LISTA 2b (JS) - instrukcja warunkowa

(każde zadanie w oddzielnym pliku – wszystkie dane pobieramy z okien dialogowych, wyświetlanie wyników oraz potrzebnych informacji na stronie HTML)

Zadanie 13. Napisz program, który weryfikuje czy punkt (x, y) znajduje się:

- a. w I ćwiartce układu współrzędnych
- b. w II ćwiartce układu współrzędnych
- c. w III ćwiartce układu współrzędnych
- d. w IV ćwiartce układu współrzędnych
- e. na jednej z osi układu współrzędnych
- f. w prostokącie $[-4, -2] \times [3, 5]$.

Zadanie 14. Napisz program, który dla zaczytanych liczb a i b rozwiązuje równanie liniowe ax + b = 0 (rozważ wszystkie przypadki dla 'a' oraz 'b').

Zadanie 15. Napisz program, który dla zaczytanych liczb a, b, c rozwiązuje równanie kwadratowe $ax^2 + bx + c = 0$ (rozważ wszystkie przypadki dla 'a', 'b' oraz 'c').

Zadanie 16. Napisz program obliczający tylko wartość BMI i wyświetlający oprócz samego wyniku jego interpretację według wzoru:

- BMI = waga / (wzrost)²
- we wzorze waga wyrażona jest w kilogramach, a wzrost w metrach
- WYMAGANIA DLA PROGRAMU inicjalizując zmienne wagę należy podać w kilogramach, a wzrost w centymetrach, BMI – jest liczbą rzeczywistą
- zarówno wagę jak i wzrost podajemy z klawiatury

Interpretacja wyników:

- wygłodzenie < 16,0
- wychudzenie 16,0–16,99
- niedowaga 17,0–18,49
- pożądana masa ciała 18,5–24,99
- nadwaga 25,0–29,99
- otyłość I stopnia 30,0–34,99
- otyłość II stopnia (duża) 35,0–39,99
- otyłość III stopnia (chorobliwa) ≥ 40,0

Zadanie 17. Napisz program,

- a. który weryfikuje czy z podanych trzech długości odcinków można zbudować trójkąt.
- b. zmodyfikuj program z punktu "a", tak aby w przypadku pozytywnej odpowiedzi podawał rodzaj trójkąta.

Zadanie 18. Napisz program, który dla pięciocyfrowej liczby naturalnej sprawdza czy jest ona palindromem (tylko dla 5-cio cyfrowej, nie wykorzystujemy tablic ani funkcji wbudowanych, a tylko zmienne typu całkowitego i własne działania matematyczne).

Zadanie 19*. Napisz program realizujący zadanie. Bajtazar kupuje meble przez Internet. Znalazł już ładny stół i zestaw krzeseł. Teraz zastanawia się, ile krzeseł może kupić, tak aby wszystkie zmieściły się przy stole. Stół ma prostokątny blat o wymiarach A × B centymetrów. Z kolei siedzisko krzesła, patrząc z góry, to kwadrat o wymiarach K × K centymetrów. Dalej będziemy traktować stół jako prostokąt, a krzesła – jako kwadraty.

Nad jednym z brzegów siedziska (kwadratu) znajduje się oparcie. Każde krzesło należy ustawić oparciem przy stole, tzn. brzeg z oparciem powinien pokrywać się z pewnym brzegiem stołu. Ponadto siedzisko powinno w całości znajdować się pod blatem. Oczywiście żadne dwa krzesła nie mogą na siebie nachodzić.

W naszych rozważaniach pomijamy nogi od stołu (możemy założyć, że są nieskończenie cienkie i znajdują się w rogach blatu). Ile krzeseł zmieści się pod stołem?

Wejście

W jedynym wierszu wejścia znajdują się trzy liczby całkowite A, B i K ($1 \le A$, B, K $\le 500~000~000$) oddzielone pojedynczymi odstępami, oznaczające, odpowiednio, wymiary blatu stołu oraz wymiar siedziska krzesła.

Wyjście

Twój program powinien wypisać na wyjście maksymalną liczbę krzeseł, które zmieszczą się przy stole.

Przykłady

Dla danych wejściowych: 15 18 4 poprawnym wynikiem jest: 10

Wyjaśnienie: Rysunek pokazuje przykładowe rozmieszczenie krzeseł przy stole. Oparcia zostały zaznaczone pogrubionymi odcinkami. Nie jest możliwe ustawienie jedenastu krzeseł.

Natomiast dla danych wejściowych: 12 8 4 poprawnym wynikiem jest: 6

