冪級数の収束判定法

七条 彰紀

2017年7月18日

 $B(r;z_0)=\{z\in\mathbb{C}:|z-z_0|< r\}\subset\mathbb{C}$ とする.これは z_0 を中心とする半径 r の \mathbb{C} における円盤である. 冪級数についていくつかの収束判定法を紹介する.

1 Weierstrass M-test

収束判定法では次の事実が基本である.

定理 1.1. 関数列 $\{f_n:A o\mathbb{C}\}_{n=0}^\infty$ の級数 $\sum_{n=0}^\infty f_n(x)$ を考える. ある実数列 $\{M_n\}_{n=0}^\infty\subset\mathbb{R}$ について

$$\forall n = 1, 2, \dots, \quad \sup_{r \in A} |f_n| \le M_n$$

が成り立ち、かつ $\sum_{n=0}^{\infty} M_n$ が収束するとき、関数項級数 $\sum_{n=0}^{\infty} f_n(x)$ も収束する.

この定理を満たす関数項級数 $\sum_{n=0}^{\infty} f_n(x)$ は、特に正規収束すると言う.

2 Abel theorem

定理 **2.1** (Abel theorem). $\{a_n\}_{n=0}^{\infty} \subset \mathbb{C}$ とする.

$$z_0 \in \mathbb{C}, \ \sum_{n=0}^{\infty} a_n z_0^n < \infty \implies {}^{\forall} z \in B(|z_0|; 0), \ \sum_{n=0}^{\infty} a_n z^n < \infty$$

特に、この時 $\sum_{n=0}^{\infty} a_n z^n$ は正規収束する.

(証明). 命題 $\sum_{n=0}^{\infty} a_n z_0^n < \infty \implies \lim_{n \to \infty} a_n z_0^n = 0$ と, $\left| \frac{z}{z_0} \right| < 1$ を用いて,Weierstrass M-test へ帰着する.

3 Cauchy-Hadamard theorem

定理 3.1 (Cauchy-Hadamard theorem). 一複素変数 z に関する,以下のような冪級数を考える.

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n.$$

ここで $a, c_n \in \mathbb{C}$ とする. このとき, f の収束半径は以下のように与えられる.

$$\frac{1}{R} = \limsup_{n \to \infty} \left(|c_n|^{\frac{1}{n}} \right) := \lim_{n \to \infty} \sup\{ |c_n|^{\frac{1}{n}} : k \ge n \}.$$

(証明). $\limsup_{n\to\infty} \left(|c_n|^{\frac{1}{n}}\right) = 0$ のとき冪級数の収束半径が ∞ であることだけ示す.

仮定より,任意の正数 ϵ に対し,十分大きい n について $0 \leq |c_n|^{\frac{1}{n}} < \epsilon$ が成立する.そこで任意の $z \in \mathbb{C}$ を とり, $\epsilon = \frac{1}{2|z|}$ とする.すると,

$$0 \le |c_n|^{\frac{1}{n}} < \epsilon \implies 0 \le |c_n|^{\frac{1}{n}}|z| < 1/2 \implies 0 \le |c_n||z|^n < (1/2)^n$$

よって Weierstrass M-test により、任意の $z \in \mathbb{C}$ について冪級数は収束する.

4 Ratio test

定理 **4.1** (Ratio test). べき級数 $\sum_{n=0}^{\infty} a_n z^n$ について, 任意の n について $a_n \neq 0$, かつ

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

が存在するならば、 $R = \frac{1}{\rho}$ がべき級数の収束半径に等しい.

(証明). 今,考えている冪級数を二つに分けて,

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{N-1} a_n z^n + \sum_{n=N}^{\infty} a_n z^n$$

としてみると、前半は有限級数であるから有限値に収束する。なので後半の収束だけを考える。z=0 での収束は自明なので、以下では $z\neq 0$ とする

 $0 \le \rho < \infty$ とする. 極限の定義から,以下が成立.

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in N, \quad n > N \implies 0 \le \left| \frac{a_{n+1}}{a_n} \right| < \rho + \epsilon$$

ここで、任意の $n \in \mathbb{N}$ について、

$$|a_n| = \overbrace{\left| \frac{a_n}{a_{n-1}} \right| \left| \frac{a_{n-1}}{a_{n-2}} \right| \cdots \left| \frac{a_N}{a_{N-1}} \right|}^{(n-N+1)} |a_{N-1}|$$

となる、したがって次のように命題がつながる。

$$\begin{array}{l} \forall \epsilon > 0, \quad ^{\exists}N \in \mathbb{N}, \\ \forall n \in \mathbb{N}, \quad n > N \implies 0 \leq \left|\frac{a_{n+1}}{a_n}\right| < \rho + \epsilon \\ \Longleftrightarrow \quad ^{\forall}n \in \mathbb{N}, \quad n > N \implies 0 \leq \left|\frac{a_{n+1}}{a_n}\right|, \left|\frac{a_n}{a_{n-1}}\right|, \ldots, \left|\frac{a_N}{a_{N-1}}\right| < \rho + \epsilon \\ \Longrightarrow \quad 0 \leq |a_n| < (\rho + \epsilon)^{n-N+1}|a_N| \\ \Longleftrightarrow \quad 0 \leq |a_n||z^n| < (\rho + \epsilon)^{n-N+1}|a_N||z^n| \\ \Longleftrightarrow \quad 0 \leq |a_n||z^n| < \frac{|z|^n}{(\rho + \epsilon)^{n-N+1}}|a_N| \\ \Longleftrightarrow \quad 0 \leq |a_n||z^n| < \left(\frac{|z|}{\frac{1}{\rho + \epsilon}}\right)^n (\rho + \epsilon)^{-N+1}|a_N| \end{array}$$

 $0<\rho<\infty$ の場合を考える.まず, $|z|<1/\rho$ となる任意の各 z に対して適切に ϵ をとれば t^{1} , $\left(\frac{|z|}{\rho+\epsilon}\right)<1$ となる.したがって.

$$\sum_{n=N}^{\infty} \left(\frac{|z|}{\frac{1}{\rho+\epsilon}} \right)^n (\rho+\epsilon)^{-N+1} |a_N| = (\rho+\epsilon)^{-N+1} |a_N| \sum_{n=N}^{\infty} \left(\frac{|z|}{\frac{1}{\rho+\epsilon}} \right)^n$$

となる. N は各 ϵ に対して定まる有限値だから、これは収束する. Weierstrass M-test により、冪級数の収束半径は $1/\rho$.

ho=0 の場合を考える.このときは 0 でない任意の z について,同様に $0<\epsilon<\frac{1}{|z|}$ の範囲の ϵ をとれば $\left(\frac{|z|}{\frac{1}{\epsilon}}\right)<1$ とすることができて,Weierstrass M-test により収束半径は ∞ となる.

最後に, $\rho=\infty$ の場合.ここまでほとんどこのケースの考察はしていないことに注意しておく.しかし同様の議論をすると $\lim_{n\to\infty}|a_n|=\infty$ がわかる.したがって命題 $\sum_{n=0}^\infty a_n z^n<\infty$ $\implies \lim_{n\to\infty}|a_n z^n|=0$ の対偶より,冪級数は発散する.

これは $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots$ のように、十分先の項でも係数が 0 になることがあるとそのままでは使えない. しかし $\sin z$ や $\cos z$ には以下のように変形するとこの方法が使える.

$$\sin z$$

$$= 1 \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$

$$= (z \cdot 1/z) \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$

$$= z \cdot \left(1/z \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \right)$$

$$= z \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n}$$

そこで、 $S(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^n$ の収束半径を考える. 以下の計算から、これの収束半径は ∞ と分かる.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{2n(2n+1)} = 0$$

したがって $\sin z = zS(z^2)$ の収束半径は $(\infty)^{1/2} = \infty$ であることが示される.

 $^{^{+1}}$ $|z| \neq 0$ ならば $0 < \epsilon < rac{1}{|z|} -
ho$ の範囲にある ϵ を,例えば $rac{1}{2} \left(rac{1}{|z|} -
ho
ight)$ をとる.