## Scenario1

Selecting Albums to Purchase;

- Hip-Hop
- Punk
- Pop
- Blues

```
WHERE c.country = "USA"
)

Select
g.name genre,
count(uts.invoice_line_id) tracks_sold,
cast(count(uts.invoice_line_id) as float)/(select count(*) from usa_tracks_sold) percentage_sold
from usa_tracks_sold uts
inner join track t on t.track_id = uts.track_id
inner join genre g on g.genre_id = t.genre_id
Group by 1
order by 2 Desc limit 10'''

run_query(albumbs_to_purchase)
```

| Out[18]: | genre |                    | tracks_sold | percentage_sold |
|----------|-------|--------------------|-------------|-----------------|
|          | 0     | Rock               | 561         | 0.533777        |
|          | 1     | Alternative & Punk | 130         | 0.123692        |
|          | 2     | Metal              | 124         | 0.117983        |
|          | 3     | R&B/Soul           | 53          | 0.050428        |
|          | 4     | Blues              | 36          | 0.034253        |
|          | 5     | Alternative        | 35          | 0.033302        |
|          | 6     | Рор                | 22          | 0.020932        |
|          | 7     | Latin              | 22          | 0.020932        |
|          | 8     | Hip Hop/Rap        | 20          | 0.019029        |
|          | 9     | Jazz               | 14          | 0.013321        |

```
In [19]: genre_sales_usa = run_query(albumbs_to_purchase)
genre_sales_usa.set_index("genre",inplace = True, drop = True)
In [24]: track_sold.plot.barh(title = "Top Selling Genres in the USA",
```

colormap = plt.cm.Accent,

xlim = (0,625))

plt.show()





```
In [26]: track_sold = genre_sales_usa["tracks_sold"]
    pct_sold = genre_sales_usa["percentage_sold"]
    pct_sold = (pct_sold*100).astype(int).astype(str)+"%"
```









Based on the sales of tracks across different genres in the USA, we should purchase the new albums by the following artists:

- Punk
- Blues
- Pop

It's worth keeping in mind that combined, these three genres only make up only 17% of total sales, so we should be on the lookout for artists and albums from the **rock** genre, which accounts for 53% of sales.

## Scenario2

Analyzing Sales by Country

```
customers,
   total_sales,
   average_order,
   customer_lifetime_value
   From
   (Select
   country,
   count(distinct customer_id) customers,
   sum(unit_price) total_sales,
   sum(unit_price)/count(distinct invoice_id) average_order,
   sum(unit_price)/count(distinct customer_id) customer_lifetime_value,
   case when country = "other" then 1
   Else 0 END as sort
   From country_or_other group by 1 order by sort, total_sales DESC)'''

run_query(sales_by_country )
```

| Out[30]: |   | country        | customers | total_sales | average_order | customer_lifetime_value |
|----------|---|----------------|-----------|-------------|---------------|-------------------------|
|          | 0 | USA            | 13        | 1040.49     | 7.942672      | 80.037692               |
|          | 1 | Canada         | 8         | 535.59      | 7.047237      | 66.948750               |
|          | 2 | Brazil         | 5         | 427.68      | 7.011148      | 85.536000               |
|          | 3 | France         | 5         | 389.07      | 7.781400      | 77.814000               |
|          | 4 | Germany        | 4         | 334.62      | 8.161463      | 83.655000               |
|          | 5 | Czech Republic | 2         | 273.24      | 9.108000      | 136.620000              |
|          | 6 | United Kingdom | 3         | 245.52      | 8.768571      | 81.840000               |
|          | 7 | Portugal       | 2         | 185.13      | 6.383793      | 92.565000               |
|          | 8 | India          | 2         | 183.15      | 8.721429      | 91.575000               |

1094.94

15

```
In [31]: country_metrics = run_query(sales_by_country)
  country_metrics.set_index("country", inplace = True, drop = True)
```

72.996000

7.448571

```
In [32]: fig, ax = plt.subplots(2,2,figsize = (9,10))
    ax1, ax2, ax3, ax4 = ax.flatten()
# top Left
```

other

9



```
In [33]: fig, ax = plt.subplots(2,2,figsize = (9,10))
         ax1, ax2, ax3, ax4 = ax.flatten()
         # top Left
         Sales breakdown =country metrics["total sales"].rename("")
         Sales breakdown.plot.pie(ax=ax1, title = "Sales Breakdown by Country,\nNumber of Customers",
                                   colormap=plt.cm.Accent, startangle = -90,
                                   counterclock = False, fontsize = 8,
         # top right
         cvd cols = ["customers","total sales"]
          custs vs dollars = country metrics[cvd cols]
          custs vs dollars.index.name = ""
         custs vs dollars/= (custs vs dollars.sum())/100
          custs vs dollars.plot.bar(ax = ax2, colormap = plt.cm.Set1,
                                    title ="Pct Customers vs Sales")
         ax2.tick_params(top = "off", right = "off", left = "off", bottom = "off")
         ax2.spines["top"].set visible(False)
         ax2.spines["right"].set visible(False)
         ax2.tick params(top=False, right=False, left=False, bottom=False)
         ax2.legend(loc = "center")
         plt.tight layout()
         plt.show()
```

