Saviorganizuojantys neuroniniai tinklai

Pijus Petkevičius 2023 m. lapkričio 27 d.

Turinys

1	Įva	das	3
	1.1	Tikslas	3
	1.2	Uždaviniai	3
2	Eks	perimentų vykdymas	3
	2.1	Duomenys	3
	2.2	Programos kodo šaltinis	3
	2.3	Parametrai	4
		2.3.1 Hiperparametrai	4
3	Pro	gramos kodas	4
4	Rez	zultatai	7
	4.1	Kvantavimo paklaida	7
		SOM žemėlapiai	8
5	Tšva	ados	11

1 Įvadas

1.1 Tikslas

Užduoties tikslas - suprogramuoti saviorganizuojančio neuroninio tinklo (žemėlapio, SOM) mokymo algoritmą, apmokyti jį naudojant irisų duomenis, gauti mokymo aibės klasterizavimo rezultata.

1.2 Uždaviniai

- Normalizuoti irisų duomenų aibės įeitis.
- Rasti SOM programinį kodą, jį pakeisti, kad tiktų irisų duomenims, apskaičiuotų kvantavimo paklaidą.
- Apmokyti SOM irisų duomenimis su skirtingais žemėlapiais: 5x5, 10x10.
- Gauti irisų duomenų klasterizavimo ir kvantavimo paklaidos rezultatus su skirtingais žemėlapio dydžiais: 5x5, 10x10.
- Klasterizavimo rezultatus atvaizduoti lentelėje.

2 Eksperimentų vykdymas

2.1 Duomenys

Šiam darbui naudoti irisų duomenys. Šiame rinkinyje yra 150 įrašų, viso yra 3 klasės - 50 įrašų kiekvienoje klasėje.

Šio tyrimo metu visi 150 įrašų buvo panaudoti mokymui, jie taip buvo panaudoti duomenų klasterizavimui.

2.2 Programos kodo šaltinis

Programinis kodas perrašytas pagal šį straipsnį (lengviau išmokti perrašant), jam buvo atlikti šie pakeitimai:

- Norėta turėti galimybę įvesti epochų skaičiaus parametrą, duomenų aibės elementai naudojami iš eilės, vienos epochos metu;
- Pridėtas kvantavimo paklaidos skaičiavimast;
- Atlikti pakeitimai, kad SOM atvaizdavimas turėtų irisų klases legendoje;
- Duomenų aibė nebeskaidoma į mokymo ir testavimo aibes.

2.3 Parametrai

2.3.1 Hiperparametrai

žemėlapio dydis - 5x5 arba 10x10;
epochų skaičius - 400;
pradinis mokymo parametras, α(t) = 0,2;
pradinis Manheteno atstumas - 4.

