Übungen zur mündlichen Prüfung

Themenfeld "Zahlensysteme"

Aufgabe 1

Führen Sie folgende Umrechnungen durch.

- a) $(0.95)_{10} \rightarrow (...)_2$
- b) $(12,6)_{10} \rightarrow (...)_2$
- c) $(12,125)_{10} \rightarrow (...)_8$
- d) $(11011.1111)_2 \rightarrow (...)_{10}$
- e) $(BAB)_{16} \rightarrow (...)_{10}$
- f) $(BAC)_{16} \rightarrow (...)_{10}$

Aufgabe 2

Berechnen Sie bei einer Stellenzahl von n = 7 unter Verwendung des Zweierkomplements:

- a) 13 14
- b) (-4) + (-9)

Aufgabe 3

Stellen Sie die folgende Dezimalzahl als binäre Gleitkommazahl (IEEE-754, float) dar:

a) 23,1

Aufgabe 4

Rechnen Sie die folgende binäre Gleitpunktzahl (IEEE-754, float) in eine Dezimalzahl um:

Themenfeld "Algorithmen"

Aufgabe 1

Beschreiben Sie in Form

- a) von stilisierter Prosa
- b) eines Ablaufdiagramms

den Algorithmus zur Konvertierung echt gebrochener Dezimalzahlen ins Dualsystem.

Boolesche Algebra

Aufgabe 1

Vereinfachen Sie die folgenden Booleschen Ausdrücke mittels Umformung. Prüfen Sie die Richtigkeit Ihres Ergebnisses jeweils mit einer Wahrheitstabelle nach.

a)
$$\neg (a \lor b) \land \neg b \land \neg c \land (a \lor c)$$

Aufgabe 2

Beweisen Sie ein Distributivgesetz.

Komplexitätstheorie

Aufgabe 1

- a) In welcher Komplexitätsklasse liegt der von Ihnen angegebene Konvertierungsalgorithmus?
- b) Gegeben sei ein beliebiger Binärbaum. Die Knoten (die Inhalte der Knoten) seien "sortiert" (was heißt das genau?). Erfinden Sie auf dieser Datenstruktur einen Suchalgorithmus und geben Sie dessen Komplexitätsklasse an.

Automatentheorie

Aufgabe 1

a) Modellieren Sie einen Automaten zur Aufladung von "Essenskarten" (z.B. Ihren Studierendenausweis).