

28.14 Timer Output Module (TOM)

28.14.1 Overview

The Timer Output Module (TOM) offers up to 16 independent channels (index x) to generate simple PWM signals at each output pin $TOM[i]_CH[x]_OUT$.

Additionally, at TOM output TOM[i]_CH15_OUT a pulse count modulated signal can be generated.

The architecture of the TOM sub-module is depicted in Figure 47.

Indices and their range as used inside this chapter are:

y=0,1

z=0...7

The following design variables are used inside this chapter. Please refer to AURIX device specific appendix for correct value.

cCTO: TOM channel count; number of channels per instance - 1.

Figure 47 TOM block diagram

The two sub-modules TGC0 and TGC1 are global channel control units that control the enabling/disabling of the channels and their outputs as well as the update of their period and duty cycle register.

The module TOM receives two (three) timestamp values *TBU_TS0*, *TBU_TS1* (and *TBU_TS2*) in order to realize synchronized output behavior on behalf of a common time base.

The 5 dedicated clock line inputs *CMU_FXCLK* are providing divided clocks that can be selected to clock the output pins.

The trigger signal *TOM_TRIG_[i-1]* of TOM instance i comes from the preceding instance i-1, the trigger *TOM_TRIG_[i]* is routed to succeeding instance i+1.Note, TOM0 is connected to its own output *TOM_TRIG_0*, i.e. the last channel of TOM instance 0 can trigger the first channel of TOM instance 0 (this path is registered, which means delayed by one SYS_CLK period).

28.14.2 TOM Global Channel Control (TGC0, TGC1)

28.14.2.1 Overview

There exist two global channel control units (TGC0 and TGC1) to drive a number of individual TOM channels synchronously by external or internal events.

Each TGC[y] can drive up to eight TOM channels where TGC0 controls TOM channels 0 to 7 and TGC1 controls TOM channels 8 to 15.

The TOM sub-module supports four different kinds of signaling mechanisms:

- Global enable/disable mechanism for each TOM channel with control register TOM[i]_TGC[y]_ENDIS_CTRL
 and status register TOM[i]_TGC[y]_ENDIS_STAT
- Global output enable mechanism for each TOM channel with control register TOM[i]_TGC[y]_OUTEN_CTRL
 and status register TOM[i]_TGC[y]_OUTEN_STAT
- Global force update mechanism for each TOM channel with control register TOM[i]_TGC[y]_FUPD_CTRL
- Update enable of the register CM0, CM1 and CLK_SRC for each TOM channel with the control bit field
 UPEN_CTRL[z] of TOM[i]_TGC[y]_GLB_CTRL

28.14.2.2 TGC Sub-unit

Each of the first three individual mechanisms (enable/disable of the channel, output enable and force update) can be driven by three different trigger sources. The three trigger sources are:

- the host CPU (bit HOST_TRIG of register TOM[i]_TGC[y]_GLB_CTRL)
- the TBU time stamp (signal TBU_TS0, TBU_TS1, TBU_TS2 if available)
- the internal trigger signal *TRIG* (bunch of trigger signals *TRIG_[x]* which can be either the trigger *TRIG_CCU0* of channel x, the trigger of preceding channel x-1 (i.e. signal *TRIG_[x-1]*) or the external trigger *TIM_EXT_CAPTURE(t)* of assigned TIM channel t.

The first way is to trigger the control mechanism by a direct register write access via host CPU (bit **HOST_TRIG** of register **TOM[i]_TGC[y]_GLB_CTRL**).

The second way is provided by a compare match trigger on behalf of a specified time base coming from the module TBU (selected by bits **TBU_SEL**) and the time stamp compare value defined in the bit field **ACT_TB** of register **TOM[i]_TGC[y]_ACT_TB**.Note, a signed compare of **ACT_TB** and selected *TBU_TS[x]* with x=0,1,2 is performed.

The third possibility is the input TRIG (bunch of trigger signals $TRIG_{[x]}$) coming from the TOM channels 0 to 7 / 8 to 15.

The corresponding trigger signal $TRIG_[x]$ coming from channel [x] can be masked by the register **TOM[i]_TGC[y]_INT_TRIG**.

To enable or disable each individual TOM channel, the register **TOM[i]_TGC[y]_ENDIS_CTRL** and/or **TOM[i]_TGC[y]_ENDIS_STAT** have to be used.

The register **TOM[i]_TGC[y]_ENDIS_STAT** controls directly the signal *ENDIS*. A write access to this register is possible.

The register **TOM[i]_TGC[y]_ENDIS_CTRL** is a shadow register that overwrites the value of register **TOM[i]_TGC[y]_ENDIS_STAT** if one of the three trigger conditions matches.

Figure 48 TOM Global channel control mechanism

The output of the individual TOM channels can be controlled using the register **TOM[i]_TGC[y]_OUTEN_CTRL** and **TOM[i]_TGC[y]_OUTEN_STAT**.

The register **TOM[i]_TGC[y]_OUTEN_STAT** controls directly the signal *OUTEN*. A write access to this register is possible.

The register **TOM[i]_TGC[y]_OUTEN_CTRL** is a shadow register that overwrites the value of register **TOM[i]_TGC[y]_OUTEN_STAT** if one of the three trigger conditions matches.

If a TOM channel is disabled by the register **TOM[i]_TGC[y]_OUTEN_STAT**, the actual value of the channel output at $TOM_CH[x]_OUT$ is defined by the signal level bit (**SL**) defined in the channel control register **TOM[i]_CH[x]_CTRL**. If the output is enabled, the output at $TOM_CH[x]_OUT$ depends on value of flip-flop **SOUR**.

The register **TOM[i]_TGC[y]_FUPD_CTRL** defines which of the TOM channels receive a *FORCE_UPDATE* event if the trigger signal *CTRL_TRIG* is raised.

Note: The force update request is stored and executed synchronized to the selected CMU_FXCLK.

The register bits UPEN_CTRL[z] defines for which TOM channel the update of the working register CM0, CM1 and CLK_SRC by the corresponding shadow register SR0, SR1 and CLK_SRC_SR is enabled. If update is enabled, the register CM0, CM1 and CLK_SRC will be updated on reset of counter register CN0 (see Figure 49 and Figure 50). An exception is the configuration of SR0_TRIG=1 which enable the trigger generation defined by SR0. Then CM0 is not updated with SR0.

28.14.3 TOM Channel

Each individual TOM channel comprises a Counter Compare Unit 0 (CCU0) which contains the counter register **CN0** and the period register **CM0**, a Counter Compare Unit 1 (CCU1) which contains the duty cycle register **CM1** and the Signal Output Generation Unit (SOU) which contains the output register **SOUR**. The architecture is depicted in **Figure 49** for channels 0 to 7 and in **Figure 50** for channels 8 to 15.

Figure 49 TOM Channel 0...7 architecture

Figure 50 TOM Channel 8...14 architecture

Figure 51 TOM Channel 15 architecture

The CCU0 contains a counter **CNO** which is clocked with one of the selected input frequencies (*CMU_FXCLK*) provided from outside of the sub-module.

Depending on configuration bits RST_CCU0 of register **TOM[i]_CH[x]_CTRL** the counter register **CN0** can be reset either when the counter value is equal to the compare value **CM0** (i.e. CN0 counts only 0 to CM0-1 and is then reset to 0) or when signaled by the TOM[i] trigger signal *TRIG_[x-1]* of the preceding channel [x-1] (which can also be the last channel of preceding instance TOM[i-1]) or the trigger signal *TIM_EXT_CAPTURE(x)* of the assigned TIM channel [x].

Note: As an exception, the input *TRIG_[0]* of instance TOM0 is triggered by its own last channel cCTO via signal *TRIG_[cCTO]*.

When the counter register **CN0** is greater or equal than the value **CM0** (in fact CM0-1) the sub-unit CCU0 triggers the SOU sub-unit and the succeeding TOM sub-module channel (signal *TRIG_CCU0*).

In the sub-unit CCU1 the counter register **CN0** is compared with the value of register **CM1**. If **CN0** is greater or equal than **CM1** the sub-unit CCU1 triggers the SOU sub-unit (signal *TRIG_CCU1*).

If counter register **CNO** of channel x is reset by its own CCUO unit (i.e. the compare match of **CNO**>=**CMO**-1 configured by RST_CCUO=0), following statements are valid:

- CN0 counts from 0 to CM0-1 and is then reset to 0.
- When CN0 is reset from CM0 to 0, an edge to SL is generated
- When CN0 is incrementing and reaches CN0 > CM1, an edge to !SL is generated.
- if CM0=0 or CM0=1, the counter CN0 is constant 0.
- if CM1=0, the output is !SL = 0% duty cycle
- if CM1 >= CM0 and CM0>1, the output is SL = 100% duty cycle

If the counter register **CN0** of channel x is reset by the trigger signal coming from another channel or the assigned TIM module (configured by RST_CCU0=1), following statements are valid:

- CNO counts from 0 to MAX-1 and is then reset to 0 by trigger signal
- CMO defines the edge to SL value, CM1 defines the edge to !SL value.
- if CM0=CM1, the output switches to SL if CN0=CM0=CM1 (CM0 has higher priority)
- if CM0=0 and CM1=MAX, the output is SL = 100% duty cycle
- if CMO > MAX, the output is !SL = 0% duty cycle, independent of CM1.

The hardware ensures that for both 0% and 100% duty cycle no glitch occurs at the output of the TOM channel.

The SOU sub-unit is responsible for output signal generation. On a trigger *TRIG_CCU0* from sub-unit CCU0 or *TRIG_CCU1* from sub-unit CCU1 an SR flip-flop of sub-unit SOU is either set or reset. If it is set or reset depends on the configuration bit **SL** of the control register **TOM[i]_CH[x]_CTRL**. The initial signal output level for the channel is the reverse value of the bit **SL**.

Figure 54 clarifies the PWM output behavior with respect to the **SL** bit definition. The output level on the TOM channel output pin *TOM*[*i*]_*CH*[*x*]_*OUT* is captured in bit **OL** of register **TOM**[*i*]_**CH**[*x*]_**STAT**.

28.14.3.1 Duty cycle, Period and Clock Frequency Update Mechanisms

The two action register **CM0** and **CM1** can be reloaded with the content of the shadow register **SR0** and **SR1**. The register **CLK_SRC** that determines the clock frequency of the counter register **CN0** can be reloaded with its shadow register **CLK_SRC_SR** (bit field in register **TOM[i]_CH[x]_CTRL**).

The update of the register **CMO**, **CM1** and **CLK_SRC** with the content of its shadow register is done when the reset of the counter register **CNO** is requested (via signal *RESET*). This reset of **CNO** is done if the comparison of **CNO** greater or equal than **CMO** is true or when the reset is triggered by another TOM channel [x-1] via the signal *TRIG_[x-1]* or when signaled via the signal *TIM_EXT_CAPTURE(x)* of the assigned TIM channel [x].

With the update of the register **CLK_SRC** at the end of a period a new counter **CNO** clock frequency can easily be adjusted.

In case of RST_CCU0=1 and update enabled by UPEN_CTRL[z] the register CM0, CM1 and CLK_SRC will be updated when CN0 is reset.

An update of duty cycle, period and counter **CNO** clock frequency becoming effective synchronously with start of a new period can easily be reached by performing following steps:

- 1. disable the update of the action register with the content of the corresponding shadow register by setting the channel specific configuration bit **UPEN_CTRL[z]** of register **TOM[i]_TGC[y]_GLB_CTRL** to '0'.
- 2. write new desired values to SR0, SR1, CLK_SRC_SR

3. enable update of the action register by setting the channel specific configuration bit **UPEN_CTRL[z]** of register **TOM[i]_TGC[y]_GLB_CTRL** to '1'.

28.14.3.1.1 Synchronous Update Of Duty Cycle Only

A synchronous update of only the duty cycle can be done by simply writing the desired new value to register **SR1** without preceding disable of the update mechanism (as described in the chapter above). The new duty cycle is then applied in the period following the period where the update of register **SR1** was done.

Figure 52 Synchronous update of duty cycle

28.14.3.1.2 Asynchronous Update Of Duty Cycle Only

If the update of the duty cycle should be performed independent of the start of a new period (asynchronous), the desired new value can be written directly to register **CM1**. In this case it is recommended to additionally either disable the synchronous update mechanism as a whole (i.e. clearing bits **UPEN_CTRL[z]** of corresponding channel [x] in register **TOM[i]_TGX[y]_GLB_CTRL**) or updating **SR1** with the same value as **CM1** before writing to **CM1**.

Depending on the point of time of the update of **CM1** in relation to the actual value of **CN0** and **CM1**, the new duty cycle is applied in the current period or the following period (see **Figure 53**). In any case the creation of glitches are avoided. The new duty cycle may jitter from update to update by a maximum of one period (given by **CM0**). However, the period remains unchanged.

Figure 53 Asynchronous update of duty cycle

28.14.3.2 Continuous Counting Up Mode

In continuous mode the TOM channel starts incrementing the counter register **CN0** once it is enabled by setting the corresponding bits in register **TOM[i]_TGC[y]_ENDIS_STAT** (refer to **Section 28.14.2.2** for details of enabling a TOM channel).

The signal level of the generated output signal can be configured with the configuration bit **SL** of the channel configuration register **TOM[i]_CH[x]_CTRL**.

If the counter **CNO** is reset from **CMO** back to zero, the first edge of a period is generated at *TOM[i]_CH[x]_OUT*.

The second edge of the period is generated if **CNO** has reached **CM1**.

Every time the counter **CNO** has reached the value of **CMO** it is reset back to zero and proceeds with incrementing.

Figure 54 PWM Output with respect to configuration bit SL in continuous mode

28.14.3.3 Continuous Counting Up-Down Mode

In continuous mode, if **CN0** counts up and down (UDMODE != 0b00), depending on configuration bits RST_CCU0 of register **TOM[i]_CH[x]_CTRL** the counter register **CN0** changes direction either when the counter value is equal to the compare value **CM0**, has counted down to 0 or when triggered by the TOM[i] trigger signal *TRIG_[x-1]* of the preceding channel [x-1] (which can also be the last channel of preceding instance TOM[i-1]) or the trigger signal *TIM_EXT_CAPTURE(x)* of the assigned TIM channel [x].

In this case, if UPEN_CTRL[x]=1, also the working register **CM0**, **CM1** and **CLK_SRC** are updated depending on UDMODE.

Figure 55 PWM Output behavior with respect to the SL bit in the ATOM[i]_CH[x]_CTRL register if UDMODE != 0b00

The clock of the counter register **CN0** can be one of the CMU clocks CMU_FXCLKx. The clock for **CN0** is defined by CLK_SRC_SR value in register **TOM[i]_CH[x]_CTRL**. The duration of a period in multiples of selected **CN0** counter clock ticks is defined by the **CM0** configuration value (i.e. **CM0** defines half of period in up-down mode). **CM1** defines the duty cycle value in clock ticks of selected **CN0** counter clock **CM0** defines half of duty cycle in up-down mode).

If counter register **CN0** of channel x is reset by its own CCU0 unit (i.e. the compare match of **CN0**>=**CM0** configured by RST_CCU0=0), following statements are valid:

- **CNO** counts continuously first up from 0 to **CMO**-1 and then down to 0.
- if CN0 >= CM1, the output is set to SL
- if CM1=0, the output is SL (i.e. 100% duty cycle)
- if CM1>= CM0, the output is !SL (i.e. 0% duty cycle)
- On output *TOM[i]_CHx]_OUT* a PWM signal is generated. The period is defined by **CM0**, the duty cycle is defined by **CM1**.

This behavior is depicted in Figure 55.

