$$I = qA\left(\frac{D_{p}p_{n0}}{L_{p}} + \frac{D_{n}n_{p0}}{L_{n}}\right)\left(e^{V_{a}/V_{T}} - 1\right)$$

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \end{split}$$

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

$$\begin{split} I &= qA \left(\frac{D_\rho p_{n0}}{L_\rho} + \frac{D_n n_{\rho0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_\rho n_i^2}{N_d \sqrt{D_\rho \tau_\rho}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_\rho}{\tau_\rho}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

Different materials (T = 300 K):

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

Different materials ($T = 300 \,\mathrm{K}$):

Semiconductor	N_c (cm ⁻³)	N_{ν} (cm ⁻³)	E_g (eV)	n_i (cm ⁻³)
Ge	1.04×10^{19}	$6.0 imes 10^{18}$	0.664	2.33×10^{13}
Si	$2.8 imes 10^{19}$	$1.04 imes 10^{19}$	1.12	1.02×10^{10}
GaAs	$4.7 imes 10^{17}$	$7.0 imes 10^{18}$	1.424	$2.1 imes 10^6$

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

Different materials ($T = 300 \,\mathrm{K}$):

Semiconductor	N_c (cm ⁻³)	N_{ν} (cm ⁻³)	E_g (eV)	n_i (cm ⁻³)
Ge	1.04×10^{19}	$6.0 imes 10^{18}$	0.664	2.33×10^{13}
Si	$2.8 imes 10^{19}$	$1.04 imes 10^{19}$	1.12	$1.02 imes 10^{10}$
GaAs	4.7×10^{17}	$7.0 imes 10^{18}$	1.424	$2.1 imes 10^6$

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

Different materials (T = 300 K):

Semiconductor	N_c (cm ⁻³)	N_{v} (cm ⁻³)	E_g (eV)	n_i (cm ⁻³)
Ge	1.04×10^{19}	$6.0 imes 10^{18}$	0.664	2.33×10^{13}
Si	$2.8 imes 10^{19}$	$1.04 imes 10^{19}$	1.12	$1.02 imes 10^{10}$
GaAs	$4.7 imes 10^{17}$	$7.0 imes 10^{18}$	1.424	$2.1 imes 10^6$

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

Different materials ($T = 300 \,\mathrm{K}$):

Semiconductor	N_c (cm ⁻³)	N_{v} (cm ⁻³)	E_g (eV)	n_i (cm ⁻³)
Ge	1.04×10^{19}	$6.0 imes 10^{18}$	0.664	2.33×10^{13}
Si	$2.8 imes 10^{19}$	$1.04 imes 10^{19}$	1.12	$1.02 imes 10^{10}$
GaAs	$4.7 imes 10^{17}$	$7.0 imes 10^{18}$	1.424	$2.1 imes 10^6$

$$\begin{split} I &= qA \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{D_p n_i^2}{N_d \sqrt{D_p \tau_p}} + \frac{D_n n_i^2}{N_a \sqrt{D_n \tau_n}} \right) \left(e^{V_a/V_T} - 1 \right) \\ &= qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right) \left(e^{V_a/V_T} - 1 \right). \end{split}$$

Different materials ($T = 300 \,\mathrm{K}$):

Semiconductor	N_c (cm ⁻³)	N_{ν} (cm ⁻³)	E_g (eV)	n_i (cm ⁻³)
Ge	1.04×10^{19}	$6.0 imes 10^{18}$	0.664	2.33×10^{13}
Si	$2.8 imes 10^{19}$	$1.04 imes 10^{19}$	1.12	$1.02 imes 10^{10}$
GaAs	$4.7 imes 10^{17}$	$7.0 imes 10^{18}$	1.424	$2.1 imes 10^6$

 $I = I_s \left(e^{V_a/V_T} - 1 \right)$, where

–
$$1)$$
, where

The temperature dependence of I_s comes

mainly from $n_i(T)$.

