Termodinámica

Intercambio de Calor

Balance de Calor

$$\sum Q_i = 0$$

$$\left|Q_{1}\right| = \left|Q_{2}\right|$$

Calor Recibido

Q > 0

Calor Cedido

Q < 0

 $1 \, cal = 4, 18 \, J$

$$1 kcal = 1000 cal$$

$$1 kcal = 4, 18 kJ$$

c (Agua)

$$c = 1 \frac{cal}{g \circ C}$$

$$c = 1 \frac{kcal}{ka^{\circ}C}$$

Ecuación Calorimétrica

$$Q = c m \Delta T [J]$$

Equivalencias

$$c_m = \frac{C}{m}$$

$$c_n = \frac{C}{\# moles}$$

Capacidad Calorífica

$$C = c m$$

Cambios en el Estado de Agregación

Calor Asociado a Cambios de Estado

$$Q_{x} = L_{x}. m$$

Agua: L_{\perp}

$$L_{n} = 540 \frac{cal}{a}$$

$$L_c = -5$$

$$L_c = -540 \frac{ca}{g}$$

$$L_f = 80^{-6}$$

$$L_v = 540 \frac{cal}{g}$$
 $L_c = -540 \frac{cal}{g}$ $L_f = 80 \frac{cal}{g}$ $L_s = -80 \frac{cal}{g}$

Termometría

Equivalente en Agua

$$\Pi = \frac{c_{sist}}{c_{agua}}$$

Calor Intercambiado por el Sistema

$$Q_c = \Pi \cdot c_{aqua} \cdot \Delta T$$

PUNTOS FIJOS	ºC (CELSIUS)	ºF (FAHRENHEIT)	K (KELVIN)
Fusión	Оō	32º	273K
Ebullición	100º	212º	373K

$$\frac{T_{C}}{100} = \frac{T_{K} - 273}{100} \rightarrow T_{C} = T_{K} - 273$$

$$\frac{T_c}{100} = \frac{T_f - 32}{180} \rightarrow T_c = \frac{5}{9} (T_f - 32)$$

Gases Ideales

Expansión	W > 0	Compresión	W < 0
Calor Recibido	Q > 0	Calor Cedido	Q < 0

1er Ppio de la Termodinámica

$$\Delta U = O - W$$

Ecuación de Estado

$$PV = nRT$$

$$PV = N k T$$

Constante de Boltzmann

$$k = 1,38 \times 10^{-23} \left[\frac{J}{K} \right]$$

$$k = \frac{R}{N_A}$$

Constante Universal de los Gases

$$R = 8,31 \left[\frac{J}{mol \, K} \right]$$

Nro de Moles en el Sistema

$$n = \frac{N}{N}$$

Variación Energía Interna

$$\Delta U = n c_{n} \Delta T$$

$$\Delta U = n c_p \Delta T$$