Example 4: Show that

$$\left(x + 3x^3\sin(y)\right)dx + \left(x^4\cos(y)\right) = 0$$

is not exact but that multiplying this equation by the factor x^{-1} yields an exact equation. Use this fact to solve $\left(x+3x^3\sin(y)\right)dx+\left(x^4\cos(y)\right)=0$

Solution

In
$$\left(x+3x^3\sin(y)\right)dx+\left(x^4\cos(y)\right)=0,\ M=x+3x^3\sin(y)\ \text{and}\ N=x^4\cos(y).$$
 Because
$$\frac{\partial M}{\partial y}=3x^3\cos(y)\neq 4x^3\cos(y)=\frac{\partial N}{\partial x}$$

 $(x+3x^3\sin(y))dx+(x^4\cos(y))=0$ is not exact. When we multiply $(x+3x^3\sin(y))dx+(x^4\cos(y))=0$ by the factor x^{-1} , we obtain

$$\left(1 + 3x^2\sin(y)\right)dx + \left(x^3\cos(y)\right)dy = 0$$

For this new equation, $M = 1 + 3x^2 \sin(y)$ and $N = x^3 \cos(y)$. If we test for exactness, we now find that

$$\frac{\partial M}{\partial y} = 3x^2 \cos(y) = \frac{\partial N}{\partial x}$$

and hence $(1 + 3x^2 \sin(y))dx + (x^3 \cos(y))dy = 0$ is exact. Upon solving $(1 + 3x^2 \sin(y))dx + (x^3 \cos(y))dy = 0$, we find that the solution is given implicitly by $x + x^3 \sin(y) = C$. Since equations $(x + 3x^3 \sin(y))dx + (x^4 \cos(y)) = 0$ is given implicitly by $x + x^3 \sin(y) = C$.