研究内容の紹介(20分)

東京理科大学理学研究科 小林 穂乃香

山口大学面接 於2022年9月5日

g : M 上の対称 (0,2) テンソル場 $X, Y \in TM$

(M,g): リーマン多様体

i. e.
$$g(X,X) \ge 0$$
 for all X , and $g(X,X) = 0 \Leftrightarrow X = 0$

(M,g): 擬リーマン多様体

$$g:M$$
 上の擬リーマン計量

i. e.
$$g(X, Y) = 0$$
 for all $Y \in TM$
 $\Rightarrow X = 0$

g : M 上の対称 (0, 2) テンソル場

 $X, Y \in TM$

(*M*, *g*): リーマン多様体

g: M 上のリーマン計量 ... 正定值

i. e. $g(X,X) \ge 0$ for all X, and $g(X,X) = 0 \Leftrightarrow X = 0$

(M,g): 擬リーマン多様体

... 非退化

g: M 上の擬リーマン計量 i. e. g(X,Y) = 0 for all $Y \in TM$

 $\Rightarrow X = 0$

Definition

def ⇔ X : spacelike $\langle X, X \rangle > 0$ or X = 0

 $\stackrel{\text{def}}{\Leftrightarrow} \langle X, X \rangle < 0$ *X* : timelike

def X: null $\langle X, X \rangle = 0$ and $X \neq 0$ \Leftrightarrow

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^s x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$$

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\begin{cases} s = 0: \, \mathbf{y} - \mathbf{v} \times \mathbf{s} \& \mathbf{k} \\ s = 1: \, \mathbf{u} - \mathbf{v} \times \mathbf{v} & \mathbf{s} \& \mathbf{k} \end{cases}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^{s} x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$$

s:指数

リーマン多様体

$$\mathbb{S}^2 := \{ \mathbf{x} \in \mathbb{E}^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

擬リーマン多様体

$$\mathbb{S}_1^2 := \{ \mathbf{x} \in \mathbb{E}_1^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

$$\mathbf{x} = (x_1, \dots, x_{m+1}), \quad \mathbf{y} = (y_1, \dots, y_{m+1}) \in \mathbb{E}_s^{m+1}$$

$$\begin{cases} s = 0: \, \mathbf{y} - \mathbf{v} \times \mathbf{s} \& \mathbf{k} \\ s = 1: \, \mathbf{u} - \mathbf{v} \times \mathbf{v} & \mathbf{s} \& \mathbf{k} \end{cases}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle := -\sum_{i=1}^{s} x_i y_i + \sum_{j=s+1}^{m+1} x_j y_j$$
 s:指数

リーマン多様体

$$\mathbb{S}^2 := \{ \mathbf{x} \in \mathbb{E}^3 \mid \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

$$\mathbb{H}^2 := \{ \mathbf{x} \in \mathbb{E}^3_1 \mid \langle \mathbf{x}, \mathbf{x} \rangle = -1 \}$$

\mathbb{S}^n_s と \mathbb{H}^n_{n-s} は 反等長

擬リーマン多様体

$$\begin{split} \mathbb{S}_1^2 &:= \{ \mathbf{x} \in \mathbb{E}_1^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = 1 \} \\ \mathbb{H}_1^2 &:= \{ \mathbf{x} \in \mathbb{E}_2^3 \, | \, \langle \mathbf{x}, \mathbf{x} \rangle = -1 \} \end{split}$$

1905 特殊相対性理論(A. Einstein)

この世界を,空間3次元と時間1次元の"時空"として考える

正定値とは限らない計量を持つ多様体を導入

1908 ミンコフスキー幾何学(H. Minkowski)

特殊相対性理論を幾何学として再構成 時空は4次元の空間として記述される

1915-1916 一般相対性理論(A. Einstein)

重力を時空の曲がりとして捉える, リーマン幾何学を応用

擬リーマン幾何学

 $(ilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 (M,\langle,\rangle) : \tilde{M} の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

 $(\tilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 $(M,\langle ,\rangle): ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part 1 · · · 擬双曲的ガウス写像による分類

- B-scroll または complex circle の擬双曲的ガウス写像
- B-scroll の定義

 $(ilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 $(M,\langle ,\rangle): ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part 1 · · · 擬双曲的ガウス写像による分類

