

Data analysis and model classification

Introduction - Unsupervised Learning

Ricardo Chavarriaga < ricardo.chavarriaga@epfl.ch) José del R. Millán < jose.millan@epfl.ch>

CNBI - Defitech Chair in Brain-Machine Interface Ecole Polytechnique Fédérale de Lausanne

Contact: damc@listes.epfl.ch

Office hours: By appointment

Lecture: AAC137 Mon 8h15-10h00

Exercises: INF1 Mon 17h15-19h00

Note: For the practical work you're supposed to use your own laptop

Motivation

 Current technology allows for the acquisition of large amounts of data

Motivation

Health status and quality of life among cancer survivors, by the time since diagnosis.

Fairley et al., 2010

EEG activity (FCz) electrode after correct and erroneous feedback. Gray bars show periods where differences are statistically significant.

Chavarriaga et al., 2014

Left: Different 3D views of regions or relatively higher activity during truth-telling (green) and lying (red). Right: Areas in which functional activity was found to be most informative in terms of pattern classification.

Davatzikos et al., 2005

Data analysis: what for?

Data analysis flowchart

Leek, J. T. & Peng, R. D. Science, 2015

Machine learning

"Algorithms capable of learning to improve their performance of a task on the basis of the previous experience (empirical data)"

"A learner can take advantage of examples (data) to capture characteristics of interest of their unknown underlying probability distribution"

Related fields include: probability theory and statistics, data mining, pattern recognition

This course is **NOT** about...

- Brain-computer interfaces or neuroprothetics
- Robotics
- Bioinformatics
- Other specific applications
- Signal processing
- Programming or matlab skills

Course structure

- Grading
 - ➤ Written exam (2/3)
 - > Exercises (1/3)
- Practical work. Teaching assistants
 - Ruslan Aydharkhanov
 - Bastien Orset
 - Julien Rechenmann
- No textbook
 - Lecture notes
 - Suggested reading material be provided
 - Moodle
- Contact: damc@listes.epfl.ch

Practical work

Three mini-projects (3 people/group)

- 1. Unsupervised learning and model validation (25% grade). Report: 5th week
- 2. Supervised classification (50% grade). Report: 10th week
- 3. Regression (25%) 13th week

TA sessions provide support to develop the projects (guidelines provided every week). Written report (max 12 pages) handed in at the end of each project

Groups members should be submitted on the 2nd October

We encourage the use of the **forum in moodle** to find solutions to your questions. When posting to the forum, mind to make clear, well-explained questions.

TAs won't reply to questions before two working days after post to allow students to post their answers or hypothesis.

Breaking

Mr. White

Heisenberg

J. Pinkman

Chemistry is the study of matter

Mr. White

Yo, B!7Ç#!!

J. Pinkman

Heisenberg

I'm the one who knocks!!

Facial hair

Facial hair

Facial hair

Types of learning

- Unsupervised learning
 - Model the data distribution without desired target values

Unsupervised Learning

Types of learning

- Unsupervised learning
 - Model the data distribution without desired target values

- Supervised learning
 - Learning by examples (inputs and corresponding target values)
 - Minimization of an explicit error function

Supervised Learning

Training data

Target Output Input Punk Glam rock Grunge Punk Grunge

Glam rock

Test

Types of learning

- Unsupervised learning
 - Model the data distribution without desired target values

- Supervised learning
 - Learning by examples (inputs and corresponding target values)
 - Minimization of an explicit error function

- Semi-supervised learning
 - Information about the performance is provided without explicitly providing target values

Course structure

1	
2	Introduction: Unsupervised machine learning, K-means
3	Unsupervised learning: Mixture Gaussian Models / Cross-validation
4	Statistical pattern recognition
5	Supervised learning: Linear classifiers
6	Feature selection: Filters, Wrappers
7	Decision Trees
8	Dimensionality reduction: Principal Component Analysis, Fisher
9	Dimensionality reduction: Self-Organizing Maps
10	Regression methods: Linear methods, Statistical approaches
11	Regression methods: Advanced issues
12	Temporal pattern recognition: Hidden Markov Models
13	Temporal pattern recognition : Hidden Markov Models
14	Case study and Q&A

Unsupervised learning

Labels are not available

Discover separate sub-classes (clusters) of data that are similar to each other

Characterize the structure of the data. Estimate its

probability density function

Goal:

Decode arm movement direction from neural activity

Each implanted electrode records signals from several <u>unknown</u> neurons

Individual neurons are identified using Unsupervised learning

Clustering

Characterize the data as an ensemble of groups of data point (clusters)

Cluster: Set of points whose inter-point distances are small compared to points outside the cluster

Clustering: K-Means

Assuming K clusters, we define:

$$\mu_k \equiv \text{Center of cluster k}$$

$$r_{nk} = \begin{cases} 1 & \text{if } \mathbf{x}_n \in \text{cluster k} \\ 0 & \text{otherwise} \end{cases}$$

Goal: minimize objective function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

Clustering: K-Means

Assuming K clusters, we define:

$$\mu_k \equiv \text{Center of cluster k}$$

$$r_{nk} = \begin{cases} 1 & \text{if } \mathbf{x}_n \in \text{cluster k} \\ 0 & \text{otherwise} \end{cases}$$

Goal: minimize objective function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

Given r_{nk} , J is minimized by

$$\frac{\partial J}{\partial \mu_k} = 0$$

$$2\sum_{m=1}^{N} r_{nk}(\mathbf{x}_n - \mu_k) = 0$$

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Mean of all points in cluster k

K-Means algorithm

Iterative algorithm

Initialize μ_k

Do

Update r_{nk} :

$$r_{nk} = \begin{cases} 1 & \text{if } k = argmin_j ||\mathbf{x}_n - \mu_j||^2 \\ 0 & \text{otherwise} \end{cases}$$

Update μ_k :

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Until (no change)

Clustering: K-means

Figs: Bishop et al. Pattern recognition and machine learning, 2006

Miniproject 1: Spike sorting

Summary

Different types of data analysis can be performed depending on the objective

We focus on predictive analysis using machine learning

Learning can be based on examples (supervised) or on the data distribution (unsupervised)

Unsupervised learning is used to process unlabelled data

Data can be characterized by a set of different clusters of data points K-means algorithm

Data analysis and model classification

Unsupervised learning

