Projet de programmation

Séance 2 question 11

TRAN-THUONG Tien-Thinh et JEAN Aimé

Affirmation

La puissance minimale pour couvrir un trajet dans le graphe G est égale à la puissance minimale pour couvrir ce trajet dans l'arbre A_{min}

Notation

A est un arbre couvrant de G

 A_{min} est l'arbre couvrant minimal de G

 u, v, i_k des nœuds de G

 $t_G(u,v)$ un trajet dans G de u à v

 $t_A(u,v)$ l'unique trajet (car A est un arbre) dans A de u à v

On pourra écrire de manière équivalente $t_G(u,v)$ et $i_1^G - i_2^G - \dots - i_{n-1}^G - i_n^G$ avec $u = i_1^G$ et $v = i_n^G$

 $p(t_G(u,v))$ la puissance minimale du trajet $t_G(u,v)$

p(A) est la somme des puissances de l'arbre A

Démonstration par l'absurde

Soit G un graphe

Soit A_{min} un arbre couvrant minimal de G

Soit u, v des nœuds de G

Par l'absurde, supposons qu'il existe un trajet $t_G(u, v)$ tel que $p(t_G(u, v)) < p(t_{A_{min}}(u, v))$

Notons :
$$t_{A_{min}}(u,v) = i_1^{A_{min}} - \dots - i_n^{A_{min}}$$

Alors $\exists \ k \in [1,n-1] \ tq \ p(i_k^{A_{min}} - i_{k+1}^{A_{min}}) = p(t_{A_{min}}(u,v))$

En rompant l'arête $i_k^{A_{min}} - i_{k+1}^{A_{min}}$ dans l'arbre A_{min} , on obtient 2 arbres. Le nœud u est dans un arbre et v est dans l'autre car l'unique chemin les reliant dans A_{min} n'existe plus.

Notons A_u l'arbre contenant u et A_v l'arbre contenant v.

Notons :
$$t_G(u,v)=i_1^G-\ldots-i_m^G$$
 avec $u=i_1^G\in A_u$ et $v=i_m^G\in A_v$ Donc $\exists\ l\in[1,m],i_l^G\in A_u$ et $i_{l+1}^G\in A_v$

Remarque:

$$\begin{split} p(i_l^G - i_{l+1}^G) &\leq p(t_G(u, v)) \\ &< p(t_{A_{min}}(u, v)) \ par \ hypoth\`{e}se \\ &= p(i_k^{A_{min}} - i_{k+1}^{A_{min}}) \end{split}$$

En ajoutant l'arête $i_l^G - i_{l+1}^G$, on relie les arbres A_u et A_v pour former un arbre couvrant A' de G. De sorte que :

$$p(A') = p(A_{min}) + p(i_l^G - i_{l+1}^G) - p(i_k^{A_{min}} - i_{k+1}^{A_{min}})$$

< $p(A_{min})$

Ce qui est absurde car par hypothèse A_{min} est l'arbre couvrant minimal. On a donc démontré le l'affirmation.