

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 4. Übungsblatt

Julian Dörfler

Aufgabe A4.1 (Quiz) (4 Punkte)

Welche der folgenden Aussagen sind wahr und welche sind falsch? Begründen Sie Ihre Antworten jeweils in wenigen Sätzen.

- (a) Es gibt eine Sprache, die durch einen regulären Ausdruck dargestellt wird, aber nicht von einem DEA erkannt wird.
- (b) Wenn $A_i \subseteq \{0,1\}^*$ regulär ist für alle $i \in \mathbb{N}$, dann ist $\bigcup_{i \in \mathbb{N}} A_i$ ebenfalls regulär.
- (c) Wenn $A_i \subseteq \{0,1\}^*$ regulär ist für alle $i \in \mathbb{N}$, dann ist $\bigcap_{i \in \mathbb{N}} A_i$ ebenfalls regulär.
- (d) Seien $A, B, C \subseteq \{0, 1\}^*$. Wenn A und B regulär sind mit $A = B \cup C$, dann ist auch C regulär.

Lösung A4.1 (Quiz)

- (a) Falsch. Sowohl die regulären Ausdrücke, als auch DEAs erkennen exakt die regulären Sprachen. Weiterhin haben wir eine Konstruktion kennengelernt, die aus einem regulären Ausdruck A einen NEA N der die selbe Sprache erkennt konstruiert und können danach die Potenzmengenkonstruktion verwenden um aus N einen DEA M zu konstruieren, der ebenfalls L(A) erkennt.
- (b) Falsch. Für ein fixes $i \in \mathbb{N}$ ist $\{0^i 1^i\}$ endlich, also regulär. Es gilt aber $\bigcup_{i \in \mathbb{N}} \{0^i 1^i\} = \{0^n 1^n \mid n \in \mathbb{N}\} \notin \mathsf{REG}$.
- (c) Falsch. Angenommen die Aussage wäre wahr. Sei A_i regulär für alle $i \in \mathbb{N}$, dann ist ebenfalls $\{0,1\}^* \setminus A_i$ regulär. Nun wäre nach der Aussage ebenfalls $\bigcap_{i \in \mathbb{N}} \{0,1\}^* \setminus A_i$ regulär und somit ist ebenfalls $\{0,1\}^* \setminus (\bigcap_{i \in \mathbb{N}} \{0,1\}^* \setminus A_i) = \bigcup_{i \in \mathbb{N}} A_i$ regulär. Diese Aussage ist nach der vorherigen Teilaufgabe aber falsch.
- (d) Falsch. Wir wählen $A = B = \{0, 1\}^*$, welche offensichtlich regulär sind. Nun gilt die Gleichung $A = B \cup C$ für jede Sprache $C \subseteq \{0, 1\}^*$, insbesondere für solche, die nicht regulär sind, z.B. $C = \{0^n 1^n \mid n \in \mathbb{N}\}.$

Aufgabe A4.2 (Minimaler DEA) (4 Punkte)

Geben Sie einen minimalen totalen DEA für folgende Sprache an und beweisen Sie dessen Minimalität, indem Sie Repräsentanten aller Myhill-Nerode-Äquivalenzklassen angeben und paarweise beweisen, dass diese nicht Myhill-Nerode-Äquivalent sind:

 $L = \{x \in \{0,1\}^* \mid x \text{ startet oder endet mit } 00\}$

Lösung A4.2 (Minimaler DEA) Der folgende totale DEA erkennt L:

Wir beweisen nun, dass 6 Zustände auch tatsächlich nötig sind, indem wir 6 paarweise nicht Myhill-Nerode-Äquivalente Repräsentanten der Myhill-Nerode-Klassen angeben.

$$R = \{\varepsilon, 0, 00, 1, 10, 100\}$$

Wir zeigen nun, dass diese paarweise nicht Myhill-Nerode-Äquivalent sind, indem wir für $x \neq y \in R$ jeweils eine Fortsetzung z angeben, so dass genau ein Wort aus $\{xz, yz\}$ in L ist:

	ε	0	00	1	10	100
ε	-	0	ε	001	001	ε
0		-	ε	0	01	ε
00			-	ε	ε	1
1				-	0	ε
10					-	ε
100						-

Aufgabe A4.3 (Nichtreguläre Sprachen revisited) (2 Punkte)

Zeigen Sie mithilfe des *Myhill-Nerode-Theorems*, dass folgende Sprachen nicht regulär sind:

(a)
$$A = \{1^{3n}0^{2n} \mid n \in \mathbb{N}\}$$

(b)
$$B = \{xx^{\text{rev}} \mid x \in \{0, 1\}^*\}$$

Lösung A4.3 (Nichtreguläre Sprachen revisited)

(a) Wir verwenden das Myhill-Nerode-Theorem: Seien $i \neq j$ natürliche Zahlen. Dann sind $1^{3i} \not\sim_A 1^{3j}$, da $1^{3i}0^{2i} \in A$ ist, aber $1^{3j}0^{2i} \notin A$, da $i \neq j$. Da i und j beliebig aus den natürlichen Zahlen gewählt waren, hat A also unendlich viele Myhill-Nerode-Äquivalenzklassen und ist somit nicht regulär.

(b) Wir verwenden das Myhill-Nerode-Theorem: Seien $i \neq j$ natürliche Zahlen. Dann sind $0^i 1^i \not\sim_A 0^j 1^j$, da $0^i 1^i 1^i 0^i = (0^i 1^i)(0^i 1^i)^{\text{rev}} \in B$ ist, aber $0^j 1^j 1^i 0^i \notin A$, da $i \neq j$, und somit die erste Hälfte des Wortes eine andere Anzahl an 0 enthält als die zweite. Da i und j beliebig aus den natürlichen Zahlen gewählt waren, hat B also unendlich viele Myhill-Nerode-Äquivalenzklassen und ist somit nicht regulär.

Aufgabe A4.4 (Stellenwertsysteme) (6 Punkte + 6 Bonuspunkte) Für $A \subseteq \mathbb{N}$ und $b \ge 2$ definieren wir uns

$$\Sigma_b := \{0, \dots, b-1\}$$

und

$$L_b(A) := \{x_k x_{k-1} \dots x_0 \in \Sigma_b^* \mid \sum_{i=0}^k x_i \cdot b^i \in A\}.$$

Somit ist $L_b(A)$ die Darstellung der Zahlen aus A in Basis b, wobei führende Nullen vorkommen dürfen. Insbesondere gilt also sowohl $\varepsilon \in L_b(A)$ als auch $0 \in L_b(A)$, falls $0 \in A$.

Wichtiger Hinweis: In dieser gesamten Aufgabe werden zur Vereinfachung alle Wörter von hinten und mit 0 indiziert, so ist z.B. x_0 das letzte Zeichen von x.

(a) Zeigen Sie, dass die Wahl führende Nullen zu erlauben arbiträr war, also dass

$$L'_b(A) := \{x_k x_{k-1} \dots x_0 \in \Sigma_b^* \mid \sum_{i=0}^k x_i \cdot b^i \in A \text{ und falls } k \ge 0 \ x_k \ne 0\}.$$

genau dann regulär ist, wenn $L_b(A)$ regulär ist. Beachten Sie, dass das Wort ε weiterhin eine gültige Darstellung der Zahl 0 ist, das Wort 0 nun aber nicht mehr.

(b) Zeigen Sie nun, dass wir die Zahlen auch auf Blöcke der Länge r aufteilen können, indem Sie für jedes $r \ge 1$ zeigen, dass

$$L_b^{(r)}(A) := \{ x = x_k x_{k-1} \dots x_0 \in \Sigma_b^{\star} \mid \sum_{i=0}^k x_i \cdot b^i \in A \text{ und } |x| = k+1 \text{ ist durch } r \text{ teilbar} \}.$$

genau dann regulär ist, wenn $L_b(A)$ regulär ist.

