Apellido: Nombre: Carrera:

(1) Sea k un cuerpo

- (a) (5 pts.) Dar la definición de espacio vectorial sobre \mathbb{k} .
- (b) (5 pts.) Si V es un espacio vectorial sobre \mathbb{k} , dar la definición de subespacio vectorial de V.
- (c) (5 pts.) Consideremos la estructura canónica de \mathbb{R}^3 como \mathbb{R} -espacio vectorial. Decidir si el conjunto $W = \{(x,y,z) \in \mathbb{R}^3 : x^2 y + 2z = 0\}$ es un subespacio vectorial de \mathbb{R}^3 . Justifique apropiadamente.
- (d) (5 pts.) Sea V un \Bbbk -espacio vectorial. Sea $S \subseteq V$ un sistema de generadores de V y $S \subseteq R \subseteq V$ un conjunto. Demostrar que R es un sistema de generadores de V.
- (2) Sean $a, b \in \mathbb{R}$ y sean L_1 y L_2 las rectas en \mathbb{R}^3 dadas por

$$L_1 = \{t(0, a, 1) + (0, 1, 0) : t \in \mathbb{R}\},\$$

$$L_2 = \{s(1, b, 1) + (1, 1, 0) : s \in \mathbb{R}\}.$$

Sea Π el plano en \mathbb{R}^3 cuya ecuación implícita es x-y+z=4.

- (a) (5 pts.) Encontrar la ecuación paramétrica de Π .
- (b) (5 pts.) Determinar todos los $a \in \mathbb{R}$ tales que la intersección $L_1 \cap \Pi$ es el conjunto vacio.
- (c) (5 pts.) Determinar **todos** los pares $(a, b) \in \mathbb{R}^2$ tales que las rectas L_1 y L_2 sean perpendiculares.
- (3) Sea $C = \{(1,0,0), (0,1,0), (0,0,1)\}$ la base canónica de \mathbb{R}^3 y sea $\mathcal{B} = \{1, x, x^2 x\}$ base de $\mathbb{R}_3[x]$. Sea $U : \mathbb{R}^3 \to \mathbb{R}_3[x]$ una transformación lineal tal que

$$[U(u, v, w)]_{\mathcal{B}} = (u - v, 0, w - u).$$

- (a) (5 pts.) Calcular U(u, v, w).
- (b) (5 pts.) Decidir si el polinomio p(x) = x + 1 pertenece a la imagen de U.
- (c) (5 pts.) Decidir si U es invectiva.
- (4) Sean $A, B \in M_3(\mathbb{R})$ las siguientes matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & \sqrt{10} & -1 \\ 0 & 4 & 711 \\ 0 & 0 & 9 \end{pmatrix}$$

- (a) (5 pts.) Decidir si existe una matriz $C \in M_3(\mathbb{R})$ tal que $C^2 = A$.
- (b) (5 pts.) Decidir si existe una matriz $D \in M_3(\mathbb{R})$ tal que $D^2 = B$.
- (5) Sea $T:\mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$T(x, y, z) = (x + 2z, 2y, -x + 4z).$$

- (a) (10 pts.) Calcular los autovalores reales de T.
- (b) (10 pts.) Calcular los autoespacios de los autovalores calculados en el punto anterior.
- (c) (5 pts.) Decidir si T es diagonalizable.
- (d) (5 pts.) Decidir si T es biyectiva.

(6) (5 pts.) Consideramos a \mathbb{R}^5 con la estructura canónica de \mathbb{R} -espacio vectorial. Sea $W\subseteq\mathbb{R}^5$ el subespacio vectorial dado por

$$W = \{(a, b, c, d, e) \in \mathbb{R}^5 : a + b + c - 2e = 0, d + e - a - 2b = 0, d + c = e + b\}.$$

Calcular la dimensión de W.

(7) (5 pts.) Sea A la matriz siguiente:

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \in M_2(\mathbb{R}).$$

Sea $L_A:M_2(\mathbb{R})\to M_2(\mathbb{R})$ la transformación lineal dada por

$$L_A(B) = AB$$
.

Calcular $\det(L_A)$.

1(a)	1(b)	1(c)	1(d)	2(a)	2(b)	2(c)	3(a)
. 5	5	5	5	0	0	0	5

3(b)	3(c)	4(a)	4(b)	5(a)	5(b)	5(c)	5(d)
5	Ŋ	0	0	10	7	5	5

6	7	Total	Nota
0	0	65	6

Recordar: Si \mathbb{k} es un cuerpo y $n \in \mathbb{N}$, se denota por $\mathbb{k}_n[x]$ al espacio vectorial de polinomios de grado menor que n con coeficientes en \mathbb{k} , es decir

$$\mathbb{k}_n[x] = \{p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} : a_i \in \mathbb{k}\}.$$

Este espacio vectorial tiene dimensión n.