

1/13

Non Uniform Field Movement

Prior Art

FIG. 1

Prior Art

FIG. 2

BEST AVAILABLE COPY

2/13

FIG. 3

FIG. 4

FIG. 5

3/13

Transmembrane voltage due to Electric field

$$V_m = -1.5a|\cos(\theta)|E$$

For coaxial Electrode

$$E = -\frac{V}{r_1 \ln(r_1/r_2)}$$

Prior ART

FIG. 6

4/13

PA-4000 Cyto Pulse Sciences Electroporation System
Cytofusion, 80 μ S/cm medium
2 mm cuvette
GAPDH siRNA
PC12 cells

FIG. 7

BEST AVAILABLE COPY

5/13

Force applied on a neutral particle by a nonlinear electric field

$$F_{dep} = a^3 [2\pi \epsilon_{medium} K(\epsilon, \sigma, \omega, r)] \nabla E^2$$

a = cell radius

ϵ = permittivity of medium external to the cell

K = Clausius-Mossotti Function, page 46, Jones

E = Electric field

For a coaxial chamber

$$\nabla E^2 = - \frac{2V^2}{r_1^3 \ln[(r_1/r_2)^2]}$$

FIG. 8

6/13

FIG. 9A

FIG. 9B

BEST AVAILABLE COPY

7/13

K562 Cells x K562 cells
Cyto Pulse PA-4000/PA-101 Electrofusion system
Cytofusion medium, 80 μ S/cm
6 ml chamber ($r_1=19.5$ mm, $r_2=23.5$ mm, gap = 4 mm)

FIG. 10

BEST AVAILABLE COPY

8/13

FIG. 11A

FIG. 11B

Gap mm
10
8
6
4
2

FIG. 11C

Gap mm
10
8
6
4
2

BEST AVAILABLE COPY

9/13

FIG. 12A

FIG. 12B

FIG. 12C

10/13

FIG. 13A

11/13

FIG. 13B

12/13

FIG. 14

13/13

FIG. 15