Influence of deep learning on precision improvement in predictive models of Wind Power Generation

1st Ronaldo R. B. de Aquino
Federal University of
Pernambuco
Departament of the electrical
enginering
Recife, Brasil
rrba@ufpe.br

2nd Jonata C. Albuquerque
Federal University of
Pernambuco
Departament of the electrical
enginering
Recife, Brasil
jonata.albuquerque@ufpe.br

3rd Otoni Nobrega Neto Federal University of Pernambuco Departament of the electrical enginering Recife, Brasil otoni.nobrega@ufpe.br 4th Milde M. S. Lira
Federal University of
Pernambuco
Departament of the electrical
enginering
Recife, Brasil
milde@ufpe.br

5th Aida A. Ferreira Federal Institute of Education, Science and Technology of Pernambuco (IFPE) Recife, Brasil aidaferreira@recife.ifpe.edu.br 6th Alcides Codeceira Neto Chesf – Hydroelectric Company of San Francisco Recife, Brasil Alcides@chesf.gov.br

Abstract— This paper, proposes the use of Deep Learning in predictive nonparametric models that use artificial intelligence tools to approximate power curves of wind farms. Three different tools are evaluated: artificial neural networks, fuzzy inference systems and Auto Encoders, an initial model of deep learning networks. The tools are inserted in a non-parametric model of power prediction, where they are compared. The results show that the autoencoder-based power curve performs well above other proposed tools. This significantly improves the performance of the predictive power model.

Keywords—Wind Power Prediction, Power Curves, wind Farms, Artificial Intelligence, Deep learning

SHORT PAPER CSI-ISAI 2017.

I. INTRODUCTION

Due to the growth of the energy demand in Brazil, the wind power source has been a very plausible solution, but this one has a basic characteristic, the variability of wind, which generates the possibility of new heuristics focused on the wind power forecast. Investigating new possibilities, the predictive power models, can be linked to parks or wind turbines, whose type can be parametric or non-parametric. In the case of non-parametric models, the highlight go to the predictive models that tend to adjust the power curve. For the adjustment of power curve in the predictive model, artificial intelligence tools are used, as: Artificial neural networks, Fuzzy inference systems, and new study tendencies such as the Deep Learning

models. These tools have an essential role to aggregate accuracy of the response of predictive models.

II. OBJECTIVE

The main goal of this paper is to show how artificial intelligence tools are effective in the approximation of predictive models, in particular, new techniques that use deep learning concepts to attest the accuracy of wind power predictions. Analyzes were performed for two wind farms titled X and Y located in the northeast of Brazil, cited in [1]. Then, a comparison is made between the efficiency of the tools used in the predictive model, at the end are exposed the conclusions and settings.

III. NON-PARAMETRIC MODELS OF POWER CURVES

A. Non-parametric model of the power curve using Artificial Neural Networks.

In this paper, two non-parametric models of power curves are created and evaluated in [1] and later published in [1]. The network models have two architectures, one with one input and one output and the other with two inputs and one output. The inputs are the wind speed (m/s) and wind direction (°) and the outputs the Power (MW). The parameters of these networks are described in [1] and [2]. They are named PCANN1 and PCANN2.

Figures 1 to 4 show the respective architectures of the non-parametric models of the power curves using neural networks for Park X and Park Y.

The authors would like to thank Chesf., CNPq and CAPES - Brazil for financial research support.

Fig. 1. PC1ANN Architecture for Park X chosen in the learning period (Source: [1]).

Fig. 2. PC1ANN Architecture for Park Y chosen in the learning period (Source: [1]).

Fig. 3. PC2ANN architecture for Park X chosen during the learning period (Source [1]).

Fig. 4. PC2ANN Architecture for Park Y chosen during the learning period (Source [1]).

B. Non-parametric model of the power curve using Fuzzy Inference Systems.

In this paper two models of Fuzzy power curves with the same architecture of the RNA power curves created and evaluated in [2] and later published in [1] are used. Two using the Mamdani inference [3] and two using the TSK inference [4], the same are named PC1Fuzzy and PC2Fuzzy.

Figures 5 and 6 show the respective architectures of non-parametric models of power curves using fuzzy inference systems for Park X and Park Y.

Fig. 5. PC1Fuzzy Architecture (Source: [1]).

