Practical 1: Import the legacy data from different sources such as (Excel,

SqlServer, Oracle etc.) and load in the target system.

Importing Excel Data

- 1) Launch Power BI Desktop.
- 2) From the Home ribbon, select Get Data O Data Feed
- 3) Paste the link

http://services.odata.org/V3/Northwind/Northwind.svc/

4) Select orders table and click load

Practical 2: Perform the Extraction Transformation and Loading (ETL) process to construct the database in the Sqlserver / Power BI. Step1:

Home- OData Feed

http://services.odata.org/V3/Northwind/Northwind.svc/

Select Orders and Products and click transform data

Step2:

Remove all the columns and keep **Productid**, **productname**, **quantityperunit**, **unitinstock**

Step3:

Change the data type of unitsinstock column to whole number

Step4:

Select order_details column

Click on the right icon

Click on expand

Ok

Step5:

Add column – Custom column - give column name (linetotal) – enter formula

[Order_Details.UnitPrice]*[Order_Details.Quantity]

Step6:

Rename the column name as Total

Step7:

Left click and drag the Total column beside the shipcountry column

Step8:
Close and apply
Step9:
Select data, the tables will be displayed
Step10:
Click manage relationships
Step11:
Click edit and click ok
Step12:
Click model and the ER diagram will be displayed
Practical 3: Data Visualization from ETL Process
Step1:
From Fields drag and drop the products_name on the canvas
Drop Unitsinstock in the same table
Step2:
Select the table on the canvas and click on the clustered column chart
Step3:
Place ProductName in axis
Place Unitsinstock in value
Step4:
Go to the settings – security – check the last box
Step5:
Right click on Unitsinstock and click sum
Step6:
Drag and drop ordersdate and total
Select line chart
Drag and drop the total from legend to values and the line chart will be generated
Step7:
Drag and drop shipcountry on the canvas

Practical 4: Apply the what – if Analysis for data visualization. Design and generate necessary reports based on the data warehouse data.

- 1. Create the Excel workbook.
- 2. Add formula in formula bar of D10 =60*50+40*20
- 3. On the Data tab, in the Forecast group, click What-If Analysis.
- 4. Click Scenario Manager.
- 5. The Scenario Manager dialog box appears.
- 6. Add a scenario by clicking on Add.
- 7. Type a scenario name as 60% highest and changing place to \$C\$4
- 8. Enter the corresponding value 0.6 and click on OK again.
- 9. Next, add 4 other scenarios (70%, 80%, 90% and 100%).

Practical 5: Implementation of Classification algorithm in R Programming.

```
# Get the data points in form of a R vector.
rainfall <-
c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)
# Convert it to a time series object.
rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency = 12)
# Print the timeseries data.
print(rainfall.timeseries)
# Give the chart file a name.
png(file = "rainfall.png")
# Plot a graph of the time series.</pre>
```

```
plot(rainfall.timeseries)
# Save the file.
dev.off()
```

Practical 6: Practical Implementation of Decision Tree using R Tool

```
Step1: install.packages("party")
Step2:
# Load the party package. It will automatically load other dependent
packages.
library(party)
# Print some records from data set readingSkills.
print(head(readingSkills))
Step3:
# Load the party package. It will automatically load other dependent
packages.
library(party)
# Create the input data frame.
input.dat <- readingSkills[c(1:105),]</pre>
# Give the chart file a name.
png(file = "decision tree.png")
# Create the tree.
output.tree <- ctree(</pre>
nativeSpeaker ~ age + shoeSize + score,
data = input.dat)
# Plot the tree.
plot(output.tree)
# Save the file.
dev.off()
```

Practical 7: Perform the data clustering using clustering algorithm.

```
Step 1:
newiris <- iris
newiris$Species <- NULL
(kc <- kmeans(newiris,3))
Step2:
table (iris$Species,kc$cluster)
Step3:
plot(newiris[c("Sepal.Length","Sepal.Width")],col=kc$cluster)</pre>
```

Practical 8: Prediction Using Linear Regression

```
Step1:
```

```
x \leftarrow c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y \leftarrow c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
# Apply the lm() function.
relation <- lm(y~x)
print(relation)
Step2:
x \leftarrow c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y \leftarrow c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
# Apply the lm() function.
relation <- lm(y~x)
print(summary(relation))
Step3:
# The predictor vector.
x \leftarrow c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
# The resposne vector.
y \leftarrow c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
# Apply the lm() function.
relation <- lm(y~x)
# Find weight of a person with height 170.
a \leftarrow data.frame(x = 170)
result <- predict(relation,a)</pre>
print(result)
Step4:
# Create the predictor and response variable.
x \leftarrow c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y \leftarrow c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)
# Give the chart file a name.
png(file = "linearregression.png")
# Plot the chart.
plot(y,x,col = "blue",main = "Height & Weight Regression",
abline(lm(x\sim y)), cex = 1.3, pch = 16, xlab = "Weight in Kg", ylab
= "Height in
cm")
```

```
# Save the file.
dev.off()
```

Practical 9: Data Analysis using Time Series Analysis

```
# Get the data points in form of a R vector.
rainfall <-
c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,88
2.8,1071)

# Convert it to a time series object.
rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency
= 12)

# Print the timeseries data.
print(rainfall.timeseries)

# Give the chart file a name.
png(file = "rainfall.png")

# Plot a graph of the time series.
plot(rainfall.timeseries)

# Save the file.
dev.off()</pre>
```