Chapitre 12

Fonctions de références

	Sommaire	
	Sommane	
1	Fonctions paraboles	1
	1.1 Fonction $x \mapsto ax^2$ où $a \neq 0$	1
	1.2 Fonction $x \mapsto ax^2 + b$ où $a \neq 0$ et $b \neq 0$	1
	1.3 Function $x \mapsto ax^2 + bx + c$ où $a \neq 0$	1
_		_
2	Fonctions hyperboles	2
	2.1 Fonction $x \mapsto \frac{a}{x}$ où $a \neq 0$	2
	2.2 Fonction $x \mapsto \frac{\tilde{a}}{x} + b$ où $a \neq 0$ et $b \neq 0$	2
	2.3 Fonction $x \mapsto \frac{ax+b}{cx+d}$ où $ad-bc \neq 0$	3
3	Exercices	3

Fonctions de références Mathématiques

1 Fonctions paraboles

1.1 Fonction $x \mapsto ax^2$ où $a \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = ax^2$, où a est un réel non nul, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \mathbb{R}$ (f est une fonction polynôme).
- La fonction f est paire.
- Le tableau des variations de f dépend du signe de a:

Si a < 0, alors: $\begin{array}{c|cccc}
x & -\infty & 0 & +\infty \\
\hline
f & & & & & & & & & & \\
\end{array}$

• La courbe (C_f) de la fonction f est appelée «**parabole de sommet** O(0,0) **et d'axe** x=0 (l'axe des ordonnées)».

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto 2x^2$ et $g: x \mapsto -\frac{2}{3}x^2$.

1.2 Fonction $x \mapsto ax^2 + b$ où $a \neq 0$ et $b \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = ax^2 + b$, où a et b sont des réels non nuls, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \mathbb{R}$ (f est une fonction polynôme).
- ullet La fonction f est paire.
- Le tableau des variations de f dépend du signe de a : Si a>0, alors :

Si a < 0, alors: $\begin{array}{c|cccc}
x & -\infty & 0 & +\infty \\
\hline
f & & & & & \\
\end{array}$

• La courbe (C_f) de la fonction f est une parabole de sommet S(0,b) et d'axe x=0 (l'axe des ordonnées).

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto 2x^2 - 3$ et $g: x \mapsto -\frac{2}{3}x^2 + 1$.

1.3 Fonction $x \mapsto ax^2 + bx + c$ où $a \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = ax^2 + b$, où a est un réel non nul, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \mathbb{R}$ (f est une fonction polynôme).
- Pour tout x de D_f , on a $f(x) = a(x-\alpha)^2 + \beta$, où $\alpha = -\frac{b}{2a}$ et $\beta = \frac{b^2 4ac}{4a}$.

Fonctions de références Mathématiques

ullet Le tableau des variations de f dépend du signe de a: Si a > 0, alors:

Si a < 0, alors:

• La courbe (C_f) de la fonction f est un parabole de sommet $S(\alpha, \beta)$ et d'axe $x = \alpha$.

Remarques

- L'écriture $a(x-\alpha)^2 + \beta$ est appelé «forme canonique» de l'expression $ax^2 + bx + c$.
- Il est à noter que $f(\alpha) = \beta$, c'est-à-dire $f\left(-\frac{b}{2a}\right) = \frac{b^2 4ac}{4a}$. Rappelons que le terme $b^2 4ac$, noté Δ , est le discriminant de l'expression $ax^2 + bx + c$.

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto 2x^2 + 8x + 5$ et $g: x \mapsto -\frac{2}{3}x^2 + \frac{8}{3}x - \frac{5}{3}$.

2 Fonctions hyperboles

Fonction $x \mapsto \frac{a}{x}$ où $a \neq 0$ 2.1

Propriétés

Soit f la fonction numérique définie par $f(x) = \frac{a}{x}$, où a est un réel non nul, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \{x \in \mathbb{R} \mid x \neq 0\} = \mathbb{R}^*$.
- La fonction f est impaire.
- Le tableau des variations de f dépend du signe de a: Si a > 0, alors:

• La courbe (C_f) de la fonction f est appelée «hyperbole de centre O(0,0) et d'asymptotes x=0et y = 0 (les axes du repère)».

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto \frac{4}{x}$ et $g: x \mapsto -\frac{3}{2x}$.

Fonction $x \mapsto \frac{a}{x} + b$ où $a \neq 0$ et $b \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = \frac{a}{x} + b$, où a et b sont des réels non nuls, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

• La fonction f a pour domaine de définition $D_f = \{x \in \mathbb{R} \mid x \neq 0\} = \mathbb{R}^*$.

Fonctions de références Mathématiques

• Le tableau des variations de f dépend du signe de a:

Si a > 0, alors:

٠_	9 0, 61012 .						
	x	$-\infty$	0	$+\infty$			
	f			•			

• La courbe (C_f) de la fonction f est un hyperbole de centre $\Omega(0,b)$ et d'asymptotes x=0 (l'axe des ordonnées) et x=b.

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto \frac{4}{x} - 1$ et $g: x \mapsto -\frac{3}{2x} + 2$.

2.3 Fonction $x \mapsto \frac{ax+b}{cx+d}$ où $ad - bc \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = \frac{ax+b}{cx+d}$, où $ad-bc \neq 0$, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

• La fonction f a pour domaine de définition $D_f = \{x \in \mathbb{R} \mid x \neq -\frac{d}{c}\} = \mathbb{R} \setminus \{-\frac{d}{c}\}.$

• Pour tout x de D_f , on a $f(x) = \alpha + \frac{\beta}{cx+d}$, où $\alpha = \frac{a}{c}$ et $\beta = -(ad-bc)$.

• Le tableau des variations de f dépend du signe de β : Si $\beta > 0$, alors :

Si $\beta \leq 0$, alors :

• La courbe (C_f) de la fonction f est un hyperbole de centre $\Omega\left(-\frac{d}{c},\alpha\right)$ et d'asymptotes $x=-\frac{d}{c}$ et $x=\alpha$.

${\bf Remarques}$

- L'écriture $\alpha + \frac{\beta}{cx+d}$ est appelé «forme canonique» de l'expression $\frac{ax+b}{cx+d}$.
- Rappelons que le terme ad bc est le déterminant $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ issue de l'expression $\frac{ax+b}{cx+d}$.

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto \frac{-x+6}{x-2}$ et $g: x \mapsto -\frac{4x+1}{2x+2}$.

3 Exercices

Evercice 1

Soient f et g deux fonctions numériques définies par $f(x) = -x^2 + 4x$ et $g(x) = \frac{4x}{x-2}$, et (C_f) et (C_g) leurs représentations graphiques dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1. Déterminer D_f et D_g les domaines de définitions respectifs de f et de g.
- 2. Déterminer la nature de (C_f) et (C_g) .
- 3. Étudier les variations de f et g.

Fonctions de références Mathématiques

- 4. Déterminer l'intersection de (C_f) et les axes du repère.
- 5. Déterminer l'intersection de (C_g) et les axes du repère.
- 6. Tracer (C_f) et (C_g) .
- 7. Résoudre algébriquement l'équation f(x) = g(x).
- 8. Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.
- 9. Résoudre graphiquement suivant les valeurs du réels m les équations f(x) = m et g(x) = m.