If the counter register **CN0** of channel x is reset by the trigger signal coming from another channel or the assigned TIM module (configured by RST_CCU0=1), following statements are valid:

- **CNO** counts continuously first up. On a trigger signal the counter switches to count down mode. If **<CNO** has reached 0, it switches to count up mode.
- if CNO >= CM1, the output is set to SL
- if **CM1**=0, the output is SL (i.e. 100% duty cycle)
- if **CM1** >= **CM0**, the output is !SL (i.e. 0% duty cycle)
- On output **TOM[i]_CHx]_OUT** a PWM signal is generated. The period is defined by the CCU0 trigger of triggering channel, the duty cycle is defined by **CM1**.
- On output **TOM[i]_CHx]_OUT** a PWM signal is generated. The period is defined by the CCU0 trigger of triggering channel, the duty cycle is defined by **CM0**.

This behavior is depicted in figure Figure 56.

Note that in case of up-down counter mode and RST_CCU0=1 it is recommended that:

- the triggering channel and the triggered channel are both running in up-down mode,
- the time between two trigger signals is equal to the time needed for CNO of triggered to count back to 0 and again up to the same upper value.

The second recommendation can be reached by synchronizing the start of triggering channel and triggered channel, i.e. let both channels start with CNO value 0. Note that if there is a synchronization register in the trigger chain (indicated by value TOM_TRIG_CHAIN in register CCM[i]_HW_CONF), the additional delay of the trigger by one clock period has to be taken into account by starting at triggering channel with a CNO value 1 (+1 compared to CNO of triggered channel).

Figure 56 PWM Output behavior in case of RST_CCU0=1 and UDMODE!= 0b00

28.14.3.4 One-shot Counting Up Mode

In one-shot mode, the TOM channel generates one pulse with a signal level specified by the configuration bit **SL** in the channel [x] configuration register **TOM[i]_CH[x]_CTRL**.

First the channel has to be enabled by setting the corresponding **TOM[i]_TGC[y]_ENDIS_STAT** value and the one-shot mode has to be enabled by setting bit **OSM** in register **TOM[i]_CH[x]_CTRL**.

In one-shot mode the counter CNO will not be incremented once the channel is enabled.

A write access to the register **CNO** triggers the start of pulse generation (i.e. the increment of the counter register **CNO**).

If SPE mode of TOM[i] channel 2 is enabled (set bit **SPEM** of register **TOM[i]_CH2_CTRL**), also the trigger signal SPE[i]_NIPD can trigger the reset of register **CN0** to zero and a start of the pulse generation.

The new value of **CNO** determines the start delay of the first edge. The delay time of the first edge is given by (**CMO-CNO**) multiplied with period defined by current value of **CLK_SRC**.

If the counter **CN0** is reset from **CM0** back to zero, the first edge at $TOM[i]_CH[x]_OUT$ is generated.

To avoid an update of **CMx** register with content of **SRx** register at this point in time, the automatic update should be disabled by setting UPEN_CTRL[x] = 00 (in register **TOM[i]_TGC[y]_GLB_CTRL**)

The second edge is generated if **CN0** is greater or equal than **CM1** (i.e. **CN0** was incremented until it has reached **CM1** or **CN0** is greater than **CM1** after an update of **CM1**).

If the counter **CNO** has reached the value of **CMO** a second time, the counter stops.

Figure 57 PWM Output with respect to configuration bit SL in one-shot mode: trigger by writing to CN0

Further output of single periods can be started by a write access to register CNO.

If CN0 is already incrementing (i.e. started by writing to CN0 a value CN0start < CM0), the affect of a second write access to CN0 depends on the phase of CN0:

phase 1: update of CN0 before CN0 reaches first time CM0

phase 2: update of CNO after CNO has reached first time CMO but is less than CM1

phase 3: update of CNO after CNO has reached first time CMO and CNO is greater than or equal CM1

In phase 1: writing to counter CN0 a value CN0new < CM0 leads to a shift of first edge (generated if CN0 reaches CM0 first time) by the time CM0-CN0new.

In phase 2: writing to incrementing counter CN0 a value CN0new < CM1 while CN0old is below CM1 leads to a lengthening of the pulse. The counter CN0 stops if it reaches CM0.

In phase 3: Writing to incrementing counter CN0 a value CN0new while CN0old is already greater than or equal CM1 leads to an immediate restart of a single pulse generation inclusive the initial delay defined by CM0 - CN0new.

If a channel is configured to one-shot mode and configuration bit OSM_TRIG is set to 1, the trigger signal OSM_TRIG (i.e. $TRIG_[x-1]$ or $TIM_EXT_CAPTURE(x)$) triggers start of one pulse generation.

Figure 58 PWM Output with respect to configuration bit SL in one-shot mode: trigger by TRIG_[x-1] or TIM_EXT_CAPTURE(x)

28.14.3.5 One-shot Counting Up-Down Mode

The TOM channel can operate in one-shot counting up-down mode when the bit OSM = 1 and the UDMODE != 0b00. One-shot mode means that a single pulse with the pulse level defined in bit SL is generated on the output line

First the channel has to be enabled by setting the corresponding **ENDIS_STAT** value.

In One-shot mode the counter **CNO** will not be incremented once the channel is enabled.

A write access to the register **CNO** triggers the start of pulse generation (i.e. the increment of the counter register **CNO**).

To avoid an update of **CMx** register with content of **SRx** register at this point in time, the automatic update should be disabled by setting UPEN_CTRL[x] = 0b00 (in register **TOM[i]_CH[x]_CTRL**)

If the counter **CNO** is greater or equal than **CM1**, the output *TOM[i]_CH[x]_OUT* is set to SL value.

If the counter **CNO** is less than **CM1**, the output $TOM[i]_CH[x]_OUT$ is set to !SL value.

If the counter **CNO** has reached the value 0 (by counting down), it stops.

The new value of **CNO** determines the start delay of the first edge. The delay time of the first edge is given by (**CM1-CNO**) multiplied with period defined by current value of **CLK_SRC**.

Figure 59 depicts the pulse generation in one-shot mode.

Figure 59 PWM Output with respect to configuration bit SL in one-shot counting up-down mode and UDMODE != 0b00: trigger by writing to CN0

Further output of single pulses can be started by writing to register **CNO**.

If a channel is configured to one-shot counting up-down mode and configuration bit OSM_TRIG is set to 1, the trigger signal OSM_TRIG (i.e. $TRIG_[x-1]$ or $TIM_EXT_CAPTURE(x)$) triggers start of one pulse generation.

Figure 60 PWM Output with respect to configuration bit SL in one-shot counting up-down mode and UDMODE != 0b00: trigger by TRIG_[x-1] or TIM_EXT_CAPTURE(x)

28.14.3.6 Pulse Count Modulation Mode

At the output *TOM[i]_CH15_OUT* a pulse count modulated signal can be generated instead of the simple PWM output signal.

Figure Figure 51 outlines the circuit for Pulse Count Modulation.

The PCM mode is enabled by setting bit **BITREV** to 1.

With the configuration bit **BITREV**=1 a bit-reversing of the counter output **CN0** is configured. In this case the bits LSB and MSB are swapped, the bits LSB+1 and MSB-1 are swapped, the bits LSB+2 and MSB-2 are swapped and so on.

The effect of bit-reversing of the CNO register value is shown in the following Figure 61.

Figure 61 Bit reversing of counter CNO output

In the PCM mode the counter register **CNO** is incremented by every clock tick depending on configured CMU clock (*CMU_FXCLK*).

The output of counter register **CNO** is first bit-reversed and then compared with the configured register value **CM1**.

If the bit-reversed value of register **CN0** is greater than **CM1**, the SR flip-flop of sub-module SOU is set (depending on configuration register **SL**) otherwise the SR flip-flop is reset. This generates at the output *TOM[i]_CH15_OUT* a pulse count modulated signal.

In PCM mode the **CM0** register - in which the period is defined - normally has to be set to its maximum value 0xFFFF.

To reduce time period of updating duty cycle value in **CM1** register, it is additionally possible to setup period value in **CM0** register to smaller values than maximum value as described before.

Possible values for **CM0** register are each even numbered values to the power of 2 e.g. 0x8000, 0x4000, 0x2000 In this case the duty cycle has to be configured in the following manner.

