Visualization Analysis & Design Full-Day Tutorial Session 1

Tamara Munzner

Department of Computer Science University of British Columbia

Sanger Institute / European Bioinformatics Institute June 2014, Cambridge UK

http://www.cs.ubc.ca/~tmm/talks.html#minicourse | 4

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - -Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - -Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- · don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
 - -don't know exactly what questions to ask in advance
- possibilities
 - -long-term use for end users (e.g. exploratory analysis of scientific data)
 - -presentation of known results
 - stepping stone to better understanding of requirements before developing models
 - help developers of automatic solution refine/debug, determine parameters
 - -help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

external representation: replace cognition with perception

Why have a computer in the loop?

Computer-based visualization systems provide visual representations of datasets designed to neip people carry out tasks more effectively.

- beyond human patience: scale to large datasets, support interactivity
 - consider: what aspects of hand-drawn diagrams are important?

Why depend on vision?

Computer-based visualization systems provide visual epresentations of datasets designed to help people carry out tasks more effectively.

- human visual system is high-bandwidth channel to brain
 - overview possible due to background processing
 - subjective experience of seeing everything simultaneously
 - significant processing occurs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
 - overview not supported
 - subjective experience of sequential stream
- touch/haptics: impoverished record/replay capacity
 - only very low-bandwidth communication thus far
- taste, smell: no viable record/replay devices

Why show the data in detail?

- summaries lose information
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model

Anscombe's Quartet

Identical statistics			
x mean	9		
x variance	10		
y mean	8		
y variance	4		
x/y correlation	1		

Idiom design space

The design space of possible vis idioms is huge, and includes the considerations of both how to create and how to interact with visual representations.

• idiom: distinct approach to creating or manipulating visual representation

- -how to draw it: **visual encoding** idiom
 - many possibilities for how to create

• even more possibilities

of Computer Science, 2000.]

- make single idiom dynamic
- link multiple idioms together through interaction

[A layered grammar of graphics. Wickham. Journal of Computational and Graphical Statistics 19:1 (2010), 3–28.] [Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. thesis, Stanford University Department

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry ou tasks more effectively.

- tasks serve as constraint on design (as does data)
 - -idioms do not serve all tasks equally!
 - -challenge: recast tasks from domain-specific vocabulary to abstract forms
- most possibilities ineffective
 - -validation is necessary, but tricky
 - -increases chance of finding good solutions if you understand full space of possibilities
- what counts as effective?
 - novel: enable entirely new kinds of analysis
 - -faster: speed up existing workflows

Resource limitations

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
 - -processing time
 - -system memory
- human limits
 - -human attention and memory
- display limits
 - -pixels are precious resource, the most constrained resource
 - -information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - -Chap 1:What's Vis, and Why Do It?

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - -Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Analysis: What, why, and how

- what is shown?
 - -data abstraction
- why is the user looking at it?
 - -task abstraction
- how is it shown?
 - idiom: visual encoding and interaction
- abstract vocabulary avoids domain-specific terms
 - -translation process iterative, tricky
- what-why-how analysis framework as scaffold to think systematically about design space

What? Why? How?

Dataset types

- Dataset Types
 - → Tables

→ Networks

→ Fields (Continuous)

→ Geometry (Spatial)

→ Multidimensional Table

→ Trees

Dataset and data types

Data and Dataset Types

Fields **Tables** Networks & Geometry Clusters, sets, lists Trees Items (nodes) Grids **Items** Items Items **Positions** Attributes Links **Positions Attributes** Attributes

- Data Types
 - → Items → Attributes → Links → Positions → Grids
- **→** Dataset Availability
 - → Static
 → Dynamic
 ••••••

Attribute types

- Attribute Types
 - → Categorical

- → Ordered
 - → Ordinal

→ Quantitative

- Ordering Direction
 - → Sequential
- Diverging

→ Cyclic

• {action, target} pairs

- discover distribution
- compare trends
- locate outliers
- browse topology

Why?

→ Consume

Analyze

→ Produce

Search (\mathbf{a})

	Target known		Target unknown	
Location known	••••	Lookup		Browse
Location unknown	<`.⊙.∙>	Locate	₹ `@;.>	Explore

Query

Targets

All Data

Attributes

Network Data

ullu.

