

```
In [1]: import warnings
        warnings.filterwarnings("ignore")
        import pandas as pd
        import sqlite3
        import csv
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        from wordcloud import WordCloud
        import re
        import os
        from sqlalchemy import create_engine # database connection
        import datetime as dt
        from nltk.corpus import stopwords
        from nltk.tokenize import word_tokenize
        from nltk.stem.snowball import SnowballStemmer
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.multiclass import OneVsRestClassifier
        from sklearn.linear_model import SGDClassifier
        from sklearn import metrics
        from sklearn.metrics import f1_score,precision_score,recall_score
        from sklearn import svm
        from sklearn.linear_model import LogisticRegression
        from skmultilearn.adapt import mlknn
        from skmultilearn.problem_transform import ClassifierChain
        from skmultilearn.problem_transform import BinaryRelevance
        from skmultilearn.problem_transform import LabelPowerset
        from sklearn.naive_bayes import GaussianNB
        from datetime import datetime
```

Stack Overflow: Tag Prediction

1. Business Problem

1.1 Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/

1.2 Source / useful links

Data Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle

Youtube: https://youtu.be/nNDqbUhtIRg (https://youtu.be/nNDqbUhtIRg)

 $Research\ paper: \underline{https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tagging-1.\underline{pdf\ (https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tagging-1.\underline{pdf\ (https://www.microsoft.com/en-us/research/wp-con$

us/research/wp-content/uploads/2016/02/tagging-1.pdf)

Research paper: https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL (https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL)

1.3 Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- 2. Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

2. Machine Learning problem

2.1 Data

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle.com/c

All of the data is in 2 files: Train and Test.

```
Train.csv contains 4 columns: Id,Title,Body,Tags.

Test.csv contains the same columns but without the Tags, which you are to predict.

Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

Number of rows in Train.csv = 6034195
```

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and programming. The number of questions from each site may vary, and no filtering has been performed on the questions (such as closed questions).

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

```
Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lowercase, should not contain tabs '\t' or ampersands '&')
```

2.1.2 Example Data point

```
Title: Implementing Boundary Value Analysis of Software Testing in a C++ program? Body:
```

```
#include<
   iostream>\n
   #include<
   stdlib.h>\n\n
   using namespace std;\n\n
   int main()\n
   {\n
             int n,a[n],x,c,u[n],m[n],e[n][4];\n
             cout<<"Enter the number of variables";\n</pre>
                                                               cin>>n;\n\n
             cout<<"Enter the Lower, and Upper Limits of the variables";\n</pre>
             for(int y=1; y<n+1; y++)\n
             {\n
                cin>>m[y];\n
                cin>>u[y];\n
             }\n
             for(x=1; x<n+1; x++)\n
                a[x] = (m[x] + u[x])/2;\n
             }\n
             c=(n*4)-4;\n
             for(int a1=1; a1<n+1; a1++)\n
             \{ \n \n
                e[a1][0] = m[a1];\n
                e[a1][1] = m[a1]+1; \n
                e[a1][2] = u[a1]-1;\n
                e[a1][3] = u[a1];\n
             }\n
             for(int i=1; i<n+1; i++)\n
                for(int l=1; l<=i; l++)\n</pre>
                {\n
                    if(1!=1)\n
                    {\n
                        cout<<a[1]<<"\\t";\n
                    }\n
                }\n
                for(int j=0; j<4; j++)\n
                    cout<<e[i][j];\n</pre>
                    for(int k=0; k< n-(i+1); k++) \ n
                    {\n
                        cout<<a[k]<<"\\t";\n
                    }\n
                    cout<<"\\n";\n
                }\n
                  n\n
             system("PAUSE");\n
             return 0;
   }\n
The answer should come in the form of a table like\n\n
<code>
             50
                             50\n
             50
                             50\n
                             50\n
100
             50
                             50\n
50
             1
                             50\n
50
             2
                             50\n
                             50\n
50
             99
50
             100
                             50\n
50
             50
                             1\n
50
             50
                             2\n
                             99\n
50
             50
                             100\n
50
             50
</code>\n\n
if the no of inputs is 3 and their ranges are\n
1,100\n
1,100\n
(could be varied too)\n
```

The output is not coming, can anyone correct the code or tell me what\'s wrong?\n'

 $n\n$

1

2

2.2 Mapping the real-world problem to a Machine Learning Problem

2.2.1 Type of Machine Learning Problem

It is a multi-label classification problem

Multi-label Classification: Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting properties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A question on Stackoverflow might be about any of C, Pointers, FileIO and/or memory-management at the same time or none of these.

__Credit__: http://scikit-learn.org/stable/modules/multiclass.html

2.2.2 Performance metric

Micro-Averaged F1-Score (Mean F Score): The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

```
F1 = 2 * (precision * recall) / (precision + recall)
```

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

'Micro f1 score':

Calculate metrics globally by counting the total true positives, false negatives and false positives. This is a better metric when we have class imbalance.

'Macro f1 score':

Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

https://www.kaggle.com/wiki/MeanFScore (https://www.kaggle.com/wiki/MeanFScore) http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html (http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html)

Hamming loss: The Hamming loss is the fraction of labels that are incorrectly predicted. https://www.kaggle.com/wiki/HammingLoss (https

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
In [2]: #Creating db file from csv
#Learn SQL: https://www.w3schools.com/sqL/default.asp
if not os.path.isfile('train.db'):
    start = datetime.now()
    disk_engine = create_engine('sqlite:///train.db')
    start = dt.datetime.now()
    chunksize = 180000
    j = 0
    index_start = 1
    for df in pd.read_csv('Train.csv', names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunksize, iterator=True, encodi
    df.index += index_start
    j+=1
    print('{} rows'.format(j*chunksize))
    df.to_sql('data', disk_engine, if_exists='append')
    index_start = df.index[-1] + 1
    print("Time taken to run this cell :", datetime.now() - start)
```

3.1.2 Counting the number of rows

```
In [0]: | if os.path.isfile('train.db'):
               start = datetime.now()
               con = sqlite3.connect('train.db')
               num_rows = pd.read_sql_query("""SELECT count(*) FROM data""", con)
               #Always remember to close the database
               print("Number of rows in the database :","\n",num_rows['count(*)'].values[0])
               print("Time taken to count the number of rows :", datetime.now() - start)
          else:
               print("Please download the train.db file from drive or run the above cell to genarate train.db file")
          Number of rows in the database :
           6034196
          Time taken to count the number of rows: 0:01:15.750352
          3.1.3 Checking for duplicates
 In [0]: #Learn SQL: https://www.w3schools.com/sql/default.asp
          if os.path.isfile('train.db'):
               start = datetime.now()
               con = sqlite3.connect('train.db')
               df_no_dup = pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_dup FROM data GROUP BY Title, Body, Tags',
               con.close()
               print("Time taken to run this cell :", datetime.now() - start)
          else:
               print("Please download the train.db file from drive or run the first to genarate train.db file")
          Time taken to run this cell: 0:04:33.560122
 In [0]:
         df_no_dup.head()
          # we can observe that there are duplicates
 Out[6]:
                                              Title
                                                                                       Body
                                                                                                                    Tags cnt_dup
           0 Implementing Boundary Value Analysis of S... <code>#include&lt;iostream&gt;\n#include&...
                                                                                                                    C++ C
                   Dynamic Datagrid Binding in Silverlight?
           1
                                                       I should do binding for datagrid dynamicall...
                                                                                                    c# silverlight data-binding
                   Dynamic Datagrid Binding in Silverlight?
                                                      I should do binding for datagrid dynamicall... c# silverlight data-binding columns
           3 java.lang.NoClassDefFoundError: javax/serv...
                                                        I followed the guide in <a href="http://sta...
                                                                                                                                1
                                                                                                                   jsp jstl
           4 java.sql.SQLException:[Microsoft][ODBC Dri... I use the following code\n\npre><code>...
                                                                                                                                2
                                                                                                                 java jdbc
 In [0]: | print("number of duplicate questions :", num_rows['count(*)'].values[0]- df_no_dup.shape[0], "(",(1-((df_no_dup.shape[0]))
          number of duplicate questions : 1827881 ( 30.2920389063 % )
 In [0]: # number of times each question appeared in our database
          df_no_dup.cnt_dup.value_counts()
 Out[8]: 1
                2656284
          2
                1272336
          3
                 277575
                     90
          4
          5
                     25
          Name: cnt_dup, dtype: int64
 In [0]: | start = datetime.now()
          df_no_dup["tag_count"] = df_no_dup["Tags"].apply(lambda text: len(text.split(" ")))
          # adding a new feature number of tags per question
          print("Time taken to run this cell :", datetime.now() - start)
          df_no_dup.head()
          Time taken to run this cell: 0:00:03.169523
 Out[9]:
                                                                                                                    Tags cnt_dup tag count
              Implementing Boundary Value Analysis of S...
                                                    <code>#include&lt;iostream&gt;\n#include&...
           1
                   Dynamic Datagrid Binding in Silverlight?
                                                       I should do binding for datagrid dynamicall...
                                                                                                    c# silverlight data-binding
                                                                                                                                          3
                                                                                                                                1
           2
                   Dynamic Datagrid Binding in Silverlight?
                                                       I should do binding for datagrid dynamicall... c# silverlight data-binding columns
              java.lang.NoClassDefFoundError: javax/serv...
                                                        I followed the guide in <a href="http://sta...</p>
                                                                                                                                          2
                                                                                                                   jsp jstl
              java.sql.SQLException:[Microsoft][ODBC Dri...
                                                    I use the following code\n\n<code>...
                                                                                                                                2
                                                                                                                                          2
                                                                                                                 java jdbc
          # distribution of number of tags per question
          df_no_dup.tag_count.value_counts()
Out[10]: 3
                1206157
                1111706
          4
                 814996
                 568298
          1
                 505158
          Name: tag_count, dtype: int64
```

```
In [0]: #Creating a new database with no duplicates
        if not os.path.isfile('train_no_dup.db'):
            disk_dup = create_engine("sqlite:///train_no_dup.db")
            no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
            no_dup.to_sql('no_dup_train',disk_dup)
In [3]: | #This method seems more appropriate to work with this much data.
        #creating the connection with database file.
        if os.path.isfile('train_no_dup.db'):
            start = datetime.now()
            con = sqlite3.connect('train_no_dup.db')
            tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup_train""", con)
            #Always remember to close the database
            con.close()
            # Let's now drop unwanted column.
            tag_data.drop(tag_data.index[0], inplace=True)
            #Printing first 5 columns from our data frame
            tag_data.head()
            print("Time taken to run this cell :", datetime.now() - start)
            print("Please download the train.db file from drive or run the above cells to genarate train.db file")
        Time taken to run this cell : 0:00:05.121681
        3.2 Analysis of Tags
        3.2.1 Total number of unique tags
In [4]: # Importing & Initializing the "CountVectorizer" object, which
        #is scikit-learn's bag of words tool.
        #by default 'split()' will tokenize each tag using space.
        vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
        # fit_transform() does two functions: First, it fits the model
        # and learns the vocabulary; second, it transforms our training data
        # into feature vectors. The input to fit_transform should be a list of strings.
        tag_dtm = vectorizer.fit_transform(tag_data['Tags'])
In [0]: | print("Number of data points :", tag_dtm.shape[0])
        print("Number of unique tags :", tag_dtm.shape[1])
```

```
Number of data points : 4206314

Number of unique tags : 42048
```

```
In [0]: #'get_feature_name()' gives us the vocabulary.
  tags = vectorizer.get_feature_names()
  #Lets Look at the tags we have.
  print("Some of the tags we have :", tags[:10])
```

Some of the tages we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile', '.class-file', '.cs-file', '.d oc', '.drv', '.ds-store']

3.2.3 Number of times a tag appeared

```
In [0]: # https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-elements
    #Lets now store the document term matrix in a dictionary.
    freqs = tag_dtm.sum(axis=0).A1
    result = dict(zip(tags, freqs))

In [0]: #Saving this dictionary to csv files.
    if not os.path.isfile('tag_counts_dict_dtm.csv'):
        with open('tag_counts_dict_dtm.csv', 'w') as csv_file:
        writer = csv.writer(csv file)
```

```
      0
      .a
      18

      1
      .app
      37

      2
      .asp.net-mvc
      1

      3
      .aspxauth
      21

      4
      .bash-profile
      138
```

```
In [0]: tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
tag_counts = tag_df_sorted['Counts'].values
```



```
In [0]: plt.plot(tag_counts[0:10000])
    plt.title('first 10k tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```


Tag number

400 [331!	FOF 440	220 22	120 17	720 12	064 114	162 100	20 0	140 0/	954 7151
400 [331: 6466	5865	5370	4983	4526	4281	4144	3929 3929	3750	3593
3453	3299	3123	2989	2891	2738	2647	2527	2431	2331
2259	2186	2097	2020	1959	1900	1828	1770	1723	1673
1631	1574	1532	1479	1448	1406	1365	1328	1300	1266
1245	1222	1197	1181	1158	1139	1121	1101	1076	1056
1038	1023	1006	983	966	952	938	926	911	891
882	869	856	841	830	816	804	789	779	770
752	743	733	725	712	702	688	678	671	658
650	643	634	627	616	607	598	589	583	577
568	559	552	545	540	533	526	518	512	506
500	495	490	485	480	477	469	465	457	450
447	442	437	432	426	422	418	413	408	403
398	393	388	385	381	378	374	370	367	365
361	357	354	350	347	344	342	339	336	332
330	326	323	319	315	312	309	307	304	301
299	296	293	291	289	286	284	281	278	276
275	272	270	268	265	262	260	258	256	254
252	250	249	247	245	243	241	239	238	236
234	233	232	230	228	226	224	222	220	219
217	215	214	212	210	209	207	205	204	203
201	200	199	198	196	194	193	192	191	189
188	186	185	183	182	181	180	179	178	177
175	174	172	171	170	169	168	167	166	165
164	162	161	160	159	158	157	156	156	155
154	153	152	151	150	149	149	148	147	146
145	144	143	142	142	141	140	139	138	137
137	136	135	134	134	133	132	131	130	130
129	128	128	127	126	126	125	124	124	123
123	122	122	121	120	120	119	118	118	117
117	116	116	115	115	114	113	113	112	111
111	110	109	109	108	108	107	106	106	106
105	105	104	104	103	103	102	102	101	101
100	100	99	99	98	98	97	97	96	96
95	95	94	94	93	93	93	92	92	91
91	90	90	89	89	88	88	87	87	86
86	86	85	85	84	84	83	83	83	82
82	82	81	81	80	80	80	79	79	78 75
78 75	78	78	77 74	77 72	76	76	76	75 73	75 731
75	74	74	74	73	73	73	73	72	72]

```
In [0]: plt.plot(tag_counts[0:1000])
   plt.title('first 1k tags: Distribution of number of times tag appeared questions')
   plt.grid()
   plt.xlabel("Tag number")
   plt.ylabel("Number of times tag appeared")
   plt.show()
   print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```

first 1k tags: Distribution of number of times tag appeared questions

200 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 1639]

```
In [0]: plt.plot(tag_counts[0:500])
    plt.title('first 500 tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```

first 500 tags: Distribution of number of times tag appeared questions


```
100 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
  22429 21820 20957 19758 18905 17728 15533 15097 14884 13703
                      11658 11228 11162
                                                   10600
                                                          10350 10224
         13157
               12407
                                            10863
  10029
                                      9148
          9884
                 9719
                        9411
                               9252
                                             9040
                                                    8617
                                                           8361
                                                                  8163
   8054
          7867
                 7702
                        7564
                               7274
                                      7151
                                             7052
                                                           6656
                                                                  6553
                                                    6847
   6466
                                             5760
          6291
                 6183
                        6093
                               5971
                                      5865
                                                    5577
                                                           5490
                                                                  5411
   5370
          5283
                 5207
                        5107
                               5066
                                      4983
                                             4891
                                                    4785
                                                           4658
                                                                  4549
   4526
                                             4239
          4487
                 4429
                        4335
                               4310
                                      4281
                                                    4228
                                                           4195
                                                                  4159
   4144
          4088
                                             3874
                                                                   3797
                 4050
                        4002
                               3957
                                      3929
                                                    3849
                                                            3818
   3750
          3703
                               3615
                                      3593
                                             3564
                                                                   3483]
                 3685
                        3658
                                                    3521
                                                            3505
```

```
In [0]: plt.plot(tag_counts[0:100], c='b')
    plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with 0.05 intervals")
# quantiles with 0.25 difference
    plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0.25 intervals")

for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
    plt.annotate(s="({{}}, {{}})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))

plt.title('first 100 tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.legend()
    plt.show()
    print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```



```
20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric for this probelm.

3.2.4 Tags Per Question

```
In [0]: #Storing the count of tag in each question in list 'tag_count'
    tag_quest_count = tag_dtm.sum(axis=1).tolist()
    #Converting list of lists into single list, we will get [[3], [4], [2], [2], [3]] and we are converting this to [3, 4, 2 tag_quest_count=[int(j) for i in tag_quest_count for j in i]
    print ('We have total {} datapoints.'.format(len(tag_quest_count)))
    print(tag_quest_count[:5])
    We have total 4206314 datapoints.
    [3, 4, 2, 2, 3]

In [0]: print( "Maximum number of tags per question: %d"%max(tag_quest_count))
    print( "Minimum number of tags per question: %d"%min(tag_quest_count))
    print( "Avg. number of tags per question: 5
    Minimum number of tags per question: 1
    Avg. number of tags per question: 2.899440
```

```
In [0]: sns.countplot(tag_quest_count, palette='gist_rainbow')
  plt.title("Number of tags in the questions ")
  plt.xlabel("Number of Tags")
  plt.ylabel("Number of questions")
  plt.show()
```


Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 Most Frequent Tags

```
In [0]: # Ploting word cloud
        start = datetime.now()
        # Lets first convert the 'result' dictionary to 'list of tuples'
        tup = dict(result.items())
        #Initializing WordCloud using frequencies of tags.
                                   background_color='black',
        wordcloud = WordCloud(
                                   width=1600,
                                  height=800,
                             ).generate_from_frequencies(tup)
        fig = plt.figure(figsize=(30,20))
        plt.imshow(wordcloud)
        plt.axis('off')
        plt.tight_layout(pad=0)
        fig.savefig("tag.png")
        plt.show()
        print("Time taken to run this cell :", datetime.now() - start)
```


Time taken to run this cell : 0:00:05.470788

3.2.6 The top 20 tags

```
In [0]: i=np.arange(30)
    tag_df_sorted.head(30).plot(kind='bar')
    plt.title('Frequency of top 20 tags')
    plt.xticks(i, tag_df_sorted['Tags'])
    plt.xlabel('Tags')
    plt.ylabel('Counts')
    plt.show()
```


Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 1M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
In [0]: def striphtml(data):
        cleanr = re.compile('<.*?>')
        cleantext = re.sub(cleanr, ' ', str(data))
        return cleantext
        stop_words = set(stopwords.words('english'))
        stemmer = SnowballStemmer("english")
```

```
In [6]: #http://www.sqlitetutorial.net/sqlite-python/create-tables/
        def create_connection(db_file):
            """ create a database connection to the SQLite database
                specified by db_file
            :param db_file: database file
            :return: Connection object or None
            try:
                conn = sqlite3.connect(db_file)
                return conn
            except Error as e:
                print(e)
            return None
        def create table(conn, create table sql):
            """ create a table from the create_table_sql statement
            :param conn: Connection object
            :param create_table_sql: a CREATE TABLE statement
            :return:
            0.000
            try:
                c = conn.cursor()
                c.execute(create_table_sql)
            except Error as e:
                print(e)
        def checkTableExists(dbcon):
            cursr = dbcon.cursor()
            str = "select name from sqlite_master where type='table'"
            table_names = cursr.execute(str)
            print("Tables in the databse:")
            tables =table_names.fetchall()
            print(tables[0][0])
            return(len(tables))
        def create_database_table(database, query):
            conn = create_connection(database)
            if conn is not None:
                create_table(conn, query)
                checkTableExists(conn)
            else:
                print("Error! cannot create the database connection.")
            conn.close()
        sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text, words
        create_database_table("Processed.db", sql_create_table)
        Tables in the databse:
        QuestionsProcessed
In [0]: # http://www.sqlitetutorial.net/sqlite-delete/
        # https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
        start = datetime.now()
        read_db = 'train_no_dup.db'
        write_db = 'Processed.db'
        if os.path.isfile(read_db):
            conn_r = create_connection(read_db)
            if conn_r is not None:
                 reader =conn_r.cursor()
                reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 1000000;")
        if os.path.isfile(write db):
            conn_w = create_connection(write_db)
            if conn_w is not None:
                tables = checkTableExists(conn_w)
                writer =conn_w.cursor()
                if tables != 0:
                    writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
                    print("Cleared All the rows")
        print("Time taken to run this cell :", datetime.now() - start)
        Tables in the databse:
        QuestionsProcessed
        Cleared All the rows
        Time taken to run this cell : 0:06:32.806567
```

__ we create a new data base to store the sampled and preprocessed questions __

```
In [0]: | #http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
        start = datetime.now()
        preprocessed_data_list=[]
        reader.fetchone()
        questions_with_code=0
        len_pre=0
        len_post=0
        questions_proccesed = 0
        for row in reader:
            is_code = 0
            title, question, tags = row[0], row[1], row[2]
            if '<code>' in question:
                questions_with_code+=1
                is_code = 1
            x = len(question)+len(title)
            len_pre+=x
            code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
            question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
            question=striphtml(question.encode('utf-8'))
            title=title.encode('utf-8')
            question=str(title)+" "+str(question)
            question=re.sub(r'[^A-Za-z]+',' ',question)
            words=word_tokenize(str(question.lower()))
            #Removing all single letter and and stopwords from question except for the letter 'c'
            question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
            len_post+=len(question)
            tup = (question,code,tags,x,len(question),is_code)
            questions_proccesed += 1
            writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values (?,?,?,?,?)
            if (questions_proccesed%100000==0):
                print("number of questions completed=",questions_proccesed)
        no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
        no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
        print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
        print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
        print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
        print("Time taken to run this cell :", datetime.now() - start)
        number of questions completed= 100000
        number of questions completed= 200000
        number of questions completed= 300000
        number of questions completed= 400000
        number of questions completed= 500000
        number of questions completed= 600000
        number of questions completed= 700000
        number of questions completed= 800000
        number of questions completed= 900000
        Avg. length of questions(Title+Body) before processing: 1169
        Avg. length of questions(Title+Body) after processing: 327
        Percent of questions containing code: 57
        Time taken to run this cell : 0:47:05.946582
       # dont forget to close the connections, or else you will end up with locks
In [0]:
        conn r.commit()
        conn_w.commit()
        conn_r.close()
        conn_w.close()
```

