Riemann Surfaces

Zihan Ke

October 3, 2025

Introduction

Riemann Surfaces is the one-dimensional complex manifold. Also, it can be described as the one-dimensional complex algeraic curves. I first encounter the concept of Riemann Surfaces in complex analysis.Later I found that Riemann Surfaces is not only an interesting object to learn itself. Since it can be described as algebraic curves, it also provides a path to the study of algebraic geometry. I want to learn algebraic geometry and Riemann Surfaces is a good place to start. OUr goal in this note is to obtain Riemann-Roch theorem and its application.

1 Riemann Surfaces and complex manifolds.

- 1.1 holomorphic functions in 1-variable
- 1.2 holomorphic functions in *n*-variables
- 1.3 Complex manifolds & Riemann Surfaces.

Definition 1.1. Let X be a **topological** space.

1. A n-dim complex chart on X is a homeomorphism

$$\phi: U \xrightarrow{\cong} V \subset \mathbb{C}^n$$
 open

- 2. Two such charts are compatible if $U_1 \cap U_2 = \emptyset$ or $\phi_2 \circ \phi_1^{-1} | \phi_1(U_1 \cap U_2)$ is holomorphic
- 3. A *n*-dim complex atlas \mathcal{A} is a collection of pairwise compatible charts on X.
- 4. Two such at lases on X are equivalent if $\mathcal{A} \cup \mathcal{B}$ is an atlas.
- 5. A n-dim $\mathbb C$ manifold is a topological space (is Hausdorff & 2^{nd} countable) with an equivalence class of n-dim $\mathbb C$ at lases.
- 6. A Riemann surface is a 1-dim \mathbb{C} manifold.

Exercise:

- 1. Equivalence of atlases is an equivalence relation.
- 2. \exists unique maximal \mathbb{C} atlas.

Remark 1.1. (i) Refining an atlas doesn't change the complex structure.

(ii) If $\phi: U \to V$ is a chart on Riemann Surface X.

$$\alpha: V \xrightarrow{\wedge} W$$

then $\alpha \circ \phi : U \to W$ is a chart compatible with ϕ .

(iii) An *n*-dimensional **manifold** is a 2*n*-dimensional real smooth **manifold**.

1.4 Examples of Riemann Surfaces.

Example 1.1. The first example is a **Non-Examples:**

1. $X = \mathbb{R}^2 \times U \to V = \mathbb{C}$ for i = 1, 2.

$$\phi_1(x,y) = x + iy$$

$$\phi_2(x,y) = \frac{x+iy}{1+idx^2y^2}$$

 ϕ_1 & ϕ_2 are not compatible. $\phi_2 \circ \phi_1^{-1}(z) = \frac{z}{1+|z|^2}$ not holomorphic.

2. The complex plane \mathbb{C} . $X = \mathbb{R}^2$. with $\phi_1 : \mathbb{R}^2 \to \mathbb{C}$.

$$(x,y)\mapsto x+iy$$

is a Riemann Surface.

3. The Riemann Sphere. \mathbb{CP}^1 : $X=S^2=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}\subset\mathbb{R}^3$. (the stereographic projection with some modifications)

2

Figure 1: An illustration of the stereographic projection.

$$S^2 \setminus \{(0,0,1)\}$$

$$\phi_0: U_0 \longrightarrow V_0 = \mathbb{C}$$

$$\parallel$$

$$S^2 \setminus \{(0,0,1)\}$$

$$(x,y,w) \longmapsto \frac{x+iy}{1-w} \quad \Rightarrow \quad \text{this is the stereographic projection}$$

$$\phi_\infty: U_\infty \xrightarrow{\cong} V_\infty = \mathbb{C}$$

$$\parallel$$

$$S^2 \setminus \{(0,0,-1)\}$$

$$(x,y,w) \longmapsto \frac{x-iy}{1+w}$$

 $\mathbf{Exercise}:$ check these are charts.

