Name: Bikis Muhammed

Email: bmpb8@mst.edu

Course: CS 5402

Assignment: Exploratory Data Analysis

Course: CS 5402


```
In [140]: 

# For using csv file import pandas as pd

# For ploting the frequency of common words import matplotlib.pylab as plt

import seaborn as sb import numpy as ny

from sklearn.impute import SimpleImputer

from sklearn.model_selection import train_test_split

import sklearn.feature_selection

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn import metrics
```

Concept Description

• The main objective of this project to make an exporative data analysis on collected data on forest fires and make a attribute prediction. First, we will try to get to know our data attributes, and then clean up the data to make it suitable for further processing. Finally, we will figure which variable more corrolate each other using different techniques.

```
In [*]: # data = pd.read_csv("../src-data/forestfires.csv")
# data.index = ny.arange(1, len(data)+1)
# data
```

Data Collection

- The data has provided to our firm as a excel (.csv)file. The given data set has 13 attributes. Those attributes are coord_X, coord_Y, month, day, FFMC, DMC, DC, ISI, temp, RH, wind, rain, and area. Each attribute will be explained in the example discription section. Only day and month attaributes are catagorical (ordinal), and the rest are numerical level of measurements.
- In addition, the data set has 517 examples.

Example Description

Level of measurements

Level of measurements	Discription
Nominal	Just a label name and no sense of order E.g. True/False - No order -There is no distance between any two values -Having absense of True or False does not mean anything.
Ordinal	Name (Nominal) + Order A named label and then ordering E.g. : Minimum -> medium -> Maximum
Interval	Nominal + Ordinal + Fixed distance between each attribute values Or They can not be catagorical attribute Any numeric attribute that is and ordinal, but it can not have a true zero. E.g. Tempreture in degree celcious ($65 \rightarrow 70 \rightarrow 75$)
Ratio	Nominal + Ordinal + Interval + Meaningful zero value E.g Number of students.

Attribute	Discription	Level of measurements	Possible Range
coord_X	x-axis spacial coordinate within a typographical map	Ratio	0 to ∞
coord_Y	y-axis of spacial coordinate within a typographical map	Ratio	0 to ∞
month	the month in which forst fire happened	Ordinal	Jan - Dec (1 - 12)
day	the day when forest fire happened	Ordinal	Mon - Sun (1 - 7)
FFMC	Final Fuel Moisture Code from the Fire Weather Index (FWI) system. According to Wood, this measurement merge/affected by different measurements such as rainfall, wind speed, relative humidity, rain, and tempreture in order to find the the level of moisture in a forest floor, and estimate how its possibility of expanding once egnited.	Interval	0 to 99
DMC	Duff Moisture Code from the FWI system "It relates rainfall, tempreture, and relative humidity." (Wood) It measures the moisture content of loosely-compacted organic layers of moderate depth. (William J. De Groot)	Ratio	0 to 350
DC	Draught Code from the FWI system "it Combines/affected by rainfall and temperature." (Wood) It measures/indicates the moisture, content in deep, and compact organic layers	Ratio	0 to 1200
ISI	Initial Spread Index from the FWI system. "It combines FFMC and wind velocity, and it can be used as an indicator of how quickly a fire is likely to spread." (Wood) ACcroding Willam, A wind speed increase by 13km/h will double ISI.	Ratio	0 to ∞
temp	tempreture in °C	Interval	0 to 100
RH	relative humidity in <i>percent</i> (%)	Interval	0 to 100
wind	speed of the wind in km/h	Ratio	0 to ∞
rain	amout of rain in mmlm^2	Ratio	0 to ∞
area	burned are in hectars $(10000 m^2)$	Ratio	0 to ∞

Data Import and Wrangling

In [27]: H data = pd.read_csv("../src-data/forestfires.csv")
 data

Out[27]:

	coord_X	coord_Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00
1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00
2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00
3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00
4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00
515	1	4	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00
516	6	3	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00
517 rows × 13 columns													

Exploratory Data Analysis

This part includes data preparation and cleaning of a data. It has three parts.

- 1. Data visualization and understanding
- 2. Cleaning of the data
- 3. Finding a relationship or corolation between two or more attributes.

1. Data visualization and understanding

Day and month will not be included since they categorical attribites.