Depending on how much the period in CM0 register is decreased - means shifted right starting from 0x10000 - the duty cycle in CM1 register has to be shifted left (= rotated: shift MSB back into LSB) with same value, e.g. period CM0 = 0x0100 -> shifted 8 bits right from 0x10000

--> so duty cycle has to be shifted left 8 bit:

e.g. 50% duty cycle = 0x00080 -> shift 8 bits left -> CM1 = 0x8000

More examples:

period CM0 > duty cycle > no shift > CM1 0xFFFF > 0x8000 > no shift > 0x8000 0x8000 > 0x4000 > shift 1 bit left > 0x8000 0x4000 > 0x1000 > shift 2 bits left > 0x7FF8 0x1000 > 0x0333 > shift 4 bits left > 0x0AA0 0x0020 > 0x0008 > shift 19 bits left > 0x4000							
0x8000 > 0x4000 > shift 1 bit left > 0x8000 0x4000 > 0x1000 > shift 2 bits left > 0x4000 0x2000 > 0x0FFF > shift 3 bits left > 0x7FF8 0x1000 > 0x03333 > shift 4 bits left > 0x3330 0x0800 > 0x0055 > shift 5 bits left > 0x0AA0 0x0020 > 0x0008 > shift 19 bits left > 0x4000	period CM0	>	duty cycle	>	no shift	>	CM1
0x4000 > 0x1000 > shift 2 bits left > 0x4000 0x2000 > 0x0FFF > shift 3 bits left > 0x7FF8 0x1000 > 0x0333 > shift 4 bits left > 0x3330 0x0800 > 0x0055 > shift 5 bits left > 0x0AA0 0x0020 > 0x0008 > shift 19 bits left > 0x4000	0xFFFF	>	0x8000	>	no shift	>	0x8000
0x2000 > 0x0FFF > shift 3 bits left > 0x7FF8 0x1000 > 0x0333 > shift 4 bits left > 0x3330 0x0800 > 0x0055 > shift 5 bits left > 0x0AA0 0x0020 > 0x0008 > shift 19 bits left > 0x4000	0x8000	>	0x4000	>	shift 1 bit left	>	0x8000
0x1000> 0x0333> shift 4 bits left> 0x3330 0x0800> 0x0055> shift 5 bits left> 0x0AA0 0x0020> 0x0008> shift 19 bits left> 0x4000	0x4000	>	0x1000	>	shift 2 bits left	>	0x4000
0x0800> 0x0055> shift 5 bits left> 0x0AA0 0x0020> 0x0008> shift 19 bits left> 0x4000	0x2000	>	0x0FFF	>	shift 3 bits left	>	0x7FF8
0x0020> 0x0008> shift 19 bits left> 0x4000	0x1000	>	0x0333	>	shift 4 bits left	>	0x3330
0x0020> 0x0008> shift 19 bits left> 0x4000	0x0800	>	0x0055	>	shift 5 bits left	>	0x0AA0
	0x0020	>	0x0008	>	shift 19 bits left	>	0x4000
0x0010> 0x0005> shift 20 bits left> 0x5000	0x0010	>	0x0005	>	shift 20 bits left	>	0x5000

Note: In this mode the interrupt CCU1TC (see register **TOM[i]_CH[x]_IRQ_NOTIFY**) is set every time if bit reverse value of **CNO** is greater or equal than **CM1** which may be multiple times during one period. Therefore, from application point of view it is not useful to enable this interrupt.

28.14.3.7 Trigger Generation

For applications with constant PWM period defined by CM0, it is not necessary to update regularly the **CM0** register with **SR0** register. For these applications the **SR0** register can be used to define an additional output signal and interrupt trigger event.

If bit SR0_TRIG in register **TOM[i]_CH[x]_CTRL** is set, the register **SR0** is no longer used as a shadow register for register **CM0**. Instead, **SR0** is compared against **CN0** and if both are equal, a pulse of signal level '1' is generated at the output $TOM[i]_CH[x]_OUT_T$. The bit SR0_TRIG should only be set if bit RST_CCU0 of this channel is 0.

If bit SR0_TRIG is set the interrupt notify flag CCU1TC is no longer set on a compare match of **CM1** and **CN0**. Instead, the CCU1TC interrupt notify flag is set in case of a compare equal match of **SR0** and **CN0**.

With configuration bit TRIG_PULSE one can select if the output $TOM[i]_CH[x]_OUT_T$ is high as long as CN0=SR0 (TRIG_PULSE=0) or if there will be only one pulse of length one SYS_CLK period when CN0 becomes SR0 (TRIG_PULSE=1).

The TOM output signal routing to DTM or GTM top level is described in subchapter "DTM connections on GTM-IP top level"

28.14.4 TOM BLDC Support

The TOM sub-module offers in combination with the SPE sub-module a BLDC support. To drive a BLDC engine TOM channels 0 to 7 can be used.

The BLDC support can be configured by setting the **SPEM** bit inside the **TOM[i]_CH[z]_CTRL** register. When this bit is set the TOM channel output is controlled through the SPE_OUT(z) signal coming from the SPE sub-module (see **Figure 49**). Please refer to chapter "Sensor Pattern Evaluation" for a detailed description of the SPE sub-module.

The TOM[i]_CH2,6,7,8 or 9 can be used together with the SPE module to trigger a delayed update of the **SPE_OUT_CTRL** register (i.e. commutation delay) after new input pattern detected by SPE (signaled by SPE[i]_NIPD). This feature is configured on TOM[i]_CH2,6,7,8 or 9 by setting SPE_TRIG=1 and OSM=1. With this configuration the TOM channel i generates one single PWM pulse on trigger by signal SPE_NIPD.

For details please refer to chapter of SPE sub-module description.

28.14.5 TOM Gated Counter Mode

Each TOM - SPE module combination provides also the feature of a gated counter mode. This is reached by using the FSOI input of a TIM module to gate the clock of a CCU0 sub-module.

To configure this mode, registers of module SPE should be set as following:

- the SPE should be enabled (bit SPE_EN = 1),
- all three TIM inputs should be disabled SIE0 = SIE1 = SIE2 = 0),
- SPE[i]_OUT_CTRL should be set to 00005555h (set SPE_OUT() to '0'),
- mode FSOM should be enabled (FSOM=1),
- set in bit field **FSOL** bit c if channel c of module TOM is chosen for gated counter mode
- Additionally in module TOM
 - mode should be disabled (SPEM=0) and
 - the gated counter mode should be enabled (GCM=1)

As a result of this configuration, the counter **CNO** in sub-module CCUO of TOM channel c counts as long as input *FSOI* is '0'.

28.14.6 TOM Interrupt signals

Table 48 TOM Interrupt signals

Signal	Description
TOM_CCU0TCx_IRQ	CCU0 Trigger condition interrupt for channel x
TOM_CCU1TCx_IRQ	CCU1 Trigger condition interrupt for channel x

28.14.7 TOM Configuration Register Overview

Table 49 TOM Configuration Register Overview

Register name	Description	see Page
TOM[i]_TGC[y]_GLB_CTRL	TOMi TGC y global control register	221
TOM[i]_TGC[y]_ENDIS_CTRL	TOMi TGC y enable/disable control register	222
TOM[i]_TGC[y]_ENDIS_STAT	TOMi TGC y enable/disable status register	223
TOM[i]_TGC[y]_ACT_TB	TOMi TGC y action time base register	224
TOM[i]_TGC[y]_OUTEN_CTRL	TOMi TGC y output enable control register	225
TOM[i]_TGC[y]_OUTEN_STAT	TOMi TGC y output enable status register	226
TOM[i]_TGC[y]_FUPD_CTRL	TOMi TGC y force update control register	226
TOM[i]_TGC[y]_INT_TRIG	TOMi TGC y internal trigger control register	227
TOM[i]_CH[x]_CTRL	TOMi channel x control register	228
TOM[i]_CH[x]_CN0	TOMi channel x CCU0 counter register	232
TOM[i]_CH[x]_CM0	TOMi channel x CCU0 compare register	233
TOM[i]_CH[x]_SR0	TOMi channel x CCU0 compare shadow register	233
TOM[i]_CH[x]_CM1	TOMi channel x CCU1 compare register	234
TOM[i]_CH[x]_SR1	TOMi channel x CCU1 compare shadow register	234
TOM[i]_CH[x]_STAT	TOMi channel x status register	235
TOM[i]_CH[x]_IRQ_NOTIFY	TOMi channel x interrupt notification register	235
TOM[i]_CH[x]_IRQ_EN	TOMi channel x interrupt enable register	236
TOM[i]_CH[x]_IRQ_FORCINT	TOMi channel x force interrupt register	237
TOM[i]_CH[x]_IRQ_MODE	TOMi channel x interrupt mode register	237

