Homework 2

Jinyuan Wu

February 18, 2024

1

1.1

Comparison between the approximate and exact susceptibilities. We consider a driven damped simple harmonic oscillator (following L8.N3). We assume that $\dot{p} = \sum_i f_i = -kq - D\dot{q} + f(t)$, where k, D, and f(t) are the spring constant, damping, and driving force, respectively. In what follows, we assume that $f(t) = f_o \cos(\omega t + \phi)$.

(a) Starting from Newton's equations, find the first order equation of motion in complex form. [Hint: you should find something like $\dot{a} = -i\omega_o a + (\ldots)$, and you're looking to identify all of the (\ldots) terms.]

When there is no damping the EOMs are

$$\dot{p} = -kq, \quad \dot{q} = \frac{p}{m},\tag{1}$$

and the following definition of the modes

$$q = \sqrt{\frac{1}{2m\omega_0}}(a^* + a), \quad p = i\sqrt{\frac{m\omega_0}{2}}(a^* - a), \quad \omega_0^2 = \frac{k}{m}$$
 (2)

turns the Hamiltonian into $H = \omega_0 a^* a$. Under this definition of a, a^* , the EOM with damping and driving therefore becomes

$$\dot{a}^* - \dot{a} = i\omega_0(a^* + a) - \frac{D}{m}(a^* - a) - i\sqrt{\frac{2}{m\omega_0}}f(t),$$

$$\dot{a}^* + \dot{a} = i\omega_0(a^* - a),$$
(3)

from which we find

$$\dot{a} = -i\omega_0 a + \frac{D}{2m} (a^* - a) + i\sqrt{\frac{2}{m\omega_0}} f(t)$$
(4)

and its complex conjugate

$$\dot{a}^* = i\omega_0 a^* - \frac{D}{2m} (a^* - a) - i\sqrt{\frac{2}{m\omega_0}} f(t).$$
 (5)

(b) Perform the rotating wave approximation to the solution you obtained in part (a). Identify the terms that are eliminated by this approximation.

Now we do RWA and let $a = \bar{a}e^{-i\omega_0 t}$, and the EOM of a becomes

$$\dot{\bar{a}}e^{-i\omega_0t} + \bar{a}(-i\omega_0)e^{-i\omega_0t} = -i\omega_0\bar{a}e^{-i\omega_0t} + \frac{D}{2m}(\bar{a}^*e^{i\omega_0t} - \bar{a}e^{-i\omega_0t}) + i\sqrt{\frac{2}{m\omega_0}}f(t),$$

or

$$\dot{\bar{a}} = -\frac{D}{2m}(\bar{a} - \bar{a}^* e^{i2\omega_0 t}) + i\sqrt{\frac{2}{m\omega_0}} e^{i\omega_0 t} f(t).$$
(6)

The fast oscillating terms include the $\frac{D}{2m}\bar{a}^*\mathrm{e}^{\mathrm{i}2\omega_0t}$ term and the $\mathrm{e}^{\mathrm{i}\omega t}$ part of f(t), assuming that ω is close to ω_0 . If these terms are removed, the resulting EOM is

$$\dot{\bar{a}} = -\frac{D}{2m}\bar{a} + i\sqrt{\frac{1}{2m\omega_0}} \cdot \frac{1}{2}f_0 e^{-i(\omega - \omega_0)t}.$$
 (7)

(c) Use the approximate equation of motion from part (b) to find the complex susceptibility, $\alpha_a[\omega]$, that relates the complex wave amplitude and force as $a[\omega] = \alpha_a[\omega]f[\omega]$.

Noting that in the stationary solution $\bar{a} \propto e^{-i(\omega - \omega_0)t}$, we have

$$a(t) = e^{-i\omega_0 t} \bar{a} = \frac{1}{-i(\omega - \omega_0) + \frac{D}{2m}} \frac{i}{\sqrt{2m\omega_0}} \cdot \frac{1}{2} f_0 e^{-i\omega t}, \tag{8}$$

and therefore the response of a is (we divide a(t) by $f_0e^{-i\omega t}/2$)

$$\alpha_a[\omega] = -\frac{1}{\sqrt{2m\omega_0}} \frac{1}{\omega - \omega_0 + i\frac{D}{2m}}.$$
(9)

1.2

(a) Starting from the second order equation, $m\ddot{q} = \sum_i f_i = -kq - D\dot{q} + f(t)$, find the exact susceptibility $q[\omega] = \alpha_q[\omega]f[\omega]$ of the driven-damped SHO.

