

nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon)
Prorked from nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon)

COMMENTS 1

DOI

dx.doi.org/10.17504/protocols.io.6qpvrdpjbgmk/v1

Bruno Gomez-Gil¹, juli.encisoi²

¹CIAD AC Mazatlan; ²CIAD juli.encisoi: Julissa Enciso Ibarra;

DEC 14, 2022

WORKS FOR ME 1

Bruno Gomez-Gil

DISCLAIMER

It work for us, any modification is up to you.

ABSTRACT

This is a fork of the protocol https://dx.doi.org/10.17504/protocols.io.bh7hj9j6 but modified for tiled 2000bp amplicons, tagmentation with Nextera XT, indexing, and sequencing with the Illumina Miniseq platform.

It has already produced very good sequences.

Much of this protocol is base on this paper: https://doi.org/10.1093/biomethods/bpaa014

DOI

dx.doi.org/10.17504/protocols.io.6qpvrdpjbgmk/v1

PROTOCOL CITATION

Bruno Gomez-Gil, juli.encisoi 2022. nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon). **protocols.io** https://dx.doi.org/10.17504/protocols.io.6qpvrdpjbgmk/v1

FUNDERS ACKNOWLEDGEMENT

<u>+</u>

CONACYT

Grant ID: 321122

FORK NOTE

FORK FROM

Forked from nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon), Nikki Freed

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 28, 2021

LAST MODIFIED

Dec 14, 2022

PROTOCOL INTEGER ID

47758

GUIDELINES

Tested with high viral copy numbers (<30 Ct).

Citation: Bruno Gomez-Gil, juli.encisoi nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon) https://dx.doi.org/10.17504/protocols.io.6gpvrdpibgmk/v1

MATERIALS TEXT

cDNA

GoScript™ Reverse Transcriptase Kit by Promega.

Multiplex DNA

•

Library preparation

- <u>Nextera XT</u> DNA Library Preparation Kit
- -

SAFETY WARNINGS

Please follow standard health and safety guidelines when working with COVID-19 patient samples.

DISCLAIMER

It work for us, any modification is up to you.

protocols.io

2

Citation: Bruno Gomez-Gil, juli.encisoi nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon) https://dx.doi.org/10.17504/protocols.io.6gpvrdpjbgmk/v1

4 Incubate the reaction as follows:

Snap cool in a prechilled metal rack or on ice 00:01:00

Note

Note

Primer pool preparation

5 **PRIMERS** for this protocol are described in protocol <u>nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon)</u> and are the 2,000 bp option. We selected for 2,000 bp amplicons so they could be more easily tagmented in the library preparation.

Two pooles are prepared, Pool1 with 18 primers and Pool2 with 16 primers.

POOL1. Average Tm 8 61.01 °C

A	В	С	D	E	F	G	Н	I	J	K
Name	Sequence	Direction	Start	End	Length	Product Siz	Tm	%GC	Hairpin Tm	Pa
SARSCoV_2000_01_LEFT	ACCAACCAACTTTCGATCTCTTGT	forward	31	54	24	2049	60.7	41.7	None	Nc
SARSCoV_2000_01_RIGHT	ACACCACCTGTAATGTAGGCCA	reverse	2058	2079	22	2049	61.4	50	39	Nc
SARSCoV_2000_03_LEFT	TCGCACAAATGTCTACTTAGCTGT	forward	3772	3795	24	1814	60.6	41.7	None	0.7
SARSCoV_2000_03_RIGHT	GTGTGCCCATGTACATAACAGCT	reverse	5563	5585	23	1814	61.2	47.8	42.7	0.7
SARSCoV_2000_05_LEFT	CAATCATGCAATTGTTTTTCAGCTATTT	forward	7299	7328	30	1825	60.4	30	33	Nc
SARSCoV_2000_05_RIGHT	CGTGTGTCAGGGCGTAAACTTT	reverse	9102	9123	22	1825	61.6	50	None	Nc
SARSCoV_2000_07_LEFT	GGACGTACCATATTGGGTAGTGC	forward	10886	10908	23	1834	60.8	52.2	43.8	Nc
SARSCoV_2000_07_RIGHT	TCTGTCGTAGTGCAACAGGACT	reverse	12698	12719	22	1834	61.3	50	41.4	Nc
SARSCoV_2000_09_LEFT	ACCACTTCAGAGAGCTAGGTGT	forward	14477	14498	22	1925	60.5	50	None	Nc
SARSCoV_2000_09_RIGHT	ACAACCTGGAGCATTGCAAACA	reverse	16380	16401	22	1925	61.5	45.5	None	Nc
SARSCoV_2000_11_LEFT	TGGCATACCTAAGGACATGACCT	forward	18168	18190	23	1814	60.9	47.8	38.3	Nc
SARSCoV_2000_11_RIGHT	CAGTGAGTGGTGCACAAATCGT	reverse	19960	19981	22	1814	61.6	50	38.7	Nc
SARSCoV_2000_13_LEFT	TCCTCAGTTTTACATTCAACTCAGGA	forward	21695	21720	26	1937	60.2	38.5	45.2	Nc
SARSCoV_2000_13_RIGHT	TGACTAGCTACACTACGTGCCC	reverse	23610	23631	22	1937	61.5	54.5	37	Nc
SARSCoV_2000_15_LEFT	AGGAGTCAAATTACATTACACATAAACG	forward	25360	25389	30	1805	60.1	30	None	Nc
SARSCoV_2000_15_RIGHT	ACTGCTACTGGAATGGTCTGTGT	reverse	27142	27164	23	1805	61.6	47.8	None	Nc
SARSCoV_2000_17_LEFT	ACTTGTCACGCCTAAACGAACA	forward	27873	27894	22	1918	60.7	45.5	36.7	Nc
SARSCoV_2000_17_RIGHT	TAGGCAGCTCTCCCTAGCATTG	reverse	29769	29790	22	1918	61.6	54.5	45.3	Nc

1h 21m

POOL2. Average Tm 8 61.05 °C

A	В	С	D	E	F	G	Н	I	J	K
Name	Sequence	Direction	Start	End	Length	Product Siz	Tm	%GC	Hairpin Tm	Pa
SARSCoV_2000_02_LEFT	AGGCCGCTATAACAATACTAGATGGA	forward	1956	1981	26	1923	61.3	42.3	None	No
SARSCoV_2000_02_RIGHT	CAGCGATCTTTTGTTCAACTTGCT	reverse	3855	3878	24	1923	60.8	41.7	None	No
SARSCoV_2000_04_LEFT	TCAACATGCCAATTTAGATTCTTGCA	forward	5473	5498	26	1929	60.3	34.6	None	8.1
SARSCoV_2000_04_RIGHT	GCTGAAATCGGGGCCATTTGTA	reverse	7380	7401	22	1929	61.5	50	None	8.1
SARSCoV_2000_06_LEFT	GCTGCTGAATGTACAATTTTTAAAGATG	forward	9011	9039	29	2003	61.1	34.5	None	Nc
SARSCoV_2000_06_RIGHT	AACCAGTGGTGTGTACCCTTGA	reverse	10992	11013	22	2003	61.5	50	47	No
SARSCoV_2000_08_LEFT	TCACCTAATTTAGCATGGCCTCTT	forward	12620	12643	24	1956	60.1	41.7	None	No
SARSCoV_2000_08_RIGHT	CAGGGTCAGCAGCATACACAAG	reverse	14554	14575	22	1956	61.5	54.5	None	Nc
SARSCoV_2000_10_LEFT	TGCATACGTAGACCATTCTTATGTTGT	forward	16291	16317	27	1985	60.8	37	32.8	Nc
SARSCoV_2000_10_RIGHT	GCTTCTTCGCGGGTGATAAACA	reverse	18254	18275	22	1985	61.5	50	None	Nc
SARSCoV_2000_12_LEFT	GGACTACAAAAGAGATGCTCCAGC	forward	19878	19901	24	1920	61.5	50	42.5	11
SARSCoV_2000_12_RIGHT	ACCTCTTAGTACCATTGGTCCCA	reverse	21775	21797	23	1920	60.5	47.8	37.1	11
SARSCoV_2000_14_LEFT	GCTGAACATGTCAACAACTCATATGA	forward	23519	23544	26	1973	60.1	38.5	35.2	Nc
SARSCoV_2000_14_RIGHT	TGCAGTAGCGCGAACAAAATCT	reverse	25470	25491	22	1973	61.4	45.5	46.2	Nc
SARSCoV_2000_16_LEFT	TCTTATTACAAATTGGGAGCTTCGCA	forward	27051	27076	26	1995	61.3	38.5	37.6	Nc
SARSCoV_2000_16_RIGHT	GCTTCTTAGAAGCCTCAGCAGC	reverse	29024	29045	22	1995	61.6	54.5	43.6	Nc

Pool2.

6	PRIMER STOCKS	[M] 100 micromolar (uM)	j

If you have ordered each primer independently and need to generate primer pool stocks: add Δ 5 μL of each primer from Pool 1 to a Δ 1.5 mL Eppendorf labelled "Pool 1 (100μM)" and each primer from Pool 2 to a Δ 1.5 mL Eppendorf labelled "Pool 2 (100μM)". These are your [M] 100 micromolar (μM) stocks of each primer pool.

Note		

7 WORKING PRIMERS ([M] 10 micromolar (μM)

Dilute the primer stocks 1:10 in molecular grade water, to generate 10µM primer working stocks. It is recommend that multiple aliquots of each primer pool are made to in case of degradation or contamination.