28.14.8 TOM Configuration Register Description

28.14.8.1 Register TOM[i]_TGC[y]_GLB_CTRL

TOMi TGC0 Global Control Register

TOMi_TGCO_GLB_CTRL (i=0-5) **TOMi TGCO Global Control Register** $(008030_{H}+i*800_{H})$ Application Reset Value: 0000 0000_H TOMi_TGC1_GLB_CTRL (i=0-5) **TOMi TGC1 Global Control Register** $(008230_{H}+i*800_{H})$ Application Reset Value: 0000 0000_H 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 UPEN_CTRL7 | UPEN_CTRL6 | UPEN_CTRL5 | UPEN_CTRL4 | UPEN_CTRL3 | UPEN_CTRL2 | UPEN_CTRL1 | UPEN_CTRL0 rw rw rw rw rw rw rw rw 15 5 14 13 12 11 10 9 8 7 6 4 3 2 1 0 RST_C RST_C RST_C RST_C RST_C RST_C RST_C RST_C HOST 0 **H7** Н6 **H5** Н4 Н3 **TRIG H2** H1 H0 w w w w

Field	Bits	Type	Description
HOST_TRIG	0	w	Trigger request signal (see TGC0, TGC1) to update the register ENDIS_STAT and OUTEN_STAT This flag is reset automatically after triggering the update. 0 _B No trigger request 1 _B Set trigger request
RST_CHx (x=0-7)	x+8	w	Software reset of channel x This bit is cleared automatically after write by CPU. The channel register are set to their reset values and channel x operation is stopped immediately. The SR flip-flop SOUR is set to '1'. 0 _B No action 1 _B Reset channel x
UPEN_CTRLx (x=0-7)	2*x+17:2*x +16	rw	TOM channel x enable update of register CM0, CM1 and CLK_SRC from SR0, SR1 and CLK_SRC_SR Write / Read: 00 _B Don't care, bits 1:0 will not be changed / update disabled 01 _B Disable update / 10 _B Enable update / 11 _B Don't care, bits 1:0 will not be changed / update enabled
0	7:1	r	Reserved Read as zero, shall be written as zero.

28.14.8.2 Register TOM[i]_TGC[y]_ENDIS_CTRL

TOMi TGC0 Enable/Disable Control Register

TOMi_TGCO_ENDIS_CTRL (i=0-5)

 $TOMi\ TGC0\ Enable/Disable\ Control\ Register(008070_H+i*800_H)$

Application Reset Value: 0000 0000_H

TOMi_TGC1_ENDIS_CTRL (i=0-5)

Field	Bits	Туре	Description
ENDIS_CTRLx (x=0-7)		rw	If FREEZE = 0: If a TOM channel is disabled, the counter CN0 is stopped and the output register of SOU unit is set to the inverse value of control bit SL. On an enable event, the counter CN0 starts counting from its current value. If FREEZE = 1: If a TOM channel is disabled, the counter CN0 is stopped. On an enable event, the counter CN0 starts counting from its current value. Write of following double bit values is possible: If the output is disabled (OUTEN[0]=0), the TOM channel 0 output TOM[i]_CH0_OUT is the inverted value of bit SL. OOB Don't care, bits 1:0 of register ENDIS_STAT will not be changed on an update trigger OOB Disable channel on an update trigger OOB Enable channel on an update trigger OOB Don't change bits 1:0 of this register
0	31:16	r	Reserved Read as zero, shall be written as zero.

28.14.8.3 Register TOM[i]_TGC[y]_ENDIS_STAT

TOMi TGC0 Enable/Disable Status Register

TOMi_TGCO_ENDIS_STAT (i=0-5)

TOMi TGC0 Enable/Disable Status Register (008074 $_{\rm H}$ +i*800 $_{\rm H}$)

TOMi_TGC1_ENDIS_STAT (i=0-5)

TOMi TGC1 Enable/Disable Status Register (008274_H+i*800_H)

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000_H

		•			J	•	п	п	•	•	•				п
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ı	ı	ı	I	l	' ())		I	I		I	l I	
		ı	ı	I	I		<u> </u>	r		I	I		I	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ENDIS	S_STAT7	ENDIS	STAT6	ENDIS	STAT5	ENDIS	STAT4	ENDIS	STAT3	ENDIS	STAT2	ENDIS	STAT1	ENDIS	STAT0
	_		_ 	_	- I	_	- I		- !	_	- I		- I		
ı	rw	r	W	r	N	r	W	r١	N	r	N	r	W	r۱	N

Field	Bits	Type	Description
ENDIS_STATx (x=0-7)	2*x+1:2*x	rw	TOM channel x enable/disable update value If FREEZE = 0: If a TOM channel is disabled, the counter CN0 is stopped and the output register of SOU unit is set to the inverse value of control bit SL. On an enable event, the counter CN0 starts counting from its current value. If FREEZE = 1: If a TOM channel is disabled, the counter CN0 is stopped. On an enable event, the counter CN0 starts counting from its current value. Write of following double bit values is possible: 00 _B Don't care, bits 1:0 will not be changed / channel disabled 01 _B Disable channel / 10 _B Enable channel / 11 _B Don't care, bits 1:0 will not be changed / channel enabled
0	31:16	r	Reserved Read as zero, shall be written as zero.

28.14.8.4 Register TOM[i]_TGC[y]_ACT_TB

TOMi TGCO Action Time Base Register

ТОМі 1 ТОМі_	TGC0_A TGC0 Ac TGC1_A	ction Ti	ime Ba 3 (i=0-5	se Reg			8034 _H + 8234 _H +				-				0 0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		0			TBU	_SEL	TB_TR IG				АСТ	_ТВ			
		r			r	W	rw				r	W			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	ı	I	1	1	1	ACT		I	1	1	1	1	1	1

Field	Bits	Туре	Description
ACT_TB	23:0	rw	Time base value Specifies the signed compare value with selected signal TBU_TS[x], x=02 If selected TBU_TS[x] value is in the interval [ACT_TB - 007FFFFFh, ACT_TB], the event is in the past, and the trigger is generated immediately. Otherwise, the event is in the future, and the trigger is generated if selected TBU_TS[x] is equal to ACT_TB.
TB_TRIG	24	rw	Set trigger request This flag is reset automatically if the selected time base unit (TBU_TS0 or TBU_TS1 or TBU_TS2, if present) has reached the value ACT_TB and the update of the register was triggered. 0 _B No trigger request 1 _B Set trigger request
TBU_SEL	26:25	rw	Selection of time base used for comparison The bit combination 0b10 is only applicable if the TBU of the device contains three time base channels. Otherwise, this bit combination is also reserved. Please refer to GTM Architecture block diagram on page 3 to determine the number of channels for TBU of this device. 00 _B TBU_TS0 selected 10 _B TBU_TS1 selected 10 _B TBU_TS2 selected 11 _B Same as 0b00
0	31:27	r	Reserved Read as zero, shall be written as zero.

