## CS 405: Algorithm Analysis, Winter, 2013 Midterm, Part II Take-home Exam, due March 4, 2013

The following figure depicts a 10-vertex convex polygon; the table lists the vertices proceeding counterclockwise from the rightmost vertex. The interior chords show a sample decomposition into triangles.

We consider only *convex* polygons in this assignment. A convex polygon has the property that the line between any two points, chosen from the interior or boundary of the polygon, lies entirely within the polygon. For a convex polygon, we define a *decomposition* as a selection of chords, each joining two non-adjacent vertices that divide the polygon into triangles and that do not intersect in the polygon interior. The challenge is to find a decomposition such that the sum of the triangle perimeters is minimum. We will call such a decomposition a *minimal decomposition*.



| Vertex | X        | У        |
|--------|----------|----------|
| 0      | 202.1177 | 93.5606  |
| 1      | 177.3577 | 159.5286 |
| 2      | 138.2164 | 194.8717 |
| 3      | 73.9028  | 189.3758 |
| 4      | 17.8465  | 165.4303 |
| 5      | 2.4919   | 92.5714  |
| 6      | 21.9581  | 45.3453  |
| 7      | 72.9884  | 3.1700   |
| 8      | 133.3893 | -0.3667  |
| 9      | 184.0190 | 38.2951  |
|        |          |          |

- 1. Give an argument showing that the number of candidate decompositions is exponential in n, the number of polygon vertices.
- 2. Find and explain a dynamic programming algorithm that finds a minimal decomposition in  $\Theta(n^3)$  time or less.
- 3. Program your dynamic programming algorithm in your language of choice, being careful to use only those language constructs that require  $\Theta(1)$  time. Your input/output should follow the example below.

## Example:

Vertices are identified by their position in the input list, starting with vertex 0, proceeding counterclockwise around the polygon. Chords are identified as a vertex pair (a, b) with a < b. Letting v denote the vertex array shown in the figure above (available from the course web page as polygon1.txt), my program finds the minimal decomposition as

## >> decompose(v);

Minimal sum of triangle perimeters = 2528.5090

7 chords are:

- 1 9 1 3 3 9 3 7 7 9
- 3 5

Check: twice sum(chords) + poly perimeter = 2528.5090,

You can use polygon1.txt to check your program's correctness, but your submitted output should also show the output using polygon2.txt, which is also available on the course web page.

As a further check, I wrote another program that chooses random chords, subject to the non-intersecting property, to obtain the following competitors in polygon1.txt

```
>> random_decomposition(v, 10);
              2906.7288
random 1:
       2:
              2752.6708
random
              2672.4656
random
        3:
random
        4:
              2736.4366
random
        5:
              2631.7518
random
              2625.2465
        7:
random
              2625.5235
random 8:
              2947.4763
random 9:
              2643.1255
random 10:
              2681.6809.
```

Note that each perimeter exceeds the minimum found with the dynamic programming algorithm.