INFORMATION AND COMMUNICATION THEORY

Unit-1: Probability Theory

Unit-2: Stochastic Processes

Unit-3: Estimation & Hypothesis Testing

Unit-4: Information Theory

Unit-5: Statistical Modeling of Noise

Module-3-Unit-2

- Stochastic Processes
- Statistical Modeling of Noise

Lecture-1 (Unit-2, Module-3) Stochastic Process

Stochastic (Random) Process

Random variable is a rule to assign a number $x(\xi)$ to every outcome ξ of an experiment S.

A stochastic process is a rule to assign a function $X(t, \xi)$ to every outcome ξ of an experiment S.

Stochastic process is represented by X(t). It has following interpretations –

- It is a <u>family (or ensemble)</u> of functions X(t, ξ). Here t and ξ are variables.
- It is a <u>single time-function</u> (or a **sample** of the given process).
 In this case t is a variable but ξ is fixed.
- It is the <u>random variable</u> equal to the <u>state of given process</u> <u>at time t</u>. In this case ξ is a variable but t is fixed.
- It is a <u>number</u> if both t and ξ are fixed.

Random Process

In real-life applications, we are often interested in multiple observations of random values over a period of time.

Example:

observing the stock price of a company over the next few months. In particular, let S(t) be the stock price at time $t \in [0, \infty), t = 0$ refers to current time.

Figure shows a possible outcome of this random experiment from time t=0 to time t=1.

10/17/2022

ICT (UEC-310)

A random process is a collection of random variables usually indexed by time.

At $t_1 \in [0, \infty)$, $S(t_1)$ is a random variable. At time $t_2 \in [0, \infty)$, $S(t_2)$ is another random variable could have a different PDF. The collective values of S(t) for $t \in [0, \infty)$ is a random process or a stochastic process. $\{S(t), t \in [0, \infty)\}$

The function shown in this figure is just one of the many possible outcomes of this random experiment.

We call each of these possible functions of S(t) a sample function or sample path S(t)

Continuous-time random processes

Let N(t) be the number of customers who have *visited a bank* from t = 9 (when the bank opens at $9:00 \ AM$) until time t, on a given day, for $t \in [9,16]$.

Here, we measure t in hours, but t can take any real value between 9 and 16.

We assume that N(9) = 0, and $N(t) \in \{0,1,2,...\}$ for all $t \in [9,16]$.

Note that for any time t_1 , the random variable $N(t_1)$ is a discrete random variable.

Thus, N(t) is a **discrete-valued random process**.

However, since t can take any real value between 9 and 16, N(t) is a **continuous-time random process**.

There are uncountable number of random variables. For example, for any given $t_1 \in [9,16]$, $N(t_1)$ is a random variable.

Thus, the random process N(t) consists of an uncountable number of random variables.

Discrete-time random processes

A discrete-time random process is a process

$$\{X(t), t \in J\}$$
, where J is a countable set i.e. $J = \{t_1, t_2, \dots\}$.

We usually define $X(t_n) = X(n)$ or $X(t_n) = X(n)$, for $n = 1,2,\cdots$, (the index values n could be from any countable set such as natural number or integers i.e. $\mathbb{N}or \mathbb{Z}$).

Therefore, a discrete-time random process is just a sequence of random variables.

Or, if the process is defined for all integers, then we may show the process by $\{X(n), n \in \mathbb{Z}\}\ or\ \{X_n, n \in \mathbb{Z}\}$

Discrete-time processes are sometimes obtained from continuous-time processes by discretizing time (sampling at specific times).

Example:

You have 1000 dollars to put in an account with interest rate R, compounded annually. That is, if X_n is the value of the account at year n, then

$$X_n = 1000(1+R)^n$$
, for $n = 0,1,2,\cdots$.

If $R \sim Uniform(0.04, 0.05)$, determine sample functions for the random process $\{X_n, n = 0, 1, 2, ...\}$ and the expected value of account at year three i.e. $E[X_3]$.

The probability density function of the continuous uniform distribution is:

$$f(x) = egin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, \ 0 & ext{for } x < a ext{ or } x > b \end{cases}$$

10/17/2022 ICT (UEC-310) 11

Solution:

Here, the randomness in X_n comes from the random variable R. Here,

$$X_n = 1000(1+R)^n, \ \forall \ n \in \{0,1,2,\cdots\}$$

So sample functions are of the form

$$f(n) = 1000(1 + R)^n$$
, for $n = 0,1,2,\cdots$
where $R \in (0.04, 0.05)$

For any value of $R \in (0.04, 0.05)$ a sample function of random process X_n can be obtained.

$$X_n = 1000(1 + R)^n = 1000Y^n$$
, thus $Y \sim Uniform(1.04, 1.05)$ and

$$f_Y(y) = \begin{cases} 100, & 1.04 \le y \le 1.05 \\ 0, & elsewhere \end{cases}$$

Expected value of sample function at n=3

$$E[X_3] = E[1000Y^3]$$

We know that

Continuous random variable

The expected value or mean of a random variable x is given as

$$E\{x\} = \int_{-\infty}^{\infty} x f(x) dx$$

$$f_Y(y) = \begin{cases} 100, \ 1.04 \le y \le 1.05 \\ 0, \ elsewhere \end{cases}$$

$$= 1000 \int_{1.04}^{1.05} 100 \, y^3 \, dy$$

_{10/17/2022}1141

CDF of Random Process

A stochastic process is a non-countable collection of random variables, one for each t.

