LCE0216 Introdução à Bioestatística Florestal 2. Estatística Descritiva

Profa. Dra. Clarice Garcia Borges Demétrio Monitores: Eduardo E. R. Junior & Giovana Fumes

> Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Piracicaba, 06 de março de 2018

Medidas de posição (ou tendência) central

Medidas de posição (ou tendência) indicam posições de interesse sobre a distribuição dos dados.

As principais medidas de posição central são a **média**, a **mediana** e a **moda**.

Média aritmética

Se temos os valores x_1, x_2, \cdots, x_n , a média aritmética é dada por

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Média aritmética

Se temos os valores x_1, x_2, \cdots, x_n , a média aritmética é dada por

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Exemplo: Considere os valores 2, 7, 5, 4, 9, 11. Então

$$\bar{x} = \frac{2+7+5+4+9+11}{6} = 6{,}33.$$

Exemplo:

Com o objetivo de avaliar a produção anual de resina de árvores de *Pinus elliottii*, em kg, foram observadas dez árvores, cujos correspondentes valores são apresentados a seguir:

1,9	2,1	3,4	2,3	2,3
5,5	2,6	1,5	1,8	2,0

Calcule a média da produção anual de resina.

Exemplo:

Com o objetivo de avaliar a produção anual de resina de árvores de *Pinus elliottii*, em kg, foram observadas dez árvores, cujos correspondentes valores são apresentados a seguir:

Calcule a média da produção anual de resina.

$$\bar{x} = \frac{1,9+2,1+\ldots+2,0}{10}$$

$$= \frac{25,4}{10}$$

$$= 2,54 \text{kg}.$$

Média Aritmética Ponderada

A média ponderada dos números $x_1, x_2, ..., x_n$, com pesos $p_1, p_2, ..., p_n$, representada por \bar{x}_p , é definida por

$$\bar{x}_p = \frac{p_1 x_1 + p_2 x_2 + \ldots + p_n x_n}{p_1 + p_2 + \ldots + p_n} = \frac{\sum_{i=1}^n p_i x_i}{\sum_{i=1}^n p_i}.$$

Média Aritmética Ponderada

Exemplo: Precipitação média em uma bacia hidrográfica.

Precipitação	Área do polígono
X_i (mm)	p_i (km ²)
90	6
110	7
120	5
100	12
112	11
95	8
108	1,5
Total	50,5

Média Aritmética Ponderada

Exemplo: Precipitação média em uma bacia hidrográfica.

Precipitação	Área do polígono
X_i (mm)	p_i (km ²)
90	6
110	7
120	5
100	12
112	11
95	8
108	1,5
Total	50,5

$$\bar{x}_p = \frac{90 \times 6 + 110 \times 7 + \ldots + 108 \times 1,5}{50,5} = 104,24.$$

Se os dados estão organizados em **tabelas de frequências**, caso das variáveis quantitativas discretas, a média aritmética pode ser calculada por:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i f_i.$$

Exemplo: Em um estudo realizado para avaliar o número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte, foram utilizadas 40 plantas.

Tabela: Cálculo auxiliar da média de dados em tabela de frequências.

x_i	f_i	$x_i f_i$
0	7	0
1	11	11
2	14	28
3	8	24
Total	40	63

Média:
$$\bar{x} = \frac{63}{40} = 1,575$$
.

A média será 1,575 brotos/planta.

Se a variável é quantitativa contínua e está agrupada em intervalos de classe, a média aritmética é dada por:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i^* f_i,$$

em que x_i^* é o ponto médio do intervalo de classe.

Exemplo: Vamos retomar ao exemplo do diâmetro das árvores em uma floresta.

Seja x_i^* : ponto médio do intervalo de classe e f_i : a frequência do intervalo de classe.

Tabela: Tabela auxiliar para o cálculo da média de dados em tabela de frequências com intervalos de classe.

Classes	x_i^*	f_i	$x_i^* f_i$
10,2-22,0	16,1	22	354,20
22,0\(-33,8\)	27,9	6	167,40
$33,8 \vdash 45,6$	39,7	2	79,40
45,6⊢57,4	51,5	5	257,50
57,4⊢69,2	63,3	2	126,60
69,2⊢81,0	<i>7</i> 5,1	2	150,20
81,0⊢92,8	86,9	1	86,90
Total		40	1222,20
Média	1222,	20/4	0 = 30,56

Observação: A média é sensível a observações discrepantes, isto é, se existirem valores fora do intervalo de maior concentração dos dados, esses valores influenciam fortemente a média. Neste caso, a média pode não ser um bom representante da tendência central dos dados.

Uma outra medida de tendência central, que é pouco influenciada por observações discrepantes, é a **mediana**.

Mediana

Se temos os valores x_1, x_2, \dots, x_n , a mediana é calculada da forma:

- i Ordene os dados em ordem crescente, ou seja,
 - $x_{(1)}, x_{(2)}, \cdots, x_{(n)}$ e
- ii Calcule

$$\mathrm{Md} = \begin{cases} \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \mathrm{se}\,n\,\mathrm{\acute{e}}\,\mathrm{par}; \\ x_{\left(\frac{n+1}{2}\right)}, & \mathrm{se}\,n\,\mathrm{\acute{e}}\,\mathrm{\acute{impar}}. \end{cases}$$

Observação: Note como a mediana é pouco afetada por valores extremos ou discrepantes.

Considere os valores 7, 9, 2, 5, 4.

Considere os valores 7, 9, 2, 5, 4.

Ordenando os valores têm-se:

$$x_{(1)} = 2, x_{(2)} = 4, x_{(3)} = 5, x_{(4)} = 7, x_{(5)} = 9.$$

Considere os valores 7, 9, 2, 5, 4.

