TP2 – Estimation de direction d'arrivée par corrélation, synthèse de filtres analogiques et numériques

- 1 Estimation de direction du locuteur par corrélation
- 1.1 Rappeler la relation entre les transformées de fourrier $\widehat{x_1}(f)$ et $\widehat{x_2}(f)$. Plus précisément, donner les relations entre les modules de ces TF et les relations entre leurs phases.

On a ces deux signaux:

$$x_2(t) = x_1(t - \tau)$$

La relations entre les transformées de Fourier est une relation de translation. La **propriété de translation de la transformée de Fourier** du cours donne :

$$\widehat{x_2}(f) = e^{-2j\pi f \tau} \widehat{x_1}(f)$$

En utilisant les formules d'Euler, on peut écrire l'exponentielle complexe comme une somme de cosinus et de sinus, ce qui donne :

$$e^{-2j\pi f\tau} = \cos(2\pi f\tau) - j\sin(2\pi f\tau)$$

On peut alors exprimer la transformée de Fourier de $x_2(t)$ en fonction de la transformée de Fourier de $x_1(t)$:

$$\widehat{x_2}(f) = (\cos(2\pi f \tau) - j\sin(2\pi f \tau))\widehat{x_1}(f)$$

On peut alors exprimer le **module et la phase** de $\widehat{x_2}(f)$ en fonction du module et de la phase de $\widehat{x_1}(f)$:

$$|\widehat{x_2}(f)| = |\widehat{x_1}(f)|$$

$$\arg(\widehat{x_2}(f)) = \arg(\widehat{x_1}(f)) - 2\pi f t$$

La relation de translation montre que le module de la transformée de Fourier de $x_2(t)$ est égal au module de la transformée de Fourier de $x_1(t)$.

En revanche, la phase de la transformée de Fourier de $x_2(t)$ est décalée par rapport à la phase de la transformée de Fourier de $x_1(t)$ de $-2\pi f \tau$, ce qui signifie que les composantes fréquentielles de $x_2(t)$ sont déphasées par rapport à celles de $x_1(t)$.

1.2 Rappeler la relation existante entre l'intercorrélation $C_{x_1,x_2}(t)$ des signaux et l'autocorrélation du signal $C_{x_1}(t)$. Comment peut on calculer le décalage entre les deux signaux à partir de l'intercorrélation $C_{x_1,x_2}(t)$

L'intercorrélation entre deux signaux $x_1(t)$ et $x_2(t)$ est une mesure de la corrélation entre ces signaux à différents moments temporels. Elle est définie dans le cours comme suit :

Pour les signaux apériodiques :

$$C_{x_1,x_2}(t) = \int_{-\infty}^{+\infty} \overline{x_1(\tau)} x_2(\tau + t) d\tau$$

Pour les signaux périodiques :

$$C_{x_1,x_2}(t) = \int_0^{T_0} \overline{x_1(\tau)} x_2(\tau + t) d\tau$$

Avec τ le décalage temporel entre les deux signaux. Mais il est aussi possible de la déterminer via l'espérance mathématique E

$$C_{x_1,x_2}(t) = E[x_1(t) * x_2(t+\tau)]$$

L'autocorrélation du signal $x_1(t)$ est définie comme suit pour les **signaux apériodiques**

$$C_{x_1}(t) = C_{x_1,x_1}(t)$$

Mais il est aussi possible de la déterminer via l'espérance mathématique E

$$C_{x_1}(t) = E[x_1(t) * x_1(t+\tau)]$$

On peut établir une relation entre l'intercorrélation et l'autocorrélation en utilisant la propriété suivante :

$$C_{x_1,x_2}(t) = C_{x_2,x_1}(-t)$$

Cela signifie que l'intercorrélation entre $x_1(t)$ et $x_2(t)$ est égale à l'intercorrélation entre $x_2(t)$ et $x_1(t)$ inversée dans le temps.

On peut également **calculer le décalage temporel** τ entre les deux signaux à partir de l'intercorrélation $C_{x_1,x_2}(t)$ en trouvant le décalage pour lequel l'intercorrélation est maximale. En d'autres termes, on cherche la valeur de τ pour laquelle :

$$\tau = \arg_{\max} \left[C_{(x_1, x_2)}(\tau) \right]$$

Cela nous donne le décalage temporel optimal pour aligner les deux signaux $x_1(t)$ et $x_2(t)$.