Reconhecimento de placas de velocidade de trânsito

usando FFT

50 km/h

Enrique Laborão Monteiro (**elm2**)

Hugo Alves Cardoso (hac)

Lucca Morosini Gioia (**lmg2**)

Williams Santiago de Souza Filho (wssf)

0101

INTRODUÇÃO

Motivação	+ - × =	Objetivos
O reconhecimento de placas de trânsito é um tema essencial no desenvolvimento de veículos autônomos, dando-lhe grande relevância.		Propomos o uso de métodos estatísticos de pré-processamento e o uso da transformada rápida de Fourier (FFT) como uma possível solução para o problema

02)2

METODOLOGIA

A. Pré-processando nosso banco de imagens

- Redimensionamento e mudança da coloração das imagens para grayscale.
- Aplicação de um filtro anti-reflexo com o intuito de eliminar ruídos que possam atrapalhar nossa abordagem.
- Utilização de um filtro estatístico para enfatizar as bordas das nossas imagens, tornando-as mais nítidas.

B. Aplicação da FFT para obtenção de contornos

- Transformação da imagem pré-processada para o domínio da frequência, permitindo obter seu espectro de magnitude e a realização de filtros nesse domínio
- Utilização do filtro de passa alta (HPF), destacando os contornos da imagem

C. Identificação dos contornos

- Para detectar contornos na imagem, é necessário normalizar os valores dos pixels no intervalo [0,255] e posteriormente aproximá-los a valores binários, o ou 255.
- Para a detecção de contornos, utilizamos a biblioteca OpenCV e filtramos contornos considerando dimensões mais prováveis para indicar uma placa de trânsito (width/height em torno de 1, já que as placas são, majoritariamente, circulares).
- Tambem foi utilizada a biblioteca EasyOCR, para auxiliar na detecção de textos na imagem. Como no nosso caso, a abordagem precisa identificar números, filtramos os retângulos que continham caracteres numéricos.

C. Identificação dos contornos

- Para detectar contornos na imagem, é necessário normalizar os valores dos pixels no intervalo [0,255] e posteriormente aproximá-los a valores binários, o ou 255.
- Para a detecção de contornos, utilizamos a biblioteca OpenCV e filtramos contornos considerando dimensões mais prováveis para indicar uma placa de trânsito (width/height em torno de 1, já que as placas são, majoritariamente, circulares).
- Tambem foi utilizada a biblioteca EasyOCR, para auxiliar na detecção de textos na imagem. Como no nosso caso, a abordagem precisa identificar números, filtramos os retângulos que continham caracteres numéricos.

Imagem após a identificação dos contornos de interesse.

033

RESULTADOS

Discussão dos resultados obtidos

resultados

- Quantitativamente falando, dado o dataset montado manualmente a partir de imagens públicas, pode-se observar que o modelo obteve bom desempenho, encontrando regiões de interesse em 77.5% das imagens (em 31 das 40 coletadas).
- Dentre os casos em que houve falha na identificação, todos compartilhavam do fato de estarem associados a imagens de baixa resolução, dificultando a detecção de contornos pelas bibliotecas suportes.

Sucesso na detecção

Falha na detecção

Discussão dos resultados obtidos

resultados

De maneira geral, se baseando na nossa motivação principal para essa abordagem, podemos concluir que a utilização de FFT em imagens pré-processadas para identificação de placas sinalizadoras de velocidade no trânsito é uma ótima abordagem, desde que se tenha um dataset com imagens de alta resolução. No que diz respeito aos veículos autônomos, é um investimento que pode vir aumentar, futuramente, a segurança das pessoas nos transportes rodoviários.

Sucesso na detecção

Falha na detecção

OBRIGADO!