## PHYS2155 Methods in physics II

## **Tutorial 4**

1. (a) A conical shell S is given by  $z = 4 - 2\sqrt{x^2 + y^2}$ ,  $0 \le z \le 4$ . At the point (x, y, z) on S, the area mass density  $\sigma(x, y, z)$  is proportional to the distance between the point and the z-axis. Find the mass of the shell.

(b) A surface lamina S is made up of the part of the paraboloid  $z=4-x^2/2-y^2/2, z\geq 0$ . Find the moment of inertia about the z-axis of the lamina if its area mass density at the point (x,y,z) is  $\sigma(x,y,z)=k$  where k is a constant.



- (c) A thin sheet S is in the shape of the hemisphere  $z = \sqrt{1 x^2 y^2}$  and its area mass density at the point (x, y, z) is  $\sigma(x, y, z) = 1 + x$ . Find the mass and location of center of mass of the sheet.
- 2. Evaluate the surface integrals over the surfaces S.

(a)  $\iint_S xyz \, dS$ , S is the surface of the cube cut from the first octant by the planes x = 1, y = 1, and z = 1.

(b)  $\iint_S (y+z) dS$ , S is the surface of the wedge in the first octant bounded by the coordinate planes and the planes x=2 and y+z=1.



- (c)  $\iint_S (x^2 + y^2 + z^2) dS$ , S is the part of the cylinder  $x^2 + y^2 = 9$  between the planes z = 0 and z = 2 together with its top and bottom disks.
- 3. Find the flux of the vector fields  ${\bf F}$  across the surfaces S. If S is closed, use the positive orientation.
  - (a)  $\mathbf{F}(x,y,z) = \sqrt{x^2 + y^2} \,\hat{k}$ , S is the portion of the cone  $\mathbf{r}(u,v) = u\cos v\,\hat{\imath} + u\sin v\,\hat{\jmath} + 2u\,\hat{k}$ ,  $0 \le u \le \sin v$ ,  $0 \le v \le \pi$ , oriented by an upward unit normal vector.
  - (b)  $\mathbf{F}(x, y, z) = x \hat{\imath} + y \hat{\jmath}$ , S is the portion of the paraboloid  $z = x^2 + y^2$  below z = 4, oriented by an upward unit normal vector



- (c)  $\mathbf{F}(x,y,z) = x^2 \hat{\imath} + y^2 \hat{\jmath} + z^2 \hat{k}$ , S is the surface of the cube bounded by the planes  $x = \pm 1$ ,  $y = \pm 1$ , and  $z = \pm 1$ .
- 4. If the electric field is  $\mathbf{E}(r, \theta, z) = (\lambda/2\pi\epsilon_0 r)\,\hat{\boldsymbol{r}}$  in cylindrical coordinates, find the electric flux  $\Phi = \iint_S \mathbf{E} \cdot d\mathbf{S}$  in the outward direction across the cylindrical side wall S of a cylinder defined by  $-h \le z \le h$  and r = R where R > 0.
- 5. (a) A fluid has a mass density  $870 \,\mathrm{kg/m^3}$  and flows in a velocity field  $\mathbf{v}(x,y,z) = 3x \,\hat{\imath} + 4y e^{\sin x} \,\hat{\jmath} + z^x \,\hat{k}$  in meter per seconds, where x,y, and

z are measured in meters. Find the rate of flow of the fluid that passes in the +y-direction through the surface S defined by  $2 \le x \le 5$ , y=0, and  $4 \le z \le 6$ .

(b) A fluid has a mass density  $1060 \, \mathrm{kg/m^3}$  and flows with velocity  $\mathbf{v}(x,y,z) = \ln y \, \hat{\imath} + \ln z \, \hat{\jmath} + \ln x \, \hat{k}$  in meter per seconds, where x,y, and z are measured in meters. Find the rate of flow of the fluid that passes in +z-direction through the surface S lying on the z=1 plane bounded by the lines 2x+2y=5 and the hyperbola xy=1 with  $x\geq 0$  and  $y\geq 0$ .

6. Use Stoke's Theorem to evaluate the following integrals.

(a) The line integral  $\oint_C \mathbf{F} \cdot d\mathbf{r}$  where  $\mathbf{F}(x,y,z) = (z+\sin x)\,\hat{\imath} + (x+y^2)\,\hat{\jmath} + (y+e^z)\,\hat{k}$  and C is the curve of intersection of the sphere  $x^2+y^2+z^2=1$  and the cone  $z=\sqrt{x^2+y^2}$  oriented in a counterclockwise direction when viewed from the positive z-axis.

(b) The line integral  $\oint_C \mathbf{F} \cdot d\mathbf{r}$  where  $\mathbf{F}(x,y,z) = -y^2 \,\hat{\imath} + z \,\hat{\jmath} + x \,\hat{k}$  and C is the triangle formed by the intersection of the plane 2x + 2y + z = 6 with the coordinate planes oriented in a counterclockwise direction when viewed from the positive z-axis.



