

Computação e sistemas distribuídos em nuvem

Introdução

Eduardo Verri

eduardo.verri@sptech.school

Nosso caminho

- Introdução à arquitetura e serviços de rede
- Revisão da infraestrutura virtualizada (EC2)
- Conceitos de cloud
- Servidor de Frontend e Backend no AWS

- Sistemas distribuídos
- Sistemas paralelos
- Computação em nuvem
- Virtualização
- Containers e micros serviços
- Alta disponibilidade configurada com balanceamento de carga
- Segurança implementada (certificado digital + https)

- Automação
- Deploy automatizado
- Testes de carga e stress

Um pouco de história...

DoD encontra uma vulnerabilidade em suas comunicações que utilizavam a rede pública de telefonia.

Metcalfe propõe a rede

DCA ("Defence Communications Agency") assumiu a responsabilidade da ARPANET, que ainda era considerada uma rede de pesquisa DoD adota os protocolos TCP/IP como padrão espalhando seu uso em departamentos do governo americano, criando mercado para a tecnologia

Desenvolvida primeira rede de comutação de pacotes -ARPANET ("Advanced Research Projects Agency Network")

Vinton G. Cerf e Robert E. Kahn apresentam um projeto de um novo conjunto de protocolos que seria a base para os protocolos TCP e IP DoD adota um único conjunto de protocolos, baseado nos protocolos da ARPANET, criada a DDN ("Defense Data Network") como "entidade mãe" das suas redes operacionais distribuídas o TCP/IP moveu-se para o mundo comercial

Em 25 de dezembro de 1990 Tim Berners-Lee implementa primeira comunicação bemsucedida entre um cliente HTTP e um servidor através da Internet

É criada a WWW (html, http e web server)

Como são definidos os protocolos?

IETF e IESG

É o IETF ("Internet Engineering Task Force"), quem escreve e implementa novos protocolos. As atividades dos grupos de trabalho do IETF são supervisionadas pelo IESG ("Internet Engineering Steering Group")

Os membros do IETF são voluntários. Para atacar um problema específico é formado um grupo de trabalho cujos membros possuem expertise técnica adequada.

RFC

Todos os documentos da Internet são organizados em documentos chamados de RFC ("Request for Comments").

As RFC's são numeradas sequencialmente, em ordem cronológica, o que pode nos dar uma idéia da evolução do TCP/IP

RFC continuação...

Nem toda RFC descreve protocolo. Algumas apenas organizam e apresentam insights que evoluíram na comunidade Internet.

Por exemplo, existe uma RFC que ajuda na seleção de nomes de computadores, outras que dão dicas de como administrar uma rede TCP/IP e implementar procedimentos de segurança

Exemplo SNMP – Simple Network Management Protocol: • RFC 1157 • RFC 1098 • RFC 1067

<u>| IETF | Internet Engineering Task Force</u>

Index of /rfc (ietf.org)

Quem organiza as conexões?

Regional Internet Registries

Desde o início, todo dispositivo conectado diretamente à Internet precisava de um endereço IP (Internet Protocol) – um número único que identifica o dispositivo e permite que ele seja localizado na rede.

Cada dispositivo conectado deve ter um endereço único, por isso era importante que a alocação dos endereços IP fosse registrada para evitar conflitos No início, o registo global de endereços IP era simplesmente uma lista de intervalos de endereços IP, juntamente com detalhes das organizações às quais estes tinham sido atribuídos.

À medida que mais organizações aderiram à Internet, esta lista cresceu. Em pouco tempo, esse papel foi formalizado como IANA – Internet Assigned Numbers Authority.

CAIDA's IPv4 AS Core AS-level INTERNET GRAPH

CAIDA's IPv4 AS Core AS-level INTERNET GRAPH

copyright © 2008 UC Regents. all rights reserved.

CAIDA's IPv6 AS Core AS-level INTERNET GRAPH

Community Collected January 2008

copyright © 2008 UC Regents. all rights reserved.

O que compõem a rede?

Borda da rede

Usuário Local

Servidores

Rede Corporativa

Forma de comunicação

Núcleo da rede

POP – (Point of Presence)

ISP Local/Regional (Internet

Service Provider)

Backbone

NAP (Network Access Point)

NOC (Network Operation

Center)

Protocolo

Protocolos definem os formatos, a ordem das mensagens enviadas e recebidas pelas entidades de redes e as ações a serem tomadas

POP

Recebe conexão dos usuários domésticos e injeta na rede dos ISP Local

ISP Local e Regional

Recebe todos usuário do POP

Verifica se o pacote destina a um host servido pelo ISP Local, se for ele entrega o pacote, caso contrário direciona ao ISP Regional

Recebe pacotes de outros ISP e "roteia" através do melhor Backbone disponível

Backbone

Meio de comunicação entre as principais operadoras, podendo ser de diversos tamanhos

HE 3D Network Map

NAP - Network Access Point

O NAP (Network Access Point) é um ou mais locais com alto nível de conectividade e diversas opções de acesso aos principais Carriers e conteúdo. Nele, diferentes provedores (ISPs) e empresas de telecomunicações montam seus POP's (Point of Presense ou ponto de presença), fazendo com que qualquer empresa facilmente possa utilizar seus serviços de conectividade.

A interconexão dessas linhas e empresas permite que os clientes possam alcançar qualquer local do Globo por meio das conexões providas no NAP.

Comunicação entre dois sistemas

A comunicação sai das Bordas e passa pelo núcleo até atingir novamente a outra borda

Esta operação é independente do meio físico

Há dois modelos de conexão: Serviço orientado a conexão Serviço sem conexão

Orientado à conexão

Transferência de dados entre sistemas finais

Handshaking: estabelece as condições para o envio de dados antes de enviá-los

Estados de conexão: controlam a troca de mensagens entre dois hospedeiros

Protocolo TCP - Transmission Control`Protocol [RFC 793]

Serviço TCP

Transferência de dados confiável e sequencial, orientada à cadeia de bytes

Perdas: reconhecimentos e retransmissões

Controle de fluxo: evita que o transmissor afogue o receptor

Controle de congestão:

transmissor reduz sua taxa quando a rede fica congestionada

Exemplos: http/ https (web), FTP (transferência de arquivo), telnet / ssh (login remoto), smtp / pop (e-mail)

Comunicação entre dois sistemas

Serviços sem conexão

Transferência de dados entre

sistemas finais

Não controla a troca de mensagens

entre dois hospedeiros

Protocolo UDP – User Datagram

Protocol[RFC 768]

Serviço UDP

Transferência de dados não

confiável

Sem controle de fluxo

Sem controle de congestão

Exemplos: Streaming de media,

videoconferência, e telefonia IP

Atividade

Vamos pedir uma pizza?

Em grupos de 4 a 5 desenhe a arquitetura básica para o pedido de pizza num sábado à noite. Você e seus colegas estão na sua casa, acessam o app do iFood e pedem uma belíssima pizza de pepperoni com borda recheada.

Qual a arquitetura de rede entre você pedir, o restaurante aceitar e você acompanhar o pedido? Desenhe essa arquitetura.

Agradeço a sua atenção!

Eduardo Verri

Eduardo.verri@sptech.school

SÃO PAULO TECH SCHOOL