1 Differentiaalvergelijkingen

Belangrijk: maak een onderscheid tussen lineaire en niet-lineaire differentiaalvergelijking. De oplossingsmethode verschilt en het is dus belangrijk van in het begin te kijken met welk geval we te maken hebben.

1.1 Lineaire differentiaalvergelijking

Voor de algemene oplossing van Ly = f geldt altijd: $y_{algemeen} = y(x) = y_p + \sum_{i=1}^n c_i y_i$

willekeurige coefficienten, eerste orde $y' = a(x)y + b(x)$			
homogeen	partikulier		
constante coefficienten, willekeurig orde $p(D)y = f$			
homogeen	partikulier		
bepaal fundamenteel stel	f zelf een oplossing van $p(D)y = 0$	anders	
(zie Tabel 1.1 op pagina 19)	'methode onbepaalde coefficienten'	'variatie van de constante'	
Euler differentiaalvergelijking			
(veranderlijke coefficienten, willekeurige orde, speciaal geval)			

1.2 Niet-Lineaire differentiaalvergelijkingen

Het beginwaardeprobleem y' = f(x, y) met $y(x_0) = y_0$ heeft een unieke oplossing.

Bernouilli differentiaalvergelijking $y' = a(x)y + b(x)y^{\alpha}$				
pas transformatie $y=z^{\beta}$ toe met $\beta=\frac{1}{1-\alpha}$				
los de nieuwe (lineaire) differentiaalvergelijkin op				
differentiaalvergelijking $Mdx + Ndy = 0$ (A)				
I) 'scheiding van de veranderlijken'	II) 'exacte differentiaalvergerlijking'	III) 'integrerende factor'		
(speciaal geval)	indien $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ geldt $G(x,y) = C$	indien $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$		
integreer de vergelijking (A)	(G is impliciete voortelling oplossing)	kies factor $P(x)$		
en werk verder uit	$G = \int M dx + F(y)$ en			
	$\frac{\partial G}{\partial y} = N$			
oplossing via parametrisatie				
mogelijke toepassingen				
stroomlijnen	orthogonale krommen	steilste-hellingspad		

(gemaakt door Ignace Bossuyt)