Aritmética para ICPC

ACM ICPC Training Camp

7 de agosto de 2010

- Números naturales
 - Algoritmos para encontrar números primos
 - \bullet Factorización, φ y cantidad de divisores

- Números naturales
 - Algoritmos para encontrar números primos
 - ullet Factorización, arphi y cantidad de divisores
- Aritmética modular
 - Operaciones básicas
 - Modexp
 - GCD y su extensión
 - Teorema chino del resto

- Números naturales
 - Algoritmos para encontrar números primos
 - ullet Factorización, arphi y cantidad de divisores
- Aritmética modular
 - Operaciones básicas
 - Modexp
 - GCD y su extensión
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias
 - Cadenas de Markov y otros problemas lineales
 - Sistemas de ecuaciones
 - Algoritmo de Gauss-Jordan
 - El algoritmo de Gauss-Jordan para matrices bidiagonales

- Números naturales
 - Algoritmos para encontrar números primos
 - ullet Factorización, arphi y cantidad de divisores
- Aritmética modular
 - Operaciones básicas
 - Modexp
 - GCD y su extensión
 - Teorema chino del resto
- Matrices
 - Notación y operaciones básicas
 - Matriz de adyacencias
 - Cadenas de Markov y otros problemas lineales
 - Sistemas de ecuaciones
 - Algoritmo de Gauss-Jordan
 - El algoritmo de Gauss-Jordan para matrices bidiagonales
- Problema adicional

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

Recordamos que

 $p \in \mathbb{N}$ es primo $\Longleftrightarrow 1$ y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

Encontrar números primos y/o la factorización de un número natural será útil para resolver problemas que involucran:

funciones [completamente] multiplicativas

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

Encontrar números primos y/o la factorización de un número natural será útil para resolver problemas que involucran:

- funciones [completamente] multiplicativas
- divisores de un número

Recordamos que

 $p \in \mathbb{N}$ es primo \iff 1 y p son los únicos divisores de p en \mathbb{N}

Dado $n \in \mathbb{N}$, podemos factorizarlo de manera única como

$$n=p_1^{e_i}\dots p_k^{e_k}$$

Encontrar números primos y/o la factorización de un número natural será útil para resolver problemas que involucran:

- funciones [completamente] multiplicativas
- divisores de un número
- números primos y factorizaciones :-)

Algoritmos para encontrar números primos

Queremos encontrar todos los números primos hasta un dado valor (por ejemplo, para factorizar m necesitamos todos los números primos hasta \sqrt{m}).

Algoritmos para encontrar números primos

Queremos encontrar todos los números primos hasta un dado valor (por ejemplo, para factorizar m necesitamos todos los números primos hasta \sqrt{m}).

• Un algoritmo ingenuo: para cada $n \in [2, MAXN)$, analizamos si es divisible por algún primo menor que n de los ya encontrados. Con algunas optimizaciones:

```
1 p[0] = 2; P = 1;
2 for (i=3; i<MAXN; i+=2) {
3  bool isp = true;
4  for (j=1; isp && j<P && p[j]*p[j]<=i; j++)
5   if (i%p[j] == 0) isp = false;
6  if (isp) p[P++] = i;
7 }</pre>
```

Primer algoritmo para encontrar primos

Algoritmos para encontrar números primos

Queremos encontrar todos los números primos hasta un dado valor (por ejemplo, para factorizar m necesitamos todos los números primos hasta \sqrt{m}).

• Un algoritmo ingenuo: para cada $n \in [2, MAXN)$, analizamos si es divisible por algún primo menor que n de los ya encontrados. Con algunas optimizaciones:

```
1 p[0] = 2; P = 1;
2 for (i=3; i<MAXN; i+=2) {
3  bool isp = true;
4  for (j=1; isp && j<P && p[j]*p[j]<=i; j++)
5   if (i%p[j] == 0) isp = false;
6  if (isp) p[P++] = i;
7 }</pre>
```

Primer algoritmo para encontrar primos

Cada número requiere tiempo $\pi(\sqrt{n}) = \mathcal{O}\left(\sqrt{n}/\ln n\right)$, luego el algoritmo es supralineal.

