

(17) Offenlegungsschrift
(17) DE 195 19 895 A 1

(51) Int. Cl. 5:
C 07 C 255/23

C 07 C 253/30
C 07 B 53/04
C 08 K 5/315
C 09 K 15/20
C 09 K 15/30
C 09 D 7/12
A 61 K 31/445
// (C08K 5/315,
5:3435)

DE 195 19 895 A 1

(21) Aktenzeichen: 195 19 895.8
(22) Anmeldetag: 31. 5. 85
(23) Offenlegungstag: 5. 12. 86

(21) Anmelder:
BASF AG, 67063 Ludwigshafen, DE

(22) Erfinder:
Krause, Alfred, Dr., 67348 Speyer, DE; Holderbaum,
Martin, Dr., 67065 Ludwigshafen, DE; Aumüller,
Alexander, Dr., 67435 Neustadt, DE; Trauth, Hubert,
67373 Dudenhofen, DE; Sperling-Vietmeier, Karin,
Dr., 67433 Neustadt, DE

(52) 2-Cyanacrylsäureester

(57) Neue 2-Cyanacrylsäureester I

wobei die Reste folgende Bedeutung haben:
einer der Reste R^1 und R^2 Wasserstoff und
der andere ein Rest mit einem iso- oder heterocyclischen
Ringssystem mit mindestens einem iso- oder heteroaromati-
schen Kern
X für $n = 2$ ein Rest der Formel II

wobei $m = 2$ bis 8 ist
X für $n > 2$ der Rest eines n-wertigen aliphatischen oder
cycloaliphatischen Polyols mit 3-20 C-Atomen, wobei ein
cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten
kann.
Die Verbindungen I dienen als Lichtschutzmittel.

DE 195 19 895 A 1

Die folgenden Angaben sind den vom Anmelder eingesetzten Unterlagen entnommen

BUNDESDRUCKEREI 10. 88 602 049/189

Beschreibung

Die vorliegende Erfindung betrifft neue 2-Cyanacrylsäureester der Formel I,

in der einer der Reste R¹ oder R² Wasserstoff bedeutet und der andere für einen Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern steht,
n einen Wert von 2 bis 10 hat und

15 X für den Fall, daß n = 2 ist, einen Rest der Formel II

bedeutet, wobei m einen Wert von 2 bis 8 hat und
25 X für den Fall, daß n > 2 ist, den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit 3–20 C-Atomen bezeichnet, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten kann.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der Verbindungen I, ihre Verwendung als Lichtschutzmittel oder Stabilisatoren für organische Materialien, insbesondere für kosmetische oder dermatologische Zubereitungen, Kunststoffe oder Lacke sowie organische Materialien, welche die Verbindungen I enthalten.

30 Aus der US-A 3 215 725 und der DE-A 41 22 475 sind 2-Cyanacrylsäureester von einwertigen und zweiwertigen Alkoholen als Lichtschutzmittel für Kunststoffe und Lacke bekannt.

Diese Verbindungen haben jedoch den anwendungstechnischen Nachteil einer relativ hohen Flüchtigkeit. Da sie außerdem mit vielen organischen Materialien, insbesondere mit Polyolefinen nur bedingt verträglich sind, neigen sie vor allem bei Wärmemagerung zur Migration und darauf beruhenden Ausschwitzeffekten.

35 Es war daher Aufgabe der Erfindung, diesen Nachteilen durch neue Stabilisatoren vom Typ der 2-Cyanacrylsäureester abzuheben.

Demgemäß wurden die eingangs definierten 2-Cyanacrylsäureester der allgemeinen Formel I gefunden.

Weiterhin wurde ein Verfahren zur Herstellung dieser Verbindungen, ihre Verwendung als Lichtschutzfaktoren oder Stabilisatoren von organischen Materialien sowie organische Zubereitungen, die diese Verbindungen als Stabilisatoren enthalten, gefunden.

