

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ГОСУДАРСТВЕННЫЙ ВЫСШИЙ РАДИОТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

СИСТЕМНЫЙ АНАЛИЗ И МОДЕЛИРОВАНИЕ

ПРАКТИКУМ

СИСТЕМНЫЙ АНАЛИЗ И МОДЕЛИРОВАНИЕ

Практикум

для учащихся специальности 2-40 01 01 «Программное обеспечение информационных технологий» и студентов специальности 1-08 01 01-07 «Профессиональное обучение. (Информатика)»

Минск МГВРК 2010 УДК 519 ББК 22.19 С40

Рекомендовано к изданию кафедрой информатики (протокол № 8 от 17.03.2010 г.) и Научно-методическим советом учреждения образования «Минский государственный высший радиотехнический колледж» (протокол № 6 от 24.03.2010 г.)

Составители:

Г. Н. Соловей, С. Н. Кудина, И. Г. Смолер, ассистенты кафедры информатики

Рецензент

Ю. А. Скудняков, зав. кафедрой информатики МГВРК, канд. техн. наук, доцент

Системный анализ и моделирование: практикум для С40 учащихся специальности 2-40 01 01 «Программное обеспечение информационных технологий» и студентов специальности 1-08 01 01-07 «Профессиональное обучение. (Информатика)» / сост. Г. Н. Соловей, С. Н. Кудина, И. Г. Смолер. – Минск: МГВРК, 2010. – 120 с. ISBN 978-985-526-088-3

Цель пособия – обеспечить учащихся и студентов необходимым практическим материалом, позволяющим самостоятельно решать задачи с использованием основных алгоритмов курса «Системный анализ и моделирование».

Предназначено для учащихся, студентов и преподавателей колледжа.

УДК 519 ББК 22.19

© Соловей Г. Н., Кудина С. Н., Смолер И. Г., составление, 2010

© Учреждение образования «Минский государственный высший радиотехнический колледж», 2010

ISBN 978-985-526-088-3

Предисловие

Учебная дисциплина «Системный анализ и моделирование» является одной из основных в цикле специальных и базируется на знаниях и навыках, полученных при изучении следующих дисциплин: «Элементы высшей математики», «Основы математической статистики и теории вероятностей», «Технология разработки программ», «Методы и алгоритмы принятия решений».

Цель практикума «Системный анализ и моделирование» — научить студентов решать задачи с помощью изученных методов.

Реализация рассмотренных моделей с помощью ЭВМ, осуществляемая на практических занятиях, опирается на знания методов и средств программирования, умения разрабатывать алгоритмы и программы.

- В результате выполнения практической работы студент (учащийся) должен уметь:
- осуществлять выбор моделей при разработке математической постановки задачи;
- реализовывать модели с помощью изученных методов на ЭВМ;
- самостоятельно разбираться в моделях рассмотренных классов и методах принятия решений на них.

В пособии приведены варианты индивидуальных заданий по всем основным разделам курса, которые можно использовать для контроля приобретенных навыков в решении задач.

Практикум является руководством для проведения работ по курсу «Системный анализ и моделирование» и предназначен для учащихся специальности 2-40 01 01 «Программное обеспечение информационных технологий» и студентов специальности 1-08 01 01-07 «Профессиональное обучение. (Информатика)».

Практические работы 1, 14, 15 выполняются только учащимися специальности 2-40 01 01 «Программное обеспечение информационных технологий», 11, 12, 13, 14, и 16 — только студентами специальности «Профессиональное обучение. (Информатика)». Остальные работы предназначены и для учащихся и для студентов. В этом случае предусмотрен разный уровень сложности заданий — задания, отмеченные* непосредственно в самой работе, имеют более высокий уровень и не выполняются учащимися специальности 2-40 01 01.

ПРАКТИЧЕСКАЯ РАБОТА 1 Составление математических моделей. Графический способ оптимизации

Задание 1

В соответствии с вариантом:

- 1) свести исходные данные в таблицу, удобную для построения модели;
 - 2) составить математическую модель задачи;
 - 3) найти оптимальное решение задачи графическим методом.

Задание 2

В соответствии с вариантом решить задачу линейного программирования графическим методом. Найти максимальное и минимальное значения целевой функции.

Вариант 1

Задание 1

Продукция может производиться двумя технологическими способами T_1 и T_2 . На производство продукции затрачиваются ресурсы трех видов R_1 , R_2 , R_3 , запасы которых соответственно равны: 15, 18, 8. Расход ресурсов на производство всей продукции по первому технологическому способу составляет 2, 4, 0, а по второму - 3, 2, 2. Выход продукции по способу T_1 равен 10 ед., по T_2 - 8 ед. Определить, с какой интенсивностью нужно применять каждый технологический способ, чтобы при этих запасах иметь максимум продукции.

Задание 2

$$f(x) = 3x_1 + 4x_2 \to \text{extr};$$

$$\begin{cases}
-x_1 + x_2 \le 3, \\
5x_1 + 3x_2 \le 97, \\
x_1 + 7x_2 \ge 77, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Вариант 2

Задание 1

Предприятие выпускает два вида изделий Π_1 и Π_2 , на изготовление которых идет три вида сырья: S_1 , S_2 , S_3 , запасы которых соответственно равны 200, 110, 120 кг. Расход сырья на 1000 ед. продукции составляет: $S_1 - 20$, 10; $S_2 - 15$, 5; $S_3 - 10$, 10. Оптовая цена за 1000 шт. изделий соответственно равна: 15 и 17 тыс. руб. Себестоимость производства 1000 шт. изделий составляет 12 и 15 тыс. руб. Составить план выпуска продукции, обеспечивающий максимальную прибыль, предполагая, что сбыт неограничен.

Задание 2

$$f(x) = x_1 + 5x_2 \to \text{extr};$$

$$\begin{cases} 3x_1 - x_2 \ge 9, \\ 2x_1 + 3x_2 \le 50, \\ -x_1 + 4x_2 \ge 19, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 3

Задание 1

Из двух сортов бензина делают две смеси А и Б. Смесь А содержит 60 % бензина 1-го сорта и 40 % — 2-го сорта. Смесь Б содержит 80 % бензина 1-го сорта и 20 % — 2-го сорта. Продажная цена 1 кг смеси А равна 10 тыс. руб., смеси Б — 12 тыс. руб. Составить план образования смесей, при котором будет получен максимальный доход, если в наличии 48 т бензина 1-го сорта и $20 \, \mathrm{T} - 2$ -го сорта.

Задание 2

$$f(x) = 9x_1 + 2x_2 \to \text{extr};$$

$$\begin{cases} x_1 + 4x_2 \le 53, \\ x_1 - x_2 \le 3, \\ 7x_1 + 3x_2 \ge 71, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Задание 1

Предприятие имеет три производственных фактора в количестве 5, 6, 7 тыс. ед. и может организовать производство двумя различными способами. Расход производственных факторов по первому способу производства составляет 1, 4, 1 тыс. ед., по второму – 1, 1, 3 тыс. соответственно. По первому способу за единицу времени предприятие выпускает в месяц 3 тыс. изделий, по второму – 2 тыс. изделий. Сколько времени предприятие должно работать каждым способом, чтобы получить максимум продукции?

Задание 2

$$f(x) = 5x_1 + 3x_2 \rightarrow \text{extr};$$

$$\begin{cases} 6x_1 - 5x_2 \ge 17, \\ x_1 + 2x_2 \le 34, \\ -4x_1 + 9x_2 \ge 17, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 5

Задание 1

На каждую автоколонну из 10 машин, направленных для вывоза груза из района A, выделяются 4 авторемонтных мастерских, 3 машины техпомощи и 2 мотоцикла. На такую же автоколонну для вывоза груза из района Б выделяются 3 авторемонтных мастерских и 1 машина техпомощи. Одна колонна из района A вывозит 2 тыс. т груза, из района Б – 1 тыс. т груза. Какое количество автоколонн следует направить в каждый район, чтобы обеспечить максимальный вывоз груза, если имеются 200 машин, 20 авторемонтных мастерских, 10 машин техпомощи и 16 мотоциклов?

Задание 2

$$f(x) = 5x_1 + 7x_2 \to \text{extr};$$

$$\begin{cases}
-3x_1 + 14x_2 \le 78, \\
5x_1 - 6x_2 \le 26, \\
x_1 + 4x_2 \ge 26, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Вариант 6

Задание 1

Предприятие выпускает два вида изделий Π_1 и Π_2 , используя четыре группы станков (A, Б, B, Γ), фонды рабочего времени которых составляют 32, 27, 20, 30 часов соответственно. На производство одного изделия Π_1 каждая группа станков соответственно тратит: 4, 0, 1, 3 ч, а изделия Π_2 – 2, 3, 2, 2 ч. Прибыль от реализации каждого изделия Π_1 равна 2 тыс. руб., Π_2 – 3 тыс. руб. Составить план производства, дающий максимальную прибыль.

Задание 2

$$f(x) = 9x_1 + 2x_2 \to \text{extr};$$

$$\begin{cases} 11x_1 - 3x_2 \ge 24, \\ 9x_1 + 4x_2 \le 110, \\ -2x_1 + 7x_2 \ge 15, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 7

Задание 1

В животноводческом совхозе на производство 1 ц молока тратится 25 ден. ед., из них на трудовые затраты — 10 ден. ед., на материальные затраты — 15 ден. ед.; производство 1 ц мяса обходится в 180 ден. ед., из которых 100 ден. ед. — трудовые затраты, 80 ден. ед. — материальные. Государственные закупочные цены: за 1 ц молока — 35 тыс. ден. ед., а за 1 ц мяса — 200 тыс. ден. ед. Определить оптимальный план производства молока и мяса, если на животноводство выделено 190 тыс. ден. ед. Фонд зарплаты — 100 тыс. ден. ед., остальное — на оборудование.

Задание 2

$$f(x) = 3x_1 + 2x_2 \to \text{extr};$$

$$\begin{cases}
-4x_1 + 5x_2 \le 29, \\
3x_1 - x_2 \le 14, \\
5x_1 + 2x_2 \ge 38, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Задание 1

Из Минска в Гродно необходимо перевезти оборудование трех типов: 84 ед. типа I, 80 ед. типа II, 150 ед. типа III. Для этого используют два вида транспорта A и Б. Количество оборудования каждого типа на транспорт A составляет: 3, 4, 3 ед., — на транспорт Б: 2, 1, 13 ед. соответственно. Затраты на перевозку транспортом A равны 8 ден. ед., Б-12 ден. ед. Составить такой план перевозок, чтобы транспортные расходы были минимальными.

Задание 2

$$f(x) = 4x_1 + 3x_2 \to \text{extr};$$

$$\begin{cases} 2x_1 - x_2 \ge 4, \\ x_1 + 3x_2 \le 37, \\ -4x_1 + 9x_2 \ge 20, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 9

Задание 1

Трикотажная фабрика производит свитеры и кофточки, используя шерсть, силон и нитрон, запасы которых соответственно равны 900, 400, 300 кг. Количество каждой пряжи на изготовление десяти свитеров составляет: 4, 2, 1 кг, а десяти кофточек – 2, 1, 1 кг соответственно. Прибыль от реализации 10 ед. продукции: 6 и 5 ден. ед. Составить план выпуска, максимизирующий прибыль.

Задание 2

$$f(x) = 5x_1 + x_2 \to \text{extr};$$

$$\begin{cases} 10x_1 - x_2 \ge 57, \\ 2x_1 + 3x_2 \le 53, \\ 6x_1 - 7x_2 \le 15, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 10

Задание 1

Кондитерская фабрика выпускает карамель двух видов: K_1 и K_2 . Для производства карамели требуется сахарный песок, патока, фруктовое пюре. Запасы этих видов сырья равны соответственно: 700, 300 и 150 т. Другие виды сырья, входящие в готовый продукт в небольших количествах, не учитываются. Расход сырья на 1 т карамели группы K_1 составляет: 0,6 т сахарного песка и 0,2 т патоки; группы K_2 : 0,5 т сахарного песка, 0,3 т патоки и 0,3 т фруктового пюре. Уровень прибыли на единицу каждого вида выпускаемой карамели (в ден. ед. за 1 т): для K_1 – 1000, для K_2 – 1500. Определить оптимальный план выпуска карамели, максимизирующий прибыль фабрики.

Задание 2

$$f(x) = x_1 + x_2 \to \text{extr};$$

$$\begin{cases}
4x_1 - x_2 \ge 6, \\
9x_1 + 8x_2 \le 157, \\
-3x_1 + 11x_2 \ge 16, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Вариант 11

Задание 1

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится на отдельной технологической линии. Суточный объем производства первой линии – 60 изделий, второй линии – 75 изделий. На радиоприемник первой модели расходуется 10 однотипных элементов электронных схем, на радиоприемник второй модели 8 таких же элементов. Максимальный суточный запас используемых элементов равен 800 ед. Прибыли от реализации одного приемника первой и второй моделей равны 30 и 20 ден. ед. соответственно. Определить оптимальные суточные объемы производства двух видов моделей.

Задание 2

$$f(x) = 2x_1 + 3x_2 \to \text{extr};$$

$$\begin{cases} x_1 + x_2 \le 6, \\ x_1 + 4x_2 \ge 4, \\ 2x_1 - x_2 \ge 0, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 12

Задание 1

Небольшая фабрика изготавливает краски и для внутренних (I) и наружных (II) работ. Продукция обоих видов поступает в оптовую продажу. Для производства красок используются два исходных продукта — A и Б. Максимально возможные суточные запасы этих продуктов составляют 6 т и 8 т соответственно. Расход продуктов на 1 т краски I составляет 2 и 1 ед., для краски II — 1 и 2 ед.

Изучение рынка сбыта показало, что суточный спрос на краску I никогда не превышает спроса на краску II более чем на 1 т. Кроме того, установлено, что спрос на краску I никогда не превышает 2 т в сутки.

Оптовая цена 1 т краски I равна 2 тыс. ден. ед., краски II – 3 тыс. ден. ед.

Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации продукции был максимальным?

Задание 2

$$f(x) = x_1 + 4x_2 \rightarrow \text{extr};$$

$$\begin{cases} x_1 + 3x_2 \ge 8, \\ -x_1 + 5x_2 \le 33, \\ 3x_1 - 4x_2 \le 11, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 13

Задание 1

Фирма производит два вида продукции – А и Б. Объем сбыта продукции вида А составляет не менее 60 % от общего

объема реализации продукции обоих видов. Для изготовления продукции А и Б используются два вида сырья, суточный запас которых ограничен величиной 140 и 80 кг. Расход сырья на единицу продукции А составляет: 1-го вида – 2 кг, 2-го – 2 кг; а на единицу продукции В – 4 и 1 соответственно. Цены продукции А и Б равны 20 и 40 ден. ед. соответственно. Определить оптимальный выпуск продукции, обеспечивающий максимальный доход.

Задание 2

$$f(x) = 2x_1 + 4x_2 \to \text{extr};$$

$$\begin{cases} 5x_1 + 2x_2 \le 38, \\ 2x_1 - x_2 \ge -1, \\ -x_1 + 3x_2 \ge 0, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 14

Задание 1

Фирма выпускает ковбойские шляпы двух фасонов. Трудоемкость изготовления шляпы 1-го фасона вдвое выше трудоемкости изготовления шляпы 2-го фасона. Если бы фирма выпускала только шляпы 1-го фасона, суточный объем производства мог бы составить 500 шляп. Суточный объем сбыта шляп обоих фасонов ограничен диапазоном от 150 до 210 шт. Прибыль от продажи шляпы 1-го фасона равна 8 ден. ед., а от 2-го фасона – 5 ден. ед. Определить, какое количество шляп каждого фасона следует изготовить, чтобы максимизировать прибыль.

Задание 2

$$f(x) = 2x_1 + x_2 \to \text{extr};$$

$$\begin{cases} 2x_1 + 4x_2 \le 16, \\ -4x_1 + 2x_2 \le 8, \\ x_1 + 3x_2 \ge 9, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Задание 1

Фирме «Иерихонская сталь» предстоит решить, какое количество чистой стали x_1 и металлолома x_2 следует использовать для приготовления (из соответствующего сплава) литья для одного из своих заказчиков. Пусть производственные затраты в расчете на 1 т чистой стали равняются 3 ден. ед., а затраты на 1 т металлолома — 5 ден. ед. (последняя цифра больше, так как использование металлолома сопряжено с его предварительной очисткой). Заказ предусматривает поставку не менее 5 т литья, при этом заказчик готов купить и большее количество литья, если фирма «Иерихонская сталь» поставит перед ним такие условия.

