

ЭТИКЕТКА

СЛКН.431271.008 ЭТ Микросхема интегральная 564 ЛА7В Функциональное назначение – Четыре логических элемента «2И-НЕ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Вход
2	Вход	9	Вход
3	Выход	10	Выход
4	Выход	11	Выход
5	Вход	12	Вход
6	Вход	13	Вход
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)^{\circ}$ C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
типменование наражетра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; 10 \; B$	$ m U_{OL}$	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{OH}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IH}=7,0~B$	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B U_{CC} = 10 B, U_{IL} = 3,0 B	U _{OH min}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	${ m I}_{ m IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~{\rm B}$	I_{IH}	-	0,1

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5~B,~U_O = 0,5~B$ $U_{CC} = 10~B,~U_O = 0,5~B$	I_{OL}	0,5 1,0	- -
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{O} = 4.5$ B $U_{CC} = 10$ B, $U_{O} = 9.5$ B	I_{OH}	/-0,5/ /-1,0/	- -
9. Ток потребления, мкA, при: $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	I _{cc}		0,05 0,1 2,0
10. Ток потребления в динамическом режиме, мА, при: $U_{CC} = 10~B,~C_L = 50~\pi\Phi$	I _{occ}	-	0,17
11. Время задержки распространения при включении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PHL}	-	160 80
12. Время задержки распространения при выключении, нС, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ	t _{PLH}	- -	160 80
13. Входная емкость, п Φ , при: U_{CC} = 10 В	C _I	-	7,5

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ,
з том числе:	
золото	г/мм
на 14 выводах, длиной	MM.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- 2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В 11~0398-2000~ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более 65~ С не менее 100000~ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC} = 5B \pm 10\%$ не менее 120000~ ч.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4	СВЕДЕНИЯ	O	ПРИЕМ	1KE
---	----------	---	-------	-----

Микросхемы 564 ЛА7В соответствуют техническим условиям бК0.347.064 ТУ 1/02 и признаны годными для эксплуатации.

Приняты по		ОТ		_
	(извещение, акт и др.)		(дата)	
Место для шт	гампа ОТК			Место для штампа ВП
Место для шт	гампа «Перепроверка	произ	ведена	
				(дата)
Приняты по		OT		
	(извещение, акт и др.)		(дата)	
Место для шт	ампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.