UNIVERSIDADE DO MINHO

Álgebra Linear

 $1^{\underline{0}}$ Teste - ${\bf A}$

LEI

Esboço de possível resolução

Duração: 2 horas

19 de novembro de 2011

Nome: ______ N⁰: _____

Responda às seguintes questões, do grupo I e II, justificando convenientemente a sua resposta e apresentando todos os cálculos efectuados.

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

1. **a**) Se
$$2\left(3A + \begin{pmatrix} 1 & 3 \end{pmatrix}^T\right) = \begin{pmatrix} 0 \\ 8 \end{pmatrix} - 2A$$
 então $A = \begin{pmatrix} -1/4 \\ 1/4 \end{pmatrix}$. \boxed{V} F

b) A matriz
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 verifica $A^2 - 5A + 4I_2 = O$.

c) As matrizes
$$A = \begin{pmatrix} 3 & -4 \\ -5 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 7 & 4 \\ 5 & k \end{pmatrix}$ são comutáveis, se $k = 4$ ou $k = -11$. V F

d) Se
$$A$$
 e B são matrizes de ordem n invertíveis, tais que $ABA = A$, então $B = A^{-1}$.

e) Se
$$A$$
 é uma matriz idempotente $(A^2=A)$ então $A^k=A,$ para qualquer $k\in\mathbb{N}.$ \bigcirc \bigcirc \bigcirc \bigcirc

2. Considere a matriz
$$A = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix}$$
, onde α é um número real.

a) A matriz
$$A$$
 é simétrica, para qualquer $\alpha \in \mathbb{R}$.

b) A matriz
$$A$$
 é ortogonal, para qualquer $\alpha \in \mathbb{R}$.

c) A matriz
$$A$$
 é invertível tendo-se $A^{-1} = A$, para qualquer $\alpha \in \mathbb{R}$.

d) O subespaço das soluções do sistema homogéneo associado a
$$A$$
 é gerado pelo conjunto $\{\mathbf{0}\}.$ \bigvee F

3. Sejam \mathbf{u} e \mathbf{v} dois vectores linearmente independentes de \mathbb{R}^3 e S um subespaço de \mathbb{R}^3 gerado por estes.

a) Os vectores
$$\mathbf{u}$$
, \mathbf{v} e \mathbf{u} + \mathbf{v} geram S .

$${f b})$$
 Os vectores ${f u}, {f v}$ e ${f 0}$ são linearmente dependentes.

c) Existem reais
$$\alpha$$
 e β tais que $\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{0}$.

d) A caracteristica da matriz $A = (\mathbf{u} \ \mathbf{v} \ \mathbf{u} + \mathbf{v})$ é igual 3.

V (F

1. Considere o seguinte sistema de equações lineares

$$\begin{cases} x+y-z = 0 \\ \alpha y + \beta z = 1 \end{cases} \quad \text{com } \alpha, \beta \in R.$$

- a) Complete, de acordo com os valores de α e β , de modo a obter afirmações verdadeiras.
 - (i) O sistema é impossível se $\alpha = 0$ e $\beta = 0$.
 - (ii) O sistema é possível indeterminado se $\alpha \neq 0$ ou $\beta \neq 0$.
- **b**) Existem valores para α e β que tornam o sistema possível determinado? Se sim, quais? Não. Sendo, no máximo, c(A) = 2 e tendo-se, número de variáveis n = 3, o sistema nunca pode ser possível determinado.
- c) Sendo $\alpha = 0$ e $\beta = 1$ determine o conjunto solução do sistema.

Considerando a matriz ampliada do sistema tem-se: $\begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$,

donde vem $\left\{ \begin{array}{cc} x+y-z &= 0 \\ z &= 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{cc} x &= -y+1 \\ z &= 1 \end{array} \right.$

e assim o conjunto solução é $S = \{(-y+1, y, 1), y \in \mathbb{R}\}.$

d) Considere o respectivo sistema homogéneo associado ao sistema dado e determine, tendo em atenção as diferentes possibilidades para os parâmetros α e β , o seu conjunto solução.

A matriz dos coeficientes do sistema homogéneo é: $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & \alpha & \beta \end{pmatrix}$

 $\boxed{\alpha = 0 \text{ e } \beta = 0} \quad c(A) = 1; n = 3, \text{ tendo-se } x + y - z = 0 \Leftrightarrow x = -y + z \text{ e } S = \{(-y + z, y, z) : y, z \in \mathbb{R}\}$

$$\boxed{\alpha \neq 0 \text{ e } \beta = 0} \left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & \alpha & 0 \end{array}\right); \left\{\begin{array}{ccc} x + y - z & = 0 \\ \alpha y & = 0 \end{array}\right. \Rightarrow \left\{\begin{array}{ccc} x & = z \\ y & = 0 \end{array}\right.; S = \left\{(x, 0, x) : x \in \mathbb{R}\right\}$$

$$\boxed{\alpha = 0 \text{ e } \beta \neq 0} \left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 0 & \beta \end{array}\right); \left\{\begin{array}{ccc} x + y - z & = 0 \\ \beta z & = 0 \end{array}\right. \Rightarrow \left\{\begin{array}{ccc} x & = -y \\ z & = 0 \end{array}\right.; S = \left\{(x, -x, 0) : x \in \mathbb{R}\right\}$$

 $\alpha \neq 0 \text{ e } \beta \neq 0$

$$\left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & \alpha & \beta \end{array}\right) \, ; \, \left\{\begin{array}{ccc} x+y-z & =0 \\ \alpha y+\beta z & =0 \end{array}\right. \Rightarrow \left\{\begin{array}{ccc} x & =z+\frac{\beta}{\alpha}z \\ y & =-\frac{\beta}{\alpha}z \end{array}\right. \; ; \, S = \{(z+\frac{\beta}{\alpha}z,-\frac{\beta}{\alpha}z,z):z\in\mathbb{R}\}$$

- **2.** Considere a matriz $A = \begin{pmatrix} 1 & 0 & a \\ 0 & \sqrt{2}b & 3 \\ a & 0 & 1 \end{pmatrix}$ com $a, b \in \mathbb{R}$. Determine os valores de a e b para os quais:
 - (i) a característica de A é igual a 2, b = 0 ou a = -1 ou a = 1.
 - (ii) a característica de A é igual a 3. $b \neq 0$ e $a \neq -1$ e $a \neq 1$.
- 3. Seja U_{α} , uma família de subconjuntos de \mathbb{R}^3 , definida por:

$$U_{\alpha} = \{ (3a, b + \alpha, b) \in \mathbb{R}^3 : a, b \in \mathbb{R} \}.$$

- a) Considere $\alpha = 0$ e mostre que $U = U_0$ é um subespaço vectorial real de \mathbb{R}^3 .
 - * $U_0 \neq \emptyset$, pois, por exemplo, $(0,0,0) \in U_0$.
 - * Sejam $\mathbf{x} = (3a, b, b)$ e $\mathbf{y} = (3a', b', b')$ elementos de U_0 , com $a, a', b, b' \in \mathbb{R}$. Então $\mathbf{x} + \mathbf{y} = (3(a+a'), b+b', b+b')$ e, portanto, é também um elemento de U_0 .
 - * Seja $k \in \mathbb{R}$ e seja $\mathbf{x} = (3a, b, b)$ um elemento de U_0 , com $a, b \in \mathbb{R}$. Então $k\mathbf{x} = (3ka, kb, kb)$ e, portanto, é também um elemento de U_0 .

Portanto, sendo U_0 um subconjunto de \mathbb{R}^3 , não vazio, fechado relativamente à soma de vectores e relativamente ao produto escalar, conclui-se que é um subespaço vectorial de \mathbb{R}^3 .

- b) Determine um conjunto de vectores geradores de U_0 que sejam linearmente independentes. Qualquer elemento de U_0 ($\alpha=0$) é da forma (3a,b,b), com $a,b\in\mathbb{R}$. Veja-se que, (3a,b,b)=3a(1,0,0)+b(0,1,1), ou seja, os vectores (1,0,0) e (0,1,1) são geradores de U_0 . Além disso, estes vectores são linearmente independentes pois, $\alpha(1,0,0)+\beta(0,1,1)=(0,0,0)\Leftrightarrow (\alpha,\beta,\beta)=(0,0,0)\Leftrightarrow \alpha=\beta=0$.
- c) Para que valores de α , U_{α} é um subespaço vectorial real de \mathbb{R}^3 ? Justifique. Sejam $(3a, b + \alpha, b)$ e $(3a', b' + \alpha, b')$ elementos de U_{α} , com $a, a', b, b' \in \mathbb{R}$.

Então $(3a, b + \alpha, b) + (3a', b' + \alpha, b') = (3(a + a'), b + b' + 2\alpha, b + b')$ e o vector soma $(3(a + a'), b + b' + 2\alpha, b + b')$ pertence a U_{α} se $2\alpha = \alpha \Leftrightarrow \alpha = 0$.

Também, $\forall k \in \mathbb{R}$, o produto escalar, $k(3a, b + \alpha, b) = (3ka, kb + k\alpha, kb)$, será um elemento de U_{α} se $k\alpha = \alpha \Leftrightarrow \alpha(k-1) = 0 \Rightarrow \alpha = 0$ pois k é um valor real qualquer.

Logo U_{α} é um subespaço vectorial real de \mathbb{R}^3 se $\alpha = 0$.

4. Mostre que:

a) Se A, B e C são matrizes de ordem n, invertíveis, tais que, $C^{-1}(A+X)B^{-1}=I_n$, então X=CB-A.

Since
$$C^{-1}(A+X)B^{-1} = I_n$$
 \Rightarrow $C(C^{-1}(A+X)B^{-1}) = C.I_n$
1. \Rightarrow $(CC^{-1})((A+X)B^{-1}) = C$
2., 3. \Rightarrow $I_n((A+X)B^{-1}) = C$
4. \Rightarrow $(A+X)B^{-1} = C$
2. \Rightarrow $((A+X)B^{-1})B = C.B$
5. \Rightarrow $(A+X)(B^{-1}B) = C.B$
3. \Rightarrow $(A+X)I_n = C.B$
4. \Rightarrow $(A+X) = C.B$
2. \Rightarrow $(A+X) = C.B$
2. \Rightarrow $(A+X) = C.B$
3. \Rightarrow $(A+X) = C.B$
4. \Rightarrow $(A+X) = C.B$
5. \Rightarrow $(A+X) = C.B$

- 1. multiplicando ambos os membros, à esquerda, pela matriz ${\cal C}.$
- $\mathbf{2}$. propriedade de existência de elemento neutro (matriz I_n) relativamente à multiplicação de matrizes.
- 3. propriedade associativa da multiplicação de matrizes.
- 4. definição de matriz inversa.
- 5. multiplicando ambos os membros, à direita, pela matriz B.
- **6.** para qualquer matriz $A = (a_{ij}), a_{ij} \in \mathbb{R}$, existe $-A = (-a_{ij})$.
- **b**) Sejam $A \in S$ matrizes de ordem n.

Se A é uma simétrica e S é ortogonal, então $S^{-1}AS$ é uma matriz simétrica.

Hipóteses:

- 1. A é uma simétrica, ou seja $A = A^T$.
- 2. S é ortogonal, ou seja, $S.S^T = S^T.S = I_n$, tendo-se $S^{-1} = S^T$

Tese: $S^{-1}AS$ é uma matriz simétrica, ou seja, $S^{-1}AS = (S^{-1}AS)^T$

Demonstração:

$$(S^{-1}AS)^{T} \Rightarrow S^{T}A^{T}(S^{-1})^{T}$$

$$1. \Rightarrow S^{T}A(S^{-1})^{T}$$

$$2. \Rightarrow S^{T}A(S^{T})^{T}$$

$$3. \Rightarrow S^{-1}AS$$

$$4.$$

- 1. $\forall A, B \quad (AB)^T = B^T A^T$.
- ${f 2.}$ hipótese 1, A é uma matriz simétrca.
- 3. hipótese 2, S é uma matriz ortogonal tendo-se $S^{-1} = S^T$.
- **4.** $\forall A, (A^T)^T = A.$

Cotação:

I		II - 1	II - 2	II - 3	II - 4
6.	5	1 + 1 + 1 + 1.5	3	1.5 + 2 + 1	$0.75\!+\!0.75$