TD 13 - Dérivation

Ι Calculs de dérivés

Exercice 1. Avec des polynômes.

Déterminer le domaine de définition, le domaine de dérivabilité et la dérivée des fonctions suivantes :

1.
$$f(x) = \frac{x-1}{x+2}$$

2.
$$f(x) = \frac{1}{x^n}, n \in \mathbb{N}^*$$

3.
$$f(x) = \frac{15x^4 - 30x^3 + 40x^2 - 20x + 7}{(x-1)^5}$$

4.
$$f(x) = \left(\frac{3+x}{2x+1}\right)^4$$

5.
$$f(x) = (4 - 3x)^5$$

6.
$$f(x) = \frac{(4x-3)^3}{3x^2+1}$$

Exercice 2. Mêmes questions, avec des racines et valeurs absolues.

1.
$$f(x) = \sqrt{2x^2 - 3x + 1}$$

2.
$$f(x) = x^n \sqrt{1-x}, n \in \mathbb{N}^*$$

3.
$$f(x) = x\sqrt{\frac{1-x}{1+x}}$$

4.
$$f(x) = (\sqrt{x} + 2x)^2$$

5.
$$f(x) = \sqrt{4x^2 - 1}$$

6.
$$f(x) = x|x|$$

Exercice 3. Mêmes questions, avec des exponentielles et logarithmes.

1.
$$f(x) = x^x$$

2.
$$f(x) = e^{-\frac{x^2}{2}}$$

$$3. \ f(x) = \ln|x|$$

4.
$$f(x) = \ln|(x^2 + 1)^3|$$

5.
$$f(x) = \ln\left(\frac{x^x - 1}{x^x + 1}\right)$$
6.
$$f(x) = \frac{1}{\ln(x)}$$

$$6. \ f(x) = \frac{1}{\ln(x)}$$

$$7. \ f(x) = \ln\left(\ln x\right)$$

8.
$$f(x) = |\ln(x)|$$

Exercice 4. Mêmes questions, avec des fonctions trigonométriques.

$$1. \ f(x) = \tan\left(\frac{2x}{1+x^2}\right)$$

$$f(x) = \cos^4 x$$

3.
$$f(x) = (\sin(x))e^{\cos x}$$

$$4. \ f(x) = \sin(\sin(\sin x))$$

$$5. \ f(x) = \cos\left(\sqrt{x}\right)$$

Exercice 5. Calculer la dérivée de $f: x \mapsto a^{\frac{1}{\sqrt{a^2-x^2}}}$ avec $a \in \mathbb{R}^{+\star} \setminus \{1\}$.

Exercice 6. Soit $x_0 \in \mathbb{R}$ fixé, et soit f une fonction définie au voisinage de x_0 et dérivable en x_0 .

Calculer
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$
 et $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{h}$.

et
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{h}$$

II Étude de la régularité d'une fonction

Exercice 7. Soit
$$f$$
 la fonction définie sur $[-1,1]$ par $f(x)=\left\{\begin{array}{ll} \frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{x} & \text{si } x\neq 0\\ 0 & \text{si } x=0 \end{array}\right.$

Montrer que f est de classe C^1 sur]-1,1[.

Exercice 8. Soit f la fonction définie par : $f(x) = \frac{x^2 e^x}{1 - e^{-3x}}$

- 1. Donner le domaine de définition et les limites aux bornes. Étudier la continuité de f, et prolonger f par continuité lorsque c'est possible.
- 2. Étudier la dérivabilité de la fonction prolongée.

Exercice 9. Soit
$$g$$
 la fonction définie par : $g(x) = \begin{cases} e^{\frac{1}{x}} & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ x^{\frac{3}{2}} \ln(x) & \text{si } x > 0 \end{cases}$

- 1. Donner le domaine de définition et les limites aux bornes.
- 2. Étudier la continuité et la dérivabilité de g.

Exercice 10. On pose
$$f(x) = \begin{cases} \exp(x^2 - 3x + 2) & \text{si } 0 \le x \le 2 \\ x - 1 - \frac{1}{\ln(x - 2)} & \text{si } x > 2 \end{cases}$$
.

- 1. Quel est l'ensemble de définition de f.
- 2. La fonction f est-elle continue? Dérivable?
- 3. Étudier les variations de f. Tracer la courbe.
- 4. Montrer que f est une bijection de $\left[\frac{3}{2},2\right]$ sur un intervalle à déterminer.
- 5. Étudier la fonction réciproque : domaine de définition, continuité, variations, dérivabilité, courbe.
- 6. Déterminer explicitement l'expression de la réciproque.

III Utilisation des théorèmes liés à la dérivation

Exercice 11. Montrer que si f est dérivable n fois sur [a,b] et admet n+1 zéros sur]a,b[alors il existe $c \in]a,b[$ tel que : $f^{(n)}(c) = 0$.

Exercice 12. Soit $P \in \mathbb{R}[X]$ un polynôme non constant dont toutes les racines sont réelles et simples. Montrer que toutes les racines de P' sont réelles et simples.

Exercice 13. Soient p et q éléments de \mathbb{R} et n entier non nul. Montrer que l'équation $x^n + px + q = 0$ ne peut avoir plus de deux racines si n est pair, plus de trois si n est impair.

Exercice 14. Soit f de classe C^1 sur l'intervalle [0,1]. On suppose que f' est strictement positive sur [0,1].

- 1. Montrer qu'il existe un réel a strictement positif tel que : $\forall x \in [0,1], f'(x) \geq a$.
- 2. En déduire que si f(0) = 0 alors pour tout x de [0,1] on $a: f(x) \ge ax$.

Exercice 15. Soient a > b et deux fonctions f et g définies sur [a, b] et de classe C^2 sur cet ensemble. On suppose que l'on a

$$f(a) = g(a)$$
 $f(b) = g(b)$ et $f^{(2)} \le g^{(2)}$.

En étudiant g - f, montrer que : $g \le f$.

Exercice 16. Montrer les inégalités suivantes

- 1. Pour tous réels a, h tels que $0 < a < a + h < \frac{\pi}{2}$, $\sin(a+h) < \sin a + h \cos a$.
- $2. \ \forall x > -1, \quad \ln(1+x) \le x.$
- 3. $\forall x \ge 0$, $(1+x)^{\alpha} \ge 1 + \alpha x$ avec $\alpha > 1$.
- 4. $\forall x \in \left]0, \frac{\pi}{2}\right[, x < \tan x < \frac{x}{\cos^2 x}.$
- 5. $\forall (x,y) \in]-\infty, 0]^2, |e^x e^y| \le |x y|.$

Exercice 17. On définit la suite $(v_n)_{n\in\mathbb{N}}$ par récurrence par $\begin{cases} v_0=1\\ \forall n\in\mathbb{N},\ v_{n+1}=\sqrt{12+v_n} \end{cases}$

- 1. Montrer que la suite est bien définie, minorée par 0 et strictement majorée par 4.
- 2. Montrer que, pour tout $n \in \mathbb{N}$: $|v_{n+1} 4| < \frac{1}{4}|v_n 4|$
- 3. En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ converge et donner sa limite.

Exercice 18. Série de Riemman.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, on a : $\frac{1}{n+1} \le \ln(n+1) \ln n \le \frac{1}{n}$.
- 2. Pour $n \in \mathbb{N}^*$, on définit $u_n = \sum_{k=1}^n \frac{1}{k}$. Donner un encadrement du terme u_n et en déduire un équivalent simple de la suite $(u_n)_{n \in \mathbb{N}^*}$ ainsi que sa limite.
- 3. (Plus dur) Soit $\alpha \in]0,1[$. Pour $n \in \mathbb{N}^*$, on définit $v_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$. En considérant $(n+1)^{1-\alpha} n^{1-\alpha}$, déterminer un encadrement puis un équivalent de la suite $(v_n)_{n \in \mathbb{N}^*}$.

IV Calculs de dérivées n-ièmes

Exercice 19. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable à tout ordre et g, h les fonctions définies pour tout $x \in \mathbb{R}^*$ par $g(x) = f(x^2)$ et $g(x) = f(x^2)$. Calculer g', g'', g''

Exercice 20. Linéariser $f(x) = \cos^3(x)$ et en déduire l'expression de la dérivée n-ième de f pour tout $n \in \mathbb{N}$.

Exercice 21. Étudier la régularité et donner la dérivée n-ième des fonctions définies par $f(x) = \frac{1}{x^2 - 1}$ et $g(x) = x^5 - \ln(x - 2) + 5e^{-x}$.

Exercice 22. Soit $f:]-1, 1[\to \mathbb{R}$ définie par : $f(x) = \frac{1}{1+x}$.

- 1. Donner l'expression de f', f'' et de f'''.
- 2. Pour $n \in \mathbb{N}$ et $x \in]-1,1[$, conjecturer l'expression de $f^{(n)}(x)$.
- 3. Démontrer cette conjecture.

4. Soit $h:]-1,1[\to \mathbb{R}$ définie par : $h(x) = \frac{1}{x^2-1}$. En vérifiant que l'on peut écrire h sous la forme

$$\forall x \in]-1,1[, h(x) = \frac{a}{x+1} + \frac{b}{x-1}$$

donner pour tout $n \in \mathbb{N}$ l'expression de la dérivée n-ième de h.

Exercice 23. Soit la fonction f_{n-1} définie par : $f_{n-1}(x) = x^{n-1}e^{\frac{1}{x}}$.

Montrer que : $\forall n \in \mathbb{N}, \quad \left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)} = \frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$

Exercice 24. Montrer que la dérivée n-ième de la fonction tan est de la forme $P_n \circ \tan$ où P_n est un polynôme de degré n+1 dont on déterminera le coefficient dominant.

Exercice 25. Montrer que la dérivée n-ième de la fonction $x \mapsto \frac{1}{1+x^2}$ est de la forme $x \mapsto \frac{P_n(x)}{(1+x^2)^{n+1}}$, où P_n est un polynôme de degré n dont on déterminera le coefficient dominant.

Exercice 26. Soit la fonction f définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[par : f(x) = \frac{1}{\cos x}.$

- 1. Calculer f' et f''.
- 2. Montrer par récurrence l'existence, pour tout $n \in \mathbb{N}$, d'un polynôme P_n tel que, pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$:

$$f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}.$$

Trouver une relation entre P_{n+1} , P_n et P'_n .

3. Déterminer le monôme de plus haut degré de P_n .

Exercice 27. Soit la fonction $f:]-1,1[\to \mathbb{R}$ définie pour tout x réel par $f(x) = \frac{1}{\sqrt{1-x^2}}$.

- 1. Calculer f' et f''.
- 2. Montrer par récurrence que la dérivée n-ième est de la forme $f^{(n)}(x) = \frac{P_n(x)}{(1-x^2)^n \sqrt{1-x^2}}$, où P_n est un polynôme. Donner une relation (R) entre P_{n+1} , P_n et P'_n .
- 3. Montrer que P_n est une fonction paire si n est pair et une fonction impaire si n est impair.
- 4. Montrer par récurrence en utilisant la relation (R) que $P'_n = n^2 P_{n-1}$.
- 5. En déduire que les polynômes P_n vérifient pour tout entier $n \geq 1$ la relation de récurrence suivante

$$P_{n+1} = (2n+1)XP_n + n^2(1-X^2)P_{n-1}.$$