Определение границ зоны обитаемости в звёздных системах

Евгений Никитин

Июнь 2022

1 Введение

Понятие экзопланеты достаточно простое — это планета вне Солнечной системы (от греч. слова ехо — вне), то есть на орбите вокруг другой звезды. Первая такая экзопланета была открыта в 1995 году, в созвездии Пегаса. После этого события ученые всерьез задумались о возможности возникновения углеродной жизни на таких объектах. В основе изучения благоприятных условий лежит понятие обитаемой зоны. Это такая область в звездной системе, где гипотетическая экзопланета сможет поддерживать на своей поверхности воду в жидком состоянии на продолжительном интервале времени. Мне стало интересно, возможно ли определить такое "золотое расстояние" для экзопланеты, при котором на ней сможет существовать вода в жидком состоянии, используя при этом, простейшие законы, выведенные для условий нашей Солнечной системы.

Цель проекта: Получить формулу для определения положения обитаемой зоны для звездных систем с экзопланетами на орбите.

Задачи:

- Изучить понятие климатической модели для Земли. Определить благоприятное климатическое уравнение для дальнейшей работы.
- Обосновать выбранное уравнение климатической модели, придать ему физический смысл.
- Трансформировать уравнение, выразив из него расстояние.
- Перевести формулу на язык программирования python для ускорения работы и получения данных.

- Определить границы зоны обитаемости для Солнечной системы.
- Определить границы обитаемой зоны для максимально возможного количества звездных систем.
- Проанализировать соотношение экзопланет у звёзд различного вида, построить статистику.
- Использовать полученные данные для ответа на возникшие в процессе исследования вопросы и гипотезы.

2 Теоретическая часть

2.1 Климатическая модель

Климатические модели используют количественные методы для моделирования взаимодействия важных факторов климата Земли. Так как моя цель — выйти за рамки звездной системы и объяснить зависимость звездного излучения и температуры на планете, я буду оперировать простейшей физической моделью.

Одна из простейших, классических моделей. Представляет собой уравнение радиационного равновесия (производное из термодинамического равновесия) для системы Земля, Солнце.

$$(1-a)A\pi r^2 = 4\pi r^2 \epsilon \sigma T^4$$

Где:

- А солнечная постоянная.
- а альбедо Бонда планеты (принимается за 0.367).
- ϵ эффективная излучательная способность (принимается за 1).
- σ постоянная Стефана-Больцмана.
- Т равновесная температура.

2.2 Физический смысл климатической модели 0-D

В данном уравнении главную роль играет две изменяющиеся во времени переменные, с которыми необходимо работать: равновесная температура (T, xapaкmepucmuka nnahemu) и солнечная постоянная (A, xapakmepucmuka звезды). На сегодняшний день $A=1360\frac{W}{m^2}$. Как известно, в

будущем излучение от Солнца может превысить текущее значение, соответственно данный член уравнение с годами может меняться, в связи с эволюцией звезды, тем самым, пропорционально изменяя и равновесную температуру на Земле (Т). Важно понимать, что **Т** не демонстрирует ни среднюю температуру атмосферы, ни среднюю температуру поверхности.

2.3 Метод вычисления границ зоны обитаемости, используя трансформированную формулу климатической модели

Помимо расстояния от звезды, претендующая на поддержание жизни планета должна обладать и другими, не менее важными качествами:

Macca. Масса планеты должна быть от 0.5 земной массы до 10 [Попов С.Б., 2019].

Атмосфера. Атмосферный CO_2 должен аккумулировать всякий раз, когда температура поверхности будет опускаться ниже 273K — точка замерзания воды. Это является условием карбонатно-силикатного цикла, которой протекает на Земле [F. Selsis e.g., 2007].

Вода. На планете должно быть столько воды, чтобы при полном испарении океанов водяной пар создавал давление в 220 бар (22 МПа), иначе поверхностная вода рискует перейти в стабильно газовое состояние до критической точки $T_c=647\mathrm{K}$ [F. Selsis e.g., 2007].

Определение внутренней границы. Внутренняя граница обитаемой зоны характеризуется процессом бесконтрольного парникового эффекта [М. Котавауазі, 1967]. Бесконтрольный парниковый эффект, в свою очередь, характеризуется верхним пределом излучения влажной атмосферы при бесконтрольном парниковом эффекте [Colin Goldblatt and Andrew J. Watson, 2012]. James F Kasting [James F. Kasting, 1987] в своем исследовании вычислил данный предел, он составил $320\frac{Wt}{m^2}$. Это эквивалентно равновесной температуре, равной 270К. Значит, $T_{max}=269K$.

