[3]: [3]:	<pre>clinical_data = pd.read_csv('heart_failure_clinical_records_dataset.csv') clinical_data.head() age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets serum_creatinine serum_sodium serum_sodium</pre>
[4]:	1 55.0 0 7861 0 38 0 263358.03 1.1 136 2 65.0 0 146 0 20 0 162000.00 1.3 129 3 50.0 1 111 0 20 0 210000.00 1.9 137 4 65.0 1 160 1 20 0 327000.00 2.7 116
[4]:	 (299, 13) The dataset consists of 13 attributes: age: age of the patient (years) anaemia: decrease of red blood cells or hemoglobin (boolean) high blood pressure: if the patient has hypertension (boolean) creatinine phosphokinase (CPK): level of the CPK enzyme in the blood (mcg/L) diabetes: if the patient has diabetes (boolean)
	 ejection fraction: percentage of blood leaving the heart at each contraction (percentage) platelets: platelets in the blood (kiloplatelets/mL) sex: woman or man (binary) serum creatinine: level of serum creatinine in the blood (mg/dL) serum sodium: level of serum sodium in the blood (mEq/L) smoking: if the patient smokes or not (boolean) time: follow-up period (days) death event (Target Variable): if the patient deceased during the follow-up period (boolean)
[5]: [5]:	<pre>anaemia_deaths = clinical_data.groupby(['anaemia', 'DEATH_EVENT'])['DEATH_EVENT'].count().unstack() anaemia_deaths DEATH_EVENT</pre>
[6]:	anaemia_deaths.plot(kind='bar', stacked=True) plt.title('Patient Survival when suffering with Anaemia') plt.show() Patient Survival when suffering with Anaemia 160 -
	120 - 100 - 80 - 40 - 20 - 0 anaemia
[7]: [7]:	diabetes 0 118 56
[8]:	diabetes_deaths.plot(kind='bar', stacked=True) plt.title('Patient Survival when suffering with Diabetes') plt.show() Patient Survival when suffering with Diabetes 175 DEATH_EVENT 0 1
	125 - 100 - 75 - 50 - 25 -
[9]: [9]:	high_blood_pressure_deaths = clinical_data.groupby(['high_blood_pressure', 'DEATH_EVENT'])['DEATH_EVENT'].clinical_data.groupby(['high_blood_pressure', 'Death_event']].clinical_data.groupby(['high_blood_pressure', 'Death_event']].clinical_data.groupby(['high_blood_pressure', 'Death_event']].clinical_data.groupby(['high_blood_pressure', 'Death_event']].clinical_data.groupby(['high_blood_pressure', 'Death_event']].clinical_data
10]:	high_blood_pressure_deaths.plot(kind='bar', stacked=True) plt.title('Patient Survival when suffering with High Blood Pressure') plt.show() Patient Survival when suffering with High Blood Pressure DEATH_EVENT DEATH_EVENT
	150 - 125 - 100 - 75 - 50 - 25 - 0
11]: 11]:	high_blood_pressure sex_deaths = clinical_data.groupby(['sex', 'DEATH_EVENT'])['DEATH_EVENT'].count().unstack() sex_deaths DEATH_EVENT
12]:	sex_deaths.plot(kind='bar', stacked=True) plt.title('Patient Survival based on Gender') plt.show() Patient Survival based on Gender DEATH_EVENT 175 DEATH_EVENT 100 DEATH_EVENT
	150 - 100 - 75 - 50 - 25 - 0
13]: 14]:	#Extracting the independent (Input variables) and dependednt (target variable) X = clinical_data.iloc[:,:-1] y = clinical_data.iloc[:,-1:] #Checking the shape of input variables X.shape
14]: 15]: 15]:	#Checking the shape of target variable y.shape (299, 1) #Checking the statistics of input variables
16]:	age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets serum_creatining count 299.000000 <t< td=""></t<>
17]:	25% 51.000000 0.000000 116.500000 0.000000 30.000000 0.000000 0.000000 0.90000 50% 60.000000 0.000000 250.000000 0.000000 38.000000 0.000000 262000.000000 1.100000 75% 70.000000 1.000000 582.000000 1.000000 45.000000 1.000000 303500.000000 1.40000 max 95.000000 1.000000 7861.000000 1.000000 80.000000 1.000000 9.40000 ax = plt.axes() ax.set_title('Pearson correlation coeff') sns.heatmap(clinical_data.corr(), annot=True, fmt=".2f",ax = ax)
	Pearson correlation coeff age -1.000.090.080.100.060.090.080.160.050.070.020.220.25 anaemia -0.091.000.190.010.030.040.040.050.040.090.110.140.07 creatinine_phosphokinase -0.080.191.000.010.040.070.020.020.060.080.000.010.06 diabetes -0.100.010.011.000.000.010.090.050.090.160.150.030.00 ejection_fraction -0.060.030.040.001.000.020.070.010.180.150.070.040.27 high_blood_pressure -0.090.040.070.010.021.000.050.000.040.100.060.200.08 platelets -0.050.040.020.090.070.051.000.040.060.130.030.010.05
