Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001930

International filing date: 09 February 2005 (09.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-032187

Filing date: 09 February 2004 (09.02.2004)

Date of receipt at the International Bureau: 07 April 2005 (07.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 2月 9日

出 願 番 号 Application Number:

人

特願2004-032187

[ST. 10/C]:

[JP2004-032187]

出 願 Applicant(s):

NTN株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月24日

【書類名】 【整理番号】

特許願 NP15032

【あて先】

特許庁長官殿

【国際特許分類】

C10M169/06

【発明者】

【住所又は居所】

三重県桑名市大字東方字尾弓田3066 NTN株式会社内

【氏名】 三上 英信

【特許出願人】

【識別番号】

000102692

【氏名又は名称】

NTN株式会社

【代理人】

【識別番号】

100100251

【弁理士】

【氏名又は名称】

和気 操

【手数料の表示】

【予納台帳番号】

045779

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1 図面 1

【物件名】 【物件名】

要約書 1

【書類名】特許請求の範囲

【請求項1】

増ちょう剤と基油を含むグリース組成物 100 重量部に、無機ビスマス化合物 0.01~15 重量部を添加したことを特徴とするグリース組成物。

【請求項2

前記無機ビスマス化合物は、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの無機ビスマス化合物であることを特徴とする請求項1記載のグリース組成物。

【請求項3】

前記増ちょう剤は、ウレア系化合物であることを特徴とする請求項1または請求項2記載のグリース組成物。

【請求項4】

内輪および外輪と、この内輪および外輪間に介在する複数の転動体と、この転動体の周囲にグリース組成物を封入してなる転がり軸受であって、前記グリース組成物は請求項1ないし請求項3のいずれか1項記載のグリース組成物であることを特徴とする転がり軸受

【請求項5】

前記転がり軸受が、ころ軸受であることを特徴とする請求項4記載の転がり軸受。

【書類名】明細書

【発明の名称】グリース組成物および転がり軸受

【技術分野】

[0001]

本発明は、高荷重下における潤滑性および耐荷重性に優れるグリース組成物および転がり軸受に関する。

【背景技術】

[0002]

従来、グリース組成物封入転がり軸受を高荷重条件下で使用する場合には、潤滑グリース組成物の潤滑膜が破断しやすくなる。潤滑膜が破断すると金属接触が起こり、発熱、摩擦摩耗が増大する不具合が発生する。そのため、極圧剤(EP剤)含有グリース組成物を使用して、その不具合を軽減している。

転がり軸受の使用条件が過酷になるにつれ、グリース組成物においては、潤滑性および 高荷重性を向上させ、潤滑油膜破断による金属接触を防止する必要がある。特に、ころ軸 受はつばを有し、つば部で転動体と軌道輪つばがすべり運動するため、つば部で潤滑油膜 の破断が起こりやすくなる。

メラミン (イソ) シアヌル酸付加物 100 重量部に対して、ポリテトラフルオロエチレン、二硫化モリブデンおよびモリブデンジチオカーバメート (以下MoDTCと略称) よりなる群から選ばれた固体潤滑剤を $5\sim1000$ 重量部の割合で併用した固体潤滑剤含有グリースが開示されている (特許文献 1 参照)。また、有機ビスマス化合物を含んでなる、転がり軸受用の極圧グリース潤滑剤組成物が開示されている(特許文献 2 参照)。また、摩耗を低減するため、MoDTCおよびポリサルファイドを含有してなるグリース組成物が開示されている(特許文献 3 参照)。

[0003]

ころ軸受は、内、外輪の転走面と転動体である「ころ」との間にころがり摩擦が、つば部と「ころ」との間にすべり摩擦が発生する。ころがり摩擦に比べるとすべり摩擦は大きいので、使用条件が過酷になるとつば部の焼付きが生じやすくなる。そのためグリース組成物の交換作業等が頻繁になりメンテナンスフリー化を達成できないという問題がある。

【特許文献1】特開昭61-12791号公報(特許請求の範囲)

【特許文献2】特開平8-41478号公報(特許請求の範囲)

【特許文献3】特開平10-324885号公報(特許請求の範囲)

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明における課題は、高荷重またはすべり運動が生じる状態での潤滑面での摩擦摩耗を防止し、長期耐久性に優れたグリース組成物およびグリース組成物封入転がり軸受を提供することである。

