ALGEBRAIC TOPOLOGY II LECTURE NOTES

HIDENORI SHINOHARA

Contents

1. Poincare Duality

1. Poincare Duality

Since $H^*(T^n) \equiv \wedge_{\mathbb{Z}} M$ where $M = \langle v_1, \cdots, v_n \rangle$, we have

k	0	1	2	 n-1	n
$\operatorname{rank} H^k(T^n; \mathbb{Z})$	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	 $\binom{n}{n-1}$	$\binom{n}{n}$

This symmetry phenomenon is true in general and very useful. Another example: The cellular complex for \mathbb{CP}^n is $\mathbb{Z} \to 0 \to \mathbb{Z} \to 0 \to \mathbb{Z}$. Thus

k	0	1	2	 2n - 1	2n
$\operatorname{rank} H^k(\mathbb{CP}^n;\mathbb{Z})$	1	0	1	 0	1