CPE 381 Equation Sheet

Chapter 0:

n	2 ⁿ	Significance
0	1	
1	2	
2	4	
4	16	
8	256	
10	1024	
16	65536	

Range of numbers:

0 to $2^n - 1$ for unsigned

$$-2^{n-1}$$
 to $2^{n-1}-1$

Unit Circle:

Arithmetic Series:

$$a_n = a_1 + (n-1)d$$

$$\sum_{i=1}^n a_i = n \cdot \frac{a_1 + a_n}{2}$$

Geometric Series:

$$\sum_{k=1}^{n} a_{k} r^{k} = a \cdot \frac{1 - r^{n}}{1 - r}$$

Triangles to Know:

Integrals to Know:

$$\int x^n dx = \frac{1}{n+1} \cdot x^{n+1}$$

$$\int \frac{1}{x} dx = \ln|x|$$

$$\int u \, dv = uv - \int v \, du$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax}$$

$$\int \sin(ax) \, dx = \frac{-1}{a} \cos(ax)$$

$$\int \cos(ax) \, dx = \frac{1}{a} \sin(ax)$$

$$\int \sin^2(ax) \, dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$$

Euler's Identity:

$$e^{j\theta} = \cos\theta + i\sin\theta$$

Other forms:

$$e^{-j\theta} = \cos(-\theta) + j\sin(-\theta)$$

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

$$e^{j\theta} + e^{-j\theta} = 2\cos\theta$$

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Sampling continuous time signal x(t) into discrete time signal sequence x[n]:

$$x[n]=x(nT_s)=x(t)\vee t=nT_s$$

Derivative and Forward Difference:

$$D[x(t)] = \frac{dx(t)}{dt} = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$
$$\Delta[x(nT_s)] = x((n+1)T_s) - x(nT_s)$$

Integral and Summation:

$$I(t) = \int_{t_0}^{t} x(\tau) d\tau x(t) = \frac{dI(t)}{dt}$$

$$I(t) \approx \sum_{n} x(nT_s) p(n) \quad \text{p(n) pulses of width } T_s$$

DE for RC circuit with constant voltage:

$$v_i(t) = v_c(t) + \frac{dv_c(t)}{dt}t \ge 0$$

Approximate Integral for a Trapezoid & DE:

$$\begin{split} v_c(t) &= \int\limits_0^t \left[v_i(\tau) - v_c(\tau) \right] d\tau + v_c(0) \\ v_c(nT) &= \frac{T}{2+T} \left[v_i(nT) + v_i((n-1)T) \right] + \frac{2-T}{2+T} v_c((n-1)T), v_c(0) = 0 \text{, } n \geq 1 \end{split}$$

Converting between Polar and Rectangular:

$$z = x + jy = |z| e^{j \angle (z)}$$

$$v = u + j w = |v| e^{j \angle (v)}$$

$$z + v = (x + u) + j (y + w)$$

$$zv = |z| |v| e^{j(\angle (z) + \angle (v))}$$

$$z^{i} = x - jy = |z| e^{-j \angle z}$$

 Be able to convert between the two in any quadrant

Euler's Identity:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$\cos(\theta) = \Re[e^{j\theta}] = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin(\theta) = lm[e^{j\theta}] = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

Trig. Identities:

$$\sin(-\theta) = \frac{e^{-j\theta} - e^{j\theta}}{2j} = -\sin(\theta)$$

$$\cos(\pi+\theta) = e^{j\pi} \frac{e^{j\theta} + e^{-j\theta}}{2} = -\cos(\theta)$$

$$\cos^2(\theta) = \left[\frac{e^{j\theta} + e^{-j\theta}}{2}\right]^2 = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$$

$$\sin(\theta)\cos(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \cdot \frac{e^{j\theta} + e^{-j\theta}}{2} = \frac{1}{2}\sin(2\theta)$$

Sinusoids and phasors

$$x(t) = A\cos(\Omega_0 t + \psi)$$
 $-\infty < t < \infty$
A amplitude, $\Omega_0 = 2\pi f_0$ frequency (rad/sec), ψ phase (rad)

Phasor:
$$X = Ae^{i\psi}$$
, $x(t) = Re[Xe^{i\Omega_0 t}]$

Eigenfunction property of LTI systems

Input:
$$x(t) = \text{Re}[Xe^{j\Omega_0t}]$$
, input phasor $X = Ae^{j\theta}$
Output: $y(t) = \text{Re}[Ye^{j\Omega_0t}]$, output phasor $Y = XH(j\Omega_0)$

Steady-state response

Frequency response of system

Chapter 1:

$$H(j\Omega_0) = |H(j\Omega_0)|e^{\angle H(j\Omega_0)}$$

$$egin{bmatrix} x(.):\mathcal{R}
ightarrow\mathcal{R} & (\mathcal{C})\ t
ightarrow x(t) \end{bmatrix}$$

Example: complex signal $y(t) = (1+j)e^{j\pi t/2}, \quad 0 \le t \le 10, \quad 0$ otherwise

$$y(t) = \left\{ \begin{array}{l} \sqrt{2} \left[\cos(\pi t/2 + \pi/4) + j \sin(\pi t/2 + \pi/4) \right], & 0 \leq t \leq 10, \\ 0, & \text{otherwise} \end{array} \right.$$

