

4ème Math Classe: (Gr standard)

Série 21 Oscillations électriques forcées (1)

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

On considère une portion de circuit constituée d'un résistor de résistance R_0 en série avec une bobine d'inductance L et de résistance r, un condensateur de capacité $C=2\mu F$ et un ampèremètre de résistance négligeable. Ce circuit est branché aux bornes d'un générateur B.F délivrant une tension sinusoïdale $\mathbf{u}(t) = \mathbf{U}_{max} \sin{(2\pi N.t - \frac{\pi}{4})}$ de fréquence N réglable.

- **I-1-** Représenter sur la feuille à rendre avec les copies, les connexions entre le montage et l'oscilloscope afin de visualiser la tension aux bornes du résistor $u_R(t)$ sur la voie Y_1 et la tension excitatrice u(t) sur la voie Y_2 . (0,5pt)
- 2- Pour une fréquence N_1 , on observe sur l'écran de l'oscilloscope les courbes de la figure -1- et l'ampèremètre indique un courant $I=20\sqrt{2}\,$ mA

Figure-1-

Les sensibilités verticales

Voie1: 2 V/div Voie2:: 2 V/div

Balayage temps: 0,2 ms/div

- a- Déterminer à partir des oscillogrammes, les grandeurs suivantes :
- * La période T_1 et déduire la fréquence N_1 . (0,5pt)
- *Les valeurs maximales de u(t) et $u_R(t)$ et déduire la résistance R_0 (1pt)
- *Le déphasage (ϕ_{uR} - ϕ_{u}) de la tension $u_{R}(t)$ par rapport à la tension excitatrice u(t) (0,5pt)
- *En déduire la phase initiale φ_{uR} de la tension $u_R(t)$ (0,25pt)
- **b-** Montrer que la tension maximale aux bornes du condensateur est U_{Cmax} = 5,1 V(0,5pt)

- 3-a- Sur la feuille à rendre avec les copies, représenter à l'échelle 2 cm \rightarrow 1Volt, les vecteurs de Fresnel \overrightarrow{OA} \overrightarrow{OB} et $\overrightarrow{V_3}$ associés respectivement aux tensions u (t), u_R(t) et u_C(t) puis compléter la construction (0,75pt)
 - **b-** Déduire que l'inductance de la bobine est L= 14,6 mH et que sa résistance est r = 21 Ω .
- 4- Déterminer la puissance moyenne consommée par le circuit (0,5pt)
- II- On règle la fréquence de la tension excitatrice à une valeur N_2 , on constate que la puissance électrique moyenne consommée par le circuit est $P_{mov} = 112,68 \text{ mW}$
- **1-a-** Montrer que lorsque $N=N_2$, la valeur maximale de l'intensité du courant qui circule dans le circuit est $I_{max} = 56,34$ mA (**0,5pt**)
 - b- Déduire que le circuit est en état de résonance d'intensité. (0,5pt)
- 2- Déterminer la fréquence N₂. (0,5pt)
- **3-**Déterminer le facteur de qualité Q. (**0,5pt**)

On considère une portion de circuit constituée d'un résistor de résistance R_0 en série avec une bobine d'inductance L et de résistance interne r, un condensateur de capacité C et un ampèremètre de résistance supposée négligeable. Ce circuit est branché aux bornes d'un générateur B.F délivrant une tension $u(t) = U_M \sin{(2\pi N.t - \frac{\pi}{4})}$ de fréquence N réglable comme l'indique la figure -5-

On visualise simultanément, à l'aide d'un oscillographe bicourbe, la tension excitatrice u(t) sur la voie Y_1 et la tension $u_C(t)$ aux bornes du condensateur sur la voie Y_2 et aux bornes de tout le circuit, on obtient les oscillogrammes de la figure ci-après.

- **1-** Représenter sur la feuille à rendre avec les copies, les connexions entre le montage et l'oscilloscope afin de visualiser les tensions u(t) sur la voie Y_1 et $u_C(t)$ sur la voie Y_2
- **2-** Montrer que l'équation reliant i(t), sa dérivée première $\frac{di}{dt}$ et sa primitive $\int idt$ est :

L.
$$\frac{di}{dt}$$
 + (R₀+r) i + $\frac{1}{C}$ fidt = u(t) = U_Msin(2 π Nt- $\frac{\pi}{4}$)

3- Pour une valeur N_1 de la fréquence du générateur l'ampèremètre indique une valeur I=0,1A. Un voltmètre branché aux bornes du résitor indique une tension $U_R=3V$ et on obtient les oscillogrammes de la figure -6-

