Almost Beatty Partitions and Optimal Scheduling Problems

Xiaomin Li

Mentor: A. J. Hildebrand University of Illinois at Urbana-Champaign

Rose-Hulman Undergraduate Mathematics Conference April 20, 2019

Credits

This talk is based on a joint work with:

- Junxian Li (University of Göttigen)
- Yun Xie (University of Washington)
- A. J. Hildebrand (University of Illinois)

It originated with a project in Spring 2018 at the **Illinois Geometry Lab** at the University of Illinois at Urbana-Champaign.

- Faculty mentors: A. J. Hildebrand and Ken Stolarsky
- Graduate student: Junxian Li
- Undergraduate students: Weiru Chen, Matthew Cho, Jared Krandel, Xiaomin Li and Yun Xie

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- Applications
 - Chairman Assignment Problem
 - Tijdeman's Theorem
 - Connection with Non-homogeneous Beatty Partitions
 - Other Scheduling Problems
- Future Work

Beatty Sequences: Definition

Definition: Beatty Sequence

Given $\alpha > 0$, define the **Beatty sequence** B_{α} as

$$B_{\alpha}:=\left\{\lfloor\frac{n}{\alpha}\rfloor,n=1,2,\ldots\right\},$$

where |x| denotes the floor function.

4/30

Definition: Beatty Sequence

Given $\alpha > 0$, define the **Beatty sequence** B_{α} as

$$B_{\alpha}:=\left\{\lfloor \frac{n}{\alpha}\rfloor, n=1,2,\ldots\right\},$$

where |x| denotes the floor function.

Remarks

- When $\alpha \leq 1$, then the elements of B_{α} are distinct and have density α in \mathbb{N} .
- When $\alpha > 1$, B_{α} has repeated elements.

															16
$\alpha = 1/3$ 3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = \sqrt{2}$	0	1	2	2	3	4	4	5	6	7	7	8	9	9	10	11

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$																
$\alpha = 1$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = \sqrt{2}$																
$\alpha = \pi$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4	5

Beatty Sequences: Examples

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\alpha = 1/3$	3	6	9													
$\alpha = 1$	1	2	3	4	5	6	l	l	l .	10			13	14	15	16
$\alpha = \sqrt{2}$	0	1	2	2	3	4	4	5	6	7	7	8	9	9	10	11
$\alpha = \pi$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4	5

Examples of Beatty Sequences B_{α} with $\alpha = 1/3, 1, \sqrt{2}, \pi$.

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
														22		
B_{1/ϕ^2}	2	5	7	10	13	15	18	20	23	26	28	31	34	36	39	41

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

Rearranging the last two sequences gives:

$B_{1/\phi}$	1		3	4		6		8	9		11	12		14		16
B_{1/ϕ^2}		2			5		7			10			13		15	

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

n
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

$$B_{1/\phi}$$
 1
 3
 4
 6
 8
 9
 11
 12
 14
 16
 17
 19
 21
 22
 24
 25

 B_{1/ϕ^2}
 2
 5
 7
 10
 13
 15
 18
 20
 23
 26
 28
 31
 34
 36
 39
 41

Rearranging the last two sequences gives:

Observations:

• The Beatty sequences $B_{1/\phi}$ and B_{1/ϕ^2} partition \mathbb{N} .

Beatty Sequences: Examples II

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$.

n
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

$$B_{1/\phi}$$
 1
 3
 4
 6
 8
 9
 11
 12
 14
 16
 17
 19
 21
 22
 24
 25

 B_{1/ϕ^2}
 2
 5
 7
 10
 13
 15
 18
 20
 23
 26
 28
 31
 34
 36
 39
 41

Rearranging the last two sequences gives:

$B_{1/\phi}$	1		3	4		6		8	9		11	12		14		16
B_{1/ϕ^2}		2			5		7			10			13		15	

Observations:

- The Beatty sequences $B_{1/\phi}$ and B_{1/ϕ^2} partition \mathbb{N} .
- $1/\phi + 1/\phi^2 = 1$ (i.e. the densities of the last two sequences **sum up to 1**).

