1 Базовые основы высшей математики

1.1 Основные операции с выражениями

– От перестановки слагаемых – сумма не меняется: 5 + 8 = 8 + 5.

А вот это совершенно разные вещи:

$$4-x$$
 $x-4$

Переставлять «икс» и «четверку» просто так нельзя.

– От перестановки множителей – произведение не меняется: 5.8 = 8.5.

С делением такой фокус не пройдет, $\frac{1}{7}$ и $\frac{1}{3}$ – это две совершенно разные дроби и перестановка числителя со знаменателем без последствий не обходится.

– Вспоминаем правила раскрытия скобок:

$$+(-a+b+c-d) = -a+b+c-d$$
 — здесь знаки у слагаемых не меняются $-(-a+b+c-d) = a-b-c+d$ — а здесь меняются на противоположные.

И для умножения:

$$a(b-c) = ab - ac$$
$$-a(b-c) = -ab + ac$$

Вспоминаем формулы разложения:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a-b)(a+b) = a^{2} - b^{2}$$

$$(a+b)^{3} = (a+b)^{2}(a+b) = (a^{2} + 2ab + b^{2})(a+b) = a^{3} + 2a^{2}b + ab^{2} + a^{2}b + 2ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3} \Rightarrow (a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

- **Вспоминаем приведение подобных слагаемых**, Вы должны хорошо понимать следующее действие:

$$5ax + 4xy^3 - 17x^2z - 3xy^3 - 9ax + 20x^2z + x^2 = -4ax + xy^3 + 3x^2z + x^2$$

- Вспоминаем что такое степень:

$$2^4 = \underbrace{2 \cdot 2 \cdot 2 \cdot 2}_{\text{4 pasa}}, \quad 4^2 = \underbrace{4 \cdot 4}_{\text{2 pasa}}, \quad 10^{12} = \underbrace{10 \cdot 10 \cdot \dots \cdot 10}_{\text{12 pas}}, \quad \mathcal{Y}^{\text{N}} = \underbrace{\mathcal{Y} \cdot \mathcal{Y} \cdot \dots \cdot \mathcal{Y}}_{\text{N pas}}.$$

Степень – это всего лишь обычное умножение.

- Вспоминаем, что дроби можно сокращать:

$$\frac{9}{27} = \frac{\cancel{3} \times \cancel{3}}{\cancel{3} \times \cancel{3} \times 3} = \frac{1 \times 1}{1 \times 1 \times 3} = \frac{1}{3}$$

$$\frac{2}{4} = \frac{1}{2}$$
 (сократили на 2),
$$\frac{35}{40} = \frac{7}{8}$$
 (сократили на пять),
$$\frac{x^3}{x^7} = \frac{1}{x^4}$$
 (сократили на x^3).

- Вспоминаем действия с дробями:

а также, очень важное правило приведения дробей к общему знаменателю:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

- Правило пропорции:

$$\frac{a}{b} = \frac{c}{d}$$
 (считаем, что a, b, c, d отличны от нуля)

То, что находится внизу одной части – можно переместить наверх другой части. То, что находится вверху одной части – можно переместить вниз другой части.

$$ad = bc$$
, $\frac{d}{b} = \frac{c}{a}$, $a = \frac{bc}{d}$, $b = \frac{ad}{c}$, $c = \frac{ad}{b}$, $d = \frac{bc}{a}$

СОВЕТ: все ПРОМЕЖУТОЧНЫЕ вычисления в высшей математике лучше проводить в ОБЫКНОВЕННЫХ ПРАВИЛЬНЫХ И НЕПРАВИЛЬНЫХ ДРОБЯХ, даже

если будут получаться страшные дроби вроде 547 . Вот эту вот дробь НЕ НАДО

представлять в виде
$$4\frac{183}{547}$$
, и, тем более, НЕ НАДО делить на калькуляторе числитель на знаменатель, получая $4,334552102...$

ИСКЛЮЧЕНИЕМ из правила является конечный ответ задания, вот тогда как раз

лучше записать
$$4\frac{183}{547}$$
 или $\approx 4,33$.

1.2 Функция от одной переменной

Пусть x — числовая переменная величина, X — область ее изменения. Если каждому числу x, принадлежащему X, поставлено в соответствие некоторое число y, то говорят, что на множестве X определена функция, и записывают

$$y = f(x)$$
.

