ЛАБОРАТОРНАЯ РАБОТА №46 ОПТИЧЕСКАЯ АКТИВНОСТЬ. ПОЛЯРИМЕТРИЯ

Поляков Даниил, 19.Б23-фз

Цель работы: изучение и проверка экспериментально установленных законов Малюса и Био; изучение принципа работы полутеневого поляриметра; изучение явления вращения плоскости поляризации в оптически активных средах (кристаллическом кварце, растворе сахара).

Схемы установок

Рисунок 1. Экспериментальная установка для проверки закона Малюса

S — галогенная лампа;

 S_2 — источник питания лампы;

P — поляризатор;

A — анализатор;

 L_2 — собирающая линза;

 Φ Э — фотоэлемент;

M — мультиметр.

Рисунок 2. Схема полутеневого поляриметра

- источник питания лампы;
- а галогенная лампа;
- b светофильтр;
- с поляризатор;
- ${
 m d}$ полутеневой поляризатор;
- е оптически активное вещество (кварц или раствор сахара);
- f анализатор;
- g собирающая линза;
- h экран.

Расчётные формулы

Экспериментальный коэффициент пропускания анализатора:

$$f_{\scriptscriptstyle \mathsf{ЭКСП}}(\varphi-\varphi_0)=rac{I}{I_0}$$

I — фототок; I_0 — максимальный фототок.

Теоретический коэффициент пропускания анализатора (закон Малюса):

$$f_{\text{\tiny TEOD}}(\varphi - \varphi_0) = \cos^2(\varphi - \varphi_0)$$

 φ — угол анализатора;

 φ_0 — исходный угол поляризации света.

Экспериментальный угол поворота плоскости поляризации оптически активным веществом:

$$\varphi' = \varphi - \varphi_0$$

 ϕ — угол анализатора, при котором наблюдается равенство яркости полей сравнения с оптически активным веществом;

 φ_0 — угол анализатора, при котором наблюдается равенство яркости полей сравнения без оптически активного вещества.

Экспериментальное отношение углов поворота двумя одинаковыми оптически активными веществами разной толщины:

$$K_{\scriptscriptstyle \mathfrak{KC\Pi}} = \frac{\varphi'_{\scriptscriptstyle 1}}{\varphi'_{\scriptscriptstyle 2}}$$

 ${\phi'}_1$ — угол поворота первым веществом;

 φ'_2 — угол поворота вторым веществом.

Теоретическое отношение углов поворота двумя одинаковыми оптически активными веществами разной толщины:

$$K_{\text{reop}} = \pm \frac{d_1}{d_2}$$

 d_1 — толщина первого вещества;

 d_2 — толщина второго вещества.

Знак «+», если направления вращения веществ совпадают; «-», если отличаются.

• Теоретический угол поворота плоскости поляризации оптически активным раствором (закон Био):

$$\varphi' = [\alpha] \cdot d \cdot C$$

 $[\alpha]$ — удельное вращение раствора;

d — толщина раствора;

C — концентрация раствора.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\bar{\textbf{x}}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^n (x_i - \bar{\textbf{x}})^2}{n(n-1)}} + (\Delta_{\textbf{x}, \text{сист}})^2 \qquad \qquad n - \text{количество измерений;} \\ \Delta_{x, \text{сист}} - \text{систематическая погрешность.}$$

• Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta_{f(x_{1},x_{2},\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_{1}} \cdot \Delta_{x_{1}}\right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \cdot \Delta_{x_{2}}\right)^{2} + \ldots} \\ & \circ \quad \Delta_{\varphi'} = \sqrt{\left(\frac{\partial \varphi'}{\partial \varphi} \cdot \Delta_{\varphi}\right)^{2} + \left(\frac{\partial \varphi'}{\partial \varphi_{0}} \cdot \Delta_{\varphi_{0}}\right)^{2}} = \sqrt{\Delta_{\varphi}^{2} + \Delta_{\varphi_{0}}^{2}} \\ & \circ \quad \Delta_{K_{\text{\tiny SKCII}}} = \sqrt{\left(\frac{\partial K_{\text{\tiny SKCII}}}{\partial \varphi'_{1}} \cdot \Delta_{\varphi'_{1}}\right)^{2} + \left(\frac{\partial K_{\text{\tiny SKCII}}}{\partial \varphi'_{2}} \cdot \Delta_{\varphi'_{2}}\right)^{2}} = \left|K_{\text{\tiny SKCII}}\right| \sqrt{\left(\frac{\Delta_{\varphi'_{1}}}{\varphi'_{1}}\right)^{2} + \left(\frac{\Delta_{\varphi'_{2}}}{\varphi'_{2}}\right)^{2}} \\ & \circ \quad \Delta_{K_{\text{\tiny Teop}}} = \sqrt{\left(\frac{\partial K_{\text{\tiny Teop}}}{\partial d_{1}} \cdot \Delta_{d_{1}}\right)^{2} + \left(\frac{\partial K_{\text{\tiny Teop}}}{\partial d_{2}} \cdot \Delta_{d_{2}}\right)^{2}} = \left|K_{\text{\tiny Teop}}\right| \sqrt{\left(\frac{\Delta_{d_{1}}}{d_{1}}\right)^{2} + \left(\frac{\Delta_{d_{2}}}{d_{2}}\right)^{2}} \end{split}$$

Порядок измерений

Примечание: угол поворота будем считать положительным, если при наблюдении навстречу световому пучку поворот анализатора происходит по часовой стрелке, и отрицательным, если против часовой стрелки.

- 1. Устанавливаем на оптическую ось лампы поляризатор, анализатор, собирающую линзу и фотоэлемент. Включаем лампу. Устанавливаем угол поворота поляризатора на 0, а угол поворота анализатора подбираем таким, при котором наблюдается максимум фототока через мультиметр (и, соответственно, максимум интенсивности на фотоэлементе). Вращая анализатор в диапазоне от -90 до 90° относительно положения максимума φ_0 , измеряем зависимость фототока I от угла анализатора φ . Выполняем две такие серии измерений.
- 2. Убираем фотоэлемент с установки. Устанавливаем полутеневой поляризатор между поляризатором и анализатором. Поворачивая анализатор, подбираем угол φ_0 , при котором наблюдается равенство яркости полей сравнения на экране вблизи полного затемнения. Выполняем измерение этого угла 10 раз.
- 3. Между полутеневым поляризатором И анализатором устанавливаем левовращающий кварц толщиной d = 1.5 MM.Между лампой зелёный поляризатором устанавливаем светофильтр. Поворачивая анализатор против часовой стрелки из нулевого отсчёта ϕ_0 , уравниваем яркость полей сравнения и снимаем соответствующий угол анализатора ϕ_3 . Выполняем измерение 10 раз. Проделываем эти же измерения для жёлтого $(\phi_{\mathbb{K}})$ и красного $(\phi_{\mathbb{K}})$ светофильтров. Затем вместо левовращающего устанавливаем правовращающий кварц толщиной d = 2.4 мм. Поворачивая анализатор по часовой стрелке из нулевого отсчёта ϕ_0 , уравниваем яркость сравнения И измеряем соответствующий γгол анализатора. Выполняем эти измерения по 10 раз для зелёного (ϕ_3) , жёлтого (ϕ_m) и красного ($\varphi_{\text{\tiny KD}}$) светофильтров.
- 4. Между полутеневым поляризатором и анализатором устанавливаем кювету с раствором сахара с известной концентрацией C. Повторяем измерения, описанные в предыдущем пункте. Поворачиваем кювету в другом направлении, тем самым изменив толщину раствора d вдоль хода луча. Выполняем аналогичные измерения. Затем повторяем эти же измерения для раствора сахара другой концентрации C. В конце линейкой измеряем внутреннюю толщину d между стенками кюветы в обоих направлениях.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

Приборную погрешность анализатора примем равной половине цены деления:

$$\Delta_{\varphi} = 1^{\circ}$$

1. Проверка закона Малюса

Максимальный фототок, полученный усреднением двух измерений:

$$I_0 = 16.05 \text{ MA}$$

Угол анализатора, соответствующий максимальному фототоку:

$$\varphi_0 = -10 \pm 1$$
 °

Таблица 1. Зависимость коэффициента пропускания анализатора от его угла

φ, °	I, mA		$f_{ m эксп}$	$f_{ ext{reop}}$
-100	1.0	1.0	0.06	0.00
-90	1.5	1.5	0.09	0.03
-80	2.8	2.8	0.17	0.12
-70	4.8	4.9	0.30	0.25
-60	7.3	7.4	0.46	0.41
-50	9.9	9.9	0.62	0.59
-40	12.3	12.3	0.77	0.75
-30	14.4	14.3	0.89	0.88
-20	15.6	15.6	0.97	0.97
-10	16.1	16.0	1.00	1.00
0	15.5	15.6	0.97	0.97
10	14.2	14.3	0.89	0.88
20	12.2	12.2	0.76	0.75
30	9.8	9.8	0.61	0.59
40	7.1	7.2	0.45	0.41
50	4.8	4.7	0.30	0.25
60	2.7	2.7	0.17	0.12
70	1.4	1.4	0.09	0.03
80	1.0	1.0	0.06	0.00

При расчёте экспериментальных коэффициентов пропускания использовались усреднённые по двум измерениям значения фототока.

График 1. Зависимость коэффициента пропускания от угла между плоскостями поляризации света и анализатора

Теоретическая и экспериментальная зависимости совпали по форме, но с увеличением модуля разности углов $\varphi - \varphi_0$ увеличивается отклонение экспериментальных точек от теоретической кривой. Это в первую очередь связано с неидеальностью анализатора и поляризатора. Даже при разности углов в 90° анализатор пропускает некоторое количество света.

2. Экспериментальное изучение принципа работы полутеневого поляриметра

Таблица 2. Нулевой отсчёт анализатора

No	φ_0 , °		
1	72		
2	72		
3	72		
4	72		
5	72		
6	72		
7	72		
8	72		
9	72		
10	72		
Среднее	72		
Δ	1		

3. Определение угла поворота плоскости поляризации для разных сортов кварца

Таблица 3. Угол анализатора после прохождения отфильтрованного света через кристалл кварца

NI.	Левов	ращающий <i>d</i> = 1.5 мм	кварц	Правовращающий кварц				
N₂	0	_	<i>a</i> 0	d = 2.4 MM				
	φ_3 , o	$\phi_{\scriptscriptstyle \mathbb{H}}$,	$\phi_{ ext{ iny Kp}}$, ${}^{\circ}$	φ_3 , \circ	$\phi_{\scriptscriptstyle \mathbb{H}}$,	$\phi_{ ext{ iny Kp}}$, ${}^{\circ}$		
1	30	40	44	138	126	116		
2	30	40	44	138	126	118		
3	30	38	44	140	126	118		
4	30	38	44	140	126	118		
5	30	40	44	138	126	118		
6	30	40	44	140	126	118		
7	30	38	44	140	126	118		
8	30	38	44	138	126	116		
9	30	38	44	138	126	118		
10	30	40	44	140	126	118		
Среднее	30.0	39.0	44.0	139.0	126.0	117.6		
Δ	1.0	1.3	1.0	1.3	1.0	1.2		

Таблица 4. Углы поворота плоскости поляризации отфильтрованного света кристаллами кварца и их отношение

Фильтр	φ' _л , °	$\varphi'_{^{\mathrm{np}}}$, $^{\circ}$	$K_{ m эксп}$	$K_{\scriptscriptstyle{Teop}}$
зелёный	-42.0 ± 1.4	67 ± 2	-1.60 ± 0.07	
жёлтый	-33 ± 2	54.0 ± 1.4	-1.64 ± 0.09	-1.60
красный	-28.0 ± 1.4	46 ± 2	-1.63 ± 0.10	

Для всех фильтров экспериментальные значения K совпали с теоретическим в пределах погрешностей.

