

EXHIBIT A
VERSION WITH MARKINGS TO SHOW CHANGES MADE

1 151. (Amended) A method of controlling a memory device by a memory
2 controller, wherein the memory device includes a plurality of memory
3 cells, the method of controlling the memory device comprises:

4 providing first block size information to the memory device,
5 wherein the first block size information is provided by the memory
6 controller and [defines] is representative of a first amount of data to
7 be input by the memory device [in response to a write request]; and

8 issuing a first operation code [write request] to the memory
9 device, wherein in response to the first operation code, [write
10 request] the memory device inputs the first amount of data
11 [corresponding to the first block size information].

1 152. The method of claim 151 wherein the memory device inputs the
2 first amount of data synchronously with respect to an external clock
3 signal.

1 153. (Amended) The method of claim 151 further including:

2 providing second block size information to the memory device,
3 wherein the second block size information defines a second amount of
4 data to be input by the memory device [in response to a write request];
5 and

6 issuing a second operation code [write request] to the memory
7 device, wherein in response to the second operation code [write
8 request], the memory device inputs the second amount of data
9 [corresponding to the second block size information].

1 154. (Amended) The method of claim 151 wherein the first block
2 size information and the first operation code [write request] are
3 included in a request packet.

1 155. (Amended) The method of claim 154 wherein the first block
2 size information and the first operation code [write request] are
3 included in the same request packet.

1 156. (Amended) The method of claim 151 further including providing
2 the first amount of data [corresponding to the first block size
3 information] to the memory device.

1 157. The method of claim 156 wherein the first amount of data is
2 provided to the memory device after a delay time transpires.

1 158. (Amended) The method of claim 157 [156] wherein the delay
2 time is representative of a number of clock cycles of [a] an external
3 clock signal.

1 159. (Amended) The method of claim 151 wherein the first block
2 size information is a binary representation of the first amount of data
3 [to be input in response to the first write request].

1 160. (Amended) The method of claim 151 wherein the first amount
2 of data [corresponding to the first block size information] is output,
3 by the memory controller, [input] synchronously during a plurality of
4 clock cycles of an [the] external clock signal.

1 161. (Amended) A method of operation in a synchronous memory
2 device, wherein the memory device includes a plurality of memory cells,
3 the method of operation of the memory device comprises:

4 receiving first block size information from a memory controller,
5 wherein the first block size information [defines] represents a first
6 amount of data to be input by the memory device in response to the
7 operation code [a write request];

8 receiving an operation code, [a first write request] from the
9 memory controller, synchronously with respect to an external clock
10 signal; and

11 inputting the first amount of data [corresponding to the first
12 block size information] in response to the operation code [first write
13 request].

1 162. (Amended) The method of claim 161 wherein inputting the first
2 amount of data includes receiving the first amount of data [the first
3 amount of data corresponding to the first block size information is
4 sampled] synchronously with respect to the external clock signal.

1 163. (Amended) The method of claim 161 wherein the first amount
2 of data is sampled synchronously during a plurality of clock cycles of
3 the external clock signal [further including:

4 [receiving second block size information, wherein the second block
5 size information defines a second amount of data to be input in
6 response to a write request;

7 receiving a second write request from the bus controller; and
8 inputting the second amount of data corresponding to the second
9 block size information], in response to the second operation code write
10 request].

1 164. (Amended) The method of claim 161 wherein the first block
2 size information and the operation code [first write request] are
3 included in a request packet.

1 165. (Amended) The method of claim 164 wherein the first block
2 size information and the operation code [first write request] are
3 included in the same request packet.

1 166. (Amended) The method of claim 161 wherein the first block
2 size information is a binary representation of the first amount of data
3 to be input in response to the operation code [first write
4 request].

1 167. (Amended) The method of claim 161 wherein the first amount
2 of data [corresponding to the first block size information] is [input]
3 output, by the memory controller, synchronously during a plurality of
4 clock cycles of [an] the external clock signal.

1 168. (Amended) The method of claim 161 further including
2 generating an internal clock signal using a delay locked loop and the
3 [an] external clock signal, wherein the first amount of data
4 [corresponding to the first block size information] is input
5 synchronously with respect to the internal clock signal.

1 169. (Amended) The method of claim 161 further including
2 generating first and second internal clock signals using clock
3 generation circuitry and [an] the external clock signal, wherein the
4 first amount of data [corresponding to the first block size
5 information] is input synchronously with respect to the first and
6 second internal clock signals.

1 170. The method of claim 169 wherein the first and second internal
2 clock signals are generated by a delay lock loop.

1 171. (Amended) A method of operation of an integrated circuit,
2 wherein the integrated circuit includes a dynamic random access memory
3 array having a plurality of memory cells, the method of operation
4 comprises:

5 receiving block size information from a controller, wherein the
6 block size information [defines a first] represents an amount of data

7 to be input [from a bus] in response to an operation code [a write
8 request];

9 receiving the operation code from the controller [a first write
10 request]; and

11 inputting the [first] amount of data [corresponding to the block
12 size information] in response to the operation code [first write
13 request].

1 172. (Amended) The method of claim 171 further including storing
2 the [first] amount of data [corresponding to the block size
3 information] in the memory array.

1 173. (Amended) The method of claim 171 wherein the block size
2 information and the operation code [first write request] are included
3 in a request packet.

1 174. (Amended) The method of claim 171 wherein the block size
2 information is a binary representation of the [first] amount of data to
3 be input in response to the operation code [first write request].

1 176. (Amended) The method of claim 171 [161] wherein the [first]
2 amount of data is input, in response to [receipt of] the operation code
3 [first write request], after a delay time transpires.

1 177. The method of claim 176 wherein the delay time is
2 representative of a number of clock cycles of the external clock signal
3 [that transpire before the first amount of data is input].

1 178. (New) The method of claim 151 wherein the first operation
2 code is issued onto a bus.

1 179. (New) The method of claim 178 wherein the bus includes a
2 plurality of signal lines to multiplex control information, address
3 information and data.

1 180. (New) The method of claim 151 further including providing
2 address information to the memory device.

1 181. (New) The method of claim 161 wherein the operation code, the
2 first block size information and address information are included in a
3 packet.

1 182. (New) The method of claim 161 further including receiving
2 address information from the memory controller.

1 183. (New) The method of claim 161 wherein the first block size
2 information, and the operation code are received from an external bus.

1 184. (New) The method of claim 183 wherein the first block size
2 information, and the operation code are received from the same external
3 bus.

1 185. (New) The method of claim 184 wherein the external bus is
2 used to multiplex address information, control information and
3 data.

1 186. (New) The method of claim 171 further including receiving
2 address information from the controller.