Soutenance lecture d'article

Learning to Extract Local Events from the Web

ASQUIN Paul AUBIN Victor LAGATTU Mickaël

Motivations et méthode

Modèle de classification d'événements

Schema.org

```
<div vocab="http://schema.org/" typeof="TouristAttraction">
        <h1><span property="name">Musée Marmottan Monet</span></h1>
        <div>
                <span property="description">It's a museum of Impressionism and fre
       </div>
        <div property="event" typeof="Event">It is hosting the
                <span property="about">Hodler</span>'s
                <span property="about">Monet</span>'s
                <span property="about">Munch</span>'s exibit:
                <span property="name">"Peindre l'impossible"</span>.
                <meta property="startDate" content="2016-10-01" />Start date: Septe
                <meta property="endDate" content="2017-02-05" />End date: Genuary 2
        </div>
</div>
```

Modèle d'extraction d'événements

De quoi s'agit ce champ dans cette région et dans ce document...?

Score global :
$$\phi(\mathcal{F}, \mathcal{R}, \mathcal{D}) = \alpha(\mathcal{D})\beta(\mathcal{R})\gamma(\mathcal{F})$$

Score de document : $\alpha(\mathbf{D})$

Score de la région : $\beta(\mathcal{R})$

Score du set de champs : $\gamma({\cal F})$

Recherche du lieu de la date et du contenu d'un événement (Quand, Quoi, Où)

Document

Score de document

Problème de classification => Naive-Bayes et Langage modeling framework (Ponte et Croft)

Définition du score de document :
$$\alpha(\mathbf{\mathcal{D}}) = \left\{ \begin{array}{ll} 1 & logP(E|\mathbf{\mathcal{D}}) - logP(\overline{E}|\mathbf{\mathcal{D}}) > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

Décomposition des probabilité :
$$P(E|D) = \prod_{w \in \mathcal{D}} \lambda P(w \in E) + (1 - \lambda) P(w \in C)$$

Fréquence d'un mot dans le corpus:
$$P(\mathcal{D} \in X) = \prod_{w \in \mathcal{D}} \frac{tf(w, X)}{tf(*, X)} \qquad X \in \{E, \overline{E}\}$$

Score de région

Filtrage selon la taille de la région :
$$eta(\mathcal{R}) = \left\{ egin{array}{ll} 1 & |\mathcal{R}| < \tau \\ 0 & \mathrm{otherwise} \end{array} \right. \quad au = 2^{12}$$

Tau est assigné de façon empirique

Les approches de probabilité de distribution étaient plus complexes et pas plus efficaces

Score de champ

Problème de classification avec 4 classes

Fonction discriminantes

Features Textuelles, NLP et structurelles

Attribution de la classe

LIBLINEAR => apprend les poids

Score final (nul si toutes les classes ne sont pas représentées)

$$\mathcal{K} = ['What', 'When', 'Where', 'Other'],$$

$$\delta_{ ext{What}}(f) = \vec{W}_{ ext{What}}^T \cdot \vec{X}_f$$

$$\delta_{ ext{Where}}(f) = \operatorname{matches}(f, \operatorname{Address}) \cdot \vec{W}_{ ext{Where}}^T \cdot \vec{X}_f$$

$$\delta_{ ext{When}}(f) = \operatorname{matches}(f, \operatorname{Date}/\operatorname{Time}) \cdot \vec{W}_{ ext{When}}^T \cdot \vec{X}_f$$

$$\delta_{Other}(f) = W_{Other} \cdot \vec{X}_f$$

$$\vec{X}_f$$

PREDICTED Type
$$(f) = \operatorname*{argmax}_{k \in \mathcal{F}^R} \delta_k(f)$$

$$\vec{W}$$

$$\gamma_S(oldsymbol{\mathcal{F}}) = \prod_{f \in oldsymbol{\mathcal{F}}} \max_{k \in oldsymbol{\mathcal{F}}^R} \delta_k(f)$$

Evaluation

Besoin de générer des événements factices pour éviter les biais

Evaluation de la précision et du rappel

Figure 6: Precision Evaluated at Recall Levels

Conséquences

Rappel doublé pour 85% de précision, quadruplé pour 65% de précision

Il reste beaucoup de faux positifs quand on augmente le rappel

Supervision par des humains : 30% de précision en plus

Etude géographique

Dataset fortement biaisé : concentration des événements aux Etats-Unis

Analyse critique

 Ne prouve pas que le Bootstrap sampling va réduire le biais

 Catégories de précision et de rappel qui peuvent être choisies de manière avantageuse pour présenter leurs résultats

Travaux similaires - Recherches historiques

Comprendre l'histoire malgré des données incomplètes

Projet d'ouverture

Mise en relation par centres d'intérêts sur des événements locaux Qui, Quoi, Quand, Où ?...

Éléments à la volée

• Il existe un extracteur d'événement assez pratique : https://schema.org/Event

Méthode

- Procédé proposé :
 - → ciblage par Nom event, date, heure, lieu.
 - → groupages des événements.
- Évaluation de la méthode avec extractions depuis dataset
- Comment donner du poids à une information
 - → Document scoring : probabilité d'une page de parler d'un événement
 - → Region scoring : probabilité que la région du document ait l'information
- Problèmes d'avoir plusieurs événements, dates et lieux nommés sur une même page, ou des faux positifs (date de copyright du site par ex)
 - → Si une date revient trop de fois, certainement faux positif, si une date dans le footer, certainement faux positif

Éléments à la volée

RELATED WORK

Analyse d'événements / lieux

- → Analyser les événements d'Histoire et détecter de mauvaises affectations lieux/dates.
- → Proposer des événements à des utilisateurs connus et leur demande si cela les intéresse
- → Détection d'événements dans twitter : catastrophe naturelle, attentat etc.
- → Analyse des unes de journaux
- + Beaucoup de travaux sur l'extraction de données