SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Celeste, Anthony J. Wozney, John Rosen, Vicki A. Wolfman, Neil Thomsen, Gerald H. Melton, Douglas A.
- (ii) TITLE OF INVENTION: TENDON-INDUCING COMPOSITIONS
- (iii) NUMBER OF SEQUENCES: 35
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: GENETICS INSTITUTE, INC.
 - (B) STREET: 87 CambridgePark Drive

 - (C) CITY: Cambridge(D) STATE: Massachusetts
 - (E) COUNTRY: USA
 - (F) ZIP: 02140
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lazar, Steven R.
 - (B) REGISTRATION NUMBER: 32,618
 - (C) REFERENCE/DOCKET NUMBER: 5202-D
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 617 498-8260
 - (B) TELEFAX: 617 876-5851
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 926 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: v1-1
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 571..882
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS

i

(B) LOCATION: 1..882

(xi)	SEOUENCE	DESCRIPTION:	SEQ	ID	NO:1:
------	----------	--------------	-----	----	-------

	GCG Ala -190	Arg	AAT Asn	ACG Thr	ACT Thr	CAC His -185	Tyr	AGG Arg	Ala	Asn	Trp -180	Val	CGG Arg	GIÀ	CCA Pro	GGC Gly -175		48
	AGC Ser	TGG Trp	ACT Thr	TCT Ser	CCG Pro -170	Pro	TTG Leu	CTG Leu	CTG Leu	CTG	TCC Ser	ACG	TGC	CCG	GGC Gly -160	Ala		96
	GCC Ala	CGA Arg	GCG Ala	CCA Pro -15	Arg	CTG Leu	CTG Leu	TAC Tyr	TCG Ser -150	Arg	GCA Ala	GCT Ala	GAG Glu	CCC Pro -145	Leu	GTC Val	1	144
	GGT Gly	CAG Gln	CGC Arg -140	Trp	GAG Glu	GCG Ala	TTC Phe	GAC Asp -135	Val	GCG Ala	GAC Asp	GCC Ala	ATG Met -130	Arg	CGC Arg	CAC His		192
	CGT Arg	CGT Arg -12	Glu	CCG Pro	CGC Arg	CCC Pro	CCC Pro -120	Arg	GCG Ala	TTC Phe	TGC Cys	CTC Leu -11	Leu	CTG Leu	CGC Arg	GCA Ala	:	240
T T T	GTG Val -110	Ala	GGC Gly	CCG Pro	GTG Val	CCG Pro -105	Ser	CCG Pro	TTG Leu	GCA Ala	CTG Leu -10	Arg	CGA Arg	CTG Leu	GGC Gly	TTC Phe -95	;	288
H D U	GGC Gly	TGG Trp	CCG Pro	GGC Gly	GGA Gly -90	GGG Gly	GGC Gly	TCT Ser	GCG Ala	GCA Ala -85	GAG Glu	GAG Glu	CGC Arg	GCG Ala	GTG Val -80	CTA Leu	:	336
	GTC Val	GTC Val	TCC Ser	TCC Ser -75	Arg	ACG Thr	CAG Gl:n	AGG Arg	AAA Lys -70	GAG Glu	AGC Ser	TTA Leu	TTC Phe	CGG Arg -65	GAG Glu	ATC Ile		384
	CGC Arg	GCC Ala	CAG Gln -60	Ala	CGC Arg	GCG Ala	CTC Leu	GGG Gly -55	GCC Ala	GCT Ala	CTG Leu	GCC Ala	TCA Ser -50	GAG Glu	CCG Pro	CTG Leu		432
H	CCC Pro	GAC Asp -45	Pro	GGA Gly	ACC Thr	GGC Gly	ACC Thr -40	GCG Ala	TCG Ser	CCA Pro	AGG Arg	GCA Ala -35	GTC Val	ATT Ile	GGC Gly	GGC Gly		480
	CGC Arg -30	Arg	CGG Arg	AGG Arg	AGG Arg	ACG Thr -25	GCG Ala	TTG Leu	GCC Ala	GGG Gly	ACG Thr -20	Arg	ACA Thr	GCG Ala	CAG Gln	GGC Gly -15		528
	AGC Ser	GGC	GGG Gly	GGC Gly	GCG Ala	Gly	CGG Arg	GGC Gly	CAC His	GGG Gly -5	Arg	AGG Arg	GGC Gly	CGG Arg	AGC Ser 1	CGC Arg		576
	TGC Cys	AGC Ser	CGC Arg	J Lys	CCG Pro	TTG Leu	CAC His	GTG Val	Asp	TTC Phe	AAG Lys	GAG Glu	CTC Leu 15	GIA	TGG Trp	GAC Asp		624
	GAC Asp	TGC Trp 20) Ile	e Ile	GCG Ala	CCG Pro	CTG Leu 25	Asp	TAC Tyr	GAG Glu	GCG Ala	TAC Tyr 30	His	TGC	GAG Glu	GGC		672
	CTT Leu 35	Cys	GAC Asp	TTC Phe	CCT Pro	TTG Leu 40	Arg	TCG Ser	CAC His	CTC Leu	Glu	CCC Pro	ACC Thr	AAC Asr	CAT His	GCC Ala 50		720

ATC ATT CAG ACG CTG CTC AAC TCC ATG GCA CCA GAC GCG GCG CCG GCC Ile Ile Gln Thr Leu Leu Asn Ser Met Ala Pro Asp Ala Ala Pro Ala 55 60 65	768
TCC TGC TGT GTG CCA GCG CGC CTC AGC CCC ATC AGC ATC CTC TAC ATC Ser Cys Cys Val Pro Ala Arg Leu Ser Pro Ile Ser Ile Leu Tyr Ile 70 75 80	816
GAC GCC GCC AAC AAC GTT GTC TAC AAG CAA TAC GAG GAC ATG GTG GTG Asp Ala Ala Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val 85 90 95	864
GAG GCC TGC GGC TGC AGG TAGCGCGCGG GCCGGGGAGG GGGCAGCCAC Glu Ala Cys Gly Cys Arg 100	912
GCGGCCGAGG ATCC	926
(2) INFORMATION FOR SEQ ID NO:2:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 294 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
Ala Arg Asn Thr Thr His Tyr Arg Ala Asn Trp Val Arg Gly Pro Gly -190 -185 -180 -175	
Ser Trp Thr Ser Pro Pro Leu Leu Leu Ser Thr Cys Pro Gly Ala -170 -165 -160	
Ala Arg Ala Pro Arg Leu Leu Tyr Ser Arg Ala Ala Glu Pro Leu Val -155 -150 -145	
Gly Gln Arg Trp Glu Ala Phe Asp Val Ala Asp Ala Met Arg Arg His -140 -135 -130	
Arg Arg Glu Pro Arg Pro Pro Arg Ala Phe Cys Leu Leu Arg Ala -125 -120 -115	
Val Ala Gly Pro Val Pro Ser Pro Leu Ala Leu Arg Arg Leu Gly Phe -110 -105 -100 -95	•
Gly Trp Pro Gly Gly Gly Ser Ala Ala Glu Glu Arg Ala Val Leu -90 -85 -80	
Val Val Ser Ser Arg Thr Gln Arg Lys Glu Ser Leu Phe Arg Glu Ile -75 -70 -65	
Arg Ala Gln Ala Arg Ala Leu Gly Ala Ala Leu Ala Ser Glu Pro Leu -60 -55 -50	
Pro Asp Pro Gly Thr Gly Thr Ala Ser Pro Arg Ala Val Ile Gly Gly -45 -35	
Arg Arg Arg Arg Thr Ala Leu Ala Gly Thr Arg Thr Ala Gln Gly -30 -25 -20 -15	
Ser Gly Gly Gly Ala Gly Arg Gly His Gly Arg Arg Gly Arg Ser Arg	

Cys Ser Arg Lys Pro Leu His Val Asp Phe Lys Glu Leu Gly Trp Asp
5 10 15

Asp Trp Ile Ile Ala Pro Leu Asp Tyr Glu Ala Tyr His Cys Glu Gly
20 25 30

Leu Cys Asp Phe Pro Leu Arg Ser His Leu Glu Pro Thr Asn His Ala 35 40 45 50

Ile Ile Gln Thr Leu Leu Asn Ser Met Ala Pro Asp Ala Ala Pro Ala 55 60 65

Ser Cys Cys Val Pro Ala Arg Leu Ser Pro Ile Ser Ile Leu Tyr Ile
70 75 80

Asp Ala Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val 85 90 95

Glu Ala Cys Gly Cys Arg 100

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1207 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (vii) IMMEDIATE SOURCE: (B) CLONE: MP52
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 845..1204

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ACCGGGCGGC	CCTGAACCCA	AGCCAGGACA	CCCTCCCCAA	ACAAGGCAGG	CTACAGCCCG	ಕರ
GACTGTGACC	CCAAAAGGAC	AGCTTCCCGG	AGGCAAGGCA	CCCCCAAAAG	CAGGATCTGT	120
CCCCAGCTCC	TTCCTGCTGA	AGAAGGCCAG	GGAGCCCGGG	CCCCCACGAG	AGCCCAAGGA	180
GCCGTTTCGC	CCACCCCCA	TCACACCCCA	CGAGTACATG	CTCTCGCTGT	ACAGGACGCT	2 ≟ 0
GTCCGATGCT	GACAGAAAGG	GAGGCAACAG	CAGCGTGAAG	TTGGAGGCTG	GCCTGGCCAA	300
CACCATCACC	AGCTTTATTG	ACAAAGGGCA	AGATGACCGA	GGTCCCGTGG	TCAGGAAGCA	3 € 0
GAGGTACGTG	TTTGACATTA	GTGCCCTGGA	GAAGGATGGG	CTGCTGGGGG	CCGAGCTCCG	420
GATCTTGCGG	AAGAAGCCCT	CGGACACGGC	CAAGCCAGCG	GCCCCCGGAG	GCGGGCGGGC	÷ 8 0
TGCCCAGCTG	AAGCTGTCCA	GCTGCCCCAG	CGGCCGGCAG	CCGGCCTCCT	TGCTGGATGT	E 4 0
GCGCTCCGTG	CCAGGCCTGG	ACGGATCTGG	CTGGGAGGTG	TTCGACATCT	GGAAGCTCTT	600
CCGAAACTTT	AAGAACTCGG	CCCAGCTGTG	CCTGGAGCTG	GAGGCCTGGG	AACGGGGCAG	6 6 0
GGCCGTGGAC	CTCCGTGGCC	TGGGCTTCGA	CCGCGCCGCC	CGGCAGGTCC	ACGAGAAGGC	-1:

	CCIC	11100															
	CCGC	TCTG	GC C	AGGA	CGAT	'A AG	ACCG	TGTA	TGA	GTAC	CTG	TTCA	.GCCA	GC G	GCGA	AAACO	g 840
	GCGG	GCC Ala	Pro	CTG Leu	GCC Ala	ACT Thr	Arg	CAG Gln	GGC Gly	AAC Lys	CGA Arg	Pro	AGC Ser	Lys	AAC Asn	CTT Leu 15	889
	AAG Lys	GCT Ala	CGC Arg	TGC Cys	AGT Ser 20	CGG Arg	AAG Lys	GCA Ala	CTG Leu	CAT His 25	GTC Val	AAC Asn	TTC Phe	AAG Lys	GAC Asp 30	ATG Met	937
	GGC Gly	TGG Trp	GAC Asp	GAC Asp 35	TGG Trp	ATC [.] Ile	ATC Ile	GCA Ala	CCC Pro 40	CTT Leu	GAG Glu	TAC Tyr	GAG Glu	GCT Ala 45	TTC Phe	CAC His	985
				CTG Leu													1033
NY				GTC Val											_		1081
Ū	ACA Thr 80	CCA Pro	CCC Pro	ACC Thr	TGC Cys	TGT Cys 85	GTG Val	CCC Pro	ACG Thr	CGG Arg	CTG Leu 90	AGT Ser	CCC Pro	ATC Ile	AGC Ser	ATC Ile 95	1129
-1				GAC Asp													1177
				GAG Glu 115						TAG							1207
IJ L	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	10:4:	:								
		-	(i) S	(B)	ENCE LEN TYI	NGTH:	: 120 amino	ami aci	ino a id		;		·				
		()	Li) N	OLEC	CULE	TYPE	E: pi	rotei	in								• •
		(>	(i) S	SEQUE	ENCE	DESC	CRIPT	CION	SEÇ	Q ID	NO : 4	ł:					
	Ala 1	Pro	Leu	Ala	Thr 5	Arg	Gln	Gly	Lys	Arg 10	Pro	Ser	Lys	Asn	Leu 15	Lys	
	Ala	Arg	Cys	Ser 20	Arg	Lys	Ala	Leu	His 25	Val	Asn	Phe	Lys	Asp 30	Met	Gly	\
	Trp	Asp	Asp 35	Tṛp	Ile	Ile	Ala	Pro 40	Leu	Glu	Tyr	Glu	Ala 45	Phe	His	Cys	`
		50		Cys			55					60					
	His 65	Ala	Val	Ile	Gln	Thr 70	Leu	Met	Asn	Ser	Met 75	Asp	Pro	Glu	Ser	Thr 80	
	Pro	Pro	Thr	Cys	Cys 85	Val	Pro	Thr	Arg	Leu 90	Ser	Pro	Ile	Ser	Ile 95	Leu	

CCTGTTCCTG GTGTTTGGCC GCACCAAGAA ACGGGACCTG TTCTTTAATG AGATTAAGGC

	Phe	Ile Asp Ser Ala Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met 100 105 110		[
	Val	Val Glu Ser Cys Gly Cys Arg 115 120		
	(2)	INFORMATION FOR SEQ ID NO:5:		
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		.
		(ii) MOLECULE TYPE: DNA (genomic)		
		(vi) ORIGINAL SOURCE: (A) ORGANISM: Ḥomo Sapiens		
		(vii) IMMEDIATE SOURCE: (B) CLONE: V1-1 fragment		
		(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 28102		ľ
y		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:		
u D		TCCTGGA AGGATTGGAT CATTGCG CCG CTG GAC TAC GAG GCG TAC CAC Pro Leu Asp Tyr Glu Ala Tyr His 1	51	
	TGC	GAG GGC CTT TGC GAC TTC CCT TTG CGT TCG CAC CTC GAG CCC ACC Glu Gly Leu Cys Asp Phe Pro Leu Arg Ser His Leu Glu Pro Thr 10 15 20	99	ļ
	AAC Asn 25		128	
	(2)	INFORMATION FOR SEQ ID NO:6:		:-
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear		•
		(ii) MOLECULE TYPE: protein		
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:		
	Pro 1	Leu Asp Tyr Glu Ala Tyr His Cys Glu Gly Leu Cys Asp Phe Pro 5 10 15		 •
	Leu	Arg Ser His Leu Glu Pro Thr Asn 20 25		
	(2)	INFORMATION FOR SEQ ID NO:7:		
		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single]
		(D) TOPOLOGY: linear		l_

(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo Sapiens	
(vii) IMMEDIATE SOURCE: (B) CLONE: VL-1	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 28102	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GGATCCTGGG ATGACTGGAT TATGGCG CCG CTG GAC TAC GAG GCG TAC CAC Pro Leu Asp Tyr Glu Ala Tyr His 1	51
TGC GAG GGT GTA TGC GAC TTC CCG CTG CGC TCG CAC CTG GAG CCC ACC Cys Glu Gly Val Cys Asp Phe Pro Leu Arg Ser His Leu Glu Pro Thr	99
AAC CACGCCATGC TACAAACGCT TCTAGA Asn 25 (2) INFORMATION FOR SEQ ID NO:8:	128
(2) INFORMATION FOR SEQ ID NO:8:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Pro Leu Asp Tyr Glu Ala Tyr His Cys Glu Gly Val Cys Asp Phe Pro	
Pro Leu Asp Tyr Glu Ala Tyr His Cys Glu Gly Val Cys Asp Phe Pro 1 5 10 15	
Leu Arg Ser His Leu Glu Pro Thr Asn 20 25	
(2) INFORMATION FOR SEQ ID NO:9:	,
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3585 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE: (B) CLONE: pALV1-781	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CTAACTACCC AACTCAAAAA AAAAAAAAAA AAAAACCCCC TCTAACCCCC ATTGACGAAA	60
GGGCCTCGTG ATACGCCTAT TTTTATAGGT TAATGTCATG ATAATAATGG TTTCTTAGAC	120
GTCAGGTGGC ACTTTTCGGG GAAATGTGCG CGGAACCCCT ATTTGTTTAT TTTTCTAAAT	180

A.

	ACATTCAAAT	ATGTATCCGC	TCATGAGACA	ATAACCCTGA	TAAATGCTTC	AATAATATTG	240
	AAAAAGGAAG	AGTATGAGTA	TTCAACATTT	CCGTGTCGCC	CTTATTCCCT	TTTTTGCGGC	300
	ATTTTGCCTT	CCTGTTTTTG	CTCACCCAGA	AACGCTGGTG	AAAGTAAAAG	ATGCTGAAGA	360
	TCAGTTGGGT	GCACGAGTGG	GTTACATCGA	ACTGGATCTC	AACAGCGGTA	AGATCCTTGA	420
	GAGTTTTCGC	CCCGAAGAAC	GTTTTCCAAT	GATGAGCACT	TTTAAAGTTC	TGCTATGTGG	480
	CGCGGTATTA	TCCCGTATTG	ACGCCGGGCA	AGAGCAACTC	GGTCGCCGCA	TACACTATTC	540
	TCAGAATGAC	TTGGTTGAGT	ACTCACCAGT	CACAGAAAAG	CATCTTACGG	ATGGCATGAC	600
	AGTAAGAGAA	TTATGCAGTG	CTGCCATAAC	CATGAGTGAT	AACACTGCGG	CCAACTTACT	660
	TCTGACAACG	ATCGGAGGAC	CGAAGGAGCT	AACCGCTTTT	TTGCACAACA	TGGGGGATCA	720
	TGTAACTCGC	CTTGATCGTT	GGGAACCGGA	GCTGAATGAA	GCCATACCAA	ACGACGAGCG	780
	TGACACCACG	ATGCCTGTAG	CAATGGCAAC	AACGTTGCGC	AAACTATTAA	CTGGCGAACT	840
		GCTTCCCGGC	AACAATTAAT	AGACTGGATG	GAGGCGGATA	AAGTTGCAGG	900
	ACCACTTCTG	CGCTCGGCCC	TTCCGGCTGG	CTGGTTTATT	GCTGATAAAT	CTGGAGCCGG	960
112	TGAGCGTGGG	TCTCGCGGTA	TCATTGCAGC	ACTGGGGCCA	GATGGTAAGC	CCTCCCGTAT	1020
		TACACGACGG	GGAGTCAGGC	AACTATGGAT	GAACGAAATA	GACAGATCGC	1080
Ţ	TGAGATAGGT	GCCTCACTGA	TTAAGCATTG	GTAACTGTCA	GACCAAGTTT	ACTCATATAT	1140
1	ACTTTAGATT	GATTTAAAAC	TTCATTTTTA	ATTTAAAAGG	ATCTAGGTGA	AGATCCTTTT	1200
7 27	TGATAATCTC	ATGACCAAAA	TCCCTTAACG	TĢAGTTTTCG	TTCCACTGAG	CGTCAGACCC	1260
Ų.	CGTAGAAAAG	ATCAAAGGAT	CTTCTTGAGA	TCCTTTTTTT	CTGCGCGTAA	TCTGCTGCTT	1320
i o	₹ Ŀ GCAAACAAAA	AAACCACCGC	TACCAGCGGT	GGTTTGTTTG	CCGGATCAAG	AGCTACCAAC	1380
	TCTTTTTCCG	AAGGTÄACTG	GCTTCAGCAG	AGCGCAGATA	CCAAATACTG	TCCTTCTAGT	1440
s.	GTAGCCGTAG	TTAGGCCACC	ACTTCAAGAA	CTCTGTAGCA	CCGCCTACAT	ACCTCGCTCT	1500
	GCTAATCCTG	TTACCAGTGG	CTGCTGCCAG	TGGCGATAAG	TCGTGTCTTA	CCGGGTTGGA	1560
	CTCAAGACGA	TAGTTACCGG	ATAAGGCGCA	GCGGTCGGGC	TGAACGGGGG	GTTCGTGCAC	1620
	ACAGCCCAGC	TTGGAGCGAA	CGACCTACAC	CGAACTGAGA	TACCTACAGC	GTGAGCATTG	1680
	AGAAAGCGCC	ACGCTTCCCG	AAGGGAGAAA	GGCGGACAGG	TATCCGGTAA	GCGGCAGGGT	1740
	CGGAACAGGA	GAGCGCACGA	GGGAGCTTCC	AGGGGGAAAC	GCCTGGTATC	TTTATAGTCC	1800
	TGTCGGGTTT	CGCCACCTCT	GACTTGAGCG	TCGATTTTTG	TGATGCTCGT	CAGGGGGGCG	1860
	GAGCCTATGG	AAAAACGCCA	GCAACGCGGC	CTTTTTACGG	TTCCTGGCCT	TTTGCTGGCC	1920
	TTTTGCTCAC	ATGTTCTTTC	CTGCGTTATC	CCCTGATTCT	GTGGATAACC	GTATTACCGC	1980
	CTTTGAGTGA	GCTGATACCG	CTCGCCGCAG	CCGAACGACC	GAGCGCAGCG	AGTCAGTGAG	2040
	CGAGGAAGCG	GAAGAGCGCC	CAATACGCAA	ACCGCCTCTC	CCCCCCCCTT	GGCCGATTCA	2100
	TTAATGCAGA	ATTGATCTCT	CACCTACCA	ACAATGCCCC	CCTGCAAAAA	. АТАААТТСАТ	2160
	ATAAAAAAACA	TACAGATAAC	CATCTGCGGT	GATAAATTAT	CTCTGGCGGT	GTTGACATAA	2220