Предположим, что запасы чистой стали ограничены и не превышают 4 т, а запасы металлолома не превышают 6 т. Отношение веса металлолома к весу чистой стали в процессе получения сплава не должно превышать 7:8. Производственно-технологические условия таковы, что на процессы плавки и литья не может быть отведено более 18 ч; при этом на 1 т стали уходит 3 ч, а на 1 т металлолома -1 ч производственного времени.

Задание 2

$$f(x) = 2x_1 + 6x_2 \to \text{extr};$$

$$\begin{cases}
2x_1 + x_2 \le 12, \\
-x_1 + x_2 \ge 1, \\
x_1 + x_2 \ge 5, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Вариант 16

Задание 1

В опытном хозяйстве установили, что откорм животных выгоден тогда, когда животное будет получать в дневном рационе не менее 6 ед. питательного вещества A, не менее 12 ед. вещества Б и не менее 4 ед. вещества В. Для кормления животных используются два вида корма. В 1 кг корма I содержится 2 ед. вещества A и 2 ед. вещества Б, в 1 кг корма II — 1, 4 и 4 ед. соответственно. Цена 1 кг корма I равна 50 ден. ед., корма II — 60 ден. ед.

Составить математическую модель задачи и на ее основе установить, сколько каждого корма необходимо расходовать ежедневно, чтобы затраты на него были минимальными.

Задание 2

$$f(x) = 6x_1 - 2x_2 \to \text{extr};$$

$$\begin{cases} x_1 - x_2 \le 1, \\ 3x_1 - x_2 \le 6, \\ x_1 + x_2 \le 14, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 17

Задание 1

Предприятие собирает автомашины двух марок: A_1 и A_2 . Для этого требуются следующие материалы: S_1 — комплекты заготовок металлоконструкций в количестве b_1 = 17 шт., необходимые для сборки автомашин марок A_1 и A_2 (соответственно 2 и 3 ед.); S_2 — комплекты резиновых изделий в количестве b_2 = 11 шт. (соответственно 2 и 1 ед.); S_3 — двигатели с арматурой и электрооборудованием в количестве b_3 = 6 комплектов, необходимых по одному для каждой автомашины марки A_1 ; S_4 — двигатели с арматурой и электрооборудованием в количестве b_4 = 5 комплектов, необходимых по одному для каждой автомашины марки A_2 . Автомашина марки A_1 стоит 7 тыс. ден. ед., а автомашина марки A_2 — 5 тыс. ден. ед. Определить план выпуска, доставляющий максимальную выручку.

Задание 2

$$f(x) = 4x_1 + 4x_2 \rightarrow \text{extr};$$

$$\begin{cases}
-5x_1 + 2x_2 \le 13, \\
2x_1 + 7x_2 \ge 21, \\
7x_1 + 2x_2 \le 49, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Задание 1

Из двух видов сырья необходимо приготовить смесь, в состав которой должно входить не менее 6 ед. химического вещества K, не менее 12 ед. вещества L и не менее 4 ед. вещества M. Количество единиц химических веществ, содержащихся в 1 кг смеси 1-го вида: 2, 2 и 3; 2-го вида: 1, 4 и 4 соответственно.

Известно, что цена 1-го вида сырья за 1 кг равна 5 ден. ед., а цена 2-го вида – 6 ден. ед. за 1 кг. Составить смесь, содержащую необходимое количество веществ данного вида и имеющую минимальную себестоимость.

Задание 2

$$f(x) = 2x_1 + x_2 \to \text{extr};$$

$$\begin{cases} 5x_1 + x_2 \le 29, \\ 3x_1 + 4x_2 \ge 19, \\ -5x_1 + 3x_2 \le 7, \\ x_1 \ge 0, & x_2 \ge 0. \end{cases}$$

Вариант 19

Задание 1

При перевозке 300 контейнеров типа I, 500 контейнеров типа II и 30 контейнеров типа III используются два вида автомашин: А и Б. На автобазе имеются 6 автомашин вида А и 10- вида Б. Автомашина вида А вмещает 50 контейнеров типа II и 9 контейнеров типа III; автомашина вида Б - 100 контейнеров типа I, 100 контейнеров типа II и 3 контейнера типа III.

На один рейс по определенному маршруту затраты составляют: при использовании машин A и Б соответственно – 2 ден. ед. и 1,8 ден. ед. Определить необходимое количество автомашин вида A и Б, чтобы стоимость перевозки контейнеров всех типов была минимальной.

Задание 2

$$f(x) = x_1 + x_2 \to \text{extr};$$

$$\begin{cases} x_1 - 2x_2 \le 2, \\ 7x_1 + 5x_2 \le 78, \\ 2x_1 \ge 8, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 20

Задание 1

Для сохранения нормальной жизнедеятельности человек должен в сутки потреблять не менее 120 у. е. белков, не менее 70 у. е. жиров и не менее 10 у. е. витаминов. В продукте P_1 их содержание равно 0,2, 0,75, 0; а в продукте P_2 – 0,1, 0,1, 0,1 соответственно. Стоимость одной единицы продукта P_1 – 2 ден. ед., P_2 – 3 ден. ед. Требуется организовать питание таким образом, чтобы его стоимость была минимальной, а организм получал необхолимое количество питательных вешеств.

Задание 2

$$f(x) = 4x_1 + 2x_2 \to \text{extr};$$

$$\begin{cases} 5x_1 + 6x_2 \ge 28, \\ 7x_1 + x_2 \le 28, \\ -4x_1 + x_2 \le -5, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 21

Задание 1

Фирма по переработке картофеля производит три вида продукции: картофельные дольки, кубики и хлопья. Анализ загруженности оборудования и спроса на рынке показывает возможность произвести и сбыть до 1,8 т долек, 1,2 т кубиков и 2,4 т хлопьев. Необходимый для переработки картофель фирма заку-

пает у двух поставщиков. Из 1 т картофеля, закупленного у 1-го поставщика, получается: долек — 0,2 т, кубиков — 0,2 т, хлопьев — 0,3 т. Из 1 т картофеля, закупленного у 2-го поставщика, получается: долек — 0,3 т, кубиков — 0,1 т, хлопьев — 0,3 т.

Прибыль (доход от реализации готовой продукции за вычетом стоимости сырья) от продажи продукции, произведенной из картофеля от 1-го поставщика, составляет 5 ден. ед. за 1 т; от продажи продукции, произведенной из картофеля от 2-го поставщика, 6 ден. ед.

Определить, какое количество картофеля надо приобрести у каждого поставщика, чтобы обеспечить наибольшую относительную прибыль с учетом возможности сбыта готовой продукции.

Задание 2

$$f(x) = 3x_1 + 2x_2 \rightarrow \text{extr};$$

$$\begin{cases} 4x_1 + 3x_2 \le 10, \\ 3x_1 + 4x_2 \ge 11, \\ x_1 + 2x_2 \le 16, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 22

Задание 1

В овощной магазин привозят одним видом транспорта картофель из двух колхозов соответственно по 40 и 30 ден. ед. за 1 кг. На разгрузку и складирование 1 т картофеля с помощью ленточного транспортера требуется времени: из 1-го колхоза — 4 мин, из 2-го — 3 мин. Чтобы без задержек удовлетворять потребности покупателей, надо на 12 т картофеля, заказываемых ежедневно магазином, затрачивать не более 40 мин.

Составить математическую модель задачи и с ее помощью установить, сколько картофеля надо привозить в магазин из каждого колхоза, чтобы общая стоимость картофеля была минимальной. Известно, что 1-й колхоз может ежедневно поставлять не более 10 т, 2-й — не более 8 т картофеля.

Задание 2

$$f(x) = 5x_1 + 2x_2 \rightarrow \text{extr};$$

$$\begin{cases}
-3x_1 + 2x_2 \le 5, \\
4x_1 + 3x_2 \ge 8, \\
x_1 + 2x_2 \le 10, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Вариант 23

Задание 1

Предприятие изготавливает продукцию двух видов, для чего требуются четыре вида сырья. Запасы каждого вида сырья ограничены и составляют соответственно 18, 15, 13, 19 ед. Для изготовления 1 ед. продукции 1-го вида необходимо 0, 3, 1, 3 ед. сырья каждого вида; для 1 ед. продукции 2-го вида -3, 0, 2, 2 ед.

Доход предприятия от реализации одной единицы продукции каждого вида соответственно равен: 5 и 7 ден. ед.

Составить такой план выпуска продукции, при котором доход от реализации всей продукции оказался бы максимальным.

Задание 2

$$f(x) = 2x_1 + 9x_2 \to \text{extr};$$

$$\begin{cases} 2x_1 + x_2 \le 12, \\ x_1 + 4x_2 \ge 10, \\ 4x_1 \ge 8, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 24

Задание 1

Имеются два участка различного плодородия площадью 150 га и 250 га. Данные об урожайности приведены в таблице:

V TV mo	Урожайность участка, ц		
Культура	1	2	
Пшеница	20	15	
Рожь	35	30	

По плану должно быть собрано не менее 2000 ц пшеницы и 5000 ц ржи.

Цена 1 ц пшеницы 6 ден. ед., ржи 5 ден. ед.

Найти оптимальное сочетание посевов пшеницы и ржи, если критерием оптимальности служит максимум валовой продукции в денежном выражении.

Задание 2

$$f(x) = 4x_1 + 6x_2 \to \text{extr};$$

$$\begin{cases} x_1 - 2x_2 \ge -3, \\ 3x_1 + 2x_2 \le 15, \\ x_1 + 2x_2 \ge 5, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

Вариант 25

Задание 1

Завод выпускает изделия двух моделей (I и II). Для их изготовления используются два вида ресурсов (А и Б), запасы которых составляют соответственно 4000 и 5200 ед. Расход ресурсов на одно изделие модели I – 2 и 4 ед., модели II – 5 и 7 ед. соответственно. Анализ условий сбыта показывает, что минимальный спрос на продукцию завода составляет 200 и 150 изделий моделей I и II соответственно. Соотношение выпуска изделий моделей I и II должно быть равно 3 : 2. Удельные прибыли от реализации изделий составляют 30 и 20 ден. ед. соответственно. Сформулировать для данных условий задачу определения объемов выпуска изделий каждой модели, при которых прибыль будет максимальной.

Задание 2

$$f(x) = x_1 + x_2 \to \text{extr};$$

$$\begin{cases} x_1 + 2x_2 \ge 7, \\ 4x_1 + x_2 \ge 14, \\ 6x_1 + 5x_2 \le 42, \\ x_1 \ge 0, \quad x_2 \ge 0. \end{cases}$$

ПРАКТИЧЕСКАЯ РАБОТА 2 Оптимизация целевой функции с помощью симплексного метода

Задание 1

В соответствии с вариантом:

- 1) свести исходные данные в таблицу, удобную для построения модели:
 - 2) составить математическую модель задачи;
 - 3) найти оптимальное решение.

Задание 2*

В соответствии с вариантом решить задачу линейного программирования методом искусственного базиса.

(Bce $x_i \ge 0$).

Вариант 1

Задание 1

Цех выпускает три вида изделий. Суточный плановый выпуск: 90 ед. изделия I, 70 ед. изделия II и 60 ед. изделия III. Суточные ресурсы: 780 ед. производственного оборудования (станков, машин и прочего), 850 ед. сырья (металла и прочего) и 790 ед. электроэнергии. Их расход на одно изделие указан в таблице:

Pecypc	Pacxo	Расход ресурса на изделие				
Гесурс	I	II	III			
Оборудование, шт	2	3	4			
Сырье, т	1	4	5			
Электроэнергия, кВт	3	4	2			

Стоимость изделия I-8 ден. ед., изделия II-7 ден. ед., изделия III-6 ден. ед. Сколько надо производить изделий каждого вида, чтобы стоимость продукции, выпущенной сверх плана, была максимальной?

Задание 2

$$Z = x_1 + 7x_2 - x_3 \rightarrow \text{max};$$

$$\begin{cases} x_1 - x_2 - 2x_3 = -1, \\ x_1 + 2x_2 + 13x_3 = 14. \end{cases}$$

Задание 1

Для грузовых перевозок создается автоколонна. На приобретение автомашин выделено 600 тыс. ден. ед. Можно заказать машины трех марок — A, Б и B, характеризующиеся данными, приведенными в таблице:

Марка автома- шины	Стоимость машины, тыс. ден. ед.	Количество водителей, обслуживающих машину за смену	Число рабочих смен в сутки	Производи- тельность машины за смену, т/км
A	10	1	3	2 100
Б	20	2	3	3 600
В	23	2	3	3 780

Количество машин не должно превышать 30, а общее число водителей в автоколонне должно быть не более 144 человек.

Сколько автомашин каждой марки следует заказать, чтобы автоколонна имела максимально возможную производительность (т/км) в расчете на одни сутки? Считать, что каждая машина будет использоваться в течение всех трех смен, а водители будут работать по одной смене в сутки.

Задание 2

$$Z = x_1 - x_2 - 3x_3 \rightarrow \text{max};$$

 $\begin{cases} x_1 - x_2 = 0, \\ x_1 + 2x_2 + x_3 = 3. \end{cases}$

Вариант 3

Задание 1

Найти оптимальное сочетание посевов трех культур: пшеницы, гречихи и картофеля. Эффективность возделывания названных культур (в расчете на 1 га) характеризуется показателями, значения которых приведены в таблице:

, I	1 ''	,	
Показатель	Пшеница	Гречиха	Картофель
Урожайность, ц	20	10	100
Затраты труда механиза-			
торов, челдней	0,5	1	5
Затраты ручного труда,			
челдней	0,5	0,5	20
Прибыль от реализации			
1 ц продукции, ден. ед.	4	10	3

Производственные ресурсы: 6000 га пашни, 5000 чел.-дней труда механизаторов, 9000 чел.-дней ручного труда. Критерий оптимальности – максимум прибыли.

Задание 2

$$Z = x_1 + x_2 + x_3 \rightarrow \text{max};$$

$$\begin{cases} 3x_1 + x_2 - x_3 = 5, \\ 3x_1 + 2x_2 + x_3 = 7. \end{cases}$$

Вариант 4

Задание 1

Для изготовления обуви четырех моделей на фабрике используются два сорта кожи. Ресурсы рабочей силы и материала, затраты труда и материала для изготовления каждой пары обуви, а также прибыль от реализации единицы продукции приведены в таблице:

Ресурс	Запас ресурса	Затраты ресурса на одну пару модели обуви			
		№ 1	№ 2	№ 3	№ 4
Рабочее время, челч	1 000	1	2	2	1
Кожа 1-го сорта	500	2	1	0	0
Кожа 2-го сорта	1 200	0	1	4	1
	Прибыль, ден. ед.	2	40	10	15

Составить план выпуска обуви по ассортименту, максимизирующий прибыль.

Задание 2

$$Z = x_1 + x_2 + x_3 + x_4 \rightarrow \text{max};$$

$$\begin{cases} x_1 + 3x_2 + 7x_3 - x_4 = 6, \\ x_1 - x_2 - x_3 + 3x_4 = 2. \end{cases}$$

Вариант 5

Задание 1

Нефтеперерабатывающий завод получает четыре полуфабриката: алкилат (400 тыс. л), крекинг-бензин (250 тыс. л), бензин прямой перегонки (450 тыс. л) и изопентон (200 тыс. л). В резуль-

тате смешения этих четырех компонентов в отношении 2:3:5:2 образуется бензин A стоимостью 120 ден. ед. за 1 тыс. л, в отношении 3:1:2:1 – бензин Б стоимостью 100 ден. ед. за 1 тыс. л; в отношении 2:2:1:3 – бензин B стоимостью 150 ден. ед. за 1 тыс. л.

Составить план, при котором стоимость всей выпущенной продукции будет максимальной.

Задание 2

$$Z = x_1 + 4x_2 + x_3 - 4x_4 \rightarrow \text{max};$$

$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0, \\ x_1 + 8x_2 + 2x_3 - 5x_4 = 3. \end{cases}$$

Вариант 6

Задание 1

Автопогрузчики АП-1 и АП-2 заняты работами на площадках Π_1 и Π_2 . Не более чем за 24 ч на площадке Π_1 необходимо погрузить 230 т груза, на площадке Π_2 – 168 т. Количество груза, которое может погрузить каждый автопогрузчик за один час на той или иной площадке, а также стоимость погрузки одной тонны груза приведены в таблице.

