

## Quantum Circuit Compilation and Classical Control with TKET: Part I

Presented by:

**Callum Macpherson & Lewis Wright** 19/09/2023

## Nice to meet you!



Callum Macpherson, MPhys

Quantum software: Technical
support & outreach

Quantum optics & atomic
physics



Lewis Wright, PhD

Quantum algorithms scientist

Physically motivated quantum algorithms & tensor network methods



## Agenda

- Tutorial 1: Introduction slides (10 minutes)
  - Quantum software.
  - What is TKET?
  - Quantum compilation
- TKET 101: Basic concepts (40 minutes)
  - Constructing circuits
  - Backends
  - New features
- Practical application: PDE solver (40 minutes)
  - Converting Parameterised Quantum Circuit to TKET
  - Circuit compilation
  - Converting to different native gatesets.
  - Noisy simulations.



## Introduction

#### Quantum Software

General purpose SDKs - qiskit, Cirq, pytket\*



- Quantum Programming languages/high level languages Q#, Silq, Quipper
- Compiler TKET, qiskit, BSQKit
- Online services AWS Bracket
- Quantum Error Correction/Mitigation- Qermit, others
- Application libraries e.g. InQuanto, pennylane
- Simulators e.g. Qulacs, Stim











#### Quantum Hardware

- Trapped ions Quantinuum, IONQ, AQT
- Superconductors IBM, Google, Rigetti, IQM
- Photonics PsiQuantum, Quandela...
- Neutral atoms Pasqal, Infleqtion...
- Others Semiconductors, topological qubits...



H-series Ion traps



Superconducting circuits- IBM



## Current Challenges with Quantum computing

- Not enough qubits for many of the exciting applications
- The qubits we do have are subject to complex noise (hard to model)
- Quantum error correction at an early stage experimentally
- Low-level details greatly influence performance gate count/depth, connectivity

#### What is TKET?



TKET is a quantum software library developed by Quantinuum:

- A high performance quantum compiler
- Open source! <a href="https://github.com/CQCL/tket">https://github.com/CQCL/tket</a>
- "Hardware agnostic" Targets a range of devices and simulators
- Works with popular libraries Qiskit, Cirq, Braket, Pennylane + more

\$ pip install pytket



#### TKET Architecture

Note: Cloud access through Microsoft Azure and AWS Braket is also available



Pytket (Python) Frontend



Quantinuum IBM Qulacs **AQT IQM** 

**Execute circuits** 

#### A Real Quantum device



Source: IBM Quantum



### Quantum Compilation I

Target device: IBMQ Belem

- Nearest neighbour interaction only
- Limited gateset {X, SX, Rz, CNOT}
- CNOT error





Belem qubit topology





## Quantum Compilation II

- Circuit is in IBM native gateset
- Each qubit is assigned to a physical node of the device



Compiled quantum Fourier transform with native gates {X, SX, Rz, CNOT}



Belem qubit topology



## Quantum Compilation III (CCX gate)



```
from pytket import Circuit
from pytket.extensions.quantinuum import QuantinuumBackend
h1_backend = QuantinuumBackend("H1-1")
circ = Circuit(3).CCX(0, 1, 2)
compiled_circ = h1_backend.get_compiled_circuit(circ, optimisation_level=2)
```

Pytket code



CCX gate compiled to Quantinuum's H-Series gateset



# TKET 101: Basic Concepts Notebook



# QUANTINUUM