PIPELINE LEAK DETECTION USING EDGE DATA ANALYTICS

- Literature Survey
- Hardware procurement
- Hardware setup
- Data Collection
- Data Modelling
- Deployment

An edge device which is capable of detecting pipe leakage using machine learning model deployed in edge device.

IDEs	Frameworks	Libraries	
Arduino IDEJupyter Notebook	TensorflowKeras	Numpypandas<tensorflowlite.h></tensorflowlite.h><arduinoble.h></arduinoble.h>	

HARDWARE SETUP

Components required:

1. Arduino nano BLE sense

2. Water Pressure Sensor

Gravity: Analog Water Pressure Sensor SKU:

SEN0257

DATA COLLECTION

Data Collection Setup

- 1. Hardware setup:-Sensor Connectivity
- 2.Recording /Save data :-
- •upload the sensor connectivity code to the hardware module
- •connect serially through python code and save the datas to csv file

DATA PREPARATION

LEAK

800 400 200 0 P1-P2(leak) P1-P2(ro_leak)

HARNIEN

-400

Data Preparation

Around 2000 datas are used for training Ml Model for Deployment With the Label of 0 and 1 with respect to Leak and No Leak.

	Α	В	С	D	E
1	P1	P2	P1-P2	(P1-P2)	LABEL
2	1033.9	1082.3	-48.39	-48.4	0
3	1020.6	1093.8	-73.1999999999999	-73.2	0
4	1035.3	1090.2	-54.9000000000001	-54.9	0
5	999.9	1049.9	-50.0000000000001	-50	0
6	897.3	923	-25.7	-25.7	0
7	829	816.7	12.3	12.3	0
8	711.8	645.9	65.9	65.9	0
9	526.2	379.7	146.5	146.5	0
10	138	-120.7	258.7	258.7	0
11	-81.7	-120.7	39	39	0
12	-120.7	-120.7	0	0	0
13	-120.7	-120.7	0	0	0
14	-120.7	-118.3	-2.40000000000001	-2.4	0
15	-40.2	-8.4	-31.8	-31.8	0
16	193	326	-133	-133	0
17	283.3	455.4	-172.1	-172.1	0
18	389.5	601.9	-212.4	-212.4	0
19	517.7	777.7	-260	-260	0
20	653.2	984	-330.8	-330.8	0
21	766.7	1096.3	-329.6	-329.6	0
22	869.2	1100	-230.8	-230.8	0
23	912	1086.5	-174.5	-174.5	0
24	1012.1	1106.1	-93.999999999999	-94	0
25	1025.5	1098.7	-73.2000000000001	-73.2	0
26	1027.9	1087.7	-59.8	-59.8	0
27	999.9	1043.8	-43.9	-43.9	0
28	951	987.6	-36.6	-36.6	0

PHASES OF EMBEDDED MACHINE LEARNING MODELLING

- Imports &Environment setup
- Data Preparation
- Model Training
- Model Evaluation
- Converting Models

A representative dataset is provided and two models saved, one in TFLite format without quantization and one in TFLite format with int8 quantization for activations and weights.

• Compare Model Performance

Compare loss or performance on the test set to evaluate how much fidelity is lost with compression and quantization.

- a. prediction
- b.loss
- c. size
- Generate a Tensorflow Lite for microcontroller model

Convert the TensorFlow Lite quantized model into a C source file that can be loaded by TensorFlow Lite for Microcontrollers.

• Deploying model to Arduino BLE nano Sense board.

MODEL EVALUATION

The training loss is a metric used to assess how a deep learning model fits the training data.

Validation loss is a metric used to assess the performance of a deep learning model on the validation set.

Over all Accuray of the system :63.38%

MODEL PERFORMANCE COMPARISON

Compare loss or performance on the test set to evaluate how much fidelity is lost with compression and quantization.

- o prediction
- o loss
- o size

LIVE TESTING & CLASSIFICATION

/dev/ttyACM0

Live Classification gives quatized output as y with a detection of around 0.6-0.88 as leak and 0-0.22 as no leak