28.14.8.5 Register TOM[i]_TGC[y]_OUTEN_CTRL

TOMi TGCO Output Enable Control Register

TOMi_TGCO_OUTEN_CTRL (i=0-5)

 $TOMi\ TGC0\ Output\ Enable\ Control\ Register (008078_{H}+i*800_{H})$

TOMi_TGC1_OUTEN_CTRL (i=0-5)

Application Reset Value: 0000 0000_H

_	_	utput E	_	Contro	l Regis	ter(008	3278 _H +	·i*800 _H))	App	olicatio	on Rese	t Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
'						ı ı	(o '		! !		, ,		! !	
		1		1		1		r		1		1		1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OUTEN	_CTRL	OUTEN	_CTRL	OUTEN	_CTRL	OUTEN	_CTRL	OUTEN	_CTRL	OUTEN	_CTRL	OUTEN	_CTRL	OUTEN	_CTRL
7	7	6		5		4	ŀ	3		2		1	ı	0	
r\	N	rv	I	rv	V	rv	V	rv	V	rv	V	rv	V	rv	V

Field	Bits	Type	Description
OUTEN_CTRL x (x=0-7)	2*x+1:2*x	rw	Output TOM[i]_CHx_OUT enable/disable update value Write of following double bit values is possible: If the channel is disabled (ENDIS[0]=0) or the output is disabled (OUTEN[0]=0), the TOM channel 0 output TOM[i]_CH0_OUT is the inverted value of bit SL. OO_B Don't care, bits 1:0 of register OUTEN_STAT will not be changed on an update trigger O1_B Disable channel output on an update trigger 1O_B Enable channel output on an update trigger 10_B Don't change bits 1:0 of this register
0	31:16	r	Reserved Read as zero, shall be written as zero.

28.14.8.6 Register TOM[i]_TGC[y]_OUTEN_STAT

TOMi TGCO Output Enable Status Register

TOMi_TGCO_OUTEN_STAT (i=0-5)

TOMi TGC0 Output Enable Status Register (00807C_u+i*800_u)

TOMi_TGC1_OUTEN_STAT (i=0-5)

TOMi TGC1 Output Enable Status Register (00827Cu+i*800u)

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000 u

Field	Bits	Type	Description
OUTEN_STAT x (x=0-7)	2*x+1:2*x	rw	Control/status of output TOM[i]_CHx_OUT Write of following double bit values is possible: 00 _B Don't care, bits 1:0 will not be changed / output disabled 01 _B Disable output / 10 _B Enable output / 11 _B Don't care, bits 1:0 will not be changed / output enabled
0	31:16	r	Reserved Read as zero, shall be written as zero

28.14.8.7 Register TOM[i]_TGC[y]_FUPD_CTRL

TOMi TGC0 Force Update Control Register

TOMi_TGCO_FUPD_CTRL (i=0-5)

TOMi TGC0 Force Update Control Register (008038_H+i*800_H)

TOMi_TGC1_FUPD_CTRL (i=0-5)

TOMi TGC1 Force Update Control Register (008238_H+i*800_H)

Application Reset Value: 0000 0000 H

Application Reset Value: 0000 0000 H

31 25 24 23 22 21 20 17 16 RSTCN0_CH7 RSTCNO_CH6 RSTCNO_CH5 RSTCNO_CH4 RSTCNO_CH3 RSTCNO_CH2 RSTCNO_CH1 RSTCNO_CH0 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 FUPD_CTRL7 | FUPD_CTRL6 | FUPD_CTRL5 | FUPD_CTRL4 | FUPD_CTRL3 | FUPD_CTRL2 | FUPD_CTRL1 | FUPD_CTRL0 rw rw rw rw rw rw rw rw

Field	Bits	Туре	Description						
FUPD_CTRLx (x=0-7)	2*x+1:2*x	rw	Force update of TOM channel x operation registers If enabled, force update of register CM0, CM1 and CLK_SRC triggered by HOST_TRIG, ACT_TB compare match, or internal trigger. Write / Read: The force update request is stored and executed synchronized to the selected FXCLK. 00 _B Don't care, bits 1:0 will not be changed / force update disabled 01 _B Disable force update / 10 _B Enable force update / 11 _B Don't care, bits 1:0 will not be changed / force update enabled						
RSTCNO_CHx (x=0-7)	2*x+17:2*x +16	rw	Reset CN0 of channel x on force update event If enabled, reset CN0 triggered by HOST_TRIG, ACT_TB compare match, or internal trigger. Write / Read: 00 _B Don't care, bits 1:0 will not be changed / CN0 is not reset on forced update 01 _B Do not reset CN0 on forced update / 10 _B Reset CN0 on forced update / 11 _B Don't care, bits 1:0 will not be changed / CN0 is reset on forced update						

28.14.8.8 Register TOM[i]_TGC[y]_INT_TRIG

TOMi TGCO Internal Trigger Control Register

TOMi_TGCO_INT_TRIG (i=0-5)

TOMi TGC0 Internal Trigger Control Register(00803C_H+i*800_H)

TOMi_TGC1_INT_TRIG (i=0-5)

TOMi TGC1 Internal Trigger Control Register(00823C_H+i*800_H)

Application Reset Value: $0000\ 0000_{\rm H}$

Application Reset Value: 0000 0000_H

Field	Bits	Туре	Description
INT_TRIGX (x=0-7)	2*x+1:2*x	rw	Select input signal TRIG_x as a trigger source Write / Read: 00 _B Don't care, bits 1:0 will not be changed / internal trigger from channel 0 (TRIG_0) not used 01 _B Do not use internal trigger from channel 0 (TRIG_0) / 10 _B Use internal trigger from channel 0 (TRIG_0) / 11 _B Don't care, bits 1:0 will not be changed / internal trigger from channel 0 (TRIG_0) used
0	31:16	r	Reserved Read as zero, shall be written as zero.

28.14.8.9 Register TOM[i]_CH[x]_CTRL

TOMi Channel x Control Register

TOMi_CHx_CTRL (i=0-5;x=0-15)

TOMi C		•	•	•	(008000 _H +i*800 _H +x*40 _H)					Application Reset Value: 0000 0800 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FREEZ E	0	GCM	SPEM	BITRE V	OSM	SPE_T RIG	TRIGO UT	EXTTR IGOUT	_	OSM_ TRIG	RST_C CU0	UDN	IODE	TRIG_ PULSE	0
rw	r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	W	rw	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ECLK_ SRC	CLK_SRC_SR SL				0		SRO_T RIG				0				
rw		rw		rw		r		rw			1	r			

Field	Bits	Туре	Description							
SRO_TRIG	7	rw	SR0 is used to generate a trigger on output TOM[i]_CH[x]_OUT_T if equal to CN0 Note: This bit should only be set if RST_CCU0 of this channel is 0. OB SR0 is used as a shadow register for register CM0. SR0 is not used as a shadow register for register CM0. SR0 is compared with CN0 and if both are equal, a trigger pulse is							
SL	11	rw	generated at output TOM[i]_CH[x]_OUT_T. Signal level for duty cycle If the output is disabled, the output TOM_OUT[x] is set to the inverse value of SL. Reset value depends on the hardware configuration chosen by silicon vendor.							
			0 _B Low signal level 1 _B High signal level							

Field	Bits	Type	Description							
CLK_SRC_SR	14:12	rw	Clock source select for channel The register CLK_SRC is updated with the value of CLK_SRC_SR together with the update of register CM0 and CM1. The input of the FX clock divider depends on the value of FXCLK_SEL (see CMU).							
			Note: This register is a shadow register for the register CLK_SRC. Thus, if the CMU_CLK source for PWM generation should be changed during operation, the old CMU_CLK has to operate until the update of the ATOM channels internal CLK_SRC register by the CLK_SRC_SR content is done either by an end of a period or a forced update.							
			Note: If clock of channel is stopped (i.e. ECLK_SRC=0 and CLK_SRC=101 $_{\rm B}$ /111 $_{\rm B}$), the channel can only be restarted by resetting CLK_SRC_SR to a value of 000 $_{\rm B}$ to 100 $_{\rm B}$ and forcing an update via the force update mechanism.							
			If ECLK_SRC=0 / ECLK_SRC=1: 000 _B CMU_FXCLK (0) selected / CMU_FXCLK (0) selected 001 _B CMU_FXCLK (1) selected / CMU_FXCLK (1) selected 010 _B CMU_FXCLK (2) selected / CMU_FXCLK (2) selected 011 _B CMU_FXCLK (3) selected / CMU_FXCLK (3) selected 100 _B CMU_FXCLK (4) selected / CMU_FXCLK (4) selected 101 _B Clock of channel stopped / TRIG[x-1] selected 110 _B Clock of channel stopped / TIM_EXT_CAPTURE[x] selected 111 _B Clock of channel stopped / reserved							
ECLK_SRC	15	rw	Extend CLK_SRC 0 _B CLK_SRC_SR set 1 selected (see bit CLK_SRC_SR) 1 _B CLK_SRC_SR set 2 selected (see bit CLK_SRC_SR)							
TRIG_PULSE	17	rw	Trigger output pulse length of one SYS_CLK period 0 _B Output on TOM[i]_OUT[x]_T is 1 as long as CN0=SR0 (if SR=_TRIG=1) 1 _B Output on TOM[i]_OUT[x]_T is 1 for only one SYS_CLK period if CN0=SR0 (if SR=_TRIG=1)							
UDMODE	19:18	rw	Up-down counter mode 00 _B Up-down counter mode disabled: CN0 counts always up 01 _B Up-down counter mode enabled: CN0 counts up and down, CM0 CM1 are updated if CN0 reaches 0 (i.e. changes from down to up) 10 _B Up-down counter mode enabled: CN0 counts up and down, CM0 CM1 are updated if CN0 reaches CM0 (i.e. changes from up to dow) 11 _B Up-down counter mode enabled: CN0 counts up and down, CM0 CM1 are updated if CN0 reaches 0 or CM0 (i.e. changes direction)							

