Isotropic nonarchimedean S-arithmetic groups are not left orderable

Groupes S-arithmétiques non-archimédiens isotropes ne sont pas ordonnés à gauche

Lucy Lifschitz

Department of Mathematics, University of Oklahoma, Norman, Oklahoma, 73019, USA

Dave Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA

Abstract

If \mathcal{O} is either $\mathbb{Z}[\sqrt{r}]$ or $\mathbb{Z}[1/r]$, where r > 1 is any square-free natural number, we show that no finite-index subgroup of $\mathrm{SL}(2,\mathcal{O})$ is left orderable. (Equivalently, these subgroups have no nontrivial orientation-preserving actions on the real line.) This implies that if G is an isotropic F-simple algebraic group over an algebraic number field F, then no nonarchimedean S-arithmetic subgroup of G is left orderable. Our proofs are based on the fact, proved by G. Liehl, that every element of G is a product of a bounded number of elementary matrices.

Résumé

Si \mathcal{O} est soit $\mathbb{Z}[\sqrt{r}]$ ou soit $\mathbb{Z}[1/r]$, où r>1 est un entier positif sans carré, nous prouvons qu'aucun sous-groupe d'indice fini de $\mathrm{SL}(2,\mathcal{O})$ n'est ordonné à gauche. (En d'autres mots, les sous-groupes d'indice fini de $\mathrm{SL}(2,\mathcal{O})$ ne possèdent pas d'action non triviale sur la droite respectant l'orientation.) Cela implique que si G est un groupe algébrique F-simple isotrope, défini sur un corps de nombres F, alors aucun sous-groupe S-arithmétique non-archimédien de G n'est ordonné à gauche. La démonstration est fondée sur le fait, due à B. Liehl, que chaque élément de $\mathrm{SL}(2,\mathcal{O})$ est le produit d'un nombre borné de matrices élémentaires.

Email addresses: LLifschitz@math.ou.edu (Lucy Lifschitz), Dave.Morris@uleth.ca (Dave Morris).

URLs: http://www.math.ou.edu/~llifschitz/ (Lucy Lifschitz), http://people.uleth.ca/~dave.morris/ (Dave Morris).

1. Introduction

It is known [8] that finite-index subgroups of $SL(3,\mathbb{Z})$ or $Sp(4,\mathbb{Z})$ are not left orderable. (That is, there does not exist a total order \prec on any finite-index subgroup, such that $ab \prec ac$ whenever $b \prec c$.) More generally, if G is a \mathbb{Q} -simple algebraic \mathbb{Q} -group, with \mathbb{Q} -rank $G \geq 2$, then no finite-index subgroup of $G_{\mathbb{Z}}$ is left orderable. It has been conjectured that the restriction on \mathbb{Q} -rank can be replaced with the same restriction on \mathbb{R} -rank, which is a much weaker hypothesis:

Conjecture 1 If G is a \mathbb{Q} -simple algebraic \mathbb{Q} -group, with \mathbb{R} -rank $G \geq 2$, then no finite-index subgroup Γ of $G_{\mathbb{Z}}$ is left orderable.

It is natural to propose an analogous conjecture that replaces \mathbb{Z} with a ring of S-integers, and has no restriction on the \mathbb{R} -rank:

Conjecture 2 If G is a \mathbb{Q} -simple algebraic \mathbb{Q} -group, and $\{p_1, \ldots, p_n\}$ is any nonempty set of prime numbers, then no finite-index subgroup Γ of $G_{\mathbb{Z}[1/p_1,\ldots,1/p_n]}$ is left orderable.

We prove Conjecture 2 under the additional assumption that \mathbb{Q} -rank $G \geq 1$:

Theorem 3 If G is a \mathbb{Q} -simple algebraic \mathbb{Q} -group, with \mathbb{Q} -rank $G \geq 1$, and $\{p_1, \ldots, p_n\}$ is any nonempty set of prime numbers, then no finite-index subgroup Γ of $G_{\mathbb{Z}[1/p_1,\ldots,1/p_n]}$ is left orderable.

