Thapar Institute of Engineering & Technology, Patiala Department of Mathematics

UMA021: Numerical Linear Algebra Assignment 2

Interpolation and Integration

1. Find the unique polynomial P(x) of degree 2 or less such that

$$P(1) = 1, P(3) = 27, P(4) = 64$$

using Lagrange interpolation. Evaluate P(1.05).

- **2.** For the given functions f(x), let $x_0 = 1$, $x_1 = 1.25$, and $x_2 = 1.6$. Construct Lagrange interpolation polynomials of degree at most one and at most two to approximate f(1.4), and find the absolute error.
 - (a) $f(x) = \sin \pi x$
 - (b) $f(x) = e^{2x} x$
- **3.** Let $P_3(x)$ be the Lagrange interpolating polynomial for the data (0,0), (0.5,y), (1,3) and (2,2). Find y if the coefficient of x^3 in $P_3(x)$ is 6.
- **4.** Construct the Lagrange interpolating polynomials for the following functions, and find a bound for the absolute error on the interval $[x_0, x_n]$.
 - (a) $f(x) = \sin x$, $x_0 = 2.0$, $x_1 = 2.4$, $x_2 = 2.6$, n = 2.
 - (b) $f(x) = e^{2x} \cos 3x$, $x_0 = 0$, $x_1 = 0.3$, $x_2 = 0.6$, n = 2.
- 5. Using Newton's divided difference interpolation, construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials.

$$f(0.43)$$
 if $f(0) = 1$, $f(0.25) = 1.64872$, $f(0.5) = 2.71828$, $f(0.75) = 4.4816$.

6. Show that the polynomial interpolating the following data has degree 3.

x	-2	-1	0	1	2	3
f(x)	1	4	11	16	13	-4

- 7. Let $f(x) = e^x$, show that $f[x_0, x_1, \dots, x_m] > 0$ for all values of m and all distinct equally spaced nodes $\{x_0 < x_1 < \dots < x_m\}$.
- **8.** The following data are given for a polynomial P(x) of unknown degree.

x	0	1	2	3
f(x)	4	9	15	18

Determine the coefficient of x^3 in P(x) if all fourth-order forward differences are 1.

9. Construct the interpolating polynomial that fits the following data using Newton's forward and backward

x	0	0.1	0.2	0.3	0.4	0.5
f(x)	-1.5	-1.27	-0.98	-0.63	-0.22	0.25

difference interpolation. Hence find the values of f(x) at x = 0.15 and 0.45.

10. For a function f, the forward-divided differences are given by

$$x_0 = 0.0$$
 $f[x_0]$
 $x_1 = 0.4$ $f[x_1]$ $f[x_0, x_1]$ $f[x_0, x_1, x_2] = \frac{50}{7}$
 $x_1 = 0.7$ $f[x_2] = 6$ $f[x_1, x_2] = 10$

Determine the missing entries in the table.

- 11. A fourth-degree polynomial P(x) satisfies $\Delta^4 P(0) = 24$, $\Delta^3 P(0) = 6$, and $\Delta^2 P(0) = 0$, where $\Delta P(x) = P(x+1) P(x)$. Compute $\Delta^2 P(10)$.
- 12. Given

$$I = \int_0^2 x^2 e^{-x^2} dx.$$

Approximate the value of I using trapezoidal and Simpson's one-third method.

13. Approximate the integral

$$\int_{1}^{1.5} x^2 \ln x \, dx$$

using the (non-composite) trapezoidal rule. Provide a rigorous error bound on this approximation.

14. Approximate the integral

$$\int_0^{0.5} \frac{2}{x - 4} \, dx$$

using the (non-composite) Simpson's rule. Provide a rigorous error bound on this approximation.

- **15.** The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 4, and Simpson's rule gives the value 2. What is f(1)?
- **16.** Suppose that f(0) = 1, f(0.5) = 2.5, f(1) = 2, and $f(0.25) = f(0.75) = \alpha$. Find α if the composite Trapezoidal rule with n = 4 gives the value 1.75 for $\int_0^1 f(x) dx$.
- 17. Calculate $I = \int_0^4 x \, dx$ using the composite Trapezoidal and Simpson's rules with 2 and 4 subintervals.

Answers: (A1) 11.895; (A2)(a) $P_1(x) = -0.6967x + 0.16425$, $P_1(1.4) = -0.8117$; Absolute error: $E_a = 0.1394$; Similarly, $P_2(x) = 3.5524x^2 - 10.8213x + 7.2689$; $P_2(1.4) = -0.91822$; Absolute error = 0.03284 (b) Do same as part (a); (A3) y = 4.25; (A4) (a) 0.31493, (b) 0.0014084; (A5) $P_1(0.43) = 2.22454$, $P_2(0.43) = 2.34886474$, $P_3(0.43) = 2.3606$; (A8) $-\frac{11}{12}$; (A11) 1140; (A12) $I_T = 0.073263$, $I_S = 0.51493$; (A13) 0.228, |E| = 0.040; (A14) -0.26706349, $|E| \approx 10^{-6}$; (A15) $\frac{1}{2}$; (A16) $\frac{3}{2}$; (A17) for each case: I = 8