Университет ИТМО Физико-технический мегафакультет Физический факультет

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1.04

Исследование равноускоренного вращательного движения (Маятник Обербека)

Группа: N3151

Студент: Мочеков С.С.

Преподаватель: Эйхвальд Т.А.

К работе допущен: Работа выполнена: Отчет принят:

I. Цели работы

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

II. Задачи, решаемые при выполнении работы

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера

III. Объект исследования

Маятник Обербека - крестовина с перемещаемыми по спицам грузами-утяжелителями и груз, создающий натяжение нити и раскручивающий крестовину.

IV. Метод эксперементального исследования

Измерение времени прохождение грузом, раскурчивающим крестовину, высоты в $700~\mathrm{mm}$

V. Рабочие формулы и исходные данные

- ullet Второй закон Ньюта для груза: ma = mg T, где T сила натяжения нити
- Путь для равноускоренного перемещения груза: $h=\frac{at^2}{2} \to a=\frac{2h}{t^2}$
- Угловое ускорение крестовины: $\varepsilon = \frac{2a}{d} = \frac{4h}{t^2d}, d$ —диаметр ступицы
- Основной закон динамикик варщения: $I\varepsilon = M M_{\rm Tp},$ I момент инерции крестовины, ε угловое ускорение крестовины, M момент силы натяжение нити, $M_{\rm Tp}$ момент силы трения
- ullet Момент силы натяжения нити: $M=rac{md}{2}(g-a)$
- Момент инерции по т. Штейнера: $I = I_0 + 4m_{yr}R^2$, I_0 момент инерции крестовины без учёта момента инерции утяжелителей, m_{yr} масса одного утяжелителя, R расстояние от утяжелителей до оси вращения
- Расстояние от оси крестовины до грузов утяжелителей: $R = l_1 + (n-1)l_0 + \frac{1}{2}b$, l_1 расстояние от оси вращения до первой риски; n номер риски, на которой установлены утяжелители; l_0 расстояние между соседним рисками; b размер утяжелителя вдоль спицы
- Абсолютная погрешность: $\Delta y = \sqrt{(\bar{\Delta x_1})^2 + (\frac{2}{3}\Delta x_2)^2}$

VI. Измерительные приборы

№ π/π	Наименование	Цена деления	Используемый диапазон	Погрешность прибора
1	Линейка	1 MM	0 - 1000 мм	0.5 мм
2	Секундомер	0.01 с	0 - 60 с	0.005 с

VII. Схема установки

Устройство или прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца (часы с секундной стрелкой) и цифровой секундомер, с ценой деления не более 0,01 с. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером.

Рис. 1. Схема измерительного стенда

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Масса каретки, г	Масса шайбы, г	Масса грузов на крестовине, г	Расстояние от оси до первой риски, мм	Расстояние между рисками, мм	Высота груза на крестовине, мм	Диаметр ступицы, мм	h1, _{MM}	h2, мм
47.0 ± 0.5	$220,0 \\ \pm 0,5$	$408,0 \\ \pm 0,5$	$57.0 \\ \pm 0.5$	$25,0 \\ \pm 0,2$	$40,0 \\ \pm 0,5$	$46,0 \\ \pm 0,5$	700	0

VIII. Результаты прямых измерений

Massa Physa P	Время падения, с	Положение утяжелителей							
Масса груза, г		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска		
	t_1,c	4,46	5,4	6,12	7,07	8,05	8,65		
267±1	t_2,c	4,36	5,1	6,04	7,23	7,95	8,61		
207 ±1	t_3,c	4,25	5,29	6,06	7,07	8,2	8,9		
	$\mathrm{t_{cp}},c$	4,36	5,26	6,07	7,12	8,07	8,72		
	t_1,c	3,17	3,9	4,33	5,13	5,51	6,48		
487±1	t_2,c	3,17	3,76	4,29	5,25	5,77	6,76		
40111	t_3,c	3,21	3,9	4,38	5,2	5,73	6,3		
	$\mathrm{t_{cp}},c$	3,18	3,85	4,33	5,19	5,67	6,51		
	t_1,c	2,75	3,1	3,37	4,44	4,58	5,49		
707±1	t_2,c	2,66	3,01	3,51	4,2	4,7	5,37		
10111	t_3,c	2,63	2,99	3,58	4,11	4,9	5,43		
	$\mathrm{t_{cp}},c$	2,68	3,03	3,49	4,25	4,73	5,43		
	t_1,c	2,15	2,65	3,97	3,77	4,15	4,76		
927±1	$\mathbf{t_2}, c$	2,3	2,76	3,12	3,68	4,25	4,58		
32111	t_3,c	2,35	2,86	3,14	3,67	4,14	4,67		
	$\mathrm{t_{cp}},c$	2,27	2,76	3,08	3,71	4,18	4,67		

ІХ. Результаты косвенных измерений

Massa Physa P		Положение утяжелителей							
Масса груза, г		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска		
	a , м/ c^2	0,074	0,051	0,038	0,028	0,022	0,018		
267 ± 1	ε , рад \cdot с ⁻²	3,207	2,197	1,650	1,200	0,935	0,801		
	М, Н∙м	0,060	0,060	0,060	0,060	0,060	0,060		
	a , $\mathrm{m/c^2}$	0,138	0,094	0,075	0,052	0,044	0,033		
487 ±1	ε , рад \cdot с ⁻²	6,007	4,099	3,242	2,257	1,893	1,435		
	М, Н·м	0,108	0,109	0,109	0,109	0,109	0,109		
	a , $\mathrm{m/c^2}$	0,195	0,115	0,090	0,078	0,063	0,047		
707 ± 1	ε , рад \cdot с ⁻²	8,475	6,615	5,007	3,370	2,725	2,064		
	М, Н·м	0,156	0,157	0,157	0,158	0,158	0,159		
	a , $\mathrm{m/c^2}$	0,272	0,184	0,148	0,102	0,080	0,064		
927 ± 1	ε , рад \cdot с ⁻²	11,847	8,010	6,430	4,430	3,484	2,791		
	М, Н∙м	0,203	0,205	0,206	0,207	0,207	0,208		

	Положение утяжелителей						
	1	2	3	4	5	6	
I , $\kappa \epsilon \cdot M^2$	0,017	0,024	0,030	0,045	0,058	0,074	
$M_{mp}, H \cdot M^2$	0,008	0,007	0,010	0,006	0,003	0,002	
<i>R</i> , м	0,077	0,102	0,127	0,152	0,177	0,202	
R^2 , M^2	0,006	0,010	0,016	0,023	0,031	0,041	

С помощью МНК по формуле $I=I_0+4m_{\rm yr}R^2$ также были получены следующие значения:

$$I_0 = 0,015 \; \mathrm{kf} \cdot \mathrm{m}^2; \; m_{\mathrm{yt}} = 0,462 \; \mathrm{kf}$$

X. Расчет погрешностей измерений (прямые и косвенные измерения)

Для $t_{\rm cp}$ при массе груза и утяжелителях на первой риске погрешность среднего значения для $\alpha=0,95,N=3$:

$$\begin{split} t_{\alpha,N} &= 4, 3; \ \sigma_t = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (t_i - t_{\rm cp})^2} = 0,061 \\ \Delta t_1^1 &= \sqrt{(t_{\alpha,N} \cdot \sigma_t)^2 + \left(\frac{N-1}{N} \Delta t\right)^2} = 0,26 \ \mathrm{c} \\ \Delta a_1^1 &= \sqrt{\left(\frac{2}{t^2} \Delta h\right)^2 + \left(\frac{4h}{t^3} \Delta t\right)^2} \approx 0,009 \ \mathrm{m/c^2} \\ \Delta \varepsilon_1^1 &= \sqrt{\left(\frac{2}{d} \Delta a\right)^2 + \left(\frac{2a}{d^2} \Delta d\right)^2} \approx 0,329 \ \mathrm{c^{-2}} \\ \Delta M_1^1 &= \sqrt{\left(\frac{d(g-a)}{2} \Delta m\right)^2 + \left(\frac{m(g-a)}{2} \Delta d\right)^2 + \left(\frac{md}{2} \Delta a\right)^2} \approx 0,003 \ \mathrm{H\cdot m} \end{split}$$

XI. Графики

Рис. 1: График 1. Зависимости момента силы натяжения нити и углового ускорения крестовины для всех положений утяжелителей

Рис. 2: График 2. Зависимость момента инерции крестовины от квадрата расстояния между центрами грузов и осью вращения

