Einblicke ins Dickicht der Parteiprogramme

Michael Hunger
Director Developer Relations Neo4j

dev.neo4j.com/ltw-sa21

Es ist Wahljahr #btw2021 - Und wir alle gehen hin!

Wahl-O-Mat® - Parteiprogramme im Vergleich

Visuelle und Algorithmische Analyse

Connections in Data are as Valuable as the Data Itself

Networks of People

E.g., Employees, Customers, Suppliers, Partners, Influencers

Transaction Networks

E.g., Risk management, Supply chain, Payments

Knowledge Networks

E.g., Enterprise content, Domain specific content, eCommerce content

Native Graph Technology for Applications & Analytics

Daten verfügbar!

Noch nicht für #btw21 aber für LTW Sachsen Anhalt

Download im CSV Format

bpb.de/politik/wahlen/wahl-o-mat/332469/download

ZIP mit CSV Dateien

Für einfachen Import auf GitHub

dev.neo4j.com/ltw-sa21

Import in sandbox.neo4j.com

CSV Format

- Partei
 - Nr
 - Name
 - Kurzbezeichnung
- These
 - Nr
 - Titel
 - Text
- Position
 - Position stimme zu, neutral, stimme nicht zu
 - Begründung

Import

- Knoten
 - Partei (21) (id, name, text)
 - These (38) (id, name, text)
- Beziehung
 - POSITION (798) (text, weight: 0.0-Ablehnung, 0.5-Neutral, 1.0-Zustimmung)
- via LOAD CSV + MERGE + CASE (siehe Script)
- Index on Parteiname/Thesenname

Exploration mit Neo4j Browser + Bloom

Abfragen + Visuelles Clustering

Exploration in Neo4j Browser + Bloom

 $MATCH (p:Partei)-[r:POSITION] \rightarrow (t) where p.id <math>\leq$ 5 and t.id <10 and r.weight = 1 RETURN *;

*(14)

Partei(5)

These(9)

*(26) POSITION(2

Ähnlichkeit von Parteien - "Abstand"

match (p1:Partei)-[r1:POSITION]->(t:These)<-[r2:POSITION]-(p2:Partei) where id(p1)>id(p2) return p1.name,p2.name, sum(abs(r1.weight-r2.weight)) as sim order by sim asc;

"p1.name"	"p2.name"	"sim"
"Tierschutzallianz"	"Tierschutzpartei"	6.0
"PIRATEN"	"Tierschutzallianz"	6.0
"WiR2020"	"dieBasis"	6.0
"Tierschutzpartei"	"GRÜNE"	6.5
"Die PARTEI"	"GRÜNE"	6.5

"Die PARTEI"	"NPD"	26.0
"Die PARTEI"	"AfD"	26.5
"Klimaliste ST"	"AfD"	26.5
"LKR"	"DIE LINKE"	26.5
"Klimaliste ST"	"LKR"	27.0
"DIE LINKE"	"AfD"	28.0
"GRÜNE"	"AfD"	29.0

Exploration in Neo4j Browser + Bloom

Graph Data Science

Abfragen + Visuelles Clustering

Neo4j for Graph Data Science™

Scalable Graph Algorithms & Analytics Workspace

Native Graph Creation & Persistence Visual Graph Exploration & Prototyping

Practical Integrated Intuitive

The Neo4j GDS Library

Robust Graph Algorithms (50+)

- Run on the loaded graph to compute metrics about the topology and connectivity
- Highly parallelized and scale to 10's of billions of nodes

Efficient & Flexible Analytics Workspace

- Automatically reshapes transactional graphs into an in-memory analytics graph
- Optimized for analytics with global traversals and aggregation
- Create workflows and layer algorithms

Computational Graph

Mutable In-Memory Workspace

Native Graph Store

Projected Graphs

- (Partei) [:SIMILAR {weight}] (Partei)
 - virtuell in in-memory graph
 - physisch als relationship
 - "Distanz" als Gewicht normalisiert auf 0..1
- Clustering -> Louvain
- ML Model -> Link Prediction zur Thesis

Projection - virtuell

```
call gds.graph.create.cypher("parteien",
"MATCH (p:Partei) RETURN id(p) as id",
"MATCH
(p1:Partei)-[r1:POSITION]->(t:These)<-[r2:POSITION]-(p2:Partei)
  RETURN id(p1) as source,id(p2) as target,
(29.0-sum(abs(r1.weight-r2.weight)))/29.0 as weight");</pre>
```

Louvain

- Louvain Algorithmus
- Clustering mit Gewicht
- 2 cluster
- Visualisierung mit Bloom

Projection - phyische Beziehung

MATCH

(p1:Partei)-[r1:POSITION]->(t:These)<-[r2:POSITION]-(p2:Partei)
WHERE id(p1)>id(p2)

WITH p1,p2, (29.0-sum(abs(r1.weight-r2.weight)))/29.0 AS weight

MERGE (p1)-[s:SIMILAR]-(p2)

SET s.weight = weight

Node Embeddings & k-NN Similarity

- Node Embeddings -> Vektor repräsentiert "topologische Eigenschaften"
- kNN -> Ähnlichkeitsberechnung
- 1. load graph (undirected)
- compute embedding (fastRP) + mutate in-memory graph
- 3. use embedding to compute k-NN topK (3) similarity

```
call gds.graph.create("p4",{Partei:{properties:"cluster"},These:{}},
                           {POSITION:{orientation:"UNDIRECTED",properties:"weight"}});
call gds.fastRP.mutate("p4",{relationshipWeightProperty:"weight"
                                                                                                n2.name
                                                                                                          similarity
                                   embeddingDimension:128,
                                                                                 "Die PARTEI"
                                                                                                "DIE LINKE"
                                                                                                          0.9972781538963318
                                   mutateProperty:"embedding"});
                                                                                 "Die Humanisten"
                                                                                                          0.9969035387039185
call gds.beta.knn.stream("p4",{nodeLabels:['Partei'],topK:3,
nodeWeightProperty:'embedding'})
                                                                                 "TIERSCHUTZ hier!"
                                                                                                "CDU"
yield node1, node2, similarity where node1 > node2
return gds.util.asNode(node1).name as n1,
                                                                                                "CDU"
                                                                                                          0.9924740791320801
            gds.util.asNode(node2).name as n2, similarity
                                                                                "LKR"
                                                                                                "CDU"
order by similarity desc LIMIT 10;
Neo4j, Inc. All rights reserved 2021
                                                                                 "AfD"
                                                                                                "CDU"
                                                                                                          0.9597322344779968
```

Train ML Model & Predict Class (Cluster)

- lade graph (undirected)
- 2. compute embedding mit fastRP
- 3. train model with embedding + class (cluster)
- 4. predict cluster

Keine tollen Ergebnisse, Embedding muss verbessert werden.

party	cluster	predictedClass	predictedProbabilities
"AfD"	10	15	[0.45584874719173485, 0.5441512528082647]
"DIE LINKE"	15	15	[0.4657041147182362, 0.5342958852817632]
"SPD"	15	15	[0.46059514148778885, 0.5394048585122106]
"GRÜNE"	15	15	[0.4896383093093259, 0.5103616906906735]
"FDP"	10	15	[0.48062074081041567, 0.5193792591895839]
"FREIE WÄHLER"	10	15	[0.4996539695593245, 0.500346030440675]

Weitere Ideen

- eigene Position(en) hinzufügen und mit Parteien (und einander) vergleichen
- Veränderung von Positionen über Wahlperioden -> Bewegung der Schwerpunkte
- Korrelation mit Wahlergebnissen
- Positionen pro Demographie / Bevölkerungssegment
- Link Prediction / Node Classification

Fragen & Diskussionen ? Gern am Stand nachfragen!

NEO4I

in 🖸 💆

Neo4j ist der führende Anbieter von Graphtechnologie. Die weltweit am häufigsten eingesetzte Graphdatenbank unterstützt Unternehmen wie <u>Deutsches Zentrum für Diabetesforschung e.V.</u>, <u>NASA</u>, <u>UBS</u> und <u>Daimler</u> darin, Zusammenhänge zwischen Menschen, Prozessen, Standorten und Systemen aufzudecken und datengestützte Vorhersagen zu treffen. Der Fokus auf Datenbeziehungen ermöglicht es, smarte Anwendungen zu entwickeln und die Herausforderungen vernetzter Daten zu meistern – von <u>Analytics und künstlicher Intelligenz</u> über <u>Betrugserkennung</u> und <u>Echtzeit-Empfehlungen</u> bis hin zu <u>Knowledge Graphen</u>. Weitere Informationen unter <u>Neo4j.com</u>.

Selbst ausprobieren?

Select a project

This will create a new Neo4j database instance

Graph Data Science (GDS)

sandbox.neo4j.com

dev.neo4j.com/qdsbk2

Danke für Ihre Aufmerksamkeit!

Michael Hunger
Director Developer Relations Neo4j

dev.neo4j.com/gdsl sandbox.neo4j.com dev.neo4j.com/ltw-sa21

Train ML Model & Predict Link

- load graph (with PRO/CON links?)
- split relationships into test / train & positive (exists) & negative (doesn't exist)
- 3. train model with existing links (works only on undirected graphs)
- 4. predict links

see GIST

