DLP-Lab 1 Backpropagation

1. Introduction:

本次 lab 使用的 network 為 fully connected neural network,具有兩個 input features、兩層 hidden layers 以及一個 output(如下圖),並使用 MSE 來計算 loss。

Input dataset 有兩種,一種為 linear,另一種為 XOR。

本次的目的是利用 python 中的 numpy 推導 backpropagation 並計算 gradient 來更新 weight,以達到 training 的效果。

2. Experiment setups:

A. Sigmoid functions

我們使用 sigmoid function 作為 activation function, 公式及其導數的推導如下:

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-x}}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]
= \frac{d}{dx} (1+e^{-x})^{-1}
= -(1+e^{-x})^{-2} (-e^{-x})
= \frac{e^{-x}}{(1+e^{-x})^2}
= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}}
= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}}
= \frac{1}{1+e^{-x}} \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right)
= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right)
= \sigma(x) \cdot (1-\sigma(x))$$

B. Neural network

Input neuron 數為 2 個,第一層 hidden layer 的 neuron 數為 4 個,第二層 hidden layer 的 neuron 數為 4 個,最後一層的 output neuron 數為 1 個。

```
# Define number of neurons for each layer
input_Neurons = 2
hid1_Neurons = 4
hid2_Neurons = 4
output_Neurons = 1
```


Input layer Hidden layer Hidden layer Output layer

C. Backpropagation

首先將 weights 都給予一隨機初始值,接著做 forward propagation 得到 predict result 並與 ground truth 計算 loss,然後利用 chain rule 將 loss 對每個 weight 做偏微分(back propagation),得到每一層之間的 gradient,最後再乘上 learning rate 以 gradient descent 的方式更新 weights,目的是使 loss 愈小愈好。

```
# Back propagation
err_grad = t - y_pred #n*1
d_predict_output = err_grad * derivative_sigmoid(y_pred) #n*1
d_hid2_output = d_predict_output.dot(w3.T) * derivative_sigmoid(z2) #n*4
d_hid1_output = d_hid2_output.dot(w2) * derivative_sigmoid(z1) #n*4
```

3. Results of your testing:

A. Screenshot and comparison figure

Linear dataset

Testing prediction:	[9.86952417e-01]
[[7.70004580e-06]	[9.99993391e-01]
[1.38472164e-06]	[9.99995923e-01]
[1.00985356e-07]	[9.99991869e-01]
[9.99995744e-01]	[9.99993252e-01]
[9.99995961e-01]	[3.53423830e-03]
[9.99995829e-01]	[9.99434845e-01]
[9.99995020e-01]	[1.37159528e-06]
[1.67994042e-07]	[9.99972953e-01]
[9.99996033e-01]	[9.81953149e-01]
[9.99995706e-01]	[9.99980281e-01]
[9.99995857e-01]	[9.99993036e-01]
[1.33910637e-07]	[1.35464506e-05]
[9.99508098e-01]	[9.99991160e-01]
[9.99995610e-01]	[9.91078095e-08]
[6.29007159e-02]	[2.24365531e-07]
[2.73932347e-06]	[9.99988482e-01]
[9.99989837e-01]	[5.30161956e-07]
[9.99994150e-01]	[9.99996005e-01]
[8.74119727e-07]	[9.76614804e-08]
[9.99993297e-01]	[3.53732200e-07]
[1.39792802e-07]	[9.99958699e-01]
[9.52088935e-01]	[9.99995473e-01]
[9.99991538e-01]	[1.87897232e-06]
[9.99536579e-01]	[9.99992327e-01]
[2.56665124e-07]	[2.74233426e-02]
[1.54130134e-07]	[3.04141355e-07]
[8.04494301e-06]	[9.99970828e-01]
[9.99996004e-01]	[9.99961174e-01]
[8.62393484e-08]	[9.99995874e-01]
[9.99995208e-01]	[9.99995836e-01]
[1.55660319e-07]	[1.10128845e-07]
[8.47436956e-08]	[9.85657551e-08]
[9.99996017e-01]	[5.39941479e-07]
[1.57223490e-07]	[9.99996078e-01]
[9.99986149e-01]	[8.47536299e-08]
[9.99994882e-01]	[1.93688697e-07]
[1.51708668e-07]	[9.99956933e-01]
[9.99995767e-01]	[8.41118640e-01]
[9.99989121e-01]	[9.99995971e-01]
[2.00069955e-07]	[9.99995536e-01]
[4.08422407e-07]	[1.47871707e-01]
[1.14552815e-07]	[8.33099623e-08]
	-

[9.99995971e-01] [9.99995536e-01] [1.47871707e-01] [8.33099623e-08] [9.65309870e-08] [9.99994874e-01] [2.12998887e-07] [1.92102578e-05] [9.13600806e-08] [2.97873082e-07] [9.99987432e-01] [9.99995565e-01] [9.26409227e-08] [9.99995695e-01] [1.55716833e-07] [1.01689893e-07] [1.66843439e-07] [4.43896876e-07] [3.48003512e-05]]

XOR dataset

epoch 49000 loss: 0.000177960590628

epoch 24000 loss : 0.001484850245630

epoch 25000 loss : 0.001228053152481

Testing prediction: [[9.41727530e-04] [9.99944767e-01] [3.51158059e-03] [9.99948145e-01] [1.09665522e-02] [9.99945050e-01] [2.19123640e-02] [9.99886612e-01] [2.55207219e-02] [9.70166226e-01] [1.85346477e-02] [9.76375336e-03] [9.68869183e-01] [4.44009815e-03] [9.99864100e-01] [2.01260273e-03] [9.99948230e-01] [9.91201675e-04] [9.99959502e-01] [5.48682851e-04] [9.99963286e-01]]

B. Show the accuracy of your prediction

Linear dataset

Accuracy: 0.98

XOR dataset

Accuracy: 0.9047619047619048

C. Learning curve (loss, epoch curve)

Linear dataset

XOR dataset

D. Anything you want to present

起初計算 back propagation 時,認為只要內積後 dimension 算起來沒有問題,就能使 loss 下降並得到不錯的 prediction,但結果卻是 loss 有下降,但 predict output 錯的離譜。後來檢查發現,原來內積後 dimension 的結果一樣,但內積時將 layer output 做 transpose 再與 gradient output 做內積,出來的 prediction 結果才是對的。

4. Discussion

A. Try different learning rates

以 linear dataset 為例,當 learning rate 太低時,會造成 loss 下降太慢,無法到達最佳解,除非將 epoch 增加。而當 learning rate 太高時,會使 loss 下降到某個程度便無法再繼續下降,最終沒辦法收斂。因此 learning rate 是個決定能不能 train 成功很重要的參數之一。

• learning rate = 0.0001

• learning rate = 0.1

• learning rate = 1

B. Try different numbers of hidden units

當 hidden units 變多時,會因為 neuron 數太多,造成計算速度下降,training 時間變長,前半部 epochs 的 loss 振幅較大(linear dataset),原因是因為 units 增加,沒辦法在前面的 epochs 就將所有 units 訓練好,所以遇到新 data 時 loss 就會上升。對於 accuracy 的話則是沒有太大的影響,除非 units 真的太多,會造成整個 network 訓練時無法收斂,prediction 也跟著錯誤。

• Units = 4

• Units = 20

C. Try without activation functions

這邊設置兩種 dataset 的 training epochs 為 50000, learning rate 為 0.0001。當沒有 activation function 做非線性轉換時,可以發現 linear dataset 預測出來的結果有 6 成以上,而 XOR dataset 預測出來的只剩 5 成。原因是 linear dataset 本身就呈現線性分佈,能找出一條線將其分開,但 XOR dataset 的非線性分佈,若只用一條線分開,

則會造成準確度降低。

• linear dataset

Accuracy : 0.67

XOR dataset

Accuracy : 0.5238095238095238

