

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Parallel in tree-related problems

References

- Michael J. Quinn. **Parallel Computing. Theory and Practice**. McGraw-Hill
- Albert Y. Zomaya. Parallel and Distributed Computing Handbook. McGraw-Hill
- Ian Foster. **Designing and Building Parallel Programs**. Addison-Wesley.
- Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar. Introduction to Parallel Computing, Second Edition. Addison Wesley.
- Joseph Jaja. An Introduction to Parallel Algorithm. Addison Wesley.
- Nguyễn Đức Nghĩa. **Tính toán song song.** Hà Nội 2003.

10.1 Prefix and Suffix

Prefix, Suffix Problems

- Concept: Let A[1..n] be a sequence of n integer elements
 - P[i] is called i_th prefix sum of array A, if : P[i] = $\sum A[j]$ with $j \in 1...i$
 - S[i] is called i_th suffix sum of array A, if : S[i] = $\sum A[j]$ with $j \in i..n$
- Problem: Build an algorithm on PRAM:
 - Input: A[1..n];
 - Output: P[1..n] (or S[1..n])
- These two problems (prefix or sufix) are the same.

Prefix Sum

- Approaches:
 - Method 1: Using Balanced Tree + Growing by Doubling
 - Method 2: Recursive.
 - Method 3: Using Jumping Pointer

Using Balanced Tree + Growing by Doubling

• Comment:

- Balanced Tree Method returns a result at the top of the tree.
- In order to obtain the sequence of prefix sum → using other nodes in the balanced tree created above.

• Idea:

- Build a new tree P, each node is called: $P_{i,j}$ with i is the level index, j is the processor index.
- Assuming that $P_{i,j}$ is root of a sub-tree, has leftmost leaf that is $P_{0,k}$, hence $P_{i,j} = \sum A[t]$ where $t \in 1..k$

Step1. Create a balanced tree

- Each node in the tree is represented by $A_{i,j}$ where:
 - i is the level index.
 - j is the processor index.

Step 2. Build a new tree P

• Comments:

- P tree is built from top to bottom with the top : $P_{k,1} = A_{k,1} = \sum A[i]$ where i = 1..n, $k = \log_2 n$.
- $P_{i,1} = A_{i,1}$ where i = k-1 ...0.
- $P_{i,j} = P_{i+1,j/2}$ with j is even; $P_{i,j} = P_{i+1,[j/2]} + A_{i,j}$ with j is odd (i = k-1..0)


```
input : A[1..n]; n = 2^k
output : P[1..n] | P[i] = Prefix_sum[i]
begin
    for i = 1 to n do in parallel
         A[0,i] = A[i];
    end parallel
    for i = 1 to k do
         for j = 1 to n/2^{j} do in parallel
              A[i,j] = A[i-1,2j-1] + A[i-1,2j];
          end parallel
     end for
     P[k,1] = A[k,1];
     for i = k - 1 downto 0 do
         for j = 1 to 2^{k-i} do in parallel
              if j = 1 then P[i,1] = A[i,1];
              else if j chan then P[i,j] = P[i+1,j/2]
              else P[i,i] = P[i+1,[i/2]] + A[i,i]
          end parallel
     end for
    for i = 1 to n do in parallel
         P[i] = P[0,i];
    end parallel
end.
```


Complexity Evaluation

- The algorithm is divided into 2 parts:
 - Part 1: create the balanced tree : O(log₂n) in PRAM EREW.
 - Part 2: build P tree with O(log₂n) serial steps.
 - Node $P_{i,j}$ needs $P_{i+1,[j/2]}$: this value can be read in serial mode in PRAM EREW.
 - When j is even: $P_{i,j}$ needs $P_{i+1,j/2}$
 - When j is odd: $P_{i,j}$ needs $A_{i,j}$ first, then $P_{i+1,[j/2]}$

Recursive Method

- Idea:
 - Using recursive method to build A, P trees.
 - For example, we can build a balanced tree thanks to a recursive method as follows:

```
function S = Reduce(A[1..n])
begin

if n = 1 then

S = A[1];

return S;

end if

for i = 1 to n/2 do in parallel

A[i] = A[2i-1] + A[2i]

end parallel

S = Reduce(A[1..n/2];
end
```