→ Topology

- **Spatial Data**
 - → Shape

High-level actions: Analyze

- consume
 - -discover vs present
 - classic split
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social
- produce
 - -annotate, record
 - -derive
 - crucial design choice

→ Consume

- → Produce
 - → Annotate

→ Record

→ Derive

Actions: Mid-level search, low-level query

- what does user know?
 - -target, location
- how much of the data matters?
 - one, some, all

	Target known	Target unknown	
Location known	• • • Lookup	Browse	
Location unknown	C Locate	Explore	

→ Identify

→ Compare

→ Summarise

Why: Targets

- **ALL DATA**
 - → Trends
- → Outliers
- → Features

- **ATTRIBUTES**
 - → One
 - → Distribution

- → Many
 - → Dependency
- → Correlation

→ Similarity

- **NETWORK DATA**
 - → Topology

→ Paths

- SPATIAL DATA
 - → Shape

How?

Encode

→ Express

→ Separate

→ Order

→ Use

What?
Why?
How?

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

→ Change

Facet

→ Juxtapose

Reduce

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

Superimpose

→ Embed

Analysis example: Compare idioms

SpaceTree

@Kaola Amphibians Marsupial @0 pussum III Birds Invertebrates @Platypus Vertebrates Fishes # @Wombat Bats Mammals Carnivores Reptiles Herbivores insectivores Marine

TreeJuxtaposer

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.]

[Tree]uxtaposer: Scalable Tree Comparison Using Focus +Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]

What?

Why?

Actions

Primates |

Shrews

→ Present → Locate → Identify

→ SpaceTree

How?

→ Encode → Navigate → Select → Filter

→ Targets

→ Path between two nodes

TreeJuxtaposer

→ Encode → Navigate → Select → Arrange

Chained sequences

- output of one is input to next
 - express dependencies
 - separate means from ends

Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Proc. Intl. Conf. Computer Vision and Graphics, pp. 56–69, 2002.]

Task 2

In

What?

→ In Tree

→ Out Filtered Tree

Tree

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 2: What: Data Abstraction
 - Chap 3: Why: Task Abstraction
- A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 19:12 (2013), 2376–2385.
- Low-Level Components of Analytic Activity in Information Visualization. Amar, Eagan, and Stasko. Proc. IEEE InfoVis 2005, p 111–117.
- A taxonomy of tools that support the fluent and flexible use of visualizations. Heer and Shneiderman. Communications of the ACM 55:4 (2012), 45–54.
- Rethinking Visualization: A High-Level Taxonomy. Tory and Möller. Proc. IEEE InfoVis 2004, p. 151–158.
- Visualization of Time-Oriented Data. Aigner, Miksch, Schumann, and Tominski.
 Springer, 2011.

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

Visual encoding

• analyze idiom structure

Definitions: Marks and channels

- marks
 - -geometric primitives
- channels
 - control appearance of marks
 - can redundantly code with multiple channels
- interactions
 - point marks only convey position; no area constraints
 - can be size and shape coded
 - -line marks convey position and length
 - can only be size coded in ID (width)
 - -area marks fully constrained
 - cannot be size or shape coded

→ Area

→ Length

→ Volume

Visual encoding

- analyze idiom structure
 - -as combination of marks and channels

Channels: Expressiveness types and effectiveness rankings

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Effectiveness and expressiveness principles

- effectiveness principle
 - encode most important attributes with highest ranked channels
- expressiveness principle
 - match channel and data characteristics

[Automating the Design of Graphical Presentations of Relational Information. Mackinlay. ACM Trans. on Graphics (TOG) 5:2 (1986), 110–141.]

- rankings: where do they come from?
 - -accuracy
 - discriminability
 - separability
 - -popout

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: S= I^N

Accuracy: Vis experiments

Discriminability: How many usable steps?

• linewidth: only a few

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Position+ Hue (Color)

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Width

+ Height

Some/significant interference

3 groups total: integral area

Red

+ Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 - -how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - -speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

- containment
- connection

- proximity
 - same spatial region
- similarity
 - same values as other categorical channels

Marks As Links

Containment

Connection

→ Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

position along aligned scale

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 5: Marks and Channels
- On the Theory of Scales of Measurement. Stevens. Science 103:2684 (1946), 677-680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects.
 Stevens. Wiley, 1975.
- Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.
- Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.