

Lista 2 – Otimização

Pedro Thiago de Souza M. Marmello 1612702

[Questão 1]

Questão 1.1:

Sabemos que o quadrado da eq 1 serve para nos dar o valor próprio, podendo ser substituído por uma abordagem em módulo (eq 2). Depois podemos substituir o módulo usando a abordagem de Regressão Quantílica, ou seja, podemos substituir os dois módulos por outras variáveis as quais serão $\geq \pm$ a equação de dentro do módulo.

Questão 1.2:

Como dito anteriormente podemos substituir as equações quadráticas dos dois somatórios por equações lineares ao substituí-las por variáveis. O que foi feito e substituído segundo as equações 3 e 4.

Questão 1.3:

A resposta e sua devida explicação se encontram no arquivo Julia.

[Questão 2]

Questão 2.1:

A resposta e sua devida explicação se encontram no arquivo Julia. O Arquivo de Imagem pertencente a essa questão se encontra no final do arquivo, com o título "Plot 2.1"

Questão 2.2:

A resposta se encontra no arquivo Julia. Foi observado que manter um lambda bem regulado tem um papel fundamental no Filtro. Quanto maior for λ mais próximo de uma reta é possível visualizar o gráfico, enquanto para valores próximos de 1 o ruído se aproxima do valor real da série. Logo, para ter uma análise da série após o Filtro Linear, é preciso regular bem o λ de forma que retire o ruído sem 'quebrar' a série. Os Arquivos de Imagem pertencentes a essa questão se encontram no final do arquivo, com os títulos: "Plot 2.2"

Questão 2.3:

Após alguns testes com o filtro HP foi possível perceber que o modelo linear tem um filtro com λ muito mais rápido. Ou seja, λ com valores menores é possível ver uma diferença mais significativa. A proporção dos filtros visto foi justa a relação de um filtro para o outro: enquanto no filtro linear a mudança do λ era visível para números próximos, no filtro HP λ mostrava mudanças com o quadrado do λ linear. Em resumo, para que o filtro linear e o HP mostrassem mudanças parecidas no Plot $\lambda[HP] = (\lambda[linear])^2$. O que na minha opinião torna o filtro HP mais fácil de acertar na calibragem do λ .

[Questão 3]

Questão 3.1:

Fora utilizado o arquivo "FinancialDistress.csv" e a função randn para criar o ruído. A resposta e sua devida explicação se encontram no arquivo Julia. Os Arquivos de Imagem pertencentes a essa questão se encontram no final do arquivo, com os títulos: "Plot 3.1"

Questão 3.2:

Os Arquivos de Imagem pertencentes a essa questão se encontram no final do arquivo, com os títulos: "Plot 3.2".

No Plot de diferenças (figura "Plot 3.2 – Diferenças), é possível observar que a tendência da série continua parecida por mais que os valores estejam com uma certa discrepância. Ou seja, Com amplitudes baixas de randn é possível recuperar a tendência da mesma, mas conforme os valores de randn aumentam a discrepância dos pontos aumentam - o que é possível verificar mais facilmente com λ 's acima de 100.

Questão 3.3:

Como dito anteriormente, para amplitudes grandes de "randn" a discrepância dos valores entre a série com ruído filtrado e a original ficam cada vez mais evidentes tornando suas tendências cada vez mais diferentes como mostra a figura "Plot 3.3 – Discrepância".

[Título da barra lateral]

[Digite o conteúdo da barra lateral. Uma barra lateral é um suplemento autônomo ao documento principal. Geralmente ela fica alinhada à esquerda ou à direita da página ou localizada na parte superior ou inferior. Use a guia Ferramentas de Desenho para alterar a formatação da caixa de texto da citação.

Digite o conteúdo da barra lateral. Uma barra lateral é um suplemento autônomo ao documento principal. Geralmente ela fica alinhada à esquerda ou à direita da página ou localizada na parte superior ou inferior. Use a guia Ferramentas de Desenho para alterar a formatação da caixa de texto da citação.]

[Plot 2.1]

[Plot 2.2]

[Plot 2.3]

[Plot 3.1]

[Plot 3.2]

[Plot 3.3]

