Estados de agregación	Ficha de trabajo 1
Nombre y apellidos:	
Curso	Eacha:

ESTUDIO DE ALGUNAS PROPIEDADES DE LA MATERIA (I)

1. Observa los instrumentos de medida que aparecen en las fotografías. Indica el nombre de cada uno de ellos y la magnitud que miden, completando la tabla que tienes abajo.

Instrumento de medida	Magnitud que mide

2. Rellena los espacios en blanco de las frases siguientes:

a)	Si queremos	medir una	longitud hasta	las décimas	de milímetro,	utilizamos el	

.....

b) La superficie es la que expresa la extensión de un cuerpo en dos En el SI se mide en metros, m².

c) La magnitud física que expresa la extensión de un cuerpo en tres dimensiones se

denomina En el SI se mide en, m³.

d) El volumen máximo que puede tener un recipiente determinado se denomina, y se mide en litros, L, o mililitros, mL. La equivalencia

entre la unidad de volumen del SI y el litro es: 1 = L.

e) Para determinar la densidad de un líquido en el laboratorio, medimos su masa con una, y el volumen que ocupa mediante una

V Trailing					
La tabla mues	stra las densida	ades de una serie	e de metales:		
La tabla mues	stra las densida	ades de una serie	e de metales: Hierro	Manganeso	
				Manganeso 7 470	
En el laborato	Metal Densidad (kg/m³) orio hemos ha	Plomo 11340 allado que 25 g	Hierro 7874 de un metal des	7470 salojan en una prol	beta c
En el laborato	Metal Densidad (kg/m³) orio hemos ha	Plomo 11340	Hierro 7874 de un metal des	7470 salojan en una prol	beta c
En el laborato	Metal Densidad (kg/m³) orio hemos ha	Plomo 11340 allado que 25 g	Hierro 7874 de un metal des	7470 salojan en una prol	beta c
I En el laborato	Metal Densidad (kg/m³) orio hemos ha	Plomo 11340 allado que 25 g	Hierro 7874 de un metal des	7470 salojan en una prol	beta c

4	
-	_)
	/
4	

Estados de agregación	Ficha de trabajo 2
Nombre y apellidos:	
Curso:	Fecha:

ESTUDIO DE ALGUNAS PROPIEDADES DE LA MATERIA (II)

1.	Lee atentamente el texto y contesta a las cuestiones que a continuación se plantean:
	«Vivimos en un espacio de tres dimensiones, donde todos los cuerpos ocupan una dimensión determinada. Si queremos conocer su extensión lineal, medimos su longitud; para conocer su extensión en dos dimensiones, medimos su superficie, y en tres dimensiones, su volumen. El volumen máximo que puede albergar un recipiente dado se denomina capacidad, que solemos medir en litros, L. Como, además, todos los cuerpos tienen una cierta masa, definimos una nueva magnitud física, la densidad, que se carac-
	teriza por ser una propiedad específica de la materia».

a)	¿De qué trata el texto? Escribe lo que creas más importante de él.
b)	Explica la diferencia entre volumen y capacidad, e indica dos unidades de cada una de estas magnitudes.
c)	Expresa en unidades del SI la densidad de un cuerpo cuyo valor es 1 g/cm³.
d)	Calcula los litros de agua que puede albergar como máximo una piscina que tiene las siguientes dimensiones: 20 m de largo por 8 m de ancho y 1,5 m de profundidad

2. Une mediante flechas las magnitudes de la columna de la izquierda con el instrumento de medida más adecuado que se encuentra en la columna de la derecha:

Masa	Termómetro
Tiempo	Cronómetro
Longitud	Balanza
Temperatura	Regla graduada

autorizado.
fotocopiable
Material
S.A.
Anaya,
© Grupo

No	mbr	e y apellidos:
3.	vai	ompleta el texto siguiente, que describe una experiencia de laboratorio, donde faltar rias palabras y varias cantidades. Una vez leído el texto, ¿podrías darle un título a esta periencia?
		JDA. Las palabras que faltan están entre las que citamos a continuación: rigidez; partículas; densidad; pro a; balanza; cronómetro; cinta de agrimensor.
	La	medida de la de un líquido desconocido nos puede ayudar a determi
	na	r cuál es. Para ello, medimos con una la masa de una
	va	cía, siendo el resultado 235 g. A continuación, añadimos 20 cm³ del líquido proble
	ma	a y volvemos a medir la masa de la probeta con el líquido, obteniendo un valor de
	25	0 g. Por tanto, el líquido tiene una masa de, y su densidad, expre
	sac	da en unidades del SI, es de kg/m³.
	• E	El título de la experiencia podría ser:
	•••	
	•••	
4.	45	os piezas cúbicas iguales, pero una de madera y otra de hierro, tienen las dimensiones cm · 30 cm · 20 cm. Medimos la masa de ambas encontrando, para la pieza de made 14,3 kg, y para la de hierro, 212,5 kg.
	a)	Sin necesidad de hacer ningún cálculo, indica qué material es más denso, la madera o el hierro. Razona la respuesta.
	b)	¿Qué relación existe entre la densidad del hierro y la de la madera? Ten en cuenta que una relación es un cociente, en este caso, el cociente entre la densidad del hierro y la densidad de la madera.
	c)	Supón que las dos piezas estuviesen huecas; ¿en cuál de ellas cabría más agua, en la de madera o en la de hierro? ¿Por qué? ¿Cuántos litros de agua podríamos alberga en ellas?

	•
_	

Estados de agregación	Ficha de trabajo 3
Nombre y apellidos:	
Cureo:	Facha:

CARACTERÍSTICAS DE LOS ESTADOS DE LA MATERIA

1. Completa el texto siguiente con las palabras: partículas; fusión; calor; rigidez; fuertemente:

La principal característica que observamos de un sólido es su
debido a que las que lo forman están unidas muy Pero ur
sólido puede transformarse en un líquido si le comunicamos suficiente
Este cambio de estado se denomina

2. Completa la tabla siguiente, en la que indicamos las características de sólidos, líquidos y gases. Debes indicar si son rígidos o no, si su compresibilidad es muy alta, baja o muy baja, y si tienen forma o volumen propio o adoptan la que tiene el recipiente.

Estado físico	Rigidez	Compresibilidad	Forma propia	Volumen propio
a) Sólido				
b) Líquido				
c) Gaseoso				

3. Completa el esquema siguiente. Encima de cada figura debes colocar el estado de agregación en el que se encuentra la sustancia: sólido, líquido o gaseoso. A continuación, explica brevemente qué diferencias observas entre las estructuras de un sólido, de un líquido y de un gas.

 •••••••	• • • • • • • • • • • • • • • • • • • •	 •••••	•••••
 •	• • • • • • • • • • • • • • • • • • • •	 •••••	•••••

-	-
-	4
/	•
_	-

Estados de agregación	Ficha de trabajo 4
Nombre y apellidos:	
Curso:	Fecha:

Gráficas de cambio de estado

1. La glicerina (C₃H₈O₃) tiene una temperatura de fusión de 17,8°C, y su temperatura de ebullición es de 290 °C. A partir de estos datos, construye una posible gráfica de calentamiento de la glicerina.

Responde al cuestionario:

a)	Explica qué fenómenos ocurren en las mesetas de tu gráfico. ¿Por qué en estos tra-
	mos no aumenta la temperatura?

b)	En qué estado de agregación estará la glicerina a una temperatura de 0 °C?	

	•
_	_

Estados de agregación	Ficha de trabajo 5
Nombre y apellidos:	
Curso:	Fecha:

Cambios de estado de varias sustancias

1. A partir de las temperaturas de fusión y de ebullición del agua, butano, etanol y mercurio, que se dan en la primera tabla, completa la segunda, indicando el estado de agregación en el que se encuentra cada sustancia en el intervalo de temperaturas señalado:

Sustancia Temperatura de fusión (°C)		Temperatura de ebullición (°C)
Agua	0	100
Butano	-138	0
Etanol	-114	78
Mercurio	-39	357

Intervalo de temperatura	Agua	Butano	Etanol	Mercurio
de –130 °C a –120 °C		Líquido		
de –100 °C a –45 °C			Líquido	
de –20 °C a –1 °C				
de 1 °C a 50 °C				
de 50 °C a 96 °C		Gas		Líquido
de 110 °C a 320 °C	Gas		Gas	
Por encima de 360 °C				

A partir de los datos de las temperaturas de fusión y de ebullición del agua, butano, etanol y mercurio, completa la siguiente tabla. Expresa la densidad del agua, del butano y del etanol utilizando la notación científica y tres cifras significativas:

T (K)	t (°C)	Sustancia	Estado	Densidad (g/cm³)	Masa (g)	Volumen
		Agua			20	43,096 mL
473		Butano			103	68,879 mL
		Etanol			45	37,943 mL
		Mercurio			3	22,1 cL

	¿Por qué la densidad del agua no es 1 g/cm³ en este caso? ¿Es mayor o menor que este valor? Justifica tu respuesta.
b)	¿Qué masa tiene un volumen de 500 mL de mercurio líquido?

c) ¿Qué volumen ocupa 1 gramo de cada uno de los gases de la tabla en estas condiciones?

2. La figura muestra un gráfico de temperatura-energía térmica suministrada para una determinada sustancia.

Indica:

- a) La temperatura de fusión de la sustancia
- b) La temperatura de ebullición de la sustancia
- c) El estado de agregación de la sustancia a 57 °C, y a 3 °C
- **d)** Dibuja el gráfico de temperaturas que se obtendría al eliminar energía en forma de calor si partimos de esa sustancia a 60 °C (gráfico del proceso regresivo).

La ley de Boyle y Mariotte

Estados de agregación

Nombre y apellidos:

1. Disponemos de datos de presión y volumen de tres situaciones de un gas ideal que se han medido manteniendo la temperatura del gas constante.

> Estado 1 p = 0.95 atmV = 2,49 L

Estado 2 p = 1,20 atmV = 2,04 L

Estado 3 p = 1,50 atmV = 1,63 L

a) Representa los valores en un gráfico p-V.

- b) Expresa matemáticamente la ley de Boyle y Mariotte y calcula el valor de la constante.
- c) Completa el párrafo: La que ejerce un gas y el que ocupa son magnitudes proporcionales. Su es constante.
- d) Explica, utilizando las ideas de la TCM, por qué al disminuir el volumen de un recipiente que contiene un gas, manteniendo constante la temperatura, aumenta la presión.

-	-
_	/
_	_

Estados de agregación	Ficha de trabajo 7
Nombre y apellidos:	
Curso: Fecha: .	

Leyes de Charles y Gay-Lussac

1. A partir de los datos de la tabla, comprueba que se cumplen las leyes de Charles y Gay-Lussac. Utiliza para ello dos representaciones gráficas, seleccionando adecuadamente los datos de la tabla.

p (atm)	1	1	1	0,9	0,7	1
V (L)	0,5	0,25	0,1	0,25	0,25	0,25
t (°C)	336,8	31,9	-151,0	1,4	-59,6	31,9
T (K)						

- **2.** Expresa matemáticamente las dos leyes anteriores y calcula los valores de las constantes. Expresa estas constantes en unidades del SI.
 - Primera ley de Charles y Gay-Lussac:

.....

• Segunda ley de Charles y Gay-Lussac: