

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

DEPARTAMENTO DE SISTEMAS ELECTRÓNICOS

PRACTICA No. 2 MINIMIZACIÓN ALGEBRAICA

OBJETIVO

Al terminar de la sesión, los integrantes del equipo contaran con la habilidad de diseñar circuitos combinatorios a partir de un enunciado.

INTRODUCCIÓN TEÓRICA

Proporcionada por los integrantes del equipo.

MATERIAL Y EQUIPO EMPLEADO

1	\boldsymbol{C}	T	711	S 00
1	C.	1.	/4L	200

> 1 C. I. 74LS02

➤ 1 C. I. 74LS04

➤ 1 C. I. 74LS08

> 1 C. I. 74LS32

> 1 C. I. 74LS86

➤ 1 Tablilla de Prueba

➤ 1 Pinzas de punta

➤ 1 Pinzas de corte

> Alambre telefónico

➤ 10 LEDS de colores

 \triangleright 10 Resistores de 330 Ω

 \triangleright 10 Resistores de 1K Ω

> Dip switch

Multímetro

> Fuente de Alimentación de 5 Volts

➤ Manual de especificaciones "FAST and LS

TTL" de MOTOROLA

DESARROLLO EXPERIMENTAL

1. Diseñe un comparador de magnitud de dos bits. Observe la tabla funcional y recuerde que tiene dos entradas y tres salidas. Arme su circuito resultante y verifique sus resultados.

#	A	В	F1= A <b< th=""><th>F2= A=B</th><th>F3= A>B</th><th>F1 A<b (volts)<="" th=""><th>F2 A=B (Volts)</th><th>F3 A>B (Volts)</th></th></b<>	F2= A=B	F3= A>B	F1 A <b (volts)<="" th=""><th>F2 A=B (Volts)</th><th>F3 A>B (Volts)</th>	F2 A=B (Volts)	F3 A>B (Volts)
0	0	0						
1	0	1						
2	1	0						
3	1	1						

1.1 Coloque la solución del problema y dibuje su circuito lógico.

MINIMIZACIÓN

2. Diseñe un generador de Código Gray de 4 bits, y arme su circuito para verificar su funcionamiento.

CÓDIGO GRAY

#	A	В	C	D	F1	F2	F3	F4
0	0	0	0	0				
1	0	0	0	1				
2	0	0	1	0				
3	0	0	1	1				
4	0	1	0	0				
5	0	1	0	1				
6	0	1	1	0				
7	0	1	1	1				
8	1	0	0	0				
9	1	0	0	1				
10	1	0	1	0				
11	1	0	1	1				
12	1	1	0	0				
13	1	1	0	1				
14	1	1	1	0				
15	1	1	1	1				

2.1 Coloque la solución de su problema y dibuje su circuito lógico obtenido.

OBSERVACIONES Y CONCLUSIONES:

Individuales.

BIBLIOGRAFÍA: