EXAMINATION QUESTION / SOLUTION

2002 - 2003

EI

txx = 25 etc

_

OLICOTION.

Please write on this side only, legibly and neatly, between the margins

f(x,y) =	y4 + 4 2 2y - 2y?	+ 525-1
78, -0	2E, ='0 =)	

$$4\times(2y^2+1)=0$$

From 1st equation si = 0. Sub into

2nd or => y=0, y=±1. Hono

stationers plic ose (0,0), (0,1), (0,-1)

To determine acture, require

(0,0): $g_{xx}(0,0) = A$, f'(0,0) = 0, f'(0,0) = -4

: sodale.

$$(0,\pm i)$$
: $f_{xx}(0,\pm i) = i2, f_{xy}(0,\pm i) = .0$
 $f_{yy}(0,\pm i) = 8$

to whe by

Since fix and fyr so for both pis, each

is a minimum

Setter:

J FLOIR

Setter's signature :

Checker: F. BERKYLE

Checker's signature :

SOLUTION (

2

2

2

7

EXAMINATION QUESTION / SOLUTION

2002 - 2003

EI

2

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

 $f(0,0) = -1, f(0,\pm 1) = -2$

SOLUTION

On y = 0, $f(x,0) = 2x^2 - 1$ On x = 0, $f(0,y) = y^4 - 2y^2 - 1$ $= (y^2 - 1)^2 - 2$

Hence, contour plat looks like

f(x,y) = constincreasing own f(x,y) = const

 $f(x,y) = f(\pm x,\pm y)$

constanción con

30

Setter: J ELGIN

Checker:

F BELLSHIAF

Setter's signature:

EXAMINATION QUESTION / SOLUTION

2002 - 2003

E 2

2

PAPER

QUESTION

SOLUTION

4

2/1

Please write on this side only, legibly and neatly, between the margins

x = tcosh & y = 4 Sinh 8

=> Tonh (1/x)=0

3x = 3/2 / 5x = -3/2 38/2x = -3/12, 38/2~ = 3/13

3x = 3x 3x + 30 3x 30 = Cosho 24 - Sinho 24.

Similarly,

34 = 3134 + 39 34 54 = 3134 + 39 34 = - Sinh 0 2f + Gsh0 2f

With f = Jsi2-y2 Tanh (3/x) = +0 2f = 3c Tonhyx + Ix2-y2 (-3/2)

X Tonly, - J

Setter: 5 ELGIN

Checker: WEDBER

Checker's signature :

Setter's signature :

3

EXAMINATION QUESTION / SOLUTION

2002 - 2003

2

QUESTION

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION 2/1

a & cosho - Sinho

AK3, 3= 0

1. (ssho 2 - sinho 2 = 8 (scho-5)

of = Colo H - Sinhe of

Similary, 2 = -y Tonky + 1x2-y2 x

= -4 Tank(x) + x Tv2-y2

- Osinho + Cosh Q.

Also - Sinho of + Gsho of = -951-60 + Cocho. Y

= Gald - Osinho.

37 = - Sinho 37 + Cocho 37

Setter: JELGIN

Checker: WENSELD

Setter's signature :

EXAMINATION QUESTION / SOLUTION

2002 - 2003

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION उ

3

(3)

(3

I2 = 1/4-0 0+ 1/4 51 1/4 = TT/x [0+T/45NT/v]= 0.2180

$$I_{3} = \frac{\pi/8 - 0}{2} \left[0 + \pi/8 \operatorname{cn} \pi/8 \right] + \frac{\pi/8}{2} \left[\frac{\pi}{8} \operatorname{cn} \pi/8 + \frac{\pi}{4} \operatorname{cn} \frac{\pi}{4} \right]$$

$$= \frac{\pi}{16} \left[2.6.1503 + 0.554 \right] = 0.1680$$

If we were to use Sumpson's Rule immediately

$$\overline{L} = \frac{\pi}{24} \left[f(0) + 4f(\pi/8) + f(\pi/4) \right]$$

$$= \frac{\pi}{24} \left[0 + 4 \cdot (0.1503) + 0.5554 \right] = 0.1513$$

If we estabilite the Trupezum Rule we have

$$I_{n} = (4I_3 - I_2)/_3 = 0.1513$$

This agrees with the Sumpson Rule approximation

To fuste the solution we integrate by parts

$$I_{Tme} = -\left[\Theta \cos \Theta \right]^{\pi l_{4}} + \int_{0}^{\pi l_{4}} \cos \theta \, d\theta$$

$$= -\left[\Theta \cos \Theta \right]^{\pi l_{4}} + \left[Sn \Theta \right]^{\pi l_{4}}.$$

$$= \left(1 - \pi l_{4} \right) \cdot \sqrt{l_{2}} = 0.1517$$

CASH Setter:

(JRIDLER-ROUT Checker:

Setter's signature: JLCan

Setter's signature: Miliate Rom

EXAMINATION QUESTIONS/SOLUTIONS SESSION 2002-2003	COURSE
Setters are advised that Checkers, Editors, Typists and External Examiners greatly appreciate the merits of accuracy, legibility and neatness.	SETTER CASH
Write on one side only, between the margins, double-spaced. Not more than one question or solution per sheet, please	<u></u>
	SOLUTION NO. L4 MARKSCHEME
37/2	
Rewrite equation as $0 = f(x) = tonx - \sqrt{a^2 - x^2}$	
The F'(x)= sec? x - 2c $\sqrt{a^2-x^2}$. So Newton-Raphon is	
$x_{n+1} = x_n - \frac{(ton x_n - \sqrt{16-x_n^2})}{sec^2 x_n + \frac{x_n}{\sqrt{16-x_n^2}}}$	3)
llerates on x0=1.3. >(=1.31262, x1=1.312086, x3=131208=x4	4
x0=3.8, x1=3.90245, x2=3.89079, x3=3.89049=x4	4

EXAMINATION QUESTION / SOLUTION

2002 - 2003

PAPER

QUESTION

SOLUTION

Please write on this side only, legibly and neatly, between the margins

Std equation of plane

N. 4 = N, 31 + N2 7 + N3 2 = b

subject to the sinu of M shale

p ic perpendicular dictare from orgin.

x + y - 22 = 3 cm b

13+13+(2) + 4 13+13+(2) + -27 13+13+(-2) = 3 13+13+(-2) = 3

 $\sqrt{1 \cdot 1} = \frac{3}{16} = \sqrt{3} = \frac{1}{2}$

2x - 2y + 2 = 1 can Plone

be wither

 $\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{3}=\frac{1}{2}$

Honor P1 = 53/2, P= 1/3.

ii) let direction essine of rego stiling the (l, m, n). Since this lies in both planos, it must be I, to M, 81, =>

> l+m-sv=D2l-2m+11 =

The direction rations are thosefore (3,5,4)

Setter:

J ELGIN

Setter's signature :

Checker: F. BERKLINE Checker's signature:

2

EXAMINATION QUESTION / SOLUTION

2002 - 2003

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION

herie

t = 15 [3,5,4]

is a unit sector along seglo line.

Pt. on line: This will also lie

on both planes. Put so =0 in

ets osigned ogus gas planes

y - 2z = 3-2y + z = 1 = 3

Regio vector to this by on line

a = [0, -5/3, -7/3]

Monce, regle oeches eguetien &: line is

r = a + ht, becometern

Checker: HERBERD

Setter's signature :

EXAMINATION QUESTION / SOLUTION

2002 - 2003

E6

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

(i)
$$A^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix}$$

SOLUTION

So A2 = I is equivalent to

$$a^{2} + bc = d^{2} + bc = 1$$

$$b(a+d) = c(a+d) = 0$$

$$(x)$$

$$b = c = 0 \quad (x)$$
 reduces to

(a) If
$$b = c = 0$$
, (*) reduces to $a^2 = d^2 = 1$, giving the four volutions $A = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$.

(b) If reither b nor c is 0, (*) becomes
$$d = -a, \quad 1-a^2 = bc \neq 0, \text{ giving the}$$
whations
$$A = \begin{pmatrix} a & b \\ (1-a^2)/b & -a \end{pmatrix},$$

Setter:

WILSON

Setter's signature :

J. Vilor '

Checker:

Kedert

EXAMINATION QUESTION / SOLUTION

2002 - 2003

SOLUTION

7 (wut)

Please write on this side only, legibly and neatly, between the margins

d = -a, a = 1, giving robitions

A = (1 b), A = (-1 b), barbitrary

Similarly if b = 0, c + 0 we get

 $A = \begin{pmatrix} 1 & 0 \\ c & -1 \end{pmatrix}, A = \begin{pmatrix} -1 & 0 \\ c & 1 \end{pmatrix}$ carbitrary

(ii) (a) Not valid, because (A+B)(A-B)

= A2+BA-AB-B2, and in general

BA + AB.

(b) Valid, because (AB)(B'A') = A(BB')A'

= AIA' = AA' = I, and rivilarly

(B-'A-')(AB) = I.