ATACCACTGG CGGTGATACT GAGCACATCA GCAGGACGCA CTGACCACCA TGAAGGTGAC 2280 GCTCTTAAAA ATTAAGCCCT GAAGAAGGGC AGCATTCAAA GCAGAAGGCT TTGGGGTGTG 2340 TGATACGAAA CGAAGCATTG GCCGTAAGTG CGATTCCGGA TTAGCTGCCA ATGTGCCAAT 2400 CGCGGGGGGT TTTCGTTCAG GACTACAACT GCCACACACC ACCAAAGCTA ACTGACAGGA 2460 GAATCCAGAT GGATGCACAA ACACGCCGCC GCGAACGTCG CGCAGAGAAA CAGGCTCAAT 2520 GGAAAGCAGC AAATCCCCTG TTGGTTGGGG TAAGCGCAAA ACCAGTTCCG AAAGATTTTT 2580 TTAACTATAA ACGCTGATGG AAGCGTTTAT GCGGAAGAGG TAAAGCCCTT CCCGAGTAAC 2640 AAAAAACAA CAGCATAAAT AACCCCGCTC TTACACATTC CAGCCCTGAA AAAGGGCATC 2700 AAATTAAACC ACACCTATGG TGTATGCATT TATTTGCATA CATTCAATCA ATTGTTATCT 2760 AAGGAAATAC TTACATATGT CTCGTTGTTC TCGTAAACCA CTGCATGTAG ATTTTAAAGA 2820 GCTCGGCTGG GACGACTGGA TCATCGCGCC GCTGGACTAC GAGGCGTACC ACTGCGAGGG 2880 CCTTTGCGAC TTCCCTTTGC GTTCGCACCT CGAGCCCACC AACCATGCCA TCATTCAGAC 2940 GCTGCTCAAC TCCATGGCAC CAGACGCGGC GCCGGCCTCC TGCTGTGTGC CAGCGCGCCT 3000 CAGCCCCATC AGCATCCTCT ACATCGACGC CGCCAACAAC GTTGTCTACA AGCAATACGA 3060 GGACATGGTG GTGGAGGCCT GCGGCTGCAG GTAGTCTAGA GTCGACCTGC AGTAATCGTA 3120 CAGGGTAGTA CAAATAAAAA AGGCACGTCA GATGACGTGC CTTTTTTCTT GTGAGCAGTA 3180 AGCTTGGCAC TGGCCGTCGT TTTACAACGT CGTGACTGGG AAAACCCTGG CGTTACCCAA 3240 CTTAATCGCC TTGCAGCACA TCCCCCTTTC GCCAGCTGGC GTAATAGCGA AGAGGCCCGC 3300 ACCGATCGCC CTTCCCAACA GTTGCGCAGC CTGAATGGCG AATGGCGCCT GATGCGGTAT 3360 TTTCTCCTTA CGCATCTGTG CGGTATTTCA CACCGCATAT ATGGTGCACT CTCAGTACAA 3420 TCTGCTCTGA TGCCGCATAG TTAAGCCAGC CCCGACACCC GCCAACACCC GCTGACGCGC 3480 CCTGACGGGC TTGTCTGCTC CCGGCATCCG CTTACAGACA AGCTGTGACC GTCTCCGGGA 3540 GCTGCATGTG TCAGAGGTTT TCACCGTCAT CACCGAAACG CGCGA 3585

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: mouse
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: mV1
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 28..243

		(xi)	SEÇ	QUENC	E DI	ESCRI	PTIC	ON: 5	SEQ I	D NO	0:10	:						
	GGAT	rccai	AGG 1	AGCT	CGGC	rg go	GACG!				rc go le Al							51
									Cys		TTT Phe	Pro		Arg				99
							Ala				ACG Thr 35							147
											GTG Val							195
											AAC Asn					AAG Lys	:	243
ŊIJ	CAAT	racg <i>i</i>	AGG 1	CAT	GTG	GT GO	GGA)	ATTC										272
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:1	l :									
			(i) 8	(B)	LEI TY		: 72 amin	amir ac:	no ao id									
TŲ		(:	ii) !	4OLE	CULE	TYPI	E: p	rote:	in									
		(:	ki) s	SEQUI	ENCE	DESC	CRIP	rion	: SE	Q ID	NO:	11:						
¥ ¥	Trp 1	Ile	Ile	Ala	Pro 5	Leu	Asp	Tyr	Glu	Ala 10	Tyr	His	Cys	Glu	Gly 15	Val		
	Cys	Asp	Phe	Pro 20	Leu	Arg	Ser	His	Leu 25	Glu	Pro	Thr	Asn	His 30	Ala	Ile		
	Ile	Gln	Thr 35	Leu	Leu	Asn	Ser	Met 40	Ala	Pro	Asp	Ala	Ala 45	Pro	Ala	Ser		ı
	Cys	Cys 50	Val	Pro	Ala	Arg	Leu 55	Ser	Pro	Ile	Ser	Ile 60	Leu	Tyr	Ile	Asp		
	Ala 65	Ala	Asn	Asn	Val	Val 70	Tyr	Lys										
	(2)	INF	ORMA'	rion	FOR	SEQ	IĐ I	NO:1	2:									
		(i)	() () ()	QUENCA) LI B) T' C) S'	ENGT YPE : TRAN	H: 2' nucl DEDNI	72 ba leic ESS:	ase p acio sino	pair:	S								
		(ii) MO	LECU	r.e. T	YPE.	DNA	(ge	nomi	c)		-						

Ϊ..

[....

1

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: mouse

	RE: NAME/KEY: CDS LOCATION: 282	13			
(xi) SEQUE	NCE DESCRIPTION	SEQ ID NO	:12:		. *
	TCGGCTG GGACGAC	TGG ATT AT		A GAG TAC u Glu Tyr	<u>5</u> 1
GAG GCC TAT CA Glu Ala Tyr Hi 10	C TGC GAG GGC G s Cys Glu Gly V 15	rg TGC GAC al Cys Asp	TTT CCG CTG Phe Pro Leu 20	CGC TCG CAC Arg Ser His	99
CTT GAG CCC AC Leu Glu Pro Th 25	T AAC CAT GCC A r Asn His Ala I 30 °	TC ATT CAG le Ile Gln	ACG CTG ATG Thr Leu Met 35	AAC TCC ATG Asn Ser Met 40	147
GAC CCG GGC TC Asp Pro Gly Se	CC ACC CCG CCT A er Thr Pro Pro S 45	GC TGC TGC er Cys Cys 50	GTT CCC ACC Val Pro Thr	AAA CTG ACT : Lys Leu Thr 55	195
Pro Ile Ser Il	CC CTG TAC ATC G Le Leu Tyr Ile A 50	AC GCG GGC sp Ala Gly 65	AAT AAT GTA Asn Asn Val	GTC TAC AAG Val Tyr Lys 70	243
CAATACGAGG ACA	ATGGTGGT GGGGAAT	TC			272
(2) INFORMATIO	ON FOR SEQ ID NO	:13:			
	QUENCE CHARACTER (A) LENGTH: 72 a (B) TYPE: amino (D) TOPOLOGY: li	mino acids acid			
(ii) MOI	LECULE TYPE: pro	tein			
(xi) SE(QUENCE DESCRIPT	ON: SEQ ID	NO:13:	<i>;</i>	
Trp Ile Ile A	la Pro Leu Glu 3 5	Yr Glu Ala 10	Tyr His Cys	Glu Gly Val	
	ro Leu Arg Ser 1 20	25		30	8
Ile Gln Thr Lo	eu Met Asn Ser I	1et Asp Pro 40	Gly Ser Thr 45	Pro Pro Ser	
Cys Cys Val P	ro Thr Lys Leu ' 55	Thr Pro Ile	Ser Ile Leu 60	Tyr Ile Asp	
Ala Gly Asn A 65	sn Val Val Tyr 1 70	bys			
(2) INFORMATI	ON FOR SEQ ID N	0:14:			
(A) (B) (C)	ENCE CHARACTERI LENGTH: 272 ba TYPE: nucleic STRANDEDNESS: TOPOLOGY: line	se pairs acid single	÷		

THE STATE OF

٢.

