(If) 1. EinL'': $f(x) = cos \frac{x-1}{x^2+1}$ (xer) $a = \frac{1}{2}$. At einst eppendele: y=f'(a) (x-a)+f(a) $a = \frac{1}{2}$, $f(a) = f(\frac{1}{2}) = \cos(\frac{-1/2}{5/4}) = \cos \frac{2}{5}$ $f(x) = -\sin\left(\frac{x-1}{x^2+1}\right) \cdot \left(\frac{x-1}{x^2+1}\right) = -\sin\left(\frac{x-1}{x^2+1}\right) \cdot \frac{1 \cdot (x^2+1) - (x-1) \cdot 2x}{(x^2+1)^2} =$ = - Sin (x-1) -x+2x+1 $f'(a) = f'(1/2) = -\sin(\frac{-1/2}{5/4}) \cdot \frac{-1/4+1+1}{(5/4)^2} = \frac{28}{25} \sin^2 \frac{1}{5}$ $y = \frac{28}{25} \sin^{2}(x-\frac{1}{2}) + \cos^{2}$ 2. Igasolya, hoff + invertelhels és f'differencial hals (-II, II)-11. $(f^{-1})'(1+\frac{\pi}{2})=?$ f(x)= x+sinx (xER) 1'(x)= (+ cosx >0 in f'(x)=0 (=) cosx=-1 (=) x=T+2KT Meg Vas. Exist f'(x) > 0 ha $-\pi + 2 \times \pi + 2 \times \pi + 2 \times \pi = 0$ $f \uparrow (-\pi + 2 \times \pi, \pi + 2 \times \pi)$ = 0 $f \uparrow (R - 1)$ (west f bolybonos)

Meples. $f'(x) = 1 + \cos x \ge 0$ es f'(x) = 0 (=) $\cos x = -1$ (=) $x = \pi + 2 \times \pi$ Girt f'(x) > 0 ha $-\pi + 2 \times \pi + 2 \times \pi + 2 \times \pi$ => $f \uparrow (-\pi + 2 \times \pi, \pi + 2 \times \pi)$ Girt f'(x) > 0 ha $-\pi + 2 \times \pi + 2 \times \pi + 2 \times \pi$ => $f \uparrow (2 - n)$. (went folyow) $f'(x) = 1 + \cos x$ = f'(x) = 0 (- $\pi_1 \pi$)-n.

=) $f'(x) = 1 + \cos x$ = $f'(x) = 1 + \cos x$ = f'(x)

3,
$$a_1b^{-2}$$
, $hery f \in D(\mathbb{R})$
 $f(x) = \int ax^2 - ax + b \cos(xn)$, $xc - 1$
 $\begin{cases} 2a \\ x^2 + 1 \end{cases} + e^{bx + b} \end{cases} \times 3 - 1$

Uneppla's. Legger

 $b(x) = ax^2 - ax + b \cos(xn) \end{cases} (x \in \mathbb{R})$, $j(x) = \frac{2a}{x^2 + 1} + e^{bx + b} \end{cases} (x \in \mathbb{R})$

A derivation is substinged perint by $f(x) = 2a \cdot \frac{1}{x^2 + 1} \cdot 2x + b \cdot e^{bx + b} \end{cases} (x \in \mathbb{R})$
 $b(x) = 2ax - a - b \sin(xn) \end{cases} (x \in \mathbb{R})$, $j'(x) = 2a \cdot \frac{1}{(x^2 + 1)^2} \cdot 2x + b \cdot e^{bx + b} \end{cases} (x \in \mathbb{R})$

Exist was $4x = -1$ points were initially likely.

The initial $b(-1) = a(-1)^2 - a(-1) + b \cos 0 = 2a + b = A$
 $j(-1) = \frac{2a}{(-1)^2 + 1} + e^0 = a + 1$,

 $axa = 2a + b = a + 1 \Rightarrow a + b = 1$

The initial $b'(-1) = 2a(-1) - a - b \sin 0 = -3a$
 $j'(-1) = -\frac{4a(-1)}{(x^2 + 1)^2} + b \cdot e^0 = a + b$,

 $axa = 2a + b = a + 1 \Rightarrow a + b = 0$

area a+b=-3a = ha+b=0Merolles: $a=-\frac{1}{3}$, $b=\frac{1}{3}$.

4. Igasolya, hogy $f(x) = \chi^7 + 14\chi - 3$ hr-nek epjetlen zh-e van! Megellars. $f \in C(IR)$ a = 0, b = 1 = 0 $f(0) \ne 0$ in f(1) > 0I'y a Bolzano-Jihl perint van ze'zhelze a (0,1) - n.

fOD(R), f'(x) = 7 x6+14 >0 (xER)

Ejest a Rolle-Jebel serint nem lehet meg egy senshelge.