	Мощ	ность	Стоимость работ		
Автопогрузчик	на площадке		на площадке		
	Π_1	Π_2	Π_1	Π_2	
АП-1	10	12	8	7	
АП-2	13	13	12	13	

Установить, сколько тонн должен погрузить каждый автопогрузчик на той или другой площадке так, чтобы своевременно выполнить задание с минимальными затратами.

Задание 2

$$Z = x_1 - 2x_2 - 4x_3 \rightarrow \text{max};$$

$$\begin{cases} 2x_1 + x_2 - x_3 = 1, \\ 5x_1 + 6x_2 + x_3 = 20. \end{cases}$$

Вариант 7

Задание 1

Производственные участки V_1 и V_2 получили заказ на изготовление 32 изделий U_1 и 4 изделий U_2 . Производительность

участков по изделиям и фонд рабочего времени участков приведены в таблице:

Производственный	Производительность		Затраты		Фонд рабочего	
_	участков по изделиям		на производство			
участок	И ₁	И ₂	И ₁	И ₂	времени	
\mathbf{y}_{1}	4	2	9	20	9,5	
\mathbf{y}_2	1	3	15	30	4	

Найти оптимальный план размещения заказа по участкам, минимизирующий затраты, при условии, что фонд рабочего времени участка $У_2$ будет использован полностью.

Задание 2

$$Z = 2x_1 + 8x_2 + 3x_3 \rightarrow \max;$$

$$\begin{cases} 4x_1 - x_2 + 3x_3 = 7, \\ 7x_1 + 5x_2 + 12x_3 = 19. \end{cases}$$

Вариант 8

Задание 1

Предприятие может выпускать продукцию Π_1 , Π_2 , Π_3 и Π_4 , сбыт любого количества которой обеспечен. При производстве продукции расходуются различные ресурсы. Запасы ресурсов, удельные затраты и цена продукции приведены в таблице:

· · ·		•				
Росута	Запас	Расход р	Расход ресурса на единицу продукции			
Pecypc	ресурса	Π_1	Π_1 Π_2 Π_3			
Трудовые ресурсы,						
челч	4800	4	2	2	8	
Полуфабрикаты, кг	2400	2	10	6	0	
Станочное оборудо-						
вание, станко-ч	1500	1	0	2	1	
Цена единицы продукци	65	70	60	120		

Найти оптимальный план выпуска продукции, максимизирующий выручку предприятия от реализованной продукции.

Задание 2

$$Z = 4x_1 + 3x_2 + 5x_3 - 20x_4 \rightarrow \text{max};$$

$$\begin{cases} x_1 + 8x_2 + 7x_3 - 15x_4 = 17, \\ x_1 - 5x_2 - 6x_3 + 11x_4 = -9. \end{cases}$$

Задание 1

Имеющийся фонд материалов M_i $\left(i=\overline{1,3}\right)$ нужно распределить между изготовителями продукции Π_j $\left(j=\overline{1,5}\right)$ так, чтобы получить максимальную прибыль от реализации всей продукции, произведенной из имеющихся материалов. Нормы расхода на единицу продукции, запас материалов и прибыль, получаемая от реализации единицы готовой продукции, приведены в таблице:

Моториол	Фонд	Норма	Норма расхода на единицу продукции, м ²			
Материал	материалов, м ²	Π_1	Π_2	Π_3	Π_4	Π_5
M_1	50 000	0,7	0,9	1,5	2,3	1,8
M_2	28 000	1,4	0,3	0,7	2,5	2,0
M_3	40 000	0,5	2,1	1,8	0,7	2,0
П	рибыль, ден. ед.	5	7	6	9	8

Задание 2

$$Z = x_1 - 5x_2 - x_3 + x_4 \longrightarrow \max;$$

$$\begin{cases} x_1 + 3x_2 + 3x_3 + x_4 = 3, \\ 2x_1 + 3x_3 - x_4 = 4. \end{cases}$$

Вариант 10

Задание 1

На заготовительный участок поступило 69 металлических прутьев длиной 107 см. Их необходимо разрезать на заготовки по 13, 15 и 31 см в комплектности, задаваемой отношением 1 : 4 : 2. Построить модель, на основе которой можно сформулировать задачу максимизации комплектов заготовок. Составить оптимальный план.

Задание 2

$$Z = x_1 + 4x_2 + x_3 \longrightarrow \max;$$

$$\begin{cases} x_1 - x_2 + x_3 = 3, \\ 2x_1 - 5x_2 - x_3 = 0. \end{cases}$$

Вариант 11

Задание 1

На предприятии освоены четыре технологии производства основной продукции. Запасы потребляемых ресурсов, затраты их в течение месяца и объемы выпуска готовой продукции при каждой технологии за один и тот же период указаны в таблице:

Decume	Запас посупса т	Pacxo	д ресурса п	ри техноло	огии, т
Pecypc	Запас ресурса, т	I	II	III	IV
P_1	34	2	4	1	5
P_2	16	4	1	4	1
P_3	22	2	3	1	2
Объем выпуска продукции, шт.		7	3	4	2

Установить такое время работы предприятия по каждой технологии, при котором выпуск продукции будет максимальным, а расход ресурсов не превысит их наличия.

Задание 2

$$Z = x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 \rightarrow \text{max};$$

$$\begin{cases} x_2 + x_3 - 2x_4 + 7x_5 = 2, \\ x_1 + x_3 - 2x_4 - 6x_5 = 2, \\ x_1 + x_2 - 2x_4 + 7x_5 = 2. \end{cases}$$

Вариант 12

Задание 1

На приобретение оборудования для нового производственного участка выделены 30 тыс. ден. ед. и помещение площадью в 45 м^2 . Участок может быть оснащен машинами трех типов, характеристики которых приведены в таблице:

Машина	Стоимость машины, тыс. ден. ед.	Занимаемая площадь, м ²	Производительность за смену, тыс. ден. ед.
M_1	6	9	8
M_2	3	4	4
M_3	2	3	3

Найти оптимальный план приобретения машин, обеспечивающий новому производственному участку максимальную производительность.

Задание 2

$$Z = x_1 + 10x_2 - x_3 + 5x_4 \longrightarrow \max;$$

$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 = 1, \\ -x_1 + 2x_2 + 3x_3 + x_4 = 2, \\ x_1 + 5x_2 + x_3 - x_4 = 5. \end{cases}$$

Вариант 13

Задание 1

Торговое предприятие реализует товары T_1 , T_2 и T_3 , используя при этом площади торговых залов и время обслуживающего персонала. Затраты указанных ресурсов на продажу одной партии товара каждого вида, их объемы и прибыль, получаемая от реализации каждой партии товара, приведены в таблице:

Pecypc	Запас пасупа	Запас расурса Затраты ресурс		
т есурс	Запас ресурса	T_1	T_2	T_3
Время, челч	370	0,5	0,7	0,6
Площадь, м ²	90	0,1	0,3	0,2
Ι	5	8	6	

Найти оптимальную структуру товарооборота, обеспечивающую предприятию максимальную прибыль.

Задание 2

$$Z = x_1 + 2x_6 \rightarrow \text{max};$$

$$\begin{cases} x_1 + x_2 + x_6 = 1, \\ x_2 + x_5 + x_6 = 1, \\ x_3 + x_4 + x_6 = 1, \\ x_4 - x_5 - x_6 = 2. \end{cases}$$

Вариант 14

Задание 1

Механический завод при изготовлении деталей \mathcal{J}_1 и \mathcal{J}_2 использует токарное, фрезерное и сварочное оборудование. Обработку деталей можно вести по технологиям I и II. Полезный фонд времени работы каждой группы оборудования (в стан-

ко-ч), затраты времени изготовления детали (в ч) и прибыль от выпуска каждой детали приведены в таблице:

Оборудование	Фонд времени,	Технология I, ч		Технология II, ч	
Оборудование	станко-ч	Д1	Д2	Д1	Д2
Токарное	37	3	1	1	2
Фрезерное	20	2	3	2	0
Сварочное	30	0	1	1	4
При	быль, ден. ед.	11	9	6	6

Составить оптимальный план загрузки оборудования, обеспечивающий заводу максимальную прибыль.

Задание 2

$$Z = 8x_1 - 6x_2 - 5x_3 + 2x_4 \rightarrow \text{max};$$

$$\begin{cases} x_1 + 4x_2 - x_3 + x_4 = 16, \\ 4x_1 - 6x_2 + 3x_3 - 7x_4 = 20. \end{cases}$$

Вариант 15

Задание 1

Имеются два проекта строительства жилых домов. Расход стройматериалов, их запас и полезная площадь дома каждого проекта приведены в таблице:

Стройматериал	Запас стройматериалов, м ³	Расход строі на один	~ ?
	строиматериалов, м	проекта I	проекта II
Кирпич силикатный	1365	7	3
Кирпич красный	1245	6	3
Пиломатериалы	650	1	2
Пол	тезная площадь, м ²	60	50

Определить, сколько домов проекта I и проекта II следует построить, чтобы полезная площадь была наибольшей.

Задание 2

$$Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \rightarrow \text{max};$$

$$\begin{cases} x_1 - x_2 + x_3 - x_4 + x_5 - x_6 + x_7 - x_8 = 1, \\ 2x_1 + x_2 + 2x_3 + x_4 + 2x_5 + x_6 + 2x_7 + x_8 = 2, \\ x_1 - 2x_2 + x_3 - 2x_4 + x_5 - 2x_6 + x_7 - 2x_8 = 0, \\ 4x_1 - 2x_2 + 4x_3 - 2x_4 + 4x_5 - 2x_6 + 4x_7 + 2x_8 = 1. \end{cases}$$

Задание 1

Сельскохозяйственное предприятие может приобрести тракторы марок M_1 и M_2 для выполнения работ P_1 , P_2 и P_3 . Производительность тракторов при выполнении указанных работ, общий объем работ и стоимость каждого трактора приведены в таблице:

Вид работ	Объем работ, га	Производительность трактора марки			
	Оовем рассі, га	M_1	M_2		
P_1	60	4	3		
P_2	40	8	1		
P_3	30	1	3		
Стоимость	трактора, ден. ед.	7	2		

Найти оптимальный вариант приобретения тракторов, обеспечивающий выполнение всего комплекса работ при минимальных денежных затратах на технику.

Задание 2

$$Z = x_1 - x_2 + x_3 - x_4 + x_5 - x_6 + x_7 \rightarrow \text{max};$$

$$\begin{cases} 2x_1 - x_2 + 2x_3 - 3x_4 + x_5 - x_6 + x_7 = 0, \\ 2x_2 - x_3 + 2x_4 - 3x_5 + x_6 - x_7 = 0, \\ -x_3 + 2x_5 + 4x_7 = 2, \\ 2x_1 + x_2 - x_4 + 4x_7 = 4. \end{cases}$$

Вариант 17

Задание 1

На заготовительный участок поступили стальные прутья длиной 111 см. Необходимо разрезать их на заготовки по 19, 23 и 30 см, которых требуется соответственно 311, 215 и 190 шт. Построить модель, на основе которой можно решить задачу выбора варианта выполнения этой работы, при котором число разрезаемых прутьев минимально.

$$Z = -x_1 + x_2 - 2x_3 - 3x_4 + x_5 \rightarrow \text{max};$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1, \\ x_1 - x_2 - x_4 = 2, \\ x_2 + x_3 = 1/2. \end{cases}$$

Вариант 18

Задание 1

Из листов стального проката размером 6×13 м необходимо выкроить 800 заготовок A размером 4×5 м и 400 заготовок Б размером 2×3 м. Раскрой можно производить четырьмя способами. Количество заготовок каждого типа, получаемых при раскрое одного листа различными способами, указано в таблице:

Заготовка	Коли	чество заготово	к при способе ра	аскроя
Jaioiobka	I	II	III	IV
A	3	2	1	0
Б	1	6	9	13

Составить такой план раскроя, чтобы расход материала был минимальным.

Задание 2

$$Z = -x_1 - x_2 - x_3 + x_4 + x_5 \rightarrow \max;$$

$$\begin{cases}
-2x_1 + x_2 + x_3 + 2x_4 - 2x_5 + 2x_6 = -2, \\
x_1 - 2x_2 + x_3 - 2x_4 + 4x_5 - 4x_6 = -2, \\
x_1 + x_2 - 2x_3 - 2x_5 + 2x_6 = -2.
\end{cases}$$

Вариант 19

Задание 1

На заготовительный участок мебельной фабрики поступили листы фанеры размером 152×152 см. Необходимо разрезать их на заготовки по 105×31 , 47×90 и 30×51 см. Потребность в них соответственно равна: 315, 215 и 416 шт. Построить модель, на основе которой можно сформулировать задачу выбора варианта раскроя, чтобы количество разрезаемых листов было минимальным.

Задание 2

$$Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \rightarrow \text{max};$$

$$\begin{cases}
-3x_1 + x_2 + 2x_3 + x_6 + 2x_7 - 3x_8 = 3, \\
-2x_1 + 3x_2 - x_3 + 2x_6 + 3x_7 - 4x_8 = 2, \\
2x_1 - 2x_4 - x_5 + 3x_6 + 4x_7 - x_8 = -3, \\
4x_1 - 4x_4 + x_5 + 4x_6 + x_7 - 2x_8 = -3.
\end{cases}$$

Вариант 20

Задание 1

Металлургический цех выпускает три вида продукции: А, Б и В. Прибыль от тонны произведенной продукции каждого вида составляет соответственно 35, 25 и 40 ден. ед. Цех располагает необходимым оборудованием, каждый тип которого имеет свой фонд рабочего времени и производительность, указанные в таблице:

Оборудование	Фонд	Производительность по видам, т/ч				
	времени, ч	A	Б	В		
Печь обжига	2 766	3,5	2,8	1		
Травильный агрегат	624	0,083	0,083	0,104		
Прокатный стан	416	0,067	0,1	0,083		
Отделочный стан № 1	250	1	_	_		
Отделочный стан № 2	1 250	_	1			
Отделочный стан № 3	1 500	_	_	1		

Составить план выпуска продукции, обеспечивающий максимум прибыли.

Задание 2

$$Z = x_1 - 3x_2 - x_3 - x_4 - x_5 - x_6 + x_7 + x_8 \rightarrow \text{max};$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 1, \\ x_1 - x_2 + x_3 - x_4 + 11x_5 + 7x_6 - 8x_7 - x_8 = 2, \\ x_1 - 2x_2 - 3x_3 - x_4 - x_5 - x_6 - x_7 - 5x_8 = 3, \\ 3x_1 - 2x_2 - x_3 - x_4 + 11x_5 + 7x_6 - 8x_7 - 5x_8 = 4, \\ x_1 - x_2 + x_3 - x_4 + x_5 - 7x_6 + 8x_7 - x_8 = 0. \end{cases}$$

Вариант 21

Задание 1

Предприятие изготавливает приборы типов A, Б и B, которые реализует соответственно по 6 000, 7 000 и 11 500 ден. ед. за изделие. Трудоемкость их производства задана отношением 1 : 2 : 3. Ранее предприятие изготавливало только приборы типа A в количестве 900 шт. за сутки. Однако изменение объема поставок экранированного провода (при сборке приборов каждого типа расходуется одинаковое количество этого материала) в планируемом году позволит выпускать за сутки 1 000 приборов. Для укомплектования каждого прибора необходим датчик того же типа, что и тип прибора. Их предполагается получать по кооперированным поставкам в количестве, обеспечивающем в сутки сборку не более 400, 500 и 200 приборов типов A, Б и В соответственно. Построить модель, на основе которой можно решить задачу определения напряженных месячных планов по объему реализации и ассортименту выпускаемой продукции. Найти оптимальные планы.

Задание 2

$$Z = 2x_1 + 3x_2 - x_3 + 5x_4 \rightarrow \max;$$

$$\begin{cases} 5x_1 + 4x_2 + 3x_3 - x_4 = 7, \\ x_1 + 2x_2 - 3x_3 = 3, \\ 2x_1 + x_2 + x_3 + 3x_4 = 8. \end{cases}$$

Вариант 22

Задание 1

В сплав может входить не менее 4 % никеля и не более 80 % железа. Для составления сплава используются три вида сырья, содержащего никель, железо и прочие вещества. Стоимость различных видов сырья и процентное содержание в нем соответствующих компонентов сплава представлены в таблице:

Компонент сплава	Содержание компонентов для сырья вида, %				
Компонент сплава	Содержание компонентов для сы I II 70 90 5 2 25 8 6 4	III			
Железо	70	90	85		
Никель	5	2	7		
Прочие	25	8	8		
Стоимость 1 кг, ден. ед.	6	4	5		

Определить состав сплава, при котором стоимость 1 кг булет минимальной.

