GENERALIZED COHOMOLOGY TALK OUTLINE

For the Brown Representability Theorem and generalized cohomology theories, see [Hat02, Sections 4.3 and 4.E]. For K-theory, [Hat17, Chapter 2] is a good reference, or [May99, Chapter 24]. I also like [Zak17, Section 12], because this is where I learned this stuff.

OUTLINE

1. Generalized Cohomology Theories

- (a) Define a generalized cohomology theory following [Hat02, Page 448]: functors $h^n : \mathfrak{Top}_* \to \mathcal{A}b$ with natural isomorphisms $h^n \to h^{n+1}\Sigma$ satisfying homotopy, exactness, and additivity axioms. (Hatcher uses pointed CW complexes, but we can just use all pointed spaces. The difference between pointed and unpointed stuff is in [Hat02, Theorem 4.59], if you're curious.)
- (b) Construct the cofibration sequence $A \to X \to Q \to \Sigma A \to \Sigma X \to ...$ (where Q is the cofiber of $A \to X$) using a problem from the second problem set. This is known as a *Puppe Sequence*. Show that this yields a long exact sequence in cohomology for any generalized cohomology theory, using the exactness axiom.
- (c) Give the example of reduced cohomology with coefficients in an abelian group A: $h^i = \widetilde{H}^i(-;A)$.
- (d) Another important example of a generalized cohomology theory is K-theory, which we will go into some detail on.

2. K-theory

- (a) Let X be a pointed space. We define $K^0(X)$ to be the free abelian group on isomorphism classes of complex vector bundles over X, modulo the relation that $[E] + [E'] = [E \oplus E']$.
- (b) An example: when X = * is a point, then $K^0(*) \cong \mathbb{Z}$. Vector bundles on a point are just vector spaces, and the only information retained by the isomorphism classes is dimension.
- (c) Another (nontrivial) example: $K^0(S^1) \cong \mathbb{Z}$.
- (d) It's not obvious, but it's a fact that $K^0(X)$ depends on the space X only up to homotopy. If Y is another space such that $Y \simeq X$, then $K^0(Y) \cong K^0(X)$.
- (e) If we want to define a generalized cohomology theory, we have to satisfy the wedge axiom. Note that the wedge axiom implies that $h^i(*) = 0$ for all i, including i = 0. See [Hat02, Item (1) at bottom of page 449]. But $K^0(*) = \mathbb{Z}$.
- (f) To fix this, we define *reduced* K-theory as $\widetilde{K}^0(X) = \ker(\dim)$, where dim: $K^0(X) \to \mathbb{Z}$ is the homomorphism given by $[E] \mapsto \dim(E)$. That is, it takes the dimension of a vector bundle. Then $\widetilde{K}^0(*) = 0$.
- (g) This group $\widetilde{K}^0(X)$ has an interpretation in terms of vector bundles too: it is the quotient of $K^0(X)$ by the relation that [E] = [E'] if there are trivial vector bundles ε^i and ε^j of dimension i and j such that $E \oplus \varepsilon^i \cong E' \oplus \varepsilon^j$, for some $i, j \in \mathbb{N}$. Elements of this group are called *stable equivalence classes* of complex vector bundles on X.
- (h) If we define $\widetilde{K}^i(X) = \widetilde{K}^0(\Sigma X)$, then this defines a generalized cohomology theory.

3. Generalized Cohomology Theories and Infinite Loopspaces

(a) An *infinite loopspace* is a space X such that there are spaces X_i for $i \in \mathbb{N}$ and homotopy equivalences $X \simeq \Omega^i X_i$ (we say that $X = X_0$).

- (b) Mention that we also call such a sequence of spaces an Ω -spectrum.
- (c) An example of an infinite loopspace is an Eilenberg–MacLane space. Recall the definition of an Eilenberg–MacLane space K(G,n). It is characterized by the property that $\pi_i K(A,n)=0$ for $i\neq n$ and $\pi_n K(A,n)=A$. This implies that $\Omega K(A,n+1)\simeq K(A,n)$, so each K(A,n) is an infinite loopspace.
- (d) Prove that if you have an infinite loopspace X, then $h^i = [-, X_n]$ is a generalized cohomology theory. This is [Hat02, Theorem 4.58], but taking the definition of a generalized cohomology theory from [Hat02, Page 448] makes the proof even easier.

4. Brown Representability Theorem

- (a) State the Brown Representability Theorem [Hat02, Theorem 4E.1]. Do not prove it.
- (b) State the theorem that $\widetilde{H}^n(X; A) = [X, K(A, n)]$, but do not prove it.
- (c) K-theory is also represented by an infinite loopspace. In this case, the infinite loopspace is the loopspace of BU, the classifying space of the infinite unitary group U.
- (d) The infinite unitary group is $U = \operatorname{colim}_n U_n$. This is the union of all of the unitary groups U_n , including $U_n \hookrightarrow U_{n+1}$ by adding a row and a column to an $n \times n$ matrix and putting a 1 in the (n+1,n+1) entry and zeros elsewhere.
- (e) This infinite unitary group is, surprisingly, an infinite loopspace. This is a theorem known as *Bott Periodicity*: $U \simeq \Omega^2 U$. The spaces in between are $\Omega U \simeq \mathbb{Z} \times BU$. So we have a sequence of spaces

$$\mathbb{Z} \times BU, U, \mathbb{Z} \times BU, U, \dots$$

REFERENCES

- [Hat02] Allen Hatcher. Algebraic topology. Cambridge: Cambridge University Press, 2002.
- [Hat17] Allen Hatcher. Vector bundles and k-theory. https://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html, 2017.
- [May99] J. P. May. *A concise course in algebraic topology*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999.
- [Zak17] Inna Zakharevich. Math 6530: K-theory and characteristic classes lecture notes. https://pi.math.cornell.edu/~zakh/6530/, 2017.