# SlowFast Networks for Video Recognition



最近一直在看视频分类,时序行为检测的文章。斗胆讲讲最近看到的一篇文章,FAIR出品的"SlowFast Networks for Video Recognition"。看了一下第一作者的介绍,也是在这领域研究了多年的大牛。文章整体给人感觉就是大厂的感觉,对比消融实验都做得非常详细。尤其是128块GPU 想想就很刺激了。

摘要:提出了一种快慢结合的网络来用于视频分类。其中一路为Slow网络,输入为低帧率,用来捕获空间语义信息。另一路为Fast网络,输入为高帧率,用来捕获运动信息。而且Fast网络是一个轻量级的网络,其channel比较小。当然了在Kinetics达到了79%的精度。。。在AVA上也达到了28.3mAP

## 的 state-of-the-art的水平。

## 1. 介绍

作者一开始提出了一个很有趣的问题,对于图像I(x,y),我们很自然的将其分为x,y两个维度。但是对于视频I(x,y,t)呢? 时间维度并不能和空间维度等同来看待,这也是当前c3d等工作的效果难以达到最优水平的原因之一。作者从生物学方面获得启发,认为慢运动更符合人类的运动感受刺激。所以才提出对运动维度(时间维度)和空间维度分而治之的思想。

对于空间维度,空间语义信息是变化缓慢的。比如,挥手的动作中,手的语义信息是不发生变化的。一个人无论走还是跑,他仍然是一个人。但对于运动维度,运动相比于发生运动的实体来说,变化是非常快的。基于这些,作者提出来一个双路的SlowFast网络。正如**摘要** 所说,一路为Slow网络,输入为低帧率,用来捕获空间语义信息。另一路为Fast网络,输入为高帧率,用来捕获运动信息,Fast网络是一个轻量级的网络。

作者专门强调了SlowFast网络受到生物学中灵长类视觉系统中视网膜节细胞的启发。在视网膜节细胞中,80%是P-cell, 20%是M-cell, 其中M-cell,接受高帧率信息,负责响应运动变化,对空间和颜色信息不敏感。P-cell处理低帧率信息,负责精细的空间和颜色信息。而这正对应于SlowFast网络的两路。

#### 2. 方法

# Slow pathway

对于一个video clip, Slow 网络的每 $\tau$ 帧采样一帧作为输入。假定该网络的输入为\*T *帧,则该视频clip的长度为* $\tau \times T$ 。\*

# Fast pathway

 $\overline{a}$   $\overline{b}$   $\overline{a}$   $\overline{a}$  Fast网络相比于Slow网络,处理高帧率的信息,则每  $\tau/\alpha$  帧采样一帧作为输入,也就是输入为  $\alpha T$  帧。( $\alpha$ =8 默 认)

高分辨率的空间特征:不使用空间降采样层。

*轻量级*:相比于Slow网络,channel为其  $\beta$ 倍( $\beta$ <1)。一般计算复杂度(FLOPs)于channel为二次关系,所以在SlowFast中,Fast网络占到20%左右的计算量。

#### • 侧连接

侧连接连接Fast和Slow网络,达到信息融合的目的。在每个阶段,将Fast输出链接到Slow中。作者也尝试了双向连接,但是没有效果的提升。

最后是全局平局池化,双路信息串联,后接一个全连接层用来 分类。

# 3. 实例化

SlowFast网络是generic的,backbone可以为各种state-of-the-art的网络。本文作者也尝试了3D-Resnet和non-local模块。

一个基于3D-ResNet-50的网络结构如下表所示。

| stage             | Slow pathway                                                                                                             | Fast pathway                                                                                                               | output sizes $T \times S^2$                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| raw clip          | 21                                                                                                                       | -                                                                                                                          | $64 \times 224^2$                                   |
| data layer        | stride 16, 1 <sup>2</sup>                                                                                                | stride <b>2</b> , 1 <sup>2</sup>                                                                                           | $Slow: 4 \times 224^2$ $Fast: 32 \times 224^2$      |
| conv <sub>1</sub> | $1 \times 7^2$ , 64 stride 1, $2^2$                                                                                      | $\frac{5\times7^2, 8}{\text{stride 1, 2}^2}$                                                                               | $Slow: 4 \times 112^2$ $Fast: 32 \times 112^2$      |
| $pool_1$          | $1 \times 3^2$ max stride 1, $2^2$                                                                                       | $1 \times 3^2$ max stride 1, $2^2$                                                                                         | $Slow: 4 \times 56^2$ $Fast: 32 \times 56^2$        |
| res <sub>2</sub>  | $\begin{bmatrix} 1 \times 1^2, 64 \\ 1 \times 3^2, 64 \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$                       | $\left[\begin{array}{c} \frac{3\times1^2,8}{1\times3^2,8}\\ 1\times1^2,32 \end{array}\right]\times3$                       | Slow: 4×56 <sup>2</sup><br>Fast: 32×56 <sup>2</sup> |
| res <sub>3</sub>  | $ \left[\begin{array}{c} 1 \times 1^{2}, 128 \\ 1 \times 3^{2}, 128 \\ 1 \times 1^{2}, 512 \end{array}\right] \times 4 $ | $\left[\begin{array}{c} \frac{3\times1^2, 16}{1\times3^2, 16} \\ 1\times1^2, 64 \end{array}\right] \times 4$               | Slow: 4×28 <sup>2</sup><br>Fast: 32×28 <sup>2</sup> |
| res <sub>4</sub>  | $\left[\begin{array}{c} \frac{3\times1^2, 256}{1\times3^2, 256} \\ 1\times1^2, 1024 \end{array}\right] \times 6$         | $\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, \frac{32}{32} \\ 1 \times 1^2, \frac{128}{128} \end{bmatrix} \times 6$ | $Slow: 4 \times 14^2$ $Fast: 32 \times 14^2$        |
| res <sub>5</sub>  | $\left[\begin{array}{c} \frac{3\times1^2}{1\times3^2}, 512\\ 1\times1^2, 2048 \end{array}\right] \times 3$               | $\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$                    | $Slow: 4 \times 7^2$ $Fast: 32 \times 7^2$          |
|                   | global average pool, c                                                                                                   | concate, fc                                                                                                                | # classes                                           |

Table 1. An example instantiation of the SlowFast network. The dimensions of kernels are denoted by  $\{T \times S^2, C\}$  for temporal, spatial, and channel sizes. Strides are denoted as  $\{\text{temporal stride}, \text{spatial stride}^2\}$ . Here the speed ratio is  $\alpha = 8$  and the channel ratio is  $\beta = 1/8$ .  $\tau$  is 16. The green colors mark *higher* temporal resolution, and orange colors mark *fewer* channels, for the Fast pathway. Non-degenerate temporal filters are underlined. Residual blocks are shown by brackets. The backbone is ResNet-50.

#### • 侧连接

每层的输出,Slow为{  $T, S^2, C$ },而Fast为{  $\alpha T, S^2, \beta C$ },需要将两者尺寸匹配。为此作者尝试了多种方式

\*Time-to-channel: \*将{  $lpha T, S^2, eta C$ }reshape为{  $T, S^2, lpha eta C$ }再融合。

Time-strided sampling:将{  $lpha T, S^2, eta C$ }进行采样成{  $T, S^2, eta C$ }再融合。

\*Time-strided convolution: \*用3D卷积,其中卷积核为 $5 imes 1^2$ ,个数为  $2\beta C$ ,步长2。

## 4. 实验

作者多次强调自己的网络是trained from scratch,感觉也是在强调恺明大神的新作"Rethinking ImageNet Pre-training"(个人理解,求轻拍)。

#### • Ablations 实验

做的非常详细(毕竟128块GPU)。直接上图:

| model                | pre-train | $T \times \tau$ | t-reduce | top-1 | top-5 | <b>GFLOPs</b> |
|----------------------|-----------|-----------------|----------|-------|-------|---------------|
| 3D R-50 [50]         | ImageNet  | 32×2            | $2^{3}$  | 73.3  | 90.7  | 33.1          |
| 3D R-50 (our recipe) | -         | 32×2            | $2^3$    | 73.0  | 90.4  | 33.1          |
| 3D R-50 [50]         | ImageNet  | 8×8             | $2^1$    | 73.4  | 90.9  | 28.1          |
| 3D R-50, our recipe  | -         | 8×8             | $2^1$    | 73.5  | 90.8  | 28.1          |

(a) **Baselines trained from scratch**: Using the same structure as [50], our training recipe achieves comparable results *without* ImageNet pre-training. "treduce" is the temporal downsampling factor in the network.

| model               | $T \times \tau$ | t-reduce | top-1 | top-5 | <b>GFLOPs</b> |
|---------------------|-----------------|----------|-------|-------|---------------|
| 3D R-50             | 8×8             | $2^{1}$  | 73.5  | 90.8  | 28.1          |
| 3D R-50             | 8×8             | 1        | 74.6  | 91.5  | 44.9          |
| our Slow-only, R-50 | 4×16            | 1        | 72.6  | 90.3  | 20.9          |
| our Fast-only, R-50 | 32×2            | 1        | 51.7  | 78.5  | 4.9           |

(b) **Individual pathways**: Training our Slow-only or Fast-only pathway alone, using the structure specified in Table 1. "t-reduce" is the total temporal downsampling factor within the network.

|           | lateral      | top-1 | top-5 | <b>GFLOPs</b> |
|-----------|--------------|-------|-------|---------------|
| Slow-only | 2            | 72.6  | 90.3  | 20.9          |
| SlowFast  | -            | 73.5  | 90.3  | 26.2          |
| SlowFast  | TtoC, concat | 74.3  | 91.0  | 30.5          |
| SlowFast  | TtoC, sum    | 74.5  | 91.3  | 26.2          |
| SlowFast  | T-sample     | 75.4  | 91.8  | 26.7          |
| SlowFast  | T-conv       | 75.6  | 92.1  | 27.6          |

| ,             | top-1 | top-5 | <b>GFLOPs</b> |
|---------------|-------|-------|---------------|
| Slow-only     | 72.6  | 90.3  | 20.9          |
| $\beta = 1/4$ | 75.6  | 91.7  | 41.7          |
| 1/6           | 75.8  | 92.0  | 32.0          |
| 1/8           | 75.6  | 92.1  | 27.6          |
| 1/12          | 75.2  | 91.8  | 25.1          |
| 1/16          | 75.1  | 91.7  | 23.4          |
| 1/32          | 74.2  | 91.3  | 21.9          |

Fast pathway | spatial | top-5 27.6 RGB 92.1 RGB,  $\beta=1/4$ 91.8 26.3 half gray-scale 75.5 91.9 26.1 91.6 74.5 26.2 time diff optical flow 26.9

(c) **SlowFast fusion**: Fusing Slow and Fast pathways with various lateral connections is consistently better than the Slow-only baseline. Backbone: R-50.

(d) Channel capacity ratio: Varying values of  $\beta$ , the channel capacity ratio of the Fast pathway. Backbone: R-50.

(e) Weaker spatial input to Fast pathway: Various ways of weakening spatial inputs to the Fast pathway in SlowFast models.  $\beta$ =1/8 unless specified otherwise. Backbone: R-50.

