January 4, 2016

Debdeep Pati

1 Location-Scale Family

Definition 1. A <u>location-scale</u> family of distributions has densities (pdf's) of the form

$$g(x \mid \mu, \sigma) = \frac{1}{\sigma} \psi \left(\frac{x - \mu}{\sigma} \right)$$

where ψ is a pdf, $\sigma > 0$, $-\infty < \mu < \infty$.

1.1 Properties

- 1. $g(x \mid 0, 1) = \psi(x)$
- 2. If $X \sim g(\cdot \mid \mu, \sigma)$, then $\frac{X-\mu}{\sigma} \sim g(\cdot \mid 0, 1)$.
- 3. If $X \sim q(\cdot \mid 0, 1)$, then $\sigma X + \mu \sim q(\cdot \mid \mu, \sigma)$.

Prove 2 and 3 by the material in Section 2.1

1.2 Examples

1. **Gaussian:** Take $\psi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, the standard normal density. Then

$$g(x\mid \mu,\sigma) = \frac{1}{\sigma}\psi\bigg(\frac{x-\mu}{\sigma}\bigg) = \frac{1}{\sigma}\frac{1}{\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sigma}\right)^2/2} = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

is the pdf of a $N(\mu, \sigma^2)$ distribution.

2. Cauchy: Take $\psi(x) = \frac{1}{\pi} \frac{1}{1+x^2}$, Then

$$g(x \mid \mu, \sigma) = \frac{1}{\sigma} \psi\left(\frac{x - \mu}{\sigma}\right) = \frac{1}{\pi \sigma} \frac{1}{1 + \left(\frac{x - \mu}{\sigma}\right)^2}, \quad -\infty < x < \infty$$

defines the Cauchy L-S family.

<u>Note</u>: for this family of distributions, μ is <u>not</u> the mean and σ is <u>not</u> the standard deviation. Same remark applies in the next example

3. **Uniform:** Take $\psi(x) = I_{(0,1)}(x) =$

$$\begin{cases} 1, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise.} \end{cases}$$

 ψ is the pdf of the Unif(0, 1) distribution.

$$g(x \mid \mu, \sigma) = \frac{1}{\sigma} \psi \left(\frac{x - \mu}{\sigma} \right) = \frac{1}{\sigma} I_{(0,1)} \left(\frac{x - \mu}{\sigma} \right) = \frac{1}{\sigma} I_{(\mu, \mu + \sigma)}(x)$$

where the last equality follows from the fact that $\frac{x-\mu}{\sigma} \in (0,1)$ iff $x \in (\mu, \mu + \sigma)$. This is the pdf of the Unif $(\mu, \mu + \sigma)$.

2 Location / Scale Family

Let ψ be a pdf.

Definition 2. A <u>scale family</u> of distributions has densities of the form $g(x \mid \sigma) = \frac{1}{\sigma} \psi(\frac{x}{\sigma})$ where $\sigma > 0$.

 σ is the scale parameter.

Definition 3. A <u>location family</u> of distributions has densities of the form $g(x \mid \mu) = \psi(x - \mu)$ where $-\infty < \mu < \infty$.

2.1 Examples

- 1. The N(μ , 1) distributions form a location family and N(0, σ^2) distributions form a scale family. Take $\psi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Then $\psi(x-\mu) = \frac{1}{\sqrt{2\pi}}e^{-(x-\mu)^2/2}$, which is the pdf of N(μ , 1) and $\frac{1}{\sigma}\psi(\frac{x}{\sigma}) = \frac{1}{\sqrt{2\pi}\sigma}e^{-x^2/2\sigma^2}$, which is the pdf of N(0, σ^2).
- 2. The family of Gamma (α_0, β) distributions (where α_0 is any fixed value of α forms a scale family. Take $\psi(x) = \frac{x^{\alpha_0 1}e^{-x}}{\Gamma(\alpha_0)}, x > 0$. Then

$$\frac{1}{\sigma}\psi\left(\frac{x}{\sigma}\right) = \frac{\frac{1}{\sigma}\left(\frac{x}{\sigma}\right)^{\alpha_0 - 1}e^{-x/\sigma}}{\Gamma(\alpha_0)} = \frac{x^{\alpha_0 - 1}e^{x/\sigma}}{\sigma^{\alpha_0}\Gamma(\alpha_0)}$$

which is the pdf of the Gamma(α_0, σ) distribution.

<u>Note</u>: If we permit both α and β to vary, the family of Gamma(α , β) distributions does <u>not</u> form a location-scale family. (α is a "shape" parameter).