AURIX™ TC3xx

Field	Bits	Туре	Description								
RST_CCU0	20	rw	Reset source of CCU0								
			Note: On TOM channel 2, SPEM=1 has special meaning. If SPEM = 1, the signal SPE_NIPD triggers the reset of CN0 independent of RST_CN0.								
			Note: This bit should only be set if bit OSM=0 (i.e. in continuous mode).								
			$0_{\rm B}$ Reset counter register CN0 to 0 on matching comparison CM0 $1_{\rm B}$ Reset counter register CN0 to 0 on trigger TRIG_[x-1] or TIM_EXT_CAPTURE(x).								
OSM_TRIG	21	rw	Enable trigger of one-shot pulse by trigger signal OSM_TRIG Note: This bit should only be set if bit OSM=1 and bit RST_CCU0=0. OB Signal OSM_TRIG cannot trigger start of single pulse generation Signal OSM_TRIG can trigger start of single pulse generation (only if bit OSM = 1)								
EXT_TRIG	22	rw	Select TIM_EXT_CAPTURE(x) as trigger signal 0 _B Signal TRIG_[x-1] is selected as trigger to reset CN0 or to start single pulse generation 1 _B Signal TIM_EXT_CAPTURE(x) is selected								
EXTTRIGOUT	23	rw	TIM_EXT_CAPTURE(x) as potential output signal TRIG_[x] 0 _B Signal TRIG_[x-1] is selected as output on TRIG_[x] (if TRIGOUT=0) 1 _B Signal TIM_EXT_CAPTURE(x) is selected as output on TRIG_[x] (if TRIGOUT=0)								
TRIGOUT	24	rw	Trigger output selection (output signal TRIG_[x]) of module TOM_CH[x] 0 _B TRIG_[x] is TRIG_[x-1] or TIM _EXT_CAPTURE(x) 1 _B TRIG_[x] is TRIG_CCU0								

Field	Bits	Туре	Description						
SPE_TRIG	25	rw	SPE trigger to reset CN0 For TOM channel 2, 6 and 7, this bit defines, in combination with bit SPEM, the source of output pin TOM[i]_CH[x]_OUT, and if CN0 can be reset by TOM input signal SPE[i]_NIPD. Note: For TOM channel 8 and 9, this bit defines only if CN0 reset is defined by input signal SPE[i]_NIPD or by configuration of RST_CCU0. The output TOM[i]_CH[x]_OUT is not affected. The configuration bit SPEM is not available for these channels, and thus assumed to be 0.						
			Note: If a configuration of SPEM SPE_TRIG = 0 1 or 1 0 is chosen (i.e. CN0 is reset by signal SPE[i]_NIPD), the one-shot mode in corresponding TOM channel should also be enabled by setting bit OSM=1 to generate one PWM pulse in case of trigger SPE[i]_NIPD.						
			Note: In SPE module, one of the trigger signals TOM[i]_CH2_TRIG_CCU1, TOM[i]_CH6_TRIG_CCU1, TOM[i]_CH7_TRIG_CCU1, TOM[i]_CH8_TRIG_CCU1, or TOM[i]_CH9_TRIG_CCU1 can be used to trigger the update of register SPE[i]_OUT_CTRL.						
			If SPEM=0 / SPEM=1: 0 _B TOM[i]_CH[x]_OUT defined by TOM[i] channel x SOUR register, CN0 reset is defined by configuration of bit RST_CCU0 / TOM[i]_CH[x]_OUT is defined by SPE[i]_OUT[x], CN0 is reset by signal SPE[i]_NIPD 1 _B TOM[i]_CH[x]_OUT defined by TOM[i] channel x SOUR register, CN0 is reset by signal SPE[i]_NIPD / TOM[i]_CH[x]_OUT is defined by SPE[i]_OUT[x], CN0 reset is defined by configuration of bit RST_CCU0						
OSM	26	rw	One-shot mode In this mode, the counter CN0 counts for only one period. The length of period is defined by CM0. A write access to the register CN0 triggers the start of counting. O _B One-shot mode disabled 1 _B One-shot mode enabled						
BITREV	27	rw	Bit-reversing of output of counter register CN0 Note: This bit enables the PCM mode of channel 15.						

Field	Bits	Туре	Description							
SPEM	28	rw	SPE output mode enable for channel Note: The SPE output mode is only implemented for TOM instances connected to an SPE module, and only for TOM channels 0 to 7. Note: For TOM channel 2, 6 and 7, this bit defines, in combination with bit SPE_TRIG, the source of output pin TOM[i]_CH[x]_OUT, and if CNO can be reset by TOM input signal SPE[i]_NIPD. 0 _B SPE output mode disabled: TOM[i]_CH[x]_OUT defined by TOM[i] channel x SOUR register 1 _B SPE output mode enabled: TOM[i]_CH[x]_OUT is defined by SPE[i]_OUT[x]							
GCM	29	rw	Gated Counter Mode enable The Gated Counter mode is only available for TOM instances connected to an SPE module, and only for channels 0 to 7. O _B Gated Counter mode disabled 1 _B Gated Counter mode enabled							
FREEZE	31	rw	FREEZE 0 _B A channel disable/enable may change internal register and output register 1 _B A channel enable/disable does not change an internal or output register, but stops counter CN0							
0	6:0, 10:8, 16, 30	r	Reserved Read as zero, shall be written as zero.							

28.14.8.10Register TOM[i]_CH[x]_CN0

TOMi Channel x CCU0 Counter Register

TOMi_CHx_CN0 (i=0-5;x=0-15)

TOMi C	hanne	l x CCU	l0 Coui	nter Re	gister	(00801	4 _H +i*80	₊ +i*800 _H +x*40 _H)			Application Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	0															
1	r															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	CNO															
·							r	W		•			•			

Field	Bits	Туре	Description
CNO	15:0	rw	TOM CCU0 counter register This counter is stopped if the TOM channel is disabled and not reset on an enable event of TOM channel.

Field	Bits	Туре	Description
0	31:16	r	Reserved
			Read as zero, shall be written as zero

28.14.8.11Register TOM[i]_CH[x]_CM0

TOMi Channel x CCU0 Compare Register

TOMi_CHx_CM0 (i=0-5;x=0-15)

TOMi Channel x CCU0 Compare Register(00800C _H +i*800 _H +x*40 _H)									Application Reset Value: 0000 0000 _H						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0															
<u> </u>	r r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	СМО														
1		I.	I.		I.	1	r	W			I	1	I.	ı	

Field	Bits	Туре	Description	
СМО	15:0	rw	TOM CCU0 compare register Setting CM0 < CM1 configures a duty cycle of 100%.	
0	31:16	r	Reserved	
			Read as zero, shall be written as zero	

28.14.8.12Register TOM[i]_CH[x]_SR0

TOMi Channel x CCU0 Compare Shadow Register

TOMi_CHx_SR0 (i=0-5;x=0-15)

TOMi Channel x CCU0 Compare Shadow Register(008004_H+i*800_H+x*40_H) Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'	'	1	1	1	1		D	1	'		1		ļ.	•
	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		r	<u> </u>	1	1	<u> </u>	1	<u> </u>	1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SI	RO							
	1	1	<u> </u>	<u> </u>	<u> </u>	l	r	W	<u> </u>	1	1	l	1	l	1

Field	Bits	Туре	Description
SR0	15:0	rw	TOM channel x shadow register SR0 for update of compare register CM0

Field	Bits	Туре	Description
0	31:16	r	Reserved
			Read as zero, shall be written as zero.

