

Renault Group

Group revenues (€ billion)
2024 56.2 B

98 000 employees in 36 countries 2.2 M vehicles sold in the world in 2021

4 brands

Energetic transition (Electrified vehicles)

Software (Connected & Autonomous vehicles)

Regulatory / compliance

Powertrain Suspension Steering system Collective AD system

Connect the 0D-1D models together in order to build a vehicle digital-twin...

... to simulate more and more numerous and complex test cases

High Grip

Autonomous Emergency Braking

Torque management

Thermal management

Simulation Platform

Involved artefacts

Driver Model

RG

Assembly of simulation Platform: FMI in Co-simulation mode

OUR USAGE OF fmi STANDARD

- Co-Simulation FMU: simple to produce, simple to use, IP protection
- Streamline communication with suppliers: a neutral and widely supported format
- May optimize license costs
- ☐ More and more involved actors (software editors, Industrial, Tiers 1, ...) to enforce inter-operability
- Robustify interfaces between Simulation means and simulations assets (Digital Vehicle, Drivers and Simulation Environment)

Note: **FMI version 2** is currently more supported than version 3 among tools and our suppliers

Thermal Management example

FMU Assembly

VS.

Former simulation process

Ad-Hoc assembly involving 2 modeling tools at runtime variable time step solvers

Compute time = 4.2h

Unified process

Low dependency on modeling tools Fixed co-simulation time step

Compute time = 48h

Co-simulation step size greatly affects simulation performance and accuracy.

Tightly linked models within FMUs assembly can lead to performance issue

Setting lower *Co-simulation Step Time* will solve FMU feeding frequency issue but leads to overall poor performances.

```
    Co-simulation Step Time ➤ ✓ Numerical accuracy & CPU Performances
    Co-simulation Step Time ➤ Numerical accuracy & ✓ CPU Performances
```

Tightly linked models within FMUs assembly: ways to improve performances

VARIABLE CO-SIMULATION STEP TIME

- + Most efficient tradeoff between performance and accuracy
- Algorithm to dynamically set *Co-Simulation Time Step* are not trivial
- Some FMU may not support variable Co-Simulation Time Step
- Not applicable on RealTime simulation means

MULTIPLE CO-SIMULATION STEP TIME

- + May be a **good tradeoff** between performance and accuracy
- Require additional effort for architecture design and to build the assembly
- + May enable multi-threading to improve performance

Can be done through FMU Containers

Thermal Management application

VS.

Execution of simulation

2 STRATEGIES FOR EXECUTION

IMPLIED DELAYS BETWEEN FMU

STRATEGY

Operating system will spread the threads across CPU cores

USE CASE

Potential benefits grow when simulate in parallel FMU's which eat approximately the same amount of CPU cycles.

In this example, speed up will be limited

RT Ratio: 1.68 (simulation is FASTER than reality)

Vehicle dynamics

RT Ratio: 106.38 (simulation is FASTER than reality)

Mutli-thread and multi-level container

Enable muti-thread for all FMUs with a second level of containers

Hierarchical Assembly with 2 containers

Mutli-thread and multi-level container: results compared to reference

Containers made easy with

INPUT

A

OUTPUT

LINK

OUTPUT

LINK

FMU

FMU

Container

Routing file

json or **SSρ** files can be used to define a multi-level container and build it in one step.

- Link with MBSI (Catia Magic)
- FMI-3.0 portage
- Layered standards support

github.com/grouperenault/fmu_manipulation_toolbox

BSD-2-Clause license

