Infinite Variables *L*-Functions, $\mathbb{Y}_n(F)$ Number Systems, and the Infinite Dimensional Riemann Hypothesis

Alien Mathematicians

Introduction

In this presentation, we continue the rigorous development of infinite variable L-functions, $\mathbb{Y}_n(F)$ number systems, and the infinite-dimensional Riemann Hypothesis. We extend the concepts and theorems from previous discussions and introduce new mathematical definitions, notations, and formulas, providing full explanations for each.

Definition 1: Infinite Dimensional L-Functions

We define the infinite-dimensional L-function $\mathcal{L}_{\infty}(s; \mathbf{X})$ associated with a vector $\mathbf{X} = (X_1, X_2, \dots)$ of complex variables as:

$$\mathcal{L}_{\infty}(s; \mathbf{X}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} e^{\langle \mathbf{X}, \mathbf{n} \rangle},$$

where $\langle \mathbf{X}, \mathbf{n} \rangle = \sum_{i=1}^{\infty} X_i n_i$ is an infinite sum and a(n) are coefficients that depend on the specific problem context.

Definition 2: Yang_n(F) Number Systems

The Yang_n(F) number system, denoted as $\mathbb{Y}_n(F)$, is a generalization of field extensions where n can be an infinite cardinal number and F is a field. The structure of $\mathbb{Y}_n(F)$ is explored through the following properties:

$$\mathbb{Y}_n(F) = \bigoplus_{i=1}^n F_i,$$

where I is an index set with cardinality n, and each F_i is a copy of F.

Theorem 1: Convergence of $\mathcal{L}_{\infty}(s; \mathbf{X})$

Theorem 1: The infinite-dimensional L-function $\mathcal{L}_{\infty}(s; \mathbf{X})$ converges absolutely for $\Re(s) > 1$ and for suitable choices of the vector \mathbf{X} .

Proof (1/3).

Consider the infinite series defining $\mathcal{L}_{\infty}(s; \mathbf{X})$:

$$\mathcal{L}_{\infty}(s; \mathbf{X}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} e^{\langle \mathbf{X}, \mathbf{n} \rangle}.$$

To show absolute convergence, we must analyze the term:

$$\left|\frac{a(n)}{n^s}e^{\langle \mathbf{X},\mathbf{n}\rangle}\right| \leq \frac{|a(n)|}{n^{\Re(s)}}\left|e^{\langle \mathbf{X},\mathbf{n}\rangle}\right|.$$

Proof (2/3).

Since $|e^{\langle X,n\rangle}| = e^{\Re(\langle X,n\rangle)}$, the convergence of the series

We introduce the generalized symmetry-adjusted zeta function for the $\mathbb{Y}_n(F)$ number system:

$$\zeta_{\mathbb{Y}_n(F)}^{\text{sym}}(s;k) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^k \chi_i(\mathbb{Y}_n(F)),$$

where χ_i are characters associated with the $\mathbb{Y}_n(F)$ system, and k is an integer parameter determining the level of symmetry adjustment.

Further Extensions

Further, we define the symmetry-adjusted *L*-function for infinite variables as:

$$\mathcal{L}_{\infty}^{\text{sym}}(\boldsymbol{s}; \mathbf{X}, k) = \sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \prod_{i=1}^{k} \chi_{i}(\mathbf{X}_{n}),$$

where $\mathbf{X}_n = (X_{n1}, X_{n2}, \dots)$ is a sequence of variables, and χ_i are symmetry characters.

Definition 4: Infinite Tensor L-Functions

We define the infinite tensor L-function $\mathcal{L}_{\infty}^{\otimes}(s; \mathbf{X}, \mathbf{T})$ for a vector \mathbf{X} of complex variables and a tensor \mathbf{T} as:

$$\mathcal{L}_{\infty}^{\otimes}(s;\mathbf{X},\mathbf{T}) = \sum_{r=1}^{\infty} \frac{a(n)}{n^{s}} \otimes_{i=1}^{\infty} T_{i}(\mathbf{X},\mathbf{n}),$$

where \otimes denotes the tensor product over infinite dimensions, and $T_i(\mathbf{X}, \mathbf{n})$ are tensor components defined in relation to the vector \mathbf{X} and the index vector \mathbf{n} .

