

CMT107 Visual Computing

IX.1 Curves

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Curve representations
 - Explicit representation
 - Implicit representation
- > Parametric representation of curves
 - Piecewise polynomial curves (spline curves)
 - Bézier curves

Curves

➤ A curve is a set of positions of a point moving with one degree of freedom

- Useful to describe shapes on a higher level
 - Not only straight lines or curved shapes approximated by short line segments
 - Simpler to create, edit and analyse
 - More accurate rendering and less storage (compared to linear approximation)

Explicit Representation

- \triangleright Explicit curve: y = f(x)
 - Essentially a *function plot* over some interval $x \in [a, b]$

- > Properties:
 - Simple to compute points and plot them
 - Simple to check whether a point lies on curve
 - Cannot represent closed or multi-valued curves:
 Only one y value for each x value (a function)

Implicit Representation

- > Define curves implicitly as solution of an equation system
 - Straight line in 2D: Ax + By + C = 0
 - Circle of radius R in 2D: $x^2 + y^2 R^2 = 0$
 - Conic section: $Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$
 - Matrix/vector representation up to order two:

$$\mathbf{x}^{\mathsf{T}} \mathbf{M} \mathbf{x} + \mathbf{v}^{\mathsf{T}} \mathbf{x} + \mathbf{s} = 0 \quad (\mathbf{x} = [\mathbf{x} \ \mathbf{y}]^{\mathsf{T}})$$

- ➤ In 3D, two equations are needed (1 equation restricts 1 variable, but there are 3 variables)
 - Straight line: Ax + By + Cz + D = 0, Ex + Fy + Gz + H = 0
 - A circle in x-y plane: $x^2 + y^2 = r^2$, z = 0

Properties of Implicit Curves

- > Mainly use polynomial or rational functions
- Coefficients determine geometric properties
- > Properties:
 - Hard to render (have to solve non-linear equation system)
 - Simple to check whether a point lies on curve
 - Can represent closed or multi-valued curves

Parametric Curves

 \triangleright Describe the position on the curve by a parameter $u \in R$

$$c(u) = \begin{pmatrix} x(u) \\ y(u) \\ z(u) \end{pmatrix}$$

- x(u), y(u), z(u) are usually polynomial or rational functions in u
- $u \in [a, b]$, usually $u \in [0, 1]$
- Parameter function maps parameter to model coordinates
 - Parameter space: u (parameter domain)
 - Model space: x, y, z (Cartesian coordinates)

Properties of Parametric Curves

> Properties:

- Simple to render (evaluate parameter function)
- Hard to check whether a point lies on curve (must compute inverse mapping from (x, y, z) to u; involves solving non-linear equations)
- Can represent closed or multi-valued curves

Parametric Polynomial Curves

> Describe coordinates by polynomials:

$$x(u) = \sum_{l=0}^{d} A_l u^l, \quad y(u) = \sum_{l=0}^{d} B_l u^l, \quad z(u) = \sum_{l=0}^{d} C_l u^l$$

- > Smooth (infinitely differentiable)
- > Higher order curves (say > 4) cause *numerical problems*
- > Hard to control shape by interpolation

Bernstein Polynomials

Bernstein basis polynomials

- Property: $\sum_{l=0}^{d} b_l^d(u) = 1 \text{ for } u \in [0,1]$
- A Bernstein polynomial is a linear combination of Bernstain basis polynomials

$$B(u) = \sum_{l=0}^{d} \beta_l b_l^d(u), u \in [0, 1].$$

Cubic Bernstein Basis Polynomials

> There are 4 cubic Bernstein basis polynomials

Piecewise Polynomial Curves

- Cut curve into segments and represent each segment as polynomial curve
- > Can use low-order polynomial curves, e.g. cubic (order 3)
- > But how to guarantee *smoothness at the joints*?
 - Continuity problem

Spline Curves

- > In general, piecewise polynomial curves are called splines
 - Motivated by loftsman's spline
 - Long narrow strip of wood or plastic
 - Shaped by lead weights (called ducks)
 - Gives curves that are smooth or fair

Bézier Curves

> Represent a polynomial segment as

$$Q(u) = \sum_{l=0}^{d} p_l b_l^d(u), u \in [0, 1]$$

$$Q(u) = \sum_{l=0}^{d} p_{l} \binom{d}{l} u^{l} (1-u)^{d-l}, u \in [0,1]. \quad u = 0$$

- Control points $p_l \in \mathbb{R}^3$ or \mathbb{R}^2 determine segment's shape
- $b_l^d(u): l^{th}$ Bernstain basis polynomial of degree d.
- \triangleright Cubic Bézier curve (d=3) has four control points
 - Note that $\sum_{l=0}^{d} b_l^d(u) = 1$ for $u \in [0, 1]$
 - Convex combination of control points

Properties of Bézier Curves

> Convex hull:

curve lies inside the convex hull of its control points

> Endpoint interpolation:

$$Q(0) = p_0$$

 $Q(1) = p_d$

> Tangents

$$Q'(0) = d(p_1 - p_0)$$

 $Q'(1) = d(p_d - p_{d-1})$

- > Symmetry
 - Q(u) defined by $p_0, ..., p_d$ is equal to Q(1 u) defined by $p_d, ..., p_0$

Smooth Bézier Curves

- > Smooth joint between two Bézier curves of order d with control points $\{p_0, ..., p_d\}$, $\{p'_0, ..., p'_d\}$ respectively
 - C_0 : same end-control-points at joints: $p_d = p'_0$ (due to end-point interpolation)
 - C_1 : control points p_{d-1} , $p_d = p'_0$, p'_1 must be collinear (due to tangent property)

Continuity conditions create restrictions on control points

Parametric/Geometric Continuity

- > Parametric continuity:
 - C⁰: curves are joined
 - C¹: first derivatives are equal at the joint points
 - C²: first and second derivatives are equal

• • •

- Cⁿ: first through nth derivatives are equal
- ➤ Geometric continuity:
 - G⁰: The curves touch at the joint points
 - G¹: The curves also share a common tangent direction at the joint points (first derivatives are *proportional*)
 - G²: The curves also share a common centre of curvature at the joint points (first and second derivatives are *proportional*)

Smoothness / Continuity

- > Curve should be *smooth* to some order at joints
- ➤ Different types of *continuity at joints*
- > Geometric continuity: from the geometric viewpoint
- > Parametric continuity: for parametric curves

➤ Parametric continuity of order *n* implies geometric continuity of order n, but not vice versa.

Summary

- ➤ What is the implicit and explicit representation of a curve? What are the advantages and disadvantages of these representations?
- ➤ What are piecewise parametric polynomial curves (splines)? What is the advantage of this representation? What is the main problem?
- ➤ What are Bézier Curves and how are they defined? What properties do they have?
- ➤ What is the major problem when using piecewise polynomial curves? What conditions do the control points of a Bézier Curve have to fulfil in order to get C₀/C₁ continuous curves?

CMT107 Visual Computing

IX.2 Freeform Surfaces

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Surface representations
- > Parametric surfaces
- Piecewise polynomial surfaces
 - Tensor product splines
- > Subdivision surfaces
 - Loop subdivision
 - Doo-Sabin subdivision
 - Catmull-Clark subdivision

Surfaces

- We require general surface shapes (something better than polygonal meshes)
 - Exact boundary representation for some objects
 - Create, edit and analyse shapes

Explicit Surfaces

➤ A surface is a set of positions of a point moving with two degrees of freedom

- > Explicit and implicit representation similar to curve
 - Explicit: z = f(x, y) for $(x, y) \in \mathbb{R}^2$

Implicit Surfaces

> Surface defined as solution of an equation system:

$$f(x, y, z) = 0$$

- Usually one equation in 3D
- > Example: linear equation (plane)

$$ax + by + cz + d = 0$$

Using vectors:

— n: unit plane normal

— *d*: distance from origin

Implicit Quadrics

Quadrics (quadratic surfaces)

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2eyz + 2fxz + gx + hy + jz + k = 0$$

• Matrix representation:

$$\mathbf{x}^{\mathsf{T}} \mathbf{M} \mathbf{x} + \mathbf{v}^{\mathsf{T}} \mathbf{x} + \mathbf{s} = \mathbf{0}$$

•Sphere / Ellipsoid:

$$\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} + \frac{z^2}{r_z^2} - 1 = 0$$

• Cylinder (elliptic):

$$\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} - 1 = 0$$

Cone (elliptic):

$$\frac{x^2}{r_x^2} + \frac{y^2}{r_y^2} - z^2 = 0$$

Properties of Implicit Surfaces

- Simple to test if point is on surface
 Hard to render
- Simple to intersect two surfaces
 Hard to describe complex shapes

Mathematical Functions / Sets

Blobby Models

Parametric Surfaces

> Describe points on surface by parametric functions

$$s(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

- Maps 2D (u,v) parameter domain to 3D (x,y,z) model space
- > Example: ellipsoid
 - $x(u, v) = r_x \cos u \cos v$ $y(u, v) = r_y \cos u \sin v$ $z(u, v) = r_z \sin u$ $(u, v) \in [-\pi/2, \pi/2] \times [0, 2\pi]$

Properties of Parametric Surfaces

- > Properties similar to parametric curves
 - Simple to render points
 - Hard to test if point is on surface, compute intersections, etc.
- Hard to represent whole surface by single polynomial function
 - Use piecewise polynomial surfaces
 - Surface is cut into patches
 - Smoothness / continuity problem when joining patches

Piecewise Polynomial Surface

> Spline surface: piecewise polynomial surface patches

- > Use spline curve approach with two degrees of freedom
 - Each patch is defined by a set of control points

Tensor Product

Intuitively, a surface is a curve which *moves* through space while it changes its shape

Mathematically this is the tensor product of two curves

Tensor Product Surfaces

- Surface patch as a curve moving through space
 - Assume this curve is at any time $v \in [0, 1]$ a Bézier curve

 $c^{\nu}(u) = \sum_{l=0}^{\alpha} P_l(\nu) B_l^{\alpha}(u)$

• The control points $P_l(v)$ lie on curves as well, assume these are also Bézier curves

$$P_{l}(\nu) = \sum_{k=0}^{\beta} P_{l,k} B_{k}^{\beta}(\nu)$$

Combing both gives the formula for a Bézier surface patch

$$Q(u,v) = \sum_{l=0}^{\alpha} \sum_{k=0}^{\beta} P_{l,k} B_l^{\alpha}(u) B_k^{\beta}(v)$$

Bézier Surface Patches

Point Q(u, v) on the patch is the tensor product of Bézier curves defined by the *control points* $P_{l,k}$

• *Order* of surface is given by order of curves α , β (e.g. bicubic: $\alpha = \beta = 3$)

Properties of Bézier Patches

- > Interpolates four corner control points
- Lies inside *convex hull* of control points

> Changing control points has only local effect (local

Smooth Bézier Surfaces

Continuity / smoothness constraints similar to Bézier splines

C⁰ and C¹ Bézier Surfaces

> C⁰ requires *aligning boundary curves*

> C¹ requires aligning boundary curves and derivatives

Drawing Bézier Surfaces

> Simple approach:

loop through *uniformly* spaced increments of *u* and *v*

```
for (int l = 0; l < l_{max}; ++l) {
    double u = u_{min} + l * u_{step};
    for (int k = 0; k < k_{max}; ++k) {
        double v = v_{min} + k * v_{step};
        DrawQuadrilateral (...);
    }
}
```


Note, Bézier surfaces always have quadrilateral structure

Drawing Bézier Surfaces

> Better approach:

use adaptive subdivision

```
DrawSurface (surface) {
  if flat(surface, epsilon) {
   DrawQuadrilateral (surface);
  } else {
   SubdivideSurface (surface,...);
   DrawSurface (surfaceLL);
   DrawSurface (surfaceLR);
   DrawSurface (surfaceRL);
   DrawSurface (surfaceRR);
```


Uniform subdivision

Adaptive subdivision

Drawing Bézier Surfaces

- > Problem of adaptive subdivision:
 - Cracks at boundaries between patches at different subdivision levels

 Avoid cracks by adding extra vertices and triangulating quadrilaterals with neighbours at finer level

Subdivision Surfaces

- ➤ Idea of *subdivision surfaces*
 - Define a smooth surface as the limit of a sequence of successive refinements of a mesh

Why Subdivision?

- Level of Detail
- Compression
- Smoothing

Cutting Corners – Curves

Center for Graphics and Geometric Computing, Technion

Surface Subdivision

- > Start with a control mesh
- > Per iteration construct *refined* mesh by inserting vertices
- Mesh sequence should converge to a limit surface
- > Subdivision scheme defined by two elements
 - Generate topology of the new mesh
 - Compute vertex locations in new mesh
 - Vertex point: new location of old vertex
 - Edge point: location of new vertex on old edge
 - Face point: location of new vertex on old face

Loop Subdivision

- > Loop subdivision scheme:
 - Refine each triangle into 4 triangles by splitting each edge and connecting new vertices

Loop Subdivision

- > Computing locations of new vertices
 - Weighted average of original vertices in neighbourhood

Edge point

Vertex point

$$\beta = \frac{1}{n} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{2}{8} \cos\left(\frac{2\pi}{n}\right) \right)^2 \right)$$

No face points

- ➤ Mesh is the control mesh of a *B-Spline surface*
 - Refined mesh is also a control mesh of a B-Spline Surface
- > Incremental construction
 - Calculate face points
 - Calculate edge points using face points
 - Calculate vertex points using face and edge points
 - Connect vertices

Step 1

First, all the face points are calculated

Step 2

Then the edge points are calculated using the values of the face points and the original vertices

Step 3

Last, the vertex points are calculated using the values of the face and edge points and the original vertex

Center for Graphics and Geometric Computing, Technion

> Connecting new vertices:

- Connect each new face point to edge points of the edges defining the old face
- Connect each new vertex point to new edge points of all old edges incident on the old vertex point

Center for Graphics and Geometric Computing, Technion

Face Point

$$f = \frac{1}{m} \sum_{i=1}^{m} p_i$$

Edge Point

$$\mathring{e} = \frac{p_1 + p_2 + f_1 + f_2}{4}$$

Vertex Point

$$\overset{\bullet}{v} = \frac{Q}{n} + \frac{2R}{n} + \frac{p(n-3)}{n}$$

$$\mathbf{v} = \frac{1}{n^2} \sum_{i=1}^{n} \mathbf{f}_i + \frac{1}{n^2} \sum_{i=1}^{n} \mathbf{p}_i + \frac{n-2}{n} \mathbf{p}$$

- \Box Q Average of face points
- \square R Average of midpoints
- \Box p old vertex

Doo-Sabin Subdivision

Masks:

$$\alpha_i = \frac{\delta_{i,0}}{4} + \frac{3 + 2\cos(2i\pi/n)}{4n}$$

$$\stackrel{\bullet}{p} = \sum_{i=0}^{n-1} \alpha_i \stackrel{\bullet}{p_i}$$

Properties of Subdivision Surfaces

> Advantages

- Simple methods for describing complex surfaces
- Multi-resolution evaluation and manipulation
- Arbitrary topology of control mesh (not only quadrilateral)
- Limit surface is smooth

Disadvantages

- No obvious parametrisation
- Hard to find intersections

Summary

- What are parametric surfaces? What are their advantages and disadvantages?
- ➤ What are spline surfaces? What are their advantages and disadvantages? What is the major problem when defining surfaces "piecewise"?
- ➤ What is the principle of a tensor product surface? What are Bézier surfaces? What conditions do the control points of C⁰/C¹ continuous Bézier surfaces have to fulfil?
- ➤ What is the principle of subdivision surfaces? What are their advantages / disadvantages?
- ➤ How do Loop, Catmull-Clark, Doo-Sabin subdivision schemes work?