运动恢复结构 (SFM)

Lu Peng School of Computer Science, Beijing University of Posts and Telecommunications

本课程三维重建篇所涉及的教学内容与课件参考了CS231A, 感谢CS231A课程团队在课程建设方面所做的工作!

Machine Vision Technology							
Semantic information				Metric 3D information			
Pixels	Segments	Images	Videos	Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking	Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2	2	2	2	2

今日主题

- 运动恢复结构问题
- 欧式结构恢复
- 仿射结构恢复
- 透视结构恢复

2020/6/1

Beijing University of Posts and Telecommunications

5

今日主题

- 运动恢复结构问题
- 欧式结构恢复
- 仿射结构恢复
- 透视结构恢复

运动恢复结构问题

Structure from Motion (sfm)

Courtesy of Oxford Visual Geometry Group

通过三维场景的多张图象,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数

2020/6/1

Beijing University of Posts and Telecommunications

1

建筑场景的增量重构

Initial pair - 2168 & Complete Set 62,323 points, 160 images Golparvar-Fard. Pena-Mora, Savarese 200

2020/6/1

Beijing University of Posts and Telecommunications

重构场景与摄像机位姿

2020/6/1

Beijing University of Posts and Telecommunications

е

照片重构

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," ACM Transactions on Graphics (SIGGRAPH Proceedings), 2006,

运动恢复结构问题

已知:n个3D点 X_j 在m张图像中的对应点的像素坐标 x_{ij} (i=1,...m,j=1...,n)

且
$$x_{ij} = M_i X_j$$
 $i = 1, ...m$; $j = 1 ..., n$

其中, M_i为第i张图片对应的摄像机的投影矩阵

求解:

ightharpoonup m个摄像机投影矩阵 M_i $(i=1,\cdots,m)$;

运动(motion)

ightharpoonup n个三维点 $X_i(j=1,\cdots,n)$ 的坐标。

结构(structure)

因此,该类问题也称为"运动恢复结构问题"!

2020/6/1

Beijing University of Posts and Telecommunications

ል

三种典型的运动恢复结构任务

- 欧式结构恢复(摄像机内参数已知,外参数未知)
- 仿射结构恢复(摄像机为仿射相机,内、外参数均未知)
- 透视结构恢复(摄像机为透视相机,内、外参数均未知)

今日主题

- 运动恢复结构问题
- 欧式结构恢复
- 仿射结构恢复
- 透视结构恢复

2020/6/1

Beijing University of Posts and Telecommunications

10

欧式结构恢复问题

已知:

- ightharpoonup n个三维点 X_i $(j=1,\cdots,n)$ 在m张图像中的对应点的像素坐标 x_{ij}
- ightharpoonup m张图像对应的摄像机的内参数矩阵 K_i $(i=1,\cdots,m)$

$$\underline{\mathbf{H}} \qquad x_{ij} = M_i X_j = K_i [R_i \ T_i] X_j \qquad \qquad i = 1, \dots \underline{m}; \ j = 1 \dots \underline{n}$$

图像个数 3D点个数

其中, M_i , K_i , $[R_i \ T_i]$ 为第i张图片对应的摄像机的投影矩阵、内参数及外参数矩阵

欧式结构恢复问题

已知:

- ightharpoonup n个三维点 X_i $(j=1,\cdots,n)$ 在m张图像中的对应点的像素坐标 x_{ij}
- ightharpoonup m张图像对应的摄像机的内参数矩阵 K_i $(i=1,\cdots,m)$

$$\mathbf{\underline{H}} \qquad x_{ij} = M_i X_j = K_i [R_i \ T_i] X_j \qquad \qquad i = 1, \dots [m]; \ j = 1 \dots [n]$$

图像个数 3D点个数

其中, M_i , K_i , $[R_i \ T_i]$ 为第i 张图片对应的摄像机的投影矩阵 、内参数及外参数矩阵

求解:

- ightharpoonup n个三维点 $X_i(j=1,\cdots,n)$ 的坐标;
- Arr m个摄像机的外参数 R_i 及 T_i $(i=1,\cdots,m)$

