pre_processing

September 20, 2021

1 Classification of arrhytmia heartbeat

- Paper: https://www.nature.com/articles/s41597-020-0386-x
- Chinese Database: https://physionetchallenges.org/2021/

1.1 Importing packages

```
[2]: import numpy as np
  import seaborn as sns
  import pandas as pd
  import matplotlib.pyplot as plt
  import glob
  import math
  import os
  import sys
  import loess
  from scipy.io import loadmat
  from scipy import signal
  from statsmodels.nonparametric.smoothers_lowess import lowess
```

1.2 Loading records and files

```
[3]: files = os.listdir(os.path.abspath('Datasets/ECGData'))

[4]: df_attrib = pd.read_excel(os.path.abspath('Datasets/AttributesDictionary.xlsx'))
    df_condnames = pd.read_excel(os.path.abspath('Datasets/ConditionNames.xlsx'))
    df_diagno = pd.read_excel(os.path.abspath('Datasets/Diagnostics.xlsx'))
    df_rhyt = pd.read_excel(os.path.abspath('Datasets/RhythmNames.xlsx'))
```

1.3 Describing files

```
[5]: df_attrib
[5]:
               Attributes
                                   Type
                                              ValueRange
     0
                 FileName
                                String
                                                      NaN
     1
                   Rhythm
                                String
                                                      NaN
     2
                     Beat
                                String
                                                      NaN
     3
                               Numeric
                                                    0-999
               PatientAge
```

4	Gender	String	MALE/FEMAL
5	VentricularRate	Numeric	0-999
6	AtrialRate	Numeric	0-999
7	QRSDuration	Numeric -	0-999
8	$\mathtt{QTInterval}$	Numeric	0-999
9	QTCorrected	Numeric	0-999
10	RAxis	Numeric	-179~180
11	TAxis	Numeric	-179~181
12	QRSCount	Numeric	0-254
13	QOnset	Numeric	16 Bit Unsigned
14	QOffset	Numeric	17 Bit Unsigned
15	TOffset	Numeric	18 Bit Unsigned

Description

```
0
    ECG data file name(unique ID)
1
                      Rhythm Label
2
           Other conditions Label
3
                               Age
4
                            Gender
5
          Ventricular rate in BPM
6
               Atrial rate in BPM
7
             QRS duration in msec
8
              QT interval in msec
9
    Corrected QT interval in msec
10
                            R axis
11
                            T axis
12
                         QRS count
13
              Q onset(In samples)
14
             Q offset(In samples)
15
             T offset(In samples)
```

[6]: df_condnames

Γe1.	A N	F17 Man-
[6]:	Acronym Name	Full Name
0	1AVB	1 degree atrioventricular block
1	2AVB	2 degree atrioventricular block
2	2AVB1	<pre>2 degree atrioventricular block(Type one)</pre>
3	2AVB2	<pre>2 degree atrioventricular block(Type two)</pre>
4	3AVB	3 degree atrioventricular block
5	ABI	atrial bigeminy
6	ALS	Axis left shift
7	APB	atrial premature beats
8	AQW	abnormal Q wave
9	ARS	Axis right shift
10	AVB	atrioventricular block
11	CCR	countercolockwise rotation
12	CR	colockwise rotation