Fig. 6. PC2Fuzzy architecture

C. Auto Encoders

Autoencoders or "Diabolo networks" [5] belong to a specific set of neural networks, called encryptors. These networks are a type of deep learning network of initial conjuncture; where, according to the complexity of the problem can constitute chains of encryptors, resulting in a "stacked autoencoder" [6] and [7].

In this article only simple autoencoders are treated, i.e., with a single input and output layer. In general, the formation of a self-encoder is not a difficult task, its training is intended to encode an input (a) into a counter-domain representation g(a), so that the input (a) can be reconstituted through its codified representation function.

The decode function, f(g(a)) produces the reconstruction of the network, being generally a vector of values obtained through a transfer function, this being: sigmoid logistic "logsig", pure linear "purelin" or saturated linear "satlin". The main duty of self-enrichment training is the creation of a function g(a) whose distributed representation of the data captures the major factors of its variations.

For the self-encoder training a pair of related inputs was used as shown by Equation 1, where the pair is assembled as the input vector, with half of its elements composed of mean speed values and half composed of mean values of power rating. In this way a single input with two coding functions established.

$$[v_{input} P_{output}] (1)$$

Each variable is approximated by a different coding function, as shown by Equations 2 and 3:

$$v_{input} \rightarrow g_v(v_{input})$$
 (2)

$$P_{output} \rightarrow g_P(P_{Output})$$
 (3)

Thus, internally the auto encoder suit v_{input} to an P_{output} as shown by Equation 4.

$$[v_{input} P_{output}] (4)$$

Figure 7 shows the respective non-parametric model of the power curve using the autoencoder for Parks X and Y.

Fig. 7. PCAutoencoder Architecture for Park X and Y chosen during the learning period.

IV. FORECASTING MODEL

The predictive model can have two different architectures according to the chosen power curve model, such architectures will depend on the number of analysis variables, these being (average speed (m/s)) or (average speed (m/s) and average direction (°)).

To deliver predicted values for approximate power curves depending on the architecture, the predictive model will have, its analysis horizon within the next 24 hours. Thus, it will use two forward-looking neural networks, according to previously mentioned architectures, where the parameters of these networks are described in [1] and [2], they are named ANN1 and ANN2.

Figures 8 and 9, show the ANN1 and ANN2 network architectures. Figure 10 show the architecture of predictive model.

Fig. 8. Architecture of the ANN1 for Park X and Y (Source [1]).

Fig. 9. Architecture of the ANN2 for Park X and Y (Source [1]).

Fig. 10. Architecture of the Previsor Power Model for Park X and Y.

For the analysis and comparison between the proposed models with respect to the expected generation (MW), prediction error indices of [8] are used, such as: the MAE and the NMAE arranged according to equations 5, 6 and 7.

$$e_{\scriptscriptstyle D}(k) = P(k) - \overline{P}(k), \tag{5}$$

$$MAE_P(k) = mean(|e_P(k)|),$$
 (6)

$$NMAE_{P}(k) = \frac{1}{P_{Max_{local}}} mean(|e_{P}(k)|), \qquad (7)$$

V. ANALYSIS AND RESULTS

For the analyses of the proposed models, were used the same periods of learning and simulation considered in [2], expressed in Table (I). In the same, the respective training and simulation periods are arranged.

TABLE I. DIVISION OF THE MODELS FEED PATTERNS.

Sets	Learning - (Nº of Patterns)	Simulation - (N° of Patterns)
Park	(14h) 02/04/2010 - (22h)	(23h) 01/01/2012 – (9h)
01	30/12/2011	10/11/2012
01	(2064 Patterns)	(3664 Patterns)
Park	(10h) 05/10/2010 - (23h)	(23h) 01/04/2013 - (0h)
02	29/03/2013	08/04/2014
02	(3950 Patterns)	(1390 Patterns)

In an objective way, the results of the comparison between the predictions performed by the predictor using the nonparametric models of the respective power curves are shown. Table II shows the coding for each power curve model used in this paper:

TABLE II. CODIFICATION ABOUT THE PAPER MODELS

Model	Code	Model	Code
PC1ANN	(A)	PC1Fuzzy (Sugeno)	(E)
PC2ANN	(B)	PC2Fuzzy (Sugeno)	(F)
PC1Fuzzy (Mamdani)	(C)	PC Autoencoder	(G)
PC2Fuzzy (Mamdani)	(D)	-	

Table III shows the comparison between the values of the indices according to the power curve model used and the park under analysis.