```
In [0]: if os.path.isfile(write db):
            conn r = create connection(write db)
            if conn_r is not None:
                reader =conn_r.cursor()
                reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
                print("Questions after preprocessed")
                print('='*100)
                reader.fetchone()
                for row in reader:
                   print(row)
                   print('-'*100)
        conn_r.commit()
        conn_r.close()
        Questions after preprocessed
        ______
        ('ef code first defin one mani relationship differ key troubl defin one zero mani relationship entiti ef object model l
        ook like use fluent api object composit pk defin batch id batch detail id use fluent api object composit pk defin batch
        detail id compani id map exist databas tpt basic idea submittedtransact zero mani submittedsplittransact associ navig r
        ealli need one way submittedtransact submittedsplittransact need dbcontext class onmodelcr overrid map class lazi load
        occur submittedtransact submittedsplittransact help would much appreci edit taken advic made follow chang dbcontext cla
        ss ad follow onmodelcr overrid must miss someth get follow except thrown submittedtransact key batch id batch detail id
        zero one mani submittedsplittransact key batch detail id compani id rather assum convent creat relationship two object
        configur requir sinc obvious wrong',)
        ______
        ('explan new statement review section c code came accross statement block come accross new oper use way someon explain
        new call way',)
        ('error function notat function solv logic riddl iloczyni list structur list possibl candid solut list possibl coordin
        matrix wan na choos one candid compar possibl candid element equal wan na delet coordin call function skasuj look like
        ni knowledg haskel cant see what wrong',)
        ('step plan move one isp anoth one work busi plan switch isp realli soon need chang lot inform dns wan wan wifi questio
        n guy help mayb peopl plan correct chang current isp new one first dns know receiv new ip isp major chang need take con
        sider exchang server owa vpn two site link wireless connect km away citrix server vmware exchang domain control link pl
        ace import server crucial step inform need know avoid downtim busi regard ndavid',)
        ______
        ('use ef migrat creat databas googl migrat tutori af first run applic creat databas ef enabl migrat way creat databas m
        igrat rune applic tri',)
        ______
        ('magento unit test problem magento site recent look way check integr magento site given point unit test jump one metho
        d would assum would big job write whole lot test check everyth site work anyon involv unit test magento advis follow po
        ssibl test whole site custom modul nis exampl test would amaz given site heavili link databas would nbe possibl fulli t
        est site without disturb databas better way automaticlli check integr magento site say integr realli mean fault site sh
        ip payment etc work correct',)
        ('find network devic without bonjour write mac applic need discov mac pcs iphon ipad connect wifi network bonjour seem
        reason choic turn problem mani type router mine exampl work block bonjour servic need find ip devic tri connect applic
        specif port determin process run best approach accomplish task without violat app store sandbox',)
        ______
        ('send multipl row mysql databas want send user mysql databas column user skill time nnow want abl add one row user dif
        fer time etc would code send databas nthen use help schema',)
        ______
        ('insert data mysql php powerpoint event powerpoint present run continu way updat slide present automat data mysql data
        bas websit',)
In [0]: #Taking 1 Million entries to a dataframe.
        write_db = 'Processed.db'
        if os.path.isfile(write_db):
            conn r = create connection(write db)
            if conn_r is not None:
                preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""", conn_r)
        conn r.commit()
        conn_r.close()
 In [0]: preprocessed data.head()
Out[47]:
                                     question
                                                       tags
              resiz root window tkinter resiz root window re...
                                                 python tkinter
         1
               ef code first defin one mani relationship diff... entity-framework-4.1
           explan new statement review section c code cam...
         3
                error function notat function solv logic riddl...
                                                  haskell logic
            step plan move one isp anoth one work busi pla...
                                                     dns isp
        print("number of data points in sample :", preprocessed_data.shape[0])
In [0]:
        print("number of dimensions :", preprocessed_data.shape[1])
        number of data points in sample : 999999
```

4. Machine Learning Models

number of dimensions : 2

4.1 Converting tags for multilabel problems

```
    X
    y1
    y2
    y3
    y4

    x1
    0
    1
    1
    0

    x1
    1
    0
    0
    0

    x1
    0
    1
    0
    0
```

```
In [0]: # binary='true' will give a binary vectorizer
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

__ We will sample the number of tags instead considering all of them (due to limitation of computing power) __

```
In [12]: def tags_to_choose(n):
    t = multilabel_y.sum(axis=0).tolist()[0]
    sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel_yn

def questions_explained_fn(n):
    multilabel_yn = tags_to_choose(n)
    x= multilabel_yn.sum(axis=1)
    return (np.count_nonzero(x==0))
```

```
In [0]: questions_explained = []
    total_tags=multilabel_y.shape[1]
    total_qs=preprocessed_data.shape[0]
    for i in range(500, total_tags, 100):
        questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

```
In [0]: fig, ax = plt.subplots()
    ax.plot(questions_explained)
    xlabel = list(500+np.array(range(-50,450,50))*50)
    ax.set_xticklabels(xlabel)
    plt.xlabel("Number of tags")
    plt.ylabel("Number Questions coverd partially")
    plt.grid()
    plt.show()
    # you can choose any number of tags based on your computing power, minimum is 50(it covers 90% of the tags)
    print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
```


with 5500 tags we are covering 99.04 % of questions

```
In [0]: multilabel_yx = tags_to_choose(5500)
    print("number of questions that are not covered :", questions_explained_fn(5500),"out of ", total_qs)
    number of questions that are not covered : 9599 out of 999999

In [0]: print("Number of tags in sample :", multilabel_y.shape[1])
    print("number of tags taken :", multilabel_yx.shape[1],"(",(multilabel_yx.shape[1]/multilabel_y.shape[1])*100,"%)")
    Number of tags in sample : 35422
```

 $_$ We consider top 15% tags which covers 99% of the questions $_$

number of tags taken : 5500 (15.527073570097679 %)

4.2 Split the data into test and train (80:20)

```
y_train = multilabel_yx[0:train_size,:]
                    y_test = multilabel_yx[train_size:total_size,:]
  In [0]: | print("Number of data points in train data :", y_train.shape)
                    print("Number of data points in test data :", y_test.shape)
                     Number of data points in train data: (799999, 5500)
                    Number of data points in test data : (200000, 5500)
                    4.3 Featurizing data
  In [0]: | start = datetime.now()
                     vectorizer = TfidfVectorizer(min_df=0.00009, max_features=200000, smooth_idf=True, norm="12", \
                                                                                     tokenizer = lambda x: x.split(), sublinear_tf=False, ngram_range=(1,3))
                     x_train_multilabel = vectorizer.fit_transform(x_train['question'])
                     x_test_multilabel = vectorizer.transform(x_test['question'])
                     print("Time taken to run this cell :", datetime.now() - start)
                     Time taken to run this cell : 0:09:50.460431
  In [0]: | print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
                     print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
                    Diamensions of train data X: (799999, 88244) Y: (799999, 5500)
                    Diamensions of test data X: (200000, 88244) Y: (200000, 5500)
  In [0]: | # https://www.analyticsvidhya.com/blog/2017/08/introduction-to-multi-label-classification/
                     #https://stats.stackexchange.com/questions/117796/scikit-multi-label-classification
                     # classifier = LabelPowerset(GaussianNB())
                     from skmultilearn.adapt import MLkNN
                     classifier = MLkNN(k=21)
                     # train
                     classifier.fit(x_train_multilabel, y_train)
                     # predict
                     predictions = classifier.predict(x_test_multilabel)
                     print(accuracy_score(y_test,predictions))
                     print(metrics.f1_score(y_test, predictions, average = 'macro'))
                     print(metrics.f1_score(y_test, predictions, average = 'micro'))
                     print(metrics.hamming_loss(y_test,predictions))
                     # we are getting memory error because the multilearn package
                     # is trying to convert the data into dense matrix
                     #MemoryError
                                                                                                                   Traceback (most recent call last)
                     #<ipython-input-170-f0e7c7f3e0be> in <module>()
                     #----> classifier.fit(x_train_multilabel, y_train)
Out[92]: "\nfrom skmultilearn.adapt import MLkNN\nclassifier = MLkNN(k=21)\n\n# train\nclassifier.fit(x_train_multilabel, y_trai
                     n)\n\n# predict\npredictions = classifier.predict(x_test_multilabel)\nprint(accuracy_score(y_test,predictions))\nprint
                     (\texttt{metrics.f1\_score}(y\_\texttt{test}, \ \texttt{predictions}, \ \texttt{average} = \texttt{'macro'})) \\ \texttt{'metrics.f1\_score}(y\_\texttt{test}, \ \texttt{predictions}, \ \texttt{average} = \texttt{'micro'})) \\ \texttt{'metrics.f1\_score}(y\_\texttt{test}, \ \texttt{predictions}, \ \texttt{average})) \\ \texttt{'metrics.f1\_score}(y\_\texttt{test
```

4.4 Applying Logistic Regression with OneVsRest Classifier

o'))\nprint(metrics.hamming_loss(y_test,predictions))\n\n"

In [0]: total_size=preprocessed_data.shape[0]
 train_size=int(0.80*total_size)

x_train=preprocessed_data.head(train_size)

x_test=preprocessed_data.tail(total_size - train_size)

```
# This takes about 6-7 hours to run.
        classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=-1)
        classifier.fit(x_train_multilabel, y_train)
        predictions = classifier.predict(x_test_multilabel)
        print("accuracy :",metrics.accuracy_score(y_test,predictions))
        print("macro f1 score :",metrics.f1_score(y_test, predictions, average = 'macro'))
        print("micro f1 scoore :", metrics.f1_score(y_test, predictions, average = 'micro'))
        print("hamming loss :", metrics.hamming_loss(y_test, predictions))
        print("Precision recall report :\n",metrics.classification_report(y_test, predictions))
        accuracy : 0.081965
        macro f1 score : 0.0963020140154
        micro f1 scoore : 0.374270748817
        hamming loss: 0.00041225090909090907
        Precision recall report :
                      precision
                                    recall f1-score
                                                       support
                  0
                           0.62
                                    0.23
                                               0.33
                                                        15760
                  1
                          0.79
                                    0.43
                                               0.56
                                                        14039
                  2
                          0.82
                                    0.55
                                               0.66
                                                        13446
                  3
                          0.76
                                    0.42
                                               0.54
                                                        12730
                  4
                          0.94
                                    0.76
                                               0.84
                                                        11229
                  5
                          0.85
                                    0.64
                                               0.73
                                                        10561
                  6
                          0.70
                                    0.30
                                               0.42
                                                         6958
                  7
                                               0.72
                          0.87
                                    0.61
                                                         6309
                  8
                          0.70
                                    0.40
                                               0.50
                                                         6032
                  9
                           0.78
                                    0.43
                                               0.55
                                                         6020
                 10
                           0.86
                                    0.62
                                               0.72
                                                         5707
                 11
                           0.52
                                               0.25
                                    0.17
                                                         5723
In [0]: | from sklearn.externals import joblib
        joblib.dump(classifier, 'lr_with_equal_weight.pkl')
```

In [0]: # this will be taking so much time try not to run it, download the lr_with_equal_weight.pkl file and use to predict

4.5 Modeling with less data points (0.5M data points) and more weight to title and 500 tags only.

```
In [0]: sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text, words
        create_database_table("Titlemoreweight.db", sql_create_table)
        Tables in the databse:
        QuestionsProcessed
In [0]: | # http://www.sqlitetutorial.net/sqlite-delete/
        # https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
        read_db = 'train_no_dup.db'
        write_db = 'Titlemoreweight.db'
        train_datasize = 400000
        if os.path.isfile(read_db):
            conn_r = create_connection(read_db)
            if conn_r is not None:
                reader =conn r.cursor()
                # for selecting first 0.5M rows
                reader.execute("SELECT Title, Body, Tags From no_dup_train LIMIT 500001;")
                # for selecting random points
                #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 500001;")
        if os.path.isfile(write_db):
            conn_w = create_connection(write_db)
            if conn w is not None:
                tables = checkTableExists(conn_w)
                writer =conn_w.cursor()
                if tables != 0:
                    writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
                     print("Cleared All the rows")
```

Tables in the databse: QuestionsProcessed Cleared All the rows

4.5.1 Preprocessing of questions

- 1. Separate Code from Body
- 2. Remove Spcial characters from Question title and description (not in code)
- 3. Give more weightage to title: Add title three times to the question

```
Remove HTML Tags 
               Convert all the characters into small letters 
               Use SnowballStemmer to stem the words 
In [0]: #http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
        start = datetime.now()
        preprocessed_data_list=[]
        reader.fetchone()
        questions_with_code=0
        len_pre=0
        len_post=0
        questions_proccesed = 0
        for row in reader:
            is_code = 0
            title, question, tags = row[0], row[1], str(row[2])
            if '<code>' in question:
                questions_with_code+=1
                is_code = 1
            x = len(question)+len(title)
            len_pre+=x
            code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
            question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
            question=striphtml(question.encode('utf-8'))
            title=title.encode('utf-8')
            # adding title three time to the data to increase its weight
            # add tags string to the training data
            question=str(title)+" "+str(title)+" "+str(title)+" "+question
              if questions_proccesed<=train_datasize:</pre>
                  question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+str(tags)
                  question=str(title)+" "+str(title)+" "+str(title)+" "+question
            question=re.sub(r'[^A-Za-z0-9#+.\-]+',' ',question)
            words=word_tokenize(str(question.lower()))
            #Removing all single letter and and stopwords from question except for the letter 'c'
            question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
            len_post+=len(question)
            tup = (question,code,tags,x,len(question),is_code)
            questions_proccesed += 1
            writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values (?,?,?,?,?)
            if (questions_proccesed%100000==0):
                print("number of questions completed=",questions_proccesed)
        no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
        no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
        print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
        print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
        print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
        print("Time taken to run this cell :", datetime.now() - start)
        number of questions completed= 100000
        number of questions completed= 200000
        number of questions completed= 300000
        number of questions completed= 400000
        number of questions completed= 500000
        Avg. length of questions(Title+Body) before processing: 1239
        Avg. length of questions(Title+Body) after processing: 424
        Percent of questions containing code: 57
        Time taken to run this cell: 0:23:12.329039
In [0]: # never forget to close the conections or else we will end up with database locks
        conn r.commit()
        conn w.commit()
```

conn_r.close()
conn w.close()

Remove stop words (Except 'C')

__ Sample quesitons after preprocessing of data ___

```
In [0]: if os.path.isfile(write_db):
           conn_r = create_connection(write_db)
           if conn_r is not None:
              reader =conn_r.cursor()
               reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
               print("Questions after preprocessed")
              print('='*100)
               reader.fetchone()
               for row in reader:
                  print(row)
                  print('-'*100)
       conn_r.commit()
       conn_r.close()
       Questions after preprocessed
       ('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind silverlight bind datagrid dynam c
       ode wrote code debug code block seem bind correct grid come column form come grid column although necessari bind nthank
       repli advance..',)
       ('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet
       jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid follow guid link ins
       tal jstl got follow error tri launch jsp page java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid t
       aglib declar instal jstl 1.1 tomcat webapp tri project work also tri version 1.2 jstl still messag caus solv',)
       ______
       ('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver mana
       g invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index use follow code disp
       lay caus solv',)
       ('better way updat feed fb php sdk better way updat feed fb php sdk better way updat feed fb php sdk novic facebook api
       read mani tutori still confused.i find post feed api method like correct second way use curl someth like way better',)
       ('btnadd click event open two window record ad btnadd click event open two window record ad btnadd click event open two
       window record ad open window search.aspx use code hav add button search.aspx nwhen insert record btnadd click event ope
       n anoth window nafter insert record close window',)
       ______
       ('sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php sql inject issu pre
       vent correct form submiss php check everyth think make sure input field safe type sql inject good news safe bad news on
       e tag mess form submiss place even touch life figur exact html use templat file forgiv okay entir php script get execut
       see data post none forum field post problem use someth titl field none data get post current use print post see submit
       noth work flawless statement though also mention script work flawless local machin use host come across problem state 1
       ist input test mess',)
       ______
       ('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit lebesgu measur let lbrace rbrace
       sequenc set sigma -algebra mathcal want show left bigcup right leq sum left right countabl addit measur defin set sigma
       algebra mathcal think use monoton properti somewher proof start appreci littl help nthank ad han answer make follow add
       it construct given han answer clear bigcup bigcup cap emptyset neq left bigcup right left bigcup right sum left right a
       lso construct subset monoton left right leq left right final would sum leq sum result follow',)
       ______
       ('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac name class properti name error occ
       ur hql error',)
       ('undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class sk
       psmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error import framework sen
       d email applic background import framework i.e skpsmtpmessag somebodi suggest get error collect2 ld return exit status
       import framework correct sorc taken framework follow mfmailcomposeviewcontrol question lock field updat answer drag dro
       p folder project click copi nthat',)
        ______
        __ Saving Preprocessed data to a Database __
In [7]: #Taking 0.5 Million entries to a dataframe.
       write_db = 'Titlemoreweight.db'
       if os.path.isfile(write_db):
           conn_r = create_connection(write_db)
           if conn_r is not None:
            preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed limit 60000""", conn_r)
       conn_r.commit()
       conn_r.close()
       preprocessed_data.head()
Out[8]:
                                   question
                                                             tags
          dynam datagrid bind silverlight dynam datagrid...
                                                c# silverlight data-binding
          dynam datagrid bind silverlight dynam datagrid... c# silverlight data-binding columns
           java.lang.noclassdeffounderror javax servlet j...
```

java jdbc

facebook api facebook-php-sdk

java.sql.sqlexcept microsoft odbc driver manag...

better way updat feed fb php sdk better way up...

```
In [9]: | print("number of data points in sample :", preprocessed_data.shape[0])
         print("number of dimensions :", preprocessed_data.shape[1])
         number of data points in sample : 60000
         number of dimensions : 2
          Converting string Tags to multilable output variables
In [10]: | vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
         multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
          __ Selecting 500 Tags __
In [13]: | questions_explained = []
          total_tags=multilabel_y.shape[1]
          total_qs=preprocessed_data.shape[0]
          for i in range(500, total_tags, 100):
              questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
In [14]: | fig, ax = plt.subplots()
          ax.plot(questions_explained)
          xlabel = list(500+np.array(range(-50,450,50))*50)
          ax.set_xticklabels(xlabel)
          plt.xlabel("Number of tags")
          plt.ylabel("Number Questions coverd partially")
          plt.grid()
          plt.show()
          # you can choose any number of tags based on your computing power, minimun is 500(it covers 90% of the tags)
          print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
         print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
            100
          Number Questions coverd partially
             99
             98
             97
             96
             95
             94
             93
             92
                                               13000
                                                     15500
                 500
                       3000
                             5500
                                   8000
                                         10500
                                 Number of tags
         with 5500 tags we are covering 99.455 % of questions
         with 500 tags we are covering 91.865 % of questions
In [15]: # we will be taking 500 tags
          multilabel_yx = tags_to_choose(500)
          print("number of questions that are not covered :", questions_explained_fn(500),"out of ", total_qs)
         number of questions that are not covered : 4881 out of 60000
In [16]: total_size=preprocessed_data.shape[0]
          train_size=int(0.80*total_size)
          x_train=preprocessed_data.head(train_size)
          x_train=preprocessed_data.head(train_size)
          x_test=preprocessed_data.tail(preprocessed_data.shape[0] - train_size)
         y_train = multilabel_yx[0:train_size,:]
         y_test = multilabel_yx[train_size:preprocessed_data.shape[0],:]
In [17]: print("Number of data points in train data :", y_train.shape)
         print("Number of data points in test data :", y_test.shape)
         Number of data points in train data : (48000, 500)
         Number of data points in test data: (12000, 500)
         4.5.2 Featurizing data with Tfldf vectorizer
```

Time taken to run this cell: 0:00:25.935389

```
In [19]: print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)

Dimensions of train data X: (48000, 102024) Y: (48000, 500)
Dimensions of test data X: (12000, 102024) Y: (12000, 500)
```

4.5.3 Applying Logistic Regression with OneVsRest Classifier