If
$$x(t) = \sqrt{2}\cos(\pi t/2 + \pi/4), -\infty < t < \infty$$

 $p(t) = 1, \quad 0 \le t \le 10, \quad 0$ otherwise
then
 $y(t) = [x(t) + jx(t-1)]p(t)$

Given signals x (t), y (t), constants α and τ , and function w(t):

- Signal addition/subtraction: x(t) + y (t), x (t) y (t)
- · Constant multiplication: $\alpha x(t)$
- · Time shifting
 - x (t τ) is x (t) delayed by τ
 - x (t + τ) is x (t) advanced by τ
- Time scaling x(αt)
 - $\alpha = -1$, x (-t) reversed in time or reflected
 - $\alpha > 1$, x (αt) is x (t) compressed
 - α < 1, x (αt) is x (t) expanded
- · Time windowing x(t)w(t), w(t) window
- · Integration

$$y(t) = \int_{t_0}^t x(\tau)d\tau + y(t_0)$$

Example

$$x(t) = \left\{ \begin{array}{ll} t & -1 \leq t \leq 1 \\ 0 & \text{otherwise} \end{array} \right.$$
 delayed by 1:
$$x(t-1) = \left\{ \begin{array}{ll} t-1 & 0 \leq t \leq 2 \\ 0 & \text{otherwise} \end{array} \right.$$
 advanced by 1:
$$x(t+1) = \left\{ \begin{array}{ll} t+1 & -2 \leq t \leq 0 \\ 0 & \text{otherwise} \end{array} \right.$$
 reflected:
$$x(-t) = \left\{ \begin{array}{ll} -t & -1 < t < 1 \\ 0 & \text{otherwise} \end{array} \right.$$
 reflected and delayed by 1:
$$x(-t+1) = \left\{ \begin{array}{ll} -t+1 & 0 \leq t \leq 2 \\ 0 & \text{otherwise} \end{array} \right.$$
 reflected and advanced by 1:
$$x(-t+1) = \left\{ \begin{array}{ll} -t+1 & 0 \leq t \leq 2 \\ 0 & \text{otherwise} \end{array} \right.$$
 compressed by 2:
$$x(2t) = \left\{ \begin{array}{ll} 2t & -\frac{1}{2} \leq t \leq \frac{1}{2} \\ 0 & \text{otherwise} \end{array} \right.$$
 expanded by 2:
$$x(t/2) = \left\{ \begin{array}{ll} t/2 & -2 \leq t \leq 2 \\ 0 & \text{otherwise} \end{array} \right.$$

$$x(t)$$
 even: $x(t) = x(-t)$
odd: $x(t) = -x(-t)$

x(t) is periodic if

- (i) x(t) defined in $-\infty < t < \infty$. and
- (ii) there is $T_0 > 0$, the fundamental period of x(t), such that $x(t + kT_0) = x(t)$, integerk

Energy of
$$x(t)$$
: $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$, Power of $x(t)$: $P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$

- x (t) is finite-energy, or square integrable, if Ex < ∞
- x (t) is finite-power if Px < ∞

T = 2T b Sin (bt) or ros (bt)

x (t) period of fundamental period T_0 is

$$\boxed{P_x = \frac{1}{2} \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x^2(t) dt}$$

· Complex exponential

Sinusoid

A
$$cos(\Omega 0t + \theta) = A sin(\Omega 0t + \theta + \pi/2)$$
 $-\infty < t < \infty$

Modulation systems

$$A(t) \cos(\Omega(t)t + \theta(t))$$

- Amplitude modulation or AM: A(t) changes according to the message, frequency and phase constant,
- Frequency modulation or FM: Ω(t) changes according to the message, amplitude and phase constant,
- Phase modulation or PM: $\theta(t)$ changes according to the message, amplitude and frequency constant

$$y = A \sin(B(x + C)) + D$$

- amplitude is A
- period is $2\pi/B$
- phase shift is C (positive is to the left)
- · vertical shift is D

Unit-impulse signal

Unit-impulse $\delta(t)$ and unit-step u(t) as $\Delta \to 0$ in pulse $p\Delta(t)$ and its integral $u\Delta(t)$.

Unit-step signal

$$u(t) = \begin{cases} 1 & t > 0 \\ 0 & t \le 0 \end{cases}$$

Ramp signal

$$r(t) = tu(t) = \begin{cases} t & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Sifting property of $\delta(t)$

$$\int_{-\infty}^{\infty} f(t)\delta(t-\tau)dt = \int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)dt = f(\tau)\int_{-\infty}^{\infty} \delta(t-\tau)dt = f(\tau), \text{ for any } \tau$$

$$f(t) = \int_{-\infty}^{\infty} f(t)\delta(t-\tau)dt = f(\tau)\int_{-\infty}^{\infty} \delta(t-\tau)dt = f(\tau), \text{ for any } \tau$$

$$f(t) = \int_{-\infty}^{\infty} f(t)\delta(t-\tau)dt = f(\tau)\int_{-\infty}^{\infty} \delta(t-\tau)dt = f(\tau)\int_{-\infty}^{\infty} \delta(t-\tau)dt = f(\tau)$$

Generic representation

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$