【課題を解決するための手段】

[0005]

本発明のグリース組成物は、増ちょう剤と基油を含むグリース組成物 100 重量部に、 無機ビスマス化合物を 0.01~15 重量部添加したことを特徴とする。

また、上記無機ビスマス化合物は硫酸ビスマス、三酸化ビスマスから選ばれた少なくとも1つの無機ビスマス化合物であることを特徴とする。

また、上記増ちょう剤は、ウレア系化合物であることを特徴とする。

[0006]

転がり軸受は、内輪および外輪と、この内輪および外輪間に介在する複数の転動体と、 この転動体の周囲にグリース組成物を封入してなり、該グリース組成物は上記記載のグリ

ース組成物であることを特徴とする。

[0007]

本発明のグリース組成物を封入した転がり軸受は、ころ軸受であることを特徴とする。 【発明の効果】

[0008]

本発明のグリース組成物および転がり軸受用ころ軸受は、耐熱耐久性に優れた無機ビスマス化合物を使用しているので、極圧性効果を長期間持続することができる。そのため、耐摩耗性とともに、長期間耐久性の要求される鉄道車両、建設機械、自動車電装補機などに好適に利用することができる。

【発明を実施するための最良の形態】

[0009]

本発明のころ軸受用グリース組成物が封入されるころ軸受について図1により説明する。図1はころ軸受の一部切り欠き斜視図である。ころ軸受は内輪1と外輪2との間にころ3が保持器4を介して配置されている。ころ3は内輪1の転走面1aと外輪2の転走面2aとの間でころがり摩擦を受け、内輪1のつば部1bとの間ですべり摩擦を受ける。これらの摩擦を低減するためにころ軸受用グリース組成物が封入されている。

[0010]

本発明のグリース組成物に使用できる基油としては、例えば、鉱油、ポリー α ーオレフィン油(以下、PAOと略称)、エステル油、フェニルエーテル油、フッ素油、さらに、フィッシャートロプシュ反応で合成される合成炭化水素油(GTL基油)などが挙げられる。この中でも、ポリー α ーオレフィン油または鉱油から選ばれた少なくとも一種を使用することが好ましい。上記のポリー α ーオレフィン油としては、通常、 α ーオレフィンまたは異性化された α ーオレフィンのオリゴマーまたはポリマーの混合物である。 α ーオレフィンの具体例としては、1ーオクテン、1ーノネン、1ーデセン、1ードデセン、1ートリデセン、1ーテトラデセン、1ーペンタデセン、1ーペキサデセン、1ーヘプタデセン、1ーオクタデセン、1ーノナデセン、1ーエイコセン、1ードコセン、1ーテトラコセン等を挙げることができ、通常はこれらの混合物が使用される。また、鉱油としては、例えば、パラフィン系鉱油、ナフテン系鉱油等の通常潤滑油やグリース組成物の分野で使用されているものをいずれも使用することができる。

$[0\ 0\ 1\ 1]$

本発明のグリース組成物に使用できる基油は、好ましくは、 40 \mathbb{C} における動粘度が 2 $0\sim200~\text{mm}^2/\text{sec}$ である。 20 mm^2/sec 未満の場合は、蒸発量が増加し、耐熱性が低下するので好ましくなく、また、200 mm^2/sec をこえると回転トルクの増加による軸受の温度上昇が大きくなるので好ましくない。

[0012]

本発明のグリース組成物に使用できる増ちょう剤として、アルミニウム、リチウム、ナトリウム、複合リチウム、複合カルシウム、複合アルミニウムなどの金属石けん系増ちょう剤、下記式(1)のジウレア化合物が挙げられる。好ましくは、ジウレア化合物である。これらの増ちょう剤は、1種類単独で用いても2種類以上組み合わせて用いてもよい。

【化1】

$$R_1$$
—NHCNH— R_2 —NHCNH— R_3

(1)

(式 (1) 中の R_2 は、炭素数 $6\sim15$ の芳香族炭化水素基、 R_1 および R_3 は、炭素数 $6\sim12$ の芳香族炭化水素基または炭素数 $6\sim20$ の脂肪族炭化水素基を示し、 R_1 および R_3 は、同一であっても異なっていてもよい。)

