

PHYSICS

Chapter 24

2nd

SECONDARY

CONEXIÓN DE RESISTORES

CONEXIÓN DE RESISTORES

Los resistores pueden asociarse o conectarse, entre dos puntos, de diferentes maneras; estas pueden ser: en **SERIE**, en **PARALELO** o una combinación de ambas.

RESISTENCIA EQUIVALENTE (Req)

Es aquel resistor que causa el mismo efecto resistivo que las que se encuentran conectadas.

CONEXIÓN EN SERIE

 Por cada resistor pasa la misma intensidad de corriente eléctrica(I).

Su resistencia equivalente es:

$$R_{eq} = R_1 + R_2 + R_3$$

CONEXIÓN EN PARALELO

La diferencia de potencial en cada resistor es la misma.

Para el caso particular de dos resistencias la resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

Determine la resistencia R_1 si la resistencia del resistor equivalente es de 200 Ω .

RESOLUCIÓN

Se trata de una conexión en serie, su resistencia equivalente es:

$$R_{eq} = R_1 + R_2$$

$$200\Omega = R_1 + 50\Omega$$

$$R_1 = 150 \Omega$$

Determine la resistencia del resistor equivalente de los resistores mostrados que están conectados en paralelo.

$$R_1 = 30\Omega$$

$$R_2 = 30\Omega$$

RESOLUCIÓN

Se trata de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

$$\mathbf{R_{eq}} = \frac{(\mathbf{30}\Omega)(30\Omega)}{30\Omega + 30\Omega} = \frac{\mathbf{30}\Omega}{\mathbf{2}}$$

$$R_{eq} = 15 \Omega$$

Si la resistencia del resistor equivalente es de 15 Ω , determine la resistencia R_1 .

RESOLUCIÓN

Se trata de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

$$\mathbf{R_{eq}} = \frac{(\mathbf{R_1})(30\Omega)}{\mathbf{R_1} + 30\Omega} = \mathbf{15}\Omega$$

$$\mathbf{2R_1} = \mathbf{R_1} + \mathbf{30}\Omega$$

$$R_1 = 30\Omega$$

Determine la resistencia R_2 si la resistencia del resistor equivalente es de 40 Ω .

RESOLUCIÓN

Se trata de una conexión en paralelo, su resistencia equivalente es:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2}$$

$$\mathbf{R_{eq}} = \frac{(\mathbf{60}\Omega)(\mathbf{R_2})}{60\Omega + \mathbf{R_2}} = \mathbf{40}\Omega$$

$$6R_2 = 4R_2 + 240\Omega$$

$$R_2 = 120 \Omega$$

Determine la resistencia del resistor equivalente entre A y B.

RESOLUCIÓN

Veamos la conexión en paralelo entre R₁ y R₂:

$$R_{eq} = \frac{R_1.R_2}{R_1 + R_2} = \frac{(80\Omega)(20\Omega)}{80\Omega + 20\Omega} = 16\Omega$$

Ahora la conexión es en serie Req y R₃:

$$\begin{aligned} R_{eq\,A\,y\,B} &= R_{eq} + R3 \\ R_{eq\,A\,y\,B} &= 16\Omega + 40\Omega \end{aligned}$$

$$R_{eq\,Ay\,B} = 56\Omega$$

RESOLUCIÓN

Se muestra 3 focos instalados como se muestra. Si la resistencia de cada uno es de 30 Ω , determine la resistencia equivalente entre los puntos A y B.

Veamos la conexión en serie R₁ y R₂:

$$R_{eq} = R_1 + R2 = 30\Omega + 30\Omega = 60\Omega$$

Ahora la conexión es en paralelo Req y R₃:

$$R_{eqAyB} = \frac{(60\Omega)(30\Omega)}{60\Omega + 30\Omega} = 20\Omega$$

$$R_{eq\,A\,y\,B} = 20\Omega$$

Dos o más resistencias se dice que están en serie, cuando cada una de ellas se sitúa a continuación de la anterior a lo largo del hilo conductor. De la imagen mostrada los tres resistores son iguales y su equivalente es 90 ohm, halla el valor de cada una de las resistencias

RESOLUCIÓN

Se trata de una conexión en serie, su resistencia equivalente es:

$$R_{eq} = R_1 + R_2 + R_3$$

$$R_{eq} = 90\Omega + 90\Omega + 90\Omega$$

$$R_{eq}=270\,\Omega$$