ALGEBRA SUPERIOR 2

GRUPO 4098

Soluciones y Demostraciones

ALUMNOS:

- Palacios Rodríguez Ricardo Rubén
- Rosas Hernandez Oscar Andres
- José Martín Panting Magaña

PROFESOR:

Leonardo Faustinos Morales

Solución a Problemas de Niven

12 de Septiembre de 2017

ÍNDICE

$\mathbf{\acute{I}ndice}$

1.	Divi	Divisibilidad																2										
	1.1.	Problema 1																										2
	1.2.	Problema 2																										4
	1.3.	Problema 3																										8
	1.4.	Problema 9																										8
	1.5.	Problema 15																										8
	1.6.	Problema 19																										9
	1.7.	Problema 25																										9
	1.8.	Problema 33																									1	.0
_																											_	_
2.	Prin	nos																									1	.1
	2.1.	Problema 11																									1	1

1. Divisibilidad

1.1. Problema 1

Algoritmo de Euclides: Encontrar el GCD(A, B)

Calcular el GCD(2947, 3997)

$$(a:2947) = (b:3997)(q:0) + (r:2947)$$

$$(a:3997) = (b:2947)(q:1) + (r:1050)$$

$$(a:2947) = (b:1050)(q:2) + (r:847)$$

$$(a:1050) = (b:847)(q:1) + (r:203)$$

$$(a:847) = (b:203)(q:4) + (r:35)$$

$$(a:203) = (b:35)(q:5) + (r:28)$$

$$(a:35) = (b:28)(q:1) + (r:7)$$

$$(a:28) = (b:7)(q:4) + (r:0)$$

Así que GCD(2947, 3997) = 7

Calcular el GCD(2689, 4001)

$$(a:2689) = (b:4001)(q:0) + (r:2689)$$

$$(a:4001) = (b:2689)(q:1) + (r:1312)$$

$$(a:2689) = (b:1312)(q:2) + (r:65)$$

$$(a:1312) = (b:65)(q:20) + (r:12)$$

$$(a:65) = (b:12)(q:5) + (r:5)$$

$$(a:12) = (b:5)(q:2) + (r:2)$$

$$(a:5) = (b:2)(q:2) + (r:1)$$

$$(a:2) = (b:1)(q:2) + (r:0)$$

Así que GCD(2689, 4001) = 1

Calcular el GCD(7469, 2464)

$$(a:7469) = (b:2464)(q:3) + (r:77)$$

$$(a:2464) = (b:77)(q:32) + (r:0)$$

Así que GCD(7469, 2464) = 77

Calcular el GCD(2947, 3997)

•
$$(a:2947) = (b:3997)(q:0) + (r:2947)$$

$$(a:3997) = (b:2947)(q:1) + (r:1050)$$

$$(a:2947) = (b:1050)(q:2) + (r:847)$$

$$(a:1050) = (b:847)(q:1) + (r:203)$$

$$(a:847) = (b:203)(q:4) + (r:35)$$

$$(a:203) = (b:35)(q:5) + (r:28)$$

•
$$(a:35) = (b:28)(q:1) + (r:7)$$

$$(a:28) = (b:7)(q:4) + (r:0)$$

Así que GCD(2947, 3997) = 7

Calcular el GCD(1109, 4999)

$$(a:1109) = (b:4999)(q:0) + (r:1109)$$

$$(a:4999) = (b:1109)(q:4) + (r:563)$$

$$(a:1109) = (b:563)(q:1) + (r:546)$$

$$(a:563) = (b:546)(q:1) + (r:17)$$

$$(a:546) = (b:17)(q:32) + (r:2)$$

$$(a:17) = (b:2)(q:8) + (r:1)$$

•
$$(a:2) = (b:1)(q:2) + (r:0)$$

Así que GCD(1109, 4999) = 1

1.2. Problema 2

Algoritmo de Euclides Extendido y Coeficientes de Bezut

Encontremos los coeficientes de 243x + 198y = 9

- (a:243) = (b:198)(q:1) + (r:45)
- (a:198) = (b:45)(q:4) + (r:18)
- (a:45) = (b:18)(q:2) + (r:9)
- (a:18) = (b:9)(q:2) + (r:0)

