

ITAM Semestre agosto-diciembre 2017

Menú

- Métodos Lineales
 - Regularización

Ajuste de Conjuntos Nolineales

- La clase pasada hablamos de cómo utilizar la regresión lineal para ajustar conjuntos de datos que no son lineales mediante la adición de atributos
- Qué atributos agregar?
 - Por ahora no resolveremos esto
- Al agregar demasiados atributos podemos sobre ajustar nuestro modelo
- Hoy hablaremos de una manera en la que podemos disminuir "automáticamente" la influencia de atributos irrelevantes

- Cuando tenemos demasiados atributos que agregan poca información
 - Atributos poco correlacionados con el valor de la función objetivo
 - Atributos muy correlacionados entre si (como en el caso de agregar x² x³ x⁴)
 - Cuando se usan la eq. Normales esto ocasiona que el inverso no exista
- La regularización es un técnica que nos ayuda mantener los valores de los coeficientes (w´s) bajos y a reducir el valor de los que poco aportan

4

Regularización: Ridge y Lasso

- Agregamos un término a nuestra función costo (error) de manera que penalice valores de w altos
- Tenemos entonces que minimizar
 - Ridge

Costo(W) =
$$\sum_{i=1}^{N} (y_i - w_0 - \sum_{j=1}^{p} x_{i,j} w_j)^2 + \sum_{i=1}^{p} \lambda w_i^2$$

Lasso

Costo(W) =
$$\sum_{i=1}^{N} (y_i - w_0 - \sum_{j=1}^{p} \chi_{i,j} w_j)^2 + \sum_{i=1}^{p} \lambda |w_i|$$

Regularización

Diferencias

- Ridge: el término es $\sum_{i=1}^{p} \lambda w_i^2$
 - La función a minimizar sigue siendo convexa y por tanto fácil de encontrar el óptimo global
- Lasso: el término es $\sum_{i=1}^{p} \lambda |w_i|$
 - No hay algoritmos muy eficientes (hay uno reciente...)
 - Obliga que algunos de los coeficientes se vuelvan cero.
 Esto es deseable

Regularización: Intuición

- Si Lambda es muy grande entonces el término $\sum_{i=1}^{p} \lambda_i w_i^2$ o $\sum_{i=1}^{p} \lambda_i |w_i|$ es muy grande y lo que sucederá es que las W tenderán a ser cero y el modelo ignora los datos (bajo-ajuste o underfit)
- Si Lambda es demasiado chica entonces es como si no regularizaramos (sobre-ajuste o overfit)
- Lambda controla la complejidad del modelos

Algoritmo de Entrenamiento iterativo (Gradient Descent regularización de Ridge)

$$w_{0} < -w_{0} + \eta \left(y^{i} - V_{ent}^{i}\right)$$

$$w_{j} < -w_{j} + \eta \left[\left(y^{i} - V_{ent}^{i}\right)x_{j}^{i}\right] - \lambda w_{j}$$

Regularización: Intuición

El valor justo de Lambda es aquel que ayuda a distinguir entre los valores (o combinaciones) que si aportan en realidad y los que no. Una lambda que es chica en relación a los atributos de importancia y grande en relación a los irrelevantes

Ejercicio

- Ejercicio
 - Baje el archivo regLinPoli2.xls
 - Programe la regresión lineal iterativa regularizada
 - Escale los datos usando el StandardScaler
 - Compare el error y los pesos resultantes para una lambda =0 y una lambda =0.001
 - Compare usando w's con pesos grandes (cientos) y chicos (menores a 1)
- Ejercicio extra (para los que acaben antes).
 Programe el minibatch para la regresion lineal iterativa

Regularización: Uso

- Ahora tenemos un parámetro más a aprender. La Lambda.
 - Esto implica que tenemos que seleccionar lambda por separado de las w´s
 - Usando bootstrapping
 - Usando validación cruzada
 - Eso lo revisaremos a continuación