- B-scroll または complex circle の擬双曲的ガウス写像
- B-scroll の定義

Part 2 \cdots generalizations of B-scroll in \tilde{M}_s^m

ullet generalized umbilical hypersurface in $ilde{M}_1^{n+1}$ ···· 次元一般化

 $(ilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 (M,\langle , \rangle) : $ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part 1 · · · 擬双曲的ガウス写像による分類

- B-scroll または complex circle の擬双曲的ガウス写像
- B-scroll の定義

Part 2 \cdots generalizations of B-scroll in \tilde{M}_s^m

- generalized umbilical hypersurface in $ilde{M}_1^{n+1}$ · · · 次元一般化
- ullet generalized umbilical hypersurface in $ilde{M}_2^{n+1}$ \cdots 指数及び次元一般化

 $(ilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 (M,\langle , \rangle) : \tilde{M} の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part 1 · · · 擬双曲的ガウス写像による分類

- B-scroll または complex circle の擬双曲的ガウス写像
- B-scroll の定義

Part 2 $\,\,\cdots\,\,$ generalizations of B-scroll in \tilde{M}^m_s

- ullet generalized umbilical hypersurface in $ilde{M}_1^{n+1}$ ···· 次元一般化
- ullet generalized umbilical hypersurface in $ilde{M}_2^{n+1}$ \cdots 指数及び次元一般化
- ullet generalized B-scroll in $ilde{M}_2^5$ \cdots 指数及び余次元一般化

 $(ilde{M},\langle\,,
angle)$: 擬球面 \mathbb{S}^m_s または 擬双曲空間 \mathbb{H}^m_s

 $(M,\langle ,\rangle): ilde{M}$ の擬リーマン曲面,

形作用素が対角化不可能, 平均曲率とスカラー曲率が一定

 γ : \tilde{M} の null 曲線 i.e. $\langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ かつ $\dot{\gamma} \neq 0$

Part 1 · · · 擬双曲的ガウス写像による分類

- B-scroll または complex circle の擬双曲的ガウス写像
- B-scroll の定義

Part 2 $\,\,\cdots\,\,$ generalizations of B-scroll in \tilde{M}^m_s

- generalized umbilical hypersurface in $ilde{M}_1^{n+1}$ · · · 次元一般化
- ullet generalized umbilical hypersurface in $ilde{M}_2^{n+1}$ \cdots 指数及び次元一般化
- ullet generalized B-scroll in $ilde{M}_2^5$ … 指数及び余次元一般化

Part 1-1 擬双曲的ガウス写像による分類 ·

… 研究背景

 $\mathbf{x}: M \hookrightarrow \mathbb{H}_s^m$: 等長はめ込み

$$(e_1^p,\ldots,e_n^p):M$$
 の向きと適合する T_pM の正規直交フレーム

擬双曲的ガウス写像 \tilde{v} $\stackrel{\text{def}}{\Leftrightarrow}$ $\tilde{v}(p) := \mathbf{x}(p) \wedge e_1^p \wedge \cdots \wedge e_n^p$

Part 1-1 擬双曲的ガウス写像による分類 … 研究背景

 $\mathbf{x}: M \hookrightarrow \mathbb{H}_{c}^{m}$: 等長はめ込み

$$(e_1^p,\ldots,e_n^p):M$$
 の向きと適合する T_pM の正規直交フレーム

ガウス写像
$$v$$
 $\stackrel{\text{def}}{\Leftrightarrow} v(p) := e_1^p \wedge \cdots \wedge e_n^p$
擬双曲的ガウス写像 \tilde{v} $\stackrel{\text{def}}{\Leftrightarrow} \tilde{v}(p) := \mathbf{x}(p) \wedge e_1^p \wedge \cdots \wedge e_n^p$

$$\phi: M \to \mathbb{S}^m_s \subset \mathbb{E}^{m+1}_s$$
 (or $\mathbb{H}^m_s \subset \mathbb{E}^{m+1}_{s+1}$): C^{∞} 級写像
$$\phi: k\text{-type} \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \phi = \phi_1 + \phi_2 + \dots + \phi_k, \quad \Delta\phi_i = \lambda_i \phi_i \quad (\lambda_i \in \mathbb{R})$$

