тобто на рівні, що забезпечує передачу даних між локальними мережами.

• Вона призначається адміністратором мережі під час налаштування мережевого адаптеру комп'ютеру (або надається автоматично), а також призначається кожному інтерфейсу маршрутизатора.

ІР-адреса

Клас мережі	W	Номер мережі	Номер комп'ютера	Кількість мереж	Кількість комп'ютерів
A	1127	w	x.y.z	126+2 резерв	16777214
В	128-191	w.x	y.z	16348	65534
C	192-223	w.x.y	Z	2097152	254

Класи **D** и **E** використовуються для службових цілей.

Приватні мережі

Диапазоны для локальных сетей

[править]

При подключении пользовательского компьютера к Интернету, IP-адреса выбираются из диапазона, предоставленного провайдером. Компьютеры, не имеющие IP-адреса, выданного провайдером, могут (при правильной настройке маршрутизации^[1]) работать с другими локальными компьютерами, имея IP-адреса из диапазонов, зарезервированных для локальных сетей (RFC 1918 ₺)^[2]:

- 10.0.0.0 10.255.255.255 (одна сеть класса A)
- 172.16.0.0 172.31.255.255 (шестнадцать сетей класса В)
- 192.168.0.0 192.168.255.255 (256 сетей класса C)

Спеціальні ІР-адреси

Localhost

```
Материал из Википедии — свободной энциклопедии
(Перенаправлено с 127.0.0.1)
```

Localhost (127.0.0.1—127.255.255.255) — зарезервированный диапазон IP-адресов для обозначения т. н. «локального хоста», то есть для сети, состоящей из только одного компьютера. Как правило, используется всего один адрес — 127.0.0.1, который устанавливается на специальный сетевой интерфейс «внутренней петли» («loopback») в сетевом протоколе TCP/IP. В Unix-подобных системах данный интерфейс обычно именуется «loX», где X — число, либо просто «lo». При установке соединений в этой вырожденной «сети» присутствует только один компьютер, при этом сетевые протоколы выполняют функции протоколов межпроцессного взаимодействия.

Использование адреса 127.0.0.1 позволяет устанавливать соединение и передавать информацию для программ-серверов, работающим на том же компьютере, что и программа-клиент, независимо от конфигурации аппаратных сетевых средств компьютера (не требуется сетевая карта, модем, и прочее коммуникационнное оборудование, интерфейс реализуется при помощи драйвера псевдоустройства в ядре операционной системы). Таким образом, для работы клиент-серверных приложений на одном компьютере не требуется изобретать дополнительные протоколы и дописывать программные модули.

Обычно адресу 127.0.0.1 однозначно сопоставляется имя хоста «localhost» и/или «localhost.localdomain».

127.0.0.1

Результат виконання команди **ping** на IP-адресу 127.0.0.1

```
Обмен пакетами с 127.0.0.1 по 32 байт:

Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128

Статистика Ping для 127.0.0.1:
Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь),
Приблизительное время приема-передачи в мс:
Минимальное = Омсек, Максимальное = 0 мсек, Среднее = 0 мсек

С:\Documents and Settings\саша>
```

Ping — акроним «**Packet InterNet Grouper** (Groper)».

Название происходит от английского названия звука импульса, издаваемого сонаром при отражении импульса от объекта.

Спеціальні ІР-адреси

00000000.00000000.00000000.000000000

якщо IP-адреса складається тільки з двійкових нулів, то вона позначає адресу вузла, що з генерував цей пакет

11111111.111111111.11111111.11111111

якщо всі двійкові розряди IP-адреси рівні 1, то пакет з такою адресою призначення повинний розсилатися усім вузлам, що знаходяться в тій же мережі, що і джерело цього пакета. Це обмежене широкомовне повідомлення (limited broadcast).

11000000.10101000.111111111.1111111

якщо в поле адреси призначення містяться 1, то такий пакет розсилається всім вузлам мережі з заданим номером. Таке розсилання називається широкомовним повідомленням (**broadcast**).

00000000.00000000.11000000.10101000

якщо в поле номера мережі містить 0, то за замовчуванням вважається, що цей вузол належить тієї ж самої мережі, що і вузол, що відправив пакет

Плоскі й ієрархічні мережі

При використанні повністю комутованій мережі створюється єдиний домен широкомовної розсилки.

Якщо кількість вузлів мережі збільшується її робота стає менш ефективною.

У міру збільшення кількості вузлів у комутованій мережі збільшується число переданих і одержуваних широкомовних розсилок.

Пакети широкомовних розсилок займають більшу частину смуги пропускання, що призводить до затримок при передачі даних і тайм-аутам.

Три отдельных широковещательных домена

Маска підмережі

Маска – число, що використовується разом з IP-адресою. Двійковий запис маски має одиниці у розрядах, що в IP-адресі відповідають номеру мережі.

