Memória Externa

João Pedro Carneiro de Almeida Evandro Felipe Rodrigues

Memória

- □ I Discos magneticos
 - □ Características físicas
 - Organização de dados
 - Mecanismos de leitura/escrita
 - Parâmetros de desempenho
 - □ RAID
- □ II Fitas Magnéticas

Memória Externa

- ☐ III Disco ópticos
 - □ CD-ROM
 - CD-Writable
 - □ CD-R/W
 - DVD
- □ IV Dispositivos SSD
 - □ Características físicas
 - □ Arquitetura
 - Vantagens

Discos Magnéticos

Discos Magnéticos - Material

Discos Magnéticos

- Encapsulamento
 - □ Floppy- flexível(disquetes)
 - □ Hard disk Winchester(discos rigidos)
 - Removable hard disk(discos rigidos removiveis)

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - □ Espaço fixo
 - Flutuante (Winchester)

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - □ Espaço fixo
 - Flutuante (Winchester)

Organização de Dados

- □ Anéis concêntricos ou trilhas
 - Espaços (lacunas) entre trilhas
 - □ Redução de lacuna ⇒ aumento da capacidade
 - Mesmo número de bits por trilha
 - Densidade de empacotamento variável
 - Velocidade angular constante
- □ Trilhas divididas em setores
- O menor tamanho de bloco é um setor
 - Dados transferidos sempre em Blocos
- □ Pode ter mais de um setor por bloco

Organização dos Dados no Disco

Gravação dos Dados no Disco

Velocidade angular constante

Gravação em múltiplas zonas

Gravação com velocidade angular constante

Gravação com velocidade angular constante

Mesma quantidade de bits por trilha

A densidade das trilhas mais internas é a maior possível

Portanto, maior que a densidade da trilha mais externa

Gravação em múltiplas zonas

- •Zona azul 5 trilhas com 16 setores cada;
- •Zona cian 5 trilhas com 14 setores cada;
- •Zona verde 4 trilhas com 12 setores;
- •Zona amarela 3 trilhas com 11 setores;
- •Zona vermelha 3 trilhas com 9 setores.

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - □ Espaço fixo
 - □ Flutuante (Winchester)

Cabeçotes Fixos e Móveis

- □ Cabeçote fixo (raro)
 - Um único cabeçote de escrita e leitura por trilha
 - Cabeçotes montados sobre braços fixos e rígidos
- Cabeçote móvel
 - Um cabeçote de escrita e leitura por lado (face)
 - Montado sobre um braço móvel
 - O movimento do cabeçote é responsável pela maior parte do tempo de acesso

Estrutura de acesso aos dados Cabeçote móvel

Cabeçote de Leitura e Escrita

Cabeçote de Leitura e Escrita

Cabeçote de Leitura e Escrita

Cabeçote de Leitura e **Escrita**

MR

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - Espaço fixo
 - □ Flutuante (Winchester)

Discos Removíveis ou Não

- Disco removível
 - Pode ser removido do drive e substituído por outro disco
 - Permite capacidade de armazenamento ilimitada
 - Facilita transferência de dados entre sistemas
- Disco não removível
 - Montado permanentemente no drive
 - Interface de mais alto desempenho

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - □ Espaço fixo
 - □ Flutuante (Winchester)

Um único lado ou dupla face

- Esta característica diz respeito apenas a configuração da face magnetizada do disco
- O mais comum é o de dupla face
- Os Sistemas mais baratos usam única face

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - Espaço fixo
 - □ Flutuante (Winchester)

Disco de Múltiplos Pratos

Barracuda hard disk com 10 discos

Disco de Múltiplos Pratos

Disco de Múltiplos Pratos

- cabeçote movel
 - cabeça de leitura e gravação em casa superfície de placa.
- Os cabeçotes estão juntos e alinhados
- As trilhas alinhadas em cada prato formam cilindros
- Os dados são organizados ao longo do cilindro

Cilindros

Dados organizados nos cilindros

- •Reduz o movimento do cabeçote
- •Aumenta a velocidade
 - Aumenta a taxa de transferência de dados

Resumo até agora

Movimento da cabeça	Pratos
Cabeça fixa (uma por trilha)	Único prato
Cabeça móvel (uma por superfície)	Múltiplos pratos
Portabilidade do disco	Mecanismo da cabeça
Disco não removível	Contato (disquete)
Disco removível	Lacuna fixa
	Lacuna aerodinâmica (Winchester)
Faces	
Única face	
Dupla face	

Características

- Organização dos dados
- Cabeçote fixo (raro) ou móvel
- Disco fixo ou removível
- Um único lado ou dupla face
- Um único prato ou diversos
- ☐ Mecanismo de cabeçote
 - Contato (disco floppy)
 - Espaço fixo
 - □ Flutuante (Winchester)

