

Diego Andrés Cisternas Herrera

Armónicas en Sistemas de Baja Tensión Trabajo N°1

Profesor Sr. Domingo Ruiz Caballero

Resumen

En el presente informe se realiza un detallado estudio armónico a dos sistemas trifásicos desbalanceados dedicados que presentan contaminación armónica, para los cuales se evalúa la norma correspondiente en el PCC. Estos sistemas presentan cargas con rectificadores y tienen la particularidad de presentar distinta naturaleza en su comportamiento. Las simulaciones son realizadas en el software PSIM en el cual se puede obtener de forma detallada las formas de onda y las variables eléctricas necesarias para el estudio.

Palabras claves: estudio armónico, PSIM, norma, contaminación armónica, PCC.

Índice general

Introducción	1
1 Sistema N°1	2
1.1 Simular el Sistema	
1.1.1 Formas de onda y análisis armónico	
1.2 Cálculo con los resultados de la simulación	
1.2.1 Factor de desplazamiento	
1.2.2 Potencia Aparente Fundamental	
1.2.3 Potencia Activa Fundamental	
1.2.4 Potencia Reactiva Fundamental	
1.2.5 Potencia Aparenta Total	
1.2.6 Potencia Armónica	
1.2.7 Factor de Potencia	
1.2.8 Distorsión armónica total THD	
1.2.9 Profundidad de los Notches	
1.2.10 Área de los Notches	
1.3 Evaluación según norma Chilena	
· · · · · · · · · · · · · · · · · · ·	
2 Sistema N°2	21
2.1 Simular el Sistema	21
2.1.1 Formas de onda y análisis armónico	22
2.2 Cálculo con los resultados de la simulación	27
2.2.1 Factor de desplazamiento	27
2.2.2 Potencia Aparente Fundamental	27
2.2.3 Potencia Activa Fundamental	
2.2.4 Potencia Reactiva Fundamental	28
2.2.5 Potencia Aparente Total	28
2.2.6 Potencia Armónica	29
2.2.7 Factor de Potencia	
2.2.8 Distorsión Armónica Total THD	30
2.3 Evaluación según norma Chilena	30

	Índice general
Discusión y conclusiones	38
Apéndice A	
- Apéndice B	

Introducción

Los sistemas eléctricos hoy en día presentan gran número de cargas que tienen implícitas en sí elementos de electrónica de potencia, estas cargas tienen la particularidad de ser no lineales, lo cual trae como resultado deformación en las formas de onda de tensión y corriente. Por lo que se vuelve pertinente realizar estudios del comportamiento de estos fenómenos que afectan el funcionamiento del sistema.

A nivel industrial es muy común encontrarse con dos tipos de comportamientos en las cargas. El primero de estos es que se comporten como fuentes de corriente continua (asociado a inductancias de elevado valor) y el segundo corresponde a fuente de tensión continua (asociado a condensadores en paralelo que imponen tensión), estos dependen netamente de la naturaleza de la carga.

La forma de trabajar con los armónicos viene de las series de Fourier, con las cuales se logra descomponer estas formas de onda no sinusoidales en una sumatoria de sinusoides de amplitud variable con argumento múltiplo de la frecuencia fundamental del sistema. Es importante notar que la presencia de armónicos en un sistema es un fenómeno indeseado, puesto que estos no necesariamente aportan a la potencia media, pero sí aportan a los valores eficaces, debido a que están circulando en el sistema. Lo cual se traduce en aumento de pérdidas, calentamiento no deseado de elementos del sistema, peor factor de potencia, vibraciones en motores, activar protecciones, etc.

En el presente informe se realizará el estudio de dos sistemas desbalanceados, cada uno presenta una carga de naturaleza distinta y se evaluará la norma Chilena hasta el orden armónico $n^{\circ}50$ sobre ellos.

Sistema N°1

El primer sistema con frecuencia fundamental 50[Hz], presenta una carga con comportamiento tipo fuente de corriente.

1.1 Simular el Sistema

La simulación se realiza en el Software PSIM, el cual permite obtener las formas de onda del sistema y además mediante el uso de la Transformada Rápida de Fourier (TFF) obtener tanto amplitudes como desfases de las armónicas a estudiar. A continuación en la Figura 1-1 se presenta el sistema en el software de simulación.

Figura 1-1: Simulación Sistema 1

Como se puede apreciar el sistema es trifásico y desbalanceado.

La fase A y C son 'idénticas', con esto se refiere a que los elementos en ambas fases son los mismos (exceptuando las fuentes, que se llevan por un desfase de 120°), por lo cual se espera que las magnitudes tanto de corriente y tensión sean muy similares.

La carga está compuesta por tres unidades monofásicas puente de tiristores que disparan con ángulo α =65° y van a una carga tipo RL serie, teniendo la inductancia de la carga un valor elevado, se espera que el comportamiento de la carga sea como el de una fuente de corriente.

A continuación se presenta en la Tabla 1-1 los detalles de los parámetros que componen el Sistema.

Fase	Fasor (peak)	Impedancia	Impedancia	Carga parte	Carga parte
	Alimentación[V]	Alimentador	Conmutación	Resistiva[Ohm]	Inductiva[Hy]
A	311 0°	20 [μH]	100 [μH]	0.5	0.01
В	311 -120°	20 [μH]	100 [μH]	0.1	0.01
C	311 120°	20 [μH]	100 [μH]	0.5	0.01
Neutro	-	0.1 [Ohm]	-	-	-

Tabla 1-1: Detalle de parámetros del sistema N°1

1.1.1 Formas de onda y análisis armónico

Es importante visualizar las formas de onda del sistema, para verificar que los desfases sean los correctos y que las magnitudes estén dentro de los rangos esperados. A continuación en la Figura 1-2 y 1-3 se presentan las formas de onda de corriente y tensión en el PCC respectivamente.

Figura 1-2: Corrientes en el PCC Sistema N°1

Figura 1-3: Tensiones en el PCC Sistema N°1

Como se puede observar en la Figura 1-2, se muestra que las magnitudes de corriente de las fases A y C son casi idénticas. La fase B tiene una mayor magnitud, esto se debe a que la carga monofásica presenta un valor resistivo más bajo en esta fase. Además las formas de onda de corriente tienden a ser cuadradas, producto del comportamiento de la carga.

Luego en la Figura 1-3 se puede observar que las tensiones en el PCC no presentan mayor diferencia de amplitud entre sí, pero se puede observar claramente que los Notches de la fase B presentan un área mayor, que los de las fases A y C.

En las Figuras 1-4, 1-5 y 1-6 se presentan las formas de onda tensión y corriente de las fases A, B y C en el PCC respectivamente, estas son obtenidas en régimen permanente del sistema.

Figura 1-4: Formas de onda Fase 'A' Sistema N°1

Figura 1-5: Formas de onda Fase 'B' Sistema N°1

Figura 1-6: Formas de onda Fase 'C' Sistema N°1

Como se puede apreciar en estas formas de onda, lo notches de tensión se producen en los 'saltos de la corriente' y la teoría nos indica que son producidos por el efecto de las inductancias de conmutación.

A simple vista se puede apreciar claramente que el contenido armónico asociado a la corriente circulando por las fases es mucho mayor al de la tensión.

En el Apéndice A, se encuentran las tablas de armónicos (magnitud y ángulo de tensión y corriente) obtenidas de la transformada rápida de Fourier para cada una de las fases del sistema, en ellas podemos apreciar que las armónicas pares presentan una magnitud muy pequeña cercana a cero, esto se debe a que las formas de onda resultantes cumplen en gran medida con la llamada simetría de media onda. Lo cual se muestra a continuación en las Figuras 1-7 y 1-8 en las cuales podemos observar el espectro monolateral para las corrientes y tensiones en el PCC respectivamente.

Figura 1-7: Espectro monolateral de corrientes PCC Sistema N°1

Figura 1-8: Espectro monolateral de tensiones PCC Sistema N°1

El espectro de corrientes de la Figura 1-7 muestra claramente el efecto de la simetría de media onda, siendo las armónicas pares imperceptibles. La Figura 1-8 muestra que la tensión en el PCC es casi sinusoidal completamente.

El estudio se centra principalmente en el PCC del sistema, no obstante se considera relevante mostrar la forma de onda circulando por la carga y el neutro, para comprobar que su comportamiento es el esperado (tipo fuente de corriente en la carga).Lo cual se muestra en las Figuras 1-9, 1-10, 1-11 y 1-12.

Figura 1-9: Formas de onda Carga 'A' Sistema N°1

Figura 1-10: Formas de onda Carga 'B' Sistema N°1

Figura 1-11: Formas de onda Carga 'C' Sistema N°1

Las Figuras 1-9, 1-10 y 1-11 dejan en evidencia que la corriente en la carga tiene un valor medio positivo, presentando una ondulación no menor, pero nunca la corriente es negativa. Las formas de onda de tensión presentan una distorsión importante, la cual es resultante de la etapa de puentes de tiristores.

Figura 1-12: Formas de onda Neutro Sistema N°1

Como es de esperarse en un sistema desbalanceado, existe corriente por el neutro. La tensión 'sigue' a la corriente, debido a que estamos en presencia de una resistencia en el neutro. Esta corriente presenta gran distorsión armónica.

1.2 Cálculo con los resultados de la simulación

En esta sección se presentarán los cálculos realizados con los datos del Apéndice A, estos datos fueron obtenidos de PSIM, y trabajados en el software Excel. Estos datos contemplan hasta el armónico de orden 50.

1.2.1 Factor de desplazamiento

Solamente considera la componente fundamental y se calcula como:

$$Factor Desplazamiento = \cos(\delta_1 - \theta_1)$$

Donde δ_1 es el ángulo de la tensión fundamental y θ_1 el ángulo de la corriente fundamental. Usando los resultados de la simulación se obtiene:

Tabla 1-2: Factor desplazamiento Sistema N°1

Fase A	Fase B	Fase C
0,38143[-]	0,36883[-]	0,37512[-]

1.2.2 Potencia Aparente Fundamental

Se calcula con la ecuación:

$$S_1 = \frac{1}{2} * V_1 * I_1$$

Donde I_1 y V_1 son la corriente y tensión de la fundamental. Luego:

Tabla 1-3: Potencia Aparente fundamental Sistema N°1

Fase A	Fase B	Fase C
37351,1[VA]	89759,3[VA]	36021,1[VA]

1.2.3 Potencia Activa Fundamental

Se calcula como:

$$P_1 = \frac{1}{2}V_1 * I_1 * \cos(\delta_1 - \theta_1)$$

Se obtiene como resultado:

Tabla 1-4: Potencia Activa fundamental Sistema N°1

Fase A	Fase B	Fase C
14246,7[W]	33105,7[W]	13512,3[W]

1.2.4 Potencia Reactiva Fundamental

Se calcula como:

$$Q_1 = \frac{1}{2} * V_1 * I_1 * \text{sen}(\delta_1 - \theta_1)$$

Los resultados obtenidos:

Tabla 1-5: Potencia Reactiva fundamental Sistema N°1

Fase A	Fase B	Fase C
34527,3[Var]	83431,1[Var]	33390,7[Var]

1.2.5 Potencia Aparenta Total

Esta se define:

$$S_T = V_{ef} * I_{ef}$$

Luego V_{ef} e I_{ef} , vienen dados por:

$$V_{ef} = \sqrt{{V_0}^2 + \sum_{n=1}^{50} \frac{{V_n}^2}{2}}$$

$$I_{ef} = \sqrt{{I_0}^2 + \sum_{n=1}^{50} \frac{{I_n}^2}{2}}$$

Realizando los cálculos:

Tabla 1-6: Potencia Aparente total Sistema N°1

Fase A	Fase B	Fase C
38749,1[VA]	96217,8[VA]	37677,1[VA]

Comparando con los valores de la potencia aparente fundamental, podemos observar que estos valores son levemente más grandes, eso se debe a que este cálculo considera las componentes armónicas.

1.2.6 Potencia Armónica

Se calcula según la expresión:

$$H = \sqrt{{S_{total}}^2 - (P_1^2 + Q_1^2)}$$

Para la cual se obtienen como resultado:

Tabla 1-7: Potencia Armónica Sistema Nº1

Fase A	Fase B	Fase C
10314,5[VAH]	34657,3[VAH]	11047,3[VAH]

1.2.7 Factor de Potencia

Se utiliza la ecuación:

$$FP = \frac{\sum_{n=1}^{50} \frac{V_{n} * I_{n}}{2} * cos(\delta_{n} - \theta_{n})}{\sqrt{{V_{0}}^{2} + \sum_{n=1}^{50} \frac{V_{n}^{2}}{2}} * \sqrt{{I_{0}}^{2} + \sum_{n=1}^{50} \frac{I_{n}^{2}}{2}}} = \frac{PotenciaMedia}{PotenciaAparenteTotal}$$

Donde:

 V_n = Amplitud de la enésima armónica de tensión

 I_n = Amplitud de la enésima armónica de corriente

 δ_n = Desfase de la enésima componente de tensión armónica

 θ_n = Desfase de la enésima componente de corriente armónica

Para lo cual se obtuvo:

Tabla 1-8: Factor de Potencia Sistema N°1

	Fase A	Fase B	Fase C
Calculado	0,36766[-]	0,34418[-]	0,35865[-]
Simulado	0,36729[-]	0,34414[-]	0,35893[-]

No se presenta mayor diferencia en lo teórico con lo simulado.

1.2.8 Distorsión armónica total THD

Vamos a tener distorsión de corriente y de tensión, lo cuales son calculados como:

$$THD_V = \frac{\sqrt{\sum_{n=2}^{50} Vef_n^2}}{Vef_1} * 100\%$$

$$THD_{I} = \frac{\sqrt{\sum_{n=2}^{50} lef_{n}^{2}}}{lef_{1}} * 100\%$$

Realizando los calculos correspondientes:

Tabla 1-9: THD tensión y corriente Sistema N°1

	Fase A	Fase B	Fase C
THDv	1,26%	3,57%	1,40%
THDi	27,58%	38,4%	30,63%

En la siguiente Figura 1-13 se presentan los THD obtenidos en PSIM:

THD		THD	
Fundamental Frequency	5.0000000e+001 HZ	Fundamental Frequency	5.0000000e+001 HZ
IA	2.7859095e-001	Va	2.0642131e-002
IB	3.8431586e-001	Vb	3.8071521e-002
IC	3.0868316e-001	Vc	1.9935493e-002

Figura 1-13: THD obtenidos de PSIM

Se puede ver que los THDi son bastante parecidos, pero en cambio los THDv presentan cierta diferencia que podría deberse a que hay componentes de tensión armónica de alta frecuencia de tensión que no se está considerando dentro de los 50 primeros armónicos.

1.2.9 Profundidad de los Notches

El sistema tiene la particularidad de ser un sistema dedicado por lo cual la profundidad de los notches no debe ser superior a un 50%.

La profundidad se calcula como:

$$Profundidad\% = \frac{Vmax - Vmin}{V_{1eff}}$$

Donde Vmax y Vmin son la tensión más alta del notch y la más baja respectivamente.

A continuación se muestran las Figuras de los Notches por fase y se presenta la Tabla con el cálculo de la profundidad

Figura 1-14: Notch fase A

Figura 1-15: Notch fase B

Figura 1-16: Notch fase C

Tabla 1-10: Cálculo de profundidad Notches

	Vmax [V]	Vmin [V]	V1eff [V]	Profundidad%
Fase A	285	230	219	25,1%
Fase B	293	230	217,5	28,9%
Fase C	286	238	219	21,9%

Con los resultados obtenidos, podemos indicar que la profundidad de los notches se encuentra dentro de la recomendación.

1.2.10 Área de los Notches

La recomendación respecto al Área de los Notches (An) indica que debe ser menor igual a aproximadamente:

$$An = 36500 * \frac{V_{1eff}}{480} = 16600[V * \mu s]$$

Para realizar el cálculo de forma sencilla se aproximará el notch a un rectángulo, entonces el área se obtiene como:

$$An = (Vmax - Vmin) * t_{promedio}$$

En la Tabla 1-Y, se muestran los resultados obtenidos:

Tabla 1-11: Área de Notches

	Vmax [V]	Vmin [V]	Τ [μs]	An[V* <i>μs</i>]
Fase A	285	230	90	4950
Fase B	293	230	330	14490
Fase C	286	238	94,5	4536

Se puede observar que el An de la fase B es el notoriamente más grande que las otras fases. Pese a esto aparentemente cumplen con la recomendación.

1.3 Evaluación según norma Chilena

Comenzaremos indicando que la norma Chilena respecto al Factor de Potencia exige que este sea mayor igual a 0,93. Para el sistema en las 3 fases nos encontramos con factores de potencia muy bajos respecto a la norma, por lo cual el Sistema N°1 no cumple con la norma de Factor de Potencia.

La norma respecto a las componentes armónicas de corriente se muestra en la siguiente Figura 1-14:

DISTORSIÓ	DISTORSIÓN ARMÓNICA MÁXIMA DE LA CORRIENTE EN PORCENTAJE DE IL (<69KV)							
	h: Orden de las armónicas ímpares							
Isc/IL	< 11	11 ≤ h < 17	17 ≤ h < 23	$23 \leq h \leq 35$	$35 \leq h$	TDD		
< 20*	4.0	2.0	1.5	0.6	0.3	5.0		
20 - 50	7.0	3.5	2.5	1.0	0.5	8.0		
50 -100	10.0	4.5	4.0	1.5	0.7	12.0		
100 - 1000	12.0	5.5	5.0	2.0	1.0	15.0		
> 1000	15.0	7.0	6.0	2.5	1.4	20.0		

Figura 1-14: Norma Chilena sobre armónicas de corriente

Para 'entrar' a la tabla es necesario saber la razón de Isc/IL. Donde:

Isc: Máxima corriente de cortocircuito en el PCC

IL: Máxima corriente de carga (efectivo) de frecuencia fundamental en el PCC.

Entonces primero se calcula la corriente Isc como:

$$Isc = \frac{220}{2 * \pi * 50 * 20\mu} = 35014[A]$$

Ahora tendremos IL para cada una de las fases, este se obtiene de la corriente fundamental, resultando

Tabla 1-12: Razones Isc/IL del Sistema N°1

	Fase A	Fase B	Fase C
Isc/IL	205,3[-]	84,86[-]	212,9[-]

Ahora con esta información podemos usar la tabla para evaluar las armónicas impares de corriente. Tanto la Fase A y C caen en la categoría de 100-1000 y la Fase B en la categoría 50-100.

A continuación se presentanrán las Tablas de evaluación de las corrientes armónicas para cada una de las fases del sistema.

Tabla 1-13: Evaluación de la norma de corrientes Fase A Sistema N°1

Orden Armónico	%Ia	%norma	¿cumple?	Orden Armónico	%Ia	%norma	¿cumple?
1	100	-	-	27	2,12	2	NO
3	19,55	12	NO	29	1,96	2	SI
5	11,53	12	SI	31	1,83	2	SI
7	8,41	12	SI	33	1,71	2	SI
9	6,51	12	SI	35	1,60	1	NO
11	5,27	5,5	SI	37	1,51	1	NO
13	4,49	5,5	SI	39	1,43	1	NO
15	3,89	5,5	SI	41	1,35	1	NO
17	3,40	5	SI	43	1,28	1	NO
19	3,04	5	SI	45	1,22	1	NO
21	2,75	5	SI	47	1,16	1	NO
23	2,49	2	NO	49	1,10	1	NO
25	2,29	2	NO	-	-	-	-

Tabla 1-14: Evaluación de la norma de corrientes Fase B Sistema N°1

Orden Armónico	%Ib	%norma	¿cumple?	Orden Armónico	%Ib	%norma	¿cumple?
1	100	-	-	27	2,19	1,5	NO
3	27,99	10	NO	29	1,93	1,5	NO
5	16,70	10	NO	31	1,69	1,5	NO
7	11,80	10	NO	33	1,47	1,5	SI
9	9,03	10	SI	35	1,28	0,7	NO
11	7,26	4,5	NO	37	1,11	0,7	NO
13	6,01	4,5	NO	39	0,96	0,7	NO
15	5,07	4,5	NO	41	0,82	0,7	NO
17	4,34	4	NO	43	0,69	0,7	SI
19	3,75	4	SI	45	0,58	0,7	SI
21	3,26	4	SI	47	0,47	0,7	SI
23	2,85	1,5	NO	49	0,38	0,7	SI
25	2,51	1,5	NO	-	-	-	-

Tabla 1-15: Evaluación de la norma de corrientes Fase C Sistema N°1

Orden Armónico	%Ic	%norma	¿cumple?	Orden Armónico	%Ic	%norma	¿cumple?
1	100	-	-	27	2,32	2	NO
3	21,67	12	NO	29	2,14	2	NO
5	13,12	12	NO	31	1,98	2	SI
7	9,17	12	SI	33	1,86	2	SI
9	7,21	12	SI	35	1,73	1	NO
11	5,89	5,5	NO	37	1,63	1	NO
13	4,93	5,5	SI	39	1,53	1	NO
15	4,29	5,5	SI	41	1,44	1	NO
17	3,77	5	SI	43	1,36	1	NO
19	3,34	5	SI	45	1,29	1	NO
21	3,03	5	SI	47	1,22	1	NO
23	2,74	2	NO	49	1,16	1	NO
25	2,51	2	NO	-	-	-	-

Ahora para evaluar la norma Chilena de tensión, se utilizará la siguiente Figura 1-X:

ARMÓN	ICAS IMPARES NO	MÚLTIPLO DE 3	ARMÓNICAS IMPARES MÚLTIPLO DE 3		PARES			
Orden	Armónica voltaje	(%)	orden	voltaje (%)		orden	voltaje (%)	
	≤ 110 kV	>110 kV		≤ 110 kV	>110 kV		≤ 110 kV	>110 kV
5	6	2	3	5	2	2	2	1.5
7	5	2	9	1.5	1	4	1	1
11	3.5	1.5	15	0.3	0.3	6	0.5	0.5
13	3	1.5	21	0.2	0.2	8	0.5	0.4
17	2	1	>21	0.2	0.2	10	0.5	0.4
19	1.5	1				12	0.2	0.2
23	1.5	0.7				>12	0.2	0.2
25	1.5	0.7						
>25	0.2+1.3*25/h	0.2+0.5*25/h						

Figura 1-15: Norma para las armónicas de voltaje

El sistema que se está trabajando cae en la categoría de ser inferior a 110kV, además los armónicos pares que presentan las 3 fases son todos inferiores a 0,2% (armónicos pares cumplen), dicho esto se evaluará la norma solo para las armónicas impares de tensión.

Tabla 1-16: Evaluación de la norma de tensión Fase A Sistema N°1

Orden Armónico	%Va	%norma	¿cumple?	Orden Armónico	%Va	%norma	¿cumple?
1	100	-	-	27	0,259	0,2	NO
3	0,264	5	SI	29	0,256	1,321	SI
5	0,260	6	SI	31	0,256	1,248	SI
7	0,261	5	SI	33	0,255	0,2	NO
9	0,265	1,5	SI	35	0,253	1,129	SI
11	0,260	3,5	SI	37	0,253	1,078	SI
13	0,261	3	SI	39	0,252	0,2	NO
15	0,263	0,3	SI	41	0,251	0,993	SI
17	0,259	2	SI	43	0,250	0,956	SI
19	0,260	1,5	SI	45	0,248	0,2	NO
21	0,261	0,2	NO	47	0,247	0,891	SI
23	0,257	1,5	SI	49	0,246	0,863	SI
25	0,258	1,5	SI	-	-	-	-

Tabla 1-17: Evaluación de la norma de tensión Fase B Sistema N°1

Orden Armónico	%Vb	%norma	¿cumple?	Orden Armónico	%Vb	%norma	¿cumple?
1	100	-	-	27	0,708	0,2	NO
3	0,997	5	SI	29	0,669	1,321	SI
5	0,993	6	SI	31	0,627	1,248	SI
7	0,983	5	SI	33	0,583	0,2	NO
9	0,968	1,5	SI	35	0,539	1,129	SI
11	0,952	3,5	SI	37	0,495	1,078	SI
13	0,931	3	SI	39	0,449	0,2	NO
15	0,907	0,3	NO	41	0,404	0,993	SI
17	0,881	2	SI	43	0,359	0,956	SI
19	0,851	1,5	SI	45	0,314	0,2	NO
21	0,818	0,2	NO	47	0,270	0,891	SI
23	0,785	1,5	SI	49	0,227	0,863	SI
25	0,748	1,5	SI	-	-	-	-

Tabla 1-18: Evaluación de la norma de tensión Fase C Sistema N°1

Orden Armónico	%Vc	%norma	¿cumple?	Orden Armónico	%Vc	%norma	¿cumple?
1	100	-	-	27	0,288	0,2	NO
3	0,300	5	SI	29	0,286	1,321	SI
5	0,303	6	SI	31	0,284	1,248	SI
7	0,294	5	SI	33	0,283	0,2	NO
9	0,297	1,5	SI	35	0,280	1,129	SI
11	0,299	3,5	SI	37	0,278	1,078	SI
13	0,294	3	SI	39	0,277	0,2	NO
15	0,295	0,3	SI	41	0,273	0,993	SI
17	0,295	2	SI	43	0,271	0,956	SI
19	0,293	1,5	SI	45	0,269	0,2	NO
21	0,292	0,2	NO	47	0,266	0,891	SI
23	0,291	1,5	SI	49	0,264	0,863	SI
25	0,289	1,5	SI	-	-	-	-

Finalmente, la norma también exige que se cumpla el indicador TDD, para nuestro caso como la demanda es constante usaremos el THDi para comparar y ver si se cumple la norma.

Tabla 1-19: Evaluación TDD Sistema N°1

	THDi%	TDD% normativo	¿Cumple?
Fase A	27,6%	15%	NO
Fase B	38,4%	12%	NO
Fase C	30,6%	15%	NO

Sistema N°2

El segundo sistema con frecuencia fundamental 50[Hz], tiene una carga con comportamiento tipo fuente de tensión.

2.1 Simular el Sistema

Al igual que para el Sistema N°1, se realizará la simulación en PSIM y se usará la TFF para obtener las corrientes y tensiones en el PCC con sus ángulos correspondientes. A continuación en la Figura 2-1 se presenta el sistema en el software de simulación.

Figura 2-1: Simulación Sistema N°2

Nuevamente estamos en presencia de un sistema trifásico desbalanceado.

Al igual que en el Sistema 1 las fases A y C presentan los mismos elementos, por lo cual se espera que los resultados a obtener de estas fases, difieran muy poco.

La carga está compuesta por tres unidades monofásicas puentes de diodos, que cumplen función de rectificadores y están conectados a una carga tipo RC paralelo, la capacitancia provoca un efecto de mantener la tensión, resultando en una ondulación de tensión que tiene valor medio positivo.

En la Tabla 2-1 se presentan los detalles de los parámetros que componen el sistema.

Tabla 2-1: Detalle de	parámetros	del Sistema	N°1
-----------------------	------------	-------------	-----

Fase	Fasor (peak)	Resistencia	Inductancia	Carga parte	Carga parte
	Alimentación	Alimentador	Alimentador	Resistiva	Capacitiva
	[V]	[Ohm]	[μH]	[Ohm]	[μF]
A	311 0°	0.1	500	25	1700
В	311 -120°	0.1	500	5	1700
С	311 120°	0.1	500	25	1700
Neutro	-	0.1	-	-	-

2.1.1 Formas de onda y análisis armónico

El análisis se centra principalmente en el PCC, en las Figuras 2-2 y 2-3 se presentan las formas de onda de corriente y tensión respectivamente.

Figura 2-2: Corrientes en el PCC sistema N°2

Figura 2-3: Tensiones en el PCC sistema N°2

Como se puede observar en la Figura 2-2 las corrientes presentan un formato de onda pulsado, estos pulsos actúan a simple vista sincronizados con sus respectivas tensiones. Se puede observar

claramente que la magnitud de corriente de la Fase B es mayor a la de las Fases A y C, esto se atribuye al hecho de que posee una resistencia de menor valor en la carga.

Luego en la Figura 2-3 se puede observar que las tensiones no presentan mayor diferencia de amplitud entre las fases. Además, las formas de ondas parecen ser bastante sinusoidales exceptuando cuando se acercan a sus valores peak, que se ve cómo se deforman, esta deformación ocurre de forma sincronizada con la aparición de los pulsos de corriente. Por último la deformación de tensión de la fase B, es notoriamente mayor.

En las Figuras 2-4, 2-5 y 2-6 se presentan las formas de onda de tensión y corriente de las fases A. B y C en el PCC respectivamente, las cuales son obtenidas en régimen permanente del sistema.

Figura 2-4: Formas de onda Fase A Sistema N°2

Figura 2-5: Formas de onda Fase B Sistema N°2

Figura 2-6: Formas de onda Fase C Sistema N°2

Como se puede apreciar en estas formas de onda, las deformaciones de tensión se producen cuando la corriente pulsa, esto se debe a que la corriente provoca una caída de tensión en la impedancia del alimentador que se ve reflejada en la tensión del PCC.

Se espera que el contenido armónico asociado a la corriente sea mucho mayor que el de la tensión.

En el Apéndice B, se encuentran las tablas de armónicos (magnitud y ángulo de tensión y corriente) obtenidas de la TFF para cada una de las fases del sistema, en ellas se puede ver que las magnitudes de orden par son prácticamente cero, esto se debe a que las formas de onda cumplen en gran parte la simetría de media onda.

En las Figuras 2-7 y 2-8 podemos observar los espectros monolateral para las corrientes y tensiones en el PCC respectivamente.

Figura 2-7: Espectro monolateral de corrientes en el PCC Sistema N°2

Figura 2-8: Espectro monolateral de tensiones en el PCC Sistema N°2

En ambos espectros se puede apreciar que por efecto de la simetría de media onda, las armónicas de orden par son imperceptibles. En la Figura 2-7 se ve que la fase B tiene menos distorsión de corriente que las fases A y C. Por otro lado en la Figura 2-8 la fase B tiene mayor distorsión de tensión que las fases A y C.

Es de importancia visualizar las formas de onda de la carga y el neutro. En las Figuras 2-9, 2-10, 2-11, y 2-12 se muestran estas formas de onda.

Figura 2-9: Formas de onda Carga A Sistema N°2

Figura 2-10: Formas de onda Carga B Sistema N°2

Figura 2-11: Formas de onda Carga C Sistema N°2

Las Figuras 2-9, 2-10 y 2-11 dejan en evidencia cómo la presencia del capacitor provoca una ondulación de tensión en torno al valor medio de tensión. Es relevante agregar que la ondulación que presenta la carga de la fase B es muy superior a la de las fases A y C. De las corrientes podemos ver su formato pulsado rectificado que resulta del puente de diodos. Como última observación se puede ver cómo coincide el pulso de corriente con la subida de tensión en la ondulación de la carga.

Figura 2-12: Formas de onda Carga C Sistema N°2

En la Figura 2-12, se puede ver como el sistema N°2 presenta corriente neutro de elevada distorsión armónica, que además alcanza gran amplitud. La tensión en el neutro no es nada más que el efecto de la corriente al circular por la resistencia del neutro, por tanto se ve como ambas están en fase.

2.2 Cálculo con los resultados de la simulación

Se presentarán los cálculos realizados con los datos del Apéndice B. Al igual que el sistema N°1, estos datos fueron obtenidos de PSIM y trabajados con el software Excel. Estos datos comprenden hasta el armónico de orden 50.

2.2.1 Factor de desplazamiento

Solamente considera la componente fundamental y se calcula como:

$$Factor Desplazamiento = \cos(\delta_1 - \theta_1)$$

Donde δ_1 es el ángulo de la tensión fundamental y θ_1 el ángulo de la corriente fundamental. Usando los resultados de la simulación se obtiene:

Tabla 2-2: Factor desplazamiento Sistema N°2

Fase A	Fase B	Fase C
0,99836[-]	0,96787[-]	0,99696 [-]

2.2.2 Potencia Aparente Fundamental

Se calcula con la ecuación:

$$S_1 = \frac{1}{2} * V_1 * I_1$$

Donde I_1 y V_1 son la corriente y tensión de la fundamental. Luego:

Tabla 2-3: Potencia Aparente fundamental Sistema N°2

Fase A	Fase B	Fase C
3529,4 [VA]	14569,6 [VA]	3540,1[VA]

2.2.3 Potencia Activa Fundamental

Se calcula como:

$$P_1 = \frac{1}{2}V_1 * I_1 * \cos(\delta_1 - \theta_1)$$

Se obtiene como resultado:

Tabla 2-4: Potencia Activa fundamental Sistema N°2

Fase A	Fase B	Fase C
3523,6[W]	14101,5 [W]	3529,3 [W]

2.2.4 Potencia Reactiva Fundamental

Se calcula como:

$$Q_1 = \frac{1}{2} * V_1 * I_1 * \text{sen}(\delta_1 - \theta_1)$$

Los resultados obtenidos:

Tabla 2-5: Potencia Reactiva fundamental Sistema N°2

Fase A	Fase B	Fase C
202,1 [Var]	-3663,5 [Var]	275,5 [Var]

2.2.5 Potencia Aparente Total

Esta se define:

$$S_T = V_{ef} * I_{ef}$$

Luego V_{ef} e I_{ef} , vienen dados por:

$$V_{ef} = \sqrt{{V_0}^2 + \sum_{n=1}^{50} \frac{{V_n}^2}{2}}$$

$$I_{ef} = \sqrt{{I_0}^2 + \sum_{n=1}^{50} \frac{{I_n}^2}{2}}$$

Realizando los cálculos:

Tabla 2-6: Potencia Aparente total Sistema N°2

Fase A	Fase B	Fase C
5236,3 [VA]	18461,9 [VA]	5166,9 [VA]

Comparando con los valores de la potencia aparente fundamental, podemos observar que estos valores son levemente más grandes, eso se debe a que este cálculo considera las componentes armónicas.

2.2.6 Potencia Armónica

Se calcula según la expresión:

$$H = \sqrt{{S_{total}}^2 - (P_1^2 + Q_1^2)}$$

Para la cual se obtienen como resultado:

Tabla 2-7: Potencia Armónica Sistema Nº2

Fase A	Fase B	Fase C
3868,2 [VAH]	11338,9[VAH]	3763,6 [VAH]

2.2.7 Factor de Potencia

Se utiliza la ecuación:

$$FP = \frac{\sum_{n=1}^{50} \frac{V_{n} * I_{n}}{2} * cos(\delta_{n} - \theta_{n})}{\sqrt{V_{0}^{2} + \sum_{n=1}^{50} \frac{V_{n}^{2}}{2}} * \sqrt{I_{0}^{2} + \sum_{n=1}^{50} \frac{I_{n}^{2}}{2}}} = \frac{PotenciaMedia}{PotenciaAparenteTotal}$$

Donde:

 V_n = Amplitud de la enésima armónica de tensión

 I_n = Amplitud de la enésima armónica de corriente

 δ_n = Desfase de la enésima componente de tensión armónica

 θ_n = Desfase de la enésima componente de corriente armónica

Para lo cual se obtuvo:

Tabla 2-8: Factor de Potencia Sistema N°2

	Fase A	Fase B	Fase C
Calculado	0,66690[-]	0,74947[-]	0,67737[-]
Simulado	0,66852[-]	0,749408[-]	0,67733[-]

2.2.8 Distorsión Armónica Total THD

Vamos a tener distorsión de corriente y de tensión, lo cuales son calculados como:

$$THD_V = \frac{\sqrt{\sum_{n=2}^{50} Vef_n^2}}{Vef_1} * 100\%$$

$$THD_{I} = \frac{\sqrt{\sum_{n=2}^{50} Ief_{n}^{2}}}{Ief_{1}} * 100\%$$

Realizando los calculos correspondientes:

Tabla 2-9: THD tensión y corriente Sistema N°2

	Fase A	Fase B	Fase C
THDv	5,81%	13,34%	5,47%
THDi	109,26%	75,99%	106,01%

En la Figura 2-13 se muestran los THD obtenidos en PSIM:

THD		THD		
	Fundamental Frequency	5.0000000e+001 HZ	Fundamental Frequency	5.0000000e+001 HZ
	IA	1.0932268e+000	Va	5.8802792e-002
	IB	7.5905103e-001	Vb	1.3411432e-001
	IC	1.0603053e+000	Vc	5.5350218e-002

Figura 2-13: THD obtenidos en PSIM Sistema N°2

Los THD tanto simulados como calculados presentan gran similitud.

2.3 Evaluación según norma Chilena

La norma Chilena respecto al Factor de Potencia exige que este sea mayor igual a 0,93. Para el sistema N°2, las 3 fases tiene un factor de potencia bajo la norma, por tanto no cumple la norma del factor de potencia.

La norma respecto a las componentes armónicas de corriente es la misma que se utilizó para el sistema N°1 en la Figura 1-14

Para 'entrar' a la tabla es necesario saber la razón de Isc/IL. Donde:

Isc: Máxima corriente de cortocircuito en el PCC

IL: Máxima corriente de carga (efectivo) de frecuencia fundamental en el PCC.

Entonces primero se calcula la corriente Isc como (se desprecia la resistencia):

$$Isc = \frac{220}{2 * \pi * 50 * 500 \mu} = 1400,6[A]$$

Ahora tendremos IL para cada una de las fases, este se obtiene de la corriente fundamental efectiva, resultando:

Tabla 2-10: Razones Isc/IL del Sistema N°1

	Fase A	Fase B	Fase C
Isc/IL	86,4[-]	20,7[-]	86,1[-]

Ahora con esta información podemos usar la tabla para evaluar las armónicas impares de corriente. Tanto la Fase A y C caen en la categoría de 50-100 y la Fase B en la categoría 20-50.

A continuación se presentanrán las Tablas de evaluación de las corrientes armónicas para cada una de las fases del sistema.

Tabla 2-11: Evaluación de la norma de corrientes Fase A Sistema $N^{\circ}2$

Orden Armónico	%Ia	%norma	¿cumple?	Orden Armónico	%Ia	%norma	¿cumple?
1	100,00	-	-	27	1,24	1,5	SI
3	84,59	10	NO	29	0,86	1,5	SI
5	59,20	10	NO	31	0,86	1,5	SI
7	32,19	10	NO	33	0,82	1,5	SI
9	11,55	10	NO	35	0,61	0,7	SI
11	5,18	4,5	NO	37	0,58	0,7	SI
13	6,30	4,5	NO	39	0,58	0,7	SI
15	4,10	4,5	SI	41	0,46	0,7	SI
17	2,26	4	SI	43	0,42	0,7	SI
19	2,58	4	SI	45	0,43	0,7	SI
21	2,07	4	SI	47	0,36	0,7	SI
23	1,30	1,5	SI	49	0,32	0,7	SI
25	1,38	1,5	SI	-	-	-	-

Tabla 2-12: Evaluación de la norma de corrientes Fase B Sistema N°2

Orden Armónico	%Ib	%norma	¿cumple?	Orden Armónico	%Ib	%norma	¿cumple?
1	100,00	-	-	27	0,40	1	SI
3	69,68	7	NO	29	0,23	1	SI
5	29,63	7	NO	31	0,29	1	SI
7	2,51	7	SI	33	0,18	1	SI
9	5,08	7	SI	35	0,23	0,5	SI
11	1,69	3,5	SI	37	0,15	0,5	SI
13	1,83	3,5	SI	39	0,17	0,5	SI
15	1,15	3,5	SI	41	0,13	0,5	SI
17	0,85	2,5	SI	43	0,14	0,5	SI
19	0,75	2,5	SI	45	0,11	0,5	SI
21	0,50	2,5	SI	47	0,11	0,5	SI
23	0,54	1	SI	49	0,10	0,5	SI
25	0,32	1	SI	-	-	-	-

Tabla 2-13: Evaluación de la norma de corrientes Fase C Sistema N°2

Orden Armónico	%Ic	%norma	¿cumple?	Orden Armónico	%Ic	%norma	¿cumple?
1	100	-	-	27	0,98	1,5	SI
3	83,60	10	NO	29	0,74	1,5	SI
5	56,92	10	NO	31	0,83	1,5	SI
7	29,17	10	NO	33	0,66	1,5	SI
9	8,72	10	SI	35	0,52	0,7	SI
11	4,59	4,5	NO	37	0,57	0,7	SI
13	5,61	4,5	NO	39	0,47	0,7	SI
15	3,10	4,5	SI	41	0,38	0,7	SI
17	2,08	4	SI	43	0,42	0,7	SI
19	2,43	4	SI	45	0,36	0,7	SI
21	1,63	4	SI	47	0,30	0,7	SI
23	1,14	1,5	SI	49	0,32	0,7	SI
25	1,30	1,5	SI	-	-	-	-

Ahora para evaluar la norma Chilena de tensión, se utilizará la Figura 1-14, la misma norma utilizada para evaluar el Sistema N°1:

El sistema que se está trabajando cae en la categoría de ser inferior a 110kV, además los armónicos pares que presentan las 3 fases son todos inferiores a 0,2% (armónicos pares cumplen), dicho esto se evaluará la norma solo para las armónicas impares de tensión.

