Algorithme 1: Insertion de coefficients dans la matrice

Soit
$$A := \left(\begin{array}{c|c} M_{\cdot D} & 0 \\ \hline 0 & \frac{1}{\Delta t} \mathrm{Id} \end{array}\right)$$

pour chaque p_k : points du bord faire

 p_k : le point de bord considéré, d'indice global k

si p_k est un point du maillage alors | On passe au point p_k suivant

fin

 p_l : premier voisin de p_k , d'indice global l p_r : deuxième voisin de p_k , d'indice global r

 γ : axe sur lequel est placée l'arête $[p_l, p_r]$ (ie soit x ou y ou z)

Nous devons dans un premier temps supprimer les interactions entre p_l et p_r :

$$A[l,r] = A[r,l] = 0$$

Ensuite actualisons la ligne k:

$$A[k,:] = 0$$
 Actualise_ligne (k,γ)

Enfin actualisons les lignes l et r:

Actualise ligne (l, γ) Actualise ligne (r, γ)

fin

Algorithme 2 : Actualise_ligne (Entier m, Axe γ)

 p_m : le point considéré d'indice global m

 p_l : voisin de p_m dans la direction $(-\gamma)$, d'indice global de l p_r : voisin de p_m dans la direction $(+\gamma)$, d'indice global de r

 d_r : distance entre p_r et p_m d_l : distance entre p_m et p_l

Calculons la distance moyenne avant et arrière :

$$moy = \frac{d_l + d_r}{2}$$

Calculons l'interaction entre m et l:

$$A[m, l] = -\frac{D}{moy} \times \frac{1}{d_l}$$

Calculons l'interaction entre m et r:

$$A[m,r] = -\frac{D}{moy} \times \frac{1}{d_r}$$

Sommons la ligne m pour avoir le nouveau coefficient diagonal :

$$A[m,m] = \frac{1}{\Delta t} - \sum_{i \neq m} A[m,i]$$