```
In [0]: | start = datetime.now()
        classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=-1)
        classifier.fit(x_train_multilabel, y_train)
        predictions = classifier.predict (x_test_multilabel)
        print("Accuracy :",metrics.accuracy_score(y_test, predictions))
        print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
        precision = precision_score(y_test, predictions, average='micro')
        recall = recall_score(y_test, predictions, average='micro')
        f1 = f1_score(y_test, predictions, average='micro')
        print("Micro-average quality numbers")
        print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
        precision = precision_score(y_test, predictions, average='macro')
        recall = recall_score(y_test, predictions, average='macro')
        f1 = f1_score(y_test, predictions, average='macro')
        print("Macro-average quality numbers")
        print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
        print (metrics.classification_report(y_test, predictions))
        print("Time taken to run this cell :", datetime.now() - start)
        Accuracy : 0.23623
        Hamming loss 0.00278088
        Micro-average quality numbers
        Precision: 0.7216, Recall: 0.3256, F1-measure: 0.4488
        Macro-average quality numbers
        Precision: 0.5473, Recall: 0.2572, F1-measure: 0.3339
                                   recall f1-score
                      precision
                                                      support
                   0
                           0.94
                                               0.76
                                     0.64
                                                          5519
                   1
                           0.69
                                     0.26
                                               0.38
                                                          8190
                   2
                           0.81
                                     0.37
                                               0.51
                                                          6529
                   3
                           0.81
                                     0.43
                                               0.56
                                                          3231
                   4
                           0.81
                                     0.40
                                               0.54
                                                          6430
                   5
                           0.82
                                     0.33
                                               0.47
                                                          2879
                   6
                           0.87
                                     0.50
                                               0.63
                                                          5086
                   7
                           0.87
                                     0.54
                                               0.67
                                                          4533
                   8
                           0.60
                                     0.13
                                               0.22
                                                          3000
                  9
                           0.81
                                     0.53
                                               0.64
                                                          2765
                 10
                           0.59
                                     0.17
                                               0.26
                                                          3051
                 11
                           0.70
                                     0.33
                                               0.45
                                                          3009
                 12
                           0.64
                                     0.24
                                               0.35
                                                          2630
                 13
                           0.71
                                     0.23
                                               0.35
                                                          1426
                 14
                           0.90
                                     0.53
                                               0.67
                                                          2548
                 15
                                     0.18
                                               0.28
                                                          2371
                           0.66
                 16
                           0.65
                                     0.23
                                               0.34
                                                          873
                 17
                           0.89
                                     0.61
                                               0.72
                                                          2151
                 18
                           0.62
                                     0.23
                                               0.33
                                                          2204
                 19
                           0.71
                                     0.40
                                               0.51
                                                          831
                 20
                                     0.41
                           0.77
                                               0.53
                                                          1860
                 21
                           0.27
                                     0.07
                                               0.11
                                                          2023
                 22
                           0.49
                                     0.23
                                               0.31
                                                          1513
                 23
                           0.91
                                     0.49
                                                          1207
                                               0.64
                 24
                           0.56
                                     0.29
                                               0.38
                                                          506
                 25
                           0.68
                                     0.30
                                               0.42
                                                           425
                 26
                           0.65
                                     0.40
                                               0.49
                                                          793
                                                          1291
                 27
                           0.60
                                     0.32
                                               0.42
                 28
                           0.75
                                     0.36
                                               0.48
                                                          1208
                  29
                           0.42
                                     0.09
                                               0.15
                                                           406
                 30
                           0.75
                                     0.18
                                               0.29
                                                           504
                 31
                           0.29
                                     0.10
                                               0.14
                                                           732
                 32
                                                           441
                           0.59
                                     0.24
                                               0.35
                  33
                           0.56
                                     0.18
                                               0.27
                                                          1645
                 34
                           0.71
                                     0.25
                                               0.37
                                                          1058
                  35
                           0.83
                                     0.54
                                               0.66
                                                           946
                                                           644
                 36
                           0.69
                                     0.21
                                               0.32
                           0.96
                                                           136
                  37
                                     0.68
                                               0.79
                                                           570
                 38
                           0.64
                                     0.37
                                               0.47
                 39
                           0.85
                                     0.29
                                               0.43
                                                           766
                 40
                           0.62
                                     0.28
                                               0.38
                                                          1132
                 41
                           0.46
                                     0.19
                                               0.27
                                                           174
                                                           210
                 42
                           0.81
                                     0.51
                                               0.63
                           0.80
                                                           433
                 43
                                     0.41
                                               0.54
                 44
                           0.66
                                     0.50
                                               0.57
                                                           626
                 45
                           0.75
                                     0.32
                                                0.45
                                                           852
                           0.75
                 46
                                     0.42
                                               0.54
                                                           534
                 47
                                                           350
                           0.34
                                     0.14
                                               0.20
                 48
                           0.74
                                     0.51
                                               0.60
                                                           496
                 49
                           0.79
                                     0.62
                                               0.70
                                                           785
                                                           475
                  50
                           0.16
                                     0.04
                                               0.06
                  51
                                                           305
                           0.33
                                     0.10
                                               0.15
                                                           251
                  52
                           0.50
                                     0.04
                                               0.07
```

53	0.68	0.40	0.50	914
54	0.45	0.16	0.23	728
55	0.31	0.02	0.03	258
56	0.46	0.19	0.27	821
57	0.47	0.09	0.15	541
58	0.78	0.27	0.41	748
59	0.94	0.62	0.75	724
60	0.34	0.07	0.12	660
61	0.83	0.19	0.31	235
62	0.91	0.71	0.80	718
63	0.83	0.63	0.71	468
64	0.55	0.33	0.41	191
65	0.36	0.11	0.17	429
66	0.29	0.05	0.08	415
67	0.76	0.49	0.60	274
68	0.82	0.52	0.64	510
69	0.67	0.45	0.54	466
70	0.30	0.06	0.10	305
71	0.49	0.15	0.23	247
72	0.79	0.47	0.59	401
73	0.98	0.73	0.84	86
74	0.73	0.36	0.48	120
75	0.89	0.68	0.77	129
76	0.50	0.00	0.01	473
77	0.36	0.25	0.30	143
78	0.79	0.44	0.57	347
79	0.72	0.23	0.35	479
80				
	0.53	0.30	0.39	279
81	0.78	0.18	0.29	461
82	0.16	0.01	0.02	298
83	0.77	0.45	0.56	396
84	0.55	0.33	0.41	184
85	0.67	0.21	0.32	573
86	0.48	0.05	0.09	325
87	0.48	0.27	0.35	273
88	0.43	0.21	0.28	135
89	0.28	0.06	0.10	232
90	0.55	0.30	0.39	409
91	0.63	0.25	0.36	420
92	0.76	0.53	0.63	408
93	0.69	0.49	0.58	241
94	0.31	0.04	0.07	211
95	0.34	0.08	0.12	277
96	0.26	0.03	0.05	410
97	0.90	0.33	0.48	501
98	0.76	0.57	0.65	136
99	0.54	0.31	0.40	239
100	0.55	0.13	0.21	324
101	0.93	0.59	0.72	277
102	0.92	0.70	0.79	613
103	0.48	0.17	0.25	157
104	0.21	0.05	0.09	295
105	0.84	0.34	0.49	334
106	0.77	0.12	0.21	335
107	0.75	0.50	0.60	389
108	0.58	0.24	0.34	251
109	0.54	0.40	0.46	317
110	0.78	0.07	0.14	187
111	0.54	0.10	0.17	140
112	0.56	0.24	0.34	154
113	0.64	0.18	0.28	332
114	0.44	0.27	0.33	323
115	0.47	0.22	0.30	344
116	0.77	0.49	0.60	370
117	0.57	0.22	0.32	313
118	0.78			874
		0.68	0.73	
119	0.50	0.21	0.29	293
120	0.00	0.00	0.00	200
121	0.77	0.48	0.59	463
122	0.40	0.10	0.16	119
123	0.75	0.01	0.02	256
124	0.91	0.70	0.79	195
125	0.40	0.12	0.18	138
126	0.79	0.49	0.60	376
127	0.14	0.03	0.05	122
128	0.14	0.03	0.05	252
129	0.45	0.10	0.16	144
130	0.44	0.08	0.14	150
131	0.14	0.01	0.02	210
132	0.66	0.26	0.37	361
133	0.94	0.54	0.69	453
134	0.89	0.72	0.79	124
135	0.31	0.04	0.08	91
136	0.68	0.27	0.38	128
137	0.57	0.35	0.43	218
138	0.77	0.15	0.25	243
139	0.39	0.18	0.25	149
140	0.76	0.43	0.55	318
±+0	0.70	0.43	0.33	210

141	0.29	0.11	0.16	159
142	0.66	0.36	0.47	274
143	0.86	0.72	0.79	362
144	0.59	0.17	0.26	118
145	0.65	0.36	0.46	164
146	0.58	0.27	0.37	461
147	0.66	0.39	0.49	159
148	0.32	0.13	0.19	166
149	0.98	0.46	0.62	346
150	0.62	0.08	0.14	350
151	0.90	0.64	0.74	55
152	0.79	0.45	0.58	387
153	0.52	0.10	0.17	150
154	0.60	0.12	0.20	281
155	0.30	0.05	0.09	202
156	0.76	0.62	0.68	130
157	0.26	0.07	0.11	245
158	0.88	0.58	0.70	177
159	0.49	0.26	0.34	130
160	0.50	0.13	0.21	336
161	0.93	0.57	0.71	220
162	0.12	0.02	0.03	229
163	0.90	0.41	0.56	316
164	0.74	0.34	0.47	283
165	0.63	0.32	0.43	197
166	0.48	0.24	0.32	101
167	0.47	0.18	0.26	231
168	0.58	0.21	0.31	370
169	0.44	0.20	0.27	258
170	0.29	0.05	0.08	101
171	0.39	0.22	0.29	89
172	0.50	0.32	0.39	193
173	0.44	0.22	0.29	309
174	0.51	0.14	0.22	172
175	0.94	0.71	0.81	95
176	0.94	0.59	0.73	346
177	0.92	0.45	0.60	322
178	0.64	0.46	0.54	232
179	0.35	0.06	0.11	125
180	0.56	0.27	0.36	145
181	0.37	0.09	0.15	77
182	0.17	0.02	0.04	182
183	0.61	0.32	0.42	257
184	0.08	0.01	0.02	216
185	0.36	0.07	0.11	242
186	0.39	0.16	0.23	165
187	0.76	0.57	0.65	263
188	0.31	0.10	0.15	174
189	0.71	0.29	0.41	136
190	0.88	0.49	0.63	202
191	0.42	0.16	0.23	134
192	0.71	0.40	0.51	230
193	0.44	0.18	0.25	90
194	0.57	0.47	0.52	185
195	0.16	0.04	0.06	156
196	0.41	0.07	0.13	160
197	0.57	0.06	0.11	266
198	0.39	0.05	0.09	284
199	0.35	0.06	0.10	145
200	0.94	0.70	0.80	212
201	0.67	0.21	0.32	317
202	0.78	0.53	0.63	427
203	0.31	0.08	0.13	232
204	0.51	0.23	0.32	217
205	0.48	0.43	0.45	527
206		0.02		124
	0.13		0.03	
207	0.52	0.11	0.18	103
208	0.89	0.49	0.63	287
209	0.33	0.08	0.13	193
210	0.72	0.31	0.44	220
211	0.82	0.19	0.31	140
212	0.14	0.02	0.03	161
213	0.52	0.21	0.30	72
214	0.60	0.44	0.51	396
215	0.87	0.34	0.49	134
216	0.53	0.06	0.11	400
217	0.53	0.24	0.33	75
218	0.97	0.76	0.85	219
219	0.74	0.36	0.48	210
220	0.90	0.59	0.71	298
221	0.97	0.59	0.73	266
222	0.78	0.41	0.54	290
223	0.09	0.01	0.01	128
224	0.80	0.40	0.53	159
225	0.59	0.29	0.39	164
226	0.63	0.36	0.46	144
227	0.56	0.32	0.40	276
228	0.15	0.02	0.03	235

229	0.23	0.01	0.03	216
230	0.36	0.18	0.03	228
231	0.70	0.47	0.56	64
232	0.44	0.07	0.12	103
233	0.71	0.30	0.42	216
234	0.71	0.09	0.15	116
235	0.60	0.40	0.48	77
236	0.96	0.64	0.77	67
237	0.54	0.06	0.11	218
238	0.26	0.05	0.08	139
239	0.17	0.01	0.02	94
240	0.55	0.30	0.39	77
241	0.50	0.08	0.14	167
242	0.83	0.28	0.42	86
243	0.40	0.14	0.21	58
244	0.64	0.19	0.29	269
245	0.19	0.05	0.08	112
246	0.95	0.73	0.83	255
247	0.46	0.19	0.83	58
248	0.25	0.02	0.04	81
249	0.00	0.00	0.00	131
250	0.40	0.20	0.27	93
251	0.67	0.28	0.39	154
252	0.40	0.05	0.08	129
253	0.61	0.30	0.40	83
254	0.38	0.09	0.14	191
255	0.15	0.02	0.04	219
256	0.35	0.05	0.08	130
257	0.46	0.29	0.36	93
258	0.69	0.41	0.52	217
259	0.32	0.09	0.14	141
260	0.95	0.13	0.23	143
261	0.52	0.11	0.17	219
262	0.53	0.28	0.37	107
263	0.39	0.23	0.29	236
264	0.26	0.17	0.21	119
	0.34	0.17		72
265			0.20	
266	0.00	0.00	0.00	70 107
267	0.28	0.12	0.17	107
268	0.66	0.41	0.51	169
269	0.29	0.09	0.14	129
270	0.74	0.52	0.61	159
271	0.82	0.33	0.47	190
272	0.62	0.22	0.33	248
273	0.91	0.70	0.79	264
274	0.92	0.63	0.75	105
275	0.62	0.08	0.14	104
276	0.14	0.02	0.03	115
277	0.83	0.60	0.70	170
278	0.66	0.24	0.35	145
279	0.91	0.60	0.72	230
280	0.57	0.41	0.48	80
281	0.67	0.55	0.61	217
282	0.74	0.47	0.58	175
283	0.33	0.06	0.11	269
284	0.65	0.27	0.38	74
285	0.86	0.50	0.63	206
286	0.90	0.59	0.71	227
287	0.85	0.30	0.71	130
288	0.35	0.06	0.11	129
289	0.50	0.03	0.05	80
299				
	0.13	0.06	0.08	99
291	0.77	0.31	0.44	208
292	0.25	0.03	0.05	67
293	0.81	0.43	0.56	109
294	0.40	0.24	0.30	140
295	0.24	0.08	0.12	241
296	0.22	0.08	0.12	72
297	0.22	0.04	0.06	107
298	0.77	0.38	0.51	61
299	0.93	0.35	0.51	77
300	0.18	0.06	0.09	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.57	0.35	0.44	176
304	0.96	0.71	0.82	230
305	0.95	0.60	0.74	156
306	0.51	0.37	0.43	146
307	0.29	0.08	0.13	98
308	0.00	0.00	0.00	78
309	0.78	0.07	0.00	94
310	0.76	0.35	0.14	162
311	0.78	0.52	0.48	116
312	0.81	0.32	0.83 0.34	57
312	0.48 0.75			
		0.05 0.36	0.09 0.42	65 138
314 315	0.50 0.54	0.36 0.31	0.42	138 105
315 316	0.54 0.43	0.21	0.30 0.30	195 69
316	v.43	0.23	0.30	69

247	0.25	0.10	0.15	124
317	0.35	0.10	0.15	134
318	0.49	0.34	0.40	148
319	0.85	0.44	0.58	161
320	0.20	0.14	0.17	104
321	0.86	0.55	0.67	156
322	0.59	0.33	0.42	134
323	0.56	0.36	0.44	232
324	0.41	0.17	0.24	92
325	0.45	0.30	0.36	197
326	0.10	0.02	0.03	126
327	0.45	0.04	0.08	115
328	0.98	0.64	0.77	198
329	0.61	0.30	0.40	125
330	0.78	0.17	0.28	81
331	0.50	0.09	0.15	94
332	1.00	0.02	0.04	56
333	0.15	0.03	0.05	260
334	0.20	0.03	0.06	60
335	0.28	0.07	0.12	110
336	0.64	0.42	0.51	71
337	0.13	0.03	0.05	66
338	0.45	0.31	0.37	150
339	0.00	0.00	0.00	54
340				195
	0.85	0.53	0.65	
341	0.93	0.18	0.30	79
342	0.41	0.18	0.25	38
343	0.68	0.40	0.50	43
344	0.52	0.22	0.31	68
345	0.69	0.40	0.50	73
346	0.27	0.03	0.05	116
347	0.89	0.36	0.51	111
348	0.30	0.10	0.14	63
349	0.83	0.62	0.71	104
350	0.63	0.43	0.51	44
351	0.70	0.17	0.28	40
352	0.98	0.39	0.56	136
353	0.44	0.22	0.30	54
354	0.43	0.04	0.08	134
355	0.59	0.28	0.38	120
356	0.51	0.21	0.29	228
357	0.66	0.28	0.39	269
358			0.48	
	0.69	0.36		80
359	0.87	0.41	0.56	140
360	0.37	0.13	0.19	125
361	0.89	0.61	0.72	169
362	0.11	0.04	0.05	56
363	0.94	0.66	0.77	154
364	0.45	0.09	0.14	58
365	0.23	0.11	0.15	71
366	1.00	0.63	0.77	54
367	0.33	0.04	0.08	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.20	0.03	0.06	61
371	0.40	0.06	0.10	71
372	0.66	0.48	0.56	52
373	0.79	0.36	0.50	150
374	0.33	0.13	0.19	93
375	0.14	0.03	0.05	67
376	0.00	0.00	0.00	76
377	0.73			
		0.18	0.29	106
378	0.27	0.03	0.06	86
379	0.33	0.07	0.12	14
380	1.00	0.40	0.57	122
381	0.19	0.03	0.05	104
382	0.28	0.08	0.12	66
383	0.50	0.28	0.36	110
384	0.00	0.00	0.00	155
385	0.36	0.08	0.13	50
386	0.25	0.11	0.15	64
387	0.36	0.05	0.09	93
388	0.59	0.28	0.38	102
389	0.07	0.01	0.02	108
390	0.96	0.65	0.78	178
391	0.62	0.17	0.27	115
392	0.78			42
		0.43	0.55	
393	0.00	0.00	0.00	134
394	0.50	0.02	0.03	112
395	0.38	0.11	0.17	176
396	0.48	0.10	0.16	125
397	0.73	0.10	0.33	224
398	0.90	0.56	0.69	63
399	0.00	0.00	0.00	59
400	0.47	0.30	0.37	63
401	0.46	0.17	0.25	98
402				
	0.57	0.17	0.26	162
403	0.41	0.14	0.21	83
404	0.73	0.84	0.78	19

405	0.30	0.07	0.11	92
406	0.83	0.12	0.21	41
407	0.64	0.33	0.43	43
408	0.82	0.34	0.48	160
409	0.14	0.08	0.10	50
410	0.00	0.00	0.00	19
411	0.37	0.10	0.15	175
412	0.33	0.06	0.10	72
413	0.56	0.05	0.10	95
414	0.19	0.03	0.05	97
415	0.33	0.17	0.22	48
416	0.45	0.30	0.36	83
417	0.50	0.07	0.13	40
418	0.33	0.07	0.11	91
419	0.51	0.30	0.38	90
420	0.29	0.22	0.25	37
421	0.00	0.00	0.00	66
422	0.61	0.34	0.44	73
423	0.48	0.25	0.33	56
424	0.93	0.82	0.87	33
425	0.00	0.00	0.00	76
426	0.25	0.05	0.08	81
427	0.99	0.67	0.80	150
428	0.95	0.66	0.78	29
429	0.99	0.70	0.73	389
430	0.63	0.35	0.45	167
431	0.48	0.08	0.43	123
431				
	0.43	0.33	0.38	39
433	0.30	0.16	0.21	82
434	1.00	0.64	0.78	66
435	0.66	0.45	0.54	93
436	0.51	0.25	0.34	87
437	0.22	0.05	0.08	86
438	0.74	0.47	0.58	104
439	0.62	0.13	0.21	100
440	0.20	0.01	0.01	141
441	0.43	0.24	0.31	110
442	0.37	0.13	0.19	123
443	0.47	0.11	0.18	71
444	0.39	0.06	0.11	109
445	0.39	0.19	0.25	48
446	0.43	0.25	0.32	76
447	0.28	0.13	0.18	38
448	0.68	0.52	0.59	81
449	0.53	0.14	0.23	132
450	0.47	0.28	0.35	81
451	0.88	0.29	0.44	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.94	0.43	0.59	70
455	0.30	0.04	0.07	155
456	0.47	0.16	0.24	43
457	0.48	0.19	0.28	72
458	0.31	0.08	0.13	62
459	0.71	0.14	0.24	69
460	0.08	0.01	0.02	119
461	0.79	0.14	0.24	79
462	0.69	0.23	0.35	47
463	0.20	0.04	0.06	104
464	0.66	0.33	0.44	104
465	0.50	0.11	0.44	64
466	0.56	0.11	0.18	173
				107
467	0.81	0.36	0.50	
468	0.82	0.11	0.20	126
469	0.00	0.00	0.00	114
470	0.94	0.79	0.86	140
471	0.92	0.28	0.43	79
472	0.41	0.30	0.35	143
473	0.69	0.30	0.42	158
474	0.36	0.07	0.11	138
475	0.00	0.00	0.00	59
476	0.57	0.30	0.39	88
477	0.86	0.56	0.68	176
478	0.94	0.71	0.81	24
479	0.09	0.01	0.02	92
480	0.82	0.50	0.62	100
481	0.47	0.17	0.26	103
482	0.47	0.23	0.31	74
483	0.85	0.57	0.68	105
484	0.25	0.02	0.04	83
485	0.17	0.01	0.02	82
486	0.36	0.11	0.17	71
487	0.43	0.18	0.26	120
488	0.33	0.02	0.04	105
489	0.72	0.30	0.42	87
490	1.00	0.81	0.90	32
491	0.00	0.00	0.00	69
492	0.00	0.00	0.00	49

```
493
                  0.00
                            0.00
                                      0.00
                                                 117
        494
                  0.52
                            0.18
                                      0.27
                                                  61
        495
                  0.98
                            0.65
                                      0.78
                                                 344
        496
                  0.36
                            0.19
                                      0.25
                                                  52
        497
                                                 137
                  0.60
                            0.18
                                      0.28
        498
                            0.04
                                      0.07
                                                  98
                  0.33
        499
                  0.65
                            0.16
                                      0.26
                                                  79
avg / total
                  0.67
                                              173812
                            0.33
                                      0.43
```

Time taken to run this cell : 0:10:14.264591

```
In [0]: joblib.dump(classifier, 'lr_with_more_title_weight.pkl')
```

Out[113]: ['lr_with_more_title_weight.pkl']

```
In [0]: | start = datetime.now()
         classifier_2 = OneVsRestClassifier(LogisticRegression(penalty='l1'), n_jobs=-1)
         classifier_2.fit(x_train_multilabel, y_train)
         predictions_2 = classifier_2.predict(x_test_multilabel)
         print("Accuracy :",metrics.accuracy_score(y_test, predictions_2))
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions_2))
         precision = precision_score(y_test, predictions_2, average='micro')
         recall = recall_score(y_test, predictions_2, average='micro')
         f1 = f1_score(y_test, predictions_2, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions_2, average='macro')
         recall = recall_score(y_test, predictions_2, average='macro')
         f1 = f1_score(y_test, predictions_2, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions_2))
        print("Time taken to run this cell :", datetime.now() - start)
        Accuracy : 0.25108
        Hamming loss 0.00270302
        Micro-average quality numbers
        Precision: 0.7172, Recall: 0.3672, F1-measure: 0.4858
        Macro-average quality numbers
        Precision: 0.5570, Recall: 0.2950, F1-measure: 0.3710
                      precision
                                   recall f1-score support
                   0
                           0.94
                                     0.72
                                                0.82
                                                          5519
                   1
                           0.70
                                     0.34
                                                0.45
                                                          8190
                   2
                           0.80
                                     0.42
                                                0.55
                                                          6529
                   3
                           0.82
                                     0.49
                                                0.61
                                                          3231
                   4
                           0.80
                                     0.44
                                                0.57
                                                          6430
                   5
                           0.82
                                     0.38
                                                0.52
                                                          2879
                   6
                           0.86
                                     0.53
                                                0.66
                                                          5086
                   7
                           0.87
                                     0.58
                                                0.70
                                                          4533
                   8
                           0.60
                                     0.13
                                                0.22
                                                          3000
                   9
                                     0.57
                                                0.67
                                                          2765
                           0.82
                  10
                           0.60
                                     0.20
                                                0.30
                                                          3051
                  11
                           0.68
                                     0.38
                                                0.49
                                                          3009
                  12
                           0.62
                                     0.29
                                                0.40
                                                          2630
                  13
                           0.73
                                     0.30
                                                0.43
                                                          1426
                  14
                           0.89
                                     0.57
                                                0.70
                                                          2548
                  15
                           0.65
                                     0.23
                                                0.34
                                                          2371
                  16
                           0.65
                                     0.25
                                                0.37
                                                           873
                  17
                           0.89
                                                0.74
                                                          2151
                                     0.63
                  18
                           0.60
                                     0.25
                                                0.35
                                                          2204
                  19
                           0.71
                                     0.41
                                                0.52
                                                           831
                  20
                           0.76
                                     0.47
                                                0.58
                                                          1860
                  21
                           0.29
                                     0.09
                                                0.14
                                                          2023
                  22
                                     0.24
                           0.52
                                                0.33
                                                          1513
                  23
                           0.89
                                     0.55
                                                0.68
                                                          1207
                  24
                           0.56
                                     0.28
                                                0.38
                                                           506
                  25
                                     0.34
                                                0.45
                                                           425
                           0.69
                                                           793
                  26
                           0.65
                                     0.43
                                                0.52
                  27
                           0.62
                                     0.38
                                                0.47
                                                          1291
                  28
                           0.74
                                     0.39
                                                0.51
                                                          1208
                  29
                                                0.17
                           0.46
                                     0.10
                                                           406
                  30
                           0.76
                                     0.21
                                                0.33
                                                           504
                  31
                           0.26
                                     0.08
                                                0.12
                                                           732
                  32
                           0.60
                                     0.29
                                                0.39
                                                           441
                  33
                           0.60
                                     0.27
                                                0.38
                                                          1645
                  34
                                                          1058
                           0.69
                                     0.26
                                                0.38
                  35
                           0.83
                                     0.58
                                                0.68
                                                           946
                  36
                           0.65
                                     0.24
                                                0.35
                                                           644
                  37
                           0.98
                                     0.65
                                                0.78
                                                           136
                  38
                           0.62
                                     0.38
                                                           570
                                                0.47
                                                           766
                  39
                           0.84
                                     0.31
                                                0.45
                  40
                           0.59
                                     0.35
                                                0.44
                                                          1132
                  41
                           0.47
                                     0.18
                                                0.26
                                                           174
                  42
                           0.76
                                     0.49
                                                0.59
                                                           210
                  43
                           0.75
                                     0.42
                                                0.54
                                                           433
                  44
                           0.66
                                     0.52
                                                0.58
                                                           626
                                                           852
                  45
                           0.71
                                     0.36
                                                0.47
                           0.77
                                     0.45
                                                0.57
                                                           534
                  46
                                                           350
                  47
                           0.37
                                     0.15
                                                0.22
                                                           496
                  48
                           0.75
                                     0.52
                                                0.62
                           0.78
                                                           785
                  49
                                     0.64
                                                0.71
                                                           475
                  50
                           0.21
                                     0.06
                                                0.09
                  51
                           0.37
                                     0.13
                                                0.19
                                                           305
                  52
                           0.42
                                                           251
                                     0.03
                                                0.06
                  53
                           0.66
                                                           914
                                     0.40
                                                0.50
                  54
                                                           728
                           0.49
                                     0.17
                                                0.26
```

55	0.47	0.03	0.05	258
56	0.45	0.24	0.31	821
57	0.46	0.10	0.17	541
58	0.76	0.31	0.45	748
59	0.94	0.66	0.77	724
60	0.35	0.10	0.15	660
61	0.78	0.20	0.31	235
62	0.92	0.74	0.82	718
63	0.83	0.69	0.75	468
64	0.55	0.36	0.43	191
65	0.33	0.11	0.17	429
66	0.29	0.06	0.10	415
67	0.74	0.50	0.59	274
68	0.82	0.53	0.64	510
69	0.67	0.45	0.54	466
70	0.30	0.09	0.13	305
71	0.49	0.17	0.25	247
72	0.78	0.53	0.64	401
73	0.99	0.77	0.86	86
74	0.72	0.42	0.53	120
75	0.92	0.67	0.78	129
76	0.47	0.02	0.04	473
77	0.40	0.29	0.33	143
78	0.79	0.49	0.60	347
79	0.69	0.25	0.36	479
80	0.56	0.34	0.43	279
81	0.70	0.23	0.34	461
82	0.34	0.04	0.07	298
83	0.78	0.50	0.61	396
84	0.55	0.29	0.38	184
85		0.24	0.35	573
	0.61			
86	0.50	0.07	0.12	325
87	0.51	0.29	0.37	273
88	0.49	0.21	0.30	135
89	0.36	0.11	0.17	232
90	0.56	0.34	0.43	409
91	0.61	0.27	0.37	420
92	0.78	0.57	0.66	408
93	0.66	0.44	0.53	241
94	0.30	0.04	0.07	211
95	0.37	0.10	0.15	277
96	0.28	0.04	0.07	410
97	0.86	0.43	0.57	501
98	0.75	0.63	0.69	136
99	0.54	0.34	0.42	239
100	0.57	0.15	0.24	324
101	0.91	0.68	0.78	277
102	0.91	0.75	0.82	613
103	0.47	0.17	0.25	157
104	0.22	0.06	0.10	295
105	0.75	0.43	0.55	334
106	0.88	0.28	0.43	335
107	0.75	0.54	0.63	389
108	0.58	0.27	0.37	251
109	0.58	0.45	0.51	317
110	0.68	0.10	0.18	187
111	0.73	0.11	0.20	140
112	0.67	0.43	0.52	154
113	0.58	0.20	0.29	332
114	0.46	0.27	0.34	323
115	0.47	0.26	0.33	344
116	0.75	0.55	0.63	370
117	0.58	0.24	0.34	313
118	0.78	0.73	0.75	874
119			0.29	293
	0.45	0.21		
120	0.11	0.01	0.01	200
121	0.77	0.51	0.61	463
122	0.32	0.10	0.15	119
123			0.03	256
	0.67	0.02		
124	0.91	0.70	0.79	195
125	0.44	0.14	0.21	138
126	0.81	0.53	0.64	376
127	0.27	0.03	0.06	122
128	0.20	0.04	0.07	252
129	0.48	0.22	0.30	144
130	0.42	0.11	0.18	150
131	0.33	0.03	0.06	210
132	0.65	0.28	0.39	361
133	0.92	0.59	0.72	453
134	0.89	0.77	0.82	124
135	0.31	0.05	0.09	91
136	0.69	0.28	0.40	128
137	0.55	0.38	0.45	218
138	0.67	0.18	0.28	243
139	0.45	0.18	0.26	149
140	0.77	0.46	0.58	318
141	0.32	0.10	0.15	159
142	0.63	0.38	0.47	274
_ 7_	0.05	0.50	U.T/	4/ 4

1.42	0.05	0.70	0 00	262
143	0.85	0.79	0.82	362
144	0.54	0.21	0.30	118
145	0.63	0.39	0.48	164
146	0.54	0.31	0.39	461
147	0.68	0.45	0.54	159
148	0.30	0.12	0.17	166
149	0.97	0.55	0.70	346
150	0.64	0.13	0.21	350
151	0.93	0.67	0.78	55
152	0.78	0.52	0.63	387
153	0.51	0.17	0.25	150
154	0.58	0.12	0.21	281
155	0.25	0.06	0.10	202
156	0.81	0.67	0.73	130
157	0.28	0.06	0.10	245
158	0.93	0.63	0.75	177
159	0.53	0.34	0.41	130
160	0.48	0.18	0.26	336
161	0.90	0.65	0.75	220
162	0.28	0.06	0.09	229
163	0.87	0.44	0.58	316
164	0.78	0.44	0.56	283
165	0.60	0.34	0.44	197
166	0.65	0.43	0.51	101
167	0.45	0.18	0.26	231
168	0.56	0.27	0.36	370
169	0.40	0.21	0.27	258
170	0.36	0.08	0.13	101
171	0.38	0.24	0.29	89
172	0.53	0.36	0.43	193
173	0.47	0.26	0.33	309
174	0.62	0.14	0.23	172
175	0.92	0.73	0.81	95
176	0.93	0.62	0.74	346
177	0.86	0.57	0.69	322
178	0.65	0.51	0.57	232
179	0.20	0.04	0.07	125
180	0.65	0.33	0.44	145
181	0.44	0.10	0.17	77
182	0.26	0.06	0.10	182
183	0.60	0.32	0.41	257
184	0.21	0.03	0.05	216
185	0.35	0.09	0.14	242
186	0.43	0.18	0.25	165
187	0.75	0.59	0.66	263
188	0.39	0.12	0.18	174
189	0.75	0.40	0.53	136
190	0.89	0.55	0.68	202
191	0.44	0.16	0.24	134
192	0.68	0.40	0.51	230
193	0.44	0.18	0.25	90
194	0.57	0.48	0.52	185
195	0.26	0.05	0.09	156
196	0.33	0.07	0.11	160
197	0.49	0.10	0.16	266
198	0.47	0.13	0.20	284
199	0.32	0.04	0.07	145
200	0.93	0.74	0.82	212
201	0.65	0.26	0.37	317
202	0.78	0.59	0.67	427
203	0.36	0.11	0.17	232
204	0.51	0.29	0.37	217
205	0.50	0.46	0.48	527
206	0.24	0.03	0.06	124
207	0.50	0.17	0.26	103
208	0.85	0.53	0.65	287
209	0.33	0.11	0.16	193
210	0.75	0.38	0.50	220
211	0.72	0.21	0.32	140
212	0.12	0.02	0.03	161
213	0.63	0.43	0.51	72
214	0.64		0.53	
		0.45		396 124
215	0.87	0.34	0.49	134
216	0.61	0.17	0.27	400
217	0.51	0.24	0.33	75
218	0.96	0.76	0.85	219
219	0.77	0.42	0.54	210
220	0.88	0.64	0.74	298
221	0.96	0.70	0.81	266
222	0.76	0.45	0.57	290
		0.43		
223	0.11		0.01	128
224	0.78	0.45	0.57	159
225	0.55	0.29	0.38	164
226	0.58	0.31	0.41	144
227	0.56	0.29	0.38	276
228	0.19	0.03	0.05	235
229	0.33	0.03	0.06	216
230	0.40	0.17	0.23	228
	5.10	J	5,25	0

231	0.70	0.48	0.57	64
232	0.48	0.10	0.16	103
233	0.72	0.35	0.47	216
234	0.72	0.11	0.19	116
235	0.54	0.36	0.43	77
236	0.90	0.67	0.77	67
237	0.57	0.12	0.20	218
238	0.40	0.14	0.20	139
239	0.00	0.00	0.00	94
240	0.54	0.34	0.42	77
241	0.47	0.08	0.14	167
242	0.78	0.37	0.50	86
243	0.40	0.10	0.16	58
244	0.62	0.27	0.38	269
245	0.16	0.04	0.07	112
246	0.95	0.76	0.84	255
247	0.44	0.24	0.31	58
248	0.44	0.05	0.09	81
249	0.23	0.02	0.04	131
250	0.43	0.24	0.31	93
251	0.61	0.29	0.39	154
252	0.36	0.04	0.07	129
253	0.69	0.40	0.50	83
254	0.34	0.08	0.13	191
255	0.15	0.03	0.05	219
256	0.32	0.05	0.09	130
257	0.48	0.26	0.34	93
258	0.65	0.48	0.55	217
259	0.41	0.13	0.20	141
260	0.86	0.17	0.29	143
261	0.62	0.17	0.27	219
262	0.55	0.27	0.36	107
263	0.41	0.27	0.32	236
264	0.33	0.22	0.26	119
265	0.57	0.24	0.33	72
266	0.00	0.00	0.00	70
267	0.36	0.14	0.20	107
268	0.67	0.44	0.53	169
269	0.32	0.14	0.19	129
270	0.74	0.53	0.62	159
271	0.88	0.48	0.62	190
272	0.61	0.27	0.37	248
273	0.90	0.75	0.82	264
274	0.90	0.68	0.77	105
275	0.52	0.12	0.20	104
276	0.08	0.01	0.02	115
277	0.83	0.63	0.72	170
278	0.74	0.41	0.52	145
279	0.90	0.70	0.78	230
280	0.58	0.42	0.49	80
281	0.66	0.54	0.59	217
282	0.75	0.50	0.60	175
283	0.33	0.13	0.18	269
284		0.32		74
	0.65		0.43	
285	0.82	0.49	0.61	206
286	0.89	0.66	0.75	227
287	0.84	0.41	0.55	130
288	0.32	0.07	0.11	129
289	0.57	0.05	0.09	80
290				99
	0.21	0.09	0.13	
291	0.76	0.35	0.48	208
292	0.42	0.07	0.13	67
293	0.84	0.48	0.61	109
294	0.46	0.26	0.34	140
295	0.24	0.12	0.16	241
296	0.31	0.12	0.18	72
297	0.44	0.11	0.18	107
298	0.77	0.49	0.60	61
299	0.89	0.51	0.64	77
300	0.21	0.08	0.12	111
301	0.00	0.00	0.00	126
302	0.25	0.01	0.03	73
303	0.57	0.43	0.49	176
304	0.91	0.79	0.85	230
305	0.92	0.72	0.81	156
306	0.50	0.37	0.43	146
307	0.34	0.11	0.17	98
308	0.00	0.00	0.00	78 04
309	0.80	0.13	0.22	94
310	0.74	0.41	0.53	162
311	0.79	0.51	0.62	116
312	0.52	0.28	0.36	57
313	0.83	0.08	0.14	65
	0.52			
314		0.36	0.42	138
315	0.54	0.22	0.31	195
316	0.56	0.35	0.43	69
317	0.29	0.13	0.18	134
318	0.56	0.39	0.46	148

319	0.84	0.50	0.63	161
320	0.24	0.19	0.21	104
321	0.82	0.61	0.70	156
322	0.60	0.37	0.46	134
323	0.58	0.44	0.50	232
324	0.34	0.15	0.21	92
325	0.41	0.24	0.31	197
326	0.14	0.03	0.05	126
327	0.20	0.03	0.05	115
328	0.99	0.70	0.82	198
329	0.59	0.32	0.41	125
330	0.73	0.20	0.31	81
331	0.45	0.10	0.16	94
332	0.54	0.12	0.20	56
333	0.19	0.05	0.08	260
	0.42			
334		0.13	0.20	60
335	0.35	0.08	0.13	110
336	0.62	0.49	0.55	71
337	0.18	0.05	0.07	66
338	0.47	0.36	0.41	150
339	0.00	0.00	0.00	54
340	0.84	0.57	0.68	195
341	0.91			79
		0.52	0.66	
342	0.38	0.26	0.31	38
343	0.62	0.42	0.50	43
344	0.56	0.29	0.38	68
345	0.62	0.33	0.43	73
346	0.14	0.03	0.04	116
347	0.86	0.43	0.57	111
348				63
	0.33	0.11	0.17	
349	0.84	0.65	0.74	104
350	0.62	0.48	0.54	44
351	0.57	0.30	0.39	40
352	0.93	0.57	0.70	136
353	0.38	0.15	0.21	54
354	0.39	0.09	0.15	134
355	0.64	0.35	0.45	120
356	0.54	0.29	0.38	228
357	0.66	0.36	0.47	269
358	0.62	0.38	0.47	80
359	0.84	0.59	0.69	140
360	0.39	0.18	0.24	125
361	0.90	0.71	0.79	169
362	0.14	0.05	0.08	56
363	0.92	0.73	0.82	154
364	0.46	0.10	0.17	58
365	0.22	0.08	0.12	71
366	1.00	0.69	0.81	54
367	0.30	0.07	0.11	116
368	0.38	0.06	0.10	54
369	0.33	0.03	0.05	71
370	0.00	0.00	0.00	61
371	0.40	0.08	0.14	71
372	0.72	0.44	0.55	52
373	0.78	0.41	0.54	150
374	0.41	0.14	0.21	93
375	0.20	0.04	0.07	67
376	0.00	0.00	0.00	76
377	0.58	0.28	0.38	106
378	0.25	0.02	0.04	86
379	0.50	0.14	0.22	14
380	0.93	0.52	0.67	122
381	0.23	0.07	0.10	104
382	0.46	0.20	0.28	66
383	0.54	0.35	0.42	110
384	0.14	0.01	0.01	155
385	0.69	0.22	0.33	50
386	0.20	0.06	0.10	64
387	0.32	0.08	0.12	93
388	0.53	0.24	0.33	102
389	0.07	0.01	0.02	108
390	0.96	0.68	0.80	178
391	0.49	0.00	0.36	115
392	0.81	0.40	0.54	42
393	0.00	0.00	0.00	134
394	0.22	0.04	0.06	112
395	0.54	0.27	0.36	176
396	0.47	0.13	0.20	125
397	0.74	0.37	0.49	224
398	0.84	0.67	0.74	63
		0.05		
399 400	0.30		0.09	59
400	0.51	0.32	0.39	63
401	0.49	0.23	0.32	98
402	0.51	0.19	0.27	162
403	0.38	0.14	0.21	83
404	0.76	0.84	0.80	19
405	0.34	0.11	0.17	92
406	0.69	0.11	0.17	41
400	U.U3	0.22	0.33	41

407	0.64	0.27	0.47	42
407	0.64	0.37	0.47	43
408	0.80	0.46	0.58	160
409	0.20	0.12	0.15	50
410	0.00	0.00	0.00	19
411	0.35	0.11	0.17	175
412	0.28	0.07	0.11	72
413	0.38	0.05	0.09	95
414	0.12	0.02	0.04	97
415	0.33	0.10	0.16	48
416	0.53	0.35	0.42	83
417	0.43	0.07	0.13	40
418	0.48	0.16	0.25	91
419	0.53	0.37	0.43	90
420	0.38	0.27	0.32	37
421	0.04	0.02	0.02	66
422	0.69	0.45	0.55	73
423	0.48	0.25	0.33	56
424	0.94	0.88	0.91	33
425	0.00	0.00	0.00	76
426	0.27		0.08	
		0.05		81
427	0.98	0.73	0.84	150
428	0.95	0.69	0.80	29
429	0.99	0.93	0.96	389
430	0.63	0.40	0.49	167
431	0.57	0.11	0.18	123
432	0.52	0.31	0.39	39
433	0.33	0.21	0.25	82
434	1.00	0.70	0.82	66
435	0.55	0.38	0.45	93
436	0.56	0.37	0.44	87
437	0.10	0.02	0.04	86
438	0.72	0.53	0.61	104
439	0.54		0.21	100
		0.13		
440	0.38	0.04	0.06	141
441	0.43	0.33	0.37	110
442	0.37	0.15	0.22	123
443	0.57	0.18	0.28	71
444	0.32	0.06	0.11	109
445	0.45	0.31	0.37	48
446	0.47	0.29	0.36	76
447	0.39	0.18	0.25	38
448	0.67	0.54	0.60	81
449	0.67	0.26	0.37	132
450	0.42	0.27	0.33	81
451	0.89	0.32	0.47	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.84	0.51	0.64	70
455	0.39	0.18	0.25	155
456	0.50	0.21	0.30	43
457	0.54	0.28	0.37	72
458	0.35	0.13	0.19	62
459	0.63	0.25	0.35	69
460	0.00	0.00	0.00	119
461	0.71	0.19	0.30	79
462	0.61	0.23	0.34	47
463	0.39	0.14	0.21	104
464	0.70	0.42	0.52	106
465	0.64	0.22	0.33	64
466	0.55	0.35	0.43	173
467	0.78	0.42	0.55	107
468	0.56	0.26	0.36	126
469	0.20	0.01	0.02	114
470	0.20	0.81	0.87	140
471	0.85	0.42	0.56	79
472	0.40	0.35	0.37	143
473	0.67	0.37	0.47	158
474	0.48	0.10	0.17	138
475	0.00	0.00	0.00	59
476	0.63	0.33	0.43	88
477	0.83	0.65	0.73	176
478	0.95	0.79	0.86	24
479	0.22	0.04	0.07	92
480	0.79	0.50	0.61	100
481	0.51	0.28	0.36	103
482	0.40	0.22	0.28	74
483	0.78	0.63	0.69	105
484	0.20	0.02	0.04	83
485				
	0.20	0.02	0.04	82 71
486	0.48	0.15	0.23	71
487	0.45	0.21	0.29	120
488	0.50	0.06	0.10	105
489	0.73	0.37	0.49	87
490	1.00	0.81	0.90	32
491	0.33	0.03	0.05	69
492	0.33	0.02	0.04	49
493	0.11	0.02	0.03	117
494	0.52	0.23	0.32	61

```
495
                  0.95
                            0.79
                                      0.87
                                                 344
        496
                  0.32
                            0.13
                                      0.19
                                                  52
        497
                  0.59
                            0.28
                                      0.38
                                                 137
                  0.31
        498
                            0.10
                                      0.15
                                                  98
                                                  79
        499
                  0.48
                            0.20
                                      0.29
avg / total
                  0.67
                            0.37
                                      0.46
                                              173812
```

Time taken to run this cell : 1:09:41.236859

In [26]: classifier.fit(x_train_multilabel_bow, y_train)

predictions = classifier.predict (x_test_multilabel_bow)

5. Assignments

- 1. Use bag of words upto 4 grams and compute the micro f1 score with Logistic regression(OvR)
- 2. Perform hyperparam tuning on alpha (or lambda) for Logistic regression to improve the performance using GridSearch
- 3. Try OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

Use bag of words upto 4 grams and compute the micro f1 score with Logistic regression(OvR)

