Indian Institute of Science Education and Research Mohali

MTH101 (Symmetry)

Tutorial Sheet 08 / March 15, 2022

Spring 2022

1. Consider the group $GL_3(\mathbb{R})$ (of 3×3 matrices whose entries are real numbers, under multiplication of matrices) and the set \mathbb{R}^3 (of triplets of real numbers). For $A \in GL_3(\mathbb{R})$ and $(a,b,c) \in \mathbb{R}^3$, define

$$A.(a,b,c) := A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

- (a) Show that above is an action of $GL_3(\mathbb{R})$ on \mathbb{R}^3 .
- (b) What is the orbit of (1,2,3)? Is it true that the orbit of (1,2,3) is same as that of (-1,-2,-3)?
- (c) Apart from the identity element of $GL_3(\mathbb{R})$, find an element in the stabilizer of (1, 2, 3). How many elements are there in this stabilizer?
- (d) Take the 3×3 rotation matrix $R_{x,\theta}$. Find all $P := (a, b, c) \in \mathbb{R}$ such that the stabilizer of P contains $R_{x,\theta}$.
- 2. Consider the group S_4 , consisting of permutations of four elements 1, 2, 3, 4. Show that the permutation action of S_4 on $S := \{1, 2, 3, 4\}$ has only one orbit. Determine the stabilizer of $3 \in S$. Show that $\# orbit(3) \times \# stab(3) = \# S_4$. Here the symbol # signifies the number of elements.