Chapter: 13. VOLUME AND SURFACE AREA

Exercise: 13A

Question: 1

(i) length = 12 cm, breadth = 8 cm and height = 4.5 cm

Volume of cuboid = (length \times breadth \times height) = (12 \times 8 \times 4.5) = 432 cm³

Lateral surface area of cuboid = $2(length + breadth) \times height = 2(12 + 8) \times 4.5 = 180 \text{ cm}^2$

Total surface area of cuboid = $2(length \times breadth + breadth \times height + height \times length)$

$$= 2(12 \times 8 + 8 \times 4.5 + 4.5 \times 12) = 2(96 + 36 + 54) = 2 \times 186 = 372 \text{ cm}^2$$

(ii) length = 26 m, breadth = 14 m and height = 6.5 m

Volume of cuboid = (length \times breadth \times height) = (26 \times 14 \times 6.5) = 2366 m³

Lateral surface area of cuboid = $2(length + breadth) \times height = 2(26 + 14) \times 6.5 = 520 \text{ m}^2$

Total surface area of cuboid = $2(length \times breadth + breadth \times height + height \times length)$

$$= 2(26 \times 14 + 14 \times 6.5 + 6.5 \times 26) = 2 \times 624 = 1248 \text{ m}^2$$

(iii) length = 15 m, breadth = 6 m and height = 5 dm = (0.5 m)

Volume of cuboid = (length × breadth × height) = $(15 \times 6 \times 0.5) = 45 \text{ m}^3$

Lateral surface area of cuboid = $2(length + breadth) \times height = 2(15 + 6) \times 0.5 = 21 \text{ m}^2$

Total surface area of cuboid = $2(length \times breadth + breadth \times height + height \times length)$

$$= 2(15 \times 6 + 6 \times 0.5 + 0.5 \times 15) = 2(90 + 3.0 + 7.5) = 2 \times 100.5 = 201 \text{ m}^2$$

(iv) length = 24 m, breadth = 25 cm and height = 6 m

Volume of cuboid = (length \times breadth \times height) = $(24 \times 0.25 \times 6) = 36 \text{ m}^3$

Lateral surface area of cuboid = $2(length + breadth) \times height = 2(24 + 0.25) \times 6 = 291 \text{ m}^2$

Total surface area of cuboid = $2(length \times breadth + breadth \times height + height \times length)$

$$= 2(24 \times 0.25 + 0.25 \times 6 + 6 \times 24) = 303 \text{ m}^2$$

Question: 2

Given,

Dimensions of closed rectangular cistern = $8m \times 6m \times 2.5 m$

 \therefore Capacity of tank = volume of tank = $(l \times b \times h) = 8 \times 6 \times 2.5 = 120 \text{ m}^3$

Area of iron sheet required to make the tank = $2(lb + bh + hl) = 2(8 \times 6 + 6 \times 2.5 + 2.5 \times 8) = 2(48 + 15 + 20) = 2 \times 83 = 166m^2$

Question: 3

Given,

Dimensions of room = $9m \times 8m \times 6.5m$

Area of 4 walls = 2 (length + breadth) × height = 2 (9 + 8) × 6.5 = $13 \times 17 = 221 \text{ m}^2$

Dimensions of one door = $2m \times 1.5m$

Area of door = length \times breadth = 2 \times 1.5 = 3.0 m²

Dimensions of windows = $1.5m \times 1m$

Area of 2 windows = $2 (1 \times b) = 2 (1.5 \times 1) = 3.0 \text{ m}^2$

Hence,

Area required for white-washing = Area of 4 walls - (area of door + area of 2 windows)

$$= 221 - (3 + 3) = 221 - 6 = 215 \text{ m}^2$$

 \therefore cost of white-washing 1 m² area = Rs. 6.40

 \therefore cost of white-washing 215 m² = 6.40 × 215 = Rs. 1376.

Question: 4

Given,

Dimensions of plank;

l = 5m

$$b = 25cm = 0.25 m$$

$$h = 10cm = 0.10 m$$

Dimensions of pit;

l = 20m

b = 6m

h = 80m

number of planks =
$$\frac{volume\ of\ pit}{volume\ of\ plank} = \frac{20 \times 6 \times 0.80}{5 \times 0.25 \times 0.10} = 768$$

Question: 5

Given,

Dimensions of wall = $8m \times 6m \times 22.5$ cm = 800 cm $\times 600$ cm $\times 22.5$ cm

Dimensions of each brick = $25 \text{ cm} \times 11.25 \text{cm} \times 6 \text{ cm}$

Hence,

Number of bricks required =
$$\frac{volume\ of\ wall}{volume\ of\ one\ brick} = \frac{800 \times 600 \times 22.5}{25 \times 11.25 \times 6} = 6400\ bricks.$$

Question: 6

Given,

Dimensions of wall = $15m \times 30cm \times 4m = 1500 cm \times 30 cm \times 400 cm$

Dimensions of each brick = $22 \text{ cm} \times 12.5 \text{ cm} \times 7.5 \text{ cm}$

Volume of wall = $1 \times b \times h = 1500 \times 30 \times 400 = 180000000 \text{ cm}^3$

Area of mortar = $1/12 \times \text{volume of wall} = \frac{1}{12} \times 180000000 = 15000000 \text{ cm}^3$

Hence,

Area occupied by bricks only = $180000000 - 15000000 = 165000000 \text{ cm}^3$

Number of bricks required =
$$\frac{volume\ for\ bricks\ only}{volume\ of\ one\ brick} = \frac{165000000}{22 \times 12.5 \times 7.5} = 8000\ bricks.$$

Question: 7

Given,

External Dimensions of cistern = $1.35 \text{m} \times 1.08 \text{m} \times 90 \text{cm} = 135 \text{cm} \times 108 \text{cm} \times 90 \text{cm}$

External volume of cistern = $1 \times b \times h = 135 \times 108 \times 90 = 1312200 \text{ cm}^3$

Internal dimensions of cistern = length = $135 - (2.5 \times 2) = 130$ cm

Breadth = $108 - (2.5 \times 2) = 103$ cm

$$Height = 90 - 2.5 = 87.5 cm$$

 \therefore internal volume of cistern = 130 × 103 × 87.5 = 1171625 cm³

Volumeof iron used = (External volume - Internal volume)

$$= 1312200 - 1171625 = 140575 \text{ cm}^3$$

Question: 8

Given,

Depth of river (h) = 2 m

Breadth of river (b) = 45 m

Rate of flowing = 3 km/h

$$\therefore$$
 Length = $\frac{3000}{60}$ meter/min.

Volume of water =
$$1 \times b \times h = \frac{3000}{60} \times 2 \times 45 = 90 \times 50 = 4500 \text{ m}^3$$

Question: 9

Given,

Total cost of box made of sheet metal = Rs. 1620

Cost of per square meter metal = Rs. 30

∴ Area of box =
$$\frac{1620}{30}$$
 = 54 m²

Dimensions of box = $5m \times 3m \times height$

Let height of box = h meter

Total surface area of sheet = 2 (lb + bh + hl)

$$= 54 = 2 (5 \times 3 + 3h + 5h)$$

$$=\frac{54}{2}=15+8h$$

$$= 8h = 27 - 15 = 12$$

$$= h = \frac{12}{8} = 1.5 m$$

Height of box = 1.5 meter.

Question: 10

Given,

Dimensions of room = $10m \times 10m \times 5m$

∴ length of longest pole can be put in room = diagonal of room

$$=\sqrt{l^2+b^2+h^2}=\sqrt{10^2+10^2+5^2}=\sqrt{225}=15 m$$

Question: 11

Given,

Dimensions of dining hall = $20m \times 16m \times 4.5m$

Volume of hall = $20 \times 16 \times 4.5 = 1440 \text{ m}^3$

Volume of air required by one person = 5 m^3

$$\therefore$$
 Number of persons in hall = $\frac{volume\ of\ hall}{volume\ of\ air\ required\ by\ one\ person} = \frac{1440}{5} = 288\ persons.$

Question: 12

Given,

Dimensions of classroom = $10m \times 6.4m \times 5m$

Area of room = length \times breadth = $10 \times 6.4 = 64 \text{ m}^2$

Area of floor required by one student = 1.6 m^2

 \therefore Number of students can sit in classroom = $\frac{\textit{Area of floor}}{\textit{area required by one student}} = \frac{64}{1.6} = 40 \textit{ students}.$

Volume of classroom = $10 \times 6.4 \times 5 \text{ m}^3$

Air required by each student = $\frac{volume\ of\ room}{number\ of\ students} = \frac{10\times6.4\times5}{40} = 8\ m^3$

Question: 13

Given,

Volume of cuboid = 1536 m^3

Length of cuboid = 16 m

Ratio of breadth and height = 3:2

Let breadth = 3x

Let breadth = 2x

 \therefore Volume of cuboid = $l \times b \times h$

$$= 1536 = 16 \times 3x \times 2x$$

$$=6x^2=\frac{1536}{16}=96$$

$$= x^2 = \frac{96}{6} = 16$$

$$= x = \sqrt{16} = 4$$

Hence,

Breadth of cuboid = $3x = 3 \times 4 = 12m$

Height of cuboid = $2x = 2 \times 4 = 8m$

Question: 14

Given,

Surface area of cuboid = 758 cm^2

Length of cuboid = 14 cm

Breadth of cuboid = 11 cm

Let height of cuboid = h cm

Total surface area of cuboid = 2 (lb + bh + hl)

$$= 758 = 2 (14 \times 11 + 11h + 14h)$$

$$= 154 + 25h = \frac{758}{2} = 379$$

$$= 25h = 379 - 154 = 225$$

$$= h = \frac{225}{25} = 9$$

Height of cuboid = 9 meter.

Question: 15

Given,

a) Edge of cube (a) = 9m

Volume of cube = $a^3 = 9^3 = 729 \text{ m}^3$

Lateral surface area of cube = $4a^2 = 4 \times 9^2 = 4 \times 81 = 324 \text{ m}^2$

Total surface area of cube = $6a^2 = 6 \times 9^2 = 6 \times 81 = 486 \text{ m}^2$

Diagonal of cube = $\sqrt{3}$ a = $\sqrt{3} \times 9 = 1.73 \times 9 = 15.57$ m

b) Edge of cube (a) = 6.5 cm

Volume of cube = $a^3 = 6.5^3 = 274.625 \text{ cm}^3$

Lateral surface area of cube = $4a^2 = 4 \times 6.5^2 = 4 \times 42.25 = 169 \text{ cm}^2$

Total surface area of cube = $6a^2 = 6 \times 6.5^2 = 6 \times 42.25 = 253.5 \text{ cm}^2$

Diagonal of cube = $\sqrt{3}$ a = $\sqrt{3} \times 6.5 = 1.73 \times 6.5 = 11.245$ cm

Question: 16

Given,

Total surface area of cube = 1176 cm^2

Let edge of cube = a cm

$$= 6 a^2 = 1176$$

$$= a^2 = \frac{1176}{6} = 196$$

$$= a = \sqrt{196} = 14 \text{ cm}$$

$$\therefore$$
 Volume of cube = $a^3 = 14^3 = 2744 \text{ cm}^3$

Question: 17

Given,

Lateral surface area of cube = 900 cm^2

Let edge of cube = a cm

$$4a^2 = 900$$

$$= a^2 = \frac{900}{4} = 225$$

$$= a = \sqrt{225} = 15 cm$$

Volume of cube = $a^3 = 15^3 = 3375 \text{ cm}^3$

Question: 18

Given

Volume of cube = 512 cm^3

Let edge of cube = a cm

So,

$$= a^3 = 512$$

$$= a = \sqrt[3]{512} = 8 \text{ cm}$$

Total surface area of cube = $6 a^2 = 6 \times 8 \times 8 = 384 cm^2$

Question: 19

Given,

Edge of three cubes $a_1=3\ cm$, $a_2=4\ cm$, $a_3=5\ cm$

Let edge of single cube formed = A cm

Sum of volume of three cubes = volume of single cube formed

$$= a_1^3 + a_2^3 + a_3^3 = A^3$$

$$= 3^3 + 4^3 + 5^3 = A^3$$

$$A^3 = 27 + 64 + 125 = 216$$

$$A = \sqrt[3]{216} = 6 cm$$

Lateral surface area of new cube = $4a^2 = 4 \times 6 \times 6 = 144 \text{ cm}^2$

Question: 20

Given,

Area of field = $2 \text{ hectare} = 20000 \text{ m}^2$

Height of rainfall = 5 cm = 0.05 m

Volume of water that falls = Area \times height

$$= 20000 \times 0.05 = 1000 \text{ m}^3$$

Exercise: 13B

Question: 1

Given,

Height of cylinder = 21 cm

Radius of base = 5 cm

∴ volume of right circular cylinder = $\pi r^2 h = \frac{22}{7} \times 5 \times 5 \times 21 = 1650 \text{ cm}^3$

Curved surface area = $2\pi rh = 2 \times \frac{22}{7} \times 5 \times 21 = 660 \text{ cm}^2$

Question: 2

Given,

Diameter of cylinder = 28 cm

Height of cylinder = 40 cm

Radius of cylinder = $\frac{diameter}{2} = \frac{28}{2} = 14 \text{ cm}$

∴ Curved surface area of cylinder = $2\pi rh = 2 \times \frac{22}{7} \times 14 \times 40 = 44 \times 40 \times 2 = 3520 \text{ cm}^2$

∴ total surface area of cylinder = $2\pi rh + 2\pi r^2 = 2\pi r(h+r) = 2 \times \frac{22}{7} \times 14 \times 54 = 88 \times 54 = 4752$ cm²

 \therefore Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 14 \times 14 \times 40 = 24640 \text{ cm}^3$

Question: 3

Given.

