Maestría en Estadística Aplicada

Curso: Modelos Lineales (cohorte 2020-2021)

Guía de actividades Nº 2

- 1) Sea $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$ con rango(X) = p. Demuestre las siguientes propiedades:
 - a) La estimación por mínimos cuadrados de β (aquel que minimiza e'e) coincide con la estimación de máxima verosimilitud.

b)
$$\frac{\widehat{\sigma^2}(n-p)}{\sigma^2} \sim \chi_{n-p}^2$$

- 2) En un modelo de regresión lineal simple sin ordenada al origen:
 - a) Encontrar la expresión para el estimador de β y σ^2 .
 - b) Encontrar la expresión para $Var(\hat{\beta})$.
 - c) Encontrar la expresión de la matriz de proyección P
 - d) Encontrar la varianza de los valores predichos/ajustados/esperados.
 - e) Obtener el test F para probar Ho: $\beta_1 = 0$
- 3) Considere el siguiente modelo de regresión lineal $y_i = \delta_0 + \delta_1(x_i \bar{x}) + \varepsilon_i$
 - a) Encontrar la expresión para el estimador de $\,\delta\,$ y su varianza.
 - b) Encontrar la expresión de la matriz de proyección P.
- 4) En un modelo de regresión simple <u>con ordenada</u> al origen, demostrar que el estadístico $T = \frac{\hat{\beta}_1 \beta_1^{(0)}}{EE(\hat{\beta}_1)}$ tiene distribución t-Student con n-2 grados de

libertad, donde $\hat{\beta}_1$ es el estimador de β_1 , $\beta_1^{(0)}$ el valor de β_1 bajo la hipótesis nula y $EE(\hat{\beta}_1)$ el error estándar estimado de $\hat{\beta}_1$

5) En un estudio sobre la incidencia que puede tener sobre el rendimiento en el lenguaje, la comprensión lectora y la capacidad intelectual, se obtuvieron datos sobre 10 estudiantes tomados al azar de un curso.

Rendimiento	3	2	4	9	6	7	2	6	5	8
Comprensión lectora	1	1	3	7	8	7	4	6	6	9
Capacidad intelectual	3	4	7	9	7	6	5	8	5	7

Maestría en Estadística Aplicada

Curso: Modelos Lineales (cohorte 2020-2021)

Guía de actividades Nº 2

- a) Escriba el modelo para el rendimiento en el lenguaje en función de la comprensión lectora y la capacidad intelectual suponiendo un efecto aditivo para ambas predictoras, que sin el efecto de las mismas el rendimiento no es nulo y que los errores del modelo se comportan normales con esperanza cero y varianza común desconocida y covarianzas cero.
- b) Exprese matricialmente el modelo.
- c) Estime los parámetros del modelo.
- d) Estime la varianza del estimador de β .
- e) Calcule el intervalo de confianza al 95% para la esperanza del rendimiento del lenguaje dado que la puntuación de la comprensión lectora es 5 y de la capacidad intelectual es 7.
- f) ¿Para qué combinación de puntuaciones de comprensión lectora y capacidad intelectual se obtiene el intervalo de confianza más estrecho para la esperanza condicional de los rendimientos?
- g) Encuentre la matriz \mathbf{H} y el vector \mathbf{h} para la prueba de hipótesis β_1 =0 y calcule la suma de cuadrados asociada y sus grados de libertad.
- h) Encuentre la matriz **H** y el vector **h** para la prueba de hipótesis $\beta_1 = \beta_2 = 0$ y calcule la suma de cuadrados asociada y sus grados de libertad.
- i) Encuentre la matriz \mathbf{H} y el vector \mathbf{h} para la prueba de hipótesis $\beta_1 = \beta_2$ y calcule la suma de cuadrados asociada y sus grados de libertad.
- j) Realice las pruebas para estas hipótesis.
- k) Construya un intervalo de confianza del 95 % para β_1
- l) Construya un intervalo de confianza del 95 % para β_1 β_2 .
- 6) Los siguientes datos fueron obtenidos en un ensayo de rendimiento de trigo bajo diferentes combinaciones de aportes de nitrógeno y potasio. (qq/ha: quintales por hectárea)

Rendimiento (qq/ha)	25	29,5	34,8	28,4	33	38,9
Nitrógeno (qq/ha)	0	1	2	0	1	2

Maestría en Estadística Aplicada

Curso: Modelos Lineales (cohorte 2020-2021)

Guía de actividades Nº 2

Potasio (qq/ha)	0	0	0	1	1	1

- a) Escriba el modelo para el rendimiento en función del aporte de nitrógeno y potasio suponiendo un efecto aditivo para los aportes de fertilizantes, que sin aporte de fertilizantes el rendimiento no es nulo y que los errores del modelo se comportan normales con esperanza cero y varianza común desconocida y covarianzas cero.
- b) Estime los parámetros del modelo.
- c) Calcule la varianza del estimador de β .
- d) Se desea probar que el efecto del nitrógeno en el rendimiento duplica el efecto del potasio. Encuentre la matriz H y el vector h para la prueba de hipótesis y calcule la suma de cuadrados asociada y sus grados de libertad.
- e) Se desea probar H_0 : $\beta_1 = \beta_2 + 1,5$ versus H_0 : $\beta_1 \neq \beta_2 + 1,5$. Encuentre la matriz \mathbf{H} y el vector \mathbf{h} para la prueba de hipótesis y calcule la suma de cuadrados asociada y sus grados de libertad.
- f) Realice las pruebas para estas hipótesis.
- 7) Mostrar que el estadístico para la prueba de hipótesis $H\beta$ =h se puede escribir como

$$W = \frac{1}{q} (\boldsymbol{H}\boldsymbol{\beta} - \boldsymbol{h})^{!} \left[\operatorname{cov}(\boldsymbol{H}\boldsymbol{\beta} - \boldsymbol{h}) \right]^{-1} (\boldsymbol{H}\boldsymbol{\beta} - \boldsymbol{h})$$