# Conception de BD relationnelle

- 1. Objectifs et principes
- 2. Le modèle objet
- 3. Passage au relationnel
- 4. Raffinement du schéma
- 5. Optimisation physique
- 6. Conclusion

# 1. Objectifs de la Modélisation

- Meilleure compréhension du problème
  - Abstraction des aspects cruciaux
  - Omission des détails
- Conception progressive
  - Abstractions et raffinements successifs
  - Prototypage rapide
  - Découpage en modules ou vues
  - Génération des structures de données et de traitements
- Visualisation du système
  - Diagrammes avec notation simple et précise
  - Compréhension visuelle

### Générations de méthodes

- 1. Méthodes d'analyse et de décomposition hiérarchiques
  - traitements -> sous-traitements
  - Warnier, SADT, Jackson, De Marco
- 2. Méthodes d'analyse et de représentation systémiques
  - Séparation des données et des traitements
  - Merise, Axial, SSADM
- 3. Méthodes d'analyse et de conception objet
  - Réconciliation données et traitements
  - Réutilisation de composants

# Objectifs des méthodes objet

- Réduire la distance sémantique entre le langage des utilisateurs et le langage des concepteurs
  - meilleure communication entre utilisateurs et concepteurs
  - abstraction du réel perçu en termes compréhensibles
- Regrouper l'analyse des données et des traitements
  - meilleure compréhension des choses
  - plus grande cohérence entre les aspects statique et dynamique
- Simplification des transformations entre niveaux conceptuel et interne
  - implémentation directe du schéma conceptuel
  - règles de transformations automatisées

# Principales méthodes objet

- OOD (G. Booch) 1991
- OOA/OOD (T. Coad & E. Yourdon) 1991
- OMT (J. Rumbaugh et. al.) 1991
- OOSE (I. Jacobson et al.) 1992
- OOM (M. Bouzeghoub, A. Rochfeld) 1994
- La notation UML (Booch, Jacobson, Rumbaugh) 1998
  - Rational et OMG
  - une notation universelle
- RUP (Rationale Unified Process)
  - IEEE 1016 Document structure

### Les cycles

- Analyse (Analysis)
  - étude du problème utilisateur
  - génération de modèles de problèmes
- Conception (Design)
  - raffinement de modèles de problèmes
  - génération de modèles d'implémentation (prototypes)
- Implémentation (Implementation)
  - codage de modèles d'implémentation
  - génération du code des programmes

### 2. Le modèle objet

- Objet
  - concept, abstraction ou entité clairement distinguable
- Classe
  - description d'un groupe d'objet aux propriétés similaires
- Attribut
  - propriété nommée d'une classe représentée par une valeur dans chaque instance
- Opération
  - une fonction/transformation applicable aux objets d'une classe
- Méthode
  - une implémentation d'une opération pour une classe

# Diagrammes UML

- Définit le modèle objet à l'aide de 9 diagrammes:
  - Diagramme de cas d'utilisation
  - Diagramme de classes
  - Diagramme d'objets
  - Diagramme d'états-transition
  - Diagramme de séquence
  - Diagramme d'activité
  - Diagramme de collaboration
  - Diagramme de composants
  - Diagramme de déploiement
- Intégrés dans la méthode progressive RUP



### Classes (UML)

Nom

attributs

opérations

#### **Voitures**

Nveh: Int

Type: String

Marque: Constructeur

Vitesse: Int

Km: Int

Démarrer()

Accélérer()

Rouler(km:Int)

Freiner()

### Association (relationship)

- Relation entre plusieurs classes
  - caractérisée par un role (verbe), des cardinalités et éventuellement des attributs
  - représente des liens entre objets de ces classes
  - implémentée par une classe
    - avec des opérations de navigation



### Généralisation

- Association spécifiant une relation de classification
  - généralisation, e.g., Personne super-classe de Emp
  - spécialisation, e.g., Emp sous-classe of Personne



### La pratique

- Bien comprendre globalement le problème à résoudre
- Essayer de conserver le modèle simple
- Bien choisir les noms
- Ne pas cacher les pointeurs sous forme d'attributs
  - utiliser les associations
- Faire revoir le modèle par d'autres
  - définir en commun les objets de l'entreprise
- Documenter les significations et conventions
  - élaborer le dictionnaire

### 3. Passage au relationnel

- Implémentations des attributs, généralisations, et associations sous forme de tables
  - mémorisent les états des objets
  - pas nécessaire d'avoir une BD objet
- Implémentation des méthodes sous forme de procédures stockées
  - état de l'objet passé en paramètre (clés)
  - associées à une base de données
  - très important pour l'optimisation client-serveur

# Réduction des généralisations

- Aplatissage des hiérarchies
  - 1 table par classe avec jointures
  - une seule table avec valeurs nulles
  - une table par feuille
- Réalisation de l'héritage
  - statique :
    - problème des valeurs nulles pour les objets sans descendants
  - dynamique :
    - jointures sur clés, bien prévoir les index!



