Name of Department:- Computer Science and Engineering

1.	Subject Code:	TCS 601		Course Title:	Compiler Design
2.	Contact Hours:	L: 3	T:	P:	

3. Semester: VI

4. Pre-requisite: TCS 501

- 5. Course Outcomes: After completion of the course students will be able to
 - 1. Understand the various phases and fundamental principles of compiler design like lexical, syntactical, semantic analysis, code generation and optimization.
 - 2. Compare and contrast various parsing techniques such as SLR, CLR, LALR etc.
 - 3. Use annotated tree to design the semantic rules for different aspects of programming language.
 - 4. Implement lexical analyzer and parser by using modern tools like Flex and Bison.
 - 5. Examine patterns, tokens & regular expressions for solving a problem in the field of data mining.
 - 6. Design a compiler for concise programming language.

6. Detailed Syllabus

UNIT	CONTENTS	Contact Hrs
Unit – I	Introduction, Lexical analysis: Compilers; Analysis of Source Program; The Phases of a Compiler; Cousins of the Compiler; The grouping of phases; Compiler- Construction tools. Lexical analysis: The Role of Lexical Analyzer; Input Buffering; Specifications of Tokens; Recognition of Tokens.	9
Unit - II	Syntax Analysis – 1: The Role of the Parser; Context-free Grammars; Writing a Grammar; Top-down Parsing; Bottom-up Parsing. Operator-Precedence Parsing; LR Parsers; Using ambiguous grammars; Parser Generators	9
Unit – III	Syntax-Directed Translation: Syntax-Directed definitions; Constructions of Syntax Trees; Bottom-up evaluation of S-attributed definitions; L-attributed definitions; Top-down translation. Run-Time Environments: Source Language Issues; Storage Organization; Storage-allocation strategies, Storage-allocation in C; Parameter passing	8
Unit – IV	Intermediate Code Generation: Intermediate Languages; Declarations; Assignment statements; Boolean Expressions; Case statements; Back patching; Procedure calls. Code Generation: Issues in the design of Code Generator; The Target Machine; Run-time Storage Management; Basic blocks and Flow graphs; Next-use information; A Simple Code Generator; Register allocation and assignment; The dag representation of basic blocks; Generating code from dags.	9

Unit – V	Code Optimization, Compiler Development: Code Optimization: Introduction; The principal sources of optimization; Peephole optimization; Optimization of basic blocks; Loops in flow graphs. Compiler Development: Planning a compiler; Approaches to compiler development; the compiler development environment; Testing and maintenance.	9
	Total	44

Text Books:

1. Alfred V Aho, Ravi Sethi, Jeffrey D Ullman: "Compilers- Principles, Techniques and Tools", Pearson Education, 2007.

Reference Books:

- 1. Charles N. Fischer, Richard J. leBlanc, Jr.:" Crafting a Compiler with C", Pearson Education, 1991.
- 2. Andrew W Apple: "Modern Compiler Implementation in C", Cambridge University Press, 1997
- 3. Kenneth C Louden: "Compiler Construction Principles & Practice", Thomson Education, 1997.