- (c) Nutzen Sie dies nun um zu zeigen, dass für $c = b^r$ mit $r \in \mathbb{N} \setminus \{0\}$ gilt: $L_b(A)$ ist regulär, genau dann, wenn $L_c(A)$ regulär ist.
- (d) Wir betrachten nun zusätzlich auch den Fall

$$L_1(A) := \{1^n \mid n \in A\}.$$

Zeigen Sie nun, dass aus $L_1(A) \in \mathsf{REG}$ ebenfalls $L_b(A) \in \mathsf{REG}$ für beliebiges $b \geq 2$ folgt.

- (e) Gilt auch die Umkehrung der Aussage aus Teilaufgabe (d), also dass aus $L_b(A) \in \mathsf{REG}$ auch $L_1(A) \in \mathsf{REG}$ folgt? Beweisen Sie Ihre Antwort.
- (f)* Gilt die Aussage aus Teilaufgabe (c) auch für beliebige $b, c \geq 2$? Falls nein, können Sie vollständig klassifizieren, für welche $b, c \geq 2$ die Aussage gilt? Beweisen Sie Ihre Antwort.

Lösung A4.4 (Stellenwertsysteme)

Wichtiger Hinweis: In dieser gesamten Aufgabe sowie der Lösung werden alle Wörter von hinten und mit 0 indiziert, so ist z.B. x_0 das letzte Zeichen von x.

Definiere $K_b = L_b'(\mathbb{N}) = \{x_k x_{k-1} \cdots x_0 \in \Sigma_b^* \mid \text{falls } k \geq 0 \text{ dann } x_k \neq 0\}$ als die Sprache aller Darstellungen von Zahlen in Basis b ohne führende Nullen. Diese Sprache ist regulär als Konkatenation und Vereinigung regulärer Sprachen $K_b = (\Sigma_b^1 \setminus \{0\})\Sigma_b^* \cup \{\varepsilon\}$.

- (a) Es gelten $L_b(A) = L(0^*)L_b'(A)$ und $L_b'(A) = K_b \cap L_b(A)$. Somit ist nach der Abgeschlossenheit von REG unter Schnitt und Konkatenation $L_b'(A)$ regulär genau dann wenn $L_b(A)$ regulär ist.
- (b) Es gilt $L_b^{(r)}(A) = K_b^{(r)} \cap L_b(A)$, wobei $K_b^{(r)} = \{x \in \Sigma_b^{\star} \mid |x| \text{ ist durch } r \text{ teilbar}\}$. Endliche Automaten, die $K_b^{(r)}$ erkennen, lassen sich analog zu Aufgabe A1.1(d) konstruieren und somit ist $L_b^{(r)}$ regulär. Durch die Abgeschlossenheit von REG unter Schnitt ist also $L_b^{(r)}(A)$ regulär, wenn $L_b(A)$ regulär ist.

Für die Rückrichtung zeigen wir, dass wenn $L_b^{(r)}(A)$ regulär ist, auch $L_b'(A)$ regulär ist und verwenden Teilaufgabe (a) um damit die Regulärität von $L_b(A)$ zu zeigen.

Lösungsweg 1: Wir betrachten hierzu den folgenden Transduktor M, der führende Nullen entfernt und alle anderen Zeichen erhält:

Formaler gilt $M = (Q, \Sigma_b, \Sigma_b, \delta, f, q_0, Q_{acc})$ mit

$$Q = \{S, R\}$$

$$q_0 = S$$

$$Q_{acc} = Q$$

$$\delta(S, 0) = S$$

$$\delta(S, \sigma_0) = R$$

$$\delta(R, \sigma) = R$$

$$für \sigma_0 \in \Sigma_b \setminus \{0\}$$

$$für \sigma \in \Sigma_b$$

$$f(S, 0) = \varepsilon$$

$$f(S, \sigma_0) = \sigma_0$$

$$für \sigma_0 \in \Sigma_b \setminus \{0\}$$

$$für \sigma \in \Sigma_b$$

Nun gilt direkt $f_M(L_b^{(r)}(A)) = L_b'(A)$, $L_b'(A)$ ist also regulär, wenn $L_b^{(r)}(A)$ regulär ist, da M ein Transduktor ist.

Lösungsweg 2: Hierzu behaupten wir $L_b'(A) = \left(L_b^{(r)}(A) \setminus L(0^*)\right) \cap K_b$, wobei $L_1 \setminus L_2$ die Notation für die Konstruktion aus Aufgabe A1.4(c) ist. Beweis:

- $\supseteq : \mathrm{Sei} \ x \in \left(L_b^{(r)}(A) \setminus L(0^\star) \right) \cap K_b.$ Dann enthält x keine führenden Nullen, da $x \in K_b$. Weiterhin existieren nun $y, z \in \Sigma_b^\star$ mit yx = z und $z \in L_b^{(r)}(A)$ und $z \in L(0^\star)$. Da z aber nur aus Nullen besteht stellen z und x aber die gleiche Zahl $n \in A$ dar. Somit ist $x \in L_b'(A)$.
- \subseteq : Sei $x \in L_b'(A)$. Dann ist x automatisch auch in K_b . Wähle $z = 0^k$ wobei k + |x| durch r teilbar ist. Nun ist $z \in L(0^*)$ und $zx \in L_b^{(r)}(A)$, da x und zx die gleiche Zahl $n \in A$ darstellen und |zx| durch r teilbar ist. Somit ist $x \in \left(L_b^{(r)}(A) \setminus L(0^*)\right) \cap K_b$.

Lösungsweg 3: Alternativ gilt auch direkt $L_b(A) = L_b^{(r)}(A) \setminus L(0^*)$, was wir hier aber nicht weiter beweisen werden.

(c) Sei $c=b^r$. Wir definieren einen Homomorphismus $h:\Sigma_c^\star\to\Sigma_b^\star$ wie folgt auf Elementen $n\in\Sigma_c$:

$$h(n) = x_{r-1}x_{r-2}\cdots x_0$$
 für $n = \sum_{i=0}^{r-1} x_i \cdot b^i$ und $x_i \in \Sigma_b$ für alle i .

Dieser Homomorphismus ist wohldefiniert, da jede Zahl $0 \le n < c$ eine eindeutige Darstellung mit exakt r Ziffern in Basis b hat.

Nun behaupten wir, wenn x eine Repräsentation von $n \in \mathbb{N}$ in Basis c ist, dass $\sum_{i=0}^{|h(x)|-1} h(x)_i \cdot b^i = n$. Wir zeigen also, dass h(x) die Zahl n in Basis b darstellt. Der Einfachheit halber bezeichnet weiterhin $h(x)_0$ das letzte Zeichen von h(x). Für

 $0 \le n < c$ ist diese Aussage klar nach Definition von h, da hier nun x = n gilt. Um die Behauptung für allgemeine $n \in \mathbb{N}$ zu zeigen sehen wir zuerst, dass $|h(x)| = r \cdot |x|$ und folgern daraus

$$\sum_{k=0}^{r \cdot |x|-1} h(x)_k \cdot b^k = \sum_{i=0}^{|x|-1} \sum_{j=0}^{r-1} h(x_i)_j \cdot b^{i \cdot r + j}$$

$$= \sum_{i=0}^{|x|-1} b^{i \cdot r} \sum_{j=0}^{r-1} h(x_i)_j \cdot b^j$$

$$= \sum_{i=0}^{|x|-1} c^i x_i = n.$$

Nun gilt $h(L_c(A)) = L_b^{(r)}(A)$.

