YJIK 577.4+550.42

Формы нахождения тяжелых металлов в почвах техногенно загрязненных территорий на примере Артемовского и Днепропетровского металлургических комбинатов

Самчук А. И.¹, Маничез В. И.², Кураева И. В.¹, Высотенко О. А.², Островская Г. П.¹, Петриченко А. В.¹, Билык В. Ж.¹
¹Институт геохимий, минералогии и рудообразования НАН Украины, Киев
²Институт геохимий окружающей среды НАН Украины, Киев

Изучение фракционного состава техногенно загрязненных почв показало, что большая часть тяжелых металлов аккумулируется в аморфных гидроксидах, а также в компонентах труднорастворимой фракции.

Введение. Закономерности миграции тяжелых металлов (ТМ) в почвах, поступление их в трофическую цель определяется не только их концентрацией, но и формами нахождения (ФН). Поэтому определение ФН ТМ в почвах является очень актуальной и важной частью эколого-геохимических исследований.

Традиционно применяются методы анализа ФН элементов, связанных с различными почвенными фазами [1, 3, 4, 6, 7]. Используются реагенты, обладающие разной экстрагирующей силой [5]. Их можно разделить на три группы: неорганические, органические, сочетание органических и неорганических соединений. К числу наиболее распространенных экстрагентов следует отнести ацетатно-аммонийный буфер с рН 4,8. Кроме того, используются, в том числе и нами 1н НNО₃; 0,02 М ЭДТА — СН₃СООNН₄; 0,0054 М ДТПА + 0,01М СаСІ₂ + 0,1 М ТЕА с рН 7,3, различные по извлекающей способности. Наиболее сильные (1 н HCl, 1 н HNO₃), кроме так называемых подвижных форм, извлекают также часть металлов, находящихся в труднорастворимых формах. Наиболее доступна растениям обменная форма.

Цель этой работы — изучение ФН ТМ в почвах территорий Артемовского и Днепропетровского металлургичеких комбинатов.

Объекты и методы исследований. На участках, находящихся в непосредственной близости к Артемовскому комбинату цветных металлов и Днепропетровскому металлургическому комбинату изучены черноземные почвы, принадлежащие к-типам чернозем обыкновенный и чернозем южный.

Участки исследования находятся в степной зоне Украины, с развитыми черноземными почвами, фоновые значения ТМ в которых определяются минеральным вещественным составом подстилающих пород. Однако почвы промзон в значительной мере урбанизи-

Введение. Закономерности миграции тяжелых рованы, поскольку частично привнесены в городские пов (ТМ) в почвах, поступление их в трофичес- пандшафты и находятся под техногенным воздействиемы определяется не только их концентрацией, ем самых разнообразных источников загрязнения.

Поступление загрязняющих веществ в окружающую среду происходит в виде аэрозолей и пылеватых частиц различной размерности, объем которых наиболее высок в черной металлургии и составляет тысячи тонн ежегодного выброса в атмосферу.

Артемовский завод работает на переплаве лома цветных металлов, загрязняя окружающую среду свинцом (до 800 мг/кг в почве), медью (до 1000), цинком (до 500). Днепропетровский металлургический комбинат выбрасывает в воздух аэрозолей и пылеватых частиц 134,6 тысяч тонн в год, что составляет 60 % выбросов города.

Пробы почв отобраны по вертикальным разрезам до глубины 40 и 80 см, с интервалом 5 см. Основное внимание уделено верхнему слою почвенного разреза (от 0 до 5 см), как наиболее информативному при изучении степени техногенного загрязнения.

На участках, прилегающих к Артемовскому комбинату цветных металлов почвенные разрезы изучены по периметру его территории и по профилю в восточном направлении на удалении до 500 м.

На территории Днепропетровского металлургического комбината отбор проб проводили у производственных корпусов и прилегающего жилого массива.

Пробы отбирали методом конверта. В табл. 1 приведены физико-химические свойства образцов почв, использованных для изучения фракционного состава ТМ. Определение общего содержания ТМ проводилось по методикам П. Е. Тулупова и Н. И. Журавлевой [8].

