Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport:TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

TCP segment structure

MSS

- Maximum Segment Size
- The default TCP Maximum Segment Size is 536
- For most computer users, the MSS option is established by the operating system
- The maximum segment size is specified as a TCP option, initially in the TCP SYN packet during the TCP handshake. The value cannot be changed after the connection is established

MSS

- To avoid fragmentation in the IP layer, a host must specify
 the maximum segment size as equal to the largest IP
 <u>datagram</u> that the host can handle minus the IP header size
 and TCP header sizes
- Therefore IPv4 hosts are required to be able to handle an
 MSS of 536 octets (= 576 20 20)

The TCP Maximum Segment Size and Related Topics (RFC 879, 1983)

The default IP Maximum Datagram Size is 576

The default TCP Maximum Segment Size is 536

TCP Behavior

RFC1323 - TCP Extensions for High Performance

BRKRST-2041

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

TCP congestion control: additive increase, multiplicative decrease

- □ AIMD
- Approach: increase transmission rate (congestion window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by 1 MSS every RTT until loss detected
 - multiplicative decrease: cut cwnd in half after loss

TCP congestion control: AIMD

 approach: senders can increase sending rate until packet loss (congestion) occurs, then decrease sending rate on loss event

TCP AIMD: more

Multiplicative decrease detail: sending rate is

- Cut in half on loss detected by triple duplicate ACK (TCP Reno)
- Cut to 1 MSS (maximum segment size) when loss detected by timeout (TCP Tahoe)

Why AIMD?

- AIMD a distributed, asynchronous algorithm has been shown to:
 - optimize congested flow rates network wide!
 - have desirable stability properties

TCP slow start

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = 1 MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- summary: initial rate is slow, but ramps up exponentially fast

TCP: from slow start to congestion avoidance

Q: when should the exponential increase switch to linear?

A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, ssthresh is set to
 1/2 of cwnd just before loss event