Ordenando os valores têm-se:

$$x_{(1)} = 2, x_{(2)} = 4, x_{(3)} = 5, x_{(4)} = 7, x_{(5)} = 9.$$

Como n=5 (ímpar), a mediana será dada por

Considere os valores 7, 9, 2, 5, 4.

Ordenando os valores têm-se:

$$x_{(1)} = 2, x_{(2)} = 4, x_{(3)} = 5, x_{(4)} = 7, x_{(5)} = 9.$$

Como n=5 (ímpar), a mediana será dada por

$$Md = x_{\left(\frac{n+1}{2}\right)} = x_{\left(\frac{5+1}{2}\right)} = x_{(3)} = 5.$$

Exemplo: Para os valores observados de produção anual de resina de árvores de *Pinus elliottii*, tem-se o seguinte rol:

Como n é par,

Exemplo: Para os valores observados de produção anual de resina de árvores de *Pinus elliottii*, tem-se o seguinte rol:

Como n é par,

Md =
$$\frac{x_{(5)} + x_{(6)}}{2} = \frac{2,1+2,3}{2} = \frac{4,4}{2}$$

= 2,2 kg.

Para dados discretos dispostos em tabela de frequências, a classe mediana é obtida fazendo o cálculo da **frequência acumulada**, que é a soma (ou valor total) de todas as frequências até o ponto desejado, e verificando o local no qual a se encontra o rol mediano.

Para dados discretos dispostos em tabela de frequências, a classe mediana é obtida fazendo o cálculo da **frequência acumulada**, que é a soma (ou valor total) de todas as frequências até o ponto desejado, e verificando o local no qual a se encontra o rol mediano.

Exemplo: Número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

Tabela: Distribuição de frequências para a variável número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

Número de		
brotos	f_i	F_i
0	7	7
1	11	18
2	14	32
3	8	40
Total	40	

Para dados discretos dispostos em tabela de frequências, a classe mediana é obtida fazendo o cálculo da **frequência acumulada**, que é a soma (ou valor total) de todas as frequências até o ponto desejado, e verificando o local no qual a se encontra o rol mediano.

Exemplo: Número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

Tabela: Distribuição de frequências para a variável número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

Número de		
brotos	f_i	F_i
0	7	7
1	11	18
2	14	32
3	8	40
Total	40	

$$Md = 2$$

Se os dados são de uma variável contínua e estiverem agrupados em classes, a mediana é dada por:

$$Md = LI_{Md} + \frac{\frac{n}{2} - F_{\frac{n}{2} - 1}}{f_{\frac{n}{2}}}h,$$

em que:

- $ightharpoonup LI_{Md}$ é limite inferior da classe mediana,
- ▶ *n* é o tamanho da amostra,
- ► $F_{\frac{n}{2}-1}$ é frequência acumulada anterior à classe mediana,
- $f_{\frac{n}{2}}$ é a frequência da classe mediana,
- \blacktriangleright *h* é a amplitude do intervalo.

$$Md = LI_{Md} + \frac{\frac{n}{2} - F_{\frac{n}{2} - 1}}{f_{\frac{n}{2}}}h,$$

Exemplo: Diâmetro das árvores em uma floresta.

Tabela: Distribuição de frequências para diâmetro das árvores em uma floresta.

Diâmetro	f_i	F_i	
10,2 ⊢ 22,0	22	22	
22,0 ⊢ 33,8	6	28	
$33,8 \vdash 45,6$	2	30	
45,6 ⊢ 57,4	5	35	
57 , 4 ⊢ 69 , 2	2	37	
69,2 ⊢ 81,0	2	39	
81,0 ⊢ 92,8	1	40	
Total	40		

Exemplo: Diâmetro das árvores em uma floresta.

Tabela: Distribuição de frequências para diâmetro das árvores em uma floresta.

Diâmetro	f_i	F_i
10,2 ⊢ 22,0	22	22
22,0 ⊢ 33,8	6	28
$33,8 \vdash 45,6$	2	30
45,6 ⊢ 57,4	5	35
$57,4 \vdash 69,2$	2	37
$69,2 \vdash 81,0$	2	39
81,0 ⊢ 92,8	1	40
Total	40	

$$Md = LI_{Md} + \frac{\frac{n}{2} - F_{\frac{n}{2} - 1}}{f_{\frac{n}{2}}}h = 10, 2 + \frac{\frac{40}{2} - 0}{22}11, 8 = 20,93$$

Uma outra forma para se calcular a mediana por meio de dados agrupados é exemplificada a seguir.

Tabela: Distribuição de frequências dos diâmetros (cm) das árvores em uma floresta nativa.

X_i	x_i^*	f_i	F_i	F'_i
10,0 ⊢ 20,0	15,0	39	39	0,39
$20,0 \vdash 30,0$	25,0	22	61	0,61
$30,0 \vdash 40,0$	35,0	10	71	0,71
$40,0 \vdash 50,0$	45,0	10	81	0,81
$50,0 \vdash 60,0$	55,0	8	89	0,89
$60,0 \vdash 70,0$	65,0	4	93	0,93
$70,0 \vdash 80,0$	75,0	3	96	0,96
$80,0 \vdash 160,0$	120	4	100	1,00
Total		100		

$$\begin{cases} 30,0-20,0 &\longleftrightarrow &0,61-0,39\\ Md-20,0 &\longleftrightarrow &0,50-0,39 \end{cases}$$

$$\begin{cases} 10,0 &\longleftrightarrow &0,22\\ Md-20,0 &\longleftrightarrow &0,11 \end{cases}$$

Uma outra forma para se calcular a mediana por meio de dados agrupados é exemplificada a seguir.

