IP 1: knapsack

a) Our IP consists of the following:

Decision variables are: x_{shampoo} , $x_{\text{conditioner}}$, x_{shampoo} , $x_{\text{toothpaste}}$, x_{perfume} , x_{nyquil} , $x_{\text{lip balm}}$, where $x \in \{0, 1\}$.

The constraint is:

$$\sum_{i} x_i v_i \le 1 \tag{1}$$

where v_i is the volume for item i.

The objective function is

$$\max \sum_{i} x_i u_i \tag{2}$$

where u_i is the utility for item i.

b) If we do not want to take more than 3 items, the following constraint needs to be added to 1

$$\sum_{i} x_i \le 3$$

c) If we take conditioner, we also want to take shampoo. Therefore, we need to add an auxiliary variable to model this relationship. We define an auxiliary variable $C \in \{0, 1\}$ and M which is arbitrarily large, take in this case 100. The additional constraints are:

$$x_{\text{conditioner}} + x_{\text{shampoo}} \ge 2 - M(1 - C)$$

 $x_{\text{conditioner}} \le 0 + MC$

d) If we take perfume, we cannot take lip balm. To model this constraint, we add an additional auxiliary variable $P \in \{0,1\}$. The additional constraints are:

$$x_{\text{perfume}} + x_{\text{lip balm}} \le 1 + M(1 - P)$$

 $x_{\text{perfume}} \le 0 + MP$

e) If shampoo, nyquil or lip balm are brought, then at least two of those must be taken. Again, we add an auxiliary variable $S \in \{0, 1\}$. The additional constraints are:

$$x_{\text{perfume}} + x_{\text{lip balm}} + x_{\text{nyquil}} \ge 2 - M(1 - S)$$

 $x_{\text{perfume}} + x_{\text{lip balm}} + x_{\text{nyquil}} \le 0 + MS$

IP 2: Facility location

a) Our IP consists of the following:

The decision variables are:

- location variables $x_{\text{NY}}, x_{\text{LA}}, x_{\text{Chicago}}, x_{\text{Atlanta}}, \text{ where } x \in \{0, 1\}$
- variables for shipping amounts $s_{l,r}$ for $l \in \{NY, LA, Chicago, Atlanta\}$ and $r \in \{r1, r2, r3\}$.

For simplicity, we will call the set of locations loc and the set of regions reg from now on.

The constraints are:

$$\sum_{l \in loc} x_l s_{l,r1} \ge 80$$

$$\sum_{l \in loc} x_l s_{l,r2} \ge 70$$

$$\sum_{l \in loc} x_l s_{l,r3} \ge 40$$
(3)

The objective is to minimize cost:

$$\min \sum_{l \in loc} \left(x_l c_l + \sum_{r \in reg} s_{l,r} c_{l,r} \right), \tag{4}$$

where c_l is the cost of having that location and $c_{l,r}$ is the cost of shipping an item from location l to region r.

b) If the New York warehouse is opened, the Los Angeles warehouse must be opened as well. To model this constraint, we need an auxiliary variable $N \in \{0, 1\}$. We add the following constraints to 3

$$x_{\text{NY}} + x_{\text{Atlanta}} \ge 2 - M(1 - N)$$

 $x_{\text{NY}} \le 0 + MN$

c) If at most 2 warehouses can be opened, we need the following constraint

$$\sum_{l \in loc} x_l \le 3$$

d) Either the Atlanta or the Los Angeles warehouses must be opened. We assume that this means both cannot be opened simultaneously. Therefore we add the constraints:

$$x_{\text{Atlanta}} + x_{\text{Los Angeles}} \le 1$$

 $x_{\text{Atlanta}} + x_{\text{Los Angeles}} \ge 1$

aad an auviliam variable

e) A constraint for all shipping to only be 20 or more units. We need an auxiliary variable $T \in \{0,1\}$ and the following constraints $\forall r \in reg \forall l \in l$

$$s_{l,r} \ge 20 - M(1 - T)$$

$$s_{l,r} \le 0 + MT$$

f) If the New York warehouse ships to region 1, no other warehouses can do so. For this, we need an auxiliary variable $Y \in \{0,1\}$. The additional constraints are:

$$x_{N,1} \le 0 + M(1 - Y)$$
$$x_{\text{Atlanta},1} + x_{\text{Chicago},1} + x_{\text{LA},1} \le 0 + MY$$

g) For the Jupyter notebook, see the other submitted document.