Student ID: 103128918

SWINBURNE UNIVERSITY OF TECHNOLOGY

MASTER OF DATA SCIENCE COS80025 – Data Visualisation Semester 2, 2024

Deliverable 3: Final Report

Word count: 4828

Project facilitator: Mr Mohammad Abuhassan

Submitted by: Thi Ngan Ha Do

Student ID: 103128918

Table of Contents

1.0	Introduction	1
2.0	Data	2
2.1	Data Source	2
2.2	Data Processing	2
3.0	Requirements	5
3.1	Must-Have Features	5
4.0	Visualisation Design	6
4.1 Envi	Topic 1: Contributory Factors Analysis: Driver Behaviour, Infrastructure, and ironmental Conditions	6
4.2. time	Topic 2: Spatio-temporal Analysis: Traffic crash density and Police response s 13	
4.3.	Topic 3: Crash Impact Analysis: Vehicle damage and injury outcomes	20
5.0	Conclusion	26
6.0	Reference List	27

1.0 Introduction

1.1. Context

For decades, vehicle accidents have been a serious global safety problem because of the injuries and fatalities they inflict (Stewart 2023). Beyond the economic burden, these incidents lead to profound losses for victims' families and affect overall public safety. (Cantillo, 2020). This project aims to analyse historical crash data to identify contributing factors, detect underlying trends, and evaluate the effectiveness of current safety measures, with the goal of raising awareness and improving road safety outcomes.

1.2. Target Audience

Given the widespread concern surrounding car accident analysis, this data visualization project aims to be accessible to individuals from diverse technical backgrounds, enabling them to extract insights without needing specialized domain knowledge. However, while the visualizations have been designed to be as user-friendly as possible, viewers with a basic understanding of statistics will likely find it easier to interpret the data more efficiently.

1.3. Project Objectives

The proposal outlined three primary research areas. However, to establish detailed requirements, it was essential to translate these research topics into clear, actionable requirements and break them down into sub-questions that could be addressed through data visualization. A comparison of these requirements with the project's objectives also involved discussing the various aspects of visualization analysis to ensure alignment with the overall project goals.

	Research topic	Requirement	Question	Reason
1	Identifying major	Examine the role of	1.1. How does driver	Pinpoint key
	factors	driver actions,	behaviour contribute to	factors and assess
	contributing to	infrastructure setup,	crashes?	safety measures,
	traffic accidents,	and environmental	1.2. What infrastructure	with the aim of
	focusing on	conditions on crash	factors affect accident	enhancing road
	driver	frequency and	rates?	safety and
	behaviours,	severity	1.3. How do environmental	awareness
	infrastructure,		conditions influence traffic	
	and		accidents?	
	environmental			
	conditions			
2	Spatio-temporal	Analyse the	2.1. How do traffic crashes	Identify high-risk
	analysis of crash	patterns of traffic	vary over time?	areas and time
	distribution and	crashes by location	2.2. What are the	periods and
	police response	and time, and	geographic patterns of	evaluate the
	times.	assess the police	crash occurrences?	effectiveness of
				police response in

		response times to		mitigating crash
		incidents		impacts
3	Crash Impact	Examine the factors	3.1. What influences the	Understand the
	Analysis: Vehicle	that most	extent of vehicle damage	key contributors to
	damage and	significantly affect	in crashes?	crash severity,
	injury outcomes	the severity of	3.2. What factors	providing insights
		vehicle damage	contribute to the severity	for improving
		and injury counts in	of injuries in crashes?	vehicle safety
		traffic crashes		standards and
				minimizing injuries

Table 1. Revised Research Topics and proposed Sub-questions

2.0 Data

2.1 Data Source

In accordance with the project proposal, the "Traffic Crashes - Crashes" dataset was initially selected for visualization. However, during the exploratory phase, it became evident that the two additional datasets, "Traffic Crashes - People" and "Traffic Crashes - Vehicles," provided valuable information essential for a comprehensive understanding of the topic. Specifically, the vehicle data offered detailed background on the types of vehicles involved in crashes from 2015 to the present, which was crucial for analysing damage (research topic 3) and contributory factors (research topic 1). Likewise, the data on individuals involved in crashes was vital for injury analysis, particularly in examining demographic factors.

