Evolving Autoencoders

Christopher Ross Jonathan Brant Zak Roessler

November 1, 2015

Introduction

- Image Processing/Classification
 - Each pixel is a separate input
 - 2 ANN inputs grows exponentially as resolution increases
 - Method of dimensionality reduction needed
- Autoencoders learns compressed representation
- Traditionally, autoencoder hidden layer topology has been hand-crafted
- Our approach evolves autoencoder structure that can then be optimized
 - Connection weights between input/hidden and hidden/output substrate evolved using HyperNEAT
 - Backpropagation optimizes evolved autoencoder

Autoencoders

- Autoencoders attempt to extract most salient features from visible layer
- Typical layers include:
 - Input (visible) layer where uncompressed features are received
 - 2 Hidden layer where compressed features are stored
 - Output layer where reconstruction error is calculated.
- Most often trained using backpropagation with the intent of minimizing reconstruction error

HyperNEAT

- Indirect encoding substantially reduces search space
 - We're no longer evolving connection weight for each pixel individually
- Substrate configuration hand-designed to capture domain geometry
 - State-space sandwich substrate ideal for visual mapping
- Ability to scale with little-to-no loss of functionality
 - Ideal for image processing at varying resolutions

Evolution of Autoencoders

- Two-phase process:
 - 4 HyperNEAT evolves initial autoencoder connection weights
 - Backpropagation fine tunes autoencoder weights
- Results will be analyzed:
 - Quantitatively reduction of reconstruction error
 - Qualitatively how closely does reconstructed image resemble the original
- MNIST handwritten digit dataset will be used for training/validation

Substrate Configuration

- Three-tiered state-space sandwich substrate
 - Input sheet all points in 2-dimensional image (size varies based on image resolution)
 - Widden sheet compressed feature vector
 - Output sheet reconstructed image at original resolution

Minimal CPPN

- CPPN inputs are cartesian coordinates between source and target sheet
 - X_1 and Y_1 is point on source sheet
 - X₂ and Y₂ is point on target sheet
 - ullet ΔX and ΔY are difference between X and Y components on source and target sheet
 - dist_{source->target} is euclidean distance between source and target point
- CPPN queries the substrate twice:
 - Once for connection weight, bias weight, and expression threshold between input and hidden sheet
 - Once for connection weight, bias weight, and expression threshold between hidden and output sheet

Minimal CPPN

Experiment Configuration

Parameter	Value	Description	
Training Sample Proportion 80%		Percentage of sample images used	
		for training	
Number of Backpropaga-	100	Number of backpropagation itera-	
tion Iterations		tions performed during training	
Learning Rate	1	Learning Rate (to control back-	
		propagation convergence speed)	
Image Resolution Reduc-	2	Reduction factor of source image	
tion Factor		(i.e. a 28x28 image becomes	
		14×14 with a reduction factor of	
		2)	
MNIST Digit	1	MNIST handwritten digit dataset	
		image used	

Current State

- Standard NEAT initially attempted
 - Slow evolution due to massive search space
 - Quantitative reconstruction accuracy rarely exceeded 60%
 - Prone to getting stuck in local optima, yielding to minimal improvements

Current State - HyperNEAT

- HyperNEAT achieved much better reconstruction accuracy
 - Attained over 90% accuracy in a couple of generations
- Matched source images quite closely from a qualitative standpoint

Current State - HyperNEAT

Source	Reconstructed	Set	Index
1	7	Training	30
/	1	Training	60
l	II	Validation	85
ì	1	Validation	95