Math 421, Section 1 Practice Final Exam Fall 2024

First name:	Last name:

Instructions:

- This exam contains 8 problems, and there are a total of 60 points available.
- Show all your work in the space provided. You may also use the backs of pages.
- No outside resources are allowed, including notes, calculators, textbooks, etc.

Question	Points	Score
1	6	
2	9	
3	7	
4	8	
5	6	
6	9	
7	6	
8	9	
Total:	60	

1. (6 points) Using induction, prove that for all $n \in \mathbb{N}$ we have

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}.$$

- 2. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$.
 - (a) (3 points) Find f((-1,2)).
 - (b) (3 points) Find $f^{-1}(\{0,1\})$.
 - (c) (3 points) Prove or disprove: The function $f: \mathbb{R} \to \mathbb{R}$ is injective.

- 3. (a) (3 points) State the definition of the least upper bound for $A \subseteq \mathbb{R}$ is $\sup A$.
 - (b) (4 points) Find $\sup\{2-\frac{3}{n}:n\in\mathbb{N}\}$ and prove your answer.

4. (8 points) Define the function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Prove that f is differentiable at any $a \in \mathbb{R}$ and find f'(a).

5. (6 points) Let a,b>0 and define the function $f:(0,\infty)\to\mathbb{R}$ by

$$f(x) = \frac{a}{x} + bx.$$

Find the global minimum of f and prove your answer.

- 6. Suppose $f:[0,1]\to\mathbb{R}$ is a continuous function that satisfies $f(x)\in[0,1]$ for all $x\in[0,1]$.
 - (a) (6 points) Prove that there exists a point $x \in [0,1]$ such that f(x) = 1 x.
 - (b) (3 points) Suppose that f is also differentiable on (0,1) and |f'(x)| < 1 for all $x \in (0,1)$. Prove that there is exactly one point $x \in [0,1]$ such that f(x) = 1 x.

7. (6 points) Prove that the function $f:[-1,1]\to\mathbb{R}$ given by

$$f(x) = \begin{cases} -2 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 2 & \text{if } x > 0 \end{cases}$$

is integrable on [-1,1], and find $\int_{-1}^{1} f$.

- 8. Let b > 0.
 - (a) (3 points) Find $\int_0^b \sin x \, dx$ and prove your answer.
 - (b) (6 points) Find $\int_0^b \sin^3 x \, dx$ and prove your answer.

Extra paper