Generování kódu z textového popisu funkcionality

Ondřej Zobal

vedoucí: doc. RNDr. Pavel Smrž Ph.D.

Motivace

- I přes současný rozkvět umělé inteligence, editoru kódu postrádají jednoduché rozhraní na vykonávání primitivních úkonů vyžadujících inteligenci.
- Nástroje jako GitHub Copilot umožňují chatovat s jazykovým modelem, dotazy je však nutné pokaždé vypisovat.
- V mé práci představuji rozšíření Codelmprove pro VS Code, které pomocí vlastních účelových jazykových modelů integruje možnosti generování jmen proměnných, inline komentářů a docstringů v souborech zdrojového kódu jazyka Python 3.

Realizace umělé inteligence

- Při práci je využita knihovna PyTorch, knihovny Transformers a další.
- Každá Al funkce používá svůj vlastní model.
- Před trénováním byly do modelů načteny váhy generického NL-PL modelu PLBART^[1].
- Modely využívají architekturu Longformer Encoder-Decoder^[2], která umožňuje prodloužení vstupní délky s lineární prostorovou komplexitou.
- Dotrénované modely CodeImprove dokážou oproti původnímu modelu PLBART pojmout 4x více tokenů (2048).
- Modely byly dotrénovány na datové sadě CodeXGlue^[3].

Modul opravy chyb

- Dalším modulem pro CodeImprove byla automatická detekce a oprava chyb.
- V rámci dotrénování tohoto modulu jsem nasbíral 16 500 vzorků oprav jednoduchých chyb.
- Experimenty se dvěma architekturami: Longformer^[2] a QLoRA^[4].
- Experimenty bohužel nepřinesly uspokojivé výsledky

Realizace výsledného produktu

- V rámci klienta neběží žádné neuronové sítě, vše se odesílá na server, který provádí všechny náročné výpočty.
- Klient je ve VS Code implementován pomocí API pro rozšíření. Je napsaný v JavaScriptu. Server je implementovaný v Pythonu
- Komunikace mezi klientem a serverem probíhá přes HTTP.

Fungování klienta

- Po kliknutí na funkci se v editoru otevře boční panel, v němž jsou prezentovány výsledky.
- Uživatel si může návrh přijmout či zahodit.
- Přijetím návrh se automaticky provedou změny v textu.

Suggestions for renaming n: fib_sequence_length fib_sequence_size fib_sequence_len Cancel

Comment Suggestions

Generování jmen proměnných (přesnost slov, kompletní shoda)

	CodeImprove-rename	GPT-3.5-turbo
TOP3UP	35.63%	37.74%
TOP3EM	10 %	18 %

Generování in-line komentářů (BLEU)

	Bleu total	Unigram	Bigram	Trigram	Quadgram
CodeImprove-comment	14.99%	72.7%	40.0%	5.6%	3.1%
GPT-3.5-turbo	12.04%	94.1%	37.5%,	3.3%	1.8 %

Generování docstringů

	Bleu total	Unigram	Bigram	Trigram	Quadgram
CodeImprove-docstring	27.92%	67.6%	42.4%	21.9%	9.7%
GPT-3.5-turbo	38.01 %	98.3%	78.0 %,	31.0%	8.8 %

Děkuji za pozornost.

Literatura

- [1] Ahmad, W. U.; Chakraborty, S.; Ray, B. and Chang, K.-W. Unified Pre-training for Program Understanding and Generation. 2021.
- [2] Beltagy, I.; Peters, M. E. and Cohan, A. Longformer: The Long-Document Transformer. 2020.
- [3] Lu, S.; Guo, D.; Ren, S.; Huang, J.; Svyatkovskiy, A. et al. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation. CoRR, 2021, abs/2102.04664.
- [4] June, F. QLoRA: Key Quantization and Fine-tuning Techniques in the Era of Large Language Models. Medium, dec 2023. Available at: https://ai.plainenglish.io/qlora-key-quantization-and-fine-tuning-techniques-in-the-era-of-large-language-models-0fa05a961d27. Accessed: 2023-04-23.

Otázka od oponenta

Zkuste zdůvodnit, proč selhává model v úloze "Korekce chyb".

- Generování oprav je relativně komplexní 1B model nemusel být dostatečný
- I když se chyba týká jen pár řádků, logika za ní je často velmi komplexní a bývá závislá na dalších komponentách
- Doménově specifický kód může být matoucí
- Důvodem byla pravděpodobně kombinace těchto faktorů.