Определение ФН ТМ проводили методом атомно-абсорбционной спектрофотометрии с пламенной атомизацией проб на приборе КАС-115. Общие физиче-

Табинца 1. Физико-химические свойства образцов черноземов

				Обменные катионы, мг*экв/100 г					
Техногеннозагрязненные почвы	Гумус, %	рН солевой	Ил, %	H*	Ca2+	Mg²*	K*	Na*	ΣΕ
Артемовский комбинат					J				
цветных металлов	4,3	6,9	34,15	7,3	2,4	1,1	0,1	1,1	12
Днепропетровский					7				
металлургический комбинат	4,6	7,2	36,7	7,2	2,3	1,2	0,1	1	11,8

Таблица 2,

Схема разделения форм тяжелых металлов Последов ательность Название формы Экстрагент, условия экстракциии экстракции Водораств оримая Вода бидистилированная 1 M MgCl₂ 2 Обменная 1 M CH₃COONa 3 Связанная с карбонатами 0,04 M NH,OH*HCI+25%CH,COOH (95°C) 4 Связанная с оксидами Мл, Fe HNO3+H2O2 (90°C) 5 Связанная с орг. веществом HF+HClO₄ (3:1)

Труднораств оримая

ские и химические свойства почв определяли с использованием общепринятых методик [2].

6

Для выявления роли различных компонентов почвы в связывании ТМ был использован метод стадийного растворения или вытяжек [4, 9], в котором разделение проводили по схеме, представленной в табл. 2.

Результаты и обсуждение. Водорастворимая форма - извлекаемые водой соединения ТМ.

Обменная - представлена непрочно адсорбированными формами ТМ, связанными с гидроксидами железа, марганца, алюминия, кремния, органическим веществом, глинистыми минералами.

Связанная с карбонатами форма объединяет сорбированные ими ТМ и изоморфные примеси.

Сорбированная на аморфных гидроксидах – совокупность форм металлов, образующих поверхностные комплексы, которые переходят в раствор при разрушении гидроксидов железа и марганца.

Связанная с органическим веществом - представлена прочными металлоорганическими комплексами.

Труднорастворимая форма объединяет металлы, входящие в кристаллическую решетку породообразующих и акцессорных минералов.

Как видно из табл. 3, содержание ТМ в техногеннозагрязненных почвах в десятки и сотни раз превышает фоновые значения. Содержание подвижных форм ТМ определялось как сумма значений концентрации металлов водорастворимой (1), обменной (2) и карбонатной (3) форм. Таким образом, подвижность изученных элементов определялась как отношение со- содержания обменного РБ определяется не столько і держания суммы фракций (1, 2, 3) к общему содержа- личиной рН, сколько уровнем его общего содержания в

нию в процентах. По полученным результатам были составлены следующие ряды подвижности техногеннозагрязненных почв: Артемовский комбинат цветных металлов - Ni (14,2) < Pb (18,3) < Cu (21) < Zn (21,28); Днепропетровский металлургический комбинат – Cu (8,5) < Ni (12,03) < Pb (18,55) < Zn (24,5).

Ряд подвижности ТМ (г. Артемовск): S1 < Cd < Mn < Zn = Co < Ni < Pb < Cu, следовательно здесь подвижность ТМ в почвах тесно связана с их гидролизуемостью. Для техногеннозагрязненных почв г. Днепропетровск такой зависимости не наблюдается.

Ряды концентрации форм имеют следующий вид. Артемовский комбинат цветных металлов: Cu 5>4>6>2>3>1; Pb 5>6>4>2>3>1; Zn 5>4>2>6>3>1; Ni 5>4>6>2>3>1;

Днепропетровский металлургический комбинат: Cu 4>6>5>3>2>1; Pb 6>2>5>3>4>1; Zn 4>6>2>5>3>1; Ni 6>4>5>2>3>1.