Совокупность Y всех частных значений функции называется множеством значений f(x). Другими словами, множество значений — это промежуток по оси ∂Y , где определена функция.

Совокупность всех x называется областью определения f(x).

- ▶ Функция зависимость одной переменной от другой, причем для любых значений х соответствует единственное значение функции
- Х независимая (аргумент)
- У зависимая (значение функции)
- D(y) область определения функции
- Е(у) область значения функции

Представление о функции, её свойствах и поведении можно получить, построив ее график. Графиком называется геометрическое место точек (x; y) плоскости таких, что y = f(x). Функцию называют непрерывной, если, говоря нестрого, малые изменения её аргумента приводят к малым изменениям её значения. Если это условие нарушается, функция терпит разрыв.

Простыми словами:

Непрерывность — это возможность нарисовать график функции одним росчерком (не отрывая ручку от листа).

Рис. 1 – График непрерывной функции

Рис. 2 – Функция с разрывами в точках а и в

Это довольно интересное свойство, которое есть не у всех функций и не во всех точках оно может быть. И разрывы бывают самые разные.

Например, просто может быть так, что одна точка немножко выбивается из наших ожиданий, и если бы мы могли функцию в этой точке поменять и переставить ее в то место, где мы хотели бы, наверное, ее видеть, то функция снова станет непрерывной.

Бывают разрывы, похожие на внезапные скачки значения функции.

Рис.4

А бывают разрывы, связанные с тем, что у функции есть асимптота. Асимптота — это прямая, к которой функция может приближаться очень близко, но при этом ее не будет пересекать.

Рис.5

Например, такая прямая будет для функции y = 1 / (x - 1).

У графика функции могут быть не только разрывы, но и какие-то углы. Гладкость функции — это отсутствие углов.

Рис.6

В реальной жизни у нас редко встречается ситуация, когда функция гладкая во всех точках.

Давайте рассмотрим какую-нибудь функцию. Например

$$f(x) = (1 + x)^{1/x}$$

При x = 0 функция не определена. Но можно посмотреть, как она себя ведет при приближении x к 0. Возьмем небольшое значение x, например, 0.1, подставим в функцию, вычислим значение функции.

Затем возьмем x еще поближе к 0 (например, x=0,01), снова вычислим значение функции. Затем еще ближе, и еще. Мы видим, что значение функции приближается к некоторой величине.

х левее нуля	$f(x) = (1+x)^{1/x}$	х правее нуля	$f(x) = (1+x)^{1/x}$
-0,1	2,867971991	0,1	2,59374246
-0,01	2,731999026	0,01	2,704813829
-0,001	2,719642216	0,001	2,716923932
-0,0001	2,718417755	0,0001	2,718145927
-0,00001	2,71829542	0,00001	2,718268237

Именно эта величина и будет пределом этой функции при х стремящемся к 0.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = 2.7182...$$

Рассмотрим другой пример:

$$f(x) = 1 / x$$
.

Опять же возьмем небольшое значение х. Например, 0.1. Затем еще меньше. Еще меньше. И еще.

х левее нуля	f(x)=1/x	х правее нуля	f(x)=1/x
-0,1	-10	0,1	10
-0,01	-100	0,01	100
-0,001	-1000	0,001	1000
-0,0001	-10000	0,0001	10000
-0,00001	-100000	0,00001	100000

Видим, что в этом случае функция просто неограниченно растет при приближении к 0. Это означает, что предел f(x) = 1/x при x стремящемся к 0 равен бесконечности.

$$\lim_{x \to 0} \frac{1}{x} = \infty$$

(более детально про пределы можно посмотреть http://mathprofi.ru/predely_primery_reshenii.html)

Понятие предела оказывается неразрывно связанным с понятием непрерывности функции.

 $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a).$

Рис.8

С помощью понятия предела определяется другое полезное понятие — понятие производной (скорость роста функции).

Рис.9

Следом за производной при исследовании функций вводится понятие экстремума и выпуклости функции (глобальные/локальные минимумы и максимумы).

Достаточное условие экстремума Пусть выполнено необходимое условие экстремума, то есть в некоторой точке x_0 значение $f'(x_0) = 0$. Если в таком случае

- 1. f''(x) > 0 функция будет строго выпукла и реализуется строгий минимум.
- 2. f''(x) < 0 функция будет строго вогнута и реализуется строгий максимум.

