(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 20. Oktober 2005 (20.10.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/099065\ A1$

(51) Internationale Patentklassifikation⁷: 1/28, 1/30

H02K 1/27,

(21) Internationales Aktenzeichen: PCT/EP2005/051253

(22) Internationales Anmeldedatum:

17. März 2005 (17.03.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2004 017 716.3 10. April 200-

10. April 2004 (10.04.2004) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MALDENER, Klaus [DE/DE]; Schlossstr. 36, 77886 Lauf (DE). WEHRLE, Andreas [DE/DE]; Stumpengaessle 1, 77770 Durbach (DE). WALTER, Gerd [FR/FR]; Rue du Stade 22, F-67410 Rohrwiller (FR).
- (74) Gemeinsamer Vertreter: ROBERT BOSCH GMBH; Postfach 30 02 20, 70442 Stuttgart (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,

[Fortsetzung auf der nächsten Seite]

(54) Title: ROTOR FOR AN ELECTRIC MOTOR

(54) Bezeichnung: ROTOR EINER ELEKTRISCHEN MASCHINE

(57) **Abstract:** The invention relates to a rotor (1), for an electric motor (10), comprising at least one permanent magnet (3), embodied as a hollow cylinder (5), with axial support surfaces (20), cooperating with corresponding axial clamping surfaces (22) of at least one retainer element (4), by means of which the permanent magnet (3) is fixed to the rotor (1), whereby at least one of the clamping surfaces (22) comprises a knurling (46), running in the radial direction.

(57) Zusammenfassung: Rotor (1) einer elektrischen Maschine (10) mit mindestens einem als Hohlzylinder (5) ausgebildeten Permanentmagnet (3), der axiale Anlageflächen (20) aufweist, die mit korrespondierenden axialen Klemmflächen (22) von mindestens einem Halteelement (4) zusammenwirken, mit dem der Permanentmagnet (3) am Rotor (1) befestigt ist, wobei mindestens eine der Klemmflächen (22) eine in radialer Richtung verlaufende Rändelung (46) aufweist.

WO 2005/099065 A1

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL,

PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

10

15

20

25

Rotor einer elektrischen Maschine

Stand der Technik

Elektrische Maschinen sind aus dem Stand der Technik wohl bekannt. Dabei sind beispielsweise permanent magnetisch erregte Gleichstrommotoren bekannt, welche elektronisch oder mechanisch kommutierbar sind. Hierbei können zwei Ausführungsarten unterschieden werden, nämlich die eine Ausführungsart, bei dem die Permanentmagnete am Stator angeordnet sind und eine andere Ausführungsart, bei der die Permanentmagnete am Rotor angebracht sind. Das kommutierte Magnetfeld zwischen dem Permanentmagneten und den am anderen Bauteil angeordneten Spulen bewirken das Drehmoment auf die Rotorwelle.

Zur Befestigung des Permanent-Ringmagneten auf einem Rotorkörper der Rotorwelle ist beispielsweise aus der EP 0 872 945 A1 bekannt, eine Klebeverbindung zu verwenden. Aufgrund von unterschiedlichen Temperaturausdehnungen der unterschiedlichen Materialien von Magnet, Klebstoff und Rotorkörper sowie aufgrund von Fertigungstoleranzen und aufgrund des bei Verwendung eines Klebstoffs notwendigen Abstands zwischen dem Magneten und der Rotorwelle/-körper, treten an den Verbindungsflächen große Materialspannungen der einzelnen Materialien (Magnet, Klebstoff, Welle) auf. Im Betrieb der elektrischen Maschine können zusätzlich große Temperaturunterschiede auftreten, was aufgrund der unterschiedlichen Ausdehnungskoeffizienten der Materialien zu Rissen bis hin zum Materialbruch führt, sodass eine Übertragung eines Drehmoments vom Magneten auf die Rotorwelle nicht mehr möglich ist. Des weiteren werden die mechanischen Eigenschaften des Klebstoffs

PCT/EP2005/051253

mit zunehmender Temperatur schlechter, mit der Folge, dass der Magnet nicht mehr fest genug auf der Rotorwelle fixiert ist.

