Gruppenaktionen

Definition 46

Sei G eine Gruppe und X eine Menge. Eine Operation oder Alution von G auf X ist eine Abbildung $G \times X \longrightarrow X, \qquad (g_1 \times) \longmapsto g. \times$

welche die folgenden Bedingungen erfüllt:

- (1) $e_G. x = x$ for all $x \in X$.
- (2) (gh).x = g. (h.x) for alle ghe G und xeX.

Beispiele

- (1) triviale Gruppen altrion: g.x = x für alle $g \in G$ und $x \in X$.
- (Z) Sei $G \subset S(X) = G \circ : X \longrightarrow X \setminus \sigma$ bijethiv). $G \circ periert out X$ in "naturlicher Weise" $(\sigma, x) \longmapsto \sigma(x)$, für $\sigma \in G \subset S(X)$
- (3) G wirht auf sich selber: G×G->G, [g,h] ->gh (d,h. X=G).
- (4) G wirlt out sich selber durch Konjugation: GxG->G, (g,h)->ghg-

Lemma 47

Sei G eine Gruppe, die auf einer Alense X wirkt. Sei geG. Dann definieren wir Tg: X->X, x -> g.x. Dann gilt:

- (1) G-> S(x), g-> tg ist ein Gruppen homomorphismus
- (2) Die Heuge der Gruppenahtionen ist bijehtiv zu dem Gruppenhow. G-> S(X).

Beweis

- (1). Seien gihe Gund xeX. Dann gilt: $T_{g,h}(x) = (g,h) \cdot x = g.(h,x) = T_g(T_h(x)) = (T_g \circ T_h)(x)$ => Egine Tgo Th
- (2) Wir wissen Zeigen, dass ein Gruppenhom. P: G-> S(X) eine Grappenahtion definiert: Wir definieren $G \times X \longrightarrow X, \quad (g, x) \mapsto \Psi(g)(x), \quad (*)$

Es gilfi (ea, x) I-> $\Psi(e_G)(x) = id_X(x) = x$ $(q \cdot h) \cdot x = \mathcal{L}(q \cdot h) \cdot (x) = (\mathcal{L}(q) \circ \mathcal{L}(h)) \cdot (x) = \mathcal{L}(q) \cdot (\mathcal{L}(h) \cdot (x)).$

-> (x) ist eine Gruppenahtion.

Dabei gilt: die Zuordnungen Gruppen. hom G-> S(x) <-> Alabionen von Gaufx sind invers zuetnander. II

Definition 48

Sei G ein Comppe and X eine Menge, auf der G wirkt. Sei xe X.

Dann definierch wir:

(2)
$$G_X = igeG | g.x = xj$$

Gx heißt Bahn oder Orbit von X.

Gx heißt Stabilisator von X.

Lemma 49

Gx CG ist cine Untirgruppe.

Beweis

Erinneruy:
$$G_X = g \in G \mid g.x = xg$$

Seien $g,h \in G_X$. Zu zeigen: $gh^{-1} \in G_X$.
Es gilt:

$$(g \cdot h^{-1}) \cdot (x) = (g \cdot h^{-1}) \cdot (h \cdot x) = (g \cdot h^{-1}) \cdot x = g \cdot x = x$$

weil he Gx

Gruppenahtion -

eigen scheft.

Lemma 50

Sei G eine Gruppe und X eine Menge, auf der G wirht.

Seien xiye X. Dann gilt:

Entweder Gx = Gy oder Gx n Gy = g.

Beweis

Sei ZE GX nGy. Down existieren g. he G. mit:

$$Z=g.X$$
 and $Z=h.y.$

=>
$$g. x = h.y => (h-g).x = y => y \in Gx => Gy \in Gx$$

=> $x = (g-h).y => x \in Gy => Gx \in Gy$.

Korollar 51

X ist eine disjunde Vereiniques von Bahnen von G.

Definition 52

Die Ahlion von G auf X heijzt transitiv, wenn es genau <u>eine</u> Bahn gibt.

(Aquivalent dazu ist, for alle xiyex existint ge & wit x=gx).

Satz 53

Sei G eine Gruppe, die ouef einer Meuge X wirkt. SeixeX. Dam gilt: $(G_2:G_X)=\#G_X.$

Beweis

Wir zeizen, dass es eine Bijchtion GGX = GX gibt. Sei xeX beliebig, aber fest gewählt.

Si 4: G-> Gx, g-> g-x les gilts g.x e Gx c X).

Seien g.heG. Dann gilt:

$$\Psi(g) = \Psi(h) \iff g.x = h.\dot{x} \iff h^{-1}g.x = x$$

$$\iff (h^{-1}g) \in G_{X}.$$

$$\iff g \in h.G_{X}$$

$$(\iff h \in g.G_{X})$$

=> 9 induziert eine injehtive Abbildung 9: 96x -> Gx.

Da 4 surjehtiv 1st, ist auch 4 surjehtiv.

=> G/Gx 2 Gx.

<u>Safz 54</u> (Bahnungleichung)

Sei Greim Gruppe, die auf einer Meuse X wirht. Seien $X_{A_1-1} \times_{A} \in X_1$, so dass $G_{X_1,...}, G_{X_N}$ genau din Bahmen in X sind, d.h. $X = \bigcup_{i=1}^{n} G_{X_i}$. Dann gilt: $\# X = \sum_{i=1}^{n} \# G_{X_i} = \sum_{i=1}^{n} (G: G_{X_i})$

Beweis

nach Soute 53

Betrachte noch einmal die Wirlung von G auf sich selbst durch Konjugation: $G \times G \longrightarrow G$, $(g,h) \longmapsto g hg^{-1}$.

Definition 55

Sei G eine Gruppe und SCG eine Teilmenge. Wir de finienn:

(1) Zs = igeG | gs=sg fur all seSj

(2) Ns = ige G 1 g S = Sg]

Zs heißt Zentralisator von Sin G.

No heißt Normalisator von Sin G

Z:= ZG = 9 geGl gh=hg für alle he GJ heij3t das Zentrumvon G.

Lemma 56

- (1) Z = G ist Lin Normalkiler
- (2) Zs und Ns sind Untergruppen von G.
- (3) 1st SCG eine Undergruppe, so ist Ns die größte aller Untergruppen HCG mit der Eigenschaft, dass Sein Normalteiler in Hist.

(in anderen Worten: falls HEG eine UG ist, s.d. SCH ein Normaltiles ist, dans gilt: HENS.).

Beweis Ubung.

Beobachtany: Bigl der Konjugationsoperation von Gauf sich selbst: Sei xe G; dann gilt:

- (1) Falls xeZ, dann Gx= {x3.
- (2) Falls x \pm Z, down Gx = Zqxj.

Korollar 57 (Klassengleichung)

Seien XIIII XII EGIZ, so dans GIZ = Uin GXi.

Dann gilti

$$\#G = \#Z + \sum_{i=1}^{N} (G: Z_{1\times_{i} 3}).$$

Beweis

Annuadung der Bohuengleichung in diesem Spezialfall der Konjugation.

Lemma 58

lst 6/2 zyklisch, so ist G abelsch.

Beweis

Sei $\alpha \in G$ mit $G/z = \langle f \alpha Z \rangle \rangle$. Wir schreiben $\overline{\alpha} := \alpha Z$. und $\overline{g} = gZ$ and $\overline{h} = hZ$. Weil G/z zyhlisch ist, existiran m. neZ with $\overline{a}^n = \overline{g}$ and $\overline{a}^m = \overline{h}$.

Dus heißt: es existienn b, cez mit g=an.b und h=am.c.
Down:

 $gh = a^{N}b \cdot a^{M}C \stackrel{bez}{=} a^{n}a^{M}bc = a^{n+m} \cdot b \cdot c$. $und \quad hg = a^{M} \cdot c \cdot a^{N} \cdot b \stackrel{cez}{=} a^{M}a^{M}cb \stackrel{bez}{=} a^{n+m} \cdot b \cdot c$ => gh = hg => Gabelsch.