Gate 2023 EC 58

HIBA MUHAMMED EE23BTECH11026

PROBLEM STATEMENT

Let $x_1(t) = u(t + 1.5) - u(t - 1.5)$ and $x_2(t)$ is shown in the figure below. For $y(t) = x_1(t) * x_2(t)$, the $\int_{-\infty}^{\infty} y(t) dt$ is ______.

Fig. 1. Figure

SOLUTION

INPUT PARAMETERS

Input Parameters		
Function	Expression	Description
$x_1(t)$	u(t+1.5) - u(t-1.5)	Step function with delay and width parameters.
$x_1(\omega)$	$3\operatorname{sinc}(1.5\omega)$	Fourier Transform of $x_1(t)$.
$x_2(t)$	$\delta(t+3) + \operatorname{rect}\left(\frac{t}{2}\right) + 2\delta(t-2)$	Impulse function followed by a rectangle and
	· ·	two impulses.
$x_2(\omega)$	$e^{3j\omega} + 2\operatorname{sinc}(\omega) + 2e^{-2j\omega}$	Fourier Transform of $x_2(t)$.

$$x_1(t) = u(t + 1.5) - u(t - 1.5)$$

$$x_1(t) = \operatorname{rect}\left(\frac{t}{3}\right)$$

$$x_1(t) = \operatorname{rect}\left(\frac{t}{3}\right)$$

$$\operatorname{rect}\left(\frac{t}{a}\right) \xrightarrow{F} f(\omega) = a \times \sin(\omega \frac{a}{2})$$

$$X_1(\omega) = 3\operatorname{sinc}(1.5\omega)$$

$$x_2(t) = \delta(t+3) + \operatorname{rect}\left(\frac{t}{2}\right) + 2\delta(t-2)$$

$$X_2(\omega) = e^{3j\omega} + 2\operatorname{sinc}(\omega) + 2e^{-2j\omega}$$

$$y(t) = x_1(t) * x_2(t)$$

$$Y(\omega) = X_1(\omega) \cdot X_2(\omega)$$

We know:

$$Y(\omega) = \int_{-\infty}^{\infty} y(t)e^{-j\omega t}dt$$

$$\int_{-\infty}^{\infty} y(t)dt = Y(0)$$

$$Y(0) = X_1(0) \cdot X_2(0)$$

$$=3(1+2+2)$$