40 Da die Reste R¹ und R² ungleich sind, können die 2-Cyanacrylsäureestergruppen von I sowohl in der Cis- als auch in der trans-Form vorliegen. Bei der Herstellung der Verbindungen entstehen meist Gemische dieser Isomeren. Eine Trennung dieser Isomeren ist möglich, jedoch für die meisten anwendungstechnischen Zwecke nicht erforderlich.

45 Als organische Reste für R¹ bzw. R² kommen allgemein Ringstrukturen in Betracht, die mindestens einen iso- oder heteroaromatischen Kern enthalten, der vorzugsweise direkt an das 3-C-Atom der Acrylsäuregruppierung gebunden ist, aber auch über aliphatische oder cycloaliphatische Gruppierungen mit diesem C-Atom verknüpft sein kann.

50 Bevorzugt steht R¹ bzw. R² für die Phenylgruppe sowie daneben allgemein für Phenylgruppen, die bis zu 3 der folgenden Substituenten tragen können:

- lineares C₁–C₆-Alkyl wie Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl oder Octyl,
- verzweigtes C₃–C₆-Alkyl wie iso-Propyl, iso-Butyl, sec.-Butyl, tert.-Butyl, iso-Pentyl, sec.-Pentyl, tert.-Pentyl, neo-Pentyl oder 2-Ethylhexyl,
- Cyan, Hydroxy,
- C₁–C₁₈-Alkoxy wie Methoxy, Ethoxy, Propoxy, Butoxy oder 2-Ethylhexoxy sowie längerkettige Alkoxygruppen, wobei der Alkyrest bevorzugt von natürlichen Fettsäuren abgeleitet ist wie Decyl, Dodecyl, Tetradecyl, Hexadecyl oder Octadecyl,
- Carbalkoxyreste mit den oben genannten Alkylgruppen oder
- C₃–C₆-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Methylcyclopentyl oder Cyclohexyl.

Unter den substituierten Phenylgruppen haben solche besondere Bedeutung, die in 4-Stellung eine Hydroxygruppe oder eine C₁–C₄-Alkoxygruppe tragen, da diese 4-substituierten Phenylgruppen zum stabilisierenden Effekt der Verbindungen I beitragen. Dieser Effekt wird durch die Methyl- oder tert.-Butylgruppen in 3-Stellung sowie besonders durch zwei dieser Gruppen in 3- und 5-Stellung noch weiter verstärkt, so daß für die Reste R¹ bzw. R² Reste der Formel Ia

5

in der R³ für Wasserstoff oder einen C₁–C₄-Alkyrest steht und R⁴ Methyl oder tert.-Butyl bedeutet, ganz 10 besonders bevorzugt werden.

Ein weiterer bevorzugter Rest für R¹ bzw. R² ist der Chromanrest Ib

15

da auch dieser die stabilisierende Wirkung der Verbindungen I verstärkt.

Als weitere Reste R¹ bzw. R² kommen heterocyclische Gruppen wie substituierte oder unsubstituierte Thiophenyl-, Furfuryl- und Pyridyreste in Betracht.

Ist n = 2 steht X für einen Rest der Formel II

23

30

wobei m einen Wert von 2 bis 8, vorzugsweise 2 bis 6 bedeutet, besonders bevorzugt jedoch für 2 steht.

Wenn n > 2 ist, steht X für den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Alkohols. Diese Alkohole können linear oder verzweigt sein, und ihre C-Ketten können durch ein oder mehrere Sauerstoff- oder Schwefelatome, durch Iminogruppen (–NH–) oder Alkyliminogruppen (–NR'–), wobei R' vorzugsweise für 35 C₁–C₄-Alkyl steht, unterbrochen sein.

Die Gruppierung X leitet sich vorzugsweise von folgenden bekannten Polyolen ab:

40

45

50

55

60

65

30 Die 2-Cyanacrylsäureester der Formel I sind vorzugsweise durch Umsetzung von Cyanessigsäureestern der allgemeinen Formel III

unter den Bedingungen der Knoevenagel-Kondensation erhältlich. Die Umsetzung kann z. B. in aromatischen Lösungsmitteln wie Toluol oder Xylool durchgeführt werden (s. z. B. Organikum, Ausgabe 1976, S. 572). Bevorzugt werden jedoch polare organische Lösungsmittel wie Dimethylformamid, Dimethylacetamid oder N-Methylpyrrolidon verwendet. Die Reaktionstemperaturen liegen bevorzugt zwischen 20 und 120°C, besonders bevorzugt zwischen 40 und 80°C. In Abhängigkeit von der Reaktivität des eingesetzten Aldehyds ist die Verwendung eines Katalysators bzw. eines Katalysatorgemisches vorteilhaft. Als Katalysatoren eignen sich z. B. Ammoniumacetat sowie Piperidin und B-Alanin und deren Acetate.

Die Cyanessigester II können beispielsweise durch Umsetzung von Cyanessigsäure oder deren Estern mit den entsprechenden Polyketen $x(OH)_n$ in Gegenwart eines Katalysators wie Borsäure, Na_2CO_3 oder K_2CO_3 oder Tetrabutylorthotitanat vorzugsweise in Toluol oder Xylo h hergestellt werden.

50 Die erfundungsgemäßen Verbindungen eignen sich in hervorragender Weise zum Stabilisieren von organischen Materialien gegen die Einwirkung von Licht, Sauerstoff und Wärme.

65 So können beispielsweise Kunststoffe wie Polyester, Polyurethane, Polyamide und Polycarbonate sowie Additionspolymere wie Polyacrylate, Polystyrol, Polyethylen oder copolymeren wie Acrylnitril-Butadien-Styrol (ABS) mit den 2-Cyanacrylsäureestern I wirkungsvoll stabilisiert werden. Das gleiche gilt für Lacke und andere Anstrichmittel. Für diesen Anwendungsbereich werden die Verbindungen in Konzentrationen von 0,01 bis 5 Gew.-%, bezogen auf die Menge des Kunststoffs, eingesetzt, bevorzugt in einer Konzentration von 0,02 bis 2 Gew.-%. Die Kombination mit anderen Stabilisatoren, beispielsweise Antioxidantien, Metalldesaktivatoren oder anderen Lichtschutzmitteln sowie mit antistatischen oder flammhemmenden Mitteln, ist oft vorteilhaft.

DE 195 19 895 A1

Besonders wichtige Costabilisatoren sind beispielsweise sterisch gehinderte Phenole sowie Phosphite, Phosphonate, Amine und Schwefelverbindungen.

Als geeignete Costabilisatoren kommen z. B. in Betracht:

Phenolische Antioxidationsmittel wie	5
2,6-Di-tert.-butyl-4-methylphenol,	
o-Octadecyl-β-(3,5-di-tert.-butyl-4-hydroxyphenol)-propionat,	
1,1,3-Tris-(2-methyl-4-hydroxy-5-tert.-butylphenyl)-butan,	
1,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert.-butyl-4-hydroxybenzyl)-benzol,	
1,3,5-Tris-(3,5-di-tert.-butyl-4-hydroxybenzyl)-isocyanurat,	10
1,3,5-Tris-[β-(3,5-di-tert.-butyl-4-hydroxyphenyl)-propionylethyl]-isocyanurat,	
1,3,5-Tris-(2,6-di-methyl-3-hydroxy-4-tert.-butylbenzyl)-isocyanurat und	
Pentaerythrit-tetrakis-[β-(3,5-di-tert.-butyl-4-hydroxy)-propionat],	
phosphorhaltige Antioxidantien wie	15
Tris-(nonylphenyl)-phosphit, Distearylpentaerythritphosphit,	
Tris-(2,4-di-tert.-butyl-phenyl)-phosphit,	
Tris-(2-tert.-butyl-4-methylphenyl)-phosphit	
Bis-(2,4-di-tert.-butylphenyl)-pentaerythritdiphosphit und	
Tetrakis-(2,4-di-tert.-butylphenyl)-4,4'-biphenyldiphosphit,	20
schwefelhaltige Antioxidantien wie	
Dilaurylthiodipropionat,	
Dimyristylthiodipropionat,	
Distearylthiodipropionat,	25
Pentaerythrittetakis-(β-laurylthiopropionat) und	
Pentaerythrittetakis-(β-hexylthiopropionat),	
sterisch gehinderte Amine wie	
Bis-(2,2,6,6-tetramethylpiperidyl)-sebacat,	30
Bis-(1,2,2,6,6-pentamethylpiperidyl)-sebacat,	
Bis-(1,2,2,6,6-pentamethylpiperidyl)-ester,	
N,N'-Bis(formyl)-bis-(2,2,6,6-tetramethyl-4-piperidyl)-1,6-hexandiamin,	
das Kondensationsprodukt von	35
1-Hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernsteinsäure,	
das Kondensationsprodukt von	
N,N'-(2,2,6,6-Tetramethylpiperidyl)-hexamethylenediamin und	
4-tert-Octylamino-2,6-dichlor,1,3,5-s-triazin,	
Poly-[3-(Eicosyl/Tetraacosyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-pyrrolidin-2,5-dion],	40
Tris-(2,2,6,6-Tetramethylpiperidyl)-nitroloracetat,	
Tetrakis-(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butantetraacbonsäure,	
1,1'-(1,2-Ethandiyil)-bis-(3,3,5,5-tetramethylpiperazinon),	
die Kondensationsprodukte von	45
4-Amino-2,2,6,6-tetramethylpiperidinen und Tetramethyloacetylendiharnstoffen sowie	
2-(2'-Hydroxyphenyl)-benztriazole,	
2-Hydroxybenzophenone,	50
Arylester von Hydroxybenzoësäuren,	
α-cyanozimtsäurederivate,	
Nickelverbindungen oder	
Qxalsäuredianilide.	
Zur Vermischung der erfundungsgemäßen Verbindungen I, vor allem mit Kunststoffen, können alle bekannten Vorrichtungen und Methoden zum Einmischen von Stabilisierungsmitteln oder anderen Zusätzen in Polymere angewandt werden.	55
Die UV-Strahlung wird in drei Bereiche eingeteilt: den UV-A-Bereich (320–400 nm), den UV-B-Bereich (290–320 nm) und den UV-C-Bereich (200–290 nm). Der hochenergetische UV-C-Bereich wird überwiegend von der Ozonschicht absorbiert. Strahlung im UV-B-Bereich ist vor allem für die Entstehung von Sonnenbrand und Hautkrebs verantwortlich. Die UV-A-Strahlung bewirkt bei längerer Einwirkung sowohl die Hautbräunung, ist aber auch für die Alterung der Haut mitverantwortlich.	60
Wegen der günstigen Löslichkeitseigenschaften sowie der guten Absorptionseigenschaften, besonders im UV-A-Bereich, eignen sich die erfundungsgemäßen Verbindungen besonders für Anwendungen im kosmetischen und dermatologischen Bereich. Auch zum Schutz kosmetischer Präparate wie Parfums, Cremes und Lotionen können die Verbindungen vorteilhaft eingesetzt werden. Besonders bevorzugt sind Kombinationen mit Lichtschutzmitteln, die im UV-B-Bereich absorbieren. Für kosmetische Formulierungen werden die 2-Cyanacrylsä-	65

reester I in Konzentrationen von 0,05 bis 15-Gew.-%, bevorzugt von 0,1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der kosmetischen Formulierung, eingesetzt.

Weitere organische Materialien, denen die erfindungsgemäßen Verbindungen vorteilhaft zugemischt werden, sind Arzneimittelformulierungen wie Pillen und Zäpfchen, photographische Aufzeichnungsmaterialien, insbesondere photographische Emulsionen, sowie Vorprodukte für Kunststoffe und Lacke.

Beispiele

Allgemeine Herstellvorschrift

10 0,1 mol eines n-wertigen Cyanessiglureesters III,

welcher durch Umsetzung von Cyanessiglure mit dem entsprechenden n-wertigen Alkohol in bekannter Weise erhalten wurde,
wurden mit 0,12 n mol eines Aldehyds IV

in 100 ml N,N-Dimethylacetammid in Gegenwart von 0,5 ml Piperidin und 0,3 ml Eisessig umgesetzt. Nach 3 Stunden bei 70°C wurde der Niederschlag abgetrennt, mit Methanol und Wasser gewaschen und getrocknet.

Die Einzelheiten dieser Versuche sowie die Eigenschaften der erhaltenen Verbindungen I sind der folgenden Tabelle zu entnehmen.

40

45

50

55

60

65

DE 195 19 895 A1

Bsp	X	R ¹ bzw. R ²	* λ_{max} [nm]	molarer Extinktions- koeffizient ϵ [l·cm ⁻¹ ·mol ⁻¹]	Schmelz- punkt [°C]	Aus- beute [%]
1		H ₃ CO-	342	57 000	>265	95
2		HO-	350	59 000	>265	70
3		H ₃ CO-	336	47 000	>265	92
4			306	59 188	110-112	70
5		H ₃ C-	322	66 678	115-120	77
6		H ₃ CO-	346	76 912	75-80	90

5

10

15

20

25

30

35

40

45

50

55

60

65

Bsp	X	R ¹ bzw. R ²	* λ_{max} [nm]	molarer Extinktions- koeffizient ϵ [1·cm ⁻¹ ·mol ⁻¹]	Schmelz- punkt [°C]	Aus- beute [%]
7	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$	+	324	73 332	90-95	84
8	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		340	72 000	179-181	70
9	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		353	72 000	170-174	77
10	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		354	72 100	95-100	88
11	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		306	58 256	114-116	63
12	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		322	67 090	95-102	74
13	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		346	75 519	30-35	73
14	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$	+	322	57 601	168-170	67
15	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		338	68 000	103-105	74
16	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2- \end{array}$		354	72 000	85-87	74
17	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2- \end{array}$		358	106 480	275-276	66
18	$\begin{array}{c} \text{CH}_2- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2- \end{array}$		346	102 298	215-216	90

Bsp	X	R ¹ bzw. R ²	* λ_{max} [nm]	molarer Extinktions- koeffizient ϵ [l·cm ⁻¹ ·mol ⁻¹]	Schmelz- punkt [°C]	Aus- beute [%]
19	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2^- \end{array}$		308	63 909	148-155	79
20	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2^- \end{array}$	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-$	324	102 273	250	79
21	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2^- \end{array}$		324	101 131	130-131	67
22	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2^- \end{array}$	$\text{H}_3\text{CO}-\text{C}_6\text{H}_3(\text{X})_2-$	342	51 000	98-100	60
23	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2- \\ \\ \text{CH}_2^- \end{array}$	$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-$	356	110 500	115-118	87
24	$\begin{array}{cc} \text{CH}_2^- & \text{CH}_2^- \\ & \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}-\text{CH}_2- & \\ & \\ \text{CH}_2^- & \text{CH}_2^- \end{array}$	$\text{H}_3\text{C}-\text{C}_6\text{H}_4-$	320	120 582	128-132	65
25	$\begin{array}{cc} \text{CH}_2^- & \text{CH}_2^- \\ & \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}-\text{CH}_2- & \\ & \\ \text{CH}_2^- & \text{CH}_2^- \end{array}$	$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-$	342	145 000	105-108	88
26	$\begin{array}{cc} \text{CH}_2^- & \text{CH}_2^- \\ & \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}-\text{CH}_2- & \\ & \\ \text{CH}_2^- & \text{CH}_2^- \end{array}$	$\text{H}_3\text{CO}-\text{C}_6\text{H}_3(\text{X})_2-$	338	149 300	150-151	58
27	$\begin{array}{cc} \text{CH}_2^- & \text{CH}_2^- \\ & \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}-\text{CH}_2- & \\ & \\ \text{CH}_2^- & \text{CH}_2^- \end{array}$	$\text{H}_3\text{CO}-\text{C}_6\text{H}_4-$	352	145 000	135-140	51

