Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento adioactivo

radioactivos

Belarmino Luís Matsinhe

FUNDAMENTOS DE FAN

FORP
UEM-CDM-24
10ª Edição

Programa temático

Radioactividade:

- 1. Decaimento radioactivo;
- 2. Quantificação da radioactividade
- 3. Resíduos radioactivos;

Leitura complementar obrigatória: Tauhata, L. et

al. (2014). Radioproteção e

Dosimetria: Fundamentos. IRD/CNEN. Ed. 10. Rio de

Janeiro.pp.16-38.

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade

Decaimento adioactivo

Objectivo do módulo

- Compreender os factos que levam a ocorrência da radiação ionizante;
- 2. Conhecer as aplicações da radioactividade.

Belarmino Luís Matsinhe

Sumário

Introdução

Radioactividade nuclear

Decaimento radioactivo

Modalidade de avaliação

- 1. Avaliação contínua;
- 2. Avaliação somativa.

Belarmino Luís Matsinhe

Sumário

Introdução

Radioactividade nuclear

Decaimento

Resíduos

Radioactividade nuclear

Decaimento radioactivo

Resíduos radioactivos

Conselho de Ministros:

Decreto n.º 71/2018:

Aprova o Regulamento de Gestão de Resíduos Radioactivos, nos termos da alínea c) do artigo 74 da Lei n.º 8/2017, de 21 de Julho e revoga todas as normas que contrarie o disposto no presente Decreto.

4. O titular de licença deve assegurar que todas as informações radiológicas e não radiológicas, sobre os materiais transferidos esteja disponível para a organização receptora e que esta esteja licenciada para aceitar estes materiais.

Contextualização

Sumário

Introdução

Radioactividade nuclear

Decaimento radioactivo

Residuos

O que são estas informações radiológicas?

Contextualização

Sumário

Introdução

Radioactividade nuclear

Decaimento adioactivo

radioactivo

Conjunto de dados técnicos usados para gerenciamento de materiais radioactivos: Exemplo: A actividade nuclear do material.

Revisão: Atómico

Belarmino Luís Matsinhe

Sumário

Introdução

Radioactividade

Decaimento adioactivo

Resíduos radioactivos

Figura: Modelos atómicos

Revisão: Atómico

Como se apresenta a informação de um

átomo?

Figura: Informação atómica

Belarmino Luís Matsinhe

Sumário

Introdução

Radioactividade

Decaimento adioactivo

Revisão: Atómico

Figura: Informação atómica

Belarmino Luís Matsinhe

Sumário

Introdução

Radioactividade

Decaimento adioactivo

radioactivos

Átomo	Proțões	Neutrões
³² ₁₅ P		
⁶⁰ ₂₇ Co		
¹⁴ ₇ N		
²³ ₁₁ Na		
³² ₁₆ S		
²¹⁰ ₈₄ Po		

Figura: Exercício didáctico

Radioactividade Nuclear

Radioactividade ou Radiactividade?

Belarmino Luís Matsinhe

Sumário

trodução

Radioactividade nuclear

Decaimento radioactivo

Resíduos

Radioactividade Nuclear

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Jecaimento adioactivo

Radioactividade Nuclear

Fenómeno pelo qual um núcleo instável <u>partículas</u> ou <u>energia</u> sob a forma de radiação eletromagnética ionizante.

Figura: Tipos de radioactividade

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento radioactivo

Instabilidade nuclear

Porquê alguns núcleos são instáveis?

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento radioactivo

Resíduos

Instabilidade nuclear

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento adioactivo

Instabilidade nuclear

Belarmino Luís Matsinhe

Sumári

Introdução

Radioactividade nuclear

Decaimento radioactivo

Núcleos serão instáveis sempre que:

- ► O rácio $\frac{N}{7}$ for superior a 1.5;
- O número de protões for superior a 83:
- O átomo tiver núcleo pesado;
- Excesso de energia nuclear;
- As forças nucleres fortes forem mínimas do que as forças de interação electrostática.

Tipos de Radiação nuclear

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento radioactivo

Resíduos

Classificação das radiações nucleares

Tipo de Radiação	Simbolo	Carga eléctrica	Massa(u.a)
Partícula Alfa	⁴ Не	2+	4.015062
Electrão	⁰ ₋₁ β	1-	0.0005486
Positrão	⁰ ₊₁ β	1+	0.0005486
Raios X	К	0	0
Raios Gama	γ	0	0

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Jecaimento adioactivo

Classificação das radiações nucleares

RADIAÇÕES IONIZANTES

Radiações Diretamente Ionizantes (Partículas com Carga Elétrica)

Partículas Alfa

- · 2 prótons + 2 nêutrons
- Quando a fonte está fora do corpo, não se constituem risco, porque não atravessam a

Partículas Beta

- nêutrons.
- Mais penetrantes que as partículas alfa: logo. são mais perigosas. A pele não é blindagem suficiente.

Radiações Indiretamente Ionizantes (Sem Carga Elétrica)

Raios Gama

- Energia emitida por um núcleo instável após a emissão de partículas alfa e beta.
- Têm grande poder de penetração, oferecendo risco elevado para o corpo.

