

Reg. No. of							
Student							

MATLAB Semester End Examination Model Question Paper

Faculty	Engineering and Technology	Engineering and Technology							
Programme	B. Tech	Department	Mathematics and Statistics						
Semester / Year	3/2 Batch 2022								
Course Code	MTB201A	MTB201A							
Course Title	Engineering Mathematics-3								

INSTRUCTIONS TO STUDENTS:

- 1. In the actual exam, you will not get internal choices as shown in the model question paper.
- 2. Answer any five full questions
- 3. Use only SI units
- 4. Missing data may be appropriately assumed
- 5. Notations used have usual meaning
- 6.

Maximum Duration: 2 Hours Maximum Marks: 50

IMPORTANT:

Do not write anything except your register number on the question paper. Please handover the question paper to the room supervisor at the end of examination.

Q. No.	Question	Marks	СО
	a. Given $A = \begin{bmatrix} 4 & 6 & 9 \\ 3 & 0 & 9 \\ 5 & 3 & 15 \end{bmatrix}$ Use MATLAB operations or built-in functions to obtain: I. Determinant of A II. Transpose of A III. Rank of A	6	4
1	b. Write a MATLAB script to determine the following sum: $S_n = \sum_{i=0}^n \frac{1}{i^2+1}.$ Hence find the value of sum for $n=10$. OR OR Use MATLAB built-in function to determine the Fourier transform of $f(t) = \cos 3t + \sin 2t.$	4	4

Reg. No. of							
Student							

	Student		
	a. Plot the periodic function $f(x) = x^2 + x + 2$, $0 < x < 3$, $f(x+3) = f(x)$ in the interval $(0,9)$.		
	OR	5	4
2	Plot the periodic function $f(x) = \begin{cases} x & 0 < x < \pi \\ 2\pi - x & \pi \le x < 2\pi' \end{cases}$ $f(x + 2\pi) = f(x)$ in the interval $(-4\pi, 4\pi)$.		
	b. Plot the vector field $\mathbf{F}(x, y, z) = x\mathbf{i} + y^2\mathbf{j} + (z^2 + 1)\mathbf{k}$ in the interval $-2 \le x \le 2, \ -2 < y \le 2 \text{ and } -2 \le z \le 2.$	5	4
	Given that		
3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	4
4	Write a MATLAB function to evaluate following integral by using the Trapezoidal/Simpson's $1/3^{\rm rd}$ rule by dividing the intervals into 6 equal subintervals. $\int_0^6 \frac{dx}{1+x^2} \ dx.$	10	5
5	Manual Calculation: Obtain the solution of the equation $x-\cos x=0$ by Newton-Raphson method with the initial approximation $x_0=0.5$.	10	5
6	Manual Calculation: Determine the solution of the following system of equations by using Gauss-Seidel method by performing four iterations: $10x + 2y + 3z = 15$ $3x + 11y + 7z = 21$ $x + 2y - 10z = -7$	10	5

Reg. No. of							
Student							

Solution:

```
1 a)
>> A=[4 6 9;3 0 9;5 3 15];
>> det(A)
ans =
-27.0000
>> transpose(A)
ans =
  4
      3
          5
  6
      0
          3
  9
         15
      9
>> rank(A)
ans =
  3
1b)
s=0;
n=10;
for i=1:n
    s=s+(1/(i^2+1));
fprintf('Sum of the series is %f\n',s)
>> testeq
Sum of the series is 0.981793
                                           OR
>> syms t w
>> f=cos(3*t)+sin(2*t);
>> fourier(f,t,w)
ans =
pi*(dirac(w - 3) + dirac(w + 3)) - pi*(dirac(w - 2) - dirac(w + 2))*i
2 a)
x = linspace(0,3);
y = x.^2 + x + 2;
ry = repmat(y, 1, 3);
rx = linspace(0, 9, length(ry));
plot(rx,ry,'k*')
xlabel('x')
ylabel('f(x)')
grid on
```


Reg. No. of							
Student							

OR

```
f= @(x) (x).*(0<=x & x<pi)+(2*pi-x).*(pi<=x & x<2*pi);
x1=linspace(0,2*pi,1000);
pfx = repmat(f(x1),1,4);
x2 = linspace(-4*pi,4*pi,length(pfx));
plot(x2,pfx,'*b')
grid</pre>
```


2b)

```
x=linspace(-2,2,5);
y=linspace(-2,2,5);
z=linspace(-2,2,5);
[x,y,z]=meshgrid(x,y,z);
f1=x;
f2=y.^2;
f3=z.^2+1;
quiver3(x,y,z,f1,f2,f3)
xlabel('x')
ylabel('y')
zlabel('z')
```


Reg. No. of							
Student							


```
3
```

```
function [poly] = lag_poly(x,y)
n=length(x);
syms t
poly=0;
for i=1:n
   L=1;
    for j=1:n
        if (i~=j)
           L=L*(t-x(j))/(x(i)-x(j));
        end
   end
   poly=poly+L*y(i);
poly=simplify(poly);
t = x(1):0.001:max(x);
z = eval(poly);
plot(x,y,'*k',t,z,'k')
legend('Data Points','Lagrange Polynomial')
end
>> x=[5 6 9 11]; y=[12 13 14 16];
>> [poly] = lag poly(x,y)
poly =
t^3/20 - (7*t^2)/6 + (557*t)/60 - 23/2
                             f(10) = 14.6667
```


Reg. No. of							
Student							

4

Trapezoidal rule

```
function [I] = trapez(f,a,b,n)
h=(b-a)/n;
x=a:h:b;
I= (h/2)*(f(a)+2*sum(f(x(2:n)))+f(b));
end
>> f=@(x) 1./(1+x.^2);
>> a=0; b=6; n=6;
>> trapez(f,a,b,n)
ans = 1.4108
```

OR

Simpson's 1/3rd rule

```
function [I] = simpson13(f,a,b,n)
h=(b-a)/n;
x=a:h:b;
I= (h/3)*(f(a)+4*sum(f(x(2:2:n)))+2*sum(f(x(3:2:n-1)))+f(b));
end

>> f=@(x) 1./(1+x.^2);
>> a=0; b=6; n=6;
>> simpson13(f,a,b,n)

ans = 1.3662
```


Reg. No. of							
Student							

5)

$$f(x) = x - \cos x, x_0 = 0.5$$

 $f'(x) = 1 + \sin x$

Newton Raphson Method is given by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n - \cos x_n}{1 + \sin x_n} = \frac{x_n \sin x_n + \cos x_n}{1 + \sin x_n}$$

- $i \quad x_i$
- 1 0.5
- 2 0.7552
- 3 0.7391
- 4 0.7390
- 5 0.7390

Therefore x = 0.739 is the root of the given equation

6) Given

$$10x + 2y + 3z = 15$$
$$3x + 11y + 7z = 21$$
$$x + 2y - 10z = -7$$

Solving for x, y, z, we get:

$$x = \frac{1}{10}(15 - 2x - 3z);$$

$$y = \frac{1}{11}(21 - 3x - 7z);$$

$$z = \frac{1}{10}(7 + x + 2y)$$

The iterations by Gauss Seidel are:

1	1.500000	1.500000	1.150000
2	0.855000	0.944091	0.974318
3	1.036705	1.006333	1.004937
4	0.991178	0.999264	0.998971

Therefore x = y = z = 1 is the solution.