

Computer Security

Authenticated Encryption

Hyoungshick Kim

Department of Software

College of Software

Sungkyunkwan University

TCP/IP (highly abstracted)

Destination Machine

Encrypted with CBC and random IV

Destination Machine

Encrypted with CBC and random IV

How?

How can we solve this ...

Message authentication is needed.

How can we integrate this with encryption?

Message Authentication Code (MAC)

- A message authentication code (MAC) is a key-dependent message digest function
 - MAC(M,k) = h

Motivating Question: Which is best?

Encryption Key = k_E ; MAC key = k_I

m

tag

m

m

Theorems

Let (E,D) by a CPA secure cipher and (S,V) a MAC secure against existential forgery. Then:

- 1. Encrypt-then-MAC <u>always</u> provides authenticated encryption
- 2. MAC-then-encrypt <u>may</u> be insecure against CCA attacks
 - However, when (E,D) is rand-CTR or rand-CBC mode,
 MAC-then-encrypt also provides authenticated encryption

Authenticated encryption modes

GCM: CTR mode encryption with Carter-Wegman (CW) MAC

CCM: CTR mode encryption with CBC-MAC

EAX: CTR mode encryption with OMAC

All are nonce-based.

All support Authenticated Encryption with Associated Data (AEAD).

Input

OMAC

$$L = E(0^n)$$

$$2L = msb(L)? L <<1 :$$

$$L <<1 \oplus 0x87$$

$$4L = 2(2L)$$

"Tweaked" OMAC:

$$OMAC_k^T(x) = OMAC_k(T \mid \mid x)$$

An example API (OpenSSL)

```
int AES_GCM_Init(AES_GCM_CTX *ain,
     unsigned char *nonce, unsigned long noncelen,
     unsigned char *key, unsigned int klen)
```

Performance

From Crypto++ 5.6.0 [by Wei Dai, the creator of "b-money"]

AE Cipher	Code Size	Speed (MB/sec)	Raw Cipher	Raw Speed
AES/GCM	large	108	AES/CTR	139
AES/CCM	smaller	61	AES/CBC	109
AES/EAX	smaller	61	AES/CMAC	109
AES/OCB*	small	129	AES/CTR	147

^{*} OCB mode may have patent issues.

Recommendations for authenticated encryption

- Use "Encrypt-then-MAC".
 - Use two different keys, one for encryption and one for the MAC.
 - If you use the same key for multiple schemes, you need to consider interactions between the different schemes.
 - If one scheme might get broken, the key for both schemes can be recovered.
- Use proper "authenticated encryption" modes with random initialization vector.
 - GCM
 - EAX
 - CCM

Questions?