Vorteile der Erfindung

5

10

15

Der erfindungsgemäße Rotor einer elektrischen Maschine mit den Merkmalen des unabhängigen Anspruchs 1 hat den Vorteil, dass durch seine axial vorgespannte Befestigung der druckempfindliche Permanentmagnet auch bei großen Temperaturschwankungen ohne Zerstörung sauber zentriert zur Rotorwelle gelagert bleibt. Durch das Anformen eines radialen Rändels an den Klemmflächen der Halteelemente kann sich die Anschlagfläche des Permanentmagneten einerseits zum Ausgleich von Materialspannungen relativ zur Klemmfläche bewegen, andererseits bleibt der Permanentmagnet durch die Führungsfunktion der radialen Rillen auch bei einer solchen Relativbewegung exakt zur Rotorwelle zentriert. Dadurch können auch Werkstoffpaarungen der Anlagefläche und der Klemmfläche mit unterschiedlichen Wärmeausdehnungskoeffizienten verwendet werden, wobei eine Selbstzentrierung des Magneten durch die radiale Anordnung der Riffelung gewährleistet ist.

20

Durch die in den Unteransprüchen aufgeführten Maßnahmen ergeben sich vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Merkmale. Weist die radiale Ränderung in radialer Richtung verlaufende Überhöhungen auf, die in axialer Richtung keilförmig zugespritzt sind, können sich die Überhöhungen unter der Wirkung der axialen Klemmkraft leicht in die Anlageflächen des Magneten bzw. dessen Oberflächenbeschichtung eingraben und dadurch bezüglich der tangentialen (Dreh-) Richtung einen Formschluss bilden.

25

30

Ist das Halteelement mehrteilig ausgeführt und weist ein separates Ringelement auf, an dessen axialer Stirnfläche die Klemmfläche mit der radialen Rändelung angeformt ist, kann dieses Ringelement mit den radial verlaufenden Überhöhungen aus einem speziellen Werkstoff hergestellt werden, der auf das Material des Permanentmagneten abgestimmt ist. Dabei kann die Lagerung des Magneten leicht durch die Formgebung des Ringes an unterschiedliche Anwendungen, beispielsweise mit oder ohne Rotorgrundkörper, angepasst werden.

Zur axialen elastischen Lagerung des Permanentmagneten ist es von Vorteil, wenn an dem Halteelement ein Federelement angeordnet ist, das die axiale Anpresskraft zwischen der Anlagefläche und der Klemmfläche erzeugt.

Das Federelement ist vorzugsweise als Tellerfeder ausgebildet, die sich radial an einer Hülse und axial an einer Schulter des Halteelements abstützt und insbesondere das separate Ringelement stetig gegen den Magneten presst.

5

10

15

20

25

30

35

Durch den Eingriff der radial verlaufenden Überhöhungen in die Anlagefläche des Magneten wird dieser bei einer Materialausdehnung radial geführt und dadurch gleichzeitig radial zentriert. Durch den Formschluss zwischen der Klemmfläche und der Anlagefläche kann dabei trotz axial elastischer Lagerung ein recht hohes Drehmoment übertragen werden.

Für die Verwendung des Permanentmagneten als Arbeitsmagneten ist dieser aus relativ weichem und sprödem magnetischem Material hergestellt, welches sich mittels Sintern einfach als Hohlzylinder formen lässt. Für die Anwendung als Sensormagnet ist der Magnet vorzugsweise kunststoffgebunden, wobei bei beiden Ausführungen magnetische Materialien wie Eisen oder Seltene Erden Elemente, insbesondere Neodymverbindungen, verwendet werden.

Besonders günstig ist es, den Permanentmagneten an dessen Oberfläche zu beschichten, wobei insbesondere ein plastisch formbares Material wie Epoxidharz, Nickel oder Aluminium verwendet wird. Dadurch ist der Magnet einerseits vor Korrosion geschützt und weist gleichzeitig eine relativ weiche axiale Anschlagsfläche auf, in die die Klemmfläche eingreifen kann.

Hierzu wird beispielsweise die Klemmfläche - im Besonderen am Ringelement - aus einem hochharten Material, wie Stahl oder einer Invar-Legierung hergestellt, wodurch die Überhöhungen auf Grund der axialen Anpresskraft sowohl in eine weiche Beschichtung, als auch direkt in den Sinterwerkstoff, oder den kunststoffgebundenen Magneten eingreifen kann. Der Werkstoff der Überhöhungen kann dabei zusätzlich derart gewählt werden, dass dessen Temperaturausdehnungskoeffizient sehr gering ist, insbesondere in etwa gleich ist, wie der des Permanentmagneten.

10

15

20

25

30

35

In einer weiteren Ausgestaltung der Erfindung ist zwischen dem Hohlzylinder des Permanentmagneten und der Ankerwelle ein Rotorkörper angeordnet, der beispielsweise als magnetischer Rückschluss für den Permanentmagneten dient und dadurch dessen Magnetfeldstärke erhöht. Dabei kann das Ringelement mit der Klemmfläche einfach dieser Geometrie angepasst werden und auf den Umfang des Rückschlusskörpers angeordnet werden.