```
In [27]: | print("Accuracy :",metrics.accuracy_score(y_test, predictions))
          print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
          precision = precision_score(y_test, predictions, average='micro')
          recall = recall_score(y_test, predictions, average='micro')
          f1 = f1_score(y_test, predictions, average='micro')
          print("Micro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          precision = precision_score(y_test, predictions, average='macro')
          recall = recall_score(y_test, predictions, average='macro')
          f1 = f1_score(y_test, predictions, average='macro')
          print("Macro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          print (metrics.classification_report(y_test, predictions))
          print("Time taken to run this cell :", datetime.now() - start)
          Accuracy: 0.07033333333333333
         Hamming loss 0.007879
         Micro-average quality numbers
         Precision: 0.2238, Recall: 0.4165, F1-measure: 0.2912
         Macro-average quality numbers
         Precision: 0.1431, Recall: 0.3207, F1-measure: 0.1758
                                      recall f1-score support
                         precision
                     0
                              0.12
                                        0.26
                                                   0.16
                                                              256
                     1
                              0.25
                                        0.38
                                                   0.30
                                                              625
                     2
                              0.48
                                        0.62
                                                   0.54
                                                              809
                     3
                                                   0.48
                              0.40
                                        0.59
                                                              622
                     4
                              0.39
                                        0.43
                                                   0.41
                                                              762
                     5
                              0.32
                                        0.50
                                                   0.39
                                                              599
                     6
                                                   0.12
                              0.07
                                        0.45
                                                               11
                     7
                              0.64
                                        0.73
                                                   0.69
                                                              724
                     8
                             0.79
                                        0.74
                                                   0.77
                                                             1312
                     9
                              0.36
                                        0.55
                                                   0.43
                                                              300
                    10
                             0.31
                                        0.36
                                                   0.33
                                                              327
                    11
                              0.13
                                        0.28
                                                   0.17
                                                              204
                    12
                                                   0.40
                              0.31
                                        0.54
                                                               93
                                                              390
                    13
                                                   0.37
                              0.39
                                        0.35
                    14
                                                   0.42
                                                              190
                              0.31
                                        0.64
                    15
                              0.38
                                        0.34
                                                   0.36
                                                              489
                                                   0.31
                    16
                              0.29
                                        0.33
                                                              369
                    17
                                                   0.25
                              0.20
                                        0.33
                                                              165
                    18
                             0.33
                                        0.59
                                                   0.42
                                                              193
                    19
                              0.25
                                        0.38
                                                   0.30
                                                              227
                    20
                              0.06
                                        0.45
                                                   0.11
                                                               11
                                                   0.33
                    21
                              0.24
                                        0.56
                                                              124
                    22
                              0.06
                                        0.20
                                                   0.09
                                                               45
                    23
                              0.09
                                        0.19
                                                   0.12
                                                              136
                    24
                                                   0.28
                             0.23
                                        0.35
                                                              193
                    25
                             0.08
                                        0.14
                                                   0.10
                                                              185
                    26
                                        0.27
                                                   0.16
                             0.11
                                                               64
                    27
                              0.74
                                        0.78
                                                   0.76
                                                              517
                                                   0.10
                    28
                             0.07
                                        0.23
                                                               13
                    29
                                                   0.31
                              0.32
                                        0.31
                                                              169
                    30
                              0.11
                                        0.42
                                                   0.18
                                                               69
                    31
                              0.19
                                        0.45
                                                   0.27
                                                               73
                    32
                                                   0.29
                              0.23
                                        0.41
                                                              113
                    33
                             0.12
                                        0.25
                                                   0.16
                                                               92
                    34
                              0.08
                                                   0.11
                                                               40
                                        0.20
                    35
                              0.04
                                        0.26
                                                   0.06
                                                               19
                    36
                              0.48
                                        0.78
                                                   0.60
                                                               97
                    37
                              0.44
                                        0.49
                                                   0.46
                                                              319
                    38
                              0.09
                                        0.25
                                                               88
                                                   0.13
                    39
                              0.24
                                        0.32
                                                   0.27
                                                               112
                    40
                              0.11
                                        0.25
                                                   0.16
                                                               55
                    41
                              0.20
                                        0.38
                                                   0.26
                                                               87
                    42
                                        0.46
                              0.37
                                                   0.41
                                                               272
                    43
                                        0.51
                                                   0.32
                                                               118
                              0.24
                    44
                              0.21
                                        0.39
                                                   0.27
                                                               96
                    45
                              0.13
                                        0.38
                                                   0.19
                                                               53
                    46
                              0.06
                                        0.45
                                                   0.10
                                                               11
                    47
                              0.40
                                        0.57
                                                   0.47
                                                               107
                    48
                                        0.42
                                                   0.27
                                                               48
                              0.20
                    49
                                        0.46
                                                   0.34
                                                               81
                              0.27
                    50
                              0.18
                                        0.59
                                                   0.28
                                                               34
                    51
                                        0.33
                              0.09
                                                   0.14
                                                               36
                    52
                                        0.57
                                                   0.30
                                                               53
                              0.20
                    53
                                        0.56
                                                               143
                              0.60
                                                   0.58
                    54
                                        0.29
                              0.12
                                                   0.17
                                                               35
                    55
                              0.27
                                        0.62
                                                   0.37
                                                               64
                    56
                                        0.73
                                                               37
                              0.16
                                                   0.26
                    57
                                        0.38
                                                               96
                              0.18
                                                   0.24
                    58
                                        0.32
                                                               37
                              0.17
                                                   0.22
```

Ε0	0.00	0.25	0.10	Г1
59	0.06	0.25	0.10	51
60	0.09	0.23	0.13	39
61	0.25	0.40	0.31	48
62	0.17	0.53	0.25	36
63			0.12	153
	0.09	0.17		
64	0.48	0.61	0.54	85
65	0.04	0.35	0.07	20
66	0.17	0.55	0.26	33
67	0.20	0.53	0.29	45
68	0.15	0.26	0.19	69
69	0.46	0.60	0.52	112
70	0.58	0.68	0.63	111
71	0.09	0.23	0.13	44
72	0.09	0.21	0.12	66
73	0.71	0.05	0.10	276
74	0.06	0.29	0.09	28
75	0.42	0.26	0.32	217
76	0.04	0.26	0.07	27
77	0.11	0.33	0.16	46
78	0.31	0.54	0.39	28
79				71
	0.18	0.25	0.21	
80	0.17	0.67	0.27	15
81	0.27	0.30	0.28	79
82	0.05	0.09	0.06	47
83	0.44	0.54	0.49	76
84	0.79	0.34	0.47	229
85	0.07	0.16	0.10	68
86	0.36	0.59	0.45	71
87	0.13	0.56	0.21	9
88	0.10	0.39	0.16	46
89	0.55	0.62	0.58	58
90	0.08	0.21	0.11	39
91	0.09	0.40	0.15	25
92	0.05	0.40	0.09	5
93	0.51	0.59	0.54	144
94	0.01	0.12	0.02	8
95	0.07	0.25	0.11	28
96	0.04	0.15	0.06	34
97	0.02	0.17	0.03	6
98	0.74	0.66	0.70	202
99	0.52	0.48	0.50	132
100	0.09	0.28	0.14	39
101	0.00	0.00	0.00	208
102	0.00	0.00	0.00	1
103	0.23	0.45	0.31	56
104	0.32	0.53	0.40	43
105	0.31	0.36	0.34	74
106	0.04	0.16	0.07	25
107	0.06	0.24	0.10	46
108	0.10	0.33	0.16	21
109	0.09	0.23	0.13	26
110	0.08	0.38	0.13	21
111	0.08	0.22	0.12	41
112	0.15	0.17	0.16	54
113	0.03	0.06	0.04	52
114	0.15	0.25	0.19	56
115	0.27	0.46	0.34	26
116	0.01	0.05	0.02	20
117	0.37	0.23	0.28	104
118	0.16	0.38	0.23	40
		0.09	0.04	
119	0.02			11
120	0.17	0.23	0.20	48
121	0.09	0.33	0.15	30
122	0.16	0.43	0.24	28
123	0.11	0.36	0.17	25
124	0.17	0.38	0.24	40
125	0.10	0.41	0.17	22
126	0.04	0.14	0.06	29
127	0.09	0.50	0.15	16
128	0.37	0.69	0.48	29
129	0.01	0.04	0.02	28
130	0.03	0.10	0.05	30
131	0.00	0.00	0.00	6
132	0.89	0.94	0.91	140
133	0.01	0.05	0.02	22
134	0.06	0.21	0.09	28
135	0.15	0.33	0.20	27
136	0.29	0.58	0.39	55
137	0.25	0.53	0.34	30
138	0.06	0.19	0.09	16
139	0.36	0.54	0.43	48
140	0.12	0.50	0.20	14
141	0.00	0.00	0.00	7
142	0.17	0.60	0.26	15
143	0.09	0.33	0.15	12
144	0.03	0.33	0.05	6
145	0.24	0.73	0.36	15
146	0.39	0.81	0.53	31
		- 	-	~-

1.47	0.00	0.45	0.12	22
147	0.08	0.45	0.13	22
148	0.48	0.07	0.12	142
149	0.19	0.50	0.27	64
150	0.07	0.12	0.09	32
151	0.80	0.77	0.78	135
152	0.13	0.38	0.20	16
153	0.23	0.65	0.34	17
154	0.05	0.20	0.08	15
155	0.15	0.35	0.21	57
156	0.02	0.11	0.04	18
157	0.07	0.27	0.12	11
158	0.13	0.21	0.16	28
159	0.07	0.17	0.10	42
160	0.01	0.07	0.02	14
161	0.35	0.47	0.40	30
162	0.03	1.00	0.06	2
163	0.06	0.15	0.08	39
164	0.14	0.43	0.21	30
165	0.00	0.00	0.00	3
166	0.04	0.18	0.07	17
167	0.17	0.57	0.26	40
168	0.18	0.36	0.24	14
169	0.01	0.07	0.02	14
170	0.00	0.00	0.00	12
171	0.10	0.11	0.10	100
172	0.10	0.53	0.17	17
173	0.22	0.46	0.30	28
174	0.18	0.36	0.24	22
175	0.10	0.36	0.15	22
176	0.35	0.38	0.36	48
177	0.05	0.25	0.08	12
178	0.12	0.45	0.19	11
179	0.06	0.25	0.10	24
180	0.12	0.69	0.21	16
181	0.07	0.28	0.12	29
182	0.02	0.07	0.03	15
183	0.18	0.50	0.26	28
184	0.17	0.26	0.21	39
185	0.22	0.37	0.27	46
186	0.09	0.19	0.12	36
187	0.06	0.42	0.11	12
188	0.13	0.38	0.19	16
189	0.11	0.60	0.18	5
190	0.26	0.48	0.34	27
191	0.28	0.54	0.37	13
192	0.09	0.24	0.13	21
193	0.04	0.25	0.06	8
194	0.03	0.17	0.05	6
195	0.18	0.56	0.27	18
196	0.09	0.11	0.10	55
197	0.04	0.17	0.07	12
198	0.11	0.40	0.17	10
199	0.05	0.12	0.07	26
200	0.00	0.00	0.00	4
201	0.06	0.45	0.10	11
202	0.18	0.17	0.17	35
203	0.16	0.40	0.23	25
204	0.03	0.09	0.05	23
205	0.30	0.34	0.32	38
206	0.13	0.31	0.19	26
207	0.25	0.30	0.27	30
208	0.35	0.48	0.41	31
209	0.00	0.00	0.00	1
210	0.11	0.32	0.16	38
211	0.04			22
		0.14	0.06	
212	0.16	0.22	0.18	36
213	0.23	0.30	0.26	20
214	0.07	0.21	0.10	29
215	0.44	0.67	0.53	21
216	0.11	0.45	0.18	11
217	0.00	0.00	0.00	3
218	0.04	0.07	0.05	28
219	0.08	0.32	0.13	19
220	0.06	0.30	0.09	10
221	0.06	0.32	0.11	22
222	0.35	0.50	0.41	26
223	0.06	0.50	0.11	6
224	0.15	0.53	0.24	15
225	0.21	0.34	0.26	35
226	0.03	0.08	0.04	25
227	0.01	0.11	0.02	9
228	0.08	0.25	0.12	12
229	0.16	0.23	0.25	14
	0.10			
230	G 22	0.41	0.29	44
224	0.22		0.00	4.0
231	0.05	0.19	0.08	16
232	0.05 0.00	0.19 0.00	0.00	23
	0.05	0.19		
232	0.05 0.00	0.19 0.00	0.00	23

225	0.20	0.43	0.07	24
235	0.20	0.42	0.27	24
236	0.23	0.46	0.31	24
237	0.11	0.33	0.16	15
238	0.20	0.53	0.29	15
239	0.02	0.11	0.03	18
240	0.19	0.62	0.29	16
241	0.06	0.33	0.11	12
242	0.07	0.33	0.12	12
243	0.00	0.00	0.00	10
244	0.00	0.00	0.00	8
245	0.11	0.40	0.17	20
246	0.02	0.20	0.04	5
247	0.02	0.09	0.03	11
248	0.07	0.50	0.12	4
249	0.79	0.62	0.69	89
250	0.02	0.04	0.03	28
251	0.29	0.69	0.41	16
252	0.17	0.31	0.22	54
253	0.05	0.33	0.09	9
254	0.06	0.40	0.10	5
255	0.06	0.24	0.09	17
256	0.50	0.27	0.13	94
257	0.05	0.07	0.06	29
258	0.07	0.26	0.12	23
259	0.02	0.04	0.03	24
260	0.19	0.38	0.25	16
261	0.41	0.41	0.41	17
262	0.08	0.38	0.13	13
263	0.06	0.27	0.10	15
264	0.14	0.25	0.18	20
265	0.93	0.33	0.49	85
266	0.01	0.25	0.03	4
267	0.16	0.47	0.24	15
	0.15	0.30	0.24	23
268				
269	0.04	0.12	0.06	17
270	0.05	0.21	0.09	19
271	0.33	1.00	0.50	6
272	0.06	0.25	0.10	16
273	0.13	0.46	0.21	13
274	0.17	0.22	0.19	37
275	0.03	0.29	0.05	14
276	0.00	0.00	0.00	1
277	0.35	0.41	0.38	32
278	0.14	0.25	0.18	12
279	0.00	0.00	0.00	90
280	0.20	0.55		11
			0.29	
281	0.73	0.49	0.58	82
282	0.09	0.62	0.16	8
283	0.12	0.80	0.21	5
284	0.15	0.38	0.21	24
285	0.25	0.33	0.29	30
286	0.17	0.35	0.23	31
287	0.09	0.29	0.14	17
288	0.05	0.23	0.08	13
289	0.10	0.38	0.16	8
290	0.06	0.40	0.10	5
291	0.14	0.50	0.22	8
292	0.02	0.33	0.04	3
293	0.14	0.41	0.21	17
294	0.00	0.00	0.00	22
295				8
	0.04	0.25	0.06	
296	0.19	0.20	0.20	30
297	0.07	0.45	0.13	11
298	0.07	0.18	0.10	22
299	0.04	0.14	0.06	14
300	0.03	0.29	0.06	7
301	0.02	0.12	0.04	8
302	0.10	0.55	0.17	11
303	0.11	0.22	0.15	27
304	0.33	0.60	0.43	15
305	0.02	0.06	0.03	16
306	0.14	0.50	0.22	14
307	0.05	0.17	0.08	18
308	0.09	0.43	0.14	7
309	0.24	0.80	0.14	10
310 311	0.05 0.00	0.25	0.08	4
311	0.00	0.00	0.00	9 15
312	0.12	0.33	0.18	15 13
313	0.21	0.46	0.29	13
314	0.12	0.67	0.21	6
315	0.03	0.17	0.05	12
316	0.20	0.38	0.26	16
317	0.02	0.11	0.03	9
318	0.23	0.80	0.36	10
319	0.03	0.17	0.04	6
320	0.04	0.14	0.06	14
321	0.00	0.00	0.00	6
322	0.00	0.00	0.00	4
	3.30	2.00	2.00	7

323	0.04	0.18	0.07	17
324	0.05	0.33	0.09	6
	0.35		0.22	57
325		0.16		
326	0.07	0.15	0.10	47 10
327	0.38	0.47	0.42	19
328	0.12	0.40	0.19	20
329	0.03	0.05	0.04	21
330	0.03	0.50	0.05	2
331	0.00	0.00	0.00	16
332	0.11	0.27	0.15	22
333	0.03	0.14	0.05	7
334	0.35	0.56	0.43	16
335	0.02	0.06	0.03	18
336	0.40	0.03	0.05	70
337	0.02	0.25	0.04	4
338	0.22	0.29	0.25	14
339	0.05	0.12	0.07	8
340	0.15	0.65	0.24	17
341	0.00	0.00	0.00	3
342	0.07	0.33	0.11	9
343	0.10	0.25	0.14	12
344	0.23	0.64	0.34	11
345	0.20	0.38	0.26	8
346	0.12	0.40	0.19	10
347	0.03	0.50	0.05	2
348	0.15	0.60	0.24	10
349	0.00	0.00	0.00	14
350				9
	0.25	0.44	0.32	
351	0.00	0.00	0.00	15 27
352	0.33	0.56	0.41	27
353	0.09	0.38	0.14	8
354	0.24	0.54	0.33	13
355	0.00	0.00	0.00	8
356	0.27	0.24	0.26	25
357	0.00	0.00	0.00	14
358	0.00	0.00	0.00	4
359	0.06	0.25	0.10	8
360	0.04	0.07	0.05	15
361	0.03	0.03	0.03	33
362	0.02	0.11	0.03	9
363	0.00	0.00	0.00	2
364	0.00	0.00	0.00	8
365	0.03	0.12	0.05	8
366	0.05	0.10	0.06	42
367	0.02	0.05	0.03	21
368	0.05	0.22	0.08	9
369	0.24	0.38	0.29	16
370	0.04	0.25	0.07	4
371	0.00	0.00	0.00	4
372	0.05	0.40	0.09	5
373	0.10	0.12	0.11	16
374	0.05	0.12	0.07	8
375	0.00	0.00	0.00	1
376	0.03	0.25	0.06	4
377	0.00	0.00	0.00	3
378	0.00	0.00	0.00	6
379	0.03	0.18	0.05	11
380	0.06	0.60	0.11	5
381	0.25	0.40	0.31	10
382	0.02	0.10	0.03	10
383	0.02	0.11	0.03	9
384	0.03	0.14	0.04	7
385	0.11	0.42	0.17	12
386	0.13	0.80	0.22	5
387	0.21	0.62	0.31	8
388	0.00	0.00	0.00	3
389	0.14	0.50	0.21	6
390	0.00	0.00	0.00	10
391	0.36	0.14	0.21	56
392	0.06	0.17	0.09	12
393	0.05	0.15	0.07	13
394	0.02	0.08	0.04	12
395 306	0.09	0.67	0.16	3
396 307	0.03	0.18	0.05	11
397	0.05	0.33	0.09	3
398	0.12	0.55	0.20	11
399 400	0.10	0.43	0.17	7
400 401	0.07	0.38	0.12	8 12
401	0.02	0.08	0.03	13
402	0.30	0.30	0.30	47 10
403	0.16	0.60	0.26	10
404 405	0.00	0.00	0.00	9
405 406	0.04	0.20	0.07	5 2
406 407	0.00 0.16	0.00 0.55	0.00	2 11
407 408	0.16	0.55 0.31	0.24	11 16
408 409	0.17 0.15	0.31 0.75	0.22 0.24	16 8
409 410	0.15 0.04	0.75 0.12	0.24 0.06	8 17
410	0.04	0.12	0.06	17

111	0 02	0 10	0 02	10
411	0.02	0.10	0.03	10
412	0.00	0.00	0.00	5
413	0.09	0.22	0.12	18
414	0.05	0.10	0.06	10
415	0.27	0.60	0.37	10
416	0.16	0.23	0.19	22
417	0.00	0.00	0.00	1
418	0.05	0.13	0.07	15
419	0.17	0.86	0.28	7
420	0.00		0.00	2
		0.00		
421	0.00	0.00	0.00	7
422	0.10	0.43	0.16	7
423	0.08	0.25	0.12	16
424	0.22	0.64	0.33	11
425	0.20	0.78	0.32	9
426	0.07	0.33	0.11	3
427	0.04	0.12	0.06	8
428	0.06	0.18	0.09	11
429	0.00	0.00	0.00	11
430	0.60	0.36	0.45	50
431	0.12	0.29	0.17	14
432	0.06	0.33	0.10	3
433	0.14	0.62	0.22	8
434	0.04	0.20	0.07	10
435	0.14	0.21	0.17	14
436	0.00	0.00	0.00	4
437	0.03	0.17	0.06	6
438	0.00	0.00	0.00	5
439	0.14	0.38	0.21	13
440	0.08	1.00	0.15	2
441	0.06	0.60	0.11	5
442	0.05	0.33	0.09	6
443	0.10	0.36	0.16	11
444	0.04	0.22	0.06	9
445	0.10	0.43	0.16	7
446	0.09	0.33	0.14	6
447	0.07	0.11	0.09	18
448	0.04	0.11	0.05	9
449	0.06	0.11	0.08	18
450	0.11	0.56	0.18	9
451	0.22	0.69	0.33	16
452	0.29	0.50	0.36	8
453	0.16	0.35	0.22	20
454	0.11	0.62	0.19	8
455				
	0.06	0.33	0.11	6
456	0.04	0.50	0.08	2
457	0.02	0.08	0.04	12
458	0.04	0.50	0.07	2
459	0.00	0.00	0.00	8
460	0.00	0.00	0.00	3
461	0.02	0.11	0.03	9
462	0.13	0.25	0.17	12
463	0.03	0.11	0.04	9
464	0.00	0.00	0.00	0
465	0.02	0.11	0.04	9
466	0.14	0.28	0.19	18
467	0.02	0.33	0.04	3
468	0.00	0.00	0.00	14
469				
	0.08	0.50	0.14	6
470	0.33	0.09	0.15	43
471	0.02	0.08	0.03	12
472	0.09	0.86	0.16	7
473	0.16	0.55	0.24	11
474	0.06	0.38	0.11	13
475	0.08	1.00	0.14	2
476	0.00	0.00	0.00	4
477	0.00	0.00	0.00	3
478	0.70	0.16	0.26	43
479	0.08	0.07	0.07	15
480	0.07	0.22	0.10	9
481	0.21	0.67	0.32	6
482	0.03	0.50	0.05	2
				3
483 484	0.05	0.33	0.08	
484	0.07	0.40	0.12	5
485	0.04	0.18	0.07	11
486	0.13	0.26	0.18	23
487	0.05	0.50	0.10	4
488	0.10	0.24	0.14	17
489	0.12	0.50	0.19	6
490	0.00	0.00	0.00	3
491	0.00	0.00	0.00	4
492	0.02	0.33	0.04	3
493	0.13	0.38	0.19	8
494	0.00	0.00	0.00	1
49 4 495	0.18	0.33	0.23	18
496 407	0.04	0.20	0.06	5
497	0.14	0.60	0.23	5
498	0.05	0.15	0.08	13

```
Time taken to run this cell : 0:03:36.840972
         Performing hyperparam tuning on alpha (or lambda) for Logistic regression to improve the performance
         using GridSearch
In [29]: | start = datetime.now()
         from sklearn.model_selection import GridSearchCV
         parameters = {"estimator alpha": [0.00001,0.0001,0.001, 0.01, 0.1, 1, 10]}
         clf = OneVsRestClassifier(SGDClassifier(loss='log',penalty='l1'))
         clf_tunning = GridSearchCV(clf, param_grid=parameters,verbose=30,cv =3, n_jobs=-1)
         clf_tunning.fit(x_train_multilabel_bow, y_train)
         Fitting 3 folds for each of 7 candidates, totalling 21 fits
         [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
         [Parallel(n_jobs=-1)]: Done
                                      1 tasks
                                                     elapsed: 5.2min
         [Parallel(n_jobs=-1)]: Done
                                       2 tasks
                                                      elapsed: 5.3min
         [Parallel(n_jobs=-1)]: Done
                                                     elapsed: 8.9min
                                      3 tasks
                                                     elapsed: 11.3min
         [Parallel(n_jobs=-1)]: Done
                                      4 tasks
         [Parallel(n_jobs=-1)]: Done
                                      5 tasks
                                                      elapsed: 11.9min
         [Parallel(n_jobs=-1)]: Done
                                      6 tasks
                                                     elapsed: 12.7min
                                      7 out of 21 | elapsed: 12.8min remaining: 25.6min
         [Parallel(n_jobs=-1)]: Done
         [Parallel(n_jobs=-1)]: Done
                                      8 out of 21 | elapsed: 12.9min remaining: 21.0min
         [Parallel(n jobs=-1)]: Done
                                                     elapsed: 14.0min remaining: 18.7min
                                      9 out of 21
         [Parallel(n_jobs=-1)]: Done 10 out of 21 |
                                                     elapsed: 15.3min remaining: 16.8min
         [Parallel(n_jobs=-1)]: Done 11 out of 21 |
                                                     elapsed: 15.4min remaining: 14.0min
         [Parallel(n_jobs=-1)]: Done 12 out of 21 |
                                                     elapsed: 16.6min remaining: 12.5min
         [Parallel(n_jobs=-1)]: Done 13 out of 21 |
                                                      elapsed: 16.9min remaining: 10.4min
                                                     elapsed: 17.5min remaining: 8.7min
         [Parallel(n_jobs=-1)]: Done 14 out of 21 |
                                                     elapsed: 17.9min remaining: 7.2min
         [Parallel(n_jobs=-1)]: Done 15 out of 21 |
         [Parallel(n jobs=-1)]: Done 16 out of 21 |
                                                     elapsed: 17.9min remaining: 5.6min
         [Parallel(n_jobs=-1)]: Done 17 out of 21 |
                                                     elapsed: 18.4min remaining: 4.3min
         [Parallel(n_jobs=-1)]: Done 18 out of 21 |
                                                     elapsed: 18.4min remaining: 3.1min
         [Parallel(n_jobs=-1)]: Done 19 out of 21 |
                                                     elapsed: 18.9min remaining: 2.0min
         [Parallel(n_jobs=-1)]: Done 21 out of 21 |
                                                     elapsed: 19.2min remaining:
                                                                                    0.0s
         [Parallel(n_jobs=-1)]: Done 21 out of 21 | elapsed: 19.2min finished
Out[29]: GridSearchCV(cv=3, error_score='raise-deprecating',
                      estimator=OneVsRestClassifier(estimator=SGDClassifier(alpha=0.0001,
                                                                            average=False,
                                                                            class_weight=None,
                                                                            early_stopping=False,
                                                                            epsilon=0.1,
                                                                            eta0=0.0,
                                                                            fit_intercept=True,
                                                                            l1_ratio=0.15,
                                                                            learning_rate='optimal',
                                                                            loss='log',
                                                                            max_iter=1000,
                                                                            n_iter_no_change=5,
                                                                            n_jobs=None,
                                                                            penalty='l1',
                                                                            power_t=0.5,
                                                                            random_state=None,
                                                                            shuffle=True,
                                                                            tol=0.001,
                                                                            validation_fraction=0.1,
                                                                            verbose=0,
                                                                            warm_start=False),
                                                    n_jobs=None),
                      iid='warn', n_jobs=-1,
                      param_grid={'estimator__alpha': [1e-05, 0.0001, 0.001, 0.01, 0.1,
                                                       1, 10]},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring=None, verbose=30)
In [30]: best param=clf tunning.best params
         print(best param)
```

5

23316

23316

23316

23316

{'estimator__alpha': 0.001}

499

micro avg macro avg

weighted avg

samples avg

0.10

0.22

0.14

0.33

0.31

0.60

0.42

0.32

0.42

0.41

0.17

0.29

0.18

0.34

0.30

