LINUX NETWORKING

PREVIOUSLY COVERED

- What is an IP?
- What is a subnet?
- CIDR notation

Focus on IPv4

A TYPICAL PACKET

Ethernet	IP	TCP* Header	Application	Ethernet
Ethernet Packe (Layer 2)	Payload			
	IP Packet (Layer 3)	Payload		
		IP Packet (Layer 4)	Payload	
			Payload (Layer 5-7)	

* Could be TCP, UDP, ICMP, or other protocols that ride on IP.

MTU

- Maximum Transmission Unit
 - Maximum size a layer can pass forward without having to break up the packet (fragmentation)
 - Ethernet is 1500bytes
 - 802.11 is 2272bytes
 - Jumbo Frames is 1500-9000bytes

• Efficiency =
$$\frac{1}{Frame_Size}$$

$$\frac{1500}{1538} = 97.53\%$$

or 97.5Mbps on a 100Mbps connection

DATA LINK - LAYER 2 -

- Layer 2
- Typically 14 byte header
 - 6 byte destination address
 - 6 byte source address
 - 2 bytes for type
 - IP, IPv6, ARP, etc.
- Addresses must be unique
 - First 3 bytes represent manufacture
 - Burnt in during manufacturing can be overridden (or spoofed)
- Special Addresses
 - Broadcast Address FF:FF:FF:FF:FF

DATA LINK HARDWARE – HUBS AND SWITCHES

- Hubs
 - Send all packets to everybody
 - Not very secure
 - Shared Bandwidth
- Switches are smart hubs
 - Maintain MAC address list for each port
 - Dedicated port bandwidth

ARP

- Address Resolution Protocol
 - Resolve IP addresses to MAC addresses
 - Broadcasts who has IP to network
 - IP holder responds via senders MAC address

- Hubs and switches can only route MAC addresses
 - No knowledge of IP

ARP EXAMPLE - REQUEST

ARP EXAMPLE - RESPONSE

Host A.1 10.0.0.1 01:0C:29:00:4 4:22 Host A.3 10.0.0.3 01:0C:29:00:3 4:15

Network Switch

Dest.: 01:0C:29:00:44:22 Src.: 01:0C:29:00:C4:D0

I have 10.0.0.4!

Host A.3 10.0.0.3 01:0C:29:00:1 4:37

Host A.4 10.0.0.4 01:0C:29:00:C 4:D0

ARP/MAC

- Traditional Networks (ARP) Address Resolution
 Protocol
 - A.1 wants to talk to A.2
 - A.1 asks all hosts/everyone (broadcasts) what MAC is A.2?
 - A.2 Broadcasts back answer
 - A.1 sends packet to A.2 with A.2's MAC address (otherwise switch wouldn't know which network port to send it to)

ARP RESPONSE - SECURITY

- Nothing to prevent other hosts from answering
 - First to respond wins
 - Can create Man in the Middle
- Switches can only remember finite number of MAC addresses (4k?)
 - If too many, switch can failsafe revert to hubs
 - MAC flood to create this situation
- Advanced switches can prevent this
 - \$50 12 port switch vs. a \$5k one.

ARP

- Works good, but what about large networks?
- Each host receives broadcasts
 - Must check if message is meant for host
- More hosts means more broadcast
 - Eventually run out of host system resources
- Need a way to segment networks

- A.1 wants to talk to B.1
 - A.1 sees B.1's IP is not on local subnet
 - A.1 sends data packet to default Router to route it
 - Router received packet and ARP process begins on B subnet

** Some additional ARPing may initially occur between A.1 and router (assuming cached)

SUBNETTING

- A subnet is a sub-network
 - A range of IP addresses
 - Defined by a subnet

- 10.0.20.0/24 Subnet is 256 hosts
- 10.0.20.0/23 Subnet is 512 hosts

WHAT IS A ROUTER?

- Router Forwards data between compute networks beyond directly connected devices.
 - Connects multiple subnets together
 - (Slide 15)

 Devices are directly connected when data is forwarded using network switches.

ROUTER [GATEWAY IS A ROUTER]

- Routes traffic
 - Can be static routes (this is what we'll use)
 - Can dynamically build routes
 - Self healing, load balancing, scalable, etc.
- If you want to send to an IP address not on your subnet (defined by subnet mask) you will need a router to send it for you
 - Can have a default router (only one)
 - Can have static routes to override
 - - Or: ip route show

ROUTING TABLE: NETSTAT -RN

user@router:~\$ netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.198.50.16 0.0.0.0 255.255.255.248 U 0 eth0 10.0.5.0 0.0.0.0 255.255.255.0 0 0 0 eth1 0.0.0.0 10.0.7.0 255.255.255.0 0 eth1 10.0.0.0 0.0.0.0 255.255.255.0 0 0 0 eth1 10.0.3.0 0.0.0.0 255.255.255.0 0 0 0 eth1 0.0.0.0 10.0.9.0 255.255.255.0 0 0 0 eth1 10.0.11.0 0.0.0.0 255.255.255.0 0 0 0 eth1 10.0.12.0 10.0.0.106 255.255.254.0 0 0 0 eth1 0.0.0.0 128.198.50.17 0.0.0.0 UG 0 0 0 eth0

