Mostafa Sabri

Lecture 24

7.1 Diagonalization of Symmetric Matrices

Symmetric Matrices

A symmetric matrix A is a square matrix satisfying $A^T = A$. This implies the entries below the diagonal are a mirror of those above the diagonal.

e.g.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
 is symmetric but $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 \end{bmatrix}$ are not.

Lem: Equip
$$\mathbb{R}^n$$
 with $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v}$. Then

$$\langle \mathbf{u}, A\mathbf{v} \rangle = \langle A^T \mathbf{u}, \mathbf{v} \rangle.$$

Proof. Recall that
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$
. So $\langle A^T \mathbf{u}, \mathbf{v} \rangle = (A^T \mathbf{u})^T \mathbf{v} = (\mathbf{u}^T A) \mathbf{v} = \mathbf{u}^T (A \mathbf{v}) = \langle \mathbf{u}, A \mathbf{v} \rangle$.

Symmetry and Orthogonality

Symmetric matrices have a lot of advantages as we will see in this section.

Thm: If A is symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. If
$$A\mathbf{v} = \lambda_1 \mathbf{v}$$
 and $A\mathbf{u} = \lambda_2 \mathbf{u}$ then since $A^T = A$,

$$\lambda_2 \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{v}, A\mathbf{u} \rangle = \langle A\mathbf{v}, \mathbf{u} \rangle = \lambda_1 \langle \mathbf{v}, \mathbf{u} \rangle$$

so
$$(\lambda_2 - \lambda_1)\langle \mathbf{v}, \mathbf{u} \rangle = 0$$
. If $\lambda_2 \neq \lambda_1$, we must have $\mathbf{v} \perp \mathbf{u}$. \square

Thm: If A is a real $n \times n$ symmetric matrix, it has n real eigenvalues, counting multiplicities.

Symmetry and spectrum

"Counting multiplicities" means that if an eigenvalue has algebraic multiplicity k, we count it k times.

<u>Proof.</u> Suppose $A\mathbf{v} = \overline{\lambda}\mathbf{v}$. Then $A\overline{\mathbf{v}} = \overline{A}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}$, so $\overline{\mathbf{v}}$ is an eigenvector of A for $\overline{\lambda}$. Hence,

$$\lambda \langle \overline{\mathbf{v}}, \mathbf{v} \rangle = \langle \overline{\mathbf{v}}, A \mathbf{v} \rangle = \langle A \overline{\mathbf{v}}, \mathbf{v} \rangle = \overline{\lambda} \langle \overline{\mathbf{v}}, \mathbf{v} \rangle$$

so
$$(\overline{\lambda} - \lambda)\langle \overline{\mathbf{v}}, \mathbf{v} \rangle = 0$$
. But $\langle \overline{\mathbf{v}}, \mathbf{v} \rangle = \sum_{i=1}^n \overline{\nu}_i \nu_i$ $= \sum_{i=1}^n |\nu_i|^2 > 0$ since $\mathbf{v} \neq 0$. Hence, $\overline{\lambda} = \lambda$, so $\lambda \in \mathbb{R}$. Finally, we know that A has n complex eigenvalues. Since we showed any eigenvalue is real, then it has n real eigenvalues.

The spectrum of a matrix A is its set of eigenvalues. If A is real and symmetric, its spectrum is thus real.

П

Symmetry and Orthogonality

We say that A is orthogonally diagonalizable if there is an orthogonal matrix P such that $D = P^{-1}AP$ is diagonal. Recall that $P^{-1} = P^{T}$ if P is orthogonal.

Thm: A square matrix *A* is orthogonally diagonalizable iff it is symmetric.

Proof. (
$$\Longrightarrow$$
) If $D = P^{-1}AP$ with P orthogonal and D diagonal, then $A = PDP^{-1} = PDP^{T}$ and so $A^{T} = P^{TT}D^{T}P^{T} = PDP^{T} = A$. So A is symmetric.

(
$$\iff$$
) Let A be symmetric.¹

1. We approximate A by a symmetric matrix A(t) that has simple spectrum. In fact, if $\{\lambda_1, \ldots, \lambda_n\}$ are the

¹I found this argument in the lectures of Oliver Knill, Harvard.

Symmetry and Orthogonality

eigenvalues of A counting multiplicity and \mathbf{v}_1 is a normalized eigenvector of A for λ_1 , then the eigenvalues² of $A_1(t) = A + t\mathbf{v}_1\mathbf{v}_1^T$ are $\{\lambda_1 + t, \lambda_2, \dots, \lambda_n\}$. In particular, if λ_1 had multiplicity k for A, it has multiplicity k-1 for $A_1(t)$. Adding similar rank-one perturbations gives the A(t) we seek.

2. All eigenvalues of A(t) are distinct, so it is diagonalizable, and its normalized eigenvectors $\mathbf{p}_i(t)$ are orthonormal as A(t) is symmetric. Let P(t) be the matrix with columns $\mathbf{p}_i(t)$. Then $D(t) = P(t)^{-1}A(t)P(t)$ is diagonal. Taking $t \to 0$ gives a diagonalization $D = P^{-1}AP$ for A with P orthogonal. Indeed, $\langle \mathbf{p}_i(t), \mathbf{p}_i(t) \rangle = \delta_{ii} \ \forall t > 0 \implies \langle \mathbf{p}_i(0), \mathbf{p}_i(0) \rangle = \delta_{ij}$.

²Ding-Zhou, *Eigenvalues of rank-one updated matrices with some applications*, 2007. The proof is simple.

Here $\delta_{ij} = 1$ if i = j and 0 if $i \neq j$.

Note that if A was not symmetric, the eigenvectors of A(t) in step 2 would only be linearly independent. The limit of such vectors can be dependent, making P(0) singular. For example, $\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2(1+t^2)}}(1+t,1-t)\right\}$ are independent for any t>0, but become dependent when t=0. The theorem is false if A is not symmetric.

Orthogonally diagonalize
$$A = \begin{bmatrix} -2 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{bmatrix}$.

Spectral Thm: Let A be a symmetric $n \times n$ matrix.

- 1. A has n real eigenvalues λ_i , counting multiplicities.
- 2. The algebraic and geometric multiplicities coincide for each λ_i .
- 3. The eigenspaces are mutually orthogonal.
- 4. There is an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ of \mathbb{R}^n consisting of eigenvectors of A, so $A\mathbf{u}_i = \lambda_i \mathbf{u}_i$.
- 5. A is orthogonally diagonalizable.

6. A has a spectral decomposition

$$A = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i,$$

where $\mathcal{P}_i = \mathbf{u}_i \mathbf{u}_i^T$.

7. $\mathcal{P}_i \mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_i) \mathbf{u}_i = \text{proj}_{W_{\mathbf{u}_i}}(\mathbf{x})$ is the orthogonal projection of \mathbf{x} onto \mathbf{u}_i and

$$I_n = \sum_{i=1}^n \mathcal{P}_i.$$

<u>Proof.</u> We already proved 1. and 5. Point 5. implies 2. (Lec17). Point 3. means that $E_{\lambda_1} \perp E_{\lambda_2}$ if $\lambda_1 \neq \lambda_2$, i.e. $\mathbf{u} \perp \mathbf{v}$ if $\mathbf{u} \in E_{\lambda_1}$ and $\mathbf{v} \in E_{\lambda_2}$, which we also proved since \mathbf{u} , \mathbf{v} are then eigenvectors for distinct eigenvalues.

Using Gram-Schmidt, we can find an orthonormal basis for each E_{λ_i} . These bases put together form an orthogonal set of eigenvectors by 3., and they span \mathbb{R}^n by 2., which proves 4. It only remains to prove 6. and 7.

By 5., $D = P^T A P$, so $A = P D P^T$ with D diagonal and P orthogonal, with columns \mathbf{u}_i that are orthonormal eigenvectors of A. Now

$$PD = P[\lambda_1 \mathbf{e}_1 \quad \cdots \quad \lambda_n \mathbf{e}_n] = [\lambda_1 \mathbf{u}_1 \quad \cdots \quad \lambda_n \mathbf{u}_n].$$
 Thus,

$$A = PDP^{T} = \begin{bmatrix} \lambda_{1} \mathbf{u}_{1} & \cdots & \lambda_{n} \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix} = \sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}.$$

Examples

This proves 6. Finally, $P_i \mathbf{x} = \mathbf{u}_i \mathbf{u}_i^T \mathbf{x} = \mathbf{u}_i (\mathbf{u}_i^T \mathbf{x}) = \mathbf{u}_i (\mathbf{u}_i \cdot \mathbf{x}) = (\mathbf{x} \cdot \mathbf{u}_i) \mathbf{u}_i$ as required. Moreover, since $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of \mathbb{R}^n , we have the expansion $\mathbf{x} = \sum_{i=1}^n (\mathbf{x} \cdot \mathbf{u}_i) \mathbf{u}_i = \sum_{i=1}^n \mathcal{P}_i \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$. This implies that $I_n = \sum_{i=1}^n \mathcal{P}_i$.

- 1. Find a spectral decomposition for the previous matrices *A* and *B*.
- 2. Find a spectral decomposition for $C = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$.