PATENT ABSTRACTS OF JAPAN

(11)Publication number: 02–113736 (43)Date of publication of application: 25.04.1990

(51)Int.Cl. H04B 10/08 H04B 10/24

(21)Application number: 63–267512 (71)Applicant: FUJITSU LTD (22)Date of filing: 24.10.1988 (72)Inventor: KUWANA ISAMU

(54) OPTICAL INTERRUPTION DETECTOR FOR BIDIRECTIONAL OPTICAL TRANSMITTER

PURPOSE: To surely detect the occurrence of a fault such as the disconnection of an optical fiber in an optical transmission line by providing a polarity inversion circuit inverting signal polarity to each of a transmission circuit and a reception circuit in one direction in the bidirection of transmission directions.

CONSTITUTION: When a fault such as the disconnection of the takes place in an optical transmission line 51, a transmission signal from a transmission circuit 52 is reflected fully at the disconnection point and reaches a reception circuit 57 of its own station, and since the arrived signal is inverted for the polarity by a polarity inversion circuit 54, the line is in the state of the code rule violation. Thus, the reception circuit 57 detects the occurrence of a fault immediately by the code rule violation to raise an alarm. Moreover, the reception circuit 53 detects the occurrence of a fault because of the interruption of the arrived signal from the transmission circuit 52. Thus, the disconnection of the line due to the occurrence of a fault in the optical fiber is surely detected by both the sender side and the receiver side.

⑩日本国特許庁(JP)

(n)特許出願公開

◎ 公開特許公報(A) 平2-113736

@Int. Cl. 5 H 04 B 10/08 10/24 総別記号 庁内整理番号 430公開 平成2年(1990)4月25日

8523-5K H 04 B

K

9/00 8523-5K (全5頁) 審査請求 未請求 請求項の数 1

の発明の名称 双方向光伝送装置の光断検出装置

> 顧 昭63-267512 創特

20H 順 昭63(1988)10月24日

神奈川県川崎市中原区上小田中1015番地 富士通株式会社 @発 明 者 么

神奈川県川崎市中原区上小田中1015番地 の出 願 人 富士通株式会社

外2名 @代理 人 弁理十 井桁 貞一

1. 公明の名称

双方向光伝送装置の光断検出装置

2. 特許請求の範囲

共通の光伝送路 (51) を用いて双方向に光伝 送を行う双方向光伝送装置において、

終五方向のうちの一方向側の送信回路 (52) および受信回路 (53) のそれぞれに信号の極性 を反転する極性反転回路 (54,55)を設けた ことを特徴とする双方向光伝送装置の光脈検用詞

3. 発明の詳細な説明

(用態)

共通の光伝送路を用いて双方向に光伝送を行う ガ 左向坐伝送装置における光斯検出回路に関し、 光伝送路でのファイバ切断などの障害発生を確

宝に除知することを目的とし、

双方向のうちの一方向側の送信回路および受信

国路のそれぞれに信号の極性を反転する模性反転 調路を設けたことを特徴とする。

(産業上の利用分野)

木登明は非道の光伝送路を用いて双方向に光伝 送を行う双方向光伝送装置における光樹検出回路 に関する。

かかる双方向光伝送装置の光斯検出回路は、光 ファイバの切断などの障害が生じた場合、自局送 信信号が切断点で全反射により自局側に使ってき ても、隣害豪生を確実に検知できることが必要と される。

(従来の技術)

従来の双方向光伝送装置の構成例が第3例に示 される。この装置は、局1'と局2'を1本の光 ファイバ3で結んで、この光ファイバ3に上り方 向と下り方向の双方の光信号を遵すことによって 双方向に光伝送を行えるようになっている。局 1 * 対き逆は解路13とまカプラ(来方面修結会 四) 1.4 と光受信回路 1.5 とを含み構成され、B 局2、は光送信刷路24と光カプラ25と光受信 回路26とを含み構成されている。

