Lecture 6

 Data, model and inference for multiple regression

Data for Multiple Regression

- Y_i is the response variable
- X_{i1}, X_{i2}, ... , X_{ip-1} are *p-1* explanatory variables for cases *i* = 1 to *n*

Multiple Regression Model

- $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{p-1} X_{ip-1} + \xi_i$
- Y_i is the value of the response variable for the ith case
- β_0 is the intercept
- β_1 , β_2 , ..., β_{p-1} are the regression coefficients for the explanatory variables

Multiple Regression Model (2)

- X_{ik} is the value of the kth explanatory variable for the ith case
- ξ_i are independent normally distributed random errors with mean 0 and variance σ^2

Many interesting special cases

- $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + ... + \beta_{p-1} X_i^{p-1} + \xi_i$
- Xs can be indicator or dummy variables with 0 and 1 (or any other two distinct numbers) as possible values
- Interactions
- $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \xi_i$

Multiple Regression Parameters

- β_0 the intercept
- β_1 , β_2 , ..., β_{p-1} the regression coefficients for the explanatory variables
- σ^2 the variance of the error term

Model in Matrix Form

$$\mathbf{Y} = \mathbf{X} \quad \beta + \xi$$

$$\mathbf{n} \times \mathbf{1} \quad \mathbf{n} \times \mathbf{p} \times \mathbf{1} \quad \mathbf{n} \times \mathbf{1}$$

$$\xi \sim N(0, \sigma^2 \mathbf{I})$$

$$\mathbf{Y} \sim \mathbf{N}(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\sigma}^2 \mathbf{I})$$

Least Squares

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\xi}$$
$$\min(\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b})$$
$$\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{X}'\mathbf{Y}$$

Least Squares Solution

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Fitted (predicted) values

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$
$$= \mathbf{H}\mathbf{Y}$$

Residuals

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}}$$
$$= \mathbf{Y} - \mathbf{H}\mathbf{Y}$$
$$= (\mathbf{I} - \mathbf{H})\mathbf{Y}$$

I - H is symetric and idempotent i.e. (I - H)(I - H) = (I - H)

Covariance Matrix of residuals

- Cov(e)= σ^2 (I-H)(I-H)'= σ^2 (I-H)
- So,
- $Var(e_i) = \sigma^2(1-h_{ii})$
- h_{ii}= X'_i(X'X)⁻¹X_i
- $X'_{i} = (1, X_{i1}, ..., X_{i(p-1)})$
- · Residuals are usually correlated
- Cov(e_i, e_j)= σh_{ij}

Estimation of σ

$$s^{2} = \frac{\mathbf{e}'\mathbf{e}}{n-p}$$

$$= \frac{(\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b})}{n-p}$$

$$= \frac{SSE}{df\mathbf{e}} = MSE$$

$$s = \sqrt{s^{2}} = Root MSE$$

Distribution of b

- b= (X'X)-1X'Y
- Y~N(Xβ, σ²I)
- $E(b)=((X'X)^{-1}X')X\beta=\beta$
- Cov(b)= σ^2 ((X'X)-1X') ((X'X)-1X')' = σ^2 (X'X)-1

Estimation of variance of h

- b ~ N(β , σ^2 (X'X)-1)
- σ² (X'X)-1
- · Is estimated by
- s2 (X'X)-1

ANOVA Table

- To organize arithmetic
- · Sources of variation are
 - -Model
 - -Error
 - -Total
- · SS and df add
 - -SSM + SSE =SST
 - -dfM + dfE = dfT

SS

$$SSM = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$$

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

df

$$df M = p - 1$$

$$df E = n - p$$

$$df T = n - 1$$

Mean Squares

$$MSM = SSM/dfM$$

$$MSE = SSE/dfE$$

$$MST = SST/dfT$$

Mean Squares (2)

$$MSM = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 / (p-1)$$

MSE =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 / (n-p)$$

MST =
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 / (n-1)$$

ANOVA Table

Source SS df MS F

Model SSM dfM MSM MSM/MSE

Error SSE dfE MSE

Total SST dfT (MST)