* UV-Messungen in CH₂Cl₂

Patentansprüche

1.2-Cyanacrylsäureester der Formel I

in der einer der Reste R¹ oder R² Wasserstoff bedeutet und der andere für einen Rest mit einem iso- oder heterocyclischen Ringssystem mit mindestens einem iso- oder heteroaromatischen Kern steht,
n einen Wert von 2 bis 10 hat und

X für den Fall, daß n = 2 ist, einen Rest der Formel II

- 10 bedeutet, wobei m einen Wert von 2 bis 8 hat und
X für den Fall, daß n > 2 ist, den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit
3–20 C-Atomen bezeichnet, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten kann.
2. 2-Cyanacrylsäureester nach Anspruch 1, in denen einer der Reste R¹ oder R² die Phenylgruppe bedeutet,
15 die bis zu 3 der folgenden Substituenten tragen kann: C₁–C₆-Alkyl, C₁–C₁₈-Alkoxy, C₃–C₆-Cycloalkyl,
C₂–C₆-Acyl, C₂–C₆-Acyloxy, C₂–C₆-Alkoxy carbonyl, Cyan und Hydroxy.
3. 2-Cyanacrylsäureester nach Anspruch 2, in denen die Phenylgruppe in 4-Stellung eine Hydroxylgruppe
oder eine C₁–C₄-Alkoxygruppe trägt.
4. 2-Cyanacrylsäureester nach Anspruch 2 oder 3, in denen die Phenylgruppe in 3-Stellung eine Methyl- oder
tert.-Butylgruppe trägt.
20 5. 2-Cyanacrylsäureester nach den Ansprüchen 1 bis 4, in denen n einen Wert von 3 bis 6 einnimmt.
6. Verfahren zur Herstellung von 2-Cyanacrylsäureestern gemäß den Ansprüchen 1 bis 5, dadurch gekenn-
zeichnet, daß man einen Cyanessigsäureester der allgemeinen Formel II

- 30 mit n mol eines Aldehydes der allgemeinen Formel IV

- 40 unter den Bedingungen der Knoevenagel-Kondensation in einem polaren Lösungsmittel und in Gegenwart
eines Katalysators umsetzt.
7. Verwendung der 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 5 als Lichtschutzmittel oder
Stabilisatoren für organische Materialien.
8. Verwendung der 2-Cyanacrylsäureester gemäß Anspruch 6 als Lichtschutzmittel oder Stabilisatoren in
kosmetischen oder dermatologischen Zubereitungen.
45 9. Verwendung der 2-Cyanacrylsäureester gemäß Anspruch 6 als Lichtschutzmittel oder Stabilisatoren in
Kunststoffen oder Lacken.
10. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisierte organische Materialien, welche 0,01
bis 10 Gew.-%, bezogen auf die Menge des organischen Materials, eines oder mehrerer 2-Cyanacrylsäure-
ester gemäß den Ansprüchen 1 bis 5 enthalten.
50 11. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisierte kosmetische oder dermatologische
Zubereitungen, welche 0,01 bis 15 Gew.-%, bezogen auf die Menge dieser Zubereitungen, eines oder
mehrerer 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 5 enthalten.
12. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisierte Kunststoffe und Lacke, welche 0,01
55 bis 10 Gew.-%, bezogen auf die Menge des Kunststoffs oder Lacks, eines oder mehrerer 2-Cyanacrylsäu-
reester gemäß den Ansprüchen 1 bis 5 enthalten.

60

65