

计算机控制系统

元部件测试、建模

北京航空航天大学 xia jie 2020年2月

自动化学院

1

教学目标和教学方式

- □ 培养学生较好地了解和掌握典型计算机控制系统 的主要部件的测试方法。
- 通过实验的锻炼,使学生达到能独立组成和调试 计算机控制系统的能力,为后续的课程设计及专 题实验、毕业设计以及毕业后从事计算机控制系 统开发打下必要的基础。
- □ 以直流小功率随动系统为研究对象,进行相应测试及其被控对象的建模,让学生具有对实际被控对象的感性认识、掌握测量方法、测量数据的处理分析过程、掌握系统建模的的关键技术。

自动化学院

小功率随动系统介绍

- ■模拟式小功率随动系统的组成
 - **❖直流电动机**
 - *测速发电机
 - *给定电位计
 - *反馈电位计
 - ❖功率放大器及运算放大器
 - ❖直流电源

自动化学院

3

小功率随动系统——电机

反馈电位计 (角度传感器)

控制盒

- 1、执行电机
- 直流低速力矩电机 SYL-5
- 出厂的技术数据:
 - ❖峰值力矩Tp: 5(-5%)公 斤•厘米
 - ❖峰值电流Ip: 1.8安培
 - ❖峰值电压Vp: 20伏
 - ❖空载转速n0: 500转/分
 - 3、角位置测量电位计
- 高精度合成膜电位计: WHJ-2
- ☑ 主要技术数据如下:
 - ❖ 阻值: 1.5千欧 功率: 2W
 - ❖ 线性度: 0.5% 电气角度: 330度;
 - ❖ 机械转角: 360°无止档

自动化学院

2、测速发电机

- 永磁直流测速发电机 **70CYD-1**
- ☑ 主要技术数据:
 - ❖输出斜率: 1伏/弧度/秒
 - ❖极限转速: 400转/分
 - ❖输出特性线性度: 1%
 - ❖最小负载: 23千欧
 - ❖静磨擦力矩: 300克•厘米

电机

- 三个部件组装成一个整体,三者用联轴节均同轴连接。
- 在组合体上面有一接线板:
 - ❖电位计正负电压及输出信号接线柱;
 - ❖力矩电机的控制电压接线柱;
 - ❖测速发电机接线柱。
- 在组合体左端装有转角测量用的刻度盘;右端可往电机 轴上加装惯性轮,以改变负载的转动惯量。
- 在开环或调速系统实验时,为减少电位计磨损,应将电位计断开。

自动化学院

元部件测试——角度传感器

电位计

- 将电位计从0旋转,每 转动30,用数字电压表 测量输出电压值,记录 角度和测量的电压值
- 可以选用"最小二乘拟 合"等各种方法,绘出 电位计梯度图,获得对 应斜率值.

某人得到:

$$K_{\theta} = U_{\theta} / \theta = 3.27 V / rad$$

序号	转角θ	输出电压
-	(度)	$\mathbf{U}_{\boldsymbol{\theta}}$ (V)
* 1	0	
2	30	
3	60	
4	90	
5	120	
6	150	
7	170	
8	180	
9	190	
10	210	
11	240	
12	270	
13	300	
14	330	
15	350	

自动化学院

元部件测试——功率放大器

- ☑ 将功率放大器的输出端Uo与电机相连
- ▼ 在功率放大器输入端输入直流电压,每试验一次增加2伏,测量输入、输出电压,记录
- ☑ 计算功率放大器的增益

K=Uo/Ui

自动化学院

元部件测试——直流电动机

■电枢电阻Ra的测量

❖直接用欧姆表测量,由于电刷与电枢在不同位 置的换向器接触电阻不同,故测量时应在电刷处 于不同位置时多测几次,取其平均值。

表 1-1 电机内阻测量表

	_ , , , , , , ,								
θ (°)	0	20	40	60	80	100	120	140	160
R (K)									
θ (°)	0	-20	-40	-60	-80	-100	-120	-140	-160
R (K)									
平均值	R =								

- ❖电枢电感La的测量
- ❖直接用具有测电感功能的万用表来测量,测量 时也要多测几次,取平均值。

白动化学院

11

元部件测试——直流电动机

■电机死区电压的测量

❖将电压加至电机两端,从0慢慢增大电压到电机 刚好开始转动,读出死区电压Ud。由于电机在 不同起始位置阻力矩不同,所以将电机的起始位 置放在几个不同角度,重复实验。可计算出两个 方向的死区电压平均值和最大值。

表 1-2 电机死区电压测量表

θ (°)	0	20	40	60	80	100	120	140	160
U(V)									
平均值									
θ (°)	0	-20	-40	-60	-80	-100	-120	-140	-160
U(V)									
平均值									

自动化学院

测试-直流电动机

- 电机调速特性是转速与控制 输入电压的关系曲线。
- □ 给一个大于死区的电压,用 转速表测量转速。
- 对顺时针、逆时针两个方向 均应测试,取其平均值。

K_m=ω/Ua (弧度/秒/伏)

断开电位计同轴后同时测量:

- 给Ua, 量Uc和转速Q
- 结果:
 - ❖测速机梯度K_∞
 - ❖电机直流增益K_m
 即"电机调速特性"

测试-测速发电机

- □ 测速机是系统的速度反 馈元件。
- □ 用电压表测量输出电压 ,用转速表测量转速。
- 顺时针、逆时针两个方 向均应测试,取平均。
- K_ω=U_ω/ω (伏/弧度/秒)

自动化学院

15

断开电位计同轴后同时测量:

- 给Ua, 量Uc和转速Q
- 结果:
 - ❖测速机梯度K。
 - ❖电机直流增益K_m 即"电机调速特性"

Ua(v)	死区	4	6	8	10	12	14	16	18
N (脉冲/分)									
n/8(转/分)									
$\Omega (\mathbf{r/s})=$									
· 支	传								
Ua(v)	死区	-4	-6	-8	-10	-12	-14	-16	-18
n (脉冲/分)									
n/8(转/分)									
Ω (r/s)									

Ua(v)	死区	4	6	8	10	12	14	16	18
N (脉冲/分)									+
n/8(转/分)									+
Ω (r/s)=									1
Uc(V)									
反	传								
Ua(v)	死区	-4	-6	-8	-10	-12	-14	-16	-18
n (脉冲/分)									
n/8(转/分)									\top
Ω (r/s)									
Uc(V)									\top
平均值	Uc(V)	=		•					-

自动化学院

实验报告要求:

具体参见《实验指导书》

- 1. 本实验所涉及工程问题描述;
- 2. 实验工作原理与理论分析; 数Tm和电磁时间常数 Te,为何一般电机传
- 3. 预习思考题的实验验证分析:

函中可以忽略后者?

计算电机机电时间常

- 4. 实验过程描述和实验数据处理及分析:
 - ❖ 所有测试数据纪录表格
 - ❖ 实验数据处理(例如: Matlab绘制相关曲线、拟合曲 线、对应物理量折算等),获得相关参数结论
- 5. 实验结论:
 - ❖ 根据测试结果,写出相关器件(电位计、测速机)的传递函数,建立小功率随动系统的数学模型。
 - ❖ 别忘了给出相应的单位
- 6. 个人体会和建议(可提出自己的观点、想法)

自动化学院

.7