Sprawozdanie

Układy elektroniczne i technika pomiarowa (2023L)

zadanie 2

Stabilizatory napięcia stałego o działaniu ciągłym

Piotr Heinzelman 146703

Dla zadanych wartości napięcia stabilizowanego **Uwyo** i prądu wyjściowego **Iwymax** dobrać parametry elementów kompensacyjnego szeregowego stabilizatora napięcia stałego. W pętli sprzężenia zwrotnego zastosować wzmacniacz operacyjny **µA741**. Obliczyć maksymalną moc strat tranzystora regulacyjnego i dobrać odpowiedni typ tranzystora.

Na drodze symulacji wyznaczyć charakterystyki: Uwy = f(Uwe) przy R0 = const. oraz Uwy = f(Iwy) przy Uwe = const.

W raporcie umieścić obliczenia projektowe elementów stabilizatora i tranzystora regulacyjnego oraz charakterystyki:

Uwy= f(Uwe) przy R0 = const. oraz Uwy = f(Iwy) przy Uwe = const.

Zakładam:

Iwymax = 1 [A] Uwyo = 5 [V] $Ro = 5 [\Omega]$

zasilanie: Uz=2 * Uwyo = 10 [V]

- + założenia z wykładu:
- dioda Zenera 3V,
- dobrać tranzystor NPN 2N2222A

Elementy:

dioda Zenera BZX79-C3V0,133 3V Uz=3V, Pd=0.4/0.5[W], Ir=10[uA] Ifmax=250[mA]

NEXPERIA Zener Diodes

Symbol	Manufacturer's part number	Manufacturer	Type of diode	Structure	Uz	Tol.	P_d	Mounting	Case	Package Package		I_{fmax}	Iz	$U_{f_{\text{max}}}$	Applicat
					[V]	[%]	[W]				[μA]	[mA]	[mA]	[V]	
BZX79-C3V0.143	BZX79-C3V0,143	NEXPERIA	Zener	single diode	3	±5	0.4/0.5	THT	DO35	Ammo Pack	10	250	-	-	-
BZX79-C3V3.113	BZX79-C3V3,113	NEXPERIA	Zener	single diode	3.3	±5	0.4/0.5	THT	DO35	reel, tape	-	250	-	0.9	-
BZX79-C3V3.133	BZX79-C3V3,133	NEXPERIA	Zener	single diode	3.3	±5	0.4/0.5	THT	DO35	Ammo Pack	-	250	-	0.9	-
BZX79-C3V6.113	BZX79-C3V6,113	NEXPERIA	Zener	single diode	3.6	±5	0.4/0.5	THT	DO35	reel, tape	-	250	-	0.9	-
BZX79-C3V6.133	BZX79-C3V6,133	NEXPERIA	Zener	single diode	3.6	±5	0.4/0.5	THT	DO35	Ammo Pack	-	250	-	0.9	-
BZX79-C3V9.113	BZX79-C3V9,113	NEXPERIA	Zener	single diode	3.9	±5	0.4/0.5	THT	DO35	reel, tape	-	250	-	0.9	-
BZX79-C3V9.133	BZX79-C3V9,133	NEXPERIA	Zener	single diode	3.9	±5	0.4/0.5	THT	D035	Ammo Pack	-	250	-	0.9	-

schemat układu

Obliczam Idmax:

Pd = 0.4[W], Uzo = 3[V]

Maksymalny prąd diody:

Idmax = Pd/Uzo = 0.4/3 = 0.1333[A]

Wartość prądu dobrano tak by prąd osiągnął 50% wartości maksymalnej: Id=0.1333/2 = 0.066 [A]

Rezystancje:

 $Id=Uwy-Uzo / R1 \rightarrow R1 = Uwy-Uzo / Id \rightarrow (5-3)/0.066 \rightarrow R1=30.03[\Omega]$ Ro=Uwy/Iwy = 5/1 = 5[\Omega],

Wyznaczam R2, R3

Uwy-Uzo (R₂/R₃ +1) -> R₂/R₃ + 1 = Uwy/Uzo -> R₂/R₃ = (Uwy-Uzo) / Uzo R₂/R₃ = (5-3)/3 = 0.666 -> R₂ = 0.6666*R₃ R₂ = 3 [Ω] , R₃ = 0.666*3 = 2 [Ω] R₃ = 2 [Ω]

Charakterystyka Uwy/Uwe przy Ro=const.

Charakterystyka Uwy = f(Iwy) przy Uwe = const.

moc strat:

Tranzystor: 2N2222A

InputImp. = 0.8 [$k\Omega$] = 800 [Ω]

 $PMAX = (UZAS)^2 / 4*Ptot$

 $PMAX = 12^2/4*800 = 144/2 = 0.045W$

wnioski:

na wykresach widać stabilizację napięcia na poziomie 5V, zmiana oporności wyjściowej oraz wzrost napięcia wejściowego nie wpływa niekorzystnie na napięcie i prąd wyjściowy.