1 The basic scheme

The diagram and parameters:

$$E_0 \xrightarrow{\varphi_{A,1}} E_{A,1} \xrightarrow{\varphi_{A,2}} E_A$$

$$\downarrow^{\varphi_1} \qquad \qquad \downarrow^{\varphi_2} \qquad \qquad d_2 = 3^{2b}$$

 $d_{A,2} = 3^b$

Check that the parameters satisfy

$$d_1 * d_{A,1} + d_2 * d_{A,2} = 2^{3a}$$

 $d_{A1} = 2^a - 3^b$

the prime is taken to be $p=2^{3a}3f-1$ and the d_2 -isogeny is computed using radical isogeny which cost

$$2b\log(p)$$

compared to

$$2b\log(2b)$$

for a 2*b*-long 3-rational isogeny, whiche is much more costly but reduces the size of p. And we can't use the techniques for d_1 and $d_{A,1}$ for d_2 (we could for $d_{A,2}$).

1.1 Remarks

The d_1 -isogeny has no reason to be smooth, as well as the $d_{A,1}$ -isogeny. How do they compute it? They are computing them using the endomorphism ring of E_0 from:

- Represent $d_1(D-d_1)$ as a norm in $End(E_0)$ (we need $d_1(D-d_1) > p$). (Same for $d_{A,1}$)
- Do Kani on

Since we can evaluate δ .

• Evaluate φ from the 2-dimensional isogeny.

They argue that the output of this algorithm can compute $\tilde{O}(2^{2a})$ curves which is sufficiently secure.

1.2 Other parameter choices

We could take $p = 2^{2a}3^b f - 1$ with

- $d_1 = 2^a + 3^b$
- $d_2 = 3^b$
- $d_{A,1} = 2^a 3^b$
- $d_{A,2} = 3^b$

But now the size of the isogenies are not balanced and the side isogenies have only $\lambda/2$ -security.

2 The generalized lollipop attack

REMEMBER: At anytime, Kani is able to interpolate an isogeny of degree d from torsion images of degree N if N > d (recall that $N^2 > 4 * d$ suffices to uniquely determine our isogeny and that the 2-dimensional isogeny has degree d + f).

This paper proposes an attack on FESTA and M-SIDH. They generalize the usual lollipop attack with diagram

to a generalized lollipop attack with diagram

The context is the following:

Definition 2.0.1. Define a generalized lollipop diagram associated to an isogeny $\varphi: E_0 \to E$ as the added data of the diagram above.

To get a FESTA trapdoor instance we add

• A matrix A in $X \subset GL_2(\mathbb{Z}/N\mathbb{Z})$.

• A basis $\langle P, Q \rangle$ of $E_0[N]$.

Now consider $\psi = \varphi' \circ \omega \circ \widehat{\varphi}$. Under some assumptions on the basis and the endomorphism $\omega \circ \widehat{\sigma}_0$ we can in fact compute the image of ψ on the scaled torsion $A * (\varphi(P)\varphi(Q))^t$. Let's see why, define M by

$$\widehat{\sigma}_0 \circ \omega(P,Q) = \mathbf{M}.(P,Q)^t$$

$$[s] \circ \psi \begin{pmatrix} \varphi(P) \\ \varphi(Q) \end{pmatrix} = (\varphi' \circ \sigma_0) \circ (\widehat{\sigma_0} \circ \omega) \circ \widehat{\varphi} \begin{pmatrix} \varphi(P) \\ \varphi(Q) \end{pmatrix}$$
$$= \sigma \circ \varphi \circ \mathbf{M} \circ [d] \begin{pmatrix} P \\ Q \end{pmatrix}$$

Now by abuse of notation, for any φ , we write $\mathbf{M} \circ \varphi = \varphi \circ \mathbf{M}$. The left \mathbf{M} acting on the image basis of the one on the right. Now

$$[s] \circ \psi \left(\mathbf{A}. \begin{pmatrix} \varphi(P) \\ \varphi(Q) \end{pmatrix} \right) = [d] \mathbf{A}. \mathbf{M}. \mathbf{A}^{-1} \sigma \left(\mathbf{A}. \begin{pmatrix} \varphi(P) \\ \varphi(Q) \end{pmatrix} \right)$$

Now if we can evaluate everything on the right we can evaluate ψ at torsion points. In particular we need

- \bullet A.M = M.A.
- Being able to compute σ .

Now for the first condition in the FESTA case A is diagonal, so that M has to be diagonal. Meaning that P,Q are eigenvectors of $\widehat{\sigma_0} \circ \omega$. For the second condition, this is even more restrictive, we would need to be able to compute a pushforward through ϕ . There are two cases that we can handle:

- When $\sigma_0 = \pi$ is the frobenius.
- When $\sigma_0 = id$ is the identity.

The next section deals with the frobenius case.

2.1 The frobenius case

We are in the case where

- $\sigma_0 = \pi_0$ is the frobenius.
- ω is an endomorphism to the conjugate.

And in particular if E_0 is defined over \mathbb{F}_p . We can take $\omega = id!$

2.2 In practice

If we are on the FESTA case the condition $\mathbf{M.A=A.M}$ is that (P,Q) are eigenvectors of the frobenius. If we are in the M-SIDH case, the matrix A is scalar so any M does it!

2.3 Remarks

The case where we have a single hidden image $\lambda \varphi(P)$ of size N reduces to the FESTA case and not the M-SIDH case. Indeed we can see that from

$$< P, Q >= E[2^{2n}] \qquad \subset \qquad E \xrightarrow{\qquad \qquad } F \qquad > \qquad < \varphi(P), Q' >= F[2^{2n}] \\ \downarrow \psi \qquad \qquad \downarrow \psi' \qquad \qquad \downarrow \\ [\psi(P), [2^n] \psi(Q)] \qquad E/ < [2^n] P > ---- \varphi' --- F/ < [2^n] \varphi(P) > \qquad [\psi' \circ \varphi(P), [2^n] \psi(Q')] \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ E/ < P > ---- F/ < \varphi(P) > \qquad \qquad \qquad$$

There we have $\phi'(\ker(\widehat{\psi})) = \ker(\widehat{\psi'})$ but ψ and ψ' project the 2^n -torsion to a single line so we have to have $\phi' \circ \psi(Q) = \lambda \psi'(Q)$ i.e. we can compute scaled torsion image by a diagonal matrice so we are in the FESTA case.

Careful: Here we suppose that we have $\phi(P)$ and not $\lambda\phi(P)$ but we could totally do that, so yes in the diagram above we can compute the weil pairing to get λ but not in general. Careful2: In the original FESTA, the size of the torsion we have is two times smaller so that having simply $\lambda\phi_A(P)$ is not enough.

3 Counter-measures for QFESTA