Computer Graphics Splines

University of Seoul School of Computer Science Minho Kim

Forms of a 2D Line

What are the "free parameters"?

- ▶ slope & y-intercept: Slope-intercept form y = mx + b
- slope & one point on the line: Point-slope form $y - y_1 = m(x - x_1)$
- ► *x* & *y*-intercepts: Intercept form $\frac{x}{a} + \frac{y}{b} = 1$
- Two points on the line: Two-point form $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$
- $\qquad \qquad \mathbf{Parametric \ form} \ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} t + \begin{bmatrix} c \\ d \end{bmatrix}$
- ▶ General form ax + by + c = 0 → What do the free parameters mean?
- Normal form $\mathbf{n} \cdot \begin{vmatrix} x \\ y \end{vmatrix} = d, \quad |\mathbf{n}| = 1$
- → Best form for design process?

Requirements of Curve Form in Design Process

- Can be modified with intuitive (geometric) free parameters
- Invariant under transformations
 - → What kind of transformations to be allowed?
- Rendered easily
 - → Implicit or parametric?

Vectors and Points in Affine Space

- ► Affine space = vector space + points
- Definition & difference
- Operations
 - addition, subtraction, scalar multiplication, (dot & cross) products
 - "point+vector", "point-vector"
- ▶ Linear combinations of vectors: " $\mathbf{v} = \sum_j a_j \mathbf{u}_j$ "
- ▶ Affine combinations of vectors & points: + " $\sum_{i} a_{i} = 1$ "
 - Affine combination of points $\sum_{j} a_{j} \mathbf{p}_{j} = \mathbf{q} \mathbf{q} + \sum_{j} a_{j} \mathbf{p}_{j} = \mathbf{q} + \sum_{j} a_{j} (\mathbf{p}_{j} \mathbf{q})$ $\rightarrow \text{point} + \text{sum of vectors}$
- ▶ Convex combinations of vectors & points: + " $\forall a_i \geq 0$ "

Homogeneous Representations

- What do we need to represent any 3D vector uniquely? → Three linearly independent vectors
- What do we need to represent any 3D point uniquely?
 → Three linearly independent vectors + fixed point (origin)
- Homogeneous representation

Validity of operations on vectors & points can be easily checked.

Affine Transformations

- Scaling, rotation, shear, translation, etc.
- Linear transformation ${f L}$ followed by a translation by ${f b}$: ${f y} = {f L} {f x} + {f b}$
- ▶ In n-D, can be represented by a $(n+1) \times (n+1)$ matrix of the form

$$\begin{bmatrix} \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{L} & \mathbf{b} \\ 0 \cdots 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

- How about vectors?
- ► Affine combination of points is invariant under affine transformations:

For
$$\sum_j a_j = 1$$
, $\mathbf{A}(\sum_j a_j \mathbf{p}_j) = \sum_j a_j (\mathbf{A} \mathbf{p}_j)$

→ Why is this important?

Representation of a Line Segment

- ▶ By the previous arguments... If a curve is defined by a affine combination of (a finite number of) points ("control points"), any affine transformation of the curve can be achieved by applying the affine transformation only to the control points.
- Representation of a line segment

$$c(t) = (1 - t)\mathbf{p} + t\mathbf{q}$$

- ▶ Parametric representation
- Affine combination of two points p and q
 → p and q are the control points
- A line segment connecting $\mathbf p$ and $\mathbf q$ for $0 \le t \le 1$: $c(0) = \mathbf p$ and $c(1) = \mathbf q$

Curves for Design Process

- What kind of functions to use?
- What are the control points?
- ► How can we represent a polynomial curve as an affine combination of the control points?

Bézier Curves

$$\mathbf{b}(t) = \sum_{j=0}^{n} \beta_j^n(t) \mathbf{p}_j$$

- Polynomial curve of degree n
- ▶ Parametric representation (usually defined for $0 \le t \le 1$)
- ▶ Represented as an affine combination of control points $(\{\mathbf{p}_j\}_{j=0}^n)$ where the coefficients are the Bernstein basis polynomials defined as

$$\beta_j^n(t) := \binom{n}{j} t^j (1-t)^{n-j}$$

where $\binom{n}{j} = \frac{n!}{j!(n-j)!}$ is the binomial coefficient.

Properties of Bernstein Basis Polynomials

- ▶ Non-negativity: $\beta_i^n(t) \ge 0$ for $0 \le t \le 1$
- ▶ Partition of unity: $\sum_{i=0}^{n} \beta_i^n(t) = 1$
- $\beta_j^n(0) = \delta_{j,0} \text{ and } \beta_j^n(1) = \delta_{j,n} \text{ where } \delta_{j,k} = \begin{cases} 1 & j=k \\ 0 & j \neq k \end{cases}$ is the Kronecker delta function.
- Symmetry: $\beta_i^n(1-t) = \beta_{n-i}^n(t)$
- ▶ Recurrence: $\beta_0^0(t) \equiv 1$ and $\beta_j^n(t) = (1-t)\beta_j^{n-1}(t) + t\beta_{j-1}^{n-1}(t)$
- ▶ Derivative: $\frac{d\beta_j^n}{dt}(t) = n(\beta_{j-1}^{n-1}(t) \beta_j^{n-1}(t))$
- ▶ If $n \neq 0$, then $\beta_j^n(t)$ has a unique local maximum on the interval [0,1] at t=j/n.
- ▶ $\{\beta_j^n\}_{j=0}^n$ form a basis of the vector space of polynomials of degree n.
- Degree elevation:

$$\beta_j^{n-1}(t) = \frac{1}{n} \left((n-j)\beta_j^n(t) + (j+1)\beta_{j+1}^n(t) \right)$$

Properties of Bézier Curves

- ▶ For $0 \le t \le 1$, all the points on $\mathbf{b}(t)$ are the convex combinations of the control points.
- ▶ Convexity: For $0 \le t \le 1$, $\mathbf{b}(t)$ lies inside the convex hull of the control points.
- ▶ Endpoint interpolation: $\mathbf{b}(0) = \mathbf{p}_0$ and $\mathbf{b}(1) = \mathbf{p}_n$
- Symmetry
- ▶ Recurrence → Can be evaluated in numerically stable way by the de Casteljau's algorithm
- ▶ The effect of the control point is largest near that point.
- Given a Bézier curve, its control points are unique.
- ▶ Subdivision: $\mathbf{b}(ct) = \sum_{j=0}^{n} \beta_{j}^{n}(t) \left(\sum_{k=0}^{j} \beta_{k}^{j}(c) \mathbf{p}_{k}\right)$
- ▶ Degree elevation: $\mathbf{b}(t) = \sum_{j=0}^{n} \beta_j^n(t) \mathbf{p}_j = \sum_{j=0}^{n+1} \beta_j^{n+1}(t) \mathbf{q}_j$ where $\mathbf{q}_j = \frac{j}{n+1} \mathbf{p}_{j-1} + \left(1 \frac{j}{n+1}\right) \mathbf{p}_j$