

Data Structures & Algorithms

QUICK SORT AND AVERAGE TIME COMPLEXITY

Some way with the sound of the

Outline

4.1 Basic Quick Sort

4.2 Analysis of Quick Sort

4.3 Improving Quick Sort with Medians

4.1 Basic Quick Sort

QUICK SORT

- Two $O(n \log n)$ sorting algorithms:
 - Merge sort which is faster but requires more memory
 - Heap sort which allows in-place sorting (will learn later!)
- We will now look at a recursive algorithm which may be done almost in place and usually faster than heap sort
 - Use an object in the array (a pivot) to divide the two
 - Average case: $O(n \log n)$ time and $O(\log n)$ memory
 - Worst case: $O(n^2)$ time and O(n) memory

Quicksort: Idea

1) Select: pick an element

2) Divide: rearrange elements so that x goes to its final position E

3) Conquer: recursively sort

Quicksort

• For example, given an unsorted array:

• We can select the last entry, 4, and sort the remaining entries into two groups, those less than 4 and those greater than 4:

2	1	3	4	7	5	6	8
---	---	---	---	---	---	---	---

- Note that 4 is now in the correct location once the list is sorted
 - Proceed by applying the algorithm to the first 3 and last
 4 entries

A Basic Implementation - PARTITION

Partition: example

Initial I	72	6	57	88	85	42	83	73	48	60 r
Pass 1	72 I	6	57	88	85	42	83	73	48 r	60
Swap 1	48 	6	57	88	85	42	83	73	72 r	60
Pass 2	48	6	57	88 I	85	42 r	83	73	72	60
Swap 2	48	6	57	42 I	85	88 r	83	73	72	60
Pass 3	48	6	57	42	85 I,r	88	83	73	72	60

A Simple Implementation – PARTITION

• PARTITION (A, p, r) $x \leftarrow A[r]$ $i \leftarrow p-1$ **FOR** $j \leftarrow p$ **TO** r-1 IF $A[j] \le x$ // comp::prior(A[j], x) THEN $i \leftarrow i + 1$ exchange $A[i] \square A[j]$ exchange A[i+1] A[r]RETURN i+1

A Simple Implementation – PARTITION

```
PARTITION (A, p, r) //A[p..r]

1  x \leftarrow A[r] //the rightmost element as pivot

2  i \leftarrow p-1

3 for j \leftarrow p to r-1 Running time = O(n)

4  do if A[j] \le x for n elements

5  then i \leftarrow i+1

6  exchange A[i+1] \leftrightarrow A[r]

7 exchange A[i+1] \leftrightarrow A[r]
```


A Simple Implementation – PARTITION

• The operation of Partition on the sample array. Lightly shaded array elements are all with values no greater than x (the pivot). Heavily shaded array elements are all with values greater than x.

Main Procedure – QUICKSORT

• QUICKSORT (A, p, r)

```
IF p < r
THEN q \leftarrow PARTITION (A, p, r)
QUICKSORT (A, p, q-1)
QUICKSORT (A, q+1, r)
```

• Initial call: QUICKSORT(A, 1, n)

4.2 Analysis of Quick Sort

Run-time Analysis

• In the best case, the list will be split into two approximately equal sub-lists, and thus, the run time could be very similar to that of merge sort: $\Theta(n \log n)$

Recursive Tree of the Best Case

- A recursion tree for quick sort in which the partition always balances the two sides of the partition equally. The resulting running time is $\Theta(n \log n)$
- The question is: WHAT happens if we don't get that lucky?

Worst-case Scenario

• Suppose we choose the smallest element as our pivot and we try ordering a sorted list:

• Using 2, we partition the original list into

• We still have to sort a list of size n-1

- The run time is $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$
 - Thus, the run time drops from $\Theta(n \log n)$ to $\Theta(n^2)$

Recursive Tree of the Worst Case

• A recursion tree for quick sort in which the partition always puts only a single element on one side of the partition. The resulting running time is $\Theta(n^2)$

Average-case Scenario

- If we choose a random pivot, this will, on average, divide a set of n items into two sets of size $\frac{n}{4}$ and $\frac{3n}{4}$.
- 80 % of the time the width will have a ratio of 1:9 or better.