$$p^2 \sqrt{D}$$
 p^2

 $I_s = qA\left(rac{n_i^2}{N_d}\sqrt{rac{D_p}{ au_p}} + rac{n_i^2}{N_a}\sqrt{rac{D_n}{ au_n}}
ight).$

$$\sqrt{D_{-}}$$
 n_{-}^2

 $I = I_s (e^{V_a/V_T} - 1)$, where

$$\frac{1}{n^2}$$

The temperature dependence of I_s comes

 $n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$

where $N_c \propto T^{3/2}$, $N_V \propto T^{3/2}$.

mainly from $n_i(T)$.

$$I_{s} = qA \left(\frac{n_{i}^{2}}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p}}} + \frac{n_{i}^{2}}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n}}} \right).$$

 $I = I_s (e^{V_a/V_T} - 1)$, where

$$p^2$$
 \sqrt{D}

 $I_s = qA\left(rac{n_i^2}{N_d}\sqrt{rac{D_p}{ au_D}} + rac{n_i^2}{N_a}\sqrt{rac{D_n}{ au_n}}
ight).$

The temperature dependence of I_s comes

 $n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$

with $E_g(0) = 1.17 \text{ eV}$, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

where $N_c \propto T^{3/2}$, $N_V \propto T^{3/2}$.

mainly from $n_i(T)$.

 $E_g(T)$ for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T \perp \beta}$ (eV),

Temperature dependence
$$I = I_s (e^{V_a/V_T} - 1), \text{ where}$$

$$I_s = qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right).$$

 $I_s = qA\left(\frac{n_i^2}{N_d}\sqrt{\frac{D_p}{\tau_D}} + \frac{n_i^2}{N_a}\sqrt{\frac{D_n}{\tau_D}}\right).$ 1.08 150 200 250 300 350 400 T(K)

 $E_g(T)$ for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T \perp \beta}$ (eV),

 $I = I_s (e^{V_a/V_T} - 1)$, where

$$E_{\mathcal{B}}(T)$$
 for silicon is given by $E_{\mathcal{B}}(T) = E_{\mathcal{B}}(0) - \frac{\Delta T}{T+\beta}$ (eV), with $E_{\mathcal{B}}(0) = 1.17$ eV, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

 $I = I_s (e^{V_a/V_T} - 1)$, where

$$\frac{n_i^2}{N_i} \sqrt{\frac{D_n}{D_n}}$$

with $E_g(0) = 1.17 \text{ eV}$, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

 $I_s = qA\left(\frac{n_i^2}{N_d}\sqrt{\frac{D_p}{\tau_D}} + \frac{n_i^2}{N_a}\sqrt{\frac{D_n}{\tau_D}}\right).$ The temperature dependence of I_s comes 1.08 mainly from $n_i(T)$. 150 200 250

300 350 400 T(K)

$$s(T) = \sqrt{N_c(T)N_V(T)} \epsilon$$

$$n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$$

where $N_c \propto T^{3/2}$, $N_v \propto T^{3/2}$.

$$E_g(T)$$
 for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$ (eV),

As
$$T$$
 increases, $E_g/2kT$ decreases, and n_i increases substantially because of the exponential function $\rightarrow I$ increases.

1.16

the exponential function $\rightarrow I$ increases.

Temperature dependence 10^{14} 1.16 $I = I_s (e^{V_a/V_T} - 1)$, where 10^{10} $n_i (cm^{-3})$ $I_s = qA\left(\frac{n_i^2}{N_A}\sqrt{\frac{D_p}{T_p}} + \frac{n_i^2}{N_a}\sqrt{\frac{D_n}{T_p}}\right).$ 10^{6} The temperature dependence of I_s comes 1.08 mainly from $n_i(T)$. 250 300 350 400 200 250 300 150 200 150 350 400

T(K)

T(K)

where
$$N_c \propto T^{3/2}$$
, $N_v \propto T^{3/2}$.

 $n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$

$$E_g(T)$$
 for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$ (eV),

with
$$E_{\sigma}(0) = 1.17 \,\text{eV}$$
, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

As T increases, $E_{\alpha}/2kT$ decreases, and n_i increases substantially because of the exponential function $\rightarrow I$ increases.