Recursive Method's Illustration

Recursive Method

- The duration of the algorithm is equal to the number of recursive function calls.
- In a recursive call: O(1) time unit
- Total duration time: O(log₂n).

```
function P[1..n] = Scan(X[1..n])
begin
      if n = 1 then
            P[1] = X[1];
            return P;
      end if
      for i = 1 to n/2 do in parallel
            Y[i] = X[2i-1] + X[2i]
      end parallel
      Z[1..n/2] = Scan(Y[1..n/2]);
      for i = 1 to n do in parallel
            if i chan then P[i] = Z[i/2];
             elseif i = 1 then P[1] = X[1];
            else P[i] = Z[(i-1)/2] + X[i];
      end parallel
      return P;
```


Jumping Pointer's Algorithm

- Idea:
 - Initial step: $P_0[i] = A[i]$.
 - At step k:
 - step = 2^{k-1} .
 - $P_k[i] = P_{k-1}[i] + P_{k-1}[i\text{-step}]$ with $\forall i \mid \text{step} < i \le n$.
 - We can see that:
 - At step k: $P_k[i] = \sum A[j]$ with $j \in 1..i$; $i \in 1..2^k$.
 - So to calculate P[1..n] requires log₂n repeating steps.

Illustration

The algorithm's illustration

- Execution time:
 Serial iteration's
 number: O(k) =
 O(log₂n).
- Assignments can be performed by reading/writing separately → PRAM EREW.

```
input : A[1..n]; n = 2^k
output : P[1..n] | P[i] = Prefix sum[i]
begin
     for i = 1 to n do in parallel
          P[i] = A[i];
     end parallel
     for i = 1 to k do
          for j = 1 to n do in parallel
               if i > 2^{i-1} then
                    P[i] = P[i] + P[i-2^{i-1}];
               end if
          end parallel
     end for
end
```


Suffix sum

- Same as Prefix sum problem.
- For example, Jumping Pointer method for Suffix sum as follows:

10.2 Tree-related Problems

10.2.1 Rooted-directed Tree

- Definition: Rooted-directed Tree T is a directional graph with a special node r satisfying:
 - \forall node $v \in V \{r\}$: have an out-of-degree outdegree(v) = 1 while the node r has outdegree(r) = 0.
 - \forall node $v \in V \{r\}: \exists 1 \text{ path from } v \text{ to } r$.
 - => The node r is called the root of tree.
- Tree T is presented by an array P[1..n],
 - P[i] = j if j is the father of i in the tree.
 - Root is the node that points to itself: P[r] = r.

Identifying tree root in the forest

- Problem speaking:
 - Let F be a forest of root-oriented trees.
 - F is presented by an array P[1..n].
 - For each node i in the forest, identifying the root of the trees that contains the node i, which is called S[i].
- Approach:
 - Use the jumping pointer technique.

Identifying tree root in the forest

Identifying tree root in the forest

```
input : rừng F xác định bởi P[1..n]
output : S[1..n], S[i] -- gốc của cây con chứa nút i
begin
for i = 1 to n do in parallel
S[i] = P[i];
while S[i] <> S[S[i]] do
S[i] = S[S[i]];
end while.
end for.
end.
```

- Complexity: if h is the height of the highest tree in the forest.
 - Execution time: O(log₂h).
 - Cost: O(n.log₂h). \rightarrow

Tree's Suffix-sum problem

- Problem speaking:
 - Forest F is presented by an arrayP[1..n].
 - The nodes on the tree are weighted W[1..n].
 - Tree root's weight equals 0.
 - Let's determine the total weight from any node (for example node v) to the root node r of a sub-tree containing node v.
- Approach:
 - Jumping pointer technique.

Tree's Suffix-sum problem

```
input : rừng F xác định bởi P[1..n], W[1..n]
output : R[1..n], R[i] -- trọng số đi từ i tới S[i]
begin
     for i = 1 to n do in parallel
         S[i] = P[i];
         while S[i] <> S[S[i]] do
              W[i] = W[i] + W[S[i]];
              S[i] = S[S[i]];
          end while.
     end for.
end.
```

- Complexity evaluation as before.
- PRAM model: CREW for 1 parent node can have multiple child nodes

Rooted Tree

• Let T = (V,E) be a tree defined by the list of adjacent vertexes and 1 node $r \in V$. Let's build the T tree with the root is r by defining p(v), with each node $v \ne r$, as the parent node of v.

