Package 'cases'

May 18, 2023

Type Package

Title Stratified Evaluation of Subgroup Classification Accuracy

Version 0.1.1

Description Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity. (Westphal, Max, and Antonia Zapf. (2021). "Statistical Inference for Diagnostic Test Accuracy Studies with Multiple Comparisons." <arXiv:2105.13469>.)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports bindata, boot, copula, corrplot, dplyr, extraDistr, magrittr, Matrix, multcomp, mvtnorm, ggplot2

Suggests testthat (>= 3.0.0), knitr, readr, rmarkdown, covr, badger, glmnet, splitstackshape

RoxygenNote 7.2.0

VignetteBuilder knitr, rmarkdown

Config/testthat/edition 3

URL https://github.com/maxwestphal/cases

BugReports https://github.com/maxwestphal/cases/issues

Depends R (>= 2.10)

NeedsCompilation no

Author Max Westphal [aut, cre] (<https://orcid.org/0000-0002-8488-758X>)

Maintainer Max Westphal <max.westphal@steady.ai>

Repository CRAN

Date/Publication 2023-05-18 08:30:02 UTC

2 cases

R topics documented:

cases	s cases package	
Index		18
	visualize	
	process_instance	
	generate_instance_roc	
	generate_instance_lfc	
	evaluate	
	draw_data_roc	
	draw_data_prb	10
	draw_data_lfc	
	draw_data	
	define_contrast	
	data_wdbc	
	cormat_equi	
	cormat_ar1	
	complete_results	
	compare	
	categorize	
	cases	

Description

Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity. (Westphal, Max, and Antonia Zapf. "Statistical Inference for Diagnostic Test Accuracy Studies with Multiple Comparisons." arXiv:2105.13469 (2021).)

Details

See the vignettes vignette()

categorize 3

ca			

Categorize continuous values

Description

This function allows to split continuous values, e.g. (risk) scores or (bio)markers, into two or more categories by specifying one or more cutoff values.

Usage

```
categorize(
  values,
  cutoffs = rep(0, ncol(values)),
  map = 1:ncol(values),
  labels = NULL
)
```

Arguments

values	numeric matrix of continuous values to be categorized. Assume an $(n \times r)$ matrix with n observations (subjects) of r continuous values.
cutoffs	numeric matrix of dimension m x k. Each row of cutoffs defines a split into k+1 distinct categories. Each row must contain distinct values. In the simplest case, cutoffs is a single column matrix whereby is row defines a binary split (<=t vs. >t). In this case (k=1), cutoffs can also be a numeric vector.
map	integer vector of length k with values in 1:r, whereby $r = ncol(values)$. map_l gives the value which column of values should be categorized by
labels	character of length m (= number of prediction r)

Value

numeric (n x k) matrix with categorical outcomes after categorizing.

Examples

```
set.seed(123)
M <- as.data.frame(mvtnorm::rmvnorm(20, mean=rep(0, 3), sigma=2*diag(3)))
M
categorize(M)
C <- matrix(rep(c(-1, 0, 1, -2, 0, 2), 3), ncol=3, byrow = TRUE)
C
w <- c(1, 1, 2, 2, 3, 3)
categorize(M, C, w)</pre>
```

4 complete_results

compare

Compare predictions and labels

Description

Compare predictions and labels

Usage

```
compare(
  predictions,
  labels,
  partition = TRUE,
  names = c(specificity = 0, sensitivity = 1)
)
```

Arguments

predictions integer, predicted class

labels integer, true class state (reference standard)

partition logical, should result be split into one matrix per class (TRUE; default) or not

(FALSE)

names integer (named), values give data values, names give class names

Value

data matrix with values 1 (correct prediction) and 0 (false prediction)

Examples

```
pred <- matrix(c(1,1,0), 5, 3)
labels <- c(1, 1, 0, 0, 1)
compare(pred, labels, FALSE)
compare(pred, labels, TRUE)</pre>
```

 $complete_results$

Complete evaluation results

Description

Complete evaluation results

```
complete_results(results, benchmark, alpha, analysis)
```

cormat_ar1 5

Arguments

results "cases_results" object, i.e. result of evaluate

benchmark numeric, vector of benchmark values

alpha numeric, significance level

analysis character, either "co-primary" or "full"

Details

Not exported, but applied at the end of evaluate by default

Value

"cases_results" object

cormat_ar1

Create an AR(1) correlation matrix

Description

Create an AR(1) correlation matrix

Usage

```
cormat_ar1(m, rho, d = TRUE)
```

Arguments

m integer, dimension

rho numeric, correlation parameter in (0,1)

d binary vector of length m, whereby TRUE/FALSE (alternatively 1/0) indicate

active/inactive components of underlying random vector.

Value

$$R_{ij} = \rho^{|i-j|}$$

6 data_wdbc

cormat_equi

Create an equicorrelation matrix

Description

Create an equicorrelation matrix

Usage

```
cormat_equi(m, rho, d = TRUE)
```

Arguments

m integer, dimension

rho numeric, correlation parameter in (0,1)

d binary vector of length m, whereby TRUE/FALSE (alternatively 1/0) indicate

active/inactive components of underlying random vector.

Value

$$R_{ij} = \rho, i \neq j$$

data_wdbc

Breast Cancer Wisconsin (Diagnostic) Data Set

Description

Dataset documentation can be found at the source website and references below.

Usage

data_wdbc

Format

data_wdbc:

A data frame with 569 rows (patients) and 31 columns (1 target, 30 features).

Details

The ID variable was removed. Diagnosis (1= malignant, 0 = benign). Feature variables have been renamed.

Source

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

define_contrast 7

References

• W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.

• O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.

define_contrast

Define a contrast (matrix) to specify exact hypothesis system

Description

Define a contrast (matrix) to specify exact hypothesis system

Usage

```
define_contrast(type = c("raw", "dunnett", "tukey"), comparator = NA)
```

Arguments

type character, either "Raw", "dunnett" or "tukey")

comparator either integer (index of comparator) or character (name of comparator)

Details

"raw" contrast: compare all candidates against specified benchmark values

"dunnett" (all vs. one) contrast: compare all candidates to a single comparator.

"tukey" (all vs. all) contrast: compare all candidates against each other.

Value

cases_contrast object to be passed to evaluate

Examples

```
define_contrast("dunnett", 1)
```

8 draw_data

draw_data

Generate binary data

Description

Generate binary data

Usage

```
draw_data(
    n = 200,
    prev = c(0.5, 0.5),
    random = FALSE,
    m = 10,
    method = c("roc", "lfc", "pr"),
    pars = list(),
    ...
)
```

Arguments

```
n integer, overall sample size

prev numeric, vector of class prevalences (adding up to 1)

random logical, random sampling (TRUE) or fixed group sample sizes

m integer, number of models

method character, either "roc", "Ifc" (multiple subgroups) or "prob" (no subgroups)

pars list, containing further named parameters passed to draw_data_roc, draw_data_lfc

... further named parameters passed
```

Value

generated binary data (possibly stratified for subgroups)

Examples

```
draw_data()
```

draw_data_lfc 9

 ${\tt draw_data_lfc}$

Generate binary data (LFC model)

Description

Generate binary data (LFC model)

Usage

```
draw_data_lfc(
    n = 100,
    prev = c(0.5, 0.5),
    random = FALSE,
    m = 10,
    se = 0.8,
    sp = 0.8,
    B = round(m/2),
    L = 1,
    Rse = diag(rep(1, m)),
    Rsp = diag(rep(1, m)),
    modnames = paste0("model", 1:m),
    ...
)
```

Arguments

n	integer, total sample size
prev	numeric, disease and healthy prevalence (adds up to 1)
random	logical, random sampling (TRUE) or fixed prevalence (FALSE)
m	integer, number of models
se	numeric, sensitivity (length 1)
sp	numeric, specificity (length 1)
В	integer, between 1 and m, specifies how many sensitivity values are projected to 1
L	numeric, worst alternative is computed under side condition $Acc \le L$ (default value L=1 corresponds to true LFC where values are projected to 1)
Rse	matrix, correlation matrix for empirical sensitivities (m x m)
Rsp	matrix, correlation matrix for empirical specificities (m x m)
modnames	character, model names (length m)
	further arguments (currently unused)

Value

Generated binary dataset

10 draw_data_roc

Examples

```
data <- draw_data_lfc()
head(data)</pre>
```

draw_data_prb

Sample binary data (single sample)

Description

This function is wrapper for rmvbin.

Usage

```
draw_data_prb(n = 100, pr = c(0.8, 0.8), R = diag(length(pr)))
```

Arguments

n integer, sample size

pr numeric, vector with marginal success probabilities

R matrix, square correlation matrix

Value

a matrix with n rows and length(pr) columns of randomly generated binary (0, 1) data

draw_data_roc

Generate binary data (ROC model)

Description

Generate binary data (ROC model)

```
draw_data_roc(
  n = 100,
  prev = c(0.5, 0.5),
  random = FALSE,
  m = 10,
  auc = seq(0.85, 0.95, length.out = 5),
  rho = c(0.25, 0.25),
  dist = c("normal", "exponential"),
  e = 10,
  k = 100,
  delta = 0,
```

evaluate 11

```
modnames = paste0("model", 1:m),
  corrplot = FALSE,
    ...
)
```

Arguments

n	integer, total sample size
prev	numeric, disease and healthy prevalence (adds up to 1)
random	logical, random sampling (TRUE) or fixed prevalence (FALSE)
m	integer, number of models
auc	numeric, vector of AUCs of biomarkers
rho	numeric, vector (length 2) of correlations between biomarkers
dist	character, either "normal" or "exponential" specifying the subgroup biomarker distributions $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}$
е	numeric, emulates better (worse) model selection quality with higher (lower) values of \boldsymbol{e}
k	integer, technical parameter which adjusts grid size
delta	numeric, specify importance of sensitivity and specificity (default 0)
modnames	character, model names (length m)
corrplot	logical (default: FALSE), if TRUE do not return data but instead plot correlation

matrices for final binary data

further arguments (currently unused)

Value

Generated binary dataset

Examples

```
data <- draw_data_roc()
head(data)</pre>
```

evaluate Evaluate the accuracy of multiple (candidate) classifiers in several subgroups

Description

Assess classification accuracy of multiple classification rules stratified by subgroups, e.g. in diseased (sensitivity) and healthy (specificity) individuals.

12 evaluate

Usage

```
evaluate(
  data,
  contrast = define_contrast("raw"),
  benchmark = 0.75,
  alpha = 0.05,
  alternative = c("two.sided", "greater", "less"),
  adjustment = c("none", "bonferroni", "maxt", "bootstrap", "mbeta"),
  transformation = c("none", "logit"),
  analysis = c("co-primary", "full"),
  regu = FALSE,
  pars = list(),
  ...
)
```

Arguments

data	list of n_g x m binary matrix or data.frame (n_g observations of m binary decisions), g is the index of subgroups/classes, usually created via compare.
contrast	cases_contrast object, specified via define_contrast
benchmark	value to compare against (RHS), should have same length as data.
alpha	numeric, significance level (default: 0.05)
alternative	character, specify alternative hypothesis
adjustment	character, specify type of statistical adjustment taken to address multiplicity
transformation	character, define transformation to ensure results (e.g. point estimates, confidence limits) lie in unit interval ("none" (default) or "logit")
analysis	character, "co-primary" or "full"
regu	numeric vector of length 3, specify type of shrinkage. Alternatively, logical of length one (TRUE := $c(2, 1, 1/2)$, FALSE := $c(0, 0, 0)$)
pars	further parameters given as named list list(type="pairs", nboot=10000)
	additional named parameters, can be used instead of (in in conjunction with)

Details

```
Adjustment methods (adjustment) and additional parameters (pars or ...):

"none" (default): no adjustment for multiplicity

"bonferroni": Bonferroni adjustment

"maxt": maxT adjustment
```

"bootstrap": Bootstrap approach

pars

generate_instance_lfc 13

- type: "pairs" (default) or "wild" = type (for adjustment="bootstrap)
- nboot: number of bootstrap draws (default: 5000)
- res_tra: = 0,1,2 or 3 = type of residual transformation of wild boostrap (default = 0: no transformation) (see https://www.math.kth.se/matstat/gru/sf2930/papers/wild.bootstrap.pdf)

"mbeta": A heuristic Bayesian approach which is based on a multivariate beta-binomial model.

- nrep: number of posterior draws (default: 5000)
- lfc_pr: prior probability of 'least-favorable parameter configuration' (default: 1).

Value

cases_results object, which is a list of analysis results

Examples

```
#
data <- draw_data_roc()
evaluate(data)</pre>
```

generate_instance_lfc Generate data sets under least favorable parameter configurations

Description

Generates a (simulation) instance, a list of multiple datasets to be processed (analyzed) with process_instance. Ground truth parameters (Sensitvity & Specificity) are least-favorable in the sense that the type-I error rate of the subsequently applied multiple test procedures is maximized.

```
generate_instance_lfc(
    nrep = 10,
    n = 100,
    prev = 0.5,
    random = FALSE,
    m = 10,
    se = 0.8,
    sp = 0.8,
    L = 1,
    rhose = 0,
    rhosp = 0,
    cortype = "equi",
    ...,
    data = NULL,
    job = NULL
)
```

14 generate_instance_roc

Arguments

nrep	integer, number of instances
n	integer, total sample size
prev	numeric, disease prevalence
random	logical, fixed prevalence (FALSE) or simple random sampling (TRUE) $$
m	integer, number of candidates
se	numeric
sp	numeric
L	numeric
rhose	numeric
rhosp	numeric
cortype	character, "equi" or "ak1"
	further arguments
data	ignored (for batchtools compatibility)
job	ignored (for batchtools compatibility)

Details

Utilizes same arguments as draw_data_lfc unless mentioned above.

Value

```
a list, a single (LFC) simulation instance
```

generate_instance_roc Generate data sets under realistic parameter configurations

Description

Generates a (simulation) instance, a list of multiple datasets to be processed (analyzed) with process_instance. Ground truth parameters (Sensitvity & Specificity) are initially generated according to a generative model whereby multiple decision rules (with different parameter values) are derived by thresholding multiple biomarkers.

```
generate_instance_roc(
  nrep = 10,
  n = 100,
  prev = 0.5,
  random = FALSE,
  m = 10,
  auc = "seq(0.85, 0.95, length.out = 5)",
```

generate_instance_roc 15

```
rhose = 0.5,
rhosp = 0.5,
dist = "normal",
e = 10,
k = 100,
delta = 0,
...,
data = NULL,
job = NULL
)
```

Arguments

nrep	integer, number of instances
n	integer, total sample size
prev	numeric, disease prevalence
random	logical, fixed prevalence (FALSE) or simple random sampling (TRUE)
m	integer, number of candidates
auc	numeric
rhose	numeric
rhosp	numeric
dist	character
е	numeric
k	numeric
delta	numeric
	further arguments
data	ignored (for batchtools compatibility)
job	ignored (for batchtools compatibility)

Details

Utilizes same arguments as draw_data_roc unless mentioned above.

Value

```
a list, a single (ROC) simulation instance
```

16 process_instance

process_instance

Analyze simulated synthetic datasets.

Description

Process data instances, a list of multiple datasets generated via generate_instance_lfc or generate_instance_roc. This function applies evaluate to all datasets.

Usage

```
process_instance(
  instance = NULL,
  contrast = "cases::define_contrast('raw', NA)",
  benchmark = 0.5,
  alpha = 0.05,
  alternative = "greater",
  adjustment = "none",
  transformation = "none",
  analysis = "co-primary",
  regu = c(1,1/2,1/4),
 pars = "list()",
  . . . ,
 data = NULL,
  job = list(id = NA)
)
```

Arguments

instance	generated via generate_instance_lfc or generate_instance_roc.
contrast	cases_contrast object, specified via define_contrast
benchmark	value to compare against (RHS), should have same length as data.
alpha	numeric, significance level (default: 0.05)
alternative	character, specify alternative hypothesis
adjustment	character, specify type of statistical adjustment taken to address multiplicity
transformation	character, define transformation to ensure results (e.g. point estimates, confidence limits) lie in unit interval ("none" (default) or "logit")
analysis	character, "co-primary" (default; only option currently)
regu	numeric vector of length 3, specify type of shrinkage. Alternatively, logical of length one (TRUE := $c(2, 1, 1/2)$, FALSE := $c(0, 0, 0)$)
pars	further parameters given as named list
	additional named parameters
data	ignored (for batchtools compatibility)
job	for batchtools compatibility, do not change

visualize 17

Details

Utilizes same arguments as evaluate unless mentioned above.

Value

standardized evaluation results

visualize

Visualize evaluation results

Description

Visualize evaluation results

Usage

```
visualize(x, ...)
```

Arguments

```
x, a cases_results object, see evaluate... further arguments (currently ignored)
```

Details

```
+++ early development version (only alternative = "greater" is supported) +++
```

Value

a ggplot

Index

```
* datasets
    data_wdbc, 6
cases, 2
{\tt categorize}, {\color{red} 3}
compare, 4, 12
complete_results, 4
cormat_ar1, 5
cormat_equi, 6
data_wdbc, 6
define_contrast, 7, 12, 16
draw_data, 8
draw_data_lfc, 8, 9, 14
draw_data_prb, 10
draw_data_roc, 8, 10, 15
evaluate, 5, 7, 11, 16, 17
generate_instance_lfc, 13, 16
generate_instance_roc, 14, 16
process_instance, 13, 14, 16
rmvbin, 10
visualize, 17
```