Radius of cylinder = 10.5 cm

Height of cylinder = 60 cm

 \therefore Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 10.5 \times 10.5 \times 60 = 20790 \text{ cm}^3$

∴ Weight of cylinder = volume of cylinder × wt. of cylinder per gram

$$= 20790 \times 5 \text{ g} = 103950 \text{ g} = 103.95 \text{ kg}$$

Question: 4

Given,

Curved surface area of cylinder = 1210 cm^2

Diameter of cylinder = 20 cm

Radius of cylinder = $\frac{20}{2}$ = 10 cm

Let height of cylinder = h cm

Curved surface area = $2\pi rh$

$$= 2\pi rh = 1210$$

$$= 2 \times \frac{22}{7} \times 10 \times h = 1210$$

$$= h = \frac{1210 \times 7}{44 \times 10} = 19.25 \text{ cm}$$

$$\therefore$$
 Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 10 \times 10 \times 19.25 = 6050 \text{ cm}^3$

Question: 5

Given,

Curved surface area of cylinder = 4400 cm^2

Circumference of its base = 110 cm

$$2\pi r = 110$$

$$= r = \frac{110}{2\pi} = \frac{110 \times 7}{44} = \frac{35}{2}cm$$

Let height of cylinder = h cm

$$C.S.A = 4400$$

$$2\pi rh = 4400$$

$$= 2 \times \frac{22}{7} \times \frac{35}{2} \times h = 4400$$

$$= h = \frac{4400 \times 7 \times 2}{44 \times 35} = 40 \text{ cm}$$

∴ Volume of cylinder =
$$\pi r^2 h = \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times 40 = 110 \times 350 = 38500 \text{ cm}^3$$

Question: 6

Given,

Volume of cylinder = 1617 cm^3

Ratio of radius of base and height = 2:3

Let base radius = 2x cm

Let height = 3x cm

Volume = $\pi r^2 h$

$$=\frac{22}{7}\times 4x^2\times 3x=1617$$

$$= x^3 = \frac{1617 \times 7}{22 \times 12}$$

$$= x^3 = 42.875$$

$$= x = \sqrt[3]{42.875} = 3.5 cm$$

Hence,

Radius of cylinder = $2 \times 3.5 = 7$ cm

Height of cylinder = $3 \times 3.5 = 10.5$ cm

Total surface area of cylinder = $2\pi rh + 2\pi r^2 = 2\pi r (h + r) = 2 \times \frac{22}{7} \times 7 \times 17.5 = 770 \text{ cm}^2$

Question: 7

Given,

Total surface area of cylinder = 462 cm^2

$$2\pi r (h + r) = 462$$

$$\Rightarrow$$
 r (h + r) = $\frac{462}{2\pi}$

$$\Rightarrow$$
 r² + rh = $\frac{(462 \times 7)}{44}$ = $\frac{(21 \times 7)}{2}$ (i)

$$CSA = \frac{1}{3} TSA (given)$$

$$2\pi rh = \frac{1}{3} \times 462 = 154$$

$$\Rightarrow$$
 rh = $\frac{154}{2\pi} = \frac{(154 \times 7)}{44} = \frac{49}{2} \dots \dots \dots \dots (ii)$

Putting value of rh in equation (i)

$$\Rightarrow$$
 r² + $\frac{49}{2}$ = $\frac{147}{2}$

$$\Rightarrow$$
 r² = $\frac{147}{2} - \frac{49}{2} = \frac{98}{2} = 49$

$$\Rightarrow$$
 r = $\sqrt{49}$ = 7 cm

From (ii)

$$\Rightarrow$$
 rh = $\frac{49}{2}$

$$\Rightarrow$$
 h = $\frac{49}{2 \times 7} = \frac{7}{2}cm$

$$\therefore$$
 Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times \frac{7}{2} = 532 \text{ cm}^3$

Question: 8

Given,

Total surface area of solid = 231 cm^2

$$2\pi r(h+r)=231$$

$$\Rightarrow r (r + h) = \frac{(231 \times 7)}{44}$$

$$\Rightarrow$$
 r² + rh = $\frac{231 \times 7}{44}$(i)

$$CSA = \frac{2}{3}TSA \ given$$

$$2\pi rh = \frac{2}{3} \times 231$$

Putting value of rh in (i) we get,

$$\Rightarrow r^2 + \frac{49}{2} = \frac{231 \times 7}{44}$$

$$\Rightarrow$$
 r² = $\frac{1617}{44} - \frac{49}{2} = \frac{1617 - 1078}{44} = \frac{539}{44} = 12.25$

$$\Rightarrow$$
 r = $\sqrt{12.25}$ = 3.5 cm

From equation (ii)

$$\Rightarrow \text{rh} = \frac{49}{2}$$

$$\Rightarrow h = \left(\frac{49}{3.5 \times 2}\right) = 7 \ cm$$

∴ Volume of cylinder =
$$\pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 7 = 269.5 \text{ cm}^3$$

Question: 9

Given,

Total surface area of cylinder = 1628 m^2

Sum of height and radius = (h + r) = 37 m

$$2\pi r (h + r) = 1628$$

$$2\pi r \times 37 = 1628$$

$$\Rightarrow r = \frac{1628 \times 7}{2 \times 22 \times 37} = 7 m$$

$$r + h = 37$$

$$\Rightarrow$$
 h = 37 - 7 = 30 m

$$\therefore$$
 Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 30 = 4620 \text{ m}^3$

Question: 10

Given,

Total surface area of cylinder = 616 cm^2

$$\Rightarrow \frac{C.S.A}{T.S.A} = \frac{1}{2}$$

$$\Rightarrow \frac{2\pi rh}{\{2\pi r(h+r)\}} = \frac{1}{2}$$

$$\Rightarrow \frac{h}{h+r} = \frac{1}{2}$$

$$\Rightarrow$$
 2h = r + h

$$\Rightarrow$$
 h = r....(i)

$$2\pi r (h + r) = 616$$

$$\Rightarrow$$
 r (r + r) = $\frac{616 \times 7}{44}$ = 198

$$\Rightarrow r^2 = \frac{198}{2} = 49$$

$$\Rightarrow$$
 r = $\sqrt{49}$ = 7 cm

$$H = 7 \text{ cm}$$

$$\therefore$$
 Volume of cylinder = $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 7 = 22 \times 49 = 1078 \text{ cm}^3$

Question: 11

Given,

Diameter of wire = 0.1 mm = 0.01 cm

Radius of wire =
$$\frac{0.01}{2}$$
 cm

Volume of gold = 1 cm^3

$$\Rightarrow \pi r^2 h = 1$$

$$\Rightarrow \frac{22}{7} \times \left(\frac{0.01}{2}\right)^2 \times h = 1$$

$$\Rightarrow$$
 h = $\frac{200 \times 200 \times 7}{22 \times 1 \times 1}$ = 12727.27 cm or 127.27 m

Length of wire = 127.27 meter.

Question: 12

Given,

Ratio of radii of two cylinders = $R_1 : R_2 = 2 : 3$

Ratio of their heights = H_1 : H_2 = 5:3

: Ratio of volumes of cylinders =
$$\frac{V_1}{V_2} = \frac{\pi R_1^2 H_1}{\pi R_2^2 H_2} = \frac{4 \times 5}{9 \times 3} = \frac{20}{27} OR \ 20 : 27$$
.

$$\therefore \text{ Ratio of their curved surface area} = \frac{A_1}{A_2} = \frac{2\pi R_1 H_1}{2\pi R_2 H_2} = \frac{2\times 5}{3\times 3} = \frac{10}{9} \text{ or } 10:9.$$

Question: 13

Given,

Side of square base = 12 cm

Height = 17.5 cm

Volume of tin = $lbh = 12 \times 12 \times 17.5 = 2520 \text{ cm}^3$

Diameter of cylindrical base = 12 cm

Radius =
$$\frac{12}{2}$$
 = 6 cm

Height of cylinder = 17.5 cm

Volume of tin in cylinder =
$$\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 17.5 = \frac{13860}{7} = 1980 \text{ cm}^3$$

Hence,

Capacity of square tin is more by = $2520 - 1980 = 540 \text{ cm}^3$

Question: 14

Given,

Diameter of cylindrical bucket = 28 cm

Radius of bucket =
$$\frac{28}{2}$$
 = 14 cm

Height of bucket = 72 cm

Volume of water in bucket =
$$\pi r^2 h = \frac{22}{7} \times 14 \times 14 \times 72 \ cm^3$$

Length of rectangular tank = 66 cm

Width of tank = 28 cm

Let rise in water level in rectangular tank = h cm

: Volume of cylinder = Volume of rectangular tank

$$\Rightarrow \frac{22}{7} \times 14 \times 14 \times 72 = 66 \times 28 \times h$$

$$\Rightarrow$$
 h = $\frac{22 \times 14 \times 14 \times 72}{7 \times 66 \times 28}$ = 24 cm.

Question: 15

Given.

Weight of $1 \text{ cm}^3 \text{ cast iron} = 21 \text{ g}$

Length of wire = h = 1 m = 100 cm

Internal radius $(r_1) = \frac{3}{2} = 1.5 \text{ cm}$

Thickness of metal = 1 cm

So, External radius $(r_2) = 1.5 + 1 = 2.5 \text{ cm}$

Volume of metal = (External volume - internal volume)

=
$$\pi r_2^2 h - \pi r_1^2 h = \pi h (r_2^2 - r_1^2) = \frac{22}{7} \times 100 (2.5 + 1.5) (2.5 - 1.5)$$

$$=\frac{22}{7} \times 100 \times 4 \times 1 \text{ cm}^3$$

Weight of metal = $\frac{22}{7} \times 100 \times 4 \times 1 \times 21 = 26400 \ gm = 26.4 \ kg$.

Question: 16

Given,

Internal diameter of tube = 10.4 cm

Internal radius of tube = $\frac{10.4}{2}$ = 5.2 cm

Thickness of metal = 8 mm = 0.8 cm

External radius of tube = 5.2 + 0.8 = 6 cm

Length of tube = 25 cm

∴ Volume of metal = (external volume - internal volume)

=
$$\pi h (6^2 - 5.2^2) = \frac{22}{7} \times 25 \times 11.2 \times 0.8 = 22 \times 32 = 704 \text{ cm}^3$$

Question: 17

Given,

Length of cylindrical barrel (h) = 7 cm

Diameter = 5 mm

Radius =
$$\frac{5}{2}$$
 = 2.5 mm = 0.25 cm

Volume of cylindrical barrel = $\pi r^2 h = \frac{22}{7} \times 0.25 \times 0.25 \times 7 = \frac{5.5}{4} cm^3$

 $\therefore \frac{5.5}{4}$ cm³ volume of barrel is used for writing = 330 words

$$\therefore \frac{5.5}{4} \times 1000 \ cm^3 \ \text{will be used for writing} = 330 \times \frac{4}{5.5} \times \frac{1}{8} \times 1000 = 48000 \ words$$

Question: 18

Given,

Diameter of pencil = 7 mm

Radius of pencil = $\frac{7}{2}$ mm = $\frac{0.7}{2}$ cm

Diameter of graphite = 1 mm

Radius of graphite = $\frac{1}{2}mm = \frac{0.1}{2}cm$

Volume of graphite = $\pi r^2 h = \frac{22}{7} \times \frac{0.1}{2} \times \frac{0.1}{2} \times 10 = \frac{0.55}{7} cm^3$

Weight of graphite = volume × specific gravity of graphite

$$=\frac{0.55}{7}\times 2.1=0.165~g$$

Volume of wood = volume of pencil - volume of graphite

$$= \frac{22}{7} \times ((0.35)^2 - (0.05)^2) \times 10 \times 0.7$$

$$=\frac{22}{7}\times(0.1225-0.0025)\times7=2.64$$
 g

∴ Total weight of the pencil = weight of wood + weight of graphite

$$= 0.165 + 2.64 = 2.805 g.$$

Exercise: 13C

Question: 1

Given,

Radius of the cone = 35cm

Height of the cone = 84cm

Curved surface area = πrl

So, we need to find out the l;

l = slant height

$$l = \sqrt{h^2 + r^2}$$

$$l = \sqrt{84^2 + 35^2} = \sqrt{7056 + 1225} = \sqrt{8281}$$

l = 91cm

Curved surface area = $\frac{22}{7} \times 35 \times 91$

$$= 110 \times 91 = 10010 \text{cm}^2$$

Volume of the cone = $\frac{1}{3}\pi r^2 h$

$$=\frac{1}{3}\times\frac{22}{7}\times35\times35\times84$$

$$= 88 \times 1225$$

$$= 107800 \text{cm}^2$$

Total surface area = $\pi rl + \pi r^2$

$$= 10010 + \frac{22}{7} \times 35 \times 35$$

$$= 10010 + 3850 = 13860$$

Total surface area = 13860cm^2

Question: 2

Given,

Height (h) = 6cm

Slant height (l) = 10cm

$$r = \sqrt{l^2 - h^2}$$

$$r = \sqrt{(10)^2 - (6)^2}$$

$$r = \sqrt{100 - 36} = \sqrt{64}$$

$$r = 8cm$$

Volume of the cone = $\frac{1}{3}\pi r^2 h$

$$=\frac{1}{3}\times\frac{22}{7}\times8\times8\times6$$

$$=\frac{8448}{21}=401.92$$
cm²

Curved surface area = πrl

Curved surface area = $\frac{22}{7} \times 8 \times 10$

$$=\frac{1760}{7}=251.2$$
cm²

Total surface area = $\pi r(r + 1)$

$$=\frac{22}{7}\times8\times(8+10)$$

$$=\frac{22}{7} \times 8 \times 18$$

$$=\frac{3168}{7}=452.16$$
 cm²

Question: 3

Given,

$$h = 12 cm$$

Volume of the cone = 100π cm³

$$=\frac{1}{3}\pi r^2 h = 100\pi$$

$$r^2h = 100 \times 3$$

$$r^2 \times 12 = 100 \times 3$$

$$r^2 = \frac{100 \times 3}{12} = 25$$

$$r = 5cm$$

$$l = \sqrt{h^2 + r^2}$$

$$=\sqrt{(12)^2+(5)^2}$$

$$=\sqrt{144 + 25}$$

$$=\sqrt{169}=13$$

Curved surface area = πrl

$$= \pi \times 5 \times 13$$

$$= (65\pi) \text{ cm}^2$$

Question: 4

Given.

Circumference of the base of the cone = 44cm

$$2\pi r = 44cm$$

$$r = \frac{44 \times 7}{2 \times 22} = 7$$

$$r = 7cm$$

$$h = \sqrt{l^2 - r^2}$$

$$=\sqrt{(25)^2-(7)^2}$$

$$=\sqrt{625-49}$$

$$=\sqrt{576}=24$$

$$volume = \frac{1}{3}\pi r^2 h$$

$$=\frac{1}{3}\times\frac{22}{7}\times7\times7\times24$$

$$= 22 \times 56 = 1232$$

Volume =
$$1232 \text{ cm}^3$$

Curved surface area = πrl

$$=\frac{22}{7}\times7\times25$$

$$= 550 \text{ cm}^2$$

Question: 5

Given,

Curved surface area = 550cm^2

$$\pi rl = 550$$

$$\frac{22}{7} \times r \times 25 = 550$$

$$r = \frac{550 \times 7}{22 \times 25}$$

$$r = 7cm$$

$$h = \sqrt{l^2 - h^2} = \sqrt{25^2 - 7^2}$$

$$= \sqrt{625 - 49} = \sqrt{576} = 24$$

$$h = 24cm$$

Volume =
$$\frac{1}{3}\pi r^2 h$$

$$=\frac{1}{3}\times\frac{22}{7}\times7\times7\times24$$

$$= 24 \times 56$$

Volume =
$$1232 \text{cm}^3$$

Question: 6

Given,

$$r = 35cm$$

$$l = 37cm$$

Volume of the cone = $\frac{1}{3}\pi r^2 h$

$$=\frac{1}{3}\times\frac{22}{7}\times38\times35\times h$$

$$=\frac{3850}{3}h$$

$$h = \sqrt{l^2 - h^2} = \sqrt{37^2 - 35^2}$$

$$=\sqrt{1369-1225}$$

$$=\sqrt{144}=12$$

$$volume = \frac{3850}{3} \times 12$$

Volume = 1540 cm^3

Question: 7

Given,

$$r = \frac{70}{2} = 35cm$$

Curved surface area = 4070

$$\pi rl = 4070$$

$$l = \frac{4070}{\pi r}$$

$$=\frac{4070\times7}{22\times35}$$

$$=\frac{814}{22}=37$$
cm

Question: 8

Given,

Radius = 7cm

$$h = 24cm$$

Curved surface area of the conical tent = πrl

$$l = \sqrt{h^2 + r^2}$$

$$=\sqrt{(24)^2+(7)^2}$$

$$=\sqrt{576 + 49}$$

$$=\sqrt{625}$$

$$= 25m$$

Curved surface area of the tent = πrl

$$=\frac{22}{7}\times7\times25$$

$$= 550 \text{ m}^2$$

Length of cloth =
$$\frac{area}{width}$$

$$=\frac{550}{2.5}=220m$$

Question: 9

When we melt any shape, and recast into another shape than volume of both shapes remain same.

Radius of the circular cone $(r_1) = 1.6cm$

Height of the circular cone $(h_1) = 3.6$ cm

Radius of the new circular cone $(r_2) = 1.2$ cm

Let height of the new circular cone be h_2

Volume of the circular cone = volume of the new circular cone

$$\frac{1}{3}\pi r_1^2 h = \frac{1}{3}\pi r_2^2 h$$

$$(1.6)^2 \times (3.6) = (1.2)^2 \times h_2$$

$$h_2 = \frac{(1.6)^2 \times 3.6}{(1.2)^2} = \frac{1.6 \times 1.6 \times 3.6}{1.2 \times 1.2} = 64$$

$$h_2 = 64 \text{ cm}$$

So, the height of the new circular cone will be 64cm

Question: 10

Given,

Ratio of the heights = $h_1 : h_2 = 1:3$

Let the heights of the cones be x and 3x,

Ratio of radius of base of the two cones = $r_1:r_2 = 3:1$

So,

Let the radius be 3x and x for the cones and volume will be v_1 and v_2

$$\frac{v_1}{v_2} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2}$$

$$=\frac{(3x)^2\times x}{x^2\times 3x}$$

$$= \frac{9x^2}{3x^2}$$

$$\frac{v_1}{v_2} = \frac{3}{1}$$

So, ratio of the volume of the two cones will be 3:1

Question: 11

Height of the conical portion = 53m

Area of canvas = curved surface area of conical part + curved surface area of cylindrical part

$$= \pi rl + 2\pi rh$$

$$=\frac{22}{7}\times\frac{105}{2}\times53+2\times\frac{22}{7}\times\frac{105}{2}\times3$$

$$= 8745 + 990$$

$$= 9735m^2$$

Length of canvas = area/width

$$=\frac{9735}{5}=1947m$$

Hence the length of the canvas will be 1947m

Question: 12

$$r^2 = 44 \times \frac{7}{22} = 14$$

Volume of the cone = 220m^3

We know that,

Volume of the cone = $\frac{1}{3}\pi r^2 h$

$$\frac{1}{3}\pi r^2h=220$$

$$\frac{1}{3} \times \frac{22}{7} \times 14 \times h = 220$$

$$h = \frac{220 \times 3 \times 7}{22 \times 14} = 15m$$

Hence, the height of the cone will be 15m

Question: 13

$$\frac{1}{3}\pi r^2 h$$

$$r^2 = \frac{18 \times 18 \times 32 \times 3}{24}$$

$$r^2 = 18 \times 8 \times 4$$

$$r = 18 \times 2$$

$$r = 36cm$$

slant height
$$l = \sqrt{h^2 + r^2}$$

$$=\sqrt{(24)^2+(36)^2}$$

$$=\sqrt{576 + 1296}$$

$$=\sqrt{1872}$$

$$l = 43.27cm$$

Question: 14

$$\frac{CSA \ of \ cylinder}{CSA \ of \ cone} = \frac{8x}{5x}$$

$$\frac{2\pi rh}{\pi rl} = \frac{8}{5}$$

$$\frac{2h}{\sqrt{h^2+r^2}} = \frac{8}{5}$$

$$\left(\frac{2h}{\sqrt{h^2+r^2}}\right)^2 = \left(\frac{8}{5}\right)^2$$

$$\frac{4h^2}{h^2 + r^2} = \frac{64}{25}$$

$$100h^2 = 64h^2 + 64r^2$$

$$100h^2 - 64h^2 = 64r^2$$

$$36h^2 = 64r^2$$

$$\frac{r^2}{h^2} = \frac{36}{64}$$

$$\frac{r}{h} = \frac{6}{9}$$

$$\frac{r}{2} = \frac{3}{2}$$

Question: 15

$$\frac{20}{2} = 10cm$$

Height of cone = 42cm

Volume of pillar = volume of cone + volume of cylinder

$$=\frac{1}{3}\pi r^2h + \pi r^2h$$

$$= \frac{1}{3} \times \frac{22}{7} \times 10 \times 10 \times 42 + \frac{22}{7} \times 10 \times 10 \times 280$$

$$=\frac{22}{7}\times 100[14 + 280]$$

$$=\frac{22}{7} \times 100 \times 294$$

$$=\frac{646800}{7}=92400$$

Given that,

Weight of $1 \text{ cm}^3 \text{ iron} = 7.5 \text{gm}$

Weight of the pillar = 92400×75

Weight of the pillar = 693000g

=693kg

Question: 16

Let's suppose the smaller cone have the radius \boldsymbol{r} and height \boldsymbol{h} cm

And radius of the given cone be R cm

Height of the original cone = 30cm

In triangle ΔOAB and ΔOCD

 \angle COD = \angle AOB (common angle)

$$\angle OCD = \angle OAB (90^{\circ})$$

 $_{-}\Delta$ OAB \sim Δ OCD [by A-A criteria]

Then,

$$\frac{r}{R} = \frac{h}{30}$$

$$r = \frac{Rh}{30}$$
....(i)

Volume of small cone = $\frac{1}{27}$ volume of original cone

$$\frac{1}{3}\pi r^2 h = \frac{1}{27} \times \frac{1}{3}\pi R^2 \times 30$$

From equation (i)

$$\left(\frac{Rh}{30}\right)^2 h = \frac{1}{27} \times R^2 \times 30$$

$$\frac{R^2h^2}{30\times30} = \frac{1}{27} \times R^2 \times 30$$

$$h^3 = \frac{1}{27} \times 30 \times 30 \times 30$$

$$h^3 = 1000$$

$$h = 10cm$$

Height of the small cone = 10cm

$$AC = OA-OC$$

$$AC = 30-10 = 20$$

Hence selection has been made at height of 20cm above the base.

Question: 17

$$=\pi r^2h-\frac{1}{3}\pi r^2h$$

$$=\frac{2}{3}\pi r^2h$$

$$=\frac{2}{3} \times 3.14 \times 6 \times 6 \times 10$$

Volume of remaining solid = $753.6cm^3$

Question: 18

$$\frac{5}{2} = 2.5$$
mm

$$= 0.25 \text{cm}$$
 [as we know $10 \text{mm} = 1 \text{cm}$]