All three datasets, sourced from the Chicago Data Portal and last updated on October 13, 2024, were utilized, leading to an exploration of the entire Traffic Crashes database schema, with three main tables (crashes, people, and vehicles) linked by crash record ID, covering the period from 2015 to the present.

2.2 Data Processing

Upon reviewing the three datasets, several data pre-processing and feature selection challenges were detected:

Type	Issues	Relevant Columns	Solution
Data Pre-	Missing	Entries missing over 10%	Drop rows
processing	values	values	
		Nominal columns	Fill in missing values with False
	Data types	Date-time columns	Convert mm/dd/yyyy to dd/mm/yyyy
			format
	Duplicates	Referencing	Drop duplicates
		crash_record_id	
	Files too	Referencing	Downsize files by filtering every 3 rows
	heavy for	crash_record_id	As crash record id is the primary key in
	Tableau to		the crashes dataset, and foreign keys for
	process		the remaining datasets, the data
	(over		cleaning process made sure that the

	800,000KB		three datasets preserve common ids
	in total)		after being cleaned.
Feature	Unused	Crashes dataset: lane_cnt,	Those columns were manually deleted in
Selection	columns	location,	Tableau
	(repetitive	intersection_related_i,	
	information	not_right_of_way_i,	
	and for	street_name,	
	underload	beat_of_occurrence,	
	the data	photos_taken_i, dooring_i,	
	size)	work_zone_i,	
		work_zone_type,	
		workers_present_i	
		Vehicles dataset:	
		cmrc_veh_i, towed_i,	
		fire_i, towed_by, towed_to,	
		area_00_i, area_99_i,	
		cmv_id, commercial_src,	
		gvwr, carrier_name,	
		hazmat_placards_i, un_no,	
		mcs_report_i,	
		idot_permit_no,	
		wide_load_i, trailer1_width,	
		axle_cnt, cargo_body_type	
Calculated	Most	Columns:	Formula:
Fields	common	roadway_surface_cond,	{ FIXED : MAX(
	values in	driver_action, alignment,	IF { FIXED [Lighting Condition] :
	categorical	lighting_condition,	COUNT([Lighting Condition]) }
	columns	roadway_surface_cond,	=
		trafficway_type,	{ FIXED : MAX({ FIXED [Lighting
		vehicle_type, vehicle_use,	Condition] : COUNT([Lighting Condition])
		weather_condition	<pre>}) }</pre>
			THEN [Lighting Condition]
			END
			,)
	Top N	araah raaard :-!	Formula
	Top N	crash_record_id,	Formula:
	Filter	injuries_total	Accident Count Filter: PANIC LINEAU FOR ANT/Count I
			RANK_UNIQUE(COUNT([Crash
			Record Id]))
			Injuries Count Filter: PANK LINIOUS (CUM/Universe)
			RANK_UNIQUE(SUM([Injuries
			Total]))

Time of	Crash_date	Formula:
Day		Γime of Day Grouped ×
Grouped		IF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 0 THEN '0(ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 1 THEN ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 2 THEN ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 3 THEN ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 4 THEN ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 5 THEN ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 6 THEN ELSEIF FLOOR(DATEPART('hour', [Crash Date]) / 3) = 7 THEN END
Accident	Damana iniumiaa tatal	The calculation is valid. 3 Dependencies Apply OK
Accident	Damage, injuries_total	Formula:
Severity		Accident Severity ×
		IF [Injuries Total] = 0 AND [Damage] = "\$500 OR LESS" THEN ELSEIF [Injuries Total] >= 1 AND [Injuries Total] <= 5 ANI ELSEIF [Injuries Total] >= 10 OR [Damage] = "OVER \$1,500" ELSE 'Moderate' ENT
		The calculation is valid. 9 Dependencies Apply OK
Count	injuries_total, injuries_fatal,	Formula:
occurrence	injuries_incapacitating,	COUNT(IF [Injuries Incapacitating] >= 1
of	injuries_non_incapacitating	AND [Injuries Fatal] = 0 THEN 1 END) /
categorical values (%)		COUNT([Crash Record Id]) * 100
Vehicle	Crash date	Formula:
Age at	_	YEAR([CRASH DATE]) - [Vehicle Year]
Crash		
Vehicle	Vehicle Age at Crash	Vehicle Age Group ×
Age Bins	j	IF [Vehicle Age at Crash] <= 5 THEN "New" ELSEIF [Vehicle Age at Crash] <= 10 THEN "Middle-Aged" ELSEIF [Vehicle Age at Crash] <= 15 THEN "Aging" ELSEIF [Vehicle Age at Crash] <= 20 THEN "Old" ELSE NULL END
		The calculation is valid. 3 Dependencies • Apply OK

Table 2. List of Data Processing issues, Feature Selection and Feature Creation

The data cleaning process was performed using a Google Colab notebook. To run this file, Python must be installed, or alternatively, the script can be executed on local Python notebook platforms such as Anaconda. The input data consists of the original files from the City of Chicago website, and the output is a set of cleaned and downsized datasets. Calculated fields and feature selection were handled in Tableau, with the corresponding formulas and explanations provided in the table above.

3.0 Requirements

3.1 Must-Have Features

Name set Type Topic 1 1.1 Overview of Table Crashes Weather_condition, Ca	Data Type ategorical, uantitative
Type Topic 1 1.1 Overview of Table Crashes Weather_condition, Ca	~
Topic 1 1.1 Overview of Table Crashes Weather_condition, Ca	~
1.1 Overview of Table Crashes Weather_condition, Ca	~
	~
1.2 Contributory dataset, lighting condition, qua	
1.3 Factors in Traffic vehicles driver vision,	
Incidents dataset trafficway type,	
alignment,	
roadway surface cond,	
vehicle use,	
vehicle_type, vehicle_id,	
person_id,	
crash_record_id	
1.2 Infrastructure Table Crashes trafficway_type, Ca	ategorical
Conditions by dataset, traffic_control_device,	
Trafficway Type people device_condition,	
dataset crash_record_id	
1.1 Driver Actions Table Crashes Sex, driver_action, Ca	ategorical
Contributing to dataset, person_id	
Accidents by people	
Gender dataset	
	ategorical
Contributory dataset sec_contributory_cause,	
Causes Leading crash_record_id	
to Crashes	
Topic 2	
	ime series,
	ategorical
of the Week field), crash_record_id 2.1 Emergency Table Crashes Crash date, Accident Tin	ima aariaa
	ime series,
Response Times dataset Severity (calculated cat by Crash Severity field), report type	ategorical
and Report Status	
	eographical,
	ategorical
Crashes in Illinois people crash record id	atogorioui
dataset	
	ime series,
	uantitative

	People and		vehicles		
	Vehicles Involved		dataset		
	in Crashes in				
	Chicago				
			Topic 3		
3.1	Damage	Table	Crashes	Damage, injuries_total,	Categorical,
3.2	Distribution by		dataset	crash_record_id	quantitative
	Cost and Injury				
	Severity				
3.2	Injury Distribution	Table	Crashes	Driver_action,	Categorical,
	by Behavioural		dataset,	injuries_total,	quantitative
	Factors		people	injury_classification,	
			dataset	crash_record_id	
3.2	Age Distribution	Table	Crashes	% of Injury Types	Quantitative
	and Injury Types		dataset,	(calculated fields), age,	
			people	crash_record_id	
			dataset		
3.1	Vehicle Age and	Table	Crashes	Crash_type, vehicle age	Categorical,
	Туре		dataset,	group (calculated field),	quantitative
	Characteristics		vehicles	damage, vehicle_type	
	by Damage Cost		dataset		
	and Crash Type				

Table 3. List of must-have fields for visualisations

4.0 Visualisation Design

4.1 Topic 1: Contributory Factors Analysis: Driver Behaviour, Infrastructure, and Environmental Conditions

Figure 1. Dashboard 1

4.1.1. Chart Analysis

Cards - Overview of Contributory Factors in Traffic Incidents

Figure 2 provides an overview of environmental and infrastructure conditions,

vehicle usage, and average count of people involved in crashes.

Attributes	Data type	Mark	Channel	Encoding
Weather,	Categorical	Text	Aligned	The categorical fields are
Lighting, Vision,		Labels	horizontally	displayed as text, representing the
Trafficway,			to represent	most frequently occurring values
Alignment, Road			each	
Surface, Vehicle			specific	
Type, Vehicle			field,	
Use			presented in	
Average Vehicle	Quantitative		a tabular	The average counts of vehicles
Count, Average			format for	and people and the total incident
People Count,			comparison	count are shown in numerical form
Total Incident			-	
Count				

