Nº Orden	Apellido y nombre	L.U.	Cantidad de hojas

Organización del Computador 2 Recuperatorio del segundo parcial - 05/07/18

Normas generales

- Numere las hojas entregadas. Complete en la primera hoja la cantidad total de hojas entregadas.
- Entregue esta hoja junto al examen, la misma no se incluye en la cantidad total de hojas entregadas.
- Está permitido tener los manuales y los apuntes con las listas de instrucciones en el examen. Está prohibido compartir manuales o apuntes entre alumnos durante el examen.
- Cada ejercicio debe realizarse en hojas separadas y numeradas. Debe identificarse cada hoja con nombre, apellido y LU.
- La devolución de los exámenes corregidos es personal. Los pedidos de revisión se realizarán por escrito, antes de retirar el examen corregido del aula.
- Los parciales tienen tres notas: I (Insuficiente): 0 a 59 pts, A- (Aprobado condicional): 60 a 64 pts y A (Aprobado): 65 a 100 pts. No se puede aprobar con A- ambos parciales. Los recuperatorios tienen dos notas: I: 0 a 64 pts y A: 65 a 100 pts.

Ej. 1. (30 puntos)

(20p) a. Considerando la siguiente tabla de traducciones de direcciones por segmentación y paginación. Dar un conjunto de descriptores de segmento, directorio de paginas y tablas de paginas que cumplan con todas las traducciones. Detallar todos los campos de estructuras involucrados. Además indicar desde que segmento de código se esta ejecutando cada acceso y si la traducción es *identity mapping*.

Lógica	Lineal	Física	Características
0x0023:0x00231432	0x09731432	0x83249432	Ejecución como nivel 3 a nivel 0, segmento conforming.
0x0041:0x21032414	0x21032414	0x83A49414	Lectura como nivel 3 a nivel 3
0x0061:0x88493253	0x88494000	0xAA494000	Escritura como nivel 0 a nivel 0
0x0072:0xAAAFFF00	0xAAAFFF00	OxAAAFFF00	Lectura como nivel 0 sobre nivel 3, espacio de solo lectura.

(10p) b. Diseñar un mecanismo para, desde nivel 0, leer un byte desde una posición física de memoria cualquiera. Suponer que se tiene segmentación y paginación activa, pero no se puede suponer nada de su funcionamiento.

Ej. 2. (40 puntos)

Considerar un sistema en dos niveles de protección, que ejecuta concurrentemente 6 tareas. Una de estas denominada *control* y las restantes cinco *workers*. La tarea control es ejecutada concurrentemente todo el tiempo, mientras que las tareas workers pueden estar siendo ejecutadas o no.

El sistema posee un servicio que solamente puede ser utilizado por la tarea control, y permite indicar si alguna tarea worker debe ser ejecutada o no. El servicio del sistema atiende en la interrupción 0x62, esta toma como parámetro en eax un puntero a un vector de bytes de 5 posiciones, que indica con un 1 si la tarea en esa posición debe ser ejecutada o 0 si la tarea no debe ser ejecutada.

En el ejemplo se observa que antes de llamar al servicio, el sistema se encuentran ejecutando la tarea 1 y 2. Luego de llamar, se continua ejecutando la tarea 1, se deja de ejecutar la tarea 2 y se comienza a ejecutar la tarea 3.

Además, las tareas workers pueden producir excepciones que deben ser capturadas. Dichas tareas deben ser marcadas para que jamas vuelvan a ejecutar, independientemente de lo indicando por la tarea control.

La organización de la memoria debe respetar las siguientes restricciónes:

- Los códigos y datos de todas las tareas son independientes y ocupan 1Mb.
- Las tareas workers deben tener, además de su código y datos, un área adicional de datos de 1Mb.
- La tarea control debe tener mapeadas todas las áreas adiccionales de todos los workers para poder leer o escribir.
- (10p) a. Describir los campos relevantes de todas las estructuras involucradas en el sistema. Detallar el esquema de segmentación y paginación utilizado. Indicar las estructuras para administrar tareas y como deben ser inicializadas. Indicar como completar las tablas de interrupciones. Considerar en cada caso privilegios involucrados.
- (10p) b. Escribir en ASM/C la rutina de atención de interrupciones del Reloj.
- (20p) c. Escribir en ASM/C una rutina de atención de excepciones y la rutina de la syscall 0x62.

Nota: Suponer que la tarea control no produce ninguna excepción.

Ej. 3. (30 puntos)

Sea un sistema con segmentación y paginación activa, que ejecuta concurrentemente n tareas. Se desea implementar un servicio del sistema denominado tope DePila , que dado un identificador de una tarea, obtiene el contenido del tope de la pila de nivel 3 de otra tarea.

tope DePila toma por parámetro en eax el indentificador de la tarea y retorna en el mismo registro el valor de 4 bytes contenido en el tope de la pila de nivel de usuario de la tarea indicada.

Suponer que se tiene además la función: tss* getTssFromId(int id), dado un id, retorna un puntero a la tss de la tarea.

- (10p) a. Explicar el funcionamiento del servicio pedido y las restricciones que dicho sistema debe tener. Considerar que las pilas de nivel cero de todas las tareas no estan mapeadas con identity mapping.
- (20p) b. Implementar en ASM/C la rutina del servicio topeDePila.