Исследование работы алгоритма KNearestNeighbors на примере датасета MNIST

Тыцкий Владислав

Октябрь 2020

Введение

Требуется решить задачу классификации с помощью метрического метода KNearestNeighbors(метод К ближайших соседей) на примере известного датасета MNIST.

MNIST - база данных рукописных цифр. Каждая цифра представляется в виде черно-белого изображения 28×28 пикселей, что эквивалентно вектору $x \in \mathbb{R}^{784}$. Датасет содержит 70000 размеченных цифр. В данном исследовании мы будем использовать обучающую выборку размера 60000, а тестовую соответсвенно 10000. ¹

Задание №1

Сравним различные алгоритмы нахождения ближайших соседей — brute, kd _tree, ball _tree и my _own.

 my_own — самописная реализация, которая вычисляет полную матрицу расстояний $D^{T\times N}$, где T — размер тестовой выборки, N — размер обучающей выборки.

brute, kd_tree, ball_tree — реализации поиска соседей из библиотеки sklearn.

Сравнение скорости работы

Так как описанные выше методы нахождения соседей являются детерминированными (100% точными), то главным критерием выбора одного из них для дальнеших исследований будет служить скорость работы. В случае MNIST важно знать как хорошо ведут себя алгоритмы в пространстве большой размерности \mathbb{R}^{784} .

Для экспериментов были выбраны подпространства размерности 10, 50, 100. В качестве меры расстояния возьмем евклидову метрику.

¹В некоторых частях исследования будет использоваться уменьшенная выборка т.к. вычислительная машина Тыцкого В.И. тяжело справляется с такой нагрузкой. Во всех случаях, где не оговаривается иное, будет использоваться полная выборка

Рис. 1:

На графике (Рис. 1) представлены результаты вычисления ближайших соседей для тестовой выборки размера 3000 и 10000 для обучающей выборки.

Из графика время работы kd_tree и ball_tree с ростом размерности пространства увеличивается линейно. Это связано с принципами работы алгоритма и так явлением называемым "Проклятие размерности". Brute и my_own имеют практически константое время работы алгортима, потому что основаны на простом построении матрицы расстояний, вычисление нормы разности $||x_i - x_j||$ по сравнению с построением матрицы имеет незначительное количество операций.

Далее везде будем использовать либо brute, либо my_own 2

Задание №2/3

Требуется по кросс-валидации с тремя фолдами оценить точность и время работы в зависимости от следующих факторов:

- 1. k от 1 до 10 (только точность)
- 2. евклидова или косинусная метрика
- 3. используются ли веса или нет (только точность) 3

Кросс-валидация проводилась на обучающей выборке размером 60000

 $^{^2}$ Кроме евклидовой метрики нам понадобится косинусное расстояние— $cos(x,y) = 1 - \frac{(x,y)}{||x||_2||y||_2}$. Sklearn метод, реализующих поиск соседей не поддерживает косинусное расстояние, поэтому часто будем использовать метод my_own, у которого есть поддержка этого расстояния.

 $^{^3}w_k=rac{1}{
ho(X,X_k)+10^{-5}},$ где w_k вес K-ого ближайшего соседа X_k для X

Рис. 2:

На графике (Puc.2) представлены результаты вычисления качества в зависимости от вышеперечисленных параметров

- Косинусное расстояние (с весами и без) лучше евклидова для любых k.
- Использование весов улучшает качество для любых k.
- Качество постепенно падает у всех алгоритмов, если k > 4
- Лучшим оказался алгоритм с k=4 использующий косинусное расстояние и веса. Его точность: 0.975

Интересно, что без весов лучшее качество достигается при k=3, а с весами при k=4. Это говорит о том, что веса в некотором смысле регуляризуют модель — она использует информацию от большего числа соседей, но не "доверяет" слишком далеким объектам.

Скорость работы

Посмотрим влияет ли метрика на скорость работы алгортима. В обоих используется my оwn. Размер обучающей выборки 10000.

test size	euclid	lean	cosine		
	mean(sec)	$\mathrm{std}(\mathrm{sec})$	mean(sec)	std(sec)	
1000	0.917	0.015	0.900	0.001	
2000	1.710	0.027	1.796	0.113	
3000	2.547	0.021	2.608	0.025	

Таблица 1: Сравнение скорости работы в зависимости от метрики

Можно сделать вывод, что метрика не влияет на скорость работы алгоритма. Это вполне логично — обе реалзиции работают с асимптотикой $\Theta(n^{2.3727})$ (Алгоритм Копперсмита — Винограда)

Задание №4

Применим лучший алгоритм (cosine, k=5) для тестовой выборки размером 10000.

Точность на тесте: 0.9771

Сравнение с лучшими алгоритмами

Рассмотрим таблицу (Таблица 2) лучших алгоритмов для датасета MNIST.

Type	Preprocessing	Error rate (%)
Convolutional neural network	Data augmentation	0.17
Random Multimodel Deep Learning (RMDL)	None	0.18
Convolutional neural network	Expansion of the train data	0.21
Convolutional neural network	Width normalizations	0.23
Convolutional neural network	Expansion of the train data	0.27
Convolutional neural network (CNN)	Expansion of the train data	0.31
Deep neural network	None	0.35
K-Nearest Neighbors	Shiftable edges	0.52
Support-vector machine (SVM)	Deskewing	0.56
Deep neural network	None	0.7
Boosted Stumps	Haar features	0.87
Deep neural network (DNN)	None	1.6
K-Nearest Neighbors (my realisation)	None	2.3
Random Forest	Statistical pixel importance	2.8
Non-linear classifier	None	3.3
Linear classifier	Deskewing	7.6

Таблица 2: Сравнение с лучшими алгоритмами

Даже на бейзлайне мы получаем неплохие результаты. С ассuracy 0.948 в таблице присутствует другой алгоритм KNN [?]

Ошибки алгоритма

Интересно взглянуть на каких именно объектах наша модель ошибалась. Для этого построим матрицу ошибок(confusion matrix) (Рис.3. Значения на диагонали убраны, в данном случае они нам неинтересны.

Рис. 3: Матрица ошибок

Можно выделить самые главные причины ошибок - выбросы и непосредственно ошибки модели. Выбросы в данном случае - это такие объекты, которые даже человеку будет тяжело распознать. Эту проблему невозможно исправить никакой моделью. В таблице (Таблица 3) нижже изображено несколько выбросов.

picture	4	2	ঠ	5	1	8	S	Q	4
true label	4	5	5	5	7	8	8	9	9
predict label	9	3	3	8	1	3	3	0	4

Таблица 3: Выбросы

Рассмотрим ошибки модели. Некоторые из них можно было бы решить аугментацией. Расширив обучающую выборку путем изменения исходных объектов (поворот, размытие, сдвиг) мы могли бы лучше решать задачу классификации.

В таблице (Таблица 4) изображены несколько объектов, которые теоретически можно было классифицировать правильно, если бы мы применили к ним фильтр Гаусса.

	6	3	8
picture			
true label	0	3	8
predict label	6	2	6

Таблица 4: Фильтр Гаусса

В таблице (Таблица 5) изображены объекты, которые были классифицированы неправильно лишь из-за того, что они повернуты относительно центра изображения слишком сильно. Аугментация могла бы улучшить качество на подобных объектах.

	\checkmark	એ	シ	У.	4	Q
$\mathbf{picture}$		-		_	-	
true label	2	2	3	4	4	6
predict label	4	9	2	1	9	0

Таблица 5: Повороты

Задание №5