Parabéns! Você foi aprovado!

PARA SER APROVADO 75% ou superior

Continue aprendendo

лота 100%

Practice quiz on Exponents and Logarithms

NÚMERO TOTAL DE PONTOS 12

1	D 20 0	701 2 4		7 . 7 .	
1.	Re write the number	er/84 = 2 × /	1 × 1 × 1 × 1	/ × / usina expon	ents

1 / 1 ponto

- $\bigcirc (2 \times 7)^6$
- \bigcirc (2⁶)(7⁶)
- \bigcirc (16⁴)(49²)

For this type of problem, count the number of times each relevant factor

appears in the product. That number is the exponent for that factor.

2. What is $(x^2 - 5)^0$?

1 / 1 ponto

- $(x^2) 5$
- \bigcirc (x^2)
- 1

Correto

Any real number (except zero) raised to the "zeroith" power = 1.

3. Simplify $((x-5)^2)^{-3}$

1 / 1 ponto

- $(x-5)^{-1}$
- $\bigcirc (x-5)$
- $(x-5)^{-6}$
- $(x-5)^{-5}$
 - Correto

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)} = (x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\frac{1}{(x-5)^6}$

Simplify $\left(\frac{8^2}{8^7}\right)^2$

1 / 1 ponto

- 0.8^{-4}
- 0.8^{-1}
- 0.8^{-5}
 - Correto

We can first simplify what is inside the parenthesis to 8^{-5} using the Division and Negative Powers Rule.

Then apply division and negative powers-- the result is the same.

$$\frac{8^4}{8^{14}} = 8^{-10}$$

5. $\log 35 = \log 7 + \log x$

Solve for x

- 5
- O 4
- \bigcirc 7
- O 28
 - ✓ Correto

$$\log(x) = \log 35 - \log 7$$

$$\log(x) = \log\left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6.
$$\log_2(x^2 + 5x + 7) = 0$$

1 / 1 ponto

Solve for x

- x = 3
- x = 2 or x = 3
- x = 2
 - ✓ Correto

We use the property that $b^{\log_b a} = a$

Use both sides as exponent for 2.

$$2^{\log_2 x^2 + 5x + 7} = 2^0$$

$$x^2 + 5x + 7 = 1$$

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2)=0$$

$$x = -3$$
 OR

$$x = -2$$

^{7.} Simplify $log_2 72 - log_2 9$

1 / 1 ponto

- $\bigcirc \log_2 63$
- \bigcirc 4
- 3
- $\bigcirc \log_2 4$
 - ✓ Correto

By the quotient rule, this is log_2 $\frac{72}{9} = log_2 2^3 = 3$

8. Simplify $log_3 9 - log_3 3 + log_3 5$

1 / 1 ponto

log₃ 15

- O log₃ 8
- O 15
 - ✓ Correto

By the Quotient and Product Rules, this is $log_3 = \frac{9 \times 5}{3} = log_3 = 15$

9. Simplify $log_2(3^8 \times 5^7)$

1 / 1 ponto

- $\bigcirc (5 \times \log_2 3) + (8 \times \log_2 5)$
- (8 × $\log_2 3$) + (7 × $\log_2 5$)
- \bigcirc 15 × log₂ 56
- \bigcirc 56 × log₂ 15
 - ✓ Correto

We first apply the Product Rule to convert to the sum: $log_2(3^8) + log_2(5^7)$. Then apply the power and root rule.

^{10.} If $\log_{10} y = 100$, what is $\log_2 y = ?$

1 / 1 ponto

- 332.19
- **500**
- O 20
- 301.03
 - ✓ Correto

Use the change of base formula, $\log_a b = \frac{\log_x b}{\log_x a}$

Where the "old" base is x and the "new" base is a.

so
$$\frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. What is its rate of growth per year?

1 / 1 ponto

- 11.41%
- 13.41%
- 12.41%
- 0 10.41%

Correto
$$\frac{\ln \frac{15}{3}}{12} = 0.1341$$

 $^{12.}$ Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25 X 10^{-10} grams weights 1000 Kilograms?

1 / 1 ponto

- \bigcirc 0.875 days
- 875 days
- 8.75 days
- 87.5 days

$$\checkmark 6.25 \times 10^{-10} \times e^{4t} = 10^6$$

$$4t = \ln \left(\frac{10^6}{(6.25 \times 10^{-10})} \right) = 35.00878$$

$$t = \ln \frac{10^6}{6.25 \times 10^{-10}} = 8.752195$$