EPSRC Vacation Scheme: Week 1 Review

Matthew Knowles

Department of Mathematics University of York mk1320@york.ac.uk

26th July 2021

1 / 11

Goals of last week

Implement 'by eye' algorithm for finding convex hull of piecewise linear functions.

Goals of last week

- Implement 'by eye' algorithm for finding convex hull of piecewise linear functions.
- 2 Look around in literature to see what I could find.

Task 1 Progress

• Wrote this in roughly 60 lines of code

Task 1 Progress

- Wrote this in roughly 60 lines of code
- Tested on a few test datasets. Here are those results

Task 1 Progress

- Wrote this in roughly 60 lines of code
- Tested on a few test datasets. Here are those results
- You will notice that they are not perfect

First test

Slightly larger test

Test with 100 data points

Test with 200 data points

• Notice how the function it computes isn't entirely convex

- Notice how the function it computes isn't entirely convex
- Can remove this issue by recursively running through the hull

- Notice how the function it computes isn't entirely convex
- Can remove this issue by recursively running through the hull
- issue: this is going to get increasingly slower and slower

- Notice how the function it computes isn't entirely convex
- Can remove this issue by recursively running through the hull
- issue: this is going to get increasingly slower and slower
- Solution? Try another algo!

Monotone Chain

• The Monotone Chain Algorithm runs in $\mathcal{O}(n \log n)$ time

Monotone Chain

- The Monotone Chain Algorithm runs in $\mathcal{O}(n \log n)$ time
- Usually runs a sub-routine on upper and lower part of the set, we are only interested in the lower part however

9 / 11

Monotone Chain

- The Monotone Chain Algorithm runs in $\mathcal{O}(n \log n)$ time
- Usually runs a sub-routine on upper and lower part of the set, we are only interested in the lower part however
- Only looking at one hull reduces to $\mathcal{O}(n)$ complexity

Any Questions?