Computer Experiments

(5)

```
q5.m ×
 1
2 - for i = 1:10
3 -
           n(i) = 500*i;
 4 -
           A = rand(n(i));
 5 -
           B = rand(n(i));
 6
                                  %to calculate current cpu time
 7 -
           t1 = cputime;
8 -
           A*B;
                                  %task
9 -
           t(i) = cputime -t1; %calculating cpu time for the task
10 -
      L end
11
12 -
           loglog(n,t)
                                               %plotting the graph
13 -
           P = polyfit(log(n),log(t),1);
                                              %finding the gradient
14 -
           fprintf('The value of alpha is %f\n',P(1))
15
                                                         Activate Windows
                                                         Go to Settings to activate Windows.
                                                                        Ln 15
                                                                                Col 1
                                          script
```

Figure 1: Script screenshot of q5

Code for question (5)

Figure 2: The variation of log(n) against log(t)

Calculations

$$\begin{array}{lll} t & = & Cn^{\alpha} \\ log(t) & = & log(C) + log(n^{\alpha}) \\ log(t) & = & k + \alpha log(n) \end{array}$$

 α can be estimate by 'polyfit' function

According to the theoretical problem value of alpha is 3

Output

• The value of alpha is 2.475217 (according to the polyfit of graph)

6) (a)

```
q6i.m
        ×
 1
2 -
       clear all;
                               %clearing all memory
3 -
       x=3;
     - for i = 1:10
                              %loop for calculating values from 1 to 10
5
 6 -
          hk = 2^{(-i)};
7
8 -
          fhk = (\log(x+hk) - \log(x))/hk;
9
10 -
          ehk = abs((1/x)-fhk);
11
12 -
       fprintf('%d\t%f\t%f\t%f\n',i,hk,fhk,ehk);
13
14 -
15
                                            script
                                                                           Ln 12
                                                                                   Col 3
```

Figure 3: Script screenshot for q6i

Code for question (6) (a)

Figure 4: The resulting output screenshot for q6i

k	h_k	f'hk(x)	E_{hk}
1	0.500000	0.308301	0.025032
2	0.250000	0.320171	0.013163
3	0.125000	0.326576	0.006757
4	0.062500	0.329909	0.003425
5	0.031250	0.331609	0.001724
6	0.015625	0.332468	0.000865
7	0.007813	0.332900	0.000433
8	0.003906	0.333117	0.000217
9	0.001953	0.333225	0.000108
10	0.000977	0.333279	0.000054

Table 1: The resulting output for q6i

(b)

```
q6ii.m
 1
 2 -
        clear all;
                               %clearing all memory
 3 -
       x=3;
 4 - \boxed{-}  for i = 1:40
                              %loop for calculating values from 1 to 40
 5
 6 -
           hk(i) = 2.^{(-i)};
           fhk(i) = (log(x+hk(i))-log(x))/hk(i);
 7 -
 8 -
           ehk(i) = abs((1/x)-fhk(i));
 9
10
           %hk, fhk, ehk has to taken as arrays in order to graph
11 -
       ∟end
12
13 -
        loglog(hk,ehk)
14 -
        P = polyfit(log(ehk),log(hk),1);
        fprintf('%f\n',P(1))
15 -
                                                                            Ln 12
                                            script
                                                                                    Col 1
```

Figure 5: Script screenshot for q6ii

Code for question (6) (b)

Figure 6: The variation of $log(E_h)$ against log(h) (N = 10)

Let's assume that , $\begin{array}{cccc} E_h & \alpha & h^\gamma \\ E_h & = & C\,h^\gamma \\ log(E_h) & = & k+log(h^\gamma) \\ log(E_h) & = & k+\gamma log(h) \end{array}$

- γ can be estimate by 'polyfit' function
- The value of gamma according to the polyfit 1.013012
- If $E_h = O(h)$ value of gamma is 1
- These values above are so close. Therefore, $E_h = O(h)$ is a valid expression

(c)

```
q6iii.m
1
2 -
       clear all;
                              %clearing all memory
3 -
       x=3;
4 -
     - for i = 1:40
                              %loop for calculating values from 1 to 40
5
6 -
          hk = 2^{(-i)};
7
8 -
          fhk = (log(x+hk)-log(x))/hk;
9
10 -
          ehk = abs((1/x)-fhk);
11
12 -
          fprintf('%d\t%f\t%f\t%f\n',i,hk,fhk,ehk);
13
14 -
       end
15
                                           script
                                                                          Ln 14
```

Figure 5: Script screenshot for q6iii

Code for question (6) (c)

```
clear all; %clearing all memory x=3; for i=1:40 %loop for calculating values from 1 to 40 hk=2^{(-i)}; \\ fhk=(\log(x+hk)-\log(x))/hk; \\ ehk=abs((1/x)-fhk); \\ fprintf('%d\t%f\t%f\t%f\n',i,hk,fhk,ehk); \\ end
```

