FCC RF Test Report

APPLICANT : Corporativo Lanix S.A . de C.V.

EQUIPMENT : SMART PHONE

BRAND NAME : LANIX

MODEL NAME : Ilium W250 FCC ID : ZC4W250

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Dec. 17, 2014 and testing was completed on Feb. 05, 2015. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 1 of 39

Testing Laboratory 2627

Report No.: FR4D1704C

Report Issued Date: Feb. 09, 2015
Report Version: Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
	2.7	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB Bandwidth Measurement	12
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	19
	3.5	Radiated Band Edges and Spurious Emission Measurement	29
	3.6	AC Conducted Emission Measurement	33
	3.7	Antenna Requirements	37
4	LIST	OF MEASURING EQUIPMENT	38
5	UNC	ERTAINTY OF EVALUATION	39
ΑP	PEND	IX A. RADIATED SPURIOUS EMISSION	
ΑP	PEND	IX B. SETUP PHOTOGRAPHS	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250

Page Number : 2 of 39

Report No. : FR4D1704C

Report Issued Date: Feb. 09, 2015

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4D1704C	Rev. 01	Initial issue of report	Feb. 09, 2015

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 3 of 39
Report Issued Date : Feb. 09, 2015

Report No. : FR4D1704C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges	- ≤ 20dBc	Pass	-
3.4	15.247(u)	Conducted Spurious Emission	<u> </u>	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 9.29 dB at 30.000 MHz
3.6	3.6 15.207 AC Conducted E		15.207(a)	Pass	Under limit 20.57 dB at 0.560 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 4 of 39
Report Issued Date : Feb. 09, 2015

Report No. : FR4D1704C

1 General Description

1.1 Applicant

Corporativo Lanix S.A. de C.V.

Carretera Internacional Hermosillo-Nogales Km 8.5 Hermosillo Sonora Mexico

1.2 Manufacturer

Corporativo Lanix S.A. de C.V.

Carretera Internacional Hermosillo-Nogales Km 8.5 Hermosillo Sonora Mexico

1.3 Product Feature of Equipment Under Test

Product Feature						
Equipment	SMART PHONE					
Brand Name	LANIX					
Model Name	Ilium W250					
FCC ID	ZC4W250					
	GSM/GPRS/WCDMA/HSPA/HSPA+(Downlink Only)/					
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n HT20/					
	Bluetooth v3.0+EDR/Bluetooth v4.0 LE					
HW Version	LELM003D1-3					
SW Version	LELPM01_1068.0025.0010.0015					
EUT Stage	Identical Prototype					

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard						
Tx/Rx Channel Frequency Range	802.11b/g/n : 2412 MHz ~ 2462 MHz					
Maximum (Peak) Output Power to	802.11b : 12.55 dBm (0.0180 W)					
Antenna	802.11g : 16.41 dBm (0.0438 W)					
Antenna	802.11n HT20 : 14.62 dBm (0.0290 W)					
tenna Type	802.11b/g/n : IFA Antenna with gain -6.00 dBi					
Type of Medulation	802.11b: DSSS (DBPSK / DQPSK / CCK)					
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)					

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 5 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INT	SPORTON INTERNATIONAL (KUNSHAN) INC.						
	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China							
Test Site Location	TEL: +86-0512-5790-0158							
	FAX: +86-0512-5790-0958							
Test Site No.		Sporton Site No	FCC Registration No.					
Test Site No.	TH01-KS	CO01-KS	03CH01-KS	149928				

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 6 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2402 F MI I-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 7 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)									
Po	wer vs. Char	nnel		Power vs. Data Rate						
Channel	Channel Frequency Data Rat (MHz) 1Mbps		Channel	2Mbps	5.5Mbps	11Mbps				
CH 01	2412 MHz	11.61								
CH 06	2437 MHz	<mark>12.55</mark>	CH 06	12.36	12.42	12.52				
CH 11	2462 MHz	12.24								

	2.4GHz 802.11g RF Output Power (dBm)										
Po	wer vs. Chan	nel				Power vs.	Data Rate				
Channel	Frequency	Data Rate	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	
	(MHz)	6Mbps		·	·	·					
CH 01	2412 MHz	15.53									
CH 06	2437 MHz	<mark>16.41</mark>	CH 06	15.95	16.37	16.23	16.15	16.21	16.34	16.24	
CH 11	2462 MHz	16.12									

