0.2 Inequalities for Sums of Bounded Independent

We start from Chernoff bound:

[Theorem 2.1] Let $0 , let <math>I_1, \cdots, I_n$ be independent binary random variables, with $P_r(I_{k=1}) = p$, $P_r(I_{k=0})^{2-1-p}$ for each k. Let $S_n = \sum_{k=1}^n I_{lk}$, then for any $4 \not> 0$, $P_r(|S_n - np| > nt) \leq 2e^{-2nt^2}$

Pf: Recall that Markov's inequality: for $I \ge 0$ r.v. $Pr(I \ge t) \le E(I)/t$ for any t > 0.

Let m=n(p+t), h>0. Then by Markov's ineq. $Pr(S_n \ge m) = Pr(e^{hS_n} \ge e^{hm}) \le e^{-hm} E(e^{hS_n})$,

by the independence of $\underline{\Lambda}_k$, $E(e^{hS_n}) = E(\frac{1}{h}e^{h\underline{\Lambda}_k}) = \frac{1}{h}E(e^{h\underline{\Lambda}_k}) = (1-p+pe^h)^n$

Hence for any h>0 $Pr(S_{n} \ge m) \le e^{-hm} (1-p+pe^{h})^{n}$

We may set $e^h = \frac{(p+t)(1-p)}{p(1-p-t)}$ to minimise the RHS.

then we get

RHS = $\left(\frac{1-p}{1-p-t} \cdot \frac{(p+t)(1-p)}{p(1-p-t)}\right)^{-(p+t)}$ = $\left[\left(\frac{1-p}{1-p-t}\right)^{1-p-t} \cdot \left(\frac{p}{p+t}\right)^{p+t}\right]^n$

Let q denote 1-p, Let $f(t) = \ln\left(\left(\frac{q}{q-t}\right)^{q-t}\left(\frac{p}{p+t}\right)^{p+t}\right)$

 $= \int f(t) = (q-t) | n(\frac{q}{q-t}) + (p+t) | n(\frac{p}{p+t})$ $\int_{-t}^{t} q-t \qquad q-t \qquad q-t \qquad q$

 $f(t) = \ln \frac{q-t}{q} + (q-t) \cdot \frac{q-t}{q} \cdot \frac{q}{(q-t)^2} + \ln \frac{p}{p+t} + (p+t) \cdot \frac{p+t}{p} \cdot \frac{-p}{(p+t)^2}$ $= \ln \left(\frac{p(q-t)}{q(p+t)} \right)$

and $f''(t) = -\frac{1}{9-t} - \frac{1}{p+t} = -\frac{1}{(p+t)(1-(p+t))} \le -4$

since f(0) = f'(0) = 0, by Taylor's theorem that for 0 = teq, $f(t) = \frac{t^2}{2} f'(s)$ for some s with 0 = s = t

Harras Pers 4-242 and a forth the ment of a

Thence J(t) = -2t, and we Jinish the proof that $Pr(S_n - np \ge nt) \le e^{-2nt^2}$, the same to $Pr(S_n - np \le nt)$

An extension of the above theorem can be derived from following Lemma.

[Lemma 2.2] Let r.v. I_1, \dots, I_n be independent, with $0 \le I_k \le 1$ for each k. Let $S_n = \sum I_k$, let $\mu = E(S_n)$, let $p = \mu/n$ and q = 1 - p. Then for any $0 \le t \le q$, $P_r(S_n - \mu \ge nt) = \left(\left(\frac{p}{p+t} \right)^{p+t} \left(\frac{q}{q+t} \right)^{q-t} \right)^n$

Pf. Let $m = \mu + n\tau$, let $P_k = E(X_k)$ for each k. $Pr(S_n \ge m) = Pr(e^{hS_n} \ge e^{hm}) \le e^{-hm}E(e^{hS_n})$ Since e^{hx} is convex, $e^{hx} \le (I-x) + xe^h$ for $0 \le x \le I$. $E(e^{hS_n}) = E(e^{hS_{n-1}})E(e^{hX_n})$ $\le E(e^{hS_{n-1}})(I-P_n+P_ne^h)$ $\le (E_{\ge i}(I-P_k+P_ke^h)/n)^n$ $= (I-P_k+P_ke^h)^n$ $\Rightarrow Pr(S_n \ge m) \le e^{-hm}(I-P+P_e^h)^n$ Let $e^h = \frac{(P+t)(I-P)}{P(I-D-t)}$, we prove the Lemma \square

Following theorem generalise Th 2.1 Or împrove when p is small. [Theorem 2.3.] Let r.v. I_1, \dots, I_n be independent with $0 \le I_r \le 1$ for each k. Let $S_n = \sum_{k=1}^n I_k$, $\mu = E[S_n]$, let $p = \frac{\mu}{n}$, q = 1-p.

. . 1 2

Let Yk=1- Ik.

(a) For any t>0, $P_r(|S_n-\mu| > nt) \leq 2e^{-2nt}$

$$P_{r}(S_{n} \leq (I-E)\mu) = P_{r}(S_{n}-n+n-\mu \leq -\epsilon\mu)$$

$$= P_{r}(\Sigma Y_{p} \geq n-\mu+\epsilon\mu)$$
Due to Lemma 2.2. Let $m = n-\mu+\epsilon\mu = :n-\mu+n\cdot t'$, $t' = \frac{\epsilon\mu}{n} = \epsilon p$

$$|et p' = \frac{n-\mu}{n} \simeq I-p=\ell, q' = I-p' = p,$$

$$P_{r}(\Sigma Y_{p} \geq m) \leq \left(\frac{p'}{p+t'}\right)^{p+t'}\left(\frac{q}{q'-t'}\right)^{q'-t'}\right)^{n}$$

$$= \left(\frac{q}{q+\epsilon p}\right)^{q+\epsilon p}\left(\frac{p}{p-\epsilon p}\right)^{p-\epsilon p}\right)^{p-\epsilon p}$$

$$= (q+px)\left[n\left(\frac{q}{q+px}\right) - (p-px)\ln(I-x)\right]$$

$$= (q+px)\left[n\left(\frac{q}{q+px}\right) - (p-px)\ln(I-x)\right]$$

$$= (q+px)\left[n\left(\frac{q}{q+px}\right) + (q+px)\frac{q+px}{\ell} \cdot \frac{-p\ell}{(q+px)^{2}}\right]$$

$$+ p\ln\left(\frac{1-x}{(q+px)(1-x)}\right)$$

$$= p\ln\left(\frac{q}{(q+px)(1-x)}\right)$$

$$f_{1}''(x) = -\frac{p^{2}}{q+px} + \frac{p}{I-x} = \frac{-p}{(I-x)(q+px)} \leq -p$$
when $0 < x < 1$, then by the Taylor's theorem:
$$f_{1}(x) = \frac{f_{1}''(x)}{2} \epsilon^{2} \quad \text{for some } s \in (0, \epsilon).$$

$$\Rightarrow f_{1}(x) = -\frac{p}{2} \epsilon^{2}$$

$$\Rightarrow P_{r}(S_{n} \leq (I-\epsilon)\mu) = P_{r}(\Sigma Y_{p} \geq m)$$

$$\leq e^{-\frac{np}{2}\epsilon^{2}}$$

$$= e^{-\frac{1}{2}\epsilon^{2}}$$

We can genalise the bounds of Ix to [ax, bx], i.e. ax = Ix = bx.

[Lemma 2.6] Let r.v. I satisfies E(I) = 0 and $0 \le I \le b$. Then for any h > b, $E(e^{hI}) \le e^{\frac{1}{8}h^2(b-a)^2}$

Pf: Since e^{hx} gives a convex function of x. for $a \le x \le b$, $e^{hx} \le \frac{x-a}{b-a} e^{hb} + \frac{b-x}{b-a} e^{ha}$ $\Rightarrow E(e^{hX}) \le \frac{b}{b-a} e^{ha} - \frac{a}{b-a} e^{hb}$

$$= (1-p) e^{-py} + p e^{(1-p) y}$$

$$= e^{-py} (1-p+p e^{y}) = e^{f(y)}$$
where $p = -\frac{\alpha}{b-\alpha}$, $1-p = \frac{b}{b-\alpha}$, $y = (b-\alpha)h$,
$$f(y) = -py + \ln(1-p+p e^{y})$$
.
$$f'(y) = -p + \frac{pe^{y}}{1-p+p e^{y}} = -p + \frac{p}{p+(1-p)e^{-y}}$$

$$f''(y) = \frac{p(1-p)e^{-y}}{(p+(1-p)e^{-y})^{2}} \leq \frac{1}{4}$$
Since $f(0) = 0$, $f'(0) = 0$, $f''(y) \leq \frac{1}{4}$ for $y > 0$, by Taylor's th.
$$f(y) = \frac{1}{2} \cdot f''(s) y^{2} \leq \frac{1}{8} y^{2}$$

$$\Rightarrow E(e^{hx}) \leq e^{\frac{1}{8}(b-\alpha)^{2}h^{2}}$$

Hoeffding gives the following extension of Theorem 2.3 (a)

Theorem 2.5 Let r.v. II, ..., In be independent, with $a_k \in X_k = b_k$ for each k. Let $S_n = X_n$ and $\mu = E(S_n)$, then for any t > 0,

$$P(|S_n - \mu| \geq t) \leq 2e^{-2t^2/\sum (b_k - a_k)^2}$$

Pf: By Lemma 2.6, for
$$h>0$$
,
 $E(e^{h(S_{1}-\mu)}) = E(\frac{\pi}{k}e^{h(X_{1}-E(X_{1}))})$
 $= \frac{\pi}{k} E(e^{h(X_{1}-E(X_{1}))})$
 $= e^{\frac{1}{8}h^{2}} \Sigma(b_{1}-a_{1})^{2}$

Hence by Markov's inequality, $Pr(S_n-\mu>t) \leq e^{-ht}E(e^{h(S_n-\mu)})$

 $\leq e^{-ht + \frac{1}{8}h^2 \sum (b_k - a_k)^2}$

Set $h = 4t/\Sigma(b_k-a_k)^2$, we obtain $Pr(Sn-\mu > t) \leq e^{-2t^2/\sum (b_k-a_k)^2}$

Finally, replace X by -X to obtain $-2+^{2}/5 (br-ar)^{2}$

 $Vr(2n-\mu \leq -t) \leq e^{-\tau/2}$ which complete the proof

An other extension is under the condition where we know bounds of Σ_k and variance of Σ_k . We need following Lemma 2.8.

[Lemma 2.8] Let $g(x) = \frac{1}{2} + \frac{1}{3!}x + \frac{3^2}{4} + \cdots = (e^x - 1 - x)/x^2, x \neq 0$ Then g is increasing; and if r.v. I s.t. E(I) = 0 and $I \leq b$, then $E(e^{I}) \leq e^{g(b) Var(I)}$

Pf: ① To show g is increasing, note that for $x \neq 0$, $g'(x) = x^{-3} ((x-2)e^x + 2 + x)$

and it is suffices to show $h(x) = (x-2)e^x + 2 + \lambda > 0$ Now h(0) = 0. $h'(x) = (x-1)e^x + 1$. h'(0) = 0, $h''(x) = xe^x$, so h'(x) < 0 for x < 0, h'(x) > 0 for x > 0, which implies h(x) > 0 for all x. Thus g is increasing. Thus g is increasing.

Hence, if E(I) = 0 and I = b, then $E[e^{I}] \leq 1 + g(b) \operatorname{Var}(I) \leq e^{g(b)} \operatorname{Var}(I)$

The following results builds on work of Bernstein.

Etheorem 2.7] Let r.v. I_r , ..., I_r be independent. With $I_r - E[I_r] \le b$ for each k. Let $S_n = \sum I_k$, and let S_n have expected value μ and variance V. Then for any t>0, $P_r(S_n - \mu > t) \le e^{-\left(\frac{V}{b^2}\right)\left(\frac{1+\varepsilon}{n(1+\varepsilon)-2}\right)} \le e^{-\frac{V}{2V(1+(bt)^3V)}}$ where $\varepsilon = bt/V$

Pf:
$$E(e^{h(S_n-\mu)}) = \pi E(e^{h(X_k-E(X_k))}) \le e^{g(hb)h^2V}$$

 $Pr(S_n-\mu>t) \le e^{-ht} E(e^{h(S_n-\mu)}) \le e^{-ht+g(hb)h^2V}$ (*)

To minimise this bound, let
$$f(h) = -ht + g(hb)h^2V$$

 $f'(h) = -t + g'(hb) \cdot bh^2V + g(hb) \cdot 2hV$
 $= -t + (hb)^{-3} ((hb-2)e^{hb} + 2 + hb) \cdot bh^2V + (hb)^{-2}(e^{hb} - 1 - hb) \cdot 2hV$
 $= -t + b^{-1}e^{hb}V - b^{-1}V$

let
$$f'(h) = 0$$
, we obtain $h = \frac{1}{b} \ln(1 + \frac{bt}{V})$

Then (+) implies
$$Pr(Sn-\mu \ge t) \le e^{-\frac{t}{b}\ln(1+\frac{bt}{V})+(\frac{bt}{V}-\ln(1+\frac{bt}{V}),\frac{V}{b^2}}$$

$$= e^{-\frac{V}{b^2}((1+\frac{bt}{V})\ln(1+\frac{bt}{V})-\frac{bt}{V})}$$

By Lemma 2.4: For all
$$x \ge 0$$
,
 $(1+x) \ln(1+x) - x \ge \frac{3x^2}{(6+2x)}$

which is shown in Th 2.3 (b).

we have

$$\frac{(1+\frac{bt}{V})|_{h}(1+\frac{bt}{V})-\frac{bt}{V} > 3(\frac{bt}{V})^{2}/(6+\frac{2bt}{V}) }{(1+\frac{bt}{V})|_{h}(1+\frac{bt}{V})-\frac{bt}{V}|_{h}}$$

Thus,

$$Pr(S_h-\mu>t) \leq e^{-\frac{\sqrt{5}}{6} \cdot \frac{3(\frac{bt}{V})^2}{6+\frac{2bt}{V}}}$$

 $= e^{-\frac{t^2}{2(V+(bt/3V))}}$