

Protein dynamics → **cellular dynamics**

- What comes next?
- How do protein work?
- How can we study protein dynamics?

Proteins function dynamically

Conformational Changes

Movement and Interaction

Proteins function dynamically (cont.)

The basics of protein function

Binding pockets in the tertiary structure of proteins

Antibody structure allows for many noncovalent bonds to the antigen

Antibody structure allows for many noncovalent bonds to the antigen

Antibody structure allows for many noncovalent bonds to the antigen

Immunohistochemistry

Immunofluorescence

Immunofluorescence imaging

Immunofluorescence imaging (cont.)

Excitation and Emission

Fluorescent markers used to study dynamic protein function

GFP – green fluorescent protein RFP or DsRed – red fluorescent protein Quantum dots

Fluorescent markers used to study dynamic protein function (cont.)

Fluorescent markers used to study dynamic protein function (cont.)

Colocalization of Actin and Vinculin in Normal Tahr Ovary Cells

Figure 1

Spectral Overlap in Paired Alexa Fluor Probes

Optical Microscopy 14

Fluorescent markers used to study dynamic protein function (cont.)

Colocalization of Actin and Vinculin in Normal Tahr Ovary Cells

Figure 1

550

650

Spectral Overlap in Paired Alexa Fluor Probes

450

Wavelength (Nanometers)

450

550

650

"Brainbow"

FRAP, FRET and FCS

Fluorescent imaging methods assist the study of protein dynamics

FRAP: fluorescence recovery after photobleaching

FRET: fluorescence (or Förster) resonance energy transfer

FCS: fluorescence correlation spectroscopy

	FRAP	FRET	FCS
Diffusion Rates	Yes	No	Yes
Multicomponent Diffusion	No	No	Yes
Mobile Fraction	Yes	No	No
Concentration	No	No	Yes
Complexing	No	✓ Yes	Yes
Complex Stoichiometry	No	No	Yes
Binding Kinetics	✓ Yes	✓ Yes	Yes

Show movement (passive or active) and protein complexing

FRAP 1

Assesses kinetic properties of proteins

	FRAP	
Diffusion Rates	V	Yes
Multicomponent Diffusion		No
Mobile Fraction	V	Yes
Concentration		No
Complexing		No
Complex Stoichiometry		No
Binding Kinetics	V	Yes

	FRAP	
Diffusion Rates	Yes	
Multicomponent Diffusion		No
Mobile Fraction	V	Yes
Concentration		No
Complexing		No
Complex Stoichiometry		No
Binding Kinetics	v	Yes

M_f mobile fraction, % of recovery diffusion constant

en.wikipedia.org Confocal Microscopy

	FRAP	
Diffusion Rates	V	Yes
Multicomponent Diffusion		No
Mobile Fraction	V	Yes
Concentration		No
Complexing		No
Complex Stoichiometry		No
Binding Kinetics	V	Yes

FRAP

 M_f mobile fraction, % of recovery D diffusion constant

$$D = \frac{kT}{6\pi\eta R} = \frac{w^2}{2\eta\tau_D}$$

- 7 absolute temperature
- η viscosity of solution
- η k Boltzman's constant
- R hydrodynamic radius of the molecule
- w radius of the bleached area
- τ_D diffusion time

	FRAP	
Diffusion Rates	V	Yes
Multicomponent Diffusion		No
Mobile Fraction	V	Yes
Concentration		No
Complexing		No
Complex Stoichiometry		No
Binding Kinetics	V	Yes

FRAP 4

Active transport via membrane-bound vesicles that track along cytoskeletal fibers

FLIP: Fluorescence Loss In Photobleaching

FRET 1

Measures proteinprotein interactions

	FF	RET
Diffusion Rates		No
Multicomponent Diffusion		No
Mobile Fraction		No
Concentration		No
Complexing	V	Yes
Complex Stoichiometry		No
Binding Kinetics	V	Yes

CFP Absorption

YFP Absorption

475 500 525 550 575

Wavelength (nm)

FRET 2

Measures proteinprotein interactions

	FI	RET
Diffusion Rates		No
Multicomponent Diffusion		No
Mobile Fraction		No
Concentration		No
Complexing	V	Yes
Complex Stoichiometry		No
Binding Kinetics	V	Yes

$$k_F \sim \left(\frac{r_0}{r}\right)^6 \cdot \underline{k_\Gamma}$$

k_F rate of energy transfer from donor to acceptor

radiative decay rate of donor fluorophore

distance between the two molecules

 r_0 Förester distance (50% efficiency point of energy transfer)

425 450

80

70 60

30 20

a Preassembled receptor

Ligand-induced assembly

FRET 3

	FF	RET
Diffusion Rates		No
Multicomponent Diffusion		No
Mobile Fraction		No
Concentration		No
Complexing	V	Yes
Complex Stoichiometry		No
Binding Kinetics	V	Yes

a Preassembled receptor

b

Ligand-induced assembly

FRET 4

	FF	RET
Diffusion Rates		No
Multicomponent Diffusion		No
Mobile Fraction		No
Concentration		No
Complexing	V	Yes
Complex Stoichiometry		No
Binding Kinetics	V	Yes

C Random

Clustered

a Preassembled receptor

Ligand-induced assembly

FRET 5

	FF	RET
Diffusion Rates		No
Multicomponent Diffusion		No
Mobile Fraction		No
Concentration		No
Complexing	V	Yes
Complex Stoichiometry		No
Binding Kinetics	V	Yes

Clustered

FCS and FCCS 1

Fluorescence correlation spectroscopy Fluorescence cross-correlation spectroscopy (dual-color FCS)

	FCS
Diffusion Rates	Yes
Multicomponent Diffusion	✓ Yes
Mobile Fraction	No
Concentration	Yes
Complexing	Yes
Complex Stoichiometry	Yes
Binding Kinetics	✓ Yes

FCS and FCCS 2

Fluorescence correlation spectroscopy Fluorescence cross-correlation spectroscopy (dual-color FCS)

FCS and FCCS 3

Fluorescence correlation spectroscopy Fluorescence cross-correlation spectroscopy (dual-color FCS)

	FCS	
Diffusion Rates	V	Yes
Multicomponent Diffusion	V	Yes
Mobile Fraction		No
Concentration	V	Yes
Complexing	V	Yes
Complex Stoichiometry	V	Yes
Binding Kinetics	V	Yes

 $G(\tau)$ autocorrelation function

What We Know Now