	2.4GHz 802.11n HT20 RF Output Power (dBm)										
Po	wer vs. Chan	inel				Power vs. I	MCS Index				
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 01	2412 MHz	14.27								13.74	
CH 06	2437 MHz	13.82	CH 11	14.52	14.55	14.47	14.58	14.61	14.57	14.58	
CH 11	2462 MHz	14.42								<mark>14.62</mark>	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 8 of 39
Report Issued Date : Feb. 09, 2015

Report No. : FR4D1704C

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
	6dB and 99% BW	802.11b	1 Mbps	1/6/11
	Power Spectral	802.11g	6 Mbps	1/6/11
	Density	802.11n HT20	MCS7	1/6/11
		802.11b	1 Mbps	1/6/11
O and a stad	Output Power	802.11g	6 Mbps	1/6/11
Conducted		802.11n HT20	MCS7	1/6/11
ICS		802.11b	1 Mbps	1/11
	Conducted Band	802.11g	6 Mbps	1/11
	Edge	802.11n HT20	MCS7	1/11
	Conducted Spurious	802.11b	1 Mbps	1/6/11
		802.11g	6 Mbps	1/6/11
	Emission —	802.11n HT20	MCS7	1/6/11
		802.11b	1 Mbps	1/11
	Radiated Band Edge	802.11g	6 Mbps	1/11
Radiated		802.11n HT20	MCS7	1/11
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS7	1/6/11

Remark:

1. For radiated test cases, the tests were performance with adapter, earphone and USB cable.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 9 of 39

Report No.: FR4D1704C

Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 10 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	LINKSYS	WRT600N	Q87-WRT600NV11	N/A	Unshielded, 1.8 m
		otebook Lenovo	G480	5504	N/A	AC I/P:
,	Natabaak					Unshielded, 1.8 m
3.	Notedook			PRC4		DC O/P:
						Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH505	N/A	N/A	N/A

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.5 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 5.5 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 12 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

3.1.5 Test Result of 6dB Bandwidth

Test Band :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	8.52	0.50	Pass
11b	1Mbps	1	6	2437	8.04	0.50	Pass
11b	1Mbps	1	11	2462	8.04	0.50	Pass
11g	6Mbps	1	1	2412	16.36	0.50	Pass
11g	6Mbps	1	6	2437	16.40	0.50	Pass
11g	6Mbps	1	11	2462	16.36	0.50	Pass
HT20	MCS7	1	1	2412	17.68	0.50	Pass
HT20	MCS7	1	6	2437	17.72	0.50	Pass
HT20	MCS7	1	11	2462	17.72	0.50	Pass

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 13 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

3.2 Output Power Measurement

Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.2.3 **Test Procedures**

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250

: 14 of 39 Page Number Report Issued Date: Feb. 09, 2015

Report No.: FR4D1704C

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	11.61	30.00	-6.00	Pass
11b	1Mbps	1	6	2437	12.55	30.00	-6.00	Pass
11b	1Mbps	1	11	2462	12.24	30.00	-6.00	Pass
11g	6Mbps	1	1	2412	15.53	30.00	-6.00	Pass
11g	6Mbps	1	6	2437	16.41	30.00	-6.00	Pass
11g	6Mbps	1	11	2462	16.12	30.00	-6.00	Pass
HT20	MCS7	1	1	2412	13.74	30.00	-6.00	Pass
HT20	MCS7	1	6	2437	14.58	30.00	-6.00	Pass
HT20	MCS7	1	11	2462	14.62	30.00	-6.00	Pass

Note: Measured power (dBm) has offset with cable loss.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 15 of 39
Report Issued Date : Feb. 09, 2015

Report No. : FR4D1704C

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.10	8.81	30.00	-6.00	Pass
11b	1Mbps	1	6	2437	0.10	9.19	30.00	-6.00	Pass
11b	1Mbps	1	11	2462	0.10	9.14	30.00	-6.00	Pass
11g	6Mbps	1	1	2412	0.59	5.76	30.00	-6.00	Pass
11g	6Mbps	1	6	2437	0.59	6.47	30.00	-6.00	Pass
11g	6Mbps	1	11	2462	0.59	6.28	30.00	-6.00	Pass
HT20	MCS7	1	1	2412	3.52	3.90	30.00	-6.00	Pass
HT20	MCS7	1	6	2437	3.52	4.60	30.00	-6.00	Pass
HT20	MCS7	1	11	2462	3.52	4.71	30.00	-6.00	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 16 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 17 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	24~25 ℃
Test Engineer :	Issac Song	Relative Humidity :	49~51%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-11.87	8.00	-6.00	Pass
11b	1Mbps	1	6	2437	-13.43	8.00	-6.00	Pass
11b	1Mbps	1	11	2462	-13.59	8.00	-6.00	Pass
11g	6Mbps	1	1	2412	-19.74	8.00	-6.00	Pass
11g	6Mbps	1	6	2437	-18.50	8.00	-6.00	Pass
11g	6Mbps	1	11	2462	-17.87	8.00	-6.00	Pass
HT20	MCS7	1	1	2412	-22.15	8.00	-6.00	Pass
HT20	MCS7	1	6	2437	-21.91	8.00	-6.00	Pass
HT20	MCS7	1	11	2462	-21.68	8.00	-6.00	Pass

Note: Measured power density (dBm) has offset with cable loss.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 19 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 20 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

Page Number : 21 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

 Test Mode :
 802.11b
 Temperature :
 24~25℃

 Test Band :
 2.4GHz High
 Relative Humidity :
 49~51%

 Test Channel :
 11
 Test Engineer :
 Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 22 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Page Number : 23 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

Page Number : 24 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Page Number : 25 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

Page Number : 26 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

Page Number : 27 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	2.4GHz High	Relative Humidity :	49~51%
Test Channel :	11	Test Engineer :	Issac Song

Page Number : 28 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 29 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.63	8.24	0.12	300Hz
802.11g	87.26	1.37	0.73	1kHz
2.4GHz 802.11n HT20	44.44	0.16	6.25	10kHz

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: ZC4W250

TEL: 86-0512-5790-0158

Page Number : 30 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250

: 31 of 39 Page Number Report Issued Date: Feb. 09, 2015

Report No.: FR4D1704C

: Rev. 01

Report Version

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 32 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 33 of 39
Report Issued Date : Feb. 09, 2015

Report No.: FR4D1704C

3.6.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 34 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

est Mode :	Mode 1	Temperature :	22~24 °C
est Engineer :	Eko Guan	Relative Humidity :	30~33%
est Voltage :	120Vac / 60Hz	Phase :	Line
unction Type :	GSM850 Idle + Bluetooth Lir + Earphone	nk + WLAN Link + USE	3 Cable (Charging from Ad
80 Level	(dBuV)		
70.0			
60.0			FCC PART 15C
50.0			FCC PART 15C(AVG)
40.0			
30.0			Malitudia Jarana
20.0	- <u>ALMANIA ARIAN ARIAN</u>	AND THE STATE OF T	14 Jahra Hall British Harry Control British Street
10.0	***		
0 <mark>.15 .</mark>	2 .5 1	2 5	10 20 3
Site Condition	: CO01-KS : FCC PART 15C LISN-L2014	Frequency (MHz) 40306 LINE	
mode	: Mode 1	d lien c-kl-	
		l Factor Loss Remark	_
1	MHz dBuV dB dBuV dBuV 0.15 40.61 -25.35 65.96 28.30	0 1.94 10.37 QP	
2 3	0.15 34.91 -21.05 55.96 22.60 0.20 35.79 -27.66 63.45 24.30 0.20 27.99 -25.46 53.45 16.50	0 0.99 10.50 QP	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 35 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