```
In [31]: | start = datetime.now()
          classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.001, penalty='l1'),n_jobs=-1)
          classifier.fit(x_train_multilabel_bow, y_train)
          predictions = classifier.predict (x_test_multilabel_bow)
          print("Accuracy :",metrics.accuracy_score(y_test, predictions))
          print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
          precision = precision_score(y_test, predictions, average='micro')
          recall = recall_score(y_test, predictions, average='micro')
          f1 = f1_score(y_test, predictions, average='micro')
          print("Micro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          precision = precision_score(y_test, predictions, average='macro')
          recall = recall_score(y_test, predictions, average='macro')
          f1 = f1_score(y_test, predictions, average='macro')
          print("Macro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          print (metrics.classification_report(y_test, predictions))
          print("Time taken to run this cell :", datetime.now() - start)
         Accuracy: 0.13933333333333333
         Hamming loss 0.003720166666666668
         Micro-average quality numbers
         Precision: 0.5395, Recall: 0.2916, F1-measure: 0.3786
         Macro-average quality numbers
         Precision: 0.3062, Recall: 0.1974, F1-measure: 0.2191
                                     recall f1-score support
                        precision
                     0
                             0.30
                                       0.14
                                                  0.19
                                                             256
                     1
                             0.45
                                       0.11
                                                  0.18
                                                             625
                     2
                                                  0.62
                             0.75
                                       0.53
                                                             809
                     3
                                                  0.58
                             0.61
                                       0.56
                                                             622
                     4
                             0.57
                                                  0.46
                                       0.39
                                                             762
                     5
                             0.65
                                       0.37
                                                  0.47
                                                             599
                                                  0.26
                     6
                             0.17
                                       0.55
                                                             11
                     7
                             0.85
                                                  0.75
                                                             724
                                       0.68
                     8
                             0.83
                                       0.78
                                                  0.80
                                                            1312
                    9
                             0.70
                                       0.45
                                                  0.55
                                                             300
                    10
                                                  0.33
                             0.60
                                       0.23
                                                             327
                    11
                             0.41
                                       0.14
                                                  0.21
                                                             204
                    12
                                       0.48
                                                  0.56
                             0.66
                                                              93
                    13
                             0.58
                                       0.22
                                                  0.31
                                                             390
                    14
                             0.69
                                       0.68
                                                  0.69
                                                             190
                    15
                             0.59
                                       0.12
                                                  0.20
                                                             489
                    16
                             0.69
                                       0.11
                                                  0.19
                                                             369
                    17
                             0.60
                                       0.21
                                                  0.31
                                                             165
                                                  0.60
                    18
                             0.58
                                       0.63
                                                             193
                    19
                             0.47
                                       0.18
                                                  0.26
                                                             227
                    20
                                                  0.20
                             0.22
                                       0.18
                                                              11
                    21
                             0.71
                                       0.51
                                                  0.59
                                                             124
                    22
                             0.18
                                       0.11
                                                  0.14
                                                              45
                    23
                             0.22
                                                  0.13
                                                             136
                                       0.09
                    24
                             0.40
                                       0.28
                                                  0.33
                                                             193
                    25
                             0.17
                                       0.01
                                                  0.01
                                                             185
                    26
                             0.43
                                       0.30
                                                  0.35
                                                              64
                    27
                             0.95
                                       0.75
                                                  0.84
                                                             517
                                       0.46
                                                  0.52
                    29
                             0.33
                                       0.10
                                                  0.15
                                                             169
                    30
                                       0.36
                                                  0.41
                                                              69
                             0.48
                    31
                             0.62
                                       0.34
                                                  0.44
                                                              73
                    32
                             0.30
                                       0.19
                                                  0.23
                                                             113
                    33
                             0.36
                                       0.11
                                                  0.17
                                                              92
                    34
                             0.18
                                       0.15
                                                  0.16
                                                              40
                    35
                                       0.32
                                                  0.26
                                                              19
                             0.22
                                       0.72
                    36
                             0.64
                                                  0.68
                                                              97
                                       0.44
                                                             319
                    37
                             0.48
                                                  0.46
                                       0.09
                    38
                             0.17
                                                  0.12
                                                              88
                    39
                             0.14
                                       0.04
                                                  0.07
                                                             112
                    40
                                                  0.21
                                                              55
                             0.29
                                       0.16
                    41
                             0.33
                                       0.06
                                                  0.10
                                                              87
                    42
                             0.50
                                       0.23
                                                  0.31
                                                             272
                                       0.45
                    43
                             0.61
                                                  0.52
                                                             118
                    44
                             0.54
                                       0.40
                                                  0.46
                                                              96
                    45
                             0.31
                                       0.17
                                                  0.22
                                                              53
                    46
                             0.50
                                       0.18
                                                  0.27
                                                              11
                    47
                                       0.29
                                                             107
                             0.41
                                                  0.34
```

40	0.53	0.42	0.47	40
48	0.53	0.42	0.47	48
49	0.52	0.54	0.53	81
50	0.68	0.56	0.61	34
51	0.32	0.22	0.26	36
52	0.39	0.45	0.42	53
53	0.72	0.41	0.52	143
54	0.35	0.40	0.37	35
				64
55	0.62	0.48	0.54	
56	0.73	0.81	0.77	37
57	0.45	0.22	0.29	96
58	0.38	0.27	0.32	37
59	0.14	0.10	0.11	51
60	0.33	0.23	0.27	39
61	0.79	0.46	0.58	48
62	0.53	0.28	0.36	36
63	0.09	0.13	0.11	153
64	0.63	0.51	0.56	85
65	0.10	0.15	0.12	20
66	0.51	0.79	0.62	33
67	0.50	0.33	0.40	45
68	0.24	0.13	0.17	69
69	0.67	0.62	0.64	112
70	0.87	0.41	0.56	111
71	0.25	0.09	0.13	44
72	0.31	0.12	0.17	66
73	0.00	0.00	0.00	276
74	0.33	0.25	0.29	28
75 76	0.00	0.00	0.00	217
76	0.62	0.19	0.29	27
77	0.26	0.13	0.17	46
78	0.75	0.32	0.45	28
79	0.38	0.04	0.08	71
				15
80	0.73	0.53	0.62	
81	0.47	0.10	0.17	79
82	0.25	0.06	0.10	47
83	0.45	0.51	0.48	76
84	0.00	0.00	0.00	229
85	0.00	0.00	0.00	68
86	0.47	0.10	0.16	71
87	0.67	0.67	0.67	9
88	0.07	0.04	0.05	46
89	0.56	0.34	0.43	58
90	0.16	0.08	0.10	39
91	0.38	0.32	0.35	25
92	0.00	0.00	0.00	5
93	0.54	0.73	0.62	144
94	0.00	0.00	0.00	8
95				28
	0.11	0.14	0.12	
96	0.17	0.03	0.05	34
97	0.00	0.00	0.00	6
98	0.00	0.00	0.00	202
99	0.57	0.20	0.29	132
100		0.15	0.21	39
	0.35			
101	0.00	0.00	0.00	208
102	1.00	1.00	1.00	1
103	0.68	0.23	0.35	56
104	0.60	0.56	0.58	43
105	0.88	0.28	0.43	74
106	0.17	0.04	0.06	25
107	0.17	0.04	0.07	46
108	0.64	0.33	0.44	21
109	0.43	0.35	0.38	26
110	0.58	0.33	0.42	21
111	0.20	0.05	0.08	41
112	0.22	0.09	0.13	54
113	0.00	0.00	0.00	52
114	0.50	0.07	0.12	56
115	0.62	0.31	0.41	26
116	0.12	0.10	0.41	20
117	0.84	0.20	0.33	104
118	0.25	0.03	0.05	40
119	0.00	0.00	0.00	11
120	0.55	0.48	0.51	48
121	0.50	0.10	0.17	30
122	0.00	0.00	0.00	28
123	0.52	0.44	0.48	25
124	0.53	0.40	0.46	40
125	0.33	0.23	0.27	22
126	0.17	0.17	0.17	29
		0.38		
127	0.22		0.28	16
128	0.88	0.52	0.65	29
129	0.05	0.04	0.04	28
130	0.00	0.00	0.00	30
131	0.00	0.00	0.00	6
132	0.94	0.43	0.59	140
133	0.00	0.00	0.00	22
134	0.50	0.07	0.12	28
135	0.44	0.15	0.22	27

120	0.45	0.25	0.22	
136	0.45	0.25	0.33	55
137	0.75	0.50	0.60	30
138	0.22	0.12	0.16	16
139	0.93	0.54	0.68	48
140	0.50	0.21	0.30	14
141	0.00	0.00	0.00	7
142				, 15
	0.71	0.67	0.69	
143	0.67	0.33	0.44	12
144	0.25	0.17	0.20	6
145	0.20	0.60	0.30	15
146	0.83	0.61	0.70	31
147	0.33	0.18	0.24	22
148	0.00	0.00	0.00	142
149	0.17	0.14	0.16	64
150	0.00	0.00	0.00	32
151	0.00	0.00	0.00	135
152	0.56	0.56	0.56	16
153	0.57	0.71	0.63	17
154	0.17	0.07	0.10	15
155	0.25	0.25	0.25	57
156	0.19	0.17	0.18	18
157	0.16	0.27	0.20	11
158	0.57	0.46	0.51	28
159	0.00	0.00	0.00	42
160	0.00	0.00	0.00	14
161	0.50	0.13	0.21	30
				2
162	0.00	0.00	0.00	
163	0.25	0.10	0.15	39
164	0.87	0.43	0.58	30
165	0.00	0.00	0.00	3
166	0.14	0.06	0.08	17
167	0.49	0.50	0.49	40
	0.50			14
168		0.29	0.36	
169	0.25	0.07	0.11	14
170	0.00	0.00	0.00	12
171	0.00	0.00	0.00	100
172	0.40	0.59	0.48	17
173	0.62	0.18	0.28	28
174	0.89	0.36	0.52	22
175	0.14	0.09	0.11	22
176	0.17	0.02	0.04	48
177	0.12	0.42	0.19	12
178	0.67	0.18	0.29	11
179	0.25	0.12	0.17	24
180	0.80	0.50	0.62	16
181	0.36	0.14	0.20	29
182	0.00	0.00	0.00	15
183	0.12	0.04	0.06	28
184	0.38	0.08	0.13	39
185	0.55	0.35	0.43	46
186	0.04	0.03	0.03	36
187	0.25	0.33	0.29	12
188	0.38	0.31	0.34	16
189	0.22	0.80	0.35	5
190	0.50	0.22	0.31	27
191	0.33	0.31	0.32	13
192	0.13	0.10	0.11	21
193	0.03	0.12	0.05	8
194	0.00	0.00	0.00	6
195	0.67	0.44	0.53	18
196	0.00	0.00	0.00	55
197	0.00	0.00	0.00	12
198			0.33	10
	0.29	0.40		
199	0.22	0.08	0.11	26
200	0.20	0.25	0.22	4
201	0.50	0.09	0.15	11
202	0.20	0.23	0.21	35
203	0.16	0.16	0.16	25
204	0.15	0.09	0.11	23
205	0.45	0.13	0.20	38
		0.13		
206	0.16		0.17	26
207	0.67	0.13	0.22	30
208	0.87	0.42	0.57	31
209	0.00	0.00	0.00	1
210	0.22	0.05	0.09	38
211	0.00	0.00	0.00	22
212	0.43	0.25	0.32	36
213	0.64	0.45	0.53	20
214	0.50	0.10	0.17	29
215	0.68	0.62	0.65	21
216	0.33	0.09	0.14	11
217	0.00	0.00	0.00	3
218	0.00	0.00	0.00	28
219	0.00	0.00	0.00	19
220	0.60	0.30	0.40	10
221	0.28	0.23	0.40	22
222	1.00	0.38	0.56	26
223	0.30	0.50	0.37	6

224	0.36	0.27	0.31	15
225	1.00	0.03	0.06	35
226	0.00	0.00	0.00	25
227	0.00	0.00	0.00	9
228	0.57	0.33	0.42	12
229	1.00	0.50	0.67	14
230	0.00	0.00	0.00	44
231	0.00	0.00	0.00	16
232	0.18	0.09	0.12	23
233	0.70	0.21	0.33	33
234	0.14	0.12	0.13	16
235	0.80	0.17	0.28	24
236	0.17	0.38	0.23	24
237	0.71	0.33	0.45	15
238	0.83	0.33	0.48	15
239	0.11	0.17	0.13	18
240	0.50	0.31	0.38	16
241	0.86	0.50	0.63	12
242	0.07	0.08	0.08	12
243	0.00	0.00	0.00	10
244	0.00	0.00	0.00	8
245	0.19	0.45	0.27	20
246	0.00	0.00	0.00	5
247	0.00	0.00	0.00	11
248	0.00	0.00	0.00	4
249	0.00	0.00	0.00	89
250	0.00	0.00	0.00	28
251	0.73	0.50	0.59	16
252	0.00	0.00	0.00	54
253	0.11	0.11	0.11	9
254	0.67	0.40	0.50	5
255	0.33	0.12	0.17	17
256	0.00	0.00	0.00	94
257	0.33	0.03	0.06	29
258	0.00	0.00	0.00	23
259	0.33	0.08	0.13	24
260	0.35	0.50	0.41	16
261	0.88	0.41	0.56	17
262	0.40	0.31	0.35	13
263	0.50	0.13	0.21	15
264	0.00	0.00	0.00	20
265	0.00	0.00	0.00	85
266	0.00	0.00	0.00	4
267	0.50	0.20	0.29	15
268	0.00	0.00	0.00	23
269	0.22	0.12	0.15	17
270	0.10	0.05	0.07	19
271	0.67	0.33	0.44	6
272	0.25	0.06	0.10	16
273	0.10	0.08	0.09	13
274	0.00	0.00	0.00	37
275	0.25	0.07	0.11	14
276	0.00	0.00	0.00	1
277	0.25	0.16	0.19	32
278	0.50	0.08	0.14	12
279	0.00	0.00	0.00	90
280	1.00	0.36	0.53	11
				82
281	0.00	0.00	0.00	
282	0.62	0.62	0.62	8
283	0.60	0.60	0.60	5
284	0.35	0.25	0.29	24
285	0.33	0.07	0.11	30
286	0.00	0.00	0.00	31
287	0.33	0.18	0.23	17
288	0.00	0.00	0.00	13
289	0.50	0.38	0.43	8
290	0.40	0.40	0.40	5
291	0.71	0.62	0.67	8
292	0.00	0.00	0.00	3
293	0.12	0.24	0.16	17
294	0.00	0.00	0.00	22
295	0.00	0.00	0.00	8
296	0.00	0.00	0.00	30
297	1.00	0.09	0.17	11
298	0.50	0.18	0.27	22
299	0.00	0.00	0.00	14
300	0.00	0.00	0.00	7
301	0.00	0.00	0.00	8
302	0.50	0.27	0.35	11
303	0.00	0.00	0.00	27
304	0.90	0.60	0.72	15
305	0.00	0.00	0.00	16
306	0.73	0.57	0.64	14
307	0.00	0.00	0.00	18
308	1.00	0.14	0.25	7
			0 0=	10
309	1.00	0.90	0.95	10
	1.00 0.00	0.90 0.00	0.95 0.00	4
309				

312	0.60	0.40	0.48	15
313	0.67	0.46	0.55	13
314	0.25	0.40	0.35	6
				12
315	0.00	0.00	0.00	
316	1.00	0.31	0.48	16
317	0.00	0.00	0.00	9
318	0.60	0.30	0.40	10
319	0.00	0.00	0.00	6
320	0.00	0.00	0.00	14
321	0.00	0.00	0.00	6
322	0.00	0.00	0.00	4
323	0.33	0.12	0.17	17
324	1.00	0.33	0.50	6
325	0.00	0.00	0.00	57
326	0.00	0.00	0.00	47
327	0.60	0.16	0.25	19
328	0.41	0.35	0.38	20
329	0.00	0.00	0.00	21
330	0.00	0.00	0.00	2
331	0.00	0.00	0.00	16
332	0.44	0.32	0.37	22
333	0.00	0.00	0.00	7
334	1.00	0.50	0.67	16
335	0.03	0.06	0.04	18
336	0.00	0.00	0.00	70
337	0.03	0.25	0.05	4
338	0.67	0.14	0.24	14
				8
339	0.00	0.00	0.00	17
340	0.83	0.59	0.69	
341	0.50	1.00	0.67	3
342	0.00	0.00	0.00	9
343	0.25	0.08	0.12	12
344	0.75	0.55	0.63	11
345	1.00	0.25	0.40	8
346	0.83	0.50	0.62	10
347	0.00	0.00	0.00	2
348	0.40	0.40	0.40	10
349	0.00	0.00	0.00	14
350	0.50	0.33	0.40	9
351	0.00	0.00	0.00	15
352	0.67	0.07	0.13	27
353	0.00	0.00	0.00	8
354	0.62	0.38	0.48	13
355	0.00	0.00	0.00	8
356	0.00	0.00	0.00	25
357	0.12	0.07	0.09	14
358	0.00	0.00	0.00	4
359	0.00	0.00	0.00	8
360	0.00	0.00	0.00	15
361	0.00	0.00	0.00	33
362	0.00	0.00	0.00	9
363	0.00	0.00	0.00	2
364	0.00	0.00	0.00	8
365	0.00	0.00	0.00	8
366	0.00	0.00	0.00	42
367	0.00	0.00	0.00	21
368	0.00	0.00	0.00	9
369	0.44	0.25	0.32	16
370	0.00	0.00	0.00	4
371	0.00	0.00	0.00	4
372	0.30	0.60	0.40	5
373	0.33	0.06	0.11	16
374	0.00	0.00	0.00	8
375	0.00	0.00	0.00	1
376	0.00	0.00	0.00	4
377	0.00	0.00	0.00	3
378	0.00	0.00	0.00	6
379	0.33	0.09	0.14	11
380	0.25	0.40	0.31	5
381	0.67	0.40	0.50	10
382	0.00	0.00	0.00	10
383	0.00	0.00	0.00	9
384	0.00	0.00	0.00	7
385	0.57	0.33	0.42	12
386	0.08	0.20	0.12	5
387	0.67	0.25	0.36	8
388	0.00	0.00	0.00	3
389	0.50	0.50	0.50	6
390	0.00	0.00	0.00	10
391	0.00	0.00	0.00	56
392	0.25	0.08	0.12	12
393	0.00	0.00	0.00	13
394	0.00	0.00	0.00	12
395	0.20	0.33	0.25	3
396	0.00	0.00	0.00	11
397	0.25	0.33	0.29	3
398	1.00	0.64	0.78	11
399	1.00	0.43	0.60	7

				_
400	0.11	0.12	0.12	8
401	0.67	0.31	0.42	13
402	0.00	0.00	0.00	47
403	0.75	0.60	0.67	10
404	0.00	0.00	0.00	9
405	0.05	0.20	0.08	5
406	0.00	0.00	0.00	2
407	0.50	0.27	0.35	11
408	0.44	0.25	0.32	16
409	0.38	0.62	0.48	8
410	0.00	0.00	0.00	17
411	0.25	0.10	0.14	10
412	0.00	0.00	0.00	5
413	0.00	0.00	0.00	18
414	0.00	0.00	0.00	10
415	0.83	0.50	0.62	10
416	0.00	0.00	0.00	22
417	0.00	0.00	0.00	1
418	0.00	0.00	0.00	15
419	0.67	0.57	0.62	7
420	0.00	0.00	0.00	2
421	0.00	0.00	0.00	7
422	1.00	0.29	0.44	7
423	0.20	0.06	0.10	16
424	0.60	0.27	0.37	11
425	0.20	0.11	0.14	9
426	0.11	0.67	0.19	3
427	0.00	0.00	0.00	8
428	0.00	0.00	0.00	11
429	0.00	0.00	0.00	11
430	0.00	0.00	0.00	50
431	0.25	0.07	0.11	14
432	0.14	0.33	0.20	3
433	0.83	0.62	0.71	8
434	0.00	0.00	0.00	10
435	0.00	0.00	0.00	14
436	0.00	0.00	0.00	4
437	0.00	0.00	0.00	6
438	0.00	0.00	0.00	5
439	0.29	0.15	0.20	13
440	0.06	0.50	0.11	2
441	0.50	0.60	0.55	5
442	0.00	0.00	0.00	6
443				11
	0.00	0.00	0.00	
444	1.00	0.11	0.20	9
445	0.50	0.14	0.22	7
446	0.50	0.33	0.40	6
447	0.00	0.00	0.00	18
448	0.00	0.00	0.00	9
449	1.00	0.06	0.11	18
450	0.38	0.67	0.48	9
451	0.42	0.31	0.36	16
452	0.20	0.62	0.30	8
453	1.00	0.05	0.10	20
454	0.40	0.25	0.31	8
455	0.20	0.17	0.18	6
456	0.00	0.00	0.00	2
457	0.00	0.00	0.00	12
458	0.50	0.50	0.50	2
459	0.40	0.25	0.31	8
460	0.00			3
		0.00	0.00	
461	0.00	0.00	0.00	9
462	0.00	0.00	0.00	12
463	0.25	0.22	0.24	9
464	0.00	0.00	0.00	0
465	0.00	0.00	0.00	9
466	0.55	0.33	0.41	18
467	0.33	0.33	0.33	3
468	0.00	0.00	0.00	14
469	0.00	0.00	0.00	6
470 471	0.00	0.00	0.00	43
471	0.00	0.00	0.00	12
472	0.80	0.57	0.67	7
473	0.00	0.00	0.00	11
474	0.00	0.00	0.00	13
475	1.00	1.00	1.00	2
476	0.00	0.00	0.00	4
477	0.00	0.00	0.00	3
		0.00	0.00	
478 470	0.00			43 15
479	0.00	0.00	0.00	15
480	0.21	0.44	0.29	9
481	1.00	0.33	0.50	6
482	0.00	0.00	0.00	2
483	0.00	0.00	0.00	3
484	0.00	0.00	0.00	5
485	0.00	0.00	0.00	11
486	0.00	0.00	0.00	23
				23 4
487	0.00	0.00	0.00	4

```
488
                                                    17
                   0.38
                             0.18
                                        0.24
        489
                   0.60
                             0.50
                                        0.55
                                                     6
        490
                   0.00
                             0.00
                                        0.00
                                                     3
        491
                   0.00
                             0.00
                                        0.00
                                                     4
        492
                   0.00
                             0.00
                                        0.00
                                                     3
        493
                   0.00
                             0.00
                                        0.00
                                                     8
        494
                   0.00
                             0.00
                                        0.00
                                                     1
                   0.00
                             0.00
                                        0.00
                                                    18
        495
                                                    5
        496
                   0.00
                             0.00
                                        0.00
        497
                   0.00
                             0.00
                                        0.00
                                                     5
                                                    13
        498
                   0.20
                             0.08
                                        0.11
        499
                   0.33
                             0.20
                                        0.25
                                                     5
  micro avg
                                                 23316
                   0.54
                             0.29
                                        0.38
  macro avg
                   0.31
                             0.20
                                        0.22
                                                 23316
weighted avg
                   0.46
                             0.29
                                        0.34
                                                 23316
 samples avg
                   0.36
                             0.28
                                        0.29
                                                 23316
```

Time taken to run this cell : 0:01:07.807943

OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

```
In [32]: start = datetime.now()
    classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=0.00001, penalty='l1'),n_jobs=-1)
In [33]: classifier.fit(x_train_multilabel_bow, y_train)
    predictions = classifier.predict (x_test_multilabel_bow)
```