Tabela: Distribuição de frequências dos diâmetros (cm) das árvores em uma floresta nativa.

X_i	x_i^*	f_i	F_i	F'_i
10,0 ⊢ 20,0	15,0	39	39	0,39
$20,0 \vdash 30,0$	25,0	22	61	0,61
$30,0 \vdash 40,0$	35,0	10	71	0,71
$40,0 \vdash 50,0$	45,0	10	81	0,81
$50,0 \vdash 60,0$	55,0	8	89	0,89
$60,0 \vdash 70,0$	65,0	4	93	0,93
$70,0 \vdash 80,0$	75,0	3	96	0,96
$80,0 \vdash 160,0$	120	4	100	1,00
Total		100		

$$\begin{cases} 30,0-20,0 &\longleftrightarrow 0,61-0,39\\ Md-20,0 &\longleftrightarrow 0,50-0,39 \end{cases}$$

$$\begin{cases} 10,0 &\longleftrightarrow 0,22\\ Md-20,0 &\longleftrightarrow 0,11 \end{cases}$$

$$(Md-20,0)\times 0,22 = 10\times 0,11$$

$$Md = \frac{10\times 0,11}{0,22} + 20$$

$$Md = 25,0 \text{ cm}.$$

Quartil: generalização da mediana.

Quartil: generalização da mediana.

Quartil
$$\Rightarrow$$
 4 partes

▶ Percentil de ordem 100*p*.

$$P_{100p} = \begin{cases} \frac{x_{(np)} + x_{(np+1)}}{2}, & \text{se } np \text{ for inteiro;} \\ x_{(\text{int}(np)+1)}, & \text{se } np \text{ não for inteiro.} \end{cases}$$

Exemplo: Para os valores observados de produção anual de resina de árvores de *Pinus elliottii*, tem-se:

1,5
 1,8
 1,9
 2,0
 2,1

$$n=10$$

 2,3
 2,3
 2,6
 3,4
 5,5
 Obter $P_{75} = Q_3$ e P_{20}

Exemplo: Para os valores observados de produção anual de resina de árvores de *Pinus elliottii*, tem-se:

1,5
 1,8
 1,9
 2,0
 2,1

$$n=10$$

 2,3
 2,3
 2,6
 3,4
 5,5
 Obter $P_{75} = Q_3$ e P_{20}

►
$$P_{75}$$
 ⇒ $np = 10 \times 0.75 = 7.5$
 $P_{75} = Q_3 = x_{(int(7,5)+1)}$
 $= x_{(7+1)} = x_{(8)}$
 $= 2.6 \text{ Kg}$

Exemplo: Para os valores observados de produção anual de resina de árvores de *Pinus elliottii*, tem-se:

1,5
 1,8
 1,9
 2,0
 2,1

$$n=10$$

 2,3
 2,3
 2,6
 3,4
 5,5
 Obter $P_{75} = Q_3$ e P_{20}

►
$$P_{75}$$
 ⇒ $np = 10 \times 0,75 = 7,5$
 $P_{75} = Q_3 = x_{(int(7,5)+1)}$
 $= x_{(7+1)} = x_{(8)}$
 $= 2,6 \text{ Kg}$

▶
$$P_{20}$$
 ⇒ $np = 10 \times 0, 20 = 2$
 $P_{20} = (x_{(2)} + x_{(3)})/2$
 $= (1, 8 + 1, 9)/2$
 $= 1, 85 \text{ Kg}$

Dados agrupados em tabelas de frequências

Tabela: Distribuição de frequências para o conjunto de dados de número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

$\overline{X_i}$	f_i	f'_i	F_i	F'_i
0	7	0,175	7	0,175
1	11	0,275	18	0,450
2	14	0,350	32	0,800
3	8	0,200	40	1,000
Total	40	1,00		

Obter $P_{25} = Q_1$, P_{50} e $P_{97,5}$.

Dados agrupados em tabelas de frequências

Tabela: Distribuição de frequências para o conjunto de dados de número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

$\overline{X_i}$	f_i	f'_i	F_i	F'_i
0	7	0,175	7	0,175
1	11	0,275	18	0,450
2	14	0,350	32	0,800
3	8	0,200	40	1,000
Total	40	1,00		

Obter $P_{25} = Q_1$, P_{50} e $P_{97,5}$.

▶ Observar
$$F_i' \ge 0,25$$

▶ Observar
$$F'_i \ge 0,50$$

▶ Observar
$$F_i' \ge 0,975$$

Dados agrupados em tabelas de frequências

Tabela: Distribuição de frequências para o conjunto de dados de número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

X_i	f_i	f'_i	F_i	F'_i
0	7	0,175	7	0,175
1	11	0,275	18	0,450
2	14	0,350	32	0,800
3	8	0,200	40	1,000
Total	40	1,00		

Obter $P_{25} = Q_1$, P_{50} e $P_{97,5}$.

• Observar
$$F'_i \ge 0,25$$

 $P_{25} = Q_1 = 1$

▶ Observar $F'_i \ge 0,50$

▶ Observar $F_i' \ge 0,975$

Dados agrupados em tabelas de frequências

Tabela: Distribuição de frequências para o conjunto de dados de número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

$\overline{X_i}$	f_i	f'_i	F_i	F'_i
0	7	0,175	7	0,175
1	11	0,275	18	0,450
2	14	0,350	32	0,800
3	8	0,200	40	1,000
Total	40	1,00		

Obter $P_{25} = Q_1$, P_{50} e $P_{97,5}$.

