Math 325 Problem Set 6 Solutions

Starred (*) problems were due Friday, October 12.

(*) 31. (Belding and Mitchell, p.80, #2) Show that if $f:(a,b)\to\mathbb{R}$ is a continuous function, then the function $g:(a,b)\to\mathbb{R}$ given by g(x)=|f(x)| is also continuous. (You should argue directly from ϵ 's and δ 's.)

We start by knowing that for any $c \in (a, b)$ and given an $\epsilon > 0$, we can always find a $\delta > 0$ so that $|x - a| < \delta$ and $x \in (a, b)$ implies that $|f(x) - f(a)| < \epsilon$. What we wish to show is that for $c \in (a, b)$ and $\epsilon > 0$, there is a $\delta' > 0$ so that $|x - a| < \delta'$ and $x \in (a, b)$ implies that $|g(x) - g(a)| < \epsilon$.

But! |g(x) - g(a)| = ||f(x)| - |f(a)||, and, by the 'reverse' triangle inequality, $||A| - |B|| \le |A - B|$ for any $A, B \in \mathbb{R}$.

[Recall that the proof is fairly short: $|A| = |B + (A - B)| \le |B| + |A - B|$ implies $|A| - |B| \le |A - B|$, which is half of what we need; $|B| = |A + (B - A)| \le |A| + |B - A| = |A| + |A - B|$ provides the other half.] So $|g(x) - g(c)| = \left||f(x)| - |f(c)|\right| \le |f(x) - f(c)|$ for any $x, c \in (a, b)$. $|f(x) - f(c)| < \epsilon$ automatically implies that $|g(x) - g(c)| < \epsilon$.

So, given $\epsilon > 0$, choose $\delta > 0$ so that $|x - c| < \delta$ and $x \in (a, b)$ implies that $|f(x) - f(c)| < \epsilon$. Then $|x - c| < \delta$ implies that $|g(x) - g(c)| \le |f(x) - f(c)| < \epsilon$, as well. So for every $\epsilon > 0$ we can find $\delta > 0$ so that $|x - c| < \delta$ and $x \in (a, b)$ implies that $|g(x) - g(c)| < \epsilon$. So g is continuous at x = c for every $c \in (a, b)$.

(*) 33. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous and f(x) = 0 for every $x \in \mathbb{Q}$. Show that f(x) = 0 for every $x \in \mathbb{R}$.

[Hint: what's the alternative? Remember that rational numbers are 'everywhere'!]

Suppose not. Suppose that there is an $a \in \mathbb{R}$ with $f(a) \neq 0$. Then $|f(a)| = \epsilon > 0$, and so, since f is continuous at a, there is a $\delta > 0$ so that $|x - a| < \delta$ implies that $|f(x) - f(a)| < \epsilon = |f(a)|$. In particular we know that $|x - a| < \delta$ implies that $|f(a) - |f(x)| \leq |f(a) - f(x)| = |f(x) - f(a)| < |f(a)|$ (by the reverse triangle inequality, from a previous problem) so 0 = |f(a)| - |f(a)| < |f(x)|, so 0 < |f(x)|. In particular (again!) we have that $|x - a| < \delta$ implies that $f(x) \neq 0$.

But this is impossible. No matter what a and $\delta > 0$ are, we know that there is an $x \in \mathbb{Q}$ so that $|x - a| < \delta$. So, by hypothesis, f(x) = 0. But the above says that, for a particular choice of $\delta > 0$, every such x has $f(x) \neq 0$. Therefore, the assumption we made, that there is an $a \in \mathbb{R}$ with $f(a) \neq 0$, must be false. So f(x) = 0 for every $x \in \mathbb{R}$.

(*) 36. (Belding and Mitchell, p.89, #9) Use the intermediate value theorem to show that any positive number $a \in \mathbb{R}$, a > 0 has an n-th root, that is, for any $n \in \mathbb{N}$, there is some real number $x \geq 0$ such that $x^n = a$.

[The textbook provides an outline that you could follow.]

Because $f(x) = x^n$, $f\mathbb{R} \to \mathbb{R}$ is continuous (it is a polynomial), we can show that there is a $c \in \mathbb{R}$ so that $f(c) = c^n = a$ by showing that there are real numbers u < v so that $f(u) = u^n < a$ and $f(v) = v^n > a$, since then by the intermediate Value Theorem, since f is continuous on the interval [u, v] and a lies between f(u) and f(v), there is a $c \in [u, v]$ with $f(c) = c^n = a$.

Finding a $u \in \mathbb{R}$ with $f(u) = u^n < a$ is fairly quick, since a > 0 and so $0^n = 0 < a$, so we can take u = 0. To find a v with $v^n > a$, we can rely on the fact that, for any $n \in \mathbb{N}$, x^n is 'usually' larger than x. In particular, if $x \ge 1$, then by induction, for every $n \in \mathbb{N}$ we have $x^n \ge x$. The base case n = 1 is the (true) statement that $x \ge x$, while $x^n \ge x$ implies that $x^{n+1} = x \cdot x^n \ge 1 \cdot x^n = x^n \ge x$ (where the first inequality uses $x \ge 1$ and multiplication by $x^n > 0$ preserves inequalities).

This means that for any a > 0 we have (a+1) > a and a+1 > 1 so $(a+1)^n \ge a+1 > a$, so setting v = a+1 we have $v^n > a$. So $f(u) = f(0) = 0^n = 0 < a < a+1 \le (a+1)^n = f(a+1) = f(v)$, so IVT implies that there is a $c \in [0, a+1]$ so that $f(c) = c^n = a$. So for every positive integer $n \in \mathbb{N}$, every positive real number a has a (positive) n-th root c (with $c^n = a$).

A selection of further solutions.

34. Using the problem #33 above, show that if $f, g : \mathbb{R} \to \mathbb{R}$ are both continuous functions, and f(x) = g(x) for every $x \in \mathbb{Q}$, then f = g (i.e., f(x) = g(x) for every $x \in \mathbb{R}$).

['A continuous function is <u>determined</u> by its values on the rational numbers.']

This has a fairly quick proof. If f and g are both continuous, then h(x) = f(x) - g(x) is also continuous, and our hyppothesis iplies that h(x) = f(x) - g(x) = 0 for every $x \in \mathbb{Q}$. Our previous problem therefore tells us that h(x) = 0 for every x, so f(x) = g(x) for every $x \in \mathbb{R}$. So f = g.

32. Using the previous problem #31 (and a problem from a previous problem set!), show that if $f, g:(a,b) \to \mathbb{R}$ are continuous functions, then the function $M:(a,b) \to \mathbb{R}$ given by $M(x) = \max\{f(x), g(x)\}$ is also continuous.

From a previous problem, we know that treating f(x) and g(x) as real numbers, we have

$$M(x) = \max\{f(x), g(x)\} = \frac{(f(x) + g(x) + |f(x) - g(x)|}{2}$$
$$= \frac{1}{2}(f(x) + g(x) + |f(x) - g(x)|).$$

But since f and g are continuous, we know that f(x)-g(x) is continuous [the difference of two continuous functions is continuous], and so by the previous problem, |f(x)-g(x)| is continuous. Then f(x)+g(x)+|f(x)-g(x)| is continuous [the sum of continuous functions is continuous], and so $M(x)=\max\{f(x),g(x)\}=\frac{1}{2}(f(x)+g(x)+|f(x)-g(x)|)$ is continuous [a constant multiple of a continuous function is continuous], as desired.