Winchester Hard Disk – IBM em 1973

- Unidade hermeticamente fechada
- Um ou mais pratos (discos)
- Os cabeçotes flutuam sobre as camadas de ar
- Permite grande proximidade entre o cabeçote e o disco, mas sem contato
- □ por possuir 30 mb de armazenamento fixo e 30 mb de armazenamento removivel, recebeu o nome do rifle 30/30 winchester

Disco Floppy (Disquete)

- □ tamanhos (8", 5.25", 3.5")
- Capacidade limitada e pequena
 - □ Até 1,44 MB
 - □ ja existiu um formato de 2,88 MB que não teve

sucesso

- Barato
- Bem lento

Removable Hard Disk

- ☐ JAZ
- □ L-120
- ☐ ZIP

Removable Hard Disk

- □ JAZ
- □ L-120
- ☐ ZIP

- Não tão barato
- □ 1 GB

Removable Hard Disk

- ☐ JAZ
- □ L-120
- ☐ ZIP

- Também lia disquetes de 3.5"
- Não se tornou muito popular

Removable Hard Disk

- ☐ JAZ
- □ L-120
- □ ZIP

- Barato
- Chegou a ser muito comum
- Apenas 100 MB

Parametros tipicos de uma unidade de disco rigido

Características	Seagate Barracuda ES.2	Seagate Barracuda 7200.10	Seagate Barracuda 7200.9	Seagate	Hitachi Microdrive
Aplicação	Servidor de alta capacidade	Desktop de alto desempenho	Desktop em nível de entrada	Laptop	Dispositivos portáteis
Capacidade	1 TB	750 GB	160 GB	120 GB	8 GB
Tempo mínimo de busca entre trilhas	0,8 ms	0,3 ms	1,0 ms	-	1,0 ms
Tempo médio de busca	8,5 ms	3,6 ms	9,5 ms	12,5 ms	12 ms
Velocidade do eixo	7200rpm	7200 rpm	7200 rpm	5 400 rpm	3600 rpm
Atraso rotacional médio	4,16 ms	4,16 ms	4,17 ms	5,6 ms	8,33 ms
Taxa de transferência máxima	3 GB/s	300 MB/s	300 MB/s	150 MB/s	10 MB/s
Bytes por setor	512	512	512	512	512
Trilhas por cilindro (número de superfícies do prato)	8	8	2	8	2

Parâmetros de Desempenho

Estrutura de acesso aos dados

Desempenho

- □ Tempo de busca(seek time)
- □ Atraso rotacional(latencia rotacional)
- □ Taxa de transferência
- □ Tempo de acesso = busca + atraso rotacional + tempo de transferência

1. Tempo de busca: T_s

- Na prática, não se calcula o tempo de acesso para cada operação
- Um valor médio é fornecido

Exemplo:

Considere um disco com as seguintes características:

- •Tempo de busca médio: $T_s = 4 \text{ ms}$
- •Velocidade de rotação: $\omega = 15000 \text{ rpm}$
- •500 setores (por trilha) de 512 bytes

Deseja-se ler um arquivo:

- •1.28 Mbytes = 1.28×10^6 Bytes
- •Armazenado em 2500 setores (2500x512 = 1.28 MB)
- •Ou seja, em 5 trilhas (5x500 = 2500)

1 – Armazenamento sequential

Tempo total de leitura da primeira trilha:

```
Tempo médio de busca = 4 ms

Atraso rotacional médio = 2 ms = [1/(2r)]

Leitura de 500 setores = 4 ms = [512x500/((15000/60)x(512x500))]

Total = 10 ms
```

Tempo total = 10ms + [4 trilhas x (2ms + 4ms)] = 34 ms

2 – Armazenamento aleatório

Tempo total de leitura do primeiro setor:

Tempo médio de busca = 4 ms

Atraso rotacional médio = 2 ms

Leitura de 1 setor = 0.008 ms

Total = 6.008 ms

Cada setor será lido em 6.008 ms:

Tempo total = $2500 \times 6.008 = 15.02 \text{ s}$

- Redundant Array of Independent Disks
- Usualmente 7 níveis (0 a 6)
- Conjunto de discos vistos como um único drive lógico de disco pelo SO
 - Dados distribuídos por drives físicos

