What I have learnt today

Author: 秦宇轩(Qin Yuxuan) Last complied at 2025-07-07

Contents

20	025	1
	06-30: F^{\times} is cyclic	
	07-05: Compact theorem (by Ultraproduct)	
	07-06: $\mathbb C$ is the ultraproduct of $\left(\overline{\mathbb F_p}\right)_{p \text{ prime}}$	2
	p prime	
	07-07: $\mathrm{Ran}_G G$ is a monad if it exists. Category admits arbitrary large limit must be a poset	2

2025

06-30: F^{\times} is cyclic

For finite field F, the multiplicative group F^{\times} is cyclic. This result can be used to prove that every finite field is gained from a quotient like $\mathbf{F}_p[x]/(\pi(x))$, for some prime p and monic irreducible $\pi(x)$.

Main idea: a group G is cyclic iff there is an element g such that $h=g^k$ for any other element h and some k, so we must have ord g=|G|. But by Lagrange theorem we alyways have ord $g\mid |G|$ for any g in G, so it suffices to prove $|G|\leq \operatorname{ord} g$. Thanks to the lemma below, we have $h^{\operatorname{ord} g}=1$ for all h. So the polynomial $x^{\operatorname{ord} g}=1$ has $|F^\times|$ roots, which implies $|F^\times|\leq \operatorname{ord} g$.

Lemma: In finite ablian group, the order of every element divides the maximal order. (It's fun to prove)

Ref. Finite Field by Conrad.

07-05: Compact theorem (by Ultraproduct)

• Ultraproduct: suppose $(A_i)_{i\in I}$ is a bunch of structure in language L, then we can construct a new structure $\mathcal A$ using them, provided am ultrafilter $\mathcal U$ on I:

$$\mathcal{A}\coloneqq\prod_{\mathcal{H}}A_i\coloneqq\left(\prod_{i\in I}A_i\right)/\underset{\mathcal{U}}{\sim}.$$

- Los theorem: A formula is ture in an ultraproduct, if and only if this formula is ture in *many* smaller models which are used to made that ultraproduct. ("many" is defined by the ultrafilter.)
- Proof of Compact theorem: The model you want is the ultraproduct $\prod_{\mathcal{U}} A_i$ where $(A_i)_{i \in I}$, which is indexed by the set I of all finite sub-theory of given theory T, are models of $i \in I$ (by assumption these models must exist). To prove all formula φ in T are vaild in that ultraproduct, one consult for Los theorem. (The ultrafilter needed by Los theorem can just be solved out by your desire of "makeing $\mathcal A$ a model of T".)

A little interesting result: Suppose \mathcal{U}_A is an ultrafilter generated by A on I (thus is priciple), then

$$\{\mathcal{U}_A\subset B: B \text{ ultrafilter on I}\}\simeq \{V: V \text{ ultrafilter on A}\}.$$

This can be used to prove every priciple ultrafilter is generated by a singleton in $\mathcal{P}(I)$ i.e., by a single subset of I, or equivalently, every non-principle ultrafilter must contain the Frechet filter (consists of precisely all "cofinite" subsets of I) as a subset.

Ref. Sets, Models and Proofs. Ieke Moerdijk and Jaap van Oosten.

07-06: $\mathbb C$ is the ultraproduct of $\left(\overline{\mathbb F_p}\right)_{p ext{ prime}}$

Do not know why yet. Can not even ensure the correctness, but I think...

07-07: $\operatorname{Ran}_G G$ is a monad if it exists. Category admits arbitrary large limit must be a poset.

This is the construction of socalled **codensity** monad of an arbitrary functor $G: A \to B$, and the monadness can be proved in a clever way:

Define a category r_G whose:

- Objects: $(X: B \to B, x: XG \Rightarrow G)$, i.e., right extensions of G;
- Morphisms between (X,x) and (Y,y): Natural transformations $\eta:X\Rightarrow Y$ which campatible with x and y.

And (r_G, id_B, \circ) is a (strict) monoidal category.

Then we find $\operatorname{Ran}_G G$ is the terminal object in r_G ! So by common abstract nonsense argument, it has an unique monoid structure.

Ref.

- CODENSITY AND THE ULTRAFILTER MONAD, Section 5. Tom Leinster.
- complete small category, Theorem 2.1. ncatlab.