MF - first results

1 Population structure

We fix the following population parameters:

N=70000

 $N_a = 10000$

 $N_b = 10000$

 $N_c = 10000$

 $N_{ab} = 10000$

 $N_{ac} = 10000$

 $N_{bc} = 10000$

 $N_{abc} = 10000$

Then simulate the study variable Y following Lohr and Rao 2005.

$$Y_{ik} = \mu_k + \epsilon_{ik}$$

where k represents the domain, μ_k is the average of domain k and $\epsilon_{ik} \sim N(0, \sigma_k)$

Scenario 1

$$\begin{split} [\mu_a, \mu_b, \mu_c, \mu_{ab}, \mu_{bc}, \mu_{ac}, \mu_{abc}] &= [15, 15, 15, 15, 15, 15, 15] \\ [\sigma_a, \sigma_b, \sigma_c, \sigma_{ab}, \sigma_{bc}, \sigma_{ac}, \sigma_{abc}] &= [1, 1, 1, 1, 1, 1, 1] \end{split}$$

Scenario 2

Tabella 1: Frames parameters

frame	Mean	St. Dev.	CV
A	15	1	0.07
В	15	1	0.07
\mathbf{C}	15	1	0.07

Tabella 2: Frames parameters						
frame	Mean	St. Dev.	CV			
A	15	2.9	0.19			
В	15	2.9	0.19			
\mathbf{C}	15	4	0.27			

Tabella 3:	Frames	parameters
------------	--------	------------

frame	Mean	St. Dev.	CV
A	15	2.9	0.19
В	15	2.9	0.19
\mathbf{C}	15	1	0.07

$$\begin{split} [\mu_a, \mu_b, \mu_c, \mu_{ab}, \mu_{bc}, \mu_{ac}, \mu_{abc}] &= [15, 15, 15, 15, 15, 15, 15] \\ [\sigma_a, \sigma_b, \sigma_c, \sigma_{ab}, \sigma_{bc}, \sigma_{ac}, \sigma_{abc}] &= [1, 1, 4, 1, 4, 4, 4] \end{split}$$

Scenario 3

$$[\mu_a, \mu_b, \mu_c, \mu_{ab}, \mu_{bc}, \mu_{ac}, \mu_{abc}] = [15, 15, 15, 15, 15, 15, 15]$$
$$[\sigma_a, \sigma_b, \sigma_c, \sigma_{ab}, \sigma_{bc}, \sigma_{ac}, \sigma_{abc}] = [4, 4, 1, 4, 1, 1, 1]$$

2 Sampling design

Simple Random Sampling without replacement

$$n = 600; f_A = f_B = f_C = 0.005 = \frac{200}{40000}$$

Sampling sequence: A -; B -; C

Screener design: 1) without reallocation of n; 2) n reallocated in the cheapest frame; 3) n reallocated in frame B and then C

Overlap design

3 Results

Considero $n_A=100,\,n_B=200,\,n_C=300$ and Scenario 2:

Tabella 4: Number of discarded units						
frame	Min.	Median	Mean	Max.		
A	125.00	150.00	150	172		
В	77.0	100.0	100	126		

Tabella 5: Empirical Mean Squard error and Average cost

				L				
	Empirical Mean Squared Error			Average cost				
Scenario	$Y_{-}M$	Y_str_1	Y_str_2	Y_str3	$Y_{-}M$	Y_str_1	Y_str_2	Y_str3
1	19044.56	3733.124	3073.348	3046.242	2000	919.5383	1256.292	1170.4
2	20833.18	11513	8438.607	7805.059	2000	919.5383	1256.292	1170.4
3	20959.44	10316.19	9307.697	9830.041	2000	919.5383	1256.292	1170.4

Tabella 6: Empirical Mean Squard error and Average cost

	Empirical Mean Squared Error				
Scenario	Y_M	Y_{KA}	Y_str_1	Y_str_2	Y_str3
2	21472.71	24152.71	9575.046	8119.957	7560.884