• Approach:

- Set up a Euler cycle on T tree.
- Let's assume u is the last node in the adjacent list of r. Set $s(\langle u,r \rangle) = 0$.
- Setting the weight for the $\langle x,y \rangle = 1$ on T tree and performing suffix sum in the tree.
- For each $\langle x,y \rangle$, defining x = p(y) if suffix_sum $(\langle x,y \rangle)$ is greater than suffix_sum($\langle y,x \rangle$).

Rooted Tree problem (root: 4)

V	adj(v)		edge	successor
1	3 —	_	<3,1>	<1,3>
2	3		<3,2>	<2,3>
3	2, 1, 4		<2,3>	<3,1>
4	3, 5, 6		<1,3>	<3,4>
5	4	Y	<4,3>	<3,2>
6	4		<3,4>	<4,5>
	. /)		<5,4>	<4,6>
			<6,4>	null
			<4,5>	<5,4>
			<4,6>	<6,4>

Euler Tour				Result	
Thứ tự	Cạnh	Giá trị	Suffix_sum	V	p(v)
1	<4,3>	1	10	1	3
2	<3,2>	1	9	2	3
3	<2,3>	1	8	3	4
4	<3,1>	1	7	4	4
5	<1,3>	1	6	5	4
6	<3,4>	1	5	6	4
7	<4,5>	1	4		
8	<5,4>	1	3		
9	<4,6> <6,4>	1	2		
10	<6,4>	1	1		

10.2.2 Tree traversing problem

- Let T = (V,E) be a tree with root node r.
- 3 ways to traverse a binary tree:
 - Pre-Order.
 - In-Order.
 - Post-Order

Approach

Euler	Tour	Tree		
Thứ tự	Cạnh	V	p(v)	
1	<1,2>	1	1	
2	<1,2> <2,4>	2	1	
3	<4,2>	3	1	
4	<2,5>	4	2	
5	<2,5> <5,2>	5	2	
6	<2,1>	6	3	
7	<1,3>	7	3	
8	<3,6>			
9	<6,3>			
10	<3,7>			
11	<7,3>			
12	<3,1>			

Post-Order

- Set up the Euler cycle on the T tree.
- With root r, identifying the rooted-directed tree (with \forall v identify p(v) as the father of v).
- Set the weight to the edges:
- $w(\langle v, p(v) \rangle) = 1 \& w(\langle p(v), v \rangle) = 0.$
- For each <u,v>, determine suffix_sum for <u,v>. It is called S(<u,v>)
- Traversing position of node v is: |V| $S(\langle v,p(v)\rangle)$.
- Finally traversing the root node r.

Post-Order

Euler Tour				Tree	
Thứ tự	Cạnh	Giá trị	Suffix_sum	\mathbf{V}	p(v)
1	<1,2>	0	6	1	1
2	<2,4>	0	6	2	1
3	<2,4> <4,2> <2,5>	1	6	3	1
4	<2,5>	0	5	4	2
5	<5,2>	1	5	5	2
6	<2,1>	1	4	6	3
7	<1,3>	0	3	7	3
8	<3,6>	0	3		
9	<6,3>	1	3		
10	<3,7>	0	2		
11	<5,2> <5,2> <2,1> <1,3> <1,3> <3,6> <6,3> <3,7> <7,3>	1	2		
12	<3,1>	1	1		

Post-Order

- Position of vertexes :
 - $S(<2,1>) = 4 \rightarrow Position(2) = 7 4 = 3.$
 - $S(<3,1>) = 1 \rightarrow Position(3) = 7 1 = 6.$
 - $S(<4,2>) = 6 \rightarrow Position(4) = 7 6 = 1.$
 - $S(<5,2>) = 5 \rightarrow Position(5) = 7 5 = 2.$
 - $S(<6,3>) = 3 \rightarrow Position(6) = 7 3 = 4.$
 - $S(<7,3>) = 2 \rightarrow Position(7) = 7 2 = 5.$
- The traversing order is:
 - $[4 \rightarrow 5 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 3 \rightarrow 1]$

Pre-Order

- Set up the Euler cycle on the T tree.
- With root r, identifying the rooted-directed tree (with \forall v, identifying p(v) as father of v).
- Set the weight to the edges:
- $w(\langle v, p(v) \rangle) = 0 \& w(\langle p(v), v \rangle) = 1.$
- For each <u,v>, determining suffix_sum for <u,v>. It is called S(<u,v>)
- Traversing position v is: |V| S(<p(v),v>).
- We traverse root node first.