Beatty's Theorem: Statement

The following theorem shows that the previous observation holds whenever the densities α and β are irrational and sum up to 1.

Theorem (Beatty's Theorem)

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. Then B_{α} and B_{β} form a partition of the positive integers.

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$$

 $\iff j \le \frac{n}{\alpha} < j + 1 \text{ and } j \le \frac{n}{\beta} < j + 1$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$. Then:

$$\begin{split} j &= \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor \\ \iff j &\leq \frac{n}{\alpha} < j+1 \text{ and } j \leq \frac{n}{\beta} < j+1 \\ \iff j &< \frac{n}{\alpha} < j+1 \text{ and } j < \frac{n}{\beta} < j+1 \text{ (since } \alpha, \beta \text{ are irrational)} \end{split}$$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer j such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$$

$$\iff j \le \frac{n}{\alpha} < j + 1 \text{ and } j \le \frac{n}{\beta} < j + 1$$

$$\iff j < \frac{n}{\alpha} < j + 1 \text{ and } j < \frac{n}{\beta} < j + 1 \text{ (since } \alpha, \beta \text{ are irrational)}$$

$$\iff j\alpha < n < (j + 1)\alpha \text{ and } j\beta < n < (j + 1)\beta$$

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. First, prove by contradiction that the two Beatty sequences are disjoint.

Suppose there exists an integer *j* such that $j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$. Then:

$$j = \lfloor \frac{n}{\alpha} \rfloor = \lfloor \frac{n}{\beta} \rfloor$$

$$\iff j \le \frac{n}{\alpha} < j + 1 \text{ and } j \le \frac{n}{\beta} < j + 1$$

$$\iff j < \frac{n}{\alpha} < j + 1 \text{ and } j < \frac{n}{\beta} < j + 1 \text{ (since } \alpha, \beta \text{ are irrational)}$$

$$\iff j\alpha < n < (j + 1)\alpha \text{ and } j\beta < n < (j + 1)\beta$$

$$\iff j < 2n < j + 1 \text{ (since } \alpha + \beta = 1)$$

This is a contradiction since n, j are integers.

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\frac{k_1}{\alpha} < j \text{ and } j+1 \le \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \le \frac{k_2+1}{\beta}$$

9/30

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\begin{split} \frac{k_1}{\alpha} < j \text{ and } j+1 &\leq \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \leq \frac{k_2+1}{\beta} \\ \iff \frac{k_1}{\alpha} < j \text{ and } j+1 < \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 < \frac{k_2+1}{\beta} \end{split}$$

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\begin{split} \frac{k_1}{\alpha} < j \text{ and } j+1 &\leq \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \leq \frac{k_2+1}{\beta} \\ \iff \frac{k_1}{\alpha} < j \text{ and } j+1 < \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 < \frac{k_2+1}{\beta} \\ \iff k_1 < j\alpha \text{ and } (j+1)\alpha < k_1+1, k_2 < j\beta \text{ and } (j+1)\beta < k_2+1 \end{split}$$

9/30

Second, prove by contradiction that any integer belongs to at least one of the sequences.

Suppose there exists an integer j s.t. $j \neq \lfloor \frac{n}{\alpha} \rfloor$ and $j \neq \lfloor \frac{n}{\beta} \rfloor$ for any n. As j must be between two consecutive elements in B_{α} , similarly for B_{β} , so there exists integers k_1 and k_2 such that:

$$\begin{split} \frac{k_1}{\alpha} < j \text{ and } j+1 &\leq \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 \leq \frac{k_2+1}{\beta} \\ &\iff \frac{k_1}{\alpha} < j \text{ and } j+1 < \frac{k_1+1}{\alpha}, \quad \frac{k_2}{\beta} < j \text{ and } j+1 < \frac{k_2+1}{\beta} \\ &\iff k_1 < j\alpha \text{ and } (j+1)\alpha < k_1+1, k_2 < j\beta \text{ and } (j+1)\beta < k_2+1 \\ &\iff k_1+k_2 < j < k_1+k_2+1 \text{ (since } \alpha+\beta=1) \end{split}$$

This is a contradiction since j, k_1, k_2 are integers. \square

9/30

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- 3 Applications
 - Chairman Assignment Problem
 - Tijdeman's Theorem
 - Connection with Non-homogeneous Beatty Partitions
 - Other Scheduling Problems
- Future Work

Uspensky's Theorem

Beatty Partitions into More Than Two Parts?