(ii) MOLECULE TYPE: DNA (genomic)

		(vi)		GINA () OR				se										
		(vii)		MEDIA 3) CL														
		(ix)	(]	ATURE A) NA B) LC	ME/K	EY:	CDS 28	. 243			·.	, e e per e . e .	· · - · · ·			-		,
		(xi)	SEÇ	UENC	E DE	SCRI	PTIC	ON: S	SEQ 1	D NO):14:	:						
	GGA'	TCCAF	AGG P	AGCTC	GGC1	rg go	BACGA							rr GA eu Gl				51
	GAG Glu	GCC Ala 10	TTC Phe	CAC His	TGC Cys	GAA Glu	GGA Gly 15	CTG Leu	TGT Cys	GAG Glu	TTC Phe	CCC Pro 20	TTG Leu	CGC Arg	TCC Ser	CAC His		99
		GAG Glu																147
	GAC Asp	CCT Pro	GAA Glu	TCC Ser	ACA Thr 45	CCA Pro	CCC Pro	ACT Thr	TGT Cys	TGT Cys 50	GTG Val	CCT Pro	ACA Thr	CGG Arg	CTG Leu 55	AGT Ser		195
h-b	CCT Pro	ATT Ile	AGC Ser	ATC Ile 60	CTC Leu	TTC Phe	ATC Ile	GAC Asp	TCT Ser 65	GCC Ala	AAC Asn	AAC Asn	GTG Val	GTG Val 70	TAT Tyr	AAA Lys		243
H	CAA	TACG	AGG 2	ACATO	GTG	GT GO	GGĄ.	ATTC						•				272
ď	(2)	INF	ORMAC	TTON	FOR	SEO	ID I	NO : 1!	5 :									
	, ,			SEQUI (A) (B)	ENCE LEI	CHAI NGTH PE: 8	RACTI : 72		TICS no ao id									
		(:	ii) I	MOLE	CULE	TYPI	E: p:	rote	in							•		
		(;	xi) :	SEQUI	ENCE	DES	CRIP'	TION	: SEC	Q ID	NO:	15:						
	Trp 1	Ile	Ile	Ala	Pro 5	Leu	Glu	Tyr	Glu	Ala 10	Phe	His	Cys	Glu	Gly 15	Leu	. ι	
	Cys	Glu	Phe	Pro 20	Leu	Arg	Ser	His	Leu 25	Glu	Pro	Thr	Asn	His 30	Ala	Val		
	Ile	Gln	Thr 35	Leu	Met	Asn	Ser	Met 40	Asp	Pro	Glu	Ser	Thr 45	Pro	Pro	Thr		
	Cys	Cys 50	Val	Pro	Thr	Arg	Leu 55		Pro	Ile	Ser	Ile 60	Leu	Phe	Ile	Asp		
	Ser 65	Ala	Asn	Asn	Val	Val 70	Tyr	Lys										
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	6 :									
		(i	(.	QUEN A) L B) T	ENGT	H: 7	ami	no a	CS: cids			٠						

```
(D) TOPOLOGY: linear
       (ii) MOLECULE TYPE: peptide
       (vi) ORIGINAL SOURCE:
             (A) ORGANISM: BMP/TGF-beta consensus sequence
                                    . . . .
                                         :-
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
       Trp Xaa Asp Trp Ile Xaa Ala
  (2) INFORMATION FOR SEQ ID NO:17:
        (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 27 base pairs
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
      (vii) IMMEDIATE SOURCE:
             (B) CLONE: oligonucleotide #1
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
m
  CGGATCCTGG VANGAYTGGA THRTNGC
   (2) INFORMATION FOR SEQ ID NO:18:
D
        (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6 amino acids
             (B) TYPE: amino acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
       (ii) MOLECULE TYPE: peptide
      (vii) IMMEDIATE SOURCE:
             (B) CLONE: BMP/TGF-beta consensus sequence
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
        His Ala Ile Xaa Gln Thr
   (2) INFORMATION FOR SEQ ID NO:19:
        (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 28 base pairs
             (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
```

(ii) MOLECULE TYPE: DNA (genomic)

(B) CLONE: oligonucleotide #2

(vii) IMMEDIATE SOURCE:

(C) STRANDEDNESS: single

61

	(X1) SEQUENCE DESCRIPTION. SEQ 15 NO.15.	
	TTTCTAGAAR NGTYTGNACD ATNGCRTG	28
	(2) INFORMATION FOR SEQ ID NO:20:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
	(ii) MOLECULE TYPE: DNA (genomic)	
	(vii) IMMEDIATE SOURCE: (B) CLONE: oligonucleotide #3	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
47	CCACTGCGAG GGCCTTTGCG ACTTCCCTTT GCGTTCGCAC	40
	(2) INFORMATION FOR SEQ ID NO:21:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
ij	(ii) MOLECULE TYPE: DNA (genomic)	
h ta h. ta kalus	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: oligonucleotide #4</pre>	•
-i-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
rij H	TGCGGATCCA GCCGCTGCAG CCGCAAGCC	29
	(2) INFORMATION FOR SEQ ID NO:22:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	,
	(ii) MOLECULE TYPE: DNA (genomic)	
	<pre>(vii) IMMEDIATE SOURCE: (B) CLONE: oligonucleotide #5</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	GACTCTAGAC TACCTGCAGC CGCAGGCCT	29
	(2) INFORMATION FOR SEQ ID NO:23:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE: (A) LIBRARY: oligonucleotide #6	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	·
GCGGATCCAA GGAGCTCGGC TGGGACGA	28
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vii) IMMEDIATE SOURCE: (B) CLONE: oligonucleotide #7 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
GGAATTCCCC ACCACCATGT CCTCGTAT	28
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1171 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vii) IMMEDIATE SOURCE: (B) CLONE: Human VL-1 protein</pre>	,
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2964	
(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 605964	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
G AAT TCG GAT CTC TCG CAC ACT CCT CTC CGG AGA CAG AAG TAT TTG Asn Ser Asp Leu Ser His Thr Pro Leu Arg Arg Gln Lys Tyr Leu -201-200 -195 -190	46
TTT GAT GTG TCC ATG CTC TCA GAC AAA GAA GAG CTG GTG GGC GCG GAG Phe Asp Val Ser Met Leu Ser Asp Lys Glu Glu Leu Val Gly Ala Glu -185 -185	94

j. .. l. .

	CTG Leu -170	Arg	CTC Leu	TTT Phe	CGC Arg	CAG Gln -165	GCG Ala	CCC Pro	TCA Ser	GCG Ala	CCC Pro -160	Trp	GGG Gly	CCA Pro	CCA Pro	GCC Ala -155	142
	GGG Gly	CCG Pro	CTC Leu	CAC His	GTG Val -150	Gln	CTC Leu	TTC Phe	CCT Pro	TGC Cys -145	Leu	TCG Ser	CCC Pro	CTA Leu	CTG Leu -140	Leu	190
	GAC Asp	GCG Ala	CGG Arg	ACC Thr -135	Leu	GAC Asp	CCG Pro	CAG Gln	GGG Gly -130	Ala	CCG Pro	CCG Pro	GCC Ala	GGC Gly -125	Trp	GAA Glu	238
				Val			GGC Gly		Arg					Lys			286
			Glu				GCA Ala -100	Trp									334
							CCC Pro										382
							AGG Arg										430
L							TCC Ser										478
							GCC Ala										526
l							CCG Pro -20										574
- American							CGG Arg										622
		Gly	Lys	Arg	His	Gly	AAG Lys	Lys	Ser	Arg	Leu	Arg	Cys	Ser			670
							AAG Lys										718
							GCC Ala 45										766
	CCG Pro 55	CTG Leu	CGC Arg	TCG Ser	CAC His	CTG Leu 60	GAG Glu	CCC Pro	ACC Thr	AAC Asn	CAC His 65	GCC Ala	ATC Ile	ATC Ile	CAG Gln	ACG Thr 70	814
	CTG Leu	ATG Met	AAC Asn	TCC Ser	ATG Met 75	GAC Asp	CCC Pro	GGC Gly	TCC Ser	ACC Thr 80	CCG Pro	CCC Pro	AGC Ser	TGC Cys	TGC Cys 85	GTG Val	862
	CCC Pro	ACC Thr	AAA Lys	TTG Leu 90	ACT Thr	CCC Pro	ATC Ile	AGC Ser	ATT Ile 95	CTA Leu	TAC Tyr	ATC Ile	GAC Asp	GCG Ala 100	GGC Gly	AAT Asn	910

ZWZ.

[----[...

