Лабораторная работа № 8 по курсу дискретного анализа: жадные алгоритмы

Выполнил студент группы М8О-208Б-18 МАИ Коростелев Дмитрий Васильевич.

Задание

Вариант №3

Разработать жадный алгоритм решения задачи, определяемой своим вариантом. Доказать его корректность, оценить скорость и объём затрачиваемой оперативной памяти.

Реализовать программу на языке C или C++, соответсвующую построенному алгоритму. Формат входных и выходных данных описан в варианте задания.

Заданы длины N отрезков, необходимо выбрать три таких отрезка, которые образовывали бы треугольник с максимальной площадью.

Формат входных данных

На первой строке находится число N, за которым следует N строк с целыми числамидлинами отрезков.

Формат резултата

Если никакого треугольника из заданных отрезков составить нельзя — 0, в противном случае на первой строке площадь треугольника с тремя знаками после запятой, на второй строке — длины трёх отрезков, составляющих этот треугольник. Длины должны быть отсортированы.

Метод решения

Рассмотрим поставленную задачу — требуется найти стороны треугольника из предложенных такие, что будут образовывать наибольшую площадь. Наивный алгоритм состоит в полном переборе всех сторон и выявления среди них треугольника с набольшей площадью. Сложность такого алгоритма $O(n^3)$ так, как кол-во ребер n на первом ребре можно взять из них n, вторыми n-1 и третьими n-2.

Удобно будет реализовать жадный алгоритм, так как исходя из задачи очевидно, что наибольшую площадь образуют стороны с наибольшим периметром. Для этого сортировкой подсчетом отсортируем ребра и применим вышеизложенный алгоритм (останавливаемся тогда, когда первый раз можем получить треугольник), однако, исходя из теоремы, что наибольшую площадь образуют стороны равные друг другу, возможен такой исход, что ребра с наибольшим периметром не образуют треугольник с наибольшей площадью, а есть такой набор ребер, чей периметр будет равен, найденному набору ребер при прямом обходе. Для этого, после того, как найдем несколько ребер с наибольшим периметром в отсортированном массиве найдем периметры троек ребер и сравним

их с полученным результатом, найдем максимум из этого множества (результат при наивном обходе + результаты подсчета троек ребер) и получим ответ.

Асимптотика решения

Асимптотика данного решения в худшем случае $O(n^3)$, однако зачастую при большом наборе различных ребер скорость выполнения данного алгоритма будет стремится к O(n), так как после сортировки среди первых троек будет находится нужная комбинация ребер. Объем затраченной памяти - O(n) - храним все ребра.

Nº	Объем теста	Время, мс
1	10	< 0.1
2	1000	2
3	2000	250
4	2500	2
5	5000	4
6	7000	10
7	10000	8

Отладка и проверка программы.

$\mathcal{N}_{ar{0}}$	Название ошибки	Причина возникновения ошибки
1-4	Неправильный ответ	Неправильный вывод
5-11	Неправильный ответ	Не учел теорему о наибольшей площади

Недочеты

В худшем случае время выполнения алгоритма равно ${\rm O}(n^3)$

Вывод

Жадные алгоритмы в некоторых случаях позволяют оптимизировать наивное решение, но только в тех задачах, где важна максимальная выгода в текущий момент времени, если использовать жадные алгоритмы для решения задач, где результат зависит от правильного выбора или решения на всех шагах, то жадные алгоритмы не подойдут для решения.