Additional material for: Network Thermodynamics of Biological Systems: A Bond Graph Approach

Peter Gawthrop and Michael Pan April 26, 2022

Contents

1	Introduction			2
	1.1	Some	useful imports	2
2	Basic reactions			2
	2.1	$A \Leftrightarrow F$	3	2
		2.1.1	Graphical bond graph representation	
		2.1.2	Convert graphical representation to BondGraphTools representation	3
		2.1.3	Stoichiometric analysis and reactions	3
3	Reactions with connections 3			
	3.1	A + B	\Leftrightarrow C + D	3
		3.1.1	Graphical bond graph representation	3
		3.1.2	Convert graphical representation to BondGraphTools representation	4
		3.1.3	Stoichiometric analysis and reactions	4
	3.2	$A \Leftrightarrow F$	·	4
		3.2.1		4
		3.2.2	Convert graphical representation to BondGraphTools representation	4
		3.2.3	Stoichiometric analysis and reactions	4
4	Multiple stoichiometry 5			
	4.1	A+2B	⇔ 3C+4D	5
		4.1.1	Graphical bond graph representation	5
		4.1.2	Convert graphical representation to BondGraphTools representation	5
		4.1.3	Stoichiometric analysis and reactions	5
5	One-port Re component			
	5.1	A+2B	⇔ 3C+4D	5
		5.1.1	Graphical bond graph representation	5
		5.1.2	Convert graphical representation to BondGraphTools representation	6
		5.1.3	Stoichiometric analysis and reactions	6

1 Introduction

- This document contains additional material for the paper: *Network Thermodynamics of Biological Systems: A Bond Graph Approach* by Peter Gawthrop and Michael Pan.
- It illustrates how the Python package BondGraphTools can be used to create and analyse chemical reaction networks.
- It provides background to Section 3, Chemical Reactions.
- This document is **Reactions.pdf** (see also **Chloroplast.pdf**).
- The document is available as the Jupyter notebook **Reactions.ipynb**.

1.1 Some useful imports

```
[1]: ## Some useful imports
     import BondGraphTools as bgt
     import numpy as np
     import sympy as sp
     import matplotlib.pyplot as plt
     ## Stoichiometric analysis
     import stoich as st
     ## SVG bg representation conversion
     import svgBondGraph as sbg
     ## Modular bond graphs
     import modularBondGraph as mbg
     ## Display (eg disp.SVG(), disp.
     import IPython.display as disp
     ## Data
     import phiData
     import redoxData
     import importlib as imp
     ## Some switches
     chemformula = True
     quiet = True
```

2 Basic reactions

2.1 $A \Leftrightarrow B$

2.1.1 Graphical bond graph representation

```
[2]: disp.SVG('ABbasic_abg.svg')
```


2.1.2 Convert graphical representation to BondGraphTools representation

```
[3]: # imp.reload(sbg)
sbg.model('ABbasic_abg.svg',quiet=quiet)
import ABbasic_abg
# imp.reload(ABbasic_abg)
```

2.1.3 Stoichiometric analysis and reactions

```
[4]: ## Stoichiometry
sABbasic = st.stoich(ABbasic_abg.model(),quiet=quiet)
disp.Latex(st.sprintrl(sABbasic,chemformula=chemformula))
```

[4]:

$$A \stackrel{r}{\Longleftrightarrow} B \tag{1}$$

3 Reactions with connections

3.1 $A + B \Leftrightarrow C + D$

3.1.1 Graphical bond graph representation

[5]: disp.SVG('ABCDbasic_abg.svg')

[5]:

3.1.2 Convert graphical representation to BondGraphTools representation

```
[6]: # imp.reload(sbg)
sbg.model('ABCDbasic_abg.svg',quiet=quiet)
import ABCDbasic_abg
# imp.reload(ABCDbasic_abg)
```

3.1.3 Stoichiometric analysis and reactions

[7]:

$$A + B \stackrel{r}{\Longleftrightarrow} C + D \tag{2}$$

3.2 $A \Leftrightarrow B \Leftrightarrow C$

3.2.1 Graphical bond graph representation

[8]: disp.SVG('ABCbasic_abg.svg')

[8]:

3.2.2 Convert graphical representation to BondGraphTools representation

```
[9]: # imp.reload(sbg)
sbg.model('ABCbasic_abg.svg',quiet=quiet)
import ABCbasic_abg
# imp.reload(ABCbasic_abg)
```

3.2.3 Stoichiometric analysis and reactions

[10]:

$$A \stackrel{r_1}{\Longleftrightarrow} B \tag{3}$$

$$B \stackrel{r_2}{\longleftrightarrow} C \tag{4}$$

4 Multiple stoichiometry

4.1 $A+2B \Leftrightarrow 3C+4D$

4.1.1 Graphical bond graph representation

[11]: disp.SVG('ABCDmult_abg.svg')

[11]:

4.1.2 Convert graphical representation to BondGraphTools representation

```
[12]: # imp.reload(sbg)
    sbg.model('ABCDmult_abg.svg',convertCe=True,quiet=quiet)
    import ABCDmult_abg
    # imp.reload(ABCDmult_abg)
```

4.1.3 Stoichiometric analysis and reactions

```
[13]: ## Stoichiometry
sABCDmult = st.stoich(ABCDmult_abg.model(),quiet=quiet)
disp.Latex(st.sprintrl(sABCDmult,chemformula=chemformula))
```

[13]:

$$A + 2B \stackrel{r}{\Longleftrightarrow} 3C + 4D \tag{5}$$

5 One-port Re component

5.1 $A+2B \Leftrightarrow 3C+4D$

5.1.1 Graphical bond graph representation

```
[14]: disp.SVG('ABCDone_abg.svg')
```

[14]:

5.1.2 Convert graphical representation to BondGraphTools representation

```
[15]: # imp.reload(sbg)
sbg.model('ABCDone_abg.svg',convertCe=True,convertR=True,quiet=quiet)
import ABCDone_abg
# imp.reload(ABCDone_abg)
```

5.1.3 Stoichiometric analysis and reactions

[16]:

$$A + 2B \stackrel{r}{\Longleftrightarrow} 3C + 4D \tag{6}$$