Biblioteke

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 import numpy as np
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.cluster import KMeans
7 import seaborn as sns
8 from sklearn.decomposition import PCA
9 from sklearn.cluster import MeanShift,BisectingKMeans
10 from sklearn.cluster import DBSCAN
11 import plotly as py
12 import plotly.graph_objs as go
13 from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
14 from sklearn.metrics import silhouette_score, calinski_harabasz_score,davies_bouldin_score
15 from sklearn.metrics import adjusted_rand_score
16 import warnings
17 warnings.filterwarnings('ignore')
```

Ucitavanje

```
1 url = "https://raw.githubusercontent.com/aleksicmilica/ml-projekat2/main/bank_marketing_dataset.csv"
2 dataset= pd.read_csv(url)
```

1 dataset.head()

	age	job	marital	education	default	housing	loan	contact	month	day_of_v
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	
1	57	services	married	high.school	unknown	no	no	telephone	may	
2	37	services	married	high.school	no	yes	no	telephone	may	
3	40	admin.	married	basic.6y	no	no	no	telephone	may	
4	56	services	married	high.school	no	no	yes	telephone	may	

5 rows × 21 columns

```
1 dataset.columns
```

1 dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 41188 entries, 0 to 41187 Data columns (total 21 columns): # Column Non-Null Count Dtype ----------41188 non-null int64 0 age 1 job 41188 non-null object 2 marital 41188 non-null object

41188 non-null object education default 41188 non-null object housing 41188 non-null object 41188 non-null object loan contact 41188 non-null object 8 month 41188 non-null object day_of_week 41188 non-null object 10 duration 41188 non-null int64 11 campaign 41188 non-null int64

12 pdays 41188 non-null int64
13 previous 41188 non-null int64
14 poutcome 41188 non-null object
15 emp.var.rate 41188 non-null float64

```
16 cons.price.idx 41188 non-null float64
17 cons.conf.idx 41188 non-null float64
18 euribor3m 41188 non-null float64
19 nr.employed 41188 non-null float64
20 subscribed 41188 non-null object
dtypes: float64(5), int64(5), object(11)
memory usage: 6.6+ MB
```

Predobrada

Provera prisustva missing values

```
1 total_missing = dataset.isnull().sum()
2 print(total_missing)
3 if (total_missing == 0).all():
4 print("Sve vrednosti su prisutne u dataset-u")
                      0
    job
                      0
    marital
                      0
    education
                      0
    default
                      a
    housing
                      0
    loan
                      0
    contact
                      a
    month
    day_of_week
                      0
    duration
                      0
    campaign
    pdays
                      0
    previous
                      0
    poutcome
    emp.var.rate
                      0
    cons.price.idx
    cons.conf.idx
    euribor3m
                      a
    nr.employed
                      0
                      0
    subscribed
    dtype: int64
    Sve vrednosti su prisutne u dataset-u
```

Provera da li su svi podaci odgovarajuceg tipa

Vizuelizacija podataka

```
1 columns = dataset.columns
2 n = len(columns)
```


¹ dataset_2 = dataset.copy()

Labeliranje kategorickih tipova

