Bayesian approach to statistics

Uncertainty interpretation

A frequentist would say: A coin flip has 1/2 heads probs, 1/2 tails probs.

A bayesian practicioner would say: We can parameterize the angle of the coin flip, velocity, thumb acceleration, etc.

The outcome of the experiment can be predicted!

Frequentist

Subjective

Objective

Data and parameters

Theta is parameters. X is the data.

The bayesian approach sorts of make sense. When we 're training a machine learning model for example, our data (X) is fixed, yet the parameters (theta) are random.

Frequentist

 θ is random X is fixed

 θ is fixed X is random

Data and parameters

Frequentist

number of data doesn't matter.

For any |X|

 $|X| \gg |\theta|$

Datapoints must be significantly larger than number of parameters.

Training

Find theta such that we get the highest probability of data given parameters theta.

Frequentist

Maximum Likelihood:

$$\widehat{\theta} = \arg\max_{\theta} P(X|\theta)$$

Training

Frequentist

We compute the posterior.

Bayes theorem:

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

Classification

For the bayesian method,

Training:

$$P(\theta|X_{\rm tr}, y_{\rm tr}) = \frac{P(y_{\rm tr}|X_{\rm tr}, \theta)P(\theta)}{P(y_{\rm tr}|X_{\rm tr})}$$

Prediction:

$$P(y_{\rm ts}|X_{\rm ts},X_{\rm tr},y_{\rm tr}) = \int P(y_{\rm ts}|X_{\rm ts},\theta)P(\theta|X_{\rm tr},y_{\rm tr})d\theta$$

Regularization

Treat prior probability as a regularizer.

Regularizer

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

Regularization

Regularization

On-line learning

New prior
$$\bigcap$$
 Likelihood \bigcap Prior $P_k(\theta) = P(\theta|x_k) = \frac{P(x_k|\theta)P_{k-1}(\theta)}{P(x_k)}$

Set prior to posterior.

On-line learning Suppose we wa

Suppose we want to estimate the parameter theta, and our prior is as follows:

On-line learning

When we update our prior = posterior, we get a new shape. The variance of this distribution is less, and mean has changed.

On-line learning

