Si considerino due sorgenti puntiformi di onde radio S_1 e S_2 coerenti ed in fase fra di loro, situate a D=4.17 m di distanza l'una dall'altra, che emettono onde di uguale potenza di lunghezza d'onda $\lambda=1.06$ m. Determinare le posizioni dei primi 3 massimi di interferenza lungo l'asse Ox, indicato in figura. Calcolare inoltre l'intensità del massimo più vicino supponendo che la potenza emessa da entrambe le sorgenti pari a 5 W.

Due altoparlanti allineati lungo l'asse x emettono una frequenza sonora v_0 . Un ascoltatore percepisce un massimo di intensità quando il primo altoparlante si trova nella posizione $x_1 = 0.00$ m e il secondo nella posizione $x_2 = 0.50$ m. Spostando il secondo altoparlante verso l'ascoltatore, l'intensità del suono si attenua e poi aumenta fino a raggiungere un nuovo massimo per la posizione $x_2' = 0.90$ m. Calcolare la frequenza del suono emesso dagli altoparlanti assumendo la velocità del suono c = 343 m/s e il loro sfasamento.

Attraverso un interferometro di Young con due fenditure distanti d = 0.2 mm passano due onde luminose di lunghezza d'onda $\lambda_1 = 780$ nm e $\lambda_2 = 520$ nm. Calcolare quale massimo di ordine m di λ_1 si sovrappone al massimo di ordine (m+1) di λ_2 . Calcolare inoltre a che angolo θ corrisponde e la sua distanza dal massimo centrale su uno schermo distante L = 2 m dalle fenditure.

In un esperimento con un interferometro di Young con un fascio di luce di lunghezza d'onda $\lambda_1 = 500$ nm il massimo di terzo ordine (m = 3) si trova a 12 mm dalla zona chiara centrale, su uno schermo distante D = 1.6 m dalle fenditure. Successivamente si ripete l'esperimento con un fascio di luce di lunghezza d'onda $\lambda_2 = 650$ nm. Quanto sarà distante il massimo del secondo ordine (m = 2) dalla zona chiara centrale?

Un interferometro di Young viene illuminato con una luce ad una lunghezza d'onda $\lambda = 633$ nm. Una lamina sottile di vetro (n = 1.50) viene posta davanti ad una delle due fenditure, e questo provoca lo spostamento della frangia luminosa di ordine m = 10 nel punto centrale dello schermo. Calcolare lo spessore s della lamina di vetro.

Un interferometro di Young con le fenditure distanti d = 0.2 mm viene illuminato con una luce monocromatica di lunghezza d'onda $\lambda = 450$ nm. Calcolare la distanza fra due frange luminose su uno schermo posto ad una distanza D = 1.3 m. Se si immerge tutto il sistema in un liquido trasparente di indice di rifrazione n si osserva che le frange luminose si avvicinano di una distanza dx = 0.90 mm. Calcolare il valore dell'indice di rifrazione del liquido.

Uno strato di SiO₂ ($n_1 = 1.45$) viene fatto crescere come strato antiriflesso su una cella solare al silicio ($n_2 = 3.45$). Calcolare che spessore minimo deve avere per produrre una interferenza distruttiva in riflessione alla lunghezza d'onda di 550 nm.

Una sottile lamina trasparente, di indice di rifrazione n = 1.4 e spessore d, è immersa in aria. In incidenza normale si osserva un massimo di intensità nella luce riflessa per $\lambda_1 = 500$ nm e un minimo per $\lambda_2 = 375$ nm. se non ci sono altri massimi o minimi fra questi due punti, calcolare lo spessore della lamina.

Mettendo un sottile foglio di carta fra i bordi di due lastrine di vetro si crea un cuneo di aria con un angolo $\theta = 3 \times 10^{-4}$ rad. Una luce di lunghezza d'onda $\lambda = 500$ nm illumina i vetrini e si osservano delle frange di interferenza. Calcolare quante frange di interferenza si osservano per centimetro.