Содержание ТМ в водорастворимой форме. Кодичество ТМ в этой фракции наименшее по сравнению с остальными и не превышает 1 % общего содержания. Хотя, как показали проведенные нами ранее исследования, при сильном загрязнении почв в эту фракцию может переходить до 50 % ТМ в зависимости от типа почв и жарактера выбросов.

Содержание ТМ в обменной и карбонатной формах не превышает 20 % общего содержания. По литературным данным, содержание Рb для незагрязненных почв в этой фракции составляет 1,1 – 6,5 %. Увеличение

Табинца 3. Формы нахождения ТМ в почвах

,	Формы нахождения						Bancace	Фон,			
TM	1	2	3	4	5	6	сод., мг/кг	ME/KE			
	Артемовский комбинат цветных металлов										
	4.8	297,6	201,6	<u>681,6</u>	770,4	444					
Qu	0,2	12,4	8,4	28,4	32,1	18,5	2400	16			
	0.62	75,02	<u>37,8</u>	132,6	192.8	<u>181</u>					
Pb	0,1	12,1	6,12	21,4	31,1	29,2	620	10			
	<u>50,4</u>	255,6	122,4	<u>550,8</u>	613,8	254,2					
Zn	0,28	14,2	6,8	30,6	34,1	14,1	1800	30			
	0.03	6,86	5.63	24.7	<u>31,6</u>	19					
Ni	0,04	7,8	6,4	28.1	36	21,7	88	7			
		Днеп	опетрово	кий метаг	тургинес	жий комб	инат	· · · · · · · · · · · · · · · · · · ·			
	0.22	3.08	15.4	91.1	26.4	55		, ,			
ထ	0,1	14,1	7,1	41,4	12,2	25,1	220	16			
	0.22	<u>54.6</u>	<u> 26.8</u>	18.4	52.8	117.4					
Pb	0,05	12,4	6,1	42,2	12,1	26,7	440	10			
	0.08	14,4	<u>5.1</u>	30.4	<u>8</u>	21,6					
Zn	0,1	18,1	6,4	38,1	10,1	27,3	80	30			
	0.01	2.4	1.2	11.4	3	11.8					
N	0,03	8,1	4,1	38,1	10,1	39,6	30	7			

Примечание. В числителе − содержание форм нахождения, мг/кг; в знаменателе − в % от валового содержания.

почве и типом источника элемента. Содержание Zn в обменной фракции - от 2 до 7,5 % в зависимости от типа чернозема, в загрязненных почвах - до 23,3 %.

Содержание ТМ в органической форме изменяется от 21,4 до 42,2 %. Максимальное содержание Си и Zn характерно только для Днепропетровского металлургического комбината. Цинк образует с органическим веществом почв преимущественно внешнесферные или неустойчивые комплексные соединения, поэтому роль органического вещества в иммобилизации Zn более значительна. Существенное значение в иммобилизации свинца имеет качественый состав гумуса.

Содержание ТМ в сорбированной на аморфных гидроксидах форме. Из всех фракций лучше всего аккумулируют ТМ гидроксиды. В незагрязненных почвах это может быть связано с нахождением их в продуктах гипергенеза. Возможно, ТМ сами входят в их структуру в современных почвах вследствии процессов гидролиза и окисления. В загрязненных почвах это объясняется дисперсностью и значительной удельной поверхностью, высоким сродством к катионам ТМ и высокой реакционной способностью. Поглощение ТМ гидроксидами происходит путем специфической адсорбции на поверхности твердых частиц с последующей диффузией внутрь твердой фазы. Содержание ТМ – от 10,1 до 36 %. Максимальное содержание всех элементов в к одному типу (промышленно-металлургическому) хаэтой форме наблюдается для техногеннозагрязненных рактер образованных ими аномальных полей разлипочв Артемовского комбината цветных металлов.

Содержание ТМ в труднорастворимой форме. Содержание ТМ изменяется от 14,12 до 39,6 %. Максимальное содержание наблюдается для Pb и Zn техногеннозагрязненных почв Днепропетровского металлургического комбината.

Выводы. Изучены черноземные почвы вблизи Артемовского и Днепропетровского металлургических комбинатов. Основными компонентами, аккумулирующими ТМ в черноземных почвах техногеннозагрязненных территорий являются аморфные гидроксиды, в меньшей степени ТМ накапливаются в труднорастворимой форме. Остальные формы играют второстепенную роль.

Составленные ряды подвижности ТМ позволяют заключить, что подвижность ТМ в черноземных почвах связана с их гидролизуемостью: наиболее подвижны слабогидролизуемые элементы, наименее - сильгидролизуемые.

Ряды концентрации ТМ для различных форм техногеннозагрязненных почв Артемовского комбината цветных металлов и Днепропетровского металлургического комбината существенно различны.

Несхожесть рядов концентрации и подвижности в почвах аномальных полей изученных объектов позволяет заключить, что несмотря на принадлежность их чен. Это можно объяснить использованием разных ви-

Табхица 3. Формы нахождения ТМ в почвах

										
	Формы нахонидения					Bancece	Фон			
TM	1	2	3	4	5	6	COAL, MITKIT	MT/KT		
Артемовский комбинат цветных металлов										
	4.8	297.6	<u>201,6</u>	<u>681.6</u>	770.4	444				
Qu	0,2	12,4	8,4	28,4	32,1	18,5	2400	16		
	0.62	75.02	37.8	132.6	192.8	<u>181</u>				
Pb	0,1	12,1	6,12	21,4	31,1	29,2	620	10		
	50.4	255,6	122.4	<u>550,8</u>	<u>613.8</u>	254.2				
Zn	0,28	14,2	6,8	30,6	34,1	14,1	1800	30		
	0.03	6.86	<u>5.63</u>	<u>24.7</u>	<u>31,6</u>	<u>19</u>				
N	0,04	7,8	6,4	28,1	36	21,7	88	7		
	Днепропетровский металтургинаский комбинат									
	0.22	3.08	15,4	91.1	26.4	<u>5</u> 5				
Qu	0,1	14,1	7,1	41,4	12,2	25,1	220	16		
	0.22	54,6	26,8	18.4	<u>52.8</u>	117,4				
Pb	0,05	12,4	6,1	42,2	12,1	26,7	440	10		
	0,08	14,4	<u>5.1</u>	30,4	<u>8</u>	<u>21,6</u>				
Z'n	0,1	18,1	6,4	38,1	10,1	27,3	80	30		
	0.01	24	1.2	11.4	3	11.8				
Ni.	0,03	8,1	4,1	38,1	10,1	39,6	30	7		

Примечание. В числителе - содержание форм нахождения, мт/кг; в знаменателе - в % от валового содержания.

почве и типом источника элемента. Содержание Zn в обменной фракции – от 2 до 7,5 % в зависимости от типа чернозема, в загрязненных почвах – до 23,3 %.

Содержание ТМ в органической форме изменяется от 21,4 до 42,2 %. Максимальное содержание Си и Zn карактерно только для Днепропетровского металлургического комбината. Цинк образует с органическим веществом почв преимущественно внешнесферные или неустойчивые комплексные соединения, поэтому роль органического вещества в иммобилизации Zn более значительна. Существенное значение в иммобилизации свинца имеет качественый состав гумуса.

Содержание ТМ в сорбированной на аморфных гидроксидах форме. Из всех фракций лучше всего аккумулируют ТМ гидроксиды. В незагрязненных почвах это может быть связано с нахождением их в продуктах гипергенеза. Возможно, ТМ сами входят в их структуру в современных почвах вследствии процессов гидролиза и окисления. В загрязненных почвах это объясняется дисперсностью и значительной удельной поверхностью, высоким сродством к катионам ТМ и высокой реакционной способностью. Поглощение ТМ гидроксидами происходит путем специфической адсорбции на поверхности твердых частиц с последующей диффузией внутрь твердой фазы. Содержание ТМ ~ от 10,1 до 36 %. Максимальное содержание всех элементов в этой форме наблюдается для техногеннозагрязненных почв Артемовского комбината цветных металлов.

