Midterm II

Name:								
SID:								
Name and SID of student to your left:								
Name and SID of student to your right:								
Exam Room:								
\square Evans 10 \square Wheeler 150 \square North Gate 105 \square Hearst Field Annex A1 \square VLSB 2060 \square Cory 540AB \square Other								
Please color the checkbox completely. Do not just tick or cross the box.								

Rules and Guidelines

- The exam is out of 110 points and will last 110 minutes.
- Answer all questions. Read them carefully first. Not all parts of a problem are weighted equally.
- Write your student ID number in the indicated area on each page.
- Be precise and concise. **Write in the solution box provided.** You may use the blank page on the back for scratch work, but it will not be graded. Box numerical final answers.
- The problems may **not** necessarily follow the order of increasing difficulty. *Avoid getting stuck on a problem.*
- Any algorithm covered in lecture can be used as a blackbox. Algorithms from homework need to be accompanied by a proof or justification as specified in the problem.
- Good luck!

Discussion Section

Which of these do you consider to be your primary discussion section(s)? Feel free to choose multiple, or to select the last option if you do not attend a section. **Please color the checkbox completely. Do not just tick or cross the boxes.**

Ш	Antares, Tuesday 5 - 6 pm, Mulford 240
	Kush, Tuesday 5 - 6 pm, Wheeler 224
	Arpita, Wednesday 9 - 10 am, Evans 3
	Dee, Wednesday 9 - 10 am, Wheeler 200
	Gillian, Wednesday 9 - 10 am, Wheeler 220
	Jiazheng, Wednesday 11 - 12 am, Cory 241
	Sean, Wednesday 11 - 12 am, Wurster 101
	Tarun, Wednesday 12 - 1 pm, Soda 310
	Jerry, Wednesday 1 - 2 pm, Wurster 101
	Jierui, Wednesday 1 - 2 pm, Etcheverry 3113
	Max, Wednesday 1 - 2 pm, Etcheverry 3105
	James, Wednesday 2 - 4 pm, Dwinelle 79
	David, Wednesday 2 - 3 pm, Barrows 140
	Vinay, Wednesday 2 - 3 pm, Wheeler 120
	Julia, Wednesday 3 - 4 pm, Wheeler 24
	Nate , Wednesday 3 - 4 pm, Evans 9
	Vishnu, Wednesday 3 - 4 pm, Moffitt 106
	Ajay, Wednesday 4 - 5 pm, Hearst Mining 310
	Zheng, Wednesday 5 - 6 pm, Wheeler 200
	Neha, Thursday 11 - 12 am, Barrows 140
	Fotis, Thursday 12 - 1 pm, Dwinelle 259
	Yeshwanth, Thursday 1 - 2 pm, Soda 310
	Matthew, Thursday 2 - 3 pm, Dwinelle 283
	Don't attend Section.

○ True

 $\bigcirc \, False$

1 True/False. (22 pts)

(a)	In every connected graph in which there is more than one edge of minim than one minimum spanning tree	num cost, th	ere is more
		○ True	○ False
(b)	If a connected graph has a cycle in which all the edge costs are the same, the than one minimum spanning tree		
<i>(</i>)		○ True	○ False
(c)	(8 pts) Consider the following LP:		
	$\max x_1 + x_2$ $x_1 - x_2 \le 3$		
	$x_1, x_2 \ge 0$		
	(i) The point $(x_1, x_2) = (0, 5)$ is feasible for the LP		
	(ii) The point $(x_1, x_2) = (3, 0)$ is a vertex for the feasible region of the LP	○ True	○ False
	(iii) The linear program is bounded	○ True	○ False
	(iii) The linear program is bounded	○ True	○ False
	(iv) The dual of the linear program is feasible	<u> </u>	O Taise
		○ True	○False
(d)	Given an undirected graph, the shortest path between any two nodes will mum spanning tree of the graph.	ll belong to	some mini-
		○ True	○ False
(e)	(6 pts) For the following, consider a network G with an $s-t$ flow f . V saturated when the flow across the edge is equal to the capacity.		
	(i) If f is a maximum flow, then f saturates all the edges going into t		
		OTrue	○ False
	(ii) Let f be a maximum flow, and let G' be the result of removing all edrated by f . There is no path from f to f in f .		
		○ True	○ False
	(iii) Let f be any flow (not necessarily a maximum flow), and let G' be the edges in G that are saturated by f . If there is no path from s to t in G' flow in G .		moving all

(f) Let G = (V, E) be an undirected complete graph with edge weights given by w_{uv} . Define the subproblem d[i, j] to be the length of the shortest path from vertex i to vertex j, with the following recurrence relation:

$$d[i,j] = \min \left(w_{ij}, \min_{v \in V} \left(d[i,v] + d[v,j] \right) \right), \quad \text{if } i \neq j$$

$$d[i,i] = 0$$

Given only G, there exists a dynamic programming algorithm that uses this recurrence relation to compute d[i,j] for all $i,j \in V$.

2 Go With the Flow.

(10pts) Recall that the Ford-Fulkerson algorithm iteratively uses the residual network to compute the max flow.

(a) (6 pts) Consider the following network:

Let *f* be a flow that assigns 1 unit of flow on the path $S \to A \to B \to D \to T$ and 0 flow elsewhere.

(i) Draw the residual graph for f.

(ii) Give a path in the residual graph from *S* to *T* which can accommodate additional flow.

(iii) What is the value of the maximum flow on this network?

(b) (4 pts) Consider the following network:

For the next questions, consider all possible sequences of iterations of Ford-Fulkerson.

(i)	What is the minimum number of iteration	ns unti	l there	is no	longer	any path	from	S to	T i	n the
	residual network?				Ü					

(ii)	What is the maximum number of iterati	ons until	there is no	longer	any pa	th from	S to	T i	n the
	residual network?								

residual network?	

3 Grab bag. (14 pts)

(a) (4 pts) Formulate the dual of the linear program below in terms of the variables y_1 and y_2 .

$$\max x_1 + x_3$$

$$x_1 - x_2 \le 5$$

$$x_1 + 3x_2 - x_3 \le 2$$

$$x_1,x_2,x_3\geq 0$$

(b) (4 pts) Recall the dynamic programming algorithm that finds the shortest path from s to t in an unweighted DAG. Let P(u) denote the length of the shortest path from u to t, and recall that:

$$P(u) = \min_{(u,v) \in E} 1 + P(v)$$

$$P(t) = 0$$

Suppose the algorithm was run on the DAG below. Give **an order** in which the subproblems will be solved from first to last (e.g. "P(S), P(B), P(C), ...")

(c) (2 pts) Consider the following set of clauses defining a HORN-SAT formula $\varphi(w, x, y, z, a, b)$:

$$\Rightarrow x, \quad x \Rightarrow y, \quad x \wedge y \Rightarrow w, \quad y \wedge w \Rightarrow z, \quad (x \vee \overline{w} \vee y \vee \overline{z} \vee \overline{a} \vee \overline{b})$$

How many satisfying assignments are there for φ ?

(a)	(4 pt	,							,			-							,			0 -			
	$0.5y_{3}$	s. Su	ıppo	se th	ıat tl	ne po	oints	s (0,	0.5)	anc	1 (3,	. 1, 2) are	fea	sible	in t	he p	rima	al ar	nd d	ual	resp	ect	ive	ly
	Argı	ıe in	itwo	or f	ewei	sen	tenc	es tł	nat t	hey	are a	also	opti	mal	for t	heir	resp	ectiv	e Ll	Ps.		•			_
	L																								_
																									_

4 Bounding Codewords.

(6 pts) Consider the Huffman encoding for an alphabet of characters c_1, \ldots, c_n such that $n = 2^k$ for integer $k \ge 1$, with respective frequencies f_1, \ldots, f_n . For each of the following characters, provide as a function of n the minimum and maximum possible codeword length for all sets of f_i such that $0 < f_1 \le \ldots \le f_n < 1$.

(a) The most fr	equent character, c_n		
Minimum:		Maximum:	
(b) The least fr	equent character, c_1		
Minimum:		Maximum:	

5 Tilted.

(8 pts) Consider the following family of linear programs parameterized by some real number *c*:

$$\max x + y$$

$$x \le 5$$

$$y \le 5 + cx$$

$$x, y \ge 0$$

For each of the questions below, describe all possible values of c, e.g. " $c \le -3$ or $5 < c \le 10$ or c = 15". If there are no possible values, write "none". If all real values are possible, write "all".

(a)	For what values of c is the point $(x, y) = (5, 0)$ feasible?
(b)	For what values of <i>c</i> does the LP have infinitely many optimal points?
(c)	For what values of <i>c</i> is the LP unbounded?
(d)	For what values of c is the dual LP bounded? (<i>Hint:</i> you do not need to construct the dual to answer this question)

6 Happy Little Trees.

(10 pts) For each of the following graphs, all e_i can vary between 1 and 100, inclusive.

For each bolded edge below, mark exactly one of ABCD:

- Mark A if for all possible values of the e_i 's, every MST contains the bolded edge
- Mark B if for all possible values of the e_i 's, only some MSTs (at least one, but not all) contain the bolded edge
- Mark C if for all possible values of the e_i 's, no MST contains the bolded edge
- Mark D if none of the above

(a)

- (i) The edge $\{W, Y\}$
- (ii) The edge $\{Z, Y\}$

OA	\bigcirc B	\circ c	\bigcirc D
ОА	ОВ	Ос	OD

(b)

- (i) The edge $\{T, V\}$
- (ii) The edge $\{T, W\}$
- (iii) The edge $\{V, X\}$

OA	Ов	Ос	\bigcirc D
OA	ОВ	ОС	\bigcirc D
ОА	ОВ	ОС	\bigcirc D

7 Sparse Graph MSTs.

(12 pts) You are given a weighted, connected, undirected graph G = (V, E) such that |E| = |V|. Give an algorithm that finds a minimum spanning tree in time O(|V|).

(a)	Main Idea
(b)	Runtime analysis
(~)	

8 Points on a Line.

(14 pts) You are given a set S of n points on a line. The points are given to you in sorted order. You want to find a set C of points of minimum size such that that every point in S is at distance at most 1 from at least one point in C. (Note that the points in C need not belong to S.) You would like a greedy algorithm that runs in time polynomial in n and finds an optimal solution.

For example, given the points $S = \{2.7, 3.2, 3.6, 4, 4.9, 5.2\}$, a possible solution is $C = \{3.5, 5\}$, and there is no smaller solution.

(a)	Describe your greedy algorithm (3 sentences or less)
(b)	Argue for its correctness using an exchange argument.
(0)	Thighe for its correctness using the excitatige argument.
(c)	What's the runtime of your algorithm?
(C)	That's the rantime of your algorithm.

9 I am the Machine(s).

(14 pts) You have a mission-critical production system that consists of n stages that must be completed in sequence. Each stage i can only be completed by a machine of type M_i . Unfortunately, the machines are faulty, and machines of type M_i fail with probability f_i (you may assume all failures are independent of each other).

A system with one copy of each machine type will succeed with probability $(1 - f_1) \cdot (1 - f_2) \cdots (1 - f_n)$. By adding redundant machines of type M_i , stage i is not completed only if all machines of type M_i fail. Therefore, if we have m_i machines of type M_i , the probability that stage i is completed is $1 - f_i^{m_i}$ and the probability that the whole system succeeds is now $\prod_{i=1}^n (1 - f_i^{m_i})$. Notice that if **any** of the $m_i = 0$, the success probability will be zero.

Unfortunately, you only have B dollars to spend on machines, and it costs c_i dollars to purchase each machine of type M_i . You may assume both B and the c_i 's are positive integers.

Give a dynamic programming algorithm that finds the maximum achievable success probability while staying under budget. Your algorithm should compute a probability, not specific values for each m_i .

More formally:

You are given probabilities f_1, \dots, f_n , costs c_1, \dots, c_n , and nonnegative integer budget B. Give a dynamic programming algorithm to compute the maximum success probability $\prod_{i=1}^{n} (1 - f_i^{m_i})$ where each m_i is a nonnegative integer and $\sum_i c_i m_i \leq B$.

(a)	Define your subproblems.
(b)	What are the base cases?
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.
(c)	Write the recurrence relation for the subproblems.