Analog Systems Design

- 4. Data Converters Specifications 1 (DC characteristics)
- 1. ADC Vs DAC
 - ADC

- DAC

- Signals could be **Unipolar**: 0 to FS or **Bipolar**: -FS to FS
- 2. Static DC Specifications
 - Offset error

- Gain error

- 1) Offset error and Gain error can be calibrated by two points calibrations
 - 1. Trim the gain error (+/- error correction factor)
 - 2. Trim the gain error
- DAC monotonicity

- 1) Non-monotonic means increasing the input will decrease the output at some points and it can be catastrophic in control loops (turn negative feedback into positive feedback)
- Linearity

Generally linearity can be described based on two factors DNL and INL

- 1) DAC DNL
 - \triangleright DNL is the deviation of an output step from 1 LSB ($\Delta = V_{FS}/2$)
 - $> \quad DNL_i = \frac{i^{th} \, step \, size \Delta}{\Delta} \rightarrow ideal \, DNL \, of \, a \, step \, = \, 0$
 - \triangleright If $DNL_i = -1 \rightarrow$ means that an output step does not changed when the input changed
 - ightharpoonup If $DNL_i < -1 \rightarrow means non-monotonicity$

- 2) DAC INL
 - > INL can be measured relative to
 - Line joining the ideal end points \rightarrow more accurate
 - A best fit straight line \rightarrow may be misleading

- > The peak to peak INL remains the same
- 3) ADC DNL and Missing Codes and Monotonicity
 - > DNL and INL always measured on the analog axis
 - \triangleright DNL = deviation of code width from 1 LSB (= VFS/2N = Δ)
 - Wide code \rightarrow +ve DNL, narrow code \rightarrow -ve DNL
 - \triangleright What does DNL = -1 mean? \rightarrow Missing Code
 - ightharpoonup Can it be < -1? \rightarrow No مفیش حاجة اسمها کود بالعکس
 - \succ Can we characterize ADC non-monotonicity using DNL? \rightarrow for ADC DNL is misleading
 - > Example

4) ADC INL

- > The INL curve can tell you the order of ADC distortion and type of the ADC Differential or Single Ended
- > 2nd Order distortion

> 3rd Order distortion

> DNL/INL plotted against digital code not analog input

