1 01-01 TESTS Biharmonic Tests

1 01-01 tests

Example 1.1. In this tests we consider:

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $\psi_{ll} = 1$
- $\psi_{\rm rr} = e$
- $g(x) = -\exp(x)$

Table 1: Numerical results of PRO1 scheme to the example 1.1.

		$\omega = 1 1,1$		$\omega = 1 3, 1$		$\omega = 1 3,3$		$\omega = 1 3, 10$		$\omega = 1 3, 0.1$		$\omega=1 3,0.01$	
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
$\mathbb{P}_3(4)$	20	2.60E - 04	_	2.07E - 04	_	2.07E - 04	_	2.06E-04	_	2.06E-04	_	2.06E-04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10	$3.82E{-07}$	3.10	3.82E - 07	3.10
$\mathbb{P}_5(6)$	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06	4.45E - 09	5.06
	80	$1.54E{-}10$	5.12	$1.38E{-}10$	5.01	1.37E - 10	5.02	$1.41E{-}10$	4.99	$1.43E{-}10$	4.96	$1.38E{-}10$	5.02
	160	$2.18E{-}11$	2.82	$5.63E{-}11$	1.30	$3.58E{-}11$	1.94	$1.65E{-}11$	3.09	$3.42E{-}11$	2.07	$2.85E{-}11$	2.27
$\mathbb{P}_7(8)$	20	6.75E - 10	_	$5.08E{-}10$	_	5.09E - 10	_	$5.09E{-}10$	_	5.09E - 10	_	5.09E - 10	_
	40	$8.06E{-}12$	6.39	$4.40E{-}12$	6.85	$4.39E{-}12$	6.86	$2.08E{-}12$	7.94	$2.24E{-}12$	7.83	$5.71E{-}12$	6.48
	80	$1.12E{-}12$	2.85	$1.93E{-}11$	↑	$1.83E{-}12$	1.26	$2.72E{-}12$	↑	$4.55E{-}12$	\uparrow	$2.49E{-}11$	\uparrow
	160	$1.37\mathrm{E}{-10}$	\uparrow	$2.07E{-}10$	\uparrow	$1.12E{-}10$	\uparrow	$1.33E{-}10$	\uparrow	$1.78E{-}10$	\uparrow	$2.04E{-}10$	\uparrow