

EFFICIENT PDE-CONSTRAINED OPTIMIZATION USING ADAPTIVE MODEL REDUCTION

Matthew J. Zahr (mzahr@stanford.edu) and Charbel Farhat (cfarhat@stanford.edu), Stanford University

MOTIVATION

Design and control of engineering systems driven by high-fidelity computational models have been become critical capabilities given the complexity of and uncertainties inherent in such systems. Optimization problems of this form may requires thousands of simulations, each of which may require millions of CPU-hours. We propose a globally convergent trust-region method for leveraging efficient reduced-order models to drastically reduce the cost of these optimization problems.

DETERMINISTIC FORMULATION

Goal: Efficiently solve **deterministic** PDE-constrained optimization problems

minimize $\mathcal{J}(\boldsymbol{u}(\boldsymbol{\mu}),\,\boldsymbol{\mu})$

 $u = u(\mu)$ satisfies the discrete, **deterministic** PDE

$$\boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{\mu})=0$$

 μ – optimization parameters

STOCHASTIC FORMULATION

Goal: Efficiently solve **stochastic** PDE-constrained optimization problems

$$\min_{oldsymbol{\mu}} ext{initial} \mathbb{E}[\mathcal{J}(oldsymbol{u}(oldsymbol{\mu},\,\cdot\,),\,oldsymbol{\mu},\,\cdot\,)]$$

 $u = u(\mu, \xi)$ satisfies the discrete, stochastic PDE

$$\boldsymbol{r}(\boldsymbol{u};\,\boldsymbol{\mu},\,\boldsymbol{\xi})=0\quad \forall \boldsymbol{\xi}\in\boldsymbol{\Xi}$$

 μ – optimization parameters, ξ – stochastic parameters

ERROR-AWARE TRUST-REGION MODEL MANAGEMENT

Introduce a trust-region method to solve (1) that leverages inexpensive subproblems (2)

minimize $m_k(\boldsymbol{\mu})$ minimize $F(\boldsymbol{\mu})$ subject to $\vartheta_k(\boldsymbol{\mu}) \leq \Delta_k$

 $|F(\boldsymbol{\mu}) - m_k(\boldsymbol{\mu})| \le \zeta \vartheta_k(\boldsymbol{\mu})$

where there exists a constant $\zeta > 0$ such that

 $\lim\inf_{k\to\infty}||\nabla_{\boldsymbol{\mu}}F(\boldsymbol{\mu}_k)||=0$

Error-aware TRs resemble traditional TRs in Θ -metric

$$egin{aligned} artheta_k(oldsymbol{\mu}) &\equiv ||oldsymbol{artheta}(oldsymbol{\mu})|| \simeq ||oldsymbol{\mu} - oldsymbol{\mu}_k||_{oldsymbol{\Theta}} \leq \Delta_k \ oldsymbol{\Theta} &\equiv \partial_{oldsymbol{\mu}} oldsymbol{artheta}(oldsymbol{\mu}_k)^T \partial_{oldsymbol{\mu}} oldsymbol{artheta}(oldsymbol{\mu}_k) = oldsymbol{Q} oldsymbol{\Lambda}^2 oldsymbol{Q}^T \end{aligned}$$

MODEL REDUCTION

Model reduction ansatz and projection of governing equations

$$\boldsymbol{u} \approx \boldsymbol{\Phi} \boldsymbol{y} \qquad \Longrightarrow \qquad \boldsymbol{\Phi}^T \boldsymbol{r}(\boldsymbol{\Phi} \boldsymbol{y}; \boldsymbol{\mu}) = 0$$

 Φ – fixed, low-dimensional subspace (very tall and skinny)

Deterministic Model Problem

Trust-region model management framework

STOCHASTIC MODEL PROBLEM

ROM used to define inexpensive subproblem and residual used to manage inexactness

$$m_k(\boldsymbol{\mu}) \equiv \mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}), \, \boldsymbol{\mu})$$
 $artheta_k(\boldsymbol{\mu}) \equiv || \boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}); \, \boldsymbol{\mu})||$

Two-level inexactness – sparse grids to approximate integral and ROM to approximate function evaluations

$$m_k(\boldsymbol{\mu}) \equiv \mathbb{E}_{\mathcal{I}_k} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot) \right] \ artheta_k(\boldsymbol{\mu}) \equiv \mathbb{E}_{\mathcal{I}_k \cup \mathcal{N}(\mathcal{I}_k)} \left[|| \boldsymbol{r}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}, \cdot); \boldsymbol{\mu})|| \right] + \left[\mathbb{E}_{\mathcal{N}(\mathcal{I}_k)} \left[\mathcal{J}(\boldsymbol{\Phi}_k \boldsymbol{y}(\boldsymbol{\mu}, \cdot), \boldsymbol{\mu}, \cdot) \right] \right]$$

 $\mathcal{N}(\mathcal{I}_k)$ – neighbors of sparse grid \mathcal{I}_k – sparse grid

RISK-NEUTRAL OPTIMAL CONTROL OF STEADY BURGERS' EQUATION

Optimal control of stochastic Burgers' equation

minimize
$$\int_{-1}^{1} \frac{1}{8} \left[\int_{0}^{1} \frac{1}{2} (u - 1)^{2} dx + \frac{\alpha}{2} \int_{0}^{1} z(\boldsymbol{\mu}, x)^{2} dx \right] d\boldsymbol{\xi}$$

$$-10^{\xi_1 - 2} \partial_{xx} u + u \partial_x u = z(\boldsymbol{\mu}, x)$$
$$u(\boldsymbol{\mu}, \boldsymbol{\xi}, 0) = 1 + \frac{\boldsymbol{\xi}_2}{1000} \qquad u(\boldsymbol{\mu}, \boldsymbol{\xi}, 1) = \frac{\boldsymbol{\xi}_3}{1000}$$

 $z(\mu, x)$ – parametrized by 9 cubic splines (11 parameters)

	HDM Queries	ROM Queries (max size)
HDM opt	6372	_
ROM opt	4	3720 (48)

Comparison of ROM optimization with error-aware trust-region model management to HDM optimization on 4-level isotropic sparse grid

$m_k(oldsymbol{\mu}_k)$	$F(\boldsymbol{\mu}_k)$	$ \nabla F(\boldsymbol{\mu}_k) $	Δ_k	Success?
3.8783e-03	8.3351e-03	6.8542e-03	-	-
3.1121e-03	7.2687e-03	7.0676e-03	$1.0000 e{+02}$	True
3.0474e-03	6.8352 e-03	3.3518e-03	$2.0000 \mathrm{e}{+02}$	True
1.1910e-02	9.7269 e-03	3.5655e-03	$1.0000 \mathrm{e}{+02}$	False
6.3680 e-03	6.3591e-03	8.6182e-05	2.8202 e-03	True
6.3587e-03	6.3589 e-03	7.2665e-07	5.6404e-03	True

Convergence history of error-aware trust-region method

Inviscid, Subsonic Aerodynamic Shape Design

Inviscid inverse shape design

$$\min_{oldsymbol{\mu}} ||oldsymbol{p}(oldsymbol{\mu}) - oldsymbol{p}^*||$$

 $p(\mu)$ – pressure distribution around μ -foil p^* – pressure distribution around RAE2822

Initial Shape (NACA0012)

Target Shape (RAE2822)

ROM opt (---) $HDM ext{ opt } (---)$

TURBULENT, TRANSONIC AERODYNAMIC SHAPE DESIGN OF FULL AIRCRAFT

Turbulent, transconic shape design

$$\underset{\boldsymbol{\mu}}{\text{maximize}} \quad L_z(\boldsymbol{\mu})/L_x(\boldsymbol{\mu})$$

 $L_x(\boldsymbol{\mu}), L_z(\boldsymbol{\mu}) - \text{drag}, \text{ lift at shape } \boldsymbol{\mu}$

Initial (gray) and optimal (red) shape

CONCLUSIONS

Leveraging and managing inexactness for efficient deterministic and stochastic PDE-constrained optimization

This work introduced a framework for leveraging reduced-order models and adaptive, anisotropic sparse grids to efficiently solve PDE-constrained optimization problems ensuring convergence to a critical point of the original problem. By breaking the offline-online decomposition commonly employed in model reduction, sampling and integration in high-dimensional spaces is avoided. The method is demonstrated on series of computational mechanics problems, including a large-scale industrial example.