2020/6/1

Beijing University of Posts and Telecommunications

12

欧式结构恢复问题

已知:

- ightharpoonup n个三维点 X_i ($j=1,\cdots,n$) 在m张图像中的对应点的像素坐标 x_{ij}
- ho m张图像对应的摄像机的内参数矩阵 K_i $(i=1,\cdots,m)$

其中, M_i , K_i , $[R_i \ T_i]$ 为第i张图片对应的摄像机的投影矩阵、内参数及外参数矩阵

求解:

- ightharpoonup n个三维点 $X_i(j=1,\cdots,n)$ 的坐标;
- ho m个摄像机的外参数 R_i 及 T_i $(i=1,\cdots,m)$

欧式结构恢复问题(<mark>两视图</mark>)

2020/6/1

Beijing University of Posts and Telecommunications

14

欧式结构恢复问题(两视图)

欧式结构恢复问题 (两视图)

问题:

$$x_{1j} = M_1 X_j = K_1 [I \quad 0] X_j$$
 $j = 1 ..., n$ $x_{2j} = M_2 X_j = K_2 [R \quad T] X_j$

求解:1. 求解基础矩阵F

归一化八点法

2. 利用F与摄像机内参数求解本质矩阵E

$$E = K_2^T F K_1$$

3. 分解本质矩阵获得R与T

$$E \rightarrow R$$
, T

4. 三角化求解三维点X_i坐标

$$X_j^* = \underset{X_j}{\operatorname{argmin}} (d(x_{1j}, M_1 X_j) + d(x_{2j}, M_2 X_j))$$

2020/6/1

Beijing University of Posts and Telecommunications

16

本质矩阵分解

$$E = [T_{\times}]R$$

找到一个策略把 E 因式分解为两个组成部分......

$$E = [T_{\times}]R$$

找到一个策略把 E 因式分解为两个组成部分......

重要说明:

 $x_2^T F x_1 = 0 \qquad \qquad E = K_2^T F K_1$

无法确定F的符号及尺度;

所以,也无法确定E的符

-F或者kF都满足上式

号及尺度

2020/6/1

Beijing University of Posts and Telecommunications

18

本质矩阵分解

$$E = [T_{\times}]R$$

定义两个矩阵:

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$E = [T_{\times}]R$$

定义两个矩阵:

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

!重要性质:相差一个正负号的情况下

$$Z = diag(1,1,0)W = diag(1,1,0)W^T$$

2020/6/1

Beijing University of Posts and Telecommunications

20

本质矩阵分解

$$E = [T_{\times}]R$$

定义两个矩阵:

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

重要性质: 相差一个正负号的情况下

$$Z = diag(1,1,0)W = diag(1,1,0)W^T$$

 $[T_{\times}]$ 可以写成: $[T_{\times}] = kUZU^T$

其中, U 是单位正交矩阵。

$$E = [T_{\times}]R$$

定义两个矩阵:

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

量要性质: 相差一个正负号的情况下

$$Z = diag(1,1,0)W = diag(1,1,0)W^T$$

2020/6/1

Beijing University of Posts and Telecommunications

22

本质矩阵分解

$$E = [T_{\times}]R$$

$$[T_{\times}] = UZU^{T}$$
$$= U \operatorname{diag}(1,1,0) W U^{T}$$

$$E = [T_{\times}]R = (U \operatorname{diag}(1,1,0)WU^{T})R$$
$$= U \operatorname{diag}(1,1,0)(WU^{T}R)$$

$$E = [T_{\times}]R$$

SVD分解
$$E = U \operatorname{diag}(1,1,0)V^T$$

2020/6/1

Beijing University of Posts and Telecommunications

24

本质矩阵分解

 $E = [T_{\times}]R$

$$[T_{\times}] = UZU^{T}$$

$$= U \operatorname{diag}(1,1,0)WU^{T}$$

$$= U \operatorname{diag}(1,1,0)W^{T}U^{T}$$

 $E = [T_{\times}]R = (U \operatorname{diag}(1,1,0)WU^{T})R$ = $U \operatorname{diag}(1,1,0)(WU^{T}R)$