Water flowing per minute through cylindrical pipe = $\pi(0.25)^2 \times 1000$

Radius of the conical vessel = $\frac{40}{2} = 20cm$

Depth of the vessel = 24cm

Volume of the vessel =
$$\frac{1}{3}\pi(20)^2 \times 24$$

Let the time to fill the conical vessel be x minute,

Water flowing per minute through cylindrical pipe x x = volume of conical vessel

$$x = \frac{\frac{1}{3}\pi(20)^2 \times 24}{\pi(0.25)^2 \times 1000}$$

$$x = \frac{20 \times 20 \times 8}{0.25 \times 0.25 \times 1000}$$

$$x = 51min 12 sec.$$

Hence the required time to fill a conical vessel is 51min 12 sec

Exercise: 13D

Question: 1

(i) Radius of sphere = 3.5cm

Volume =
$$\frac{4}{3}\pi r^3$$

$$=\frac{4}{3}\times\frac{22}{7}\times3.5\times3.5\times3.5$$

$$= 179.67 \text{cm}^3$$

Surface area = $4\pi r^2$

$$=4 \times \frac{22}{7} \times 3.5 \times 3.5$$

$$= 2 \times 22 \times 3.5 = 154 \text{ cm}^2$$

(ii)
$$R = 4.2cm$$

Volume =
$$\frac{4}{3}\pi r^3$$

$$=\frac{4}{3}\times\frac{22}{7}\times4.2\times4.2\times4.2$$

$$= 310.464 \text{cm}^2$$

Surface area = $4\pi r^2$

$$=4 \times \frac{22}{7} \times 4.2 \times 4.2$$

$$= 4 \times 22 \times .6 \times 4.2$$

$$= 221.76$$
cm²

(iii)
$$R = 5cm$$

Volume =
$$\frac{4}{3}\pi r^3$$

$$=\frac{4}{3}\times\frac{22}{7}\times5\times5\times5$$

$$=\frac{11000}{21}=523.80$$
cm³

Surface area = $4\pi r^2$

$$=4\times\frac{22}{7}\times5\times5$$

$$=\frac{20 \times 110}{7} = 314.28 \text{cm}^2 +$$

Question: 2

Volume of sphere = 38808cm^3

$$\frac{4}{3}\pi r^3 = 38808$$

$$r^3 = \frac{38808 \times 3}{4\pi}$$

$$r^3 = \frac{38808 \times 3 \times 7}{4 \times 22}$$

$$r^3 = 441 \times 21$$

$$r^3 = 21 \times 21 \times 21$$

$$r = 21cm$$

surface area = $4\pi r^2$

$$=4\times\frac{22}{7}\times21\times21$$

$$= 5544 \text{cm}^3$$

Question: 3

Given,

 $Volume = 606.375 cm^3$

$$\frac{4}{3}\pi r^3 = 606.375$$

$$r^3 = \frac{606.375 \times 3}{4\pi}$$

$$r^3 = \frac{606.375 \times 3 \times 7}{4 \times 21}$$

$$r^3 = \frac{12733.875}{88}$$

$$r^3 = 144.703$$

$$r = 5.25m$$

Surface area = $4\pi r^2$

$$=4 \times \frac{22}{7} \times 5.25 \times 5.25$$

$$= 346.5 \text{m}^2$$

Question: 4

Given,

Surface area = 394.24m²

$$4\pi r^2 = 394.24$$

$$4 \times \frac{22}{7} \times r^2 = 394.24$$

$$r^2 = \frac{394.24 \times 7}{22 \times 4}$$

$$r^2 = \frac{2759.68}{88}$$

$$r^2 = 31.36$$

$$r = 5.67cm$$

Volume =
$$\frac{4}{3}\pi r^3$$

$$=\frac{4}{3}\times\frac{22}{7}\times5.6\times5.6\times5.6$$

$$=\frac{4}{3} \times 22 \times 0.8 \times 5.6 \times 5.6$$

$$= 735.91 \text{cm}^3$$

Question: 5

Given,

Surface area = 576π

$$4\pi r^2 = 576\pi$$

$$r^2 = \frac{576\pi}{4\pi} = 144$$

$$r = 12cm$$

Volume =
$$\frac{4}{3}\pi r^3$$

$$= \frac{4}{3}\pi \times 12 \times 12 \times 12$$

$$= 2304 \text{cm}^3$$

Question: 6

Given,

Outer Diameter of spherical shell = 12cm

Radius of the outer sphere $r_1 = 6cm$

Inner diameter of spherical shell = 8cm

Radius of the inner sphere $r_2 = 4cm$

Volume of metal = outer volume - inner volume

$$= \frac{4}{3}\pi r_1^3 - \frac{4}{3}\pi r_2^3$$

$$=\frac{4}{2}\pi[r_1^3-r_2^3]$$

$$=\frac{4}{3}\times\frac{22}{7}\times[6^2-4^3]$$

$$=\frac{4}{3}\times\frac{22}{7}[216-64]$$

$$=\frac{4}{3}\times\frac{22}{7}\times152$$

 $= 636.95 \text{cm}^3$

Surface area of outer surface = $4\pi r^2$

$$=4\times\frac{22}{7}\times6\times6$$

 $= 452.571 \text{cm}^2$

Question: 7

Given,

Dimensions of cuboid l = 12cm

b = 11cm

h = 9cm

Diameter of sphere (d) = 3mm

$$r = \frac{3}{2}mm = 1.5mm$$

r = 0.15 cm

When we melt any object, and convert it into another then the volume of both the object will be same.

So,

Volume of cuboid = $n \times volume$ of sphere

n = no. of sphere

$$1 \times b \times h = n \times \frac{4}{3}\pi r^3$$

$$12 \times 11 \times 9 = n \times \frac{4}{3} \times \frac{22}{7} \times 0.15 \times 0.15 \times 0.15$$

$$n = \frac{12 \times 11 \times 9 \times 3 \times 7 \times 100 \times 100 \times 100}{4 \times 22 \times 0.15 \times 0.15 \times 0.15} = \ \frac{3 \times 7 \times 20 \times 20 \times 20}{2}$$

n = 84000

Question: 8

Given,

Radius of big sphere (R) = 8cm

Radius of small sphere (r) = 1cm

Volume of big sphere = $2 \times \text{volume of small sphere}$

n = no. of sphere

$$\frac{4}{3}\pi R^3 = n \times \frac{4}{3}\pi r^3$$

$$\frac{4}{3}\pi(8)^3 = n \times \frac{4}{3}\pi(1)^3$$

$$512 = n$$

n = 512 ball

Question: 9

Given,

Radius of big ball = 3cm

Diameter of small ball = 0.16cm

$$r = \frac{0.16}{2} = 0.3cm$$

Volume of big ball = $n \times volume$ of small ball

$$\frac{4}{3}\pi(3)^3 = n \times \frac{4}{3}\pi(0.3)^3$$

$$n = \frac{(3)^3}{(0.3)^3} = \frac{3 \times 3 \times 3}{0.3 \times 0.3 \times 0.3} = \frac{3 \times 3 \times 3}{3 \times 3 \times 3} \times 1000$$

$$n = 1000$$

Question: 10

Given,

Sphere radius = 10.5cm

Cone radius = 3.5cm

$$h = 3cm$$

When any object is melt and recast into another so the volume of both the object will be same

Volume of sphere = $n \times volume$ of cone

$$\tfrac{4}{3} \times \pi r^3 = n \times \tfrac{1}{3} \pi r^3 h$$

$$\frac{4}{3}\pi \times 10.5 \times 10.5 \times 10.5 = n \times \frac{1}{3} \times \pi \times 3.5 \times 3.5 \times 3$$

$$n = \frac{4\pi \times 10.5 \times 10.5 \times 10.5 \times 3}{2\pi \times 25 \times 35 \times 3}$$

$$n = 126$$

Question: 11

Given,

Diameter of cylinder = 8cm

Radius = 4cm

Height = 90cm

Diameter of sphere = 12cm

Radius = 6cm

When we convert any object into another shape the volume will remain same.

Volume of cylinder = $n \times volume$ of sphere

$$\pi r^2 h = n \times \frac{4}{3} \pi r^3$$

$$\pi \times 4 \times 4 \times 90 = n \times \frac{4}{3}\pi(6)^3$$

$$n = \frac{\pi \times 4 \times 4 \times 90 \times 3}{4\pi \times (6)^3}$$

$$n = \frac{4 \times 90 \times 3}{6 \times 6 \times 6} = \frac{90}{18}$$

$$n = 5$$

Question: 12

Given,

Diameter sphere = 6cm

$$r = 3cm$$

radius of wire =
$$\frac{2}{2} = 1mm$$

$$r = 0.1cm$$

let us consider length of wire = h cm

When we convert any object into another shape the volume will remain same.

Volume of sphere = volume of cylinder

$$\frac{4}{3}\pi r^3 = \pi r^2 h$$

$$\frac{4}{3}\pi(3)^3 = \pi(1)^2h$$

$$h = \frac{4\pi \times 3 \times 3 \times 3}{3 \times 0.1 \times 0.1 \times \pi} = \frac{4 \times 3 \times 3}{.001}$$

$$h = 36 \times 100 = 3600$$

$$h = 36m$$

Question: 13

Given,

Radius of sphere = 9cm

Let us consider diameter at cylinder = d cm

Radius = r cm

Height = 108 m = 10800 cm

When we convert any object into another shape the volume will remain same.

Volume of sphere = volume of cylinder

$$\frac{4}{3}\pi r^3 = \pi r^2 h$$

$$\frac{4}{3}\pi(9)^3 = \pi r^2 \times 10800$$

$$r^2 = \frac{4 \times 9 \times 9 \times 9}{3 \times 10800}$$

$$r^2 = \frac{4}{3} \times \frac{729}{10800}$$

$$r^2 = 0.09$$

$$r = 0.03 \text{ cm}$$

Diameter = $2 \times 0.03 = 0.06$ cm

Question: 14

Given,

When we convert any object into another shape the volume will remain same.

Radius of sphere =
$$\frac{15.6}{2}$$
 = 7.8cm

Radius of cone = r cm

Volume of sphere = volume of cone

$$\frac{4}{3}\pi r^3 = \frac{1}{3}\pi r^2 h$$

$$\frac{4}{3}\pi(7.8)^3 = \frac{1}{3}\pi r^2 \times 31.2$$

$$r^2 = \frac{4\pi \times 3 \times 7.8 \times 7.8 \times 7.8}{3\pi \times 31.2} = \frac{4 \times 474.552}{31.2}$$

$$r^2 = \frac{1898.208}{31.2}$$

$$r^2 = 60.84$$

$$r = 7.8cm$$

$$d = 2 \times r = 2 \times 7.8 = 15.6 \text{ cm}$$

Question: 15

Given,

Radius of sphere $(r_3) = 14cm$

Diameter of cone = 35cm

$$r_c = \frac{35}{2}$$

When we convert any object into another shape the volume will remain same.

Volume of sphere = volume of cone

$$\frac{4}{3}\pi r_3^3 = \frac{1}{3}\pi r_c^2 h$$

$$4r_3^3 = r_c^2$$

$$4 \times (14)^3 = \left(\frac{35}{2}\right)^2 \times h$$

$$h = \frac{4 \times 14 \times 14 \times 14}{\left(\frac{35}{2}\right)^2}$$

$$h = \frac{4 \times 14 \times 14 \times 14 \times 2 \times 2}{35 \times 35} = 35.84cm$$

Question: 16

Given,

Radius of big ball (R) = 3cm

Radius of smaller ball $(r_1) = 1.5 \text{ cm}$

Radius of second smaller ball $(r_2) = 2 \text{ cm}$

Let r_3 be the radius of 3^{rd} smaller ball

$$V = v_1 + v_2 + v_3$$

$$\frac{4}{3}\pi(R)^3 = \frac{4}{3}\pi r_1^3 + \frac{4}{3}\pi r_2^3 + \frac{4}{3}\pi r_3^3$$

$$(R)^3 = r_1^3 + r_2^3 + r_3^3$$

$$(3)^3 = (1.5)^3 + (2)^3 + (r_3)^3$$

$$27 = 2.817 + 8 + (r_3)^3$$

$$(r_3)^3 = 27 - (2.817 + 8) = 16.875$$

$$r_3 = 2.5 \text{ cm}$$

Question: 17

Given,

Ratio of radii of spheres = $R_1 : R_2 = 1 : 2$

Ratio of their surface areas =
$$\frac{A_1}{A_2} = \frac{4\pi R_1^2}{4\pi R_2^2} = \frac{R_1^2}{R_2^2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$
.

Question: 18

Given,

Ratio of Surface area of two spheres = A_1 : $A_2 = 1:4$

Let radius of these sphere are resp. = R_1 and R_2

$$=\frac{A_1}{A_2}=\frac{1}{4}$$

$$=\frac{4\pi R_1^2}{4\pi R_2^2}=\frac{1}{4}$$

$$=\frac{R_1^2}{R_2^2}=\frac{1}{4}$$

$$= \frac{R_1}{R_2} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

Ratio of their volumes = $\frac{\frac{4}{2}\pi R_1^2}{\frac{2}{3}\pi R_2^2} = \frac{R_1^2}{R_2^2} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$.

Question: 19

Given,

Radius of cylinder = 12 cm

Height = 20 cm

Before drop a ball volume of water = v_1 = $\pi r^2 h$ = $\pi r^2 \times$ 20 cm^3

After droping rise in water level = 6.75 cm

New height = 20 + 6.75 = 26.75 cm

New volume = $\pi r^2 \times 26.75 \text{ cm}^3$

Volume of spherical ball = πr^2 (26.75 - 20)

$$= \pi r^2 \times 6.75 = \frac{22}{7} \times 12 \times 12 \times 6.75 = 3054.85 \text{ cm}^3$$

$$=\frac{4}{3}\pi R^3=3054.85$$

$$= R^3 = \frac{3054.85 \times 3 \times 7}{4 \times 22} = 729$$

$$= R = \sqrt[3]{729} = 9 cm$$

Question: 20

Given,

Radius of spherical ball = 9 cm

Volume of spherical ball = $\frac{4}{3}$ mr³ = $\frac{4}{3}$ π (9)³ cm³

Radius of cylinder = 15 cm

Let the increase in level = h cm

$$=\frac{4}{3}\pi \times 729 = \pi \times 15 \times 15 \times h$$

$$= h = \frac{4}{3} \times \frac{729}{225} = 4.326 \, cm$$

Question: 21

Given,

Radius of hemisphere = (R) = 9 cm

Height of cone = 72 cm

Let radius of cone = r cm

We know that,

Volume of hemisphere = volume of cone

$$=\frac{2}{3}\pi R^3 = \frac{1}{3}\pi r^2 h$$

$$=\frac{2}{3} \times 9^3 = r^2 \times 72$$

$$= r^2 = \frac{2 \times 729}{3 \times 72} = \frac{81}{4}$$

$$= r = \sqrt{\frac{81}{4}} = \frac{9}{2} = 4.5 \ cm$$

Radius of base of cone = 4.5 cm.

Question: 22

Given,

Radius of hemisphere (R) = 9 cm

Radius of cylinder (r) = $\frac{3}{2}$ = 1.5 cm

Height of cylinder = 4 cm

Volume of hemisphere = $n \times volume$ of cylinder

$$= \frac{2}{3}\pi R^3 = n \times \pi r^2 h$$

$$=\frac{2}{3} \times 9^3 = n \times 1.5^2 \times 4$$

$$= n = \frac{2 \times 9 \times 9 \times 9}{3 \times 1.5 \times 1.5 \times 4} = 54$$
.

Question: 23

Given,

Internal radius of sphere $(r_i) = 8 \text{ cm}$

External radius of sphere $(r_e) = 9$ cm

Volume of shell = (external volume - internal volume)

$$= \frac{4}{3}\pi r_e^3 - \frac{4}{3}\pi r_i^3 = \frac{4}{3}\pi (9^3 - 8^3) = \frac{4}{3} \times \frac{22}{7} \times 217 = 909.33 \ cm^3$$

Weight of sphere = $909.33 \times 4.5 = 4092 \text{ gm} = 4.092 \text{ kg}$

Question: 24

Given,

In-radius of bowl $(r_i) = 4$ cm

Thickness of steel = 0.5 cm

External radius of bowl (r_e)= 4 + 0.5 = 4.5 cm

Volume of metal =
$$\frac{2}{3}\pi r_e^3 - \frac{2}{3}\pi r_i^3$$

$$= \frac{2}{3}\pi \left(r_e^3 - r_i^3\right) = \frac{2}{3}\pi (4.5^3 - 4^3) = \frac{2}{3} \times \frac{22}{7} \times (91.25 - 64)$$

$$=\frac{2}{3}\times\frac{22}{7}\times27.125=56.83$$
 cm³

Exercise: CCE QUESTIONS

Question: 1

The length, bread

Solution:

Given: Length = 15 cm

Breadth = 12 cmHeight = 4.5 cmVolume of a cuboid = Length \times Breadth \times Height Volume = 15 cm \times 12 cm \times 4.5 cm = 810 cm³ **Question: 2** A cuboid is 12 cm **Solution:** Given: Length = 12 cmBreadth = 9 cmHeight = 8 cmTotal surface area of a cuboid = $2[(Length \times Breadth) + (Breadth \times Height) + (Height \times Length)]$ Total surface area = $2[(12\times9) + (9\times8) + (8\times12)] \text{ cm}^2 = 2(108+72+96) \text{ cm}^2$ $= 2(276) \text{ cm}^2 = 552 \text{ cm}^2$ **Question: 3** The length, bread **Solution:** Given: Length = 15 mBreadth = 6 mHeight = 5 mLateral surface area of a cuboid = $2(Length + Breadth) \times Height$ 1 m = 10 dm \Rightarrow 5dm = 0.5m Lateral surface area = $2(15+6) \times 0.5 \text{ m}^2 = 1 \times 21 \text{ m}^2$ $= 21 \text{ m}^2$ Question: 4 A beam 9 m long, **Solution:** Given: Length = 9 cmBreadth = 40 cmHeight = 20 cmVolume of a cuboid = Length \times Breadth \times Height 1 m = 100 cm \Rightarrow 40 cm= 0.4 m and 20 cm =0.2 m Volume = $9 \text{ m} \times 0.4 \text{m} \times 0.2 \text{m} = 0.72 \text{ m}^3$

Question: 5

The length of the

Given that 1 cm³ weighs 50 kg

 \Rightarrow 0.72 m³ weighs 50 × 0.72 kg = 36 kg

Solution:

Longest rod = diagonal of the cuboid = $\sqrt{(l^2 + b^2 + h^2)}$

Length of longest rod = $\sqrt{(10^2 + 10^2 + 5^2)} = \sqrt{(100 + 100 + 25)}$

 $=\sqrt{225} = 15$ m

Question: 6

What is the maxim

Solution:

Maximum length of a pencil = diagonal of the cuboid

Now, the diagonal of cuboid is = $\sqrt{l^2 + b^2 + h^2}$

Thus,

Length of longest rod

$$=\sqrt{(8^2+6^2+5^2)}$$

$$=\sqrt{(64+36+25)}$$

$$=\sqrt{125}$$

$$= 5\sqrt{5}$$
 cm

$$= 5(2.24) \text{ cm}$$

$$= 11.2 \text{ cm}$$

Question: 7

The number of pla

Solution:

Volume of a cuboid = Length \times Breadth \times Height

Volume of pit = $40 \text{ m} \times 12 \text{ m} \times 16 \text{ m} = 7680 \text{ m}^3$

Volume of plank = $4 \text{ m} \times 5 \text{ m} \times 2 \text{ m} = 40 \text{ m}^3$

No. of planks =
$$\frac{\text{Volume of Pit}}{\text{volume of Plank}} = \frac{7680}{40}$$

$$= 192$$

Question: 8

How many planks o

Solution:

Volume of a cuboid = Length \times Breadth \times Height

$$1 \text{ m} = 100 \text{ cm}$$

Volume of pit =
$$20 \text{ m} \times 6 \text{ m} \times 0.5 \text{ m} = 60 \text{ m}^3$$

Volume of plank = $5 \text{ m} \times 0.25 \text{ m} \times 0.1 \text{ m} = 0.125 \text{ m}^3$

No. of planks =
$$\frac{\text{Volume of Pit}}{\text{volume of Plank}} = \frac{60}{0.125}$$

$$= 480$$

Question: 9

How many bricks w

Solution:

Volume of a cuboid = Length \times Breadth \times Height

$$1 \text{ m} = 100 \text{ cm}$$

Volume of wall = $8 \text{ m} \times 6 \text{ m} \times 0.225 \text{ m} = 10.8 \text{ m}^3$

Volume of a brick = $0.25 \text{ m} \times 0.1125 \text{ m} \times 0.06 \text{ m} = 0.0016875 \text{ m}^3$

No. of bricks =
$$\frac{\text{Volume of wall}}{\text{volume of brick}} = \frac{10.8}{0.0016875}$$

= 6400

Question: 10

How many persons

Solution:

Volume of a cuboid = Length \times Breadth \times Height

Volume of hall =
$$20 \text{ m} \times 15 \text{ m} \times 4.5 \text{ m} = 1350 \text{ m}^3$$

Volume of air required by 1 person = 5 m^3

No. of persons =
$$\frac{\text{Volume of hall}}{\text{Volume of air required by 1 person}} = \frac{1350}{5}$$

=270

Question: 11

A river 1.5 m dee

Solution:

Volume of a cuboid = Length \times Breadth \times Height

Length of the river = Speed of river = 3km (in an hr)

1km = 1000 m and 1 hour = 60 min

Speed in m per minute = $3 \times \frac{1000}{60} = 50$ m per min

Volume of water that runs in a minute = $1.5 \text{ m} \times 30 \text{ m} \times 50 \text{ m} = 2250 \text{ m}^3$

Question: 12

The lateral surfa

Solution:

Lateral surface area of a cube = $4(side)^2$

Given Lateral surface area = 256 m^2

$$\Rightarrow$$
 4(side)² = 256m²

$$\Rightarrow$$
 (side)² = $\frac{256}{4}$ m²

$$\Rightarrow$$
 (side) = $\sqrt{64}$ m= 8m

Volume of a cube = $(side)^3$

$$\Rightarrow$$
 Volume = $(8)^3 \text{ m}^3 = 512 \text{ m}^3$

Question: 13

The total surface

Solution:

Total surface area of a cube = $6(side)^2$

Given Total surface area = 96 cm^2

$$\Rightarrow$$
 6(side)² = 96m²

$$\Rightarrow$$
 (side)² = $\frac{96}{6}$ cm²

$$\Rightarrow$$
 (side) = $\sqrt{16}$ cm= 4cm

Volume of a cube =
$$(side)^3$$

$$\Rightarrow$$
 Volume = $(4)^3$ cm³ = 64 cm³

Question: 14

The volume of a c

Solution:

Volume of a cube =
$$(side)^3$$

Given volume =
$$512 \text{ cm}^3$$

$$\Rightarrow$$
 (side)³ = 512 cm³

⇒ side =
$$\sqrt[3]{512}$$
 = 8 cm

Total surface area of a cube = $6(side)^2$

$$\Rightarrow$$
 Total surface area = $6(8)^2$ cm² = 384 cm²

Question: 15

The length of the

Solution:

Length of the longest rod = diagonal of the cube = side
$$\sqrt{3}$$

Length of longest rod =
$$10\sqrt{3}$$
 cm

Question: 16

If the length of

Solution:

Diagonal of the cube = side
$$\sqrt{3}$$

Given diagonal =8
$$\sqrt{3}$$
 cm = side $\sqrt{3}$

$$\Rightarrow$$
 side = 8 cm

Total surface area of a cube =
$$6(side)^2$$

$$\Rightarrow$$
 Surface area = $6(8)^2 = 6 \times 64 = 384 \text{ cm}^2$

Question: 17

Solution:

Let original side be x, on increasing it by 50% i.e.
$$\frac{50}{100} = \frac{1}{2}$$

New side will be
$$x + \frac{1}{2}x = \frac{3}{2}x$$

Total surface area of a cube =
$$6(side)^2$$

Original surface area =
$$6(x)^2$$

New surface area =
$$6(\frac{3}{2}x)^2 = 6 \times \frac{9}{4}x^2 = \frac{27}{2}x^2$$

Change in surface area =
$$\frac{27}{2}$$
 x² - 6 (x)²

Taking LCM of 2 and 1 = 2

$$\Rightarrow \frac{27x^2-12x^2}{2} = \frac{15}{2}x^2$$

The percentage increase in its surface area is $\frac{15}{2}x^2\over 6x^2}\times 100\%=125\%$

Question: 18

Three cubes of me

Solution:

Here, the volume of three cubes = volume of the new cube

Volume of a cube = $(side)^3$

Volume of three cubes = $(3)^3 + (4)^3 + (5)^3 = (27 + 64 + 125) \text{ cm}^3 = 216 \text{ cm}^3$

 \Rightarrow Volume of new cube = 216 cm³= (side)³

 \Rightarrow (side)³ = (6 cm)³

 \Rightarrow side = 6cm

Lateral surface area = $4(\text{side})^2 = 4(6)^2 = 144 \text{cm}^2$

Question: 19

In a shower, 5 cm

Solution:

1 hectare = 10000 m^2

 $2 \text{ hectares} = 20000 \text{ m}^2$

 $1 \text{ cm} = 0.01 \text{ m} \Rightarrow 5 \text{cm} = 0.05 \text{ m}$

Volume of water that falls on 2 hectares of ground = $20000 \times 0.05 \text{ m}^3 = 1000 \text{ m}^3$

Question: 20

Two cubes have th

Solution:

Volume of a cube = $(side)^3$

Let the sides be \boldsymbol{x} and \boldsymbol{y}

Ratio of volumes = $\frac{x^2}{y^2} = \frac{1}{27}$

 $\Rightarrow \frac{x}{y} = \frac{1}{3}$

Surface area of a cube = $6(side)^2$

Ratio of surface areas = $\frac{x^2}{v^2} = \frac{1}{3^2} = \frac{1}{9} = 1:9$

Question: 21

If each side of a

Solution:

Let original side be x, New side will be 2x

Volume of a cube = $(side)^3$

Original volume = $(x)^3$

New volume = $(2x)^3 = 8x^3$

Question: 22

The diameter of t

Solution:

Volume of a cylinder = $\pi r^2 h$

 $Diameter = 6cm \Rightarrow radius = 3cm$

⇒ Volume =
$$\frac{22}{7}$$
 × 3² × 14

$$= 22 \times 9 \times 2 = 396$$
cm³

Question: 23

If the diameter o

Solution:

Curved surface area of a cylinder = $2\pi rh$

Diameter = $28 \text{ cm} \Rightarrow \text{radius} = 14 \text{ cm}$

⇒ Curved surface area =
$$2 \times \frac{22}{7} \times 14 \times 20$$

$$= 44 \times 40 = 1760 \text{ cm}^2$$

Question: 24

If the curved sur

Solution:

Curved surface area of a cylinder = $2\pi rh$

$$\Rightarrow$$
 Curved surface area = $2 \times \frac{22}{7} \times 14 \times h = 1760 \text{ cm}^2$

$$\Rightarrow h = \frac{1760}{44 \times 2} = 20 \text{ cm}$$

Question: 25

The height of a c

Solution:

Curved surface area of a cylinder = $2\pi rh$

$$\Rightarrow$$
 Curved surface area = 1760 cm²

$$\Rightarrow 2 \times \frac{22}{7} \times r \times 14 = 1760 \text{ cm}^2$$

$$\Rightarrow r = \frac{1760}{44 \times 2} = 20 \text{ cm}$$

Volume of a cylinder = $\pi \Gamma^2 h$

$$Volume = \frac{22}{7} \times 20^2 \times 14$$

$$= 17,600 \text{ cm}^3$$

Question: 26

The curved surfac

Solution:

Curved surface area of a cylinder = $2\pi rh$

⇒ Curved surface area =
$$2 \times \frac{22}{7} \times r \times h = 264 \text{ m}^2$$

$$\Rightarrow r = \frac{264 \times 7}{44 \times h} = \frac{42}{h}$$

Volume of a cylinder = $\pi r^2 h$

Volume =
$$\frac{22}{7} \times \left(\frac{42}{h}\right)^2 \times h = 924m^3$$

$$\Rightarrow h = \frac{22 \times 42 \times 6}{924}$$

$$\Rightarrow h = \frac{42 \times 6}{42} = 6 \text{ m}$$

Question: 27

The radii of two

Solution:

Let the radii be 2x and 3x respectively and heights be 5y and 3y respectively.

