Chapitre 14

Système de deux équations à deux inconnues

I. Équation du 1er degré à deux inconnues

Définition:

Une **équation** du **1**^{er} **degré** à **deux inconnues** x et y est une équation qui peut se ramener à une équation de la forme ax+by=c où a, b et c sont trois nombres donnés.

Exemple:

Soit l'équation 3x-5y=2.

 $3\times4-5\times2=12-10=2$, donc le couple (4 ;2) est **une** solution de cette équation ((14 ;8) également)

3x-5y=2 a une **infinité** de solutions.

Interprétation graphique :

L'équation 3x-5y=2 est équivalente à $y=\frac{3x-2}{5}=0.6x-0.4$.

On vérifie ainsi que, dans un repère, l'ensemble des points de coordonnées (x; y) avec 3x-5y=2 appartient à une droite, représentant la fonction affine d'expression algébrique f(x)=0.6x-0.4.

II. Système de deux équations à deux inconnues

Définitions:

Un système de deux équations du 1^{er} degré à deux inconnues x et y est de la forme :

$$\begin{cases} a x+b y=c \\ a'x+b'y=c' \end{cases}$$
 où a, b, c, a', b', c' sont des nombres donnés.

Résoudre un tel système, c'est trouver les couples (x; y) qui vérifient **simultanément** les deux équations.

Exemple:

Le couple (2 ; 3) est solution du système $\begin{cases} 4x - 2y = 2 \\ x + y = 5 \end{cases}$ En effet, on vérifie que $\begin{cases} 4 \times 2 - 2 \times 3 = 8 - 6 = 2 \\ 2 + 3 = 5 \end{cases}$

En effet, on vérifie que
$$\begin{cases} 4 \times 2 - 2 \times 3 = 8 - 6 = 2 \\ 2 + 3 = 5 \end{cases}$$

Interprétation graphique:

Chaque équation donne une relation entre x et y qui, dans un repère, correspond à une droite, représentant une fonction affine.

$$\begin{cases} 4x - 2y = 2 \\ x + y = 5 \end{cases} \Leftrightarrow \begin{cases} y = 2x - 1 \\ y = -x + 5 \end{cases}$$

On cherche donc le point de coordonnées (x; y) qui vérifie simultanément :

$$y=2x-1$$
 et $y=-x+5$ c'est-à-dire le point d'intersection des deux droites.

Remarque:

Une solution unique

Cette interprétation nous permet de constater qu'il existe différents cas d'études :

 $\begin{cases} y=0.5 x-0.5 \\ y=-\frac{1}{3} x-3 \end{cases}$ $\Leftrightarrow \begin{cases} x-2 y=1 \\ x+3 y=-9 \end{cases}$

m = 0.5 et $m' = \frac{-1}{3}$

Deux droites sécantes (les coefficients directeurs sont différents)

Pas de solution

$$\begin{cases} y = 2x - 2 \\ y = 2x + 3 \end{cases} \Leftrightarrow$$

$$\begin{cases} 2x - y = 2 \\ 2x - y = -3 \end{cases}$$

$$m = m' = 2$$

 $p = 2$ et $p' = 3$

Deux droites parallèles non confondues (mêmes coefficients directeurs mais ordonnées à l'origine différents)

Infinité de solution

y=2x+3 y=2x+3 2x-y=-3 4x-2=-6

m = m' = 2p = p' = 3

Deux droites confondues (mêmes coefficients directeurs et mêmes ordonnées à l'origine)

III. Résolution d'un système

Par substitution 1)

$$\begin{cases} x+2y=7\\ 2x+3y=11 \end{cases}$$

On exprime une inconnue en fonction de l'autre (ici x en fonction de y)

$$\begin{cases} x = 7 - 2y \\ 2 \times (7 - 2y) + 3y = 11 \end{cases}$$

On substitue une inconnue pour obtenir $2 \times (7-2y) + 3y = 11$ une équation du 1^{er} degré à une inconnue

$$\begin{cases} x = 7 - 2y \\ 14 - 4y + 3y = 11 \end{cases}$$

$$\begin{cases} x = 7 - 2 y \\ -y = -3 \end{cases}$$

On résout la 2ème équation et on obtient y

$$\begin{cases} x = 7 - 2 \times 3 = 1 \\ y = 3 \end{cases}$$

On utilise la 1ère équation pour obtenir x

$$\begin{cases} x = 1 \\ y = 3 \end{cases}$$

Vérifications:

$$\begin{array}{|c|c|c|}
\hline
1+2\times3=1+6=7 \\
2\times1+3\times3=2+9=11
\end{array}$$

La solution est le couple (1; 3).

2) Par combinaison

$$\begin{cases} 3x + 4y = 5 \\ 2x - 3y = 9 \end{cases}$$

On cherche à avoir les mêmes coefficients devant les *x* pour chaque équation.

$$\begin{cases} 6x + 8y = 10 \\ 6x - 9y = -27 \end{cases}$$

On multiplie la $1^{\text{ère}}$ équation par **2** et la $2^{\text{ème}}$ équation par **3**.

On conserve la $1^{\text{ère}}$ équation et on soustrait la $2^{\text{ème}}$ équation à la $1^{\text{ère}}$ (combinaison)

$$\begin{cases} 6x + 8 \times (-1) = 10 \\ y = -1 \end{cases}$$

On résout la 2ème équation et on obtient y

$$\begin{cases} x=3 \\ y=-1 \end{cases}$$

On utilise la 1ère équation pour obtenir x

Vérifications:

La solution est le couple (3; -1)