```
In [34]: | print("Accuracy :", metrics.accuracy_score(y_test, predictions))
          print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
          precision = precision_score(y_test, predictions, average='micro')
          recall = recall_score(y_test, predictions, average='micro')
          f1 = f1_score(y_test, predictions, average='micro')
          print("Micro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          precision = precision_score(y_test, predictions, average='macro')
          recall = recall_score(y_test, predictions, average='macro')
          f1 = f1_score(y_test, predictions, average='macro')
          print("Macro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          print (metrics.classification_report(y_test, predictions))
          print("Time taken to run this cell :", datetime.now() - start)
          Accuracy: 0.07133333333333333
         Hamming loss 0.007927333333333333
         Micro-average quality numbers
         Precision: 0.2211, Recall: 0.4122, F1-measure: 0.2878
         Macro-average quality numbers
         Precision: 0.1375, Recall: 0.3091, F1-measure: 0.1697
                                      recall f1-score support
                        precision
                     0
                             0.11
                                        0.26
                                                  0.16
                                                              256
                     1
                             0.25
                                        0.36
                                                  0.30
                                                              625
                     2
                             0.47
                                        0.63
                                                  0.54
                                                              809
                     3
                                                  0.47
                             0.39
                                        0.60
                                                              622
                     4
                             0.37
                                        0.44
                                                  0.40
                                                              762
                     5
                             0.33
                                        0.49
                                                  0.40
                                                              599
                     6
                                        0.55
                                                  0.11
                             0.06
                                                               11
                     7
                             0.62
                                        0.72
                                                  0.66
                                                              724
                     8
                             0.79
                                        0.76
                                                  0.77
                                                             1312
                     9
                             0.35
                                        0.54
                                                  0.43
                                                              300
                    10
                             0.30
                                        0.38
                                                  0.34
                                                              327
                    11
                             0.13
                                        0.25
                                                  0.17
                                                              204
                    12
                                                   0.37
                             0.28
                                        0.56
                                                               93
                    13
                                                  0.36
                                                              390
                             0.37
                                        0.34
                    14
                                                  0.41
                                                              190
                             0.31
                                        0.61
                    15
                             0.35
                                        0.37
                                                   0.36
                                                              489
                                                  0.30
                    16
                             0.30
                                        0.30
                                                              369
                    17
                                                  0.18
                             0.14
                                        0.27
                                                              165
                    18
                             0.37
                                                  0.45
                                        0.60
                                                              193
                    19
                             0.29
                                        0.37
                                                  0.33
                                                              227
                    20
                             0.08
                                        0.45
                                                  0.13
                                                               11
                    21
                                                  0.40
                             0.32
                                        0.54
                                                              124
                    22
                             0.09
                                        0.29
                                                  0.14
                                                               45
                    23
                             0.09
                                        0.18
                                                  0.12
                                                              136
                    24
                                                  0.31
                             0.27
                                        0.37
                                                              193
                    25
                             0.12
                                        0.20
                                                  0.15
                                                              185
                    26
                             0.12
                                        0.28
                                                  0.17
                                                               64
                    27
                             0.79
                                        0.79
                                                  0.79
                                                              517
                                                   0.00
                    28
                             0.00
                                        0.00
                                                               13
                    29
                                                  0.36
                             0.34
                                        0.39
                                                              169
                    30
                             0.12
                                        0.32
                                                  0.17
                                                               69
                    31
                             0.13
                                        0.45
                                                  0.21
                                                               73
                    32
                                                  0.28
                             0.21
                                        0.41
                                                              113
                    33
                             0.14
                                        0.22
                                                  0.17
                                                               92
                    34
                             0.08
                                        0.23
                                                  0.11
                                                               40
                    35
                             0.06
                                        0.32
                                                  0.10
                                                               19
                    36
                             0.39
                                        0.79
                                                  0.53
                                                               97
                    37
                                                              319
                             0.45
                                        0.42
                                                  0.43
                    38
                             0.08
                                        0.18
                                                               88
                                                   0.11
                    39
                             0.24
                                        0.40
                                                   0.30
                                                              112
                    40
                             0.10
                                        0.29
                                                   0.15
                                                               55
                    41
                             0.22
                                        0.32
                                                   0.26
                                                               87
                    42
                             0.33
                                        0.42
                                                   0.37
                                                              272
                    43
                                        0.59
                                                   0.31
                                                              118
                             0.21
                    44
                             0.27
                                        0.42
                                                   0.33
                                                               96
                    45
                             0.10
                                        0.34
                                                   0.16
                                                               53
                    46
                             0.02
                                        0.18
                                                   0.03
                                                               11
                    47
                             0.32
                                        0.60
                                                   0.42
                                                              107
                    48
                             0.13
                                        0.44
                                                   0.20
                                                               48
                                        0.57
                                                               81
                    49
                             0.29
                                                   0.39
                    50
                             0.21
                                        0.62
                                                   0.31
                                                               34
                    51
                             0.07
                                        0.22
                                                   0.10
                                                               36
                    52
                             0.21
                                        0.62
                                                   0.32
                                                               53
```

143

35

64

37

96

37

53

54

55

56

57

58

0.57

0.37

0.55

0.73

0.43

0.38

0.58

0.23

0.40

0.33

0.29

0.20

0.60

0.16

0.32

0.21

0.22

0.14

59	0.07	0.27	0.11	51
60	0.08	0.23	0.12	39
61	0.20	0.42	0.27	48
62 63	0.15 0.11	0.53 0.22	0.23 0.14	36 153
64	0.56	0.64	0.59	85
65	0.05	0.25	0.08	20
66	0.18	0.64	0.29	33
67	0.21	0.49	0.29	45
68	0.12	0.30	0.17	69
69 70	0.42	0.46	0.44	112
70 71	0.58 0.09	0.65 0.18	0.61 0.12	111 44
72	0.12	0.27	0.17	66
73	0.54	0.03	0.05	276
74	0.15	0.39	0.22	28
75	0.50	0.35	0.41	217
76 77	0.03 0.12	0.19 0.41	0.05 0.19	27 46
77 78	0.12	0.41	0.19	28
79	0.19	0.28	0.22	71
80	0.20	0.67	0.30	15
81	0.22	0.27	0.24	79
82	0.02	0.04	0.03	47
83 84	0.41 0.81	0.53 0.36	0.46 0.50	76 229
85	0.09	0.18	0.12	68
86	0.31	0.48	0.38	71
87	0.09	0.67	0.16	9
88	0.19	0.46	0.26	46
89	0.44	0.66	0.52	58
90 91	0.06 0.16	0.13 0.36	0.08 0.22	39 25
92	0.02	0.20	0.22	25 5
93	0.4 6	0.62	0.53	144
94	0.01	0.12	0.02	8
95	0.05	0.21	0.09	28
96	0.03	0.09	0.04	34
97 98	0.00 0.74	0.00	0.00	6 202
99	0.74 0.53	0.72 0.53	0.73 0.53	202 132
100	0.06	0.13	0.08	39
101	0.16	0.02	0.04	208
102	0.00	0.00	0.00	1
103	0.19	0.38	0.26	56
104 105	0.29	0.51	0.37	43 74
106	0.25 0.05	0.30 0.16	0.27 0.07	25
107	0.05	0.15	0.08	46
108	0.12	0.43	0.18	21
109	0.10	0.35	0.16	26
110	0.09	0.38	0.14	21
111 112	0.11 0.18	0.29 0.26	0.16 0.22	41 54
113	0.02	0.06	0.03	52
114	0.11	0.16	0.13	56
115	0.22	0.50	0.31	26
116	0.00	0.00	0.00	20
117	0.32	0.19	0.24	104
118 119	0.09 0.00	0.25 0.00	0.13 0.00	40 11
120	0.17	0.38	0.23	48
121	0.10	0.27	0.15	30
122	0.09	0.18	0.12	28
123	0.11	0.32	0.17	25
124 125	0.21 0.09	0.45 0.36	0.29 0.14	40 22
126	0.05	0.17	0.14	29
127	0.07	0.38	0.12	16
128	0.35	0.66	0.45	29
129	0.03	0.07	0.04	28
130	0.04	0.13	0.06	30
131 132	0.00 0.85	0.00 0.91	0.00 0.88	6 140
133	0.02	0.09	0.03	22
134	0.07	0.18	0.10	28
135	0.07	0.30	0.12	27
136	0.30	0.44	0.36	55
137	0.37	0.47	0.41	30
138 130	0.02 0.34	0.12 0.58	0.04 0.43	16 48
139 140	0.34 0.11	0.36	0.43 0.16	48 14
141	0.02	0.14	0.10	7
142	0.21	0.67	0.32	15
143	0.04	0.25	0.07	12
144 145	0.02 0.19	0.17 0.60	0.04 0.29	6 15
145 146	0.19 0.36	0.60 0.74	0.29 0.48	15 31
± - 70	0.50	0.74	∪. ∓0	71

147	0.05	0.18	0.08	22
148	0.00	0.00	0.00	142
148	0.13	0.27	0.17	64
150	0.09	0.16	0.11	32 125
151	0.83	0.58	0.68	135
152	0.10	0.19	0.13	16
153	0.26	0.65	0.37	17
154	0.04	0.13	0.06	15
155	0.20	0.39	0.26	57
156	0.03	0.17	0.05	18
157	0.06	0.27	0.10	11
158	0.12	0.25	0.16	28
159	0.09	0.17	0.12	42
160	0.00	0.00	0.00	14
161	0.21	0.20	0.20	30
162	0.03	1.00	0.06	2
163	0.06	0.21	0.09	39
164	0.16	0.50	0.24	30
165	0.03	0.33	0.06	3
166	0.03	0.12	0.05	17
167	0.22	0.12	0.32	40
168	0.09	0.29	0.13	14
169	0.03	0.21	0.06	14
170	0.00	0.00	0.00	12
171	0.07	0.07	0.07	100
172	0.13	0.59	0.21	17
173	0.13	0.46	0.20	28
174	0.18	0.41	0.25	22
175	0.08	0.50	0.13	22
176	0.39	0.46	0.42	48
177	0.05	0.33	0.09	12
178	0.07	0.36	0.12	11
179	0.05	0.17	0.08	24
180	0.21	0.69	0.32	16
181	0.07	0.31	0.11	29
182	0.04	0.20	0.06	15
183	0.21	0.46	0.29	28
184	0.14	0.18	0.16	39
185	0.20	0.43	0.28	46
186	0.10	0.22	0.13	36
187	0.05	0.25	0.08	12
188			0.28	
	0.20	0.50		16
189	0.04	0.40	0.07	5
190	0.24	0.41	0.30	27
191	0.35	0.62	0.44	13
192	0.07	0.14	0.09	21
193	0.04	0.25	0.07	8
194	0.00	0.00	0.00	6
195	0.16	0.50	0.25	18
196	0.10	0.13	0.11	55
197	0.03	0.08	0.05	12
198	0.14	0.50	0.22	10
199	0.12	0.27	0.17	26
200	0.00	0.00	0.00	4
201	0.09	0.64	0.16	11
202	0.18	0.23	0.20	35
203	0.15	0.40	0.22	25
204	0.05	0.13	0.07	23
205	0.32	0.26	0.29	38
206	0.25	0.35	0.29	26
207	0.29	0.30	0.30	30
208	0.35	0.52	0.42	31
209	0.00	0.00	0.00	1
210	0.10	0.26	0.14	38
211	0.05	0.14	0.07	22
212	0.15	0.36	0.21	36
213	0.25	0.35	0.29	20
214	0.12	0.38	0.18	29
215	0.37	0.62	0.46	21
216	0.12	0.45	0.19	11
217	0.02	0.33	0.04	3
	0.02			28
218 219	0.07 0.05	0.11 0.16	0.08 0.08	28 19
219	0.03	0.16	0.08 0.04	
				10 22
221	0.07	0.36	0.12	22
222	0.32	0.46	0.37	26
223	0.05	0.33	0.09	6 15
224	0.13	0.40	0.19	15 25
225	0.34	0.31	0.33	35
226	0.03	0.08	0.04	25
227	0.03	0.22	0.05	9
228	0.11	0.42	0.17	12
229	0.16	0.50	0.24	14
230	0.24	0.39	0.29	44
231	0.07	0.38	0.12	16
232	0.03	0.13	0.05	23
233	0.27	0.45	0.34	33
234	0.12	0.38	0.18	16

235 0.24 0.50 0.32 236 0.21 0.54 0.30 237 0.23 0.47 0.31 238 0.12 0.47 0.19 239 0.02 0.11 0.04 240 0.18 0.56 0.28 241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36 252 0.13 0.20 0.16	24 24 15 15 18 16 12 12 10 8 20 5
236 0.21 0.54 0.30 237 0.23 0.47 0.31 238 0.12 0.47 0.19 239 0.02 0.11 0.04 240 0.18 0.56 0.28 241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	24 15 15 18 16 12 12 10 8 20
237 0.23 0.47 0.19 238 0.12 0.47 0.19 239 0.02 0.11 0.04 240 0.18 0.56 0.28 241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	15 15 18 16 12 12 10 8 20
238 0.12 0.47 0.19 239 0.02 0.11 0.04 240 0.18 0.56 0.28 241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	15 18 16 12 12 10 8 20
239 0.02 0.11 0.04 240 0.18 0.56 0.28 241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	18 16 12 12 10 8 20
240 0.18 0.56 0.28 241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	16 12 12 10 8 20
241 0.12 0.67 0.20 242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	12 12 10 8 20
242 0.03 0.17 0.05 243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	12 10 8 20
243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	10 8 20
243 0.00 0.00 0.00 244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	10 8 20
244 0.00 0.00 0.00 245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	8 20
245 0.07 0.25 0.11 246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	20
246 0.02 0.20 0.04 247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	
247 0.00 0.00 0.00 248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	
248 0.07 0.50 0.12 249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	11
249 0.75 0.40 0.53 250 0.00 0.00 0.00 251 0.26 0.56 0.36	4
250 0.00 0.00 0.00 251 0.26 0.56 0.36	89
251 0.26 0.56 0.36	
	28
	16
	54
253 0.06 0.22 0.10	9
254 0.08 0.60 0.15	5
255 0.04 0.24 0.07	17
256 0.46 0.12 0.19	94
257 0.09 0.10 0.09	29
258 0.05 0.09 0.06	23
259 0.03 0.08 0.04	24
260 0.15 0.44 0.23	16
261 0.22 0.47 0.30	17
262 0.05 0.38 0.09	13
263 0.09 0.27 0.13	15
264 0.15 0.40 0.22	20
265 0.80 0.24 0.36	85
266 0.02 0.25 0.03	4
267 0.17 0.40 0.24	1 5
268 0.11 0.30 0.17	23
269 0.07 0.18 0.10	17
270 0.02 0.05 0.03	19
271 0.10 0.67 0.17	6
272 0.06 0.31 0.10	16
273 0.03 0.08 0.04	13
274 0.09 0.19 0.12	37
275 0.02 0.07 0.03	14
276 0.00 0.00 0.00	1
277 0.29 0.41 0.34	32
278 0.06 0.17 0.09	12
279 0.00 0.00 0.00	90
280 0.15 0.45 0.22	11
281 0.53 0.20 0.29	82
282 0.10 0.62 0.17	8
283 0.09 1.00 0.17	5
284 0.10 0.33 0.15	24
285 0.23 0.47 0.31	30
286 0.19 0.26 0.22	31
287 0.07 0.24 0.11	17
288 0.06 0.38 0.10	13
289 0.06 0.12 0.08	8
290 0.04 0.40 0.08	5
291 0.08 0.50 0.14	8
	3
	17
293 0.07 0.35 0.12 294 0.00 0.00 0.00	
794 0 00 0 00 0 00	22 8
	×
295 0.03 0.38 0.06	
295 0.03 0.38 0.06 296 0.09 0.13 0.11	30
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10	30 11
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11	30 11 22
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04	30 11 22 14
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05	30 11 22 14 7
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06	30 11 22 14 7 8
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18	30 11 22 14 7 8 11
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09	30 11 22 14 7 8 11
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46	30 11 22 14 7 8 11 27 15
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07	30 11 22 14 7 8 11
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25	30 11 22 14 7 8 11 27 15 16 14
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15	30 11 22 14 7 8 11 27 15 16
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15	30 11 22 14 7 8 11 27 15 16 14
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15	30 11 22 14 7 8 11 27 15 16 14
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15	30 11 22 14 7 8 11 27 15 16 14 18 7
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41	30 11 22 14 7 8 11 27 15 16 14 18 7
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12 16
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12 16 9
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12 16 9 10
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12 16 9 10 10 10 10 10 10 10 10 10 10 10 10 10
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12 16 9 10 6 14
295 0.03 0.38 0.06 296 0.09 0.13 0.11 297 0.06 0.27 0.10 298 0.07 0.18 0.11 299 0.03 0.07 0.04 300 0.03 0.29 0.05 301 0.03 0.25 0.06 302 0.11 0.45 0.18 303 0.07 0.11 0.09 304 0.33 0.73 0.46 305 0.04 0.19 0.07 306 0.16 0.50 0.25 307 0.11 0.22 0.15 308 0.09 0.43 0.15 309 0.28 0.80 0.41 310 0.04 0.25 0.07 311 0.00 0.00 0.00 312 0.15 0.33 0.20 313 0.14 0.54 0.22 314 0.17 0.67 0.28 315 0.02 0.17	30 11 22 14 7 8 11 27 15 16 14 18 7 10 4 9 15 13 6 12 16 9 10 10 10 10 10 10 10 10 10 10 10 10 10

323	0.06	0.41	0.11	17
323 324	0.03	0.41	0.11	6
325	0.34	0.35	0.34	57
326	0.06	0.17	0.09	47
327	0.21	0.42	0.28	19
328	0.10	0.30	0.15	20
329	0.06	0.10	0.07	21
330	0.04	0.50	0.07	2
331	0.00	0.00	0.00	16
332	0.10	0.27	0.15	22
333	0.06	0.29	0.09	7
334	0.30	0.50	0.37	16
335	0.00	0.00	0.00	18
336	0.43	0.09	0.14	70
337	0.02	0.25	0.03	4
338	0.08	0.21	0.11	14
339 340	0.09 0.24	0.50 0.41	0.15 0.30	8 17
341	0.02	0.33	0.04	3
342	0.06	0.22	0.10	9
343	0.14	0.25	0.18	12
344	0.40	0.55	0.46	11
345	0.17	0.25	0.20	8
346	0.08	0.30	0.12	10
347	0.03	0.50	0.06	2
348	0.20	0.60	0.30	10
349	0.00	0.00	0.00	14
350	0.14	0.44	0.21	9
351	0.01	0.07	0.02	15
352	0.64	0.59	0.62	27
353	0.00	0.00	0.00	8
354	0.25	0.54	0.34	13
355	0.00	0.00	0.00	8
356 357	0.00	0.00	0.00	25 14
357 358	0.00 0.00	0.00 0.00	0.00 0.00	14 4
359	0.07	0.38	0.12	8
360	0.00	0.00	0.00	15
361	0.00	0.00	0.00	33
362	0.00	0.00	0.00	9
363	0.00	0.00	0.00	2
364	0.02	0.12	0.04	8
365	0.03	0.12	0.05	8
366	0.08	0.12	0.09	42
367	0.03	0.05	0.03	21
368	0.03	0.22	0.06	9
369	0.15	0.44	0.23	16
370	0.02	0.25	0.04	4
371	0.09	0.25	0.13	4
372	0.05	0.20	0.07	5 16
373 374	0.03	0.06	0.04	16 8
37 4 375	0.03 0.00	0.12 0.00	0.05 0.00	1
376	0.02	0.25	0.04	4
377	0.00	0.00	0.00	3
378	0.00	0.00	0.00	6
379	0.03	0.18	0.06	11
380	0.07	0.60	0.13	5
381	0.25	0.50	0.33	10
382	0.00	0.00	0.00	10
383	0.01	0.11	0.02	9
384	0.02	0.14	0.04	7
385	0.08	0.42	0.13	12
386	0.03	0.20	0.05	5
387	0.22	0.62	0.32	8
388 389	0.00	0.00	0.00	3 6
390	0.09 0.00	0.50 0.00	0.16 0.00	10
391	0.39	0.21	0.28	56
392	0.04	0.17	0.07	12
393	0.05	0.23	0.08	13
394	0.02	0.08	0.03	12
395	0.05	0.67	0.09	3
396	0.07	0.27	0.12	11
397	0.03	0.33	0.06	3
398	0.30	0.64	0.41	11
399	0.17	0.57	0.26	7
400	0.04	0.12	0.06	8
401	0.05	0.23	0.09	13
402	0.39	0.38	0.39	47
403	0.19	0.60	0.29	10
404 405	0.00	0.00	0.00	9
405 406	0.05 0.00	0.20 a aa	0.08 a aa	5 2
406 407	0.00	0.00 0.64	0.00 0.21	11
407	0.12	0.38	0.21	16
409	0.25	0.62	0.21	8
410	0.07	0.18	0.10	17
-	-	-	-	

111	0.04	0.20	0.00	10
411	0.04	0.20	0.06	10
412	0.00	0.00	0.00	5 10
413 414	0.11	0.22	0.15	18 10
	0.03	0.10	0.05	10
415	0.33	0.50	0.40	10
416	0.19	0.18	0.19	22
417	0.00	0.00	0.00	1
418	0.02	0.07	0.04	15
419	0.10	0.86	0.18	7
420	0.00	0.00	0.00	2
421	0.04	0.14	0.06	7
422	0.21	0.43	0.29	7
423	0.09	0.25	0.13	16
424	0.20	0.73	0.31	11
425	0.19	0.67	0.30	9
426	0.05	0.33	0.08	3
427	0.07	0.12	0.09	8
428	0.04	0.18	0.06	11
429	0.00	0.00	0.00	11
430	0.48	0.26	0.34	50
431	0.13	0.29	0.18	14
432	0.05	0.33	0.08	3
433	0.12	0.62	0.20	8
434	0.07	0.20	0.10	10
435	0.05	0.07	0.06	14
436	0.00	0.00	0.00	4
437	0.04	0.17	0.07	6
438	0.02	0.20	0.03	5
439	0.11	0.38	0.17	13
440	0.07	1.00	0.13	2
441	0.04	0.40	0.06	5
442	0.08	0.33	0.13	6
443	0.07	0.27	0.11	11
444	0.02	0.11	0.03	9
445	0.09	0.29	0.14	7
446	0.10	0.33	0.15	6
447	0.03	0.06	0.04	18
448	0.03	0.11	0.05	9
449	0.12	0.17	0.14	18
450	0.09	0.56	0.15	9
450 451	0.18	0.62	0.13	16
451			0.28	
452 453	0.50	0.50 0.40		8
453 454	0.19 0.03	0.12	0.25 0.04	20 8
455	0.05	0.12	0.04	6
455 456				2
	0.00	0.00	0.00	
457 450	0.08	0.17	0.11	12
458 450	0.04	0.50	0.07	2
459	0.13	0.50	0.21	8
460	0.00	0.00	0.00	3
461	0.02	0.11	0.03	9
462	0.16	0.33	0.22	12
463	0.00	0.00	0.00	9
464	0.00	0.00	0.00	0
465	0.03	0.11	0.05	9
466	0.24	0.33	0.28	18
467	0.04	0.33	0.07	3
468	0.03	0.07	0.04	14
469	0.07	0.33	0.11	6
470	0.20	0.02	0.04	43
471	0.00	0.00	0.00	12
472	0.19	0.86	0.32	7
473	0.09	0.36	0.14	11
474	0.05	0.31	0.08	13
475	0.07	1.00	0.12	2
476	0.00	0.00	0.00	4
477	0.02	0.33	0.04	3
478	0.54	0.16	0.25	43
479	0.05	0.07	0.06	15
480	0.08	0.44	0.13	9
481	0.18	0.50	0.26	6
482	0.03	0.50	0.05	2
483	0.00	0.00	0.00	3
484	0.04	0.20	0.06	5
485	0.02	0.09	0.03	11
486	0.11	0.22	0.14	23
487	0.03	0.25	0.05	4
488	0.20	0.41	0.27	17
489	0.09	0.50	0.15	6
490	0.00	0.00	0.00	3
491	0.03	0.25	0.06	4
492	0.00	0.00	0.00	3
493	0.06	0.25	0.10	8
494	0.00	0.00	0.00	1
495	0.18	0.28	0.22	18
496	0.05	0.20	0.08	5
497	0.20	0.60	0.30	5
498	0.10	0.38	0.16	13
	2.20			-5

```
499
                                                       5
                    0.04
                              0.40
                                         0.07
   micro avg
                    0.22
                              0.41
                                         0.29
                                                   23316
   macro avg
                    0.14
                              0.31
                                         0.17
                                                   23316
weighted avg
                    0.32
                              0.41
                                         0.34
                                                   23316
samples avg
                    0.31
                              0.40
                                         0.30
                                                   23316
```

Time taken to run this cell: 0:03:45.620031

Performing hyperparam tuning on alpha (or lambda) for Linear SVM to improve the performance using GridSearch

```
In [35]: | start = datetime.now()
         from sklearn.model_selection import GridSearchCV
         parameters = {"estimator__alpha": [0.00001,0.0001,0.001, 0.01, 0.1, 1, 10]}
         clf = OneVsRestClassifier(SGDClassifier(loss='hinge',penalty='l1'))
         clf_tunning = GridSearchCV(clf, param_grid=parameters,verbose=30,cv =3, n_jobs=-1)
         clf_tunning.fit(x_train_multilabel_bow, y_train)
         Fitting 3 folds for each of 7 candidates, totalling 21 fits
         [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
         [Parallel(n_jobs=-1)]: Done
                                       1 tasks
                                                      elapsed: 4.7min
         [Parallel(n_jobs=-1)]: Done
                                                      elapsed: 5.0min
                                       2 tasks
                                                      elapsed: 9.4min
         [Parallel(n_jobs=-1)]: Done
                                       3 tasks
         [Parallel(n_jobs=-1)]: Done
                                       4 tasks
                                                      elapsed: 10.5min
         [Parallel(n_jobs=-1)]: Done
                                       5 tasks
                                                      elapsed: 10.9min
         [Parallel(n jobs=-1)]: Done
                                       6 tasks
                                                      elapsed: 11.0min
         [Parallel(n_jobs=-1)]: Done
                                       7 out of 21 | elapsed: 11.7min remaining: 23.4min
                                       8 out of 21 |
                                                      elapsed: 11.8min remaining: 19.2min
         [Parallel(n_jobs=-1)]: Done
         [Parallel(n_jobs=-1)]: Done
                                       9 out of 21 |
                                                      elapsed: 14.3min remaining: 19.1min
         [Parallel(n_jobs=-1)]: Done 10 out of 21 |
                                                      elapsed: 14.4min remaining: 15.9min
         [Parallel(n_jobs=-1)]: Done 11 out of 21 |
                                                      elapsed: 15.4min remaining: 14.0min
         [Parallel(n_jobs=-1)]: Done 12 out of 21 |
                                                      elapsed: 15.4min remaining: 11.5min
         [Parallel(n_jobs=-1)]: Done 13 out of 21 |
                                                      elapsed: 17.7min remaining: 10.9min
         [Parallel(n_jobs=-1)]: Done 14 out of 21 |
                                                      elapsed: 17.9min remaining: 8.9min
         [Parallel(n_jobs=-1)]: Done 15 out of 21 |
                                                      elapsed: 18.1min remaining: 7.2min
                                                      elapsed: 18.5min remaining: 5.8min
         [Parallel(n_jobs=-1)]: Done
                                      16 out of
         [Parallel(n_jobs=-1)]: Done 17 out of
                                                      elapsed: 18.5min remaining: 4.4min
                                                      elapsed: 18.8min remaining: 3.1min
         [Parallel(n_jobs=-1)]: Done 18 out of 21
         [Parallel(n_jobs=-1)]: Done 19 out of 21 |
                                                      elapsed: 19.5min remaining: 2.1min
         [Parallel(n_jobs=-1)]: Done 21 out of 21 |
                                                      elapsed: 19.7min remaining:
                                                                                     0.0s
         [Parallel(n_jobs=-1)]: Done 21 out of 21 | elapsed: 19.7min finished
Out[35]: GridSearchCV(cv=3, error_score='raise-deprecating',
                      estimator=OneVsRestClassifier(estimator=SGDClassifier(alpha=0.0001,
                                                                            average=False,
                                                                            class_weight=None,
                                                                            early_stopping=False,
                                                                            epsilon=0.1,
                                                                            eta0=0.0,
                                                                            fit_intercept=True,
                                                                            l1_ratio=0.15,
                                                                            learning_rate='optimal',
                                                                            loss='hinge',
                                                                            max iter=1000,
                                                                            n_iter_no_change=5,
                                                                            n_jobs=None,
                                                                            penalty='l1',
                                                                            power t=0.5,
                                                                            random_state=None,
                                                                            shuffle=True,
                                                                            tol=0.001,
                                                                            validation fraction=0.1,
                                                                            verbose=0,
                                                                            warm_start=False),
                                                    n_jobs=None),
                      iid='warn', n_jobs=-1,
                      param_grid={'estimator__alpha': [1e-05, 0.0001, 0.001, 0.01, 0.1,
                                                       1, 10]},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring=None, verbose=30)
In [36]: best_param=clf_tunning.best_params_
         print(best_param)
```

{'estimator__alpha': 0.001}