AAT GTG GTC TAC AAG CAG TAC GAG GAC ATG GTG GTG GAG TCG TGC GGC Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val Glu Ser Cys Gly 105 110 115	958
TGC AGG TAGCGGTGCC TTTCCCGCCG CCTTGGCCCG GAACCAAGGT GGGCCAAGGT Cys Arg 120	1014
CCGCCTTGCA GGGGAGGCCT GGCTGCAGAG AGGCGGAGGA GGAAGCTGGC GCTGGGGGAG	1074
GCTGAGGGTG AGGGAACAGC CTGGATGTGA GAGCCGGTGG GAGAGAAGGG AGCGCACCTT	1134
CCCAGTAACT TCTACCTGCC AGCCCAGAGG GAAATAT	1171
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 321 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
Asn Ser Asp Leu Ser His Thr Pro Leu Arg Arg Gln Lys Tyr Leu Phe -201 -200 -195 -190	
Asp Val Ser Met Leu Ser Asp Lys Glu Glu Leu Val Gly Ala Glu Leu -185 -180 -175 -170	
Arg Leu Phe Arg Gln Ala Pro Ser Ala Pro Trp Gly Pro Pro Ala Gly -165 -160 -155	
Pro Leu His Val Gln Leu Phe Pro Cys Leu Ser Pro Leu Leu Leu Asp -150 -145 -140	
Ala Arg Thr Leu Asp Pro Gln Gly Ala Pro Pro Ala Gly Trp Glu Val -135 -130 -125	
Phe Asp Val Trp Gln Gly Leu Arg His Gln Pro Trp Lys Gln Leu Cys -120 -115 -110	
Leu Glu Leu Arg Ala Ala Trp Gly Glu Leu Asp Ala Gly Glu Ala Glu -105 -90 -90	,
Ala Arg Ala Arg Gly Pro Gln Gln Pro Pro Pro Pro Asp Leu Arg Ser -85 -80 -75	
Leu Gly Phe Gly Arg Arg Val Arg Pro Pro Gln Glu Arg Ala Leu Leu -70 -65 -60	
Val Val Phe Thr Arg Ser Gln Arg Lýs Asn Leu Phe Ala Glu Met Arg -55 -50 -45	
Glu Gln Leu Gly Ser Ala Glu Ala Ala Gly Pro Gly Ala Gly Ala Glu -40 -35 -30	

Gly Ser Trp Pro Pro Pro Ser Gly Ala Pro Asp Ala Arg Pro Trp Leu
-25 -10

Pro Ser Pro Gly Arg Arg Arg Arg Thr Ala Phe Ala Ser Arg His

Gly Lys Arg His Gly Lys Lys Ser Arg Leu Arg Cys Ser Lys Lys Pro 10 15 20

Leu His Val Asn Phe Lys Glu Leu Gly Trp Asp Asp Trp Ile Ile Ala Pro Leu Glu Tyr Glu Ala Tyr His Cys Glu Gly Val Cys Asp Phe Pro Leu Arg Ser His Leu Glu Pro Thr Asn His Ala Ile Ile Gln Thr Leu 65 60 Met Asn Ser Met Asp Pro Gly Ser Thr Pro Pro Ser Cys Cys Val Pro 80 Thr Lys Leu Thr Pro Ile Ser Ile Leu Tyr Ile Asp Ala Gly Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val Glu Ser Cys Gly Cys 110 115 ٠. Arq 120 (2) INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1233 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (vii) IMMEDIATE SOURCE: (B) CLONE: DNA encoding BMP2 propeptide/BMP-12 mature (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..1233 (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 847..1233 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: ATG GTG GCC GGG ACC CGC TGT CTT CTA GCG TTG CTG CTT CCC CAG GTC Met Val Ala Gly Thr Arg Cys Leu Leu Ala Leu Leu Pro Gln Val -282 -280 -275 CTC CTG GGC GGC GCT GGC CTC GTT CCG GAG CTG GGC CGC AGG AAG 96 Leu Leu Gly Gly Ala Ala Gly Leu Val Pro Glu Leu Gly Arg Arg Lys -265 TTC GCG GCG GCG TCG TCG GGC CGC CCC TCA TCC CAG CCC TCT GAC GAG 144 Phe Ala Ala Ser Ser Gly Arg Pro Ser Ser Gln Pro Ser Asp Glu -240 -250 -245 GTC CTG AGC GAG TTC GAG TTG CGG CTG CTC AGC ATG TTC GGC CTG AAA 192 Val Leu Ser Glu Phe Glu Leu Arg Leu Leu Ser Met Phe Gly Leu Lys -230 -225 CAG AGA CCC ACC CCC AGC AGG GAC GCC GTG GTG CCC CCC TAC ATG CTA 240 Glm Arg Pro Thr Pro Ser Arg Asp Ala Val Val Pro Pro Tyr Met Leu -210

-215

GA As	AC SP	CTG Leu	TAT Tyr -200	Arg	AGG Arg	CAC His	TCA Ser	GGT Gly -195	Gln	CCG Pro	GGC Gly	TCA Ser	CCC Pro -190	Ala	CCA Pro	GAC Asp		288
			Leu					Ser			AAC Asn		Val					336
Hi		His					Glu				GAA Glu -160	Thr						384
						Phe					ATC Ile					Phe		432
					Glu					Arg	GAA Glu				Asp			480
Le []	eu	Gly	Asn -120	Asn)	Ser	Ser	Phe	His -115	His	Arg	ATT Ile	Asn	Ile -110	Tyr)	Glu	Ile	·	528
100 mm	.е	-105	P10	Ala	1111	Ата	-100)	гÀг	Pne	CCC Pro	-95	1111	Arg	ьeu	Leu		576
— 9		ACC Thr	AGG Arg	TTG Leu	GTG Val´	AAT Asn -85	CAG Gln	AAT Asn	GCA Ala	AGC Ser	AGG Arg -80	TGG Trp	GAA Glu	AGT Ser	TTT Phe	GAT Asp -75		624
											CAG Gln							672
∭ _{GG} ₩G1	SA - Y	TTC Phe	GTG Val	GTG Val -55	GAA Glu	GTG Val	GCC Ala	CAC His	TTG Leu -50	GAG Glu	GAG Glu	AAA Lys	CAA Gln	GGT Gly -45	GTC Val	TCC Ser		720
											CAC His							768
											TTT Phe							816
	У										ACG Thr 1	Ala						864
											GGC Gly							912
											TTG Leu							960
											CCG Pro							1008
T.											TTG Leu 65						;	1056

	CCC Pro	ACC Thr	AAC Asn	CAT His	GCC Ala 75	ATC Ile	ATT Ile	CAG Gln	ACG Thr	CTG Leu 80	CTC Leu	AAC Asn	TCC Ser	ATG Met	GCA Ala 85	CCA Pro	1104
	GAC Asp	GCG Ala	GCG Ala	CCG Pro 90	GCC Ala	TCC Ser	TGC Cys	TGT Cys	GTG Val 95	Pro	GCG Ala	CGC Arg	CTC Leu	AGC Ser 100	CCC Pro	ATC Ile	1152
					ATC Ile												1200
					GTG Val												1233
	(2)	INFO	RMAT	rion	FOR	SEQ	ÍĎ 1	10:28	3:							-	
-		,	(i) S	(A)	ENCE) LEI) TYI) TOI	NGTH:	: 411	l am	ino a id		5					J	
									_								
		(:	Li) N	4OLE	CULE	TYPI	E: pi	rote	in								
=		()	(i) S	SEQUI	ENCE	DESC	CRIP	rion	: SE	O ID	NO:2	28:					
r tr. mark	Met -282		Ala -28	-	Thr	Arg	Cys		Leu 275	Ala	Leu	Leu		Pro -270	Gln	Val	
ud' mail	Leu	Leu -26		Gly	Ala	Ala	Gly -26		Val	Pro	Glu		Gly 255	Arg	Arg	Lys	
tarl tark	Phe -250		Ala	Ala	Ser	Ser -24		Arg	Pro	Ser		Gln 240	Pro	Ser	Asp	Glu -235	
	Val	Leu	Ser	Glu	Phe -23		Leu	Arg	Leu	Leu -22		Met	Phe	Gly		Lys 220	
100 to	Gln	Arg	Pro	Thr	Pro 5	Ser	Arg	Asp	Ala -2		Val	Pro	Pro		Met 205	Leu	
	Asp	Leu	Tyr -20	_	Arg	His	Ser	Gly -1		Pro	Gly	Ser		Ala 190	Pro	Asp	••
	His	Arg -189		Glu	Arg	Ala	Ala -1		Arg	Ala	Asn		Val 175	Arg	Ser	Phe	
	-170)			Ser	-10	65				-:	160				-155	
					Phe -15	0				-1	45				- 3	140	
				-13					-1	30				-	125		
		-	-12	0	Ser			-1	15				-	110			
		-10	5				- 1	00					95			Leu	
	Asp - 90	Thr	Arg	Leu	Val	Asn -85	GIn	Asn	Ala	Ser	Arg -80	Trp	Glu	Ser	Phe	Asp - 75	