Маски для стандартных типов сетей имеют вид:

Класс А: - 11111111.00000000.0000000.00000000 (255.0.0.0)

Класс В: - 11111111.111111111.00000000.00000000 (255.255.0.0)

Класс С: - 11111111.11111111.111111111.00000000 (255.255.255.0)

Мережевий префікс 255.0.0.0 - /8 255.255.0.0 - /16 255.255.255.0 - /24

Підмережі

- До введення маски було **2** градації адресування: *мережа* і *номер комп'ютеру* у даній мережі
- Введення маски створює **3** градації адресування: *мережа*, *підмережа* і *номер комп'ютеру* у даній підмережі

№ мережі	№ ПК	№ мережі	№ підмережі	№ ПК
1	Ш	I	II	III

Розрахунок маски підмережі

- розрахувати маску, яка дозволить створити необхідну кількість підмереж із заданою кількістю комп'ютерів в кожній підмережі.
- визначити адреси підмереж.
- визначити широкомовні адреси для кожної підмережі.
- визначити діапазони доступних адрес для кожної підмережі.

BAPIAHT 1

Адреса мережі

198.1.120.0

ЛКМ-2 PC1 PC1 PC3 PC3 PC4 2620A 2620C 2950C PC5 ЛКМ-3 NКМ-3 1 PC6 PC7 ЛКМ-4

Розрахувати маску <u>підмережі</u>, яка дозволяє розбити блок адрес мережі класу С так, що його можна адаптувати до 4-х існуючих мереж, кожна з яких має 15 комп'ютерів.

Задача

- Дано: мережі підприємства привласнена адреса мережі класу С: 206.0.125.0
- **Необхідно** поділити блок адрес мережі класу С таким чином, щоб адаптувати його до 3-х існуючих підмереж (офіси A, B і C рис. 1) і зарезервувати дві додаткові підмережі для майбутнього використання. Кожна підмережа повинна мати не менше 25 доступних адрес.

Мережа підприємства

• Стандартна маска для мережі класу С має вигляд: **255.255.25.0.** Вона містить «1» в тих розрядах, які повинні інтерпретуватися маршрутизаторами як номер мережі, тобто маска містить одиниці в трьох перших байтах:

11111111.111111111.11111111.00000000

- Тому в нашому випадку тільки біти останнього байту можуть бути використані для організації підмереж. Причому для створення підмереж використовуються старші біти байту, молодші використовуються для адресації вузлів.
- Формула, що дозволяє визначити необхідну кількість біт для створення підмереж має вигляд:

Nsubnet ≤ 2 , N - 6іти

• Необхідно підібрати таке **N**, щоб число **2** було більше або дорівнювало необхідної кількості підмереж. Підставляючи N=1,2,3.. одержимо:

Nsubnet = 2 = 2 підмережі

Nsubnet = 2 = 4 підмережі

Nsubnet = **2** = **8** підмереж

- Таким чином, для створення 2 підмереж необхідно задіяти 1 старшій біт з останнього байту маски, для створення 4 підмереж 2 біти, 8 підмереж 3 біти.
- В дані розряди записуються одиниці. Тоді, наприклад, для 8 підмереж отримуємо наступний запис маски у двійковому вигляді:

11111111.111111111.11111111.11100000

- Для того, щоб отримати запис маски у десятковому вигляді необхідно визначити вагові коефіцієнти для даних бітів.
- Створимо таблицю, першій рядок якої номер біту, другій вага цього біту, яка розраховується як 2 (основа системи числення) у відповідному ступені, третій рядок вага розряду у десятковому вигляді.

128 64 32 8 4 2 16 1 2 1 2 0 2 7 26 2 5 2 4 23 2 2 8 біт 7 біт б біт 5 біт 4 біт 3 біт 2 біт 1 біт

Таблиця 1. Вагові коефіцієнті розрядів двійкового числа

• Сума вагових коефіцієнтів дорівнює 224

128+64+32=224

- Тобто маска підмережі буде мати наступний вигляд: 255.255.255.224
- Для організації 8 підмереж необхідні 3 старші біти останнього байта ІР-адреси. Запишемо всі можливі двійкові комбінації, які можна створити на основі 3-х розрядів:

Таблиця 2. Двійкові комбінації на основі 3 розрядів

№ комбінації	3 біт	2 біт	1 біт
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

Сформуємо адреси підмереж. Для цього представимо адресу підмережі таким чином:

Запишемо першу комбінацію у відповідні розряди номера підмережі. Одержимо:

Таким чином, перша підмережа матиме наступну ІР-адресу: 206.0.125.0.

Запишемо наступну комбінацію у відповідні розряди номера підмережі. Одержимо:

IP-адреса другій підмережі буде: **206.0.125.32**

IP-адреса 3-й підмережі буде: **206.0.125.64**, тобто:

IP-адреса 4-ї підмережі буде: **206.0.125.96**:

Таблиця 3. Адреси підмереж

№ підмережі	ІР-адреса
1	206.0.125.0
2	206.0.125.32
3	206.0.125.64
4	206.0.125.96
5	206.0.125.128
6	206.0.125.160
7	206.0.125.192
8	206.0.125.224

Широкомовна адреса

- Широкомовна адреса це спеціальна адреса, яка використовується для розсилки пакету всім вузлам деякої підмережі.
- У даній адресі в кожен розряд, що застосовується для нумерації вузла встановлюються в «1», тобто 5 останніх розрядів байта IP-адреси, що відведені для організації підмереж, необхідно встановити в «1».
- Використовуючи комбінацію № підмережі і № вузла, в якому всі розряди встановлені в «1», наприклад, для 2-ї підмережі одержимо:

Широкомовна адреса для 2-ої підмережі матиме вигляд: 206.0.125.63.

Для третьої підмережі одержимо: 206.0.125.95, тобто:

Остаточний результат

Таблиця 5. Адреси підмереж з широкомовною адресою

№ підмережі	IP-адреса підмережі	Широкомовна ІР-адреса
1	206.0.125.0	206.0.125.31
2	206.0.125.32	206.0.125.63
3	206.0.125.64	206.0.125.95
4	206.0.125.96	206.0.125.127
5	206.0.125.128	206.0.125.159
6	206.0.125.160	206.0.125.191
7	206.0.125.192	206.0.125.223
8	206.0.125.224	206.0.125.255

Діапазон доступних адрес для кожної підмережі не включатиме власну адресу мережі і широкомовну адресу для даної підмережі

Таблиця 6. Діапазони доступних ІР-адрес для кожної підмережі

№ <u>під</u> мережі	Начальный	Конечный
	ІР-адрес	ІР-адрес
1	206.0.125.1	206.0.125.30
2	206.0.125.33	206.0.125.62
3	206.0.125.65	206.0.125.94
4	206.0.125.97	206.0.125.126
5	206.0.125.129	206.0.125.158
6	206.0.125.161	206.0.125.190
7	206.0.125.193	206.0.125.222
8	206.0.125.225	206.0.125.254

Результат:

Таблиця 7. Результати виконання завдання

N₂	ІР-адрес	Широковещательный	Начальный	Конечный
подсети	подсети	ІР-адрес	ІР-адрес	ІР-адрес
1	206.0.125.0	206.0.125.31	206.0.125.1	206.0.125.30
2	206.0.125.32	206.0.125.63	206.0.125.33	206.0.125.62
3	206.0.125.64	206.0.125.95	206.0.125.65	206.0.125.94
4	206.0.125.96	206.0.125.127	206.0.125.97	206.0.125.126
5	206.0.125.128	206.0.125.159	206.0.125.129	206.0.125.158
6	206.0.125.160	206.0.125.191	206.0.125.161	206.0.125.190
7	206.0.125.192	206.0.125.223	206.0.125.193	206.0.125.222
8	206.0.125.224	206.0.125.255	206.0.125.225	206.0.125.254

Незабаром ІР-адреса закінчаться

- Когда Винт Серф вместе с другими специалистами заложил основу интернета в 1977 году, он ввел "интернет-протокол четвертой версии" (IPv4), который мог обеспечить **4,2 млрд** адресов. Однако число устройств с доступом в интернет, особенно мобильных телефонов, возрастает, и теперь свободны лишь 14% этих адресов.
- По оценкам, адреса IPv4, каждый из которых представляет собой ряд из 32 двоичных символов, закончатся к 2010 году.
- Новая система, названная IPv6, готова к внедрению уже больше десятилетия.

Точечно- десятичное представление маски подсети	Двоичная маска подсети	Представление с косой чертой	Число битов узла	Возможное число узлов 2^n-2
255.0.0.0	11111111.00000000.00000000.00000000	/8	24	16777214
255.128.0.0	11111111.10000000.00000000.00000000	/9	23	8388606
255.192.0.0	11111111.11000000.00000000.00000000	/10	22	4194302
255.224.0.0	11111111.11100000.00000000.00000000	/11	21	2097150
255.240.0.0	11111111.11110000.00000000.00000000	/12	20	1048574
255.248.0.0	11111111.11111000.00000000.00000000	/13	19	524286
255.252.0.0	11111111.11111100.00000000.00000000	/14	18	262142
255.254.0.0	11111111.11111110.00000000.00000000	/15	17	131070
255.255.0.0	11111111.11111111.00000000.00000000	/16	16	65534
255.255.128.0	11111111.11111111.10000000.00000000	/17	15	32766
255.255.192.0	11111111.11111111.11000000.00000000	/18	14	16382
255.255.224.0	11111111.11111111.11100000.00000000	/19	13	8190
255.255.240.0	11111111.11111111.11110000.00000000	/20	12	4094