1. Se dă variabila aleatoare ce descrie numărul de puncte acordate într-un joc de noroc:

$$X = \begin{pmatrix} -3 & -1 & 0 & 1 & 3 & 5 \\ \frac{1}{12} & \frac{1}{6} & \frac{1}{12} & \frac{1}{3} & \frac{1}{12} & p \end{pmatrix}. \text{ Să se determine:}$$

- a) probabilitatea de a primi 5 puncte;
- b) funcția de repartiție a variabilei X;
- c) probabilitatea de a primi mai mult de 1 punct;
- d) distribuția variabilei X^2 .
- e) numărul mediu de puncte care se acordă şi dispersia variabilei X;

a)
$$hat{0} = 1 - \frac{1}{12} - \frac{1}{6} - \frac{1}{12} - \frac{1}{3} - \frac{1}{12} = 1 - \frac{1}{4} - \frac{1}{2} - \frac{1}{4}$$

$$\frac{1}{12}$$
, $\times \in \mathbb{C}^{1}$, 3

$$\frac{9}{12}$$
 $\times \in [3,5)$

c)
$$\rho(x > 1) = \rho(x=3) + \rho(x=5) = \frac{1}{12} + \frac{3}{12} = \frac{4}{12} = \frac{1}{3}$$

$$\frac{d}{d} = \begin{pmatrix} 0 & 1 & 9 & 25 \\ \frac{1}{12} & \frac{1}{2} & \frac{1}{6} & \frac{1}{4} \end{pmatrix} \iff \frac{1}{12} + \frac{6}{12} + \frac{2}{12} + \frac{3}{12} = \frac{12}{12} = 1 \checkmark$$

$$P(x^{2}=0) = \frac{1}{12}$$

$$P(x^2=1) = P(x=-1) + P(x=1) = \frac{1}{6} + \frac{3}{3} = \frac{3}{6} = \frac{1}{2}$$

$$P(x^2-9) = P(x=-3) + P(x=3) = \frac{1}{12} + \frac{1}{12} = \frac{2}{12} = \frac{1}{6}$$

$$P(x^2-25)=P(x=5)=\frac{1}{4}$$

e)
$$M(x) = \sum_{x \in A} x \cdot A \cdot C = \frac{14}{12}$$

 $\nabla^{2}(x) = M(x^{2}) - [M(x)]^{2} = \frac{19}{12} - \frac{289}{144} = 6,25$

$$M(x^2) = 0.12 + 1.12 + 9.16 + 25.14 = \frac{9.5}{12}$$

=> mr de postări de sâmbată influenteară mr de postări de duminică

G)
$$T = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0_1 & 0_1 & 0_1 & 0_1 & 0_1 \end{pmatrix}$$

$$S = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0_1 & 0_1 & 0_1 & 0_1 & 0_1 \end{pmatrix}$$

$$P(T = 0) = P(S = 0, S = 0) = P(S = 0) = P(S = 0) = P(S = 0, S = 0, A)$$

$$P(T = 1) = P[(S = 1, S = 0) \cup (S = 0, S = 0)] = P(S = 1, S = 0) + P(S = 0, S = 1) = 2$$

$$= P(S = 1) \cdot P(S = 0) + P(S = 0) \cdot P(S = 1, S = 0) + P(S = 0, S = 1) = 2$$

$$= P(S = 1) \cdot P(S = 0) + P(S = 0) \cdot P(S = 1, S = 0) + P(S = 0, S = 1) = 2$$

$$= P(S = 1) \cdot P(S = 0) \cdot P(S = 0) \cdot P(S = 1, S = 0) \cdot P(S = 1, S = 0) = 2$$

$$= P(S = 1) \cdot P(S = 1, S = 1) \cdot U(S = 1, S = 0) \cdot V(S = 1, S = 0) \cdot V(S = 1, S = 1) \cdot U(S = 1, S = 1) \cdot V(S = 1, S = 1) \cdot U(S = 1, S = 1, S = 1) \cdot U(S = 1, S = 1,$$

- 4. Firma ta acordă asistență telefonică clienților. Evenimentele pe care le raportează clienții sunt:
- A: "PC-ul este virusat" si B: "un fisier sistem este corupt".

Probabilitățile producerii **simultane** a combinațiilor dintre aceste două evenimente și opusele lor sunt date în tabloul:

	A	\overline{A}
В	0.01	0.19
\overline{B}	0.02	0.78

De exemplu, numărul 0.19 din tabelul de mai sus reprezintă probabilitatea evenimentului $\overline{A} \cap B$, adică $P(\overline{A} \cap B) = 0.19$.

Fie (X,Y) vectorul aleator ale cărui coordonate sunt variabile aleatoare Bernoulli. X ia valoarea 1 dacă se produce evenimentul A și valoarea 0 dacă se produce evenimentul \overline{A} , iar Y ia valoare 1 dacă se produce B și 0 în caz contrar.

- a) Să se deducă distribuțiile marginale ale lui X și Y
- b) Să se calculeze P(X = 1|Y = 0)

5. Fie X, Y două variabile aleatoare discrete ce pot lua valorile $\{1, 2, 3, 4\}$. Distribuția de probabilitate comună a celor două variabile este dată în tabloul:

			Y		
		1	2	3	4
	1	0.03	0.05	0.1	0.12
Χ	2	0.05	0.06	0.08	0.07
	3	0.07	0.06	0.06	0.02
	4	0.07	0.09	0.05	0.02

a) Să se determine distribuțiile marginale;

a.

b) Să se determine distribuția de probabilitate a variabilei condiționate (X|Y=2).

							4
			Y				
		1	2	3	4	p_X	
	1	0.03	0.05	0.1	0.12	0.3	
X	2	0.05	0.06	0.08	0.07	0.26	
	3		0.06	0.06	0.02	0.21	
	4	0.07	0.09	0.05	0.02	023	
	p_Y	0.22	0.26	0.29	0.23		