FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Exercicis resolts de Fonaments de les Matemàtiques (Primer curs del Grau de Matemàtiques)

Àlex Batlle Casellas

$\mathbf{\acute{I}ndex}$

1		2
2	Conjunts i aplicacions.	3
3	Relacions, operacions i estructures.	4

2 Conjunts i aplicacions.

21. Siguin $A_1, A_2, B_1, B_2 \neq \emptyset$. Demostreu:

21.3.
$$(A_1 \cup A_2) \times (B_1 \cup B_2) = (A_1 \times B_1) \cup (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2)$$
:
Sigui $y \in (A_1 \cup A_2) \times (B_1 \cup B_2)$. Aleshores, $\exists y_1 \in A_1 \cup A_2, \ y_2 \in B_1 \cup B_2 : \ y = (y_1, y_2)$.
 $\iff (y_1 \in A_1 \vee y_1 \in A_2) \wedge (y_2 \in B_1 \vee y_2 \in B_2) \iff (y_1 \in A_1 \wedge y_2 \in B_1)$
 $\vee (y_1 \in A_2 \wedge y_2 \in B_1) \wedge (y_1 \in A_1 \wedge y_2 \in B_2) \vee (y_1 \in A_2 \wedge y_2 \in B_2)$
 $\iff y \in (A_1 \times B_1) \cup (A_2 \times B_2) \cup (A_1 \times B_2) \cup (A_2 \times B_1)$.

- 30. Considerem una aplicació $f:A\mapsto B$ i subconjunts $A',A''\subseteq A$ i $B',B''\subseteq B$. Demostreu:
 - 30.1. Si $A' \subseteq A''$, aleshores $f(A') \subseteq f(A'')$. Demostreu que la igualtat és certa si f és injectiva.

Sigui
$$A' \subseteq A''$$
. Aleshores $f(A') = \{y \in B : (\exists x \in A' : f(x) = y)\}$
 $\subseteq \{y \in B : (\exists x \in A'' : f(x) = y)\} = f(A'') \implies f(A') \subseteq f(A'').\square$

Si f és injectiva, volem veure que $f(A'') \subseteq f(A')$ (ja que la primera inclusió per la igualtat ja l'hem demostrada a l'apartat anterior).

Sigui
$$A' \subseteq A''$$
. Aleshores $f(A'') \subseteq f(A') \iff A'' \subseteq A'$ (resultat anterior) \iff $A'' = A'$ (perquè sabem $A' \subseteq A''$) \iff (sabent que $f(A') \subseteq f(A'')$) f és injectiva. \square

30.2. Si $B'\subseteq B''$, aleshores $f^{-1}(B')\subseteq f^{-1}(B'')$. Demostreu que la igualtat és certa si f és exhaustiva.

Sigui
$$B' \subseteq B''$$
. Aleshores, $f^{-1}(B') = \{x \in A : (\exists y \in B' : f^{-1}(\{y\}) = \{x\})\} \subseteq \{x \in A : (\exists y \in B'' : f^{-1}(\{y\}) = \{x\})\} = f^{-1}(B'') \implies f^{-1}(B') \subseteq f^{-1}(B'').\square$

Si f^{-1} és exhaustiva, volem veure que $f^{-1}(B'') \subseteq f^{-1}(B')$ (ja que la primera inclusió per la igualtat ja l'hem demostrada a l'apartat anterior) quan la igualtat dels dos conjunts B' i B'' es dóna, és a dir, quan $B' \subseteq B''$ i $B'' \subseteq B'$. Quan passa això, per l'anterior demostració:

- $f^{-1}(B') \subseteq f^{-1}(B'')$,
- $\bullet \ f^{-1}(B'')\subseteq f^{-1}(B').$

Per tant, tenim que $f^{-1}(B') = f^{-1}(B'')$.

- 31. Considerem una aplicació $f: A \mapsto B$. Demostreu:
 - 31.1. Si $A' \subseteq A$, aleshores $A' \subseteq f^{-1}(f(A'))$.
 - 31.2. f és injectiva si i només si $A' = f^{-1}(f(A')) \ \forall A' \subseteq A$.

3 Relacions, operacions i estructures.