Assignment1

0. [1pt] What file format should assignments be submitted in? What are the consequences if it is not submitted in that format?

Please use the knowledge about **set theory** to solve the following problems.

- 1. $[1 \text{ pts}] |\{\emptyset\}| = __$.
- 2. [2 pts] Which of the following statement is **NOT** true? (Multiple choice, there may be more than one correct answer)
 - A. If \mathbb{N} is the set of Natural Numbers, then the size of \mathbb{N} is ∞ .
 - B. A power set is a set of sets.
 - C. For a finite set, the size of its power set is greater than its size.
 - D. If $S P = \emptyset$, then S = P (Both S and P are sets).
 - E. The elements of a set can be the set
- 3. [2 pts] Let $A = \{0, 2, 4\}, B = \{1, 3, 5\}, C = \{3, 4, 5\}$. Find
 - a) $A \cup (B C)$
 - b) $A \times (B C)$
 - c) $|\{P(A) P(C)\}|$
 - d) $P(A) \cap P(B-C)$
- 4. [2 pts] We use R_{LT5} to note the "Less Than" Relation on natural numbers smaller than 5.
 - (1) Please define R_{LT5} as the set of ordered pairs mathematically.

Example: Addition Relation on natural numbers smaller than 2 is

AddR₂:
$$N_2 \rightarrow N_2 =_{df} \{(0,0), (0,1), (1,0), (1,1)\}$$

- (2) R_{LT5} is _____.
 - a. Universal b. Identity c. Reflexive d. Irreflexive
 - e. Symmetric f. Antisymmetric g. Connected h. Transitive
- 5. [2pt] Let $P = \{0, 1, 2\}$. $R = \{(0,0), (0,1), (1,0), (1,1), (2,2)\}$ is a relation on P.
 - (a) (True or False) R is an equivalence relation.

(b) If (a) is true, find the equivalence class $[0]_{\equiv}$ and the quotient set of P defined by R. If (a) is not true, find a counterexample.