- \subseteq : Diese Richtung ist klar durch obigen Beweis, dass das Bild von x unter h weiterhin die gleiche Zahl repräsentiert, nur in Basis b statt Basis c. Weiterhin sind die Längen aller Bilder von h immer Vielfache von r.
- \supseteq : Sei $x \in L_b^{(r)}(A)$ mit Länge $|x| = k \cdot r$. Nun repräsentiert x eine Zahl $n \in \mathbb{N}$, wobei $n < b^{|x|} = b^{k \cdot r} = c^k$. Damit gibt es aber auch eine eindeutige Repräsentation y von n mit k Stellen in Basis c. Da Darstellungen in Stellenwertsystemen eindeutig sind und $|h(y)| = r \cdot |y| = r \cdot k$ muss nun schon h(y) = x gelten und somit $x \in h(L_c(A))$.

Auf diesem Wege kann man insbesondere auch zeigen, dass h bijektiv ist.

Da h bijektiv in die Menge alle Darstellungen von Zahlen mit Längen, die durch r teilbar sind, abbildet, gilt nun aber auch $L_c(A) = h^{-1}(L_b^{(r)}(A))$.

Da sich Regulärität unter Bildern und Urbildern von Homomorphismen überträgt gilt nun $L_c(A)$ ist regulär, genau dann wenn $L_b^{(r)}(A)$ regulär ist. Weiterhin gilt nach Teilaufgabe (b), dass $L_b^{(r)}(A)$ genau dann regulär ist, wenn $L_b(A)$ regulär ist.

(d) $L_1(A)$ ist eine unäre Sprache und somit regulär genau dann, wenn A letzendlich periodisch ist. Seien nun also n_0 und p so, dass für alle $n \ge n_0$ gilt $n \in A \Leftrightarrow n+p \in A$. Nun können wir $A = A_f \cup A_0 \cup A_1 \cup \cdots \cup A_{p-1}$ schreiben mit

$$\begin{split} A_f &= \{n \in A \mid n < n_0\} \\ A_i &= \{n \in A \mid n \geq n_0 \text{ und } n \equiv i \mod p\} \end{split}$$

Nun gilt, dass sowohl $L_b(A_f)$, als auch $L_b(A_i)$ für alle $i \in \{0, 1, ..., p-1\}$ regulär sind¹ und somit auch $L_b(A) = L_b(A_f) \cup L_b(A_0) \cup L_b(A_1) \cup \cdots \cup L_b(A_{p-1})$ regulär ist.

 $^{{}^{1}}A_{f}$ ist endlich und $L_{b}(\overline{A_{i}})$ wird von einem DEA erkannt, der für jede Restklasse modulo p einen Zustand hat, sowie n_{0} weitere Zustände für kleine Eingaben.

- (e) Die Aussage gilt für kein $b \geq 2$. Wir wählen $A = \{b^n \mid n \in \mathbb{N}\}$. Dann ist $L_b(A) = L(0^*10^*)$ und somit regulär. Wäre nun aber $L_1(A)$ auch regulär, so wäre A letzendlich periodisch. Es gäbe also n_0 und p mit $n \in A \Leftrightarrow n + p \in A$ für alle $n \geq n_0$. Für $b^n \in A$ mit $b^n > n_0$ und $b^n > p$ müsste also gelten $b^n + p \in A$, aber $b^n + p < b^{n+1}$, also ein Widerspruch.
- (f) Wir klassifizieren vollständig die Basen $b, c \geq 2$, für die die Regulärität von $L_b(A)$ äquivalent zur Regulärität von $L_c(A)$ ist.

Falls $p, q \ge 1$ mit $b^q = c^p$ existieren, überträgt sich Regularität nach Teilaufgabe (c) wie folgt:

$$L_b(A)$$
 regulär $\Leftrightarrow L_{bq}(A) = L_{cp}(A)$ regulär $\Leftrightarrow L_c(A)$ regulär

In allen anderen Fällen gibt es Mengen A, so dass $L_b(A)$ regulär ist, aber $L_c(A)$ nicht regulär ist.

