Bot vs. Bot: Evading Machine Learning Malware Detection

/in/hyrumanderson

The Promise of Machine Learning

- Learn from data what constitutes malicious content or behavior
- Discriminatory patterns learned automatically, not obviously constructed by hand
- Generalize to never-before-seen samples and variants...
 - ...so long as data used for "training" is representative of deployment conditions
 - motivated adversaries actively trying to invalidate this assumption

Goal: Can You Break Machine Learning?

Static machine learning model trained on millions of samples

- Simple structural changes that don't change behavior
 - unpack
 - '.text' -> '.foo' (remains valid entry point)
 - create '.text' and populate with '.text from calc.exe'

Adversarial Examples

- Machine learning models have blind spots / hallucinate (modeling error)
- Depending on model and level of access, they can be straightforward to exploit
 - e.g., deep learning is fully differentiable (directly query what perturbation would best bypass model)
- Adversarial examples can generalize across models / model types (Goodfellow 2015)
 - blind spots in MY model may also be blind spots in YOUR model

Taxonomy of Attacks Against ML

adversary's knowledge about your model

An adversary...

- ...has your model
- architecture & weights are known
- a direct attack on your model
- "easy" for deep learning
 - gradient perturbation
 [for Android malware]
 (Papernot et al. 2016)
 - dueling models / GAN

[for DGA detection] (Anderson et al. 2016)

- ...can get a score
- black box...
- ...but can arbitrarily probe and get a score
- score = raw output / confidence before thresholding for good/bad

EvadeML [for PDF malware] (Xu, Qi, Evans, 2016)

- ...can get good/bad
- black box...
- ...but can arbitrarily probe and get a label
- label = malicious / benign
- also a viable solution for traditional AV scanners

MalGan [PE: known features] (Hu, Tan, 2017)

Related Work: full access to model

Bus (99%), Ostrich (1%) BUT... = image

Malware (90%), Benign (10%)

Attack:

Query deep learning model: What change will be most dramatic reduction in score? (gradient)

Malware variant not a PE file Change in file breaks behavior

break PE format destroy function

Same conditions exist for approaches based on generative adversarial networks

Related Work: attack score-reporter

EvadeML [for PDF malware] (Xu, Qi, Evans, 2016)

Summary of Previous Works

Gradient-based attacks: perturbation or GAN

- Attacker requires full knowledge of model structure and weights
 - Or can train a mimic model
- Presents worst-case attack to the model
- Generated sample may not be valid PE file

Genetic Algorithms

- Requires only score from black box model
- Oracle/sandbox [expensive] needed to ensure that functionality is preserved

Goal: Design an AI that chooses format- and function-preserving mutations to bypass black-box machine learning. Reinforcement Learning!

Atari Breakout

Nolan Bushnell, Steve Wozniak, Steve Bristow

Inspired by Atari Pong

"A lot of features of the Apple II went in because I had designed Breakout for Atari" (The Woz)

Game

- Bouncing ball + rows of bricks
- Manipulate paddle (left, right)
- Reward for eliminating each brick

Atari Breakout: an Al

Environment

- Bouncing ball + rows of bricks
- Manipulate paddle (left, right)
- Reward for eliminating each brick

Agent

- Input: environment state (pixels)
- Output: action (left, right)
- Feedback: delayed reward (score)
- Agent learns through 1000s of games what action to take given state of the environment

https://gym.openai.com/envs/Breakout-v0

Anti-malware evasion: an Al

Environment

- A malware sample (Windows PE)
- Buffet of malware mutations
 - preserve format & functionality
- Reward from static malware classifier

Agent

- Input: **environment state** (*malware bytes*)
- Output: action (stochastic)
- Feedback: **reward** (AV reports benign)

The Agent's State Observation

Features

- Static Windows PE file features compressed to 2350 dimensions
 - General File Information
 - Machine/OS/linker info
 - Section characteristics
 - Imported/exported functions
 - Strings
 - File byte and entropy histograms
- Fed to neural network to choose choose the best action for the given "state" (Deep Q-Learning)

The Agent's Manipulation Arsenal

Functionality-preserving mutations:

Create

- New Entry Point (w/ trampoline)
- New Sections

Add

- Random Imports
- Random bytes to PE overlay
- Bytes to end of section

Modify

- · Random sections to common name
- (break) signature
- Debug info
- UPX pack / unpack
- Header checksum
- Signature

Library to Instrument Executable Formats

The Machine Learning Model

Static PE malware classifier

- gradient boosted decision tree (nondifferentiable)
- need not be known to the attacker
- for demo purposes, we reuse feature extractor employed by the agent to represent "state"
- present an optimistic situation for the agent

Game Setup

Environment

- No concept of "you lose, game over"
 - artificially terminate game after max_turns unless unsuccessful
- GBDT Model trained on 100K benign+malicious samples

Agent

- Agent #1: gets score from machine learning malware detector
- Agent #2: gets malicious/benign label
- Double DQN with dueling network with replay memory

Shall we play a game?

Expectation Management

- Agent has no knowledge about AV model (black box)
- Agent receives incomplete
- Agent has limited (and stochastic) actions

...but AV engines conservative to prevent FPs, so maybe there's a chance...

Evasion Results

15 hours to do 100K trials (~10K episodes x 10 turns each)

Evasion rate on 200 holdout samples

(averaged over 10 trials)

Warning Long episodes can "overattack" to specific model

add_section, add_section, add_section, add_section

Model Hardening Strategies

Adversarial training

Train with new evasive variants

Feedback to the human

category	evasion %	dominant action sequence
ransomware	3%	unpack->add section->change entrypoint
backdoor	1%	<pre>pack (low entropy)->add imports</pre>

We're releasing code

gym-malware OpenAl environment

https://github.com/drhyrum/gym-malware

Agent

- Preliminary DQN agent for playing game
- [contribute] improve actions, improve RL agent

Environment

- [provided] Manipulations written via LIEF to change elements of a PE file
- [provided] Feature extraction via LIEF to convert raw bytez into environment "state"
- [you provide] API access to AV engine you wish to bypass (default: attack toy mode that is provided)
- [you provide] Malware samples for training and test

Summary

- Machine Learning Models quite effective at new samples
 - But all models have blind spots that can be exploited
- Our ambitious approach
 - Craft a game of bot vs. AV engine
 - · Variants guaranteed to preserve format and function of original
 - · Manipulates binaries: no malware source code needed
 - No knowledge of target model needed
- Only modest results. Make it better! https://github.com/drhyrum/gym-malware

Thank you!

Hyrum Anderson

Technical Director of Data Science

Co-contributors:

Anant Kharkar, University of Virginia Bobby Filar, Endgame Phil Roth, Endgame

ENDGAME