Correction contrôle S2 2023

Exercice 1 : polynômes

On considère le polynôme $P(X) = X^6 - X^5 - 3X^4 + 7X^3 + 14X^2 + 6X$.

- 1. Montrer que -1 est une racine de P et trouver son ordre exact de multiplicité.
 - P(-1) = 1 + 1 3 7 + 14 6 = 0. -1 est bien une racine de P.
 - $P'(X) = 6X^5 5X^4 12X^3 + 21X^2 + 28X + 6$. D'où, P'(-1) = -6 5 + 12 + 21 28 + 6 = 0
 - $P''(X) = 30X^4 20X^3 36X^2 + 42X + 28$. D'où, P''(-1) = 30 + 20 36 42 + 28 = 0.
 - $P'''(X) = 120X^3 60X^2 72X + 42$. D'où, $P'''(-1) = -66 \neq 0$.

Donc, -1 est une racine d'ordre de multiplicité exactement 3 de P.

2. Que peut-on en déduire en termes de divisibilité?

Cela signifie que $(X+1)^3 \mid P$ et $(X+1)^4 \nmid P$.

3. En vous aidant d'une seule division euclidienne, factoriser P en produit de polynômes irréductibles dans $\mathbb{R}[X]$.

Rappel : les polynômes irréductibles dans $\mathbb{R}[X]$ sont uniquement ceux de degré 1 et ceux de degré 2 à discriminant strictement négatif.

On pose la division euclidienne de P par $(X+1)^3=X^3+3X^2+3X+1$. On trouve un reste nul et un quotient $Q=X^3-4X^2+6X$.

Ainsi, $P = (X+1)^3 (X^3 - 4X^2 + 6X) = (X+1)^3 X (X^2 - 4X + 6)$. Le polynôme $X^2 - 4X + 6$ a un discriminant égal à -8 < 0. Il est donc irréductible dans $\mathbb{R}[X]$. En conclusion, l'écriture en produit de polynômes irréductibles dans $\mathbb{R}[X]$ de P est : $(X+1)^3 X (X^2 - 4X + 6) = (X+1)(X+1)(X+1)X(X^2 - 4X + 6)$.

Exercice 2 : équations différentielles

Dans cet exercice, les questions sont indépendantes.

- 1. On considère l'équation différentielle (E_1) : $(x+1)y'-2y=(x+1)^3\cos(3x)$ sur $I=]-1,+\infty[$.
 - (a) Résoudre (E_1) sur I.
 - Les solutions de l'équation homogène sont de la forme

$$y_0(x) = ke^{-\int \frac{-2}{x+1} dx} = ke^{2\ln(x+1)} = k(x+1)^2 \text{ avec } k \in \mathbb{R}$$

• Cherchons une solution particulière (SP) de (E_1) de la forme $y_p(x) = k(x)(x+1)^2$ (variation de la constante).

On a $y'_p(x) = k'(x)(x+1)^2 + 2k(x)(x+1)$. Ainsi :

$$y_p(x)$$
 SP de (E_1) \iff $(x+1)y'_p(x) - 2y_p(x) = (x+1)^3\cos(3x)$ \iff $(x+1)^3k'(x) + 2k(x)(x+1)^2 - 2k(x)(x+1)^2 = (x+1)^3\cos(3x)$

D'où, $k'(x) = \cos(3x)$. Prenons par exemple $k(x) = \frac{1}{3}\sin(3x)$. $y_p(x) = \frac{(x+1)^2}{3}\sin(3x)$ est donc une SP de (E_1) .

En conclusion,
$$S = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; k \in \mathbb{R} \\ x & \longmapsto & k(x+1)^2 + \frac{(x+1)^2}{3} \sin(3x) \end{array} \right\}$$

(b) Trouver les solutions de (E_1) telles que y(0) = 1.

On cherche la constante k telle que y(0) = 1. On a $y(0) = k(0+1)^2 + \frac{(0+1)^2}{3}\sin(3\times0) = k$. Ainsi, k = 1 et il n'y a qu'une fonction y solution de (E_1) telle que $y(0) = 1 : x \longmapsto (x+1)^2 + \frac{(x+1)^2}{3}\sin(3x)$.

- 2. Soit (E_2) : $y'' + 4y' + 13y = (25x^2 + 16x + 2)e^{2x}$ sur $J = \mathbb{R}$.
 - (a) Montrer que $y_p: x \longmapsto x^2 e^{2x}$ est une solution particulière de (E_2) .

