МГУ лаба №106 Изучение движения маятника Максвелла

Сергей Слепышев 109 группа

Сентябрь 2022 (последний день до дедлайна)

0.1 Теоретическое введение

0.1.1 Маятник Максвелла

Рис. 1. Принципиальная схема маятника Максвелла.

Маятник Максвелла (см. рис. 1) состоит из тонкого металлического стержня АВ с закрепленным посередине диском С. К концам стержня прикреплены нити, другими концами закрепленные на неподвижной планке DE. Нити тщательно, виток к витку, наматываются на стержень (от его концов к диску), и в верхнем положении маятник закрепляется с помощью фиксатора. После освобождения из верхнего положения маятник начинает движение под действием силы тяжести и сил со стороны нитей: поступательное – вниз и вращательное – вокруг оси АВ. В нижней точке вращение продолжается по инерции, нить наматывается на стержень, а маятник начинает подниматься. Достигнув верхней точки, маятник снова начинает движение вниз и т. д. Такой характер движения (вверх-вниз) в чем-то схож с колебаниями груза на пружине. Поэтому это устройство и получило название маятника Максвелла.

В движении маятника Максвелла можно выделить три временные стадии: спуск, удар и подъем. На рис. 2 (а, б) схематически представлены зависимости скорости и ускорения оси маятника. Силы, действующие на маятник, могут быть условно разделены на силы длительного действия (при спуске и подъеме) и силы кратковременного действия (удар).

Отметим, что удар маятника в нижней точке отличается от удара, например, шарика о плиту. Если кинетическая энергия падающего тела (шарика) на первой стадии удара полностью переходит в потенциальную энергию упругой деформации, то при ударе маятника Максвелла кинетическая энергия его вращения (которая гораздо больше, чем кинетическая энергия поступательного движения перед ударом) практически не изменяется. В связи с тем, что полное аналитическое решение за весь цикл движения маятника не представляется возможным, в эксперименте исследуются плоское движение и удар. Теоретически стадии движения рассматриваются раздельно, и, кроме того, используются предположения, которые упрощают решение задачи. Силы, действующие на маятник, могут быть условно разделены на силы длительного действия (при спуске и подъеме) и силы кратковременного действия (удар).

Рис. 2. Схематические зависимости скорости υ (a) и ускорения a (δ) точек оси маятника, а также силы натяжения нитей T (s) от времени движения маятника.

В связи с тем, что полное аналитическое решение за весь цикл движения маятника не представляется возможным, в эксперименте исследуются плоское движение и удар. Теоретически стадии движения рассматриваются раздельно, и, кроме того, используются предположения, которые упрощают решение задачи.

Движение маятника происходит под действием силы тяжестии и силы натяжения нитей, поэтому устойчивое движение маятника (без раскачивания) возможно, только если нити находятся в вертикальной плоскости (рис. 3). При отклонении нитей от вертикальной плоскости возникают горизонтальные составляющие сил натяжения, возвращающие маятник к положению, когда нити вертикальны. В результате возникают колебания, период которых зависит от длины нитей. Это можно наблюдать во время подъема маятника, когда нити выходят из вертикальной плоскости. Если перед отпусканием маятника нити находятся в вертикальной плоскости, то движение вниз происходит без колебаний (заметим, что при этом центр масс маятника находится вне плоскости расположения нитей).

Рис. 3. Три последовательных положения оси маятника: в начале (a), в середине (δ) и в конце (s) удара.

Итак, без учета силы сопротивления воздуха и отклонения нитей от вертикали, уравнения движения маятника Максвелла вниз и вверх в лабораторной системе отсчета одинаковы и имеют вид:

$$ma = mg - 2T \tag{27}$$

где m — масса маятника, T — сила натяжения нити, g — ускорение свободного падения, a — ускорение поступательного движения центра масс маятника.

