BIG DATA (BD) COURSEWORK REPORT

Do not write your name on your work unless your lecturer has explicitly told you to do so.

Student ID number	tudent ID number Title of degree studying Level/							Level/Year	
2200918	Bachelor of Science (Honours) Data Science and Analytics						1		
Short unit name:	M32364 – Big Data				Due date: 29 May 2023		Deadline: 29	Deadline: 29 May	
Full unit name:	Big Data								
Unit lecturer name:						Group: (if applicable)			
Additional items e.g. CD/disk/USB:	Yes		No	/	Details:				
All additional items shou	ld be clear	ly labelle	d with IC	number ar	nd unit nam	e and secu	rely attached to your	r work.	
sense that all or a su if it were the student Please note: Group co	udent Disc plete an ass e University bstantial pa t's own wor oursework ember's II	cipline: sessment defines ar art of the v rk when in k will be D number	by means s the inco work has n fact it is filed und rs.	s considered orporation by been copied s wholly or su der the firs	I to be <u>unfair</u> y a student i I without any ubstantially t	; n work for a y adequate a the work of D number	ssessment of material attempt at attribution o another person or per	which is not thei or has been incor sons.	r own, in the porated as
FOR OFFICIAL USE ON	<u>LY</u>								
Date received/Office	stamp		Provisio	onal mark	c % / Comr	ments			

Administration Office

Academic Staff Member

1.0 Introduction – TMDB 5000 Dataset

The TMDB 5000 dataset is a movie metadata dataset containing information about thousands of movies, including their titles, genres, release dates, ratings, and other attributes.

The problem statement for TMDB 5000 movie content-based filtering by movie tags is to create a movie recommendation system that recommends movies based on similar textual descriptions as the input movie and recommending those as potential movies that the user might be interested in.

The goal is to enhance the user experience by recommending movies that align with their interests and preferences, thereby increasing the chances of the user engaging with the recommended movies.

1.1 Details of Approach

Content-based filtering

It is a recommendation technique that focuses on the characteristics of items to make recommendations. It analyzes the features and attributes of items, such as text, metadata, or user-generated content, to understand their properties and match them to user preferences.

1.2 Algorithms

The overall solution approach could be summarized as below flowchart:

1.3 Experimental Results and Analysis

1.3.1 Experimental Setup

1. Data Understanding

	irst 5 mou ies.head()									
\$	budget \$	genres \$	homepage \$	id ¢	keywords \$	original_language \$	original_title \$	overview \$	popularity \$	production
0	237000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.avatarmovie.com/	19995	[{"id": 1463, "name": "culture clash"}, {"id":	en	Avatar	In the 22nd century, a paraplegic Marine is di	150.437577	[{"name" Parti
1	30000000	[{"id": 12, "name": "Adventure"}, {"id": 14, "	http://disney.go.com/disneypictures/pirates/	285	[{"id": 270, "name": "ocean"}, {"id": 726, "na	en	Pirates of the Caribbean: At World's End	Captain Barbossa, long believed to be dead, ha	139.082615	[{"nam Pictu
2	245000000	[{"id": 28, "name": "Action"}, {"id": 12, "nam	http://www.sonypictures.com/movies/spectre/	206647	[{"id": 470, "name": "spy"}, {"id": 818, "name	en	Spectre	A cryptic message from Bond's past sends him o	107.376788	[{"ni Pictures",
3	250000000	[{"id": 28, "name": "Action"}, {"id": 80, "nam	http://www.thedarkknightrises.com/	49026	[{"id": 849, "name": "dc comics"}, {"id": 853,	en	The Dark Knight Rises	Following the death of District Attorney Harve	112.312950	[{"na Pictures

There are 4803 rows and 23 columns (data type: 16 strings, 4 int, 3 float). There are missing values from homepage, overview, release_date, runtime and tagline.

merge.info()					
<cla< td=""><td>ss 'pandas.core.frame.</td><td>DataFrame'></td><td></td></cla<>	ss 'pandas.core.frame.	DataFrame'>			
Int6	4Index: 4803 entries,	0 to 4802			
Data	columns (total 23 col	umns):			
#	Column	Non-Null Count	Dtype		
0	budget	4803 non-null	int64		
1	genres	4803 non-null	object		
2	homepage	1712 non-null	object		
3	id	4803 non-null	int64		
4	keywords	4803 non-null	object		
5	original_language	4803 non-null	object		
6	original_title	4803 non-null	object		
7	overview	4800 non-null	object		
8	popularity	4803 non-null	float64		
9	production_companies	4803 non-null	object		
10	production_countries	4803 non-null	object		
11	release_date	4802 non-null	object		
12	revenue	4803 non-null	int64		
13	runtime	4801 non-null	float64		
14	spoken_languages	4803 non-null	object		
15	status	4803 non-null	object		
16	tagline	3959 non-null	object		
17	title_x	4803 non-null	object		
18	vote_average	4803 non-null	float64		
19	vote_count	4803 non-null	int64		
20	title_y	4803 non-null	object		
21	cast	4803 non-null	object		
22	crew	4803 non-null	object		
dtyp	es: float64(3), int64(4), object(16)			

Features	Missing values
homepage	3,091
overview	3
release_date	1
runtime	2
tagline	124

2. EDA

TMDB movies top 15 production companies bar graph in descending order. Warner bros, Universal Pictures and paramount pictures produce the most movies.

The TMDB movies dataset predominantly consists of movies belonging to genres such as Comedy, Drama, Thriller, and Romance.

Top 15 popular movies of all time

TMDB movies top 15 most popular movies of all time.

No. of movies produced over the years

Most of the movies were produced after the year 2000.

3. Data Pre-processing

- Data cleansing
- > Check if any duplicated rows

Feature selection

Check if any missing values

```
# Checking null values
                                             ]: movies.info()
movies.isnull().sum()
                                                <class 'pandas.core.frame.DataFrame'>
                                                Int64Index: 4800 entries, 0 to 4802
                                                Data columns (total 8 columns):
id
                             a
                                                    Column
                                                                  Non-Null Count
original_title
                             0
                                                                  4800 non-null
                                                                                int64
                                                    id
overview
                              3
                                                    original_title 4800 non-null
                                                                                object
                                                                  4800 non-null
                                                    overview
                             0
genres
                                                    genres
                                                                  4800 non-null
                                                                                object
                             0
cast
                                                    cast
                                                                  4800 non-null
                                                                                object
                                                    kevwords
                                                                  4800 non-null
                                                                                object
keywords
                             0
                                                    crew
                                                                  4800 non-null
                                                                                object
                                                    tags
                                                                  4800 non-null
                                                                                object
                             0
crew
                                                dtypes: int64(1), object(7)
dtype: int64
                                                memory usage: 337.5+ KB
```

As shown above, there are 3 missing values in overview. The use of dropNA() method will drop rows that contain missing values.

➤ Replace square brackets with empty strings

```
# Replace square brackets with empty strings
movies2 = movies2.replace({'\\[|\\]': ''}, regex=True)
movies2.head()
```

> Spilt text in overview column

```
# Splitting the text in the overwiew column
movies['overview'] = movies['overview'].apply(lambda x:x.split())
```

➤ Apply a transformation to remove spaces between words for genres, keywords, cast and crew features

```
# Applying a transformation to remove spaces between words

movies['genres'] = movies['genres'].apply(lambda x:[i.replace(" ","") for i in x])
movies['keywords'] = movies['keywords'].apply(lambda x:[i.replace(" ","") for i in x])
movies['cast'] = movies['cast'].apply(lambda x:[i.replace(" ","") for i in x])
movies['crew'] = movies['crew'].apply(lambda x:[i.replace(" ","") for i in x])
```

Tags feature derived from overview, genres, cast, keywords, and crew

```
# Making tags column by combining other 5 columns
movies['tags'] = movies['overview'] + movies['genres'] + movies['keywords'] + movies['cast'] + movies['crew']
```

➤ New data frame movies2 consist only id, original_title and tags for recommendation system

```
movies2.head()
        id 💠
                                       original title $
                                                                                                   tags $
  0
      19995
                                                Avatar
                                                             in the 22nd century, a paraplegic marine is di...
         285 Pirates of the Caribbean: At World's End
                                                           captain barbossa, long believed to be dead, ha...
  2 206647
                                               Spectre a cryptic message from bond's past sends him o...
       49026
                                 The Dark Knight Rises
                                                              following the death of district attorney harve...
  3
      49529
                                                             john carter is a war-weary, former military ca...
                                           John Carter
```

First 5 rows after data pre-processing

4. Feature Engineering

- New feature tags derived from overview, genres, keywords, cast and crew
- Text Vectorization: CountVectorizer

It converts a collection of text documents into a matrix of word counts.

PorterStemmer

Stemming is a text processing technique that reduces words to their root or base form, which can help to improve text analysis by reducing the number of unique words in the dataset and grouping together words with similar meanings.

5. Recommendation System – Content Based Filtering

Function to get recommendations for a movie based on the tags

Step 1: Text Vectorization: The CountVectorizer technique is used to convert the 'tags' column of the movies2 dataframe into a feature matrix of token counts.

```
#Text Vectorization
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=5000,stop_words='english')
vectors = cv.fit_transform(movies2['tags']).toarray()
```

Step 2: The PorterStemmer technique is used to stem the words in the 'tags' column to improve the quality of the features.

```
#Stemming Process
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()

#defining the stemming function
def stem(text):
    a=[]
    for i in text.split():
        a.append(ps.stem(i))
    return " ".join(a)

movies2['tags'] = movies2['tags'].apply(stem)
```

Step 3: Similarity Measurement: The cosine_similarity function from the sklearn.metrics.pairwise module is used to calculate the pairwise cosine similarity between the feature vectors of all the items in the dataset.

```
# Measuring similarity between Movies using cosine distance
from sklearn.metrics.pairwise import cosine similarity
similarity = cosine similarity(vectors)
similarity
                   0.08980265, 0.05986843, ..., 0.02457366, 0.02777778,
array([[1.
       0.
                 ],
                             , 0.06451613, ..., 0.02648136, 0.
       [0.08980265, 1.
                ],
       [0.05986843, 0.06451613, 1. , ..., 0.02648136, 0.
       0.
                 ],
       [0.02457366, 0.02648136, 0.02648136, ..., 1.
                                                        , 0.07372098,
       0.04721922],
       [0.02777778, 0.
                             , 0. , ..., 0.07372098, 1.
       0.05337605],
                 , 0.
                             , 0.
                                         , ..., 0.04721922, 0.05337605,
       [0.
       1.
                 11)
```

Step 4: Recommendation: The recommend_me function takes a movie name as input, finds the index of the movie in the movies2 dataframe, calculates the cosine similarity between the feature vector of the movie and the feature vectors of all other movies in the dataset, and returns the top 5 most similar movies as recommendations

```
: def recommend me(movie):
     movie_index = movies2[movies2['original_title'] == movie].index[0]
     distances = similarity[movie_index]
     movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x:x[1])[1:6] # Top 5 movies similar
      for i in movies list:
         print(movies2.iloc[i[0]].original_title)
 recommend me('Pirates of the Caribbean: On Stranger Tides')
                                                                   recommend me('Batman')
 Pirates of the Caribbean: Dead Man's Chest
                                                                   Batman & Robin
 Pirates of the Caribbean: The Curse of the Black Pearl
                                                                   The Dark Knight Rises
 The Pirates! In an Adventure with Scientists!
                                                                   Batman Begins
 Pirates of the Caribbean: At World's End
                                                                   Batman Returns
 20,000 Leagues Under the Sea
                                                                   Batman v Superman: Dawn of Justice
```

The recommendation system will recommend top 5 movies based on similarity similar textual descriptions as the input movie and recommending those as potential movies that the user might be interested in.

3.0 Discussion and Conclusions

- Summary of project achievements
- > TMDB 5000 Movie dataset

It does not rely heavily on user history or past behavior. It can provide recommendations even for new or first-time users based on the properties of items and their similarity to user preferences. It does not require a large user base or rely heavily on data from other users. It primarily focuses on the characteristics of items, making it useful in situations where user data is unavailable.

Future Direction for improvement

We considered the four options below for future improvements. To begin, we can communicate more with business users to better understand their business concepts and, hopefully, improve model prediction performance by leveraging their experience. Second, we can use improved techniques to continue fine-tuning the parameters. Third, we can search for more efficient algorithms to run the datasets.

Lastly, we can try to gather additional data to augment existing dataset. More data can help increase the diversity and representation of our samples, improving the model's generalization capabilities. If the data test set is small, it may not adequately represent the entire population or the true distribution of the data. The results may be more prone to random variations and may not provide a reliable estimate of model performance.

4.0 Reference

- 1. Convolutional Neural Network with Implementation in Python (analyticsvidhya.com)
- 2. 10 steps to build and optimize a ML model DEV Community
- 3. Getting Started with a Movie Recommendation System | Kaggle
- 4. <u>Text Vectorization and Word Embedding | Guide to Master NLP (Part 5) (analyticsvidhya.com)</u>
- 5. <u>Cosine Similarity Understanding the math and how it works? (with python)</u> (machinelearningplus.com)