3.2 גבול עליון ותחתון של סדרה

הגדרות

1. סדרות הסופרמה והאינפימה

תהי $(a_n)_{n=1}^\infty$ סדרה חסומה. $\forall n\in\mathbb{N}\ u_n=\sup\{a_k\mid k\geq n\}$ המוגדרת המוגדרת של הסופרמה של הסופרמה של $(a_n)_{n=1}^\infty$, המוגדרת החוברת האינפימה של $(\ell_n)_{n=1}^\infty$, סדרת האינפימה של המוגדרת $(\ell_n)_{n=1}^\infty$, המוגדרת האינפימה של האינפימה של המוגדרת המו

2. גבול עליון ותחתון של סדרה

 $\overline{\lim_{n \to \infty} a_n}$ סדרה חסומה. $\lim_{n \to \infty} a_n$ ומסומן $\lim_{n \to \infty} \sup_{n \to \infty} a_n$ או $\lim_{n \to \infty} \sup_{n \to \infty} a_n$ המספר $\lim_{n \to \infty} a_n$ ונקרא הגבול העליון של $\lim_{n \to \infty} a_n$ ומסומן $\lim_{n \to \infty} \ell_n$ המספר $\lim_{n \to \infty} \ell_n$

3. גבול עליון ותחתון במובן הרחב

תקף גם לסדרות לא חסומות. $a_n = a_n \text{ bim sup} a_n = \infty : \text{constant}$ נגדיר: $\lim_{n \to \infty} \sup a_n = -\infty : \text{dim sup} a_n = -\infty : \text{cut}$ נגדיר: $\lim_{n \to \infty} a_n = -\infty : \text{dim sup} a_n = -\infty : \text{cut}$ נגדיר $\lim_{n \to \infty} \inf a_n = a_n : \text{dim inf} a_n = -\infty : \text{cut}$ נגדיר $\lim_{n \to \infty} a_n = \infty : \text{dim inf} a_n = \infty : \text{cut}$ chart for the sup $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \lim_{n$

משפטים

1. סדרות הסופרמה והאינפימה של סדרה חסומה מונוטוניות וחסומות (+קיום)

.תהי $\left(a_{n}
ight)_{n=1}^{\infty}$ סדרה חסומה

. אזי סדרת האינפימה u_n מונוטונית יורדת וחסומה מלעיל, וסדרת האינפימה ℓ_n מונוטונית עולה וחסומה מלרע.

.inf $B \leq \inf A \bigwedge \sup B \geq \sup A$ מתקיים $\phi \neq A \subseteq B$ הוכחה באינפי 1 הוכחנו שבהינתן $A_n = \{a_k \mid k \geq n\}$ מסמן $A_n = \{a_k \mid k \geq n\}$

 $orall n \in \mathbb{N}$ $u_n = \sup A_n \bigwedge \ell_n = \inf A_n$ בנוסף מתקיים

לכן $u_n \geq u_{n+1} \wedge u_n$ ולכן הסופרמה מונוטונית יורדת והאינפימה מונוטונית עולה. $\ell_n \leq \ell_{n+1} \wedge u_n \geq u_{n+1}$

(מלרע ומלעיל) חסימות נובעת ממשפט הירושה שכן a_n

 $\limsup_{n \to \infty} a_n$, $\liminf_{n \to \infty} a_n$ חסומות שתיהן מלרע ומלעיל ומכך מתכנסות שתיהם, ולכן בסדרה חסומה תמיד קיימים שתיהן מלרע ומלעיל ומכך מתכנסות שתיהם.

2. הגבול העליון הוא הגבול החלקי הגדול ביותר והתחתון הוא הקטן ביותר בסדרה חסומה

תהי $(a_n)_{n=1}^\infty$ סדרה חסומה. lim sup a_n , lim inf a_n אזי lim sup a_n , lim inf a_n הם הגבול החלקי

הוכחה (זהה לגבול עליון או תחתון עם היפוך הסימנים, נוכיח על עליון)

נסמן $\forall k\in\mathbb{N}$ $a_{n_k}\leq u_{n_K}$ וויהי $ilde{\lambda}$ גבול חלקי כלשהו של a_{n_k} . אז קיימת תת סדרה a_{n_k} המתכנסת ל a_{n_k} מתקיים ולכן מעקרון $\forall k\in\mathbb{N}$ וויהי a_{n_k} גבול חלקי כלשהו של היימת תח

 $\tilde{\lambda} < \lambda$ החדר רגרולות

 a_n נבנה בצורה רקורסיבית את u_n מתוך a_n ונקבל ש λ הוא הגבול שלה, ולכן גבול חלקי מקסימלי של

הערה מבולצאנו ויירשטראס, a_n חסומה ולכן קיימת לה תת סדרה מתכנסת, ובנוסף לכן קבוצת הגבולות החלקיים S_a חסומה ומקיימת ממשפט החסם העליון (והתחתון) ועקרון הסדר ש-

$$\inf\left(S_{a}\right)\overset{order}{=}\min\left(S_{a}\right)=\underset{n\rightarrow\infty}{\liminf}a_{n}\bigwedge\sup\left(S_{a}\right)\overset{order}{=}\max\left(S_{a}\right)=\underset{n\rightarrow\infty}{\limsup}a_{n}$$

$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n$ מתכנסת אם"ם a_n .3

 $\limsup_{n o \infty} a_n = \lim_{n o \infty} a_n = \liminf_{n o \infty} a_n$ במקרה זה יתקיים

 $n o \infty$ י $n o \infty$ י $n o \infty$ היידי ו $n o \infty$ הוכחה מהמשפט על סדרה חסומה מתכנסת אמ״מ יש לה גבול יחיד הוכחה נובעת ישירות מהמשפט על סדרה חסומה מתכנסת אמ״מ יש לה

4. אפיון הגבול העליון (התחתון) של סדרה חסומה באמצעות סביבות

 $\lambda \in \mathbb{R}$,תהא סדרה חסומה, a_n

אמיים כמעט תמיד מתקיים אזי אזי וגם אזי אם"ם לכל התקיים אזי אזי א $a_n < \lambda + \varepsilon$ מתקיים אזי אזי אזי אזי אזי א $e_n > 0$ מתקיים לכל אזי אזי אזי אזי אזי אזי אזי א

5. עקרון הסדר בגבולות עליונים של סדרות חסומות

 $\limsup_{n o \infty} a_n \le \limsup_{n o \infty}$, מתקיים , $n \in \mathbb{N}$ ממעט לכל $a_n \le b_n$ יהיו הסדרות החסומות . a_n, b_n אזי אם מתקיים