INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Date: (AN) ... Time: 2 Hrs. Mid-Spring Semester: 2010-11

Maximum Marks 60 No. of Students: 75

Department: Computer Science and Engineering

Sub. No: CS31004

B. Tech.(Hons.), Dual Deg.

Sub. Name: Theory of Computation

Instructions: Answer ALL questions

1. (a) Let M_1, M_2, \cdots be an enumeration of some set of Turing machines that halt on all inputs. Show that there is some recursive language that is not $L(M_i)$ for any i.

(b) Using the result of part (a) show that there is a recursive language which is not context sensitive.

[8 + 10 = 18]

2. (a) Show that a language L over Σ is recursive if and only if both L and $\Sigma^* - L$ are recursively enumerable.

(b) Suppose L is recursively enumerable but not recursive. Show that any recognizer of L must loop forever on infinitely many different inputs.

[6+10=16]

3. (a) Show that $E_{TM} = \{\langle M \rangle | M \text{ is a Turing machine and } L(M) = \emptyset \}$ is undecidable.

(b) Show that A_{TM} cannot be reduced to E_{TM} .

(c) Show that if a decision problem class \mathcal{P} is partially decidable and \mathcal{P} can be reduced to \mathcal{P}^c , then \mathcal{P} is decidable.

[7+4+3=14]

4. Define the Word problem of Semi-Thue system. Show that the problem is undecidable. Is the problem partially decidable? Justify your answer. [10 + 2 = 12]