

Prototype Low- and High-fidelity Dimensions of fidelity Paper prototype Computer prototype Storyboard Form builder Wizard of Oz

(1)

What is prototype?

- A prototype is an original type, form, or instance of something serving as a typical example, basis, or standard for other things of the same category
- Examples
 - Screen shots
 - Paper drawings
 - prototype software referred to as alpha grade, meaning it is the first version to run

6/15/21

Prototype fidelity

- Low-fidelity
 - a set of sketches/storyboards providing a static, noncomputerized, non-working mockup of the planned product
 - omits details
- High-fidelity
 - a set of screens that provide a dynamic, computerized, working model of the planed product

working software

Why we need prototypes?

- Experiment with alternative designs
- Provide an early, concrete representation of design ideas
- Provide hands-on experience for all stakeholders (design teams, users, etc.)
- Easier to change or throw away
- Keep the design centered on the user
 - must test and observe ideas with users
- Facilitate iterative design and evaluation
- Reduce the risk of making customers surprise
 - □ "I won't believe it until I see it"

21

Prototype fidelity (cont'd)

6/15/21

6/15/21

Dimensions of fidelity

- Horizontal
 - Prototypes cover many features but with little detail
- Vertical
 - Prototypes cover few features but with much in detail
- Diagonal
 - Prototypes cover down to a certain level and vertical

Paper prototype - Videos

"Example Usability Test with a Paper Prototype"

- "Hanmail Paper Prototype"
- "Paper prototype usability test"
- Find these videos on Youtube

Dimensions of fidelity (cont'd)

- Look
 - Is the appearance and graphic design of the UI
 - Can be sketchy and hand-drawn
- Feel
 - Referring to input methods to interact with the UI
 - Pointing and writing (in paper-mockup) is different from mouse and keyboard
- Can paper prototype have the feel attribute?

6/15/21

6/15/21

10

Paper prototype

- Using paper mockup to represent the UI
 - Sketches of screen appearance
 - Paper pieces show windows, menus, dialog boxes, toolbars

6/15/21

(1)

Paper prototype (cont'd)

- Interaction
 - □ Pointing with a finger = mouse click
 - □ Writing = typing
- A person simulates the computer's operation
 - Putting down and picking up pieces
 - Writing responses on the mockup (screen)
 - Describing effects that are hard to show on paper

6/15/21

13

15

Paper prototype (cont'd)

- Characteristics
- Low fidelity in look and feel
- High fidelity in depth as there is person to simulate the operation

Paper prototype (cont'd)

6/15/21

4

14

Paper prototype (cont'd)

- Advantages
 - Faster to build
 - Easier to change
 - Cheap
 - Focuses attention on big picture
 - Designers don't waste time on details
 - Attract ideas from customers
 - Non-programmers can help
 - Convenient
 - You can prototype on the bus
 - You can utilize your time efficiently

6/15/21

Tools for paper prototyping

- White poster board
 - Used as background or window frame
- Index cards
- Re-stickable glue
- White correction type
- Photocopier
 - For making copies
- Pens, markers, scissors, type
- Etc.

6/15/21

6/15/21

Tips for good paper prototypes

- Make it large
- Make it monochrome (single color)
- Use description where necessary
 - □ You cannot represent tricky interactions like drag & drop, animation, progress bar
- Keep pieces organized
 - Use folders and envelopes
- Produce multiple alternatives
 - Better to get feedback

19

Exercise

- Work on paper prototypes for your app
 - □ 1 2 main screens
- Take photos of your protoype and share
- Time: 15 minutes

6/15/21

What can paper prototypes help?

- It helps better understanding of
 - conceptual model
 - Do users understand the UI?
 - functionality of the system
 - What features are missing in the UI?
 - navigation and task flow
 - Do users understand the navigation of the UI?
 - terminology
 - Are terms and levels understood?
 - screen content and layout
 - What are there in the UI?

6/15/21

What it does not help?

- Showing "look": color, font, whitespace, etc.
- Demonstrating "feel": efficiency issues
 - Interactions are in low fidelity (not real)
- Measuring response time
- Demonstrating animation and high-level of interaction
 - Actions like drag and drop, drawing, etc.

6/15/21

21

23

What can computer prototypes help?

- Everything from paper prototypes, plus
- Better and higher-fidelity look
 - Screen layout
 - Colors, fonts, icons, etc.
 - Choices of controls
- Interactive feedback
- Efficient issues
 - Controls are big enough?
 - Whitespace?

6/15/21

Distance between controls?

Computer prototype

- Interactive software simulation
- High-fidelity in look & feel
- Low-fidelity in depth
 - May be no backend, covering horizontally
 - Does not have a human simulating the backend like paper prototype

6/15/21

22

Advantages of computer prototype

- Faster than coding
- No debugging
- Easier to change and throw away
- Separate UI design ideas from what offered by UI toolkit (e.g., Visual Studios, C++ Builder)
 - Your thinking is **not** limited to available widgets
- Non-programmers can do it

6/15/21

Computer prototyping techniques

- Storyboard
 - Sequence of painted screenshots, sometimes connected with links
- Form builder
 - Creating real windows with widgets such as buttons, windows, labels, etc.)
- Wizard of Oz
 - Computer frontend, human backend

6/15/21

25

27

Computer prototyping techniques (cont'd)

- Storyboarding tools
 - Pros
 - You can draw anything
 - Fast
 - Cons

6/15/21

- No or limited interaction
 - No text entry
 - □ Widgets aren't active

Computer prototyping techniques (cont'd)

- Form builders
 - FlexBuilder
 - Silverlight
 - Visual Basic
 - C++ Builder
 - Visual C#

6/15/21

Qt Designer

Computer prototyping techniques (cont'd)

- Form builders
 - Pros
 - Actual controls → high-fidelity in terms of look
 - You can reuse the design for implementation → save effort from doing again
 - Cons
 - Limits thinking to standard and available widgets
 - Content in each widget is not visible

6/15/21

29

Computer prototyping techniques (cont'd)

- Wizard of Oz
 - Faking the interaction

Issues

6/15/21

- Wizard has to be mechanical (pretending to be non-human)
- Worry about both UIs: for wizard and users

31

Computer prototyping techniques (cont'd)

- Wizard of Oz
 - "Wizard of Oz" = "man behind the curtain"
 - Software simulation with human in the loop to help
 - Human "wizard" mimics computational functionalities
 - system response interprets user input
 - controls computer to simulate appropriate output
 - Wizard is not always hidden
 - Example
 - Simulate the speech recognition which is not available (human is needed to recognize speech)

6/15/21

31

Exercise 2

- Work with your project team
- Discuss with your team mates to select the best paper prototype
- Convert the selected paper protoype into computer prototypes using a software tool
- 25 minutes
- Present 5 minutes each

6/15/21

Summary

- Prototype
 - Low- and High-fidelity
 - Dimensions of fidelity
- Paper prototype
- Computer prototype
 - Storyboard
 - Form builder
 - Wizard of Oz

6/15/21

