Assignment 3

Naman Mishra

25 January, 2024

Problem 3.1.

Solution (Case 1). Let b > 1 and n > 0. Let $B = \{t \in \mathbb{R} : t > 0, t^n < b\}$. B is non-empty since $1 \in B$.

Since b > 1, $b^n > b$. Moreover, since $0 < x < y \implies x^n < y^n$, we have that B is bounded above by b. Thus b has a supremum.

We now show that $(\sup B)^n = b$. For this we show that B has no largest element. For any $u \in B$, let $\delta = \min\{\frac{b-u^n}{2^nu^n}, 1\}$. Then

$$(u(1+\delta))^n = u^n (1 + n\delta + \dots + \delta^n)$$

$$\leq u^n \left(1 + \delta \sum_{j=1}^n \binom{n}{j} \right)$$

$$< u^n + 2^n u^n \delta$$

$$\leq u^n + b - u^n$$

$$= b$$

Thus $u(1 + \delta)$ is an element of B greater than u.

This implies that $\sup B \notin B$. Now let $u = \sup B$ and suppose $u^n > b$. Let $\delta = \min \left\{ \frac{u^n - b}{2^n u^n}, 1 \right\}$. Then

$$(u(1-\delta))^n \ge u^n(1-n\delta)$$

$$\ge u^n - 2^n u^n \delta$$

$$= b$$

Thus $u(1-\delta)$ is an upper bound of B less than u. This contradicts that u is the supremum.

Thus, $(\sup B)^n = b$. Using $0 < x < y \implies x^n < y^n$, we have that $\sup B$ is the only positive real number whose *n*-th power is *b*, so $t^n = b \implies t = \sup B$.

Solution (Case 2). Let mq = np. For b and t positive,

$$t^{n} < b^{m} \implies t^{np} < b^{mp}$$

$$\implies t^{mq} < b^{mp}$$

$$\implies (t^{q})^{m} < (b^{p})^{m}$$

$$\implies t^{q} < b^{p}.$$

The last implication may seem hairy, but it also follows directly from $0 < x < y \implies x^m < y^m$. Similarly,

$$t^q < b^p \implies t^n < b^m$$
.

Thus

$$\sup\{t \in \mathbb{R} : t > 0, t^n < b^m\} = \sup\{t \in \mathbb{R} : t > 0, t^q < b^p\}.$$

For the rest of the proof, we can give up.

Problem 3.2. Given $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and p > 0, define

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

(a) Show that if p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q, \quad \forall x, y \in \mathbb{R}^n.$$

You may directly use Young's inequality: if $a, b \ge 0$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.

- (b) Let $d_p(x,y) = ||x-y||_p$, $x,y \in \mathbb{R}^n$. Show that (\mathbb{R}^n, d_p) is a metric space if $p \geq 1$.
- (c) Show that (\mathbb{R}^n, d_p) is not a metric space if $p \in (0, 1)$.

Lemma 3.1 (Young's inequality). Let p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Then for $a, b \ge 0$, $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.

Proof.

Solution.

(a) Apply Young's inequality on $\frac{|x_i|}{\|x\|_p}$ and $\frac{|y_i|}{\|y\|_q}.$ Then

$$\sum_{i=1}^{n} \frac{|x_{i}y_{i}|}{\|x\|_{p} \|y\|_{q}} \leq \sum_{i=1}^{n} \left(\frac{1}{p} \frac{|x_{i}|^{p}}{\|x\|_{p}^{p}} + \frac{1}{q} \frac{|y_{i}|^{q}}{\|y\|_{q}^{q}}\right)$$

$$= \frac{1}{p} \sum_{i=1}^{n} \frac{|x_{i}|^{p}}{\|x\|_{p}^{p}} + \frac{1}{q} \sum_{i=1}^{n} \frac{|y_{i}|^{q}}{\|y\|_{q}^{q}}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1.$$

3