El proceso para encontrar los coeficientes de Bezut son:

- (a': 243) = (a': 243)(m:1) + (b': 198)(n:0)
- $\bullet (b':198) = (a':243)(m:0) + (b':198)(n:1)$
- (r:45) = (a:243) (b:198)(1:1) = (a':243)(m:1) + (b':198)(n:-1)
- (r:18) = (a:198) (b:45)(1:4) = (a':243)(m:-4) + (b':198)(n:5)
- (r:9) = (a:45) (b:18)(1:2) = (a':243)(m:9) + (b':198)(n:-11)
- (r:0) = (a:18) (b:9)(1:2) = (a':243)(m:-22) + (b':198)(n:27)

Por lo tanto el GCD(243, 198) = 9

Y los números de Bezut son (243, 198) = (9, -11)

Y la Identidad de Bezut es: (GCD:9) = (a':243)(m:9) + (b':198)(n:-11)

Encontremos los coeficientes de 71x + 50y = 1

$$(a:71) = (b:50)(q:1) + (r:21)$$

$$(a:50) = (b:21)(q:2) + (r:8)$$

$$(a:21) = (b:8)(q:2) + (r:5)$$

$$(a:8) = (b:5)(q:1) + (r:3)$$

•
$$(a:5) = (b:3)(q:1) + (r:2)$$

$$(a:3) = (b:2)(q:1) + (r:1)$$

$$(a:2) = (b:1)(q:2) + (r:0)$$

El proceso para encontrar los coeficientes de Bezut son:

$$(a':71) = (a':71)(m:1) + (b':50)(n:0)$$

$$(b':50) = (a':71)(m:0) + (b':50)(n:1)$$

$$(r:21) = (a:71) - (b:50)(1:1) = (a':71)(m:1) + (b':50)(n:-1)$$

$$(r:8) = (a:50) - (b:21)(1:2) = (a':71)(m:-2) + (b':50)(n:3)$$

$$(r:5) = (a:21) - (b:8)(1:2) = (a':71)(m:5) + (b':50)(n:-7)$$

$$(r:3) = (a:8) - (b:5)(1:1) = (a':71)(m:-7) + (b':50)(n:10)$$

$$(r:2) = (a:5) - (b:3)(1:1) = (a':71)(m:12) + (b':50)(n:-17)$$

$$(r:1) = (a:3) - (b:2)(1:1) = (a':71)(m:-19) + (b':50)(n:27)$$

$$(r:0) = (a:2) - (b:1)(1:2) = (a':71)(m:50) + (b':50)(n:-71)$$

Por lo tanto el GCD(71, 50) = 1

Y los números de Bezut son (71, 50) = (-19, 27)

Y la Identidad de Bezut es: (GCD:9) = (GCD:1) = (a':71)(m:-19) + (b':50)(n:27)

Grupo 4098 5 VE AL ÍNDICE

Encontremos los coeficientes de 43 + 64 = 1

$$(a:43) = (b:64)(q:0) + (r:43)$$

$$(a:64) = (b:43)(q:1) + (r:21)$$

$$(a:43) = (b:21)(q:2) + (r:1)$$

$$(a:21) = (b:1)(q:21) + (r:0)$$

El proceso para encontrar los coeficientes de Bezut son:

$$(a':43) = (a':43)(m:1) + (b':64)(n:0)$$

$$(b':64) = (a':43)(m:0) + (b':64)(n:1)$$

$$(r:43) = (a:43) - (b:64)(1:0) = (a':43)(m:1) + (b':64)(n:0)$$

$$(r:21) = (a:64) - (b:43)(1:1) = (a':43)(m:-1) + (b':64)(n:1)$$

$$(r:1) = (a:43) - (b:21)(1:2) = (a':43)(m:3) + (b':64)(n:-2)$$

$$(r:0) = (a:21) - (b:1)(1:21) = (a':43)(m:-64) + (b':64)(n:43)$$

Por lo tanto el GCD(43, 64) = 1

Y los números de Bezut son (43,64) = (3,-2)

