# **Homotopy Type Theory**

identifications are paths

a lipson

### Types vs. Sets

Sets

Sets contain elements.

Elements belong to sets via membership  $(\in)$ .

Sets may mix different kinds of elements.

Sets are built from other sets.

## Types vs. Sets

Sets

Types

Sets contain elements.

Types contain terms.

Elements belong to sets via membership  $(\in)$ .

Terms inhabit types via typing (:).

Sets may mix different kinds of elements.

Terms have exactly one type.

Sets are built from other sets.

Terms are built with constructors.

# **Common Types**

| Name     | Symbol       | <b>Terms</b>     |
|----------|--------------|------------------|
| empty    | $\mathbb{O}$ |                  |
| unit     | 1            | *                |
| naturals | $\mathbb{N}$ | $0, 1, 2, \dots$ |

# **Common Types**

| Name     | Symbol       | <b>Terms</b> |
|----------|--------------|--------------|
| empty    | $\mathbb{O}$ |              |
| unit     | 1            | *            |
| naturals | $\mathbb{N}$ | 0, 1, 2,     |
| identity | x = y        | depends      |

## **Common Types**

| Name     | Symbol       | <b>Terms</b>     |
|----------|--------------|------------------|
| empty    | $\mathbb{O}$ |                  |
| unit     | 1            | *                |
| naturals | $\mathbb{N}$ | $0, 1, 2, \dots$ |
| identity | x = y        | depends          |

Identity types may have no terms, one term, or even many!

# **Curry Howard**

Types  $\longleftrightarrow$  Propositions

 $Terms \longleftrightarrow Proofs$ 

## **Curry Howard**

Types  $\longleftrightarrow$  Propositions

 $Terms \longleftrightarrow Proofs$ 

... Constructing a term of a type is the same as proving a proposition.

# Homotopy



# **Homotopy Type Theory**

Types  $\sim$  Spaces Terms  $\sim$  Points in space



# **Homotopy Type Theory**

Types  $\sim$  Spaces

Terms  $\sim$  Points in space



Terms of the identity type x = y are paths from x to y.

#### **Concatenate Paths**



$$x \stackrel{p}{=\!\!\!=\!\!\!=} y \stackrel{q}{=\!\!\!=\!\!\!=} z \stackrel{r}{=\!\!\!=\!\!\!=} w$$

# **Identity Type**

The identity type at a fixed point a:A has one constructor:

$$\operatorname{refl}_a : a = a.$$



## **Path Induction**



#### **Path Induction**



Any type that looks like this is contractible.

# **Circle Type**



# **Circle Type**



Distinct identifications between base b.

#### **Truncation Levels**

We separate types by their equalities:

```
-2. Contractible 1 ) has identity type -1. Propositions Eq_{\mathbb{N}} ) 0. Sets \mathbb{N} 1. 1-types S^1
```