Prof. J.C. Kao

University of California, Los Angeles; Department of ECETAs: A. Ghosh, T. Monsoor & G. Zhao

1. Sampling

Assume x(t) a real bandlimited signal where $X(j\omega)$ is non-zero for $|\omega| \leq 2\pi B$ rad/s. If F_s Hz is the Nyquist rate of x(t), determine the Nyquist rate in Hz of the following signals in terms of B:

- (a) x(t-1)
- (b) $\cos(2\pi Bt)x(t)$
- (c) $x(t) + x(\frac{t}{2})$

2. Denoising

Given the system in Figure 1 and the Fourier transforms in Figure 2, determine A and find the maximum value of T in terms of W such that y(t) = x(t) if s(t) is the impulse train

$$s(t) = \sum_{n = -\infty}^{n = \infty} \delta(t - nT)$$

Figure 1: Denoising system

Figure 2: Fourier transforms

3. Laplace transform

Consider the signal $x(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$

- (a) Does the Fourier transform of this signal converge?
- (b) For which of the following values of σ does the Fourier transform of $x(t)e^{-\sigma t}$ converge?
 - i. $\sigma = 1$
 - ii. $\sigma = 2.5$
 - iii. $\sigma = 3.5$
- (c) Determine the laplace transform X(s) of x(t). Sketch the location of the poles and zeros of X(s) and the ROC.