Suppose $g(x \mid \mu, \sigma)$ is a location-scale family of density and

$$X \sim g(\cdot \mid \mu, \sigma), \quad Z \sim g(\cdot \mid 0, 1).$$

Then

$$\frac{X-\mu}{\sigma} \stackrel{d}{=} Z, \quad X \stackrel{d}{=} \sigma Z + \mu$$

so that

$$\begin{split} P(X>b) &= P\bigg(\frac{X-\mu}{\sigma}>\frac{b-\mu}{\sigma}\bigg) = P\bigg(Z>\frac{b-\mu}{\sigma}\bigg) \\ E(X) &= E(\sigma Z + \mu) = \sigma E Z + \mu, \text{ if } EZ \text{ is finite} \\ Var(X) &= Var(\sigma Z + \mu) = \sigma^2 Var(Z) \text{ if } Var(Z) \text{ is finite} \end{split}$$

Similar facts hold for location families and scale families. Erase μ (set $\mu = 0$) for facts for scale families. Erase σ (set $\sigma = 1$) for facts about location families.

2.2 Examples

1. The $N(\sigma, \sigma^2), \sigma > 0$, distributions form a scale family. The density of the $N(\sigma, \sigma^2)$ distribution is:

$$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\left\{\frac{(x-\mu)^2}{2\sigma^2}\right] = \frac{1}{\sigma} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{x}{\sigma}-1\right)^2\right\}$$

where ψ is the N(1,1) pdf.

2. The $N(1,\lambda)$, $\lambda > 0$, distributions do <u>not</u> form a scale family. One way to see this is to note that if $X \sim N(1,\lambda)$ then EX = 1 for all λ (it is constant). But a scale family with scale parameter σ satisfies $EX = \sigma EZ$ which cannot be constant (unless EZ = 0).

3 Exponential families

Definition 4. The family of pdf's or pmf's $\{f(x \mid \theta) : \theta \in \Theta\}$, where Θ is the parameter space and θ can represent a single parameter or a vector of parameters is an exponential family if we can write

$$f(x \mid \theta) = h(x)c(\theta) \exp \left\{ \sum_{i=1}^{k} w_i(\theta)t_i(x) \right\}$$

for real valued functions $c(\theta), h(x), w(\theta), t(x)$ with $c(\theta), h(x) \ge 0$ for all x and all $\theta \in \Theta$. In addition $c(\theta) > 0$ for all $\theta \in \Theta$. This is the general <u>k</u>-parameter exponential family (kpef). For k = 1, the general one parameter exponential family (1pef) has the form

$$f(x \mid \theta) = h(x)c(\theta) \exp\{w(\theta)t(x)\}$$

for all x and all $\theta \in \Theta$.

<u>Note</u>: We allow h to be degenerate (constant), but require <u>all</u> the other functions to be nondegenerate (nonconstant).

3.1 Examples of 1pef's

1. Exponential Distributions: The pdf is given by

$$f(x \mid \beta) = \frac{1}{\beta} e^{-x/\beta}, x > 0, \beta > 0.$$

In this example, $\theta = \beta$ and $\Theta = (0, \infty)$ and

$$f(x \mid \beta) = \underbrace{I_{(0,\infty)}(x)}_{h(x)} \cdot \underbrace{\frac{1}{\beta}}_{c(\theta)} \cdot \exp\left\{-\underbrace{\frac{1}{\beta}}_{w(\theta)} \cdot \underbrace{x}_{t(x)}\right\}$$

This $f(x \mid \beta)$ forms a 1pef with the parts as identified above.

2. **Binomial distributions:** The family of Binomial(n, p) distributions with n known (fixed) is a 1pef. The pmf is

$$f(x \mid p) = \binom{n}{x} \underbrace{p^x (1-p)^{n-x}}_{(1-p)^n \left(\frac{p}{1-p}\right)^x}, x = 0, 1, \dots, n, 0$$

In this example, $\theta = p$ and $\Theta = (0,1)$ and

$$f(x \mid p) = \underbrace{\binom{n}{x}} I_{\{0,1,\dots,n\}}(x) \cdot \underbrace{(1-p)^n}_{c(\theta)} \cdot \exp\left\{\underbrace{x}_{t(x)} \cdot \underbrace{\log\frac{p}{1-p}}_{w(\theta)}\right\}$$

This $f(x \mid p)$ forms a 1pef with the parts as identified above.

