Challenges for Quantitation of Emphysema in the Screening Setting

Anthony P. Reeves
Vision and Image Analysis Group
School of Electrical and Computer Engineering
Cornell University

Screening for COPD and Emphysema

Why screen?

- 1. Identify early stage disease
 - Asymptomatic: fixed protocol
- Monitor disease progression and response to therapy
 - Symptomatic: adaptive protocol

What to screen for?

- Emphysema
- Small airway disease: air trapping
- Large airway disease
- Other lung diseases (dense image structures)

CT Emphysema Index Measure

- Emphysema Index EI₋₉₅₀, EI₋₉₁₀
- Fraction (percentage)
 of lung parenchyma
 below intensity
 threshold

Emphysema Measures

- Emphysema Index El₋₉₅₀, El₋₉₁₀
 - Fraction (percentage) of lung parenchyma below intensity threshold
 - Poor correlation with FEV₁/FVC
- Mean Lung Density MLD
 - Mean lung image intensity in HU
- 15th Percentile Intensity 15PI
 - Image intensity at the 15th percentile level in the histogram
- Fractal Dimension Measure FD

Challenges with screening (CT imaging)

- Low-dose regimen
 - Noisy images: challenge for measurement of Emphysema
 - Multiple-scans required for airway trapping measurement
 - Noise limits the depth to which airways can be measured
- Calibration
 - Image calibration is important for Emphysema measurement
- Changes in CT scanner settings
 - Dose (KVp,mAs), slice thickness, and recon filter affect EI measures
 - Changes in technology e.g. model based reconstruction
- Inspiration Level

El Thresholds

Histogram for Lung region

$$EI_{-910} = 23.8\%$$
 $EI_{-950} = 2.5\%$
 $EI_{-960} = 1.1\%$
 $EI_{-980} = 0.1\%$

Effect of Image Noise

Histogram for Lung region

The effect of adding Gaussian noise of SD 50 and 100 HU

LIDC 120 kVp 198 mAs 1.25 mm 16 MDCT

Image Noise Filtering

Effect of Noise Filtering

Histogram for Lung regic

Effect of Noise on Emphysema Index

EI (-950) for original scan

+50 HU noise

After noise filtering

Effect of Image Noise

Histogram for Lung region

The effect of adding Gaussian noise of SD 50 and 100 HU

Before Filtering

$$EI_{-950} = 2.6\%$$

$$EI_{-950} = 13.0\%$$

$$EI_{-950} = 24.1\%$$

After Filtering

$$EI_{-950} = 1.3\%$$

$$EI_{-950} = 2.6\%$$

Manufacturers Low Cutoff

Example scans from 4 different Manufacturers Histogram for Lung region

Manufacturers Low Cutoff

Example scans from 4 different Manufacturers Histogram for Lung region

Example: Difference in inspiration (9%)

Histogram for Lung region

Slice thickness 5 mm

Slice Thickness 1.0 mm

Effects of inspiration and calibration

Lung histogram

10% change in EI due to inspiration change

10% change in EI due to 10 HU "calibration" change

Conclusion

Challenges

- Image noise
- Subject inspiration level
- Scanner parameter settings
- Poor correlation with conventional function tests

Opportunities

- Low-cost (in the context of LC screening) evaluation of COPD and emphysema
- Simple automated implementation
- The importance of early diagnosis of COPD