Math 104

Reza Pakzad

Davis Foote*

University of California, Berkeley

 $August\ 27^{th},\ 2015-December\ 10^{th},\ 2015$

Contents

1	Natural Numbers 1	
2	Real Numbers 2	
	2.1 Ordered Fields	
	2.2 Properties of the Real Numbers	
	1 Natural Numbers	Lecture 1
1.1	DEFINITION. Peano axioms for the set of natural numbers:	August 27 th , 2015
(N:	1) $1 \in \mathbb{N}$	
(Na	2) $n \in \mathbb{N} \Rightarrow \exists n+1 \in \mathbb{N}$, called the successor of n	
(N ₃	3) 1 is not the successor of any element of $\mathbb N$	
(N	4) $n+1=m+1 \Rightarrow n=m$	
(N	5) A subset of $\mathbb N$ containing 1 and containing $n+1$ whenever it contains n must be the entire set $\mathbb N$.	Ţ.,
*	difoote@berkelev.edu	Lecture 2 September 1 st , 2015

There are some intuitions about the natural numbers which are not represented directly by these axioms. For example, we know that any natural number which is not 1 is the successor of some natural number.

1.2 Theorem. $\forall n \in \mathbb{N} : n \neq 1 \Rightarrow \exists m \in \mathbb{N} : n = m+1$

Proof. Let $n \in N$ s.t. $n \neq 1$. Suppose $\forall m \in \mathbb{N}$, $n \neq m+1$. Let $S = \mathbb{N} \setminus \{n\}$. Let $q \in S$. Then $q \in \mathbb{N}$ and $q \neq n$. Since $q + 1 \in \mathbb{N}$ by N2 and $q + 1 \neq n$ (since n is not the successor of any natural number), then $q + 1 \in S$. Since $n \neq 1, 1 \in S$. Therefore $S = \mathbb{N}$ by N₅. But $n \in \mathbb{N}$ and $n \notin S$. Contradiction.

1.3 THEOREM (Well-Ordering Principle). Any subset of the natural numbers admits a "least element." Logically,

$$\forall S \subseteq \mathbb{N} : \exists n_0 \in S : \forall n \in S : n_0 \leq n+1$$

TODO: Proof of WOP based on these Peano postulates

1.4 DEFINITION. For some $S \subseteq \mathbb{N}$, if

- 1. 1 ∈ *S*
- 2. Whenever $\{1, 2, ..., n\} \subset S$, then $n + 1 \in S$

then $S = \mathbb{N}$. This is called **strong induction**.

REAL NUMBERS

2.1 Ordered Fields

Nicholas Bourbaki: school of thought putting forth that there are three main types of structures in mathematics:

- Algebraic structures $\xrightarrow{\text{binary operations}}$ Algebra
- Order structures $\xrightarrow{\text{inequalities}}$ Analysis
- Topological structures $\xrightarrow{\text{continuums, stretches}}$ Geometry/Topology

Goal: identify the "optimal" sets of axioms (related to the above three structures) which will uniquely determine the set of real numbers.

TODO: Incorporate notes from when I left early (on groups and fields)

Lecture 1

Lecture 3 September 3rd, 2015

September 8th, 2015

2.1 DEFINITION. An **ordered field** is a tuple $(F, +, \cdot, \leq)$ with axioms:

- (F, +) is an abelian group.
- $(F \setminus \{0\})$ is an abelian group.
- \bullet · distributes over +.
- ≤ is a total ordering on *F* (i.e. it is reflexive, antisymmetric, transitive, and total).
- $\forall a, b, c \in F : a \le b \implies a + c \le b + c$.
- $\forall a, b, c \in F : a \le b \land 0 \le c \implies a \cdot c \le b \cdot c$

2.2 FACT. C cannot be an ordered field for any ordering \leq .

The following are true in any ordered field:

- 1) $\forall a, b \in F : a \leq b \implies -b \leq -a$.
- 2) $\forall a, b \in F : a \leq b \land c \leq 0 \implies b \cdot c \leq a \cdot c$.
- 2.3 DEFINITION. Let *F* be a field. For all $a \in F$, define

$$|a| := \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

This is called the **absolute value** of *a*.

Properties of the absolute value:

- (i) $\forall a \in F, |a| \ge 0$, and |a| > 0 if and only if $a \ne 0$.
- (ii) $\forall a, b \in F, |a \cdot b| = |a| \cdot |b|$.
- (iii) $\forall a, c \in F$ with $c \ge 0$, $|a| \le c \iff -c \le a \le c$.
- (iv) $\forall a, b \in F, |a+b| \leq |a| + |b|$. This is the **triangle inequality**.

A useful consequence of the triangle inequality:

$$||a| - |b|| \le |a - b|$$

2.4 DEFINITION. We say a is a **maximum** for $A \subset F$ if and only if $a \in A$ and $\forall x \in A, x \leq a$. A **minimum** is defined similarly.

2.5 DEFINITION. $a \in F$ is an **upper bound** for the set $A \subset F$ if and only if $\forall x \in A, x \leq a$. If such a bound exists, we say A is **bounded above**. Definitions for **lower bound** and **bounded below** are similar.

2.6 definition. $s \in F$ is a **supremum** (least upper bound) for the set A if and only if

- (i) *s* is an upper bound for *A*.
- (ii) For all upper bounds a for A, we have $s \le a$.

We then say $s = \sup F$.

An **infimum** of F is defined identically as the greatest lower bound. If i is an infimum of F we say $i = \inf F$.

2.2 Properties of the Real Numbers

2.7 DEFINITION (Completeness Axiom). Any nonempty subset $A \subseteq \mathbb{R}$ which is bounded above admits a supremum in \mathbb{R} .

 \mathbb{R} is identified as the only possible "complete" ordered field. Any other ordered field that satisfies the completeness axiom is isomorphic to \mathbb{R} .

2.8 Proposition. Consider the open interval S = (-3,2] in \mathbb{R} . No minimum exists in S.

Proof. Assume
$$a = \min S$$
. Then $-3 < a \le 2 \implies 0 < a + 3$. $1 < 1 + 1 = 2 \implies 1^{-1} > 2^{-1} \implies \frac{1}{2} < 1 \implies \frac{a+3}{2} < a + 3$. Let $b = a - \frac{a+3}{2} = \frac{a-3}{2}$. Then $-3 < b < a$.

TODO: Why does that last sentence hold?

2.9 Example. Let $A = \{\frac{1}{n} : n \in \mathbb{N}\} \subseteq \mathbb{R}$. max A = 1 and min A does not exist. The set of upper bounds $U = [1, +\infty)$. The set of lower bounds $L = (-\infty, 0]$. The last of these needs justification, which we'll see later.

2.10 DEFINITION. If A admits no upper bound, we say A is **unbounded above** and if A admits no lower bound, we say A is **unbounded below**.

2.11 NOTATION. If $A \neq \emptyset$ and A is unbounded above, we write that $\sup A = +\infty$. This does not mean that $+\infty$ is a number nor that $\sup A$ exists. If $A \neq \emptyset$ is unbounded below, we write $\inf A = -\infty$. We also write that $\sup \emptyset = -\infty$ and $\inf \emptyset = +\infty$.

2.12 тнеогем (Archimedean Principle). $\mathbb N$ is unbounded above in $\mathbb R$.

2.13 THEOREM. If sup A exists, it is unique. Same for inf A.

Lecture 5 September 10th, 2015 *Proof.* Assume $s_1 = \sup A$ and $s_2 = \sup A$. Fix some $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$. Then $s_2 - \varepsilon < s_2 \implies s_2 - \varepsilon$ is not an upper bound so there exists some element $x \in A$ such that $x > s_2 - \varepsilon \implies s_2 < x + \varepsilon \le s_1 + \varepsilon$ because s_1 is an upper bound. Since $\forall \varepsilon > 0$, $s_2 < s_1 + \varepsilon$, $\forall \varepsilon > 0$, $s_2 - s_1 < \varepsilon \implies s_2 - s_1 \le 0$. This argument is symmetric w.r.t. s_1 and s_2 , so we also have that $s_1 - s_2 \le 0 \implies s_2 = s_1$. Thus $\sup A$ is unique. The same argument can be applied for $\inf A$.

TODO: Get that guy's name Here is an alternate, cleaner proof of the uniqueness of sup *A*, courtesy of []:

2.14 THEOREM (Existence of $\sqrt{2}$). There exists $s_0 \in \mathbb{R}$, $s_0 > 0$ such that $s_0^2 = 2$.

Proof. Let $A = \{x \in \mathbb{R} : x > 0, x^2 < 2\}$. The A is bounded above because 2 is an upper bound for A. (If $x \in A$ and x > 2, then $x^2 > 2 \cdot 2 = 2 + 2 > 2$. This is a contradiction because $x \in A$ implies $x^2 < 2$.) By the completeness axiom, this means that $\sup A$ must exist. Let $s_0 = \sup A$.

Since s_0 is an upper bound, $\forall x \in A, s_0 \ge x > 0 \implies \forall x \in A, s_0^2 \ge x^2$. Suppose $s_0^2 < 2$. Let $x = (s_0 + \varepsilon)$ for some $\varepsilon > 0$. Then $x^2 = s_0^2 + 2\varepsilon s_0 + \varepsilon^2 = s_0^2 + (2s_0 + \varepsilon)\varepsilon$. Choose $\varepsilon < \min\{1, \frac{2-s_0^2}{2s_0+1}\}$. Then $s_0^2 + (2s_0^2 + \varepsilon)\varepsilon < s_0^2 + (2s_0 + 1)\varepsilon \le s_0^2 + (2s_0 + 1)\frac{2-s_0^2}{2s_0+1} = 2 \implies x^2 < 2 \implies x \in A$. But $x = s_0 + \varepsilon > s_0$, which is an upper bound for A. Contradiction. So $s_0^2 \not< 2 \implies s_0^2 \ge 2$.

Since s_0 is the smallest upper bound for A, $\forall \varepsilon > 0$, $s_0 - \varepsilon$ is not an upper bound and there exists some $x \in A$ such that $x > s_0 - \varepsilon$. $0 < s_0 < x + \varepsilon \implies s_0^2 < (x + \varepsilon)^2 = x^2 + 2\varepsilon x + \varepsilon^2 = x^2 + \varepsilon(2x + \varepsilon) < 2 + \varepsilon(4 + \varepsilon)$. So for all $0 < \varepsilon < 1$, $s_0^2 < 2 + 5\varepsilon$. Therefore $s_0^2 \le 2 + 0 = 2$.