ABOUT	Applications	SOCIETY	Tools	System tips	About	Applications	SOCIETY	Tools	System tips
	S _I Res U	Discussion Discussion Discussion Discussion Discussion Samothrakis Search Fellow, IAI Iniversity of Essex March 20, 2017	s OS		About Applica Society Tools System	ations			
				1 / 47					2 / 47

About	Applications	Society	Tools	System tips	Авоит	Applications	Society	Tools	System tips	
Last lecture					Better science through data					
					,	ony, Stewart Tansley ee: a transformed sc	,		Gray on	
					► Th	nousand years ago:	empirical branc	h		
		ed on Lecture one				► You observed stuff	and you wrote de	own about it		
	vill go again thro everything into c	ough what we hav	re discussed a.	ready, and	▶ La	st few hundred year	rs: theoretical b	oranch		
_	v o	e End Is the Begin	nning			► Equations of gravit	y, equations of el	ectromagnetism		
					► Last few decades: computational branch					
					► Modelling at the micro level, observing at the macro level					
					► To	oday: data explorati	on			
						► Let machines create	e models using va	ast amounts of da	ıta	
				3 / 47					4 / 47	

MIXING STATISTICS, PHILOSOPHY OF SCIENCE AND MACHINE LEARNING

- ▶ Wu, C. F. J. "Statistics= data science." (1997).
- ▶ Breiman, Leo. "Statistical modeling: The two cultures (with comments and a rejoinder by the author)." Statistical Science 16.3 (2001): 199-231.
- ▶ Science is the epistemology of causation
- ▶ Data science is basically science on arbitrary data
 - ▶ But quite often we only care about predictions
- ► Possibly a re-branding of data mining, machine learning, artificial intelligence, statistics

About Applications Society Tools System tips

BETTER BUSINESS THROUGH DATA

► There was a report by Mckinsey

Manyika, James, et al. "Big data: The next frontier for innovation, competition, and productivity." (2011).

- ► Urges everyone to monetise "Big Data"
- ▶ Use the data provided within your organisation to gain insights
- ▶ Has some numbers as to how much this is worth
- ▶ Proposes a number of methods, most of them associated with machine learning and databases

5/47

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

More is different

- ► Anderson, Philip W. "More is different." Science 177.4047 (1972): 393-396.
- ► The idea of emergence
- ▶ You put stuff together, you go from physics to chemistry
- ightharpoonup . . . from chemistry to biology
- ▶ ... from biology to psychology and zoology
- ► ...from psychology to sociology
- ► "quantity changes into quality"

ABOUT SOCIETY Tools System tips Applications IBM'S INFOGRAPHIC The FOUR V's of Big **Variety** DIFFERENT Data **Velocity** Veracity ANALYSIS OF STREAMING DATA UNCERTAINTY OF DATA IBM. 8 / 47

CLASSIC SCIENCE

- ► The original data science field
- ► SKA (The Square Kilometer Array) ~ 4.6 EB expected (i.e. 4.6e+6 TB), (Zhang, Yanxia, and Yongheng Zhao. "Astronomy in the Big Data Era." Data Science Journal 14 (2015).)¹
- ► Bioinformatics
- ► Medical science

¹http://datascience.codata.org/article/10.5334/dsj-2015-011

SOCIETY

9 / 47

11 / 47

ABOUT

System tips

RECOMMENDER SYSTEMS

APPLICATIONS

ABOUT

- ► One of the most popular applications of data science
- ► Propose products to customers based on past history
- ► Almost all online vendors do it
- ► Made popular by the Netflix prize

Applications

SOCIETY

SOCIETY

System tips

Digital Cameras best sellers see

Tools

10 / 47

System tips

Data journalism

About

► Wikileak style data dumps are everywhere

APPLICATIONS

- ► The Ashley-Madison Affair, 2015
- ► "Just three in every 10,000 female accounts on infidelity website are real"
- ► "The website claims 5.5 million of its 37 million accounts are 'female'."