Задание 2

$$Z = 2x_1 + 3x_2 \rightarrow \text{max};$$

$$\begin{cases} x_1 + x_2 + x_3 = 5, \\ x_1 + 3x_2 + 4x_4 = 9, \\ x_1 + x_5 = 4, \\ x_1 + 2x_2 + x_6 = 8. \end{cases}$$

Вариант 23

Задание 1

Фабрика выпускает кожаные брюки, куртки и пальто специального назначения в ассортименте, заданном отношением 2:1:3. В процессе изготовления изделия проходят три производственных участка: дубильный, раскройный и пошивочный. Фабрика имеет практически неограниченную сырьевую базу, однако сложная технология предъявляет высокие требования к квалификации рабочих. Время обработки изделий на каждом участке, их плановая себестоимость и оптовая цена приведены в таблице:

Ресурс	Брюки	Куртка	Пальто
Норма времени на участках, челч:			
дубильном	0,3	0,4	0,6
раскройном	0,4	0,4	0,7
пошивочном	0,5	0,4	0,8
Полная себестоимость, ден. ед.	15	40,5	97,8
Оптовая цена, ден. ед.	17,5	42	100

Ограничения на фонд времени для дубильного, раскройного и пошивочного участков составляют соответственно 3360, 2688 и 5040 ч. Учитывая заданный ассортимент, построить модель, на основе которой можно сформулировать задачу определения напряженного месячного плана по прибыли от реализованной продукции. Найти оптимальный план.

$$Z = -6x_2 + 6x_3 \rightarrow \max;$$

$$-x_1 + 2x_2 - x_3 \ge 1,$$

$$-x_1 + 2x_2 - 2x_3 \le 0,$$

$$2x_1 + 2x_2 + x_3 \le 4,$$

$$-x_2 + 2x_3 \le 1.$$

Вариант 24

Задание 1

На заводе ежемесячно скапливается около 14 т отходов металла, из которого можно штамповать большие и малые шайбы. Месячная потребность завода в больших шайбах – 600 тыс. шт., в малых – 1100 тыс. шт. (недостающее количество шайб закупается на специализированном предприятии). Оптовая цена больших шайб – 1,9 ден. ед. (за тысячу штук), малых – 5,2 ден. ед. Расход металла на тысячу больших шайб – 22 кг, на тысячу малых – 8 кг. Для изготовления шайб используются два пресса холодной штамповки. Производительность каждого за смену – 9 тыс. шт. больших шайб либо 11,5 тыс. шт. малых. Завод работает в две смены. Построить модель, на основе которой можно решить задачу определения плана производства шайб (из отходов), обеспечивающего максимальную долю в валовой продукции предприятия. За плановый период принять год. Найти оптимальный план.

Задание 2

$$Z = -4x_1 + 8x_2 - 16x_3 - 7x_4 \rightarrow \text{max};$$

$$\begin{cases}
-2x_3 + x_4 \le 0, \\
2x_1 - x_3 + 2x_4 \le 5, \\
-2x_1 + 2x_2 - 2x_3 - 2x_4 \le -2.
\end{cases}$$

Вариант 25

Задание 1

На кондитерской фабрике весь ассортимент выпускаемой карамели разделен на три однородные группы, условно обозначенные K_1 , K_2 и K_3 . Расход основного сырья и его запас указаны в таблице:

Виды основного сырья	Общий запас сырья, т	Расход сырья на 1 т, т			
виды основного сырья	Оощии запас сырья, 1	K_1	K_2	K_3	
Сахар-песок	700	0,7	0,7	0,7	
Патока	300	0,3	0,3	0,2	
Фруктовое пюре	150	0	0,2	0,3	
Уро	вень прибыли, ден. ед.	100	110	120	

Другие виды сырья, входящие в готовый продукт в небольших количествах, не учитываются. Составить план выпуска продукции, обеспечивающий максимум прибыли.

Задание 2

$$Z = 12x_1 + x_2 - 2x_3 \rightarrow \max;$$

$$\begin{cases}
-2x_1 - x_2 \ge -10, \\
2x_1 - x_2 - 2x_3 \le 8, \\
-x_1 + x_3 \le -2.
\end{cases}$$

ПРАКТИЧЕСКАЯ РАБОТА 3 Решение двойственных задач. Экономическая интерпретация задач линейного программирования

На предприятии имеется возможность выпускать n видов продукции Π_j (j=1...n). При ее изготовлении используются ресурсы P_1 , P_2 , P_3 . Размеры допустимых затрат ресурсов ограничены соответственно величинами b_1 , b_2 , b_3 . Расход ресурса i-го (i=1...3) вида на единицу продукции j-го вида составляет a_{ij} единиц. Цена единицы продукции j-го вида равна c_{ij} ден. ед.

Задание 1

В соответствии с вариантом:

- 1) составить экономико-математическую модель задачи, пользуясь которой можно найти план выпуска продукции, обеспечивающий предприятию максимальную прибыль;
- 2) симплексным методом найти оптимальный план выпуска продукции и максимальную величину прибыли. Раскрыть экономический смысл дополнительных переменных в оптимальном плане.

Задание 2

В соответствии с вариантом:

- 1) составить модель задачи, двойственной к исходной. Пользуясь теоремами двойственности по решению исходной задачи, найти оптимальный план и экстремальную величину целевой функции двойственной задачи;
- 2) *сформулировать в экономических терминах значения двойственных переменных и дополнительных двойственных оценок.

Все необходимые числовые данные приведены в таблице.

Варианты 1-9

Номер варианта									
Данные	1 2 3 4 5 6							8	9
n	4	3	4	3	3	3	3	4	3
$b_{\rm l}$	20	150	280	1 200	600	24	500	100	360
b_2	37	180	80	150	30	10	550	260	192
b_3	30	120	250	3 000	144	6	200	370	180
a_{11}	2	2	2	15	10	5	2	2,5	18
a_{12}	2	3	1	20	20	7	1	2,5	15
a_{13}	3	4	1	25	23	4	0	2	12
a_{14}	0	ı	1		_	-	-	1,5	_
a_{21}	3	1	1	2	1	5	0	4	6
a_{22}	1	4	0	3	1	2	2	10	4
a_{23}	1	5	1	2,5	1	1	1	4	8
a_{24}	2	-	1	_	_	_	_	6	_
a_{31}	0	3	1	35	5	2	0	8	5
a_{32}	1	4	2	60	6	1	1	7	3
a_{33}	1	2	1	60	6	1	0	4	3
a_{34}	4	_	0	_	_	_	-	10	_
c_1	11	8	4	300	35	18	3	40	9
c_2	6	7	3	250	60	12	4	50	10
c_3	9	6	6	450	63	8	1	100	16
c_4	6	_	7	_	_	_	_	80	_

Варианты 10–17

Полого				Номер в	арианта			
Данные	10	11	12	13	14	15	16	17
n	3	4	5	3	3	3	4	5
b_1	180	2	3	400	6 000	12	1 000	3
b_2	210	2	2	250	5 000	25	500	5
b_3	244	2	2	200	9 000	18	1 200	4
a_{11}	4	1	1	1/6	1	6	1	1
a_{12}	2	1	1	3/7	1	4	2	2
a_{13}	1	0	1	1/4	1	3	3	3
a_{14}	_	2	2	-	_	_	1	6
a_{15}	_	_	2	_	_	_		2
a_{21}	3	0	0	1/4	1/2	5	2	2
a_{22}	1	1	1	1/7	1	3	1	3
a_{23}	3	1	1	1/4	5	2	0	1
a_{24}	_	0	1	-	-	-	0	6
a_{25}	_	_	2	-	_	_	0	0
a_{31}	1	1	1	1/6	1/2	4	0	3
a_{32}	2	0	1	1/7	1/2	5	1	1
a_{33}	3	1	0	3/8	20	4	4	2
a_{34}	_	0	2	_	_	_	1	6
a_{35}	_	_	1	_	_	_	-	4
c_1	10	3	5	120	80	1	2	3
c_2	14	7	2	100	100	2	40	4
c_3	12	4	8	150	300	3	10	1
c_4	_	2	3	-	_	-	15	3
c_{5}	_	_	6	_	-	_	_	2

Варианты 18–25

Полити				Номер в	варианта			
Данные	18	19	20	21	22	23	24	25
n	4	4	3	3	3	3	3	3
$b_{_{1}}$	4	24	12	8	5	12	4	18
b_2	3	12	27	18	4	27	7	16
b_3	3	35	6	6	2	6	12	8
a_{11}	1	1	2	4	0	2	1	1
a_{12}	3	2	1	1	2	1	3	2
a_{13}	0	4	6	2	5	6	0	1
a_{14}	1	8	_	_	_	-	_	_
a_{15}	-	-		-	-	-	-	_
a_{21}	2	3	3	6	2	3	1	2
a_{22}	1	5	3	1	4	3	0	1
a_{23}	0	1	9	3	2	9	2	1
a_{24}	0	0	_	_	_	_	_	_
a_{25}	-	_	_	_	_	-	_	_
a_{31}	0	6	2	6	1	2	1	1
a_{32}	1	0	1	1	0	1	3	1
a_{33}	4	3	2	1	1	2	2	0
a_{34}	1	1	_	_	_	_	_	_
a_{35}	_	_	_	_	_	_	_	_
c_1	2	0,4	14	24	20	14	3	3
c_2	4	0,2	6	4	8	6	8	4
c_3	1	0,5	22	8	30	22	5	2
c_4	1	0,8	-		_	-		_
c_5	_	_	_	_	_	_	_	-

ПРАКТИЧЕСКАЯ РАБОТА 4 РЕШЕНИЕ ТРАНСПОРТНЫХ ЗАДАЧ

Задание 1

В соответствии с вариантом:

- 1) построить начальный опорный план задачи (методом минимального элемента);
 - 2) решить задачу (методом потенциалов).

Задание 2*

В соответствии с вариантом:

- 1) построить начальный опорный план задачи (методом Фогеля);
 - 2) решить задачу (методом потенциалов).

Вариант 1

Поставщик	Запас груза аі	Потребитель				
Поставщик	Sanac Tpysa u _i	B_1	B_2	B_3	B_4	
A_1	40	6	4	2	7	
A_2	36	8	10	14	12	
A_3	24	16	12	6	13	
Потребн	ость в грузе b_j	24	20	30	26	

Вариант 2

Поставщик	Запас груза a_i		Потребитель				
Поставщик	Janac Tpysa u _i	B_1	B_2	B_3	B_4	B_5	
A_1	200	3	1	5	4	2	
A_2	450		4	2	7	3	
A_3	500		2	3	4	6	
Потребн	300	400	200	100	150		

Вариант 3

Поставщик	201700 1101100 0	Потребитель			
Поставщик	Запас груза a_i	B_1	B_2	B_3	
A_1	40	4	6	7	
A_2	36	3	5	8	
A_3	24	9	10	6	
Потребность в грузе b_j			40	60	

Вариант 4

Поставщик	Запас груза a_i				
Поставщик	Sanac i pysa u _i	B_1	B_2	B_3	B_4
A_1	30	4	7	2	3
A_2	A_2 190			0	4
A_3	A_3 250			3	7
Потребн	70	120	150	130	

Вариант 5

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Sanac i pysa u _i	B_1	B_2	B_3	B_4	B_5	
A_1	100	4	1	2	5	6	
A_2	70	7	3	4	2	5	
A_3	130	6	4	7	1	8	
A_4	150		5	6	4	7	
Потреб	80	120	70	130	50		

Вариант 6

Поставщик	Запас		Потребитель						
Поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6		
A_1	600	7	1	4	6	5	8		
A_2	800	1	3	5	2	4	6		
A_3	550	4	5	6	3	1	7		
A_4	730	5	3	7	2	8	4		
A_5 900		2	4	3	5	6	3		
Потребность в грузе b_j			580	440	620	550	640		

Поставщик	Запас груза a_i	Потребитель					
Поставщик		B_1	B_2	B_3	B_4		
A_1	300	5	1	2	3		
A_2	200	6	3	7	1		
A_3	500		5	3	2		
A_4	700		4	6	4		
Потребн	230	420	650	400			

Поставщик	Запас		Потребитель					
Поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	B_7
A_1	1 040	5	1	4	3	6	7	2
A_2	2 700	4	2	6	5	1	8	3
A_3	1 885	7	3	1	4	2	5	6
A_4	1 457	2	5	7	1	4	3	4
Потребность в	в грузе b_j	590	740	875	1537	1200	1500	640

Вариант 9

Поставщик	20000 00000 0	Потребитель			
Поставщик	Запас груза a_i	B_1	B_2	B_3	
A_1	50	1	3	2	
A_2	100	4	5	7	
A_3	130	6	2	4	
Потребность в грузе b_j			100	110	

Вариант 10

Поставщик	Запас	Потребитель						
Поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	
A_1	3 000	2	4	3	1	6	3	
A_2	5 000	5	7	4	5	2	1	
A_3	1 250	3	6	1	4	3	7	
A_4	7 300	1	3	2	6	4	5	
Потребность в грузе b_j		2300	3200	4000	1760	1500	2220	

Вариант 11

Поставщик	Запас груза a_i		Потребитель					
поставщик	Janac i pysa u _i	B_1	B_2	B_3	B_4			
A_1	40	8	4	6	2			
A_2	25	4	10	5	6			
A_3	A_3 28		7	8	5			
A_4	A_4 32			8	9			
Потреб	28	32	20	45				

Вариант 12

Поставщик	Запас груза аі	Потребитель					
Поставщик	Sanae i pysa u _i	B_1	B_2	B_3	B_4	B_5	
A_1	100		6	8	11	10	
A_2	2 80		9	13	15	12	
A_3	A_3 40			12	5	9	
Потребн	60	50	40	35	35		

Вариант 13

Поставщик	Запас		Потребитель					
Поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	
A_1	36	9	3	4	8	10	12	
A_2	34	4	6	7	11	13	9	
A_3	32	5	8	8	4	12	10	
A_4	30	6	2	15	9	6	8	
Потребность в грузе b_j		20	15	25	27	30	15	

Вариант 14

Поставщик	Запас груза аі	Потребитель					
Поставщик	Sanae i pysa a _i	B_1	B_2	B_3	B_4		
A_1	10	15	17	20	22		
A_2	A_2 12			19	21		
A_3	A_3 18				20		
Потре	9	10	12	15			

Поставщик	Запас			Потре	битель		
Поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6
A_1	1 780	5	3	1	4	2	6
A_2	2 000	4	2	3	6	1	3
A_3	1 530	1	3	7	4	5	2
A_4	2 860	3	4	6	7	1	5
Потребность в грузе b_j		850	1870	1950	1670	1000	830

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Junue i pysu u _i	B_1	B_2	B_3	B_4	B_5	
A_1	50	7	6	8	10	12	
A_2	60			7	4	6	
A_3	A_3 40				9	7	
Потребн	30	20	55	20	25		

Вариант 17

Поставщик	Запас груза a_i	Потребитель						
Поставщик	Sunae i pysa u _i	B_1	B_2	B_3	B_4	B_5		
A_1	150	7	5	9	8	6		
A_2	170			4	11	12		
A_3	200		3	15	13	14		
Потребн	120	80	140	70	110			

Вариант 18

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Sunae ipysa a _l	B_1	B_2	B_3	B_4		
A_1	30	12	15	14	10		
A_2	50	16	20	18	17		
A_3	A_3 45			16	13		
Потре	20	25	35	40			

Вариант 19

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Janac ipysa u _i	B_1	B_2	B_3	B_4		
A_1	60	15	17	14	12		
A_2	A_2 45			10	9		
A_3	A_3 130			11	15		
Потре	50	70	60	80			

Вариант 20

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Sanac ipysa a _i	B_1	B_2	B_3	B_4		
A_1	70	17	15	10	14		
A_2	100		16	18	13		
A_3	60	18	17	19	20		
A_4	80	16	12	15	18		
Потре	90	80	50	100			

Вариант 21

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Sanac i pysa a _i	B_1	B_2	B_3	B_4		
A_1	1 500	12	9	10	15		
A_2	500	14	8	13	17		
A_3	700	18	19	20	14		
A_4	900	17	15	18	21		
Потре	1000	600	800	1100			

Вариант 22

Поставщик	Запас груза a_i	Потребитель					
Поставщик	Sanae i pysa a _i	B_1	B_2	B_3	B_4		
A_1	40	25	23	19	21		
A_2	50	12	18	20	24		
A_3	A_3 60			23	17		
Потре	35	30	45	32			

Вариант 23

Поставщик	Запас			Потре	битель		
Поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6
A_1	120	5	10	15	6	14	13
A_2	60	14	9	8	12	11	10
A_3	150	7	12	13	15	9	14
Потребность в грузе b_j		45	52	48	55	70	60

Вариант 24

Поставщик	Запас груза аі	Потребитель					
Поставщик	Sanac i pysa u _i	B_1	B_2	B_3	B_4	B_5	
A_1	150	7	2	11	5	9	
A_2	2 170			3	6	1	
A_3	110		5	10	7	8	
Потреб	110	120	80	50	70		

Поставщик	Запас		Потребитель					
поставщик	груза a_i	B_1	B_2	B_3	B_4	B_5	B_6	B_7
A_1	135	7	5	3	4	2	1	8
A_2	270	9	4	5	10	3	6	5
A_3	120	6	2	8	7	1	4	3
Потребность в грузе b_j		80	93	56	100	125	98	73

ПРАКТИЧЕСКАЯ РАБОТА 5 ПОСТРОЕНИЕ ОСТОВНОГО ДЕРЕВА ГРАФА. НАХОЖДЕНИЕ НАИКРАТЧАЙШЕГО РАССТОЯНИЯ МЕЖДУ ЗАДАННЫМИ ВЕРШИНАМИ ГРАФА

Задание 1

В соответствии с вариантом:

- 1) построить остовное дерево минимального веса по алгоритму Prim;
- 2) построить остовное дерево минимального веса по алгоритму Kruskal.

Задание 2

В соответствии с вариантом найти кратчайшие цепи от заданного узла (s) до всех остальных узлов в сети, используя алгоритм Dejkstra.

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 7

Вариант 8

Вариант 9

Вариант 10

Вариант 13

Вариант 14

Вариант 15

Вариант 16

Вариант 19

Вариант 20

Вариант 21

Вариант 22

Вариант 25

ПРАКТИЧЕСКАЯ РАБОТА 6 НАХОЖДЕНИЕ НАИКРАТЧАЙШИХ РАССТОЯНИЙ МЕЖДУ ВСЕМИ ПАРАМИ ВЕРШИН ГРАФА. АЛГОРИТМ ФЛОЙДА

Задание

В соответствии с вариантом:

- 1) найти матрицу узлов и матрицу элементов для заданного графа;
- 2) найти кратчайшую цепь и ее длину между парами указанных вершин, используя алгоритм Флойда.

Вариант 1

Найти кратчайшую цепь и ее длину между парами вершин: CE, FC, FD.

Вариант 2

Найти кратчайшую цепь и ее длину между парами вершин: FB, AB, BF.

Найти кратчайшую цепь и ее длину между парами вершин: CF, EF, AB.

Вариант 4

Найти кратчайшую цепь и ее длину между парами вершин: DF, CD, BD.

Вариант 5

Найти кратчайшую цепь и ее длину между парами вершин: AB, BE, CE.

Вариант 6

Найти кратчайшую цепь и ее длину между парами вершин: ED, BC, EC.

Найти кратчайшую цепь и ее длину между парами вершин: CE, FD, CB.

Вариант 8

Найти кратчайшую цепь и ее длину между парами вершин: CF, CD, BA.

Вариант 9

Найти кратчайшую цепь и ее длину между парами вершин: AC, DB, BF.

Вариант 10

Найти кратчайшую цепь и ее длину между парами вершин: BC, CD, FE.

Найти кратчайшую цепь и ее длину между парами вершин: AD, CA, EA.

Вариант 12

Найти кратчайшую цепь и ее длину между парами вершин: EF, AC, DC.

Вариант 13

Найти кратчайшую цепь и ее длину между парами вершин: BC, EA, AD.

Вариант 14

Найти кратчайшую цепь и ее длину между парами вершин: BA, AF, CF.

Найти кратчайшую цепь и ее длину между парами вершин: DB, BF, CF.

Вариант 16

Найти кратчайшую цепь и ее длину между парами вершин: FA, BE, EA.

Вариант 17

Найти кратчайшую цепь и ее длину между парами вершин: AD, AE, FD.

Вариант 18

Найти кратчайшую цепь и ее длину между парами вершин: DC, AF, DB.

Найти кратчайшую цепь и ее длину между парами вершин: BF, CD, DB.

Вариант 20

Найти кратчайшую цепь и ее длину между парами вершин: BD, DF, AF.

Вариант 21

Найти кратчайшую цепь и ее длину между парами вершин: AD, BA, EF.

Вариант 22

Найти кратчайшую цепь и ее длину между парами вершин: CE, DF, CB.

Найти кратчайшую цепь и ее длину между парами вершин: DE, FA, CB.

Вариант 24

Найти кратчайшую цепь и ее длину между парами вершин: CE, FA, EA.

Вариант 25

Найти кратчайшую цепь и ее длину между парами вершин: BC, EB, DF.

ПРАКТИЧЕСКАЯ РАБОТА 7 ПОСТРОЕНИЕ ПОТОКОВ МАКСИМАЛЬНОЙ МОЩНОСТИ. АЛГОРИТМ ФОРДА-ФАЛКЕРСОНА

Задание

В соответствии с вариантом:

- 1) используя алгоритм Форда-Фалкерсона, построить на сети поток максимальной мощности, направленный из источника S к стоку T;
- 2) указать «узкое место» сети и найти его пропускную способность.

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 8

Вариант 9

Вариант 10

Вариант 11

Вариант 14

Вариант 15

Вариант 16

Вариант 17

Вариант 20

Вариант 21

Вариант 22

Вариант 23

ПРАКТИЧЕСКАЯ РАБОТА 8 Нахождение потока заданной величины минимальной стоимости. Алгоритм Басакера–Гоуэна

Задание

Для сети (см. практическую работу 7) построить поток максимальной мощности минимальной стоимости (в соответствии с вариантом). На каждой дуге сети указаны два числа. Первое число означает пропускную способность ребра, а второе – поток по ребру. Стоимость доставки единицы потока по дуге указана в соответствии с вариантом.

Вариант 1	Вариант 2	Вариант 3
SA-7	SA - 6	SA - 7
SC – 8	SC - 8	SC – 9
SD – 9	SD-3	SD-2
AB - 4	AB-4	AB - 4
AC - 5	AC-4	AC-5
BC-2	BC-2	BC-4
BT - 8	BT - 7	BT - 8
CD-3	CD-3	CD-7
CE-7	CE – 6	CE-7
DE – 6	DE – 6	DE-6
ET-4	ET-4	ET-2
CT – 5	CT-5	CT-4

Вариант 4	Вариант 5	Вариант 6
SA-2	SA-6	SA-4
SC – 6	SC - 3	SC – 8
SD – 9	SD-4	SD-2
AB - 5	AB-4	AB-4
AC - 6	AC - 5	AC - 5
BC-7	BC-2	BC - 9
BT - 8	BT - 5	BT - 8
CD-3	CD-3	CD-7
CE-7	CE – 7	CE-7
DE-4	DE – 6	DE-2
ET-4	ET-7	ET-4
CT - 3	CT – 9	CT – 5
Вариант 7	Вариант 8	Вариант 9
SA - 3	SA - 8	SA - 6
SC-4	SC – 9	SC - 3
SD – 9	SD – 6	SD-5
AB - 6	AB - 8	AB-4
AC – 8	AC-2	AC - 5
BC – 6	BC-5	BC-2
BT-4	BT - 5	BT - 5
CD-3	CD-4	CD – 9
CE-7	CE-7	CE – 7
DE - 3	DE – 6	DE - 5
ET-7	ET – 7	ET-7
CT – 9	CT – 6	CT – 9
Вариант 10	Вариант 11	Вариант 12
SA-7	SA - 3	SA - 2
SC-5	SC – 6	SC-7
SD – 9	SD – 9	SD-7
AB - 5	AB - 6	AB - 9
AC - 3	AC – 6	AC - 3
BC-7	BC - 8	BC - 5
BT - 8	BT - 8	BT - 7
CD – 9	CD – 6	CD-3
CE-7	CE-7	CE – 4
DE - 8	DE-2	DE-4
ET-4	ET – 4	ET - 7
CT - 3	CT – 5	CT - 8

Вариант 13	Вариант 14	Вариант 15
SA-4	SA - 5	SA - 2
SC – 3	SC-5	SC-4
SD-6	SD – 6	SD - 8
AB - 8	AB - 5	AB - 2
AC - 3	AC-7	AC - 9
BC-7	BC-7	BC-4
BT - 6	BT - 8	BT - 8
CD – 9	CD-8	CD – 9
CE-5	CE – 7	CE-7
DE - 8	DE - 8	DE - 2
ET-7	ET-4	ET-7
CT – 4	CT – 2	CT – 3
Вариант 16	Вариант 17	Вариант 18
SA-7	SA-6	SA - 5
SC-4	SC-3	SC-5
SD-8	SD – 9	SD-7
AB - 5	AB-4	AB - 6
AC - 3	AC - 8	AC-7
BC-7	BC – 6	BC-7
BT-2	BT - 8	BT – 9
CD – 9	CD – 9	CD-5
CE-7	CE – 7	CE – 9
DE - 8	DE – 7	DE - 8
ET-4	ET-6	ET-4
CT – 6	CT – 3	CT – 2
Вариант 19	Вариант 20	Вариант 21
SA-2	SA - 8	SA-6
SC – 6	SC - 5	SC – 6
SD-7	SD – 9	SD-5
AB - 5	AB-4	AB - 5
AC – 6	AC-4	AC - 6
BC-7	BC - 9	BC-7
BT-5	BT - 8	BT - 8
CD-3	CD – 4	CD – 9
CE – 7	CE – 7	CE-7
DE - 6	DE-4	DE - 8
ET-4	ET - 8	ET-4
CT - 3	CT-7	CT – 6

Вариант 22	Вариант 23	Вариант 24	Вариант 25
SA-4	SA - 2	SA - 6	SA - 5
SC-4	SC - 8	SC-2	SC - 5
SD-7	SD - 8	SD-7	SD-7
AB - 2	AB - 2	AB - 2	AB - 5
AC - 9	AC-4	AC – 9	AC - 6
BC - 8	BC-4	BC-4	BC-7
BT - 8	BT - 6	BT - 8	BT - 5
CD – 9	CD – 9	CD-7	CD-5
CE-7	CE - 7	CE - 7	CE - 7
DE - 7	DE - 2	DE - 2	DE – 6
ET-7	ET - 9	ET-7	ET-4
CT-5	CT – 4	CT – 8	CT - 3

ПРАКТИЧЕСКАЯ РАБОТА 9 Нахождение потока заданной величины минимальной стоимости. Алгоритм Клейна

Задание

В соответствии с вариантом для сети построить поток заданной мощности минимальной стоимости, используя алгоритм Клейна.

Вариант 1

V = 4

Вариант 3

V = 6

Вариант 4

V = 5

Вариант 5

V = 6

Вариант 6

V = 5

Вариант 7

V = 5

Вариант 9

V = 5

Вариант 10

V = 5

Вариант 11

V = 5

Вариант 12

V = 4

Вариант 13

V = 5

Вариант 15

V = 6

Вариант 16

V = 5

Вариант 17

V = 5

Вариант 18

V = 5

Вариант 19

V = 5

Вариант 21

V = 5

Вариант 22

V = 4

Вариант 23

V = 6

Вариант 24

V = 5

Вариант 25

ПРАКТИЧЕСКАЯ РАБОТА 10 Задача об оптимальном назначении

Задание

В соответствии с вариантом решить задачу об оптимальном назначении, используя венгерский алгоритм.

Вариант 1

3	10	5	9	16	8	17
6	8	11	8	18	19	20
7	10 8 13 9	10	3	4	14	18
5	9	6	21	12	17	22
5	4	11	6	13	14	11
17	7	12	13	16	17	9
13	4 7 0	8	8	10	12	17

Вариант 2

5	13	6	10	13	8	9]
10	9	7	11	8	12	11
11		8	12	4	18	4
12	6	9	8	5	8	5
9	4		5	6	6	7
11	8	7	4	7	3	8
6	5	8	12	13	9	14

Вариант 3

6	5	9	10	7	12	8
9	7	11	6	8	11	10
8	10	7	8	10	7	4
5	6	10	5	6	11	12
4	9	8	9	4	1	2
5	6	10	10 6 8 5 9 11 4	10	12	5
4	11	5	4	5	12	13_

Вариант 4

[13	4	5	12	3	6	14]
7	1	9	4	11	2	10
12	4	7	6	8	7	4
5	4	6	1	7	8	6
8	9	9	7	10	3	5
7	4	4	5	4	3	8
15	3	3	13	5	3	16

Вариант 5

Вариант 6

4	5	9	5	6	14	6]
8	12	4	13	16	15	16
2	5 12 15	8	10	17	7	9
14	8	4	9	5	6	7
3	5	4	12	10	11	13
10	9	11	5	6	12	8
7	13	8	12	8	11	10

Вариант 7

18	4	6	7	8	11	5
13	5	12	13	5	6	8
10	13	14	17	3	4	2
5	5 13 6 20	5	6	4	15	3
19	20	10	7	8	6	7
12	13	1	13	15	8	7
4	1	2	2	4	16	9

Вариант 8

8	4	5	18	6	1	9]
9	5	7	2	4	8	4
1	10	5	6	12	9	6
2	4	7	13	10	8	5
12	3	11	9	12	10	11
5	13	8	2	3	12	13
7	6	4	18	5	6	7

Вариант 9

1	17	1	4	5	18 6 15 7 2 8	2
21	5	6	7	8	6	16
9	10	9	14	10	15	8
14	2	3	13	6	7	15
10	8	12	1	11	2	4
6	7	1	10	3	8	6
3	19	4	12	13	20	4

Вариант 10

[12	13	8	5	5	16	17]
1	2	6	7		3	4
6	7	2	16	3	9	10
4	5	15	20	19	11	4
10	1	2	18	17	3	5
5	6	4	10	5	7	8
18	19	11	12	14	14	15

Вариант 11

1	4	5	8 8 7 6 9 12 6	9	4	5
5	6	7	8	10	11	12
4	18	4	7	6	7	8
5	4	3	6	10	4	5
9	10	8	9	5	13	6
6	8	11	12	7	8	9
12	4	5	6	2	5	4

1	5	7	10	2	3	4
8	2	5	4	7	10	1
8	3	10	17	8	2	3
5	6	7	10	1	3	7
4	8	12	5	4		
ı		1			6	7
8	7	12	6	18	5	4

5 1 4 2 10 6 7 4 5 10 4 5 8 10 15 12 14 15 4 5 7 4 8 9 10 12 13 14 5 4 7 8 9 10 5 7 8 4 3 5 6 7 9 10 5 8 11 4 3

Вариант 14

[3	5	10	7	8	10	12
4	6	7	4	5	6	7
12	13	11	6	7	8	9
10	4	5	8	9	4	5
8	7	9	5	6	7	11
1	3	12	1	4	5	6
4	10	11	13	15	16	8

Вариант 19

Вариант 20

	5			9	10	18
16	12	4	5	6	7	8
13	12 15	16	8	9	10	6
7	8	12	5	7	8	9
5	7	9		11	12	6
12	5	7	8	9	4	5
7	4	3	4	5	1	2

Вариант 15

[20	5	12	13	4	3	8]
9	10	11	12	13	14	15
8	4	5	4	6	7	8
10	5	7	3	4	5	4
3	12	13	4	6	7	8
9	4	8	9	8	5	4
11	4	3	15	4	5	14

Вариант 16

Вариант 21

Вариант 22

12	4	5	6	7	2	1
5	7	8	9	10	11	8
6	3	4	5	6	7	9
8	7	2	11	12	13	2
6	5	1	5	6	7	6
1	4	5	7	12	4	5
8	9	14	5	6	7	4

Вариант 17

Вариант 18

Вариант 23

Вариант 24

 3
 2
 4
 7
 5
 8
 5

 4
 8
 5
 6
 6
 9
 6

 5
 10
 7
 4
 7
 4
 7

 10
 4
 13
 8
 3
 8
 3

 12
 3
 4
 9
 2
 10
 14

 5
 7
 6
 12
 1
 7
 5

 1
 10
 11
 8
 4
 2
 8

 1
 4
 5
 6
 7
 15
 2

 3
 5
 7
 9
 5
 12
 10

 4
 7
 8
 10
 7
 3
 4

 6
 8
 12
 12
 9
 6
 1

 10
 2
 4
 4
 12
 7
 4

 1
 9
 7
 7
 15
 2
 8

 2
 11
 10
 10
 4
 5
 10

ПРАКТИЧЕСКАЯ РАБОТА 11 **З**АДАЧА КОММИВОЯЖЕРА

Задание

В соответствии с вариантом решить задачу коммивояжера методом ветвей и границ.