この双方向光伝送装置では、例えば局1'の光 送信回路13から送出された送信信号は光カブラ 14と光ファイバ3と光カプラ25とを介して局 2'の考受値回路26に受信される。また届2' 以の米は位同路ですから送出された単位号は果カ プラ25と光ファイバ3と光カプラし4を介して 局1'の光受信同路15に受信される。

(発明が解決しようとする課題)

従来の双方向光伝送装置の光晰検出回路は、光 ファイバ3が切断されるなどの顕書が生じた場合。 切断点によっては光断を抽出することができず、 設実アラームを発生できない。

例えば、第3図の光ファイバ3において×点で 光ファイバ切断が生じた場合。局1′の光送信回 路13から送出された光信号は、局2、局の光受 原御取り方に強減せず、すた風2′の光洗偿回路

2.4から送信された光信号は迢旛での全反射であ るので、主受信回路26は顕宝の全生を検知する ことができる。

ところが、局1'に関しては光送信回路13か ら送出された業値号は近端での全反射であるため、 局1 ′ 側に戻ってきて光受信回路15で受信され てしまう。この場合、光受信回路15は受信され た光信号が自局の信号であるのか相手局の信号で あるのか区別がつかないため、相手間からの信号 が途絶えているにもかかわらず。光ファイバ3で の障害発生を検知できず、アラームを発生できな いという状態になってしまう。

したがって未発用の目的は、主伝送路でのファ イバ切断などの顕実発生を確実に検知できるよう にすることにある。

[課題を解決するための手段]

第1図は本発明に係る原理ブロック図である。 例において、51は光ファイバ等の光伝送路、5 2と53は一方阿側の光通付路の送信回路と受信

3

回路、5.4と5.5は信号の極性を反転する極性反 転回路、56と5?は他方向側の光邊信路の送信 問題と提供開路である。

大急間に係る妻方向を長漢装置の光斯検出詞路 は、共通の光伝送路51を用いて双方向に光伝送 を行う双方向光伝送装置において、双方向のうち の一方向側の送信回路52および受信観路53の それぞれに信号の極性を短転する極性反転回路 5 4、55を設けるように構成される。

(4F M)

光ファイバ切断などの観書が発生していない正 常状態では、送信回路52からの送信信号は極性 反転開路54で信号の犠牲を反転された後に光フ ァイバ51を介して受信回路53に送出される。 ※世間数53では御事した信号の振性を振性反転 回路5.5で再び反転して受信する。この結果、送 四回路 5.2 からの送信信見は元の正しい属併で受 便回路53に受信され、正常な適信が行われる。

一方、光伝送路51に切断などの障害が生じた

場合、送信回路52からの送信信号はその切断点 で今反射して自局の受信回路57に到達すること となるが、この到途信号は極性反転前路 5.4 で極

性が反転されているため、符号則違反の状態にあ る。したがって受信細路57はこの符号削違反に よって書ちに設実の発生を検知してアラームを発 中することができる。また受信判略53も送信回 既ちりからの刑事信号が光斯となることにより難 寒の発生を検囲することができる。

これにより光ファイバでの障害発生による光断 を、送信側および受信側の双方において確実に接 知することが可能となる。

(事務例)

以下、図面を参照しつつ本発明の実施側を説明

本発明の一実施例としての双方向光伝送装置の ※断検出回路のブロック図が第2図に示される。 第2図において、局1と局2とは光ファイバ3で 針げれている

ß

助1の退級側減額は、CM 1 料等の返録館等を ユニボーラ符号に変換するC/U変換網路11. C/U変換網路11の助力信号を5ビットから6 ビットにコード波数する5 B G B コーダ12。 B G B コーダ12 の由力信号を電気/光変換する 光透磁器13、光透磁網路13からの影透磁 ラを乗ファイバ3に返出する先かブラ14を余み 株成された。