```
In [37]: | start = datetime.now()
          classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=0.001, penalty='l1'),n_jobs=-1)
          classifier.fit(x_train_multilabel_bow, y_train)
          predictions = classifier.predict (x_test_multilabel_bow)
          print("Accuracy :",metrics.accuracy_score(y_test, predictions))
          print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
          precision = precision_score(y_test, predictions, average='micro')
          recall = recall_score(y_test, predictions, average='micro')
          f1 = f1_score(y_test, predictions, average='micro')
          print("Micro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          precision = precision_score(y_test, predictions, average='macro')
          recall = recall_score(y_test, predictions, average='macro')
          f1 = f1_score(y_test, predictions, average='macro')
          print("Macro-average quality numbers")
          print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
          print (metrics.classification_report(y_test, predictions))
          print("Time taken to run this cell :", datetime.now() - start)
         Accuracy: 0.1294166666666668
         Hamming loss 0.003778666666666667
         Micro-average quality numbers
         Precision: 0.5270, Recall: 0.2697, F1-measure: 0.3568
         Macro-average quality numbers
         Precision: 0.2545, Recall: 0.1929, F1-measure: 0.1989
                                     recall f1-score support
                        precision
                    0
                             0.25
                                       0.15
                                                 0.19
                                                             256
                    1
                             0.32
                                       0.08
                                                 0.13
                                                             625
                    2
                                                 0.59
                             0.72
                                       0.50
                                                             809
                    3
                                                 0.58
                             0.66
                                       0.51
                                                             622
                    4
                             0.74
                                       0.23
                                                 0.35
                                                             762
                    5
                                                 0.50
                                                             599
                             0.59
                                       0.43
                    6
                                                 0.50
                             0.41
                                       0.64
                                                             11
                    7
                                                 0.75
                             0.84
                                       0.67
                                                             724
                    8
                             0.83
                                       0.73
                                                 0.78
                                                           1312
                    9
                             0.71
                                       0.44
                                                 0.55
                                                             300
                    10
                             0.55
                                       0.24
                                                 0.34
                                                             327
                                                 0.04
                                                             204
                    11
                             0.50
                                       0.02
                    12
                             0.57
                                       0.53
                                                 0.55
                                                             93
                    13
                             0.54
                                       0.20
                                                 0.29
                                                             390
                    14
                                                             190
                             0.67
                                       0.68
                                                 0.68
                    15
                             0.54
                                       0.17
                                                 0.26
                                                             489
                    16
                             0.68
                                       0.13
                                                 0.21
                                                             369
                    17
                             0.40
                                       0.28
                                                 0.33
                                                             165
                    18
                             0.42
                                       0.62
                                                 0.50
                                                             193
                    19
                             0.23
                                                 0.08
                                       0.05
                                                             227
                    20
                             0.56
                                       0.45
                                                 0.50
                                                             11
                    21
                             0.66
                                       0.52
                                                 0.58
                                                             124
                    22
                             0.20
                                       0.22
                                                 0.21
                                                             45
                    23
                                                 0.00
                             0.00
                                       0.00
                                                             136
                    24
                             0.58
                                       0.20
                                                 0.29
                                                             193
                    25
                             0.06
                                       0.01
                                                 0.02
                                                             185
                             0.62
                    26
                                                 0.43
                                       0.33
                                                             64
                    27
                             0.94
                                                 0.76
                                                             517
                                       0.64
                    28
                             0.40
                                       0.15
                                                  0.22
                                                              13
                    29
                             0.38
                                       0.09
                                                  0.14
                                                             169
                    30
                             0.49
                                       0.33
                                                  0.40
                                                             69
                    31
                                                  0.50
                                                             73
                             0.66
                                       0.40
                    32
                             0.49
                                       0.24
                                                  0.32
                                                             113
                    33
                             0.21
                                       0.12
                                                  0.15
                                                              92
                                                              40
                    34
                             0.00
                                       0.00
                                                  0.00
                    35
                             0.26
                                       0.47
                                                  0.33
                                                              19
                    36
                             0.80
                                       0.76
                                                  0.78
                                                             97
                    37
                                                  0.00
                                                             319
                             0.00
                                       0.00
                    38
                             0.33
                                       0.01
                                                  0.02
                                                             88
                    39
                             0.26
                                       0.08
                                                  0.12
                                                             112
                    40
                             0.27
                                       0.29
                                                  0.28
                                                             55
```

41

42

43

44

45

46

47

48

0.17

0.47

0.43

0.51

0.59

0.33

0.54

0.25

0.10

0.20

0.48

0.39

0.19

0.45

0.33

0.21

0.13

0.28

0.45

0.44

0.29

0.38

0.41

0.23

87 272

118

96 53

11

107

48

49	0.50	0.56	0.53	81
50	0.62	0.47	0.53	34
51	0.53	0.22	0.33	36
52	0.38	0.45	0.41	53
53	0.61	0.38	0.47	143
54	0.50	0.43	0.46	35
55	0.57	0.64	0.60	64
56	0.24	0.70	0.36	37
57	0.39	0.24	0.30	96
58	0.33	0.38	0.35	37
59	0.00	0.00	0.00	51
60	0.35	0.23	0.28	39
61	0.66	0.44	0.53	48
62	0.51	0.53	0.52	36
63	0.00	0.00	0.00	153
64	0.51	0.52	0.51	85
65	0.25	0.10	0.14	20
66	0.44	0.73	0.55	33
67	0.64	0.60	0.62	45
68	0.17	0.20	0.18	69
69	0.74	0.49	0.59	112
70	0.76	0.28	0.41	111
71	0.04	0.02	0.03	44
72	0.19	0.08	0.11	66
73	0.00	0.00	0.00	276
74	0.26	0.29	0.27	28
75	0.00	0.00	0.00	217
76	0.40	0.30	0.34	27
77	0.00	0.00	0.00	46
78	0.67	0.43	0.52	28
79	0.00	0.00	0.00	71
80	0.85	0.73	0.79	15
81	0.50	0.01	0.02	79
82	0.03	0.04	0.03	47
83	0.49	0.59	0.54	76
84	0.00	0.00	0.00	229
85	0.08	0.03	0.04	68
86	0.52	0.18	0.27	71
87	0.07	0.44	0.12	9
88	0.33	0.07	0.11	46
89	0.14	0.10	0.12	58
90	0.00	0.00	0.00	39
91	0.42	0.52	0.46	25
92	0.00	0.00	0.00	5
93	0.57	0.51	0.54	144
94	0.17	0.12	0.14	8
95	0.00	0.00	0.00	28
96	0.00	0.00	0.00	34
97	0.00	0.00	0.00	6
98	0.00	0.00	0.00	202
99	0.67	0.21	0.32	132
100	0.00	0.00	0.00	39
101	0.00	0.00	0.00	208
102	0.14	1.00	0.25	1
103	0.39	0.16	0.23	56
104	0.58	0.67	0.62	43
105	0.85	0.31	0.46	74
106	0.00	0.00	0.00	25
107	0.36	0.11	0.17	46
108	0.54	0.67	0.60	21
109	0.36	0.31	0.33	26
110	0.50	0.33	0.40	21
111	0.17	0.17	0.17	41
112	0.00	0.00	0.00	54
113	0.00	0.00	0.00	52
114	0.48	0.18	0.26	56
115	0.00	0.00	0.00	26
116	0.00	0.00	0.00	20
117	0.71	0.23	0.35	104
118	0.00	0.00	0.00	40
119	0.00	0.00	0.00	11
120	0.47	0.38	0.42	48
121	0.71	0.17	0.27	30
122	0.33	0.04	0.06	28
123	0.42	0.32	0.36	25
124	0.46	0.45	0.46	40
125	0.36	0.41	0.38	22
126	0.04	0.10	0.06	29 16
127	0.45	0.56	0.50	16
128	0.91	0.69	0.78	29 20
129	0.00	0.00	0.00	28
130	0.00	0.00	0.00	30 6
131	0.00	0.00 0.64	0.00 0.77	6 140
132 133	0.97 0.00	0.64 0.00	0.77 0.00	140 22
133 134	0.00 a as	0.00 0.07	0.00 0.06	22 28
134	0.05 0.00	0.07 0.00	0.06 0.00	28 27
136	0.59	0.24	0.00 0.34	55
100	0.33	0.24	U.J 4	,,

40=	0.40	0.00	0.00	20
137	0.48	0.33	0.39	30
138	0.00	0.00	0.00	16
139	0.92	0.50	0.65	48
140	0.50	0.43	0.46	14
141	0.11	0.14	0.12	7
142	0.67	0.67	0.67	15
143	0.30	0.25	0.27	12
144	0.25	0.17	0.20	6
145	0.39	0.47	0.42	15
146	0.59	0.55	0.57	31
147	0.43	0.27	0.33	22
148	0.00	0.00	0.00	142
149	0.18	0.03	0.05	64
150	0.00	0.00	0.00	32
151	0.00	0.00	0.00	135
152	0.60	0.38	0.46	16
153	0.62	0.59	0.61	17
154	0.00	0.00	0.00	15
155	0.17	0.02	0.03	57
156	0.00	0.00	0.00	18
157	0.22	0.36	0.28	11
158	0.38	0.21	0.27	28
159	0.08	0.02	0.04	42
160	0.00	0.00	0.00	14
161	0.00	0.00	0.00	30
162	0.09	0.50	0.15	2
163	0.20	0.18	0.19	39
164	0.75	0.70	0.72	30
165	0.00	0.00	0.00	3
166	0.00	0.00	0.00	17
167	0.24	0.57	0.34	40
168	0.47	0.50	0.48	14
169	0.00	0.00	0.00	14
170	0.00	0.00	0.00	12
171	0.00	0.00	0.00	100
172	0.26	0.65	0.37	17
173	0.75	0.21	0.33	28
174	0.53	0.45	0.49	22
175	0.00	0.00	0.00	22
176	0.00	0.00	0.00	48
177	0.11	0.42	0.17	12
178	0.75	0.27	0.40	11
179	0.27	0.33	0.30	24
180	0.53	0.62	0.57	16
181	0.24	0.41	0.31	29
182	0.00	0.00	0.00	15
183	0.00	0.00	0.00	28
184	0.00	0.00	0.00	39
185	0.36	0.33	0.34	46
186	0.21	0.11	0.15	36
187	0.75	0.25	0.38	12
188	0.15	0.19	0.17	16
189	0.18	0.60	0.27	5
190	0.18	0.26	0.22	27
191	0.50	0.46	0.48	13
192	0.08	0.10	0.09	21
193	0.00	0.00	0.00	8
194				6
	0.20	0.17	0.18	
195	0.80	0.22	0.35	18
196	0.00	0.00	0.00	55
197	0.00	0.00	0.00	12
198	0.27	0.30	0.29	10
199	0.20	0.08	0.11	26
200	0.00	0.00	0.00	4
201	0.50	0.18	0.27	11
202	0.00	0.00	0.00	35 25
203	0.67	0.08	0.14	25
204	0.14	0.13	0.13	23
205	1.00	0.05	0.10	38
206	0.23	0.12	0.15	26
207	0.47	0.30	0.37	30
208	0.82	0.29	0.43	31
209	0.00	0.00	0.00	1
210	0.00	0.00	0.00	38
211	0.00	0.00	0.00	22
212	0.27	0.19	0.23	36
213	0.67	0.50	0.57	20
214	0.25	0.10	0.15	29
215	0.64	0.67	0.65	21
216	0.80	0.36	0.50	11
217	0.00	0.00	0.00	3
218	0.22	0.07	0.11	28
219	0.00	0.00	0.00	19
220	0.33	0.30	0.32	10
221	0.12	0.14	0.13	22
222	0.92	0.46	0.62	26
223	0.25	0.50	0.33	6
224	0.67	0.27	0.38	15

225	0.50	0.17	0.26	35
226	0.00	0.00	0.00	25
227	0.00	0.00	0.00	9
228	1.00	0.42	0.59	12
229	0.80	0.57	0.67	14
230	0.70	0.16	0.26	44
231	0.00	0.00	0.00	16
232	0.13	0.13	0.13	23
233	0.41	0.21	0.28	33
234	0.20	0.19	0.19	16
235	0.82	0.38	0.51	24
236	0.22	0.08	0.12	24
237	0.67	0.40	0.50	15 15
238	0.71	0.33	0.45	15 18
239 240	0.33 0.20	0.06	0.10 0.22	18 16
241	0.62	0.25 0.67	0.64	12
242	0.00	0.00	0.00	12
243	0.00	0.00	0.00	10
244	0.00	0.00	0.00	8
245	0.15	0.35	0.21	20
246	0.00	0.00	0.00	5
247	0.00	0.00	0.00	11
248	0.00	0.00	0.00	4
249	0.00	0.00	0.00	89
250	0.00	0.00	0.00	28
251	0.55	0.38	0.44	16
252	0.00	0.00	0.00	54
253	0.00	0.00	0.00	9
254	0.00	0.00	0.00	5
255 256	0.20	0.24	0.22	17 04
256 257	0.00 0.00	0.00 0.00	0.00 0.00	94 29
258	0.00	0.00	0.00	23
259	0.00	0.00	0.00	24
260	0.26	0.50	0.34	16
261	1.00	0.76	0.87	17
262	0.33	0.15	0.21	13
263	0.33	0.13	0.19	15
264	0.08	0.05	0.06	20
265	0.00	0.00	0.00	85
266	0.00	0.00	0.00	4
267	0.00	0.00	0.00	15
268	0.20	0.04	0.07	23
269	0.00	0.00	0.00	17
270	0.00	0.00	0.00	19
271	1.00	0.33	0.50	6
272	0.29	0.12	0.17	16
273	0.00	0.00	0.00	13
274 275	0.00 0.00	0.00 0.00	0.00 0.00	37 1 4
276	0.00	0.00	0.00	1
277	0.47	0.22	0.30	32
278	1.00	0.17	0.29	12
279	0.00	0.00	0.00	90
280	0.88	0.64	0.74	11
281	0.00	0.00	0.00	82
282	0.80	0.50	0.62	8
283	1.00	0.40	0.57	5
284	0.12	0.25	0.17	24
285	0.15	0.07	0.09	30
286	0.00	0.00	0.00	31
287	0.00	0.00	0.00	17
288	0.00	0.00	0.00	13
289	0.57	0.50	0.53	8
290 291	0.17 0.36	0.20 0.62	0.18 0.45	5 8
292	0.00	0.02	0.43	3
293	0.21	0.24	0.22	17
294	0.00	0.00	0.00	22
295	0.00	0.00	0.00	8
296	0.00	0.00	0.00	30
297	0.00	0.00	0.00	11
298	0.16	0.18	0.17	22
299	0.00	0.00	0.00	14
300	0.00	0.00	0.00	7
301	0.00	0.00	0.00	8
302	0.25	0.18	0.21	11
303	0.00	0.00	0.00	27
304	0.92	0.80	0.86	15 16
305 306	0.00	0.00	0.00	16
306 307	0.25 0.00	0.50 0.00	0.33 a aa	14 18
307 308	0.00 0.00	0.00 0.00	0.00 0.00	18 7
309	0.75	0.60	0.67	10
310	0.00	0.00	0.00	4
311	0.00	0.00	0.00	9
312	0.33	0.47	0.39	15
=	- · 	- -		==

242	0.44	0.21	0.26	12
313	0.44	0.31	0.36	13
314	0.22	0.67	0.33	6 13
315	0.00	0.00	0.00	12
316	0.73	0.50	0.59	16
317	0.00	0.00	0.00	9
318	0.43	0.60	0.50	10
319	0.00	0.00	0.00	6
320	0.00	0.00	0.00	14
321	0.00	0.00	0.00	6
322	0.00	0.00	0.00	4
323	0.00	0.00	0.00	17
324	0.25	0.33	0.29	6
325	0.00	0.00	0.00	57
326	0.00	0.00	0.00	47
327	0.25	0.21	0.23	19
328	0.00	0.00	0.00	20
329	0.00	0.00	0.00	21
330	0.00	0.00	0.00	2
331	0.00	0.00	0.00	16
332	0.43	0.27	0.33	22
333	1.00	0.14	0.25	7
334	1.00	0.50	0.67	16
335	0.00	0.00	0.00	18
336	0.00	0.00	0.00	70
337	0.00	0.00	0.00	4
338	0.00	0.00	0.00	14
339	0.00	0.00	0.00	8
340	0.43	0.35	0.39	17
341	0.00	0.00	0.00	3
342	0.00	0.00	0.00	9
343	0.19			
		0.25	0.21	12
344	0.62	0.45	0.53	11
345	0.36	0.50	0.42	8
346	0.56	0.50	0.53	10
347	0.00	0.00	0.00	2
348	0.46	0.60	0.52	10
349	0.00	0.00	0.00	14
350 351	0.50	0.22	0.31	9
351	0.00	0.00	0.00	15
352	0.00	0.00	0.00	27
353	0.00	0.00	0.00	8
354	0.48	0.85	0.61	13
355	0.00	0.00	0.00	8
356	0.00	0.00	0.00	25
357	0.29	0.14	0.19	14
358	0.00	0.00	0.00	4
359	1.00	0.25	0.40	8
360	0.00	0.00	0.00	15
361	0.00	0.00	0.00	33
362	0.00	0.00	0.00	9
363	0.00	0.00	0.00	2
364	0.00	0.00	0.00	8
365	0.00	0.00	0.00	8
366	0.00	0.00	0.00	42
367	0.00	0.00	0.00	21
368	0.00	0.00	0.00	9
369	0.25	0.31	0.28	16
370	0.00	0.00	0.00	4
371	0.29	0.50	0.36	4
372	0.25	0.40	0.31	5
373	0.75	0.19	0.30	16
374	0.50	0.25	0.33	8
375	0.00	0.00	0.00	1
376	0.00	0.00	0.00	4
377	0.00	0.00	0.00	3
378	0.00	0.00	0.00	6
379	0.00	0.00	0.00	11
380	0.27	0.60	0.37	5
381	0.24	0.40	0.30	10
382	0.00	0.00	0.00	10
383	0.00	0.00	0.00	9
384	1.00	0.14	0.25	7
385	0.50	0.42	0.45	12
386	0.04	0.20	0.07	5
387	0.67	0.50	0.57	8
388	0.00	0.00	0.00	3
389	0.00	0.00	0.00	6
390	0.00	0.00	0.00	10
391	0.00	0.00	0.00	56
392	0.00	0.00	0.00	12
393	0.00	0.00	0.00	13
394	0.00	0.00	0.00	12
395	0.67	0.67	0.67	3
396	0.20	0.09	0.13	11
397	0.20	0.33	0.25	3
398	1.00	0.09	0.17	11
399	0.86	0.86	0.86	7
400	0.06	0.12	0.08	8

401	0.71	0.20	0. 50	12
401	0.71	0.38	0.50	13
402	0.00	0.00	0.00	47 10
403	0.38	0.50	0.43	10
404 405	0.00	0.00	0.00	9
405	0.23	0.60	0.33	5
406	0.00	0.00	0.00	2
407	0.29	0.55	0.37	11
408	0.55	0.38	0.44	16
409	0.38	0.38	0.38	8
410	0.00	0.00	0.00	17
411	0.00	0.00	0.00	10
412	0.00	0.00	0.00	5
413	0.00	0.00	0.00	18
414	0.00	0.00	0.00	10
415	0.80	0.40	0.53	10
416	0.50	0.09	0.15	22
417	0.00	0.00	0.00	1
418	0.00	0.00	0.00	15
419	0.50	0.29	0.36	7
420	0.00	0.00	0.00	2
421	0.11	0.14	0.12	7
422	0.75	0.43	0.55	7
423	0.12	0.12	0.12	16
424	0.44	0.36	0.40	11
425	0.56	0.56	0.56	9
426	0.00	0.00	0.00	3
427	0.00	0.00	0.00	8
428	0.00	0.00	0.00	11
429	0.00	0.00	0.00	11
430	0.00	0.00	0.00	50
431	0.17	0.14	0.15	14
432	0.00	0.00	0.00	3
433	1.00	0.38	0.55	8
434	0.00	0.00	0.00	10
435	0.00	0.00	0.00	14
436	0.00	0.00	0.00	4
437	0.60	0.50	0.55	6
438	0.00	0.00	0.00	5
439	0.00	0.00	0.00	13
440	0.50	1.00	0.67	2
441	0.22	0.40	0.29	5
442	0.00	0.00	0.00	6
443	0.00	0.00	0.00	11
444	0.00	0.00	0.00	9
445	0.67	0.29	0.40	7
445 446	0.29	0.33	0.40	6
447				
	0.00	0.00	0.00	18
448	0.11	0.11	0.11	9 10
449	0.25	0.11	0.15	18
450 451	0.43	0.33	0.38	9
451	0.00	0.00	0.00	16
452	0.33	0.50	0.40	8
453	0.00	0.00	0.00	20
454	0.27	0.38	0.32	8
455	0.00	0.00	0.00	6
456	0.00	0.00	0.00	2
457	0.00	0.00	0.00	12
458	0.67	1.00	0.80	2
459	0.00	0.00	0.00	8
460	0.00	0.00	0.00	3
461	0.00	0.00	0.00	9
462	0.00	0.00	0.00	12
463	0.00	0.00	0.00	9
464 465	0.00	0.00	0.00	0
465 466	0.00	0.00	0.00	9 10
466 467	0.00	0.00	0.00	18
467	0.17	0.33	0.22	3
468	0.00	0.00	0.00	14
469	0.00	0.00	0.00	6
470	0.00	0.00	0.00	43
471 472	0.00	0.00	0.00	12
472	0.38	0.43	0.40	7
473	0.00	0.00	0.00	11
474	0.00	0.00	0.00	13
475	0.67	1.00	0.80	2
476	0.00	0.00	0.00	4
477	0.00	0.00	0.00	3
478	0.00	0.00	0.00	43
479	0.20	0.07	0.10	15
480	0.15	0.22	0.18	9
481	0.17	0.17	0.17	6
482	0.00	0.00	0.00	2
483	0.00	0.00	0.00	3
484	0.00	0.00	0.00	5
485	0.00	0.00	0.00	11
486	0.00	0.00	0.00	23
487	0.00	0.00	0.00	4
488	0.00	0.00	0.00	17

```
489
                  0.60
                            0.50
                                      0.55
                                                   6
        490
                  0.00
                            0.00
                                      0.00
                                                   3
        491
                  0.00
                                      0.00
                                                   4
                            0.00
                  0.00
                            0.00
                                      0.00
                                                   3
        492
                                      0.15
                                                  8
        493
                  0.20
                            0.12
        494
                  0.00
                            0.00
                                      0.00
                                                  1
        495
                  0.00
                            0.00
                                      0.00
                                                  18
                  0.00
        496
                            0.00
                                      0.00
                                                  5
                                                  5
        497
                  1.00
                            0.20
                                      0.33
        498
                  0.00
                            0.00
                                      0.00
                                                  13
        499
                  0.00
                            0.00
                                      0.00
                                                  5
  micro avg
                  0.53
                            0.27
                                      0.36
                                               23316
                  0.25
                            0.19
                                      0.20
                                               23316
  macro avg
weighted avg
                                      0.31
                                               23316
                  0.42
                            0.27
 samples avg
                  0.34
                                               23316
                            0.26
                                      0.27
```

Time taken to run this cell : 0:01:02.425383

Result Table

Steps followed:

- Countvectorized the text data for (1,4) grams.
- Used gridsearchev to get the best hyperparameter for LR and Linear SVM and then used the same to train the model again

In []: