MATH 325 Q1: LINEAR ALGEBRA III, PART 1

Throughout this lecture F denotes either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. Vector spaces are always assumed to be of finite dimension, unless otherwise stated.

We denote by $M_n(F)$ (respectively $M_{m\times n}(F)$) the set of all matrices with coefficients in F of size $n\times n$ (respectively $m\times n$). We denote by $O_{m\times n}\in M_{m\times n}(F)$ the $m\times n$ -matrix whose entries are all zero, and by $I_n\in M_n(F)$ the $n\times n$ -identity matrix.

Complex Numbers

In mathematics people want all polynomial equations with real coefficients to have solutions. In particular, they want an existence of a solution of the equation $x^2 + 1 = 0$. To deal with the problem that this equation has no real solutions mathematicians invented "the imaginary number" i having the property $i^2 = -1$ or equivalently $i = \sqrt{-1}$. In this way they came in a natural way to the notion of complex numbers.

Definition. A complex number is a formal sum $a+b \cdot i$ where $a, b \in \mathbb{R}$. The number a is called the real part and the number b is called the imaginary part. Two complex numbers $z_1 = a + b \cdot i$ and $z_2 = c + d \cdot i$ are equal if and only if a = c, b = d. The set of all such expressions is denoted by \mathbb{C} .

Remark. We may identify any real number a with a formal sum $a+0 \cdot i$. In this way we may view the set \mathbb{R} of all real numbers as a subset of \mathbb{C} .

The following operations on \mathbb{C} are clearly well-defined.

(1) Addition:

$$(a+bi) + (c+di) = (a+b) + (c+d)i;$$

(2) Subtraction:

$$(a + b i) - (c + d i) = (a - c) + (b - d) i;$$

(3) Multiplication:

$$(a + b i)(c + d i) = (ac - bd) + (ad + bc) i;$$

Multiplication is commutative: $z_1 \cdot z_2 = z_2 \cdot z_1$; associative: $(z_1 z_2) z_3 = z_1(z_2 z_3)$. The real number $1 = 1 + 0 \cdot i$ is the multiplicative identity.

(4) Complex conjugation: if z = a+bi then the complex conjugation \bar{z} of z is

$$\bar{z} = a - bi$$
.

One easily checks that $z \cdot \bar{z} = a^2 + b^2 \in \mathbb{R} \subset \mathbb{C}$.

(5) The absolute value: If z = a + bi then the absolute value of z (or modulus of z) is the real number

$$|z| = \sqrt{a^2 + b^2}.$$

(6) Existence of multiplicative inverse: if $z \in \mathbb{C}$ is nonzero then it has the multiplicative inverse; i.e. there exists $w \in \mathbb{C}$ such that $z \cdot w = 1$. Formula: if z = a + bi then

$$w = \frac{\bar{z}}{|z|^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \cdot i.$$

This complex number w is usually denoted by z^{-1} .

(7) **Division:** if $z, w \in \mathbb{C}$ and $w \neq 0$ then

$$\frac{z}{w} := z \cdot w^{-1}.$$

Geometric presentation of complex numbers

Given a complex number z = a + bi one can associate the ordered pair (a, b) of real numbers which is geometrically represented by a point (or vector) in xy-plane with coordinates a and b respectively. The geometric picture then suggests that z can be presented in the form

$$z = |z|(\cos \phi + \sin \phi \cdot i)$$

which is called a polar form of z. The angle ϕ in this formula is called an argument of z. It is not unique. It is defined up to multiples of 2π . However, there is only one angle satisfying

$$-\pi < \phi < \pi$$

which is called the principal argument of z and is denoted by arg(z).

Example. If $z = 1 - \sqrt{3} \cdot i$ then

$$z = 2(\cos(-\frac{\pi}{3}) + \sin(-\frac{\pi}{3}) \cdot i).$$

Presenting complex numbers in geometric form helps us to multiply them, divide, take powers and extract roots: if z_1 and z_2 have arguments ϕ and ψ then

$$z_1 \cdot z_2 = |z_1||z_2|(\cos(\phi + \psi) + \sin(\phi + \psi) i).$$
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|}(\cos(\phi - \psi) + \sin(\phi - \psi) i).$$

Also.

$$z_1^n = |z_1|^n(\cos(n\phi) + \sin(n\phi))$$

and

$$\sqrt[n]{z} = \sqrt[n]{|z|}(\cos(\phi/n) + \sin(\phi/n) i).$$

Remark. By definition, $\sqrt[n]{z}$ is a complex number w such that $w^n = z$. In other words, it is a solution of the equation $x^n = z$. It is worth mentioning that such solution is not unique. Indeed, if ξ_n is a root of

unity of degree n, i.e. $\xi^n = 1$ then $\widetilde{w} = w \cdot \xi_n$ also has the property $\widetilde{w}^n = z$. Conversely, if w_1 is another solution of the equation $x^n = z$ then $w_1 = w \cdot \xi_n$ for some root of unity of degree n.

