Bat Virus

Neverland is a country with N cities (indexed from O to N-1). The cities are connected to each other by a network of R two-way roads.

Two cities are considered to be neighbors if they're directly connected by a two-way road.

To an unfortunate turn of events, the country got struck by a mysterious bat virus. Initially (on day D_1), patients with the virus were reported from some cities in the country. The virus spreads in a weird, but interesting way.

Consider a city C_0 , with C_1 , C_2 , C_3 , C_4 , ..., C_t neighbor cities. On day D_i , let's say there are P_0 , P_1 , P_2 , P_3 , P_4 , ..., P_t patients corresponding to each city. Then number of patients in C_0 on day

$$D_{(i+1)} = max(C_0, rac{C_1}{2}, rac{C_2}{2}, rac{C_3}{2}, rac{C_4}{2}, \dots, rac{C_t}{2})$$

Given the road network and initial conditions of virus, your task is to find the maximum number of bat-virus patients that will be recorded in the country (P_{max}), and the number of days (D_{max}) it will take for P_{max} to appear first.

Input Format

N R

 s_0 e_0

 s_i e_i

 s_{R-1} e_{R-1}

M

 c_0 p_0

 c_j p_j

 c_{M-1} p_{M-1}

Constraints

0 < N < 20000

0 < R < 50000

0 < M < 5000

 $0 \leq s_i, e_i, c_j < N$

 $00 \le p_j < 30000000$

 $0 \le i < R$

 $0 \le j < M$

A single city can be connected to 1 city at minimum and N-1 cities at maximum.

There are no isolated cities.

Output Format

 D_{max} P_{max}

Sample Input 0

```
6 5
0 1
1 2
2 3
3 4
4 5
2
0 100
4 5
```

Sample Output 0

6 196

Explanation 0