Tabla 2-14: Evaluación de la norma de tensión Fase A Sistema N°2

Orden Armónico	%Va	%norma	¿cumple?	Orden Armónico	%Va	%norma	¿cumple?
1	100,000	-	-	27	0,393	0,2	NO
3	3,037	5	SI	29	0,292	1,321	SI
5	3,488	6	SI	31	0,312	1,248	SI
7	2,650	5	SI	33	0,319	0,2	NO
9	1,219	1,5	SI	35	0,251	1,129	SI
11	0,667	3,5	SI	37	0,253	1,078	SI
13	0,960	3	SI	39	0,267	0,2	NO
15	0,720	0,3	NO	41	0,220	0,993	SI
17	0,450	2	SI	43	0,213	0,956	SI
19	0,573	1,5	SI	45	0,229	0,2	NO
21	0,510	0,2	NO	47	0,196	0,891	SI
23	0,352	1,5	SI	49	0,184	0,863	SI
25	0,405	1,5	SI	-	-	-	-

Tabla 2-15: Evaluación de la norma de tensión Fase B Sistema N°2

Orden Armónico	%Vb	%norma	¿cumple?	Orden Armónico	%Vb	%norma	¿cumple?
1	100,000	-	-	27	0,535	0,2	NO
3	10,565	5	NO	29	0,328	1,321	SI
5	7,376	6	NO	31	0,450	1,248	SI
7	0,861	5	SI	33	0,300	0,2	NO
9	2,269	1,5	NO	35	0,393	1,129	SI
11	0,912	3,5	SI	37	0,274	1,078	SI
13	1,184	3	SI	39	0,340	0,2	NO
15	0,851	0,3	NO	41	0,269	0,993	SI
17	0,715	2	SI	43	0,289	0,956	SI
19	0,703	1,5	SI	45	0,258	0,2	NO
21	0,526	0,2	NO	47	0,255	0,891	SI
23	0,608	1,5	SI	49	0,246	0,863	SI
25	0,391	1,5	SI	-	-	-	-

Tabla 2-16: Evaluación de la norma de tensión Fase C Sistema N°2

Orden Armónico	%Vc	%norma	¿cumple?	Orden Armónico	%Vc	%norma	¿cumple?
1	100,000	-	-	27	0,310	0,2	NO
3	3,007	5	SI	29	0,252	1,321	SI
5	3,367	6	SI	31	0,302	1,248	SI
7	2,410	5	SI	33	0,256	0,2	NO
9	0,928	1,5	SI	35	0,212	1,129	SI
11	0,591	3,5	SI	37	0,245	1,078	SI
13	0,858	3	SI	39	0,215	0,2	NO
15	0,548	0,3	NO	41	0,183	0,993	SI
17	0,415	2	SI	43	0,208	0,956	SI
19	0,544	1,5	SI	45	0,188	0,2	SI
21	0,403	0,2	NO	47	0,162	0,891	SI
23	0,308	1,5	SI	49	0,180	0,863	SI
25	0,383	1,5	SI	-	-	-	-

Finalmente, la norma también exige que se cumpla el indicador TDD, para nuestro caso como la demanda es constante usaremos el THDi para comparar y ver si se cumple la norma.

Tabla 2-17: Evaluación TDD Sistema N°2

	THDi%	TDD% normativo	¿Cumple?
Fase A	109,3%	12%	NO
Fase B	76%	8%	NO
Fase C	106%	12%	NO

Discusión y conclusiones

En ambos sistemas se pudo observar que las magnitudes de tensiones en el PCC eran bastante similares entre sí, siendo la fase B la cual presentaba magnitud de tensión más baja que las otras fases, esto se atribuye a que la corriente presente en esta fase era mayor que las otras, lo cual provoca una mayor caída de tensión en la impedancia del alimentador.

Nuevamente en ambos sistemas la parte resistiva de la carga de la fase B era de menor valor, lo cual provocaba notoriamente que la corriente circulando por esta fase, tuviera mayor magnitud.

En el sistema N°1, que la carga era tipo fuente de corriente, se pudo apreciar satisfactoriamente que las formas de onda de corriente en el PCC tendían a ser cuadradas. Y en las tensiones de este mismo, se pudo observar que eran prácticamente sinusoidales, excepto por los hundimientos (notches), que eran producto de la conmutación producida por los puentes a tiristor.

El sistema N°2, con carga tipo fuente de tensión, se pudo observar que la corriente circulando en el PCC tenía el formato de ser pulsada, lo cual provocaba una distorsión en las formas de tensión solo durante la aparición de la corriente. Como la corriente por la fase B era de mayor amplitud, la distorsión de tensión asociada era mayor que en las otras fases.

Respecto a la evaluación de la norma, es muy notorio observar que el desbalance de ambos sistemas provocaba que las armónicas múltiplos de 3 (de secuencia cero) aparecieran, lo cual se observó en la evaluación de norma de tensión, puesto que las armónicas múltiplos de 3 no cumplían con la norma.

Ambos sistemas presentan gran contaminación armónica, esto se ve reflejado en que las normas de factor de potencia, TDD, corrientes y tensiones, no se cumplían. Con respecto a la fase B de ambos sistemas (la cual presentaba el desbalance) se pudo ver que tenía mayor cantidad de armónicos de tensión fuera de la norma, en comparación a las otras fases.

Durante el trabajo con el sistema N°2 se pudo observar como el factor de desplazamiento era cercano a la unidad, pero el factor de potencia llegaba al orden de 0,6-0,7. Esto ejemplifica de forma práctica que la presencia de armónicos en el sistema afecta de forma negativa al factor de potencia.

Si bien el estudio realizado solo consideró hasta el armónico de orden 50, los resultados obtenidos comparado a la simulación son muy representativos, excepto en el THDv del primer sistema, puesto que la diferencia observada se atribuye a que los notches provocan armónicas de alta frecuencia fuera del rango estudiado.

Si bien los elementos de electrónica de potencia permiten manipular la energía de forma rápida y con alto control, la contaminación armónica que provocan es un efecto que no se puede ignorar. Por lo cual para tener un sistema que funcione de mejor forma es necesaria la inminente implementación de filtros para atenuar componentes armónicas que se salgan de la norma.

A Tablas por Fase Sistema N°1

Se presentan las tablas obtenidas de PSIM con las cuales se trabajó en Excel para sistema N°1.

Tabla A-1: Fase A PCC Sistema N°1

Orden	Ia[A]	AngIa[°]	Va[V]	AngVa[°]	Orden	Ia[A]	AngIa[°]	Va[V]	AngVa[°]
Armónico		0 - 1			Armónico		0 - 1		9 - 1
0	0,021	0,0	0,000	0,0	26	0,022	-172,7	0,004	59,3
1	241,157	-67,4	309,766	0,2	27	5,126	31,9	0,802	-58,1
	241,157	-07,4	303,700	0,2	21	3,120	31,3	0,002	-30,1
2	0,029	-41,3	0,041	0,0	28	0,022	56,0	0,005	-19,8
3	47,148	169,8	0,821	78,7	29	4,737	-99,3	0,793	170,6
4	0,021	-164,1	0,016	2,1	30	0,022	-74,6	0,002	-150,9
T	0,021	-104,1	0,010	2,1	30	0,022	-74,0	0,002	-130,3
5	27,820	34,0	0,808	-55,1	31	4,415	129,5	0,795	39,3
6	0,022	55,0	0,011	-1,6	32	0,021	153,9	0,005	44,9
7	20,294	-97,7	0,811	172,2	33	4,143	-1,3	0,793	-91,3
'	20,234	31,1	0,011	112,2	33	4,143	1,3	0,733	31,3
8	0,023	-71,3	0,007	-1,8	34	0,022	23,0	0,005	-47,5
9	15,719	132,5	0,822	42,3	35	3,879	-132,3	0,787	137,4
10	0,022	156,5	0,007	10,6	36	0,021	-107,7	0,003	149,2
10	0,022	130,3	0,007	10,0	30	0,021	-107,7	0,003	149,2
11	12,711	0,3	0,806	-89,3	37	3,649	96,5	0,786	6,3
12	0,022	23,5	0,006	-12,5	38	0,021	120,7	0,006	23,8
10	10.025	121.0	0.010	120 5	20	2 454	24.4	0.700	1045
13	10,835	-131,2	0,810	138,5	39	3,454	-34,4	0,782	-124,5
14	0,022	-105,4	0,003	12,4	40	0,021	-9,9	0,005	-81,8
	- ,	, -	-,	-,-	•	-,	- ,-	-,	,-

15	9,387	98,6	0,817	8,6	41	3,263	-165,4	0,778	104,2
16	0,022	122,4	0,006	12,1	42	0,021	-140,9	0,004	112,8
17	8,204	-33,0	0,803	-122,8	43	3,091	63,5	0,775	-26,7
18	0,022	-8,9	0,004	-34,7	44	0,021	87,6	0,007	-1,0
19	7,354	-164,3	0,806	105,3	45	2,943	-67,5	0,770	-157,7
20	0,022	-139,2	0,003	54,2	46	0,021	-42,9	0,005	-122,0
21	6,656	65,2	0,811	-24,8	47	2,798	161,5	0,768	71,1
22	0,022	89,1	0,006	0,8	48	0,021	-174,2	0,006	82,8
23	6,026	-66,1	0,799	-156,2	49	2,664	30,4	0,763	-59,8
24	0,022	-41,7	0,002	-75,1	50	0,021	54,6	0,007	-28,9
25	5,536	162,6	0,802	72,3	-	-	-	-	-

Tabla A-2: Fase B PCC Sistema N°1

Orden	Ib[A]	AngIb[°]	Vb[V]	AngVb[°]	Orden	Ib[A]	AngIb[°]	Vb[V]	AngVb[°]
Armónico					Armónic				
0	0,040	0,0	0,027	0,0	26	0,056	73,9	0,008	-18,6
1	583,485	171,7	307,666	-120,0	27	12,824	-24,2	2,181	-112,7
	0.070	110.0	0.000	140.0		0.050	= 0.0	0.000	0.1.0
2	0,078	-113,9	0,028	-140,3	28	0,053	58,8	0,008	-34,8
2	162.252	150.0	2.070	CO 1	20	11 267	20.2	2.050	107.7
3	163,353	158,8	3,070	69,1	29	11,267	-39,2	2,059	-127,7
4	0,080	-123,2	0,010	-164,8	30	0,049	43,6	0,009	-50,6
4	0,000	-123,2	0,010	-104,0	30	0,043	43,0	0,003	-30,0
5	97,467	142,7	3,058	53,0	31	9,876	-54,3	1,930	-142,6
	,	,	,	ŕ		,	,	,	ŕ
6	0,079	-137,0	0,007	176,7	32	0,046	28,3	0,009	-65,9
7	68,883	127,4	3,027	37,8	33	8,624	-69,2	1,795	-157,4
8	0,077	-151,4	0,006	157,9	34	0,042	13,2	0,009	-80,7
9	52,741	112,3	2,981	22,8	35	7,522	-84,1	1,661	-172,2

10	0,076	-166,0	0,006	137,9	36	0,039	-1,9	0,009	-95,3
11	42,411	96,9	2,930	7,5	37	6,523	-99,0	1,523	173,0
12	0,074	179,2	0,006	117,0	38	0,036	-17,1	0,009	-109,5
13	35,104	81,7	2,867	-7,6	39	5,612	-113,8	1,382	158,4
14	0,072	164,3	0,006	95,8	40	0,032	-32,0	0,009	-123,4
15	29,607	66,6	2,791	-22,6	41	4,804	-128,5	1,245	143,8
16	0,070	149,4	0,006	74,7	42	0,029	-46,9	0,008	-137,1
17	25,372	51,3	2,712	-37,8	43	4,067	-143,0	1,106	129,4
18	0,067	134,4	0,006	54,3	44	0,026	-61,6	0,008	-150,5
19	21,935	36,2	2,621	-52,8	45	3,394	-157,4	0,966	115,1
20	0,065	119,3	0,007	34,7	46	0,022	-76,0	0,007	-163,3
21	19,069	21,1	2,519	-67,7	47	2,797	-171,5	0,833	101,1
22	0,062	104,3	0,007	16,2	48	0,019	-90,1	0,006	-175,9
23	16,688	6,0	2,416	-82,8	49	2,254	174,8	0,700	87,5
24	0,059	89,1	0,008	-1,6	50	0,016	-103,8	0,006	172,1
25	14,629	-9,1	2,303	-97,8	-	-	-	-	-
			l			1			

Tabla A-3: Fase C PCC Sistema N°1

Orden	Ic[A]	AngIc[°]	Vc[V]	AngVc[°]	Orden	Ic[A]	AngIc[°]	Vc[V]	AngVc[°]
Armónico					Armónico				
0	0,017	0,0	0,027	0,0	26	0,023	-118,1	0,005	158,2
1	232,586	52,2	309,744	120,2	27	5,397	25,6	0,894	-64,0
2	0,033	24,2	0,027	139,8	28	0,023	-9,9	0,004	-114,8
3	50,417	168,9	0,931	79,9	29	4,981	133,8	0,886	44,3

T									
4	0,022	123,0	0,009	153,8	30	0,023	97,6	0,003	11,9
5	30,536	-87,4	0,941	-177,5	31	4,627	-117,5	0,882	153,0
6	0,023	-119,0	0,006	162,3	32	0,022	-153,0	0,005	127,4
7	21,339	21,0	0,912	-69,1	33	4,327	-8,9	0,878	-98,5
8	0,025	-13,8	0,004	-175,5	34	0,022	-44,1	0,005	-141,1
9	16,784	130,3	0,923	40,7	35	4,040	99,3	0,868	9,9
10	0,023	91,4	0,002	161,2	36	0,022	63,3	0,004	-30,9
11	13,712	-122,6	0,927	147,7	37	3,792	-152,0	0,864	118,7
12	0,023	-157,1	0,004	149,6	38	0,022	172,2	0,005	92,1
13	11,472	-13,9	0,914	-103,8	39	3,573	-43,4	0,858	-132,8
14	0,024	-48,5	0,004	-163,9	40	0,022	-78,5	0,006	-169,7
15	9,992	95,1	0,916	5,4	41	3,362	64,9	0,848	-24,4
16	0,024	57,8	0,001	-90,2	42	0,022	29,1	0,005	-67,1
17	8,772	-157,2	0,915	113,1	43	3,178	173,5	0,842	84,3
18	0,023	167,1	0,003	114,4	44	0,021	137,5	0,005	54,2
19	7,785	-48,5	0,908	-138,2	45	3,009	-77,9	0,836	-167,2
20	0,023	-83,2	0,004	-177,2	46	0,021	-113,0	0,007	159,7
21	7,052	60,3	0,907	-29,4	47	2,848	30,5	0,825	-58,8
22	0,023	24,1	0,003	-92,5	48	0,021	-5,0	0,006	-100,2
23	6,393	168,2	0,902	78,7	49	2,704	139,1	0,818	49,9
24	0,023	132,1	0,003	63,8	50	0,021	103,0	0,006	15,6
25	5,839	-83,0	0,897	-172,6	-	-	-	-	-

B Tablas por Fase Sistema N°2

Se presentan las tablas obtenidas de PSIM con las cuales se trabajó en Excel para sistema N°2.

Tabla B-1: Fase A PCC Sistema N°2

Orden	Ia[A]	AngIa[°]	Va[V]	AngVa[°]	Orden	Ia[A]	AngIa[°]	Va[V]	AngVa[°]
Armónico					Armónico				
0	0,000	0,0	0,000	0,0	26	0,001	154,8	0,007	45,8
1	22,936	-3,7	307,759	-0,4	27	0,285	-46,8	1,210	-137,6
2	0,007	-7,4	0,040	-2,6	28	0,001	-72,2	0,002	-150,0
3	19,401	168,7	9,347	66,6	29	0,197	75,0	0,899	-15,6
4	0,010	164,5	0,020	17,7	30	0,001	38,9	0,006	-34,2
5	13,577	-20,3	10,735	-117,4	31	0,197	-171,9	0,959	97,4
6	0,010	-25,8	0,010	-53,6	32	0,001	163,6	0,006	55,4
7	7,384	147,1	8,157	52,0	33	0,189	-39,1	0,981	-129,5
8	0,006	137,1	0,014	21,2	34	0,001	-63,9	0,003	-141,1
9	2,650	-60,2	3,752	-154,0	35	0,140	85,4	0,772	-4,8
10	0,002	-98,1	0,003	14,7	36	0,001	50,8	0,006	-27,2
11	1,188	25,4	2,054	-67,5	37	0,134	-161,1	0,778	108,5
12	0,003	-6,5	0,007	-47,9	38	0,001	172,6	0,005	65,4
13	1,445	155,2	2,955	62,5	39	0,134	-31,0	0,821	-121,2
14	0,003	139,5	0,010	27,9	40	0,001	-55,6	0,004	-132,7

15	0,941	-59,5	2,217	-151,6	41	0,105	95,3	0,677	5,3
16	0,002	-88,6	0,000	145,7	42	0,001	62,1	0,006	-19,8
17	0,517	48,8	1,384	-42,8	43	0,097	-150,5	0,656	119,4
18	0,002	11,3	0,006	-45,3	44	0,001	-178,1	0,005	75,7
19	0,591	166,2	1,763	74,5	45	0,099	-22,7	0,703	-112,6
20	0,002	146,6	0,008	36,6	46	0,001	-47,3	0,004	-124,5
21	0,476	-53,9	1,569	-145,2	47	0,082	104,7	0,605	14,9
22	0,001	-80,4	0,002	-160,3	48	0,001	72,8	0,005	-12,0
23	0,299	63,3	1,083	-27,7	49	0,074	-139,9	0,567	130,2
24	0,001	26,0	0,006	-40,4	50	0,001	-168,6	0,005	86,5
25	0,317	177,2	1,245	86,1	-	-	-	-	-
	•								

Tabla B-2: Fase B PCC Sistema N°2

Orden	Ib[A]	AngIb[°]	Vb[V]	AngVb[°]	Orden	Ib[A]	AngIb[°]	Vb[V]	AngVb[°]
Armónico					Armónico				
0	0,013	0,0	0,020	0,0	26	0,004	172,4	0,004	68,1
1	95,746	-108,3	304,340	-122,9	27	0,381	-13,1	1,628	-105,1
_	00,110	100,0	001,010	122,0	2.	0,001	10,1	1,020	100,1
2	0,014	33,1	0,038	-120,4	28	0,001	-171,3	0,006	-101,8
3	66,720	-145,2	32,154	112,9	29	0,221	-135,0	0,999	132,9
4	0,014	-124,1	0,017	-151,3	30	0,003	-146,6	0,007	179,4
5	28,370	176,8	22,449	79,5	31	0,282	113,3	1,370	20,8
6	0,023	-174,5	0,011	115,8	32	0,003	168,6	0,005	53,7
7	2,400	122,5	2,621	27,0	33	0,174	-0,5	0,914	-93,0
8	0,014	161,4	0,006	57,4	34	0,001	155,0	0,005	-63,9
9	4,864	-75,5	6,905	-169,7	35	0,218	-119,5	1,195	148,8
10	0,008	-149,0	0,008	-177,6	36	0,002	-148,9	0,007	175,7

F									
11	1,615	-139,4	2,776	127,1	37	0,145	134,3	0,833	41,4
12	0,010	-154,8	0,012	143,6	38	0,003	179,1	0,006	85,6
13	1,756	46,4	3,604	-46,9	39	0,167	7,7	1,036	-84,6
14	0,005	171,5	0,000	55,3	40	0,001	162,0	0,005	-64,1
15	1,098	-24,0	2,591	-116,8	41	0,128	-94,2	0,818	174,1
16	0,002	-131,9	0,009	-125,1	42	0,002	-138,0	0,007	-160,4
17	0,815	178,4	2,175	85,7	43	0,131	137,5	0,879	44,7
18	0,005	-160,3	0,006	155,0	44	0,002	-177,6	0,005	92,9
19	0,719	97,2	2,141	4,4	45	0,110	36,2	0,785	-56,6
20	0,005	157,1	0,005	26,4	46	0,001	148,8	0,006	-35,7
21	0,481	-48,0	1,599	-140,3	47	0,105	-93,2	0,777	175,1
22	0,002	-176,2	0,005	-107,2	48	0,001	-144,8	0,006	-149,8
23	0,514	-137,2	1,849	130,8	49	0,099	166,4	0,749	73,8
24	0,004	-154,3	0,008	151,2	50	0,002	-172,1	0,006	105,6
25	0,302	86,9	1,190	-6,1	-	-	-	-	-

Tabla B-3: Fase C PCC Sistema $N^{\circ}2$

Orden	Ic[A]	AngIc[°]	Vc[V]	AngVc[°]	Orden	Ic[A]	AngIc[°]	Vc[V]	AngVc[°]
Armónico					Armónico				
0	0,000	0,0	0,031	0,0	26	0,001	-160,1	0,004	-131,5
1	23,014	115,2	307,646	119,6	27	0,225	-109,5	0,952	160,5
2	0,006	44,6	0,022	157,6	28	0,001	-149,1	0,005	-128,5
3	19,240	165,2	9,250	63,3	29	0,171	-125,3	0,775	145,0
4	0,009	100,8	0,005	-119,5	30	0,001	-159,5	0,004	-119,0
5	13,100	-145,8	10,358	117,0	31	0,192	-125,1	0,928	145,0
6	0,009	152,5	0,001	134,7	32	0,001	-156,9	0,004	-132,7

	0.515	100.0		1017		0.150	1150	0.500	15.5
7	6,715	-100,2	7,415	164,7	33	0,152	-115,9	0,788	154,5
8	0,005	-161,9	0,005	-175,5	34	0,001	-147,1	0,005	-132,2
9	2,007	-70,8	2,856	-164,5	35	0,120	-128,4	0,653	142,3
10	0,002	-151,6	0,006	-129,7	36	0,001	-153,5	0,004	-124,2
11	1,057	-129,8	1,818	137,5	37	0,131	-129,8	0,755	140,7
12	0,002	165,0	0,004	-108,3	38	0,001	-153,6	0,004	-135,1
13	1,293	-112,3	2,640	155,4	39	0,108	-122,5	0,662	148,5
14	0,002	-167,7	0,004	-141,5	40	0,001	-145,6	0,005	-135,6
15	0,714	-93,6	1,687	174,7	41	0,088	-133,3	0,563	137,8
16	0,001	-155,6	0,005	-125,0	42	0,001	-149,9	0,004	-128,7
17	0,480	-122,9	1,276	145,9	43	0,096	-135,1	0,641	135,8
18	0,001	-179,4	0,004	-110,3	44	0,001	-151,4	0,004	-138,3
19	0,561	-115,8	1,672	153,1	45	0,082	-128,6	0,577	142,6
20	0,002	-164,2	0,004	-134,5	46	0,001	-144,7	0,005	-139,9
21	0,375	-101,2	1,240	168,1	47	0,068	-137,7	0,498	133,7
22	0,001	-151,2	0,005	-127,1	48	0,001	-147,2	0,004	-134,0
23	0,264	-121,5	0,949	148,2	49	0,073	-140,0	0,555	131,2
24	0,001	-166,6	0,004	-115,1	50	0,001	-149,4	0,004	-142,2
25	0,301	-120,2	1,177	149,4	-	-	-	-	-
L			1				1		1