In [29]: ► (data.describe()).T

Out[29]:

	count	mean	std	min	25%	50%	75%	max
coord_X	517.0	4.669246	2.313778	1.0	3.00	4.00	7.00	9.00
coord_Y	517.0	4.299807	1.229900	2.0	4.00	4.00	5.00	9.00
FFMC	517.0	92.091296	37.111003	9.9	90.20	91.60	92.90	921.00
DMC	517.0	110.872340	64.046482	1.1	68.60	108.30	142.40	291.30
DC	517.0	547.940039	248.066192	7.9	437.70	664.20	713.90	860.60
ISI	517.0	9.021663	4.559477	0.0	6.50	8.40	10.80	56.10
temp	515.0	18.895922	5.815985	2.2	15.55	19.30	22.80	33.30
RH	517.0	44.288201	16.317469	15.0	33.00	42.00	53.00	100.00
wind	517.0	4.017602	1.791653	0.4	2.70	4.00	4.90	9.40
rain	517.0	0.021663	0.295959	0.0	0.00	0.00	0.00	6.40
area	517.0	12.847292	63.655818	0.0	0.00	0.52	6.57	1090.84

```
In [37]: M data['month'].describe()
   Out[37]: count
                     517
            unique
                     12
            top
                     aug
            frea
                    184
            Name: month, dtype: object
 In [34]: M data['day'].describe()
   Out[34]: count
                    517
            unique
            top
                     sun
            freq
            Name: day, dtype: object
         Minimum and maximum value of each attribute in our data
 In [38]: M data.describe().loc[['min','max']].T
   Out[38]:
                    min
                          max
            coord_X 1.0 9.00
             coord_Y 2.0
                         9.00
             FFMC 9.9 921.00
               DMC
                    1.1
                        291.30
                    7.9
                    0.0
                   2.2
                         33.30
                RH 15.0
                        100.00
               wind 0.4
                         9.40
               rain 0.0
                         6.40
            area 0.0 1090.84
         Note: The FFMC value range should be between 0 to 99. In the above table, the maximum value is 921 that is not in the interval.
         If it is only one or two values, the imputation technique will be used to change those values. If it is many, the whole column
        will be dropped.
         2. Data Cleaning /Tidying
        The first step will be changing non-numeric attributes to numeric.
data = data.drop(i, 1)
data = pd.concat([data, dummies], axis=1)
Out[40]:
                               4.0
                                        6.0
                                             6.0
                                                  6.0
             FFMC 86.2 90.6 90.6 91.7 89.3 92.3 92.3 91.5 91.0 92.5
                DMC 26.2 35.4 43.7 33.3 51.3 85.3 88.9 145.4 129.5
                                                                88.0
              DC 94.3 669.1 686.9 77.5 102.2 488.0 495.6 608.2 692.6 698.6
                 ISI
                                        9.6 14.7 8.5 10.7 7.0
                     5.1
                          6.7
                               6.7 9.0
                                                                7.1
                temp
                     8.2
                         18.0 14.6 8.3 11.4 22.2 24.1 8.0 13.1 22.8
                               33.0 97.0
                                       99.0 29.0 27.0 86.0 63.0
                     6.7
                               1.3 4.0
                                       1.8 5.4 3.1 2.2 5.4
                     0.0
                          0.0
                               0.0 0.2
                                        0.0
                                             0.0
                                                 0.0 0.0
                                                           0.0
                               0.0 0.0 0.0 0.0 0.0 0.0 0.0
                     0.0
                          0.0
                                                                0.0
               day_fri
                     1.0
                          0.0
                               0.0 1.0 0.0 0.0 0.0 0.0 0.0
                                                                0.0
                     0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0
              day_mon
                                                                0.0
                               1.0 0.0 0.0 0.0 0.0 0.0 0.0
               day_sat 0.0
                          0.0
                                                                1.0
              day_thu 0.0
                               0.0 0.0 0.0 0.0 0.0 0.0 0.0
              day_tue 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
              day_wed 0.0
                               0.0 0.0 0.0 0.0 0.0 0.0 0.0
             \textbf{month\_apr} \quad 0.0 \quad 0.0
            month_aug
                     0.0
                          0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0
                                                                0.0
            0.0
                          0.0
                               00 00 00 00 00 00
                                                           0.0
                                                                0.0
             month feb
             month_jan 0.0
                          0.0
                               0.0 0.0 0.0 0.0 0.0 0.0
                                                           0.0
                                                                0.0
```

0.0 0.0

month_jul

0.0 0.0

0.0 0.0 0.0 0.0 0.0

```
        month_mar
        1.0
        0.0
        0.0
        1.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0.0
        0
```

Check for Missing Value

```
In [41]: M data.isnull().sum().sort_values(ascending=False)
   Out[41]: temp
coord_X
              day_tue
              month_oct
month_nov
month_may
                            0
0
                            0
0
0
0
              month mar
              month_jun
              month_jul
month_jan
              month_feb
                            0 0 0 0 0 0 0 0 0 0 0
              month_dec
month_aug
              month_apr
              day_wed
day_thu
              coord_Y
day_sun
day_sat
              day_mon
day_fri
area
              rain
              wind
                            0
0
0
              RH
              ISI
              DMC
                            0
              FFMC
              month_sep
              dtype: int64
                Impute Missing Value
      data = pd.DataFrame(data=imput.transform(data) , columns=data.columns)
```

Check for missing value again

```
Out[43]: coord_X
coord_Y
month_oct
                month_nov
month_may
month_mar
month_jun
month_jul
month_jan
                                 0 0
                                 0 0
                month_feb
month_dec
month_aug
                                 0
0
0
                month_apr
                                 0
0
                day_wed
day_tue
                day_thu
day_sun
day_sat
                                 0
0
                day_mon
day_fri
                                 0
0
                                 0
0
                rain
                 wind
                 temp
                                 0
                                 0
                ISI
                DMC
                                 0
                FFMC
                 month_sep
                dtype: int64
```

Data attribute unit conversion

Make sure all value are within their range

```
In [45]: b data = data[data.FFMC < 99]
```

Corrolation Matrix

```
In [46]: M corr = data.corr() corr
```

Out[46]:

a t		coord_X	coord_Y	FFMC	DMC	DC	ISI	temp	RH	wind	rain	 month_dec	month_feb	month
	coord_X	1.000000	0.537882	0.000110	-0.048435	-0.085083	0.006503	-0.052403	0.085432	0.018300	0.065308	 -0.006853	0.041328	-0.045
	coord_Y	0.537882	1.000000	-0.071361	0.007827	-0.099982	-0.024110	-0.023917	0.062592	-0.021261	0.033081	 0.075626	0.015684	0.008
	FFMC	0.000110	-0.071361	1.000000	0.315966	0.264463	0.457830	0.376249	-0.285000	-0.011597	0.049475	 -0.112019	-0.231907	-0.380
	DMC	-0.048435	0.007827	0.315966	1.000000	0.682309	0.305131	0.468255	0.073795	-0.105345	0.074791	 -0.176303	-0.317909	-0.105
	DC	-0.085083	-0.099982	0.264463	0.682309	1.000000	0.229093	0.494358	-0.039235	-0.203319	0.035928	 -0.105552	-0.399197	-0.118
	ISI	0.006503	-0.024110	0.457830	0.305131	0.229093	1.000000	0.393135	-0.132530	0.106891	0.067688	 -0.162295	-0.249741	-0.103
	temp	-0.052403	-0.023917	0.376249	0.468255	0.494358	0.393135	1.000000	-0.528772	-0.225832	0.069417	 -0.329942	-0.320403	-0.146
	RH	0.085432	0.062592	-0.285000	0.073795	-0.039235	-0.132530	-0.528772	1.000000	0.069434	0.099758	 -0.047704	0.140452	0.170
	wind	0.018300	-0.021261	-0.011597	-0.105345	-0.203319	0.106891	-0.225832	0.069434	1.000000	0.061089	0.269661	-0.029524	-0.070
	rain	0.065308	0.033081	0.049475	0.074791	0.035928	0.067688	0.069417	0.099758	0.061089	1.000000	 -0.009771	-0.014727	-0.004
	area	0.063074	0.044386	0.038657	0.072998	0.049540	0.008301	0.097723	-0.075506	0.012239	-0.007391	 0.000965	-0.020802	-0.012
	day_fri	-0.021085	-0.050563	0.027053	-0.012007	-0.003853	0.046814	-0.072577	0.064556	0.117918	-0.004324	 -0.019259	0.046161	-0.027
	day_mon	0.038508	0.020230	-0.108241	-0.107934	-0.052672	-0.158528	-0.137141	0.009412	-0.064080	-0.030008	 0.114434	0.003775	-0.025
	day_sat	0.023510	0.001892	-0.005783	-0.003649	-0.034836	-0.038485	0.034331	-0.023837	-0.064013	-0.032340	 -0.058751	0.020239	0.05€
	day_sun	-0.030446	0.004467	-0.063740	0.025365	-0.001037	-0.003127	0.013780	0.136290	0.027774	-0.017943	-0.025094	0.008234	0.050
	day_thu	-0.000362	0.026640	0.069252	0.087687	0.052178	-0.022319	0.050970	-0.123046	-0.062730	-0.026853	 -0.002932	-0.042427	-0.022
	day_tue	-0.028402	-0.055033	0.018604	0.000019	0.028689	0.068713	0.038684	-0.014181	0.053236	0.139278	 -0.005222	-0.014640	-0.023
	day_wed	0.022807	0.061841	0.086468	0.018061	0.022564	0.125746	0.091461	-0.088494	-0.018799	-0.020499	 0.003686	-0.034867	-0.02
	month_apr	0.063617	-0.008918	-0.095328	-0.197545	-0.268153	-0.106449	-0.157284	0.021246	0.048210	-0.009771	 -0.017751	-0.026754	-0.008
	month_aug	-0.056831	-0.005553	0.209335	0.498790	0.278783	0.334902	0.351497	0.054743	0.029238	0.093457	 -0.098769	-0.148860	-0.04€
	month_dec	-0.006853	0.075626	-0.112019	-0.176303	-0.105552	-0.162295	-0.329942	-0.047704	0.269661	-0.009771	1.000000	-0.026754	-0.008
	month_feb	0.041328	0.015684	-0.231907	-0.317909	-0.399197	-0.249741	-0.320403	0.140452	-0.029524	-0.014727	 -0.026754	1.000000	-0.012
	month_jan	-0.045200	0.009961	-0.380971	-0.105646	-0.115034	-0.103574	-0.146653	0.170929	-0.070277	-0.004575	 -0.008311	-0.012526	1.000
	month_jul	0.060570	0.060728	0.033036	-0.001944	-0.100698	0.021047	0.142304	0.013208	-0.040766	-0.013428	 -0.034259	-0.051633	-0.01€
	month_jun	0.129375	0.078194	-0.029682	-0.050403	-0.186069	0.111566	0.050789	0.009398	0.012042	-0.013537	 -0.024592	-0.037064	-0.011
	month_mar	0.007073	0.049430	-0.054196	-0.407447	-0.650333	-0.143454	-0.338701	-0.089817	0.181308	-0.020795	 -0.045551	-0.068652	-0.021
r	nonth_may	0.008789	-0.015484	-0.029794	-0.081979	-0.114178	-0.060478	-0.045638	0.086828	0.015027	-0.004575	 -0.008311	-0.012526	-0.003
	month_nov	0.025278	-0.046889	-0.073751	-0.074218	-0.078357	-0.076550	-0.053875	-0.035881	0.011845	-0.003232	 -0.005871	-0.008849	-0.002
	month_oct	0.089276	0.004104	-0.000832	-0.187635	0.093442	-0.071115	-0.053762	-0.072322	-0.053932	-0.012690	 -0.023054	-0.034746	-0.010
	month_sep	-0.088954	-0.108447	0.030943	0.110968	0.532796	-0.068737	0.087207	-0.062566	-0.181893	-0.051859	 -0.094211	-0.141990	-0.044

Corrolation Chart

```
In [47]: M
f, ax = plt.subplots(figsize=(25,25))
sb.heatmap(corr, square = True, annot=True, cmap='YlGnBu', linewidth=0.5)
plt.savefig("../generated-output/corrolation.png")
```


Corolation pairplot Graph

```
In [*]: M f, ax = plt.subplots(figsize=(40,40))
sb.pairplot(data)
                   plt.savefig("../generated-output/pairplotData.png")
              #### Temp, RH, and month_june are selected for analysis.
In [16]: M cor = corr.abs().unstack()
cor = cor.sort_values(ascending = False)
cor['temp']
     Out[16]: temp
                                       1.000000
                                       0.528772
                   DC
DMC
                                       0.494358
0.468255
                    ISI
                                       0.393135
                                       0.376249
0.351497
                    FFMC
                   month_aug
month_mar
month_dec
month_feb
                                       0.338701
                                       0.329942
0.320403
                   wind
month_apr
month_jan
month_jul
                                       0.225832
                                       0.157284
0.146653
                                       0.142304
                   day_mon
area
day_wed
month_sep
day_fri
                                       0.137141
0.097723
                                       0.091461
0.087207
                                       0.072577
                    rain
month_nov
month_oct
                                       0.069417
0.053875
                                       0.053762
                   coord_X
day_thu
month_jun
                                       0.052403
0.050970
                                       0.050789
                    month_may
                                       0.045638
0.038684
                   day_tue
day_sat
                                       0.034331
                   coord_Y
day_sun
                                       0.023917
                                       0.013780
                    dtype: float64
```

