Advanced Quantum Theory Exercise Sheet 6

Problem 10

Let $(\mathcal{X}, \langle \cdot | \cdot \rangle)$ be the Hilbert space. and let $f: \mathbb{R} \to \mathbb{C}$ with f(o) = 0 and some good differentiability properties;)

We define: $H_o: \mathcal{X} \to \mathcal{X}$ linear, self-adjust operator

 $H_0 := \hbar \omega \left(a^{\dagger} a + \frac{i}{2} \right)$ with $a := \sqrt{\frac{m \omega}{2 \hbar}} \left(X + \frac{i}{m \omega} P \right)$

for some constants m, w & (0,00).

Then Ho is the Hamiltonian of the harmonic oscillator, thus giving us a discrete orthonormal basis of eigenstates $\{n\} \ n \in \mathbb{N}_0\}$. For all times $t \in \mathbb{R}$, we define the dime-Jependent Hamiltonian through

 $H(t) := H_s(t) := h\omega(a^{\dagger}a + \frac{1}{2}) + \int (t)a + \int^{*}(t)a^{\dagger}$

= Ho =: Hx,s(t) Currently, everything is formulated in the Schrödinger picture.

For the formulation of the Interaction proture one has to put the implicit time-dependence caused by Ho into the operators. The explicit time-dependence of H1,s(t) will be handled by the interaction states.

(1) For any operator $A(t) = A_s(t)$ in the Schrödinger picture the corresponding operator in the interaction picture is given by

$$A_{I}(t) = e^{\frac{i}{n} \operatorname{Hot}} A_{s}(t) e^{-\frac{i}{n} \operatorname{Hot}}$$

$$\Rightarrow H_{0,T}(t) = e^{\frac{i}{\hbar}H_0t} H_0 e^{-\frac{i}{\hbar}H_0t} = H_0 e^{\frac{i}{\hbar}H_0t} e^{-\frac{i}{\hbar}H_0t} = H_0$$

$$\Rightarrow$$
 $H_{I}(t) = H_{o} + H_{A,I}(t)$, $H_{I}(0) = H_{o}$

Theofore the annihilation operators in the interaction picture are given by $a_{\rm I}(t)=e^{\frac{i}{\hbar}H_0t}$ a $e^{-\frac{i}{\hbar}H_0t}$, $a_{\rm I}^{\dagger}(t)=e^{\frac{i}{\hbar}H_0t}$ at $e^{-\frac{i}{\hbar}H_0t}$

(2) The interaction - picture state is given for all
$$t \in \mathbb{R}$$
:

 $\{n,t\}_{\mathbb{Z}} = e^{\frac{i}{\hbar}\theta_{0}t} \{n,t\}_{S} = With \quad |n_{1}0\rangle_{S} := \{n\}$

Therefore, we can derive and if $\frac{1}{\hbar} \frac{1}{4} \{n,t\}_{S} = \frac{1$

$$O[_{\mathbf{I}}\langle m, \cdot | H_{\mathbf{I}}(\cdot) | n, \cdot \rangle_{\mathbf{I}}](0) = \partial_{t} _{\mathbf{I}}\langle m, t | (0) | H_{\mathbf{I}}(0) | n, 0 \rangle_{\mathbf{I}}$$

$$+ _{\mathbf{I}}\langle m, 0 | H_{\mathbf{I}}(0) | \partial_{t} | n, t \rangle_{\mathbf{I}}(0)$$

$$+ _{\mathbf{I}}\langle m, 0 | H_{\mathbf{I}}(0) | \partial_{t} | n, t \rangle_{\mathbf{I}}(0)$$

=
$$(m)(f'(0) \alpha + f^{*}(0) \alpha^{+}) | n \rangle = f'(0) (m|\alpha|n) + f^{*}(0) (m|\alpha^{+}|n)$$

= $f'(0) \sqrt{n} \delta_{m,n-n} + f^{*}(0) \sqrt{n+n} \delta_{m,n+n}$

=>
$$I \left(m_i \delta t \right) H_I(\delta t) \left(n_i \delta t \right)_I = \hbar \omega \left(n + \frac{1}{2} \right) \int_{Min} + \delta t \left(\int_{-\infty}^{1} (0) \int_{-\infty}^{\infty} \int_{-\infty}^{$$

Let (K.(1.7) be the Hilbert space. The Homiltonian is given by

$$H := \frac{\rho^2}{2m} + V(x), V(x) := -\frac{m\omega^2}{2} x^2 + \frac{1}{4} x^4$$

with $m, \omega, \lambda \in (0, \infty)$. Additionally, we define for all $k \in (0, \infty)$, $v \in \mathbb{R}$ the following variational test functions.

$$\psi_{k,\nu}: |\mathbb{R} \to C, \quad \psi_{k,\nu}(x) := \sqrt{k} \quad \mathcal{Y}(k(x-\nu)) \quad \text{with}$$

$$\mathcal{Y}: |\mathbb{R} \to |\mathbb{R}, \quad \mathcal{Y}(x) := \frac{1}{\sqrt{2}} \quad e^{-\frac{x^2}{2}}$$

(1) The energy function is given by:

$$\frac{\rho^2}{2m} = -\frac{\hbar^2}{2m} \Delta , \quad \Delta \mathcal{V}_{k,v}(x) \stackrel{(*)}{=} k^{5/2} \mathcal{G}''(k(x-v))$$

$$\stackrel{(**)}{=} k^{5/2} \left[x^2 - \Lambda \right] \mathcal{G}(k(x-v))$$

(*)
$$\Delta(f \circ g) = (f \circ g)'' = (f' \circ g \cdot g')' = f'' \circ g \cdot g'^2 + f' \circ g \cdot g''$$

$$(yy) \quad \varphi'(x) = -\frac{x}{\pi^{1/4}} e^{-x^{2}/2} , \quad \varphi''(x) = -\frac{1}{\pi^{1/4}} e^{-x^{2}/2} + \frac{x^{2}}{\pi^{1/4}} e^{-x^{2}/2}$$

$$= - \mathcal{G}(x) + x^2 \mathcal{G}(x)$$

$$\Rightarrow E(k,v) = \int_{\mathbb{R}} Y_{k,v}^*(x) H Y_{k,v}(x) dx$$

$$= -\frac{h^{2}}{2m} k^{3} \int_{\mathbb{R}} x^{2} \varphi^{2}(k(x-v)) dx + \frac{h^{2}}{2m} k^{3} \int_{\mathbb{R}} \varphi^{2}(k(x-v)) dx$$

$$= -\frac{\hbar^2}{2m} \frac{k^3}{\sqrt{\pi}} \int_{\mathbb{R}} x^2 e^{-\left[h(x-v)\right]^2} dx + \frac{\hbar^2}{2m} \frac{k^3}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\left[h(x-v)\right]^2} dx$$

$$-\frac{m\omega^{2}}{2}\frac{k}{\sqrt{\pi}}\int_{\mathbb{R}}x^{2}e^{-\left[k(x-v)\right]^{2}}dx+\frac{\lambda}{4}\frac{k}{\sqrt{\pi}}\int_{\mathbb{R}}x^{4}e^{-\left[k(x-v)\right]^{2}}dx$$

We can choose the same substitution for all integrals: $\frac{1}{2}(x) := kx$ $\frac{1}{2}(x) = k$, $x = \frac{1}{2}(x)$ (because k) 0 the integral bounds do

=>
$$\frac{2}{k}$$
 (because k > 0 the integral bounds do not change)

(2) To apply the variational principle we have to find the global minimum of the energy function E. Because E is continuously differentiable we are able to use the necessary condition $\nabla E(\mathbf{k}_0 \mathbf{v}_0) = 0$ (We assume extremal values do not lie on the boundary)

$$\begin{split} \partial_{\lambda} E(k_{V}) &= -\frac{k^{2}}{2m} \left(2kv^{2} + 2k \right) \\ &- \frac{m\omega^{2}}{2} \left[\frac{-2}{k^{3}} \left(\frac{1}{2} + k^{2}v^{2} \right) + \frac{1}{k^{2}} \left(2kv^{2} \right) \right] \\ &+ \frac{2}{4} \left[\frac{-4}{k^{5}} \left(\frac{3}{4} + 3k^{2}v^{2} + k^{4}v^{4} \right) + \frac{1}{k^{4}} \left(6kv^{2} + 4k^{3}v^{4} \right) \right] \\ \partial_{2} E(k_{V}) &= -\frac{k^{2}}{2m} 2k^{2}v \\ &- \frac{m\omega^{2}}{2} \frac{1}{k^{2}} 2k^{2}v \\ &+ \frac{1}{4} \frac{1}{4} \left(6k^{2}v + 4k^{4}v^{3} \right) \end{split}$$