Raios X

- Radiação eletromagnética que resulta do freamento de elétrons em alta velocidade,
- quando colidem com um alvo.
- -Têm a mesma natureza física dos Raios Gama.

Belarmino Luís Matsinhe

Sumário

Radioactividade nuclear

Processo físico-matemático de desintegração (transformação) espontânea ou induzida dos núcleos de um ou mais átomos.

Belarmino Luís

Matsinhe

Sumário

ntrodução

Radioactividade

Decaimento radioactivo

TIPO Formula geral da reação nuclear

$$\alpha \qquad {}_{Z}^{A}X \rightarrow {}_{2}^{4}He + {}_{Z-2}^{A-4}Y$$

$$\beta \qquad {}_{Z}^{A}X \rightarrow {}_{-1}^{0}\beta + {}_{Z+1}^{A}Y$$

$$\beta^{+} \qquad {}_{Z}^{A}X \rightarrow {}_{+1}^{0}\beta + {}_{Z-1}^{A}Y$$

$$? \qquad {}_{Z}^{A}X + {}_{-1}^{0}e \rightarrow {}_{Z-1}^{A}Y$$

$$\gamma \qquad {}_{Z}^{A}X \rightarrow {}_{0}^{0}\gamma + {}_{Z}^{A}Y$$

Belarmino Luís Matsinhe

Sumário

trodução

Radioactividade

Decaimento radioactivo

$$\frac{dN}{N} = -k dt$$

$$\int_{N_0}^{N} \frac{dN}{N} = -k \int_{0}^{t} dt$$

$$\ln \frac{N}{N_0} = -kt$$

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento radioactivo

$$\frac{dN}{N} = -k dt$$

$$\int_{N_0}^{N} \frac{dN}{N} = -k \int_{0}^{t} dt$$

$$N(t)=N_0 e^{-kt}$$

Belarmino Luís Matsinhe

Sumário

trodução

Radioactividade nuclear

Decaimento radioactivo

Belarmino Luís

Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento radioactivo

Resíduos

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade .

Decaimento radioactivo

Resíduos

Radioactividade nuclear

Decaimento radioactivo

radioactivos

♠

Tempo de meia-vida. Constante de decaimento. Tempo

de vida-média

(1)
$$k = \frac{ln(2)}{t_{\frac{1}{2}}}$$

(2)
$$V_m = \frac{t_{\frac{1}{2}}}{\ln(2)}$$

Exemplo didático

Belarmino Luís Matsinhe

Sumário

ntroducão

Radioactividade

Decaimento radioactivo

Quantificação da radioactividade

$$A = \frac{dN}{dt} = kN \Rightarrow A = A_0 e^{-kt}$$

- Becquerel desintegrações/s (dps)
- Curie 3,7 x 10¹⁰ dps

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento radioactivo

Materiais radioactivos

"Aqueles que apresentam átomos com a capacidade de eliminar espontaneamente radiação (alfa, beta ou gama) a partir de seus núcleos."

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

Decaimento adioactivo

Materiais radioactivos

Belarmino Luís Matsinhe

Sumário

Introdução

Radioactividade

Decaimento

Resíduos radioactivos

"Materiais radioactivos ou materiais contaminados com radionuclídeos, com baixa actividade nuclear"

Belarmino Luís Matsinhe

Sumário

trodução

Radioactividade nuclear

Decaimento

Resíduos radioactivos

Resíduos de baixa actividade: possuem radioactividade gama e beta em níveis menores a $0.04~\mathrm{GBq/m^3}$ se são líquidos, $0.00004~\mathrm{GBq/m^3}$ se são gasosos, ou a taxa de dose em contacto é inferior a $20~\mathrm{mSv/h}$ se são sólidos.

Belarmino Luís Matsinhe

Sumário

trodução

Radioactividade nuclear

Decaimento radioactivo

Resíduos radioactivos

"Materiais radioactivos ou materiais contaminados com radionuclídeos, com baixa actividade nuclear"

Belarmino Luís Matsinhe

Sumário

trodução

Radioactividade nuclear

Decaimento

Complete e apresente o nome das respectivas partículas.

$$a)_{7}^{14}N + {}_{2}^{4}He \rightarrow {}_{8}^{17}O + \dots$$

$$(b)_{6}^{12}C \rightarrow _{7}^{14}N + \dots$$

$$(c)_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C + \dots$$

$$(d)_{7}^{13}N \rightarrow_{6}^{13}C + \dots$$

Exemplo didáctico

O estrôncio 90 é um dos radioisótopos mais perigosos espalhados pelo acidente de Chernobyl. Sua meia vida é de, aproximadamente, 28 anos. Para que 1g dele se transforme em 125 mg, quanto tempo deve decorrer?

Belarmino Luís Matsinhe

Sumário

ntrodução

Radioactividade nuclear

> Decaimento radioactivo

FIM DA AULA

Belarmino Luís Matsinhe

Sumário

ntroducão

Radioactividade

ecaimento