Algoritmos para encontrar números primos (cont.)

 Un algoritmo antiguo: armamos una tabla con los números [2, MAXN), y los recorremos en orden. Cada número que encontramos que todavía no fue tachado es un primo, de modo que podemos tachar todos sus múltiplos:

```
1 memset(isp, true, sizeof(isp));
2 for (i=2; i<MAXN; i++)
3    if (isp[i])
4    for (j=2*i; j<MAXN; j+=i)
5    isp[j] = false;</pre>
```

Criba de Eratóstenes

Algoritmos para encontrar números primos (cont.)

 Un algoritmo antiguo: armamos una tabla con los números [2, MAXN), y los recorremos en orden. Cada número que encontramos que todavía no fue tachado es un primo, de modo que podemos tachar todos sus múltiplos:

```
1 memset(isp, true, sizeof(isp));
2 for (i=2; i < MAXN; i++)
3     if (isp[i])
4     for (j=2*i; j < MAXN; j+=i)
5     isp[j] = false;</pre>
```

Criba de Eratóstenes

El tiempo de ejecución es $\mathcal{O}(N \log \log N)$, y puede ser llevado a $\mathcal{O}(N)$ con algunas optimizaciones.

Factorización usando la criba

La criba puede guardar más información:

```
1 memset(p, -1, sizeof(p));
2 for (i=4; i<MAXN; i+=2) p[i] = 2;
3 for (i=3; i*i<MAXN; i+=2)
4  if (p[i] == -1)
5  for (j=i*i; j<MAXN; j+=2*i)
6  p[j] = i;</pre>
```

Criba de Eratóstenes extendida y optimizada

Factorización usando la criba

La criba puede guardar más información:

```
1 memset(p, -1, sizeof(p));
2 for (i=4; i<MAXN; i+=2) p[i] = 2;
3 for (i=3; i*i<MAXN; i+=2)
4   if (p[i] == -1)
5   for (j=i*i; j<MAXN; j+=2*i)
6   p[j] = i;</pre>
```

Criba de Eratóstenes extendida y optimizada

Y entonces

```
int fact(int n, int f[]) {
  int F = 0;
  while (p[n] != -1) {
    f[F++] = p[n];
    n /= p[n];
  }
  f[F++] = n;
  return F;
}
```

Funciones de teoría de números

Teniendo la factorización de un número n, podemos generar sus divisores, o calcular funciones de teoría de números:

Funciones de teoría de números

Teniendo la factorización de un número n, podemos generar sus divisores, o calcular funciones de teoría de números:

• Función φ de Euler: $\varphi(n)$ es la cantidad de números menores o iguales que n que son coprimos con n. Se tiene

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

Funciones de teoría de números

Teniendo la factorización de un número n, podemos generar sus divisores, o calcular funciones de teoría de números:

• Función φ de Euler: $\varphi(n)$ es la cantidad de números menores o iguales que n que son coprimos con n. Se tiene

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \dots (p_k^{e_k} - p_k^{e_k-1})$$

• La cantidad de divisores de n es

$$\sigma_0(n) = (e_1 + 1) \dots (e_k + 1)$$

(y fórmulas parecidas para $\sigma_m(n) = \sum_{d|n} d^m$)

Ejercicios (1)

Algunos problemas para ir fijando ideas:

- SPOJ, p.2 *Prime Generator*: Encontrar todos los primos en el intervalo [M, N] con $1 \le M \le N \le 10^9$ y $N M \le 10^5$.
- SPOJ, p.526 *Divisors*: Encontrar todos los *N* tales que $\sigma_0(N) = p.q$ con $p \neq q$ primos y $N \leq 10^6$.

Ejercicios (1)

Algunos problemas para ir fijando ideas:

- SPOJ, p.2 *Prime Generator*: Encontrar todos los primos en el intervalo [M, N] con $1 \le M \le N \le 10^9$ y $N M \le 10^5$.
- SPOJ, p.526 *Divisors*: Encontrar todos los N tales que $\sigma_0(N) = p.q$ con $p \neq q$ primos y $N \leq 10^6$.

