

SU 001710694 A
FEB 1992

92-431342/52 H01
BOREHOLE CONSOLIDATION MUDS
89.06.26 89SU-4710051 (92.02.07) E218 29/10
Repairing damaged casing pipe - by expanding patch with edges
coated with sealing material and granules, of hardness exceeding
that of patch and casing
C92-191751
Addnl. Data: YUREV V A, NEUDACHIN V P, NIKITIN V I

Sealing material (1) is put on edges of the longitudinally corrugated pipe (3) and granules (2) of hardness exceeding that of the pipe (3) and of casing pipe are put on the sealing material (1). Size of the granules (2) is less than thickness of the pipe's (3). The pipe (3) is lowered down the casing pipe into required position and pressed against its inner surface.

The material may be in the form of sticky tape on which the granules (2) are placed. During expansion of the patch (3) the granules edges cut into the patch and the casing pipe and ensure a strong contact on a shorter section. The sealing material (1) with the granules (2) can be deposited practically in any width, but initially the width of 200-400 mm is sufficient.

ADVANTAGE - More effective adhesion of the patch to the
using pipe during initial expansion of the patch. Bul.5/7.2.92 (5pp
wg.No.1/1)

H(1-C10)

© 1992 DERWENT PUBLICATIONS LTD.
128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
Suite 401 McLean, VA22101, USA
Unauthorised copying of this abstract not permitted.

BEST AVAILABLE COPY

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1710694 A1

(53) E 21 B 29/10

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

- (21) 4710051/03
(22) 26.06.89
(46) 07.02.92. Бюл. № 5
(71) Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам
(72) В.А.Юрьев, В.П.Неудачин, В.И.Никитин, В.И.Власов и В.А.Никишин
(53) 622.248.12 (088.8)
(56) Патент США
№ 3175618, кл. 166-63, опублик. 1965.
Патент США
№ 3179168; кл. 166-14, опублик. 1965.
(54) СПОСОБ РЕМОНТА ОБСАДНОЙ КОЛОННЫ
(57) Изобретение относится к ремонту скважин, а именно к способу подземного ремонта обсадных колонн. Цель изобретения –

2

повышение эффективности сцепления пластиря с обсадной колонной в начальный момент работы формирующей головки. Это достигается тем, что перед спуском пластиря на концевые участки его наружного герметизирующего покрытия наносят зернистый материал твердостью, большей твердости материалов обсадной колонны и пластиря. При этом размер зернистого материала не превышает толщину стенки пластиря. Для ремонта обсадной колонны осуществляют спуск в интервал нагружения герметичности пластиря в виде продольно гофрированного патрубка с наружным герметизирующим покрытием. Затем расширяют его до плотного прижатия к внутренней поверхности осадной трубы формирующей головкой. 1 ил.

Изобретение относится к технике подземного ремонта, а именно к восстановлению герметичности обсадных колонн металлическими пластирями нефтяных, водяных и газовых скважин.

Известен способ ремонта обсадной колонны, когда перед спуском в скважину пластиря на специальном устройстве типа ДОРН наружную поверхность его покрывают герметизирующим составом на основе наирита "НТ".

Недостатком способа является то, что с целью обеспечения сопряжения пластиря с колонной в начальный период его расширения конец пластиря со стороны захода дорнирующей головки устройства не покрывают герметиком. Длина этого участка соответствует величине 300-500 мм.

Кроме того, применение герметика "НТ" ограничено по температуре до +70° С и не обеспечивает достаточную адгезию между пластирем и обсадной колонной. Этот герметик токсичен в процессе его нанесения.

При расширении пластиря протяжкой через него дорнирующей головки в начальный период не гарантируется качественное сопряжение между колонной и пластирем. В результате чего существует вероятность продольного смещения пластиря по колонне.

Все эти недостатки не позволяют обеспечить поставленную цель – локальную герметизацию обсадной колонны в скважине путем надежной установки пластиря.

Известен способ, включающий в себя продольно-гофрированный пластирь, покрытый стеклотканью с отверждающейся

BEST AVAILABLE COPY

композицией на основе эпоксидной смолы, пуск к месту дефекта и расширение его до энгантного сопряжения с внутренней поверхностью обсадной колонны с помощью специального транспортного устройства.

Недостатком этого способа является то, что в начальный период отсутствует гарантия качественного сопряжения пластира с колонной (имеется вероятность смещения пластира по колонне).

Кроме того, технология нанесения этого герметика непростая, материал токсичен, имеет короткую "жизнеспособность" (до 24 ч), что приводит к преждевременному за-твердеванию.

Цель изобретения - повышение эффективности сцепления пластира с обсадной колонной в начальный момент работы дорнирующей головки.

Эта цель достигается тем, что перед спуском в скважину пластира на концевые участки наружного герметизирующего покрытия наносят зернистый материал твердостью, большей твердости материалов обсадной колонны и пластира, и размером, не превышающим толщину стенки пластира. Таким материалом может быть, напри- мер, абразивный камень, алмаз, твердый сплав.

Герметизирующим материалом может быть лента "ГЕРЛЕНД-Д". Эта лента обладает хорошей пластичностью, самоклеящаяся, что позволяет наносить на ее kleящуюся (рабочую) поверхность в виде многогранной крошки твердый материал без применения дополнительного клея непосредственно перед наложением ленты на металлический пластирь.

При расширении пластира до сопряже-ния с обсадной трубой зернистый твердый материал своими гранями врезается в обсадную колонну и пластирь, обеспечивая прочный контакт на более коротком отрезке, чем это происходит без его применения, и повышает коэффициент успешности и на-дежности установки пластира.

Используя эти качества твердого материала, герметизирующий материал (ленту "ГЕРЛЕН-Д") наносят сразу от торца пластира, не оставляя технический пропуск на длине 300-500 мм для сопряжения обсадной трубы с пластирем в начальный период расширения дорнирующей головкой. Это позволяет, с точки зрения герметизации ре-монтируемого участка обсадной трубы, ис-пользовать пластиры на всей его длине.

Величину нанесения герметика с твер-дым зернистым материалом практически можно не ограничивать, однако, для обес-печения надежности сцепления пластира с об-садной трубой, в начальный момент достаточна 200-400 мм, т.е. на одно-два кольца нанесенной ленты "ГЕРЛЕН-Д" с твердым зернистым материалом.

На чертеже изображена заготовка пла-стыра.

Герметизирующий материал 1 с приме-нением твердого зернистого материала в виде крошки многогранной формы 2 нано-сят на металлическую гофрированную трубу

3. Предложенное техническое решение повышает коэффициент успешности уста-новки пластира и устраняет необходимость оставлять технологический участок без на-несения герметизирующего материала.

Ф о р м у л а и з о б р е т е н и я
Способ ремонта обсадной колонны, включающий спуск в обсадную колонну и установку пластира в виде продольно-гоф-рированного патрубка с наружным гермети-зирующим покрытием путем его расширения дорнирующей головкой, отли-чая ю щ и й с я тем, что, с целью повышения эффективности сцепления пластира с об-

садной колонной в начальный момент рабо-ты дорнирующей головки, перед спуском пластира на концевые участки наружного герметизирующего покрытия наносят зер-нистый материал твердостью, большей твердости материалов обсадной колонны и пластира, и размером, не превышающим толщину стенки пластира.

BEST AVAILABLE COPY

1710694

45

50

Редактор Н.Химчук

Составитель В.Юрьев
Техред М.Моргентал

Корректор М.Кучерявая

Заказ 317

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

[see English abstract - separate page]

[state seal] Union of Soviet Socialist
 Republics
USSR State Committee
on Inventions and Discoveries of the State
Committee on Science and Technology

(19) SU (11) 1710694 A1

(51)5 E 21 B 29/10

SPECIFICATION OF INVENTOR'S CERTIFICATE

(21) 4710051/03

(22) June 26, 1989

(46) February 7, 1992, Bulletin No. 5

(71) All-Union Scientific-Research and
Planning Institute of Well Casing and
Drilling Muds

(72) V. A. Yur'ev, V. P. Neudachin, V. I.
Nikitin, V. I. Vlasov, and V. A. Nikishin

(53) 622.248.12 (088.8)

(56) US Patent No. 3175618, cl. 166-
63, published 1965.

US Patent No. 3179168, cl. 166-
14, published 1965.

(54) METHOD FOR CASING REPAIR

(57) The invention relates to repair of
wells, and specifically to a method for
subsurface repair of casings. The aim of
the invention is

to improve the effectiveness of bonding
between the patch and the casing at the
initial moment of operation of the
forming head. This is achieved by the
fact that before lowering the patch, a
granular material with hardness greater
than the hardness of the casing and patch
materials is deposited on the terminal
sections of its exterior sealing coat. In
this case, the size of the granular material
is no greater than the patch wall
thickness. For casing repair, a patch in
the form of a longitudinally corrugated
sleeve with exterior sealing coat is
lowered to the leakage interval. Then it is
expanded until it is tightly squeezed
against the inner surface of the casing by
the forming head. 1 drawing.

[vertically along right margin]

(19) SU (11) 1710694 A1

The invention relates to subsurface repair technology, and specifically to repairing leaks in casings with metallic patches for oil, water, and gas wells.

A method is known for casing repair where before the patch is lowered into the well on a special DORN device, its exterior surface is coated with a sealing compound based on Nairit [chloroprene rubber] NT.

A disadvantage of the method is that, with the aim of ensuring joining of the patch and the string in the initial period of patch expansion, the end of the patch on the entry side for the coring head of the device is not coated with sealant. The length of this section corresponds to 300-500 mm.

Furthermore, the use of the NT sealant is limited to temperatures up to +70°C and does not provide sufficient adhesion between the patch and the casing. This sealant is toxic while being applied.

