Analiza datelor în R

Curs 7

Statistici de selecţie

Fie $X_1, X_2, ..., X_n$ variabile aleatoare independente, identic distribuite (i.i.d.). Definim:

- ► media de selecţie $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$
- ► dispersia de selecţie $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$

Principii generale

- Se formulează cu privire la parametrul sau parametrii de interes ai populaţiei o ipoteză nulă H₀ şi o ipoteză alternativă H_a;
- Pe baza datelor din eşantion se poate lua decizia nerespingerii lui H₀ sau a respingerii lui H₀, i.e., a acceptării lui H_a.
- ► P(resping H₀ | H₀ e adevărată) = α = nivelul de semnificaţie al testului
- ▶ $P(\text{nu resping } H_0 \mid H_0 \text{ e falsă}) = \beta$
- ▶ $1 \beta = P(\text{accept } H_a \mid H_a \text{ e adevărată}) = \text{puterea testului}$
- R. Fisher Lady tasting tea experiment

Principii generale

- Se alege o statistică test a cărei distribuţie este cunoscută când H₀ este adevărată şi se calculează valoarea ei pe datele din eşantion;
- Dacă probabilitatea de a obţine valori cel puţin "la fel de extreme" sub ipoteza nulă (**p-valoarea testului**) este foarte mică (mai mică decât α), vom respinge H₀ în favoarea lui H_a. În caz contrar, nu respingem H₀.

Este un test pentru media unei populații cu volum de eşantion mare (n > 30) sau distribuţie (aproximativ) normală şi volum de eşantion mic, cu dispersie necunoscută.

- ► $H_0: \mu = \mu_0$
- ► H_a : $\mu \neq \mu_0$ sau H_a : $\mu < \mu_0$ sau H_a : $\mu > \mu_0$
- ► Statistica test: $T = \frac{\overline{X} \mu_0}{\frac{S}{\sqrt{S}}}$

În ipoteza că H_0 e adevărată, $T \sim t(n-1)$.

- $t_{obs} = \frac{\overline{x} \mu_0}{\frac{s}{\sqrt{p}}}$
- ▶ Dacă p-valoarea corespunzătoare lui t_{obs} este $< \alpha$, se respinge H_0 ; în caz contrar, nu se respinge H_0 la nivelul de semnificatie ales.

 $H_a: \mu < \mu_0$

Regiunea critică: $(-\infty, t_{n-1;\alpha})$

 $H_a: \mu > \mu_0$

Regiunea critică: $(t_{n-1;1-\alpha},\infty)$

 H_a : $\mu \neq \mu_0$

Regiunea critică: $(-\infty,t_{n-1;\frac{\alpha}{2}}^{\mathsf{x}})\cup(t_{n-1;1-\frac{\alpha}{2}},\infty)$

```
În R: t.test(x, mu=mu0, alternative="two.sided"
/"less"/"greater")
```

Exemplu:

O fabrică producătoare de baterii susţine că durata medie de funcţionare a produselor sale este de 180 ore. Pentru verificare, se aleg la întâmplare şi se analizează 50 baterii. Duratele lor de funcţionare se găsesc în dataframe-ul *Battery* din *PASWR*, în variabila *facilityA*. Vom testa la nivelul de semnificaţie 0.05 cele susţinute de firmă.

Compararea mediilor a două populații

Pentru populaţii cu distribuţie aproximativ normală sau volum de eşantion mare:

- testul t pentru eşantioane independente
- testul t pentru eşantioane dependente (perechi)

În cazul populațiilor cu distribuție non-normală și eșantioane mici se folosesc teste neparametrice:

- ▶ eşantioane independente → testul Mann Whitney;
- ▶ eşantioane dependente (perechi) → testul Wilcoxon.

Testul t pentru două eșantioane independente

Se folosește pentru compararea mediilor a două populații independente cu distribuție aproximativ normală sau volume de eșantion suficient de mari.

- ► $H_0: \mu_1 \mu_2 = \mu_0$
- ► $H_a: \mu_1 \mu_2 \neq \mu_0$ sau $H_a: \mu_1 \mu_2 < \mu_0$ sau $H_a: \mu_1 \mu_2 > \mu_0$
- Statistica test: $T = \frac{(\overline{X}_1 \overline{X}_2) \mu_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$

În ipoteza că H_0 e adevărată, T are distribuţie t (Welch)

►
$$t_{obs} = \frac{(\overline{X}_1 - \overline{X}_2) - \mu_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 Dacă p-valoarea corespunzătoare lui t_{obs} este < α, se respinge H₀; altfel, nu se respinge H₀ la nivelul de semnificație ales.

Testul t pentru două eşantioane independente

```
În R:t.test(x, y, mu=mu0, alternative="two.sided"
/"less"/"greater")
```

Exemplu:

Pentru setul de date mtcars din datasets, vom testa la nivelul de semnificaţie 0.05 ipoteza că maşinile cu transmisie manuală (am=0) sunt mai puţin eficiente decât cele cu transmisie automată (am=1) în privinţa consumului.

Testul t pentru două eşantioane dependente (perechi)

Se folosește pentru compararea mediilor a două populații cu distribuție aproximativ normală sau volume de eșantion suficient de mari, în cazul în care acestea constituie observații repetate sau perechi.

- ► $H_0: \mu_1 \mu_2 = \mu_0$
- ► $H_a: \mu_1 \mu_2 \neq \mu_0$ sau $H_a: \mu_1 \mu_2 < \mu_0$ sau $H_a: \mu_1 \mu_2 > \mu_0$
- ▶ Se consideră $D_i = X_i Y_i$, $i = \overline{1, n}$. Atunci D_i sunt i.i.d. şi

$$\mu_1 - \mu_2 = \mu_0 \Leftrightarrow \mu_D = \mu_0.$$

→ se poate utiliza testul t pentru un singur eşantion reprezentând mulţimea diferenţelor din perechile de observaţii.

Testul t pentru două eşantioane dependente (perechi)

În R: t.test(x, y, mu=mu0, alternative="two.sided"
/"less"/"greater", paired=TRUE)

Exemplu:

O dietă este promovată ca fiind capabilă să reducă în mod considerabil nivelul de glucoză din sânge. Zece pacienţi diabetici sunt aleşi aleator şi puşi să urmeze dieta o lună, şi rezultatele lor sunt prezentate mai jos.

înainte	268	225	252	192	307	228	246	298	231	185
după	106	236	253	110	203	101	211	176	194	203

Verificăm la nivelul de semnificație 0.05 dacă există suficiente dovezi care să susțină eficiența dietei la pacienții diabetici.

Testele Wilcoxon și Mann-Whitney

Date două populații X și Y, testele Wilcoxon și Mann-Whitney se folosesc pentru a verifica ipoteza

$$H_0: P(X < Y) = \frac{1}{2}$$
 (valorile din cele două grupuri sunt similare)

cu una dintre alternativele

►
$$P(X < Y) \neq \frac{1}{2}$$

►
$$P(X < Y) < \frac{1}{2}$$

►
$$P(X < Y) < \frac{1}{2}$$

► $P(X < Y) > \frac{1}{2}$.

Testele Wilcoxon și Mann-Whitney se pot folosi și pentru date ordinale.

În R:

Testele Wilcoxon şi Mann-Whitney

Exemplu:

Se planifică un studiu pilot care să testeze eficienţa administrării de suplimente de vitamina E pentru prevenirea bolii Alzheimer. 20 subiecţi cu vârste peste 65 ani sunt repartizaţi aleator în două grupuri. Primul grup (10 persoane) primeşte 400 Ul/zi vitamina E, iar grupul al doilea primeşte un tratament placebo. Se înregistrează nivelul iniţial de vitamina E în fiecare grup, obţinându-se valorile:

Grup 1: 7.5, 12.6, 3.8, 20.2, 6.8, 403.3, 2.9, 7.2, 10.5, 205.4 Grup 2: 8.2, 13.3, 102.0, 12.7, 6.3, 4.8, 19.5, 8.3, 407.1, 10.2 Analizăm dacă există diferențe între grupuri la momentul iniţial.