Interferência e interferómetros

Interferência

- Apenas polarizações paralelas interferem
- Interferência duma onda com a própria onda

O interferómetro de Michelson

- Franjas devido um atraso
- Aplicações

Outros Interferómetros

- Mach-Zehnder
- Sagnac
- Iridescência

Ref: Hecht secção 9.4 Peatross Ware secções 8.1, 8.2, 12.1 Saleh Teich seção 2.5

Sobreposição

A equação de onda é linear

$$\nabla^2 \mathbf{E} - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$

Se ambas $\mathbf{E}_{1}(\mathbf{r},t)$ e $\mathbf{E}_{2}(\mathbf{r},t)$

são soluções, então a sobreposição

$$\mathbf{E}_{1}(\mathbf{r},t) + \mathbf{E}_{2}(\mathbf{r},t)$$

também é uma solução

O principio de sobreposição permite as ondas se atravessar sem interagir

Soma de duas ondas: a irradiância

Interferência acontece apenas quando as ondas tem a mesma frequência e polarização. Vamos focar neste caso

Franjas devido um atraso

Sobreposição de duas ondas monocromáticas

$$I = I_1 + c\varepsilon \operatorname{Re} \left\{ E_1 \cdot E_2^* \right\} + I_2$$

Luz se propaga 300 μ m em 10⁻¹²s 1 μ m \leftrightarrow 6.6 fs (cerca 2 ciclos)

Uma onda com um atraso τ

$$\tau = 2 \delta L / c$$

$$\Delta \phi = \omega \tau$$
$$= 2\omega \delta L / c$$
$$= 2k \delta L$$

$$I = 2I_0 + c\varepsilon \operatorname{Re} \left\{ E_0 \exp(i\omega t) \cdot E_0^* \exp[-i\omega(t - \tau)] \right\}$$

$$\Rightarrow I = 2I_0 + 2I_0 \cos(\omega \tau)$$

Vários métodos para introduzir um atraso

2 espelhos criam um atraso e desloca o feixe. Espelhos desalinhos façam que os feixe não sejam paralelos.

Conjunto de três superfícies refletores á 90° criam sempre um feixe paralelo ao feixe incidente.

Interferómetro Michelson

O interferómetro de Michelson pode ser usado para determinar o comprimento de onda duma fonte monocromática Mudança de fase no divisor de feixe introduza o sinal -

$$I_{out} = 2I_0 - 2I_0 \cos(\omega \tau)$$
$$= 2I_0 - 2I_0 \cos(2k\delta L)$$

$$\delta L = L_2 - L_1$$

Pormenor técnico – a placa compensadora

Franjas de inclinação

Muitas vezes o interferómetro de Michelson é "desalinhado" para criar um pequeno angulo entro os feixes da saída

$$\vec{k}_1 = k \cos \theta \, \hat{z} + k \sin \theta \, \hat{x}$$

$$\vec{k}_2 = k \cos \theta \, \hat{z} - k \sin \theta \, \hat{x}$$

$$E(x, z, t) = E_0 \exp \left[i(kz\cos\theta - \omega t)\right] \left[\exp(+ikx\sin\theta) + \exp(-ikx\sin\theta)\right]$$
$$= 2E_0 \exp \left[i(kz\cos\theta - \omega t)\right] \cos(kx\sin\theta)$$

$$\Rightarrow I(x,t) = 4I_0 \cos^2(kx \sin \theta) = 2I_0 \left[1 + \cos(2kx \sin \theta) \right]$$

Separação entre as franjas: $\Lambda = 2\pi/(2k\sin\theta)$ $\Lambda = \lambda/(2\sin\theta)$

Franjas de inclinação com atraso

Deslocar um feixe de distância δL provoca uma atraso na fase igual a $k \delta L$

$$E_1 + E_2 = E_0 \left\{ \exp\left[i(kz\cos\theta + kx\sin\theta - \omega t)\right] + \exp\left[i(kz\cos\theta - kx\sin\theta + k\delta L - \omega t)\right] \right\}$$
$$= 2E_0 \exp\left[i(kz\cos\theta - \omega t)\right] \exp\left(ik\delta L/2\right) \cos(kx\sin\theta - k\delta L/2)$$

$$\Rightarrow I(x,t) \propto I_0 \cos^2(kx \sin \theta - k \delta L/2)$$
$$= \frac{1}{2} I_0 \left[1 + \cos(2kx \sin \theta - k \delta L) \right]$$

Atrasar um feixe resulta num deslocamento de fase das franjas por $k \delta L$.

