Sets, Functions and Relations

Yuting Wang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

September 11, 2023

Notations

Get familiar with the following notations

- \triangleright P & Q is an abbreviation of: P and Q;
- $ightharpoonup P \mid\mid Q$ is an abbreviation of: P or Q;
- $ightharpoonup \sim P$ is an abbreviation of: not P;
- $ightharpoonup P \Longrightarrow Q$ is an abbreviation of: if P then Q;
- $ightharpoonup P \iff Q$ is an abbreviation of: P if and only if Q;
- $ightharpoonup \exists x, P \text{ is an abbreviation of: there exists an } x \text{ such that } P;$
- \blacktriangleright $\forall x, P$ is an abbreviation of: for all x such that P;

Sets

A set is a collection of elements.

Example

```
\mathbb{N} (natural numbers), \mathbb{Z} (integers), \mathbb{Q} (rationals), \mathbb{R} (reals)
```

Given a statement P about x, $\{x \mid P(x)\}$ is a set of objects such that P(x) is true.

Example

- ▶ $\{x \mid x \in \mathbb{N} \& x \text{ is divisible by 2}\};$
- ▶ Alternatively: $\{x \in \mathbb{N} \mid x \text{ is divisible by 2}\};$

Set Operations

- ▶ $A \cup B = \{x \mid x \in A \mid | x \in B\};$
- ► $A \cap B = \{x \mid x \in A \& x \in B\};$
- $A \setminus B = \{ x \mid x \in A \& x \notin B \};$
- \blacktriangleright $A \times B = \{\langle x, y \rangle \mid x \in A \& y \in B\};$
- $ightharpoonup A \subseteq B$ if every member of A is a member of B;
- $ightharpoonup A \subset B \text{ if } A \subseteq B \& A \neq B;$

Relations

Given n sets A_1, \ldots, A_n , a relation over them is a subset of $A_1 \times \ldots \times A_n$.

Definition (Binary Relations)

A binary relation R is a relation over $A \times B$ given some A and B.

- ▶ The domain of *R* (written dom(R)) is $\{x \mid \exists y, \langle x, y \rangle \in R\}$;
- ▶ The range of R (written rng(R)) is $\{y \mid \exists x, \langle x, y \rangle \in R\}$;

Example

< is the relation $\{\langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x \text{ is less than } y\}$

A binary relation R on A is

- ▶ reflexive iff $\langle x, x \rangle \in R$ for every $x \in A$;
- ▶ symmetric iff $\langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R$;
- ▶ transitive iff $\langle x, y \rangle \in R \& \langle y, z \rangle \in R \Longrightarrow \langle x, z \rangle \in R$

An equivalence relation is a relation satisfying all three properties.

Functions

Definition (Functions)

A function $f:A\to B$ is a binary relation over $A\times B$ satisfying the following property:

- ▶ its domain is *A*;
- ▶ for every $x \in A$, there is a unique $y \in B$ s.t. $\langle x, y \rangle \in f$.

We write f(x) for the value in B related to x by f.

One-to-One Correspondence

Definition (One-to-One Correspondence)

A function $f: A \rightarrow B$ is

- one-to-one (injective) if for every $x, y \in A$, $f(x) = f(y) \Longrightarrow x = y$;
- ▶ onto (surjective) if for every $y \in B$, there is some $x \in A$ s.t. f(x) = y;
- an one-to-one correspondence (bijective) between A and B if f is both one-to-one and onto.

One-to-One Correspondence (Cont'd)

Example

 \mathbb{Z} is one-to-one correspondent to \mathbb{N} .

We use the notion of one-to-one correspondence between infinite sets to talk about the size of infinite sets.

Finite Sets

Definition

- ► The set X is finite if there is a natural number n and a one-to-one correspondence between X and $\{0, ..., n\}$;
- ► The set *X* is infinite if it is not finite.

Enumerable Sets

Definition

► The set X is enumerable if there is a one-to-one correspondence between X and \mathbb{N} ;

Example

 \mathbb{Z} is enumerable.

Listings of Sets

Definition

Let A be a set. a_0, \ldots, a_n, \ldots is a listing of A if

- \triangleright each a_i is in A, and
- ightharpoonup every member of A is equal to a_n for some $n \in \mathbb{N}$.

Theorem

The set A is enumerable iff there is some listing without repetitions of A.

Example

 \mathbb{Q} is enumerable.

Countable Sets

Definition

- ► The set *X* is countable if it is finite or enumerable;
- ▶ The set *X* is uncountable if it is not countable.

Theorem

- The set X is countable iff there is a one-to-one mapping $f: X \to \mathbb{N}$;
- ▶ The set *X* is countably infinite iff it is enumerable;

Listings of Countable Sets

Theorem

► The set *A* is countable and nonempty iff there is some listing with possible repetitions of *A*.

More about Countable Sets

Proposition

If A is enumerable and $B \subseteq A$ then B is countable.

There are lots of Countable Sets

Theorem

- 1. A and B countable implies $A \cup B$, $A \cap B$ and $A \times B$ are countable.
- 2. if each of A_0, \ldots, A_n, \ldots is countable then the union, i.e. $\bigcup \{A_n \mid n \in \mathbb{N}\}$, is countable.
- 3. if *A* is countable and non-empty then the set of all finite sequences of members of *A* is countable.

How do we find an uncountable set?

The Power Set Operation

Definition

The power set of the set A is:

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

Theorem (Cantor's Theorem)

 $\mathcal{P}(\mathbb{N})$ is uncountable.

Proof.

By a Diagonal Argument!

Corollary

 \mathbb{R} is uncountable.

Is $\mathcal{P}(\mathbb{N})$ the biggest set?

Domination of Sets

Definition

- ▶ $A \leq B$ if there is a one-to-one function $f: A \rightarrow B$;
- ▶ $A \prec B$ if $A \leq B$ but not $B \leq A$;
- ▶ $A \equiv B$ if $A \leq B$ and $B \leq A$.

Remark

- $ightharpoonup A \leq B$ is our way of saying A is no bigger than B;
- ▶ $A \prec B$ is our way of saying A is smaller than B;
- $ightharpoonup A \equiv B$ is one way of saying A and B have the same size.

Cantor-Schröder-Bernstein Theorem

Two different ways to say A and B have the same size:

- 1. $A \equiv B$, and
- 2. There is a one-to-one correspondence between A and B.

Are they equivalent?

Theorem (Cantor-Schröder-Bernstein)

 $A \equiv B$ iff there is a one-to-one correspondence between A and B.

Cantor's Theorem

Theorem (Cantor)

For every set A, $A \prec \mathcal{P}(A)$.

Proof.

Show that any $f: A \to \mathcal{P}(A)$ cannot be surjective.

Corollary

- 1. For every A there is a B s.t. $A \prec B$;
- 2. $\mathcal{P}(\mathbb{N})$ is uncountable.

Sets of Functions

Definition

 ^{A}B is the set of all functions that map A into B.

Example

 $^{A}\{0,1\}$ is the set of all functions that map A into $\{0,1\}$. Suppose $f \in ^{A}\{0,1\}$. Let $X=\{x\in A\mid f(x)=1\}$. Then f is the characteristic function of X, i.e. $f=C_{X}$. Thus $^{A}\{0,1\}$ is the set of all characteristic functions of subsets of A.

Characteristic Functions and Power Set

Exercise

Find a one-to-one correspondence between $^{A}\{0,1\}$ and $\mathcal{P}(A)$.

A special case:

Theorem

There is a one-to-one correspondence between $\mathbb{N}\{0,1\}$ and $\mathcal{P}(\mathbb{N})$.

In particular,

Theorem

 $\mathbb{N}\{0,1\}$ is uncountable.

More Uncountable Sets

Theorem

 $^{\mathbb{N}}\mathbb{N}$ is uncountable.

The Continuum Hypothesis

Question

Is there a set A s.t. $\mathbb{N} \prec A \prec \mathcal{P}(\mathbb{N})$?

If there is such a set A it would be "bigger" than $\mathbb N$ but "smaller" than $\mathcal P(\mathbb N)$.