

Lane Segmentation Week 5

HCT CV Class

学习目标

• 掌握Deeplab v3+的原理和实现

Bodypix

deeplab v3+ demo

https://ai.googleblog.com/2018/03/semantic-image-segmentation-with.html

deeplab v3+

Semantic Segmentation

DilatedFCN

HRNet

• 在语义分隔、目标检测、生成算法中都有广泛 采用

$$y[i] = \sum_{k} x[i + r \cdot k]w[k]$$

rate = 1

rate = 2

rate = 3

- Conv2d(..., dilation=1, ...)
- 正常卷积是膨胀卷积的特殊情况: dilation=1
 - Input: $(N, C_{in}, H_{in}, W_{in})$
 - Output: $(N, C_{out}, H_{out}, W_{out})$ where

$$H_{out} = \left\lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

$$W_{out} = \left \lfloor rac{W_{in} + 2 imes \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
floor$$

• 保持Output == Input (Spatial)

$$pad = rac{dilation imes (kerne - 1)}{2}$$

receptive field

- 在filter中填充0
- 输入等间隔采样

DilatedFCN

(a) Going deeper without atrous convolution.

Spatial Pyramid Pooling

Atrous Spatial Pyramid Pooling

Encoder-Decoder

Encoder-Decoder

Depthwise Separable Convolutions

Inception

Inception

Inception

Xception(Extream Inception)

 that the map ping of cross-channels correlations and spatial correlations in the feature maps of convolutional neural networks can be entirely decoupled.

Xception(Extream Inception)

19x19x728 feature maps

Middle flow

Exit flow

Backbone

Note

Backbone

Backbone

模型对比

模型对比

课程总结

- Dilated Convolution
- ASPP
- Encoder-Decoder
- Xception

重难点

- Dilated Convolution
- ASPP
- Xception

课程作业

在Pytorch deeplab v3的基础上实现deeplab v3+

参考资料

Deeplab v3+ Tensorflow

https://github.com/tensorflow/models/tree/master/research/deeplab

Deeplab v3+ PaddlePaddle

https://github.com/gujingxiao/Lane-Segmentation-Solution-For-BaiduAl-Autonomous-Driving-Competition/blob/master/models/deeplabv3p.py

Deeplab v3 Pytorch

https://github.com/pytorch/vision/blob/master/torchvision/models/segmentation/deeplabv3.py

一所专注前沿互联网技术领域的创新实战大学