Part 1-1 擬双曲的ガウス写像による分類 … 研究背景

 $\mathbf{x}: M \hookrightarrow \mathbb{H}_s^m$:等長はめ込み

 $(e_1^p,\ldots,e_n^p): M$ の向きと適合する $T_p M$ の正規直交フレーム

$$\phi: M \to \mathbb{S}^m_s \subset \mathbb{E}^{m+1}_s$$
 (or $\mathbb{H}^m_s \subset \mathbb{E}^{m+1}_{s+1}$): C^{∞} 級写像
$$\phi: k\text{-type} \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \phi = \phi_1 + \phi_2 + \dots + \phi_k, \quad \Delta\phi_i = \lambda_i \phi_i \quad (\lambda_i \in \mathbb{R})$$

部分多様体の平均曲率ベクトル場 H と部分多様体の type number の関係

- 1970 年代 ・ $\Delta H = \lambda H$ となるリーマン部分多様体の type number
 - ・null 2-type かつ H: const なローレンツ曲面の完全分類
- 1980 年代 ・部分多様体のガウス写像の type number
 - 2007年 ・球面にはめ込まれた部分多様体の球面的ガウス写像

Part 1-1 擬双曲的ガウス写像による分類 \cdots in \mathbb{S}^3_1 or \mathbb{H}^3_1

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}^3_1$ (または \mathbb{H}^3_1): 向きづけられたローレンツ超曲面

形作用素が対角化不可能 かつ H,K が一定 \updownarrow

 M_1^2 は B-scroll または complex circle どちらかの開部分

Part 1-1 擬双曲的ガウス写像による分類

 \cdots in \mathbb{S}^3_1 or \mathbb{H}^3_1

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}_1^3$ (または \mathbb{H}_1^3): 向きづけられたローレンツ超曲面

形作用素が対角化不可能 かつ H,K が一定

 M_1^2 は B-scroll または complex circle どちらかの開部分

Part 1-1 擬双曲的ガウス写像による分類

 \cdots in \mathbb{S}^3_1 or \mathbb{H}^3_1

Theorem (D. S. Kim-Y. H. Kim)

 $M_1^2 \subset \mathbb{S}_1^3$ (または \mathbb{H}_1^3): 向きづけられたローレンツ超曲面

形作用素が対角化不可能 かつ H,K が一定

 M_1^2 は B-scroll または complex circle どちらかの開部分

	M_1^2		$ ilde{ u}$	K	Н
	(Main Result 1) $S^1_{\mathbb{C}}(\kappa)$	$\kappa = -1$	1-type	0	0
in \mathbb{H}_1^3	complex circle	<i>κ</i> ≠ −1	∞-type	0	≠ 0
	(Main Result 2) $\mathcal{B}(k_2)$	$k_2 = \pm 1$	∞-type	0	≠ 0
	B-scroll	$k_2 \neq \pm 1$	null 2-type	≠ 0	≠ 0
in \mathbb{S}^3_1	(B–C–D 2017) $\mathcal{B}(k_2)$ B-scroll		null 2-type	≠ 0	≠ 0

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C) : γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = k_2(s)C(s) + \varepsilon\gamma(s). \end{cases}$$

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C) : γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = k_2(s)C(s) + \varepsilon\gamma(s). \end{cases}$$

Definition

M を,次のようにパラメータづけされたローレンツ曲面とする:

$$\mathbf{x}: M \hookrightarrow \mathbb{S}^3_1 \text{ or } \mathbb{H}^3_1 \stackrel{\mathrm{def}}{\Leftrightarrow} \mathbf{x}(s,t) := \gamma(s) + tB(s)$$

このとき,

 $M: \gamma \perp \mathcal{O} B$ -scroll $\stackrel{\text{def}}{\Leftrightarrow} k_2 : \text{const}$

 γ : \mathbb{S}^3_1 または \mathbb{H}^3_1 の null 曲線 (A,B,C): γ 上の Cartan frame field

i.e.
$$\begin{cases} \langle A,A\rangle = \langle B,B\rangle = 0, & \langle A,B\rangle = -1, \\ \langle A,C\rangle = \langle B,C\rangle = 0, & \langle C,C\rangle = 1, \\ \dot{\gamma}(s) = A(s), \\ \dot{A}(s) = k_1(s)C(s), \\ \dot{C}(s) = k_2(s)A(s) + k_1(s)B(s), \\ \dot{B}(s) = k_2(s)C(s) + \varepsilon\gamma(s). \end{cases}$$

Definition

M を,次のようにパラメータづけされたローレンツ曲面とする:

$$\mathbf{x}: M \hookrightarrow \mathbb{S}^3_1 \text{ or } \mathbb{H}^3_1 \overset{\text{def}}{\Leftrightarrow} \mathbf{x}(s,t) := \gamma(s) + tB(s)$$

このとき,

 $M: \gamma \perp \mathcal{O} B$ -scroll $\stackrel{\text{def}}{\Leftrightarrow} k_2 : \text{const}$

Note

- null 曲線 γ と γ に沿う Frenet 型フレーム場 から構成される線織面
- 2次元非退化ローレンツ曲面
- 形作用素は対角化不可能,実固有値

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : $ilde{M}_1^{n+1}$ のローレンツ超曲面

A: M_1^n の形作用素, 対角化不可能, 実固有値

P(x):A の最小多項式

Theorem (M. A. Magid)

A の固有値の個数が 1 or 2個 かつ 0 でない固有値が 1 つ以下

 M_1^n は次のいずれか:

- \bigcirc M_1^n : generalized cylinder

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面

A: M_1^n の形作用素, 対角化不可能, 実固有値

P(x):A の最小多項式

Theorem (M. A. Magid)

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

 M_1^n は次のいずれか:

● Mⁿ₁: generalized cylinder ・・・ゼロ固有値を持つ

② M_1^n : generalized umbilical hypersurface \cdots ゼロ固有値を持たない

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面

A: M_1^n の形作用素, 対角化不可能, 実固有値

P(x): *A*の最小多項式

Theorem (M. A. Magid)

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

 M_1^n は次のいずれか:

- Mⁿ₁: generalized cylinder ・・・ゼロ固有値を持つ
- ② M_1^n : generalized umbilical hypersurface \cdots ゼロ固有値を持たない

$$\begin{cases} degree 2 & P(x) = (x - a)^2 \\ degree 3 & P(x) = (x - a)^3 \end{cases}$$

 $\tilde{M}_1^{n+1} = \mathbb{E}_1^{n+1} \text{ or } \mathbb{S}_1^{n+1} \text{ or } \mathbb{H}_1^{n+1}$

 M_1^n : \tilde{M}_1^{n+1} のローレンツ超曲面

A: M_1^n の形作用素, 対角化不可能, 実固有値

P(x): A の最小多項式

Theorem (M. A. Magid)

A の固有値の個数が 1 or 2 個 かつ 0 でない固有値が 1 つ以下

 M_1^n は次のいずれか:

- ② M_1^n : generalized umbilical hypersurface \cdots ゼロ固有値を持たない

$$\begin{cases}
degree 2 & P(x) = (x - a)^2 ← B-scroll はこの型 \\
degree 3 & P(x) = (x - a)^3
\end{cases}$$

 $ilde{M}$ が指数 1 のとき, 形作用素 A はある基底に関して次の 4 つのいずれかの形をとる.

(II)
$$\begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix}$$
, (II) $\begin{pmatrix} a_0 & 0 & 0 \\ & a_1 & \\ & & \ddots & \\ & & a_{n-2} \end{pmatrix}$, (IV) $\begin{pmatrix} a_0 & b_0 & \\ & a_1 & \\ & & \ddots & \\ & & & a_{n-2} \end{pmatrix}$, a_{n-2} , a_{n-2} ,

ここで,
$$b_0 \neq 0$$
.

