# L20: Solving Systems of Linear Algebraic Equations (when solving them is possible)

Lucas A. J. Bastien

E7 Spring 2017, University of California at Berkeley

March 8, 2017

Version: release

#### Announcements

#### Lab 07 is due on March 10 at 12 pm (noon)

#### Today:

- Systems of linear algebraic equations (Chapter 12)
  - Review/learn some linear algebra concepts
  - ▶ How many solutions are there?
  - How to find a solution when there is at least one?
  - ▶ How to find a reasonable approximation when there are no solutions?

#### Friday:

- ▶ Solve engineering and physics problems using:
  - ► Root finding
  - Solving systems of linear algebraic equations

### Review of matrix multiplication: theory

Consider a  $m_1$  by  $n_1$  real matrix A and a  $m_2$  by  $n_2$  real matrix B

▶ The matrix multiplication of A by B (call it  $C = A \times B$ ) is defined if and only if  $n_1 = m_2$ . We say that:

"The inner dimensions of the matrices must be equal"

▶ The result is the  $m_1$  by  $n_2$  matrix C such that:

Element in ith row and jth column
$$C_{i,j} = \sum_{k=1}^{k=n_1} A_{i,k} B_{k,j}$$

▶ Matrix multiplication is not commutative, meaning that  $A \times B$  is not necessarily equal to  $B \times A$ . If fact, sometimes  $A \times B$  is defined but  $B \times A$  is not

#### Review of matrix multiplication: example

$$A = \begin{bmatrix} 5 & 0 & 1 & 2 \\ -1 & 4 & -2 & 9 \end{bmatrix} \quad B = \begin{bmatrix} 6 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & 4 \end{bmatrix}$$

$$C = A \times B = \begin{bmatrix} 29 & 13 & 18 \\ 4 & 30 & 46 \end{bmatrix}$$

$$C_{1,1} = 5 \times 6 + 0 \times 2 + 1 \times (-1) + 2 \times 0 = 29$$

$$C_{1,2} = 5 \times 0 + 0 \times 1 + 1 \times 5 + 2 \times 4 = 13$$

$$C_{1,3} = 5 \times 2 + 0 \times 3 + 1 \times 0 + 2 \times 4 = 18$$

$$C_{2,1} = -1 \times 6 + 4 \times 2 + -2 \times (-1) + 9 \times 0 = 4$$

$$C_{2,2} = -1 \times 0 + 4 \times 1 + -2 \times 5 + 9 \times 4 = 30$$

$$C_{2,3} = -1 \times 2 + 4 \times 3 + -2 \times 0 + 9 \times 4 = 46$$

#### Linear combinations: definition

Consider n vectors:  $v_1, v_2, \ldots, v_n$ . A **non-zero** vector u is a **linear combination** of vectors  $v_1, v_2, \ldots, v_n$  if and only if there exist scalars  $a_1, a_2, \ldots, a_n$  ( $\in \mathbb{R}$  or  $\mathbb{C}$ ) such that:

$$u = a_1v_1 + a_2v_2 + \cdots + a_nv_n$$

**Note:** since u is non-zero, at least one of the  $a_i$ 's must be non-zero

For example, in the example below, u is a linear combination of vectors  $v_1$  and  $v_2$ :

$$v_1 = (4, 6, 1)$$
  
 $v_2 = (3, 0, 7)$   
 $u = 3v_1 - 2v_2 = (6, 18, -11)$ 

#### Linear combinations: practice question

Consider the following vectors:

$$u = (1, 1, 5, 10, 2)$$
  
 $v = (-1, -1, 95, 90, -2)$   
 $w = (0, 0, 1, 1, 0)$   
 $x = (1, 1, -95, -90, 0)$ 

Is one of the vectors above a linear combination of the other vectors?

- (A) Yes
- (B) No

$$v = 100w - u$$
 and  $u = 100w - v$  and  $w = \frac{1}{100}u + \frac{1}{100}v$ 

#### Linear independence and rank of a matrix

A set of **non-zero** vectors  $v_1, v_2, \ldots, v_n$  are **linearly independent** if and only if we cannot write any of these vectors as a linear combination of the other vectors

The rank of an  $m \times n$  matrix A, often noted  $\operatorname{rank}(A)$  measures "how linearly independent" the rows of the matrix are. More precisely, it is the largest integer r such that r of the rows of A are linearly independent

Note:  $0 \leqslant \operatorname{rank}(A) \leqslant m$  and  $0 \leqslant \operatorname{rank}(A) \leqslant n$ 

## Rank of a matrix: examples

$$A = \begin{bmatrix} 1 & 1 & 5 & 10 & 2 \\ -1 & -1 & 95 & 90 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & -95 & -90 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 & 5 & 10 & 2 \\ 1 & 1 & 95 & 90 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & -95 & -90 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 & 5 & 10 & 2 \\ 1 & 1 & 95 & 90 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & -95 & -90 & 0 \end{bmatrix}$$

Row 2 is a linear combination of rows 1 and 3

All the rows are linearly independent

Rows 1, 3, and 4 are linearly independent

Therefore:

$$rank(B) = 4$$

Therefore:

$$rank(A) = 3$$

## Introduction to systems: two equations and two unknowns

Practice: solve the following systems of two equations and two unknowns:

$$x + 2 = 2y$$
$$2x - 3 = y$$

$$x + 2 = 2y$$
$$2x + 4 = 4y$$

$$x + 2 = 2y$$
$$x - 3 = 2y$$

Unique solution: 
$$x = 8/3$$
 and  $y = 7/3$ 

Infinite number of solutions, as long as: 
$$y = 1 + x/2$$

No solution







#### More practice: solve this system of equations

Solve this system of 5 equations with 5 unknowns:

$$5x_1 + 8x_2 + x_3 + 2x_4 + x_5 = 6$$

$$3x_1 + 4x_2 + 10x_3 + 3x_4 + 7x_5 = 3$$

$$9x_1 + 2x_2 + 10x_3 + 9x_4 + 8x_5 = 8$$

$$4x_1 + 4x_2 + 6x_3 + 7x_5 = 2$$

$$x_1 + x_2 + 4x_5 = 7$$

Actually, solving this system of equations by hand is quite tedious. Today, we will learn how to solve systems of linear algebraic equations using Matlab, instead of doing it by hand!

## More practice: write the previous system in matrix form

$$5x_1 + 8x_2 + x_3 + 2x_4 + x_5 = 6$$

$$3x_1 + 4x_2 + 10x_3 + 3x_4 + 7x_5 = 3$$

$$9x_1 + 2x_2 + 10x_3 + 9x_4 + 8x_5 = 8$$

$$4x_1 + 4x_2 + 6x_3 + 7x_5 = 2$$

$$x_1 + x_2 + 4x_5 = 7$$



with:

$$A = \begin{bmatrix} 5 & 8 & 1 & 2 & 1 \\ 3 & 4 & 10 & 3 & 7 \\ 9 & 2 & 10 & 9 & 8 \\ 4 & 4 & 6 & 0 & 7 \\ 1 & 1 & 0 & 0 & 4 \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \qquad b = \begin{bmatrix} 6 \\ 3 \\ 8 \\ 2 \\ 7 \end{bmatrix}$$

You absolutely need to be able to write a system of linear algebraic equations in matrix form, when given to you as separate equations (and vice-versa). This skill is needed for several topics, including least-square regression and interpolation

#### Linear algebraic equations: definitions and notation

A system of linear algebraic equations is a system of m equations  $(m \ge 1)$  that can be written in the following form:

$$a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$$
  
 $a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2$   
 $\cdots$   
 $a_{m,1}x_1 + a_{m,2}x_2 + \cdots + a_{m,n}x_n = b_m$ 

#### where:

- ▶ The *n* unknowns  $x_1, x_2, ..., x_n$  are scalars  $(\in \mathbb{R} \text{ or } \mathbb{C})$
- ▶ The  $a_{i,j}$ 's and  $b_i$ 's are scalar constant coefficients ( $\in \mathbb{R}$  or  $\mathbb{C}$ )

Note that m (number of equations) can be different from n (number of unknowns)

### Linear algebraic equations: definitions and notation

The following system of linear algebraic equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$
  
 $a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$   
 $\dots$   
 $a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m$ 

can be written in matrix form as: Ax = b

- ► A is the system's matrix
- x is the vector of unknowns
- b is the system's "right-hand side"

(size: 
$$m \times n$$
)

(size: 
$$n \times 1$$
)

(size:  $m \times 1$ )

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

## Example of a system of non-linear equations

The equations of the following system are **not** linear:

$$2x^{2} + 4y + 7z = 0$$
$$x^{3} + 4y^{7} = -1$$
$$x + 4y^{10} + z^{3} = 5$$

## Over- and under-determined systems

Consider a system of m linear algebraic equations with n unknowns

The system is **over-determined** if and only if m > n

The system is **under-determined** if and only if m < n

For example:

For example:

$$3x + 2y = -7$$
$$x + 2y = 0$$
$$-x + y = 1$$

$$3x + 2y + z = -7$$
$$x + y - z = 0$$

## Rank of a matrix and implications for solutions of systems

rank(A) measures "how linearly independent" the rows of the matrix are. If a row of A is a linear combination of other rows of the matrix, then:

#### **EITHER:**

One of the equations is redundant

For example:

For example:

$$\begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$$

OR:

**Equations** are incompatible

has the same solution (x = 8/3 and y = 7/3) as the following system:

$$\begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

### Solutions of systems of linear algebraic equations

Consider a system of m linear algebraic equations with n unknowns. We want to find a solution to this system

# There are 3 possible cases; you must know them for E7:

(You don't need to know the linear algebra proofs)

Case 1: 
$$rank([A,b]) == rank(A)+1$$

No solution exists

Case 2: 
$$rank([A,b]) == rank(A)$$
 and  $rank(A) == n$ 

There is one and only one solution

Case 3: 
$$rank([A,b]) == rank(A)$$
 and  $rank(A) < n$ 

▶ There is an infinite number of solutions

## Solving systems of linear algebraic equations in Matlab

#### Case 2: There is one and only one solution

Use Matlab's backslash operator (\):

```
>> a = [1, -2; 2, -1];
>> b = [-2; 3];
>> rank([a, b]) = rank(a)
ans =
  logical
   1
\gg rank(a) = size(a, 2)
ans =
  logical
\gg % Solve for x
>> x = a \setminus b
x =
    2.6667
    2.3333
\gg % Verify that x is a solution (a*x should be equal to b)
>> a*x
ans =
   -2.0000
    3.0000
```

## Solving systems of linear algebraic equations in Matlab

#### Case 3: There is an infinite number of solutions

Use Matlab's built-in function pinv to get one of these solutions

```
>> a = [0.5, -1; 1, -2];
>> b = [-1; -2];
\gg rank([a, b]) = rank(a)
ans =
  logical
   1
\gg rank([a, b]) = rank(a)
ans =
  logical
   1
\gg % Solve for a specific solution x. pinv(a) is the pseudo-inverse
                                     % of a. More detail on this
>> x = pinv(a)*b
                                     % topic next week
x =
   -0.4000
    0.8000
\gg % Verify that x is a solution (a*x should be equal to b)
>> a*x
ans =
   -1.0000
   -2.0000
```

## Solving systems of linear algebraic equations in Matlab

#### Case 1: No solution exists

**WARNING!** In this case, using Matlab's backslash operator (\) yields something that is **NOT** a solution

```
>> a = [0.5, -1; 1, -2; 2, 3];
>> b = [-2; -3; 10];
\gg rank([a, b]) = rank(a) + 1
ans =
  logical
>> % Try using Matlab's backslash operator
>> x = a \setminus b
x =
    1 4857
    2 3429
\gg WARNING: x is not a solution (a*x is not equal to b) but
>> %
        is a "reasonable'' approximation (see next slides)
>> a*x
ans =
   -1.6000
   -3.2000
   10.0000
```

#### Square error

What is the value of x calculated by Matlab in the previous example, since it is not a solution to the system? Since x is not a solution:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 + \text{error}_1$$
  
 $a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 + \text{error}_2$   
 $\dots$   
 $a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m + \text{error}_m$ 

The square error s is:

$$s = \sum_{i=1}^{i=m} (\text{error}_i)^2$$
  
= 
$$\sum_{i=1}^{i=m} (a_{i,1}x_1 + a_{i,2}x_2 + \dots + a_{i,n}x_n - b_i)^2$$

#### Square error

The square error *s* is:

$$s = \sum_{i=1}^{i=m} (\operatorname{error}_i)^2$$

- ▶ Why the square?
  - So that positive and negative errors don't cancel out
- ▶ Why not absolute value instead of square?
  - $x \mapsto |x|$  is not differentiable at x = 0

When you use Matlab's backslash operator to try to solve a system that has no solution, Matlab returns the value of x (if any) that minimizes the square error (more on this topic next week)