USA.





other







```
In [34]: fig, ax = plt.subplots(2,2,figsize = (9,10))
         ax1, ax2, ax3, ax4 = ax.flatten()
         color = [plt.cm.Accent(i) for i in np.linspace(0, 1, country metrics.shape[0])]
         # top Left
         Sales breakdown =country metrics["total sales"].rename("")
         Sales breakdown.plot.pie(ax=ax1, title = "Sales Breakdown by Country,\nNumber of Customers",
                                   colormap=plt.cm.Accent, startangle = -90,
                                   counterclock = False, fontsize = 8,
         # top right
         cvd cols = ["customers", "total sales"]
          custs vs dollars = country metrics[cvd cols]
          custs vs dollars.index.name = ""
          custs vs dollars/= (custs vs dollars.sum())/100
         custs vs dollars.plot.bar(ax = ax2, colormap = plt.cm.Set1,
                                    title = "Pct Customers vs Sales")
          ax2.tick params(top = "off", right = "off", left = "off", bottom = "off")
         ax2.spines["top"].set visible(False)
         ax2.spines["right"].set visible(False)
         ax2.tick params(top=False, right=False, left=False, bottom=False)
         ax2.legend(loc = "center")
         # bottom left
         avg order = country metrics["average order"].copy()
         avg order.index.name = ""
         difference from avg = avg order * 100 / avg order.mean() - 100
         difference from avg.drop("other", inplace = True)
         difference from avg.plot.bar(ax=ax3,
                                       title = "Average Order, \nPct Difference from Mean",
                                       color = color)
          ax3.tick params(top=False, right=False, left=False, bottom=False)
          ax3.axhline(0, color = "k")
          ax3.spines["top"].set_visible(False)
         ax3.spines["right"].set visible(False)
          ax3.spines["bottom"].set visible(False)
         plt.tight_layout()
          plt.show()
```

## Sales Breakdown by Country, Number of Customers













```
In [35]: fig, ax = plt.subplots(2,2,figsize = (9,10))
         ax1, ax2, ax3, ax4 = ax.flatten()
         color = [plt.cm.Accent(i) for i in np.linspace(0, 1, country metrics.shape[0])]
         # top left
         Sales breakdown =country metrics["total sales"].rename("")
         Sales breakdown.plot.pie(ax=ax1, title = "Sales Breakdown by Country,\nNumber of Customers",
                                   colormap=plt.cm.Accent, startangle = -90,
                                   counterclock = False, fontsize = 8,
         # top right
         cvd cols = ["customers", "total sales"]
          custs vs dollars = country metrics[cvd cols]
          custs vs dollars.index.name = ""
          custs vs dollars/= (custs vs dollars.sum())/100
         custs vs dollars.plot.bar(ax = ax2, colormap = plt.cm.Set1,
                                    title = "Pct Customers vs Sales")
          ax2.tick params(top = "off", right = "off", left = "off", bottom = "off")
         ax2.spines["top"].set visible(False)
         ax2.spines["right"].set visible(False)
         ax2.tick params(top=False, right=False, left=False, bottom=False)
         ax2.legend(loc = "center")
         # bottom left
         avg order = country metrics["average order"].copy()
         avg order.index.name = ""
         difference from avg = avg order * 100 / avg order.mean() - 100
         difference from avg.drop("other", inplace = True)
         difference from avg.plot.bar(ax=ax3,
                                       title = "Average Order, \nPct Difference from Mean",
                                       color = color)
          ax3.tick params(top=False, right=False, left=False, bottom=False)
          ax3.axhline(0, color = "k")
          ax3.spines["top"].set_visible(False)
         ax3.spines["right"].set visible(False)
          ax3.spines["bottom"].set visible(False)
         # bottom right
         ltv = country metrics["customer lifetime value"].copy()
         ltv.index.name = ''
```

Sales Breakdown by Country, Number of Customers





Average Order, Pct Difference from Mean





USA

Canada

Brazi

France

Germany

Czech Republic

United Kingdom

Portugal

ndia

| In [ ]: | ]: |  |
|---------|----|--|
|         |    |  |
| In [ ]: | ]: |  |