UNIVERSIDADE FEDERAL DO MARANHÃO

CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS

DEPARTAMENTO DE MATEMÁTICA

PROFESSOR: ÍTALO AUGUSTO OLIVEIRA DE ALBUQUERQUE

DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL III

ALUNO:

Reposição

1. Calcule $\iiint_W \frac{1}{x^2+y^2+z^2} dV$ onde W é a região limitada superiormente pela esfera $x^2+y^2+z^2=4$, inferiormente pela esfera $x^2+y^2+z^2=1$ e interior ao cone $z=\sqrt{(x^2+y^2)}$.

- 2. Considere o sólido homogêneo W, limitado pelo plano z=0, o cilindro $x^2+y^2=2y$ e pelo cone $z=\sqrt{x^2+y^2}$. Calcule o momento de inércia em relação ao eixo z.
- 3. Considere as curvas C_1 dada pela equação y = x e C_2 pela equação $x^2 + y^2 = 11$. Sejam P_1 a intersecção de C_1 e C_2 no primeiro quadrante, P_2 a intersecção no terceiro quadrante e P uma partícula que percorre de P_1 à P_2 pela curva C_1 e que retorna novamente a P_1 pela curva C_2 . Faça a ilustração da figura, dê uma orientação da curva e calcule o trabalho realizado pela partícula ao longo desse trajeto sabendo que a força aplicada em cada ponto é dada por

$$F(x,y) = (xy, x^2 + y^2).$$

4. Seja L o losango formado pelas quatro retas abaixo:

$$r_1: y = -x + 8, r_2: x + 8, r_3: -x - 8, r_4: x - 8.$$

 $\text{Considere tamb\'em a elipse } E: \frac{x^2}{4} + \frac{y^2}{2} = 1 \text{ e } F: \mathbb{R}^2 - \{(0,0)\} \longrightarrow \mathbb{R}^2, \ F = (F_1,F_2) \text{ tal que } F$

$$\int_{\mathsf{E}}\mathsf{F} ds = 18\sqrt{2}\pi \quad \mathrm{e} \quad \frac{\partial \mathsf{F}_2}{\partial x} = \frac{\partial \mathsf{F}_1}{\partial y} + 9.$$

Faça o esboço da região de integração e utilize o Teorema de Green para encontrar $\int_{L} \mathsf{Fds}$.

SÃO LUÍS - 2022