|             | top-1 | top-5 | <b>GFLOP</b> |
|-------------|-------|-------|--------------|
| Slow-only   | 72.6  | 90.3  | 20.9         |
| SlowFast    | 75.6  | 92.1  | 27.6         |
| 2-Slow ens. | 73.2  | 90.8  | 41.8         |
| "SlowSlow"  | 70.5  | 88.6  | 75.6         |

|           | $T \times \tau$ | $\alpha$ | top-1 | top-5 | GFLOP: |
|-----------|-----------------|----------|-------|-------|--------|
| Slow-only | 4×16            | 170      | 72.6  | 90.3  | 20.9   |
| SlowFast  | 4×16            | 8        | 75.6  | 92.1  | 27.6   |
| Slow-only | 8×8             | 020      | 74.9  | 91.5  | 41.9   |
| SlowFast  | 8×8             | 4        | 77.0  | 92.6  | 50.3   |
| SlowFast  | 2×32            | 8        | 73.4  | 90.8  | 13.9   |
| SlowFast  | 4×16            | 4        | 75.3  | 91.7  | 25.2   |
| SlowFast  | 6×16            | 8        | 76.8  | 92.2  | 41.1   |
| SlowFast  | 8×12            | 4        | 76.8  | 92.5  | 50.3   |
|           |                 |          |       |       |        |

| SlowFast   | $T\times \tau$ | $\alpha$ | top-1 | top-5 | <b>GFLOPs</b> |
|------------|----------------|----------|-------|-------|---------------|
| R-50       | 4×16           | 8        | 75.6  | 92.1  | 27.6          |
| R-50 + NL  | $4\times16$    | 8        | 76.3  | 92.2  | 33.8          |
| R-50       | $8 \times 8$   | 4        | 77.0  | 92.6  | 50.3          |
| R-50 + NL  | $8 \times 8$   | 4        | 77.7  | 93.1  | 65.5          |
| R-101      | 4×16           | 8        | 76.9  | 92.7  | 44.5          |
| R-101 + NL | $4 \times 16$  | 8        | 77.4  | 92.7  | 47.4          |
| R-101      | $8 \times 8$   | 4        | 77.9  | 93.2  | 81.5          |
| R-101 + NL | $8\times8$     | 4        | 79.0  | 93.6  | 88.0          |

(f) vs. Slow+Slow: Ensembling 2 Slowonly models (ens.), or replacing the Fast pathway with a Slow pathway ("SlowSlow") . Backbone: R-50. (g) **Various SlowFast instantiations**, compared to Slow-only counterparts. Here all SlowFast models use  $\beta$ =1/8 for the Fast pathway. Backbone: R-50.

(h) Advanced backbones for SlowFast models, with ResNet-101 [21] and/or nor receipt Lindows is [50].

# Comparison with state-of-the-art results

## 直接放图:

| model                | flow | pretrain | top-1 | top-5 | inference<br>GFLOPs×views |
|----------------------|------|----------|-------|-------|---------------------------|
| I3D [3]              |      | ImageNet | 72.1  | 90.3  | 108 × N/A                 |
| Two-Stream I3D [3]   | ✓    | ImageNet | 75.7  | 92.0  | $216 \times N/A$          |
| S3D-G [53]           | ✓    | ImageNet | 77.2  | 93.0  | 143 × N/A                 |
| Nonlocal R-50 [50]   |      | ImageNet | 76.5  | 92.6  | $282 \times 30$           |
| Nonlocal R-101 [50]  |      | ImageNet | 77.7  | 93.3  | $359 \times 30$           |
| R(2+1)D Flow [45]    | ✓    | -        | 67.5  | 87.2  | 152 × 115                 |
| STC [7]              |      | S=       | 68.7  | 88.5  | $N/A \times N/A$          |
| ARTNet [48]          |      | 12       | 69.2  | 88.3  | $23.5 \times 250$         |
| S3D [53]             |      | -        | 69.4  | 89.1  | $66.4 \times N/A$         |
| ECO [54]             |      | -        | 70.0  | 89.4  | $N/A \times N/A$          |
| I3D [3]              | ✓    | -        | 71.6  | 90.0  | $216 \times N/A$          |
| R(2+1)D [45]         |      | -        | 72.0  | 90.0  | $152 \times 115$          |
| R(2+1)D [45]         | ✓    |          | 73.9  | 90.9  | $304 \times 115$          |
| SlowFast, R50 (4×16) |      | 0,20     | 75.6  | 92.1  | $36.1 \times 30$          |
| SlowFast, R50        |      | -        | 77.0  | 92.6  | $65.7 \times 30$          |
| SlowFast, R50 + NL   |      | -        | 77.7  | 93.1  | $80.8 \times 30$          |
| SlowFast, R101       |      | _        | 77.9  | 93.2  | $106 \times 30$           |
| SlowFast, R101 + NL  |      | -        | 79.0  | 93.6  | $115 \times 30$           |

Table 3. Comparison with the state-of-the-art on Kinetics-400. In the column of computational cost, we report the cost of a single "view" (temporal clip with spatial crop) and the numbers of such views used. Details of the SlowFast models in this table are in Table 2h. "N/A" indicates the numbers are not available for us. The SlowFast models are the  $T \times \tau = 8 \times 8$  versions, unless specified.

| model               | pretrain            | top-1 | top-5 | inference<br>GFLOPs×views |
|---------------------|---------------------|-------|-------|---------------------------|
| I3D [2]             | ·                   | 71.9  | 90.1  | 108 × N/A                 |
| StNet-IRv2 RGB [18] | ImgNet+Kinetics400† | 79.0  | N/A   | N/A                       |
| SlowFast, R50       | .=:                 | 79.9  | 94.5  | 65.7 ×30                  |
| SlowFast, R101      | -                   | 80.4  | 94.8  | $106 \times 30$           |
| SlowFast, R101 + NL | -                   | 81.1  | 94.9  | $115 \times 30$           |

Table 4. **Kinetics-600 results**. SlowFast models are with  $T \times \tau = 8 \times 8$ . †: The Kinetics-400 training set partially overlaps with the Kinetics-600 validation set, and "it is therefore not ideal to evaluate models on Kinetics-600 that were pre-trained on Kinetics-400 [2].

跑完kinetics-400, 再跑-600 (跪了。)

'在最新的2018年ActivityNet比赛,冠军的最佳单模模型,精度为79.0%。我们的方法达到了81.1%。"很皮。

## • AVA action detection 结果

| model                 | flow | video pretrain | val mAP | test mAP          |
|-----------------------|------|----------------|---------|-------------------|
| I3D [17]              |      | Kinetics-400   | 14.5    | -                 |
| I3D [17]              | V    | Kinetics-400   | 15.6    | -                 |
| ACRN, S3D [41]        | 1    | Kinetics-400   | 17.4    | -                 |
| ATR, $R50 + NL$ [26]  |      | Kinetics-400   | 20.0    | 1. <del>-</del> 1 |
| ATR, $R50 + NL$ [26]  | ✓    | Kinetics-400   | 21.7    | 848               |
| 9-model ensemble [26] | V    | Kinetics-400   | 25.6    | 21.1              |
| I3D [13]              |      | Kinetics-600   | 21.9    | 21.0              |
| SlowFast, R101        |      | Kinetics-400   | 26.1    | -                 |
| SlowFast, R101        |      | Kinetics-600   | 26.8    | 26.6              |
| SlowFast, R101 + NL   |      | Kinetics-600   | 27.3    | 1 <del>-</del> 1  |
| SlowFast++, R101 + NL |      | Kinetics-600   | 28.3    | 8 <u>4</u> 8      |

Table 7. Comparison with the state-of-the-art on AVA. Here "++" indicates a version of our method that is tested with multi-scale and horizontal flipping augmentation (testing augmentation strategies for existing methods are not always reported). 知乎 @另半夏

## 5. 总结

直接放上大佬的原话吧。

We hope that this SlowFast concept will foster further research in video recognition.

#### 个人感悟:

感觉从TSN之后,大家开始更多关注在如何稀疏采样上。

同时如何在时间维度上更好的处理运动信息,也是大家重点研究的问题。

最后题外话,如何去国内大厂实习?求带。