ESCUELA POLITÉCNICA NACIONAL FACULTAD DE ELÉCTRICA Y ELECTRÓNICA REDES DE COMUNICACIONES ÓPTICAS

TALLER #8

INTEGRANTES:

- Ronaldo Almachi
- Francisco Salazar

TEMA: Diseño y simulación de una red SDH

PERIÓDO: 2021-A

Contenido

Equipos multiplexores SDH comerciales	3
Multiplexor TN1U STM-1	
Multiplexor STM-1 STM-4 SDH/MSTP, STM-16 multiservicio	
Equipos multiplexores/demultiplexores SDH comerciales	
CWDM Mux-Demux de 8 canales, 1470-1610nm, con Monitor y puerto de expansión, LC/UPC, fibra Dual, baja pérdida de inserción.	
Diseño y simulación de una Red SDH.	7
Cálculo del presupuesto de enlace	7

Equipos multiplexores SDH comerciales

Multiplexor TN1U STM-1

Fig. 1. Comunicaciones - Multiplexor TN1U SDH. [1]

El Multiplexor SDH TN1U es un nodo de nivel STM-1 con capacidad integrada de transporte y acceso. Ofreciendo las ventajas propias del SDH – interoperabilidad, supervivencia y monitoreo de la calidad de funcionamiento – extiende estos beneficios hasta la interfaz al usuario mediante sincronización total hasta el nivel básico de 64 kbps, permitiendo simple extracción e inserción de canales para proveer los servicios requeridos en cada nodo de la red. [1]

Características: [1]

- Combina bajo plataforma única las funciones de interfaz óptica del agregado de línea, la multiplexación de canales y tributarias, y las interfaces de servicios al usuario.
- Proporciona un Sistema de Gestión integrado con visibilidad total de la red de nodos, con capacidad de configuración remota, incluyendo hasta el nivel de canal básico (64 kbps), minimizando tiempos y gastos de mantenimiento asociados
- Soporta arquitecturas punto a punto, lineales y anulares de extracción e inserción, y combinaciones con múltiples anillos
- Software y Firmware común soporta todas las configuraciones, simplificando la operación y mantenimiento
- Fácil crecimiento de la red adicionando nuevos servicios y/ó nodos, sin interrupción del tráfico existente
- Interoperable con elementos de redes de tecnología SDH de nivel jerárquico superior

Tabla 1. Especificaciones técnicas del Multiplexor SDH TN1U. [1]

Especificaciones técnicas	Parámetros
Interfaz Optica (STM-1)	Conector: FCPC
_	Tipo de fibra: Monomodo
	Longitud de onda: 1300 nm ó 1550 nm
	Fuente óptica: díodo Laser
	Ganancia de sistema (Monomodo)
	@ 1300 nm : 28 dB
	@ 1550 nm : 33 dB
Capacidad (STM-1)	Velocidad de transmisión: 155.52 Mb/s
	Código: NRZ
Configuraciones soportadas	Anillos conmutados de trayecto dedicado (DPRing)
	Sistemas lineales a 2 fibras
	Anillos con derivaciones radiales
	Anillos múltiples interconectados sincrónicamente
Sistema de Gestión	Basado sobre plataforma Windows, provee total gestión de
	red TN1U, desde cualquier elemento de red (nodo)
	Visibilidad remota completa de cada nodo, con capacidad de monitoreo y configuración
	Diagnóstico: motor de alarmas con registro secuencial
	fecha/hora
	Gestión de averías y calidad de desempeño
	Permite acceso simultáneo desde dos ó más nodos de la red
Canal de servicio orderwire	Canal de voz en banda de 64 kbps, transportado en el encabezado STM-1

Alimentación	24V, 48V, 130VCC 115V, 230VCA
Bajo consumo de energía	10W equipo común (por nodo) (consumo de tarjetas de aplicación se indica en hoja técnica respectiva)
Datos baja velocidad	Interfaz V.24/V.28, RS232, asincrónico, para cuatro señales de 9.6 kb/s, y submúltiplos, dos de 19.2 kb/s ó una de 38.4 kb/s
Datos alta velocidad	Interfaces V.11/RS422, V.35, G.703, 56 kb/s ó 64 kb/s sincrónico, asincrónico
Datos Nx64 kb/s	Interfaz eléctrica V.35 sincrónico, N=1 a 12 Datos Nx64 kb/s: interfaz óptica para relevadores de protecciones, IEEE C37.94
Interfaz E1 (PDH)	Cuatro circuitos E1 G.703 de 2.048 Mb/s (75Ω ó 120Ω
LAN Ethernet	Interfaz Ethernet en 10 Mb/s y 100 Mb/s, tipo "Learning Bridge", norma IEEE 802.3
Interfaz FDM	Transporte de señales analógicas de banda ancha FDM (Frequency Division Multiplex), para un supergrupo de 60 canales (SG 1-10)

Multiplexor STM-1 STM-4 SDH/MSTP, STM-16 multiservicio

Multiplexor baudicom multiservicio SDH/MSTPEs de clase portadora, rentable, compacta (solo 3U alta), STM-1/STM-4/STM-16 SDH/MSTP que es diseñado para aplicaciones en metro y redes de acceso para facilitar el transporte eficiente del TDM tradicional y el tráfico de datos emergente para los proveedores de servicios. Es un equipo SDH compacto basado en tarjetas, diseñado principalmente como un nodo de entrada entre la red SDH central y una serie de cajas CPE remotas. [2]

Fig. 2. Multiplexor STM-1 STM-4 SDH/MSTP, STM-16 multiservicio. [2]

Características: [2]

- Admite hasta STM-1/STM-4/STM-16
- SDH/PDH/PCM integrado
- Gran Cruz-Conectar matriz capacidad es de 96*96 de alto orden VC-4 conexión Cruz o 2016 de 2016 VC-12 o 96*96 VC-3 nivel la conexión Cruz
- Soporte 1 + 1 MSP, protección SNCP
- Gestión de canal puede ser DCC/E1/VC12
- Modo de cierre compatible: reloj interno/reloj externo/reloj de línea/reloj de seguridad
- Servicio Ethernet compatible con encapsulación GFP, concatenación virtual VC12 y LCAS, VLAN P y VLAN 801.1Q
- E1 BER tester es integrado
- Apoyo a 110 Ethernet sobre 8 * E1 (EoPDH o EoE) Control Remoto CPEs
- Apoyo a 756 Ethernet sobre 1 * E1 (EoPDH o EoE) Control Remoto CPEs
- Soporta hasta 110 Ethernet MÁS DE VC-12 CPEs remotos (EoSDH o EoS)

Tabla 2. Especificaciones técnicas del Multiplexor STM-1 STM-4 SDH/MSTP, STM-16 multiservicio. [2]