Un poco de teoría de números:

- SPOJ, p.5971 *LCM Sum*: Calcular (\leq 300000 veces) $\sum_{i=1}^{N} lcm(i, N)$ con $N \leq 10^{6}$.
- SER'08, p.H GCD Determinant: Dado $\{x_1, \ldots, x_N\}$, calcular det S con $S_{ij} = \gcd(x_i, x_j)$ y $N \le 10^3$.

Aritmética modular

Recordamos que dados $a \in \mathbb{Z}$ y $m \in \mathbb{N}$

$$a \equiv_m r \iff a = q.m + r \quad \text{con} \quad r = 0, 1, \dots, m - 1$$

Las operaciones de suma, resta y producto se extienden trivialmente, y mantienen las propiedades conocidas

$$a \pm b = c \implies a \pm b \equiv_m c$$

 $a.b = c \implies a.b \equiv_m c$

Aritmética modular

Recordamos que dados $a \in \mathbb{Z}$ y $m \in \mathbb{N}$

$$a \equiv_m r \iff a = q.m + r \quad \text{con} \quad r = 0, 1, \dots, m - 1$$

Las operaciones de suma, resta y producto se extienden trivialmente, y mantienen las propiedades conocidas

$$a \pm b = c \implies a \pm b \equiv_m c$$

 $a.b = c \implies a.b \equiv_m c$

La división se define como la inversa del producto, es decir que

$$a/b \implies a.b^{-1} \quad \text{con} \quad b.b^{-1} = 1$$

¿Siempre existe el inverso módulo m? ¿Cómo podemos calcularlo?

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \text{ con } \sum_{i=1}^M m_i = N \text{ y } N \le 10^6$$

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \text{ con } \sum_{i=1}^M m_i = N \text{ y } N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando todos los factores 5 (y una cantidad igual de factores 2). Necesitamos evaluar eficientemente $a^b \mod m$:

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \quad \text{con} \quad \sum_{i=1}^M m_i = N \quad \text{y} \quad N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando todos los factores 5 (y una cantidad igual de factores 2). Necesitamos evaluar eficientemente $a^b \mod m$:

• La evaluación directa es $\mathcal{O}(b)$, que es demasiado lento.

A veces podemos directamente evitar buscar los inversos: en MCA'07, p.C *Last Digit*, nos piden calcular el ultimo dígito no nulo de

$$\chi = {N \choose m_1 \dots m_M} = \frac{N!}{m_1! \dots m_M!} \text{ con } \sum_{i=1}^M m_i = N \text{ y } N \le 10^6$$

Podemos factorizar χ usando lo que ya aprendimos, y evaluarlo módulo 10 eliminando todos los factores 5 (y una cantidad igual de factores 2). Necesitamos evaluar eficientemente $a^b \mod m$:

- La evaluación directa es $\mathcal{O}(b)$, que es demasiado lento.
- Si escribimos a b en binario, $b = c_0.2^0 + \cdots + c_{\log b}.2^{\log b}$, podemos evaluar a^b en $\mathcal{O}(\log b)$

$$a^b = \prod_{i=0, c_i \neq 0}^{\log b} a^{2^i}$$

Modexp (código)

```
1 tint modexp(tint a, tint b) {
2    tint RES = 1;
3    while (b > 0) {
4        if ((b&1) == 1) RES = (RES*a)% MOD;
5        b >>= 1;
6        a = (a*a)% MOD;
7     }
8     return RES;
9 }
```