Содержание ТМ в труднорастворимой форме. Содержание ТМ изменяется от 14,12 до 39,6 %. Максимальное содержание наблюдается для Рb и Zn техногеннозагрязненных почв Днепропетровского металлургического комбината.

Выводы. Изучены черноземные почвы вблизи Артемовского и Днепропетровского металлургических комбинатов. Основными компонентами, аккумулирующими ТМ в черноземных почвах техногеннозагрязненных территорий являются аморфные гидроксиды, в меньшей степени ТМ накапливаются в труднорастворимой форме. Остальные формы играют второстепенную роль.

Составленные ряды подвижности ТМ позволяют заключить, что подвижность ТМ в черноземных почвах связана с их гидролизуемостью: наиболее подвижны слабогидролизуемые элементы, наименее — сильгидролизуемые.

Ряды концентрации ТМ для различных форм техногеннозагрязненных почв Артемовского комбината цветных металлов и Днепропетровского металлургического комбината существенно различны.

на поверхности твердых частиц с последующей диффузией внутрь твердой фазы. Содержание ТМ ~ от 10,1 до 36 %. Максимальное содержание всех элементов в этой форме наблюдается для техногеннозагрязненных почв Артемовского комбината цветных металлов.

Несхожесть рядов концентрации и подвижности в почвах аномальных полей изученных объектов позволяет заключить, что несмотря на принадлежность их к одному типу (промышленно-металлургическому) характер образованных ими аномальных полей различен. Это можно объяснить использованием разных виспределяет характер выбросов, т. е. форм поступления почв, как фактор формирования техногенного анополлютантов в окружающую среду. Ландшафтно-геомального поля, имеют подчиненное значение.

для сырья и отличиями технологических циклов, что имические условия территорий, в частности, тип

- 1. Антропова Л. В. Поиски рудных месторождений по металлоорганическим формам нахождения элементов // Методика и техника разведки. – Л.: ОНТИ ВИТР, 1971. – т. 76. – С. 36-42.
 - 2. Армнушкина Е. В. Руководство по кимическому акализу почв. М.: Изд-во Моск. ун-та, 1970. 487 с.
 - 3. Зырин Н. Г. Содержание и формы микроэлементов в почвах. М.: Изд-во Моск. ун-та, 1979. 387 с.
- 4. Кузнецов В. А., Шимко Г. А. Метод постадийных вытяжен при геохимических исследованиях. Минск: Наука и техника, 1990. - 65 с.
 - 5. Методические указания по определению подвижных форм микроэлементов в почвах. М.: ЦИНАО, 1973. 47 с.
- 6. Милляр А. Д. Применение ускоренного частично-фазового анализа при геохимических поисках // Бюл. МГИ Минreo CCCP, 1962. - № 1. - C. 16 - 26.
 - 7. Сает Ю. Е., Несвижская Н. И. Изучение форм нахождения элементов во вторичных ореолах. М.: ВИЭМС, 1974. 89 с.
- 8. Тулупов П. Е., Журавлева Н. И. Использование кислотных вытяжек для округления валового содержания тажелых металлов в почвах // Загрязнение почв и сопередельных сред токсикантами промышленного и сельскохозяйственного происхождения. - М.: Гидрометеоиздат, 1987. -- С. 89-98.
 - 9. Shuman L. M. Fractionation method for soil microelements // Soil. Sci. 1985. № 140. P. 11-22.

Вивчення франційного складу техногеннозабруднених ґрунтів показало, що більша частина важких металів акумужюється в аморфиих гідроксидах, а також у компонентах важнорозчинної фракції.

The studies of the fractional composition of the technogeneous contaminated soils showned: the heavy metals is mainly accumulated in amorphous hydroxides, and in the residual fraction.