Pre-Order

Euler Tour				Tree	
Thứ tự	Cạnh	Giá trị	Suffix_sum	\mathbf{V}	p(v)
1	<1,2>	1	6	1	1
2	<2,4>	1	5	2	1
3	<2,4> <4,2>	0	4	3	1
4	<2,5> <5,2> <2,1>	1	4	4	2
5	<5,2>	0	3	5	2
6	<2,1>	0	3	6	3
7	<1,3>	1	3	7	3
8	<3,6>	1	2		
9	<6,3>	0	1		
10	<3,7>	1	1		
11	<1,3> <1,3> <3,6> <6,3> <3,7> <7,3> <7,3> <3,1>	0	0		
12	<3,1>	0	0		

Pre-Order

- Position of vertexes as follows:
 - $S(<1,2>) = 6 \rightarrow Position(2) = 7 6 = 1.$
 - $S(<1,3>) = 3 \rightarrow Position(3) = 7 3 = 4.$
 - $S(<2,4>) = 5 \rightarrow Position(4) = 7 5 = 2$.
 - $S(<2,5>) = 4 \rightarrow Position(5) = 7 4 = 3$.
 - $S(<3,6>) = 2 \rightarrow Position(6) = 7 2 = 5$.
 - $S(<3,7>) = 1 \rightarrow Position(7) = 7 1 = 6.$
- The traversing order is:
 - $[1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6 \rightarrow 7]$

A different approach

- For the binary tree:
 - Each v node is considered to be 3 child nodes: v[a], v[b], v[c].
 - Rules of the node [a]:
 - If v has a left child that is u, then: $v[a] \rightarrow u[a]$.
 - If v does not have left child: $v[a] \rightarrow v[b]$.
 - Rules of the node [b]:
 - If v have a right child that is u, then: $v[b] \rightarrow u[a]$.
 - If v does not have right child: $v[b] \rightarrow v[c]$.
 - Rules of the node [c]:
 - If v is u's left child, then: $v[c] \rightarrow u[b]$.
 - If v is u's right child,: $v[c] \rightarrow u[c]$.
 - If v is the root node: $v[c] \rightarrow NULL$.

Illustration

- Look at the tree as pictured on the side. Each node is presented by a set of 3 child nodes A, B, C
- Assigning the appropriate values A,B,C to problems:
 - Traversing trees
 - Calculate height, number of child nodes, ...

Euler cycle and Linked List

 $1[A] \rightarrow 2[A] \rightarrow 4[A] \rightarrow 4[B] \rightarrow 4[C] \rightarrow 2[B] \rightarrow 5[A] \rightarrow 5[B] \rightarrow 5[C] \rightarrow 2[C] \rightarrow 1[B] \rightarrow 3[A] \rightarrow 6[A] \rightarrow 6[B] \rightarrow 6[C] \rightarrow 3[B] \rightarrow 3[C] \rightarrow 1[C] \rightarrow \bullet(NULL)$

PreOrder: A = 1, B = 0, C = 0.

Calculate the Suffix-Sum of the List.

PreOrder's order

- Node's traversing order v: |V| v[A] + 1.
 - $1[A] = 6 \rightarrow Position(1) = 6 6 + 1 = 1.$
 - $2[A] = 5 \rightarrow Position(2) = 6 5 + 1 = 2.$
 - $3[A] = 2 \rightarrow Position(3) = 6 2 + 1 = 5.$
 - $4[A] = 4 \rightarrow Position(4) = 6 4 + 1 = 3$.
 - $5[A] = 3 \rightarrow Position(5) = 6 3 + 1 = 4.$
 - $6[A] = 1 \rightarrow Position(6) = 6 1 + 1 = 6$.
- The traversing order is: $[1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6]$

InOrder: A = 0, B = 1, C = 0.

Calculate the Suffix-Sum of the List

InOrder's order

- Node's traversing order v: |V| v[B] + 1.
 - $1[B] = 3 \rightarrow Position(1) = 6 3 + 1 = 4.$
 - $2[B] = 5 \rightarrow Position(2) = 6 5 + 1 = 2$.
 - $3[B] = 1 \rightarrow Position(3) = 6 1 + 1 = 6.$
 - $4[B] = 6 \rightarrow Position(4) = 6 6 + 1 = 1.$
 - $5[B] = 4 \rightarrow Position(5) = 6 4 + 1 = 3$.
 - $6[B] = 2 \rightarrow Position(6) = 6 2 + 1 = 5$.
- The traversing order is: $[4 \rightarrow 2 \rightarrow 5 \rightarrow 1 \rightarrow 6 \rightarrow 3]$

PostOrder: A = 0, B = 0, C = 1.

Calculate the Suffix-Sum of the List

PostOrder's order

- Node's traversing order v: |V| v[C] + 1.
 - $1[C] = 1 \rightarrow Position(1) = 6 1 + 1 = 6$.
 - $2[C] = 4 \rightarrow Position(2) = 6 4 + 1 = 3$.
 - $3[C] = 2 \rightarrow Position(3) = 6 2 + 1 = 5.$
 - $4[C] = 6 \rightarrow Position(4) = 6 6 + 1 = 1.$
 - $5[C] = 5 \rightarrow Position(5) = 6 5 + 1 = 2.$
 - $6[C] = 3 \rightarrow Position(6) = 6 3 + 1 = 4$.
- The traversing order is: $[4 \rightarrow 5 \rightarrow 2 \rightarrow 6 \rightarrow 3 \rightarrow 1]$

Depth(v): A = 1, B = 0, C = -1

Calculate the Suffix-Sum of the List

Specify the depth of nodes

- Depth of node v: abs(v[A])
 - $1[A] = 0 \rightarrow Depth(1) = 0.$
 - $2[A] = -1 \rightarrow Depth(2) = 1$.
 - $3[A] = -1 \rightarrow Depth(3) = 1$.
 - $4[A] = -2 \rightarrow Depth(4) = 2$.
 - $5[A] = -2 \rightarrow Depth(5) = 2$.
 - $6[A] = -2 \rightarrow Depth(6) = 2$.
- Node's Height: Height(v) = H Depth(v) where H = max { Depth(v)}.

Determining the size of the tree with the root v

• For all v, specifying the number of nodes in the subtree that consider v as the root. Set A = 0, B = 0, C = 1.

Determining the size of the tree with the root v

• Calculate the Suffix-sum of the list based on the Euler cycle

Determine the size of the tree with the root v

- Size(v) = v[A] V[C] + 1.
 - Size(1) = 6 1 + 1 = 6.
 - Size(2) = 6 4 + 1 = 3.
 - Size(3) = 3 2 + 1 = 2.
 - Size(4) = 6 6 + 1 = 1.
 - Size(5) = 5 5 + 1 = 1.
 - Size(6) = 3 3 + 1 = 1.

Euler cycle for general tree

- Consider node v. Supposing {v1, v2, .., vm} are the children of v from left to right.
- Node v is presented by m+1 child nodes:
 - v[A]: the entrance point of v in the Euler cycle.
 - v[C]: point out of v in euler cycle.
 - $v[B_k]$: connect to the child nodes of v_{k+1} . (k = 1..m-1)
- If v is a leaf node or has only 1 child, v is still presented by v[A], v[B], v[C].

Node's connecting rules

• Rules for A:

- If v has an outer-left child v_1 then v[A] connected to $v_1[A]$.
- If v does not have children, then v[A] connects to v[B].

• Rules for B:

- If v is the leaf node, then v[B] connects to v[C].
- If v has child nodes $\{v_1, v_2, ..., v_m\}$ then $v[B_k]$ connected to $v_{k+1}[A]$ with k = 1..m-1.

• Rules for C:

- If v is the outer-right child of u then v[C] connects to u[C].
- If v is the k-child of u then v[C] connects to $u[B_k]$.
- If v is the root, then v[C] connects to NULL.

Illustration

Problems with the general tree

- Traversing problem:
 - No Inorder concept.
 - PreOrder and PostOrder's traversing are based on the A input node A and output node C. Values $B_k = 0$.
 - Preorder : A = 1; C = 0.
 - Postorder: A = 0; C = 1.
- Depth problem: A = 1; C = -1.
- Sub-tree size problem: A = 0; C = 1.

PreOrder: A = 1, $B_k = 0$, C = 0

PreOrder: A = 1, $B_k = 0$, C = 0

10.2.3 Tree Contraction

- For a binary tree. Let's reduce a main tree to a smaller tree consisting of 1 root and 2 child nodes.
- For example, the example shortens 3 nodes to 2 nodes:

- Tree T = (V,E) is a binary tree with root r:
 - p(v) is the parent node of v on the T tree.
 - sib(v) is the brother node of v: being the child of the same parent node. (sib = sibling).
- RAKE operation for leaf node v: $p(v) \neq r$
 - Delete nodes v, p(v) on the T tree.
 - Connect sib(v) to p(p(v)) on the T tree.

• RAKE operation - reduce the leaf nodes:

- Problems arises:
 - The RAKE can't be performed with the leaf node connected to the root.
 - All leaves cannot be excluded by a RAKE operation in parallel?
 - \rightarrow it works only on the leaves that their fathers do not adjacent to each other.
 - For example, nodes of 1, 8, 9 cannot be RAKE together.

• Solution:

- Each parent node must store information about its left child and its right child nodes.
- Highlight leaf nodes in the order from 1..n
- Consider nodes with odd index:
 - The nodes are the left child, and their fathers won't be together. It is called as Group 1.
 - The same with the right-child nodes. It is called as Group 2.
- > implemented in parallel on each group in turn will ensure that RAKE operation's condition is not violated.

Algorithm steps

- S1. Marking the leaf nodes in order from 1..n to save to array Z, except for 2 leaf nodes located on the left, on the right end.
- Repeat:
 - S2. Performing RAKE with Z[k] nodes if k is odd and the node must be left child.
 - S3. Performing RAKE with Z[k] nodes with remaining odd-values k.
 - S4. Assign Z = set of Z[k] if k is even.
- Until there are 3 nodes left, then the algorithm stops.

Detailed steps

- Solving step 1 of the algorithm:
 - Given tree T = (V,E).
 - Numbering the leaves from left to right (except for leftend/right-end nodes) in order from 1...n.
- Solution:
 - Using Euler cycle.
- Illustration with binary tree (each node has exactly 2 sub-nodes).

Order leaves from left to right

Defining leaf nodes

- Building the Euler cycle on tree.
- At each node v : v[A] = 0; v[B] = 0; v[C] = 1.
- Calculate the Suffix-Sum for nodes on the list generated from the Euler cycle.
- Leaf node has following characteristics: suffix-sum values at its child nodes are equal: v[A] = v[B] = v[C].
- From the picture, we have the leaves as follows:

[HQSMEJNTPG]

Set the order for the leaves

- Set A = 1, B = 0, C = 0.
- Calculate the Suffix-sum for nodes on the list generated from the Euler cycle.
- Order of the leaves sorted from right to left through value v[A]
- Node can be numbered left-to-right using formula: |number of leaves| v[A] + 1.
- Store the leaves except for the leaf on the left end and for the leaf on the right end in array Z[1..n].

Assigning the order of leaves from left to right

Tree Contraction (Step 1.1)

RAKE : Z[1], Z[5], Z[7]

Tree Contraction (Step 1.2)

Tree Contraction (Steps 1.3-2.1)

Z = Z[k] with k is even

RAKE: Z[3]

Tree Contraction (Steps 2.2-2.3)

RAKE : Z[1]

Z = Z[k] with k is even

Tree Contraction (steps 3.1-3.2)

Assign: Z = Z[k] with even

RAKE : *Z*[1]

10.3 Write parallel tree-based programs

Write parallel tree-based programs

- Choose a tree-based algorithm
- Write a program implemented the chosen algorithm
- Run the program in a cluster consisting at least 2 connected linux-based computers.
- Evaluating the performance of the algorithm

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