	serum_sodium -0.050.040.060.090.180.040.060.191.000.030.000.090.20 sex -0.070.090.080.160.150.100.130.010.031.000.051.000.055 smoking -0.020.110.000.150.070.060.030.030.000.451.000.0551.000.0551.000.0551.000.0551.000.0551.000.0551.000.050.05
18]:	<pre>#Producing a distribution plots for the key clinical attributes plt.figure(figsize = [16, 10]) plt.subplot(3, 3, 1) sns.histplot(X['age'], kde=True,</pre>
	<pre>plt.subplot(3, 3, 2) sns.histplot(X['creatinine_phosphokinase'], kde=True,</pre>
	<pre>plt.subplot(3, 3, 5) sns.histplot(X['serum_creatinine'], kde=True,</pre>
	30 40 40 40 40 40 40 40 40 40 40 40 40 40
	From the above distribution of some key clinical attributes in the dataset we can say the attributes like age, ejection fraction, platelets,
	serum sodium have a fairly normal distribution while creatinine phosphokinase and serum creatinine have distributions that is skewed towards lower values. Since follow-up time (measured in days) is not a clinical attribute I am disrigarding it for building machine learning model For further data exploration I have loaded the data into SQlite database to use SQL queries that can retrive some interesting attributes of the dataset conn = sql.connect('Clinical.db') clinical_data.to_sql('Clinical_data', conn, if_exists = 'replace')
19]:	index age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets serum_creatinine serum_so 0 0 75.0 0 20 1 265000.00 1.9 1 1 55.0 0 7861 0 38 0 263358.03 1.1 2 2 65.0 0 146 0 20 0 162000.00 1.3
20]: 20]:	# Checking Patients suffering from decrease of red blood cells or hemoglobin anaemia_count = pd.read_sql('SELECT anaemia,COUNT(*) AS count FROM Clinical_data GROUP BY anaemia', conn) anaemia_count.head() anaemia count 0 0 170 1 1 129
21]:	<pre>plt.pie(anaemia_count['count'], labels=['No', 'Yes'], colors=['purple', 'pink'] , startangle=90, autopct='%1.2f plt.title('Patients having decrease of red blood cells or hemoglobin') plt.show()</pre> <pre>Patients having decrease of red blood cells or hemoglobin</pre>
	No 56.86% Yes
22]: 23]:	From the pie chart we can see that greater percentage of the patients (56.86%) in the dataset do not suffer from anaemia # Checking Patients having decrease of red blood cells or hemoglobin diabetes_count = pd.read_sql('SELECT diabetes, COUNT(*) AS count FROM Clinical_data GROUP BY diabetes', conf plt.pie(diabetes_count['count'], labels=['No', 'Yes'], colors=['purple', 'pink'] , startangle=90, autopct='%1.2 plt.title('Patients suffering from diabetes') plt.show()
	Patients suffering from diabetes 41.81% Yes No
24]: 25]:	<pre># Checking Patients suffering from hypertension high_blood_pressure_count = pd.read_sql('SELECT high_blood_pressure,COUNT(*) AS count FROM Clinical_data GF</pre>
	<pre>plt.pie(high_blood_pressure_count['count'], labels=['No', 'Yes'], colors=['purple', 'pink'] , startangle=90, au plt.title('Patients suffering from hypertension') plt.show()</pre> Patients suffering from hypertension Yes
26]:	No 64.88% No Rationts sufforing from hymortonsion
27]:	<pre># Checking Patients suffering from hypertension sex_count = pd.read_sql('SELECT sex,COUNT(*) AS count FROM Clinical_data GROUP BY sex', conn) plt.pie(sex_count['count'],labels=['Female','Male'],colors=['purple','pink'] , startangle=90, autopct='%1.2 plt.title('Sex of the Patient') plt.show()</pre> Sex of the Patient
	Female 35.12% 64.88% Male
28]: 29]:	<pre># Checking Patients suffering from hypertension smoke_count = pd.read_sql('SELECT smoking,COUNT(*) AS count FROM Clinical_data GROUP BY smoking', conn) plt.pie(smoke_count['count'],labels=['non-smoking','smoking'],colors=['purple','pink'] , startangle=90, aut plt.title('Smoking & Non-Smoking Patients') plt.show()</pre>
	Smoking & Non-Smoking Patients smoking 32.11%
	Seeing the above pie charts we can say that there would be comparatively there are more number of patients surviving in the given dataset. Since we are only considering the clinical features for model building I have removed the folloewup time variables for the initial predictive models