XII. Окончательные результаты

Результаты измерений для требуемых значений с учётом доверительных интервалов и погрешностей

- $t_1^1 = 4,36 \pm 0,26$ c
- $a_1^1 = 0.074 \pm 0.009 \text{ m/c}^2$
- $\varepsilon_1^1 = 3,207 \pm 0,329 \; \mathrm{H \cdot c^{-2}}$
- $M_1^1 = 0,060 \pm 0,003 \; \mathrm{H} \cdot \mathrm{M}$
- $I_0 = 0,015 \pm 0,0014 \text{ kg} \cdot \text{m}^2$
- $m_{
 m yr} = 0,462 \pm 0,004 \ {
 m kg}$

XIII. Исходные измерения

	(1.04)		Marenob N3151 Mywrneb N3146
Purue I			mywing " " to
		. 36e; 4.	25 c 1. 200
hys II	: 3.17e; 3	. lte; 3.21	le
	: 2.75e;		
Pucra II:	V: 2.15 e;	d. 3 c;	A, 82 e
trys	I: 5. 4c;	5.10 - 5.	2 gc.
Frag	I 3. 4c; 11 3. 67c; 11 3. 1c; 17. 2.65c, 2.	3. 46e . 3. 3. 3. 96 e . 3 . 9	19c 6e
	Tyrys T: 6.12 Gyg. II: 4.3 Epys IV: 3.	2; 6.04c;	6.06 c. 4.37
-	they w. 2.	97: 3.12	3.14
Puevo IV.	Trys I! 9.0	07; 7.23	; 7.07
	Trus T: 4.	07; 7.23 13; 5.25 44; 4.2 77; 3.68	; 3,2 ; 4.11
uena V:			
1	13 Tr. 5.5	3 : 4,9: 5.77 4.7	; 5. 73
9	19 W. 4.18	: 4.23	4.14
Puena VI			
Table VI	Trys I: S.	85.46	/e; V.8;
	1 S	85 , 8, 6, 4 49; 6, 4 49; 5	1 e; V, 9; 16; 6.3 87: 5.43
	magin , 4	76, 9.2	7.04

XIV. Выводы и анализ результатов работы

После построения экспериментальной выборки были рассчитаны необходимые параметры и значения для проверки зависимости момента инерции от масс грузовутяжелителей на спицах вращающейся крестовины. Также экспериментально подтверждена теория динамики вращения - был проверен основной закон, связывающий угловое ускорение с моментами сил трения и натяжения нити. Были получены доверительные интервалы для некоторых характеристик динамики вращения, построены соответствующие графики.

XV. Дополнительные задания

- 1. Что такое инерция?
- 2. Как в данной лабораторной работе угловое ускорение зависит от линейного ускорения груза?
- 3. Как звучит основной закон динамики вращательного движения?
- 4. О чём говорит теорема Штейнера?
- 5. Моменты каких сил участвуют в основном законе динамики вращательного движения для данной работы?
- 6. Как изменятся параметры установки, если увеличить расстояние утяжелителей от оси?
- 7. Что такое момент инерции? Как его можно найти?
- 8. Что такое момент силы? Как его можно найти?
- 9. В каких единицах измеряется момент инерции? В каких единицах измеряется момент силы?
- 10. Как изменятся параметры установки, если увеличить массу утяжелителей?

XVI. Выполнение дополнительных заданий

- 1. Инерция способность тела оставаться в покое или двигаться равномерно в инерциальной системе отсчёта.
- $2. \ \varepsilon = \frac{2a}{d}$
- 3. $M = \varepsilon * J$ J - moment of inertia
- 4. $J = J_0 + MR^2$ R расстояние от центра масс тела до новой оси вращения, параллельной той, относительно которой измерено J_0

- 5. Моменты силы трения и силы тяжести (грузиков).
- 6. ε уменьшится M увеличится J увеличится
- 7. Момент инерции мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Складывается из моментов инерции всех точек тела. $J_a = \sum_{i=1}^n m_i r_i^2$
- 8. Момент силы векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. M=Fl
- 9. $[J] = \left[\mathbf{k} \mathbf{f}^* \mathbf{m}^2 \right]$ $[M] = \left[\mathbf{H}^* \mathbf{m} \right]$
- 10. ε уменьшится M увеличится J увеличится