MATH 4065 HW 2

David Chen, dc3451

October 2, 2020

8

We can just bash this one out in terms of real partial derivatives (there's probably an easier way than this, but this is the obvious route). Let

$$f(x+iy) = f_1(x,y) + if_2(x,y), g(x+iy) = g_1(x,y) + ig_2(x,y), h(x+iy) = h_1(x,y) + ih_2(x,y).$$

Note that from the chain rule in real multivariable calculus, and treating a + bi as (a, b), we have that

$$\begin{bmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{bmatrix} = Dh = Dg \cdot Df = \begin{bmatrix} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$$

This gives

$$\frac{\partial h}{\partial z} = \frac{1}{2} \left(\frac{\partial h}{\partial x} + \frac{1}{i} \frac{\partial h}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial h_1}{\partial x} + \frac{\partial h_2}{\partial y} + i \left(\frac{\partial h_2}{\partial x} - \frac{\partial h_1}{\partial y} \right) \right)$$
$$\frac{\partial h}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial h}{\partial x} - \frac{1}{i} \frac{\partial h}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial h_1}{\partial x} - \frac{\partial h_2}{\partial y} + i \left(\frac{\partial h_2}{\partial x} + \frac{\partial h_1}{\partial y} \right) \right)$$

We can now compute, from the above matrix,

$$\frac{\partial h}{\partial z} = \frac{1}{2} \left(\left(\frac{\partial g_1}{\partial x} \frac{\partial f_1}{\partial x} + \frac{\partial g_1}{\partial y} \frac{\partial f_2}{\partial x} \right) + \left(\frac{\partial g_2}{\partial x} \frac{\partial f_1}{\partial y} + \frac{\partial g_2}{\partial y} \frac{\partial f_2}{\partial y} \right) \right)
+ \frac{i}{2} \left(\left(\frac{\partial g_2}{\partial x} \frac{\partial f_1}{\partial x} + \frac{\partial g_2}{\partial y} \frac{\partial f_2}{\partial x} \right) - \left(\frac{\partial g_1}{\partial y} \frac{\partial f_1}{\partial y} + \frac{\partial g_1}{\partial x} \frac{\partial f_2}{\partial y} \right) \right)$$

Which factors nicely into the obvious guess, given what we are trying to prove (it is tedious, but easy to check that the following results in the last expression)

$$= \frac{1}{4} \left(\frac{\partial g_1}{\partial x} + \frac{\partial g_2}{\partial y} + i \left(\frac{\partial g_2}{\partial x} - \frac{\partial g_1}{\partial y} \right) \right) \left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + i \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \right)$$

$$+ \frac{1}{4} \left(\frac{\partial g_1}{\partial x} - \frac{\partial g_2}{\partial y} + i \left(\frac{\partial g_2}{\partial x} + \frac{\partial g_1}{\partial y} \right) \right) \left(\frac{\partial f_1}{\partial x} - \frac{\partial f_2}{\partial y} + i \left(-\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) \right)$$

From the first line showing how $\frac{\partial h}{\partial z}$ decomposes, but applied to f, g, we have that this simplies to

$$= \frac{\partial g}{\partial z} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial z}$$

Similarly,

$$\begin{split} \frac{\partial h}{\partial \bar{z}} &= \frac{1}{2} \left(\left(\frac{\partial g_1}{\partial x} \frac{\partial f_1}{\partial x} + \frac{\partial g_1}{\partial y} \frac{\partial f_2}{\partial x} \right) - \left(\frac{\partial g_2}{\partial x} \frac{\partial f_1}{\partial y} + \frac{\partial g_2}{\partial y} \frac{\partial f_2}{\partial y} \right) \right) \\ &+ \frac{i}{2} \left(\left(\frac{\partial g_2}{\partial x} \frac{\partial f_1}{\partial x} + \frac{\partial g_2}{\partial y} \frac{\partial f_2}{\partial x} \right) + \left(\frac{\partial g_1}{\partial y} \frac{\partial f_1}{\partial y} + \frac{\partial g_1}{\partial x} \frac{\partial f_2}{\partial y} \right) \right) \\ &= \frac{1}{4} \left(\frac{\partial g_1}{\partial x} + \frac{\partial g_2}{\partial y} + i \left(\frac{\partial g_2}{\partial x} - \frac{\partial g_1}{\partial y} \right) \right) \left(\frac{\partial f_1}{\partial x} - \frac{\partial f_2}{\partial y} + i \left(\frac{\partial f_2}{\partial x} + \frac{\partial f_1}{\partial y} \right) \right) \\ &+ \frac{1}{4} \left(\frac{\partial g_1}{\partial x} - \frac{\partial g_2}{\partial y} + i \left(\frac{\partial g_2}{\partial x} + \frac{\partial g_1}{\partial y} \right) \right) \left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + i \left(-\frac{\partial f_2}{\partial x} + \frac{\partial f_1}{\partial y} \right) \right) \\ &= \frac{\partial g}{\partial z} \frac{\partial f}{\partial \bar{z}} + \frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{f}}{\partial \bar{z}} \end{split}$$

20

Via a theorem from class, we have that for any power series

$$f(z_0 + h) = \sum_{n=0}^{\infty} a_n h^n$$
, we have $f'(z_0 + h) = \sum_{n=1}^{\infty} n a_n h^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} h^n$

In general, we have that $f^{(n)}(z_0 + h) = \sum_{n=0}^{\infty} \frac{(n+m)!}{n!} a_{n+m} h^n$. We can induct, as the earlier formula gives the m = 1 case; if it holds for m, then applying the formula in the base case of $f'(z_0 + h)$, which follows the same pattern:

$$f^{(m+1)} = \sum_{n=1}^{\infty} n \left(\frac{(n+m)!}{n!} \right) a_{n+m} h^{n-1} = \sum_{n=0}^{\infty} \frac{(n+1+m)!}{n!} a_{n+m+1} h^n$$

so it holds for m+1.

Then, if a function is given by a power series on some region centered at z_0 , $f^{(m)}(z_0) = \sum_{n=0}^{\infty} \frac{(n+m)!}{n!} a_{n+m} 0^n = m! a_m$, so $a_m = \frac{f^{(m)}(z_0)}{m!}$.

Then, to expand $f_m(z) = (1-z)^{-m}$ to a power series, we need to find, for the n^{th} term a_n , $\frac{f^n(z_0)}{n}$. We have that since 1-z is holomorphic, $(1-z)^{-m}$ is holomorphic everywhere but z=1, and so on the appropriate domain, $f'_m(z) = \frac{d}{dz}(1-z)^{-m}$. By the power rule (and the fact given in class that $\frac{d}{dz}$ works as expected here),

$$f_m^{(n)}(z) = \frac{(n+m-1)!}{(m-1)!(1-z)^{n+m}}$$

Note that this for n=1 is just a simple power rule application, and if it holds for k, then $f_m^{(k+1)}(z) = \frac{(k+m-1)!}{(m-1)!} \left(\frac{k+m}{(1-z)^{k+1+m}}\right) = \frac{((k+1)+m-1)!}{(m-1)!(1-z)^{n+k+1}}$, so it holds for k+1.

Then, we have that, centered at z_0 , the coefficients of the power series are

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{(n+m-1)!}{n!(m-1)!(1-z_0)^{n+1}} = \binom{n+m-1}{m-1} \frac{1}{(1-z_0)^{n+1}}$$

Thus, we have that

$$f_m(z_0 + h) = \frac{1}{(1 - (z_0 + h))^m} = \sum_{n=0}^{\infty} {n+m-1 \choose m-1} \frac{h^n}{(1-z_0)^{n+1}}$$

Further,

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{n+m}{n+1} \frac{1}{|1-z_0|} = \frac{1}{|1-z_0|}$$

so we have a radius of convergence of $|1-z_0|$.

Everything above only applies for $z_0 \neq -1$, as f_m is not defined at -1. For the second half of the problem, note that we take $z_0 = 0$, and

$$\lim_{n \to \infty} \frac{\binom{n+m-1}{m-1}}{\frac{1}{(m-1)!}n^{m-1}} = \lim_{n \to \infty} \frac{\binom{n+m-1}{m-1}}{\frac{1}{(m-1)!}n^{m-1}}$$

$$= \lim_{n \to \infty} \frac{(n+m-1)!}{n^{m-1}n!}$$

$$= \lim_{n \to \infty} \frac{\prod_{i=1}^{m-1} (n+i)}{n^{m-1}}$$

$$= \lim_{n \to \infty} \prod_{i=1}^{m-1} \frac{n+i}{n}$$

$$= \prod_{i=1}^{m-1} \lim_{n \to \infty} \frac{n+i}{n} = 1$$

So we have that $a_n \sim \frac{1}{(m-1)!} n^{m-1}$.

21

We can compute the partial sums; if these partial sums converge to z/(1-z), then we are done. In particular, we can induct on n to show that $\sum_{i=0}^{n} \frac{z^{2^i}}{1-z^{2^{i+1}}} = \frac{\sum_{i=1}^{2^{n+1}-1} z^i}{1-z^{2^{n+1}}}$. In particular,

for n = 0, the sum is only one term, which is $\frac{z}{1-z^2}$, which is of the correct form. Then, if it holds for n, we can see that

$$\begin{split} \sum_{i=0}^{n+1} \frac{z^{2^{i}}}{1 - z^{2^{i+1}}} &= \frac{\sum_{i=1}^{2^{n+1} - 1} z^{i}}{1 - z^{2^{n+1}}} + \frac{z^{2^{n+1}}}{1 - z^{2^{n+2}}} \\ &= \frac{(1 + z^{2^{n+1}}) \sum_{i=1}^{2^{n+1} - 1} z^{i}}{(1 - z^{2^{n+1}})(1 + z^{2^{n+1}})} + \frac{z^{2^{n+1}}}{1 - z^{2^{n+2}}} \\ &= \frac{(1 + z^{2^{n+1}}) \sum_{i=1}^{2^{n+1} - 1} z^{i} + z^{2^{n+1}}}{1 - z^{2^{n+2}}} \\ &= \frac{\sum_{i=1}^{2^{n+1} - 1} z^{i} + z^{2^{n+1}} + \sum_{i=1}^{2^{n+1} - 1} z^{i+2^{n+1}}}{1 - z^{2^{n+2}}} \\ &= \frac{\sum_{i=1}^{2^{n+2} - 1} z^{i}}{1 - z^{2^{n+2}}} \end{split}$$

We have that for |z| < 1,

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{2^{n+2}-1} z^i}{1 - z^{2^{n+2}}} = \frac{\lim_{n \to \infty} \sum_{i=1}^{2^{n+2}-1} z^i}{\lim_{n \to \infty} 1 - z^{2^{n+2}}}$$

as long as the numerator and denominator are both finite (and the denominator is non-zero).

Then, we have that the top is $z(\sum_{i=0}^{\infty}z^i)=z\frac{1}{1-z}$, as the radius of convergence for the power series $\sum_{i=0}^{\infty}z^i$ associated to $\frac{1}{1-z}$ centered at 0 being 1 as a special case of last problem's result and allows us to evaluate the numerator limit. Further, since we have that $|z|<1\implies \lim_{n\to\infty}|z|^n=0\implies \lim_{n\to\infty}z^n=0$, so the limit in the denominator goes to 1, and we know that

$$\sum_{i=0}^{\infty} \frac{z^{2^i}}{1 - z^{2^{i+1}}} = \lim_{n \to \infty} \frac{\sum_{i=1}^{2^{n+2} - 1} z^i}{1 - z^{2^{n+2}}} = \frac{\lim_{n \to \infty} \sum_{i=1}^{2^{n+2} - 1} z^i}{\lim_{n \to \infty} 1 - z^{2^{n+2}}} = \frac{z}{1 - z}$$

To see the second one, consider the following:

$$\frac{2^{n}z^{2^{n}}}{1+z^{2^{n}}} = \frac{2^{n}z^{2^{n}}(1-z^{2^{n}})}{1-z^{2^{n+1}}}$$

$$= \frac{2^{n}z^{2^{n}}-2^{n}z^{2^{n+1}}}{1-z^{2^{n+1}}}$$

$$= \frac{2^{n}z^{2^{n}}+2^{n+1}z^{2^{n+1}}-2^{n}z^{2^{n+1}}}{1-z^{2^{n+1}}}$$

$$= \frac{2^{n}z^{2^{n}}(1-z^{2^{n}})+2^{n+1}z^{2^{n+1}}}{1-z^{2^{n+1}}}$$

$$= \frac{2^{n}z^{2^{n}}(1-z^{2^{n}})}{1-z^{2^{n+1}}}+\frac{2^{n+1}z^{2^{n+1}}}{1-z^{2^{n+1}}}$$

$$= \frac{2^{n}z^{2^{n}}}{1-z^{2^{n}}}+\frac{2^{n+1}z^{2^{n+1}}}{1-z^{2^{n+1}}}$$

This means that $\sum_{i=1}^{n} \frac{2^{i}z^{2^{i}}}{1+z^{2^{i}}}$ can be seen to be $\frac{z}{1-z} - \frac{2^{n+1}z^{2^{n+1}}}{1-z^{2^{n+1}}}$, as the sum telescopes; in particular, we can see the base case of n=0 from just apply n=0 to the above identity. Then, if it holds for n, then

$$\sum_{i=1}^{n+1} \frac{2^i z^{2^i}}{1+z^{2^i}} = \frac{z}{1-z} - \frac{2^{n+1} z^{2^{n+1}}}{1-z^{2^{n+1}}} + \frac{2^{n+1} z^{2^{n+1}}}{1-z^{2^{n+1}}} = \frac{z}{1-z} + \frac{2^{n+1} z^{2^{n+1}}}{1-z^{2^{n+1}}}$$

so it holds for n+1.

Then, we have that the limit of the partial sums is

$$\lim_{n \to \infty} \frac{z}{1 - z} + \frac{2^{n+1}z^{2^{n+1}}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z} + \lim_{n \to \infty} \frac{2^{n+1}z^{2^{n+1}}}{1 - z^{2^{n+1}}}$$

Then, if we can show that $\lim_{n\to\infty}\frac{2^{n+1}z^{2^{n+1}}}{1-z^{2^{n+1}}}=0$, we are done. Since we have that if the numerator and the denominator are finite, and the denominator is nonzero that $\lim_{n\to\infty}\frac{2^{n+1}z^{2^{n+1}}}{1-z^{2^{n+1}}}=\frac{\lim_{n\to\infty}2^{n+1}z^{2^{n+1}}}{\lim_{n\to\infty}1-z^{2^{n+1}}}$, and we saw the same denominator go to one in the first part of the problem, we have that if we can show that $\lim_{n\to\infty}2^{n+1}z^{2^{n+1}}=0$, we are done. In particular, we have that if $\lim_{n\to\infty}|2^{n+1}z^{2^{n+1}}|=0$, we will be done.

We can further reduce this limit, as if $\lim_{m\to\infty} |mz^m| = 0$, then for any $\epsilon > 0$, $\exists M \mid \forall m > M$, $|mz^m| < \epsilon$; then, we have that for all $n > \log_2(M)$, $2^{n+1} > M \implies |2^{n+1}z^{2^{n+1}}| < \epsilon$. However, this is fairly easy to see: we have that

$$\lim_{m \to \infty} |mz^m| = \lim_{m \to \infty} |m||z|^m = \lim_{m \to \infty} \frac{|m|}{\left(\frac{1}{|z|}\right)^m} = \lim_{m \to \infty} \frac{m}{\left(\frac{1}{|z|}\right)^m}$$

since it is enough to show this for m > 0. Then, L'Hopital gives that

$$\lim_{m \to \infty} \frac{m}{\left(\frac{1}{|z|}\right)^m} = \lim_{m \to \infty} \frac{1}{\log\left(\frac{1}{|z|}\right)\left(\frac{1}{|z|}\right)^m} = 0$$

as the denominator approaches ∞ as $\frac{1}{|z|} > 1$.

This finally gives us what the limit of the partial sums is $\frac{z}{1-z}$, and we are done.

25b

Let γ have radius r and be centered at z such that |z| < r. Then, we can parameterize $\gamma(\theta) = re^{i\theta} + z$, and so

$$\int_{\gamma} z^n dz = \int_0^{2\pi} (re^{i\theta} + z)^n ire^{i\theta} d\theta$$

If $n \ge 0$, with the convention that $0^0 = 1$,

$$\begin{split} &= \int_0^{2\pi} \left(i r e^{i\theta} \sum_{j=0}^n \binom{n}{j} r^j e^{ij\theta} z^{n-j} \right) d\theta \\ &= \sum_{j=0}^n \binom{n}{i} \int_0^{2\pi} r^{j+1} i e^{i(j+1)\theta} z^{n-j} d\theta \\ &= \sum_{j=0}^n \binom{n}{i} \int_0^{2\pi} r^{j+1} i e^{i(j+1)\theta} z^{n-j} d\theta \\ &= \sum_{j=0}^n \binom{n}{i} \int_0^{2\pi} r^{j+1} i (\cos((j+1)\theta) - i \sin((j+1)\theta)) z^{n-j} d\theta \end{split}$$

However, we have that $\int_0^{2\pi} \cos((j+1)\theta) d\theta = \int_0^{2\pi} \sin((j+1)\theta) d\theta = 0$ for integer $j \neq 0$,

$$=\sum_{i=0}^{n} \binom{n}{i} 0 = 0$$

In particular, we actually have that any circle, not necessarily containing the origin, satisfies that $\int_{\gamma} z^n = 0$ for nonnegative n.

Then, for n < 0, we have to use the earlier problem; we can consider the expansion of $\frac{1}{1-z}$ centered at $z_0 = 0$, which gives

$$(1-z)^{-m} = \sum_{n=0}^{\infty} {n+m-1 \choose m-1} z^n$$

Let us actually rename the circle to have center -z, such that $\gamma(\theta) = re^{i\theta} - z$ instead. Then,

$$\int_{\gamma} z^n dz = \int_0^{2\pi} (re^{i\theta} - z)^n i r e^{i\theta} d\theta = \int_0^{2\pi} (re^{i\theta})^n \left(1 - \frac{ze^{-i\theta}}{r}\right)^n i r e^{i\theta} d\theta$$
$$= i r^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} \left(1 - \frac{ze^{-i\theta}}{r}\right)^n d\theta$$

We have that the circle encloses the origin, so we have that $|ze^{-i\theta}| = |z| < r$, so we can use the earlier expansion but confusingly, with m, n swapped since I'm bad at planning indices:

$$= ir^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} \sum_{m=0}^{\infty} {m-n-1 \choose -n-1} \left(\frac{ze^{-i\theta}}{r}\right)^m d\theta$$

$$= ir^{n+1} \sum_{m=0}^{\infty} {m-n-1 \choose -n-1} \left(\frac{z}{r}\right)^m \int_0^{2\pi} e^{i(n+1-m)\theta} d\theta$$

$$= ir^{n+1} \sum_{m=0}^{\infty} {m-n-1 \choose -n-1} \left(\frac{z}{r}\right)^m \int_0^{2\pi} (\cos((n+1-m)\theta) + i\sin((n+1-m)\theta)) d\theta$$

