

Lecture 2: Circuits & Layout

Outline

- □ A Brief History
- CMOS Gate Design
- □ Pass Transistors
- □ CMOS Latches & Flip-Flops
- □ Standard Cell Layouts
- ☐ Stick Diagrams

The First Computer

The Babbage
Difference Engine
(1832)
25.000 parts
cost: £17.470

ENIAC – The First Electronic Computer (1946)

The Transistor Revolution

John
Bardeen,
Walter
Brattain,
and their
supervisor
William
Shockley.

First Transistor Bell Labs 1948

A Brief History

- ☐ 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas
 Instruments
- **2010**
 - Intel Core i7 μprocessor
 - 2.3 billion transistors
 - 64 Gb Flash memory
 - > 16 billion transistors

Courtesy Texas Instruments

[Trinh09]
© 2009 IEEE.

First Integrated Circuits

Bipolar Logic 1960's

ECL 3-input NAND Gate Motorola

Intel 4004 Microprocessor

19711000 transistors1 MHz operation

Growth Rate

- ☐ 53% compound annual growth rate over 50 years
 - No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

[Moore65]
Electronics Magazine

Annual Sales

- □ >10¹⁹ transistors manufactured in 2008
 - 1 billion for every human on the planet

Invention of the Transistor

- □ Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- ☐ 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - See Crystal Fireby Riordan, Hoddeson

AT&T Archives. Reprinted with permission.

Transistor Types

- Bipolar transistors
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration

MOS Integrated Circuits

- ☐ 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

[Vadasz69] © 1969 IEEE.

Intel Museum. Reprinted with permission.

Intel 1101 256-bit SRAM

Intel 4004 4-bit µProc

■ 1980s-present: CMOS processes for low idle power

Moore's Law

- ☐ In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- ☐ He made a prediction that semiconductor technology will double its effectiveness every 18 months

Moore's Law: Then

- ☐ 1965: Gordon Moore plotted transistor on each chip
 - Fit straight line on semilog scale
 - Transistor counts have doubled every 26 months

Integration Levels

SSI: 10 gates

MSI: 1000 gates

LSI: 10,000 gates

VLSI: > 10k gates

Electronics Magazine

And Now...

Evolution in Complexity

Feature Size

☐ Minimum feature size shrinking 30% every 2-3 years

Feature Size

TABLE 7.6 Predictions from the 2007 ITRS

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
L _{gate} (nm)	20	14	10	7	5
$V_{DD}(V)$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

Feature Size

~40,000 (65-nm node) transistors could fit on cross-section

Die Size Growth

Power Dissipation

Lead Microprocessors power continues to increase

2/

Productivity Trends

Complexity outpaces design productivity

CMOS VLSI Design 4th Ed.

Why Scaling?

- ☐ Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- ☐ Cost of a function decreases by 2x
- **□** But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Design Metrics

- □ How to evaluate performance of a digital circuit (gate, block, ...)?
 - Cost
 - Reliability
 - Scalability
 - Speed (delay, operating frequency)
 - Power dissipation
 - Energy to perform a function

Cost of Integrated Circuits

- □ NRE (non-recurrent engineering) costs
 - design time and effort, mask generation
 - one-time cost factor
- Recurrent costs
 - silicon processing, packaging, test
 - proportional to volume
 - proportional to chip area

NRE Cost is Increasing

Die Cost

Yield

$$Y = \frac{\text{No. of good chips per wafer}}{\text{Total number of chips per wafer}} \times 100\%$$

$$Die cost = \frac{Wafer cost}{Dies per wafer \times Die yield}$$

Dies per wafer =
$$\frac{\pi \times (\text{wafer diameter/2})^2}{\text{die area}} - \frac{\pi \times \text{wafer diameter}}{\sqrt{2 \times \text{die area}}}$$

Defects

die yield =
$$\left(1 + \frac{\text{defects per unit area} \times \text{die area}}{\alpha}\right)^{-\alpha}$$

α is approximately 3

 $die cost = f (die area)^4$

Some Examples (1994)

		· · · · · · · · · · · · · · · · · · ·			·····			•
Chip	Metal	Line	Wafer	Def./	Area	Dies/	Yield	Die
	layers	width	cost	cm ²	mm^2	wafer		cost
	•							
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	2	0.00	#4000	4.0	04	404	T 40/	040
400 DAZ	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC	4	0.80	\$1700	1.3	121	115	28%	\$53
601			*					•
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417
	•		Ţ. 0 0 0					7

CMOS Gate Design

- ☐ Activity:
 - Sketch a 4-input CMOS NOR gate

Complementary CMOS

- □ Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON	
Pull-down OFF	Z (float)	1	
Pull-down ON	0	X (crowbar)	

Series and Parallel

- nMOS: 1 = ON
- \square pMOS: 0 = ON
- ☐ Series: both must be ON
- ☐ Parallel: either can be ON

Conduction Complement

- □ Complementary CMOS gates always produce 0 or 1
- □ Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- ☐ Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates

- ☐ Compound gates can do any inverting function
- \square Ex: $Y = A \cdot B + C \cdot D$ (AND-AND-OR-INVERT, AOI22)

$$A \multimap \Box P B C \multimap \Box P D \longrightarrow A \multimap \Box P B$$
(c)
(d)

Example: O3AI

$$\Box$$
 Y = $\overline{(A+B+C)\cdot D}$

Signal Strength

- ☐ Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- □ nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- □ Thus nMOS are best for pull-down network

$$V_{DD}$$

$$V_{DD} \perp V_{s} = V_{DD} - V_{tr}$$

$$V_s = |V_{tp}|$$

$$V_{SDD}$$

Pass Transistors

☐ Transistors can be used as switches

$$g = 0$$

 $s - d$

$$g = 1$$

 $s \rightarrow d$

$$g = 0$$

 $s \longrightarrow d$

$$g = 1$$
 $s - d$

Input
$$g = 1$$
 Output $0 \rightarrow strong 0$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

$$g = 0$$
1 \rightarrow strong 1

Transmission Gates

- Pass transistors produce degraded outputs
- ☐ Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$

Input Output

$$g = 1$$
, $gb = 0$
 $0 \rightarrow -\infty$ strong 0

$$g = 1$$
, $gb = 0$
1 \rightarrow strong 1

Tristates

☐ *Tristate buffer* produces Z when not enabled

EN	А	Υ
0	0	
0	1	
1	0	
1	1	

Nonrestoring Tristate

- ☐ Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- ☐ Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Tristates were once commonly used to allow multiple units to drive a common bus, as long as exactly one unit is enabled at a time.

- If multiple units drive the bus, contention occurs and power is wasted.
- ➤ If no units drive the bus, it can float to an invalid logic level that causes the receivers to waste power.
- Moreover, it can be difficult to switch enable signals at exactly the same time when they are distributed across a large chip. Delay between different enables switching can cause contention.

Given these problems, multiplexers are now preferred over tristate busses

Multiplexers

☐ 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

chooses input D0 when the select is 0 and input D1 when the select is 1.

Gate-Level Mux Design

- \square $Y = SD_1 + SD_0$ (too many transistors)
- ☐ How many transistors are needed?

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- □ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

$$y = SD_1 + \bar{S}D_0$$

4:1 Multiplexer

- ☐ 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

4:1 Multiplexer

<u>S1</u>	S0	Z
0	0	Α
0	1	В
1	0	С
1	1	D

D Latch

- ☐ When CLK = 1, latch is *transparent*
 - D flows through to Q like a buffer
- \Box When CLK = 0, the latch is *opaque*
 - Q holds its old value independent of D
- ☐ a.k.a. transparent latch or level-sensitive latch

D Latch Design

■ Multiplexer chooses D or old Q

D Latch Operation

When *CLK* = 1, the latch is transparent and *D* flows through to *Q* (Figure 1.31(c)). When *CLK* falls to 0, the latch becomes opaque. A feedback path around the inverter pair is established to hold the current state of *Q* indefinitely

D Flip-flop

- When CLK rises, D is copied to Q
- ☐ At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

■ Built from master and slave D latches

D Flip-flop Operation

While *CLK* is low, the master negative-level-sensitive latch output (\overline{QM}) follows the *D* input while the slave positive-level-sensitive latch holds the previous value. When the clock transitions from 0 to 1, the master latch becomes opaque and holds the D value at the time of the clock transition. The slave latch becomes transparent, passing the stored master value (QM) to the output of the slave latch (Q). The D input is blocked from affecting the output because the master is disconnected from the D input. When the clock transitions from 1 to 0, the slave latch holds its value and the master starts sampling the input again.

Race Condition

- □ Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called hold-time failure or race condition

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- We will use them in this class for safe design
 - Industry manages skew more carefully instead

Gate Layout

- □ Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- ☐ Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- \square 32 λ by 40 λ

Stick Diagrams

- ☐ Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Wiring Tracks

- ☐ A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor $= 8 \lambda$ pitch
- ☐ Transistors also consume one wiring track

Well spacing

- \Box Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- ☐ Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

Example: O3AI

☐ Sketch a stick diagram for O3AI and estimate area

$$-Y = \overline{(A+B+C)\cdot D}$$