Test Mode :	Mode 1	Temperature :	22~24 ℃	
Test Engineer :	Eko Guan Relative Humidity :		30~33%	
Test Voltage :	120Vac / 60Hz	Phase :	Neutral	
Function Type :	GSM850 Idle + Bluetooth Lir	nk + WLAN Link + USB	B Cable (Charging from Adapter)	
i unction type:	+ Earphone			
80 Level	el (dBuV)			
70.0				
70.0				
60.0			FCC PART 15C	
50.0			FCC PART 15C(AVG)	
40.0				
40.0				
30.0			Mallon ale	
20.0]	The Marie of the Marie of the second	Lindhicken Frite Park Control Control	
10.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'		
10.0				
0.15	.2 .5 1	2 5 Frequency (MHz)	10 20 30	
Site	: CO01-KS			
Condition	: FCC PART 15C LISN-N201	40306 NEUTRAL		
mode	: Mode 1 Over Limit Read			
	Freq Level Limit Line Level MHz dBuV dB dBuV dBuV		-	
1 2	0.15 39.17 -26.83 66.00 26.90 0.15 33.17 -22.83 56.00 20.90) 1.90 10.37 QP		
3 4	0. 20 34. 49 -28. 96 63. 45 23. 00 0. 20 27. 09 -26. 36 53. 45 15. 60	0.99 10.50 QP 0.99 10.50 Average		
5 6 7	0. 25 33. 51 -28. 13 61. 64 22. 10 0. 25 22. 61 -29. 03 51. 64 11. 20 0. 36 30. 70 -28. 13 58. 83 19. 60	0.88 10.53 Average		
8 9	0.36 21.00 -27.83 48.83 9.90 0.45 27.86 -28.94 56.80 16.90	0 0.49 10.61 Average 0 0.34 10.62 QP		
10 11 12 *	0.45 19.96 -26.84 46.80 9.00 0.56 31.10 -24.90 56.00 20.20 0.56 23.40 -22.60 46.00 12.50	0.27 10.63 QP		
		-		

Page Number : 36 of 39
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 37 of 39

Report No.: FR4D1704C

Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100319	9kHz~40GHz	Oct. 28, 2014	Jan. 26, 2015~ Jan. 27, 2015	Oct. 27, 2015	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	30MHz~40GHz	Feb. 27, 2014	Jan. 26, 2015~ Jan. 27, 2015	Feb. 26, 2015	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Feb. 27, 2014	Jan. 26, 2015~ Jan. 27, 2015	Feb. 26, 2015	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESCI	100534	9kHz~3GHz	Oct. 25, 2014	Feb. 05, 2015	Oct. 24, 2015	Radiation (03CH01-KS)
Spectrum Analyzer	R&S	FSP30	101399	9kHz~30GHz	May 04, 2014	Feb. 05, 2015	May 03, 2015	Radiation (03CH01-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 13, 2014	Feb. 05, 2015	Nov. 12, 2015	Radiation (03CH01-KS)
Bilog Antenna	TeseQ	CBL6112D	37879	30Mhz-2Ghz	Sep. 13, 2014	Feb. 05, 2015	Sep. 12, 2015	Radiation (03CH01-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 08, 2014	Feb. 05, 2015	Nov. 07, 2015	Radiation (03CH01-KS)
Active Horn Antenna	com-power	AHA-118	701030	1GHz~18GHz	Nov. 08, 2014	Feb. 05, 2015	Nov. 07, 2015	Radiation (03CH01-KS)
SHF-EHF Horn	Schwarzbeck	BBHA 9170	BBHA1702 49	15GHz~40GHz	Mar. 10, 2014	Feb. 05, 2015	Mar. 09, 2015	Radiation (03CH01-KS)
Amplifier	com-power	PA-103A	161073	1MHz~1GHz	May 04, 2014	Feb. 05, 2015	May 03, 2015	Radiation (03CH01-KS)
Amplifier	Agilent	8449B	3008A023 71	1GHz~26.5GHz	Oct. 28, 2014	Feb. 05, 2015	Oct. 27, 2015	Radiation (03CH01-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Feb. 05, 2015	NCR	Radiation (03CH01-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Feb. 05, 2015	NCR	Radiation (03CH01-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Feb. 05, 2015	NCR	Radiation (03CH01-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 04, 2014	Jan. 08, 2015	May 03, 2015	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 25, 2014	Jan. 08, 2015	Oct. 24, 2015	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 25, 2014	Jan. 08, 2015	Oct. 24, 2015	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 25, 2014	Jan. 08, 2015	Oct. 24, 2015	Conduction (CO01-KS)