The EOM of q is

$$m\ddot{q} + D\dot{q} + kq = \frac{f_0}{2} (e^{i\omega t} + e^{-i\omega t}), \qquad (10)$$

and since the system is linear, we can only consider the response of q to the $e^{-i\omega t}$ component of f, and get

$$\alpha_q[\omega] = \frac{1}{-m\omega^2 - iD\omega + k} = -\frac{1}{m} \frac{1}{\omega^2 - \omega_0^2 + i\frac{D}{m}\omega}.$$
 (11)

(b) Compare the approximate response you obtained in part (1.1c) with the exact response you found in (1.2a). [Remember, q(t) is contained in a(t).]

Since $q = \sqrt{\frac{1}{2m\omega_0}}(a^* + a)$, and the response of a^* to $e^{-i\omega t}$ is the complex conjugate of the response of a to $e^{i\omega t}$, we find

$$\alpha_q^{\text{RWA}}[\omega] = \frac{1}{\sqrt{2m\omega_0}} (\alpha_a^{\text{RWA}}[\omega] + \alpha_a^{\text{RWA}}[-\omega]^*)$$

$$= -\frac{1}{2m\omega_0} \left(\frac{1}{\omega - \omega_0 + i\frac{D}{2m}} + \frac{1}{-\omega - \omega_0 - i\frac{D}{2m}} \right)$$

$$= -\frac{1}{m} \frac{1}{\left(\omega + \frac{iD}{2m}\right)^2 - \omega_0^2}.$$
(12)

It can be seen that the denominator of $\alpha^{\text{RWA}}[\omega]$ has an additional term of $-\frac{D^2}{4m}$.

(c) Can you find a set of approximations that will make your exact susceptibility converge with the susceptibility you found from the RWA?

The validity of RWA is equivalent to

$$\frac{D^2}{4m^2} \ll |\omega^2 - \omega_0^2| \,. \tag{13}$$

2

Time Modulation of Dielectric Constant: Next, we consider the impact of a time-modulated dielectric constant on the modes of a resonator. In this case, we assume that a standing-wave mode of the form $\mathbf{E}(r,t)=(a-a^*)\mathbf{E}^o(r)$ with real-valued field distribution $\mathbf{E}^o(r)$ is localized within a structured dielectric, having dielectric distribution $\varepsilon_r(r)$. For example, you could imagine that this is an eigenmode of a dielectric photonic crystal resonator of the type seen as Fig 8 in Chapter 7 of [JJSJ]. In the absence of a dielectric perturbation, the Hamiltonian takes the form $H_a=\omega_o a^*a$, where ω_o is the natural frequency of this time-harmonic mode.

- (a) As a starting point, find an expression for δH associated with an arbitrary dielectric perturbation $\Delta \varepsilon_r(r)$.
- (b) Using your result from part (a), find an equations of motion for a and a^* . (c) Next, we assume that perturbation to the dielectric constant takes the form $\Delta \varepsilon_r(t) = \beta \varepsilon_r(r) \cos{(2\omega_o t + \phi)}$, where β is a small ($\beta \ll 1$) unitless constant. Find the new form of our equations of motion from part (b). [Remember, our field normalization permits us to reduce $\langle \mathbf{E}^o | \varepsilon_o \varepsilon_r(r) | \mathbf{E}^o \rangle$ to a constant already defined above.] (d) Using a trial solution in the form $a(t) = \bar{a}(t)e^{-i\omega_o t}$, apply the rotating wave approximation to the equations of motion from part (c). [Hint: your results should closely resemble the problem involving a child on a swing.] (e) Treating $\Delta \varepsilon_r(r)$ as a perturbation on our original mode, solve for the first order correction to our mode amplitude.

3

3.1

Third order nonlinear polarization: In this problem, we consider the effect of third order nonlinearity on a single time-harmonic mode. A single optical mode, $\mathbf{E}(\mathbf{r},t)$, interacts with a polarizable medium. We assume that the medium produces a polarization field $\mathbf{P} = \chi^{(3)} |\mathbf{E}|^2 \mathbf{E}$, where $\chi^{(3)}$ is a constant. In the absence of the polarizable medium (i.e., $\chi^{(3)} = 0$), the Hamiltonian for the system is $H(a, a^*) = \omega a^* a$ where a and a^* are the complex mode amplitudes. As we have done in lecture, we assume that the mode amplitude is related to the field by $\mathbf{E}(\mathbf{r},t) = (a-a^*)\mathbf{E}^o(\mathbf{r})$.

- (a) Find an expression for the interaction Hamiltonian, δH , in terms of the electric fields.
- **(b)** Express your interaction Hamiltonian from part (a) as products of a, a*; be sure to define all of the coefficients in this expression. [The coefficients will include integrals over space.]
- (c) Find à using Poisson brackets.
- (d) From part (c), show that the mode acquires intensity dependent frequency shift. Explain the significance of this term.