Tools

²http://www.independent.co.uk/life-style/gadgets-and-tech/news/ashley-madison-hack-just-three-in-every-10000-female-accounts-on-infidelity-website-are-real-10475310.html

Finance & Insurance

- ► Predict stock prices (Hedge Funds)
- ► Insurance models
- ► Credit score
- ► In fact, a lot of trading that currently happens is algorithmic trading²
- ► Sudden drops in share prices often caused by defective algorithms

http://www.bbc.com/news/business-34264380

POLITICS (CURRENT)

"... This included a) integrating data from social media, online advertising, websites, apps, canvassing, direct mail, polls, online fundraising, activist feedback, and some new things we tried such as a new way to do polling (about which I will write another time) and b) having experts in physics and machine learning do proper data science in the way only they can – i.e. far beyond the normal skills applied in political campaigns..."

Dominic Cummings's (Head of *Vote Leave*) Blog³

4https://dominiccummings.wordpress.com/2016/10/29/on-thereferendum-20-the-campaign-physics-and-data-science-vote-leavesvoter-intention-collection-system-vics-now-available-for-all/

SOCIETY

13 / 47

System tips

ABOUT SOCIETY APPLICATIONS

Politics (Historical)

- ► New Yorker THE PLANNING MACHINE: Project Cybersyn and the origins of the Big Data nation⁴
- ► Cybersyn / Chile during Alliente's rule, co-designed by Stafford Beer
- ▶ Plan was to use data fed directly from each industry to automate production

DIGITAL MARKETING

⁵http://www.newyorker.com/magazine/2014/10/13/planning-machine

14 / 47

System tips

System tips

APPLICATIONS

QUESTION ANSWERING

About

- ▶ e.g. Antol, Stanislaw, et al. "VQA: Visual question answering." Proceedings of the IEEE International Conference on Computer Vision. 2015.⁵
- ► Input can be videos, websites, et
- ► Think google

Tools

How many slices of pizza are there?

- ▶ Is a new product I just created well received by our customers?
- ▶ Is a new marketing campaign e-mail sent detrimental to our efforts?
- ▶ What is the content a chain of e-mails should have?
- ► Customer segmentation
- ▶ What adverts should I present to a user?

ABOUT SOCIETY Tools Applications

⁶http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/ Antol_VQA_Visual_Question_ICCV_2015_paper.pdf

About Applications Society Tools System tips

CREATIVE ARTIFICIAL INTELLIGENCE (RECIPES, MUSIC, ART, TEXT)

- ▶ e.g. Vondrick, Carl, Hamed Pirsiavash, and Antonio Torralba. "Generating videos with scene dynamics."
 Advances In Neural Information Processing Systems. 2016.⁶
- ► Generate an artefact
 - ▶ Generate videos
 - ► Generate text
 - ► Generate music

 $^6 http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf$

17 / 47

About Applications Society Tools System tips

GAME PLAYING

- ▶ We recently have seen a resurgence of game playing machines
- ► A computer GO programme finally outperformed top humans (AlphaGO)
- ▶ No-limit heads up poker (matches still played as we speak!)
- \blacktriangleright New labs are opening from major game companies dealing with game AI
- ▶ Though directly related, game analytics

18 / 47

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

ARTIFICIAL INTELLIGENCE

- ► Everything we have seen so far are basically applications of Artificial Intelligence and Machine Learning
- ▶ Inductive reasoning from a limited amount of examples
 - ► Structured learning
 - ► One-shot models
- ► Deductive reasoning
 - ► From concepts to data
 - ► Platonic forms

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

Some sample data

- ▶ takes_off_road: owner takes the vehicle off road
- ► company vehicle: it belongs to a business
- ▶ is over 30: age of vehicle is over 30
- ► regular_service: is the vehicle serviced regularly?
- ► brake_down: will it break down within three months of our inspection date?

$takes_off_road$	$company_vehicle$	is_over_30	regular_service	brake_down
0	1	1	0	1
0	0	1	1	0
1	1	1	1	1
0	1	1	0	1
0	0	1	0	0
0	1	0	0	0
1	0	0	1	0
1	1	1	1	1
1	0	0	1	1
0	1	1	0	1
1	0	0	1	0
1	1	0	0	0
0	0	0	0	0

ABOUT SOCIETY Tools APPLICATIONS System tips

PREDICTIONS

About

- ► The most common data science operation
- ▶ Can you predict if a car will break down given the data, and if yes with what probability?
- ▶ Can you learn a model, that if provided with a tuple < takes off road, company vehicle, is over 30, regular service > predict break down?
- ► The tuple represents a vehicle
- ► Columns are called *features*
- ▶ If we call the model M, can you learn P(C|D; M)
- ► You might have seen this as *supervised learning*
- ▶ You can also try to predict if a vehicle was taken off-road, given that it broke down

SOCIETY Tools System tips ABOUT APPLICATIONS

Clustering

- ► Another very common request
- ▶ Imagine there is some hidden property in the data, another feature that we have not observed
 - ► This feature groups together vehicles
 - ▶ Again we are looking for P(C|D; M), but C is a fictional/latent variable
- ► Unsupervised learning
- ► The probabilistic intuition I provided is not unique

22 / 47

System tips

SOCIETY

Tools

Inferring what-if scenarios from the data

► Say your vehicle broke down

APPLICATIONS

- ▶ What would have happened if you have not driven if off-road?
- \blacktriangleright Have a look at the data what can you say?
- ► Do you have enough data of the needed type?
- ► Causality from observational data
 - ► Super hard, but super important
 - ► Think of smoking!

ACQUIRING NEW DATA

Applications

▶ We can't really answer what would happen to vehicle from the data collected already

SOCIETY

Tools

- ▶ We might need to set a controlled experiment where:
 - ► We find vehicles of similar characteristics
 - ▶ Drive them off-road
 - ► See if they break down
 - ▶ What is the optimal way of doing such a procedure?
- ▶ Causality from experimental data mostly what science is all about
 - Science is the epistemology of causality

23 / 47

21/47

ABOUT

System tips

ABOUT SOCIETY Tools SYSTEM TIPS ABOUT SOCIETY Tools System tips APPLICATIONS APPLICATIONS

Anomaly Detection

▶ If we are given a new vehicle, can we say if it is "special" in a way?

- ► Maybe it's the only vehicle with certain features
- ► Maybe it's a unique vehicle
- ▶ Somehow we need to find bizarre samples that do not conform to expect norm
- ► Multiple formal definitions

Generate New Data

- ► Can I generate fictional vehicles and their properties?
- ▶ Mathematically, learn P(D;M), a model of the data
- ▶ You can then use your plausible, but fictional vehicles for entertainment
- ▶ "Learning to draw before learning to see"
 - ightharpoonup P(D, C; M) = P(C|D)P(D)
 - ightharpoonup P(D|C;M)

Applications

25 / 47

About

System tips

Tools

26 / 47

System tips

DIMENSIONALITY REDUCTION

APPLICATIONS

About

- ▶ Maybe we only need some feature combination above
- ▶ Maybe some features only carry noise with them they are irrelevant

SOCIETY

- ▶ For example, how important the *car colour* feature would be?
- ▶ What happens if we learn based on irrelevant features?
- ► Spurious correlations are everywhere
- ▶ Kicking out useless features might make the model more interpretable

SOCIETY

Tools

LINKING WITH OTHER DATA/COLLECTING LABELS

- ▶ What if the data we have is not enough?
- ▶ In our example, model make is not provided
- ► Can we inquire data providers to find that?
- ► How expensive would that be?
- ► How easy is to label the data?
 - ► Active learning
 - ► Labelled data often very expensive

Making decisions from data

- ▶ Now that we have a model
- ► Let's say you know that a vehicle will break down after three months with a certain probability
 - ▶ How much do we charge for insurance on it?
 - ► Should we even sell insurance to the owner?
 - ► What is the risk of actually selling insurance?
- ▶ We are missing another model (that of the customer)
 - ► Do we actually need the model?
 - ► Do customer preferences change over time?
- ► Bandits, reinforcement learning

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

Some notes

- "If you torture the data enough, nature will always confess."
 - ► Disputed
- ► "If you torture the data long enough, it will confess to anything."
 - ► Huff, D. "How to lie with statistics (illust. I. Geis)." NY: Norton (1954).
- ► Lies, damned lies, and statistics
 - ► Disputed

29 / 47

30 / 47

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

THE LAW

"We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine learning algorithms. Slated to take effect as law across the EU in 2018, it will restrict automated individual decision-making (that is, algorithms that make decisions based on user-level predictors) which "significantly affect" users. The law will also effectively create a **right to explanation**, whereby a user can ask for an explanation of an algorithmic decision that was made about them. We argue that while this law will pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks which avoid discrimination and enable explanation"

Goodman, Bryce, and Seth Flaxman. "European Union regulations on algorithmic decision-making and a" right to explanation"." arXiv preprint arXiv:1606.08813 (2016).

31 / 47

The social impact of AI/Machine Learning

"We examine how susceptible jobs are to computerisation. To assess this, we begin by implementing a novel methodology to estimate the probability of computerisation for 702 detailed occupations, using a Gaussian process classifier. Based on these estimates, we examine expected impacts of future computerisation on US labour market outcomes, with the primary objective of analysing the number of jobs at risk and the relationship between an occupation's probability of computerisation, wages and educational attainment. According to our estimates, about 47 percent of total US employment is at risk. We further provide evidence that wages and educational attainment exhibit a strong negative relationship with an occupation's probability of computerisation"

▶ Not sure I believe them, but read the article

Frey, Carl Benedikt, and Michael A. Osborne. "The future of employment: how susceptible are jobs to computerisation." Technological Forecasting and Social Change (2014).

33 / 47

About Applications Society Tools System tips

OVERALL ON DATA AND SOCIETY

- ► Think about how much of your life you spend online
 - ► Not just on a computer, but mobile phones, GPS signals etc., car sensors
 - ► Soon your fridge and coffee machine (IoT)
- ► Tons of data flying around
 - ► They are being used to make decisions on a micro level (i.e. about you)
- ► Regulations are set in place
- ► New El-Dorado?

34 / 47

About Applications Society Tools System tips

LINUX VM

- ► Download the VM for this module
- ► External link https://docs.google.com/uc?id= OB_kDfEzMuWD6ZGJFU1VfeEY3TnM&export=download
- ► The VM contains all (or most) of what you need if you are to create a successful python project
- ► Username/password is mlvm/mlvm
- ➤ You will have a USB stick were you should copy the VM folder (after you un-rar the archive)
- ► More about this on the labs

About Applications Society Tools System tips

Python

- ▶ Python is the language of this module
- ➤ You are expected to be competent python programmers (or willing to put the extra effort)
- ► Python has evolved to be one of the two "data science" languages (the other is **R**)
- ► Python has/is:
 - ► An excellent list of features coming from functional programming
 - \blacktriangleright A huge number of related libraries
 - ► Easy to learn
 - ▶ Object oriented programming capabilities
 - ightharpoonup Can be extended via C trivially
 - ► A massive amount of related libraries

About Applications Society Tools System tips

IPYTHON/JUPITER

- ► A better command line interface to python
- ► Has something called a "notebook"
 - ► A notebook combines code + natural language
- ► See here for a very nice example

37 / 47

About

Applications

About APPLICATIONS SOCIETY Tools System tips PYCHARM SHORTCUTS ► Double shift - meta-shortcut! **₽ △** PyCharm Default Keymap PyCharm Default Keymap Basic code completion (the name of any class, method Select configuration and debu Class name completion (the name of any project class independently of current imports) Run context configuration from edit Parameter info (within method call arguments) Quick documentation lookup External Doc Ctrl + mouse over code Ctrl + F1 Brief Info Step over Step into Show descriptions of error or warning at caret Alt + Insert Step out Surround with... Evaluate expression Comment/uncomment with block commen Resume program Decrease current selection to previous state Select till code block end/start Show intention actions and quick-fixed Ctrl + N Ctrl + Shift + N Go to file Crit + At + 1 Auto-Indert line(s)

Tab / Shift + Tab Indert / Line(s)

Tab / Shift + Delete Cut current line or selected block to clipboard

Crit + X or Shift + Delete Cut current line or selected block to clipboard

Crit + V or Shift + Insert Copy current line or selected block to clipboard Go to next/previous editor tab Go to editor (from tool window) Hide active or last active window Ctrl + Shift + F4 Close active run/messages/find/... tab Paste from recent buffers Go to line Duplicate current line or selected bloc Navigate back/forward Smart line split Start new line Select current file or symbol in any view Go to declaration Toggle case for word at caret or selected block Delete to word end Go to implementation(Open quick definition lookup (From jetbrains blog) 38 / 47

