Table of Contents

- 1. Project Setup and Initialization
- 2. Data Loading and Initial Exploration
- 3. Target Label Analysis
- 4. Feature Selection by Missing Values
- 5. Feature Engineering and Preprocessing
 - 5.1. Separating Feature Types
 - 5.2. Creating Preprocessing Pipelines
- 6. Data splitting & Imputation
 - 6.1. Data Splitting and Imputation
 - 6.2.
- 7. Handling Class Imbalance with SMOTE
 - 7.1. Applying Synthetic Minority Over-sampling Technique (SMOTE)
 - 7.2. Training and Evaluation with SMOTE
- 8. Advanced Modeling and Hyperparameter Tuning (CatBoost)
 - 8.1. Hyperparameter Search with RandomizedSearchCV
 - 8.2. CatBoost, XgBoost, RF Model Evaluation
 - 8.3. Precision vs. Threshold Analysis
- 9. Results

1. Project Setup and Initialization

This initial step configures the computing environment and imports necessary libraries.

Library Imports: The necessary Python libraries are imported: os and pandas for data manipulation.

Define File Paths: Local paths are defined for the main training data (train (6).csv) and the churn label file (train_churn_labels.csv).

2. Data Loading and Initial Exploration

The primary feature dataset is loaded and summarized to understand its structure and statistical properties.

Load Data: The train (6).csv file is read into a pandas DataFrame named data.

Descriptive Statistics: The .describe() method is executed on the DataFrame, showing count, mean, standard deviation, and quartile information for the numeric columns. This summary is also saved to a file named summary_features.csv. The data contains 192 columns in the summary, with varying counts of non-missing values.

3. Target Label Analysis

The dataset containing the target variable is loaded to examine the class distribution.

Load Labels: The train_churn_labels.csv file is loaded into a DataFrame named labels.

Label Values: The unique values in the Label column are identified as -1 and 1.

Class Imbalance Check: The value counts for the target variable show a significant class imbalance: 46,328 instances with label -1 and only 3,672 instances with label 1.

4. Feature Selection by Missing Values

Columns are filtered based on the percentage of missing values to remove those with excessive sparsity.

Missing Value Calculation: The percentage of missing values for every column is calculated.

Filtering Criterion: Columns with less than 30% missing values are selected for the downstream analysis.

Result: This filtering step results in 67 columns being retained, creating a new DataFrame called data_filtered_missing.

5. Feature Engineering and Preprocessing

The selected features are prepared for model training by separating them by type and establishing a preprocessing pipeline.

5.1. Separating Feature Types

The 67 retained columns are separated into categorical (object, category dtypes) and numerical (int64, float64 dtypes) feature lists.

- Categorical features: Variables like Var192 through Var228.
- Numerical features: Variables like Var6, Var7, Var13, Var21, etc.

5.2. Creating Preprocessing Pipelines

- Missing Indicator: Flags columns with missing values.
- Numerical Pipeline:
 - Imputes missing values with the mean.
 - Applies MinMaxScaler for feature scaling.
- Categorical Pipeline:
 - Imputes missing values with the mean
 - Applies labelEncoder for categorical encoding.
- **Column Transformer:** Applies the numerical pipeline to numerical features and the categorical pipeline to categorical features.

6. Model Training and Evaluation

- Data split into training and testing sets (70/30 split) using train_test_split.
- Preliminary Pipeline combines preprocessing steps with a Logistic Regression model (max_iter=5000).
- Pipeline is fit on the training data (X_train, y_train).

6.2. Model Evaluation

- Generates probability predictions (y_proba_1r) on the test set.
- Classification threshold of 0.1 is applied to convert probabilities into binary predictions (y_pred_lr).
- Evaluated using a Classification Report and ROC-AUC score.

7. Handling Class Imbalance with SMOTE

To address the severe class imbalance identified in Step 3, the SMOTE technique is applied.

7.1. Applying Synthetic Minority Over-sampling Technique (SMOTE)

- SMOTE object is initialized and applied to the training data (X_train, y_train) to generate synthetic samples for the minority class (Label 1).
- Result is a new, balanced dataset (X_resampled, y_resampled).

7.2. Training and Evaluation with SMOTE

- Second Logistic Regression pipeline is trained using the SMOTE-resampled training data.
- Same threshold of 0.1 used for evaluation on the test set.

 Performance evaluated using Classification Report and ROC-AUC score, compared against the baseline model.

8. Advanced Modeling and Hyperparameter Tuning

An advanced gradient boosting model is introduced, and its hyperparameters are optimized.

8.1. Hyperparameter Search with RandomizedSearchCV

- Final pipeline constructed using the ColumnTransformer (preprocessing) and a CatBoost Classifier.
- Parameter grid (param_grid_cat) defined for tuning the CatBoost model.
- RandomizedSearchCV used to efficiently search the hyperparameter space (n_iter=10, cv=3).
- Search fitted on the original training data.

8.2. Model Evaluation

- Best estimator (best_cat) from randomized search is used to make probability predictions on the test set.
- Same threshold (0.1) applied to generate binary predictions (y_pred_cat).
- Best hyperparameters printed, performance presented via Classification Report and ROC-AUC score.

8.3. Precision vs. Threshold Analysis

- Precision-Recall Curve calculated using predicted probabilities and true test labels.
- Line plot visualizes the relationship between Precision and classification Threshold, allowing optimal threshold selection beyond the fixed 0.1 used in evaluations.

9. Results

```
Fitting 3 folds for each of 15 candidates, totalling 45 fits
```

```
XGBoost Evaluation (Threshold=0.65):
Best XGB Params: {'subsample': 0.7, 'reg lambda': 5, 'reg alpha': 1,
'n_estimators': 500, 'max_depth': 4, 'learning_rate': 0.01, 'colsample_bytree':
0.8}
            precision recall f1-score support
         0
                0.94 0.92 0.93
                                          9266
                0.20 0.24 0.22
         1
                                            734
                                  0.87 10000
   accuracy
  macro avg 0.57 0.58 0.57 10000
weighted avg
               0.88 0.87 0.88 10000
ROC-AUC: 0.7048997212862823
Fitting 3 folds for each of 10 candidates, totalling 30 fits
Random Forest Evaluation (Threshold=0.65):
Best RF Params: {'n_estimators': 200, 'max_features': 'log2', 'max_depth':
None, 'class weight': 'balanced'}
```

precision recall f1-score support

0	0.93	1.00	0.96	9266
1	0.50	0.00	0.01	734
accuracy			0.93	10000
macro avg	0.71	0.50	0.48	10000
weighted avg	0.90	0.93	0.89	10000

ROC-AUC: 0.666311633577622

Fitting 3 folds for each of 10 candidates, totalling 30 fits

c:\users\rajud\anaconda3\lib\site-packages\catboost\core.py:1411:

FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.

self._init_pool(data, label, cat_features, text_features, embedding_features,
embedding features data, pairs, weight,

CatBoost Evaluation (Threshold=0.65):

Best CatBoost Params: {'learning_rate': 0.01, 'l2_leaf_reg': 7, 'iterations':
600, 'depth': 5}

	precision	recall	f1-score	support	
0	0.94	0.93	0.93	9266	
O	0.94	0.33	0.93	9200	
1	0.20	0.23	0.21	734	
accuracy			0.88	10000	
macro avg	0.57	0.58	0.57	10000	
weighted avg	0.88	0.88	0.88	10000	

ROC-AUC: 0.7024428178139175