

The K-Means Clustering Method

- □ *K-Means* (MacQueen'67, Lloyd'57/'82)
 - Each cluster is represented by the center of the cluster
- ☐ Given K, the number of clusters, the K-Means clustering algorithm is outlined as follows
 - Select *K* points as initial centroids
 - Repeat
 - ☐ Form K clusters by assigning each point to its closest centroid
 - □ Re-compute the centroids (i.e., *mean point*) of each cluster
 - ☐ **Until** convergence criterion is satisfied
- □ Different kinds of measures can be used
 - \square Manhattan distance (L₁ norm), Euclidean distance (L₂ norm), Cosine similarity

Example: K-Means Clustering

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., *mean point*) of each cluster

Until convergence criterion is satisfied

Discussion on the K-Means Method

- **Efficiency**: O(tKn) where n: # of objects, K: # of clusters, and t: # of iterations
 - Normally, K, t << n; thus, an efficient method</p>
- ☐ K-means clustering often *terminates at a local optimal*
 - Initialization can be important to find high-quality clusters
- □ **Need to specify** *K*, the *number* of clusters, in advance
 - There are ways to automatically determine the "best" K
 - □ In practice, one often runs a range of values and selected the "best" K value
- Sensitive to noisy data and *outliers*
 - □ Variations: Using K-medians, K-medoids, etc.
- ☐ K-means is applicable only to objects in a continuous n-dimensional space
 - Using the K-modes for categorical data
- □ Not suitable to discover clusters with *non-convex shapes*
 - Using density-based clustering, kernel K-means, etc.

Variations of *K-Means*

- ☐ There are many variants of the *K-Means* method, varying in different aspects
 - Choosing better initial centroid estimates
 - □ K-means++, Intelligent K-Means, Genetic K-Means

To be discussed in this lecture

- Choosing different representative prototypes for the clusters
 - ☐ K-Medoids, K-Medians, K-Modes

To be discussed in this lecture

- Applying feature transformation techniques
 - Weighted K-Means, Kernel K-Means

To be discussed in this lecture