 $\phi_0 \ \& \ \phi_\infty \text{ are compatible. On } U_0 \cap U_\infty = S^2 \setminus \{(0,0,1),(0,0,-1)\}, \ \phi_0(U_0 \cap U_\infty) \subset \mathbb{C}^* \subset V_0.$

$$\frac{1}{\phi_0(x,y,w)} = \frac{1-w}{x+iy} = \frac{(1-w)(x-iy)}{x^2+y^2} = \frac{(1-w)(x-iy)}{1-w^2} = \frac{x-iy}{1+w} = \phi_\infty(x,y,w)$$

Thus,

$$\phi_{\infty} \circ \phi_0^{-1}(z) = \frac{1}{z} \text{ on } \mathbb{C}^* = \phi_0(U_0 \cap U_{\infty}) \subset \mathbb{C} = V_0.$$

holomorphic

Hence, $\{\phi_0, \phi_\infty\}$ are an atlas, and the corresponding Riemann Surface is called the **Riemann Sphere**.

1. **Complex tori of dimension 1.** For $\omega_1, \omega_2 \in \mathbb{C}$ which are \mathbb{R} -linearly independent. consider the lattice $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 = \{n\omega_1 + m\omega_2 : n, m \in \mathbb{Z}\} \subset \mathbb{C}$. Let $X = \mathbb{C}/L$, with the quotient topology.

$$\pi: \mathbb{C} \longrightarrow X = \mathbb{C}/L.$$

$$z \longmapsto [z] = z + L.$$

Topologically X is a torus.

Every $z \in \mathbb{C}$ is equivalent to a unique point in the Fundamental domain.

Given $X = \mathbb{C}/L$, we construct an atlas using $\pi : \mathbb{C} \to \mathbb{C}/L$.

Pick $\varepsilon > 0$ s.t. $\forall p \in \mathbb{C}$, $B_{\varepsilon}(p)$ intersects each [z] in at most one point.

Thus gives a homeomorphism

$$\pi: B_{\varepsilon}(p) \xrightarrow{\cong} \pi(B_{\varepsilon}(p))$$
 with $\phi_p = \pi|_{B_{\varepsilon}(p)}: U_p \subset X$

where $U_p = \pi(B_{\varepsilon}(p))$.

Claim:

$$\mathcal{A} = \{\phi_p : U_p \to V_p\}_{p \in \mathbb{C}}$$
 is an atlas.

Compatibility of ϕ_p & ϕ_q : Assume $U_{p,q} = U_p \cap U_q \neq \emptyset$.

The transition map is:

$$T = \phi_q \circ \phi_p^{-1} : \phi_p(U_{p,q}) \longrightarrow \phi_q(U_{p,q})$$

 $T \text{ satisfies } \pi(T([z])) = \phi_p^{-1}([z]) = \pi([z]) \text{ i.e., } T([z]) - z \in L = \ker(\pi), \text{ which is constant.}$

 $\Rightarrow T - id$ is locally constant: locally $T - id = w \in L$.

T(z) = z + w is holomorphic

1.5 Examples of complex manifolds.

Example 1.2 (Complex Projective Plane).

$$\mathbb{CP}^n = \{\text{1-dimensional complex vector subspace in } \mathbb{C}^{n+1}\} = \mathbb{C}^{n+1} \setminus \{0\}/\mathbb{C}^*.$$

$$\cong S^{2n+1}/S^1$$
 quotient topology.

Give \mathbb{CP}^n the quotient topology.

$$\pi: \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow \mathbb{CP}^n$$

$$(z_0,\ldots,z_n)\longmapsto \pi(z_0,\ldots,z_n)=[z_0:z_1:\cdots:z_n].$$

homogeneous coordinates.

Atlases: Let

$$U_i = \{ [z_0 : \dots : z_n] : z_i \neq 0 \} \subset \mathbb{CP}^n$$
 open

The chart ϕ_i is given by:

$$\phi_i: U_i \longrightarrow V_i = \mathbb{C}^n$$

$$[z_0:\dots:z_n]\longmapsto\left(\frac{z_0}{z_i},\frac{z_1}{z_i},\dots,\frac{\widehat{z_i}}{z_i},\dots,\frac{z_n}{z_i}\right)$$

where $\frac{\widehat{z_i}}{z_i}$ denotes the omission of the *i*-th coordinate.

2 Morphisms of complex manifolds & meromorphic functions.

2.1 Morphisms of manifolds.

Definition 2.1. Let X & Y be complex **manifolds** of dimensions n & m respectively. Let $W \subset X \& W' \subset Y$ be open sets.

- 1. A continuous map $F: W \to W'$ is holomorphic at $p \in W$ if \exists charts $\phi: U \to V$ & $\psi: W' \to V'$ s.t. $p \in U$ & $F(p) \in W'$, s.t. $\psi \circ F \circ \phi^{-1}$ is holo at $\phi(p)$.
- 2. Biholomorphism.

Example 2.1. (Examples of Morphisms)

- 1. A chart on a Riemann Surface $\phi:U\to V\subset\mathbb{C}$ on a Riemann Surface is a holomorphic function.
- 2. Let $U \subset X$ for a Riemann Surface X. Then U has a unique Riemann Surface structure s.t. the inclusion map $U \hookrightarrow X$ is holomorphic.
- 3. Let $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\} \cong S^2 = U_0 \cup U_{\infty}$. Let f be a holomorphic function on \mathbb{C} . Let $f_0 := f \circ \phi_0^{-1} : \mathbb{C} \to \mathbb{C}$. Let $f_{\infty} := f \circ \phi_{\infty}^{-1} : \mathbb{C} \to \mathbb{C}$. On \mathbb{C}^* :

$$f_{\infty}(w) = f \circ \phi_{\infty}^{-1}(w) = f \circ \phi_0^{-1} \circ \phi_0 \circ \phi_{\infty}^{-1}(w) = f_0\left(\frac{1}{w}\right)$$

This f is holomorphic at $w \in \mathbb{C}_{\infty}$

$$\iff f\left(\frac{1}{z}\right)$$
 is holomorphic at 0

↑ Def

 $f_{\infty}(w)$ is holomorphic at $0 \iff f_0\left(\frac{1}{w}\right)$ is holomorphic at ∞

4. the quotient map $\pi: \mathbb{C}^n \to \mathbb{C}^n/L$ for a complex torus is holomorphic.

subsection*§ 2.2. Properties of holomorphic maps of Riemann Surfaces.

Theorem 2.1 (The identity theorem). Let $F, G : X \to Y$ be holomorphic maps of Riemann Surfaces s.t. F & G agree on a subset of X with an accumulation point. Then F = G.

Theorem 2.2 (Local form of holomorphic maps). Let $F: X \to Y$ be a non-constant holomorphic map of Riemann Surfaces. For $p \in X$ & q = F(p), \exists unique $k \in \mathbb{Z}_{>0}$ and local charts $\phi: U \to V$ & $\psi: U' \to V'$ s.t. F has local form

$$\psi \circ F \circ \phi^{-1} : V \to V'$$
$$z \mapsto z^k.$$

Proof. take any charts $\phi: U \to V \subset \mathbb{C} \& \psi: U' \to V' \subset \mathbb{C}$.

$$\begin{array}{ccc} X & \xrightarrow{F} & Y \\ \downarrow \phi & & \downarrow \psi & p \mapsto 0. \\ \mathbb{C} & \xrightarrow{f} & \mathbb{C} & q \mapsto 0. \end{array}$$

Shrink V so $F(U) \subset U'$. Then $f = \psi \circ F \circ \phi^{-1} : V \to V'$ is holomorphic and $0 \mapsto 0$. Define $k = \operatorname{ord}_0(f) \in \mathbb{Z}_{\geq 0}$. $\operatorname{ord}_0(f)$ is the order of vanishing of f at $0 = \min\{n \mid c_n \neq 0\}$ where $f(z) = \sum_{n \geq 0} c_n z^n$ is the Taylor expansion. $f(z) = z^k g(z)$, where g(z) is non-zero. Shrink V so $g:V\to\mathbb{C}$ is non-zero and holomorphic. Thus, \exists holomorphic k^{th} root $h:V\to\mathbb{C}$ of g i.e., $(h(z))^k=g(z)$.

Thus $f(z) = z^k g(z) = (zh(z))^k$.

Let $\alpha: V \xrightarrow{\cong} \alpha(V)$ be biholomorphic

$$z \mapsto zh(z) = w$$
.

Note $\alpha(0) = 0$, $\alpha'(0) = h(0) \neq 0$, then $\operatorname{ord}_0(\alpha) = 1$.