(c) Not valid even for scalars: A = B = I

is a counterexample

Setter:

WILSON

Setter's signature:

1. Wilson

Checker:

EXAMINATION QUESTION / SOLUTION

2002 - 2003

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION

'5

(a)

Donstry the missey elements as lin and Visi we have. $U_{11} = 1$, $U_{12} = 1$, $U_{22} = 1$

$$\begin{pmatrix}
1 & 0 & 0 \\
- & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

So $l_{21} = 1$, $1 + U_{22} = 0$ $\Rightarrow U_{22} = a - 1$, $1 + U_{23} = 2$ $U_{23} = 1$ $\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
 & & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 \\
0 & 4-1 & 1 \\
0 & 0 & 1
\end{pmatrix}$

Finally $l_{31} = 1$, $l_{31} + (q-1)l_{32} = q \Rightarrow l_{32} = 1$ $2 + v_{33} = 2q$ $v_{33} = 2q-2$ $\begin{pmatrix}
1 & 0 & 0 & \\
1 & i & 0 & \\
1 & 1 & i & \\
\end{pmatrix}$ $\begin{pmatrix}
1 & 0 & 0 & \\
0 & 0 & 2a - 2
\end{pmatrix}$

So we need to some
$$LU\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & a-1 & 1 \\ 0 & 0 & 2a-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix} \qquad \begin{array}{l} y_3 = b/(2a-2) \\ (a-1)x_2 + b/2(a-1)^2 \\ \vdots & x_2 = -b/2(a-1)^2 \end{array}$$

x1 - 5/2/a-172+ 5/2/2-1) =0

$$\frac{x_{1}^{2}}{2(a-1)} \left[\frac{b}{a-1} - 1 \right] = \frac{b(2-a)}{2(a-1)^{2}}$$

If $a=1, b\neq 0$ No solution

If $a=1, b\neq 0$ No solution

If $a=1, b\neq 0$ No solution $\begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 1 & 1 & 1$

Setter:

Checker:

CASVI

RIDLER-ROWE

Setter's signature:

EXAMINATION QUESTION / SOLUTION

2002 - 2003

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION 9

2

1

١

(i)
$$(y^2 - x^2) \frac{dy}{dx} = x^2 + 2xy \rightarrow \frac{dy}{dx} = \frac{x^2 + 2xy}{(y^2 - x^2)} = \frac{1 + 2\frac{y}{x}}{\left(\frac{y}{x}\right)^2 - 1}$$

$$\therefore \quad \text{Put} \quad y(x) = xv(x) \quad \rightarrow \quad x \frac{dv}{dx} + v = \frac{1 + 2v}{v^2 - 1}$$

$$\therefore x \frac{dv}{dx} = \frac{1+2v}{v^2-1} - v = \frac{1+2v-v^3+v}{v^2-1} = \frac{1+3v-v^3}{v^2-1}$$

$$\therefore \int \frac{dx}{x} = \int \frac{v^2 - 1}{1 + 3v - v^3} dv \qquad \therefore \qquad \ln x = -\frac{1}{3} \ln (1 + 3v - v^3) + c_1$$

$$\rightarrow \ln (1+3v-v^3)x^3 = c_2. \qquad \therefore \qquad x^3+3x^2y-y^3 = c_3.$$

Given that
$$y(1) = 2$$
, $c_3 = 1 + 6 - 8 = -1$

$$\therefore \qquad \text{Required solution is} \qquad : \qquad y^3 - x^3 - 3x^2y = 1$$

(ii)
$$(x+1) \frac{dy}{dx} - 3y = (x+1)^5 \rightarrow \frac{dy}{dx} - \frac{3}{(x+1)}y = (x+1)^4$$
.

Integrating factor:
$$\exp(-\int \frac{3 dx}{(x+1)}) = \exp(-3 \ln(x+1)) = (x+1)^{-3}$$
.

$$\therefore \text{ ODE } \to \frac{d((x+1)^{-3}y)}{dx} = x+1. \quad \therefore (x+1)^{-3}y = \frac{1}{2}(x+1)^2 + c$$

$$\therefore \text{ The general solution is} \qquad y(x) = \frac{1}{2}(x+1)^5 + c(x+1)^3$$
$$= (x+1)^3(\frac{1}{2}x^2 + x + c_1)$$

Setter: WENRENT

Checker: REICH

Setter's signature :

Checker's signature:

20CHOLON-

MATHEMATICS FOR ENGINEERING STUDENTS **EXAMINATION QUESTION / SOLUTION**

2002 - 2003

SOLUTION

Please write on this side only, legibly and neatly, between the margins

(i) The auxiliary equation is m2+m-2=0. Hence m=1, m==2. The general solution of the homogeneous equation is a ex + be-2x To find a solution of the inhomogeneous equation try y = dx+B. Then we get $\Delta - 2dx - 2\beta = x$. Whence $\Delta = -\frac{1}{2}, \beta = -\frac{1}{4}$ 3 marks The answer is ae 2+ be-2x_1 x-1.

(ii) The auxiliary equation is m2+2m=0. The general solution of the homogeneous equation is thus a+be-2x. Now try y(x)= dcosx+Bsinx. We obtain

- d Conx-Bsinx + 22 sinx +2Bconx = conx. Hence - d+23 = 1, p+22=0. We get $d = -\frac{1}{5}$, $\beta = \frac{2}{5}$. The general solution is $a + be^{-2x}$ $-\frac{1}{5}\cos x + \frac{2}{5}\sin x$.

The initial condition says that $a+b-\frac{1}{5}=1$, $-2b+\frac{2}{5}=0$, whence $b=\frac{1}{5}$, $\alpha = 1$. The answer is

1+ = e -2x - = cosx + = sinx.

Setter: ANS

Checker: 5 L

Setter's signature :

Checker's signature:

2 mark

3 mark

EXAMINATION QUESTION / SOLUTION

2002 - 2003

E 10

2

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION

4

$$\begin{array}{lll}
a) & \text{Identify} & \text{os} & \text{Fourier Cosine series: bard} \\
a) & \text{on} & = & \frac{2}{\pi} \int_{-\infty}^{\pi} x \cos \alpha x dx = \frac{2}{\pi} \left(\frac{x \sin \alpha x}{n} \right) \left(\frac{1}{n} - \frac{1}{n} \int_{-\infty}^{\sin \alpha x} \sin \alpha x dx \right) \\
& = & \frac{2}{\pi} \left[\frac{1 + (-1)}{n^2} \right] = \int_{-\infty}^{4} \frac{1}{n} x^{2} + \int_{-\infty}^{\infty} \cos \alpha x dx dx \\
& = & \frac{2}{\pi} \left[\frac{1 + (-1)}{n^2} \right] = \int_{-\infty}^{4} \frac{1}{n} x^{2} + \int_{-\infty}^{\infty} \cos \alpha x dx dx \\
& = & \frac{2}{\pi} \left[\frac{\pi}{n^2} \right] = \pi i
\end{array}$$

b) Fourier Sine series ...
$$C_{n} = 0$$

$$D_{n} = \frac{7}{7} \int_{0}^{\pi} x \sin nx = \frac{2}{7} \left(-\frac{\sin(\cos nx)}{n} \right) \left(-\frac{1}{7} \int_{0}^{\cos nx} x dx \right)$$

$$= -\frac{2}{7} \frac{\pi(-1)^{n}}{n}$$

$$T_{N} = 0$$
, ever $g_{N} = 0$ (c) $f_{N} = 0$
 $f_{N} = 0$ $f_{N} = 0$ $f_{N} = 0$ $f_{N} = 0$ $f_{N} = 0$ $f_{N} = 0$ $f_{N} = 0$ $f_{N} = 0$

$$\sum_{N=0}^{\infty} \frac{1}{(2n+i)^2} = \frac{\pi^2}{8}$$

Setter: 5 ELGIP

Checker: F. BERWHIRE

Setter's signature:

Checker's signature :

The series

DEPARTMENT MATHEMATICS

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$a = a_1i + a_2j + a_3k = (a_1, a_2, a_3)$$

Scalar (dot) product:
$$\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$

Vector (cross) product:

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

Scalar triple product:

[a, b, c] = a, b x c = b.c x a = c.a x b =
$$\begin{vmatrix} a_1 & a_3 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Vector triple product:

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots$$
 (a arbitrary, $|x| < 1$)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^{1}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n} \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

cos(a+b) = cos a cos b - sin a sin b.

cosiz = coshz; coshiz = cosz; siniz = isinhz; sinhiz = isinz.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = \int D^{n}g + \binom{n}{i} D \int D^{n-1}g + \ldots + \binom{n}{i} D \int D^{n-1}g + \ldots + D^{n}fg.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h)=f(a)+hf'(a)+h^2f''(a)/2!+\ldots+h^nf^{(n)}(a)/n!+\epsilon_n(h),$$

where $c_n(h) = h^{n+1} f^{(n+1)} (u + \theta h) / (n+1)!, \quad 0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h,b+k) = f(a,b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy}\right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$.

ii. If
$$z = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If x = x(u, v), y = y(u, v), then f = F(u, v), and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

(c) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let (a, b) be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a,b}$. If D>0 and $f_{xx}(a,b)<0$, then (a,b) is a maximum; If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a minimum; If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation
$$dy/dx + P(x)y = Q(x)$$
 has an integrating factor $I(x) = \exp[\int P(x)(dx]$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.