But, we know, as in the case shown in class, that the integral vanishes if $n+1-m\neq 0$, as $\int_0^{2\pi}\cos(k\theta)d\theta=\int_0^{2\pi}\sin(k\theta)d\theta=0$ for integral $k\neq 0$. Finally, n+1-m<0 for n<-1, $m\geq 0$, so in these cases,

$$= 0$$

Thus, we have that for any $n \neq -1$, $\int_{\gamma} z^n dz = 0$. In the case of n = -1, we have that

$$= ir^{n+1} \sum_{m=0}^{\infty} {m-n-1 \choose -n-1} \left(\frac{z}{r}\right)^m \int_0^{2\pi} (\cos((n+1-m)\theta) + i\sin((n+1-m)\theta)) d\theta$$
$$= ir^{-1+1} \sum_{m=0}^{\infty} {m-n-1 \choose -n-1} \left(\frac{z}{r}\right)^m \int_0^{2\pi} (\cos((-m)\theta) + i\sin((-m)\theta)) d\theta$$

Again, this integral is only nonzero when m=0, so

$$= i \binom{0}{0} \left(\frac{z}{r}\right)^0 \int_0^{2\pi} (\cos(0) + i\sin(0)) d\theta$$
$$= 2\pi i$$

We have finally reached the conclusion:

$$\int_{\gamma} z^n dz = \begin{cases} 0 & n \neq -1\\ 2i\pi & n = -1 \end{cases}$$

25c

Taking the parameterization $\gamma(\theta) = re^{i\theta}$, we have that

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} dz = \int_{0}^{2\pi} \frac{1}{(re^{i\theta}-a)(re^{i\theta}-b)} rie^{i\theta} d\theta$$

$$= \frac{i}{a-b} \int_{0}^{2\pi} \left(\frac{a}{re^{i\theta}-a} - \frac{b}{re^{i\theta}-b} \right) d\theta$$

$$= \frac{i}{a-b} \int_{0}^{2\pi} \frac{a}{re^{i\theta}-a} d\theta - \frac{i}{a-b} \int_{0}^{2\pi} \frac{b}{re^{i\theta}-b} d\theta$$

$$= \frac{1}{a-b} \int_{0}^{2\pi} \left(\frac{rie^{i\theta}}{re^{i\theta}-a} - 1 \right) d\theta - \frac{1}{a-b} \int_{0}^{2\pi} \left(\frac{rie^{i\theta}}{re^{i\theta}-b} - 1 \right) d\theta$$

$$= \frac{1}{a-b} \int_{0}^{2\pi} \frac{rie^{i\theta}}{re^{i\theta}-a} d\theta - \frac{1}{a-b} \int_{0}^{2\pi} \frac{rie^{i\theta}}{re^{i\theta}-b} d\theta$$

However, consider $\gamma_1(\theta) = re^{i\theta} - a$ and $\gamma_2(\theta) = re^{i\theta} - b$; we have that

$$= \frac{1}{a-b} \left(\int_{\gamma_1} z^{-1} dz - \int_{\gamma_2} z^{-1} dz \right)$$

Since we have that |a| < r < |b|, γ_1 encloses the origin, but γ_2 does not. By the last problem we have that

$$= \frac{1}{a-b} \left(2\pi i - \int_{\gamma_2} z^{-1} dz \right) = \frac{2\pi i}{a-b} - \frac{1}{a-b} \int_{\gamma_2} z^{-1} dz$$

Further, we have that 1/z as a quotient of two entire functions, is holomorphic wherever $z \neq 0$; however, we have that on and inside γ_2 , $z \neq 0$ as γ_2 does not enclose the origin. In particular, we actually have that 1/z is holomorphic on $D_{|b|}(b)$, which does not include the origin, but does contain γ_2 . Then (I am slightly cheating, using a theorem from chapter 2), we can find some F holomorphic that satisfies F' = f. Thus, we have $\int_{\gamma_2} z^{-1} dz = 0$, and

$$= \frac{2\pi i}{a-b}$$

22

Take |z| < 1.

