II Università di Roma, Tor Vergata Dipartimento d'Ingegneria Civile e Ingegneria Informatica LM in Ingegneria dell'Informazione e dell'Automazione Complementi di Probabilità e Statistica - Advanced Statistics Instructors: Roberto Monte & Massimo Regoli Final Test - 2020-02-12 - Statistics

Problem 1 Let X and Y two real random variables each of which represents a certain trait of a population. Assume that X and Y are independent and such that

$$X \sim N(\mu_X, \sigma_X^2), \qquad Y \sim N(\mu_Y, \sigma_Y^2),$$

where $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2$ are known. Consider a simple random sample X_1, \ldots, X_m [resp. Y_1, \ldots, Y_n] of size m [resp. n] drawn from X [resp. Y].

- 1. Compute $\mathbf{P}\left(x \leq S_n^2(Y) \leq y\right)$ in terms of given $x, y \in \mathbb{R}_+$.
- 2. Determine x such that $\mathbf{P}(\bar{X}_m > x) = 0.25$.
- 3. Compute $\mathbf{P}(\bar{X}_m x > \bar{Y}_n + y)$ in terms of given $x, y \in \mathbb{R}_+$.

Solution.

Problem 2 Let $\theta > 0$ and let X be an absolutely continuous real random variable with density function $f_X : \mathbb{R} \to \mathbb{R}_+$ given by

$$f_X(x) \stackrel{def}{=} \frac{1}{2} e^{-|x-\theta|}, \quad \forall x \in \mathbb{R}.$$

- 1. Apply the method of moments to determine the estimator $\hat{\theta}_n^M$ for θ .
- 2. Check whether $\hat{\theta}_n^M$ is unbiased, consistent in probability, and consistent in square mean.
- 3. Can you "guess" the result of the method of maximum likelihood to determine the estimator $\hat{\theta}_n^{ML}$ for θ ?

Hint: take for granted that the random variable X has finite moment of the first order; recall that an estimator $\hat{\theta}_n$ for the true value of a parameter θ is said to be consistent in probability [resp. in square mean] if

$$\hat{\theta}_n \stackrel{\mathbf{P}}{\to} \theta$$
 [resp. $\hat{\theta}_n \stackrel{\mathbf{L}^2}{\to} \theta$],

 $as n \to \infty$.

Solution.

Problem 3 Let X be a standard Bernoulli random variable with unknown success parameter p. Let X_1, \ldots, X_n be a simple random sample of size n drawn from X and let $Z_n \equiv \sum_{k=1}^n X_k$ be the sample sum. It is well known that $Z_n \sim Bin(n,p)$. In addition, when n is large $(np \ge 10 \text{ and } n(1-p) \ge 10)$ the sample sum has approximately a normal distribution.

1. Determine a confidence interval for the parameter p with confidence level approximately $100 (1 - \alpha) \%$.

2. Determine the size n of the sample X_1, \ldots, X_n which allows a confidence interval for the parameter p with confidence level approximately $100(1-\alpha)\%$ and width w, where both α and w are given in advance.

Solution.

Problem 4 Let $X_1, \ldots, X_n, X_{n+1}$ be a simple random sample of size n+1 drawn from a Gaussian distributed random variable X with unknown mean μ and variance σ^2 . Assume that we have observed X_1, \ldots, X_n and we want use the observed values x_1, \ldots, x_n to determine a confidence interval for the prediction of X_{n+1} . To this goal give detailed answers to the following questions:

- 1. what is the distribution of the statistic \bar{X}_n ?
- 2. what is the distribution of the statistic $(X_{n+1} \bar{X}_n) / \sigma \sqrt{1 + 1/n}$?
- 3. what is the distribution of the statistic $S_n^2 \equiv \frac{1}{n-1} \sum_{k=1}^n (X_k \bar{X}_n)^2$?
- 4. are the statistics $X_{n+1} \bar{X}_n$ and $S_n^2 \equiv \frac{1}{n-1} \sum_{k=1}^n (X_k \bar{X}_n)^2$ independent? Why?
- 5. what is the distribution of the statistic $(X_{n+1} \bar{X}_n)/S_n\sqrt{1+1/n}$?
- 6. After answering the above questions, build an interval in which the random variable X_{n+1} takes its values with probability α and determine the corresponding confidence interval for the prediction of X_{n+1} . In the end, assume that n=7 and we have

$$x_1 = 7005$$
, $x_2 = 7432$, $x_3 = 7420$, $x_4 = 6822$, $x_5 = 6752$, $x_6 = 5333$, $x_7 = 6552$.

compute the 95% confidence interval for the prediction of X_8 .

Solution.

Problem 5 Let X [resp. Y] be a Gaussian distributed random variables with (unknown) mean $\mu_X \in \mathbb{R}$ [resp. $\mu_Y \in \mathbb{R}$] and variance $\sigma_X^2 > 0$ [resp. $\sigma_Y^2 > 0$]. Assume that X describes a trait of some population before a treatment and Y describes the same trait of the same population after a treatment (for instance a power training period). Let X_1, \ldots, X_n be a simple random sample drawn by X and let Y_1, \ldots, Y_n be the corresponding sample drawn from Y. Note that we can still assume that Y_1, \ldots, Y_n is a simple random sample but we cannot assume that the samples X_1, \ldots, X_n and Y_1, \ldots, Y_n are independent. Actually, there is no reason at all to think that the random variables X and Y are independent. However, it is still reasonable to assume that the random variable $D \equiv Y - X$ is Gaussian distributed and that $D_1 \equiv Y_1 - X_1, \ldots, D_n \equiv Y_n - X_n$ is a simple random sample drawn from D. Assume to have measured

$$x_1 = 73.80$$
 $x_2 = 62.80$ $x_3 = 73.40$ $x_4 = 63.50$ $x_5 = 71.90$ $x_6 = 74.30$ $x_7 = 63.10$ $y_1 = 75.70$ $y_2 = 63.70$ $y_3 = 74.70$ $y_4 = 64.40$ $y_5 = 70.50$ $y_6 = 74.90$ $y_7 = 64.90$

- 1. Should we reject the null hypothesis $H_0 = \mu_Y = \mu_X$ against the alternatives $H_1 = \mu_Y \neq \mu_X$ and $H_1 = \mu_Y > \mu_X$ at the significance level $\alpha = 0.05$? Consider both the rejection region method and the p-value method.
- 2. Assume that $\sigma_X = 5.51$ and that $\rho_{X,Y} = 0.98$. Should we reject the null hypothesis $H_0 = \sigma_Y^2 = \sigma_X^2$ against the alternatives $H_1 = \sigma_Y^2 \neq \sigma_X^2$ and $H_1 = \sigma_Y^2 < \sigma_X^2$ at the significance level $\alpha = 0.05$?

Solution.