

12-24-99

ASSISTANT COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, DC 20231

PATENT

Date: December 28, 1999

File No. 0941.63502

Sir:

Transmitted herewith for filing is the patent application of
Inventor(s): Kazutaka Hanaoka, Yuichi Inoue,
Seiji Tanuma and Makoto Ohashi

I hereby certify that this paper is being deposited with the United States Postal Service as Express Mail in an envelope addressed to: Asst Comm. for Patents, Washington, D.C. 20231, on this date.

12-28-99
Date

Express Mail Label No.: EL409490758US

For: DRIVING OF A LIQUID CRYSTAL
DISPLAY DEVICE

JC525 U.S. PTO
09/473868
12/28/99

Enclosed are:

(X) 20 pages of specification, including 16 claims and an abstract.
(X) an executed oath or declaration, with power of attorney.
() an unexecuted oath or declaration, with power of attorney.
(X) 8 sheet(s) of informal drawing(s).
() sheet(s) of formal drawings(s).
(X) Assignment(s) of the invention to Fujitsu Limited.
(X) Assignment Form Cover Sheet.
(X) A check in the amount of \$40.00 to cover the fee for recording the assignment(s) is enclosed.
() Information Disclosure Statement.
() Form PTO-1449 and cited references.
() Associate power of attorney.
(X) Priority Document.

Fee Calculation For Claims As Filed

a)	Basic Fee	\$ 760.00
b)	Independent Claims <u>2</u> - 3 = <u>0</u> x \$ 78.00 = \$ _____	
c)	Total Claims <u>16</u> - 20 = <u>0</u> x \$ 18.00 = \$ _____	
d)	Fee for Multiple Claims	\$260.00 = \$ _____
Total Filing Fee		\$ 760.00

() _____ Statement(s) of Status as Small Entity, reducing Filing Fee by half to \$ _____

(X) A check in the amount of \$ 760.00 to cover the filing fee is enclosed.

() Charge \$ _____ to Deposit Account No. 07-2069.

(X) The Commissioner is hereby authorized to charge any additional fees which may be required to this application under 37 C.F.R. §§1.16-1.17, or credit any overpayment, to Deposit Account No. 07-2069. Should no proper payment be enclosed herewith, as by a check being in the wrong amount, unsigned, post-dated, otherwise improper or informal or even entirely missing, the Commissioner is authorized to charge the unpaid amount to Deposit Account No. 07-2069. A duplicate copy of this sheet is enclosed.

Suite 8660 - Sears Tower
233 S. Wacker Drive
Chicago, Illinois 60606
(312) 993-0080

GREER, BURNS & CRAIN, LTD.

By
Patrick G. Burns

Registration No. 29,367

I hereby certify that this paper is being deposited with the United States Postal Service as Express Mail in an envelope addressed to: Asst. Comm. for Patents, Washington, D.C. 20231, on this date.

12/28/99

Date

Express Mail Label No.:EL409490758US

SPECIFICATION

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT WE, Kazutaka Hanaoka, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan, Yuichi Inoue, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan, Seiji Tanuma, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan and Makoto Ohashi, a citizen of Japan residing at Kawasaki-shi, Kanagawa, Japan have invented certain new and useful improvements in

DRIVING OF A LIQUID CRYSTAL DISPLAY DEVICE

of which the following is a specification : -

1 TITLE OF THE INVENTION

DRIVING OF A LIQUID CRYSTAL DISPLAY DEVICE

BACKGROUND OF THE INVENTION

5 The present invention generally relates to liquid crystal display devices and more particularly to the driving of an active-matrix liquid crystal display device in which representation of images is achieved by applying a driving voltage to a liquid crystal layer via a thin-film transistor (TFT).

Liquid crystal display devices have various advantageous features such as compact size, light weight, low power consumption, and the like. Thus, liquid crystal display devices are used extensively in portable information processing apparatuses such as lap-top computers or palm-top computers. Further, liquid crystal display devices are used also in desktop computers in these days.

A typical liquid crystal display device includes a liquid crystal layer confined between a pair of glass substrates and achieves representation of images by inducing a change in the orientation of liquid crystal molecules in the liquid crystal layer by applying a driving voltage to the liquid crystal layer. Such a change in the orientation of the liquid crystal molecules causes a change in the optical property of the liquid crystal layer.

In the case of using such a liquid crystal display device in a high-resolution color representation apparatus, there is a need of driving the individual pixels or liquid crystal cells defined in the liquid crystal layer at a high speed. In order to meet this requirement, it is generally practiced to provide a thin-film transistor in correspondence to each of the pixels in the liquid crystal layer and to drive the liquid crystal cells by way of such thin-film transistors.

1 FIG.1 shows the construction of a liquid
crystal panel 10 used in such an active matrix liquid
crystal display device of a related art in a plan
view, while FIG.2 shows the part circled in FIG.1 in a
5 cross-sectional view.

Referring to FIG.2, the liquid crystal panel
10 generally includes a pair of glass substrates 10A
and 10B, and a liquid crystal layer 10C is confined
between the substrates 10A and 10B.

10 As represented in the plan view of FIG.1,
the glass substrate 10A carries thereon a number of
thin-film transistors 11₁ - 11₄ corresponding to the
pixels in a row and column formation, wherein the
thin-film transistors 11₁ and 11₂ aligned in the row
15 direction are connected commonly to a gate bus line G₁
provided directly on the glass substrate 10A.
Similarly, the thin-film transistors 11₃ and 11₄ are
connected commonly to a gate bus line G₂ provided
directly on the glass substrate 10A. Further, the
20 glass substrate 10A carries thereon a number of
generally H-shaped auxiliary electrodes Cs at the
level of the gate bus lines G₁ and G₂, wherein the
auxiliary electrode Cs is covered by an insulation
film 12 as represented in the cross-sectional view of
25 FIG.2, and data bus lines D₁ and D₂ are formed on the
insulation film 12 so as to extend in the column
direction as represented in the plan view of FIG.1.

It should be noted that the data bus lines
D₁ and D₂ are covered by another insulation film 13 as
30 represented in the cross-sectional view of FIG.2, and
the data bus line D₁ is connected to the respective
source regions of the thin-film transistors 11₁ and
11₂ via a conductor pattern branched from the data bus
line D₁. Similarly, the data bus line D₂ is connected
35 to the respective source regions of the thin-film
transistors 11₂ and 11₄ via a conductor pattern
branched from the data bus line D₂.

1 Further, there is provided a rectangular
pixel electrode of a transparent conductor such as ITO
on the insulation film 13 in correspondence to the
drain region of each of the thin-film transistors.
5 For example, the drain region of the thin-film
transistor 11₁ is connected to a transparent pixel
electrode P₁ provided on the insulation film 13 via a
contact hole formed in the insulation film 13. As can
be seen from FIGS.1 and 2, the auxiliary electrode Cs
10 is disposed at both sides of the data bus line D₁ or
D₂ when viewed in the direction perpendicular to the
substrate 10A, such that the electrode Cs overlaps the
edge part of the transparent pixel electrode P₁ or P₂.
Thereby, the auxiliary electrode Cs forms an auxiliary
15 capacitor together with the transparent pixel
electrode P₁ or P₂.

Further, each of the transparent pixel
electrodes P₁ and P₂ is covered by a molecular
alignment film 14, wherein the molecular alignment
20 film 14, contacting directly with the liquid crystal
layer 10C, induces an alignment of the liquid crystal
molecules in the liquid crystal layer 10C in a
predetermined direction.

The opposing substrate 10B, on the other
25 hand, carries a color filter CF in correspondence to
the foregoing transparent pixel electrode P₁ or P₂,
and a transparent opposing electrode 15 of ITO, and
the like, is provided uniformly on the substrate 10B.
It should be noted that the transparent opposing
30 electrode 15 is covered by another molecular alignment
film 16, and the molecular alignment film 16 induces
an alignment of the liquid crystal molecules in the
liquid crystal layer 10C in a desired direction.
Further, the substrate 10B carries thereon an opaque
35 mask BM in correspondence to a gap between a color
filter CF and an adjacent color filter CF.

FIG.3 shows an example of the driving signal

1 supplied to the data bus line D_1 or D_2 when driving
the liquid crystal panel 10 of FIGS.1 and 2.

Referring to FIG.3, a bipolar driving pulse
signal is supplied to the data bus line from a driving
5 circuit, wherein it should be noted that the bipolar
driving pulse signal changes a polarity thereof
between a positive peak level of $+V_D$ and a negative
peak level $-V_D$ during the black mode of the liquid
crystal panel 10 for representing a black image.
10 Further, a predetermined common voltage V_{Cs} is
supplied to the opposing electrode 15 and the
auxiliary electrode Cs from another D.C. voltage
source during the black mode. In the white mode of
the liquid crystal panel 10 for representing a white
15 image, on the other hand, on the other hand, a bipolar
drive pulse signal having an amplitude smaller than a
predetermined threshold voltage is supplied to the
foregoing data bus line D_1 or D_2 .

