Introduction

- 5G: Device-to-Device (D2D) networks,
- Security issues: potential strong malware propagation,
- Multi-Agent Simulation for complex systems.

Objectives

- Build an agent based simulator for the Malware Propagation model,
- Identify the critical relations between the parameters,
- Study the virus propagation by the mean of simulation.

The Malware Propagation Model

Malware and Anti-malware Transmission

Devices a_1, a_2, \ldots moving on a map.

Connection

Two devices a_i, a_j are connected if

$$d(a_i,a_j) \leq r,$$

The Malware Propagation Model

Malware and Anti-malware Transmission

Devices a_1, a_2, \ldots moving on a map.

Connection

Two devices a_i, a_j are connected if

- $\bullet \ d(a_i,a_j) \leq r,$
- \bullet a_i and a_j are on the same street.

The Malware Propagation Model

Malware and Anti-malware Transmission

Devices a_1, a_2, \ldots moving on a map.

Connection

Two devices a_i, a_j are connected if

- $d(a_i, a_j) \leq r$,
- \bullet a_i and a_j are on the same street.

Malware Transmission Rule

Connection time greater than ρ .

State of a_i at time t

$$\xi_i(t) := (ext{state of device } a_i ext{ at time } t)$$

 $\in \{ ext{susceptible, infected}\}$

Poisson-Voronoi Tessellations

 λ : surface intensity of the Voronoi seeds, H: side size of the map.

- **1** Random Seeds number N: Poisson variable with parameter λH^2 ,
- ② Random Seeds positions $Q_1, \ldots, Q_N \in [0, H] \times [0, H]$,
- **③** Voronoi cells $C_i := \{X \in [0, H]^2 \mid \forall j \in \{1, \dots, N\}, \|X Q_i\| \le \|X Q_j\|\}.$

Initial Distribution of the Agents

 θ : Length intensity of susceptible agents,

- On a street of length L
 - **Q** Random number N_S of agents: Poisson variable with parameter θL ,
 - 2 Random positions on the street $X^{(1)}, \ldots, X^{(N_S)}$,
- One infected agent near the center of the map

Mobility: WayPoint Algorithm

Definition (WayPoint)

Each agent has a Home, and it moves back and forth between its home and a new destination every **Trip**.

Mobility: WayPoint Algorithm

Definition (WayPoint)

Each agent has a Home, and it moves back and forth between its home and a new destination every **Trip**.

• Sample a point (x_d, y_d) with Gaussian distribution centered at Home and with a standard deviation σ_D ,

Mobility: WayPoint Algorithm

Definition (WayPoint)

Each agent has a Home, and it moves back and forth between its home and a new destination every **Trip**.

- Sample a point (x_d, y_d) with Gaussian distribution centered at Home and with a standard deviation σ_D ,
- Set the destination as the closest map node to (x_d, y_d) ,

Mobility: WayPoint Algorithm

Definition (WayPoint)

Each agent has a **Home**, and it moves back and forth between its home and a new destination every **Trip**.

- Sample a point (x_d, y_d) with Gaussian distribution centered at Home and with a standard deviation σ_D,
- Set the destination as the closest map node to (x_d, y_d),
- Go to destination and go back
 Home via a "good" path.

The Simulator

Track the Virus Propagation

- If a_i and a_j are connected at kdt, we can compute the connection interval $[t_{i,j,k}^{(C,i)}, t_{i,j,k}^{(C,f)}] \ni kdt$ using their movement equations,
- If a_i is infected, InfectNeighbors(a_i) [Algorithm 2]: updates $T_{j,k}^{(l)}$ for each susceptible neighbor a_j of a_i

What Values for the Parameters ?

Simplified Model. The initially infected a_{l_0} visits a succession of streets $\hat{\mathcal{E}}_0, \hat{\mathcal{E}}_1, \ldots$, each having an independent length $L_{\lambda,i} \sim f_{\lambda,L}$, where $f_{\lambda,L}$ is the density function of the edges lengths in a PVT having a seeds intensity equal to λ . No white-knights in this model.

(We deduced $f_{\lambda,L}$ from $f_{1,L}$ using a length unit change)

Proposition (Kenneth A. Brakke. "Statistics of Random Plane Voronoi Tessellations")

If
$$L_{\lambda} \sim f_{\lambda,L}$$
, then $\mathbb{E}[L_{\lambda}] = \frac{2}{3\sqrt{\lambda}}$.

What can we say about $T^{(I)}:=\inf\{t\geq 0\mid \exists a_j\neq a_{I_0} \text{ such that } \xi_{j,t}=I\}$?

Lower Bounds for $\mathbb{E}[T^{(I)}]$

$$\mathbb{E}[T^{(I)}] \geq \frac{2}{3\sqrt{\lambda}\nu} \cdot (e^{\lambda\rho^2\nu^2} - 1), \qquad \mathbb{E}[T^{(I)}] \geq \frac{1}{2\sqrt{\lambda}\nu} (\sqrt{\lambda}/\theta - 4/3).$$

Note.
$$\sqrt{\lambda}\rho v \gg 1 \iff \rho v \gg \mathbb{E}[L_{\lambda}], \qquad \sqrt{\lambda}/\theta \gg 1 \iff \theta \mathbb{E}[L_{\lambda}] \ll 1.$$

Propagation Indicators

$$\bullet \ \tau_u := \inf\{t \geq 0 \mid \exists a_j \in \mathcal{I}(t) : \|X_j(t) - X_{l_0}(0)\| \geq u\}.$$

Propagation Speed

The speed with which the virus spreads in space.

$$\mathcal{V} := \limsup_{u \to +\infty} u \mathbb{E}[1/\tau_u],$$

Infection Rate

the rate of agents infected inside the area reached by the virus.

$$\mathcal{R} := \limsup_{u o +\infty} rac{|\mathcal{I}(au_u)|}{|\{X_j(au_u) \mid a_j \in \mathcal{A}\} \cap B(X_{l_0}(0), u)|},$$

Default Parameters' Values and Stop Condition

Unless otherwise stated, the parameters will have the following values $u=3.5km,~H=10km,~\lambda=50km^{-2},~\theta=3km^{-1},~v=5km/h,~\rho=20s,~r=200m.$

Let
$$u_k := \max\{\|X_{j,k} - X_{l_0}(0)\| \mid a_j \in \mathcal{A}\}$$
, (max propagation radius)

Stop at step
$$k$$
 if : $(u_k \ge u \quad \text{or} \quad u_k/(kdt) < 0.05km/h \quad \text{or} \quad |\mathcal{I}_k| = 0)$.

Figure: $\lambda \in [10, 200](km^{-2})$, $v \in [3, 90](km/h)$. The blue curve: $\sqrt{\lambda}\rho v = 2/3 \left(\rho v = \mathbb{E}[L_{\lambda}]\right)$, and the white one: $\sqrt{\lambda}\rho v = 3/2$

Figure: $\theta \in [0.2, 5](km^{-1}), v \in [2, 40](km/h)$.

Conclusion and Future Work

Conclusion

- Agent based simulation is a powerful tool to study D2D network systems,
- The virus does not propagate when $\sqrt{\lambda}\rho v > 1.5$,
- The propagation is maximal for $\sqrt{\lambda}\rho v \approx 2/3$

Future Work

- Introduce "white knights"
- Study the survival/extinction of the malware
- Predict what happens on real maps