Remark. For a given n we have exactly n roots of unity of degree n. All of them are given by the formula

$$\cos\left(\frac{2\pi k}{n}\right) + \sin\left(\frac{2\pi k}{n}\right) i$$

where k = 0, 1, ..., n - 1.

Vector spaces

Recall in class the definitions of vector spaces over a field F and a vector subspace. Throughout F is either \mathbb{R} or \mathbb{C} .

Main Example. Let

$$V = F^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \mid a_i \in F \right\}.$$

The addition is given by componentwise and multiplication by a scalar is given by multiplication of all components.

Definition. Let V, U be vector spaces over F. A map $f: V \to U$ is called linear (linear transformation or linear operator) if it preserves linear combinations, i.e. for any two vectors $u, v \in V$ and scalars $a, b \in F$ one has f(au + bv) = af(u) + bf(v). A linear map $f: V \to V$ is called a (linear) endomorphism of V.

Definition. A linear map $f: V \to U$ is called an isomorphism if f is bijective.

Definition. Let $f: V \to U$ be a linear map. The set

$$\{v \in V \mid f(v) = 0 \}$$

is called the kernel of f and is denoted by Ker f. The subset

$$\operatorname{Im} f = \{ f(v) \mid v \in V \}$$

of U is called the image of f.

Remark. It is almost obvious that $\operatorname{Ker} f = 0$ if and only if f is injective and $\operatorname{Im} f = U$ if and only if f is surjective.

Definition. Let V be a vector space over F. A subset $\{v_1, \ldots, a_n\} \subset V$ is called linear independent if from $a_1v_1 + \cdots + a_nv_n = 0$ where $a_1, \ldots, a_n \in F$ it follows that $a_1 = \cdots = a_n = 0$. It is called a basis of

V if it is in addition is a system of generators, i.e. every vector $v \in V$ can be written as a linear combination of v_1, \ldots, v_n .

Definition. Let V be a vector space over F and let $f: V \to V$ be an endomorphism. A nonzero vector $v \in V$ is called an eigenvector for f if there exists a scalar $\lambda \in F$ such that $f(v) = \lambda v$. This scalar λ is called an eigenvalue of f. Often one says that v is a λ -eigenvector.

Remark. It is easy to see that if v is a λ -eigenvector for f then for any scalar $b \in F$ the vector $\tilde{v} = bv$ is also a λ -eigenvector. Thus all nonzero vectors in 1-dimensional subspace $U = \langle v \rangle \subset V$ spanned by v are λ -eigenvectors for f. Conversely, if $U \subset V$ is a 1-dimensional subspace stable with respect to f then every nonzero vector $v \in is$ an eigenvector for f. Indeed, since U is f-stable then $f(v) \in U$, hence f(v) = av for some scalar $a \in F$. We used here the fact that U is spanned by v.

Linear maps and matrices

We briefly recall here the relation between linear maps and matrices.

Let $\alpha: V \longrightarrow W$ be a linear map between the (finite dimensional) vector spaces V and W. Let v_1, \ldots, v_n and w_1, \ldots, w_m be bases of V and W, respectively. Then there exists unique elements $a_{ij} \in F$, $1 \le i \le m$, $1 \le j \le n$, such that

$$\alpha(v_j) = \sum_{i=1}^m a_{ij} w_i. \tag{1}$$

The $m \times n$ -matrix

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

is the matrix of α with respect to these bases.

If V = W and $v_i = w_i$ we say also that A is the matrix of α with respect to the basis v_1, \ldots, v_n .

Note that the matrix A depends on choosen bases of V and W. However bases are not unique. Our next goal is to see what happens with A if we choose other bases of V and W.

