Discrete Mathematics Midterm Exam (GEDB007-41, Spring 2022)

Problem 1. For a set X, let $\mathcal{P}(X)$ be the set of all subsets of X. Let \emptyset be the empty set. Determine whether each statement is true or false. You don't have to explain your answer.

- $(1) \ \emptyset \subseteq \{\emptyset\}.$
- $(2) \emptyset \in \{\emptyset\}.$
- (3) $(1,2) \in \{1,(1,2)\} \times \{1,\{1,2\}\}.$
- (4) \emptyset is a relation on $\mathcal{P}(\emptyset)$.
- (5) (\emptyset, \emptyset) is a relation on $\mathcal{P}(\emptyset)$.
- (6) $\{\emptyset\}$ is a relation on $\mathcal{P}(\emptyset)$.
- (7) $\{(\emptyset, \emptyset)\}$ is a relation on $\mathcal{P}(\emptyset)$.
- (8) $\mathcal{P}(\emptyset) \times \mathcal{P}(\emptyset)$ is a relation on $\mathcal{P}(\emptyset)$.
- (9) $\mathcal{P}(\emptyset) \times \emptyset$ is a relation on $\mathcal{P}(\emptyset)$.
- (10) $\mathcal{P}(\emptyset)$ is a relation on $\mathcal{P}(\emptyset)$.

Problem 2. Prove or disprove each statement.

- (1) $\forall x \forall y ((x^2 > y^2) \to (x < y))$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (2) $\forall x \exists y ((x^2 > y^2) \to (x < y))$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (3) $\forall x \exists y (x^2 > y^2)$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (4) $\exists x \forall y (x < y)$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (5) $\forall y \exists x (x < y)$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.

Problem 3. Prove that there is no positive integer solution to the equation $2x^3 + 3y^2 = 130$.

Problem 4. Let R be the relation on $X = \{1, 2, 3, 4\}$ determined by the following conditions.

- R is reflexive.
- \bullet R is antisymmetric.
- \bullet R is transitive.
- $(1,2),(2,4),(3,1) \in R$.

Write the matrix of relation for R with respect to the ordering 1, 2, 3, 4. Explain your answer.

Problem 5. Let $X = \{1, 2, 3, \dots, 2022\}$. We define the relation R on the set of all subsets of X as follows. For two subsets $A, B \subseteq X$,

$$(A,B) \in R \quad \Leftrightarrow \quad \{x \in A : x \text{ is divisible by } 3\} = \{x \in B : x \text{ is divisible by } 3\}.$$

- (1) Show that R is an equivalent relation.
- (2) Find the number of elements in the equivalence class containing $\{1, 3, 5, \dots, 2021\}$.

Problem 6. Consider the following algorithm.

Input: s, n (s is a sequence of n numbers: $s = (s_1, s_2, \ldots, s_n)$ and n is a positive integer) Output: an integer

```
Alice(s, n){
if (n = 1)
      return s_1
m = 1
for i = 2 to n
      if (s_i < s_m)
           m = i
if (m = 1)
      s' = (s_2 - 1, s_3 - 1, \dots, s_n - 1)
if (2 \le m \le n - 1)
      s' = (s_1, \dots, s_{m-1}, s_{m+1} - 1, s_{m+2} - 1, \dots, s_n - 1)
if (m=n)
      s' = (s_1, \dots, s_{n-1})
return s_m + Alice(s', n-1)
```

- (1) What is the output of the algorithm **Alice** for the input s = (1, 2, 3, 4, 5) and n = 5? Explain your answer.
- (2) What is the output of the algorithm Alice for the input s = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5) and n = 10? Explain your answer.

Problem 7. Prove or disprove:

}

$$\sum_{k=1}^{n} \log k^{n-k+1} = \Theta(n^2 \log n).$$

Problem 8. Let f_0, f_1, f_2, \ldots be the sequence defined by $f_0 = 1, f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. Show that for $n \ge 1$,

$$\sum_{i=1}^{2n} f_{i-1} f_i = f_{2n}^2.$$