On the stability of portfolio selection models

Cesarone, Francesco, Fabiomassimo Mango et al. Journal of Empirical Finance, 2020

解读者: 屠雪永

2021.04.20

Outline

- Introduction
- Research design
 - Portfolio selection models
- Empirical study
 - Monte Carlo method
 - Resampling method
- Conclusion

1. Introduction-- Motivation

- Portfolio selection: assessing the effect of the estimation errors of the parameters
 - Minimum risk models.

- No sensitivity analysis for the Risk Parity diversification approach.
- Nor for other portfolio selection models requiring maximum gain—risk ratios.

1. Introduction-- Questions

 What is the amount of data required to significantly reduce the effects of the estimation errors?

Smaller n/T

Given n tradable assets and T observations, what is the portfolio selection model that is less sensitive to the information deficit?

Risk Parity

1. Introduction-- Contribution

 We examine and compare the noise sensitivity of financial portfolios obtained using various risk and gain measures, and different selection approaches.

2. Portfolio selection models

List of portfolio strategies.

#	Model	Abbreviation		
Risk Diversification strategy				
1	Risk Parity portfolio	RP		
2	Most Diversified portfolio	MDP		
Optimizat	tion strategy			
Minimum 1	Risk portfolios			
3	Min Variance	MinV		
4	Min SMAD	MinSMAD		
5	Min CVaR ($\varepsilon = 0.3$)	MinCVaR		
6	Min MaxLoss	MinMaxLoss		
Maximum	gain–risk ratio portfolios			
7	Max Sharpe Ratio	MaxSR		
8	Max MAD Ratio	MaxMADR		
9	Max STARR Ratio ($\varepsilon = 0.3$)	MaxSTARR		
10	Max MaxLoss Ratio	MaxMaxLossR		
11	Max Omega Ratio	MaxOmegaR		

2.1 Risk Diversification strategy

The Risk Parity (RP) approach(1996)

The risk is measured by the volatility

$$\sigma(x) = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \sigma_{ij}}$$

The total risk contribution of asset *i* is described by

$$TRC_i^{\sigma}(x) = x_i \frac{\partial \sigma(x)}{\partial x_i} = \frac{x_i (\Sigma x)_i}{\sigma(x)}$$

The RP approach requires equality of all total risk contributions

$$TRC_i^{\sigma}(x) = TRC_j^{\sigma}(x) \Leftrightarrow x_i (\Sigma x)_i = x_j (\Sigma x)_j \quad \forall i, j.$$

$$\begin{cases} x_i (\Sigma x)_i = \lambda & i = 1, \dots, n \\ \sum_{i=1}^n x_i = 1 \\ x_i \ge 0 & i = 1, \dots, n \end{cases}$$

2.1 Risk Diversification strategy

The Most Diversified portfolio(2008)

Maximize a measure of diversification

$$DR(\mathbf{x}) = \frac{\mathbf{x}^T \boldsymbol{\sigma}}{\sqrt{\mathbf{x}^T \Sigma \mathbf{x}}}, \quad \boldsymbol{\sigma} = (\sigma_1, \sigma_2, \dots, \sigma_n)^T$$

$$\min_{\mathbf{y}} \quad \frac{1}{2} \mathbf{y}^T \boldsymbol{\Sigma} \mathbf{y}$$

s.t.

Choueifaty et al. (2013)

$$\sum_{i=1}^{n} y_i \sigma_i = 1$$

$$y_i \ge 0 \qquad i = 1, \dots, n$$

$$x_i = \frac{y_i}{\sum_{i=1}^n y_i}$$
 for $i = 1, \dots, n$.

2.2 Minimum risk portfolios

$$\min_{\mathbf{x}} \quad Risk(\mathbf{x}) \qquad \sum_{i=1}^{n} x_i = 1, \ x_i \ge 0 \qquad i = 1, \dots, n.$$

- Variance: $\sigma_P^2(\mathbf{x}) = \sum_{i=1}^n \sum_{j=1}^n \sigma_{ij} x_i x_j$
- Semi-Mean Absolute Deviation (SMAD): $MAD(x) = \frac{1}{T} \sum_{t=1}^{I} |\sum_{i=1}^{n} (\mu_i r_{it}) x_i|$ $SMAD(x) = \frac{1}{T} \sum_{t=1}^{T} \max(0, \sum_{i=1}^{n} (\mu_i - r_{it}) x_i)$
- CVaR: $CVaR_{\varepsilon}(\mathbf{x}) = -\frac{1}{\varepsilon} \int_{0}^{\varepsilon} Q_{R_{P}(\mathbf{x})}(\alpha) d\alpha$ ($\varepsilon = 0.30$)
- MaxLoss: $l_P^{max}(x) = -r_P^{min}(x) = -\min_{1 \le t \le T} \sum_{i=1}^n x_i r_{i,t}$

2.3 Maximum gain-risk ratio portfolios

Model	Gain measure	Risk measure
max Sharpe ratio	$\mu_P(\mathbf{x}) - r_f$	Variance (6)
max MAD ratio	$\mu_P(\mathbf{x}) - r_f$	MAD (7)
max STARR ratio	$\mu_P(\mathbf{x}) - r_f$	CVaR (8)
max MaxLoss ratio	$\mu_P(\mathbf{x}) - r_f$	MaxLoss (9)
max Omega ratio	$E[\max(0, R_P(\mathbf{x}) - r_f)]$	$E[\min(0, R_P(\mathbf{x}) - r_f)]$

$$\max_{\mathbf{x}} \frac{Gain(\mathbf{x})}{Risk(\mathbf{x})}$$
s.t.
$$\sum_{i=1}^{n} x_i = 1$$

$$x_i \ge 0$$
 $i = 1, \dots, n$.

3. Stability measures

$$q_0^2 = \frac{x^{*'} \Sigma^{(0)} x^*}{x^{(0)'} \Sigma^{(0)} x^{(0)}}. \qquad \text{Papp et al. (2005)} \qquad E[q_0] = \frac{1}{\sqrt{1 - \frac{n}{T}}}$$

• $x^{(0)}$: the "true" optimal portfolio x^* : the "perturbed" optimal portfolio

3. Stability measures

- $x^{(0)}$: the "true" optimal portfolio
- x^* :the "perturbed" optimal portfolio
- The Euclidean norm: $d_2 = ||x^{(0)} x^*||$
- The Root Mean Squared Error (RMSE): $d_{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i^{(0)} x_i^*)^2}$
- The L_1 norm: $d_1 = \sum_{i=1}^n |x_i^{(0)} x_i^*|$
- The L_{∞} norm: $d_{\infty} = \max_{1 \le i \le n} |x_i^{(0)} x_i^*|$

4. Data

Artificial market:

$$R \sim N(\mu, \Sigma), \ \mu = (0.1, 0.1, ..., 0.1), \text{ and } \Sigma = \sigma^2 I$$

- The "true" optimal portfolio: $x^{(0)} = \frac{1}{n}$
- Artificial data: the Monte Carlo technique with n = 100, $\sigma^2 = 1$, portfolio: M=50
- Five real-world datasets
 - DJIA: 28, 16/02/1990 to 07/04/2016
 - HSI, 43, 25/11/2005 to 11/04/2016
 - STOXX50:49, 22/05/2001 to 11/04/2016
 - NDX:82, 03/11/2004 to 11/04/2016
 - FTSE :83, 11/07/2002 to 11/04/2016
- The Monte Carlo : $\mathbf{R} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ estimated from the real-world.
- Resampling: the historical scenarios represented by the returns

5.1 Stability analysis with the Monte Carlo method

Artificial market

The Risk Parity portfolio is always the most stable strategy

5.1 Stability analysis with the Monte Carlo method

Artificial market

The Risk Parity portfolio is also the most stable strategy

5.1 Stability analysis with the Monte Carlo method

Normal market with inputs estimated from real world datasets

As expected, the dispersion around the "true" optimal portfolio increases when $\frac{n}{T}$

5.2 Resampling method

The Risk Parity portfolio is always the most stable strategy

5.3. Profitability analysis

In-sample analysis

 The SRs obtained by MaxSR are, as expected, always the highest in-sample values.

5.3. Profitability analysis

out-of-sample

 The SR of the Risk Parity portfolio is the most stable one, even though its value is not generally satisfactory

6. Conclusion

- The maximum gain—risk portfolios are the most sensitive to noise, while risk diversification strategies are generally the most stable.
- The Risk Parity portfolios are the least dispersed, have the worse Sharpe ratios

7. Future research

- Obtain theoretical justifications
- Extend the stability analysis to other classes of portfolio selection models such as those based on stochastic dominance