```
1 lista = ["job", "marital", "education", "default", "housing", "loan", "contact", "month", "day_of_week", "poutcome", "subscribed"]
2 for el in lista:
3 possible_location = dataset[el].unique().tolist()
    # possible_location.insert(0,'nan')
5
     dict_help ={}
     for i in range(len(possible_location)):
6
       dict_help[possible_location[i]] = i
8
     print(dict_help)
     dataset.replace({el:dict help},inplace = True)
10 dataset
     {'housemaid': 0, 'services': 1, 'admin.': 2, 'blue-collar': 3, 'technician': 4, 'retire
     {'married': 0, 'single': 1, 'divorced': 2, 'unknown': 3}
     {'basic.4y': 0, 'high.school': 1, 'basic.6y': 2, 'basic.9y': 3, 'professional.course':
     {'no': 0, 'unknown': 1, 'yes': 2}
{'no': 0, 'yes': 1, 'unknown': 2}
{'no': 0, 'yes': 1, 'unknown': 2}
     {'telephone': 0, 'cellular': 1}
     { 'may': 0, 'jun': 1, 'jul': 2, 'aug': 3, 'oct': 4, 'nov': 5, 'dec': 6, 'mar': 7, 'apr': 
{ 'mon': 0, 'tue': 1, 'wed': 2, 'thu': 3, 'fri': 4} 
{ 'nonexistent': 0, 'failure': 1, 'success': 2}
     {'no': 0, 'yes': 1}
              age job marital education default housing loan contact month day_of_week
         0
                                 0
                                                                   0
                                                                                            0
                                 0
                                                                                                           0
         1
               57
                                              1
                                                                   0
                                                                         0
                                                                                    0
                                                                                            0
         2
               37
                                 0
                                              1
                                                        0
                                                                   1
                                                                         0
                                                                                    0
                                                                                            0
                                                                                                           0
                                              2
         3
               40
                      2
                                 0
                                                        0
                                                                   0
                                                                         0
                                                                                    0
                                                                                            0
                                                                                                           0
         4
               56
                      1
                                 0
                                              1
                                                        0
                                                                   0
                                                                          1
                                                                                    0
                                                                                            0
                                                                                                           0
        ...
      41183
               73
                      5
                                 0
                                              4
                                                        0
                                                                   1
                                                                         0
                                                                                    1
                                                                                            5
                                                                                                           4
                                              4
      41184
               46
                      3
                                 0
                                                        0
                                                                   0
                                                                         0
                                                                                    1
                                                                                            5
                                                                                                           4
                                              6
      41185
               56
                      5
                                 0
                                                        0
                                                                   1
                                                                         0
                                                                                            5
                                                                                                           4
      41186
                                 0
                                              4
                                                                   0
                                                                         0
                                                                                            5
                                                                                                           4
               44
                      4
                                                        0
                                                                                    1
                                              4
      41187
               74
                      5
                                 0
                                                        n
                                                                   1
                                                                         0
                                                                                            5
                                                                                                           4
     41188 rows × 21 columns
1 dataset_bckup = dataset.copy()
```

1 dataset = dataset_bckup.copy()

Iskoseni podaci normalizuju se primenom logaritma

```
1 skewed_columns = ["age","campaign"]
2 fig, axes = plt.subplots(1,2)
3
4 for ind,col in enumerate(skewed_columns):
    dataset[col] = np.log(dataset[col])
6
7
    axes[ind].hist(dataset[col])
8
    axes[ind].set_title(col)
9
    axes[ind].set_xlabel('')
10
   axes[ind].set_ylabel('')
11
12 plt.tight_layout()
13 plt.show()
14
```


Umereno iskoseni podaci normalizuju se primenom korena

```
1 moderate_skewed_columns = ["job","month"]
2 fig, axes = plt.subplots(1,2)
3
4 for ind,col in enumerate(moderate_skewed_columns):
5
    dataset[col] = np.sqrt(dataset[col])
6
    axes[ind].hist(dataset[col])
8
    axes[ind].set_title(col)
9
    axes[ind].set_xlabel('')
    axes[ind].set_ylabel('')
10
11
12 plt.tight_layout()
13 plt.show()
14
```


Ostali numericki podaci standardizuju se

```
1 scaler = StandardScaler()
2 normalize_columns = ["education", "duration", "pdays", "previous", "poutcome", "emp.var.rate", "cons.price.idx", "cons.conf.idx", "euribo
3 # normalize_columns = ["education", "duration"]
4 normalized_data__color_fit_transform/dataset[normalize_columns])
```


Detekcija i otklanjanje outlier-a, normalizacija podataka

```
1 lista = ["age", "job","marital", "education", "default", "housing", "loan", "contact", "month", "day_of_week", "duration", "campaign", "
2 for el in lista:
3    sns.boxplot(x = dataset[el])
4    plt.show()
```


i

ż

-2

-1

ò

cons.price.idx

Druga varijanta dataseta

Kategoricki podaci kod kojih je jasno zastoupljenija jedna kategorija u odnosu na sve ostale transformisu se tako da imaju samo 2 moguce vrednosti

```
1 lista = ["marital", "default", "loan", "poutcome"]
2 dataset_2 = dataset.copy()
3 for ind,el in enumerate(lista):
4   dataset_2[el] = np.where(dataset_2[el] == 0, 0, 1)
5 dataset_2
```

	age	job	marital	education	default	housing	loan	contact	month
0	4.025352	0.000000	0	-1.499673	0	0	0	0	0.000000
1	4.043051	1.000000	0	-1.042111	1	0	0	0	0.000000
2	3.610918	1.000000	0	-1.042111	0	1	0	0	0.000000
3	3.688879	1.414214	0	-0.584550	0	0	0	0	0.000000
4	4.025352	1.000000	0	-1.042111	0	0	1	0	0.000000
41183	4.290459	2.236068	0	0.330573	0	1	0	1	2.236068
41184	3.828641	1.732051	0	0.330573	0	0	0	1	2.236068
41185	4.025352	2.236068	0	1.245696	0	1	0	1	2.236068
41186	3.784190	2.000000	0	0.330573	0	0	0	1	2.236068
41187	4.304065	2.236068	0	0.330573	0	1	0	1	2.236068

⁴¹¹⁸⁸ rows × 21 columns

ALGORITMI

```
1 def eval_metrics(X,labels):
```

² silhouette = silhouette_score(X, labels)

³ ch_index = calinski_harabasz_score(X,labels)

⁴ db_index = davies_bouldin_score(X, labels)

⁵ return (silhouette,db_index,ch_index)

```
1 def visualise_3d_data( datas, cluster_labels, n_clusters):
 pca = PCA(n_components=3)
3 PCs = pd.DataFrame(pca.fit_transform(datas))
4 PCs.columns = ["PC1","PC2","PC3"]
5 PCs["cluster"] = cluster_labels
    cluster = []
6
7
    trace = []
    for i in range(n_clusters):
8
      cluster.append(PCs[PCs["cluster"]==i])
10
      trace.append (go.Scatter3d(
                      x = cluster[i]["PC1"],
11
12
                      y = cluster[i]["PC2"],
                      z = cluster[i]["PC3"],
13
14
                      mode = "markers",
                      name = "Cluster "+str(i),
15
16
                      # marker = dict(color = 'rgba(255, 128, 255, 0.8)'),
17
                       text = None))
18
19
20
    title = "Vizuelizacija klastera u 3D pomocu 3 PCA komponente"
21
22
    layout = dict(title = title,
                xaxis= dict(title= 'PC1',ticklen= 5,zeroline= False),
23
                yaxis= dict(title= 'PC2',ticklen= 5,zeroline= False)
24
25
26
27
    fig = dict(data = trace, layout = layout)
28
29
    iplot(fig)
1 def visualise_2d_data(datas, cluster_labels, n_clusters):
pcas=PCA(n_components=2).fit_transform(datas)
    df2=pd.DataFrame(pcas,columns=['PC1','PC2'])
    sns.scatterplot(data=df2, x="PC1", y="PC2", hue=cluster_labels)
    plt.title("Vizuelizacija klastera u 2d pomocu 2 PCA komponente")
1 pcas=PCA(n_components=2).fit_transform(dataset)
2 df2=pd.DataFrame(pcas,columns=['PC1','PC2'])
```

Kmeans

```
1 from scipy.spatial.distance import cdist
  2 inertias = []
  3 \text{ mapping } 2 = \{\}
  4 K = range(1, 12)
  5 distortions = []
  6 mapping1 = {}
  7 for k in K:
                      kmeanModel = KMeans(n_clusters=k).fit(dataset)
  8
  9
                      kmeanModel.fit(dataset)
                      {\tt distortions.append(sum(np.min(cdist(dataset, kmeanModel.cluster\_centers\_, kmeanModel.cluster\_cente
10
11
                                                                                                                                                 'euclidean'), axis=1)) / dataset.shape[0])
                      mapping1[k] = sum(np.min(cdist(dataset, kmeanModel.cluster_centers_,'euclidean'), axis=1)) / dataset.shape[0]
12
13
                      inertias.append(kmeanModel.inertia_)
14
                      mapping2[k] = kmeanModel.inertia_
  1 print("Vrednosti distrozije po broj klastera")
  2 for key, val in mapping1.items():
                     print(f'{key} : {val}')
                Vrednosti distrozije po broj klastera
                1: 3.6913650287156656
               2: 3.195397659473886
                3 : 3.0337668694656728
                4 : 2.854440107706939
                5 : 2.7606542867947423
                6: 2.6898759944248862
                7 : 2.6076150932171145
                8: 2.5556592662526554
                9: 2.5027815746300863
               10: 2.4589177197818985
                11: 2.425843796089128
```

```
1 plt.plot(K, distortions, 'bx-')
2 plt.xlabel('Vrednosti K')
3 plt.ylabel('Distorzija')
4 plt.title('Elbow metoda')
5 plt.show()
```



```
1 print("Vrednosti inercije po broj klastera")
2 for key, val in mapping2.items():
     print(f'{key} : {val}')
    Vrednosti inercije po broj klastera
    1 : 631425.3405406944
    2 : 474669.1279857573
    3 : 407115.17265450803
    4 : 367195.09307091916
    5 : 340396.85283842846
    6: 321577.40636241285
   7 : 305634.37154894805
8 : 293727.4616294227
    9 : 283660.95170666
    10: 270095.10949484084
   11 : 264163.24255030265
1 plt.plot(K, distortions, 'bx-')
2 plt.xlabel('Vrednosti K')
3 plt.ylabel('Inercije')
4 plt.title('Elbow metoda')
5 plt.show()
```



```
1 kmeans = KMeans(n_clusters =4)
2 cluster_labels = kmeans.fit_predict(dataset)
3 results = eval_metrics(dataset,cluster_labels)
4 print("Silhouette Score : "+str(results[0])+" Davies-Bouldin Index: "+str(results[1])+"Calinski-Harabasz Index: "+str(results[2]))
5 results_df = pd.DataFrame()
6 results_df.loc[1,"KMeans"] = results[0]
```

Silhouette Score : 0.16992386604518878 Davies-Bouldin Index: 1.6498489644815606Calinski-Harabasz Index: 9878.544076019489

1 visualise_3d_data(dataset,cluster_labels,4)

Vizuelizacija klastera u 3D pomocu 3 PCA komponente

1 visualise_2d_data(dataset,cluster_labels,4)


```
1 unique_values, counts = np.unique(cluster_labels, return_counts=True)
```

- 1 clustering_dataframe = pd.DataFrame(counts)
- 1 clustering_dataframe.columns = ["KMeans"]
- 1 results_df

1 clustering_dataframe

```
KMeans
0 11101
1 16398
2 1537
3 12152
```

```
1 kmeans = KMeans(n_clusters =4)
2 cluster_labels = kmeans.fit_predict(df2)
3 results = eval_metrics(df2,cluster_labels)
4 print("Silhouette Score : "+str(results[0])+" Davies-Bouldin Index: "+str(results[1])+"Calinski-Harabasz Index: "+str(results[2]))
5 results_df.loc[1,"PCA_KMeans"] = results[0]

Silhouette Score : 0.516524642626481 Davies-Bouldin Index: 0.8108890221200817Calinski-Harabasz Index: 52734.52377635431

1 unique_values, counts = np.unique(cluster_labels, return_counts=True)
2 clustering_dataframe["PCA_Kmeans"] = counts

1 results_df
```

```
Means PCA_KMeans

1 0.169924 0.516525
```

1 clustering_dataframe

	KMeans	PCA_Kmeans	
0	11101	16136	11.
1	16398	5783	
2	1537	8448	
3	12152	10821	
Next st	eps: 🧧	View recom	mended plots

Bisecting K-means

Vizuelizacija klastera u 3D pomocu 3 PCA komponente

- 1 unique_values, counts = np.unique(cluster_labels, return_counts=True)
- 2 clustering_dataframe["Bisecting Kmeans"] = counts
- 1 results_df

	KMeans	PCA_KMeans	BisectingKMeans		
1	0.169924	0.516525	0.137333		

1 clustering_dataframe

	KMeans	PCA_Kmeans	Bisecting Kmeans	\blacksquare
0	11101	16136	4927	ıl.
1	16398	5783	14641	
2	1537	8448	7285	
3	12152	10821	14335	

```
1 bisectingkmeans = BisectingkMeans(n_clusters =4)
2 cluster_labels = bisectingkmeans.fit_predict(df2)
3 results = eval_metrics(df2,cluster_labels)
4 print("Silhouette Score : "+str(results[0])+" Davies-Bouldin Index: "+str(results[1])+"Calinski-Harabasz Index: "+str(results[2]))
5 results_df.loc[1,"PCA_BisectingkMeans"] = results[0]
    Silhouette Score : 0.5105757848760489 Davies-Bouldin Index: 0.7468223050428169Calinski-Harabasz Index: 50709.23961838911

1 unique_values, counts = np.unique(cluster_labels, return_counts=True)
2 clustering_dataframe["PCA_BisectingkMeans"] = counts
```

Gaussian Mixture

```
1 from sklearn.mixture import GaussianMixture
2 gmm = GaussianMixture(n_components = 4,random_state=42)

1 cluster_labels = gmm.fit_predict(dataset)
2 results = eval_metrics(dataset,cluster_labels)
3 print("Silhouette Score : "+str(results[0])+" Davies-Bouldin Index: "+str(results[1])+"Calinski-Harabasz Index: "+str(results[2]))
4 results_df.loc[1,"Gaussian Mixture"] = results[0]

Silhouette Score : 0.09975477726149581 Davies-Bouldin Index: 3.3015872624880185Calinski-Harabasz Index: 7460.016926791017

1 unique_values, counts = np.unique(cluster_labels, return_counts=True)
2 clustering_dataframe["Gaussian Mixture"] = counts
```

1 visualise_2d_data(dataset,cluster_labels,4)


```
1 cluster_labels = gmm.fit_predict(df2)
2 results = eval_metrics(df2,cluster_labels)
3 print("Silhouette Score : "+str(results[0])+" Davies-Bouldin Index: "+str(results[1])+"Calinski-Harabasz Index: "+str(results[2]))
4 results_df.loc[1,"PCA_Gaussian Mixture"] = results[0]

Silhouette Score : 0.4654669162073473 Davies-Bouldin Index: 0.8838660347437242Calinski-Harabasz Index: 38707.1393547403

1 unique_values, counts = np.unique(cluster_labels, return_counts=True)
2 clustering_dataframe["PCA_Gaussian Mixture"] = counts

1 results_df

KMeans PCA_KMeans BisectingKMeans PCA_BisectingKMeans Gaussian PCA_Gaussian Mixture Mixture Mixture
```

1 clustering_dataframe

	KMeans	PCA_Kmeans	Bisecting Kmeans	PCA_BisectingKMeans	Gaussian Mixture	PCA_Gaussian Mixture
C	11101	16136	4927	12223	7931	9756
1	16398	5783	14641	2008	11603	7315
2	1537	8448	7285	16136	19623	14241
3	12152	10821	14335	10821	2031	9876

Next steps:

Hierarchical Clustering

```
1 from sklearn.cluster import AgglomerativeClustering
2

1 from scipy.cluster.hierarchy import dendrogram,linkage

1 # linkage_data = linkage(df2,method = "ward",metric = "euclidean")

1 # dendrogram(linkage_data)
2 # plt.show()

1 # hierarchical_cluster = AgglomerativeClustering(n_clusters = 4, affinity = "euclidean",linkage = "ward")
2 # cluster_labels = hierarchical_cluster.fit_predict(df2)

1 # results = eval_metrics(df2,cluster_labels)
2 # print("Silhouette Score : "+str(results[0])+" Davies-Bouldin Index: "+str(results[1])+"Calinski-Harabasz Index: "+str(results[2]))
3 # results_df.loc[1, "Hierarchical Clustering(ward)"] = results[0]

1 # visualise_2d_data(dataset,cluster_labels,4)
```