Stock Price Prediction Methods

Márton Espán

2024. 05. 09.

Data Used and Forecasting Procedure

- Yahoo Finance
- S&P 500
- Data from 2013–2023
- Daily closing prices and volume
- If data was missing, the stock was excluded
- 448 remained
- 10 years training (2013–2022), 1 year testing (2023)
- Benchmark: market return and today's stock price

Methods Examined

- Random forest regression
- KNN regression
- AR(1) model
- ARIMA models
- LSTM

Random Forest Regression

2024. 05. 09.

RF1 I.

Indicators for RF1:

- Ret-1
- EMA 14, 30, 50, 200
- RSI 14, 30, 50, 200
- PVT
- Volume-1

$$RSI = 100 - \frac{100}{1 + \frac{\text{average gain}}{\text{average loss}}}$$

RF1 II.

Optimized parameters:

- n estimators= 20
- max depth= 4
- min_samples_split= 20
- min samples leaf= 4

RF1 III.

- score train 0.085606
- score test -0.057209
- benchmark -0.004352
- correlation 0.040853

$$R^2 = 1 - \frac{\sum (y_i - y_{pred_i})^2}{\sum (y_i - y_{mean})^2}$$

RF1 V.

RF2 I.

Indicators for RF2:

- Ret-1, -2, -3, -4, -5
- Volume-1, -2, -3, -4, -5

RF2 II.

- score train 0.078952
- score test -0.027274
- benchmark -0.004352
- correlation 0.005215

RF2 IV.

KNN Regression

KNN1 I.

- score train 0.113815
- score test -0.109042
- benchmark -0.004352
- correlation 0.047081

KNN1 II.

KNN1 III.

KNN2 I.

- score train 0.061398
- score test -0.052859
- benchmark -0.004352
- correlation 0.000174

KNN2 II.

KNN2 III.

ARIMA Models

We say that the time series X_t is an ARMA(p, q) process if

$$X_t = \mu + \sum_{i=1}^p \alpha_i \cdot X_{t-i} + \sum_{j=1}^q \beta_j \cdot \epsilon_{t-j} + \epsilon_t.$$

 X_t is an ARIMA(p, d, q) process if $X_{t+d} - X_t$ is an ARMA(p, q) process. Thus, if X_t is an AR(1) process, then $X_t = \mu + \alpha_1 \cdot X_{t-1} + \epsilon_t$.

LIN1 I.

- score train 0.003966
- score test -0.005593
- benchmark -0.004352
- p value 0.186823
- correlation 0.007811

True Benchmark

Thank you for your attention!

Image sources:

- [1] https://pub.towardsai.net/...
- [2] https://neptune.ai/...
- [3] https://medium.com/...