ALEX MOREHEAD

Machine Learning & Computational Biology Researcher

@ alex.morehead@gmail.com © 0000-0002-0586-6191

Columbia, Missouri, USA

amorehead

"Machine Learning & Computational Biology Researcher with over 4 years of experience developing cuttingedge deep learning algorithms for geometric (e.g., structural biology) data. Track record of bringing new ideas to life and implementing them using AI-standard programming languages/frameworks. Experienced leading research teams, fostering collaborations, and presenting research findings at top conferences."

SKILLS

☐ Jun 2019 - Aug 2019

Artificial intelligence

tection.

Python PyTorch PyG PyTorch Lightning W&B Hydra Slurm Git LaTeX Pandas Java
Geometric deep learning Generative modeling Graph neural networks Al4Science CompBio/Chem
EXPERIENCE
Graduate Research Assistant (Supervisor: Dr. Jianlin Cheng)
University of Missouri Bioinformatics & Machine Learning Lab
☐ Aug 2020 - Ongoing
Awarded two competitive first-year PhD fellowships and an outstanding PhD award for EECS graduate studies. • Research geometric and generative modeling methods for bioinformatics, to date yielding 20+ academic works .
• Developed two state-of-the-art protein representation learning methods along with the first diffusion model to su cessfully generate valid large 3D molecules and flow model for blind protein-ligand docking. Published results at to tier machine learning conferences (ICLR) and scientific venues (ISMB / Bioinformatics, CASP16, & Nature Commucations Chemistry).
• Introduced the first deep learning benchmark for broadly applicable protein-ligand docking.
• Orchestrated several large-scale deep learning HPC experiments and contributed to open-source code.
Deep learning Geometric & graph representation learning Generative models Structural bioinformatics
(
Research Intern (Supervisor: Dr. Jeffrey Ruffolo)
Profluent Bio AI Research Lab
 Created MMDiff, the first SE(3) diffusion model for joint sequence-structure generation of DNA, RNA, and protein which achieved a 9% nucleic acid design success rate. Presented at NeurIPS 2023 MLSB. Paper and Code.
Diffusion models Structure generation Sequence generation Differential geometry Google Cloud
Research Intern (Supervisor: Joshua Meier)
Absci Al Research Lab
☐ Jun 2022 - Apr 2023
• Collaboratively attained a 0.1 % <i>de novo</i> antibody binder design success rate using deep learning, a first-of-its-kind result . Paper and Data .
Protein design Generative Al Data science Model prototyping & benchmarking Kubernetes
Undergraduate Research Assistant IUPUI NSF REU on the Data Science of Risk and Human Activity

Indiana, USA

Signal processing | Edge computing

• Invented and deployed a convolutional neural network pipeline that yielded a 98% F-1 score for gunshot sound de-

• Published and orally presented one corresponding manuscript at IEEE Big Data (2019). Paper and Code.

Data mining

Machine learning

MY LIFE PHILOSOPHY

"The cure to boredom is curiosity.
There is no cure for curiosity." - Dorothy Parker

ACHIEVEMENTS

LoG Top-10 Reviewer

• Awarded large monetary prize for being a *top-3%* reviewer for the 2023 Learning on Graphs (LoG) conference.

Dean's Engineering Excellence & O'Neill Graduate Fellowships and Top-Ranked EECS PhD Student Award

• Won *two* competitive graduate fellowships for first-year PhD students and an *outstanding EECS PhD student* award.

Region IV Scholarship and Floyd Tesmer/Strayer University Prize in Computer Science and Engineering

 Earned *two* awards for innovative computer science research.

Public outreach

• Research featured in *two* public-facing venues including HPCwire and Marktechpost.

