Міністерство освіти і науки України КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРССИТЕТ

Кафедра автоматизації та систем неруйнівного контролю Група ПМ-11

ПРОЕКТУВАННЯ СИСТЕМ АВТОМАТИЗАЦІЇ

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №2

Розробка та складання схем електричних принципових керування промисловими двигунами

Керівник	(підпис)	д.т.н., проф. Черепанська І. Ю. (дата)
Виконавець	(підпис)	Погорелов Б. Ю. (дата)

Тема роботи

Розробка та складання схем електричних принципових керування промисловими двигунами

Мета роботи

Вивчити будову та принцип дії промислових двигунів різних типів, як складових систем автоматичного керування / регулювання / контролю. Навчитися складати схеми електричні принципові для керування промисловими двигунами різних типів.

Вихідні дані (Варіант 09)

Параметр	Значення
Потужність, кВт	1,0
$\cos\!arphi$	0,86
Швидкість обертання n ном, об/хв	2850
γ (перенавантажувальна здатність)	2,2
ККД, %	91
а (кратність пускового струму)	5,1
β (кратність пускового моменту)	2,35

Табл. 1: Вихідні дані для розрахунків

Розрахунки

Розрахунок споживаної потужності

$$P_{\text{спож}} = \frac{P_{\text{НОМ}}}{\eta} = \frac{1,0}{0,91} = 1,10 \text{ кBT}$$
 (1)

Розрахунок повної потужності

$$S = \frac{P_{\text{спож}}}{\cos \varphi} = \frac{1,10}{0,86} = 1,28 \text{ kBA}$$
 (2)

Розрахунок струму

$$I = \frac{S}{\sqrt{3}U} = \frac{1,28 \times 10^3}{\sqrt{3} \times 380} = 1,95 \text{ A}$$
 (3)

Розрахунок обертового моменту

$$M = \frac{P_{\text{hom}} \times 60}{2\pi n} = \frac{1,0 \times 60}{2\pi \times 2850} = 3,34 \text{ Hm}$$
 (4)

Розрахунок пускового моменту

$$M_{\text{пуск}} = \beta \times M_{\text{ном}} = 2,35 \times 3,34 = 7,84 \text{ Hm}$$
 (5)

					$\Pi M1109.04.00.01\ \Pi P$			
Зм.	Лист	№ докум.	Підпис	Дата				
Роз	роб.	Погорелов Б.Ю				Літ.	Аркуш	Аркушів
Пер	рев.	Черепанська І.Ю.			Розробка та складання схем		2	3
Н. И	Сонтр.				електричних принципових керування промисловими двигунами КПІ		Г. Сікорськ	ого, ПБФ
Зат	В.	Черепанська I.Ю.						

Графік залежності обертового моменту від ковзання

Схеми підключення

Висновки

У ході роботи були проведені розрахунки параметрів трифазного асинхронного двигуна. Розраховані струми, потужності та моменти підтвердили можливість його використання у керованих системах. Також побудований графік залежності моменту від ковзання дозволив оцінити динамічні характеристики двигуна.

Контрольні питання

- 1. Чому асинхронний двигун так називається? Асинхронний двигун називається так тому, що частота обертання його ротора не співпадає з частотою обертання магнітного поля статора (яка визначається частотою змінного струму). Різниця між цими частотами називається ковзанням.
- 2. Чому є небажаною велика сила пускового струму? Велика сила пускового струму небажана, оскільки вона може призвести до значних механічних та електричних навантажень на двигун і мережу, викликати пошкодження ізоляції проводів, зменшити термін служби обладнання, а також викликати перевантаження трансформаторів і підстанцій.
- 3. Що використовують для зниження сили пускового струму? Для зниження сили пускового струму використовують спеціальні пристрої, такі як стартери з обмеженням струму, трансформатори з регульованим напругою або пристрої плавного пуску, що забезпечують поступове збільшення напруги на двигуні.

Змн.	Арк.	№ докум.	Підпис	Дата