

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Haiora Seuger! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Introdução às funções

Olímpio Rudinin Vissoto Leite

■ Conceito intuitivo de função

Uma função é uma correspondência entre dois conjuntos, em que cada elemento do primeiro conjunto corresponde a apenas um elemento do segundo.

Vamos entender como isso acontece, analisando a seguinte situação: uma locadora de veículos forma o preço diário de locação da seguinte forma:

Uma parte fixa de R\$35,00 mais uma parte variável de R\$0,60 por quilômetro rodado.

Representando em uma tabela alguns valores para o número de quilômetros rodados, indicando o preço por p e o número de quilômetros rodados por x, temos:

x (km)	Cálculos	p (R\$)
5	p = 35 + 5.0,60	38,00
10	p = 35 + 10.0,60	41,00
15	p = 35 + 15.0,60	44,00
х	$p = 35 + x \cdot 0,60$	p = 0.60x + 35

Podemos representar a situação descrita na tabela utilizando diagramas da seguinte forma:

Percebemos que para cada x pertencente ao conjunto K, temos apenas um correspondente p pertencente ao conjunto C.

Nessa situação, o conjunto K, formado pelos elementos 5, 10 e 15, é chamado de Domínio, o conjunto C, formado pelos elementos 20,00, 38,00, 41,00, 44,00 é denominado Contra-domínio e o conjunto L, formado pelos elementos 38,00, 41,00 e 44,00 é denominado Imagem.

Vejamos mais um exemplo:

Para construir um galinheiro retangular, um carpinteiro dispõe de 12m de tela. Em um dos lados vai aproveitar uma parede já existente.

Veja os desenhos a seguir. Obter uma expressão que relaciona a área do galinheiro com a medida de um dos lados.

Solução:

São dados:

y(m²): área do galinheiro x(m): medida de um lado do retângulo

Assim, se dois lados medem x, o outro mede 12 - 2x. Logo, y = x. (12 - 2x) ou $y = 12x - x^2$.

Desse modo, descobrimos uma expressão que relaciona y com x.

A partir dessa lei, vamos construir uma tabela de valores, um diagrama de flechas e um gráfico cartesiano.

Tabela

x(m)	0	1	2	3	4	5	6
y(m²)	0	10	16	18	16	10	0

Diagrama de flechas

Gráfico cartesiano

A partir da tabela, do diagrama ou da expressão, podemos fazer um gráfico cartesiano. O gráfico permite uma análise profunda do fenômeno, na medida em que ele nos passa uma mensagem imediata.

A tabela, o diagrama, a expressão e o gráfico nos mostram que, para todo x corresponde um único valor de y. Quando isso ocorre, dizemos que y é a função de x. No exemplo, a expressão é $y = 12x - 2x^2$.

O domínio da função é o conjunto dos valores de x para os quais a situação é possível. No exemplo, o domínio é formado pelos valores reais de x que são positivos e menores do que 6, isto é,]0, 6[.

O conjunto imagem da função é formado pelos valores de y correspondentes aos valores do domínio. No exemplo, o conjunto imagem é formado pelos valores de y que são positivos e menores ou iguais a 18, isto é,]0, 18[.

Resumindo

Sempre que duas grandezas, x e y, estão relacionadas entre si, de modo que

- \blacksquare x pode assumir qualquer valor em um conjunto A.
- A cada valor de *x* corresponde um único valor de *y* em um conjunto *B*.
- Dizemos que a grandeza que assume valores y é uma função da grandeza que assume valores x, isto é, que y é uma função de x.

Exemplo:

Os gráficos a seguir mostram como duas grandezas que assumem valores x e y se relacionam entre si. Em quais deles y é a função de x?

a)
$$y = x + 2$$

b) $y = x^2$

c)
$$x^2 + y^2 = 4$$

d)
$$y = |x|$$

Solução:

As expressões *a*, *b*, e *d* são leis de funções, pois, em todas elas, cada *x* corresponde um único valor *y*.

A expressão c não é função, pois há valores de x que estão associados a dois valores de y. Por exemplo, x = 0 está associado a y = +2 e y = -2.

Domínio e imagem de uma função

Seja y uma função de x, com x assumindo valores em um conjunto A e y assumindo valores em um conjunto B.

O conjunto *A* recebe o nome de *domínio da função* e o conjunto *B*, de contra-domínio da função.

Quando A não for dado, o domínio da função é o conjunto dos possíveis valores reais assumidos por x, excluídos os valores para os quais, fixada uma lei, as operações indicadas não têm significado.

O conjunto dos valores de *y*, que estão associados a algum valor *x* do domínio da função, recebe o nome de *conjunto imagem*.

Exemplos:

1. Considere a função cuja lei é y = x². Achar o domínio e o conjunto imagem dessa função.

Solução:

Domínio: x pode assumir todos os valores reais. Assim, o domínio é o próprio conjunto |R|.

Conjunto imagem: x pode assumir todos os valores reais positivos ou o valor zero, pois eles são iguais ao quadrado de um número real. Assim, o conjunto imagem é $\rm lR_{_+}$.

2. Dar o domínio e o conjunto imagem de função expressa por $y = \frac{1}{x}$.

Solução:

Domínio: todos os valores reais podem substituir x, exceto o valor zero. Logo, o domínio $\not\in \mathbb{R}^*$.

Conjunto imagem: todo número real é inverso de algum número real, exceto o zero. Logo, o conjunto imagem é \mathbb{R}^* .

3. Conhecido o gráfico cartesiano de uma função, achar o domínio e o conjunto imagem.

Solução:

Nesse caso, o domínio pode ser obtido pela simples observação das abscissas dos pontos do gráfico.

Da mesma forma, observando os valores de *y* associados ao gráfico, obtemos o conjunto imagem.

Assim, temos:

- Domínio = [1, 6]
- Conjunto imagem = [2, 7]

■I Uma nova notação para função

Quando y é uma função de x, escrevemos y = f(x) (lê-se: y é igual a f de x).

Indica-se por $f: A \to B$ uma função em que x assume valores no conjunto A e y assume valores no conjunto B.

Considere a função $f:[1,2] \rightarrow \mathbb{R}$ definida por $f(x) = x^2$.

Através dessa notação, concluímos que a função é definida por $y = x^2$, com x assumindo os valores no conjunto [1, 2] e y assumindo valores no conjunto |R.

Exemplo:

É dada a função f(x) = 2x + 5. Determine f(2) e f(1).

Solução:

A função anterior pode ser indicada por y = 2x + 5. Assim, f(2) significa o valor que y assume quando x = 2. Substituindo esse valor de x na expressão, temos $y = 2 \cdot 2 + 5 = 9$. Portanto, quando x = 2, y = 9, ou, simplesmente, f(2) = 9.

Analogamente, obtemos f(0) = 5 e f(1) = 7.

Exercícios

- 1. Uma caixa d'água tem capacidade para 500ℓ. Quando ela está com 200ℓ, uma torneira é aberta e despeja na caixa 15ℓ/min.
 - a) Obtenha uma fórmula que relaciona a quantidade de água na caixa y (em litros) em função do tempo x (em minutos).
 - b) Quanto tempo transcorre do momento em que a torneira é aberta até o enchimento total da caixa?
- 2. Um carro parte do km 10 de uma estrada, com uma velocidade média de 40km/h. Obtenha a função que dá a posição y do carro, isto é, o quilômetro em que ele se encontra, em função do tempo x (em horas).

3. Dados os gráficos, descubra o domínio e o conjunto imagem das funções:

a)

b)

4. O domínio de uma função é o conjunto de todos os números reais *x* para os quais a expressão tenha significado, ou seja, todos os valores reais de *x*, exceto os que geram impossibilidades. Assim, descubra o domínio das funções abaixo:

a)
$$y = \frac{1}{x}$$

b)
$$y = \sqrt{x}$$

c)
$$y = 2x$$

d)
$$y = x^2$$

e)
$$y = \frac{7}{x - 2}$$

f)
$$y = \frac{x}{x+2}$$

5. A função $y = x^2$, com domínio [-2, 2], está representada graficamente abaixo. Descubra o seu conjunto imagem:

6. A função $y = \sqrt{x}$ está representada graficamente abaixo. O conjunto imagem dessa função é [0, 2]. Qual é o domínio?

7.	Considere a função cuja lei é dada por $f(x) = x^2 + x$. Obtenha: a) $f(0)$
	b) $f(-1)$
	c) o valor de x, tal que $f(x) = 6$
8.	Numa fábrica, o custo, em milhares de dólares, para a produção de x unidades de certo produto é dado por $f(x) = x^3 - 10x^2 + 300x + 500$. Obtenha: a) $f(0)$
	b) f(1)
	c) f(10)
9.	Uma pizzaria verificou que existe uma relação entre o número y de pedidos

para entrega em domicílio por mês e o preço x praticado. Essa relação é dada pela função $f(x) = 1 \, 425 - 25x$. Calcule qual preço a pizzaria deve praticar para

atingir a meta de 950 pizzas por mês.

10. Você quer abrir um negócio e precisa comprar uma nova linha telefônica para a sua empresa. Existem duas companhias disponíveis na sua região: a companhia A apresenta uma taxa de manutenção de R\$90,00 e um valor, por minuto de ligação, de R\$0,08; já a companhia B não cobra taxa de manutenção, mas cobra o dobro pelo minuto de ligação. Quantos minutos de ligação sua empresa precisa fazer para que o plano da companhia A seja mais vantajoso?

Gabarito

Introdução às funções

1.

a)
$$y = 200 + 25 \cdot x$$

- b) 32 min
- 2. y = 10 + 40 . x

3.

- a) Domínio = [-2, 5] e Imagem = [-1, 3]
- b) Domínio = [0, 5] e Imagem = [-2, 2]

4.

- a) $D = IR^*$
- b) D = IR
- c) D = IR
- d) D = IR
- e) $D = IR \{2\}$
- f) $D = IR \{-2\}$
- 5. Imagem = [0, 4]
- **6.** Domínio = [0, 4]

7.

- a) f(0) = 0
- b) f(-1) = 0
- c) x = -3 ou x = 2

8.

- a) f(0) = 500
- b) f(1) = 791
- c) f(10) = 3500

9. Como f(x) é o número de pizzas por mês, devemos substituir na lei da função da seguinte forma:

$$f(x) = 1425 - 25x$$

$$950 = 1425 - 25x$$

$$25x = 475$$

$$x = 19$$

Portanto o preço que dever ser praticado é de \$19.00.

10. Companhia A:

$$A(x) = 90 + 0.08x$$

Companhia B:

$$B(x) = 0.16x$$

Para determinar o ponto em que o valor da conta da companhia B ultrapassa o valor da conta da companhia A, devemos determinar o ponto onde os valores dessas contas são iguais. Assim:

$$A(x) = B(x)$$

$$90 + 0.08x = 0.16x$$

$$x = 1 125$$

Portando, o plano da companhia A é mais vantajoso que o plano da companhia B quando a conta ultrapassar 1 125 minutos.

 -

Matemática Elementar II: situações de matemática do ensino médio no dia a dia