

CIS 530—Advanced Data Mining

8- Min Hashing and Locality Sensitive Hashing

Thomas W Gyeera, Assistant Professor Computer and Information Science University of Massachusetts Dartmouth

Why is similarity important?

- We saw many definitions of similarity and distance
- How do we make use of similarity in practice?
- What issues do we have to deal with?

An important problem

- Recommendation systems
 - When a user buys an item (initially books) we want to recommend other items that the user may like
 - When a user rates a movie, we want to recommend movies that the user may like
 - When a user likes a song, we want to recommend other songs that they may like
- A big success of data mining
- Exploits the long tail

Recommendation systems

Content-based:

- Represent the items into a feature space and recommend items to customer C similar to previous items rated highly by C
- Movie recommendations: recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news: recommend other sites with "similar" content

Plan of action

Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Recommendation Systems (II)

- Collaborative Filtering (user-user)
 - Consider user c
 - Find set D of other users whose ratings are "similar" to c's ratings
 - Estimate user's ratings based on ratings of users in D

Recommendation Systems (II)

Collaborative Filtering (user-user)

			4	• u1				
	m1	m2						
u1	1	4	Movie 2 2					
u2	4	1	Š 2					
u3	2	5	1				• u2	
			0					
			0	1	2	3	4	5

Movie 1

Recommendation Systems (III)

- Collaborative Filtering (item-item)
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than useruser

Recommendation Systems (III)

	uı	uz
m1	5	1
m2	1	5
m3	4	1

	m1	m2	m3
m1	1.000000	0.384615	0.998868
m2	0.384615	1.000000	0.428086
m3	0.998868	0.428086	1.000000

Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?

Another important problem

- Find duplicate and near-duplicate documents from a web crawl.
- Why is it important:
 - Identify mirrored web pages, and avoid indexing them, or serving them multiple times
 - Find replicated news stories and cluster them under a single story.
 - Identify plagiarism
- What if we wanted exact duplicates?

Finding similar items

- Both the problems we described have a common component
 - We need a quick way to find highly similar items to a query item
 - OR, we need a method for finding all pairs of items that are highly similar.
- Also known as the Nearest Neighbor problem, or the All Nearest Neighbors problem
- We will examine it for the case of nearduplicate web documents.

Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If exact match was the issue, it would be ok, can we replicate this idea?

Three Essential Techniques

- 1. Shingling: convert documents, emails, etc., to sets.
- Minhashing: convert large sets to short signatures, while preserving similarity.
- 3. Locality-Sensitive Hashing (LSH): focus on pairs of signatures likely to be similar.

Motivating problem

• Find duplicate and near-duplicate documents from a web crawl.

- If we wanted exact duplicates, we could do this by hashing
 - We will see how to adapt this technique for near duplicate documents

The Big Picture

Candidate those pairs

of signatures that we need to test for similarity.

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k characters that appears in the document.
- Example: document = abcab. k=2
 - Set of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.
- Represent a document by its set of k-shingles.

Shingling

• Shingle: a sequence of k contiguous characters

```
a rose is a rose is a rose
 rose is
  rose is a
  rose is a
   ose is a r
          a rose
            rose
            rose
             rose 1s
             rose is
```

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
 - Extreme case k = 1: all documents are the same
 - k = 5 is OK for short documents; k = 10 is better for long documents.
- Alternative ways to define shingles:
 - Use words instead of characters
 - Anchor on stop words (to avoid templates)

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- From now on we will assume that shingles are integers
 - Collisions are possible, but very rare

Fingerprinting

Hash shingles to 64-bit integers

Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - Sim $(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
 - E.g., similar customers or items.

Signatures

- Problem: shingle sets are too large to be kept in memory.
- Key idea: "hash" each set S to a small signature Sig (S), such that:
 - 1. Sig (S) is small enough that we can fit a signature in main memory for each set.
 - 2. Sim (S_1, S_2) is (almost) the same as the "similarity" of Sig (S_1) and Sig (S_2) . (signature preserves similarity).
- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
 - False negatives: Similar items deemed as non-similar
 - False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
 - Rows = the universe of all possible set elements
 - In our case, shingle fingerprints take values in [0...2⁶⁴-1]
 - Columns = the sets
 - In our case, documents, sets of shingle fingerprints
 - M(r,S) = 1 in row r and column S, if and only if r is a member of S.
- Typical matrix is sparse.
 - We do not really materialize the matrix

