1 python module

 $\begin{array}{lll} \mbox{Hello world: } \mbox{D2A6229667374E17AB5A9634534F18D2} \\ \mbox{Hello world: } \mbox{16A7D3AA00F063BC9040C3D92A92A9D0} \\ \mbox{Testing of the property of the pr$

1	1 1		1
1 -	⊢ I	=	4

number/function	\sin	\cos	an
1	0.8415	0.5403	1.5574
2	0.9093	-0.4161	-2.185
3	0.1411	-0.99	-0.1425
4	-0.7568	-0.6536	1.1578
5	-0.9589	0.2837	-3.3805
6	-0.2794	0.9602	-0.291
7	0.657	0.7539	0.8714
8	0.9894	-0.1455	-6.7997
9	0.4121	-0.9111	-0.4523
10	-0.544	-0.8391	0.6484
11	-1.0	0.0044	-225.9508
12	-0.5366	0.8439	-0.6359
13	0.4202	0.9074	0.463
14	0.9906	0.1367	7.2446
_ 15	0.6503	-0.7597	-0.856

2 wolfram module

1

$$\mathcal{L}(t^4 \sin(3t)) = \frac{72(5s^4 - 90s^2 + 81)}{(s^2 + 9)^5}$$

$$\int_{a}^{b} \sin(x) dx = \cos(a) - \cos(b)$$

\overline{x}	x^2	x^3	x^4
(1)	(1)	(1)	(1)
(2)	(4)	(8)	(16)
(3)	(9)	(27)	(81)
(4)	(16)	(64)	(256)
(5)	(25)	(125)	(625)
(6)	(36)	(216)	(1296)

x	x^2	x^3	x^4
(1)	(1)	(1)	(1)
(2)	(4)	(8)	(16)
(3)	(9)	(27)	(81)
(4)	(16)	(64)	(256)
(5)	(25)	(125)	(625)
(6)	(36)	(216)	(1296)

$$x = \frac{9}{a+b}, y = -\frac{a-8b}{a+b} \tag{1}$$

$$x = \frac{9}{a+b}, y = -\frac{a-8b}{a+b}$$

$$x = \frac{9}{a+b}||y = -\frac{a-8b}{a+b}$$
(2)

$$x = \frac{9}{a+b} \tag{3}$$

$$y = -\frac{a - 8b}{a + b} \tag{4}$$

$$x = 15, y = 12, x = 41, y = 10, x = 57, y = 6$$
 (5)

$$y(x) = -\frac{1}{2}e^{-x}\left(-ae^x\sin(x) + ae^x\cos(x) - a - 2\right)$$
 (6)

$$\begin{cases}
z(x) = \log\left(c_1 \tan^2\left(\frac{1}{2}\left(\sqrt{2}\sqrt{c_1}x + 2\sqrt{2}\sqrt{c_1}c_2\right)\right) + c_1\right) \\
y(x) = x + \sqrt{2}\sqrt{c_1}\tan\left(\frac{1}{2}\left(\sqrt{2}\sqrt{c_1}x + 2\sqrt{2}\sqrt{c_1}c_2\right)\right)
\end{cases}$$
(7)

