Wealth inequality, intergenerational transfers and family background

Juan C. Palomino, Gustavo A. Marrero, Brian Nolan, Juan G. Rodríguez

Supplementary Material – Online Appendix

Appendix A.

Table A1. OLS regression coefficients of log wealth on age and gender variables.

		France				Spain	
	Estimate	S.E.	p		Estimate	S.E.	p
α (Intercept)	11.454	0.041	< 0.001		11.81	0.055	< 0.001
β_1 (Age difference)	0.021	0.007	0.003		0.018	0.009	0.042
β_1 (Age difference)^2	-0.001	0.000	0.028		-0.002	0.000	< 0.001
β_1 (Age difference)^3	0.000	0.000	0.675		0.000	0.000	0.635
β_1 (Age difference)^4	0.000	0.000	0.986		0.000	0.000	0.74
δ (Female dummy)	-0.244	0.067	< 0.001		-0.342	0.086	< 0.001
γ_1 (Interaction femaleage difference)	0.033	0.011	0.004		0.004	0.013	0.785
γ_2 (Interaction femaleage difference) ²	-0.001	0.001	0.03		0.001	0.001	0.076
γ_3 (Interaction femaleage difference) ³	0.000	0.000	0.006		0.000	0.000	0.371
γ_4 (Interaction femaleage difference)^4	0.000	0.000	0.081		0.000	0.000	0.087
Observations		9235				5066	
R2		0.049				0.05	
R ² adjusted		0.048				0.049	
		Britain		_		US	
	Estimate	S.E.	p		Estimate	S.E.	p
α (Intercept)	11.775	0.045	< 0.001	-	11.537	0.079	< 0.001
β_1 (Age difference)	-0.002	0.007	0.821		-0.001	0.013	0.925
β_1 (Age difference)^2	-0.002	0.000	< 0.001		0.000	0.001	0.869
β_1 (Age difference)^3	0.000	0.000	0.263		0.000	0.000	0.009
β_1 (Age difference)^4	0.000	0.000	0.102		0.000	0.000	0.015
δ (Female dummy)	-0.318	0.075	< 0.001		-0.692	0.111	< 0.001
γ_1 (Interaction femaleage difference)	-0.002	0.012	0.878		0.042	0.019	0.026
γ_2 (Interaction femaleage difference) 2	-0.001	0.001	0.235		0.001	0.001	0.553
γ_3 (Interaction femaleage difference) ³	0.000	0.000	0.369		0.000	0.000	0.030
γ_4 (Interaction femaleage difference) ⁴	0.000	0.000	0.199		0.000	0.000	0.024
Observations		10218				4486	
R2		0.045				0.064	
R ² adjusted		0.044				0.062	

Notes: Coefficients of the regression used to adjust wealth by age and gender prior to our main analysis:

$$\begin{split} &\ln{(W_i\,)} = \alpha + \delta F_i + \sum_{n=1}^4 \beta_n (A_i - 65)^n + \sum_{n=1}^4 \gamma_n F_i (A_i - 65)^n + \epsilon_i \\ &\text{We finally retain the adjusted value as by: } \ln{(W_i^{adj}\,)} = \ln{(W_i\,)} - \,\hat{\delta} F_i - \sum_{n=1}^4 \hat{\beta}_n (A_i - 65)^n - \sum_{n=1}^4 \hat{\gamma}_n F_i (A_i - 65)^n \end{split}$$
Details and comments on the coefficients in Section 3. Source: Authors' calculations from HFCS (France and Spain), WAS (Britain) and SCF (United States).

Table A2. Inequality of distributions and contributions of inheritances and family background to total wealth inequality (%) for the 50-80 years old sample.