3.2 Examples of 2pef's

1. The family of $N(\mu, \sigma^2)$ distributions: The pdf is given by

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

valid for $\sigma > 0$ and $-\infty < \mu < \infty$. In this example, $\theta = (\mu, \sigma^2)$ and

$$\Theta = \{(\mu, \sigma^2) : \sigma^2 > 0, \text{ and } -\infty < \mu < \infty\}.$$

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2}\right\}$$
$$= \underbrace{\frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)}_{h(x)} \cdot \exp\left\{\underbrace{\frac{-1}{2\sigma^2} \cdot \underbrace{x^2}_{t_1(x)} + \underbrace{\frac{\mu}{\sigma^2} \cdot \underbrace{x}_{t_2(x)}}_{w_2(\theta)} \cdot \underbrace{x}_{t_2(x)}\right\}$$

This $f(x \mid \mu, \sigma^2)$ forms a 2pef with the parts as identified above.

3.3 Non-exponential families

There are many families of distributions which are <u>not</u> exponential families. The Cauchy L-S family family

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma} \cdot \frac{1}{\pi \left\{ 1 + \left(\frac{x - \mu}{\sigma} \right)^2 \right\}}, \quad -\infty < x < \infty$$

cannot be written as an exponential family. (Try it!).

A trickier Example: Consider this shifted exponential distribution with pdf

$$f(x \mid \mu, \beta) = \begin{cases} \frac{1}{\beta} e^{-(x-\mu)/\beta}, & x > \mu \\ 0, & \text{otherwise.} \end{cases}$$

Note that

$$f(x \mid \mu, \beta) = \underbrace{1}_{h(x)} \cdot \underbrace{\frac{e^{\mu/\beta}}{\beta}}_{c(\theta)} \exp\left\{-\underbrace{\frac{1}{\beta}}_{w(\theta)} \cdot \underbrace{x}_{t(x)}\right\}, \quad \text{Is it correct?}$$

This is <u>not</u> valid for <u>all</u> x, but only for $x > \mu$. To get an expression valid for all x, we need an indicator function.

$$f(x \mid \mu, \beta) = \underbrace{I_{(\mu, \infty)}(x)}_{\text{not a function of } x \text{ alone}} \cdot \underbrace{\frac{e^{\mu/\beta}}{\beta}}_{c(\theta)} \exp\bigg\{ - \underbrace{\frac{1}{\beta}}_{w(\theta)} \cdot \underbrace{x}_{t(x)} \bigg\}.$$

This is not an exponential family.

Definition 5. The <u>support</u> of an exponential family of a pdf or pmf f(x) is the set $\{x : f(x) > 0\}$.

<u>Fact:</u> The support of an exponential family of pdf's (pmf's) $f(x \mid \theta)$ is the same for all θ .

Proof. (For 1pef) The support of $f(x \mid \theta) = h(x)c(\theta) \exp\{w(\theta)t(x)\}$ is $\{x : h(x) > 0\}$ which does not involve θ .

<u>Fact:</u> If $f(x \mid \theta)$ is 1pef, then for any 4 distinct points x_1, x_2, x_3 and x_4 in the support, $g(x, \theta) = \log\{f(x \mid \theta)/h(x)\}$ satisfies

$$\frac{g(x_1,\theta) - g(x_2,\theta)}{g(x_3,\theta) - g(x_4,\theta)}$$

independent of θ .

Proof. Observe that if $f(x \mid \theta)$ is 1pef

$$\frac{g(x_1,\theta) - g(x_2,\theta)}{g(x_3,\theta) - g(x_4,\theta)} = \frac{t(x_1) - t(x_2)}{t(x_3) - t(x_4)}$$

and the proof follows immediately.

3.4 Examples

1. The pdf

$$f(x \mid \mu, \beta) = \begin{cases} \frac{1}{\beta} e^{-(x-\mu)/\beta}, & x > \mu \\ 0, & \text{otherwise.} \end{cases}$$

has support $\{x : x > \mu\}$ which depends on $\theta = (\mu, \beta)$ through the value μ . Thus (without further work) we know that this is <u>not</u> an exponential family.

2. The family of $\mathrm{Unif}(a,b)$ distributions with $-\infty < a < b < \infty$ is <u>not</u> an exponential family. The $\mathrm{Unif}(a,b)$ density

$$f(x \mid a, b) = \begin{cases} \frac{1}{b-a}, & \text{for } a < x < b \\ 0, & \text{otherwise} \end{cases}$$

has support $\{x : a < x < b\}$ which depends on $\theta = (a, b)$. Thus (without further work) we know that this is <u>not</u> an exponential family.

3. The Cauchy L-S family is <u>not</u> an exponential family, but its support is the <u>same</u> for all $\theta = (\mu, \sigma)$.

Proof. We will show that for $\sigma = 1$, Cauchy Location family is not a 1pef. Observe that for Cauchy Location family

$$\frac{g(x_1,\theta) - g(x_2,\theta)}{g(x_3,\theta) - g(x_4,\theta)}$$

is not a function of x alone.