1 実験方法

1.1 トランジスタの静特性

1.1.1 入力特性の測定方法

エミッタ接地回路で, V_{CE} を一定に保ち, V_{BE} を変化させたときの I_B の変化を測定する.

図 1: 入力特性測定回路

図 2: 入力特性

1.1.2 出力特性の測定方法

エミッタ接地回路で , I_B を一定に保ち , V_{CE} を変化させたときの I_C の変化を測定する .

図 3: 出力特性測定回路

図 4: 出力特性

1.1.3 吟味事項

- 1. 電圧計,電流計の等級と内部抵抗を調べる. 電圧計,電流計の接続方法により,計器の内部抵抗による測定誤差について考察する. その時の補正方法を考察する.
- $2.\,\,\,V_{CE}=4[V]$, $I_B=20[\mu A]$ のときの h 定数を , 測定した特性図より求める .

1.2 トランジスタ増幅

1.2.1 電流増幅特性の測定方法

エミッタ接地回路で $R_C=1[k\Omega]$ を接続し $E_C=8[V]$ 一定として , I_B を変化させたときの I_C の変化を測定する . (注. 電流計の内部抵抗が負荷抵抗に加算されないように E_C を調整する)

図 5: 電流増幅特性測定回路

図 6: 電流増幅特性

1.2.2 電圧増幅特性の測定方法

エミッタ接地回路で $R_C=1[k\Omega]$ を接続し $E_C=8[V]$ 一定として , V_{BE} を変化させたときの V_{CE} の変化を測定する .

図 7: 電圧増幅特性測定回路

図 8: 電圧増幅特性

以上の測定はトランジスタ増幅回路の交流不可線上の特性を測定することと等価である. まず,動作点 Q を電流増幅特性の直線部分より決定する.次に,この動作点に対応する電圧増幅 特性での動作点を記入する.

1.2.3 吟味事項

- 1. 電流増幅特性より, h_{FE} を求める.
- 2. 電圧増幅特性より電圧増幅度を求める.

1.2.4 直流バイアス回路定数の選定及びバイアス電圧測定

先の実験で測定した出力特性に8[V], R_C の 交流負荷線を引き,動作点を記入する.

$$E_C = R_C I_C + V_{CE} \tag{1}$$

また,動作点を通る傾き $1/(R_C+R_E)$ の直流 負荷線を引き,電源電圧を決定する.

ここでは $R_C = R_E = 1k\Omega$ とする.

以下の下線部を埋めて実験を行つ.
Tr の名 称
交流負荷線 $R_C = \underline{\hspace{1cm}} \Omega$
直流負荷線 $R_C+R_E=$ Ω
$R_E = \underline{\hspace{1cm}} \Omega$
電源電圧 $E = ___V$
設定した動作点 $\mathrm Q$ における
ベース電流 $I_{BQ} = \underline{\hspace{1cm}} \mu A$
コレクタ電流 $I_{CQ} = \underline{\hspace{1cm}} mA$
電流増幅率
ベース-エミッタ間電圧 $V_{BEQ} = $ V

図 9: 出力特性測定回路

静特性から,図10における各点の電位は,

コレクタ-エミッタ間電圧 $V_{CEQ} =$ _____V

また, $I_2=V_2/R_{B2}$, $I_1=(E-V_2)$, $I_1=I_2+I_{BQ}$ の関係が成り立つ.

 I_{BQ} , V_1 , V_2 , E は既知である.また,係数 k を導入し, $I_2=kI_{BQ}$ と表す.これらを用いて I_1 , I_2 , R_{B1} , R_{B2} を式で表すと

$$I_1 = \underline{\hspace{1cm}} \qquad I_2 = \underline{\hspace{1cm}} \qquad R_{B1} = \underline{\hspace{1cm}} \qquad R_{B2} = \underline{\hspace{1cm}}$$

となる .k の値を変えていくつかの場合について R_{B1} , R_{B2} の値を求めよ . 一番右端の欄には , 実 験回路に選んだ値を記せ.

k	1	5	10		
R_{B1}					
R_{B2}					

増幅しようとする周波数範囲は,	Hz ~		$_{\it Hz}$	
この下限周波数より, C_g , C_E を決定すると	, $C_g = $	μF		μF
各点の電位及び電圧				

点	設計値	実測値	誤差	点	設計値	実測値	誤差
1				3 - 1			
2				2 - 1			
3				4 - 2			
4				4 - 3			

補足:直流バイアス回路の設計

トランジスタの静特性 (出力特性) に交流負荷線 R_C を引き , 動作点 Q を設定する .

このとき,トランジスタに流れるベース電流 I_{BQ} ,コレクタ電流 I_{CQ} ,ベース-エミッタ間電圧 V_{CEQ} をトランジスタの静特性より求める.

求めた I_{BEQ} , I_{CEQ} が流れるように

$$V_2 = \{R_2/(R_1 + R_2)\}E = V_{BEQ}$$
 (2)

から R_1 , R_2 の値を設定する.

これで良いのであるが,トランジスタは温度によって特性が変化する.特性が変化すると設定した動作点 g がずれてしまい増幅器の特性も安定しなくなる.

・・そこで負帰還をかけて特性の変化による動作店の変動を ・・抑制するため図 11 のように R_E を接続する .

このとき, R_C+R_E は直流負荷線として図??のように静特性上に交流負荷線の動作点 Q で交わる直線として引く.電源電圧 E は 8V から R_E による電圧降下分を加えた 12V に変わる.

温度が交渉してベース電流が I_{BQ} よりも増加したとすると R_E による電圧降下は ,

$$R_E(I_B + I_C) = R_E(I_{BQ} + I_{CQ} + \Delta I_B + \Delta I_C)$$
 (3)

となり, $R_E(\Delta I_B + \Delta I_C)$ だけ R_E による電圧降下は大きくなる. V_2 が一定であると仮定すると,

$$V_{BE} = V_2 - R_E(I_B + I_C) = V_2 - R_E(I_{BQ} + I_{CQ} + \Delta I_B + \Delta I_C)$$
(4)

なので I_B が増加すると V_{BE} は小さくなる . V_{BE} が小さくなると I_B は減少する . このように R_E を接続することにより , ベース電流が増加 (減少) しようとすると負帰還が働きベース電流の増加 (減少) を押さえ , ベース電流を一定に保つ .

次に,前述の解析では, V_2 が一定であると仮定したわけであるが, V_2 を一定にするためには, R_2 にながれる電流 I_2 と I_{BQ} の比を大きくするとよい. I_B が増加するとその文だけ I_2 は減少するが,比が大きいと I_2 にとってその変化分はわずかな変化でしかなく,

$$V_2 = R_2 \cdot I_2 \approx -\mathbf{\hat{z}} \tag{5}$$

となる.

今回の設計では, $I_=kI_{BQ}$ という定数 k を導入する.k の値を大きくするほうが安定度は良いのであるだ,k を大きくしすぎると R_1 と R_2 の値が小さくなりすぎる.市販品の少抵抗は少なく,誤差も大きい.また,消費電力 $R_2\cdot I_2^2$ が大きくなってよくない.消費電力が大きくなると発熱し,トランジスタの周囲温度を上げ,特性の変化をもたらす.

ここでは , R_1 と R_2 の値は数 $k\Omega$ ~ 数 $10k\Omega$ 程度になるように k を選ぶとよい .

1.2.5 入出力特性の測定方法

設計製作した増幅回路に,低周波発振器より f=1kHz の正弦波信号を入力する.この入力信号の入力電圧に対する出力電圧の変化を測定する.オシロスコープで入力波形と出力波形の変化も観測する.

図 12: 入出力特性測定回路

図 13: 入出力特性

1.2.6 周波数特性の測定

設計製作した増幅回路に,低周波発振器より正弦波信号を入力する.この入力信号の入力電圧を例えば $e_i=10[mV]$ 一定にして,入力信号の周波数を変化させたときの出力電圧の変化を測定する. C_E の値を変えて同じ測定を行う.

図 14: 周波数特性測定回路

図 15: 周波数特性

1.2.7 吟味事項

- 1. 入出力特性より,制作した増幅回路の増幅度を求める.
- 2. バイパスコンデンサ C_E のない回路について解析する.測定はしなくていい.
- 3. 観測した入力波形および出力波形について,入力特性や増幅特性をもとに考察する.

2 実験結果の処理

2.1 トランジスタの静特性

2.1.1 入力特性の測定結果

1.1.1 に示した測定を , 同一種のトランジスタ 3 個について , それぞれ行った . それぞれを Tr_1 , Tr_2 , Tr_3 と区別することとする .

以下表 1 に Tr_1 の測定結果の表を , 図 16 に Tr_1 の測定結果のグラフを示す .

表 1: Tr_1 の入力特性の測定値

	$V_{CE} = 4[V]$		$V_{CE} = 6[V]$		$V_{CE} = 8[V]$
$V_{BE}[V]$	$I_B[\mu A]$	$V_{BE}[V]$	$I_B[\mu A]$	$V_{BE}[V]$	$I_B[\mu A]$
0	0	0	0	0	0
0.099	0	0.562	0.5	0.56	0.5
0.198	0	0.62	2.8	0.624	3.8
0.297	0	0.642	6	0.643	7.5
0.397	0	0.654	10.2	0.654	11.4
0.493	0.1	0.664	15.1	0.667	17.4
0.555	0.5	0.671	20.1	0.67	22.2
0.589	1.1	0.676	25	0.672	26.1
0.608	1.9	0.68	29.9	0.675	31.2
0.62	2.8	0.683	34.8	0.656	36
0.628	3.8	0.686	39.8		
0.634	4.5	0.688	44.9		
0.643	6.3	0.689	50		
0.646	7.3				
0.649	8.2				
0.652	9.2				
0.66	13				
0.665	16.1				
0.671	20.1				
0.675	24				
0.68	28.9				
0.685	35.9				
0.6866	46.8				
0.6887	49.9				

図 16: Tr_1 の入力特性

以下表 2 に Tr_2 の測定結果の表を,図 17 に Tr_2 の測定結果のグラフを示す.

表 2: Tr_2 の入力特性の測定値

	T		T7 0[T7]		T. O. T. T.
$V_{BE}[V]$	$V_{CE} = 4[V]$	$V_{BE}[V]$	$V_{CE} = 6[V]$	$V_{BE}[V]$	$V_{CE} = 8[V]$
221	$I_B[\mu A]$	22[]	$I_B[\mu A]$	22[]	$I_B[\mu A]$
0	0	0	0	0	0
0.198	0	0.562	0.5	0.588	1.2
0.396	0	0.618	2.7	0.633	5.5
0.559	0.5	0.643	6.5	0.652	11.2
0.609	1.9	0.657	11.2	0.661	16.2
0.639	5.5	0.667	17	0.665	22.1
0.647	7.5	0.671	20.1	0.662	28
0.653	9.2	0.676	24.9		
0.66	12.1	0.68	29.9		
0.663	14.2	0.683	34.8		
0.67	21	0.686	40.6		
0.682	29.8	0.688	46.8		
0.685	34.8				
0.688	39.7				
0.69	44.8				
0.692	49.8				

図 17: Tr_2 の入力特性

以下表 3 に Tr_3 の測定結果の表を,図 18 に Tr_3 の測定結果のグラフを示す.

表 $3: Tr_3$ の入力特性の測定値

$V_{BE}[V]$	$V_{CE} = 4[V]$	$V_{BE}[V]$	$V_{CE} = 6[V]$	$V_{BE}[V]$	$V_{CE} = 8[V]$
	$I_B[\mu A]$		$I_B[\mu A]$		$I_B[\mu A]$
0	0	0	0	0	0
0.491	0	0.562	0.5	0.561	0.5
0.59	1.1	0.619	2.8	0.64	6.5
0.63	5.5	0.632	4.5	0.655	12.2
0.653	10.3	0.653	10.2	0.656	17.1
0.663	15.1	0.662	15.1	0.671	24.1
0.671	20.5	0.669	20.1	0.675	29.1
0.676	25	0.673	25	0.672	35
0.68	29.9	0.676	30		
0.684	34.8	0.678	34.9		
0.687	39.8	0.679	39.8		
0.689	44.8	0.68	50		
0.691	49.9				

図 18: Tr_3 の入力特性

2.1.2 出力特性の測定結果

1.1.2 に示した測定を , 2.1.1 に示した測定と同様に同一種のトランジスタ 3 個について , それぞれ行った . 以下 , 表 4 に Tr_1 の測定結果の表を , 図 19 の測定結果のグラフを示す .

表 4: Tr_1 の出力特性の測定値

V_{CE}	$I_B = 0[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 5[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 10[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 20[\mu A]$ $I_C[mA]$
0	0	0	0	0	0	0	0
1.001	0	0.005	0	0.006	0	0.006	0
2.001	0	0.099	0.238	0.068	0.26	0.074	0.68
3	0	0.17	0.618	0.107	0.71	0.124	1.88
4	0	0.21	0.68	0.145	1.17	0.183	2.9
5	0	0.308	0.7	0.205	1.47	0.272	3.18
6	0	0.408	0.7	0.298	1.52	0.371	3.2
7	0	0.508	0.7	0.398	1.52	0.471	3.2
8	0	1.508	0.71	0.497	1.53	0.571	3.2
9	0	2.506	0.71	0.597	1.53	1.57	3.2
10	0	3.506	0.72	1.596	1.54	2.568	3.22
11	0	4.51	0.72	2.595	1.55	3.567	3.23
12	0	6.5	0.72	3.593	1.55	4.57	3.24
13	0	8.5	0.73	4.59	1.56	6.56	3.26
14	0	10.5	0.74	6.59	1.58	8.56	3.39
15	0	12.5	0.74	8.59	1.59	10.56	3.4
16	0	14.5	0.75	10.59	1.6	12.56	3.46
	0	16.5	0.75	12.58	1.61	14.56	3.5
				14.58	1.63	16.55	3.58
				16.58	1.66		
		·					

V_{CE}	$I_B = 30[\mu A]$	V	$I_B = 40[\mu A]$	V	$I_B = 50[\mu A]$
VCE	$I_C[mA]$	V_{CE}	$I_C[mA]$	V_{CE}	$I_C[mA]$
0	0	0	0	0	0
0.006	0	0.006	0	0.005	0
0.788	5.12	0.715	6.88	0.643	8.6
1.788	5.16	1.715	6.88	1.643	8.62
2.787	5.18	2.713	6.92	2.641	8.68
3.785	5.2	3.712	6.96	3.639	8.72
4.79	5.22	4.71	7.02	4.64	8.8
6.78	5.3	6.7	7.12	6.63	8.98
8.78	5.4	8.7	7.28	8.62	9.2
10.77	5.48	10.69	7.4	10.61	9.4
12.77	5.6	12.69	7.58	12.6	9.56
14.76	5.72	14.68	7.78	14.58	10
16.76	5.82	16.67	7.96	16.57	10.35

図 19: Tr_1 の出力特性

以下,表5に Tr_2 の測定結果の表を,図20の測定結果のグラフを示す.

表 5: Tr_2 の出力特性の測定値

V_{CE}	$I_B = 0[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 5[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 10[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 20[\mu A]$ $I_C[mA]$
0	0	0	0	0	0	0	0
1.001	0	0.004	0	0.006	0	0.006	0
2.001	0	0.737	0.7	0.79	1.56	0.855	3.52
3	0	1.735	0.704	1.789	1.57	1.853	3.56
4	0	2.733	0.708	2.789	1.58	2.53	3.58
5	0	3.732	0.712	3.787	1.59	3.852	3.6
6	0	4.73	0.716	4.79	1.6	4.85	3.62
7	0	6.73	0.72	6.78	1.62	6.85	3.68
8	0	8.73	0.728	8.78	1.63	8.85	3.7
9	0	10.72	0.732	10.8	1.64	10.84	3.8
10	0	12.72	0.738	12.78	1.65	12.84	3.88
11	0	14.72	0.74	14.78	1.66	14.84	3.92
12	0	16.72	0.744	16.77	1.68	16.83	3.96
13	0						
14	0						
15	0						
16	0						

T.	$I_B = 30[\mu A]$	17	$I_B = 40[\mu A]$	17	$I_B = 50[\mu A]$
V_{CE}	$I_C[mA]$	V_{CE}	$I_C[mA]$	V_{CE}	$I_C[mA]$
0	0	0	0	0	0
0.006	0	0.006	0	0.005	0
0.788	5.12	0.715	6.88	0.643	8.6
1.788	5.16	1.715	6.88	1.643	8.62
2.787	5.18	2.713	6.92	2.641	8.68
3.785	5.2	3.712	6.96	3.639	8.72
4.79	5.22	4.71	7.02	4.64	8.8
6.78	5.3	6.7	7.12	6.63	8.98
8.78	5.4	8.7	7.28	8.62	9.2
10.77	5.48	10.69	7.4	10.61	9.4
12.77	5.6	12.69	7.58	12.6	9.56
14.76	5.72	14.68	7.78	14.58	10
16.76	5.82	16.67	7.96	16.57	10.35

図 20: Tr_2 の出力特性

以下,表6に Tr_3 の測定結果の表を,図21の測定結果のグラフを示す.

表 6: Tr3 の出力特性の測定値

V_{CE}	$I_B = 0[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 5[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 10[\mu A]$ $I_C[mA]$	V_{CE}	$I_B = 20[\mu A]$ $I_C[mA]$
0	0	0	0	0	0	0	0
1.001	0	0.004	0	0.006	0	0.006	0
2.001	0	0.737	0.7	0.79	1.56	0.855	3.52
3	0	1.735	0.704	1.789	1.57	1.853	3.56
4	0	2.733	0.708	2.789	1.58	2.53	3.58
5	0	3.732	0.712	3.787	1.59	3.852	3.6
6	0	4.73	0.716	4.79	1.6	4.85	3.62
7	0	6.73	0.72	6.78	1.62	6.85	3.68
8	0	8.73	0.728	8.78	1.63	8.85	3.7
9	0	10.72	0.732	10.8	1.64	10.84	3.8
10	0	12.72	0.738	12.78	1.65	12.84	3.88
11	0	14.72	0.74	14.78	1.66	14.84	3.92
12	0	16.72	0.744	16.77	1.68	16.83	3.96
13	0						
14	0						
15	0						
16	0						

		1			
V_{CE}	$I_B = 30[\mu A]$	V_{CE}	$I_B = 40[\mu A]$	V_{CE}	$I_B = 50[\mu A]$
VCE	$I_C[mA]$	VCE	$I_C[mA]$	VCE	$I_C[mA]$
0	0	0	0	0	0
0.006	0	0.006	0	0.005	0
0.788	5.12	0.715	6.88	0.643	8.6
1.788	5.16	1.715	6.88	1.643	8.62
2.787	5.18	2.713	6.92	2.641	8.68
3.785	5.2	3.712	6.96	3.639	8.72
4.79	5.22	4.71	7.02	4.64	8.8
6.78	5.3	6.7	7.12	6.63	8.98
8.78	5.4	8.7	7.28	8.62	9.2
10.77	5.48	10.69	7.4	10.61	9.4
12.77	5.6	12.69	7.58	12.6	9.56
14.76	5.72	14.68	7.78	14.58	10
16.76	5.82	16.67	7.96	16.57	10.35

図 21: Tr_3 の出力特性

2.2 トランジスタ増幅

2.2.1 電流増幅特性の測定方法

1.2.1 に示した測定を,2.1.1 に示した測定と同様に同一種のトランジスタ 3 個について,それぞれ行った.以下,表 7 に Tr_1 の測定結果の表を,図 22 の測定結果のグラフを示す.

表 7: Tr_1 の電流増幅特性の測定値

$I_B[\mu A]$	$I_C[mA]$
0	0
10	1.78
20	3.48
30	5.19
40	6.79
50	7.89
60	7.96
70	7.99

図 22: Tr_1 の電流増幅特性

以下 , 表 8 に Tr_2 の測定結果の表を , 図 23 の測定結果のグラフを示す .

表 8: Tr_2 の電流増幅特性の測定値

$I_C[mA]$
0
1.7
3.42
3.75
3.95
4.1
4.3
5.13
6.7
7.9
7.95
7.99

図 23: Tr_2 の電流増幅特性

以下,表 9 に Tr_3 の測定結果の表を,図 24 の測定結果のグラフを示す.

表 9: Tr_3 の電流増幅特性の測定値

$I_B[\mu A]$	$I_C[mA]$
0	0
10	1.8
20	3.56
30	5.28
40	7.93
50	7.94
60	7.98
70	7.99

図 24: Tr_3 の電流増幅特性

2.2.2 電圧増幅特性の測定方法

1.2.2 に示した測定を , Tr_2 について行った .

以後,トランジスタは Tr_2 を使用した.

以下,表10に測定結果の表を,図25の測定結果のグラフを示す.

表 10: 電圧増幅特性の測定値

$V_{BE}[V]$	$V_{CE}[V]$
0.1	8.02
0.2	8.02
0.3	8.02
0.4	8.02
0.5	8.02
0.559	7.97
0.61	7.71
0.629	7.4
0.641	7.08
0.653	6.59
0.668	5.6
0.675	4.93
0.685	3.77
0.701	1.85
0.712	0.645
0.713	0.245
0.715	0.159
0.717	0.127

図 25: 電圧増幅特性

2.2.3 直流バイアス回路定数の選定およびバイアス電圧測定

先の実験で測定した出力特性に 8[V] , R_C の 交流負荷線を引き , 動作点を記入する .

$$E_{C} = R_{C}I_{C} + V_{CE}$$

$$(6)$$

$$\begin{bmatrix}
I_{B} & 0[\mu A] \\
I_{B} & 0[\mu A] \\$$

④○E

また,動作点を通る傾き $1/(R_C+R_E)$ の直流

負荷線を引き,電源電圧を決定する.

ここでは $R_C = R_E = 1k\Omega$ とする.

以下の下線部を埋めて実験を行う.

Tr の名称 VTC C1815 L VDH (Tr_2)

交流負荷線 $R_C = 1000\Omega$

直流負荷線 $R_C + R_E = 2000\Omega$

 $R_E = \underline{1000}\Omega$

電源電圧 $E = \underline{12}V$

設定した動作点 Q における

ベース電流 $I_{BQ} = \underline{23}\mu A$

コレクタ電流 $I_{CQ} = 3.95 mA$

電流増幅率 171.7

ベース-エミッタ間電圧 $V_{BEQ}=\underline{0.674}V$

コレクタ-エミッタ間電圧 $V_{CEQ}=4V$

静特性から,図10における各点の電位は,

① $\underline{4}V$ ② $\underline{4.674}V$ ③ $\underline{8}V$ と求まる .

また, $I_2=V_2/R_{B2}$, $I_1=(E-V_2)$, $I_1=I_2+I_{BQ}$ の関係が成り立つ.

 I_{BQ} , V_1 , V_2 , E は既知である.また,係数 k を導入し, $I_2=kI_{BQ}$ と表す.これらを用いて I_1 , I_2 , R_{B1} , R_{B2} を式で表すと

 $I_1 = (1+k)I_{BQ}$ $I_2 = kI_{BQ}$ $R_{B1} = V_1/\{(1+k)I_{BQ}\}$ $R_{B2} = V_2/kI_{BQ}$

となる .k の値を変えていくつかの場合について R_{B1} , R_{B2} の値を求めよ . 一番右端の欄には . 実験回路に選んだ値を記せ .

k	1	5	10	20	30	50	20
R_{B1}	$159.26k\Omega$	$53.086k\Omega$	$28.156k\Omega$	$15.167k\Omega$	$10.274k\Omega$	6245Ω	$15.167k\Omega$
R_{B2}	$203.21k\Omega$	$40.643k\Omega$	$20.321k\Omega$	$10.160k\Omega$	6773Ω	4064Ω	$10.160k\Omega$

増幅しようとする周波数範囲は , 200Hz ~ 100kHz この下限周波数より , C_g , C_E を決定すると , $C_g=0.8665 \mu F$ $148.779 \mu F$ 各点の電位及び電圧

点	設計値	実測値	誤差	点	設計値	実測値	誤差
\textcircled{\scriptsize 1}	4	3.998		3-1	4	4.028	
$\begin{tabular}{ll} $$ \text{$$ \text{$$ $$}$} \\ \text{$$ $$} \\ \text{$$ $$} \\ \text{$$} \\ \text{$$}$	4.674	4.668		2-1	0.674	0.670	
\textcircled{\scriptsize 3}	8	8.027		4 - 2	7.326	7.312	
\textcircled{\scriptsize 4}	12	11.99		4 - 3	4	3.958	

2.2.4 入出力特性の測定結果

1.2.5 に示した測定を , Tr_2 について行った .

以下,表 11 に測定結果の表を,図 27 の測定結果のグラフを示す.また,図 $28 \sim 31$ にディジタルオシロスコープを用いて測定した入力波形と出力波形を示す.

表 11: 入出力特性の測定値

$V_i[V]$	$V_o[V]$
0	0
0.011	1.2
0.02	2
0.03	2.8
0.04	3.22
0.05	3.5
0.06	3.62
0.07	3.78
0.08	3.82
0.09	3.92
0.101	3.98
0.11	4
0.121	4.02
0.13	4.04
0.14	4.06
0.15	4.1
0.16	4.1
0.171	4.14
0.18	4.14
0.19	4.16
0.203	4.18

図 27: 入出力特性

図 28: 入力電圧 0.011[V] のときの波形

図 29: 入力電圧 0.04[V] のときの波形

図 30: 入力電圧 0.101[V] のときの波形

図 31: 入力電圧 0.203[V] のときの波形

2.2.5 周波数特性の測定

1.2.6 に示した測定を , Tr_2 について行った.以下 , 表 $12 \sim 15$ に測定結果の表を , 図 32 の測定 結果のグラフを示す.

表 12: 周波数特性の測定値 $(C_E=100[\mu F])$

$V_i[V]$	$V_o[V]$	frequency[Hz]	Amplification degree [dB]
0.01	0.0276	10	8.81818164130435
0.01	0.0828	20	18.3606067356976
0.01	0.138	30	22.7975817280247
0.01	0.192	40	25.666024574071
0.01	0.242	50	27.6763073196086
0.01	0.292	60	29.3076570289684
0.01	0.34	70	30.6295783408451
0.01	0.385	80	31.70921459017
0.01	0.424	90	32.5473171318547
0.01	0.472	100	33.4788399726818
0.01	0.78	200	37.8418920538096
0.01	0.95	300	39.554472105777
0.01	1.04	400	40.3406667859756
0.01	1.09	500	40.7485299588125
0.01	1.14	750	41.1380970267295
0.01	1.17	1000	41.3637172349232
0.01	1.2	2000	41.5836249209525
0.01	1.2	3000	41.5836249209525
0.01	1.2	5000	41.5836249209525
0.01	1.2	7500	41.5836249209525
0.01	1.2	10000	41.5836249209525
0.01	1.2	25000	41.5836249209525
0.01	1.2	50000	41.5836249209525
0.01	1.2	75000	41.5836249209525
0.01	1.18	100000	41.4376401461225
0.01	1.1	200000	40.8278537031645
0.01	0.98	300000	39.8245215138499
0.01	0.85	400000	38.5883785142859
0.01	0.75	500000	37.501225267834
0.01	0.65	600000	36.2582671328571
0.01	0.57	700000	35.1174971134498
0.01	0.5	800000	33.9794000867204
0.01	0.44	900000	32.8690535297237
0.01	0.4	1000000	32.0411998265592

表 13: 周波数特性の測定値 $(C_E=220[\mu F])$

$V_i[V]$	$V_o[V]$	frequency[Hz]	Amplification degree [dB]
0.01	0.055	10	14.8072537898849
0.01	0.175	25	24.8607609737259
0.01	0.358	50	31.0776605328775
0.01	0.51	75	34.1514035219587
0.01	0.63	100	35.9868109890716
0.01	1.01	250	40.0864274756529
0.01	1.15	500	41.2139568070722
0.01	1.18	750	41.4376401461225
0.01	1.19	1000	41.5109392278506
0.01	1.21	2500	41.655707406329
0.01	1.21	5000	41.655707406329
0.01	1.21	7500	41.655707406329
0.01	1.21	10000	41.655707406329
0.01	1.21	25000	41.655707406329
0.01	1.21	50000	41.655707406329
0.01	1.21	75000	41.655707406329
0.01	1.2	100000	41.5836249209525
0.01	1.05	250000	40.4237859813988
0.01	0.75	500000	37.501225267834
0.01	0.54	750000	34.6478751964594
0.01	0.4	1000000	32.0411998265592

表 14: 周波数特性の測定値 $(C_E=47[\mu F])$

$V_i[V]$	$V_o[V]$	frequency[Hz]	Amplification degree [dB]
0.01	0.01	10	0
0.01	0.064	25	16.1235994796777
0.01	0.148	50	23.4052343078991
0.01	0.224	75	27.0049603666833
0.01	0.298	100	29.4843252815251
0.01	0.62	250	35.8478337899651
0.01	0.86	500	38.6899690248714
0.01	0.95	750	39.554472105777
0.01	0.99	1000	39.912703891951
0.01	1.4	2500	42.9225607135648
0.01	1.4	5000	42.9225607135648
0.01	1.4	7500	42.9225607135648
0.01	1.4	10000	42.9225607135648
0.01	1.4	25000	42.9225607135648
0.01	1.4	50000	42.9225607135648
0.01	1.4	75000	42.9225607135648
0.01	1.4	100000	42.9225607135648
0.01	0.94	250000	39.462557071994
0.01	0.68	500000	36.6501782541247
0.01	0.49	750000	33.8039216005703
0.01	0.38	1000000	31.5956719323362

表 15: 周波数特性の測定値 $(C_E=147[\mu F])$

$V_i[V]$	$V_o[V]$	frequency[Hz]	Amplification degree [dB]
0.01	0.041	10	12.2556771343947
0.01	0.142	25	23.0457668876611
0.01	0.305	50	29.6859967869357
0.01	0.438	75	32.829482210082
0.01	0.568	100	35.0869667142204
0.01	0.958	250	39.6273101815709
0.01	1.12	500	40.9843604534036
0.01	1.16	750	41.2891597845384
0.01	1.19	1000	41.5109392278506
0.01	1.21	2500	41.655707406329
0.01	1.21	5000	41.655707406329
0.01	1.21	7500	41.655707406329
0.01	1.21	10000	41.655707406329
0.01	1.21	25000	41.655707406329
0.01	1.21	50000	41.655707406329
0.01	1.21	75000	41.655707406329
0.01	1.19	100000	41.5109392278506
0.01	1.04	250000	40.3406667859756
0.01	0.75	500000	37.501225267834
0.01	0.54	750000	34.6478751964594
0.01	0.41	1000000	32.2556771343947

図 32: 周波数特性