Таким образом, если функция является строго выпуклой или строго вогнутой, необходимое условие экстремума будет для нее также и достаточным.

 \bigwedge^y

y ______

Рис. 11: Выпуклая функция

Рис. 12: Вогнутая функция

- 1. $f'(x) \ge 0$ функция возрастает,
- 2. f'(x) > 0 функция строго возрастает,
- 3. $f'(x) \leq 0$ функция убывает,
- 4. f'(x) < 0 функция строго убывает.

1.3 Приращение функции, относительное приращение, производная

Рассмотрим функцию y = 2x + 3. Если x = 1, то y = 5. Увеличим аргумент x на пять единиц (это увеличение называется приращением аргумента и обозначается Δx).

Новое значение аргумента будет равно x = 6, а новое значение функции будет равно y = 15. Видно, что с увеличением x на $\Delta x = 5$ функция также выросла на величину $\Delta y = 10$. Задача 2. Найти приращение функции y = 5x + 1, если x = 3, а $\Delta x = 2$. (Ответ: $\Delta y = 10$).

Итак, приращения Δy у двух рассмотренных функций одинаковые. Означает ли это, что обе эти функции растут одинаково быстро? Нет, так как для получения одинакового увеличения y в первом случае мы должны увеличить аргумент x на 5 единиц, а во втором — только на 2. Поэтому важен не абсолютный рост функции, а ее относительный рост.

Показатель относительного роста (скорость роста) характеризуется величиной

$$k = \frac{\Delta y}{\Delta x}$$
.

Для первой функции $\kappa = 2$, для второй $\kappa = 5$. Это означает, что вторая функция растет быстрее.

Две рассмотренные функции принадлежат к классу линейных функций, общий вид которых задается уже известной нам формулой $y = \kappa x + b$. Графиком линейной функции является прямая.

Рассмотрим геометрический смысл уже введенных понятий «приращение аргумента», «приращение функции» и «показатель относительного роста».

На рис. изображены график линейной функции y = kx + b и две точки на нем – A(x, y) и $B(x + \Delta x, y + \Delta y)$.

Из треугольника АВС видно, что показатель относительного роста равен

$$\frac{\Delta y}{\Delta x} = \text{tg}\alpha.$$

Можно убедиться, что для линейной функции показатель относительного роста (скорость роста) равен коэффициенту при x в уравнении прямой $y = \kappa x + b$, т. е. $k = \frac{\Delta y}{\Delta x} = \text{tg}\alpha$.

$$k = \frac{\Delta y}{\Delta x} = \text{tg}\alpha.$$

Это означает, что скорость роста связана с наклоном прямой. Чем больше угол наклона прямой, тем больше показатель относительного роста κ , тем больше скорость роста. Так как для линейной функции скорость роста к связана с углом, величину к называют еще угловым коэффициентом. Знак углового коэффициента указывает на характер изменения функции (плюс – функция возрастает, минус – функция убывает).

Рассмотрим пример

Рассмотрим функцию, не являющуюся линейной. Графиком такой функции будет кривая линия

Видно, что для таких функций показатель относительного роста Δx (скорость роста) будет меняться от точки к точке. В случае, изображенном на рис. 8, видно, что угол наклона уменьшается, и поэтому уменьшается скорость роста.

С целью нахождения показателя относительного роста (скорости роста) данной функции в данной точке M проведем в этой точке касательную к графику функции (рис. 9).

Можно считать, что вблизи точки M кривая и касательная совпадают, т. е. вблизи этой точки графиком функции является прямая линия, а сама функция вблизи данной точки является линейной.

Уже было установлено, что для линейной функции показатель относительного роста функции равен $k=\operatorname{tg}\alpha$. Это и есть скорость роста данной функции в данной точке. Но величина k меняется от точки к точке, так как меняется угол наклона. Следовательно, можно сказать, что показатель относительного роста k (скорость роста) является функцией от x. Эта функция называется npoussodhoй от данной функции y=f(x) и обозначается как y=f'(x).

Итак, производная от данной функции в данной точке — это тангенс угла наклона касательной к оси X, т. е. $\mathbf{f}(x) = \mathrm{tg}\alpha$.

И одновременно производная – это показатель относительного роста (скорость

$$f'(x) = \frac{\Delta y}{\Delta x}$$

роста) функции в данной точке, т. е. Δx где Δx и Δy следует принимать очень малыми для того, чтобы находиться вблизи данной точки.

Как найти производную?

Обычно при нахождении производных сначала используются правиладифференцирования, а затем— таблица производных элементарных функций.

Правила дифференцирования:

- 1) (Cu)' = Cu', где C постоянное число;
- константу можно вынести за знак производной.
- 2) $(u \pm v)' = u' \pm v'$ правило дифференцирования суммы
- 3) (uv)' = u'v + uv' правило дифференцирования произведения
- 4) $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$ правило дифференцирования частного
- 5) $(u(v))' = u'(v) \cdot v'$ дифференцирование сложной функции

Производные элементарных функций:

(C)' = 0, где C – постоянное число;

$$(x^n)' = nx^{n-1}$$
, в частности: $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$, $(x)' = 1$, $\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$

Следует обратить внимание, что производная степенной функции — это самая «ходовая» вещь на практике. Любой радикал (корень), например $\sqrt[3]{x^5}$, $\frac{1}{\sqrt[7]{x^2}}$, $\frac{1}{x^5}$, $\sqrt{(4x-7)^3}$, нужно

представить в виде $x^{\frac{a}{b}}$ для применения формулы $(x^n)' = nx^{n-1}$

Для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию.

Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначают
$$\frac{dy}{dx}$$
 или $\frac{dy}{dx}$

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – **ГРУБАЯ ОШИБКА!** Функция и её производная – это две разные функции!

Из большой таблицы производных желательно **запомнить наизусть**: правила дифференцирования и производные некоторых элементарных функций, особенно:

- производную константы:

$$(C)' = 0$$
 , где C – постоянное число;

-производную степенной функции:

$$(x^n)' = nx^{n-1}$$
, в частности: $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$, $(x)' = 1$, $(\frac{1}{x})' = -\frac{1}{x^2}$.

Пример 1

Вычислить производную функции $f(x) = x^3 + 3x^2 - 72x + 90$ в точке x = 5

Сначала находим производную:

$$f'(x) = (x^3 + 3x^2 - 72x + 90)' = 3x^2 + 6x - 72$$

На втором шаге вычислим значение производной в точке x = 5:

$$f'(5) = 3 \cdot 5^2 + 6 \cdot 5 - 72 = 75 + 30 - 72 = 33$$

Частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий.

В чём смысл частных производных?

По своей сути частные производные 1-го порядка напоминают <u>«обычную»</u> производную:

 z_x', z_y' — это функции, которые характеризуют *скорость изменения* функции z = f(x;y) в направлении осей OX и OY соответственно.

Так, например, функция $z_x' = 4xy^3 + 12x^3$ характеризует крутизну «подъёмов» и «склонов» поверхности $z = 2x^2y^3 + 3x^4 + 5y - 7$ в направлении оси абсцисс, а функция $z_y' = 6x^2y^2 + 5$ сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

Элементарные прикладные правила:

- 1) Когда мы дифференцируем по x , то переменная $^{\mathcal{Y}}$ считается константой.
- 2) Когда же дифференцирование осуществляется по $^{\mathcal{Y}}$, то константой считается x .
- 3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (x , y либо какой-нибудь другой), по которой ведется дифференцирование.

Пример 1

Найти частные производные первого и второго порядка функции $z = 2x^2y^3 + 3x^4 + 5y - 7$

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

$$z_x'$$
 или $\dfrac{\partial z}{\partial x}$ — частная производная по «икс» z_y' или $\dfrac{\partial z}{\partial y}$ — частная производная по «игрек»

Начнем с $^{Z_{\chi}^{r}}$. Когда мы находим частную производную по «икс», то переменная $^{\mathcal{Y}}$ считается константой (постоянным числом).

Решаем:

$$z_{x}^{(1)} = (2x^{2}y^{3} + 3x^{4} + 5y - 7)_{x}^{(2)} = 2y^{3}(x^{2})_{x}^{\prime} + 3(x^{4})_{x}^{\prime} + (5y)_{x}^{\prime} - (7)_{x}^{\prime} =$$

$$= 2y^{3} \cdot 2x + 3 \cdot 4x^{3} + 0 - 0 = 4xy^{3} + 12x^{3}$$

1.4 Уравнения

Уравнение имеет приравненную левую и правую часть.

$$x^2 - 7ax + 14b + 18 = y^2 - 3x + 5$$

Можно перенести любое слагаемое в другую часть, сменив у него знак: Перенесем, например, все слагаемые в левую часть:

$$x^2 - 7ax + 14b + 18 - v^2 + 3x - 5 = 0$$

Или в правую:

$$0 = y^2 - 3x + 5 - x^2 + 7ax - 14b - 18$$

Обратите внимание, что части уравнения можно безболезненно поменять местами: $y^2 - 3x + 5 - x^2 + 7ax - 14b - 18 = 0$, равно, как и произвольно переставить слагаемые в пределах ОДНОЙ части.

Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения не выше четвёртой степени: <u>линейное, квадратное, кубическое уравнения и уравнение четвёртой степени.</u> Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

- Линейное уравнение
 - ullet от одной переменной: $ax+b=0,\quad a
 eq 0.$
 - от нескольких переменных: $a_1x_1 + a_2x_2 + \cdots + a_nx_n + b = 0$.
- Квадратное уравнение
 - ullet от одной переменной: $ax^2 + bx + c = 0, \quad a
 eq 0.$
- Кубическое уравнение
 - ullet от одной переменной: $ax^3+bx^2+cx+d=0,\quad a
 eq 0.$
- Уравнение четвёртой степени
 - ullet от одной переменной: $ax^4 + bx^3 + cx^2 + dx + e = 0$, a
 eq 0.

Решение уравнения — задача по нахождению таких значений аргументов x, при которых это равенство достигается.

В уравнении функции y=kx+b коэффициент k отвечает за наклон графика функции:

- если $^{k>0}$, то график наклонен вправо
- если k < 0 , то график наклонен влево

Коэффициент b отвечает за сдвиг графика вдоль оси OY :

- если b>0 , то график функции y=kx+b получается из графика функции y=kx сдвигом на b единиц вверх вдоль оси OY
- если b<0 , то график функции y=kx+b получается из графика функции y=kx сдвигом на b единиц вниз вдоль оси OY

На рисунке ниже изображены графики функций

$$y = 2x + 3$$

$$y = \frac{1}{2}x + 3$$
$$y = x + 3$$

Если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции $y\!=\!kx\!+\!b$.

Если **k<0 и b>0,** то график функции y = kx + b имеет вид:

Если **k>0 и b>0,** то график функции y = kx + b имеет вид:

Если **k<0 и b<0,** то график функции y = kx + b имеет вид:

Если **k=0** , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

Если $\mathbf{b=0}$, то график функции y=kx проходит через начало координат:

Через одну точку можно провести сколько угодно прямых с разным наклоном. Этот наклон зависит от значения и знака параметра k .

Рассмотрим пример, изображенный на графике ниже. Заметьте, что на графике ниже во всех функциях коэффициент k меньше нуля, и все графики функций наклонены влево.

Заметим, что чем больше |k|, тем круче идет прямая.

Таким образом коэффициент при x отвечает за наклон прямой и называется коэффициентом наклона. Кроме того — он равен тангенсу угла между прямой и положительным направлением оси OX .

Внимание! Не просто между прямой и осью OX , а именно между прямой и положительным направлением оси OX .

Например, в прямой y=3x-1 коэффициент наклона равен 3 , а прямой y=2-5x коэффициент наклона равен $^{-5}$.

В уравнении прямой y=-1 слагаемое, содержащее x отсутствует, следовательно, коэффициент при x равен нулю. Угол наклона этой прямой к оси X равен нулю - прямая X параллельна оси X

Если прямая наклонена вправо, то угол между прямой и положительным направлением оси OX_- острый, соответственно, тангенс этого угла больше нуля, и коэффициент k>0.

Например: $3{\rm десь}\;k{=}tg\;\alpha{=}2{>}0$ Если прямая наклонена влево, то угол между прямой и

положительным направлением оси OX - тупой, соответственно, тангенс этого угла меньше нуля, и коэффициент $k{<}0$:

$$_{3$$
десь $k=tg} \alpha = -3 < 0$.

1.5 Квадратичная функция и ее график

Функция вида

$$y=ax^2+bx+c$$
,

где $a \neq 0$ называется квадратичной функцией.

В уравнении квадратичной функции:

- а старший коэффициент
- **b** второй коэффициент
- с свободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции $y=x^2$ имеет вид:

Чтобы найти координаты этих точек для функции $y=x^2$ можно составить таблицу, отметить найденные точки на графике и соединить их гладкой кривой:

X	-2	-1	0	1	2	
у	4	1	0	1	4	

Если поменять знак коэффициента a график функции $y=-x^2$ зеркально отразится относительно оси Ox.

Если старший коэффициент a>0, то ветви параболы направлены вверх. Если старший коэффициент a<0, то ветви параболы направлены вниз.

Второй параметр для построения графика функции - значения x, в которых функция равна нулю, или **нули функции**. На графике нули функции f(x) - это точки пересечения графика функции y = f(x) с осью OX.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, **чтобы найти коо**рдинаты точек пересечения графика функции $y=f\left(x\right)$ с осью ОХ, нужно решить уравнение $f\left(x\right)=0$.

В случае квадратичной функции $y=ax^2+bx+c$, нужно решить квадратное уравнение

$$ax^{2}+bx+c=0$$

В процессе решения квадратного уравнения мы находим дискриминант: $D=b^2-4ac$, который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если D<0, то уравнение $ax^2+bx+c=0$ не имеет решений, и, следовательно, квадратичная парабола $y=ax^2+bx+c$ не имеет точек пересечения с осью ОХ. Если а>0 ,то график функции выглядит как-то так:

2. Если D=0, то уравнение $ax^2+bx+c=0$ имеет одно решение, и, следовательно, квадратичная парабола $y=ax^2+bx+c$ имеет одну точку пересечения с осью Ox. Если a>0, то график функции выглядит примерно так:

3. Если D>0, то уравнение $ax^2+bx+c=0$ имеет два решения, и, следовательно, квадратичная парабола $y=ax^2+bx+c$ имеет две точки пересечения с осью ОХ:

$$x_1 = \frac{-b + \sqrt{D}}{2a}$$
, $x_2 = \frac{-b - \sqrt{D}}{2a}$

Если а>0, то график функции выглядит примерно так:

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Следующий важный параметр графика квадратичной функции - **координаты** вершины параболы:

$$x_0 = -\frac{b}{2a}$$

$$y_0 = -\frac{D}{4a} = y\left(x_0\right)$$

Прямая, проходящая через вершину параболы параллельно оси ОУ является осью симметрии параболы.

 $\dot{\text{И}}$ еще один параметр, полезный при построении графика функции - точка пересечения параболы $y=ax^2+bx+c$ с осью OY.

Поскольку абсцисса любой точки, лежащей на оси ОУ равна нулю, чтобы найти точку пересечения параболы $y=ax^2+bx+c$ с осью ОУ, нужно в уравнение параболы вместо х подставить ноль: y(0)=c.

То есть точка пересечения параболы с осью ОУ имеет координаты (0;с).

Итак, основные параметры графика квадратичной функции показаны на рисунке:

При нахождении точек пересечения графика с осью Оу нам пришлось **решать уравнение** – найти нули функции.

Нули функции - это те значения аргумента х, при которых значение функции (у) равно нулю.

Чтобы найти нули функции y=f(x), нужно решить уравнение f(x)=0. Корни этого уравнения и будут нулями функции y=f(x).

Чтобы найти нули функции y=f(x) по ее графику, нужно найти точки пересечения графика с осью ОХ. Абсциссы точек пересечения и будут нулями функции y=f(x).

1.6 Многочлены

Объектом нашего интереса будут наиболее распространённые многочлены вида

$$a_0 x^{n} + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-2} x^2 + a_{n-1} x + a_n$$

с целыми коэффициентами $a_0, a_1, a_2, ..., a_{n-2}, a_{n-1}, a_n$. Натуральное число a_0 называют *степенью многочлена*, число a_0 – коэффициентом при старшей степени *(или просто старшим коэффициентом)*, а коэффициент a_n – *свободным членом*.

Данный многочлен я буду свёрнуто обозначать через $P_{\pi}(x)$.

Корнями многочлена $P_{n}(x)$ называют корни уравнения $a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\ldots+a_{n-2}x^2+a_{n-1}x+a_n=0$

С нахождением корней многочленов 1-й и 2-й степеней нет никаких проблем, но по мере увеличения n эта задача становится всё труднее и труднее.

1.7 Решение системы линейных уравнений

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных.

Пример 1

Решить систему линейных уравнений:

$$\begin{cases} x - y + 5 = 0 \\ 2x + y + 7 = 0 \end{cases}$$

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство.

Решаем: из первого уравнения выразим: x = y - 5

Полученное выражение x = y - 5 подставляем во второе уравнение: 2(y - 5) + y + 7 = 0

Раскрываем скобки, приводим подобные слагаемые и находим значение ${}^{\mathcal{Y}}$:

$$2y - 10 + y + 7 = 0$$

$$3y - 3 = 0$$

$$3y = 3$$

$$y = 1$$

Далее опять подставляем в первое уравнение: x = y - 5

Значение y нам уже известно, осталось найти: x = 1 - 5 = -4

Ответ:
$$x = -4$$
, $y = 1$

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендуется выполнить проверку

1) Подставляем найденный ответ x = -4, y = 1 в первое уравнение x - y + 5 = 0:

-4-1+5=0

0 = 0 – получено верное равенство.

2) Подставляем найденный ответ x = -4, y = 1 во второе уравнение 2x + y + 7:

 $2 \cdot (-4) + 1 + 7 = 0$

-8 + 8 = 0

0 = 0 — получено верное равенство.

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить $^{\mathcal{Y}}$, а не $^{\mathcal{X}}$.

Можно наоборот — что-нибудь выразить из второго уравнения 2x + y = -7 и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов — выразить x из второго уравнения:

$$2x = -y - 7$$

$$x = -\frac{1}{2}y - \frac{7}{2}$$

Решение системы уравнения можно запросто найти по графику.

$$\begin{cases} 5x - 7y = -11, \\ 2x + 3y = 10. \end{cases}$$

Решение. Графики этих уравнений – прямые линии

Решение системы уравнений – это точки пересечения линий – заданных каждый уравнением.

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления.

Пример 4

Решить систему линейных уравнений:

$$\begin{cases} x - y + 5 = 0 \\ 2x + y + 7 = 0 \end{cases}$$

Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (-1 и 1). В такой ситуации уравнения можно сложить почленно:

$$\begin{array}{c|c}
x & y + 5 = 0 \\
+ & + & + \\
2x + y + 7 = 0
\end{array}$$

$$3x + 12 = 0$$

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.

Как видите, в результате почленного сложения у нас пропала переменная $^{\mathcal{Y}}$. В этом, собственно, и состоит **суть метода** — **избавиться от одной из переменных**.

Теперь всё просто: $3x + 12 = 0 \Rightarrow x = -4$ — подставляем в первое уравнение системы (можно и во второе, но это не так выгодно — там числа больше):

$$-4-y+5=0 \Rightarrow y=1$$

В чистовом оформлении решение должно выглядеть примерно так:

$$\begin{cases} x - y + 5 = 0 \\ 2x + y + 7 = 0 \end{cases} + \Rightarrow 3x + 12 = 0 \Rightarrow x = -4$$
$$-4 - y + 5 = 0 \Rightarrow y = 1$$
OTBET: $x = -4, y = 1$

1.8 Неравенства

Рассмотрим пример нахождения области определения функции

$$f(x) = \sqrt{1 - x^2}$$

Решение:

Функция будет иметь решение только тогда, когда выражение под корнем будет больше или равно нулю.

Иными словами, нужно решить неравенство $1-x^2 \ge 0$

Парабола $\alpha(x) = -x^2 + 1$ пересекает ось абсиисс в точках $x = \pm 1$. Поскольку $\alpha = -1$, то ветви параболы направлены вниз.

Ответ: область определения: D(f) = [-1; 1]

И мы плавно подошли к понятию неравенства.

Различают два типа линейных неравенств:

- 1) **Строгие** неравенства: Ax + By + C > 0 либо Ax + By + C < 0.
- 2) **Нестрогие** неравенства: $Ax + By + C \ge 0$ либо $Ax + By + C \le 0$.

Какой геометрический смысл этих неравенств?

Если линейное уравнение Ax + By + C = 0 задаёт прямую, то линейное неравенство определяет **полуплоскость**.

Что значит решить линейное неравенство?

Решить линейное неравенство – это значит найти полуплоскость, точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое).

Алгоритм нахождения решения неравенства графическим методом достаточно прост и состоит в следующих этапах.

Сначала чертим прямую 2x + 5 = 0.

$$2 \cdot 0 + 0 \cdot 0 + 5 < 0$$

5 < 0

Получено **неверное неравенство** (простыми словами, так быть не может), значит, точка O(0;0) не удовлетворяет неравенству O(0;0), значит множество решений не включает эту точку.

Ключевое правило решение задачи:

- Если какая-либо точка полуплоскости (не принадлежащая прямой) **не удовлетворяет** неравенству, то и **BCE** точки данной полуплоскости **не удовлетворяют** данному неравенству.
- Если какая-либо точка полуплоскости (не принадлежащая прямой) **удовлетворяет** неравенству, то и **BCE** точки данной полуплоскости **удовлетворяют** данному неравенству.

Можете протестировать: любая точка справа от прямой 2x + 5 = 0 не будет удовлетворять неравенству 2x + 5 < 0.

Система линейных неравенств – это, как вы понимаете, система, составленная из нескольких неравенств.

Рассмотри пример

$$\begin{cases} x - y + 5 \ge 0 \\ 2x + y + 7 \le 0 \end{cases}$$

Построим графики прямых y=x+5 и y=-7-x

Теперь подставим в неравенство x- $y+5 \ge 0$ координаты точки x=0 и y=0 0- $0+5 \ge 0$

Условие выполняется, значит точка (0;0) принадлежит множеству решений — заштрихуем это полуплоскость на графике.)

Аналогичную операцию выполним для выражения $2x+y+7 \le 0$

A тут условие не выполняется, значит заштрихуем полуплоскость, в которой нет точки (0;0)

Множество решений системы уравнений выделена на рисунке красны цветом – любая точка из этой области дает решение, удовлетворяющее и первому и второму неравенству системы.

Рекомендуемые ссылки

- **▶** Linear equations and inequalities
- ► https://www.khanacademy.org/math/algebra-basics/alg-basics-linear-equations-and-inequalities
- Как исследовать функцию и построить её график?
- http://mathprofi.ru/polnoe_issledovanie_funkcii_i_postroenie_grafika.html
- ▶ Как найти производную? Примеры решений
- http://mathprofi.ru/kak_naiti_proizvodnuju.html
- Частные производные функции двух переменных. Понятие и примеры решений
- http://mathprofi.ru/chastnye_proizvodnye_primery.html
- ▶ Линейные неравенства. Системы линейных неравенств
- http://mathprofi.ru/lineinye_neravenstva.html

Некоторые функции © (просто скопировать формулу и вставить в гугл поиск по очереди)

$$100-3/\operatorname{sqrt}(x^2+y^2)+\sin(\operatorname{sqrt}(x^2+y^2))+\operatorname{sqrt}(200-x^2+y^2+10*\sin(x)+10*\sin(y))/1000$$

 $5 + (-sqrt(1-x^2-(y-abs(x))^2))\cos(30((1-x^2-(y-abs(x))^2))), x \text{ is from -1 to 1, y is from -1 to 1.5, z is from 1 to 6}$

$$log(x^2+y^2)^3$$

 $\frac{2}{3}) \operatorname{sqrt}(-\operatorname{abs}(\operatorname{abs}(x)-1)*\operatorname{abs}(3-\operatorname{abs}(x))/((\operatorname{abs}(x)-1)*(3-\operatorname{abs}(x))))(1+\operatorname{abs}(\operatorname{abs}(x)-3)/(\operatorname{abs}(x)-3)) \operatorname{sqrt}(1-(x/7)^2)+(5+0.97(\operatorname{abs}(x-.5)+\operatorname{abs}(x+.5))-3(\operatorname{abs}(x-.75)+\operatorname{abs}(x+.75)))(1+\operatorname{abs}(1-\operatorname{abs}(x))/(1-\operatorname{abs}(x))), -3\operatorname{sqrt}(1-(x/7)^2)\operatorname{sqrt}(\operatorname{abs}(\operatorname{abs}(x)-4)/(\operatorname{abs}(x)-4)), \operatorname{abs}(x/2)-0.0913722(x^2)-3+\operatorname{sqrt}(1-(\operatorname{abs}(\operatorname{abs}(x)-2)-1)^2), (2.71052+(1.5-.5\operatorname{abs}(x))-1.35526\operatorname{sqrt}(4-(\operatorname{abs}(x)-1)^2))\operatorname{sqrt}(\operatorname{abs}(\operatorname{abs}(x)-1)/(\operatorname{abs}(x)-1))+0.9$