Табло / Моите курсове / Бакалаври, зимен семестър 2021/2022 / КН

/ Структури от данни и програмиране (И, ИС, КН1), зимен семестър 2021/2022 / Текущ контрол / Блиц Тест

```
        Започнат на
        Tuesday, 28 December 2021, 16:46

        Състояние
        Завършен

        Приключен на
        Tuesday, 28 December 2021, 16:55

        Изминало време
        8 мин. 11 сек.
```

```
Въпрос 1
Правилен отговор
От максимално 1,00
```

Искаме да реализираме опашка (queue) чрез свързано представяне, използващо двойни кутии от вида:

```
struct Element {
  int Data;
  Element* pNext;
};
```

Ако поддържаме само указател към първия елемент в опашката, но нямаме указател към последния ѝ елемент, вярно ли е, че можем да я реализираме така, че както добавянето на елемент (enqueue), така и изваждането на елемент (dequeue) да бъдат със сложност O(1)?

Изберете едно:

ОИстина

⊚ Лъжа 🗸

```
Въпрос 2
Правилен отговор
От максимално 1,00
```

Нека е даден **двусвързан** списък, който съдържа N-елемента. Считаме, че представянето е такова, че разполагаме с указатели към първата и последната кутия в списъка.

Каква ще бъде сложността на всяка от дадените по-долу операции със списъка?

Забележка: В отговорите със знак ^ е обозначена операцията степенуване. По-конкретно:

- O(N^2) обозначава сложността $O(N^2)$
- O(2^N) обозначава сложността $O(2^N)$

Въпрос **3**Правилен отговор
От максимално **1**,00

Нека е дадено следното свързано представяне на стек:

```
// двойна кутия в стека
struct Box {
  int Data; // текущ елемент
  Box* pNext; // следващ елемент
};

// представяне на стека
struct Stack {
  Box* pTop; // указател към върха на стека
  size_t Size; // брой на елементите в стека
};
```

Вярно ли е, че при това представяне можем да реализираме всички стандартни операции на стека (Push, Pop, Peek, GetSize) със сложност O(1)?

Изберете едно:

○ Лъжа

Нека в опашка (queue) поред сме добавили числата 10, 20, 30, 40 и накрая 50. Можем ли да извадим числото 30 от опашката?

Изберете едно

- ⊚ а. Да, но най-напред трябва да извадим 10 и след него 20.
- b. He, няма начин да извадим 30 от опашката.
- ос. Да, но най-напред трябва да извадим 50 и след него 40.
- d. Да, можем директно да го извадим.

Правилен отговор
От максимално 1,00
Нека е дадена опашка, която съхранява елементите си в динамичен масив. Тя е реализирана по стандартната схема, при която ако запълним масива до неговия край, а в началото му има свободно място, "превъртаме" края на опашката така, че запълването да продължи използвайки свободните позиции. Знаем, че при тази схема е възможно индексът на края на опашката да е по-малък от индекса на нейното начало. Такава опашка е показана на дадената по-долу схема. Тя съдържа числата от 10 до 60. Над числата с 'H' (head) е обозначена главата, а с 'T' (tail) - опашката. Със символ '' са указани празните клетки в масива. Т
добавянето на елемент в общия случай?
Изберете едно
о а. Да, може. Сложността на добавянето ще бъде O(N).
 b. Не може, защото няма как да се направи копиране на елементите, без да се изгуби техният ред в опашката.
○ с. Да, може. Сложността на добавянето ще бъде O(1).
◎ d. Да, може. Сложността на добавянето ще бъде амортизирано O(1).
Въпрос 7
Правилен отговор
От максимално 1,00
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък.
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно:
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно:
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина Лъжа ✔
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина Лъжа ✔ Въпрос 8
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина Лъжа ✓ Въпрос 8 Правилен отговор
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина Лъжа ✓ Въпрос 8 Правилен отговор
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно: Истина Лъжа ✓ Въпрос 8 Правилен отговор От максимално 1,00 Коя от структурите данни ще използва повече памет, за да съхрани N елемента от тип int?
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно:
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно:
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно:
Динамичният масив (вектор) винаги изисква по-малко памет от едносвързания списък. Изберете едно:

,,	од о		
Въпрос 9 Правилен отговор			
От максимално 1,00			
Какво прави операцията Peek, наричана още Тор, за стек (stack)?			
Изберете едно			
🔾 а. Връща масив от всички елементи в стека, подредени от най-горния към най-долния.			
○ b. За стековете няма такава операция			
 с. Връща стойността на или дава достъп до елемента, който се намира най-отдолу на стека. 			
 d. Връща масив от всички елементи в стека, подредени от най-долния към най-горния. 			
⊚ е. Връща стойността на или дава достъп до елемента, който се намира най-отгоре на стека.			
Въпрос 10			
Правилен отговор			
От максимално 1,00			
Нека е даден сортиран масив, който съдържа N-елемента.			
Каква ще бъде сложността на всяка от дадените по-долу операции с масива?			
Забележка: В списъка с отговорите със знак ^ е обозначена операцията степенуване. По-конкретно:			
$ullet$ O(N^2) обозначава сложността $O(N^2)$			
$ullet$ O(2^N) обозначава сложността $O(2^N)$			
Извличане на стойността на елемент намиращ се на даден индекс к в масива	O(1)	✓	
Вмъкване на елемент на произволна позиция	O(N)	→	
Проверка дали даден елемент се съдържа в масива (с изчерпващо търсене)	O(N)	~	
Намиране на максималния елемент в масива	O(1)	✓	
Проверка дали даден елемент се съдържа в масива (с двоично търсене)	O(log(N))	▼	
Добавяне на елемент на първа позиция в масива	O(N)	✓	
Въпрос 11			
Правилен отговор			
От максимално 1,00			
При реализация на структура от данни, която ще изисква често добавяне и премахване на елементи на произволна позиция, двусвързания списък е за предпочитане пред динамичен масив при голям размер.			
Изберете едно:			
⊙ лъжа			

Въпрос **18**Правилен отговор
От максимално 1,00

Искаме да реализираме стек (stack) чрез свързано представяне, използващо структури от вида:

```
struct Element {
  int Data;
  Element* pNext;
};
```

Вярно ли е, че можем да реализираме стека така, че както добавянето на елемент (push), така и изваждането на елемент (pop) да бъдат със сложност O(1)?

Изберете едно:

⊚ Истина ✔

○ Лъжа

Въпрос **19**

Правилен отговор

От максимално 1,00

Нека е даден **едносвързан** списък, който съдържа N-елемента. Считаме, че представянето е такова, че разполагаме с указатели към първата и последната кутия в списъка.

Каква ще бъде сложността на всяка от дадените по-долу операции със списъка?

Забележка: В отговорите със знак ^ е обозначена операцията степенуване. По-конкретно:

- ullet O(N^2) обозначава сложността $O(N^2)$
- ullet O(2^N) обозначава сложността $O(2^N)$

Вмъкване на елемент на първа позиция в списъка
Проверка дали даден елемент се съдържа в списъка
Изтриване на последния елемент на списъка
Намиране на максималния елемент в списъка
Вмъкване на елемент на последна позиция в списъка

Вмъкване на елемент на произволна позиция в списъка

Изтриване на първия елемент на списъка

O(1)

O(N)

O(N)

O(N)

O(1)

V

O(1)

O(1)

O(1)

O(1)

V

◀ Избор на проект

Отиди на ...

Записи от лекциите на ИС ▶