Devoir facultatif n° 4

Dans ce problème, on note ${\mathscr P}$ l'ensemble des nombres premiers.

Si $n \in \mathbb{N}^*$, on note $\pi(n)$ le nombre de nombres premiers dans l'intervalle d'entiers $[\![1,n]\!]$:

$$\pi(n) = \operatorname{Card} \{ p \in [1, n] \mid p \in \mathscr{P} \}.$$

Si $n \in \mathbb{N}^*$, on note μ_n le plus petit multiple strictement positif commun aux nombres 1, 2, ..., n:

$$\mu_n = \text{PPCM}(1, 2, \dots, n).$$

On rappelle que si $p \in \mathscr{P}$, on note $\nu_p(a)$ la valuation p-adique d'un entier a. On rappelle aussi que si $a, b \in \mathbb{N}^*$, alors

$$a \mid b \Leftrightarrow \forall p \in \mathscr{P}, \ \nu_p(a) \leqslant \nu_p(b).$$

L'objectif de ce problème est de démontrer une inégalité de Tchebychev sur la répartion des nombres premiers :

$$\forall n \in \mathbb{N} \setminus \{0, 1, 2\}, \ \ln(2) \frac{n}{\ln(n)} \leqslant \pi(n).$$

I - Résultats préliminaires.

- 1) Démontrer que pour tout $k \in \mathbb{Z}$, $k \wedge (2k+1) = 1$.
- 2) Un critère de divisibilité par un produit de trois entiers. Soit $a, b, c, d \in \mathbb{N}^*$. On suppose que $ac \mid d, bc \mid d$ et $a \land b = 1$.
 - a) Justifier l'existence de $u, v \in \mathbb{Z}$ tels que adu + bdv = d.
 - **b)** En déduire que $abc \mid d$.
- 3) Propriétés élémentaires de μ_n .
 - a) Déterminer μ_2 , μ_3 et μ_4 .
 - **b)** Montrer que pour tout $n \in \mathbb{N}^*$, $\mu_n \mid \mu_{n+1}$.
- 4) Valuations p-adiques de μ_n .

Soit $n \in \mathbb{N}^*$. Montrer que pour tout $p \in \mathscr{P}$, $\nu_p(\mu_n) = \max(\nu_p(1), \dots, \nu_p(n))$.

II - Un diviseur non trivial de μ_n .

Soit $a, b \in \mathbb{N}$ vérifiant $1 \leqslant a \leqslant b$, on pose

$$I(a,b) = \int_0^1 x^{a-1} (1-x)^{b-a} dx.$$

- 5) Calcul de I(a, b).
 - a) Calculer I(1, b).
 - **b)** Montrer que si a < b, alors $I(a+1,b) = \frac{a}{b-a}I(a,b)$.
 - c) En déduire que $I(a,b) = \frac{1}{a\binom{b}{a}}$.
- **6)** Lien avec μ_n .
 - a) Montrer que $I(a,b) = \sum_{k=0}^{b-a} \frac{(-1)^k}{k+a} {b-a \choose k}$.
 - **b)** En considérant $\mu_b I(a,b)$, en déduire que $a\binom{b}{a}$ divise μ_b .

III - Minoration de μ_n (théorème de Nair, 1982).

Soit $n \in \mathbb{N}^*$.

- 7) a) En utilisant ce qui précède, montrer que $n\binom{2n}{n}$ divise μ_{2n+1} .
 - **b)** Montrer que $(2n+1)\binom{2n}{n} = (n+1)\binom{2n+1}{n+1}$ et en déduire que $(2n+1)\binom{2n}{n}$ divise aussi μ_{2n+1} .
 - c) En déduire que $n(2n+1)\binom{2n}{n}$ divise aussi μ_{2n+1} .
- 8) Montrer que pour tout $0 \le k \le 2n$, $\binom{2n}{k} \le \binom{2n}{n}$.

 Indication: on pourra étudier les variations de la suite finie $\binom{2n}{0}, \ldots, \binom{2n}{2n}$.
- 9) En déduire que $(2n+1)\binom{2n}{n} \geqslant 4^n$.
- 10) En déduire que $\mu_{2n+1} \geqslant n4^n$.
- 11) Montrer que si $n \ge 9$, alors $\mu_n \ge 2^n$.

 Indication: on pourra discuter selon la parité de n.

IV - Conclusion.

Soit n un entier supérieur ou égal à 3.

- **12)** Soit $p \in \mathscr{P}$. Montrer que pour tout $a \geqslant 2$, $p^{\nu_p(a)} \leqslant a$.
- 13) En déduire que $\mu_n \leqslant n^{\pi(n)}$.
- 14) En déduire finalement l'inégalité de Tchebychev :

$$\ln(2)\frac{n}{\ln(n)} \leqslant \pi(n)$$
— **FIN** —