Die Zentrierung des Permanentmagneten wird im Betrieb des Rotors ausschließlich über die radiale Führung der Klemmfläche mit der Anschlagsfläche realisiert. Zur Vorzentrierung des Permanentmagneten bei der Montage des Ankers ist es jedoch von Vorteil, wenn der Permanentmagnet an einem radialen Bund des Halteelements, insbesondere des Ringelements oder des Rotorkörpers anliegt. In einer weiteren Ausführung kann auch eine zusätzliche radiale elastische Lagerung durch ein in radialer Richtung wirkendes Federelement gelagert werden, an dem der Permanentmagnet mit einer Innenfläche anliegt.

Aufgrund der elastischen axialen Lagerung des druckempfindlichen Magneten über die Anlageflächen und die Klemmflächen können zur dreh- und verschiebefesten Fixierung der Halteelemente auf der Ankerwelle kostengünstige und standardisierte Befestigungsverfahren, wie beispielsweise Materialumformung, Schweißen, Presspassung, Kleben oder Klemmringe angewandt werden.

Besonders günstig ist es, wenn das Halteelement einen hülsenartigen Fortsatz aufweist, mit dem das Halteelement einerseits auf der Ankerwelle gelagert ist, und andererseits zur Aufnahme des Permanentmagneten oder des Rotationskörpers dient. Eine am Halteelement angeformte axiale Schulter dient dabei gleichzeitig zur direkten oder indirekten axialen Abstützung der Anlagefläche des Permanentmagneten.

Hierzu ist an der axialen Schulter des Halteelements vorzugsweise die Klemmfläche mit den radial ausgerichteten Überhöhungen einstückig an dem Halteelement angeformt, so dass die Anlagefläche des Magneten direkt an der axialen Schulter des Halteelements anliegt. Insbesondere für die Anwendung des Permanentmagneten als Sensormagnet ist es von Vorteil, an dessen radialer Innenfläche radiale Quetschelemente anzuformen, die zur Vorzentrierung auf der Hülse des Halteelements dienen.

Ist das Halteelement, insbesondere dessen hülsenförmiger Fortsatz, aus einem magnetisch leitenden Material hergestellt, so kann dieser gleichzeitig als magnetischer Rückschlusskörper für den Permanentmagneten wirken.

Für Permanentmagneten mit einer relativ geringen axialen Ausdehnung von beispielsweise weniger als 10 mm, kann der Permanentmagnet mittels eines einzigen Halteelements befestigt werden. Dabei wird der Permanentmagnet auf der Hülse des Halteelements mittels eines federnden Klemm- oder Sperrelements gelagert, das sich axial an der Hülse abstützt und den Permanentmagneten gegen die radial gerändelte Klemmfläche am anderen Ende der Hülse gepresst.

Der erfindungsgemäße Rotor kommt vorzugsweise in einer elektrischen Maschine zum Einsatz, wobei der Permanentmagnet entweder als Arbeitsmagnet des Rotors oder als Sensormagnet für ein Drehlageerfassung verwendet wird. Durch die Lagerung über die radial gerändelte Klemmfläche ist eine verdreh- und verschiebefeste, sowie Positions- und rundlaufgenaue Befestigung des drucksensitiven Permanentmagneten auch bei großen Temperaturschwankungen gewährleistet.

Zeichnungen

20

25

30

35

15

In den Zeichnungen sind verschiedene Ausführungsbeispiele einer erfindungsgemäßen Vorrichtung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen

- Figur 1 einen Schnitt durch einen erfindungsgemäßen Rotor,
- Figur 2 einen Schnitt eines weiteren Ausführungsbeispiels eines Rotors,
- Figur 3 einen Ausschnitt einer radial gerändelten Klemmfläche,
- Figur 4 einen vergrößerten Ausschnitt des Sensormagnets aus Figur 3,
- Figur 5 und
- Figur 6 eine Ansicht und einen Schnitt eines Halteelements gemäß Figur 4 und
- Figur 7 einen Schnitt durch einen Permanentmagnet gemäß Figur 4.