Для записи уравнения вращательного движения (уравнения моментов) выберем ось маятника в качестве «оси моментов», которая движется с ускорением а. В такой системе отсчета уравнение моментов не будет содержать момента сил инерции*, т.е.

$$J\epsilon = 2rT\tag{28}$$

где J — момент инерции маятника относительно его оси, r — радиус стержня маятника, ϵ — угловое ускорение маятника.

Уравнение кинематической связи, являющееся следствием нерастяжимости нитей, имеет вид

$$a = \epsilon * r \tag{29}$$

При опускании маятника начальная скорость его центра масс равна нулю, а при подъеме она отлична от нуля. Решая систему уравнений (27) – (29), получим:

$$a = \frac{g}{1 + J/mr^2} \tag{30}$$

Момент инерции маятника приближенно можно представить в виде $J \approx \frac{mR^2}{2}$, где R – радиус диска. Поскольку радиус диска R много больше радиуса стержня r, то величина $\frac{J}{mr^2} = \frac{R^2}{2r^2} \gg 1$ и ускорение маятника $a \ll g$. Следовательно, для суммарной силы натяжения нитей справедливо выражение:

$$2T = m(g - a) \approx mg \tag{31}$$

На первой стадии движения (спуск) ускорение центра масс равно:

$$a_1 = \frac{2h_1}{t_1^2} \tag{32}$$

где t1 – время опускания маятника, h1 – расстояние, которое он проходит за это время.

Из соотношений (30) и (32) получаем формулу для экспериментального определения момента инерции маятника:

$$J = mr^2(\frac{g}{a} - 1) = mr^2(\frac{gt_1^2}{2h_1} - 1)$$
(33)

Скорость опускания центра масс маятника непосредственно перед его ударом равна

$$v_1 = at_1 = \frac{2h_1}{t_1} \tag{34}$$

При подъеме маятника вверх после удара (III стадия) он движется равнозамедленно с ускорением a, направленным так же, как при его движении вниз. Скорость движения центра масс маятника при подъеме определяется уравнением:

$$v = v_2 - at (35)$$

где v_2 — начальная скорость при движении маятника вверх, t — время от начала этого движения, a — модуль ускорения. Движение маятника вверх обусловлено продолжающимся по инерции вращением маятника в нижней точке его траектории. Наматывание при этом вращении нитей на стержень маятника и приводит к его подъему.

Если время подъема маятника до его остановки равно t_2 , то для начальной скорости имеем:

$$v_2 = at_2 = \frac{2h_2}{t_2} \tag{36}$$

так как ускорение при подъеме маятника связано с расстоянием h_2 , которое проходит его ось до остановки, таким же соотношением, как и при спуске:

$$a_2 = \frac{2h_2}{t_2^2} \tag{37}$$

Ускорения при спуске и подъеме одинаковы. Высота подъема h_2 несколько меньше, чем h_1 . Это обусловлено изменением механической энергии маятника за один цикл движения: $\Delta W = mg(h_1-h_2)$. Уменьшение механической энергии связано как с неупругими процессами в нитях в момент удара, так и с потерями энергии на трение при движении маятника. Поскольку сопротивление воздуха мало, можно считать, что потери энергии происходят главным образом в момент удара и равны уменьшению кинетической энергии маятника: $\Delta W_{mec} \approx \Delta W_{hit} = W_{k1} - W_{k2}$.

Кинетическая энергия маятника равна:

$$W_k = \frac{mv^2}{2} + \frac{Jw^2}{2} = \frac{mv^2}{2} + \frac{Jv^2}{2r^2} = \frac{mv^2}{2} \left(1 + \frac{J}{mr^2}\right)$$
(38)

где w=v/r – угловая скорость маятника. Поскольку $J/mr^2\gg 1$, кинетическая энергия $\frac{mv^2}{2}$, связанная с поступательным движением, мала по сравнению с энергией вращательного движения $\frac{Jw^2}{2}$. Это обстоятельство является главной особенностью маятника Максвелла.

Кроме того, потери энергии при ударе малы ($\Delta W_{hit} \ll W_k$), т.е. коэффициент восстановления скорости $K_v = v_2/v_1 \approx 1$. Именно благодаря этому в данной системе можно наблюдать многократное повторение цикла движения вниз – вверх, а сама система называется «маятником».

Теперь рассмотрим удар в нижней точке движения маятника. Явление удара сопровождается, как уже упоминалось, резкими изменениями сил взаимодействия за очень малый промежуток времени. Эти силы сначала нарастают, а затем убывают. Как правило, их зависимость от времени, неизвестна, и применение уравнений движения в явном виде затруднительно.

В теории удара рассматривают суммарный импульс силы:

$$\int_0^{\Delta t} F(t)dt = \Delta(mv^2) = m(v_2 - v_1)$$
(39)

где m — масса ударяющегося тела, v_1 и v_2 — его скорости до и после удара, F(t) — сила, действующая на тело во время удара, Δt — длительность удара.

В нашем случае во время удара происходит резкое увеличение силы натяжения нитей 2T. График изменения этой силы приведен на рис. 3 в. Поскольку скорость маятника при ударе меняет свое направление, изменение импульса – $m(v_1+v_2)$ обусловлено импульсом силы $F(t)=(2T)_{II}-mg$. Так как при движении маятника вниз и вверх (I и III стадии) сила натяжения нитей мало отличается от веса маятника: $(2T)_{I,III}\approx mg$ (ускорение $a_{I,III}\ll g$), то можно считать, что $F(t)\approx (2T)_{II}-(2T)_{I,III}=\Delta(2T)$.

Таким образом, импульс силы при ударе равен:

$$m(v_1 + v_2) = F_{mid}\Delta t = \int_0^{\Delta t} 2T(t)dt \tag{40}$$

т.е. определяется площадью под кривой ABCA на рис. 2 в. Поскольку при ударе угловая скорость маятника практически не изменяется (потери энергии малы), можно считать, что во время удара вращение происходит со средней угловой скоростью

$$w_{mid} = \frac{w_1 + w_2}{2} = \frac{v_1 + v_2}{2r} \tag{41}$$

а время удара равно

$$t = \frac{\pi}{w_{mid}} = \frac{2\pi r}{v_1 + v_2} \tag{42}$$

Преобразуя соотношения (40) и (42), получаем выражение для среднего значения силы F:

$$F_{mid} = \frac{m(v_1 + v_2)}{\Delta t} = \frac{m(v_1 + v_2)^2}{2\pi r}$$
(43)

Рассмотрим упрощенную картину движения маятника при ударе. Удар начинается в тот момент, когда нити полностью размотались со стержня и заканчивается через пол-оборота маятника, в момент начала нового наматывания нитей. Будем считать нити нерастяжимыми, т.е. пренебрежем дополнительным удлинением δh нитей при ударе (возникающим из-за роста сил натяжения) по сравнению с радиусом r стержня маятника:

$$\delta h \ll r.$$
 (44)

При таких предположениях центр масс маятника во время удара совершает движение вниз – вверх по закону: $h_{cm} = h_0 - r \sin(w_{mid}t)$, где h_0 – вертикальная координата центра масс в начале удара, время отсчитывается от момента начала удара. Поэтому сила, действующая на маятник во время удара, равна:

$$F(t) = \Delta(2T) = ma(t) = m\frac{d^2h_{cm}}{dt^2}$$
(45)

а ее максимальное значение:

$$[F(t)]_{max} = [\Delta 2T]_{max} = mw_{mid}^2 r = \frac{m(v_1 + v_2)^2}{4r}$$

Нетрудно видеть (сравнивая соотношения (43) и (46)), что во время удара максимальное значение силы натяжения нитей в $\pi/2$ раз превышает среднее значение силы.

Заметим, что поскольку радиус r стержня маятника мал по сравнению с длиной нитей h, нити маятника за время удара лишь незначительно отклоняются от вертикальной плоскости: $\phi_{max} \leq 2r/h \ll 1$, и небольшая горизонтальная проекция силы натяжения 2T не успевает вызвать заметного смещения центра масс маятника по горизонтали (см. рис. 3, где показаны три последовательных положения оси маятника: а — в начале, б — в середине и в — в конце удара). Однако отклонение нитей от вертикальной плоскости, возникающее после удара, приводит к появлению небольшого раскачивания оси маятника во время его подъема (III стадия). Это раскачивание маятника и вибрации системы, возникающие в результате удара, объясняют наблюдаемые в эксперименте осцилляции в зависимости силы натяжения нитей от времени.

0.2 Эксперемент и обработка

0.2.1 Упражнение 1. Определение ускорений и скоростей маятника Максвелла при его спуске и подъеме.

Для каждой измеряемой величины я нашел среднее арифметическое:

$$\langle X \rangle = \frac{\sum_{i=1}^{N} X_i}{N}$$

Оценку случайной погрешности произвел по формуле:

$$\sigma_{\langle X \rangle} = \sqrt{\frac{\sum (X_i - \langle X \rangle)^2}{N(N-1)}}$$

Суммарную погрешность вычислил:

$$\sigma_{\sum \langle X \rangle} = \sqrt{\sigma_{\langle X \rangle}^2 + \sigma_{X_{rand}}^2}$$

Скорость v и ускорение a:

$$v = \frac{4h}{\Delta t} \qquad a = \frac{8h}{(\Delta t)^2}$$

Погрешности v и a:

$$\sigma_v = \sqrt{\left(\frac{4}{\Delta t}\right)^2 * \sigma_h^2 + \left(\frac{4h}{(\Delta t)^2}\right)^2 * \sigma_{\Delta t}^2}$$
$$\sigma_a = \sqrt{\left(\frac{8}{(\Delta t)^2}\right)^2 * \sigma_h^2 + \left(\frac{8h}{2(\Delta t)^3}\right)^2 * \sigma_{\Delta t}^2}$$

Принял приборную погрешность h за 0.5 см, т.к. в статичном положении значения с датчика колебались на такую величину, это больше чем 1 процент от величины.

Приборную погрешность измерения массы, времени, силы взял равной 1 проценту.

Единственный очень весомый косяк - я забыл померить толщину веревки, взял на глаз значение в 0,75 см и прибавив к соответствубщим радиусам получил "Истинное значение по моему предположению маятник крутится по радиусу равному сумме его собственного и толщины веревки, погрешность "Истинного"радиуса поэтому взял равной 10 процентам.

На следующей странице приведены таблицы и обработка.

Хотя вставлю сюда характеристики установки:

mg	Погрешность mg	Xmax	Среднее	Приборная погрешность Хтах	Диаметр D	Радиус R	Macca m	Погрешность т	Истинный радиус R	Погрешность Истинного R
н	н	СМ	СМ	СМ	М	М	КГ	М	М	М
	Приборная +-1%									
3,75	0,04	26,3	26,7	0,5	0,005	0,0025	0,382	0,004	3,25E-03	3,25E-04
		26,7			0,007	0,0035			4,25E-03	4,25E-04
		27,1			0,009	0,0045			5,25E-03	5,25E-04

 $\ddot{\mathbf{E}}$ мае как же я задолбался это обрабатывать, мне кажется я сильно переборщил с данными, короче вот таблицы:

Таблица 1 по частям для радиуса $R1=25~\mathrm{cm}$:

dt - 1	dt - 2	dt - 3	Сред		Погрешн случайно измерень	ого	Погрешно среднего	СТЬ	Приборная погрешност	Полная погрешность
сек	сек	сек	сек		сек		сек		сек	сек
4,66	4,73	4,4	.9 4	1,63	0,12		0,07		0,05	0,08
4,54	4,54	4,5	4 4	1,54	0,00		0,00		0,05	0,05
4,24	4,19	4,2	.6 4	1,23	0,03		0,02		0,04	0,05
3,99	3,99	4,0	0 3	3,99	0,00		0,00		0,04	0,04
3,83	3,83	3,7	9 3	3,82	0,02		0,01		0,04	0,04
3,56	3,53	3,5	6 3	3,55	0,02		0,01		0,04	0,04
3,38	3,36	3,4	.0 3	3,38	0,02		0,01		0,03	0,04
3,18	3,16	3,1	6 3	3,17	0,01		0,01		0,03	0,03
h - 1	h - 2	h - 3	Среднее h	случа	шность айного рения		решность реднего		оиборная решность	Полная погрешность
СМ	СМ	СМ	СМ	C	М		СМ		СМ	СМ
26,3	26,7	27,1	26,7	C),4		0,2		0,5	0,6
24,8	24,4	24,4	24,5	C),2		0,1		0,5	0,5
21,8	21,9	21,9	21,9	0),1		0,0		0,5	0,5
19,2	19,6	19,6	19,5	0),2		0,1		0,5	0,5
17,7	17,4	17,3	17,5	C	,2		0,1		0,5	0,5
15,6	15,7	15,6	15,6	0),1		0,0		0,5	0,5
14,1	13,8	14,1	14,0	C	,2		0,1		0,5	0,5
12,5	12,9	12,5	12,6	C	,2		0,1		0,5	0,5
F-1	F - 2	F - 3	Среднее F	случа	шность айного рения		ешность еднего		иборная решность	Полная погрешность
Н	Н	Н	Н		Н		Н		Н	Н
4,5	3,7	5,1	4,4	0,	69		0,40		0,04	0,40
3,7	3,8	3,8	3,7	0,	01		0,00		0,04	0,04
3,8	3,8	3,8	3,8		01		0,01		0,04	0,04
3,7	3,7	3,8	3,7	0,	01		0,01		0,04	0,04
3,8	3,8	3,8	3,8		01		0,00		0,04	0,04
3,7	3,7	3,7	3,7		00		0,00		0,04	0,04
3,8	3,8	3,8	3,8		01		0,00		0,04	0,04
3,7	3,7	3,8	3,7		01		0,00		0,04	0,04

Таблица 2 для радиуса $R1=25~\mathrm{cm}$:

Ускорение а	Погрешность а	Скорость V	Погрешность V	Отношение К	Погрешность К
м / с^2	м / с^2	м/с	м/с	1	1
0,0998	0,0022	0,231	0,006	_	_
0,0951	0,0021	0,216	0,005	0,91	0,03
0,0978	0,0023	0,207	0,005	0,89	0,03
0,0976	0,0026	0,195	0,006	0,89	0,04
0,0960	0,0029	0,183	0,006	0,90	0,04
0,0993	0,0032	0,176	0,006	0,90	0,04
0,0982	0,0036	0,166	0,006	0,90	0,05
0,1008	0,0042	0,160	0,007	0,90	0,05

Таблица 1 по частям для радиуса $R2=35~\mathrm{cm}$:

dt - 1	dt - 2	dt - 3	Среднее dt	Погрешность случайного измерения	Погрешность среднего	Приборная погрешность	Полная погрешность
сек	сек	сек	сек	сек	сек	сек	сек
3,412	3,378	3,394	3,395	0,017	0,010	0,034	0,035
3,386	3,409	3,386	3,394	0,013	0,008	0,034	0,035
3,271	3,272	3,294	3,279	0,013	0,008	0,033	0,034
3,158	3,135	3,158	3,150	0,013	0,008	0,032	0,032
3,088	3,065	3,069	3,074	0,012	0,007	0,031	0,032
2,912	2,937	2,937	2,929	0,014	0,008	0,029	0,030
2,886	2,895	2,895	2,892	0,005	0,003	0,029	0,029
2,771	2,754	2,753	2,759	0,010	0,006	0,028	0,028
2,794	2,712	2,695	2,734	0,053	0,031	0,027	0,041
h - 1	h - 2	h - 3	Среднее h	Погрешность случайного измерения	Погрешность среднего	Приборная погрешность	Полная погрешность
СМ	СМ	СМ	СМ	СМ	СМ	СМ	СМ
27,0	26,5	26,8	26,8	0,3	0,1	0,5	0,5
25,1	25,0	25,1	25,1	0,1	0,0	0,5	0,5
23,6	23,1	23,0	23,2	0,3	0,2	0,5	0,5
21,7	21,7	21,7	21,7	0,0	0,0	0,5	0,5
20,8	20,4	20,8	20,7	0,2	0,1	0,5	0,5
19,3	19,2	19,2	19,2	0,1	0,0	0,5	0,5
18,1	18,1	18,5	18,2	0,2	0,1	0,5	0,5
17,1	17,1	16,6	16,9	0,3	0,2	0,5	0,5
15,7	16,2	16,2	16,0	0,3	0,2	0,5	0,5
F-1	F - 2	F - 3	Среднее F	Погрешность случайного измерения	Погрешность среднего	Приборная погрешность	Полная погрешность
H	Н	Н	H	H	H	Н	H
4,39	4,28	4,23	4,30	0,08	0,05	0,04	0,06
4,05	3,74	3,73	3,84	0,18	0,11	0,04	0,11
3,77	3,78	3,76	3,77	0,01	0,01	0,04	0,04
3,71	3,72	3,71	3,71	0,01	0,00	0,04	0,04
3,71	3,74	3,70	3,72	0,02	0,01	0,04	0,04
3,64	3,65	3,67	3,65	0,02	0,01	0,04	0,04
3,73	3,71	3,73	3,72	0,01	0,01	0,04	0,04
3,68	3,70	3,70	3,69	0,01	0,01	0,04	0,04
3,75	3,75	3,75	3,75	0,00	0,00	0,04	0,04

Таблица 2 для радиуса R2 = 35 см:

Ускорение а	Погрешность а	Скорость V	Погрешность V	Отношение К	Погрешность К
м/с^2	м/с^2	м/с	м/с	1	1
0,186	0,004	0,315	0,006	_	_
0,174	0,004	0,295	0,007	0,94	0,03
0,173	0,004	0,283	0,007	0,93	0,03
0,175	0,004	0,276	0,007	0,93	0,03
0,175	0,004	0,269	0,007	0,95	0,03
0,179	0,005	0,263	0,007	0,93	0,04
0,174	0,005	0,252	0,008	0,95	0,04
0,178	0,006	0,245	0,008	0,93	0,04
0,172	0,006	0,235	0,008	0,95	0,05

Таблица 1 по частям для радиуса R3 = 45 см:

dt - 1	dt - 2	dt - 3	Среднее dt	Погрешность случайного измерения	Погрешность среднего	Приборная погрешность	Полная погрешность
сек	сек	сек	сек	сек	сек	сек	сек
2,366	2,396	2,396	2,386	0,017	0,010	0,024	0,026
2,411	2,381	2,396	2,396	0,015	0,009	0,024	0,025
2,306	2,313	2,336	2,318	0,016	0,009	0,023	0,025
2,224	2,254	2,269	2,249	0,023	0,013	0,022	0,026
2,208	2,201	2,216	2,208	0,008	0,004	0,022	0,023
2,104	2,119	2,142	2,122	0,019	0,011	0,021	0,024
2,044	2,074	2,098	2,072	0,027	0,016	0,021	0,026
2,007	1,984	1,999	1,997	0,012	0,007	0,020	0,021
h - 1	h - 2	h - 3	Среднее h	Погрешность случайного измерения	Погрешность среднего		Полная погрешность
СМ	СМ	СМ	СМ	CM	СМ	СМ	СМ
25,6	25,6	25,6	25,6	0,0	0,0	0,5	0,5
24,2	24,2	23,7	24,0	0,3	0,2	0,5	0,5
22,3	22,7	22,3	22,4	0,2	0,1	0,5	0,5
21,5	21,1	21,0	21,2	0,3	0,2	0,5	0,5
19,9	19,8	19,5	19,7	0,2	0,1	0,5	0,5
18,8	18,3	18,3	18,5	0,3	0,2	0,5	0,5
17,4	17,4	17,4	17,4	0,0	0,0	0,5	0,5
16,4	16,4	16,4	16,4	0,0	0,0	0,5	0,5
F-1	F - 2	F-3	Среднее F	Погрешность случайного измерения	Погрешность среднего	Приборная погрешность	Полная погрешность
Н	Н	Н	Н	Н	Н	H	Н
2,59	2,60	2,59	2,59	0,01	0,00	0,03	0,03
3,34	3,31	3,43	3,36	0,06	0,04	0,03	0,05
3,37	3,38	3,37	3,37	0,01	0,00	0,03	0,03
3,31	3,31	3,31	3,31	0,00	0,00	0,03	0,03
3,31	3,31	3,33	3,32	0,01	0,01	0,03	0,03
3,32	3,33	3,30	3,32	0,02	0,01	0,03	0,03
3,30	3,31	3,31	3,31	0,01	0,00	0,03	0,03
3,28	3,28	3,29	3,28	0,01	0,00	0,03	0,03