Modexp

MCA'07, p.C Last Digit

```
int calc(int N, int m[], int M) {
2
     int i. RES:
3
4
     memset(e, 0, sizeof(e));
5
     e[N]++;
6
     for (i=0; i < M; i++) if (m[i] > 1) e[m[i]] --;
7
     for (i=MAXN-2; i>=0; i--) e[i] += e[i+1];
8
9
     RES = 1:
10
     for (i=MAXN-1; i>=0; i--)
11
       if (p[i] != -1) {
12
         e[i/p[i]] += e[i]:
13
         e[p[i]] += e[i];
14
         e[i] = 0:
15
16
     e[2] -= e[5]; e[5] = 0;
17
18
     for (i=2; i \leq MAXN; i++)
       if (e[i] != 0) RES = (RES*modexp(i, e[i]))% MOD;
19
20
     return RES:
21
```

GCD

El máximo común divisor entre a y b es es el mayor d tal que d|a y d|b. Observamos que

$$a = q.b + r \implies \gcd(a, b) = \gcd(b, r)$$

Y tenemos entonces

```
1 int gcd(int a, int b) {
2    if (b == 0) return a;
3    return gcd(b, a%b);
4 }
```

Algoritmo de Euclides

GCD

El máximo común divisor entre a y b es es el mayor d tal que d|a y d|b. Observamos que

$$a = q.b + r \implies \gcd(a, b) = \gcd(b, r)$$

Y tenemos entonces

```
1 int gcd(int a, int b) {
2   if (b == 0) return a;
3   return gcd(b, a%b);
4 }
```

Algoritmo de Euclides

Puede verse que $\gcd(F_{n+1}, F_n)$ requiere exactamente n operaciones (siendo F_n los números de Fibonacci). Como los F_n crecen exponencialmente, y son la peor entrada posible para el algoritmo, el tiempo es $\mathcal{O}(\log n)$.

Extensión del GCD

Puede verse que

$$gcd(a, m) = 1 \iff 1 = a.x + m.y$$

Extensión del GCD

Puede verse que

$$gcd(a, m) = 1 \iff 1 = a.x + m.y$$

Entonces $x \equiv_m a^{-1}$, de modo que a tiene inverso módulo m si y sólo si gcd(a, m) = 1. [Corolario: \mathbb{Z}_p es un cuerpo.]

Extensión del GCD

Puede verse que

$$gcd(a, m) = 1 \iff 1 = a.x + m.y$$

Entonces $x \equiv_m a^{-1}$, de modo que a tiene inverso módulo m si y sólo si $\gcd(a,m)=1$. [Corolario: \mathbb{Z}_p es un cuerpo.] Para encontrar x e y, los rastreamos a través del algoritmo de Euclides:

```
pii egcd(int a, int b) {
    if (b == 0) return make_pair(1, 0);
    else {
        pii RES = egcd(b, a%b);
        return make_pair(RES.second, RES.first -RES.second*(a/b));
    }
}

int inv(int n, int m) {
    pii EGCD = egcd(n, m);
    return ( (EGCD.first% m)+m)% m;
}
```

Algoritmo de Euclides extendido e inverso módulo m

Teorema chino del resto

Dado un conjunto de condiciones

$$x \equiv a_i \mod n_i$$
 para $i=1,\ldots,k$ con $\gcd(n_i,n_j)=1 \ \forall i \neq j$ existe un único $x \mod N = n_1 \ldots n_k$ que satisface todas las ecuaciones simultáneamente.

Teorema chino del resto

Dado un conjunto de condiciones

$$x \equiv a_i \mod n_i$$
 para $i = 1, \dots, k$ con $\gcd(n_i, n_j) = 1$ $\forall i \neq j$

existe un único $x \mod N = n_1 \dots n_k$ que satisface todas las ecuaciones simultáneamente. Podemos construirlo considerando

$$m_i = \prod_{j \neq i} n_j \qquad \Longrightarrow \qquad \gcd(n_i, m_i) = 1$$

Llamando $\bar{m}_i = m_i^{-1} \mod n_i$, armamos

$$x \equiv \sum_{i=1}^{k} \bar{m}_i m_i a_i \mod N$$

Teorema chino del resto (código)

```
int tcr(int n[], int a[], int k) {
2
     int i, tmp, MOD, RES;
3
4
    MOD = 1:
5
     for (i=0; i< k; i++) MOD *= n[i];
6
     RES = 0;
8
     for (i=0; i< k; i++) {
9
       tmp = MOD/n[i];
10
       tmp *= inv(tmp, n[i]);
11
       RES += (tmp*a[i])\% MOD:
12
13
     return RES% MOD:
14
```