Definition 5: Yang $_{n,m}(F)$ **Number Systems**

The Yang_{n,m}(F) number system, denoted as $\mathbb{Y}_{n,m}(F)$, extends the $\mathbb{Y}_n(F)$ number system to two indices, n and m, where n can be an infinite cardinal number and m is a positive integer. The structure of $\mathbb{Y}_{n,m}(F)$ is given by:

$$\mathbb{Y}_{n,m}(F) = \bigoplus_{i=1}^{m} \mathbb{Y}_{n}(F)_{i},$$

where each $\mathbb{Y}_n(F)_i$ represents an individual $\mathbb{Y}_n(F)$ system.

Theorem 2: Existence of Symmetry-Invariant *L*-Functions

Theorem 2: For any infinite-dimensional symmetry group S_{∞} , there exists a symmetry-invariant L-function $\mathcal{L}_{\infty}^{S}(s; \mathbf{X})$ such that:

$$\mathcal{L}_{\infty}^{\mathcal{S}}(s; \mathbf{X}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \operatorname{Sym}_{\infty}(\mathbf{X}_{n}),$$

where $\operatorname{Sym}_{\infty}(\mathbf{X}_n)$ denotes the symmetry-invariant components associated with \mathbf{X}_n .

Proof (1/4).

Let S_{∞} be the infinite-dimensional symmetry group acting on the vector space \mathbb{V} . Consider the *L*-function defined as:

$$\mathcal{L}_{\infty}^{\mathcal{S}}(s; \mathbf{X}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \operatorname{Sym}_{\infty}(\mathbf{X}_n).$$

We need to show that $\mathcal{L}_{\infty}^{\mathcal{S}}(s; \mathbf{X})$ remains invariant under the action of any element $\sigma \in \mathcal{S}_{\infty}$.

We introduce the infinite dimensional convolution *L*-function defined as:

$$\mathcal{L}_{\infty}^{*}(s; \mathbf{X}, \mathbf{Y}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} *_{i=1}^{\infty} f_{i}(\mathbf{X}, \mathbf{Y}),$$

where * denotes the convolution product over infinite dimensions, and $f_i(\mathbf{X}, \mathbf{Y})$ are convolution factors that depend on the vectors \mathbf{X} and \mathbf{Y} .

Additionally, we define the generalized $Yang_{n,m}(F)$ -zeta function as:

$$\zeta_{\mathbb{Y}_{n,m}(F)}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^m \chi_i(\mathbb{Y}_n(F)),$$

where χ_i are characters associated with the $\mathbb{Y}_n(F)$ systems, and m is the index parameter introduced in Definition 5.

Definition 7: Infinite Product *L***-Functions**

We define the infinite product *L*-function $\mathcal{L}_{\infty}^{\prod (s; \mathbf{X}, \mathbf{P})}$ for a vector \mathbf{X} of complex variables and a sequence of products \mathbf{P} as:

$$\mathcal{L}_{\infty}^{\prod(s;\mathbf{X},\mathbf{P})} = \prod_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \frac{a(m)}{m^{s}} P_{n}(\mathbf{X},m) \right),$$

where $P_n(\mathbf{X}, m)$ represents a product term involving the vector \mathbf{X} and index m, extended infinitely.

Definition 8: Yang_{n,m}(F)-**Symmetry Zeta Functions** We introduce the Yang_{n,m}(F)-symmetry zeta function $\zeta_{\mathbb{Y}_{n,m}(F)}^{\text{sym}}(s)$ as:

$$\zeta_{\mathbb{Y}_{n,m}(F)}^{\mathsf{sym}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \mathsf{Sym}_{\infty}(\mathbb{Y}_{n,m}(F)_n),$$

where $\operatorname{Sym}_{\infty}$ denotes the symmetry operation applied to the nth component of the $\mathbb{Y}_{n,m}(F)$ number system.