It should be noted that the foregoing D.C.
20 voltage source for supplying the common voltage V_{Cs} is
provided as an independent unit independent from the
driving circuit used for driving the data bus line D_1
or D_2 . The D.C. voltage source provides a voltage of
 ΔV_c as the foregoing common voltage V_{Cs} , wherein the
25 common voltage V_{Cs} thus set is slightly offset from
the central voltage V_c of the bipolar driving pulse
signal. It should be noted that the liquid crystal
panel 10 of FIG.1 or 2 uses a low voltage liquid
crystal, characterized by the black mode drive voltage
30 V_D of about 5 V or less, for the liquid crystal layer
10C.

In the liquid crystal panel 10 driven as
such, it should be noted that the optimum common
voltage V_{Cs} changes slightly between the black
35 representation mode and the white representation mode.
More specifically, the optimum common voltage V_{Cs}
coincides substantially with the central voltage V_c of

1 the bipolar driving pulse signal ($\Delta V_c = 0$) in the
black representation mode, while the optimum common
voltage deviates from the central voltage V_c ($\Delta V_c \neq 0$)
in the half-tone or white representation mode. As the
5 common voltage V_{Cs} is applied uniformly to the
opposing electrode 15, it is difficult to change the
common voltage adaptively depending on the content of
the image to be represented. Thus, it has been
practiced to fix the common voltage V_{Cs} to the optimum
10 voltage at the time of the half-tone representation
mode.

Meanwhile, the inventor of the present
invention has noticed, in a liquid crystal panel using
a low voltage liquid crystal for the liquid crystal
15 layer 10C, that there appears a noticeable flicker in
the represented images along the edge part of the
auxiliary electrode Cs. In the investigation that
constitutes the foundation of the present invention,
the inventor has studied this phenomenon and
20 discovered that the flicker is caused as a result of
variation of the disclination which is induced in the
liquid crystal layer 10C in the region including the
data bus line D_1 or D_2 and the auxiliary electrode Cs
by a strong lateral electric field.

25 FIGS.4A and 4B show the alignment of the
liquid crystal molecules in the liquid crystal layer
10C and the electric flux of the lateral electric
field applied to the liquid crystal layer for the case
in which the common voltage V_{Cs} applied to the
30 auxiliary electrode Cs and the opposing electrode 15
is offset from the central voltage of the bipolar
driving pulse signal ($V_{Cs} \neq V_c$, wherein FIG.4A shows
the state in which a voltage of +5V is applied to the
data bus line D_1 or D_2 (represented as "D"), while
35 FIG.4B shows the state in which a voltage of -5V is
applied to the data bus line D.

Referring to FIG.4A, it can be seen that a

1 very large lateral electric field is created between
the data bus line D and the adjacent auxiliary
electrode Cs in the state the voltage of +5V is
applied to the data bus line D. Associated with this,
5 there occurs a conspicuous disturbance in the
molecular orientation or disclination in the liquid
crystal layer 10C in correspondence to the part
between the data bus line D and the auxiliary
electrode Cs. As a result of the formation of such a
10 disclination, there is induced a domain structure in
the liquid crystal layer 10C, and a leakage of light
occurs in correspondence to the boundary of the
domains as represented in FIG.4A by arrows.

In the state of FIG.4B in which a voltage of
15 -5V is applied to the data bus line D, on the other
hand, the lateral electric field applied to the liquid
crystal layer 10C is substantially reduced and there
occurs no substantial formation of domain structure or
associated problem of leakage of the light. As the
20 state of FIG.4A and FIG.4B appears alternately in
correspondence to the polarity of the bipolar driving
signal pulse, the leakage light appearing only in the
state of FIG.4A causes the flicker.

Further, the inventor of the present
25 invention has discovered that there occurs a flow of
the liquid molecules in the liquid crystal layer 10C
in the rubbing direction of the molecular alignment
film when the value of the common voltage V_{Cs} of the
auxiliary electrode Cs is deviated from the central
30 voltage of the bipolar driving pulse signal. When
such a flow occurs in the liquid crystal layer 10C,
there occurs an increase in the thickness of the
liquid crystal layer 10C in correspondence to the part
where the liquid crystal molecules are accumulated.
35 When there occurs such a change in the thickness of
the liquid crystal layer 10C, the optical property of
the liquid crystal panel 10 is modulated also.

1 Further, in the case a low-voltage liquid
crystal is used for the liquid crystal layer 10C,
there tends to occur a sticking of images as a result
of the accumulation of impurity ions associated with
5 the flow of the liquid crystal molecules. It should
be noted that such a low-voltage liquid crystal,
characterized by a low driving voltage, is
particularly vulnerable to contamination.

10 SUMMARY OF THE INVENTION

Accordingly, it is a general object of the present invention to provide a novel and useful driving method of a liquid crystal display device wherein the foregoing problems are eliminated.

15 Another and more specific object of the present invention is to provide a method of driving a liquid crystal display device, said liquid crystal display device comprising: a first substrate; a second substrate opposing said first substrate with a gap
20 therebetween; a liquid crystal layer confined in said gap; a thin-film transistor formed on said first substrate; a conductor pattern formed on said first substrate in electrical connection with said thin-film transistor, said conductor pattern supplying an
25 alternate-current driving voltage signal to said thin-film transistor; a pixel electrode provided on said first substrate in electrical connection to said thin-film transistor; an auxiliary electrode formed on said first substrate in the vicinity of said conductor
30 pattern so as to form an auxiliary capacitance with said pixel electrode, said auxiliary electrode being disposed so as to induce a lateral electric field between said auxiliary electrode and said conductor pattern; and an opposing electrode formed on said
35 second substrate;
 said method comprising the step of:
 applying to said auxiliary electrode a

1 common voltage substantially equal to a central
voltage of said alternate-current driving voltage
signal.

5 Other objects and further features of the
present invention will become apparent from the
following detailed description when read in
conjunction with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

10 FIG.1 is a diagram showing the construction
of a liquid crystal display panel of a related art in
a plan view;

15 FIG.2 is a diagram showing the construction
of the liquid crystal display device of FIG.1 in a
cross-sectional view;

FIG.3 is a diagram showing the waveform of a
driving signal used in the liquid crystal display
device of FIGS.1 and 2;

20 FIGS.4A and 4B are diagrams showing the
electric flux line and the alignment of the liquid
crystal molecules in a liquid crystal layer used in
the liquid crystal display panel of FIGS.1 and 2;

25 FIG.5 is a diagram showing the construction
of a liquid crystal display device according to a
first embodiment of the present invention in a block
diagram;

30 FIGS.6A and 6B are diagrams showing the
electric flux line and the alignment of the liquid
crystal molecules in a liquid crystal layer used in
the liquid crystal display panel of FIG.5;

FIG.7 is a diagram showing the possible
range of an optimum common voltage according to the
first embodiment of the present invention;

35 FIG.8 is a diagram showing the waveform of
another driving voltage signal according to a second
embodiment of the present invention; and

FIG.9 is a diagram showing the optimum

1 common voltage corresponding to the driving voltage
signal of FIG.8 according to the second embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5 [FIRST EMBODIMENT]

FIG.5 shows the construction of a liquid crystal display device 20 according to a first embodiment of the present invention, wherein those parts corresponding to the parts described previously 10 are designated by the same reference numerals and the description thereof will be omitted.

Referring to FIG.5, the liquid crystal display device 20 includes, in addition to the liquid crystal panel 10 described previously with reference 15 to FIGS.1 and 2, a scanning-electrode driving circuit 21 for selectively activating the gate bus lines $G_1 - G_n$ and a signal electrode driving circuit 22 for supplying the A.C. driving signal explained with reference to FIG.3 to the data bus lines $D_1 - D_m$, and 20 there is further provided a D.C. voltage source 23 supplying the common voltage V_{Cs} to the opposing electrode 15 and to the auxiliary electrode Cs as a common voltage supply source. FIG.5 further indicates a capacitor PIXEL, wherein it should be noted that the 25 capacitor PIXEL represents the capacitance formed between the transparent pixel electrode P_1 or P_2 and the transparent opposing electrode 15.

The liquid crystal display device 20 of FIG.5 is a so-called low-voltage liquid crystal display device and the signal electrode driving circuit supplies a bipolar driving voltage pulse signal similar to the one shown in FIG.3 to the data bus lines $D_1 - D_m$ with an amplitude of $\pm 5V$.

In the present invention, the inventor has 35 discovered that the formation of the disclination becomes substantially the same in the state in which a driving voltage pulse of $+5V$ is applied to the

1 selected data bus line $D_1 - D_m$ and in the state in
which a driving voltage pulse of -5V is applied to the
selected data bus line $D_1 - D_m$, by setting the common
voltage V_{Cs} supplied from the common voltage source
5 23, to be equal to the central voltage (0V) of the
bipolar driving voltage pulse signal. As a result,
although the leakage of the light itself is not
eliminated, the flicker of the leakage light is
successfully eliminated. Further, it was discovered
10 that, by setting the voltage V_{Cs} as set forth above,
the sticking of images caused as a result of the flow
of the liquid crystal molecules in the liquid crystal
layer 10C, is also suppressed successfully.

FIGS.6A and 6B show the electric flux in the
15 liquid crystal layer 10C for the case in which the
common voltage V_{Cs} is set to 0 V.

Referring to FIGS.6A and 6B, it can be seen
that, although the disclination formation in the
liquid crystal layer 10C by the lateral electric field
20 is not avoidable, the degree of the disclination in
the liquid crystal layer 10C is more or the same in
the state of FIG.6A in which a driving voltage pulse
of +5V is applied to the selected signal electrode D_1
- D_m and in the state of FIG.6B in which a driving
25 voltage pulse of -5V is applied to the selected signal
electrode $D_1 - D_m$. As a result, there occurs no
substantial flicker in the light that has leaked
through the liquid crystal display device.

Further, as a result of the reduced
30 disclination formation in the liquid crystal layer 10C
caused by the foregoing setting of the common voltage
 V_{Cs} , the flow of the liquid crystal molecules is also
reduced. As a result, the problem of thickness
increase in the liquid crystal layer 10C and
35 associated problem of local accumulation of the
impurity ions in the liquid crystal layer 10C are
effectively reduced. Thus, the present invention

1 reduces the sticking of images in the liquid crystal
display device 20 of FIG.5 by setting the common
voltage V_{Cs} to be equal to 0V.

5 FIG.7 shows the flicker formation in the
liquid crystal panel 10 having a 12-inch diagonal size
for the case in which the common voltage V_{Cs} is
changed variously, wherein FIG.7 represents the
flicker formation represented in terms of a domain
fluctuation DF defined as

10

$$DF = (B_p - B_n)/B_p \times 100 \quad (B_p > B_n),$$

where B_p represents the leakage of light during the
positive frame interval in which a positive drive
15 voltage pulse of +5V is applied, while B_n represents
the leakage of light during the negative frame
interval in which a negative drive voltage pulse of
-5V is applied. Further, FIG.7 represents the
thickness increase observed for the liquid crystal
20 layer 10C of the liquid crystal display device 20 of
FIG.5, wherein the thickness increase was measured at
a point offset from the right upper corner of the 12-
inch panel 10 by a distance of 2cm in the lateral
direction and 2cm in the longitudinal direction. The
25 measurement was made after 20 minutes of operation.

Referring to FIG.7, it can be seen that the
domain fluctuation, and hence the flicker formation,
increases with increasing deviation of the common
voltage V_{Cs} from the central voltage of the bipolar
30 driving voltage pulse. Further, it can be seen that
there appears a liquid crystal flow in the panel
diagonal direction along the rubbing direction of the
molecular alignment film 14, wherein the liquid
crystal flow appears particularly conspicuously in the
35 black representation mode in which the amplitude of
the driving voltage pulse signal applied to the liquid
crystal panel 10 becomes maximum. As a result, the

1 cell thickness of the liquid crystal layer 10C is also
increased. As explained already, such an increase in
the liquid crystal cell thickness tends to invite an
accumulation of impurity ions contained in the liquid
5 crystal, and the contamination of the liquid crystal
by such an accumulation of the impurity ions induces a
conspicuous sticking in the represented images.

In FIG.7, it can be seen that, in a region A
in which the deviation ΔC of the common voltage V_{CS} is
10 less than about 0.025V, in other words in the region A
in which the foregoing deviation ΔV_C is less than about
1/20 of the voltage amplitude (5V) of the drive
voltage pulse, the domain fluctuation DF is less than
about 10% and no substantial sticking of images is
15 recognized. On the contrary, in a region B in which
the foregoing deviation ΔV_C exceeds 0.25V but is
smaller than about 2V, a linear sticking was
recognized. Further, in a region C in which the
deviation ΔV_C exceeds about 2V, the domain fluctuation
20 exceeds 50% and a considerable flicker is recognized.
Further, the thickness increase of the liquid crystal
layer 10C reaches as much as 0.025 μm . In this case,
the liquid crystal molecules are caused to flow in the
liquid crystal layer 10C with a velocity such that the
25 liquid crystal molecules move by a distance of more
than 80 μm during the interval of 24 hours.

From the foregoing, it is preferable to set
the common voltage V_{CS} in the region B in which the
deviation ΔV_C with respect to the amplitude center of
30 the bipolar driving pulse voltage signal is less than
about 50% of the maximum voltage amplitude for the
black representation mode, more preferably in the
region A in which the deviation ΔV_C is less than about
10%. In the region B, it should be noted that the
35 liquid crystal molecules in the liquid crystal layer
10C moves over a distance of 80 μm or less during the
interval of 24 hours.

1 It should be noted that the foregoing result
is not only pertinent to the liquid crystal panel of
the 12-inch size but is applicable also to general
liquid crystal panels having a diagonal size of 10 -
5 13 inches.

[SECOND EMBODIMENT]

In the foregoing embodiment, it was assumed
that the drive voltage pulse signal supplied to the
10 data bus lines $D_1 - D_m$ is a bipolar voltage pulse
having a central voltage of 0V. The present
invention, however, is never limited to such a
particular driving signal but is applicable to the
case in which the driving voltage pulse signal
15 includes a D.C. voltage offset as represented in
FIG.8.

Referring to FIG.8, the driving voltage
pulse signal has a voltage amplitude of $\pm 2.5V$ in the
black representation mode, and the driving voltage
20 pulse signal is supplied to the data bus line $D_1 - D_m$
together with a D.C. offset of 2.37V. Thereby, an
optimum common voltage V_{Cs} of 2.37V, which is
substantially equal to the foregoing D.C. voltage
offset, is applied to the auxiliary electrode Cs and
25 to the opposing electrode 15.

In the driving process noted above, it
should be noted that the optimum common voltage V_{Cs}
may be different in the black representation mode and
in the white representation mode. In the example of
30 FIG.8, the common voltage V_{Cs} optimized for the case
in which the amplitude of the driving voltage pulse
signal is set smaller than the threshold voltage of
image representation, does not coincide with the
common voltage V_{Cs} of 2.37 V optimized for the black
35 representation mode. In fact, the optimized common
voltage for the foregoing case takes a value of 2.42V
rather than 2.37V. FIG.9 represents the relationship

1 between the optimum common voltage V_{Cs} and the
gradation level for two different liquid crystal
panels A and B.

5 In view of the fact that the common voltage
 V_{Cs} is applied to the entirety of the liquid crystal
panel, it is difficult to change the optimum common
voltage V_{Cs} adaptively depending on the gradation
level to be represented. In the present invention,
therefore, the optimum common voltage V_{Cs} is optimized
10 for the black representation mode in which the flow of
the liquid crystal molecules in the liquid crystal
layer 10C appears most significantly.

15 In the description heretofore, the present
invention is described with reference to the so-called
H-type Cs liquid crystal panel represented in FIGS.1
and 2. However, the present invention is by no means
limited to such a specific construction of the liquid
crystal panel but is applicable to other liquid
crystal panels such as "independent Cs type" or
20 "Cs-on-gate type."

Further, the present invention is not
limited to the embodiments described heretofore, but
various variations and modifications may be made
without departing from the scope of the invention.

25

30

35

1 WHAT IS CLAIMED IS

5

1. A method of driving a liquid crystal display device, said liquid crystal display device comprising: a first substrate; a second substrate opposing said first substrate with a gap therebetween; 10 a liquid crystal layer confined in said gap; a thin-film transistor formed on said first substrate; a conductor pattern formed on said first substrate in electrical connection with said thin-film transistor, said conductor pattern supplying an alternate-current 15 driving voltage signal to said thin-film transistor; a pixel electrode provided on said first substrate in electrical connection to said thin-film transistor; an auxiliary electrode formed on said first substrate in the vicinity of said conductor pattern so as to form 20 an auxiliary capacitance with said pixel electrode, said auxiliary electrode being disposed so as to induce a lateral electric field between said auxiliary electrode and said conductor pattern; and an opposing electrode formed on said second substrate; 25 said method comprising the step of: applying to said auxiliary electrode a common voltage substantially equal to a central voltage of said alternate-current driving voltage signal.

30

2. A method as claimed in claim 1, wherein
35 said common voltage is deviated from said central voltage by an amount corresponding to 2/5 or less of an amplitude of said alternate-current driving voltage

1 signal set so as to provide a maximum gradation level.

5

3. A method as claimed in claim 1, wherein
said common voltage is deviated from said central
voltage by an amount corresponding to 1/20 or less of
an amplitude of said alternate-current driving voltage
10 signal set so as to provide a maximum gradation level.

15

4. A method as claimed in claim 1, wherein
said central voltage is substantially zero volt.

20

5. A method as claimed in claim 1, wherein
said central voltage is offset from zero volt.

25

6. A method as claimed in claim 1, wherein
said common voltage is set such that a fluctuation of
a leakage light, caused by a disclination induced in
30 said liquid crystal layer by a lateral electric field,
is 10% or less.

35

7. A method as claimed in claim 1, wherein
said common voltage is set such that a flow of liquid

1 crystal molecules, caused in said liquid crystal layer
by a disclination induced in said liquid crystal layer
by a lateral electric field, has a velocity of 80 μm
or less per an interval of 24 hours.

5

8. A liquid crystal display device, said
10 liquid crystal display device comprising: a first
substrate;
a second substrate opposing said first
substrate with a gap therebetween;
a liquid crystal layer confined in said gap;
15 a thin-film transistor formed on said first
substrate;
a conductor pattern formed on said first
substrate in electrical connection with said thin-film
transistor;
20 a driving circuit supplying an alternate-
current driving voltage signal to said thin-film
transistor via said conductor pattern;
a pixel electrode provided on said first
substrate in electrical connection to said thin-film
25 transistor;
an auxiliary electrode formed on said first
substrate in the vicinity of said conductor pattern so
as to form an auxiliary capacitance with said pixel
electrode, said auxiliary electrode being disposed so
30 as to induce a lateral electric field between said
auxiliary electrode and said conductor pattern;
an opposing electrode formed on said second
substrate; and
35 a direct-current source applying, to said
auxiliary electrode, a common voltage substantially
equal to a central voltage of said alternate-current
driving voltage signal.

1 9. A liquid crystal display device as
claimed in claim 8, wherein said direct-current source
produces said common voltage such that said common
voltage is deviated from said central voltage by an
5 amount corresponding to 2/5 or less of an amplitude of
said alternate-current driving voltage signal set so
as to provide a maximum gradation level.

10

10. A liquid crystal display device as
claimed in claim 8, wherein said direct-current source
produces said common voltage such that said common
15 voltage is deviated from said central voltage by an
amount corresponding to 1/20 or less of an amplitude
of said alternate-current driving voltage signal set
so as to provide a maximum gradation level.

20

11. A liquid crystal display device as
claimed claim 8, wherein said driving circuit produces
25 said alternate-current driving voltage signal such
that said central voltage is substantially zero volt.

30

12. A liquid crystal display device as
claimed claim 8, wherein said driving circuit produces
said alternate-current driving voltage signal such
that said central voltage is offset from zero volt.

35

1 13. A liquid crystal display device as
claimed in claim 8, wherein said direct-current source
produces said common voltage such that a fluctuation
of a leakage light, caused by a disclination induced
5 in said liquid crystal layer by a lateral electric
field, is 10% or less.

10

14. A liquid crystal display device as
claimed in claim 8, wherein said direct-current source
produces said common voltage such that a flow of
liquid crystal molecules, caused in said liquid
15 crystal layer by a disclination induced in said liquid
crystal layer by a lateral electric field, has a
velocity of 80 μm or less per an interval of 24 hours.

20

15. A liquid crystal display device as
claimed in claim 8, wherein said liquid crystal layer
is formed of a low-voltage liquid crystal.

25

16. A liquid crystal display device as
30 claimed in claim 8, wherein said auxiliary electrode
extends along an edge of said conductor pattern, said
liquid crystal display device thereby forming an H-
type Cs liquid crystal display device.

35

1 ABSTRACT OF THE DISCLOSURE

A liquid crystal display device includes a
d.c. voltage source for producing a common voltage
such that the common voltage is substantially equal to
5 a central voltage of a bipolar voltage signal.

10

15

20

25

30

35

【書類名】 図面

【図1】

FIG 1

従来の液晶パネルの構成を示す平面図

【図2】

FIG 2

従来の液晶パネルの構成を示す断面図

【図 3】

従来の駆動電圧信号の例を示す波形図

Fig. 3

【図4】

(A),(B)は、従来の駆動方式における液晶層中の電気力線の分布およびこれに伴う液晶分子の配列を示す図

[5]

FIG 5

本発明の一実施例による液晶表示装置の構成を示す図

【図6】

(A),(B)は、本発明による液晶表示装置の駆動方式を使った場合の、液晶層中の電気力線の分布およびこれに伴う液晶分子の配列を示す図

【図7】

本発明一実施例による、最適なコモン電圧の範囲を示す図

【図8】

別の駆動電圧信号の例を示す波形図

【図9】

FIG 9

図8の駆動電圧信号における最適コモン電圧を示す図

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

As a below named inventor, I hereby declare that:

私の住所、私務所、国籍は下記の私の氏名の後に記載された通りです。

My residence, post office address and citizenship are as stated next to my name.