Wir nehmen oBdA. dazu an, dass b > c. Falls b < c gilt, so gibt es ein r, so dass $b^r > c$ ist und zusätzlich ist $L_b(A)$ genau dann regulär, wenn $L_{b^r}(A)$ regulär ist. Dann können wir also b in der weiteren Betrachtung durch b^r ersetzen. Wähle $A = \{b^n \mid n \in \mathbb{N}\}$. Nun nehmen wir an, dass $L_c(A)$ regulär sei. Wie schon in der vorherigen Teilaufgabe gezeigt ist $L_c(A)$ regulär und somit auch $L'_c(A)$.

Wir definieren den Homomorphismus h, der alle Zeichen aus Σ_c auf 1 abbildet. Wir betrachten nun die Sprache $L := h(L'_c(A)) = \{1^{|x|} \mid x \in L'_c(A)\}$, die als Bild einer regulären Sprache unter einem Homomorphismus ebenfalls regulär ist. Da L unär ist, ist sie charakterisiert durch eine letzendlich periodische Menge $B = \{|x| \mid x \in L'_c(A)\}$, es gilt also $L_1(B) = L$.

Seien wieder n_0 und p gewählt mit $n \in B \Leftrightarrow n + p \in B$ für alle $n \ge n_0$. Sei nun $a_0 \in B$ mit $a_0 > n_0$ und $a_0 > p$. Dann ist a_0 die Länge einer Zahl $b^{\alpha_0} \in A$ in Basis c. Weiterhin ist $a_i = a_0 + i \cdot p \in B$, also existieren jeweils Zahlen $b^{\alpha_i} \in A$ mit Länge a_i in Basis c.

Da b>c gibt es keine zwei Zahlen in A, die die gleiche Länge in Basis c haben, Jedes Element $a\in\{a_0,a_0+1,\ldots,a_0+p-1\}$ so dass $a\in B$ ist, ist also die Länge genau einer Zahl $b^{\alpha_0+j}\in A$, insbesondere von aufeinander folgenden Elementen in A. Gibt es also genau q Elemente in $\{a_0,a_0+1,\ldots,a_0+p-1\}\cap B$, so muss a_1 die Länge der Zahl b^{α_0+q} sein, bzw allgemeiner a_i die Länge der Zahl $b^{\alpha_0+i\cdot q}$ und somit $\alpha_i=\alpha_0+i\cdot q$.

Letztlich gilt $c^{a_i-1} \leq b^{\alpha_i} \leq c^{a_i} - 1$, da a_i die Länge der Zahl b^{α_i} in Basis c ist. Wir

kombinieren dies nun zu:

$$\begin{split} c^{a_0+i\cdot p-1} &\leq b^{\alpha_0+i\cdot q} \leq c^{a_0+i\cdot p}-1 \\ \Longrightarrow \frac{c^{a_0+i\cdot p-1}}{c^{a_0}-1} &\leq b^{i\cdot q} \leq \frac{c^{a_0+i\cdot p}-1}{c^{a_0-1}} \\ \Longrightarrow \sqrt[i]{\frac{c^{a_0+i\cdot p-1}}{c^{a_0}-1}} &\leq b^q \leq \sqrt[i]{\frac{c^{a_0+i\cdot p}-1}{c^{a_0-1}}} \\ \Longrightarrow \lim_{i\to\infty} \sqrt[i]{\frac{c^{a_0+i\cdot p-1}}{c^{a_0}-1}} &\leq b^q \leq \lim_{i\to\infty} \sqrt[i]{\frac{c^{a_0+i\cdot p}-1}{c^{a_0-1}}} \\ \Longrightarrow c^p \leq b^q \leq c^p \\ \Longrightarrow c^p = b^q \end{split}$$

Dies ist ein Widerspruch zur Annahme, dass keine $p,q\geq 1$ existieren, so dass $b^q=c^p$. $L_c(A)$ kann also nicht regulär sein.