ÍNDICE		Parámetro de rendimiento			
Max	STM-1	4 agregación + 28 interfaces ópticas tributarias STM-			
		1			
	STM-4	4 agregación + 4 interfaces ópticas tributarias STM-4,			
		SFP			
	STM-16	4 interfaz de agregación STM-16, SFP			
	Conector	SC/PC o FC/PC o SFP			
	Especificación	S-1.1 S1.2 L-1.1 L-1.2 S4.1 S4.2 L4.1			
*		L4.2 S16.1 S16.2 L16.1 L16.2			
		Interfaz bidireccional de fibra única que puede ser			
		compatible opcionalmente			
PDH	Max E1	336 E1			
interfaz	Max E3/DS3	14 E3/DS3			
Ethernet	Interfaz	10/100Base-Tx o 100Base-Tx, cumple con IEEE			
		802,3			
	Max FE/FX de interfaz	56 Puertos FE (soporte para tarjetas 14 FE01 o FE02)			
	La encapsulación	Cumplir con ITU-T G.7041 (VCAT GFP ECV)			
	GE (eléctrico/óptico)	14 puertos GE (14 GX01A/GX02A)			
V.35	Max interfaz	28 V.35 interfaces (enmarcadas o sin enmarcar)			
		DCE/DTE			
PCM	Max interfaz de voz	140 FXO/60 FXS/140 4 W/60 teléfono magnético/60			
		Línea Directa			
	Max interfaz asincrónica	224 RS-232/28 RS422/224 V.24/28 V.11			
Enlace STM-1		De alto orden 20 20 VC-4s			
Conectar la		Bajo orden 1260 de 1260 VC12s			
capacidad	Enlace STM-4	De alto orden 32 32 VC-4s			
		Bajo orden 2016 de 2016 VC-12s			
Enlace STM-16		De alto orden 96 96 VC-4s			
		Bajo orden 2016 de 2016 VC-12s			
DE	Interfaz	10/100 Base-T (se puede usar en cascada)			
GESTIÓN					
DE	1				
	uir siguiendo interfaz	Enchufe estándar RJ11			
	ensión Física (H/D/W)	3U: 136, 240, 440 (mm)			
Poder Suministro de		-48 V DC/~ 110 V AC/~ 220 V AC			
		De redundancia de alimentación de apoyo			
	El consumo de	= 100 W			
	Sistema de	Ventilador integrado			
	refrigeración —				
Medio ambie		0~50			
	La humedad	= 90% (sin condensación)			
	Peso	= 8 kg			

Equipos multiplexores/demultiplexores SDH comerciales

CWDM Mux-Demux de 8 canales, 1470-1610nm, con Monitor y puerto de expansión, LC/UPC, fibra Dual, baja pérdida de inserción.

Fig. 3. CWDM Mux-Demux de 8 canales.

GEZHI DWDM Passive Mux + Demux Duplex 8 canales con puerto gris 1310nm para transmisión de datos bidireccional a través de dos fibras. Los canales DWDM: C21, C22, C23, C24, C25, C26, C27 y 1310 / Banda WWDM: 1260-1360 nm para transceptores "grises" de 1310 nm. es totalmente neutral en cuanto a velocidad de datos o protocolo de línea: se puede utilizar con transceptores de colores que admitan aplicaciones como Ethernet 1G / 10G, SDH / SONET y Canal de fibra 8/4/2 / 1G. Es fácil de instalar, no requiere configuración ni mantenimiento.

El multiplexor de fibra dual DWDM, basado en la tecnología TFF (filtro de película delgada), permite organizar 8 flujos de datos de multiplexación por división de longitud de onda densa (DWDM) paralelos independientes de protocolo ITU-T G.694.1 sobre doble SMF. El equipo de canal dúplex DWDM de 8 canales se fabrica como un montaje en bastidor 1U de 19 ".

Características

- Protocolo y velocidad de datos neutrales
- Fácil instalación y expansión
- 8 flujos de datos CWDM sobre SMF doble
- Totalmente pasivo: sin fuente de alimentación ni refrigeración
- Aplicaciones
- Redes de largo recorrido
- Enrutamiento de longitud de onda
- Añadir / soltar canal
- Enlaces de fibra óptica CATV
- Sistemas densos de WDM

Tabla 3. Especificaciones técnicas del CWDM Mux-Demux de 8 canales.

Parámetro	Unidad	Mux + Demux pasivo DWDM		
Numero de canal		8 canales		
Operación longitud de onda	nm	C21 ~ C28		
Longitud de onda central del canal	nm	Cuadrícula ITU-T @DWDM		
Banda de paso del canal	nm	0,8 (100 Ghz)		
Pérdida de inserción @PB	dB	<2,8		
Aislamiento @ canal adyacente	dB	> 30		
Aislamiento en canal no adyacente	dB	> 40		
Aislamiento @ canal reflectante	dB	> 15		
Ondulación de la banda de paso	dB	<0,5		
Pérdida dependiente de la polarización	dB	<0,15		
Dispersión del modo de polarización	ps	<0,1		
Pérdida de directividad y retorno	dB	Directividad:> 50 Pérdida de retorno:> 45		
Manejo de poder	mW	<500		
Conector		LC / UPC		
Tipo de fibra		SMF-28e o personalizado		
Temperatura de funcionamiento	°C	-20 ~ +70		
Temperatura de almacenamiento	°C	-40 ~ +85		
Paquete	mm	Montaje en rack estándar de 19 "1U		

Diseño y simulación de una Red SDH.

Se tienen las siguientes instrucciones a realizar para el diseño y simulación de la Red SDH:

- Variar la capacidad del sistema y su alcance, el resto de los parámetros son de libre configuración
- Realizar el cálculo del presupuesto de enlace
- Realizar el análisis del diagrama de ojo, BER y OSNR para determinar la calidad del enlace.
- Variar los parámetros para obtener un máximo desempeño del sistema

Cálculo del presupuesto de enlace

Para el criterio de las pérdidas por empalmes se toma en cuenta un rollo de 2km comercial, por ello se coloca el criterio de las pérdidas por los dos tramos de fibra.

Potencia de transmisión:
$$P_{Tx}=10dBm$$

Atenuación total: $\alpha_{total}=\alpha_{empalmes}+\alpha_{conectores}+\alpha_{fibra}=(10*0.2)dB+(14*0.5)dB+\frac{(0.1*120km)dB}{km}=21~dB$
Ganancia del amplificador: $G=18~dBm$
Sensibilidad del receptor: $S_{Rx}=-16~dBm$

$$P_{Tx}-\alpha_{total}+G=S_{Rx}+M_{margen}$$

$$M_{margen}=P_{Tx}-\alpha_{total}+G-S_{Rx}$$

$$M_{margen} = 23 dBm$$

 $M_{margen} = 10dBm - 21dB + 18dB + 16dBm$

Tabla 4. Costo de los equipos y mano de obra para la realización del sistema FSO. [3] [4] [5] [6]

Equipos	Unidad	Precio \$	Total por producto
Rollo De Fibra Optica Drop 2km Sm 2 Hilos Plana G.657a2 Lszh	10	300	3000
FiberCablesDirect - Cable de conexión de fibra LC LC OS2	14	24.25	339.5
AnyAngle Duplex 9/125 Single mode Jumper Amarillo			
10dBm CATV 1550nm transmisor óptico modulación directa,	4	600	2400
10dBm láser transmisor			
CWDM Mux-Demux de 8 canales, 1470-1610nm, con Monitor y	2	1000	2000
puerto de expansión, LC/UPC, fibra Dual, baja pérdida de inserción			
Receptor óptico Huawei EG8141A5	4	100	400
F-EDFA-18 Erbium Doped Fiber Amplifier +18 dBm de Salida	1	1500	1500
Total			9639.5

Fig. 4 Esquema del enlace SDH propuesto

Fig. 5 Transmisor del enlace SDH

Fig. 6 Receptor del enlace SDH

Fig. 7 Fibra óptica usada en la implementación

Fig. 8 Multiplexación, demultiplexación y la etapa WDM Add and Drop

Resultados de la simulación

El valor más optimo alcanzado fue para un STM-16, es decir a una velocidad de 2.5Gbps