Таблица 2 для радиуса R3 = 45 см:

Ускорение а	Погрешность а	Скорость V	Погрешность V	Отношение К	Погрешность К
м/с^2	м/с^2	м/с	м/с	1	1
0,360	0,007	0,429	0,010		_
0,335	0,008	0,401	0,010	0,94	0,03
0,334	0,008	0,387	0,010	0,93	0,03
0,335	0,008	0,377	0,010	0,95	0,03
0,324	0,009	0,357	0,010	0,93	0,04
0,328	0,010	0,348	0,011	0,94	0,04
0,324	0,010	0,336	0,011	0,94	0,04
0,329	0,010	0,329	0,011	0,94	0,04

Ну шо сказать, нормально. Делаем выводы, пацаны...

Я убедился в том что механическая энергия с каждым прошедшим колебанием уменьшается (рассеивается), хоть и значительная энергии (около 95%) сохраняется от колебания к колебанию.

0.2.2 Упражнение 2. Определение времени удара и максимального увеличения силы натяжения нитей.

Расчитал для 1-го и 2-го ударов время au и максимальное увеличение силы натяжения $\left[\Delta T\right]_{max}$:

$$\tau = \frac{2\pi r}{v_1 + v_2} \qquad \left[\Delta T\right]_{max} = \frac{m(v_1 + v_2)}{4r}$$

Погрешности τ и $\left[\Delta T\right]_{max}$:

$$\begin{split} \sigma_{\tau} &= \sqrt{\left(\frac{2\pi}{v_1 + v_2}\right)^2 \sigma_r^2 + \left(\frac{2\pi R}{(v_1 + v_2)^2}\right)^2 (\sigma_{v_1}^2 + \sigma_{v_2}^2)} \\ \\ \sigma_{[\Delta T]_{max}} &= \sqrt{\left(\frac{v_1 + v_2}{4r}\right)^2 \sigma_m^2 + \left(\frac{m}{4r}\right)^2 (\sigma_{v_1}^2 + \sigma_{v_2}^2) + \left(\frac{m(v_1 + v_2)}{4r^2}\right)^2 * \sigma_r^2} \end{split}$$

Вычислил отношение:

$$P_{calc} = \frac{\left[\Delta T\right]_{max}^{calc}}{mg} + 1$$

Ну що, поехали таблицы:

Таблица 3 для R1:

Время t	Погрешн ость t	Delta(2T)	Погрешность Delta(2T)	Ррасч	Рэксп
С	С	Н	Н	1	1
0,046	0,005	13,1	1,3	4,5	забыл

Таблица 3 для R2:

Время t	Погрешность t	Delta(2T)	Погрешность Delta(2T)	Ррасч	Рэксп
С	С	Н	Н	1	1
0,044	0,004	13,7	1,4	4,66	забыл

Таблица 3 для R3:

Время t	Погрешность t	Delta(2T)	Погрешность Delta(2T)	Ррасч	Рэксп
С	C	Н	Н	1	1
0,040	0,004	15,1	1,5	5,03	забыл

Вывод можно сделать таким: я забыл снять эксперементальное значение P_{exp}

0.2.3 Упражнение 3. Определение момента инерции маятника Максвелла.

