IMAGE RETRIEVAL

Presenters: Bao Truong, Thuyen Phan, Dang Nguyen, Khoi Pham Instructor: Tiep Nguyen

May 9, 2015

VNUHCM - University of Science - Faculty of Information Technology

OUTLINE

- 1. Overview
- 2. Index construction
 - · Feature extraction
 - Codebook building
 - · Quantization
- 3. Query
 - · TF-IDF weighting
 - · Query expansion (with geometric verification)
- 4. Experimental results
- 5. Conclusion

FEATURE EXTRACTION

Apply "compute descriptors" tool from University of Surrey¹ with the following parameters:

-hesaff -sift -noangle

hesaff: Scale and Affine invariant interest point detector **sift**: use Scale Invariant Feature Transform (SIFT) descriptor **noangle**: no angle estimation

¹http://kahlan.eps.surrey.ac.uk/featurespace/web/desc (last access: May 2, 2015) .

FEATURE EXTRACTION

CODEBOOK BUILDING

Use approximate k-Means to cluster all features to 1M clusters

- · Use Fast Library for Approximate Nearest Neighbors (FLANN)²
- Philbin et al.³ shows that 1M dictionary size produce best performance on Oxford Building dataset⁴
- · Run with 50 iterations

Each image is presented by a 1M-dimensional vector

²http://www.cs.ubc.ca/research/flann (last access: May 2, 2015).

³J. Philbin, M. Isard, J. Sivic, and A. Zisserman,

[&]quot;Lost in quantization: Improving particular object retrieval in large scale image databases", in Proc. CVPR, 2008.

⁴http://www.robots.ox.ac.uk/vgg/data/oxbuildings (last access: May 2, 2015).

CODEBOOK BUILDING

QUANTIZATION (SOFT ASSIGNMENT)

Soft assignment: Each **128-dimensional** feature vector is reduced to **3-dimensional** by looking for its **3 nearest visual words** Each of the **nearest visual words** is assigned with **weight**⁵:

weight =
$$\exp(-\frac{d^2}{2\delta^2})$$

d = distance from feature vector to cluster centroid

$$\delta^2 = 6250$$

All weights are added to their corresponding visual word in the 1M-dimensional representation of the image

⁵J. Philbin, M. Isard, J. Sivic, and A. Zisserman,

[&]quot;Lost in quantization: Improving particular object retrieval in large scale image databases", in Proc. CVPR. 2008.

QUANTIZATION (NATURAL SOFT ASSIGNMENT)

Use **natural soft assignment** to increase accuracy. 2 steps:

1. Detection of repetitive structures:

- \cdot (x_i, s_i, d_i) is feature at location x_i, scale s_i, descriptor d_i
- · 2 features are connected if
 - 1. L2 distance $|x_i x_j| < c(s_i + s_j)$
 - 2. ratio σ of 2 features is in 0.5 $< \sigma <$ 1.5
 - 3. 2 features share at least one common visual word

Find connected components of features. The detected components are called repttiles.

QUANTIZATION (NATURAL SOFT ASSIGNMENT)

2. Weight calculation for each visual word in an image:

wid: weight of visual word i in image d

k_f: number of nearest visual words we consider for feature f

 $V_{f}:\mbox{set of indices of the }k_{f}\mbox{ nearest visual words to feature }f$

$$w_{id} = \sum_{f \in F_d} \sum_{k=1}^{k_f} 1[V_f(k) = i] \frac{1}{2^{k-1}}$$

where the indicator function $\mathbf{1}[V_f(k)=i]$ equals to 1 if visual word i is at position k of V_f

$$k_f = \left\lceil k_{max} \frac{log \frac{n_d + 1}{m_f}}{max_{f \in F_d} log \frac{n_d + 1}{m_f}} \right\rceil$$

where m_f is the number of features in the repttile of f

QUANTIZATION

TF-IDF WEIGHTING

Similar with text retrieval

- · raw term frequency: raw $tf_{i,j}$ = weight of visual word i in image j
- · document frequency: $df_i = \#$ of images that visual word i appears
- · raw inverse document frequency: raw $idf_i = |D|/df_i$

TF-IDF WEIGHTING

Observation

- · The more time a visual word occurs, the less important it is
- · A visual word is more discriminate if it occurs in fewer images

Hence, it is necessary to normalize the values of TF-IDF

$$\begin{split} & tf_{i,j} = \frac{\text{raw } tf_{i,j}}{\sum\limits_{k} \text{raw } tf_{k,j}} \text{ (for all visual words k in image j)} \\ & idf_i = log \frac{|D|}{|\{j: t_i \in d_j\}|} \end{split}$$

TF-IDF WEIGHTING

Weight of visual word i in image j is therefore: $tfidf_{i,j} = tf_{i,j} \times idf_i$

The tf-idf weight is used to compute similarity between an image $d_{\rm i}$ and a query q

$$s_{d_i,q} = tf\vec{i}df_i \cdot tf\vec{i}df_q = \sum_{j=1}^{|T|} tfidf_{i,j} \times tfidf_{q,j}$$

By **sorting** list of images based on their **similarity score** with a query, we achieve the **raw ranked list** which is used for the **Query Expansion** step

QUERY EXPANSION

Apply **geometric verification** between the query image **Q** and each top-ranked image **A**:

- 1. (x,y) is a matched pair of features if $x \in Q$, $y \in A$, x and y are assigned to the same visual word
- 2. Randomly choose 4 pairs of features to build the **homography matrix**. A matched pair (x, y) is called **inliner** if apply the computed homography matrix on feature x produces feature y. Repeat 100 times to find the matrix that produces the **largest** number of inliners. These inliers are the **verified** visual words
- 3. **TF-IDF weight** of the **verified** visual words are added to query

Run this process for all top-ranked images. The added TF-IDF weight are averaged before running the query again

EXPERIMENTAL RESULTS

Table: mAP comparisons between different methods on Oxford 5K dataset

Method	mAP
BoW + soft assignment	0.676
Bow + nat. soft assignment	0.69814
Bow + nat. soft + spatial rerank	0.755482
Bow + nat. soft + query expansion	0.787189

CONCLUSION

Our proposed system (Bow + nat. soft + query expansion) achieves mAP = 0.787 on the Oxford 5K dataset

Future works: port code from MATLAB to C++ to run the system on the **Oxford 100K** dataset