Table 4. Data encoding Chart 1

Heatmap - Infrastructure Conditions by Trafficway Type

Infrastructure Conditions by Trafficway Type							
Traffic	Device Condition	DIVIDED - W/	FOUR WAY	NOT DIVIDED	ONE-WAY	PARKING LOT	
NO CON	FUNCTIONING P	0.58%	0.27%	0.54%	0.48%	0.39%	
TROLS	WORN REFLECTI	0.00%		0.00%	0.00%		
	FUNCTIONING I	0.04%		0.03%	0.02%	0.03%	
	FUNCTIONING P	7.97%	23.41%	8.37%	7.24%	0.84%	
GN/FLAS HER	WORN REFLECTI	0.02%	0.01%	0.00%	0.01%		
	FUNCTIONING I	0.12%	0.26%	0.14%	0.10%	0.01%	
	FUNCTIONING P	36.95%	62.23%	26.90%	12.36%	0.41%	
SIGNAL	WORN REFLECTI	0.02%	0.02%	0.01%	0.01%		
	FUNCTIONING I	0.46%	0.73%	0.32%	0.16%	0.02%	
NO CON	NOT FUNCTIONI	0.13%	0.03%	0.12%	0.17%	0.20%	
TROLS	MISSING	0.00%		0.00%	0.00%	0.01%	
	NO CONTROLS	51.78%	8.29%	61.23%	77.90%	97.80%	
STOP SI		0.06%	0.11%	0.04%	0.02%		
GN/FLAS HER	MISSING	0.00%	0.02%	0.01%			
	NO CONTROLS	1.01%	3.29%	1.52%	1.27%	0.23%	
	NOT FUNCTIONI	0.17%	0.44%	0.11%	0.03%	0.01%	
SIGNAL	MISSING	0.00%		0.00%			
	NO CONTROLS	0.68%	0.89%	0.65%	0.23%	0.06%	

Figure 3 visualises the performance of various traffic control devices under different trafficway configurations

Attributes	Data type	Mark	Channel	Encoding
Trafficway Type	Categorical	Rectangles	Positions along the x-axis	Encoded using positions on the x-axis, the order is shown in the original data source. Filtered by top 5 trafficway types with highest crash counts
Traffic Control Device	Categorical		Positions along the yaxis	Encoded using positions along the y-axis to show different control devices
Device Condition	Categorical		Secondary categorization on the y-axis.	ncoded using different colors to distinguish between functioning (green) and nonfunctioning conditions (red)
Percentage of Incidents/Conditions	Quantitative	Text labels	Colour intensity	Encoded using different shades of colour, where darker shades indicate higher percentages

Table 5. Data encoding Chart 2

Bar Chart - Driver Actions Contributing to Accidents by Gender

Figure 4 highlights the most common driver behaviours leading to accidents, categorised by gender

Attributes	Data type	Mark	Channel	Encoding
Driver Action	Categorical	Bars	Positions	Encoded using positions
			along the y-	along the y-axis to
			axis	differentiate types of driver
				actions. Additional filter to
				display top N driver actions
				with highest accident count
Sex	Categorical	Bars	Positions	Encoded using positions
			along the x-	along the x-axis and colour to
			axis. Colours	differentiate between gender
			coded	groups
Percentage of	Quantitative	Bar	Length of	Encoded using the length of
Accidents		length	bars. Text	the bars and text labels to
			labels	represent exact accident
				percentages

Table 6. Data encoding Chart 3

Tree map - Top Behavioural Contributory Causes Leading to Crashes

Figure 5 visualises the most frequent driver behaviours contributing to accidents

Attributes	Data type	Mark	Channel	Encoding
Primary	Categorical	Rectangles	Positions	Encoded using the text labels
Contributory			within the	inside the rectangles to
Cause			tree map	differentiate contributory
Secondary	Categorical	Rectangles	Positions	causes (driver behaviours)
Contributory			within the	
Cause			treemap	
Percentage of Accidents	Quantitative	Bar length	Size of the rectangles. Colour	Encoded using the size of the rectangles and text labels to represent the percentage
			coded	of crashes caused by each behaviour

Table 7. Data encoding Chart 4

Chart Analysis

Visualisation	Chart Type	Insight
Figure 2	The cards displaying most occurred categorical values were chosen to display a wide range of data fields at once. Despite its limitations on exploring further details, it provides a grand picture of categorical fields	Driver behaviour and infrastructure design play a larger role than adverse environmental conditions Environment: Most crashes occurred under clear weather conditions during daylight, with no vision obstructions and on dry, straight, and level roads. Infrastructure: The crashes primarily took place on undivided roads.