Curved surface area of a cylinder = $2\pi rh$

⇒ Ratio of their Curved surface area =
$$\frac{2\pi rh}{2\pi RH} = \frac{2xx5y}{3xx3y} = \frac{10}{9}$$

Question: 28

The radii of two

Solution:

Let the radii be 2x and 3x respectively and heights be 5y and 3y respectively.

Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow$$
 Ratio of their Volumes $=\frac{\pi r^2 h}{\pi R^2 H} = \frac{2x^2 \times 5y}{3x^2 \times 3y} = \frac{20}{27}$

Question: 29

The ratio between

Solution:

Let the radius be 2x and height be 3x respectively.

Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow \text{Volume} = \frac{22}{7} \times (2x)^2 \times 3x = 1617$$

$$\Rightarrow \frac{22}{7} \times x^3 \times 12 = 1617$$

$$\Rightarrow x^3 = \frac{1617 \times 7}{22 \times 12} = \frac{343}{8}$$

$$\Rightarrow x = \frac{7}{2} = 3.5$$

So, radius = $2 \times 3.5 = 7$ cm and height = $3 \times 3.5 = 10.5$ cm

Total surface area of a cylinder = $2\pi r(r + h)$

$$\Rightarrow$$
 T.S.A. = $2 \times \frac{22}{7} \times 7(7 + 10.5) = 44 \times 17.5 = 770 \text{ cm}^2$

Question: 30

Two circular cyli

Solution:

Let the heights be h = x and H=2x respectively of the two cylinders.

Volume of a cylinder = $\pi r^2 h$

Given that $\pi r^2 h = \pi R^2 H$

$$\Rightarrow \frac{r^2}{R^2} = \frac{2x}{x}$$

$$\Rightarrow$$
 r: R = $\sqrt{2}$: 1

Question: 31

The ratio between

Solution:

Total surface area of a cylinder = $2\pi r(r + h)$

Curved surface area of a cylinder = $2\pi rh$

$$\Rightarrow \frac{2\pi rh}{2\pi r(r+h)} = \frac{1}{2}$$

$$\Rightarrow$$
 2h=r + h \Rightarrow h = r

Given that total surface area = 616 cm^2

$$\Rightarrow 2 \times \frac{22}{7} \times 2r^2 = 616$$

$$\Rightarrow$$
 r² = 7× 7

So,
$$r = h = 7 \text{ cm}$$

Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow \frac{22}{7} \times 49 \times 7 = 1078 \text{ cm}^3$$

Question: 32

In a cylinder, if

Solution:

Let the radius be r and height be h

Volume of a cylinder = $\pi r^2 h$

When radius = $\frac{1}{2}$ r and height = 2h

Volume =
$$\pi \left(\frac{r}{2}\right)^2 \times 2h = \pi \frac{r^2}{2}h$$

The volume will be halved.

Question: 33

The number of coi

Solution:

Volume of a cylinder = $\pi r^2 h$

Volume of the coin = $\pi(\frac{1.5}{2})^2 \times 0.2$

Volume of the cylinder = $\pi(\frac{4.5}{2})^2 \times 10$

 $Number\ of\ coins = \frac{Volume\ of\ the\ cylinder}{Volume\ of\ the\ coin}$

$$=\frac{\pi\left(\frac{4.5}{2}\right)^2\times 10}{\pi\left(\frac{1.5}{2}\right)^2\times 0.2}$$

$$= 9 \times 50 = 450$$

Question: 34

The radius of a w

Solution:

Let radius and length of a wire be r and h respectively

Volume of a wire =
$$\pi r^2 h$$

If radius =
$$\frac{r}{3}$$
 and new length = H

Volume of the wire =
$$\pi (\frac{r}{3})^2 \times H = \pi r^2 h$$

$$\Rightarrow$$
 H = 9h i.e. 9 times

Question: 35

The diameter of a

Solution:

Curved surface area of a cylinder = $2\pi rh$

$$1m = 100cm$$
, radius = $42 cm = 0.42m$

Curved surface area =
$$2 \times \frac{22}{7} \times 0.42 \times 1 = 2.64 \text{ m}^2$$

Area of the playground = $500 \times 2.64 \text{ m}^2 = 1320 \text{ m}^2$

Question: 36

$$2.2 \text{ dm}^3$$

Solution:

Given volume of the cylindrical wire is $2.2 dm^3$

Volume of a wire =
$$\pi r^2 h$$

$$1 \text{ dm} = 10 \text{ cm} \Rightarrow 0.50 \text{ cm} = 0.05 \text{ dm}$$

Volume of the wire = $\pi(0.25)^2 \times \text{length of the wire} = 2.2$

$$\Rightarrow h = \frac{2.2 \times 7}{22 \times 0.0625} = 11.2 \text{ dm}$$

$$1 \text{ m} = 10 \text{ dm}$$

$$\Rightarrow$$
 11.2 dm = 112 m

Question: 37

ucstroin s,

The lateral surfa

Solution:

The curved surface area of a cylinder is only the lateral surface area

And, we know that the curved surface area = $2\pi rh$

Question: 38

The height of a c

Solution:

Curved surface area of a cone = πrl

where
$$l = \sqrt{h^2 + r^2}$$

Here, r=7cm and h=24cm

$$l = \sqrt{24^2 + 7^2}$$

$$=\sqrt{625}$$

$$\Rightarrow \frac{22}{7} \times 7 \times 25$$

$$= 550 cm^{2}$$

The volume of a r

Solution:

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

$$\Rightarrow \frac{1}{3}\pi 6^2 12$$

$$= \pi \times 36 \times 4$$

$$= (144\pi) \text{cm}^3$$

Question: 40

How much cloth 2.

Solution:

Curved surface area of a cone = πrl

where
$$l = \sqrt{h^2 + r^2}$$

Here,
$$r=7m$$
 and $h=24m$

$$l=\sqrt{24^2+7^2}$$

$$=\sqrt{625}$$

$$= 25m$$

$$\Rightarrow \frac{22}{7} \times 7 \times 25 = 550 \text{m}^2$$

The cloth required =
$$\frac{550}{2.5}$$

$$= 220 \text{ m}$$

Question: 41

The volume of a c

Solution:

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Given volume =
$$1570 \text{ cm}^3$$

$$\Rightarrow \frac{1}{3}\pi r^2 \times 15 = 3.14 \times r^2 \times 5 = 15.7r^2 \text{cm}^3$$

$$\Rightarrow 15.7r^2 = 1570$$

$$\Rightarrow$$
 r² = 100 \Rightarrow r = 10cm

Question: 42

The height of a c

Volume of a cone = $\frac{1}{2}\pi r^2 h$

where slant height $l = \sqrt{h^2 + r^2}$

Here, l=28 cm and h=21 cm

$$r=\sqrt{28^2-21^2}$$

$$= \sqrt{441}$$

$$Volume = \frac{1}{3} \times \frac{22}{7} \times 21^2 \times 21$$

$$=7546 \text{ cm}^3$$

Question: 43

The volume of a r

Solution:

Given:

Volume of cone = 1232 cm^3

As we know, Volume of a cone $=\frac{1}{3}\pi r^2 h$

$$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times r^2 \times 24 = 1232 \text{ cm}^3$$

$$\Rightarrow$$
 r² = 49

$$\Rightarrow$$
 r = 7 cm

slant height
$$l = \sqrt{h^2 + r^2}$$

Here, r = 7 cm and h = 24 cm

$$l = \sqrt{7^2 + 24^2} = \sqrt{625} = 25 \text{cm}$$

Curved surface area of a cone = πrl

$$\Rightarrow \frac{22}{7} \times 7 \times 25$$

$$= 550 cm^{2}$$

Question: 44

If the volumes of

Solution:

Volume of a cone = $\frac{1}{3}\pi r^2 h$

$$\Rightarrow \frac{\frac{1}{2}\pi r^2 h}{\frac{1}{2}\pi R^2 H} = \frac{1}{4} \text{ and } \frac{r^2}{R^2} = \frac{16}{25}$$

$$\Rightarrow \frac{h}{H} = \frac{1 \times 25}{4 \times 16}$$

$$\Rightarrow \frac{h}{H} = \frac{25}{64}$$

Question: 45

If the height of

Volume of a cone = $\frac{1}{3}\pi r^2 h$

If height is doubled,

$$volume = \frac{1}{3}\pi r^2 \times 2h$$

$$Volume = \tfrac{2}{3} \pi r^2 h$$

Increase in volume = $\frac{\frac{2}{3}\pi r^2h - \frac{1}{3}\pi r^2h}{\frac{1}{3}\pi r^2h} \times 100\%$

$$= \frac{\frac{1}{3}\pi r^2 h}{\frac{1}{3}\pi r^2 h} \times 100\%$$

$$= 100\%$$

Thus, there will be 100% increase in the volume.

Question: 46

The curved surfac

Solution:

Curved surface area of a cone = πrl

Given that curved surface area of $1^{st} = 2 \times$ curved surface area of 2^{nd}

And slant height of $2^{nd} = 2 \times \text{slant height of } 1^{st}$

$$\Rightarrow$$
 L= 21

$$\Rightarrow \frac{\pi r l}{\pi R L} = \frac{2}{1}$$

$$\Rightarrow \frac{r}{R} = \frac{2 \times 2l}{1 \times l}$$

$$\Rightarrow$$
 r : R = 4 : 1

Question: 47

The ratio of the

Solution:

Given that heights and radii of cone and cylinder are equal

Volume of a cone =
$$\frac{1}{3}\pi R^2 H$$

Volume of a cylinder =
$$\pi r^2 h$$

Ratio of their volumes =
$$\frac{\pi r^2 h}{\frac{1}{3}\pi R^2 H} = \frac{3}{1}$$

$$\{because h=H and r=R\}$$

Question: 48

A right circular

Solution:

Let height of cylinder and cone be H and h respectively

Given that radii of cone and cylinder are equal

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a cylinder = $\pi r^2 H$

Given
$$\frac{1}{3}\pi r^2 h = \pi r^2 H$$

$$\Rightarrow \frac{H}{h} = \frac{1}{3}$$

Ans: 1:3

Question: 49

The radii of the

Solution:

Given that radii of cone and cylinder are 4x and 3x respectively and

height of cylinder and cone are 2y and 3y respectively

Volume of a cone =
$$\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \times 4x^2 \times 3y$$

Volume of a cylinder = $\pi r^2 h = \pi \times 3x^2 \times 2y$

$$\Rightarrow \frac{\text{Volume of a cylinder}}{\text{Volume of a cone}} = \frac{\pi \times 3x^2 \times 2y}{\frac{1}{2}\pi \times 4x^2 \times 3y}$$

$$\Rightarrow \frac{\text{Volume of a cylinder}}{\text{Volume of a cone}} = \frac{9 \times 2}{16}$$

$$\Rightarrow \frac{\text{Volume of a cylinder}}{\text{Volume of a cone}} = \frac{9}{8}$$

Question: 50

If the height and

Solution:

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

If height and radius are doubled, volume = $\frac{1}{2}\pi(2r)^2 \times 2h = \frac{8}{2}\pi r^2 h$

The volume of the cone becomes 8 times.

Question: 51

A solid metallic

Solution:

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a cylinder =
$$\pi r^2 h$$

Volume of solid metallic cylinder = $\pi(3)^2 \times 5 = 45\pi \text{ cm}^3$

$$1cm=10mm$$

Volume of solid coin =
$$\frac{1}{3} \pi (0.1)^2 \times 1 = \frac{1}{3} \times 0.01 \pi \text{ cm}^3$$

No. of coins =
$$\frac{\text{Volume of solid metallic cylinder}}{\text{Volume of solid coin}}$$

$$= \frac{45\pi \times 3~cm^{3}}{0.01\pi~cm^{3}}$$

Question: 52

A conical tent is

As each person needs 4 m 2 spaces on ground, so 11 persons will need 44 m 2 space on the ground. Therefore, Area of ground = 44 m 2 \Rightarrow πr^2 = 44

$$\Rightarrow \frac{22 \times r^2}{7} = 44$$

$$\Rightarrow$$
 r² = 14Each person needs = $\frac{220}{11}$ = 20m³ of air Therefore volume of tent = 220 m³

Volume of a cone = $\frac{1}{3}\pi r^2 h \Rightarrow \frac{1}{3}\pi r^2 h = 220$

$$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times 14 \times h = 220$$

$$\Rightarrow$$
 h = 15cm

Question: 53

The volume of a s

Solution:

Volume of a sphere $=\frac{4}{3}\pi r^3$

Volume =
$$\frac{4}{3}\pi(2r)^3 = \frac{32}{3}\pi r^3$$

Question: 54

The volume of a s

Solution:

Volume of a sphere $=\frac{4}{3}\pi r^3$

Volume =
$$\frac{4}{3}\pi(10.5)^3$$

$$=\frac{4}{3}\times\frac{22}{7}\times(10.5)^3$$

$$=4851cm^{3}$$

Question: 55

The surface area

Solution:

Surface area of a sphere = $4\pi r^2$

Surface area = $4\pi(21)^2$

$$=4 \times \frac{22}{7} \times (21)^2$$

$$= 5544 \text{cm}^2$$

Question: 56

The surface area

Solution:

Surface area of a sphere = $4\pi r^2$

Given Surface area = 1386 cm^2

$$\Rightarrow 4 \times \frac{22}{7} \times r^2 = 1386$$

$$\Rightarrow r^2 = \frac{1386 \times 7}{88} = \frac{441}{4}$$

$$\Rightarrow r = \frac{21}{2}$$

Volume of a sphere $=\frac{4}{3}\pi r^3$

$$Volume = \frac{4}{3} \pi \left(\frac{21}{2}\right)^3$$

$$= \frac{4}{3} \times \frac{22}{7} \times \left(\frac{21}{2}\right)^3$$

$$=4851cm^{3}$$

Question: 57

If the surface ar

Solution:

Surface area of a sphere = $4\pi r^2$

Given Surface area = (144π) m²,

$$\Rightarrow 4 \times \pi \times r^2 = 144\pi$$

$$\Rightarrow$$
 r= 6m

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume =
$$\frac{4}{3}\pi(6)^3 = 288\pi m^3$$

Question: 58

The volume of a s

Solution:

Volume of a sphere = $\frac{4}{3} \pi r^3$

Given Volume= 38808 cm³.

$$\Rightarrow \frac{4}{3}\pi r^3 = 38808$$

$$\Rightarrow r^3 = 38808 \times \frac{21}{88} = 9261$$

$$\Rightarrow$$
 r=21cm

Surface area of a sphere = $4\pi r^2$

Surface area =
$$4 \times \frac{22}{7} (21)^2 = 5544 \text{ cm}^2$$

Question: 59

If the ratio of t

Solution:

Volume of a sphere $=\frac{4}{3}\pi r^3$

Given that
$$\frac{4}{3}\pi r^3 = \frac{1}{8}$$

$$\Rightarrow \frac{r}{R} = \frac{1}{2}$$

Surface area of a sphere = $4\pi r^2$

$$\Rightarrow \frac{4\pi r^2}{4\pi R^2} = \frac{1}{4}$$

A solid metal bal

Solution:

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Volume of the solid metal ball =
$$\frac{4}{3}\pi(8)^3$$

Volume of smaller ball=
$$\frac{4}{3}\pi(2)^3$$

$$No. \ of \ balls = \frac{Volume \ of \ the \ solid \ metal \ ball}{Volume \ of \ smaller \ ball}$$

$$=\frac{\frac{4}{3}\pi(8)^3}{\frac{4}{3}\pi(2)^3}$$

$$= 64$$

Question: 61

A cone is 8.4 cm

Solution:

Volume of a cone =
$$\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (2.1)^2 \times 8.4$$

$$= 12.348\pi \text{ cm}^3$$

On recasting a cone into sphere, the volume will remain same

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Volume of sphere =12.348
$$\pi$$
 cm³

$$\Rightarrow \frac{4}{3}\pi r^3 = 12.348\pi$$

$$\Rightarrow$$
 r³ = 12.348 $\times \frac{3}{4}$ = 9.261

$$\Rightarrow$$
 r = 2.1cm

Question: 62

A solid lead ball

Solution:

Volume of a sphere
$$=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (6)^3 = 288\pi \text{ cm}^3$$

On recasting a sphere into cylinder, the volume will remain same

Volume of a cylinder =
$$\pi r^2 h$$

Radius =
$$0.1 \text{ cm}$$

$$\Rightarrow \pi(0.1)^2 h = 288\pi$$

$$\Rightarrow$$
 h = 288 $\times \frac{1}{0.01}$

$$= 28800cm$$

$$= 288 \text{ m} (\because 1\text{m} = 100 \text{ cm})$$

$$\Rightarrow$$
 h = 288 m

Question: 63

Volume of a sphere $=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (10.5)^3 \text{ cm}^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

$$=\frac{1}{3}\pi(3.5)^2\times 3$$

$$=\pi(3.5)^2 \text{cm}^3$$

No. of cones = $\frac{\text{Volume of a sphere}}{\text{Volume of a cone}}$

$$=\frac{\frac{4}{3}\pi(10.5)^3}{\pi(3.5)^2}$$

Question: 64

How many lead sho

Solution:

Volume of a cuboid = $l \times b \times h = 9 \times 11 \times 12 \text{ cm}^3$

Radius of a lead shot = 0.15 cm

Volume of a lead shot $=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi(0.15)^3 \text{ cm}^3$

No. of lead shot = $\frac{\text{Volume of a cuboid}}{\text{Volume of a lead shot}}$

$$= \frac{9 \times 11 \times 12}{\frac{4}{3} \pi (0.15)^3}$$

$$= \frac{9 \times 11 \times 3 \times 3}{\frac{22}{7} \times 0.003375}$$

$$= 84000$$

Question: 65

The diameter of a

Solution:

Radius of the sphere = 3 cm

Volume of a sphere = $\frac{4}{3}\pi r^3$

$$=\frac{4}{3}\pi(3)^3$$

$$=36\pi$$
 cm³

On recasting a sphere into cylinder wire, the volume will remain same

Volume of a cylinder = $\pi r^2 h$

$$1cm=10mm$$

$$\Rightarrow$$
 2mm = 0.2cm

Radius =
$$0.1 \text{ cm}$$

$$\Rightarrow \pi(0.1)^2 h = 36\pi$$

$$\Rightarrow$$
 h = 36 $\times \frac{1}{0.01}$

$$\Rightarrow$$
 h = 3600cm

$$\Rightarrow$$
 h = 36 m (: 1m = 100 cm)

A sphere of diame

Solution:

Radius of the sphere = 6.3 cm

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

⇒ Volume of a sphere =
$$\frac{4}{3}\pi(6.3)^3$$
 cm³

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

⇒ Volume of a cone =
$$\frac{1}{3}\pi r^2 \times 25.2$$

$$=8.4\pi r^2 cm^3$$

On recasting a sphere into a cone, volume will remain same

$$\Rightarrow 8.4\pi r^2 = \frac{4}{3}\pi (6.3)^3$$

$$\Rightarrow$$
 r² = $\frac{4}{3}$ (6.3)³ × $\frac{1}{8.4}$ = 39.69

$$\Rightarrow$$
 r = 6.3 cm

Question: 67

A spherical ball

Solution:

Volume of a sphere $=\frac{4}{3}\pi r^3$

Volume of spherical ball =
$$\frac{4}{3}\pi(3)^3$$
 cm³

Volume of three balls =
$$\frac{4}{3}\pi(1.5)^3 + \frac{4}{3}\pi(2)^3 + \frac{4}{3}\pi r^3$$

$$=\frac{4}{3}\pi(3.375+8+r^3)$$
On recasting this sphere into three spherical balls, volume will remain same

$$\Rightarrow \frac{4}{3}\pi(3.375 + 8 + r^3) = \frac{4}{3}\pi(3)^3$$

$$\Rightarrow 11.375 + r^3 = 27$$

$$\Rightarrow$$
 r³ = 15.625

$$\Rightarrow$$
 r = 2.5 cm

Question: 68

The radius of a h

Solution:

Surface area of a hemisphere = $2\pi r^2$

Radii are 6cm and 12 cm respectively

Ratio of surface areas =
$$\frac{2\pi r^2}{2\pi R^2} = \frac{6^2}{12^2} = \frac{1}{4}$$

Ans 1:4

Question: 69

The volumes of th

Solution:

Volume of a sphere = $\frac{4}{3} \pi r^3$

Given Ratio of volumes of two spheres = $\frac{64}{27}$

$$\Rightarrow \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3} = \frac{r^3}{R^3} = \frac{64}{27}$$

$$\Rightarrow \frac{r}{R} = \frac{4}{3}$$

So,
$$r = 4x$$
 and $R = 3x$

Also given that the sum of radii = 7

$$\Rightarrow$$
 r +R = 4x +3x =7x =7

$$\Rightarrow x = 1$$

So
$$r = 4cm$$
 and $R = 3cm$

Surface area of a sphere = $4\pi \Gamma^2$

Difference in total surface area = $4\pi r^2 - 4\pi R^2 = 4\pi (r^2 - R^2)$

$$4 \times \frac{22}{7} \times 7 = 88 \text{ cm}^2$$

Question: 70

A hemispherical b

Solution:

Volume of a hemisphere $=\frac{2}{3}\pi r^3 = \frac{2}{3}\pi (9)^3 \text{ cm}^3$

Volume of a cylinder = $\pi r^2 h$

Volume of a cylindrical bottle= $\pi(1.5)^2 \times 4$

No. of bottles required = $\frac{\text{Volume of a hemisphere}}{\text{Volume of a cylindrical bottle}}$

$$=\frac{\frac{2}{3}\pi(9)^3}{\pi(1.5)^2\times 4}$$

$$= \frac{81 \times 3}{2.25 \times 1.5 \times 2} = 54$$

Thus, total 54 bottles are required.

Question: 71

A cone and a hemi

Solution:

Given that Radius of the hemisphere = Radius of cone

And Volume of hemisphere = Volume of cone

Volume of a hemisphere = $\frac{2}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

$$\Rightarrow \frac{2}{3}\pi r^3 = \frac{1}{3}\pi r^2 h$$

$$\Rightarrow \frac{\mathbf{h}}{\mathbf{r}} = \frac{2}{1}$$

A cone, a hemisph

Solution:

Given that Radius of the hemisphere = Radius of cone = Radius of cylinder

And Height of the hemisphere = Height of cone = Height of cylinder

Volume of a hemisphere $=\frac{2}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a cylinder = $\pi r^2 h$

Ratio of their volumes = $\frac{1}{3}\pi r^2 h$: $\frac{2}{3}\pi r^3$: $\pi r^2 h$

$$=h: 2r: 3h = 1: 2: 3$$

Question: 73

If the volume and

Solution:

Volume of a sphere = $\frac{4}{3} \pi r^3$

Surface area of a sphere = $4\pi r^2$

Given that volume = surface area

$$\Rightarrow \frac{4}{3}\pi r^3 = 4\pi r^2$$

$$\Rightarrow$$
 r = 3 units

Question: 74

Which is false in

Solution:

Inner curved surface area of a hollow cylinder = $2\pi rh$

Question: 75

Which is false?

Solution:

Curved surface area of a hemisphere = $2\pi r^2$

Question: 76

For a right circu

Solution:

A) Curved surface area of a cylinder = $2\pi rh$

$$\Rightarrow 2 \times \frac{22}{7} (7) \times 14 = 616 \text{ cm}^2$$

B) Total surface area of a cylinder = $2\pi r(r + h)$

$$\Rightarrow 2 \times \frac{22}{7} (7) \times (7 + 14) = 924 \text{ cm}^2$$

C) Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow \frac{22}{7}(7^2) \times 14 = 2156 \text{ cm}^3$$

D) Total area of the end faces = $2 \times \pi r^2$ {Because there are two circular faces}

$$= 2 \times \frac{22}{7} \times 49 = 308 \text{ cm}^2$$

Question: 77

Which is false?

Solution:

A) Inner curved surface area = $2\pi rh$

$$\Rightarrow 2 \times \frac{22}{7}(2) \times 63 = 792 \text{ cm}^2$$

B) Outer curved surface area = $2\pi Rh$

$$\Rightarrow 2 \times \frac{22}{7} (2.2) \times 63 = 871.2 \text{ cm}^2$$

C) Surface area of the end face = $\pi(R^2 - r^2)$ {Because there are two circular faces}

$$= 2 \times \frac{22}{7} \times (2.2^2 - 2^2) = 2.64 \text{ cm}^2$$

D) R = 2.2 cm, r = 2 cm and h = 63 cm

Total surface area of a hollow cylinder = $2\pi (R + r)(h + R - r)$.

$$= 2 \times \frac{22}{7} \times 4.2 \times 63.2 = 1668.48 \text{ cm}^2$$

Question: 78

The question cons

Solution:

Slant height $l = \sqrt{h^2 + r^2}$

Here, r=7cm and l=25cm

$$h = \sqrt{25^2 - 7^2} = \sqrt{576} = 24cm$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

$$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times (7)^2 \times 24 = 1232 \text{cm}^2$$

Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).

Question: 79

The question cons

Solution:

Surface area of a sphere = $4\pi r^2$

Given Surface area = 2464 cm^2

$$\Rightarrow 4 \times \frac{22}{7} \times r^2 = 2464$$

$$\Rightarrow r^2 = \frac{2464 \times 7}{88} = 196$$

Volume of a sphere $=\frac{4}{3}\pi r^3$

Volume =
$$\frac{4}{3}\pi(14)^3 = \frac{4}{3} \times \frac{22}{7} \times (14)^3 = 11498 \frac{2}{3} \text{cm}^3$$

Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).

Question: 80

The question cons

Solution:

The volume of a hollow cylinder with external and internal radii R and r respectively and height $h=\pi(R^2-r^2)h$

$$= \pi(5^2 - 3^2) \times 210$$

$$=\frac{22}{7}\times16\times210$$

$$= 10560 \text{cm}^3$$

Thus, the volume is 10560cm³

Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).

Question: 81

The question cons

Solution:

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume =
$$\frac{4}{3}\pi(2r)^3 = \frac{32}{3}\pi r^3$$

Ratio = 1:8

Reason is wrong. Assertion (A) is true and Reason (R) is false.

Question: 82

The question cons

Solution:

Curved surface area of a cone = πrl

$$\Rightarrow \frac{22}{7} \times 7 \times 1 = 550 \text{cm}^2$$

Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).

