Предложения за контролна работа 3

Иво Стратев

20 юли 2019 г.

Задача 4.

Нека \mathbb{V} е линейно пространсво над полето \mathbb{F} и нека $\varphi \in \mathrm{Hom}\mathbb{V}$. Нека A е матрицата на φ спрямо произволен базис. Нека $n=\dim \mathbb{V}$.

Нека
$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix} \in M_n(\mathbb{F}).$$

Нека
$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix} \in M_n(\mathbb{F}).$$
а) Да се докаже, че $D^k = \begin{pmatrix} \lambda_1^k & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2^k & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3^k & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n^k \end{pmatrix}$ за произволно естествено чис-

ло k.

б) p е произволен полином с коефициенти от полето \mathbb{F} . Тоест $p \in \mathbb{F}[x]$. Нека $\tau: \mathbb{F}[x] \to (M_n(\mathbb{F}) \to M_n(\mathbb{F}))$ е естественото изображение, което на полином f от $\mathbb{F}[x]$ по естествен начин съпоставя "полином"със същите коефициенти като f, само че приемащ матрици, а не скалари. Тоест $\tau(a_0x^m + a_1x^{m-1} + \dots + a_{m-1}x + a_m.1) = a_0X^m + a_1X^{m-1} + \dots + a_{m-1}X + a_mE.$ Да се докаже, че ако A е подобна матрица на D, то $(\tau(p))(A)$ е подобна на $(\tau(p))(D)$.

в) Да се докаже, че
$$(\tau(p))(D) = \begin{pmatrix} p(\lambda_1) & 0 & 0 & \cdots & 0 \\ 0 & p(\lambda_2) & 0 & \cdots & 0 \\ 0 & 0 & p(\lambda_3) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & p(\lambda_n) \end{pmatrix}$$
.
г) Нека $\lambda_1, \ \lambda_2, \ \ldots, \ \lambda_n$ са корени на p . Да се докаже, че $(\tau(p))(D) = \theta$. Тоест D

- е корен на $\tau(p)$.
- д) Нека $f_A(\lambda) = \det(A \lambda E)$ е характерестичния полином на матрицата A. И нека f_A има n на брой корена в полето \mathbb{F} . Тоест всички корени на f_A са в полето \mathbb{F} . Да се докаже, че $(\tau(f_A))(A) = \theta$. Тоест A е корен на $\tau(f_A)$.