比较
$$\downarrow$$
 $V^T = WU^TR$

SVD分解 $E = U \operatorname{diag}(1,1,0)V^T$

 $\frac{\prod\limits_{R = UW^TV^T}$

同理:

 $R = UWV^T$

 $R = UWV^T$ or UW^TV^T

注意: E 的这个因式分解只保证了矩阵 UWV^T 或 UW^TV^T 是正交的。其为旋转矩阵还需确保行列式的值为正:

 $R = (\det UWV^T)UWV^T$ $\vec{\mathbf{y}}$ $(\det UW^TV^T)UW^TV^T$

$$T \times T = [T_{\times}]T = UZU^TT = 0$$

 $T = \pm u_3$ (U的第三列)

2020/6/1

Beijing University of Posts and Telecommunications

本质矩阵分解

四种潜在 R,T 对:

 $R = (\det UWV^T)UWV^T$ $R = (\det UWV^{T})UWV^{T}$ $R = (\det UW^{T}V^{T})UW^{T}V^{T}$ $R = (\det UW^{T}V^{T})UW^{T}V^{T}$

(图片来自于 Hartley and Zisserman 书第 260 页)

- 选择一个点三角化,正确的一组解能保证该点在两个摄像机的z坐标均为正。
- 对多个点进行三角化,选择在两个摄像机系下z坐标均为正的个数最多的那组 R、T。(更鲁棒)

本质矩阵分解(总结)

步骤1: SVD分解
$$E = U \text{diag}(1,1,0)V^T$$

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

步骤2:

$$R = (\det UWV^T)UWV^T$$
 或 $(\det UW^TV^T)UW^TV^T$

$$T = \pm u_3$$

步骤3:

$$\begin{cases} R = (\det UWV^T)UWV^T & T = u_3 \\ R = (\det UWV^T)UWV^T & T = -u_3 \\ R = (\det UW^TV^T)UW^TV^T & T = u_3 \\ R = (\det UW^TV^T)UW^TV^T & T = -u_3 \end{cases}$$

步骤4: 通过重建单个或多个点找出正确解

2020/6/1

Beijing University of Posts and Telecommunications

20

欧式结构恢复(2视图)

问题:

$$\begin{aligned} x_{1j} &= M_1 X_j = K_1 [I \quad 0] X_j \\ x_{2j} &= M_2 X_j = K_2 [R \quad T] X_j \end{aligned} \qquad j = 1 \dots, n$$

求解:1. 求解基础矩阵F

归一化八点法

2. 利用F与摄像机内参数求解本质矩阵E

 $E = K_2^T F K_1$

3. 分解本质矩阵获得R与T

$$E \rightarrow R$$
, $T \rightarrow M_2$

4. 三角化求解三维点X_i坐标

$$X_j^* = \underset{X_j}{\operatorname{argmin}} \left(d(x_{1j}, M_1 X_j) + d(x_{2j}, M_2 X_j) \right)$$

欧式结构恢复歧义

• 例子: 仅凭下图能否估计场景的绝对尺度?

欧式结构恢复歧义

• 例子: 仅凭下图能否估计场景的绝对尺度?

欧式结构恢复歧义

• 例子: 仅凭下图能否估计场景的绝对尺度?

需要其他先验信息!

欧式结构恢复歧义

- 恢复出来的欧式结构与真实场景之间相差一个相似变换(旋转,平移,缩放)
- 恢复的场景与真实场景之间仅存在相似变换的重构称为度量重构

欧式结构恢复歧义

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

今日主题

- 运动恢复结构问题
- 欧式结构恢复
- 仿射结构恢复
- 透视结构恢复

仿射摄像机

$$x = MX = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} X = \begin{bmatrix} m_1 X \\ m_2 X \\ m_3 X \end{bmatrix} \qquad M = \begin{bmatrix} A & b \\ v & 1 \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}$$

$$M = \begin{bmatrix} A & b \\ v & 1 \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}$$

$$x^E = \left(\frac{m_1 X}{m_3 X}, \frac{m_2 X}{m_3 X}\right)^T$$

$$x = MX = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} X \qquad M = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} A_{2\times3} & b_{2\times1} \\ 0_{1\times3} & 1 \end{bmatrix} \qquad = \begin{bmatrix} m_1 \\ m_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \left[egin{array}{ccc} m_1 & & \ m_2 & \ 0 & 0 & 0 & 1 \end{array}
ight]$$

仿射

$$m_3X = 1$$

$$x^E = (m_1X, m_2X)^T = \begin{bmatrix} A & b \end{bmatrix} X = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = AX^E + b$$
放大率

$$X^E = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

仿射结构恢复问题

问题:已知n个三维点 X_i $(j=1,\cdots,n)$ 在m张图像中的对应点的像素坐标 x_{ij}

$$x_{ij} = A_i X_j + b_i$$

度?

其中, A_i , b_i 组成了第i张图片对应的仿射摄像机的投影矩阵 $M_i = \begin{bmatrix} A_i & b_i \\ 0 & 1 \end{bmatrix}$

求解:

ightharpoonup n个三维点 $X_i(j=1,\cdots,n)$ 的坐标

ightharpoonup m个仿射摄像机的投影矩阵 A_i 与 b_i ($i=1,\cdots,m$)

仿射结构恢复问题

两种方法:

- -代数方法
- -因式分解法

2020/6/1

Beijing University of Posts and Telecommunications

38

仿射结构恢复问题

两种方法:

-代数方法

-因式分解法

- 数据中心化
- 因式分解

数据中心化

中心化:减去图像点的质心

因式分解

把去均值以后的*m×n*个测量值写成矩阵的形式:

$$D = \begin{bmatrix} \hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\ \hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\ & & \ddots & \\ \hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn} \end{bmatrix}$$
 (2 m)

每个 \hat{x}_{ij} 是一个 2×1 向量!

因式分解

2m×n维的数据(测量值)矩阵:

$$D = \begin{bmatrix} \hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\ \hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\ \vdots & & \ddots & \\ \hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn} \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix} \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}$$

$$(2 m \times n)$$

$$(2 m \times n)$$

$$\frac{1}{2} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}$$

 A_i 是 2×3 维, X_i 是 3×1 维

测量矩阵 D = MS 秩为3 (它是 $2m \times 3$ 矩阵和 $3 \times n$ 矩阵的乘积)

2020/6/1

Beijing University of Posts and Telecommunications

42

因式分解

怎么分解D?

2020/6/1

因式分解

• 通过计算D的奇异值分解!

2020/6/1

Beijing University of Posts and Telecommunications

44

因式分解

由于 rank (D)=3, 理想情况下这里只有三个非零的奇异值 σ_1 , σ_2 和 σ_3

2020/6/1

因式分解

2020/6/1

Beijing University of Posts and Telecommunications

46

求解运动与结构

$$D = U_3 W_3 V_3^T = U_3 (W_3 V_3^T) = MS$$

仿射结构恢复问题

问题: 已知n个三维点 X_j $(j=1,\cdots,n)$ 在m张图像中的对应点的像素坐标 x_{ij} 求解:

- ightharpoonup n个三维点 $X_i(j=1,\cdots,n)$ 的坐标
- ightharpoonup m个投影矩阵 M_i (即 A_i 与 b_i) $(i=1,\cdots,m)$

计算步骤: 1. 创建一个 2m x n 维的数据(测量值)矩阵D 2. 分解矩阵 $D = U_3W_3V_3^T$, $M = U_3\mathcal{D}S = W_3V_3^T$

2020/6/1

Beijing University of Posts and Telecommunications

<u>۸</u>8

问题:这样分解可以吗?

