

Creating a well-being data layer using open source data

Contents

The problem

The Data

Solution

Conclusion

The problem

Demographic Health Survey is hard to obtain

Problem Statement

Conducting economic surveys require huge amount of resources.

Goals

Using Open-Source available data, is it possible to replace current processes?

The Data

Demographic Health Survey (DHS)

Description

DHS national household surveys conducted in 2015.

Usage

Different targets to predict, with the lowest aggregation being the DHS cluster.

	Wealth	Toilet Facility	Roof Material	Population_Density
DHSCLUST				
10001	richer	Flush	Metal	Average
10002	middle	Flush	Metal	Very Low
10003	middle	Flush	Metal	Very Low
10004	middle	Flush	Metal	Very Low
10005	middle	Flush	Metal	Very Low

Open Street Maps

Description

Open Source geospatial data — map tiles (geotiff) and vector data

Usage

Location about the hospitals, cafe's and colleges.

Status

Python modules implemented to use the OSM API to collect vector and geotiff data given a district boundary.

Night Time Lights

Description

NASA's VIIRS/NPP Lunar BRDF-Adjusted Nighttime Lights Daily L3 Global 500m Linear Lat Lon Grid.

Usage

To be used as a proxy measure for economic activity

Status

Python script to download hdf5 files based on region and time range and convert to geotiff format.

Joining DHS, OSM and NTL data

Voronoi Polygons

Given a finite set of DHS cluster points the map is divided into cells where each cell covers the region closest to a particular cluster point.

Combine DHS and OSM data

Every OSM data point gets the same id as the Voronoi Cell which contains it.

Solution

Data Integration

Description

Integrating all the data in a pipeline:

- **DHS**(Target): Wealth Indicators
- OSM(Features): Describing amenities in the Cluster

Usage

Different targets to predict, with the lowest aggregation being the DHS cluster.

am	nenity	highway	landuse	building	Toilet Facility	Roof Material
ho	spital	crossing	forest	yes	No Facility	Metal
	clinic	crossing	residential	yes	Flush	Cement
pa	arking	crossing	residential	yes	No Facility	Metal
C	ollege	motorway_junction	residential	yes	No Facility	Metal

Modeling

The label

Mean Absolute Error of 0.64

- 1: Poorest

- 2 : Poor

- 3: middle

- 4 : richer

- 5 : richest

Modeling

Modeling

Conclusion

Conclusion

Results

Predictive Model that is computationally cheap

- Open Source Data
- No cloud computing resources

Modeling remains explainable and accountable while preserving accuracy

- Explainable and Interpretable machine learning
- Accountable
- High Generalization

Future Work

Steps

- Scale Up
- Integrate with NTL
- Temporal Evaluation

Scope

- Towards an application?
- Towards deployment?
- Towards research?