INVITED TALKS

- Geometric Deep Learning and Generative Models For Protein-Ligand Docking, Computational modeling of molecular structures course @ MU, Nov 2024, Columbia, Missouri, USA
- RNA-FrameFlow for de novo 3D RNA backbone design, SPIGM @ ICML, Jul 2024, Vienna, AT
- A Gated Graph Transformer for Protein Complex Structure Quality Assessment, 3DSIG @ ISMB, Jul 2023, Lyon, FR
- Geometry-Complete Perceptron Networks for 3D Molecular Graphs, AI2ASE @ AAAI, Feb 2023, Washington D.C., USA
- Neural Diffusion Models: Next-Generation Generative Deep Learning, Advanced topics in deep learning course @ MU, Nov 2022, Columbia, Missouri, USA
- Geometric Transformers for Protein Interface Contact Prediction, Xuefeng Cui Lab @ Shandong University, May 2022, Remote

EDUCATION

M.S. & Ph.D. in Machine Learning & Computational Biology

University of Missouri | O'Neill and College of Engineering Dean's Graduate Fellow

Aug 2020 - Ongoing

PhD Topic:

E Geometric Deep Learning & Generative Modeling of 3D Biomolecules

Collaborations:

 University of Cambridge, Research Labs of Prof. Pietro Lió & Prof. Sir Tom Blundell

Coursework:

Highest distinction (GPA=4.0/4.0)

B.S. in Computer Science

Missouri Western State University | General Studies and Outstanding Graduate Honors

🗖 Aug 2016 - May 2020

 Graduated top of class among all 2020 graduates in computer science, mathematics, and physics (GPA=4.0/4.0)

REFERENCES

Dr. Jianlin Cheng

- @ University of Missouri

Dr. Dong Xu

- Output
 <p
- xudong@missouri.edu

Dr. Xiaoqin Zou

- @ University of Missouri

REVIEWING

- Conferences:
 - Neural Information Processing Systems (NeurIPS), also the Al4Science, Al4D3, GenBio, & MLSB workshops
 - International Conference on Learning Representations (ICLR), also the GEM, AI4NA, and FPI workshops
 - International Conference on Machine Learning (ICML), also the AI4Science, CB, AccMLBio, & SPIGM workshops
 - Also served on the ICML 2024 ML4LMS workshop's organizing committee
 - Learning on Graphs Conference (LoG) of the Proceedings of Machine Learning Research (PMLR)
 - Also served on the LoG 2024-2025 organizing committee
 - ACM Conference on Bioinformatics, Computational Biology, & Health Informatics (ACM BCB)
- lournals.
 - Nature Machine Intelligence & Nature Methods
 - Bioinformatics, Briefings in Bioinformatics, BMC Bioinformatics, JCIM, and CSB Journal
 - IEEE Transactions on Neural Networks & Learning Systems (TNNLS) & Emerging Topics in Comp. Intelligence (TETCI)

PUBLICATIONS

- Conference Proceedings
 [1] C. K. Joshi et al., "GRNAde: Geometric deep learning for 3d RNA inverse design," in Thirteenth International Conference on Learning Representations (ICLR), Selected as an ICLR 2025 *spotlight*, 2025.
- [2] A. Morehead and J. Cheng, "Flowdock: Geometric flow matching for generative protein-ligand docking and affinity prediction," in Intelligent Systems for Molecular Biology (ISMB), Presented as a CASP16 top-5 method, 2025.
- [3] R. Anand* et al., "Rna-frameflow for de novo 3d rna backbone design," in ICML AI4Science & SPIGM Workshops, presented at SPIGM (*oral*) and Al4Science (*spotlight*), top 20% - 30/159, 2024.
- [4] A. R. Jamasb* et al., "Evaluating representation learning on the protein structure universe," in Twelth International Conference on Learning Representations (ICLR), also presented at NeurIPS 2023 MLSB (poster), 2024.
- [5] A. Morehead, N. Giri, J. Liu, and J. Cheng, "Deep learning for protein-ligand docking: Are we there yet?" In ICML Al4Science Workshop, presented as a *spotlight*, top 20% - 30/159, 2024.
- [6] X. Chen*, A. Morehead*, J. Liu, and J. Cheng, "A gated graph transformer for protein complex structure quality assessment and its performance in casp15," in Intelligent Systems for Molecular Biology (ISMB), 2023.
- [7] A. Morehead, A. Bhatnagar, J. A. Ruffolo, and A. Madani, "Towards joint sequence-structure generation of nucleic acid and protein complexes," in NeurIPS Machine Learning in Structural Biology (MLSB) Workshop, 2023.
- [8] A. Morehead, W. Chantapakul, and J. Cheng, "Semi-supervised graph learning meets dimensionality reduction," in IEEE International Conference on Machine Learning and Applications, 2023.
- [9] E. Soltanikazemi, R. S. Roy, F. Quadir, N. Giri, A. Morehead, and J. Cheng, "Drlcomplex: Reconstruction of protein quaternary structures using deep reinforcement learning," in International Conference on Intelligent Biology and Medicine, 2023.
- [10] A. Morehead, C. Chen, and J. Cheng, "Geometric transformers for protein interface contact prediction," in Tenth International Conference on Learning Representations (ICLR), 2022.
- [11] M. Shoman, A. Aboah, A. Morehead, Y. Duan, A. Daud, and Y. Adu-Gyamfi, "A region-based deep learning approach to automated retail checkout," in Proceedings of the IEEE/CVF CVPR Workshops, 2022.
- M. Gao et al., "High-performance deep learning toolbox for genome-scale prediction of protein structure and function," in IEEE/ACM Machine Learning with Graphs in High Performance Computing Environments (MLHPC) Workshop, 2021.
- [13] A. Morehead, L. Ogden, G. Magee, R. Hosler, B. White, and G. Mohler, "Low cost gunshot detection using deep learning on the raspberry pi," in IEEE International Conference on Big Data, 2019.

■ Journal Articles

- A. Morehead, J. Liu, P. Neupane, N. Giri, and J. Cheng, "Protein-ligand structure and affinity prediction in casp16 using a geometric deep learning ensemble and flow matching," Proteins: Structure, Function, and Bioinformatics, 2025, Presented as a CASP16 top-5 method.
- [15] A. Morehead and J. Cheng, "Geometry-complete diffusion for 3d molecule generation," *Nature Communications* Chemistry, 2024, also presented at ICLR 2023 MLDD (poster).
- [16] A. Morehead and J. Cheng, "Geometry-complete perceptron networks for 3d molecular graphs," Bioinformatics, 2024, also presented at AAAI 2023 DLG (poster) and AI2ASE (*oral*).
- [17] C. Chen, X. Chen, A. Morehead, T. Wu, and J. Cheng, "3d-equivariant graph neural networks for protein model quality assessment," Bioinformatics, 2023.
- [18] M. F. Lensink et al., "Impact of alphafold on structure prediction of protein complexes: The casp15-capri experiment," Proteins: Structure, Function, and Bioinformatics, 2023.
- [19] S. Mahmud, A. Morehead, and J. Cheng, "Accurate prediction of protein tertiary structural changes induced by single-site mutations with equivariant graph neural networks," bioRxiv, 2023.
- [20] A. Morehead, C. Chen, A. Sedova, and J. Cheng, "Dips-plus: The enhanced database of interacting protein structures for interface prediction," Nature Scientific Data, 2023.
- [21] A. Morehead and J. Cheng, "Protein structure accuracy estimation using geometry-complete perceptron networks," Protein Science, 2023.
- [22] A. Shanehsazzadeh et al., "Unlocking de novo antibody design with generative artificial intelligence," bioRxiv, 2023, follow-up work presented at NeurIPS 2023 MLSB (poster).
- [23] A. Morehead, X. Chen, T. Wu, J. Liu, and J. Cheng, "Egr: Equivariant graph refinement and assessment of 3d protein complex structures," arXiv, 2022.
- [24] O. Kouckya et al., "Synthetic biology bicistronic designs support gene expression equally well in vitro and in vivo," AJUR, 2020.