Statu	Status Finished		
Starte	Monday, 23 December 2024, 5:33 PM		
Complete	Tuesday, 3 December 2024, 8:45 AM		
Duratio	n 20 days 8 hours		
Question 1 Correct Marked out of 3.00 F Flag question	Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i!=j. Input Format 1. First line is number of test cases T. Following T lines contain: 2. N, followed by N integers of the array 3. The non-negative integer k Output format Print 1 if such a pair exists and 0 if it doesn't. Example		

Input:
1
3 1 3 5
4
Output:
1
Input:
1
3 1 3 5
99
Output:
0

```
#include<stdio.h>
    int main()
 3 ,
         int t;
        scanf("%d",&t);
        while(t--)
             int n;
             scanf("%d",&n);
10
             int a[n];
11
             for(int i=0;i<n;i++)</pre>
12 1
                 scanf("%d",&a[i]);
13
14
15
             int k;
16
             scanf("%d",&k);
17
             int flag=0;
18
             for(int i=0;i<n;i++)</pre>
19 ,
20
                 for(int j=i+1;j<n;j++)</pre>
21 1
22
                      if(a[i]-a[j]==k||a[j]-a[i]==k)
23
24
                          flag=1;
25
                          break;
26
27
                 if(flag)
28
29
                 break;
30
             printf("%d\n",flag);
31
32
```


33

return 0;

Question Z	Sai
Correct	On
Marked out of 5.00	
⟨ Flag question	Co
	pu
	yo
	Inp
	The
	Th
	an
	Th
	ith
	Co

Sam loves chocolates and starts buying them on the 1st day of the year, Each day of the year, x, is numbered from 1 to Y. n days when x is odd, Sam will buy x chocolates; on days when x is even, Sam will not purchase any chocolates. emplete the code in the editor so that for each day Ni (where $1 \le x \le N \le Y$) in array arr, the number of chocolates Sam irchased (during days 1 through N) is printed on a new line. This is a function-only challenge, so input is handled for u by the locked stub code in the editor. put Format e program takes an array of integers as a parameter. e locked code in the editor handles reading the following input from stdin, assembling it into an array of integers (arr), d calling calculate(arr). e first line of input contains an integer, T (the number of test cases). Each line i of the T subsequent lines describes the test case as an integer, Ni (the number of days). onstraints

4

Explanation

Test Case 0: N = 1

Test Case 1: N = 2

Test Case 2: N = 3

new line.

Answer: (penalty regime: 0 %)

Sam buys 1 chocolate on day 1 and 0 on day 2. This gives us a total of 1 chocolate. Thus, we print 1 on a new line.

Sam buys 1 chocolate on day 1, 0 on day 2, and 3 on day 3. This gives us a total of 4 chocolates. Thus, we print 4 on a

Sam buys 1 chocolate on day 1, giving us a total of 1 chocolate. Thus, we print 1 on a new line.

```
int main()
 3 ,
        int t;
        scanf("%d",&t);
        while(t--)
            int n,c=0;
            scanf("%d",&n);
10
            for(int i=0;i<=n;i++)</pre>
11 *
12
                if(i%2!=0)
13
                c=c+i;
14
15
            printf("%d\n",c);
16
17
        return 0;
18
19
```

#include<stdio.h>

	Input	Expected	Got	
~	3	1	1	~
	1	1	1	
	2	4	4	
	3			
~	10	1296	1296	V
	71	2500	2500	
	100	1849	1849	
	86	729	729	
	54	400	400	
	40	25	25	
	9	1521	1521	
	77	25	25	
	9	49	49	
	13	2401	2401	

Passed all tests! ✓

```
Correct
Marked out of
7.00
Flag question
```

Question 3

The number of goals achieved by two football teams in matches in a league is given in the form of two lists. Consider:

• Football team A has played three matches and has scored (1, 2, 3) goals in each match respectively.

- Football team A, has played three matches, and has scored { 1 , 2 , 3 } goals in each match respectively.
- Football team B, has played two matches, and has scored { 2, 4 } goals in each match respectively.
- Your task is to compute, for each match of team B, the total number of matches of team A, where team A has scored less than or equal to the number of goals scored by team B in that match.
- In the above case:

Hence, the answer: {2, 3}.

given order.

- For 2 goals scored by team B in its first match, team A has 2 matches with scores 1 and 2.
- For 4 goals scored by team B in its second match, team A has 3 matches with scores 1, 2 and 3.

Complete the code in the editor below. The program must return an array of m positive integers, one for each maxes[i] representing the total number of elements nums[j] satisfying nums[j] \leq maxes[i] where $0 \leq j < n$ and $0 \leq i < m$, in the

It has the following: nums[nums[0],...nums[n-1]]: first array of positive integers

maxes[maxes[0],...maxes[n-1]]: second array of positive integers

Constraints

 $2 \le n, m \le 105$

 $1 \le \text{nums}[j] \le 109$, where $0 \le j < n$.

 $1 \le \text{maxes}[i] \le 109$, where $0 \le i < m$.

Input Format For Custom Testing

Input from stdin will be processed as follows and passed to the function.

The next n lines each contain an integer describing nums[j] where $0 \le j < n$.

The first line contains an integer n, the number of elements in nums.

The next line contains an integer m, the number of elements in maxes.

The next m lines each contain an integer describing maxes[i] where $0 \le i < m$.

Sample Case 0

Sample Input 0

```
5
Sample Output 0
Explanation 0
We are given n = 4, nums = [1, 4, 2, 4], m = 2, and maxes = [3, 5].
     For maxes[0] = 3, we have 2 elements in nums (nums[0] = 1 and nums[2] = 2) that are \leq maxes[0].
    For maxes[1] = 5, we have 4 elements in nums (nums[0] = 1, nums[1] = 4, nums[2] = 2, and nums[3] = 4) that are \leq
maxes[1].
```

Thus, the function returns the array [2, 4] as the answer.
Sample Case 1
Sample Input 1
5
2
10
5
4
8
4
3
1
7
8

```
Sample Output 1
0
3
4
Explanation 1
We are given, n = 5, nums = [2, 10, 5, 4, 8], m = 4, and maxes = [3, 1, 7, 8].
     For maxes[0] = 3, we have 1 element in nums (nums[0] = 2) that is \leq maxes[0].
     For maxes[1] = 1, there are 0 elements in nums that are \leq maxes[1].
3.
     For maxes[2] = 7, we have 3 elements in nums (nums[0] = 2, nums[2] = 5, and nums[3] = 4) that are \leq maxes[2].
     For maxes[3] = 8, we have 4 elements in nums (nums[0] = 2, nums[2] = 5, nums[3] = 4, and nums[4] = 8) that are \leq
maxes[3].
Thus, the function returns the array [1, 0, 3, 4] as the answer.
Answer: (penalty regime: 0 %)
```

```
Answer: (penalty regime: 0 %)
      #include<stdio.h>
       int main()
    3 ,
           int s1,s2,ans;
           scanf("%d",&s1);
           int ta[s1];
           for(int i=0;i<s1;i++)
           scanf("%d",&ta[i]);
           scanf("%d",&s2);
   10
           int tb[s2];
   11
           for(int i=0;i<s2;i++)
           scanf("%d",&tb[i]);
   12
   13
           for(int j=0;j<s2;j++)</pre>
   14 *
   15
                ans=0:
   16
               for(int i=0;i<s1;i++)</pre>
   17 •
   18
                    if(tb[j]>=ta[i])
   19
                    ans++;
   20
   21
                printf("%d\n",ans);
   22
   23
           return 0;
   24
```

	Input	Expected	Got
~	4	2	2
	1	4	4
	4		
	2		
	4		
	2		
	3		
	5		
~	5	1	1
	2	0	0
	10	3	3
	5	4	4
	4		
	8		
	4		
	3		
	1		
	7		
	8		

Passed all tests! <