

SEQUENCE MODELS

Dr. Varodom Toochinda

Dept. of Mechanical Engineering

Kasetsart University

RNN (RECURRENT NEURAL NETWORKS)

RNN FORWARD PROPAGATION

$$h^{} = f(W_{hh}h^{} + W_{hx}x^{} + b_h)$$
$$\hat{y}^{} = g(W_{yh}h^{} + b_y)$$

$$W_h = \begin{bmatrix} W_{hh} & W_{hx} \end{bmatrix}$$

 $[h^{}, x^{}] = \begin{bmatrix} h^{} \\ x^{} \end{bmatrix}$

$$h^{} = f(W_h[h^{}, x^{}] + b_h)$$

RNN BACKWARD PROPAGATION

RNN ARCHITECTURES

(a) many to one

(b) one to many

(c) many to many

(d) many to many

GRU (GATED RECURRENT UNIT)

LSTM (LONG SHORT TERM MEMORY)

LSTM UNROLLED

BIDIRECTIONAL RNN

TIME SERIES PREDICTION

TIME SERIES COMPONENTS

- trend
- seasonal
- noise
- autocorrelation

TREND


```
def trend(t, slope=0):
return slope * t
```

```
time = np.arange(4 * 365 + 1)
y_trend = trend(time, -0.2)
plot_series(time, y_trend)
```

SEASONAL

def seasonality(time, period, amplitude=I, phase=0):
 season_time = ((time + phase) % period) / period
 return amplitude * seasonal pattern(season time)

```
amplitude = 50
series = seasonality(time, period=365, amplitude=amplitude)
plot_series(time, series)
```

NOISE

def noise(time, noise_level=1):
 return np.random.randn(len(time)) * noise_level

plot_series(time, noise_level=10))

AUTO CORRELATION EXAMPLES SERIES WITH TREND, SEASONAL, AND AUTOCORRELATION

series = autocorrelation2(time, I0) + seasonality(time, period=50, amplitude=150) + trend(time, 2) plot_series(time[:200], series[:200], xlabel="time")

NONSTATIONARY TIME SERIES

```
series = autocorrelation2(time, I0) + seasonality(time, period=50, amplitude=150) + trend(time, 2) series2 = autocorrelation2(time, 5) + seasonality(time, period=50, amplitude=2) + trend(time, -I) + 500 series[180:] = series2[180:] plot_series(time[:300], series[:300], xlabel="time")
```


FIXED DATA PARTITIONING (ROLL FORWARD)

PERFORMANCE METRICS

- mse = np.square(errors).mean()
- rmse = np.sqrt(mse)
- mae = np.abs(errors).mean()
- mape = np.abs(errors/x_valid).mean()

keras.metrics.mean_squared_error(x_valid, naive_forecast).numpy() keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy()

CREATE SYNTHETIC DATA

NAÏVE FORCAST (BASELINE)

print(keras.metrics.mean_squared_error(x_valid, naive_forecast).numpy())
print(keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy())

434.3780304104924 16.27624466936418

DEMO AND EXERCISE

- see time_series.ipynb
- Create a model for sunspot prediction