On a
$$y_p'(x) = (2x + 2x^2) e^{2x}$$
 et $y_p''(x) = (2 + 4x + 4x + 4x^2) e^{2x}$. En reportant dans l'équation, on a
$$y_p''(x) + 4y_p'(x) + 13y_p(x) = (2 + 8x + 4x^2 + 8x + 8x^2 + 13x^2)e^{2x} = (25x^2 + 16x + 2)e^{2x}$$

 y_p est bien solution de (E_2) .

- (b) Trouver toutes les solutions de (E_2) .
 - L'équation caractéristique associée à (E_2) est (C) $r^2 + 4r + 13 = 0$. Son discriminant vaut -36. Les racines sont donc $r_1 = \frac{-4+6i}{2} = -2+3i$ et $r_2 = -2-3i$.
 - On peut en déduire que $S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & \\ x & \longmapsto & e^{-2x} \left(k_1 \cos(3x) + k_2 \sin(3x) \right) + x^2 e^{2x} \end{array} \right\}$

Exercice 3: études locales

- 1. Soient f et g deux fonctions définies sur \mathbb{R} . Soit $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Rappeler les définitions mathématiques de : $f(x) \sim g(x)$ et f(x) = o(g(x)) au voisinage de a.
 - $f(x) \sim g(x) \iff f(x) = g(x)(1 + \varepsilon(x))$ avec $\lim_{x \to a} \varepsilon(x) = 0$. On peut aussi écrire $f(x) \sim g(x) \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 1$.
 - $f(x) = o(g(x)) \iff f(x) = g(x)\varepsilon(x)$ avec $\lim_{x\to a} \varepsilon(x) = 0$. On peut aussi écrire $f(x) = o(g(x)) \iff \lim_{x\to a} \frac{f(x)}{g(x)} = 0$.
- 2. Donner, en justifiant, un équivalent simple (autre que la fonction elle même) de $f(x) = 3x^3 2x^2 + 6x$ en a = 0 ET en $a = +\infty$.
 - On a $\frac{3x^3 2x^2 + 6x}{6x} = \frac{x^2}{2} \frac{x}{3} + 1$. Ainsi, $\lim_{x \to 0} \frac{f(x)}{6x} = 1$. Donc, $f(x) \sim 6x$ en 0.
 - On a $\frac{3x^3 2x^2 + 6x}{3x^3} = 1 \frac{2}{3x^2} + \frac{2}{x^2}$. Ainsi, $\lim_{x \to +\infty} \frac{f(x)}{3x^3} = 1$. Donc, $f(x) \sim 3x^3$ en $+\infty$.
- 3. Soient h et k deux fonctions telles qu'au voisinage de 0

$$h(x) = 1 + 2x + x^2 - 3x^3 + o(x^3)$$
 et $k(x) = -x + 3x^2 + o(x^2)$

(a) Donner un équivalent le plus simple possible en 0 de : h(x) (sans justifier), k(x) (sans justifier) et xh(x) + k(x) (en justifiant).

On a $h(x) \sim 1$ en 0 et $k(x) \sim -x$ en 0. De plus, $xh(x) + k(x) = 5x^2 + o(x^2)$. D'où, $xh(x) + k(x) \sim 5x^2$ en 0.

(b) A-t-on assez d'informations pour donner le développement limité de h(x) + k(x) à l'ordre 1 ? À l'ordre 2 ? À l'ordre 3 ? Donner le développement limité quand la réponse est oui.

On peut donner les DL à l'ordre 1 et 2 mais nous n'avons pas assez d'informations pour le DL à l'ordre 3 (à cause de k). On a

$$h(x) + k(x) = 1 + x + o(x)$$
 (ordre 1) et $h(x) + k(x) = 1 + x + 4x^2 + o(x^2)$ (ordre 2)

Exercice 4 : développements limités

Dans cet exercice, vous prendrez soin de rappeler les développements limités usuels que vous devez utiliser.

1. Trouver le développement limité en 0 à l'ordre 3 de $f(x) = \cos(x)e^{-2x}$.

$$f(x) = \left(1 - \frac{x^2}{2} + o(x^3)\right) \times \left(1 - 2x + \frac{(-2x)^2}{2} + \frac{(-2x)^3}{3!} + o(x^3)\right)$$

Ainsi,

$$f(x) = \left(1 - \frac{x^2}{2} + o(x^3)\right) \times \left(1 - 2x + 2x^2 - \frac{4x^3}{3} + o(x^3)\right) = 1 - 2x + 2x^2 - \frac{4x^3}{3} - \frac{x^2}{2} + x^3 + o(x^3)$$

Donc,
$$f(x) = 1 - 2x + \frac{3x^2}{2} - \frac{x^3}{3} + o(x^3)$$
.