また場」の受信側到額は、先カプラ14を適ったほと物からの光気信信号を表が角気変換する光受信刷額。5、光受信削額の由力信号の機械を反
は (論理を反転)するインバータ16、インバータ16で機性反転された受信信号を6ビットから 5ビットにコード変換する586Bデコーダ17、 5B6Bデコーダ17の出力信号をユンボーラ替 分からCM1符号に変換するU/C変換器器18 写金会会構成された。

局2側の送信側回路および受信側回路も同様な 機能を持つ誘路で構成されている。すなわち送信 側回路はC/U変換回路21、5868コーダ2 2、5日6日或換解解21の出力信号の機能を反 転させるインバーク23。機構反転されたインバーク23の出力信号を高別、光表換する光送信期 第24、光カブラ25等を含み構成され、また受 信棚料路は光カブラ25、先受信用路26、5日 6日デコーダ27、U/C 成長開路28米を含み 構成されている。なお思るの受信用路にはインバークをは含まれている。なおない。

ここで5 B 6 B アコーダ 1 7 と 5 B 6 B アコー ダ 2 7 は受信信号に持ち刑違反などがあった場合 には、それにより生じる同期外れによって、その 符号問違反の発生を検加することができるうよう に構造されている。

この実施側装置の動作を以下に説明する。

美伝送路に解寄が生じていない正常状態では、 限えば局2の道は側隔路から遅出される近ば信号 はインバータ23で極端が反転された「反転」信 号となっており、これが見フィバ3を介して局 1の受信機関路に受信されると、インバータ10 であび機帯が反転されて元の機械反転のない信号

7

に戻され、それにより局2と周1間で正常な通信

が可能となっている。
いま光ファイバ3が切断される腱害が生じたものとすると、局2の送信側関路から送出された光
は尽は切断される違端であるため品1に到達しない

信号は切断点が遠端であるため局1に到達しない ので、局1の受信側回路は受信信号の断によって 障害の発生を検知してアラームを発生する。 ・・ホー局2から送出された光信号は、光ファイ

バ3の切断点で全反射し、切断点が近端であるため自局側に到達し、自局の受信側翻路に受信されることとなるが、この自局に戻ってくる信号は「反転」信号であるため符号削速度となり、5 B 6 B デコーグ 2 7 はこの符号削速度によって発生する同期外れを検出し、それにより光に返路での解客を検知してアラームを発生できる。

本発明の実施にあたっては様々の変形形態が可能である。例えば上述の実施例では信号の極性の 反転を電気信号の設備で行ったが、これに関いず、 信号の設備で行うことも可慮である。すなわち、 第2回の実施例を用いて説明すると、インバーク 8

23と16の代わりに、光遊信網幣24と光カブ ラ25の間に挿入される光インバータと、光カブ ラ14と光受信料除15の間に挿入される光イン バータとを用いて信号の様性反転を行うようにし てもよい。

(発明の効果)

本発明によれば、充伝送降でファイバ関係などの関告が全生し、その関告が主張分が自防側に 全反射されて自動物受情間落に戻されたとしても、 自動制を傾射器では表伝送路での関系の発生を防 線に検知してアラームを発生することが可能とな る。よって光伝送路での関名の発生を送信削およ び受信側の変方で確実に検知することが可能とな

4. 図面の簡単な説明

第1図は本発明に係る原理プロック図。

第2図は本発明の一実施例としての双方向光伝 送装置の光脈検出回路を示すプロック図、および

-245-

第3関は従来の双方向光伝送装置の構成例を示

すプロック図である。

図において.

1. 1' -- A E

2. 2' - B局

3 光ファイバ

1 1 . 2 1 ··· C M I / ユニポーラ符号変換回路

12.22 5 B 6 B 3 - 9

13.24 - 光送信回路

14.25…光カプラ

15.26 光受信回路

16.23 128-9

17. 27 - 5 B 6 B # 3 - 9

18, 28…ユニポーラ/CM J 符号変換回路

特許出願代理人 弁理士 井 桁 貞

本発明に係る原理プロック図

第 | 図

本発明の実施例

第2図

双方旬光伝送装置の従来例

第3図