28.14.8.13Register TOM[i]_CH[x]_CM1

TOMi Channel x CCU1 Compare Register

TOMi_CHx_CM1 (i=0-5;x=0-15)

томі с	_	l x CCU	•	•	egister	(00801	.0 _H +i*8	00 _H +x	'40 _H)	Ар	plicati	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•	•	'	•				D		'	ı.	•	'	i.	
	1	1	<u> </u>	1	1	1		r	1	<u> </u>	I	1	<u> </u>	I	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	ı	1			CI	M1		ı	ı	1	i	ı	'
1							r	W					I		

Field	Bits	Туре	Description
CM1	15:0	rw	TOM CCU1 compare register Setting CM1 = 0 configures a duty cycle of 0%, independent of the configured value of CM0.
0	31:16	r	Reserved Read as zero, shall be written as zero

28.14.8.14Register TOM[i]_CH[x]_SR1

TOMi Channel x CCU1 Compare Shadow Register

TOMi_CHx_SR1 (i=0-5;x=0-15)

TOMi Channel x CCU1 Compare Shadow Register $(008008_{H} + i*800_{H} + x*40_{H})$ Application Reset Value: 0000 0000_{H}

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	ı	ı	1	ı	ı	'	, D	1		I	I	ı	I	'
	1	L	L	1	1	I	L	I	1		1	I	L	I	
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	I	I	ı	ı	I	SI) D1	1		ļI	ļi	I	Į.	ļ.
							. Ji								
<u> </u>		I	I	I.	I.	I	r	W					I		1

Field	Bits	Туре	Description
SR1	15:0	rw	TOM channel x shadow register SR1 for update of compare register CM1

Field	Bits	Туре	Description
0	31:16	r	Reserved
			Read as zero, shall be written as zero

28.14.8.15Register TOM[i]_CH[x]_STAT

TOMi Channel x Status Register

TOMi_ TOMi (-	•	-		(00801	8 _H +i*8	00 _H +x*	40 _H)	Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								0							
		I			I		I	r	1	I					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	ı			ı		0	1	1	ı	1			ı	OL
1	1	1	1	1	1	1	r	1	1	1	1	I.	1	I	r

Field	Bits	Туре	Description
OL	0	r	Output level of output TOM_OUT(x)
			Reset value is the inverted value of SL bit, which depends on the hardware configuration chosen by silicon vendor.
0	31:1	r	Reserved Read as zero, shall be written as zero

28.14.8.16Register TOM[i]_CH[x]_IRQ_NOTIFY

TOMi Channel x Interrupt Notification Register

TOMi_CHx_IRQ_NOTIFY (i=0-5;x=0-15) TOMi Channel x Interrupt Notification Register (00801C_H+i*800_H+x*40_H) Application Reset Value: 0000 0000_H 30 24 23 22 21 18 17 16 0 15 14 10 0 CCU1T CCU0T 0 C C rw

Field	Bits	Туре	Description
ССИОТС	0	rw	CCU0 Trigger condition interrupt for channel x The notification of the interrupt is only triggered one time after reaching the condition CN0 >= CM0. To enable re-trigger of the notification, first the condition CN0 < CM1 has to be reached. Note: This bit will be cleared on a CPU write access of value 1. A read access leaves the bit unchanged. OB No interrupt occurred 1B The condition CN0 >= CM0 was detected
CCU1TC	1	rw	CCU1 Trigger condition interrupt for channel x The notification of the interrupt is only triggered one time after reaching the condition CN0 >= CM1. To enable re-trigger of the notification, first the condition CN0 < CM1 has to be reached. Note: This bit will be cleared on a CPU write access of value 1. A read access leaves the bit unchanged. O _B No interrupt occurred 1 _B The condition CN0 >= CM1 was detected (if SR0_TRIG=0) / the condition SR0=CN0 was detected (if SR0_TRIG=1)
0	31:2	r	Reserved
			Read as zero, shall be written as zero.

28.14.8.17Register TOM[i]_CH[x]_IRQ_EN

TOMi Channel x Interrupt Enable Register

TOMi_CHx_IRQ_EN (i=0-5;x=0-15)

томі	Mi Channel x Interrupt Enable Register(008020 _H +i*800 _H +x*40 _H)								Ap	plicati	on Res	et Valı	ue: 0000	0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	1	1	1	1	ı	'	0			1	1	1	1	
		•		•				r			•			•	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı	ı	ı	ı	ı	•	0	l			ı	ı	ı	C_IRQ	CCU0T C_IRQ
	1	1	1	1	1		ı	1	1 1		1	1	ı	_ EN	_ EN

Field	Bits	Туре	Description
CCUOTC_IRQ_ EN	0	rw	TOM_CCU0TC_IRQ interrupt enable 0 _B Disable interrupt, interrupt is not visible outside GTM 1 _B Enable interrupt, interrupt is visible outside GTM
CCU1TC_IRQ_ EN	1	rw	TOM_CCU1TC_IRQ interrupt enable Coding see bit 0.
0	31:2	r	Reserved Read as zero, shall be written as zero.

28.14.8.18Register TOM[i]_CH[x]_IRQ_FORCINT

TOMi Channel x Force Interrupt Register

TOMi_CHx_IRQ_FORCINT (i=0-5;x=0-15)

томі С	OMi Channel x Force Interrupt Register(008024 _H +i*800 _H +x*40 _H)								Ар	plicati	on Res	et Valı	ue: 0000	0 0000 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ı	1	ı	1 1		0	ı	I	ı	ı	ı	ı	'
	1	1	1	1	1	1		r	1	I	1	1	1	1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı	ı	I	ı	I	C)	I	I	I		I	I		TRG_C CUOTC 0
	1	1	1	1	1	1 I	•	1	1	I	1	1	1	rw	rw

Field	Bits	Туре	Description							
TRG_CCU0TC	0	rw	Trigger TOM_CCU0TC0_IRQ interrupt by software							
0			This bit is cleared automatically after write.							
			This bit is write protected by bit RF_PROT of register GTM_CTRL							
			0 _B No interrupt triggering							
			1 _B Assert CCU0TC0_IRQ interrupt for one clock cycle							
TRG_CCU1TC	1	rw	Trigger TOM_CCU1TC0_IRQ interrupt by software							
0			This bit is cleared automatically after write.							
			This bit is write protected by bit RF_PROT of register GTM_CTRL.							
			0 _B No interrupt triggering							
			1 _B Assert CCU1TC0_IRQ interrupt for one clock cycle							
0	31:2	r	Reserved							
			Read as zero, shall be written as zero.							

28.14.8.19Register TOM[i]_CH[x]_IRQ_MODE

TOMi Channel x Interrupt Mode Register

TOMi_CHx_IRQ_MODE (i=0-5;x=0-15)

	OMi Channel x Interrupt Mode Register(008028 _H +i*800 _H +x*40 _H)							Application Reset Value: 0000 0000							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	i.	i.	Į.	ļ	ļ	Į.	•	0	i.		i.	Į.	ļ	'	
1	1	1	I	1	1	I	1	r	1		1	I	1		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ı	ı		1	1	' '	0	ı	ı		ı		1	IRQ_	MODE
							r						ı	r	w

AURIX™ TC3xx

Field	Bits	Туре	Description
IRQ_MODE	1:0	rw	IRQ mode selection The interrupt modes are described in Section 28.4.5. 00 _B Level mode 01 _B Pulse mode 10 _B Pulse-Notify mode 11 _B Single-Pulse mode
0	31:2	r	Reserved Read as zero, shall be written as zero