		Driver behaviour: Passenger vehicles used for personal purposes were most frequently involved.
Figure 3	Heatmap was chosen to compare two categorical fields (trafficway type and device condition) for identification of patterns and outliers	Positive traffic control devices, especially at critical junctions like fourway intersections and divided roads, play a crucial role in reducing accidents, while areas with no or malfunctioning controls see significantly higher accident rates
Figure 4	Side-by-side bar chart was selected to visualise the relationship between driver actions and accident counts, sliced by genders for comparison between categories	Males are involved in most accidents. Failing to yield and following too closely are leading driver actions to accidents across all genders, with slight variations in the proportion of crashes caused by each behaviour
Figure 5	Tree map was selected to compare primary and secondary contributory causes (hierarchical categorical data) that lead to crashes	Most common contributory cause is following too closely. Secondary cause, failing to reduce speed to avoid a crash, exacerbates the impact of behaviour, contributing to an additional 10.84% of incidents

Table 8. Dashboard 1 Analysis

4.1.2. Visualisation Design

Gestalt's data visualization design principles focus on how individuals interpret visual elements, emphasizing concepts like proximity, similarity, and continuity to help users identify patterns and relationships in the data (Ye, Xue & Lin 2021). While this data visualization project was built with these principles in mind, it's essential to evaluate the design elements to assess how well the dashboards communicate information and achieve aesthetic appeal.

	Principle	Critique
1	Proximity	Grouping of related visualisations: The row of cards placed on top provides an overall understanding to common factors in crashes. Then, the dashboard is split into two sections, with the left exploring infrastructure conditions, and the right diving into driver behaviours (actions and contributory causes)
2	Similarity	Intuitive colours are used across the dashboard (shades of blue, red, and orange were used to represent gender categories; shades of green and red were used to display the positive/negative conditions of traffic devices)
3	Enclosure	Unclear enclosure, missing bounding boxes around groups of related visualizations, which makes it harder for viewers to understand how the visualizations are related
4	Continuity	Unclear continuity between the charts. Viewers need to read context to follow the contents
5	Figure-Ground	The dashboard's background is light and does not distract from the figures

6	Closure	Overwhelming with too much detailed data in the heatmap.
		Should replace with on-hover details and categories grouping
7	Symmetry and Order	The dashboard displays balance in the layout, the heatmap is
		cramped because of excessive information

Table 9. Design principles Evaluation of Dashboard 1

The dashboard incorporates interactive features such as filters for crash types, age, and year, enabling users to explore the data more thoroughly. A filter for selecting the top N driver actions with the highest accident counts is particularly added to address the issue of limited space for displaying multiple data fields. Additionally, users can hover over elements to view detailed tooltips. However, the organization of the filters is unclear due to the absence of proper grouping.

4.1.3. Evolution of Design

Initially, the approach for analysing common factors was to explore as many fields as possible, given the nature of the selected datasets. Since most of the data was categorical, bar charts were chosen to display the most frequent values. However, during the exploration, it became apparent that this layout was too space-consuming and repetitive. As a result, the bar charts were replaced with a card row, though this limited the ability to perform drilldown analysis.

4.2. Topic 2: Spatio-temporal Analysis: Traffic crash density and Police response times

Figure 6. Dashboard 2

4.2.1. Chart Analysis

Heatmap - Crash Frequency by Time and Day of the Week

Figure 7 visualises the frequency of traffic crashes by the time of day and day of the week

Attributes	Data type	Mark	Channel	Encoding
Time of Day	Categorical	Rectangles	Positions along the y-	Encoded using positions along the y-axis to show
			axis	different time intervals of the day
Day of the Week	Categorical	Rectangles	Positions along the x-axis	Encoded using positions along the x-axis to show different days of the week
Percentage of Accidents	Quantitative	Colour and text labels	Colour intensity	Encoded using a gradient of color intensity from yellow (low frequency) to red (high frequency) and text labels to
				show the exact percentages

Table 10. Data encoding Chart 5

Bubble Chart - Emergency Response Times by Crash Severity and Report Status

Figure 8 compares the response times based on crash severity and report type

Attributes	Data type	Mark	Channel	Encoding
Crash Severity	Categorical	Circles	Positions along the yaxis	Encoded using positions along the y-axis to show different crash severity levels
Report Type	Categorical	Circles	Positions along the y- axis (secondary level)	Encoded using positions along the y-axis to differentiate report type
Crash Hour	Categorical	Circles	Positions along the x-axis	Encoded using positions along the x-axis to represent each hour of the day
Number of Crashes	Quantitative	Circle size	Size of circles	Encoded using the size of circles, where larger circles represent a higher count of crashes
Response Time	Quantitative	Colour intensity	Color of circles	Encoded using colour intensity, where darker red represents longer response times and lighter yellow represents shorter response times

Table 11. Data encoding Chart 6

Map - Spatial Distribution of Crashes in Illinois

Figure 9 illustrates the spatial distribution of crashes across Chicago's neighbourhoods

highlighted	for higher	crash	densities
-------------	------------	-------	-----------

Attributes	Data type	Mark	Channel	Encoding
Geographic Location	Categorical	Polygons	Positions along latitude and longitude	Encoded using latitude and longitude to position geographic regions within Illinois
Accident Count	Quantitative	Colour intensity and text	Colour of polygons	Encoded using colour intensity, where darker blues represent higher accident counts. Details: Encoded using tooltips to show the exact accident count when hovering over each region.
Zipcode	Categorical	Polygons	Region boundaries	Encoded using distinct geographic regions defined by zipcode boundaries

Table 12. Data encoding Chart 7

Mixed Chart - Monthly Distribution of People and Vehicles Involved in Crashes in Chicago

Figure 10 provides an overview of the temporal crash patterns in Chicago, showing the number of people and vehicles involved in crashes each month

Attributes	Data type	Mark	Channel	Encoding
Month	Categorical	Bars	Positions	Encoded using positions
			along the x-	along the x-axis to represent
			axis	each month
Number of People	Quantitative	Bars	Height of	Encoded using the height of
		length	bars	bars, where taller bars
				represent a higher number of
				people involved in crashes
Number of	Quantitative	Line	Position of	Encoded using the line
Vehicles			line	position, where higher points
				represent more vehicles
				involved in crashes

Table 13. Data encoding Chart 8

Chart Analysis

Visualisation	Chart Type	Insight
Figure 7	Heatmap was selected to represent two categorical variables (time and day of the week) to identify patterns and hotspots at specific times and days	Weekends and late-night hours (especially between 00:00 and 05:59) have the highest crash frequency
Figure 8	Bubble chart was selected to display the correlation between two quantitative variables: response time and accident count	Longer response times for more serious accidents, particularly when the crash is on-scene. Minor crashes generally have quicker response times, and the number of crashes increases significantly for severe injuries

Figure 9	The map was used to show geographical distribution and visualise the relationship between location (categorical) and crash frequency (quantitative)	Crashes are highly concentrated in Belmont Cragin, Chicago Lawn, and South Chicago
Figure 10	Combined bar and line chart was selected to visualise two quantitative variables (number of people and vehicles involved in crashes) over time (monthly distribution)	The number of people involved in crashes remains relatively stable throughout the year, but there is a notable spike in vehicle involvement in December, suggesting seasonal factors like weather or increased holiday travel as potential contributors

Table 14. Dashboard 2 Analysis

4.2.2. Visualisation Design

	Principle	Critique
1	Proximity	Grouping of related visualisations: The dashboard is split into two sections, with the upper exploring time analysis, and the lower exploring location analysis. This layout is different from the first dashboard, which may cause viewers to be confused.
2	Similarity	Consistent use of colours helps distinguish two types of analysis (warm colours for time analysis, and cold colours for location analysis). However, there is inconsistency between the geographic map and the bar chart where the colour scales differ significantly.
3	Enclosure	Unclear enclosure, missing bounding boxes around groups of related visualizations
4	Continuity	The top two charts are well-grouped together, but the bottom two are more isolated, disrupting the natural flow for viewers to follow the data narrative
5	Figure-Ground	The dashboard's background is light and does not distract from the figures
6	Closure	Overwhelming with too much detailed data in the heatmap. Should replace with on-hover details and categories grouping
7	Symmetry and Order	The dashboard displays balance in the layout, but the map is slightly out of balance due to its smaller size

Table 15. Design principles Evaluation of Dashboard 2

The dashboard incorporates interactive features such as filters for accident severity and damage (vehicles damage filters), zip code and travel directions (geographical filters), and year (chronological filter), as this grouping is an improvement from the first dashboard. Additionally, users can hover over elements to view detailed tooltips.