 $I = I_s (e^{V_a/V_T} - 1)$, where

$$I_s = qA\left(\frac{n_i^2}{N_d}\sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a}\sqrt{\frac{D_n}{\tau_n}}\right).$$

The temperature dependence of I_s comes mainly from $n_i(T)$.

$$n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$$

where $N_c \propto T^{3/2}$. $N_v \propto T^{3/2}$.

$$E_g(T)$$
 for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$ (eV),

with $E_g(0) = 1.17 \text{ eV}$, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

As T increases, $E_g/2kT$ decreases, and n_i increases substantially because of the exponential function $\rightarrow I$ increases.

 $I = I_s (e^{V_a/V_T} - 1)$, where

$$I_s = qA \left(\frac{n_i^2}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a} \sqrt{\frac{D_n}{\tau_n}} \right).$$

The temperature dependence of I_s comes mainly from $n_i(T)$.

$$n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$$

where $N_c \propto T^{3/2}$. $N_v \propto T^{3/2}$.

$$E_g(T)$$
 for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$ (eV),

with $E_g(0) = 1.17 \text{ eV}$, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

As T increases, $E_g/2kT$ decreases, and n_i increases substantially because of the exponential function $\to I$ increases.

$$I = I_s (e^{V_a/V_T} - 1)$$
, where

$$I_s = qA\left(\frac{n_i^2}{N_d}\sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a}\sqrt{\frac{D_n}{\tau_n}}\right).$$

The temperature dependence of I_s comes mainly from $n_i(T)$.

$$n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$$

where $N_c \propto T^{3/2}$. $N_V \propto T^{3/2}$.

$$E_g(T)$$
 for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$ (eV),

with $E_g(0) = 1.17 \text{ eV}$, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

As T increases, $E_g/2kT$ decreases, and n_i increases substantially because of the exponential function $\to I$ increases.

$$I = I_s (e^{V_a/V_T} - 1)$$
, where

$$I_s = qA\left(\frac{n_i^2}{N_d}\sqrt{\frac{D_p}{\tau_p}} + \frac{n_i^2}{N_a}\sqrt{\frac{D_n}{\tau_n}}\right).$$

The temperature dependence of I_s comes mainly from $n_i(T)$.

$$n_i(T) = \sqrt{N_c(T)N_v(T)} \exp\left(-\frac{E_g(T)}{2kT}\right),$$

where $N_c \propto T^{3/2}$, $N_V \propto T^{3/2}$.

$$E_g(T)$$
 for silicon is given by $E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$ (eV),

with $E_g(0) = 1.17 \text{ eV}$, $\alpha = 4.73 \times 10^{-4}$, $\beta = 636$.

As T increases, $E_g/2kT$ decreases, and n_i increases substantially because of the exponential function $\to I$ increases.

For silicon, the $\emph{I-V}$ curve shifts by about $-2\,\mathrm{mV/^\circ C}$ as the temperature is increased.

* A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at some point as V_R is increased.

- * A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at some point as V_B is increased.
- * Reverse breakdown can be due to
 - impact ionisation (avalanche breakdown)
 - tunneling (Zener breakdown)

pn junction diode: AC and transient conditions

* We have looked at the DC behaviour of a pn junction diode so far. We now want to consider V_a (the applied voltage) varying with time.

pn junction diode: AC and transient conditions

- * We have looked at the DC behaviour of a pn junction diode so far. We now want to consider V_a (the applied voltage) varying with time.
- * Two situations are of interest:
 - * Small-signal behaviour (AC): With $V_a(t) = V_{DC} + V_m \sin \omega t$, how does the current vary with time when V_m is "small?"
 - * Large-signal behaviour: The variation in the applied voltage is not small. In particular, we are interested in the turn-off and turn-on transients.

* Let $v(t) = V_{DC} + V_m \sin \omega t$.

* Let $v(t) = V_{DC} + V_m \sin \omega t$.

- * Let $v(t) = V_{DC} + V_m \sin \omega t$.
- * If V_m is "small," the current is also sinusoidal, i.e., $i(t) = I_{DC} + I_m \sin(\omega t + \phi)$.

- * Let $v(t) = V_{DC} + V_m \sin \omega t$.
- * If V_m is "small," the current is also sinusoidal, i.e., $i(t) = I_{DC} + I_m \sin(\omega t + \phi)$.