30]: 30]: 31]:	<pre>X_new = X.drop(['time'], axis=1) X_new.shape (299, 11) Building Machine Learning Models</pre>
	<pre>#Splitting the data into train & test set X_train, X_test, y_train, y_test = train_test_split(X_new, y.values.ravel(), test_size=0.3, random_state=1) Logistic Regression log_classifier = LogisticRegression() log_classifier.fit(X_train, y_train) ytrain_predLR = log_classifier.predict_proba(X_train) ytrain_predLR actual = log_classifier.predict(X_train)</pre>
	ytrain_predLR_actual = log_classifier.predict(X_train) print('Logistic train roc-auc: {}'.format(roc_auc_score(y_train, ytrain_predLR[:,1]))) print('Logistic train Accuracy: {} '.format(accuracy_score(y_train, ytrain_predLR_actual))) ytest_predLR = log_classifier.predict_proba(X_test) ytest_predLR_actual = log_classifier.predict(X_test) print('Logistic test roc-auc: {}'.format(roc_auc_score(y_test, ytest_predLR[:,1]))) print('Logistic test Accuracy: {} '.format(accuracy_score(y_test, ytest_predLR_actual))) Logistic train roc-auc: 0.740698869475848 Logistic train Accuracy: 0.7416267942583732 Logistic test roc-auc: 0.7445913461538461
33]:	<pre>Random Forest Classification rf_model = RandomForestClassifier(max_depth = 2,random_state=1) rf_model.fit(X_train, y_train) ytrain_predrf = rf_model.predict_proba(X_train) ytrain_predrf_actual = rf_model.predict(X_train) print('Random Forest train roc-auc: {}'.format(roc_auc_score(y_train, ytrain_predrf_actual))) print('Random Forest train Accuracy: {} '.format(accuracy_score(y_train, ytrain_predrf_actual)))</pre>
	<pre>ytest_predrf = rf_model.predict_proba(X_test) ytest_predrf_actual = rf_model.predict(X_test) print('Random Forest test roc-auc: {}'.format(roc_auc_score(y_test, ytest_predrf[:,1]))) print('Random Forest test Accuracy: {} '.format(accuracy_score(y_test, ytest_predrf_actual))) Random Forest train roc-auc: 0.8626927029804727 Random Forest train Accuracy: 0.7894736842105263 Random Forest test roc-auc: 0.7908653846153846 Random Forest test Accuracy: 0.7555555555555555555555555555555555555</pre>
34]:	<pre>ada_classifier=AdaBoostClassifier(random_state=1) ada_classifier.fit(X_train, y_train) ytrain_predada = ada_classifier.predict_proba(X_train) ytrain_predada_actual = ada_classifier.predict(X_train) print('Adaboost train roc-auc: {}'.format(roc_auc_score(y_train, ytrain_predada[:,1]))) print('Adaboost train Accuracy: {} '.format(accuracy_score(y_train, ytrain_predada_actual))) ytest_predada = ada_classifier.predict_proba(X_test) ytest_predada_actual = ada_classifier.predict(X_test) print('Adaboost test roc-auc: {}'.format(roc_auc_score(y_test, ytest_predada[:,1])))</pre>
35]:	<pre>print('Adaboost test Accuracy: {} '.format(accuracy_score(y_test, ytest_predada_actual))) Adaboost train roc-auc: 0.9618705035971222 Adaboost train Accuracy: 0.90909090909091 Adaboost test roc-auc: 0.7052283653846154 Adaboost test Accuracy: 0.7222222222222222222222222222222222222</pre>
	<pre>xgb_classifier.fit(X_train, y_train) ytrain_predxgb = xgb_classifier.predict_proba(X_train) ytrain_predxgb_actual = xgb_classifier.predict(X_train) print('XGBoost train roc-auc: {}'.format(roc_auc_score(y_train, ytrain_predxgb[:,1]))) print('XGBoost test Accuracy: {} '.format(accuracy_score(y_train, ytrain_predxgb_actual))) ytest_predxgb = xgb_classifier.predict_proba(X_test) ytest_predxgb_actual = xgb_classifier.predict(X_test) print('XGBoost test roc-auc: {}'.format(roc_auc_score(y_test, ytest_predxgb[:,1]))) print('XGBoost test Accuracy: {} '.format(accuracy_score(y_test, ytest_predxgb_actual)))</pre> XGBoost train roc-auc: 0.992497430626927
	XGBoost test Accuracy: 0.9569377990430622 XGBoost test roc-auc: 0.7289663461538461 XGBoost test Accuracy: 0.76666666666667 It would be good to do feature selection and hyperparameter tuning to select best parameters for the above built predictive models Feature Selection Univariate feature selection works by selecting the best features based on univariate statistical tests. Below I am using selectKBest which can return best features based on ANOVA F-value between target/feature.
53]: 54]:	<pre># Perform feature selection using SelectKBest class and f classif() function (Univariate Analysis) selector = SelectKBest(score_func=f_classif, k=11) fit = selector.fit(X_new, y.values.ravel()) scores =fit.scores_ features = fit.transform(X_new)</pre> Top_Features = pd.DataFrame() Top_Features['Features'] = X_new.columns Top_Features['Feature Importance Score'] = scores Top_Features = Top_Features.sort_values(by = 'Feature Importance Score', ascending = False)
54]:	Top_Features = Top_Features.sort_values(by = 'Feature Importance Score', ascending = False) Top_Features Features Feature Importance Score 7
	5 high_blood_pressure 1.881937 1 anaemia 1.310096 2 creatinine_phosphokinase 1.173259 6 platelets 0.718880 10 smoking 0.047333 9 sex 0.005534
55]:	<pre>diabetes</pre>
	smoking platelets creatinine_phosphokinase anaemia high_blood_pressure serum_sodium age ejection_fraction serum_creatinine
	From the above plot we can see that serum creatinine and ejection fraction are the top 2 important features, Thus I have used these key features as input variables to obtain accurate predictions. Since Random Forest, Adaboost and XGBoost are tree based we can find the feature importance based on each of these models RF_Top_Features = pd.DataFrame() RF_Top_Features['Features'] = X_new.columns RF_Top_Features['Feature Importance Score'] = rf_model.feature_importances_ RF_Top_Features = RF_Top_Features.sort_values(by = 'Feature Importance Score', ascending = False)
	RF_Top_Features = RF_Top_Features.sort_values(by = 'Feature Importance Score', ascending = False) RF_Top_Features.plot.barh(x='Features', y='Feature Importance Score') plt.show() anaemia diabetes high_blood_pressure sex sex
40]:	age serum_sodium ejection_fraction serum_creatinine Ada_Top_Features = pd.DataFrame()
40]:	Ada_Top_Features = pd.DataFrame() Ada_Top_Features['Features'] = X_new.columns Ada_Top_Features['Feature Importance Score'] = ada_classifier.feature_importances_ Ada_Top_Features = Ada_Top_Features.sort_values(by = 'Feature Importance Score', ascending = False) Ada_Top_Features.plot.barh(x='Features', y='Feature Importance Score') plt.show() diabetes smoking sex high_blood_pressure
	high_blood_pressure anaemia serum_sodium ejection_fraction serum_creatinine platelets age creatinine_phosphokinase 0.00 0.05 0.10 0.15 0.20 0.25
41]:	<pre>xgb_Top_Features = pd.DataFrame() xgb_Top_Features['Features'] = X_new.columns xgb_Top_Features['Feature Importance Score'] = xgb_classifier.feature_importances_ xgb_Top_Features = xgb_Top_Features.sort_values(by = 'Feature Importance Score', ascending = False) xgb_Top_Features.plot.barh(x='Features', y='Feature Importance Score') plt.show()</pre> ### Feature Importance Score
	anaemia platelets smoking creatinine_phosphokinase high_blood_pressure serum_sodium age sex ejection_fraction serum_creatinine
	Based on the Univariate analysis and the feature importances from each model, serum creatinine and ejection fraction appear to be important features to accurately predict patients survival. Thus I have selected these features to build an accurately predicting model. Since followup time could be important aspect that I did not include in the earlier models I have tried to include it as one of the input feature for final models #Splitting the data into train & test set
43]:	<pre>X_selected = X[['serum_creatinine','ejection_fraction','time']] X_train, X_test, y_train, y_test = train_test_split(X_selected, y.values.ravel(), test_size=0.35, random_st log_classifier = LogisticRegression() log_classifier.fit(X_train,y_train) ytrain_predLR = log_classifier.predict_proba(X_train) ytrain_predLR_actual = log_classifier.predict(X_train) print('Logistic train roc-auc: {}'.format(roc_auc_score(y_train, ytrain_predLR_actual))) print('Logistic train Accuracy: {} '.format(accuracy_score(y_train, ytrain_predLR_actual)))</pre>