• Universe: **U** = {**A**,**B**,**C**,**D**,**E**,**F**,**G**}

•
$$X = \{A, B, F, G\}$$

•
$$Y = \{A, E, F, G\}$$

• Sim(X,Y) =

Х	Υ
1	1
1	0
0	0
0	0
0	1
1	1
1	1
	1 1 0 0 0

Universe: U = {A,B,C,D,E,F,G}

•
$$X = \{A, B, F, G\}$$

•
$$Y = \{A, E, F, G\}$$

• Sim(X,Y) =

	Х	Υ
Α	1	1
В	1	0
С	0	0
D	0	0
E	0	1
F	1	1
G	1	1

At least one of the columns has value 1

Universe: U = {A,B,C,D,E,F,G}

•
$$X = \{A, B, F, G\}$$

•
$$Y = \{A, E, F, G\}$$

• Sim(X,Y) =

	Х	Υ
A	1	1
В	1	0
С	0	0
D	0	0
E	0	1
F	1	1
G	1	1

Both columns have value 1

Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
 - h(S) = the index of the first row (in the permuted order) in which column S has 1.
 - OR
 - h(S) = the index of the first element of S in the permuted order.
- Use k (e.g., k = 100) independent random permutations to create a signature.

Input matrix

A 1 0 1 0 1 C 2 C 0 1 0 C 2 C 0 1 0 C D 0 1 B F 1 0 1 B F 1 0 0 C F F 1 0 1 0 C C C C C C C C C C C C C C C C	S_1 S_2 S_3			S ₄	S ₃	S ₂	S ₁	
B 1 0 0 1 C 0 1 0 1 D 0 1 0 1 E 0 1 0 1 B 2 C 0 1 0 1 G 3 G 1 0 1 4 F 1 0 1 B 5 B 1 0 0	1 A 1 0 1	1	Α	0	1	0	1	Α
C 0 1 0 1 D 0 1 0 1 E 0 1 0 1 B 5 B 1 0 0	2 C 0 1 0	2	С	1	0	0	1	В
E 0 1 0 1 B 5 B 1 0 0	3 G 1 0 1	3	G	1	0	1	0	С
E 0 1 0 1	4 F 1 0 1	4	F	1	0	1	0	D
F 1 0 1 0 E 6 E 0 1 0	5 B 1 0 0	5	В	1	0	1	0	E
	6 E 0 1 0	6	E	0	1	0	1	F
G 1 0 1 0 D 7 D 0 1 0	7 D 0 1 0	7	D	0	1	0	1	G
1 2 1	1 2 1	_						

Input matrix

	S ₁	S ₂	S ₃	S ₄				S ₁	S ₂	S ₃	5
Α	1	0	1	0	D	1	D	0	1	0	1
В	1	0	0	1	В	2	В	1	0	0	1
С	0	1	0	1	Α	3	Α	1	0	1	C
D	0	1	0	1	С	4	С	0	1	0	1
E	0	1	0	1	F	5	F	1	0	1	C
F	1	0	1	0	G	6	G	1	0	1	C
G	1	0	1	0	E	7	E	0	1	0	1
								2	1	3	

Input matrix

	S ₁	S ₂	S ₃	S ₄	<u> </u>	1			S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0			1	С	0	1	0	1
В	1	0	0	1	D		2	D	0	1	0	1
С	0	1	0	1	G		3	G	1	0	1	0
D	0	1	0	1	F		4	F	1	0	1	0
E	0	1	0	1	Α		5	Α	1	0	1	0
F	1	0	1	0	В		6	В	1	0	0	1
G	1	0	1	0	E		7	E	0	1	0	1
						1			3	1	3	1

Input matrix

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Signature matrix

	S ₁	S ₂	S ₃	S ₄
h ₁	1	2	1	2
h ₂	2	1	3	1
h ₃	3	1	3	1

- Sig(S) = vector of hash values
 - e.g., $Sig(S_2) = [2,1,1]$
- Sig(S,i) = value of the i-th hash function for set S
 - E.g., $Sig(S_2,3) = 1$

Hash function Property

$$Pr(h(S_1) = h(S_2)) = Sim(S_1, S_2)$$

- where the probability is over all choices of permutations.
- Why?
 - The first row where one of the two sets has value 1 belongs to the union.
 - Recall that union contains rows with at least one 1.
 - We have equality if both sets have value 1, and this row belongs to the intersection

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	Х	Υ			Х	Υ
Α	1	1	D	D	0	0
В	1	0	*			
С	0	0	*			
D	0	0	С	С	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

- Universe: **U** = {**A**,**B**,**C**,**D**,**E**,**F**,**G**}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

The * rows belong to the union

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	Х	Υ					Х	Υ
Α	1	1		D		D	0	0
В	1	0		*				
С	0	0		*				
D	0	0		С		С	0	0
E	0	1		*				
F	1	1		*				
G	1	1		*				

