MDL Lista 10

Cezary Świtała

5 stycznia 2021

Zadanie 1 Przypuśćmy, że w grafie G wszystkie wagi krawędzi są różne. Pokaż, nie używając żadnego algorytmu, że G zawiera tylko jedno minimalne drzewo rozpinające.

Załóżmy nie wprost, że istnieją dwa różne drzewa MST T_1 i T_2 . Ze zbioru krawędzi, które są tylko w jednym z drzew – E', wybierzmy tą o najmniejszej wadze, nazwijmy ją e_1 . Wiemy, że taka istnieje gdyż oba drzewa są opisane na tych samych wierzchołkach, ale są różne, czyli muszą różnić się krawędzią. Bez straty ogólności możemy założyć, że $e_1 \in T_1$.

Jeśli dodamy e_1 do T_2 to otrzymamy w nim cykl, gdyż otrzymany graf nie jest drzewem, bo ma n krawędzi, ale jest to graf spójny, czyli musi być cykliczny (inaczej by był drzewem). Na cyklu musi znajdować się jakaś krawędź, która nie należy do T_1 , inaczej T_1 miałoby cykl, a nie ma bo jest drzewem, nazwiemy ją e_2 . Skoro krawędź ta należy tylko do jednego drzewa, to należy też do zbioru E' i skoro nie była krawędzią o najmniejszej wadze, to $c(e_1) < c(e_2)$.

Tworzymy zatem nowy graf dokładając do drzewa T_2 krawędź e_1 i usuwając e_2 . Nie tracimy spójności, gdyż krawędź e_2 leżała na cyklu, a żaden most nie leży na cyklu. Liczba krawędzi pozostaje ta sama (n-1), czyli otrzymaliśmy graf który jest drzewem. Ponieważ $c(e_1) < c(e_2)$, otrzymujemy graf którego suma wag jest mniejsza niż w T_2 , czyli T_2 nie było MST. Mamy sprzeczność, więc nie mogły istnieć dwa różne drzewa MST.

Zadanie 2 Niech T będzie MST grafu G. Pokaż, że dla dowolnego cyklu C grafu G drzewo T nie zawiera jakiejś najcięższej krawędzi z C.

Załóżmy nie wprost, że drzewo MST grafu G zawiera najcięższą krawędź cyklu C, nazwijmy ją e_1 . Jeśli usuniemy tą krawędź z drzewa T otrzymamy graf T' posiadający dwie spójne składowe (po usunięciu graf T' dalej jest acykliczny, ale ma za mało krawędzi, żeby być drzewem, więc musi nie być spójny). Wiemy, że na cyklu musiała leżeć jakaś inna krawędź która uspójnia te dwie składowe (jeśli weszliśmy do jednej spójnej, to na cyklu musieliśmy gdzieś z niej wyjść), nazwijmy ją e_2 . Skoro e_1 było najcięższą krawędzią, to $c(e_1) > c(e_2)$.

Tworzymy teraz nowy graf poprzez usunięcie e_1 z T i dodanie e_2 . Powstaje graf spójny posiadający tyle samo krawędzi co T, czyli n-1, zatem jest to drzewo, którego suma wag krawędzi jest mniejsza od T, gdyż $c(e_1)>c(e_2)$. Czyli T nie jest MST, mamy sprzeczność. Zatem T nie mogło zawierać najcięższej krawędzi jakiegoś cyklu C.

Zadanie 4 Udowodnij, że algorytm Prima znajdowania MST działa poprawnie.

Pokażemy, że dla dowolnego grafu G, algorytm w i-tym kroku znajduje jakieś drzewo G_i będące podgrafem pewnego drzewa MST tego grafu. Wtedy w szczególności po n krokach G_n będzie równe jakiemuś MST tego grafu (bo będzie podgrafem grafu zawierającego tyle samo wierzchołków).

Dowód będzie indukcyjny po krokach algorytmu. Teza: W i-tym kroku algorytm Prim'a znajduje drzewo G_i , będące podgrafem jakiegoś MST T_i . Zaznaczam, że indeks przy T oznacza, że jest to MST grafu G z i-tego kroku.

Podstawa dla i = 1. Wybieramy wierzchołek, tworzy on G_1 i trywialnie jest podgrafem jakiegoś MST, gdyż każde MST zawiera wszystkie wierzchołki, więc w szczególności ten wybrany. T_1 może być zatem dowolnym MST.

Krok. Zakładamy, że teza zachodzi dla i-tego kroku, pokażemy że indukuje to prawdziwość dla (i+1)-szego kroku.

W (i+1)-szym kroku dokładamy krawędź $e_1 = (v, w)$ do grafu G_i , taką że $v \in V(G_i)$, a $w \notin V(G_i)$ i otrzymujemy graf G_{i+1} . Jeśli krawędź ta należała do $E(T_i)$, wtedy G_{i+1} też jest podgrafem MST T_i , więc niech $T_{i+1} = T_i$, wtedy otrzymujemy $G_{i+1} \subseteq T_{i+1}$, gdzie T_{i+1} to MST, więc teza zachodzi dla (i+1)-szego kroku.