$$D = U_3 W_3 V_3^T = (U_3 W_3) V_3^T = M * S *$$

仿射结构恢复歧义

2020/6/1

Beijing University of Posts and Telecommunications

50

仿射结构恢复歧义

• 分解不唯一。通过以下变换可以得到相同的D:

$$M^* = M H$$

 $S^* = H^{-1}S$

其中 H 是任意可逆的3×3矩阵

• 必须利用其他约束条件来解决歧义

2020/6/1

Beijing University of Posts and Telecommunications

仿射结构恢复问题

问题: 已知n个三维点 X_j $(j=1,\cdots,n)$ 在m张图像中的对应点的像素坐标 x_{ij}

求解:

ightharpoonup n个三维点 $X_i(j=1,\cdots,n)$ 的坐标

ightharpoonup m个投影矩阵 M_i (即 A_i 与 b_i) $(i=1,\cdots,m)$

问题:给定m个相机,n个三维点,我们有多少个等式,多少个未知量?

回答: 2mn个等式, 8m+3n-8个未知量

计算步骤:

1. 创建一个 2m x n 维的数据(测量值)矩阵D

2. 分解矩阵 $D = U_3 W_3 V_3^T$, $M = U_3 \mathcal{D} S = W_3 V_3^T$

2020/6/1

Beijing University of Posts and Telecommunications

52

仿射结构恢复歧义

仿射结构恢复歧义

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

2020/6/1

Beijing University of Posts and Telecommunications

54

今日主题

- 运动恢复结构问题
- 欧式结构恢复
- 仿射结构恢复
- 透视结构恢复

透视摄像机

$$x = MX = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} X = \begin{bmatrix} m_1 X \\ m_2 X \\ m_3 X \end{bmatrix}$$

$$x = MX = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} X = \begin{bmatrix} m_1 X \\ m_2 X \\ m_3 X \end{bmatrix} \qquad M = \begin{bmatrix} A & b \\ v & 1 \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & 1 \end{bmatrix}$$

透视

$$x^{E} = (\frac{m_{1}X}{m_{3}X}, \frac{m_{2}X}{m_{3}X})^{T}$$

$$x = MX = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} X$$

$$x = MX = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} X \qquad M = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} A_{2\times3} & b_{2\times1} \\ 0_{1\times3} & 1 \end{bmatrix} \qquad = \begin{bmatrix} m_1 \\ m_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} m_1 \\ m_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

仿射

$$x^{E} = (m_{1}X, m_{2}X)^{T} = \begin{bmatrix} A & b \end{bmatrix} X = \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = AX^{E} + b$$
放大率

$$X^E = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

2020/6/1

Beijing University of Posts and Telecommunications

56

透视结构恢复问题

问题:已知n个三维点 X_j $(j=1,\cdots,n)$ 在m张图像中的对应点的像素坐标 x_{ij} ;

且
$$x_{ij}=M_iX_j$$
 $i=1,...$ m ; $j=1...$ n
图像个数 3D点个数

其中, M_i 为第i张图片对应的摄像机的投影矩阵

求解:

ightharpoonup n个三维点 X_i ($i=1,\cdots,n$)的坐标;

ightharpoonup m个摄像机投影矩阵 M_i ($i=1,\cdots,m$)。

透视结构恢复歧义

2020/6/1

Beijing University of Posts and Telecommunications

58

透视结构恢复歧义

2020/6/1

透视结构恢复歧义

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

2020/6/1

Beijing University of Posts and Telecommunications

60

透视结构恢复方法

在相差一个4×4的可逆变换的情况下恢复摄像机运动与场景结构

- 代数方法(通过基础矩阵)
- 因式分解法(通过SVD)
- 捆绑调整

透视结构恢复方法

在相差一个4×4的可逆变换的情况下恢复摄像机运动与场景结构

- 代数方法 (通过基础矩阵)
- 因式分解法(通过SVD)
- 捆绑调整

2020/6/1

Beijing University of Posts and Telecommunications

62

代数方法(两视图情况)

代数方法(两视图情况)

- 1. 求解基础矩阵 F 归一化八点法
- 2. 利用 F 估计摄像机矩阵

$${\rm F} \to M_1, M_2$$

3. 三角化计算三维点坐标

$$X_j^* = \underset{X_j}{\operatorname{argmin}} (d(x_{1j}, M_1 X_j) + d(x_{2j}, M_2 X_j))$$

