UNIDADE 4 Aprendizado de Máquina Associação

Disciplina: Tópicos Especiais III (DEC7553)

Prof. Alexandre L. Gonçalves

E-mail: a.l.goncalves@ufsc.br

Visa descobrir **associações** importantes entre os itens (*k-itemsets*), tal que, a presença de um item em uma determinada transação irá implicar na presença de outro item na mesma transação.

Cada registro corresponde a uma transação, com itens assumindo valores binários (sim/não), indicando se o cliente comprou ou não o respectivo item.

ld	Leite	Café	Cerveja	Pão	Arroz	Feijão
1	S	N	N	S	N	N
2	N	S	S	S	S	N
3	S	S	S	N	N	S
4	S	S	S	S	N	N
5	S	S	N	S	N	S

Uma regra de associação é uma **implicação** na forma $X \Rightarrow Y$. Por exemplo:

Se (Café) Então (Pão); Se (Leite) Então (Café e Pão)

O número de regras que podem ser extraídas é: $R = 3^d - 2^{d+1} + 1$, onde **d** é o número de itens. No exemplo $R = 3^6 - 2^7 + 1 = 180$ regras.

Para diminuir esse número, são definidos para cada regra de associação dois parâmetros básicos: um **suporte** e uma **confiança**;

O suporte (frequência) é caracterizado pelo número mínimo de ocorrências, enquanto que a confiança (força da regra) é um percentual das transações na base de dados que satisfazem o antecedente da regra (X) e também satisfazem o consequente da regra (Y).

A função do **Suporte** é determinar a freqüência que ocorre um *itemset* dentre todas as transações da Base de Dados; representa a porcentagem de transações onde este *itemset* aparece.

Um *itemset* será considerado frequente se o seu suporte for maior ou igual a um suporte mínimo estabelecido previamente.

$$Suporte(A \Rightarrow B) = \frac{N^{\circ} de \ registros \ com(A \cap B)}{N^{\circ} Total \ de \ transações \ da \ BD}$$

A toda regra X => Y associa-se um grau de **confiança**. Ela é a medida da força da regra e determina a sua validade. A probabilidade condicional de se encontrar B, já tendo encontrado A é obtida pela confiança.

Assim como o suporte, também é estabelecido um nível mínimo de confiança para as regras.

$$Conf(A \Rightarrow B) = \frac{N^o de transações que suportam(A \cap B)}{N^o de transações que suportam(A)}$$

Id	Leite	Café	Cerveja	Pão	Arroz	Feijão
1	S	N	N	S	N	N
2	N	S	S	S	S	N
3	S	S	S	N	N	S
4	S	S	S	S	N	N
5	S	S	N	S	N	S

```
Se (Café) Então (Pão) S = 0.6 (3/5) C = 0.75 (3/4);
```

Se (Café e Pão) **Então** Leite
$$S = 0.4 (2/5)$$
 $C = 0.67 (2/3)$;

Se (Leite) **Então** (Café e Pão)
$$S = 0.4 (2/5)$$
 $C = 0.50 (2/4)$;

Fases do algoritmo Apriori:

- 1. Geração dos conjuntos candidatos, com **suporte** maior ou igual ao mínimo estabelecido;
 - 1. Repetir até que não haja mais possibilidades de combinações:
 - 1. Contagem no banco de dados
 - 2. Poda dos conjuntos candidatos considerando o suporte
 - 3. Combinação dos *itemsets*
- 2. Geração das regras de associação dos conjuntos candidatos gerados com **confiança** maior ou igual ao mínimo estabelecido.

Algoritmo Apriori

Suporte mínimo = 0.5 (ou 2)

Algoritmo Apriori

Regras geradas para L2 (s \geq 2 (ou 50%) e c \geq 60%)

Se A Então C (
$$s = 50\%$$
, $c = 100\%$)

Se C Então A (
$$s = 50\%$$
, $c = 66.7\%$)

Se B Então C (
$$s = 50\%$$
, $c = 66.7\%$)

Se C Então B (
$$s = 50\%$$
, $c = 66.7\%$)

Se B Então E (
$$s = 75\%$$
, $c = 100\%$)

Se E Então B (
$$s = 75\%$$
, $c = 100\%$)

Se C Então E (
$$s = 50\%$$
, $c = 66.7\%$)

Se E Então C (
$$s = 50\%$$
, $c = 66.7\%$)

Algoritmo Apriori

Regras geradas para L3 (s \geq 2 (ou 50%) e c \geq 60%)

Se B e E Então C (
$$s = 50\%$$
, $c = 66.7\%$)

Se C e E Então B (
$$s = 50\%$$
, $c = 100\%$)

Se B Então C e E (
$$s = 50\%$$
, $c = 66.7\%$)

Outras Medidas: Medidas de Interesse

A medida de interesse *lift*, também conhecida como *interest*, é utilizada para avaliar dependências.