Y la Identidad de Bezut es: (GCD:1) = (a':43)(m:3) + (b':64)(n:-2)

Encontremos los coeficientes de 93 + 81 = 3

$$(a:93) = (b:81)(q:1) + (r:12)$$

$$(a:81) = (b:12)(q:6) + (r:9)$$

•
$$(a:12) = (b:9)(q:1) + (r:3)$$

$$(a:9) = (b:3)(q:3) + (r:0)$$

El proceso para encontrar los coeficientes de Bezut son:

$$(a':93) = (a':93)(m:1) + (b':81)(n:0)$$

$$(b':81) = (a':93)(m:0) + (b':81)(n:1)$$

$$(r:12) = (a:93) - (b:81)(1:1) = (a':93)(m:1) + (b':81)(n:-1)$$

$$(r:9) = (a:81) - (b:12)(1:6) = (a':93)(m:-6) + (b':81)(n:7)$$

$$(r:3) = (a:12) - (b:9)(1:1) = (a':93)(m:7) + (b':81)(n:-8)$$

$$(r:0) = (a:9) - (b:3)(1:3) = (a':93)(m:-27) + (b':81)(n:31)$$

Por lo tanto el GCD(93, 81) = 3

Y los números de Bezut son (93, 81) = (7, -8)

Y la Identidad de Bezut es: (GCD:3) = (a':93)(m:7) + (b':81)(n:-8)

Encontremos los coeficientes de 10x + 15y = 5 ... Espera, este es muy obvio, es simplemente (GCD:5) = (a':10)(m:-1) + (b':15)(n:1)

Mientras que el de 6x + 5y = 1 es (GCD: 1) = (a': 6)(m: 1) + (b': 5)(n: -1)

Por lo tanto: (GCD:1) = (a':6)(m:1) + (b':10)(n:1) + (c':15)(o:-1)

Grupo 4098 7 VE AL ÍNDICE

1 Divisibilidad 1.3 Problema 3

1.3. Problema 3

¿Cuantos enteros hay entre 100 y 1000 que sean divisibles entre 7?

Empecemos porque el primero es 105, de ahi hay 127 más, pues 105 + (127 * 7) = 994. Por lo tanto son 128 enteros.

Otro truco es aplicar el algoritmo de la división y ver que 1000 = 7(142) + 6 y 100 = 7(14) + 2 y 142 - 14 = 128.

1.4. Problema 9

Si bc|ac entonces a|c

Demostración:

Si c = 0 esto se reduce a 0|0 lo cual es cierto.

Si bc|ac entonces ac = q(bc), por lo tanto ya que estamos en los enteros podemos cancelar y ver que a = bq es decir b|a.

1.5. Problema 15

Si x, y son impares entonces $(x^2 + y^2)$ es par pero no divisible entre 4

Demostración:

Pongamos que: $x = 2k_1 + 1$ y $x = 2k_2 + 1$, entonces:

$$x^{2} + y^{2} = (2k_{1} + 1)^{2} + (2k_{2} + 1)^{2}$$

$$= 4k_{1}^{2} + 4k_{1} + 1 + 4k_{2}^{2} + 4k_{2} + 1$$

$$= 4k_{1}^{2} + 4k_{1} + 4k_{2}^{2} + 4k_{2} + 2$$

$$= 4(k_{1}^{2} + k_{1} + k_{2}^{2} + k_{2}) + 2$$

$$= 2(2(k_{1}^{2} + k_{1} + k_{2}^{2} + k_{2}) + 1)$$

Gracias a la última línea vemos que que x^2+y^2 es par, y gracias a la penúltima línea es vemos que no puede ser divisible entre 4

1.6. Problema 19

Cualquier conjunto de números primos pares, son primos relativos

Demostración:

Por contradicción, supón que hay un conjunto donde no son primos relativos, pero si sus pares de elementos son coprimos.

Sabemos que:

$$A = \{ a_1, a_2, a_3, \dots, a_{n-1}, a_n \} \text{ donde } (a_i, a_j) = 1 \ \forall i, j, i \neq j \}$$

Si el conjunto no fuera coprimo entonces pasaría que: $GCD(a_1, a_2, a_3, \dots, a_{n-1}, a_n) = d$ con $d \neq 1$ Y por definición sabemos que $d|a_i \forall a_i \in S$

Pero si para todos los pares de números tenemos que el único número que divide a ambos es el uno.

Así, ningún miembro de A tiene un divisor común con d lo que sea una contradicción.

Por lo tanto, el conjunto de enteros que son relativamente primos en pares es también relativamente primo.

1.7. Problema 25

Demuestre que existe una cantidad infinita de enteros x, y tal que x+y=100 y (x,y)=5

Demostración:

Ve que una solución es 55+45=5 y (55,45)=5 Para encontrar todas las demás soluciones simplemente tenemos que:

- x = 55 + r
- y = 55 r

donde r = 100k y k es cualquier entero tal que (k, 55) = 1

1.8. Problema 33

$$\mathrm{GCD}(a,b,c)=\mathrm{GCD}((a,\,b),\,c)$$

Demostración:

Usando la factorización de primos tenemos que:

- $a = \prod_i p^{\alpha_i}$
- lacksquare $b=\prod_i p^{\beta_i}$
- $c = \prod_i p^{\gamma_i}$

Entonces tenemos que:

$$GCD(a,b,c) = \prod_{i} p^{\min(\alpha_{i},\beta_{i},\gamma_{i})} = \prod_{i} p^{\min(\min(\alpha_{i},\beta_{i}),\gamma_{i}))} = GCD((a,b),c)$$

2. Primos

2.1. Problema 11

Si x,y son coprimos con 3 entonces x^2+y^2 no puede ser un cuadrado perfecto

Demostración:

Antes que nada recuerda que un cuadrado perfecto, lo podemos expresar como:

$$(3k+0)^2 = 9k^2 = 3(3k^2)$$

$$(3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$$

$$(3k+2)^2 = 9k^2 + 12k + 3 + 1 = 3(3k^2 + 4k + 1) + 1$$

Es decir, todo cuadrado perfecto o es divisible entre 3 o es de la forma 3k + 1.

Veamos los casos posibles:

 $x = 3k_1 + 1 y y = 3k_2 + 1$

Dado esto tenemos que:

$$(3k_1 + 1)^2 + (3k_2 + 1)^2 = 9k_1^2 + 6k_1 + 1 + 9k_2^2 + 6k_2 + 1$$

$$= 9k_1^2 + 6k_1 + 9k_2^2 + 6k_2 + 2$$

$$= 9k_1^2 + 6k_1 + 9k_2^2 + 6k_2 + 2$$

$$= 3(3k_1^2 + 2k_1 + 3k_2^2 + 2k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.

• $x = 3k_1 + 1$ y $y = 3k_2 + 2$

Dado esto tenemos que:

$$(3k_1 + 1)^2 + (3k_2 + 2)^2 = 9k_1^2 + 6k_1 + 1 + 9k_2^2 + 12k_2 + 3 + 1$$
$$= 9k_1^2 + 6k_1 + 3 + 9k_2^2 + 12k_2 + 2$$
$$= 3(3k_1^2 + 2k_1 + 1 + 3k_2^2 + 4k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.

 $x = 3k_1 + 2 y y = 3k_2 + 2$

Dado esto tenemos que:

$$(3k_1 + 2)^2 + (3k_2 + 2)^2 = 9k_1^2 + 12k_1 + 3 + 1 + 9k_2^2 + 12k_2 + 3 + 1$$
$$= 9k_1^2 + 12k_1 + 6 + 9k_2^2 + 12k_2 + 2$$
$$= 3(3k_1^2 + 6k_1 + 2 + 3k_2^2 + 6k_2) + 2$$

Por lo tanto no puede ser un cuadrado perfecto.