► Observar
$$F'_i \ge 0,25$$

 $P_{25} = Q_1 = 1$

Observar
$$F_i' \ge 0,50$$

$$P_{50} = 2$$

▶ Observar $F'_i \ge 0,975$

Dados agrupados em tabelas de frequências

Tabela: Distribuição de frequências para o conjunto de dados de número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

X_i	f_i	f'_i	F_i	F'_i
0	7	0,175	7	0,175
1	11	0,275	18	0,450
2	14	0,350	32	0,800
3	8	0,200	40	1,000
Total	40	1,00		

Obter $P_{25} = Q_1$, P_{50} e $P_{97,5}$.

• Observar
$$F'_i \ge 0,25$$

 $P_{25} = Q_1 = 1$

Observar
$$F_i' \ge 0,50$$

$$P_{50} = 2$$

• Observar
$$F'_i \ge 0,975$$
 $P_{97,5} = 3$

Se os dados são de uma variável contínua e estiverem agrupados em intervalos de classe, o primeiro quartil pode ser calculado por:

$$Q_1 = LI_{Q_1} + \frac{\frac{n}{4} - F_{\frac{n}{4} - 1}}{f_{Q_1}} h,$$

em que:

- ▶ LI_{Q_1} é o limite inferior da classe Q_1 ,
- n é o tamanho da amostra,
- ▶ $F_{\frac{n}{4}-1}$ é a frequência acumulada anterior à classe que contém Q_1 ,
- f_{Q_1} é a frequência da classe Q_1 e
- \blacktriangleright *h* é a amplitude do intervalo.

Exemplo: Obter $P_{25} = Q_1$ para os dados referentes aos diâmetros das árvores, dispostos na seguinte tabela:

Tabela: Distribuição de frequências para diâmetro das árvores.

Diâmetro	f_i	f'_i	F_i	F'_i
10,2 ⊢ 22,0	22	0,550	22	0,550
22,0 ⊢ 33,8	6	0,150	28	0,700
$33,8 \vdash 45,6$	2	0,050	30	0,750
45,6 ⊢ 57,4	5	0,125	35	0,875
<i>57,</i> 4 ⊢ <i>69,</i> 2	2	0,050	37	0,925
69,2 ⊢ 81,0	2	0,050	39	0,975
81,0 ⊢ 92,8	1	0,025	40	1,000
Total	40	1,00		

Exemplo: Obter $P_{25} = Q_1$ para os dados referentes aos diâmetros das árvores, dispostos na seguinte tabela:

Tabela: Distribuição de frequências para diâmetro das árvores.

Diâmetro	f_i	f'_i	F_i	F'_i
10,2 ⊢ 22,0	22	0,550	22	0,550
22,0 ⊢ 33,8	6	0,150	28	0,700
$33,8 \vdash 45,6$	2	0,050	30	0,750
$45,6 \vdash 57,4$	5	0,125	35	0,875
<i>57,</i> 4 ⊢ <i>69,</i> 2	2	0,050	37	0,925
69,2 ⊢ 81,0	2	0,050	39	0,975
81,0 ⊢ 92,8	1	0,025	40	1,000
Total	40	1,00		

$$Q_1 = LI_{Q_1} + \frac{\frac{n}{4} - F_{\frac{n}{4} - 1}}{f_{Q_1}}h = 10, 2 + \frac{\frac{40}{4} - 0}{22}11, 8 = 15, 56.$$

 Outra forma para o cálculo de quartis e percentis para dados agrupados em tabelas de classes de frequências.

Para o exemplo referente ao diâmetro das árvores, tem-se:

Tabela: Distribuição de frequências dos diâmetros (cm) das árvores em uma floresta nativa.

X_i	x_i^*	f_i	F_i	F'_i
10,0 ⊢ 20,0	15,0	39	39	0,39
$20,0 \vdash 30,0$	25,0	22	61	0,61
$30,0 \vdash 40,0$	35,0	10	71	0,71
$40,0 \vdash 50,0$	45,0	10	81	0,81
50,0 ⊢ 60,0	55,0	8	89	0,89
$60,0 \vdash 70,0$	65,0	4	93	0,93
$70.0 \vdash 80.0$	75,0	3	96	0,96
$80,0 \vdash 160,0$	120	4	100	1,00
Total		100		

Obter
$$P_{20}$$
 e $P_{75} = Q_3$.

$$P_{20} \Rightarrow \text{classe: } 10,0 \vdash 20,0$$

$$P_{75} \Rightarrow \text{classe: } 40,0 \vdash 50,0$$

$$P_{20} \Rightarrow \text{classe: } 10,0 \vdash 20,0$$

$$\begin{cases} 20,0-10,0 &\longleftrightarrow 0,39 \\ P_{20}-10,0 &\longleftrightarrow 0,20 \end{cases}$$

$$P_{20} = 10 + \frac{20,0-10,0}{0,39} \times 0,20$$

$$P_{20} = 15,1\text{cm.}$$

$$P_{75} \Rightarrow \text{classe: } 40,0 \vdash 50,0$$

$$P_{20} \Rightarrow \text{classe: } 10,0 \vdash 20,0$$

$$\begin{cases} 20,0-10,0 &\longleftrightarrow 0,39 \\ P_{20}-10,0 &\longleftrightarrow 0,20 \end{cases}$$

$$P_{20} = 10 + \frac{20,0-10,0}{0,39} \times 0,20$$

$$P_{20} = 15,1 \text{cm.}$$

$$P_{75} \Rightarrow \text{classe: } 40,0 \vdash 50,0$$

$$\begin{cases} 50,0-40,0 &\longleftrightarrow 0,10 \\ P_{75}-40,0 &\longleftrightarrow 0,04 \end{cases}$$

$$P_{75} = 40 + \frac{50,0-40,0}{0,10} \times 0,04$$

$$P_{20} = 44,0\text{cm}.$$

A **moda** é o valor mais frequente da amostra, caso discreto, ou o valor com a mairo densidade de dados, caso contínuo.

Observação: Também pode ser obtida para variáveis qualitativas.

Exemplo: Para os dados observados de síndrone de regeneração de espécies arbóreas em uma floresta nativa, tem-se:

Síndrome de	Número de	Percentual
regeneração	espécies	(%)
Heliófitas	4	13%
Oportunistas de clareira	11	37%
Tolerantes	15	50%

A **moda** é o valor mais frequente da amostra, caso discreto, ou o valor com a mairo densidade de dados, caso contínuo.

Observação: Também pode ser obtida para variáveis qualitativas.

Exemplo: Para os dados observados de síndrone de regeneração de espécies arbóreas em uma floresta nativa, tem-se:

Síndrome de	Número de	Percentual
regeneração	espécies	(%)
Heliófitas	4	13%
Oportunistas de clareira	11	37%
Tolerantes	15	50%

Mo = Tolerantes

Medidas resumo - Moda

Exemplo: Número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

Tabela: Distribuição de frequências para a variável número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

Número de	
brotos	f_i
0	7
1	11
2	14
3	8
Total	40
10ta1	40

$$Mo = 2$$

Se os dados são provenientes de uma variável quantitativa contínua e estão agrupados em intervalos de classe, a moda por calculada de diferentes formas:

Se os dados são provenientes de uma variável quantitativa contínua e estão agrupados em intervalos de classe, a moda por calculada de diferentes formas:

► Moda bruta: ponto médio da classe com maior frequência

Se os dados são provenientes de uma variável quantitativa contínua e estão agrupados em intervalos de classe, a moda por calculada de diferentes formas:

- ▶ Moda bruta: ponto médio da classe com maior frequência
- ► Moda: método de Czuber ⇒ semelhança de triângulos

Se os dados são provenientes de uma variável quantitativa contínua e estão agrupados em intervalos de classe, a moda por calculada de diferentes formas:

- Moda bruta: ponto médio da classe com maior frequência
- ► Moda: método de Czuber ⇒ semelhança de triângulos
- Fórmula: Mo = $LI_{Mo} + \frac{\Delta_1}{\Delta_1 + \Delta_2}h$

Para o exemplo referente ao diâmetro das árvores, tem-se:

Tabela: Distribuição de frequências dos diâmetros (cm) das árvores em uma floresta nativa.

X_i	x_i^*	f_i	F_i	F'_i
10,0 ⊢ 20,0	15,0	39	39	0,39
$20,0 \vdash 30,0$	25,0	22	61	0,61
$30,0 \vdash 40,0$	35,0	10	71	0,71
$40,0 \vdash 50,0$	45,0	10	81	0,81
$50,0 \vdash 60,0$	55,0	8	89	0,89
$60,0 \vdash 70,0$	65,0	4	93	0,93
$70,0 \vdash 80,0$	75,0	3	96	0,96
$80,0 \vdash 160,0$	120	4	100	1,00
Total		100		

Para o exemplo referente ao diâmetro das árvores, tem-se:

Tabela: Distribuição de frequências dos diâmetros (cm) das árvores em uma floresta nativa.

X_i	x_i^*	f_i	F_i	F'_i
10,0 ⊢ 20,0	15,0	39	39	0,39
$20,0 \vdash 30,0$	25,0	22	61	0,61
$30,0 \vdash 40,0$	35,0	10	71	0,71
$40,0 \vdash 50,0$	45,0	10	81	0,81
50,0 ⊢ 60,0	55,0	8	89	0,89
$60,0 \vdash 70,0$	65,0	4	93	0,93
<i>7</i> 0,0 ⊢ 80,0	75,0	3	96	0,96
$80,0 \vdash 160,0$	120	4	100	1,00
Total		100		

Moda bruta:

Mo =
$$\frac{10,0+20,0}{2}$$

= 15,0 cm

$$\left\{ \begin{array}{lll} 39-0 & \longleftrightarrow & 39-22 & Mo = \frac{(39-0)\times 20 + (39-22)\times 10}{(39-0) + (39-22)} \\ Mo-10,0 & \longleftrightarrow & 20-Mo \end{array} \right. \\ Mo = 17,0cm$$

Supondo o seguinte histograma para uma variável \boldsymbol{X} qualquer.

Supondo o seguinte histograma para uma variável X qualquer.

Classe correspondente à moda: $80 \vdash 90$

Supondo o seguinte histograma para uma variável X qualquer.

Classe correspondente à moda: $80 \vdash 90$

Moda bruta: Mo = 85

Supondo o seguinte histograma para uma variável \boldsymbol{X} qualquer.

Classe correspondente à moda: $80 \vdash 90$ Moda bruta: Mo = 85

$$\left\{ \begin{array}{ccc} 40-30 & \longleftrightarrow & 40-20 \\ Mo-80 & \longleftrightarrow & 90-Mo \end{array} \right.$$

$$(40-30)(90-Mo) = (40-20)(Mo-80)$$

$$Mo = \frac{(40-30)\times 90 + (40-20)\times 80}{(40-30) + (40-20)}$$
$$= 83,33$$

Fórmula:

$$Mo = LI_{Mo} + \frac{\Delta_1}{\Delta_1 + \Delta_2}h,$$

em que:

- $ightharpoonup LI_{Mo}$ é o limite inferior da classe modal,
- Δ₁ é a diferença de frequência entre a classe modal e a anterior,
- $ightharpoonup \Delta_2$ é a diferença de frequência entre a classe modal e a seguinte,
- \blacktriangleright *h* é aamplitude do intervalo de classe.