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

DRIVING OF A LIQUID CRYSTAL DISPLAY DEVICE

上記発明の明細書（下記の欄でx印がついていない場合は、本書に添付）は、

the specification of which is attached hereto unless the following box is checked:

__月__日に提出され、米国出願番号または特許協定条約国際出願番号を_____とし、
(該当する場合) _____に訂正されました。

was filed on _____
as United States Application Number or
PCT International Application Number
_____ and was amended on
_____ (if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるとおり、特許資格の有無について重要な情報を開示する義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Japanese Language Declaration (日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基き下記の、米国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基づく国際出願、又は外国での特許出願もしくは発明者証の出願についての外国優先権をここに主張するとともに、優先権を主張している。本出願の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

外国での先行出願

Pat. Appln. No. 10-374813	Japan
(Number) (番号)	(Country) (国名)
(Number) (番号)	(Country) (国名)

私は、第35編米国法典119条(e)項に基いて下記の米国特許出願規定に記載された権利をここに主張いたします。

(Application No.)
(出願番号)

(Filing Date)
(出願日)

私は、下記の米国法典第35編120条に基いて下記の米国特許出願に記載された権利、又は米国を指定している特許協力条約365条(c)に基づく権利をここに主張します。また、本出願の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出願に開示されていない限り、その先行米国出願書提出日以降で本出願書の日本国内または特許協力条約国提出日までの期間中に入手された、連邦規則法典第37編1条56項で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

(Application No.)
(出願番号)

(Filing Date)
(出願日)

(Application No.)
(出願番号)

(Filing Date)
(出願日)

私は、私自身の知識に基づいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じていてこと、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18編第1001条に基づき、罰金または拘禁、もしくはその両方に上り処罰されること、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごく宣誓を致します。

I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed

優先権主張なし

28/December/1998

(Day/Month/Year Filed)

(出願年月日)

(Day/Month/Year Filed)

(出願年月日)

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.)
(出願番号)

(Filing Date)
(出願日)

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of application.

(Status: Patented, Pending, Abandoned)
(現況: 特許可済、係属中、放棄済)

(Status: Patented, Pending, Abandoned)
(現況: 特許可済、係属中、放棄済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

委任状： 私は下記の発明者として、本出願に関する一切の手続を米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。（弁護士、または代理人の氏名及び登録番号を明記のこと）

POWER OF ATTORNEY: As a named Inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

<u>Attorney</u>	<u>Reg. No.</u>
Patrick G. Burns	29,367
Roger D. Greer	26,174
Lawrence J. Crain	31,497
Steven P. Fallon	35,132

<u>Attorney</u>	<u>Reg. No.</u>
James K. Folker	37,538
Jonathan D. Feuchtwang	41,017
B. Joe Kim	41,895
Joel H. Bootzin	42,343

直接電話連絡先：（名前及び電話番号）

Send Correspondence to:

Direct Telephone Calls to: (name and telephone number)

Patrick G. Burns, Esq.
Greer, Burns & Crain, Ltd.
Sears Tower - Suite 8660, 233 S. Wacker Dr.
Chicago, IL 60606 (312) 993-0080

唯一または第一発明者名		Full name of sole or first inventor
		Kazutaka Hanaoka
発明者の署名	日付	Inventor's signature
		Kazutaka Hanaoka December 21, 1999
住所	Residence	
Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship	
Japan		
私書箱	Post Office Address	
c/o FUJITSU LIMITED, 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan		
第二共同発明者		Full name of second joint Inventor, if any
		Yuichi Inoue
第二共同発明者	日付	Second Inventor's signature
		Yuichi Inoue December 21, 1999
住所	Residence	
Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship	
Japan		
私書箱	Post Office Address	
c/o FUJITSU LIMITED, 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan		

(第三以降の共同発明者についても同様に記載し、署名をすること)

{Supply similar information and signature for third and subsequent joint inventors.)

第三共同発明者名		Full name of third joint inventor, if any Seiji Tanuma	
第三共同発明者の署名	日付	Third inventor's signature <i>Seiji Tanuma</i>	Date December 21, 1999
住所	Residence Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship Japan		
私書箱	Post Office Address c/o FUJITSU LIMITED, 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan		
第四共同発明者名	Full name of fourth joint inventor, if any Makoto Ohashi		
第四共同発明者の署名	日付	Fourth inventor's signature <i>Makoto Ohashi</i>	Date December 21, 1999
住所	Residence Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship Japan		
私書箱	Post Office Address c/o FUJITSU LIMITED, 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan		
第五共同発明者名	Full name of fifth joint inventor, if any		
第五共同発明者の署名	日付	Fifth inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		
第六共同発明者名	Full name of sixth joint inventor, if any		
第六共同発明者の署名	日付	Sixth inventor's signature	Date
住所	Residence		
国籍	Citizenship		
私書箱	Post Office Address		