Now replace ϕ by $\alpha \circ \phi$.

$$\psi\circ F\circ (\alpha\circ\phi)^{-1}(w)=\psi\circ F\circ\phi^{-1}\circ\alpha^{-1}(w)$$

$$= f(\alpha^{-1}(w)) = (\alpha^{-1}(w)h(\alpha^{-1}(w)))^k = w^k.$$

Local form is $w \mapsto w^k$.

Exercise: Show k is independent of the choice of chart.

Definition 2.2. The **multiplicity** of a non-constant holomorphic map $F: X \to Y$ of Riemann Surfaces at $p \in X$ is the unique positive integer k given by Theorem 2.2.

We say p is an unramified point of F if $\operatorname{mult}_p(F) = 1$. p is a ramified point of F if $\operatorname{mult}_p(F) > 1$.

$$R(F) = \{ p \in X : \operatorname{mult}_p(F) > 1 \}$$
 ramification locus.

$$B(F) = F(R(F)) \subset Y$$
 branch locus.

Theorem 2.3. (Open mapping theorem) A non-constant holomorphic map of Riemann Surfaces is an open mapping.

Proof: The local form $z \mapsto z^k$ is open ("maps circle to circle").

Theorem 2.4. (Biholomorphic maps are biholomorphisms) The inverse of a bijective holomorphic map of Riemann Surfaces is holomorphic (since F is an open mapping).

Theorem 2.5. (Discreteness of preimages) Let $F: X \to Y$ non constant map of RS. Then $\forall q \in Y$. the preimage $F^{-1}(q)$ is discrete in X. (If X is compact then $F^{-1}(q)$ is finite)

Proof. F follows as a holomorphic map of the complex plane are discrete.

Theorem 2.6. (Surjectivity of non-constant holomorphic map from compact RS) Let $F: X \to Y$ a non-constant holomorphic map of RS with X compact. Then F is surjective and Y is compact.

Proof. Open mapping theorem $\implies F(X) \subset Y$ is open F continuous and X compact $\implies F(X)$ compact hence closed (and Y hausdorff) \square .

Corollary 2.7. Every holomorphic function on a compact Riemann Surface (RS) is constant.

Proof: Let $f: X \to \mathbb{C}$ be a non-constant holomorphic function. Then f is constant.

Theorem 2.8 (Riemann's extension theorem). Let X be a \mathbf{RS} , $p \in U \subset_{open} X$. If $f: U \setminus \{p\} \to \mathbb{C}$ is holomorphic and bounded in a punctured neighborhood of p, then f extends to a holomorphic function on U.

Proof: Follows from complex analysis using charts.

Theorem 2.9 (Maximum principle). Let $f: X \to \mathbb{C}$ be a non-constant holomorphic function on a RS X. Then |f| has no local maximum.

2.2 Meromorphic functions on RS

Definition 2.3. Let X be a **RS** and $p \in W \subset_{\text{open}} X$. If $f : W \setminus \{p\} \to \mathbb{C}$ is holomorphic, we say that p is a

$$\left\{ \begin{array}{l} \text{removable singularity} \\ \text{pole} \\ \text{essential singularity} \end{array} \right\} \text{ if } \exists \text{ chart } \phi: U \to V, \text{ s.t. } \phi(p) \text{ is a} \left\{ \begin{array}{l} \text{removable singularity} \\ \text{pole} \\ \text{essential singularity} \end{array} \right\}$$

We say f is **meromorphic** at p if p is a **non-essential singularity**. If $S \subset W \subset_{\text{open}} X$ and $f: W \setminus S \to \mathbb{C}$ is holomorphic, we say f is **meromorphic** on W if it is **meromorphic** at each $p \in S$.

Notation

Let $U \subset_{\text{open}} X$.

- $\mathcal{O}_X(U) = \{ f : U \to \mathbb{C} \mid f \text{ is holomorphic} \}$
- $\mathcal{M}_X(U) = \{ f : U \setminus S \to \mathbb{C} \mid f \text{ is meromorphic on } U \}$

Lemma 2.10. i) The above definition is independent of the choice of chart.