More generally, if G is an F-simple algebraic group over an algebraic number field F, with F-rank $G \ge 1$, then no nonarchimedean S-arithmetic subgroup Γ of G is left orderable.

We also prove some cases of Conjecture 1 (with \mathbb{Q} -rank G = 1). For example, we consider \mathbb{Q} -forms of $\mathrm{SL}(2,\mathbb{R}) \times \mathrm{SL}(2,\mathbb{R})$:

Theorem 4 If r > 1 is any square-free natural number, then no finite-index subgroup Γ of $SL(2, \mathbb{Z}[\sqrt{r}])$ is left orderable.

In geometric terms, the theorems can be restated as the nonexistence of orientation-preserving actions on the line:

Corollary 5 If Γ is as described in Theorem 3 or Theorem 4, then there does not exist any nontrivial homomorphism $\varphi \colon \Gamma \to \operatorname{Homeo}^+(\mathbb{R})$.

Combining this corollary with an important theorem of É. Ghys [3] yields the conclusion that every orientation-preserving action of Γ on the circle S^1 is of an obvious type; any such action is either virtually trivial or semiconjugate to an action by linear-fractional transformations, obtained from a composition $\Gamma \to \mathrm{PSL}(2,\mathbb{R}) \hookrightarrow \mathrm{Homeo}^+(S^1)$. See [4] for a discussion of the general topic of group actions on the circle.

It has recently been proved that certain individual arithmetic groups are not left orderable (see, e.g., [2]), but our results apparently provide the first new examples in more than ten years of arithmetic groups that have no left-orderable subgroups of finite index. They are also the only known such examples that have Q-rank 1.

The theorems are obtained by reducing to the fact, proved by B. Liehl [5], that if $\mathcal{O} = \mathbb{Z}[1/(p_1 \dots p_n)]$ or $\mathcal{O} = \mathbb{Z}[\sqrt{r}]$, then $\mathrm{SL}(2,\mathcal{O})$ has bounded generation by unipotent elements. (That is, the fact that $\mathrm{SL}(2,\mathcal{O})$ is the product of finitely many of its unipotent subgroups. For the general case of Theorem 3, we also note that Γ contains a finite-index subgroup of $\mathrm{SL}(2,\mathbb{Z}[1/p])$, for some prime p.) We are able to prove the same reduction for certain other groups:

Theorem 6 Suppose Γ is a finite-index subgroup of either

- (i) $SL(2,\mathbb{Z}[1/r])$, for some natural number r > 1, or
- (ii) $SL(2,\mathcal{O})$, where \mathcal{O} is the ring of integers of a number field F, and F is neither \mathbb{Q} nor an imaginary quadratic extension of \mathbb{Q} , or
- (iii) an arithmetic subgroup of a quasi-split \mathbb{Q} -form of the \mathbb{R} -algebraic group $\mathrm{SL}(3,\mathbb{R})$.

If $\varphi: \Gamma \to \operatorname{Homeo}^+(\mathbb{R})$ is any homomorphism, and U is any unipotent subgroup of Γ , then every $\varphi(U)$ -orbit on \mathbb{R} is bounded.

Corollary 7 Suppose

- Γ is as described in Thm. 6, and
- Γ is commensurable to a group that has bounded generation by unipotent elements.

Then every homomorphism $\varphi \colon \Gamma \to \operatorname{Homeo}^+(\mathbb{R})$ is trivial. Therefore, Γ is not left orderable.

Assuming a certain generalized Riemann Hypothesis, G. Cooke and P. J. Weinberger [1] proved that the groups described in part (ii) of Thm. 6 do have bounded generation by unipotent elements. Thus, if this generalized Riemann Hypothesis holds, then finite-index subgroups of these groups are not left orderable. See [5] for relevant results on bounded generation that do not rely on any unproved hypotheses, and see [6] for a recent discussion of bounded generation.