A)

			France	Spain	Great Britain	United States
Original Adjusted		Estimate	0.989	0.753	0.949	1.857
Original Adjusted Wealth Distribution	T	Standard Error	(0.028)	(0.046)	(0.021)	(0.048)
Weaten Distribution		C.I. (Low - High)	(0.928 - 1.050)	(0.655 - 0.852)	(0.904 - 0.995)	(1.754 - 1.959)
		Estimate	0.564	0.450	0.606	1.115
Inheritance Smoothed	T_I^S	Standard Error	(0.021)	(0.038)	(0.026)	(0.049)
		C.I. (Low - High)	(0.520 - 0.608)	(0.369 - 0.532)	(0.549 - 0.662)	(1.009 - 1.221)
Family Background Smoothed		Estimate	0.799	0.588	0.784	1.369
	T_F^S	Standard Error	(0.029)	(0.045)	(0.028)	(0.055)
		C.I. (Low - High)	(0.736 - 0.862)	(0.491 - 0.684)	(0.723 - 0.844)	(1.251 - 1.487)
Inheritance and		Estimate	0.520	0.377	0.552	0.873
Family Background	T_{I+F}^{S}	Standard Error	(0.021)	(0.034)	(0.024)	(0.049)
Smoothed		C.I. (Low - High)	(0.475 - 0.566)	(0.304- 0.451)	(0.501 - 0.603)	(0.767 - 0.978)

Notes: Inequality (measured by the MLD Index) of the original adjusted wealth distribution (row 1) and of the different smoothed counterfactual distributions in which differences in wealth associated with inheritances (row 2), family background (row 3) or both (row 4) have been removed. See Section 2 for details on the smoothing procedure. All measures weighted using population weights. Standard errors and confidence intervals calculated using bootstrap and multiple imputation (MI Boot method as proposed in Schomaker and Heumann, 2018). Sample used is aged between 50 and 80, excluding non-positive wealth observations and adjusting by age, gender and household size. Source: Authors' calculations from HFCS (France and Spain), WAS (Britain) and SCF (United States).

			France	Spain	Great Britain	United States
		Estimate	43.0%	40.2%	36.2%	39.9%
Gross Inheritance Contribution	$\mathit{Sh}^{\mathit{G}}_{I}$	Standard Error	(1.6%)	(3.3%)	(2.1%)	(2.5%)
		C.I. (Low - High)	(39.5% - 46.4%)	(33.2% - 47.3%)	(31.7% - 40.8%)	(34.5% 5.45 %4%)
Gross Family		Estimate	19.2%	22.0%	17.4%	26.3%
Background	Sh_F^G	Standard Error	(1.9%)	(3.1%)	(2.4%)	(2.2%)
Contribution		C.I. (Low - High)	(15.0% - 23.4%)	(15.3% - 28.7%)	(12.3% - 22.6%)	(21.6% - 30.9%)
Combined		Estimate	47.4%	49.9%	41.8%	53.0%
Inheritance and Family	Sh_{I+F}^{C}	Standard Error	(1.7%)	(3.1%)	(2.0%)	(2.5%)
Background Contribution	177	C.I. (Low - High)	(43.6% - 51.1%)	(43.2% - 56.6%)	(37.6% - 46.1%)	(47.6% - 58.4%)
Interacted Contribution	$Sh_{I+F}^{INT.} = Sh_{I}^{G} + Sh_{F}^{G} - Sh_{I+F}^{C}$	Estimate	14.8%	12.3%	11.8%	13.2%
		Standard Error	(1.6%)	(4.7%)	(2.2%)	(2.5%)
		C.I. (Low - High)	(11.3% - 18.2%)	(2.2% - 22.4%)	(7.0% - 16.6%)	(7.7% - 18.7%)
Marginal	GLM	Estimate	28.2%	27.9%	24.4%	26.7%
Inheritance	$Sh_I^M = Sh_{I+F}^C - Sh_F^G$	Standard Error	(1.9%)	(3.7%)	(2.8%)	(2.9%)
Contribution	$Sn_{I+F} - Sn_F$	C.I. (Low - High)	(24.2% - 32.2%)	(20.0%- 35.9%)	(18.4% - 30.4%)	(20.5% - 33.0%)
Marginal Family Background Contribution	Ch ^M	Estimate	4.4%	9.7%	5.6%	13.1%
	$= Sh_{I+F}^{G} - Sh_{I}^{G}$	Standard Error	(0.9%)	(3.8%)	(0.9%)	(2.2%)
		C.I. (Low - High)	(2.6% - 6.6%)	(1.6% -17.8%)	(3.6% - 7.7.%)	(8.4% - 17.7%)
Shapley		Estimate	35.6%	34.1%	30.3%	33.3%
	Sh _I SHAPLEY	Standard Error	(1.5%)	(2.6%)	(2.2%)	(2.4%)
Contribution	1	C.I. (Low - High)	(32.2% -38.9%)	(28.5% - 39.6%)	(25.6% - 35.1%)	(28.1% - 38.5%)
Shapley Family		Estimate	11.8%	15.9%	11.5%	19.7%
Background	$Sh_F^{SHAPLEY}$	Standard Error	(1.3%)	(2.5%)	(1.4%)	(1.7%)
Contribution		C.I. (Low - High)	(9.1% - 14.6%)	(10.4% - 21.3%)	(8.4% - 14.6%)	(15.9% - 23.4%)

