Měření ohniskových vzdáleností tenkých čoček

Autor: Filip Plachý 1F/46

Spolupracoval: Adam Babovák
Datum měření: 21. 4. 2022

Úvod:

Pozorovat nějaký objekt můžeme buď napřímo zrakem nebo si můžeme obraz zlepšit optickou sadou. Tato optická soustava je souhrn lámavých a odrazových ploch, které ovlivňují přechod světelných paprsků při vytváření obrazu pozorovaného předmětu. Jednou z nejznámějších optických sad je čočka. Čočka je průhledná soustava dvou optických ploch, nejčastěji kulových. Nejdůležitějšími jsou tzv "spojné" čočky (sdružují k sobě svazek) a "rozptylné" čočky (opak čoček, rozptylují paprsky od sebe). V názvosloví se spojným čočkám obecně říká "čočky" a rozptylným čočkám "rozptylky". Vlastnosti čočky se poté určují vzájemnou polohou rovin a její ohniskovou vzdáleností. I když se tyhle údaje dají zjistit pomocí výpočtu, dáváme mnohdy přednost určení ohniskové vzdálenosti pomocí experimentálních metod, které bývají rychlejší a jednodušší na výpočet.

Soustavu, kterou využijeme k měření je optická lavice s předmětem (P), dvěma čočkami (jednou čočkou druhou rozptylkou vyznačené písmenem C) a stínítkem.

Zadání:

- 1. Změřte ohniskovou vzdálenost spojky z polohy předmětu a obrazu pro několik různých vzdáleností předmětu a čočky a určete její nejistotu.
- 2. Změřte ohniskovou vzdálenost Besselovou metodou pro různé vzdálenosti předmětu a stínítka a určete její nejistotu
- 3. Změřte ohniskovou vzdálenost rozptylky a určete její nejistotu.

Postup:

Měření je rozděleno do 3 částí:

1. Měření ohniskové vzdálenosti spojky Na optické lavici umístíme předmět v pozici x_1 , spojku v pozici x_2 , a stínítko do pozice x_3 (rozptylku dáme bokem). Pro stanovení ohniskové vzdálenosti použijeme metodu měření

polohy předmětu a obrazu. Polohu změříme 5x. Pro určení ohniskové vzdálenosti ještě budeme potřebovat vzdálenost předmětu od čočky a a vzdálenost obrazu od čočky a. Vypočítáme ohniskovou vzdálenost čočky f a její nejistotu.

- 2. Měření ohniskové vzdálenosti rozptylky
 - Na lavici přidáme mezi spojku a stínítko rozptylku. K naměřeným hodnotám přidáme naměřenou polohu rozptylky x_4 . Obraz na stínítku se díky rozptylce rozptýlil, tudíž musíme najít vhodnou polohu stínítka, kde se obraz opět zaostří x_5 . Měření opět provedeme 5x.
- 3. Měření ohniskové vzdálenosti pomocí Besselovy metody Ta funguje na principu, že poloha stínítka a předmětu se nemění. Zatímco existují 2 polohy čočky, která potom vytváří ostrý obraz. Poloha stínítka je x_1 , poloha předmětu x_4 , a 5x naměříme 2 různé polohy čočky x_2 a x_3 .

Měření a výpočet:

Měření ohniskové vzdálenosti spojky

Naměřené hodnoty:

n	$x_1 (mm)$	$x_2 (mm)$	$x_3 (mm)$
1	1600	1800	2011
2	1600	1800	2013
3	1600	1800	2017
4	1600	1800	2005
5	1600	1800	2010

Pouze u x_3 zjistíme průměr $\overline{x_3}$ a odchylku Δx_3

$$\overline{x_3} = \frac{1}{n} * \sum_{i=1}^{n} x_i = 2011,2 \ mm$$

Nejistota typu A:

$$\Delta_A \overline{x_3} = k * \sqrt{\frac{1}{n \cdot (n-1)} * \sum_{i=1}^n (x_i - \overline{x_3})^2} = 5,45 \ mm$$

Kdy součinitel k = 2,78

Nejistota typu B je rovna 0,5 mm

Kombinovaná nejistota:

$$\Delta x_3 = \sqrt{(\Delta_A x)^2 + (\Delta_B x)^2} = 5.47 \ mm$$

Výsledky měření spojky:

$$x_1 = 1600 \pm 0.5 \, mm$$

$$x_2 = 1800 \pm 0.5 \, mm$$

$$x_3 = 2011,2 \pm 5,47 \, mm$$

K výpočtu ohniska potřebujeme znát vzdálenost předmětu od čočky:

$$a = -(x_2 - x_1) = -200 mm$$

Nejistota se zjistí pomocí součtu Δx_1 a Δx_2 => $\Delta a = \Delta x_1 + \Delta x_2 = 1 \; mm$

$$a=-200\pm 1\,mm$$

A vzdálenost obrazu od čočky:

$$a' = x_3 - x_2 = 211,2 mm$$

Nejistota se opět zjistí pomocí součtu, tentokrát Δx_3 a $\Delta x_2 => \Delta a' = \Delta x_3 + \Delta x_2 = 5,97 \ mm$

$$\underline{a' = 211,2 \pm 5,97 \ mm}$$

Výpočet ohniskové vzdálenosti:

$$f' = \frac{a * a'}{a - a'} = 102,72 mm$$

Nejistota ohniskové vzdálenosti se vypočítá pomocí vzorce:

$$\Delta f' = \sqrt{\left[\frac{a'^2}{(a-a')^2} * \Delta a\right]^2 + \left[\frac{a^2}{(a-a')^2} * \Delta a'\right]^2} = 1,43 \ mm$$

$$\underline{f' = 102,72 \pm 1,43 \ mm}$$

Měření ohniskové vzdálenosti rozptylky:

Naměřené hodnoty:

n	$x_1 (mm)$	$x_2 (mm)$	$x_3 (mm)$	$x_4 (mm)$	$x_5 (mm)$
1	1600	1800	2011	1916	2058
2	1600	1800	2013	1916	2057
3	1600	1800	2017	1916	2066
4	1600	1800	2005	1916	2069
5	1600	1800	2010	1916	2059

Opět zjistíme u x_5 průměr $\overline{x_5}$ a odchylku Δx_5 .

$$\overline{x_5} = \frac{1}{n} * \sum_{i=1}^{n} x_i = 2061.8 \ mm$$

Typu A:

$$\Delta_A \overline{x_5} = k * \sigma(\overline{x_5}) = \sqrt{\frac{1}{n * (n-1)}} * \sum_{i=1}^n (x_i - \overline{x_5})^2 = 6,66 mm$$

Typu B jsou opět 0,5 mm

Kombinovaná nejistota:

$$\Delta x_5 = \sqrt{(\Delta_A x)^2 + (\Delta_B x)^2} = 6.7 \ mm$$

Výsledky:

$$x_4 = 1916 \pm 0.5 \, mm$$

$$x_5 = 2061.8 \pm 6.7 \, mm$$

Vzdálenost rozptylky od čočky:

$$a = x_3 - x_4 = 95,2 mm$$

Její nejistota:

$$\Delta a = \Delta x_3 + \Delta x_4 = 5,97 mm$$
$$a = 95,2 \pm 5,97 mm$$

Vzdálenost obrazu a rozptylky:

$$a' = x_5 - x_4 = 145,8 \ mm$$

Nejistota:

$$\Delta a' = \Delta x_5 + \Delta x_4 = 7,2 mm$$
$$\underline{a' = 145,8 \pm 7,2 mm}$$

Ohnisková vzdálenost:

$$f' = \frac{a * a'}{a - a'} = -247,31 \, mm$$

Nejistota:

$$\Delta f' = \sqrt{\left[\frac{a'^2}{(a-a')^2} * \Delta a\right]^2 + \left[\frac{a^2}{(a-a')^2} * \Delta a'\right]^2} = 55,7 \ mm$$

$$\underline{f' = 247,31 \pm 55,7 \ mm}$$

Měření pomocí ohniska Besselovy metody:

Naměřená data:

n	$x_1 (mm)$	$x_2 (mm)$	$x_3 (mm)$	$x_4 (mm)$
1	1600	1756	1956	2100
2	1600	1754	1956	2100
3	1600	1756	1957	2100
4	1600	1750	1958	2100
5	1600	1754	1956	2100

Opět zjistíme průměrné hodnoty hodnot, které nejsou stejné:

$$\overline{x_2} = 1754 \, mm$$

$$\overline{x_3} = 1956,6 \, mm$$

Použijeme i stejný vzorec pro výpočet nejistot typu A a kombinovanou nejistotu:

$$\Delta x_2 = 3.1 \ mm$$

$$\Delta x_3 = 1.2 \ mm$$

$$x_2 = 1754 \pm 3.1 \ mm$$

$$x_3 = 1956.6 \pm 1.2 \ mm$$

Pro Besselovu metodu potřebujeme 2 vzdálenosti:

Vzdálenost mezi stínítkem a předmětem:

$$d = x_4 - x_1 = 500 mm$$

Vzdálenost mezi polohami čočky:

$$s = x_3 - x_2 = 202,6 mm$$

Nejistoty obou vzdáleností vypočítáme opět součtem:

$$\Delta d = \Delta x_4 + \Delta x_1 = 1 mm$$

$$\Delta s = \Delta x_2 + \Delta x_3 = 4.3 mm$$

$$\underline{d = 500 \pm 1 mm}$$

$$s = 202.6 \pm 4.3 mm$$

Ohnisková vzdálenost se vypočítá tímhle vzorcem:

$$f' = \frac{d^2 - s^2}{4d} = 104,47 \, mm$$

A nejistota:

$$\Delta f' = \sqrt{\left[\frac{d^2 + s^2}{4d^2} * \Delta d\right]^2 + \left[\frac{s * \Delta s}{2d}\right]^2} = 0,92 \ mm$$

$$\underbrace{f' = 104,47 \pm 0,92 \ mm}_{=======}$$

Závěr:

Měřením jsme zjistili ohniskové vzdálenosti čočky aji rozptylky. U čočky jsme použili dva způsoby, kdy při nám vyšli výsledky $f'=102,72\pm1,43~mm$ a z Besselovy metody $f'=104,47\pm0,92~mm$. Intervaly hodnot se překrývají, takže skutečná vzdálenost se nachází někde mezi nimi. Jejich průměr se určí následujícím vzorcem:

$$\overline{f'} = \frac{\sum g_i * f'_i}{\sum g_i} = 103,59 \ mm$$

Kdy vypočítáme z nejistot $g_i = \frac{1}{(\Delta f'_i)^2}$ a průměru obou hodnot f'_i .

Nejistotu zjistíme pomocí vzorce:

$$\Delta f' = \sqrt{\frac{1}{\sum g_i}} = 0.8 \ mm$$

Výsledek je tedy $103,59 \pm 0,8 \ mm$.

Ohnisková vzdálenost rozptylky je $\frac{f'=247,31~\pm 55,7~mm}{=}$.

Měření jsem se bohužel nemohl účastnit, proto jsem byl závislý na poznatcích mého kolegy.