2. Proof of Theorem 6(i)

Notation 8 For convenience, let

$$\overline{u} = \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}, \qquad \underline{v} = \begin{bmatrix} 1 & 0 \\ v & 1 \end{bmatrix}, \qquad \hat{s} = \begin{bmatrix} s & 0 \\ 0 & 1/s \end{bmatrix}$$

for $u, v \in \mathbb{Z}[1/r]$ and $s \in \{r^n \mid n \in \mathbb{Z}\}.$

Suppose some $\varphi(U)$ -orbit on \mathbb{R} is not bounded above. (This will lead to a contradiction.) Let us assume U is a maximal unipotent subgroup of Γ .

Let V be a subgroup of Γ that is conjugate to U, but is not commensurable to U. Then $V_{\mathbb{Q}} \neq U_{\mathbb{Q}}$. Because \mathbb{Q} -rank $\mathrm{SL}(2,\mathbb{Q}) = 1$, this implies that $V_{\mathbb{Q}}$ is opposite to $U_{\mathbb{Q}}$. Therefore, after replacing U and V by a conjugate under $\mathrm{SL}(2,\mathbb{Q})$, we may assume

$$U = \{ \overline{u} \mid u \in \mathbb{Z}[1/r] \} \cap \Gamma \qquad \text{and} \qquad V = \{ \underline{v} \mid v \in \mathbb{Z}[1/r] \} \cap \Gamma.$$

Because V is conjugate to U, we know that some $\varphi(V)$ -orbit is not bounded above. Let

$$x_U = \sup\{x \in \mathbb{R} \mid \text{the } \varphi(U)\text{-orbit of } x \text{ is bounded above}\} < \infty$$

and

$$x_V = \sup\{x \in \mathbb{R} \mid \text{the } \varphi(V)\text{-orbit of } x \text{ is bounded above}\} < \infty.$$

Assume, without loss of generality, that $x_U \geq x_V$.

Fix some $s = r^n > 1$, such that $\hat{s} \in \Gamma$, and let $B = \langle \hat{s} \rangle U$. Because $\langle \hat{s} \rangle$ normalizes U, this is a subgroup of Γ . Note that $\varphi(B)$ fixes x_U , so it acts on the interval (x_U, ∞) . Since $\varphi(B)$ is nonabelian, it is well known (see, e.g., [4, Thm. 6.10]) that some nontrivial element of $\varphi(B)$ must fix some point of (x_U, ∞) . In fact, it is not difficult to see that each element of $\varphi(B) \setminus \varphi(U)$ fixes some point of (x_U, ∞) . In particular, $\varphi(\hat{s})$ fixes some point x of (x_U, ∞) .

The left-ordering of any additive subgroup of \mathbb{Q} is unique (up to a sign), so we may assume that

$$\varphi(\overline{u_1})x < \varphi(\overline{u_2})x \Leftrightarrow u_1 < u_2$$
 and $\varphi(v_1)x < \varphi(v_2)x \Leftrightarrow v_1 < v_2$.

The $\varphi(U)$ -orbit of x is not bounded above (because $x > x_U$), so we may fix some $u_0, v_0 > 0$, such that

$$\varphi(v_0)x < \varphi(\overline{u_0})x.$$

For any $\underline{v} \in V$, there is some $k \in \mathbb{Z}^+$, such that $v < s^{2k}v_0$. Then, because $\varphi(\hat{s})$ fixes x and $s^{-2k} < 1$, we have

$$\begin{split} \varphi(\underline{v})x &< \varphi(\underline{s^{2k}v_0})x = \varphi(\hat{s}^{-k}\underline{v_0}\hat{s}^k)x = \varphi(\hat{s}^{-k})\varphi(\underline{v_0})x \\ &< \varphi(\hat{s}^{-k})\varphi(\overline{u_0})x = \varphi(\hat{s}^{-k}\overline{u_0}\hat{s}^k)x = \varphi(\overline{s^{-2k}u_0})x < \varphi(\overline{u_0})x. \end{split}$$

So the $\varphi(V)$ -orbit of x is bounded above by $\varphi(\overline{u_0})x$. This contradicts the fact that $x > x_U \ge x_V$.

3. Other parts of Theorem 6

- (ii) The above proof of Case (i) needs only minor modifications to be applied with a ring \mathcal{O} of algebraic integers in the place of $\mathbb{Z}[1/r]$. (We choose $s = \omega^n$, where ω is a unit of infinite order in \mathcal{O} .) The one substantial difference between the two cases is that the left-ordering of the additive group of \mathcal{O} is far from unique there are infinitely many different orderings. Fortunately, we are interested only in left-orderings of $U = \{\overline{u} \mid u \in \mathcal{O}\} \cap \Gamma$ that arise from an unbounded $\varphi(U)$ -orbit, and it turns out that any such left-ordering must be invariant under conjugation by \hat{s} . The left-ordering must, therefore, arise from a field embedding σ of F in \mathbb{C} (such that $\sigma(s)$ is real whenever $\hat{s} \in \Gamma$), and there are only finitely many such embeddings. Hence, we may replace U and V with two conjugates of U whose left-orderings come from the same field embedding (and the same choice of sign).
- (iii) A serious difficulty prevents us from applying the above proof to quasi-split \mathbb{Q} -forms of $\mathrm{SL}(3,\mathbb{R})$. Namely, the reason we were able to obtain a contradiction is that if $\overline{u_0}$ is upper triangular, \underline{v} is lower triangular, \hat{s} is diagonal, and $\lim_{k\to\infty} \hat{s}^{-k} \overline{u_0} \hat{s}^k = \infty$ under an ordering of Γ , then $\lim_{k\to\infty} \hat{s}^{-k} \underline{v} \hat{s}^k = e$. Unfortunately, the "opposition involution" of $\mathrm{SL}(3,\mathbb{R})$ causes the calculation to result in a different conclusion in case (iii): if $\hat{s}^{-k} \overline{u_0} \hat{s}^k$ tends to ∞ , then $\hat{s}^{-k} \underline{v} \hat{s}^k$ also tends to ∞ . Thus, the above simple argument does not immediately yield a contradiction.

Instead, we employ a lemma of M. S. Raghunathan [7, Lem. 1.7] that provides certain nontrivial relations in Γ . These relations involve elements of both U and V; they provide the crucial tension that leads to a contradiction.

Acknowledgements The authors would like to thank A. S. Rapinchuk for helpful suggestions. D. M. was partially supported by a grant from the National Science Foundation (DMS-0100438).

References

- [1] G. Cooke and P. J. Weinberger: On the construction of division chains in algebraic number rings, with applications to SL₂. Comm. Algebra 3 (1975), 481–524.
- [2] M. K. Dabkowski, J. H. Przytycki and A. A. Togha: Non-left-orderable 3-manifold groups (preprint). arXiv:math.GT/0302098
- [3] É. Ghys: Actions de réseaux sur le cercle. Invent. Math. 137 (1999), no. 1, 199-231.
- [4] É. Ghys: Groups acting on the circle, Enseign. Math. (2) 47 (2001), no. 3-4, 329-407.
- [5] B. Liehl: Beschränkte Wortlänge in SL₂. Math. Z. 186 (1984), no. 4, 509–524.
- [6] V. K. Murty: Bounded and finite generation of arithmetic groups, in: K. Dilcher, ed., Number theory (Halifax, NS, 1994), pp. 249–261. CMS Conf. Proc., #15, Amer. Math. Soc., Providence, RI, 1995.
- [7] M. S. Raghunathan: On the congruence subgroup problem, II, Invent. Math. 85 (1986) 73–117.
- [8] D. Witte: Arithmetic groups of higher Q-rank cannot act on 1-manifolds. Proc. Amer. Math. Soc. 122 (1994), no. 2, 333-340.