Wired LANs Ethernet (IEEE 802.3 Standard)

Sachin Gajjar sachin.gajjar@nirmauni.ac.in

Reading Material

- DATA COMMUNICATIONS AND NETWORKING, Fourth Edition by Behrouz A. Forouzan, Tata McGraw-Hill
 - Chapter 13 Wired LANs, Topics 13.2, 13.4, 13.5

STANDARD ETHERNET

- For setting up a Wired Local Area Network
- In 1976 by Xerox's Palo Alto Research Center
- Defines Data Link layer, Physical layer
- Now

Data link layer

Medium Access Control

Ethernet Shield for Arduino

Frame Format

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)

Frame Fields - Preamble

- 7 bytes (56 bits) of alternating 0s and 1s
- alerts receiving system to the coming frame
- enables it to synchronize its input timing
- 56-bit pattern allows stations to miss some bits at the beginning of the frame
- added at physical layer and is not (formally) part of frame

Frame Fields - Start frame delimiter (SFD)

- 1 byte: 10101011
- signals beginning of frame
- warns station/stations that this is the last chance for synchronization
- last 2 bits is 11 to alert receiver that next field is destination address

Frame Fields - Destination address (DA) Source address (SA).

- Physical Address
- Destination address (DA).
 - 6 bytes
 - contains physical address of destination station or stations to receive the packet
- Source address (SA)
 - 6 bytes
 - contains physical address of sender of the packet

Physical Addressing

- Each station on Ethernet network (PC, workstation, printer) has its own network interface card (NIC)
- NIC provides station with a 6-byte (48 bits) physical address
- written in hexadecimal notation, with a colon between bytes

6 bytes = 12 hex digits = 48 bits

How to find MAC/NIC/Physical address?

getmac /v

ipconfig /all Gigabit Ethernet (GbE)

```
Media State . . . . . . . : Media disconnected
Connection-specific DNS Suffix . :
Description . . . . . . : Realtek PCIe GbE Family Controller
Physical Address . . . . . : 88-A4-C2-A3-80-30
DHCP Enabled . . . . : No
Autoconfiguration Enabled . . . : Yes
```

Unicast, Multicast, Broadcast

- Source address is always a unicast address
- Destination address
 - Least significant bit of first byte in a destination
 address = 0 → address is unicast
 - Otherwise, it is multicast
 - All bits = $1 \rightarrow$ broadcast destination address

Example

Define type of following destination addresses:

a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE

c. FF:FF:FF:FF:FF

Solution

LSB of first byte (4A) tells type of address If it is even number, in binary LSB = 0, address is unicast If it is odd number, in binary LSB = 1, address is multicast

If all digits F's, address is broadcast

- a. unicast address because A (10) in binary is 1010
- b. multicast address because 7 in binary is 01111
- c. broadcast address because all digits are F's

Frame Fields - Length or Type

- Original Ethernet used to define upper-layer protocol using MAC frame (TYPE)
- IEEE standard used to define number of bytes in the data field (LENGTH)
- Both uses are common today

Minimum and Maximum frame length

- Reasons for maximum length restriction
- Memory was expensive when Ethernet was designed: a maximum length restriction helped to reduce size of buffer for frame storage
- Maximum length restriction prevents one station from monopolizing shared medium, blocking other stations that have data to send

Example

A network using CSMA/CD has a bandwidth of 10 Mbps. If maximum propagation time (including the delays in the devices) is 25.6 μ s, what is minimum size of frame?

Solution

- The frame transmission time is $T_{fr} = 2 \times T_p = 51.2$ μs .
- This means, in worst case, a station needs to transmit for a period of 51.2 µs to detect collision.
- Transmission time=Message size/BW
- Minimum size of frame = 10 Mbps \times 51.2 μ s = 512 bits or 64 bytes
- This is frame size of Ethernet

Frame Fields – Data and CRC

Data

- data encapsulated from upper-layer protocols
- It is a minimum of 46 and a maximum of 1500 bytes

• CRC

Contains error detection information, CRC-32 algorithm

No Acknowledgement

- Ethernet does not provide any mechanism for acknowledging received frames
- Less needed as it's a wired media not wireless
- Acknowledgments must be implemented at the higher layers

Access Method: CSMA/CD

Standard Ethernet uses 1-persistent CSMA/CD

Physical Layer

- Several physical layer implementations
- Most common are

Digital To Digital Conversion

- Line coding converts digital data to digital signals
- Data (text, number, image, video) in computer memory as 1s/0s → Line Coding→ converted to digital signals (+V, 0, -V)
- At sender, digital data are encoded into a digital signal
- At receiver, digital signal decoded to get back digital

Synchronization

- To correctly interpret signals received from sender, receiver's bit intervals must correspond exactly to sender's bit intervals
- If receiver clock is faster or slower, bit intervals are not matched and receiver might misinterpret signals

Problem if there is no Synchronization

Eg. Receiver has a shorter bit duration

- sender sends 10110001
- receiver receives 110111000011

Self-synchronization

- A self-synchronizing digital signal includes timing information in data being transmitted
- Can happen if there are transitions in signal that alert receiver to beginning, middle, or end of pulse
- If receiver's clock is out of synchronization, these points can reset the clock
- Manchester encoding is self-synchronous

Encoding and Decoding

- All standard implementations use digital signaling (baseband) at 10 Mbps
- Baseband signaling means no modulation is done, signal transmitted in its original form
- At sender, data converted to a digital signal using Manchester scheme
- At the receiver, received signal is interpreted as Manchester and decoded into data

Manchester encoding

- Transition at middle of the bit is used for both synchronization and bit representation
- Manchester encoding is self-synchronous

Encoding in a Standard Ethernet implementation

10Base5: Thick Ethernet

- First implementation is called 10Base5, thick Ethernet, Thicknet.
- Nickname due to size of cable, roughly size of a garden hose, too stiff to bend with hands.
- Uses bus topology with external transceiver connected via a tap to a thick coaxial cable.

Connection of a station to medium using 10Base5

10Base5 implementation

- Transceiver is responsible for transmitting, receiving, detecting collisions.
- Transceiver connected to station via a transceiver cable that provides separate paths for sending and receiving
- Thus collision can only happen in coaxial cable.
- Maximum length of coaxial cable must not exceed 500 m
- Otherwise, there is excessive degradation of signal.
- If a length of > 500 mtr is needed repeaters are required
- Can go up to 5 segments, each a maximum of 500 mtr

10Base2: Thin Ethernet

- 10Base2, Thin Ethernet, Cheapernet
- Uses a bus topology
- Cable is much thinner and more flexible
- Cable can be bent to pass very close to stations
 - Installation is easy
- Transceiver is part of network interface card (NIC), which is installed inside the station

10Base2: Thin Ethernet

- Collision occurs in thin coaxial cable
- Cable is less expensive than thick coaxial
- Tee connections are cheaper than taps
- Length of each segment cannot exceed 185 m due to attenuation in thin coaxial cable

10Base2 implementation

Connection of stations to medium using 10Base2

10Base- T Twisted-Pair Ethernet

- Uses star topology
- Stations are connected to hub via two pairs of twisted cable
- 2 pairs of twisted cable create 2 paths (one for sending, one for receiving) between station and hub
- Collision here happens in hub
- Maximum length of cable=100 mtr to minimize effect of attenuation in cable

10Base-T implementation

Hub

- Physical layer device
- Multiport repeater
- A data frame received at a port, is repeated and broadcasted to every other port

Two layer Switch

- Physical and data link layer device
- Makes a filtering decision based on MAC address of frame it received
- Can have a buffer to hold frames for processing

10Base-F: Fiber Ethernet

- Uses star topology to connect stations to a hub.
- Stations are connected to hub using two fiberoptic cables

Summary of Standard Ethernet implementations

Characteristics	10Base5	10Base2	10Base-T	10Base-F
Media	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber
Maximum length	500 m	185 m	100 m	2000 m
Line encoding	Manchester	Manchester	Manchester	Manchester

FAST ETHERNET

- IEEE 802.3u
- backward-compatible with Standard Ethernet
- can transmit data 10 times faster at a rate of 100 Mbps

Goals of Fast Ethernet

- 1. Upgrade data rate to 100 Mbps.
- 2. Make it compatible with Standard Ethernet.
- 3. Keep the same 48-bit address
- 4. Keep the same frame format.
- 5. Keep the same minimum and maximum frame lengths.

MAC Sublayer

- Main consideration Keep the MAC sublayer untouched
- Keep only the star topology
- For star topology, there are two choices
 - In half-duplex approach, stations are connected via a hub
 - In full-duplex approach, connection is made via a switch with buffers at each port
- Access method is CSMA/CD

Autonegotiation

- It allows a station or a hub a range of capabilities.
- Allows two devices to negotiate the mode (half/full duplex) or data rate of operation.
- Allows incompatible devices to connect to one another
 - eg. A device with capacity of 10 Mbps can communicate with a device with a 100 Mbps capacity (but can work at a lower rate)
- To allow one device to have multiple capabilities (encoding)
- To allow a station to check a hub's capabilities (ports etc.)

Physical Layer

Topology

a. Point-to-point

b. Star

Fast Ethernet implementations

100Base-TX

- Uses 2 pairs of twisted-pair cable (category 5 UTP or STP)
- Multiline transmission, three level (MLT-3) scheme is used for encoding
- It uses 3 levels (+V, 0, V) and 3 transition rules to move between levels
 - 1. If next bit is 0, there is no transition.
 - 2. If next bit is 1 and current V level is not 0, next level is 0.
 - 3. If next bit is 1 and current V level is 0, next level is opposite of last nonzero level

Multitransition: MLT-3 scheme

Why MLT-3 is used in 100Base-TX?

- Shape of signal in MLT-3 helps to reduce required bandwidth
- Worst-case scenario is a sequence of 1s
- Signal element pattern +V,0,- V,0 is repeated every 4 bits
- Nonperiodic signal has changed to a periodic signal with the period equal to 4 times the bit duration
- This can be simulated as an analog signal with a frequency one-fourth of bit rate
- i.e Signal rate for MLT-3 = One-fourth bit rate
- For 100 Mbps, Signal rate = ¼ x 100 = 25 MHz
- Copper wire cannot support more than 32 MHz (frequencies above this level create electromagnetic emissions)
- MLT-3 is not a self-synchronous line coding scheme

Block Coding

- Put redundancy to ensure synchronization and to provide some kind of inherent error detecting
- Block coding gives redundancy and improves performance of line coding

Block (mB/nB) coding replaces each m-bit group with an n-bit group
 Division of a stream into m-bit groups

Combining n-bit groups into a stream

Block coding 4B/5B with MLT-3 line coding

- MLT-3 is not a self-synchronous line coding scheme
- 4B/5B block coding is used to provide bit synchronization by preventing occurrence of a long sequence of 0 s and 1 s
- Every 4 bits are replaced by 5 bits and it is assured that there are no consecutive 0s or 1s
- This creates a data rate of 125 Mbps, which is fed into MLT-3 for encoding

Encoding and decoding in 100Base-TX

2 pairs of twisted-pair cable

100Base-FX

- uses two pairs of fiber-optic cables
- NRZ-I encoding scheme is used
- NRZ-I has a bit synchronization problem for long sequences of 0s or 1 s
- A long sequence of 0s can make the receiver clock lose synchronization.
- To overcome this problem, 4B/5B block encoding is used
- The block-coded stream does not have more that three consecutive 0s
- The block encoding increases the bit rate from 100 to 125
 Mbps, which can easily be handled by fiber-optic cable

NRZ-L and NRZ-I schemes

O No inversion: Next bit is 0 • Inversion: Next bit is 1

In NRZ-L the level of the voltage determines the value of the bit. In NRZ-I the inversion (for 1) or the lack of inversion (for 0) determines value of bit.

Encoding and decoding in 100Base-FX

At the receiver, the NRZ-I encoded digital signal is first decoded into a stream of bits and then decoded to remove the redundancy.

Summary of Fast Ethernet implementations

Characteristics	100Base-TX	100Base-FX
Media	Cat 5 UTP or STP	Fiber
Number of wires	2	2
Maximum length	100 m	100 m
Block encoding	4B/5B	4B/5B
Line encoding	MLT-3	NRZ-I

GIGABIT ETHERNET (802.3z)

- 1. Upgrade data rate to 1 Gbps.
- 2. Make it compatible with Standard or Fast Ethernet.
- 3. Use same 48-bit address.
- 4. Use same frame format.
- 5. Keep same minimum and maximum frame lengths.
- 6. To support autonegotiation as defined in Fast Ethernet.

Gigabit Ethernet - MAC Sublayer

- Full-duplex mode
- Switch connected to computers/other switches
- Each switch has buffers for each input port to store data until they are transmitted
- Thus no collision and CSMA/CD is not used
- Lack of collision implies
 - maximum length of cable is determined by signal attenuation in cable, not by CD process (Slot time rule is not required here)

Gigabit Ethernet - MAC Sublayer

- Half-Duplex Mode
- To have it compatible with previous generations
 Ethernet
- Switch replaced by a hub, which acts as common cable in which a collision might occur
- Uses CSMA/CD brings slot time rule

Slot Time and Minimum Frame Size

- Slot time = minimum time a station must transmit a single frame for
- This means a frame cannot be too small or a station would not be able to transmit for long enough to abide by slot-time rule
- The reason a station has to transmit continuously for a particular length of time is (slot time rule):

Slot time rule

- Suppose station is transmitting frame and collision occurs at the far end of network
- Transmitting station will only be able to detect collision when collision wave has propagated back again
- This takes time
- If sending station finishes transmitting before collision wave makes it back to it, then it will not realize a collision has occurred
- Slot time rule makes sure a transmitting station transmits for a long enough period of time, so it can detect any returning collision wave

Slot time for 10/100 Mbps Ethernet

- For 10/100 Mbps Ethernet networks, slot time is 512 bit times
- A bit time is time it takes for a transmitter to send a single bit out onto the medium
- Gigabit Ethernet can send out bits at a faster rate than 10/100 Mbps Ethernet
- If slot time for Gigabit Ethernet was also 512 bit times, then transmission time period would not be long enough for a station to detect collision waves
- So the slot time for Gigabit Ethernet is 4096 bit times

Slot time for 10/100 Mbps Ethernet

- To think about what slot and bit time means, consider Ethernet frame
- If a transmitter has to transmit 512 bits of data to satisfy slot time, how many bytes is that?
- Which frame fields below must be transmitted to satisfy slot time rule?

Slot time and Frame Size in 10/100 Mbps Ethernet

Ethernet II Frame

preamble	destination	source	type	data/pad	FCS
8	6	6	2	46 - 1500	4

- For 512 bits (64 bytes), transmitter must send out destination source, type, FCS fields (6+6+2+4=18 bytes)
- Preamble is not part of frame so not considered
- To satisfy slot time (64 bytes), a transmitter must send out at least 46 (64-18) more bytes of data
- This is why there is 46 byte minimum size for the data/pad field of a frame - to ensure that slot time is satisfied
- Station is not allowed to transmit a frame shorter in length than this

Slot time and Frame Size in Gigabit Ethernet

- Gigabit Ethernet has problem with 512 bit slot time used on 10/100 Mbps Ethernet
- It can transmit 512 bits on medium so quickly, that signal would travel less than 100 mts before station stopped transmitting
- Thus station would have stopped transmitting way before any collision wave made its way back along a 100 m of cable.

Slot time and Frame Size in Gigabit Ethernet

- So, slot time for Gigabit Ethernet was increased to 4096 bit times - this is 512 bytes of data
- If a short frame is to be transmitted that meets the minimum data/pad field length of an Ethernet frame (46 bytes) but is too short to meet slot time requirements (512 bytes), then an "carrier extension field" is added to the frame
- The extension field helps bring the total transmission size up to the required 512 bytes.
- Any extension field is discarded by the receiving station

Carrier Extension

SFD : Start of Frame Delimiter

DA: Destination Address

SA: Source Address

FC8 : Frame Check Sequence

Fig 1. Ethernet Frame Format with Carrier Extension

Frame Bursting

- Carrier Extension wastes bandwidth as up to 448 padding bytes may be sent for small packets (64 bytes size)
- Frame Bursting is "Carrier Extension plus a burst of packets"
- When a station has a number of packets to transmit, first packet is padded to slot time using carrier extension.
- Subsequent packets are transmitted back to back, with minimum Inter-packet gap (IPG) until a burst timer (of 1500 bytes) expires (the maximum payload is 1500 bytes offered by ethernet frame)

Gigabit Ethernet - Physical Layer

a. Point-to-point

- b. Star
- Switch Switch

c. Two stars

d. Hierarchy of stars

- Topology
- Can be Hub or **Switch**

Encoding in Gigabit Ethernet Two wire case

- 1000BaseSX, 1000BaseLX
- Two wire one fiber for sending and one for receiving
- Two-wire implementations uses NRZ scheme
- NRZ does not self-synchronize properly
- To synchronize bits, at this high data rate, 8B/10B block encoding is used.
- It prevents long sequences of 0s or 1s in the stream, the resulting stream is 1.25 Gbps

Encoding in Gigabit Ethernet

1000Base-SX, 1000Base-LX, and 1000Base-CX

Two fibers or two STPs

Encoding in Gigabit Ethernet Four wire case

1000BaseT

UTP cables used

Four wire implementation

- All four wires are involved in input/output each carries 250 Mbps (capacity of Cat-5 UTP)
- 4D-PAM5 encoding is used to reduce BW and bring it to that offered by UTP

4D-PAM5 encoding

- 4 dimensional 5 level pulse amplitude modulation
- data transmitted over four wires simultaneously
- 5 voltage levels are used to represent these data viz. -2, -1, 0, 1 and 2
- Level '0' is used for forward error detection
- All 8 bits are fed into wire simultaneously and are transmitted using one signal element

4D-PAM5: Gigabit Ethernet: 1000Base-T

(Four-Dimensional Five-level Pulse Amplitude Modulation)

1 voltage level = 2 bits

Encoding in Gigabit Ethernet

1000Base-T

Summary of Gigabit Ethernet implementations

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
Media	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
Number of wires	2	2	2	4
Maximum length	550 m	5000 m	25 m	100 m
Block encoding	8B/10B	8B/10B	8B/10B	
Line encoding	NRZ	NRZ	NRZ	4D-PAM5

Ten-Gigabit Ethernet (802.3ae)

Goals

- Upgrade the data rate to 10 Gbps.
- Make it compatible with Standard, Fast, Gigabit Ethernet.
- Use same 48-bit address.
- Use same frame format.
- Keep same minimum and maximum frame lengths.
- Allow interconnection of existing LANs into MAN/WAN
- Make Ethernet compatible with technologies such as Frame Relay and ATM

Ten-Gigabit-MAC Sublayer

- Operates in full duplex mode which means there is no need for contention
- CSMA/CD is not used

Ten-Gigabit-Physical Layer

for using fiber-optic cable over long distances

Characteristics	10GBase-S	10GBase-L	10GBase-E
Media	Short-wave 850-nm multimode	Long-wave 1310-nm single mode	Extended 1550-mm single mode
Maximum length	300 m	10 km	40 km

Thank You!