# Implémentation d'association

- Par une table dont le schéma est le nom de l'association et la liste des clés des classes participantes et des attributs de l'association
- Exemple :
  - POSSEDE (N° SS, N° VEH, DATE, PRIX)
- Amélioration possible
  - Regrouper les associations 1 --> n avec la classe cible
- Exemple :
  - VOITURE (N°VEH, MARQUE, TYPE, PUISSANCE, COULEUR)
  - POSSEDE (N° SS, N° VEH, DATE, PRIX)
  - regroupés si toute voiture a un et un seul propriétaire

### 4. Raffinement du schéma

- Risques de mauvaise conception
  - classe trop importante
  - classe trop petite
- Exemple :
  - Propriétaire-de-véhicule (n° ss, nom, prénom, n° veh, marque, type, puissance, couleur, date, prix)
    - Propriétaire-de-véhicule = personne |x| possède |x| voiture
- Anomalies
  - redondance de données, valeurs nulles
  - perte de sémantique

# Dépendances Fonctionnelles

#### Définition :

- Soient R(A1, A2 ... An) un schéma de relation, X et Y des sous-ensembles de A1, A2 ...An;
- On dit que X --> Y (X détermine Y ou Y dépend fonctionnellement de X) ssi il existe une fonction qui a partir de toute valeur de X détermine une valeur unique de Y

#### Formellement :

- ssi quel que soit l'instance r de R, pour tout tuple t1 et t2 de r on a  $\Pi X(t1) = \Pi X(t2) ==> \Pi Y(t1) = \Pi Y(t2)$ 

### Exemples

#### PERSONNE

- N° SS --> NOM ?
- NOM --> N° SS ?

#### VOITURE

- (MARQUE, TYPE) --> PUISSANCE ?
- MARQUE --> PUISSANCE ?
- PUISSANCE --> TYPE ?

#### POSSEDE

- N° VEHP --> N° PROP ?
- N° PROP --> N° VEHP?
- (N° VEHP, N° PROP) --> DATE ACHAT ?

### Graphe de DF

VOITURE (N°VEH, TYPE, COULEUR, MARQUE, PUISSANCE)



### Notion formelle de Clé

#### • Définition :

- Un groupe d'attribut X est une clé de R (a1, a2 ... an) ssi
  - X --> A1 A2 ... An
  - il n'existe pas de sous-ensemble Y de X tel que Y --> A1 A2 ... An

#### Plus simplement :

- Une clé est un ensemble minimum d'attributs qui détermine tous les autres.
- Exemple : (n° veh) voiture ? (n° veh, type) voiture ?

#### Non unicité :

- Il peut y avoir plusieurs clés pour une relation (clés candidates)
- Une clé est choisie comme clé primaire

### Formes normales

- Objectifs
  - Définir des règles pour décomposer les relations tout en préservant les DF et sans perdre d'informations, afin de représenter des objets et associations du monde réel
  - Éviter les anomalies de mises a jour
- Éviter les réponses erronées

### 1e Forme (1NF)

- Définition
  - Une relation est en 1NF si tout attribut contient une valeur atomique (unique)
- Exemple

| PERSONNE | NOM    | PROFESSION            |
|----------|--------|-----------------------|
|          | DUPONT | Ingénieur, Professeur |
|          | MARTIN | Géomètre              |
|          |        |                       |

Une telle relation doit être décomposée en répétant les noms pour chaque profession

### 2e Forme (2NF)

- Définition
  - une relation est en 2NF ssi :
    - elle est en 1ère forme
    - tout attribut non clé ne dépend pas d'une partie de clé
- Schéma



Une telle relation doit être décomposée en

R1(K1,K2,X) et R2(K2,Y)

### Exemple 2NF

- Fournisseur (nom, adresse, article, prix)
  - La clé est (nom, article)
  - Mais nom --> adresse : pas en 2NF!
- Décomposition en 2NF
  - Fournisseur (nom, article, prix)
  - Ad-Fournisseur (nom, adresse)

### 3e Forme (3NF)

- Définition
  - une relation est en 3NF ssi :
    - elle est en 2NF
    - tout attribut n'appartenant pas a une clé ne dépend pas d'un autre attribut non clé



Une telle relation doit être décomposée en R1(K, X, Y) et R2(X,Z)

### Exemple 3NF

- Voiture (n° veh, marque, type, puissance, couleur)
  - Type --> marque
  - Type --> puissance
  - Pas en 3NF!

- Décomposition en 3NF
  - Véhicule (n° veh, type, couleur)
  - Modèle (type, marque, puissance)

### Propriété de la 3NF

- Toute relation R a une décomposition en relations R1, R2 ... Rn (ou plusieurs) en 3e forme normale telle que:
  - 1) pas de perte de dépendances Les dépendances fonctionnelles des relations décomposées permettent de générer celles de la relation initiale.
  - 2) pas de perte d'informations Les relations décomposées permettent à tout instant de recomposer la relation initiale par jointures.
- Faiblesse:
  - Il existe des relations en 3NF avec des redondances ...

# 5. Optimisation physique

- On n'implémente pas forcément le schéma logique
  - regroupement de relations interrogées ensemble parfois avantageux
  - la dénormalisation évite des jointures coûteuses
  - nécessite de gérer la redondance en mise à jour
- Choix du placement
  - index primaire plaçant = clé primaire
  - hachage parfois avantageux (groupes de relations)
- Choix des index
  - contraintes référentielles
  - attributs de sélections fréquentes
  - index B-tree ou bitmap

# Réglage des performances

- 1. Régler les requêtes en premier :
  - vérifier les plans d'exécution générés
  - reformuler les requêtes sans changer le schéma
- 2. Régler les dimensions des tables par partitionnement
- 3. Régler les index et l'organisation des relations
- 4. Considérer l'usage de données redondantes
- 5. Revoir les décisions de normalisation
- L'usage de vues permet de masquer ces réorganisations

### 6. Conclusion

### Intérêt de l'utilisation d'une méthode objet

- proche du monde réel
- démarche sémantique claire
- diagramme UML standards

### Passage au relationnel automatique

- outils du commerce utilisables (Rationale Rose, etc.)
- supporteront les extensions objet-relationnel à venir

### Normalisation à l'exception

- utile quand sémantique confuse
- Optimisation et réglage
  - une étape essentielle et permanente