	<pre>print('Logistic train Accuracy: {} '.format(accuracy_score(y_train, ytrain_predLR_actual))) ytest_predLR = log_classifier.predict_proba(X_test) ytest_predLR_actual = log_classifier.predict(X_test) print('Logistic test roc-auc: {}'.format(roc_auc_score(y_test, ytest_predLR[:,1]))) print('Logistic test Accuracy: {} '.format(accuracy_score(y_test, ytest_predLR_actual))) Logistic train roc-auc: 0.8925843224820778 Logistic train Accuracy: 0.845360824742268 Logistic test roc-auc: 0.8557168784029038 Logistic test Accuracy: 0.8095238095238095</pre> Hyperparameter Tuning
	Selecting the best parameter for Random Forest Model using RandomizedSearchCV params_rf = {'bootstrap': [True, False],
45]:	<pre>search1 = RandomizedSearchCV(estimator = rf_model, param_distributions=params_rf,random_state=42) search1.fit(X_train, y_train) print(search1.best_params_) {'n_estimators': 800, 'min_samples_split': 10, 'min_samples_leaf': 2, 'max_depth': 80, 'bootstrap': True} best_rf_model = RandomForestClassifier(n_estimators= 800,min_samples_split = 10, min_samples_leaf= 2,</pre>
	<pre>print('Random Forest train roc-auc: {}'.format(roc_auc_score(y_train, ytrain_predrf[:,1]))) print('Random Forest train Accuracy: {} '.format(accuracy_score(y_train, ytrain_predrf_actual))) ytest_predrf = best_rf_model.predict_proba(X_test) ytest_predrf_actual = best_rf_model.predict(X_test) print('Random Forest test roc-auc: {}'.format(roc_auc_score(y_test, ytest_predrf[:,1]))) print('Random Forest test Accuracy: {} '.format(accuracy_score(y_test, ytest_predrf_actual)))</pre> Random Forest train roc-auc: 0.977553178986955 Random Forest train Accuracy: 0.9123711340206185 Random Forest test roc-auc: 0.9033575317604357 Random Forest test Accuracy: 0.8761904761904762
47]:	<pre>search2 = GridSearchCV(estimator = ada_classifier, param_grid=params_ada) search2.fit(X_train, y_train) print(search2.best_params_) {'learning_rate': 1, 'n_estimators': 100} best_ada_classifier=AdaBoostClassifier(learning_rate = 1, n_estimators = 100, random_state=1) best_ada_classifier.fit(X_train, y_train) ytrain_predada = best_ada_classifier.predict_proba(X_train)</pre>
	Adaboost train Accuracy: 0.9587628865979382 Adaboost test roc-auc: 0.8491379310344827
	Adaboost test Accuracy: 0.8095238095238095 Selecting the best parameters for the XGBoost Model will further improve the performance of the model and to do that I have used RandomizedSerchCV which can provide best parameters out of different combinations of availables input parameters #Tuning XGBoost Model params = { "colsample_bytree": [0.3,0.5,0.7],
	Selecting the best parameters for the XGBoost Model will further improve the performance of the model and to do that I have used RandomizedSerchCV which can provide best parameters out of different combinations of availables input parameters #Tuning XGBoost Model params = { "colsample_bytree": [0.3,0.5,0.7], "learning_rate": [0.05,0.30,1], # default 0.1 "max_depth": [2,4,5,6,8,15], # default 3 "n_estimators": [50, 100,150,200, 400, 600, 800], # default 100 "subsample": [0.6, 0.4,1], "max_child_weight": [1,3,7] } search = RandomizedSearchCV(estimator = xgb_classifier, param_distributions=params, random_state=42) search.fit(X_train, y_train) print(search.best_params_)
	Selecting the best parameters for the XGBoost Model will further improve the performance of the model and to do that I have used RandomizedSerchCV which can provide best parameters out of different combinations of availables input parameters #Tuning XGBoost Model params = { "colsample_bytree": [0.3,0.5,0.7], "learning_rate": [0.05,0.30,1], # default 0.1 "max_depth": [2,4,5,6,8,15], # default 3 "n_estimators": [50, 100,150,200, 400, 600, 800], # default 100 "subsample": [0.6, 0.4,1], "max_child_weight": [1,3,7] } search = RandomizedSearchCV(estimator = xgb_classifier, param_distributions=params,random_state=42) search.fit(X_train, y_train)