Beschreibung der Ausführungsbeispiele

Nachfolgend wird unter Bezugnahme auf die Figur 1 ein Anker 1 gemäß einem ersten Ausführungsbeispiel der Erfindung beschrieben. In Figur 1 ist ein Rotor 1 dargestellt, der

10

15

20

25

30

35

mittels Gleit- oder Kugellager 12 in einem nicht näher dargestellten Gehäuse 11 einer elektrischen Maschine 10 gelagert ist. Der Rotor 1 umfasst eine Rotorwelle 2 und einen Permanentmagnet 3, der mittels zweier Halteelemente 4 auf der Rotorwelle 2 befestigt ist. Der Permanentmagnet 3 ist beispielsweise aus Eisen oder neodymhaltigen Sintermaterial 56 hergestellt und ist näherungsweise als Hohlzylinder 5 ausgebildet. Der Permanentmagnet 3 weist eine Beschichtung 14 aus einem plastisch verformbaren Material, beispielsweise Epoxidharz oder ein weiches Metall auf, das den Permanentmagneten 3 einerseits vor Korrosion schützt und andererseits eine verformbare Oberfläche 16 bildet. An seinen beiden axialen Enden 18, 19 weist der Permanentmagnet 3 jeweils eine in etwa ringförmige Anlagefläche 20 auf, die an jeweils korrespondierenden Klemmflächen 22 der Halteelemente 4 anliegen. Die Halteelemente 4 sind in diesem Beispiel mehrteilig ausgebildet. Sie weisen einen Grundkörper 24 auf, der mittels eines axialen hülsenförmigen Teils 26 auf der Rotorwelle 2 gelagert ist. Des weiteren weist das Halteelement 4 einen axialen Bund 28 auf, an dem sich als weiteres Bauteil des Halteelements 4 ein Federelement 30 zumindest axial abstützt. Im Ausführungsbeispiel ist das Federelement 30 als Tellerfeder 32 ausgebildet, die sich zusätzlich radial an der Hülse 26 des Halteelements 4 abstützt. Das Federelement 30 presst ein weiteres ringförmiges Bauelement 34 des Halteelements 4 gegen die Anlagefläche 20 des Permanentmagneten 3. Das Ringelement 34 weist im Ausführungsbeispiel einen radialen Bund 36 des Halteelements 4 auf, an dem sich der Permanentmagnet 3 durch Vorzentrierung bei der Montage des Rotors 1 radial abstützt.

Zur Montage des Permanentmagneten 3 wird beispielsweise ein Halteelement 4 am Grundkörper 24 mittels einer Schweißnaht 38 oder eines Sicherungsrings 40 an der Rotorwelle 2 fest fixiert. Das Federelement 30 und das Ringelement 34 mit der Klemmfläche 22 sind beispielsweise als Vormontagegruppe axial auf dem Grundkörper 24 montiert. Anschließend wird der Permanentmagnet 3 und das zweite Halteelement 4 mit seinen einzelnen Bauteilen in umgekehrter Reihenfolge auf die Rotorwelle 2 aufgeschoben. Bevor das zweite Halteelement 4 an der Ankerwelle 2 befestigt wird, werden die beiden Halteelemente 4 unter einer vordefinierten Vorspannkraft entgegen den Federkräften der Federelemente 30 derart zusammengedrückt, dass der Permanentmagnet 3 allein durch die axiale Anpresskraft zwischen den Anschlagsflächen 20 und den Klemmflächen 22 gehalten wird. Die Befestigung der Halteelemente 4, sowie der Lager 12, kann alternativ auch mittels Materialumformung an der Rotorwelle 2 oder an den Halteelementen durchgeführt werden, wie dies beispielsweise mittels Rolliernuten

10

15

20

25

30

42, wie in Figur 3 dargestellt, realisiert ist. Dabei können zur Toleranzminimierung vorteilhaft mehrere Bauteile in einem Arbeitsgang mittels Rollierscheiben fest rolliert werden.

Figur 2 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Rotors 1, wobei hier zwischen dem Permanentmagneten 3 und der Rotorwelle 2 als Rotorkörper 8 ein magnetisches Rückschlusselement 7 angeordnet ist. Das Rückschlusselement 7 führt bei einem radial magnetisierten Permanentmagneten 3 zu einer Verstärkung der magnetischen Feldstärke zwischen der Rotorwelle 2 und dem Hohlzylinder 5 des Permanentmagneten 3. Bei dem andersartig magnetisierten Permanentmagneten 3 gemäß Figur 1 verlaufen die Feldlinien innerhalb des Hohlzylinders 5, so dass dort kein magnetisches Rückschlusselement 7 angeordnet ist. Das magnetische Rückschlusselement 7 gemäß Figur 2 liegt mit einer Aussparung 44 an den beiden radialen Bünden 36 der Halteelemente 4 an und dient gleichzeitig als Rotorkörper 8, auf dem der Hohlzylinder 5 zur Vorzentrierung bei der Montage radial anliegt. Das Ringelement 34 des Halteelements 4 ist hierbei ebenfalls auf dem Rotorkörper 8 angeordnet und umschließt diesen, sowie die Ankerwelle 2, vollständig. Auch hier wird der Permanentmagnet 3 über seine Anlageflächen 20 und die gegenüberliegenden Klemmflächen 22 der Ringelemente 34 axial elastisch gelagert. Die Klemmfläche 22 des Halteelements 4, die hier am separaten Ringelement 34 angeformt ist, weist eine axiale Rändelung 46 auf, wie dies in Figur 3 in einem vergrößerten Ausschnitt des Ringelements 34 gemäß Figur 2 dargestellt ist.