For a specific t, X(t) is random variable with distribution

$$F(x,t) = P\{X(t) \le x\}$$

This function depend on t and it equals the probability of the event $\{X(t) \le x\}$ consisting of all outcomes ξ , such that, at specific time t, the samples of $X(t,\xi)$ of the given process does not exceed x.

F(x,t) is called first-order distribution of the process X(t)

$$f(x,t) = \frac{\partial F(x,t)}{\partial x}$$
 is the first-order density of the process $X(t)$

Continued...

Consider the random process $\{X(t), t \in J\}$. For any $t_0 \in J$, $X(t_0)$ is a random variable, so we can write its CDF as

$$F_{X(t_0)}(x) = P\{X(t_0) \le x\}.$$

If the experiment is performed n times, then n functions $x(t, \varepsilon_i)$ are observed, one for each trial as shown in figure below:

If $t_1, t_2 \in J$, then the joint CDF $X(t_1)$ and $X(t_2)$ is

$$F(x_1, x_2, t_1, t_2) = F_{X(t_1) | X(t_2)}(x_1, x_2)$$
$$= P\{X(t_1) \le x_1, X(t_2) \le x_2\}$$

10/____

Example:

Consider the random process $\{X_n, n = 0, 1, 2, \dots\}$ in which X_i 's are i.i.d. standard normal random variables.

Find
$$f_{X_n}(x)$$
 and $f_{X_m,X_n}(x_1,x_2)$

Solution: Since $X_n \sim N(0,1)$,

PDF of normal RV is

$$f_{X_n}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\eta)^2/2\sigma^2}$$

$$f_{X_n}(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Since it is i.i.d.

$$f_{X_m,X_n}(x_1,x_2) = f_{X_m}(x_1)f_{X_n}(x_2)$$

$$= \left(\frac{1}{\sqrt{2\pi}} e^{-x_1^2/2}\right) \left(\frac{1}{\sqrt{2\pi}} e^{-x_2^2/2}\right)$$

$$=\frac{1}{\sqrt{2\pi}} e^{-(x_1^2+x_2^2)/2}$$

Mean Functions

The mean function gives an idea about how the random process behaves on average as time evolves.

$$\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f(x, t) dx \qquad \mu_X(n) = E[X_n]$$

For example, if X(t) is the temperature in a certain city, the mean function $\mu_X(t)$ might look like the function shown in Figure below. (the expected value of X(t) is lowest in the winter and highest In the summer)

Correlation and Covariance Functions

The mean function $\mu_X(t)$ gives the expected value of X(t) at time t, but it does not give any information about how $X(t_1)$ and $X(t_2)$ are related.

The **autocorrelation function**, $R_X(t_1, t_2)$ is defined for a random process $\{X(t), t \in J\}$

We know that:
$$\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f(x, t) dx$$

$$R_X(t_1, t_2) = E[X(t_1) X(t_2)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f(x_1, x_2, t_1, t_2) dx_1 dx_2 \text{ for } t_1, t_2 \in J$$

$$x1 \text{ and } x2 \text{ are two values of } X \text{ at two different time}$$

t1 and t2

The auto covariance function

We know that:

$$\sigma^{2} = E\{(x - \eta)^{2}\} = \int_{-\infty}^{\infty} (x - \eta)^{2} f(x) dx$$

$$\sigma^{2} = E\{x^{2}\} - E^{2}\{x\}$$

$$\sigma^{2} = E\{(x - \eta)^{2}\} = E\{x^{2} - 2x\eta + \eta^{2}\}$$
How?
$$= E\{x^{2}\} - 2\eta E\{x\} + \eta^{2}$$

$$= E\{x^{2}\} - 2\eta \eta + \eta^{2}$$

$$= E\{x^{2}\} - 2\eta^{2} + \eta^{2}$$

$$= E\{x^{2}\} - \eta^{2} + \eta^{2}$$

$$= E[X(t_{1}) - E[X(t_{1})]\} \{X(t_{2}) - E[X(t_{2})]\}$$

$$= R_{X}(t_{1}, t_{2}) - \mu_{X}(t_{1})\mu_{X}(t_{2}) \quad \text{for} \quad t_{1}, t_{2} \in J$$

HELP:

$$C_X(t_1, t_2) = Cov[X(t_1) X(t_2)]$$

$$= E[\{X(t_1) - E[X(t_1)]\}$$

$$\{X(t_2) - E[X(t_2)]\}]$$

$$= R_X(t_1, t_2)$$
$$- \mu_X(t_1)\mu_X(t_2)$$

for $t_1, t_2 \in J$

+ 4142

Continued...