Определение внешней границы. Минимальная равновесная температура $T_{min} = 203K$, как минимально необходимая температура, при которой возникнет стабильная смена фаз воды. При данной температуре эффективное солнечное излучение будет 0.4 от A [G. Valle e.g., 2018].

3 Исследовательская часть

3.1 Получение формулы на основе климатической модели 0-D

Солнечная постоянная А будет равняться отношению суммарной энергии, излучаемой звездой, к площади сферы, через которую проходит поток (как указано выше):

$$A = \frac{L}{4\pi R^2}$$

Таким образом, мы предали частной переменной общий смысл и получили возможность выразить радиус орбиты R для зоны обитаемости. Подставим полученное значение в уравнение климатической модели:

$$(1-a)\frac{L}{4\pi R^2}\pi r^2 = 4\pi r^2\epsilon\sigma T^4$$

Отсюда выразим R:

$$R = \sqrt{\frac{L\left(1-a\right)}{16\pi\epsilon\sigma T^4}}$$

Где $\epsilon=1$, а значит полученная формула для вычисления радиуса обитаемой зоны:

$$R = \sqrt{\frac{L(1-a)}{16\pi\sigma T^4}}$$

Данную формулу я перевел в программу, написанную на языке программирования python для удобства исчисления.

3.2 Вычисление границ зоны обитаемости для солнечной системы

Используя приведенные выше методы оценки расстояния до границ зоны обитаемости, найдем их для нашей Солнечной системы. Получим:

$$Rmin = 132.710.324 \text{ km } (0.89 \text{ a.e.})$$

 $Rmax = 234.682.660 \text{ km } (1.57 \text{ a.e.})$

В Таблице 1 мои результаты сравниваются с результатами учёных, использовавших другие методы, от самой ранней оценки, до самой недавней.

-	Мои результа- ты	S.Dole (1964)	J.F.Kasting et al. (2011)
Внутренняя	0.89 a.e.	0.725 a.e.	0.84 a.e.
Внешняя	1.57 a.e.	1.24 a.e.	1.67 a.e.

Таблица 1: Ширина зоны обитаемости у звёзд разной температуры

3.3 Вычисления границ обитаемой зоны для других звездных систем

Используя базу данных, в которой содержатся все когда-либо открытые экзопланеты, я, с помощью программы, написанной на языке программирования руthon, вычислил границы зоны обитаемости для каждой звездной системы (у звезд которых известны радиус и эффективная температура.) и проверил, попадает ли планеты в границы обитаемой зоны или нет. Всего исследовалось 2637 планет (1780 систем), из которых лишь 108 попадают в зону обитаемости. Общий шанс нахождения исследуемой планеты в границах ЗО составил около четырёх процентов.

Анализируя данные, которые были получены в ходе работы программы, можно заметить, что ширина обитаемой зоны прямо пропорциональна светимости звезды, это видно из Таблицы 2. Получается, что у массивных звезд в соотношении больше потенциально обитаемых экзопланет?

Поррожимо органия	Температура (в	Ширина зоны обитаемости
Название звезды	Кельвинах)	(B a.e.)
1. KOI-351	6080	1.26
2. HD-75383	4511	0.4
3. TOI-712	4622	0.4
4. TOI-1238	4089	0.27
5. LHS-1678	3490	0.11
6. TOI-2257	3430	0.11

Таблица 2: Ширина зоны обитаемости у звёзд разной температуры

3.4 Экзопланеты у массивных звёзд

Чтобы проверить данную гипотезу необходимо договориться, какие звезды называть массивными, а какие нет, так что:

$$R_{max} - R_{min} > 1$$
 a.e. – массивные звезды (K1III, K0IV, F6V).

```
R_{max} - R_{min} < 1 a.e. – немассивные звезды (G5V, G0V, M6).
```

Основываясь на работе программы см. Рисунок 1, видно, что получивший результат совершенно противоречит гипотезе см. Таблица 3. Этому существует несколько объяснений:

- Немассивных звезд во Вселенной в целом больше, чем массивных, в том числе из-за того, что их период жизни больше.
- У большинства массивных звезд внутренняя граница начинается довольно далеко (5 а.е.). Что уменьшает шансы образования каменистой планеты сразу в зоне обитаемости из протопланетного диска [Попов С.Б., 2018].

Тип звезды	Общее кол-во планет	Планеты в ЗО
Массивные	24%	27%
Немассивные	76%	73%

Таблица 3: Соотношение экзопланет у массивных и немассивных звезд

```
Название звезды: ups And / F8 V / 1.277
Название звезды: ups And / F8 V / 1.277
2637 планет / 1760 систем.
Планеты, попадающие в зону обитаемости: 108
необитаемые планеты у массивных звезд: 653
необитаемые планеты у немассивных звезд: 1984
обитаемые планеты у массивных звезд: 30
обитаемые планеты у немассивных звезд: 78
```

Рис. 1: Результаты программы, оценивающей количество планет у массивных и немассивных звезд

В Таблице 4 представлены результаты распределения экзопланет по спектральным классам родительской звезды. Видно, что у звёзд класса М достаточно малое количество экзопланет в зоне обитаемости несмотря на то, что их больше всего в галактике.

Звёзды класса М физически довольно разнообразны, они представлены карликами и гигантами. У красных карликов (MVII-VI) ширина обитаемой зоны крайне мала см. Таблицу 2. Красные гиганты (MIII), в основном, являются этапом звёздной эволюции, при котором планетарная структура системы меняется, например, сдвигаются границы обитаемой зоны. Данный этап ждёт и нашу солнечную систему. Для объяснения данного явления вначале необходимо внести некоторые корректировки в формулу, а именно раскрыть физический смысл светимости звезды:

Спектральный	Всего планет	Потенциально	Соотношение	
класс	рсего планет	обитаемые	Соотношение	
Т	1	0	0%	
L	1	0	0%	
M	263	19	7%	
K	408	16	3%	
G	479	45	9%	
F	173	9	5%	
A	15	0	0%	
В	8	0	0%	

Таблица 4: Распределение экзопланет по спектральному классу звезд

$$R = \sqrt{\frac{4\pi R_{3B}^2 T_{9\Phi\Phi}^4 (1-a)}{16\pi\sigma T^4}}$$
 (1)

Таким образом, формула также может учитывать изменение радиуса звезды и температуры её короны.

4 Заключение

В ходе работы над проектом была получена формула для определения границ зоны обитаемости для звёзд главной последовательности с экзопланетами на орбите:

$$R = \sqrt{\frac{L\left(1-a\right)}{16\pi\epsilon\sigma T^4}}$$

4.1 Общие выводы

- Оценены границы ЗО у 1760 звездных систем.
- Уточнен общий шанс нахождения планет в пределах зоны обитаемости (4%).
- Построена статистика количества потенциально обитаемых планет и спектрального класса родительской звезды.
- Опровергнута дополнительная гипотеза о том, что у массивных звезд больший шанс на нахождение планеты в 30.

• Появилась возможность исследовать влияние эволюции звезды на границы обитаемой зоны и выяснить, как человек может на них повлиять

5 Источники

- 1. James F. Kasting, Whitmire, Daniel P. Reynolds, Ray T. Habitable Zones around Main Sequence Stars / Icarus, 1993.
- ${\it 2. Hans J. Deeg Juan Antonio Belmonte. Handbook of Exoplanets / Springer}, \\ {\it 2018.}$
- 3. F. Selsis, J. F. Kasting, B. Levrard, J. Paillet, I. Ribas, and X. Delfosse. Habitable planets around the star Gliese 581? / Astronomy & Astrophysics, 2007.
- 4. M. Komabayasi. Discrete Equilibrium Temperatures of a Hypothetical Planet with the Atmosphere and the Hydrosphere of One Component-Two Phase System under Constant Solar Radiation / Journal of the Meteorological Society of Japan, 1967.
- 5. Colin Goldblatt and Andrew J. Watson. The Runaway Greenhouse: implications for future climate change, geoengineering and planetary atmospheres / 2012.
- 6. James F. Kasting. Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus James / Icarus, 1987.
- 7. G. Valle, M. Dell'Omodarme, P.G. Prada Moroni, S. Degl'Innocenti. Evolution of the habitable zone of low-mass stars / Astronomy & Astrophysics, 2018.