Dada uma regra de associação $\mathbf{A} \Rightarrow \mathbf{B}$, a medida indica o quanto mais frequente torna-se \mathbf{B} quando \mathbf{A} ocorre:

$$Lift(A \Rightarrow B) = Sup(A \Rightarrow B) / (Sup(A) \times Sup(B))$$

Se Lift($A \Rightarrow B$) = 1, então A e B são independentes.

Se Lift(A ⇒ B) > 1, então A e B tem relação positiva.

Se Lift(A ⇒ B) < 1, então A e B tem relação negativa.

Esta medida possui interpretação bastante simples: quanto maior o valor do *lift*, mais interessante a regra.

Outras Medidas: Medidas de Interesse

O valor do RI (regra de interesse) para A ⇒ B é computado por:

$$RI(A \Rightarrow B) = Sup(A \Rightarrow B) - SupEsp(A \Rightarrow B)$$

onde SupEsp, é o suporte esperado e calculado como:

$$SupEsp(A \Rightarrow B) = Sup(A) \times Sup(B)$$

Se $RI(A \Rightarrow B) = 0$, então A e B são independentes.

Se $RI(A \Rightarrow B) > 0$, então A e B são positivamente dependentes.

Se $RI(A \Rightarrow B) < 0$, A e B são negativamente dependentes.

Nesta medida quanto maior o valor da RI, mais interessante é a regra.

Outras Medidas: Medidas de Interesse

Tanto o *lift* quanto o RI possuem como característica o fato de serem medidas simétricas, ou seja:

$$Lift(A \Rightarrow B) = Lift(B \Rightarrow A) e RI(A \Rightarrow B) = RI(B \Rightarrow A).$$

Isto ocorre porque estes índices possuem o objetivo de mensurar dependência entre os itens, ao invés de medir implicação (o sentido da seta "\ip").

A medida de interesse de convicção é proposta com o objetivo de avaliar uma regra de associação como uma verdadeira implicação.

$$\operatorname{conv}\left(A \Rightarrow B\right) = \frac{1 - \sup(B)}{1 - \operatorname{conf}\left(A \Rightarrow B\right)}$$

Categorização dos Dados

ID	Idade	Casado	Carros
ID1	23	N	1
ID2	25	S	1
ID3	29	N	0
ID4	34	S	2
ID5	38	S	2

ID	Idade	Carros	Casado
ID1	range1 [-∞ - 24]	range2 [0.500 - 1.500]	N
ID2	range2 [24 - 31.500]	range2 [0.500 - 1.500]	S
ID3	range2 [24 - 31.500]	range1 [-∞ - 0.500]	N
ID4	range3 [31.500 - ∞]	range3 [1.500 - ∞]	S
ID5	range3 [31.500 - ∞]	range3 [1.500 - ∞]	S

Categorização dos Dados

Sexo	Escolaridade	Tem Computador	Estado
M	Superior	S	RS
F	Posgraduação	S	SC
F	Posgraduação	S	SC
F	2 grau	N	PR
M	Superior	S	PR
M	2 grau	N	RS
F	1 grau	S	RS
M	1 grau	N	PR
M	2 grau	S	PR
F	Superior	S	RS

Masculino	Feminino	1 grau	2 grau	Superior	Posgraduacao	Computador
1	0	0	0	1	0	1
0	1	0	0	0	1	1
0	1	0	0	0	1	1
0	1	0	1	0	0	0
1	0	0	0	1	0	1
1	0	0	1	0	0	0
0	1	1	0	0	0	1
1	0	1	0	0	0	0
1	0	0	1	0	0	1
0	1	0	0	1	0	1

Bons Estudos!