Let v'_1, \ldots, v'_n and w'_1, \ldots, w'_m are other bases of V and W, respectively. Then there are unique elements s_{ij} and t_{ij} of F, such that

$$v'_{i} = \sum_{h=1}^{n} s_{hi} v_{h}$$
 and $w'_{i} = \sum_{h=1}^{m} t_{hi} w_{h}$. (2)

Similarly, there are $s'_{ij}, t'_{ij} \in F$, such that

$$v_i = \sum_{h=1}^n s'_{hi} v'_h$$
 and $w_i = \sum_{h=1}^m t'_{hi} w'_h$. (3)

Inserting the equations (2) in (3) the linear independence of v_1, \ldots, v_n and of w_1, \ldots, w_m implies

$$\sum_{h=1}^{n} s_{lh} \cdot s'_{hi} = \sum_{h=1}^{m} t_{lh} \cdot t'_{hi} = \begin{cases} 1 & i = l \\ 0 & i \neq l \end{cases},$$

or, in other words, the matrices $S = (s_{ij})$ and $T = (t_{ij})$ are invertible with inverses $S^{-1} = (s'_{ij})$ and $T^{-1} = (t'_{ij})$, respectively.

We use this now to compute the matrix $A' = (a'_{ij})$ of the linear map α with respect to the bases v'_1, \ldots, v'_n and w'_1, \ldots, w'_m . We have

$$\alpha(v_i') = \alpha\left(\sum_{h=1}^n s_{hi}v_h\right) = \sum_{h=1}^n s_{hi}\alpha(v_h) \quad \text{by (2)}$$

$$= \sum_{h=1}^n s_{hi} \sum_{l=1}^m a_{lh}w_l \quad \text{by (1)}$$

$$= \sum_{h=1}^n s_{hi} \sum_{l=1}^m a_{lh} \sum_{j=1}^m t'_{jl}w'_j \quad \text{by (3)}$$

$$= \sum_{i=1}^m \left(\sum_{l=1}^m t'_{jl} \left(\sum_{h=1}^n a_{lh}s_{hi}\right)\right) \cdot w'_j.$$

Therefore $a'_{ij} = \sum_{l=1}^m t'_{jl} \left(\sum_{h=1}^n a_{lh} s_{hi} \right)$, and this is the ij-coefficient of the matrix $T^{-1} \cdot A \cdot S$. In other words, the matrix of α in bases $\{v'_1, \ldots, v'_n\}$ and $\{w'_1, \ldots, w'_m\}$ is

$$A' = T^{-1} \cdot A \cdot S.$$

Particular case: The following particular case is of great importance for us.

Assume that V = W and $v_1 = w_1, \ldots, v_n = w_n$. Let A (resp. A') be the matrix of a linear map $\alpha : V \to V$ with respect to the basis $\{v_1, \ldots, v_n\}$ (resp. with respect to $\{w_1, \ldots, w_n\}$). Let S be base change matrix. Then $A' = S^{-1}AS$.

Important remark. Let $\alpha: V \to V$ be a linear map. Then the composition $\alpha \circ \alpha: V \to V$, $v \to \alpha(\alpha(v))$ is also linear. Furthermore, if A is the matrix of α with respect to some basis $\{v_1, \ldots, v_n\}$ then the matrix of $\alpha \circ \alpha$ in the same basis is A^2 . The similar remark applies to $\alpha \circ \alpha \circ \alpha$ and etc.

Examples.

(i) The vector space F^n has the standard basis e_1, \ldots, e_i , where

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

with the "1" is in the *i*th row. Let $A = (a_{ij})$ be a $m \times n$ -matrix. This matrix gives rise to an F-linear map

$$\alpha_A: F^n \longrightarrow F^m, v \longmapsto A \cdot v,$$

whose matrix with respect to the standard bases is precisely A. As we saw above choosing different bases on F^n and F^m will lead to another matrix.

For instance, let
$$n = m$$
 and v_1, \ldots, v_n , where $v_i = \begin{pmatrix} s_{1i} \\ \vdots \\ s_{ni} \end{pmatrix}$,

be another basis of F^n . Then α_A has with respect to this basis the matrix

$$S^{-1} \cdot A \cdot S$$
,

where $S = (s_{ij})$.

(ii) Let $V = \mathbb{C}$ be considered as \mathbb{R} -vector space, and $i = \sqrt{-1}$. The map $\ell_{\iota} : \mathbb{C} \longrightarrow \mathbb{C}$, $z \mapsto \iota \cdot z$ is \mathbb{R} - and also \mathbb{C} -linear. The complex numbers $\{1, \iota\}$ is a basis of the \mathbb{R} -vector space \mathbb{C} . We compute the matrix of ℓ_{ι} with respect to this basis. We have

$$\ell_{\iota}(1) = \iota = 0 \cdot 1 + 1 \cdot \iota$$

and

$$\ell_{\iota}(\iota) = -1 = (-1) \cdot 1 + 0 \cdot \iota \,,$$

and so the associated matrix is:

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

Exercise. What is the matrix with respect to the basis $\{1 + \iota, 1 - \iota\}$, and what are the base change matrices?