 I_{DC}

- * Let $v(t) = V_{DC} + V_m \sin \omega t$.
- * If V_m is "small," the current is also sinusoidal, i.e., $i(t) = I_{DC} + I_m \sin(\omega t + \phi)$.
- * In small-signal analysis, we are interested in the relationship between the sinusoidal parts of the current and voltage, in particular, the ratio of the current and voltage phasors, $I_m \angle \phi / V_m \angle 0$.

* A pn junction diode conducts negligibly small current with a DC reverse bias.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- * With a time-varying applied reverse bias, it can conduct an appreciable current.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- * With a time-varying applied reverse bias, it can conduct an appreciable current.
- * Consider a pn junction with $V_a = -V_R$, i.e., a reverse bias of V_R . If V_R is increased to $V_R + \Delta V_R$, the depletion width must change from W to $W + \Delta W$.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- With a time-varying applied reverse bias, it can conduct an appreciable current.
- * Consider a pn junction with $V_{\partial} = -V_R$, i.e., a reverse bias of V_R . If V_R is increased to $V_R + \Delta V_R$, the depletion width must change from W to $W + \Delta W$.

- * A pn junction diode conducts negligibly small current with a DC reverse bias.
- With a time-varying applied reverse bias, it can conduct an appreciable current.
- * Consider a pn junction with $V_{a}=-V_{R}$, i.e., a reverse bias of V_{R} . If V_{R} is increased to $V_{R}+\Delta V_{R}$, the depletion width must change from W to $W+\Delta W$.
- * This change is made possible by removal of majority carriers.

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

* The situation is similar to a parallel-plate capacitor.

- * Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{}$ for electrons.
 - For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V^{-s}}$, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.
- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{X_n}^{X_n} \rho dx = \text{Area} \times q N_d W_n$.

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{\epsilon}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{x_i}^{x_n} \rho dx = \text{Area} \times q N_d W_n$.
- * $V_R \rightarrow V_R + \Delta V_R \Rightarrow Q \rightarrow Q + \Delta Q$.

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V^{-s}}$, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \operatorname{Area} \times \int_{X_n}^{X_n} \rho dx = \operatorname{Area} \times q N_d W_n$.
- * $V_P \rightarrow V_P + \Delta V_P \Rightarrow Q \rightarrow Q + \Delta Q$.

M. B. Patil, IIT Bombay

* Movement of majority carriers is relatively fast, and the time scale involved is $\sim \tau = \frac{\epsilon_s}{q\mu_n n}$ for electrons.

For $n=10^{16}\,\mathrm{cm^{-3}}$, $\mu_n=1000\,\mathrm{cm^2/V}$ -s, $\epsilon_s=11.7\epsilon_0$, $\tau=0.6\,\mathrm{ps}$, which is negligibly small for all practical purposes.

- * The situation is similar to a parallel-plate capacitor.
- * $V_a = V_R$: $Q = \text{Area} \times \int_{X_n}^{X_n} \rho dx = \text{Area} \times q N_d W_n$.
- * $V_R \rightarrow V_R + \Delta V_R \Rightarrow Q \rightarrow Q + \Delta Q$.

Note: For simplicity, we have not shown $V_{\rm bi}$ in the figure; the drop across the junction is actually $V_{\rm bi}+V_{\rm R}$, as seen before.

* In semiconductor devices, "capacitance" generally refers to the differential capacitance $C_d = \frac{dQ}{dV}$ (the subscript d is usually dropped).

M. B. Patil, IIT Bombay

- * In semiconductor devices, "capacitance" generally refers to the differential capacitance $C_d=\frac{dQ}{dV}$ (the subscript d is usually dropped).
- * For a reverse-biased pn junction, $C = \frac{\Delta Q}{\Delta V_P}$.

M. B. Patil, IIT Bombay

$$V_{\rm bi} + V_R = -\int_{x_p}^{x_n} \mathcal{E}(x) dx$$

$$\begin{aligned} V_{\mathsf{b}\mathsf{i}} + V_R &= -\int_{\mathsf{x}_p}^{\mathsf{x}_n} \mathcal{E}(\mathsf{x}) d\mathsf{x} \\ V_{\mathsf{b}\mathsf{i}} + V_R + \Delta V_R &= -\int_{\mathsf{x}_p'}^{\mathsf{x}_n'} \mathcal{E}'(\mathsf{x}) d\mathsf{x} \end{aligned}$$

$$\begin{aligned} V_{\text{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \\ V_{\text{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \\ &\to \Delta V_R = -\int_{x_-'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_-'}^{x_n'} \Delta \mathcal{E}(x) dx \end{aligned}$$

$$\begin{split} V_{\text{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \\ V_{\text{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \\ &\to \Delta V_R = -\int_{x_p'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_p'}^{x_n'} \Delta \mathcal{E}(x) dx \\ &= \Delta \mathcal{E}_0 W \text{ as } \Delta V_R \to 0 \text{ V}. \end{split}$$

$$egin{aligned} V_{ ext{bi}} + V_R &= -\int_{x_p}^{x_n} \mathcal{E}(x) dx \ V_{ ext{bi}} + V_R + \Delta V_R &= -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx \ & o \Delta V_R &= -\int_{x_p'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_p'}^{x_n'} \Delta \mathcal{E}(x) dx \ &= \Delta \mathcal{E}_0 W ext{ as } \Delta V_R o 0 \text{ V}. \end{aligned}$$

 ΔQ , the total charge in the Gaussian box between AA'D'D and BB'C'C, is given by

$$\Delta Q = \epsilon_s \oint \mathbf{E} \cdot d\mathbf{S} = A \epsilon_s \Delta \mathcal{E}_0.$$

 $=\Delta \mathcal{E}_0 W$ as $\Delta V_R \rightarrow 0 V$.

$$V_{bi} + V_R = -\int_{x_p}^{x_n} \mathcal{E}(x) dx$$

$$V_{bi} + V_R + \Delta V_R = -\int_{x_p'}^{x_n'} \mathcal{E}'(x) dx$$

$$\to \Delta V_R = -\int_{x_p'}^{x_n'} (\mathcal{E}'(x) - \mathcal{E}(x)) dx = -\int_{x_p'}^{x_n'} \Delta \mathcal{E}(x) dx$$

 ΔQ , the total charge in the Gaussian box between AA'D'D and BB'C'C, is given by

$$\Delta Q = \epsilon_s \oint \mathbf{E} \cdot d\mathbf{S} = A \, \epsilon_s \Delta \mathcal{E}_0.$$

$$\rightarrow C_J = \left. \frac{\Delta Q}{\Delta V_R} \right|_{\Delta V_R \rightarrow 0} = \frac{A \epsilon_s}{W}.$$

 C_J is called the "junction capacitance" or "depletion layer capacitance."

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \, \log \left(rac{N_a N_d}{n_i^2}
ight) = 0.77 \, \mathrm{V} \, .$$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_{eta} N_d}{n_i^2}
ight) = 0.77 \,
m V \, .$$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_{eta} N_d}{n_i^2}
ight) = 0.77 \,
m V \, .$$

Capacitance
$$C_J = \frac{A \, \epsilon_s}{W} \ = \frac{0.01 \, \mathrm{cm}^2 \times 11.7 \times 8.85 \times 10^{-14} \, \mathrm{F/cm}}{0.464 \times 10^{-4} \, \mathrm{cm}}$$

For an abrupt, uniformly doped silicon pn junction, with $N_a=10^{17}\,\mathrm{cm}^{-3}$ and $N_d=2\times10^{16}\,\mathrm{cm}^{-3}$, and area $=0.01\,\mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R=2\,\mathrm{V}$ ($T=300\,\mathrm{K}$).

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_a N_d}{n_i^2}
ight) = 0.77 \, \mathrm{V} \, .$$

Capacitance
$$C_J = \frac{A \, \epsilon_s}{W} = \frac{0.01 \, \mathrm{cm}^2 \times 11.7 \times 8.85 \times 10^{-14} \, \mathrm{F/cm}}{0.464 \times 10^{-4} \, \mathrm{cm}}$$

$$= 2.23 \times 10^{-10} \, \, \mathrm{F}$$

For an abrupt, uniformly doped silicon pn junction, with $N_a = 10^{17} \, \mathrm{cm}^{-3}$ and $N_d = 2 \times 10^{16} \, \mathrm{cm}^{-3}$, and area $= 0.01 \, \mathrm{cm}^2$, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of $V_R = 2 \, \mathrm{V} \, (T = 300 \, \mathrm{K})$.