4.2.3. Evolution of Design

Similar to the initial design of Dashboard 1, Dashboard 2 was originally designed to display all time series data using line charts, as they effectively show category distributions over time. However, this approach proved unnecessary since traffic crash data requires hourly updates. Consequently, the time analysis was replaced with a timetable-style breakdown, highlighting accident density by the hour.

4.3. Topic 3: Crash Impact Analysis: Vehicle damage and injury outcomes

Figure 11. Dashboard 3

4.3.1. Chart Analysis

Pareto Chart - Damage Distribution by Cost and Injury Severity

Figure 12 illustrates the distribution of vehicle damage costs and the corresponding injury severity

Attributes	Data type	Mark	Channel	Encoding
Damage	Categorical	Bars,	Positions	Encoded using positions
		Area	along the x-	along the x-axis to represent
			axis	damage categories
Percentage of	Quantitative	Bars	Height of	Encoded using the height of
Accident Count			bars. Colour	bars (blue), where taller bars
				represent a higher percentage
				of accidents
Max Injuries Total	Quantitative	Area	Height of	Encoded using the height of
			area. Colour	the area (orange), where
				higher areas represent more
				injuries

Table 16. Data encoding Chart 9

Box Plot - Injury Distribution by Behavioural Factors

Figure 13 visualises the distribution of injuries caused by different driver behaviours

and highlights the high variability in injuries related to specific actions

Attributes	Data type	Mark	Channel	Encoding
Driver Action	Categorical	Box Plot	Positions	Encoded using positions
			along the x-	along the x-axis to represent
			axis	different driving behaviours
Injuries Total	Quantitative	Box Plot	Height of	Encoded using box plots to
			boxes,	show the distribution of total
			length of	injuries, with the whiskers
			whiskers	capturing the spread
Injury	Categorical	Circles	Colour	Encoded using colour to
Classification				differentiate between injury
				types (red for fatal, orange for
				incapacitating)

Table 17. Data encoding Chart 10

Area Chart - Age Distribution and Injury Types

Figure 14. shows the distribution of different injury types across various age groups

Attributes	Data type	Mark	Channel	Encoding
Age	Quantitative	Area, Line	Positions along the x-axis	Encoded using positions along the x-axis to represent different age groups
Injury Types	Categorical	Area and colour	Height of stacked areas and colour intensity	Encoded using the height of the stacked areas to represent the percentage of each injury type per age group Encoded using different colours for each injury type: yellow for no injuries, orange for non-incapacitating, dark orange for incapacitating, and red for fatality
Accident Count	Quantitative	Line	Height of line	Encoded using the height of the line chart to show the total number of crashes for each age group

Table 18. Data encoding Chart 11

Heatmap - Vehicle Age and Type Characteristics by Damage Cost and Crash Type

Figure 15 compares different vehicle types and ages against damage costs and crash outcomes

Attributes	Data type	Mark	Channel	Encoding
Damage	Categorical	Squares	Positions along the y-axis	Encoded using positions along the y-axis to represent different damage cost categories
Vehicle Type	Categorical		Positions along the yaxis	Encoded within each damage category to represent different vehicle types
Vehicle Age	Categorical		Positions along the x-axis	Encoded using positions along the x-axis to represent different vehicle age groups
Crash Type	Categorical		Secondary categorization on the x-axis	Encoded as a secondary variable on the x-axis to represent crash type (injury/no injury)
Vehicle Count	Quantitative	Size and colour intensity	Size and colour of squares	Encoded using size and colour intensity of the squares, where larger and darker squares represent a higher count of vehicles

Table 19. Data encoding Chart 12

Chart Analysis

Visualisation	Chart Type	Insight
Figure 12	Stacked bar and area chart was	Damage cost increases as the
	used to compare two quantitative variables (injury severity and total	proportion of severe injuries increases, with the highest costs (over \$1,500)
	running sum of accidents) across a	associated with the most significant

	categorical variable (damage cost). The area chart displays the range of injuries, while the bar chart visualises the total accident counts	injuries and the highest running sum of accident counts
Figure 13	Box plot was used to display the distribution of injuries for each driver behaviour (categorical data), with the addition of circles for specific injury classifications (fatal and incapacitating)	Improper turns and following too closely show a wide range of injury totals, with several fatal or incapacitating injuries represented by outliers. Cell phone usage and disregarding traffic signals have fewer injury counts overall
Figure 14	Stacked area chart was used to show age distribution and injury types (both quantitative) over a continuous variable (age), while the line chart represents the total accident count per age group	Younger drivers (ages 16-30) are associated with the highest accident counts, but they tend to have fewer severe injuries. Older drivers (ages 60+) show fewer accidents, but they have a higher proportion of incapacitating injuries
Figure 15	Heatmap was used to compares two categorical variables (vehicle age and vehicle type) with damage cost and crash type (injury or no injury)	Older vehicles and SUVs involved in crashes with higher damage costs (over \$1,500) tend to be associated with injury-related crashes. In contrast, newer vehicles and passenger cars are more commonly involved in non-injury crashes

Table 20. Dashboard 3 Analysis

4.3.2. Visualisation Design

	Principle	Critique
1	Proximity	Grouping of related visualisations: The top bar chart provides an overall understanding of how vehicles damage and injuries severity are associated. Then, the dashboard is split into two sections, with the left exploring injury distribution, and the right exploring damage analysis. This layout is similar from the first dashboard
2	Similarity	Consistent use of colours helps distinguish two types of analysis (warm colours for injury analysis, and cold colours for damage analysis). However, this colour scheme is similar to dashboard 2, which may be confusing for viewers as the two dashboards are of different topics
3	Enclosure	Unclear enclosure, missing bounding boxes around groups of related visualizations
4	Continuity	The display follows a logical left-to-right order, with the bottom left two charts are well-grouped together, but the bottom right chart is more isolated, showing an imbalance in information
5	Figure-Ground	The dashboard's background is light and does not distract from the figures
6	Closure	Overwhelming with too much detailed data in the heatmap. Should replace with on-hover details and categories grouping

7	Symmetry and Order	The dashboard displays balance in the layout, but the area chart
		is slightly out of balance due to its smaller size

Table 21. Design principles Evaluation of Dashboard 3

The dashboard incorporates interactive features such as filters for gender, age, and participant role (driver characteristics filters), safety equipment and vehicle defect (vehicle characteristics filters), as this grouping is an improvement from the first dashboard. Additionally, users can hover over elements to view detailed tooltips.

4.3.3. Evolution of Design

Topic 3 was the only topic that could not be addressed, as the original plan involved building predictive models, regression for the numerical field "injuries total" and classification for categorical fields like "damage groups." However, this modelling required Python integration, which was beyond the scope of the project. Instead, the focus shifted to exploring two remaining aspects of the datasets: damage analysis and injury analysis. The design was adjusted to first display the relationship between these two aspects, followed by a detailed breakdown of each.

5.0 Conclusion

This data visualization project focused on analysing car crash data to uncover patterns and insights into driver behaviours, infrastructure, and environmental factors that contribute to traffic incidents. As a Data Science student, I learned valuable skills in data preparation, from handling missing values to feature engineering and creating calculated fields. I also gained a deeper understanding of the iterative design process, using interactive features and design principles to create intuitive dashboards that communicate insights clearly to audiences.

6.0 Reference List

Click or tap here to enter text.

Cantillo, Víctor, Luis Márquez, and Carmelo J. Díaz. "An exploratory analysis of factors associated with traffic crashes severity in Cartagena, Colombia." Accident Analysis & Prevention 146 (2020): 105749.

City of Chicago. (2024). Traffic crashes - Crashes [Data set]. Chicago Data Portal.

https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if/about data

City of Chicago. (2024). Traffic crashes - People [Data set]. Chicago Data Portal.

https://data.cityofchicago.org/Transportation/Traffic-Crashes-People/u6pd-qa9d/about data

City of Chicago. (2024). Traffic crashes - Vehicles [Data set]. Chicago Data Portal.

https://data.cityofchicago.org/Transportation/Traffic-Crashes-Vehicles/68nd-jvt3/about data

Stewart, T., 2023. Overview of motor vehicle traffic crashes in 2021 (No. DOT HS 813 435).

Ye, Z, Xue, C & Lin, Y 2021, "Visual perception based on Gestalt theory," in Advances in intelligent systems and computing, pp. 792–797, https://doi.org/10.1007/978-3-030-68017-6 118.