Sensibilité verticale : Voie Y₁ : 5V/div Voie Y₂ : 10V/div Balayage temps 1ms/div

Figure-6-

- a- Déterminer la fréquence N₁ de la tension excitatrice
- **b-** Déterminer le déphasage $\Delta \varphi$ de la tension $u_C(t)$ par rapport à la tension excitatrice u(t) et déduire que le déphasage de l'intensité du courant par rapport à la tension excitatrice u(t) est $\Delta \varphi_1 = \frac{\pi}{4}$ rad
- c- S'agit-il d'un circuit inductif ou capacitif? Justifier.
- **4-**Déterminer les valeurs de la résistance R₀ et de la capacité C
- 5-a- Faire sur la feuille à rendre avec les copies, la construction de Fresnel correspondant à l'équation différentielle précédente Echelle 1cm —> 2V
 - **b-** Déduire la valeur de la résistance r de la bobine et de son inductance L.

On considère une portion de circuit constituée d'un résistor de résistance R_0 =10 Ω en série avec une bobine d'inductance L et de résistance interne r, un condensateur de capacité C et un ampèremètre de résistance supposée négligeable. Ce circuit est branché aux bornes d'un

générateur B.F délivrant une tension sinusoïdale $\mathbf{u(t)} = \mathbf{U_{max}}$. $\mathbf{sin} (2\pi \text{N.t-} \frac{\pi}{10})$ ($\mathbf{u(t)}$ est en volt) de fréquence N réglable

- I-1- Représenter sur la feuille à rendre avec les copies, les connexions entre le montage et l'oscilloscope afin de visualiser les tensions u_R(t) sur la voie Y₁ et u_b(t) sur la voie Y₂ où le signal est inversé (u_b(t) est la tension aux bornes de la bobine) (0.5pt)
 - 2- Pour une fréquence N₁, on observe sur l'écran de l'oscilloscope les courbes de la figure cidessous .

pour les deux voies Sensibilité verticale $: \sqrt{2} \text{ V /div}$ Balayage temps $\frac{\pi}{4} \text{ms/div}$

- a- Montrer que la courbe (b) est celle de la tension aux bornes du résistor. (0,25pt)
- **b-**Déterminer à partir des oscillogrammes, les grandeurs suivantes :
- * La période T_1 et déduire la fréquence N_1 . (0,75pt)
- *Les valeurs maximales de $u_R(t)$ et $u_b(t)$ (0,5pt)
- *Le déphasage (ϕ_{ub} - ϕ_{uR}) de la tension $u_b(t)$ par rapport à $u_R(t)$ (0,5pt)
- **3-a-** Sachant que l'intensité du courant i(t) est de la forme i(t) = $I\sqrt{2}$.sin($2\pi Nt$), donner les expressions numériques de $u_R(t)$ et $u_b(t)$. (**0,25pt+0,5pt**)
 - **b-** Précise en le justifiant la nature du circuit (résistif ou inductif ou capacitif) (**0,5pt)**

c- Faire la construction de Fresnel sur la figure-6- de la feuille à rendre avec les copies lorsque le circuit étudié à la fréquence N_1 échelle : 2cm pour $\sqrt{2}$ V. (0,75pt)

On désignera par \overrightarrow{OA} Vecteur associé à la tension $u_{R0}(t)$

 \overrightarrow{AB} Vecteur associé à la tension $u_b(t)$ (tension aux bornes de la bobine)

 \overrightarrow{BC} Vecteur associé à la tension $u_C(t)$ (tension aux bornes du condensateur)

OC Vecteur associé à la tension excitatrice u(t)

d- Montrer que l'intensité maximale du courant est $I_{max} = 0.25\sqrt{2}$ A (0.5pt)

e- Compléter la représentation de Fresnel et déduire que l'inductance de la bobine est L = 0,01 H, sa résistance $r = R_0 = 10 \Omega$ et que la capacité du condensateur est C = 61 μ F ((0,5+0,5+0,5)pt)

f- Déterminer la puissance moyenne consommée par le circuit (0,5pt)

II- Pour une fréquence N₂ l'intensité du courant i(t) est de la forme i(t) = $I_2\sqrt{2}$.sin($2\pi Nt - \frac{\pi}{10}$),

1- Montrer que le circuit est en état de résonance d'intensité et déterminer l'intensité du courant l₂ indiquée par l'ampèremètre (0,75pt+ 0,25 pt)

2- Déterminer la fréquence N₂ de la tension excitatrice (0,5pt)

Un circuit électrique comporte en série, un résistor de résistance R_0 une bobine d'inductance L et de résistance r et un condensateur de capacité r et r et r et un condensateur de capacité r et r et r et un générateur basse fréquence délivrant une tension alternative sinusoïdale r une r et r et r de fréquence r réglable et d'amplitude r maintenue constante. (figure-1-)deux voltmètres r et r branchés respectivement aux bornes du résistor et aux bornes du condensateur mesurent les tensions efficaces r et r

I- Dans une première expérience, on règle la fréquence de la tension excitatrice à une valeur N₁

Un oscilloscope bicourbe convenablement branché permet de visualiser simultanément la tension excitatrice u(t).aux bornes du générateur **sur la voie Y**₁et la tension $u_{DM}(t)$ aux bornes de l'association bobine-condensateur **sur la voie Y**₂. On obtient l'oscillogramme de la **figure-2-** et les voltmètres

indiquent une tension $U_R = 4V$ et une tension $U_C = 15,71V$

Voie1: 2V/div; Voie2: 0,5V/div et balayage temps 1 ms/div

- **1-** Représenter sur la feuille annexe, les connexions entre le montage et l'oscilloscope afin de visualiser les tensions u(t) sur la voie Y₁ et u_{DM}(t) sur la voie Y₂ (**0,5pt**)
- **2-** Déterminer le déphasage de u(t) par rapport à $u_{DM}(t)$ (0,5pt)
- **3-** Montrer que dans ce cas que le circuit est en état de résonance d'intensité. **(0,5pt)**
- **4-a-**Déterminer les valeurs maximales U_{max} et U_{DMmax} de la tension excitatrice et celle aux bornes l'association bobine-condensateur (**0,5pt**)
- **b-** Déterminer la fréquence N_1 de l'oscillateur (0,75pt)
- **5-** Déterminer le facteur de surtension Q(**0,5pt**)

Figure-2-

II- Dans une deuxième expérience, on mesure l'intensité efficace I du courant pour différentes valeurs de la fréquence N. Les résultats permettent de tracer la **figure-3**- qui représente la variation de l'intensité efficace du courant en fonction de la fréquence N.

- 1- Déterminer l'intensité du courant maximale I_{max}, à la résonance d'intensité.(0,25pt)
- 2- Déduire à partir des deux expériences
 - a- La capacité C du condensateur (0,5pt)
 - **b-** L'inductance L de la bobine et montrer que sa résistance est $r \approx 10 \Omega$. (0,5pt +0,5pt)
 - c- La résistance R₀ du résistor. (0,5pt)
- 3-Déterminer lorsque N=N₀, la puissance électrique moyenne consommée par le dipôle (R₀+r,L,C)(0,5pt)
- III- Dans une troisième expérience, on règle la fréquence de la tension excitatrice à une valeur N_2 et l'ampèremètre indique un courant efficace I_2 = 72 mA.
 - 1-Etablir l'équation différentielle relative à l'intensité du courant i(t) (0,5pt)
 - **2-** La solution de l'équation différentielle $L \frac{\text{di}(t)}{\text{dt}} + (R_0 + r)i(t) + \frac{1}{C} \int i(t) dt = u(t)$ lorsque $N = N_2$, est

$$i(t) = I_2 \sqrt{2} \sin(2\pi N_2 t - \frac{\pi}{4})$$

- a-Préciser, en le justifiant, caractère (capacitif ou inductif) du circuit. (0,25pt)
- **b-** Comparer, en le justifiant N_2 et N_0 la fréquence propre de l'oscillateur. (0,25pt)
- **3-** Représenter, à l'échelle, les vecteurs de Fresnel associés aux tensions $u_R(t)$, $u_{DM}(t)$ et u(t). sur la feuille à rendre avec les copies Echelle : 1 cm \rightarrow 1Volt. (0,5pt)
- 4- a- Déterminer la nouvelle valeur de la tension U_{DM} indiquée par le voltmètre. (0,5pt)
 - **b** Déterminer l'impédance Z du circuit (R_0+r,L,C) (0,5pt)
 - c- Retrouver la résistance r de la bobine
- 5- Sachant que le voltmètre V_1 indique une tension $U_C=9,75V$, déterminer la fréquence N_2 (0,5pt)

