

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Experiment No. 7

Apply Dimensionality Reduction on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance: 12/10/2023

Date of Submission: 16/10/2023

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Aim: Apply Dimensionality Reduction on Adult Census Income Dataset and analyze the

performance of the model.

Objective: Able to perform various feature engineering tasks, perform dimetionality reduction

on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

In machine learning classification problems, there are often too many factors on the basis of

which the final classification is done. These factors are basically variables called features. The

higher the number of features, the harder it gets to visualize the training set and then work on

it. Sometimes, most of these features are correlated, and hence redundant. This is where

dimensionality reduction algorithms come into play. Dimensionality reduction is the process

of reducing the number of random variables under consideration, by obtaining a set of principal

variables. It can be divided into feature selection and feature extraction.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K. age:

continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked. fnlwgt: continuous.

CSL701: Machine Learning Lab

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Marriedspouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. sex: Female,

Male. capital-gain: continuous. capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, OutlyingUS(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

CSL701: Machine Learning Lab

In [2]: import numpy as np
import pandas as pd

df = pd.read_csv("adult.csv")
 df.head()

Out[2]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gŧ
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	
4	18	?	103497	Some- college	10	Never- married	?	Own-child	White	Fŧ
4										

In [3]: df.describe()

Out[3]:

	age	fnlwgt	educational- num	capital-gain	capital-loss	hours-per- week
count	48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000	48842.000000
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314	40.422382
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552	12.391444
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000

In [4]: df.shape

Out[4]: (48842, 15)

In [5 df.info

Out[5]:											
				•	22602	11.	- L		7		
	0	25		/ate	226802	11.			7		
	1	38		/ate	89814	HS-gr			9		
	2	28	Local·	_	336951	Assoc-ac			12		
	3	44	Priv	/ate	160323	Some-colle	_		10		
	4	18		?	103497	Some-colle	ge		10		
	• • •	• • •		• • •	• • •		• •		• • •		
	48837	27	Priv		257302	Assoc-ac			12		
	48838	40		/ate	154374	HS-gr			9		
	48839	58		/ate	151910	HS-gr			9		
	48840	22		/ate	201490	HS-gr			9		
	48841	52	Self-emp	-inc	287927	HS-gr	ad		9		
		m	arital-st	tatus		occupation		•	race	gender	\
	0		Never-man	rried		e-op-inspct		Own-child	Black	Male	
	1	Marri	ed-civ-sp	ouse	Farm	ing-fishing		Husband	White	Male	
	2	Marri	ed-civ-sp	ouse	Prot	ective-serv		Husband	White	Male	
	3	Marri	ed-civ-sp	ouse	Machin	e-op-inspct		Husband	Black	Male	
	4		Never-man	rried		?		Own-child	White	Female	
	• • •			• • •							
	48837	Marri	ed-civ-sp	ouse	Т	ech-support		Wife	White	Female	
	48838	Marri	ed-civ-sp	ouse	Machin	e-op-inspct		Husband	White	Male	
	48839		Wio	dowed	Α	dm-clerical		Unmarried	White	Female	
	48840		Never-man	rried	А	dm-clerical		Own-child	White	Male	
	48841	Marri	ed-civ-sp	ouse	Exec	-managerial		Wife	White	Female	
		capit	al-gain	capi ⁻	tal-loss	hours-per	-wee	ek native-	country	income	
	0	•	0	•	0	-		10 United	_	<=50K	
	1		0		0		5	0 United	-States	<=50K	
	2		0		0		4	10 United	-States	>50K	
	3		7688		0		4		-States	>50K	
	4		0		0				-States	<=50K	
	48837		0		0			88 United		<=50K	
	48838		0		0		4		-States	>50K	
	48839		0		0				-States	<=50K	
	48840		0		0				-States	<=50K	
	48841		15024		0			10 United		>50K	
					Ū					• • • •	

[48842 rows x 15 columns]>

```
In [7
         df.isnull().sum()
Out[7]: age
                                0
         workclass
                             2799
         fnlwgt
                                0
         education
                                0
                                0
         educational-num
         marital-status
                                0
                             2809
         occupation
         relationship
                                0
         race
                                0
         gender
                                0
         capital-gain
                                0
                                0
         capital-loss
         hours-per-week
                                0
         native-country
                              857
         income
         dtype: int64
 In [9]: for col in ['workclass', 'occupation', 'native-country']:
             df[col].fillna(df[col].mode()[0], inplace=True)
         df.isnull().sum()
Out[9]: age
                             0
         workclass
                             0
                             0
         fnlwgt
                             0
         education
         educational-num
                             0
         marital-status
                             0
         occupation
                             0
                             0
         relationship
         race
                             0
         gender
                             0
                             0
         capital-gain
         capital-loss
                             0
                             0
         hours-per-week
         native-country
                             0
         income
                             0
         dtype: int64
In [11]: from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rar
In [14]: from sklearn import preprocessing
         categorical = ['workclass', 'education', 'marital-status', 'occupation', 'relation']
         for feature in categorical:
             label = preprocessing.LabelEncoder()
             X_train[feature] = label.fit_transform(X_train[feature])
             X_test[feature] = label.transform(X_test[feature])
```

]:

```
15
          from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X.columns)
          X_test = pd.DataFrame(scaler.transform(X_test), columns = X.columns)
          X train.head()
Out[15]:
                                                   educational-
                                                                marital-
                  age workclass
                                   fnlwgt education
                                                                        occupation relationship
                                                                 status
                                                          num
          0 -0.849978
                      -1.887643 -0.551219
                                          1.212393
                                                      -0.027733 -0.406325
                                                                         -1.554732
                                                                                     0.969833
             0.241031 -0.094859
                                1.687545 -2.650223
                                                     -1.587187 -0.406325
                                                                         -1.049322
                                                                                     0.969833
           2 -0.486308
                       1.697924 -1.434052 -0.590161
                                                      0.362131 -0.406325
                                                                         -0.543912
                                                                                     -0.899325
           3 -0.195373 -0.094859 -0.384485
                                                                                     -0.276272
                                          1.212393
                                                     -0.027733 0.922720
                                                                         -0.796617
            -0.704510 -0.094859
                                1.608144
                                          0.182362
                                                      -0.417596 1.587242
                                                                          1.730434
                                                                                     1.592886
In [18]: from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score
          LR = LogisticRegression()
          LR.fit(X_train, y_train)
Out[18]: LogisticRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or
          trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
          with nbviewer.org.
In [20]: y_pred = LR.predict(X_test)
          accuracy_score(y_test, y_pred)
Out[20]: 0.8221524602470484
In [21]: from sklearn.decomposition import PCA
          pca = PCA()
In [22]: X train = pca.fit transform(X train)
          pca.explained_variance_ratio_
Out[22]: array([0.14740223, 0.10130193, 0.08096753, 0.07933632, 0.07433976,
                 0.07314763, 0.07066221, 0.06753572, 0.06516078, 0.06093536,
                 0.06003764, 0.04864317, 0.04289137, 0.02763835])
In [24]: X = df.drop(['income'], axis=1)
          y = df['income']
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rar
```

In []:

```
In [ ]:
         categorical = ['workclass', 'education', 'marital-status', 'occupation', 'relation')
    25
         for feature in categorical:
             lablel = preprocessing.LabelEncoder()
             X_train[feature] = label.fit_transform(X_train[feature])
             X_test[feature] = label.transform(X_test[feature])
In [26]: X train = pd.DataFrame(scaler.fit transform(X train), columns = X.columns)
In [27]: pca= PCA()
         pca.fit(X_train)
         cumsum = np.cumsum(pca.explained variance ratio )
         dim = np.argmax(cumsum >= 0.90) + 1
         print('The number of dimensions required to preserve 90% of variance is',dim)
         The number of dimensions required to preserve 90% of variance is 12
In [28]: X = df.drop(['income', 'native-country', 'hours-per-week'], axis=1)
         y = df['income']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rain
In [30]: categorical = ['workclass', 'education', 'marital-status', 'occupation', 'relation']
         for feature in categorical:
             label = preprocessing.LabelEncoder()
             X train[feature] = label.fit transform(X train[feature])
             X_test[feature] = label.transform(X_test[feature])
         X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X.columns)
         X_test = pd.DataFrame(scaler.transform(X_test), columns = X.columns)
In [31]: LR2 = LogisticRegression()
         LR2.fit(X_train, y_train)
Out[31]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or
         trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
In [32]: y_pred = LR2.predict(X_test)
         accuracy_score(y_test, y_pred)
Out[32]: 0.8229031597625059
```

```
In [ ]:
```

from sklearn.metrics import confusion_matrix
import pandas as pd
confusion = confusion_matrix(y_test, y_pred)
df_confusion = pd.DataFrame(confusion, columns=['Predicted No', 'Predicted Yes
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
<=50K >50K	0.84 0.71	0.94 0.44	0.89 0.54	11138 3515
accuracy macro avg weighted avg	0.78 0.81	0.69 0.82	0.82 0.72 0.81	14653 14653 14653

NAR ON THE SECOND

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Conclusion:

- 1. The Accuracy score obtained by applying principal component analysis on the testing data is 0.82 which means our model is 82% accurate on the testing data.
- 2. Precision measures the accuracy of the positive predictions and the precision score obtained by our model is 0.84
- 3. Recall measures the ability of the model to correctly identify all relevant instances and the Recall score obtained by our model is 0.94
- 4. F1-score is the harmonic mean of precision and recall and provides a balance between the 2 metrics and the F1-score obtained by our model is 0.89

CSL701: Machine Learning Lab