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 38 of 39
Report Issued Date : Feb. 09, 2015

Report No. : FR4D1704C

Report Version : Rev. 01

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.3dB
Confidence of 95% (U = 2Uc(y))	2.5ub

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.5dB
Confidence of 95% (U = 2Uc(y))	2.5uB

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : 39 of 39
Report Issued Date : Feb. 09, 2015

Report No. : FR4D1704C

Report Version : Rev. 01

Appendix A. Radiated Spurious Emission

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2341.5	50.26	-23.74	74	49.23	31.25	6.12	36.34	150	185	Р	Н
		2389.56	36.9	-17.1	54	35.51	31.3	6.17	36.08	150	185	Α	Н
000 445	*	2413.527	96.63	-	-	95.12	31.31	6.22	36.02	150	185	Р	Н
802.11b CH 01	*	2411.606	91.67	-	-	90.16	31.31	6.22	36.02	150	185	Α	Н
2412MHz		2358.15	49.44	-24.56	74	48.31	31.26	6.12	36.25	155	239	Р	V
241211112		2388.39	36.46	-17.54	54	35.07	31.3	6.17	36.08	155	239	Α	V
	*	2413.36	94.44	-	-	92.93	31.31	6.22	36.02	155	239	Р	V
	*	2412.692	89.12	-	1	87.61	31.31	6.22	36.02	155	239	Α	V
	*	2438.41	96.22	-	1	94.57	31.34	6.22	35.91	188	30	Р	Н
802.11b	*	2437.742	91.24	-	-	89.59	31.34	6.22	35.91	188	30	Α	Н
CH 06 2437MHz	*	2438.41	97.17	-	-	95.52	31.34	6.22	35.91	152	337	Р	V
2437191112	*	2436.156	92.43	-	1	90.84	31.33	6.22	35.96	152	337	Α	V
	*	2463.46	97.58	-	1	95.79	31.36	6.28	35.85	177	182	Р	Н
	*	2462.792	92.33	-	ı	90.54	31.36	6.28	35.85	177	182	Α	Н
000 445		2496.32	50.6	-23.4	74	48.62	31.39	6.33	35.74	177	182	Р	Н
802.11b CH 11		2499.24	36.92	-17.08	54	34.94	31.39	6.33	35.74	177	182	Α	Н
2462MHz	*	2460.705	93.25	-	1	91.46	31.36	6.28	35.85	100	17	Р	V
240211112	*	2461.289	88.19	-	1	86.4	31.36	6.28	35.85	100	17	Α	V
		2488.56	49.34	-24.66	74	47.36	31.39	6.33	35.74	100	17	Р	V
		2483.52	36.45	-17.55	54	34.54	31.37	6.33	35.79	100	17	Α	V
Remark		o other spurio I results are F		st Peak	and Averag	e limit lin	e.						

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A1 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11b (Harmonic @ 3m)

		_		_									
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		4824	47.58	-26.42	74	40.61	34.89	8.73	36.65	167	269	Р	Н
CH 01													
2412MHz		4824	47.62	-26.38	74	40.65	34.89	8.73	36.65	154	261	Р	V
		4875	47.7	-26.3	74	40.86	34.92	8.76	36.84	138	264	Р	Н
802.11b CH 06		7311	46.97	-27.03	74	39.43	35.56	10.84	38.86	138	267	Р	Н
2437MHz		4875	46.5	-27.5	74	39.66	34.92	8.76	36.84	100	0	Р	V
2407111112		7311	46.25	-27.75	74	38.71	35.56	10.84	38.86	200	135	Р	V
000 445		4923	46.65	-27.35	74	39.94	34.95	8.79	37.03	135	45	Р	Н
802.11b CH 11		7386	47.86	-26.14	74	40.58	35.58	10.89	39.19	100	132	Р	Н
2462MHz		4923	47.75	-26.25	74	41.04	34.95	8.79	37.03	138	261	Р	V
2402111112		7386	47.45	-26.55	74	40.17	35.58	10.89	39.19	100	168	Р	V