Solution: The built-in voltage is

$$V_{\rm bi} = rac{kT}{q} \log \left(rac{N_a N_d}{n_i^2}
ight) = 0.77 \, \mathrm{V} \, .$$

Capacitance
$$C_J = \frac{A \, \epsilon_s}{W} = \frac{0.01 \, \mathrm{cm}^2 \times 11.7 \times 8.85 \times 10^{-14} \, \mathrm{F/cm}}{0.464 \times 10^{-4} \, \mathrm{cm}}$$

$$= 2.23 \times 10^{-10} \, \mathrm{F}$$

$$= 0.223 \, \mathrm{nF}.$$

$$C_J = rac{A\epsilon_s}{W} = A\epsilon_s \sqrt{rac{qN_a}{2\epsilon_s(V_{
m bi}-V_a)}}.$$

$$C_J = rac{A\epsilon_s}{W} = A\epsilon_s \sqrt{rac{qN_a}{2\epsilon_s(V_{\mathrm{bi}} - V_a)}}.$$

$$\frac{1}{C_I^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s(V_{\text{bi}} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{\text{bi}} - V_a).$$

$$\begin{aligned} C_J &= \frac{A\epsilon_s}{W} = A\epsilon_s \sqrt{\frac{qN_a}{2\epsilon_s(V_{bi} - V_a)}}.\\ \frac{1}{C_J^2} &= \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s(V_{bi} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{bi} - V_a). \end{aligned}$$

$$C_J = \frac{A\epsilon_s}{W} = A\epsilon_s \sqrt{\frac{qN_a}{2\epsilon_s(V_{bi} - V_a)}}.$$

$$\frac{1}{C_J^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s(V_{bi} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{bi} - V_a).$$

Solution: The junction capacitance is given by

$$C_J = rac{A\epsilon_s}{W} = A\epsilon_s \sqrt{rac{qN_a}{2\epsilon_s(V_{
m bi}-V_a)}}.$$

$$\frac{1}{C_I^2} = \frac{1}{(A\epsilon_s)^2} \frac{2\epsilon_s (V_{\rm bi} - V_a)}{qN_a} = \frac{2}{qN_a\epsilon_s A^2} (V_{\rm bi} - V_a).$$

 $ightarrow 1/C_J^2$ versus V_a : Slope gives N_a ; x-intercept gives $V_{
m bi}$.

 $\mbox{Small signal} \rightarrow \mbox{With a sinusoidal input, the output (voltage or current) should} \\ \mbox{also be sinusoidal, i.e., it should not be distorted.}$

Small signal \rightarrow With a sinusoidal input, the output (voltage or current) should also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased
$$pn$$
 junction, $C_J = \frac{dQ}{dV_a} = \frac{A\epsilon_s}{W(V_a)} = \frac{K}{\sqrt{V_{bi} - V_a}}$, with $K = A\epsilon_s \sqrt{\frac{qN_aN_d}{2\epsilon_s(N_a + N_d)}}$.

Small signal \to With a sinusoidal input, the output (voltage or current) should also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased
$$pn$$
 junction, $C_J = \frac{dQ}{dV_a} = \frac{A\epsilon_s}{W(V_a)} = \frac{K}{\sqrt{V_{bi} - V_a}}$, with $K = A\epsilon_s \sqrt{\frac{qN_aN_d}{2\epsilon_s(N_a + N_d)}}$.

With
$$V_a(t) = -(V_R + V_m \sin \omega t)$$
, $i(t) = \frac{dQ}{dt} = \frac{dQ}{dV_a} \frac{dV_a}{dt} = C_J(V_a) \times (-\omega V_m \cos \omega t)$.

Small signal \rightarrow With a sinusoidal input, the output (voltage or current) should also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased
$$pn$$
 junction, $C_J = \frac{dQ}{dV_a} = \frac{A\epsilon_s}{W(V_a)} = \frac{K}{\sqrt{V_{bi} - V_a}}$, with $K = A\epsilon_s \sqrt{\frac{qN_aN_d}{2\epsilon_s(N_a + N_d)}}$.

With
$$V_a(t) = -(V_R + V_m \sin \omega t)$$
, $i(t) = \frac{dQ}{dt} = \frac{dQ}{dV_a} \frac{dV_a}{dt} = C_J(V_a) \times (-\omega V_m \cos \omega t)$.

 $\rightarrow i(t)$ is sinusoidal if C_J can be treated as a constant.

$$egin{aligned} & v_{a}(t) = -(V_R + V_m \sin \omega t)
ightarrow -(V_R + V_m) < v_a < -(V_R - V_m). \ & C_J^{\min} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R + V_m}}. \end{aligned}$$

$$v_a(t) = -(V_R + V_m \sin \omega t) \rightarrow -(V_R + V_m) < v_a < -(V_R - V_m).$$

$$C_J^{\min} = rac{\mathcal{K}}{\sqrt{V_{\mathrm{bi}} + V_R + V_m}}, \quad C_J^{\max} = rac{\mathcal{K}}{\sqrt{V_{\mathrm{bi}} + V_R - V_m}}.$$

Consider one of these two extreme values.

$$C_J^{\text{max}} = \frac{\mathcal{K}}{\sqrt{V_{\text{bi}} + V_R - V_m}} = \frac{\mathcal{K}}{\sqrt{V_{\text{bi}} + V_R}} \times \frac{1}{\sqrt{1 - \frac{V_m}{V_{\text{bi}} + V_R}}} \approx \frac{\mathcal{K}}{\sqrt{V_{\text{bi}} + V_R}} \left(1 + \frac{1}{2} \frac{V_m}{V_{\text{bi}} + V_R}\right).$$

$$v_a(t) = -(V_R + V_m \sin \omega t) \to -(V_R + V_m) < v_a < -(V_R - V_m).$$

$$C_J^{\min} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R + V_m}}, \quad C_J^{\max} = rac{K}{\sqrt{V_{\mathrm{bi}} + V_R - V_m}}.$$

Consider one of these two extreme values,

$$C_J^{\text{max}} = \frac{K}{\sqrt{V_{\text{bi}} + V_R - V_m}} = \frac{K}{\sqrt{V_{\text{bi}} + V_R}} \times \frac{1}{\sqrt{1 - \frac{V_m}{V_{\text{bi}} + V_R}}} \approx \frac{K}{\sqrt{V_{\text{bi}} + V_R}} \left(1 + \frac{1}{2} \frac{V_m}{V_{\text{bi}} + V_R}\right).$$

If $\frac{V_m}{2(V_{i,j} + V_D)} \ll 1$, C_J can be treated as a constant.

* Small-signal condition: $\frac{V_m}{2\left(V_{\mathrm{bi}}+V_R\right)}\ll 1.$

* Small-signal condition: $\frac{V_m}{2\left(V_{\rm bi}+V_R\right)}\ll 1.$

* Small-signal condition: $\frac{V_m}{2\left(V_{\mathrm{bi}}+V_R\right)}\ll 1.$

* Small-signal condition:
$$\frac{V_m}{2\left(V_{\rm bi}+V_R\right)}\ll 1.$$

* If the small-signal condition is not satisfied, i(t) shows distortion.

* The voltage-dependent capacitance provided by a reverse-biased *pn* junction is useful in practice.

- * The voltage-dependent capacitance provided by a reverse-biased *pn* junction is useful in practice.
- * Specially designed diodes called "varactors" (variable reactors) are used in applications such as voltage-variable tuning, mixing, detection, etc.

- * The voltage-dependent capacitance provided by a reverse-biased *pn* junction is useful in practice.
- * Specially designed diodes called "varactors" (variable reactors) are used in applications such as voltage-variable tuning, mixing, detection, etc.
- * In these devices, the doping density profiles are designed so as to get a large capacitance change for a small change in reverse bias.