Name:_	Key
	1

Section:

1. Find the equation of the tangent line to $y = x^3 + 5x - 7$ at the point (1, -1).

$$y' = 3x^{2} + 5$$

 $m = y'$ evaluated at point (1,-1)
 $= 3(1)^{2} + 5 = 8$.

equation of tangent line is

$$y = mx + b$$

 $y = 8x + b$
 $(-1) = 8(1) + b$
 $y = -q$
 $y = -q$

y = 8x - 9

2. Let $f(x) = \sin(\pi x^2 + \frac{\pi}{2}x)$.

(a) Find
$$f'(x) = (\cos(\pi x^2 + \frac{\pi}{2}x))(2\pi x + \pi/2)$$
.

$$f'(x) = (2\pi x + \pi/2) \cos(\pi x^2 + (\pi/2)x)$$

(b) Find
$$f'(1) = (2\pi(1) + \pi/2) \cdot \cos(\pi(1)^2 + \pi/2)$$

= $(5\pi/2) \cdot \cos(3\pi/2)$
= $5\pi/2 \cdot (0)$

f'(1) = 0

3#/2

SO $\cos(3\pi/2) = 0$.

3. Evaluate
$$\int (3\sqrt{x} + 5x^4 - \sin(x))dx$$
.
= $3\int x^{1/2}dx + 5\int x^4 dx - \int \sin(x) dx$
= $\frac{3x^{3/2}}{3/2} + \frac{5x^5}{5} - (-\cos(x)) + C$
= $2x^{3/2} + 1x^5 + \cos(x) + C$

$$2x^{3/2} + 1x^5 + \cos(x) + C$$

4. Solve the differential equation $f'(x) = 5e^x - 2$ subject to the initial condition f(0) = 8.

$$f(x) = \int (5e^{x}-2) dx$$

$$= 5e^{x}-2x+C$$

$$f(0) = 8$$

$$5e^{0}-2(0)+C = 5+C$$

$$= C = 3$$

$$f(x) = 5e^{x} - 2x + 3$$

