Research Plan

Noisy Byzantine agreement protocol in a small quantum network

Background of the Research

What problem are we solving?

- Byzantine agreement protocol on a quantum network.
- Four-qubit network
- Imperfect hardware (measurement errors) simulated using a noise model
- How does imperfect hardware impact performance (failure probability)?

Why?

- Byzantine agreement protocol in network on n parties can only reach consensus in the presence of at most t faulty components
- Classical Implementation: **t < n/3**
- Quantum Implementation: t < n/2
- Quantum Implementation exists, but performance on "real" hardware has not been examined

Research Question

"How is the failure probability of the quantum Byzantine agreement protocol influenced by measurement errors?"

Method

Library

• SquidASM

Collaboration

- Peer group decides on general implementation
- Each student develops the protocol on their own
- Different noise model

Week 1	Week 2	Week 3	Week 4	Week 5
Start reading related papers	Start implementing basic noiseless protocol	ACS Assignment 2: Author Feedback and Midterm poster	Rework poster	Midterm presentation
Follow SquidASM tutorial	Recreate graphs from proposal paper (lower samples)	Improve graphs (DelftBlue?)	Group meeting: Set date for final presentation	ACS Assignment 3: Improve first 300 words and add section
Meeting with supervisor - divide research questions	ACS Assignment 1: First 300 words	Group meeting: Compare code progress	Start working on adding "measurement error" noise	Group meeting: Receive midterm feedback

Week 6	Week 7	Week 8	Week 9	Week 10
Complete protocol implementation including noise model	Paper Draft v1	Implement Paper Draft v1 Feedback	Finalize paper	Finalize poster
Expand paper: Definition and implementation of model	Peer Review Draft v1	Expand data and graphs	Group meeting: Feedback on final state of paper	Final presentation
Group meeting: Assess progress, Decide if expansion of RQ is possible	Group meeting: Receive feedback on Paper Draft v1	Start working on missing paper sections	Submit final paper	
Produce initial failure probability graphs	Start working on Results section	Paper Draft v2		