TABLE III. MAE [MW] FOR THE MODELS OF PARK X

Code	A	В	С	D	E	F	G
1h	5.498	5.900	5.468	5.996	5.766	5.970	1.007
2h	7.431	7.793	7.435	7.726	7.704	7.667	1.009
3h	8.786	8.785	8.765	8.609	9.106	8.559	1.014
4h	8.906	9.318	8.932	9.241	9.111	9.161	1.019
5h	9.495	9.271	9.500	9.203	9.774	9.113	1.026
6h	9.689	9.694	9.713	9.620	9.958	9.527	1.033
7 h	10.273	10.024	10.290	9.912	10.605	9.823	1.039
8h	10.458	9.842	10.448	9.721	10.786	9.675	1.045
9h	10.829	9.732	10.802	9.629	11.137	9.589	1.050
10h	10.587	9.980	10.554	9.877	10.864	9.833	1.049
11h	10.359	10.238	10.349	10.008	10.578	9.949	1.046
12h	10.367	10.207	10.355	10.158	10.605	10.050	1.047
13h	10.520	10.164	10.464	10.082	10.803	10.011	1.045
14h	10.673	10.282	10.658	10.162	10.939	10.076	1.043
15h	10.632	10.426	10.615	10.376	10.948	10.237	1.040
16h	10.735	10.419	10.707	10.182	11.020	10.084	1.035
17h	10.507	10.882	10.481	10.587	10.773	10.468	1.035
18h	10.563	10.879	10.534	10.667	10.868	10.530	1.035
19h	10.275	10.139	10.254	10.066	10.591	9.966	1.035
20h	10.359	10.324	10.323	10.198	10.713	10.104	1.040
21h	10.602	10.259	10.590	10.314	10.983	10.218	1.044
22h	10.400	10.616	10.383	10.555	10.717	10.497	1.046
23h	10.553	11.061	10.557	10.934	10.819	10.868	1.047
24h	10.626	10.738	10.617	10.666	10.919	10.638	1.049
Mean	9.963	9.874	9.950	9.770	10.254	9.692	1.037
Std.	1.235	1.110	1.232	1.068	1.246	1.055	0.013