 $x_{1j} = M_1 X_j$ $x_{2j} = M_2 X_j$

2020/6/1

Beijing University of Posts and Telecommunications

64

利用 F 估计摄像机矩阵

$$x_{1j} = M_1 X_j$$
$$x_{2j} = M_2 X_j$$

由于透视歧义存在, 我们总是可以找到一个可逆矩阵 H, 使得:

$$M_1 H^{-1} = [I|0]$$

$$M_2H^{-1} = [A|b]$$

- X表示3D点
- 将x和x′分别称为摄像机1和2的对应观测值

$$\begin{cases} \widetilde{M}_1 = M_1 H^{-1} = [\ I\ 0\] & x = M_1 X = M_1 H^{-1} H X = [I|0] \widetilde{X} \\ \widetilde{M}_2 = M_2 H^{-1} = [\ A\ b\] & x' = M_2 X = M_2 H^{-1} H X = [A|b] \widetilde{X} \\ \widetilde{X} = H X & \end{cases}$$

$$x' = [A|b]\tilde{X} = [A|b] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \end{bmatrix} = A[I|0] \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \\ \tilde{X}_3 \\ 1 \end{bmatrix} + b = A[I|0]\tilde{X} + b = Ax + b$$

$$x' \times b = (Ax + b) \times b = Ax \times b$$

$$x'^T \cdot (x' \times b) = x'^T \cdot (Ax \times b) = 0$$

$$x'^T (b \times Ax) = 0 \implies x'^T [b_{\times}] Ax = 0$$
基本矩阵!

2020/6/1

Beijing University of Posts and Telecommunications

66

利用 F 估计摄像机矩阵

已知:
$$x'^T F x = 0$$
 $F = [b_{\times}]A$

 $x'^T F x = 0$ $F = [b_{\times}]A$ 已知:

- 1. 计算b:
- > 考虑乘积 F^Tb

$$F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T [b_{\times}]^T \cdot b = -A^T [b_{\times}] \cdot b = 0$$

2020/6/1

Beijing University of Posts and Telecommunications

利用 F 估计摄像机矩阵

 $x'^T F x = 0 \qquad F = [b_{\times}] A$ 已知:

- 1. 计算b:

$$ightharpoonup$$
 考虑乘积 F^Tb
$$F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T[b_{\times}]^T \cdot b = -A^T[b_{\times}] \cdot b = 0$$

 $F^Tb=0$

已知: $x'^T F x = 0$ $F = [b_{\times}]A$

- 1. 计算b:
- **考虑乘积** $F^T b$ $F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T [b_{\times}]^T \cdot b = -A^T [b_{\times}] \cdot b = 0$ $F^T b = 0$
- \triangleright b为 F^T 矩阵最小奇异值的右奇异向量,且||b||=1

2020/6/1

Beijing University of Posts and Telecommunications

70

利用 F 估计摄像机矩阵

已知: $x'^T F x = 0$ $F = [b_{\times}]A$

- 1. 计算b:
- ightarrow 考虑乘积 F^Tb $F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T[b_{\times}]^T \cdot b = -A^T[b_{\times}] \cdot b = 0$

 $F^Tb=0$

- \triangleright b为 F^T 矩阵最小奇异值的右奇异向量,且||b||=1
- 2. 计算 A:
 - 定义: $A' = -[b_{\times}]F$
 - 验证 [b_×]A'等于 F:

已知: $x'^T F x = 0$ $F = [b_{\times}]A$

- 1. 计算b:
- **考虑乘积** F^Tb $F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T[b_{\times}]^T \cdot b = -A^T[b_{\times}] \cdot b = 0$ $F^Tb = 0$
- ho b为 F^T 矩阵最小奇异值的右奇异向量,且||b||=1
- 2. 计算 A:
 - 定义: $A' = -[b_{\times}]F$
 - 验证 [b_×]A'等于 F:

$$[b_{\times}]A' = -[b_{\times}][b_{\times}]F = -(bb^{T} - |b|^{2}I)F = -bb^{T}F + |b|^{2}F = 0 + 1 \cdot F = F$$

2020/6/1

Beijing University of Posts and Telecommunications

72

利用 F 估计摄像机矩阵

已知: $x'^T F x = 0$ $F = [b_{\times}]A$

- 1. 计算b:
- ightharpoonup 考虑乘积 F^Tb $F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T[b_{\times}]^T \cdot b = -A^T[b_{\times}] \cdot b = 0$

 $F^Tb=0$

- \triangleright b为 F^T 矩阵最小奇异值的右奇异向量,且||b||=1
- 2. 计算 A:
 - 定义: $A' = -[b_{\times}]F$
 - 验证 [b] A' 等于 F:

$$[b_{\times}]A' = -[b_{\times}][b_{\times}]F = -(bb^{T} - |b|^{2}I)F = -bb^{T}F + |b|^{2}F = 0 + 1 \cdot F = F$$

• 因此, $A = A' = -\lceil b_{\times} \rceil F$

 $x'^T F x = 0$ 已知:

 $F = [b_{\times}]A$

1. 计算b:

- \triangleright 考虑乘积 F^Tb
- $F^{T} \cdot b = ([b_{\times}]A)^{T} \cdot b = A^{T}[b_{\times}]^{T} \cdot b = -A^{T}[b_{\times}] \cdot b = 0$

 $F^Tb=0$

- \triangleright b为 F^T 矩阵最小奇异值的右奇异向量,且||b||=1
- 2. 计算 A:
 - 定义: $A' = -[b_{\times}]F$
 - 验证 [b_×]A'等于 F:

$$[b_{\times}]A' = -[b_{\times}][b_{\times}]F = -(bb^{T} - |b|^{2}I)F = -bb^{T}F + |b|^{2}F = 0 + 1 \cdot F = F$$

· 因此, $A = A' = -[b_{\times}]F$

摄像机矩阵:

 $\widetilde{M}_1 = [I \ 0]$

 $\widetilde{M}_2 = [-[b_{\times}]F \ b]$

2020/6/1

Beijing University of Posts and Telecommunications

利用 F 估计摄像机矩阵

已知:

 $x'^T F x = 0 F = [b_{\vee}]A$

问题:这里/是什么?

- 1. 计算b:
- \triangleright 考虑乘积 F^Tb
- $F^{T} \cdot b = ([b_{\times}]A)^{T} \cdot b = A^{T}[b_{\times}]^{T} \cdot b = -A^{T}[b_{\times}] \cdot b = 0$

 $F^Tb=0$

- \triangleright b为 F^T 矩阵最小奇异值的右奇异向量,且||b||=1
- 2. 计算 A:
 - 定义: $A' = -[b_{\times}]F$
 - 验证 [b] A' 等于 F:

$$[b_{\times}]A' = -[b_{\times}][b_{\times}]F = -(bb^T - |b|^2I)F = -bb^TF + |b|^2F = 0 + 1 \cdot F = F$$

 $A = A' = -[b_{\times}]F$ 因此。

摄像机矩阵: $\widetilde{M}_1 = [I \ 0]$

 $\widetilde{M}_2 = [-[b_{\times}]F \ b]$

极几何约束

 $p'^T F p = 0$

- $l = F^T p' \mathbf{L} p'$ 对应的极线
- l' = Fp是p对应的极线
- Fe = 0, $F^Te' = 0$
- F是奇异的(秩2)
- F的DOF为7

2020/6/1

Beijing University of Posts and Telecommunications

利用 F 估计摄像机矩阵

 $x'^T F x = 0 F = [b_{\times}] A$ 已知:

问题: 这里b是什么?

