Errata

Title & Document Type: 5328A Universal Counter Service Manual

Manual Part Number: 05328-90011

Revision Date: April 1976

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

5328A UNIVERSAL COUNTER

SERVICE MANUAL

SERIAL PREFIX: 1604A

This manual applies to Hewlett-Packard Model 5328A Universal Counters with serial prefix number 1604A.

SERIAL PREFIXES NOT LISTED

For serial prefixes above 1604A, a "Manual Change" sheet is included with this manual. For series prefixes below 1604A, refer to Section V of this manual.

Copyright HEWLETT-PACKARD COMPANY 1976 5301 STEVENS CREEK BLVD., SANTA CLARA, CALIF. 95050

Printed: APR 1976

MANUAL PART NUMBER 05328-90011 MICROFICHE PART NUMBER 05328-90012

PRINTED IN U.S.A.

CONTENTS

Section	Title	Page
1	GENER	RAL INFORMATION
	1–1.	Introduction 1–1
	1–4.	Description 1–1
	1–6.	Instrument Identification 1-1
	1–8.	Applications
	1–17.	Options 1–2
	1–19.	Equipment Supplied and Accessories Available 1-3
	1–21.	Specifications 1–3
11	THEO	RY OF OPERATION 2-1
	2-1.	Introduction 2–1
	2-3.	Overall Description 2–1
	2-10.	Configuration 2–3
	2-14.	Main Counter Section 2–3
	2-19.	Input Options Section 2–4
	2-27.	Hewlett-Packard Interface Bus (HP-IB) Section 2-5
	2-29.	A1 Motherboard 2-5
	2-31.	Display Control 2-5
	2-34.	State Control 2–5
	2-36.	Oscillator 2–5
	2-39.	Decade Counting Assembly (DCA) 2-6
	2-43.	Time Base 2–6
	2-47.	A2 Power Supply2-7
	2-49.	+5V Supply 2–7
	2-53.	A4 Function Selector 2–7
	2-55.	High Speed Multiplexer, Main Gate, and 1st Decade 2-7
	2-58.	Arming Multiplexer and Arming FF
	2-60.	Time Base Multiplexer and Main Gate FF 2-8
	2-63.	An Example of Operation 2–8
	2-67.	Standard Time Interval Module (A10 and A19) 2-9
	2–77.	A16 Display Assembly 2-10
Ш	MAIN	TENANCE 3-1
	3–1.	Introduction 3–1
	3-3.	Assembly Designations 3–1
	3-5.	Test Equipment 3–2
	3–7.	Assembly Connection Identification 3–2
	3-9.	Preventive Maintenance 3–2
	3–11.	Inspection
	3–13.	Cleaning 3–3
	3–15.	In-Cabinet Performance Check
	3–17.	Repair 3–3
	3-18.	Printed Circuit Component Replacement 3-3
	3-20.	Replacing Integrated Circuits
	3-22.	Adjustments 3–9
	3-24.	Oscillator Adjustment (Standard or Option 010) 3-9
	3-26.	Sensitivity Adjustments
	3-28.	Instrument Troubleshooting
	3-30.	Troubleshooting Aids 3–10
	3-32.	DVM Extender Board Kit (05328–82020) 3–10
	3-34.	Extender Board (05328–62016) 3–10
	3-36.	Function Selector and ROM Kit (05328–82004) 3–10

CONTENTS (Cont'd)

Section	Title	Page
	3-40.	Using the Test Cards 3-11
	3-45.	Test Card 1, Test 1, Low Disable Decade Counting
		Assembly (LDDCA)
	3-50.	Test Card 1, Test 2, DCA and Time Base 3-12
	3-55.	Test Card 1, Test 3, Decade Counting Assembly (DCA) 3-12
	3–60.	Test Card 1, Test 4, Time Base Code 3-13
	3-64.	Test Card 2, Test 5, Function Code and Display 3-14
	3-68.	Test Card 2, Test 6, Strobe Code I Display 3-15
	3–73.	Test Card 2, Test 7, Strobe Code II Display 3-15
	3-78.	Test Card 2, Test 8, Auto Sample Rate 3-16
	3-83.	Test Card 3, Test 9, Function Selector Main Gate
		ROM Bits (LMGF, LTIF, HOPN)
	3-87.	Test Card 3, Test 10, A4 Function Selector Time Base
		Input ROM Bits (HTBA, HTBB, HTBO) 3–18
	3-91.	Test Card 3, Test 11, A4 Function Selector Totalize
		ROM Bits and DVM Enable ROM Bit RL(LTOT),
		R(LST), RL4(HDVM)
	3-95.	Test Card 3, Test 12, A4 Function Selector High Speed
	5 55.	ROM Bits (IA, IB, IC)
	3-99.	Test Card 4, Test 13, Arming ROM Bits (A0, A1) and
	5-33.	ARM Switch 3–21
	3-103.	Test Card 4, Test 14, Auxiliary ROM Bits RL6(HC),
	3 103.	RL5(TIO), RL2(BIL) 3–22
	3-107.	Test Card 4, Test 15, C Module (ROM Bit
	5 107 .	HEC and CARM) 3–23
	3–111.	Test Card 4, Test 16, Function Selector Digit
	5-111.	(FDA, FDB, FDC, FDD)
	3–116.	IC Troubleshooting
	3–118.	Functional Signals 3–29
	3–110.	Removal and Replacement Instructions 3–31
	3–120.	Instrument Cover Removal 3–31
	3–124.	Time Interval Module (Assemblies A10 and A19)
	3-124.	Removal and Replacement 3–31
	3-126.	A16 Display Assembly Removal and Replacement 3–32
	3-120.	Allo Bispitaly Assertion, Nemocial and top
IV	REPLAC	EABLE PARTS 4-1
	4–1.	Introduction 4–1
	4-4.	Ordering Information 4–3
	4-6.	HP Part Number Organization
		omponent Parts and Materials
	4–11.	General Usage Parts 4–4
	4–13.	Specific Instrument Parts 4–4
	4–15.	Factory Selected Parts 4-4
V		AL CHANGES AND OPTIONS5-1
	5–1.	Introduction 5–1
	5–3.	Manual Changes 5–1
	5-5.	Newer Instruments 5–1
	5–7.	Older Instruments 5–1
	5–9.	Options 5–3
	5–11.	Field Installation of Option 010 5-3

CONTENTS (Cont'd)

Section	Title	Page
VI	SCHEMATIC DIAGRAMS 6-1. Introduction 6-3. Schematic Diagram Symbols and Reference Designators 6-7. Signal Mnemonics 6-9. Identification Markings on Printed-Circuit Boards 6-14. Assembly Locations and Component Locators 6-16. Factory Selected Components 6-18. Schematic Diagrams	. 6–1 . 6–1 . 6–1 . 6–2 . 6–2
	TARIFO	
	TABLES	D
Table		Page
1–1 1–2 1–3	Equipment Supplied	1-3 1-3 1-4
3–1 3–2 3–3 3–4 3–5 3–6	Assembly Identification Recommended Test Equipment Preventive Maintenance In-Cabinet Performance Check IC Troubleshooting, A1 Motherboard 5328A Functional Signals	3-2
4–1 4–2	Replaceable Parts	4–5 4–17
5–1	Manual Backdating	5–1
6–1	Signal Mnemonics	6–4
	FIGURES	
Figure		Page
1–1	Model 5328A Universal Counter with Options	1–0
2–1	Block Diagram	2–2
3–1 3–2 3–3 3–4 3–5 3–6	A1 Motherboard Troubleshooting Flowchart A2 Power Supply Troubleshooting Flowchart A4 Function Selector Troubleshooting Flowchart Standard A10 Synchronizer Assembly Troubleshooting Flowchart Standard A19 Attenuator Assembly Troubleshooting Flowchart A16 Display Assembly Troubleshooting	3-35 3-37 3-39 3-41

FIGURES (Cont'd)

Table		Page
6–1	Schematic Diagram Notes	. 6–3
6-2	5328A Front View	. 6–7
6-3	5328A Rear View	. 6–7
6-4	5328A Top View	. 6-8
6-5	A1 Motherboard Block Diagram	. 6–9
6-6	A1 Motherboard Assembly	6-15
6-7	A2 Power Supply Block Diagram	6-16
6–8	A2 Power Supply Assembly	6-17
6-9	A4 Function Selector Assembly Block Diagram	6-19
6-10	A4 Function Selector Assembly	6-21
6-11	Standard Time Interval Module (A10 and A19) Block Diagram	6-23
6-12	Standard A19 Attenuator Assembly	6-25
6-13	Standard A10 Synchronizer Assembly	6-29
6-14	A16 Display Assembly Block Diagram	6-31
6–15	A16 Display Assembly	6-33
6-16	Option 010 A3 Oscillator Support Board and 10 MHz	
0 10	Oscillator Assembly	6-35
6-17	A1 Motherboard Interconnection Diagram	6–37

SAFETY CONSIDERATIONS

GENERAL

This is a Safety Class I instrument. This instrument has been designed and tested according to IEC Publication 348, "Safety Requirements for Electronic Measuring Apparatus".

This manual contains information, cautions, and warnings which must be followed by the service person to ensure safe operation and to retain the instrument in safe condition.

WARNINGS

SAFETY

If this instrument is to be energized via an autotransformer for voltage reduction, make sure the common terminal is connected to the earthed pole of the power source.

BEFORE SWITCHING ON THIS INSTRUMENT, the protective earth terminals of this instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding).

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Whenever it is likely that the protection offered by fuses has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

GROUNDING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal is likely to make this instrument dangerous. Intentional interruption is prohibited.

HIGH VOLTAGE

Warning — These servicing instructions are for use by qualified personnel only. To avoid dangerous electric shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

CAUTIONS

LINE VOLTAGE SELECTION

BEFORE SWITCHING ON THIS INSTRUMENT, make sure the instrument is set to the voltage of the power source. Verify that the power transformer primary is matched to the available line voltage. Verify that the correct fuse is installed.

GROUNDING

BEFORE SWITCHING ON THIS INSTRUMENT, ensure that all devices connected to this instrument are connected to the protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient.)

This symbol: A which appears on the instrument means: Read the instruction manual before operating the instrument. If the instrument is operated without reading the instructions, it may not operate correctly.

Figure 1-1. Model 5328A Universal Counter with Options

SECTION I

GENERAL INFORMATION

1-1. SCOPE OF MANUAL

- 1–2. This manual provides service information for the Hewlett-Packard Model 5328A Universal Counter (including Option 010). A separate Installation and Service Manual is provided for each option supplied with the 5328A. Operating information for the 5328A (with options) is covered in the 5328A Users Manual.
- 1-3. This manual is divided into five sections containing the following information:

SECTION I GENERAL INFORMATION covers a description of the counter, options, equipment supplied, accessories available, and specifications.

SECTION II THEORY OF OPERATION covers a description of the general operating principles of the counter in reference to block and schematic diagrams of each assembly.

SECTION III MAINTENANCE contains maintenance and service information including a list of assemblies, recommended test equipment, performance checks and adjustments. Troubleshooting procedures and flowcharts are included in this section.

SECTION IV REPLACEABLE PARTS provides a complete list of replaceable parts and information for ordering parts.

SECTION V MANUAL CHANGES AND OPTIONS contains information on manual changes and available options. Field installation of Option 010 Oven Oscillator is contained in this section.

SECTION VI SCHEMATIC DIAGRAMS contains schematic diagrams and component locators. A description of reference designators, signal mnemonics and printed-circuit card identification is included.

1-4. DESCRIPTION

1–5. The standard 5328A mainframe measures frequency, period, period average, time interval, time interval average, and ratio. A totalize function is also provided. The capabilities of the instrument are expanded (as shown in Table 1–3) by installing the options described in paragraph 1–17. The 5328A provides an 8–digit (9 with Option 030) LED display, display storage, and leading zero blanking. Decimal point and unit readouts are displayed automatically. Two independent selectable input channels are provided for time interval measurements. Each input channel has an attenuator, trigger slope selector, level control, ac–dc coupling, and an oscilloscope marker output. Rear panel connectors provide a gate output, a time base output and an input for an external frequency standard. An ARM switch on the rear panel allows arming by the signal being measured (switch OFF) or by another input signal (switch ON).

1-6. INSTRUMENT IDENTIFICATION

1–7. Hewlett-Packard instruments have a 2-section, 10-character serial number (0000A00000), which is located on the rear panel. The 4-digit serial prefix identifies instrument changes. If the serial prefix of your instrument differs from that listed on the title page of this manual, there are differences between this manual and your instrument. Instruments having higher serial prefixes are covered with a "Manual Changes" sheet included with this manual. If the change sheet is missing, contact the nearest Hewlett-Packard Sales and Service Office listed at the back of this manual.

1-8. APPLICATIONS

- 1-9. Specific applications information is provided in Section IV of the 5328A Users Manual. The general application features of the 5328A are described in the following paragraphs.
- 1-10. The high sensitivity, frequency range, and signal conditioning controls (see Table 1-3) make the 5328A ideally suited for a wide range of applications. The direct count feature of the 5328A means that prescaling techniques are not used to achieve the 100 MHz frequency range (up to 512 MHz with Option 030). Direct count speed is required in high-speed totalizing or system applications. The dynamic range, input attenuators and trigger level range (see Table 1-3) permit measurements to be made on virtually any signal.
- 1-11. The controlled "arming" feature of the 5328A is useful in applications such as burst frequency measurements, and pulse amplitude measurements.
- 1-12. The optional integrating digital voltmeters measure trigger levels (critical in most time interval measurements) and external voltages. The hysteresis compensation feature of Option 040 means that the trigger level does not need resetting when the slope switch changes the polarity.
- 1-13. The standard 5328A single-shot resolution of 100 ns meets the requirements for applications such as mechanical and electromechanical device (relays) timing, time of flight measurements (ballistics), sonar ranging, radio ranging and navigation. The Option 040 provides increased resolution (to 10 ns) useful in applications such as computer/peripheral timing measurements, logic timing measurements, radar ranging and optical ranging. The delay feature of Option 040 allows unwanted signals to be ignored which would otherwise trigger the counter.
- 1-14. Using time interval averaging, time intervals as short as 100 ps, with resolution to 10 ps may be measured. Applications include cable length measurements, phase measurements, logic timing measurements, and integrated circuit propagation delay measurement.
- 1-15. Full bandwidth, sensitivity, and signal conditioning of the Channel A, B (and C for Option 030) input amplifiers is provided for ratio, totalizing, and scaling measurements.
- 1–16. The 5328A with Option 011 HP-IB Interface is able to output measurement data and be controlled (fully programmed) via the Hewlett-Packard Interface Bus (HP-IB). The 5328A is interfaced to HP-IB compatible instruments, calculators, or computers by simply interconnecting with an HP-IB cable.

1-17. OPTIONS

- 1–18. Several options are available with the 5328A, as listed below. If purchased as part of an initial order, options are installed at the factory and the instrument is ready for operation when received. Procedures for field installation of an option are described in the Installation and Service Manual supplied with each option (except for Option 010, Oscillator which is covered in this manual). Options 907, 908 and 909 are ordered by option number if part of an initial order, otherwise by part number listed in Table 1-2. The following options are available:
 - a. Option 010, High Stability Time Base. Oven oscillator with aging rate $<5 \times 10^{-10}/day$.
 - b. Option 011, HP-IB Interface. Allows 5328A to output data and be controlled via the HP Interface Bus.
 - c. Option 020, Digital Voltmeter (DVM). Single ended DVM for trigger level and external dc voltage measurements.
 - d. Option 021, High Performance DVM. Floating high accuracy DVM for trigger level and external dc voltage measurements.

- e. Option 030, Channel C. Frequency measurements to 512 MHz; 15 mV rms sensitivity; direct count.
- f. Option 040, High Performance Universal Module. Same as standard 5328A but with 10 ns single shot time interval; improved T.I. averaging; improved T.I. accuracy; measurements with delay; T.I. A—B marker; hysteresis compensation; switchable input impedance (1 $M\Omega/50\Omega$).
- g. Option 907, Front Handle Kit.
- h. Option 908, Rack Flange Kit (for instrument without handles).
- i. Option 909, Rack and Handle Kit.

1-19. EQUIPMENT SUPPLIED AND ACCESSORIES AVAILABLE

1-20. Table 1-1 lists equipment supplied with the 5328A and Table 1-2 lists accessories available. The Service Kits listed in Table 1-2 are described in Section III.

Table 1-1. Equipment Supplied

DESCRIPTION	HP PART NO.
Detachable Power Cord 7½ ft (231 cm) long	8120-1348

Table 1-2. Accessories Available

DESCRIPTION	HP PART NO.
HP Interface Bus Interconnect Cable	10631A, 3 ft long (914 mm) 10631B, 6 ft long (1828 mm) 10631C, 12 ft long (3656 mm)
Front Handle Kit Rack Flange Kit (For instrument without handles) Rack and Handle Kit (Installation instructions included with above kits)	5061–0088 5061–0076 5061–0082
Service Kits: DVM Extender Board Kit Function Selector and ROM Kit Extender Board, 18 pin (2 required)	05328-82020 05328-82004 05328-62016

1-21. SPECIFICATIONS

1-22. Table 1-3 lists detailed specifications for the 5328A including all options.

INPUT CHARACTERISTICS

Channel A and B (standard and option 040) Sensitivity:

25 mV rms, 0-40 MHz (dc coupled)

20 Hz-40 MHz (ac coupled)

200 kHz-40 MHz (ac coupled and 50Ω with

Opt. 040)

50 mV rms, 40 MHz-106 MHz

Min. pulse width: 5 ns, 140 mV p-p

Coupling: Ac or Dc, switch selectable

Impedance: 1 M Ω \parallel <40 pF (switch selectable 1 M Ω or

50Ω nominal with Opt. 040)

Trigger Level: Variable over ±2.5 volts times attenuator

setting with 0 volt preset position.

Trigger Slope: independent selection of + or - slope
Attenuators: X1, X10, X100 (X1, X2, X20 with Opt. 040)

Dynamic Range: 25 mV to 1 V rms x attenuator setting for 0—40 MHz; 50 mV to 500 mV rms x attenuator setting for 40—100 MHz

Maximum Input (dc coupled):

X1: 250 V rms. dc-50 kHz

1.25 x 10° V rms/freq., 50 kHz-2.5 MHz

5 V rms, 2.5-100 MHz

X10, X100: 250 V rms, dc-5 MHz

1.25 x 109 V rms/freq., 5-100 MHz

X2, X20: 250 V rms, dc-500 kHz

(Opt. 040) 1.25 x 108 V rms/freq., 0.5-25 MHz

5 V rms, 25-100 MHz

Ac coupled: Vmax = 200 V (peak + dc) for dc-20 Hz;

same as dc coupled for frequency greater

than 20 Hz.

Opt. **040** 50Ω

position: 5 V rms, dc-100 MHz

Channel Input: Common A or separate, switch selectable. In COM A position, sensitivity remains the same. Impedance becomes 1 M Ω | <65 pF for the standard and 500 k Ω | <65 pF for the Option 040 high impedance position. 50 Ω position remains nominal 50 Ω .

Channel C (option 030)

Sensitivity: 15 mV rms, 5 MHz-512 MHz

Coupling: dc

Trigger Level: 0 V, fixed Impedance: 50Ω nominal Maximum Input: 5 V rms Input Protection: Fused

FREQUENCY MEASUREMENTS

Frequency A (standard and option 040)

Range: 0 - 100 MHz direct count

Resolution: 1 MHz to 0.1 Hz in decade steps

Accuracy: ±1 count ±timebase error

Display: kHz, MHz Frequency C (option 030)

Range: 5 - 512 MHz direct count

Resolution: 1 MHz to 0.1 Hz in decade steps

Accuracy: ±1 count ±timebase error

Display: kHz, MHz

 $\frac{\text{signal slope}}{\text{(or } \frac{\pm .0025\,\mu\text{sec}}{\text{signal slope in V/}\mu\text{sec}} \text{ for 40 dB S/N.)} }$

PERIOD MEASUREMENTS

Period A (standard and option 040)

Range: 0 - 10 MHz

Resolution: 100 ns to 1 s in decade steps

(10 ns to 0.1 s with opt. 040)

Accuracy: ±1 count ±timebase error ±trigger error*

Display: ns. us. ms. s

Period Average A (standard and option 040) — the period of the signal at the A input is averaged over the number of periods, N, indicated by the resolution switch (N=1 to 107).

Range: 0 - 10 MHz

Resolution: 100 ns to .01 ps in decade steps

(10 ns to .001 ps with opt. 040)

Accuracy: ±1 count displayed ± timebase error

± trigger error*

TIME INTERVAL MEASUREMENTS

Time Interval A to B (standard and option 040)

Range: $100 \text{ ns} - 10^8 \text{ s} (10 \text{ ns} - 10^7 \text{ s with opt.} 040)$

Resolution: 100 ns to 1 s in decade steps

(10 ns to 0.1 s with opt. **040**)

Accuracy: ±1 count ± timebase error ± trigger error*

Time Interval Average A to B (standard and option 040) —

The time interval between a start signal at A and a stop signal at B is averaged over the number of time intervals, N, indicated by the resolution switch (N=1 to 10°).

Range: 0.1 ns - 10 s (0.1 ns - 1 s with opt. 040)

Resolution: $\frac{\pm 100 \text{ ns}}{\sqrt{\text{no. intervals averaged}}} \pm 10 \text{ ps}$

 $(\frac{\pm 10 \text{ ns}}{\sqrt{\text{no. intervals averaged}}} \pm 10 \text{ ps with opt. } 040)$

Accuracy:

 $\frac{\pm 100 \text{ ns} \pm \text{trigger error}^*}{\sqrt{\text{no. intervals averaged}}} \pm 4 \text{ ns} \pm \text{timebase error}$

 $\frac{\pm 10 \text{ ns} \pm \text{trigger error}}{\sqrt{\text{no. intervals averaged}}} \pm 2 \text{ ns} \pm \text{timebase error}$

with opt. **040**. The opt. **040** has a "jittered" clock in time interval averaging for those cases when the input is coherent with the 5328A's clock frequency.)

Minimum pulse width: 25 ns (10 ns with opt. 040)

Minimum dead time: 150 ns (40 ns with opt. 040 and maximum repetition rate of 10 MHz) ("dead time" is the time between the preceding time interval's stop event and the current time interval's start event).

RATIO MEASUREMENTS

B/A and C/A (standard and option 040) — The ratio of the frequency at B (or C for C/A function when option 030 is installed) to the frequency at A is measured for N counts of A where N is selected by the resolution switch (N=1 to 10⁷).

Range: A: 0 — 10 MHz

B: 0 — 100 MHz C: 5 — 512 MHz

O. 5 - 512 WH 12

Resolution: 1 part in $\frac{B}{A} \times N$ (or $\frac{C}{A} \times N$)

Accuracy: ± 1 count of B (or C) ± trigger error* of A x freq.

of B (or C) (N > 1)

For N = 1, add \pm 120 ns x freq. of B (or C) (\pm 12 ns x freq. of B (or C) with **Opt. 040**)

^{&#}x27;Trigger error is <0.3% of one period for sinewaves of 40 dB S/N or better and amplitude equal to sensitivity of counter. For any waveshape, trigger error is less than $\pm 2 \ x$ peak noise voltage

DIGITAL VOLTMETER MEASUREMENTS

DVM (option 020 and 021) — Trigger levels of input channels A and B and external voltages may be measured.

Maximum Sensitivity:	OPT. 020	OPT. 021
Meas. Time (N=): 10 s (N=10') 1 s (N=10°) 0.1 s (N=10°) 10 ms (N=10°) 1 ms (N=10³)	1 mV 1 mV 2 mV 20 mV 200 mV	10 μV 100 μV 1 mV 10 mV 100 mV
Range:	0 to ±125 Vdc	\pm 10, \pm 100, \pm 1000 Vdc, and AUTORANGE
Full range display resolution (1 sec measurement time):	±0.9999, ±9.999, ±99.99, ±125.0	±12.5000, ±125.000, ±1000.00
Accuracy: (20 min. warm-up)	±.5% reading ±4 mV	±.03% reading ±.004% range; for 1000 V range: ±.087% reading ±.004% range
Temp. Coefficient: (0 to 40°C)	\pm .05% reading/°C \pm 0.5 mV/°C	± .002% reading/° C ± .001% range/° C
Input Terminals:	Single ended	Floating pair
Input Impedance:	, 10 M Ω	10 MΩ
Normal Mode Rejection Ratio:	>60 dB at 60 Hz (50 Hz) ± 0.1%	>80 dB at 50 Hz or greater with filter on
Effective Common Mode Rejection Ratio (1 kΩ unbalance):	= "	DC: >120 dB AC: >120 dB for multiples of 60 Hz (50 Hz) with filter on
Response Time (step input):	70 ms	10 ms (filter off)
Maximum Input:	±500 V	HI to LO: ±1100 V all ranges; LO to chassis ground: ±500 V
Trigger Level Measurements:	2 mV display resolution	1 mV display resolution; trigger level reading automatically multiplied by setting of attenuator switch if using option 040 uni- versal module

TOTALIZING AND SCALING MEASUREMENTS

Start A (standard and option 040) — The number of counts at the A input are totalized for N=1 on the resolution switch. For N>1, A/N is totalized and the scaled output (A/N) is available at the Timebase Out rear panel connector.

Range: 0 — 100 MHz for N=1 0 — 10 MHz for N > 1

EVENTS C, A TO B (standard and option 040) — The number of events at the C input are totalized during the synchronized time interval (i.e., a multiple of 100 ns, or 10 ns for opt. 040) defined by inputs to channel A and B.

Accuracy: ±1 count of C ± trigger error* of A and B± freq. of C x 120 ns (±1 count of C ± trigger error* of A and B ± freq. of C x 12 ns with opt. 040)

MEASUREMENTS WITH DELAY (Option 040)

Delay mode is activated by inner concentric knob on LEVEL A control of option 040 Universal Module (red LED indicates delay is activated). In delay mode, Channel A triggers and is then disabled from triggering again until the delay times out (disabled state occurs within 1 μ s after triggering). Channel B is continuously disabled until the delay times out. After the delay, both A and B are enabled. The delay time may be measured by placing the counter in T.I. A B and the Universal Module in check (CHK).

Delay range: 20 µs to 20 ms continuously adjustable

Minimum Dead Time: $1 \mu s$ between stop and next start (T.I. average measurements only)

Meaningful Functions: FREQ. A, PER A, PER AVG A, T.I. A→B, T.I. AVG A→B, RATIO C/A, START A, EVENTS C, A→B

HP-IB INTERFACE (Option 011)

Provides digital output of measurement data ("talker") as well as input for remote program control ("listener").

Programmable Functions: Function, Resolution, Sample rate (max, or manual control), Arming, Display modes, Measurement modes, Output modes, and Reset commands

HP-IB commands: responds to the following bus commands (see HP-IB Users Guides for definitions) — Unlisten, Untalk, Local Lockout, Device Clear, Serial Poll Enable, Serial Poll Disable, Go to Local, Selected Device Clear, and Group Execute Trigger.

Service Request (SRQ): if enabled, indicates end of measurement.

Maximum data output rate: 500 readings/sec

GENERAL

Display: 8 digit (9 with Opt. 030) LED display

Blanking: Suppresses display of unwanted zeros to left of most significant digit

Storage: Holds reading between samples; can be overridden by rear panel switch.

Sample rate: Variable from less than 2 ms between measurements to HOLD which holds display indefinitely.

Gate output: Rear panel output; TTL levels; high when counter gate open

Timebase output: Rear panel output; TTL levels
Check signal: With function switch in CHECK, counter should display 10 MHz ±1 count. (With opt. 040, place function switch in Freq A and universal module in CHECK (CHK) — counter should display 100 MHz ±1 count.)

Timebase:

standard crystal

Aging rate: <3 x 10⁻⁷/month Temperature: <2.5 x 10⁻⁶ 0° to 50° C

Line voltage: <1 x 10⁻⁷ for 10% change Opt. 010 oven oscillator

Aging rate: <5 x 10⁻¹⁰/day after 24-hour warm-up

Short term: <1 x 10⁻¹⁰ rms/sec
Temperature: <7 x 10⁻⁹ 0° to 50° C
Line voltage: <±5 x 10⁻⁹ for 10% variation
Warm-up: <±5 x 10⁻⁹ in 20 min.

Ext. Freq. Std. Input: 30 kHz to 10 MHz signal of amplitude >1.0 V rms into 1 kΩ. Maximum input: 5 V p-p. Correct reading obtained only with 10 MHz input. Other inputs give scaled readings. For opt. 040 only, the following constraints apply: ext. freq. std. must be 10 MHz for Period Avg., T.I. Avg., Period (N=1), and T.I. (N=1).

Trigger Lights: Light is ON when input is above trigger level; OFF when input is below trigger level; BLINKING when channel is triggering. Operative over frequency range 0—100 MHz. Marker Outputs: Inverted channel A and channel B Schmitt trigger outputs available on front panel; 0 to −100 mV levels into 50Ω;<20 ns delay. (With Opt. 040, inverted channel A Schmitt trigger and T.I. A→B marker outputs (0 to −50 mV) available on front panel—T.I, A→B is high during the time interval measured by the counter). Outputs protected from inadvertently applied voltage to ± 5 Vdc.

ARM: Rear panel switch turns arming ON or OFF. With arming ON, the measurement is armed by an input other than the input involved in the measurement. The following are armed by an event at B: FREQ A, PERIOD A, PERIOD AVG A, FREQ C, DVM, RATIO C/A; the following are armed by an event at C: T.I. A→B, T.I. AVG A→B, EVENTS C, A→B, RATIO B/A.

Operating Temperature: 0° to 50°C

Power Requirements: 100/120/220/240 V rms, +5%, -10% (switch selectable), 48—66 Hz; 150 VA max.

Accessories Furnished: Power cord, 229 cm (7½ ft.)
Weight: Net 8.5 kg (18 lb, 12 oz). Shipping 11.2 kg (24 lb. 12 oz)
Dimensions:

SECTION II THEORY OF OPERATION

2-1. INTRODUCTION

2-2. This section contains a description of the operating principles of the counter in reference to an overall block diagram in this section and to individual block and schematic diagrams in Section VI. The standard mainframe assemblies are the A1 Motherboard, A2 Power Supply, A4 Function Selector, A10 Synchronizer, A19 Attenuator, and A16 Display. Detailed theory for Options 020 and 021 DVM's, Option 030 Channel C, Option 040 Universal Module, and Option 011 HP-IB Interface is covered in a separate manual for each option.

2-3. OVERALL DESCRIPTION

2-4. The 5328A is a basic universal counter mainframe that supports several options. In its standard configuration it offers the following universal counter functions:

Frequency — 100 MHz direct count

• Period — 100 ns resolution () I MSE

Period Average — 10 MHz clock

- Time Interval 100 ns single-shot resolution of , I use
- Time Interval Average
- Totalize 100 MHz
- Ratio 100 MHz/10 MHz
- Check
- 2-5. The inputs have matched (± 4 ns) 100 MHz amplifiers with ac or dc coupling, ± 2.5 V trigger-level range, three-position attenuators (x1, x10, x100), 1 M Ω input impedance, slope controls, trigger lights that act like logic probes, and high speed output markers.
- 2-6. Capabilities can be greatly expanded by selecting options. Two DVM options provide dc voltage measurements. Option 020 is an economy version that offers millivolt sensitivity, $10\,\mathrm{M}\Omega$ single ended inputs, $125\mathrm{V}$ range, 0.5% accuracy, and the "read trigger level" function. Option 021 is a high performance unit that has $10\,\mu\mathrm{V}$ sensitivity, automatic or manual range control to $1000\mathrm{V}$, $10\,\mathrm{M}\Omega$ floating inputs, switchable filter, 0.03% accuracy, read trigger level function, variable integration time, and high speed acquisition (up to 300 readings per second with two-dgit resolution). For applications requiring greater frequency range, a 5 to $512\,\mathrm{MHz}$ direct count Channel C Option 030 is available. This option offers $15\,\mathrm{mV}$ sensitivity across the band, 50Ω fuse-protected input, and a ninth digit added to the eight digit mainframe display. For applications requiring a precision time base, the high performance oven-stabilized time base Option 010 is available.
- 2–7. For greater precision in the basic counter functions, high performance universal module Option 040 is available. It has a 100 MHz clock for increased resolution in time interval and period measurements. Its functions are:
 - Frequency 100 MHz direct count
 - Period 10 ns resolution
 - Period Average 100 MHz clock
 - Time Interval 10 ns single-shot resolution
 - Time Interval Average 100 MHz phase jittered clock
 - Totalize 100 MHz
 - Ratio 100 MHz/10 MHz
 - Check 100 MHz

Figure 2-1. Block Diagram

- 2–8. The inputs have matched (± 2 ns) amplifiers, ac/dc coupling, ± 2.5 V trigger level range, three-position attenuators (x1, x2, x20), 1 M Ω or 50Ω switchable input impedance, slope control, logic-probe trigger lights, channel A high speed marker, time interval A-to-B high speed marker, and a variable delay feature.
- 2-9. For systems applications Hewlett-Packard Interface Bus (HP-IB) Option 011 is available.

2-10. Configuration

- 2-11. The 5328A is organized into four main operating sections (refer to Figure 2-1):
 - The main counter section
 - The input options section
 - The power supply section
 - The Hewlett-Packard Interface Bus (HP-IB) option section
- 2-12. Each section operates relatively independently and communicates to the others through an internal bus system. The two-way bus consists of 90 lines.
- 2-13. The power supply provides regulated dc voltage for the other operating sections of the instrument. Its capacity is sufficient to accommodate any combination of options. The main on-off switch of the instrument operates only the central power supply regulator; the main ac power line is never broken. Unregulated dc is constantly fed to the oven oscillator (if installed), eliminating the need for time base warmup. The fan gets its power from the ac power line by way of a triac, which is switched off by an optical isolator when the instrument is turned off.

2-14. Main Counter Section

- 2–15. The main counter section on A1 Motherboard contains all of the functional subunits of a standard counter with the exception of input signal conditioning and special logic, which are contained in the input options section. The decade counting assembly contains eight decades of BCD counting logic, latches, and output multiplexing logic. The time base assembly contains eight counting decades, output multiplexing logic, and synchronizers to generate precise timing signals for the main gate. The oscillator section contains the standard room-temperature 10 MHz oscillator circuit and the input/output logic to accept an external signal via the rear panel or an internal signal from the optional crystal oven oscillator.
- 2-16. The sample rate circuit controls the instrument display cycle. Inhibit, reset, main gate, transfer, and sample rate signals are generated in this circuit, as is the BCD digit address code for the strobed display. Generation of decimal point and annunciators and decoding of BCD data are accomplished by the display control circuits. Data out of the decade counting assembly or the input option modules is decoded and displayed on the eight-digit LED display.
- 2–17. The A4 Function Selector serves as the main signal switch of the instrument. It routes input signals through multiplexers to the decade counting assembly and/or the time base. At the same time, it interacts with the display control circuits to determine the beginning and end of the display cycle. The precision ECL main gate signal is created on the function selector through interaction with the time base assembly. The function selector also has extensive interaction with the input option modules. It is the main receiver of the high speed data from the modules and the originator and receiver of module arming pulses.
- 2-18. The flexibility of the 5328A comes from the ability of all these operating subsections to accept diverse data from various combinations of input option modules. This is accomplished through the use of a 4K read-only memory (ROM) as the master control of the instrument. Located in the main counter section of the instrument, the ROM accepts the four-bit function code and the three-bit time base code from the front-panel switches or the HP-IB remote pro-

gramming board. The ROM generates 32 bits of output data which are transmitted throughout the instrument to set up each subsection for the particular measurement situation. Various combinations of input option modules are accommodated without circuit change as different ROMs are plugged into the instrument. This provides inherent obsolescence protection for the user. As each new input module is engineered, the mainframe needs only a new ROM (supplied in an update kit) to accept it.

2-19. Input Options Section

- 2-20. The input modules are the main interface between the instrument and the outside electronic environment. They accept input signals and convert them into the proper form to be handled by the main counter circuits.
- 2-21. The universal module contains the main input amplifiers, Schmitt triggers, and high-speed synchronizers for complex timing measurements. One of the key performance options of the 5328A is the selection of one of the two universal modules. The prime difference between the two is the basic clock rate. In the standard unit the basic 10 MHz clock provides 100 ns as the fundamental timing unit. In the high-performance unit (Option 040), a phase-lock multiplier extends this rate to 100 MHz and a basic timing unit of 10 ns. In the time interval averaging function, the multiplier unit, upon command from the ROM, phase modulates the 100 MHz clock with band-limited noise to prevent the synchronous lockup problems associated with this measurement.
- 2–22. The middle area of the option module section provides the instrument with extended frequency capability (Channel C Option 030). A 50Ω fuse-protected 512 MHz amplifier and Schmitt trigger feed the 512 MHz decade. Latches in this option strobe the ninth (least significant) digit from the module onto the data bus and into the display. In functions not requiring an input from this module, ROM lines deactivate the output strobing circuitry and the ninth digit on the display goes blank. The ninth LED digit is loaded into the mainframe display board only when the Channel C module is installed.
- 2–23. The third area of the option section contains the inputs for the optional digital voltmeters. Using a voltage-to-frequency conversion technique, these modules provide an output suited to the frequency measuring capabilities of the mainframe. The low-cost unit (Option 020) provides the 5328A with inexpensive access to the important capability of trigger level measurement as well as an excellent general-purpose single-ended voltmeter. In this unit and the high performance unit (Option 021), trigger level measurement is selected by means of switches located on the DVM front panel. When the user selects either READ LEVEL A or READ LEVEL B, the DVM module disconnects itself from the external banana input jacks, connects itself to the selected trigger level voltage, disengages the function and time base front-panel switches, places the code DVM on the function code bus and places 0.1s gate time (1 mV sensitivity) on the time base bus. Upon release of the READ LEVEL switch, the instrument returns to its previous state. Thus the user can check his trigger levels without having to change and reset his function and time base settings.
- 2-24. The high performance DVM option (021) provides the user with the measurement capability of a manual or autoranging floating DVM that has a range of 10 μ V to 1000V and a basic accuracy of 0.03%. For particularly noisy environments, a switchable filter may be engaged to increase normal mode rejection to 50 dB at 50 or 60 Hz. Isolation for this option is accomplished through special high speed transformers, optical isolators, and an on-board switching dc-to-ac power supply. Although no remote programming of the front-panel controls is possible, remote controlled voltage measurement is quite easy. Through the use of special range controls in the V-to-F converter, a conversion factor of 10 kHz/volt is maintained regardless of the DVM's range. The voltmeter may be placed in autorange and the user simply programs the DVM function from the Hewlett-Packard Interface Bus (HP-IB) and any voltage from 10 μ V to 1000V is measurable.
- 2-25. This technique results in a small problem. If, for example, the user puts 900 volts on the input terminals, the output frequency is $900 \times 10 \text{ kHz} = 9 \text{ MHz}$. In a measurement time of 1-

second, this would provide a resolution of 1 part in 9×10^6 , far beyond the resolution limit of the V-to-F converter. To prevent the user from misinterpreting his results, the module blanks the meaningless data, thus providing the user with a display that contains only accurate data.

2–26. In the measurement of trigger levels, the high performance DVM performs much like the low-cost version, with an important exception. Measurement of trigger levels normally requires the user to compensate mentally for the attenuation factor used in the universal module input attenuator. For example, if one-volt is the trigger level voltage, x1 attenuation yields an effective trigger level of one-volt, x10 attenuation yields 10 volts, and x100 attenuation yields 100 volts. The high performance DVM, in combination with the high performance universal module, eliminates the need for mental multiplication, automatically reading out the effective trigger level in the three possible ranges of ± 2.5 volts, ± 5 volts, and ± 50 volts.

2-27. Hewlett-Packard Interface Bus (HP-IB) Section

2–28. The fourth section of the instrument, the HP-IB assembly (Option 011), provides for control of the counter by the HP-IB. Plugging into the main instrument bus through a ribbon cable, the internally mounted HP-IB board controls function, time base, cycle rate, arming, and virtually all other controls in the instrument with the exception of the DVM and universal module front-panel controls. A special module programming system in the HP-IB board allows any future module to be programmed through the present HP-IB system. For a more detailed description of the capability of the HP-IB option, see the 5328A Users Manual.

2-29. A1 MOTHERBOARD

- 2-30. The A1 Motherboard (Figures 6-5 and 6-6) consists of five sections, as follows:
 - a. Display control.
 - b. State control.
 - c. Oscillator.
 - d. Decade Counting Assembly.
 - e. Time Base.

2-31. Display Control

- 2-32. The display control section on A1 Motherboard acts as an interface between the A16 Display Board and the other circuits of the counter.
- 2-33. The outputs of the A16 Display Board FUNCTION and RESOLUTION switches go to the ROM (A1U37). The outputs of the ROM position the decimal point and annunciators in the display and provide control functions for other circuits of the counter. Data from the data bus is translated from BCD to seven-segment form in decoder U41 and sent to the display which is strobed by U39. U39 decodes the digit address code from BCD to 1 of 10 form. Leading zero blanking is provided by the latch comprised of U32B and U40B. Latches U25, U26, U27, and U31 provide outputs related to function and time base codes for use in other sections of the instrument.

2-34. State Control

2-35. The state control section is comprised of circuits U1, U2, U3, U4, and U5. Decade Counter U1 generates the digit select strobe code for the display. Circuit U4 receives the Sample Rate signal and generates the main Reset, Transfer, and Inhibit signals.

2-36. Oscillator

2-37. The 5328A 10 MHz oscillator circuit consists of ECL crystal controlled oscillator Y1 and U15,

buffer amplifier, level shifting circuitry, internal/external mode control circuitry, and Option 010 oscillator control circuitry.

2-38. A ECL OR/NOR gate (U15A) as shown on the schematic diagram (Figure 6-6) functions as an amplifier with positive feedback. The positive feedback path is from the noninverting output. through a 10 MHz crystal and parallel configuration of fixed and trimmer capacitor (C17, C18), to one input of the gate. Negative feedback from the inverting output to the same input of the gate establishes the input bias for the gate amplifer. The noninverting output is buffered, translated to a TTL level and routed to a control gate (U17C). This gate is controlled by the rear panel DPDT EXT/INT switch and passes the internal oscillator signal when this switch is in the INT position. When installed, the Option 010 oscillator also appears at the input of this gate through 11. However, Option 010 disables the mainframe oscillator and its output is therefore passed through the control gate when in the internal oscillator operation. The output of the control gate goes to one input of gate U16B. The other input to this gate is the output of the external input signal Schmitt trigger gate U16A. When in internal mode, this signal is an enable signal to pass the internal oscillator signal. When in external, with a signal input at the rear panel OSC INT EXT connector, this signal is the external input. The output of this gate goes to the A4 Function Selector, Motherboard Bus, and EXT/INT switch S1. The EXT/INT switch and connector are connected such that the connector inputs an EXT signal in external operation and outputs the internal oscillator signal in internal operation. This oscillator circuit may be modified by installing Option 010 Oven Oscillator as described in Section V. The schematic diagram for Option 010 is shown in Figure 6-16.

2-39. Decade Counting Assembly (DCA)

- 2-40. The 5328A DCA is comprised of Decade Counter/Latches (U10 and U12) on the A1 Motherboard and U1A, U3, and U4B on A4 Function Selector Board. The Motherboard contains output enable circuitry (U6, U7, and U9) for controlling the counters output data, signal overflow indication, and circuitry for strobing data into the display (U41). The data output of each Decade Counter in the DCA corresponds to a digit on the display. The first Decade Counter in the sequence of operation corresponds to the least significant digit and the last to the most significant digit. Digits 0 through 5 are processed by U12, digit 6 by U10, and digit 7 by U11.
- 2-41. All measurements performed by the 5328A result in pulses being counted in the DCA. Pulses are admitted to the DCA by way of the Main Gate FF on A4 which is either controlled by a Gate Out signal from the Time Base (A1U19) or held open by the HOPN signal from A1U25.
- 2-42. Data strobe signals, transfer pulses, reset pulses, and an output disabling signal are routed to the DCA via the 5328A State Control Circuitry. These signals are processed in the DCA and are used to control transfer of the counter's output data to the latch outputs, strobe this data onto the Data Bus, disable the outputs that feed into the Data Bus, and reset the counters after a measurement cycle is over.

2-43. Time Base

- 2-44. The 5328A Time Base circuit is comprised of an 8 decade divider U21, shaping flip-flop U19A, and Synchronization flip-flop U19B. The Time Base input, depending on the particular measurement being made, is either the 10 MHz system clock or the channel A or B input signal. These signals are routed to the Time Base input via the ROM controlled Time Base Multiplexer U10 on the A4 Function Selector board.
- 2-45. The Time Base circuit has two modes of operation consistent with the two types of measurements performed by the 5328A. For frequency and time interval type measurements, the Time Base circuit generates a gate during which either oscillator or input pulses are counted. For totalize type measurements, the Time Base circuit divides its input by N as set on the RESOLUTION, N switch on the front panel and outputs the divided signal to be counted in the

DCA. The outputs of the Time Base circuit, corresponding to both operating modes, are generated simultaneously. Regardless of the type of measurement being performed, these outputs are made available to the A4 Function Selector which selects the proper signal to perform the function.

2–46. The length of the gate time generated by the Time Base circuit and the scale factor of the Time Base Input is determined by the Time Base code. The 5328A Mainframe ROM reads the codes of both the Time Base (RESOLUTION, N) and FUNCTION switches and outputs the proper code to the Time Base such that measurement resolution and scale factor agree with the information in the various (RESOLUTION, N) switch positions.

2-47. A2 POWER SUPPLY

2-48. The power supply shown in Figures 6-7 and 6-8 has five output voltages: +5, -5.2, +15, -15, and +3.5 volts, dc. The +5V and -5.2V circuits are essentially the same as are the +15V and -15V sections, so only the positive voltage sections will be described.

2-49. +5V Supply

- 2-50. The +5V supply is a switching regulator that has greater efficiency than a linear regulator of the same output. When the output voltage is below its nominal level, comparator U1 sees its + input being above its input and hence its output goes positive turning on transistor Q5 which in turn turns on Q3 and Q1. The voltage at the collector of Q1 now goes high (greater than 17V) and current starts to build up through L1, charging the output capacitor and increasing the output voltage. At the same time positive feedback is provided via resistor R11 to maintain the situation until the output goes slightly above +5V. When the voltage reaches this point the comparator output voltage starts to fall turning off transistors Q5, Q3, and Q1 causing the voltage at the collector of Q1 to fall. This provides positive feedback via resistor R11 to reinforce the charge. As a result, transistors Q5, Q3, and Q1 are turned off hard, and the voltage at the collector of Q1 goes negative, except for diode CR3 which clamps the voltage to ground. During this part of the cycle, current flows through diode CR3 and coil L1 allowing the energy which has been stored in the field of L1 to go into the load. This goes on until the output voltage again goes low enough to overcome the offset at the input of comparator U1 and turn transistor Q1 on again.
- 2-51. The \pm 15V supply is a simple linear regulator using transistor Q7 as the pass transistor. Transistor Q9 provides level shifting and current gain while U3 is used as comparator and gain block.
- 2-52. The +3.5V supply is also a simple linear regulator with the operational amplifier section of U5 being used as a comparator and gain block. Resistor R32 provides overcurrent limiting to protect against shorts.

2-53. A4 FUNCTION SELECTOR

2-54. The A4 Function Selector serves as the main high-speed switching module of the 5328A as shown in Figures 6-9 and 6-10. It receives high-speed differential ECL data from the Main Bus (from the modules that process the signal input) and routes that data to either the Time Base or the DCA. In addition, the Main Gate FF, the Arming Multiplexer and Arming FF, and the First Decade of the DCA are on the A4 Function Selector assembly.

NOTE

Refer to Table 6-1 for definitions of mnemonics.

2-55. High Speed Multiplexer, Main Gate, and 1st Decade

2-56. High speed multiplexer U6 serves as the main multiplexer and routes the following signals to the 1st decade of the DCA: A, B, GATED OSC (GOSC), C, DVM, TIME BASE OUT (TBO), and

OSCILLATOR (OSC). ROM lines IA, IB, and IC control the active address of the multiplexer. Pin 2 (enable) of the multiplexer serves as the Main Gate. The Low Time Interval (LTIF), Low Main Gate FF (LMGF), or (LTOT •LST), signal operating through U8 and enabled by ROM lines LMGF, LTIF, (LTOT •LST), respectively control the Main Gate. In addition, ROM line HOPN can override LTIF or LMGF and lock open Main Gate U6(2) through U8C. Main Gate status is detected and sent off the A4 Function Selector by ECL-to-TTL translator U2D. Capacitor C11 and resistor R35 serve to stretch any ECL gate signal present at U2(10) so that the slower TTL control chip A1U4 and gate light one-shot (Q6, U36B, E) can see the pulses and properly react. U8D differentially drives bus lines MG and MG to operate the remote Main Gate of channel C.

2-57. The output of the main multiplexer U6(15) feeds into first binary U1 of the main DCA. U1A is an ECL High-Speed binary the output of which couples to pins 14 and 15 of ECL-to-TTL translator U2. The TTL output of U2(13) clocks Schottky quinary U4 and U3. The outputs of the first decade U3(9), U4(9), U3(5), and U2(13) travel off the A4 Function Selector board to the DCA on the A1 Motherboard where they are latched and the carry feeds into the next decade of the DCA.

2-58. Arming Multiplexer and Arming FF

2–59. The Arming FF, the second half of U4, serves to inhibit various measurements by enabling or disabling Time Base Multiplexer U10 and the synchronizers in the Universal Module. This action occurs via the High Disables Synchronizers (HDS) signal from U4(6). The signal which sets or enables U4 comes from Arming Multiplexer U5(6). ROM lines control U5(10, 11) while the remaining address line (pin 9) is controlled by the Low Arm (L ARM) signal from the rear panel ARM switch. U5 thus selects either C–ARM, A, B, or free run (+5V) as the signal to send to U4 as the Arming signal. The A and B signals are derived from ECL-to-TTL translator U2A and U2B, respectively. Capacitors C4 and C5 and resistors R17 and R18 serve as pulse stretcher timing elements to enable the narrow ECL pulses on lines \overline{A} and \overline{B} to be seen by the TTL Arming FF U4.

2-60. Time Base Multiplexer and Main Gate FF

- 2-61. Time Base Multiplexer U10 selects either A, B, or OSC to send the Time Base Input (TBI) signal via pin 8 to the Time Base. This same signal is also sent to U1, the Main Gate FF, as a resynchronizing signal. ROM lines R(HTBA), R(HTBO), and R(HTBB) control the selection of the Time Base Input signal. The HDS signal to U10(13) or ROM line LTOT to U10(1) serve to enable or disable U10.
- 2-62. U1B is a high-speed ECL FF used to generate precise stable gate times for the Main Gate Multiplexer U8 and the remote gate in the Frequency C module. A TTL replica of the Main Gate signal (GATE OUT) is generated in the Time Base and sent to U1 via the line Main Gate Synchronizer on the Motherboard. Resistors R14 and R43B translate this TTL signal down to ECL levels at U1(10). The output of Time Base Multiplexer U10 via resistors R42 and R43D and capacitor C16 clocks U1(11) yielding a synchronized fast rise and fall time Main Gate signal on U1(14).

2-63. An Example of Operation

- 2-64. To show how the above mentioned function selector circuits operate together an example of the measurement of frequency A is given in the following paragraphs.
- 2-65. Assume the counter is in the middle of its display cycle. Low Inhibit (LINH) is TTL low, High Reset Time Base (HRTB) has momentarily gone high resetting U1 and U4 and High Reset Decade (HRD) has momentarily gone high resetting First Decade U1, U4, and U3. The control chip on the Motherboard releases LINH to go high. U9(13) goes low enabling Arming Multiplexer U5. Assuming that self arm has been selected, A will have been selected by the ROM on pins 9, 10, and 11 of U5. When the first A pulse occurs U4(4) goes low setting U4. U4(5) goes high turning on transistor Q1 which in turn pulls LINH low again and inhibits another measurement

from starting until Reset has occurred. In a frequency measurement, the ROM selects the Oscillator signal on pin 2 of U10 to be sent into the Time Base. Shortly after the Time Base returns, a high signal on Main Gate Synchronizer drives U1(10) high. On the next Oscillator signal (through U10) U10(11) gets clocked causing U1(14) to go low. This low signal propagates through U8(B and C) to U6(2) opening the Main Gate and initiating the count. Signal A has been selected on U6 by ROM lines R22, 23, and 24 thus each A event is counted into 1st decade U1A, U4A, and U3.

2-66. After the appropriate gate time has elapsed (N clock counts into the Time Base) the Main Gate Synchronizer signal goes low and the next Oscillator signal clocks Main Gate FF U1 closed. U2(10) detects the closing of the Main Gate and sends a TTL signal (LMGF) to U4 in the State Control section of the A1 Motherboard which initiates a new display cycle.

2-67. STANDARD TIME INTERVAL MODULE (A10 AND A19)

- 2-68. This module, shown in block form in Figure 6-11, is comprised of A19 Attenuator/Amplifier assembly and A10 Synchronizer assembly. These assemblies contain the 100 MHz A and B channels with signal conditioning (SLOPE, AC/DC, ATTEN, SEP/COM A) controls, amplifiers, Schmitt trigger, trigger lights and markers, and synchronizing circuitry for time interval and period type measurements. For most of the circuitry, channel A and B are identical. Therefore, only channel A will be discussed.
- 2-69. The A input signal enters the A19 board (Figure 6-12) through J2 and depending on the position of switch S3 is either ac coupled through capacitor C7 or dc coupled across the switch contacts. It then enters the 3 position attenuator (X1, X10, X100) and passes from the selected attenuation node through switch S4 to the FET impedance converter stage. This stage consists of Q1 A and B and resistors R3, R4, R6, and R7 connected in a zero offset totem-poll configuration. The signal at the node between resistors R6 and R7 follows closely the signal at the gate of Q1A. Resistor R3 is used to adjust any initial offset voltage. Diodes CR2 and CR3, resistors R8, R9, R10 and capacitors C4 and C5 form an overvoltage protection network to limit the signal to transistor Q1 and successive circuits to ± 3.6 volts (max).
- 2-70. The SEP/COM A switch (S5) connects the input of the B channel impedance converter to either the B channel attenuator output or the A channel attenuator output.
- 2–71. The signal then passes through J5(6) to the A10 Synchronizer board (Figure 6–13), where it enters the dual Schmitt trigger U1. Trigger U1 compares the signal at pin 12 to a dc reference between $\pm 2.5 \text{V}$ generated by R1, R2, and R3 on its other input (pin 11) and changes state at its output whenever the input crosses this reference voltage. The output is ECL (\approx –.8V to –1.6V) and drives both the A trigger output and the exclusive OR gate U2B. U1 has approximately 15 mV peak–to–peak hysteresis at its input.
- 2–72. The exclusive OR gate U2B is used in conjunction with U3 to select the slope of the input waveform that is desired. When pin 5 on U2B is held to an ECL high level (SLOPE switch in + position), U2B acts as an inverter. When pin 5 goes low (SLOPE switch moved to position), U2B does not invert the signal passing through it. Circuit U3 is a one-shot that only triggers on a negative edge, and therefore passes only trigger events that occur on the slope selected by U2B.
- 2-73. The output of U3D at pins 9 and 15 are differential ECL pulses of approximately 5—10 nanoseconds width. These pulses go to the A4 Function Selector to be counted as A events and to U4, an ECL-to-TTL converter and pulse stretcher. The feedback through capacitor C16 stretches the 5 nanosecond ECL pulse at pin 10 to an approximately 25 nanosecond TTL pulse at pin 12.
- 2–74. A similar pulse stretcher is used to convert the tigger output at Schmitt trigger U1(15) to a trigger light signal. A larger feedback capacitor (C20) is used to convert the output to a pulse of long enough duration to be seen when driving the trigger light LED. Because this pulse stretcher is dc coupled to the Schmitt trigger, it functions like a logic probe with adjustable threshold voltage.

When the channel A input is higher than the trigger level setting the trigger light LED is ON. When the input is lower, the LED is OFF, and whenever it passes through the trigger threshold, the LED blinks on or off depending on the polarity of the input signal.

- 2–75. The remaining circuitry consisting primarily of IC's U5, U6, U7, U9, and U10 is used to generate synchronized time interval and gated oscillator pulses for the mainframe to use in T1, T1 AVE, PER and PER AVE functions. After a reset pulse enters on the High Disables Snychronizers (HDS) line, the RS FF's (U5) and D FF's (U7) are reset through U6B and $\overline{11}$ is an ECL high, \overline{GOSC} is an ECL high, and GOSC is at VBB \approx –1.2V. When a start event enters U5(13), it sets the FF output at U5C low and pin 12 on U7 high. The next 10 MHz clock pulse synchronously sets U7(9) high, and $\overline{11}$ goes low, telling the A4Function Selector that the time interval has begun. \overline{GOSC} also begins to output 10 MHz oscillator pulses. When a stop event occurs at U5(1), (U9 is a 2 input multiplexer and selects channel A as the stop event for PERIOD measurements and B as the stop event for TI measurements) the FF output at U5(3) goes high, and synchronous to the next oscillator pulse sets U7(6) low. This disables $\overline{11}$ and \overline{GOSC} sending them high again, then propogates through two U6 gates to reset all FF's and thus prepare them for the next measurement.
- 2-76. U7(8) is a control line which disables the stop channel in Period measurements until a start event has been detected.

2-77. A16 DISPLAY ASSEMBLY

- 2–78. The Display Assembly contains the display, as shown in the block diagram in Figure 6–14, in addition to switches S1 (POWER), S2 (RESET), S3 (FUNCTION), S4 (FREQ RESOLUTION, N) and SAMPLE RATE control R6 as shown in the schematic diagram in Figure 6–15.
- 2-79. The display consists of a 9-digit (9th digit used with Option 030, Frequency C only) seven-segment LED numeric display (DS1-DS9) and annunciators for indicating measurement units (DS10-DS16) in addition to overflow (DS17), remote (DS18), and gate (DS19). The display digits and annunciators are automatically displayed with the correct decimal point.
- 2-80. The digit address code from A1U39 on the Motherboard is applied to transistors Q1 through Q9 to strobe each digit which receives the seven-segment code from A1U41 through transistors Q13—Q20. The gate (DS19), remote (DS18), and overflow (DS17) LED's receive signals from the Motherboard through transistors Q10, Q11, and Q12, respectively.

SECTION III MAINTENANCE

3-1. INTRODUCTION

3-2. This section gives maintenance and service information. Included is a table of assemblies, recommended test equipment, in-cabinet performance checks (which may be used to verify proper counter operations) and adjustments.

3-3. ASSEMBLY DESIGNATIONS

3-4. Table 3-1 lists the designations, name, and Hewlett-Packard part number of assemblies used in this instrument.

Table 3-1. Assembly Identification

Assembly	Description	HP Part No.
A 1	Motherboard	05328-60001
A2	Power Supply	05328-60003
А3	Oven Oscillator Support Board (Option 010) Supports Plug-In Oscillator (10544A)	05328-60018
A4	Function Selector	05328-60005
A5	DVM (Option 020)	05328-60011
A5	PS Auto Range (Option 021)	05328-60012
A6	Buffer Amplifier (Option 021)	05328-60013
A7	VF Converter (Option 021)	05328-60014
A8	Frequency C (Option 030)	05328-60016
A9	Not Assigned	
A10	Synchronizer (Standard)	05328-60006
A10	Synchronizer (Option 040)	05328-60008
A11	Not Assigned	
A12	Not Assigned	
A13	Not Assigned	
A14	Multiplier (Option 040)	05328-60010
A15	HP-IB Board (Option 011)	05328–60019
A16	Display	05328-60004
A17	DVM Front Board (Option 021)	05328–60015
A18	Not Assigned	
A19	Attenuator (Standard)	05328-60007
A19	Attenuator/T.I. Amp (Option 040)	05328-60009

3-5. TEST EQUIPMENT

3-6. Test equipment recommended for maintaining and checking performance is listed in Table 3-2. Test equipment having equivalent characteristics may be substituted for the equipment listed.

Table 3-2. Recommended Test Equipment

Instrumenî Type	Required Characteristics	Recommended Type
Frequency Standard	1 MHz Output	HP 107AR
Oscilloscope Vertical Plug-In Time Base Plug-In	50 MHz Bandwidth 50 mV/cm Sensitivity 50 MHz Bandwidth	HP 180A HP 1801A HP 1820A
Test Oscillator	10 Hz to 10 MHz at 5V p-p	HP 651B
VHF Signal Generator	10 MHz to 480 MHz	HP 608E
Frequency Counter	10 to 80 MHz Frequency Measurements	HP 5381A
DC Voltmeter	0 to 200V dc, 1% accuracy	HP 970A
AC VTVM	0 to 250V ac	HP 400F
RF Voltmeter	1 mV to 3V	HP 3406A
Logic Probe	Logic State Test	HP 10525T
Logic Pulser	State Activator	HP 10526T
Logic Comparator	IC Test	HP 10529A
DVM Extender Board Kit		05328-82020
Function Selector and ROM Kit		05328-82004

3-7. ASSEMBLY CONNECTION IDENTIFICATION

3-8. Throughout the manual, connections to printed-circuit assemblies are referred to in abbreviated form. For example, connection to A4 pin 10 is A4(10).

3-9. PREVENTIVE MAINTENANCE

3-10. Preventive maintenance consists of periodic inspection, cleaning, performance checks, and oscillator calibration. Table 3-3 lists the recommended schedule of preventive maintenance routines.

Table 3-3. Preventive Maintenance

Routine	Schedule
Inspection	Weekly
Cleaning	Monthly
Performance Check	As required
Oscillator Calibration	Quarterly

3-11. Inspection

3-12. The 5328A should be inspected for indications of mechanical and electrical defects. Electronic components that shown signs of overheating, leakage, frayed insulation, and other signs of deterioration should be checked and a thorough investigation of the associated circuitry should be made to verify proper operation. Mechanical parts should be inspected for excessive wear, looseness, misalignment, corrosion, and other signs of deterioration.

3-13. Cleaning

3-14. The instrument should be kept free of dust, moisture, grease, and foreign matter to ensure trouble-free operation. A dry clean cloth, a soft bristled brush, or a cloth saturated with cleaning compound may be used.

WARNING

100/120/220/240 VAC SUPPLY WIRES ARE EXPOSED WHEN EITHER TOP OR BOTTOM COVER IS REMOVED. USE EXTREME CAUTION DURING TROUBLESHOOTING, ADJUSTMENT, OR REPAIR. AVOID DAMAGE TO INSTRUMENT BY REMOVING POWER BEFORE REMOVING OR REPLACING COVERS, ASSEMBLIES, OR COMPONENTS.

3-15. In-Cabinet Performance Check

- 3-16. GENERAL. The performance check (Table 3-4) and test card sheet that follows the check can be used to verify and record proper operation of all circuits of the counter and may also be used:
 - a. As part of an incoming inspection check of instrument specifications.
 - b. Periodically, for instruments used in systems where maximum reliability is important.
 - c. As part of a procedure to locate defective circuits.
 - d. After any repairs or adjustments and before returning instrument to regular service.
 - e. As a permanent record of instrument maintenance performed, because the test record pages are perforated and may be removed.

3-17. REPAIR

3-18. Printed Circuit Component Replacement

3-19. Component lead holes in the circuit boards have plated-through walls to ensure good electrical contact between conductors on opposite sides of the board. To prevent damage to the plating and the replacement component, apply heat sparingly, and work carefully.

3-20. Replacing Integrated Circuits

- 3-21. Following are two recommended methods of replacing integrated circuits:
 - a. SOLDER GOBBLER. This is the best method. Solder is removed from board by a soldering iron with a hollow tip connected to a vacuum source.
 - b. CLIP-OUT. This method should be used as a last resort only. Clip the leads as close to the base as possible. With a soldering iron and long nose pliers, carefully remove the wires from each hole. Then clean the holes.

Table 3-4. In-Cabinet Performance Check

1. TIME BASE STABILITY AND OUTPUT

a. Set counter front panel controls as follows:

SAMPLE RATE	Midrange
FUNCTION	FREQ A
FREQ RESOLUTION, N	1 Hz
SLOPE (A)	+
AC/DC (A)	
ATTEN (A)	1
SEP-COM	SEP
LEVEL A	PRESET

b. Set counter rear panel controls as follows:

STOR	٩GE			 		 													ON
OSC		 		 		 													INT
ARM		 		 		 													OFF

NOTE

Allow 30-minute warmup before proceeding to step c.

- c. Connect 1 MHz frequency standard to INPUT A.
- d. A counter display of OF 1000.0000 kHz indicates that counter time base frequency is exactly 10 MHz. The offset between counter time base and 1 MHz frequency standard can be determined by subtracting 10 MHz from the indicated oscillator frequency.

COUNTER DISPLAY INTERNAL OSCILLATOR FREQUENCY

999.9950 kHz	10 000 050 Hz
999.9960 kHz	10 000 040 Hz
999.9970 kHz	10 000 030 Hz
999.9980 kHz	10 000 020 Hz
000.9990 kHz	10 000 010 Hz
1 000.0000 kHz	10 000 000 Hz
1 000.0010 kHz	9 999 990 Hz
1 000.0020 kHz	9 999 980 Hz
1 000.0030 kHz	9 999 970 Hz
1 000.0040 kHz	9 999 960 Hz
1 000.0050 kHz	9 999 950 Hz

- e. Record frequency offset on test card that follows this table. For long term stability, operate the counter continuously for at least one month. Measure frequency offset at one month intervals.
- f. To calibrate the counter time base to the frequency standard, perform time-base adjustment in paragraph 3-24.

NOTE

Temperature must be held constant or compensation for temperature difference must be made whenever a frequency difference is recorded. Unless a record of the temperature and date of last calibration is available, the frequency offset should not be considered drift or aging rate of the 10 MHz crystal.

- g. Connect oscilloscope vertical input to OSC jack on counter rear panel. Use 50-ohm termination.
- h. Oscilloscope should display 10 MHz nominal at ≈1V. Record on test card.
- Disconnect test equipment.

2. SELF CHECK

a. Set counter controls as follows:

FUNCTION	CHECK
SAMPLE RATE	CCW
OSC	INT
ARM ON/OFF (rear panel)	OFF
STORAGE ON/OFF (rear panel)	ON
RESOLUTION	DISPLAY
1 MHz (1)	10.
.1 MHz (10)	10.0
10 kHz (10 ²)	10.00
1 kHz (10 ³)	. 10.000
.1 kHz (10 ⁴)	
10 Hz (10 ⁵)	10.00000
1 Hz (106) 10	
.1 Hz (10 ⁷) OF 0.	0000000

- b. Push and hold RESET
 - (1) Display should read 88888888 with all annunciators and decimal points ON.
- c. Sample Rate and Gate Light Check:
 - (1) Set RESOLUTION switch to 1 kHz (103).
 - (2) Adjust Sample Rate Control from full ccw to cw.

Gate light (G) should display a steady on to a flickering on-off condition.

- d. Function Control:
 - (1) Set RESOLUTION to 1 Hz (106).

(2)	Set FUNCTION DISP	PLAY	
	CHECK 10	.000000 M	Hz
	*FREQ C	0.00	
	*DVM	0.0000	
	START A	0.	M
	STOP	0.	M
	FREQ A	0.000	kHz
	PER À	0.0	S
	PER AVG A	0.0000	NS
	RATIO B/A	0.000000	
	TI A→B	0.0	S
	TI AVG A→B	0.0000	NS
	*EVENTS C, A→B	0	
	*RATIO C/A	0.00000	

*With no Options installed.

3. FREQUENCY RESPONSE AND SENSITIVITY

- a. Set counter controls as in 1a, except RESOLUTION to 1 Hz (106) and AC/DC switch to AC.
- b. Connect a BNCT connector to INPUT A input jack. Connect HP 651B Test Oscillator output to T connector. Connector oscilloscope vertical input to T connector to monitor input signal amplitude; use a 50-ohm feedthrough at oscilloscope BNC.
- c. Adjust HP 651B from 10 Hz to 10 MHz, maintaining 25 mV rms (70 mV p-p) input amplitude. Counter should properly display all frequencies in this range. Record on test card.
- d. Repeat step 3c with an input from HP 608E VHF Signal Generator of 10 MHz to 100 MHz maintaining 50 mV rms (141 mV p-p).
- e. Disconnect HP 608E and connect HP 651B through BNCT connector to INPUT A of 5328A and to Channel B of oscilloscope.
- f. Adjust HP 651B output to 1000 Hz at 4 volts peak-to-peak.
- g. Connect OUTPUT MARKER A of 5328A to Channel A of oscilloscope.
- h. Set LEVEL A to PRESET and SEP-COM A to COM A.
- i. Set DISPLAY control on oscilloscope to ALT.
- j. Adjust oscilloscope for a symmetrical waveform on Channel B, centered at 0 volts. Adjust A POSITION so the top of the marker pulse is at 0 volts. (The top of the marker pulse should touch both the positive and the negative slope of the waveform. This indicates that the trigger level is at 0 volts in PRESET.)
- k. Adjust A POSITION so the top of marker pulse is at least 1.8 volts above 0 volts. Rotate LEVEL A control until the top of the marker pulse touches both the positive and negative slope of the waveform. This indicates that the trigger level is at 1.8 volts.
- 1. Rotate LEVEL A control from full cw position to ccw. Top of marker pulse should be settable to at least 1.8 volts below 0 volts.
- m. Disconnect cable from OUTPUT MARKER A and connect to OUTPUT MARKER B. Repeat steps j through l above.

4. PERIOD AND PERIOD AVERAGE

- a. Set counter controls as in step 1a, with FUNCTION to PER A and RESOLUTION to 1 kHz (10³) or as needed.
- b. Connect HP 651B to INPUT A, using BNC T. Connect oscilloscope to T, using 50Ω feedthrough at oscilloscope BNC.
- c. Vary the HP 651B output from 10 Hz to 10 MHz, maintaining 25 mV rms amplitude. Vary RESOLUTION switch as needed to maintain meaningful display with change of frequency. Counter should properly display the period of the frequencies in this range within accuracy specified in Table 1–3. Record on test card.
- d. Set FUNCTION switch to PERIOD AVG A and repeat step c. Record on test card.

5. TIME INTERVAL AND TIME INTERVAL AVERAGE

a. Set counter controls as follows:

SAMPLE RATE	Midrange
FUNCTION	. T.I. A→B
RESOLUTION	1 MHz
SLOPE (A)	(+)
SLOPE (B)	(–)
AC/DC (A and B)	AC
ATTEN (A and B)	X1
LEVEL (A and B)	PRESET
SEP-COM A	COM A

- b. Connect HP 651B to INPUT A. Set oscillator for 1 MHz output at 150 mV rms (425 mV pp). Observe display for .5 μ s \pm 1 count \pm trigger error. Record on test card.
- c. Set FUNCTION to T.I. AVG A→B, RESOLUTION to .1 kHz (10⁴). Set signal source to <2 MHz (2 MHz must NOT be exact or display will be ambiguous). Counter should display one half the period of the input signal. For example, with a 1 MHz input signal the counter should display 500.00 ns.

trigger error
$$\pm 100$$
 ns (± 1 count)
 ± 2 ns $\pm \sqrt{\frac{\pm 1}{\text{number of intervals averaged}}}$

6. TOTALIZE

a. Connect HP 651B to INPUT A. Set oscillator for 1 MHz output at 150 mV rms (425 mV p-p). Set counter controls as follows:

FUNCTION	START A
RESOLUTION	1 Hz (106)
LEVEL (A and B)	

- b. Check that display totalizes, Gate light (G) is on and LEVEL A and B lamps flash on and off. Record on test card.
- c. Using 10:1 divider probe, connect oscilloscope vertical input to TB OUT jack on counter rear panel.
- d. Check that oscilloscope indicates 1 Hz positive going pulses at least 3V p-p. Set RESOLUTION switch to .1 MHz (10) and observe 100 kHz output pulses (.1 μ s).
- e. Disconnect oscilloscope from TB OUT jack and connect TB OUT to 5381A 80 MHz Frequency Counter input.
- f. Set HP 651B to 10 MHz at 150 mV rms (425 mV p-p).

Table 3-4. In-Cabinet Performance Check (Cont'd)

g. Set RESOLUTION as follows, and check for proper counter display (approximate). Record on test card.

RESOLUTION	550 17 (2 15 1 27 1 1
1	No Output
10	1.0 MHz
10 ²	100 kHz
103	10 kHz
104	1 kHz
105	100 Hz
106	10 Hz
107	1 Hz

7. RATIO B/A

a. Set counter controls as follows:

FUNCTION	RATIO B/A
RESOLUTION	.1 kHz (104)
SLOPE (A and B)	(+)
AC/DC (A and B)	AC
ATTEN 1–10–100	1
SEP-COM A	COM A
LEVEL A	+ Triggering
LEVEL B	+ Triggering

- b. Set HP 651B to 10 MHz at 1V rms.
- c. Connect BNC cable from OSC BNC on rear panel to INPUT A on front panel.
- d. Display should read 1.0000, depending on accuracy of test oscillator setting.

8. GATE OUTPUT AND SAMPLE RATE

- a. Connect equipment as in step 7c above except disconnect HP 651B.
- b. Set counter controls as follows:

FUNCTION	 	 FREQ A
RESOLUTION	 	 .1 kHz (104)
SEP-COM A .	 	 SEP
SAMPLE RATE	 	 . MAX CCW

- c. Using 10:1 divider probe, connect oscilloscope vertical input to GATE OUT and observe a positive pulse \geq 2.4V with a pulse width of \leq 10 ms. Record on test card.
- d. Slowly rotate SAMPLE RATE clockwise and observe that the negative portion of the pulse width increases.

PERFORMANCE CHECK TEST CARD

erial No Da	te
DESCRIPTION (Refer to Table 3–4)	CHECK
I. TIME BASE STABILITY AND OUTPUT	
Aging Rate: <3 parts in 10 ⁷ per month	
Output: 10 MHz, ≈1V (square wave)	
2. DISPLAY, DECIMAL POINTS, AND DIVIDERS	
As per self-check procedures, Table 3-4	
B. FREQUENCY RESPONSE AND SENSITIVITY	
Frequency A Range: 0 to 40 MHz at 25 mV (70 mV p-p) 40 MHz to 100 MHz at 50 mV (141 mV p-p)	
Channel A Preset: 0V	
Channel A Level: +1.8 to -1.8V	-
Channel B Preset: 0V	
Channel B Level: +1.8 to -1.8V	
I. PERIOD AND PERIOD AVERAGE	
Frequency Range: 0 to 10 MHz at 25 mV (70 mV p-p)	
5. TIME INTERVAL AND TIME INTERVAL AVERAGE	
Time Interval: 0.5 μ s at 150 mV	
Time Interval Average: $\frac{1}{2}$ period of input signal	
5. TOTALIZE	
Range: 0 to 10 MHz	
Output: Rear panel TB OUT BNC (for N>1)	
Factor: 1 to 10 ⁷ in decade steps	
7. RATIO B/A	
Per Table 3–4, Step 7	
B. GATE OUTPUT AND SAMPLE RATE:	
Per Table 3-4, Step 8	

3-22. ADJUSTMENTS

- 3-23. Adjustment procedures are provided for the standard and Option 010 oscillator and for the standard time interval unit (sensitivity). The adjustments should not be done unless:
 - a. A trouble has been repaired which would affect these values.
 - b. The instrument does not meet all specifications while performing the check in Table 3-4 (In-Cabinet Performance Check) or during periodic calibration.

3-24. Oscillator Adjustment (Standard or Option 010)

NOTE

When adjusting the standard 5328A oscillator, adjust capacitor C18 (see Figure 6-6). When adjusting the Option 010 oscillator, adjust FREQ ADJ on the 10544A crystal oscillator unit.

3-25. Periodically, the oscillator should be checked to a house standard. When adjustment is required, use the oscilloscope method shown below. Using the appropriate sweep speed, adjust the oscillator until the movement of the pattern is stopped or nearly stopped.

	SWEEP SPEED		Norte	
MOVEMENT	1µSEC/CM	/CM 0.1µSEC/CM 0.01µ SEC/CM	NOTES	
1 CM/SEC	1 × 10 ⁻⁶	1 × 10 ⁻⁷	1 × 10 ⁻⁸	TIME SCOPE
1 CM/10 SEC	1 × 10 ⁻⁷	1 × 10 ⁻⁸	1 × 10 ²⁹	TRACE MOVEMENT WITH SECOND HAND
1 CM/100 SEC	1 × 10 ⁻⁸	1 × 10 ⁻⁹	1 X 10 ⁻¹⁰	OF WATCH OR CLOCK

3-26. Sensitivity Adjustments

- 3-27. Adjust the sensitivity as follows:
 - a. Remove top cover of 5328A to gain access to variable resistors R3 and R18 on the A19 Attenuator Assembly (see Figure 6-12 component locator).
 - b. Set counter front panel controls as follows:

FUNCTION FR	EQ A
RESOLUTION 106	1 Hz
SLOPE (A)	+
AC/DC (A)	. DC
ATTEN (A)	
LEVEL A PI	RESET
SEP-COM A CO	A MC
SAMPLE RATE Mid	range

c. Set counter rear panel controls as follows:

STORAGE	ON
OSC	INT
ARM	OFF

- d. Connect HP 608 Signal Generator (or equivalent) to INPUT A. Set signal generator to 40 MHz at 50 mV rms.
- e. Decrease signal generator output level slowly to 25 mV rms (70 mV p-p) and observe counter display for stable correct indication. If necessary, adjust resistor R3.
- f. To check Channel B change settings of front panel controls as follows:

FUNCTION	RATIO B/A
RESOLUTION	. 1 kHz 10 ³
SEP-COM A	SEP

- g. With signal generator connected to INPUT A set to 10 MHz, connect a second signal generator to INPUT B set to 40 MHz at 50 mV rms.
- h. Repeat step e and observe display for correct ratio indication. If necessary, adjust resistor R18.

3-28. INSTRUMENT TROUBLESHOOTING

3-29. Trouble isolation can best be accomplished by obtaining all possible information from the controls, connectors, and indicators on the 5328A. This information should then be analyzed by conducting the In-Cabinet Performance Check (Table 3-4) to aid in determining symptoms of the trouble. Troubleshooting aids are described in the following paragraphs.

3-30. TROUBLESHOOTING AIDS

3-31. Troubleshooting flowcharts for each assembly of the 5328A are provided at the back of this section. The use of extender boards and test cards, available as service kits, is described in the following paragraphs. This section also contains a table for analysis of functional signals and a table for IC troubleshooting.

3-32. DVM Extender Board Kit (05328-82020)

- 3-33. This kit consists of three extender boards that are used for servicing DVM Options 020 and 021. It allows circuit assemblies to be extended from their plug-in connectors for monitoring signals with the appropriate test equipment. The kit includes the following:
 - a. Extender board (05328-62020) with one 15-pin and one 18-pin connector. Extends A5 assembly for Option 020 or 021.
 - b. Extender board (05328-62021) with one 15-pin connector. Extends A6 or A7 assembly for Option 021. (Assembly A5 must be placed on its extender board before A6 can be extended due to space requirements.)
 - c. Extender board (05328-62022) for front of assemblies A5 and A6. Simulates front panel board of Option 021. Has cable attached to connect front connectors of A5 and A6 together.

3-34. Extender Board (05328-62016)

3-35. This type of extender board is available separately (not part of a service kit). Two of these extender boards are required to extend the A4 Function Selector Assembly or the Option 030 A8 Frequency C Assembly. One of these extender boards is required to extend the A10 assembly for the standard 5328A or the A10 or A14 assembly for Option 040.

3-36. Function Selector and ROM Kit (05328-82004)

- 3-37. This kit is used to replace the A4 Function Selector Assembly with a test card or to replace the ROM on the motherboard with a ROM simulator card. Use of this kit is required in the troubleshooting flowchart for A1 motherboard and is described in the following paragraphs.
- 3–38. The four test cards in the kit provide a total of 16 tests, one for each of the four-edge connectors on each card. The tests are described in paragraphs 3–45 through 3–115. The cards are inserted into A1 Motherboard connector XA4 to replace the A4 Function Selector assembly with test connections shown in the block diagram for each test. The test cards are numbered 1, 2, 3, and 4. The four-edge connectors on each card are numbered with tests 1, 2, 3, and 4 on Card 1, tests 5, 6, 7, and 8 on Card 2, tests 9, 10, 11, and 12 on Card 3 and tests 13, 14, 15, and 16 on Card 4. Part numbers of the cards are as follows:
 - a. Test Card 1, 05328-21004
 - b. Test Card 2, 05328-22004
 - c. Test Card 3, 05328-23004
 - d. Test Card 4, 05328-24004
- 3-39. The ROM Simulator card (05328-65005) is used in conjunction with Cable Assembly 8120-2176. The card and cable are supplied with this Service kit. The ROM simulator card contains three IC's, and a connector for each IC. The card replaces ROM A1U37 by connecting the cable from one of the card connectors to the connector for ROM A1U37 (after removing the ROM). Use of the ROM Simulator card is described in A1 Motherboard Troubleshooting Flowchart.

3-40. USING THE TEST CARDS

- 3-41. The test cards described in paragraphs 3-34 and 3-35 are used to test various functions of the 5328A as described in the following paragraphs.
- 3-42. Each of the following listed test card and test numbers are labeled on the card and card edge, respectively. The cards are keyed to prevent incorrect insertion into test connector XA4.
- 3-43. A description of the purpose of the test, a block diagram of test connections of circuits tested and procedures to perform are provided for each test.

CAUTION

TURN OFF POWER BEFORE REMOVING OR INSERTING CARDS.

3-44. To perform any of the following tests, insert the appropriate test card and observe the display.

NOTE

To check the test connections shown in the block diagrams, refer to connector XA4(A and B) in Figure 6-17, A1 Motherboard Interconnection Diagram.

3-45. Test Card 1, Test 1, Low Disable Decade Counting Assembly (LDDCA)

3-46. Description. In this test the ability of the LDDCA line to disable the output of the DCA is checked. This line is used in most test card tests and during normal operation when any module wishes to strobe different data into the display or blank the display.

3-47. Block diagram of test connections:

- 3-48. Procedure: Set FUNCTION switch to CHECK.
- 3-49. Display results:

3-50. Test Card 1, Test 2, DCA and Time Base

3-51. Description. With this test, both the DCA and Time Base can be checked without the A4 Function Selector being used, enabling problem isolation to A1 Motherboard or A4 Function Selector.

3-52. Block diagram of test connections:

- 3-53. Procedure: Set FUNCTION switch to CHECK.
- 3-54. Display results: the MSD on the display should totalize at a rate of 10 MHz when N=1 and 1 MHz when N=10. As N is increased, the displayed digits will decrease in decade steps of 10. The MSD triggers OVFL indicator after the first cycle.

3-55. Test Card 1, Test 3, Decade Counting Assembly (DCA)

3-56. Description: If the DCA is suspected to be faulty this test will determine if it will count 10 MHz at the correct rate. The MSD should totalize and trigger the OVERFLOW indicator after its first cycle.

3-57. Block diagram of test connections:

- 3-58. Procedure: Set FUNCTION switch to CHECK.
- 3-59. Display results: Display should totalize at 10 MHz.

3-60. Test Card 1, Test 4, Time Base Code

- 3-61. Description. This test will show whether the Time Base code going to the Time Base is correct.
- 3-62. Block diagram of test connections:

3-63. Procedure: Set FUNCTION switch to CHECK and RESOLUTION as shown in table below:

Table for Test Card 1, Test 4

RESOLUTION	DISPLAY	NOTE
1 10 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶	22222222 33333333 33444444 5555555 5455555	If Option 040 is installed the displayed digits will be 3 's.
1	· ·	

3-64. Test Card 2, Test 5, Function Code and Display

- 3-65. Description: This test can be used to verify the Function Code or as the rapid way to verify a faultless display.
- 3-66. Block diagram of test connections:

3-67. Procedure: Set RESOULTION switch to .1 kHz (104) and set FUNCTION switch to each position as listed in table below.

Table of Test Card 2, Test 5

FUNCTION	DISPLAY	NOTE
Check Freq C	9999 <u>9</u> 999 88888888	Ninth digit if Option 030 is installed.
DVM START A STOP		The "phantom" (unmarked)
*START CLOCK *DVM/A *DVM, A→B FREQ A PER A PER AVG A RATIO B/A TI A→B TI AVG A→B	2222222 3333333 5555555 4444444 5555555 7777777 8888888 8888888	positions of the FUNCTION switch that follow (*) are located 1, 2, and 3 switch positions clockwise from STOP, respectively.
EVENTS C, A→B RATIO, C→A	555555555 5555555555555555555555555555	Ninth digit if Option 030 is installed.

3-68. Test Card 2, Test 6, Strobe Code I Display

- 3-69. Description: This test displays the display strobe code (D bit grounded) showing the code on which each digit is strobed. This is useful in checking the display when the Function code is suspected to be faulty.
- 3-70. Block diagram of test connections:

- 3-71. Procedure: Set FUNCTION switch to CHECK and RESOLUTION switch to 1 Hz (106).
- 3-72. Display results: Display should read 6234567

3-73. Test Card 2, Test 7, Strobe Code II Display

- 3-74. Description. This test displays the strobe code except that the D bit is made high, allowing the higher order codes to be displayed.
- 3-75. Block diagram of test connections:

- 3-76. Procedure: Set FUNCTION switch to CHECK and RESOLUTION switch to 1 Hz (106).
- 3-77. Display results: 89.0=456 ■8

NOTE

Ninth digit if Option 030 installed.

3-78. Test Card 2, Test 8, Auto Sample Rate

- 3–79. Description. This test allows the Sample Rate circuitry to be tested without an A4Function Selector in the instrument, thus allowing for fault isolation between the A1 Motherboard and the A4 Function Selector. The Time Base output simulates the opening and closing of the main gate.
- 3-80. Block diagram of test connections:

- 3-81. Procedure: Set FUNCTION switch to CHECK and RESOLUTION switch to 1 Hz (106). Set SAMPLE RATE control approximately midpoint (1 O'Clock).
- 3–82. Display results: All digits will read the same. They will continuously cycle through the sequence of $z \in \mathbb{R}^3$

3-83. Test Card 3, Test 9, Function Selector Main Gate ROM Bits (LMGF, LTIF, HOPN)

3-84. Description. This test tests the ROM bits that help determine which signal on the A4Function Selector is used to establish the main gate signal.

3-85. Block Diagram of test connections:

3-86. Procedure: Set the FUNCTION and RESOLUTION switches to the positions shown in the table that follows.

Table for Test Card 3, Test 9

FINCTION	RESOL	UTION
FUNCTION	100	10 ¹ -10 ⁷
CHECK	3	3
FREQ C	7	7
DVM	3	3
START A	3	7
STOP	3	7
*START CLOCK	3	7
*DVM/A	1	3
FREQ A	3	3
*DVM A→B	1	1
PER A	5	;
PER AVG A	5	3
RATIO B/A	1	3
TI A→B	5	1
TI AVG A→B	S	3
EVENTS C, A→B	5 5	5
RATIO C/A	5	_;

^{*}Phantom Functions.

3-87. Test Card 3, Test 10, A4 Function Selector Time Base Input ROM Bits (HTBA, HTBB, HTBO)

- 3-88. Description. These ROM bits determine which signal goes to the input of the Time Base and Clock input of the Main Gate FF.
- 3-89. Block Diagram of test connections:

3–90. Procedure: Set the FUNCTION and RESOLUTION switches to the positions shown in the table that follows.

Table for Test Card 3, Test 10

			RESC	OLUTIO	N			
FUNCTION	100	10¹	10 ² —10 ⁷	(10³)	(104)	(10 ⁵)	(10 ⁶)	(10 ⁷)
СНЕСК	Ļ	4	'-			-		
FREQ C	낙 낙	J. J.	막 막					
START A STOP	0 8 0	0.00	; 0,0 ++	α.	0.00	8.8	Ο.	0.00
*START CLOCK *DVM/A *DVM A→B	0 0) 	J C		<u> </u>		·	
FREQ A PER A	4 0) J J		÷			
PER AVG A RATIO B/A	000	ا دریم†						
TIA→B TIAVGA→B EVENTSC,A→B RATIOC/A	0000	4 / 0† ∂ 1	CD 0, £					

^{*}Phantom Functions

[†] Lower number for Option 040.

tt 10² only

3-91. Test Card 3, Test 11, A4 Function Selector Totalize ROM Bits and DVM Enable ROM Bit RL(LTOT), R(LST), RL4(HDVM)

3-92. Description. The ROM line LTOT turns storage off and disables the sample rate circuitry for the totalize mode functions. HDVM enables the DVM to strobe in a minus sign to the display and also blank portions of the display.

3-93. Block diagram of test connections:

3-94. Procedure: Set the FUNCTION and RESOLUTION switches to the position shown in the table that follows.

Table for Test Card 3, Test 11

	RESOLU	TION
FUNCTION	1 0	10¹ — 10²
СНЕСК	1	1
FREQ C	1	1
DVM	S	5
START A	0	0
STOP	2	0 2
*START CLOCK	₽	
*DVM/A	5	5 5
*DVM A→B	S	5
FREQ A	1	}
PER A	1	1
PER AVG A	1	1
RATIO B/A	t	1
TI A→B	1 1	1
TI AVG A→B	1	1
EVENTS C, TI A→B	1	1
RÁTIO C/A		1

^{*&}quot;Phantom" Functions

3-95. Test Card 3, Test 12, A4 Function Selector High Speed ROM Bits (IA, IB, IC)

- 3-96. Description. These ROM lines determine which input line is selected by U6 on the A4 Function Selector.
- 3-97. Block diagram of test connections:

3–98. Procedure: Set the FUNCTION and RESOLUTION switches to the position shown in the table that follows.

Table for Test Card 3, Test 12

		RESOLUTION	- · · · · · · · · · · · · · · · · · · ·
FUNCTION	10°	10 ¹	10 ² — 10 ⁷
СНЕСК	5	5	Ь
FREQ C	0 3	0	0
DVM	3	3	0 3
START A	-	7	7
STOP	}	7	7
*START CLOCK	1	7	7
*DVM/A	3 3	3	3
*DVM A→B	3	3	3
FREQ A	1 .	! .	1
PER A	5/5 [†]	7/5	7/6
PER AVG A	Ś	 	5
RATIO B/A	. ب	닉 .	4
TI A→B	b/S [†]	7/5	7
TI AVG A→B	<u> </u>	<u> </u>	S
EVENTS C, A→B	0	0	0
RATIO C/A	8	G	8

^{*&}quot;Phantom" Functions

NOTE

[†]Second number for Option 040.

3-99. Test Card 4, Test 13, Arming ROM Bits (A0, A1) and ARM Switch

3-100. Description. These three bits determine which signal the counter should trigger on as defined by the following table:

Table for Arming ROM Bits

ARM SWITCH (Rear Panel)	A1	A0	
(0	0	0	CH C
1514115 611 0	0	1	СН В
ARMING ON $\begin{cases} 0 \\ 0 \end{cases}$	1	0	СН В
(0	1	1	СН В
(1	0	0	FREE RUN
ARMING OFF	0	1	FREE RUN
ARMING OFF \1	1	0	C ARM
(1	1	1	CH A

3-101. Block diagram of test connections:

3-102. Procedure: Adjust the FUNCTION and ARM switches to the position shown in the table that follows.

Table for Aller Striker Fest	Table	for	ARM	Switch	Test
------------------------------	--------------	-----	-----	--------	------

. FUNCTION	ARM S	WITCH
Tokenok	OFF	ON
СНЕСК	5 .	1
FREQ C	5	,∃'
DVM ·	5	!
START A	4	G
STOP	낙	ls a
*START CLOCK	4	0
*DVM/A	5	;
*DVM A→B	ų	0
FREQ A	-7	3
PER A	5	-
PER AVG A	5	;
RATIO B/A	ų	8
TI A→B	<u>.</u>	ñ
TI AVG A→B	4	Ĭ
EVENTS C, TI A→B	ų	Ō
RATIO C/A	ь - Б	ā ·

^{*&}quot;Phantom" positions.

NOTE

When 3 's are displayed, all those to the left of the decimal, except the first, are blanked.

3-103. Test Card 4, Test 14, Auxiliary ROM Bits RL6(HC), RL5(TIO), RL2(BIL)

3–104. Description. The ROM bit RL6(HC) is used to program hysteresis compensation and have the syncronizers make a TI measurement when true. When false, there will be no hysteresis compensation and a period measurement will be made. The ROM line RL5(TIO) tells the synchronizer to send 100 MHz on the lines in the PER AVG A function (Option 040 only). The ROM line RL2(BIL) programs the A14 Multiplier Assembly (Option 040 only) to jitter its output in TI AVG A→B only.

3-105. Block diagram of test connections:

3-106. Procedure: Set FUNCTION and RESOLUTION switches as shown in table that follows:

Table for Test Card 4, Test 14

	RESOLU	JTION
FUNCTION	10°	10 ¹ - 10 ⁷
CHECK		0
FREQ C	8	0
DVM	8	8
START A	0	0
STOP	0	O
*START CLOCK		0
*DVM/A	G	0
*DVM A→B	1	. 1
FREQ A	8	~ ()
PER A	0 0	0
PER AVG A	0/2 [*]	0
RATIO B/A	0'	0
TI A→B	1	1
TI AVG A→B	5	5
EVENTS C, A→B	1	
RATIO C/A	0	9 0

^{*&}quot;Phantom" positions.

3-107. Test Card 4, Test 15, C Module (ROM Bit HEC and CARM)

3-108. Description. ROM bit HEC enables the Channel C module to strobe its digit into the display. CARM tells the A4 Function Selector that the C Module is triggering (CARM high).

3-109. Block diagram of test connections:

[†]Lower number for Option 040.

3-110. Procedure: Set the FUNCTION switch and trigger Channel C as shown in the table that follows.

Table for Test Card 4, Test 1.	Table	for 1	est Ca	rd 4.	Test	15
--------------------------------	-------	-------	--------	-------	------	----

	DISPL	AY
FUNCTION	C MODULE NOT TRIGGERING	C MODULE TRIGGERING
CHECK	0	
FREQ C	!	3
DVM	0	Ē'
START A		,⊋'
STOP		₽'
*START CLOCK		₽.
*DVM/A		€'
*DVM A→B		Ē
FREQ A	0	2
PER A		Ē
PER AVG A		2
RATIO B/A	Ō	
TI A→B		2.
TI AVG A→B	i o	Ë
EVENTS C, A→B		3
RATIO C/A		ម្នាញ មិនស្នាយា មិនស្នាយ្យ មា

^{*&}quot;Phantom" Positions

NOTE

The C module triggers if installed. If not installed, the same effect is obtained by grounding the CARM line of the bus.

3-111. Test Card 4, Test 16, Function Selector Digit (FDA, FDB, FDC, FDD)

3-112. Description. These lines are sent to the DCA where they are latched and strobed onto the Data Bus.

3-113. Block diagram of test connections:

- 3-114. Procedure: Set FUNCTION switch to each position listed in the table that follows.
- 3-115. Display Results: Observe only the Function Selector digit (2nd from right). It should be as shown below.

Table for Test Card 4, Test 16

FUNCTION	DISPLAY
CHECK FREQ C DVM	
START A STOP *START CLOCK *DVM/A *DVM A→B FREQ A	0 2 3 5 4
PER A PER AVG A RATIO B/A TI A→B TI AVG A→B EVENTS C, TI A→B	5 7 9 8 -
RATIO C/A	5

^{*&}quot;Phantom" positions

3-116. IC Troubleshooting

- 3-117. To troubleshoot the IC's on the A1 Motherboard, proceed as follows:
 - a. Set the FUNCTION switch to CHECK.
 - b. Set the FREQ RESOLUTION, N switch to 1 MHz 1.
 - c. Remove top cover and remove A4 Function Selector Assembly.
 - d. Apply power and check for the logic states as shown in Table 3-5, using an HP Model 10528A Logic Clip or a Model 10525T Logic Probe. A dark pattern indicates a logic high.

Table 3-5. IC Troubleshooting, A1 Motherboard

Table 3-5. IC Troubleshooting, A1 Motherboard (Continued)

		Table 3–5. IC Troubleshooting, A1 Motherboard (Continued)															
		FUNCTION P															
PINS U25		СНЕСК	FREQ C	DVM	START A	STOP	*START CLOCK	*DVM/A	*DVM A→B	FREQ C	PER A	PER AVG A	RATIO B/A	TI A→B	TI AVG A→B	EVENTS C, TI A→B	RATIO C/A
INPUTS	2 3 6 7	L H H	L H L	HHHL	H	1111	H H H	H H H	1111	L H H	HLHL	HLHL	H	HLHL	HLHL	HHLL	H H L
OUTPUTS	9 10 15 16	H H L	L H L	H H L	L H L	L H L	L H L	H H L	H H L	L H L	רדרד	LHLH	HLL	L H L	L H H	L H L	L H L H
U26																	
INPUTS	2 3 6 7	Н Н Ц	H L L	L H H L	LHLL	L H L	H	L L H L	L L L	Н Н Н	- エ - エ	JIJI	L I L L	H	H	HLLL	H L L
OUTPUTS	9 10 15 16	L H L	L L L	L L L	L L L	L L L	L	L L L	L L L	L L L	L H L	1 H 1 1	LHLL	L H L	H H L	L L L	L L L
U27																	
INPUTS	2 3 6 7	L L H	L L L	L L L	L H H	L H H	— H Н	L H H	L H H	L L H	L H L H	L H L	H H H	LHLH	L H L	L H H	Н Н
OUTPUTS	9 10 15 16	L L L	L L H L	L H L	HLH	H H L	HHLH	H H L	H H L	L H L	H L L	HHLL	HLLL	HHJJ	HHLL	H L H L	H L H L
U31		-							,								
INPUTS	2 3 6 7	H L H L	H L H L	L L L	L H H	L H	L H H	L L H	L L H	H L H L	L L L	L L L	LLHH	1 1 1 1	L L L	L H H	LHH
OUTPUTS	9 10 15 16	L L H	L L H	L H H	L H H	L L H	L L H	L L L	H L H L	L H H	L L L		L L L	HLLL	H L L	H L L	L L L

Table 3-5. IC Troubleshooting, A1 Motherboard (Continued)

		FREQ RESOLUTION									
		Hz 1	.1 MHz 10	4z 10²	103	z 104	: 105	106	107		
PINS U25		1 MHz	7.	10 kHz	1 kHz	.1 kHz	10 Hz	1 Hz	.1 Hz		
INPUTS	2 3 6 7	Ь Н Н	L H H L	L H L H	L H L	L Н Н	L H H L	L H L H	L H L		
OUTPUTS	9 10 15 16	H H L	H H L	H H L L	H H L	H H L L	H H H L	H H L L	H H H L		
U26											
INPUTS	2 3 6 7	L H L	L H H L	L H H L	L H H L	L L H L	L L H L	L L H L	L L H L		
OUTPUTS	9 10 15 16	L H L	L H L	L H L L	L H L L	L H L H	L H L H	L H L H	L H L H		
U27											
INPUTS	2 3 6 7	L L H	L L L H	H	H	H	H	L L L H	L L L H		
OUTPUTS	9 10 15 16	L L L	L L L	H L	L L H	L L L	L L L	L L H	L L L H		
U31											
INPUTS	2 3 6 7	H L H L									
OUTPUTS	9 10 15 16	L L L H	L L L	L L L	L L L	L L H	L L L H	L L H	L L L H		

U37 (ROM STATES WITH A4 REMOVED)

3-118. Functional Signals

3-119. Table 3-6 lists the functional signals at pertinent points for each position of the FUNCTION switch. This information can be used to isolate problems that may occur in any of the various modes of operation.

Table 3-6. 5328A Functional Signals

NOTE
N=0→7 (Exponent of 10 on FREQ RESOLUTION, N switch.
N=0 is position 1 on switch. All other positions N≠0).
CLK = 10 MHz

* = Don't care

Function Switch	Displayed Number FREQ • TIME (Hz) (Seconds)	Signal to TB (Output A4U10) IF N=0 IF N≠0		Signal to (Outpu	(Outpu	ning it A4U5) Armed	(Input	n Gate t A4U6) i F N≠0	Gate (Opt. 030) (Input A8U4)	
FREQ A	A ● 10 ^(N+1) CLK	CLK	CLK	A	А	A	В	MGFF	MGFF	*
PER A	CLK 10 ^N ● PER A	*	CLK	GOSC	ТВО	Free	В	Open	ΤI	*
PER A (Option 040)	100 MHz 10 ^N ● PER A	* (N=0 or 1)	CLK (N≠0 or 1)	GOSC (IF N=	TBO =1, CLK)	Free	В	Open	RI	*
PER AVG A	CLK • 10 ^N PER A	*	A	GOSC	CLK	Free	В	Open	MGFF	*
PER AVG A (Option 040)	100 MHz ● 10 ^N PER A	*	A	GOSC	100 MHz	Free	В	Open	MGFF	*
TI A→B	<u>CLK</u> • TI A−B	*	CLK	GOSC	ТВО	Free	CA	Open	TI	*
TI A→B (Option 040)	100 MHz 10 ^N ◆ TI A→B	* (N=0 or 1)	CLK (N≠0 or 1)	GOSC (IF N=	TBO 1, CLK)	Free	CA	Open	ΤI	*
TI AVG A→B	(CLK • 10 ^N) • TI A→B	*	В	GOSC	GOSC	Free	CA	Open	MGFF	*
TI AVG A→B (Option 040)	(100 MHz • 10 ^N) • TI A−B	*	В	GOSC	GOSC	Free	CA	Open	MGFF	*
FREQ C (Option 030)	C ● 10 ^(N+1) CLK	CLK	CLK	С	С	CA	В	Open	Open	MGFF
DVM (Option 020, 021)	DVM ◆ 10(N+1) CLK	CLK	CLK	DVM	DVM	Free	В	MGFF	MGFF	•
†DVM, A−B	(In DVM, A→B TB Switch ignored)	*	*	DVM	DVM	Free	CA	TI	TI	*
EVENTS C, A→B	(EVENTS C A→B TB Switch ignored)	*	*	С	С	Free	CA	Open	Open	ТІ
START A, STOP	A TI START	*	A	Α.	ТВО	Free	Free	LStart	Open	*
RATIO B/A	B • 10 ^N / _A	++*	A	В	В	Free	CA	ΤI	MGFF	*
RATIO C/A (Option 030)	C • 10 ^N /A	*	Α	С	С	Free	В	Open	Open	TI IF N=0 MGFF IF N≠0
tDVM/A	DVM ● $\frac{10^{N}}{A}$	*	A	DVM	DVM	Free	В	ΤI	MGFF	*
†START CLOCK	CLK • TI START	*	CLK	•	ТВО	Free	Free	Open	Open	*
CHECK	CLK • 10(N+1) CLK	CLK	CLK	CLK	CLK	Free	В	MGFF	MGFF	*
				NOTES	<u> </u>	1				

NOTES

† = Phantom Function (see 5328A Users Manual) †† = ROM makes "A" into period = gate time CA = CARM

3-120. REMOVAL AND REPLACEMENT INSTRUCTIONS

3-121. Removal and replacement instructions are provided for the instrument cover, the time interval module (assemblies A10 and A19) and A16 Display Assembly. Option 010 is covered in Section V and all other options are covered in the Installation and Service Manual for the option.

3-122. Instrument Cover Removal

3-123. To remove top or bottom cover, remove the screw at the rear edge that secures cover to instrument. Slide cover toward rear of instrument and lift off. To replace cover, reverse procedure.

WARNING

100/120/220/240 VAC SUPPLY WIRES ARE EXPOSED WHEN EITHER TOP OR BOTTOM COVER IS REMOVED. USE EXTREME CAUTION DURING TROUBLESHOOTING, ADJUSTMENT, OR REPAIR. AVOID DAMAGE TO INSTRUMENT BY REMOVING POWER BEFORE REMOVING OR REPLACING COVERS, ASSEMBLIES, OR COMPONENTS.

3-124. Time Interval Module (Assemblies A10 and A19) Removal and Replacement

- 3-125. To remove and replace the time interval module, proceed as follows:
 - a. Disconnect the power cable from the 5328A (Safety Precaution).
 - b. Remove the top cover from the 5328A.
 - c. Using a suitable flat-blade screwdriver as a prying tool, gently remove the plastic filler strip from the top of the cast front-panel frame.
 - d. Remove the two machine screws that secure the top of the module front panel to the top of the cast front-panel frame.
 - e. Turn the 5328A on its side and remove the two machine screws that secure the bottom of the module front panel to the bottom of the cast front-panel frame.
 - f. Slightly loosen all remaining machine screw along the top of the cast front-panel frame. This releases the compressive force on the module front panel.
 - g. Using a suitable allen wrench, remove the LEVEL A control knob from the module front panel.
 - h. Remove the A19 Attenuator Assembly, with front panel attached, by gently pushing the assembly from the rear. Note that the attenuator assembly is separated from the A10 Synchronizer Assembly during this operation.
 - i. Remove the front panel from the A19 Attenuator Assembly by removing the nut attached to each connector and removing the LEVEL B control knob.
 - Remove the A10 Synchronizer Assembly by pulling the assembly upward.
 - k. Replacement is essentially the reverse of removal.

3-126. A16 Display Assembly Removal and Replacement

- 3-127. To remove and replace the A16 Display Assembly, proceed as follows:
 - a. Disconnect the power cable from the 5328A (Safety Precaution).
 - b. Remove the top cover from the 5328A.
 - c. Using a suitable flat-blade screwdriver as a prying tool, gently remove the plastic filler strip from the top of the cast front-panel frame.
 - d. Remove the two machine screws that secure the top of the display front panel to the top of the cast front-panel frame.
 - e. Turn the 5328A on its side and remove the two machine screws that secure the bottom of the display front panel to the bottom of the cast front-panel frame.
 - f. Slightly loosen all remaining machine screws along the top of the cast front-panel frame. This release the compressive force on the module front panel.
 - g. Remove the A16 Display Assembly, with front panel attached, by gently pushing the assembly from the rear. Note that the display assembly is separated from the A1 Motherboard during this operation.
 - h. Using a suitable allen wrench, remove the SAMPLE RATE control knob from the module.
 - Remove the nuts that attach the SAMPLE RATE and RESET switches and separate the front panel from the display assembly.

NOTE

If the FUNCTION or FREQ RESOLUTION switch control knob is removed or if the associated printed-circuit board switch is disassembled, the knob and switch must be aligned during replacement as described in the following paragraph.

j. To realign the display switches with the proper knob positions, set the rear wafers with the slots directly towards each other. Set the knob of the FUNCTION switch to START A and set the knob of the FREQ RESOLUTION switch to 10⁴.1 kHz position and tighten the two set screws on each knob with a suitable allen wrench.

Figure

NOTE:
TO TRACE MOTHERBOARD BUS
LINES, REFER TO INTERCONNECTION
DIAGRAM, FIGURE 6-17.

Figure 3-1. A1 Motherboard Troubleshooting Flowchart

Figure :

Figure 3-2. A2 Power Supply Troubleshooting Flowchart

A4 FUNCTION SELECTOR TROUBLE SHOOTING FLOWCHART

Figu

Figure 3-3. A4 Function Selector Troubleshooting Flowchart

AIO STANDARD SYNCHRONIZER TROUBLESHOOTING FLOWCHART

YES SUSPECT U2, THEN U3 OR U8

Figure 3-4. Standard A10

Figure 3-4. Standard A10 Synchronizer Assembly Troubleshooting Flowchart

A19 STANDARD ATTENUATOR ASSEMBLY TROUBLESHOOTING FLOWCHART

Figure 3-5. Standard A19

Figure 3-5. Standard A19 Attenuator Assembly Troubleshooting Flowchart

Figure 3-6. A16 Display Assembly Troubleshooting

SECTION IV REPLACEABLE PARTS

4-1. INTRODUCTION

- 4-2. This section contains information for ordering replacement parts. Table 4-1 lists parts in alphanumerical order of their reference designators and indicates the description and HP Part Number of each part, together with any applicable notes. The table includes the following information.
 - a. Description of part (see abbreviations below).
 - b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in Table 4-2.
 - c. Manufacturer's part number.
 - d. Total quantity used in the instrument (Qty column).
- 4-3. HP 5328A options parts are listed in the Installation and Service Manual for each option.

			REFERENCE D	ESIGNA	TIONS		
A	= assembly	E	= micellaneous electrical	MP	= miscellaneous	TP	= test point
ΑT	= attenuator; isolator;	_	part		mechanical part	U	= integrated circuit;
	termination	F	= fuse	Р	= electrical connector		microcircuit
В	= fan; motor	FL	= filter		(movable portion);	٧	= electron tube
вт	= battery	н	= hardware		plug	VR	= voltage regulator;
С	= capacitor	HY	= circulator	Q	= transistor; SCR; triode		breakdown diode
CP	= coupler	J	 electrical connector 		thyristor	W	= cable; transmission
CR	diode; diode thyristor;		(stationary portion);	R	= resistor		path; wire
	varactor		jack	RT	= thermistor	X	= socket
DC	 directional coupler 			s	= switch	Y	= crystal unit-piezo-
DL	= delay line	K	= relay	Т	= transformer		electric
DS	annunciator; signaling	L	= coil; inductor	тв	= terminal board	Z	tuned cavity; tuned
	device (audible or visual); lamp; LED	М	= meter	TC	= thermocouple		circuit
			ABBREV	IATIONS	}		
A	= ampere	BCD	= binary coded decimal	COMP	= composition	°K	= degree Kelvin
ac	= alternating current	BD	= board	COMPL	= complete	DEPC	= deposited carbon
ACCESS	= accessory	BE CU	= beryllium copper	CONN	= connector	DET	= detector
ADJ	= adjustment	BFO	= beat frequency	CP	= cadmium plate	diam	= diameter
A/D	= analog-to-digital		oscillator	CRT	= cathode-ray tube	DIA	= diameter (used in
AF	= audio frequency	вн	= binder head	CTL	= complementary tran-		parts list)
AFC	= automatic frequency	BKDN	= breakdown		sistor logic	DIFF	
	control	BP	= bandpass	cw	= continuous wave	AMPL	= differential amplifier
AGC	= automatic gain control	BPF	= bandpass filter	cw	= clockwise	div	= division
AL	= aluminum	BRS	= brass	D/A	= digital-to-analog	DPDT	= double-pole, double
ALC	= automatic level control	BWO	= backward-wave	dB	= decibel		throw
AM ·	= amplitude modulation		oscillator	dBm	= decibel referred to	DR	= drive
AMPL	= amplifier	CAL	= calibrate		1 mW	DSB	 double sideband
APC	= automatic phase	ccw	= counterclockwise	dc	= direct current	DTL	 diode transistor logi
	control	CER	= ceramic	deg	= degree (temperature	DVM	 digital voltmeter
ASSY	= assembly	CHAN	= channel	-	interval or difference)	ECL	= emitter coupled logi
AUX	= auxiliary	cm	= centimeter	•	= degree (plane angle)	EMF	= electromotive force
avq	= average	СМО	= coaxial	°C	= degree Celsius	EDP	= electronic data
AWG	= american wire gauge	COEF ,	= coefficient		(centrigrade)		processing
BAL	= balance	COM	= common	۰F	= degree Fahrenheit	ELECT	= electrolytic

ABBREVIATIONS (CONTINUED)

ENCAP	- oncensulated	min	= minute (time)	PIV	= peak inverse voltage	TFT	= thin-film to	ransistor
EXT	= encapsulated = external		= minute (time) = minute (plane angle)	pk	= peak iliverse voltage	TGL	= toggle	ansistoi
F	= farad	MINAT	= miniature	PL	= phase lock	THD	= thread	
FET	= field-effect transistor	mm	= millimeter	PLO	= phase lock oscillator	THRU	= through	
F/F	= flip-flop	MOD	≠ modulator	PM	= phase modulation	TI	= titanium	
FH	= flat head	MOM	≈ momentary	PNP	= positive-negative-	TOL	= tolerance	
FOL H	= fillister head	MOS	= metal-oxide semi-		positive	TRIM	= trimmer	
FM	= frequency modulation		conductor	P/O	= part of	TSTR	= transistor	
FP	= front panel	ms	= millisecond	POLY	= polystyrene	TTL	= transistor-	transistor
FREQ	= frequency	MTG	= mounting	PORC	= porcelain	–	logic	
FXD	= fixed	MTR	= meter (indicating	POS	= positive; position(s)	TV	= television	
g	= gram		device)		(used in parts list)	TVI	= television i	nterference
ĞE	= germanium	mV	= millivolt	POSN	= position	TWT	= traveling w	
GHz	= gigahertz	mVac	= millivolt, ac	POT	= potentiometer	U	= micro (10-	
GL	= glass	mVdc	= millivolt, dc	p-p	= peak-to-peak		parts list)	, ,
GND	= ground(ed)	mVpk	= millivolt, peak	PP	= peak-to-peak (used in	UF	= microfarad	(used in
н	= henry	mVp~p	= millivolt, peak-to-peak		parts list)		parts list)	•
h	= hour	mVrms	= millivolt, rms	PPM	= pulse-position	UHF	= ultrahigh fi	equency
HET	= heterodyne	mW	= milliwatt		modulation	UNREG	= unregulate	d
HEX	= hexagonal	MUX	= multiplex	PREAMPL	= preamplifier	V	= volt	
HD	= head	MY	= mylar	PRF	= pulse-repetition	VA	= voltampere	
HDW	= hardware	μΑ	= microampere		frequency	Vac	= volts ac	
HF	= high frequency	μF	= microfarad	PRR	= pulse repetition rate	VAR	= variable	
HG	= mercury	μН	= microhenry	ps	= picosecond	vco	= voltage-co	ntrolled
н	= high	μ mho	= micromho	PT	= point		oscillator	
HP	= Hewlett-Packard	μs	= microsecond	PTM	= pulse-time modulation	Vdc	= voits dc	
HPF	= high pass filter	μ∨	= microvolt	PWM	= pulse-width modulation	VDCW	= volts dc, we	orking (used
HR	= hour (used in parts list)	µ∨ac	= microvolt, ac	PWV	= peak working voltage		in parts list)
HV	= high voltage	µ∨dc	= microvolt, dc	RC	= resistance capacitance	V(F)	= volts, filtere	ed
Hz	= Hertz	µVpk	= microvolt, peak	RECT	= rectifier	VFO	= variable-fre	quency
IC	= integrated circuit	µ ∨p-p	= microvolt, peak-to-	REF	= reference		oscillator	
ID	= inside diameter		peak	REG	= regulated	VHF	= very-high f	requency
IF	 intermediate frequency 	µ∨rms	= microvolt, rms	REPL	= replaceable	Vpk	= volts peak	
IMPG	= impregnated	μW	= microwatt	RF	= radio frequency	Vp-p	= Volts peak-	to-peak
in	= inch	nA	= nanoampere	RFI	= radio frequency		= volts rms	
INCD	= incandescent	NC	= no connection		interference	VSWR	= voltage star	nding wave
INCL	= include(s)	N/C	= normally closed	RH	= round head; right hand		ratio	
INP	= input	NE	= neon	RLC	= resistance-inductance-	VTO	= voltage-tun	
INS	= insulation	NEG	= negative		capacitance		= vacuum-tut	
INT	= internal	nF	= nanofarad	RMO	= rack mount only		= volts, switcl	hed
kg	= kilogram	NI PL	= nickel plate	rms	= root-mean-square		= watt	
kHz	= kilohertz	N/O	= normally open	RND	= round		= with	
kΩ	= kilohm	NOM	= nominal	ROM	= read-only memory		= working inv	erse voltage
kV	= kilovolt	NORM	= normal	R&P	= rack and panel		= wirewound	
lb	= pound	NPN	= negative-positive-	RWV	= reverse working voltage		= without	
LC	= inductance-capacitance	NDO	negative	8	= scattering parameter		= yttrium-iror	-
LED	= light-emitting diode	NPO	= negative-positive zero	s "	= second (time)	Zo	= characterist	ic
LF.	= low frequency		(zero temperature	"	= second (plane angle)		impedance	
LG	= long	NRFR	coefficient) = not recommended for	S-B	= slow-blow (fuse (used			
LH	= left hand	NACA		con	in parts list)			
LIM	= limit	NCD	field replacement	SCR	= silicon controlled rectifier; screw		NOTE	
LIN	= linear taper (used in	NSR	= not separately	SE	= selenium			
lia.	parts list)	ne	replaceable = nanosecond	SECT			viations in the	parts list
lin LK WASH	= linear	ns nW	= nanowatt	SEMICON	= sections = semiconductor	will be in	upper case.	
LK WASH	= lockwasher = low; local oscillator	OBD	= order by description	SHF	= superhigh frequency			
	to a contate and a Apparatu	ODD	= outside diameter	SI				
LOG	= logarithmic taper (used in parts list)	ОН	= oval head	SIL	= silver			
Log	= logarithm(ic)	OP AMPL	= operational amplifier	SL	= slide			
log LPF	= logarithm(ic) = low pass filter	OPT	= option	SNR	= signal-to-noise ratio			
LPF	= low pass filter = low voltage	osc	= oscillator	SPDT	= single-pole, double-	MU	LTIPLIE	RS
m m	= meter (distance)	ox	= oxide	G. D1	throw			
mA	= milliampere	oz	= ounce	SPG	= spring			
MAX	= miliampere = maximum	$\tilde{\Omega}$	= ohm	SPG	= split ring	Abbreviation	on Prefix	Multiple
MΩ	= megohm	P	= peak (used in parts	SPST	= single-pole, single-	т	tera	1012
MEG	= meg (10%) (used in		list)	- ·	throw	Ġ	giga	10%
I	parts list)	PAM	= pulse-amplitude	SSB	= single sideband	M	mega	10
MET FLM	= metal film		modulation	SST	= stainless steel	k k	kilo	103
MET OX	= metal oxide	PC	= printed circuit	STL	= steel	da	deka	10
MF	= medium frequency;	PCM	≈ pulse-code moudulation;	SQ	= square	ď	deci	10-1
1	microfared (used in		pulse-count modulation	SWR	= standing-wave ratio	c	centi	10-2
1	parts list)	PDM	= pulse-duration	SYNC	= synchronize	m	milli	10-3
MFR	= manufacturer		modulation	T	= timed (slow-blow fuse)	μ	micro	10-6
mg	= milligram	pF	= picofarad	TA	= tantalum	д П	nano	10-9
MHz	= megahertz	PH BRZ	= phosphor bronze	TC	= temperature	р	pico	10-12
mH	= millihenry	PHL	= Phillips		compensating	f	femto	10-15
mho	= mho	PIN	= positive-instrinsic-	TD	= time delay	a	atto	10-18
MIN	= minimum		negative	TERM	= terminal	-	3.10	••

4-4. ORDERING INFORMATION

- 4-5. To obtain replacement parts, address order of inquiry to your local Hewlett-Packard Sales and Service Office (see lists at rear of this manual for addresses). Identify parts by their Hewlett-Packard part numbers.
 - a. Instrument model number.
 - b. Instrument serial number.
 - c. Description of the part.
 - d. Function and location of the part.

4-6. HP PART NUMBER ORGANIZATION

4-7. Following is a general description of the HP part number system.

4-8. Component Parts and Materials

4-9. Generally, the prefix of HP part numbers identifies the type of device. Eight digit part numbers are used, where the four digit prefix identifies the type of component, part, or material and the four digit suffix indicates the specific type. Following is a list of some of the more commonly used prefixes for component parts. The list includes HP manufactured parts and purchased parts.

Prefix	Component/Part/Material
0121	Capacitors, Variable (mechanical)
0122–	Capacitors, Voltage Variable (semiconductor)
0140-	Capacitors, Fixed
0150-	Capacitors, Fixed Non-Electrolytic
0160-	Capacitors, Fixed
0180-	Capacitors, Fixed Electrolytic
0330-	Insulating Materials
0340-	Insulators, Formed
0370-	Knobs, Control
0380-	Spacers and Standoffs
0410-	Crystals
0470-	Adhesives
0490-	Relays
0510-	Fasteners
0674- thru 0778-	Resistors, Fixed (non wire wound)
0811- thru 0831-	Resistors (wire wound)
1200-	Sockets for components
1205–	Heat Sinks
1250-	Connectors (RF and related parts)
1251–	Connectors (non RF and related parts)
1410-	Bearings and Bushings
1420-	Batteries
1820–	Monolithic Digital Integrated Circuits
1826-	Monolithic Linear Integrated Circuits
1850-	Transistors, Germanium PNP
1851–	Transistors, Germanium NPN
1853–	Transistors, Silicon PNP
1854	Transistors, Silicon NPN
1855–	Field-Effect-Transistors
1900- thru 1912-	Diodes
1920- thru 1952-	Vacuum Tubes
1990-	Semiconductor Photosensitive and Light-Emitting Diodes
3100 thru 3106	Switches
8120-	Cables
9100-	Transformers, Coils, Chokes, Inductors, and Filters

4-10. For example, 1854-0037, 1854-0221, and 1851-0192 are all NPN transistors. The first two are silicon and the last is germanium.

4-11. General Usage Parts

4-12. The following list gives the prefixes for HP manufactured parts used in serveral instruments, e.g., side frames, feet, top and bottom covers, etc. These are eight-digit part numbers with the four-digit prefix identifying the type of parts as shown below:

Type of Part	Prefix
Sheet Metal	5000- to 5019-
Machined	5020- to 5039-
Molded	5040- to 5059-
Assemblies	5060- to 5079-
Components	5080- to 5099-

4-13. Specific Instrument Parts

4-14. These are HP manufactured parts for use in individual instruments or series of instruments. For these parts, the prefix indicates the instrument and the suffix indicates the type of part. For example, 05328-60001 is an assembly used in the 5328A. Following is a list of suffixes commonly used.

Type of Part	P/N Suffix
Sheet Metal	-00000 to -00499
Machined	-20000 to -20499
Molded	-40000 to -40499
Assembly	-60000 to -60499
Component	-80000 to -80299
Documentation	-90000 to -90249

4-15. FACTORY SELECTED PARTS

4-16. Some of the values in the parts lists are selected during manufacture to meet circuit requirements. These parts are marked with an asterisk (*) in the parts list and schematic diagrams, with average values shown.

Table 4-1. Replaceable Parts

A1C1 A1C2 A1C3 A1C4 A1C5 A1C6 A1C7	05328-60001 0180-1735 0160-0161	1	MOTHER BOARD ASSEMBLY		
A1C1 A1C2 A1C3 A1C4 A1C5 A1C6 A1C7	0180-1735	1	MOTHER BOARD ASSEMBLY		
A1C2 A1C3 A1C4 A1C5 A1C6 A1C7 A1C7			SERIES 1604	28480	05328-60001
A1C4 A1C5 A1C6 A1C7 A1C8			NOT ASSIGNED NOT ASSIGNED		
A1C7 A1C8	0180-0106	1 2 2	CAPACITOR-FXD .22UF-10% 35VDC TA CAPACITOR-FXD .01UF -10% 200WVDC POLYE CAPACITOR-FXD 60UF+-20% 6VDC TA	56289 56289 56289	150D224X9035A2 292P10392 150D606X0006B2
A1C8	0140-0177 0160-0155	1 1	CAPACITOR-EXD 400PF +-1% 300HVDC HICA	72136 56289	DM15F401F0300WV1CR 292P33292
A1C9	0180-0230	3	CAPACITOR—FXD 3300PF +-10% 200HVDC POLYE CAPACITOR—FXD 1UF+-20% 50VDC TA NOT ASSIGNED	56289	1500105X005QA2
A1C10	0160-0314	1	CAPACITOR-FXD .Oluf -5% 100WVDC POLYE	84411	.663UW10354W2
A1C11 THRU A1C16			NOT ASSIGNED		
A1C17*	0160-2264	1	CAPACITOR-FXD 20PF +-5% 500 WVDC CER *FACTORY SELECTED PART	28480	0160-2264
AIC18 AIC19	0121-0060	1	CAPACITOR-V TRMR-CER 2/8PF 350V PC-MTG NOT ASSIGNED	00865	304322 2/8PF NPO
A1C20 A1C21	0160-0161 0180-0210	9	CAPACITOR-FXD .01UF -10% 200WVDC POLYE CAPACITOR-FXD 3.3UF-20% 15VDC TA	56289 56289	292P10392 150D335X0015A2
A1C 22	0160-2055	26	CAPACITOR-FXD .01UF +80-20% 100MVDC CER	28480	0160-2055
A1C23 THRU A1C28 A1C29	0180-0230	_	NOT ASSIGNED Capacitor-fxd 1uf+-20% 50VDC TA	56289	150D105X0050A2
A1C30 A1C31	0160÷0153 0180÷0230	1	CAPACITOR—FXD 1000PF IO% 200HVDC POLYE CAPACITOR—FXD 1UF+-20% 50VDC TA	56289 56289	292P10292 150D105X0050A2
A1C32 A1C33	0180-0106 0160-2055		CAPACITOR-FXD 60UF+-20% 50VDC TA CAPACITOR-FXD -0UF+-20% 6VDC TA CAPACITOR-FXD -0UF+80-20% 100WVDC CER	56289 28480	15001 05 X005 0A2 15006 06 X0006 B2 0160~2055
A1C34 A1C35	0180-0210 0160-2055		CAPACITOR-FXD 3-3UF+-20% 15VDC TA CAPACITOR-FXD -01UF +80-20% 100WVDC CER	56289 28480	150D335X0015A2 0160-2055
A1C36 A1C37	0180-0210 0160-2055		CAPACITOR-FXD 3.3UF-20% 15VDC TA CAPACITOR-FXD .01UF +80-20% 100WVDC CER	56289 28480	1500335 X0015A2 0160-2055
A1C38 A1C39 A1C40	0160-2055 0160-2055 0180-0210		CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD 3.3UF+-20% 15VDC TA	28480 28480 56289	0160-2055 0160-2055 150D335X0015A2
A1C41 A1C42	0160-2055 0180-0210		CAPACITOR-FXD -01UF +80-20% 100WVDC CER CAPACITOR-FXD 3-3UF+-20% 15V0C TA	28480 56289	0160-2055 150D335 X0015A2
A1C43 A1C44	0160-2055 0160-2055		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER	28480 28480	0160-2055 0160-2055
A1C45	0180-0210		CAPACITOR-FXD 3.3UF-20% 15VDC TA	56289	1500335X0015A2
A1C46 A1C47	0180=0210 0160=4084	6	CAPACITOR-FXD 3-3UF+-20% 15VDC TA CAPACITOR-FXD -1UF +-20% 50MVDC CER	56289 28 48 0	150D335X0015A2 0160-4084
A1CR1 A1CR2	1901-0040 1910-0016	17 4	DIODE-SWITCHING 30V 50NA 2NS DO-35 DIODE-GE 60V 60NA 1US DO-7	28480 28480	1901-0040 1910-0016
A1CR3 A1CR4 A1CR5	1910-0016 1902-0031 1901-0050	1 2	DIODE-GE 60V 60NA 1US DO-7 DIODE-ZNR 12.7V 5% DO-7 PD=.4M TC=+.061% DIODE-SWITCHING 80V 200NA 2NS DO-7	28480 04713 28480	1910 - 0016 SZ10939-212 1901-0050
A1CR6 A1CR7	1901-0050 1901-0040		DIODE-SWITCHING 80V 200NA 2NS DD-7 DIODE-SWITCHING 30V 50NA 2NS DO-35	28480 28480	1901-0050 1901-0040
AICR8 AICR9	1902-3082 1901-0040	1	DIODE-SMITCHING 30V 50NA 2NS DU-35 DIODE-SMITCHING 30V 50NA 2NS DO-35	04713 28480	52 10939-86 1901-0040
A1CR10	1901-0040		DIODE-SWITCHING 30V 50NA 2NS DO-35	28480	1901-0040
AICRII AICRI2 AICRI3	1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50NA 2NS DD-35 DIODE-SWITCHING 30V 50NA 2NS DD-35 DIODE-SWITCHING 30V 50NA 2NS DD-35	28480 28480 28480	1901-0040 1901-0040 1901-0040
AICRI4 AICRI5	1901-0040 1901-0040 1910-0016		DIODE-SWITCHING 30V 50NA 2NS DO-35 DIODE-GE 60V 60NA 1US DO-7	28480 28480 28480	1901-0040 1901-0040 1910-0016
A1CR16	1901-0040		DIODE-SWITCHING 30V 50NA 2NS DO-35	28480	1901-0040
A1L1	9100-2276	1	COIL-FXD MOLDED RF CHOKE 1000H 10%	24226	10/103
A 1Q 1 A 1Q 2	1854-0071 1853-0015	5 2	TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=200MW FT=500MHZ	28480 28480	1854-0071 1853-0015
A1Q3 A1Q4 A1Q5	1853-0015 1854-0071 1854-0071		TRANSISTOR PNP SI PD=200MW FT=500MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480	1853-0015 1854-0071 1854-0071
A196	1854-0071	3	TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=200MW FT=600MHZ	28480 28480	1854-0071
A107 A108	1854-0071 1854-0071		TRANSISTOR NPN SI 'D=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480	1854-0071 1854-0071

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
AIR1 AIR2 AIR3 AIR4 AIR5	0683-2715 1810-0055 0683-2725 0683-3355 1810-0055	9 5 1	RESISTOR 270 5% .25W FC TC=-400/+600 NETWORK-RES 9-PIN-SIP .15-PIN-SPCG RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 3.3M 5% .25W FC TC=-900/+1100 NETWORK-RES 9-PIN-SIP .15-PIN-SPCG	01121 28480 01121 01121 28480	C82715 1810-0055 C82725 C83355 1810-0055
Alro Alro Alro Alro Alrio	0683-2725 0683-1035 0683-4725 0683-1525 0683-1025	21 5 9 18	RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB2725 CB1035 CB4725 CB1525 CB1025
AIR11 AIR12 AIR13 AIR14 AIR15	0683-1025 0683-1025 0683-1035 0683-4725 1810-0041	2	RESISTOR 1K 5% -25W FC TC=-400/+600 RESISTOR 1K 5% -25W FC TC=-400/+600 RESISTOR 10K 5% -25W FC TC=-400/+700 RESISTOR 4-7K 5% -25W FC TC=-400/+700 NETWORK-RES 9-PIN-SIP -15-PIN-SPCG	01121 01121 01121 01121 01121 28480	C81025 C81025 C81035 C84725 1810-0041
A1R16 A1R17 A1R18 A1R19 A1R20	0683-1025 0683-1035 0683-1525 1810-0055 0683-1525		RESISTOR 1K 5% -25W FC TC=-400/+600 RESISTOR 10K 5% -25W FC TC=-400/+700 RESISTOR 1-5K 5% -25W FC TC=-400/+700 NETWORK-RES 9-PIN-51P -15-PIN-5PCG RESISTOR 1-5K 5% -25W FC TC=-400/+700	01121 01121 01121 28480 01121	C81025 C81035 C81325 1810-0055 C81525
A1R21 A1R22 A1R23 A1R24 A1R25	0698-4037 0683-2715 0683-2015 0683-1025 0683-1525	1	RESISTOR 46.4 1% .125W F TC=0+-100 RESISTOR 270 5% .25W FC TC=-400/+600 RESISTOR 200 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1.5K 5% .25W FC TC=-400/+700	16299 01121 01121 01121 01121	C4-1/8-T0-46R4-F CB2715 CB2015 CB1025 CB1525
A1R 26 A1R 27 A1R 28 A1R 29 A1R 30	0483-1025 0483-1525 1810-0055 0683-4725 0683-1035		RESISTOR 1K 5% .25% FC TC=-400/+600 RESISTOR 1.5K 5% .25% FC TC=-400/+700 NETMORK-RES 9-PIN-SIP .15-PIN-SPCG RESISTOR 4-7K 5% .25% FC TC=-400/+700 RESISTOR 10K 5% .25% FC TC=-400/+700	01121 01121 28480 01121 01121	CB1025 CB1525 1810-0055 CB4725 CB1035
A1R 31 A1R 32 A1R 33 A1R 34 A1R 35	0483-5105 0483-1035 0483-1035 0483-2715 0483-5115	13	RESISTOR 51 5% -25W FC TC=-400/+500 RESISTOR 10N 5% -25W FC TC=-400/+700 RESISTOR 10K 5% -25W FC TC=-400/+700 RESISTOR 270 5% -25W FC TC=-400/+600 RESISTOR 510 5% -25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB5105 CB1035 CB1035 CB2715 CB2715 CB5115
A1R36 A1R37 A1R38 A1R39 A1R40	0683-1035 0683-2715 0683-1035 0683-1035 0683-1035		RESISTOR 10K 5% -25M FC TC=-400/+700 RESISTOR 270 5% -25M FC TC=-400/+600 RESISTOR 10K 5% -25M FC TC=-400/+700 RESISTOR 10K 5% -25M FC TC=-400/+700 RESISTOR 10K 5% -25M FC TC=-400/+700	01121 01121 01121 01121 01121	CB1 035 CB2715 CB1 035 CB1 035 CB1 035
A1R41 A1R42 A1R43 A1R44 A1R45	0683-1035 1810-0055 0683-1025 0683-1035 0683-1035	:	RESISTOR 10K 5% .25W FC TC=-400/+700 NETWORK-RES 9-PIN-SIP .15-PIN-SPCG RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 28480 01121 01121 01121	C81035 1810-0055 CB1025 CB1035 CB1035
A1R46 A1R48 A1R52 A1R55 A1R56	0683-1545 0683-1035 0683-5635 0683-1025 0683-4725	1	RESISTOR 150K 5% .25M FC TC=-800/+900 RESISTOR 10K 5% .25M FC TC=-400/+700 RESISTOR 56K 5% .25M FC TC=-400/+800 RESISTOR 1K 5% .25M FC TC=-600/+600 RESISTOR 1K 5% .25M FC TC=-400/+700	01121 01121 01121 01121 01121	CB1545 CB1035 CB5635 CB1025 CB4725
A1R47, R49-R51, R53, R54 A1R57 A1R58 A1R59 A1R60 A1R61	0683-6815 0683-1025 0683-5605 0683-5605 0683-5605	10	NOT ASSIGNED RESISTOR 680 5% .25W FC TC=-600/+600 RESISTOR 1K 5% .25W FC TC=-600/+600 RESISTOR 56 5% .25W FC TC=-600/+500 RESISTOR 56 5% .25W FC TC=-600/+500 RESISTOR 56 5% .25W FC TC=-600/+500	01121 01121 01121 01121 01121	CB6815 CB1025 CB5605 CB5605 CB5605
A1R62 A1R63 A1R64 A1R65 A1R66	0 683- 5605 0 683- 5605 0 683- 5605 0 683- 5605 0 683- 5605		RESISTOR 56 5% -25M FC TC==400/+500 RESISTOR 56 5% -25M FC TC==400/+500	01121 01121 01121 01121 01121	CB5605 CB5605 CB5605 CB5605 CB5605
Alr67 Alr68 Alr69	0 683-5605 0 683-1035 0 757-0935	1	RESISTOR 56 5% -25% FC TC=-400/+500 RESISTOR 10K 5% -25% FC TC=-400/+700 RESISTOR 3K 2% -125% F TC=0-100	01121 01121 24546	C85605 CB1035 C4-1/8-T0-3001-G
A1R70	0757-0950	1	RESISTOR 12K 2% -125W F TC=0+-100	24546	C4-1/8-T0-1202-G
A1R71 A1R72 A1R73 A1R74 A1R75	0757-0279 0757-0931 0683-1035 0683-1035 0683-1035	1	RESISTOR 3-16K 1% -125W F TC-0+-100 RESISTOR 2K 2% -125W F TC-0+-100 RESISTOR 10K 5% -25W FC TC-400/+700 RESISTOR 10K 5% -25W FC TC-400/+700 RESISTOR 10K 5% -25W FC TC-400/+700	24546 24546 01121 01121 01121	C4-1/8-T0-3161-F C4-1/8-T0-2001-G C81035 C81035 C81035
A1R76 A1R77	0683-1015 0683-5605	4	RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 56 5% .25W FC TC=-400/+500	01121 01121	CB1 015 CB5605
A151 A152 A153	3101-1977 3101-1977 3101-1977	3	SHITCH-SL DPDT-NS SUBMIN -5A 125VAC PC SWITCH-SL DPDT-NS SUBMIN -5A 125VAC PC SWITCH-SL DPDT-NS SUBMIN -5A 125VAC PC	28480 28480 28480	3101-1977 3101-1977 3101-1977

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1U1 A1U2 A1U3	1820-0055 1820-1056 1820-0175	2 1 1	IC SN74 90 N COUNTER IC SN74 132 N COUNTER IC SN74 05 N INV	01295 01295 01295	SN7490N SN74132N SN7405N
A1U4	1820-1401	ī	IC DIGITAL	28480	1820-1401
A1U5 A1U6 A1U7 A1U8	1820-0513 1820-0282 1820-0511 1820-0174	2 4 1 6	IC SN74 09 N GATE IC SN74 86 N GATE IC SN74 08 N GATE IC SN74 04 N INV	01295 01295 01295 01295	SN7409N SN7486N SN7408N SN7404N
A1U9	1820-0661	2	IC SN74 32 N GATE	01295	SN7432N
A1U10 A1U11 A1U12 A1U13 A1U14	1820-1143 1820-0301 1820-0634 1820-0269 1820-0513	1 5 1 2	IC DM85 52N COUNTER IC SN74 75 N LATCH IC COUNTER IC SN74 03 N GATE IC SN74 09 N GATE	27014 01295 28480 01295 01295	DM8552N SN7475N 1820-0634 SN7403N SN7409N
A1U15 A1U16 A1U17 A1U18 A1U19	1820-0803 1820-0537 1820-0068 1820-0174 1820-0077	1 1 1	IC MC10105L GATE IC SN74 13 N SCHMITT IC SN74 10 N GATE IC SN74 04 N INV IC SN74 74 N FLIP—FLOP	04713 01295 01295 01295 01295	MC10105P SN7413N SN7410N SN7404N SN7474N
A1U20 A1U21 A1U22 A1U22 A1U23 A1U24	1820-0055 1820-0633. 1820-0269 1820-0328	1 2	IC SN74 90 N COUNTER IC DIGITAL IC SN74 03 N GATE IC:TTL QUAD 2-INPT NOR GATE IC:SN74 86 N GATE	01295 28480 01295 01295 01295	SN7490N 1820-0633 SN7403N SN7402N SN7486N
A1U25 A1U26 A1U27 A1U28 A1U29	1820-0301 1820-0301 1820-0301 1820-0538 1820-0282	2	IC SN74 75 N LATCH IC SN74 23 N GATE IC SN74 86 N GATE	01295 01295 01295 01295 01295 01295	SN7475N SN7475N SN7475N SN7475N SN7423N SN7486N
A 1030 A 1031 A 1032 A 1033 A 1034	1820-0282 1820-0301 1820-0538 1820-0174 1820-0174		IC SNT4 86 N GATE IC SNT4 75 N LATCH IC SNT4 23 N GATE IC SNT4 04 N INV IC SNT4 04 N INV	01295 01295 01295 01295 01295 01295	SN7486N SN7475N SN7423N SN7404N SN7404N
A1U35 A1U36 A1U38 A1U39 A1U40	1820-0174 1820-0174 1820-0661 1820-0214 1820-0054	1 1	IC SNT4 04 N INV IC SNT4 04 N INV IC SNT4 32 N GATE IC:TT1 BCD-TO-DECIMAL DECODER IC SNT4 00 N GATE	01295 01295 01295 01295 01295	SN7404N SN7404N SN7432N SN7442N SN7440N
A1U41	1820-0914	1	1C DECODER	07263	9307DC
A1XA-Y1 A1Y1	1200-0153	1	SOCKET-XSTR 3-CONT TO-5-PKG CRYSTAL:QUARTZ 10 NHZ	91459 28480	1211-UL-I 0410-0405
	0360-0124 1200-0473 1200-0549 1251-2026 1251-2035	7 2 4 7 5	TERMINALSTUD SPCL-PRESS MTG SOCKET IC 16-PIN DUAL IN-LINE SOCKET-IC 14-CONT STRIP-PKG CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480 28480 00779 71785 71785	0360-0124 1200-0473 583773-6 252-18-30-300 252-15-30-300
A2	8159-0005 05328-60003	1	WIRE 22AWG W PVC 1X22 80C POWER SUPPLY ASSEMBLY SERIES 1548	00 73G 28400	L-2007-1 05328-60003
A2C1 A2C2 A2C3	0180-0480 0180-0480	2	CAPACITOR, FXD 4500UF +75 -10% 25VDC AL CAPACITOR, FXD 4500UF +75 -10% 25VDC AL NOT ASSIGNED	56289 56289	36DX452G025AA2A 36DX452G025AA2A
A2C4 A2C5 A2C6	0170-0055 0140-0202 0140-0202	2 3	CAPACITOR-FXD .1UF +-20% 200WVDC POLYE CAPACITOR-FXD .15PF +-5V 500VDCW MICA CAPACITOR-FXD .15PF +-5V 500VDCW MICA CAPACITOR-FXD .1UF +-20% 200WVDC POLYE	56289 72186 72186	292P10402 DM15C150J0500WV1CR DM15C150J0500WV1CR 292P10402
A2C7 A2C8 AZC9 A2C10 A2C11 A2C12	0170-0055 0160-2055 0160-0174 0160-0174 0180-1867 0180-1867	2	CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .47UF +80-20% 25WVDC CER CAPACITOR-FXD .47UF +80-20% 25WVDC CER CAPACITOR-FXD 1600UF+75-10% 10VDC AL CAPACITOR-FXD 1600UF+75-10% 10VDC AL	56289 28480 28480 28480 56289 56289	0160-2055 0160-0174 0160-0174 3901686010FL4 3901686010FL4
A2C14 A2C15 A2C16 A2C17	0180-0119 0180-0119 0140-0209 0140-0209 0180-1746	2 4	CAPACITOR-FXD 1UF+75-IO% 25VDC AL CAPACITOR-FXD 1UF+75-IO% 25VDC AL CAPACITOR-FXD 5PF IO% 500WVDC MICA CAPACITOR-FXD 5PF IO% 500WVDC MICA CAPACITOR-FXD 15UF-IO% 20VDC TA	56289 56289 72136 72136 56289	300105G025BA2 300105G025BA2 DM15C05 0K0500MV1CR DM15C05 0K0500MV1CR 1500156 X902 0B2
A2C18 A2C19	0180-1746 0150-0096	1	CAPACITOR-FXD 15UF 10% 20VDC TA CAPACITOR-FXD .05UF +80-20% 100WVDC CER	56 289 28480	150D156 X9020B2 0150-0096
A2CR1 A2CR2 A2CR3 A2CR4 A2CR5	1902-0774 1902-0774 1901-1086 1901-1086 1901-0040	2	DIODE-ZNR 12-1V 10% DO-15 PD=1W DIODE-ZNR 12-1V 10% DO-15 PD=1W DIODE-PWR RECT 50V 5A DIODE-PWR RECT 50V 5A DIODE-SWITCHING 30V 50NA 2NS DO-35	28480 28480 04713 04713 28480	1902-0774 1902-0774 MR820 MR820 1901-0040

Table 4-1. Replaceable Parts (Cont'd)

		13	able 4–1. Replaceable Parts (Cont'd)		
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2CR6 A2CR7 A2CR8 A2CR9 A2CR10	1901-0040 1902-0074 1902-0074 1901-0040 1901-0040	2	DIODE-SWITCHING 30V 50NA 2NS DD-35 DIODE-INR 7.15V 5% DD-7 PD=.4M TC=+.047% DIODE-ZNR 7.15V 5% DD-7 PD=.4M TC=+.047% DIODE-SWITCHING 30V 50NA 2NS DD-35 DIODE-SWITCHING 30V 50NA 2NS DD-35	28480 04713 04713 28480 28480	1901-0040 SZ 18939-140 SZ 10939-140 1901-0040 1901-0040
A2CR11 A2CR12 A2CR13	1902-3224 1902-3224 1901-0638	2	DIODE-ZNR 17.8V 5% DO-7 PD4W TC-+.067% DIODE-ZNR 17.8V 5% DO-7 PD4W TC-+.067% DIODE-MULT FULL WAVE BRIDGE RECTIFIER	04713 04713 28480	SZ 10939-254 SZ 10939-254 1901-0638
A2F1 A2F2	2110-0003 2110-0003	2	FUSE 3A 250V 1.25X.25 UL 1EC FUSE 3A 250V 1.25X.25 UL 1EC	71400 71400	AGC-3
A2L1 A2L2	9100-3017 9100-3017	2	INDUCTOR INDUCTOR	28480 28480	9100-3017 9100-3017
A2Q1 A2Q2 A2Q3 A2Q4 A2Q5	1853-0363 1854-0635 1853-0326 1854-0634 1854-0246	2 3 10 1 14	TRANSISTOR PNP SI PD=50M TRANSISTOR NPN SI PD=50M TRANSISTOR PNP SI PD=1M :T=50MHZ TRANSISTOR PNP SI PD=1M FT=50MHZ TRANSISTOR NPN SI PD=350MM FT=250MHZ	03508 03508 28480 04713	045H5 044H5 1853-0326 MPS-U01 SPS 233
A296 A297 A298 A299 A2910	1853-0016 1853-0363 1854-0635 1854-0246 1853-0016	2	TRANSISTOR PNP SI TO-92 PD-300MW TRANSISTOR PNP SI PD-50W TRANSISTOR NPN SI PD-50W TRANSISTOR NPN SI PD-350MW FT-250MHZ TRANSISTOR PNP SI TO-92 PD-300MW	28480 03508 03508 04713 28480	1853-0016 D45H5 D44H5 SPS 233 1853-0016
A2011 A2012	1854-0635 1884-0055	. 1	TRANSISTOR NPN SI PO=50M Thyristor—Triac	03508 28480	D44H5 1884-0055
A 2R 1 A 2R 2 A 2R 3 A 2R 4 A 2R 5	0761-0026 0761-0026 0683-1015 0683-1015 0683-1025	2	RESISTOR 220 5% 1W MO TC=0+-200 RESISTOR 220 5% 1W MO TC=0+-200 RESISTOR 100 5% -25W FC TC=-400/+500 RESISTOR 100 5% -25W FC TC=-400/+600 RESISTOR 1K 5% -25W FC TC=-400/+600	24546 24546 01121 01121 01121	FP32-1-T00-221-J FP32-1-T00-221-J C81015 C81015 C81025
A2R6 A2R7 A2R8 A2R9 A2R10	0683-1025 0683-6815 0683-6815 0698-3620 0698-3620	2	RESISTOR 1K 5% -25W FC TC=-400/+600 RESISTOR 680 5% -25W FC TC=-400/+600 RESISTOR 680 5% -25W FC TC=-400/+600 RESISTOR 100 5% 25W MO TC=04-200 RESISTOR 100 5% 2W MO TC=04-200	01121 01121 01121 24546 24546	CB1025 CB6815 CB6815 FP42-2-T00-100R-J FP42-2-T00-100R-J
A2R11 A2R12 A2R13 A2R14 A2R15	0683-2055 0683-2055 0683-1025 0683-1025 0683-1025	2	RESISTOR 2M 5% .25W FC TC==900/+1100 RESISTOR 2M 5% .25W FC TC==900/+1100 RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 1K 5% .25W FC TC==400/+600	01121 01121 01121 01121 01121	C82055 C82055 C81025 C81025 C81025 C81025
A 2R 16 A 2R 17 A 2R 18 A 2R 19 A 2R 20	0698-3160 0757-0428 0757-0454 0683-6825 0683-7525	1 1 1 1	RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=04-100 RESISTOR 33.2K 1% .125W F TG=0+-100 RESISTOR 6.8K 5% .25W FC TC=+400/+700 RESISTOR 7.5K 5% .25W FC TC=-400/+700	16299 24546 24546 01121 01121	C4-1/8-T0-3162-F C4-1/8-T0-1621-F C4-1/8-T0-3322-F C86825 C87525
A2R 21 A 2R 22 A 2R 23 A 2R 24 A 2R 25	0683-1025 0683-1025 0757-0449 0757-0449 0757-0442	2 5	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	01121 01121 24546 24546 24546	C81025 C81025 C4-1/8-T0-2002-F C4-1/8-T0-2002-F C4-1/8-T0-1002-F
A2R26 A2R27 A2R28 A2R29 A2R30	0757-0442 2100-1738 0757-0442 0683-4725 0683-1135	1	RESISTOR 10K 1% -125W F TC=0+-100 RESISTOR-TRMR 10K 10% C TOP-ADJ 1-TURN RESISTOR 10K 1% -125W F TC=0+-100 RESISTOR 4-7K 5% -25W FC TC=-400/+800 RESISTOR 11K 5% -25W FC TC=-400/+800	24546 30983 24546 01121	C4-1/8-T0-1002-F ET50W103 C4-1/8-T0-1002-F C84725 C81135
A2R31 A2R32 A2R33	0683-2715 0811-3050 0683-2715	1	RESISTOR 270 5% -25W FC TC=-400/+600 RESISTOR -75 5% -5W PW TC=0+-150 RESISTOR 270 5% -25W FC TC=-400/+600	01121 75042 01121	CB2715 BW20-1-3/4-J CB2715
A 2U 1 A 2U 2 A 2U 3 A 2U 4 A 2U 5 A 2U 6	1820-0223 1820-0223 1820-0223 1820-0223 1820-0223 1820-0196	1	IC LM 301A OP AMP IC LW 723C V RGLTR OPTO-ISOLATOR LAMP-PCNDCT IF = 50MA-MAX A2 MISCELLANEOUS	27014 27014 27014 27014 07263 03911	LM301AH LM301AH LM301AH LM301AH 723HC 1990-0449
	1200-0544 1251-3246 2110-0269 05328-00010	3 5 4 1	SOCKET-STRP 3-CONT DIP-SLDR-TERMS CONNECTOR 3-PIN F FUSEHOLDER, CLIP TYPE .25 FUSE BRACKET, REAR	00779 27264 91506 28480	1-583773-1 09-52-3030 6008-32CN 06328-00010
			OPTION 010, OSCILLATOR ASSEMBLY SERIES 1516		
A3	05328-60018	1	SUPPORT BOARD ASSEMBLY	28480	05328-60018

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3A1	10544A	1	CRYSTAL OSCILLATOR ASSEMBLY (PLUGS ONTO A3 BOARD)	28480	10544A
A3C1	0180-2125	2	CAPACITOR-FXD 15UF +- 5% 20VDC TA	56 28 9	1500156 X5 02 082
A 3C2	0160-3466	1	CAPACITOR-FXD 100PF +-10% 1000WVDC CER	28480	0160-3466
A3C3	0160-4084		CAPACITOR-FXD .1UF +-20% 50WVDC CER	28480	0160-4084
A3C4	0160-4084		CAPACITOR-FXD .1UF +-20% 50WVDC CER	28480	0160-4084
A3C5	0180-2125		CAPACITOR-FXD 15UF+-5% 20VDC TA	56289	1500156 X5020B2
A3J1	1 251-2035		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	71785	252-15-30-300
A3L1 A3L2	9140-0131 9100-1788	1 2	COIL-FXD MOLDED RF CHOKE 10MH 5% COIL; FXD; NON-MOLDED RF CHOKE; .75UH	24226 02114	24/105 VK200-20/48
A3MP1	0380-0310	1	STANDOFF-RVT-ON .75LG 6-32THD .25OD BRS	00 866	19218
A3R1	0683-0825	,	RESISTOR 8.2 5% .25W FC TC=-400/+500	01121	C882G5
A3R2	0757-0200	1	RESISTOR 5.62K 12 .125W F TC=0←100	24546	C4-1/8-T0-5621-F
A3R3	0757-0439	1	RESISTOR 6.81K 1% .125W F TC=0←100	24546	C4-1/8-T0-6811-F
A3R4	0683-1225	4	RESISTOR 1.2K 5% .25W FC TC=-400/+703	01121	CB1225
A3R5	0683-1015		RESISTOR 100 5% .25W FC TC=-400/+500	01121	C81015
A3U1	1 820-0439	1	IC UA 723C V RGLTR	07263	723PC
44	05328-60005	1	FUNCTION SELECTOR ASSEMBLY SERIES 1548	28480	05328-60005
A4C1 A4C2 A4C3 A4C4 A4C5	0160-3879 0160-4084 0140-0215 0140-0215	12 2	NOT ASSIGNED CAPACITOR-FXD -01UF +-20% 100MVDC CER CAPACITOR-FXD -01UF +-20% 50MVDC CER CAPACITOR-FXD 80PF +-2% 300MVDC MICA CAPACITOR-FXD 80PF +-2% 300MVDC MICA	28480 28480 72136 72136	0160-3879 0160-4084 DM15E800G0300WV1CR DM15E800G0300WV1CR
A4C6 A4C7 A4C8 A4C9 A4C10	0160-2055 0180-0210 0160-2055 0180-0210 0160-2055	:	CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD 3.3UF5-20% 15VDC TA CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD 3.3UF5-20% 15VDC TA CAPACITOR-FXD .01UF +80-20% 100MVDC CER	28480 56289 28480 56289 28480	0160-2055 1500335 X0015A2 0160-2055 1500335 X0015A2 0160-2055
A4C11 A4C12* A4C13 A4C14 A4C15	0160-0342 0140-0214 0160-2055 0160-2055 0160-2055	1	CAPACITOR-FXD 800PF +-1% 300WVDC MICA CAPACITOR-FXD 60PF +-1% 300WVDC MICA CAPACITOR-FXD -01UF +80-20% 100MVDC CER CAPACITOR-FXD -01UF +80-20% 100MVDC CER CAPACITOR-FXD -01UF +80-20% 100MVDC CER FACTORY SELECTED PART	28480 28480 28480 28480 28480	0160-0342 0140-0214 0160-2055 0160-2055 0160-2055
A4C16	0140-0202	1	CAPACITOR-FXD 15PF +-5% 300WVDC MICA	28480	0140-0202
A4Q1 A4Q2 A4Q3	1854-0215 1854-0215 1854-0215	3	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	04713 04713 04713	SPS 3611 SPS 3611 SPS 3611
A4R1 A4R2 A4R3 A4R4 A4R5	0683-5115 0683-1315 0683-8205 0683-5115 0683-5115	3 3	RESISTOR 510 5% -25W FC TC=-400/+600 RESISTOR 130 5% -25W FC TC=-400/+600 RESISTOR 82 5% -25W FC TC=-400/+500 RESISTOR 510 5% -25W FC TC=-400/+600 RESISTOR 510 5% -25W FC TC=-400/+600	01121 01121 01121 01121 01121	C85115 C81315 C88205 C85115 C85115
A4R6 A4R7 A4R8 A4R9 A4R10	0683-2025 0683-1815 0683-2025 0683-1815 0683-2025	6 7	RESISTOR 2K 5% .25W FC TC=-400/+700 RESISTOR 180 5% .25W FC TC=-400/+600 RESISTOR 2K 5% .25W FC TC=-400/+600 RESISTOR 180 5% .25W FC TC=-400/+600 RESISTOR 2K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB2025 CB1815 CB2025 CB1815 CB2025
A4R11 A4R12 A4R13 A4R14 A4R15	0683-1815 0683-2025 0683-1815 0683-1825 0683-4315	11 4	RESISTOR 180 5% -25W FC TC=-400/+600 RESISTOR 2K 5% -25W FC TC=-400/+700 RESISTOR 180 5% -25W FC TC=-400/+600 RESISTOR 1.8K 5% -25W FC TC=-400/+700 RESISTOR 430 5% -25W FC TC=-400/+600	01121 01121 01121 01121 01121	C81815 C82025 C91815 C81825 C84315
A4R16 A4R17 A4R18 A4R19 A4R20	0483-1825 0483-1815 0483-1815 0483-1825 0483-8205		RESISTOR 1.8K 5% .25M FC TC=-400/+700 RESISTOR 180 5% .25M FC TC=-400/+600 RESISTOR 180 5% .25M FC TC=-400/+600 RESISTOR 1.8K 5% .25M FC TC=-400/+700 RESISTOR 82 5% .25M FC TC=-400/+500	01121 01121 01121 01121 01121	C81825 C81815 C81815 C81825 C88205

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A4R 21 A4R 22 A4R 23 A4R 24 A4R 25	0683-1315 0683-1825 0683-1825 0683-1825 0683-1835		RESISTOR 130 5% -25W FC TC=-400/+600 RESISTOR 1-8K 5% -25W FC TC=-400/+700 RESISTOR 1-8K 5% -25W FC TC=-400/+700 RESISTOR 1-8K 5% -25W FC TC=-400/+700 RESISTOR 10K 5% -25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1315 CB1825 CB1825 CB1825 CB1825 CB1035
A4R 26 A4R 27 A4R 28 A4R 29 A4R 30	0683-4315 0683-2715 0683-3315 0683-1825 0683-1825	3	RESISTOR 430 5% .25W FC TC=-400/+600 RESISTOR 270 5% .25W FC TC=-400/+600 RESISTOR 330 5% .25W FC TC=-400/+600 RESISTOR 1.8K 5% .25W FC TC=-400/+700 RESISTOR 1.8K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	C84315 C82715 C83315 CB1825 CB1825
A4R 31 A4R 32 A4R 33 A4R 34 A4R 35	0683-2725 0683-2725 0683-2725 0683-1825 0683-1815		RESISTOR 2.7K 5% .25M FC TC=-400/+700 RESISTOR 2.7K 5% .25M FC TC=-400/+700 RESISTOR 2.7K 5% .25M FC TC=-400/+700 RESISTOR 1.8K 5% .25M FC TC=-400/+700 RESISTOR 1.8K 5% .25M FC TC=-400/+600	01121 01121 01121 01121 01121	CB2725 CB2725 CB2725 CB1825 CB1825 CB1815
A4R36 A4R37 A4R38 A4R39 A4R40	0683-8205 0683-1315 0683-5115 0683-2715 0683-2715		RESISTOR 82 5% -25% FC TC=-400/+500 RESISTOR 130 5% -25% FC TC=-400/+600 RESISTOR 510 5% -25% FC TC=-400/+600 RESISTOR 270 5% -25% FC TC=-400/+600 RESISTOR 270 5% -25% FC TC=-400/+600	01121 01121 01121 01121 01121	C88205 C81315 C85115 C82715 C82715
A4R41 A4R42 A4R43 A4R44 A4R45	0683-6815 0683-1825 1810-0041 1810-0080 0698-5103	3 1	RESISTOR 680 5% -25W FC TC=-400/+600 RESISTOR 1.8K 5% -25W FC TC=-400/+700 NETWORK-RES 9-PIN-SIP -15-PIN-SPCG NETWORK-RES 8-PIN-SIP -125-PIN-SPCG RESISTOR 430 5% -125W CC TC=0+882	01121 01121 28480 28480 01121	C86815 CB1825 1810-0041 1810-0080 884315
A4R46	0683 1825		RESISTOR 1.8K 5% .25W FC TC=-400/+700	01121	CB1825
A4U1 A4U2 A4U3 A4U4 A4U5	1820-1225 1820-1052 1820-0629 1820-0629 1820-0622	1 2 2	IC MC10231P FLIP-FLOP IC MC10125L XLTR-LGC IC SN74S 112 N FLIP-FLOP IC SN74S 112 N FLIP-FLOP IC SN74S 112 N FLIP-FLOP IC SN74 151 N MUXR	04713 04713 01295 01295 01295	MC10231P MC10125L SN74S112N SN74S112N SN74S112N
A4U6 A4U7 A4U8 A4U9 A4U10	1820-0829 1820-0809 1820-0802 1820-0328 1820-0074	1 1 3	IC MC10164L MUXR IC MC10115 RCVR IC MC10102P GATE IC:TTL QUAD 2—INPT NOR GATE IC:SN74 54 N GATE	04713 04713 04713 01295 01295	MC10164L MC10115P MC10102P SN7402N SN7454N
			A4 MISCELLANEOUS		
·	1480-0116 4040-0752	2 1	EXTRACTOR PIN:1/16" DIA EXTRACTOR-PC 8D YEL POLYC .062—8D-THKNS	73957 28480	GP24-063X250-12 4040-0752
			REFER TO OPTION MANUAL FOR OPTIONS BELOW		
A5			SEE OPT. 020 AND 021 MAN. LISTING FOR AS		
A6			SEE OPT. 021 MAN. LISTING FOR A6		
A7			SEE OPT. 021 MAN. LISTING FOR A7		
A8			SEE OPT. 030 MAN. LISTING FOR A8		
A9 A10			NOT ASSIGNED SEE OPTION 040 MANUAL LISTING FOR OPTION 040 ASSEMBLY A10. SEE BELOW FOR STANCARD A10.		
A10	05328-60006	1	SYNCHRONIZER ASSEMBLY (SERIES 1516)	28480	05328-80006
A10C1 A10C2 A10C3 A10C4 A10C5	0160-3879 0160-3879 0160-3879 0160-2055 0160-0128	2	CAPACITOR-FXD .01UF +-20% 100MYDC CER CAPACITOR-FXD .01UF +-20% 100MYDC CER CAPACITOR-FXD .01UF +-20% 100MYDC CER CAPACITOR-FXD .01UF +80-20% 100MYDC CER CAPACITOR-FXD 2.2UF +-20% 50MYDC CER	28480 28480 28480 28480 28480	0160-3879 0160-3879 0160-3879 0160-2055 0160-0128
A10C6 A10C7 A10CB A10C9 A10C10	0160-3879 0160-3879 0160-3879 0160-0128 0160-3879		CAPACITOR-FXD .01UF -20% 100WVDC CER CAPACITOR-FXD .01UF -20% 100WVDC CER CAPACITOR-FXD .01UF -20% 100WVDC CER CAPACITOR-FXD 2.2UF -20% 50WVDC CER CAPACITOR-FXD .01UF -20% 100WVDC CER	28480 28480 28480 28480 28480	0160-3879 0160-3879 0160-3879 0160-0128 0160-3879
A10C11 A10C12 A10C13 A10C14 A10C15	0180-0428 0180-0428 0160-3879 0160-3879 0160-3874	3	CAPACITOR-FXD 68UF - 20% 6VDC TA CAPACITOR-FXD 68UF - 20% 6VDC TA CAPACITOR-FXD .01UF - 20% 100WVDC CER CAPACITOR-FXD .01UF - 20% 100WVDC CER CAPACITOR-FXD 10FF - 25FF 200WVDC CER	28480 28480 28480 28480 28480	0180-0428 0180-0428 0160-3879 0160-3879 0160-3874

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A10C16 A10C17 A10C18 A10C19 A10C20	0160-3874 0160-3879 0180-0428 0180-1746 0180-1746		CAPACITOR-FXD 10 PF +5PF 200WVDC CER CAPACITOR-FXD .01UF20% 100WVDC CER CAPACITOR-FXD 68UF20% 6VDC TA CAPACITOR-FXD 15UF10% 20VDC TA CAPACITOR-FXD 15UF10% 20VDC TA	28480 28480 28480 56289 56289	0160-3874 0160-3879 0180-0428 1500156 X902082 1500156 X902082
A10C21 A10C22 A10C23 A10C24 A10C25	0160-3879 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD .01UF +-20% 100MVDC CER CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD .01UF +80-20% 100MVDC CER CAPACITOR-FXD .01UF +80-20% 100MVDC CER	28480 28480 28480 28480 28480	0160-3879 0160-2055 0160-2055 0160-2055 0160-2055
A10C26	0160-2055		CAPACITOR-FXD .01UF +80-20% 100WVDC CER	28480	0160-2055
A1061 A1062 A1063	9140-0137 9140-0137 9100-1788	2	COIL-FXD MOLDED RF CHOKE 1MH 5% COIL-FXD MOLDED RF CHOKE 1MH 5% COIL: FXD: NON-MOLDED RF CHOKE: .75UM	24226 24226 02114	19/104 19/104 VK200-20/48
A10Q1 A10Q2 A10Q3 A10Q4	1853-0020 1853-0020 1854-0092 1854-0092	2	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MM FT=150MHZ TRANSISTOR NPN SI PD=200MW FT=600MHZ TRANSISTOR NPN SI PD=200MW FT=600MHZ	28480 28480 28480 28480	1853-0020 1853-0020 1854-0092 1854-0092
Alori .	2100-3439	1	RESISTOR-VAR W/SW 10K 20% LIN DPST-NO-NC P/O A10S1	01121	70K1G132L103M
Alorz Alor3 Alor4	0683-1525 0683-4315 0683-1035		RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 430 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC400/+700	01121 01121 01121	CB1525 CB4315 CB1035
Alors Alor6 Alor7 Alor8 Alor9	0683-5115 0683-1035 0683-4315 0683-3615 0483-3615	3	RESISTOR 510 5% .25M FC TC=-400/+600 RESISTOR 10K 5% .25M FC TC=-400/+700 RESISTOR 430 5% .25M FC TC=-400/+600 RESISTOR 360 5% .25M FC TC=-400/+600 RESISTOR 360 5% .25M FC TC=-400/+600	01121 01121 01121 01121 01121	CB5115 CB1035 CB4315 CB3615 CB3615
AlORIO AlORII Alori2 Alori3 Alori4	0683-2025 0683-2025 1810-0080 1810-0080 0683-5115		RESISTOR 2K 5% .25% FC TC=-400/+700 RESISTOR 2K 5% .25% FC TC=-400/+700 NETMORK-RES 8-PIN-SIP .125-PIN-SPCG NETMORK-RES 8-PIN-SIP .125-PIN-SPCG RESISTOR 510 5% .25% FC TC=-400/+600	01121 01121 28480 28480 01121	CB2025 CB2025 1810-0080 1810-0080 CB5115
AlORIS AlORI6 AlORI7 AlORI8 AlORI9	0683-2415 0683-2415 0683-5115 0683-3315 0683-5105	4	RESISTOR 240 5% .25W FC TC=+400/+600 RESISTOR 240 5% .25W FC TC=+400/+600 RESISTOR 510 5% .25W FC TC=+400/+600 RESISTOR 330 5% .25W FC TC=+400/+600 RESISTOR 51 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB2415 CB2415 CB5115 CB3315 CB3105
A10R20 A10R21 A10R22 A10R23 A10R24	0683-5105 0683-5115 0683-3315 0683-1525 0683-1525		RESISTOR 51 5% .25M FC TC=-400/+500 RESISTOR 510 5% .25M FC TC=-400/+600 RESISTOR 330 5% .25M FC TC=-400/+600 RESISTOR 1.5K 5% .25M FC TC=-400/+700 RESISTOR 1.5K 5% .25M FC TC=-400/+700	01121 01121 01121 01121 01121	C85105 C85115 C83315 C81525 C81525
A10R25 A10R26 A10R27 A10R28 A10R29	0683-1225 0683-3615 0683-1025 0683-1225 0683-1225		RESISTOR 1.2K 5% .25M FC TC=-400/+700 RESISTOR 360 5% .25M FC TC=-400/+600 RESISTOR 1K 5% .25M FC TC=-400/+600 RESISTOR 1.2K 5% .25M FC TC=-400/+700 RESISTOR 1.2K 5% .25M FC TC=-400/+700	01121 01121 01121 01121 01121	CB1225 CB3615 CB1025 CB1225 CB1225
Alor30	0683-1025		RESISTOR 1K 5% -25% FC TC400/+600	01121	CB1025
Alosi			P/O AlORI		
A10U1*	1820-0624	1	IC, ECL *FACTORY SELECTED PART (1820-0624 OR 1820-1566)	01295	MC1651
A10U2	1 82 0- 06 05	1	IC MC10107 GATE	04713	MC10107P
A10U3 A10U4	1820~0802 1820~1052		IC MC10102P GATE IC MC10125L XLTR-LGC	04713 04713	MC10102P MC10125L
A10U5 A10U6 A10U7	1820-0681 1820-1322 1820-0693	2 1 1	IC SN74S OO N GATE IG SN74S OO N GATE IC SN74S 74 N FLIP-FLOP	01295 01295 01295	SN74S00N SN74S02N SN74S74N
A10U8 A10U9 A10U10	1820-0802 1820-0681 1820-0685	1	IC MC10102P GATE IC SNT4S OO N GATE IC SNT4S 10 N GATE	04713 01295 01295	MC10102P SN74S00N SN74S10N
	1480-0116 4040-0748	1	A10 MISCELLANEOUS EXTRACTOR PIN:1/16" DIA EXTRACTOR-PC BD BLK POLYC .062-8D-THKNS	73957 28480	GP24-063X250-12 4040-0748
A11			NOT ASSIGNED		
A12			NOT ASSIGNED		
		,		·	·

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A13			NOT ASSIGNED		
A14			SEE OPTION 040 MAN. LISTING FOR A14		4.2
A15			SEE OPTION 011 MAN. LISTING FOR A15		
A16	05328-60004	1	DISPLAY ASSEMBLY (SERIES 1544)	28480	05328-60004
A16C1	0180-0124		CAPACITOR-FXD 200UF+75-10% 6VDC AL	56 28 9	30D207G006DC2
A16CR1 A16CR2 A16CR3 A16CR4 A16CR5	1901-0040 1901-0040 1901-0040 1910-0016 1901-0040		DIODE-SWITCHING 30V 50NA 2NS DO-35 DIODE-SWITCHING 30V 50NA 2NS DO-35 DIODE-SWITCHING 30V 50NA 2NS DO-35 DIODE-SE 60V 60NA 1NS DO-7 DIODE-SWITCHING 30V 50NA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1910-0016 1901-0040
A16DS1 A16DS2 A16DS3 A16DS4 A16DS5	1990=0452 1990=0452 1990=0452 1990=0452 1990=0452	8	DISPLAY NUM SEG 1 CHAR .3 IN HIGH DISPLAY NUM SEG 1 CHAR .3 IN HIGH	28480 28480 28480 28480 28480	1990-0452 1990-0452 1990-0452 1990-0452 1990-0452
A16D56 A16D57 A16D58 A16D59 A16D510	19900452 19900452 19900452	10	DISPLAY NUM SEG 1 CHAR .3 IN HIGH DISPLAY NUM SEG 1 CHAR .3 IN HIGH DISPLAY NUM SEG 1 CHAR .3 IN HIGH NOT ASSIGNED (SEE OPTION 030 MAN. LISTING) LEO-VISIBLE	28480 28480 28480 28480	1990-0452 1990-0452 1990-0452 1990-0406
A160511 A160512 A160513 A160514 A160515	1990-0406 1990-0406 1990-0406 1990-0406 1990-0406		LED-VISIBLE LED-VISIBLE LED-VISIBLE LED-VISIBLE LED-VISIBLE	28480 28480 28480 28480 28480	1990-0406 1990-0406 1990-0406 1990-0406 1990-0406
A160S16 A160S17 A160S18 A160S19	1990-0406 1990-0406 1990-0406 1990-0406		FED-AIZIBFE FED-AIZIBFE FED-AIZIBFE FED-AIZIBFE	28480 28480 28480 28480	1990-0406 1990-0406 1990-0406 1990-0406
A16P1	1251-2582	1	CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS	71785	252-24-30-300
A16Q1 A16Q2 A16Q3 A16Q4 A16Q5	1853-0326 1853-0326 1853-0326 1853-0326 1853-0326		TRANSISTOR PNP SI PD=1W FT=50MHZ	28480 28480 28480 28480 28480	1853-0326 1853-0326 1853-0326 1853-0326 1853-0326
A16Q6 A16Q7 A16Q8 A16Q9 A16Q10	1853-0326 1853-0326 1853-0326 1853-0326 1854-0246		TRANSISTOR PNP SI PD=1W FT=50MHZ TRANSISTOR PNP SI PD=350MW FT=250MHZ	28480 28480 28480 28480 04713	1853-0326 1853-0326 1853-0326 1853-0326 SPS 233
A16911 A16912 A16913 A16914 A16915	1854-0246 1854-0246 1854-0246 1854-0246 1854-0246		TRANSISTOR NPN SI PD=350MW FT=250MHZ	04713 04713 04713 04713 04713	SPS 233 SPS 233 SPS 233 SPS 233 SPS 233
A16016 A16017 A16018 A16019 A16020	1854-0246 1854-0246 1854-0246 1854-0246 1854-0246		TRANSISTOR NPN SI PD=350MW FT=250MHZ	04713 04713 04713 04713 04713	SPS 233 SPS 233 SPS 233 SPS 233 SPS 233
A16Q21	1854-0246		TRANSISTOR NPN SI PD=350MW FT=250MHZ	04713	SPS 233
A16R1 * A16R2 A16R3 A16R4 A16R5	0683-3905 0683-3905 0683-3905 1810-0213 0683-0395	3 1 1	RESISTOR 39 5% .25M FC TC=-400/+500 RESISTOR 39 5% .25M FC TC=-400/+500 RESISTOR 39 5% .25M FC TC=-400/+500 NETMORK-RES 9-PIN-SIP .15-PIN-SPCG RESISTOR 3.9 5% .25M FC TC=-400/+500	01121 01121 01121 28480 01121	CB3905 CB3905 CB3905 1810-0213 CB3965
A16R6 A16R7 A16S1 A16S2 A16S3	2100-3455 0683-2005 3101-0574 3101-1940 05328-60101 3130-0385 3130-0386 3130-0387 3130-0498 3130-0498	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RESISTOR-VAR CONTROL CC 2.5M 20% 10CW RESISTOR 20 5% .25W FC TC= -400/+500 SMITCH-SL DPDT-MS NINTR 1A 120VAC PC SMITCH-BB DPDT MOM .02A 20VAC PC SMITCH ASSEMBLY, DISPLAY CONTACT, PC, ROTARY SWITCH SPRING:PC ROTARY SMITCH INSULATOR, PC, ROTARY SMITCH, MALE INSULATOR, PC, ROTARY SMITCH, FEMALE SHAFT AND INDEX, B-POSITION SHAFT AND INDEX, 16-POSITION	01121 01121 28480 28480 28480 28480 28480 28480 28480 28480 28480	MP4G048P255RZ CB2005 3101-0574 3101-1940 05328-60101 3130-0384 3130-0385 3130-0386 3130-0387 3130-0498 3130-0499
A1654	05328-60101 3130-0384 3130-0385 3130-0386 3130-0387 3130-0498		SWITCH ASSEMBLY, DISPLAY CONTACT, PC, ROTARY SWITCH SPRING:PC ROTARY SWITCH INSULATOR, PC,ROTARY SWITCH, MALE INSULATOR, PC,ROTARY SWITCH, FEMALE SMAET AND INDEX. 8—POSITION	28480 28480 28480 28480 28480 28480	05328-60101 3130-0384 3130-0385 3130-0386 3130-0387 3130-0498

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
	3130-0499		SHAFT AND INDEX, 16-POSITION A16 MISCELLANEOUS	28480	3130-0499
	1200-0474 05328-20252 05328-20253	9 4 10	SOCKET: ELEC: IC 14-CONT DIP SLDR TERM SPACER, STANDOFF ANNUNCIATOR	28480 28480 28480	1200-0474 05328-20252 05328-20253
A17			SEE OPTION 021 MANUAL LISTING FOR A17		
A18			NOT ASSIGNED		·
A19	05338-40007		SEE OPTION 040 MANUAL LISTING FOR OPTION 040 ASSEMBLY A19. SEE BELOW FOR STANCARD A19. ATTENUATOR ASSEMBLY (SERIES 1516)	28480	05328-60007
A19C1	05328-60007 0160-2055	1	CAPACITOR-FXD -01UF +80-208 100WVDC CER	28480	0160-2055
A19C2 A19C3 A19C4*	0160-2055 0160-4084 0160-0571	2	CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 470PF -20% 100WVDC CER *FACTORY SELECTED PART	28480 28480 28480	0160-2055 0160-4084 0160-0571
A19C5*	0160-3876	2	CAPACITOR-FXD 47PF +-20% 200WVDC CER *FACTORY SELECTED PART	28480	0160-3876
A19C6 A19C7 A19C8*	0180-1701 0160-4256 0160-2244	2 2 2	CAPACITOR—FXD 6.8UF+-20% 6VDC TA CAPACITOR—FXD .047UF +-20% 200WVDC CER CAPACITOR—FXD 3PF +-25PF 500WVDC CER *FACTORY SELECTED PART	56289 6F 364 28480	150D685X0006A2 300-200-W5R-473M 0160-2244
A19C9*	0140-0190	2	CAPACITOR-FXD 39PF +-5% 300WVDC MICA *FACTORY SELECTED PART	72136	DM15E390J0300WV1CR
A19C11*	0160-4084 0160-3876		CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 47PF +-20% 200WVDC CER #FACTORY SELECTED PART	28480 28480	0160-4084 0160-3876
A19C12*	0160-0571		CAPACITOR-FXD 470PF20% 100WVDC CER *FACTORY SELECTED PART	28480	0160-0571
A19C13*	0140-0190		CAPACITOR-FXD 39PF +-5% 300WVDC MICA *FACTORY SELECTED PART NOT ASSIGNED	72136	DM15E390J0300WV1CR
A19C15 A19C16*	0160~2244		NOT ASSIGNED CAPACITOR=FXD 3PF +25PF 500WVDC CER	28480	0160-2244
A19C17 A19C18	0160-4256 0160-2055		*FACTORY SELECTED PART CAPACITOR-FXD =047UF ++-20% 200WVDC CER CAPACITOR-FXD =01UF +80-20% 100WVDC CER	6F 364 28480	300-200-W5R-473M 0160-2055
A19C19 A19C20	0160-2055 0180-1701		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD 6.8UF+-20% 6VDC TA	28480 56289	0160-2055 1500685 X0006A2
A19CR1 A19CR2 A19CR3 A19CR4 A19CR5	1902-0126 1901-0376 1901-0376 1901-0376 1901-0376	2 4	DIODE-ZNR 2-61V 5% DO-7 PD4W TC=073% DIODE-GEN PRP 35V 50NA DO-7 DIODE-GEN PRP 35V 50NA DO-7 DIODE-GEN PRP 35V 50NA DO-7 DIODE-GEN PRP 35V 50NA DO-7	04713 28480 28480 28480 28480	SZ 10939-14 1901-0376 1901-0376 1901-0376 1901-0376
A19CR6	1902-0126		DIODE-ZNR 2.61V 5% DO-7 PD=.4W TC=073%	04713	SZ 10939-14
A190S1 A190S2	1990→0485 1990-0485	2	LEO-VISIBLE LEO-VISIBLE	28480 28480	1990-0485 1990-0485
A19Q1 A19Q2	1855-0213 1855-0213	2	TRANSISTOR-JFET DUAL 2N5912 N-CHAN TRANSISTOR-JFET DUAL 2N5912 N-CHAN	28480 28480	1855-0213 1855-0213
A19R1 A19R2 A19R3	0683-2415 0683-5115 2100-1984	2	RESISTOR 240 5% .25M FC TC=-400/+600 RESISTOR 510 5% .25M FC TC=-400/+600 RESISTOR-TRMR 100 10% C TOP-ADJ 1-TURN	01121 01121 30983	CB2415 CB5115 ET50M101
A19R4	0683-5115		RESISTOR 510 5% -25W FC TC=-400/+600	01121	CB5115
A19R5 A19R6 A19R7 A19R8	0683-5115 0698-5996 0698-5996 0698-6283	2 2	RESISTOR 510 5% .25W FC TC==400/+600 RESISTOR 560 5% .125W CC TC=0+882 RESISTOR 560 5% .125W CC TC=0+882 RESISTOR 10 5% .125W CC TC=0+888 RESISTOR 1M 5% .25W FC TC==800/+900	01121 01121 01121 01121 01121	CB5115 BB5615 BB5615 BB1005 CB1055
A19R9 A19R10*	0683-1055	2 2	RESISTOR 20 5% -25% FC TC==400/+500	01121	CB2005
A19R11 A19R12 A19R13	0698-6974 0757-0442 0698-6431	2	*FACTORY SELECTED PART RESISTOR 90K .25% -125W F TC=0+-25 RESISTOR 10K 1% 12 .125W F TC=0+-100 RESISTOR 900K .5% -125W F TC=0+-100	24546 24546 24546	NE55 C4-1/8-T0-1002-F NA4
A19R14 A19R15 A19R16 A19R17	0698-5996 0698-5996 0683-5115 0698-6283		RESISTOR 560 5% .125W CC TC=0+882 RESISTOR 560 5% .125W CC TC=0+882 RESISTOR 510 5% .25W FC TC=-400/+600 RESISTOR 10 5% .125W CC TC=0+588	01 121 01 121 01 121 01 121	885615 885615 C85115 881005
A19R18	2100-1984		RESISTOR-TRMR 100 10% C TOP-ADJ 1-TURN	30983	ET50W101

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A19R19	0683-1055		RESISTOR 1M 5% -25W FC TC=-800/+900	01121	CB1055
A19R20*	0683-2005		RESISTOR 20 5% .25W FC TC=-400/+500 +FACTORY SELECTED PART	01121	CB2005
A19R21 A19R22	0757-0442 0698-6974	2	RESISTOR 10K 1% •125W F TC=0+-100 RESISTOR 90K •25% •125W F TC=0+-25	24546 24546	C4-I/8-T0-I002-F NE55
A19R23 A19R24	0698-6431 2100-3438	1	RESISTOR 900K .5% .125W F TC=0+-100 RESISTOR-VAR W/SW 10K 20% LIN DPST-NG-NC	24546 01121	NA4 70K1G100L103M
A19R25 A19R26	0683-1525 0683-2415		P/O A1988 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 240 5% .25W FC TC=-400/+600	01121 01121	CB1525 CB2415
A1951 A1952	3101-1933 3101-1933	5	SWITCH-SL SPDT-NS SUBMIN •5A 125V SWITCH-SL SPDT-NS SUBMIN •5A 125V	28480 28480	3101-1933 3101-1933
A1953 A1954	3101-1933 3101-0551	2	SMITCH-SL SPOT-NS SUBMIN .5A 125V SMITCH-SL 4P3T-NS MINTR .3A 125VAC PC	28480 28480	3101-1933 3101-0551
A1955	3101-1933	•	SWITCH-SL SPOT-NS SUBMIN .5A 125V	28480	3101-1933
A19S6 A19S7 A19S8	3101-0551 3101-1933		SWITCH-SL 4P3T-NS MINTR .3A 125VAC PC SWITCH-SL SPOT-NS SUBMIN .5A 125V P/O A19R24	28480 28480	3101-0551 3101-1933
			A19 MISCELLANEOUS		
	1250-1453 1251-1626 05328-20254	1 2	CONNECTOR-RF BNC CKT BD MTG CONNECTOR-PC EDGE 12-CONT/ROW 2-ROWS SPACER: LED	28480 71785 28480	1250-1453 252-12-30-300 05328-20254
			CHASSIS PARTS		
B1	3160-0209	1	FAN-TBAX 45-CFM 115V 50/60-HZ 1.5-THK	28480	3160-0209
S1	3101-1609	1	SWITCH-SL 2-DPDT-NS STD 1.5A 250VAC SLOR	82389	11E-1036
T1	9100-3046	1	TRANSFORMER	28480	9100-3046
U37	1818-2251	1	IC-ROM-NMOS 4K	28480	1818-2251
			MISCELLANEOUS PARTS (5328A)		
	0370-1005 0370-1097 0370-1107 0510-0043 0570-1171	2 2 2 2 2 2	KNOB-BASE-PTR .375 IN JGK SGI-DECAL KNOB-BASE-PTR .5 IN JGK SGI-DECAL KNOB-BASE-PTR AND BAR .5 IN JGK RETAINER-RING .141-DIA CD PL STL SCREW	28480 28480 28480 0018A 00000	0370-1005 0370-1097 0370-1107 1500-14-CD 080
	1250-0083		CONNECTOR-RF BNC FEM SGL HOLE FR	24931	28JR-130-1
	1251-2357 1460-1345	2	CONNECTOR-AC PWR HP-9 MALE FLG MTG WIREFORM 1.34-W 3-LG SST	28480 28480	1251-2357 1460-1345
	2110-0001 2110-0002	1	FUSE 1A 250V NORM-BLO 1.25X.25 UL IEC FUSE 2A 250V 1.25X.25 UL IEC	71400 71400	AGC-1 AGC-2
	2110=0464 2110=0465 2950=0001 2950=0035 2950=0038	1 1 2 2 2	FUSEHOLDER-EXTR POST 20A 300V UL/IEC FUSEHOLDER-EXTR POST UL/IEC .25X1.25FUSE NUT-HEX-DBL-CHAM 3/8-32-THD .094-THK NUT-HEX-DBL-CHAM 15/32-32-THD .078-THK NUT-SPCLY 1/2-24-THD .125-THK .688-A/F	75915 28480 12697 28480 75915	345002-010 2110-0465 20/4-13 2950-0035 903-12
	3101-0851 7120-0644	1 1	CAP-PB BLACK; .2-IN DIA; .155-IN L; FOR WARN LBL "MARNING HIGH VOLTAGE"	28480 28480	3101-0851 7120-0644
	8120-1378	1	CABLE ASSY 3-COND 18-AWG	28480	8120-1378
		:			
					,
	· ·				
	1				
	1				
		I			l

Table 4-1. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			CABINET PARTS FOR SERIAL PREFIXES 1504A, 1516A, 1544A AND 1548A (SEE FIGURE 4-1)		
MP1 MP2 MP3 MP41	5020-8801 5020-8802 5020-8831 5020-8895	1 1 2 2	FRONT FRAME REAR FRAME SIDE STRUT FRONT HANDLE TRIM	28480 28480 28480 28480	5020-8801 5020-8802 5020-8831 5020-8895
MP5 MP6 MP7† MP8† MP9†	5040-7201 5040-7202 5060-9898 5061-1910 5061-1911	4 1 2 1 1	FOOT TOP TRIM FRONT HANDLE ASSEMBLY COVER, TOP COVER, BOTTOM	28480 28480 28480 28480 28480	5040-7201 5040-7202 5060-9898 5061-1910 5061-1911
MP10 MP11 MP12 MP13 MP14 MP15	05328-00001 05328-00002 05328-00003 05328-00006 05328-00012 05328-00013	1 3 3 1 1	BRACKET, MAIN BRACKET, CORNER BRACKET, FRONT BRACKET, POWER SUPPLY PANEL, REAR PLATE, COVER	28480 28480 28480 28480 28480 28480	05328-00001 05328-00002 05328-00003 05328-00006 05328-00012 05328-00013
MP16 MP17 MP18 MP19	05328-20201 05328-20202 05328-20203 05328-20251	1 1 1 1	PANEL, DISPLAY PANEL, DOUBLE, BLANK PANEL, TI HINDOW	28480 28480 28480 28480	05328-20201 05328-20202 05328-20203 05328-20251
			CABINET PARTS FOR SERIAL PREFIX 1604A AND HIGHER DELETE ABOVE PARTS MARKED WITH DAGGER (1) AND ADD		
	5001-0438 5040-7219 5040-7220 5060-9803 5060-9851 5060-9846 5060-9875 05328-00015	2 1 1 1 1 1 1 1 1	THE FOLLOWING: SIDE TRIM FRONT CAP REAR CAP STAP HANDLE COVER, SIDE (W/O HANDLE RECESS) COVER, BOTTOM COVER, SIDE (W/HANDLE RECESS) INSULATOR COVER, TOP	28480 28480 28480 28480 28480 28480 28480 28480 28480	5001-0438 5040-7219 5040-7220 5060-9803 5060-9851 5060-9846 5080-9875 05328-00015 05328-00016
			·		,
					·
			, , , , , , , , , , , , , , , , , , ,		

Figure 4-1. Cabinet Parts

Table 4-2. Manufacturers Code List

Mfr No.	Manufacturer Name	Address	Zip Code
00000	U.S.A. Common	Any Supplier of the U.S.A.	
0018A	Ar Tech Packaging Corp	Lowell, MA	01854
0073G	Gettig Engrg & Mfg Co Inc	Spring Mills, PA	16875
00779	Amp Inc	Harrisburg, PA	17105
0086S	Stettner-Trush Inc	Cazenovia, NY	13035
00866	Goe Engineering Co Inc	City of Industry, CA	91746
01121	Allen-Bradley Co	Milwaukee, WI	53212
01295	Texas Instr Inc Semicond Cmpnt Div	Dallas, TX	75231
02114	Ferroxcube Corp	Saugerties, NY	12477
03508	GE Co Semiconductor Prod Dept	Syracuse, NY	13201
03911	Clairex Corp	Mt. Vernon, NY	10550
04713	Motorola Semiconductor Products	Phoenix, AZ	85008
05123	Gulton Ind Inc Matl & Ceramics Div	Metuchen, NJ	08840
07263	Fairchild Semiconductor Div	Mountain View, CA	94040
12697	Clarostat Mfg Co Inc	Dover, NH	03820
16299	Corning Gl Wk Elec Cmpnt Div	Raleigh, NC	27604
24226	Gowanda Electronics Corp	Gowanda, NY	14070
24546	Corning Glass Works (Bradford)	Bradford, PA	16701
24931	Specialty Connector Co Inc	Indianapolis, IN	46227
27014	National Semiconductor Corp	Santa Clara, CA	95051
27264	Molex Products Co	Downers Grove, IL	60515
28480	Hewlett-Packard Co Corporate HQ	Palo Alto, CA	94304
30983	Mepco/Electra Corp	San Diego, CA	92121
56289	Sprague Electric Co	North Adams, MA	01247
6F364	Centre Engineering Inc	State College, PA	16801
71279	Cambridge Thermionic Corp	Cambridge, MA	02138
71400	Bussman Mfg Div of McGraw-Edison Co	St. Louis, MO	63017
71785	TRW Elek Components Cinch Div	Elk Grove Village, IL	60007
72136	Electro Motive Mfg Co Inc	Willimantic, CT	06226
73957	Groov-Pin Corp	Ridgefield, NJ	07657
75042	TRW Inc Philadelphia Div	Philadelphia, PA	19108
75915	Littlefuse Inc	Des Plaines, IL	60016
82389	Switchcraft Inc	Chicago, IL	60630
84411	TRW Capacitor Div	Ogaliala, NE	69153
91459	Alcon Metal Products Inc	Chicago, IL	60647
91506	Augat Inc	Attleboro, MA	02703

Digitally signed by http://www.aa4df.com

SECTION V MANUAL CHANGES AND OPTIONS

5-1. INTRODUCTION

5-2. This section contains information necessary to adapt this manual to apply to older instruments. Also included is information regarding available options.

5-3. MANUAL CHANGES

5-4. This manual applies directly to Model 5328A Universal Counters with serial number prefix 1604A.

5-5. Newer Instruments

5-6. As engineering changes are made, newer instruments may have serial prefix numbers higher than those listed on the title page of this manual. The manuals for these instruments will be supplied with "manual changes" sheets containing the required information. Replace affected pages or modify existing manual information as directed in the "manual changes" pages. Contact the nearest Hewlett-Packard Sales and Service Office if the change information is missing.

5-7. Older Instruments

5-8. To adapt this manual to instruments having serial prefixes below 1604A, refer to Table 5-1 for backdating that applies to your instrument serial prefix.

lf Your Instrument Has Serial Prefix	Make the Following Changes to Your Manual		
1548	1		
1544	1, 2		
1516	1, 2, 3		
1504	1, 2, 3, 4		

Table 5-1. Manual Backdating

NOTE

Refer to the four-digit series number stamped on the printed-circuit board in your instrument before making manual changes to ensure the changes are applicable.

CHANGE 1

Table 4–1, A1 MISCELLANEOUS:

Change "SERIES 1604" in "Description" column to "SERIES 1544."

Change "0360-0124; 7; TERMINAL STUD SPCL-PRESS MTG; 28480; 0360-0124" to "0360-0451; 4; TERMINAL-STUD SGL-PIN SWGFRM-MTG; 71279; 2970-3".

Figure 6-6, A1 Schematic:

Change "SERIES 1604" at top of schematic to "SERIES 1544."

CHANGE 2

Table 4-1, A2 Replaceable Parts:

Change "SERIES 1548" in A2 "Description" to "SERIES 1544."

Delete the entries for A2C5 and A2C6.

Change "SERIES 1548" in A4 "Description" to "SERIES 1544."

Change A4C12 from 0140-0214 to 0160-2201; CAPACITOR-FXD 51 PF + -5% 300 WVDC MICA; 28480; 0160-2201.

Change A4C16 from 0140-0202 to 0160-2202; 1; CAPACITOR-FXD 75 PF + -5% 300 WVDC MICA; 28480; 0160-2202.

Change A4R42 from 0683-1825 to 0683-2225; 1; RESISTOR 2.2K 5% .25W FC TC = -400/+700; 01121; CB2225.

Figure 6-8, A2 Schematic:

Change "SERIES 1548" at top of schematic to "SERIES 1544."

Change A2C5 and A2C6 from 15 pF to 5 pF. Change NOTE 3 on schematic to read "Capacitors C3, C5 and C6 are normally not installed."

Figure 6-10, A4 Schematic:

Change "SERIES 1548" at top of schematic to "SERIES 1504."

Change A4C12 from 60 pF to 51 pF.

Change A4C16 from 15 pF to 75 pF.

Change A4R42 from 1800 to 2200 ohms.

CHANGE 3

Table 4–1, A1 Replaceable Parts:

Change "SERIES 1604" in A1 "Description" to "SERIES 1516."

Change A1C5 from 0180-0106 to 0180-0124; 2; CAPACITOR-FXD 200 UF +75 -10% 6 VDC AL; 56289; 30D207G006DC2.

Under "A1 MISCELLANEOUS" delete 1200-0473; 2; SOCKET IC 16-PIN DUAL IN-LINE; 28480; 1200-0473.

Table 4–1, A2 Replaceable Parts:

Change "SERIES 1548" to "SERIES 1516."

Under A2 MISCELLANEOUS change "Qty" for 1251-3246 from "5" to "2".

Figure 6-8, A2 Schematic Diagram:

Change "SERIES 1548" at top of schematic to "SERIES 1516."

Table 4–1, A3 Replaceable Parts:

Change "SERIES 1516" in A1 "Description" column to "SERIES 1504."

Change A3C1 from 0180-2125 to 0180-0374; 1; CAPACITOR-FXD 10 UF \pm -10% 20 VDC TA; 56289; 150D106X9020B2.

Change A3R2 from 0757-0200 to 0698-3155; 1; RESISTOR 4.64K 1% .125W F TC = 0 + -100; 16299; C4-1/8-TO-4641-F.

Change A3R4 from 0683-1225 to 0683-2025; RESISTOR 2K 5% .25W FC TC = -400/+700; 01121; CB2025.

Delete A3C3, A3C4, A3C5, A3L2, A3R5 and descriptions.

Figure 6–13, A3 Schematic:

Change A3C1 to 10 UF.

Change A3R2 to 3830 ohms.

Change A3R4 to 2000 ohms.

Delete A3C3, A3C4, A3C5, A3L2 and A3R5.

Change "SERIES 1516" at top of schematic to "SERIES 1504."

Table 4-1, A16 Replaceable Parts:

Change "SERIES 1544" in A16 "Description" to "SERIES 1504."

Delete entry for A16R7.

Figure 6-15, A16 Schematic Diagram:

Change "SERIES 1544" at top of schematic to "SERIES 1516."

Delete resistor R7 from schematic.

CHANGE 4

Table 4-1, A1 Replaceable Parts:

Change "SERIES 1604" in A1 "Description" to "SERIES 1504."

Change A1C17 from 0160-2264 to 0160-2266; 1; CAPACITOR-FXD 24 PF + -5% 500 WVDC CER; 28480; 0160-2266.

Table 4-1, A2 Replaceable Parts:

Change "SERIES 1548" in A2 "Description" to "SERIES 1504."

Table 4-1, A19 Replaceable Parts:

Change "SERIES 1516" in A19 "Description" to "SERIES 1504."

Under "A19 MISCELLANEOUS" change 1250-1453 to 1250-1163.

Figure 6-12, A19 Schematic Diagram:

Change "SERIES 1516" at top of schematic to "SERIES 1504."

Figure 6-6, A1 Schematic Diagram:

Change "SERIES 1604" at top of schematic to "SERIES 1504."

Change A1C17 (in Y1 oscillator circuit) from *20P to 24P.

Figure 6-8, A2 Schematic Diagram and Figure 6-13, A10 Schematic Diagram:

Change "SERIES 1516" at top of schematic to "SERIES 1504."

5-9. OPTIONS

5-10. Options are described in Section I of this manual. Operating instructions for all options are provided in the 5328A Users Manual. Field installation and service instructions for each option are provided in a separate manual for each option with the exception of Option 010, Oven Oscillator and Support Board. Installation instructions for Option 010 are given in the following paragraphs.

5-11. FIELD INSTALLATION OF OPTION 010

5-12. To install Option 010, use field installation kit HP Part No. 05328-80010, consisting of the following parts:

ITEM	PART NUMBER	QUANTITY
Screw, 6-32 x ⁵ / ₁₆	2360-0115	1
Support Board	05328-60018	1
Oven Oscillator Assembly	10544-60011	1

- 5-13. To install the parts, proceed as follows:
 - a. Disconnect the power cable from the 5328A (Safety Precaution).

WARNING

THE AC POWER CIRCUITS TO TRANSFORMER T1 AND THE UNREGULATED DC VOLTAGE ARE STILL ON EVEN WHEN THE POWER SWITCH IS OFF. CONTACT WITH THESE CIRCUITS CAN RESULT IN INJURY TO PERSONNEL OR DAMAGE TO EQUIPMENT.

b. Remove the top and bottom covers of the 5328A.

CAUTION

REFER TO THE REPAIR PARAGRAPH IN SECTION III FOR INSTRUCTIONS ABOUT COMPONENT REMOVAL AND REPLACEMENT.

- c. Remove the 10 MHz crystal (Y1) HP Part No. 0410-0405 from its socket on the motherboard.
- d. Apply power to the 5328A and check pin 2 of connector XA3 for 25 volts, dc. Check all other voltages at connector XA3 for the values shown on the schematic diagram of the Motherboard (Figure 6-6).
- e. Disconnect the power cable from the 5328A.
- f. Ensure that the oven oscillator is secured to the connector on the Support Board. Plug the Support Board into XA3 on the Motherboard with the stud mount facing the rear panel.
- g. Install a 6-32 x ⁵/₁₆-inch screw through 5328A main bracket into support Board stud mount and secure.
- h. Apply power to the 5328A and verify counter operation by performing the In-Cabinet Performance Check in Section III.

SECTION VI SCHEMATIC DIAGRAMS

6-1. INTRODUCTION

6-2. This section contains schematic diagrams and part locators. The part locators show the location by reference designator.

6-3. SCHEMATIC DIAGRAM SYMBOLS AND REFERENCE DESIGNATORS

6-4. Figure 6-1 shows the symbols used on the schematic diagrams. At the bottom of Figure 6-1, the system for reference designators, assemblies, and subassemblies are shown.

6-5. Reference Designations

6-6. Assemblies such as printed-circuit boards are assigned numbers in sequence, A1, A2, etc. As shown in Figure 6-1, subassemblies within an assembly are given a subordinate A number. For example, rectifier subassembly A1 has the complete designator of A25A1. For individual components, the complete designator is determined by adding the assembly number and subassembly number if any. For example, CR1 on the rectifier assembly is designated A25A1CR1.

6-7. SIGNAL MNEMONICS

6-8. Table 6-1 contains a list of the mnemonics used to identify signals on the schematic diagrams.

6-9. IDENTIFICATION MARKINGS ON PRINTED-CIRCUIT BOARDS

- 6-10. HP printed-circuit boards (see Figure 6-1) have four identification numbers: an assembly part number, a series number, a revision letter, and a production code.
- 6-11. The assembly part number has 10 digits (such as 05328-60018) and is the primary identification. All assemblies with the same part number are interchangeable. When a production change is made on an assembly that makes it incompatible with previous assemblies, a change in part number is required. The series number (such as 1504A) is used to document minor electrical changes. As changes are made, the series number is incremented. When replacement boards are ordered, you may receive a replacement with a different series number. If there is a difference between the series number marked on the board and the schematic in this manual, a minor electrical difference exists. If the number on the printed-circuit board is lower than that on the schematic, refer to Section V for backdating information. If it is higher, refer to the loose leaf manual change sheets for this manual. If the manual change sheets are missing, contact your local Hewlett-Packard Sales and Service Office. See the listing on the back cover of this manual.
- 6-12. Revision letters (A, B, etc.) denote changes in printed-circuit layout. For example, if a capacitor type is changed (electrical value may remain the same) and requires different spacing for its leads, the printed-circuit board layout is changed and the revision letter is incremented to the next letter. When a revision letter changes, the series number is also usually changed. The production code is the four-digit seven-segment number used for production purposes.

6-13. Symbols are used on PC boards to aid in identifying pin number, diode elements, etc., as follows:

 Δ OR \square

IDENTIFIES:

Pin 1 of dip and flat-pack IC's. Tab of TO cases. + side of electrolytic capacitors. Pin 1 of resistor packs. Cathode of diodes. Section 1 of dip switches.

6-14. ASSEMBLY LOCATIONS AND COMPONENT LOCATORS

6-15. Figures 6-2, 6-3, and 6-4 show the front, rear, and top views of the 5328A, respectively. The front and rear views shows reference designators of the front and rear panel controls, connectors, and indicators. The top view shows assembly locations. Component locators for each printed circuit assembly are located next to the schematics.

6-16. FACTORY SELECTED COMPONENTS

6-17. Factory selected parts are identified by an asterisk on the schematic and in the parts list. The nominal value is shown on the schematics and is listed in the table of replaceable parts. A table-format summary on the schematic indexes factory selected parts by reference designator, describes what they are selected for and the range of normal values.

6-18. SCHEMATIC DIAGRAMS

6-19. Each schematic diagram contains a table that shows all reference designations used for the assembly and a table of active elements (diodes, transistors and IC's) including part numbers. The schematics contain to/from information for inputs and outputs. This information is supplemented by an overall interconnection diagram of the motherboard and block diagrams of each assembly. Diagrams are as follows:

Figure 6-5. A1 Motherboard Block Diagram

Figure 6-6. A1 Motherboard

Figure 6-7. A2 Power Supply Block Diagram

Figure 6-8. A2 Power Supply Assembly

Figure 6-9. A4 Function Selector Assembly Block Diagram

Figure 6-10. A4 Function Selector Assembly

Figure 6-11. Standard Time Interval Module (A10 and A19) Block Diagram

Figure 6-12. Standard A19 Attenuator/Amplifier Assembly

Figure 6-13. Standard A10 Synchronizer Assembly

Figure 6-14. A16 Display Assembly Block Diagram

Figure 6-15. A16 Display Assembly

Figure 6-16. Option 010 A3 Oscillator Support Board and 10 MHz Oscillator Assembly

Figure 6-17. A1 Motherboard Interconnection Diagram

Figure 6-1. Schematic Diagram Notes

Table 6-1. Signal Mnemonics

MNEMONIC	DESCRIPTION
MINEMONIC	DESCRIPTION
A A	Output of Time Interval Unit, A channel. ECL levels.
R (AØ) R (A1)	Non-latched ROM bits that drive Arming Multiplexer select lines on Function Selector. TTL levels.
B B	Output of Time Interval Unit, B channel. ECL levels.
C C	Output of C module, the carry input for the FS decade. ECL levels.
C ARM	Active high TTL line used for module C arming measurement.
CLK	Clock. Digit address clock to display. TTL levels.
Data A Data B Data C Data D	TTL 4-bit BCD code. Data going to display and HP-IB.
Digit A Digit B Digit C Digit D	TTL 4-bit digit address code. Controls interchange of data.
DVM	Frequency line counted by Function Selector to give display reading. ECL level.
F Code A (FA) F Code B (FB) F Code C (FC) F Code D (FD)	Function code from function switch. TTL levels.
FS	Function Selector.
GOSC GOSC	Gated oscillator. ECL levels.
HDS	TTL level high disables synchronizers.
· HDSA	Used by Option 011 HP-IB Interface to strobe bus data in remote listener.
HLS	TTL level line used to strobe latches.
RL (HOPN)	Latched ROM line which locks open Function Selector main gate.
HPL	Same as LDP.
HRD	High resets decades. TTL active high.
HRS	High strobes 4K ROM. TTL active high.
НВТВ	High resets time base. TTL active high. Also resets Function Selector.
R (HTBA)	Non-latched ROM bit which enables the TTL level Channel A signal from the Function Selector to be counted by the Time Base.

Table 6-1. Signal Mnemonics (Continued)

MNEMONIC	DESCRIPTION
RL (HTBB)	Latched ROM bit which enables the TTL level Channel B signal from the Function Selector to be counted by the Time Base.
R (HTBO)	Non-latched ROM bit which enables the time base to count the oscillator output.
RL (IA) RL (IB) RL (IC)	TTL level latched ROM bits that drive High Speed Multiplexer select lines on Function Selector.
L ANN	Low annunciators. TTL active low turns RHS annunciators on. Must be timed with digit address code to display selected annunciators.
LDDCA	Low disable Decade Counting Assembly (DCA). TTL active low disables DCA so that all DCA outputs are high.
LDI	Low disable indicators. TTL active low blanks RHS annunciators and all decimal points.
LDDIS	Low disable display. TTL active low blanks display except LHS annunciators.
LDP	Low decimal point. TTL active low turns decimal points on. Must be timed with digit address code to display selected decimal points.
LDSW	Low disable switches. The active low disables the FUNCTION RESOLUTION and RESET switches. Allows module control.
LEXT	Low external. TTL active low disables function and resolution switches for external control and lights RM annunciator.
LINH	Low inhibit. TTL active low inhibits starting new measurement.
LMG	Low main gate. TTL active low indicates main gate open.
RL (LMGF)	Latched ROM bit to Function Selector which selects the main gate F/F on the Function Selector to establish the gate time.
LMRES	Low when reset signal comes from display. Provides power- up type reset.
LRES	Low reset. TTL active low resets when FUNCTION, RESOLUTION, or RESET switch settings are changed. Also resets when DVM switches are changed. Provides power-up type of reset.
R (LST)	Non-latched ROM line which is high in stop totalize and low in start.
RL (LTOT)	Low totalize. Latched ROM bit low in totalize mode. TTL level.
LTR	Low transfer. TTL active low used in DCA.
MG MG	Main gate. Accurate signal to drive remote gate such as channel C. ECL levels.
OSC	10 MHz oscillator. TTL level.

Table 6-1. Signal Mnemonics (Continued

Table 6–1. Signal Mnemonics (Continued)			
MNEMONIC	DESCRIPTION		
OSC OSC	100 MHz oscillator. ECL levels.		
OVFL	Overflow. TTL active low indicates display overflow.		
RG	ROM bit. Used to recognize period and institute hysteresis compensation. TTL level.		
RL1 (HEC)	Latched ROM bit. TTL level enables channel C to strobe its digit onto the bus.		
RL2 (BIL)	Latched ROM bit. High for time interval average. TTL level.		
RL3 (HDVM)	Latched ROM bit. Enables DVM to strobe a minus sign on the display or blank characters. TTL level.		
RL4 (LTIF)	Latched ROM bit. TTL level low in time interval or period measurement.		
RL5 (TIO)	Latched ROM bit. TTL level used to recognize period average.		
RL6 (HC)	Latched ROM bit which turns hysteresis compensation on and has a time interval as opposed to a period measurement made by the Time Interval unit. TTL level.		
SRT	The charge node line that controls the sample rate speed.		
RL (TBA) RL (TBB) RL (TBC)	Latched ROM bits that drive Time Base select code inputs.		
TBI TBO	TTL signal that drives Time Base. Time Base scaled output. TTL levels.		
TBS Code A (TBSA) TBS Code B (TBSB) TBS Code C (TBSC)	Time Base code input to ROM controlled by the Time Base switch. TTL levels.		
<u>TI</u>	Time interval. Output of Time Interval module used in time interval measurements. ECL levels.		

Figure 6-2. 5328A Front View

Figure 6-3. 5328A Rear View

Figure 6-4. 5328A Top View

Figure 6-5. A1 Motherboard Block Diagram

5328A

FUNCTION: CHECK FREQ RESOLUTION: 1 kHz 10³

OSCILLOSCOPE

HP 180A/1801A/1821A WITH 10:1 PROBE COUPLING: DC

SLOPE: +

SYNCH: INT, ACF

FUNCTION: CHECK

FREQ RESOLUTION: 1 kHz 10³

OSCILLOSCOPE

HP 180A/1801A/1821A WITH 10:1 PROBE

COUPLING: DC SLOPE: +

SYNCH: INT, ACF

5328A

FUNCTION: CHECK

FREQ RESOLUTION: 1 kHz 10³

OSCILLOSCOPE

HP 180A/1801A/1802A WITH 10:1 PROBE

BUS

COUPLING: DC

SLOPE: +

SYNCH: INT, ACF

Control of the Contro	ADDRESS	LINE NO.
.5V/DIV 1 ms/DIV		
ov	Α	45
ov 111111111111111111111111111111111111	В	45
ov	С	44
ov	D	44

	DATA	LINE NO.
.5V/DIV 1 ms/DIV	A	43
ov	В	43
ov	c	42
ov	D D	42

A1 ACTIVE ELEMENTS

ATACTIVE ELE	IMET TO
REFERENCE DESIGNATIONS	PART NUMBERS
CR1, CR7, CR9-CR14, CR16 CR2, CR3, CR15 CR4 CR5, CR6 CR8	1901-0040 1901-0016 1902-0031 1901-0050 1902-3082
Q1, Q4, Q5, Q7, Q8 Q2, Q3	1854-0071 1853-0015 2N3640
Q6	1854-0092 2N3563
U1, U20	1820-0055 SN7490N
U2	1820-1056 SN74132N
U3	1820- 0175 SN7405N
U4	1820-1401
U5, U14	1820-0513 SN7409N
U6, U24, U29, U30	1820-0282 SN7486N
U7	1820-0511 SN7408N
U8, U18, U33, U34, U35, U36	1820-0174 SN7404N
U9, U38	1820-0661 SN7432N
U10	1820-1143 DM8552N
U11, U25, U26, U27, U31	1820-0301 SN7475N
U12	1820-0634
U13	1820-0269 SN7403N
U15	1820-0803 MC10105P
U16	1820-0537 SN7413N
U17	1820-0068 SN7410N
U19	1820-0077 SN7474N
U21	1820-0633
U23	1820-0338 SN7402N
U28, U32	1820-0538 SN7423N
U39	1820-0214 SN7442N
U40	1820-0054 SN7400N
U41	1820-0914 9307DC

REFERENCE DESIGNATIONS

A1
C1, C2 NOT ASSIGNED
C3-C8
C9
C10
C11-C16 NOT ASSIGNED
C17-C18
C19 NOT ASSIGNED
C20-C22
C23-C28 NOT ASSIGNED
C29-C47
CR1-CR16
L1 ·
Q1-Q8
R1-R46
R47 NOT ASSIGNED
R48
R49-R51 NOT ASSIGNED
R52
R53, R54 NOT ASSIGNED
R55-R77

FACTORY SELECTED PART

REFERENCE DESIGNATOR	SELECTED FOR	NORMAL VALUE RANGE
C-17	10 MHz oscillation adjusted by C-18	24 pf ±5 pf

421- pin 7, 8, 9-7.

pin 6- 15 mHz

1174- RESET

11 11- 7 ME BA

11- TIME BASE OUTP47 SEZECT

PINE SECTION

DISPLAY CONTROL

STATE CONTROL

OSCILLATOR

PECADE COUNTING ASSEMBLY

TIME BASE

Figure 6-6. A1 Motherboard Assembly

Figure 6-7. A2 Power Supply Block Diagram

R28 Ţ;iu³ R21 1000 R26 -12V R25 10K U2 R6 1000 R18 33.2K -12V R 10 100 R4 100 T.47U +1 C12 1600U C8 0.01U R12 2M 7.15V <u>L2</u> R24 20K R22 1000 ♥ CR4 R20 7500 -127 R2 220 CR2 12.1V

	A2
C1, C2 C3 NO C4 C7-C19 CR1-CF	
F1, F2 L1, L2 Q1-Q12 R1-R33	

REFERENCE DESIGNATIONS	PART NUMBERS
CR1, CR2 CR3, CR4 CR5, CR6, CR9, CR10	1902-0774 1901-1086 1901-0040
CR7, CR8 CR11, CR12 CR13 Q1, Q7	1902-0074 1902-3224 1901-0638 1853-0363 D45H5
Q2, Q8, Q11	1854-0635 D44H5
Q3	1853-0326
Q4	1854-0634 MPS-U01
Q5, Q9	1854-0246 2N3643
Q6, Q10	1853-0016 2N3638
Q12	- 1884-0055 R40529
U1, U2, U3, U4	1820-0223 LM301AH
U5	1820-0196 723HC

Figure 6-8. A2 Power Supply Assembly

NOTE: REFER TO TABLE 6-1 FOR DESCRIPTION OF SIGNAL MNEMONICS.

REFERENCE DESIGNATIONS

A4

C1 NOT ASSIGNED C2-C16 Q1-Q3 R1-R46 U1-U10

A4 ACTIVE ELEMENTS

REFERENCE DESIGNATIONS	PART NUMBERS 1854-0215 2N3904 1820-1225 MC10231P
Q1-Q3	
U1	
U2	1820-1052 MC10125L
U3, U4	1820-0629 SN74S112N
U5	1820-0622 SN74151N
U6	1820-0829 MC10164L
U7	1820-0809 MC10115P
U8	1820-0802 MC10102P
U9	1820-0328 SN7402N
U10	1820-0074 SN7454N

P1A PINS

DVM 1 2 ~15V 3 +5V 4 HDS* 5 $\overline{\mathsf{c}}$ 6 CARM 7 MG* 8 Ā 9 GND 10 TI 11 GOSC 12 LTR HRD 13 14 **LDDCA** 15 **GATE OUT** 16 **GND**

LMG*

FDC*

*SIGNAL SOURCE

14

15

16

17

DVM

-5.2V

+15V

GND

MG*

C

 $\frac{A}{B}$

В

Tī

GOSC

GND

FS OSC

FS OSC

FDD*

HRTB

FDA*

FDB*

P1B PINS

1	-	LARM
2	-	RL5(TIO)
3	-	RL4(LTIF)
4	-	R(HTBO)
5	_	RL2(BIL)
6	_	RL(HTBB)
7	_	RL(LMGF)
8	_	R(A1)
9	_	R(HTBA)
10	-	FB \
11	-	FA
12	-	FD
13	1500	FC
14	_	TBO NC
15	1200	DATA C
16	-	DATA D
17	-	DATA A
18	-	DATA B

RL6(HC) R(AØ) R(LST)

RL3(HDVM) RL(HOPN) RL(IC) RL1(HEC)

RL(TBC) RL(IB) RL(LTOT)

13 14 15 16 17 TBI* DS C DS A DS D

18

DS B

- NC

*SIGNAL SOURCE

17

18

Figure 6-10. A4 Function Selector Assembly

Figure 6-11. Standard Time Interval Module (A10 and A19) Block Diagram

FUNCTION GENERATOR

HP 3312A

RANGE: 100 kHz FUNCTION: ☐ 1

OFFSET: CAL

SYM: CAL

ADJUST AMPLITUDE TO OUTPUT MARKER WAVEFORM ≈ 0.8V PP

5328A

FUNCTION: FREQ A

RESOLUTION: 10⁵ 10 kHz (DC, X1,

+ SLOPE, COMA.)

OSCILLOSCOPE

HP 180A/1801A/1821A WITH 10:1 PROBE

COUPLING: DC VOLTS/DIV: .5 TIME/DIV: $5 \mu s$

SLOPE: +

SYNCH: INT, ACF

3 OUTPUT OV MARKER B

R3 = A OFF. ADJ. (ON BACK) R18 = B OFF. ADJ.

NOTES:

- CAPACITORS CI4 AND CI5 ARE NOR REPRESENTED BY PARASITIC CAPA OF THE BOARD.
- 2. S8 AND R24 ARE PART OF THE SA
- 3. ASTERISK (*) INDICATES SELECT AVERAGE VALUE SHOWN.
- 4. UNLESS OTHERWISE INDICATED: RESISTANCE IN OHMS; CAPACITANCE IN FARADS.

- CAPACITORS CI4 AND CI5 ARE NORMALLY REPRESENTED BY PARASITIC CAPACITANCE OF THE BOARD.
- 2. S8 AND R24 ARE PART OF THE SAME COMPONENT.
- ASTERISK (*) INDICATES SELECTED VALUE, AVERAGE VALUE SHOWN.
- 4. UNLESS OTHERWISE INDICATED: RESISTANCE IN OHMS; CAPACITANCE IN FARADS.

Figure 6-12. Standard A19 Attenuator Assembly

P/O Figure 6-13. A10 Synchronizer Assembly

P1 PINS NC 1 2 NC 3 LBDVM* 4 LADVM* 5 NC 6 -5.2V 7 +15V 8 RL6(HC) 9 **AARM** 10 GND REFERENCE DESIGNATIONS 11 GND A10 12 NC 13 Α* C1-C26 14 GND L1-L3 15 Q1--Q4 16 TI(NC) R1~R30 17 **GND** S1 U1-U10 GOSC* (TO A4 FUNCTION SELECTOR) 18 7 NC 2 3 4 5 6 7 NC NC A10 ACTIVE ELEMENTS NC -15V REFERENCE **DESIGNATIONS** +5V **NUMBERS** HDS 8 Q1, Q2 1853-0020 GND 9 **BARM** Q3, Q4 1854-0092 10 NC 2N3563 11 OSC (10 MHz) U1 1820-0624 12 GND (FOR SERIES 13 Ā* 1504) 14 В* 1820-1566 15 GND (FOR SERIES 16 TI* (TO A4 FUNCTION SELECTOR) 1516) 17 GOSC* (TO A4 FUNCTION SELECTOR) Ų2 1820-0805 **GND** MC10107P U3, U8 1820-0802 *SIGNAL SOURCE MC10102P U4 1820-1052 MC10125L P2 PINS U5, U9 1820-0681 1234567 TL GND TLA* 1 SN74500N 2 +5V TLB* U6 1820-1322 3 CHANNEL B **B GND** SN74S02N A SLOPE -15V U7 1820-0693 5 **B SLOPE** +15V SN74S74N 6 "A" GND CHANNEL A U10 1820-0685 7 LEVEL A LEVEL A* SN74S10N 8 8 **GND** LEVEL B 9 **GND** 9 GND 10 **GND** 10 A TRIGGER OUT* 11 11 GND **B TRIGGER OUT*** 12 12 **GND** -5.2V *SIGNAL SOURCE

P/O Figure 6-13. Standard A10 Synchronizer Assembly

Figure 6-13. Standard A10 Synchronizer Assembly

Figure 6-14. A16 Display Assembly Block Diagram

REFERENCE DESIGNATIONS

A16
C1
CR1-CR5
DS1-DS8
DS9 (Option 30 only)
DS10-DS19
Q1-Q21
R1-R7
S1-S4

A16 ACTIVE ELEMENTS

REFERENCE DESIGNATIONS	PART NUMBERS
CR1, CR2, CR3, CR5	1901-0040
CR4	1910-0016
DS1-DS8	1990-0452
DS10-DS19	1990-0406
Q1-Q9	1853-0326
Q10-Q21	1854-0246 2N3643
	2113043

P1 PINS

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 12 23 24
          RM LIGHT
                                         GND
 2
          B1
                                         LAMP TEST
 3
          B2
                                         G LIGHT
          LSWL
                                         OF LIGHT
          FC
                                         FD
 6
                                         NC
          FA
 7
          NC
                                         FB
 8
          GND
                                         NC
 9
          B3
                                         B4
10
          B5
                                         NC
                                         NC
11
12
13
                                         NC
14
                                         NC
15
          B6
16
          DP
17
          B7
                                         B8
18
          LMRES
                                         +5V = DISABLE, -0.7V = ENABLE
19
          ANN
20
          B9
                                         +3.5V
21
          LSLO NC
                                           POWER SWITCH
22
          TBS C
23
          TBS A
                                         +5V
24
          TBS C
                                         SRT
```


Figure 6-15. A16 Display Assembly

REFERENCE DESIGNATIONS

А3	
A1	
C1-C5	
J1	
L1, L2	
R1-R5	
U1	

A3 ACTIVE ELEMENTS

REFERENCE DESIGNATIONS	PART NUMBERS
A1	10544A
U1	1820-0439 723PC

- NC

NOTES

- REFERENCE DESIGNATIONS WITHIN THIS ASSEMBLY ARE ABBREVIATED. ADD ASSEMBLY NUMBER TO ABBREVIATION FOR COMPLETE DESCRIPTION.
- 2. UNLESS OTHERWISE INDICATED:
 RESISTANCE IN OHMS;
 CAPACITANCE IN FARADS;
 INDUCTANCE IN HENRIES
- 3. CAPACITORS C3, C4, C5, RESISTOR R5
 AND COIL L2 ARE NOT INSTALLED ON
 SERIES 1504 BOARDS AND THE
 FOLLOWING PART VALUES ARE CHANGED:
 C1 = 10U, R2 = 4640, R4 = 2000.

Figure 6–16. Option 010 A3 Oscillator Support Board and 10 MHz Oscillator Assembly

Figure 6-17. A1 Motherboard Interconnection Diagram