Answers to Worksheet 5 - Derivatives II

1)
$$\frac{dy}{dx} = -4x$$

2)
$$\frac{dy}{dx} = 6x$$

3)
$$\frac{dy}{dx} = \frac{8}{3}x^3 - \frac{10}{3}x^{\frac{2}{3}} + \frac{2}{15}x^{-\frac{3}{5}}$$

$$= \frac{8x^3}{3} - \frac{10x^{\frac{2}{3}}}{3} + \frac{2}{\frac{2}{3}}$$

4)
$$f'(x) = \frac{25}{3}x^{\frac{2}{3}} - 8x^{-5} + \frac{5}{4}x^{-6}$$
 5) $f'(x) = \frac{20}{3}x^{4} - x^{-2} + \frac{5}{2}x^{-6}$ 6) $\frac{dy}{dx} = \frac{5}{3}x^{4} - 16x^{3} + x^{2}$

$$= \frac{20x^{4}}{3} - \frac{1}{x^{2}} + \frac{5}{2x^{6}}$$

$$= \frac{5x^{4}}{3} - 16x^{3} + x^{2}$$

$$0 = \frac{25}{3}x^{\frac{2}{3}} - 8x^{-5} + \frac{5}{4}x^{-6}$$

$$0 = \frac{25}{3}x^{\frac{2}{3}} - 8x^{-5} + \frac{5}{4}x^{-6}$$

$$0 = \frac{20}{3}x^{4} - x^{-2} + \frac{5}{2}x^{-6}$$

$$0 = \frac{20}{3}x^{4} - x^{2} + \frac{5}{2}x^{-6}$$

$$0 = \frac{25}{3}x^{4} - x^{2} + \frac{5}{3}x^{4} - x^{2} + \frac{$$

6)
$$\frac{dy}{dx} = \frac{5}{3}x^4 - 16x^3 + x^2$$
$$= \frac{5x^4}{3} - 16x^3 + x^2$$

7)
$$f'(x) = \frac{16}{3}x^{\frac{1}{3}} - \frac{5}{12}x^{-\frac{2}{3}} + 10x^{-3}$$

$$= \frac{16x^{\frac{1}{3}}}{3} - \frac{5}{12x^{\frac{2}{3}}} + \frac{10}{x^{3}}$$

8)
$$f'(x) = -\frac{4}{3}x^{\frac{2}{3}} - \frac{1}{2}x^{-\frac{1}{2}} - 4x^{-5}$$

= $-\frac{4x^{\frac{2}{3}}}{3} - \frac{1}{\frac{1}{2}x^{\frac{1}{2}}} - \frac{4}{x^{5}}$

9)
$$f'(x) = 12x^3 - \frac{5}{16}x^{-\frac{3}{4}} + \frac{2}{5}x^{-\frac{4}{5}}$$

= $12x^3 - \frac{5}{16x^{\frac{3}{4}}} + \frac{2}{5x^{\frac{4}{5}}}$

10)
$$f'(x) = -8x^3 + 3 + \frac{1}{5}x^{-2}$$

= $-8x^3 + 3 + \frac{1}{5x^2}$

11)
$$f'(x) = 2x - 5x^{-2} + 2x^{-6}$$

= $2x - \frac{5}{x^2} + \frac{2}{x^6}$

$$= 12x^{3} - \frac{3}{16x^{\frac{3}{4}}} + \frac{4}{5x^{\frac{4}{5}}}$$

$$11) f'(x) = 2x - 5x^{-2} + 2x^{-6}$$

$$= 2x - \frac{5}{x^{2}} + \frac{2}{x^{6}}$$

$$= -\frac{6x^{2}}{5} - \frac{5}{4}x^{\frac{1}{2}} + \frac{2}{25x^{\frac{3}{5}}}$$

$$= -\frac{6x^{2}}{5} - \frac{5}{4x^{\frac{1}{2}}} + \frac{2}{25x^{\frac{3}{5}}}$$

13)
$$f'(x) = 4x + \cos x + \sin x$$

14)
$$g'(x) = \frac{1}{x} - 2\sin x + \frac{2}{x^2}$$

15)
$$g'(x) = 3\sin x + \frac{5}{x} - 5e^x - \frac{4}{x^3}$$