- ii) $\mathcal{O}(X) = \mathcal{O}_X(X)$ is a \mathbb{C} -algebra.
- iii) $\mathcal{M}(X) = \mathcal{M}_X(X)$ is a field, called the **function field of X **.
- $iv) \mathcal{M}(X) = Frac(\mathcal{O}(X)).$
- v) p has a

$$\left\{ \begin{array}{l} \textit{removable singularity} \\ \textit{pole} \\ \textit{essential singularity} \end{array} \right\} \ \textit{at p if} \left\{ \begin{array}{l} |f| \ \textit{is bounded in a neighborhood of p} \\ \lim_{z \to p} |f(z)| = \infty \\ \lim_{z \to p} f(z) \ \textit{doesn't exist} \end{array} \right\}$$

2.3 Laurent Expansions & Orders of Singularities

Let $f: W \setminus \{p\} \to \mathbb{C}$ be a holomorphic function with $p \in W \subset_{\text{open}} X$, where X is a **Riemann Surface**. Let $\phi: U \to V$ be a chart on X, such that $\phi(p) = 0$. Then $f \circ \phi^{-1}: V \setminus \{0\} \to \mathbb{C}$ is holomorphic and has a Laurent expansion at 0.

$$f \circ \phi^{-1}(z) = \sum_{n=-\omega}^{\infty} c_n z^n$$
 (**Note**: This depends on the choice of chart.)

Definition 2.4. The **order of f^{**} is defined as:

$$\operatorname{ord}_p(f) := \operatorname{ord}_0(f \circ \phi^{-1}) = \min\{n \in \mathbb{Z} \mid c_n \neq 0\}$$

If f(z) = 0 for all z, then $\operatorname{ord}_{p}(0) = \infty$.

Lemma 2.11. i) $ord_p(f)$ is independent of the chart ϕ centered at p.

ii) X is a

$$\left\{ \begin{array}{l} \textit{removable singularity} \\ \textit{pole} \\ \textit{essential singularity} \end{array} \right\} \ \textit{of f if } \textit{ord}_p(f) = \left\{ \begin{array}{l} \geq 0 \\ -m, \quad m > 0 \quad \textit{(i.e., } < 0) \\ -\infty \end{array} \right\}$$

- iii) $ord_p(f^{-1}) = -ord_p(f)$.
- $iv) \ ord_p(fg) = ord_p(f) + ord_p(g).$
- $v) \ ord_p(f+g) \ge \min\{ord_p(f), ord_p(g)\}.$

Example 2.2. The map $\exp: \mathbb{C} \to \mathbb{C}$ is holomorphic on \mathbb{C} . Is it holomorphic or meromorphic on \mathbb{C}_{∞} ? Consider w = 1/z. For $f: \mathbb{C}_{\infty} \setminus \{0\} \to \mathbb{C}$ we have $\operatorname{ord}_{\infty}(f) = \operatorname{ord}_{0}(f(1/z))$. Thus, $\exp(w)$ has an essential singularity at w = 0, so \exp is not meromorphic on \mathbb{C}_{∞} .

Example 2.3 (Meromorphic functions on \mathbb{C}_{∞}). Let $z = \phi_0 : U_0 \to V_0 = \mathbb{C}$. ord₀(z) = -1. Let $P, Q \in \mathbb{C}[z]$ with $Q \not\equiv 0$. We claim $f(z) = P(z)/Q(z) \in \mathcal{M}(\mathbb{C}_{\infty})$. We know $f \in \mathcal{M}(\mathbb{C})$: what about at ∞ ? Let $f(z) = \lambda \prod_i (z - a_i)^{k_i}$, where $a_i \in \mathbb{C}$ and $k_i \in \mathbb{Z}$. $x \in \mathbb{C}$. f(z) is meromorphic at ∞ if f(1/z) is meromorphic at 0.

$$f(1/z) = \lambda \prod_{i} (1/z - a_i)^{k_i} = \lambda z^{-\sum k_i} \prod_{i} (1 - a_i z)^{k_i}$$

$$\operatorname{ord}_{\infty}(f) = \begin{cases} -\sum k_i & p = \infty \\ k_i & p = a_i \\ 0 & \text{otherwise} \end{cases}$$
 Note:
$$\sum_{p \in \mathbb{C}_{\infty}} \operatorname{ord}_p(f) = 0.$$

Theorem 2.12 (Meromorphic functions as holomorphic maps to \mathbb{C}_{∞}). For a **Riemann Surface ** X, there is a 1-1 correspondence:

 $\mathcal{M}(X) = \{meromorphic \ functions \ on \ X\} \longleftrightarrow \{holomorphic \ maps \ F : X \to \mathbb{C}_{\infty} \mid F \not\equiv \infty\}$

The correspondence is given by:

$$f \longmapsto F: X \to \mathbb{C}_{\infty}, \quad F(x) = \left\{ \begin{array}{ll} f(x), & x \notin Pole(f) \\ \infty, & x \in Pole(f) \end{array} \right.$$

$$f = \phi_{\infty} \circ F \mid_{F^{-1}(\mathbb{C})} \longleftarrow F : X \to \mathbb{C}_{\infty}.$$

and $f(x) = \infty$ if $F(x) = \infty$.

Proof. The map F associated to $f \in \mathcal{M}(X)$ is holomorphic on $X \setminus \text{Pole}(f)$. We want to show: F is holomorphic at each $p \in \text{Pole}(f)$. f has a pole at $p \iff f \circ \psi^{-1}$ has a pole at $\psi(p) = 0$ (by definition). $\iff \phi_{\infty} \circ F \circ \psi^{-1} = \frac{1}{f \circ \phi^{-1}}$ has a zero at $\psi(p) = 0$. This means F is holomorphic at p (by definition of holomorphicity for a map to \mathbb{C}_{∞}).

Lemma 2.13 (Relating the order of $f \in \mathcal{M}(X)$ and the multiplicity of the corresponding map $F: X \to \mathbb{C}_{\infty}$). For $f \in \mathcal{M}(X)$ non-constant, and $F: X \to \mathbb{C}_{\infty}$ the corresponding holomorphic map at $p \in X$:

- i) If f(p) = 0, then $mult_p(F) = ord_p(f)$.
- ii) If $f(p) = \infty$, then $mult_p(F) = -ord_p(f)$.
- iii) Otherwise, $mult_p(F) = ord_p(f f(p)).$

Theorem 2.14 (Meromorphic functions on \mathbb{C}_{∞}).

$$\mathcal{M}(\mathbb{C}_{\infty}) = \mathbb{C}(z)$$

Proof: We've seen $\mathbb{C}(z) \subset \mathcal{M}(\mathbb{C}_{\infty})$. Let $f \in \mathcal{M}(\mathbb{C}_{\infty})$. Let p_1, p_2, \ldots, p_n be the zeros of f in $\mathbb{C} \subset \mathbb{C}_{\infty}$. Let $g(z) := \prod_{i=1}^{n} (z - p_i)^{r_i}$, where $r_i = \operatorname{ord}_{p_i}(f) \in \mathbb{Z}$. (Note that $g(z) \in \mathbb{C}(z)$). By construction, $\operatorname{ord}_p(f) = \operatorname{ord}_p(g)$ for all $p \in \mathbb{C}$. Then $h = f/g \in \mathcal{M}(\mathbb{C}_{\infty})$ has no zeros and no poles in \mathbb{C} . Let $h(z) = \sum c_n z^n$ be the Taylor expansion of h at $0 \in \mathbb{C}$. Let w = 1/z be a local coordinate at $\infty \in \mathbb{C}_{\infty}$. Then

$$h(w) = \sum c_n w^{-n}$$

is the Laurent expansion of h at ∞ . Since h is meromorphic at ∞ , then $h(z) = \sum_{n=0}^{m} c_n z^n \in \mathbb{C}[z]$ (polynomial). If deg(h) > 0, then h has a zero in \mathbb{C} . Thus $h(z) = \lambda$, a constant. And $f = \lambda g \in \mathbb{C}(z)$. \square

Corollary 2.15. For $f \in \mathcal{M}(\mathbb{C}_{\infty})$, $\sum_{p \in \mathbb{C}_{\infty}} ord_p(f) = 0$.

The degree of a holomorphic map 2.4

Theorem 2.16. Let $F: X \to Y$ be a non-constant holomorphic map of compact **Riemann Surfaces**. For $q \in Y$, the quantity $deg_q(F) = \sum_{p \in F^{-1}(q)} mult_p(F)$ is independent of q.

Definition 2.5. The **degree of F^{**} is $\deg(F) = \deg_q(F)$ for any $q \in Y$.

Proof. For $q \in Y$, take $F^{-1}(q) = \{p_1, p_2, \dots, p_s\}$ and let $k_i = \text{mult}_{p_i}(F)$. By Theorem 2.2, \exists local normal forms at each p_i , i.e., \exists charts $\phi_i : U_i \to V_i$ on X and $\psi : U'_i \to V'_i$ on Y, such that $F(U_i) \subset U'_i$, $p_i \to 0, q \to 0, \text{ and } \psi \circ F \circ \phi_i^{-1}(z) = z^{k_i}.$ Assume the U_i are pairwise disjoint.

Claim. \exists open neighborhood W of q in Y such that $F^{-1}(W) \subset \bigcup_i U_i$.

Proof of Claim: Let \overline{W} be an open neighborhood of q, $\overline{W} = \{q\} \cup$ something else. Let W be an open neighborhood of q such that $W \cap F(X \setminus \bigcup_i U_i) = \emptyset$. Thus $F^{-1}(W) \cap (X \setminus \bigcup_i U_i) = \emptyset$. Since X is compact, F($X \setminus \bigcup_i U_i$) is compact. \exists an open neighborhood W_i of q in Y such that $F^{-1}(W_i) \cap (X \setminus U_i) = \emptyset$. Let $W = \bigcap_{i=1}^s W_i$, which is an open neighborhood of q. Then $F^{-1}(W) \subset \bigcup_{i=1}^s U_i$. \square For any $q' \in W$, we have $\deg_{q'}(F) = \deg_{q}(F)$. This is because, for $q' \in W$, $F^{-1}(q') \cap U_i$ consists of k_i points of multiplicity 1. Hence $\deg_{q}(F)$ is locally constant, and as Y is connected, $\deg_{q}(F)$ is

constant.

Remark 2.1. Let $f: X \to \mathbb{C}$. If f is locally constant and X is connected, then f is a constant.

Proof. Take $p \in X$. $\exists U_p \subset X$ such that $f|_{U_p}$ is a constant f(p). Consider $\mathcal{O} = \{x \in X \mid f(x) = f(p)\}$.

- 1. \mathcal{O} is open since f is locally constant.
- 2. \mathcal{O} is closed since f is locally constant.

If $y \in X \setminus \mathcal{O}$, then $f(y) \neq f(p)$. Then $\exists U_y$ such that $U_y \subset X \setminus \mathcal{O}$. Since X is connected and \mathcal{O} is non-empty (as $p \in \mathcal{O}$) and is both open and closed, we must have $\mathcal{O} = X$. Thus f is constant.

1. At a ramification point p, F looks locally like $\mathbb{C} \to \mathbb{C}, z \mapsto z^k$. Remark 2.2.

2. $F|_{X \setminus R(F)}: X \setminus R(F) \to Y \setminus B(F)$ is a d-sheeted covering, where $d = \deg(F)$

i) If F is a degree 1 non-constant holomorphic map of compact **Riemann Corollary 2.17. $Surfaces^{**}$ (RS), then F is a **biholomorphism** (surjectivity + injectivity).

ii) If X is compact and has a meromorphic function with a single simple pole, then $X \cong \mathbb{C}_{\infty}$.

Proof. Left as an exercise

Corollary 2.18. $\mathbb{CP}^1 \cong \mathbb{C}_{\infty}$.

Corollary 2.19. Let X be a compact **Riemann Surface** (**RS**) and $f \in \mathcal{M}(X)$ non-constant. Then $\sum_{p \in X} \operatorname{ord}_p(f) = 0$.

