Chapter 12: Mass-Storage Systems

Operating System Concepts - 9th Edition

Chapter 12: Mass-Storage Systems

- Disk Structure
- Disk Attachment
- Disk Scheduling Disk Management
- Swap-Space Management

Objectives

- To describe the physical structure of secondary storage devices and its effects on the uses of the devices
- To explain the performance characteristics of mass-storage devices
- To evaluate disk scheduling algorithms
- To discuss operating-system services provided for mass storage, including RAID

Overview of Mass Storage Structure

- - Drives rotate at 60 to 250 times per second
 Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 Head crash results from disk head making contact with the disk surface

 - That's bad
 - Disks can be removable
 - Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS, Firewire
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Magnetic Disks

- Platters range from .85" to 14" (historically)
- Commonly 3.5", 2.5", and 1.8"

 Range from 30GB to 3TB per drive
- Performance
 - Transfer Rate theoretical 6 Gb/sec

 Effective Transfer Rate real 1Gb/sec

 - Seek time from 3ms to 12ms 9ms common for desktop drives
 - Average seek time measured or calculated based on 1/3 of tracks
 - Latency based on spindle speed
 - 1/(RPM * 60) Average latency = ½ latency

Spindle [rpm]	Average latency [ms]
4200	7.14
5400	5.56
7200	4.17
10000	3
15000	2

(From Wikipedia)

Magnetic Disk Performance

- - For fastest disk 3ms + 2ms = 5ms
 - For slow disk 9ms + 5.56ms = 14.56ms
- Average I/O time = average access time + (amount to transfer / transfer rate) + controller overhead
- For example to transfer a 4KB block on a 7200 RPM disk with a 5ms average seek time, 1Gb/sec transfer rate with a .1ms controller overhead =
 - 5ms + 4.17ms + 4KB / 1Gb/sec + 0.1ms =
 - 9.27ms + 4 / 131072 sec =
 - 9.27ms + .12ms = 9.39ms

Solid-State Disks

- Nonvolatile memory used like a hard drive
- Many technology variations
- Can be more reliable than HDDs
- More expensive per MB
- Maybe have shorter life span
- Less capacity
- But much faster
- Busses can be too slow -> connect directly to PCI for example
- No moving parts, so no seek time or rotational latency

Magnetic Tape

- Was early secondary-storage medium
- Evolved from open spools to cartridges
- Relatively permanent and holds large quantities of data
- Access time slow
 Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequently-used data, transfer medium between systems
- Kept in spool and wound or rewound past read-write head Once data under head, transfer rates comparable to disk
 - 140MB/sec and greater
- 200GB to 1.5TB typical storage
- Common technologies are LTO-{3,4,5} and T10000

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer
 - Low-level formatting creates logical blocks on physical media
 - The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially
 - . Sector 0 is the first sector of the first track on the outermost cylinder Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost
 - Logical to physical address should be easy
 - Except for bad sectors
 - Non-constant # of sectors per track via constant angular velocity

Disk Attachment

- Host-attached storage accessed through I/O ports talking to I/O busses
- SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests operation and SCSI targets perform
 - Each target can have up to 8 logical units (disks attached to device controller)
- - Can be switched fabric with 24-bit address space the basis of storage area networks (SANs) in which
 many hosts attach to many storage units
- I/O directed to bus ID, device ID, logical unit (LUN)

- Can just attach disks, or arrays of disks
- Storage Array has controller(s), provides features to attached host(s)
 - Ports to connect hosts to array
 - Memory, controlling software (sometimes NVRAM, etc)
 A few to thousands of disks
 - RAID, hot spares, hot swap (discussed later)
 - Shared storage -> more efficiency Features found in some file systems
 - > Snaphots, clones, thin provisioning, replication, deduplication, etc

SSTF

- Shortest Seek Time First selects the request with the minimum seek time from the current head po-
- SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests
- Illustration shows total head movement of 236 cylinders

SCAN

- The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.
- SCAN algorithm Sometimes called the elevator algorithm
- Illustration shows total head movement of 208 cylinders
- But note that if requests are uniformly dense, largest density at other end of disk and those wait the longest

C-SCAN

- Provides a more uniform wait time than SCAN
- The head moves from one end of the disk to the other, servicing requests as it goes
 - When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip
- Treats the cylinders as a circular list that wraps around from the last cylinder to the first one
- Total number of cylinders?

C-SCAN (Cont.)

C-LOOK

- LOOK a version of SCAN, C-LOOK a version of C-SCAN
- Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk
- Total number of cylinders?

C-LOOK (Cont.) queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53 37 53 65 67 98 122124 183199

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk
 - Less starvation

- And metadata lavout
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary
- Either SSTF or LOOK is a reasonable choice for the default algorithm
- - Difficult for OS to calculate
- How does disk-based queuing effect OS queue ordering efforts?

Disk Management

- Low-level formatting, or physical formatting Dividing a disk into sectors that the disk controller can read and write
 - Each sector can hold header information, plus data, plus error correction code (ECC)
 - Usually 512 bytes of data but can be selectable
- To use a disk to hold files, the operating system still needs to record its own data structures on the disk

 Partition the disk into one or more groups of cylinders, each treated as a logical disk

 - Logical formatting or "making a file system"
 - To increase efficiency most file systems group blocks into clusters
 - Disk I/O done in blocks ► File I/O done in clusters
- Raw disk access for apps that want to do their own block management, keep OS out of the way (databases for example)
- Boot block initializes system
 - The bootstrap is stored in ROM
- Bootstrap loader program stored in boot blocks of boot partition
 Methods such as sector sparing used to handle bad blocks

RAID Structure

- RAID redundant array of inexpensive disks
 - multiple disk drives provides reliability via redundancy
- Increases the mean time to failure
- Mean time to repair exposure time when another failure could cause data loss Mean time to data loss based on above factors
- If mirrored disks fail independently, consider disk with 1300,000 mean time to failure and 10 hour mean time to
 - Mean time to data loss is 100, 000² / (2 * 10) = 500 * 10⁶ hours, or 57,000 years!
- Frequently combined with NVRAM to improve write performance
- RAID is arranged into six different levels

RAID (Cont.)

- Several improvements in disk-use techniques involve the use of multiple disks working cooperatively
- Disk striping uses a group of disks as one storage unit
- RAID schemes improve performance and improve the reliability of the storage system by storing redundant
 - Mirroring or shadowing (RAID 1) keeps duplicate of each disk
 - Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance and high reliability
- Block interleaved parity (RAID 4, 5, 6) uses much less redundancy
- RAID within a storage array can still fail if the array fails, so automatic replication of the data between arrays is common
- arrays is cultimori

 Frequently, a small number of hot-spare disks are left unallocated, automatically replacing a failed disk and having data rebuilt onto them