Resumo

Desalinhar os espelhos para formar franjas na saída

$$I(x) \propto 1 - \cos(2kx \sin \theta)$$

Deslocar um espelho de distância δL provoca uma mudança na fase das franjas $2k \delta L (= \omega \tau)$:

$$I(x) \sim 1 - \cos(2kx \sin \theta - 2k \delta L)$$
$$\sim 1 - \cos(2kx \sin \theta - \omega \tau)$$

Franjas ao longo do eixo dos xxs

$$\Lambda = \lambda / (2\sin\theta)$$

Ondas Eletromagnéticas

James Clerk Maxwell (1831-1879)

1864 : deduza 4 equações que descreve EM

Velocidade da onda EM
$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

Qual é a referência?

Na altura a hipótese foi que havia um "éter" que permeava o espaço e servia o meio de suporte para as ondas EMs.

A velocidade da luz é c na referência em que o éter é estacionário.

Experiência de Michelson-Morley

The Aether Wind

Albert Michelson Nobel 1907

Edward Morley

Laboratório 1887 (Case Western University)

Imagine que o éter se desloca com velocidade v na direção horizontal relativo ao interferómetro

Tempo da ida no braço horizontal

$$t_{ida} = \frac{d}{c + v}$$

Tempo da volta

$$t_{volta} = \frac{d}{c - V}$$

$$t_{\text{Horz}} = \frac{d}{c + v} + \frac{d}{c - v} = 2d \frac{c}{c^2 - v^2} = \frac{2d}{c} \frac{1}{1 - (v/c)^2}$$

O braço vertical é ligeiramente mais complicado

No braço vertical tem haver uma pequeno componente horizontal para compensar a velocidade do éter.

A velocidade vertical efetiva é dão pela teorema de Pitágoras

$$c^2 = v^2 + v_{Vert}^2$$
 $v_{Vert} = c\sqrt{1 - (v/c)^2}$

Tempo da ida e volta no braço vertical

$$t_{\text{Vert}} = \frac{2d}{v_{\text{Vert}}} = \frac{2d}{c} \frac{1}{\sqrt{1 - (v/c)^2}}$$

Diferença no tempo entre os braços horizontal e vertical

$$t_{Horz} - t_{Vert} = \frac{2d}{c} \left[\frac{1}{1 - (v/c)^2} - \frac{1}{\sqrt{1 - (v/c)^2}} \right]$$

Velocidade da Terra á volta do Sol

$$v_{Terra} \approx \frac{2\pi (1.5x10^{11} m)}{\pi x 10^7 s} \approx 3,0x10^4 m/s$$

$$c \approx 3.0 \times 10^8 \ m/s$$

$$t_{Horz} - t_{Vert} = \frac{2d}{c} \left[\frac{1}{1 - (v/c)^2} - \frac{1}{\sqrt{1 - (v/c)^2}} \right]$$

$$(1\pm\varepsilon)^n \approx 1\pm n\varepsilon$$

Expansão Taylor
$$(1 \pm \varepsilon)^{n} \approx 1 \pm n\varepsilon$$

$$\frac{1}{1 - (v/c)^{2}} \approx 1 + \left(\frac{v}{c}\right)^{2}$$

$$\frac{1}{\sqrt{1 - (v/c)^{2}}} \approx 1 + \frac{1}{2} \left(\frac{v}{c}\right)^{2}$$

$$t_{\text{Horz}} - t_{\text{Vert}} \approx \frac{d}{c} \left(\frac{v}{c}\right)^{2}$$

$$\approx \frac{d}{c} x 10^{-8}$$

Experiência de Michelson e Morely 1887

Comprimento de cada braço = 11m

O comprimento de onda da luz visível é muito pequeno

$$\Delta t \approx \frac{d}{c} x 10^{-8}$$

$$\Delta \varphi = \omega \Delta t \approx \omega \frac{d}{c} x 10^{-8} \approx 2\pi \left(\frac{d}{\lambda}\right) x 10^{-8} \approx 2\pi \left(0.2\right)$$

Não é possível parar a Terra, mas ao rodar o interferómetro 90º os braços trocam posições.

O Michelson e Morley esperava observar as franjas deslocarem 0.4 dum ciclo.

Testarem dia e noite, verão e inverno e o resultado eram sempre ≈ 0.

Talvez o resultado negativo mais importante na ciência

Deslocamento de franjas esperado 0.4Λ

Resolução das medidas 0.02Λ

A. A. Michelson, Studies in Optics

Einstein propus que luz é uma onda que não requer um meio para propagar.

Afirmou que as equações de Maxwell são validas em qualquer referencial inercial (sem aceleração).

- Um consequência é que observadores em qualquer referência inercial observam a mesma velocidade para luz.
- Todas as leis de Física (e não apenas as lei de Newton) são iguais em qualquer referência inercial. Não existe nenhuma maneira de detetar movimento absoluto.

O conceito de espaço não pode ser separado do conceito do tempo. As transformações de Lorentz misturam espaço e tempo.

Igualmente na relatividade restrita campos elétricos e campos magnéticos não são independentes.

Relatividade Geral

Massas distorcem a geometria do espaço a sua volta

Massas em aceleração emitam onda gravíticas

Ondas gravítica são ondas quadrupolares

 esticam espaço numa direção e contraem espaço na direção perpendicular.

Um onda gravítica a propagar na direção +z.

Ondas gravíticas produzam uma diferença no comprimentos do braços ¿L que varia sinusoidalmente no tempo enquanto a onda se passa no interferómetro.

A distorção é muito pequena ($\delta L \sim 10^{-16} \, \mathrm{cm}$) cerca de 1000 vezes menor do que o raio dum protão!

Ligo

Os braços (tuneis de vácuo com um comprimento de 4km) são ajustados para produzir uma franja escura na saída.

Têm feixes lasers uma potência – 1kW a circular dentro do interferómetro.

Qualquer perturbação façam que alguma luz sai, pois a interferência já não completamente destrutiva.

Ligo

Braços ~4 km

resolução
$$\frac{\delta L}{L} \approx 10^{-21}$$

Primeira deteção

Michelson "desequilibrado"

Ao colocar um objeto transparente num dos braços uma variação de fase será induzida que reflete as propriedades física do objeto.

È possível obter uma resolução que é uma fração pequena de λ

Franjas espaciais devida variações de temperatura provocadas por um ferro de soldadura

$$I(x) \propto 1 - \cos[2kx \sin \theta - 2\phi(x, y)]$$

Quando a fonte não é monocromática

$$\vec{\mathbf{E}}_0 e^{-i\omega t} \to \vec{\mathbf{E}}(t)$$

A transformada Fourier de E(t) dá o espetro

$$I_{saida}(\tau) = 2I_0 + \varepsilon c \operatorname{Re} \{ \vec{\mathbf{E}}(t) \bullet \vec{\mathbf{E}} * (t - \tau) \}$$

O campo Elétrico varia rapidamente (~500 THz) enquanto os detetores são mais lentes (~10sGHz) integrar para obter energia

$$U(\tau) = 2I_0 \Delta T + \varepsilon c \operatorname{Re} \int_{-\Delta T/2}^{\Delta T/2} dt \vec{\mathbf{E}}(t) \bullet \vec{\mathbf{E}} * (t - \tau)$$
Função da autocorrelação
$$\int_{-\infty}^{\infty} dt \operatorname{Re} \vec{\mathbf{E}}(t) \bullet \vec{\mathbf{E}} * (t - \tau) = \left| \mathbf{E}(\omega) \right|^2$$

Esepctrometro de transformada Fourier

Usada mais no infravermelho (maiores λ s, mais fácil controlar τ)

Utilizado frequentemente para identificar componentes químicos

wavenumbers = (wavelength)⁻¹, units of 1/cm

Mach-Zenhder

O feixe passa só uma vez no objeto Não há um feixe que volta para a trás na direção da fonte.

