NIS Performance Analysis

on behalf the NISP team

A. Ealet (NISP Spectroscopy Scientist)

The presented document is Proprietary information of the Euclid Consortium. This document shall be used and disclosed by the receiving Party and its related entities (e.g. contractors and subcontractors) only for the purposes of fulfilling the receiving Party's responsibilities under the Euclid Project and that identified and marked technical data shall not be disclosed or retransferred to any other entity without prior written permission of the document preparer.

Coll.Meeting A. Ealet 07/09/11

NISP requirements

NISP Requirements

Spectroscopy verification

Description	Requirement	implementation
Flux limit on a 1" object	$< 3 \times 10^{-6} \text{ erg cm}^{-2} \text{ s}^{-1}$ (3,5 σ 1600 nm)	Performance
Completeness	>45% (Goal 65%)	Performance Performance
Variation in Flux limit vs. wavelength	<20%	Performance Performance
Spectral range limits	1.1micron* to 2.0 micron	Instrument
Spectral resolution	>250	Instrument
Resolution element	sampled by> 2 pixels	Instrument
Wavelength error	f < 0.25	Calibration
PSF size and shape in spectroscopic mode	FWHM<0.6" and * EE80 radius <0,6"	Instrument
Stray light	<20% of Zodiacal light at ecliptic poles	Instrument
Dithering	>= 4 dithers	Survey/simu
spectroscopic obs stratgy	≥4 dith/rotation	Survey/simu
NIR image for spectro	allows association	Survey/simu
NIR integration time	Sufficient to reach flux limit	Survey/simu

Performance loop

Performance loop

A goal = Mitigating the spectral confusion

Recovering emission lines from confusion

- -optimize sensitivity
- control the crowding

- 4 sub-integrations (dithers)
- 2 roll angles of the dispersion axis (0°, 90°)
- 2 spectral ranges (2 grisms) → shorter spectra but same S/N

Sequence: 0° -blue - 0° -red - 90° -blue - 90° -red

Implementation

540s integration time for each Grism GW i

Grism positions

- 1. GW1 0° disp.: 1100-1457nm
- 2. GW2 90° disp.: 1100-1457nm
- 1. GW3 0° disp.: 1445-2000nm
- 2. GW\$ 90° disp.: 1445-2000nm

Performance loop

Optical quality

Parameter	Value in IPRR
Grism bands (nm)	Blue=1100-1457
	Red=1445-2000
Dispersion/pixel	9.8A/pix
Optical PSF	Double Gaussian
EE in radius (asec)	Blue EE50= 0,2'' EE80 =
	0,45'' RedEE50=0,225''
	EE80 = 0.55"

PSF contribution (arcesec)	Blue	Red
EE50 radius (arcsec)	0,2	0,225
EE80 radius (arcsec)	0,45	0,55
Optical FWHM	0,44	0,5
detector	0,066	0,066
AOCS	0,05	0,05
total	0,45	0,51

- -EE80 minimize pixel under the line
- -EE50 ensure imagequality to extract lines of faint objects on the full Image

Slitless Spectral Resolution => $\delta\lambda$ =cst = 9,8 A/pixel

The sensitivity parameters

The detectors (NIS and NIP)

Parameter	Value
Pixels per Detector	2040 × 2040, 18 micron each
Active Area	36.72 × 36.72 mm
Number of Detectors	4×4
Pixel size (arcsec)	0,3''
Gaps between Detectors	$3 \times 6 \text{ mm}$
Quantum Efficiency	0.7
Total noise in 540 s	9 e-
Detector PSF	Gaussian, FWHM = 4 μm
Detector Cut-off	2 .1(2.5) μm
Readout mode for spectro	Up the Ramp
Cosmic rejection	Yes/on board

Dithering strategy

Dither 5 tep 2	Step®x?	Step l y?
Step212	100''2	50''2
Step222	100''2	0''2
Step:33	100"2	0''?

Performance loop

The expected sensitivity

R-GC.2.1-1: the effective H-alpha-line flux limit from a 1-arcsec diameter source shall be lower than or equal to 3×10^{-16} erg cm⁻² s⁻¹ at 1600 nm. The flux limit is defined as the flux for which the signal-to-noise is > 3.5

Use an exposure time calculator To optimise the different contributions

Spectroscopy line flux limit

Red baseline
Green zod noise x 2
Blue requirement
= 3 × 10⁻¹⁶ erg cm⁻² s⁻¹

Variation with the object size

For 1" < 3 × 10⁻¹⁶ erg cm⁻² s⁻¹ For 0,4" <1.3 × 10⁻¹⁶ erg cm⁻² s⁻¹

Completness

R-GC.2.1-2: The completeness of redshift measurements from NISP spectra shall be larger than 45%. (goal 65%)

T-GC.2.1-2:The completeness is the number of galaxies for which a redshift is measured, divided by total number of galaxies at the flux limit specified by R-GC.2.1-1

the completness is affected by the crowding in a field:

⇒Validation with pixel level simulation and object extraction

(end to end)

- ⇒simulate a field
- ⇒Extract spectra
- ⇒Extract redshift
- ⇒contamination/confusion estimation

Completeness

(see B.Garilli presentation for details)

Use a representative catalog

Use AXESIM with the same instrument configuration

Simulate the observational strategy

Parameters	Value in IPRR	
Grism bands (nm)	Blue=1100-1457 Red=1445-2000	
Plate scale	0,3"	
Dispersion/pixel	9.8A/pix	
transmission	See curve	
PSF, EE in radius (asec)	Blue EE50= 0,2'' EE80 = 0,45''	
	RedEE50=0,225'' EE80 = 0,55''	
Detector total noise	9e	
Zodi noise (entrance)	aldering	
Extra noise	20 % of zodiacal noise	
Array size	16x 2040x2040	
Gap x/gap y	3/6 mm	
Dither pattern	4 dithers	
Observational strategy	2 rolls, 2 bands	
Exposure time	540s	
Field Overlap	no	
Coll.Meeting		

NISP instrument performance has been validated through a full loop of verification

- Verify the instrument parameters (PSF, transmission and detector performances) and check faisability
- Verify the performance of observational strategy (dithering efficiency , rolls/filters efficiency)
- Verify the scientific objectives (sensitivity, completness, purity) through a full end to end simulation
 See B.Garilli talk for more details on this part

Spectroscopy L2 verification

Reference	Description	Requirement	implementation	compl
GC.2.1-1	Flux limit	$< 3 \times 10^{-6} \text{ erg cm}^{-2} \text{ s}^{-1}$ (3,5 σ 1600 nm)	Performance/Simulation	<
GC.2.1-2	Completeness	>45% (Goal 65%)	Performance/Simulation	~
GC.2.1-3	Variation in Flux limit vs. wavelength	<20%	Instrument/simula tion	
GC.2.1-4	Spectral range limits	1.1micron* to 2.0 micron	Instrument	
GC.2.1-5	Spectral resolution	>250	Instrument	V
GC.2.1-6	Resolution element	sampled by> 2 pixels	Instrument	V
GC.2.1-7	Wavelength error	f < 0.25	Calibration	V
GC.2.1-8	PSF size and shape in spectroscopic mode	FWHM<0.6" and * EE80 radius <0,6"	Instrument	
GC.2.1-9	Stray light	<20% of Zodiacal light at ecliptic poles	Instrument	V
WS.2.2-5	Wide Survey field overlap	No*	Survey/simu	>
WS.2.2-6	Dithering I	>= 4 dithers	Survey/simu	/
WS.2.2-7	Dithering II	>92%with $>=3$ dithers	Survey/simu	/
WS.2.2-8	spectroscopic obs stratgy	≥4 dith/rotation	Survey/simu	>
WS.2.2-10	NIR image for spectro	allows association	Survey/simu	/
WS.2.2-11	NIR integration time	Sufficient to reach flux limit	Survey/simu	

^{*}request of modification

Total noise Psf (npix) **Transmission** Exposure time Flux 3 line

Flux % npix*(flux+total noise)

Performance verification approach consortium

- Define instrument/observational parameters versus design (optical design, detectors, dithering strategy)
- Validate instrument parameter requirements against current instrument design at instrument level
- Validate Spectroscopy performance (sensitivity and completness) against Level 2 science requirement with simulation

Coll.Meeting A. Ealet 07/09/11