

SCSR1013 DIGITAL LOGIC

MODULE 2b: DATA ORGANIZATION (CODES)

FACULTY OF COMPUTING

Data Organization

- A value may take an arbitrary number of bits.
- Common collections are single bits
 - smallest "unit" of data on a binary computer is a single bit
 - groups of four bits called <u>nibbles</u>
 - groups of eight bits called <u>bytes</u>
 - groups of 16 bits called words
- The bits in a byte are normally numbered from zero to seven.

Bit 0 is the <u>low order bit</u> (rightmost) or <u>least significant bit</u> (<u>LSB</u>) bit
 7 is the <u>high order bit</u> (leftmost) or <u>most significant bit</u> (<u>MSB</u>) of the
 byte.

Note 1 byte also contains exactly 2 nibbles:

Nibbles

4 bits

- Major uses:
 - BCD (Binary Coded Decimal)
 - Hexadecimal numbers

Example: 0111, 1011 and 1111.

$$7_{16}$$
, B_{16} , F_{16}

Bytes

- 8 bits
- Total values: 28 = 256
- Major uses:
 - Numeric values $(0 \dots 2^8-1=0 \dots 255)$
 - Signed numbers: (-128 to +127)

Word

- 16 bits = 2 bytes
- Bit 0 to 15
- Total values:
 - $2^{16} = 65,536$

- Major uses of word:
 - signed integer (-32,768 ... +32,767)
 - unsigned integer (0 ... 2¹⁶-1) = 0 ... 65,535)
 UNICODE characters

What are codes?

- Code is a representation of information generated by following a certain rules.
- In general, we need code because:
 - Code is unique
 - Codes are easy to process
 - Code is easy to represent
 - Codes enable communication in place where ordinary spoken or written language is difficult or impossible, eg Morse Code
- Due to this, code can simplify the process (such as manipulation and arithmetic operations) of the information in the digital system.

We will learn:

- BCD codes
- ii. Gray Codes
- iii. ASCII codes
- iv. Parity codes/bit

Binary Coded Decimal (BCD)

- BCD is a way to express each of the decimal digits with a binary code.
- There are only 10 code groups in the BCD system, one for every digit (0000 – 1001)

Decimal	BCD	Decimal	BCD
0	0000	5	0101
I	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Invalid codes are 1010, 1011, 1100, 1101, 1110, 1111

Example 1: Convert 3245 to BCD

Example 2: Convert 7848 to BCD

Gray codes

Gray Codes

Toggle

Basics

Limit

- Designed to prevent false output from electromechanical switches.
- Are widely used to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems.
- In modern digital communications, Gray codes play an important role in error correction.
- It is arranged so that every transition from one value to the next value involves only one bit change.
- Sometimes referred to as first eight values compare with those of the last 8 values, but in reverse order.

Conversion of Gray Code ←→ Binary

To convert binary → Gray code

where b_{i+1} , b_i , b_{i-1} , ..., b_0 is the binary number while g_{i+1} , g_i , g_{i-1} , ..., g_0 gray code.

To convert Gray code → binary:

- $b_i = g_i$ if no. of 1's preceding g_i is even
- $b_i = \overline{g_i}$ if no. of 1's preceding g_i is odd

Example:

Convert 100110 to its equivalent gray code value

Example:

Convert the Gray code 11010111 to binary.

Exercise 2b.1:

Convert 11010100₂ to its equivalent gray code value.

Parity code

Parity Code

- Parity bit used for bit error detection
 - Even parity total number of 1s even
 - Odd parity total number of 1s odd
- Parity bit is append to the code at the leftmost position (MSB).

leftmost position

Parity bit

A parity bit is a bit that is added to ensure that the number of bits with value of 1's in a given set of bits is always even or odd. Parity bits are used as the simplest error detecting code.

Examples:

1 10100111

Even Parity bit

0 10100111

Odd Parity bit

Number 1s	Even Parity	Odd Parity
Even	0	1
Odd	1	0

(Remember these basic rule)

7 bits of data	8 bits including parity							
(number of 1s)	even	odd						
0000000 (0)	00000000	10000000						
1010001 (3)	1 1010001	01010001						
1101001 (4)	01101001	1 1101001						
1111111 (7)	1 1111111	01111111						
	Parity bit							

Example: Calculate the parity bit for the codes below.

Code	Number of 1s	Even/Odd	Even Parity	Odd Parity
110010	3	Odd	1 110010	0 110010
101110	4	Even	0 101110	1 101110
101000	2	Even	0 101000	1 101000
110111	5	Odd	1 110111	0 110111
111111	6	Even	0 111111	1 1111111
100000	1	Odd	1 100000	0 100000

Error Detection by Parity Checking

- Assume that data = 0101
- It uses even parity.
- Therefore the appended parity bit is 0.
- The data with parity bit: 0 0101
- The data is transmitted.
- The data is received as 00001 → odd no. of 1, not even!!

ASCII

Module 2

American Standard Code for Information Interchange (ASCII)

- It has 128 characters and symbols represented in 7-bit binary code
- Example:
- $A = 1000001_2$
- $a = 1100001_2$

Decima	al Hex	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	NUL	32	20	(blank)	64	40	@	96	60	,
1	01	SOH	33	21	!	65	41	Α	97	61	a
2	02	STX	34	22	-	66	42	В	98	62	b
3	03	ETX	35	23	#	67	43	C	99	63	С
4	04	EOT	36	24	\$	68	44	D	100	64	d
5	05	ENQ	37	25	%	69	45	E	101	65	e
6	06	ACK	38	26	&	70	46	F	102	66	f
7	07	BEL	39	27	•	71	47	G	103	67	g
8	08	BS	40	28	(72	48	Н	104	68	h
9	09	HT	41	29)	73	49	I	105	69	į
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	0D	CR	45	2D	-	77	4D	M	109	6D	m
14	0E	SO	46	2E		78	4E	N	110	6E	n
15	0F	SI	47	2F	/	79	4F	0	111	6F	0
16	10	DLE	48	30	0	80	50	Р	112	70	р
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	s
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	v
23	17	ETB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	X	120	78	х
25	19	EM	57	39	9	89	59	Y	121	79	у
26	1A	SUB	58	3A	:	90	5A	Z	122	7A	z
27	1B	ESC	59	3B	;	91	5B	[123	7B	{
28	1C	FS	60	3C	<	92	5C	Ĭ	124	7C	Į
29	1D	GS	61	3D	=	93	5D]	125	7D	}
30	1E	RS	62	3E	>	94	5E	٨	126	7E	~
31	1F	US	63	3F	?	95	5F	_	127	7F	(delete)

b ₇ b ₆ b ₅	b

b ₆ —				-	_	0 0		0 0		0 1		0	1		1 0	
b ₅	_				· · ·		0		1		0			1		0
Bits	b ₄	b ₃	b ₂	b ₁	Column → Row↓	0		1		2			3		4	
	0	0	0	0	0	NH	ī	DI	F	SE)		n	\neg	a)

7-bits binary₂ **ASCII** code

Examples:

 $B_7b_6b_5$ $b_4b_3b_2b_1$ 110 1101

is represent as 'm'

b ₅					-	0	1	0	1	0	1	0	1
	b ₄	b ₃	b ₂	b ₁	Column ↑ Row↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	•	р
	0	0	0	1	1	SOH	DC1	Ţ	1	Α	Q	a	q
	0	0	1	0	2	STX	DC2	"	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	S
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	V
	0	1	1	1	7	BEL	ETB	'	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	X	h	X
	1	0	0	1	9	HT	EM)	9	- 1	Υ	į	У
	1	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+	-	K	[k	{
	1	1	0	0	12	FF	FC	,	٧	L	/	- 1	
	1	1	0	1	13	CR	GS	-		М]	m	}
Ī	1	1	1	0	14	SO	RS	-	^	N	٨	n	~
	1	1	1	1	15	SI	US	1	?	0	_	0	DEL

Exercise 2b.2:

Convert the string SCR1013 to its ASCII hexadecimal value.

SCR1013 = 53 43 52 31 30 31 33

By using even parity coding, calculate the parity bit and insert this bit at the MSB position. Recalculate the ASCII value in its hexadecimal representation.

Exercise 2b.3:

Given a string (character) UTM1435.

- a) Convert the string to its ASCII hexadecimal value.
- b) Calculate the odd parity bit and insert as MSB.
- a) Recalculate the ASCII value in hexadecimal.

Number 1s	Even Parity	Odd Parity
Even	0	1
Odd	1	0

Character (ASCII)	ASCII (Hex)	Binary	Odd parity bit + Binary	New ASCII (Hex)
U				
Т				
M				
1				
4				
3				
5				
h				

Decima	al Hex	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	NUL	32	20	(blank)	64	40	@	96	60	,
1	01	SOH	33	21	!	65	41	Α	97	61	a
2	02	STX	34	22	-	66	42	В	98	62	b
3	03	ETX	35	23	#	67	43	C	99	63	С
4	04	EOT	36	24	\$	68	44	D	100	64	d
5	05	ENQ	37	25	%	69	45	E	101	65	e
6	06	ACK	38	26	&	70	46	F	102	66	f
7	07	BEL	39	27	•	71	47	G	103	67	g
8	08	BS	40	28	(72	48	Н	104	68	h
9	09	HT	41	29)	73	49	I	105	69	į
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	0D	CR	45	2D	-	77	4D	M	109	6D	m
14	0E	SO	46	2E		78	4E	N	110	6E	n
15	0F	SI	47	2F	/	79	4F	0	111	6F	0
16	10	DLE	48	30	0	80	50	Р	112	70	р
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	s
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	v
23	17	ETB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	X	120	78	х
25	19	EM	57	39	9	89	59	Y	121	79	у
26	1A	SUB	58	3A	:	90	5A	Z	122	7A	z
27	1B	ESC	59	3B	;	91	5B	[123	7B	{
28	1C	FS	60	3C	<	92	5C	Ĭ	124	7C	Į
29	1D	GS	61	3D	=	93	5D]	125	7D	}
30	1E	RS	62	3E	>	94	5E	٨	126	7E	~
31	1F	US	63	3F	?	95	5F	_	127	7F	(delete)