

CHUONG 7

BÀI TOÁN LUÔNG CỰC ĐẠI

Nội dung

- Bài toán luồng cực đại
- 2 Mạng & Luồng trên mạng
- Lát cắt & Đường tăng luồng
- Thuật toán Ford-Fulkerson
- Thảo luận & Bài tập

Bài toán luồng cực đại (1/1) (Max flow problem)

Trên một mạng máy tính cho trước, làm sao để truyền dữ liệu với tốc độ cao nhất giữa 2 nút mạng? Cho trước một mạng giao thông kết nối các thành phố.

Làm thế nào để khai thác tối đa công suất vận chuyển của nó?

Mạng và luồng trên mạng (1/6)

Mạng và luồng trên mạng (2/6)

♦ Đỉnh nguồn: / phát

Là đỉnh chỉ có các cung đi ra

*Dinh đích: / Hw

Là đỉnh chỉ có các cung đi vào

Mạng và luồng trên mạng (3/6)

*Dinh nghĩa mạng:

- Là đồ thị có hướng, có trọng số
- Tồn tại đỉ<u>nh nguồn s</u> và đỉnh đích t.

Mạng và luồng trên mạng (4/6)

- *Định nghĩa <u>luồng</u>:
 - Giả sử có mạng G(V,E,s,t) $\{(\alpha_1,\beta_1),(\alpha_1,\beta_2),(\beta_$
 - Ánh xaf: $V \times V \rightarrow R$ (tập số thực) thỏa điều kiện:
 - Cân bằng luồng, với mọi đỉnh v thuộc $V \setminus \{s,t\}$:

$$\sum_{x \in V} f(v, x) = \sum_{y \in V} f(y, v)$$

- Giới hạn luồng trên cung: $0 \le f(u,v) \le c(u,v)$
- Khi đó f được gọi là 1 luồng trên mạng G,
- Và giá trị luồng f được xác định là:

$$val(f) = \sum_{x \in V} f(\underline{s}, x) = \sum_{y \in V} f(y, \underline{t})$$

Mạng và luồng trên mạng (5/6)

Biểu diễn mạng G và luồng f với giá trị luồng là: Val(f) = 9

Mạng và luồng trên mạng (6/6)

*Bài toán luồng cực đại

• Đầu vào: Mạng G(V,E,s,t)

■ Đầu ra: Luồng f trên G sao cho: $val(f) \rightarrow max$

Lát cắt và đường tăng luồng (1/9)

Dịnh nghĩa lát cắt:

Lát cắt (X,X') là phân hoạch của tập 🕅 thỏa mãn:

$$-s \in X$$

$$- X' = V \setminus X$$

$$-t \in X'$$

$$C(X,X') =$$

*Khả năng thông qua của lát cắt:

$$C(X, X') = \sum_{u \in X, v \in X'} f(u, v)$$

Lát cắt và đường tăng luồng (2/9)

- Trên một mạng bất kỳ, giá trị của luồng cực đại bằng khả năng thông qua của lát cắt cực tiểu.
- Định lý được Ford và Fulkerson chứng minh
 - Năm 1954 với đồ thị vô hướng,
 - Năm 1955 với đồ thị có hướng.

Lát cắt và đường tăng luồng (3/9)

*Đồ thị tăng luồng:

- Giả sử có mạng G(V,E,C,s,t) với luồng f.
- Đồ thị tăng luồng G'(V,E',W) được xây dựng trên

G và f với 3 trường hợp sau:

Lát cắt và đường tăng luồng (4/9)

- * Đồ thị tăng luồng:
 - Trường hợp 1: $f(u,v) \le c(u,v)$

Cung (u,v) trên mạng G(V,E)

Hình thành 2 cung trên đồ thị tăng luồng G'(V,E',W):

- $(\underline{u,v})$ với $\underline{w(u,v)} = c(u,v)-f(u,v)$ (v,u) với w(v,u) = f(u,v)

Lát cắt và đường tăng luồng (5/9)

- * Đồ thị tăng luồng:
 - Trường hợp 2: f(u,v) = 0

Cung (u,v) trên mạng G(V,E)

Hình thành 1 cung trên đồ thị tăng luồng G'(V,E',W): w(u,v) = c(u,v)

Lát cắt và đường tăng luồng (6/9)

- * Đồ thị tăng luồng:
 - Trường họp 3: f(u,v) = c(u,v)

Cung (u,v) trên mạng G(V,E)

Hình thành 1 cung trên đồ thị tăng luồng G'(V,E',W): w(v,u) = f(u,v) = c(u,v)

Lát cắt và đường tăng luồng (7/9)

 \clubsuit Đồ thị tăng luồng G_f :

Mạng G và đồ thị tăng luồng G_f tương ứng với luồng f.

Lát cắt và đường tăng luồng (8/9)

Là đường đi từ nguồn s đến đích t trên đồ thị tăng luồng.

- 1, 3, 2, 4 là một đường tăng luồng với trọng số nhỏ nhất d = 1
- Đường tăng luồng là cơ sở để tìm luồng cực đại f*

Lát cắt và đường tăng luồng (9/9)

❖Định lý:

- Giả sử có luồng f trên mạng G(V,E,C,s,t)
- Và G_f là đồ thị tăng luồng tương ứng.
- Gọi d là trọng số nhỏ nhất của đường tăng luồng P_f trên G_f.
- Đặt:
 - f'(u,v) = f(u,v) + d n'eu(u,v) thuộc E.
 - f'(u,v) = f(u,v) d n'eu(u,v) không thuộc E.
- Khi đó:
 - f' là một luồng mới trên G
 - Và $val(f') = val(f) + \underline{d}$

Thuật toán Ford-Fulkerson (1/7)

❖Định lý:

- Giả sử f là một luồng trên mạng G, khi đó các phát biểu sau là tương đương:
 - f là luồng cực đại.
 - G_f không tồn tại đường tăng luồng.
 - Val(f) = c(X,X') với (X,X') là lát cắt bất kỳ.

Thuật toán Ford-Fulkerson (2/7)

Ford-Fulkerson

- Đầu vào: mạng G(V,E,s,t)
- Đầu ra: luồng cực đại trên G

begin

- Khởi tạo f(u,v) = 0, với mọi (u,v) thuộc E.
- Trong khi còn tồn tại đường tăng luồng $\underline{P_f}$ trên G_f :
 - Tăng luồng f = f + d, với d là trọng số nhỏ nhất trên P_f .
- Return f.
- ***** end

Thuật toán Ford-Fulkerson (3/7)

Đồ thị tăng luồng Gf

$$t_1 = \frac{50 \text{ tin taing 1 along 0}}{4}$$

Thuật toán Ford-Fulkerson (4/7)

Ví dụ: bước 2, lặp lại quá trình tăng luồng

Đồ thị tăng luồng *Gf*

Mạng G với luồng 85

Thuật toán Ford-Fulkerson (5/7)

Ví dụ: bước 2, lặp lại quá trình tăng luồng

Mạng G với luồng 5

Đồ thị tăng luồng Gf

$$P_{1} = 13.4$$
 $d = 3$

Thuật toán Ford-Fulkerson (6/7)

Ví dụ: bước 2, lặp lại quá trình tăng luồng

Đồ thị tăng luồng Gf

- Trên Gf không tồn tại đường tăng luồng, thuật toán kết thúc
- Giá trị luồng cực đại val(f) = 5 + 3

Thuật toán Ford-Fulkerson (7/7)

❖ Ví dụ: bước 2, lặp lại quá trình tăng luồng

Đồ thị tăng luồng *Gf*

Mạng G với luồng cựu đại

Lát cắt cực tiểu (X,X) với $X = \{1,3\}, X' = \{2,4\}$

Thảo luận & Bài tập (1/1)

- \Rightarrow Tại sao khởi tạo từ luồng f = 0?
- Có thể khởi tạo từ luồng tùy ý được không?
- Làm thế nào để tìm đường tăng luồng?
- Chứng minh (lại) các định lý.
- * Minh họa trường hợp xấu nhất của thuật toán.
- *Cài đặt thuật toán Ford-Fulkerson trên máy tính?