Question: 83

A right circular

Solution:

True

Curved surface area of a sphere = $4\pi r^2$

Radius of cylinder = r + r = 2r

Curved surface area of a cylinder = $2\pi rh$ = $2\pi \times r \times 2r = 4\pi r^2$

The largest possi

Solution:

True

The dimensions of the cone are diameter = r; radius = r/2 height = rVolume of a cone

$$=\,{\textstyle\frac{1}{3}}\pi r^2 h$$

$$=\frac{1}{3}\pi(\frac{r}{2})^2 \times r = \frac{1}{12}\pi r^3$$

Question: 85

If a sphere is in

Solution:

True

Let the radius of sphere be r so the edge of cube = 2r

Volume of a sphere $=\frac{4}{3}\pi r^3$

Volume of a cube = $(2r)^3$

Ratio of their volumes = $8r^3 : \frac{4}{3}\pi r^3 = 6 : \pi$

Question: 86

If the length of

Solution:

False

Diagonal of the cube = $side\sqrt{3}$

Length of longest rod = $6\sqrt{3}$ cm

Side = 6 cm

Exercise: FORMATIVE ASSESSMENT (UNIT TEST)

Question: 1

The radii of two

Solution:

Let the radii be 2x and 3x respectively and heights be 5y and 3y respectively.

Volume of a cylinder = $\pi r^2 h$

⇒ Ratio of their Volumes =
$$\frac{\pi r^2 h}{\pi R^2 H} = \frac{2x^2 \times 5y}{3x^2 \times 3y}$$

Thus, the ratio of two cylinders = $\frac{20}{27}$

Question: 2

The total surface

Solution:

Total surface area of a cone = $\pi r(r + 1)$

$$= \pi \frac{r}{2} \left(\frac{r}{2} + 2l \right)$$

$$=\pi r(\frac{r}{4}+l)$$

A cone is 8.4 cm

Solution:

Volume of a cone = $\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (2.1)^2 \times 8.4$

 $= 12.348\pi \text{ cm}^3$

On recasting a cone into sphere, the volume will remain same

Volume of a sphere $=\frac{4}{3}\pi r^3$

Volume of sphere = $12.348 \, \pi \, \text{cm}^3$

$$\Rightarrow \frac{4}{3}\pi r^3 = 12.348\pi$$

$$\Rightarrow$$
 r³ = 12.348 $\times \frac{3}{4}$ = 9.261

 \Rightarrow r = 2.1cm

Question: 4

The radius of a h

Solution:

Surface area of a hemisphere = $2\pi r^2$

Radii are 6cm and 12 cm respectively

Ratio of surface areas $=\frac{2\pi r^2}{2\pi R^2} = \frac{6^2}{12^2} = \frac{1}{4}$

Question: 5

A copper sphere o

Solution:

Radius of the sphere = 3 cm

Volume of a sphere $=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (3)^3 = 36\pi \text{ cm}^3$

On recasting a sphere into cylinder wire, the volume will remain same

Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow \pi(r)^2 36 = 36\pi$$

$$\Rightarrow$$
 r = 1cm

Question: 6

Find the lateral

Solution:

Total surface area of a cube = $6(side)^2$

 \Rightarrow Total surface area = $6(8)^2$ cm² = 384 cm²

Lateral surface area of a cube = $4(side)^2$

⇒ Total surface area = $4(8)^2$ cm² = 256 cm²

Question: 7

Find the lateral

Solution:

Total surface area of a cuboid = $2[(Length \times Breadth) + (Breadth \times Height) + (Height \times Length)]$

Total surface area = $2[(40\times30) + (30\times20) + (20\times40)]$ cm² = 2(1200+600+800) cm²

 $= 2(2600) \text{ cm}^2 = 5200 \text{ cm}^2$

Lateral surface area of a cuboid = 2(Length +Breadth) ×Height

Lateral surface area = $2(40+30) \times 20 \text{ cm}^2 = 140 \times 20 \text{ cm}^2$

 $= 2800 \text{ cm}^2$

Question: 8

The total surface

Solution:

Total surface area of a cylinder = $2\pi r(r + h)$

Curved surface area of a cylinder = $2\pi rh$

$$\Rightarrow \frac{2\pi rh}{2\pi r(r+h)} = \frac{1}{3}$$

 \Rightarrow 3h=r+h \Rightarrow 2h=r

Given that total surface area = 462 cm^2

$$\Rightarrow 2 \times \frac{22}{7} \times \frac{3}{2} r^2 = 462$$

$$\Rightarrow$$
 r² = 7× 7

So, r = 7 cm, h = 3.5 cm

Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow \frac{22}{7} \times 49 \times 3.5 = 539 \text{ cm}^3$$

Question: 9

The length and br

Solution:

Area of the floor =
$$\frac{\text{Cost of carpeting}}{\text{rate of carpeting}} = \frac{1350}{25} = 54 \text{ m}^2$$

Given that length and breadth are in ratio 3:2, so l = 3x and b = 2x

 \Rightarrow l= 9 m and b = 6 m

Lateral surface area of a cuboid = 2(Length +Breadth) ×Height

Lateral surface area = $\frac{2580}{15}$ = 172 m²

Adding door and window, Lateral surface area = 180 m^2

$$\Rightarrow 2(1+b)h = 2(15 \times h) = 180$$

$$\Rightarrow$$
 h = 6 m

Question: 10

If the radius of

Solution:

Volume of a sphere $=\frac{4}{3}\pi r^3$

Let the radius be 'r'Increased Radius = 1.1r

Volume =
$$\frac{4}{3}\pi(1.1r)^3 = \frac{4\times1.331}{3}\pi r^3$$

Change in volume =
$$\frac{\frac{4}{3} \times 1.331 \pi r^3 - \frac{4}{3} \pi r^3}{\frac{4}{3} \pi r^3} \times 100\% = \frac{0.331}{1} \times 100\% = 33.1\%$$

The surface area

Solution:

Curved surface area of a sphere $= 4\pi \Gamma^2$

Curved Surface area of a cone = πrl

Given that
$$\Rightarrow 4\pi r^2 = 5(\pi r l)$$

$$\Rightarrow 1 = \frac{4 \times 25}{5 \times 4} = 5 \text{cm}$$

l= 5 cm and r= 4 cm

$$h = \sqrt{5^2 - 4^2} = \sqrt{9} = 3$$
cm

Volume =
$$\frac{1}{3} \times \frac{22}{7} \times 4^2 \times 3 = 50.3 \text{ cm}^3$$

Question: 12

A rectangular tan

Solution:

 $Volume = l \times b \times h$

Volume =
$$5 \times 4.5 \times 2.1 = 47.25 \text{ m}^3$$

Area over which it is spread = 13.5 x 25 - 5 x 4.5 = 33.75 - 220 = 11.75 mRise in level =
$$\frac{47.25}{11.75}$$
 = 4.2 m

Question: 13

A joker's cap is

Solution:

Curved surface area of a cone = πrl

where
$$l = \sqrt{h^2 + r^2}$$

Here, r=7cm and h=24cm

$$l = \sqrt{24^2 + 7^2} = \sqrt{625} = 25$$
cm

$$\Rightarrow \frac{22}{7} \times 7 \times 25 = 550 \text{cm}^2$$

Area of 10 such caps = 5500 cm^2

Question: 14

The volume of a r

Solution:

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Given volume = 9856 cm^3

Radius of cone = 14 cm

$$\Rightarrow \frac{1}{3}\pi(14)^2 \times h = \frac{22}{21} \times 196 \times h = 9856 cm^3$$

$$\Rightarrow$$
 h = 48 cm

Into a circular d

Solution:

Volume of a cylinder = $\pi r^2 h$

Volume of the cylinder = $\pi(4.2)^2 \times 3.5$

Number of bags =
$$\frac{\text{Volume of the cylinder}}{\text{Volume of the wheat bags}} = \frac{\pi (4.2)^2 \times 3.5}{2.1} = 92$$

Question: 16

A well with 10 m

Solution:

Volume of a cylinder = $\pi r^2 h$

Radius of well = 5m, Height of well = 14m

Volume of the well =
$$\pi(5)^2 \times 14 = \frac{22}{7} \times 25 \times 14 = 1100 \text{m}^2$$

For embankment, radius = 5+5=10 m and let height be h m

Volume of well = Volume of embankment

$$\Rightarrow \pi[(10)^2 - (5)^2] \times h = \frac{22}{7} \times 75 \times h = 1100$$

$$\Rightarrow$$
 h = 4.67 m

Question: 17

How many metres o

Solution:

Curved surface area of a cone = πrl

where
$$l = \sqrt{h^2 + r^2}$$

Here, r=7m and h=24m

$$l = \sqrt{24^2 + 7^2} = \sqrt{625} = 25m$$

$$\Rightarrow \frac{22}{7} \times 7 \times 25 = 550 \text{m}^2$$

The cloth required $=\frac{550}{5} = 110m$

Question: 18

The volume of a s

Solution:

Volume of a cylinder= $\pi r^2 h$, Given volume = 1584 cm³

$$\Rightarrow \frac{22}{7} \times r^2 \times 14 = 1584 \text{ cm}^3$$

$$\Rightarrow$$
 r² = 36 \Rightarrow r = 6 cm

Total surface area of a cylinder = $\pi r(r + h)$

$$\Rightarrow \frac{22}{7} \times 6 \times (6 + 14) = 754.29 \text{ cm}^2$$

The volume of two

Solution:

Volume of a sphere $=\frac{4}{3}\pi r^3$

Given Ratio of volumes of two spheres = $\frac{64}{27}$

$$\Rightarrow \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3} = \frac{r^3}{R^3} = \frac{64}{27}$$

$$\Rightarrow \frac{\mathbf{r}}{R} = \frac{4}{3}$$

So, r = 4x and R = 3x

Also given that the sum of radii = 7

$$\Rightarrow r + R = 4x + 3x = 7x = 7$$

$$\Rightarrow x = 1$$

So, r = 4cm and R = 3cm

Surface area of a sphere = $4\pi \Gamma^2$

Difference in total surface area = $4\pi r^2 - 4\pi R^2 = 4\pi (r^2 - R^2)$

$$4 \times \frac{22}{7} \times 7 = 88 \text{ cm}^2$$

Question: 20

The radius and he

Solution:

Since the radius and height of a cone is 4:3 so let radius = 4x and height = 3x

Volume of a cone $=\frac{1}{3}\pi r^2 h$, Given volume = 2156 cm³.

$$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times (4x)^2 \times 3x = 2156 \text{ cm}^3$$

$$\Rightarrow$$
 $x^3 = \frac{343}{9} \Rightarrow x = \frac{7}{2}$

So , r = 14 cm and height = 10.5 cm

slant height
$$l = \sqrt{h^2 + r^2}$$

Here, r=14 cm and h=10.5 cm

$$l = \sqrt{14^2 + 10.5^2} = \sqrt{306.25} = 17.5$$
cm

Curved surface area of a cone = πrl

$$\Rightarrow \frac{22}{7} \times 14 \times 17.5 = 770 \text{ cm}^2$$

Question: 21

The radius of the

Solution:

Curved surface area of a cone = πrl

where
$$l = \sqrt{h^2 + r^2}$$

Here, r=14cm and h=24cm

$$l = \sqrt{24^2 + 14^2} = \sqrt{772} = 27.8$$
cm

$$\Rightarrow \frac{22}{7} \times 14 \times 27.8 = 1223 \text{ cm}^2$$

Total surface area of a cone = $\pi r(r+l)$

$$\Rightarrow \frac{22}{7} \times 14 \times (14 + 27.8) = 1839 \text{ cm}^2$$

Volume of a cone = $\frac{1}{2}\pi r^2 h$

$$\Rightarrow \frac{1}{3} \times \frac{22}{7} \times (14)^2 \times 24 = 4928 \text{ cm}^3$$

Question: 22

Two cylindrical v

Solution:

Volume of a cylinder= $\pi r^2 h$

Volume of first vessel =
$$\frac{22}{7} \times 15^2 \times 25 = 17678.57 \text{ cm}^3$$

Volume of second vessel =
$$\frac{22}{7} \times 10^2 \times 18 = 5657.14 \text{ cm}^3$$

The volume of the third vessel = volume of first vessel + volume of second vessel

$$\Rightarrow \frac{22}{7} \times r^2 \times 33 = 17678.57 + 5657.14$$

$$\Rightarrow$$
 r² = 225 \Rightarrow r = 15 cm

Question: 23

The ratio of the

Solution:

Total surface area of a cylinder = $2\pi r(r + h)$

Curved surface area of a cylinder = $2\pi rh$

$$\Rightarrow \frac{2\pi rh}{2\pi r(r+h)} = \frac{1}{2}$$

$$\Rightarrow$$
 2h=r + h

$$\Rightarrow$$
 h=r

Given that total surface area = 616 cm^2

$$\Rightarrow 2 \times \frac{22}{7} \times 2r^2 = 616$$

$$\Rightarrow$$
 r² = 7× 7

So,
$$r = h = 7 cm$$

Volume of a cylinder = $\pi r^2 h$

$$\Rightarrow \frac{22}{7} \times 49 \times 7 = 1078 \,\mathrm{cm}^3$$