Proof. Let $F: X \to \mathbb{C}_{\infty}$ be the associated holomorphic map. We know that:

$$\sum_{p \in X} \operatorname{ord}_p(f) = \sum_{p \in \operatorname{Zero}(f)} \operatorname{ord}_p(f) + \sum_{p \in \operatorname{Pole}(f)} \operatorname{ord}_p(f)$$

We use the relationship between order and multiplicity

$$\sum_{p \in \mathrm{Zero}(f)} \mathrm{ord}_p(f) = \sum_{p \in F^{-1}(0)} \mathrm{mult}_p(F)$$

And

$$\sum_{p \in \operatorname{Pole}(f)} \operatorname{ord}_p(f) = \sum_{p \in F^{-1}(\infty)} (-\operatorname{mult}_p(F)) = -\sum_{p \in F^{-1}(\infty)} \operatorname{mult}_p(F)$$

Substituting these back:

$$\sum_{p \in X} \operatorname{ord}_p(f) = \sum_{p \in F^{-1}(0)} \operatorname{mult}_p(F) - \sum_{p \in F^{-1}(\infty)} \operatorname{mult}_p(F)$$

Since $\sum_{p \in F^{-1}(q)} \operatorname{mult}_p(F) = \operatorname{deg}(F)$ for any $q \in \mathbb{C}_{\infty}$:

$$= \deg(F) - \deg(F) = 0.$$

2.5 Germs of holomorphic functions

Definition 2.6. For a complex manifold X and $p \in X$, we define the ring of germs of holomorphic functions at p:

 $\mathcal{O}_{X,p} = \left\{ (U,f) \mid U \text{ is an open neighborhood of } p,f:U \to \mathbb{C} \text{ is holomorphic} \right\} / \sim$

where \sim is the equivalence relation defined by:

$$(U,f) \sim (V,g) \iff \exists$$
 a neighborhood W of p s.t. $f|_W = g|_W$

The equivalence class [(U, f)] is called the **germ of f at p^{**} .

Remark 2.3. 1. $\mathcal{O}_{X,p}$ is a ring whose non-invertible elements form an ideal.

2. The maximal ideal \mathfrak{m}_p is given by:

$$\mathfrak{m}_p = \{[(U, f)] \mid f(p) = 0\}.$$
 (germs vanishing at p)

This is the kernel of the evaluation map:

$$\ker(\operatorname{ev}_p:\mathcal{O}_{X,p}\to\mathbb{C}).$$

Thus $\mathcal{O}_{X,p}/\mathfrak{m}_p \cong \mathbb{C}$. This means \mathfrak{m}_p is a **maximal ideal** (local ring).

Example 2.4. 1. $\mathcal{O}_{\mathbb{C}^n,0} \cong \mathbb{C}\{x_1,\ldots,x_n\}$.

$$[(U, f)] \mapsto \text{Taylor expansion of } f \text{ at } 0.$$

2. If X is an n-dimensional complex manifold and $p \in X$, then a local chart $\phi: U \to V$,

10

centered at p, induces an isomorphism:

$$\phi^*: \mathcal{O}_{\mathbb{C}^n,0} \to \mathcal{O}_{X,p}$$

which maps the germ $[(V, \psi)]$ to the germ $[(U, \psi \circ \phi)]$.

$\mathcal{O}_{X,p}$ for a Riemann Surface

The order of a **holomorphic** function at p descends to a map

$$\operatorname{ord}_p: \mathcal{O}_{X,p} \to \mathbb{N} \cup \{\infty\}$$
 satisfying

- 3. $\operatorname{ord}_p(f) = \infty \iff f \equiv 0$.
- 4. $\operatorname{ord}_p(fg) = \operatorname{ord}_p(f) + \operatorname{ord}_p(g)$.
- 5. $\operatorname{ord}_p(f+g) \ge \min\{\operatorname{ord}_p(f), \operatorname{ord}_p(g)\}.$

This is known as a **discrete valuation**.

We can extend ord_p to $\operatorname{Frac}(\mathcal{O}_{X,p})$ by $\operatorname{ord}_p(f/g) = \operatorname{ord}_p(f) - \operatorname{ord}_p(g)$.

Lemma 2.20. For a **Riemann Surface** X, $\mathcal{O}_{X,p}$ is a **Discrete Valuation Ring** (**DVR**) with valuation given by $\operatorname{ord}_p : \operatorname{Frac}(\mathcal{O}_{X,p}) \to \mathbb{Z} \cup \{\infty\}$. The **uniformizer** (element with valuation 1) is given by a local chart centered at p.