Question

Does Beatty's Theorem generalize to partitions into 3 parts?

That is, given three positive irrational numbers α , β and γ which sum up to 1, do B_{α} , B_{β} and B_{γ} partition the positive integers?

Beatty Partitions into More Than Two Parts?

Question

Does Beatty's Theorem generalize to partitions into 3 parts?

That is, given three positive irrational numbers α , β and γ which sum up to 1, do B_{α} , B_{β} and B_{γ} partition the positive integers?

Answer: No!

Theorem (Uspensky's Theorem)

Beatty's Theorem does not hold for three (or more) sequences. That is, if α , β and γ are arbitrary positive numbers, then B_{α} , B_{β} and B_{γ} never partition the positive integers.

Almost Beatty Sequences

Almost Beatty Sequences

Question

How close can three Beatty sequences come to a 3-part partition?

Beatty's Theorem

Almost Beatty Sequences

Question

How close can three Beatty sequences come to a 3-part partition?

Definition: Almost Beatty Sequence

Consider a Beatty sequence with density $\alpha \in (0, 1)$:

$$B_{\alpha}=(a(n))_{n\in\mathbb{N}}$$
, where $a(n)=\lfloor \frac{n}{\alpha} \rfloor$.

We call a sequence

$$\widetilde{B_{\alpha}} = (\widetilde{a}(n))_{n \in \mathbb{N}}$$

an almost Beatty sequence with density α if $\|\widetilde{a} - a\| < \infty$, where $\|\widetilde{a} - a\| = \sup_{n} |\widetilde{a}(n) - a(n)|$.

Theorem (Partition into 2 Exact and 1 Almost Beatty Sequence)

Let α , β , and γ be positive irrational numbers such that $\alpha + \beta + \gamma = 1$. Let $B_{\alpha} = (a(n))_{n \in \mathbb{N}}$, $B_{\beta} = (b(n))_{n \in \mathbb{N}}$ and $B_{\gamma} = (c(n))_{n \in \mathbb{N}}$ be the corresponding Beaty sequences. Define

$$\widetilde{B_{\gamma}} = \mathbb{N} \setminus (B_{\alpha} \cup B_{\beta}) = (\widetilde{c}(n))_{n \in \mathbb{N}}.$$

Then:

- (i) B_{α} , B_{β} , $\widetilde{B_{\gamma}}$ form a partition of \mathbb{N} if and only if $r\alpha + s\beta = 1$ for some $r, s \in \mathbb{N}$.
- (ii) If this condition is satisfied, then $\widetilde{B_{\gamma}}$ is an almost Beatty sequence with perturbation errors satisfying $|c(n) \widetilde{c}(n)| \le \max(\lfloor \frac{2-\alpha}{1-\alpha} \rfloor, \lfloor \frac{2-\beta}{1-\beta} \rfloor)$.

Remarks

- Part (i) of the theorem (i.e. the partition property) follows from the following Theorem of Skolem (1957):
 - Let α,β be irrational numbers in (0,1). Then the Beatty sequences B_{α} and B_{β} are disjoint if and only if there exist positive integers r and s such that $r\alpha + s\beta = 1$.
- In part (ii) (the **almost Beatty sequence property**), the bound on the perturbation errors $|c(n) \widetilde{c}(n)|$ is the best possible. If $\max(\alpha, \beta) < \frac{1}{2}$, then the bound simplifies to $|c(n) \widetilde{c}(n)| \le 2$.