The **autocovariance function**, $C_X(t_1, t_2)$ is defined for a random process $\{X(t), t \in J\}$

Special condition:

If
$$t_1 = t_2 = t$$

$$R_X(t,t) = E[X(t) X(t)]$$

$$= E[X(t)^2]$$

$$C_X(t,t) = E[\{X(t) - E[X(t)]\} \{X(t) - E[X(t)]\}]$$

$$= Var[X(t)]$$

$$= R_X(t_1,t_1) - \mu_X(t_1)\mu_X(t_1)$$
for $t_1 \in J$

Continued...

- Intuitively, $C_X(t_1, t_2)$ shows how $X(t_1)$ and $X(t_2)$ move relative to each other.
- If large values of $X(t_1)$ tend to imply large values of $X(t_2)$, then $\{X(t_1) E[X(t_1)]\}$ $\{X(t_2) E[X(t_2)]\}$ is positive on average. In this case, $C_X(t_1,t_2)$ is positive, and we say $X(t_1)$ and $X(t_2)$ are positively correlated.
- On the other hand, if large values of $X(t_1)$ imply small values of $X(t_2)$, then $\{X(t_1) E[X(t_1)]\}$ $\{X(t_2) E[X(t_2)]\}$ is negative on average, and we say $X(t_1)$ and $X(t_2)$ are negatively correlated.
 - If $C_X(t_1,t_2)=0$, then $X(t_1)$ and $X(t_2)$ are uncorrelated.

Example:

Find the mean, correlation and covariance function for random process $X_n = 1000(1 + R)^n$,

for
$$n = 0,1,2,\dots$$
 $R \sim Uniform(0.04, 0.05)$.

Solution:

For any value of $R \in (0.04, 0.05)$ a sample function of random process X_n can be obtained.

$$X_n = 1000(1 + R)^n = 1000Y^n$$
, thus
 $Y \sim Uniform(1.04, 1.05)$ and

$$f_Y(y) = \begin{cases} 100, & 1.04 \le y \le 1.05 \\ 0, & elsewhere \end{cases}$$

The probability density function of the continuous uniform distribution is:

$$f(x) = \left\{ egin{array}{ll} rac{1}{b-a} & ext{for } a \leq x \leq b, \ 0 & ext{for } x < a ext{ or } x > b \end{array}
ight.$$

Continued...

We know that:

Mean:

$$f_Y(y) = \begin{cases} 100, & 1.04 \le y \le 1.05 \\ 0, & elsewhere \end{cases}$$

$$\mu_X(n) = E[X_n] = 1000E[Y^n]$$

$$= 1000 \int_{1.04}^{1.05} 100 \, y^n \, dy$$

$$=\frac{10^5}{n+1}\left[1.05^{n+1}-1.04^{n+1}\right]$$

Correlation:

We know that:

$$R_X(m,n) = E[X_m, X_n]$$

$$= 10^6 E[Y^m Y^n] \qquad f_Y(y)$$

$$= 10^6 \int_{1.04}^{1.05} 100 y^{(m+n)} dy$$

$$= \frac{10^8}{m+n+1} [1.05^{m+n+1} - 1.04^{m+n+1}]$$

$$f_Y(y) = \begin{cases} 100, & 1.04 \le y \le 1.05 \\ 0, & elsewhere \end{cases}$$

 $\mu_X(n) = E[X_n] = 1000E[Y^n]$

Covariance:

$$C_X(m,n) = R_X(m,n) - \mu_X(m)\mu_X(n)$$

$$= \frac{10^8}{m+n+1} \left[1.05^{m+n+1} - 1.04^{m+n+1} \right]$$

$$-\left\{\frac{10^5}{m+1}\left[1.05^{m+1}-1.04^{m+1}\right]\right\}\left\{\frac{10^5}{n+1}\left[1.05^{n+1}-1.04^{n+1}\right]\right\}$$

Multiple Random Processes

For two random processes $\{X(t), t \in J\}$ and $\{Y(t), t \in J\}$

The **cross-correlation function**, $R_{XY}(t_1, t_2)$ is defined as

$$R_{XY}(t_1, t_2) = E[X(t_1) Y(t_2)]$$
 for $t_1, t_2 \in J$

The **cross-covariance function**, $C_X(t_1, t_2)$ is defined as

$$C_{XY}(t_1, t_2) = Cov[X(t_1) Y(t_2)]$$

$$= R_{XY}(t_1, t_2) - \mu_X(t_1) \mu_Y(t_2) \quad \text{for} \quad t_1, t_2 \in J$$

Reference

- Athanasios Papoulis, "Probability, Random Variables, and Stochastic Processes," 3rd edition, McGraw Hill Publication.
- https://www.probabilitycourse.com