- Routes are processed in order default route last
- •Mask 0.0.0.0 routes everything, but it is the last to be checked
- •Almost all hosts have at least one route
 - Usually just a default route

STATIC VS. DYNAMIC Static:

10.0.2.0/24

10.0.3.0/24

STATIC VS. DYNAMIC

10.0.0.0/2 4

Router

10.0.1.0/2 4

Dynamic:

Router 1 discovers Router is connected to 10.0.2.0/23

Router1 reroutes traffic from broken link to Route4.0/ 3 24

Static:

Link breaks so router not able to send to 10.0.2.0/23

Router

10.0.2.0/24

Router

10.0.3.0/24

Dynamic:

The link does not have to be broken for the router to choose a different route. Performance and other factors play into 10.0.5^{choosing} a route.

24

RIP (Routing Information Protocol) is a way for the Routers to dynamically exchange route information.

STATIC VS. DYNAMIC

• So why choose Static?

STATIC VS. DYNAMIC

- So why choose Static?
 - It's quick/easier.
 - It's constant.

CREATING STATIC ROUTES

- Any traffic sent to us for a given subnet, we forward to a given IP address
- 1st: Need a subnet to route
- 2nd: Need a destination to route it to
- Examples:
 - ISP gave us 128.198.0.0/22
 - We have 6 routers and have to use one for the incoming connection.

MANUALLY ADDING ROUTES

- Default routes (gateways)
 - route add default gw 10.0.0.1
 - Statically routes subnet mask 0.0.0.0 or /0 to 10.0.0.1

- Static routes
 - route add -net 10.0.12.0 netmask 255.255.254.0 gw 10.0.0.106 dev eth0

PERSISTING STATIC ROUTES

- Edit vi /etc/network/interface and add:
 - up route add -net 10.0.13.0/24 gw 10.0.12.137

 This will apply a static route and route all 10.0.13.0 traffic the router sees to 10.0.12.137

ICMP

- Internet Control Messaging Protocol
 - Intended to complement IP
 - Not used to send data but rather host status and error messages
- Ping
 - ICMP command that queries if a host is online
 - If hosts receives a ping 'echo request', the host, if online, should respond with a 'echo reply'
 - Useful for determining what hosts are online

ICMP REDIRECTS

- If a router received a packet and determines the host can route it more efficiently it sends an ICMP redirect
- Prevents excess router hops

HOW TO CHECK ROUTES

- tracert
 - Is able to determine the routers between it and a given destination.

- To install:
 - apt-get install traceroute
 - apt-get will be covered in later slides this is just a reference.

HOW TO SETUP NETWORKING ON UBUNTU

Must have a network interface

- Use Ismod to list modules inserted into the kernel
 - /etc/modules file containing modules at boot time
 - /etc/modprobe.d config files for modules

HOW TO SETUP NETWORKING ON UBUNTU

- Where is the network interface?
 - Can use dmesg to help determine interface names and link availability
 - ifconfig -a
 - Looking in /dev for stuff that looks right

HOW TO ADD A MACHINE TO A NETWORK?

- Assign a unique IP
- Configure host to boot up with ip address
- Add default routes
 - Allows it access to the internet
- Add a DNS server's IP to the host
 - vi edit the /etc/resolv.conf
 - nameserver 10.0.0.1

MANUALLY ASSIGNING IP ADDRESS

- Quickly configuring IP
 - ifconfig eth0 10.0.0.2 netmask 255.255.255.0 up
 - route add default gw 10.0.0.1

- Route command adds a default static route
 - Routes subnet mask 0.0.0.0 to 10.0.0.1

PERMANENTLY ADDING IP ADDRESS

Edit /etc/network/interface and add:

```
auto eth0
iface eth0 inet static # can be static or dhcp
address 10.0.0.2
netmask 255.255.255.0 # this is a /24
gateway 10.0.0.1 # default gateway (optional)
```

- gateway is a static route for 0.0.0.0
- gateway must exist on your local subnet

BRING INTERFACE ONLINE

- /etc/init.d/networking restart
 - Restarting networking can cause all adapters to restart
 - Consider using nohup is connected remotely
 - sudo nohup /etc/init.d/networking restart
- ifup eth0

HOW DO WE CREATE A ROUTER IN UBUNTU?

Easy!

- Add two network interfaces
- Configure them
- Enable Routing

CREATING UBUNTU ROUTER

• Edit /etc/network/interface and add:

```
auto eth0
iface eth0 inet static
address 10.0.0.106
netmask 255.255.255.0
gateway 10.0.0.1

auto eth1
iface eth1 inet static
address 10.0.12.1
netmask 255.255.255.0
```

- Edit /etc/sysctl.conf and uncomment line to:
 - net.ipv4.ip_forward=1