Question Number	Answer		Mark
20(a)	Stress (or strain) value at/beyond which a material/object undergoes a sudden or large plastic deformation	(1)	1
20(b)(i)	The force/tension from/in the cable (on the actor) is greater than the weight of the actor	(1) (1)	2
	(So) there is a resultant/net/unbalanced force (upwards)	(-)	_

0 4:

20(b)(ii)	Use of $W = m g$	(1)	
	Use of $\Sigma F = m \ a$	(1)	
	Tension = 917 (N)	(1)	3
	Example calculation $W = 77 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 755 \text{ N}$ $T - 755 \text{ N} = 77 \text{ kg} \times 2.1 \text{ m s}^{-2}$ T = 162 N + 755 N = 917 N		
20(b)(iii)			
	Use of $A = \pi r^2$	(1)	
	Use of $\sigma = F \div A$ (ecf from (b)(ii))	(1)	
	Allowed stress (15% yield stress of steel) = 3.8×10^7 Pa and $\sigma = 2.0 \times 10^7$ Pa Or		
	$(15\%)^{-1}$ of cable stress = 1.3×10^8 Pa Or		
	Max safe tension = 1.7×10^3 N Or		
	Min safe diameter = 5.6×10^{-3} m Or		
	Percentage of yield stress = 8%		
	Or Max safe acceleration = 12.3 m s^{-2}	(1)	
	Valid conclusion by comparison of relevant student values	(1)	4
	Example calculation		
	$A = \frac{\pi d^2}{4} = \frac{\pi \times (7.6 \times 10^{-3} \mathrm{m})^2}{4} = 4.54 \times 10^{-5} \mathrm{m}^2$		
	$\sigma = \frac{{}^{4} 917 \text{ N}}{{}^{4.54 \times 10^{-5} \text{m}^{2}}} = 2.02 \times 10^{7} \text{ Pa (show that value gives } 2.03 \times 10^{7} \text{ Pa)}$		
	$0.15 \times 2.5 \times 10^8 \text{ Pa} = 3.75 \times 10^7 \text{ Pa}$ $2.03 \times 10^7 \text{ Pa} < 3.75 \times 10^7 \text{ Pa so it is safe.}$		
20(c)			
	New cable has a greater cross sectional area, (but same breaking stress) so a greater force is required	(1)	
	Because new cable has smaller Young modulus, there is a greater strain for the same stress	(1)	
	So (at breaking stress) there will be a greater extension (because cables are the same length) [dependent on MP2] Or		
	Smaller Young modulus implies greater extension (at breaking stress, because cables are the same length) [independent mark]	(1)	
	(And as) force and extension both increase, work done to break the new cable is greater than that for the original cable [independent mark]	(1)	4

14

Total for question 20