## **Announcements**

- Homework 2 is due tomorrow
- Homework 3 will be posted

## **Today's Lecture**

- Bayesian inference (regression)
- Summary of estimation techniques

| - These 2 pages are from Lecture 4, pp.7-8 BE                                                             |
|-----------------------------------------------------------------------------------------------------------|
| WE WANT TO ESTIMATE O                                                                                     |
| INSTEAD OF FINDING A POINT ESTIMATE O,<br>LET'S ESTIMATE THE DENUITY:                                     |
| WE HAVE A MODER: US:                                                                                      |
| (i) P(y x, \theta) [REGRESSION] [DISCRIMINAT N<br>(ii) PR P(x   y, \theta) [CUMSSIFICATION], [GENERATION] |
|                                                                                                           |

| EE559: p(x   S;) €A                 | 55U M |
|-------------------------------------|-------|
| Me                                  | DEC   |
| (i) DISCRIMINATINE APPROACH         |       |
| MODELS P (y X, B) DIRECTLY.         |       |
| (ii) GENERATINE APPROACH.           |       |
| MODELS p (y, x   0)                 |       |
| NOTE: MODELING p(x   y=c, 0) IN     | į.    |
| CLASSIFICATION, WE CAN:             | - CA: |
| $p(y=c x,\theta) = p(x y=c,\theta)$ | PIA   |
| $\rho(x)$                           |       |

BAYESIAN INFERENCE (part 2) w=w=(+) [not always true in Murphy 7.6]. GIVEN OUR MODEL, WE CAN COMPUTE THE LIKELIHOOD: p (D 0) USE BAYES THEOREM. IN WHICH: p(D) = Sp(D) p(0) do (1) (OR SUM IF A IS DISCRETE IN Ch. 3 READING, &= h= HYPOTHESIS. IN REGRESSION, Q = W (AND MAYBE (2) EXAMPLES OF (1): · NUMBERS GAME (HWZ, MCh.3) he Ehz, hu3









1. MODEL 15 
$$p(y|x,\theta) = p(y|x,w,\theta')$$

|   | - 11 | D         |        |     |
|---|------|-----------|--------|-----|
| d | 1    | PARAMETER | BSTERI | 915 |

FROM EQ. (1):

K= Sp(A/m, X) p(m/X) dm

3. POSTERIOR PREDICTIVE

From Eq. (2):

likelihood

Mosa.

















Murphy Fig. 7.11.

Linear regr. w | Scalar input  $x_1$  |  $w_0$  |  $w = [w_0]$  |  $w = [w_0]$  |  $w = [w_0]$  |  $w_0 + w_1 x_1 + \varepsilon$  |  $w_0$  |  $w_0$ 

## SUMMARY OF ESTIMATION TECHNIQUES

$$\underline{MAP}: \widehat{\theta} = \underset{\theta}{\operatorname{argmax}} \left\{ \operatorname{lnp}(\widehat{\theta}) + \operatorname{lnp}(\widehat{\theta}) \right\}$$

BAYESIAN: 
$$p(\theta|\Delta) \propto p(\Delta|\theta) p(\theta)$$

$$p(y|x, d) = \sqrt{p(y|x, \theta)} p(\theta|\Delta) d\theta$$

$$p(sterior Predictive)$$