2. Calculer le développement limité en 0 à l'ordre 2 de $g(x) = \sqrt{1+x}$ à partir d'un des cinq DL usuels.

$$g(x) = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2}x^2 + o(x^2) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)$$

3. Trouver le développement limité en 0 à l'ordre 2 de $h(x) = \ln (1 + \sqrt{1+x})$.

Par la question précédente :

$$h(x) = \ln\left(2 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)\right) = \ln\left(2\left(1 + \frac{x}{4} - \frac{x^2}{16} + o(x^2)\right)\right) = \ln(2) + \ln\left(1 + \frac{x}{4} - \frac{x^2}{16} + o(x^2)\right)$$

Posons $u(x) = \frac{x}{4} - \frac{x^2}{16} + o(x^2)$ qui tend vers 0 quand x tend vers 0. On a $u^2(x) = \frac{x^2}{16} + o(x^2)$. Comme au voisinage de 0, $\ln(1+u) = u - \frac{u^2}{2} + o(u^2)$ on obtient :

$$h(x) = \ln(2) + \frac{x}{4} - \frac{x^2}{16} - \frac{x^2}{32} + o(x^2) = \ln(2) + \frac{x}{4} - \frac{3x^2}{32} + o(x^2)$$

Exercice 5 : calculs de limites

- 1. Calculer $\lim_{x\to 0} \frac{e^x + e^{-x} 2}{\sin(\frac{x}{2})}$. Vous devez utiliser les DL!
 - Posons $N(x) = e^x + e^{-x} 2$.

On a
$$N(x) = \left(1 + x + \frac{x^2}{2} + o(x^2)\right) + \left(1 - x + \frac{(-x)^2}{2} + o(x^2)\right) - 2 = x^2 + o(x^2)$$
. Ainsi, $N(x) \sim x^2$ en 0.

- Posons $D(x) = \sin\left(\frac{x}{2}\right)$. Via les DL, on a $D(x) \sim \frac{x}{2}$.
- On en déduit que $\frac{N(x)}{D(x)} \sim \frac{x^2}{\frac{x}{2}} = 2x$. Comme $\lim_{x\to 0} 2x = 0$, on conclut : $\lim_{x\to 0} \frac{N(x)}{D(x)} = 0$
- 2. Calculer $\lim_{x\to +\infty} \left(1+\ln\left(1+\frac{1}{x}\right)\right)^x$. Vous devez utiliser les DL.

$$\left(1 + \ln\left(1 + \frac{1}{x}\right)\right)^x = e^{x\ln\left(1 + \ln\left(1 + \frac{1}{x}\right)\right)} = e^{x\left(\ln\left(1 + \frac{1}{x} + o(\frac{1}{x})\right)\right)} = e^{x\left(\frac{1}{x} + o(\frac{1}{x})\right)} = e^{1 + o(1)}$$

Donc
$$\lim_{x \to +\infty} \left(1 + \ln\left(1 + \frac{1}{x}\right) \right)^x = e^1$$

Exercice 6 : espaces vectoriels 1

- 1. Les ensembles suivants sont-ils des R-espaces vectoriels? Justifiez rigoureusement votre réponse.
 - (a) $E = \{(x, y) \in \mathbb{R}^2, x \le y\}$

Prenons le vecteur u=(1,2). On a $u\in E$. Or $-u=(-1,-2)\notin E$. Ainsi, la multiplication externe n'est pas stable dans E. E n'est donc pas un \mathbb{R} -espace vectoriel.

(b) $F = \{(x, y, z) \in \mathbb{R}^3, x - y = 0\}.$

De par sa donnée, $F \subset \mathbb{R}^3$. De plus $0_{\mathbb{R}^3} = (0,0,0) \in F$ car 0-0=0.

Soient $(u_1 = (x, y, z), u_2 = (x', y', z')) \in F^2 \text{ et } \lambda \in \mathbb{R}.$

On a $\lambda u_1 + u_2 = (\lambda x + x', \lambda y + y', \lambda z + z')$ et $(\lambda x + x') - (\lambda y + y') = \lambda (x - y) + (x' - y') = \lambda \times 0 + 0 = 0$ car u_1 et u_2 sont dans F.

Ainsi, on a montré que $\lambda u_1 + u_2 \in F$.

On en déduit que F est un sous-espace vectoriel de \mathbb{R}^3 . C'est donc un \mathbb{R} -espace vectoriel.

(c) $G = \{ P \in \mathbb{R}[X], X \mid P \}$

On a $G \subset \mathbb{R}[X]$ et $0_{\mathbb{R}[X]} = X \times 0_{\mathbb{R}[X]}$, d'où $X \mid 0_{\mathbb{R}[X]}$ ainsi, $0_{\mathbb{R}[X]} \in G$.