式 (1) で表されるウレア系化合物は、例えば、ジイソシアネートとモノアミンの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、1, 5 — ナフチレンジイソシアネート、2, 4 — トリレンジイソシアネート、3, 3 — ジメチルー 4, 4 — ビフェニレンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネート等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘギサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p — トルイジン、シクロヘキシルアミン等が挙げられる。

ウレア化合物は、イソシアネート化合物とアミン化合物を反応させることにより得られる。反応性のある遊離基を残さないため、イソシアネート化合物のイソシアネート基とアミン化合物のアミノ基とは略当量となるように配合することが好ましい。

基油にウレア化合物を配合して各種配合剤を配合するためのベースグリース組成物が得られる。ベースグリース組成物は、基油中でイソシアネート化合物とアミン化合物とを反応させて作製する。

[0013]

本発明のグリース組成物には、無機ビスマス化合物を極圧剤として添加することを必須とする。これらビスマス化合物は、1 種類または、2 種類を混合してグリース組成物に添加してもよい。また、添加量は、 $0.01\sim15$ 重量部である。好ましくは $1\sim10$ 重量部である。添加量が 0.01 重量部未満では、耐摩耗性の向上効果が発揮されず、また、 15 重量部をこえると、回転時のトルクが大きくなって、発熱が増大し、回転障害を生じるためである。

本発明のグリース組成物に使用することができる無機ビスマス化合物としては、ビスマス、炭酸ビスマス、塩化ビスマス、硝酸ビスマスおよびその水和物、硫酸ビスマス、フッ化ビスマス、臭化ビスマス、ヨウ化ビスマス、オキシフッ化ビスマス、オキシ塩化ビスマス、オキシ臭化ビスマス、オキショウ化ビスマス、酸化ビスマスおよびその水和物、水酸化ビスマス、セレン化ビスマス、テルル化ビスマス、リン酸ビスマス、オキシ過塩素酸ビスマス、オキシ硫酸ビスマス、ビスマス酸ナトリウム、チタン酸ビスマス、ジルコン酸ビスマス、モリブデン酸ビスマス等が挙げられるが、本発明において、特に好ましいのは、耐熱耐久性に優れ、熱分解しにくいため、極圧性効果の高い硫酸ビスマス、三酸化ビスマスである。

[0014]

本発明のグリース組成物には、必要に応じて公知の添加剤を含有させることができる。この添加剤として、例えば、有機亜鉛化合物、アミン系、フェノール系、イオウ系等の酸化防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレン等の粘度指数向上剤、二硫化モリブデン、グラファイト等の固体潤滑剤等が挙げられる。これらを単独または 2 種類以上組み合せて添加することができる。

[0015]

本発明のころ軸受用グリース組成物は、グリース組成物封入ころ軸受の寿命を向上させることができる。このため、円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受等の封入グリース組成物として使用することができる。

【実施例】

[0016]

実施例1~実施例10

反応容器中で、基油中に増ちょう剤を加え、3 本ロールミルを用いて均一化処理して、表 1 に示す L i 石けん/鉱油系グリース組成物 (40 ℃基油粘度 100 mm²/sec 、混和ちょう度 220)、ウレア/ P A O 系グリース組成物 (40 ℃基油粘度 46 mm²/sec 、混和ちょう度 280)、L i 石けん/エステル油系グリース組成物 (40 ℃基油粘度 30 mm²/sec 、混和ちょう度 250)、ウレア/エーテル系グリース組成物 (40 ℃基油粘度 100 mm²/sec 、混和ちょう度 300)を得た。さらに、極圧剤として無機ビスマス化合物を、表 1

に示す割合で上記グリース組成物に添加して、各実施例のグリース組成物を作製した。得られたグリース組成物につき、以下に記す極圧性評価試験およびころ軸受試験を行なった。結果を表1に併記した。

 $[0\ 0\ 1\ 7]$

【表 1】

グリース組成物		実施例									
		1	2	3	4	5	6	7	8	9	10
	Li 石けん / 鉱油系グリース	95	95	-	- "	99	85	~	-	95	95
グリース (重量部)	ウレア / PAO系グリース	-	_	95	95	1	-	-	-	_	-
	ப 石けん/ エステル油系グリース	-	-	-		-	-	95	-	_	-
	ウレア /エーテル系グリース	-	-	-	_	,	_	-	95	-	_
極圧剤(重量部)	硫酸ビスマス	5	_	5	-	_	-	5	-	_	-
	三酸化ビスマス	-	5	-	5	1	15	-	5	<u> -</u>	
	有機ビスマス化合物 1)	-	-	-	-	-	-	-	-		_
	炭酸ビスマス	-	-	-	-	-	-	-	_	5	
	ビスマス酸ナトリウム	-	_	_	-	-	-	-	_	-	5
	MbDTC ²⁾	-	-	_	-	-					
極圧性評価試験,h		92	140	170	230	86	190	76	88	53	54
ころ軸受試験, ℃		66	64	58	56	68	67	50	70	68	68

