物理探究 第3ターム試験 解答用紙

<対象:12E イ群>

1

2020.12.10 (木) 6,7 時限目

(1)	$40~\Omega$	(2)	10 Ω
(3)			50 Ω
(4)	2.0 A	(5)	$\frac{4.0\times10^2}{2\pi}~\mathrm{Hz}$

2

(1)	向き: y 軸の正の向き 大きさ: $\displaystyle \frac{eE}{m}$	(2)		$\frac{l}{v}$	
(3)					eEl ² 2mv ²
(4)					$\frac{2v^2y}{El^2}$
(5)	向き: 奥 (手前から奥)	磁束領	密度の大きさ:	$\frac{E}{v}$	

3

(1)	$2d\mathrm{sin} heta$		
(2)	$2dsin\theta = n\lambda (n=1, 2,)$		
(3)	$d = \frac{\lambda}{2\sin\theta_0}$		

4

(1)	鉛直:物体Aにはたらく垂直抗力の大きさを NA とすると	水平:物体Aにはたらく動摩擦力の大きさをfとすると			
	$N_{ m A}=m_1 g$	$m_1 a_1 = -f, \qquad m_1 a_1 = -\mu' m_1 g$			
	N/	- 1			

(2) 鉛直:物体Aにはたらく垂直抗力の大きさを
$$N_{
m B}$$
 とすると 水平: $N_{
m B} = N_{
m A} + m_{
m 2} g$

 $m_2 a_2 = f, \qquad m_2 a_2 = -\mu' m_1 g$

(3) $\mathbf{A}\, \mathcal{O}$ 加速度: $a_1 = -\mu' g$, $\mathbf{B}\, \mathcal{O}$ 加速度: $a_2 = -\mu' \frac{m_1}{m_2} g$

 $\frac{m_2}{m_1+m_2} \cdot v_0 \mu' \varrho$

 $\sqrt{\frac{2}{\mu'g} \cdot \frac{m_1 + m_2}{m_2} \cdot (l_2 - l_1)}$

5

(1)	A の速さ: 0 m/s, B の速さ: v, エネルギー変化量: 0J
(2)	A の速さ: $\frac{1}{5}v$, B の速さ: $\frac{4}{5}v$,エネルギー変化量: $-\frac{4}{25}mv^2$

(3)	
	A の速さ: $\frac{1}{2}v$, B の速さ: $\frac{1}{2}v$,エネルギー変化量: $-\frac{1}{4}mv^2$

(1)		
(1)		
	2.47	_
	240	Jg
(2)		
(2)		
		2
	40 cr	m ³
(3)		
(3)		
	6.0 g/cr	m^3

ア	$\frac{nh}{2\pi}$	イ	$m \cdot \frac{v^2}{r}$	ウ	$rac{e^2}{4\piarepsilon_0 r^2}$, または $k_0rac{e^2}{r^2}$
工	$\frac{\varepsilon_0 n^2 h^2}{\pi m e^2}$	オ	$\frac{1}{2}mv^2$	力	$-rac{e^2}{4\piarepsilon_0 r}$, または $k_0rac{e^2}{r}$
+	$-rac{e^2}{8\piarepsilon_0 r}$, または $rac{k_0 e^2}{2r}$	ク	$-rac{me^4}{8arepsilon_0^2h^2}\cdotrac{1}{n^2}$,または $-rac{2\pi^2{k_0}^2me^4}{h^2}\cdotrac{1}{n^2}$	ケ	$\frac{me^4}{8{\varepsilon_0}^2h^2}\Big(\frac{1}{{n_1}^2}-\frac{1}{{n_2}^2}\Big), \sharp \hbar \wr \sharp$ $\frac{2\pi^2{k_0}^2me^4}{h^2}\Big(\frac{1}{{n_1}^2}-\frac{1}{{n_2}^2}\Big)$
コ	$\frac{hc}{\lambda}$	サ	$rac{me^4}{8{arepsilon_0}^2 ch^3} \Big(rac{1}{{n_1}^2} - rac{1}{{n_2}^2}\Big)$, 又は $rac{2\pi^2 {k_0}^2 me^4}{ch^3} \Big(rac{1}{{n_1}^2} - rac{1}{{n_2}^2}\Big)$	シ	4 0 2, 2 4