GATE PH-2012

AI24BTECH11001 Abhijeet Kumar

14) In a central force field, the trajectory of a particle of mass m and angular momentum L in plane polar coordinates is given by,

$$\frac{1}{r} = \frac{m}{L^2} \left(1 + \epsilon \cos \theta \right)$$

where ϵ is the eccentricity of the particle's motion. Which one of the following choices for ϵ gives rise to a parabolic trajectory?

a)
$$\epsilon > 0$$

b)
$$\epsilon = 0$$

c)
$$0 < \epsilon < 1$$
 d) $\epsilon > 1$

d)
$$\epsilon > 1$$

1

15) Identify the CORRECT energy band diagram for Silicon doped with Arsenic. Here CB, VB, E_D and E_F are conduction band, valence band, impurity level and Fermi level, respectively.

a)

b)

d)

c)

16) The first Stokes line of a rotational Raman spectrum is observed at $12.96cm^{-1}$. Considering the rigid rotor approximation, the rotational constant is given by

- a) $6.48cm^{-1}$
- b) $3.24cm^{-1}$ c) $2.16cm^{-1}$ d) $1.62cm^{-1}$
- 17) The total energy, E of an ideal non-relativistic Fermi gas in three dimensions is given by $E \propto \frac{N^{\frac{3}{3}}}{V^{\frac{3}{3}}}$ where N is the number of particles and V is the volume of the gas. Identify the CORRECT equation of state (P being the pressure),
 - a) $PV = \frac{1}{3}E$
- b) $PV = \frac{2}{3}E$
- c) PV = E
- d) $PV = \frac{5}{2}E$
- 18) Consider the wavefunction $\Psi = \psi(\overrightarrow{r_1}, \overrightarrow{r_2})\chi_S$ for a fermionic system consisting of two spin-half particles. The spatial part of the wavefunction is given by.

$$\psi\left(\overrightarrow{r_1}, \overrightarrow{r_2}\right) = \frac{1}{\sqrt{2}} \left[\phi_1(\overrightarrow{r_1}) \phi_2(\overrightarrow{r_2}) + \phi_2(\overrightarrow{r_1}) \phi_1(\overrightarrow{r_2}) \right]$$

where ϕ_1 and ϕ_2 are single particle states. The spin part χ_s of the wavefunction with spin states $\alpha\left(\frac{+1}{2}\right)$ and $\alpha\left(\frac{-1}{2}\right)$ should be

- a) $\frac{1}{\sqrt{2}}(\alpha\beta + \beta\alpha)$ b) $\frac{1}{\sqrt{2}}(\alpha\beta + \beta\alpha)$ c) $\alpha\alpha$

- d) $\beta\beta$
- 19) The electric and the magnetic fields, $\overrightarrow{E}(z,t)$ and $\overrightarrow{B}(z,t)$ respectively corresponding to the scalar potential $\phi(z,t) = 0$ and vector potential $\overrightarrow{A}(z,t) = \hat{i}tz$ are
 - a) $\overrightarrow{E} = \hat{i}z$ and $\overrightarrow{B} = -jt$ b) $\overrightarrow{E} = \hat{i}z$ and $\overrightarrow{B} = it$

c) $\overrightarrow{E} = -iz$ and $\overrightarrow{B} = -jt$ d) $\overrightarrow{E} = -iz$ and $\overrightarrow{B} = it$

- 20) Consider the following OP-AMP circuit.

Which one of the following correctly represents the output V_{out} corresponding to the input V_{in} ?

- 21) Deuteron has only one bound state with spin parity 1^+ isospin 0 and electric quadrupole moment $0.286efm^2$. These data suggest that the nuclear forces are having
 - a) only spin and isospin dependence
 - b) no spin dependence and no tensor components
 - c) spin dependence but no tensor components
 - d) spin dependence along with tensor components
- 22) A particle of unit mass moves along the x-axis under the influence of a potential, $V(x) = x(x-2)^2$. The particle is found to be in stable equilibrium at the point x = 2. The time period of oscillation of the particle is

a)
$$\frac{\pi}{2}$$

b) π

c) $\frac{3\pi}{2}$

d) 2π

23) Which one of the following CANNOT be explained by considering a harmonic approximation for the lattice vibrations in solids?

- a) Debye's T^3 law
- b) Dulong Petit's law

- c) Optical branches in lattices
- d) Thermal expansion
- 24) A particle is constrained to move in a truncated harmonic potential well (x > 0) as shown in the figure. Which one of the following statements is CORRECT?

- a) The parity of the first excited state is even
- b) The parity of the ground state is even
- c) The ground state energy is $\frac{1}{2}\hbar\omega$
- d) The first excited state energy is $\frac{7}{2}\hbar\omega$
- 25) The number of independent components of the symmetric tensor A_{ij} with indices i, j = 1, 2, 3 is
 - a) 1

- b) 3
- c) 6
- d) 9
- 26) Consider a system in the unperturbed state described by the Hamiltonian $H_0 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. The system is subjected to a perturbation of the form $H' = \begin{pmatrix} \delta & \delta \\ \delta & \delta \end{pmatrix}$, where $\delta << 1$. The energy eigenvalues of the perturbed system using the first order perturbation approximation are
 - a) 1 and $(1+2\delta)$

c) $(1+2\delta)$ and $(1-2\delta)$

b) $(1 + \delta)$ and $(1 - \delta)$

d) $(1 + \delta)$ and $(1 - 2\delta)$