When the patch is expanded by pulling the coring head through it, high quality joining of the string and the patch is not guaranteed in the initial period. As a result, longitudinal displacement of the patch along the string is possible.

All these disadvantages mean that the proposed goal cannot be assured: local sealing of the casing in the well by reliable placement of the patch.

A method is known that includes a longitudinally corrugated patch, covered by fiberglass fabric with a curable

compound based on epoxy resin, lowering the patch to the location of the defect and expansion of the patch until contact joining occurs with the inner surface of the casing, with the help of a special transport device.

A disadvantage of this method is that in the initial period, there is no guarantee of high quality joining of the patch to the string (displacement of the patch along the string is possible).

Furthermore, the technology for application of this sealant is not simple, the material is toxic and has a short "working life" (up to 24.h), which leads to premature hardening.

The aim of the invention is to improve the effectiveness of bonding between the patch and the casing at the initial moment of operation of the forming head.

This aim is achieved by the fact that before the patch is lowered into the well, a granular material, with hardness greater than the hardness of the casing and the patch and size no greater than the patch wall thickness, is deposited on the terminal sections of the exterior sealing coat. Such a material may be, for example, abrasive stone, diamond, or hard alloy.

The sealing material may be GERLEND-D [sic] tape. This tape has good plasticity and is self-sticking, which makes it possible to deposit hard material on its sticky (working) surface in the form of small polyhedral fragments without using additional adhesive, immediately before applying the tape to the metallic patch.

When the patch is expanded until it joins to the casing, the hard granular material cuts into the casing and the patch by means of its facet edges, ensuring strong contact over a shorter length than occurs without its use, and it improves the success rate and reliability factor of the patch.

Using these qualities of the hard material, the sealing material (GERLEN-D tape) is applied directly from the end of the patch, without leaving a processing gap of length 300-500 mm for joining the casing to the patch in the initial period of expansion by the coring head. From the standpoint of sealing the section of casing to be repaired, this makes it possible to use the patch along its entire length.

The extent of application of the sealant with hard granular material can be practically unrestricted, but 200-400 mm is sufficient to ensure reliability of the bond between the patch and the casing at the initial moment, i.e., one to two rolls of applied GERLEN-D tape with hard granular material.

The drawing depicts the patch blank.

The sealing material 1 employing hard granular material in the form of polyhedrally shaped small fragments 2 is applied to metallic corrugated tube 3.

The proposed design improves the success rate for patch placement and eliminates the need to leave a processing section with no application of the sealing material.

Claim

A method for repair of a casing, including lowering into the casing and placement of a patch in the form of a longitudinally corrugated sleeve with exterior sealing coat by means of its expansion by a coring head, *distinguished* by the fact that, with the aim of improving the effectiveness of bonding between patch and casing at the initial moment of operation of the coring head, before lowering the patch a granular material, of hardness greater than the hardness of the casing and patch materials and of size no greater than the patch wall thickness, is deposited on the terminal sections of the exterior sealing coat.

1710694

[see original Russian for figure]

Fig. 1

Compiler V. Yur'ev

Editor N. Khimchuk Tech. Editor M. Morgental Proofreader M. Kucheryavaya

Order 317

Run

Subscription edition

All-Union Scientific Research Institute of Patent Information and Technical and Economic
Research of the USSR State Committee on Inventions and Discoveries of the State
Committee on Science and Technology [VNIIPPI]
4/5 Raushskaya nab., Zh-35, Moscow 113035

"Patent" Printing Production Plant, 101 ul. Gagarina, Uzhgorod

TRANSPERFECT TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

RU2016345 C1	
RU2039214 C1	
RU2056201 C1	
RU2064357 C1	
RU2068940 C1	
ATLANTA	RU2068943 C1
BOSTON	RU2079633 C1
BRUSSELS	RU2083798 C1
CHICAGO	RU2091655 C1
DALLAS	RU2095179 C1
DETROIT	RU2105128 C1
FRANKFURT	RU2108445 C1
HOUSTON	RU21444128 C1
LONDON	SU1041671 A
LOS ANGELES	SU1051222 A
MIAMI	SU1086118 A
MINNEAPOLIS	SU1158400 A
NEW YORK	SU1212575 A
PARIS	SU1250637 A1
PHILADELPHIA	SU1295799 A1
SAN DIEGO	SU1411434 A1
SAN FRANCISCO	SU1430498 A1
SEATTLE	SU1432190 A1
WASHINGTON, DC	SU 1601330, A1
	SU 001627663 A
	SU 1659621 A1
	SU 1663179 A2
	SU 1663180 A1
	SU 1677225 A1
	SU 1677248 A1
	SU 1686123 A1
	SU 001710694 A
	SU 001745873 A1
	SU 001810482 A1
	SU 001818459 A1
	350833
	SU 607950
	SU 612004
	620582
	641070
	853089
	832049
	WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart

Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serna

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX