Newtonian Mechanics

Javier Orduz-Ducuara

¹Baylor University

July 13, 2021

Contents

Objectives

Fundamental concepts

Activity

Conclusions

Objectives

We want to appraise historical facts and concepts related to Physics [(Check the general objective)]

Particular Objectives

- Describe with cards a general description of Newtonian Mechanics.
- Revise fundamental concepts of Physics.
- Do some exercises with the three Newton's laws.

Classical Physics worked to describe our universe at our scale (before 1900s) and some branches include thermodynamics, electromagnetism, optics, and others areas.

[See more branches]

Classical Mechanics is the theory of mechanics based on Newton's laws of motion for describing how the bodies move.

Mechanics . . .

We use the Newton's laws of motion,

The Newton's Laws

Concepts

First law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line)

$$\vec{a} = 0$$

$$\sum \vec{F} = 0$$

Second law

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

$$\sum \vec{F} = m\vec{a} \tag{2}$$

Third law

If two objects interact, the force \vec{F}_{12} exerted by object 1 on object 2 is equal in magnitude to and opposite in direction to the force \vec{F}_{21} exerted by object 2 on object 1:

$$\vec{F}_{12} = -\vec{F}_{21} \tag{3}$$

We will be unable to talk about every concept related to Classical, Mechanics or Newtonian Physics, such as,

- Inertia
- Acceleration
- Force

- Inertial and non-inertial frames
- Mass
- Vector, scalars

But I let you know some examples.

First

Newton's First Law

An object at rest remains at rest.

An object in motion remains in motion at a constant speed and in a straight line (constant velocity) unless acted upon by an UNBALANCED force.

Newton's Second Law

If you apply more force to an object, it accelerates at a higher rate.

Third

Activity

Go to this PADLET or the QR code to contribute to the Newtonian Mechanics chart padlet

- We described with cards a general description of Newtonian Mechanics.
- ▶ We revised fundamental concepts of Physics.
- ▶ We did some exercises with the three Newton's laws.

References

[1] David Halliday, Robert Resnick, and Jearl Walker. Fundamentals of physics. John Wiley & Sons, 2013.