1): 次没食子酸ビスマス

2): Molyvan A (バンダービルド社製)

モリブデンジチオカーバメート

[0018]

比較例1~比較例7

反応容器中で、基油中に増ちょう剤を加え、3 本ロールミルを用いて均一化処理して、表 2 に示す L i 石けん/鉱油系グリース組成物(40 $^{\circ}$ と基油粘度 100 mm²/sec 、混和ちょう度 220)、ウレア/ P A O 系グリース組成物(40 $^{\circ}$ と基油粘度 46 mm²/sec 、混和ちょう度 280)、L i 石けん/エステル油系グリース組成物(40 $^{\circ}$ と基油粘度 30 mm²/sec 、混和ちょう度 250)、ウレア/エーテル系グリース組成物(40 $^{\circ}$ と基油粘度 100 mm²/sec 、混和ちょう度 300)を得た。さらに、極圧剤として、有機ビスマス化合物または M o D T C を、表 2 に示す割合で上記グリース組成物に添加して、各比較例のグリース組成物を作製した。得られたグリース組成物につき、以下に記す極圧性評価試験およびころ軸受試験を行なった。結果を表 2 に併記した。

[0019]

【表2】

グリース組成物		上上章交例								
		1	2	3	4	5	6	7		
	Li 石けん / 鉱油系グリース	100	_	_	-	95	95	-		
グリース	ウレア / PAO系グリース	_	100	-	-	-	-	95		
(重量部)	Li 石けん/ エステル油系グリース	-		100	-	-	_	_		
	ウレア /エーテル系グリース	-	-	_	100	-	-	_		
	硫酸ビスマス	-	-	-	-	-	-	-		
極圧剤	三酸化ビスマス	-	-	_	-	-	-	-		
(重量部)	有機ビスマス化合物・			-	_	5	-	5		
	炭酸ビスマス	-	-	-	-	-	-	-		
	ビスマス酸ナトリウム	-	-	-	-	-	-	-		
	MbDTC 2)	-	-	-	-	-	5	-		
極圧性評価試験,h		13	39	6	14	54	16	62		
ころ軸受試験,℃		85	74	48	72	82	90	73		

1): 次没食子酸ビスマス

2): Molyvan A (バンダービルド社製)

モリブデンジチオカーバメート

[0020]

極圧性評価試験:

極圧性評価試験装置を図 2 に示す。評価試験装置は、回転軸 5 に固定された ϕ 40×10 のリング状試験片 6 と、この試験片 6 と端面 8 にて端面同士が擦り合わされるリング状試験片 7 とで構成される。ころ軸受用グリース組成物を端面 8 部分に塗布し、回転軸 5 を回転数 2000 rpm、図 2 中右方向のアキシアル荷重 490 N、ラジアル荷重 392 N を負荷して、極圧性を評価した。極圧性は両試験片のすべり部の摩擦摩耗増大により生じる回転軸 5 の振動を振動センサにて測定し、その振動値が初期値の 2 倍になるまで試験を行ない、その時間を測定した。

回転軸5の振動値が初期値の2倍になるまでの時間が長いほど極圧性効果が大となり、優れた耐熱耐久性を示す。したがってグリース組成物の耐熱耐久性の評価は、測定された上記時間の長さにて各実施例と各比較例とを対比させて行なった。

ころ軸受試験:

30206円すいころ軸受にグリース組成物を 3.6g 封入し、アキシアル荷重 980 N 、回転数 2600 rpm 、室温にて運転し、回転中のつば部表面温度を測定した。運転開始後 、4~8 時間までのつば部表面温度の平均値を算出した。

つば部と「ころ」との間に発生するすべり摩擦が大きくなると回転中のつば部表面温度は上昇する。そのためグリース組成物の耐熱耐久性の評価は、測定された上記温度の高さにて各実施例と各比較例とを対比させて行なった。上記温度の高さが 70 ℃未満であることが、グリース組成物の耐熱耐久性を有する基準とした。

