제 5 장 진동학/전달함수

1. 목 적

진동학에서 다루는 중요한 개념인 Transfer Function, Frequency Response에 대하여 실험한다. 보(beam)의 진동문제를 해석하는데 있어서 system을 modeling하는 법을 알아보고, 실험에서 자기유도(Magnetic-Induction)를 이용한 속도측정방법을 알아본다.

2. 예습부문

(1) Mechanical Measurements(4th Ed.), T. G. Beckwith & R. D. Marangoni, Chapter 5. (pp.123-166)

3. 실험장치

- (1) Oscilloscope, FG, DMM, Power Supply, Frequency Counter
- (2) Jig (Beam 고정용)
- (3) A/D Converter Board(DT2814)
- (4) Aluminum Beam Set (M₂ = 12g(자석), Beam = 82g)
- (5) Shaker(Speaker, M1 = 60g), Bread board, Op. Amp., 저항, 콘텐서 등
- (6) Accelerometer (Coil)

4. 이 콘

4.1 진동문제의 예

로 보 트 : 로보트 팔 등의 운동을 진동학을 관점에서 파악하지 않고서는

정확한 위치제어가 불가능

자 동 차 : Engine Mount, 승차감 등

비 행 기 : 비행기 날개의 진동

공작기계 : 고속회전에 따른 주축의 진동

건 물: 지진에 대해 방진 설계, 바람에 의한 진동

4.2 해결방법

(1) 해석적인 방법

4.3 Modeling

이번 실험에서 해석하고자 하는 System은 Fig.5.1 (a)와 같은 상태이다. Beam을 따라서 Mass의 Discontinuity가 있으면 Continuous Beam이 아닌 자유도계로 볼 수 있다. 따라서 해석의 편이를 위하여 Lumped-Parameter System으로 보아 Fig.5.1(b)와 같이 Modelidng 하였다.

Fig. 5.1 (a) The beam system (b) Model of the beam system

4.4 Transfer Function

Transfer Function은 어떤 System의 Input과 Output의 관계를 나타내는 수학적 Model이다. System의 특성을 실험적으로 알아내기 위해서는 그 System에 Pulse, Sine-wave, Step-Function 등의 Input을 가하고 Output을 관찰해야 한다. 이때, 가하는 Input의 종류에 따라 Output의 형태도 여러가지가될 수 있으나, System이 하나인 이상, 관계식은 반드시 하나인 것이다. 즉,모든 Input에 대해

$$(Input) \cdot (Transfer Function) = (Output)$$

가 되는 한개의 Transfer Function이 있을 것이다. 본 실험에서는 다음과 같이 Input, Output을 설정하였다.

Input : Excitation Force e(t), 즉 Shaker에 의해 Mass M1에 가

해지는 가진력

Output : Mass M2의 수직방향으로의 위치 Z2(t)

e(t)는 Function Generator에 의해 $e(t) = A(f) \cos(2\pi f t)$ 로 가하여 지고, $z_2(t)$ 는 Accelerometer와 적분기에 의해 전압값으로 환산되어 $z_2(t) = B(f) \cos(2\pi f t + \varphi)$ 로 나타난다. 따라서 System Transfer Function은

$$|H(f)| = \left| \frac{B(f)}{\Lambda(f)} \right|$$

가 되어 가진력의 주파수의 함수가 될 것이다. 이것은 다음절에서 유도하는 바와 같이, 우리의 경우 다음과 같은 식이 된다.

$$|H_{\text{exp}}(s=j\omega)| = \frac{|V_z(j\omega)|}{|Ve(j\omega)|} = \left| \frac{G}{(-\omega^2 + j2\xi_1\omega_1\omega + \omega_1^2)(-\omega^2 + j2\xi_2\omega_2\omega + \omega_2^2)} \right|$$

여기서 G는 여러가지 상수들이 포함된 Lumped Constant라 할 수 있고, ω 는 $2\pi f$ 이다.

4.5 혜석적 방법

Fig. 5.1 (b)와 같이 Modeling 된 2자유도 System에 운동방정식을 적용하면, M_1 , M_2 에 대해 각각

$$M_1 \frac{d^2 z_1(t)}{dt^2} + c_1 \frac{dz_1(t)}{dt} + k_1(z_1(t) + z_{10}) - k_2(z_2(t) + z_{20} - z_1(t) - z_{10})$$

$$= e(t) + M_1 g \tag{1}$$

$$M_2 \frac{d^2 z_2(t)}{dt^2} + c_2 \frac{dz_2(t)}{dt} + k_2(z_2(t) + z_{20} - z_1(t) - z_{10}) = M_2 g$$
 (2)

가 된다. 여기서 z_{10} , z_{20} 는 각각 M_1 , M_2 의 무게에 의한 Static Spring 변위이다. (2)식을 $z_1(t)$ 에 대해 풀면,

$$z_1(t) = \left(\frac{M_2}{k_2}\right) \frac{d^2 z_2(t)}{dt^2} + \left(\frac{c_2}{k_2}\right) \frac{d z_2(t)}{dt} + z_2(t)$$
 (3)

가 되고 이를 (1)에 대입하여 정리하면 아래와 같이 $z_2(t)$ 에 대한 4차 상미분 방정식이 된다.

$$\frac{d^{4}z_{2}(t)}{dt^{4}} + \left[\frac{M_{1}c_{2} + M_{2}c_{1}}{M_{1}M_{2}}\right] \frac{d^{3}z_{2}(t)}{dt^{3}} + \left[\frac{M_{1}k_{2} + M_{2}(k_{1} + k_{2}) + c_{1}c_{2}}{M_{1}M_{2}}\right] \frac{d^{2}z_{2}(t)}{dt^{2}} + \left[\frac{k_{2}c_{1} + (k_{1} + k_{2})c_{2}}{M_{1}M_{2}}\right] \frac{dz_{2}(t)}{dt} + \left[\frac{k_{1}k_{2}}{M_{1}M_{2}}\right] z_{2}(t) = e(t) \tag{4}$$

여기서 $e(t) = E(s)e^{st}$, $z_2(t) = Z_2(s)e^{st}$ 라 놓으면, (4)식은

$$(s^4 + a_3s^3 + a_2s^2 + a_1s + a_0)Z_2(s) = E(s)$$
 (5)

$$a_3 = \left(\frac{M_1c_2 + M_2c_1}{M_1M_2}\right),$$

$$a_2 = \left(\frac{M_1k_2 + M_2(k_1 + k_2) + c_1c_2}{M_1M_2}\right),$$

$$a_1 = \left(\frac{k_2c_1 + (k_1 + k_2)c_2}{M_1M_2}\right), \qquad a_0 = \left(\frac{k_1k_2}{M_1M_2}\right)$$

따라서 Transfer Function $H(s) = Z_2(s)/E(s)$ 는

$$H(s) = \frac{Z_2(s)}{E(s)} = \frac{1}{s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$
 (6)

이다. 실제 실험에서는 전압값으로 나타나므로

$$H_{\text{exp}}(s) = \frac{V_{z}(s)}{V_{e}(s)}$$
로 쓸 수 있고.

$$H_{exp}(s) = \frac{G}{s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$
 (8)

가 된다. 여기서 G는 여러가지 영향이 포함된 상수이다. (8)식은 다시 아래와 같이 표현될 수 있다.

$$H_{\text{exp}}(s) = \frac{G}{(s^2 + 2\xi_1\omega_1 s + \omega_1^2)(s^2 + 2\xi_2\omega_2 s + \omega_2^2)}$$
(9)

만일 System이 정현파로 가진(Excited)된다면,

 $v_{e}(t) = \text{Re}[V_{e}(j\omega)e^{j\omega t}], v_{z}(t) = \text{Re}[V_{z}(j\omega)e^{j\omega t}]$ 가 되어, $s = j\omega$ 이므로 마침내 다음과 같은 식을 얻을 수 있다.

$$H_{\text{exp}}(j\omega) = \frac{G}{(-\omega^2 + j2\xi_1\omega_1\omega + \omega_1^2)(-\omega^2 + j2\xi_2\omega_2\omega + \omega_2^2)}$$
(10)

이 (10)식의 의미를 생각하여 보자

(i) Low Frequency Limit

만일 ω → 0이면 아래와 같은 상수가 나타난다.

$$\lim_{\omega \to 0} |H_{\exp}(\omega)| = |H_{\exp}(\omega \to 0)| = \frac{G}{\omega_1^2 \omega_2^2}$$
 (11)

$$|H_{\text{exp}}(f \rightarrow 0)| = \frac{G}{16\pi^4 f_1^2 f_2^2}$$
 (12)

(ii) High Frequency Limit

$$f\gg f_1$$
 혹은 $f\gg f_2$ 이면
$$\lim_{f\to\infty}|H_{\rm exp}(f)|=\frac{G}{16\pi^4f^4} \tag{13}$$
 즉 , f^4 에 반비례하여 감소한다.

(iii) 첫번째 공진주파수 (f_1) $f = f_1 그리고 f_1^2 \ll f_2^2 \text{ 이면}$ $|H_{\text{exp}}(f_1)| \cong \frac{G}{32\pi^4 \mathcal{E}_1 f_1^2 f_2^2} \tag{14}$

(iv) 두번째 공진주파수
$$(f_2)$$

$$f = f_2 그리고 f_1^2 \ll f_2^2$$
이면
$$|H_{exp}(f_2)| \cong \frac{G}{32\pi^4 \xi_2 f_2^4}$$
(15)

 ξ_1 , ξ_2 , f_1 , f_2 의 값에 따라 약간의 차이는 있으나, 일반적으로 $f_2 > f_1$ 이 므로 $|H_{\text{exp}}(f_2)| < |H_{\text{exp}}(f_1)|$ 이 성립된다. 또 ξ_2 가 작으면 $|H_{\text{exp}}(f_2)| > |H_{\text{exp}}(f_1)|$ 도 성립한다.

Half-Power Frequency는 공진주파수에서의 최대값의 $1/\sqrt{2}$ 이 되는 주파수를 말한다. 만약 $\xi_1 \ll 1$, $\xi_2 \ll 1$, $f_1^2 \ll f_2^2$ 이면 각각의 공진주파수를 중심으로 $|H_{\text{exp}}(f)|$ 의 모양이 그 부근에서 대칭이 되며, Half-Power Frequency는 f_1 근처에서 $f_{1h^+}=(1+\xi_1)f_1$, $f_{1h^-}=(1-\xi_1)f_1$, 또 f_2 근처에서는 $f_{2h^+}=(1+\xi_2)f_2$, $f_{2h^-}=(1-\xi_2)f_2$ 가 된다. 따라서 『width』는

$$\Delta f_{1h} = f_{1h+} - f_{1h-} = 2\xi_1 f_1,$$

$$\Delta f_{2h} = f_{2h+} - f_{2h-} = 2\xi_2 f_2,$$
(16)

이 되며, 이때의 |Hexp(f)| 는 다음과 같다.

$$|H_{\text{exp}}(f_{1h-} \text{ or } f_{1h+})| = \frac{1}{\sqrt{2}} |H_{\text{exp}}(f_1)|,$$
 (17)
 $|H_{\text{exp}}(f_{2h-} \text{ or } f_{2h+})| = \frac{1}{\sqrt{2}} |H_{\text{exp}}(f_2)|,$

Fig. 5.2 General shape of $|H_{exp}(f)|$ vs. f plot (log-log scale).

