Coherent Logic — an overview

Marc Bezem
Department of Informatics
University of Bergen

September 2022

Crash course in Coherent Logic (CL)

Basics

Proof theory for CL

Metatheory

Translation from FOL to CL

Evaluation of CL as a fragment of FOL

Automated reasoning in CL

Automated reasoning

Elimination of function symbols

Proof assistants

Model finding

Constructive algebra

Coherent logic preliminaries 1

- Fix a finite first-order signature Σ
- Positive formulas: built up from atoms using ⊤, ⊥, ∨, ∧, ∃
- ▶ Coherent implications (sentences): $\forall \vec{x}. \ (C \rightarrow D)$ with C, D positive formulas
- Coherent theory: axiomatized by coherent sentences
- ▶ $\vee \exists \wedge$ -formula: $(\exists \vec{y}_1.A_1) \vee \cdots \vee (\exists \vec{y}_k.A_k), k \geq 0$, with each A_i a (possibly empty) conjunction of atoms
- Lemma 1. Every positive formula is (constructively) equivalent to a ∨∃∧-formula. Proof by induction:
 - Base cases: atom (one disjunct, empty ∃, one conjunct);
 ⊥ (empty ∨); ⊤ (one disjunct with empty ∃, ∧)
 - Induction cases: \vee (trivial); \wedge (distributivity + $(\exists x.\varphi) \wedge (\exists y.\psi)$ iff $\exists xy. (\varphi \wedge \psi)$); \exists (commutes with \vee)

Coherent logic preliminaries 2

- ▶ Lemma 2. Every coherent implication is (constructively) equivalent to a finite set of coherent implications $\forall \vec{x}. \ (C \to D)$ with C a conjunction of atoms and D a $\lor \exists \land$ -formula
- ▶ Proof. Use Lemma 1 to replace C and D by $\lor \exists \land$ -formulas. Then use $(\varphi \lor \psi) \to D$ iff $(\varphi \to D) \land (\psi \to D)$, and $(\exists y.\varphi) \to D$ iff $\forall y. (\varphi \to D)$
- Notation: we use the format of Lemma 2, leaving out the universal prefix, and omitting the premiss ' $C \rightarrow$ ' if $C \equiv \top$
- ▶ Discuss: $\exists y. \top$ and $\exists y. \bot$ and $\forall y. \top$ and $\forall y. \bot$
- ▶ Full compliance with Tarski semantics if Σ has a constant

Examples

- all usual equality axioms, including congruence
- ▶ $p \lor np$ and $p \land np \to \bot$ (NB $p \lor \neg p$ is not coherent)
- ▶ lattice theory: $\exists z. \ meet(x, y, z)$
- ▶ geometry: $p(x) \land p(y) \rightarrow \exists z. \ \ell(z) \land i(x,z) \land i(y,z)$
- ▶ rewriting, ⋄-property: $r(x, y) \land r(x, z) \rightarrow \exists u. \ r(y, u) \land r(z, u)$
- ▶ weak-tc-elim: $r^*(x,y) \rightarrow (x=y) \lor \exists z. \ r(x,z) \land r^*(z,y)$
- ▶ seriality: $\exists y. \ s(x,y)$ (who needs a function?)
- ▶ field theory: $(x = 0) \lor \exists y. (x \cdot y = 1)$
- ▶ local ring: $\exists y. (x \cdot y = 1) \lor (\exists y. ((1 x) \cdot y = 1)$

History of CL

- Skolem (1920s): coherent formulations of lattice theory and projective geometry, calling the axioms "Erzeugungsprinzipien" (production rules), anticipating ground forward reasoning. Using CL,
 - Skolem solved a decision problem in lattice theory
 - Skolem gave a method to test in/dependence from the axioms of plane projective geometry (example: Desargues' Axiom)
- Grothendieck (1960s): geometric morphisms preserve geometric logic (= coherent logic + infinitary disjunction). This is quite complicated, but we'll see a glimpse in the forcing semantics of coherent logic given later.

A proof theory for CL

- In short: ground forward reasoning with case distinction and introduction of witnesses (ground tableau reasoning)
- ▶ In full: define inductively $\Gamma \vdash_{\vec{y}}^T A$, where A (Γ) atom (set of atoms) with all variables in \vec{y} , in case
- (base) A is in Γ , or in case (step) T has an axiom $\forall \vec{x}$. $(C \to (\exists \vec{y}_1.B_1) \lor \cdots \lor (\exists \vec{y}_k.B_k))$ such that for some sequence of terms \vec{t} with variables in \vec{y} we have
 - $ightharpoonup C[\vec{t}/\vec{x}]$ is a subset of Γ , and
 - $\qquad \qquad \Gamma, B_i[\vec{\imath}/\vec{x}] \vdash_{\vec{y}, \vec{y}_i}^T A \text{ for all } i = 1, \dots, n \quad \text{(NB } \vec{y_i} \text{ fresh wrt } \vec{y} \text{)}$
- Rough visualization as a tree with inner nodes like

$$\frac{\Gamma, B_1[\vec{t}/\vec{x}] \quad \cdots \quad \Gamma, B_n[\vec{t}/\vec{x}]}{\Gamma} \ axiom$$

NB we omit conclusion A in all the nodes, but we should actually keep track of the $\vec{y}, \vec{y_i}$. Looking ahead, pairs like (\vec{y}, Γ) will be the forcing conditions, \approx finite Kripke worlds.

Example of a derivation in CL

- ▶ Let *T* consists of $p \lor \exists x. \ q(x)$ and $p \to \bot$ and $q(y) \to r$
- ▶ Derivation tree for $\emptyset \vdash_{\emptyset}^{T} r$

$$\frac{(\bot)}{\{p\}} p \to \bot \quad \frac{\{q(c), r\}}{\{q(c)\}} q(y) \to r$$

$$\emptyset \quad p \lor \exists x. \ q(x)$$

- Search procedure: until all branches are closed,
 - 1. pick an open leaf node with some Γ
 - 2. if Γ contains the conclusion A, close the branch
 - 3. otherwise, pick fairly a Γ -false instance of an axiom of T 3a if no such instance exists, Γ is a model and A underivable
 - 3b else if the conclusion of the instance is \perp , close the branch 3c otherwise, extend the branch according to the instance
- The search procedure stops iff A is derivable (if-part!)

Soundness and completeness wrt Tarski semantics

- ▶ Soundness easily proved by induction on $\Gamma \vdash_{\vec{y}}^T A$
- Not complete: $\emptyset \vdash_{\emptyset}^{\forall x. \perp} p$ underivable without a constant in Σ
- ▶ Silly, let's assume a constant in Σ , or just $\exists x. \top$
- Proof of completeness: essentially non-constructive. Assume $\forall \vec{y}.\ (\Gamma \to A)$ holds in any model of T. Do the proof search procedure for $\Gamma \vdash^T_{\vec{y}} A$. If it stops we have a proof. If not, the tree has an infinite branch by König's Lemma. Collect the set of variables Y and the set of atoms M along the infinite branch. Build a model with domain $\mathrm{Tm}^\Sigma(Y)$ and positive diagram M. This is a model of T (by fairness) containing Γ but not A. Contradiction.
- Proof theory easily extended to arbitrary coherent formulas

Metatheoretic results and remarks

- Corollary of completeness: all classically provable coherent sentences are constructively provable
- For geometric logic this is called Barr's Theorem
- Completeness and Barr's Theorem are not constructive
- Barr's Theorem for coherent logic can be proved constructively using a cut-elimination argument
- Coherent completeness wrt forcing semantics is constructively provable, but does not give the conservativity of classical reasoning
- NB: the forcing semantics is sound wrt intuitionistic logic for arbitrary formulas

Translation from FOL to CL

ldea: introduce two new predicate symbols $T(\psi), F(\psi)$ for each subformula ψ , with arity the number of free variables of ψ . The rules for signed tableaux are coherent axioms:

$$\begin{split} & \quad \text{if } \psi(\vec{x}) \equiv \psi_1 \wedge \psi_2, \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x}) \wedge T(\psi_2)(\vec{x}) \\ F(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x}) \vee F(\psi_2)(\vec{x}) \end{array} \right. \\ & \quad \text{if } \psi(\vec{x}) \equiv \psi_1 \vee \psi_2 \text{ then } \dots \\ & \quad \text{if } \psi(\vec{x}) \equiv \psi_1 \rightarrow \psi_2 \text{ then } \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x}) \vee T(\psi_2)(\vec{x}) \\ F(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x}) \wedge F(\psi_2)(\vec{x}) \end{array} \right. \\ & \quad \text{if } \psi(\vec{x}) \equiv \neg \psi_1 \text{ then } \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x}) \\ F(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x}) \end{array} \right. \\ & \quad \text{if } \psi(\vec{x}) \equiv \forall y. \psi_1(\vec{x},y) \text{ then } \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow T(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow \exists y. F(\psi_1)(\vec{x},y) \end{array} \right. \\ & \quad \text{if } \psi(\vec{x}) \equiv \exists y. \psi_1(\vec{x},y) \text{ then } \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow \exists y. F(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x},y) \end{array} \right. \\ & \quad \text{if } \psi(\vec{x}) \equiv \exists y. \psi_1(\vec{x},y) \text{ then } \left\{ \begin{array}{l} T(\psi)(\vec{x}) \rightarrow \exists y. F(\psi_1)(\vec{x},y) \\ F(\psi)(\vec{x}) \rightarrow F(\psi_1)(\vec{x},y) \end{array} \right. \end{aligned}$$

▶ By the completeness of tableaux: φ is a tautology iff $F(\varphi) \vdash_{\emptyset}^{Coh(\varphi)} \bot$, with $Coh(\varphi)$ as above

• if $\psi(\vec{x})$ is atomic then $(T(\psi)(\vec{x}) \wedge F(\psi)(\vec{x})) \rightarrow \bot$

Example in propositional logic: Peirce's Law

- ▶ Peirce's Law: $\varphi \equiv ((p \rightarrow q) \rightarrow p) \rightarrow p$
- ▶ To prove: $F(((p \rightarrow q) \rightarrow p) \rightarrow p) \vdash_{\emptyset}^{Coh(\varphi)} \bot$
- ▶ Part of $Coh(\varphi)$ that is actually used:
 - 1. $F(((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow (T((p \rightarrow q) \rightarrow p) \land F(p))$
 - 2. $T((p \rightarrow q) \rightarrow p) \rightarrow (F(p \rightarrow q) \lor T(p))$
 - 3. $F(p \rightarrow q) \rightarrow (T(p) \land F(q))$
 - **4.** $(T(p) \wedge F(p)) \rightarrow \bot$
- ▶ Proof: use 1, 2, 3 and split on $F(p \rightarrow q) \lor T(p)$, ...
- Details on the blackboard
- ▶ Proof of φ : take $T \equiv \lambda \varphi$. φ , $F \equiv \lambda \varphi$. $\neg \varphi$. Then 1,2,3,4 are easy (but classical), the CL proof is also a proof in propositional logic, and we finish by RAA

Example in predicate logic: the Drinker's Paradox

- ▶ Drinker's Paradox: $\varphi \equiv \exists x. (d(x) \rightarrow \forall y.d(y))$
- ▶ To prove: $F(\exists x. \ d(x) \rightarrow \forall y. d(y))) \vdash_{\emptyset}^{Coh(\varphi)} \bot$
- ▶ Part of $Coh(\varphi)$ that is actually used:
 - 1. no take-off without $\exists x. \top$, alternative: prove $F(\varphi) \vdash_{\{c\}}^{Coh(\varphi)} \bot$
 - 2. $\forall \mathbf{x}. (F(\exists \mathbf{x}. d(\mathbf{x}) \to \forall \mathbf{y}. d(\mathbf{y}))) \to F(d(\mathbf{x}) \to \forall \mathbf{y}. d(\mathbf{y})))$
 - 3. $\forall x. (F(d(x) \to \forall y.d(y)) \to (T(d(x)) \land F(\forall y.d(y))))$
 - **4**. $F(\forall y.d(y)) \rightarrow \exists y.F(d(y))$
 - 5. $\forall x. (T(d(x)) \land F(d(x))) \rightarrow \bot$
- ▶ Proof: use 1 and get c, instantiate 2 and 3 with c and get $T(d(c)) \land F(\forall y.d(y))$, so by 4 we get c' with F(d(c')), ...
- Details on the blackboard
- ▶ Proof of φ in FOL: take $T \equiv \lambda \varphi$. φ , $F \equiv \lambda \varphi$. $\neg \varphi$. Then 1–5 are easy (Tarski and classical), the CL proof is also a proof in FOL, and we finish by RAA

Translation from FOL to CL (ctnd)

- Skolem (1920): Every FOL theory has a definitional extension that is equivalent to a ∀∃ theory
- Many variations possible (Polonsky, Dyckhoff & Negri, Fisher, Mints)
- Possible objectives: fewer new predicates, fewer CL axioms ..., keeping a coherent axiom coherent
- Polonsky proposed several improvements, starting from NNF, flipping polarities, also using reversed tableaux rules
- ▶ Dyckhoff & Negri: add $T(\psi)(\vec{x}) \to \psi(\vec{x})$ and $(F(\psi)(\vec{x}) \land \psi(\vec{x})) \to \bot$ for all atomic ψ and obtain: Every FOL theory has a positive semi-definitional extension that is equivalent to a CL theory
- Consequences in CL are always constructive
- Translation of FOL to CL contains many non-constructive steps, often more than necessary

Evaluation of CL as a fragment of FOL

- constructive, with classical logic a conservative extension
- Simpler metatheory: proof theory, completeness, conservativity of skolemization (elimination of ∃)
- metamathematics: independence, decision problems
- automated reasoning, supporting proof assistants
- model finding
- constructive algebra

Automated reasoning (AR)

- We focus on AR in (fragments of) FOL
- ► There are dozens of FOL provers (Vampire wins CASC)
- ▶ TPTP is a large database of AR problems (CNF/FOL/HOL)
- There are a handful of CL provers (competitive on CL problems, but not on FOL problems):
 - ► SATCHMO+ (Bry et al.)
 - Geo (Nivelle et al.)
 - Colog (Fisher)
 - Argo, Larus (Janicic et al.)
 - EYE (De Roo, semantic web)
- Most CL provers support only 0-ary function symbols
- We describe below how to eliminate function symbols

Rationale for automated reasoning in CL

- Expressivity of CL is between CNF (resolution) and FOL
- ▶ Different balance: expressivity versus efficiency
- Skolemization (elimination of ∃) not necessary
 - Skolemization makes the Herbrand Universe infinite
 - ▶ Why skolemize an axiom like $p(x, y) \rightarrow \exists z. \ p(x, z)$?
 - Skolemization changes meaning (problematic for interactive theorem proving, and for obtaining proof objects)
 - Skolem functions obfuscate symmetries (cf. ⋄-property)
 - But: skolemized proofs can be exponentially shorter!
- Ground forward reasoning is very simple and intuitive, proof objects can easily be obtained
- But: non-ground proofs can be exponentially shorter!

Elimination of function symbols

- ldea: use the graph instead of the function, a new (n+1)-predicates for an n-ary function, for example:
 - For constants: c(x) (expressing c = x), axiom $\exists x. c(x)$
 - For unary functions: s(x, y) (expressing s(x) = y), axiom $\exists y. s(x, y)$
- Example: the term f(s(x), o) leads to a condition $s(x, y) \wedge o(u) \wedge f(y, u, z)$ after which every occurrence of f(s(x), o) is replaced by z. Then $\forall \vec{x} . (C \to D)$ becomes $\forall x, y, u, z, \vec{x} \ (s(x, y) \wedge o(u) \wedge f(y, u, z) \wedge C' \to D')$ where C', D' are the result of the substitution in C, D.
- **Example:** a = b becomes $a(x) \land b(y) \rightarrow x = y$
- ▶ Unicity, e.g., $c(x) \land c(y) \rightarrow x = y$, not required! (since the new conditions only occur in negative positions)

Puzzle, formalized in CL with functions (Nivelle)

- ▶ Can one color each $n \in \mathbb{N}$ either red or blue but not both such that, if n is red, then n+2 is blue, and if n is blue, then n+1 is red?
- ► No: consider 0?23... and 01?34...
- ► CL theory:
 - 1. $r(x) \vee g(x)$
 - **2**. $r(x) \land g(x) \rightarrow \bot$
 - 3. $r(x) \rightarrow g(s(s(x)))$
 - **4.** $g(x) \rightarrow r(s(x))$
- Do we miss something?
- Yes, domain non-empty:
 - 5. $\exists x$. \top

Puzzle, function eliminated

- Living dangerously: demo of hdn.co in Colog (Fisher, '12)
- Just in case the demo fails: refutation on blackboard
 - 1. $r(x) \vee g(x)$
 - **2**. $r(x) \land g(x) \rightarrow \bot$
 - 3. $r(x) \wedge s(x, y) \wedge s(y, z) \rightarrow g(z)$
 - **4.** $g(x) \wedge s(x,y) \rightarrow r(y)$
 - 5. $\exists x$. \top
 - **6**. $\exists y. \, s(x, y)$
- Solution of puzzle before eliminating the function:
 - Note that the substitution principle is valid
 - Substitute (s(x) = y) for s(x, y) in 3,4,6:
 - ▶ Regarding 6, $\exists y. s(x) = y$ is trivial
 - ▶ Regarding 4, $g(x) \land s(x) = y \rightarrow r(y)$ is equivalent to $g(x) \rightarrow r(s(x))$
 - Similarly for 3 (and, in general, for any function)

Depth-first proof search in CL

- Recall the search procedure on slide 8
- Any open leaf is fine, so we always take the leftmost
- What instance of which Γ-false axiom to pick?
- NB two trees: derivation tree and the search space organized as a tree
- Depth-first search: pick always the first Γ-false axiom from the list, and use the 'simplest' ('oldest') instance
- Obviously incomplete, but often OK with favourable ordering of coherent axioms:
 - 1. Facts first, then Horn clauses (→ goal)
 - 2. Disjunctive clauses (cause branching)
 - 3. Existential axioms (cause new variables)
 - 4. Disjunctive existential axioms (cause both, the worst)
- **Example:** $\exists y. s(x, y)$ should not be put first!

Breadth-first proof search in CL

- ightharpoonup Recall: Γ is the state of the leaf node at hand
- Breadth-first search: collect all 'simplest' instances of Γ-false axioms and use them exhaustively
- Breadth-first search: complete but infeasible
- Without functions, depth-first terminates for forms 1 and 2
- Depth-first search not complete for one single existential
 clause, subtle: p(a). p(b). q(b) -> goal.
 p(X),p(Y) -> dom(U),p(U),q(X),r(Y).
- Wanted: fair application of axioms of form 3 and 4
- Queueing depth-first: the (disjunctive) existential clauses in a cyclic queue + iterative deepening wrt constants. Complete.

Automated reasoning in CL, conclusions

- ► Good start: Newman's Lemma (B, Coquand, BEATCS'03)
- Limited success in CASC: 50% in FOF (Geo, Nivelle'06)
- ▶ Readable proofs can be extracted from search space
- ► Highlight: Hessenberg's Theorem (B, Hendriks, JAR'08)
- Promising: using CDCL techniques (Nikolic, PhD'13)
- ▶ Colog:

```
www.csupomona.edu/~jrfisher/colog2012/
```

Proof assistants

- Proof objects required
- CL proofs are readable and easy to convert
- Provers outputting proof objects
 - CL.pl (exports proofs to Coq)
 - coherent (Isabelle tactic, Berghofer)
 - ArgoCLP (Coq, Isar, 'natural' language)
- Excerpt: Stojanovic et al., CICM'14 evince

Model finding

- ▶ Breadth-first not finite model complete: $\exists y. \ s(x,y)$
- Solution (Nivelle & Meng, IJCAR'06): try old constants before you generate a new one
- Complete, but lemma learning absolutely necessary!
- Success in CASC'07: 81% in FNT (Geo, Nivelle) (Paradox, based on Minisat, winner with 85%)
- CL competitive on problems 'too big to ground'
- Example: formal verification of a Kripke model for simplicial sets (B & Coquand, TCS)

Constructive algebra

- Pioneers of applying CL/GL to constructve algebra: Coste, Lombardi, Roy, Coquand
- Idea: making constructive sense of classical proofs by exploiting that significant parts of algebra can be formalized in CL/GL
- Barr's Theorem guarantees then that classical results are provable in CL/GL

Algebraic theories in CL/GL

- Ring (commutative with unit): equational
- ▶ Local ring: $\exists y. (x \cdot y = 1) \lor \exists z. ((1 x) \cdot z = 1)$
- ▶ Field: $(x = 0) \lor \exists y. (x \cdot y = 1)$ (makes = decidable!)
- ▶ Alg. closed: $\exists x. \ x^{n+1} = a_0 + a_1x + \cdots + a_nx^n \ (n \in \mathbb{N})$
- Nilpotent $x: \bigvee_{n \in \mathbb{N}} 0 = x^{n+1}$

Hilbert's Nullstellensatz

- Consider fields $k \subset K$ with K algebraically closed. Let I be an ideal of $k[\vec{x}]$, and V(I) the set of common zeros (Nullstellen) in K of the polynomials in I. Then: for any $p \in k[\vec{x}]$ such that p is zero on V(I) there exists an n such that $p^n \in I$.
- Hilbert's Nullstellensatz in its full generality is a strong classical theorem, with lots of special cases and variations
- ▶ Effective Nullstellensatz: compute the n such that $p^n \in I$
- ► Example: $\mathbb{Q} \subset \mathbb{C}$, $I = (1 + 2x^2 + x^4)$, $p = x x^5$, $p^n \in I$?