Probabilidade

Exercícios

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Tópicos da segunda prova

- Teoria de conjuntos;
- Métodos de contagem;
- Probabilidade;

Teoria de conjuntos

Isto é um conjunto?

$$A = \{0, 1, 2, ...\}$$

$$A = (0, 1, 2, ...)$$

Isto é verdade?

$$\{0, 1, 2\} = \{2, 1, 0\}$$

Isto é verdade?

$$\{0, 1, 2\} = \{2, 2, 1, 1, 0\}$$

O que é isso?

A = B?

A ≠ **B** ?

$A \subseteq B$?

$A \supseteq B$?

$A \subset B$?

∈ B?

Qual a diferença entre ⊆ e ∈?

\subseteq (pertence a) vs \subseteq (contém)

- ∈ → relação entre um elemento e um conjunto;
 - \circ x \in A \rightarrow elemento x pertence ao conjunto A;
 - $0 \in \{0, 1\}$
 - {0} ∉ {0, 1}

- ⊆ → relação entre dois conjuntos;
 - \circ A \subseteq B \rightarrow o conjunto A é um subconjunto do conjunto B
 - $\circ \{0\} \subseteq \{0,1\}$
 - 0 ⊈ { 0, 1 }

Propriedades do subconjunto

- $\emptyset \subseteq A \subseteq A \subseteq \Omega$
- $A \subseteq B$, $B \subseteq C$, então $A \subseteq C$ (transitividade)
- $A \subseteq B, B \subseteq A$, então A = B

Complemento

• $\Omega^{c} = \emptyset$ $\emptyset^{c} = \Omega$

$$\varnothing^{c} = \Omega$$

- A e A^c são sempre disjuntos
- $(A^c)^c = A \rightarrow involução$

$A \cap B$

$A \cup B$

A - **B**

ΑΔΒ

(A ∩ B)^c

Métodos de contagem

Métodos de contagem

- Regra da soma;
- Regra da inclusão e exclusão;
- Regra da multiplicação (produto cartesiano);
- Potência cartesiana;
- Conjunto de partes (power set);
- Árvores;
- Permutação;
- Permutação parcial;
- Análise combinatória.

Quando |A U B|=|A| + |B|?

União disjunta

$$|A \cup B| = |A| + |B| = 7$$

Para conjuntos disjuntos, o tamanho da união é a soma dos tamanhos dos conjuntos.

Regra da soma

Quando |AUB|≠|A| + |B|?

União geral

Se A e B são disjuntos, $|A \cup B| = |A| + |B|$

Em geral: $|A \cup B| \neq |A| + |B|$

$$|\{1\} \cup \{1\}| = |\{1\}| = 1 \neq |\{1\}| + |\{1\}| = 2$$

Princípio da Inclusão e Exclusão:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Múltiplos de 2 números

- Produto cartesiano
- Potência cartesiana
- Permutação
- Permutação parcial (arranjo)
- Combinação

Quantas rotas possíveis de A para C?

Regra da multiplicação

Possíveis rotas: (1,4), (1,5), (1,6), ..., (3,8)

Produto cartesiano

1	B 5
$A \left(\begin{array}{c} 2 \\ \end{array} \right)$	$\frac{6}{C}$
3	7
	8

$rAB = \{ 1, 2 \}$	3 }
rBC = { 4 ,5,	6, 7, 8 }

	4	5	6	7	8
1	1,4	1,5	1,6	1,7	1,8
2	2,4	2,5	2,6	2,7	2,8
3	3,4	3,5	3,6	3,7	3,8

rAB X rBC = {
$$(1, 4), (1, 5), (1, 6), (1, 7), (1, 8)$$

 $(2, 4), (2, 5), (2, 6), (2, 7), (2, 8)$
 $(3, 4), (3, 5), (3, 6), (3, 7), (3, 8)$ }

Produto cartesiano como árvores

 $2 \times 3 = 6$

Usado apenas quando, em todos os níveis, os nós possuem o mesmo grau.

 $|\{a, b\} \times \{1, 2, 3\}| = 2 \times 3 = 6$

Caminhos da fonte até o destino

Generalização da contagem de caminhos para um grafo acíclico:

"Potência cartesiana" de um conjunto

Produto cartesiano de um conjunto com ela mesma.

$$A^2 = A \times A \rightarrow quadrado cartesiano$$

$$A^n = A \times A \times ... \times A \rightarrow n$$
-ésima potência cartesiana

$$|A^{n}| = |A \times A \times ... \times A| = |A| \times |A| \times ... \times |A| = |A|^{n}$$

Aplicações teóricas e práticas.

Potência em conjunto de binário

{0,1}

 $\{0, 1\}^n = \{\text{ string binário de tamanho n}\} = \{\text{ string de n-bit }\}$

n	Conjunto	String
1	{0,1} ¹	0, 1
2	{0,1} ²	00, 01, 10, 11
3	{0,1} ³	000, 001, 010, 011, 100, 101, 110, 111
n	{0,1} ⁿ	0 0,, 1 1

$$|\{0, 1\}^n| = |\{0, 1\}|^n = 2^n$$

Conjunto de partes (power set)

Conjunto de partes de S é a coleção de todos os subconjuntos de S.

$$\mathbb{P}(\{a,b\}) = \{\{\},\{a\},\{b\},\{a,b\}\}$$

$$|P(S)| = ?$$

 $\mathbb{P}(S)$ possui uma correspondência com $\{0,1\}^{|S|}$.