Note: temp attribute has a data missing problem, and RH has a highest corrolation with tempreture. month_june is an imputed ordinal attrbute.

```
Pairplot of their corrolation
```

```
In [209]: N sb.pairplot(data, vars =['temp', 'RH', 'month_jun'], height=4.5)
plt.show()
```


Temp, RH, and FFMC are selected for analysis.

- Both temp and RH will be independent variables
 - FFMC will be dependant variable

Mining or Analytics

20

Spliting training and test set

Creating Multiple Regression Model

Make a prediction using the training set

```
In [204]:  M predict = model.predict(xtrain)
```

```
Evaluation
```

```
In [205]: M Result = pd.DataFrame()
Result['Training Value(ytrain)'] = list(ytrain)
Result['Predicted value'] = list(predict)
              # for i, j in zip(list(ytrain),list(predict)):
# print(i, '- ', j)
Result.to_csv("../generated-output/result.csv", index=False)
              Result.head(11)
   Out[205]:
                  Training Value(ytrain) Predicted value
                      91.6 90.740870
               0
                               87.6
               2
                               88.1 89.045987
               3
                               91.0
                                       93.283194
               4
                               92.1 90.933470
               5
                               92.1
                                       89.700828
                6
                               91.5
                                       89.431187
                7
                               95.9
                                        93.899516
                               91.5
                                       87.274063
                9
                               91.4
                                        91.049030
               10
                               90.7 87.736304
          Accuracy of the prediction in root mean square
In [152]: M accuracy = ny.sqrt(metrics.mean_squared_error(ytrain, predict))
   Out[152]: 6.051094122179813
          Testing using testing set
In [195]:  M TestResult = pd.DataFrame()
    TestResult['Testing Value(ytest)'] = list(ytest)
    TestResult['Predicted value'] = list(testpredict)
               TestResult.to_csv("../generated-output/testresult.csv", index=False)
TestResult.head(11)
    Out[195]:
                   Testing Value(ytest) Predicted value
                0
                     87.6
                                     85.823573
                 1
                               91.0
                                       90.661278
                           93.7 93.824413
                2
                 3
                               91.6
                                       86.475536
                          90.3 89.523423
                               93.7
                 6
                               92.4 89.460382
                 7
                               96.1
                                       90.822056
                                     86.147255
                 8
                               85.4
                               93.5
                 9
                                       89.955677
                           89.4 87.908032
                10
 Out[196]: 3.829412225984367
```

Results

The root-mean-square error of the testing data set is 3.83, which is smaller than 6.05. One of the main reasons for this difference is that the training data set is 80% of the whole data. Specifically, 412 examples were leveraged for training, and 104 examples were used for testing. The second reason may be the correlation between each selected element is small. For instance, the correlation between Relative humidity and FFMC (Final Fuel Moisture Code) is small in the correlation table. Generally, my model minimally predicts the correct FFMC value.

Reference

- David A. Wood (2021). Prediction and datamining of burned areas of forest fires: Optimized data matching and mining algorithm provides valuable insight. Retrived (2021, jun 19) from https://doi.org/10.1016/j.aiia.2021.01.004
- Rising Odegua (2018) Exploratory Data Analysis, Feature Engineering, and Modelling using Supermarket Sales Data. Retrived (2021, jun 19) from https://towardsdatascience.com/exploratory-data-analysis-feature-engineering-and-modelling-using-supermarket-sales-data-part-1-228140f89298
- Stackoverflow (2021). Python Libraries. Retrived (2021, Jun 19) from https://stackoverflow.com/
- William J. De Groot (?) INTERPRETING THE CANADIAN FOREST FIRE WEATHER INDEX (FWI) SYSTEM Retrived (2021, Jun 23) from https://www.dnr.state.mi.us/WWW/FMD/WEATHER/Reference/FWI_Background.pdf