Early repolarization of the ventricles	B ERV	13
fQRS Wave	4 FQRS	14
Interior differences conduction		15
Intraventricular block		16
junctional escape beat	7 JEB	17
J point shift	JPS	18
junctional premature beat	JPT	19
left bundle branch block	D LBBB	20
left back bundle branch block	1 LBBBB	21
left front bundle branch block	2 LFBBB	22
Long RR interval	3 LRRI	23
left ventricle hypertrophy	4 LVH	24
left ventricle high voltage	5 LVHV	25
lower voltage QRS in all lead	5 LVQRSAL	26
lower voltage QRS in chest lead	7 LVQRSCL	27
lower voltage QRS in limb lead	3 LVQRSLL	28
myocardial infarction	9 MI	29
myocardial infraction in back wall) MIBW	30
Myocardial infgraction in the front wall	1 MIFW	31
Myocardial infraction in the lower wall	2 MILW	32
Myocardial infraction in the side wall	B MISW	33
PR interval extension	4 PRIE	34
P wave Change	5 PWC	35
QT interval extension	QTIE	36
right atrial hypertrophy	7 RAH	37
right atrial high voltage	B RAHV	38
right bundle branch block	RBBB	39
right ventricle hypertrophy) RVH	40
ST drop down	1 STDD	41
ST extension	2 STE	42
ST-T Change	3 STTC	43
ST tilt up	4 STTU	44
T wave Change	5 TWC	45
T wave opposite	TWO	46
U wave	7 UW	47
ventricular bigeminy	3 VB	48
ventricular escape beat	9 VEB	49
ventricular fusion wave	VFW	50
ventricular premature beat	1 VPB	51
ventricular preexcitation	2 VPE	52
ventricular escape trigeminy	3 VET	53
Wandering in the atrioventricalualr node	4 WAVN	54
WPW	5 WPW	55

[7]: df_rhyt

0 1 2 3 4 5 6 7 8	AVRT	rioventricu Atriove	ılar Nod	Atrial Sinu Sinus Sinus ventricula Atria e Reentrar	Full Na s Bradycard Sinus Rhyt Fibrillati s Tachycard Atrial Flutt s Irregulari ar Tachycard al Tachycard at Tachycard at Tachycard	ia hm on ia er ty ia ia ia		
10 [8]: df_di	SAAWR	Sinus At	rium to	Atrial war	ndering Rhyt	nm		
[O]. ui_ui	agno							
[8]: 0 1 2 3 4 10641 10643 10644 10645	MUSE_2018122 MUSE_2018122 MUSE_2018122	.3_171327_27 .2_073319_29 .1_165520_97 .3_121940_44 .2_122850_57 .22_204306_99 .22_204309_22 .2_204310_31 .22_204312_58	0000 0000 0000 0000 S 0000 S 0000 S	IB RBBB SB N SB N AF STDD S VT N VT N VT N VT N	TWC IONE IONE	tAge 85 59 20 66 73 80 81 39 76 75	Gender MALE FEMALE FEMALE MALE FEMALE FEMALE FEMALE MALE MALE MALE MALE	
0 1 2 3 4 10641 10643 10644 10645		Rate Atrial 117 52 67 53 162 196 162 152 175 117	234 52 67 53 162	SDuration 114 92 82 96 114 168 162 152 128 140	QTInterval 356 432 382 456 252 284 294 340 310		orrected 496 401 403 427 413 513 482 540 529 435	
0 1 2 3 4	RAxis TAxis 81 -27 76 42 88 20 34 3 68 -40	2 8 0 11 3 9	QOnset 208 215 224 219 228	QOffset 265 261 265 267 285	TOffset 386 431 415 447 354			

•••	•••	•••	•••	•••	•••	
10641	258	244	32	177	261	319
10642	110	-75	27	173	254	320
10643	250	38	25	208	284	378
10644	98	-83	29	205	269	360
10645	263	144	19	208	278	364

[10646 rows x 16 columns]

1.4 Checking NaN values

```
[9]: df_diagno.isnull().sum()
 [9]: FileName
                          0
      Rhythm
                          0
                          0
      Beat
      PatientAge
                          0
      Gender
      VentricularRate
      AtrialRate
                          0
      QRSDuration
                          0
      QTInterval
                          0
      QTCorrected
                          0
      RAxis
                          0
      TAxis
                          0
      QRSCount
      QOnset
                          0
      QOffset
                          0
      TOffset
                          0
      dtype: int64
[10]: df_diagno['Rhythm'].unique()
[10]: array(['AFIB', 'SB', 'SA', 'AF', 'SR', 'ST', 'SVT', 'AT', 'AVNRT',
             'SAAWR', 'AVRT'], dtype=object)
[11]: df_diagno.groupby(['Rhythm']).count()['FileName']
[11]: Rhythm
      AF
                445
      AFIB
               1780
      ΑT
                121
      AVNRT
                 16
      AVRT
                  8
      SA
                399
                  7
      SAAWR
      SB
               3889
```

SR 1826 ST 1568 SVT 587

Name: FileName, dtype: int64

1.5 Grouping rhythms

```
[]: df 1 = df diagno[df diagno['Rhythm'].isin(['AF', 'AFIB'])]
    df_1['Rhythm_grouped'] = ['AFIB' for _ in range(len(df_1))]
    df_2 = df_diagno[df_diagno['Rhythm'].isin(['SVT','AT',_
     df_2['Rhythm_grouped'] = ['GSVT' for _ in range(len(df_2))]
    df_3 = df_diagno[df_diagno['Rhythm'].isin(['SB'])]
    df 3['Rhythm grouped'] = ['SB' for in range(len(df 3))]
    df_4 = df_diagno[df_diagno['Rhythm'].isin(['SR','SI'])]
    df_4['Rhythm_grouped'] = ['SR' for _ in range(len(df_4))]
    df_{total} = [df_{1}, df_{2}, df_{3}, df_{4}]
    df = pd.concat(df_total)
```

```
[13]: df.groupby(['Rhythm_grouped']).count()['FileName']
```

[13]: Rhythm_grouped

AFIB 2225 GSVT 2706 SB 3889 1826 SR

Name: FileName, dtype: int64

[48]: df

```
[48]:
                               FileName Rhythm
                                                      Beat PatientAge
                                                                        Gender \
            MUSE_20180113_171327_27000
      0
                                          AFIB
                                                 RBBB TWC
                                                                    85
                                                                          MALE
      4
            MUSE_20180112_122850_57000
                                            ΑF
                                                STDD STTC
                                                                    73
                                                                        FEMALE
            MUSE_20180114_075026_69000
                                          AFIB
                                                       TWC
                                                                    80
                                                                        FEMALE
      15
            MUSE_20180113_133901_16000
                                          AFIB
                                                      STTC
                                                                    67
                                                                        FEMALE
      22
            MUSE_20180116_123940_90000
                                          AFIB
                                                       TWC
                                                                    81
                                                                          MALE
      9878 MUSE_20180209_123628_18000
                                            SR
                                                      NONE
                                                                    66
                                                                          MALE
      9879 MUSE_20180209_122145_99000
                                            SR
                                                      NONE
                                                                    63
                                                                        FEMALE
      9887 MUSE 20180209 132636 13000
                                            SR
                                                      NONE
                                                                    46
                                                                          MALE
      9888 MUSE_20180210_123100_20000
                                            SR
                                                       TWC
                                                                        FEMALE
                                                                    57
      9891 MUSE 20180209 132228 29000
                                                                        FEMALE
                                            SR
                                                      NONE
                                                                    71
```

	Ventri	cularRa	te Atrial	Rate QI	RSDuration	QTInter	val	QTCorrected	\
0		1	17	234	114		356	496	
4		1	62	162	114		252	413	
6			98	86	74		360	459	
15			72	65	90		416	455	
22			79	150	92		404	463	
•••		•••	•••		•••	•••	•••		
9878			73	73	96		416	458	
9879			72	72	72		402	440	
9887			78	78	100		348	396	
9888			68	68	96		400	425	
9891			90	90	68		360	440	
	RAxis	TAxis	QRSCount	QOnset	QOffset	TOffset	Rhyt!	hm_grouped	
0	RAxis 81	TAxis -27	QRSCount 19	QOnset 208	QOffset 265	TOffset 386	Rhyt	hm_grouped AFIB	
0 4							Rhyt	-0 -	
	81	-27	19	208	265	386	Rhyt	AFIB	
4	81 68	-27 -40	19 26	208 228	265 285	386 354	Rhyt	AFIB AFIB	
4	81 68 69	-27 -40 83	19 26 17	208 228 215	265 285 252	386 354 395	Rhyt	AFIB AFIB AFIB	
4 6 15	81 68 69 -1	-27 -40 83 -15 -51	19 26 17 12	208 228 215 228	265 285 252 273	386 354 395 436	Rhyt	AFIB AFIB AFIB AFIB	
4 6 15 22	81 68 69 -1 -15	-27 -40 83 -15 -51	19 26 17 12 13	208 228 215 228 218	265 285 252 273 264	386 354 395 436 420	Rhyt	AFIB AFIB AFIB AFIB	
4 6 15 22	81 68 69 -1 -15	-27 -40 83 -15 -51	19 26 17 12 13 	208 228 215 228 218	265 285 252 273 264	386 354 395 436 420	Rhyt	AFIB AFIB AFIB AFIB AFIB	
4 6 15 22 9878	81 68 69 -1 -15 	-27 -40 83 -15 -51	19 26 17 12 13 	208 228 215 228 218 209	265 285 252 273 264 	386 354 395 436 420 	Rhyt	AFIB AFIB AFIB AFIB AFIB AFIB	
4 6 15 22 9878 9879	81 68 69 -1 -15 43 13	-27 -40 83 -15 -51 42 45	19 26 17 12 13 12	208 228 215 228 218 209 214	265 285 252 273 264 257 250	386 354 395 436 420 417 415	Rhyt	AFIB AFIB AFIB AFIB AFIB SR	
4 6 15 22 9878 9879 9887	81 68 69 -1 -15 43 13 73	-27 -40 83 -15 -51 42 45 73	19 26 17 12 13 12 12 13	208 228 215 228 218 209 214 218	265 285 252 273 264 257 250 268	386 354 395 436 420 417 415 392	Rhyt	AFIB AFIB AFIB AFIB AFIB SR SR SR	

[10646 rows x 17 columns]

```
[14]: df_diagno['Gender'].unique()
```

[14]: array(['MALE', 'FEMALE'], dtype=object)

```
[15]: sns.histplot(df_diagno['PatientAge'])
```

[15]: <AxesSubplot:xlabel='PatientAge', ylabel='Count'>

1.6 Loading a patient's ECG

```
[38]:
                                            aVR
                                                       aVL
                                                                         V1
                                                                                 ۷2
                  Ι
                          ΙI
                                   III
                                                               aVF
                                        251.410
                                                 -23.8830 -217.52
                                                                     441.74
      0
           -150.75 -336.810 -114.980
                                                                             646.47
      1
           -136.69 -315.560 -108.630
                                        233.450
                                                  -19.1260 -204.36
                                                                     436.06
                                                                             656.31
           -123.74 -296.230 -103.090
                                                  -14.8150 -192.29
                                                                     432.27
                                                                             666.14
      2
                                        217.230
      3
           -112.57 -279.750
                              -98.611
                                        203.530
                                                  -11.2130 -181.87
                                                                     431.08
                                                                             676.31
      4
           -103.74 -266.700
                              -95.229
                                        192.840
                                                   -8.5498 -173.50
                                                                     432.76
                                                                             687.31
      4994 -190.32
                      52.396
                              170.760
                                         74.543 -170.8900
                                                            107.63
                                                                     310.73
                                                                             398.59
      4995 -178.98
                      65.438
                              171.870
                                         62.325 -165.6500
                                                            114.41
                                                                     302.32
                                                                             398.80
                                                                     297.25
      4996 -171.04
                      74.181
                              172.080
                                                            118.93
                                                                             401.02
                                         53.876 -161.4900
      4997 -165.46
                      79.570
                              171.300
                                         48.203 -157.8400
                                                            121.64
                                                                     293.97
                                                                             403.86
      4998 -160.69
                      83.461
                              169.810
                                         43.624 -154.1300
                                                            123.48
                                                                     290.95
                                                                             406.44
                 VЗ
                          ۷4
                                    ۷5
                                            V6
      0
            642.56
                      35.389 -269.510 -532.21
      1
            665.95
                      76.572 -225.830 -495.39
      2
            688.05
                    113.510 -186.000 -461.84
```

```
4994
            538.11
                     230.970
                               87.684 -249.88
      4995
            541.18
                     245.270
                              110.940 -226.42
      4996
            544.16
                     254.480
                              129.340 -207.20
      4997
                              144.140 -190.64
            546.18
                     259.510
      4998
            547.24
                     262.570
                              157.620 -174.67
      [4999 rows x 12 columns]
[50]: patient_normal = pd.read_csv('Datasets/ECGData/'+ files[0])
      patient_normal
[50]:
                                         aVR
                                                  aVL
                                                          aVF
                                                                    V1
                                                                            ٧2
                                                                                     VЗ
                         ΙI
                                 III
           -214.72 -229.36
                                      224.48 -102.48 -122.00
                                                               614.88
                                                                        814.96
                                                                                912.56
      0
                             -14.64
      1
           -200.08 -209.84
                              -9.76
                                      204.96
                                              -97.60 -112.24
                                                               605.12
                                                                        819.84
                                                                                927.20
      2
           -190.32 -195.20
                              -4.88
                                      195.20
                                              -92.72 -102.48
                                                                        829.60
                                                               600.24
                                                                                956.48
      3
           -165.92 -165.92
                               0.00
                                      165.92
                                              -82.96
                                                       -82.96
                                                               590.48
                                                                        844.24
                                                                                971.12
      4
           -161.04 -156.16
                               4.88
                                      161.04
                                              -82.96
                                                       -78.08
                                                               585.60
                                                                        844.24
                                                                                985.76
                                       53.68 -122.00
      4995 -117.12
                       9.76
                             126.88
                                                        68.32
                                                               439.20
                                                                        634.40
                                                                                800.32
      4996 -102.48
                      14.64
                             117.12
                                       43.92 -112.24
                                                        63.44
                                                               424.56
                                                                        634.40
                                                                                819.84
      4997
                             122.00
            -92.72
                      29.28
                                       34.16 -107.36
                                                        73.20
                                                               424.56
                                                                        644.16
                                                                                829.60
      4998
            -92.72
                      34.16
                             126.88
                                       29.28 -112.24
                                                        78.08
                                                               424.56
                                                                        644.16
                                                                                829.60
      4999
            -87.84
                             117.12
                                       29.28 -102.48
                                                        73.20
                                                               424.56
                                                                        653.92
                      29.28
                                                                                834.48
                         ۷5
                 ۷4
                                  ۷6
      0
            126.88 -239.12 -507.52
            165.92 -195.20 -463.60
      1
      2
            204.96 -151.28 -429.44
      3
            239.12 -117.12 -400.16
      4
            273.28 -78.08 -370.88
      4995
            278.16
                       0.00 -273.28
      4996
            297.68
                      24.40 -248.88
      4997
            312.32
                      43.92 -229.36
      4998
            312.32
                      58.56 -204.96
      4999
                      63.44 -200.08
            312.32
```

1.7 Records that do not meet the premises below are excluded.

• lead II = lead I + lead II

[5000 rows x 12 columns]

3

4

708.47

726.98

144.300 -151.680 -432.56

167.550 -124.030 -408.07

• lead aVR + aVL + aVF = 0

Authors: "It is well known that the right hand electrode and left hand electrode could have their

positions switched by operators without a change on corresponding ECG data. Moreover, some of the electrodes could slip off during the test resulting in ECGs displaying a straight line."

```
[40]: #for i in range(len(patient1)):

# if (patient1.II[i] != (patient1.I[i] + patient1.III[i])) or ((patient1.

→aVR[i] + patient1.aVL[i] + patient1.aVF[i]) != 0):

# patient1.drop(i, inplace=True)

#patient1.reset_index(drop=True, inplace=True)
```

```
[41]: #patient1.reset_index(drop=True, inplace=True) #patient1
```

```
[51]: plt.figure(figsize=(20,5))
patient_normal['II'].plot()
```

[51]: <AxesSubplot:>


```
[43]: plt.figure(figsize=(20,5))
patient_denoised['II'].plot()
```

[43]: <AxesSubplot:>

1.8 Denoise signals

• Butterworth low pass filter

- LOcally Weighted Scatterplot Smoothing (LOWESS) curve fitting
- Non local means(NLM)

```
[44]: def NLM_1dDarbon(signal, Nvar, P, PatchHW):
          if isinstance(P,int): # scalar has been entered; expand into patch sample_
       \rightarrow index vector
              P = P-1 #Python start index from 0
              Pvec = np.array(range(-P,P+1))
          else:
              Pvec = P # use the vector that has been input
          signal = np.array(signal)
          #debug = [];
          N = len(signal)
          denoisedSig = np.empty(len(signal)) #NaN * ones(size(signal));
          denoisedSig[:] = np.nan
          # to simpify, don't bother denoising edges
          iStart = PatchHW+1
          iEnd = N - PatchHW
          denoisedSig[iStart: iEnd] = 0
          #debug.iStart = iStart;
          \#debug.iEnd = iEnd;
          # initialize weight normalization
          Z = np.zeros(len(signal))
          cnt = np.zeros(len(signal))
          # convert lambda value to 'h', denominator, as in original Buades papers
          Npatch = 2 * PatchHW + 1
          h = 2 * Npatch * Nvar**2
          for idx in Pvec: # loop over all possible differences: s-t
              # do summation over p - Eq.3 in Darbon
              k = np.array(range(N))
              kplus = k + idx
              igood = np.where((kplus >=0) & (kplus < N)) # ignore OOB data; we could_
       \rightarrowalso handle it
              SSD = np.zeros(len(k))
              SSD[igood] = (signal[k[igood]] - signal[kplus[igood]])**2
              Sdx = np.cumsum(SSD)
              for ii in range(iStart,iEnd): # loop over all points 's'
                  distance = Sdx[ii + PatchHW] - Sdx[ii - PatchHW-1] #Eq 4; this is in_
       \rightarrowplace of point - by - point MSE
                  # but note the - 1; we want to icnlude the point ii - iPatchHW
```

```
w = math.exp(-distance/h) # Eq 2 in Darbon
        t = ii + idx # in the papers, this is not made explicit
        if t>0 and t<N:
            denoisedSig[ii] = denoisedSig[ii] + w * signal[t]
            Z[ii] = Z[ii] + w
            \#cnt[ii] = cnt[ii] + 1
            #print('ii', ii)
            #print('t',t)
            #print('w',w)
            #print('denoisedSig[ii]', denoisedSig[ii])
            #print('Z[ii]',Z[ii])
 # loop over shifts
# now apply normalization
denoisedSig = denoisedSig/(Z + sys.float_info.epsilon)
denoisedSig[0: PatchHW+1] =signal[0: PatchHW+1]
denoisedSig[ - PatchHW: ] =signal[- PatchHW: ]
\#debug.Z = Z;
return denoisedSig
                    #,debug
```

```
[52]: Fs=500
      fp=50
      fs=60
      rp=1
      rs=2.5
      wp=fp/(Fs/2)
      ws=fs/(Fs/2)
      [n,wn] = signal.buttord(wp,ws,rp,rs)
      [bz,az] = signal.butter(n,wn)
      LPassDataFile= signal.filtfilt(bz,az,patient_normal['II'])
      t = range(0,len(LPassDataFile))
      yy2 = lowess(t,LPassDataFile,frac=0.1)
      #yy2 = signal.savgol_filter(LPassDataFile,2,1)
      BWRemoveDataFile = (LPassDataFile-yy2[:,1])
      #BWRemoveDataFile = (LPassDataFile-yy2)
      Dl1=BWRemoveDataFile
      for k in range(2,len(Dl1)-1):
          Dl1[k]=(2*Dl1[k]-Dl1[k-1]-Dl1[k+1])/math.sqrt(6)
      NoisSTD = 1.4826*np.median(np.abs(Dl1-np.median(Dl1)))
      Denoising Patient 1= NLM_1dDarbon(BWRemoveDataFile,(1.5)*(NoisSTD),5000,10)
```

```
[54]: plt.figure(figsize=(15,5))
#plt.xlim(1000,1500)
patient_normal['II'].plot()
plt.legend(['Patient'])
```

[54]: <matplotlib.legend.Legend at 0x24ea473d3d0>


```
[55]: plt.figure(figsize=(15,5))
#plt.xlim(1000,1500)
df_denoised = pd.DataFrame(Denoising_Patient_1,columns=['II'])
df_denoised['II'].plot()
plt.legend(['Patient_denoising'])
```

[55]: <matplotlib.legend.Legend at 0x24ea47a90d0>


```
[]:
```