ITC5/EIT5

rev. 2020-09-18/MS

EIT5/ITC5 Signal Processing, 4

Topics:

- OpAmps applied in active RC-filters
- Various designs of 2nd order Sallen-Key LP-filters
- MFB-filters
- HP, BP and BS filters
- In brief: Section allocation, effect of limited operational amplifier gain

Literature:

Kendal Su: "Analog Filters", Kluwer Academic Publishers, 2nd ed. 2002, ISBN 1-4020-7033-0 The book is available in electronic form at http://www.en.aub.aau.dk.

Topic	Pages	
	$({*} \Leftrightarrow supplementary lit.)$	
Operational amplifier circuits	187-189, {190-196}, 206-208	
Biquad circuits	204-206, 217-238	
Higher order filters	253-260, 263-264	

Supplementary: Lecture presentation "slides"

Preparation: I assume that basic operational amplifier circuits are well known to you. If you are in doubt, please read page 190-196.

Exercises:

4.1

The filter in Kendall Su: "Analog filters" Figure 8.4 has the transfer function given in (8.22). Component values are chosen as: $C_1 = C_2 = C$, $R_1 = R_2 = R$ and $R_3 = 2R$. In this case the transfer function can be reduced to:

$$H(s) = \frac{\frac{\mu}{CR}s}{s^2 + \frac{3 - \mu}{CR}s + \frac{1}{(CR)^2}}$$

- a. Find expressions for ω_0 and Q
- b. Find an expression for S_{μ}^{Q} and its value for Q=5
- c. Find a simple expression for $H(j\omega_0)$ and for $S_u^{H(j\omega_0)}$ and their values for Q = 5

4.2

A 2nd order Butterworth normalized low-pass prototype filter is transformed to a BP-filter (4 poles) having:

- Lower passband edge (-3 dB) = 10 kHz
- Upper passband edge (-3 dB) = 15 kHz

The filter is made using 2 biquad filter sections of the type analyzed in exercise 4.1

a. Find the pole locations of the BP-filter. Hint: Use Matlab:

```
OrderLPP = 2;
Om = [10 15]*pi*2e3;
[Numpoly DenomPoly] = butter(OrderLPP,Om,'s'); % Bandpass since Om is a vector
Poles = roots(DenomPoly)
```

b. Find ω_0 and Q for each of the two sections. Hint:

```
omeg_0_biquad = abs(Poles)
Q biquad = % some function of Poles
```

c. Using C = 1 nF, find the resistor values and μ in each section.

Section	ω_0 [10 ⁴ rad/s]	Q	$R = R_1 = R_2$	$R_3 = 2R$	μ
1	8.90	3.5	11.2 kΩ	22.5 kΩ	2.71
2			kΩ	$k\Omega$	

d. Option: Make a Spice-simulation to check the results (Hint: LT-Spice example):

4.3

The 2nd order MFB high-pass section shown has the transfer function:

$$H(s) = -\frac{\frac{C_1}{C_2}s^2}{s^2 + \frac{C_1 + C_2 + C_3}{R_2C_2C_3}s + \frac{1}{R_1R_2C_2C_3}}$$

The capacitor values are chosen as:

- $C_1 = C_2 = 10 \text{ nF}$
- $C_3 = 2C_1 = 2C_2 = 20 \text{ nF}$

and it is required that:

- $\omega_0 = 2\pi \cdot 10^4 \text{ rad/s}$
- Q = 5
- a. Find the values of R₁ and R₂
- b. Find the filter gain, $|H(j\omega_0)|_{dB}$, at ω_0 .
- c. Find the filter gain, $|H(j\omega)|_{dB}$, for $\omega \rightarrow \infty$

ITC5/EIT5 3/3

4.4

A 2nd order Butterworth normalized low-pass prototype filter is transformed to a BP-filter (4 poles) having (same data as in ex. 4.2):

- Lower passband edge (-3 dB) = 10 kHz
- Upper passband edge (-3 dB) = 15 kHz

The filter is made using 2 biquad filter sections:

- An MFB low-pass section, for the poles with the largest ω_0 , with $R_1 = R_2 = R_3 = R = 2 \text{ k}\Omega$.
- An SK high-pass section, for the poles with the smallest ω_0 , with $C_1=C_2=C=10$ nF and $\mu=1$.

Section

1 MFB-LP

2 SK-HP

 ω_0 [10⁴ rad/s]

8.90

3.5

- a. Find the pole locations of the BP-filter using Matlab
- b. Find ω_0 and Q for each of the two sections from the pole locations.
- c. Find the component values of the MFB-LP section
- d. Find the component values of the SK-HP section.
- e. Option: Make a Spice-simulation to check the results (Exerc5_2template.asc)

Results:

4.1

a.

b. *14*

c. 14, 15

4.2

a. -12710±j88077 and -9504±j65862

b. 88989/66545 3.5/3.5

4.3

a. 79.6 Ω , 15.9 $k\Omega$

b. *14 dB*

c. *0 dB*

4.4

a. *-12710±j88077, -9504±j65862*

b

c. 59.0 nF, 535 pF

d. *215 Ω*, *10.5 kΩ*

e.