(c) The surface integral  $\iint_S \text{curl } \mathbf{F} \cdot d\mathbf{S}$  where  $\mathbf{F}(x,y,z) = e^{z^2} \hat{\imath} + (4z - y) \hat{\jmath} + 8x \sin y \hat{k}$  and S is the hemisphere  $z = \sqrt{4 - x^2 - y^2}$  lying above the xy-plane with upward orientation.

(d) The surface integral  $\iint_S \text{curl } \mathbf{F} \cdot d\mathbf{S}$  where  $\mathbf{F}(x, y, z) = xyz\,\hat{\imath} + xy\,\hat{\jmath} + x^2yz\,\hat{k}$  and S consists of the top and the four sides (but not the bottom) of the cube with vertices  $(\pm 1, \pm 1, \pm 1)$  with outward orientation.

7. (a) Use Stoke's Theorem to find the work done by the force field  $\mathbf{F}(x,y,z) = x^2 \hat{\imath} + 4xy^3 \hat{\jmath} + y^2x \hat{k}$  on a particle that transverses the rectangle C in the plane z=y with vertices (0,0,0), (0,3,3), (1,3,3) and (1,0,0) oriented in a clockwise direction when viewed from the positive z-axis.



- (b) Use Stoke's Theorem and Maxwell's equation  $\nabla \cdot \mathbf{B} = 0$  to show that the flux of a magnetic field **B** across a surface S with boundary Csatisfying the hypotheses of Stoke's Theorem equals the circulation of the vector potential **A** around C where  $\mathbf{B} = \nabla \times \mathbf{A}$ .
- 8. Evaluate the volume integral of the vector field  $\mathbf{F}$  over the region E.
  - (a)  $\mathbf{F}(x,y,z) = x^2 \hat{\imath} + 2 \hat{\jmath}$ , E is the region defined by  $0 \le x \le 1$ ,  $0 \le y \le 2 \text{ and } 0 \le z \le (1 - x).$
  - (b)  $\mathbf{F}(x,y,z) = x \cos y \hat{\imath} + z^3 \hat{\jmath} + xy^2 \hat{k}$ , E is the region defined by  $0 \le x + y^2 \hat{k}$
  - $x \le \sqrt{4 z^2}, \ 0 \le y \le \pi/2 \text{ and } 0 \le z \le 2.$ (c)  $\mathbf{F}(x, y, z) = e^y \hat{\imath} + x \ln z \, \hat{\jmath} + \frac{z}{y} \hat{k}$ , E is the region defined by  $0 \le x \le 2$  $2y^2$ ,  $z \le y \le 1$  and  $0 \le z \le 1$ .
- 9. Use the Divergence theorem to find the outward flux of the vector fields  $\mathbf{F}$  across the surfaces S.
  - (a)  $\mathbf{F}(x, y, z) = 2x \hat{\imath} + 3y \hat{\jmath} + z^2 \hat{k}$ , S is the surface of the cubical region E cut from the first octant by the planes x = 1, y = 1 and z = 1.
  - (b)  $\mathbf{F}(x,y,z) = x^3 \hat{\imath} + y^3 \hat{\jmath} + z^3 \hat{k}$ , S is the surface of the solid region E bounded by the paraboloid  $z = 4 - x^2 - y^2$  and the xy-plane.



(c)  $\mathbf{F}(x,y,z) = (x^2 - \sin z)\hat{\imath} + (xy + \cos z)\hat{\jmath} + e^y\hat{k}$ , S is the surface of the solid region E bounded by the cylinder  $x^2 + y^2 = 4$ , the plane x + z = 6 and the xy-plane.



- 10. (a) Use the Divergence Theorem and Maxwell's equation  $\nabla \cdot \mathbf{B} = 0$  to show that the flux of a magnetic field  $\mathbf{B}$  is equal to zero, i. e.  $\iint_S \mathbf{B} \cdot d\mathbf{S} = 0$ , for any closed surface S.
  - (b) If the temperature function T has a continuous partial derivative with respect to time t, then the heat flow out of the solid with constant mass density  $\rho$  occupying the region E bounded by the surface S is given by

$$\iint_{S} (-k\nabla T) \cdot d\mathbf{S} = -\iiint_{E} \rho \sigma \frac{\partial T}{\partial t} dV , \qquad (1)$$

where k is the conductivity and  $\sigma$  is the specific heat of the solid. Use the Divergence theorem and the above equation to derive the heat equation

$$\frac{\partial T}{\partial t} = \alpha^2 \, \nabla^2 T \,\,, \tag{2}$$

where  $\alpha^2 = k/(\rho\sigma)$ .

- 11. Find the Fourier series for the function f(x) = x(L-x) for  $0 \le x \le L$ .
- 12. Find the Fourier series for the function  $f(x) = x^3$  for  $-1 \le x \le 1$ .
- 13. Find the Fourier transform of the function  $f(x) = xe^{-x^2}$ .
- 14. Assume well-behaved, how does the Fourier transform of the derivative of a function relate to the Fourier transform of the function? And higher derivatives?
- 15. Solve the differential equation

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \delta(x) \ . \tag{3}$$