Definition 9: Infinite Dimensional Cohomological Zeta Function

Theorem 3: Convergence of Infinite Product *L*-Functions

Theorem 3: The infinite product *L*-function $\mathcal{L}_{\infty}^{\prod(s;\mathbf{X},\mathbf{P})}$ converges for $\Re(s)>1$ and for suitable choices of the vector \mathbf{X} and the sequence of products \mathbf{P} .

Proof (1/5).

Consider the infinite product *L*-function:

$$\mathcal{L}_{\infty}^{\prod(s;\mathbf{X},\mathbf{P})} = \prod_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \frac{a(m)}{m^s} P_n(\mathbf{X},m) \right).$$

To demonstrate convergence, we analyze the convergence of the inner sum and the infinite product separately.

Proof (2/5).

First, consider the inner sum:

$$\sum_{m=0}^{\infty} a(m) = a_{m}$$

We introduce the cohomological $Yang_{n,m}(F)$ -zeta function defined as:

$$\zeta^{\mathsf{coh}}_{\mathbb{Y}_{n,m}(F)}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \mathsf{Coh}_{\mathbb{Y}_{n,m}(F)}(n),$$

where $Coh_{\mathbb{Y}_{n,m}(F)}(n)$ denotes the cohomological component of the nth term in the $Yang_{n,m}(F)$ number system.

Additionally, we define the infinite dimensional mixed *L*-function:

$$\mathcal{L}_{\infty}^{\mathsf{mix}}(s; \mathbf{X}, \mathbf{Y}, \mathbf{P}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \mathsf{Mix}_{n,\infty}(\mathbf{X}, \mathbf{Y}, \mathbf{P}),$$

where $\operatorname{Mix}_{n,\infty}(\mathbf{X},\mathbf{Y},\mathbf{P})$ represents a mixed operation over infinite dimensions involving vectors \mathbf{X} , \mathbf{Y} , and the product sequence \mathbf{P} .

Definition 10: Infinite Dimensional Automorphic *L*-Functions

We define the infinite dimensional automorphic L-function $\mathcal{L}_{\infty}^{\mathrm{aut}}(s;\mathbf{X},\mathbf{A})$ for a vector \mathbf{X} of complex variables and a sequence of automorphic forms \mathbf{A} as:

$$\mathcal{L}_{\infty}^{\text{aut}}(s; \mathbf{X}, \mathbf{A}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \prod_{i=1}^{\infty} A_i(\mathbf{X}, n),$$

where $A_i(\mathbf{X}, n)$ represents the *i*th automorphic form evaluated at the vector \mathbf{X} and index n.

Definition 11: Yang $_{n,m,k}(F)$ **Number Systems**

The Yang_{n,m,k}(F) number system, denoted as $\mathbb{Y}_{n,m,k}(F)$, is an extension of the previously defined Yang_{n,m}(F) systems to include a third index k, where k is a positive integer. The structure of $\mathbb{Y}_{n,m,k}(F)$ is given by:

$$\mathbb{Y}_{n,m,k}(F) = \bigoplus_{j=1}^{k} \mathbb{Y}_{n,m}(F)_{j},$$

Theorem 4: Convergence of Infinite Dimensional Automorphic *L*-Functions

Theorem 4: The infinite dimensional automorphic L-function $\mathcal{L}^{\mathrm{aut}}_{\infty}(s;\mathbf{X},\mathbf{A})$ converges for $\Re(s)>1$ and for suitable choices of the vector \mathbf{X} and the sequence of automorphic forms \mathbf{A} .

Proof (1/6).

Consider the infinite dimensional automorphic *L*-function:

$$\mathcal{L}^{\mathsf{aut}}_{\infty}(s;\mathbf{X},\mathbf{A}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \prod_{i=1}^{\infty} A_i(\mathbf{X},n).$$