14/30

Construction 1: Example

Example: $\alpha = 1/\phi^3$, $\beta = 1/\phi^4$, $\gamma = 1/\phi$

We have $1/\phi^3 + 1/\phi^4 + 1/\phi = 1$ and $3/\phi^3 + 2/\phi^4 = 1$.

Therefore, the condition $r\alpha + s\beta = 1$ holds for r = 3 and s = 2.

B_{α}	a(n)	4	8	12	16	21	25	29	33	38	42	46	50
B_{β}	b(n)	6	13	20	27	34	41	47	54	61	68	75	82
B_{γ}	c(n)	1	3	4	6	8	9	11	12	14	16	17	19
$\widetilde{B_{\gamma}}$	$\widetilde{c}(n)$	1	2	3	5	7	9	10	11	14	15	17	18
Error	$c(n) - \widetilde{c}(n)$	0	1	1	1	1	0	1	1	0	1	0	1

Construction 1: Analysis of Perturbation Errors

Theorem (Perturbation Errors in Construction 1)

Assume the conditions of the above theorem are satisfied and suppose $\max(\alpha,\beta)<\frac{1}{2}$. Then the perturbation errors $c(n)-\widetilde{c}(n)$ are 0,1,2 and each value is attained infinitely often. Moreover, the densities of these values are given by:

$$\begin{aligned} d_0 &= \frac{r(s-1)(1-2\gamma) + (2r\gamma - 1 - \lfloor r\gamma \rfloor)\lfloor r\gamma \rfloor}{2r(r-s)\gamma} \\ d_1 &= \frac{r^2(4\gamma - 1) - r(s-2+4\gamma) - (4r\gamma - 2)\lfloor r\gamma \rfloor + 2\lfloor r\gamma \rfloor^2}{2r(r-s)\gamma} \\ d_2 &= \frac{(-r+2r\gamma - \lfloor r\gamma \rfloor)(1-r+\lfloor r\gamma \rfloor)}{2r(r-s)\gamma} \end{aligned}$$

Example: Density of Perturbation Errors

Example: $\alpha = 1/\phi^3$, $\beta = 1/\phi^4$, $\gamma = 1/\phi$

B_{α}	a(n)	4	8	12	16	21	25	29	33	38	42	46	50
B_{β}	b(n)	6	13	20	27	34	41	47	54	61	68	75	82
B_{γ}	c(n)	1	3	4	6	8	9	11	12	14	16	17	19
$\widetilde{B_{\gamma}}$	$\widetilde{c}(n)$	1	2	3	5	7	9	10	11	14	15	17	18
Error	$c(n) - \widetilde{c}(n)$	0	1	1	1	1	0	1	1	0	1	0	1

The densities of the perturbation errors 0,1,2 are given by:

$$d_0 = (1 + \sqrt{5})/12 = 0.26967...,$$

 $d_1 = (19 - 5\sqrt{5})/12 = 0.65163...,$
 $d_2 = (\sqrt{5} - 2)/3 = 0.078689...$

Theorem (Partition into 1 Exact and 2 Almost Beatty Sequences)

Let α , β , and γ be positive irrational numbers such that $\alpha + \beta + \gamma = 1$ and $\max(\alpha, \beta) < \gamma$. Define $\widetilde{B_{\beta}} = (\widetilde{b}(n))_{n \in \mathbb{N}}$ as

$$\widetilde{b}(n) = \begin{cases} b(n), & \text{if } b(n) \notin B_{\alpha} \\ b(n) - 1, & \text{if } b(n) \in B_{\alpha} \end{cases}$$

Denote

$$\widetilde{\textit{\textbf{B}}_{\gamma}}=\mathbb{N}\backslash(\textit{\textbf{B}}_{lpha}\cup\widetilde{\textit{\textbf{B}}_{eta}}).$$

Then B_{α} , $\widetilde{B_{\beta}}$, and $\widetilde{B_{\gamma}}$ partition all positive integers and $b(n) - \widetilde{b}(n) \in \{0, 1\}$, $c(n) - \widetilde{c}(n) \in \{0, 1, 2\}$

Remark: Construction 2 applies to any irrational densities α, β, γ that sum up to 1 and satisfy $\max(\alpha, \beta) < \gamma$.

Is this Construction Best Possible?

Question

Is there a partition of the positive integers into one exact and two almost Beatty sequences with perturbation errors less than or equal to 1?

Is this Construction Best Possible?

Question

Beatty's Theorem

Is there a partition of the positive integers into one exact and two almost Beatty sequences with perturbation errors less than or equal to 1?

Applications

Answer: No (in general)!

Theorem (Nonexistence Result)

Let α , β , and γ be positive irrational numbers such that $\alpha + \beta + \gamma = 1$. If $\alpha > \frac{1}{3}$ and $1, \alpha, \beta$ are linearly independent over Q, then there does not exist an almost Beatty partition $B_{\alpha} \cup B_{\beta} \cup B_{\gamma} = \mathbb{N}$ such that $B_{\beta} = (b(n))_{n \in \mathbb{N}}, B_{\gamma} = (\widetilde{c}(n))_{n \in \mathbb{N}}$ satisfy

$$\sup_{n}|b(n)-\widetilde{b}(n)|\leq 1,\quad \sup_{n}|c(n)-\widetilde{c}(n)|\leq 1.$$

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- Applications
 - Chairman Assignment Problem
 - Tijdeman's Theorem
 - Connection with Non-homogeneous Beatty Partitions
 - Other Scheduling Problems
- Future Work

Chairman Assignment Problem

Chairman Assignment Problem (Robert Tijdeman, 1980)

Suppose a set of $k \ (\ge 2)$ states $S = \{S_1, S_2, ..., S_k\}$ form a union and a union chair has to be selected every year. Each state S_i has a positive weight λ_i with $\sum_{i=1}^k \lambda_i = 1$.

Denote the state designating the chairman in the nth year by ω_n . Hence $\omega = \{\omega_n\}_{n \in \mathbb{N}}^{\infty}$ is a sequence in S. Let $A_{\omega}(i, N)$ denote the number of chairmen representing S_i in the first N years.

The problem asks for the assignment $\boldsymbol{\omega}$ which minimizes the perturbation error

$$D(\omega) = \sup_{i=1,\dots,k} \sup_{N \in \mathbb{N}} |\lambda_i N - A_{\omega}(i,N)|.$$

Chairman Assignment Problem

Chairman Assignment & Partition of Postive Integers

Example: Chairman Assignment for 2 States														
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
State1	1		3	4		6		8	9		11	12		14
State2		2			5		7			10			13	
Assignment ω_n	1	2	1	1	2	1	2	1	1	2	1	1	2	1

This example illustrates the connection between chairman assignments with k states and partitions of \mathbb{N} into k sequences.

Chairman Assignment Problem

Connection with Beatty Partitions

Question:

Is the assignment given by a Beatty partition an optimal assignment (i.e. minimizes the error $D(\omega)$ defined by Tijdeman)?

Connection with Beatty Partitions

Question:

Is the assignment given by a Beatty partition an optimal assignment (i.e. minimizes the error $D(\omega)$ defined by Tijdeman)?

Theorem

Let α , β be positive irrational numbers such that $\alpha+\beta=1$. Then the chairman assignment ω corresponding to the Beatty partition $\mathbb{N}=\mathcal{B}_{\alpha}\cup\mathcal{B}_{\beta}$ satisfies

$$D(\omega) = \max\{\alpha, 1 - \alpha\}.$$

Theorem (Tijdeman, 1980)

Define

$$D_k^* := \sup_{\lambda_1, \dots, \lambda_k} \inf_{\omega} D(\omega) \le k - 1$$

where ω runs through all Chairman assignment sequences and $\lambda_1,...,\lambda_k$ run through all k positive real numbers which sum up to 1. Then

$$D_k^* = 1 - \frac{1}{2k-2}.$$

Tijdeman also gave a recursive algorithm to generate the optimal assignment given by the theorem.