4. Определение угла поворота плоскости поляризации и удельного вращения для двух растворов сахара

Таблица 5. Угол анализатора после прохождения отфильтрованного света через раствор сахара

	$C = 0.61 \pm$				0.02 г/мл		C = 0.38 ± 0.01 г/мл					
No	$d = 8.0 \pm 0.1$ cm		1 см	$d = 2.5 \pm 0.1$ см		$d = 8.0 \pm 0.1$ cm			$d = 2.5 \pm 0.1$ см			
	φ_3 , °	φж, °	$\phi_{ ext{\tiny kp}}$, $^{\circ}$	φ_3 , °	φж, °	$\phi_{ ext{\tiny KP}}$, $^{\circ}$	φ_3 , °	φж, °	φ_{kp} , °	φ_3 , °	φж, °	$\phi_{ ext{ kp}}$, $^{\circ}$
1	114	106	100	86	82	80	98	92	90	80	78	78
2	114	106	100	84	82	80	98	92	90	80	78	78
3	114	106	100	86	82	80	98	92	90	80	78	78
4	114	106	100	86	82	80	98	92	90	80	78	78
5	114	106	100	84	82	80	98	92	88	80	78	78
6	114	106	100	86	82	80	98	92	90	80	78	78
7	114	106	100	86	82	82	98	92	88	80	78	78
8	114	106	100	84	82	80	98	92	90	80	78	78
9	114	106	100	84	82	80	98	92	88	80	78	78
10	114	106	100	84	82	80	98	92	90	80	78	78
Среднее	114.0	106.0	100.0	85.0	82.0	80.2	98.0	92.0	89.4	80.0	78.0	78.0
Δ	1.0	1.0	1.0	1.3	1.0	1.1	1.0	1.0	1.2	1.0	1.0	1.0

Таблица 6. Углы поворота плоскости поляризации отфильтрованного света растворами сахара и их отношение

	C = 0	0.61 ± 0.02	г/мл	C = 0	IZ.		
Фильтр	φ'_1 , °	φ'_2 , °	$K_{\scriptscriptstyle ЭКСП}$	φ'_1 , °	φ'_2 , °	$K_{ m \scriptscriptstyle 9KC\Pi}$	$K_{ ext{reop}}$
зелёный	42.0 ± 1.4	13 ± 2	3.2 ± 0.4	26.0 ± 1.4	8.0 ± 1.4	3.2 ± 0.6	2.20
жёлтый	34.0 ± 1.4	10.0 ± 1.4	3.4 ± 0.5	20.0 ± 1.4	6.0 ± 1.4	3.3 ± 0.8	-3.20 ± 0.13
красный	28.0 ± 1.4	8.2 ± 1.5	3.4 ± 0.6	17 ± 2	6.0 ± 1.4	2.9 ± 0.7	± 0.13

Все экспериментальные значения K, кроме одного, совпали с теоретическим в пределах погрешностей.

Построим графики зависимостей $\varphi'(d \cdot C)$ для разных фильтров и аппроксимируем их линейной функцией. Значения удельного вращения $[\alpha]$ являются коэффициентами наклона аппроксимирующих прямых.

Зависимость угла поворота плоскости поляризации от произведения толщины и концентрации раствора сахара для разных фильтров

Экспериментальные точки хорошо аппроксимируются прямыми.

Находим удельное вращение раствора сахара для каждого из фильтров:

$$[\alpha]_{_3} = 8.58 \pm 0.07 \, ^{\circ} \cdot \text{cm}^2 \cdot \Gamma^{^{-1}} \quad [\alpha]_{_{\mathcal{K}}} = 6.8 \pm 0.4 \, ^{\circ} \cdot \text{cm}^2 \cdot \Gamma^{^{-1}} \qquad [\alpha]_{_{\mathcal{K}p}} = 5.7 \pm 0.2 \, ^{\circ} \cdot \text{cm}^2 \cdot \Gamma^{^{-1}}$$

Выводы

- исследованы явления поляризации и поворота плоскости поляризации светового пучка;
- успешно проведена экспериментальная проверка справедливости законов Малюса и Био;
- получены навыки экспериментальной работы с полутеневым поляриметром;
- определены углы поворота плоскости поляризации кристаллами кварца и растворами сахара для света различной длины;
- найдено удельное вращение раствора сахара для света различной длины.