Mục lục

LÒ XO	15
Chủ đề 1. Liên hệ giữa lực tác dụng, độ giãn và độ cứng của lò xo	1:
1. Cho biết lực kéo F , độ cứng k : tìm độ giãn Δl_0 , tìm l	1:
2. Cắt lò xo thành n phần bằng nhau (hoặc hai phần không bằng nhau): tìm độ cứng của mỗi phần	1.
Chủ đề 2. Viết phương trình dao động điều hòa của con lắc lò xo	1.
Chủ đề 3. Chứng minh một hệ cơ học dao động điều hòa	1
1.Phương pháp động lực học	1
2.Phương pháp định luật bảo toàn năng lượng	1
Chủ đề 4. Vận dụng định luật bảo toàn cơ năng để tìm vận tốc	1
Chủ đề 5. Tìm biểu thức động năng và thế năng theo thời gian	1
$\mathbf{Ch\mathring{u}}$ đề 6. Tìm lực tác dụng cực đại và cực tiểu của lò xo lên giá treo hay giá đ \mathring{o}	1
1.Trường hợp lò xo nằm ngang	1
2.Trường hợp lò xo treo thẳng đứng	1
3.Chú ý	1
Chủ đề 7. Hệ hai lò xo ghép nối tiếp: tìm độ cứng $k_{\rm h\hat{e}}$, từ đó suy ra chu kỳ T	1
Chủ đề 8. Hệ hai lò xo ghép song song: tìm độ cứng $k_{\rm hệ}$, từ đó suy ra chu kỳ T	1
Chủ đề 9. Hệ hai lò xo ghép xung đối: tìm độ cứng $k_{\rm hệ}$, từ đó suy ra chu kỳ T	1
Chủ đề 10. Con lắc liên kết với ròng rọc(không khối lượng): chứng minh rằng hệ dao động điều hòa, từ đó suy ra chu kỳ T	1
1. Hòn bi nối với lò xo bằng dây nhẹ vắt qua ròng rọc	1
2. Hòn bi nối với ròng rọc di động, hòn bi nối vào dây vắt qua ròng rọc	1
3.Lò xo nối vào trục ròng rọc di động, hòn bi nối vào hai lò xo nhờ dây vắt qua ròng rọc	19

Chủ đề 11.Lực hồi phục gây ra dao động điều hòa không phải là lực đàn hồi như: lực đẩy Acximet, lực ma sát, áp lực thủy tỉnh, áp lực của chất khí: chứng minh	20
hệ dao động điều hòa	20
	20
$2.\vec{F}$ là lực ma sát	20
3.Áp lực thủy tỉnh	21
$4.ec{F}$ là lực của chất khí $\dots\dots\dots\dots\dots\dots$	21
Phần2 . PHƯƠNG PHÁP GIẢI TOÁN VỀ DAO ĐỘNG ĐIỀU HÒA CỦA CON LẮC ĐƠN	22
Chủ đề 1. Viết phương trình dao động điều hòa của con lắc đơn	22
Chủ đề 2. Xác định độ biến thiên nhỏ chu kỳ ΔT khi biết độ biến thiên nhỏ gia tốc trọng trường Δg , độ biến thiên chiều dài Δl	22
Chủ đề 3. Xác định độ biến thiên nhỏ chu kỳ ΔT khi biết nhiệt độ biến thiên nhỏ Δt ; khi đưa lên độ cao h ; xuống độ sâu h so với mặt biển	23
1. Khi biết nhiệt độ biến thiên nhỏ Δt	23
2. Khi đưa con lắc đơn lên độ cao h so với mặt biển	23
3. Khi đưa con lắc đơn xuống độ sâu h so với mặt biển	23
Chủ đề 4. Con lắc đơn chịu nhiều yếu tố ảnh hưởng độ biến thiên của chu kỳ: tìm điều kiện để chu kỳ không đổi	24
1.Điều kiện để chu kỳ không đổi	24
2.Ví dụ:Con lắc đơn chịu ảnh hưởng bởi yếu tố nhiệt độ và yếu tố độ cao	24
Chủ đề 5. Con lắc trong đồng hồ gõ giây được xem như là con lắc đơn: tìm độ nhanh hay chậm của đồng hồ trong một ngày đêm	24
Chủ đề 6. Con lắc đơn chịu tác dụng thêm bởi một ngoại lực \vec{F} không đổi: Xác định chu kỳ dao động mới T'	25
$1.ec{F}$ là lực hút của nam châm $\dots\dots\dots\dots\dots\dots\dots\dots\dots$	25
$2.ec{F}$ là lực tương tác Coulomb	25
$3.ec{F}$ là lực điện trường	25
$4.ec{F}$ là lực đẩy Acsimet	26
$5.ec{F}$ là lực nằm ngang $\ldots\ldots\ldots\ldots\ldots$	26
Chủ đề 7. Con lắc đơn treo vào một vật (như ôtô, thang máy) đang chuyển động với gia tốc \vec{a} : xác định chu kỳ mới T'	26
1.Con lắc đơn treo vào trần của thang máy (chuyển động thẳng đứng) với gia tốc \vec{a}	27
2. Con lắc đơn treo vào trần của xe ô tô đang chuyển động ngang với gia tốc \vec{a} .	27

		ào trần của xe ôtô đang chuyể góc α :	
Chủ		ăng E_{d} thế năng E_{t} , cơ năng của \ldots	· · · · · · · · · · · · · · · · · · ·
Chủ		c dài v và lực căng dây $\mathcal T$ tại vị t $\ldots\ldots\ldots\ldots$	
	1. Vận tốc dài v tại C		
	2.Lực căng dây \mathcal{T} tại \mathcal{T}	C	
	3.Hệ qủa: vận tốc và l	ực căng dây cực đại và cực tiểu	
Chủ	đề 10. Xác định biên đ	tộ góc $lpha'$ mới khi gia tốc trọng t	rường thay đổi từ g sang g'
Chủ	•	xỳ và biên độ của con lắc đơn v ằng	
	1.Tìm chu kỳ T		
	2.Tìm biên độ mới sau	ı khi vướng đinh	
Chủ		gian để hai con lắc đơn trở lại v nuyển động cùng chiều)	
Chủ		ao động thì bị dây đứt:khảo sát	
	1.Trường hợp dây đứt	khi đi qua vị trí cân bằng O	
	2.Trường hợp dây đứt	khi đi qua vị trí có li giác α	
Chủ	•	hòn bi va chạm đàn hồi với một bi sau va chạm?	
	PHƯƠNG PHÁP GIẢ HỌC	I TOÁN VỀ DAO ĐỘNG TẮT	DẦN VÀ CỘNG HƯỞNG
Chủ		o động tắt dần: biên độ giảm dần	=
Chủ		động tắt dần: biên độ góc giảm c q. Năng lượng cung cấp để duy	
Chủ	đề 3. Hệ dao động cư điều kiện để có hiện tư	ỡng bức bị kích thích bởi một r ượng cộng hưởng	ngoại lực tuần hoàn: tìm
	. PHƯƠNG PHÁP G DA SÓNG, SÓNG DÙI	IẢI TOÁN VỀ SỰ TRUYỀN NG, SÓNG ÂM	SÓNG CƠ HỌC, GIAO
Chủ	Tìm bước sóng khi biế	giữa hai điểm cách nhau d trên n t độ lệch pha và giới hạn của bư ương trình sóng tại một điểm .	ớc sóng,(tần số, vận tốc
		a hai điểm cách nhau d trên một	
	, , r 010		1 0

2.Tìm bước sóng khi biết độ lệch pha và giới hạn của bước sóng,(tần số, vận tốc truyền sóng)	35
3. Viết phương trình sóng tại một điểm trên phương truyền sóng	35
4.Vận tốc dao động của sóng	35
Chủ đề 2. Vẽ đồ thị biểu diễn quá trình truyền sóng theo thời gian và theo không gia	n 36
1.Vẽ đồ thị biểu diễn qúa trình truyền sóng theo thời gian	36
2.Vẽ đồ thị biểu diễn qúa trình truyền sóng theo không gian (dạng của môi trường)	36
Chủ đề 3. Xác định tính chất sóng tại một điểm M trên miền giao thoa $\dots \dots$	36
Chủ đề 4. Viết phương trình sóng tại điểm M trên miền giao thoa	37
Chủ đề 5. Xác định số đường dao động cực đại và cực tiểu trên miền giao thoa	37
Chủ đề 6. Xác định điểm dao động với biên độ cực đại (điểm bụng) và số điểm dao động với biên độ cực tiểu (điểm nút) trên đoạn S_1S_2	38
Chủ đề 7. Tìm qũy tích những điểm dao động cùng pha (hay ngược pha) với hai nguồn S_1, S_2	38
Chủ đề 8. Viết biểu thức sóng dừng trên dây đàn hồi	38
Chủ đề 9.Điều kiện để có hiện tượng sóng dừng, từ đó suy ra số bụng và số nút sóng	39
1.Hai đầu môi trường (dây hay cột không khí) là cố định	39
2. Một đầu môi trường (dây hay cột không khí) là cố định, đầu kia tự do	39
3. Hai đầu môi trường (dây hay cột không khí) là tự do	40
Chủ đề 10.Xác định cường độ âm (I) khi biết mức cường độ âm tại điểm. Xác định công suất của nguồn âm? Độ to của âm	40
1.Xác định cường độ âm (I) khi biết mức cường độ âm tại điểm	40
2.Xác định công suất của nguồn âm tại một điểm:	40
3.Độ to của âm:	41
Phần5 . PHƯƠNG PHÁP GIẢI TOÁN VỀ MẠCH ĐIỆN XOAY CHIỀU KHÔNG PHÂN NHÁNH (RLC)	G 42
Chủ đề 1. Tạo ra dòng điện xoay chiều bằng cách cho khung dây quay đều trong từ trường, xác định suất điện động cảm ứng e(t)? Suy ra biểu thức cường độ dòng điện i(t) và hiệu điện thế u(t)	42
Chủ đề 2. Đoạn mạch RLC : cho biết $i(t) = I_0 \sin(\omega t)$, viết biểu thức hiệu điện thế $u(t)$. Tìm công suất $P_{\rm mạch}$	42
Chủ đề 3. Đoạn mạch RLC : cho biết $u(t) = U_0 \sin(\omega t)$, viết biểu thức cường độ dòng điện $i(t)$. Suy ra biểu thức $u_R(t)$? $u_L(t)$? $u_C(t)$?	42

Chủ	đề 4. Xác định độ lệch pha giữa hai hđt tức thời u_1 và u_2 của hai đoạn mạch khác nhau trên cùng một dòng điện xoay chiều không phân nhánh? Cách vận dụng?	43
Chủ	đề 5. Đoạn mạch RLC , cho biết U,R : tìm hệ thức L,C,ω để: cường độ dòng điện qua đoạn mạch cực đại, hiệu điện thế và cường độ dòng điện cùng pha, công suất tiêu thụ trên đoạn mạch đạt cực đại	43
	1.Cường độ dòng điện qua đoạn mạch đạt cực đại	43
	2. Hiệu điện thế cùng pha với cường độ dòng điện	44
	3. Công suất tiêu thụ trên đoạn mạch cực đại	44
	4.Kết luận	44
Chủ	$\mathbf{d\hat{e}}$ 6. Đoạn mạch RLC , ghép thêm một tụ C' : tìm C' để: cường độ dòng điện qua đoạn mạch cực đại, hiệu điện thế và cường độ dòng điện cùng pha, công suất tiêu thụ trên đoạn mạch đạt cực đại	44
Chủ	đề 7. Đoạn mạch RLC : Cho biết U_R, U_L, U_C : tìm U và độ lệch pha $\varphi_{u/i}$	45
Chủ	đề 8. Cuộn dây (RL) mắc nối tiếp với tụ C : cho biết hiệu điện thế U_1 (cuộn dây) và U_C . Tìm $U_{\rm mạch}$ và φ	45
Chủ	đề 9. Cho mạch RLC : Biết U, ω , tìm L , hay C , hay R để công suất tiêu thụ trên đoạn mạch cực đại	45
	1. Tìm L hay C để công suất tiêu thụ trên đoạn mạch cực đại $\ldots \ldots \ldots$	46
	2. Tìm R để công suất tiêu thụ trên đoạn mạch cực đại	46
Chủ	đề 10. .Đoạn mạch RLC : Cho biết U, R, f : tìm L (hay C) để U_L (hay U_C) đạt giá trị cực đại?	46
	1. Tìm L để hiệu thế hiệu dụng ở hai đầu cuộn cảm cực đại 	47
	$2. {\rm Tim} \ C$ để hiệu thế hiệu dụng ở hai đầu tụ điện cực đại $\ \ldots \ \ldots \ \ldots \ \ldots$	48
Chủ	đề 11. Đoạn mạch RLC : Cho biết U, R, L, C : tìm f (hay ω) để U_R, U_L hay U_C đạt giá trị cực đại?	49
	1. Tìm f (hay ω) để hiệu thế hiệu dụng ở hai đầu điện trở cực đại $\ldots \ldots$	49
	2. Tìm f (hay ω) để hiệu thế hiệu dụng ở hai đầu cuộn cảm cực đại 	49
	3. Tìm f (hay ω) để hiệu thế hiệu dụng ở hai đầu tụ điện cực đại	49
Chủ	đề 12. Cho biết đồ thị $i(t)$ và $u(t)$, hoặc biết giản đồ vecto hiệu điện thế: xác định các đặc điểm của mạch điện?	50
	1. Cho biết đồ thị $i(t)$ và $u(t)$: tìm độ lệch pha $\varphi_{u/i}$	50
	2. Cho biết giản đồ vectơ hiệu điện thế: vẽ sơ đồ đoạn mạch? Tìm $U_{\rm mach}$	51
Chủ	đề 13. Tác dụng nhiệt của dòng điện xoay chiều: tính nhiệt lượng tỏa ra trên đoạn mạch?	51

Chủ	đề 14. Tác dụng hóa học của dòng điện xoay chiều: tính điện lượng chuyển qua bình điện phân theo một chiều? Tính thể tích khí Hiđrô và Oxy xuất hiện ở các điện cực?	51
	1. Tính điện lượng chuyển qua bình điện phân theo một chiều (trong 1 chu kỳ T , trong t)	51
	2. Tính thể tích khí Hiđ rô và Oxy xuất hiện ở các điện cực trong thời gian $t(s)$.	52
Chủ	đề 15. Tác dụng từ của dòng điện xoay chiều và tác dụng của từ trường lên dòng điện xoay chiều?	52
	1. Nam châm điện dùng dòng điện xoay chiều (tần số f) đặt gần dây thép căng ngang. Xác định tần số rung f' của dây thép	52
	2. Dây dẫn thẳng căng ngang mang dòng điện xoay chiều đặt trong từ trường có cảm ứng từ \vec{B} không đổi (vuông góc với dây): xác định tần số rung của dây f'	52
Phần6 .	PHƯƠNG PHÁP GIẢI TOÁN VỀ MÁY PHÁT ĐIỆN XOAY CHIỀU, BIẾN	
	à 2 ^ ·	53
Chủ	$\mathbf{d\hat{e}}$ 1. Xác định tần số f của dòng điện xoay chiều tạo bởi máy phát điện xoay chiều 1 pha	53
	1. Trường hợp roto của mpđ có p cặp cực, tần số vòng là n	53
	2. Trường hợp biết suất điện động xoay chiều (E hay E_o)	53
Chủ	đề 2. Nhà máy thủy điện: thác nước cao h , làm quay tuabin nước và roto của mpđ. Tìm công suất P của máy phát điện?	53
Chủ	đề 3. Mạch điện xoay chiều ba pha mắc theo sơ đồ hình Υ : tìm cường độ dòng trung hòa khi tải đối xứng? Tính hiệu điện thế U_d (theo U_p)? Tính P_t (các tải)	53
Chủ	đề 4. Máy biến thế: cho U_1, I_1 : tìm U_2, I_2	54
	1.Trường hợp các điện trở của cuộn sơ cấp và thứ cấp bằng 0, cuộn thứ cấp hở	54
	2.Trường hợp các điện trở của cuộn sơ cấp và thứ cấp bằng 0, cuộn thứ cấp có tải	54
	3. Trường hợp các điện trở của cuộn sơ cấp và thứ cấp khác 0:	55
Chủ	đề 5. Truyền tải điện năng trên dây dẫn: xác định các đại lượng trong quá trình truyền tải	55
Chủ	đề 6.Xác định hiệu suất truyền tải điện năng trên dây?	55
	PHƯƠNG PHÁP GIẢI TOÁN VỀ DAO ĐỘNG ĐIỆN TỰ DO TRONG CH LC	57
-	${ m d}{ m \hat{e}}$ 1. Dao động điện tự do trong mạch LC: viết biểu thức $q(t)$? Suy ra cường	58
Chủ	đề 2. Dao động điện tự do trong mạch LC, biết $u_C = U_0 \sin \omega t$, tìm $q(t)$? Suy ra $i(t)$?	58
Th.s Trần	n AnhTrung 6 Luyện thi đại h	оc

Chủ	đề 3. Cách áp dụng định luật bảo toàn năng lượng trong mạch dao đ	ộng LC	58
	1.Biết Q_0 (hay U_0) tìm biên độ I_0		58
	2.Biết Q_0 (hay U_0)và q (hay u), tìm i lúc đó		58
Chủ	đề 4. Dao động điện tự do trong mạch LC, biết Q_0 và I_0 :tìm chu kỳ riêng của mạch LC		59
Chủ	đề 5. Mạch LC ở lối vào của máy thu vô tuyến điện bắt sóng điện th f (hay bước sóng λ). Tìm $L($ hay $C)$		59
	1. Biết $f(\text{ sóng})$ tìm L và C		59
	2. Biết λ (sóng) tìm L và C		59
Chủ	đề 6. Mạch LC ở lối vào của máy thu vô tuyến có tụ điện có điện thiên $C_{max} \div C_{min}$ tương ứng góc xoay biến thiên $0^0 \div 180^0$: xác địn $\Delta \alpha$ để thu được bức xạ có bước sóng λ ?	h góc xoay	59
Chủ	đề 7. Mạch LC ở lối vào của máy thu vô tuyến có tụ xoay biến thiớ C_{min} : tìm dải bước sóng hay dải tần số mà máy thu được?		60
	PHƯƠNG PHÁP GIẢI TOÁN VỀ PHẢN XẠ ÁNH SÁNG CƯ NG VÀ GƯƠNG CẦU	ŮA GƯƠNG	61
	đề 1. Cách vẽ tia phản xạ trên gương phẳng ứng với một tia tới đã ch	ю?	61
	đề 2. Cách nhận biết tính chất "thật - ảo" của vật hay ảnh(dựa vào sáng)	các chùm	61
Chủ	đề 3. Gương phẳng quay một góc α (quanh trục vuông góc mặt phẳn góc quay của tia phản xạ?		61
	1. Cho tia tới cố định, xác định chiều quay của tia phản xạ		61
	2. Cho biết $SI=R$, xác định quãng đường đi của ảnh S'		61
	3. Gương quay đều với vận tốc góc ω : tìm vận tốc dài của ảnh		62
Chủ	đề 4. Xác định ảnh tạo bởi một hệ gương có mặt phản xạ hướng vào	nhau	62
Chủ	đề 5. Cách vận dụng công thức của gương cầu		63
	1. Cho biết d và AB : tìm d' và độ cao ảnh $A'B'$		63
	2.Cho biết d' và $A'B'$: tìm d và độ cao vật AB		63
	3. Cho biết vị trí vật d và ảnh d' xác định tiêu cự f		63
	4.Chú ý		63
Chủ	đề 6. Tìm chiều và độ dời của màn ảnh khi biết chiều và độ dời của	vật. Hệ qủa?	64
	1.Tìm chiều và độ dời của màn ảnh khi biết chiều và độ dời của vật		64
	2.Hệ qủa		64
Chủ	đề 7. Cho biết tiêu cự f và một điều kiện nào đó về ảnh, vật: xác địn d và vị trí ảnh d'		64
Th.s Trần	AnhTrung 7	Luyện thi đại l	học

1. Cho biết độ phóng đại k và f	64
2.Cho biết khoảng cách $l=\overline{AA'}$	64
Chủ đề 8. Xác định thị trường của gương (gương cầu lồi hay gương phẳng)	65
Chủ đề 9. Gương cầu lõm dùng trong đèn chiếu: tìm hệ thức liên hệ giữa vệt sáng tròn trên màn (chắn chùm tia phản xạ) và kích thước của mặt gương	65
Chủ đề 10. Xác định ảnh của vật tạo bởi hệ "gương cầu - gương phẳng"	65
1.Trường hợp gương phẳng vuông góc với trục chính	66
2. Trường hợp gương phẳng nghiêng một góc 45^{0} so với trục chính	66
Chủ đề 11. Xác định ảnh của vật tạo bởi hệ "gương cầu - gương cầu"	66
Chủ đề 12. Xác định ảnh của vật AB ở xa vô cùng tạo bởi gương cầu lõm \dots	67
Phần9 . PHƯƠNG PHÁP GIẢI TOÁN VỀ KHÚC XẠ ÁNH SÁNG, LƯỚNG CHẤT	
PHẮNG (LCP), BẢNG MẶT SONG SONG (BMSS), LĂNG KÍNH (LK)	69
Chủ đề 1. Khảo sát đường truyền của tia sáng đơn sắc khi đi từ môi trường chiết quang kém sang môi trường chiết quang hơn?	69
Chủ đề 2. Khảo sát đường truyền của tia sáng đơn sắc khi đi từ môi trường chiết quang hơn sang môi trường chiết quang kém?	69
Chủ đề 3. Cách vẽ tia khúc xạ (ứng với tia tới đã cho) qua mặt phẳng phân cách giữa hai môi trường bằng phương pháp hình học?	70
1.Cách vẽ tia khúc xạ	70
2.Cách vẽ tia tới giới hạn toàn phần	70
Chủ đề 4. Xác định ảnh của một vật qua LCP?	70
Chủ đề 5. Xác định ảnh của một vật qua BMSS?	
1.Độ dời ảnh	
2.Độ dời ngang của tia sáng	71
Chủ đề 6. Xác định ảnh của một vật qua hệ LCP- gương phẳng?	71
1.Vật A - LCP - Gương phẳng	71
2.Vật A nằm giữa LCP- Gương phẳng	72
Chủ đề 7. Xác định ảnh của một vật qua hệ LCP- gương cầu ?	72
Chủ đề 8. Xác định ảnh của một vật qua hệ nhiều BMSS ghép sát nhau?	72
Chủ đề 9. Xác định ảnh của một vật qua hệ nhiều BMSS - gương phẳng ghép song song?	73
1.Vật S - BMSS - Gương phẳng	73
2.Vật S nằm giữa BMSS - Gương phẳng	73
Chủ đề 10. Xác định ảnh của một vật qua hệ nhiều BMSS - gương cầu?	73
5 mm m, m m m m m m m m m m m m m m m m	

Chủ đề 11. Cho lăng kính (A,n) và góc tới i_1 của chùm sáng: xác định góc lệch D? .	7 4
Chủ đề 12. Cho lăng kính (A,n) xác định i_1 để $D=min$?	74
1.Cho A,n: xác định i_1 để D = min, D_{min} ?	74
2.Cho Avà D_{min} : xác định n?	74
3.Chú ý:	75
Chủ đề 13. Xác định điều kiện để có tia ló ra khỏi LK?	75
1.Điều kiện về góc chiếc quang	75
1.Điều kiện về góc tới	75
Phần10 . PHƯƠNG PHÁP GIẢI TOÁN VỀ THẤU KÍNH VÀ HỆ QUANG HỌC ĐỒNG TRỤC VỚI THẤU KÍNH	76
Chủ đề 1. Xác định loại thấu kính ?	76
1.Căn cứ vào sự liên hệ về tính chất, vị trí, độ lớn giữa vật - ảnh	76
2.Căn cứ vào đường truyền của tia sáng qua thấu kính	76
3.Căn cứ vào công thức của thấu kính	76
Chủ đề 2. Xác định độ tụ của thấu kính khi biết tiêu cự, hay chiếc suất của môi trường làm thấu kính và bán kính của các mặt cong	76
1.Khi biết tiêu cự f	76
2.Khi biết chiếc suất của môi trường làm thấu kính và bán kính của các mặt cong	76
Chủ đề 3. Cho biết tiêu cự f và một điều kiện nào đó về ảnh, vật: xác định vị trí vật d và vị trí ảnh d'	77
1. Cho biết độ phóng đại k và f	77
2.Cho biết khoảng cách $l=\overline{AA'}$	77
Chủ đề 4. Xác định ảnh của một vật AB ở xa vô cực	77
Chủ đề 5. Xác định ảnh của một vật AB ở xa vô cực	77
1.Cho biết khoảng cách "vật - ảnh" L , xác định hai vị trí đặt thấu kính	78
2. Cho biết khoảng cách "vật - ảnh " L , và khoảng cách giữa hai vị trí, tìm $f \ \ .$.	78
Chủ đề 6. Vật hay thấu kính di chuyển, tìm chiều di chuyển của ảnh	78
1.Thấu kính (O) cố định: dời vật gần (hay xa) thấu kính, tìm chiều chuyển dời của ảnh	78
2. Vật AB cố định, cho ảnh $A'B'$ trên màn, dời thấu kính hội tụ, tìm chiều chuyển dời của màn	78
Chủ đề 8. Liên hệ giữa kích thước vệt sáng tròn trên màn(chắn chùm ló) và kích thước của mặt thấu kính	79
Chủ đề 9. Hệ nhiều thấu kính mỏng ghép đồng trục với nhau, tìm tiêu cự của hệ	79

Chủ	đề 10. Xác định ảnh của một vật qua hệ " thấu kính- LCP"		79
	1.Trường hợp: AB - TK - LCP		79
	2.Trường hợp: AB - LCP - TK		80
Chủ	đề 11. Xác định ảnh của một vật qua hệ " thấu kính- BMSS"		80
	1.Trường hợp: AB - TK - BMSS		80
	2.Trường hợp: AB - LCP - TK		81
Chủ	đề 12. Xác định ảnh của một vật qua hệ hai thấu kính ghép đồng trụ	c	81
Chủ	đề 13. Hai thấu kính đồng trục tách rời nhau: xác định giới hạn của a hoặc $d_1 = \overline{O_1 A}$) để ảnh $A_2 B_2$ nghiệm đúng một điều kiện nào đó thật, ảnh ảo, cùng chều hay ngược chiều với vật AB)	(như ảnh	82
	1. Trường hợp A_2B_2 là thật (hay ảo)		82
	2. Trường hợp A_2B_2 cùng chiều hay ngược chiều với vật \dots		82
Chủ	đề 14. Hai thấu kính đồng trục tách rời nhau: xác định khoảng cách để ảnh cuối cùng không phụ thuộc vào vị trí vật AB		82
Chủ	đề 15. Xác định ảnh của vật cho bởi hệ "thấu kính - gương phẳng".		83
	1. Trường hợp gương phẳng vuông góc với trục chính		83
	$2. {\rm Trường}$ hợp gương phẳng nghiêng một góc 45^0 so với trục chính $$		83
	3. Trường hợp gương phẳng ghép xác thấu kính (hay thấu kính mạ b	pạc)	84
	4. Trường hợp vật AB đặt trong khoảng giữa thấu kính và gương phả	ing	84
Chủ	đề 16. Xác định ảnh của vật cho bởi hệ "thấu kính - gương cầu"		84
	1. Trường hợp vật AB đặt trước hệ " thấu kính - gương cầu "		85
	2.Trường hợp hệ "thấu kính- gương cầu" ghép sát nhau		85
	3. Trường hợp vật AB đặt giữa thấu kính và gương cầu:		85
•	. PHƯƠNG PHÁP GIẢI TOÁN VỀ MẮT VÀ CÁC DỤNG CỤ QỊ TRỢ CHO MẮT	UANG HỌC	89
Chủ	đề 1. Máy ảnh: cho biết giới hạn khoảng đặt phim, tìm giới hạn đặt	vật?	89
Chủ	đề 2. Máy ảnh chụp ảnh của một vật chuyển động vuông góc với t Tính khoảng thời gian tối đa mở của sập của ống kính để ảnh không	•	89
Chủ	đề 3. Mắt cận thị: xác định độ tụ của kính chữa mắt? Tìm điểm cực khi đeo kính chữa?	•	89
Chủ	đề 4. Mắt viễn thị: xác định độ tụ của kính chữa mắt? Tìm điểm cụ ξ_c khi đeo kính chữa?		90
Chủ	đề 5. Kính lúp: xác định phạm vi ngắm chừng và độ bội giác. Xác thước nhỏ nhất của vật AB_{min} mà mắt phân biệt được qua kính lúp		90
	1. Xác định phạm vi ngắm chừng của kính lúp		90
Th.s Trần	AnhTrung 10	Luyện thi đại l	học

	2.Xác định độ bội giác của kính lúp		91
	3. Xác định kích thước nhỏ nhất của vật AB_{min} mà mắt phân biệt chuy 1 lúp 1 1 1 1 1 1 1 1 1 1		92
Chủ	đề 6. Kính hiển vi: xác định phạm vi ngắm chừng và độ bội giác. Σ thước nhỏ nhất của vật AB_{min} mà mắt phân biệt được qua kính h		92
	1. Xác định phạm vi ngắm chừng của kính hiển vi		92
	2. Xác định độ bội giác của kính hiển vi		93
	3. Xác định kích thước nhỏ nhất của vật AB_{min} mà mắt phân biệt chiến vi		93
Chủ	đề 7. Kính thiên văn: xác định phạm vi ngắm chừng và độ bội giá	c?	94
	1. Xác định phạm vi ngắm chừng của kính thiên văn		94
	2. Xác định độ bội giác của kính thiên văn		94
Phần12	. PHƯƠNG PHÁP GIẢI TOÁN VỀ HIỆN TƯỢNG TÁN SẮC	ÁNH SÁNG	95
Chủ	đề 1. Sự tán sắc chùm sáng trắng qua mặt phân cách giữa hai môi sát chùm khúc xạ? Tính góc lệch bởi hai tia khúc xạ đơn sắc? .		95
Chủ	đề 2. Chùm sáng trắng qua LK: khảo sát chùm tia ló?		95
Chủ	đề 3. Xác định góc hợp bởi hai tia ló (đỏ, tím) của chùm cầu vồng Tính bề rộng quang phổ trên màn?		95
Chủ	đề 4. Chùm tia tới song song có bề rộng a chứa hai bứt xạ truyền khảo sát chùm tia lớ? Tính bề rộng cực đại a_{max} để hai chùm tia lợ		95
Phần13	. PHƯƠNG PHÁP GIẢI TOÁN VỀ GIAO THOA SÓNG ÁNH	I SÁNG	97
Chủ	đề 1. Xác định bước sóng λ khi biết khoảng vân i, a, D		97
Chủ	đề 2. Xác định tính chất sáng (tối) và tìm bậc giao thoa ứng với màn?		97
Chủ	đề 3. Tìm số vân sáng và vân tối quang sát được trên miền giao th	юа	97
Chủ	đề 4. Trường hợp nguồn phát hai ánh sáng đơn sắc. Tìm vị trí trên sự trùng nhau của hai vân sáng thuộc hai hệ đơn sắc?		98
Chủ	đề 5. Trường hợp giao thoa ánh sáng trắng: tìm độ rộng quang pánh sáng cho vân tối (sáng) tại một điểm (x_M) ?		98
	1. Xác định độ rộng quang phổ		98
	2. Xác định ánh sáng cho vân tối (sáng) tại một điểm (x_M)		98
Chủ	đề 6. Thí nghiệm giao thoa với ánh sáng thực hiện trong môi trư suất $n>1$. Tìm khoảng vân mới i^\prime ? Hệ vân thay đổi thế nào? .		98
Chủ	đề 7. Thí nghiệm Young: đặt bản mặt song song (e,n) trước khe S Tìm chiều và độ dịch chuyển của hệ vân trung tâm		98
Th.s Trần	a AnhTrung 11	Luyện thi đại l	học

Chủ đề 8. Thí nghiệm Young: Khi nguồn sáng di chuyển một đoạn $y = SS'$. Tìm chiều, độ chuyển dời của hệ vân(vân trung tâm)?	99
Chủ đề 9. Nguồn sáng S chuyển động với vân tốc \vec{v} theo phương song song với S_1S_2 : tìm tần số suất hiện vân sáng tại vân trung tâm O ?	99
Chủ đề 10. Tìm khoảng cách $a=S_1S_2$ và bề rộng miền giao thoa trên một số dụng	
cụ giao thoa?	99
1.Khe Young	99
2.Lưỡng lăng kính Frexnen	100
3.Hai nữa thấu kính Billet	100
4.Guong Frexnen	100
Phần14 . PHƯƠNG PHÁP GIẢI TOÁN VỀ TIA RƠNGHEN	101
Chủ đề 1. Tia Rơnghen: Cho biết vận tốc v của electron đập vào đối catot: tìm U_{AK}	101
Chủ đề 2. Tia Rơnghen: Cho biết vận tốc v của electron đập vào đối catot hoặt U_{AK} : tìm tần số cực đại F_{max} hay bước sóng λ_{min} ?	101
Chủ đề 3. Tính lưu lượng dòng nước làm nguội đối catot của ống Ronghen:	101
Phần15 . PHƯƠNG PHÁP GIẢI TOÁN VỀ HIỆN TƯỢNG QUANG ĐIỆN	103
Chủ đề 1. Cho biết giới hạn quang điện (λ_0) . Tìm công thoát A (theo đơn vị eV)? .	103
Chủ đề 2. Cho biết hiệu điện thế hãm U_h . Tìm động năng ban đầu cực đại (E_{dmax}) hay vận tốc ban đầu cực đại (v_{0max}) , hay tìm công thoát A ?	103
1.Cho U_h : tìm $E_{\mathtt{dmax}}$ hay v_{0max}	103
2.Cho U_h và λ (kích thích): tìm công thoát A :	103
Chủ đề 3. Cho biết v_{0max} của electron quang điện và λ (kích thích): tìm giới hạn quang điện λ_0 ?	103
Chủ đề 4. Cho biết công thoát A (hay giới hạn quang điện λ_0) và λ (kích thích): Tìm v_{0max} ?	103
Chủ đề 5. Cho biết U_{AK} và v_{0max} . Tính vận tốc của electron khi tới Anốt ?	104
Chủ đề 6. Cho biết v_{0max} và A .Tìm điều kiện của hiệu điện thế U_{AK} để không có dòng quang điện $(I=0)$ hoặc không có một electron nào tới Anốt?	104
Chủ đề 7. Cho biết cường độ dòng quang điện bảo hoà (I_{bh}) và công suất của nguồn sáng. Tính hiệu suất lượng tử?	104
Chủ đề 8. Chiếu một chùm sáng kích thích có bước sóng λ vào một qủa cầu cô lập về điện. Xác định điện thế cực đại của qủa cầu. Nối quả cầu với một điện trở R sau đó nối đất. Xác định cường độ dòng qua R	105
1. Chiếu một chùm sáng kích thích có bước sóng λ vào một qủa cầu cô lập về điện. Xác định điện thế cực đại của qủa cầu:	105

Th.s Trầi	n AnhTrung 13	Luyện thi đại	học
Chủ	đề 8. Xác định năng lượng tỏa (hay thu vào) của phản ứng hạt nhâ	n?	111
	đề 7. Xác định năng lượng tỏa ra khi phân rã $m(g)$ hạt nhân ${}^A_Z X ?$		111
Chủ	đề 6. Xác định năng lượng liên kết hạt nhân(năng lượng tỏa ra khi p hạt nhân)?		111
	đề 5. Xác định tuổi của mẫu vật cổ có nguồn gốc là khoáng chất?		111
	đề 4. Xác định tuổi của mẫu vật cổ có nguồn gốc là thực vật?		110
	đề 3. Tính khối lượng của chất phóng xạ khi biết độ phóng xạ H ?		110
	đề 2. Tìm số nguyên tử $N($ hay khối lượng $m)$ còn lại, mất đi của xạ sau thời gian $t?$		110
Chủ	đề 1. Chất phóng xạ A_ZX có số khối A : tìm số nguyên tử (hạt) có thạt nhân đó?	• (0)	110
Phần17 NHÆ	. PHƯƠNG PHÁP GIẢI TOÁN VỀ PHÓNG XẠ VÀ PHẢN ÂN	ÚNG HẠT	110
Chủ	đề 6. Tìm năng lượng để bức electron ra khỏi nguyên tử khi nó đang K (ứng với năng lượng E_1)?		109
Chủ	đề 5. Xác định qũy đạo dừng mới của electron khi nguyên tử nhận kích thích $\varepsilon=hf$?		109
Chủ	đề 4. Xác định bước sóng cực đại (λ_{max}) và cực tiểu (λ_{min}) của các c Banme, Pasen?		109
Chủ	đề 3. Tìm bước sóng của các vạch quang phổ khi biết các bước só vạch lân cận?	-	108
Chủ	đề 2. Xác định bước sóng của photon do nguyên tử Hiđrô phát ra kh ở trạng thái dừng có mức năng lượng E_m sang E_n ($< E_m$)?	· .	108
Chủ	đề 1. Xác định vận tốc và tần số f của electron ở trạng thái dừng nguyên tử Hiđrô?		108
Phần16	. PHƯƠNG PHÁP GIẢI TOÁN VỀ MẪU NGUYÊN TỬ HIĐRÔ	THEO BO	108
Chủ	đề 12. Cho λ kích thích, bước sóng giới hạn λ_0 , electron quang ơ theo phương vuông góc với cảm ứng từ của trừ trường đều (\vec{B}) . Khảo động của electron?	sát chuyển	107
Chủ	đề 11. Cho λ kích thích, bước sóng giới hạn λ_0 , electron quang cheo phương vuông góc với điện trường (\vec{E}) . Khảo sát chuyển động c		2106
Chủ	đề 10. Cho λ kích thích, bước sóng giới hạn λ_0 và U_{AK} : Tìm bán kíc của vòng tròn trên mặt Anốt mà các electron từ Katốt đập vào?		105
Chủ	$\mathbf{d\hat{e}}$ 9. Cho λ kích thích, điện trường cản E_c và bước sóng giới hạn λ_0 đường đi tối đa mà electron đi được	: tìm đoạn	105
	2.Nối quả cầu với một điện trở R sau đó nối đất. Xác định cường độ	δ dòng qua R :	105

Chủ	đề 9. Xác định năng lượng tỏa khi tổng hợp $m(g)$ hạt nhân nhẹ(từ các hạt nhân	
	nhẹ hơn)?	112
Chủ	${f d\hat e}$ 10. Cách vận dụng định luật bảo toàn động lượng, năng lượng?	112
	1. Cách vận dụng định luật bảo toàn động lượng:	112
	2.Cách vận dụng định luật bảo toàn năng lượng:	113
Chủ	đề 11. Xác định khối lượng riêng của một hạt nhân nguyên tử. Mật độ điện tích của hat nhân nguyên tử?	113

PHẦN 1

PHƯƠNG PHÁP GIẢI TOÁN VỀ DAO ĐÔNG ĐIỀU HÒA CỦA CON LẮC LÒ XO

CHỦ ĐỀ 1.Liên hệ giữa lực tác dụng, đô giãn và đô cứng của lò xo: Phương pháp:

1.Cho biết lưc kéo F, đô cứng k: tìm đô giãn Δl_0 , tìm l:

+Điều kiện cân bằng:
$$\vec{F} + \vec{F}_0 = 0$$
 hay $F = k\Delta l_0$ hay $\Delta l_0 = \frac{F}{k}$

+Nếu
$$F=P=mg$$
 thì
$$\boxed{\Delta l_0=\frac{mg}{k}}$$
 +Tìm l : $l=l_0+\Delta l_0,\ l_{max}=l_0+\Delta l_0+A;\ l_{min}=l_0+\Delta l_0-A$

+Tim
$$l: l = l_0 + \Delta l_0, l_{max} = l_0 + \Delta l_0 + A; l_{min} = l_0 + \Delta l_0 - A$$

Chú ý: Lưc đàn hồi tai mọi điểm trên lò xo là như nhau, do đó lò xo giãn đều.

2. Cắt lò xo thành n phần bằng nhau (hoặc hai phần không bằng nhau): tìm đô cứng của mỗi phần?

Áp dụng công thức Young: $k = E \frac{S}{l}$

- a. Cắt lò xo thành n phần bằng nhau (cùng k): $\frac{k}{k_0} = \frac{l_0}{l} = n \rightarrow k = nk_0$.
- b. Cắt lò xo thành hai phần không bằng nhau: $\frac{k_1}{k_0} = \frac{l_0}{l_*}$ và $\frac{k_2}{l_0} = \frac{l_0}{l_*}$

CHỦ ĐỀ 2.Viết phương trình dao động điều hòa của con lắc lò xo:

Phương pháp:

Phương trình li đô và vân tốc của dao đông điều hòa:

$$\begin{cases} x = Asin(\omega t + \varphi) & (cm) \\ v = \omega Acos(\omega t + \varphi) & (cm/s) \end{cases}$$

•Tîm ω :

+ Khi biết
$$k,m$$
: áp dụng: $\omega=\sqrt{\frac{k}{m}}$

+ Khi biết
$$T$$
 hay f : $\omega = \frac{2\pi}{T} = 2\pi f$

• Tîm *A*:

+ Khi biết chiều dài qũy đạo:
$$d=BB'=2A \rightarrow A=\frac{d}{2}$$

+ Khi biết
$$x_1, v_1$$
: $A = \sqrt{x_1^2 + \frac{v_1^2}{\omega^2}}$

+ Khi biết chiều dài
$$l_{max}$$
, l_{min} của lò xo: $A = \frac{l_{max} - l_{min}}{2}$.

+ Khi biết năng lượng của dao động điều hòa:
$$E=rac{1}{2}kA^2
ightarrow A=\sqrt{rac{2E}{k}}$$

$$ullet$$
 Tìm φ : Dựa vào điều kiện ban đầu: khi $t_0=0 \leftrightarrow x=x_0=A\sin \varphi \to \sin \varphi=rac{x_0}{A}$

•Tîm A và φ cùng một lúc:Dưa vào điều kiên ban đầu:

$$t_0 = 0 \leftrightarrow \begin{cases} x = x_0 \\ v = v_0 \end{cases} \leftrightarrow \begin{cases} x_0 = Asin\varphi \\ v_0 = \omega Acos\varphi \end{cases} \leftrightarrow \begin{cases} A \\ \varphi \end{cases}$$

Chú ý: Nếu biết số dao động n trong thời gian t, chu kỳ: $T = \frac{t}{n}$

CHỦ ĐỀ 3.Chứng minh một hệ cơ học dao động điều hòa:

Phương pháp:

Cách 1: Phương pháp đông lực học

1. Xác định lực tác dụng vào hệ ở vị trí cân bằng: $\sum \vec{F}_{0k} = 0$.

2.Xét vật ở vị trí bất kì (li độ x), tìm hệ thức liên hệ giữa \vec{F} và \vec{x} , đưa về dạng đại số: F = -kx (k là hằng số tỉ lệ, F là lực hồi phục.

 $3. {
m Ap}$ dụng định luật II Newton: $F=ma\Leftrightarrow -kx=mx$ ", đưa về dạng phương trinh: $x"+\omega^2x=0$. Nghiệm của phương trình vi phân có dạng: $x=Asin(\omega t+\varphi)$. Từ đó, chứng tỏ rằng vật dao động điều hòa theo thời gian.

Cách 2: Phương pháp định luật bảo toàn năng lượng

1. Viết biểu thức động năng $E_{\rm d}$ (theo v) và thế năng E_t (theo x), từ đó suy ra biểu thức cơ năng:

$$E = E_{d} + E_{t} = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2} = const \tag{*}$$

2. Đạo hàm hai vế (*) theo thời gian: $(const)'=0; (v^2)'=2v.v'=2v.x"; (x^2)'=2x.x'=2x.v.$

3. Từ (*) ta suy ra được phương trình: $x" + \omega^2 x = 0$. Nghiệm của phương trình vi phân có dạng: $x = A sin(\omega t + \varphi)$. Từ đó, chứng tổ rằng vật dao động điều hòa theo thời gian.

CHỦ ĐỀ 4.Vận dụng định luật bảo toàn cơ năng để tìm vận tốc:

Phương pháp:

Định luật bảo toàn cơ năng:

$$E = E_{d} + E_{t} = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2} = \frac{1}{2}kA^{2} = E_{dmax} = E_{tmax}$$
 (*)

Từ
$$(*)$$
 ta được: $v = \sqrt{\frac{k}{m}(A^2 - x^2)}$ hay $v_{0max} = A\sqrt{\frac{k}{m}}$

Luyện thi đại học

CHỦ ĐỀ 5.Tìm biểu thức động năng và thế năng theo thời gian:

Phương pháp:

Thế năng:
$$E_t = \frac{1}{2}kx^2 = \frac{1}{2}kA^2sin^2(\omega t + \varphi)$$

Động năng:
$$E_{\mathrm{d}}=\frac{1}{2}mv^2=\frac{1}{2}kA^2cos^2(\omega t+\varphi)$$

Chú ý:Ta có:
$$\omega t = \frac{2\pi}{T}t$$

CHỦ ĐỀ 6.Tìm lực tác dụng cực đại và cực tiểu của lò xo lên giá treo hay giá đở:

Phương pháp:

Lực tác dụng của lò xo lên giá treo hay giá đổ chính là lực đàn hồi.

1.Trường hợp lò xo nằm ngang:

Điều kiện cân bằng: $\vec{P} + \vec{N} = 0$, do đó lực của lò xo tác dụng vào giá đở chính là lực đàn hồi. Lực đàn hồi: $F = k\Delta l = k|x|$.

 $\mathring{\mathbf{O}}$ vị trí cân bằng: lò xo không bị biến dạng: $\Delta l = 0 \rightarrow F_{min} = 0.$

 $\mathring{\mathbf{O}}$ vị trí biên: lò xo bị biến dạng cực đại: $x=\pm A \to F_{max}=kA$.

2.Trường hợp lò xo treo thẳng đứng:

Điều kiện cân bằng: $\vec{P} + \vec{F_0} = 0$, độ giản tỉnh của lò xo: $\Delta l_0 = \frac{mg}{k}$.

Lực đàn hồi ở vị trí bất kì: $F = k(\Delta l_0 + x)$ (*).

Lực đàn nói ở vị tri bắt ki: $F = k(\Delta l_0 + x)$ (*). Lực đàn gỗi cực đại (khi qủa nặng ở biên dưới):

 $x = +A \rightarrow F_{max} = k(\Delta l_0 + A)$

Lực đàn hồi cực tiểu:

Trường hợp $A < \Delta l_0$: thì F = min khi x = -A:

 $F_{min} = k(\Delta l_0 - A)$

Trường hợp $A>\Delta l_0$: thì F=min khi $x=\Delta l_0$ (lò xo không biến dạng): $F_{min}=0$

3.Chú ý: *Lực đàn hồi phụ thuộc thời gian: thay $x=A\sin(\omega t+\varphi)$ vào (*) ta được: $F=mg+kA\sin(\omega t+\varphi)$

Đồ thị:

CHỦ ĐỀ 7.Hệ hai lò xo ghép nối tiếp: tìm độ cứng $k_{\text{hệ}}$, từ đó suy ra chu kỳ T:

Phương pháp:

- •Ở vi trí cân bằng:
 - + Đối với hệ nằm ngang: $\vec{P} + \vec{N} = 0$
 - + Đối với hệ thẳng đứng: $\vec{P} + \vec{F}_0 = 0$
- \vec{O} vị trí bất kì(OM = x):

Lò xo
$$L_1$$
 giãn đoạn x_1 : $F = -k_1x_1 \rightarrow x_1 = -\frac{F}{k_1}$

Lò xo
$$L_2$$
 giãn đoạn x_2 : $F=-k_2x_2 \rightarrow x_2=-rac{\dot{F}}{k_2}$

Hệ lò xo giãn đoạn
$$x$$
: $F=-k_{\mathrm{h}\hat{\mathrm{e}}}x \rightarrow x=-rac{F}{k_{\mathrm{h}\hat{\mathrm{e}}}}$

Ta có :
$$x=x_1+x_2$$
, vậy: $\boxed{\frac{1}{k_{\mathrm{h\hat{e}}}}=\frac{1}{k_1}+\frac{1}{k_2}}$, chu kỳ: $\boxed{T=2\pi\sqrt{\frac{m}{k_{\mathrm{h\hat{e}}}}}}$

CHỦ ĐỀ 8.Hệ hai lò xo ghép song song: tìm độ cứng $k_{ m h\hat e}$. từ đó suv ra chu kỳ T:

Phương pháp:

- •Ở vị trí cân bằng:
 - + Đối với hệ nằm ngang: $\vec{P} + \vec{N} = 0$
 - + Đối với hệ thẳng đứng: $\vec{P} + \vec{F}_{01} + \vec{F}_{02} = 0$
- \vec{O} vi trí bất kì(OM = x):
 - Lò xo L_1 giãn đoạn x: $F_1 = -k_1 x$
 - Lò xo L_2 giãn đoạn x: $F_2 = -k_2 x$
 - Hệ lò xo giãn đoạn x: $F_{\text{hệ}} = -k_{\text{hệ}}x$

Ta có :
$$F=F_1+F_2$$
, vậy: $k_{\rm h\hat e}=k_1+k_2$, chu kỳ: $T=2\pi\sqrt{\frac{m}{k_{\rm h\hat e}}}$

CHỦ ĐỀ 9.Hệ hai lò xo ghép xung đối: tìm độ cứng $k_{\rm hệ}$, từ đó suy ra chu kỳ T: Phương pháp:

- •Ở vị trí cân bằng:
 - + Đối với hệ nằm ngang: $\vec{P} + \vec{N} = 0$
 - + Đối với hệ thẳng đứng: $\vec{P} + \vec{F}_{01} + \vec{F}_{02} = 0$
- \vec{O} vị trí bất kì(OM = x):
 - Lò xo L_1 giãn đoạn x: $F_1 = -k_1 x$
 - Lò xo L_2 nén đoạn x: $F_2 = -k_2 x$
 - Hệ lò xo biến dạng x: $F_{\text{hệ}} = -k_{\text{hệ}}x$

CHỦ ĐỀ 10.Con lắc liên kết với ròng rọc(không khối lượng): chứng minh rằng hệ

dao đồng điều hòa, từ đó suy ra chu kỳ T:

Phương pháp:

Dạng 1. Hòn bi nối với lò xo bằng dây nhẹ vắt qua ròng rọc:

Áp dụng định luật bảo toàn cơ năng: $E=E_{\mathrm{d}}+E_{\mathrm{t}}=\frac{1}{2}mv^{2}+\frac{1}{2}kx^{2}=const$

Đạo hàm hai vế theo thời gian:
$$\frac{1}{2}m2vv' + \frac{1}{2}k2xx' = 0$$
.

Đặt:
$$\omega=\sqrt{\frac{k}{m}}$$
, ta suy ra được phương trình: $x"+\omega^2x=0$. Nghiệm của phương trình vi phân có dạng: $x=Asin(\omega t+\varphi)$. Từ đó, chứng tỏ rằng vật dao động điều hòa theo thời gian.Chu kỳ: $T=\frac{2\pi}{\omega}$

Dạng 2.Hòn bi nối với ròng rọc di động, hòn bi nối vào dây vắt qua ròng rọc:

Khi vật nặng dịch chuyển một đoạn x thì lò xo biến dạng một đoạn $\frac{x}{2}$.

Điều kiện cân bằng:
$$\Delta l_0 = \frac{F_0}{k} = \frac{2T_0}{k} = \frac{2mg}{k}$$
.

Cách 1: $\mathring{\mathbf{O}}$ vị trí bất kỳ(li độ x): ngoài các lực cân bằng, xuất hiện thêm các lực đàn hồi

$$|F_x| = kx_L = k\frac{x}{2} \Leftrightarrow |T_x| = \frac{|F_x|}{2} = \frac{k}{4}x$$

Xét vật năng:
$$m\vec{g}+\vec{T}=m\vec{a}\Leftrightarrow mg-(|T_0|+|T_x|)=mx"\Leftrightarrow x"+\frac{k}{4m}x=0.$$

Đặt: $\omega^2 = \frac{k}{4m}$, phương trình trở thành: $x'' + \omega^2 x = 0$, nghiệm của phương trình có dạng: $x = Asin(\omega t + \varphi)$, vậy hệ dao động điều hoà.

Chu kỳ:
$$T = \frac{2\pi}{\omega}$$
 hay $T = 2\pi \sqrt{\frac{4m}{k}}$

Cách 2:Cơ năng:
$$E = E_d + E_t = \frac{1}{2}mv^2 + \frac{1}{2}kx_L^2 = \frac{1}{2}mv^2 + \frac{1}{2}k(\frac{x}{2})^2 = const$$

Đạo hàm hai vế theo thời gian:
$$\frac{1}{2}m2vv' + \frac{1}{2}\frac{k}{4}2xx' = 0 \Leftrightarrow x'' + \frac{k}{4m}x = 0.$$

Đặt: $\omega^2=\frac{k}{4m}$, phương trình trở thành: $x"+\omega^2x=0$, nghiệm của phương trình có dạng: $x=Asin(\omega t+\varphi)$, vậy hệ dao động điều hoà.

Chu kỳ:
$$T=\frac{2\pi}{\omega}$$
 hay $T=2\pi\sqrt{\frac{4m}{k}}$

Dạng 3.Lò xo nối vào trục ròng rọc di động, hòn bi nối vào hai lò xo nhờ dây vắt qua ròng rọc:

$$\vec{O}$$
 vị trí cân bằng: $\vec{P} = -2\vec{T}_0$; $\vec{F}_{02} = -2\vec{T}$ với ($\vec{F}_{01} = \vec{T}_0$)

 $\mathring{\mathbf{O}}$ vị trí bất kỳ
(li độ x) ngoài các lực cân bằng nói trên, hệ còn chịu tác dụng thêm các lưc:

 L_1 giãn thêm x_1 , xuất hiện thêm $\vec{F_1}$, m dời x_1 .

 L_2 giãn thêm x_2 , xuất hiện thêm \vec{F}_2 , m dời $2x_2$.

$$V_{ay}: x = x_1 + 2x_2 \tag{1}$$

Xét ròng rọc: $(F_{02} + F_2) - 2(T_0 + F_1) = m_R a_R = 0$ nên: $F_2 = 2F_1 \Leftrightarrow k_2 x_2 = 2k_1 x_1$,

hay:
$$x_2 = \frac{2k_1}{k_2} x_1$$

Thay (2) vào (1) ta được: $x_1 = \frac{k_2}{k_2 + 4k_1}x$

Lực hồi phục gây ra dao động của vật m là:

$$F_x = F_1 = -k_1 x_1 \tag{3}$$

Thay (2) vào (3) ta được: $F_x=\frac{k_2k_1}{k_2+4k_1}x$, áp dụng: $F_x=ma_x=mx$ ".

Cuối cùng ta được phương trình: $x" + \frac{k_2 k_1}{m(k_2 + 4k_1)}x = 0.$

Đặt: $\omega^2 = \frac{k_2 k_1}{m(k_2 + 4k_1)}$, phương trình trở thành: $x'' + \omega^2 x = 0$, nghiệm của phương trình có dạng: $x = A sin(\omega t + \varphi)$, vậy hệ dao động điều hoà.

Chu kỳ:
$$T=\frac{2\pi}{\omega}$$
 hay $T=2\pi\sqrt{\frac{k_2k_1}{m(k_2+4k_1)}}$

CHỦ ĐỀ 11.Lực hồi phục gây ra dao động điều hòa không phải là lực đàn hồi như: lực đẩy Acximet, lực ma sát, áp lực thủy tỉnh, áp lực của chất khí...: chứng minh hệ dao động điều hòa:

Dang $\mathbf{1}.\vec{F}$ là lưc đẩy Acximet:

Vị trí cân bằng: $\vec{P} = -\vec{F}_{0A}$

Vị trí bất kỳ (li độ x): xuất hiện thêm lực đẩy Acximet: $\vec{F}_A = -VD\vec{g}$. Với V = Sx, áp dụng định luật II Newton:

$$F = ma = mx$$
".

Ta được phương trình:x" $+\omega^2x=0$, nghiệm của phương trình có dạng: $x=Asin(\omega t+\varphi)$, vậy hệ dao động điều hoà.

Chu kỳ:
$$T=\frac{2\pi}{\omega}$$
, với $\omega=\sqrt{\frac{SDg}{m}}$

Dang $2.\vec{F}$ là lưc ma sát:

Vị trí cân bằng:
$$\vec{P}=-(\vec{N}_{01}+\vec{N}_{02})$$
 và $\vec{F}_{ms_{01}}=-\vec{F}_{ms_{02}}$

Vị trí bất kỳ (li độ
$$x$$
):Ta có: $\vec{P}=-(\vec{N_1}+\vec{N_2})$ nhưng $\vec{F}_{ms_1} \neq -\vec{F}_{ms_2}$

Hợp lực:
$$|F| = F_1 - F_2 = \mu(N_1 - N_2)$$
 (*)

Mà ta có: $M_{\vec{N}_1/G} = M_{\vec{N}_2/G}$

$$\Leftrightarrow N_1(l-x) = N_2(l+x) \Leftrightarrow \frac{N_1}{(l+x)} = \frac{N_2}{(l-x)} = \frac{N_1 + N_2}{2l} = \frac{N_1 - N_2}{2l}$$

Suy ra:
$$N_1 - N_2 = (N_1 + N_2) \frac{x}{l} = P \frac{x}{l} = mg \frac{x}{l}$$

Từ (*) suy ra: $|F| = \mu mg \frac{x}{l}$, áp dụng định luật II Newton:

$$F = ma = mx$$
".

Ta được phương trình:x" $+\omega^2 x=0$, nghiệm của phương trình có dạng: $x=Asin(\omega t+\varphi)$, vây hệ dao đông điều hoà.

Chu kỳ:
$$T=\frac{2\pi}{\omega}$$
, với $\omega=\sqrt{\frac{\mu g}{l}}$

Dang 3.Áp lưc thủy tỉnh:

 $\mathring{\mathbf{O}}$ vị trí bất kỳ, hai mực chất lỏng lệch nhau một đoạn h=2x

Áp lực thuỷ tỉnh: p=Dgh suy ra lực thuỷ tỉnh: |F|=pS=Dg2xS, giá trị đại số: F=-pS=-Dg2xS, áp dụng định luật II Newton: F=ma=mx".

Ta được phương trình: $x'' + \omega^2 x = 0$, nghiệm của phương trình có dạng: $x = Asin(\omega t + \varphi)$, vậy hệ dao động điều hoà.

Chu kỳ:
$$T = \frac{2\pi}{\omega}$$
, với $\omega = \sqrt{\frac{2SDg}{m}}$

Dang $\mathbf{4}.\vec{F}$ là lưc của chất khí:

Vị trí cân bằng: $p_{01} = p_{02}$ suy ra $F_{01} = F_{02}$; $V_0 = Sd$

Vị trí bất kỳ (li độ x):Ta có: $V_1 = (d + x)S$; $V_2 = (d - x)S$

áp dụng định luật Bôilo-Mariốt: $p_1V_1 = p_2V_2 = p_0V_0$

Suy ra:
$$p_1 - p_2 = \frac{2p_0d}{d^2 - r^2}x$$

Hợp lực:
$$|F| = F_2 - F_1 = (p_1 - p_2)S = \frac{2p_0 dS}{d^2 - x^2}x \approx 2p_0 dS$$

$$\frac{2p_0dS}{d^2}x$$

Đại số: $F=-\frac{2p_0dS}{d^2}x$, áp dụng định luật II Newton:

V,p V,p d d-x

Ta được phương trình: $x"+\omega^2x=0$, nghiệm của phương trình có dạng: $x=Asin(\omega t+\varphi)$, vậy hệ dao động điều hoà. Chu kỳ: $T=\frac{2\pi}{\omega}$, với $\omega=\sqrt{\frac{md^2}{2p_0V_0}}$

F = ma = mx".

PHẦN 2

PHƯƠNG PHÁP GIẢI TOÁN VỀ DAO ĐỘNG ĐIỀU HÒA CỦA CON LẮC ĐƠN

GHI NHỚ

1.Độ biến thiên đại lượng $X:\Delta X=X_{\rm sau}-X_{\rm trước}$

- a. Nếu $\Delta X > 0$ thì X tăng.
- b. Nếu $\Delta X < 0$ thì X giảm.

2.Công thức gần đúng:

$$\begin{split} \text{a.}\forall \varepsilon \ll 1 \text{ ta c\'o: } &(1+\varepsilon)^n \approx 1+n\varepsilon\\ &\text{Hệ quả: } \sqrt{\frac{1+\varepsilon_1}{1+\varepsilon_2}} \approx (1-\frac{1}{2}\varepsilon_2)(1+\frac{1}{2}\varepsilon_1) = 1-\frac{1}{2}(\varepsilon_2-\varepsilon_1)\\ \text{b.}\forall \alpha \leq 10^0; \alpha \leq 1 (rad) \end{split}$$

$$\text{Ta c\'o: } &\cos \alpha \approx 1-\frac{\alpha^2}{2} \text{ ;} &\sin \alpha \approx tg\alpha \approx \alpha (rad) \end{split}$$

CHỦ ĐỀ 1.Viết phương trình dao động điều hòa của con lắc đơn:

Phương pháp:

Phương trình dao động có dạng: $s = s_0 sin(\omega t + \varphi)$ hay $\alpha = \alpha_0 sin(\omega t + \varphi)$ (1)

- $s_0 = l\alpha_0$ hay $\alpha_0 = \frac{s_0}{l}$
- $ullet\omega$: được xác định bởi: $\omega=\sqrt{rac{g}{l}}$
- •Tìm s_0 và φ cùng một lúc:Dựa vào điều kiện ban đầu:

$$t_0 = 0 \leftrightarrow \begin{cases} s = s_1 \\ v = v_1 \end{cases} \leftrightarrow \begin{cases} s_1 = s_0 sin\varphi \\ v_1 = \omega s_0 cos\varphi \end{cases} \leftrightarrow \begin{cases} s_0 \\ \varphi \end{cases}$$

Chú ý: Nếu biết số dao động n trong thời gian t, chu kỳ: $T = \frac{t}{n}$

CHỦ ĐỀ 2.Xác định độ biến thiên nhỏ chu kỳ ΔT khi biết độ biến thiên nhỏ gia tốc trọng trường Δg , độ biến thiên chiều dài Δl :

Phương pháp:

Lúc đầu:
$$T=2\pi\sqrt{\frac{l}{g}}$$
; Lúc sau: $T'=2\pi\sqrt{\frac{l'}{g'}}$ Lập tỉ số: $\frac{T'}{T}=\sqrt{\frac{l'}{l}\cdot\frac{g}{g'}}$

$$\text{Mà} \begin{cases} \Delta T &= T'-T\\ \Delta g &= g'-g\\ \Delta l &= l'-l \end{cases} \Leftrightarrow \begin{cases} T' &= T+\Delta T\\ g' &= g+\Delta g\\ l' &= l+\Delta l \end{cases}$$

Vậy:
$$\frac{T + \Delta T}{T} = \left(\frac{l + \Delta l}{l}\right)^{\frac{1}{2}} \left(\frac{g}{g + \Delta g}\right)^{\frac{1}{2}} \Leftrightarrow 1 + \frac{\Delta T}{T} = \left(1 + \frac{1}{2}\frac{\Delta l}{l}\right) \left(1 - \frac{1}{2}\frac{\Delta g}{g}\right)$$
Hay:
$$\frac{\Delta T}{T} = \frac{1}{2} \left(\frac{\Delta l}{l} - \frac{\Delta g}{g}\right)$$

Hay:

Chú ý:

a. Nếu
$$g=const$$
 thì $\Delta g=0\Rightarrow \frac{\Delta T}{T}=\frac{1}{2}\frac{\Delta l}{l}$

b. Nếu
$$l=const$$
 thì $\Delta l=0\Rightarrow \frac{\Delta T}{T}=-\frac{1}{2}\frac{\Delta g}{g}$

 $\mathbf{CH\mathring{U}}$ ĐỀ 3.Xác đinh đô biến thiên nhỏ chu kỳ ΔT khi biết nhiệt độ biến thiên nhỏ Δt ; khi đưa lên đô cao h; xuống đô sâu h so với mặt biển:

Phương pháp:

1.Khi biết nhiệt đô biến thiên nhỏ Δt :

$$\mathring{\mathbf{O}}$$
 nhiệt độ t_1^0C : $T_1=2\pi\sqrt{\frac{l_1}{g}}$; $\mathring{\mathbf{O}}$ nhiệt độ t_2^0C : $T_2=2\pi\sqrt{\frac{l_2}{g}}$

Lập tỉ số:
$$\frac{T_2}{T_1} = \sqrt{\frac{l_2}{l_1}} = \sqrt{\frac{l_0(1+\alpha t_2)}{l_0(1+\alpha t_1)}} = \sqrt{\frac{1+\alpha t_2}{1+\alpha t_1}} = \left(1+\alpha t_2\right)^{\frac{1}{2}} \left(1+\alpha t_1\right)^{-\frac{1}{2}}$$

Áp dụng công thức tính gần đúng: $(1+\varepsilon)^n \approx 1+n\varepsilon$

$$\frac{T_2}{T_1} = \left(1 + \frac{1}{2}\alpha t_2\right)\left(1 - \frac{1}{2}\alpha t_1\right) \qquad \text{Hay:} \qquad \boxed{\frac{\Delta T}{T_1} = \frac{1}{2}\alpha (t_2 - t_1) = \frac{1}{2}\alpha \Delta t}$$

2.Khi đưa con lắc đơn lên đô cao h so với mặt biển:

$$\mathring{\mathbf{O}} \text{ mặt đất}: T = 2\pi \sqrt{\frac{l}{g}}; \qquad \mathring{\mathbf{O}} \text{ độ cao } h: T_h = 2\pi \sqrt{\frac{l}{g_h}}; \quad \text{Lập tỉ số: } \frac{T_h}{T} = \sqrt{\frac{g}{g_h}}$$

Ta có, theo hệ qủa của định luật vạn vật hấp dẫn:

$$\begin{cases} g = G \frac{M}{R^2} \\ g_h = G \frac{M}{(R+h)^2} \end{cases}$$

Thay vào (1) ta được: $\frac{T_h}{T} = \frac{R+h}{R}$

$$G\frac{M}{(R+h)^2}$$

Hay:

3.Khi đưa con lắc đơn xuống đô sâu h so với mặt biển:

$$\mathring{\mathbf{O}} \text{ mặt đất}: T = 2\pi \sqrt{\frac{l}{g}}; \quad \mathring{\mathbf{O}} \text{ độ sâu } h: T_h = 2\pi \sqrt{\frac{l}{g_h}}; \quad \text{Lập tỉ số: } \frac{T_h}{T} = \sqrt{\frac{g}{g_h}} \quad (2).$$

Ta có, theo hệ qủa của định luật vạn vật hấp dẫn:

$$\begin{cases} g = G \frac{M}{R^2} \\ g_h = G \frac{M_h}{(R-h)^2} \end{cases}$$

Thay vào (2) ta được:
$$\frac{T_h}{T} = \sqrt{\frac{(R-h)^2}{R^2} \frac{M}{M_h}}$$

Ta lai có:

$$\begin{cases} M = V.D = \frac{4}{3}\pi R^3.D \\ M_h = V_h.D = \frac{4}{3}\pi (R - h)^3.D \end{cases}$$

Thay vào ta được: $\frac{T_h}{T} = \left(\frac{R}{R-h}\right)^{\frac{1}{2}}$

$$\frac{T_h}{T} = \left(\frac{R}{R-h}\right)^{\frac{1}{2}}$$

Hay:

$$\frac{\Delta T}{T} = \frac{1}{2} \frac{h}{R}$$

CHỦ ĐỀ 4.Con lắc đơn chiu nhiều yếu tố ảnh hưởng đô biến thiên của chu kỳ: tìm điều kiện để chu kỳ không đổi:

Phương pháp:

1.Điều kiên để chu kỳ không đổi:

Điều kiên là:"Các yếu tố ảnh hưởng lên chu kỳ là phải bù trừ lẫn nhau"

Do đó:

$$\Delta T_1 + \Delta T_2 + \Delta T_3 + \dots = 0$$

Hay:

$$\left[\frac{\Delta T_1}{T} + \frac{\Delta T_2}{T} + \frac{\Delta T_3}{T} + \dots = 0 \right]$$

(*)

2.Ví dụ: Con lắc đơn chịu ảnh hưởng bởi yếu tố nhiệt độ và yếu tố độ cao:

Yếu tố nhiệt độ: $\frac{\Delta T_1}{T} = \frac{1}{2}\alpha\Delta t$; Yếu tố độ cao: $\frac{\Delta T_2}{T} = \frac{h}{R}$

Yếu tố độ cao:
$$\frac{\Delta T_2}{T} = \frac{h}{R}$$

Thay vào (*):

$$\boxed{\frac{1}{2}\alpha\Delta t + \frac{h}{R} = 0}$$

CHỦ ĐỂ 5.Con lắc trong đồng hồ gỗ giây được xem như là con lắc đơn: tìm độ nhanh hay châm của đồng hồ trong một ngày đêm:

Phương pháp:

Thời gian trong một ngày đêm:

$$t = 24^h = 24.3600s = 86400(s)$$

Úng với chu kỳ T_1 : số dao động trong một ngày đêm: $n = \frac{t}{T_1} = \frac{86400}{T_2}$.

Úng với chu kỳ T_2 : số dao động trong một ngày đêm: $n' = \frac{t}{T_2} = \frac{86400}{T_2}$.

Độ chênh lệch số dao động trong một ngày đêm: $\Delta n = |n' - n| = 86400 \left| \frac{1}{T_1} - \frac{1}{T_2} \right|$

Hay:

$$\Delta n = 86400 \frac{|\Delta T|}{T_2 T_1}$$

Vậy: độ nhanh (hay chậm) của đồng hồ trong một ngày đêm là:

$$\theta = \Delta n. T_2 = 86400 \frac{|\Delta T|}{T_1}$$

Chú ý: Nếu $\Delta T>0$ thì chu kỳ tăng, đồng hồ chạy chậm; Nếu $\Delta T<0$ thì chu kỳ giảm, đồng hồ chạy nhanh.

CHỦ ĐỀ 6. Con lắc đơn chịu tác dụng thêm bởi một ngoại lực \vec{F} không đổi: Xác định chu kỳ dao động mới T':

Phương pháp:

Phương pháp chung: Ngoài trọng lực thật $\vec{P}=m\vec{g}$, con lắc đơn còn chịu tác dụng thêm một ngoại lực \vec{F} , nên trọng lực biểu kiến là: $\vec{P}'=\vec{P}+\vec{F}\Leftrightarrow \boxed{\vec{g}'=\vec{g}+\frac{\vec{F}}{m}}$ (1)

Sử dụng hình học để suy ra được độ lớn của g', chu kỳ mới $T'=2\pi\sqrt{\frac{l}{g'}}$. Chú ý: chúng ta thường lập tỉ số: $\frac{T'}{T}=\sqrt{\frac{g}{g'}}$

$\mathbf{1}.\vec{F}$ là lưc hút của nam châm:

Chiếu (1) lên
$$xx'$$
: $g' = g + \frac{F_x}{m}$;

Nam châm đặt phía dưới: $F_x>0 \Leftrightarrow \vec{F}$ hướng xuống

$$\Leftrightarrow g' = g + \frac{F}{m}.$$

Nam châm đặt phía trên: $F_x < 0 \Leftrightarrow \vec{F}$ hướng lên

$$\Leftrightarrow g' = g - \frac{F}{m}.$$

Chu kỳ mới $T'=2\pi\sqrt{\frac{l}{g'}}$. Chú ý: chúng ta thường lập tỉ

số:
$$\frac{T'}{T} = \sqrt{\frac{g}{g'}}$$
.

$\mathbf{2}.\vec{F}$ là lưc tương tác Coulomb:

Lực tương tác Coulomb: $F = k \frac{|q_1 q_2|}{r^2}$; Tìm g' và chu kỳ T' như trên.

Hai điện tích cùng dấu: \vec{F} lưc đẩy.;

Hai điện tích trái dấu: \vec{F} lực hút.

${f 3.} ec F$ là lực điện trường ec F = q ec E:

Trọng lực biểu kiến là: $\vec{P'} = \vec{P} + q\vec{E} \Leftrightarrow \vec{g'} = \vec{g} + \frac{q\vec{E}}{m}$

Chiếu (2) lên
$$xx'$$
: $g' = g + \frac{qE_x}{m}$;

(2)

Chu kỳ mới:
$$T'=2\pi\sqrt{\frac{l}{g+\frac{qE_x}{m}}}=2\pi\sqrt{\frac{l}{g\left(1+\frac{qE_x}{mg}\right)}}.$$

Chú ý: chúng ta thường lập tỉ số:

Chú ý: chúng ta thường lập tỉ số:
$$\frac{T'}{T} = \sqrt{\frac{1}{1 + \frac{qE_x}{mg}}} = \left(1 + \frac{qE_x}{mg}\right)^{-\frac{1}{2}} = 1 - \frac{1}{2}\frac{qE_x}{mg}$$
 hay
$$\frac{\Delta T}{T} = -\frac{1}{2}\frac{qE_x}{mg}$$

4. \vec{F} là lực đẩy Acsimet $\vec{F}_A = -VD_{kk}\vec{g}$:

Trong lưc biểu kiến là:

$$\vec{P}' = \vec{P} + \vec{F}_A \Leftrightarrow \vec{g}' = \vec{g} - \frac{VD_{kk}\vec{g}}{m} = \left(1 - \frac{VD_{kk}}{m}\right)\vec{g} \quad (3)$$

Chiếu (3) lên
$$xx':g' = \left(1 - \frac{VD_{kk}}{m}\right)g;$$

Với:
$$m = V.D$$
, trong đó D là khối lượng riêng của qủa

cầu:
$$g' = \left(1 - \frac{D_{kk}}{D}\right)g;$$

Chu kỳ mới:
$$T'=2\pi\sqrt{\frac{l}{\left(1-\frac{D_{kk}}{D}\right)g}}.$$

Chú ý: chúng ta thường lập tỉ số:
$$\frac{T'}{T} = \sqrt{\frac{1}{\left(1 - \frac{D_{kk}}{D}\right)}}$$
 hay $\boxed{\frac{\Delta T}{T} = \frac{1}{2}\frac{D_{kk}}{D}}$

$\mathbf{5.}\vec{F}$ là lưc nằm ngang:

Trọng lực biểu kiến: $\vec{P'}=\vec{P}+\vec{F}$ hay $m\vec{g'}=m\vec{g}+\vec{F}$ hướng xiên, dây treo một góc β so

với phương thẳng đứng. Gia tốc biểu kiến: $\vec{g}' = \vec{g} + \frac{r}{m}$.

Điều kiên cân bằng:
$$\vec{P} + \vec{T} + \vec{F} = 0 \Leftrightarrow \vec{P'} = -\vec{T}$$
.

Vậy
$$\beta = \widehat{PO'P'}$$
 ứng với vị trí cân bằng của con lắc đơn.

Ta có:
$$tg\beta = \frac{F}{mg}$$

Tìm
$$T'$$
 và g' : áp dụng định lý Pitago: $g' = \sqrt{g^2 + (\frac{F}{m})^2}$

hoăc:
$$g' = \frac{g}{\cos \beta}$$
.

Chu kỳ mới:
$$T'=2\pi\sqrt{\frac{l}{q'}}$$
. Thường lập tỉ số: $\frac{T'}{T}=\sqrt{\frac{g}{q'}}=\sqrt{\cos\beta}$

CHỦ ĐỂ 7.Con lắc đơn treo vào một vật (như ôtô, thang máy...) đang chuyển động với gia tốc \vec{a} : xác định chu kỳ mới T':

Phương pháp:

Trong hệ quy chiếu gắn liền với điểm treo(thang máy, ôtô..) con lắc đơn còn chịu tác dụng thêm một lực quán tính $\vec{F}=-m\vec{a}$. Vậy trọng lực biểu kiến $\vec{P}'=\vec{P}-m\vec{a}$ hay gia tốc biểu kiến:

$$\vec{g}' = \vec{g} - \vec{a} \tag{1}$$

Sử dụng hình học để suy ra được độ lớn của g', chu kỳ mới $T'=2\pi\sqrt{\frac{l}{g'}}$. Chú ý: chúng ta thường lập tỉ số: $\frac{T'}{T}=\sqrt{\frac{g}{g'}}$

1.Con lắc đơn treo vào trần của thang máy (chuyển động thẳng đứng) với gia tốc

Chiếu (1) lên
$$xx'$$
: $g' = g - a_x$ (2)

a. Trường hợp \vec{a} hướng xuống: $a_x > 0 \rightarrow a_x = |a|$

(2):
$$g' = g - a$$
 chu kỳ mới: $T' = 2\pi \sqrt{\frac{l}{g - a}}$

Thường lập tỉ số: $\frac{T'}{T} = \sqrt{\frac{g}{g-a}}$

 \vec{a} :

Đó là trường hợp thang máy chuyển động lên chậm dần đều $(\vec{v}, \vec{a}_{\vec{a}})$ cùng chiều) hay thang máy chuyển động xuống nhanh dần đều $(\vec{v}, \vec{a}_{\vec{a}})$ ngược chiều).

b. Trường hợp \vec{a} hướng lên: $a_x < 0 \rightarrow a_x = -|a|$

(2) :
$$g'=g+a$$
 chu kỳ mới: $T'=2\pi\sqrt{\frac{l}{g+a}}$ Thường lập tỉ số: $\frac{T'}{T}=\sqrt{\frac{g}{g+a}}$

Đó là trường hợp thang máy chuyển động lên nhanh dần đều $(\vec{v}, \vec{a} \text{ ngược chiều})$ hay thang máy chuyển động xuống chậm dần đều $(\vec{v}, \vec{a} \text{ cùng chiều})$.

2.Con lắc đơn treo vào trần của xe ôtô đang chuyển động ngang với gia tốc \vec{a} :

Góc: $\beta = \widehat{PO'P'}$ ứng với vị trí cân bằng của con lắc đơn.

Ta có:
$$tg\beta = \frac{F}{mq} = \frac{a}{q}$$

Tìm T' và g': áp dụng định lý Pitago: $g' = \sqrt{g^2 + a^2}$ hoặc: $g' = \frac{g}{\cos \beta}$.

Chu kỳ mới:
$$T'=2\pi\sqrt{\frac{l}{q'}}$$
. Thường lập tỉ số: $\frac{T'}{T}=\sqrt{\frac{g}{q'}}=\sqrt{\cos\beta}$

3. Con lắc đơn treo vào trần của xe ô
tô đang chuyển động trên mặt phẳng nghiêng một góc α :

Ta có điều kiện cân bằng: $\vec{P} + \vec{F}_{qt} + \vec{T} = 0$ (*)

Chiếu (*)/Ox: $T \sin \beta = ma \cos \alpha$ (1)

Chiếu (*)/Oy: $T \cos \beta = mg - ma \sin \alpha$ (2)

Lập tỉ số: $\frac{1}{2}$: $tg\beta = \frac{a\cos\alpha}{g - a\sin\alpha}$

Từ (1) suy ra lực căng dây: $T = \frac{ma\cos\alpha}{\sin\beta}$

Từ(*) ta có: $P' = T \leftrightarrow mg' = T$ hay $g' = \frac{a\cos\alpha}{\sin\beta}$

Chu kỳ mới: $T'=2\pi\sqrt{\frac{l}{g'}}$ hay $T'=2\pi\sqrt{\frac{l\sin\beta}{a\cos\alpha}}$

CHỦ ĐỀ 8. Xác định động năng $E_{\bf d}$ thế năng E_t , cơ năng của con lắc đơn khi ở vị trí có góc lệch β :

Phương pháp:

Chọn mốc thế năng là mặt phẳng đi qua vị trí cân bằng.

•Thế năng E_t :

Ta có:
$$E_t = mgh_1$$
, với $h_1 = OI = l(1 - \cos \beta)$
Vây: $E_t = mgl(1 - \cos \beta)$ (1)

•Cơ năng E: Áp dụng định luật bảo toàn cơ năng:

$$E = E_C = E_B = mgh_2 = mgl(1 - \cos \alpha)$$
Hay
$$E = mgl(1 - \cos \alpha)$$
(2)

Thay (1) , (2) vào ta được:
$$E_{\mathrm{d}} = mgl(\cos\beta - \cos\alpha)$$

Đặt biệt: Nếu con lắc dao động bé: áp dụng công thức tính gần đúng:

$$\cos \beta \approx 1 - \frac{\beta^2}{2}; \cos \alpha \approx 1 - \frac{\alpha^2}{2}$$

$$\begin{cases} (1) \to E_t &= \frac{1}{2} mgl\beta^2 \\ (2) \to E &= \frac{1}{2} mgl\alpha^2 \\ (3) \to E_{\rm d} &= \frac{1}{2} mgl(\alpha^2 - \beta^2) \end{cases}$$

CHỦ ĐỀ 9. Xác định vận tốc dài v và lực căng dây $\mathcal T$ tại vị trí hợp với phương thẳng đứng một góc β :

Phương pháp:

1. Vận tốc dài v tại C:

Ta có công thức tính động năng: $E_{d} = \frac{1}{2}mv^{2}$, thay vào biểu thức (3) ở chủ đề 8 ta được:

$$v = \sqrt{2gl(\cos\beta - \cos\alpha)}$$
 (1)

(3)

2.Lực căng dây T tại C:

Áp dụng định luật II Newton:
$$\vec{P} + \vec{T} = m\vec{a}_{ht}$$
 (2)

Chọn trục tọa độ hướng tâm, chiếu phương trình (2) lên xx':

Ta được:
$$-mg\cos\beta + \mathcal{T} = m\frac{v^2}{l}$$

Đặt biệt: Nếu dao động của con lắc đơn là dao động bé Thay biểu thức tính gần đúng vào ta được:

$$\begin{cases} (1) \to v = \sqrt{gl(\alpha^2 - \beta^2)} \\ (2) \to \mathcal{T} = m \left[1 + \alpha^2 - \frac{3}{2}\beta^2 \right] g \end{cases} (5)$$

3.Hệ qủa: vận tốc và lực căng dây cực đại và cực tiểu:

$$\begin{cases} (1), (4) \to \begin{cases} v = \max \leftrightarrow \beta = 0 \text{(vị trí cân bằng)}, & \to \begin{cases} v_{\max} = \sqrt{2gl(1 - \cos \alpha)} \\ v_{\max} = \alpha \sqrt{gl} \end{cases} \\ v = \min \leftrightarrow \beta = \alpha \text{(vị trí biên)} & \to v_{\min} = 0, \end{cases} \\ (3), (5) \to \begin{cases} \mathcal{T} = \max \leftrightarrow \beta = 0 \text{(vị trí cân bằng)}, & \to \begin{cases} \mathcal{T}_{\max} = m(3 - 2\cos \alpha)g \\ \mathcal{T}_{\max} = m[1 + \alpha^2]g \end{cases} \\ \mathcal{T} = \min \leftrightarrow \beta = \alpha \text{(vị trí biên)} & \to \begin{cases} \mathcal{T}_{\min} = mg\cos \alpha \\ \mathcal{T}_{\min} = m[1 - \frac{1}{2}\alpha^2]g \end{cases} \end{cases}$$

CHỦ ĐỀ 10. Xác định biên độ góc α' mới khi gia tốc trọng trường thay đổi từ g sang

Phương pháp:

g':

Áp dung công thức số (2) chủ đề (8)

Khi con lắc ở nơi có gia tốc trọng trường g: Cơ năng của con lắc: $E = \frac{1}{2} mgl\alpha^2$.

Khi con lắc ở nơi có gia tốc trọng trường g': Cơ năng của con lắc: $E' = \frac{1}{2} mg' l\alpha'^2$.

Áp dụng định luật bảo toàn cơ năng: $E=E'\leftrightarrow \frac{1}{2}mgl\alpha^2=\frac{1}{2}mg'l\alpha'^2$

Hay:

$$\alpha' = \alpha \sqrt{\frac{g}{g'}}$$

 $CH \mathring{U}$ ĐỀ 11. Xác định chu kỳ và biên độ của con lắc đơn vướng đinh (hay vật cản) khi đi qua vị trí cân bằng:

Phương pháp:

1.Tîm chu kỳ T:

Chu kỳ của con lắc đơn vướng đinh $T=\frac{1}{2}$ chu kỳ của con lắc đơn có chiều dài $l+\frac{1}{2}$ chu kỳ của con lắc đơn có chiều dài l'

Ta có:
$$T = \frac{1}{2}T_1 + \frac{1}{2}T_2$$

Trong đó:
$$\begin{cases} T_1=2\pi\sqrt{rac{l}{g}} & ext{với:} l'=l-QI \\ T_2=2\pi\sqrt{rac{l'}{g}} & \end{cases}$$

2.Tìm biên đô mới sau khi vướng đinh:

Vận dụng chủ đề (10) ta được: $\frac{1}{2}mgl\alpha^2 = \frac{1}{2}mgl'\alpha'^2$

Hay:

$$\boxed{\alpha' = \alpha \sqrt{\frac{l}{l'}}}$$

 $CH\mathring{U}$ ĐỀ 12.Xác định thời gian để hai con lắc đơn trở lại vị trí trùng phùng (cùng qua vi trí cân bằng, chuyển động cùng chiều):

Phương pháp:

Giả sử con lắc thứ nhất có chu kỳ T_1 , con lắc đơn thứ hai có chu kỳ T_2 ($T_2 > T_1$).

Nếu con lắc thứ nhất thực hiện được n dao đông thì con lắc thứ hai thực hiện được n-1dao đông. Goi t là thời gian trở lai trùng phùng, ta có:

$$t = nT_1 = (n-1)T_2 \rightarrow n = \frac{T_2}{T_2 - T_1}$$

Vậy thời gian để trở lại trùng phùng: $t = \frac{T_1.T_2}{T_2-T_1}$

CHỦ ĐỀ 13.Con lắc đơn dao động thì bị dây đứt:khảo sát chuyển động của hòn bi sau khi dây đứt?

Phương pháp:

1.Trường hợp dây đứt khi đi qua vị trí cân bằng O: Lúc đó chuyển động của vật xem như là chuyển đông vật ném ngang. Chon hệ trục toa đô Oxy như hình vẽ.

Theo định luật II Newton: $\vec{F} = \vec{P} = m\vec{a}$

Hay:
$$\vec{a} = \vec{g}$$
 (*)

Chiếu (*) lên Ox: $a_x = 0$,

trên Ox, vật chuyển động thẳng đều với phương trình: $x=v_0t\to t=\frac{x}{v_0}$ (1)

$$x = v_0 t \to t = \frac{x}{v} \quad (1)$$

Chiếu (*) lên Oy: $a_x = g$,

trên Oy, vật chuyển động thẳng nhanh dần đều với phương trình:

$$y = \frac{1}{2}a_y t^2 = \frac{1}{2}gt^2 \quad (2)$$

Thay (1) vào (2), phương trình quỹ đao:

$$y = \frac{1}{2} \cdot \frac{g}{v_0^2} x^2$$

Kết luân: quỹ đạo của qủa năng sau khi dây đứt tại VTCB là một Parabol.($y = ax^2$)

2. Trường hợp dây đứt khi đi qua vi trí có li giác α : Lúc đó chuyển đông của vât xem như là chuyển động vật ném xiên hướng xuống, có \vec{v}_c hợp với phương ngang một góc β : $v_c = \sqrt{2gl(\cos\beta - \cos\alpha_0)}$. Chọn hệ trục tọa độ Oxy như hình vẽ.

Theo đinh luật II Newton: $\vec{F} = \vec{P} = m\vec{a}$

Hay:
$$\vec{a} = \vec{g}$$
 (*

Chiếu (*) lên Ox: $a_x = 0$,

trên Ox, vật chuyển động thẳng đều với phương trình: $x=v_c\cos\beta t \to t=\frac{x}{v_0\cos\beta} \quad (1)$

$$x = v_c \cos \beta t \to t = \frac{x}{v_0 \cos \beta} \quad (1)$$

Chiếu (*) lên Oy: $a_x = -g$,

trên Oy, vật chuyển đông thẳng biến đổi đều, với phương trình:

$$y = v_c \sin \beta t - \frac{1}{2}gt^2 \quad (2)$$

Thay (1) vào (2), phương trình quỹ đạo:

$$y = -\frac{g}{2v_c \cos^2 \beta} x^2 + tg\beta.x$$

Kết luận: quỹ đạo của qủa nặng sau khi dây đứt tại vị trí C là một Parabol.($y = ax^2 + bx$)

CHỦ ĐỀ 14.Con lắc đơn có hòn bi va cham đàn hồi với một vật đang đứng yên: xác đinh vân tốc của viên bi sau va cham?

Phương pháp:

- * Vận tốc của con lắc đơn trước va chạm(ở VTCB): $v_0 = \sqrt{2gl(1-\cos\alpha_0)}$
- *Gọi v, v' là vận tốc của viên bi và qủa nặng sau va chạm:

áp dụng định luật bảo toàn động năng: $m\vec{v}_0 = m\vec{v} + m_1\vec{v}'$ (1)

áp dụng định luật bảo toàn động lượng: $\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{1}{2}m_1v^{'2}$

Từ (1) và (2) ta suy ra được v và v'.

PHẦN 3

PHƯƠNG PHÁP GIẢI TOÁN VỀ DAO ĐỘNG TẮT DẦN VÀ CỘNG HƯỞNG CƠ HỌC

 $CH \mathring{U} \, D \grave{E} \, 1. Con lắc lò xo dao động tắt dần: biên độ giảm dần theo cấp số nhân lùi vô hạng, tìm công bội q:$

Phương pháp:

- Cơ năng ban đầu(cung cấp cho dao động): $E_0 = E_{t(max)} = \frac{1}{2}kA_1^2$ (1)
- ullet Công của lực masat (tối lúc dừng lại): $|A_{ms}|=F_{ms}s=\mu mgs$ (2), với s là đoạn đường đi tối lúc dừng lại.
 - ullet Áp dụng định luật bảo toàn và chuyển hóa năng lượng: $A_{ms}=E_0
 ightarrow s$
 - Công bội q: vì biên độ giảm dần theo cấp số nhân lùi vô hạn nên:

$$q = \frac{A_2}{A_1} = \frac{A_3}{A_2} = \dots = \frac{A_n}{A_{(n-1)}} \to A_2 = qA_1, A_3 = q^2A_1 \cdots, A_n = q^{n-1}A_1(\text{v\'oi}q < 1)$$

Đường đi tổng cộng tới lúc dùng lại:

$$s = 2A_1 + 2A_2 + \dots + 2A_n = 2A_1(1 + q + q^2 + \dots + q^{n-1}) = 2A_1S$$

Với:
$$S = (1 + q + q^2 + \dots + q^{n-1}) = \frac{1}{1 - q}$$

$$s = \frac{2A_1}{1-q}$$

 $CH \mathring{U}$ ĐỀ 2.Con lắc lò đơn động tắt dần: biên độ góc giảm dần theo cấp số nhân lùi vô hạng, tìm công bội q. Năng lượng cung cấp để duy trì dao động:

Phương pháp:

• Công bội q: vì biên độ góc giảm dần theo cấp số nhân lùi vô hạn nên:

$$q = \frac{\alpha_2}{\alpha_1} = \frac{\alpha_3}{\alpha_2} = \dots = \frac{\alpha_n}{\alpha_{(n-1)}} \to \alpha_2 = q\alpha_1, \alpha_3 = q^2\alpha_1 \cdots, \alpha_n = q^{n-1}\alpha_1(\text{v\'oi}q < 1)$$

Vây:

$$q = ^{n-1} \sqrt{\frac{\alpha_n}{\alpha_1}}$$

• Năng lượng cung cấp (như lên dây cót) trong thời gian t để duy trì dao động:

Cơ năng ở chu kì 1:
$$E_1 = E_{tB_1max} = mgh_1$$
, hay $E_1 = \frac{1}{2}mgl\alpha_1^2$

Cơ năng ở chu kì 2:
$$E_2=E_{tB_2max}=mgh_1$$
, hay $E_2=\frac{1}{2}mgl\alpha_2^2$

Độ giảm cơ năng sau 1 chu kỳ: $\Delta E = \frac{1}{2} mgl(\alpha_1^2 - \alpha_2^2)$

Hay : $\Delta E = \frac{1}{2} mgl(\alpha_1^2(1-q^2))$, đây chính là năng lượng cần cung cấp để duy trì dao động trong một chu kỳ.

Trong thời gian t, số dao động: $n=\frac{t}{T}$. Năng lượng cần cung cấp để duy trì sau n dao đông: $E=n.\Delta E$.

Công suất của đồng hồ: $P = \frac{E}{t}$

 $CH \mathring{U} \ D \hat{E} \ 3.H \hat{e}$ dao động cưỡng bức bị kích thích bởi một ngoại lực tuần hoàn: tìm điều kiện để có hiện tượng cộng hưởng:

Phương pháp:

Điều kiện để có hiện tượng cộng hưởng: $f=f_0$, với f_0 là tần số riêng của hệ.

Đối với con lắc lò xo:
$$f_0 = \frac{1}{T_0} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Đối với con lắc đơn:
$$f_0 = \frac{1}{T_0} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

PHẦN 4

PHƯƠNG PHÁP GIẢI TOÁN VỀ SỰ TRUYỀN SÓNG CƠ HỌC , GIAO THOA SÓNG, SÓNG DÙNG, SÓNG ÂM

 $CH\mathring{U}$ ĐỀ 1.Tìm độ lệch pha giữa hai điểm cách nhau d trên một phương truyền sóng? Tìm bước sóng khi biết độ lệch pha và giới hạn của bước sóng,(tần số, vận tốc truyền sóng). Viết phương trình sóng tại một điểm :

Phương pháp:

1.Tìm độ lệch pha giữa hai điểm cách nhau d trên một phương truyền sóng:

• Đô lệch pha giữa hai điểm ở hai thời điểm khác nhau:

$$\Delta \varphi = \frac{2\pi}{T} \Delta t = \omega \Delta t$$

• Độ lệch pha giữa hai điểm cách nhau d trên một phương truyền sóng

$$\Delta\varphi=\frac{2\pi}{\lambda}d\quad \text{V\'oi}\quad \begin{cases} \text{Hai dao động cùng pha} \quad \Delta\varphi &=2k\pi; \quad k\in Z\\ \text{Hai dao động ngược pha} \quad \Delta\varphi &=(2k+1)\pi; \quad k\in Z \end{cases}$$

2.Tìm bước sóng khi biết độ lệch pha và giới hạn của bước sóng,(tần số, vận tốc truyền sóng):

Giả sử xét hai dao động cùng pha $\Delta \varphi = 2k\pi$, so sánh với công thức về độ lệch pha:

Từ đó suy ra được bước sóng λ theo k: $\lambda = \frac{d}{k}$

Nếu cho giới hạn của λ : ta được: $\lambda_1 \leq \frac{d}{k} \leq \lambda_2$, có bao giá trị nguyên của k thay vào ta suy ra được bước sóng hay tần số, vận tốc.

Nếu bài toán cho giới hạn của tần số hay vận tốc, áp dụng công thức: $\lambda = V.T = \frac{V}{f}$. Từ đó suy ra các giá trị nguyên của k, suy ra được đại lượng cần tìm.

Chú ý: Nếu biết lực căng dây F, và khối lượng trên mỗi mét chiều dài ρ , ta có: $V = \sqrt{\frac{F}{\rho}}$

3. Viết phương trình sóng tai một điểm trên phương truyền sóng:

Giả sử sóng truyền từ O đến M:OM=d, giả sử sóng tại O có dạng: $u_O=a\sin\omega t$ (cm)

Sống tại M trể pha $\frac{2\pi}{\lambda}d$ so với O. Phương trình sống tại M: $u_M=a\sin(\omega t-\frac{2\pi}{\lambda}d)$ (cm) với $t\geq \frac{d}{V}$

4. Vận tốc dao động của sóng:

Vận tốc dao động:
$$v=\frac{du_M}{dt}=\omega a\cos(\omega t+\frac{2\pi}{\lambda}d)$$
 (cm/s) Th.s Trần AnhTrung

 $CH\mathring{U}$ ĐỀ 2. Vẽ đồ thị biểu diễn quá trình truyền sóng theo thời gian và theo không gian:

Phương pháp:

1. Vẽ đồ thị biểu diễn qúa trình truyền sóng theo thời gian:

Xem yếu tố không gian là không đổi.

• Cách 1:(Vẽ trực tiếp)

$$\mathring{\mathbf{O}}$$
 gốc $O: u_O = a \sin \omega t = a \sin \frac{2\pi}{T} t$

Xét điểm
$$M(x_M=OM=const)$$
: $u_M=a\sin(\omega t-\frac{2\pi}{\lambda}x_M)$ điều kiện $t\geq\frac{x_M}{V}$

Lập bảng biến thiên:

t	0	$\frac{T}{4}$	$\frac{T}{2}$	$\frac{3T}{4}$	T
		X	0	X	X
u_M	$a\sin\frac{2\pi}{\lambda}$	\overline{x}_M			

Vẽ đồ thị biểu diễn, chỉ lấy phần biểu diễn trong giới hạn $t \geq \frac{x_M}{V}$

• Cách 2:(Vẽ gián tiếp)

-Vẽ đồ thị : u_0

t	0	$\frac{T}{4}$	$\frac{T}{2}$	$\frac{3T}{4}$	T
u_0	0	A	0	-A	0

Tịnh tiến đồ thị $u_0(t)$ theo chiều dương một đoạn $\theta=\frac{x_M}{V}$ ta được đồ thị biểu diễn đường sin thời gian.

Chú ý: Thường lập tỉ số: $k = \frac{\theta}{T}$

2. Vẽ đồ thị biểu diễn qúa trình truyền sóng theo không gian (dạng của môi trường...):

Xem yếu tố thời gian là không đổi.

Với M thuộc dây: $OM = x_M$, t_0 là thời điểm đang xét $t_0 = const$

Biểu thức sóng:
$$u_M=a\sin(\omega t-\frac{2\pi}{\lambda}x)$$
 (cm) , với chu kỳ: λ

Đường sin không gian là đường biểu diễn u theo x. Giả sử tại t_0 , sóng truyền được một đoạn $x_M=V.t_0$, điều kiện $x\leq x_M.$ Chú ý: Thường lập tỉ số: $k=\frac{x_M}{\lambda}.$

Lập bảng biến thiên:

X	0	$\frac{\lambda}{4}$	$\frac{\lambda}{2}$	$\frac{3\lambda}{4}$	λ
u		X	X	X	X
	$a\sin\omega t_0$				

sống chưa tới

 $\mathrm{CH}\mathring{\mathrm{U}}\,\mathrm{D}\mathring{\mathrm{E}}\,3.\mathrm{X\acute{a}c}$ định tính chất sóng tại một điểm M trên miền giao thoa:

Phương pháp:

$$\forall \mathbf{M} : MS_1 = d_1; MS_2 = d_2$$

Tìm hiệu đường đi:
$$\delta = d_2 - d_1$$
 và tìm bước sóng: $\lambda = V.T = \frac{V}{f}$

Lập tỉ số:

$$k = \frac{\delta}{\lambda} \quad \begin{cases} \bullet \text{N\'eu} & p = k (\text{ nguy\'en}) \Leftrightarrow \delta = k \lambda \\ \bullet \text{N\'eu} & p = k + \frac{1}{2} (\text{ bán nguy\'en}) \Leftrightarrow \delta = (k + \frac{1}{2}) \lambda \end{cases} \Rightarrow M \text{dao động cực tiểu}$$

CHỦ ĐỀ 4.Viết phương trình sóng tại điểm M trên miền giao thoa:

Phương pháp:

Giả sử:
$$u_1 = u_2 = a \sin \omega t$$
 (cm)

Sóng tryền từ
$$S_1$$
 đến M :sóng tại M trễ pha $\frac{2\pi}{\lambda}d_1$ so với S_1 : $u_1=a\sin(\omega t-\frac{2\pi}{\lambda}d_1)$ (cm)

Sóng tryền từ
$$S_2$$
 đến M :sóng tại M trễ pha $\frac{2\pi}{\lambda}d_2$ so với S_2 : $u_2=a\sin(\omega t-\frac{2\pi}{\lambda}d_2)$ (cm)

Sống tại
$$M$$
: $u_M = u_1 + u_2$, thay vào, áp dụng công thức: $\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$

Cuối cùng ta được:
$$u_{M} = 2a\cos\frac{\pi}{\lambda}(d_{2} - d_{1})\sin\left[\omega t - \frac{\pi}{\lambda}(d_{2} + d_{1})\right] \tag{*}$$

Phương trình (*) là một phương trình dao động điều hòa có dạng: $u_M = A\sin(\omega t + \Phi)$

Với:
$$\begin{cases} \text{Biên độ dao dộng:} \quad A = 2a \bigg| \cos \frac{\pi}{\lambda} (d_2 - d_1) \bigg| \\ \text{Pha ban đầu:} \qquad \Phi = -\frac{\pi}{\lambda} \big(d_2 + d_1 \big) \end{cases}$$

CHỦ ĐỀ 5.Xác định số đường dao động cực đại và cực tiểu trên miền giao thoa:

Phương pháp:

$$\forall \mathbf{M} : MS_1 = d_1; MS_2 = d_2, S_1S_2 = l$$

Xét
$$\Delta M S_1 S_2$$
: ta có: $|d_2 - d_1| \le l \Leftrightarrow -l \le d_2 - d_1 \le l$ (*)

$$ullet$$
 Để M dao động với biên độ cực đại: $\delta=d_2-d_1=k\lambda \quad k\in Z$

Thay vào (*),ta được: $-\frac{l}{\lambda} \le k \le \frac{l}{\lambda}$, có bao nhiều giá trị nguyên của k thì có bấy nhiều đường dao động với biên độ cực đại (kể cả đường trung trực đoạn S_1S_2 ứng với k=0)

$$ullet$$
Để M dao động với biên độ cực tiểu: $\delta=d_2-d_1=\left(k+rac{1}{2}
ight)\!\lambda\quad k\in Z$

Thay vào (*),ta được: $\boxed{-\frac{l}{\lambda}-\frac{1}{2}\leq k\leq \frac{l}{\lambda}-\frac{1}{2}}$, có bao nhiều giá trị nguyên của k thì có bấy nhiều đường dao động với biên độ cực tiểu.

CHỦ ĐỀ 6. Xác định điểm dao động với biên độ cực đại (điểm bụng) và số điểm dao động với biên độ cực tiểu (điểm nút) trên đoạn S_1S_2 :

Phương pháp:

$$\forall M \in S_1 S_2 : MS_1 = d_1; MS_2 = d_2, S_1 S_2 = l$$

Ta có:
$$d_1 + d_2 = l$$
 (*)

$$ullet$$
 Để M dao động với biên độ cực đại: $\delta=d_2-d_1=k\lambda\quad k\in Z$

Cộng (1) và (*) ta được:
$$d_2 = \frac{l}{2} + k\frac{\lambda}{2}$$
, điều kiện: $0 \le d_2 \le l$

Vậy ta được: $\boxed{-\frac{l}{\lambda} \leq k \leq \frac{l}{\lambda}}$, có bao nhiều giá trị nguyên của k thì có bấy nhiều điểm bung (kể cả điểm giữa)

$$ullet$$
 Để M dao động với biên độ cực tiểu: $\delta=d_2-d_1=\left(k+\frac{1}{2}\right)\!\lambda\quad k\in Z$ (2)

Cộng (2) và (*) ta được:
$$d_2=\frac{l}{2}+\left(k+\frac{1}{2}\right)\frac{\lambda}{2}$$
 , điều kiện: $0\leq d_2\leq l$

Vậy ta được: $\boxed{-\frac{l}{\lambda}-\frac{1}{2}\leq k\leq \frac{l}{\lambda}-\frac{1}{2}}$, có bao nhiều giá trị nguyên của k thì có bấy nhiều điểm nút.

Chú ý: Để tìm vị trí các điểm dao động cực đại (hay cực tiểu) ta thường lập bảng:

k	các giá trị âm	-1	0	1	các giá trị dương
d_2	$d_{2i} - \frac{\lambda}{2}$		d_{20}		$d_{2i} + \frac{\lambda}{2}$

CHỦ ĐỀ 7. Tìm qũy tích những điểm dao động cùng pha (hay ngược pha) với hai nguồn S_1, S_2 :

Phương pháp:

Pha ban đầu sóng tại
$$M$$
: $\Phi_M = -\frac{\pi}{\lambda}(d_2 + d_1)$

Pha ban đầu sóng tại S_1 (hay S_2): $\varphi = 0$

Độ lệch pha giữa hai điểm:
$$\Delta \varphi = \varphi - \Phi_M = \frac{\pi}{\lambda} (d_2 + d_1)$$
 (*)

Để hai điểm dao động cùng pha $\Delta \varphi = 2k\pi$, so sánh (*): $d_2 + d_1 = 2k\lambda$. Vậy tập hợp những điểm dao động cùng pha với hai nguồn S_1, S_2 là họ đường Ellip, nhận hai điểm S_1, S_2 làm hai tiêu điểm.

Để hai điểm dao động ngược pha $\Delta \varphi = (2k+1)\pi$, so sánh (*): $d_2+d_1=(2k+1)\lambda$. Vậy tập hợp những điểm dao động ngược pha với hai nguồn S_1,S_2 là họ đường Ellip, nhận hai điểm S_1,S_2 làm hai tiêu điểm (xen kẻ với họ Ellip nói trên).

CHỦ ĐỀ 8.Viết biểu thức sóng dừng trên dây đàn hồi:

Phương pháp:

Goi: MC = d, AC = l thì AM = l - d. Các bước thực hiện:

1. Viết biểu thức sóng tới:

- Sóng tại A: $u_A = a \sin \omega t$
- Sóng tại M:

Tại
$$M$$
 sóng trể pha $\frac{2\pi}{\lambda}(l-d)$ so với A $u_M = a \sin\left(\omega t - \frac{2\pi}{\lambda}(l-d)\right)$ (1)

Tại
$$C$$
 sóng trể pha $\frac{2\pi}{\lambda}l$ so với A $u_C=a\sin(\omega t-\frac{2\pi}{\lambda}l)$ (2)

2. Viết biểu thức sóng phản xa:

• Sóng tai C:

$$\begin{cases} \text{Nếu ở C cố định} & u_C' = -u_C = -a\sin(\omega t - \frac{2\pi}{\lambda}l) & \text{(3)} & \text{sóng tới} \\ \text{Nếu ở C tự do} & u_C' = u_C = a\sin(\omega t - \frac{2\pi}{\lambda}l) & \text{(4)} & \text{A} & \text{Sóng phần xa} \end{cases}$$

Sóng tại M:

Tại M sóng trể pha $\frac{2\pi}{\lambda}d$ so với C:

$$\begin{cases} \text{Nếu ở C cố định} & u_M' = -a\sin(\omega t - \frac{2\pi}{\lambda}l - \frac{2\pi}{\lambda}d) & (5) \\ \text{Nếu ở C tự do} & u_M' = a\sin(\omega t - \frac{2\pi}{\lambda}l - \frac{2\pi}{\lambda}d) & (6) \end{cases}$$

3.Sóng tại M: $u=u_M+u_M^\prime$, dùng công thức lượng giác suy ra được biểu thức sóng dừng.

CHỦ ĐỂ 9.Điều kiện để có hiện tượng sóng dùng, từ đó suy ra số bụng và số nút sóng:

Phương pháp:

1.Hai đầu môi trường (dây hay cột không khí) là cố định:

+ Điều kiện về chiều dài: là số nguyên lần múi sóng:
$$l=k\frac{\lambda}{2}$$
 + Điều kiện về tần số: $\lambda=\frac{V}{f}\to f=k\frac{V}{2l}$

+ Số múi:
$$k = \frac{2l}{l}$$
, số bung là k và số nút là $k + l$

+ Số múi:
$$k = \frac{2l}{\lambda}$$
, số bụng là k và số nút là $k + 1$.

2.Môt đầu môi trường (dây hay côt không khí) là cố đinh, đầu kia tư do:

+ Điều kiên về chiều dài: là số bán nguyên lần múi sóng:

1 _	\int_{L}	1)	λ
$\iota =$	$(\kappa +$	$\overline{2}$	2

+ Điều kiện về tần số:
$$\lambda = \frac{V}{f} \rightarrow \left| f = \left(k + \frac{1}{2} \right) \frac{v}{2l} \right|$$

$$\frac{\lambda}{2} \left[\begin{array}{c} \lambda \\ \lambda \\ \lambda \end{array} \right]$$

+ Số múi: $k = \frac{2l}{\lambda} - \frac{1}{2}$, số bụng là k + 1 và số nút là k + 1.

3. Hai đầu môi trường (dây hay cột không khí) là tự do:

+ Điều kiện về chiều dài: là số nguyên lần múi sóng:
$$l=k\frac{\lambda}{2}$$

+ Điều kiện về tần số:
$$\lambda = \frac{V}{f} \rightarrow \boxed{f = k \frac{v}{2l}}$$

+ Số múi:
$$k = \frac{2l}{\lambda}$$
, số bụng là k và số nút là $k-1$.

Chú ý: Cho biết lực căng dây F, mật độ chiều dài ρ : $V = \sqrt{\frac{F}{\rho}}$

Thay vào điều kiện về tần số:
$$F = \frac{4l^2f^2\rho}{k^2}$$

 $CH\mathring{U}$ ĐỀ 10.Xác định cường độ âm (I) khi biết mức cường độ âm tại điểm. Xác định công suất của nguồn âm? Đô to của âm:

Phương pháp:

1.Xác đinh cường đô âm (I) khi biết mức cường đô âm tai điểm:

*Nếu mức cường độ âm tính theo đơn vị B: $L = lg \frac{I}{I_0}$

Từ đó: $I = I_0.10^L$

* Nếu mức cường độ âm tính theo đơn vị dB: $L=10lg\frac{I}{I_0}$

Từ đó: $I=I_0.10^{\frac{L}{10}}$

Chú ý: Nếu tần số âm f=1000 Hz thì $I_0=10^{-12} Wm^{-2}$

2. Xác định công suất của nguồn âm tại một điểm:

Công suất của nguồn âm tại A là năng lượng truyền qua mặt cầu tâm N bán kính NA trong 1 giây.

Ta có:
$$I_A = \frac{W}{S} \rightarrow W = I_A.S$$
 hay $P_{\text{nguồn}} = I_A.S_A$

Nếu nguồn âm là đẳng hướng: $S_A = 4\pi NA^2$

Nếu nguồn âm là loa hình nón có nữa góc ở đỉnh là α :

Gọi R là khoảng cách từ loa đến điểm mà ta xét. Diện tích của chỏm cầu bán kính R và

chiều cao h là $S=2\pi Rh$

Ta có: $h=R-R\cos\alpha$, vậy $S=2\pi R^2(1-\cos\alpha)$

Vây, công suất của nguồn âm:

 $P = I.2\pi R^2 (1 - \cos \alpha)$

3.Độ to của âm:

Tùy tần số, mỗi âm có một ngưỡng nghe ứng với I_{min}

Độ to của âm: $\Delta I = I - I_{min}$

Độ to tối thiểu mà tai phân biệt được gọi là 1 phôn

Ta có: $\Delta I = 1 \mathrm{phôn} \leftrightarrow 10 lg \frac{I_2}{I_1} = 1 dB$

PHẦN 5

PHƯƠNG PHÁP GIẢI TOÁN VỀ MẠCH ĐIỆN XOAY CHIỀU KHÔNG PHÂN NHÁNH (RLC)

CHỦ ĐỀ 1. Tạo ra dòng điện xoay chiều bằng cách cho khung dây quay đều trong từ trường, xác định suất điện động cảm ứng e(t)? Suy ra biểu thức cường độ dòng điện i(t) và hiêu điên thế u(t):

Phương pháp:

1. Tìm biểu thức từ thông $\Phi(t)$:

$$\Phi(t) = NBS\cos(\omega t)$$
 hay $\Phi(t) = \Phi_0\cos(\omega t)$ với $\Phi_0 = NBS$.

2. Tìm biểu thức của sđđ cảm ứng e(t):

$$e(t)=-rac{d\Phi(t)}{dt}=\omega NBS\sin(\omega t)$$
 hay $e(t)=E_0\sin(\omega t)$ với: $E_0=\omega NBS$

3. Tìm biểu thức cường độ dòng điện qua R: $i=\frac{e(t)}{R}$

4. Tìm biểu thức hđt tức thời u(t): u(t) = e(t) suy ra $U_0 = E_0$ hay U = E.

CHỦ ĐỀ 2.Đoạn mạch RLC: cho biết $i(t)=I_0\sin(\omega t)$, viết biểu thức hiệu điện thế u(t). Tìm công suất $P_{\rm mach}$?

Phương pháp:

Nếu
$$i = I_0 \sin(\omega t)$$
 thì $u = U_0 \sin(\omega t + \varphi)$ (*)

Với:

$$U_0=I_0.Z,$$
 tổng trở: $Z=\sqrt{R^2+(Z_L-Z_C)^2}$ với $egin{cases} Z_L=&\omega L\ Z_C=&rac{1}{\omega C} \end{cases}$

$$tg\varphi=rac{Z_L-Z_C}{R}
ightarrow arphi,$$
 với $arphi$ là độ lệch pha của u so với $i.$

Công suất tiêu thụ của đoạn mạch:

Cách 1: Dùng công thức:
$$P = UI\cos\varphi$$
, với $U = \frac{U_0}{\sqrt{2}}$, $I = \frac{I_0}{\sqrt{2}}$, $\cos\varphi = \frac{R}{Z}$

Cách 2: Trong các phần tử điện, chỉ có điện trở R mới tiêu thụ điện năng dưới dạng tỏa nhiệt: $P=RI^2$

Chú ý:
$$\frac{1}{\pi} = 0,318$$

CHỦ ĐỀ 3.Đoạn mạch RLC: cho biết $u(t)=U_0\sin(\omega t)$, viết biểu thức cường độ dòng điện i(t). Suy ra biểu thức $u_R(t)?u_L(t)?u_C(t)?$

Phương pháp:

$$I_0 = \frac{U_0}{\cdot} Z, \quad \text{tổng trở:} \quad Z = \sqrt{R^2 + (Z_L - Z_C)^2} \quad \text{với} \quad tg\varphi = \frac{Z_L - Z_C}{R} \rightarrow \varphi$$

Hê qủa:

Hiệu điện thế hai đầu điện trở R cùng pha với cđdđ:

$$u_R = U_{0R} \sin(\omega t - \varphi)$$
. với: $U_{0R} = I_0.R$.

Hiệu điện thế hai đầu cuộn cảm L nhanh pha $\frac{\pi}{2}$ so với cđdđ:

$$u_L = U_{0L}\sin(\omega t - \varphi + \frac{\pi}{2}).$$
 với: $U_{0L} = I_0.Z_L.$

Hiệu điện thế hai đầu tụ điện C chậm pha $\frac{\pi}{2}$ so với cđ
dđ:

$$u_C = U_{0C}\sin(\omega t - \varphi - \frac{\pi}{2}).$$
 với: $U_{0C} = I_0.Z_C.$

Chú ý: Nếu phần tử điện nào bi đoản mạch hoặc không có trong đoạn mạch thì ta xem điện trở tương ứng bằng 0.

Nếu biết:
$$i=I_0\sin(\omega t+\varphi_i)$$
 và $u=U_0\sin(\omega t+\varphi_u)$ thì độ lệch pha: $\varphi_{u/i}=\varphi_u-\varphi_i$

CHỦ ĐỀ 4. Xác định độ lệch pha giữa hai hđt tức thời u_1 và u_2 của hai đoạn mạch khác nhau trên cùng một dòng điện xoay chiều không phân nhánh? Cách vân dung?

Phương pháp:

•Cách 1:(Dùng đai số)

Độ lệch pha của
$$u_1$$
 so với i :
$$tg\varphi_1 = \frac{Z_{L_1} - Z_{C_1}}{R_1} \rightarrow \varphi_1$$
 Độ lệch pha của u_2 so với i :
$$tg\varphi_2 = \frac{Z_{L_2} - Z_{C_2}}{R_2} \rightarrow \varphi_2$$
 Ta có:
$$\varphi_{u_1/u_2} = \varphi_{u_1} - \varphi_{u_2} = (\varphi_{u_1} - \varphi_i) - (\varphi_{u_2} - \varphi_i)$$

$$= \varphi_{u_1/i} - \varphi_{u_2/i} = \varphi_1 - \varphi_2$$

Độ lệch pha của u_1 so với u_2 : $\Delta \varphi = \varphi_1 - \varphi_2$

Ta có:
$$u=u_1+u_2 \leftrightarrow \vec{U}=\vec{U_1}+\vec{U_2}$$
 trục pha \vec{I} .

$$\vec{U_1} \quad \begin{cases} U_1 &= I.Z_1 \\ tg\varphi_1 &= \frac{Z_{L_1} - Z_{C_1}}{R_1} \to \varphi_1 \end{cases}; \qquad \begin{cases} U_2 &= I.Z_2 \\ tg\varphi_2 &= \frac{Z_{L_2} - Z_{C_2}}{R_2} \to \varphi_1 \end{cases}$$

Độ lệch pha của
$$u_1$$
 so với u_2 : $\Delta \varphi = \varphi_1 - \varphi_2$

CHỦ ĐỀ 5.Đoan mạch RLC, cho biết U,R: tìm hệ thức L,C,ω để: cường độ dòng điên qua đoan mach cưc đai, hiệu điên thế và cường đô dòng điên cùng pha, công suất tiêu thu trên đoan mach đat cưc đai.

Phương pháp:

1.Cường đô dòng điện qua đoan mach đat cực đại:

Áp dụng định luật Ohm cho đoạn mạch:
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}}$$
 (*)

Ta có:

$$I = max \leftrightarrow M = R^2 + (Z_L - Z_C)^2 = min \leftrightarrow Z_L - Z_C = 0 \leftrightarrow \omega L = \frac{1}{\omega C}$$

Hay
$$LC\omega^2 = 1$$

$$LC\omega^2 = 1$$
 $(*) \rightarrow I_{max} = \frac{U}{R}$

2.Hiêu điên thế cùng pha với cường đô dòng điên:

Để
$$u$$
 và i cùng pha: $\varphi = 0$
hay $tg\varphi = \frac{Z_L - Z_C}{R} = 0 \leftrightarrow Z_L - Z_C = 0 \leftrightarrow \omega L = \frac{1}{\omega C}$
 \overrightarrow{U}_L
 \overrightarrow{U}_R

Hay
$$LC\omega^2 = 1$$

3.Công suất tiêu thu trên đoan mach cực đại:

Ta có:
$$P=UI\cos\varphi$$
 , để $P=max\leftrightarrow\cos\varphi=1$ Ta có: $\cos\varphi=\frac{R}{\sqrt{R^2+(Z_L-Z_C)^2}}=1$

Hay
$$R^2 + (Z_L - Z_C)^2 = R$$

Hay $LC\omega^2 = 1$

4.Kết luân:

Hiên tượng cộng hưởng điện:

$$LC\omega^2 = 1 \quad \leftrightarrow \begin{cases} \bullet & I = max \\ \bullet & u, i \text{ cùng pha } (\varphi = 0) \\ \bullet & \cos \varphi = 1 \end{cases}$$

$$\bullet \quad \text{Hệ qủa:} \begin{cases} 1.I_{max} = \frac{U}{R} \\ 2.\text{Do} \quad Z_L = Z_C \rightarrow U_L = U_C \quad \text{với} \quad \varphi_L = -\varphi_C = -\frac{\pi}{2} \\ \text{nên} \quad \vec{U_L} = -\vec{U_C} \leftrightarrow u_L = -u_C \end{cases}$$

 $\mathbf{CH\mathring{U}}$ ĐỀ 6.Đoạn mạch RLC, ghép thêm một tụ C': tìm C' để: cường độ dòng điện qua đoạn mạch cực đại, hiệu điện thế và cường độ dòng điện cùng pha, công suất tiêu thụ trên đoạn mạch đạt cực đại.

Phương pháp:

Gọi C_b là điện dung tương đương của bộ tụ, tương tự chủ đề 5, ta

$$LC_b\omega^2 = 1 \rightarrow C_b = \frac{1}{L\omega^2}$$

$$\circ \text{N\'eu } C \text{ n\'oi ti\'ep v\'oi } C': \boxed{\frac{1}{C_b} = \frac{1}{C} + \frac{1}{C'}}$$

$$\circ \text{N\'eu } C \text{ song song v\'oi } C': \boxed{C_b = C + C'}$$

CHỦ ĐỂ 7.Đoạn mạch RLC: Cho biết U_R, U_L, U_C : tìm U và độ lệch pha $\varphi_{u/i}$.

Phương pháp:

Cách 1:(Dùng đại số)

$$\begin{split} \text{\'Ap diung công thức: } I &= \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}} \\ &\to U = I\sqrt{R^2 + (Z_L - Z_C)^2} \\ \hline &U = \sqrt{U_R^2 + (U_L - U_C)^2} \end{split}$$

Cách 2: (Dùng giản đồ vectơ)

Ta có:
$$u=u_R+u_L+u_C \leftrightarrow \vec{U}=\vec{U}_R+\vec{U}_L+\vec{U}_C$$
 trục pha \vec{I} Dựa vào giản đồ vectơ: ta được
$$U=\sqrt{U_R^2+(U_L-U_C)^2}$$

Độ lệch pha:
$$tg\varphi=rac{Z_L-Z_C}{R}=rac{IZ_L-IZ_C}{IR}$$
 Hay $tg\varphi=rac{U_L-U_C}{U_R}$

CHỦ ĐỀ 8. Cuộn dây (RL) mắc nối tiếp với tụ
 C: cho biết hiệu điện thế U_1
(cuộn dây) và U_C . Tìm $U_{\rm mach}$ và
 φ .

Phương pháp:

Ta có: $u=u_1+u_C \leftrightarrow \vec{U}=\vec{U}_1+\vec{U}_C \quad (*)$ trục pha \vec{I}

$$\text{V\'oi} \quad \begin{cases} \bullet \vec{U}_1 \\ +(\vec{I},\vec{U}_1) &= I.Z_1 = I.\sqrt{R^2 + Z_L^2} \\ +(\vec{I},\vec{U}_1) &= \varphi_1 \quad \text{v\'oi} \end{cases} \begin{cases} tg\varphi_1 &= \frac{Z_L}{R} \\ \cos\varphi_1 &= \frac{R}{\sqrt{R^2 + Z_L^2}} \end{cases} \quad \vec{U}_1 \quad \vec{U}_2 \quad \vec{U}_1 \quad \vec{U}_2 \quad \vec{U}_3 \quad \vec{U}_4 \quad \vec{U}_4 \quad \vec{U}_5 \quad \vec{U}_5 \quad \vec{U}_6 \quad \vec{U}$$

Xét $\triangle OAC$: Định lý hàm cosin:

$$U^2=U_1^2+U_C^2-2U_1U_C\cos(\frac{\pi}{2}-\varphi_1) \quad \text{Hay} \quad \boxed{U=\sqrt{U_1^2+U_C^2+2U_1U_C\sin\varphi_1}}$$
 Với: $\sin\varphi_1=\cos\varphi_1.tg\varphi_1=\frac{Z_L}{\sqrt{R^2+Z_L^2}}$

Chiếu (*) lên \overrightarrow{OI} : $U\cos\varphi = U_1\cos\varphi_1 \to \cos\varphi = \frac{U}{U_1}\cos\varphi_1$

CHỦ ĐỀ 9. Cho mạch RLC: Biết U, ω , tìm L, hay C, hay R để công suất tiêu thụ trên đoạn mạch cực đại.

Phương pháp:

Trong các phần tử điên, chỉ có điên trở R mới tiêu thu điên năng dưới dang tỏa nhiệt:

Ta có:
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}}$$
 Vậy: $P = \frac{RU^2}{R^2 + (Z_L - Z_C)^2}$ (*)

1.Tìm L hay C để công suất tiêu thụ trên đoạn mạch cực đại:

Dể
$$P = max$$
 từ (*) $\leftrightarrow M = R^2 + (Z_L - Z_C)^2 = min \leftrightarrow Z_L - Z_C = 0$

_ Với
$$P_1=rac{RU^2}{R^2+Z_L^2}$$

2. Tìm R để công suất tiêu thu trên đoan mạch cực đại:

Chia tử và mẫu của (*) cho R:
$$P=\frac{U^2}{R+\frac{(Z_L-Z_C)^2}{D}}=\frac{const}{M}$$

Để P=max khi và chỉ khi M=min. Áp dụng bất đẳng thức Côsin:

$$M = R + \frac{(Z_L - Z_C)^2}{R} \ge 2\sqrt{R \cdot \frac{(Z_L - Z_C)^2}{R}} = 2|Z_L - Z_C|$$

Dấu " = " xảy ra khi:
$$R = \frac{(Z_L - Z_C)^2}{R}$$

hay
$$R = |Z_L - Z_C|$$

Vây:
$$P_{max} = \frac{U^2}{2|U_L - U_C|}$$

Bang blen thien R theo P:				
R	0	$ Z_L - Z_C $	∞	
\overline{P}	0	P_{max}	0	

CHỦ ĐỂ 10.Đoạn mạch RLC: Cho biết U, R, f: tìm L (hay C) để U_L (hay U_C) đạt giá trị cực đại?

Phương pháp:

1.Tìm L để hiệu thế hiệu dung ở hai đầu cuôn cảm cực đai:

Hiệu điện thế ở hai đầu cuộn cảm:
$$U_L = I.Z_L = \frac{U.Z_L}{\sqrt{R^2 + (Z_L - Z_C)^2}}$$
 (*)

•Cách 1:(Dùng đao hàm)

Đạo hàm hai vế của (*) theo
$$Z_L$$
: $\frac{\partial U_L}{\partial Z_L} = \frac{(R^2 + Z_C^2 - Z_L Z_C)U}{[R^2 + (Z_L - Z_C)^2]^{\frac{3}{2}}}$

Ta có:
$$\frac{\partial U_L}{\partial Z_L}=0 \leftrightarrow \boxed{Z_L=\frac{R^2+Z_C^2}{Z_C}}$$
 , ta có bảng biến thiên:

•Cách 2:(Dùng đai số)

Chia tử và mẫu của (*) cho
$$Z_L$$
, ta được:
$$U_L = \frac{U}{\sqrt{\frac{R^2}{Z_L^2} + (1 - \frac{Z_C}{Z_L})^2}} = \frac{const}{\sqrt{y}}$$

Với
$$y = \frac{R^2}{Z_L^2} + (1 - \frac{Z_C}{Z_L})^2 = (R^2 + Z_C^2)\frac{1}{Z_L^2} - 2.Z_C\frac{1}{Z_L} + 1 = (R^2 + Z_C^2)x^2 - 2.Z_Cx + 1$$

Trong đó:
$$x=\frac{1}{Z_L}$$
; Ta có: $a=(R^2+Z_C^2)>0$

Nên
$$y = min$$
 khi $x = -\frac{b}{2a} = \frac{Z_C}{R^2 + Z_C^2}, y_{min} = -\frac{\Delta}{4a} = \frac{R^2}{R^2 + Z_C^2}$

Vậy:
$$\overline{Z_L = \frac{R^2 + Z_C^2}{Z_C}} \quad \text{và} \quad \overline{U_{Lmax} = \frac{U\sqrt{R^2 + Z_C^2}}{R}}$$

•Cách 3: (Dùng giản đồ vectơ)

Ta có:
$$u=u_{RC}+u_L \leftrightarrow \vec{U}=\vec{U}_{RC}+\vec{U}_L \quad (*)$$
 trục pha \vec{I} ,

$$\operatorname{\mathtt{d}\check{\mathrm{a}}\mathsf{t}} \, \widehat{AOB} = \alpha$$

$$\begin{array}{l} \text{X\'et } \Delta OAB \text{: } \text{D\'enh l\'en h\`am sin: } \frac{U_L}{\sin AOB} = \frac{U}{\sin OAB} \\ \leftrightarrow \frac{U_L}{\sin \alpha} = \frac{U}{\sin \left(\frac{\pi}{2} - \varphi_1\right)} = \frac{U}{\cos \varphi_1} \end{array}$$

$$\leftrightarrow \frac{U_L}{\sin \alpha} = \frac{U}{\sin(\frac{\pi}{2} - \varphi_1)} = \frac{U}{\cos \varphi_1}$$

Hay:
$$U_L = \frac{U}{\cos \varphi_1} \sin \alpha \text{ vậy: } U_L = \max$$

khi
$$\sin \alpha = 1 \rightarrow \alpha = 90^{0} \rightarrow \Delta AOB \perp O$$

Từ đó:
$$\varphi_1+|\varphi_{u/i}|=\frac{\pi}{2}$$
, vì $\varphi_1<0$, $\varphi_{u/i}>0$ nên: $tg\varphi_1=-cotg\varphi_{u/i}=-\frac{1}{tg\varphi_{u/i}}$

$$\leftrightarrow -\frac{Z_C}{R} = -\frac{R}{Z_L - Z_C} \text{ hay } \qquad \boxed{Z_L = \frac{R^2 + Z_L^2}{Z_C}}, \text{ v\'oi } U_{Lmax} = \frac{U}{\cos \varphi_1}$$

hay
$$U_{Lmax} = rac{U\sqrt{R^2 + Z_C^2}}{R}$$

2.Tìm C để hiệu thế hiệu dụng ở hai đầu tụ điện cực đại:

Hiệu điện thế ở hai đầu tụ điện:
$$U_C = I.Z_C = \frac{U.Z_C}{\sqrt{R^2 + (Z_L - Z_C)^2}}$$
 (**)

•Cách 1:(Dùng đao hàm)

Đạo hàm hai vế của (*) theo
$$Z_C$$
: $\frac{\partial U_C}{\partial Z_C} = \frac{(R^2 + Z_L^2 - Z_L Z_C)U}{[R^2 + (Z_L - Z_C)^2]^{\frac{3}{2}}}$

Ta có: $\frac{\partial U_C}{\partial Z_C}=0 \leftrightarrow \left|Z_C=\frac{R^2+Z_L^2}{Z_L}\right|$, ta có bảng biến thiên:

•Cách 2:(Dùng đại số)

Chia tử và mẫu của (*) cho
$$Z_C$$
, ta được: $U_C=\dfrac{U}{\sqrt{\dfrac{R^2}{Z_C^2}+(\dfrac{Z_L}{Z_C}-1)^2}}=\dfrac{const}{\sqrt{y}}$

Với
$$y = \frac{R^2}{Z_C^2} + (\frac{Z_L}{Z_C} - 1)^2 = (R^2 + Z_L^2)\frac{1}{Z_C^2} - 2.Z_L\frac{1}{Z_C} + 1 = (R^2 + Z_L^2)x^2 - 2.Z_Lx + 1$$

Trong đó:
$$x = \frac{1}{Z_C}$$
; Ta có: $a = (R^2 + Z_L^2) > 0$

Nên
$$y = min \text{ khi } x = -\frac{b}{2a} = \frac{Z_L}{R^2 + Z_L^2}, y_{min} = -\frac{\Delta}{4a} = \frac{R^2}{R^2 + Z_L^2}$$

Vậy:
$$Z_C = \frac{R^2 + Z_L^2}{Z_L}$$
 và $U_{Cmax} = \frac{U\sqrt{R^2 + Z_L^2}}{R}$

•Cách 3:(Dùng giản đồ vectơ)

Ta có: $u=u_{RL}+u_C\leftrightarrow \vec{U}=\vec{U}_{RL}+\vec{U}_C$ (*) trục pha \vec{I} , đặt $\widehat{AOB}=\alpha$ Xét ΔOAB : Định lý hàm sin: $\frac{U_C}{\sin AOB}=\frac{U}{\sin OAB}$

Định lý hàm sin:
$$\frac{CC}{\sin AOB} = \frac{C}{\sin OAB}$$

$$U_{C} \qquad U_{C} \qquad U_{C}$$

$$\leftrightarrow \frac{U_C}{\sin \alpha} = \frac{U}{\sin(\frac{\pi}{2} - \varphi_1)} = \frac{U}{\cos \varphi_1}$$

Hay:
$$U_C = \frac{U}{\cos \varphi_1} \sin \alpha \text{ vây: } U_C = \max$$

khi
$$\sin \alpha = 1 \rightarrow \alpha = 90^{\circ} \rightarrow \Delta AOB \perp O$$

Từ đó:
$$\varphi_1 + |\varphi_{u/i}| = \frac{\pi}{2}$$
, vì $\varphi_1 > 0$, $\varphi_{u/i} < 0$ nên: $tg\varphi_1 = -cotg\varphi_{u/i} = -\frac{1}{tg\varphi_{u/i}}$

$$\leftrightarrow rac{Z_L}{R} = -rac{R}{Z_L - Z_C} ext{ hay } \left| Z_C = rac{R^2 + Z_L^2}{Z_L}
ight|,$$

$$Z_C = \frac{R^2 + Z_L^2}{Z_L} \,,$$

$$\text{v\'oi } U_{Cmax} = \frac{U}{\cos \varphi_1}$$

hay
$$U_{Cmax} = rac{U\sqrt{R^2 + Z_L^2}}{R}$$

CHỦ ĐỀ 11. Đoạn mạch RLC: Cho biết U,R,L,C: tìm f (hay ω) để U_R , U_L hay U_C đạt giá trị cực đại?

Phương pháp:

1.Tìm f (hay ω) để hiệu thế hiệu dụng ở hai đầu điện trở cực đại:

Hiệu điện thế ở hai đầu điện trở
$$R$$
: $U_R = I.R = \frac{UR}{\sqrt{R^2 + (Z_L - Z_C)^2}} = \frac{const}{M}$

Để
$$U_R = max \leftrightarrow M = min \leftrightarrow Z_L - Z_C = 0$$
 hay $\omega_0 = \frac{1}{\sqrt{LC}}$ (1) (Với $\omega_0 = 2\pi f$)

$$\mathbf{V}\mathbf{\hat{a}}\mathbf{y} \quad \boxed{U_{Rmax} = U}$$

2.Tìm f (hay ω) để hiệu thế hiệu dụng ở hai đầu cuộn cảm cực đại:

Hiệu điện thế ở hai đầu điện trở L:

$$U_{L} = I.Z_{L} = \frac{UZ_{L}}{\sqrt{R^{2} + (Z_{L} - Z_{C})^{2}}} = \frac{U\omega L}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} = \frac{U}{\sqrt{\frac{R^{2}}{\omega^{2}L^{2}} + \left(1 - \frac{1}{\omega^{2}CL}\right)}}$$

Hay $U_L = \frac{const}{\sqrt{y}}$, để U_L cực đại khi y = min.

Ta có:
$$y = \frac{R^2}{\omega^2 L^2} + (1 - \frac{1}{\omega^2 CL})^2 = \frac{1}{C^2 L^2} \frac{1}{\omega^4} + \left(\frac{R^2}{L^2} - 2\frac{1}{CL}\right) \frac{1}{\omega^2} + 1$$

Hay:
$$y = \frac{1}{C^2 L^2} x^2 + \left(\frac{R^2}{L^2} - 2\frac{1}{CL}\right) x + 1$$
 với $x = \frac{1}{\omega^2}$ Ta có: $a = \frac{1}{C^2 L^2} > 0$

Nên
$$y = min \text{ khi } x = -\frac{b}{2a} = \left(\frac{2}{CL} - \frac{R^2}{L^2}\right) \cdot \frac{L^2C^2}{2} = \frac{2LC - R^2C^2}{2}$$

Vậy
$$\omega_1 = \sqrt{\frac{2}{2LC - R^2C^2}} \quad (2)$$

3.Tîm f (hay ω) để hiệu thế hiệu dụng ở hai đầu tụ điện cực đại:

Hiệu điên thế ở hai đầu điên trở C:

$$U_C = I.Z_C = \frac{UZ_C}{\sqrt{R^2 + (Z_L - Z_C)^2}} = \frac{U\frac{1}{\omega C}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{U}{\sqrt{R^2 C^2 \omega^2 + (LC\omega - 1)}}$$

Hay $U_L = \frac{const}{\sqrt{u}}$, để U_L cực đại khi y = min.

Ta có:
$$y = R^2C^2\omega^2 + (LC\omega - 1)^2 = C^2L^2\omega^4 + (R^2C^2 - 2CL)\omega^2 + 1$$

Hay:
$$y = C^2 L^2 x^2 + (R^2 L^2 - 2CL)x + 1$$
 với $x = \omega^2$

Ta có:
$$a=C^2L^2>0$$
 Nên $y=min$ khi $x=-\frac{b}{2a}=\left(\frac{2CL-R^2C^2}{2C^2L^2}\right)$

Vây
$$\omega^2 = \left(\frac{2CL - R^2C^2}{2C^2L^2}\right)$$
 Hay: $\omega_2 = \frac{1}{LC} \cdot \sqrt{\frac{2CL - R^2C^2}{2}}$ (3)

Chú ý: Ta có: $\omega_0^2 = \omega_1.\omega_2$

Hiệu điện thế cực đại ở hai đầu cuôn cảm và tu điện đều có dang

$$U_{Cmax} = U_{Lmax} = \frac{2L}{R} \frac{U}{\sqrt{4LC - R^2C^2}}$$

CHỦ ĐỀ 12.Cho biết đồ thi i(t) và u(t), hoặc biết giản đồ vectơ hiệu điện thế: xác đinh các đặt điểm của mạch điện?

Phương pháp:

1.Cho biết đồ thị i(t) và u(t): tìm độ lệch pha $\varphi_{u/i}$:

Gọi θ là độ lệch pha về thời gian giữa u và i (Đo bằng khoảng thời gian giữa hai cực đại liên tiếp của u và i)

- Lệch thời gian $T \leftrightarrow$ lệch pha 2π
- Lệch thời gian $\theta \leftrightarrow$ lệch pha $\varphi_{u/i}$ Vậy: $\varphi_{u/i} = 2\pi \frac{\theta}{T}$

2.Cho biết giản đồ vectơ hiệu điện thế: vẽ sơ đồ đoan mạch? Tìm U_{mach}

Quy tắc:

$$\begin{cases} \bullet \vec{U}_R & \text{nằm ngang} & \leftrightarrow & \text{phần tử R} \\ \bullet \vec{U}_L & \text{thẳng đứng hướng lên} & \leftrightarrow & \text{phần tử L} \\ \bullet \vec{U}_C & \text{thẳng đứng hướng xuống} & \leftrightarrow & \text{phần tử C} \end{cases}$$

$$ec{U}_{ ext{mach}} \quad \left\{ egin{array}{ll} + ext{g\'oc}O; \ + ext{ngon: cu\'oi} \ ec{U}_R; \ arphi_{u/i} = (ec{I}, ec{U}) \end{array}
ight.$$

CHỦ ĐỂ 13. Tác dung nhiệt của dòng điện xoay chiều: tính nhiệt lượng tỏa ra trên doan mach?

Phương pháp:

Biết I: áp dụng công thức $Q = RI^2t$

Biết
$$U$$
: Từ công thức $I=\frac{U}{Z} \rightarrow Q=R\frac{U^2}{Z^2}t$

Nếu cuộn dây (RL) hoặc điện trở dìm trong chất lỏng: tìm Δt^0

Ta có:
$$Q_{toa} = RI^2t$$
; $Q_{thu} = Cm\Delta t^0 \rightarrow \Delta t^0 = \frac{RI^2t}{Cm}$

CHỦ ĐỂ 14. Tác dung hóa học của dòng điện xoay chiều: tính điện lương chuyển qua bình điện phân theo một chiều? Tính thể tích khí Hiđrô và Oxy xuất hiện ở các điện cuc?

Phương pháp:

1. Tính điên lương chuyển qua bình điên phân theo môt chiều (trong 1 chu kỳ T, trong *t*):

Xét dòng điện xoay chiều $i = I_0 \sin \omega t(A)$ qua bình điện phân chứa dung dịch axit hay bazo loãng.

Trong thời gian dt (bé): điện lượng qua bình điện phân: $dq = idt = I_0 \sin \omega t dt$

Trong 1 chu kỳ T: dòng điện chỉ qua bình điện phân trong $\frac{T}{2}$ theo một chiều:

$$q_1 = \int_0^{\frac{T}{2}} i dt = \int_0^{\frac{T}{2}} I_0 \sin \omega t dt = -\frac{1}{\omega} I_0 \cos \omega t \Big|_0^{\frac{T}{2}}$$

hay
$$q_1=rac{2I_0}{\omega}$$
 Với $\omega=rac{2\pi}{T}$ do đó ta có: $q_1=rac{I_0T}{\pi}$

Trong thời gian t, số dao động $n = \frac{t}{T}$, điện lượng qua bình điện phân theo một chiều là:

$$q=nq_1=rac{t}{T}.q_1$$
, vây:
$$q=rac{2I_0}{\omega}rac{t}{T}=rac{I_0t}{\pi}$$
Th.s Trần AnhTrung

2. Tính thể tích khí Hiđrô và $\mathbf{O}\mathbf{x}\mathbf{y}$ xuất hiện ở các điện cực trong thời gian t(s):

Cứ 96500C giải phóng $\frac{A}{n}=1g$ tương ứng 11,2(l)H đktc.

Vậy qC :thể tích khí H: $v_H = \frac{q}{96500}.11, 2(l)$

Thể tích của khí $O: v_O = \frac{v_H}{2}$

Vậy ở mỗi điện cực xuất hiện hồn hợp khí với thể tích $v=v_O+i$

 $CH\mathring{U}$ ĐỀ 15. Tác dụng từ của dòng điện xoay chiều và tác dụng của từ trường lên dòng điện xoay chiều?

Phương pháp:

1.Nam châm điện dùng dòng điện xoay chiều $(t \sin s \hat{o} f)$ đặt gần dây thép căng ngang. Xác định tần số rung f' của dây thép:

Trong một chu kỳ, dòng điện đổi chiều hai lần. Do đó nam châm hút hay nhả dây thép hai lần trong một chu kỳ. Nên tần số dao động của dây thép bằng hai lần tần số của dòng điện: f'=2f

2. Dây dẫn thẳng căng ngang mang dòng điện xoay chiều đặt trong từ trường có cảm ứng từ \vec{B} không đổi (vuông góc với dây): xác định tần số rung của dây f':

Từ trường không đổi \vec{B} tác dụng lên dây dẫn mang dòng điện một lực từ F = Bil(có chiều tuân theo quy tắc bàn tay trái). Vì F tỉ lệ với i, nên khi i đổi chiều hai lần trong một chu kỳ thì F đổi chiều hai lần trong một chu kỳ, do đó dây rung hai lần trong một chu kỳ. $\boxed{f' = f}$

PHẦN 6

PHƯƠNG PHÁP GIẢI TOÁN VỀ MÁY PHÁT ĐIỆN XOAY CHIỀU, BIẾN THẾ, TRUYỀN TẢI ĐIÊN NĂNG

 $\text{CH\'{U}}$ ĐỀ 1. Xác định tần số f của dòng điện xoay chiều tạo bởi máy phát điện xoay chiều 1 pha

Phương pháp:

1. Trường hợp roto của mpđ có p cặp cực, tần số vòng là n:

Nếu n
 tính bằng (vòng/s) thì: f=np

Nếu n tính bằng (vòng/phút) thì: $f = \frac{n}{60}p$

Chú ý: Số cặp cực:
$$p = \frac{\text{số cực (bắc+ nam)}}{2}$$

2.Trường hợp biết suất điện động xoay chiều (E hay E_o):

Áp dụng:
$$E_o=NBS\omega$$
 với $\omega=2\pi f$, nên:
$$f=\frac{E_o}{2\pi NBS}=\frac{E\sqrt{2}}{2\pi NBS}$$

Chú ý:

Nếu có k cuộn dây (với N_1 vòng) thì $N=kN_1$

Thông thường: máy có k cực (bắc + nam) thì phần ứng có k cuộn dây mắc nối tiếp.

CHỦ ĐỀ 2. Nhà máy thủy điện: thác nước cao h, làm quay tuabin nước và roto của mpđ. Tìm công suất P của máy phát điện?

Phương pháp:

Gọi: H_T là hiệu suất của tuabin nước;

 H_M là hiệu suất của máy phát điện;

m là khối lượng nước của thác nước trong thời gian t.

Công suất của thác nước: $P_o=\frac{A_o}{t}=\frac{mgh}{t}=\mu gh;$ với $\mu=\frac{m}{t}$ là lưu lượng nước (tính theo khối lương)

Công suất của tuabin nước: $P_T = H_T P_o$

Công suất của máy phát điện: $P_M = H_M P_T = H_M H_T P_o$

CHỦ ĐỀ 3. Mạch điện xoay chiều ba pha mắc theo sơ đồ hình Υ : tìm cường độ dòng trung hòa khi tải đối xứng? Tính hiệu điện thế U_d (theo U_p)? Tính P_t (các tải)

Phương pháp:

Tîm i_{th} :

$$\begin{cases} i_1 &= I_0 \sin \omega t \\ i_2 &= I_0 \sin (\omega t + \frac{2\pi}{3}) \to i_{th} = i_1 + i_2 + i_3 = 0 \quad \text{Suy ra: } \vec{I_1} = -\vec{I_{23}} \leftrightarrow \vec{I_{th}} = 0 \\ i_3 &= I_0 \sin (\omega t - \frac{2\pi}{3}) \end{cases}$$

Tìm U_d : Ta có:

 $U_d=U_{A_1A_2}=U_{A_2A_3}=U_{A_3A_1}$: hiệu điện thế giữa hai dây pha

 $U_p = U_{A_1O} = U_{A_2O} = U_{A_3O}$: hiệu điện thế giữa dây pha và dây trung hòa

Ta có:
$$u_d = u_{A_1A_2} = u_{A_1O} + u_{OA_2} = u_{A_1O} - u_{A_2O} \leftrightarrow \vec{U}_{A_1A_2} = \vec{U}_{A_1O} - \vec{U}_{A_1O}$$

Từ hình ta được: $U_d = U_p \sqrt{3}$

Tîm $P_{t\mathring{a}i}$:

Do hiệu điện thế của các tải bằng nhau (U_p) nên: $I_{
m tải}=rac{U_p}{Z_{
m tải}}$

Công suất tiêu thụ của mỗi tải: $P_t = U_p I_t \cos \varphi_t = R_t I_t^2$

 $\mathbf{CH\mathring{U}}$ ĐỀ 4. Máy biến thế: cho U_1, I_1 : tìm U_2, I_2

Phương pháp:

1.Trường hợp các điện trở của cuộn sơ cấp và thứ cấp bằng 0, cuộn thứ cấp hở:

Lúc đó: $I_2=0$ Áp dụng: $\boxed{\frac{U_2}{U_1}=\frac{N_2}{N_1}}$ $\rightarrow U_2$

- 2.Trường hợp các điện trở của cuộn sơ cấp và thứ cấp bằng 0, cuộn thứ cấp có tải:
 - a. Trường hợp hiệu suất MBT H=1:

Ta có:
$$P_1=P_2\leftrightarrow U_1I_1=U_2I_2$$
 Hay: $\frac{U_2}{U_1}=\frac{I_1}{I_2}$ hay $I_2=I_1\frac{N_1}{N_2}$

b. Trường hợp hiệu suất MBT là H:

Ta có:
$$\frac{U_2}{U_1} = \frac{N_2}{N_1}$$
 hay $I_2 = HI_1 \frac{N_1}{N_2}$

3.Trường hợp các điện trở của cuôn sơ cấp và thứ cấp khác 0:

Suất điện động qua cuộn sơ cấp: $e_1 = -N_1 \frac{d\Phi}{dt}$

Suất điện động qua cuộn thứ cấp: $e_2 = -N_2 \frac{d\Phi}{dt}$

Lập tỉ:
$$\frac{e_1}{e_2} = \frac{N_1}{N_2} \equiv k$$
 (3)

Cuộn sơ cấp đóng vai trò như một máy phát: $u_1 = e_1 + r_1 i_1 \rightarrow e_1 = u_1 - r_1 i_1$

Cuộn sơ cấp đóng vai trò như một máy thu: $u_2 = e_2 - r_2 i_2 \rightarrow e_2 = u_2 + r_2 i_2$

Lập tỉ:
$$\frac{e_1}{e_2} = \frac{u_1 - r_1 i_1}{u_2 + r_2 i_2} \equiv k \leftrightarrow u_1 - r_1 i_1 = k u_2 + k r_2 i_2$$
 (6)

Ta có
$$e_1 i_1 = e_2 i_2$$
 hay $\frac{e_1}{e_2} = \frac{i_1}{i_2} = \frac{1}{k} \rightarrow i_1 = \frac{i_2}{k}$ và $i_2 = \frac{u_2}{R}$ (7)

Thay (7) vào (6), thực hiện biến đổi ta được: $u_2 = \frac{kR}{k^2(R+r_2)+r_1}u_1$

Hay:
$$U_2 = \frac{kR}{k^2(R+r_2) + r_1}U_1$$

 $CH\mathring{U}$ ĐỀ 5. Truyền tải điện năng trên dây dẫn: xác định các đại lượng trong quá trình truyền tải

Phương pháp:

Tuyền tải:

Sản xuất:

Cường độ d.điện : $I = I_{2A} = I_{1B}$ $\frac{U_{2B}}{U_{1B}} = \frac{I_{1B}}{I_{2B}} = \frac{N_{2B}}{N_{1B}}$

 $\frac{U_{2A}}{U_{1A}} = \frac{I_{1A}}{I_{2A}} = \frac{N_{2A}}{N_{1A}} \qquad \text{ Diện trở}: R = \rho \frac{2l}{S}(l = AB)$

 $P_A = U_{1A}I_{1A} = U_{2A}I_{2A}$ Độ giảm thế : $\Delta U_{AB} = U_{2B} - U_{2A} = IR$ $P_B = U_{1B}I_{1B} = U_{2B}I_{2B}$

Công suất hao phí : $\Delta P = P_A - P_B = RI^2$

CHỦ ĐÊ 6. Xác định hiệu suất truyền tải điện năng trên dây?

Phương pháp:

Công thức định nghĩa hiệu suất: $\mathcal{H} = \frac{P_B}{P_A}$;

Xác định theo công suất: $\mathcal{H} = \frac{P_B}{P_A} = \frac{P_A - \Delta P}{P_A} = 1 - \frac{\Delta P}{P}$;

Sử dung:

Xác định theo hđt:
$$\mathcal{H}=rac{U_B}{U_A}=rac{U_A-\Delta U}{U_A}=1-rac{\Delta U}{U}$$

PHẦN 7

PHƯƠNG PHÁP GIẢI TOÁN VỀ DAO ĐỘNG ĐIỆN TỰ DO TRONG MẠCH LC

Ký hiệu:

- $q_{max} = Q_0$ (biên độ điện tích)
- $u_{max} = U_0$ (biên độ hiệu điện thế)
- $i_{max} = I_0$ (biên độ dòng điện)

	I	
GHI NHŐ	Dao động cơ học (con lắc lò xo)	Dao động điện (mạch LC
	Li độ: x	Điện tích : q
	Vận tốc: $v = \frac{dx}{dt} = x'$	Cường độ dòng điện : $i = -$
Các đại lượng đặt trưng	Khối lượng: m	Độ tự cảm : L
	Độ cứng: k	Nghịch đảo điện dung : $\frac{1}{C}$
	Lực tác dụng : F	Hiệu điện thế : u
Phương trình động lực học	Lực tác dụng: F $x" + \frac{k}{m}x = 0$	Hiệu điện thế : u $q" + \frac{1}{LC}q = 0$
	$\leftrightarrow x'' + \omega^2 x = 0$	$\leftrightarrow q" + \omega^2 q = 0$
Nghiệm của pt vi phân	$x = A\sin(\omega t + \varphi)$	$q = Q_0 \sin(\omega t + \varphi)$
Tần số góc riêng	$\omega = \sqrt{\frac{k}{m}}$	$\omega = \sqrt{\frac{1}{LC}}$
Chu kỳ dao động	$T = 2\pi \sqrt{\frac{m}{k}}$	$T = 2\pi\sqrt{LC}$
	Thế năng đàn hồi :	Năng lượng điện trường:
	$E_t = \frac{1}{2}kx^2$	$W_{\rm d} = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2} C u^2 = \frac{1}{2} q u$
	Động năng:	Năng lượng từ trường :
Năng lượng dao động	$E_{\mathbf{d}} = \frac{1}{2}mv^2$	$W_t = \frac{1}{2}Li^2$
	Cơ năng :	Năng lượng điện từ:
	$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$	$W = \frac{1}{2}Li^2 + \frac{1}{2}\frac{q^2}{C}$ $= \frac{1}{2}\frac{Q_0^2}{C} = \frac{1}{2}LI_0^2$
	$= \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2$	$= \frac{1}{2} \frac{Q_0^2}{C} = \frac{1}{2} L I_0^2$

Bảng so sánh dao động điều hòa của con lắc lò xo và dao động điện tự do

CHỦ ĐỀ 1. Dao động điện tự do trong mạch LC: viết biểu thức q(t)? Suy ra cường độ dòng điện i(t)?

Phương pháp:

$$q(t)$$
 có dạng tổng quát: $q=Q_0\sin(\omega t+\varphi)$ với: $Q_0=CU_0$ $\omega=\frac{1}{\sqrt{LC}}$ hoặc $\omega=\frac{2\pi}{T}=2\pi f$

 φ được xác định nhờ điều kiện ban đầu (t=0) của q.

$$i(t)$$
 được xác định: $i=-rac{dq}{dt}=q'=-\omega Q_0\cos(\omega t+\varphi)=-I_0\cos(\omega t+\varphi)$

Với
$$I_0 = \omega Q_0 = rac{Q_0}{\sqrt{LC}}$$

CHỦ ĐỀ 2. Dao động điện tự do trong mạch LC, biết $u_C=U_0\sin\omega t$, tìm q(t)? Suy ra i(t)?

Phương pháp:

Ta có:
$$q=Cu=Q_0\sin\omega t$$
 với $Q_0=CU_0$ $i(t)$ được xác định: $i=-\frac{dq}{dt}=-q'=-\omega Q_0\cos\omega t=-I_0\cos\omega t$ hay $i=I_0\sin\left(\omega t+\frac{\pi}{2}\right)$

CHỦ ĐỀ 3. Cách áp dụng định luật bảo toàn năng lượng trong mạch dao động LC. Phương pháp:

Áp dụng định luật bảo toàn và chuyển hóa năng lượng:

$$W = W_{\rm d} + W_t \qquad \qquad = W_{\rm dmax} = W_{tmax} = const$$

hay
$$\frac{1}{2}Li^2 + \begin{cases} \frac{1}{2}Cu^2 \\ \frac{1}{2}\frac{q^2}{C} \end{cases} = \frac{1}{2}LI_0^2 = \begin{cases} \frac{1}{2}CU_0^2 \\ \frac{1}{2}\frac{Q_0^2}{C} \end{cases}$$
 (*)

1.Biết Q_0 (hay U_0) tìm biên đô I_0 :

Từ (*) ta được:

$$\begin{cases} \frac{1}{2}CU_0^2 \\ \frac{1}{2}\frac{Q_0^2}{C} \end{cases} = \frac{1}{2}LI_0^2 \qquad \text{Suy ra} \qquad \begin{cases} I_0 = \frac{Q_0}{\sqrt{LC}} \\ I_0 = U_0\sqrt{\frac{L}{C}} \end{cases}$$

2.Biết Q_0 (hay U_0) và q (hay u), tìm i lúc đó :

Từ (*) ta được:

$$\frac{1}{2}Li^2 + \begin{cases} \frac{1}{2}Cu^2 \\ \frac{1}{2}\frac{q^2}{C} \end{cases} = \begin{cases} \frac{1}{2}CU_0^2 \\ \frac{1}{2}\frac{Q_0^2}{C} \end{cases} \quad \text{Suy ra} \quad \begin{cases} i = \sqrt{\frac{Q_0^2 - q^2}{LC}} \\ i = \sqrt{\frac{C}{L}(U_0^2 - u^2)} \end{cases}$$

CHỦ ĐỀ 4. Dao động điện tự do trong mạch LC, biết Q_0 và I_0 :tìm chu kỳ dao động riêng của mạch LC.

Phương pháp:

Áp dụng công thức Thomson: $T=2\pi\sqrt{LC}$ (1)

Ta có:
$$I_0=\frac{Q_0}{\sqrt{LC}} \rightarrow LC=\frac{Q_0^2}{I_0^2}$$
, thay vào (1): $T=2\pi\frac{Q_0}{T_0}$

CHỦ ĐỀ 5. Mạch LC ở lối vào của máy thu vô tuyến điện bắt sóng điện từ có tần số f (hay bước sóng λ). Tìm L(hay C)?

Phương pháp:

Điều kiện để bắt được sóng điện từ là tần số của sóng phải bằng tần số riêng của mạch dao động LC:

$$f(song) = f_0(mach)$$
 (**)

1.Biết f(sóng) tìm L và C:

$$\text{T\'er} (**) \quad \to \quad f = \frac{1}{2\pi\sqrt{LC}} \quad \leftrightarrow \quad \begin{cases} L = \frac{1}{4\pi^2 f^2 C} \\ C = \frac{1}{4\pi^2 f^2 L} \end{cases}$$

2.Biết λ (sóng) tìm L và C:

$$\text{Từ (**)} \quad \rightarrow \quad \frac{c}{\lambda} = \frac{1}{2\pi\sqrt{LC}} \quad \leftrightarrow \quad \begin{cases} L = \frac{\lambda^2}{4\pi^2c^2C} \\ C = \frac{\lambda^2}{4\pi^2c^2L} \end{cases}$$

CHỦ ĐỀ 6.Mạch LC ở lối vào của máy thu vô tuyến có tụ điện có điện dung biến thiên $C_{max} \div C_{min}$ tương ứng góc xoay biến thiên $0^0 \div 180^0$: xác định góc xoay $\Delta \alpha$ để thu được bức xạ có bước sóng λ ?

Phương pháp:

Lập luận như chủ đề 5:
$$C = \frac{\lambda^2}{4\pi^2c^2L}$$
 Khi $\Delta C_0 = C_{max} - C_{min} \leftrightarrow \Delta\alpha_0 = 180^0 - 0 = 180^0$ Khi $\Delta C = C - C_{min} \leftrightarrow \Delta\alpha$ Vậy:
$$\Delta\alpha = 180^0 \frac{C - C_{min}}{C_{max} - C_{min}}$$

CHỦ ĐỀ 7. Mạch LC ở lối vào của máy thu vô tuyến có tụ xoay biến thiên $C_{max} \div C_{min}$: tìm dải bước sóng hay dải tần số mà máy thu được?

Phương pháp:

Lập luận như chủ đề 5, ta có:

$$\begin{cases} \lambda = 2\pi c \sqrt{LC_v} \leftrightarrow \begin{cases} \lambda_{min} \leftrightarrow C_{min} \\ \lambda_{max} \leftrightarrow C_{max} \end{cases} \longrightarrow \lambda_{min} \leq \lambda \leq \lambda_{max} \end{cases}$$

$$f = \frac{1}{2\pi \sqrt{LC_v}} \leftrightarrow \begin{cases} C_{min} \leftrightarrow f_{max} \\ C_{max} \leftrightarrow f_{min} \end{cases} \longrightarrow f_{min} \leq f \leq f_{max}$$

PHẦN 8

PHƯƠNG PHÁP GIẢI TOÁN VỀ PHẢN XẠ ÁNH SÁNG CỦA GƯƠNG PHẮNG VÀ GƯƠNG CẦU

 $CH\mathring{U}$ $D\hat{E}$ 1.Cách vẽ tia phản xạ trên gương phẳng ứng với một tia tới đã cho? Phương pháp:

1.Cách 1:(Áp dụng định luật phản xạ ánh sáng)

- + Vẽ pháp tuyến IN tại điểm tới I, với góc tới $i = \widehat{SIN}$.
- + Vẽ tia phản xạ IR đối xứng với SI: $i' = \widehat{NIR} = i$

2.Cách 2:(Dưa vào mối liên hệ giữa vật và ảnh)

- + Nếu tia tới SI phát xuất từ điểm S thì tia phản xạ có phương qua ảnh ảo S' (đối xứng với S qua gương).
- + Nếu tia tới SI có phương qua vật ảo S (sau gương) thì tia phản xạ trực tiếp qua ảnh thật (trước gương).

 $CH \mathring{U}$ ĐỀ 2. Cách nhận biết tính chất ''thật - ảo'' của vật hay ảnh
(dựa vào các chùm sáng)

Phương pháp:

Nhân biết tính chất "thât - ảo" của vât: dưa vào tính chất của chùm tia tới.

- + Chùm tia tới phân kì thì vật thật.(vật trước gương).
- + Chùm tia tới hội tụ thì vật ảo.(vật sau gương). Nhận biết tính chất "thật - ảo" của ảnh: dựa vào tính chất của chùm tia phản xa.

+ Chùm tia phản xạ phân kỳ thì ảnh ảo.(ảnh sau gương).

Chú ý: Đối với gương phẳng, vật thật cho ảnh ảo và ngược lại.

CHỦ ĐỀ 3. Gương phẳng quay một góc α (quanh trục vuông góc mặt phẳng tới): tìm góc quay của tia phản xạ?

Phương pháp:

Định lý:(về gương quay):Khi gương quay một góc α quanh một trục \perp mp tới thì tia phản xạ quay một góc $\beta=2\alpha$ cùng chiều quay của gương."

1.Cho tia tới cố đinh, xác đinh chiều quay của tia phản xa:

Dùng hình học: $i_2' = i_2 = i_1 + \alpha$

Suy ra, góc quay:
$$\beta = \widehat{RIR'} = 2(i_2' - i_1) = 2\alpha$$

2.Cho biết SI = R, xác đinh quãng đường đi của ảnh S':

Đường đi S'S", ứng với góc quay $\beta=2\alpha$ của tia phản xạ.

Vậy:
$$S'S'' = R\beta_{rad} = 2R\alpha_{rad}$$

3. Gương quay đều với vận tốc góc ω : tìm vận tốc dài của ảnh?

$$v = \frac{S'S''}{t} = \frac{2R\alpha_{rad}}{t} = 2R\omega$$

$CH\mathring{U}$ ĐỀ 4. Xác định ảnh tạo bởi một hệ gương có mặt phản xạ hướng vào nhau Phương pháp:

Dựa vào hai nguyên tắc:

- **1.Nguyên tắc phân đoạn:** Chia quá trình tạo ảnh thành từng giai đoạn, mỗi giai đoạn chỉ xét tao ảnh trên một gương.
 - 2. Nguyên tắc tạo ảnh liên tiếp: ảnh của gương này là vật của gương kia.

Có hai nhóm liên tiếp

Nhóm ảnh 1: S G_1 G_2 G_2 G_3 G_4 G_5 G_5 G_7 G_8 G_9 G_9

Số ảnh là tổng tất cả các ảnh của hai hệ

Hệ qủa:

Đối với hệ hai gương song thì số ảnh là vô hạn nếu mắt đặt ngoài hai gương và hữu hạn nếu mắt đặt giữa hai gương.

Nếu hai gương hợp nhau một góc α

Mỗi nhóm ảnh, nếu ảnh nào nằm sau gương thì không tạo ảnh nữa.

Chú ý: Ta chứng minh được rằng nếu $\alpha = \frac{360^0}{n}$

với n là số nguyên dương thì hệ có n-1 ảnh.

CHỦ ĐỀ 5.Cách vân dung công thức của gương cầu

Phương pháp:

Xét sự tạo ảnh: $AB_{d=\overline{OA}}$ G $A'B'_{d'=\overline{OA'}}$

Áp dụng các công thức:
$$\boxed{\frac{1}{d} + \frac{1}{d'} = \frac{1}{f}}$$
 (1) với $f = \frac{R}{2}$

Công thức về độ phóng đại ảnh :
$$k = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{d'}{d}$$
 (2)

Hay:

$$k = -\frac{f}{d-f} = -\frac{d'-f}{f}$$

1.Cho biết d và AB: tìm d' và đô cao ảnh A'B'

Từ (1):
$$\rightarrow d' = \frac{df}{d-f}$$
, nếu $d' > 0$: ảnh thật; $d' < 0$ ảnh ảo.

Từ (2): ta suy ra được giá trị của k, nếu k>0 ảnh vật cùng chiều; k<0 ảnh vật ngược chiều.

Độ cao của ảnh: A'B' = |k|AB

2.Cho biết d' và A'B': tìm d và đô cao vât AB

Từ (1):
$$\rightarrow d = \frac{d'f}{d'-f}$$
, nếu $d > 0$: vật thật; $d < 0$ vật ảo.

Độ cao của vật:
$$AB = \frac{A'B'}{|k|}$$

3.Cho biết vị trí vật d và ảnh d' xác định tiêu cự f:

Từ (1):
$$\rightarrow f = \frac{d'd}{d+d'}$$
, nếu $f > 0$: gương cầu lõm; $f < 0$ gương cầu lồi.

4.Chú ý:

*Đối với gương cầu lồi: Vật thật luôn cho ảnh ảo, cùng chiều, nhỏ hơn vật, gần gương hơn vật.

*Đối với gương cầu lõm: Vật thật nằm trong OF luôn cho ảnh ảo, cùng chiều, nhỏ hơn vật, xa gương hơn vật. Vật thật nằm ngoài OF luôn cho ảnh thật, ngược chiều với vật.

 $CH\mathring{U}$ ĐỀ 6. Tìm chiều và độ dời của màn ảnh khi biết chiều và độ dời của vật. Hệ qủa?

Phương pháp:

1.Tìm chiều và đô dời của màn ảnh khi biết chiều và đô dời của vât:

Cách 1:

Ta có:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} = const$$
 (*)

Do đó: khi d tăng thì d' giảm và ngược lại.

Cách 2:

$$(*) \rightarrow d' = \frac{df}{d-f}$$
 hay $y = \frac{ax}{a-x}$

đạo hàm theo x: $y' = -\frac{a^2}{(a-x)^2} < 0$, vậy hàm số y = f(x) là hàm nghịch biến.

Kết luận:

Khi dịch chuyển vật lại gần gương cầu một đoạn $\Delta d=d_1-d_2$ thì dịch chuyển mà ra xa gương cầu một đoạn $\Delta d'=d_2'-d_1'$, và ngược lại.

2.Hệ qủa:

Lần 1:
$$k_1 = -\frac{d_1'}{d_1} = -\frac{f}{d_1 - f} = -\frac{d_1' - f}{f}$$

Từ đó ta suy ra d_1 (hay d_1') theo k_1 và f

Lần 2:
$$k_2 = -\frac{d_2'}{d_2} = -\frac{f}{d_2 - f} = -\frac{d_2' - f}{f}$$

Từ đó ta suy ra d_2 (hay d'_2) theo k_2 và f

Thay vào độ dịch chuyển của vật (hay độ dịch chuyển của ảnh) để suy ra được f.

CHỦ ĐỀ7. Cho biết tiêu cự f và một điều kiện nào đó về ảnh, vật: xác định vị trí vât dvà vi trí ảnh d'

Phương pháp:

1.Cho biết độ phóng đại k và f:

Từ (2) ta được: d' = -kd,

thay vào (1):

$$\frac{1}{d} + \frac{1}{-kd} = \frac{1}{f},$$

ta suy ra được phương trình theo d, từ đó suy ra d'.

2.Cho biết khoảng cách $l = \overline{AA'}$:

Trong mọi trường hợp: $l = \overline{AA'} = |d' - d| \leftrightarrow d' = d \pm l$

Thay vào (1) ta được phương trình: $\frac{1}{d} + \frac{1}{d+1} = \frac{1}{f}$, ta suy ra được phương trình theo d,

từ đó suy ra d'.

Chú ý:Ánh trên màn là ảnh thật, ảnh nhìn thấy trong gương là ảnh ảo.

CHỦ ĐỀ 8.Xác đinh thi trường của gương (gương cầu lồi hay gương phẳng)

Phương pháp:

Gọi M' là ảnh của mắt M qua gương, ta có sư tao ảnh:

$$M_{d=\overline{OM}} \longrightarrow M'_{d'=\overline{OM'}}$$

Thị trường của gương là phần không gian trước gương, giới hạn bởi mặt phẳng gương và các đường sinh vẽ từ M' tưa lên chu vi của gương.

1. Đối với gương cầu lồi:
$$\frac{1}{d} + \frac{1}{d}' = \frac{1}{f} \rightarrow d' = \frac{df}{d-f}$$

2. Đối với gương phẳng: M' và M đối xứng nhau qua gương phẳng: d' = -d.

Gọi φ là góc nữa hình nón của thị trường: ta có : $tg\varphi = \frac{OM}{|d'|} = \frac{r}{|d'|}$, rlà bán kính của gương.

Chú ý:
$$1' = \frac{1}{3500} rad$$

CHỦ ĐỀ 9.Gương cầu lõm dùng trong đèn chiếu: tìm hệ thức liên hệ giữa vệt sáng tròn trên màn (chắn chùm tia phản xa) và kích thước của mặt gương

Phương pháp:

Goi S' là ảnh của mắt S(bóng đèn) qua gương, ta có sư tao ảnh:

$$S_{d=\overline{OS}} \xrightarrow{G} S'_{d'=\overline{OS'}}$$

$$\frac{1}{d} + \frac{1}{d}' = \frac{1}{f} \to d' = \frac{df}{d-f} = \overline{OS'}$$

Sử dụng hình học: xét các tam giác đồng dạng để suy ra mối quan hệ giữa Dvà D_0 Gọi D_0 , D lần lượt là đường kính của gương và của vệc sáng tròn.

1.S' là ảnh ảo \leftrightarrow chùm phản xạ là chùm phân kỳ.

$$\frac{D}{D_0} = \frac{|d'| + L}{|d'|}$$

2.S' là ảnh thật \leftrightarrow chùm phản xạ là chùm hội tụ. $\frac{D}{D_0} = \frac{L-d'}{d'}$

$$\frac{D}{D_0} = \frac{L - d'}{d'}$$

3.Chùm phản xa là chùm song song (ảnh ở vô cùng)

$$D = D_0$$

CHỦ ĐỂ 10.Xác đinh ảnh của vật tạo bởi hệ "gương cầu - gương phẳng"

Phương pháp:

Xét 2 lần tao ảnh:

$$AB_{d_1=\overline{O_1A}} \quad \underbrace{G_1(\text{ g.c\^{a}u})}_{d_1'=\overline{O_1A_1}}A_1B_{1d_2=\overline{O_2A_1}} \quad \underbrace{G_2(\text{ g. ph\'{a}ng})}_{G_2(\text{ g. ph\'{a}ng})} \quad A_2B_{2d_2'=\overline{O_2A_2}}$$

1.Trường hợp gương phẳng vuông góc với truc chính:

Lần 1:
$$\frac{1}{d_1} + \frac{1}{d_1}' = \frac{1}{f_1} \rightarrow d_1' = \frac{d_1 f_1}{d_1 - f_1}$$
 Độ phóng đại:
$$k_1 = \frac{\overline{A_1 B_1}}{\overline{A_B}} = -\frac{d_1'}{d_1} = -\frac{f_1}{d_1 - f_1}$$

Lần 2:

Ta có
$$A_2B_2$$
 đối xứng với A_1B_1 qua gương phẳng, do đó $d_2'=-d_2=d_1'+a$

Độ phóng đại
$$k_2 = \frac{\overline{A_2B_2}}{\overline{A_1B_2}} = -\frac{d_2'}{d_2} = 1$$
 (2) Vậy: $A_2B_2 = A_1B_1$

2. Trường hợp gương phẳng nghiêng một góc 45° so với truc chính:

$$\begin{array}{l} \textit{Lần 1:} \\ \frac{1}{d_1} + \frac{1'}{d_1} = \frac{1}{f_1} \to d_1' = \frac{d_1 f_1}{d_1 - f_1} \\ \text{Độ phóng đại:} \quad k_1 = \frac{\overline{A_1 B_1}}{\overline{AB}} = -\frac{d_1'}{d_1} = -\frac{f_1}{d_1 - f_1} \\ \text{Ta có:} \boxed{d_2 = a - d_1'} \text{ (luôn như vậy)} \end{array}$$

Lần 2:

Ta có
$$A_2B_2$$
 đối xứng với A_1B_1 qua gương phẳng, do đó : $O_2A_2=O_2A_1; \widehat{A_1O_2A_2}=2\times 45^0=90^0$

Vậy: A_2B_2 song song với trục chính và $A_2B_2 = A_1B_1$

CHỦ ĐẾ 11.Xác định ảnh của vật tạo bởi hệ "gương cầu - gương cầu"

Phương pháp:

Xét 2 lần tạo ảnh:

$$AB_{d_1=\overline{O_1A_1}}$$
 G_1 G_1 G_2 G_2 G_2 G_2 G_2 G_3

$$\frac{1}{d_1} + \frac{1'}{d_1} = \frac{1}{f_1} \to d'_1 = \frac{d_1 f_1}{d_1 - f_1}$$

Độ phóng đại:
$$k_1 = \frac{\overline{A_1 B_1}}{\overline{A_B}} = -\frac{d_1'}{d_1} = -\frac{f_1}{d_1 - f_1} = -\frac{d_1' - f_1}{f_1}$$
 (1)

Ta có: $d_2 = a - d'_1$ (2)(luôn như vậy)

$$\frac{1}{d_2} + \frac{1'}{d_2} = \frac{1}{f_2} \to d_2' = \frac{d_2 f_2}{d_2 - f_2}$$

Độ phóng đại:
$$k_2 = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = -\frac{d_2'}{d_2} = -\frac{f_2}{d_2 - f_2} = -\frac{d_2' - f_2}{f_2}$$
 (3)

Chú ý: Độ phóng đại ảnh cuối cùng:

$$k_{\text{h}\hat{e}} = \frac{\overline{A_2 B_2}}{\overline{AB}} = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} \frac{\overline{A_1 B_1}}{\overline{AB}} = k_2 k_1 = \frac{f_2}{(d_2 - f_2)} \frac{f_1}{(d_1 - f_1)} = \frac{(d_2' - f_2)}{f_2} \frac{(d_1' - f_1)}{f_1}$$

CHỦ ĐỀ 12. Xác định ảnh của vật AB ở xa vô cùng tạo bởi gương cầu lõm?

Phương pháp:

Xét sự tạo ảnh: $AB(\infty)_{d=\infty}$ O $A'B'_{d'}$

Vì
$$d=\infty$$
 nên $\frac{1}{d}=0$, từ công thức Đêcart: $\frac{1}{d}+\frac{1}{d'}=\frac{1}{f}\to \boxed{d'=f}$

Vậy ảnh A'B' nằm trên mặt phẳng tiêu diện của gương cầu lõm. Gọi α là góc trông của vật qua gương.

Ta có: $\Delta CA'B'$: $A'B' = CA'tg\alpha$ hay $A'B' = f.tg\alpha \approx f.\alpha_{rad}$

PHỤ LỤC: CÁCH XÁC ĐỊNH TÍNH CHẤT ẢNH CỦA VẬT QUA GƯƠNG CẦU 1.Đối với gương cầu lõm:

2.Đối với gương cầu lồi:

PHẦN 9

PHƯƠNG PHÁP GIẢI TOÁN VỀ KHÚC XẠ ÁNH SÁNG, LƯỮNG CHẤT PHẨNG (LCP) BÅNG MĂT SONG SONG (BMSS), LĂNG KÍNH (LK)

CHỦ ĐỀ 1. Khảo sát đường truyền của tia sáng đơn sắc khi đi từ môi trường chiết quang kém sang môi trường chiết quang hơn?

Phương pháp:

Luôn có tia khúc xa gần pháp tuyến hơn so với tia tới

1. Mặt phân cách là mặt phẳng: áp dung công thức:

$$n_1 \sin i = n_2 \sin r \Rightarrow \sin r = \frac{n_1 \sin i}{n_2}$$

Khi: i = 0thì r = 0: Tia tới vuông góc với mặt phân cách thì tia ló đi thẳng.

2.Măt m I.

CHỦ ĐỀ 2. Khảo sát đường truyền của tia sáng đơn sắc khi đi từ môi trường chiết quang hơn sang môi trường chiết quang kém?

Phương pháp:

Có thể có tia khúc xạ nhưng cũng có thể có tia phản xa tòan phần

1. Mặt phân cách là mặt phẳng: áp dụng công thức:

$$n_1 \sin i = n_2 \sin r \Rightarrow \sin r = \frac{n_1 \sin i}{n_2}$$

Ta có:
$$\sin i_{gh} = \frac{\text{chiết quang b\'e}}{\text{chiết quang lớn}} = \frac{n_1}{n_2}$$

Nếu $i < i_{ah}$ thì có hiện tượng khúc xạ ánh sáng

Khi: i = 0thì r = 0: Tia tới vuông góc với mặt phân cách thì tia ló đi thẳng.

Nếu $i \geq i_{gh}$: Thì có hiện tượng phản xạ toàn phần : i=i'

2.Măt

$CH\mathring{U}$ ĐỀ 3. Cách vẽ tia khúc xạ (ứng với tia tới đã cho) qua mặt phẳng phân cách giữa hai môi trường bằng phương pháp hình học?

Phương pháp:

1.Cách vẽ tia khúc xa

a. Vẽ tia khúc xạ thường : $(n_1 < n_2)$

*Trong môi trường khúc xạ (n_2) vẽ hai nữa đường tròn: (I, n_1) ; (I, n_2)

* Nối dài SI cắt vòng tròn (I, n_1) tại J. Hạ $JH \perp mp(P)$, cắt vòng tròn (I, n_2) ở

K. Tia IK chính là tia khúc xạ, Thật vậy:

 $\Delta IJH : IH = IJ\sin i = n_1\sin i$

 $\Delta IKH : IH = IK \sin r = n_2 \sin r$

Vây: $n_1 \sin i = n_2 \sin r$

b. Vẽ tia khúc xạ giới hạn:

Ta có:
$$\Delta IH_0K_0$$
: $\sin i_{gh}=\frac{IH}{IK_0}=\frac{n_1}{n_2}$

2.Cách vẽ tia tới giới hạn toàn phần

* Từ H_0 vẽ đường vuông góc mp(P) , cắt (I,n_1) ở S_0

 $*S_0I$ chính là tia tới giới hạn toàn phần(ứng với tia ló IK_0 là sát mặt phân cách)

Ta có: $\Delta S_0 I H_0 : \sin i_{gh} = \frac{I \bar{H}_0}{I S_0} = \frac{n_2}{n_1}$

$CH\r{U}$ ĐỀ 4. Xác định ảnh của một vật qua LCP ?

Phương pháp:

Lưỡng chất phẳng (LCP) là mặt phân cách giữa hai môi trường có chiết suất n_1, n_2

Đặt: $d=\overline{SH}$: khoảng cách từ mặt phân cách đến vật; $d'=\overline{S'H}$: khoảng cách từ mặt phân cách đến ảnh.

$$\begin{cases} \Delta SHI: tgi = \frac{HI}{SH} & \rightarrow \sin i = \frac{HI}{d} \\ \Delta S'HI: tgr = \frac{HI}{S'H} & \rightarrow \sin r = \frac{HI}{d'} \end{cases} \quad \text{Vây:} \frac{\sin i}{\sin r} = \frac{d'}{d}$$

Ta có:
$$n_1 \sin i = n_2 \sin r \rightarrow \frac{\sin i}{\sin r} = \frac{n_2}{n_1}$$
 Vậy ta có công thức: $\boxed{\frac{d'}{d} = \frac{n_2}{n_1}}$ (*)

Nếu $n_1>n_2$: ánh sáng đi từ môi trường chiếc quang hơn sang môi trường chiếc quang kém: (*) $\to d'< d$, ảnh S' nằm dưới vật S.

Nếu $n_1 < n_2$: ánh sáng đi từ môi trường chiếc quang kém sang môi trường chiếc quang hơn: (*) $\rightarrow d' > d$, ảnh S' nằm trên vật S.

CHỦ ĐỀ 5. Xác đinh ảnh của một vật qua BMSS ?

Phương pháp:

Bản mỏng song (BMSS) là hệ thống hai LCP.

1.Độ dời ảnh

Gọi S' là ảnh của S qua BMSS, độ dời ảnh là : $\delta = \overline{SS'}$

Chú ý: Khoảng dời ảnh δ không phụ thuộc vào vị trí đặt vật. Ảnh luôn dời theo chiều ánh sang tới.

2.Độ dời ngang của tia sáng

Khi tia sáng qua BMSS thì không đổi phương, nhưng dời ngang. Độ dời ngang của tia sáng là khoảng cách giữa tia tới và tia ló: $d=\overline{IM}$

Xét:
$$\Delta IJM: d = IM = IJ\sin(i-r)$$

Ta
$$c\acute{o}:\Delta IJN: \cos r = \frac{IN}{IJ} \rightarrow IJ = \frac{IN}{\cos r} = \frac{e}{\cos r}$$
 Vậy:
$$d = \frac{e\sin(i-r)}{\cos r}$$

CHỦ ĐỀ 6. Xác định ảnh của một vật qua hệ LCP- gương phẳng?

Phương pháp:

1. Vật A - LCP - Gương phẳng

Xét 3 lần tao ảnh:

$$\mathbb{A} \xrightarrow{LCP(kk-nc)} \mathbb{A}_{\overline{l}} \xrightarrow{G_p} \mathbb{A}_{\overline{2}} \xrightarrow{LCP(nc-kk)} \mathbb{A}_{3}$$

Lần 1:
$$\frac{HA_1}{HA} = \frac{n}{n_0} = n \rightarrow HA_1 = nHA$$

Lần 2:
$$A_2$$
 đối xứng với A_1 qua gương phẳng:

Ta có:
$$KA_2 = KA_1 = KH + HA_1 = e + nHA$$

Lần 3:
$$\frac{HA_3}{HA_2} = \frac{n_0}{n} = \frac{1}{n}$$

Với:
$$HA_2 = HK + KA_2 = 2e + nHA \to HA_3 = \frac{2e}{n} + HA$$

2. Vât A nằm giữa LCP- Gương phẳng

Xét hai khả năng tao ảnh

A qua LCP(nc-kk) cho ảnh là A'

$$\frac{HA'}{HA} = \frac{n_0}{n} = \frac{1}{n} \to HA' = \frac{HA'}{n}$$

Ånh A'': A qua G_p cho ảnh A_1 qua LCP(nc-kk) cho ảnh A''

Lần 1: A_1 đối xứng với A qua gương phẳng:

Ta có: $KA_1 = KA$

Lần 2:
$$\frac{HA''}{HA_1} = \frac{n_0}{n} = \frac{1}{n} \to HA''$$

$CH\mathring{U}$ ĐỀ 7. Xác định ảnh của một vật qua hệ LCP- gương cầu ?

Phương pháp:

Xét 3 lần tao ảnh:

$$\mathbb{A} \xrightarrow{LCP(kk-nc)} \mathbb{A}_{1} \xrightarrow{G_{2}} \mathbb{A}_{2} \xrightarrow{LCP(nc-kk)} \mathbb{A}_{3}$$

Lần 1:
$$\frac{HA_1}{HA} = \frac{n}{n_0} = n \rightarrow HA_1 = nHA$$

Lần 2:
$$d_2 = \overline{OA_1}$$
; $d'_2 = \overline{OA_2} = OH + HA_2$

Lần 2:
$$d_2 = \overline{OA_1}$$
; $d_2' = \overline{OA_2} = OH + HA_2$
Áp dụng công thức: $\frac{1}{d_2} + \frac{1}{d_2'} = \frac{1}{f} \rightarrow d_2'$

Lần 3:
$$\frac{HA_3}{HA_2} = \frac{n_0}{n} = \frac{1}{n} \to HA_3$$

Chú ý: Trường hợp chất lỏng rất mỏng: $H \equiv O$

Lúc đó:
$$d_2 = OA_1 = HA_1 = nHA = nOA;$$

$$d_2' = OA_21 = HA_2 = nHA' = nOA$$

$$\begin{aligned} d_2' &= OA_2 1 = HA_2 = nHA' = nOA' \\ \text{Vây: } \frac{1}{d_2} + \frac{1}{d_2'} &= \frac{1}{f} = \frac{1}{n\overline{OA}} + \frac{1}{n\overline{OA'}} = \frac{1}{f} \end{aligned}$$

Hay:
$$\frac{1}{\overline{OA'}} + \frac{1}{\overline{OA'}} = \frac{1}{f}$$
, có dạng: $\frac{1}{d} + \frac{1}{d'} = \frac{1}{f'}$

Vậy hệ tương đương với gương cầu lõm có tiêu cự: $f' = \frac{f}{n}$

CHỦ ĐỀ 8. Xác định ảnh của một vật qua hệ nhiều BMSS ghép sát nhau?

Phương pháp:

Khoảng dời ảnh: $\delta = \overline{SS_i} = \overline{SS_1} + \overline{S_1S_2} + \overline{S_2S_3} + \cdots + \overline{S_{i-1}S_i} = \delta_1 + \delta_2 + \delta_3 + \cdots + \delta_i$

 $CH \mathring{U} \, D \hat{E}$ 9. Xác định ảnh của một vật qua hệ nhiều BMSS - gương phẳng ghép song song?

Phương pháp:

1. Vật S - BMSS - Gương phẳng

Xét 3 lần tạo ảnh:

Lần 1: Khoảng dời ảnh:
$$\delta = \overline{SS_1} = e\left(1 - \frac{1}{n}\right)$$

Dời theo chiều ánh sáng tới.

Lần 2: S_2 đối xứng với S_1 qua gương phẳng:

Ta có: $KS_2 = KS_1 = KS - \delta$

Lần 3: Khoảng dời ảnh:
$$\delta = \overline{S_2 S_3} = e \left(1 - \frac{1}{n} \right)$$

Dời theo chiều ánh sáng phản xa.

Với: $KS_3 = KS_2 - \delta$

2. Vật S nằm giữa BMSS - Gương phẳng

Xét hai khả năng tạo ảnh

 \mathring{A} nh S': S qua BMSS cho ảnh là S'

Khoảng dời ảnh: $\delta = \overline{SS'} = e\left(1 - \frac{1}{n}\right)$

 \mathring{A} nh A'': S qua G_p cho ảnh S_1 qua \mathring{B} MSS cho ảnh S''

Lần 1: S_1 đối xứng với S qua gương phẳng:

Ta có: $KS_1 = KS$

Lần 2: Khoảng dời ảnh: $\delta = \overline{S"S_1} = e\left(1 - \frac{1}{n}\right)$

Do đó: KS" = $KS - \delta$

$\mathrm{CH}\mathring{\mathrm{U}}$ ĐỀ 10. Xác định ảnh của một vật qua hệ nhiều BMSS - gương cầu?

Phương pháp:

Xét 3 lần tạo ảnh:

$$AB \xrightarrow{BMSS} A_1B_1 \xrightarrow{G_c} A_2B_2 \xrightarrow{BMSS} A_3B_3$$

Lần 1: Khoảng dời ảnh:
$$\delta = \overline{AA_1} = e \left(1 - \frac{1}{n} \right)$$

Dời theo chiều ánh sáng tới.

$$\overline{A_1B_1} = \overline{AB}$$

Lần 2: Ta có: $d_2 = OA - \delta$

Áp dụng công thức:

$$\frac{1}{d_2} + \frac{1}{d'_2} = \frac{1}{f}$$

Hay:
$$d_2' = \frac{d_2 f}{d_2 - f}$$

Độ phóng đại:
$$k=-\frac{d_2'}{d_2}=-\frac{f}{d_2-f}$$

Lần 3: Khoảng dời ảnh:
$$\delta = \frac{a_2}{A_2 A_3} = e \left(1 - \frac{1}{n} \right)$$

Dời theo chiều ánh sáng phản xạ. $\overline{A_3B_3} = \frac{n}{A_2B_2}$

CHỦ ĐỀ 11. Cho lăng kính (A,n) và góc tới i_1 của chùm sáng: xác định góc lệch D?

Phương pháp:

1.Tîm
$$r_1$$
: $\sin r_1 = n \sin i_1$

2.Tîm
$$r_2$$
: $A = r_1 + r_2$

3.Tìm
$$i_2$$
: $\sin i_2 = n \sin r_2$

4.Tìm
$$D: D = i_1 + i_2 - A$$

Chú ý: Nếu lăng kính có góc chiết quang A và góc tới i bé: $D = (n-1)A_{rad}$

CHỦ ĐỀ 12. Cho lăng kính (A,n) xác định i_1 để D = min?

Phương pháp:

1.Cho A,n: xác định i_1 để D = min, D_{min} ?

Dựa vào tính chất: Góc lệch D= min khi tia tới và tia ló đối xứng nhau qua phân giác của góc A.

Lúc đo:
$$i_1 = i_2 = i$$
; $r_1 = r_2 = r$

Thay vào Chủ đề 11 ta được:
$$D_{min} = 2i - A$$

2.Cho Avà D_{min} : xác định n?

Lúc này ta có:
$$r_1=rac{A}{2}$$
 ; $i_1=rac{D_{min}+A}{2}$

Thay vào:
$$n = \frac{\sin \frac{D_{min} + A}{2}}{\sin \frac{A}{2}}$$

3.Chú ý:

Trường hợp lăng kính có D=min. Nếu giữ tia tới SI cố định, quay lăng kính một góc quanh một trục với góc nhỏ: tìm chiều quay của tia ló (theo chiều quay của LK)

Vì: $D=(SI,\bar{JR})$ với SI cố định, vậy D thay đổi thì tia ló JR thay đổi.

Vì D=min nên góc D không thể giảm, mà chỉ tăng. Vậy tia ló JR luôn quay theo chiều kim đồng hồ (về phía đáy BC để D tăng) dù quay LK bất kỳ hướng nào.

CHỦ ĐỀ 13. Xác định điều kiên để có tia ló ra khỏi LK?

Phương pháp:

1.Điều kiên về góc chiếc quang

Ta có:
$$A = r_1 + r_2$$
 (1)

Do
$$i_1 \leq 90^0$$
 nên: $\sin r_1 = \frac{\sin i_1}{n} \leq \frac{1}{n} \equiv \sin i_{gh} \rightarrow r_1 \leq i_{gh}$

để không có tia ló ra AC: $r_2 \leq i_{qh}$

$$\hat{\text{Vay:}}(1) \rightarrow \boxed{A \leq 2i_{gh}}$$

2.Điều kiên về góc tới

Muốn tia ló không ra khỏi AC ta có $r_2 \leq i_{ah}$

$$(1) \to r_2 = A - r_1 \le i_{gh} \to r_1 \ge A - i_{gh}$$

Ta có : $\sin i_1 = n \sin r_1 \ge n \sin (A - i_{gh}) = \sin \gamma$ với $\sin \gamma = n \sin (A - i_{gh})$

PHẦN 10

PHƯƠNG PHÁP GIẢI TOÁN VỀ THẦU KÍNH VÀ HÊ QUANG HOC ĐỒNG TRUC VỚI THẦU KÍNH

 $CH\mathring{U}$ ĐỀ 1.Xác định loại thấu kính ?

Phương pháp:

1.Căn cứ vào sư liên hệ về tính chất, vi trí, đô lớn giữa vật - ảnh:

- . Đối với thấu kính hôi tu
 - + Vật thất, ngoài $OF \rightarrow \text{ảnh thật, ngoài } OF'$, ngược chiều với vật.
 - + Vật thật, trong $OF \rightarrow$ ảnh ảo, xa thấu kính, lớn hơn vật, cùng chiều với vật.
 - + Vật ảo \rightarrow ảnh thật, trong OF', nhỏ hơn vật, ngược chiều với vật.
- . Đối với thấu kính phân kỳ
 - + Vật thật \rightarrow ảnh ảo, gần thấu kính, nhỏ hơn vật, cùng chiều với vật.
 - + Vật ảo, trong $OF \rightarrow$ ảnh thật, xa thấu kính, lớn hơn vật, cùng chiều với vật.
 - + Vật ảo,
ngoài $OF \rightarrow$ ảnh ảo, ngược chiều với vật.

2.Căn cứ vào đường truyền của tia sáng qua thấu kính:

Nếu tia ló lệch gần trục chính so với tia tới thì thấu kính đó là hội tụ. Nếu tia ló lệch xa trục chính so với tia tới thì thấu kính đó là phân kỳ.

3.Căn cứ vào công thức của thấu kính:

Áp dụng công thức:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} \rightarrow f = \frac{dd'}{d+d'}$$

Nếu f>0 thì thấu kính hội tụ, nếu f<0 thì thấu kính phân kỳ.

 $CH\mathring{U}$ ĐỀ 2.Xác định độ tụ của thấu kính khi biết tiêu cự, hay chiếc suất của môi trường làm thấu kính và bán kính của các mặt cong.

Phương pháp:

1.Khi biết tiêu cự f

Áp dụng công thức:
$$D = \frac{1}{f}$$

Nếu thấu kính hội tụ: D>0, thấu kính phân kỳ: D<0

- 2.Khi biết chiếc suất của môi trường làm thấu kính và bán kính của các mặt cong
 - a. Nếu thấu kính đặt trong môi trường không khí:

$$D = \frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

b. Nếu thấu kính đặt trong môi trường có chiếc suất n':

$$D' = \frac{1}{f} = \left(\frac{n}{n'} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$\begin{array}{lll} \textbf{Chú \acute{y:}} & \begin{cases} R>0 & \leftrightarrow \text{ mặt lỗi} \\ R<0 & \leftrightarrow \text{ mặt lỗm} \\ R=\infty & \leftrightarrow \text{ mặt phẳng} \end{cases}$$

CHỦ ĐỀ 3. Cho biết tiêu cự f và một điều kiện nào đó về ảnh, vật: xác định vị trí vật d và vị trí ảnh d^\prime

Phương pháp:

Áp dụng công thức:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f}$$
 (1) và $k = -\frac{d'}{d}$ (2)

1.Cho biết độ phóng đại k và f:

Từ (2) ta được: d' = -kd, thay vào (1): $\frac{1}{d} + \frac{1}{-kd} = \frac{1}{f}$, ta suy ra được phương trình theo d, từ đó suy ra d'.

A' LF AO F

2.Cho biết khoảng cách $l = \overline{AA'}$:

Trong mọi trường hợp: $l=\overline{AA'}=|d'+d|\leftrightarrow d'+d=\pm l$ Thay vào (1) ta được phương trình: $\frac{1}{d}+\frac{1}{-d\pm l}=\frac{1}{f}$, ta suy ra được phương trình theo d, từ đó suy ra d'.

 $\mathbf{CH\mathring{U}}\,\mathbf{D}\hat{\dot{\mathbf{E}}}\,\mathbf{4.X\acute{a}c}$ định ảnh của một vật AB ở xa vô cực

Phương pháp:

Xét sự tạo ảnh:
$$\overset{AB(\infty)}{\underset{d=\infty}{\longrightarrow}} \overset{G}{\underset{d'=\overline{OA}}{\longrightarrow}} A'B'$$

Vì $d=\infty$ nên $\frac{1}{d}=0$, từ công thức Đêcart: $\frac{1}{d}+\frac{1}{d'}=\frac{1}{f} \to \boxed{d'=f}$

Vậy ảnh A'B' nằm trên mặt phẳng tiêu diện của thấu kính. Gọi α là góc trông của vật qua thấu kính.

gọc trong của vật qua thau Khin. Ta có: $\Delta OA'B'$: $A'B' = OA'tg\alpha$ hay $A'B' = |f|.tg\alpha \approx |f|.\alpha_{rad}$ Nếu $f > 0 \rightarrow d' > 0$ ảnh thật. Nếu $f < 0 \rightarrow d' < 0$ ảnh ảo.

CHỦ ĐỀ 5. Trường hợp hai vị trí thấu kính hội tụ cho từ một vật AB, hai ảnh trên cùng một màn chắn.

Phương pháp:

Xét sự tạo ảnh:
$$\begin{array}{ccc}
AB & & O \\
\hline
A'B' & & \hline
A'B' \\
\hline
A' = \overline{OA}
\end{array}$$

Ta có:
$$L=d+d' \rightarrow d'=L-d$$
, thay vào công thức: $\frac{1}{d}+\frac{1}{d'}=\frac{1}{f}$

Ta được phương trình:
$$d^2 - Ld + Lf = 0$$
 (*)

1.Cho biết khoảng cách "vật - ảnh" L, xác định hai vị trí đặt thấu kính:

Từ (*): $\Delta = L^2 - 4Lf = L(L-4f)$, điều kiện phương trình (*) có nghiệm:

$$\Delta \ge 0 \to L \ge 4f$$

Nghiệm có dạng:
$$\begin{cases} d_1 = \frac{L - \sqrt{L^2 - 4Lf}}{2} \to d_1' = \frac{L + \sqrt{L^2 - 4Lf}}{2} \\ d_2 = \frac{L + \sqrt{L^2 - 4Lf}}{2} \to d_2' = \frac{L - \sqrt{L^2 - 4Lf}}{2} \end{cases}$$

Chú ý: Ta thấy $d_1=d_2'; d_1'=d_2$ do đó hai vị trí đặt thấu kính đối xứng nhau qua trung điểm I của khoảng cách từ vật đến màn.

2.Cho biết khoảng cách "vật - ảnh" L, và khoảng cách giữa hai vị trí, tìm f:

Ta có:
$$l = \overline{O_1 O_2} = d_1' - d_2', \ l = \sqrt{L^2 - 4Lf} \text{ hay } \boxed{f = \frac{L^2 - l^2}{4L}}$$

CHỦ ĐỀ 6.Vật hay thấu kính di chuyển, tìm chiều di chuyển của ảnh?

Phương pháp:

1.Thấu kính (O) cố định: dời vật gần (hay xa) thấu kính, tìm chiều chuyển dời của ảnh:

Áp dụng công thức:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} \rightarrow d' = \frac{df}{d-f}$$

Lấy đạo hàm hai vế theo d: $\frac{\partial d'}{\partial d} = -\frac{f^2}{(d-f)^2} < 0$, do đó d và d' là nghịch biến.

a. Vật thật (d > 0) cho ảnh thật(d' > 0):

Khi AB di chuyển gần thấu kính (d giảm) thì ảnh di chuyển ra xa thấu kính (d' tăng). Vậy ảnh dời cùng chiều với vật.

b. Vật thật cho ảnh ảo:

Khi AB di chuyển dời gần thấu kính (d giảm) thì ảnh di chuyển xa thấu kính (d' tăng), mà d'<0 nên |d'| tăng.

Vậy: Ẩnh ảo dời cùng chiều vật.

2. Vật AB cố định, cho ảnh A'B' trên màn, dời thấu kính hội tụ, tìm chiều chuyển dời của màn: Sư dịch chuyển của màn ảnh tùy thuộc vào sư biến thiên

Sự dịch chuyển của man anh tuy thuộc vào sự biến thiên của
$$L=d+d'=d+\frac{df}{d-f}$$
 hay $L=\frac{d^2}{d-f}$, lấy đạo hàm theo $d:\frac{\partial L}{\partial d}=\frac{d(d-2f)}{(d-f)^2}$

d f 2f \circ $\frac{\partial L}{\partial d}$ - 0 +

Khảo sát sự biến thiên L theo d suy ra chiều chuyển dời của mà (theo chiều chuyển dời của thấu kính).

 $CH \mathring{U} \ D \hat{E} \ 8. Liên hệ giữa kích thước vệt sáng tròn trên màn
(chắn chùm ló) và kích thước của mặt thấu kính.$

Phương pháp:

Goi S' là ảnh điểm sáng S qua thấu kính, ta có sư tao ảnh:

$$S \xrightarrow{O} S'$$
 $d = \overline{OS}$
 $d' = \overline{OS}'$

$$\frac{1}{d} + \frac{1'}{d} = \frac{1}{f} \to d' = \frac{df}{d - f} = \overline{OS'}$$

Sử dụng hình học: xét các tam giác đồng dạng để suy ra mối quan hệ giữa Dvà D_0 Với D_0 , D lần lượt là đường kính của thấu kính và của vêt sáng tròn.

1. Vật thật S cho ảnh S' là ảnh thật \leftrightarrow chùm ló là chùm hội tụ.

$$\frac{D}{D_0} = \frac{d' - l}{d'}$$

2. Vật thật S cho ảnh S' là ảnh ảo \leftrightarrow chùm ló là chùm phân kỳ.

$$\frac{\dot{D}}{D_0} = \frac{|d'| + l}{|d'|}$$

3. Vật ảo $\overset{\circ}{S}$ cho ảnh $\overset{\circ}{S}'$ là ảnh thật \leftrightarrow chùm tới, chùm ló là chùm hội tụ.

$$\frac{D}{D_0} = \frac{l - d'}{d'}$$

Phương pháp:

Hệ nhiều thấu kính mỏng ghép sát nhau, nên được xem là có cùng quang tâm O. Áp dụng định lý về độ tụ: "Độ tụ của hệ nhiều thấu kính mỏng ghép sát nhau (đồng trục) bằng tổng đai số đô tu của các thấu kính thành phần"

$$D_{\text{h}\hat{e}} = D_1 + D_2 + \dots + D_n \leftrightarrow \frac{1}{f_{\text{h}\hat{e}}} = \frac{1}{f_1} + \frac{1}{f_2} + \dots + \frac{1}{f_n}$$

Nếu $f_{h\hat{e}} > 0$ thì hệ thấu kính là hội tụ. Nếu $f_{h\hat{e}} < 0$ thì hệ thấu kính là phân kỳ.

CHỦ ĐỀ 10.Xác định ảnh của một vật qua hệ " thấu kính- LCP".

Phương pháp: Phân biệt hai trường hợp

1.Trường hợp: AB - TK - I CP

Xét 2 lần tạo ảnh:
$$AB \xrightarrow{O} A_1B_1 \xrightarrow{(LCP)} A_2B_2$$

 $d_1=\overline{OA_1} \parallel d_2=\overline{HA_1} \qquad d_2=\overline{HA_2}$

Lân 1:

$$\frac{1}{d_1} + \frac{1'}{d_1} = \frac{1}{f_1} \to d'_1 = \frac{d_1 f_1}{d_1 - f_1}$$

$$A \to B_1 \to d'_1$$

Độ phóng đại:
$$k=\frac{\overline{A_1B_1}}{\overline{A_B}}=-\frac{d_1'}{d_1}\to A_1B_1=|k|AB.$$

$$\frac{HA_2}{HA_1} = \frac{n}{n_0} = n \text{ v\'oi } HA_1 = OA_1 - OH \text{ v\`a } A_2B_2 = A_1B_1$$

2. Trường hợp:
$$AB - ICP - TK$$
Xét 2 lần tạo ảnh: $AB \xrightarrow[d_1]{(LCP)} A_1B_1 \xrightarrow[d_2]{O} A_2B_2$

Lần 1: $\frac{HA_1}{HA_1} = \frac{1}{n} \rightarrow HA_1 = \frac{HA}{n} \text{ và } AB = A_1B_1$

Ta có:
$$d_2 = \overline{OA_1} = \overline{OH} + HA_1$$

$$\frac{1}{d_2} + \frac{1}{d_2'} = \frac{1}{f} \to d_2' = \frac{d_2 f}{d_2 - f} \text{D\^{o}} \text{ ph\'ong \'ai:} \quad k = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = -\frac{d_2'}{d_2} \to A_2 B_2 = |k| A_1 B_1.$$

CHỦ ĐỀ 11.Xác định ảnh của một vật qua hệ '' thấu kính- BMSS''.

Phương pháp: Phân biệt hai trường hợp

1.Trường hợp: AB - TK - BMSS

Xét 2 lần tạo ảnh:

Lần 1:

Lan 1:
$$\frac{1}{d_1} + \frac{1'}{d_1} = \frac{1}{f_1} \to d'_1 = \frac{d_1 f_1}{d_1 - f_1} \quad \text{Dộ phóng đại:} \quad k = \frac{\overline{A_1 B_1}}{\overline{AB}} = -\frac{d'_1}{d_1}$$

Lần 2:

Khoảng dời ảnh:
$$\overline{A_1A_2}=\overline{B_1B_2}=\delta=e\bigg(1-\frac{1}{n}\bigg)$$
, theo chiều ánh sáng.

Do đó:
$$\overline{OA_2}=\overline{OA_1}+\overline{A_1A_2}$$
, hay $OA_2=d_1'+\delta$ và $A_2B_2=A_1B_1$

2.Trường hợp: AB - LCP - TK

Xét 2 lần tao ảnh:

$$AB \xrightarrow{\text{(BMSS)}} A_1B_1 \xrightarrow{\text{(O)}} A_2B_2$$
 $d_1 \quad d_1 \mid d_2 \quad d_2'$

Lần 1:

Khoảng dời ảnh: $\overline{AA_1} = \overline{BB_1} = \delta = e\left(1 - \frac{1}{n}\right)$, theo chiều ánh sáng. Và $A_1B_1 = AB$

Lần 2:

Ta có:
$$d_2 = \overline{OA_1} = \overline{OA} - \delta$$

$$\frac{1}{d_2} + \frac{1}{d_2'} = \frac{1}{f} \rightarrow d_2' = \frac{d_2 f}{d_2 1 - f}$$
Vây $A_2 B_2 = |k| A_1 B_1$.

$$\frac{1}{d_2} + \frac{1}{d_2'} = \frac{1}{f} \to d_2' = \frac{d_2 f}{d_2 1 - f} \quad \text{Dộ phóng đại:} \quad k = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = -\frac{d_2'}{d_2}$$

CHỦ ĐỂ 12.Xác đinh ảnh của một vật qua hệ hai thấu kính ghép đồng truc.

Phương pháp:

Xét 2 lần tao ảnh:

Lần 1:

$$\frac{1}{d_1} + \frac{1'}{d_1} = \frac{1}{f_1} \to \boxed{d'_1 = \frac{d_1 f_1}{d_1 - f_1}}$$
 (1)

Độ phóng đại:
$$k_1 = \frac{\overline{A_1B_1}}{\overline{AB}} = -\frac{d_1'}{d_1} = -\frac{f_1}{d_1 - f_1} = -\frac{d_1' - f_1}{f_1}$$
 (2)

Lần 2:

Ta luôn có:
$$d_2 = a - d'_1$$
 (3)

$$\frac{1}{d_2} + \frac{1'}{d_2} = \frac{1}{f_2} \to \boxed{d'_2 = \frac{d_2 f_2}{d_2 - f_2}} \tag{4}$$

Độ phóng đại:
$$k_2 = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = -\frac{d_2'}{d_2} = -\frac{f_2}{d_2 - f_2} = -\frac{d_2' - f_2}{f_2}$$
 (5)

Chú ý:Độ phóng đại ảnh của hệ:

$$k_{\text{h}\hat{\textbf{e}}} = \frac{\overline{A_2 B_2}}{\overline{AB}} = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} \frac{\overline{A_1 B_1}}{\overline{AB}} = k_2 \cdot k_1 = \frac{d_2'}{d_2} \frac{d_1'}{d_1} = \frac{f_2}{(d_2 - f_2)} \frac{f_1}{(d_1 - f_1)} = \frac{(d_2' - f_2)}{f_2} \frac{(d_1' - f_1)}{f_1} = \frac{(d_2' - f_2)}{f_2} \frac{(d_1' - f_1)}{f_2} = \frac{(d_2' - f_2)}{f_2} \frac{($$

CHỦ ĐỀ 13.Hai thấu kính đồng trục tách rời nhau: xác định giới hạn của $a=O_1O_2$ (hoặc $d_1=\overline{O_1A}$) để ảnh A_2B_2 nghiệm đúng một điều kiện nào đó (như ảnh thật, ảnh ảo, cùng chều hay ngược chiều với vật AB).

Phương pháp:

1.Trường hợp A_2B_2 là thật (hay ảo)

Xét hai lần tao ảnh như chủ đề 12

a. Nếu A_1B_1 cố định, (O_2) di động:

Từ phương trình (1), (3), (4) ta thiết lập được biểu thức d_2 theo a

Lập bảng xét dấu d_2' theo a, để A_2B_2 là ảnh thật thì $d_2'>0$, nếu A_2B_2 là ảnh ảo $d_2'<0$, từ đó suy ra giới han của a.

b. Nếu (O_1, O_2) cố định,AB di động:

Từ phương trình (1), (3), (4) ta thiết lập được biểu thức d'_2 theo d_1 .

Lập bảng xét dấu d_2' theo d_1 , để A_2B_2 là ảnh thật thì $d_2'>0$, nếu A_2B_2 là ảnh ảo $d_2'<0$, từ đó suy ra giới hạn của d_1 .

2. Trường hợp A_2B_2 cùng chiều hay ngược chiều với vất

Xét hai lần tạo ảnh như chủ đề 12

Từ phương trình (2), (5) ta thiết lập được biểu thức $k_{\text{hê}}$ theo a hoặc d_1 .

Nếu A_2B_2 cùng chiều với AB thì $k_{\text{hệ}} > 0$.

Nếu A_2B_2 ngược chiều với AB thì $k_{\rm h\hat{e}} < 0$

CHỦ ĐỀ 14. Hai thấu kính đồng trục tách rời nhau: xác định khoảng cách $a=O_1O_2$ để ảnh cuối cùng không phụ thuộc vào vị trí vật AB.

Phương pháp:

Từ chủ đề 12 ta thiết lập biểu thức $k_{\rm h\hat{e}}$ theo d_1 và theo a

$$k_{\text{h}\hat{e}} = \frac{f_1 f_2}{d_1 [a - (f_1 + f_2)] - f_1 (a - f_2)}$$

Để $k_{\text{hệ}}$ không phụ thuộc vào d_1 thì hệ số đứng với d_1 phải triệt tiêu.

Ta có điều kiện: $a-(f_1+f_2)=0$ hay $a=f_1+f_2$

Chú ý: Có thể nhận được kết qủa bằng cách xem hệ thấu kính là vô tiêu, nghĩa là $F_1' \equiv F_2$

CHỦ ĐỂ 15.Xác định ảnh của vật cho bởi hệ "thấu kính - gương phẳng".

Phương pháp:

1.Trường hợp gương phẳng vuông góc với truc chính:

Xét 3 lần tao ảnh:

Lần 1:

$$\frac{1}{d_1}+\frac{1}{d_1'}=\frac{1}{f}\rightarrow d_1'=\frac{d_1f}{d_1-f} \quad \text{ \mathfrak{D}\^{o} ph\'ong \mathtt{d}\^{a}$:} \quad k_1=\frac{\overline{A_1B_1}}{\overline{AB}}=-\frac{d_1'}{d_1}=-\frac{f}{d_1-f}$$

Lần 2:

Ta có: $d_2 = a - d'_1$ (luôn như vậy)

Ta có A_2B_2 đối xứng với A_1B_1 qua gương phẳng, do đó $d_2'=-d_2=d_1'-a$

Độ phóng đại
$$k_2 = \frac{A_2 B_2}{A_1 B_2} = -\frac{d_2'}{d_2} = 1$$
 Vậy: $A_2 B_2 = A_1 B_1$

Lần 3:

Ta có:
$$d_3 = a - d_2'$$

$$\frac{1}{d_3} + \frac{1}{d_3'} = \frac{1}{f} \to d_3' = \frac{d_3 f}{d_3 - f}$$

$$A_2 B_2 \qquad d_3'$$

Độ phóng đại:
$$k_3 = \frac{\overline{A_3 B_3}}{\overline{A_2 B_2}} = -\frac{d_3'}{d_3} = -\frac{f}{d_3 - f}$$

Chú ý:Độ phóng đại ảnh của hệ:
$$k_{\text{hệ}} = \frac{\overline{A_3 B_3}}{\overline{AB}} = \frac{\overline{A_3 B_3}}{\overline{A_2 B_2}} \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} \frac{\overline{A_1 B_1}}{\overline{AB}} = k_3.k_2.k_1 = \frac{d_3'}{d_3} \frac{d_1'}{d_1}$$

2.Trường hợp gương phẳng nghiêng một góc 45° so với trục chính:

Xét 2 lần tạo ảnh:

Lần 1:

$$\frac{1}{d_1} + \frac{1'}{d_1} = \frac{1}{f_1} \rightarrow d'_1 = \frac{d_1 f_1}{d_1 - f_1}$$

$$d_1$$
 d_1 f_1 d_1 d_1 f_1

Dộ phóng đại: $k_1 = \frac{d_1 - f_1}{\overline{AB}} = -\frac{d_1'}{d_1} = -\frac{f_1}{d_1 - f_1}$

Ta có: $d_2 = a - d_1'$ (luôn như vậy)

Lần 2:

Ta có A_2B_2 đối xứng với A_1B_1 qua gương phẳng, do đó : $O_2A_2=O_2A_1;\widehat{A_1O_2A_2}=O_2A_1$ $2 \times 45^0 = 90^0$

Vậy: A_2B_2 song song với trục chính và $A_2B_2 = A_1B_1$

3. Trường hơp gương phẳng ghép xác thấu kính (hay thấu kính mạ bạc):

Thực hiện như trường hợp 1

Nhưng chú ý:

$$a=0$$
. Lúc đó: $d_2=-d_1'; d_2'=-d_2; d_3=-d_2'
ightarrow d_3=-d_1'$

Vây:
$$\frac{1}{d_1} + \frac{1}{d'_1} = \frac{1}{f}$$
 (1)

và
$$\frac{1}{d_3} + \frac{1}{d'_3} = \frac{1}{f}$$
 hay $\frac{1}{d_3} - \frac{1}{d'_1} = \frac{1}{f}$ (2)
Cộng (1) và (2) vế theo vế ta được phương trình: $\frac{1}{d_1} + \frac{1}{d'_3} = \frac{2}{f} = \frac{1}{f_{h\hat{e}}}$

$$\frac{1}{d_1} + \frac{1}{d'_3} = \frac{2}{f} = \frac{1}{f_{h\hat{e}}}$$

Đây là công thức của gương cầu lồi (hay lõm):
$$f_{\mathrm{h\hat{e}}}=rac{f}{2}$$

4. Trường hợp vật AB đặt trong khoảng giữa thấu kính và gương phẳng:

Phân biệt hai trường hợp:

a. Ănh A'B' cho bởi thấu kính:

xét một lần tạo ảnh

$$\begin{array}{ccc} AB & & \bigcirc \\ & & & A'B' \end{array}$$

$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} \to d' = \frac{df}{d-f} \quad \text{ \mathfrak{D}\^{o} ph\'ong $\mathfrak{d}$$ai:} \quad k = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{d'}{d} = -\frac{f}{d-f}$$

b. Ảnh A''B'' cho bởi gương- thấu kính: xét hai lần tao ảnh

Lần 1:

Ta có A_1B_1 đối xứng với AB qua gương phẳng, do đó :

$$d_1 = \overline{O'A} = a - OA; d'_1 = -d_1 = d - a; \overline{A_1B_1} = \overline{AB}$$

Lần 2:

Ta có:
$$d_2 = a - d_1' = 2a - d$$

$$\frac{1}{d_2} + \frac{1}{d_2'} = \frac{1}{f} \rightarrow d_2' = \frac{d_2 f}{d_2 - f}$$
 Độ phóng đại: $k_2 = -\frac{d_2'}{d_2} = \frac{\overline{A^{"}B^{"}}}{\overline{A_1B_1}}$

CHỦ ĐỀ 16.Xác định ảnh của vật cho bởi hệ "thấu kính - gương cầu".

Phương pháp:

1.Trường hợp vật AB đặt trước hệ " thấu kính- gương cầu":

Xét 3 lần tao ảnh:

Lần 1:

$$\frac{1}{d_1} + \frac{1}{d_1'} = \frac{1}{f} \to d_1' = \frac{d_1 f}{d_1 - f} \quad (1) \quad \text{ \mathfrak{D}\^{o}$ ph\'ong \mathfrak{d}\^{a}$:} \quad k_1 = \frac{\overline{A_1 B_1}}{\overline{AB}} = -\frac{d_1'}{d_1} = -\frac{f}{d_1 - f}$$

Lần 2:

Ta có: $d_2 = a - d'_1$ (luôn như vậy)

$$\frac{1}{d_2} + \frac{1}{d'_2} = \frac{1}{f_c}$$
 (2) $\rightarrow d'_2 = \frac{d_2 f_c}{d_2 - f_c}$

Độ phóng đại:
$$k_2 = \frac{A_2 B_2}{\overline{A_1 B_1}} = -\frac{d_2'}{d_2} = -\frac{f_c}{d_2 - f_c}$$

Lần 3:

Ta có: $d_3 = a - d_2'$

$$\frac{1}{d_3} + \frac{1}{d'_3} = \frac{1}{f}$$
 (3) $\rightarrow d'_3 = \frac{d_3 f}{d_3 - f}$

Độ phóng đại:
$$k_3 = \frac{\overline{A_3 B_3}}{\overline{A_2 B_2}} = -\frac{d_3'}{d_3} = -\frac{f}{d_3 - f}$$

Chú ý:Độ phóng đại ảnh của hệ:

$$k_{\text{h}\hat{\text{e}}} = \frac{\overline{A_3 B_3}}{\overline{AB}} = \frac{\overline{A_3 B_3}}{\overline{A_2 B_2}} \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} \frac{\overline{A_1 B_1}}{\overline{AB}} = k_3.k_2.k_1 = -\left(\frac{d_3'}{d_3} \frac{d_2'}{d_2} \frac{d_1'}{d_1}\right)$$

2.Trường hợp hệ "thấu kính- gương cầu" ghép sát nhau:

Ta có: $a=O_1O_2=0$, do đó: ta có: $d_2'=-d_1;\quad d_3'=-d_2$

Từ (1), (2), (3) ta được hệ phương trình:

$$\begin{cases} \frac{1}{d_1} + \frac{1}{d'_1} &= \frac{1}{f} \\ \frac{1}{d_2} + \frac{1}{d'_2} &= \frac{1}{f_c} \\ \frac{1}{d} + \frac{1}{d'} &= \frac{1}{f} \end{cases} \leftrightarrow \begin{cases} \frac{1}{d_1} + \frac{1}{d'_1} &= \frac{1}{f} \\ -\frac{1}{d'_1} + \frac{1}{d'_2} &= \frac{1}{f_c} \end{cases}$$
 Cộng vế theo vế, ta được:
$$\frac{1}{d_1} + \frac{1}{d'_3} = \frac{2}{f} + \frac{1}{f_c}$$

$$\frac{1}{d_1} + \frac{1}{d'_2} = \frac{1}{f}$$

Đặt :
$$\boxed{\frac{1}{f_{\mathrm{h\hat{e}}}} = \frac{2}{f} + \frac{1}{f_c}}$$
, ta được: $\boxed{\frac{1}{d_1} + \frac{1}{d_3'} = \frac{1}{f_{\mathrm{h\hat{e}}}}}$

Vậy: hệ đã cho tương đương với thấu kính, có tiêu cự $f_{\text{hê}}$.

3. Trường hợp vật AB đặt giữa thấu kính và gương cầu:

Phân biệt hai trường hợp:

a. Ảnh A'B' cho bởi thấu kính:

xét một lần tạo ảnh

$$AB \xrightarrow{O} A'B'$$

$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} \to d' = \frac{df}{d-f} \quad \text{ Dộ phóng đại:} \quad k = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{d'}{d} = -\frac{f}{d-f}$$

b. Ảnh A''B'' cho bởi gương- thấu kính: xét hai lần tạo ảnh

Lần 1:

$$d_1 = a - d$$
$$d'_1 = \frac{d_1 f_c}{d_1 - f_c}$$

Độ phóng đại:
$$k_1=\dfrac{\overline{A_1B_1}}{\overline{AB}}=-\dfrac{d_1'}{d_1}$$

Lần 2:

Ta có:
$$d_2 = a - d_1'$$

$$\frac{1}{d_2} + \frac{1}{d_2'} = \frac{1}{f} \to d_2' = \frac{d_2 f}{d_2 - f}$$
 Độ phóng đại: $k_2 = -\frac{d_2'}{d_2} = \frac{\overline{A''B''}}{\overline{A_1B_1}}$

Chú ý: Nếu ảnh cuối cùng có độ cao không đổi khi dịch chuyển dọc theo trục chính: tức là ảnh B_3 chạy trên tia phản xạ cuối cùng song song với trục chính khi vật B chạy trên tia tới song song với trục chính. Bài toán quy về: Một vật $\mathring{\sigma}$ vô cùng qua hệ cho ảnh $\mathring{\sigma}$ vô cùng

PHỤ LỤC: CÁCH XÁC ĐỊNH TÍNH CHẤT ẢNH CỦA VẬT QUA THẦU KÍNH 1.Đối với thấu kính hội tụ:

2.Đối với thấu kính phân kỳ:

PHẦN 11

PHƯƠNG PHÁP GIẢI TOÁN VỀ MẮT VÀ CÁC DỤNG CỤ QUANG HỌC BỔ TRỢ CHO MẮT

 $\mathrm{CH}\mathring{\mathrm{U}}$ ĐỀ 1. Máy ảnh: cho biết giới hạn khoảng đặt phim, tìm giới hạn đặt vật?

Phương pháp:

Xét sự tạo ảnh:

áp dụng công thức:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} \rightarrow d = \frac{d'}{d'-f}$$

Khi: $d'_{min} \leq d' \leq d'_{max}$ thay vào trên ta được $d_{min} \leq d \leq d_{max}$

 $CH\mathring{U}$ ĐỀ 2.Máy ảnh chụp ảnh của một vật chuyển động vuông góc với trục chính. Tính khoảng thời gian tối đa mở của sập của ống kính để ảnh không bị nhoè.

Phương pháp:

Gọi t là thời gian mở của sập. Vật A dời được một đoạn s=v.t. Ảnh dời được một đoạn $s'=A'A'_1.$

Ta có:
$$k = \frac{s'}{s} = -\frac{d'}{d} = -\frac{f}{d-f} \to s' = |k|.s = |k|.v.t$$

Gọi e là độ nhò
e cho phép trên phim. Điều kiện để cho ảnh

$$s' \leq e \Leftrightarrow |k|.v.t \leq e \quad \text{hay:} \boxed{t_{max} = \frac{e}{v.|k|}}$$

CHỦ ĐỀ 3. Mắt cận thị: xác định độ tụ của kính chữa mắt? Tìm điểm cực cận mới ξ_c khi đeo kính chữa?

Phương pháp:

a.Cách chữa: Người đó phải đeo thấu kính phân kỳ có độ tụ thích hợp sao cho nhìn rỏ vật ở vô cùng không điều tiết.

Sơ đồ tao ảnh:

Ta có:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f_k}$$

hay
$$f_k = d' = -OC_v$$
 Độ tụ: $D_k = \frac{1}{f_k}$

b.Điểm cực cận mới:

điểm cực cận củ C_c là ảnh ảo của điểm cực cận mới ξ_c khi đeo kính.

Xét sư tao ảnh:

$$\xi_{c} \xrightarrow{(O)} C$$

$$d = O\xi_{c} \qquad d' = -OC_{c}$$
Ta có: $d = \overline{OA} = O\xi_{c}$; $d' = \overline{OA'} = -OC_{c}$, vậy: $d = \frac{d'f}{d' - f}$

$$A = \xi_{c} \quad A = C_{c}$$

Ta có:
$$d = \overline{OA} = O\mathcal{E}$$
: $d' = \overline{OA'} = -OC$ vâv:

CHỦ ĐỀ 4.Mắt viễn thị: xác định độ tụ của kính chữa mắt? Tìm điểm cực cận mới ξ_c khi đeo kính chữa?

Phương pháp:

a.Cách chữa: Người đó phải đeo thấu kính hội tụ có độ tụ thích hợp sao cho nhìn rỏ vật ở gần như mắt người bình thường.

Sơ đồ tao ảnh:

Ta có:
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f_k} \rightarrow f_k = \frac{dd'}{d+d'}$$

Độ tụ:
$$D_k = \frac{1}{f_k}$$

b.Điểm cực cận mới: điểm cực cận củ C_c là ảnh ảo của điểm cực cận mới ξ_c khi đeo kính.

$$S \xrightarrow{(O)} S'(\tilde{a}_0)$$
 $d \qquad d'$

CHỦ ĐỂ 5.Kính lúp: xác định phạm vi ngắm chừng và độ bội giác. Xác định kích thước nhỏ nhất của vật AB_{min} mà mắt phân biệt được qua kính lúp

Phương pháp:

1.Xác đinh pham vi ngắm chừng của kính lúp:

Xét sự tạo ảnh:

$$\begin{array}{ccc} AB & & (L) & & A'B'(\delta o) \\ d & & & d' \end{array}$$

Ta có: $d = \overline{OA}$; $d' = -\overline{OA'}$

$$\text{ Áp dụng: } \frac{1}{d} + \frac{1}{d'} = \frac{1}{f}$$

$$\to d = \frac{d'f}{d' - f} \quad (1)$$

Độ phóng đại:
$$k = -\frac{d'}{d}$$
 (2)

*Khi ngắm chừng ở cực cận: cho $A' \equiv C_c$ nên $d'_c = -O_L C_c = -(OC_c - l)$;

$$(1) \to d_c = \frac{d'_c f}{d' - f}$$

*Khi ngắm chừng ở cực viễn: cho $A'\equiv C_v$ nên $d_v'=-O_LC_v=-(OC_v-l);$

$$(1) \to d_v = \frac{d'_v f}{d'_v - f}$$

Vậy: Phạm vi ngắm chừng của kính lúp: $d_c \le d \le d_v$; hay khoảng ngắm chừng:

$$\Delta d = d_v - d_c$$

Chú ý: Nếu mắt không tật thì $C_v = \infty \rightarrow d_v = f$

2. Xác định độ bội giác của kính lúp:

Ta có, độ bội giác tổng quát:
$$G = \frac{\alpha}{\alpha_0} \approx \frac{tg\alpha}{tg\alpha_0}$$
 (2)

Với
$$tg\alpha_0 = \frac{AB}{OC_c} = \frac{AB}{\Phi};$$
 $tg\alpha = \frac{A'B'}{OA'} = \frac{A'B'}{|d'| + l}$

Thay vào (2):
$$G = \frac{A'B'}{AB} \frac{\mathbf{D}}{|d'| + l} = |k| \cdot \frac{\mathbf{D}}{|d'| + l}$$
(3)

*Khi ngắm chừng ở cực cận:
$$|d'|+l=$$
Đ; (3) $\rightarrow G_c=|k_c|=\left|-\frac{d'_c}{d_c}\right|$

*Khi ngắm chừng ở cực viễn:
$$|d'| + l = OC_v$$
; (3) $\rightarrow G_v = |k_v| \cdot \frac{\mathbf{D}}{OC_v}$ với $|k_v| = \left| -\frac{d'_v}{d_v} \right|$

*Khi ngắm chừng ở vô cùng:
$$G_{\infty} = \frac{\mathbf{D}}{f}$$

***Chú ý:** Nếu mắt đặt tại tiêu điểm ảnh F' của kính lúp thì:

Ta có:
$$l=f; \quad |d'|=\frac{df}{d-f} \quad \text{hay} \quad d'=\frac{df}{f-d}$$

$$k = -\frac{d'}{d} = \frac{f}{f - d}$$
, thay vào (3) ta được:

$$G = \frac{f\mathbf{D}}{(f-d)\left(\frac{fd}{f-d} + f\right)} = \frac{\mathbf{D}}{f}$$

Vậy: khi mắt đặt tại tiêu điểm của kính lúp, độ bội giác của kính lúp không phụ thuộc vào vị trí đặt vật.

3. Xác định kích thước nhỏ nhất của vật AB_{min} mà mắt phân biệt được qua kính lúp:

Gọi α là góc trông ảnh qua kính lúp (L).

Ta có:
$$tg\alpha = \frac{A'B'}{|d'|+l} = \frac{k.AB}{|d'|+l} \approx \alpha_{rad}$$
 (4)

Điều kiện để mắt có thể phân biệt được vật AB là: $\alpha \geq \alpha_{min}$ (năng suất phân ly của mắt).

$$(4) \to \frac{k.AB}{|d'|+l} \ge \alpha_{min} \leftrightarrow AB \ge \frac{|d'|+l}{k}\alpha_{min}$$
 Hay
$$AB_{min}\frac{|d'|+l}{k}\alpha_{min}$$

*Khi ngắm chừng ở vô cực:
$$\alpha \approx tg\alpha = \frac{AB}{f} \rightarrow AB_{min} = f.\alpha_{min}$$

CHỦ ĐỀ 6. Kính hiển vi: xác định phạm vi ngắm chừng và độ bội giác. Xác định kích thước nhỏ nhất của vật AB_{min} mà mắt phân biệt được qua kính hiển vi

Phương pháp:

1.Xác định phạm vi ngắm chừng của kính hiển vi:

Xét sự tạo ảnh:

Xét lần 2:

Ta có:
$$d_2 = \frac{d_2' f_2}{d_2' - f_2}$$
 (1)

Xét lần 1:

Ta có:
$$d_2 = a - d'_1 \rightarrow d'_1 = a - d_2$$
 (2)

Ta có:
$$d_1 = \frac{d'_1 f_1}{d'_1 - f_1}$$
 (3)

*Khi ngắm chừng ở cực cận: cho $A'\equiv C_c$ nên $d'_{2c}=-O_2C_c$;

$$(1) \to d_{2c} \quad (2) \to d'_{1c}; \quad (3) \to d_{1c}$$

*Khi ngắm chừng ở cực cận: cho $A'\equiv C_v$ nên $d'_{2v}=-O_2C_v$;

$$(1) \to d_{2v} \quad (2) \to d'_{1v}; \quad (3) \to d_{1v}$$

Vậy: Phạm vi ngắm chừng của kính hiển vi: $d_{1c} \le d_1 \le d_{1v}$; hay khoảng ngắm chừng:

$$\Delta d_1 = d_{1v} - d_{1c}$$

Chú ý: Nếu mắt không tật thì $C_v = \infty$

2.Xác định độ bội giác của kính hiển vi:

Ta có, độ bội giác tổng quát: $G = \frac{\alpha}{\alpha_0} \approx \frac{tg\alpha}{tg\alpha_0}$ (2)

Với
$$tg\alpha_0 = \frac{AB}{OC_c} = \frac{AB}{D};$$
 $tg\alpha = \frac{A_2B_2}{OA_2} = \frac{A_2B_2}{|d_2'|}$

Thay vào (2):
$$G = \frac{A_2 B_2}{AB} \frac{\mathbf{D}}{|d_2'|} = |k_1 . k_2| . \frac{\mathbf{D}}{|d_2'|}$$
 (3)

*Khi ngắm chừng ở cực cận: $|d_2'| = D$; (3) $\rightarrow G_c = |k_{1c}k_{2c}|$

Với:
$$k_{1c} = -\frac{d'_{1c}}{d_{1c}}; k_{2c} = -\frac{d'_{2c}}{d_{2c}}$$

*Khi ngắm chừng ở cực viễn: $|d_2'| = OC_v$; (3) $\rightarrow G_v = |k_{1v}k_{2v}| \cdot \frac{\mathbf{D}}{OC_v}$

Với:
$$k_{1v} = -\frac{d'_{1v}}{d_{1v}}; k_{2v} = -\frac{d'_{2v}}{d_{2v}}$$

*Khi ngắm chừng ở vô cùng:
$$G_{\infty} = \frac{\delta \mathbf{D}}{f_1, f_2}$$
 hoặc $G_{\infty} = |k_1|G_{2\infty}$.

Trong đó: $\delta = a - (f_1 + f_2)$

3.Xác định kích thước nhỏ nhất của vật AB_{min} mà mắt phân biệt được qua kính hiển

Gọi α là góc trông ảnh qua kính hiển vi .

Ta có:
$$tg\alpha = \frac{A_1B_1}{d_2} = \frac{k_1.AB}{d_2} = \frac{d_1'}{d_1} \cdot \frac{AB}{d_2} \approx \alpha_{rad}$$
 (4)

Điều kiện để mắt có thể phân biệt được vật AB là: $\alpha \geq \alpha_{min}$ (năng suất phân ly của mắt).

$$(4) \to \frac{d_1'}{d_1} \cdot \frac{AB}{d_2} \ge \alpha_{min} \leftrightarrow AB \ge \frac{d_1 d_2}{d_1'} \alpha_{min}$$

$$\text{Hay} AB_{min} = \frac{d_1 d_2}{d_1'} \alpha_{min}$$

*Khi ngắm chừng ở vô cực:
$$\alpha \approx tg\alpha = \frac{A_1B_1}{f_2} = \frac{k_1.AB}{f_2} \rightarrow AB_{min} = \frac{f_2}{k_1}.\alpha_{min}$$

vi:

CHỦ ĐỀ 7.Kính thiên văn: xác định phạm vi ngắm chùng và độ bội giác?

Phương pháp:

1. Xác đinh pham vi ngắm chừng của kính thiên văn:

Phạm vi ngắm chừng là khoảng dời của thị kính O_2 để đưa ảnh ảo A_2B_2 vào giới hạn nhìn rỏ của mắt.

Xét sự tạo ảnh:

Vì : $d_1 = \infty$ nên $d_1' = f_1$; mà $d_2 = a - d_1'$ nên:

$$a = f_1 + d_2 \quad (1)$$

*Khi ngắm chừng ở cực cận:

cho
$$A' \equiv C_c$$
 nên $d'_{2c} = -OC_c$;

$$d_{2c} = \frac{d'_{2c}f_2}{d'_{2c} - f_2}$$

$$(1) \to a_c = f_1 + d_{2c}$$

*Khi ngắm chừng ở cực cận: cho $A'\equiv C_v$ nên $d'_{2v}=-OC_v$;

$$\to d_{2v} = \frac{d'_{2v} f_2}{d'_{2v} - f_2} \quad (1) \to a_v = f_1 + d_{2v}$$

Vậy: Phạm vi ngắm chừng của kính hiển vi: $a_c \le a \le a_v$; hay khoảng ngắm chừng:

$$\Delta a = a_v - a_c$$

Chú ý: Nếu mắt không tật thì $C_v = \infty$

2.Xác đinh đô bôi giác của kính thiên văn:

Ta có:
$$G = \frac{\alpha}{\alpha_0} \approx \frac{tg\alpha}{tg\alpha_0}$$

Với:
$$tg\alpha=\frac{A_1B_1}{d_2};\quad tg\alpha_0=\frac{A_1B_1}{f_1}$$

Vậy:
$$G = \frac{f_1}{d_2}$$

* Khi ngắm chừng ở cực cận: $G_c = \frac{f_1}{d_{2c}}$

$$st$$
 Khi ngắm chừng ở cực viễn: $G_v=rac{f_1}{d_{2v}}$

*Khi ngắm chừng ở vô cùng: $G_{\infty}=rac{f_1}{f_2}$

PHẨN 12

PHƯƠNG PHÁP GIẢI TOÁN VỀ HIỆN TƯƠNG TÁN SẮC ÁNH SÁNG

CHỦ ĐỀ 1.Sự tán sắc chùm sáng trắng qua mặt phân cách giữa hai môi trường: khảo sát chùm khúc xa? Tính góc lệch bởi hai tia khúc xa đơn sắc?

Phương pháp:

Ta có: $n_{\text{do}} \leq n \leq n_{\text{tím}}$

Mà :
$$\lambda = \frac{c}{n}$$
 do đó: $\lambda_{\text{dổ}} \ge \lambda \ge \lambda_{\text{tím}}$

Ta có:
$$\sin i = n \sin r$$
 do đó: $\sin r = \frac{\sin i}{n}$

Vậy:
$$r_{\text{đỏ}} \geq r \geq r_{\text{tím}}$$

Vậy: Chùm khúc xạ có màu cầu vồng xòe ra: tia đỏ lệch ít nhất, tia tím lệch nhiều nhất. Góc lệch bởi hai tia: $\Delta r = r_{\rm d\acute{o}} - r_{\rm tím}$

CHỦ ĐỀ 2.Chùm sáng trắng qua LK: khảo sát chùm tia ló?

Phương pháp:

Ta có:
$$\sin i_1 = n \sin r_1 \rightarrow \sin r_1 = \frac{\sin i_1}{n}$$
 Vậy: $r_{1\text{đỏ}} \geq r_1 \geq r_{1\text{tím}}$

Mà:
$$A=r_1+r_2 \rightarrow r_2=A-r_1 \rightarrow r_{2{\rm d}\mathring{\rm o}} \leq r_2 \leq r_{2{\rm tím}}$$

Qua
$$AC$$
: ta có: $n\sin r_2 = \sin i_2$ vậy: $i_{2\text{do}} \leq i \leq i_{2\text{tím}}$

Vậy: Chùm khúc xạ có màu cầu vồng xòe ra: tia đỏ lệch ít nhất, tia tím lệch nhiều nhất

CHỦ ĐỀ 3. Xác định góc hợp bởi hai tia ló (đỏ , tím) của chùm cầu vồng ra khỏi LK. Tính bề rộng quang phổ trên màn?

Phương pháp: Dựa vào góc lệch: $\Delta D = D_{\text{tím}} - D_{\text{dổ}}$

1. Trường hợp LK có góc chiết quang nhỏ:
$$D = (n-1)A_{rad}$$

Vậy:
$$\Delta D = (n_{tim} - n_{dỏ})$$

2. Trường hợp A lớn:
$$D = i_1 + i_2 - A$$

Vậy:
$$\Delta D = (i_{2 \text{tím}} - i_{2 \text{đỏ}})$$

3.
Bề rộng quang phỏ:
$$\Delta D = tgD = \frac{l}{d}$$
 Vây: $l = d.\Delta D$

CHỦ ĐỀ 4. Chùm tia tới song song có bề rộng a chứa hai bứt xạ truyền qua BMSS: khảo sát chùm tia ló? Tính bề rộng cực đại a_{max} để hai chùm tia ló tách rời nhau?

Phương pháp:

Do tính chất BMSS: hai chùm tia ló là hai chùm song song. Muốn hai chùm tia ló tách rời nhau ta có: $I_1J_1\leq I_1I_2=HI_2-HI_1$

Hay:
$$\frac{a}{\cos i} \le e(tgr_2 - tgr_1) \to a_{max}$$

PHẦN 13

PHƯƠNG PHÁP GIẢI TOÁN VỀ GIAO THOA SỐNG ÁNH SÁNG

CHỦ ĐỀ 1. Xác định bước sóng λ khi biết khoảng vân i, a_i, D

Phương pháp:

Áp dụng công thức:
$$i = \frac{\lambda D}{a} \longrightarrow \lambda = \frac{a.i}{D}$$

Chú ý:

$$1\mu m = 10^{-6} m = 10^{-3} mm$$

$$1nm = 10^{-9}m = 10^{-6}mm$$

$$1pm = 10^{-12}m = 10^{-9}mm$$

$$1A^0 = 10^{-10}m = 10^{-7}mm$$

Chú ý: Cho n khoảng vân trên chiều dài l: Ta có: $n = \frac{l}{i} + 1 \rightarrow i = \frac{l}{n-1}$

 $CH\mathring{U}$ ĐỀ 2. Xác định tính chất sáng (tối) và tìm bậc giao thoa ứng với mỗi điểm trên màn?

Phương pháp:

*Tính khoảng vân
$$i$$
: $i = \frac{\lambda D}{a}$

*Lập tỉ:
$$p = \frac{x_M}{i}$$

Nếu: p = k(nguyên) thì: $x_M = ki$: M là vân sáng bậc k.

Nếu: $p=k+\frac{1}{2}$ (bán nguyên) thì: $x_M=\left(k+\frac{1}{2}\right)i$: M là vân tối thứ k-1.

 $CH\mathring{U}$ ĐỀ 3.Tìm số vân sáng và vân tối quang sát được trên miền giao thoa Phương pháp:

*Tính khoảng vân
$$i$$
: $i=\frac{\lambda D}{a}$; Chia nữa miền giao thao: $l=OP=\frac{PQ}{2}$

*Lập tỉ:
$$\boxed{p = \frac{OP}{i} = k(\text{nguyên}) + m(\text{lẽ})}$$

Kết luận:

Nữa miền giao thoa có k vân sáng thì cả miền giao thoa có 2.k + 1 vân sáng.

Nếu m < 0,5: Nữa miền giao thoa có k vân tối thì cả miền giao thoa có 2.k vân tối.

Nếu $m \geq 0,5$: Nữa miền giao thoa có k+1 vân tối thì cả miền giao thoa có 2(k+1) vân tối.

CHỦ ĐỀ 4.Trường hợp nguồn phát hai ánh sáng đơn sắc. Tìm vị trí trên màn ở đó có sự trùng nhau của hai vân sáng thuộc hai hệ đơn sắc?

Phương pháp:

Đối với bức xạ λ_1 : toạ độ vân sáng: $x_1 = k_1 \frac{\lambda_1 D}{a}$.

Đối với bức xạ λ_2 : toạ độ vân sáng: $x_2 = k_2 \frac{\lambda_2 D}{a}$.

Để hệ hai vân trùng nhau: $x_1 = x_2$ hay : $k_1\lambda_1 = k_2\lambda_2$ $k \in \mathbb{Z}$

Suy ra các cặp giá trị của k_1, k_2 tương ứng, thay vào ta được các vị trí trùng nhau.

Chú ý: Chỉ chọn những vị trí sao cho: $|x| \leq OP$

CHỦ ĐỀ 5.Trường hợp giao thoa ánh sáng trắng: tìm độ rộng quang phổ, xác định ánh sáng cho vân tối (sáng) tại một điểm (x_M) ?

Phương pháp:

1.Xác đinh đô rông quang phổ:

Toạ độ vân sáng: $x = k \frac{\lambda D}{a}$; Bức xạ đỏ: $x_d = k_d \frac{\lambda_d D}{a}$; Bức xạ tím: $x_t = k_t \frac{\lambda_t D}{a}$

Độ rộng quang phổ: $\Delta = x_d - x_t = (k_d \lambda_d - k_t \lambda_t) \frac{D}{a}$

Quang phổ bậc 1: $k_d = k_t = 1$ nên $\Delta_1 = (\lambda_d - \lambda_t) \frac{D}{a}$;

Quang phổ bậc $2:k_d=k_t=2$ nên $\Delta_2=2(\lambda_d-\lambda_t)\frac{D}{a}=2\Delta_1\cdots$

2. Xác định ánh sáng cho vân tối (sáng) tại một điểm (x_M) :

Tọa độ vẫn tối:
$$x=\left(k+\frac{1}{2}\right)\frac{\lambda D}{a} \to \lambda = \frac{a.x}{D\left(k+\frac{1}{2}\right)}$$
 (*)

Ta có: $\lambda_{\rm t} \leq \lambda \leq \lambda_{\rm d}$, từ (*) ta được $k_{min} \leq k \leq k_{max}$

Kết luận: Có bao nhiều giá trị nguyên của k thì có bấy nhiều ánh sáng bị " $thi \acute{e}u$ " (tối) ở M.

CHỦ ĐỀ 6. Thí nghiệm giao thoa với ánh sáng thực hiện trong môi trường có chiếc suất n>1. Tìm khoảng vân mới i'? Hệ vân thay đổi thế nào?

Phương pháp:

Trong môi trường không khí: $i = \frac{\lambda D}{a}$; Trong môi trường chiếc suất n: $i' = \frac{\lambda' D}{a}$

Lập tỉ: $\frac{i'}{i} = \frac{\lambda'}{\lambda} = \frac{v}{c} = \frac{1}{n} \rightarrow i' = \frac{i}{n}$

Vây: Khoảng vân giảm, nên số vân tăng, do đó hệ vân sít lai.

CHỦ ĐỀ 7. Thí nghiệm Young: đặt bản mặt song song (e,n) trước khe S_1 (hoặc S_2). Tìm chiều và độ dịch chuyển của hệ vân trung tâm.

Phương pháp:

Trong BMSS: thời gian ánh sáng truyền qua BMSS là: $t=\frac{e}{v}$. Với thời gian này, ánh sáng truyền trong môi trường không khí một đoạn $e'=t.c=\frac{e}{v}.c=n.e$. Vậy e'=ne gọi là quang trình của ánh sáng trong môi trường chiếc suất n. Kí hiệu: [e]=n.e

Hiệu quang trình: $\delta' = [S_2O'] - [S_1O'] = d_2 - d_1 - (n-1)e$

Để tại O' là vân trung tâm: $\delta'=0$, vậy: $d_2-d_1=(n-1)e$

Ta có:
$$d_2-d_1=\dfrac{ax}{D}$$
 , vậy: $x=\dfrac{(n-1)eD}{a}$

Kết luận: Vậy, hệ vân dịch chuyển một đoạn x về phía BMSS (vì x > 0).

CHỦ ĐỀ 8.Thí nghiệm Young: Khi nguồn sáng di chuyển một đoạn y=SS'. Tìm chiều, độ chuyển dời của hệ vân(vân trung tâm)?

Phương pháp:

Hiệu quang trình:
$$\delta'=[S'S_2O']-[S'S_1O']=([S'S_2]-[S'S_1])+([S_2O']-[S_1O'])=(S'S_2-S'S_1)+(d_2-d_1)$$

Để
$$O'$$
 là vân trung tâm: $\delta'=0$ hay: $(S'S_2-S'S_1)+(d_2-d_1)=0$

Ta có:
$$d_2 - d_1 = \frac{ax}{D}$$
; $S'S_2 - S'S_1 = \frac{ay}{D'}$, thay vào trên ta được:

$$x = -\frac{D}{D'}y$$
. Vậy: Hệ vân dịch chuyển ngược chiều dịch chuyển

của nguồn sáng
$$S$$
, dịch chuyển một đoạn: $x = \frac{D}{D'}y$

CHỦ ĐỀ 9. Nguồn sáng S chuyển động với vân tốc \vec{v} theo phương song song với S_1S_2 : tìm tần số suất hiện vân sáng tại vân trung tâm O?

Phương pháp:

Hiệu quang trình:
$$\delta = [S'S_2O] - [S'S_1O] = ([S'S_2] - [S'S_1]) + (S'S_1O) = (S'S_1O)$$

$$([S_2O] - [S_1O]) = (S'S_2 - S'S_1) = \frac{ay}{D'}$$

Ta có: để
$$O$$
 là vân sáng: $\delta = k\lambda$ $k \in \mathbb{Z}$

Vây:
$$\frac{ay}{D'} = k\lambda \leftrightarrow \frac{av.t}{D'} = k\lambda$$

Tần số suất hiện vân sáng tại
$$O$$
: $f = \frac{k}{t} = \frac{av}{\lambda . D'}$

CHỦ ĐỀ 10. Tìm khoảng cách $a=S_1S_2$ và bề rộng miền giao thoa trên một số dụng cu giao thoa?

Phương pháp:

1.Khe Young:

$$a = S_1 S_2$$

PQ: độ rộng miền giao thoa thường cho biết.

2.Lưỡng lăng kính Frexnen:

S qua lăng kính thư nhất cho ảnh ảo S_1 . S qua lăng kính thư hai cho ảnh ảo S_2 .

Khoảng dời ảnh: $SS_1 = SS_2 = 2SItg\beta \approx 2SI(n-1)A_{rad}$

Sử dụng tam giác đồng dạng: $\frac{PQ}{S_1S_2} = \frac{IO}{IS} \rightarrow PQ$

3.Hai nữa thấu kính Billet

 S_1, S_2 là những ảnh thật.

Vối:
$$d' = \frac{df}{d - f}$$

Ta có: $\frac{S_1 S_2}{O_1 O_2} = \frac{d + d'}{d} \rightarrow S_1 S_2$
 $\frac{PQ}{O_1 O_2} = \frac{SO}{d} \rightarrow PQ$

4.Gương Frexnen

 S_1, S_2 là những ảnh ảo.

Ta có:
$$a = S_1 S_2 = R.2\alpha_{rad}$$

$$\frac{PQ}{S_1S_2} = \frac{IO}{IS'} \to PQ$$

PHẦN 14

PHƯƠNG PHÁP GIẢI TOÁN VỀ TIA RONGHEN

 CHỦ ĐỀ 1. Tia Rơnghen: Cho biết vận tốc v của electron đập vào đối ca
tot: tìm U_{AK} ?

Phương pháp:

"Công của lực điện trường (thế năng của điện trường) chuyển thành động năng của electron tới đối catot"

$$\frac{1}{2}mv^2 = eU_{AK} \text{ nên: } \boxed{v = \sqrt{\frac{2eU_{AK}}{m}} \leftrightarrow U_{AK} = \frac{mv^2}{2e}}$$

CHỦ ĐỀ 2. Tia Rơnghen: Cho biết vận tốc v của electron đập vào đối catot hoặt U_{AK} : tìm tần số cực đại F_{max} hay bước sóng λ_{min} ?

Phương pháp:

"Động năng của electron chuyển thành năng lượng của tia X và nhiệt năng để nung nóng Catôt"

$$\left| \frac{1}{2}mv^2 = hf + W_t \right| \quad (*)$$

1. Cho v: tìm f_{max} hay λ_{min} ?

$$(*) \rightarrow \frac{1}{2}mv^2 \ge hf \text{ hay } \boxed{f_{max} = \frac{mv^2}{2h}}$$

$$(*) \rightarrow \frac{1}{2}mv^2 \ge \frac{hc}{\lambda} \text{ hay } \left[\lambda_{min} = \frac{2hc}{mv^2} \right]$$

2. Cho U: tìm f_{max} hay λ_{min} ?

Ta có:
$$\frac{1}{2}mv^2 = eU$$
, nên phương trình (*) viết lại: $eU = hf + W_t$ (**)

(**)
$$\rightarrow eU \ge hf$$
 hay $f_{max} = \frac{eU}{h}$

$$(**) \rightarrow eU \ge \frac{hc}{\lambda} \text{ hay } \boxed{\lambda_{min} = \frac{hc}{eU}}$$

CHỦ ĐỂ 3.Tính lưu lượng dòng nước làm nguội đối catot của ống Rơnghen:

Phương pháp: Phân biệt hai trường hợp

1. Khi biết động năng $E_{\rm d}$ của electron (hay vận tốc v): Bỏ qua năng lượng của lượng tử so với nhiệt năng.

Ta có:
$$W_t = nE_{\mathrm{d}} = n\frac{1}{2}mv^2$$
 mà $W_t = Q = MC(t_2 - t_1)$

Suy ra khối lượng của dòng nước khi có n electron đập vào đối catôt:

$$M = \frac{nmv^2}{2C(t_2 - t_1)}$$

Suy ra lưu lượng nước (tính theo khối lượng): $\mu=\frac{M}{t}$; tính theo thể tích: $L=\frac{\mu}{D}$ (D: khối lượng riêng của nước)

2. Khi biết công suất P hay hiệu điện thế U:

Ta có:
$$W=Pt=UIt \leftrightarrow W_t=UIt$$
 mà $W_t=Q=MC\Delta t$

Suy ra khối lượng của dòng nước, suy ra lưu lượng nước (tính theo khối lượng): $\mu=\frac{M}{t}$; tính theo thể tích: $L=\frac{\mu}{D}$ (D: khối lượng riêng của nước)

PHẦN 15

PHƯƠNG PHÁP GIẢI TOÁN VỀ HIÊN TƯƠNG QUANG ĐIÊN

CHỦ ĐỀ 1. Cho biết giới hạn quang điện (λ_0) . Tìm công thoát A (theo đơn vị eV)? Phương pháp:

Áp dụng công thức:
$$\lambda_0 = \frac{hc}{A} \longrightarrow A = \frac{hc}{\lambda_0}$$

Với:
$$h = 6,625.10^{-34} J.s; c = 3.10^8 m/s$$

Đổi ra đơn vị:
$$eV$$
: $1eV = 1, 6.10^{-19} J \rightarrow 1J = \frac{1}{1, 6.10^{-19}} eV$

CHỦ ĐỀ 2. Cho biết hiệu điện thế hãm U_h . Tìm động năng ban đầu cực đại ($E_{\rm dmax}$) hay vận tốc ban đầu cực đại (v_{0max}), hay tìm công thoát A?

Phương pháp:

1.Cho U_h : tìm E_{dmax} hay v_{0max}

Để dòng quang điện triệt tiêu (I=0) (hay không có electron nào bức ra đập về Anốt là: động năng ban đầu cực đại của quang electron bằng công của lực điện trường cản.

Ta có:
$$E_{\text{dmax}} = e|U_h|$$
 hay $\frac{1}{2}mv_{0max}^2 = e|U_h|$

Vậy:
$$v_{0max} = \sqrt{\frac{2|U_h|}{m}}$$

2.Cho U_h và λ (kích thích): tìm công thoát A:

Áp dụng phương trình Einstein:
$$\frac{hc}{\lambda} = A + \frac{1}{2} m v_{0max}^2 = A + e |U_h|$$

Vậy:
$$A = \frac{hc}{\lambda} - e|U_h|$$

CHỦ ĐỀ 3. Cho biết v_{0max} của electron quang điện và λ (kích thích): tìm giới hạn quang điện λ_0 ?

Phương pháp:

Áp dụng phương trình Einstein:
$$\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2} m v_{0max}^2$$

Vây:
$$\lambda_0 = \frac{hc}{\left(\frac{hc}{\lambda} - \frac{1}{2}mv_{0max}^2\right)}$$

CHỦ ĐỀ 4. Cho biết công thoát A (hay giới hạn quang điện $\lambda_0)$ và $\lambda($ kích thích): Tìm v_{0max} ?

Phương pháp:

Áp dụng phương trình Einstein:
$$\frac{hc}{\lambda} = A + \frac{1}{2}mv_{0max}^2 \quad \leftrightarrow \quad \left| v_{0max} = \sqrt{\frac{2}{m}\left(\frac{hc}{\lambda} - A\right)} \right|$$

$$v_{0max} = \sqrt{\frac{2}{m} \left(\frac{hc}{\lambda} - A\right)}$$

Hay:
$$\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2}mv_{0max}^2 \leftrightarrow \boxed{v_{0max} = \sqrt{\frac{2hc}{m}\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)}}$$

 $\mathbf{CH\mathring{U}}$ ĐỀ 5.Cho biết U_{AK} và v_{0max} . Tính vận tốc của electron khi tới Anốt ?

Phương pháp:

Áp dụng định lý về độ biến thiên động năng: $\frac{1}{2}mv_A^2 - \frac{1}{2}mv_{0max}^2 = eU_{AK}$

Vậy:
$$v_A = \sqrt{\frac{2e}{m}U_{AK} + v_{0max}^2}$$

CHỦ ĐỀ 6. Cho biết v_{0max} và A. Tìm điều kiện của hiệu điện thế U_{AK} để không có dòng quang điện (I = 0) hoặc không có một electron nào tới Anốt?

Phương pháp:

*Bước 1: Tìm hiệu điện thế hãm U_h (chủ đề 2):

Ta được:
$$U_h = \frac{1}{e} \left(\frac{hc}{\lambda} - A \right)$$

*Bước 2: điều kiện để I=0 là : $U_{AK}<0$ và $|U_{AK}|\geq |U_h|$

 $\mathbf{CH\mathring{U}}\,\mathbf{D\^{E}}$ 7. Cho biết cường độ dòng quang điện bảo hoà (I_{bh}) và công suất của nguồn sáng. Tính hiệu suất lương tử?

Phương pháp:

1.Goi n là số electron bứt ra khỏi K trong thời gian t:

Ta có:
$$I_{bh} = \frac{q}{t} = \frac{n.e}{t}$$
 Vậy: $n = \frac{I_{bh}}{e}.t$ (1).

2. Gọi n' là số photon đập vào K trong thời gian t:

Năng lượng của một photon(lượng tử):
$$\varepsilon = hf = \frac{hc}{\lambda}$$

Năng lượng của
$$n'$$
 photon: $E=n'.\varepsilon=n'.hf=n'.\frac{hc}{\lambda}$

Công suất của nguồn sáng:
$$P = \frac{E}{t} = \frac{n'.hc}{\lambda t}$$
 Vậy: $n' = \frac{P\lambda}{hc}t$ (2)

3. Hiệu suất lượng tử:
$$H = \frac{S \acute{o} \ electron \ bức \ ra \ khỏi \ K}{S \acute{o} \ photon \ dập \ vào \ K} 100\%$$
 (3)

Thay (1)& (2) vào (3) ta được:
$$H = \frac{P\lambda e}{I_{bh}hc}100\%$$

 $\mathbf{CH\mathring{U}}$ ĐỀ 8. Chiếu một chùm sáng kích thích có bước sóng λ vào một qủa cầu cô lập về điên. Xác đinh điên thế cực đại của qủa cầu. Nối quả cầu với một điên trở R sau đó nối đất. Xác đinh cường đô dòng qua R.

Phương pháp:

1.Chiếu một chùm sáng kích thích có bước sóng λ vào một gủa cầu cô lập về điện. Xác đinh điện thế cưc đai của qủa cầu:

Ban đầu điện thế của gủa cầu cô lập: V=0.

Khi chiếu chùm sáng kích thích, electron bức ra làm qủa cầu tích điện dương (+e) và điện thế V tăng. Nhưng điện thế V này lại cản trở chuyển động bứt ra của các electron làm cho v_{0max} giảm, nhưng V tiếp tục tăng.

V ngừng tăng khi V=max lúc đó: đông năng ban đầu cực đại của electron quang điện bằng thế năng của lực điện trường.

Ta có: $\frac{1}{2} m v_{0max}^2 = e.V_{max}$

2. Nối quả cầu với một điện trở R sau đó nối đất. Xác định cường độ dòng qua R:

Cường độ dòng điện qua
$$R{:}\;I=\frac{U}{R}\;\mathrm{hay}\;I=\frac{V_{max}}{R}\;(\;\mathrm{vì:}\;V_{\mathrm{dất}}=0)$$

CHỦ ĐỀ 9. Cho λ kích thích, điện trường cản E_c và bước sóng giới hạn λ_0 : tìm đoạn đường đi tối đa mà electron đi được.

Phương pháp:

Áp dụng định lý về độ biến thiên động năng:
$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_{0max}^2 = E_c = -eEs$$
 (1)

Để
$$s = max$$
 khi $v_B = 0$ (1) $\rightarrow \frac{1}{2} m v_{0max}^2 = e E s_{max}$ (2)

Áp dụng phương trình Einstein:
$$\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2}mv_{0max}^2$$
.

Thay vào (2) ta được:
$$s_{max} = \frac{hc}{eE} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right)$$

CHỦ ĐỀ 10. Cho λ kích thích, bước sóng giới hạn λ_0 và U_{AK} : Tìm bán kính lớn nhất của vòng tròn trên mặt Anốt mà các electron từ Katốt đập vào?

Phương pháp:

Chọn hệ trục tọa độ Oxy như hình vẽ.

Áp dung định luật II Newton: $\vec{F} = -e\vec{E} = m\vec{a}$

Hay:

$$\vec{a} = \frac{-e\vec{E}}{m} \quad (*)$$

Chiếu (*) lên Ox: $a_x = 0$, do đó trên Ox electron chuyển động thẳng đều, với phương trình:

$$x = vt \to t = \frac{x}{v}$$
 (1)

Chiếu (*) lên Oy: $a_y = \frac{eE}{m} = \frac{eU}{md}$, do đó trên Oy electron chuyển đông thẳng nhanh dần đều, với phương trình:

$$y = \frac{1}{2}a_y t^2 = \frac{1}{2}\frac{eU}{md}t^2$$
 (2)

dang: $y = Ax^2$

Thay (2) vào (1) ta được phương trình:
$$y = \frac{1}{2} \frac{eU}{md} \frac{x^2}{v^2}$$
 (**) có dạng: $y = Ax^2$

Vây: qũy đao của electron trong điện trường là một Parabolic.

Electron quang điện bay ra theo moi hướng. Electron đập vào Anốt với bán kính qũy đạo lớn nhất khi vân tốc của electron bứt ra khỏi Katốt là cực đại, có phương trùng với phương của Katốt.

Vậy: $v = v_{0max} \leftrightarrow r = r_{max}, y = d$, thay vào phương trình (**):

$$d = \frac{1}{2} \frac{eU}{md} \frac{r_{max}^2}{v_{0max}^2} \quad \text{hay} \boxed{r_{max} = d.v_{0max} \sqrt{\frac{2m}{eU}}}$$

CHỦ ĐỀ 11. Cho λ kích thích, bước sóng giới hạn λ_0 , electron quang điện bay ra theo phương vuông góc với điện trường (\vec{E}) . Khảo sát chuyển đông của electron ?

Phương pháp:

Chon hệ truc toa đô Oxy như hình vẽ. Áp dung định luật II Newton: $\vec{F} = -e\vec{E} = m\vec{a}$ Hay:

$$\vec{a} = \frac{-e\vec{E}}{m} \quad (*)$$

Chiếu (*) lên Ox: $a_x = 0$, do đó trên Ox electron chuyển động thẳng đều, với phương trình:

$$x = v_{0max}t \to t = \frac{x}{v_{0max}} \quad (1)$$

Chiếu (*) lên Oy: $a_y = \frac{eE}{m} = \frac{eU}{md}$, do đó trên Oy electron chuyển động thẳng nhanh dần đều, với phương trình:

$$y = \frac{1}{2}a_y t^2 = \frac{1}{2}\frac{eU}{md}t^2$$
 (2)

Thay (2) vào (1) ta được phương trình: $y = \frac{1}{2} \frac{eU}{md} \frac{x^2}{v_{2--2}^2}$ (**) có dạng: $y = Ax^2$

$$: y = \frac{1}{2} \frac{eU}{md} \frac{x^2}{v_{0max}^2}$$

Vây: qũy đao của electron trong điện trường là một Parabol.

Chú ý:
$$tg\alpha = \frac{dy}{dx}\Big|_{x=l}$$

CHỦ ĐỀ 12. Cho λ kích thích, bước sóng giới hạn λ_0 , electron quang điện bay ra theo phương vuông góc với cảm ứng từ của trừ trường đều (\vec{B}) . Khảo sát chuyển đông của electron?

Phương pháp:

*Electron chuyển đông trong từ trường chiu tác dung của lưc Lorentz.

$$\vec{f_L} \quad \begin{cases} + \text{Phương}: & \bot mp(\vec{v}, \vec{B}) \\ + \text{Chiều}: & \text{Tuân theo quy tắc bàn tay trái.} \\ + \text{Độ lớn}: & f_L = B.v.e \end{cases}$$

Vì $\vec{f_L} \perp \vec{v}$ nên, $\vec{f_L}$ đóng vai trò như lực hướng tâm. Ta có:

$$\vec{f_L} = \vec{f_{ht}} \leftrightarrow B.e.v = m \frac{v^2}{R}$$

Hay:

$$R = \frac{m.v}{B.e}$$

Khi $v = v_{0max}$ thì $R = R_{max}$ do đó: $R_{max} = \frac{m.v_{0max}}{R.e}$

PHẦN 16

PHƯƠNG PHÁP GIẢI TOÁN VỀ MẪU NGUYÊN TỬ HIĐRÔ THEO BO

Chú ý:Năng lượng trạng thái dừng thứ n: $E_n = \frac{-13,6eV}{n^2}$ với $n \in N$

CHỦ ĐỀ 1. Xác định vận tốc và tần số f của electron ở trạng thái dừng thứ n của nguyên tử Hiđrô?

Phương pháp:

Vì chuyển động của electron ở trạng thái dừng thứ n là qũy đạo tròn,

Ta có:
$$\vec{f_c} = \vec{f_{ht}} \leftrightarrow f_c = f_{ht}$$
 hay: $k \frac{e^2}{r_n^2} = m \frac{v_n^2}{r_n}$

Hay:
$$v_n = e\sqrt{\frac{k}{mr_n}}$$
, ta có: $r_n = n^2.r_0$

Vậy:
$$v_n = \frac{e}{n} \sqrt{\frac{k}{mr_0}}$$
, với: $r_0 = 5, 3.10^{-11} m$

Tần số:
$$f = \frac{\omega}{2\pi} = \frac{v_n}{2\pi r_n}$$

CHỦ ĐỀ 2.Xác định bước sóng của photon do nguyên tử Hiđrô phát ra khi nguyên tử ở trạng thái dừng có mức năng lượng E_m sang E_n ($< E_m$)?

Phương pháp:

Theo tiên đề Bo:
$$\varepsilon = h f_{mn} = \frac{hc}{\lambda_{mn}} = E_m - E_n$$

Với dãy Lyman:
$$n = 1, m = 2, 3, \cdots$$

Với dãy Banme:
$$n=2, m=3, 4, \cdots$$

Với dãy Pasen:
$$n = 3, m = 4, 5, \cdots$$

 $CH\mathring{U}$ ĐỀ 3. Tìm bước sóng của các vạch quang phổ khi biết các bước sóng của các vạch lân cận?

Phương pháp:

Ta có:
$$\frac{hc}{\lambda_{mn}}=E_m-E_n=E_m-E_p+E_p-E_n=\frac{hc}{\lambda_{mn}}-\frac{hc}{\lambda_{mn}}$$

Vây:
$$\frac{1}{\lambda_{mn}} = \frac{1}{\lambda_{mp}} + \frac{1}{\lambda_{pn}}$$

CHỦ ĐỀ 4. Xác định bước sóng cực đại (λ_{max}) và cực tiểu (λ_{min}) của các dãy Lyman,

Banme, Pasen?

Phương pháp:

Từ (*) ta thấy: $\lambda = max \leftrightarrow E_m - E_n = min$

hay $\lambda = min \leftrightarrow E_m - E_n = max$

Vậy:

Dãy Lyman: $\lambda_{Lmin} = \lambda_{\infty 1}; \quad \lambda_{Lmax} = \lambda_{21}$

Dãy Banme: $\lambda_{Bmin} = \lambda_{\infty 2}; \quad \lambda_{Bmax} = \lambda_{32}$

Dãy Pasen: $\lambda_{Pmin} = \lambda_{\infty 3}; \quad \lambda_{Pmax} = \lambda_{43}$

CHỦ ĐỀ 5. Xác định qũy đạo dừng mới của electron khi nguyên tử nhận năng lượng kích thích $\varepsilon=hf$?

Phương pháp:

Theo tiên đề Bo: $hf = E_m - E_n \rightarrow E_m = hf + E_n \rightarrow m$

CHỦ ĐỀ 6. Tìm năng lượng để bức electron ra khỏi nguyên tử khi nó đang ở qũy đạo K (ứng với năng lượng E_1)?

Phương pháp:

Tìm năng lượng để bức electron ra khỏi nguyên tử khi nó đang ở qũy đạo K tức là năng lượng iôn hoá: Năng lượng để đưa electron từ trạng thái dừng có mức năng lượng E_1 ra vô cùng

Ta có:
$$W=E_{\infty}-E_1$$
 , ta có: $E_{\infty}=0; E_1=-13, 6(eV)$

Do đó: Năng lương iôn hóa nguyên tử Hiđrô là: W=13,6(eV)

Chú ý:Khi biết bước sóng ngắn nhất và dài nhất trong một dãi nào đó:

$$W = E_{\infty} - E_1 = E_{\infty} - E_p + E_p - E_1 = hc \left(\frac{1}{\lambda_{\infty p}} + \frac{1}{\lambda_{p1}}\right)$$

PHẦN 17

PHƯƠNG PHÁP GIẢI TOÁN VỀ PHÓNG XA VÀ PHẢN ỨNG HAT NHÂN

CHỦ ĐỀ 1. Chất phóng xạ A_ZX có số khố
iA: tìm số nguyên tử (hạt) có trong
 m(g) hạt nhân đó?

Phương pháp:

Cứ A(g) hạt nhân thì có $N_A=6,023.10^{23}\, ($ nguyên tử) (Số Avôga
đrô)

Vậy:
$$m(g)$$
 hạt nhân thì có: $N = \frac{m}{A}.N_A$

CHỦ ĐỀ 2. Tìm số nguyên tử N(hay khối lượng m) còn lại, mất đi của chất phóng xa sau thời gian t?

Phương pháp:

* Số nguyên tử (hay khối lượng) chất phóng xạ còn lại sau thời gian t:

$$N = N_0 e^{-\lambda t}$$
; Hay $m = m_0 e^{-\lambda t}$

* Số nguyên tử (hay khối lượng) chất phóng xạ mất đi sau thời gian t:

$$\Delta N = N_0 - N = N_0 (1 - e^{-\lambda t});$$
 Hay $\Delta m = m_0 - m = m_0 (1 - e^{-\lambda t})$

Trong đó:
$$\lambda = \frac{ln2}{T} = \frac{0,693}{T}$$

*Chú ý: Nếu
$$k=\frac{t}{T}\in Z$$
 thì: $N=\frac{N_0}{2^k}$; Hay $m=\frac{m_0}{2^k}$

Nếu: $x \le 1$ áp dụng công thức: $e^{-x} \approx 1 - x$.

Do đó:
$$\Delta N = N_0(1-\lambda t)$$
 hay $\Delta m = m_0(1-\lambda t)$

 ${
m CH}\mathring{
m U}$ ĐỀ 3. Tính khối lượng của chất phóng xạ khi biết độ phóng xạ H?

Phương pháp:

Ta có: độ phóng xạ:
$$H = \lambda N$$
 hay $N = \frac{H}{\lambda}$

Dựa vào công thức:
$$m = \frac{N}{N_A} A$$
 (chủ đề 1)

Đơn vị độ phóng xạ: phân rã/giây = 1Bq ; $1Ci=3,7.10^{10}Bq$

CHỦ ĐỀ 4.Xác đinh tuổi của mẫu vật cổ có nguồn gốc là thực vật?

Phương pháp:

Khi sống: Thành phần C14 không đổi (do luôn hấp thụ thức ăn).

Khi chết: Thành phần C14 bị phân rã dần.

Gọi N_0 là số C14 có trong mẫu sống, N là số nguyên tử C14 có trong mẫu cổ.

Ta có:
$$N = N_0 e^{-\lambda t} \rightarrow e^{\lambda t} = \frac{N_0}{N}$$

Lấy
$$ln$$
 hai vế: $\lambda t=ln\frac{N_0}{N}$ hay $\boxed{t=\frac{1}{\lambda}ln\frac{N_0}{N}}$ Với: $\lambda=\frac{ln2}{T}=\frac{0,693}{T}$

Chú ý:Nếu tính theo độ phóng xạ:
$$t = \frac{1}{\lambda} ln \frac{H_0}{H}$$

CHỦ ĐỀ 5.Xác định tuổi của mẫu vật cổ có nguồn gốc là khoáng chất?

Phương pháp:

Xét chuổi phản ứng: ${}^{A}_{Z}X\cdots$ chuổi ${}^{A'}_{Z'}X'$, X' là hạt nhân bền, không bị phân rã nữa.

*Bước 1:Tìm số nguyên tử của X mất đi:

Áp dụng chủ đề 2: $\Delta N = N_0 (1 - e^{-\lambda t})$

*Bước 2: Số nguyên tử của hạt nhân mất đi chính là số nguyên tử hạt nhân X' tạo thành.

Ta có:
$$N' = \Delta N = N_0 (1 - e^{-\lambda t})$$
 (*)

Gọi m và m' lần lược là khối lượng hạt nhân X và X' tại thời điểm khảo sát.

Từ chủ đề 1 ta có: $m=\frac{A}{N}N_A$; $m'=\frac{A'}{N'}N_A$, lập tỉ số:

$$\frac{m}{m'} = \frac{A}{A'} \frac{N}{N'} = \frac{A}{A'} \frac{N_0 e^{-\lambda t}}{N_0 (1 - e^{-\lambda t})} = \frac{A}{A'} \frac{e^{-\lambda t}}{(1 - e^{-\lambda t})} \to e^{-\lambda t} \to t$$

$CH\mathring{U}$ ĐỀ 6. Xác định năng lượng liên kết hạt nhân
(năng lượng tỏa ra khi phân rã một hạt nhân)?

Phương pháp:

- * Tìm độ hụt khối hạt nhân: ${}_Z^AX$, $\Delta m=m_0-m=[Zm_p+(A-Z)m_n]-m$
- *Năng lượng liên kết hạt nhân(chính là năng lượng tỏa ra khi phân rã một hạt nhân):

$$\Delta E_1 = \Delta mc^2$$

Chú ýTa có: $1u = 931 MeV/c^2$

Năng lượng liên kết riêng là năng lượng khi liên kết một nuclon: $\varepsilon = \frac{\Delta E_1}{A}$

CHỦ ĐỀ 7. Xác định năng lượng tỏa ra khi phân rã
 m(g)hạt nhân A_ZX ? Phương pháp:

- * Tìm số nguyên tử có trong m(g) hạt nhân X: chủ đề 1: $N=\frac{m}{A}N_A$
- *Tìm năng lượng tỏa ra khi phân rã một hạt nhân nguyên tử: $\Delta E_1 = \Delta mc^2$
- *Năng lượng tỏa ra khi phân rã m(g) hạt nhân nguyên tử: $E=\Delta E_1.N$

$CH\mathring{U}$ ĐỀ 8.Xác định năng lượng tỏa (hay thu vào) của phản ứng hạt nhân?

Phương pháp:

Xét phản ứng hạt nhân: $A_1 \atop Z_1 X_1 + A_2 \atop Z_2 X_2 \rightarrow A_3 \atop Z_3 X_3 + A_4 \atop Z_4 X_4$ (*)

*Độ hụt khối của phản ứng hạt nhân: $\Delta m = m_0 - m = (m_1 + m_2) - (m_3 + m_4)$

Năng lượng tỏa ra (hay thu vào) của phản ứng hạt nhân:

$$\Delta E = [(m_1 + m_2) - (m_3 + m_4)]c^2$$
 (*)

Chú ý:

* Nếu biết được năng lượng liên kết riêng của các hạt nhân:

Ta có:
$$\varepsilon = \frac{\Delta E}{A} = \frac{[Zm_p + (A-Z)m_n - m]c^2}{A}$$

Do đó: $mc^2=[Zm_p+(A-Z)m_n]c^2-\varepsilon A$, thay vòa phương trình (*) chúng ta được:

$$\Delta E = (\varepsilon_4 A_4 + \varepsilon_3 A_3) - (\varepsilon_2 A_2 + \varepsilon_1 A_1)$$

* Nếu biết đô hụt khối của các hạt nhân:

Ta có: $\Delta m = [Zm_p + (A-Z)m_n] - m$ nên: $mc^2 = [Zm_p + (A-Z)m_n]c^2 - \Delta mc^2$

Từ (*) ta được:
$$\Delta E = [(\Delta m_4 + \Delta m_3) - (\Delta m_1 + \Delta m_2)]c^2$$

Ghi nhớ:

*Nếu $\Delta m > 0$ thì phản ứng tỏa nhiệt: $\Delta E = \Delta m.c^2$.

*Nếu $\Delta m < 0$ thì phản ứng thu nhiệt: $\Delta E = |\Delta m|.c^2$.

CHỦ ĐỀ 9. Xác định năng lượng tỏa khi tổng hợp m(g) hạt nhân nhẹ (từ các hạt nhân nhe hơn)?

Phương pháp:

Xét phản ứng: ${}^{A_1}_{Z_1}X_1 + {}^{A_2}_{Z_2}X_2 \rightarrow {}^{A_3}_{Z_3}X_3 + {}^{A_4}_{Z_4}X_4 + \Delta W_1$ (*)

 ΔW_1 là năng lương tỏa ra của phản ứng.

Tương tự chủ đề 8: Ta có: $W=N.\Delta W_1$

$CH\mathring{U}$ ĐỀ 10.Cách vận dụng định luật bảo toàn động lượng, năng lượng?

Phương pháp:

1.Cách vận dụng định luật bảo toàn động lượng:

Ta có:
$$\vec{p_1} + \vec{p_2} = \vec{p_3} + \vec{p_4}$$

Sử dụng các giả thiết để biểu diễn các vecto động lượng bằng hình vẽ, sau đó sử dụng hình học để suy ra được độ lớn của chúng.

Ta có công thức liên hệ giữa động lượng và động năng:

$$\vec{p} = m\vec{v} \leftrightarrow p^2 = 2m\frac{1}{2}mv^2 = 2mK$$

Ví dụ: Hạt nhân A đứng yên phóng xạ ra hạt nhân B và tia phóng xạ C. Xác định phương chuyển động của hai hạt nhân con sinh ra, và chứng minh rằng động năng của chúng tỉ lệ

nghịch với khối lượng.

$$A \rightarrow B + C$$

Ta có: $\vec{p}_A = \vec{p}_B + \vec{p}_C = 0 \rightarrow \vec{p}_B = -\vec{p}_C$, vậy các hạt sinh ra có cùng động lượng nhưng chuyển động ngược chiều nhau.

Độ lớn:
$$p_B^2=p_C^2$$
 hay $2m_BK_B=2m_CK_C$ vậy: $\boxed{\frac{K_B}{K_C}=\frac{m_C}{m_B}}$

2.Cách vân dung đinh luật bảo toàn năng lương:

Ta có:
$$m_1c^2 + K_1 + m_2c^2 + K_2 = m_3c^2 + K_3 + m_4c^2 + K_4$$

Hay:
$$[(m_1 + m_2) - (m_3 + m_4)]c^2 = (K_3 + K_4) - (K_1 + K_2)$$

Hay: $\Delta E = \Delta K$, năng lượng tỏa ra của phản ứng hạt nhân chính là độ biến thiên động năng .

CHỦ ĐỀ 11. Xác định khối lượng riêng của một hạt nhân nguyên tử. Mật độ điện tích của hạt nhân nguyên tử ?

Phương pháp:

Hạt nhân ${}_{Z}^{A}X$: bán kính hạt nhân tuân theo công thức tính gần đúng:

$$R = R_0 A^{1/3}$$
, với $R_0 = 1, 2fm = 1, 2.10^{-15} m$

Khối lượng của một hạt nhân nguyên tử: $m = \frac{A}{N_A}$

Thể tích của một hạt nhân nguyên tử: $V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi R_0^3 A$

* Khối lượng riêng của hạt nhân nguyên tử:
$$D=\frac{m}{V}=\frac{3}{4\pi R_0^3 N_A}$$

* Điện tích của hạt nhân nguyên tử: q=Ze với $e=1,6.10^{-19}C$

Mật độ điện tích:
$$\rho = \frac{q}{V} \left[(C/m^3) \right]$$

