Student Number:

Name: Bryan Hoang

3. (4 points) Answer:

Proof.

Part 1. (Irreducibility)

Let $i, j \in S$ where S is the state space of $X_n : n \ge 0$. WLOG, suppose that i < j and let n = j - i > 0. Then

$$p_{ij}^{(n)} = P_i(X_n = j)$$

= $\prod_{k=i}^{j-1} p_{k,k+1}$
> 0.

Thus, $i \to j$. In the other direction, we have

$$p_{ji}^{(n)} = P_j(X_n = i)$$

$$= \prod_{k=i}^{j-1} p_{k+1,k}$$
> 0.

Thus, $j \to i$. Then for arbitrary i, j, we have that $i \leftrightarrow j$. Therefore, the Markov chain is irreducible.

Part 2. (Transience)

Suppose that the Markov chain is recurrent. Then

$$P_1(X_n = 0 \text{ for some } n) = 1.$$

But the result from Question 3 in Assignment 2 is that

$$P_1(X_n \ge 1, \forall n \ge 0) > 0$$

$$\Rightarrow P_1(X_n = 0 \text{ for some } n) < 1$$

which leads to a contradiction. Therefore, the Markov chain must be transient.