Amostragem	Sinal de entrada	m(t)
Amostragem	Frequência máxima do sinal Frequência de amostragem	$W \text{ [Hz]} $ $f_s \ge 2W \text{ [Hz]}$
PCM		
	Número de bits por amostra Número de intervalos de quantificação Débito binário Potência normalizada Valor máximo de quantificação (PCM) Intervalo de quantificação Potência do ruído de quantificação Relação sinal ruído de quantificação	$\begin{array}{l} R \\ L = 2^R \\ R_b = Rf_s \; [\text{bit/s}] \; [\text{Hz}] \\ P_n = P/m_{max}^2 \\ V \\ \Delta_q = 2V/L \\ \sigma^2 = \Delta_q^2/12 \\ SNR \simeq 6.02R + 10 \log_{10} \left(3P/V^2\right) \; [\text{dB}] \end{array}$
PCM não uniforme		
DPCM	Relação sinal ruído de quantificação	$SNR \simeq 6.02R - 10 \text{ [dB]}$
	Valor máximo de quantificação (DPCM) Relação sinal ruído de quantificação	V_1 $SNR \simeq 6.02R + 10 \log_{10} (3P/V_1^2) \text{ [dB]}$
Transmissão binária	Tempo de bit	$T_b = 1/R_b$
	Amplitude do código de linha	A = 1/10b
	Probabilidade do bit i	p_i
	Energia do bit i ($i = \{0, 1\}$) Energia média por bit	$E_i = \int_0^{T_b} s_i^2(t)$ $E_b = p_0 E_0 + p_1 E_1 \text{ (tabela 1)}$
	Largura de banda do sinal Transmitido	B_{T} (tabela 1)
	Eficiência espectral	$ \rho = R_b/B_T $
	Potência Transmitida factor de rolloff	$S_T = E_b R_b \text{ [W]}$
	Potência por Hertz do ruído no canal Largura de banda do canal de comunicação Relação sinal-ruído no canal Probabilidade de erro de bit distância entre símbolos	α $N_0/2$ [W/Hz] [J] $B_c > B_T$ SNR_c [dB] (tabela 1) $2d$
	BER receptor óptimo	$\frac{1}{2}$ erfc $\left(\sqrt{\frac{d^2}{2\sigma_n^2}}\right)$
${\it Transmiss\~ao/Modulaç\~ao}$ M-ária		.,
Controle de Erros	Número de bits por símbolo Número de símbolos da constelação Débito de símbolos Tempo de símbolo Energia média por símbolo Energia do símbolo de menor energia Energia média por bit Probabilidade de erro de símbolo Probabilidade de erro de bit (código Gray) (código aleatório)	$K \\ M = 2^K \\ R_s = R_b/K \text{ [Baud]} \\ T_s = 1/R_s = KT_b \text{ [s]} \\ E_s \text{ (tabela 2)} \\ E_{min} \text{ (tabela 2)} \\ Eb = E_s/K \\ P_s \text{ (tabela 2)} \\ BER = P_s/K \text{ (tabela 2)} \\ BER = \frac{K+1}{2K}P_s$
Conviole de Elifes	Débito binário com código	R_b [bit/s]
	Débito binário sem código Tempo médio entre erro de bit sem correcção Tempo médio entre erro de bit sem correcção Número de bits de informação do bloco Número de bits total do bloco Razão do código Probabilidade de erro de bit (sem código) Probabilidade de erro de bit (com código) Distância mínima de Hamming Detecção até l erros Correcção até t erros Distribuição binomial: Combinações	$\begin{array}{l} R_b^{\vec{r}} \left \text{bit}/\text{s} \right \\ T_c = (R_b B E R)^{-1} \left \text{s} \right \\ T_c' = (R_b' B E R')^{-1} \left \text{s} \right \\ k \\ n \\ R_c = k/n = R_b'/R_b \\ \text{BER} \\ \text{BER} \\ \text{(tabela 3)} \\ d_{min} \\ l < d_{min} \\ t \leq \frac{d_{min-1}}{t} \\ f(l n,p) = C_l^n p^l (1-p)^{n-l} \\ C_l^n = \frac{n!}{l!(n-l)!} \end{array}$

