EE 330 Homework 9 Fall 2018

Due Mon Oct 22 at the beginning of class (no late HW accepted)

Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 350 \mu A/V^2$ and $V_{Tn} = 0.5 V$, all p-channel transistors have model parameters $\mu_p C_{OX} = 70 \mu A/V^2$ and $V_{Tp} = -0.5 V$. Correspondingly, assume all npn BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 100$ and all pnp BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 25$. If the emitter area of a transistor is not given, assume it is $100 \mu^2$. If parameters are needed for CMOS process characterization beyond what is given, use the measured parameters from the TSMC 0.18μ process given below as model parameters. Assume all diodes are characterized by the model parameters $J_{SX} = 0.5 A/\mu m^2$, $V_{G0} = 1.17 V$, and m = 2.3.

Problem 1 Assume the capacitors are very large and V_M is small.

- a) Draw the small signal equivalent circuit for the amplifier shown
- b) Determine the quiescent value of V_C and V_{OUT}
- c) Determine the voltage gain in terms of the small-signal y-parameters (or equivalently the g-parameters) for the transistor. Assume the parameter y_{21} in the model of the transistor is 0.
- d) Determine the numerical value for the small-signal voltage gain

Problem 2 Obtain the small signal equivalent circuit for the following network. Assume the transistors are operating in the saturation region, all capacitors are large, and V_M is small. You need not solve the circuit.

Page 1

Problem 3 Assume the capacitors are all very large and V_m is small.

- a) Draw the small signal equivalent circuit for the amplifier shown
- b) Determine the quiescent value of V_C and V_{OUT}
- c) Determine the small-signal voltage gain in terms of the small-signal g parameters
- d) Numerically determine the small-signal voltage gain.

Problem 4 Consider a device characterized by the equations

$$I_{1} = V_{1} V_{2}^{2}$$

$$I_{2} = 0.1e^{0.2V_{1}^{2}V_{2}}$$

$$V_{1} = V_{1} V_{2}^{2}$$

$$V_{2} = V_{2}^{2}$$

- a. Determine the small signal model for a two-terminal device characterized by the equations given above
- b. Determine the numerical values for the small signal model parameters if the quiescent value of the port voltages are $V_2=1V$, $V_1=5V$.
- c. Determine the quiescent currents at the Q-point established in part b.
- d. Determine the small signal currents i_1 and i_2 if the small signal voltages v_1 and v_2 were measured to be $1mV_{RMS}$ and $2mV_{RMS}$ respectively. Assume the same Q-point as established in part b.

Problem 5 Consider the following circuit operating at T=300K. Assume the capacitor C is very large and the v_{IN} is a small-signal input.

- a) Determine the quiescent output voltage.
- b) Draw the small-signal equivalent circuit
- c) Determine the small-signal voltage gain from the input to the output.
- d) Repeat part c) if the current I_B is increased to 5mA

Problem 6 Determine the small signal output voltage if the small signal input voltage is a sinusoidal 1KHz signal with 0-P amplitude of 25mV.

Problem 7 Consider the following circuit operating at T=300K. Assume v_{IN} is a small-signal voltage source.

- a) If the voltage V_{BB} is adjusted so that the quiescent diode current is 1mA, determine the small signal voltage gain $A_V = \frac{v_{OUT}}{v_{N}}$
- b) Repeat part a) if V_{BB} is adjusted so that the quiescent diode current is 10mA

Page 3

Problem 8 Consider the following circuits.

- a) Obtain the small signal impedance between the two terminals exiting the box in terms of the small-signal model parameters. Assume the MOSFET is operating in the Saturation region and the BJT in the Forward Active region
- b) Numerically determine the small-signal impedances if the quiescent currents are both 1mA, the width and length of the MOSFET are both 5 μ m, and the emitter of the BJT is square and is 5 μ m on a side. Assume $V_{AF}=\infty$ and $\lambda=0$.

Problem 9

- a) Determine the maximum value of R_1 that will keep M_1 in saturation. M_1 has dimensions W=18u and L=2u and is in a process with $\mu_n C_{OX}=100\mu A/v^2$, $\mu_p C_{OX}=30\mu A/v^2$, $V_{TNO}=0.5V$, $V_{TPO}=-0.5V$, $C_{OX}=2fF/\mu^2$, $\lambda=0$, $\gamma=0$.
- b) If R_1 is 1/3 of the value determined in Part a), determine the small signal voltage gain of this circuit
- With the value of R_1 used in part b), determine the total output voltage if $v_{IN}(t)=.001\sin(5000t+75^{\circ})$.

Problem 10 Obtain an expression for the small signal output voltage in terms of the small signal parameters if the input is given by the expression $v_{\text{IN}}(t)=v_{\text{MCOS}}(\omega t+\theta)$. Assume w_{I} is operating in the saturation region.

Page 4

Problem 11 Determine the total output voltage for the circuit in Problem 10 if $V_{DD}=5V,~V_{SS}=-2V,~W_1=10u,~L_1=2u,~W_2=6u$ and $L_2=1u$. Assume the devices are from a process with parameters $\mu_n C_{OX}=100\mu A/v^2$, $\mu_p C_{OX}=30\mu A/v^2$, $V_{TNO}=0.5V,~V_{TPO}=-0.5V,~C_{OX}=2fF/\mu^2,~\lambda=0,~\gamma=0.$

Problem 12 Design an amplifier using only BJT transistors, resistors, capacitors and voltage sources that has a voltage gain of -5 when driving a 2K resistor.

Problem 13 Design an amplifier using only MOS transistors, capacitors, and voltage sources that has a voltage gain of -10 when driving an external 10K resistor.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T68B (MM NON-EPI) VENDOR:

TSMC

TECHNOLOGY: SCN018 FEATURE SIZE: 0.18

microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018 TSMC

TRANSISTOR PARAM	ETERS W/L	N-CHANNEL	P-CHANNEL	UNITS		
MINIMUM Vth	0.27/0.18	0.50	-0.51	volts		
SHORT Idss Vth Vpt	20.0/0.18	547 0.51 4.8	-250 -0.51 -5.6	uA/um volts volts		
WIDE Ids0	20.0/0.18	14.4	-4.7	pA/um		
LARGE Vth Vjbkd Ijlk	50/50	0.43 3.1 <50.0	-4.3	volts volts pA		
K' (Uo*Cox/2) Low-field Mobil	ity	175.4 416.5		·		

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

-	Design Tech	nnology	X	L (um)	XW um)
	SCN6M_DEEP	(lambda=0.09 thick oxid	,	.00	-0.01 -0.01
	SCN6M_SUBM	(lambda=0.10 thick oxid	,	.02	0.00
FOX TRANSISTORS Vth	GATE Poly	N+ACTIVE >6.6	P+ACTIVE <-6.6	UNITS volts	

PROCESS PARAMETERS N+ P+ POLY N+BLK PLY+BLK M1 M2 UNITS

Sheet Resistance Contact Resistance Gate Oxide Thicknes	10.6	11.0	1	LO.(O		.7	3:	13.6	0.	.08		.79	ohms/sq ohms ngstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance	M3 0.08 9.24	POL	Y_F	HRI	0.	8 0	0.	45 .08 3.39	0.0 9 20	03	N_ 93	_		UNITS ohms/sq ohms
COMMENTS: BLK is silicide block.														
CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (metal1)	S N+ P+ 942 116		34 55	14 20 17	9 13 10 14	6	5 9	3 8 4 5	R_W	D_N	1_W 1 123	M5P	_	UNITS aF/um^2 aF/um^2 aF/um^2 aF/um^2
Area (metal2) Area (metal3) Area (metal4) Area (metal5) Area (r well) Area (d well)	920				33		14	9 14 34	582	582		9	84	aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2
Area (no well) Fringe (substrate) Fringe (poly) Fringe (metal1) Fringe (metal2) Fringe (metal3) Fringe (metal4)		35		35 39 52	29 34	2335	20 22 27 34	19						aF/um aF/um aF/um aF/um aF/um aF/um
Fringe (metal5) Overlap (N+active) Overlap (P+active)		89! 73						55						aF/um aF/um aF/um
CIRCUIT PARAMETERS								UI	NITS					
Inverters Vinv		1	.0						volt					
Vinv Vol (100 uA)			.5				78 08		volt: volt:					
Voh (100 uA)			.0				63		volt					
Vinv Gain Ring Oscillator Fre	2 C		.0		-	0. 23.	82 72	7	volt	S				
D1024_THK (31-stg, DIV1024 (31-stg,1.	3.3V) .8V)					00. 63.			MHz MHz					
Ring Oscillator Pov D1024_THK (31-stg, DIV1024 (31-stg,1.	3.3V)						07 02		uW/I					

Note: Go back to HW 9 of Fall 17 to include the small signal gain calculations for the first few problems on this assignment