[0021]

表1および表2においてLi石けん/鉱油系グリース組成物のデータを、各実施例と各比較例とを対比すると、極圧剤の種類では、有機ビスマス化合物よりも硫酸ビスマスおよび三酸化ビスマスといった無機ビスマス化合物が、極圧性評価試験およびころ軸受試験で評価される優れた耐熱耐久性を示し、実施例2および比較例5に示すように、特に三酸化ビスマスは、有機ビスマスに比して約3倍の耐熱耐久性を示すことがわかる。これは無機ビスマス化合物が有機ビスマス化合物よりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。

[0022]

また、実施例 2、実施例 5 および実施例 6 に示すように、三酸化ビスマスの添加量が 1,5,15 重量部と増加するにつれて極圧性効果が増加する傾向を示すが、三酸化ビスマスの添加量を 15 重量部と添加量 5 重量部の 3 倍に増加させても、極圧性効果の増加は約 1.4 倍に留まる。これは三酸化ビスマスの添加量が 15 重量部に近づくと、回転時のトルクが大きくなって、発熱が増大し、回転障害を生じる傾向にあるためと考えられる。

[0023]

表1および表2においてウレア/PAO系グリース組成物、Li石けん/エステル油系グリース組成物、ウレア/エーテル系グリース組成物のデータを、各実施例と各比較例とを対比すると、ウレア/PAO系グリース組成物の場合、極圧剤の種類では、有機ビスマス化合物よりも硫酸ビスマスおよび三酸化ビスマスといった無機ビスマス化合物が優れた耐熱耐久性を示す。実施例3、実施例4および比較例7に示すように、硫酸ビスマスは有機ビスマスに比して約3倍の耐熱耐久性を示し、三酸化ビスマスは有機ビスマスに比して約4倍の耐熱耐久性を示すことがわかる。これは無機ビスマス化合物が有機ビスマス化合物よりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。

[0024]

また、実施例7および比較例3に示すように、Li石けん/エステル油系グリース組成物の場合、硫酸ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約13倍の耐熱耐久性を示した。

また、実施例8および比較例4に示すように、ウレア/エーテル系グリース組成物の場合、三酸化ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約6倍の耐熱耐久性を示した。以上のことから、硫酸ビスマスおよび三酸化ビスマスといった無機ビスマス化合物が極圧性効果を長時間持続することがわかる。

【産業上の利用可能性】

[0025]

本発明のグリース組成物および転がり軸受は、耐熱耐久性に優れた無機ビスマス化合物を使用しているので、極圧性効果を長期間持続することができる。そのため、耐摩耗性とともに、長期間耐久性の要求される鉄道車両、建設機械、自動車電装補機などに好適に利用できる。

【図面の簡単な説明】

[0026]

- 【図1】ころ軸受の一部切り欠き斜視図である。
- 【図2】極圧性評価試験装置を示す図である。

【符号の説明】

[0027]

- 1 内輪
- 2 外輪
- 3 ころ
- 4 保持器
- 5 回転軸
- 6、7 リング状試験片
- 8 端面

【書類名】図面 【図1】

【図2】

【書類名】要約書

【要約】

【課題】

高荷重または、すべり運動が生じる状態での潤滑面での摩擦摩耗を防止し、長期耐久性に優れたグリース組成物および転がり軸受を提供することである。

【解決手段】

グリース組成物は、増ちょう剤と基油を含むグリース組成物 100 重量部に、硫酸ビスマス、三酸化ビスマスから選ばれた少なくとも1つの無機ビスマス化合物 $0.01\sim15$ 重量部を添加し、増ちょう剤は、ウレア系化合物を使用する。転がり軸受は、上記グリース組成物を使用する。

【選択図】図1

特許出願の番号

特願2004-032187

受付番号

5 0 4 0 0 2 0 8 9 9 0

書類名

特許願

担当官

第六担当上席 0095

作成日

平成16年 2月10日

<認定情報・付加情報>

【提出日】

平成16年 2月 9日

特願2004-032187

出願人履歴情報

識別番号

[000102692]

1. 変更年月日

2002年11月 5日

[変更理由]

名称変更

住 所 氏 名 大阪府大阪市西区京町堀1丁目3番17号

NTN株式会社