Código	E_b	DC	B_T 1° zero	B_T com rolloff	BER
PNRZ PRZ	A^2T_b $\frac{1}{2}A^2T_b$	não não	R_b $2R_b$	$\frac{1}{2}R_b(1+\alpha)$ $R_b(1+\alpha)$	$\frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_0}} \right)$
UNRZ	$\frac{1}{2}A^2T_b$	\sin	R_b	$\frac{1}{2}R_b(1+\alpha)$	$\frac{1}{2}$ erfc $\left(\sqrt{\frac{E_b}{2N_0}}\right)$
Mancheste BNRZ	$\frac{1}{2}A^2T_b$	não não	$2R_b$ R_b		$\frac{3}{4}$ erfc $\left(\sqrt{\frac{E_b}{2N_0}}\right)$
NRZI Manch. di	f. A^2T_b A^2T_b	não não	R_b $2R_b$	$\frac{1}{2}R_b(1+\alpha)$ $R_b(1+\alpha)$	$\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$ $\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$

Tabela 1: assume-se que $p_0 = p_1$

	E_b	B_T	BER
M-PAM	$\frac{(M^2-1)}{12}T_ba^2$	$\frac{1}{2K}R_b(1+\alpha)$	$\frac{M-1}{KM}\operatorname{erfc}\left(\sqrt{\frac{3K}{M^2-1}}\frac{E_b}{N_0}\right)$
PSK	$\frac{1}{2}A^2T_b$	$R_b(1+\alpha)$	$\frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$
ASK	$\frac{1}{4}A^2T_b$	$R_b(1+\alpha)$	$\frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_0}}\right)$
DPSK	$\frac{1}{2}A^2T_b$	$R_b(1+\alpha)$	$\frac{3}{4}$ erfc $\left(\exp{-\frac{E_b}{N_0}}\right)$
FSK	$\frac{1}{2}A^2T_b$	$f_1 - f_0 + R_b(1 + \alpha)$	$\frac{1}{2}$ erfc $\left(\sqrt{\frac{E_b}{2N_0}}\right)^{3/2}$
QPSK	$\frac{1}{2}A^2T_b$	$\frac{R_b}{2}(1+\alpha)$	$\frac{1}{2}$ erfc $\left(\sqrt{\frac{E_b}{N_0}}\right)$
MPSK	$\frac{1}{2}A^2T_b$	$\frac{R_b}{K}(1+\alpha)$	$\frac{1}{K} \operatorname{erfc} \left(\sqrt{K sin^2 \left(\pi/M \right) \frac{E_b}{N_0}} \right)$
$_{\mathrm{QAM}}$	$\frac{2(M-1)}{3}\frac{E_0}{K}$	$\frac{R_b}{K}(1+\alpha)$	$\frac{2}{K}\left(1-\frac{1}{\sqrt{M}}\right)\operatorname{erfc}\left(\sqrt{\frac{3K}{2(M-1)}}\frac{E_b}{N_0}\right)$

Tabela 2:

Código	d_{min}	BER'
Paridade Repetição (n bits)	1 n	$(n-1)BER^2$ $C_{n+1}^n BER^{\frac{n+1}{2}}$
Hamming	3	$\frac{3(n-1)}{2}BER^2$

Tabela 3:

Hamming	polinómio gerador	matriz de paridade
H(3,1) = R(3)	$x^2 + x + 1$	$P = \begin{bmatrix} 11 \end{bmatrix}$
H(7,4)	$x^3 + x + 1$	$P = \begin{bmatrix} 111 \\ 111 \\ 101 \\ 101 \\ 011 \end{bmatrix}$
H(15, 11)	$x^4 + x + 1$	_ [011]

Tabela 4: Matriz geradora: $G=[I_k|P]$; matriz de verificação: $H^T=\begin{bmatrix} P\\ I_{n-k} \end{bmatrix}$; I_i é a matriz identidade de dimensão $i\times i$.