Fig. 9 Secuencia de datos original del transmisor 4

Fig. 10 Señal recuperada 4 en la mitad del enlace

Fig. 11 Diagrama de ojo de la señal 4

Fig. 12 Secuencia de bits del transmisor 1

Fig. 13 Secuencia de bits recuperada para el transmisor 1

Fig. 14 Diagrama de ojo de la señal 1

Fig. 15 Espectro óptico de la señal transmitida

Fig. 16 Espectro óptico de la señal recuperada

Fig. 17 OSNR de la señal recuperada

Resultados para un STM-4, velocidad de 622Mbps

Fig. 18 Secuencia de datos original y la señal recuperada del transmisor 1

Fig. 19 Diagrama de ojo de la señal 1

Fig. 20 Espectro óptico de la señal recuperada

Fig. 21 OSNR de señal recuperada

Resultados para un STM-64, velocidad de 10Gbps

Fig. 22 Secuencia de datos original y recuperada de la señal 1

Fig. 23 Diagrama de ojo para la señal 1

Fig. 24 Espectro óptico de la señal recuperada

Fig. 25 OSNR de la señal recuperada

Conclusiones

- El enlace SDH realizado trabaja bien a una tasa de transmisión de 2.5 Gbps y no a 10 Gbps, esto se debe a las configuraciones realizadas en transmisión que se adaptan de manera adecuada, también de los tramos de fibra por lo cual se debe hacer un análisis para conseguir optimizar de mejor manera el sistema para que trabaje a las velocidades que trabaja de manera estándar SDH.
- Se toma en cuenta en cuenta los elemento y sus pérdidas generando un margen de 23 dBm, lo cual es muy bueno y se esperar de manera general que el margen sea menor. Se buscan los equipos que se adapten de manera adecuada a las configuraciones realizadas con lo cual se podrían implementar en el enlace, obteniendo sin contar mano de obra un total de casi \$10000 lo cual es bueno ya que multiplexa cuatro señales.
- Para el sistema SDH propuesto el velocidad más óptima conseguida fue para un SMT-16, puesto que no se tiene ningún error aparente, esto se lo puede corroborar con el diagrama de ojo que es casi perfecto, además que el BER nos da un valor de 0, por lo que la transmisión de datos es ideal libre de errores, por otro lado si aumentamos la velocidad hasta un STM-16 se tiene algunos errores considerables a pesar de los resultados no son malos no se encuentran dentro de los estándares sugeridos para considerarse un buen enlace.
- El WDM Add and Drop nos ayuda substraer una longitud de onda específica, la cual en un ambiente práctico puede ser de mucha utilidad, esta no afecta a la señal multiplexada a pesar de que añade cierto ruido es casi despreciable.

Referencias

- [1] «TN1U STM-1,» [En línea]. Available: https://www.gegridsolutions.com/products/brochures/tn1u-sp.pdf.
- [2] «Multiplexor STM-1 STM-4 SDH/MSTP, STM-16 multiservicio,» [En línea]. Available: https://spanish.alibaba.com/product-detail/multi-service-stm-1-stm-4-stm-16-sdh-mstp-multiplexer-60315025443.html.
- (3) «10dBm CATV 1550nm transmisor óptico modulación directa, 10dBm láser transmisor,» [En línea]. Available: https://es.aliexpress.com/item/2034300976.html.
- (4) «18 dBm Amplificador Óptico EDFA,» [En línea]. Available: https://thorbroadcast.com/es/producto/18-dbm-amplificador-optico-edfa.html.
- [5] «FiberCablesDirect Cable de conexión de fibra LC LC OS2 | AnyAngle Duplex 9/125 Single mode Jumper Amarillo,» [En línea]. Available: https://www.amazon.com/FiberCablesDirect-conexi%C3%B3n-AnyAngle-Duplex-Amarillo/dp/B07L534XBF/ref=sr_1_2_sspa?dchild=1&keywords=LC%2BFiber%2BConnector&qid=1628302102&s r=8-2-
- spons & spLa = ZW5 jcnlwdGVkUXVhbGlmaWVyPUExUjlHQVA2OERBQVhOJmVuY3J5cHRIZElkPUEwNDQwOTQ.

 $[6] \quad \text{$\tt @Rollo De Fibra Optica Drop 2km Sm 2 Hilos Plana G.657a2 Lszh,} \\ \quad \text{$\tt [En linea]. Available: https://articulo.mercadolibre.com.ec/MEC-432239118-rollo-de-fibra-optica-drop-2km-sm-2-hilos-plana-g657a2-lszh_JM\#position=6\&search_layout=stack\&type=item\&tracking_id=16b24e83-e2ca-4cff-b4b0-4bf260db178c.}$