Вариант 1

 ∫ ∞ 19 25 5 24 34 	31	15	19	8	55
19	∞	22	31	7	35
25	43	∞	53	57	16
5	50	49	∞	39	9
24	24	33	5	∞	14
34	26	6	3	36	∞

Вариант 2

$$\begin{bmatrix} \infty & 19 & 25 & 11 & 2 & 35 \\ 37 & \infty & 26 & 58 & 21 & 43 \\ 10 & 50 & \infty & 39 & 22 & 3 \\ 38 & 39 & 24 & \infty & 38 & 45 \\ 27 & 9 & 32 & 9 & \infty & 2 \\ 33 & 48 & 60 & 53 & 1 & \infty \end{bmatrix}$$

Вариант 3

$$\begin{bmatrix} \infty & 16 & 13 & 35 & 41 & 52 \\ 19 & \infty & 29 & 31 & 26 & 18 \\ 57 & 51 & \infty & 44 & 51 & 7 \\ 5 & 40 & 32 & \infty & 14 & 16 \\ 33 & 41 & 28 & 3 & \infty & 53 \\ 19 & 54 & 24 & 10 & 41 & \infty \end{bmatrix}$$

Вариант 4

$$\begin{bmatrix} \infty & 39 & 45 & 2 & 51 & 33 \\ 30 & \infty & 20 & 33 & 40 & 35 \\ 54 & 16 & \infty & 55 & 22 & 56 \\ 19 & 36 & 25 & \infty & 18 & 43 \\ 29 & 8 & 8 & 12 & \infty & 25 \\ 16 & 47 & 31 & 14 & 8 & \infty \end{bmatrix}$$

Вариант 5

∞	41	27	54	46	5
42	∞	11	32	58	21
36	5	∞	33	22	33
46	24	59	∞	49	59
48	58	11	44	∞	47
26	50	35	19	27	∞ _

Вариант 7

∞	6	56 46 ∞ 12 40 59	35	48	29
34	∞	46	46	55	26
29	31	∞	32	13	42
26	34	12	∞	17	7
38	35	40	13	∞	47
60	25	59	36	31	∞ _

Вариант 9

-					
∞	14	40 34 ∞ 44 24 31	33	16	51
48	∞	34	4	11	24
57	35	∞	24	38	52
30	50	44	∞	9	31
18	42	24	31	∞	30
1	38	31	19	32	∞

Вариант 11

∞	41	60	39	46	10
31	∞	59	16	1	51
29	51	∞	14	42	50
35	12	52	∞	16	26
16	39	15	60	∞	57
15	30	38	47	36	∞]
	 ∞ 31 29 35 16 15 	$\begin{bmatrix} \infty & 41 \\ 31 & \infty \\ 29 & 51 \\ 35 & 12 \\ 16 & 39 \\ 15 & 30 \end{bmatrix}$	$\begin{bmatrix} \infty & 41 & 60 \\ 31 & \infty & 59 \\ 29 & 51 & \infty \\ 35 & 12 & 52 \\ 16 & 39 & 15 \\ 15 & 30 & 38 \end{bmatrix}$	$\begin{bmatrix} \infty & 41 & 60 & 39 \\ 31 & \infty & 59 & 16 \\ 29 & 51 & \infty & 14 \\ 35 & 12 & 52 & \infty \\ 16 & 39 & 15 & 60 \\ 15 & 30 & 38 & 47 \end{bmatrix}$	$ \begin{bmatrix} \infty & 41 & 60 & 39 & 46 \\ 31 & \infty & 59 & 16 & 1 \\ 29 & 51 & \infty & 14 & 42 \\ 35 & 12 & 52 & \infty & 16 \\ 16 & 39 & 15 & 60 & \infty \\ 15 & 30 & 38 & 47 & 36 \end{bmatrix} $

Вариант 6

-					
∞	21	40	28	60	52
58	∞	11	39	22	56
22	12	∞	28 39 23 ∞ 42 52	14	19
25	47	51	∞	20	54
47	43	18	42	∞	52
44	49	50	52	29	∞

Вариант 8

_∞	4	39	22	10	47
58	∞	56	18	4	35
34	29	∞	17	27	18
52	4	39 56 ∞ 22	∞	15	37
41	44	25 19	11	∞	32
11	6	19	2	58	∞

Вариант 10

∞	56	48	39	3	40]
47	∞	50	4	10	40 49 16 33
48	50	∞	42	19	16
24	44	47	∞	23	33
38	17	6	51	∞	26
29	59	55	34	18	∞

∞	44	60	54	29	39]
53	∞	46	19	42 44	6
36	7	∞	37	44	3
21	4	49	∞	14	26
15	12	38	46	∞	24
19	6	45	57	11	∞

$\begin{bmatrix} \infty & 15 & 43 & 38 & 10 & 45 \\ 44 & \infty & 18 & 6 & 49 & 40 \\ 41 & 42 & \infty & 19 & 1 & 48 \\ 33 & 44 & 20 & \infty & 20 & 21 \\ 40 & 17 & 16 & 26 & \infty & 15 \\ 3 & 4 & 37 & 54 & 36 & \infty \end{bmatrix}$

Вариант 14

∞	58 ∞ 46 56 34 47	56	13	21	54
21	∞	58	43	56	14
4	46	∞	38	7	22
44	56	42	∞	6	60
3	34	36	11	∞	17
59	47	40	60	13	∞ _

Вариант 15

∞	23	38	44	18	32]
51	∞	17	35	56	47
19	37	∞	24	16	21
42	37496	60	∞	7	46
27	6	40	34	∞	31
	20				

Вариант 16

$$\begin{bmatrix} \infty & 21 & 34 & 48 & 58 & 35 \\ 9 & \infty & 14 & 30 & 4 & 12 \\ 6 & 7 & \infty & 35 & 11 & 34 \\ 26 & 37 & 17 & \infty & 36 & 52 \\ 59 & 15 & 7 & 32 & \infty & 47 \\ 3 & 17 & 6 & 44 & 59 & \infty \end{bmatrix}$$

Вариант 17

[∞	23	38	44	18	32]
51	∞	17	35	56	47
28	37	∞	24	16	21
26	49	∞ 60 40	∞	7	46
56	6	40	34	∞	31
33	20	50	51	30	∞

Вариант 18

$$\begin{bmatrix} \infty & 20 & 28 & 12 & 39 & 32 \\ 21 & \infty & 15 & 9 & 17 & 27 \\ 30 & 25 & \infty & 45 & 29 & 47 \\ 7 & 52 & 40 & \infty & 15 & 1 \\ 60 & 46 & 11 & 5 & \infty & 34 \\ 11 & 45 & 14 & 21 & 30 & \infty \end{bmatrix}$$

Вариант 19

$$\begin{bmatrix} \infty & 36 & 51 & 24 & 11 & 46 \\ 28 & \infty & 17 & 46 & 10 & 20 \\ 7 & 41 & \infty & 58 & 2 & 35 \\ 25 & 60 & 45 & \infty & 55 & 59 \\ 48 & 20 & 33 & 26 & \infty & 38 \\ 50 & 27 & 19 & 14 & 52 & \infty \end{bmatrix}$$

Вариант 20

$$\begin{bmatrix} \infty & 16 & 15 & 32 & 53 & 55 \\ 27 & \infty & 34 & 50 & 2 & 31 \\ 33 & 39 & \infty & 42 & 36 & 39 \\ 45 & 22 & 59 & \infty & 28 & 26 \\ 55 & 49 & 14 & 18 & \infty & 12 \\ 28 & 14 & 8 & 48 & 35 & \infty \end{bmatrix}$$

Вариант 21

_ ∞	9	37	28	52	53
24	∞	25	48	27	48
27	45	∞	23	47	58
2	30	16	∞	8	60
53	54	4	1	∞	46
60	12	5	28 48 23 ∞ 1 50	35	∞ _

Вариант 22

∞	33	41	46	11	21
10	∞	26	46 28	39	43
1	57	∞	20	60	28
50	25	35	20 ∞ 19 50	42	7
43	44	51	19	∞	34
55	22	30	50	53	∞

Вариант 23

∞	44	6	49 30 55 ∞ 33 22	28	53
40	∞	4	30	42	51
3	47	∞	55	20	24
1	26	30	∞	33	47
18	24	13	33	∞	46
56	25	11	22	40	∞

Вариант 24

∞	37	7	46	57	20]
26	∞	34	10	42	16
42	1	∞	26	21	13
30	20	60	∞	50	10
43	20 47	28	38	∞	36
16	17	53	36	2	∞

Вариант 25

∞	40	34	50 38 47 ∞ 8 15	10	44
18	∞	3	38	52	10
23	12	∞	47	42	5
54	29	56	∞	9	2
17	31	23	8	∞	4
28	53	58	15	41	∞

ПРАКТИЧЕСКАЯ РАБОТА 12 МЕТОД ГОМОРИ ДЛЯ РЕШЕНИЯ ЗАДАЧ ЦЕЛОЧИСЛЕННОГО ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Задание

В соответствии с вариантом решить задачу целочисленного линейного программирования методом Гомори.

$$\max Z = 3x_1 + x_2;$$

$$\begin{cases} 4x_1 + 11x_2 \le 44, \\ x_1 \le 5, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 3

$$\max Z = 2x_1 - 8x_2;$$

$$\begin{cases} 3x_1 + 5x_2 \le 17, \\ x_2 \le 4, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 5

$$\max Z = x_1 - 7x_2;$$

$$\begin{cases} 3x_1 + x_2 \le 8, \\ x_1 - 3x_2 \ge 2, \\ x_1 \le 6, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 7

$$\max Z = x_1 - x_2;$$

$$\begin{cases} x_1 - 2x_2 + x_3 = 1, \\ x_1 + 3x_2 + x_4 = 3, \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \\ x_1, \ x_2 - \text{целые}. \end{cases}$$

Вариант 2

$$\begin{aligned} \max Z &= x_1 + x_2; \\ & \left\{ 8x_1 - 3x_2 \leq 24, \\ 3x_1 + 2x_2 \leq 13, \\ x_1 \geq 0, \ x_2 \geq 0, \\ x_1, \ x_2 - \text{целые}. \end{aligned} \right.$$

Вариант 4

$$\max Z = 7x_1 - 9x_2;$$

$$\begin{cases} 2x_1 + x_2 \leq 9, \\ 3x_2 \leq 7, \\ 4x_1 + 5x_2 \leq 5, \end{cases}$$

$$x_1 \geq 0, \ x_2 \geq 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 6

$$\max Z = x_1 - 7x_2;$$

$$\begin{cases} 7x_1 - x_2 \ge 5, \\ 2x_1 + 3x_2 \le 11, \\ x_2 \le 5, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 8

$$\max Z = x_1 + 2x_2;$$

$$\begin{cases} x_1 + x_2 \le 5, \\ -x_1 + 2x_2 \le 3, \\ x_2 \le 6, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0,$$

$$x_1, \ x_2 - \text{целые.}$$

Вариант 9

$$\begin{aligned} & \min Z = -x_1 - x_2; \\ & \begin{cases} x_1 + 2x_2 \leq 5, \\ 3x_1 + 2x_2 \leq 9, \end{cases} \\ & x_1 \geq 0, \ x_2 \geq 0, \\ & x_1, \ x_2 - \text{целые.} \end{aligned}$$

Вариант 11

$$\max Z = 2x_1 + 5x_2;$$

$$\begin{cases} 3x_1 + 4x_2 \le 25, \\ 2x_1 - x_2 \ge 1, \\ x_1 \le 5, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 13

$$\min Z = -3x_1 - 4x_2;$$

$$\begin{cases} x_1 + 4x_2 \le 44, \\ x_2 + x_3 = 22, \\ x_1 \le 18, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 15

$$\min Z = 3x_1 - 2x_2 - 3x_3;$$

$$\begin{cases} x_1 - 2x_2 \le 3, \\ -2x_1 + x_2 + x_3 = 5, \\ x_1 + 3x_2 \le 4, \end{cases}$$

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0,$$

$$x_1, \ x_2 - \text{целые}.$$

Вариант 10

$$\max Z = 2x_1 + 3x_2;$$

$$\begin{cases} 2x_1 + 2x_2 \ge 1, \\ 4x_1 - x_2 \le 15, \\ x_1 + 3x_2 \le 16, \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0,$$

$$x_1, x_2 - \text{целые}.$$

Вариант 12

$$\begin{aligned} \min Z &= x_1 - x_2; \\ \begin{cases} x_1 - 2x_2 \leq 1, \\ -2x_1 + x_2 \leq 2, \\ 3x_1 + x_2 + x_3 = 3, \end{cases} \\ x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0, \\ x_1, \ x_2 - \text{целые}. \end{aligned}$$

Вариант 14

$$\min Z = -3x_1 - 4x_2;$$

$$\begin{cases} 3x_1 - 2x_2 \le 8, \\ x_1 + 4x_2 \le 10, \\ 3x_1 + x_2 + x_3 = 3, \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, \\ x_1, x_2 - \text{целые.} \end{cases}$$

$$\min Z = -x_1 - x_2 - 2x_3;$$

$$\begin{cases} 2x_1 + 2x_2 + x_3 = 16, \\ x_2 + x_3 \le 7, \\ 2x_1 + 3x_3 \ge 18, \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \\ x_1, \ x_2 - \text{целые.} \end{cases}$$

 $\min Z = x_1 + 2x_2 + 3x_3$; $\begin{cases} x_1 + 3x_2 + x_3 \ge 10, \\ 2x_1 + x_3 \ge 7, \end{cases} \begin{cases} x_1 + x_2 + 2x_3 \ge 3, \\ x_1 + 2x_2 \ge 1, \end{cases}$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$ x_1, x_2 – целые.

Вариант 19

 $\max Z = x_1 + 2x_2 + 3x_3;$ $\int 6x_1 + 4x_2 + 3x_3 \le 25,$ $\int 5x_1 + 3x_2 + 2x_3 \le 15,$ $x_1 \ge 0, x_2 \ge 0,$ x_1, x_2 – целые.

Вариант 21

 $\min Z = x_1 + 2x_2 + x_3$; $\begin{cases} x_1 + x_2 + 2x_3 \ge 3, \\ x_1 + 2x_2 \ge 1, \end{cases} \begin{cases} x_1 + x_2 \le 7, \\ -3x_1 + 2x_2 \le 5, \end{cases}$ $x_1 \ge 0, x_2 \ge 0, x_2 \ge 0,$ x_1, x_2 – целые.

Вариант 23

 $\min Z = 3x_1 + 2x_2 + x_3$; $\left[x_1 + 3x_2 + x_3 \ge 10, \quad \left[x_1 + 2x_2 + 2x_3 = 16, \right]\right]$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$ x_1, x_2 – целые.

Вариант 18

 $\min Z = 2x_1 + x_2 + x_3$; $|2x_1 + 3x_2| \ge 4$, $x_1 \ge 0, x_2 \ge 0, x_2 \ge 0,$ x_1, x_2 – целые.

Вариант 20

 $\max Z = 110x_1 + 90x_2;$ $[3x_1 + 4x_2 \le 10,$ $\begin{cases} 2x_1 + x_2 \leq 8, \end{cases}$ $x_2 \leq 5$ $x_1 \ge 0, x_2 \ge 0,$ x_1, x_2 – целые.

Вариант 22

 $\max Z = x_1 + 5x_2;$ $x_1 \ge 0, x_2 \ge 0,$ x_1, x_2 – целые.

Вариант 24

 $\max Z = 2x_1 + x_2 + x_3;$ $3x_1 + 2x_3 \ge 18$, $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$ x_1, x_2 – целые.

Вариант 25

 $\max Z = 4x_1 + 3x_2$; $[8x_1 + 2x_2 \le 88,$ $5x_2 \le 90$. $x_1 \ge 0, x_2 \ge 0,$ x_1, x_2 – целые.

ПРАКТИЧЕСКАЯ РАБОТА 13 СЕТЕВОЕ ПЛАНИРОВАНИЕ. Модели управления проектами

Задание

В соответствии с вариантом:

- 1) по данным таблицы построить сетевой график комплекса работ и найти правильную нумерацию его вершин;
- 2) рассчитать на сетевом графике ранние и поздние сроки наступления событий, а также резервы времени событий;
 - 3) выделить на сетевом графике критические пути;
- 4) для некритических работ найти полные и свободные резервы времени;
- 5) найти минимальное время, за которое может быть завершен весь комплекс работ.

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	1
A_2	A_3	5
A_3	A_4, A_5	3
A_4	A_6	2
A_5	A_3	6
A_6	A_2, A_7	5
A_7	A_8	5
A_8	A_6	3

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 7 месяцев, работы A_6 на 2 месяца? На какое время можно увеличить продолжительность работ A_3 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 2

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_7	4
A_2	A_5, A_6	6
A_3	A_7	2
A_4	A_5, A_6	6
A_5	A_6	3
A_6	A_7	3
A_7	A_5	5

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 8 месяцев, работы A_7 на 4 месяца? На какое время можно увеличить продолжительность работ A_3 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 3

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	6
A_2	A_3	8
A_3	-	2
A_4	A_{6}, A_{9}	3
A_5	A_6, A_9 A_6, A_7, A_9	4
A_6	A_8	6
A_7	A_8	3
A_8	_	4
A_9	A_3	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_7 на 7 месяцев, работы A_9 на 4 месяца? На какое время можно увеличить продолжительность работ A_7 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 4

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_5, A_6	5
A_2	A_3, A_7	10
A_3	A_5, A_6	5
A_4	A_8	3
A_5	A_7	5
A_6	A_4	3
A_7	A_9	4
A_8	A_9	5
A_9	_	39

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_4 на 4 месяца, работы A_6 на 3 месяца? На какое время можно увеличить продолжительность работ A_2 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 5

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4	5
A_2	A_4, A_5	3
A_3	A_6	7
A_4	A_8	6
A_5	A_4	7
A_6	A_5	3
A_7	A_8	10
A_8	_	8

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_6 на 6 месяцев, работы A_4 на 2 месяца? На какое время можно увеличить продолжительность работ A_3 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 6

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_7	3
A_2	A_4, A_5, A_6	6
A_3	A_8	2
A_4	A_6	5
A_5	A_7	4
A_6	A_7	3
A_7	A_8	9
A_8	_	3

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_1 на 9 месяцев, работы A_5 на 3 месяца? На какое время можно увеличить продолжительность работ A_2 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 7

Работа	Последующие работы	Продолжительность работы, мес
A_1	_	6
A_2	A_1	8
A_3	A_1	12
A_4	A_3	4
A_5	A_3	12
A_6	A_4, A_5	15
A_7	A_2, A_5	12
A_8	A_{6}, A_{7}	8

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_1 на 8 месяцев, работы A_4 на 4 месяца? На какое время можно увеличить продолжительность работ A_5 и A_8 , не изменяя ранние сроки выполнения последующих работ?

Вариант 8

Работа	Последующие работы	Продолжительность работы, мес
A_1	_	1
A_2	_	5
A_3	A_1	4
A_4	A_1	3
A_5	A_2	6
A_6	A_4, A_5	5
A_7	A_4, A_5	6
A_8	A_3, A_6	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_2 на 7 месяцев, работы A_3 на 4 месяца? На какое время можно увеличить продолжительность работ A_2 и A_7 , не изменяя ранние сроки выполнения последующих работ?

Вариант 9

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_6, A_8	5
A_2	A_5	8
A_3	A_5	4
A_4	A_7	5
A_5	A_8	3
A_6	A_7	3
A_7	A_8	9
A_8	_	12

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 7 месяцев, работы A_5 на 3 месяца? На какое время можно увеличить продолжительность работ A_4 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 10

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	5
A_2	A_3	9
A_3	_	3
A_4	A_5, A_6	5
A_5	A_3	7
A_6	A_7	6
A_7	_	3
A_8	A_9, A_{10}	4
A_9	A_6	4
A_{10}	_	2

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_2 на 8 месяцев, работы A_4 на 3 месяца? На какое время можно увеличить продолжительность работ A_1 и A_6 , не изменяя ранние сроки выполнения последующих работ?

Вариант 11

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4, A_5, A_6	5
A_2	A_3, A_7	10
A_3	A_5, A_6	5
A_4	A_8	3
A_5	A_8	5
A_6	A_9	3
A_7	A_9	4
A_8	_	5
A_9	_	39

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 8 месяцев, работы A_7 на 2 месяца? На какое время можно увеличить продолжительность работ A_2 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 12

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_4, A_5	2
A_2	A_3, A_8	5
A_3	_	1
A_4	A_8	11
A_5	A_6	4
A_6	A_7	8
A_7	_	7
A_8	_	8

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 6 месяцев, работы A_5 на 1 месяц? На какое время можно увеличить продолжительность работ A_3 и A_2 , не изменяя ранние сроки выполнения последующих работ?

Вариант 13

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_6	20
A_2	A_4, A_6	12
A_3	A_5, A_7	8
A_4	A_5, A_7	4
A_5	A_8	14
A_6	A_8	7
A_7	A_6	7
A_8	_	10

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_3 на 8 месяцев, работы A_7 на 2 месяца? На какое время можно увеличить продолжительность работ A_1 и A_3 , не изменяя ранние сроки выполнения последующих работ?

Вариант 14

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4	10
A_2	A_6	13
A_3	A_7, A_8	8
A_4	A_5	7
A_5	_	15
A_6	A_8	17
A_7	A_5	10
A_8	_	3

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_4 на 1 месяц, работы A_6 на 2 месяца? На какое время можно увеличить продолжительность работ A_1 и A_4 , не изменяя ранние сроки выполнения последующих работ?

Вариант 15

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_7	2
A_2	A_4, A_5, A_6	1
A_3	A_6	2
A_4	A_8	10
A_5	A_7	3
A_6	A_8	4
A_7	A_8	7
A_8	_	2

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_7 на 1 месяц, работы A_3 на 5 месяцев? На какое время можно увеличить продолжительность работ A_3 и A_1 , не изменяя ранние сроки выполнения последующих работ?

Вариант 16

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_5	2
A_2	A_3	2
A_3	_	3
A_4	A_3, A_8	4
A_5	_	7
A_6	A_7	4
A_7	A_3	8
A_8	A_7	6

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_5 на 12 месяцев, работы A_8 на 1 месяц? На какое время можно увеличить продолжительность работ A_5 и A_1 , не изменяя ранние сроки выполнения последующих работ?

Вариант 17

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_5, A_8	12
A_2	A_3, A_4	10
A_3	_	8
A_4	A_8	4
A_5	A_6	2
A_6	A_7	4
A_7	_	8
A_8	_	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_6 на 4 месяца, работы A_2 на 1 месяц? На какое время можно увеличить продолжительность работ A_6 и A_7 , не изменяя ранние сроки выполнения последующих работ?

Вариант 18

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_7	2
A_2	A_5	8
A_3	A_4, A_5	8
A_4	A_6	1
A_5	A_6	10
A_6	_	2
A_7	A_8	10
A_8	_	10

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_5 на 3 месяца, работы A_3 на 11 месяцев? На какое время можно увеличить продолжительность работ A_3 и A_4 , не изменяя ранние сроки выполнения последующих работ?

Вариант 19

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_7	2
A_2	A_5, A_6	4
A_3	A_7	14
A_4	A_5, A_6	2
A_5	A_8	6
A_6	A_7	8
A_7	A_8	3
A_8	_	2

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_4 на 4 месяца, работы A_7 на 2 месяца? На какое время можно увеличить продолжительность работ A_4 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 20

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4	10
A_2	A_5, A_6, A_7	2
A_3	A_6	3
A_4	A_8	2
A_5	A_4	8
A_6	A_8	4
A_7	A_8	8
A_8	_	10

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_5 на 4 месяца, работы A_3 на 5 месяцев? На какое время можно увеличить продолжительность работ A_6 и A_3 , не изменяя ранние сроки выполнения последующих работ?

Вариант 21

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_7	2
A_2	A_4, A_6	11
A_3	A_4, A_5, A_6	4
A_4	A_8	4
A_5	A_7	1
A_6	A_7	2
A_7	A_8	2
A_8	1	4

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_6 на 1 месяц, работы A_1 на 3 месяца? На какое время можно увеличить продолжительность работ A_1 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 22

1		
Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2, A_6, A_8	5
A_2	A_5	3
A_3	A_5	2
A_4	A_7	25
A_5	A_8	20
A_6	A_7	20
A_7	A_8	15
A_8	_	5

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_2 на 12 месяцев, работы A_6 на 5 месяцев? На какое время можно увеличить продолжительность работ A_2 и A_5 , не изменяя ранние сроки выполнения последующих работ?

Вариант 23

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	15
A_2	A_3	5
A_3	_	5
A_4	A_5, A_6	30
A_5	A_3	50
A_6	_	30
A_7	A_{8}, A_{9}	10
A_8	A_5	20

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_8 на 4 месяца, работы A_9 на 35 месяцев? На какое время можно увеличить продолжительность работ A_1 и A_9 , не изменяя ранние сроки выполнения последующих работ?

Вариант 24

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_4, A_5, A_6	2
A_2	A_3, A_7	1
A_3	A_5, A_6	3
A_4	A_8	5
A_5	A_8	4
A_6	A_9	3
A_7	A_9	2
A_8	_	1
A_9	_	2

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_1 на 1 месяц, работы A_3 на 2 месяца? На какое время можно увеличить продолжительность работ A_1 и A_7 , не изменяя ранние сроки выполнения последующих работ?

Вариант 25

Работа	Последующие работы	Продолжительность работы, мес
A_1	A_2	6
A_2	A_3	7
A_3	_	3
A_4	A_{6}, A_{9}	4
A_5	A_6, A_7, A_9	1
A_6	A_8	4
A_7	A_8	3
A_8	_	2
A_9	A_3	9

Как повлияет на срок выполнения комплекса работ увеличение продолжительности работы A_7 на 12 месяцев, работы A_4 на 3 месяца? На какое время можно увеличить продолжительность работ A_6 и A_7 , не изменяя ранние сроки выполнения последующих работ?

ПРАКТИЧЕСКАЯ РАБОТА 14

Решение матричных игр в чистых стратегиях

Задание

В соответствии с вариантом:

- 1) показать существование или отсутствие чистых оптимальных стратегий, найти цену игры;
 - 2) выполнить возможные упрощения платежных матриц.

Вариант 1

(4	2	3	1)
$\begin{pmatrix} 4 \\ 4 \\ 5 \\ 3 \end{pmatrix}$	0	2	1 2 2 1
5	0	3	2
3	2	2	1

Вариант 2

$$\begin{pmatrix}
4 & 2 & 0 & 1 \\
5 & 2 & 1 & 3 \\
6 & 3 & 2 & 2 \\
2 & 7 & 4 & 5
\end{pmatrix}$$

Вариант 3

$$\begin{pmatrix}
3 & 5 & 1 & 2 & 4 \\
2 & 2 & 1 & 3 & 0 \\
2 & 1 & 2 & 4 & 1
\end{pmatrix}$$

Вариант 4

$$\begin{pmatrix}
7 & 9 & 7 & 5 & 6 & 12 \\
9 & 10 & 5 & 6 & 8 & 9 \\
8 & 0 & 2 & 3 & 1 & 4
\end{pmatrix}$$

Вариант 5

$$\begin{pmatrix}
4 & 2 & 0 & 1 \\
3 & 5 & 1 & 2 \\
4 & 0 & 3 & 6 \\
2 & 5 & 1 & 1 \\
9 & 4 & 0 & 8
\end{pmatrix}$$

Вариант 6

$$\begin{pmatrix}
1 & 1 & 2 & 4 \\
4 & 7 & 2 & 3 \\
2 & 1 & 1 & 2 \\
1 & 4 & 3 & 6 \\
1 & 3 & 0 & 5
\end{pmatrix}$$

Вариант 7

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 \\
3 & 2 & 1 & 2 \\
2 & 4 & 3 & 4
\end{pmatrix}$$

Вариант 8

$$\begin{pmatrix}
2 & 4 & 5 & 4 \\
4 & 3 & 4 & 2 \\
3 & 7 & 6 & 5 \\
1 & 5 & 2 & 3
\end{pmatrix}$$

Вариант 9

$$\begin{pmatrix}
7 & 6 & 6 & 3 \\
2 & 3 & 4 & 3 \\
3 & 4 & 3 & 2 \\
4 & 4 & 6 & 5
\end{pmatrix}$$

Вариант 11

$$\begin{pmatrix}
4 & 3 & 3 & 4 \\
2 & 1 & 5 & 3 \\
0 & 5 & 5 & 1 \\
1 & 6 & 6 & 3
\end{pmatrix}$$

Вариант 13

$$\begin{pmatrix}
1 & 4 & 10 & 12 \\
2 & 3 & 11 & 12 \\
1 & 6 & 2 & 2 \\
5 & 4 & 8 & 9
\end{pmatrix}$$

Вариант 15

$$\begin{pmatrix}
1 & 3 & 6 & 2 \\
2 & 1 & 3 & 2 \\
6 & 2 & 4 & 10 \\
4 & 1 & 0 & 7
\end{pmatrix}$$

Вариант 17

$$\begin{pmatrix}
1 & 1 & 3 & 1 \\
1 & 3 & 4 & 2 \\
3 & 2 & 2 & 3 \\
3 & 0 & 1 & 3
\end{pmatrix}$$

Вариант 10

$$\begin{pmatrix}
1 & 1 & 1 & 2 \\
4 & 1 & 3 & 3 \\
1 & 2 & 1 & 4 \\
1 & 2 & 3 & 5
\end{pmatrix}$$

Вариант 12

$$\begin{pmatrix}
4 & 2 & 3 & 11 \\
6 & 7 & 5 & 2 \\
3 & 2 & 1 & 9 \\
5 & 6 & 3 & 2
\end{pmatrix}$$

Вариант 14

$$\begin{pmatrix}
2 & 1 & 2 & 4 & 5 \\
1 & 4 & 1 & 3 & 2 \\
3 & 0 & 1 & 0 & 2 \\
1 & 3 & 0 & 2 & 1
\end{pmatrix}$$

Вариант 16

$$\begin{pmatrix}
3 & 1 & 5 & 2 \\
2 & 3 & 1 & 8 \\
4 & 1 & 6 & 3 \\
1 & 3 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 5 & 2 & 2 \\
8 & 1 & 7 & 9 \\
4 & 3 & 2 & 3 \\
4 & 4 & 0 & 1
\end{pmatrix}$$

$(5 \ 1 \ 4 \ 1)$ 1 2 3 1 1 1 2 0 4 2 1 2

Вариант 20

$$\begin{pmatrix}
0 & 1 & 4 & 9 & 1 \\
1 & 0 & 1 & 4 & 1 \\
4 & 1 & 0 & 1 & 4 \\
9 & 4 & 1 & 3 & 9
\end{pmatrix}$$

Вариант 21

$$\begin{pmatrix}
5 & 1 & 3 & 4 & 3 \\
3 & 2 & 1 & 2 & 2 \\
3 & 6 & 4 & 7 & 6
\end{pmatrix}$$

Вариант 22

$$\begin{pmatrix}
1 & 3 & 3 & 1 & 2 \\
2 & 0 & 3 & 2 & 3 \\
2 & 1 & 0 & 1 & 3
\end{pmatrix}$$

Вариант 23

$$\begin{pmatrix}
2 & 1 & 1 & 1 \\
6 & 3 & 1 & 3 \\
1 & 1 & 2 & 4 \\
1 & 2 & 1 & 2
\end{pmatrix}$$

Вариант 24

$$\begin{pmatrix}
4 & 0 & 3 & 0 \\
3 & 2 & 4 & 1 \\
5 & 3 & 5 & 2 \\
1 & 1 & 0 & 6
\end{pmatrix}$$

Вариант 25

$$\begin{pmatrix}
6 & 7 & 1 & 1 & 1 \\
3 & 4 & 2 & 1 & 6 \\
2 & 0 & 3 & 1 & 4 \\
8 & 2 & 4 & 4 & 3 \\
0 & 1 & 2 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
4 & 0 & 3 & 0 \\
3 & 2 & 4 & 1 \\
5 & 3 & 5 & 2 \\
1 & 1 & 0 & 6
\end{pmatrix}$$

ПРАКТИЧЕСКАЯ РАБОТА 15

ГРАФИЧЕСКИЙ МЕТОД РЕШЕНИЯ МАТРИЧНЫХ ИГР

Задание

В соответствии с вариантом произвести возможные упрощения следующих платежных матриц и найти решения игр, используя графический метод.

Вариант 1

$$\begin{pmatrix}
-3 & 2 & 3 \\
6 & -5 & 2 \\
3 & 0 & 5 \\
2 & -1 & 4
\end{pmatrix}$$

Вариант 2

$$\begin{pmatrix}
3 & 1 & 9 & 5 \\
1 & 5 & 7 & 0 \\
0 & 4 & 5 & -1 \\
1 & 5 & 7 & 0
\end{pmatrix}$$

Вариант 3

$$\begin{pmatrix}
1 & 0 & 8 & 6 \\
2 & 2 & 7 & 5 \\
5 & 3 & 1 & 1 \\
5 & 5 & 2 & 0
\end{pmatrix}$$

Вариант 4

$$\begin{pmatrix}
3 & 1 & 5 & 4 \\
6 & 6 & 2 & 0 \\
4 & 2 & 7 & 6 \\
5 & 3 & 5 & 5
\end{pmatrix}$$

Вариант 5

$$\begin{pmatrix}
3 & 8 \\
12 & 1 \\
9 & 6
\end{pmatrix}$$

Вариант 6

$$\begin{pmatrix}
5 & 2 & 0 & 3 & 4 \\
1 & 4 & 6 & 2 & 5 \\
0 & 4 & 3 & 1 & 2
\end{pmatrix}$$

Вариант 7

$$\begin{pmatrix}
8 & 5 & 3 & 6 & 7 \\
4 & 7 & 9 & 5 & 8
\end{pmatrix}$$

Вариант 8

$$\begin{pmatrix} 2 & 2 & 3 & -1 \\ 4 & 3 & 2 & 6 \end{pmatrix}$$

Вариант 9

$$\begin{pmatrix}
2 & 4 \\
2 & 3 \\
3 & 2 \\
-2 & 6
\end{pmatrix}$$

Вариант 10

$$\begin{pmatrix}
5 & 3 & 4 & 4 \\
3 & 5 & 6 & 8 \\
2 & 6 & 7 & 8 \\
2 & 4 & 5 & 5
\end{pmatrix}$$

Вариант 11

$$\begin{pmatrix}
6 & 4 \\
5 & 3 \\
3 & 6 \\
1 & 8 \\
2 & 5
\end{pmatrix}$$

$$\begin{pmatrix}
9 & 9 & 2 & 1 \\
7 & 8 & 9 & 6 \\
3 & 5 & 7 & 7 \\
5 & 7 & 1 & 0 \\
4 & 4 & 5 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
5 & 3 & 6 & 4 & 6 \\
4 & 1 & 8 & 4 & 2
\end{pmatrix}$$

Вариант 14

$$\begin{pmatrix} 7 & 0 & 3 \\ 2 & -1 & -6 \end{pmatrix}$$

Вариант 15

$$\begin{pmatrix} -2 & -6 & -5 & -1 \\ -3 & -5 & -6 & -2 \end{pmatrix}$$

Вариант 16

$$\begin{pmatrix} 4 & 0 & 2 \\ 6 & 7 & 1 \end{pmatrix}$$

Вариант 17

$$\begin{pmatrix}
1 & -3 & 5 & -7 & 9 \\
-2 & 4 & -6 & 8 & -10
\end{pmatrix}$$

Вариант 18

$$\begin{pmatrix} 2 & 2 & 3 & 4 \\ 4 & 3 & 2 & 2 \end{pmatrix}$$

Вариант 19

$$\begin{pmatrix}
3 & 0 & -2 & 1 & 1 \\
-1 & 2 & 4 & 0 & 4 \\
2 & -1 & -3 & 0 & 1
\end{pmatrix}$$

Вариант 20

$$\begin{pmatrix}
1 & 3 \\
5 & 7 \\
9 & 11
\end{pmatrix}$$

Вариант 21

$$\begin{pmatrix} 2 & 3 & 4 & 2 \\ 2 & 3 & 3 & 3 \\ 3 & 4 & 2 & 4 \\ -2 & 0 & 6 & 1 \end{pmatrix}$$

Вариант 22

$$\begin{pmatrix} 4 & 7 & 1 & -2 \\ 4 & 6 & 0 & -2 \\ 0 & -3 & 4 & 2 \\ 4 & 7 & 0 & -3 \end{pmatrix}$$

Вариант 23

$$\begin{pmatrix} 9 & 9 & 2 & 1 \\ 7 & 8 & 9 & 6 \\ 3 & 5 & 7 & 7 \\ 5 & 7 & 1 & 0 \\ 4 & 4 & 5 & 3 \end{pmatrix}$$

Вариант 24

$$\begin{pmatrix}
7 & 0 & -1 & 8 \\
5 & 5 & 4 & 6 \\
1 & 5 & 5 & 2 \\
3 & 0 & -2 & 5 \\
2 & 1 & 1 & 4
\end{pmatrix}$$

Вариант 25

$$\begin{pmatrix} 4 & 6 & 0 \\ 3 & 0 & 7 \end{pmatrix}$$

ПРАКТИЧЕСКАЯ РАБОТА 16 Динамическое программирование

Задание

Для развития трех предприятий выделено 5 млн руб. Известна эффективность капитальных вложений в каждое предприятие, заданная функцией полезности $g_i(x)$ (i = 1, 2, 3). В соответствии с вариантом составить оптимальный план распределения средств между предприятиями, предположив, что оно проводится в целых числах (0, 1, 2, 3, 4 и 5 млн руб.).

Исходные данные задачи приведены в таблице.

Вариант 1

х	0	1	2	3	4	5
$g_1(x)$	0	2,4	3,5	4,0	5,1	5,7
$g_2(x)$	0	2,0	3,0	4,1	5,3	6,0
$g_3(x)$	0	3,1	3,4	4,4	6,0	6,2

Вариант 2

х	0	1	2	3	4	5
$g_1(x)$	0	1,0	1,5	3,5	4,0	5,1
$g_2(x)$	0	0,8	1,4	2,0	3,6	4,9
$g_3(x)$	0	0,3	1,0	2,3	2,9	4,1

Вариант 3

х	0	1	2	3	4	5
$g_1(x)$	0	3,2	3,4	4,0	4,5	5,3
$g_2(x)$	0	3,5	4,0	4,6	5,0	5,9
$g_3(x)$	0	4,3	4,5	5,1	6,0	6,8

Вариант 4

х	0	1	2	3	4	5
$g_1(x)$	0	2,0	2,4	3,0	3,6	4,4
$g_2(x)$	0	1,5	2,0	2,8	4,0	5,1
$g_3(x)$	0	2,3	2,8	3,4	4,8	5,6

X	0	1	2	3	4	5
$g_1(x)$	0	4,4	4,6	4,8	4,9	5,2
$g_2(x)$	0	4,6	4,8	5,3	5,8	6,3
$g_3(x)$	0	4,0	4,5	5,1	6,0	6,6

х	0	1	2	3	4	5
$g_1(x)$	0	4,1	4,8	5,7	6,3	7,9
$g_2(x)$	0	3,2	3,9	5,0	7,0	8,8
$g_3(x)$	0	4,0	6,0	6,8	9,0	11,0

Вариант 7

x	0	1	2	3	4	5
$g_1(x)$	0	2,1	4,2	6,0	8,2	9,8
$g_2(x)$	0	1,8	3,5	5,0	6,6	8,0
$g_3(x)$	0	4,0	5,0	5,7	7,3	10,0

Вариант 8

х	0	1	2	3	4	5
$g_1(x)$	0	2,0	2,2	3,0	3,4	4,0
$g_2(x)$	0	3,0	3,1	4,0	4,4	5,0
$g_3(x)$	0	3,1	4,0	4,7	5,0	6,0

Вариант 9

x	0	1	2	3	4	5
$g_1(x)$	0	0,2	0,6	1,6	2,4	4,4
$g_2(x)$	0	1,0	1,8	2,0	3,0	5,0
$g_3(x)$	0	1,3	2,4	3,4	4,0	5,4

Вариант 10

X	0	1	2	3	4	5
$g_1(x)$	0	1,0	2,3	3,4	3,5	4,3
$g_2(x)$	0	2,0	3,0	4,5	4,9	5,1
$g_3(x)$	0	3,1	3,5	4,0	4,6	5,5

Вариант 11

x	0	1	2	3	4	5
$g_1(x)$	0	3,6	4,0	4,6	5,0	7,4
$g_2(x)$	0	2,5	3,0	3,7	4,8	6,7
$g_3(x)$	0	3,4	3,5	4,8	5,7	7,8

Вариант 12

X	0	1	2	3	4	5
$g_1(x)$	0	0,5	1,2	1,7	2,0	2,9
$g_2(x)$	0	0,9	1,0	1,5	1,8	3,0
$g_3(x)$	0	1,5	1,8	2,5	2,9	3,5

Вариант 13

	X	0	1	2	3	4	5
	$g_1(x)$	0	3,3	3,8	4,5	5,0	5,3
ſ	$g_2(x)$	0	3,6	3,9	4,2	5,8	6,3
	$g_3(x)$	0	2,6	2,9	3,8	4,5	4,9

Вариант 14

x	0	1	2	3	4	5
$g_1(x)$	0	0,8	1,4	2,0	3,0	4,9
$g_2(x)$	0	0,3	1,0	2,3	2,5	5,3
$g_3(x)$	0	2.0	4.0	4,5	5.2	5.8

Вариант 15

x	0	1	2	3	4	5
$g_1(x)$	0	1,9	2,5	2,9	3,3	4,4
$g_2(x)$	0	1,5	2,0	2,4	3,1	5,0
$g_3(x)$	0	2,0	3,2	3,9	4,0	6,0

Вариант 16

X	0	1	2	3	4	5
$g_1(x)$	0	2,5	2,7	3,0	3,1	3,3
$g_2(x)$	0	2,0	3,0	4,0	5,0	5,5
$g_3(x)$	0	2,0	3,4	4,9	5,3	6,0

Вариант 17

x	0	1	2	3	4	5
$g_1(x)$	0	2,0	3,0	4,8	5,5	7,0
$g_2(x)$	0	3,0	3,2	3,8	5,2	6,5
$g_3(x)$	0	1,0	2,2	3,0	5,0	6,0

Вариант 18

x	0	1	2	3	4	5
$g_1(x)$	0	1,4	2,1	2,5	2,7	3,0
$g_2(x)$	0	0,8	1,2	1,6	2,2	2,8
$g_3(x)$	0	1,2	1,8	2,2	2,6	3,2

	X	0	1	2	3	4	5
ſ	$g_1(x)$	0	2,5	3,2	4,0	5,0	6,2
	$g_2(x)$	0	2,0	3,0	4,0	5,2	6,8
ſ	$g_3(x)$	0	2,0	3,5	5,0	6,1	7,0

x	0	1	2	3	4	5
$g_1(x)$	0	3,4	4,5	5,0	6,1	6,7
$g_2(x)$	0	3,0	4,0	5,1	6,3	7,0
$g_3(x)$	0	4,1	4,4	5,4	7,0	7,2

Вариант 21

x	0	1	2	3	4	5
$g_1(x)$	0	1,3	1,5	2,0	2,8	3,4
$g_2(x)$	0	1,6	2,5	2,7	3,0	4,0
$g_3(x)$	0	3,0	3,5	3,8	4,0	5,0

Вариант 22

x	0	1	2	3	4	5
$g_1(x)$	0	2,3	3,1	3,5	4,5	5,0
$g_2(x)$	0	2,2	3,5	4,1	5,5	6,2
$g_3(x)$	0	3,4	3,8	4,1	5,7	6,0

Вариант 23

х	0	1	2	3	4	5
$g_1(x)$	0	4,0	4,6	4,9	5,2	5,5
$g_2(x)$	0	2,0	2,5	3,0	3,5	3,9
$g_3(x)$	0	3,0	3,6	3,8	4,0	5,8

Вариант 24

X	0	1	2	3	4	5
$g_1(x)$	0	1,2	2,3	3,4	4,5	5,6
$g_2(x)$	0	0,9	1,3	2,6	3,0	3,7
$g_3(x)$	0	2,1	3,2	4,3	5,4	6,5

Вариант 25

x	0	1	2	3	4	5
$g_1(x)$	0	1,9	2,2	3,4	5,1	5,0
$g_2(x)$	0	2,2	3,8	4,0	5,5	6,3
$g_3(x)$	0	3,3	3,9	4,6	5,7	6,6

Рекомендуемая литература

- 1. Волков, И. К. Исследование операций: учебник для вузов / И. К. Волков, Е. А. Загоруйко; под ред. В. С. Зарубина, А. П. Крищенко. 2-е изд. М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. 436 с.
- 2. Костевич, Л. С. Математическое программирование : информационные технологии оптимальных решений : учеб. пособие / Л. С. Костевич. Минск : Нов. знание, 2003. 424 с. : ил.
- 3. Кудрявцев, Е. М. Исследование операций в задачах, алгоритмах, программах / Е. М. Кудрявцев. М. : Радио и связь, 1984. 184 с. : ил.
- 4. Кузнецов, А. В. Высшая математика : математическое программирование / А. В. Кузнецов, В. А. Сокович, Н. И. Холод. Минск : Выш. шк., 1994. 287 с. : ил.
- 5. Кузнецов, А. В. Руководство к решению задач по математическому программированию: учеб. пособие / А. В. Кузнецов, Н. И. Холод, Л. С. Костевич; под общ. ред. А. В. Кузнецова. 2-е изд. Минск: Выш. шк., 2001. 448 с.: ил.
- 6. Окулов, С. М. Программирование в алгоритмах / С. М. Окулов. 2-е изд. М. : БИНОМ, 2006. 283 с. : ил.
- 7. Самарский, А. А. Математическое моделирование. Идеи. Методы. Примеры / А. А. Самарский, А. П. Михайлов. М.: Наука, 1997.
- 8. Сборник задач и упражнений по высшей математике : математическое программирование : учеб. пособие / А. В. Кузнецов [и др.] ; под общ. ред. А. В. Кузнецова, Р. А. Рутковского. 2-е изд. Минск. : Выш. шк., 2002. 447 с. : ил.
- 9. Экономико-математические методы и модели : учеб. пособие / Н. И. Холод [и др.] ; под общ. ред. А. В. Кузнецова. 2-е изд. Минск : $Б\Gamma$ ЭУ, 2000. 412 с.

116 117

Оглавление

Предисловие	3
Практическая работа 1 Составление математических моделей. Графический способ оптимизации	4
Практическая работа 2 Оптимизация целевой функции с помощью симплексного метода	19
Практическая работа 3 Решение двойственных задач. Экономическая интерпретация задач линейного программирования	34
Практическая работа 4 Решение транспортных задач	38
Практическая работа 5 Построение остовного дерева графа. Нахождение найкратчайшего расстояния между заданными вершинами графа	44
Практическая работа 6 Нахождение наикратчайших расстояний между всеми парами вершин графа. Алгоритм Флойда	52
Практическая работа 7 Построение потоков максимальной мощности. Алгоритм Форда-Фалкерсона	65
Практическая работа 8 Нахождение потока заданной величины минимальной стоимости. Алгоритм Басакера-Гоуэна	74
Практическая работа 9 Нахождение потока заданной величины минимальной стоимости. Алгоритм Клейна	77
Практическая работа 10 Задача об оптимальном назначении	86

Практическая работа 11 Вадача коммивояжера	90
Практическая работа 12 Метод Гомори для решения задач целочисленного пинейного программирования	93
Практическая работа 13 Сетевое планирование. Модели управления проектами	97
Практическая работа 14 Решение матричных игр в чистых стратегиях	108
Практическая работа 15 Графический метод решения матричных игр	110
Практическая работа 16 Цинамическое программирование	113
Рекомендуемая литература	117

СИСТЕМНЫЙ АНАЛИЗ И МОДЕЛИРОВАНИЕ

Практикум

для учащихся специальности 2-40 01 01 «Программное обеспечение информационных технологий» и студентов специальности 1-08 01 01-07 «Профессиональное обучение. (Информатика)»

Составители:

Соловей Галина Николаевна Кудина Светлана Николаевна Смолер Ирина Геннадьевна

Ответственный за выпуск О. П. Козельская Редактор О. А. Артемчик Корректор Г. Л. Говор Компьютерная верстка В. С. Понтус

Подписано в печать 15.11.2010. Формат $60 \times 84^{1}/_{16}$. Бумага писчая. Ризография. Усл. печ. л. 6,98. Уч.-изд. л. 5,84 Тираж 150 экз. Заказ 223.

Издатель и полиграфическое исполнение: учреждение образования «Минский государственный высший радиотехнический колледж»

ЛИ № 02330/0494033 от 08.01.2009.
Пр. Независимости, 62, 220005, Минск.