CS 4342 - Machine Learning

WPI Fall 2019

Lecture 2: Bayes Rule & Naïve Classifier

MLE and **MAP**

Instructor: Ali Yousefi

Joint Probability Distribution

$$P(X_1 = x_1, X_2 = x_2, Y = y)$$

Conditional Probability Distribution

$$P(X_1 = x_1, X_2 = x_2 | Y = y)$$

$$P(Y = y | X_1 = x_1, X_2 = x_2)$$

$$= \frac{P(X_1 = x_1, X_2 = x_2 | Y = y)P(Y = y)}{P(X_1 = x_1, X_2 = x_2)}$$

 (x_1, x_2)

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y|X) = \frac{P(X|Y)P(Y)}{\sum P(X|Y)P(Y)}$$

Parametric models

$$P(Y|X, \theta) = \frac{P(X|Y, \theta)P(Y|\theta)}{P(X|\theta)}$$

$$P(Y|X, \theta) = \frac{P(X|Y, \theta)P(Y|\theta)}{\sum P(X|Y, \theta)P(Y|\theta)}$$

Model Parameter

We focus on likelihood function

$$L(X;Y,\theta) = P(X|Y,\theta)$$

Log likelihood

$$LL(X;Y,\theta) = log P(X|Y,\theta)$$

Observation

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$$

Basic Classifier

$$P(Y = c|X,\theta) \propto P(X|Y = c,\theta)P(Y = c|\theta)$$

$$\hat{Y} = \underset{c}{\operatorname{argmin}} P(Y = c | X, \theta)$$

Basic Distribution

$$P(\theta|a,b) = \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)}$$

$$\theta \in [0,1] \quad a,b > 0$$

$$E[\theta] = \frac{a}{a+b}$$

$$var[\theta] = \frac{ab}{(a+b)^2(a+b+1)}$$

$$Mode = \frac{a-1}{(a+b-2)}$$

Zero Count Problem

Bayesian (MAP)
You are no good
when sample
size is small

Frequentists (MLE)
You give a different
answer for
different priors

A Basic Classifier: Credit Rating Prediction

- x_1 income level $x_1 = \{'low', 'med', 'high'\}$
- y credit rating $y = \{'bad', 'good'\}$
- We have a dataset containing 577 samples $D = \{x_i, y_i\}$ i = 1, ..., 577
- x is the feature $x = \{0,1,2\}$

Feature (x)	Credit # bad	Rate (y) #good
X=0	135	105
X=1	165	148
X=2	15	9

• Use Bayes theorem to build a classifier – predict y given x

Class prior probability

Feature (x)	Credit Rate (y)		
	# bad	#good	
X=0	135	105	
X=1	165	148	
X=2	15	9	

Credit # bad	Rate (y) #good	# bad + #good
315	262	577
0.545	0.455	1

$$p(y = 'bad')$$
 $p(y = 'good')$

Class conditional probability

Feature (x)	Credit Rate (y)	
	# bad	#good
x=0	0.428	0.400
x=1	0.524	0.564
x=2	0.048	0.036

$$p(x = ? | y = 'bad')$$

$$p(x = ? | y = 'good')$$

Posterior probability

$$p(y = ? | x = 1) \propto p(x = 1 | y = ?)p(y = ?)$$

? =
$$'good'$$
 $p(y = 'good' | x = 1) \propto 0.564 \times 0.455 = 0.256$

?='
$$bad'$$
 $p(y = bad' | x = 1) \propto 0.524 \times 0.545 = 0.286$

The sum is not equal to 1!

$$p(y = 'bad'|x = 1) > p(y = 'good'|x = 1)$$

The confident about the decision might not be that strong!

Predictor prior probability

Feature (x)			
X=0	240	0.416	p(x=0)
X=1	313	0.542	p(x=1)
X=2	15	0.042	p(x=2)

$$p(y = 'good'|x = 1)=0.256/0.542=0.472$$

$$p(y = 'bad'|x = 1)=0.528$$

Posterior probability

$$p(y = ? | x = 1) \propto p(x = 1 | y = ?)p(y = ?)$$

?='good'
$$p(y = 'good' | x = 1) \propto 0.564 \times 0.455 = 0.256$$

?=' bad' $p(y = 'bad' | x = 1) \propto 0.524 \times 0.545 = 0.286$

$$p(y = ? | x_1 = 1, x_2 = 0) \propto p(x_1 = 1 | y = ?)p(x_2 = 0 | y = ?)p(y = ?)$$

Beta Binomial Model