Soient $(P_1, P_2) \in G^2$ et $\lambda \in \mathbb{R}$. Comme $X \mid P_1$ et $X \mid P_2$, $\exists (Q_1, Q_2) \in (\mathbb{R}[X])^2$ tel que $P_1 = XQ_1$ et $P_2 = XQ_2$. Ainsi, $\lambda P_1 + P_2 = X(\lambda Q_1 + Q_2)$, d'où $X \mid (\lambda P_1 + P_2)$. Donc, $\lambda P_1 + P_2 \in G$.

On en déduit que G est un sous-espace vectoriel de $\mathbb{R}[X]$. C'est donc un \mathbb{R} -espace vectoriel.

2. Dans cette question, il n'est pas demandé de justifier les réponses.

Donner un sous-espace vectoriel de E (autre que E et $\{0_E\}$) dans les cas suivants :

(a) $E = \mathbb{R}^4$

Par exemple : $F = \{(x, y, z, t) \in \mathbb{R}^4, x + z + t = 0\}.$

(b) $E = \mathbb{R}^{\mathbb{R}}$

Par exemple: $F = \{ f \in \mathbb{R}^{\mathbb{R}}, f(0) = 0 \}$

(c) $E = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ converge}\}$

Par exemple : $F = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ converge vers } 0\}$

Exercice 7 : espaces vectoriels 2

Les deux questions sont indépendantes.

1. Dans \mathbb{R}^3 , on considère les sous-espaces vectoriels

$$F = \left\{ (x,y,z) \in \mathbb{R}^3, \, x = 0 \right\} \ et \ G = \left\{ (x,y,z) \in \mathbb{R}^3, \, x = y \right\}$$

(a) A-t-on $F \cap G = \{0_{\mathbb{R}^3}\}$? Justifier.

Le vecteur $u = (0, 0, 15) \in F \cap G$. Donc $F \cap G \neq \{0_{\mathbb{R}^3}\}$.

(b) Rappeler la définition mathématique de l'ensemble F + G.

$$F + G = \{u \in E \text{ tel que } \exists (u_1, u_2) \in F \times G \text{ tel que } u = u_1 + u_2\}$$

(c) Le vecteur u = (1, 2, 3) appartient-il à F + G? Justifier.

On a, par exemple, $u = (1, 2, 3) = u_1 + u_2$ avec $u_1 = (0, 1, 6)$ \$ $\in F$ et $u_2 = (1, 1, -3) \in G$. Donc on a bien $u \in F + G$.

(d) La décomposition que vous avez trouvé est-elle unique? Justifier. Pourquoi en étiez-vous certain avant même de faire le moindre calcul?

Non, la décomposition ci-dessus n'est pas unique. Par exemple, on a aussi $u=(1,2,3)=v_1+v_2$ avec $v_1=(0,1,0)\in F$ et $v_2=(1,1,3)\in G$. Il y en a une infinité même. On le savait dès la première question car $F\cap G\neq \{0_{\mathbb{R}^3}\}$.

2. Soient E un \mathbb{R} -espace vectoriel et $\mathcal{F} = (u_1, u_2, \cdots, u_n) \in E^n$ une famille de n vecteurs de E. $(n \in \mathbb{N}^*)$

(a) Donner la définition mathématique de : \mathcal{F} est une famille libre de E.

$$\mathcal{F}$$
 est libre $\iff \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n, (\lambda_1 u_1 + \dots + \lambda_n u_n = 0_E \implies \lambda_1 = \dots = \lambda_n = 0)$

(b) Donner la définition mathématique de : \mathcal{F} est une famille génératrice de E.

$$\mathcal{F}$$
 est génératrice de $E \iff \forall u \in E, \ \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \text{ tel que } u = \lambda_1 u_1 + \dots + \lambda_n u_n$

- (c) Dans $E = \mathbb{R}^3$, donner un exemple d'une famille libre composée de 2 vecteurs et un exemple d'une famille liée composée de 3 vecteurs. Justification non demandée.
 - Prenons $u_1 = (1,0,0) \in \mathbb{R}^3$ et $u_2 = (0,1,0) \in \mathbb{R}^3$. La famille (u_1,u_2) est libre car ils ne sont pas colinéaires.
 - Prenons dans \mathbb{R}^3 , $v_1 = (1, 2, 3)$, $v_2 = (4, 5, 6)$ et $v_3 = (5, 7, 9)$. La famille (v_1, v_2, v_3) est liée car $v_3 = v_1 + v_2$.
- (d) Dans $E = \mathbb{R}^2$, donner un exemple d'une famille génératrice de E. Justification non demandée.

La famille $(e_1 = (1,0), e_2 = (0,1))$ est génératrice de \mathbb{R}^2 car pour tout $u = (x,y) \in \mathbb{R}^2$, $u = xe_1 + ye_2$.