Recall from last time ...

PCA Algorithm By Eigen Decomposition

Data Preprocessing

Training set: $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)}$$

Replace each $x_i^{(i)}$ with $x_i - \mu_i$.

Center the data

PCA Algorithm

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

PCA Algorithm

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$x_1 \quad \begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

Turns towards direction of variation

PCA Algorithm

Finding Principal Components

1. Find eigenvalues by solving: $\det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} = (2.0 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = \lambda^2 - 2.6\lambda + 0.56 = 0$$
$$\{\lambda_1, \lambda_2\} = \{2.36, 0.23\}$$

Finding Principal Components

2. Find i^{th} eigenvector by solving: $\Sigma u_i = \lambda_i u_i$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = 0.23 \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} \quad u_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix} \qquad u_1 \sim \begin{bmatrix} 2.2 \\ 1 \end{bmatrix}$$

3.
$$1^{st}$$
 PC: $\begin{bmatrix} 0.91 \\ 0.41 \end{bmatrix}$ and 2^{nd} PC: $\begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$

How many PCs?

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue $\lambda_i = \text{variance along } u_i$
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > ... > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance
 - Typical threshold: 90%, 95%, 99%

0.95

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvectors and pick first *k* eigenvectors
- 5. Project data to k eigenvectors

Practical Issues

PCA: Practical Issues

- PCA assumes underlying subspace is linear
 - PCA cannot find a curve

Squashing by projecting onto a plane (left) vs unrolling the swiss roll (right)

A d-dimensional manifold is a part of an n-dimensional space (where d < n) that locally resembles a d-dimensional hyperplane.

Manifold

A d-dimensional manifold is a part of an n-dimensional space (where d < n) that locally resembles a d-dimensional hyperplane.

In the case of the swiss roll, d = 2 and n = 3: it locally resembles a 2D plane, but it is rolled in the 3rd dimension.

Manifold

Manifold Assumption:

Most real world high-dimensional datasets lie close to a much lower-dimensional manifold.

Manifold

The decision boundary may not always be simpler with lower dimensions

The decision boundary may not always be simpler with lower dimensions.

PCA: Practical Issues

- PCA assumes underlying subspace is linear
 - PCA cannot find a curve

- PCA and Classification
 - PCA is unsupervised
 - PCA can pick direction that makes hard to separate classes

Linear Discriminant Analysis Machine Learning and Pattern Recognition

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

Today's Agenda

- Linear Discriminant Analysis
 - PCA vs LDA
 - LDA: Simple Example
 - LDA Algorithm
 - LDA Step by Step

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA)

- LDA pick a new dimension that gives:
 - Maximum separation between means of projected classes
 - Minimum variance within each projected class

 Solution: eigenvectors based on between-class and within-class covariance matrix

The new axis is created according two criteria:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

1. Maximize the distance between the means:

2. Minimize the variation (which LDA calls scatter) within each class.

The new axis is created according two criteria:

1. Maximize the distance between the means:

This is the scatter around the pink dots.

2. Minimize the variation (which LDA calls scatter) within each class.

The new axis is created according two criteria:

1. Maximize the distance between the means:

This is the scatter around the blue dots.

The new axis is created according two criteria:

The new axis is created according two criteria:

The new axis is created according two criteria:

The new axis is created according two criteria:

Why both distance and scatter are important?

If we only maximize the distance between means ...

Why both distance and

How we measure the distance among the means?

Then measure the distance between a point that is central in each class and the main central point.

$$\frac{d^2 + d^2 + d^2}{s^2 + s^2 + s^2}$$

LDA in a Nutshell (Eigen Decomposition)

- 1. Compute the d-dimensional mean vectors for the different classes.
- 2. Compute the scatter matrices (between-class S_R and within-class S_W).
- 3. Compute the eigenvectors $(u_1, u_2, ..., u_d)$ and eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices $S_W^{-1}S_R$.
- 4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.
- 5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

http://sebastianraschka.com/Articles/2014_python_lda.html

150 iris flowers from three different species.

The three classes in the Iris dataset:

- 1. Iris-setosa (n=50)
- 2. Iris-versicolor (n=50)
- 3. Iris-virginica (n=50)

The four features of the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

1. Compute the d-dimensional mean vectors for the different classes.

1. Compute the d-dimensional mean vectors for the different classes.

```
\mu_1: [5.01 3.42 1.46 0.24]

\mu_2: [5.94 2.77 4.26 1.33]

\mu_3: [6.59 2.97 5.55 2.03]
```

2. Compute the **scatter matrices** (between-class S_B and within-class S_W)

Within-class scatter matrix S_w :

$$S_W = \sum_{i=1}^{c} S_i$$
 , where $S_i = \sum_{x \in D_i}^{n} (x - \mu_i)(x - \mu_i)^T$

2. Compute the scatter matrices (between-class S_B and within-class S_W)

Within-class scatter matrix S_W :

```
      38.96
      13.68
      24.61
      5.66

      13.68
      7.04
      8.12
      4.91

      24.61
      8.12
      27.22
      6.25

      5.66
      4.91
      6.25
      6.18
```

2. Compute the scatter matrices (between-class S_B and within-class S_W)

Between-class scatter matrix S_R :

$$S_B = \sum_{i=1}^{c} N_i (\mu_i - \mu) (\mu_i - \mu)^{\mathrm{T}}$$

where μ is the overall mean, and μ_i and N_i are the sample mean and sizes of the respective classes.

2. Compute the scatter matrices (between-class S_{B} and within-class S_{W})

Between-class scatter matrix S_R :

```
      63.21
      -19.53
      165.16
      71.36

      -19.53
      10.98
      -56.05
      -22.49

      65.16
      -56.05
      436.64
      186.91

      71.36
      -22.49
      186.91
      80.60
```

3. Compute the eigenvectors $(u_1, u_2, ..., u_d)$ and eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices $S_W^{-1}S_B$.

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

Eigenvalues in decreasing order:

32.27

0.27

5.71e-15

5.71e-15

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

Eigenvalues in decreasing order:

32.27

0.27

5.71e-15

5.71e-15

Variance explained:

 λ_1 : 99.15%

 λ_2 : 0.85%

 λ_3 : 0.00%

 λ_4 : 0.00%

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

LDA Step by Step http://sebastianraschka.com/Articles/2 014_python_lda.html

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8
 "Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"