Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling

Summary and bigger picture

Bayesian Analysis via MCMC

Jingqi Zhu

The University of Manchester

June 7, 2022

Overview

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling

- 1 Bayesian analysis and its primary challenge
 - 2 Markov Chain Monte Carlo
 - M-H algorithm
 - Gibbs sampling
 - Comparison
- 3 Summary and bigger picture

Bayesian analysis and its primary challenge

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling

Summary and bigger picture

 Bayesian analysis: a statistical inference paradigm combining prior and data based on Bayes' theorem.

■ Objective: posterior distribution $p(\theta|\mathbf{x})$

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} \propto p(\mathbf{x}|\theta)p(\theta)$$
 (1)

where $p(\mathbf{x}) = \int_{\mathbf{\Theta}} p(\mathbf{x}|\mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta}$ is a normalizing constant.

• Moreover, most summary statistics can be expressed as posterior expectations of $f(\theta)$

$$E[f(\theta)|\mathbf{x}] = \frac{\int_{\Theta} f(\theta)p(\mathbf{x}|\theta)p(\theta)d\theta}{\int_{\Theta} p(\mathbf{x}|\theta)p(\theta)d\theta}$$
(2)

■ Challenge: approximating integrals/expectations.

Bayesian analysis and its primary challenge

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling Comparison

Summary and bigger picture

■ Task: Approximate $E_{\pi}[f(\theta)] = \int f(\theta)\pi(\theta)d\theta$

- Numerical integration (trapezium/Simpson's method, etc) suffers the curse of dimensionality: $e \sim O(n^{-\frac{1}{d}})$.
- Monte Carlo integration: sample iid $\theta_i \sim \pi$, $1 \le i \le n$

$$\hat{I}(n) = \frac{1}{n} \sum_{i=1}^{n} f(\theta_i)$$
 (3)

Converge faster: $e \sim O(n^{-\frac{1}{2}})$.

■ New challenge: sampling from a target distribution $\pi(\theta)$.

Classical simulation methods

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chair Monte Carlo M-H algorithm Gibbs sampling

Summary and bigger picture

Classical simulation methods fail to sample an arbitrary target posterior π in high dimension.

Methods	Problem			
Inverse cdf method	no available cdf for posterior			
Transformation method	only work for standard distributions			
Accept-Reject method	hard to find high dimensional proposal			
Importance sampler	hard to find high dimensional proposal			

Rethinking 1 - dependence

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo

Gibbs sampling Comparison

- Rethinking 1: Monte Carlo requires independent samples. Side effect: erase information from previous sample when drawing new samples!
- Independency-Efficiency tradeoff: improve the efficiency of sampling by allowing some dependence among samples?
- Rather than universal proposal, use moving proposal!

Rethinking 2 - convergence

Double Project

Jingqi Zhi

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo

Gibbs sampling
Comparison

- Rethinking 2: Hard to sample target distribution directly. Generate a sequence converging to target distribution?
- Markov chain converging to stationary distribution which happens to be the target distribution.
- Markov chain+Monte Carlo=Markov chain Monte Carlo.

Metropolis-Hastings algorithm

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling

Summary and

- 1. starting from an initial point x_0
 - 2. draw candidate from proposal $Y \sim q(Y|X_i)$
 - 3. accept candidate with probability

$$\alpha(Y|X_i) = \min\{\frac{\pi(Y)q(X_i|Y)}{\pi(X_i)q(Y|X_i)}, 1\}$$
(4)

- Acceptance rate $\bar{\alpha} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} \alpha(Y|X_i)$
- Only requires knowing target up to a constant.

Metropolis-Hastings algorithm

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chair Monte Carlo M-H algorithm Gibbs sampling Comparison

Summary and bigger picture

- Proposal should be close to the target as possible
- We usually choose proposals with larger variance or heavier tails than the target to ensure the whole space is explored.
- Parameters of proposal can be tuned according to acceptance rate, trace plot and autocorrelation plot.
- Independent Metropolis-Hastings

$$\alpha(Y|X_i) = \min\{\frac{\pi(Y)q(X_i)}{\pi(X_i)q(Y)}, 1\}$$
 (5)

Random Walk Metropolis

$$\alpha(Y|X_i) = \min\{\frac{\pi(Y)}{\pi(X_i)}, 1\}$$
 (6)

Ideal random walk proposal should have acceptance rate approximately 25%.

Gibbs sampling

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling Comparison

Summary and bigger picture

■ 1. determine an initial point $x^{(0)}$

$$\begin{array}{l} \text{2. generate } X_1^{(i+1)} \sim \pi \big(x_1 | x_2^{(i)}, \dots, x_d^{(i)} \big) \\ \text{generate } X_2^{(i+1)} \sim \pi \big(x_2 | x_1^{(i+1)}, x_3^{(i)}, \dots, x_d^{(i)} \big) \\ \dots \\ \text{generate } X_d^{(i+1)} \sim \pi \big(x_d | x_1^{(i+1)}, x_2^{(i+1)}, \dots, x_{d-1}^{(i+1)} \big) \end{array}$$

- Even though joint distribution can be complicated, full conditionals are univariate, thus Gibbs sampling is very efficient.
- Gibbs sampling accept every move, no need to concern acceptance rate or tuning parameters.

Algorithm comparison

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling Comparison

Summary and bigger picture

- Estimate parameters of Gaussian mixture model $pN(\mu_1, 1/\tau_1) + (1-p)N(\mu_2, 1/\tau_2)$.
- Underlying true model is 0.7N(-1,1) + 0.3N(2,1).
- Non-informative priors: $\mu_1 \sim N(-1,4), \mu_2 \sim N(2,4), \tau_1 \sim Exp(1), \tau_2 \sim Exp(1), p \sim Beta(3,2).$

Gaussian mixture 0.7N(-1,1)+0.3N(2,1)

Algorithm comparison

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chair Monte Carlo M-H algorithm Gibbs sampling Comparison

Summary and bigger picture

Independent proposals: $\mu_1 \sim N(-1, \frac{var(x)}{n}), \mu_2 \sim N(2, \frac{var(x)}{n}), \tau_1 \sim Gamma(2, 2), \tau_2 \sim Gamma(2, 2), p \sim Beta(7, 3).$

- Random proposals: for $\mu_1, \mu_2, \tau_1, \tau_2$ are $N(0, 0.25^2)$, for p is $N(0, 0.005^2)$.
- Gibbs: latent variables, data argumentation.

	mu1	tau1	mu2	tau2	р
IndepMH	-0.91	1.10	1.96	1.53	0.66
RWM	-1.02	0.96	1.32	0.73	0.61
Gibbs	-1.06	0.99	2.84	0.92	0.70
True Model	-1	1	2	1	0.70

Independent Metropolis-Hastings

Double Project

Jingqi Zhu

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm Gibbs sampling

Comparison
Summary and bigger picture

Acceptance rate: 0.26.

Random walk Metropolis

Double Project

Jingqi Zhu

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm

Summary and

Acceptance rate: 0.25.

Gibbs sampling

Double Project

Jingqi Zh

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo M-H algorithm

Comparison
Summary and bigger picture

Summary and bigger picture

Double Project

Jingqi Zhu

Bayesian analysis and its primary challenge

Markov Chain Monte Carlo

M-H algorithm
Gibbs sampling