\tilde{M}_{2}^{m} の形作用素

$$\begin{pmatrix}
\lambda & 0 & & & \\
1 & \lambda & & & & \\
& & & \lambda & & \\
& & & & \ddots & \\
& & & & & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 0 & & & & \\
1 & \lambda & & & & \\
& & & \lambda & 0 & & \\
& & & & \lambda & 0 & & \\
& & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & & \lambda & 0 & & \\
& & & & \lambda & 0 & & \\
& & & & \lambda & 0 & & \\
& & & & \lambda & 0 & & \\
& & & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
& & & \lambda & 0 & & \\
&$$

$$\begin{pmatrix}
\lambda & & & & & \\
1 & \lambda & & & & \\
& & 1 & \lambda & & \\
& & & 1 & \lambda & & \\
& & & & \ddots & \\
\end{pmatrix}, \begin{pmatrix}
\lambda & 0 & & & & \\
1 & \lambda & 0 & & & \\
& & & 1 & \lambda & & \\
& & & & 1 & \lambda & & \\
& & & & & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 & & & & \\
1 & \lambda & & & & \\
& & & & 1 & \lambda & & \\
& & & & & 1 & \lambda & & \\
& & & & & & 1 & \lambda & & \\
& & & & & & & \lambda
\end{pmatrix}$$

$ilde{M}_2^m$ の形作用素

$$\begin{pmatrix}
\lambda & 0 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 0 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 0 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 0 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
1 & \lambda
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\
\lambda & 1
\end{pmatrix}, \begin{pmatrix}
\lambda & 1 \\$$

Main Result 3 (H. Kobayashi)

degree 2 の generalized umbilical hypersurface in \mathbb{S}_2^{n+1} or \mathbb{H}_2^{n+1} の具体例を構成

 \cdots in \mathbb{E}_1^m

 γ : \mathbb{E}_1^m の null 曲線

 $(A, B, C, Z_1, \dots, Z_{m-3})$: γ に沿う Cartan frame field

M: generalized B-scroll $\stackrel{\text{def}}{\Leftrightarrow}$ M: $\mathbf{x}(s,t) = \gamma(s) + tB(s)$

Part 2-3 B-scroll の指数及び余次元一般化 … in \mathbb{E}_1^m

 γ : \mathbb{E}_1^m の null 曲線

 $(A, B, C, Z_1, \dots, Z_{m-3})$: γ に沿う Cartan frame field

$$M$$
: generalized B-scroll $\stackrel{\text{def}}{\Leftrightarrow}$ M : $\mathbf{x}(s,t) = \gamma(s) + tB(s)$

Note

- null 曲線 γ と γ に沿う Frenet 型フレーム場から構成される線織面
- 2次元非退化ローレンツ曲面
- 形作用素は対角化不可能,実固有値

Part 2-3 B-scroll の指数及び余次元一般化 \cdots in \mathbb{E}_1^m

 γ : \mathbb{E}_1^m の null 曲線

 $(A, B, C, Z_1, \dots, Z_{m-3})$: γ に沿う Cartan frame field

M: generalized B-scroll $\stackrel{\text{def}}{\Leftrightarrow}$ M: $\mathbf{x}(s,t) = \gamma(s) + tB(s)$

Note

- ullet null 曲線 γ と γ に沿う Frenet 型フレーム場から構成される線織面
- 2次元非退化ローレンツ曲面
- 形作用素は対角化不可能,実固有値

Theorem (D. S. Kim-Y. H. Kim-D. W. Yoon)

 $M: \mathbb{E}_1^m \mathcal{O} \text{ null scroll}$

H:M の平均曲率ベクトル場

A_H: M の H 方向の形作用素

 A_H の最小多項式が $(x-a^2)^2$ \Leftrightarrow M: generalized B-scroll $(a \in \mathbb{R} : const)$

null 曲線 $\gamma \subset \tilde{M}_2^m$ に沿う Frenet 型フレーム場,

$$A:=\dot{\gamma}$$

null 曲線 $\gamma \subset \tilde{M}_2^m$ に沿う Frenet 型フレーム場,

null 曲線 $\gamma \subset \tilde{M}_2^m$ に沿う Frenet 型フレーム場,

 $\cdots m = 5$ のとき,H. Kobayashi

Main Result 4 (H. Kobayashi)

M : \mathbb{S}_2^5 or \mathbb{H}_2^5 における null scroll

H: Mの平均曲率ベクトル場

 A_H : Mの H方向の形作用素

P(x): A_H の最小多項式

M が generalized B-scroll のとき,P(x) は次のいずれかである:

