Bioinformatics

Discrete Mathematics and Optimisation

Problem Sheet: Extrema in Several Variables

- 1. Let $f(x,y) = x^4 + \frac{1}{4}y^4 8x^2 y$.
 - (a) Find the critical points of f.
 - (b) Determine the nature of the critical points of f using Sylvester's criterion. ¹.
- 2. Let $f(x,y) = x^2 + y^3$ and $g(x,y) = x^2 + y^4$.
 - (a) Show that both functions have a critical point at (0,0), and that it is a degenerate point in both cases, i.e. the determinant of the Hessian is zero at that point.
 - (b) Show that only one of the functions has a local minimum at (0,0).
- 3. Let $f(x, y, z) = e^x + e^y + e^z + 2e^{-x-y-z}$.
 - (a) Find a local minimum of f in \mathbb{R}^3 (hint: check points for which x = y = z).
 - (b) Show that this point is furthermore the unique global minimum of f in \mathbb{R}^3 .
- 4. Let $f(x,y) = x^4 4xy + y^4$.
 - (a) Find the critical points of f and determine their nature if possible.
 - (b) Show that $f(x,y) \to \infty$, whenever $|(x,y)| = \sqrt{x^2 + y^2} \to \infty$. Hint: observe that $4 \max(x^4, y^4) \ge f(x,y) \ge \max(x^4, y^4) - 4 \max(x^2, y^2)$.
 - (c) Deduce that f has at least one global minimum, and determine it or them.
- 5. Suppose that a particular gene occurs as one of two alleles (A and a), where allele A has frequency θ in the population. That is, a random copy of the gene is A with probability θ and a with probability 1θ . Since a diploid genotype consists of two genes, the probability of each genotype is given by:

genotype AA Aa aa probability
$$\theta^2$$
 $2\theta(1-\theta)$ $(1-\theta)^2$

Suppose we test a random sample of people and find that k_1 are AA, k_2 are Aa, and k_3 are aa. Find the maximum likelihood estimate of θ .

- 6. Let $f(x,y) = x^3 12xy + 8y^3$.
 - (a) Find the critical points of f.
 - (b) Determine the nature of the critical points of f.

¹https://en.wikipedia.org/wiki/Sylvester%27s_criterion