University of Vienna Faculty of Mathematics

Nonlinear Optimization Problems

Milutin Popovic

Contents

1	She	et 7	1
	1.1	Exercise 43	1
	1.2	Exercise 44	2
	1.3	Exercise 45	2
	1.4	Exercise 46	3
		1.4.1 Part a	3
		1.4.2 Part b	4
	1.5	Exercise 47	4
	1.6	Exercise 48	5

1 Sheet 7

1.1 Exercise 43

Consider the optimization problem

min
$$f(x) := (x_1 + 1)^2 + (x_2 + 2)^2$$
,
s.t. $g_1(x) := -x_1 \le 0$
 $g_2(x) := -x_2 \le 0$ (1)

with $x = (x_1, x_2)^T$. For $\alpha > 0$, find the minimum $x^*(\alpha)$ of the penalty function

$$P(x;\alpha) := f(x) + \frac{\alpha}{2} ||g_{+}(x)||^{2}$$
(2)

and the limit points $x^* = \lim_{\alpha \to +\infty} x^*(\alpha)$ and $\lambda^* = \lim_{\alpha \to +\infty} \alpha g_+(x^*(\alpha))$. Find out if (x^*, λ^*) is a KKT point of the constrained optimization problem. First we find the minimum of $P(x; \alpha)$.

$$\nabla P(x;\alpha) = \nabla f(x) + \frac{\alpha}{2} \left(\nabla \left(\max(0, -x_1) \right)^2 + \nabla \left(\max(0, -x_2) \right)^2 \right)$$
 (3)

since $\frac{\partial}{\partial x_i} \max(0, -x_i)^2$ is $2x_i$ for $x_i < 0$ and 0 otherwise for all i = 1, 2, so we have the equations

$$\nabla P(x;\alpha) = \begin{pmatrix} 2(x_1+1) \\ 2(x_2+2) \end{pmatrix} + \alpha \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{4}$$

which gives

$$x^*(\alpha) = \begin{pmatrix} -2(2+\alpha)^{-1} \\ -4(2+\alpha)^{-1} \end{pmatrix}$$
 (5)

$$x^* = \lim_{\alpha \to +\infty} x^*(\alpha) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{6}$$

and

$$\lambda^* = \lim_{\alpha \to +\infty} \alpha g_+(x^*(\alpha)) \tag{7}$$

$$= \lim_{\alpha \to +\infty} {\max(0, \frac{2\alpha}{(2+\alpha)}) \atop \max(0, \frac{4\alpha}{(2+\alpha)})}$$
(8)

$$= \begin{pmatrix} 2\\4 \end{pmatrix}. \tag{9}$$

All that is left is to show that (x^*, λ^*) is a KKT point by $\nabla_x L(x^*, \lambda^*) = 0$

$$\nabla f(x^*) + \lambda_1^* \nabla g_1(x^*) + \lambda_2^* \nabla g_2(x^*) =$$
(10)

$$= \binom{2}{4} + \binom{-2}{-4} \tag{11}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \tag{12}$$

we conclude that $(x^* = (0,0)^T, \lambda^* = (2,4)^T)$ is a KKT point.

1.2 Exercise 44

Consider the optimization problem

min
$$f(x) := x^2$$
,
s.t. $g(x) := 1 - \ln(x) \le 0$ (13)

and the penalized optimization problem

$$\min_{x \in \mathbb{R}} P(x; \alpha) = f(x) + \alpha \phi \left(\frac{g(x)}{\alpha} \right). \tag{14}$$

with $\phi(t) = e^t - 1$ (exponential penalty function). For $\alpha > 0$ find the optimal solution $x^*(\alpha)$ of the penalized optimization problem and prove x^* , the limit of $x^*(\alpha)$ as $\alpha \downarrow 0$ is an optimal solution of the constrained optimization problem.

To find the minimum we differentiate $P(x;\alpha)$ w.r.t x

$$\frac{d}{dx}P(x;\alpha) = \frac{d}{dx}\left(x^2 + \alpha\left(\exp\left(\frac{1 - \ln(x)}{\alpha}\right) - 1\right)\right) = \tag{15}$$

$$=2x - e^{\frac{1}{\alpha}}x^{-\frac{\alpha+1}{\alpha}} \tag{16}$$

setting to 0 give the equation

$$x^{-\frac{\alpha+1}{\alpha}} = 2e^{-\frac{1}{\alpha}}x\tag{17}$$

$$x^*(\alpha) = \left(\frac{1}{2}e^{\frac{1}{\alpha}}\right)^{\frac{\alpha}{2\alpha+1}}.$$
 (18)

Then

$$x^* = \lim_{\alpha \downarrow 0} x^*(\alpha) = e. \tag{19}$$

First of all $f(x) = x^2$ is strictly convex and the condition $1 - \ln(x) \le 0$ is equivalent the condition $x \ge e$. So there is no $y \in \{x \in \mathbb{R} : x > e\}$ such that $f(y) = y^2 < e^2$. We conclude that $x^* = e$ is the optimal solution for the constrained optimization problem.

1.3 Exercise 45

Consider the optimization problem

min
$$f(x) := x^2$$
,
s.t. $h(x) := x - 1 = 0$ (20)

and its optimal solution $x^* = 1$. For $\overline{\alpha} > 0$ such that x^* is a minimum of the ℓ_1 -penalty function $P_1(\cdot, \alpha)$ for all $\alpha \geq \overline{\alpha}$. We have that for $\overline{\alpha}$ and x^* and some $x \in \mathbb{R}$ that

$$P_1(x;\overline{\alpha}) < P_1(x^*,\overline{\alpha}) \tag{21}$$

$$|x^2 + \overline{\alpha}|x - 1| < 1 \qquad \left|\frac{d}{dx}\right| \tag{22}$$

$$2x + \overline{\alpha} \frac{x-1}{|x-1|} < 0 \tag{23}$$

$$\alpha < -\frac{2x|x-1|}{x-1} \longrightarrow 2 \quad \text{as } x \downarrow 1 \tag{24}$$

so $\alpha \geq 2$.

1.4 Exercise 46

Consider the optimization problem in Exercise 40

min
$$f(x) := \gamma + c^T x + \frac{1}{2} x^T Q x$$
, (25)
s.t $h(x) := b^T x = 0$,

The penalized optimization problem

$$P(x;\alpha) := f(x) + \frac{\alpha}{2} \left(h(x) \right)^2 \tag{26}$$

with solution

$$x^*(\alpha) = \left(\frac{\alpha}{1 + \alpha b^T Q^{-1} b} Q^{-1} b b^T - I\right) Q^{-1} c$$
 (27)

and solution to the constrained optimization problem

$$x^* = \lim_{\alpha \to \infty} x^*(\alpha) \tag{28}$$

$$= \left(\frac{Q^{-1}bb^{T}}{b^{T}Q^{-1}b} - I\right)Q^{-1}c. \tag{29}$$

1.4.1 Part a

Prove that

$$\mu^* := \lim_{\alpha \to +\infty} \alpha h(x^*(\alpha)) \tag{30}$$

is a Lagrange multiplier corresponding to the optimal solution x^* .

$$\alpha h(x^*(\alpha)) = \alpha b^T x^*(\alpha) \tag{31}$$

$$= \alpha \left(\frac{\alpha}{1 + \alpha b^T Q^{-1} b} b^T Q^{-1} b b^T - b^T \right) Q^{-1} c \tag{32}$$

$$= \left(\frac{\alpha^2}{1 + \alpha b^T Q^{-1} b} b^T Q^{-1} b - \alpha\right) b^T Q^{-1} c \tag{33}$$

$$= \left(\frac{\alpha^2 b^T Q^{-1} b - \alpha - \alpha^2 b^T Q^{-1} b}{1 + \alpha b^T Q^{-1} b}\right) b^T Q^{-1} c \tag{34}$$

$$= \left(\frac{-\alpha}{1 + \alpha b^T Q^{-1} b}\right) b^T Q^{-1} c \tag{35}$$

(36)

then we let the $\alpha \to +\infty$ and we get

$$\mu^* = -\frac{b^T Q^{-1} c}{b^T Q^{-1} b}. (37)$$

Now we check if μ^* is the Lagrange multiplier w.r.t x^* .

$$L(x,\mu) = f(x) + \mu h(x) \tag{38}$$

$$= \gamma + c^T x + \frac{1}{2} x^T Q x + \mu b^T x, \tag{39}$$

we need the condition $\nabla L(x^*, \mu^*) = 0$, which is satisfied if

$$\nabla L(x^*, \mu^*) = c + Qx^* + \mu^* b = 0 \qquad |b^T Q^{-1}|$$
(40)

$$-\mu^* b^T Q^{-1} b = b^T Q^{-1} c + b^T x^*. (41)$$

(42)

we know that $b^T x^* = 0$ is satisfied then

$$\mu^* = -\frac{b^T Q^{-1} c}{b^T Q^{-1} b}. (43)$$

which is the same as taking the limit.

1.4.2 Part b

Popović

A bit confused here.

1.5 Exercise 47

Prove that the following functions are NCP-functions.

1. minimum function

$$\varphi(a,b) = \min\{a,b\} \tag{44}$$

2. Fischer-Burgmeister function

$$\varphi(a,b) = \sqrt{a^2 + b^2} - a - b \tag{45}$$

3. penalized minimum function

$$\varphi(a,b) = 2\lambda \min\{a,b\} + (1-\lambda)a_{+}b_{+} \tag{46}$$

where $a_{+} = \max\{0, a\}, b_{+} = \max\{0, b\}$ and $\lambda \in (0, 1)$

For 1. we have that $\min\{a, b\} = 0$ if

$$\Leftrightarrow a = 0 \quad \text{for} \quad b \ge 0 \quad \text{then} \quad ab = 0 \tag{47}$$

$$\Leftrightarrow b = 0 \quad \text{for} \quad a \ge 0 \quad \text{then} \quad ab = 0.$$
 (48)

The minimum function is an NCP-function

For 2. we have

$$\varphi(a,b) = \sqrt{a^2 + b^2} - a - b = 0 \tag{49}$$

then

$$a^2 + b^2 = (a+b)^2, (50)$$

here we need $a \ge 0$ and $b \ge 0$ to preserve the root. Solving the above we get 2ab = 0 or simply ab = 0, which means φ is an NCP-function

For 3. we have that

$$\varphi(a,b) = -2\lambda \min(a,b) + (1-\lambda) \max(0,a) \max(0,b) = 0$$
(51)

$$-2\lambda \min(a, b) = (1 - \lambda) \max(0, a) \max(0, b) = 0.$$
 (52)

The solution is either a=0 with $b\geq 0$ or b=0 with $a\geq 0$ in the first case we get that $a\cdot b=0$, which means this is an NCP function.

1.6 Exercise 48

Let $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^{n+m+p}$ be a KKT point of the optimization problem.

min
$$f(x)$$
, (53)
s.t. $g_i(x) \le 0, i = 1, ..., m$ $h_j(x) = 0, j = 1, ..., p$

all functions are considered to be twice continuously differentiable. Additionally we have that

- $g_i(x^*) + \lambda_i^* \neq 0$ for all i = 1, ..., p
- $\{\nabla g_i(x^*)\}_{i\in\mathcal{A}(x^*)}$ and $\{\nabla h_j(x^*)\}_{j=1,\dots,p}$ are linearly independent (LICQ)
- second order sufficient optimality condition is satisfied

Let $\Phi: \mathbb{R}^{n+m+p} \to \mathbb{R}^{n+m+p}$ be defined as

$$\Phi := \begin{pmatrix} \nabla_x L(x, \lambda, \mu) \\ h(x) \\ \phi(-g(x), \lambda) \end{pmatrix}$$
 (54)

where

$$\phi(-g(x),\lambda) := \begin{pmatrix} \varphi(-g_1(x),\lambda_1) \\ \vdots \\ \varphi(-g_m(x),\lambda_1) \end{pmatrix} \in \mathbb{R}^m$$
 (55)

and $\varphi : \mathbb{R}^2 \to \mathbb{R}$ with $\varphi(a,b) = \min\{a,b\}$. Show that the matrix $\nabla \Phi$ is well defined and regular. The matrix is well defined because first of all, the functions f, g_i, h_j are C^2 and $\min\{-g_i(x), \lambda_i\}$ is differentiable because of the strict complementarity condition, meaning that

$$\nabla \varphi(-g_i(x^*, \lambda_i^*)) = \begin{cases} -\nabla g_i(x^*) & i \in \mathcal{A}(x^*) \\ 0 & i \notin \mathcal{A}(x^*) \end{cases}$$
(56)

Then we need to show that he matrix $\nabla \Phi(x^*, \lambda^*, \mu^*)$ is regular, first of all the matrix has the following form

$$\nabla \Phi = \begin{pmatrix} \nabla_x^2 L(x, \lambda, \mu) & \nabla h(x)^T & \nabla \phi(x)^T \\ \nabla h(x) & 0 & 0 \\ \nabla \phi(x) & 0 & 0 \end{pmatrix} \in \mathbb{R}^{(n+m+p) \times (n+m+p)}.$$
 (57)

To show that $\nabla \Phi(x^*, \lambda^*, \mu^*)$ is regular we show that $\ker (\nabla \Phi(x^*, \lambda^*, \mu^*)) = \emptyset$. Let $q = (q^{(1)}, q^{(2)}, q^{(3)})^T \in \mathbb{R}^{n+m+p}$ then we need to find the solution of

$$\nabla \Phi(x^*, \lambda^*, \mu^*) \begin{pmatrix} q^{(1)} \\ q^{(2)} \\ q^{(3)} \end{pmatrix} = 0.$$
 (58)

These are three equations

$$\nabla_x^2 L(x^*, \lambda^*, \mu^*) q^{(1)} + \nabla h(x^*)^T q^{(2)} + \nabla \phi(x^*)^T q^{(3)} = 0$$
 (59)

$$\nabla h(x^*)q^{(1)} = 0 (60)$$

$$\nabla \phi(x^*)q^{(1)} = 0. \tag{61}$$

By multiplying 59 with $(q^{(1)})^T$ we get that

$$(q^{(1)})^T \nabla_x^2 L(x^*, \lambda^*, \mu^*) q^{(1)} + (q^1)^T \nabla h(x^*)^T q^{(2)} + (q^1)^T \nabla \phi(x^*)^T q^{(3)} =$$
(62)

$$= (q^{(1)})^T \nabla_x^2 L(x^*, \lambda^*, \mu^*) q^{(1)} + \sum_{j=1}^p q_j^{(2)} \underbrace{(q^{(1)})^T \nabla h_j(x^*)}_{=0 \text{ (60)}} + \sum_{i=1}^m q_i^{(3)} \underbrace{(q^{(1)})^T \nabla \phi (-g_i(x^*), \lambda_i^*)}_{=0 \text{ (61)}}$$
(63)

$$=0,$$

in summary

$$(q^{(1)})^T \nabla_x^2 L(x^*, \lambda^*, \mu^*) q^{(1)} = 0.$$
 (65)

Since second order sufficient optimality condition is satisfied then $q^{(1)} \in T_2(x^*)$, and the only solution is $q^{(1)} = 0$. Equation 59 is left with

$$\nabla h(x^*)^T q^{(2)} + \nabla \phi(x^*) q^{(3)} = \tag{66}$$

$$= \sum_{j=1}^{p} q_j^{(2)} \nabla h_j(x^*) + \sum_{i \in \mathcal{A}(x^*)} q_i^{(3)} (-\nabla g_i(x^*)) = 0$$
 (67)

since LICQ is fulfilled these vectors are linearly independent and by definition of linear independence the only $q^{(2)}, q^{(3)}$ fulfilling the above condition are $q^{(2)} = 0$ and $q^{(3)} = 0$. Thereby q = 0 and $\ker(\nabla\Phi(x^*, \lambda^*, \mu^*)) = \emptyset$, so the matrix is regular.