Teorema chino del resto

Ejercicios (2)

- TCO'10 Round 1, p.2 TwoRegisters: Muchas veces el algoritmo de GCD aparece en problemas que no tienen demasiado que ver con teoría de números;-)
- CEPC'08, p.I Counting heaps: Calcular el número (módulo M) de asignaciones de los valores $\{1,\ldots,N\}$ a los $N \leq 5.10^5$ nodos de un árbol que respetan la condición de min-heap.
- WF Warmup I, p.C Code Feat: Aplicar el teorema chino del resto con $k \le 9$ y $a_i \in \left\{a_i^{(1)}, \dots, a_i^{(A_i)}\right\}$ siendo $A_i \le 100$.

Matrices

Una matriz de $N \times M$ es un arreglo de N filas y M columnas de elementos. Podemos definir la suma y la resta de matrices en forma natural $(\mathcal{O}(N.M))$:

$$A \pm B = C \iff C_{ij} = A_{ij} \pm B_{ij}$$

El producto de matrices se define como $(\mathcal{O}(N.M.L))$

$$A_{N\times M}\cdot A_{M\times L}=C_{N\times L}$$
 \iff $C_{ij}=\sum_{k=1}^{M}A_{ik}.B_{kj}$

Matrices

Una matriz de $N \times M$ es un arreglo de N filas y M columnas de elementos. Podemos definir la suma y la resta de matrices en forma natural $(\mathcal{O}(N.M))$:

$$A \pm B = C$$
 \iff $C_{ij} = A_{ij} \pm B_{ij}$

El producto de matrices se define como $(\mathcal{O}(N.M.L))$

$$A_{N\times M}\cdot A_{M\times L}=C_{N\times L}\qquad\Longleftrightarrow\qquad C_{ij}=\sum_{k=1}^MA_{ik}.B_{kj}$$

Para matrices cuadradas (a partir de ahora, trabajamos en $N \times N$), tiene sentido preguntarse si existe la inversa multiplicativa de una matriz A. Resulta que si det $A \neq 0$, la inversa existe y se tiene

$$A \cdot A^{-1} = \mathbb{1} = A^{-1} \cdot A$$

Matrices (cont.)

Representamos matrices usando arreglos bidimensionales, pero para pasar una matriz como argumento a una función conviene definir una lista de punteros, así evitamos tener que fijar una de las dimensiones en la definición de la función

```
tipo funcion(int **A, int N, int M) {
    ...

int main() {
    int a [MAXN] [MAXN], *ra [MAXN];
    for (int i=0; i < MAXN; i++) ra [i] = a [i];
    ...
    funcion(ra, N, M);
    ...

funcion(ra, N, M);
    ...
}</pre>
```

Lista de punteros que referencia a una matriz

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo.

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

• el costo de la arista que va del nodo i al j (∞ si la arista no existe).

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo i al j (0 si no hay).

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo i al j (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos con exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original.

Uno de los usos que podemos darle a las matrices es el de representar las aristas de un grafo. Para una grafo de N nodos, una matriz $A_{N\times N}$ puede tener en A_{ij} :

- el costo de la arista que va del nodo i al j (∞ si la arista no existe).
- la cantidad de aristas que van del nodo i al j (0 si no hay).

En este último caso, $(A^2)_{ij} = \sum_k A_{ik} A_{kj}$ es la cantidad de caminos con exactamente dos aristas que van del nodo i al j. Esto puede generalizarse para A^n , que entonces contiene la cantidad de caminos con exactamente n aristas entre los pares de nodos del grafo original.