Categoria	Nível	Descrição	Discos exigidos	Disponibilidade dos dados	Capacidade para grande transferência de dados de E/S	Taxa para pequena solicitação de E/S
Striping	0	Não redundante	N	Menor que disco único	Muito alta	Muito alta para leitura e gravação
Espelhamento	1	Espelhado	2//	Maior que RAID 2, 3, 4 ou 5; menor que RAID 6	Maior que único disco para leitura; semelhante a único disco para gravação	Até o dobro de um único disco para leitura; semelhante a único disco para gravação
Acesso paralelo	2	Redundante via código de Hamming	N+m	Muito mais alta que único disco; comparável a RAID 3, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco
	3	Paridade de bit intercalada	N+1	Muito mais alta que único disco; comparável a RAID 2, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco
Acesso independente	4	Paridade de bloco intercalada	N+1	Muito mais alta que único disco; comparável a RAID 2, 3 ou 5	Semelhante a RAID 0 para leitura; muito menor que único disco para gravação	Semelhante a RAID 0 para leitura; muito menor que único disco para gravação
	5	Paridade de bloco distribuída e intercalada	<i>ll</i> + 1	Muito mais alta que único disco; comparável a RAID 2, 3 ou 4	Semelhante a RAID 0 para leitura/ menor que único disco para gravação	Semelhante a RAID 0 para leitura; geralmente, menor que único disco para gravação
	6	Paridade de bloco dual distribuida e intercalada	N+2	Mais alta de todas as alternativas listadas	Semelhante a RAID 0 para leitura; menor que RAID 5 para gravação	Semelhante a RAID 0 para leitura; muito menor que RAID 5 para gravação

- Sem redundância
- Dados distribuídos ao longo de todos os discos
- Aumenta velocidade
 - Múltiplas requisições de dados provavelmente não são feitas ao mesmo disco

Aplicações

O RAID 0 é ideal para os aplicações que necessitam do máximo de velocidade e capacidade.

Aplicações que necessitam de desempenho e capacidade acima da média e o baixo custo acima de confiabilidade avançada como em supercomputadores

- Discos espelhados
- Dados distribuídos ao longo dos discos
- 2 cópias de cada tira em discos separados
- Leitura feita de uma das cópias
- Escrita em ambas
- □ Fácil recuperação
- □ Caro

- □ Discos sincronizados
- acesso paralelo
- Camadas de disco (tiras) muito pequenas
 - Com frequência compostas de alguns bytes ou palavras
 - Acessa todos todos os discos simultaneamente
- Correção de erros calculada ao longo dos bits correspondentes nos discos
- □ Redundância excessiva
 - □ Caro
 - Não utilizado

Taxas de transferência muito altas

- □ Similar ao RAID 2
- Apenas um disco de redundância, independentemente do tamanho da sequência
- Um único bit de paridade para cada conjunto de bits correspondentes
- Dados em drives danificados podem ser recuperados usando os dados restantes e a informação de paridade
- Taxas de transferência muito altas

Aplicações

Mesmo que RAID 0, com redundância.

Não é recomendado para uma utilização intensiva com arquivos não sequenciais, uma vez que o desempenho de leitura aleatório é prejudicado (discos sincronizados).

- Cada disco opera independentemente
- Bom para altas taxas de requisição de E/S
 - □ E/S distintas podem ser satisfeitas em paralelo
- Camadas de disco (blocos) grandes
- □ Paridade bit a bit calculadas ao longo de cada disco
- Paridades guardadas no disco de paridade

- □ Similar ao RAID 4
- □ Paridade calculada ao longo de todos os discos
- Alocação alternada de camadas de paridade
 - □ Evita o gargalo do disco de paridade do RAID 4
- □ Muito usado em servidores de rede

Aplicações

O RAID 5 é útil as aplicações que necessitam de um bom desempenho e acesso constante aos respectivos dados.

- Dois cálculos de paridades distintos
- Resultado armazenado em discos diferentes (similar ao RAID 5)

Fitas Magneticas

Características

- Mesmo principio dos discos magneticos
- Fita de poliester coberta com material magnetizavel
- Semelhante a gravadores de fita domésticos
- □ 0,38 a 1,27 cm de largura

Características

Características

- Dados estruturados em trilhas paralelas no comprimento da fita
- primeiros modelos possuíam nove trilhas
- gravação paralela ou serial

Gravação por Serpentina

Características

	LTO-1	LTO-2	LTO-3	LT0-4	LTO-5	LT0-6
Data de lançamento	2000	2003	2005	2007	TBA	TBA
Capacidade compactada	200 GB	400 GB	800 GB	1600 GB	3,2 TB	6,4TB
Taxa de transferência compactada (MB/s)	40	80	160	240	360	540
Densidade linear (bits/mm)	4880	7398	9638	13300		
Trilhas de fita	384	512	704	896		
Comprimento da fita	609 m	609 m	680 m	820 m		
Largura da fita (cm)	1,27	1,27	1,27	1,27		
Elementos de gravação	8	8	16	16		

MEMÓRIA ÓPTICA

- CD-ROM
- CD-R
- CD-RW
- DVD

CD

- Compact Disk
- Dados Computacionais

- Resistencia Superior ao antecessor
- Dispositivos de Correção Garantindo uma gravação de dados mais confiável

• Fabricação - Resina, como o policarbonato.

• Informações registradas digitalmente - Sulcos microscópicos na superfície do policarbonato.

- Laser de precisão Alta intensidade
- Disco mestre Substrato para estampar cópias no policarbonato
- Superfície altamente refletora Aluminio e Ouro

- Superfície protegida contra poeira e arranhões - Camada externa de acrílico claro.
- Rótulo pode ser aplicado por serigrafia (silkscreen) sobre o acrílico.

- Leitura feita com laser de baixa frequência
- Sulcos e Pistas Diferença captada por sensor convertida em sinais digitais

- Trilhas concêntricas Trilha espiral
- Dividida em partes iguais Varridas na mesma velociade
- Laser de Velocidade Linear constante

 Dados no CD-ROM são organizados como uma sequência de blocos

• Sync: o campo de sincronismo identifica o início de um bloco.

• Cabeçalho: o cabeçalho contém o endereço de bloco e o byte de modo. O modo 0 especifica um campo de dados em branco; o modo 1 especifica o uso de um código de correção de erro e 2.048 bytes ,o modo 2 especifica 2.336

bytes

• Dados: dados do usuário.

 Auxiliar: dados adicionais do usuário no modo 2. No modo 1, este é um código de correção de erro com 288 bytes.

• Vantages:

- Facilidade de Replicação em massa

- Disco Removível

• Desvantages:

- Apenas para leitura

- Tempo de acesso aos dados - Até 0,5s

Recordable

• Gravável - Uso e laser de média intensidade

Uma gravação - Múltiplas Leituras

Camada extra de substrato

 O substrato é usado para mudar a refletividade

Ativado por um laser de alta intensidade

• Lido em drive de CD-R e CD-ROM.

• Arquivamento de documentos e arquivos.

• Rewritetale

 Pode ser gravado e apagado diversas vezes - 500.00 a 1.000.000

• Técnica de mudança de Fase

• Fase amorfa e Fase cristalina

- Vantagem sobre os outros discos
- Disputa com discos magnéticos - Confiabilidade e durabilidade

- Disco Versátil Digital
- Substituindo VHS
- Evolução do CD

• Maior espaço de armazenamento

• Alta qualidade de imagem

- A maior capacidade dar-se por:
- Menor distância entre os bits
- Laser com comprimento de onda mais curto
- Segunda camada de sulcos e pistas
- O DVD-ROM pode ser de dois lados

Discos Ópticos de Alta Definição

- Feitos para armazenar conteúdos ainda maiores
- Bits mais proximos
- Comprimento de onda mais curto faixa do azul violeta

Discos Ópticos de Alta Definição

- HD DVD vs BLU-Ray DVD
- Existem três versões:
- Somente leitura (BD-ROM),
- Gravável uma vez (BD-R)
- Regravável (BD-RE).

Discos Ópticos de Alta Definição

Solid State Drives

- Circuito eletrônico construído com semicondutores.
- Feito com componentes de estado sólido
- Substituição ao drive de disco rígido

- Comparado ao HDD:
- Operações de entrada/saída por segundo de alto desempenho: aumenta significativamente o desempenho dos subsistemas de E/S.
- Durabilidade: menos suscetível a choque físico e vibração.

- Comparado ao HDD:
- Longa vida útil: SSDs não são suscetíveis a desgaste mecânico.
- Baixo consumo de energia: SSDs usam consideravelmente menos energia que HDDs de tamanhos comparáveis.

- Comparado ao HDD:
- Capacidades de funcionamento mais silenciosas e resfriadas: menos espaço exigido, menores custos de energia e empresas mais ecológicas.
- Menores tempos de acesso e taxas de latência: acima de 10 vezes mais rápido que os discos giratórios em um HDD.

Organização

SSD SSD Interface Controlador Endereçamento Buffer de Correção dados/cache de erro Componentes de memória flash Componentes de memória flash Componentes de memória flash Componentes de memória flash

- Organização
- Controlador: proporciona o interfaceamento e a execução do firmware do dispositivo de SSD.
- Endereçamento: a lógica que apresenta a função de seleção nos componentes de memória flash.

- Organização
- Buffer de dados/cache: componentes de memória RAM de alta velocidade usados para combinação da compatibilização da velocidade e para o aumento da taxa de transferência de dados.
- Correção de erros: a lógica para a detecção e correção de erros.
- Componentes de memória flash: chips individuais de flash NAND.

Exercícios

- 1 Como os dados são lidos de um disco magnético? Defina os termos trilha, cilindro e setor
- 2- Defina resumidamente os sete níveis de RAID.
- 3 Que diferenças entre um CD e um DVD são responsáveis pela maior capacidade de armazenamento do último?

Obrigado!