回答: b是一个极点

- 1. 计算b:
- \triangleright 考虑乘积 F^Tb

$$F^T \cdot b = ([b_{\times}]A)^T \cdot b = A^T[b_{\times}]^T \cdot b = -A^T[b_{\times}] \cdot b = 0$$

 $F^Tb=0$

- > b b F^T 矩阵最小奇异值的右奇异向量,且||b|| = 1
- 2. 计算 A:
 - 定义: $A' = -[b_{\times}]F$
 - 验证 [b_×]A'等于 F:

$$[b_{\times}]A' = -[b_{\times}][b_{\times}]F = -(bb^{T} - |b|^{2}I)F = -bb^{T}F + |b|^{2}F = 0 + 1 \cdot F = F$$

・ 因此, $A = A' = -[b_{\times}]F$

摄像机矩阵: $\widetilde{M}_1 = [I \ 0]$ $\widetilde{M}_2 = [-[b_{\times}]F \ b]$

代数方法(两视图情况)

- 1. 求解基础矩阵 F 归一化八点法
- 2. 利用 F 估计摄像机矩阵

$$\widetilde{M}_1 = [\begin{array}{ccc} I & 0 \end{array}] \qquad \widetilde{M}_2 = [-[b_{\times}]F \ b]$$

3. 三角化计算三维点坐标

$$X_j^* = \underset{X_j}{\operatorname{argmin}} (d(x_{1j}, M_1 X_j) + d(x_{2j}, M_2 X_j))$$

 $x_{1j} = M_1 X_j$ $x_{2j} = M_2 X_j$

2020/6/1

Beijing University of Posts and Telecommunications

78

代数方法(// 视图情况)

分别对每一个图像对 I_k 与 I_h 计算运动与结构

$$I_k = I_h \longrightarrow \widetilde{M}_k, \widetilde{M}_h, \widetilde{X}_{[k,h]}$$

增量法!

透视结构恢复方法

- 代数方法 (通过基础矩阵)
- 因式分解法(通过SVD)
- 捆绑调整

2020/6/1

Beijing University of Posts and Telecommunications

ደበ

代数法与分解法的局限性

- •因式分解法假定所有点都是可见的,所以下述场合不可用:
 - 存在遮挡

能够用于构建观测矩阵D的点少,重建点数少!

- 建立对应点关系失败
- •代数法应用于2视图重建

易出现误差累积!

$$D = \begin{bmatrix} \hat{x}_{11} & \hat{x}_{12} & \cdots & \hat{x}_{1n} \\ \hat{x}_{21} & \hat{x}_{22} & \cdots & \hat{x}_{2n} \\ & & \ddots & \\ \hat{x}_{m1} & \hat{x}_{m2} & \cdots & \hat{x}_{mn} \end{bmatrix}$$

捆绑调整

• 恢复结构和运动的非线性方法

最小化重投影误差:
$$E(M,X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2$$

2020/6/1

Beijing University of Posts and Telecommunications

ดว

捆绑调整

$$E(M,X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, M_i X_j)^2$$
 参数

非线性最小化问题

- 牛顿法 与 列文伯格-马夸尔特法(L-M方法)

捆绑调整

$$E(M,X) = \sum_{i=1}^m \sum_{j=1}^n D(x_{ij}, M_i \ X_j \)^2$$

非线性最小化问题
参数

- 牛顿法 与 列文伯格-马夸尔特法(L-M方法)

优势

- > 同时处理大量视图
- > 处理丢失的数据

2020/6/1

Beijing University of Posts and Telecommunications

84

捆绑调整

$$E(M,X) = \sum_{i=1}^m \sum_{j=1}^n D(x_{ij}, M_i \ X_j \)^2$$

非线性最小化问题
参数

- 牛顿法 与 列文伯格-马夸尔特法(L-M方法)

优势

局限性

- ▶ 同时处理大量视图
- > 大量参数的最小化问题
- > 处理丢失的数据
- > 需要良好的初始条件

捆绑调整

- 牛顿法 与 列文伯格-马夸尔特法(L-M方法)

优势

局限性

实际操作:

- > 同时处理大量视图
- / I-J...J.C.Z./__ [//L]
- > 处理丢失的数据
- > 大量参数的最小化问题
- > 需要良好的初始条件
- ▶ 常用作SFM的最后一步,分解或代数方法可作为优化问题的初始解

2020/6/1

Beijing University of Posts and Telecommunications

86

今日主题

- 运动恢复结构问题(完)
- 欧式结构恢复(完)
- 仿射结构恢复(完)
- 透视结构恢复(完)