Die Rändelung 46 in Figur 3 weist Überhöhungen 48 auf, die sich mit Rillen 50 abwechseln und sich in radialer Richtung erstrecken. Die Überhöhungen 48 weisen dabei eine scharfe Kante 52 auf, die sich im montierten Zustand in die gegenüberliegende Anlagefläche 20 des Permanentmagneten 3 eingraben. Die scharfen Kanten 52 weisen dabei eine keilförmige Spitze 54 auf, so dass die Überhöhung 48 leichter in die weichere Anlagefläche 20 eindringen. Hierzu ist das Ringelement 34 mit den Überhöhungen 48 aus einem hochfesten Werkstoff, beispielsweise Stahl oder einer Invar-Legierung, hergestellt. Der Werkstoff 56 ist dabei beispielsweise derart gewählt, dass dessen Wärmeausdehnungskoeffizient in etwa gleich ist, wie der des Permanentmagneten 3. Aber auch bei einer unterschiedlichen Temperaturausdehnung der Klemmfläche 22 und der Anlagefläche 20 wird der Permanentmagnet 3 entlang der radialen Überhöhungen 48

-8-

bei einer Relativbewegung geführt, so dass der Permanentmagnet 3 exakt zentriert zur Rotorwelle 2 bleibt .

5

10

15

20

25

30

35

In Figur 2 ist als weitere Ausführung eines Dauermagneten 3 ein Sensormagnet 3 dargestellt, der mittels eines einzigen Halteelements 4 auf der Rotorwelle 2 befestigt ist. Dieses Ausführungsbeispiel ist in Figur 4 vergrößert dargestellt, wobei das Halteelement 4 eine Hülse 26 aufweist, die auf der Rotorwelle 2 beispielsweise mittels Materialverformung befestigt ist. Das Halteelement 4 weist des weiteren eine axiale Schulter 28 auf, an der direkt einstückig mit der Hülse 26 die Klemmfläche 22 mit dem radialen Rändel 46 angeformt ist. Der Permanentmagnet 3 liegt dabei axial direkt mit seiner Anlagefläche 20 an der radialen Rändelung 46 an, unter einer axialen Vorspannung, die von einem als Sperrelement 58 ausgebildeten Federelement 30 aufgebracht wird. Das Sperrelement bzw. Speed nut 58 stützt sich dabei direkt an der Hülse 26 des einen Halteelements 4 axial ab, und liegt mit seinem elastischen Bereich 59 an der zweiten Anlagefläche 20 des Permanentmagneten 3 an. Dabei kann der Permanentmagnet 3 schon vor der Montage des Halteelements 4 auf die Rotorwelle 2 komplett auf dem Halteelement 4 vormontiert werden.

Hierzu weist der Hohlzylinder 5, der in dieser Ausführung als kunststoffgebundener Magnet 5 ausgeführt ist, an seiner radialen Innenfläche 60 Quetschelemente 62 auf, mittels derer der Permanentmagnet 3 leicht auf die Hülse 26 des in Figur 6 dargestellten Halteelements 4 gepresst wird. Zur leichteren Montage weist dabei der Hohlzylinder 5 an ihrer Innenfläche 60 Fasen 64 auf. Die Quetschelemente 62 sind dabei einstückig mit dem Permanentmagneten 3 ausgebildet und weisen eine radiale Verjüngung, beispielsweise eine radiale Spitze 66, auf. Wenn nun diese Quetschelemente 62 bei der Vormontage oder im Temperaturgang irreversibel verformt werden, wird die radiale Zentrierung des Permanentmagneten 3 durch die radial verlaufenden Überhöhungen 48 an der axialen Schulter 28 des Halteelements 4 gewährleistet. Dabei graben sich die scharfen Kanten 52 direkt in die Oberfläche 16 des relativ weichen kunststoffgebundenen Magneten 3 ein, wodurch eine Gegenführung zur radialen Ausdehnung des Hohlzylinders 5 geschaffen wird. Damit die Klemmfläche 22 dicht an der Anlagefläche 20 anliegen kann, ist durch die Fase 64 an der Innenfläche 60 des Hohlzylinders 5 Material ausgespart, so dass ein Freiraum 70 für einen Biegeradius 68 zwischen der Hülse 26 und der axialen Schulter 28 entsteht.

-9-

Der Rotor 1 ist Bestandteil einer elektrischen Maschine 10, beispielsweise eines Verstellmotors für bewegliche Teile im Kraftfahrzeug. So ist an der Rotorwelle 2 in Figur 2 als Abtriebselement 74 beispielsweise ein Abtriebsritzel 74 angeformt, das in eine nicht näher dargestellte, korrespondierende Verzahnung einer Verstellmimik greift. Zur Erzeugung eines umlaufenden äußeren Magnetfelds, das den Rotor 1 zur Drehung veranlasst, sind in einem Stator der elektrischen Maschine 10 Elektromagneten angeordnet, die über eine elektrische Kommutierung angesteuert werden. Zur Positionserfassung des Stellantriebs sind am Umfang des Sensormagneten 3 Hallsensoren 72 angeordnet, die die aufmagnetisierten Polwechsel des Hohlzylinders 5 detektieren.

10

15

5

Es sei angemerkt, dass hinsichtlich der in den Figuren und der Beschreibung dargestellten Ausführungsbeispiele vielfältige Kombinationsmöglichkeiten der einzelnen Merkmale untereinander möglich sind. So kann beispielsweise die konkrete Ausgestaltung der Halteelemente 4 und deren Befestigung auf der Rotorwelle 2 variiert werden. In einer alternativen Ausführung können die beiden Halteelemente 4 in einen gemeinsamen Rotorkörper 8 integriert werden, auf den der Permanentmagnet 3 axial elastisch gelagert ist. Je nach Anwendung kann die Form des Hohlzylinders 5, insbesondere dessen axiale Länge, sehr unterschiedlich ausgeführt sein, wobei die Ausführung der Halteelemente entsprechend angepasst werden kann. Ebenso können die verwendeten Werkstoffe 56 der Permanentmagneten 3, der Beschichtung 14 und der Klemmflächen 22 bzw. der Ringelemente 34 den entsprechenden Anforderungen angepasst werden. Besonders eignet sich die Erfindung für die Verwendung in Verstellantrieben für automatische Schaltgetriebe in Kraftfahrzeug.

25

WO 2005/099065

5

10

Ansprüche

15

Rotor (1) einer elektrischen Maschine (10) mit mindestens einem als Hohlzylinder
 (5) ausgebildeten Permanentmagnet (3), der axiale Anlageflächen (20) aufweist,
 die mit korrespondierenden axialen Klemmflächen (22) von mindestens einem
 Halteelement (4) zusammenwirken, mit dem der Permanentmagnet (3) am Rotor
 (1) befestigt ist,
 dadurch gekennzeichnet, dass mindestens eine der Klemmflächen (22) eine in

20

radialer Richtung verlaufende Rändelung (46) aufweist.

25

2. Rotor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Rändelung (46) radiale Rillen (50) und axial zugespitzte Überhöhungen (48, 52) aufweist, die in radialer Richtung verlaufen.

Rotor (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Halteelement
 (4) ein Ringelement (34) aufweist, an dessen - zumindest der Anlagefläche (20)
 zugewandter - axialer Seite (28) die Klemmfläche (22) angeformt ist.

30

4. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Halteelement (4) ein Federelement (30, 32) aufweist, das die Klemmfläche (22) mit einer Anpresskraft gegen die Anlagefläche (20) presst.

WO 2005/099065

5

10

15

20

25

- 5. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass sich das Federelement (30) insbesondere eine Tellerfeder (32) axial und radial am Halteelement (4) abstützt und den Permanentmagneten (3) elastisch lagert.
- 6. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die radialen Überhöhungen (48, 52) in die Anlagefläche (20) des Permanentmagneten (3) eingreifen, um ein Drehmoment zwischen dem Permanentmagneten (3) und dem Halteelemente (4) zu übertragen und/oder den Permanentmagneten (3) radial zum Rotor (1) zu zentrieren.
 - Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Permanentmagnet (3) aus Sintermaterial oder kunststoffgebundenem Material gefertigt ist, und insbesondere Ferrit und/oder Seltene-Erden-Elemente vorzugsweise NdFeB - enthält.
 - 8. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Permanentmagnet (3) zumindest an einer seiner Anschlagsflächen (20) eine Beschichtung (14) insbesondere aus Epoxidharz, Nickel oder Aluminium aufweist, die weicher ist, als der Werkstoff (56) der Überhöhungen (48, 52).
 - 9. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Überhöhungen (48, 52) aus härterem Werkstoff (56) als der Permanentmagnet (3) oder die Beschichtung (14) insbesondere aus Stahl oder Invar gefertigt ist und einen dem verwendeten Permanentmagneten (3) angepassten Temperaturausdehnungskoeffizienten aufweist.
 - 10. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass der Rotor (1) eine Rotorwelle (2) und/oder einen als magnetischen Rückschluss (7) ausgebildeten Rotorkörper (8) aufweist, die von einem die Klemmfläche (22) aufweisendem Ringelement (34) umschlossen werden.
 - 11. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass das Halteelement (4) insbesondere dessen Ringelement 34 einen radialen Bund

10

15

20

- (36) oder ein radial-elastisches Element aufweist, an dem sich der Permanentmagnet (3) zur radialen Vorzentrierung abstützt.
- 12. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Halteelemente (4) auf der Rotorwelle (2) mittels Sicherungsringen (40), Federbauteilen, Laserschweißen, Kleben, Materialumformung oder Schrumpfpassung fest fixiert ist.
- 13. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Halteelement (4) als Hülse (26) mit einer axialen Schulter (28) ausgebildet ist, an der sich die Anlagefläche (20) abstützt.
- 14. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die axiale Schulter (28) als die Klemmfläche (22) ausgebildet ist.
- 15. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Permanentmagnet (3) an seiner Innenfläche (60) insbesondere sich radial verjüngende Fortsätze (62) aufweist, mit denen der Permanentmagnet (3) zur Vorzentrierung auf die Hülse (26) gepresst wird.
- 16. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Halteelemente (4) als magnetischer Rückschluss (7) ausgebildet ist.
- 17. Rotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Federelement (30) als speed-nut (58) ausgebildet ist, die sich direkt an der Hülse (26) abstützt und insbesondere direkt an einer der Anlageflächen (20) anliegt.
- 18. Elektrische Maschine (10) mit einem Roter (1) nach einem der vorhergehenden
 30 Ansprüche, dadurch gekennzeichnet dass der Permanentmagnet (3) mit mindestens
 einem Hallsensor (72) oder einem um den Rotor (1) umlaufenden, elektrisch
 kommutierten Magnetfeld zusammenwirkt.

1/4

2/4

Fig. 3

4/4

Fig. 5

Fig. 6

Fig. 7

INTERNATIONAL SEARCH REPORT

Intermional Application No PCT/EP2005/051253

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER H02K1/27 H02K1/28 H02K1/30		
A consideration	a International Detant Classification (IDC) anto both national electrical	tion and IDC	
	 International Patent Classification (IPC) or to both national classifical SEARCHED 	uion and IPG	
	ocumentation searched (classification system followed by classification H02K	on symbols)	
Documenta	lion searched other than minimum documentation to the extent that si	uch documents are included in the fields se	earched
1	lata base consulted during the International search (name of data bas	se and, where practical, search terms used)
EPO-1n 	ternal, PAJ, WPI Data		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
Х	DE 100 53 245 A1 (ROBERT BOSCH GM	IBH)	1-3,6,8,
Υ	29 May 2002 (2002-05-29) paragraphs '0024!, '0034!; claim	14;	9,12 7,11,18
	figures 2,4		
Х	PATENT ABSTRACTS OF JAPAN vol. 010, no. 008 (E-373),		1-3,10, 16
	14 January 1986 (1986-01-14) & JP 60 170433 A (MITSUBISHI DENK	I KK).	
	3 September 1985 (1985-09-03) abstract; figure 2	• ,	
P,X	DE 103 14 394 A1 (SIEMENS AG) 14 October 2004 (2004-10-14)		1,2,4,6, 10,16
:	paragraph '0040! - paragraph '004 figures 6,8	21;	10,10
		-/	
X Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
° Special ca	ategories of cited documents :	"T" later document published after the inte	
consid	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or th invention	
filing	document but published on or after the international date ant which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cannot be considered novel or canno involve an inventive step when the do	t be considered to
which citatio	in oited to cotablish the publication date of enother	"Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or me	ventive step when the
other	means ent published prior to the international filing date but	ments, such combination being obvio in the art. "&" document member of the same patent	us to a person skilled
	actual completion of the international search	Date of mailing of the international sea	
1	2 May 2005	24/05/2005	
Name and I	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Sedlmeyer, R	

INTERNATIONAL SEARCH REPORT

Intermional Application No PCT/EP2005/051253

		PC1/EP200	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Υ	PATENT ABSTRACTS OF JAPAN vol. 012, no. 293 (E-645), 10 August 1988 (1988-08-10) & JP 63 069450 A (MATSUSHITA ELECTRIC IND CO LTD), 29 March 1988 (1988-03-29) abstract		7
Υ	GB 1 009 827 A (SANYO ELECTRIC COMPANY LIMITED) 10 November 1965 (1965-11-10) page 1, lines 72-75; figure 1		11
Α	PATENT ABSTRACTS OF JAPAN vol. 017, no. 371 (E-1396), 13 July 1993 (1993-07-13) & JP 05 056582 A (MABUCHI MOTOR CO LTD), 5 March 1993 (1993-03-05) abstract; figures 1,2		13–15
Y	DE 102 05 413 A1 (ROBERT BOSCH GMBH) 21 August 2003 (2003-08-21) paragraph '0008!; figure 2		18
Α	FR 2 723 490 A (VALEO SYSTEMES D'ESSUYAGE) 9 February 1996 (1996-02-09) page 8, line 1 - line 2; figure 2		4,5,17

INTERNATIONAL SEARCH REPORT

nformation on patent family members

Intermional Application No	
PCT/EP2005/051253	

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 10053245	A1	29-05-2002	WO	0235681 A2	02-05-2002
JP 60170433	Α	03-09-1985	NONE		
DE 10314394	A1	14-10-2004	FR	2853155 A1	01-10-2004
JP 63069450	A	29-03-1988	NONE		- — — — — — — — — — — — — — — — — — — —
GB 1009827	Α	10-11-1965	NONE		
JP 05056582	Α	05-03-1993	NONE		
DE 10205413	A1	21-08-2003	MO	03067741 A1	14-08-2003
FR 2723490	Α	09-02-1996	FR	2723490 A1	09-02-1996

INTERNATIONALER RECHERCHENBERICHT

intermionales Aktenzeichen
PCT/EP2005/051253

a. Klassifizierung des anmeldungsgegenstandes IPK 7 H02K1/27 H02K1/28 H02K1/30 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 H₀₂K Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, PAJ, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie® χ DE 100 53 245 A1 (ROBERT BOSCH GMBH) 1-3,6,829. Mai 2002 (2002-05-29) 9,12 Absätze '0024!, '0034!; Anspruch 14; 7,11,18 Υ Abbildungen 2,4 X PATENT ABSTRACTS OF JAPAN 1-3,10,Bd. 010, Nr. 008 (E-373), 14. Januar 1986 (1986-01-14) & JP 60 170433 A (MITSUBISHI DENKI KK). 3. September 1985 (1985-09-03) Zusammenfassung; Abbildung 2 DE 103 14 394 A1 (SIEMENS AG) 14. Oktober 2004 (2004-10-14) P,X 1,2,4,6, 10.16 Absatz '0040! - Absatz '0042!; Abbildungen 6.8 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen X I Siehe Anhang Patentfamilie ΧĮ "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der ° Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit elner oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausgeführt)
Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 24/05/2005 12. Mai 2005 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL. – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Sedlmeyer, R

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2005/051253

C.(Fortsetzu Kategorie	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°		
	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile Betr. Anspruch Nr.
Y	PATENT ABSTRACTS OF JAPAN Bd. 012, Nr. 293 (E-645), 10. August 1988 (1988-08-10) & JP 63 069450 A (MATSUSHITA ELECTRIC IND CO LTD), 29. März 1988 (1988-03-29) Zusammenfassung	7
Y	GB 1 009 827 A (SANYO ELECTRIC COMPANY LIMITED) 10. November 1965 (1965-11-10) Seite 1, Zeilen 72-75; Abbildung 1	11
A	PATENT ABSTRACTS OF JAPAN Bd. 017, Nr. 371 (E-1396), 13. Juli 1993 (1993-07-13) & JP 05 056582 A (MABUCHI MOTOR CO LTD), 5. März 1993 (1993-03-05) Zusammenfassung; Abbildungen 1,2	13-15
Y	DE 102 05 413 A1 (ROBERT BOSCH GMBH) 21. August 2003 (2003-08-21) Absatz '0008!; Abbildung 2	18
A	FR 2 723 490 A (VALEO SYSTEMES D'ESSUYAGE) 9. Februar 1996 (1996-02-09) Seite 8, Zeile 1 - Zeile 2; Abbildung 2	4,5,17

INTERNATIONALER RECHERCHENBERICHT Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intermonales Aktenzeichen
PCT/EP2005/051253

im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	1	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 10053245	A1	29-05-2002	WO	0235681 A2	02-05-2002
JP 60170433	A	03-09-1985	KEINE		
DE 10314394	A1	14-10-2004	FR	2853155 A1	01-10-2004
JP 63069450	A	29-03-1988	KEINE		
GB 1009827	A	10-11-1965	KEINE		
JP 05056582	A	05-03-1993	KEINE	——————————————————————————————————————	
DE 10205413	A1	21-08-2003	WO	03067741 A1	14-08-2003
FR 2723490	A	09-02-1996	FR	2723490 A1	09-02-1996