We begin by analyzing the convergence of the product term:

$$\prod_{i=1}^{\infty} A_i(\mathbf{X}, n).$$

We introduce the automorphic $Yang_{n,m,k}(F)$ -zeta function defined as:

$$\zeta_{\mathbb{Y}_{n,m,k}(F)}^{\text{aut}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^k A_i(\mathbb{Y}_{n,m}(F), n),$$

where $A_i(\mathbb{Y}_{n,m}(F), n)$ represents the *i*th automorphic form associated with the *n*th term of the Yang_{n,m,k}(F) system. Additionally, we define the infinite dimensional spectral Yang_{n,m,k}(F)-zeta function:

$$\zeta_{\mathbb{Y}_{n,m,k}(F)}^{\mathsf{spec}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^k \Lambda_i(\mathbb{Y}_{n,m}(F), n),$$

where $\Lambda_j(\mathbb{Y}_{n,m}(F), n)$ denotes the *j*th spectral function associated with the *n*th term of the $\mathrm{Yang}_{n.m.k}(F)$ system.

Conclusion

This ongoing development introduces further layers of complexity in the study of infinite variable L-functions, ${\rm Yang}_{n,m,k}(F)$ number systems, and the infinite-dimensional Riemann Hypothesis. By incorporating automorphic and spectral elements, we open new avenues for the exploration of these advanced mathematical objects in infinite-dimensional settings.

Definition 10: Infinite Dimensional Automorphic *L*-Functions

We define the infinite dimensional automorphic L-function $\mathcal{L}_{\infty}^{\mathrm{aut}}(s;\mathbf{X},\mathbf{A})$ for a vector \mathbf{X} of complex variables and a sequence of automorphic forms \mathbf{A} as:

$$\mathcal{L}_{\infty}^{\text{aut}}(s; \mathbf{X}, \mathbf{A}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \prod_{i=1}^{\infty} A_i(\mathbf{X}, n),$$

where $A_i(\mathbf{X}, n)$ represents the *i*th automorphic form evaluated at the vector \mathbf{X} and index n.

Definition 11: Yang $_{n,m,k}(F)$ **Number Systems**

The Yang_{n,m,k}(F) number system, denoted as $\mathbb{Y}_{n,m,k}(F)$, is an extension of the previously defined Yang_{n,m}(F) systems to include a third index k, where k is a positive integer. The structure of $\mathbb{Y}_{n,m,k}(F)$ is given by:

$$\mathbb{Y}_{n,m,k}(F) = \bigoplus_{j=1}^{k} \mathbb{Y}_{n,m}(F)_{j},$$

Theorem 4: Convergence of Infinite Dimensional Automorphic *L*-Functions

Theorem 4: The infinite dimensional automorphic L-function $\mathcal{L}_{\infty}^{\mathrm{aut}}(s;\mathbf{X},\mathbf{A})$ converges for $\Re(s)>1$ and for suitable choices of the vector \mathbf{X} and the sequence of automorphic forms \mathbf{A} .

Proof (1/6).

Consider the infinite dimensional automorphic *L*-function:

$$\mathcal{L}^{\mathsf{aut}}_{\infty}(s;\mathbf{X},\mathbf{A}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \prod_{i=1}^{\infty} A_i(\mathbf{X},n).$$

We begin by analyzing the convergence of the product term:

$$\prod_{i=1}^{\infty} A_i(\mathbf{X}, n).$$

We introduce the automorphic $Yang_{n,m,k}(F)$ -zeta function defined as:

$$\zeta_{\mathbb{Y}_{n,m,k}(F)}^{\text{aut}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^k A_i(\mathbb{Y}_{n,m}(F), n),$$

where $A_i(\mathbb{Y}_{n,m}(F), n)$ represents the ith automorphic form associated with the nth term of the Yang $_{n,m,k}(F)$ system. Additionally, we define the infinite dimensional spectral Yang $_{n,m,k}(F)$ -zeta function:

$$\zeta_{\mathbb{Y}_{n,m,k}(F)}^{\mathsf{spec}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{j=1}^k \Lambda_j(\mathbb{Y}_{n,m}(F), n),$$

where $\Lambda_j(\mathbb{Y}_{n,m}(F), n)$ denotes the *j*th spectral function associated with the *n*th term of the $\mathrm{Yang}_{n.m.k}(F)$ system.

Theorem 5: Convergence of Spectral Yang $_{n,m,k}(F)$ -Zeta Functions

Theorem 5: The spectral $\operatorname{Yang}_{n,m,k}(F)$ -zeta function $\zeta^{\operatorname{spec}}_{\mathbb{Y}_{n,m,k}(F)}(s)$ converges for $\Re(s) > 1$ and for suitable choices of the spectral functions $\Lambda_j(\mathbb{Y}_{n,m}(F),n)$.

Proof (1/5).

Consider the spectral $Yang_{n,m,k}(F)$ -zeta function defined as:

$$\zeta_{\mathbb{Y}_{n,m,k}(F)}^{\mathsf{spec}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{j=1}^k \Lambda_j(\mathbb{Y}_{n,m}(F), n).$$

We begin by analyzing the convergence of the product term:

$$\prod_{j=1}^k \Lambda_j(\mathbb{Y}_{n,m}(F),n).$$

Definition 13: Infinite Dimensional Modular *L***-Functions** We define the infinite dimensional modular *L*-function $\mathcal{L}_{\infty}^{\text{mod}}(s; \mathbf{X}, \mathbf{M})$ for a vector \mathbf{X} of complex variables and a sequence of modular forms \mathbf{M} as:

$$\mathcal{L}_{\infty}^{\mathsf{mod}}(s; \mathbf{X}, \mathbf{M}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \prod_{i=1}^{\infty} M_i(\mathbf{X}, n),$$

where $M_i(\mathbf{X}, n)$ represents the *i*th modular form evaluated at the vector \mathbf{X} and index n.

Definition 14: Yang_{n,m,k,ℓ}(F) Number Systems

The Yang_{n,m,k,ℓ}(F) number system, denoted as $\mathbb{Y}_{n,m,k,\ell}(F)$, extends the previously defined Yang_{n,m,k}(F) systems to include a fourth index ℓ , where ℓ is a positive integer. The structure of $\mathbb{Y}_{n,m,k,\ell}(F)$ is given by:

$$\mathbb{Y}_{n,m,k,\ell}(F) = \bigoplus_{t=1}^{\ell} \mathbb{Y}_{n,m,k}(F)_t,$$

where each $\mathbb{Y}_{n,m,k}(F)_t$ is an individual Yang $_{n,m,k}(F)$ system.

Theorem 6: Convergence of Modular $Yang_{n.m.k,\ell}(F)$ -Zeta Functions

Theorem 6: The modular $\operatorname{Yang}_{n,m,k,\ell}(F)$ -zeta function $\zeta^{\operatorname{mod}}_{\mathbb{Y}_{n,m,k,\ell}(F)}(s)$ converges for $\Re(s) > 1$ and for suitable choices of the modular forms $M_i(\mathbb{Y}_{n,m,k}(F),n)$.

Proof (1/6).

Consider the modular $Yang_{n,m,k,\ell}(F)$ -zeta function defined as:

$$\zeta_{\mathbb{Y}_{n,m,k,\ell}(F)}^{\mathsf{mod}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^{\ell} M_i(\mathbb{Y}_{n,m,k}(F), n).$$

We begin by analyzing the convergence of the product term:

$$\prod_{i=1}^{\ell} M_i(\mathbb{Y}_{n,m,k}(F),n).$$

We introduce the modular $Yang_{n,m,k,\ell}(F)$ -zeta function defined as:

$$\zeta_{\mathbb{Y}_{n,m,k,\ell}(F)}^{\mathsf{mod}}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{i=1}^{\ell} M_i(\mathbb{Y}_{n,m,k}(F), n).$$

Additionally, we define the infinite dimensional modular $Yang_{n,m,k,\ell}(F)$ -convolution L-function:

$$\mathcal{L}_{\infty}^{\mathsf{conv}}(s; \mathbf{X}, \mathbf{Y}, \mathbf{M}) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \mathsf{Conv}_{n,\infty}(\mathbf{X}, \mathbf{Y}, \mathbf{M}),$$

where $\operatorname{Conv}_{n,\infty}(\mathbf{X},\mathbf{Y},\mathbf{M})$ represents a convolution operation over infinite dimensions involving vectors \mathbf{X} , \mathbf{Y} , and the modular sequence \mathbf{M} .