Optimal Assignment according to Tijdeman

Corollary

For k = 2, Tijdeman's shows that the optimal assignment ω satisfies $D(\omega) = \frac{1}{2}$.

Since for the Beatty partition assignment, we have $D(\omega) = \max\{\alpha, 1 - \alpha\} > \frac{1}{2}$, the Beatty partition assignment is **not optimal**.

Connection with Non-homogeneous Beatty Partitions

Connection with Non-homogeneous Beatty Partitions

Definition: Non-homogeneous Beatty Sequence

Given $\alpha>0$ and $\delta\in\mathbb{R}$, define the non-homogeneous Beatty sequence $\mathcal{B}_{\alpha,\delta}^*$ as:

$$B_{\alpha,\delta}^* := \{\lfloor \frac{n}{\alpha} + \delta \rfloor, n = 1, 2, \dots \}.$$

Connection with Non-homogeneous Beatty Partitions

Connection with Non-homogeneous Beatty Partitions

Definition: Non-homogeneous Beatty Sequence

Given $\alpha > 0$ and $\delta \in \mathbb{R}$, define the **non-homogeneous Beatty sequence** $B_{\alpha,\delta}^*$ as:

$$B_{\alpha,\delta}^* := \{\lfloor \frac{n}{\alpha} + \delta \rfloor, n = 1, 2, \dots \}.$$

Theorem

Let α , β be positive irrational numbers such that $\alpha + \beta = 1$. Let $\delta = 1 - \frac{1}{2\alpha}$, $\epsilon = 1 - \frac{1}{2\beta}$. Then the non-homogeneous Beatty sequences $B_{\alpha,\delta}^*$ and $B_{\beta,\epsilon}^*$ partition $\mathbb N$ and the chairman assignment ω corresponding to $B_{\alpha,\delta}^*$ and $B_{\beta,\epsilon}^*$ satisfies

$$D(\omega)=\frac{1}{2}$$

and therefore is an optimal assignment.

Other Applications

Other possible applications:

- Frequency Hopping
- Carpool Problem
- Weighted Fair Queueing
- Computer Networks

Outline

- Beatty's Theorem
 - Beatty Sequences
- Almost Beatty Partitions
 - Uspensky's Theorem
 - Almost Beatty Sequences
 - Almost Beatty Partitions: Construction 1
 - Almost Beatty Partitions: Construction 2
- 3 Applications
 - Chairman Assignment Problem
 - Tijdeman's Theorem
 - Connection with Non-homogeneous Beatty Partitions
 - Other Scheduling Problems
- Future Work

Future Work

- Investigate almost Beatty partitions into more than 3 sequences.
- Investigate almost Beatty partitions using non-homogeneous Beatty sequences. Can such sequences give an optimal chairman assignment?
- Consider other perturbation measures in the Chairman Assigment Problem.
- Look for applications of Beatty partitions to other optimal scheduling problems (e.g. frequency hopping).
- Investigate connections between non-homonegeous Beatty sequences and sequences given by Tijdeman's recursive algorithm.

References

- Beatty, S. (1926). Problem 3173. American Mathematical Monthly. 33 (3): 159. doi:10.2307/2300153
- Hildebrand, A. J., Li, J., Li, X., Xie, Y. (2018). Almost Beatty Partitions. arXiv preprint arXiv:1809.08690.
- Lord Rayleigh (1894). The Theory of Sound. 1 (Second ed.). Macmillan. p. 123. 10.1016/0012-365X(80)90269-1.
- Skolem, T. (1957). On certain distributions of integers in pairs with given differences, *Math. Scand.* 5 (1957), 57–68.
- Tijdeman, R. (1980). The chairman assignment problem. *Discrete Mathematics*. 32. 323-330.
- Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp. 516–521. Canadian Journal of Mathematics, 21, 6-27.