TOTEND DOTATOR

Val	Thr	Pro	Ala	Val -70	Met	Arg	Trp	Thr	Ala -65	Gln	Gly	His	Ala	Asn -60	His	
Gly	Phe	Val	Val -55	Glu	Val	Ala	His	Leu -50	Glu	Glu	Lys	Gln	Gly -45	Val	Ser	
Lys	Arg	His -40	Val	Arg	Ile	Ser	Arg -35	Ser	Leu	His	Gln	Asp -30	Glu	His	Ser	
Trp	Ser -25	Gln	Ile	Arg	Pro	Leu -20	Leu	Val	Thr	Phe	Gly -15	His	Asp	Gly	Lys	•
Gly -10	His	Pro	Leu	His	Lys -5	Arg	Glu	Lys	Arg	Thr 1	Ala	Leu	Ala	Gly 5	Thr	
Arg	Thr	Ala	Gln 10	Gly	Ser	Gly	Gly	Gly 15	Ala	Gly	Arg	Gly	His 20	Gly	Arg	
Arg	Gly	Arg 25	Ser	Arg	Cys	`Ser	Arg 30	Lys	Pro	Leu	His	Val 35	Asp	Phe	Lys	
Glu	Leu 40	Gly	Trp	Asp	Asp	Trp 45	Ile	Ile	Ala	Pro	Leu 50	Asp	Tyr	Glu	Ala	
Tyr 55	His	Cys	Glu	Gly	Leu 60	Cys	Asp	Phe	Pro	Leu 65	Arg	Ser	His	Leu	Glu 70	
Pro	Thr	Asn	His	Ala 75		Ile	Gln	Thr	Leu 80	Leu	Asn	Ser	Met	Ala 85	Pro	
Asp	Ala	Ala	Pro 90	Ala	Ser	Cys	Cys	Val 95	Pro	Ala	Arg	Leu	Ser 100	Pro	Ile	
Ser	Ile	Leu 105	Tyr	Ile	Asp	Ala	Ala 110	Asn	Asn	Val	Val	Tyr 115	Lys	Gln	Tyr	
Glu	Asp 120	Met	Val	Val	Glu	Ala 125	Cys	Gly	Cys	Arg						
(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:2	9:								
	(i) SE	OUEN	CE C	HARA	CTER	ISTI	CS:								
		(.	A) L	ENGT		203	base	pai	rs							
		(C) S	TRAN	DEDN	ESS:	sin	_								•
					OGY :											
-	(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(vii				SOUR : mu		MV1									
	(ix	(,		AME/	KEY: ION:		721									
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:29	:					
A A	AG T ys P	TC T he C	GC C ys L	TG G eu V	TG C al L 5	TG G eu X	NG N 01 X	CG G 02 V	al T	CG G hr A 10	CC T la S	CG G er G	AG A lu S	GC A er X	GN 03 15	4
	_				_											

94

CNG CTG GCC CTG AGA CGA CTG GGC TTC GGC TGN CCG GGC GGT GGC GAC X04 Leu Ala Leu Arg Arg Leu Gly Phe Gly X05 Pro Gly Gly Asp 20 25 30

	GGC Gly																142
CGT Arg	ACG Thr	CAA Gln 50	AGG Arg	AAA Lys	GAG Glu	AGT Ser	CTG Leu 55	TTC Phe	CGG Arg	GAG Glu	ATC Ile	CGA Arg 60	GCC Ala	CAG Gln	GCC Ala		190
	GCT Ala 65																238
	GGG Gly																286
GCG Ala	CTG Leu	GCT Ala	GGG Gly	ACT Thr 100	CGG Arg	GGA Gly	GNG X07	NAG X08	GGA Gly 105	AGC Ser	GGT Gly	GGT Gly	GGC Gly	GGC Gly 110	GGT Gly		334
GGC Gly	GGT Gly	GGC Gly	GGC Gly 115	GGC Gly	GGC Gly	GGC Gly	GGC Gly	GGC Gly 120	GGC Gly	GGC Gly	GGC Gly	GGC Gly	GGC Gly 125	GGC Gly	GCA Ala		382
TGGC TGly	AGG Arg	GGC Gly 130	CAC His	GGG Gly	CGC Arg	AGA Arg	GGC Gly 135	CGG Arg	AGC Ser	CGC Arg	TGC Cys	GGT Gly 140	CGC Arg	AAG Lys	TCA Ser		430
UCTG LLeu	CAC His 145	GTG Val	GAC Asp	TTT Phe	AAG Lys	GAG Glu 150	CTG Leu	GGC Gly	TGG Trp	GAC Asp	GAC Asp 155	TGG Trp	ATC Ile	ATC Ile	GCG Ala		478
UCCA Pro	TTA Leu	GAC Asp	TAC Tyr	GAG Glu	GCA Ala 165	TAC Tyr	CAC His	TGC Cys	GAG Glu	GGC Gly 170	GTT Val	TGC Cys	GAC Asp	TTT Phe	CCT Pro 175		526
UCTG Leu	CGC Arg	TCG Ser	CAC His	CTG Leu 180	GAG Glu	CCT Pro	ACC Thr	AAC Asn	CAC His 185	GCC Ala	ATC Ile	ATT Ile	CAG Gln	ACG Thr 190	CTG Leu		574
CTC Leu	AAC Asn	TCC Ser	ATG Met 195	GCG Ala	CCC Pro	GAC Asp	GCT Ala	GCG Ala 200	CCA Pro	GCC Ala	TCC Ser	TGC Cys	TGC Cys 205	GTG Val	CCC Pro		622
	AGG Arg		Ser		Ile	Ser		Leu								·	670
	GTC Val 225														TGC Cys		718
AGG Arg 240	TAGO	ATGO	GG 1	CTGC	GGAG	G GI	CTG	GCGC	CCA	AGGAC	ССТ	AGCT	CAAC	GAG			771
CAGO	TGTC	AT C	AGGC	CCCGA	AG GO	ACGO	GCGGA	A CTA	TGGC	CTC	TGCC	CAGC	ACA C	SAGG	AGAGCA		831
CACA	AGTT <i>P</i>	AC A	ACTC#	ACATI	OA TI	CACAC	TCCI	TCA	ACTC	ACGC	ACAT	GTT	TAC (CGTGC	BACGGC		891
AGGC	CGCTA	AA A	 AGCCI	TGCT	ra Tr	TTGC	TACC	TTA :	GAT	ACAA	ACCI	CTGT	rcc 1	гтттс	CGGGAG		951
AGGG	SAAGG	GC F	ATCTO	STGTI	ra Ti	GTTC	GCAGI	TAA 1	TGGC	CACT	AAA	CCA	AGT A	AGAAA	ATGGGT	1	011
TAGO	CATTO	GA 1	тстс	CTTT	T AC	STTGG	GAGGC	GGT	GTGC	SCTG	GATI	гсстс	GAC (GTTGO	GATATG	1	1071
GAGT	GCAC	TG C	AGGG	GCTGC	GG AT	CACCO	AGAT	тст	CTGC	SAGT	GGGG	CATTO	GG A	AACCI	AAADTT]	1131

	CTGC	CTCAC	ett 1	rg			÷										
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	10:30) :								
		((i) S	(B)	LE1	CHAF NGTH: PE: a POLOG	240 mino	ami aci	ino a		5						
		į)	li) N	OLEC	CULE	TYPE	E: p1	rotei	in								
		()	(i) S	SEQUE	ENCE	DESC	CRIPT	NOI?	: SEÇ	Q ID	NO:3	30:					
	Lys 1	Phe	Cys	Leu	Val 5	Leu	X01	X02	Val	Thr 10	Ala	Ser	Glu	Ser	X03	X04	
	Leu	Ala	Leu	Arg 20	Arg	Leu	Gly	Phe	Gly 25	X05	Pro	Gly	Gly	Gly 30	Asp	Gly	
0	Gly	Gly	Thr 35	Ala	X06	Glu	Glu	Arg 40	Ala	Leu	Leu	Val	Ile 45	Ser	Ser	Arg	
	Thr	Gln 50	Arg	Lys	Glu	Ser	Leu 55	Phe	Arg	Glu	Ile	Arg 60	Ala	Gln	Ala	Arg	
N	Ala 65	Leu	Arg	Ala		Ala 70	Glu	Pro	Pro	Pro	Asp 75	Pro	Gly	Pro	Gly	Ala 80	
	Gly	Ser	Arg	Lys	Ala 85	Asn	Leu	Gly	Gly	Arg 90	Arg	Arg	Gln	Arg	Thr 95	Ala	
	Leu	Ala	Gly	Thr 100	Arg	Gly	X07	X08	Gly 105	Ser	Gly	Gly	Gly	Gly 110	Gly	Gly	
	Gly	Gly	Gly 115	Gly	Gly	Gly	Gly	Gly 120	Gly	Gly	Gly	Gly	Gly 125	Gly	Ala	Gly	
	Arg	Gly 130	His	Gly	Arg	Arg	Gly 135	Arg	Ser	Arg	Cys	Gly 140	Arg	Lys	Ser	Leu	
	His 145	Val	Asp	Phe	Lys	Glu 150	Leu	Gly	Trp	Asp	Asp 155	Trp	Ile	Ile	Ala	Pro 160	
	Leu	Asp	Tyr	Glu	Ala 165	Tyr	His	Cys	Glu	Gly 170	Val	Cys	Asp	Phe	Pro 175	Leu	
	Arg	Ser	His	Leu 180	Glu	Pro	Thr	Asn	His 185	Ala	Ile	Ile	Gln	Thr 190	Leu	Leu	
	Asn	Ser	Met 195	Ala	Pro	Asp	Ala	Ala 200	Pro	Ala	Ser	Cys	Cys 205	Val	Pro	Ala	
	Arg	Leu 210	Ser	Pro	Ile	Ser	Ile 215	Leu	Tyr	Ile	Asp	Ala 220	Ala	Asn	Asn	Val	
	Val 225	Tyr	Lys	Gln	Tyr	Glu 230	Asp	Met	Val	Val	Glu 235	Ala	Cys	Gly	Cys	Arg 240	

AGTAAGGAGC CACTGGGGCT TGGGAGGGAG CACCCGGTTC CTAAACAAGT CTGATGTGTA

1191 1203

1.

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1046 base pairs
 (B) TYPE: nucleic acid

	(iii)	HYP	OTHE	TICA	L: N	0											
		(iv)	ANT	'I-SE	NSE:	ИО			·· , • .									
	(vii)		EDIA				MV2										
		(ix)	(A	TURE () NA () LC	ME/K			90										
		(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	SEQ I	D NC	:31:							
	A AG	GA AA g Ly 1	A CA 's Gl	A GC n Al	T TO a Cy	C AT 's Il 5	T CC e Pr	T GC	CA GO La Gl	y Pr	G AC o Th	T CI ir Le	A AC	GA GG	y Se	CC er .5	;	46
Q	TCA Ser	GGG Gly	ACC Thr	CAA Gln	CCC Pro 20	AGG Arg	CCG Pro	GCT Ala	GGG Gly	AAG Lys 25	TCT Ser	TTC Phe	GAC Asp	GTG Val	TGG Trp 30	CAG Gln		94
VП	GGC Gly	CTG Leu	CGC Arg	CCT Pro 35	CAG Gln	CCT Pro	TGG Trp	AAG Lys	CAG Gln 40	CTG Leu	TGC Cys	CTG Leu	GAG Glu	TTG Leu 45	CGG Arg	GCA Ala		142
	GCC Ala	TGG Trp	GGT Gly 50	GAG Glu	CTG Leu	GAC Asp	RCC X01	GGG Gly 55	GAT Asp	ACG Thr	GGG Gly	GCG Ala	CGC Arg 60	GCG Ala	AGG Arg	GGT Gly		190
Ū	CCC Pro	CAG Gln 65	CAG Gln	CCA Pro	CCG Pro	CCT Pro	CTG Leu 70	GAC Asp	CTG Leu	CGG Arg	AGT Ser	CTG Leu 75	GGC Gly	TTC Phe	GGT Gly	CGG Arg		238
	AGG Arg 80	GTG Val	AGA Arg	CCG [.] Pro	CCC Pro	CAG Gln 85	GAG Glu	CGC Arg	GCC Ala	CTG Leu	CTT Leu 90	GTA Val	GTG Val	TTC Phe	ACC Thr	AGA Arg 95		286
	TCG Ser	CAG Gln	CGC Arg	AAG Lys	AAC Asn 100	CTG Leu	TTC Phe	ACT Thr	GAG Glu	ATG Met 105	CAT His	GAG Glu	CAG Gln	CTG Leu	GGC Gly 110	TCT Ser		33,4
	GCA Ala	GAG Glu	GCT Ala	GCG Ala 115	GGA Gly	GCC Ala	GAG Glu	GGG Gly	TCA Ser 120	TGT Cys	CCA Pro	GCG Ala	CCG Pro	TCG Ser 125	GGC Gly	TCC Ser		382
	CCA Pro	GAC Asp	ACC Thr 130	GGG Gly	TCT Ser	TGG Trp	CTG Leu	CCC Pro 135	TCG Ser	CCC Pro	GGC Gly	CGC Arg	CGG Arg 140	CGG Arg	CGA Arg	CGC Arg		430
	ACC Thr	GCC Ala 145	TTC Phe	GCC Ala	AGC Ser	CGT Arg	CAC His 150	GGC Gly	AAG Lys	CGA Arg	CAT His	GGC Gly 155	AAG Lys	AAG Lys	TCC Ser	AGG Arg		478
	CTG Leu 160	CGC Arg	TGC Cys	AGC Ser	AGA Arg	AAG Lys 165	CCT Pro	CTG Leu	CAC His	GTG Val	AAT Asn 170	TTT Phe	AAG Lys	GAG Glu	TTA Leu	GGC Gly 175		526
	TGG Trp	GAC Asp	GAC Asp	TGG Trp	ATT Ile 180	Ile	GCG Ala	CCC Pro	CTA Leu	GAG Glu 185	TAC Tyr	GAG Glu	GCC Ala	TAT Tyr	CAC His 190	TGC Cys		574

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

GAG GGC GTG TGC GAC TTT CCG CTG CGC TCG CAC CTT GAG CCC ACT Glu Gly Val Cys Asp Phe Pro Leu Arg Ser His Leu Glu Pro Thr 195 200 205	AAC 622 Asn
CAT GCC ATC ATT CAG ACG CTG ATG AAC TCC ATG GAC CCG GGC TCC His Ala Ile Ile Gln Thr Leu Met Asn Ser Met Asp Pro Gly Ser 210 215 220	
CCG CCT AGC TGC TGC GTT CCC ACC AAA CTG ACT CCC ATT AGC ATC Pro Pro Ser Cys Cys Val Pro Thr Lys Leu Thr Pro Ile Ser Ile 225	
TAC ATC GAC GCG GGC AAT AAT GTN GTC TAC AAG CAG TAT GAG GAC Tyr Ile Asp Ala Gly Asn Asn X02 Val Tyr Lys Gln Tyr Glu Asp 240 245 250	ATG 766 Met 255
GTG GTG GAG TCC TGC GGC TGT AGG TAGCGGTGCT GTCCCGCCAC CTGGG Val Val Glu Ser Cys Gly Cys Arg 260 ``	CCAGG 820
GACCATGGAG GGAGGCCTGA CTGCCGAGAA AGGAGCAGGA GCTGGCCTTG GAAG	AGGCCA 880
CAGGTGGGG ACAGCCTGAA AGTAGGAGCA CAGTAAGAAG CAGCCCAGCC	CAGAAC 940
CTTCCAATCC CCCAACCCAG AAGCAGCTAA GGGGTTTCAC AACTTTTGGC CTTG	CCAGCC 1000
TGGAAAGACT AGACAAGAGG GATTCTTCTC TTTTTATTAT GGCTTG	1046
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 263 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
Arg Lys Gln Ala Cys Ile Pro Ala Gly Pro Thr Leu Arg Gly Ser 1 5 10 15	
Gly Thr Gln Pro Arg Pro Ala Gly Lys Ser Phe Asp Val Trp Gln 20 25 30	Gly
Leu Arg Pro Gln Pro Trp Lys Gln Leu Cys Leu Glu Leu Arg Ala 35 40 45	Ala
Trp Gly Glu Leu Asp X01 Gly Asp Thr Gly Ala Arg Ala Arg Gly 50 55 60	Pro
Gln Gln Pro Pro Pro Leu Asp Leu Arg Ser Leu Gly Phe Gly Arg 65 70 75	Arg 80
Val Arg Pro Pro Gln Glu Arg Ala Leu Leu Val Val Phe Thr Arg 85 90 95	
Gln Arg Lys Asn Leu Phe Thr Glu Met His Glu Gln Leu Gly Ser 100 105 110	Ala

1.

	Ι
	v
4	(
T)	
195	
Ù	
U	
9	
Ф	
Ш	
وأجأ	
<u>L</u>	

Ala 145	Phe	Ala	Ser	Arg	His 150	Gly	Lys	Arg	His	Gly 155	Lys	Lys	Ser	Arg	Leu 160		
Arg	Cys	Ser	Arg	Lys 165	Pro	Leu	His	Val	Asn 170	Phe	Lys	Glu	Leu	Gly 175	Trp		
Asp	Asp	Trp	Ile 180	Ile	Ala	Pro	Leu	Glu 185	Tyr	Glu	Ala	Tyr	His 190	Cys	Glu		
Gly	Val	Cys 195	Asp	Phe	Pro	Leu	Arg 200	Ser	His	Leu	Glu	Pro 205	Thr	Asn	His		
Ala	Ile 210	Ile	Gln	Thr	Leu	Met 215	Asn	Ser	Met	Asp	Pro 220	Gly	Ser	Thr	Pro		
Pro 225	Ser	Cys	Cys	Val	Pro 230	Thr	Lys	Leu	Thr	Pro 235	Ile	Ser	Ile	Leu	Tyr 240		
Ile	Asp	Ala	Gly	Asn 245	Asn	X02	Val	Tyr	Lys 250	Gln	Tyr	Glu	Asp	Met 255	Val		
Val	Glu	Ser	Cys 260	Gly	Cys	Arg											
!](2)	INF	ORMA'	TTON	FOR	SEO	TD 1	NO - 3	3 ·									
1					-												
3) \$1	(i) SE(~		HARA H: 1			_	rs								
		(1	в) т	YPE:	nuc	leic	aci	ď									
-					DEDN OGY:			gle									
2		()	<i>D</i> , 1	OFOD	001.		cur										
	(ii) MO:	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
	(iii) HY	ротн	ETIC.	AL:	МО											
	(iv) AN	TI-S	ENSE	: NO												
ii n	/ ·	` ~			00IT	an.											
	(V11	MI (:)		_	: HU		V1-1										
	(iv) FE	מוזיי מ	F.													
	(1)	(.	A) N	AME/	KEY:			01				•				,	
	(ix) FE	ATUR	E:													
					KEY:												
		(в) ц	OCAT	ION:	990	13	01									
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:33	:						
AAC	TATA	GCA	CCTG	CAGT	cc c	TGGT	CTTG	G GT	GTAG	GGGT	GCG	CTCC	TGG	TCCC	GCGGC	т 60	1
CAG	GGAT	ATG	CAGT	'GACC	AA T	GGGT	TGTT	G GC	CTGA	TGGG	ACT	TTTG	GCT	TGCT	AAACC	A 120	ı
AAG	CTCG		CGGA	TAG	CCC Pro -284	Gly	CGA Arg	AGA Arg	CGT Arg -280	Pro	CTG Leu	CTC Leu	TGG Trp	GCC Ala -275	Arg	170	1
CTG Leu	GCA Ala	GCG Ala	TTC Phe	Arg	CTG Leu	GGG Gly	CAG Glr	AGA Arg	Arg	GGA Gly	GTC Val	Gly	CGC Arg	Trp	CTC Leu	218	}