Вычислил эксперементальное значение момента инерции по формуле:

$$J_{exp} = mr^2 \left(\frac{g}{a} - 1\right)$$

Погрешность J_{exp} :

$$\sigma_{J_{exp}} = \sqrt{\left(\frac{mr^2g}{a^2}\right)^2\sigma_a^2 + \left(r^2\bigg(\frac{g}{a}-1\bigg)\right)^2\sigma_m^2 + \left(2mr\bigg(\frac{g}{a}-1\bigg)\right)^2\sigma_r^2}$$

Теоретическое значение момента инерции:

$$J_{theor} \approx \frac{mR^2}{2}$$

Таблички:

Таблица 4 для R1:

Момент инерции Ј_эксп	Погрешность Ј_эксп	Среднее Ј_эксп	Ј_теор	Ј_эксп / Ј_теор
кг * м^2	кг * м^2	кг * м^2	кг * м^2	1
4,0E-04	8E-05	4,1E-04	4,8E-04	0,85
4,2E-04	8E-05			
4,1E-04	8E-05			
4,1E-04	8E-05			
4,2E-04	8E-05			
4,0E-04	8E-05			
4,1E-04	8E-05			
4,0E-04	8E-05			

Таблина 4 для R2:

Момент инерции Ј_эксп	Погрешность Ј_эксп	Среднее Ј_эксп	Ј_теор	Ј_эксп / Ј_теор
кг * м^2	кг * м^2		кг * м^2	1
3,7E-04	7E-05	3.9E-04	4,8E-04	0,81
4,0E-04	8E-05			
4,0E-04	8E-05			
3,9E-04	8E-05			
3,9E-04	8E-05			
3,8E-04	7E-05			
4,0E-04	8E-05			
3,9E-04	8E-05			
4,0E-04	8E-05			

Таблица 4 для R3:

Момент инерции Ј_эксп	Погрешность Ј_эксп	Среднее Ј_эксп	Ј_теор	J_эксп / J_теор
кг * м^2	кг * м^2	кг * м^2	кг * м^2	1
3,0E-04	6E-05	3,2E-04	4,8E-04	0,67
3,2E-04	6E-05			
3,2E-04	6E-05			
3,2E-04	6E-05			
3,3E-04	6E-05			
3,3E-04	6E-05			
3,3E-04	6E-05			
3,2E-04	6E-05			

Довольно точно получилось. Вывод: я профессионал подгона.

Заметка: сделать в следующий раз таблицы покрасивее.

0.2.4 Упражнение 4. Проверка закона сохранения механической энергии.

Считаю кинетическую энергию по формуле:

$$W_k \approx \frac{Jw^2}{2} = \frac{Jv^2}{2r^2}$$

Потенциальную по формуле:

$$W_p = mgh$$

Введу отношение потенциальной энергии к соответствующей кинетической:

$$K = \frac{W_k}{W_p}$$

Табличка:

Nº	x	Кинетическая энергия Ек	Потенциальная энергия Еп	Отношение К
	Размерность	Дж	Дж	1
1	R1	0,91	0,92	0,99
	R2	0,94	0,94	1,00
	R3	0,93	0,90	1,03
2	R1	0,83	0,82	1,01
	R2	0,86	0,87	0,99
	R3	0,87	0,84	1,04

УРААААА Я ДОДЕЛАЛ ПРАК УРАААААААААААААААРАРРАРАРАРАРА Вывод: ОААООАОАОАОАОАОА закон сохранения энергии работает!!!

Отношение энергий почти 1!