Optimality conditions

V. Leclère (ENPC)

March 31st, 2023

Why should I bother to learn this stuff?

- Optimality conditions enable to solve exactly some easy optimization problems (e.g. in microeconomics, some mechanical problems...)
- Optimality conditions are used to derive algorithms for complex problem
- => fundamental both for studying optimization as well as other science

Contents

- ① Optimization problem [BV 4.1]
- 2 Unconstrained case [BV 4.2]
- First order optimality conditions [B.V 5.5]
- 4 Wrap-up

Optimization problem: vocabulary

Generically speaking, an optimization problem is

where

- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function (a.k.a. cost function),
- X is the feasible set,
- $x \in X$ is an admissible decision variables or a solution,
- $x^{\sharp} \in X$ such that $val(P) = f(x^{\sharp}) = \inf_{x \in X} f(x)$ is an optimal solution,
- if $X = \mathbb{R}^n$ the problem is unconstrained,
- if X and f are convex, then the problem is convex,
- if X is a polyhedron and f linear then the problem is linear,
- if X is a convex cone and f linear then the problem is conic.

Optimization problem: explicit formulation

The previous optimization problem is often defined explicitly in the following standard form

s.t.
$$g_i(x) = 0$$
 $\forall i \in [n_E]$
 $h_j(x) \le 0$ $\forall j \in [n_I]$

with

$$X:=\left\{x\in\mathbb{R}^n\mid\forall i\in[n_E],\quad g_i(x)=0,\quad\forall j\in[n_I],\quad h_j(x)\leq 0\right\}.$$

- (P) is a differentiable optimization problem if f and $\{g_i\}_{i\in[n_E]}$ and $\{h_i\}_{i\in[n_I]}$ are differentiable.
- (P) is a convex differentiable optimization problem if f, and h_j (for $j \in [n_I]$) are convex differentiable and g_i (for $i \in [n_E]$) are affine. • Exercise: Show that in this case X is convex.

Optimization problem: explicit formulation

The previous optimization problem is often defined explicitly in the following standard form

with

$$X:=\left\{x\in\mathbb{R}^n\mid\forall i\in[n_E],\quad g_i(x)=0,\quad\forall j\in[n_I],\quad h_j(x)\leq 0\right\}.$$

- (P) is a differentiable optimization problem if f and $\{g_i\}_{i\in[n_E]}$ and $\{h_i\}_{i\in[n_I]}$ are differentiable.
- (P) is a convex differentiable optimization problem if f, and h_j (for $j \in [n_I]$) are convex differentiable and g_i (for $i \in [n_E]$) are affine.
 - \clubsuit Exercise: Show that in this case X is convex.

A few remarks and tricks

- We can always write an abstract optimization problem in standard form (exercise!)
- For a given optimization problem there is an infinite number of possible standard forms (exercise!)
- We can always find an equivalent problem in dimension \mathbb{R}^{n+1} with linear cost (exercise!)
- ullet A minimization problem with $X=\emptyset$ has value $+\infty$ (by convention)
- A minimization problem has value $-\infty$ iff there exists a sequence $x_n \in X$ such that $f(x_n) \to -\infty$
- Maximizing f is just minimizing -f

Contents

- ① Optimization problem [BV 4.1]
- 2 Unconstrained case [BV 4.2]
- 3 First order optimality conditions [B.V 5.5]
- 4 Wrap-up

Differentiable case

Theorem

Assume that $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is differentiable at x^{\sharp} .

- If x^{\sharp} is an unconstrained local minimizer of f then $\nabla f(x^{\sharp}) = 0$.
- ② If in addition f is convex, then $\nabla f(x^{\sharp}) = 0$ iff x^{\sharp} is a global minimizer.

Proof:

- ① Assume $\nabla f(\mathbf{x}^{\sharp}) \neq 0$. DL of order 1 at \mathbf{x}^{\sharp} show that $f(\mathbf{x}^{\sharp} t \nabla f(\mathbf{x}^{\sharp})) < f(\mathbf{x}^{\sharp})$ for t > 0 small enough.

Theorem

Assume that $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ is differentiable at x^{\sharp} .

- ① If x^{\sharp} is an unconstrained local minimizer of f then $\nabla f(x^{\sharp}) = 0$.
- ② If in addition f is convex, then $\nabla f(x^{\sharp}) = 0$ iff x^{\sharp} is a global minimizer.

Proof:

- **1** Assume $\nabla f(\mathbf{x}^{\sharp}) \neq 0$. DL of order 1 at \mathbf{x}^{\sharp} show that $f(\mathbf{x}^{\sharp} t \nabla f(\mathbf{x}^{\sharp})) < f(\mathbf{x}^{\sharp})$ for t > 0 small enough.
- $f(y) \geq f(x^{\sharp}) + \langle \nabla f(x^{\sharp}), y x^{\sharp} \rangle.$

7/21

Theorem

Consider $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. Then x^{\sharp} is a global minimum iff

$$0\in\partial f(x^{\sharp})$$

Theorem

Consider $f: \mathbb{R}^n \to \bar{\mathbb{R}}$. Then x^{\sharp} is a global minimum iff

$$0\in\partial f(x^{\sharp})$$

Theorem

Consider a proper convex function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, and X a closed convex set, such that $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(X) \neq \emptyset$.

Then x^{\sharp} is a minimizer of f on X iff there exists $g \in \partial f(x^{\sharp})$ such that $-g \in N_X(x^{\sharp})$.

Theorem

Consider $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. Then x^{\sharp} is a global minimum iff

$$0\in\partial f(x^{\sharp})$$

Theorem

Consider a proper convex function $f: \mathbb{R}^n \to \bar{\mathbb{R}}$, and X a closed convex set. such that $ri(dom(f)) \cap ri(X) \neq \emptyset$.

Then x^{\sharp} is a minimizer of f on X iff there exists $g \in \partial f(x^{\sharp})$ such that $-g \in N_X(x^{\sharp}).$

proof : The technical assumption ensures that $\partial(f + \mathbb{I}_X) = \partial f + \partial(\mathbb{I}_X)$. As $\partial(\mathbb{I}_X) = N_X$, we have, $0 \in \partial(f + \mathbb{I}_X)(x^{\sharp})$ iff there exists $g \in \partial f(x^{\sharp})$ such that $-\mathbf{g} \in N_X(\mathbf{x}^{\sharp}).$

Contents

- ① Optimization problem [BV 4.1]
- 2 Unconstrained case [BV 4.2]
- 3 First order optimality conditions [B.V 5.5]
- 4 Wrap-up

Tangent cones

For $f: \mathbb{R}^n \to \mathbb{R}$, we consider an optimization problem of the form

Definition

We say that $d \in \mathbb{R}^n$ is tangent to X at $x \in X$ if there exists a sequence $x_k \in X$ converging to x and a sequence $t_k \searrow 0$ such that

$$d = \lim_{k} \frac{x_k - x}{t_k}.$$

Tangent cones

For $f: \mathbb{R}^n \to \mathbb{R}$, we consider an optimization problem of the form

Definition

We say that $d \in \mathbb{R}^n$ is tangent to X at $x \in X$ if there exists a sequence $x_k \in X$ converging to x and a sequence $x_k \setminus X$ 0 such that

$$d = \lim_{k} \frac{x_k - x}{t_k}.$$

Let $T_X(x)$ be the tangent cone of X at x, that is, the set of all tangent to X at x.

Tangent cones

8/21

For $f: \mathbb{R}^n \to \mathbb{R}$, we consider an optimization problem of the form

Definition

We say that $d \in \mathbb{R}^n$ is tangent to X at $x \in X$ if there exists a sequence $x_k \in X$ converging to x and a sequence $t_k \searrow 0$ such that

$$d = \lim_{k} \frac{x_k - x}{t_k}.$$

Let $T_X(x)$ be the tangent cone of X at x, that is, the set of all tangent to X at x.

Equivalently,

$$T_X(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \exists t_k \searrow 0, \exists d_k \to \mathbf{d}, \mathbf{x} + t_k d_k \in X \}$$

V. Leclère Optimality conditions March 31st, 2023

Optimality conditions - differentiable case

Consider a function $f:\mathbb{R}^n \to \mathbb{R}$ and the optimization problem

$$(P) \qquad \mathop{\rm Min}_{\mathbf{x} \in X} \qquad f(\mathbf{x}).$$

If $\mathbf{x}^{\sharp} \notin \operatorname{int}(X)$ we do not necessarily need to have $\nabla f(\mathbf{x}^{\sharp}) = 0$, indeed we just to have $\langle d, \nabla f(\mathbf{x}^{\sharp}) \rangle \leq 0$ for all "admissible" direction d.

Optimality conditions - differentiable case

Consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the optimization problem

$$(P) \qquad \mathop{\rm Min}_{\mathbf{x} \in X} \qquad f(\mathbf{x}).$$

If $x^{\sharp} \notin \operatorname{int}(X)$ we do not necessarily need to have $\nabla f(x^{\sharp}) = 0$, indeed we just to have $\langle d, \nabla f(x^{\sharp}) \rangle \leq 0$ for all "admissible" direction d.

Theorem

Assume that f is differentiable at x^{\sharp} .

• If x^{\sharp} is a local minimizer of (P) we have

$$\nabla f(\mathbf{x}^{\sharp}) \in [T_X(\mathbf{x}^{\sharp})]^{\oplus}.$$
 (*)

② If f and X are both convex, and (*) holds, then x^{\sharp} is an optimal solution of (P)

Optimality conditions - differentiable case

Consider a function $f:\mathbb{R}^n \to \mathbb{R}$ and the optimization problem

$$(P) \qquad \mathop{\rm Min}_{\mathbf{x} \in X} \qquad f(\mathbf{x}).$$

If $x^{\sharp} \notin \operatorname{int}(X)$ we do not necessarily need to have $\nabla f(x^{\sharp}) = 0$, indeed we just to have $\langle d, \nabla f(x^{\sharp}) \rangle \leq 0$ for all "admissible" direction d.

Theorem

Assume that f is differentiable at x^{\sharp} .

• If x^{\sharp} is a local minimizer of (P) we have

$$\nabla f(\mathbf{x}^{\sharp}) \in [T_X(\mathbf{x}^{\sharp})]^{\oplus}.$$
 (*)

- ② If f and X are both convex, and (*) holds, then x^{\sharp} is an optimal solution of (P)
- ♠ Exercise: Prove this result.

Let $K_X^{ad}(x)$ be the cone of admissible direction

$$K_X^{ad}(\mathbf{x}) := \left\{ t(y - \mathbf{x}) \in \mathbb{R}^n \mid y \in X, t \geq 0 \right\}$$

Lemma

If $X \subset \mathbb{R}^n$ is convex, and $x \in X$, we have

$$T_X(\mathbf{x}) = \overline{K_X^{ad}(\mathbf{x})}.$$

Recall that

$$T_X(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \exists t_k \searrow 0, \exists d_k \to \mathbf{d}, \mathbf{x} + t_k d_k \in X \}$$

▲ Exercise: Prove this lemma

Differentiable constraints

11/21

We consider the following set of admissible solution

$$X = \Big\{x \in \mathbb{R}^n \quad | \quad g_i(x) = 0, \ i \in [n_E] \quad h_j(x) \leq 0, \ j \in [n_j] \Big\},$$

where g and h are differentiable functions.

Recall that the tangent cone is given by

$$T_X(\mathbf{x}) = \{ \ d \in \mathbb{R}^n \mid \exists t_k \searrow 0, \ \exists d_k \to d, \ g(\mathbf{x} + t_k d_k) = 0, \ h(\mathbf{x} + t_k d_k) \leq 0 \}$$

We define the linearized tangent cone

$$T_X^{\ell}(\mathbf{x}) := \{ d \in \mathbb{R}^n \mid \langle \nabla g_i(\mathbf{x}), d \rangle = 0, \forall i \in [n_E] \\ \langle \nabla h_j(\mathbf{x}), d \rangle \leq 0, \forall j \in I_0(\mathbf{x}) \}$$

where

$$I_0(\mathbf{x}) := \{ j \in [n_I] \mid h_i(\mathbf{x}) = 0 \}.$$

Constraint qualifications

We always have

$$T_X(\mathbf{x}) \subset T_X^{\ell}(\mathbf{x}).$$

& Exercise: Prove it.

We say that the constraints are qualified at x if

$$T_X(\mathbf{x}) = T_X^{\ell}(\mathbf{x}).$$

Constraint qualifications

We always have

$$T_X(\mathbf{x}) \subset T_X^{\ell}(\mathbf{x}).$$

& Exercise: Prove it.

We say that the constraints are qualified at x if

$$T_X(\mathbf{x}) = T_X^{\ell}(\mathbf{x}).$$

Sufficient qualification conditions

Recall that g and h are assumed differentiable.

We denote the index set of active constraints at x

$$I_0(\mathbf{x}) := \{i \in [n_I] \mid h_i(\mathbf{x}) = 0\}.$$

The following conditions are sufficient qualification conditions at x:

- **1** g and h_i for $i \in I_0(x)$ are locally affine;
- ② (Slater) g is affine, h_j are convex, and there exists x_S such that $g(x_S) = 0$ and $h_j(x_S) < 0$;
- **1** (Mangasarian-Fromowitz) For all $\alpha \in \mathbb{R}^{n_E}$ and $\beta \in \mathbb{R}^{n_I}_+$,

$$\sum_{i \in [n_E]} \alpha_i \nabla g_i(\mathbf{x}) + \sum_{j \in I_0(\mathbf{x})} \beta_j \nabla h_j(\mathbf{x}) = 0 \qquad \Longrightarrow \qquad \alpha = 0 \text{ and } \beta = 0$$

Expliciting the optimality condition

Under constraint qualification, the optimality condition reads

$$\nabla f(\mathbf{x}) \in [T_X^{\ell}(\mathbf{x})]^{\oplus}$$

where

$$T_X^{\ell}(\mathbf{x}) = \{ \ \mathbf{d} \in \mathbb{R}^n \mid \underbrace{\left\langle \nabla g_i(\mathbf{x}), \mathbf{d} \right\rangle = 0, i \in [n_I] \quad \left\langle \nabla h_j(\mathbf{x}), \mathbf{d} \right\rangle \leq 0, j \in I_0(\mathbf{x})}_{= A_{\mathbf{x}} \mathbf{d} \in C} \}$$

with
$$A_{\mathbf{x}} = \begin{pmatrix} ((\nabla g_i(\mathbf{x}))^{\top})_{i \in [n_I]} \\ ((\nabla h_j(\mathbf{x}))^{\top})_{j \in I_0(\mathbf{x})} \end{pmatrix}$$
 and $C = \{0\}^{n_E} \times (\mathbb{R}_-)^{n_I}$.

 \clubsuit Exercise: Show that $C^{\oplus} = \mathbb{R}^{n_E} \times (\mathbb{R}_-)^{n_I}$

Recall that the positive dual cone of a set K is

$$K^{\oplus} := \{ \ensuremath{\text{d}} \in \mathbb{R}^n \mid \langle \ensuremath{\text{d}}, x \rangle \geq 0, \forall x \in K \}.$$

Let C be a closed convex set. Consider

$$K = A^{-1}C := \left\{ x \in \mathbb{R}^n \mid Ax \in C \right\},\,$$

then

$$K^{\oplus} = \{ A^{\top} \lambda \mid \lambda \in C^{\oplus} \}.$$

& Exercise: prove it.

Hence

$$\nabla f(\mathbf{x}) \in \left[\underbrace{T_X^{\ell}(\mathbf{x})}_{A_{\mathbf{x}}^{-1}C}\right]^{\oplus}$$

$$\iff$$
 $\exists \lambda \in C^{\oplus}, \quad \nabla f(\mathbf{x}) = A_{\mathbf{x}}^{\top} \lambda$

$$\iff \exists \lambda \in \mathbb{R}^{n_E}, \ \exists \mu \in \mathbb{R}^{l_0(x)}_+ \ \nabla f(x) + \sum_{i=1}^{n_E} \lambda_i \nabla g_i(x) + \sum_{j \in l_0(x)} \mu_j \nabla h_j(x) = 0.$$

Recall that the positive dual cone of a set K is

$$K^{\oplus} := \{ \ensuremath{\text{d}} \in \mathbb{R}^n \mid \langle \ensuremath{\text{d}}, x \rangle \geq 0, \forall x \in K \}.$$

Let C be a closed convex set. Consider

$$K = A^{-1}C := \left\{ x \in \mathbb{R}^n \mid Ax \in C \right\},\,$$

then

$$K^{\oplus} = \{ A^{\top} \lambda \mid \lambda \in C^{\oplus} \}.$$

\$ Exercise: prove it.

Hence,

$$\nabla f(\mathbf{x}) \in \left[\underbrace{T_X^{\ell}(\mathbf{x})}_{A_{\mathbf{x}}^{-1}C}\right]^{\oplus}$$

$$\iff \exists \lambda \in C^{\oplus}, \quad \nabla f(\mathbf{x}) = A_{\mathbf{x}}^{\top} \lambda$$

Recall that the positive dual cone of a set K is

$$K^{\oplus} := \{ d \in \mathbb{R}^n \mid \langle d, x \rangle \ge 0, \forall x \in K \}.$$

Let C be a closed convex set. Consider

$$K = A^{-1}C := \left\{ x \in \mathbb{R}^n \mid Ax \in C \right\},\,$$

then

$$K^{\oplus} = \{ A^{\top} \lambda \mid \lambda \in C^{\oplus} \}.$$

& Exercise: prove it.

Hence,

$$\nabla f(\mathbf{x}) \in \left[\underbrace{T_X^{\ell}(\mathbf{x})}_{A_{\mathbf{x}}^{-1}C}\right]^{\oplus}$$

$$\iff$$
 $\exists \lambda \in C^{\oplus}, \quad \nabla f(\mathbf{x}) = A_{\mathbf{x}}^{\top} \lambda$

$$\iff \exists \lambda \in \mathbb{R}^{n_E}, \ \exists \mu \in \mathbb{R}_+^{l_0(\mathbf{x})} \quad \nabla f(\mathbf{x}) + \sum_{i=1}^{n_E} \frac{\lambda_i}{\lambda_i} \nabla g_i(\mathbf{x}) + \sum_{j \in l_0(\mathbf{x})} \mu_j \nabla h_j(\mathbf{x}) = 0.$$

Theorem (KKT)

Assume that the objective function f and the constraint function g_i and h_j are differentiable. Assume that the constraints are qualified at x.

Then if x is a local minimum of

$$\min_{\tilde{\mathbf{x}} \in \mathbb{R}^n} \left\{ f(\tilde{\mathbf{x}}) \mid g_i(\tilde{\mathbf{x}}) = 0, \ \forall i \in [n_E] \quad h_j(\tilde{\mathbf{x}}) \leq 0, \ \forall j \in [n_I] \right\}$$

then there exists dual variables λ , μ such that

$$\begin{cases} \nabla f(\mathbf{x}) + \sum_{i=1}^{n_E} \lambda_i \nabla g_i(\mathbf{x}) + \sum_{j=1}^{n_I} \mu_j \nabla h_j(\mathbf{x}) = 0 & \nabla_{\mathbf{x}} \mathcal{L} = 0 \\ g(\mathbf{x}) = 0, & h(\mathbf{x}) \leq 0 & \textit{Primal feasibility} \\ \lambda \in \mathbb{R}^{n_E}, & \mu \in \mathbb{R}^{n_I}_+ & \textit{dual feasibility} \\ \mu_j h_j(\mathbf{x}) = 0 & \forall j \in [n_I] & \textit{complementarity constraint} \end{cases}$$

Exercise

Solve the following optimization problem

Contents

- ① Optimization problem [BV 4.1]
- 2 Unconstrained case [BV 4.2]
- 3 First order optimality conditions [B.V 5.5]
- 4 Wrap-up

What you have to know

- Basic vocabulary: objective, constraint, admissible solution, differentiable optimization problem
- First order necessary KKT conditions

What you really should know

- What is a tangent cone
- Sufficient qualification conditions (linear and Slater's)
- That KKT conditions are sufficient in the convex case

What you have to be able to do

 Write the KKT condition for a given explicit problem and use them to solve said problem

What you should be able to do

Check that constraints are qualified