		CAG Gln		Trp					Arg					Leu				266
		GGC Gly -240	Pro					Cys					Tyr					314
		CTC Leu					Ser					Ser						362
		CAG Gln				Phe					Leu					Glu		410
		GTG Val			Glu					Arg					Glu			458
P.	GGC Gly	CCA Pro	GGC Gly -175	Ser	TGG Trp	ACT Thr	TCT Ser	CCG Pro -170	Pro	TTG Leu	CTG Leu	CTG Leu	CTG Leu -165	Ser	ACG Thr	TGC Cys		506
SHS 192	CCG Pro	GGC Gly -160	Ala	GCC Ala	CGA Arg	GCG Ala	CCA Pro -155	Arg	CTG Leu	CTG Leu	TAC Tyr	TCG Ser -150	Arg	GCA Ala	GCT Ala	GAG Glu		554
	CCC Pro -145	CTA Leu	GTC Val	GGT Gly	CAG Gln	CGC Arg -140	\mathtt{Trp}	GAG Glu	GCG Ala	TTC Phe	GAC Asp -135	Val	GCG Ala	GAC Asp	GCC Ala	ATG Met -130		602
	AGG Arg	CGC Arg	CAC His	CGT Arg	CGT Arg -125	Glu	CCG Pro	CGC Arg	CCC Pro	CCC Pro -120	Arg	GCG Ala	TTC Phe	TGC Cys	CTC Leu -115	Leu		650
u	CTG Leu	CGC Arg	GCA Ala	GTG Val -110	Ala	GGC Gly	CCG Pro	GTG Val	CCG Pro -105	Ser	CCG Pro	TTG Leu	GCA Ala	CTG Leu -100	Arg	CGA Arg		698
		GGC Gly																746
	GCG Ala	GTG Val -80	CTA Leu	GTC Val	GTC Val	TCC Ser	TCC Ser -75	CGC Arg	ACG Thr	CAG Gln	AGG Arg	AAA Lys -70	GAG Glu	AGC Ser	TTA Leu	TTC Phe		7 9 A
		GAG Glu																842
		CCG Pro																890
		GGC Gly																938
		CAG Gln																986
		AGC Ser															3	1034

JENO.

ľ

[...

				GAC Asp														1082
				CTT Leu 35														1130
				ATC Ile														1178
				TCC Ser														1226
				GAC Asp			Asn											1274
				GAG Glu						TAGO	CGCG	CGG (GCCGC	GGA(G			1321
<u>E</u>	GGGC	CAGCO	CAC (GCGG	CCGAC	GG AT	rcc											1345
	(2)	INFO	ORMA!	поп	FOR	SEQ	ID 1	10:34	1:									
YHOO			(i) \$	(B)	ENCE LEI TYI	VGTH	: 388 amino	am:	ino a id		5							
		(j	ii) 1	MOLE	CULE	TYPI			_									
	.	()	ci) s	SEQUI	ENCE	DESC	E: pi	rote	in : SE(_				.,	_,			
	Pro -284	() Gly	ci) s		ENCE	DESC Pro	E: pi	rote	in : SE(Ala			Ala	Ala		Arg -270		
		Gly	ki) S	SEQUI Arg	ENCE Arg -28 Arg	DESO Pro	E: pi CRIPT Leu	rote: FION: Leu	in : SE(Trp	Ala -2 Trp	Arg 275	Leu		Ala	-	-270		
	-284 Leu	Gly Gly Gly	ci) s Arg Gln	Arg Arg -265	Arg -28 Arg	DESO Pro 30 Gly	E: processor pro	rote: FION Leu Gly	in : SEQ Trp Arg -26 Leu	Ala -2 Trp	Arg 275 Leu	Leu	Gln Gly	Ala -2	Trp 255	-270 Leu		e.
	-284 Leu Pro	Gly Gly Gly His	Arg Gln Arg -250	Arg Arg -265	Arg -28 Arg Gln	DESO Pro 30 Gly Leu	E: process of the control of the con	COTES FION Leu Gly His -24	in : SE(Trp Arg -26 Leu 15	Ala Trp 50 Leu	Arg 275 Leu Leu	Leu Gln Gly Ser	Gln Gly	Ala -2 Pro 240	Trp 255 Ala	Leu Leu Leu		e.
	-284 Leu Pro	Gly Gly His Val -235	Gln Arg -250 Cys	Arg Arg -269 Arg	Arg -28 Arg Gln	Pro 30 Gly Leu Cys	E: process of the control of the con	COTE: FION: Leu Gly His -24 Tyr 30	in E SEG Trp Arg -26 Leu 15	Ala Trp 50 Leu	Arg 275 Leu Leu Leu	Leu Gln Gly Ser	Gln Gly -2 Leu 225	Ala Pro 240 Cys	Trp 255 Ala Pro	Leu Cys	205	••
	-284 Leu Pro Thr Arg -220	Gly Gly His Val -235	Gln Arg -250 Cys Pro	Arg Arg -265 Arg O	Arg -28 Arg Gln Ile Asp	Pro 30 Gly Leu Cys Glu -2:	E: process of the control of the con	COTE: FION: Leu Gly His -24 Tyr 30 Ala	in E SEG Trp Arg -26 Leu 15 Thr	Trp 50 Leu Ala	Arg 275 Leu Leu Leu Thr	Gln Gly Ser -2 Gly 210	Gln Gly -2 Leu 225 Gln	Ala Pro 240 Cys Ser	Trp 255 Ala Pro Phe	Leu Cys	205	•
	Leu Pro Thr Arg -220	Gly Gly His Val -235 Ser	Gln Arg -250 Cys Pro Val	Arg Arg -269 Arg Arg Arg	Arg Arg Gln Ile Asp Ser -200	Pro 30 Gly Leu Cys Glu -2:	CRIPT Leu Val Gly Ser -23 Ser	COTESTION Leu Gly His -20 Tyr 30 Ala Asp	in : SE(Trp Arg -26 Leu 15 Thr Ala	Ala Trp O Leu Ala Glu Asp -15	Arg 275 Leu Leu Thr -2 Glu	Gln Gly Ser -2 Gly 210 Val	Gln Gly -2 Leu 225 Gln Val	Ala Pro 240 Cys Ser Gly	Trp 255 Ala Pro Phe Ala	Leu Cys Leu Glu	205	••
	Leu Pro Thr Arg -220 Phe Leu	Gly Gly His Val -235 Ser Asp	Arg Gln Arg -250 Cys Pro Val	Arg Arg Arg Arg Arg Arg Leu -18:	Arg Arg Gln Ile Asp Ser -200 Arg	Pro 30 Gly Leu Cys Glu -2: Leu	CRIPT Leu Val Gly Ser -23 Ser 15 Asn Gly	COLESTION Leu Gly His -24 Tyr 30 Ala Asp	in SE(Trp Arg -26 Leu 15 Thr Ala Ala Pro -18	Trp O Leu Ala Glu Asp -19 Glu 30	Arg 275 Leu Leu Thr -2 Glu 95	Gln Gly Ser Gly Cly Val	Gln Gly Leu 225 Gln Val Pro	Ala Pro 240 Cys Ser Gly	Trp 255 Ala Pro Phe Ala -: Ser	Leu Cys Leu Glu 190 Trp	205	
	Leu Pro Thr Arg -220 Phe Leu	Gly Gly His Val -235 Ser Asp Arg	Gln Arg -250 Cys Pro Val Val Pro -170 Arg	Arg Arg Arg Arg Arg Arg Leu -18:	Arg Arg Gln Ile Asp Ser -200 Arg Leu	Pro 30 Gly Leu Cys Glu -2: Leu Arg	CRIPT Leu Val Gly Ser -21 Ser 15 Asn Gly Leu	COLESTION: Leu Gly His -20 Tyr 30 Ala Asp Ser Leu -10 Arg	in SE(Trp Arg -26 Leu 15 Thr Ala Ala Pro -18 Ser	Ala Trp	Arg 275 Leu Leu Thr -2 Glu 95 Ser	Gly Ser Gly 210 Val Gly Pro	Gln Gly Leu 225 Gln Val Pro Gly Leu	Ala Pro 240 Cys Ser Gly Gly	Trp 255 Ala Pro Phe Ala -: Ser 175 Ala	Leu Cys Leu Glu 190 Trp Arg	205	

Glu Pro Arg Pro Pro Arg Ala Phe Cys Leu Leu Leu Arg Ala Val Ala -120 -115 -110

Gly Pro Val Pro Ser Pro Leu Ala Leu Arg Arg Leu Gly Phe Gly Trp
-105 -100 -95

Pro Gly Gly Gly Ser Ala Ala Glu Glu Arg Ala Val Leu Val Val
-90 -85 -80

Ser Ser Arg Thr Gln Arg Lys Glu Ser Leu Phe Arg Glu Ile Arg Ala
-75 -70 -65

Gln Ala Arg Ala Leu Gly Ala Ala Leu Ala Ser Glu Pro Leu Pro Asp
-60 -55 -50 -45

Pro Gly Thr Gly Thr Ala Ser Pro Arg Ala Val Ile Gly Gly Arg Arg
-40 -35 -30

Arg Arg Arg Thr Ala Leu Ala Gly Thr Arg Thr Ala Gln Gly Ser Gly
-25
-15

Gly Gly Ala Gly Arg Gly His Gly Arg Arg Gly Arg Ser Arg Cys Ser
-10 -5 1

Arg Lys Pro Leu His Val Asp Phe Lys Glu Leu Gly Trp Asp Asp Trp 5 10 15 20

5 10 15 20

Ile Ile Ala Pro Leu Asp Tyr Glu Ala Tyr His Cys Glu Gly Leu Cys
30 35

Asp Phe Pro Leu Arg Ser His Leu Glu Pro Thr Asn His Ala Ile Ile 40 45 50

Gln Thr Leu Leu Asn Ser Met Ala Pro Asp Ala Ala Pro Ala Ser Cys 55 60 65

Cys Val Pro Ala Arg Leu Ser Pro Ile Ser Ile Leu Tyr Ile Asp Ala 70 75 80

Ala Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val Val Glu Ala 85 90 95 100

Cys Gly Cys Arg

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: primer number 8
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TGTATGCGAC TTCCCGC