Proof of Correctness

Total Correctness: Termination and Partial Correctness Partial Correctness: Loop invariants and induction

Loop Invariant: A property that holds before and after each iteration of a loop

Initialization: The loop invariant holds before the first iteration

Maintenance: If the loop invariant holds before an iteration, it holds after the iteration

Termination: When loop terminates, invariant gives useful property to show the algorithm is correct

Stable Marriage

Perfect Matching with Stability

Gale-Shapley Algorithm

Men get the best women while women get the worst men

Greedy algorithm that picks the best available women for each man

Complexity

Big Oh: f(n) is O(g(n)) if $f(n) \le cg(n)$ for $n \ge n_0$: $c, n_0 > 0$

Big Omega: f(n) is $\Omega(g(n))$ if $f(n) \ge cg(n)$ for $n \ge n_0$: $c, n_0 > 0$

Big Theta: f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n)

is $\Omega(g(n))$

Little Oh: Strict Big Oh

Little Omega: Strict Big Omega

 $\lim_{n\to\infty}\frac{f(n)}{g(n)}$:

0 if f(n) is $o(g(n)), \infty$ if f(n) is $\omega(g(n))$

 $<\infty$ if f(n) is O(g(n)), > 0 if f(n) is $\Omega(g(n))$

 $0 < \infty$ if f(n) is $\Theta(g(n))$

Growth Rates: $1 < \log(n) < \sqrt{n} < n < n \log(n) < n^2 < n^c < 2^n < c^n < n! < n^n$

Graphs

$$n = |V|, m = |E|, e = (u, v)$$

Adjacency Matrix

Space: n^2 , Check if (u, v) is an edge: $\Theta(1)$, Check all edges: $\Theta(n^2)$

Adjacency List

Space: n + m, Check if (u, v) is an edge: $O(\deg(u))$ (actually $O(1 + \deg(u))$), Check all edges: $\Theta(n + m)$ (actually $\Theta(n + 2m)$)

Paths

Sequence of vertices v_1, v_2, \ldots, v_k such that (v_i, v_{i+1}) is

an edge

Simple Path: No repeated vertices

Connected: There is a path between every pair of ver-

tices

Cycle: Simple path with $v_1 = v_k$ and k > 2

Tree: Connected graph with no cycles, |E| = n - 1

Breadth First Search

O(n+m) if adjacency list, $O(n^2)$ if adjacency matrix

Depth First Search

Directed Graphs

Mutually Reachable: $u \to v$ and $v \to u$

Strongly Connected: Every node mutually Reachable

Directed Acyclic Graph: No directed cycles

Topological Ordering: Ordering of vertices v_1, v_2, \ldots, v_n

such that if (v_i, v_j) is an edge, i < jDAG \rightleftharpoons Topological Ordering

Bipartite Graphs

No odd cycles, can be colored with 2 colors

Connected Components

Greedy Algorithms

Use local optimization to find a global solution.

Interval Scheduling

Sort by finish time, take the first interval that doesn't overlap with the previous interval

Time: $O(n \log(n))$

Interval Partitioning/Scheduling all Intervals

Sort by start time, if interval overlaps with all preceding intervals, allocate new room

Time: $O(n \log(n))$

Scheduling to Minimize Lateness

Sort by deadline, schedule in order of increasing deadline Time: $O(n \log(n))$

Dijkstra

Single-source shortest path

Assumes non-negative edge weights, non-deterministic (consistent) otherwise

Use Bellman-Ford if negative edge weights, which uses dynamic programming

Time: O(nm) if naive, $O(m \log(n))$ if priority heap

Minimum Spanning Trees

Assumes connected, undirected, distinct and non-negative edges

Kruskal

Sort edges by weight, add edge if it doesn't form a cycle Time: $O(m^2)$ if naive, $O(m \log(n))$ if union-find

Prim

Start with any vertex, add the minimum weight edge that connects to the tree(one inside tree and one outside)

Time: $O(n^2)$ if naive, $O(m \log(n))$ if priority heap

Reverse-Delete

Sort edges in decreasing order, remove edge if it doesn't disconnect the graph

Time: $O(e \log(e))$ in PPT, $O(E \log(V)(\log \log V)^3)$ online