MATH8705 IN-CLASS WORKSHEET 4

Your name:	
Improve the following theorem and proofs.	
Bad Theorem. If $x^2 \neq 0$, then $x^2 > 0$.	

Bad proof. If
$$x>0$$
 then $x^2=xx>0$. If $x<0$ then $-x>0$, so $(-x)(-x)>0$, i.e., $x^2>0$. \square

Bad Theorem: $ab = 0 \implies a = 0 \text{ or } b = 0.$

Bad Proof: If $a \neq 0$ and $b \neq 0$, then $ab \neq 0$. Contradiction.

Date: August 18, 2022.

Bad Theorem: $\frac{x+y}{2} \ge \sqrt{xy}$. Bad Proof: $\frac{x+y}{2} \ge \sqrt{xy}$ $\Leftrightarrow x+y \ge 2\sqrt{xy}$ $\Leftrightarrow x+y-2\sqrt{xy} \ge 0$ $\Leftrightarrow (\sqrt{x}-\sqrt{y})^2 \ge 0$ (trivial).

Bad theorem: $\log_2 \pi \notin \mathbf{Q}$ Bad proof: Suppose $\log_2 \pi = r \in \mathbf{Q}$. Then $2^r = 2 \times 2 \times \cdots r$ times $\in \mathbf{Q}$ (closed under multiplication). But $2^r = \pi \notin \mathbf{Q}$. Contradiction. So $\log_2 \pi = r \notin \mathbf{Q}$.