How to Build an LLM from Scratch

Shaw Talebi

Should Enterprises Consider A Large Language Model Strategy?

Should You Purchase an LLM or Train Your Own?

An excerpt from our Training LLMs from Scratch piece to help you decide if you should purchase a large language model or train your own

Introducing BloombergGPT, Bloomberg's 50-billion parameter large language model, purpose-built from scratch for finance

March 30, 2023

Technology And Analytics

How to Train Generative Al Using Your Company's Data

by Tom Davenport and Maryam Alavi

July 06, 2023

Harvard Business Review

How much does it cost?

Llama 2 (7b) ~180,000 GPU hours ~100,000 GPU hours ~100,000 GPU hours ~100b model ~1,000,000 GPU hours

Renting

Invidia A100: \$1-2 per GPU per hour

10b model: \$150,000

100b model: \$1,500,000

Buying

Invidia A100: ~\$10,000

⇒ GPU Cluster: ~\$10,000 x 1000 = **\$10,000,000**

Training Energy Cost (100b model): ~1,000 megawatt hour [3] Energy Price: ~\$100 per megawatt hour

Marginal Energy cost (100b model): 1,000 x \$100 = **\$100,000**

4 Key Steps

- 1. Data Curation
- 2. Model Architecture
- 3. Training at Scale
- 4. Evaluation

The quality of your model is driven by the quality of your data

3.5T tokens

Falcon 180b^[5]

Trillion words pprox 1,000,000 novels pprox 1,000,000,000 news articles

Where do we get all these data?

The internet e.g. web pages, wikipedia, forums, books, scientific articles, code bases, etc.

Public datasets

- Common Crawl (Colossal Clean Crawled Corpus i.e. C4, Falcon RefinedWeb)
- The Pile [6]
- Hugging Face Datasets

Private data sources e.g. FinPile (BloombergGPT) drawn from Bloomberg archives

Dataset Diversity

How do we prepare the data?

Quality Filtering - remove "low-quality" text from dataset

Heuristic-based

De-duplication - several instances of same (or very similar) text can bias model and disrupt training

Privacy Redaction - removal of sensitive and confidential information

Tokenization - translate text into numbers [8]

Bytepair Encoding Algorithm [10]

Libraries: SentencePiece, Tokenizers

[11, 12]

Transformers

Neural network architecture that uses attention mechanisms

Attention mechanism - learns dependencies between different elements of a sequence based on position and content [13]

"I hit the baseball with a bat"

3 Types of Transformers [14, 15]

Encoder-only - encoder translates tokens into a semantically meaningful representation | tasks: text classification

Decoder-only - similar to encoder but does not allow self-attention with future elements | tasks: text generation

[13, 15]

Encoder-decoder - combines both and allows cross-attention | tasks: translation

Other Design Choices

Residual Connections - allow intermediate training values to bypass hidden layers [14]

Figure 4. Various usages of activation in Table 2. All these units consist of the same components — only the orders are different.

Other Design Choices

Residual Connections - allow intermediate training values to bypass hidden layers

Layer Normalization - re-scaling values between layers based on their mean and standard deviation

Where you normalize

How you normalize

$$y = \frac{x - \bar{x}}{\sqrt{Var(x) + \epsilon}} \times \gamma + \beta \qquad \text{Layer Norm}^{[8]}$$

$$y = \frac{x}{RMS(x)} \times \gamma + \beta$$

RMS Norm

Other Design Choices

Residual Connections - allow intermediate training values to bypass hidden layers

Layer Normalization - re-scaling values between layers based on their mean and star

Activation Functions - introduce non-linearities into model e.g. GeLU, ReLU, Swish, Sv

Position Embedding - captures information about token positions

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Self-Attention with Relative Position Representations

Peter Shaw Google petershaw@google.com

Jakob Uszkoreit Google Brain usz@google.com

Ashish Vaswani Google Brain avaswani@google.com Positional C

Embedding

Inputs

Encoding

[13]

Forward

Output

Embedding

Relative positional encodings^[20]

How big do I make it?

If model is too big or trained too long, it can overfit

If model is too small or not trained long enough, it can underperform

			- F91
Parameters	FLOPs	Tokens	- [21 _]
400 Million	1.92e+19	8.0 Billion	
1 Billion	1.21e + 20	20.2 Billion	
10 Billion	1.23e + 22	205.1 Billion	
67 Billion	5.76e + 23	1.5 Trillion	
175 Billion	3.85e + 24	3.7 Trillion	
280 Billion	9.90e+24	5.9 Trillion	
520 Billion	3.43e + 25	11.0 Trillion	
1 Trillion	1.27e + 26	21.2 Trillion	
10 Trillion	1.30e+28	216.2 Trillion	_
			_

~20 tokens per model parameter

~100x increase in FLOPs for each 10x increase in model parameters

Step 3: Training at Scale

3 Training Techniques

Mixed Precision Training - uses both 32-bit and 16-bit floating point data types [8, 22]

3D Parallelism - combination of pipeline, model, and data parallelism^[8]

- Pipeline Parallelism distributes transformer layers across multiple GPUs
- Model Parallelism decomposes parameter matrix operation into multiple matrix multiplies distributed across multiple GPUs
- Data Parallelism distributes training data across multiple GPUs

Zero Redundancy Optimizer (ZeRO) - reduces data redundancy regarding the optimizer state, gradient, or parameter partitioning ^[8]

Step 3: Training at Scale

Training Stability

Checkpointing - takes a snapshot of model artifacts so training can resume from that point [8]

Gradient Clipping - rescales the gradient of the objective function if its norm exceeds a pre-specified value [8, 25]

Step 3: Training at Scale

Hyperparameters

Batch Size: (Static) typically ~16M tokens. (Dynamic) GPT-3 increased from 32K to 3.2M

Learning Rate: (*Dynamic*) learning rate increases linearly until reaching a maximum value and then reduces via a cosine decay until the learning rate is about 10% of its max value [8]

Optimizer: Adam-based optimizers are most commonly used for LLMs^[8]

Dropout: typical values between 0.2 and 0.5 [32]

Step 4: Evaluation

Benchmark Dataset (Open LLM Leaderboard)

Step 4: Evaluation

Multiple-choice Tasks e.g. ARC, Hellaswag, MMLU

"""Question: Which technology was developed most recently?

Choices:
A. Cellular Phone
B. Television
C. Refrigerator
D. Airplane

Answer:"""

Step 4: Evaluation

Open-ended Tasks e.g. TruthfulQA

Human Evaluation - a person scores completion based on ground truth, guidelines, or both

NLP Metrics - quantify completion quality via metrics such as Perplexity, BLEU, or ROGUE scores

Auxiliary Fine-tuned LLM - use LLM to compare completions to ground truth [30]

What's Next?

Base models are typically a starting point, not final solution

Prompt Engineering

Model fine-tuning

[8, 15] 3: text generation

Masked Self-Attention

Self-Attention (Encoder)

Non-zero weight

ro weight (Decoder)