

MEMORANDUM REPORT BRL-MR-3711

BRL

1938 - Serving the Army for Fifty Years - 1988

CO
AD-A201 109

TERRAIN EFFECTS ON SHOCK WAVES AS MEASURED USING
A 1:1300 SCALE MODEL OF REITERAPLE PROVING GROUND

G. BULMASH
G. COULTER
C. KINGERY
A. CORRIGGIO
R. ABRAHAMS
R. PETERSON

NOVEMBER 1988

DTIC
ELECTED
NOV 21 1988
S D

^{AV}
H

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

U.S. ARMY LABORATORY COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

88 10 014

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.

18. SUBJECT TERMS (Continued)

Terrain Modeling
Overpressure
Air Blast Prediction
Impulse

19. ABSTRACT (Continued)

there was blast enhancement because of reflection which occurred when the shock wave struck the valley floor at an angle and traveled up a slope. At the two far field stations, there was blast attenuation because the shock wave expanded when it entered the lower valley.

Acknowledgements

There were many people who graciously assisted with this project. Each one would have willingly helped more if required, and the authors are sincerely appreciative. They are John Sullivan, Peter Muller, George Teel, Jim Bernhardt, Ken Holbrook, Brian Bertrand, John Simansky, and Rick Thane all from the Blast Dynamics Branch at BRL. We particularly wish to thank the US Army Ordnance School Photography Laboratory for creating a 2.6 x 3.4 m (8.5 x 11 ft) photograph of the Reiteralpe contour map.

Accession For	
NTIS	GRA&I <input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

TABLE OF CONTENTS

	Page	
Paragraph 1	LIST OF FIGURES	v
2	INTRODUCTION	1
2	TEST PROCEDURE	1
2.1	Terrain Construction	1
2.2	Shock Tube Model	4
2.3	Instrumentation	4
2.4	Experiments	7
3	RESULTS	8
4	DISCUSSION	8
5	CONCLUSION	14
	LIST OF REFERENCES	17
	DISTRIBUTION LIST	19

FIGURES

	Page
FIGURE 1. Mountains and Valleys as Viewed from Near the Large Blast Simulator	2
2. Contour Map of Mountains and Valleys in the Reiteralpe Vicinity	3
3. Construction Details of Terrain Model	5
4. Terrain Model Covered with Plaster and Soil	6
5. Shock Tube Station Records for Each Test Configuration	9
6. Pressure-time Records at Station 1	10
7. Pressure-time Records at Station 2	11
8. Pressure-time Records at Station 3	12
9. Pressure-time Records at Station 4	13
10. Comparison of Equation 1 with Scale Model Results and Other Data	15

1. INTRODUCTION

The large blast simulator is a shock tube that was hollowed out of the Reiteralpe Mountain. It has a closed end inside the mountain and an open end which exits into the surrounding terrain. Figure 1 shows the nearby mountains and valley as seen from a location close to the shock tube exit. The facility was constructed to produce blast waves of up to one bar (14.5 psi). Because of the proximity of the shock tube to previously existing inhabited areas, shock wave related damage has occurred which in the past has inhibited the use of the facility. When a shot with a peak overpressure of 0.8 bars was fired, structural damages were incurred¹. These damages included broken windows and even some minor damage to ceilings and walls in a neighboring village. In order to more fully examine these problems and document the terrain effects, a 1:1300 scale model was constructed of the Reiteralpe shock tube and nearby topography.

2. TEST PROCEDURES

2.1 Terrain Construction. The Federal Republic of Germany (FRG) provided the Ballistic Research Laboratory (BRL) with a contour map of the terrain in the region near the Reiteralpe Facility. The terrain model was confined to the region displayed on this map; see Figure 2 which is a reduced replica. The map provided by FRG describes the contours of the land at a 1:5000 scale. It was concluded that the map should be enlarged to a scale that would allow for a workable shock tube model. The first method of enlargement attempted was by the use of a pantograph which is a device consisting of four jointed bars in parallelogram form that may be used to copy on a predetermined scale. However, a pantograph large enough was not readily available, and it was determined that a great deal of time would be expended to get results by this method. The map was instead photographically reproduced and enlarged in sections roughly following the grid lines already present. By means of this sectioned augmenting process, the map was enlarged 3.8 times to a new scale of 1:1316 (In this paper, the scale is sometimes referred to as 1:1300 and at other times more exactly as 1:1316.) and covered a 2.6 x 3.4 meter (8.5 x 11 ft) area. An increase factor of 3.8 was as much as the available enlarging equipment would allow. To assure that all map sections had the same scale, the photographically enlarged sections were dried at room temperature instead of being heat dried which might have caused distortions.

A large space was cleared in a nearby warehouse to be the work area for this project. An indoor environment was chosen over an outdoor site primarily because of the weather factor. The cover of the warehouse would assure against any weather related side-effects during the actual testing. Additionally, working indoors also assured protection from inclement weather to the workers, maps, and construction tools. The building material chosen for construction of the terrain was plywood because it was readily available in a standard size and thickness of 1.2 m x 2.4 m x 2.54 cm (4 ft x 8 ft x 1 in) and because of its structural stability. A 3.7 x 3.7 meter (12 x 12 ft) platform elevated 15.2 cm (6 in) above the ground was assembled to provide a level base on which to work and plenty of room for cables to run underneath. Fortunately, the 1:1316 scale allowed for a very convenient transference of actual height to scale height. The major map contours ascend in 100 meter increments which converts to 7.62 cm (3 in) at 1:1316 scale with an error of 0.26%. In other words, three thicknesses of plywood equals a scale height of 100.26 meters. So, every 100 meter increase in height on the German mountains would constitute a 7.62 cm height increase on the model. A base altitude of approximately 500 m above sea level was found along the Saalach River near Reiterpoint and deemed the low point on the map. All height delineations were made referencing 500 m as the base, thus placing any altitude from 500-599 m (mostly all of the river basin) flat on the platform. Seven levels or 21 layers of plywood were needed to model the highest mountains on the test site which corresponds to

Figure 1. Mountains and Valleys
as Viewed from Near the Large Blast Simulator

Figure 2. Contour Map of Mountains and Valleys in the Reiteralpe Vicinity

1200 m above sea level. Figure 3 shows some construction details of the plywood terrain. The wooden contours were covered with plaster in the critical areas to get the finer details of the altitude modeling; a photograph of the test site is shown on Figure 4. In the less critical regions, the plywood was covered with firmly packed soil.

2.2 Shock Tube Model. According to Reference 1, the Reiteralpe large blast simulator has a total length of 106 m, and a cross-section of 76 meter square. The floor is 13 m wide, and the height is 7 m with a 2.5 m vertical part and a semicircle on top. The blast wave generator or driver consists of 144 pressure bottles 6.34 m long clamped horizontally into a frame resting against the shock tube back wall.

From the dimensions reported in Reference 1, the cross-sectional area was calculated to be 75.3 meter square which is 0.7 meter square less than the number reported therein. Using 75.3 m as the cross-sectional area resulted in a hydraulic diameter of 9.79 m. Scaling by 1:1316 gave a hydraulic diameter of 0.744 cm (0.293 in). The scaled shock tube was constructed out of steel pipe having a nominal inside diameter of 0.767 cm (0.302 in). This means that the scaled tube is 3.1% larger than it should be. This small systematic error was considered acceptable for several reasons. It was not possible to locate a drill bit that would allow for machining a pipe to exactly 0.293 in. Also the error was on the conservative side and thus would give higher field pressures than a 0.293 in tube. Lastly, the cross-sectional area reported in Reference 1 was slightly larger than the area used herein.

It was infeasible to scale the 6.34 m high pressure gas bottles by 1:1316 so a simple compressed air driver which was filled from a pair of 6.9 bar (100 psi) bottles was used. The length of the driver, including air in the control valve, was 7.1 cm (2.8 in). The diaphragm material was 0.00635 mm (0.25 mil) mylar for the low pressure range and 0.0127 mm (0.5 mil) mylar for the high pressure range. Mylar was easy to cut, easy to handle, and gave consistent, repeatable results. The mylar diaphragm was ruptured by piercing it with a pin placed in a 1 mm hole in the downstream tube wall. (Other materials that were tried as diaphragms at this scale gave interesting but negative results. Ordinary writing paper was far too strong, aluminum foil was hard to handle without causing wrinkles and therefore did not give repeatable results, and wax paper became porous under pressure.) The downstream or test section of the shock tube was 30.5 cm (12.0 in) long. The driver to test section length ratio was chosen to give a flattop wave at the exit. An Endevco pressure transducer was placed 5.1 cm (2.0 in) from the open end to record the shock pressure within the tube near the exit. The operational shock tube may be seen on both Figures 3 and 4.

The shock tube was very easy to operate and had a turnaround time of only ten minutes. The circular mylar diaphragm was punched out of a sheet of mylar using a custom made hole punch and was placed on an O-ring that was seated at the end of the driver. The downstream section was screwed into the driver forming a pressure tight seal at the O-ring.

2.3 Instrumentation. Pressure-time data were recorded at five locations, one within the model shock tube using an Endevco gage Model 8510 and at 4 field positions using Susquehanna yellow dot gages Model ST-2. Neff Model 122 amplifiers, rated at 100 kHz, were used to amplify the gage signals. Pacific Instruments Model 9820 transient data recorders, having 12 bit resolution and a 2 microsecond sampling rate, were used to digitize and store the data which was then transferred to a Hewlett Packard (HP) Model 9807A Integral Personal Computer. The HP electroluminescent monitor produced a graphic display that facilitated analysis of the shots. This very efficient data acquisition scheme made it possible to fire many shots with little turnaround time. In the event of a misfire, erratic diaphragm break, or instrumentation error, a quick look at the shock tube gage record was all that was needed in order to decide to throw out the shot and repeat it. Good shot

Figure 3. Construction Details of Terrain Model

Figure 4. Terrain Model Covered with Plaster and Soil

pressure-time records were then plotted out using an HP Thinkjet printer. The records were stored on a 3.25 in, double density, double sided, 1.2 megabyte floppy disks and transferred to cassette tapes for further reduction on a Tektronix 4052A micro-computer, 4631 hardcopier, and 4662 plotter.

The Endevco gage was chosen for the shock tube station because the gage has a 2.34 mm (0.092 in) case diameter with a 1.25 mm (0.05 in) diameter sensing element. A small diameter gage was needed since the shock tube diameter is 7.67 mm (0.302 in), and a larger gage would have obstructed the flow that was being measured. This type gage had one noticeable disadvantage. It has a natural frequency of 100 kHz and this periodic ringing was evident on each shock tube station record. The ringing was filtered out by smoothing the records on the Tektronix 4052A computer.

The Susquehanna gage was chosen for the field stations because no other available gages would adequately record these short duration, extremely low pressure records. PCB Inc. piezoelectric gages, having a quartz sensing element, were not sensitive enough to record low pressures. The electronic signal to noise ratio made the records useless when these gages were tried. The Susquehanna gages have 200 kHz natural frequency and 100 mV/psi sensitivity, but are unstable to temperature changes. The temperature instability is inherent to gages having a sensing element composed of manmade ceramic crystal material. The temperature problem was solved by calibrating each gage from 60° F to 100° F in 10 degree increments, recording the temperature at the time of each shot, and then making a scalar correction to the gage calibration level. Since only short duration waveforms were being measured, AC coupling was used to cancel most of the baseline drift which was a result of the temperature sensitivity. The Susquehanna gage element diameter is 1.27 cm (0.5 in).

The 1:1300 scale imposed difficulties on the ability of the instrumentation to adequately capture and record the shock. The most significant losses in the field records were a result of the amplifier response time and the yellow dot gage crossing time. As much as 20% of the field record peak pressures may have been lost because of the instrumentation limitations. The largest losses for the shock tube gage were caused by the gage response time and the amplifier response time. The shock tube station losses were insignificant.

2.4 Experiments. Experiments were conducted on the free field plaster board to establish a baseline to compare with results from the topographical model. After this baseline was established, experiments were performed on the topographical model. Shots were fired at two pressure levels, nominally 55 and 98 kPa shock tube exit pressure. Before experiments were conducted on the plaster covered model, preliminary tests were performed on the model which was covered with firmly packed soil. The soil was too rough, granular, and porous to be used on a 1:1300 scale model. Therefore, the pressures recorded on the soil model were low and at the far field stations difficult to interpret. Using a plaster model increased the pressures and made it much easier to interpret the records. Also, the field gages were shock mounted on the plywood board by emplacing the 5.08 cm (2 in) brass gage mounts in oversized mounting holes within the plywood and cushioning the mounts with foam rubber and duct seal (a malleable filler); this was done to reduce the signals transmitted to the gages by mechanical vibration of the solids and was very effective. Even with this measure, however, because the system was recording Pa level pressures, there was still some noise superposed on the records which made it difficult to determine the baseline. To be consistent, the baseline for each record was determined in the same manner; it was set to 0 Pa at the shock discontinuity.

3. RESULTS

The results are summarized in Table 1 and presented graphically in Figures 5 - 9 where the test label 'Plaster FF' refers to the plaster covered flat surface, and the label 'Plaster Model' refers to the plaster covered terrain model.

Table 1. Peak Pressure at the Four Field Gage Positions					
Shock Tube Station Pressure (kPa)	Test Configuration	Field Pressure (Pa)			
		1	2	3	4
55	Flat Surface	141	54	47	390
	Terrain Model	195	25	18	487
96	Flat Surface	270	86	69	716
	Terrain Model	354	43	32	772

The four gage positions were provided by the FRG and are indicated on Figures 2 - 4. Station 1 is at Oberjettenberg, 0.764 m from the shock tube open end and at an angle of 25° with respect to the shock tube axis; Station 2 at Unterjettenberg, 1.615 m and 58.5°; Station 3 at Reiterpoint, 1.869 m and 51.3°; and Station 4 at the Reiteralpe support facilities, 0.365 m and 0°.

4. DISCUSSION

Figure 5 shows the shock tube exit pressure records at low and high pressure for each plaster shot configuration. These shots were chosen for comparison because the exit pressures are quite similar. Figures 6 - 9 compare the records at Stations 1 - 4 at both low and high pressure. The most important phenomenon observed was the pressure enhancement on the topographical model² at Station 1 which was caused by a reflection as the shock wave moved up the slope. Station 4, which is located in the valley directly in front of the shock tube also shows an enhancement because of the reflection that occurs when the shock wave reaches the flat area at the bottom of the valley. Stations 2 & 3 show a clear blast attenuation when compared with the flat surface.

The free field plywood surface results for Stations 1-4 are compared with Equation 1.

$$P_{\alpha\nu} = \frac{B_1 P_{\alpha} \left(\frac{d}{R}\right)^{B_2}}{1 + \left(\frac{\nu}{B_3}\right)^2} \quad (1)$$

where,

$P_{\alpha\nu}$ is the expected overpressure in the environment

$B_1 = 1.2 \pm 0.2$

$B_2 = 1.35 \pm 0.08$

$B_3 = 56^\circ \pm 3^\circ$

P_{α} is the overpressure in the tunnel outlet

d is the tunnel diameter

Figure 5. Shock Tube Station Records for Each Test Configuration

Figure 6. Pressure-time Records at Station 1

Figure 7. Pressure-time Records at Station 2

Figure 8. Pressure-time Records at Station 3

Figure 9. Pressure-time Records at Station 4

R is the distance between the tunnel outlet and the object in the environment, and ν is the angle between the tunnel axis and the radial R .

This formula was reported by Dr. Amann of the Ernst Mach Institute as indicated in Reference 1. (In Reference 1, $B_2 = 1.35 \pm 0.8$) The equation is an empirical fit to data; it was reduced from experiments where TNT charges ranging from 9.5 gm to 151.5 gm were detonated in a non-responding chamber connected by a passageway (tunnel outlet) to the outside environment and was reported at MABS 5.³ According to Reference 3, the data was compared with data from compressed air shock tubes, and the fitted parameters showed qualitative agreement. Kingery⁴ has compared this empirically derived equation with other similar equations and found that for a large variety of explosive and shock tube data Equation 1 adequately predicts the environmental overpressure. The predictions generated by Equation 1 are shown as a straight line on Figure 10 and may be compared with the experimental results and other data. A comparison indicates that the results measured on this 1:1300 scale flat surface are similar to what would be measured at full scale.

5. CONCLUSIONS

The enhancement at Station 1 and the attenuation at Stations 2 & 3 are real effects that are present at Reiteralpe. The enhancement at Station 4 may or may not be occurring at Reiteralpe, depending upon just how well the 1:1300 scale model simulates the topography at this near field position.

Figure 10. Comparison of Equation 1 with Scale Model Results and Other Data

LIST OF REFERENCES

1. J. Ackerman and L. Klubert, "The New Large Blast Simulator of Reiteralpe Proving Ground," Ninth International Symposium on Military Applications of Blast Simulation, Oxford, England, Sept. 1985.
2. K Kaplan, "Effects of Terrain on Blast Prediction Methods and Predictions," Scientific Services, Inc., Redwood City, California, BRL Contract Report ARBRL-CR-00364, Jan. 1978.
3. A. T. Skjeltorp, A. Jenssen, A. Rinnan, "Blast Propagation Outside a Typical Underground Ammunition Storage Site," Fifth International Symposium on Military Applications of Blast Simulation, Stockholm, Sweden, May 1977.
4. C. N. Kingery, "Survey of Airblast Data Related to Underground Munitions Storage Sites," Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, Technical Report, to be published.

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Administrator Defense Technical Info Center ATTN: DTIC-FDAC Cameron Station, Bldg 5 Alexandria, VA 22304-6145	2	Chairman Joint Chiefs of Staff ATTN: J-3 (Operations) J-5 (P&P/R&D Div) Washington, DC 20301
30	Chairman DOD Explosives Safety Board ATTN: JDDESB Hoffman Bldg 1, Room 856-C 2461 Eisenhower Avenue Alexandria, VA 22331-0600	3	Director Institute for Defense Analyses ATTN: Dr. H. Menkes Dr. J. Bengston Tech Info Ofc 1801 Beauregard Street Alexandria, VA 22311
1	OSD, ADUSDRE (R/AT,ET) ATTN: Mr. J. Persh Washington, DC 20301-3110	4	Director Defense Nuclear Agency ATTN: SPTD (Mr. Kennedy) DDST(E) (Dr. Sevin) OALG (Mr. Jeffers) LEEE (Mr. Eddy) Washington, DC 20305
1	Under Secretary of Defense for Research & Engineering Department of Defense Washington, DC 20301	1	Information & Analysis Ctr-DNA Kaman Tempo ATTN: DASIAAC P.O. Drawer QQ Santa Barbara, CA 93102
1	Director of Defense Research & Engineering Washington, DC 20301	1	Commander Field Command, DNA ATTN: FCWS-SC (Tech Library) Kirtland AFB, NM 87115
1	Assistant Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301	10	IIQDA (DAMA-ART-M) (DAEN-ECE-T/Mr. Wright) (DAEN-MCC-D/Mr. Foley) (DAEN-RDL/Mr. Simonini) (DAEN-RDZ-A/Dr. Choromokos) (DALO-SMA/COL Paris) (DAMA-CSM-CA) (DAMA-AR/NCL Div) (DAMA-NCC/COL Orton) (DAPE-HRS) Washington, DC 20310
1	Assistant Secretary of Defense (MRA&L) ATTN: EO&SP Washington, DC 20301		
1	Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209-2308		
1	Director Defense Intelligence Agency ATTN: DT-1B (Dr. Vorona) Washington, DC 20301		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Commander US Army Materiel Command ATTN: AMCDRA-ST AMCSF 5001 Eisenhower Avenue Alexandria, VA 22333-0001	2	Commander USA Armament Materiel Readiness Command ATTN: Joint Army/Navy/AF Conven Ammo Prof Coord GP/E1 (Jordan) Rock Island, IL 61299
1	Director AMC Field Safety Activity ATTN: AMXOS-OES Charlestown, IN 47111-9669	1	Commander USA Armament Command ATTN: AMSAR-SA Rock Island Arsenal Rock Island, IL 61201
1	Director AMC ITC ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501	1	Commander US Army Armament, Munitions and Chemical Command ATTN: AMSMC-IMP-L Rock Island, IL 61299-7300
1	Commander USA Laboratory Command ATTN: AMSLC-AS-SE (R. Oden) 2800 Powder Mill Road Adelphi, MD 20783-1145	3	Commander USA Armament Research, Develop- ment & Engineering Center ATTN: SMCAR-LCM-SPC SMCAR-MSI SMCAR-TDC Picatinny Arsenal NJ 07806-5000
1	Director Materials Technology Laboratory ATTN: AMXMR-ATL Watertown, MA 02172-0001	1	Commander USA Rock Island Arsenal Rock Island, IL 61299
1	Commander USA Harry Diamond Laboratory ATTN: SLCHD-TI 2800 Powder Mill Road Adelphi, MD 20783-1197	1	Commander Indiana Army Ammunition Plant Charlestown, IN 47111
1	Director Benet Weapons Laboratory ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050	1	Commander Joliet Army Ammunition Plant Joliet, IL 60436
1	Commander USA Natick R&D Laboratories ATTN: AMDNA-D (Dr. Seiling) Natick, MA 01760	1	Commander Kansas Army Ammunition Plant Parsons, KS 67357
		1	Commander Lone Star Army Ammunition Plant Texarkana, TX 75502

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander Longhorn Army Ammunition Plant Marshall, TX 75671	2	Commander USA Communications Electronics Command ATTN: AMSEL-ED AMSEL-IM-L (RptSec,B2700) Fort Monmouth, NJ 07703-5000
1	Commander Milan Army Ammunition Plant Milan, TN 38358		
1	Commander Radford Army Ammunition Plant Radford, VA 24141	4	Commander US Army Missile Command ATTN: AMSMI-R (Mr. Cobb) AMSMI-RD AMSMI-RR (Mr. Lively) AMSMI-RX (M. Thauer) Redstone Arsenal, AL 35898-5249
1	Commander Ravenna Army Ammunition Plant Ravenna, OH 44266		
1	Commander Pine Bluff Arsenal Pine Bluff, AR 71601	1	Commander USA Ballistic Missile Defense Systems Command ATTN: M. Whitfield, ATC ATTN: J. Veeneman P.O. Box 1500 Huntsville, AL 35807-3801
1	Commander USA Aviation Systems Command ATTN: AMSAV-ES 4300 Goodfellow Boulevard St. Louis, MO 63120-1798	1	Director Missile & Space Intelligence Center ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500
1	Director USA Aviation Research & Technology Activity Ames Research Center Moffett Field, CA 94035-1099	1	Commander USA Tank Automotive Command ATTN: AMSTA-TSL Warren, MI 48397-5000
1	Commander USA Research Office P.O. Box 12211 Research Triangle Park NC 27709-2211	1	Commander USA Development & Employment Agency ATTN: MODE-ORO Fort Lewis, WA 98433-5000
1	Director Lewis Research Center ATTN: Mail Stop 77-5 21000 Brookpark Road Cleveland, OH 44135	1	Director USA TRADOC Analysis Center ATTN: ATOR-TSL White Sands Missile Range, NM 88002-5502
1	Commander USA Dugway Proving Ground ATTN: STEDP-TO-H (Mr. Miller) Dugway, UT 84022		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commandant USA Infantry School ATTN: ATSH-CD-CS-OR Fort Benning, GA 31905-5400	1	Assistant Secretary of the Navy (R&D) Department of the Navy Washington, DC 20350
1	Commandant USA Engineer School ATTN: ATSE-CD Fort Belvoir, VA 22060	3	Chief of Naval Operations ATTN: OP-411 (C. Ferraro) OP-41B CPT Wernsman Washington, DC 20350
1	Commander USA Belvoir R&D Center ATTN: STRBE-NN Fort Belvoir, VA 22060-5606	2	Commander Naval Sea Systems Command ATTN: SEA-06H (Van Slyke) SEA-0333 Washington, DC 20362
1	Commander USA Engineer Division-Europe ATTN: EUDED (Dr. Crowson) APO. New York, NY 09757	1	Commander Naval Surface Weapons Center ATTN: E-23 (Mr. Walsh) Dahlgren, VA 22448-5000
1	Division Engineer USA Engineer Division Fort Belvoir, VA 22060	5	Commander Naval Surface Weapons Center ATTN: Dr. Schindel Dr. Victor Dawson Dr. P. Huange R15 (Swisdak/Smith) Silver Spring, MD 20902-5000
1	Corps of Engineers-HSV Division ATTN: HNDDE (Mr. Char) P.O. Box 1600 Huntsville, AL 35807	1	Commander Naval Weapons Center ATTN: Code 0632 (Osterman) China Lake, CA 93555
1	Director USA Engineer Waterways Experimental Station ATTN: WESNB (K. Davis) P.O. Box 631 Vicksburg, MS 39180-0631	1	Commander Naval Research Lab ATTN: Code 2027 Washington, DC 20375
1	Commander USA Construction Engineering Research Laboratory P.O. Box 4005 Champaign, IL 61820	1	Commander Naval Weapons Evaluation Facility ATTN: Document Control Kirtland AFB Albuquerque, NM 87117
1	Commander USA Foreign Science & Technology Center ATTN: Rsch & Data Br Federal Office Building 220 7th Street, NE Charlottesville, VA 22901		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Officer-In-Charge Naval EOD Facility ATTN: Code D (Dickenson) Indian Head, MD 20640	1	Commander Air Force Rocket Propulsion Laboratory ATTN: Code AFRPL MKPA (Geisler) Edwards AFB, CA 93523
1	Commander Naval Weapons Support Center ATTN: Code 502 Crane, IN 47522	3	Air Force Armament Laboratory ATTN: AFATL/DOIL (TIC) DLYV (Mr. McGuire) AFTAWC (OA) Eglin AFB, FL 32542-5438
1	Commander Naval Facilities Engineering Cmd ATTN: Code 04T5 Washington, DC 22360	1	Ogden ALC/MMWRE ATTN: Mr. Comins Hill Air Force Base, UT 84056
1	Commander Naval Air Systems Command ATTN: AIR 532 Washington, DC 20360	7	US Air Force ATTN: AFML (LNN/Nicholas; MAS; MBC/Schmidt) AFWAL AFLC (MMWM/Rideout; IGYE/ Shopker) FTD (ETD) Wright-Patterson AFB, OH 45433
2	Commander David W. Taylor Naval Ship R&D Center ATTN: Code 17 (Mr. Murray) Code 1747 (Mr. Wilner) Bethesda, MD 20084-5000	1	AFWL/SUL Kirtland AFB, NM 87117
1	Commander Naval Ship R&D Center ATTN: Underwater Explosions Rsch Div (Mr. L.T. Butt) Portsmouth, VA 23709	3	Director of Aerospace Safety ATTN: JDG/AFISC(SEVV) (COL McQueen) IDG/AFISC (SEW)(Gavitt) (SEV)(Gopher) Norton AFB, CA 92409
2	Civil Engineering Laboratory Naval Construction Battalion Ctr ATTN: Code L31 Code L51 (Mr. Keenan) Port Hueneme, CA 93041	2	Director Joint Strategic Target Planning Staff ATTN: JLTW TPTP Offutt AFB, Omaha, NE 68113
4	HQ USAF (AFNIE-CA) (AFRIDO/AFRODXM/AFRDPM) Washington, DC 20330	1	HQ AFESC/RDC ATTN: Walter Buckholtz Tyndall AFB, FL 32403
1	USAF Systems Command ATTN: IGFG Andrews Air Force Base Washington, DC 20334		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Director Office of Operational & Environmental Safety US Department of Energy Washington, DC 20545	2	Director NASA-Aerospace Safety Research & Data Institute Lewis Research Center 21000 Brook Park Road Cleveland, OH 44135
1	Director Office of Military Application US Department of Energy Washington, DC 20545	1	Director NASA-Scientific & Technical Information Facility P.O. Box 8757 Baltimore/Wash International Airport, MD 21240
1	US Department of Energy Albuquerque Operations Office ATTN: Operational Safety P.O. Box 5400 Albuquerque, NM 87115	1	National Academy of Science ATTN: Mr. Groves 2101 Constitution Avenue, NW Washington, DC 20418
1	Director Pittsburgh Mining & Safety Research Center Bureau of Mines, Department of Interior 4800 Forbes Avenue Pittsburgh, PA 15213	1	Central Intelligence Agency OIR/DB/Standard GE47 HQ Washington, DC 20505
1	Director Lawrence Livermore National Laboratory University of California P.O. Box 808 Livermore, CA 94550	1	Institute of Makers of Explosives ATTN: Exec Dir, Suite 550 1575 Eve Street, NW Washington, DC 20075
1	Director Los Alamos National Laboratory ATTN: Dr. J. Taylor P.O. Box 1663 Los Alamos, NM 87545	1	Aberdeen Research Center ATTN: Mr. John Keefer P.O. Box 548 Aberdeen, MD 21001
1	Director Sandia National Laboratories ATTN: Div 6442 (von Riesemann) P.O. Box 5800 Albuquerque, NM 87115	1	Aeronautical Research Associates of Princeton, Inc. ATTN: Dr. Donaldson P.O. Box 2229 Princeton, NJ 08540
1	Director NASA-George C. Marshall Space Center Huntsville, AL 35812	1	Aerospace Corporation P.O. Box 92957 Los Angeles, CA 90009
		1	Agbabian Associates ATTN: Dr. D.P. Reddy 250 N. Nash Street El Segundo, CA 90245

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Ammann & Whitney ATTN: Mr. Dobbs, Suite 1700 Two World Trade Center New York, NY 10048	2	Kaman-AviDyne ATTN: Dr. N.P. Hobbs Mr. S. Criscione Northwest Industrial Park 83 Second Avenue Burlington, MA 01803
1	Applied Research Assoc., Inc. ATTN: Mr. Drake 1204 Openwood Street Vicksburg, MS 39180	3	Kaman-Nuclear ATTN: Dr. F.H. Shelton Dr. D. Sachs Dr. R. Keffe 1500 Garden of the Gods Road Colorado Springs, CO 80907
2	AVCO Corporation Structures & Mechanics Dept ATTN: Dr. William Broding Dr. J. Gilmore 201 Lowell Street Wilmington, MA 01887	1	Knolls Atomic Power Lab ATTN: Dr. R.A. Powell Schenectady, NY 12309
1	Black & Veatch Consulting Engineers ATTN: Mr. Callahan 1500 Meadow Lake Parkway Kansas City, MO 64114	1	McDonnell Douglas Astronautics Western Division ATTN: Dr. Lea Cohen 5301 Bosla Avenue Huntington Beach, CA 92647
2	The Boeing Company- Aerospace Div ATTN: Dr. Peter Grafton Dr. D. Strome (Mail Stop 8C-68) P.O. Box 3707 Seattle, WA 98124	1	Physics International 2700 Merced Street San Leandro, CA 94577
1	J.G. Engineering Research Associates 3831 Menlo Drive Baltimore, MD 21215	1	R&D Associates ATTN: Mr. John Lewis P.O. Box 9695 Marina del Rey, CA 90291
1	General American Trans Corp General American Research Div ATTN: Dr. J.C. Shang 7449 N. Natchez Avenue Niles, IL 60648	1	R&D Associates ATTN: G.P. Ganong P.O. Box 9335 Albuquerque, NM 87119
1	Hercules, Inc. ATTN: Billings Brown Box 93 Magna, UT 84044	1	Science Applications, Inc. Suite 310 1216 Jefferson Davis Highway Arlington, VA 22202
		1	Dr. Wilfred E. Baker Wilfred Baker Engineering P.O. Box 6477 San Antonio, TX 78209

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Battelle Memorial Institute ATTN: Dr. L.E. Hulbert Mr. J.E. Backofen, Jr. 505 King Avenue Columbus, OH 43201	2	Southwest Research Institute ATTN: Dr. H.N. Abramson Dr. U.S. Lindholm 8500 Culebra Road San Antonio, TX 78228
1	Brown University Division of Engineering ATTN: Prof. R. Clifton Providence, RI 02912	1	Texas A&M University Dept of Aerospace Engineering ATTN: Dr. J.A. Stricklin College Station, TX 77843
1	Florida Atlantic University Dept of Ocean Engineering ATTN: Prof. K.K. Stevens Boca Raton, FL 33432	1	University of Alabama ATTN: Dr. T.L. Cost P.O. Box 2908 University, AL 35486
1	Georgia Institute of Tech ATTN: Dr. S. Atluri 225 North Avenue, NW Atlanta, GA 30332	1	University of Delaware Dept of Mechanical & Aerospace Engineering ATTN: Prof. J.R. Vinson Newark, DE 19711
1	ITT Research Institute ATTN: Mrs. H. Napadensky 10 West 35th Street Chicago, IL 60616		
1	Lovelace Research Institute ATTN: Dr. E.R. Fletcher P.O. Box 5890 Albuquerque, NM 87115		Cdr, TECOM, ATTN: AMSTE-SI-F Cdr, CRDEC, ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-SPS-IL
1	Mason & Hanger-Silas Mason Co., Inc. Plantex Plant P.O. Box 647 Amarillo, TX 79117		Cdr, USATHMA, ATTN: AMXTH-TE Dir, AMSAA, ATTN: AMXSY-D AMXSY-MP (H. Cohen)
1	Massachusetts Institute of Technology Aeroelastic & Structures Research Laboratory ATTN: Dr. E.A. Witmar Cambridge, MA 02139		
1	Monsanto Research Corporation Mound Laboratory ATTN: Frank Neff Miamisburg, OH 45342		

Aberdeen Proving Ground

Cdr, TECOM, ATTN: AMSTE-SI-F
 Cdr, CRDEC, ATTN: SMCCR-RSP-A
 SMCCR-MU
 SMCCR-SPS-IL
 Cdr, USATHMA, ATTN: AMXTH-TE
 Dir, AMSAA, ATTN: AMXSY-D
 AMXSY-MP (H. Cohen)

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number _____ Date of Report _____

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

CURRENT ADDRESS Name _____
 Organization _____
 Address _____
 City, State, Zip _____

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

OLD ADDRESS Name _____
 Organization _____
 Address _____
 City, State, Zip _____

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

----- FOLD HERE -----

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 12062 WASHINGTON, DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989

----- FOLD HERE -----