Airline passengers satisfaction prediction

Süleyman Erim, Giacomo Schiavo, Mattia Varagnolo

Introduction

Objective

predict whether a passenger will be satisfied or dissatisfied with the services offered by an airline company

The dataset

It contains insights into airline passengers' satisfaction levels and preferences, including demographic details, travel experiences, and perceptions of various services

Variables (1)

- Satisfaction: Airline satisfaction level (Satisfaction, Neutral, or Dissatisfaction).
- **Gender**: The gender of the passengers (Female, Male).
- **Customer Type**: The type of customer (Loyal customer, disloyal customer).
- **Type of Travel**: The purpose of the flight (Personal Travel, Business Travel).
- Class: The travel class in the plane (Business, Eco, Eco Plus).
- **Age**: The actual age of the passengers.
- **Flight Distance**: The distance of the flight journey.
- Arrival Delay in Minutes: Number of minutes delayed during arrival.
- Departure Delay in Minutes: Number of minutes delayed during departure.

Variables (2)

- Inflight WiFi Service: Satisfaction level with the inflight WiFi service.
- Departure/Arrival Time Convenience: Satisfaction level with the convenience of departure and arrival times.
- **Ease of Online Booking**: Satisfaction level with the online booking process.
- Gate Location: Satisfaction level with the gate location.
- Food and Drink: Satisfaction level with the food and drink provided.
- Online Boarding: Satisfaction level with the online boarding process.
- Seat Comfort: Satisfaction level with the comfort of the seats.
- **Inflight Entertainment**: Satisfaction level with the inflight entertainment options.
- **On-board Service**: Satisfaction level with the service provided onboard.
- Leg Room Service: Satisfaction level with the legroom space.
- **Baggage Handling**: Satisfaction level with the handling of baggage.
- Check-in Service: Satisfaction level with the check-in service.
- **Inflight Service**: Satisfaction level with the inflight service.
- Cleanliness: Satisfaction level with the cleanliness of the aircraft.

Data preprocessing

- 1. Renaming columns
- 2. Dropping unnecessary columns
- 3. Converting categorical variables to factors:
 - o "Gender", "Customer Type", "Type of Travel" and "Class" and all the rating features
- 4. Handling NA values in Arrival_Delay_in_Minutes
 - only 3% of the entire dataset

Distributions

Categorical to numerical

- Gender
 - Male = 0, Female = 1
- Customer type
 - Loyal customer = 0, disloyal customer = 1
- Type of travel
 - Personal travel = 0, Business travel = 1
- Class
 - Business = 0, Eco = 1, Eco plus = 2
- Satisfaction
 - neutral or dissatisfied = 0, satisfied = 1

Training and test set

Train Test Split:

- Data is split into training and testing sets using a random seed for reproducibility.
- 80% of the data is allocated for training, and 20% is set aside for testing.
- This ensures we have distinct datasets to build and evaluate our model.

Features and Outputs:

- The input features are extracted from the dataset, excluding the 'satisfaction' column.
- The target variable, 'satisfaction', is separated for further analysis.

Number of Samples:

- The number of samples in the training data: 103589.
- The number of samples in the test data: 25898.

Data Balance:

- Proportion of satisfied and dissatisfied customers in the training data:
 - Satisfied: 56.7%
 - Dissatisfied: 43.3%
- Proportion of satisfied and dissatisfied customers in the test data:
 - Satisfied: 56%
 - Dissatisfied: 44%

Classification models

Methodology

Parametric Approaches

- Logistic Classifier
- Basic Logistic Regression
- Logistic Regression with Backward Variable Selection
- Logistic Regression with Shrinkage Method
- Naive Bayes

Non-Parametric Approach

K-Nearest Neighbors (KNN)

Basic Logistic Regression

VIF: 2.045321

```
## Call:
## glm(formula = satisfaction ~ ., family = "binomial", data = train data)
## Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                   -8.662e+00 8.467e-02 -102.293 < 2e-16 ***
## Gender
                                    6.747e-02 1.947e-02
                                                            3.465 0.00053 ***
## Customer Type
                                   -2.013e+00 2.969e-02 -67.789 < 2e-16 ***
                                   -7.945e-03 7.109e-04 -11.176 < 2e-16 ***
## Age
## Type of Travel
                                    2.749e+00 3.131e-02
                                                          87.802 < 2e-16 ***
## Class
                                   -3.491e-01 1.281e-02 -27.266 < 2e-16 ***
## Flight Distance
                                   -1.281e-06 1.116e-05
                                                           -0.115 0.90861
## Inflight wifi service
                                    3.988e-01 1.148e-02
                                                           34.745 < 2e-16 ***
## Departure Arrival time convenient -1.333e-01 8.178e-03 -16.301 < 2e-16 ***
## Ease of Online booking
                                   -1.535e-01 1.134e-02 -13.541 < 2e-16 ***
## Gate location
                                   2.288e-02 9.178e-03
                                                            2.493 0.01266 *
## Food and drink
                                   -2.982e-02 1.070e-02
                                                           -2.785 0.00534 **
## Online boarding
                                    6.243e-01 1.028e-02
                                                           60.734 < 2e-16 ***
## Seat_comfort
                                    5.763e-02 1.120e-02
                                                           5.145 2.68e-07 ***
## Inflight_entertainment
                                    5.710e-02 1.425e-02
                                                            4.007 6.14e-05 ***
## On board service
                                    3.088e-01 1.017e-02
                                                           30.375 < 2e-16 ***
## Leg_room_service
                                    2.547e-01 8.530e-03
                                                           29.856 < 2e-16 ***
## Baggage handling
                                    1.332e-01 1.141e-02
                                                           11.670 < 2e-16 ***
## Checkin service
                                    3.288e-01 8.560e-03
                                                           38.417 < 2e-16 ***
## Inflight service
                                    1.224e-01 1.204e-02
                                                           10.165 < 2e-16 ***
## Cleanliness
                                    2.294e-01 1.212e-02
                                                           18.933 < 2e-16 ***
## Departure Delay in Minutes
                                    5.019e-03 9.851e-04
                                                            5.095 3.48e-07 ***
## Arrival Delay in Minutes
                                   -9.839e-03 9.731e-04 -10.111 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 141746 on 103588 degrees of freedom
## Residual deviance: 69302 on 103566 degrees of freedom
## AIC: 69348
## Number of Fisher Scoring iterations: 6
```

