REVIEW QUESTIONS

- The voltage V_o across the capacitor in Fig. 10.43 is:
 - (a) $5/0^{\circ} V$
- (b) 7.071 /45° V
- (c) $7.071 / -45^{\circ} \text{ V}$

For Review Question 10.1.

- 10.2 The value of the current I_o in the circuit in Fig. 10.44 is:
 - (a) $4/0^{\circ}$ A
- (b) $2.4 / -90^{\circ} \text{ A}$
- (c) $0.6/0^{\circ}$ A

Figure 10.44 For Review Question 10.2.

- 10.3 Using nodal analysis, the value of V_o in the circuit of Fig. 10.45 is:
 - (a) -24 V
- (b) -8 V
- (c) 8 V
- (d) 24 V

Figure 10.45 For Review Question 10.3.

- 10.4 In the circuit of Fig. 10.46, current i(t) is:
- (a) $10\cos t \, A$ (b) $10\sin t \, A$ (c) $5\cos t \, A$
- (d) $5\sin t$ A
- (e) $4.472\cos(t 63.43^{\circ})$ A

Figure 10.46 For Review Question 10.4.

- 10.5 Refer to the circuit in Fig. 10.47 and observe that the two sources do not have the same frequency. The current $i_x(t)$ can be obtained by:
 - (a) source transformation
 - (b) the superposition theorem
 - (c) PSpice

Figure 10.47 For Review Question 10.5.

- 10.6 For the circuit in Fig. 10.48, the Thevenin impedance at terminals a-b is:
 - (a) 1 Ω
- (b) $0.5 j0.5 \Omega$
- (c) $0.5 + j0.5 \Omega$
- (d) $1 + j2 \Omega$
- (e) $1 j2 \Omega$

For Review Questions 10.6 and 10.7.

- In the circuit of Fig. 10.48, the Thevenin voltage at 10.7 terminals a-b is:
 - (a) $3.535 / -45^{\circ} \text{ V}$
- (c) $7.071 / -45^{\circ} \text{ V}$
- (d) $7.071/45^{\circ} \text{ V}$
- 10.8 Refer to the circuit in Fig. 10.49. The Norton equivalent impedance at terminals a-b is:
 - (a) $-j4 \Omega$
- (b) $-j2 \Omega$
- (c) $j2 \Omega$
- (d) $j4 \Omega$

Figure 10.49 For Review Questions 10.8 and 10.9.

- **10.9** The Norton current at terminals *a-b* in the circuit of Fig. 10.49 is:
 - (a) $1/0^{\circ}$ A
- (b) $1.5 / -90^{\circ} \text{ A}$
- (c) $1.5/90^{\circ}$ A
- (d) $3/90^{\circ}$ A
- **10.10** *PSpice* can handle a circuit with two independent sources of different frequencies.
 - (a) True
- (b) False

Answers: 10.1c, 10.2a, 10.3d, 10.4a, 10.5b, 10.6c, 10.7a, 10.8a, 10.9d, 10.10b.

PROBLEMS

Section 10.2 Nodal Analysis

10.1 Find v_o in the circuit in Fig. 10.50.

Figure 10.50 For Prob. 10.1.

- **10.2** For the circuit depicted in Fig. 10.51 below, determine i_o .
- **10.3** Determine v_o in the circuit of Fig. 10.52.

Figure 10.52 For Prob. 10.3.

10.4 Compute $v_o(t)$ in the circuit of Fig. 10.53.

Figure 10.53 For Prob. 10.4.

10.5 Use nodal analysis to find v_o in the circuit of Fig. 10.54.

Figure 10.54 For Prob. 10.5.

10.6 Using nodal analysis, find $i_o(t)$ in the circuit in Fig. 10.55.

Figure | 0.5 | For Prob. 10.2.

Figure 10.55 For Prob. 10.6.

10.7 By nodal analysis, find i_o in the circuit in Fig. 10.56.

Figure 10.56 For Prob. 10.7.

10.8 Calculate the voltage at nodes 1 and 2 in the circuit of Fig. 10.57 using nodal analysis.

Figure 10.57 For Prob. 10.8.

10.9 Solve for the current **I** in the circuit of Fig. 10.58 using nodal analysis.

Figure 10.58 For Prob. 10.9.

10.10 Using nodal analysis, find V_1 and V_2 in the circuit of Fig. 10.59.

Figure 10.59 For Prob. 10.10.

10.11 By nodal analysis, obtain current I_o in the circuit in Fig. 10.60.

Figure 10.60 For Prob. 10.11.

10.12 Use nodal analysis to obtain V_o in the circuit of Fig. 10.61 below.

Figure | 0.6 | For Prob. 10.12.

10.13 Obtain V_o in Fig. 10.62 using nodal analysis.

Figure 10.62 For Prob. 10.13.

10.14 Refer to Fig. 10.63. If $v_s(t) = V_m \sin \omega t$ and $v_o(t) = A \sin(\omega t + \phi)$, derive the expressions for A and ϕ .

Figure 10.63 For Prob. 10.14.

10.15 For each of the circuits in Fig. 10.64, find V_o/V_i for $\omega = 0$, $\omega \to \infty$, and $\omega^2 = 1/LC$.

Figure 10.64 For Prob. 10.15.

10.16 For the circuit in Fig. 10.65, determine V_o/V_s .

Figure 10.65 For Prob. 10.16.

Section 10.3 Mesh Analysis

10.17 Obtain the mesh currents I_1 and I_2 in the circuit of Fig. 10.66.

Figure 10.66 For Prob. 10.17.

10.18 Solve for i_o in Fig. 10.67 using mesh analysis.

Figure 10.67 For Prob. 10.18.

- 10.19 Rework Prob. 10.5 using mesh analysis.
- **10.20** Using mesh analysis, find I_1 and I_2 in the circuit of Fig. 10.68.

Figure 10.68 For Prob. 10.20.

10.21 By using mesh analysis, find I_1 and I_2 in the circuit depicted in Fig. 10.69.

Figure 10.69 For Prob. 10.21.

- 10.22 Repeat Prob. 10.11 using mesh analysis.
- **10.23** Use mesh analysis to determine current I_o in the circuit of Fig. 10.70 below.
- **10.24** Determine V_o and I_o in the circuit of Fig. 10.71 using mesh analysis.

Figure | 0.7| For Prob. 10.24.

- 10.25 Compute I in Prob. 10.9 using mesh analysis.
- **10.26** Use mesh analysis to find I_o in Fig. 10.28 (for Example 10.10).
- **10.27** Calculate I_o in Fig. 10.30 (for Practice Prob. 10.10) using mesh analysis.
- **10.28** Compute V_o in the circuit of Fig. 10.72 using mesh analysis.

Figure 10.72 For Prob. 10.28.

10.29 Using mesh analysis, obtain I_o in the circuit shown in Fig. 10.73.

Figure 10.73 For Prob. 10.29.

Section 10.4 Superposition Theorem

10.30 Find i_o in the circuit shown in Fig. 10.74 using superposition.

Figure 10.74 For Prob. 10.30.

10.31 Using the superposition principle, find i_x in the circuit of Fig. 10.75.

Figure 10.75 For Prob. 10.31.

- **10.32** Rework Prob. 10.2 using the superposition theorem.
- **10.33** Solve for $v_o(t)$ in the circuit of Fig. 10.76 using the superposition principle.

Figure 10.70 For Prob. 10.23.

Figure 10.76 For Prob. 10.33.

Figure 10.80 For Prob. 10.37.

10.34 Determine i_o in the circuit of Fig. 10.77.

Find i_o in the circuit in Fig. 10.78 using superposition.

Figure 10.78 For Prob. 10.35.

10.38 Solve Prob. 10.20 using source transformation.

Use the method of source transformation to find I_x in the circuit of Fig. 10.81.

Figure 10.81 For Prob. 10.39.

Use the concept of source transformation to find V_{o} in the circuit of Fig. 10.82.

Section 10.5 **Source Transformation**

10.36 Using source transformation, find i in the circuit of Fig. 10.79.

Figure 10.79 For Prob. 10.36.

10.37 Use source transformation to find v_o in the circuit in Fig. 10.80.

Figure 10.82 For Prob. 10.40.

Section 10.6 Thevenin and Norton Equivalent **Circuits**

10.41 Find the Thevenin and Norton equivalent circuits at terminals a-b for each of the circuits in Fig. 10.83.

Figure 10.83 For Prob. 10.41.

10.42 For each of the circuits in Fig. 10.84, obtain Thevenin and Norton equivalent circuits at terminals *a-b*.

Figure 10.84 For Prob. 10.42.

10.43 Find the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 10.85.

Figure 10.85 For Prob. 10.43.

10.44 For the circuit depicted in Fig. 10.86, find the Thevenin equivalent circuit at terminals *a-b*.

Figure 10.86 For Prob. 10.44.

10.45 Repeat Prob. 10.1 using Thevenin's theorem.

10.46 Find the Thevenin equivalent of the circuit in Fig. 10.87 as seen from:

(a) terminals a-b

(b) terminals *c-d*

Figure 10.87 For Prob. 10.46.

10.47 Solve Prob. 10.3 using Thevenin's theorem.

10.48 Using Thevenin's theorem, find v_o in the circuit in Fig. 10.88.

Figure 10.88 For Prob. 10.48.

10.49 Obtain the Norton equivalent of the circuit depicted in Fig. 10.89 at terminals *a-b*.

Figure 10.89 For Prob. 10.49.