First, we will show that we can encode some sequence $\{a, a+d, a+2d, \dots\}$ as $\frac{z^a}{1-z^d}$. We have that $\frac{1}{1-z} = \sum_{i=0}^{\infty} z^i$. Then, replacing z with z^d , we get $\frac{1}{1-z^d} = \sum_{i=0}^{\infty} z^{id}$; further multiplying by z^a gives us

$$\frac{z^a}{1-z^d} = \sum_{i=0}^{\infty} z^{a+id}$$

This gives us a way to represent any arithmetic progression with start a and step d by $\frac{z^a}{1-z^d}$. In particular, some subset $E \subseteq \mathbb{N}$ is represented by a power series $\sum_{i=0}^{\infty} a_i z^i$ if for any $i \in \mathbb{N}$, $i \in E \iff a_i = 1$, where $a_i \in \{0,1\}$. This suggests that \mathbb{N} is represented by $\frac{z}{1-z}$.

Further, we can represent the union of two disjoint sets by the sum of their representative functions. To see this, let S_1 be represented by $\sum_{i=0}^{\infty} a_{i,1} z^i$ and S_2 by $\sum_{i=0}^{\infty} a_{i,2} z^i$, and finally $S_1 \cup S_2$ by $\sum_{i=0}^{\infty} a_i z^i$. We will show that taking $a_i = a_{i,1} + a_{i,2}$ is sufficient.

We have that $a_i = 1 \implies i \in S_1 \cup S_2$; further, since i is in the union of two disjoint sets, i is in exactly one of S_1 or S_2 , so $a_{i,1} + a_{i,2} = a_i$. Similarly, $a_i = 0 \implies i \notin S_1, \notin S_2 \implies a_{i,1} + a_{i,2} = 0 + 0 = a_i$. Thus, at every index, $a_i = a_{i,1} + a_{i,2}$, which was what we wanted.

Now, suppose that \mathbb{N} could be partitioned into a finite number, say n, of arithmetic progressions with distinct steps; in particular, assign a random order and let the i^{th} progression be denoted S_i have step d_i and start a_i . Since this is a partition, we have that all such S_i are disjoint, and their union must be \mathbb{N} . Then, we have the earlier properties of the representative functions,

$$\sum_{i=1}^{n} \frac{z^{a_i}}{1 - z^{d_i}} = \frac{z}{1 - z}$$

The above statement holds in each respective ball of convergence, so $|z|^{d_i} < 1 \implies |z| < 1$. Now, since we disallowed the trivial case a = d = 1, $n \ge 2$. In that case, let d be the maximal step of all the S_i , and μ be a primitive d^{th} root of unity. Then, since we know that μ lies on |z| = 1 and is a limit point of |z| < 1, we can see that as $z \to \mu$, $\sum_{i=1}^n \frac{z^{a_i}}{1-z^{d_i}} \to \infty$, but $\frac{z}{1-z} \to \frac{\mu}{1-\mu}$, which satisfies $|\frac{\mu}{1-\mu}| = \frac{|\mu|}{|1-\mu|} = \frac{1}{|1-\mu|}$. Further, since μ is a primitive d^{th} root of unity for d > 1, $\mu \ne 1$, so $|\frac{\mu}{1-\mu}|$ is bounded. Then, the left hand side and the right hand side go to different limits, so \Longrightarrow . \mathbb{N} thus cannot be partitioned in such a way.

In particular, we need the largest step, otherwise two of the $\frac{z^{a_i}}{1-z^{d_i}}$ could blow up, and the behaviour here is unclear. But the largest step works, so we are done!