3 Programos kodas

```
import numpy as np
   from math import ceil
   import matplotlib.pyplot as plt
   from matplotlib import colors
                                # SOM lentelės eilučių skaičius
   numRows = 5
   numCols = 5
                               # SOM lentelės stulpelių skaičius
   maxLearningRate = 0.2
                               # Pradinis mokymo parametras
   epochs = 400
                               # Epochų skaičius
   maxManhatanDistance = 4
                                      # Pradinis Manheteno atstumas
   fileName = 'iris.data'
                                 # Duomeny failo pavadinimas
   labels = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'] #
    → Klasių pavadinimai
13
   # Irisų duomenų aibėje, duomenų reikšmėms priskiriamas numeris,
   # po to duomenys sumaišomi, paskutinis stulpelis(klasės reikšmė)
    → perkeliama į atskirą masyva) ir išmetama.
   def prepareIrisData(inputFile: str) -> (np.ndarray, [int]):
16
       outputFile= inputFile.replace('.data', '2.csv')
17
       with open(inputFile, 'r') as fileInput:
           with open(outputFile, 'w') as file:
19
               for row in fileInput:
20
                    modifiedString = row
21
                    for i in range(len(labels)):
                        modifiedString =
23

→ modifiedString.replace(labels[i], str(i))

                    file.write(modifiedString)
24
       inputData = readDataFromFile(outputFile, 0)
       np.random.shuffle(inputData)
26
       output = inputData[:, -1]
       inputData = np.delete(inputData, -1, axis=1)
28
       return inputData, output
30
```

```
def readDataFromFile(filename: str, skipRows: int = 1) ->
       np.ndarray:
       return np.loadtxt(filename, delimiter=',',skiprows=skipRows)
32
   def euclideanDistance(x: np.array, y: np.array) -> float:
34
       return np.sqrt(np.sum(np.power(x - y, 2)))
35
36
   def manhattanDistance(x: np.array, y: np.array) -> float:
37
       return np.sum(np.abs(x - y))
38
   def normalizeData(data: np.ndarray) -> np.ndarray:
40
       return (data - np.min(data, axis=0) - np.max(data,axis=0)) /
41
        42
   # Neurono-nugalėtojo paieška
   def winningNeuron(data, t, som, numRows, numCols):
44
     winner = [0,0]
45
     shortestDistance = np.sqrt(data.shape[1]) # Kintamasis
46
      → pradžioje inicializuojamas didžiausiu įmanomu atstumu
     for row in range(numRows):
47
       for col in range(numCols):
         distance = euclideanDistance(som[row][col], data[t])
49
         if distance < shortestDistance:</pre>
           shortestDistance = distance
51
           winner = [row,col]
     return winner
53
   # Didejant epochos skaičiui apskaičiuojamas vis mažesnis mokymo
    \rightarrow parametras ir
   # didžiausias leistinas Manheteno atstumas, kuriuo kaimynai
    → nutole nuo
   # neurono-nugalėtojo
   def decay(step, epochs,learningRate,maxManhatanDistance):
58
     coefficient = 1.0 - (np.float64(step)/epochs)
59
     learningRate = coefficient * learningRate
60
     neighbourhoodRange = ceil(coefficient * maxManhatanDistance)
61
     return learningRate, neighbourhoodRange
62
   def SOMTraining(irisData, epochs:int, maxManhatanDistance:int,
64
    → numRows: int, numCols: int):
     # Inicializuojama matrica su atsitikinėmis vektorių reikšmėmis
65
     numDimensions = irisData.shape[1]
     np.random.seed(40)
67
     som = np.random.random_sample(size=(numRows, numCols,
      → numDimensions))
```

```
for epoch in range(epochs):
70
        learningRate, neighbourhoodRange = decay(epoch, epochs,
71

→ maxLearningRate, maxManhatanDistance)
        for t in range(irisData.shape[0]):
72
          winner = np.array(winningNeuron(irisData, t, som, numRows,
73
          → numCols)) # Randamas neuronas-nugalėtojas duotam
             vektoriui
          # Atnaujinami neurony svoriai
75
          # Naudojama burbuliuko kaimynystės funkcija, kur
          → atnaujinami tik į
          # neurono-nugalėtojo kaimynus patenkančių vektorių svoriai
          for row in range(numRows):
78
            for col in range(numCols):
79
              if manhattanDistance(np.array([row,col]),winner) <=</pre>
                  neighbourhoodRange:
                som[row][col] += learningRate * (irisData[t] -

    som[row][col])

      return som
83
    def drawMap(map, numRows, numCols):
85
      # Kiekviename langelyje parenkama vaizduoti ta klasė, kuri
      → pasikartoja
      # dažniausiai tame langelyje
      labelMap = np.zeros(shape=(numRows, numCols), dtype=np.int16)
88
      for row in range(numRows):
        for col in range(numCols):
90
          labelList = map[row][col]
          if len(labelList) == 0:
92
            label = 3
          else:
            label = max(labelList, key=labelList.count)
95
          labelMap[row][col] = label
97
      cmap = colors.ListedColormap(['tab:blue', 'tab:green',
      → 'tab:red', 'w'])
      colorMap = plt.imshow(labelMap, cmap=cmap)
      dataLabels = labels.copy()
100
      dataLabels.insert(len(dataLabels), 'No class')
      cbar = plt.colorbar(colorMap, ticks=range(4))
102
      cbar.ax.set_yticklabels(dataLabels)
104
      plt.show()
106
    def getMapAndQuantization(irisData, irisOutput, som):
```

```
# Apmokytas SOM priskiria kiekvieno įeities vektoriaus klasę
108

→ žemėlapio vietai,

       # kurioje yra neuronas-nugalėtojas
109
      map = np.empty(shape=(numRows, numCols), dtype=object)
111
      quantizationError = 0
112
113
      for row in range(numRows):
        for col in range(numCols):
115
          map[row][col] = []
117
      for t in range(irisData.shape[0]):
118
        winner = winningNeuron(irisData, t, som, numRows, numCols)
119
        map[winner[0]][winner[1]].append(irisOutput[t])
120
        quantizationError += euclideanDistance(irisData[t],
121

    som[winner[0]][winner[1]])

      return map, quantizationError/irisData.shape[0]
122
123
    irisData, irisOutput = prepareIrisData('iris.data')
125
    irisData = normalizeData(irisData)
    irisData = np.array(irisData)
127
    irisOutput = np.array(irisOutput)
    print (irisOutput)
129
130
    som = SOMTraining(irisData, epochs, maxManhatanDistance, numRows,
131
        numCols)
132
    # Apskaičiuojama kvantavimo paklaida
133
    map, quantizationError = getMapAndQuantization(irisData,
134

    irisOutput, som)

    print("Quantization error: ", quantizationError)
135
136
    drawMap(map, numRows, numCols)
137
```

4 Rezultatai

4.1 Kvantavimo paklaida

1 lentelėje 10x10 žemėlapio kvantavimo paklaida 2 kartus mažesnė lyginant su 5x5 žemėlapiu. Galime teigti, kad didesniame, 10x10 žemėlapyje neuronai buvo geriau prisitaikę prie duomenų įeičių nei mažesniame, 5x5 žemėlapyje.

1 lentelė: Kvantavimo paklaida skirtingo dydžio žemėlapiuose

Žemėlapio dydis	Kvantavimo paklaida
5x5	0,1163
10x10	0,0653

4.2 SOM žemėlapiai

Žemėlapių langeliuose pasirinkta atvaizduoti tą klasę, kurios įeitys buvo dažniausiai priskirtos tam langeliui.

Tiek 1 pav., tiek 2 pav. Iris-versicolor ir Iris-virginica duomenys persikloja kur kas dažniau nei su Iris-setosa. 1 pav. galima aiškiau matyti nei 2 pav., kad kai kurios Iris-versicolor duomenų įeitys panašesnės į Iris-virginica nei į Iris-versicolor.

Tačiau Iris-versicolor klasė artima ir Iris-setosa, nuspalvinti langeliai arti vieni kitų. Labiausiai nutolusios yra Iris-setosa ir Iris-virginica klasės.

1 pav.: 10x10 žemėlapio klasterizavimo rezultatas

 $2~{\rm pav.}\colon~5{\rm x}5$ žemėlapio klasterizavimo rezultatas

- 3 pav. pavaizduota mokymo ir testavimo aibės duomenų požymių porų vaizdai. Mėlyna spalva pažymėta Iris-setosa, raudona spalva Iris-versicolor ir žydra spalva Iris-Virginica.
- 3 pav. galime pastebėti, kad Iris-versicolor ir Iris-virginica požymių porų reikšmės ganėtinai artimos viena kitai, dažnai sutampa, o Iris-setosa klasės požymiai išsiskiria iš kitų dviejų klasių.

3 pav.: Irisų duomenų skirtingų klasių atributų reikšmės

5 Išvados

- $\bullet\,$ 10x 10 žemelapis geriau išskiria irisų duomenis, lyginant su 5x5 žemėlapiu.
- Iris-virginica ir Iris-versicolor duomenys SOM išsidėsto, kartais net persikloja, nes jų duomenų atributai yra ganėtinai artimi.