Notes: Gross contribution of each characteristic to wealth inequality (rows 1-2) and of both characteristics combined (row 3) based on comparing the original adjusted wealth inequality and the inequality of the counterfactual wealth distributions. Interacted contribution to wealth inequality of both characteristics (row 4) and marginal contribution of each of them (rows 5 and 6) based on our methodology (see Section 2). Rows 6 and 7 show the contribution of each characteristic using the Shapley value decomposition. All measures weighted using population weights. Standard errors and confidence intervals calculated using bootstrap and multiple imputation (MI Boot method as proposed in by Schomaker and Heumann, 2018), Sample used is aged between 50 and 80, excluding non-positive wealth and adjusting by age, gender and household size. Source: Authors' calculations from HFCS (France and Spain), WAS (Britain) and SCF (United States).

Table A3. Inequality of distributions and contributions of inheritances and family background to total wealth inequality (%). Samples exclude observations in the first decile of the wealth distribution for France, Spain and Great Britain to be comparable with the sample for the U.S. when non-positive wealth observations are excluded.

A)

			France	Spain	Great Britain	United States
O-1-1-1 A 114-1		Estimate	0.816	0.534	0.957	1.841
Original Adjusted Wealth Distribution	T	Standard Error	0.033	0.029	0.020	(0.045)
Weaten Distribution		C.I. (Low - High)	(0.745 - 0.888)	(0.471 - 0.597)	(0.976 - 0.999)	(1.745 - 1.937)
		Estimate	0.559	0.387	0.685	1.158
Inheritance Smoothed	T_I^S	Standard Error	0.033	0.027	0.026	(0.058)
		C.I. (Low - High)	(0.488 - 0.630)	(0.330 - 0.444)	(0.630 - 0.740)	(1.033 - 1.284)
Family Background Smoothed	T_F^S	Estimate	0.726	0.445	0.842	1.433
		Standard Error	0.035	0.031	0.019	(0.048)
		C.I. (Low - High)	(0.649 - 0.802)	(0.379 - 0.512)	(0.800 - 0.884)	(1.329 - 1.537)
Inheritance and		Estimate	0.521	0.337	0.634	0.943
Family Background	T_{I+F}^{S}	Standard Error	0.028	0.023	0.022	(0.043)
Smoothed		C.I. (Low - High)	(0.460 - 0.582)	(0.287- 0.387	(0.587 - 0.681)	(0.850 - 1.036)

Notes: Inequality (measured by the MLD Index) of the original adjusted wealth distribution (row 1) and of the different smoothed counterfactual distributions in which differences in wealth associated with inheritances (row 2), family background (row 3) or both (row 4) have been removed. See Section 2 for details on the smoothing procedure All measures weighted using population weights. Standard errors and confidence intervals calculated using bootstrap and multiple imputation (MI Boot method as proposed in by Schomaker and Heumann, 2018) Sample used is aged between 35 and 80, excluding non-positive wealth observations in the U.S. and the lowest 10% of the wealth distribution observations in the other three countries, adjusting by age, gender and household size. Source: Authors' calculations from HFCS (France and Spain), WAS (Britain) and SCF (United States).

			France	Spain	Great Britain	United States
		Estimate	31.5%	27.6%	28.4%	37.1%
Gross Inheritance Contribution	Sh_I^G	Standard Error	(1.7%)	(2.6%)	(2.1%)	(2.9%)
		C.I. (Low - High)	(27.8% - 35.3%)	(22.0% - 33.0%)	(23.9% - 33.0%)	(30.9%5.43%3%)
Gross Family		Estimate	11.1%	16.6%	12.0%	22.2%
Background	Sh_F^G	Standard Error	(1.2%	(2.1%)	(1.3%)	(1.8%)
Contribution		C.I. (Low - High)	(8.6% - 13.6%)	(12.2% - 21.1%)	(9.1% - 14.8%)	(18.3% - 26.0%)
Combined		Estimate	36.2%	36.8%	33.8%	48.8%
Inheritance and Family	Sh_{I+F}^{C}	Standard Error	(1.4%	(2.7%)	(1.8%)	(2.1%)
Background Contribution		C.I. (Low - High)	(33.2% - 39.1%)	(30.9% - 42.7%)	(29.9% - 37.6%)	(44.1% - 53.4%)
	T	Γ				
Interacted	$Sh_{I+F}^{INT} = Sh_{I}^{G} + Sh_{F}^{G} - Sh_{I+F}^{C}$	Estimate	6.5%	7.4%	6.7%	10.5%
Contribution		Standard Error	(1.6%)	(2.8%)	(1.4%)	(2.8%)
		C.I. (Low - High)	(3.1% - 9.8%)	(1.3% - 13.5%)	(3.7% - 9.6%)	(4.5% - 16.5%)
Marginal	CLM	Estimate	25.1%	20.2%	21.8%	26.6%
Inheritance	$Sh_I^M = Sh_{I+F}^C - Sh_F^G$	Standard Error	(0.9%)	(3.0%)	(1.9%)	(2.1%)
Contribution	Sivi _{I+F} Siv _F	C.I. (Low - High)	(23.3% - 27.1%)	(13.7%- 26.6%)	(17.7% - 25.9%)	(22.1% - 31.1%)
Marginal Family	Sh_{E}^{M}	Estimate	4.6%	9.3%	5.3%	11.7%
Background Contribution	$Sh_F^M = Sh_{I+F}^C - Sh_I^G$	Standard Error	(1.1%)	(2.6%)	(1.0%)	(2.5%)
Contribution		C.I. (Low - High)	(2.3% - 6.9%)	(3.7% -14.8%)	(3.2% - 7.4%)	(6.2% - 7.1%)
Chamler		Estimate	28.3%	23.9%	25.1%	31.8%
Shapley Inheritance	$Sh_I^{SHAPLEY}$	Standard Error	(1.2%)	(2.4%)	(1.9%)	(2.1%)
Contribution	SILĮ	C.I. (Low - High)	(1.2%)	(18.7% - 29.1%)	(21.0% - 29.2%)	(27.3% - 36.4%)
Shapley Family		Estimate	7.9%	13.0%	8.6%	16.9%
Background	$Sh_F^{SHAPLEY}$	Standard Error	(0.8%	(1.9%	(0.9%	(1.7%)
Contribution	Sity	C.I. (Low - High)	(6.2% - 9.6%)	(9.0% - 16.9%)	(6.6% - 10.7%)	(13.3% - 20.6%)

Notes: Gross contribution of each characteristic to wealth inequality (rows 1-2) and of both characteristics combined (row 3) based on comparing the original adjusted wealth inequality and the inequality of the counterfactual wealth distributions. Interacted contribution to wealth inequality of both characteristics (row 4) and marginal contribution of each of them (rows 5 and 6) based on our methodology (see Section 2). Rows 6 and 7 show the contribution of each characteristic using the Shapley value decomposition. All measures weighted using population weights. Standard errors and confidence intervals calculated using bootstrap and multiple imputation (MI Boot method as proposed in by Schomaker and Heumann, 2018), Sample used is aged between 35 and 80, excluding non-positive wealth observations in the U.S. and the lowest 10% of the wealth distribution observations in the other three countries, adjusting by age, gender and household size. Source: Authors' calculations from HFCS (France and Spain), WAS (Britain) and SCF (United States).

Figure A1. Age wealth profile by gender of the household head. (Rolling mean over 9 years centred intervals)

Adjusted and Original Wealth-Age profiles Britain

Notes: Original and age-gender adjusted wealth distributions, by gender, in each of the countries analysed. Values represent the moving rolling average across 9 years of age. Details of the adjustment in Section 3. Source: Authors' calculations from HFCS (France and Spain), WAS (Britain) and SCF (United States).