 90 % of the time the width will have a ratio of 1:19 or better.

Average-case Scenario (prove)

- 假设 $a_1 < \dots < a_k < \dots < a_n$,且 $perm(a_1, \dots, a_n)$ 表示n个元素的某个序列。因此,共有n! 种不同的序列,而 a_k ($1 \le k \le n$)在末尾的序列有(n-1)!,概率为 $\frac{1}{n}$ 。
- 考虑 a_k 出现在序列末尾,作为基准值划分的结果如下:

 $perm(a_1, ... a_{k-1}), a_k, perm(a_{k+1}, ..., a_n)$

划分比例(平衡性)=数量少的子数组长度/数量多的子数组长度

•
$$a_k$$
 划分出的数量少的子数组长度 =
$$\begin{cases} k-1, & \text{if } k \leq \frac{n}{2} \\ n-k, & \text{if } k > \frac{n}{2} \end{cases}$$

• 数量少的子数组的平均长度

Average-case Scenario (prove)

- 假设 $a_1 < \cdots < a_k < \cdots < a_n$,且 $perm(a_1, ..., a_n)$ 表示n个元素的某个序列。因此,共有n! 种不同的序列,而 a_k ($1 \le k \le n$)在末尾的序列有(n-1)!,概率为 $\frac{1}{n}$ 。
- 考虑 a_k 出现在序列末尾,作为基准值划分的结果如下:

$$perm(a_1, ... a_{k-1}), a_k, perm(a_{k+1}, ..., a_n)$$

如果每个元素被选为基准值的机会一样,则划分出的(数量少和数量多)两组的平均长度比为1:3

Q: 长度比不低于 1:9 的概率是多少?

A: 如果选 a_k $(k \in \left[\frac{n}{10}, \frac{9n}{10}\right])$ 为基准值,则长度比大于等于 1:9

A: 因此,概率 =
$$\frac{1}{n} * \left(\frac{9n}{10} - \frac{n}{10} \right) = 0.8$$

随机选择(或选择末尾)元素作为基准,80%以上的几率 划分出的两组长度比好于 1:9

• What if the split is always 1:9?

$$-T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

- What is the solution to this recurrence?

• A recursion tree for quick sort in which partition always produces a 1-to-9 split, yielding a running time of $\Theta(n \log n)$

• What if the split is always 1:9?

$$-T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

- Prove $T(n) = \Theta(n \log(n))$ by induction

$$-T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

Assume $T(n) \le cn \log(n)$ Then

$$T(n) \le \frac{9}{10} cn \log \left(\frac{9}{10}n\right) + \frac{1}{10} cn \log \left(\frac{1}{10}n\right) + dn$$

$$= \frac{9}{10} cn \log(n) + \frac{9}{10} cn \log \left(\frac{9}{10}\right) + \frac{1}{10} cn \log(n) + \frac{1}{10} cn \log \left(\frac{1}{10}\right) + dn$$

$$= cn \log(n) + \left(\frac{d}{d} + c \left[\frac{9}{10} \log \left(\frac{9}{10}\right) + \frac{1}{10} \log \left(\frac{1}{10}\right)\right]\right) n$$

$$\exists c > 0: d + c \left[\frac{9}{10} \log \left(\frac{9}{10} \right) + \frac{1}{10} \log \left(\frac{1}{10} \right) \right] \le 0$$

$$T(n) = O(n\log(n))$$

• Similarly, we can prove $T(n) = \Omega(n \log(n))$

4.3 Improving Quick Sort with Medians

Alternate Strategy

• Our goal is to choose the median element in the list as our pivot:

- Unfortunately, it's DIFFICULT to find
- Alternate strategy: take the median of a subset of entries
 - For example, take the median of the first, middle, and last entries

Choose the Median-of-Three

- It is difficult to find the median so consider another strategy:
 - -Choose the median of the first, middle, and last entries in the list
 - 80 38 95 84 99 10 79 44 26 87 96 12 43 81 3

• This will usually give a much better approximation of the actual median

Choose the Median-of-Three

• Sorting the elements based on 44 results in two sub-lists, each of which must be sorted (again, using quicksort)

• We select the 26 to partition the first sub-list:

and 81 to partition the second sub-list:

A Simple Implementation of Median

```
median(A, a, b, c)
1. if A[a] < A[b]
       then if A[b] < A[c]
3.
                then return b
             else if A[a] < A[c]
5.
                    then return c
6.
                 else
7.
                    return a
   else if A[c] < A[b]
9.
                then return b
10.
        else if A[a] < A[c]
11.
                then return c
12.
             else
13.
                return a
```

Choose the Median-of-Three

三数取中

```
median(A, a, b, c)
     if A[a] < A[b]
2.
         then if A[b] < A[c]
3.
                 then return b
4.
              else if A[a] < A[c]
5.
                     then return c
6.
                  else
7.
                      return a
8.
     else if A[c] < A[b]
9.
                 then return b
10.
      else if A[a] < A[c]
11.
                 then return c
12.
              else
13.
                 return a
```

Q: 设 $a_1 < \cdots < a_k < \cdots < a_n$,随机挑选元素, a_k 被选的概率为 $\frac{1}{n}$ 。但按三数取中法, a_k 被选着基准(pivot)的概率是多少?

A: a_k 成为基准(pivot)的条件:

• 上述1,2,3的顺序可以交换

A:
$$P(a_k \to pivot) = \frac{3!(k-1)(n-k)}{n(n-1)(n-2)}$$

Choose the Median-of-Three

- If we choose a random pivot, this will, on average, divide a set of n items into two sets of size $\frac{n}{4}$ and $\frac{3n}{4}$.
 - 90 % of the time the width will have a ratio of 1:19 or better.
- Choosing the median-of-three will, on average, divide the *n* items into two sets of size $\frac{5n}{16}$ and $\frac{11n}{16}$.
 - Median-of-three helps speed the algorithm
 - 90 % of the time the width will have a ratio of 1:6.388 or better.
- Further, we can apply insertion sort to sorting the small subarrays.

- First, we examine the first, middle, and last entries of the full list
- The span below will indicate which list we are currently sorting

```
pivot = 57 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49 24
```

- We select 57 to be our pivot
- We move 24 into the first location

```
pivot = 57
24 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49
```

- Starting at the 2nd and 2nd-last locations:
- we search forward till we find 70 > 57
- we search backward till we find 49 < 57

```
pivot = 57

24 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49
```

• We swap 70 and 49, placing them in order with respect to each other

We search forward until we find

97 > 57

We search backward until we find

16 < 57

• We swap 16 and 97 which are now in order with respect to each other

- We search forward till we find 63 > 57
- We search backward till we find 55 < 57

```
pivot = 57

24 49 16 38 63 21 85 68 76 9 81 36 55 79 74 85 97 61 77 70
```

• We swap 63 and 55

- We search forward till we find 85 > 57
- We search backward till we find 36 < 57

```
pivot = 57

24 49 16 38 55 21 85 68 76 9 81 36 63 79 74 85 97 61 77 70
```

• We swap 85 and 36, placing them in order with respect to each other

- We search forward until we find 68 > 57
- We search backward until we find 9 < 57

```
pivot = 57
24 49 16 38 55 21 36 68 76 9 81 85 63 79 74 85 97 61 77 70
```

• We swap **68** and **9**

```
pivot = 57

24 49 16 38 55 21 36 9 76 68 81 85 63 79 74 85 97 61 77 70
```

- We search forward until we find 76 > 57
- We search backward until we find 9 < 57
 - The indices are out of order, so we stop

```
pivot = 57
24 49 16 38 55 21 36 9 76 68 81 85 63 79 74 85 97 61 77 70
```

- We move the larger indexed item to the vacancy at the end of the array
- We fill the empty location with the pivot, 57
- The pivot is now in the correct location

- We will now recursively call quick sort on the first half of the list
- When we are finished, all entries < 57 will be sorted

• We examine the first, middle, and last elements of this sub list

```
pivot = 24 49 16 38 55 21 36 9 <mark>57</mark> 68 81 85 63 79 74 85 97 61 77 70 76
```

- We choose 24 to be our pivot
- We move 9 into the first location in this sub-list

```
pivot = 24

9 49 16 38 55 21 36 57 68 81 85 63 79 74 85 97 61 77 70 76
```

- We search forward till we find 49 > 24
- We search backward till we find 21 < 24

• We swap 49 and 21, placing them in order with respect to each other

- We search forward till we find 38 > 24
- We search backward till we find 16 < 24
- The indices are reversed, so we stop

- We move 38 to the vacant location and move the pivot 24 into the previous location of 38
- 24 is now in the correct location

• We will now recursively call quick sort on the left and right halves of those entries which are < 57

9 21 16 <mark>24</mark> 55 49 36 38 <mark>57</mark> 68 81 85 63 79 74 85 97 61 77 70 76

• The first partition has three entries, so we sort it using insertion sort

• The second partition also has only four entries, so again, we use insertion sort

• First we examine the first, middle, and last entries of the sub-list

- We choose 74 to be our pivot
- We move 76 to the vacancy left by 74

- We search forward till we find 81 > 74
- We search backward till we find 70 < 74

• We swap 70 and 84 placing them in order

- We search forward till we find 85 > 74
- We search backward till we find 61 < 74

```
pivot = 74

9 16 21 24 36 38 49 55 57 68 70 85 63 79 76 85 97 61 77 81
```

• We swap 85 and 61 placing them in order

- We search forward till we find 79 > 74
- We search backward till we find 63 < 74
- The indices are reversed, so we stop

```
pivot = 74

9 16 21 24 36 38 49 55 57 68 70 61 63 79 76 85 97 85 77 81
```

- We move 79 to the vacant location and move the pivot 74 into previous location of 79
- 74 is now in the correct location

- We sort the left sub-list first
- It has 4 elements, so we simply use insertion sort

• Having sorted the four elements, we focus on the remaining sub-list of seven entries

• To sort the next sub-list, we examine the first, middle, and last entries

- We select 79 as our pivot and move:
- 76 into the lowest position
- 85 into the highest position

- We search forward till we find 85 > 79
- We search backward till we find 77 < 79

• We swap 85 and 77, placing them in order

- We search forward till we find 97 > 79
- We search backward till we find 77 < 79
- The indices are reversed, so we stop

```
pivot = 79

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 77 97 85 85 81
```

- Finally, we move 97 to the vacant location and copy 79 into the appropriate location
- 79 is now in the correct location

- This splits the sub-list into two sub-lists of size 2 and 4
- We use insertion sort for the first sub-list

• We are left with one sub-list with four entries, so again, we use insertion sort

Sorting the last sub-list, we arrive at an ordered list

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 77 79 81 85 85 97

Run Time Summery

• To summarize all three $O(n \log n)$ algorithms

	Average Run Time	Worst-case Run Time	Average Memory	Worst-case Memory
Heap Sort	$O(n \log n)$		O (1)	
Merge Sort	$O(n \log n)$		$\mathbf{O}(n)$	
Quick Sort	$O(n \log n)$	$O(n^2)$	$O(\log n)$	$\mathbf{O}(n)$

《数据结构与算法》课程组重庆大学计算机学院

End of Section.