Introduction to Econometrics

Limited dependent variables

Outline of this course

Limited dependent variables Introduction

Limited variable?

Limited dependent variable: Discrete variable takes on finite values.

Binary variables: Possible values: 0/1

Any output of a dichotomous question:

- Do I feel good today ? (time series)
- Did this bank collapse this year? (cross-sectional data)
- Will this app become a killer app? (cross-sectional data or time series)
- Is there a difference between low-cost and high-cost cheese cubes?

9,96 euro/kg

23,27 euro/kg

Linear regression with limited variables

Dependent variable: Paid dividend in 2019

Explanatory variable: Market capitalisation (in billions \$)

$$Div_t = -0.27 + 0.0025cap_t$$

Interpretation as a probability?

$$cap_t = 50 \rightarrow Div_t = -0.15$$
$$cap_t = 1000 \rightarrow Div_t = 2.2$$

Useful for quickly checking if a relation exists

Linear regression with limited variables

Dependent variable: Paid dividend in 2019

Explanatory variable: Market capitalisation (in billions \$)

Limited dependent variables Unconditional probability

Model for limited variables

Are you able to distinguish between a low-cost and an expensive cheese cube?

Dependent variable: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

Unconditional probability

Average probability in the population of detecting a correct cube cheese

$$P[C_t = 1] = p$$

How to estimate p?

Conditional probability

Probability given some characteristics of detecting a correct cube cheese

$$P[C_t = 1|x_t] = f(\beta_1 + \beta_2 x_t)$$

How to estimate β_1 and β_2 ?

Model for limited variables

<u>Dependent variable</u>: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

<u>Unconditional probability:</u> $P[C_t = 1] = p \longrightarrow P[C_t = 0] = 1 - p$

Properties:

$$E(C_t) = p$$

$$V(C_t) = E(C_t^2) - E(C_t)^2 = p - p^2 = p(1 - p)$$

Application: Estimation of a proportion

Survey and polls

When individuals are humans

$$C_t = 1$$

Other proportions

When individuals are not humans

 $P[C_t = 1] = p$ $N = \sum_{t=1}^{T} c_t = \# \text{ of } 1$

<u>Dependent variable</u>: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

Let us assume that p = 0.5

$$P(C_1 = 0) = 0.5$$
 $T = 1$ $P(C_1 = 1) = 0.5$

$$T=1$$

$$P(C_1 = 1) = 0.5$$

$$P(C_1 = 0, C_2 = 0) = 0.25$$
 $P(C_1 = 0, C_2 = 1) = 0.25$ $P(C_1 = 1, C_2 = 0) = 0.25$ $P(C_1 = 1, C_2 = 1) = 0.25$

$$P(C_1 = 0, \overline{C_2} = 1) = 0.25$$

$$P(C_1 = 1, C_2 = 0) =$$

$$P(C_1 = 1, C_2 = 1) =$$

Likelihood function for two flips:

$$P(C_1 = 0, C_2 = 1|p) = P(C_1 = 0|p)P(C_2 = 1|p) = (1-p)p = (1-p)^{\# \text{ of } 0}p^{\# \text{ of } 1}$$

General likelihood function:

$$P(C_1 = c_1, C_2 = c_2, \dots, C_T = c_T | p) = \prod_{t=1}^T P(C_t = c_t | p) = \prod_{t=1}^T p^{c_t} (1-p)^{1-c_t} = p^{N} (1-p)^{T-N}$$

General likelihood function:

$$P(C_1 = c_1, C_2 = c_2, \dots, C_T = c_T | p) = \prod_{t=1}^T P(C_t = c_t | p) = \prod_{t=1}^T p^{c_t} (1-p)^{1-c_t} = p (1-p)^{T-N}$$

Likelihood of observing a sample: depends on N and T

Let us assume that p = 0.5

$$N = 0$$
 $T = 2$
 $P(C_1 = 0, C_2 = 0) = 0.25$

Prob = 0.25

$$N = 1$$
 $P(C_1 = 1, C_2 = 0) = 0.25$
 $+$
 $P(C_1 = 0, C_2 = 1) = 0.25$
 $-$
Prob = 0.5

The likelihood of the number of successes can be expressed as $f(N|T,p) = \sum_{i=1}^{\# \text{success}=N} p^N (1-p)^{T-N}$

$$P[C_t = 1] = p
 N = \sum_{t=1}^{T} C_t = \# \text{ of } 1$$

Additional examples

$$p=0.5$$
 $N=0$ $N=1$ $N=2$ $N=3$ $T=1$ Prob = 0.5 Prob = 0.5 Prob = 0.25 $T=3$ Prob = 0.125 Prob = 0.375 Prob = 0.375 Prob = 0.125

Binomial distribution

$$f(N|T,p) = \sum_{i=1}^{\text{\#success=N}} p^N (1-p)^{T-N} = {T \choose N} p^N (1-p)^{T-N}$$

The sum of Bernoulli random variables follows a Binomial distribution:

$$C_t \sim \text{Be}(p) \text{ then } N = \sum_{t=1}^T C_t \sim \text{Bino}(p, T)$$

Cheese tasting

One trial:

$P|C_t = 1| = p$

Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

Unable to tell them apart → Random guess:

$$p = 0.5$$

$$N=0$$
 $N=1$

$$N = 1$$

$$N = 8$$

$$N = 9$$

$$N = 10$$

$$T = 10$$

$$Prob = 0$$

$$T = 10$$
 Prob = 0 Prob = 0.01

$$Prob = 0.04$$

• • •
$$N = 8$$
 $N = 9$ $N = 10$ Prob = 0.04 Prob = 0.01 Prob = 0

$$Prob = 0$$

Link to statistical tests

Significant level of 99%

 $P[N \ge 8] = 0.05$ One mistake is allowed!

Significant level of 95%

Two mistake is allowed

Are we able to statistically detect the expensive cheese?

<u>Dependent variable</u>: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

How to estimate p?

$$p=0.5,\ p=0.25$$
 $N=0$ $N=1$ $N=2$ $N=3$ $T=1$ Prob = 0.5 Prob = 0.5 Prob = 0.25 $T=2$ Prob = 0.25 Prob = 0.25

$$T=3$$
 Prob = 0.125 Prob = 0.375 Prob = 0.375 Prob = 0.125 Prob = 0.421 Prob = 0.421 Prob = 0.14 Prob = 0.015

ob = 0.421 | Prob = 0.14 | Prob = 0.015

$$(N|T, n) = \max_{x \in T} (T)_{n} N(1-n)^{T-N}$$

Binomial distribution: $\max_{p} f(N|T,p) = \max_{p} \binom{T}{N} p^{N} (1-p)^{T-N}$

Maximum likelihood estimator (MLE)

$$P[C_t = 1] = p$$
$$N = \sum_{t=1}^{T} C_t$$

<u>Dependent variable</u>: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

$$\max_{p} f(N|T,p) = \max_{p} {T \choose N} p^{N} (1-p)^{T-N}$$
 Complicated function to optimize

If \hat{p} maximizes f(N|T,p) then \hat{p} maximizes $\ln f(N|T,p)$.

$$P[C_t = 1] = p$$
$$N = \sum_{t=1}^{T} C_t$$

<u>Dependent variable</u>: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

$$\max_{p} \ln f(N|T, p) = \max_{p} \ln \binom{T}{N} + N \ln(p) + (T - N) \ln(1 - p)$$

Estimator of p: $\hat{p} = \frac{N}{T}$

Number of successes over the number of trials

Proof:

$$\frac{d\ln f(N|T,p)}{dp} = \frac{N}{p} - \frac{(T-N)}{1-p} (=0),$$

$$\frac{N}{\hat{p}} = \frac{(T-N)}{1-\hat{p}},$$

$$N-N\hat{p} = (T-N)\hat{p},$$

$$\hat{p} = \frac{N}{T}$$

$P[C_t = 1] = p$ $N = \sum_{t=1}^{T} C_t$

Properties of the estimator?

Note that:
$$\hat{p} = \frac{N}{T} = \frac{1}{T} \sum_{t=1}^{T} C_t = \bar{C}$$

Average of random variables!

What kind of random variable is C_t ?

Properties: $E(C_t) = p$

$$E(C_t) = p$$

$$V(C_t) = E(C_t^2) - E(C_t)^2 = p - p^2 = p(1 - p)$$

Assumption: No dependence between the trials

e.g. No learning curve

Properties of the estimator: $\hat{p} = C$

$E(C_t) = p$ $V(C_t) = p(1-p)$

Unbiasedness

$$E(\hat{p}) = \frac{1}{T} \sum_{t=1}^{T} E(C_t)$$

$$E(\hat{p}) = p$$

Consistency

$$V(\hat{p}) = \frac{1}{T^2} \sum_{t=1}^{T} V(C_t)$$

Also: Implication of the LLN

Distribution of the estimator?

<u>Central limit theorem:</u> $\hat{p} = \frac{1}{T} \sum_{t=1}^{T} C_t \rightarrow N(p, \frac{p(1-p)}{T})$

Statistical test when T large

 $E(C_t) = p$ $V(C_t) = p(1 - p)$

Central limit theorem:
$$\hat{p} = \frac{1}{T} \sum_{t=1}^{T} C_t \rightarrow N(p, \frac{p(1-p)}{T})$$

Hypothesis: $H_0: p = 0.4 \text{ vs } H_1: p \neq 0.4$

 $\underline{\text{Under the null:}} \quad \hat{p} \sim N(0.4, \tfrac{0.24}{T}) \qquad \qquad \underline{\hat{p}-0.4} \sim N(0,1)$

For large T:
$$Z_p \equiv \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{T}}} \sim N(0,1)$$

Any estimate of the statistic is a realization of a N(0,1)

For large T, no need to use the binomial cumulative density function for performing statistical tests.

Empirical exercise

Iphone application: What is the proportion of Game applications?

What do we learn in this exercise?

- How to estimate the unconditional probability from a limited variable.
- How to maximize a likelihood function.
- How to test a probability.

Limited dependent variables Conditional probability

Dependent variable: Distinguishing the cheese cube \rightarrow $C_t = 1$ if correct

Conditional probability: $P[C_t = 1 | x_t] = f(\beta_1 + \beta_2 x_t)$

Which function to choose?

Any cumulative density function on the real support

$$f(\beta_1 + \beta_2 x_t) = \frac{\exp(\beta_1 + \beta_2 x_t)}{1 + \exp(\beta_1 + \beta_2 x_t)} \qquad f(\beta_1 + \beta_2 x_t) = \Phi(\beta_1 + \beta_2 x_t) = \int_{-\infty}^{\beta_1 + \beta_2 x_t} \frac{1}{\sqrt{2\pi}} \exp(-\frac{z^2}{2}) dz$$

Dependent variable: Distinguishing the cheese cube $\rightarrow C_t = 1$ if correct

How to estimate a conditional probability?

$$P[C_t = 1|x_t] = f(\beta_1 + \beta_2 x_t) = f_{\beta}(x_t)$$

$$P(C_1 = 0|x_1) = 1 - f_{\beta}(x_1)$$
 $T = 1$ $P(C_1 = 1|x_1) = f_{\beta}(x_1)$

$$T = 2$$

$$P(C_1 = 0, C_2 = 0 | x_1, x_2) = (1 - f_{\beta}(x_1))(1 - f_{\beta}(x_2)) \qquad P(C_1 = 1, C_2 = 0 | x_1, x_2) = f_{\beta}(x_1)(1 - f_{\beta}(x_2))$$

$$P(C_1 = 0, C_2 = 1 | x_1, x_2) = (1 - f_{\beta}(x_1))f_{\beta}(x_2) \qquad P(C_1 = 1, C_2 = 1 | x_1, x_2) = f_{\beta}(x_1)f_{\beta}(x_2)$$

General likelihood function:

$$P(C_1 = c_1, C_2 = c_2, \dots, C_T = c_T | x_1, \dots, x_T) = \prod_{t=1}^T P(C_t = c_t | x_t) = \prod_{t=1}^T f_{\beta}(x_t)^{c_t} (1 - f_{\beta}(x_t))^{1 - c_t}$$

Cannot be simplified with the number of successes *N* and of trials *T*

$$\prod_{t=1}^{T} f_{\beta}(x_t)^{c_t} (1 - f_{\beta}(x_t))^{1-c_t} \neq p^N (1-p)^{T-N}$$

$$P[C_t = 1|x_t] = f_{\beta}(x_t)$$

Maximum likelihood estimator:

$$\max_{\beta_1,\beta_2} P(C_1 = c_1, C_2 = c_2, \dots, C_T = c_T | x_1, \dots, x_T) = \max_{\beta_1,\beta_2} \prod_{t=1}^T f_{\beta}(x_t)^{c_t} (1 - f_{\beta}(x_t))^{1-c_t}$$

Complicated function to optimize

$$\max_{\beta_1,\beta_2} \sum_{t=1}^{T} c_t \ln[f_{\beta}(x_t)] + (1 - c_t) \ln(1 - f_{\beta}(x_t))$$

Logistic function:
$$f_{\beta}(x_t) = \frac{\exp(\beta_1 + \beta_2 x_t)}{1 + \exp(\beta_1 + \beta_2 x_t)}$$

Normal cdf:
$$f(\beta_1 + \beta_2 x_t) = \Phi(\beta_1 + \beta_2 x_t) = \int_{-\infty}^{\beta_1 + \beta_2 x_t} \frac{1}{\sqrt{2\pi}} \exp(-\frac{z^2}{2}) dz$$