TABLE IV. MAE [MW] FOR THE MODELS OF PARK Y. Code A B C D E F G 1h 7.231 7.042 7.223 7.133 7.146 7.256 3.937 2h 9.205 9.289 9.000 9.124 8.975 9.116 3.920 3h 10.158 9.946 9.910 9.868 9.930 9.937 3.895 4h 10.389 10.371 10.368 10.197 10.339 10.259 3.920 5h 10.570 10.426 10.571 10.335 10.552 10.466 3.920 6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012	Ditt.	1.200	1.110	1.202	1.000	1.2.0	1.000	0.015		
Ih 7.231 7.042 7.223 7.133 7.146 7.256 3.937 2h 9.205 9.289 9.000 9.124 8.975 9.116 3.920 3h 10.158 9.946 9.910 9.868 9.930 9.937 3.895 4h 10.389 10.371 10.368 10.197 10.339 10.259 3.920 5h 10.570 10.426 10.571 10.335 10.552 10.466 3.920 6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.360 11.308 11.353 11.232 11.865 3.952	TABLE IV. MAE [MW] FOR THE MODELS OF PARK Y.									
2h 9.205 9.289 9.000 9.124 8.975 9.116 3.920 3h 10.158 9.946 9.910 9.868 9.930 9.937 3.895 4h 10.389 10.371 10.368 10.197 10.339 10.259 3.920 5h 10.570 10.426 10.571 10.335 10.552 10.466 3.924 6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.944 10.770 11.038 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 1th 11.192 11.689 11.459 11.766 11.285 11.808 3.926	Code	A	В	С	D	E	F	G		
3h 10.158 9.946 9.910 9.868 9.930 9.937 3.895 4h 10.389 10.371 10.368 10.197 10.339 10.259 3.920 5h 10.570 10.426 10.571 10.335 10.552 10.466 3.924 6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.369 11.459 11.776 11.328 11.865 3.952 11h 11.192 11.689 11.459 11.766 11.285 11.808 3.926 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 </th <th>1h</th> <th>7.231</th> <th>7.042</th> <th>7.223</th> <th>7.133</th> <th>7.146</th> <th>7.256</th> <th>3.937</th>	1h	7.231	7.042	7.223	7.133	7.146	7.256	3.937		
4h 10.389 10.371 10.368 10.197 10.339 10.259 3.920 5h 10.570 10.426 10.571 10.335 10.552 10.466 3.924 6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.952 10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 11h 11.192 11.689 11.459 11.776 11.328 11.865 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.529 11.151 11.547 3	2h	9.205	9.289	9.000	9.124	8.975	9.116	3.920		
5h 10.570 10.426 10.571 10.335 10.552 10.466 3.924 6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.952 10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 11h 11.192 11.689 11.470 11.389 11.866 11.285 11.808 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.529 11.151 11.547 3.870 14h 11.065 11.453 11.270 11.520 11.168	3h	10.158	9.946	9.910	9.868	9.930	9.937	3.895		
6h 10.606 10.989 10.610 10.867 10.571 10.880 3.920 7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 11h 11.192 11.689 11.459 11.776 11.328 11.865 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.952 13h 11.085 11.472 11.247 11.529 11.151 11.547 3.870 14h 11.065 11.453 11.270 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 <th< th=""><th>4h</th><th>10.389</th><th>10.371</th><th>10.368</th><th>10.197</th><th>10.339</th><th>10.259</th><th>3.920</th></th<>	4h	10.389	10.371	10.368	10.197	10.339	10.259	3.920		
7h 10.809 11.076 10.807 10.944 10.770 11.058 3.948 8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.360 11.308 11.353 11.232 11.391 3.952 11h 11.192 11.689 11.459 11.776 11.328 11.865 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.520 11.151 11.547 3.870 14h 11.065 11.493 11.515 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 <t< th=""><th>5h</th><th>10.570</th><th>10.426</th><th>10.571</th><th>10.335</th><th>10.552</th><th>10.466</th><th>3.924</th></t<>	5h	10.570	10.426	10.571	10.335	10.552	10.466	3.924		
8h 11.041 11.388 11.065 11.256 11.007 11.324 3.965 9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 11h 11.192 11.689 11.459 11.776 11.328 11.805 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.520 11.151 11.547 3.870 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.766 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.778 20h 11.020 11.207 11.126 11.082 11.041 3.778	6h	10.606	10.989	10.610	10.867	10.571	10.880	3.920		
9h 11.154 10.976 11.275 11.012 11.184 11.111 3.959 10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 11h 11.192 11.689 11.459 11.776 11.328 11.865 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.529 11.151 11.547 3.870 14h 11.065 11.453 11.270 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.766 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.769 18h 10.690 10.846 11.063 10.952 10.932 11.041	7 h	10.809	11.076	10.807	10.944	10.770	11.058	3.948		
10h 11.185 11.360 11.308 11.353 11.235 11.391 3.952 11h 11.192 11.689 11.459 11.776 11.328 11.865 3.952 12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.529 11.151 11.547 3.870 14h 11.065 11.453 11.270 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.769 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.769 18h 10.690 10.846 11.064 11.082 10.952 10.932 11.041 3.776 20h 11.020 11.207 11.126 11.208 11.041	8h	11.041	11.388	11.065	11.256	11.007	11.324	3.965		
11h	9h	11.154	10.976	11.275	11.012	11.184	11.111	3.959		
12h 11.245 11.739 11.389 11.866 11.285 11.808 3.926 13h 11.085 11.472 11.247 11.529 11.151 11.547 3.870 14h 11.065 11.453 11.270 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.769 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.769 18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.123 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.81 21h 11.023 11.433 11.293 11.517 11.186 11.559	10h	11.185	11.360	11.308	11.353	11.235	11.391	3.952		
13h 11.085 11.472 11.247 11.529 11.151 11.547 3.870 14h 11.065 11.453 11.270 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.766 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.776 18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.120 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	11h	11.192	11.689	11.459	11.776	11.328	11.865	3.952		
14h 11.065 11.453 11.270 11.520 11.168 11.483 3.809 15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.766 17h 10.649 10.956 11.041 11.091 10.919 11.101 3.776 18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.192 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	12h	11.245	11.739	11.389	11.866	11.285	11.808	3.926		
15h 11.290 11.493 11.515 11.541 11.402 11.517 3.794 16h 10.916 10.956 11.247 11.130 11.136 11.222 3.766 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.769 18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.192 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	13h	11.085	11.472	11.247	11.529	11.151	11.547	3.870		
16h 10.916 10.956 11.247 11.130 11.136 11.222 3.766 17h 10.649 10.956 11.041 11.091 10.919 11.100 3.769 18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.192 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	14h	11.065	11.453	11.270	11.520	11.168	11.483	3.809		
17h 10.649 10.956 11.041 11.091 10.919 11.100 3.769 18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.192 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	15h	11.290	11.493	11.515	11.541	11.402	11.517	3.794		
18h 10.690 10.846 11.063 10.952 10.932 11.041 3.776 19h 10.717 10.882 10.959 11.041 10.823 11.192 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	16h	10.916	10.956	11.247	11.130	11.136	11.222	3.766		
19h 10.717 10.882 10.959 11.041 10.823 11.192 3.778 20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	17h	10.649	10.956	11.041	11.091	10.919	11.100	3.769		
20h 11.020 11.207 11.126 11.208 11.041 11.232 3.781 21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	18h	10.690	10.846	11.063	10.952	10.932	11.041	3.776		
21h 11.023 11.433 11.293 11.517 11.186 11.559 3.778	19h	10.717	10.882	10.959	11.041	10.823	11.192	3.778		
	20h	11.020	11.207	11.126	11.208	11.041	11.232	3.781		
22h 10 998 11 419 11 315 11 492 11 198 11 466 3 752	21h	11.023	11.433	11.293	11.517	11.186	11.559	3.778		
2210 10:550 11:115 11:510 11:150 11:100 5:702	22h	10.998	11.419	11.315	11.492	11.198	11.466	3.752		
23h 11.178 11.521 11.305 11.655 11.201 11.699 3.745	23h	11.178	11.521	11.305	11.655	11.201	11.699	3.745		
24h 11.429 11.486 11.664 11.573 11.512 11.580 3.739	24h	11.429	11.486	11.664	11.573	11.512	11.580	3.739		
Mean 10.702 10.892 10.835 10.916 10.750 10.963 3.857	Mean	10.702	10.892	10.835	10.916	10.750	10.963	3.857		
Std. 0.873 1.002 0.963 1.030 0.942 1.011 0.084	Std.	0.873	1.002	0.963	1.030	0.942	1.011	0.084		

