1. Context-Free Grammars

- The set of sequences over a set X, called X^* is another set such that:
 - ε is a sequence called the empty sequence, and
 - if z is a sequence and $a \in X$ then az is also a sequence. We use lowercase letters from the end of the latin alphabet to denote sequences: z, y, x, \ldots
- An **alphabet** is a finite set X. Its elements are called symbols and are usually denoted by lowercase letters from the beginning of the latin alphabet: a, b, c, ...
- A language is a subset of T^* for some alphabet T. Examples of languages over an alphabet T are $T^*, \emptyset, \{\varepsilon\}$ and T itself
- A sentence (often called word) is any element of a language.
- Language operations. Let L and M be languages over an alphabet T. Then,
 - $\overline{L} = T^* L$ is the complement of L,
 - $L^R = \{s^R \mid s \in L\}$ is the reverse of L,
 - $LM = \{st \mid s \in L, t \in M\}$ is the concatenation of L and M,
 - $L^0 = \{\varepsilon\}$ is the 0-th power of L,
 - $L^{n+1} = LL^n$ is the (n+1)-th power of L,
 - $L^* = \bigcup_{i \in \mathbb{N}} L^i$ is the start-closure of L,
 - $L^+ = \bigcup_{i \in \mathbb{N}, i>0}^{\infty}$ is the positive clousre of L. And the following properties hold:
 - $L^+ = LL*$, and
 - $L^* = \{\varepsilon\} \cup L^+$.
- A grammar is a shorthand syntax for an inductive definition of a language, where we use
 - Monospace characters for **terminals**, i.e. symbols of the alphabet.
 - Capital letters for **nonterminals**, i.e. auxiliary symbols that are not part of the alphabet but are part of the language.
 - **Production rules** of the form $\alpha \to \beta$, where α is always a non-terminal.
 - A nonterminal start symbol, which can be ε .
- A context-free grammar is a four-tuple (T, N, R, S) where
 - T is a finite set of terminal symbols (alphabet),
 - N is a finite set of nonterminal symbols,
 - R is a finite set of production rules of the form $A \to \beta$, where A is exactly one nonterminal and β is a sequence of terminals and nonterminals, and
 - S is the start symbol.

An example of a context-free grammar is

$$P \rightarrow \varepsilon \mid a \mid b \mid c \mid aPa \mid bPb \mid cPc.$$

A non example of a context-free grammar is $\{a^nb^nc^n\mid n\in\mathbb{N}\}$, because in this case the production rules would not be of the form $A\to\beta$ where A is exactly one nonterminal.

A context-free language is a language generated by a context-free grammar.