Note			

8 POOLING OF PRIMERS

Label two 🚨 1.5 mL Eppendorf tubes, one as **P00L1** and the another as **P00L2**.

https://dx.doi.org/10.17504/protocols.io.6qpvrdpjbgmk/v1

	Note
	Expected result
	Pooling and PCR quantification
13	Amplicon quantification to make an equimolar mixture.
13	This phoon quantification to make an equilibrian mixture.
	Note
13.1	Put 🔼 1 µL of each pool in a Nanodrop or similar spectometer and quantify the DNA concentration.
13.2	Label a A 1.5 mL Eppendorf tube for each sample and make a equimolar mix with the two pools. Calculate to achieve a final concentration of [M] 50 Mass Percent
14	Quantify DNA using a Qubit or other method.
	Quantification using Nanodrop is not recommended for a good estimation of the final pool.
	Note
14.1	Protocol

6

Citation: Bruno Gomez-Gil, juli.encisoi nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon) https://dx.doi.org/10.17504/protocols.io.6qpvrdpjbgmk/v1

14.1.6	Mix each tube vigorously by vortexing for 3–5 seconds.
14.1.7	Allow all tubes to incubate at room temperature for 2 minutes, then proceed to "Read standards and samples".
14.1.8	On the Home screen of the Qubit™ 3 Fluorometer, press DNA, then select 1X dsDNA HS as the assay type. The Read standards screen is displayed. Press Read Standards to proceed.
	Note
14.1.9	Insert the tube containing Standard #1 into the sample chamber, close the lid, then press Read standard. When the reading is complete (~3 seconds), remove Standard #1.
14.1.10	Insert the tube containing Standard #2 into the sample chamber, close the lid, then press Read standard. When the reading is complete, remove Standard #2.
14.1.11	The instrument displays the results on the Read standard screen. For information on interpreting the calibration results, refer to the Qubit™ Fluorometer User Guide, available for download at thermofisher.com/qubit.
14.1.12	Press Run samples.
14.1.13	On the assay screen, select the sample volume and units: Press the + or – buttons on the wheel, or anywhere on the wheel itself, to select the sample volume added to the assay tube (from 1–20µL). From the unit dropdown menu, select the units for the output sample concentration (in this case choose ng/µL).
14.1.14	Insert a sample tube into the sample chamber, close the lid, then press Read tube. When the reading is complete (~3 seconds), remove the sample tube.
14.1.15	The top value (in large font) is the concentration of the original sample and the bottom value is the dilution concentration. For information on interpreting the sample results, refer to the Qubit™ Fluorometer User Guide.
14.1.16	Repeat step 14 until all samples have been read.
14.1.17	Carefully record all results and store run file from the Qubit on a memory stick.

14.1.18 All negative controls should ideally be 'too low' to read on the Qubit machine, but MUST be < 1ng per ul. If your negative controls >1ng per ul, considerable contamination has occurred and you must redo previous steps.

	Normalisation	
15	Label a 🚨 0.2 mL PCR tube for each sample.	
15.1	Adjust the amount of DNA in the tube to be Δ 100 ng total per sample in Δ 7.5 μL molecular grade water.	
	Note	
	Tagmentation	7m
16		
	Nextera XT DNA Library Preparation Kit Illumina, Inc. Catalog #FC-131-1024 We have reduced the amount of reagents used per reaction.	
16.1	Label a Label	
	1. Tagment DNA buffer (TD) 2. cDNA [M] 2 ng/μl Δ 3 μL	
16.2	Pipette 10 times to mix Add Amplicon Tagment Mix A 0.5 µL and pipette 10 times to mix	
10.2	and pipette to times to mix	
16.3	Centrifuge at 280 x g, 20°C, 00:01:00	
		_
16.4	Incubate in thermal cycler 55°C for 00:10:00 10°C indefenitly	10m
16.5		
	Pipette 10 times to mix	
16.6	Centrifuge at 280 x g, 20°C, 00:01:00	

protocols.io

Citation: Bruno Gomez-Gil, juli.encisoi nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon) https://dx.doi.org/10.17504/protocols.io.6qpvrdpjbgmk/v1

Purificación final y pooling

Al volumen que se tiene en el tubo agregar 0.8X de perlas magnéticas Ampure XP.

19.1 Mezclar y spin-down.

10

Citation: Bruno Gomez-Gil, juli.encisoi nCoV-2019 Illumina Miniseq sequencing protocol (2,000bp amplicon) https://dx.doi.org/10.17504/protocols.io.6gpvrdpibgmk/v1

19.2	Llevar al magneto hasta formar el pellet y desechar el sobrenadante.
19.3	Agregar 150 uL de etanol 80% en posición contraria al pellet. Esperar 30 segundos. Desechar el etanol.
19.4	Retirar el exceso de etanol y secar las perlas por 5 min.
19.5	Resuspender las perlas en 26 uL de Agua libre de nucleasas. Mix y spin down. Incubar por 5 min a TA.
19.6	Llevar al magneto hasta formar el pellet y transferir 25 uL del sobrenadante a un nuevo tubo previamente etiquetado.
19.7	Cuantificar 2 uL por Qubit HS y analizar los tamaños mediante electroforesis en gel de agarosa al 1.0%.

Secuenciacion de bibliotecas en plataforma Illumina Miniseq

A partir de la concentración en ng/uL determinada por Qubit y obtenido el tamaño aproximado del fragmento, llevar cada una de las librerias a una concetracion de 4 nM

Transferir 5 uL de cada librerías a 4 nM aun tubo previamente etiquetado para obtener el pool final. Seguir el protocolo Library Denaturing and miniseq Sample Loading del kit