TABLE V. NMAE FOR THE MODELS [% OF WIND CAPACITYT] OF PARKS X AND Y .

I	Pk.X	A	В	С	D	E	F	G
	Mean	14.120	13.968	14.126	13.846	14.531	13.736	1.469
ſ	Pk.Y	A	В	С	D	E	F	G
ſ	Mean	8.493	8.598	8.598	8.663	10.484	8.701	3.061

CONCLUSION

The results show a marked advantage of the power curve model of the autoencoder over the other models. One can notice a constancy of precision over the forecast horizon. This is due to the functional connection by decoding range that the autoencoder establishes, as commented in equations 2 and 3.

In this way, the techniques of this type are very useful for the application in predictive models of variable energy generation as is the case of wind generation. Another factor is that the accuracy can still improve greatly with the addition of one more input variable coupled to the [speed, Power] pair. Another approach is the use of cascaded autoencoders with each layer being responsible for a characteristic of the power curve.

REFERENCES

- [1] R. R. B. de Aquino. J. C. Albuquerque. O. Nobrega Neto. A. A. Ferreira. A. C. Neto M. Lyra. M. A. Carvalho Jr. "Assessment of power curves in models of wind power forecasting." in Neural Networks (IJCNN). The 2016 International Joint Conference on . vol.. no.. pp.3915-3922. 24-29 Jul. 2016.
- [2] J. C. Albuquerque. "Power Curves Evaluation in Short Term Wind Power Prediction Models" (in Portuguese). M.Sc. dissertation Dep. of Electrical Engineering, UFPE. Recife. Brazil – 2015.
- [3] REZENDE, S. O. Sistemas inteligentes: fundamentos e aplicações. Barueri: Manole, 2005. 525 p. 2. ed. ISBN 85-204-1683-7.
- [4] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science Pub. Co., 1985.
- [5] BOURLARD, H.; KAMP, Y. Auto-association by multilayer perceptrons and singular value decomposition. Biological cybernetics, Springer, v. 59, n. 4-5, p. 291–294, 1988.
- [6] Y. Bengio, et al, "Greedy layer-wise training of deep networks." Advances in neural information processing systems 19 (2007): 153.
- [7] POULTNEY, C. et al. Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems. [S.l.: s.n.], 2006. p.1137–1144.
- [8] MADSEN, H., PINSON, P., KARINIOTAKIS, G., NIELSEN, H. A., NIELSEN, T. S. A Protocol for Standardizing the Performance Evaluation of Short-term Wind Power Prediction Models. 17 p. 2004.