Likelihood function cannot be maximized analytically

$$P[C_t = 1|x_t] = \Phi(\beta_1 + \beta_2 x_t)$$

Normal cdf:
$$f(\beta_1 + \beta_2 x_t) = \Phi(\beta_1 + \beta_2 x_t) = \int_{-\infty}^{\beta_1 + \beta_2 x_t} \frac{1}{\sqrt{2\pi}} \exp(-\frac{z^2}{2}) dz$$

Maximum likelihood estimator with Normal cdf:

$$\max_{\beta_1,\beta_2} \sum_{t=1}^{T} c_t \ln[\Phi(\beta_1 + \beta_2 x_t)] + (1 - c_t) \ln(1 - \Phi(\beta_1 + \beta_2 x_t))$$

We maximize the function using a statistical software:

Numerical algorithms:

- Steepest gradient (Based on the first derivative)
- Newton-Raphson method (Based on the first two derivatives)
- Nelder-Mead algorithm (derivative-free)
- Heuristic algorithms (Particle swarm, Differential Evolution, ...)

Focus on the Newton-Raphson method

Numerical optimization

e.g. function: $f(x) = x^2 + 4x + 2$

Newton-Raphson:
$$\hat{x} = \operatorname{argmin}_{x} f(x)$$

$$\frac{df(x)}{dx}\big|_{x=\hat{x}} = 0$$

Algorithm:

- 1. Start from an initial point: x_0
- 2. Find a promising new point: $x_1 = x_0 + t$

If the promising point is a minimum, its derivative is zero: $\frac{df(x)}{dx}|_{x=x_1}=0$

The derivative at the promising point is approximated by a Taylor expansion:

$$\frac{df(x)}{dx}|_{x=x_1} \approx \frac{df(x)}{dx}|_{x=x_0} + (x_1 - x_0) \frac{d^2f(x)}{dx^2}|_{x=x_0} \qquad t = -(\frac{d^2f(x)}{dx^2}|_{x=x_0})^{-1} \frac{df(x)}{dx}|_{x=x_0}$$

3. Check if the promising point is a minimum, if not come back to 1 with $x_0 = x_1$

Numerical optimization

Illustration with a function:
$$f(x) = x^2 + 4x + 2$$
 $\xrightarrow{df(x)} \frac{df(x)}{dx} = 2x + 4$ and $\frac{d^2f(x)}{dx^2} = 2$

Newton-Raphson algorithm:

- 1. Start from an initial point: $x_0 = 5$
- 2. Find a promising new point: $x_1 = x_0 + t$ with $t = -\left(\frac{d^2 f(x)}{dx^2}|_{x=x_0}\right)^{-1} \frac{df(x)}{dx}|_{x=x_0}$

$$t = -\frac{1}{2}(2x_0 + 4) = -7 \qquad \longrightarrow \qquad x_1 = -2$$

3. Check if the promising point is a minimum: $\frac{df(x)}{dx}|_{x=x_1} = 2(-2) + 4 = 0$

For more complex function, it requires several iterations

Why does it work in one iteration for quadratic functions?

The derivative is linear so the Taylor expansion is exact.

$$P[C_t = 1|x_t] = \Phi(\beta_1 + \beta_2 x_t)$$

Maximum likelihood estimator with Normal cdf:

$$\max_{\beta_1,\beta_2} \sum_{t=1}^{T} c_t \ln[\Phi(\beta_1 + \beta_2 x_t)] + (1 - c_t) \ln(1 - \Phi(\beta_1 + \beta_2 x_t))$$

Using a Numerical algorithm, we get our estimates: $\hat{\beta}_1$, $\hat{\beta}_2$

Two issues:

- How to interpret these estimates?
- 2. What are the statistical properties of our estimator?

Interpretation

We have our estimates: $\hat{\beta}_1, \hat{\beta}_2$

How do I interpret them?

Estimates are related to the probability: $P[C_t = 1|x_t] = \Phi(\hat{\beta}_1 + \hat{\beta}_2 x_t)$

Signs

 $\hat{\beta}_2 > 0$: prob increases with x_t

 $\hat{\beta}_2 < 0$: prob decreases with x_t

Exact interpretation:

$$\frac{dP[C_t=1|x_t]}{dx_t} = \underbrace{\frac{d\Phi(\hat{\beta}_1+\hat{\beta}_2x_t)}{d(\hat{\beta}_1+\hat{\beta}_2x_t)}}_{\gamma} \hat{\beta}_2$$

Density function of N(0,1)

Statistical test

We have our estimates: $\hat{\beta}_1, \hat{\beta}_2$

Without analytical formulas, how can we study the statistical properties?

Maximum likelihood theory provides a solution

Limited dependent variables Introduction to the maximum likelihood theory (Relevant for empirical works)

Maximum likelihood estimator

$E(C_t) = p$ $V(C_t) = p(1 - p)$

Maximum likelihood estimator (MLE):

$$\hat{p} = \operatorname{argmax}_{p} P(C_1, C_2, \dots, C_T) = \operatorname{argmax}_{p} \prod_{t=1}^{T} p^{C_t} (1-p)^{1-C_t}$$

<u>Intuition:</u>

Curvature gives a sense of the variance

$$\hat{p} \sim N(p, \sigma_p^2)$$

$$\ln f(\hat{p}|p, \sigma_p^2) = -\frac{1}{2} \ln(2\pi\sigma_p^2) - \frac{(\hat{p}-p)^2}{2\sigma_p^2}$$

$$\frac{d^2 \ln f(\hat{p}|p, \sigma_p^2)}{dp^2} = -\frac{1}{\sigma_p^2}$$

$$\sigma_p^2 = (-\frac{d^2 \ln f(\hat{p}|p, \sigma_p^2)}{dp^2})^{-1}$$

In a Nutshell: Maximum likelihood theory

Given the log-likelihood function:

$$\ln f(c_{1:T}|\beta = \{\beta_1, \beta_2\}) = \sum_{t=1}^{T} c_t \ln[\Phi(\beta_1 + \beta_2 x_t)] + (1 - c_t) \ln(1 - \Phi(\beta_1 + \beta_2 x_t))$$

- 1. Find the maximum likelihood estimate: $\frac{d \ln f(c_{1:T}|\beta)}{d\beta} = 0$ $\hat{\beta} = \{\hat{\beta}_1, \hat{\beta}_2\}$
- 2. Compute the second derivative: $H(\beta) = \frac{d^2 \ln f(c_{1:T}|\beta)}{d\beta^2}$
- 3. Maximum likelihood estimator:

$$\hat{\beta}_1 \sim N(\beta_1, ((-H(\hat{p}))^{-1})_{11})$$
 for large T.

In a Nutshell: Maximum likelihood theory

Example: Unconditional probability

Slide 11: Log-likelihood function is given by

$$\ln P(C|p) = \sum_{t=1}^{T} c_t \ln[p] + (1 - c_t) \ln(1 - p)$$

1. Find the maximum likelihood estimate: $\frac{d \ln P(C|p)}{dp} = 0$

$$\frac{d \ln P(C|p)}{dp} = \frac{\sum_{t=1}^{T} c_t}{p} - \frac{\sum_{t=1}^{T} (1 - c_t)}{1 - p} \qquad \qquad \hat{p} = \frac{N}{T - N}$$

$$\hat{p} = \frac{\sum_{t=1}^{T} c_t}{T} = \frac{N}{T}$$

2. Compute the second derivative: $H(p) = \frac{d^2 \ln P(C|p)}{dp^2}$

$$\frac{d^2 \ln P(C|p)}{dp^2} = -\frac{N}{p^2} - \frac{T - N}{(1 - p)^2} \qquad H(\hat{p}) = -\frac{T}{\hat{p}^2} \left[\frac{N}{T} + \frac{\hat{p}^2}{T} \frac{\hat{p}^2}{(1 - \hat{p})^2} \right] \qquad H(\hat{p}) = -\frac{T}{\hat{p}(1 - \hat{p})}$$

3. Maximum likelihood estimator:

$$\hat{p} \sim N(p, (-H(\hat{p}))^{-1})$$
 for large T $\hat{p} \sim N(p, \frac{\hat{p}(1-\hat{p})}{T})$

Empirical exercise

Iphone application: Does the app score help for becoming a killer app?

What do we learn in this exercise?

- How to estimate the conditional probability from a limited variable.
- How to maximize a likelihood function.
- How to test the value of a parameter.

Limited dependent variables Introduction to the maximum likelihood theory (mathematical part)

Maximum likelihood estimator

 $E(C_t) = p$ $V(C_t) = p(1-p)$

Central limit theorem:
$$\hat{p} = \frac{1}{T} \sum_{t=1}^{T} C_t \rightarrow N(p, \frac{p(1-p)}{T})$$

Maximum likelihood theory:

Likelihood function:
$$P(C|p) = \prod_{t=1}^{T} p^{C_t} (1-p)^{1-C_t}$$

Log-likelihood function:
$$\ln P(C|p) = \sum_{t=1}^{T} C_t \ln p + (1 - C_t) \ln (1 - p)$$

First derivative:
$$\frac{d \ln P(C|p)}{dp} = \sum_{t=1}^{T} \frac{C_t}{p} - \frac{(1-C_t)}{1-p}$$
 $E[\frac{C_t}{p} - \frac{(1-C_t)}{1-p}] = \frac{E(C_t)}{p} - \frac{E(1-C_t)}{1-p} = 0$

Asymptotically, the true probability should maximize the likelihood function!

$$\frac{d \ln P(C|p)}{dp}|_{p=p} = \sum_{t=1}^{T} \frac{C_t}{p} - \frac{(1-C_t)}{1-p} \approx 0 \text{ for large T.}$$

$$\frac{d \ln P(C|p)}{dp}|_{p=p} \sim N\left(0, T V\left(\frac{C_t}{p} - \frac{(1-C_t)}{1-p}\right)\right) \text{ for large T.}$$

Maximum likelihood estimator

$$V(\frac{C_t}{p} - \frac{(1 - C_t)}{1 - p}) = E((\frac{C_t}{p} - \frac{(1 - C_t)}{1 - p})^2),$$

$$= \frac{1}{p^2}p + \frac{1}{(1 - p)^2}(1 - p),$$

$$= \frac{1}{p(1 - p)}.$$

$$\frac{d \ln P(C|p)}{dp}|_{p=p} \sim N\left(0, T V\left(\frac{C_t}{p} - \frac{(1-C_t)}{1-p}\right)\right)$$
 for large T.

Maximum likelihood estimator: $\frac{d \ln P(C|p)}{dp}|_{p=\hat{p}} = 0$ $\hat{p} = \frac{1}{T} \sum_{t=1}^{T} C_t$

$$\frac{d\ln P(C|p)}{dp}|_{p=\hat{p}} = 0$$

$$\hat{p} = \frac{1}{T} \sum_{t=1}^{T} C_t$$

Maximum likelihood theory

Mean Value Theorem:

$$\underbrace{\frac{d\ln P(C|p)}{dp}|_{p=\hat{p}}}_{=0} = \frac{d\ln P(C|p)}{dp}|_{p=p} + (\hat{p} - p)\frac{d^2 \ln P(C|p)}{dp^2}|_{p=\bar{p}}$$

$$(\hat{p} - p) = \left(-\frac{d^2 \ln P(C|p)}{dp^2}\Big|_{p=\bar{p}}\right)^{-1} \frac{d \ln P(C|p)}{dp}\Big|_{p=p}$$

$$(\hat{p}-p) \sim N(0, \left(\frac{-d^2 \ln P(C|p)}{dp^2}|_{p=p}\right)^{-1} T V(\frac{C_t}{p} - \frac{(1-C_t)}{1-p}) \left(\frac{-d^2 \ln P(C|p)}{dp^2}|_{p=p}\right)^{-1})$$
 for large T.

Maximum likelihood estimator

$$V(\frac{C_t}{p} - \frac{(1 - C_t)}{1 - p}) = \frac{1}{p(1 - p)}.$$

$$(p - \hat{p}) \sim N(0, \left(\frac{-d^2 \ln P(C)}{dp^2}|_{p=p}\right)^{-1} \frac{T}{p(1-p)} \left(\frac{-d^2 \ln P(C)}{dp^2}|_{p=p}\right)^{-1})$$
 for large T.

Variance of the estimator:
$$\frac{d^2 \ln P(C)}{dp^2} = \frac{d}{dp} \left[\sum_{t=1}^{T} \frac{C_t}{p} - \frac{(1-C_t)}{1-p} \right],$$

$$= T\frac{1}{T}\sum_{t=1}^{T}\frac{C_t-1}{(1-p)^2}-\frac{C_t}{p^2},$$

$$\frac{d^2 \ln P(C)}{dp^2}|_{p=p} = TE(\frac{C_t - 1}{(1-p)^2} - \frac{C_t}{p^2}), \text{ for large T},$$

$$= -\frac{T}{p(1-p)} \text{ for large T}.$$

$$(\hat{p}-p) \sim N(0, \frac{p(1-p)}{T})$$
 for large T.

Maximum likelihood theory

Maximum likelihood theory:

Log-likelihood function: $\ln f(y_1, \dots, y_T | \theta) = \sum_{t=1}^{T} \ln f(y_t | \theta)$

Maximum likelihood estimator: $\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{t=1}^{T} \ln f(y_t | \theta)$ $\sum_{t=1}^{T} \frac{d \ln f(y_t | \theta)}{d \theta} = 0$

$$\sum_{t=1}^{T} \frac{d \ln f(y_t | \theta)}{d \theta} = 0$$

$$\underbrace{\frac{d \ln f(y_1,...,y_T)}{d\theta}}_{=0} |_{\theta=\hat{\theta}} = \underbrace{\frac{d \ln f(y_1,...,y_T)}{d\theta}}_{-dN\left(0,TV(\frac{d \ln f(y_t|\theta)}{d\theta})\right)} + (\hat{\theta} - \theta_0) \underbrace{\frac{d^2 \ln f(y_1,...,y_T)}{d\theta^2}}_{-pTV(\frac{d \ln f(y_t|\theta)}{d\theta})} |_{\theta=\bar{\theta}}$$

Properties of the MLE: $\hat{\theta} \sim N(\theta_0, (\frac{-d^2 \ln f(y_1, ..., y_T)}{d\theta}|_{\theta=\theta_0})^{-1}))$ for large T.

CAN: Consistent and Asymptotically Normally distributed

Maximum likelihood theory: Example

Linear regression with a constant: $y_t = \beta_1 + \epsilon_t$

ML: Additional assumption: $\epsilon_t \sim N(0, \sigma^2)$ (independent)

OLS estimator: $\hat{\beta}_1 = \frac{1}{T} \sum_{t=1}^{T} y_t$

Large sample prop: $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{T})$

Model fully characterized: $y_t | \beta_1 \sim N(\beta_1, \sigma^2)$

ML criterion - Likelihood function: $f(y_1, ..., y_T | \beta_1) = \prod_{t=1}^T f(y_t | \beta_1) = \prod_{t=1}^T \frac{\exp\left(-\frac{(y_t - \beta_1)^2}{2\sigma^2}\right)}{\sqrt{2\sigma^2}}$

Maximum likelihood theory: Example

Linear regression with a constant: $y_t = \beta_1 + \epsilon_t$

OLS criterion: $\hat{\beta}_1 = \operatorname{argmin}_{\beta_1} \sum_{t=1}^T \epsilon_t^2$

OLS estimator: $\hat{\beta}_1 = \frac{1}{T} \sum_{t=1}^{T} y_t$

ML criterion - Likelihood function:

$$f(y_1, ..., y_T | \beta_1) = \prod_{t=1}^T f(y_t | \beta_1) = \prod_{t=1}^T \frac{\exp\left(-\frac{(y_t - \beta_1)^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}}$$

Large sample prop: $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{T})$

ML estimator: $\hat{\beta}_1 = \operatorname{argmax}_{\beta_1} \ln f(y_1, ..., y_T | \beta_1) = \operatorname{argmax}_{\beta_1} \sum_{t=1}^T \left(-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_t - \beta_1)^2}{2\sigma^2} \right)$

$$\hat{\beta}_1 = \operatorname{argmax}_{\beta_1} - \frac{1}{2\sigma^2} \sum_{t=1}^T (y_t - \beta_1)^2$$
 $\hat{\beta}_1 = \frac{1}{T} \sum_{t=1}^T y_t$

Same estimator as the OLS estimator

<u>Large sample prop:</u> $\hat{\beta}_1 \sim N(\beta_1, (\frac{-d^2 \ln f(y_1, ..., y_T | \beta_1)}{d\beta_1^2})^{-1}) = N(\beta_1, \frac{\sigma^2}{T})$

$$\frac{d^2 \ln f(y_1, ..., y_T | \beta_1)}{d\beta_1^2} = \frac{d^2}{d\beta_1^2} \left[\sum_{t=1}^T \left(-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_t - \beta_1)^2}{2\sigma^2} \right) \right],$$

$$= -\sum_{t=1}^{T} \frac{1}{\sigma^2} \quad (= -\frac{T}{\sigma^2})$$

Summary

1. Fully Characterized your model:

Linear regression:

$$y_t|x_t \sim N(\beta_1 + \beta_2 x_t, \sigma^2)$$

2. Write down the likelihood function:

$$\prod_{t=1}^{T} \frac{\exp\left(-\frac{(y_t - \beta_1 - \beta_2 x_t)^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}}$$

3. Compute the log-likelihood function:

$$\sum_{t=1}^{T} \left(-\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(y_t - \beta_1 - \beta_2 x_t)^2}{2\sigma^2} \right) \right)$$

Probit model:

$$P[C_t = 1|x_t] = \Phi(\beta_1 + \beta_2 x_t)$$

$$\prod_{t=1}^{T} \Phi(\beta_1 + \beta_2 x_t)^{c_t} (1 - \Phi(\beta_1 + \beta_2 x_t))^{1-c_t}$$

$$\sum_{t=1}^{T} c_t \ln[\Phi(\beta_1 + \beta_2 x_t)] + (1 - c_t) \ln(1 - \Phi(\beta_1 + \beta_2 x_t))$$

4. Maximize the log-likelihood function with respect to the parameters

$$\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}, \ \hat{\beta}_2 = \frac{\sum_{t=1}^T (x_t - \bar{x})(y - \bar{y})}{\sum_{t=1}^T (x_t - \bar{x})^2}, \ \hat{\sigma}^2 = \frac{\sum_{t=1}^T \hat{\epsilon}_t^2}{T}$$

No analytical formula

5. Compute the Hessian at the maximum likelihood estimate: $H(\hat{\theta}) = \frac{d^2 \ln f(y_1, ..., y_T)}{d\theta d\theta}$

$$\begin{pmatrix} \beta_1 \\ \hat{\beta}_2 \\ \hat{\sigma}^2 \end{pmatrix} \sim N\left(\begin{pmatrix} \beta_1 \\ \beta_2 \\ \sigma^2 \end{pmatrix}, (-H(\hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}^2))^{-1} \right) \quad \boxed{\textbf{Large T}} \quad \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}, (-H(\hat{\beta}_1, \hat{\beta}_2))^{-1} \right)$$

Limited dependent variables Model comparison

Likelihood ratio test

m = # of restrictions= $K_{\text{II}} - K_{\text{R}}$

How to compare nested models?

Likelihood ratio test (equivalent of the Fisher test in a ML context).

Full model (or unrestricted model):

$$P[C_t = 1|x_t] = \Phi(\beta_1 + \beta_2 x_t)$$

$$\ln f(c_1, ..., c_T | \hat{\beta}, x_{1:T}) = \sum_{t=1}^{T} c_t \log[\Phi(\hat{\beta}_1 + \hat{\beta}_2 x_t)] + (1 - c_t) \log(1 - \Phi(\hat{\beta}_1 + \hat{\beta}_2 x_t))$$

Nested model (or restricted model):

 H_0 : Restrictions on the model hold

$$P[C_t = 1|x_t] = \Phi(\beta_1)$$
 $H_0: \beta_2 = 0$

$$\ln f(c_1, ..., c_T | \hat{\beta}_1) = \sum_{t=1}^{T} c_t \log[\Phi(\tilde{\beta}_1)] + (1 - c_t) \log(1 - \Phi(\tilde{\beta}_1))$$

Likelihood ratio test

$$2[\ln f(c_1, ..., c_T | \hat{\beta}, x_{1:T}) - \ln f(c_1, ..., c_T | \tilde{\beta}_1)] \sim \chi^2(m) \text{ under } H_0$$

Information Criteria

In general, how to compare models with the same dependent variable?

Information criteria have been proposed for general comparisons.

Advantage: Simple and intuitive

<u>Drawback:</u> Multiple criteria exist and can lead to select different models.

Example:

- Multiple models to compare: Model 1 to Model 10.
- Compute the information criterion for each model.
- The best model exhibits the highest value of the information criterion.

Information criteria (IC): Likelihood function evaluated at the MLE - penalty

Differs from one IC to another

Two popular information criteria: AIC and BIC

Information Criteria

• Akaïke Information criterion (AIC):

$$AIC = \ln f(c_1, ..., c_T | \hat{\beta}, x_{1:T}) - \underbrace{K}_{\text{penalty}_{AIC}}$$
 where K denotes # parameters

• Bayesian Information criterion (BIC):

$$BIC = \ln f(c_1, ..., c_T | \hat{\beta}, x_{1:T}) - \underbrace{\frac{K}{2} \log T}_{\text{penalty}_{BIC}}$$

AIC penalty is smaller than the BIC penalty

BIC leads to select smaller models than AIC

AIC and BIC justifications

• Akaïke Information criterion (AIC): $AIC = \ln f(c_1, ..., c_T | \hat{\beta}, x_{1:T}) - K$

Asymptotic justification:

- Selected model minimizes the Kullback-Leibler divergence (with respect to the true model)
- No claim that the selected model is the good one.
- The selected model should be good at predicting the data
- Bayesian Information criterion (BIC): $BIC = \ln f(c_1, ..., c_T | \hat{\beta}, x_{1:T}) \frac{K}{2} \log T$

Asymptotic justification:

- BIC is proportional to the marginal likelihood of the Bayesian model with uninformative priors.
- Selected model is the true model!
- The true model must be among the models in competition.

BIC is favoured in financial research