Podemos calcular A^n usando una version adaptada de modexp en $\mathcal{O}(N^3\log n)$. Hay algoritmos más eficientes para multiplicar (el algoritmo de Strassen es $\mathcal{O}(n^{2,807})$, y el de CoppersmithWinograd es $\mathcal{O}(n^{2,376})$), pero no necesariamente conviene usarlos en una competencia...

Cadenas de Markov y otros problemas lineales

Si tenemos un sistema con un conjunto de estados $\{S_i\}$, con probabilidad p_{ij} conocida de efectuar una transición del estado i al estado j, los estados terminales $\{S_k\}$ son aquellos en los que $\sum_i p_{ki} = 0$. ¿Cuál es el tiempo esperado E_i para alcanzar un estado terminal desde el estado S_i ?

Cadenas de Markov y otros problemas lineales

Si tenemos un sistema con un conjunto de estados $\{S_i\}$, con probabilidad p_{ij} conocida de efectuar una transición del estado i al estado j, los estados terminales $\{S_k\}$ son aquellos en los que $\sum_i p_{ki} = 0$. ¿Cuál es el tiempo esperado E_i para alcanzar un estado terminal desde el estado S_i ? Para los estados terminales, claramente

$$E_k = 0$$

Para los demas estados

$$E_i = 1 + \sum_j p_{ij}.E_j$$

Cadenas de Markov y otros problemas lineales

Si tenemos un sistema con un conjunto de estados $\{S_i\}$, con probabilidad p_{ij} conocida de efectuar una transición del estado i al estado j, los estados terminales $\{S_k\}$ son aquellos en los que $\sum_i p_{ki} = 0$. ¿Cuál es el tiempo esperado E_i para alcanzar un estado terminal desde el estado S_i ? Para los estados terminales, claramente

$$E_k = 0$$

Para los demas estados

$$E_i = 1 + \sum_j p_{ij}.E_j$$

Es decir que debemos resolver un sistema de ecuaciones sobre los tiempos esperados. Otros sistemas de ecuaciones aparecen, por ejemplo, en problemas de geometría computacional...

Sistemas de ecuaciones

Un sistema de ecuaciones sobre N variables

$$a_{11} x_1 + \dots + a_{1N} x_N = b_1$$

$$\vdots$$

$$a_{N1} x_1 + \dots + a_N x_N = b_N$$

Puede representarse matricialmente como

$$A\vec{x} = \vec{b}$$
 \iff $\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$

Sistemas de ecuaciones

Un sistema de ecuaciones sobre N variables

$$a_{11} x_1 + \dots + a_{1N} x_N = b_1$$

$$\vdots$$

$$a_{N1} x_1 + \dots + a_N x_N = b_N$$

Puede representarse matricialmente como

$$A\vec{x} = \vec{b}$$
 \iff $\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix}$

Resolver el sistema consiste en encontrar la inversa A^{-1} , porque entonces $\vec{x} = A^{-1}\vec{b}$. Observamos que si $\vec{b} \mapsto 1$, $\vec{x} \mapsto A^{-1}$.

Sistemas de ecuaciones (cont.)

Para resolver un sistema a mano, despejamos una variable de una ecuación y la usamos para eliminar las apariciones de esa variable en las demás ecuaciones, trabajando simultáneamente con los términos independientes. Para eso podemos:

- Multiplicar o dividir una ecuación (fila) por un número.
- Sumar o restar una ecuación (fila) a otra.
- Intercambiar dos filas (no modifica las ecuaciones).

Sistemas de ecuaciones (cont.)

Para resolver un sistema a mano, despejamos una variable de una ecuación y la usamos para eliminar las apariciones de esa variable en las demás ecuaciones, trabajando simultáneamente con los términos independientes. Para eso podemos:

- Multiplicar o dividir una ecuación (fila) por un número.
- Sumar o restar una ecuación (fila) a otra.
- Intercambiar dos filas (no modifica las ecuaciones).

El algoritmo de Gauss-Jordan consiste en formalizar este procedimiento con un sólo cuidado: para reducir el error numérico, las variables se despejan de las ecuaciones en las que aparecen con el coeficiente más grande en valor absoluto en cada paso (llamamos a esto el *pivoteo*).

