The Selective Disclosure of Evidence: An Experiment

A. Farina G. R. Fréchette A. Lizzeri J. Perego September 2023

Introduction

Introduction

Core economic environment:

- Sender has private information about a state of the world.
- · Receiver wants to learn the state.
- · Sender wants to pretend the state is high.
- · Sender can send a message about the state.
- How much communication can be achieved?

It depends on whether messages are verifiable or not.

Introduction

Often verifiability is partial and evidence is noisy

- Sender has multiple verifiable signals about the state.
- Signals can be selected for disclosure.
 - e.g. SAT, news about political candidate, oil fields...

Signals have both **intrinsic** and **context-dependent** meanings:

- · SAT may have been taken multiple times.
- There are many stories about the candidate.
- There are reports from many geologists.

This Paper

- Considers a modified communication game.
 - Sender has noisy signals and can selectively disclose.
- Studies how information transmission is affected by:
 - Variations in the number of signals available (selection)
 - Changes in sender's communication capacity (verifiability)
- Derives a theory based experimental design to test the main predictions.
 - · Selective disclosure in equilibrium.
 - Witholding information and selectively disclosing possible.
 - Deception (rather than lying) possible.

Overview: Theory

Cheap Talk

e.g., Crawford-Sobel '82

- "Soft" information—Messages are Unverifiable.
- · Large frictions in information transmission.

Disclosure

e.g., Milgrom '81

- "Hard" information—Messages are Verifiable.
- No frictions in information transmission (unravelling).

Our Framework

- · Flexible verifiability.
- Spans cheap-talk and disclosure results.

Overview: Experiments

Cheap Talk

e.g., Cai-Wang '06

- Over-communication (with misaligned preferences).
- Some information transmission.

Disclosure

e.g., Jin-Luca-Martin '20

- Incomplete unravelling (failure to account for selection).
- Frictions in information transmission.

Our Framework

- Both over and under communication are possible.
- What dominates?

Some Literature

Disclosure: Jin, Luca and Martin (2022, AEJ: Micro)

Cheap talk: Blume, Lai and Lim (2020, Handbook of

Experimental GT)

Partially verifiable disclosure: Penczynski, Koch and Zhang (2021)

Theory: Milgrom (1981, Bell), Fishman and Hagerty (1990, QJE), Di Tillio, Ottaviani and Sorensen (2021, Ecma)

MODEL

The Communication Game—Milgrom (1981)

Sender

- 1. Privately observes state $\theta \in \Theta$, with:
 - Θ finite.
 - Prior $p \in \Delta(\Theta)$.
- 2. Given θ , draws N i.i.d. signals, $s_i \in S \subseteq \mathbb{R}$.
 - An exogenous information structure f : Θ → Δ(S), MLRP.
 - Notation: $\bar{s} = (s_1, ..., s_N) \in S^N$.
- 3. Can disclose up to *K* of the *N* drawn signals:
 - N, the number of available signals.
 - K, the number of reportable signals.

The Communication Game—Milgrom (1981)

Receiver

- 4. Observes the message.
- 5. Takes an action ($a \in A$) to maximize the expected payoff.

The Communication Game—Milgrom (1981)

Receiver

- 4. Observes the message.
- 5. Takes an action ($a \in A$) to maximize the expected payoff.

Payoffs

- 6. $u_S(\theta, a) = a$.
- 7. $u_R(\theta, a) = c (a \theta)^2$, where $c \in \mathbb{R}$

Let
$$\Theta = \{\theta_H, \theta_L\}$$
, $S = \{A, B, C, D\}$ and f be

		Signal			
State	A	В	С	D	
$ heta_L$	10%	20%	25%	45%	
θ_H	45%	25%	20%	10%	

Let
$$\Theta = \{\theta_H, \theta_L\}$$
, $S = \{A, B, C, D\}$ and f be

	Signal			
State	Α	В	С	D
θ_L	10%	20%	25%	45%
θ_H	45%	25%	20%	10%

Let N = 3 and $\theta = \theta_L$.

Let
$$\Theta = \{\theta_H, \theta_L\}$$
, $S = \{A, B, C, D\}$ and f be

	Signal			
A	В	C	D	
10%	20%	25%	45%	
45%	25%	20%	10%	
	10%	A B 20%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Let N = 3 and $\theta = \theta_L$.

Assume signals are $\{B, D, D\}$.

Let
$$\Theta = \{\theta_H, \theta_L\}$$
, $S = \{A, B, C, D\}$ and f be

		Signal			
State	_ A	В	C	D	
θ_L	10%	20%	25%	45%	
θ_H	45%	25%	20%	10%	

Let N = 3 and $\theta = \theta_L$.

Assume signals are $\{B, D, D\}$.

If K=1

Sender can send message from $\{\varnothing, B, D\}$.

Let
$$\Theta = \{\theta_H, \theta_L\}$$
, $S = \{A, B, C, D\}$ and f be

	Signal			
State	A	В	C	D
θ_L	10%	20%	25%	45%
θ_H	45%	25%	20%	10%

Let N = 3 and $\theta = \theta_L$.

Assume signals are $\{B, D, D\}$.

If K = 3

Sender can send message from $\{\emptyset, B, D, BD, BDD\}$.

Role of K and N

When K = N, information is **fully verifiable**.

Can disclose all signals → unraveling → no frictions

When K < N, information is **partially verifiable**.

- Can't disclose all signals → unraveling is unfeasible.
- Scope for imitation via selective disclosure.
- Messages verifiable, but selection \rightarrow meaning **context** dependent.

Hybrid framework b/w cheap-talk games and disclosure games.

Equilibrium

Proposition

Milgrom (1981)

Fix any (N, K), there exists a Sequential Equilibrium with maximal selective disclosure: Sender reports the K most favorable signals.

Equilibrium

Proposition

Milgrom (1981)

Fix any (N, K), there exists a Sequential Equilibrium with maximal selective disclosure: Sender reports the K most favorable signals.

Observable Implications

Sender

- ↑ K: disclosed signals increases.
- \uparrow *N*: most favorable signal sent more often.

Receiver

• ↑ *N*: most favorable signals become less persuasive.

Equilibrium: Refinements

Unlike classic disclosure games, the sequential equilibrium outcome is **not unique** when K < N.

- Off-path beliefs can support other equilibrium outcome.
- Refinements for signalling games (e.g., Cho-Kreps '87, Banks-Sobel '87) have no force here.
- Refinements for cheap talk games: Farrel (1993)'s Neologism Proofness.

Equilibrium: Uniqueness

Proposition

The equilibrium with maximal selective disclosure is Neologism Proof.

Equilibrium: Uniqueness

Proposition

The equilibrium with maximal selective disclosure is Neologism Proof.

Neologism Proofness delivers outcome uniqueness

An equilibrium (σ, μ) induces an outcome $x : S^N \to A$,

$$X(\bar{s}) = \sum_{\bar{s}'} \mu(\bar{s}' | \sigma(\bar{s})) \mathbb{E}(\theta | \bar{s}') \qquad \forall \ \bar{s}$$

Equilibrium: Uniqueness

Proposition

The equilibrium with maximal selective disclosure is Neologism Proof.

Proposition

Let (σ^*, μ^*) be the equilibrium with maximal selective disclosure and (σ, μ) be any other Neologism Proof equilibrium. Let x^* and x their respective outcomes. Then, $x^* = x$.

Main Outcome Variable

We study the effects of changing (N, K).

Our main outcome of interest is **equilibrium informativeness**.

• How effectively the receiver learns the state θ .

Informativeness can be measured in several ways:

- Correlation between θ and a.
- Receiver's expected payoff.

Increasing K (Verifiability)

Fix $N \ge 1$.

Proposition

Equilibrium informativeness increases in K.

Intuition

- Easier to send messages that others cannot imitate.
- \Rightarrow Less pooling.
- ⇒ More information transmitted.

Increasing N (Selection)

Fix $K \geq 1$.

Proposition

When $N \to \infty$, equilibrium informativeness converges to zero.

Intuition

- When N grows, "highest" message available to every θ .
- \Rightarrow All types pool.

Increasing N

Increase in N (for small N) generates two contrasting effects:

1 Information Effect

- · Sender has more evidence to prove her type.
- Selection contains information about undisclosed signals: "bad" messages are more informative.

2. Selection Effect

 Sender is more selective, making "higher" signals less informative.

 $(1) + (2) \implies$ informativeness may be non monotonic in N

EXPERIMENT

Experimental Design

- Two urns: Yellow (low) and Red (high).
- Four balls: A, B, C, or D.
- f is

		Signal			
State	_ A	В	C	D	
Yellow (θ_L)	10%	20%	25%	45%	
Red (θ_H)	45%	25%	20%	10%	

	N=1	N=3	N=10	N=50
K = 1	i	•	ii	iii
<i>K</i> = 3		iv	V	vi

	N=1	N=3	N=10	N=50
K = 1	i		ii	iii
<i>K</i> = 3		iv	V	vi

	N=1	N=3	N=10	N=50
K=1	i		ii	iii
K = 3		iv	V	vi

	N=1	N=3	N=10	N=50
K = 1	i		ii	iii
<i>K</i> = 3		iv	V	vi

Experimental Design: Testable Implications

Experimental Design: Testable Implications

Test 1. If K = N, informativeness increases with N (more info)

Experimental Design: Testable Implications

Test 2. $\uparrow K$: informativeness increases (more verifiability)

Experimental Design: Testable Implications

Test 3. ↑ *N*: informativeness decreases (selection effect)

$$ii > iii$$
 $v > vi$

Experimental Design: Testable Implications

Test 4. ↑ *N*: informativeness increases (information effect)

Experimental Design: Sender Interface

Experimental Design: Sender Interface

Experimental Design: Receiver Interface

Experimental Design: Summary

Experimental Design: History

Round	Secret Urn	Message	Guess
7	Yellow	A A B	10
6	Red	66	77
5	Red	A B B	77
4	Red	A A A	97
3	Red	88	87
2	Yellow	© © O	52
1	Red	000	0

RESULTS

SENDER'S AGGREGATE BEHAVIOR

Sender's Disclosure Choices

Signals in Sender's Message: Observed Distribution (Bars) vs Theoretical Distribution (Dashed Bars) vs Random Distribution (Dots)

Sender's Disclosure Choices

Signals in Sender's Message: Observed Distribution (Bars) vs Theoretical Distribution (Dashed Bars) vs Random Distribution (Dots)

High Type Sender's Disclosure Choices

Signals in Sender's Message | H: Observed Distribution (Bars) vs Theoretical Distribution (Dashed Bars) vs Random Distribution (Dots)

Low Type Sender's Disclosure Choices

Signals in Sender's Message | L: Observed Distribution (Bars) vs Theoretical Distribution (Dashed Bars) vs Random Distribution (Dots)

Sender's Messages

Result 1 (Senders)

Result: The distribution of balls in messages is "close" to equilibrium.

Main Deviation:

- Not disclosing bad balls when N = K.
- Not disclosing good balls as often as predicted when the type of the sender is low.
- · Overall, more information transmitted than predicted.

RECEIVER'S AGGREGATE BEHAVIOR

Receiver's Updating

Receiver's Beliefs

Receiver's Beliefs

Result 2 (Receivers)

Result: Receivers overestimate the probability of an high type sender when it is less likely, more so when selection is more acute.

SENDER'S HETEROGENEITY

Challenge

- Large number of urn / balls / message combinations.
- Specific behavior of interest varies across treatments.
 - Number of balls sent (K = 1 vs K = 3).
 - Balls sent vs balls available (N = K vs N > K).
- → Precludes a unified approach using those variables.

Solution

- Transform balls and messages to numbers ($B^{\#}$ and $M^{\#}$).
- Regress $M^{\#}$ on $B^{\#}$ |yellow urn and $B^{\#}$ |red urn.
- Cluster the coefficient estimates.
- · Describe behavior along key dimensions of interest.

Cluster	Obs	Urn			
	(33)		K	Α	D
Triangle	15				
		Red	0.91	1	0.38
		Yellow	0.64	1	0.27
Square	7				
		Red	0.73	1	0.25
		Yellow	0.51	1	0.21
Circle	3				
		Red	0.5	0.92	n/a
		Yellow	0.54	0.67	0.49
Diamond	8				
		Red	0.71	1	0.20
		Yellow	0.30	0	0.46
		Tellow	0.30	0	0.40

Cluster	Obs (34)	Urn	K	Α	D
	. ,				
Triangle	24				
		Red	1	1	0
		Yellow	1	0.97	0.02
Square	4				
		Red	1	0.81	0.08
		Yellow	1	0.88	0.07
Circle	4				
		Red	1	1	0
		Yellow	1	0.46	0.14
Diamond	2				
		Red	1	1	0
		Yellow	1	0	0.89

Cluster	Obs (36)	Urn	К	А	D
Triangle	25				
mangio		Red	1	0.99	0
		Yellow	1	0.74	0.03
Square	3				
		Red	1	0.04	0.82
		Yellow	1	0	0.51
Circle	3				
		Red	1	0.78	0
		Yellow	1	0.63	0.18
Diamond	5				
		Red	1	0.96	0
		Yellow	0.95	0.26	0.46

Cluster	Obs (29)	Urn	К	Α	D
Triangle	12				
		Red	0.64	1	0.23
		Yellow	0.25	1	0.17
Square	11				
		Red	0.34	1	0.05
		Yellow	0.12	0.80	0.18
Circle	5				
		Red	0.26	1	0
		Yellow	0.12	0	0.80
Diamond	1				
		Red	0	1	0
		Yellow	0	0.50	0

Cluster	Obs (33)	Urn	К	А	D
Triangle	19				
3		Red	0.99	0.99	0
		Yellow	0.88	0.96	0.01
Square	3				
		Red	1	0.46	0.17
		Yellow	1	0.43	0.04
Circle	7				
		Red	1	0.94	0
		Yellow	0.74	0.66	0.10
Diamond	4				
		Red	0.92	0.83	0
		Yellow	0.76	0.28	0.43

Cluster	Obs	Urn			_
	(35)		K	Α	D
Triangle	15				
		Red	1	0.88	0
		Yellow	0.94	0.80	0
Square	5				
		Red	0.89	0.17	0
		Yellow	0.87	0.32	0
Circle	9				
		Red	0.97	0.70	0
		Yellow	0.94	0.31	0.04
Diamond	6				
		Red	1	0.86	0.03
		Yellow	0.95	0.31	0.41

Equilibrium type (55%)

- · Most common.
- N > K: Mostly report best balls independently of the type.
- N = K: Disclose fewer than K balls.

Deception Averse Type (15%)

- A's reported more often when the type is high.
- D's reported more often when the type is low.
- *N* = *K*: Disclose fewer than *K* balls.

Others (30%)

- Similar to *equilibrium types* when the type is high.
- Report A's less but do not report D's when the type is low.
- Some low rates of A's when the type is high [confusion].

RECEIVER'S HETEROGENEITY

Challenge

- Large number of messages.
- Different messages across treatments.
- · Some messages have very few observations.
- \rightarrow Precludes a unified approach using that variable.

Solution

- · Compute equilibrium update following each message.
- Compute the update of someone who ignores selection: naive update.
- Regress guesses on a constant (α) and the equilibrium and naive updates.
- · Cluster the coefficient estimates.
- Describe behavior along key dimensions of interest.

Cluster	Obs (33)	Α	В	Ø	С
Diamond	8				
$\alpha = 0.23$		0.87	0.67	0.23	0.47
Circle	5				
$\alpha = 0.39$		0.56	0.49	0.41	0.37
Square	12				
$\alpha = 0.02$		0.86	0.73	0.41	0.38
Triangle	8				
$\alpha = -0.23$		0.90	0.67	0.51	0.23

Cluster	Obs (29)	Α	В	Ø	D
Diamond	1				
$\alpha = 4.20$		0.60*	0.23*	0.60*	n/a
Circle	17				
$\alpha = 0.28$		0.66	0.26	n/a	0.11
Square	8				
$\alpha = 0.56$		0.58	0.60	n/a	0.60
Triangle	8				
$\alpha = -0.23$		0.62	0.52	n/a	0.11

Cluster	Obs (34)	Α	В	Ø	D
Diamond	3				
$\alpha = 0.89$		0.35	0.17	0.21*	0.75
Circle	13				
$\alpha = 0.15$		0.71	0.29	0.46*	0.11
Square	18				
$\alpha = 0.26$		0.63	0.53	n/a	0.19
Triangle	2				
$\alpha = -1.15$		0.69	0.41	n/a	n/a

Cluster	Obs (33)	AAA	AAB	AA	AB
Diamond	3				
$\alpha = 0.35$		0.79*	0.90	0.82	0.50
Circle	7				
$\alpha = 0.02$		0.96	0.90	0.96	0.85
Square	10				
$\alpha = 0.13$		0.85	0.81	0.72	0.71
Triangle	9				
$\alpha = -0.24$		1	0.97	0.96	0.88

Cluster	Obs (36)	AAA	AAB	AA	ABB
Diamond	8	0.05	0.11	0.00	0.00
$\alpha = 0.19$		0.95	0.11	0.02	0.03
Circle	13				
$\alpha = -0.07$		0.89	0.70	0.24	0.26
Square	11				
$\alpha = 0.10$		0.74	0.70	n/a	0.61
Triangle	1				
$\alpha = -3.98$		1*	0.54*	n/a	0.02*

Cluster	Obs (35)	AAA	AAB	AA	DDD
Diamond	10				
$\alpha = 0.64$		0.54	0.49	0.33	0.32
Circle	3				
$\alpha = 0.11$		0.84	0.01*	n/a	0.07
Square	18				
$\alpha = -0.04$		0.67	0.69	0.57	0.12
Triangle	4				
$\alpha = -1.16$		0.89	0.80	0.91*	n/a

- · Variation in updating strategies.
 - Extent they account for selection.
- Being closer to equilibrium $\not\to$ higher payoffs.
- However, in many treatments, groups better at accounting for selection is among the highest.
- With N = 50, few differences in payoffs.

Summary

Senders

- The majority:
 - Select the better balls to send.
 - Behave similarly for both urns.
- Some convey more information by conditioning on the type.
- \rightarrow More information transmitted than predicted.

Receivers

- Many do not fully account for selection.
- · Some are not very responsive.
- → Less information received than predicted.

INFORMATIVENESS

Information Transmission: Bayesian Receivers (Given Data)

Information Transmission

Test 1: More Information

Test 1. If K = N, informativeness increases with N (more info)

- Data: p value = 0.00.
- Bayesian receivers given data: p value = 0.00.

Test 2: More Verifiability

Test 2. $\uparrow K$: informativeness increases (more verifiability)

- Data: *p* − *value* = 0.00.
- Bayesian receivers given data: p value = 0.00.

Test 3: Selection Effect

Test 3. ↑ *N*: informativeness decreases (selection effect)

- Data (K = 1): p value = 0.43.
- Bayesian receivers given data (K = 1): p value = 0.64.

Test 3: Selection Effect

Test 3. ↑ *N*: informativeness decreases (selection effect)

- Data (K = 3): p value = 0.00.
- Bayesian receivers given data (K = 3): p value = 0.00.

Test 4: Information Selection

Test 4. \uparrow *N*: informativeness increases (information effect)

- Data: *p* − *value* = 0.81.
- Bayesian receivers given data: p value = 0.04.

Result 3 (Informativeness)

Result: Changes in *K* and *N* moves informativeness in the directions predicted by the theory in most cases.

- $N = K \uparrow \Longrightarrow \text{ informativeness } \uparrow$.
 - \rightarrow More information.
- Fix $N: K \uparrow \Longrightarrow$ informativeness \uparrow .
 - \rightarrow More verifiability.
- Fix $K: N \uparrow \Longrightarrow$ informativeness never \uparrow .
 - \rightarrow Selection effect \geq Information effect.

Conclusion

Model:

- · Selective disclosure in equilibrium.
- · Spans cheap talk and disclosure models.
- Studies role of information and selection effect.

Experimental results:

- Important selective disclosure (predicted and otherwise).
- · Some deception aversion.
- · Receivers have difficulty accounting for selection.
- · Less information transmission than predicted.

APPENDIX

Some Notation: Strategies and Beliefs

Denote $\mathcal M$ the space of all messages

Sender's Strategy

pure and θ -independent

$$-\ \sigma: S^N o \mathcal{M} \text{ s.t. } \sigma(\bar{s}) \in M(\bar{s}), \text{ for all } \bar{s}$$

where $M(\bar{s})$ is the space of available messages given \bar{s}

Receiver's Beliefs and Strategy

- $\mu: \mathcal{M} o \Delta(\mathcal{S}^{\mathcal{N}})$
- $\ a: \mathcal{M} \to \Delta(\textbf{A})$

Given μ , receiver's optimal strategy given by

$$a(m) = \mathbb{E}(\theta|m) = \sum_{\bar{s}} \mu(\bar{s}|m)\mathbb{E}(\theta|\bar{s}) \quad \forall m$$

Sequential Equilibrium

A **Sequential Equilibrium** is a pair (σ^*, μ^*) s.t.

1. For all $\bar{s} \in S^N$, $\sigma^*(\bar{s}) \in M(\bar{s})$ and

$$\sum_{\bar{s}'} \mu^*(\bar{s}'|\sigma^*(\bar{s})) \mathbb{E}(\theta|\bar{s}') \ge \sum_{\bar{s}'} \mu^*(\bar{s}'|m') \mathbb{E}(\theta|\bar{s}') \qquad m' \in M(\bar{s})$$

2. For all m, supp $\mu^*(\cdot|m) \subseteq C(m) = \{\bar{s} \in S^N : m \in M(\bar{s})\}$. In particular, if $m \in \sigma^*(S^N)$,

$$\mu^*(\bar{s}|m) = q(\bar{s}|\sigma^{\star^{-1}}(m)) \quad \forall \ \bar{s}$$

where
$$q(\bar{s}) = \sum_{\theta} p(\theta) f(\bar{s}|\theta)$$

Equilibrium Multiplicity

$$\Theta = \{0, 1\} \text{ and } p(1) = \frac{1}{2}. \ N = 2 \text{ and } K = 1.$$

$$S = \{A, B\}, f(A|\theta_H) = 1 \text{ and } f(A|\theta_L) = \frac{1}{2}.$$

$$\theta$$
 \bar{s} $M(\bar{s})$ $\sigma^*(\bar{s})$

1 \cdots (A,A) $\{\varnothing,A\}$ A

0 (A,B) $\{\varnothing,A,B\}$ A
 (B,B) $\{\varnothing,B\}$ B

$$\mathbb{E}[\theta|m=A]=rac{4}{7} ext{ and } \mathbb{E}[\theta|m=B]=\mathbb{E}[\theta|m=\varnothing]=0 \implies$$
No incentive to deviate

Equilibrium Multiplicity

$$\Theta = \{0, 1\} \text{ and } p(1) = \frac{1}{2}. \ N = 2 \text{ and } K = 1.$$

$$S = \{A, B\}, f(A|\theta_H) = 1 \text{ and } f(A|\theta_L) = \frac{1}{2}.$$

$$\mathbb{E}[\theta|m=\varnothing]=\frac{1}{2} \text{ and } \mathbb{E}[\theta|m=A]=\mathbb{E}[\theta|m=B]=0 \implies$$

No incentive to deviate

Neologism Proof Equilibrium

A **neologism** is a pair (m, C), $C \subseteq \{\bar{s} \in S^N : m \in M(\bar{s})\}$

Literal meaning of $(m, C) \rightsquigarrow "My type \bar{s} belongs to C"$

A neologism (m, C) is **credible** relative to equilibrium (σ^*, μ^*) if

1.
$$\sum_{\bar{s}'} q(\bar{s}'|C)\mathbb{E}(\theta|\bar{s}') > \sum_{\bar{s}'} \mu^*(\bar{s}'|\sigma^*(\bar{s}))\mathbb{E}(\theta|\bar{s}') \text{ for all } \bar{s} \in C$$

2.
$$\sum_{\bar{s}'} q(\bar{s}'|C)\mathbb{E}(\theta|\bar{s}') \leq \sum_{\bar{s}'} \mu^*(\bar{s}'|\sigma^*(\bar{s}))\mathbb{E}(\theta|\bar{s}') \text{ for all } \bar{s} \notin C$$

The equilibrium is **Neologism Proof** if no neologism is credible.

Back to the Example

$$m = A \text{ and } C = \{(A, A), (A, B)\} \implies$$

$$\mathbb{E}[\theta|m = A] = \frac{4}{7} > \mathbb{E}[\theta|m = \varnothing] = \frac{1}{2}$$

Credible neologism \implies no Neologism Proof equilibrium