W przeciwnym wypadku, jeśli $e_1 \notin E(T_i)$, wiemy, że w MST T_i istniała ścieżka z v do w, która w pewnym momencie opuściła graf G_i . Weźmy pierwszą krawędź na tej ścieżce, której jeden wierzchołek należy do G_i , a drugi nie, nazwijmy ją e_2 . Skoro e_2 nie zostało wybrane przez Prima, który wybiera krawędzie o minimalnej wadze to $c(e_1) \leq c(e_2)$. Rozważmy teraz graf T_{i+1} równy drzewu T_i z usuniętą krawędzią e_2 i dodaną e_1 . Usunięcie e_2 rozspójniło graf T_i na spójną składową, w której jest wierzchołek v oraz drugą, w której jest w. Zatem dodanie e_1 na nowo uspójnia graf. Zachowana została także liczba krawędzi więc T_{i+1} jest znów drzewem. Zauważamy również, że $c(T_{i+1}) \leq c(T_i)$, a skoro T_i to MST, to $c(T_{i+1}) = c(T_i)$, więc T_{i+1} jest również MST. Widać również, że G_{i+1} zawiera się w T_{i+1} , więc spełniona została teza dla (i+1)-szego kroku.

Zadanie 5 Załóżmy, że wszystkie krawędzie w grafie mają różne wagi. Udowodnij, że algorytm Boruvki rzeczywiście znajduje drzewo rozpinające, tzn. pokaż, że w żadnej iteracji nie powstaje cykl.

Załóżmy nie wprost, że w którejś iteracji algorytmu powstał cykl w jakiejś spójnej składowej S. Rozważymy dwa przypadki.

- 1. S powstała z dwóch składowych z poprzedniego kroku S_1 i S_2 i krawędzi do nich dołączonych odpowiednio e_1 i e_2 . Skoro e_1 zostało dołączone do S_1 , a nie e_2 to $c(e_1) < c(e_2)$, ale skoro e_2 została dołączona do S_2 , zamiast e_1 , to $c(e_2) < c(e_1)$ i otrzymujemy sprzeczność.
- 2. S powstała z trzech lub więcej składowych S_1, S_2, S_3, \dots z poprzedniego kroku oraz krawędzi e_1, e_2, e_3, \dots do nich przyłączonych. W S Pojawił się jakiś cykl C, który musiał być złożony z jakichś składowych $S_1, S_2, S_3, \dots, S_l$ i krawędzi $e_1, e_2, e_3, \dots, e_l$ położonych na przemian.

Jak widać na powyższym rysunku skoro e_2 zostało dołączone do S_2 zamiast e_1 to $c(e_1) > c(e_2)$. Kontynuując to rozumowanie dla każdego wierzchołka otrzymujemy nierówność

$$c(e_1) > c(e_2) > \dots > c(e_{l-1}) > c(e_l) > c(e_1)$$

Z której wynikałoby, że $c(e_1) > c(e_1)$, więc mamy sprzeczność.

W obu przypadkach otrzymaliśmy sprzeczność, czyli cykl nie mógł powstać.

Zadanie 6 Jak zmodyfikować algorytm Boruvki, by działał również w grafach, w których jakieś krawędzie mają takie same wagi?

Wystarczy, że przed uruchomieniem algorytmu posortujemy wagi krawędzi i do powtarzających się wag dodamy różne, małe epsilony, nie zmieniające kolejności krawędzi w sortowaniu, a pozwalające ustalić porządek wśród takich samych wag i sprawiające że nie będą już one równe.

Następnie stosujemy algorytm Boruvki, wiemy, że dla różnych wag algorytm znajdzie MST. Odwracamy teraz proces dodawania epsilonów. Nie mógł on mieć wpływu na wagę wyjściowego drzewa, gdyż jedynie nadaliśmy nowy priorytet krawędziom, między którymi wybór jest dla nas i tak bez znaczenia, bo mają te same wagi.

Zadanie 10 W pewnej grupie muzykujących osób Ania gra na skrzypcach, harfie, kontrabasie i wiolonczeli, Bartek gra na harfie i fortepianie, Cezary gra na fortepianie, Dąbrówka gra na harfie i Elwira gra na kontrabasie, skrzypcach, wiolonczeli i harfie.

Chcieliby zagrać utwór na fortepian, skrzypce, wiolonczelę, kontrabas i harfę. Czy uda im się dobrać skład?

Dla lepszego zobrazowania, możemy narysować reprezentację tych relacji za pomocą grafu dwudzielnego.

Pytanie zatem jest o skojarzenie doskonałe, a z warunku Halla wiemy, że jest ono możliwe w grafie dwudzielnym tylko wtedy kiedy dla każdego $A' \subseteq A$ zachodzi $|N(A')| \ge |A'|$, oraz dla każdego $B' \subseteq B$ zachodzi $|N(B')| \ge |B'|$. Niech A będzie zbiorem osób, a B zbiorem instrumentów.

Zauważamy, że wtedy istnieje podzbiór B' zbioru B równy $\{S, W, K\}$ (na rysunku, zaznaczony na po prawo na czerwono), taki że $N(B') = \{A, E\}$, czyli |N(B')| < |B'|, więc z warunku Halla wnioskujemy, że skojarzenie doskonałe nie może tutaj istnieć.