 \cdots in \mathbb{S}_2^5 or \mathbb{H}_2^5

Main Result 4 (H. Kobayashi)

M : \mathbb{S}_2^5 or \mathbb{H}_2^5 における null scroll

H: Mの平均曲率ベクトル場

 A_H : MのH方向の形作用素

P(x): A_H の最小多項式

M が generalized B-scroll のとき,P(x) は次のいずれかである:

Type (i) $\, \cdots Z_1 \,$ が non-null のとき

$$\begin{pmatrix}
\dot{A} = k_1 C \\
\dot{C} = k_2 A + \varepsilon_C k_1 B \\
\dot{B} = \varepsilon_C k_2 C + k_3 Z_1 + \varepsilon \gamma \\
\dot{Z}_1 = \varepsilon_1 k_3 A + k_4 Z_2 \\
\dot{Z}_2 = \varepsilon_C k_4 Z_1
\end{pmatrix} (1)$$

 \cdots in \mathbb{S}_2^5 or \mathbb{H}_2^5

Main Result 4 (H. Kobayashi)

M : \mathbb{S}_2^5 or \mathbb{H}_2^5 における null scroll

H: Mの平均曲率ベクトル場

 A_H : Mの H方向の形作用素

P(x): A_H の最小多項式

M が generalized B-scroll のとき,P(x) は次のいずれかである:

•
$$Z_1$$
: non-null $\Rightarrow P(x) = (x - (\varepsilon_C k_2^2 + \varepsilon_1 k_3^2))^2$

2
$$Z_1$$
: null $\Rightarrow P(x) = (x - k_2^2)^2$

Type (i) $\cdots Z_1$ が non-null のとき

$$\begin{cases}
\dot{A} = k_1 C \\
\dot{C} = k_2 A + \varepsilon_C k_1 B \\
\dot{B} = \varepsilon_C k_2 C + k_3 Z_1 + \varepsilon \gamma \\
\dot{Z}_1 = \varepsilon_1 k_3 A + k_4 Z_2 \\
\dot{Z}_2 = \varepsilon_C k_4 Z_1
\end{cases}$$
(1)

Type (iii) …Z₁ が null のとき

$$\begin{cases}
\dot{A} = k_1 C \\
\dot{C} = k_2 A + k_1 B \\
\dot{B} = k_2 C + Z_1 + \varepsilon \gamma \\
\dot{Z}_1 = h Z_1 \\
\dot{Z}_2 = -A - h Z_2
\end{cases}$$
(2)

 \cdots in \mathbb{S}_2^5 or \mathbb{H}_2^5

Main Result 4 (H. Kobayashi)

M : \mathbb{S}_2^5 or \mathbb{H}_2^5 における null scroll

H : M の平均曲率ベクトル場

 A_H : Mの H方向の形作用素

P(x): A_H の最小多項式

M が generalized B-scroll のとき,P(x) は次のいずれかである:

•
$$Z_1$$
: non-null $\Rightarrow P(x) = (x - (\varepsilon_C k_2^2 + \varepsilon_1 k_3^2))^2$

2
$$Z_1$$
: null $\Rightarrow P(x) = (x - k_2^2)^2$

Type (i) $\cdots Z_1$ が non-null のとき

$$\begin{cases}
\dot{A} = k_1 C \\
\dot{C} = k_2 A + \varepsilon_C k_1 B \\
\dot{B} = \varepsilon_C k_2 C + k_3 Z_1 + \varepsilon \gamma \\
\dot{Z}_1 = \varepsilon_1 k_3 A + k_4 Z_2 \\
\dot{Z}_2 = \varepsilon_C k_4 Z_1
\end{cases}$$
(1)

Type (iii) $\cdots Z_1$ が null のとき

$$\begin{cases}
\dot{A} = k_1 C \\
\dot{C} = k_2 A + k_1 B \\
\dot{B} = k_2 C + Z_1 + \varepsilon \gamma \\
\dot{Z}_1 = h Z_1 \\
\dot{Z}_2 = -A - h Z_2
\end{cases}$$
(2)