TDS2201 Statistical Data Analysis taken in Trimester 1, 2017/2018 Summary Sheet by Kia Kin

Univariate Data Exploration

- 1. Five-number summary: Min, Q_1 , Median, Q_3 , Max
- 2. $IQR = Q_3 Q_1$ lower boundary = $Q_1 - 1.5 \times IQR$ outlier < lower boundary upper boundary = $Q_3 + 1.5 \times IQR$ outlier > upper boundary

Sampling Distribution

- 1. To find P(X), use $Z = \frac{x \mu}{\sigma}$ To find $P(\bar{X})$, use $Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$
- 2. P(Z > a) = 1 P(Z < a)P(a < Z < b) = P(Z < b) - P(Z < a)

Confidence Interval $100(1-\alpha)\%$

- 1. CI for μ
 - (a) $\bar{x} \pm Z_{\frac{\sigma}{2}} \frac{\sigma}{\sqrt{n}}$ Use when 1. σ known. 2. σ unknown. $n \ge 30$. (Swap σ with s.)
 - (b) $\bar{x} \pm t_{\frac{\sigma}{2}, v} \frac{s}{\sqrt{n}}$ Use when σ unknown. n < 30.
- 2. CI for $\mu_1 \mu_2$
 - (a) $(\bar{x}_1 \bar{x}_2) \pm Z_{\frac{\sigma}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ Use when 1. σ_1^2, σ_2^2 known. 2. σ_1^2, σ_2^2 unknown. $n_1 \geq 30$. $n_2 \geq 30$. (Swap σ with s.)
 - (b) $(\bar{x}_1 \bar{x}_2) \pm t_{\frac{\sigma}{2}, n_1 + n_2 2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ where $S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ Use when σ_1^2 , σ_2^2 unknown. $n_1 < 30$. $n_2 < 30$. $\sigma_1^2 = \sigma_2^2$.
 - (c) $(\bar{x}_1 \bar{x}_2) \pm t_{\frac{\sigma}{2}, v} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ where $w_1 = \frac{s_1^2}{n_1}$, $w_2 = \frac{s_2^2}{n_2}$, $v = \frac{(w_1 + w_2)^2}{\frac{w_1^2}{n_1 - 1} + \frac{w_2^2}{n_2 - 1}}$

Use when σ_1^2 , σ_2^2 unknown. $n_1 < 30$. $n_2 < 30$. $\sigma_1^2 \neq \sigma_2^2$.

- 3. CI for μ_d (paired data) $\bar{d} \pm t_{\frac{\sigma}{2},v} \frac{s_d}{\sqrt{n}}$
- 4. CI for p

$$\hat{p}\pm Z_{\frac{\sigma}{2}}\sqrt{\frac{\hat{p}\hat{q}}{n}}$$
 where $\hat{p}=\frac{X}{N},~\hat{q}=1-\hat{p}$

Use when $n\hat{p} \geq 5$. $n\hat{q} \geq 5$.

- 5. CI for $p_1 p_2$ $(\hat{p}_1 \hat{p}_2) \pm Z_{\frac{\sigma}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$
- 6. CI for σ^2 $\frac{(n-1)s^2}{\chi^2_{\frac{\sigma}{2},v}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\frac{\sigma}{2},v}}$
- 7. CI for $\frac{\sigma_1^2}{\sigma_2^2}$ $\frac{s_1^2}{s_2^2} \cdot \frac{1}{f_{\frac{\sigma}{2},v_1,v_2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \cdot f_{\frac{\sigma}{2},v_2,v_1}$
- 8. To find appropriate sample size, use margin of error $= \varepsilon$

Test of Significance

- 1. (a) State H_0 , H_1
 - (b) test statistic
 - (c) p-value
 - (d) p-value $\leq \alpha \Rightarrow$ reject H_0 p-value $> \alpha \Rightarrow$ do not reject H_0 α is level of significance
 - (e) Conclusion by restating H_1
- 2. Direction of H_1
 - (a) >, < same
 - (b) \geq , \leq flip
 - (c) unequal \neq
- 3. Test for μ

(a)
$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Use when 1. σ known. 2. σ unknown. $n \geq 30$. (Swap σ with s.)

(b)
$$T = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

Use when σ unknown. n < 30.

4. Test for $\mu_1 - \mu_2$

(a)
$$Z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Use when 1. σ_1^2 , σ_2^2 known. 2. σ_1^2 , σ_2^2 unknown. $n_1 \geq 30$. $n_2 \geq 30$. (Swap σ with s.)

(b)
$$T = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where
$$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Use when σ_1^2 , σ_2^2 unknown. $n_1 < 30$. $n_2 < 30$. $\sigma_1^2 = \sigma_2^2$.

(c)
$$T = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where
$$w_1 = \frac{s_1^2}{n_1}$$
, $w_2 = \frac{s_2^2}{n_2}$, $v = \frac{(w_1 + w_2)^2}{\frac{w_1^2}{n_1 - 1} + \frac{w_2^2}{n_2 - 1}}$

Use when σ_1^2 , σ_2^2 unknown. $n_1 < 30$. $n_2 < 30$. $\sigma_1^2 \neq \sigma_2^2$.

5. Test of μ_d

$$T = \frac{\bar{d} - \mu_d}{s_d / \sqrt{n}}$$

6. Test for p

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$$
 where $q_0 = 1 - p_0$

7. Test for $p_1 - p_2$

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}}$$

8. Test for σ^2

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

9. Test for $\frac{\sigma_1^2}{\sigma_2^2}$

$$F = \frac{s_1^2}{s_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2}$$

10. p-value

- (a) $H_1: \langle \Rightarrow P(\langle \cdot \rangle)$
- (b) $H_1: > \Rightarrow P(>)$

(c)
$$H_1: \neq \Rightarrow 2 \times P(>)$$

(d) no exact value

Example. p-value =
$$P(t > 1.989, v = 18)$$

 $\alpha = 0.05 \Rightarrow T_{0.05,18} = 1.734$

$$T_{0.025,18} = 2.101$$

$$0.025 < \text{p-value} < 0.05$$

11. (a) False Positive,

$$P(\text{Type I Error}) = P(\text{Reject } H_0 \mid H_0 \text{ is True})$$

(b) False Negative,

$$P(\text{Type II Error}) = P(\text{Not reject } H_0 \text{ is False})$$

(c) Power =
$$1 - P(\text{Type II Error})$$

Test of Independence

1. H_0 : 2 categorical variables are not associated / dependent.

 H_1 : 2 categorical variables are associated / dependent.

2. expected count = $\frac{\text{row total} \times \text{column total}}{\text{table total}}$

Example.

	Drug X	Placebo	
Insonmia	91 (69)	13 (<mark>35</mark>)	104
No insonmia	271 (293)	170 (148)	441
	362	183	545

$$\frac{362 \cdot 104}{545} = 69$$

3. test statistic
$$\chi^2 = \Sigma \Sigma \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

$$v = (r-1)(c-1)$$

O is Observed, E is Expected.

Linear Regression

1.
$$y = \beta_0 + \beta_1 x + \varepsilon$$

Fitted regression line: $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x$

2. Residual = observed y - predicted \hat{y}

3. CI for β_i

$$\hat{\beta}_i \pm t_{\frac{\sigma}{2}, n-2} se(\hat{\beta}_i)$$

4. Test for β_i

(a)
$$H_0: \beta_i = b \text{ vs. } H_1: \beta_i \neq b$$

(b) test statistic
$$T = \frac{\hat{\beta}_i - b}{se(\hat{\beta}_i)}, v = n - 2$$

(c) Special case:
$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$

5. CI for \hat{y}_0

$$\hat{y}_0 \pm t_{\frac{\sigma}{2}, n-2} \sqrt{\hat{\sigma}^2 (\frac{1}{n} + \frac{(x_0 - \bar{x})}{S_{xx}})}$$
where $S_{xx} \approx (\frac{\hat{\sigma}}{se(\beta_1)})^2$

6. PI for \hat{y}_0

$$\hat{y}_0 \pm t_{\frac{\sigma}{2}, n-2} \sqrt{\hat{\sigma}^2 (1 + \frac{1}{n} + \frac{(x_0 - \bar{x})}{S_{xx}})}$$
where $S_{xx} \approx (\frac{\hat{\sigma}}{se(\beta_1)})^2$

- 7. R output
 - (a) Estimate β_0 , β_1
 - (b) Std.Error $se(\beta_0)$, $se(\beta_1)$
 - (c) Residual standard error $\hat{\sigma}$
- 8. Example. $r^2 = 0.9025$.

90.25% of variation in y-variable can be explained by the model with x-variable.

CASIO 570MS

Mean and Standard Deviation

- 1. MODE twice
- 2. 1 (SD)
- 3. Type all x + M+
- 4. SHIFT + 2 (S-VAR)
- 5. 1 (Mean)
 - $2 (\sigma)$
 - 3(s)

$$P(Z < z)$$
 and $P(Z > z)$

- 1. MODE twice
- 2. 1 (SD)
- 3. SHIFT + 3 (DISTR)
- 4. 1 (P(Z < z))

Linear Regression

- 1. MODE twice
- 2. REG
- 3. Lin
- 4. Type all x,y M+
- 5. SHIFT + 2
- 6. > twice
- 7. $A = \beta_0 = y$ -intercept
 - $B = \beta_1 = \text{slope}$

r = correlation coefficient

Statistical Tables

1. Example. $Z_{0.025} = k / P(Z < k) = 0.025$

$$\begin{array}{c|c}
Z & .06 \\
\hline
-1.9 & .0250
\end{array}$$

$$k = -1.96$$

2. Example. $t_{0.025,6} = k$

$$\begin{array}{c|c}
 & A \\
 v & .025 \\
\hline
 & 6 & 2.447 \\
\end{array}$$

$$k = 2.447$$

3. Example. $\chi^2_{0.025,16} = k$

$$\begin{array}{c|c}
 & \alpha \\
 v & 0.025 \\
\hline
 16 & 28.845 \\
\end{array}$$

$$k = 28.845$$

4. Example. $f_{0.01,7,3} = k$

$$\begin{array}{c|c}
 & f_{0.01(v_1, v_2)} \\
 & v_1 \\
 v_2 & 7 \\
 & 3 & 27.67
\end{array}$$

$$k = 27.67$$