Tabela: Distribuição de frequências para diâmetro das árvores em uma floresta

Diâmetro	f_i
10,2 ⊢ 22,0	22
22,0 ⊢ 33,8	6
$33,8 \vdash 45,6$	2
45,6 ⊢ 57,4	5
<i>57,</i> 4 ⊢ <i>69,</i> 2	2
69,2 ⊢ 81,0	2
81,0 ⊢ 92,8	1
Total	40

Tabela: Distribuição de frequências para diâmetro das árvores em uma floresta

Diâmetro	f_i
10,2 ⊢ 22,0	22
$22,0 \vdash 33,8$	6
33,8 ⊢ 45,6	2
45,6 ⊢ 57,4	5
57,4 ⊢ 69,2	2
69,2 ⊢ 81,0	2
81,0 ⊢ 92,8	1
Total	40

Logo, a moda será dada por:

$$Mo = LI_{Mo} + \frac{\Delta_1}{\Delta_1 + \Delta_2}h = 10, 2 + \frac{(22, 0 - 0)}{(22, 0 - 0) + (22, 0 - 6)}11, 8 = 17, 03.$$

Medidas de dispersão

2. Medidas de dispersão

As medidas de dispersão são utilizadas para determinar a variabilidade dos dados em relação as medidas de posição.

Medidas de dispersão

2. Medidas de dispersão

As medidas de dispersão são utilizadas para determinar a variabilidade dos dados em relação as medidas de posição.

Principais medidas de dispersão:

- Amplitude;
- Distância interquartílica;
- Desvio médio;
- Variância;
- Desvio padrão;
- Coeficiente de variação.

Medidas de dispersão

Para esta sessão vamos considerar o seguinte exemplo:

Foram observadas cinco amostras de duas máquinas, quanto à gramatura do papel produzido, conforme a tabela a seguir:

	Máquina		
Amostra	A	В	
1	152	205	
2	248	203	
3	260	195	
4	200	197	
5	140	200	
média	200	200	

Qual das máquinas a empresa deve adquirir? Por quê?

Medidas de dispersão - Amplitude

A amplitude é dada por:

$$A_x = \max(x) - \min(x)$$

Medidas de dispersão - Amplitude

A amplitude é dada por:

$$A_x = \max(x) - \min(x)$$

Exemplo: Considerando-se o exemplo da gramatura do papel, temos:

Máquina	Amplitude
A	260 - 140 = 120
В	205 - 195 = 10

Medidas de dispersão: Amplitude Interquartílica

A amplitude interquartílica é dada por:

$$AIQ = Q_3 - Q_1$$

Exemplo: Considerando-se o exemplo da gramatura do papel, temos os dados ordenados:

Máquina	A	140	152	200	248	260
	В	195	197	200	203	205

Medidas de dispersão: Amplitude Interquartílica

A amplitude interquartílica é dada por:

$$AIQ = Q_3 - Q_1$$

Exemplo: Considerando-se o exemplo da gramatura do papel, temos os dados ordenados:

Máquina						
	В	195	197	200	203	205

$$np = 5 \times 0,25 = 1,25 \Rightarrow Q_1 = x_{(int(1,25)+1)} = x_2$$

 $np = 5 \times 0,75 = 3,75 \Rightarrow Q_3 = x_{(int(3,25)+1)} = x_4$

Medidas de dispersão: Amplitude Interquartílica

A amplitude interquartílica é dada por:

$$AIQ = Q_3 - Q_1$$

Exemplo: Considerando-se o exemplo da gramatura do papel, temos os dados ordenados:

Máquina	A	140	152	200	248	260
	В	195	197	200	203	205

$$np = 5 \times 0,25 = 1,25 \Rightarrow Q_1 = x_{(int(1,25)+1)} = x_2$$

 $np = 5 \times 0,75 = 3,75 \Rightarrow Q_3 = x_{(int(3,25)+1)} = x_4$

Máquina	Q_1	Q_3	AIQ
A	152	248	$Q_3 - Q_1 = $ 96
В	197	203	$Q_3 - Q_1 = 6$

Desvio de uma observação em relação a uma constante:

$$d_i = x_i - k$$

Desvio de uma observação em relação a uma constante:

$$d_i = x_i - k$$

Desvio de uma observação em relação à média aritmética:

$$e_i = x_i - \bar{x} \implies \sum_{i=1}^n e_i = ?$$

Desvio de uma observação em relação a uma constante:

$$d_i = x_i - k$$

Desvio de uma observação em relação à média aritmética:

$$e_i = x_i - \bar{x} \implies \sum_{i=1}^n e_i = ?$$

Desvio de uma observação em relação a uma constante:

$$d_i = x_i - k$$

▶ Desvio de uma observação em relação à média aritmética:

$$e_i = x_i - \bar{x} \implies \sum_{i=1}^n e_i = ?$$

Desvio Médio

$$Dm_x = \frac{1}{n} \sum_{i=1}^{n} |e_i| = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Exemplo: Considerando-se o exemplo da gramatura do papel, temos:

Maquina	Desvios			$\sum_{i=1}^{5} e_i /5$		
A	-48	48	60	0	-60	
В	5	3	-5	-3	0	

Exemplo: Considerando-se o exemplo da gramatura do papel, temos:

Maquina	Desvios			os		$\sum_{i=1}^{5} e_i /5$
A	-48	48	60	0	-60	216/5 = 43,2
В	5	3	-5	-3	0	16/5 = 3,2

Variância populacional

é a média dos quadrados dos desvios em relação à média aritmética.

