L2 Norm Estimation

MIT Piotr Indyk

L2 Norm Estimation

Vector x:

A stream is a sequence of updates (i,1)

$$x_i = x_i + 1$$

- Want to estimate ||x||₂ up to 1±ε
- Last week, we have seen how to do that for $||x||_0$:
 - Space: $(1/\epsilon + \log m)^{O(1)}$
 - Technique:
 - Linear sketches $Sum_S(x) = \sum_{i \in S} x_i$ for "random" sets S
 - (Somewhat messy) estimator involving median
- Today: three methods for estimating ||x||₂

 - Johnson-Lindenstrauss
 - Median-based
 - Alon-Matias-SzegedyReally cute and simple
 - Need in future lectures
 - Generalizes to L_p norm for p<2

Lecture 2

Why L₂ norm?

- Database join (on A):
 - All triples (Rel1.A, Rel1.B, Rel2.B)

S.t. Rel1.A=Rel2.A

- Self-join: if Rel1=Rel2
- Size of self-join:

 $\sum_{\text{val of A}} \text{Rows(val)}^2$

Updates to the relation increment/decrement
 Rows(val)

Rel1

Α	В
Lec1	distinct
Lec1	elements
Lec1	norm
Lec2	L2
Lec2	norm

Rel2

Α	В
Lec1	distinct
Lec1	elements
Lec1	norm
Lec2	L2
Lec2	norm

Α	Rel1.B	Rel2.B
Lec1	distinct	distinct
Lec1	distinct	elements
Lec1	distinct	norm
Lec1	elements	distinct
Lec1	elements	elements

Lecture 2

Algorithm I: AMS

Alon-Matias-Szegedy'96

Choose r₁ ... r_m to be i.i.d. r.v., with

$$Pr[r_i=1]=Pr[r_i=-1]=1/2$$

Maintain

$$Z = \sum_{i} r_{i} x_{i}$$

under increments/decrements to x_i

Algorithm A:

$$Y=Z^2$$

"Claim": Y "approximates" ||x||₂² with "good" probability

Analysis

• The expectation of $Z^2 = (\sum_i r_i x_i)^2$ is equal to $E[Z^2] = E[\sum_{i,i} r_i x_i r_i x_i] = \sum_{i,i} x_i x_i E[r_i r_i]$

- We have
 - For $i\neq j$, $E[r_ir_j] = E[r_i]$ $E[r_i] = 0$ term disappears
 - For i=j, $E[r_ir_i] = 1$
- Therefore

$$E[Z^2] = \sum_i x_i^2 = ||x||_2^2$$

(unbiased estimator)

Analysis, ctd.

- The second moment of $Z^2 = (\sum_i r_i x_i)^2$ is equal to the expectation of $Z^4 = (\sum_i r_i x_i) (\sum_i r_i x_i) (\sum_i r_i x_i) (\sum_i r_i x_i)$
- This can be decomposed into a sum of
 - $\sum_{i} (r_i x_i)^4$ →expectation= $\sum_{i} x_i^4$ - $6 \sum_{i < j} (r_i r_j x_i x_j)^2$ →expectation= $6 \sum_{i < j} x_i^2 x_j^2$
 - Terms involving single multiplier r_i x_i (e.g., r₁x₁r₂x₂r₃x₃r₄x₄)
 →expectation=0

Total:
$$\sum_{i} x_{i}^{4} + 6 \sum_{i < j} x_{i}^{2} x_{j}^{2}$$

The variance of Z² is equal to

$$E[Z^{4}]-E^{2}[Z^{2}] = \sum_{i} x_{i}^{4} + 6\sum_{i < j} x_{i}^{2} x_{j}^{2} - (\sum_{i} x_{i}^{2})^{2}$$

$$= \sum_{i} x_{i}^{4} + 6\sum_{i < j} x_{i}^{2} x_{j}^{2} - \sum_{i} x_{i}^{4} - 2\sum_{i < j} x_{i}^{2} x_{j}^{2}$$

$$= 4\sum_{i < j} x_{i}^{2} x_{j}^{2}$$

$$\leq 2 (\sum_{i} x_{i}^{2})^{2}$$

Analysis, ctd.

- We have an estimator Y=Z²
 - $E[Y] = \sum_{i} x_{i}^{2}$ - $\sigma^{2} = Var[Y] \le 2 (\sum_{i} x_{i}^{2})^{2}$
- Chebyshev inequality^{Wiki}:

$$Pr[|E[Y]-Y| \ge c\sigma] \le 1/c^2$$

- Algorithm B:
 - Maintain $Z_1 \dots Z_k$ (and thus $Y_1 \dots Y_k$), define $Y' = \sum_i Y_i/k$
 - $E[Y'] = k \sum_{i} x_i^2 / k = \sum_{i} x_i^2$
 - $-\sigma'^2 = Var[Y'] \le 2k(\sum_i x_i^2)^2/k^2 = 2(\sum_i x_i^2)^2/k$
- Guarantee:

$$Pr[|Y' - \sum_{i} x_{i}^{2}| \ge c (2/k)^{1/2} \sum_{i} x_{i}^{2}] \le 1/c^{2}$$

• Setting c to a constant and $k=O(1/\epsilon^2)$ gives $(1\pm\epsilon)$ -approximation with const. probability

Comments

- Only needed 4-wise indepence of r₁...r_m
 - Can generate such vars from O(log m) random bits
- What we did:
 - Maintain a "linear sketch" vector $\mathbf{Z} = [Z_1...Z_k] = R \mathbf{x}$
 - Estimator for $||x||_2^2$: $(Z_1^2 + ... + Z_k^2)/k = ||Rx||_2^2/k$
 - "Dimensionality reduction": x→ Rx
 - ... but the tail somewhat "heavy"
 - Reason: only used second moment of the estimator

Algorithm II: Dim. Reduction (JL)

Interlude: Normal Distribution

- Normal distribution N(0,1):
 - Range: (-∞, ∞)
 - Density: $f(x)=e^{-x^2/2}/(2\pi)^{1/2}$
 - Mean=0, Variance=1
- Basic facts:
 - If X and Y independent r.v. with normal distribution, then X+Y has normal distribution^{WIKI}
 - $Var(cX)=c^2 Var(X)$
 - If X,Y independent, then Var(X+Y)=Var(X)+Var(Y)

A different linear sketch

- Instead of ±1, let r_i be i.i.d. random variables from N(0,1)
- Consider

$$Z = \sum_{i} r_i x_i$$

- We still have that $E[Z^2] = \sum_i x_i^2 = ||x||_2^2$, since:
 - $E[r_i] E[r_i] = 0$
 - $E[r_i^2]$ = variance of r_i , i.e., 1
- As before we maintain Z=[Z₁ ... Z_k] and define

$$Y = ||Z||_2^2 = \sum_j Z_j^2$$
 (so that $E[Y] = k||x||_2^2$)

We show that there exists C>0 s.t. for small enough ε>0

$$Pr[||Y - k||x||_2^2| > \varepsilon k ||x||_2^2] \le exp(-C \varepsilon^2 k)$$

Proof

See the attached notes,
 by Ben Rossman and Michel Goemans