Interferogramas Mach Zehnder

Braços vazios

Uma plasma num braço

Focar um laser pulsado intenso num dos braços de Mach-Zehnder.

Cristais de lisozima (uma proteína) a crescer num gel – as franjas representam contornos de concentração.

Mach Zehnder em ótica integrada

Com o efeito Pockels um Mach-Zehnder pode ser usado para modular a intensidade duma feixe numa guia de onda em ótica integrada.

È um componente comum nos sistemas de comunicação.

Interferómetro de Fizeau

Superfície alto refletor

Produz uma padrão complexa de franjas com espessuras variáveis. Utilizado na industria para caracterizar erros nas espessuras das lentes

Um interferómetro Fizeau comercial

Anéis de Newton

Interferência entre luz refletida nas duas fronteiras duma camada de ar entre uma superfície curva e uma plana.

Interferência construtiva ocorre quando as reflexões de frente de atrás são em fase (múltiplo inteiro de 2π)

Interferência construtiva ou destrutiva Interferência

construtiva

 $2L = (2m+1)\lambda$

destrutiva

 $2L = (2m)\lambda$

Superfície dum vidro plano

Iridescência

Interferência construtiva pode resultar em cores intensas.

Comum em biologia e geologia.

Têm uma dependência angular forte (porque?)

Opala

Bismulo

Possível usar para substituir tinta de impressores a cor?

Filmes de sabão e óleo

Em geral vê as cores intensas apenas para a primeira e segunda ordem (m = 1 ou 2)

Interferómetro de Sagnac

Os 2 feixes temo mesmo caminho dentro do interferómetro.

Georges Sagnac 1869 - 1926

Mesmo caminho no interferómetro

Os feixes passam pelo mesmo quantidade de vidro no divisor de feixe.

Interferómetro de Sagnac

Mudanças de fase devida as reflexões:

Feixe de retorno: caminho no sentido dos relógios tem fases π , π , π , e 0.

No sentido contra dos relógios fases: $0, \pi, \pi, e \pi$.

Interferência construtiva!

Toda a luz volta a fonte

Feixe da saída: No sentido dos relógios fases: π , π , π , e 0.

Contra do sentido dos relógios fases: 0, π , π , e 0.

Interferência destrutiva

O interferómetro de Sagnac sente rotação

Se houver uma rotação o divisor de feixe vai deslocar uma distância d durante o tempo T que a luz demora realizar uma volta.

Um feixe se desloca mais (d) o outro menos (-d)

$$I_{exit} \propto \left| E_0 \exp(ikd) - E_0 \exp(-ikd) \right|^2 \propto I_0 \sin^2(kd)$$

Divisor de feixe quando o feixe sai

raio de interferómetro, $\ R$ velocidade angular $\ \Omega$

$$d=R\theta$$

$$\theta=\Omega T$$
Entrada/saída

Divisor de feixe quando o feixe entra o interferómetro

$$d = R\theta = R(\Omega T) = R\Omega(2\pi R/c) = 2\Omega(\pi R^2)/c = 2\Omega(\text{Årea})/c$$

$$\Rightarrow I_{saida} \propto I_0 \sin^2(2k\Omega \text{Årea}/c) \approx 4I_0 k^2 \Omega^2 \text{Årea}^2/c^2$$

A sensibilidade á rotação ~ (área do interferómetro)²

Giroscópio baseado num interferómetro de Sagnac

Podem atingir uma precisão de 0.01°/hora

Tipicamente usam fibras óticas enroladas numa forma circular.

São usados em aviões, naves espaciais (e mísseis)