Subspaces invariant under a linear map.

We start with an example. Let

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 7 \\ 0 & 0 & 2 \end{pmatrix} \in \mathcal{M}_{3 \times 3}(\mathbb{R}).$$

The matrix A is of the form $\begin{pmatrix} B & C \\ \mathcal{O}_{1\times 2} & D \end{pmatrix}$, where B is a 2×2 -matrix,

C is a 2×1 -matrix and D is a 1×1 -matrix. Let $\alpha_A : \mathbb{R}^3 \to \mathbb{R}^3$, $v \to Av$ be the linear map corresponding to A.

We have $A \cdot e_1 = e_1 + 2e_2$ and $A \cdot e_2 = e_2$. Hence for the vector subspace $U \subset \mathbb{R}^3$ spanned by e_1, e_2 we have $\alpha_A(U) \subset U$. Such a subspace is called A- or α_A -invariant. We give a general definition.

Definition. Let V be an F-vector space and $\alpha: V \longrightarrow V$ an F-linear map. We say that a subspace W of V is α -invariant if $\alpha(w) \in W$ for all $w \in W$, or in other symbols, if

$$\alpha(W) := \left\{ \alpha(w) \, | \, w \in W \right\} \subseteq W,$$

or in words, if α maps W into W.

Remark. If $V = F^n$ and $\alpha = \alpha_A : v \mapsto A \cdot v$ for some $n \times n$ -matrix A we say also that W is A-invariant.

Examples. Let $\alpha: V \longrightarrow V$ be an F-linear map. We denote $\alpha^n = \alpha \circ \alpha \ldots \circ \alpha$ (n-times), e.g. $\alpha^2(v) = \alpha(\alpha(v))$, $\alpha^3(v) = \alpha(\alpha(\alpha(v)))$ and so on.

- (i) The kernel and the image of α is α -invariant.
- (ii) Let A be a $n \times n$ -matrix with eigenvalue $\lambda \in F$. The eigenspace of λ :

$$E_{\lambda} = \{ v \in F^n \mid A \cdot v = \lambda \cdot v \}$$

is an A-invariant subspace of F^n . In fact, if $v \in E_{\lambda}$ then $A \cdot (A \cdot v) = A \cdot (\lambda v) = \lambda (A \cdot v)$ and so $A \cdot v$ is also in E_{λ} .

More generally, if $\alpha: V \longrightarrow V$ is an F-linear map then the eigenspace

$$E_{\lambda} = \{ v \in V \mid \alpha(v) = \lambda \cdot v \}$$

of every eigenvalue λ of α is α -invariant. (Recall here that an eigenvalue of α is a zero of the characteristic polynomial of the matrix of α with respect to some basis of V. Recall also that the characteristic polynomial is independent of the choice of a basis.)

(iii) Let

$$W := \left\{ v \in V \mid \alpha^n(v) = 0 \text{ for some } n \ge 1 \right\}.$$

This is a subspace of V since if $v, w \in W$, say $\alpha^m(v) = \alpha^n(w) = 0$ for some $m, n \geq 1$ then $\alpha^{m+n}(\lambda v + \mu w) = 0$ by linearity for all $\lambda, \mu \in F$. Moreover W is α -invariant since if $\alpha^n(v) = 0$ then $\alpha^{n-1}(\alpha(v)) = \alpha^n(v) = 0$.

(iv) Let $\alpha: V \longrightarrow V$ and λ be as in (ii) above. The subspace E_{λ} is equal to the kernel of $\alpha - \lambda \operatorname{id}_{V}$, where $\operatorname{id}_{V}: V \longrightarrow V$, $v \mapsto v$, is the identity mapping. Let

$$K_{\lambda} := \{ v \in V \mid (\alpha - \lambda \cdot \mathrm{id}_{V})^{n}(v) = 0 \text{ for some } n \geq 1 \},$$

the so called generalized eigenspace for the eigenvalue λ (this space plays an important role later and will be defined then again). As in (iii) above this is a subspace of V, and α -invariant since

$$\alpha \circ (\alpha - \lambda \cdot \mathrm{id}_V)^n = (\alpha - \lambda \cdot \mathrm{id}_V)^n \circ \alpha,$$

and so if
$$(\alpha - \lambda \cdot id_V)^n(v) = 0$$
 then

$$(\alpha - \lambda \cdot id_V)^n(\alpha(v)) = \alpha((\alpha - \lambda \cdot id_V)^n(v)) = \alpha(0) = 0.$$