Eliminación de Gauss-Jordan

```
bool invert (double **A, double **B, int N) {
2
     int i, j, k, jmax; double tmp;
 3
     for (i=1: i \le N: i++) {
       imax = i; //Maximo el. de A en la col. i con fila >= i
       for (i=i+1; i \le N; i++)
6
          if (abs(A[j][i]) > abs(A[jmax][i])) jmax = j;
7
8
       for (i=1; i \le N; i++) \{ //Intercambiar las filas i y imax \}
         swap(A[i][j], A[jmax][j]); swap(B[i][j], B[jmax][j]);
9
10
11
12
       //Controlar que la matriz sea invertible
       if (A[i][i] == 0.0) return false;
13
14
15
       tmp = A[i][i]; //Normalizar la fila i
       for (j=1; j \le N; j++) \{ A[i][j] /= tmp; B[i][j] /= tmp; \}
16
17
18
       //Eliminar los valores no nulos de la columna i
19
       for (j=1; j \le N; j++) {
20
          if (i == j) continue;
21
         tmp = A[i][i]:
22
          for (k=1; k \leq N; k++) {
23
           A[j][k] -= A[i][k]*tmp; B[j][k] -= B[i][k]*tmp;
24
25
26
27
     return true:
28
```

Eliminación de Gauss-Jordan

Eliminación de Gauss-Jordan para matrices bidiagonales

El algoritmo de Gauss-Jordan claramente es $\mathcal{O}(N^3)$. Puede verse que si sabemos multiplicar dos matrices de $N \times N$ en $\mathcal{O}(T(N))$, podemos invertir una matriz o calcular su determinante en el mismo tiempo asintótico.

Eliminación de Gauss-Jordan para matrices bidiagonales

El algoritmo de Gauss-Jordan claramente es $\mathcal{O}(N^3)$. Puede verse que si sabemos multiplicar dos matrices de $N \times N$ en $\mathcal{O}(T(N))$, podemos invertir una matriz o calcular su determinante en el mismo tiempo asintótico.

En general, en lugar de optimizar el algoritmo general conviene aprovechar alguna propiedad particular de las matrices que queremos invertir: podemos invertir una matriz bidiagonal o tridiagonal (con elementos diagonales no nulos) en $\mathcal{O}(N)$.

$$\begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & \dots & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & \dots & 0 \\ \vdots & & & & & \vdots \\ 0 & & \dots & & 0 & a_{NN-1} & a_{NN} \end{pmatrix}$$

Ejercicios (3)

Para implementar y poner a prueba lo que hablamos

- SWERC'08, p.B First Knight
- SPOJ, p.339 Recursive Sequence

Ejercicios (3)

Para implementar y poner a prueba lo que hablamos

- SWERC'08, p.B First Knight
- SPOJ, p.339 Recursive Sequence

Algunos problemas entretenidos

- TC SRM 443, p.3 ShuffledPlaylist: Contar la cantidad de caminos en un grafo, con un poco de imaginación...
- TCO'08 Semifinal Room 2, p.3 ColorfulBalls
- CodeForces BR24, p.D *Broken robot*: Calcular el tiempo esperado para llegar a la ultima fila en desde una posición arbitraria de una grilla de $N \times N$ con $N \le 10^3$, cuando podemos en cada paso quedarnos quietos, movernos a los lados o hacia abajo.

Un problema adicional para ver qué nos falta

SARC'08, p.B *Bases*: Analizar en qué bases una expresión como 10000 + 3 * 5 * 334 = 3 * 5000 + 10 + 0 es válida.

Un problema adicional para ver qué nos falta

SARC'08, p.B *Bases*: Analizar en qué bases una expresión como 10000 + 3 * 5 * 334 = 3 * 5000 + 10 + 0 es válida.

Queda para la próxima discutir:

- Polinomios (evaluación, operaciones, propiedades, etc).
- Evaluación de expresiones matemáticas (parseo).

Suerte en el Cairo :-)