

System Reliability Center

201 Mill Street Rome, NY 13440-6916 888.722.8737 or 315.337.0900 Fax: 315.337.9932

MTBF Confidence Limits

When a product's failure rate is considered constant, The Chi-Square distribution may be used to calculate confidence intervals around a measured mean time between failures (MTBF), the total test time among all tested products divided by the number of failures. The calculation differs depending on whether the test data truncates on the last failure or at a time after the last failure. The formulas used are:

One-sided Confidence interval (MTBF lower limit)	For time trun $\frac{27}{X^2(\alpha, 2)}$	Γ	For failure truncated tests $\frac{2T}{X^2(\alpha,2n)}$			
Two-sided Confidence intervals	$\frac{2T}{X^2(\alpha/2,2n+2)}$	$\frac{2T}{X^2(1-\alpha/2,2n)}$	$\frac{2T}{X^2(\alpha/2,2n)}$	$\frac{2T}{X^2(1-\alpha/2,2n)}$		
MTBF limit:	Lower	Upper	Lower	Upper		

Where T is the total test time

 α is the acceptable risk of error (1- desired confidence)

n is the number of failures observed

The following table is derived from the formulas: http://www.kekaoxing.com

(Assumption of Exponential Distribution)

	(Assumption of Exponential Distribution)											
	99% Two-Sided 99-1/2% One-Sided											_
			98% Two-Sided 99% One-Sided									
			95% Two-Sided 97-1/2% One-Sided									
			90% Two-Sided				95% One-Sided					
			80% Two-Sided 90% One-Sided									
						60% Tw	o-Sided					
						80% On						
d	Lower Limit						Upper Limit					
2	0.185	0.217	0.272	0.333	0.433	0.619	4.47	9.462	19.388	39.58	100.0	200.0
4	0.135	0.151	0.180	0.210	0.257	0.334	1.21	1.882	2.826	4.102	6.667	10.00
6	0.108	0.119	0.139	0.159	0.188	0.234	0.652	0.909	1.221	1.613	2.3077	3.007
8	0.0909	0.100	0.114	0.129	0.150	0.181	0.437	0.573	0.733	0.921	1.212	1.481
10	0.0800	0.0857	0.0976	0.109	0.125	0.149	0.324	0.411	0.508	0.600	0.789	0.909
12	0.0702	0.0759	0.0856	0.0952	0.107	0.126	0.256	0.317	0.383	0.454	0.555	0.645
14	0.0635	0.0690	0.0765	0.0843	0.0948	0.109	0.211	0.257	0.305	0.355	0.431	0.500
16	0.0588	0.0625	0.0693	0.0760	0.0848	0.0976	0.179	0.215	0.251	0.290	0.345	0.385
18	0.0536	0.0571	0.0633	0.0693	0.0769	0.0878	0.156	0.184	0.213	0.243	0.286	0.322
20	0.0500	0.0531	0.0585	0.0635	0.0703	0.0799	0.137	0.158	0.184	0.208	0.242	0.270
22	0.0465	0.0495	0.0543	0.0589	0.0648	0.0732	0.123	0.142	0.162	0.182	0.208	0.232
24	0.0439	0.0463	0.0507	0.0548	0.0601	0.0676	0.111	0.128	0.144	0.161	0.185	0.200
26	0.0417	0.0438	0.0476	0.0513	0.0561	0.0629	0.101	0.116	0.130	0.144	0.164	0.178
28	0.0392	0.0413	0.0449	0.0483	0.0527	0.0588	0.0927	0.106	0.118	0.131	0.147	0.161
30	0.0373	0.0393	0.0425	0.0456	0.0496	0.0551	0.0856	0.0971	0.108	0.119	0.133	0.145
32	0.0355	0.0374	0.0404	0.0433	0.0469	0.0519	0.0795	0.0899	0.0997	0.109	0.122	0.131
34	0.0339	0.0357	0.0385	0.0411	0.0445	0.0491	0.0742	0.0834	0.0925	0.101	0.113	0.122
36	0.0325	0.0342	0.0367	0.0392	0.0423	0.0466	0.0696	0.0781	0.0899	0.0939	0.104	0.111
38	0.0311	0.0327	0.0351	0.0375	0.0404	0.0443	0.0656	0.0732	0.0804	0.0874	0.0971	0.103
40	0.0299	0.0314	0.0337	0.0359	0.0386	0.0423	0.0619	0.0689	0.0756	0.0820	0.0901	0.0968

System Reliability Center 201 Mill Street

Rome, NY 13440-6916 888.722.8737 or 315.337.0900 Fax: 315.337.9932

Notes: 1. Multiply value shown by total part hours to get MTBF figure in hours.

- 2. $d = 2 \times (\# \text{ of failures accumulated at test termination}).$
- 3. For the lower limit on tests truncated at a fixed time where the number of failures occurring is less than the total number of items placed on test initially, use: d = 2 x (# of failures accumulated at test termination +1).

Copyright © 2001 Alion Science and Technology. All rights reserved.

Source:

• RAC Publication, CPE, <u>Reliability Toolkit: Commercial Practices Edition</u>.

For More Information:

• RAC Publication, STAT, <u>Practical Statistical Tools for the Reliability Engineer</u>, Sept. 1999.

http://www.kekaoxing.com/club/