Со	mm	and Window			⊙
	>>	q6iii			^
	1	0.500000	0.308301	0.025032	
	2	0.250000	0.320171	0.013163	
	3	0.125000	0.326576	0.006757	
	4	0.062500	0.329909	0.003425	
	5	0.031250	0.331609	0.001724	
	6	0.015625	0.332468	0.000865	
	7	0.007813	0.332900	0.000433	
	8	0.003906	0.333117	0.000217	
	9	0.001953	0.333225	0.000108	
	10	0.000977	0.333279	0.000054	
	11	0.000488	0.333306	0.000027	
	12	0.000244	0.333320	0.000014	
	13	0.000122	0.333327	0.000007	
	14	0.000061	0.333330	0.000003	
	15	0.000031	0.333332	0.000002	
	16	0.000015	0.333332	0.000001	
	17	0.000008	0.333333	0.000000	
	18	0.000004	0.333333	0.000000	
	19	0.000002	0.333333	0.000000	
	20	0.000001	0.333333	0.000000	
	21	0.000000	0.333333	0.000000	
	22	0.000000	0.333333	0.000000	
	23	0.000000	0.333333	0.000000	
	24	0.000000	0.333333	0.000000	
	25	0.000000	0.333333	0.000000	
	26	0.000000	0.333333	0.000000	
fx	27	0.000000	0.333333	0.00000	~

Figure 6.1: The resulting output screenshot for q6iii

Co	mma	ınd Window			⊙
	14	0.000061	0.333330	0.000003	^
	15	0.000031	0.333332	0.000002	
	16	0.000015	0.333332	0.000001	
	17	0.000008	0.333333	0.000000	
	18	0.000004	0.333333	0.000000	
	19	0.000002	0.333333	0.000000	
	20	0.000001	0.333333	0.000000	
	21	0.000000	0.333333	0.000000	
	22	0.000000	0.333333	0.00000	
	23	0.000000	0.333333	0.000000	
	24	0.000000	0.333333	0.00000	
	25	0.000000	0.333333	0.000000	
	26	0.000000	0.333333	0.000000	
	27	0.000000	0.333333	0.000000	
	28	0.000000	0.333333	0.000000	
	29	0.000000	0.333333	0.000000	
	30	0.000000	0.333333	0.000000	
	31	0.000000	0.333333	0.000000	
	32	0.000000	0.333334	0.000001	
	33	0.000000	0.333334	0.000001	
	34	0.000000	0.333336	0.000003	
	35	0.000000	0.333336	0.000003	
	36	0.000000	0.333344	0.000010	
	37	0.000000	0.333344	0.000010	
	38	0.000000	0.333374	0.000041	
	39	0.000000	0.333374	0.000041	
	40	0.000000	0.333496	0.000163	
fx	>>				~

Figure 6.2: The resulting output screenshot for q6iii (continued)

k	h_k	f'hk(x)	E_{hk}
1	0.500000	0.308301	0.025032
2	0.250000	0.320171	0.013163
3	0.125000	0.326576	0.006757
4	0.062500	0.329909	0.003425
5	0.031250	0.331609	0.001724
6	0.015625	0.332468	0.000865
7	0.007813	0.332900	0.000433
8	0.003906	0.333117	0.000217
9	0.001953	0.333225	0.000108
10	0.000977	0.333279	0.000054
11	0.000488	0.333306	0.000027
12	0.000244	0.333320	0.000014
13	0.000122	0.333327	0.000007
14	0.000061	0.333330	0.000003
15	0.000031	0.333332	0.000002
16	0.000015	0.333332	0.000001
17	0.000008	0.333333	0.000000
18	0.000004	0.333333	0.000000
19	0.000002	0.333333	0.000000
20	0.000001	0.333333	0.000000
21	0.000000	0.333333	0.000000
22	0.000000	0.333333	0.000000
23	0.000000	0.333333	0.000000
24	0.000000	0.333333	0.000000
25	0.000000	0.333333	0.000000
26	0.000000	0.333333	0.000000
27	0.000000	0.333333	0.000000
28	0.000000	0.333333	0.000000
29	0.000000	0.333333	0.000000
30	0.000000	0.333333	0.000000
31	0.000000	0.333333	0.000000
32	0.000000	0.333334	0.000001
33	0.000000	0.333334	0.000001
34	0.000000	0.333336	0.000003
35	0.000000	0.333336	0.000003
36	0.000000	0.333344	0.000010
37	0.000000	0.333344	0.000010
38	0.000000	0.333374	0.000041
39	0.000000	0.333374	0.000041
40	0.000000	0.333496	0.000163

Table 2: The resulting output for q6iii

(d) According to the values in the table 2, E_{hk} decreases at the beginning. But after the 32^{nd} iteration, again E_{hk} starts rising.

 E_{hk} is the absolute difference of f'(x) and $f'_{hk}(x)$. As it appears up to 32^{nd} iteration E_{hk} reaches to zero and conceptually it should be happened afterwards too. For MATLAB the machine epsilon (the lowest number that can be represented) is about 10^{-16} . As E_{hk} value decreases below this eps value, particular value can't be represent properly and therefore, E_{hk} value varies in an unusual manner.

(e)

```
q6ii.m
1
       clear all;
2 -
                                 %clearing all memory
3 -
       x=3;
     - for i = 1:40
                                 %loop for calculating values from 1 to 40
5
6 -
          hk(i) = 2.^{(-i)};
7 -
          fhk(i) = (log(x+hk(i))-log(x))/hk(i);
8 -
          ehk(i) = abs((1/x)-fhk(i));
9
10
           %hk, fhk, ehk has to taken as arrays in order to graph
11 -
      ∟end
12
13 -
        loglog(hk,ehk)
14 -
        P = polyfit(log(ehk),log(hk),1);
15 -
        fprintf('%f\n',P(1))
                                                                             Ln 1
                                                                                     Col 1
```

Figure 7: Script screenshot for q6iv

Figure 8: The variation of $log(E_h)$ against log(h) (N = 40)

$$log(h_{min}) = 5.96 \times 10^{-8}$$

 $h_{min} = 1.0000$