4.6 Magnetic Induction

영구자석과 코일이 함께 있을 때, 영구자석의 코일에 대한 상대속도에 의해 코일에 유도되는 기전력과의 관계를 구하여 보자.

$$V_{\rm m} = n \frac{d\phi}{dt}$$

[Vm : 유도 기전력, ϕ : Magnetic Flux (Webers), n : Coil의 감은횟수]

Fig.5.3 A permanent magnet/pickup coil arrangement

Fig.5.3의 상태에서

$$\left(\frac{d\Phi}{dt}\right)_{o} = \left(\frac{d\Phi}{dz}\right)_{o} \left(\frac{dz}{dt}\right)$$

여기서 (dz/dt)는 영구자석의 속도이다. 따라서 유도 기전력은 영구자석의 속도에 비례할 것이며, 변위를 구하려면 유도 기전력을 적분하여야 한다. 또 z_0 에 비해 변위가 작을수록 출력이 변위에 대해 선형적으로 될 것이다.

실 험 5 : 전달함수

1. Experimental Set up

(1) 다음과 같이 장치를 꾸민다.

- * Integrator는 실험2를 참조한다.
- (i) shaker의 위치는 대략 Beam의 중앙에 잡는다.

- (ii) shaker의 높이를 조절한후, Bolt를 죄어 shaker를 고정시킨다.
- (iii) 영구자석 밑에 Coil이 설치된 삼발이의 높이를 조정한다.
- (iv) l₁, l₂과 알루미늄 Beam의 dimension(길이, 폭, 나비)를 기록한다.
- (2) Integrator를 연결함에 있어서 주의할 점은 scope CH1에 입력시키면 scope 뒷면의 CH1 output에서는 입력×10의 증폭이 되어 나오므로 Coil에서 나온 signal을 scope CH1에 연결후, CH1 output(scope 뒤에 있음)을 Integrator circuit의 Vin에 연결한 다음 Vout은 scope CH2에 연결한다.
- (3) 실험장치가 꾸며졌으면 FG는 sine signal, Hi(20 p-p Volt)에 연결후, switch On 시킨다.

2. 실험및 결과정리

- (1) Funtion Generator의 Frequency를 0Hz ~ 100Hz 정도까지 증가시키면서 각 frequency에 해당되는 Vout(Integrator의 Output)을 기록한다. Scope를 보면 Resonance가 일어날때는 Voltage가 증가하므로 Scope를 보면서 Resonance를 찾으면 쉽다. 단 Resonance 부근에서는 세밀히 측정, 기록한다.
- (2) 『Hexp(f)』 = |Vz/Ve|』를 구함에 있어 Ve는 FG에서 나온 V(peak-to-peak), 20V를 사용하고 Vz는 Integrator에서 나온 output을 DMM으로 측정한 값이다. Vz를 측정할때 Scope에 나온 CH2의 파형을 보면서 측정한다. 즉, Resonance가 일어날때는 그 Frequency에서 파형이 갑자기 커지므로 최대로 커질때 Integrator의 Output을 DMM(AC로 놓고 측정)으로 측정한뒤 그값에 √2를 곱해야 된다. 왜냐하면 DMM의 값은 Vrms(실험치)값이므로 Vmax를 얻으려면 Vrms×√2이어야 한다.
- (3) 실험에서 얻은 $V_{e}(t)$, $V_{out}(t)$ 를 사용하여 $|H_{exp}(f)|$ 對 f를 log-log scale로 plot한다.

Frequency(Hz)	log(f)	$V_{out}(mV)$	log(√2 Vout/Vin)

- (4) Transfer Funtion $|H_{exp}(f)|$ 로부터 f_1 , f_2 , ξ_1 , ξ_2 , G를 구한다.
- (5) M₁, M₂, 그리고 Beam의 dimension을 알 수 있다면 f₁, f₂를 이론적으로 결정 하고 discussion한다.
- (6) 우리 주변의 진동문제를 구체적으로 기술하고 해결책을 나름대로 적어본다.