Logistic Regression with Backward Variable Selection

after 4 iterations

```
VIF
##
                               Variable
## 1
                       Inflight service 1.881686
## 2
                       Baggage handling 1.787458
## 3
                         Type of Travel 1.776955
      Departure_Arrival_time_convenient 1.587989
## 5
                           Seat comfort 1.585879
## 6
                                  Class 1.563525
## 7
                  Inflight wifi service 1.551518
## 8
                       On_board_service 1.534811
## 9
                          Customer_Type 1.512988
## 10
                         Food and drink 1.431732
## 11
                        Online boarding 1.408212
## 12
                          Gate location 1.401531
## 13
                        Flight_Distance 1.321957
## 14
                       Leg room service 1.202873
## 15
                                     Age 1.166393
## 16
                        Checkin service 1.164245
## 17
             Departure Delay in Minutes 1.013281
## 18
                                 Gender 1.004409
```

Logistic Regression with Backward Variable Selection Model Output

```
## Call:
## glm(formula = satisfaction ~ . - Arrival_Delay_in_Minutes - Inflight_entertainment -
      Ease_of_Online_booking - Cleanliness, family = "binomial",
      data = train data)
## Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                    -8.753e+00 8.187e-02 -106.909 < 2e-16 ***
                                                            3.638 0.000275 ***
## Gender
                                    7.017e-02 1.929e-02
## Customer Type
                                   -2.047e+00 2.906e-02 -70.452 < 2e-16 ***
## Age
                                    -8.049e-03 7.022e-04
                                                         -11.463 < 2e-16 ***
## Type_of_Travel
                                    2.757e+00 3.074e-02
                                                           89.667 < 2e-16 ***
## Class
                                   -3.243e-01 1.264e-02 -25.653 < 2e-16 ***
## Flight Distance
                                                         -0.254 0.799509
                                   -2.802e-06 1.103e-05
## Inflight_wifi_service
                                    3.202e-01 9.479e-03
                                                         33.776 < 2e-16 ***
## Departure_Arrival_time_convenient -1.682e-01 7.817e-03 -21.520 < 2e-16 ***
## Gate location
                                   -1.325e-02 8.707e-03
                                                         -1.522 0.128025
## Food and drink
                                    8.632e-02 8.915e-03
                                                         9.683 < 2e-16 ***
## Online boarding
                                     6.124e-01 9.978e-03
                                                         61.379 < 2e-16 ***
## Seat_comfort
                                    1.865e-01 9.774e-03
                                                         19.080 < 2e-16 ***
## On board service
                                     3.241e-01 9.740e-03 33.278 < 2e-16 ***
## Leg_room_service
                                    2.540e-01 8.403e-03 30.228 < 2e-16 ***
## Baggage handling
                                    1.522e-01 1.116e-02
                                                         13.629 < 2e-16 ***
## Checkin service
                                    3.329e-01 8.317e-03 40.023 < 2e-16 ***
## Inflight service
                                    1.445e-01 1.149e-02
                                                           12.575 < 2e-16 ***
## Departure Delay in Minutes
                                   -4.336e-03 2.619e-04 -16.553 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 141746 on 103588 degrees of freedom
## Residual deviance: 70165 on 103570 degrees of freedom
## AIC: 70203
## Number of Fisher Scoring iterations: 5
```

Logistic Regression with Shrinkage Method Lasso Regression

We identify th best lambda value
best_lambda <- glm_lasso\$lambda.min
best_lambda</pre>

[1] 0.02491896

Comparison of Models - ROC CURVE

Logistic Regression Model Selection

Threshold	Accuracy	F1_Score	Precision	Recall
0.4	0.8586	0.8711	0.8892	0.8538
0.5	0.8705	0.8862	0.8725	0.9004
0.6	0.8722	0.8914	0.8508	0.9360
0.7	0.8628	0.8871	0.8224	0.9628

Logistic Regression with Backward Variable Selection

Threshold	Accuracy	$F1_Score$	Precision	Recall
0.4	0.8616	0.8740	0.8913	0.8574
0.5	0.8727	0.8881	0.8745	0.9021
0.6	0.8737	0.8926	0.8521	0.9371
0.7	0.8637	0.8877	0.8241	0.9619

Logistic Regression with Shrinkage Method

Threshold	Accuracy	F1_Score	Precision	Recall
0.4	0.8566	0.8690	0.8900	0.8489
0.5	0.8707	0.8868	0.8696	0.9047
0.6	0.8711	0.8916	0.8428	0.9463
0.7	0.8527	0.8808	0.8051	0.9723

Naïve Bayes

 Choose the model with 10 variables

KNN with Cross Validation

Classification results - logistic regression

Classification Results - Naïve Bayes

Classification Results - KNN

Thank you for your attention