数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - ■门延迟
 - ■静态冒险
- 险象判断及消除
 - 代数法
 - 卡诺图法

扇入系数(fan-in)

■逻辑门最大输入端的个数

利用与非门(扇入系数为2)和反相器设计指定逻辑函数

 $f_3 = a'b'c + ab + bc'$

直接应用摩根定理,则需要扇入系数为3的与非门

$$f_{1} = b'c' + ab' + a'b f_{2} = b'c' + bc + a'b f_{3} = a'b'c + (ab + bc')$$

$$f_{1} = b'(\underline{a + c'}) + \underline{a'b} f_{2} = (b' + c)(b + c') + \underline{a'b} f_{3} = a'b'c + b(\underline{a + c'})$$

表达式变换:将二级电路变成多级电路

- 提取公因子
- 与或式→ 或与式
- 尽量保留或产生共享项

$$a'b'c = a'(b'c) = a'(b + c')'$$

P180

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - ■门延迟
 - ▶静态冒险
- 险象判断及消除
 - 代数法
 - 卡诺图法

1. 门延迟

当输入发生变化,逻辑门的输出不会同步发生改变

可能引发非预期 的尖峰干扰

- 对于组合逻辑电路,多数情况下可以忽略门的延迟.
- 但是,门的延迟对时序电路的影响不容忽视

当一个逻辑门的两个输入端的信号同时向相反方向变化,则该电路存在竞争。

两路信号到达逻辑门 的时间存在差异。

逻辑门因输入端的竞争而导致输出了不应有的尖峰干扰脉冲(又称过渡干扰脉冲)称为冒险。

2. 险象

险象类型	概念		输出波形
■静态冒险	输入信号发生一次 变化只引起 一个 错 误信号脉冲	■ 静态1冒险	0
		■静态0冒险	0 0
■ 动态冒险	输入信号发生一次改变引起 <mark>多个</mark> 错误信号脉冲		
■功能冒险	<mark>多个</mark> 输入信号的变化不同步而产 生的错误信号脉冲		

■静态冒险

$$F = (A+B)(\overline{A}+C)$$

if $B=C=0$ 理论上
then $F = A\overline{A} = 0$

■ 动态冒险

- ■通常发生在多级电路情况下
- ■不同的路径有不同的传输延迟
- ■当输入发生一次变化、输出将发生多次变化。

F=(W+X)(Y+X')+ZW'X'

if WYZ=001, F=X'

from X to F: 存在3条路径

■功能冒险

多个输入信号同时 改变,因<mark>速度不同</mark> 产生错误信号脉冲

$$F(100) = F(111) = 1$$

初值 过渡值 终值

F值

C 较快: $100 \longrightarrow 101 \longrightarrow 111$

 $1 \longrightarrow 1 \longrightarrow 1$

B 较快: $100 \longrightarrow 110 \longrightarrow 111$

 $1 \longrightarrow 0 \longrightarrow 1$

静态1冒险

 $BC: 00 \longrightarrow 11$

真值表

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - ■门延迟
 - ■静态冒险
- 险象判断及消除
 - 代数法
 - 卡诺图法

3. 险象的判断——代数法

检查表达式中是否存在某个变量X,它同时以原变量和反变量的形式出现;并能在特定条件下简化成下面形

式之一:

$$X + \overline{X}$$

$$X \cdot \overline{X}$$

$$F = \overline{A}\overline{C} + \overline{A}B + AC$$

分别检查C,A

C:

$$AB=00$$
 $F=\overline{C}$

$$AB=01$$
 $F=1$

$$AB=10$$
 $F=C$

$$AB=11$$
 $F=C$

没有险象

A:

$$BC = 00$$
 $F = \overline{A}$

$$BC = 01$$
 $F = A$

$$BC = 10$$
 $F = \overline{A}$

$$BC = 11$$
 $F = A + \overline{A}$

静态1冒险

$$F = (A+B)(\overline{A}+C)(\overline{B}+C)$$

分别检查变量: A, B

 \boldsymbol{B} :

A C=0 0	$F=B\overline{B}$
A C=0 1	F=B
A C=1 0	F=0
A C=1 1	F=1

静态0冒险

 \boldsymbol{A} :

B C=0 0	$F=A\overline{A}$
B C=0 1	F=A
B C=1 0	$\mathbf{F} = \overline{\mathbf{A}}$
B C=1 1	F=1

4. 险象的判断—— k. maps

化简后是否存在相切的卡诺圈

$$F1 = A' \cdot C + B \cdot C'$$

When
$$A = 0, B = 1$$
: $F1 = C + C'$

$$F2 = (A' + C) \cdot (B + C')$$

When
$$A = 1, B = 0 : F2 = C \cdot C'$$

$$F = \overline{AD} + \overline{AC} + AB\overline{C}$$

When
$$B = D = 1$$
, $C = 0$

5. 险象的消除

① 添加卡诺圈

$$F1 = A' \cdot C + B \cdot C' + A' \cdot B$$

$$F2 = (A'+C)\cdot (B+C')\cdot (A'+B)$$

When
$$A = 0, B = 1$$
: $F1 = 1$

When
$$A = 1$$
, $B = 0$: $F2 = 0$

添加一个包含相邻单元的新项

$$F = AB + AC$$

② 添加冗余项: BC

$$F = AB + \overline{AC} + \underline{BC}$$

$$F = AB + \overline{AC} + \underline{BC}$$

FPGA设计

中常用

③ 添加滤波电容

④ 加封锁/选通脉冲

封锁脉冲

Unit 6 组合逻辑电路设计

- 使用有限扇入门设计组合电路
- 组合电路中的险象
 - Gate Delays
 - Static hazard
- 险象判断及消除
 - 代数法
 - 卡诺图法