流体的粘滞性

无粘滞性: 根据伯努利方程,如果管径前后一致,前后速度一致,则两端压力一致,两端无压力差。

有粘滯性: 两端需要压强差来消除层间的粘滞力。(挤牙膏,挤番茄酱)

液体的粘滯性

牛奶 蜂蜜 沥青

沥青滴漏实验

沥青滴漏实验时间表

年份	状况	到达此状态 所用时间	从切开封口 所用总时间	从架设实验 所用总时间
1927年	架设实验		/	/ making
1930年	切开封口	3年	/	3年
1938年12月	第一滴	8年11个月	8年11个月	11年11个月
1947年2月	第二滴	8年3个月	17年1个月	20年1个月
1954年4月	第三滴	7年2个月	24年3个月	27年3个月
1962年5月	第四滴	8年1个月	32年4个月	35年4个月
1970年8月	第五滴	8年3个月	40年7个月	43年7个月
1979年4月	第六滴	8年8个月	49年3个月	52年3个月
1988年7月	第七滴	9年3个月	58年6个月	61年6个月
2000年11月28日	第八滴	12年5个月	70年11个月	73年11个月

全球持续时间最长的实验

沥青比水粘性大2.3×10¹¹倍

流体的粘滞性

力作用于顶板 顶部速度为U 底部速度为0

速度沿z线性变化

$$\frac{dv}{dz} = \frac{U}{b}$$

最终推出:

剪应力
$$\tau = \eta \frac{dv}{dz}$$

流体的粘滯性

图 5.4-1 流体的粘滞性

流体的粘滞性

层间粘滞力:
$$f = \eta \frac{dv}{dz} \Delta S = \tau \Delta S$$
 粘滞系数,粘度 (单位: Pa·s = N·s·m-2)

泊肃叶定律

速度分布

$$v(r) = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2)$$

流量公式:

$$Q = \int_0^R v dS = \int_0^R v(r) 2\pi r dr = \frac{\pi}{i} \frac{p_1 - p_2}{\eta l} R^4$$

$$Q \propto (p_1 - p_2)R^4$$

胆固醇过高,血管变窄

高血压

粘滞流体的伯努利方程

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2 + w$$
 单位体积内粘滞力做的功
$$v_1 = v_2 \quad \text{and} \quad h_1 = h_2 \quad \Rightarrow \quad p_1 - p_2 = w$$

$$v_1 = v_2 \quad \text{and} \quad p_1 = p_2 \quad \Rightarrow \quad \rho g h_1 - \rho g h_2 = w$$
 Flow
$$Av = \text{const.}$$

层流和涡流

圆形管道中的流体

层流和涡流

涡流

雷诺数决定层流还是涡流

$$R_e = \frac{\rho v l}{\eta}$$

l:特征长度(如管道直径)

热学

热学

气体温度越高,分子的平均动能越大。那锅上方**100**摄氏度的空气的分子平均速度比周围**25**摄氏度的空气中的分子平均速度快多少?

人体在标准大气压下(1.01 x 10⁵ Pa), 每天有10³²个分子碰撞人体, 分子的平均速率1700km/h。

热学

什么是热?

为啥热学又叫热力学?

那温度是什么?我们测量的温度到底是啥?

如果决定物质的状态为固态、液态与气态?

热质说与分子说

热质是以种无质量的气体,可以从热的物体流向冷的物体。

摩擦生热、钻木取火表明热可以由机械功转化而来。

热是原子分子的无规则运动, 热的物体分子运动剧烈, 热量 是分子无规则运动的能量。

热学基本概念:温度、热量

分子运动与物质状态

 $F_r(r) = -dU/dr$

 $E_k \ll U_0$,束缚态,固体 $E_k \gg U_0$,气体 $E_k \approx U_0$,液体

Lenard-Jones 势 U, F_r $u(r) = \frac{\sigma}{r^{12}} - \frac{\mu}{r^6}$ $r < r_0, F_r > 0$,分子间排斥力 $r > r_0, F_r < 0,$ 分子间为吸引力

 $r=r_0$,分子间势能最小,分子间的力为0

固体

原子的振动

热力学体系

阿佛加德罗常数: $N_A = 6 \times 10^{23}$

1摩尔(1 mol) = N_A

1 mol 水 (H_2O) = 18 g

1 mol 空气(O₂, N₂) = 29 g

估算地球上空气的总质量、总摩尔数。

系统类别	物 质 交 换	能量交换	做功	例子
孤立体系	无	无	无	刚性绝热容器内的气体
封闭体系	无	有	有	封闭气球内的气体
开放体系	有	有	有	开口容器

平衡态和非平衡态

质量(M)

广延量 体积(V)

热容量(C_V, C_p)

强度量

压强(p)

温度(T)

微观物理量:

分子质量(m)

直径(d)

速度(v)

动量(p)

能量(E)

平衡态:体系的宏观性质不随时间变化。

非平衡态:反之。

状态参量

状态参量: 描述物体状态的变量

气体的状态参量:

温度 (热力学温标:单位K; 摄氏温标:

单位C°)

体积: m³

压强: Pa (N/m²)

P V T 一 一瓶医用氧气有压强 计,标有体积

微观量

描述系统内个别微观粒子特征的物理量。 如分子的质量、直径、速度、动量、能量等。 微观量与宏观量有一定的内在联系。

P, V, T

温度

物体A和物体B都与温度计(物体C)接触后,经测量后A和B的温度相同。

热力学第零定律: A与C处于热平衡, B与C处于热平衡, 则A与B处于热平衡。

温度的本质: 原子分子的运动

A,B,C具有共同的宏观性质: 温度

温度的概念和热力学第零定律

温度的本质: 原子分子的运动

热力学第零定律: A与C处于热平衡, B与C处于热平衡, 则A与B处于热平衡。 A,B,C具有共同的宏观性质: 温度

温度

10³⁹K:大爆炸后宇宙温度

109K:宇宙He合成

107K:热核聚变温度

10⁴K:太阳表面温度

10²K:室温

10K:氢的液化

3K:微波背景辐射

10-3K:稀释致冷

10-8K:核自旋致冷

温度

最通俗的理解: 温度计测量出来的值

温度: 两个物体长时间接触后, 具有相同的东西

什么样的接触?多长的时间算长?

热平衡态:两个物体接触足够长时间后,我们说他们处于热平衡态。

弛豫时间: 系统达到热平衡态的时间叫做弛豫时间。

接触:两个物体自发的交换能量(热).不一定需要物理的接触(热辐射也可以)

温度是测量物体自发的向环境传输能量的趋势。两个物体热接触时,自发损失能量的物体具有更高的温度。

温度计

如何定量的测量温度?温度计

温度计类型1: 体积V ← 温度 T

温度计

双层金属温度计

(b) The strip bends when its temperature is raised.

(c) A bimetallic strip used in a thermometer

红外温度计

热电偶 (温差电动势)