Normal Distributions

Normal Distribution

- Most common distribution in statistics and life
- Symmetric, unimodal, bell curve
- Many distributions of events are effectively normal (height, blood pressure, SAT scores)
- Critically, the distribution of any average value follows a normal distribution
 - This also applies to any expected value
- No distribution will be perfectly normal, because we live in the real world. But many will be so close that it's the most effective distribution to use in calculations.

Normal Distribution

Generic Normal Distribution

 68% of the population falls within 1 standard deviation of the mean value, 95% falls within 1.96 standard deviations, and 99.7% falls within 3 standard deviations

95% Confidence Interval

Generic Normal Distribution

- 90% of the population falls within 1.66 standard deviations (σ) of the mean value
- 95% of the population falls within 1.96 standard deviations (σ) of the mean value.
- 99% of the population falls within 2.58 standard deviations (σ) of the mean value.
- 99.9% of the population falls within 3.291 standard deviations (σ) of the mean value.

Normal Examples

- Normal Distribution: $\mu = 0$ and $\sigma = 1$
 - Called the standardized normal distribution, N(0,1)
 - Will often transform data to mimic the standardized normal

• $N(19,4) = N(\mu, \sigma)$, so $\mu = 19$ and $\sigma = 4$

Difference between distribution of observations and distribution of means

 The distribution of the individuals/observations is much wider than the distribution of the means of those observations

Difference between distribution of observations and distribution of means

 The distribution of the individuals/observations is much wider than the distribution of the means of those observations