Towards the Most Generalized Riemann Hypothesis

To approach a proof of the most generalized Riemann Hypothesis (RH) in the context of infinite-dimensional spaces and the $\mathsf{Yang}_{n,m,k,\ell}(F)$ number systems, we begin by considering the infinite-dimensional analogues of the classical zeta function and its extensions to various forms of L-functions.

Theorem 7: Generalized Spectral RH for $\zeta_{\mathbb{Y}_{n,m,k,\ell}(F)}^{\text{spec}}(s)$

Theorem 7: The non-trivial zeros of the spectral

Yang $_{n,m,k,\ell}(F)$ -zeta function $\zeta^{\mathrm{spec}}_{\mathbb{Y}_{n,m,k,\ell}(F)}(s)$ lie on the critical line

 $\Re(s)=\frac{1}{2}$ under appropriate conditions on the spectral functions $\Lambda_j(\mathbb{Y}_{n,m,k}(F),n)$.

Proof (1/8).

Consider the spectral Yang $_{n,m,k,\ell}(F)$ -zeta function:

$$\zeta^{\mathsf{spec}}_{\mathbb{Y}_{n,m,k,\ell}(F)}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{j=1}^{\ell} \Lambda_j(\mathbb{Y}_{n,m,k}(F), n).$$

We start by analyzing the functional equation for this zeta function, which we hypothesize extends the classical functional equation of the Riemann zeta function.

Proof (2/8).

Assume that the spectral functions $\Lambda_i(\mathbb{Y}_{n,m,k}(F),n)$ satisfy a

Definition 15: Infinite Dimensional Dirichlet *L***-Functions** We define the infinite dimensional Dirichlet *L*-function $\mathcal{L}_{\infty}^{\mathrm{Dir}}(s;\mathbf{X},\chi)$ for a vector \mathbf{X} of complex variables and a sequence of Dirichlet characters χ as:

$$\mathcal{L}_{\infty}^{\mathsf{Dir}}(\boldsymbol{s}; \mathbf{X}, \chi) = \sum_{n=1}^{\infty} \frac{\chi_n(\mathbf{X})}{n^{\mathbf{s}}} \prod_{i=1}^{\infty} \chi_i(\mathbf{X}_n),$$

where $\chi_i(\mathbf{X}_n)$ represents the *i*th Dirichlet character evaluated at the *n*th coordinate of the vector \mathbf{X} .

Theorem 8: Generalized Dirichlet RH for $\mathcal{L}_{\infty}^{\mathsf{Dir}}(s; \mathbf{X}, \chi)$

Theorem 8: The non-trivial zeros of the infinite dimensional Dirichlet *L*-function $\mathcal{L}_{\infty}^{\mathsf{Dir}}(s; \mathbf{X}, \chi)$ lie on the critical line $\Re(s) = \frac{1}{2}$ under appropriate conditions on the Dirichlet characters $\chi_i(\mathbf{X}_n)$.

Proof (1/8).

Consider the infinite dimensional Dirichlet *L*-function:

$$\mathcal{L}_{\infty}^{\mathsf{Dir}}(\boldsymbol{s}; \mathbf{X}, \chi) = \sum_{n=1}^{\infty} \frac{\chi_n(\mathbf{X})}{n^{\mathbf{s}}} \prod_{i=1}^{\infty} \chi_i(\mathbf{X}_n).$$

We analyze the functional equation for this *L*-function, hypothesizing an extension of the classical Dirichlet *L*-function equation.

Proof (2/8).

Assume that the Dirichlet characters $\chi_i(\mathbf{X}_n)$ satisfy a symmetry similar to that of the classical Dirichlet *L*-functions:

Conclusion

The ongoing exploration towards proving the most generalized Riemann Hypothesis in infinite-dimensional settings continues with the development of spectral and Dirichlet L-functions. These developments suggest that under appropriate symmetry conditions, the non-trivial zeros of these generalized zeta functions adhere to the critical line $\Re(s) = \frac{1}{2}$, reinforcing the universal applicability of the Riemann Hypothesis across diverse mathematical structures.