Remark

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A2 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2329.98	49.52	-24.48	74	48.6	31.23	6.12	36.43	104	301	Р	Н
		2386.95	36.67	-17.33	54	35.28	31.3	6.17	36.08	104	301	Α	Н
000 44	*	2418.454	81.71	-	ı	80.2	31.31	6.22	36.02	104	301	Р	Н
802.11g CH 01	*	2417.869	70.22	-	-	68.71	31.31	6.22	36.02	104	301	Α	Н
2412MHz		2318.19	49.29	-24.71	74	48.43	31.23	6.06	36.43	100	20	Р	V
2412101112		2388.84	36.82	-17.18	54	35.43	31.3	6.17	36.08	100	20	Α	V
	*	2415.615	82.92	-	1	81.41	31.31	6.22	36.02	100	20	Р	V
	*	2417.284	70.74	-	-	69.23	31.31	6.22	36.02	100	20	Α	٧
	*	2430.812	80.49	-	-	78.9	31.33	6.22	35.96	177	297	Р	Н
802.11g	*	2432.481	68.96	-	-	67.37	31.33	6.22	35.96	177	297	Α	Н
CH 06	*	2442.418	83.22	-	-	81.51	31.34	6.28	35.91	152	0	Р	V
2437MHz	*	2442.084	71.23	-	1	69.52	31.34	6.28	35.91	152	0	Α	V
	*	2466.299	82.88	-	-	81.09	31.36	6.28	35.85	142	172	Р	Н
	*	2467.885	70.23	-	-	68.44	31.36	6.28	35.85	142	172	Α	Н
		2487.64	49.23	-24.77	74	47.25	31.39	6.33	35.74	142	172	Р	Н
802.11g		2486.2	36.58	-17.42	54	34.67	31.37	6.33	35.79	142	172	Α	Н
CH 11 2462MHz	*	2455.945	83.33	-	-	81.54	31.36	6.28	35.85	100	15	Р	V
2402111112	*	2455.611	71.54	-	-	69.75	31.36	6.28	35.85	100	15	Α	٧
-		2499.2	49.48	-24.52	74	47.5	31.39	6.33	35.74	100	15	Р	V
		2486.36	36.51	-17.49	54	34.6	31.37	6.33	35.79	100	15	Α	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.						

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A3 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11g		4824	43.79	-30.21	74	36.82	34.89	8.73	36.65	100	34	Р	Н
CH 01 2412MHz		4824	44.23	-29.77	74	37.26	34.89	8.73	36.65	100	46	Р	V
		4875	43.17	-30.83	74	36.33	34.92	8.76	36.84	100	68	Р	Н
802.11g		7311	44.48	-29.52	74	36.94	35.56	10.84	38.86	100	211	Р	Н
CH 06 2437MHz		4875	43.45	-30.55	74	36.61	34.92	8.76	36.84	100	45	Р	٧
2437 WIFIZ		7311	44.17	-29.83	74	36.63	35.56	10.84	38.86	100	36	Р	V
		4923	43.86	-30.14	74	37.15	34.95	8.79	37.03	100	0	Р	Н
802.11g		7386	45.06	-28.94	74	37.78	35.58	10.89	39.19	100	34	Р	Н
CH 11 2462MHz	_	4923	43.47	-30.53	74	36.76	34.95	8.79	37.03	100	63	Р	٧
Z+OZIVIF1Z		7386	45.28	-28.72	74	38	35.58	10.89	39.19	100	26	Р	V

Remark

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A4 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

		_						,	_				
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor	Loss (dB)	Factor	Pos	Pos (deg)	Avg. (P/A)	
1		2376.51	50.05	-23.95	<u>(авµv/m)</u> 74	48.76	(dB/m) 31.28	6.17	(dB) 36.16	(cm)	203	(P/A)	(n/v) H
		2347.53	37.82	-16.18	54	36.79	31.25	6.12	36.34	109	203	Α	Н
802.11n	*	2412.608	77.21	-	-	75.7	31.31	6.22	36.02	109	203	Р	Н
HT20	*	2416.282	66.18	-	-	64.67	31.31	6.22	36.02	109	203	Α	Н
CH 01		2334.84	49.64	-24.36	74	48.61	31.25	6.12	36.34	102	335	Р	V
2412MHz		2379.39	37.9	-16.1	54	36.61	31.28	6.17	36.16	102	335	Α	V
	*	2416.867	73.61	-	ı	72.1	31.31	6.22	36.02	102	335	Р	V
	*	2417.368	62.61	-	1	61.1	31.31	6.22	36.02	102	335	Α	V
802.11n	*	2443.002	79.07	-	ı	77.36	31.34	6.28	35.91	100	337	Р	Н
HT20	*	2444.338	68.43	-	ı	66.72	31.34	6.28	35.91	100	337	Α	Н
CH 06	*	2431.98	79.86	-	-	78.27	31.33	6.22	35.96	133	46	Р	V
2437MHz	*	2431.229	69.24	-	-	67.65	31.33	6.22	35.96	133	46	Α	V
	*	2460.371	80.16	-	-	78.37	31.36	6.28	35.85	100	158	Р	Н
	*	2467.134	69.67	-	-	67.88	31.36	6.28	35.85	100	158	Α	Н
802.11n		2497.44	49.11	-24.89	74	47.13	31.39	6.33	35.74	100	158	Р	Н
HT20		2498.24	37.55	-16.45	54	35.57	31.39	6.33	35.74	100	158	Α	Н
CH 11	*	2457.615	83.23	-	1	81.44	31.36	6.28	35.85	200	318	Р	V
2462MHz	*	2455.862	72.61	-	-	70.82	31.36	6.28	35.85	200	318	Α	V
		2489.68	49.3	-24.7	74	47.32	31.39	6.33	35.74	200	318	Р	V
		2497.92	38.02	-15.98	54	36.04	31.39	6.33	35.74	200	318	Α	V
Remark		o other spurio I results are F		st Peak	and Averag	e limit lin	e.						

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250

Page Number : A5 of A9 Report Issued Date: Feb. 09, 2015 Report Version : Rev. 01

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	($dB\mu V$)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	4824	43.87	-30.13	74	36.9	34.89	8.73	36.65	100	79	Р	Н
	4824	44.66	-29.34	74	37.69	34.89	8.73	36.65	100	192	Р	V
	4875	44.46	-29.54	74	37.62	34.92	8.76	36.84	100	23	Р	Н
	7311	44.33	-29.67	74	36.79	35.56	10.84	38.86	100	61	Р	Н
	4875	44.93	-29.07	74	38.09	34.92	8.76	36.84	100	98	Р	V
	7311	43.98	-30.02	74	36.44	35.56	10.84	38.86	100	39	Р	V
	4923	44.58	-29.42	74	37.87	34.95	8.79	37.03	100	254	Р	Н
	7386	44.29	-29.71	74	37.01	35.58	10.89	39.19	100	10	Р	Н
	4923	43.66	-30.34	74	36.95	34.95	8.79	37.03	100	64	Р	V
	7386	44.34	-29.66	74	37.06	35.58	10.89	39.19	100	0	Р	٧
	Note	(MHz) 4824 4824 4875 7311 4875 7311 4923 7386 4923	(MHz) (dBμV/m) 4824 43.87 4824 44.66 4875 44.46 7311 44.33 4875 44.93 7311 43.98 4923 44.58 7386 44.29 4923 43.66	(MHz) (dBμV/m) (dB) 4824 43.87 -30.13 4824 44.66 -29.34 4875 44.46 -29.54 7311 44.33 -29.67 4875 44.93 -29.07 7311 43.98 -30.02 4923 44.58 -29.42 7386 44.29 -29.71 4923 43.66 -30.34	(MHz) (dBμV/m) (dB) (dBμV/m) 4824 43.87 -30.13 74 4824 44.66 -29.34 74 4875 44.46 -29.54 74 7311 44.33 -29.67 74 4875 44.93 -29.07 74 7311 43.98 -30.02 74 4923 44.58 -29.42 74 7386 44.29 -29.71 74 4923 43.66 -30.34 74	Limit Line Level (MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) 4824 43.87 -30.13 74 36.9 4824 44.66 -29.34 74 37.69 4875 44.46 -29.54 74 37.62 7311 44.33 -29.67 74 36.79 4875 44.93 -29.07 74 38.09 7311 43.98 -30.02 74 36.44 4923 44.58 -29.42 74 37.87 7386 44.29 -29.71 74 37.01 4923 43.66 -30.34 74 36.95	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) 4824 43.87 -30.13 74 36.9 34.89 4824 44.66 -29.34 74 37.69 34.89 4875 44.46 -29.54 74 37.62 34.92 7311 44.33 -29.67 74 36.79 35.56 4875 44.93 -29.07 74 38.09 34.92 7311 43.98 -30.02 74 36.44 35.56 4923 44.58 -29.42 74 37.87 34.95 7386 44.29 -29.71 74 37.01 35.58 4923 43.66 -30.34 74 36.95 34.95	(MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dBμV) Loss (dBμV) 4824 43.87 -30.13 74 36.9 34.89 8.73 4824 44.66 -29.34 74 37.69 34.89 8.73 4875 44.46 -29.54 74 37.62 34.92 8.76 7311 44.33 -29.67 74 36.79 35.56 10.84 4875 44.93 -29.07 74 38.09 34.92 8.76 7311 43.98 -30.02 74 36.44 35.56 10.84 4923 44.58 -29.42 74 37.87 34.95 8.79 7386 44.29 -29.71 74 36.95 34.95 8.79 4923 43.66 -30.34 74 36.95 34.95 8.79	(MHz) (dBμV/m) (dB) (dBμV/m) ((MHz) Limit (dBμV/m) Line (dBμV/m) Level (dBμV) Factor (dBμV) Pos (dBμV) 4824 43.87 -30.13 74 36.9 34.89 8.73 36.65 100 4824 44.66 -29.34 74 37.69 34.89 8.73 36.65 100 4875 44.46 -29.54 74 37.62 34.92 8.76 36.84 100 7311 44.33 -29.67 74 36.79 35.56 10.84 38.86 100 4875 44.93 -29.07 74 36.44 35.56 10.84 38.86 100 7311 43.98 -30.02 74 36.44 35.56 10.84 38.86 100 7312 43.98 -29.42 74 37.87 34.95 8.79 37.03 100 4923 44.58 -29.42 74 37.01 35.58 10.89 39.19 100 4923 43.66 -30.34	Limit Line Level Factor Loss Factor Pos Pos Pos (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (dB) (deg) (deg)	Limit Line Level Factor Loss Factor Pos Pos Avg.

Remark

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A6 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C Emission below 1GHz

2.4GHz WIFI 802.11n HT20 (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		49.4	26.25	-13.75	40	48.88	9.21	0.79	32.63	100	94	Р	Н
		101.78	25.04	-18.46	43.5	45.31	11.32	1.04	32.63			Р	Н
		109.54	24.38	-19.12	43.5	44.41	11.38	1.23	32.64			Р	Н
		154.16	26.64	-16.86	43.5	46.21	11.55	1.44	32.56			Р	Н
2.4GHz		211.39	24.21	-19.29	43.5	44.76	10.33	1.61	32.49			Р	Н
802.11n		364.65	27.29	-18.71	46	42.05	15.44	2.15	32.35			Р	Н
HT20		30	30.71	-9.29	40	43.38	19.2	0.79	32.66	100	29	Р	٧
LF		41.64	29.03	-10.97	40	47.58	13.28	0.79	32.62			Р	٧
		97.9	26.63	-16.87	43.5	47.13	11.08	1.04	32.62			Р	٧
		158.04	27.75	-15.75	43.5	47.46	11.4	1.44	32.55			Р	٧
		211.39	26.89	-16.61	43.5	47.44	10.33	1.61	32.49			Р	٧
		299.66	25.45	-20.55	46	42.93	13	1.9	32.38			Р	٧
			•									•	

Remark 2.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A7 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

	Fundamental Frequency which can be ignored. However, the level of any
*	unwanted emissions shall not exceed the level of the fundamental frequency per
	15.209(c).
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250 Page Number : A8 of A9
Report Issued Date : Feb. 09, 2015
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZC4W250

Page Number : A9 of A9 Report Issued Date: Feb. 09, 2015 Report Version

: Rev. 01