$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Estimador da variância populacional (variância amostral):

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n e_i^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - \frac{(\sum_i^n x_i)^2}{n} \right]$$

Exemplo:

► Máquina A:

► Máquina B:

Exemplo:

► Máquina A:

$$S_{X_1}^2 = \frac{\sum_{i=1}^5 (x_i - \bar{x})^2}{5 - 1}$$

$$= \frac{(152 - 200)^2 + (248 - 200)^2 + (260 - 200)^2 + (200 - 200)^2 + (140 - 200)^2}{4}$$

$$= 2952g^2$$

► Máquina B:

Exemplo:

► Máquina A:

$$S_{X_1}^2 = \frac{\sum_{i=1}^5 (x_i - \bar{x})^2}{5 - 1}$$

$$= \frac{(152 - 200)^2 + (248 - 200)^2 + (260 - 200)^2 + (200 - 200)^2 + (140 - 200)^2}{4}$$

$$= 2952g^2$$

Máquina B:

$$S_{X_2}^2 = \frac{\sum_{i=1}^5 (x_i - \bar{x})^2}{5 - 1}$$

$$= \frac{(205 - 200)^2 + (203 - 200)^2 + (195 - 200)^2 + (197 - 200)^2 + (200 - 200)^2}{4}$$

$$= 17g^2$$

Dados agrupados em tabelas de frequências

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^k f_i e_i^2 = \frac{1}{n-1} \sum_{i=1}^k f_i (x_i - \bar{x})^2$$

em que k corresponde ao número de diferentes valores para a variável e $n = \sum_{i=1}^{k} f_i$

Ou ainda,

$$S_X^2 = \frac{1}{n-1} \left[\sum_{i=1}^k f_i x_i^2 - \frac{(\sum_{i=1}^k f_i x_i)^2}{n} \right]$$

Exemplo: Em trinta vasos, foi observado, em cada vaso, o número de estacas enraizadas num total de quatro estacas, cujos dados são apresentado na tabela a seguir:

f_i
7
12
8
2
1
30

Exemplo: Em trinta vasos, foi observado, em cada vaso, o número de estacas enraizadas num total de quatro estacas, cujos dados são apresentado na tabela a seguir:

X_i	f_i
0	7
1	12
2	8
3	2
4	1
Total	30

Média

Exemplo: Em trinta vasos, foi observado, em cada vaso, o número de estacas enraizadas num total de quatro estacas, cujos dados são apresentado na tabela a seguir:

X_i	f_i
0	7
1	12
2	8
3	2
4	1
Total	30

Média

$$\bar{x} = \frac{0 \times 7 + 1 \times 12 + \ldots + 4 \times 1}{30}$$
$$= 1,27 \text{ estacas}$$

Exemplo: Em trinta vasos, foi observado, em cada vaso, o número de estacas enraizadas num total de quatro estacas, cujos dados são apresentado na tabela a seguir:

X_i	f_i
0	7
1	12
2 3	8
3	2
4	1
Total	30

Exemplo: Em trinta vasos, foi observado, em cada vaso, o número de estacas enraizadas num total de quatro estacas, cujos dados são apresentado na tabela a seguir:

X_i	f_i
0	7
1	12
2	8
3	2
4	1
Total	30

Variância

Exemplo: Em trinta vasos, foi observado, em cada vaso, o número de estacas enraizadas num total de quatro estacas, cujos dados são apresentado na tabela a seguir:

f_i
7
12
8
2
1
30

Variância

$$S_X^2 = \frac{7(0-1,27)^2 + 12(1-1,27)^2 + \dots + 1(4-1,27)^2}{30-1}$$
$$= 1,03 \text{ estacas}^2$$

Dados agrupados em tabelas de classes frequências

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^k f_i e_i^2 = \frac{1}{n-1} \sum_{i=1}^k f_i (x_i^* - \bar{x})^2$$

em que k corresponde ao número de diferentes valores para a variável e $n = \sum_{i=1}^k f_i$

Ou ainda,

$$S_X^2 = \frac{1}{n-1} \left[\sum_{i=1}^k f_i x_i^{*2} - \frac{\left(\sum_{i=1}^k f_i x_i^{*}\right)^2}{n} \right]$$

Exemplo: Foram avaliados 196 árvores com relação ao diâmetro, em cm (floresta plantada), cujos dados são apresentados na tabela a seguir.

Diâmetro (cm)	x_i^*	f_i
4,0 ⊢ 6,0	5,0	17
$6,0 \vdash 8,0$	7,0	21
$8,0 \vdash 10,0$	9,0	35
$10,0 \vdash 12,0$	11,0	40
$12,0 \vdash 14,0$	13,0	38
$14,0 \vdash 16,0$	15,0	24
$16,0 \vdash 18,0$	17,0	13
$18,0 \vdash 20,0$	19,0	8
Total		196

Exemplo: Foram avaliados 196 árvores com relação ao diâmetro, em cm (floresta plantada), cujos dados são apresentados na tabela a seguir.

Diâmetro (cm)	x_i^*	f_i
4,0 ⊢ 6,0	5,0	17
$6,0 \vdash 8,0$	7,0	21
$8,0 \vdash 10,0$	9,0	35
$10,0 \vdash 12,0$	11,0	40
$12,0 \vdash 14,0$	13,0	38
$14,0 \vdash 16,0$	15,0	24
$16,0 \vdash 18,0$	17,0	13
$18,0 \vdash 20,0$	19,0	8
Total		196

Média

$$\bar{x} = \frac{5,0 \times 17 + 7,0 \times 21 + \ldots + 19,0 \times 8}{196}$$
= 11,30 cm

Exemplo: Foram avaliados 196 árvores com relação ao diâmetro, em cm (floresta plantada), cujos dados são apresentados na tabela a seguir.

Diâmetro (cm)	x_i^*	f_i
4,0 ⊢ 6,0	5,0	17
$6,0 \vdash 8,0$	7,0	21
$8,0 \vdash 10,0$	9,0	35
$10,0 \vdash 12,0$	11,0	40
$12,0 \vdash 14,0$	13,0	38
$14,0 \vdash 16,0$	15,0	24
$16,0 \vdash 18,0$	17,0	13
$18,0 \vdash 20,0$	19,0	8
Total		196

Exemplo: Foram avaliados 196 árvores com relação ao diâmetro, em cm (floresta plantada), cujos dados são apresentados na tabela a seguir.

Diâmetro (cm)	x_i^*	f_i
4,0 ⊢ 6,0	5,0	17
$6,0 \vdash 8,0$	7,0	21
$8,0 \vdash 10,0$	9,0	35
$10,0 \vdash 12,0$	11,0	40
$12,0 \vdash 14,0$	13,0	38
$14,0 \vdash 16,0$	15,0	24
$16,0 \vdash 18,0$	17,0	13
$18,0 \vdash 20,0$	19,0	8
Total		196

Variância

$$\frac{\sum_{k=1}^{8} 17 \times (5, 0 - 11, 30)^{2} + 21 \times (7, 0 - 11, 30)^{2} + \dots + 8 \times (19, 0 - 11, 30)^{2}}{196 - 1}$$

$$= 2586, 84/195 = 13, 27 \text{ cm}^{2}$$

O desvio padrão

corresponde à raiz quadrada da variância,

$$S_X = \sqrt{S_X^2}$$

O desvio padrão tem a mesma unidade dos dados originais

Exemplo: Considerando os dados de diâmetro das árvores:

Exemplo: Considerando os dados de diâmetro das árvores:

$$S_X = \sqrt{13,27} = 3,64 \text{ cm}$$

Medidas de dispersão - Coeficiente de Variação

O coeficiente de variação é dado por

$$CV_X = 100 \frac{S_X}{\bar{x}}$$

O CV é adimensional, pode-se comparar a dispersão de variáveis com diferentes unidades de medida.

Orientação

$$CV \le 10\%$$
 \Rightarrow baixo
 $10\% < CV \le 20\%$ \Rightarrow médio
 $20\% < CV \le 30\%$ \Rightarrow alto
 $CV > 30\%$ \Rightarrow muito alto

Não tome as sugestões como regra, o CV não é invariável a transformações.

Medidas de dispersão - Coeficiente de Variação

Exemplo: Considerando os dados de diâmetro das árvores:

Medidas de dispersão - Coeficiente de Variação

Exemplo: Considerando os dados de diâmetro das árvores:

$$CV_X = 100 \frac{3,64}{11,30} = 32,21\%$$

Medidas de dispersão - Gráfico de Caixas

O gráfico de caixas ou **box-plot** resume a distribuição dos dados em uma representação bastante informativa. Têm-se como principais aspectos observados no box-plot:

- Simetria ou assimetria da distribuição;
- Amplitude de variação;
- Observações atípicas.

Medidas de dispersão - Gráfico de Caixas

O gráfico de caixas ou **box-plot** resume a distribuição dos dados em uma representação bastante informativa. Têm-se como principais aspectos observados no box-plot:

- Simetria ou assimetria da distribuição;
- Amplitude de variação;
- Observações atípicas.

Figura: Exemplo de um box-plot ou gráfico de caixas.

Construção de um gráfico de caixas

- Calcular o primeiro quartil (Q_1) , a mediana (Md) e o terceiro quartil (Q_3) ;
- 2 Calcular a AIQ = $Q_3 Q_1$;
- 3 Verificar a existência de observações atípicas, ou seja, valores menores do que $Q_1 1$, 5AIQ ou maiores do que $Q_3 + 1$, 5AIQ;
- Calcular os limites inferior e superior dos dados sem considerar as observações atípicas;
- 5 Construir o gráfico seguindo o esquema a seguir:

Medidas de dispersão - Gráfico de Caixas

Exemplo: Para os valores observados de produção anual de resina de árvores de *Pinus elliottii*, em kg, tem-se:

1,5	1,8	1,9	2,0	2,1
2,3	2,3	2,6	3,4	5,5

Medidas de posição e dispersão - Software R

```
# Armazenando os dados
resina \leftarrow c(1.5, 1.8, 1.9, 2, 2.1, 2.3, 2.3, 2.6, 3.4, 5.5)
# Calculando algumas estatísticas
c("Média" = mean(resina),
 "Mediana" = median(resina),
 "Variância" = var(resina),
 "Desvio padrão" = sd(resina))
          Média
                    Mediana
                                Variância Desvio padrão
##
       2,540000
                    2,200000
                                1,349333 1,161608
##
# Alguns quantis
quantile(resina, probs = c(0.1, 0.25, 0.5, 0.8))
## 10% 25%
                50% 80%
## 1,770 1,925 2,200 2,760
# Um resumo genérico
summary(resina)
     Min. 1st Qu. Median Mean 3rd Qu. Max.
##
##
    1.500 1.925 2.200 2.540 2.525
                                          5.500
```

Medidas de posição e dispersão - Software R

Programando o cálculo de algumas estatísticas

```
# Minimo e máximo
range(resina)
## [1] 1.5 5.5
# Amplitude
diff(range(resina))
## [1] 4
# Amplitude interquartílica
diff(quantile(resina, c(0.25, 0.75), names = FALSE))
## [1] 0.6
# Coeficiente de variação
sd(resina) / mean(resina)
## [1] 0,457326
```

Medidas de posição e dispersão - Software R

Suíte gráfica

```
# Dados versus indice
plot(resina)

# Histograma
hist(resina)

# Boxplot
boxplot(resina)

# Para curiosos
demo(graphics)
```