ANOVA F test

- H_0 : $\beta_1 = \beta_2 = ... \beta_{p-1} = 0$
- H_a : $\beta_k \neq 0$, for at least one k=1, ..., p-1
- Under H₀, F ~ F(p-1,n-p)
- Reject H₀ if F is large, use P value

Study of CS students

- Study of computer science majors at Purdue
- Large drop out rate
- Can we find predictors of success
- Predictors must be available at time of entry into program

Data available

- · GPA after three semesters
- · High school math grades
- · High school science grades
- High school English grades
- SAT Math
- SAT Verbal
- Gender (of interest for other reasons)

Example

```
cs<-read.table('csdata.dat',
col.names=c("id", "gpa", "hsm",
"hss", "hse", "satm", "satv",
"gen"));
reg1<-lm(gpa~hsm+hss+hse, cs);
Anova(reg1);
summary(reg1);</pre>
```

CS ANOVA Table

Df Sum Mean F Pr(>F)
hsm 1 25.81 25.8 52.7 6.6e-12
hss 1 1.24 1.23 2.5 0.1134
hse 1 0.67 0.67 1.4 0.2451
Res 220 107.7 0.49

F-stat: 18.86 on 3 and 220 DF

p-value: 6.359e-11

Hypothesis Tested by F

• H_0 : $\beta_1 = \beta_2 = \dots \beta_{p-1} = 0$

•F = MSM/MSE

•Reject H_0 if the P value is $\leq .05$

•What do we conclude?

R^2

- The squared multiple regression correlation (R²) gives the proportion of variation in the response variable explained by the explanatory variables included in the model
- It is usually expressed as a percent
- It is sometimes called the coefficient of multiple determination

$R^2(2)$

- R² = SSM/SST, the proportion of variation explained
- R² = 1 (SSE/SST), 1 the proportion of variation not explained
- $F = [(R^2)/(p-1)]/[(1-R^2)/(n-p)]$

- The P-value for the F significance test tells us one of the following:
 - -there is no evidence to conclude that any of our explanatory variables can help us to model the response variable using this kind of model (P≥ .05)
 - -one or more of the explanatory variables in our model *is* potentially useful for predicting the response variable in a linear model ($P \le .05$)

Stat 512 Class 14

- Review multiple linear regression
 - data
 - Model

Inference for multiple regression (continued)

Diagnostics and remedies

Data for Multiple Regression

- Y_i is the response variable
- X_{i1}, X_{i2}, ... , X_{ip-1} are *p-1* explanatory variables for cases *i* = 1 to *n*
- Y_i , X_{i1} , X_{i2} , ..., X_{ip-1} is the data for case i, where i = 1 to n
- Y | X is the data

Multiple Regression Model

- $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{p-1} X_{ip-1} + \xi_i$
- Y_i is the value of the response variable for the ith case
- β_0 is the intercept
- β_1 , β_2 , ..., β_{p-1} are the regression coefficients for the explanatory variables

Multiple Regression Model (2)

- X_{ik} is the value of the kth explanatory variable for the tth case
- ξ_i are independent normally distributed random errors with mean 0 and variance σ^2

Model in Matrix Form

$$\xi \sim N(0, \sigma^2 \mathbf{I})$$

$$\mathbf{Y} \sim \mathbf{N}(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\sigma}^2 \mathbf{I})$$

Least Squares Solution

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Estimation of σ^2

ANOVA F test

- H_0 : $\beta_1 = \beta_2 = ... \beta_{p-1} = 0$
- H_a : $\beta_k \neq 0$, for at least one k=1, ..., p-1
- Under H₀, F ~ F(p-1,n-p)
- Reject H₀ if F is large, using P value we reject if P leq 0.05

\mathbb{R}^2

 R² = SSM/SST, the proportion of variation explained by the explanatory variables

Inference for individual regression coefficients

- b ~ $N(\beta, \sigma^2(X'X)^{-1})$
- $S_b^2 = s^2 (X'X)^{-1}$
- $s^2(b_i) = S^2_b(i,i)$
- CI: $b_i \pm t^*s(b_i)$, where $t^* = t(.975, n-p)$
- Significance test for H_{0i}: β_i, = 0 uses the test statistic t =b_i/s(b_i), df=dfE=n-p, and the P-value computed from the t(n-p) distribution

Example

- Dwaine Studios operates portrait studios in 21 cities
- · Y is sales
- X₁ is number of persons aged 16 and under
- X₂ is per capita disposable income
- n = 21 cities

R code

```
dwst<-read.table('ch06fi05.txt',
col.names=c("young", "income",
   "sales"));
reg<-lm(sales~young+income,
dwst);
summary(reg)</pre>
```

```
Est Std t p-val
Int -68.86 60.02 -1.15 0.2663
young 1.45 0.21 6.87 2e-06
income 9.37 4.06 2.31 0.0333
```

Residual standard error: 11.01 on 18 degrees of freedom Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075 F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

confint(reg)

2.5 % 97.5 % Int -194.9480130 57.233867 young 1.0096226 1.899497 income 0.8274411 17.903560

Estimation of $E(Y_h)$

- X_h is now a vector
- (1, X_{h1}, X_{h2}, ..., X_{h1})'
- We want an point estimate and a confidence interval for the subpopulation mean corresponding to X_h

Theory for $E(Y_h)$

$$E(Y_{h}) = \mu_{h} = X'_{h} \beta$$

$$\hat{\mu}_{h} = X'_{h} b$$

$$\sigma^{2}(\hat{\mu}_{h}) = X'_{h} \sum_{b} X_{h} = \sigma^{2} X'_{h} (X'X)^{-1} X_{h}$$

$$s^{2}(\hat{\mu}_{h}) = s^{2} X'_{h} (X'X)^{-1} X_{h}$$

$$CI: \hat{\mu}_{h} \pm s (\hat{\mu}_{h}) t_{(0.975,n-p)}$$

Estimation of $E(Y_h)$ (CLM)

predict.lm(reg,
interval='confidence');

E(Y_h) CI Output

	fit	lwr	upr
1	187.1841	179.1146	195.2536
2	154.2294	146.7591	161.6998
3	234.3963	224.7569	244.0358
4	153.3285	146.5361	160.1210
5	161 3849	152 0778	170 6921

Prediction of Y_h

- X_h is now a vector
- (1, X_{h1}, X_{h2}, ..., X_{h1})'
- We want a prediction for Y_h with an interval that expresses the uncertainty in our prediction

Theory for Y_h

$$Y_{h} = X'_{h} \beta + \xi$$

$$\hat{Y}_{h} = \hat{\mu}_{h} = X'_{h} b$$

$$\sigma^{2}(pred) = Var(\hat{Y}_{h} - Y_{h}) = Var \hat{Y}_{h} + \sigma^{2}$$

$$= \sigma^{2}(1 + X'_{h} (X'X)^{-1}X_{h})$$

$$s^{2}(pred) = s^{2}(1 + X'_{h} (X'X)^{-1}X_{h})$$

 $CI: \hat{\mu}_h \pm s \ (pred) \mathbf{t}_{(0.975, \text{n-p})}$

Prediction of Y_h (PI)

predict.lm(reg,
interval='prediction');

Prediction Intervals Output

I		fit	lwr	upr
I	1	187.1841	162.6910	211.6772
I	2	154.2294	129.9271	178.5317
I	3	234.3963	209.3421	259.4506
I	4	153.3285	129.2260	177.4311
I	5	161.3849	136.4566	186.3132

Diagnostics

- Look at the distribution of each variable
- Look at the relationship between pairs of variables
- Plot the residuals versus
 - -Each explanatory variable
 - -Time

Diagnostics (2)

- · Are the residuals approximately normal?
 - Look at a histogram
 - Normal quantile plot
- Is the variance constant?
 - Plot the squared residuals vs anything that might be related to the variance (e.g. residuals vs predicted)

Remedial measures

- Transformations such as Box-Cox
- Analyze without outliers

Scatter Plot Matrix

pairs(~gpa+satm+satv,cs)