About	Applications	SOCIETY	Tools	System tips
Лир	TITER/IPYTHON N	OTEBOOK S	SHORTCUTS	3
001	11210/11 111101	O I E E O O II E	7110101 0 0 1 1	
	The Jupyter Notebook has two different keybo	oard input modes. Edit mode	allows you to type ×	
	code/text into a cell and is indicated by a gree		de binds the	
	keyboard to notebook level actions and is ind	icated by a grey cell border.		
C	ommand Mode (press Esc to enable)			
	Enter: enter edit mode	B ; i	nsert cell below	
	Shift - Enter : run cell, select below		ut selected cell	
	Ctrl - Enter : run cell		opy selected cell	
	Alt - Enter : run cell, insert below		aste cell above	
	Y: to code		aste cell below	
	M: to markdown		ındo last cell deletion	
	R: to raw		lelete selected cell	
	1: to heading 1		nerge selected cells	
	2: to heading 2		Save and Checkpoint	
	3: to heading 3		Save and Checkpoint	
	4: to heading 4		oggle line numbers	
	5 : to heading 5		oggle output	
	6 : to heading 6		oggle output scrolling	
	K : select cell above		lose pager	
	up : select cell above		lose pager	
	J : select cell below Pown : select cell below		how keyboard shortcut	
	Shift - K : extend selection abov		elp dialog nterrupt kernel	
	Shift - J : extend selection abov	-	estart kernel	
	A : insert cell above	Shift - Space : S		
	A. Hisert cell above	Sittle - Space , 3	ci on up	
(Fre	om stackoverflow)			
htt	ps://github.com/rhiever/Data-Analysi	s-and-Machine-Learning	-Projects/blob/maste	r/example-data-
	ence-notebook/Example%20Machine%20Le			39 / 47

Numpy is possibly the most important library in Python for numerical computing

► Provides vector and matrix operations on top of arrays

► Almost every other library manipulates numpy arrays underneath

SOCIETY

Tools

System tips

About Applications SOCIETY Tools System tips

SCIPY

- ► A scientific computing framework
- ► Linear Algebra
- ► Optimisation
- ► Statistics
- ► Clustering

SOCIETY ABOUT APPLICATIONS Tools System tips

SCIKIT-LEARN

- ► A machine learning framework
- ▶ Includes almost everything, apart from neural networks
- ► We are going to use it extensively
- ► Super-fast trees
- ► Excellent documentation
- ▶ http://scikit-learn.org/stable/modules/generated/ sklearn.model_selection.TimeSeriesSplit.html
 - ► Cross validation for time series

41 / 47

42 / 47

Keras

About

► A neural networks framework

Applications

- ► Very popular
- ► Uses theano or tensorflow underneath
- ► We will use this as well
- ▶ Though notice this is not a module on neural networks

SOCIETY

Tools

- ► But you can delve into this if you want
- ► Not trivial, but not super hard either
- ► Again, a lot of examples and online tutorials

PANDAS

- \triangleright R had dataframes
 - ▶ Essentially, a very SQL-like table-like data structure
- ▶ "DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object"
- ► You can manipulate these, and it helps a lot with cleaning up and re-shaping your data
- ▶ This is a big part of data science!
 - ► Data munging/data wrangling

45 / 47

About Applications Society Tools System tips

GITHUB

- ▶ All your code for your project will need to be publicly available
- ► Create a github account if you don't have one
- ► Two directories (/src, /pdf)
 - ► One for the pdf of the project
 - ► One for the code
 - ightharpoonup If you have an ipython ipnb it should go here
- ► Add a README.md as well!

ABOUT APPLICATIONS SOCIETY TOOLS SYSTEM TIPS

APACHE SPARK

- ► The clustering framework
- ► You need it when you have tons of data to process
- ► Has its own machine learning library (mlib), which we are not going to use
 - ▶ But it makes sense to use it if your data doesn't fit in memory
 - $\,\blacktriangleright\,$ Can be used with 3rd party modules in conjuction with sk-learn
- ► Sits on top of HDFS (which we are going to install and use later on)