Example

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- \cdot Y = {A,E,F,G}

The question is what is the value of the first * element

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	Х	Υ			Х	Υ
Α	1	1	D	D	0	0
В	1	0	*			
С	0	0	*			
D	0	0	С	С	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- \cdot Y = {A,E,F,G}

If it belongs to the intersection, then h(X) = h(Y)

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	X	Υ			X	Υ
Α	1	1	D	D	0	0
В	1	0	*			
С	0	0	*			
D	0	0	С	С	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$Pr(h(X) = h(Y)) = Sim(X,Y)$$

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	X	Υ			X	Υ
Α	1	1	D	D	0	0
В	1	0	*			
С	0	0	*			
D	0	0	С	С	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Similarity for Signatures

 The similarity of signatures is the fraction of the hash functions in which they agree.

4

S ₁	S ₂	S ₃	S ₄
1	2	1	2
2	1	3	1
3	1	3	1

	Actual	Sig
(S_1, S_2)	0	0
(S_1, S_3)	3/5	2/3
(S_1, S_4)	1/7	0
(S_2, S_3)	0	0
(S_2, S_4)	3/4	1
(S_3, S_4)	0	0

tures we get a good approximated

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1 billion...
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?

Being more practical

- Instead of permuting the rows we will apply a hash function that maps the rows to a new (possibly larger) space
 - The value of the hash function is the position of the row in the new order (permutation).
 - Each set is represented by the smallest hash value among the elements in the set
- The space of the hash functions should be such that if we select one at random each element (row) has equal probability to have the smallest value
 - Min-wise independent hash functions

Algorithm – One set, one hash function

Computing Sig(S,i) for a single column S and single hash function h_i

for each row r

compute h_i (r)

 $h_i(r)$ = index of row r in permutation

if column S that has 1 in row r

S contains row r

if h_i (r) is a smaller value than Sig(S,i)

then

Find the row r with minimum index

Cia/Ci) = b/v

Sig(S,i) will become the smallest value of $\mathbf{h_i(r)}$ among all rows (shingles) for which column **S** has value **1** (shingle belongs in S); *i.e.*, $\mathbf{h_i(r)}$ gives the min index for the **i-**th permutation

Algorithm – All sets, k hash functions

Pick k=100 hash functions $(h_1,...,h_k)$

for each row r

In practice this means selecting the hash function parameters

for each hash function h

compute h_i (r)

Compute **h**_i (**r**) only once for all sets

for each column 5 that has 1 in row r

if h_i (r) is a smaller value than Sig(S,i)
then

$$Sig(S,i) = h_i(r);$$

Algorithm – All sets, k hash functions

X	Row	S1	<u>S2</u>	h(x)	g(x)
0	Α	1	0	1	3
1	В	0	1	2	0
2	C	1	1	3	2
3	D	1	0	4	4
4	E	0	1	0	1

$$h(0) = 1$$
 1
 -

 $g(0) = 3$
 3
 -

 $h(1) = 2$
 1
 2

 $g(1) = 0$
 3
 0

$$h(x) = x+1 \mod 5$$

 $g(x) = 2x+3 \mod 5$

$$h(3) = 4$$
 1 2 $g(3) = 4$ 2 0

0

g(2) = 2

$$h(4) = 0$$
 1 0 $g(4) = 1$ 2 0

Implementation

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_i(r)$ only once for each row.

Finding similar pairs

- Problem: Find all pairs of documents with similarity at least t = 0.8
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10⁶ columns implies 5*10¹¹ column-comparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function f(X,Y) that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same minhash signature.
 - Easy to test by hashing the signatures.
 - Similar sets are more likely to have the same signature.
 - Likely to produce many false negatives.

! Multiple levels of Hashing!

- Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
 - Reduce the probability for false negatives.

Signature matrix reminder

Partition into Bands – (1)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with *r* hash functions.

Partition into Bands – (1)

Partition into Bands – (2)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.

Partition into Bands – (3)

- Divide the signature matrix Sig into **b** bands of **r** rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.

Analysis of LSH – What we want

What One Band of One Row Gives You

What b Bands of r Rows Gives You

Similarity s of two sets

Example: b = 20; r = 5

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Figure 3.7: The S-curve

Suppose S₁, S₂ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability S_1 , S_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability S_1 , S_2 are not similar in any of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.
- Probability S_1 , S_2 are similar in at least one of the 20 bands: 1-0.00035 = 0.999

Suppose S₁, S₂ Only 40% Similar

- Probability S_1 , S_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- Probability S_1 , S_2 identical in at least 1 of 20 bands: $\leq 20 * 0.01 = 0.2$.
- But false positives much lower for similarities << 40%.