Devoir surveillé n°14

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Notons f l'endomorphisme de \mathbb{R}^n canoniquement associé à A. Par définition, $\operatorname{tr}(f) = \operatorname{tr}(A)$. Notons B la matrice de f dans la base (e_1, \dots, e_n) . Comme il s'agit d'une base orthonormée, $B_{i,j} = \langle f(e_j), e_i \rangle = \langle Ae_j, e_i \rangle$ pour tout $(i,j) \in [\![1,n]\!]^2$. Notamment, $\operatorname{tr}(f) = \operatorname{tr}(B) = \sum_{i=1}^{n} \langle Ae_i, e_i \rangle$. On en déduit l'égalité recherchée.

2 Cf. Cours

Comme B est symétrique réelle, il existe une base orthonormée $(e_1, ..., e_n)$ de \mathbb{R}^n formée de vecteurs propres de B. Notons λ_i la valeur propre associée à e_i . Comme A est symétrique,

$$\langle A, B \rangle = tr(A^T B) = tr(AB)$$

D'après la question 1,

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^{n} \langle \mathbf{A} \mathbf{B} e_i, e_i \rangle = \sum_{i=1}^{n} \lambda_i \langle \mathbf{A} e_i, e_i \rangle$$

Comme B est symétrique positive, les λ_i sont positifs et comme A est symétrique positive, $\langle Ax, x \rangle \ge 0$ pour tout $x \in \mathbb{R}^n$. On en déduit que $\langle A, B \rangle \ge 0$.

4 Tout d'abord, $(A^TA)^T = A^T(A^T)^T = A^TA$ donc A^TA est symétrique. De plus, pour tout $x \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$x^{\mathsf{T}}(A^{\mathsf{T}}A)x = ||Ax||^2 > 0$$

donc A est symétrique positive.

D'après le théorème spectral, il existe une base orthonormée (e_1, \dots, e_n) de \mathbb{R}^n formée de vecteurs propres de A^TA . Notons λ_i la valeur propre associée au vecteur propre e_i . Soit $x \in \mathbb{R}^n$ de norme 1. Comme (e_1, \dots, e_n) est orthonormée,

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

puis

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \lambda_i \langle \mathbf{x}, e_i \rangle e_i$$

Comme (e_1, \dots, e_n) est orthonormée,

$$\|\mathbf{A}\mathbf{x}\|^2 = \langle \mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x}, \mathbf{x} \rangle = \sum_{i=1}^n \lambda_i \langle \mathbf{x}, e_i \rangle^2$$

Si on note $M = \max\{\lambda_1, \dots, \lambda_n\}$, alors

$$\|\mathbf{A}\mathbf{x}\|^2 \le \mathbf{M} \sum_{i=1}^n \langle \mathbf{x}, e_i \rangle^2$$

Or (e_1, \dots, e_n) est orthonormée donc

$$||x||^2 = \sum_{i=1}^n \langle x, e_i \rangle^2 = 1$$

Ainsi $||Ax|| \le \sqrt{M}$. Enfin, en notant u un vecteur propre unitaire de A^TA associé à la valeur propre M,

$$\|\mathbf{A}u\|^2 = \langle \mathbf{A}^\mathsf{T} \mathbf{A}u, u \rangle = \mathbf{M} \langle u, u \rangle = \mathbf{M}$$

puis $||Au|| = \sqrt{M}$. Finalement,

$$\|\mathbf{A}\|_2 = \sup_{x \in \mathbb{R}^n, \|x\| = 1} \|\mathbf{A}x\| = \sqrt{\mathbf{M}} = \max_{\lambda \in \operatorname{Sp}(\mathbf{A}^\mathsf{T}\mathbf{A})} \sqrt{\lambda}$$

où on a utilisé la croissance de la racine carrée pour la dernière égalité.

 $\boxed{\mathbf{5}}$ A^TA est la matrice de $f^* \circ f$ dans une base orthonormée de E. Comme A^TA est symétrique positive, $f^* \circ f$ est auto-adjoint positif.

Remarque. On peut aussi le montrer sans l'aide de la matrice A. En effet, $(f^* \circ f)^* = f^* \circ (f^*)^* = f^* \circ f$ et, pour tout $x \in \mathbb{E}$, $\langle f^* \circ f(x), x \rangle = \|f(x)\|^2 \ge 0$.

D'après le théorème spectral, il existe une base orthonormée (e_1, \dots, e_n) de E formée de vecteurs propres de $f^* \circ f$. Notons $\lambda_i \geq 0$ la valeur propre associée au vecteur propre e_i . Comme (e_1, \dots, e_n) est une base de E, on définit un endomorphisme h de E en posant $h(e_i) = \sqrt{\lambda_i} e_i$ pour tout $i \in [1, n]$. De plus, les endomorphismes $f^* \circ f$ et h^2 coïncident sur cette base; ils sont donc égaux.

Comme (e_1, \dots, e_n) est également une base de vecteurs propres de h, h est auto-adjoint. Enfin, $Sp(h) = \{\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\} \subset \mathbb{R}_+$ donc h est auto-adjoint positif.

Tout d'abord, Im h est bien stable par h, ce qui permet de définir \tilde{h} . Soit alors $x \in \text{Ker } \tilde{h} = \text{Im } h \cap \text{Ker } h$. Alors $h(x) = 0_E$ et il existe $a \in E$ tel que x = h(a). Ainsi $f^* \circ f(a) = h^2(a) = 0_E$ puis $||x||^2 = ||f(a)||^2 = \langle f^* \circ f(a), a \rangle = 0$ et enfin $x = 0_E$.

Par conséquent, Ker $\tilde{h} = \{0_E\}$. Mais comme Im h est de dimension finie, ceci suffit à garantir que \tilde{h} est un automorphisme de Im h.

7 Soit $x \in E$. Alors

$$||h(x)||^2 = \langle h^* \circ h(x), x \rangle = \langle h^2(x), x \rangle = \langle f^* \circ f(x), x \rangle = ||f(x)||^2$$

et donc ||h(x)|| = ||f(x)||.

On en déduit notamment que $h(x) = 0_E \iff f(x) = 0_E$. Ainsi Ker h = Ker f. D'après le théorème du rang,

$$\dim \operatorname{Ker} h = \dim \operatorname{Ker} f = \dim \operatorname{E} - \dim \operatorname{Im} f = \dim (\operatorname{Im} f)^{\perp}$$

Notamment, il existe une application linéaire v qui envoie une base orthonormée de $(\operatorname{Im} f)^{\perp}$. Cette application linéaire v est un isomorphisme car l'image d'une base de $(\operatorname{Im} f)^{\perp}$. De plus, comme v envoie une base orthonormée sur une base orthonormée, il conserve la norme.

Remarque. Rigoureusement, ce dernier résultat ne figure au programme que pour les endomorphismes. La preuve ne pose pas de difficulté. Notons (e_1, \dots, e_p) et (f_1, \dots, f_p) les bases orthonormées respectives de Ker h et $(\operatorname{Im} f)^{\perp}$ telles que $v(e_i) = 1$

 f_i pour tout $i \in [1, p]$. Soit $x \in \text{Ker } h$. Alors, comme (e_1, \dots, e_p) est orthonormée, $x = \sum_{i=1}^p \langle x, e_i \rangle e_i$ et $||x||^2 = \sum_{i=1}^p \langle x, e_i \rangle^2$.

Par linéarité de v, $v(x) = \sum_{i=1}^{p} \langle x, e_i \rangle v(e_i) = \sum_{i=1}^{p} \langle x, e_i \rangle f_i$. Comme (f_1, \dots, f_p) est orthonormée, $||v(x)||^2 = \sum_{i=1}^{p} \langle x, e_i \rangle^2 = ||x||^2$.

8 Montrons tout d'abord que Ker h et Im h sont orthogonaux et supplémentaires dans E. Soit $(x, y) \in \text{Ker } h \times \text{Im } h$. Alors $h(x) = 0_E$ et il existe $a \in E$ tel que y = h(a). Ainsi, comme h est auto-adjoint,

$$\langle x, y \rangle = \langle x, h(a) \rangle = \langle h(x), a \rangle = \langle 0_{\rm E}, a \rangle = 0$$

Par conséquent, $\operatorname{Ker} h \perp \operatorname{Im} h$ et le théorème du rang donne $\dim E = \dim \operatorname{Ker} h + \dim \operatorname{Im} h$ donc $\operatorname{Im} h$ et $\operatorname{Ker} h$ sont orthogonaux et supplémentaires dans E.

On peut alors définir un endomorphisme u de E en posant u(x) = v(x) pour $x \in \text{Ker } h$ et $u(x) = f \circ \tilde{h}^{-1}(x)$ pour $x \in \text{Im } h$.

- Soit $x \in \text{Ker } h$. Alors $u \circ h(x) = 0_E$. Mais on a vu que Ker h = Ker f donc $f(x) = 0_E = u \circ h(x)$.
- Soit $x \in \text{Im } h$. Alors $u \circ h(x) = u \circ \tilde{h}(x) = f(x)$.

Les endomorphismes f et $u \circ h$ coïncident sur deux sous-espaces supplémentaires; ils sont égaux.

• Soit $y \in \text{Ker } h$. Alors ||u(y)|| = ||v(y)|| = ||y|| car v conserve la norme.

• Soit $z \in \text{Im } h$. On rappelle que ||h(x)|| = ||f(x)|| pour tout $x \in E$. Ainsi

$$||u(z)|| = ||f \circ \tilde{h}^{-1}(z)|| = ||h \circ \tilde{h}^{-1}(z)|| = ||z||$$

Soit $x \in E$. Il existe alors $(y, z) \in \text{Ker } h \times \text{Im } h$ tel que x = y + z. Comme $\text{Ker } h \perp \text{Im } h$, $||x||^2 = ||y||^2 + ||z||^2$ d'après le théorème de Pythagore. Ensuite, u(x) = u(y) + u(z). Mais $u(y) = v(y) \in (\text{Im } f)^{\perp}$ et $u(z) = f \circ \tilde{h}^{-1}(z) \in \text{Im } f$. D'après le théorème de Pythagore,

$$||u(x)||^2 = ||u(y)||^2 + ||u(z)||^2 = ||y||^2 + ||z||^2 = ||x||^2$$

Ainsi *u* conserve la norme : c'est un automorphisme orthogonal.

Il suffit de considérer l'endomorphisme f associée à A dans une base orthonormée \mathcal{B} de E. Il existe alors $u \in O(E)$ et $h \in \mathcal{S}^+(E)$ tels que $f = u \circ h$. On note alors U et S les matrices respectives de u et h dans la base \mathcal{B} . On a alors bien A = US et, comme \mathcal{B} est orthonormée, $U \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n^+(\mathbb{R})$.

L'application $h \mapsto \|x - h\|$ est continue sur le compact H : elle y admet donc un minimum. Il existe alors $h_0 \in H$ tel que $d(x, H) = \|x - h_0\|$.

Soit alors h_1 tel que $d(x, H) = ||x - h_0|| = ||x - h_1||$. Considérons alors la fonction q de l'énoncé.

$$\forall t \in \mathbb{R}, \ q(t) = \|t(h_1 - h_0) + (x - h_1)\|^2 = t^2 \|h_1 - h_0\|^2 + 2t\langle h_1 - h_0, x - h_1 \rangle + \|x - h_1\|^2$$

Par ailleurs, $q(0) = q(1) = d(x, H)^2$ donc $P = q - d(x, H)^2$ est un trinôme de racines 0 et 1 de sorte que

$$\forall t \in \mathbb{R}, \ P(t) = ||h_1 - h_0||^2 t(t - 1)$$

Par convexité de H, $th_0 + (1-t)h_1 \in H$ pour tout $t \in [0,1]$. On en déduit que $q(t) \ge d(x,H)^2$ i.e. $P(t) \ge 0$ pour tout $t \in [0,1]$. Ceci n'est possible que si $\|h_1 - h_0\|^2$ i.e. $h_0 = h_1$.

11 Soit $h_0 \in H$ tel que $d(x, H) = ||x - h_0||$. Soit $h_1 \in H$. Remarquons que

$$\forall t \in \mathbb{R}, \ q(t) = \|(x - h_0) - (1 - t)(h_1 - h_0)\|^2 = d(x, H)^2 + (1 - t)^2 \|h_1 - h_0\|^2 - 2(1 - t)\langle x - h_0, h_1 - h_0\rangle$$

A nouveau, $q(t) \ge d(x, H)^2$ pour tout $t \in [0, 1]$ donc

$$\forall t \in [0,1], \ 2(1-t)\langle x - h_0, h_1 - h_0 \rangle \le (1-t)^2 ||h_1 - h_0||^2$$

donc

$$\forall t \in [0,1[, 2\langle x - h_0, h_1 - h_0 \rangle \le (1-t) \|h_1 - h_0\|^2$$

En faisant tendre t vers 1^- , on obtient

$$\langle x - h_0, h_1 - h_0 \rangle \le 0$$

Réciproquement, soit $h_0 \in H$ tel que $\langle x - h_0, h_1 - h_0 \rangle \le 0$ pour tout $h_1 \in H$. Fixons $h_1 \in H$ et considérons toujours la même fonction q.

$$\forall t \in \mathbb{R}, \ q(t) = \|(x - h_0) - (1 - t)(h_1 - h_0)\|^2 = \|x - h_0\|^2 + (1 - t)^2 \|h_1 - h_0\|^2 - 2(1 - t)\langle x - h_0, h_1 - h_0\rangle$$

donc

$$\|x-h_1\|^2 = q(0) = \|x-h_0\|^2 + \|h_1-h_0\|^2 - 2\langle x-h_0,h_1-h_0\rangle \geq \|x-h_0\|^2$$

Ceci étant valide pour tout $h_1 \in H$, on a bien $d(x, H) = ||x - h_0||$.

12 Notons C l'ensemble des combinaisons convexes d'éléments de H.

Tout d'abord, $H \subset C$ car tout élément de H peut être considéré comme une combinaison convexe d'un seul élément de H (l'élément en question). Ensuite C est convexe. Soit $(x,y) \in C^2$. Il existe donc des éléments x_1, \ldots, x_p de H et des réels

positifs $\lambda_1, \dots, \lambda_p$ de somme 1 tels que $x = \sum_{i=1}^p \lambda_i x_i$. De même, il existe es éléments y_1, \dots, y_q de H et des réels positifs

 μ_1, \dots, μ_q de somme 1 tels que $y = \sum_{j=1}^q \mu_j y_j$. Soit alors $t \in [0, 1]$. Alors

$$(1-t)x + ty = \sum_{i=1}^{p} (1-t)\lambda_i x_i + \sum_{i=1}^{q} t\mu_j y_j$$

De plus, les réels $(1 - t)\lambda_i$ et $t\mu_i$ sont positifs et

$$\sum_{i=1}^{p} t\lambda_i + \sum_{j=1}^{q} t\mu_j = 1 - t + t = 1$$

donc (1-t)x+ty est bien combinaison convexe des éléments $x_1,\ldots,x_p,y_1,\ldots,y_q$. Ainsi $(1-t)x+ty\in C$ et C est convexe. Comme conv H est le plus petit convexe contenant H, $conv(H)\subset C$.

Réciproquement, on note \mathcal{P}_n l'assertion «conv(H) contient les combinaisons convexes de n éléments de H». \mathcal{P}_1 est vraie puisque conv(H) contient H. Supposons \mathcal{P}_n vraie pour un certain $n \in \mathbb{N}^*$. Soit x_1, \dots, x_{n+1} des éléments de H ainsi que

 $\lambda_1, \dots, \lambda_{n+1}$ des réels positifs de somme 1. Si $\lambda_{n+1} = 1$ alors $\lambda_i = 0$ pour tout $i \in [1, n]$ et $x = \sum_{i=1}^{n+1} \lambda_i x_i = x_{n+1} \in [1, n]$

 $H \subset \text{conv}(H)$. Sinon, posons $\mu_i = \frac{\lambda_i}{1 - \lambda_{n+1}}$ pour $i \in [1, n]$. Alors $\sum_{i=1}^n \mu_i = 1$ donc $y = \sum_{i=1}^n \mu_i x_i \in \text{conv}(H)$ d'après \mathcal{P}_n .

Mais comme conv(H) est convexe, $x = (1 - \lambda_{n+1})y + \lambda_{n+1}x_{n+1} \in \text{conv}(H)$. Par récurrence, conv(H) contient toutes les combinaisons convexes d'éléments de H donc C $\subset \text{conv}(H)$.

Par double inclussion, conv(H) = C.

La famille $(x_2 - x_1, \dots, x_p - x_1)$ est une famille de p-1 vecteurs de E. Comme $p-1 \ge n+1 > n = \dim E$, cette famille est liée. Il existe donc des réels μ_2, \dots, μ_p non tous nuls tels que $\sum_{i=2}^p \mu_i(x_i - x_1) = 0_E$. En posant $\mu_1 = -\sum_{i=2}^p \mu_i$, on a bien $\sum_{i=1}^p \mu_i x_i = 0_E$ et $\sum_{i=1}^p \mu_i = 0$.

Comme les μ_i sont non tous nuls et de somme nulle, l'ensemble $I = \{i \in [[1, p]], \mu_i > 0\}$ n'est pas vide. On peut alors poser $\theta = \min_{i \in I} \frac{\lambda_i}{\mu_i}$. Comme les λ_i sont positifs, $\theta \ge 0$. Posons ensuite $\alpha_i = \lambda_i - \theta \mu_i$. On a alors

$$\sum_{i=1}^{p} \alpha_i = \sum_{i=1}^{p} \lambda_i - \theta \sum_{i=1}^{p} \mu_i = 1$$

et

$$\sum_{i=1}^{p} \alpha_i x_i = \sum_{i=1}^{p} \lambda_i x_i - \theta \sum_{i=1}^{p} \mu_i x_i = x$$

De plus, si $i \in I$, alors $\alpha_i \ge 0$ par construction de θ et si $i \in [[1, p]] \setminus I$, alors $\mu_i \le 0$ donc $\alpha_i \ge 0$. Finalement, les α_i sont tous positifs et de somme 1. Enfin, il existe $j \in I$ tel que $\theta = \frac{\lambda_j}{\mu_j}$ i.e. $\alpha_j = 0$. On en déduit que x est combinaison convexe de p-1 éléments de H.

On peut alors prouver par une récurrence descendante finie que x peut s'écrire comme une combinaison convexe de n+1 éléments de H.

Vérifions que l'ensemble Λ de l'énoncé est bien compact. Tout d'abord, les formes linéaires φ_i : $(t_1, \dots, t_{n+1}) \mapsto t_i$ et ψ : $(t_1, \dots, t_{n+1}) \mapsto \sum_{i=1}^{n+1} t_i$ sont continues car \mathbb{R}^{n+1} est de dimension finie. De plus,

$$\Lambda = \psi^{-1}(\{1\}) \cap \left(\bigcap_{i=1}^{n+1} \varphi_i^{-1}(\mathbb{R}_+)\right)$$

On peut conclure au caractère fermé de Λ car une image réciproque de fermé par une application continue est fermé et car une intersection de fermés est fermée.

L'ensemble Λ est évidemment borné puisque $\Lambda \subset [0,1]^{n+1}$ par exemple. Comme \mathbb{R}^{n+1} est de dimension finie, Λ est bien compact.

Remarquons alors que conv(H) est l'image de $\Lambda \times H^{n+1}$ par l'application

$$\gamma: (t_1, \dots, t_{n+1}, x_1, \dots, x_{n+1}) \mapsto \sum_{i=1}^{n+1} t_i x_i$$

L'ensemble $\Lambda \times H^{n+1}$ est compact comme produit cartésien fini de compacts. L'application γ est continue car on peut la voir comme une application bilinéaire sur $\mathbb{R}^{n+1} \times E^{n+1}$ et les espaces vectoriels \mathbb{R}^{n+1} et E^{n+1} sont de dimensions finies. Finalement, $conv(H) = \gamma(A \times H^{n+1})$ est compacte.

La question précédente montre qu'il suffit de prouver que $O_n(\mathbb{R})$ est compact. C'est très classique. Pour tout $Q \in O_n(\mathbb{R})$, $\|Q\|_1 = \sqrt{\operatorname{tr}(Q^TQ)} = \sqrt{\operatorname{tr}(I_n)} = \sqrt{n}$ donc $O_n(\mathbb{R})$ est borné. Enfin, l'application $f: M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^TM$ est continue puisque les coefficients de M^TM sont polynomiaux en les coefficients de M. On en déduit que $O_n(\mathbb{R}) = f^{-1}(\{I_n\})$ est fermé en tant qu'image réciproque d'un fermé par une application continue.

17 Soit $Q \in O_n(\mathbb{R})$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ de norme 1. Alors $\|QX\|^2 = X^TQ^TQX = X^TX = \|X\|^2 = 1$ donc $\|QX\| = 1$. Ainsi $\|Q\|_2 = 1$.

Soit alors $M \in \text{conv}(O_n(\mathbb{R}))$. Il existe donc des réels $\lambda_1, \dots, \lambda_p$ positifs et de somme 1 ainsi que des matrices Q_1, \dots, Q_p dans $O_n(\mathbb{R})$ tels que $M = \sum_{i=1}^p \lambda_i Q_i$. Par inégalité triangulaire et homogénéité de la norme :

$$\|\mathbf{M}\|_{2} \leq \sum_{i=1}^{p} \lambda_{i} \|\mathbf{Q}_{i}\|_{2} = \sum_{i=1}^{p} \lambda_{i} = 1$$

On a bien montré que $conv(O_n(\mathbb{R})) \subset \mathcal{B}$.

Remarque. On pouvait aussi remarquer que \mathcal{B} était convexe en tant que boule. Puisque $O_n(\mathbb{R}) \subset \mathcal{B}$, $conv(O_n(\mathbb{R})) \subset \mathcal{B}$ car $conv(O_n(\mathbb{R}))$ est le plus petit convexe contenant $O_n(\mathbb{R})$.

18 Tout d'abord, $M \neq N$ car $M \notin conv(O_n(\mathbb{R}))$ et $N \in conv(O_n(\mathbb{R}))$. Ainsi

$$tr(AM) - tr(AN) = tr(A(M - N)) = ||M - N||_1 > 0$$

donc tr(AN) < tr(AV).

De plus, d'après la question 11,

$$\forall V \in \text{conv}(O_n(\mathbb{R})), \langle M - N, V - N \rangle \leq 0$$

ou encore

$$\forall V \in \text{conv}(O_n(\mathbb{R})), \text{ tr}(A(V - N)) \leq 0$$

ou encore

$$\forall V \in \text{conv}(O_n(\mathbb{R})), \text{ tr}(AV) \leq \text{tr}(AN)$$

Choisissons alors $V = U^T \in O_n(\mathbb{R}) \subset \text{conv}(O_n(\mathbb{R}))$. Alors $\text{tr}(AV) = \text{tr}(USU^T) = \text{tr}(SU^TU) = \text{tr}(S)$ car U est orthogonale. On conclut en remarquant que tr(AM) = tr(USM).

19 D'après le théorème spectral, il existe une base orthonormée $(e_1, ..., e_n)$ de \mathbb{R}^n formée de vecteurs propres de S. Notons λ_i la valeur propre associée au vecteur propre e_i . D'après la question 1,

$$tr(MUS) = \sum_{i=1}^{n} \langle MUSe_i, e_i \rangle = \sum_{i=1}^{n} \lambda_i \langle MUe_i, e_i \rangle$$

Comme les λ_i sont positifs (S est symétrique positive), on obtient avec l'inégalité de Cauchy-Schwarz,

$$\operatorname{tr}(\operatorname{MUS}) \le \sum_{i=1}^{n} \lambda_{i} \|\operatorname{MU} e_{i}\| \|e_{i}\|$$

Or pour tout $i \in [1, n]$, $|e_i| = 1$ et, par définition et sous-multiplicativité de la norme subordonnée,

$$\|\mathbf{M}\mathbf{U}e_i\| \leq \|\mathbf{M}\mathbf{U}\|_2 \|e_i\| = \|\mathbf{M}\mathbf{U}\|_2 \leq \|\mathbf{M}\|_2 \|\mathbf{U}\|_2 \leq 1 \times 1 = 1$$

On en déduit que

$$tr(MUS) \le \sum_{i=1}^{n} \lambda_i = tr(S)$$

20 Par propriété de la trace, tr(MUS) = tr(USM) donc il y a une contradiction entre les deux questions précédentes. On en déduit par l'absurde que $\mathcal{B} \subset \text{conv}(O_n(\mathbb{R}))$. Par double inclusion, $\mathcal{B} = \text{conv}(O_n(\mathbb{R}))$.

21 Soit $X \in \mathbb{R}^n$. Par inégalité triangulaire,

$$\|UX\| \le \frac{1}{2}(\|VX\| + \|WX\|)$$

Mais comme $U \in O_n(\mathbb{R})$, ||UX|| = ||X||. Enfin, comme V et W sont dans \mathcal{B} ,

$$\frac{1}{2}(\|VX\| + \|WX\|) \leq \frac{1}{2}(\|V\|_2\|X\| + \|W\|_2\|X\| \leq \|X\|)$$

On en déduit que $\|VX + WX\| = \|VX\| \|WX\|$ puis, en élévant au carré,

$$\langle VX, WX \rangle = \|VX\| \|WX\|$$

On est dans le cas d'égalité de l'inégalité de Cauchy-Schwarz, ce qui prouve que les vecteurs VX et WX sont (positivement) liés

Montrons tout d'abord que pour tout $X \in \mathbb{R}^n$, $VX = 0 \implies X = 0$. Supposons que VX = 0. Alors $\|X\| = \|UX\| = \frac{1}{2}\|WX\| \le \frac{1}{2}\|X\|$ donc $\|X\| = 0$ puis X = 0. De même, $WX = 0 \implies X = 0$. On se donne alors $X \ne 0$. On a alors $VX \ne 0$, $WX \ne 0$ et même $UX \ne 0$ car U est inversible.

Comme VX et WX sont colinéaires et que VX $\neq 0$, il existe $\lambda \in \mathbb{R}$ tel que WX = λ VX. Alors UX = $\frac{1+\lambda}{2}$ VX. Mais comme UX $\neq 0$, il existe $\alpha \in \mathbb{R}$ tel que VX = α UX. De même, il existe $\beta \in \mathbb{R}$ tel que WX = β UX. Alors 2UX = VX + WX = $(\alpha + \beta)$ UX de sorte que $\alpha + \beta = 2$ car UX $\neq 0$. Ensuite, comme U est orthogonale, $\|UX\| = \|X\|$. Mais comme V et W sont dans \mathcal{B} , $\|VX\| \leq \|X\|$ et $\|WX\| \leq \|X\|$. Comme |X| > 0, on en déduit que $|\alpha| \leq 1$ et $|\beta| \leq 1$. Ainsi $(1-\alpha)+(1-\beta)=0$, $1-\alpha\geq 0$ et $1-\beta\geq 0$ donc $\alpha=\beta=1$. On a donc montré que UX = VX = WX pour tout $X\neq 0$ mais c'est encore vrai pour X = 0. On en déduit que U = V = W.

D'après la question 9, il existe $U \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n^+(\mathbb{R})$ telles que A = US. D'après le théorème spectral, il existe $Q \in O_n(\mathbb{R})$ et D diagonale à coefficients diagonaux positifs telles que $S = Q^TDQ$. Il suffit alors de poser $P = UQ^T \in O_n(\mathbb{R})$.

23 On a vu à la question 4 que $\|A\|_2^2 = \max_{\lambda \in \operatorname{Sp}(A^TA)} \lambda$. Or $A^TA = Q^TD^TP^TPDQ = Q^{-1}D^2Q$ donc $\operatorname{Sp}(A^TA) = \{d_1^2, \dots, d_n^2\}$. Ainsi, pour tout $i \in [\![1,n]\!]$, $d_i^2 \leq \|A\|_2^2 = 1$ car $A \in \mathcal{B}$. Notamment, $d_i \leq 1$ pour tout $i \in [\![1,n]\!]$. Si on avait $d_i = 1$ pour tout $i \in [\![1,n]\!]$, alors on aurait $D = I_n$ puis $A = PQ \in O_n(\mathbb{R})$, ce qui n'est pas. Il existe donc $j \in [\![1,n]\!]$ tel que $d_i < 1$.

24 Posons B = P diag $(d_1, ..., d_{j-1}, 1, d_{j+1}, ..., d_n)$ Q et C = P diag $(d_1, ..., d_{j-1}, 2d_j - 1, d_{j+1}, ..., d_n)$ Q. Comme $d_j \neq 1$, on a B \neq C. De plus, A = $\frac{1}{2}$ (B + C).

En raisonnant comme à la question précédente, si $M = P \operatorname{diag}(\lambda_1, \dots, \lambda_n)Q$, alors

$$\|\mathbf{M}\|_2 = \max\{|\lambda_1|, \dots, |\lambda_n|\}$$

Comme $0 \le d_i \le 1$ pour tout $i \in [\![1,n]\!]$, $\|B\|_2 = 1$ et $\|C\|_2 \le 1$ donc B et C appartiennent à \mathcal{B} . On en déduit que A n'est pas un point extrémal de \mathcal{B} . Les points extrémaux de \mathcal{B} sont donc exactement les éléments de $O_n(\mathbb{R})$.