Deep Learning in Computer Vision

Image Classification Using Feed-Forward ANN

Instructor: Dr. Mehrandezh

Student: Marzieh Zamani

Important Parts in a Neural Network Classifier

- Dataset
 - Training dataset
 - Validation dataset
- Loss Function
- Model Architecture
 - Number of layers and nodes
- Optimization Method
 - Minimising training loss to maximise classification accuracy (validation accuracy)

Training Challenge: Overfitting

Strategies to Prevent Overfitting [2]

- ▶ 1. Getting more training data
- 2. Descending Learning Rate
- ▶ 3. Reducing the capacity of the network.
- 4. Adding weight regularization.
- 5. Adding dropout
- ▶ 6. Data-augmentation
- 7. Batch normalization

Descending Learning Rate

Adding weight regularization

▶ L1 regularization

$$R(W) = \sum_{i} \sum_{j} |W_{i,j}|$$

L2 regularization

$$R(W) = \sum_{i} \sum_{j} W_{i,j}^{2}$$

Adding dropout

- One of the most effective and most commonly used regularization techniques for neural networks,
 - developed by the University of Toronto.
- Randomly "dropping out" (i.e. set to zero) a number of output features of the layer during training.
- ▶ E.g. [0.2, 0.5, 1.3, 0.8, 1.1] => [0, 0.5, 1.3, 0, 1.1].
- The "dropout rate" is the fraction of the features that are being zeroed-out; (0.2-0.5)

Implementation Step #1 - Load Data

Dataset for Training and Validation

12,000 images from Cifar-10 dataset (60,000

images)

Implementation Step #2 - Define Keras Model

X

Model Architecture

4-layer model 3072 x 1024 x 512 x 10

> 3-layer model 3072 x 1024 x 10

Weight regularization & Dropout

None

weight regularization (L2)

weight regularization (L2) + dropout

Implementation Step #3 - Compile Keras Model

Loss Function	<u>Optimiz</u>	<u>zer</u>	<u>Learning Rate</u>		<u>Momentum</u>
categorical_ crossentropy			Constant (0.01)		0
	SGD	X		X	
			Descending		0.5

Implementation Step #4 - Fit Keras Model

Using training and testing data

Implementation Step #5 - Evaluate Keras Model

- Cifar-10 truck images
- 2. 167 Unknown truck images (original)
- 3. 167 Unknown truck images (scaled)
- 4. 167 Unknown truck images (blurred)
- 5. 167 Unknown truck images (flipped horizontally)
- 6. 167 Unknown truck images (flipped vertically)
- 7. 167 Unknown truck images (rotated 180 degree)
- 8. 167 Unknown truck images (rotated 90 degree)

Results: Training Loos and Accuracy for Model

Results: Training Loos and Accuracy for Model

Loss:

Training loss is constantly decreasing but validation loss is first decreasing and then starts increasing; (Overfitting)

Accuracy:

While training accuracy is reaching nearly 100%, validation accuracy is less than 50%.

Results: Validation Accuracy for 3-Layer Models

Results: Validation Accuracy for 3-Layer Models

- Validation accuracies for models with same optimizer (but different weight regularizer) are displayed with the same color and marking
- Effect of weight regularization:
 - L2 weight regularization reduces average validation accuracy but increases max validation accuracy
 - However L2d (L2 + dropout) significant increases both average and max validation accuracies

- Effect of learning rate and momentum:
 - There is not a clear pattern for the effect of momentum;
 - However, SGD* and SGD*-M (descending learning rate with/without momentum) are slightly better than SGD and SGD-M (constant learning rate with/without momentum).

Results: Validation Accuracy for 3-Layer vs. 4-Layer Models

Validation Accuracy 3-Layer [3072x1024x10] vs. 4-Layer [3072x1024x512x10]

Results: Validation Accuracy for 3-Layer vs. 4-Layer Models

- Validation accuracies for models with same architecture (but different weight regularizer) are displayed with the same color and marking
- Effect of parameter modification
 - 4L-SGD points are the average and max accuracies for base model (default parameters)
 - The average accuracy of all modified models (3-layer & 4-layer) is higher than base model;
 - There is no specific pattern for max accuracies
- Effect of weight regularization for 4-Layer models:
 - L2d (L2 + dropout) significant increases both average and max validation accuracies
- Effect of model architecture
 - 4-layer models have accuracies slightly higher than 3-layer models but the difference is less than expected

Results: Classification Precision for Trucks for Two Models

Results: Classification Precision for Trucks for Two Models

- Dataset vs. unknown image:
 - Although test dataset is only used for validation, and not for training, their classification accuracy is about 50%: almost 2 time more than unknown images
- Base model (4L-SGD) vs. modified model (4L-SGD*-M-L2d)
 - Almost for all test batches, modified model has higher accuracies than base model
- Effect of filters
 - Scale has no effect as all images are scaled to 32x32x3 in pre-processing step (30%)
 - Blur and horizontal flip have very little effects (30%)
 - Vertical flip and 180-degree rotation are very similar with less than 20% accuracies
 - Among all filters, 90-degree rotation has most effect, reducing accuracy from 30% to less than 10%

Challenges and validity of results

- The effect of modifying parameters is not always clear
- There needs to be multiple runs for each model to ensure repeatability which is very time consuming

References

- Rosebrock, A. (2017). Deep learning for computer vision with python: starter bundle. PylmageSearch.
- https://www.tensorflow.org/tutorials/keras/overfit_and_underfit
- Cifar-10 Dataset: https://pjreddie.com/projects/cifar-10-dataset-mirror/

Thanks for your attention

Questions are welcome