Conjunto de partes

Correspondência entre $\mathbb{P}(S)$ e $\{0, 1\}^{|S|}$:

$$\mathbb{P}(\{a,b\}) \in \{0,1\}^2$$
.

$$| \mathbb{P}(S) | = | \{ 0, 1 \}^{|S|} | = 2^{|S|}$$

Tamanho do conjunto de partes é a potência de base 2 elevado ao tamanho do conjunto.

P({a,b})	а	b	$\{0,1\}^2$
{ }	X	X	00
{a}	0	X	10
{b}	X	0	01
{a,b}	0	0	11

Permutação

Permutação: diferentes formas de ordenar um conjunto de objetos.

Interesse: fórmula que calcule o número de permutações em função do número de objetos em um conjunto.

# de letras	permutações	# de permutações
1	а	1
2	a,b b,a	2
3	a,b,c a,c,b b,a,c b,c,a c,a,b c,b,a	6

Permutação

de permutações de n-objetos = $n \times (n - 1) \times ... \times 2 \times 1 = n!$

Anagramas com restrição

1. A, R ser adjacente nesta ordem (PARSE, ESPAR):

Permutação de conjunto de 4 objetos: P, S, E e AR 4! = 24

2. A, R ser adjacente em qualquer ordem (PARSE, ESPRA):

Duas formas de ordenar $\{A,R\}$: (A,R) e (R,A) 2*4! = 48

3. A, R não serem adjacentes (PERSA, PRESA):

Regra da subtração: 5! - 2*4! = 120 - 48 = 72

Permutação parcial (arranjo)

	Qualquer dígito	Dígitos distintos	
ldentificador de 2 dígitos	10 65 33	10 65 33	
	10 × 10	10 × 9	
	Qualquer letra	Letras distintas	
Anagramas com 3 letras	abc voa pop	abc voa pop	
	26 x 26 x 26	26 x 25 x 24	

de permutações parciais (arranjos)

número de permutações de tamanho k em um conjunto n:

$$n.(n-1).(n-2).....(n-k+1) = \frac{n!}{(n-k)!}$$

Exemplo do anagrama de 3 letras distintas: n = 26 e k = 3

$$\frac{26!}{(26-3)!} = 26.25.24$$

Combinação

Número de subconjuntos de tamanho k;

$$egin{pmatrix} [n] \\ k \end{pmatrix}$$
 Coleção de todos os subconjuntos de tamanho k presentes no conjunto [n] = {1,2, ..., n}

$$\binom{[3]}{1} = \{\{1\}, \{2\}, \{3\}\}$$

Os diferentes subconjuntos correspondem à diferentes combinações.

$$ig(egin{array}{c} ig(egin{array}{c} ig) & ig(eta) & ig(egin{array}{c} ig(egin{array}{c} ig(egin{array}{c} ig(egin{array}{c} ig(egin{array}{c} ig(egin{array}{c} ig) & ig(eta) & ala & ala &$$

Número de combinações

$$\binom{n}{k} = \binom{[n]}{k}$$
 Coeficiente binomial

Número

k-subconjuntos

inteiro

$$\binom{3}{2}$$
 = $\binom{[3]}{2}$ = $|\{\{1,2\},\{1,3\},\{2,3\}\}| = 3$

Número de combinações

$$\binom{3}{2} = \binom{\lfloor 3 \rfloor}{2} = |\{\{1,2\},\{1,3\},\{2,3\}\}| = 3$$

Número de
$$=\frac{3!}{(3-2)!}=6$$
 $\frac{n!}{(n-k)!}=k!\binom{n}{k}$

$$\frac{n!}{(n-k)!k!} = \binom{n}{k}$$

Permutação de {1,2}

Permutação de {1,3}

Permutação de {2,3}

Aplicações:

Formação de comitês:

Um comitê deve ser composto por 4 pessoas. 7 pessoas estão aptas a compor o comitê. Quantas maneiras diferentes posso formar este comitê?

$$\binom{7}{4} = \frac{7!}{(7-4)!4!} = 35$$

Aplicações:

Formação de comitês:

Um comitê deve ser composto por 4 pessoas, dois homens e duas mulheres. 7 pessoas estão aptas a compor o comitê, 4 homens e 3 mulheres. Quantas maneiras diferentes posso formar este comitê?

$$\binom{4}{2}\binom{3}{2} = \frac{4!}{(4-2)!2!} \frac{3!}{(3-2)!2!} = 18$$

Aplicações:

Formação de comitês:

Um comitê deve ser composto por 4 pessoas. 7 pessoas estão aptas a compor o comitê. João e Maria não se dão bem, por isso eles não devem fazer parte da comissão juntos. Quantas maneiras diferentes posso formar este comitê?

Comitês com João e Maria:
$$\binom{5}{2}=rac{5!}{(5-2)!2!}=10$$
 $35-10=25$ Regra da subtração: