微积分 A (2)

姚家燕

第 2 讲

主讲老师联系方式与答疑时间

欢迎大家平时到办公室来咨询或讨论问题, 拒绝在考试后以各种名目来要分数! 不建议网上提问,因为无法保证时效和准确!

- 地点: 理科楼数学系 A 216
- 电话: 62794494
- 时间: 每周三下午 18:00-19:00
- 每次上课前时采用雨课堂签到并随机点名, 请大家务必准时出席!

清华大学本科生学籍管理规定

第十条 学生应当参加学校教育计划规定的各项活动. 自觉遵守课堂纪律. 完成规定学业. 因故不能参加学校 教育计划规定的活动,应当事先请假并获得批准,未经 批准而缺席的. 学校视情节轻重根据有关规定给予相应 的批评教育. 纪律处分. 未请假或者请假未获批准连续 两周未参加教学计划规定的活动的. 予以退学处理.

第十七条 含实验或者作业的课程, 学生在按时完成课程实验 (包括实验报告) 和作业后, 方可参加该课程考核.

选择适合自己的课程!

若选择本课程,请大家遵守下列纪律:

- 线下上课期间严禁使用任何电子产品
- 严禁以任何形式外传课堂内容
- 务必按时上交作业 (允许三次不交作业)
- 无故缺交平时作业 4 次及 4 次以上或无故 缺席期中考试,取消参加期末考试的资格!
- 严禁以任何方式在考试后来要成绩

第 1 讲回顾: n 维 Euclid 空间

- \mathbb{R}^n 及其上的范数 $\|\cdot\|_n$ 与距离.
- 点 X_0 的 δ -邻域 $B(X_0, \delta)$, 也称为以点 X_0 为中心、以 δ 为半径的开球.
- 点 X_0 的去心 δ-邻域 $\mathring{B}(X_0, \delta)$.
- 内点, 外点, 边界点, <mark>极限点</mark>, 开集, 闭集, 内部, 外部, 边界, 闭包.

回顾: 基本性质

- \emptyset , \mathbb{R}^n 既为开集, 也为闭集.
- 任意开球均为开集, 任意闭球均为闭集.
- 拓扑概念与空间 \mathbb{R}^n 有关.
- $S \subseteq \mathbb{R}^n$ 为开集当且仅当它为开球的并.
- 任意多个开集的并是开集,任意多个闭集的 交是闭集;有限多个开集的交为开集,有限 多个闭集的并为闭集.
- 连通集, 非连通集, 开区域, 闭区域.

回顾: 重要的例子

例 1. $\forall X_0 \in \mathbb{R}^n$ 以及 $\forall \delta > 0$. 我们有

Int
$$B(X_0, \delta) = B(X_0, \delta),$$

Ext $B(X_0, \delta) = \{X \in \mathbb{R}^n \mid ||X - X_0|| > \delta\},$
 $\partial B(X_0, \delta) = \{X \in \mathbb{R}^n \mid ||X - X_0|| = \delta\},$
 $\overline{B(X_0, \delta)} = \{X \in \mathbb{R}^n \mid ||X - X_0|| \le \delta\}.$

回顾: \mathbb{R}^n 中的点列与性质

- 概念: \mathbb{R}^n 中的点列的极限, Cauchy 序列.
- ℝⁿ 中点列收敛当且仅当其坐标分量组成的数列均收敛.
- $\bullet \mathbb{R}^n$ 中点列为 Cauchy 序列当且仅当它的坐标分量组成的数列均为 Cauchy 数列.
- \mathbb{R}^n 完备, 也即 \mathbb{R}^n 中的 Cauchy 序列必收敛.

- ℝⁿ 中子集为闭集当且仅当该集合中的任意 收敛点列的极限依然属于该集合.
- •概念: 直径, 有界集, 有界点列.
- 闭集套定理: \mathbb{R}^n 中的直径趋于零的递降的闭集列的交集为单点集.
- 列紧性定理: \mathbb{R}^n 中有界点列必有收敛子列.

回顾: 多元向量值函数

- •概念: n元向量值函数, n元(数量值)函数.
- 向量值函数的运算:线性组合;向量值函数 与数量值函数之间的乘、除;向量值函数的 复合运算.
- 向量值函数的表示: 在 \mathbb{R}^m 中取值的 n 元 向量值函数等同于 m 个 n 元数量值函数.

回顾: 函数极限

- 函数极限 $\lim_{\Omega \ni X \to X_0} \vec{f}(X)$, $\lim_{X \to X_0} \vec{f}(X)$.
- 向量值函数极限收敛当且仅当它的每一个 坐标分量函数的函数极限收敛.
- 函数极限的唯一性,数量值函数极限的 保序性、保号性、夹逼原理、四则运算.
- 复合函数极限法则, 点列极限与函数极限 之间的关系, Cauchy 准则.
- $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{\substack{x\to x_0\\y\to y_0}} f(x,y)$ 的差别.

回顾: 多变量函数极限的计算

基本方法: 转化为单变量的情形.

- $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1.$
- $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0.$
- $\lim_{\substack{x \to \infty \\ y \to a}} \left(1 \frac{1}{2x}\right)^{\frac{x^2}{x+y}} = e^{-\frac{1}{2}}$, $\sharp \, \forall \, a \in \mathbb{R}$.
- 极限 $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ 不存在.
- 极限 $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2-x}$ 不存在.

第 2 讲

二重极限与累次极限

二重极限:
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
.

累次极限: $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$, $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$.

注: 对于累次极限 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$, 先对 $x\neq x_0$ 计算 $\varphi(x) := \lim_{y \to y_0} f(x, y)$, 随后再求 $\lim_{x \to x_0} \varphi(x)$.

问题: 二重极限与累次极限有什么关系?

回答: 没有任何关系!

情形 1: 二重极限不存在, 但累次极限存在.

例 7. 前面已证二重极限 $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ 不存在, 但当 $y \neq 0$ 时, 我们有 $\lim_{x\to 0} \frac{2xy}{x^2+y^2} = 0$, 于是

$$\lim_{y \to 0} \lim_{x \to 0} \frac{2xy}{x^2 + y^2} = 0.$$

由对称性可得 $\lim_{x\to 0} \lim_{y\to 0} \frac{2xy}{x^2+y^2} = 0.$

情形 2: 二重极限存在, 但累次极限不存在.

例 8. $\forall (x,y) \in \mathbb{R}^2$ (其中 $xy \neq 0$), 定义

$$f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}.$$

由于 $\lim_{x\to 0} x \sin \frac{1}{y} = 0$,但极限 $\lim_{x\to 0} y \sin \frac{1}{x}$ 不存在,故极限 $\lim_{x\to 0} f(x,y)$ 不存在.由对称性可知极限 $\lim_{y\to 0} f(x,y)$ 也不存在.又 $|f(x,y)| \leq |x| + |y|$,由夹逼原理可知 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

定理 1. 假设 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$ 且在 x_0 的某去心邻域 U 内 $\lim_{y\to y_0} f(x,y) = \varphi(x)$ 收敛, 则

$$A = \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y).$$

证明: 由极限的定义可知, $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $\forall (x,y) \in \mathring{B}((x_0,y_0),\delta)$, 均有 $|f(x,y)-A| < \varepsilon$. 则 $\forall x \in U \cap (x_0-\delta,x_0+\delta)$, 对 y 取极限可得 $|\varphi(x)-A| \leqslant \varepsilon$. 故 $\lim_{x\to x_0} \varphi(x) = A$.

注: 这里仅考虑了 $A \in \mathbb{R}$ 而省略了其它情形.

推论 1. 若二重极限与某一个累次极限均存在,则二者必然相等: 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$ 且 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = B$ 存在,则 A=B.

推论 2. 若累次极限存在但不相等, 则二重极限不存在: 若 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ 与 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ 均存在但不相等, 则 $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ 不存在.

向量值函数的连续性

定义 2. 假设 $m, n \ge 1$ 为整数, $\Omega \subseteq \mathbb{R}^n$, $X_0 \in \Omega$

为 Ω 的极限点, $\vec{f}: \Omega \to \mathbb{R}^m$ 为向量值函数. 若

$$\lim_{\Omega \ni X \to X_0} \vec{f}(X) = \vec{f}(X_0),$$

则称 \vec{f} 在点 X_0 处连续.

评注

• \vec{f} 在点 X_0 连续当且仅当 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $\forall X \in \Omega$, 当 $\|X - X_0\|_n < \delta$ 时, 均有 $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$.

若点 X_0 不为 Ω 的极限点, 上述性质恒成立, 此时我们也称 \vec{f} 在点 X_0 处连续.

- 若 \vec{f} 在 Ω 的每点连续, 则称 \vec{f} 在 Ω 上连续.
- 定义 $\mathcal{C}(\Omega; \mathbb{R}^m) = \{\vec{f} \mid \vec{f} : \Omega \to \mathbb{R}^m \text{ 为连续}\}.$ 当 m = 1 时,我们将之简记为 $\mathcal{C}(\Omega)$.

连续函数的性质

定理 2. 多元数量值连续函数经过加、减、乘、除 (分母不为零)运算后仍为连续函数.

定理 3. 多元向量值连续函数经加、减、数乘与复合运算后仍为连续函数.

注: 我们可以类似地定义多个变元的初等函数, 由上述性质可知它们在 其定义区域内 连续. 定理 4. 设 $\Omega \subset \mathbb{R}^n$ 为开集, 而 $\vec{f}: \Omega \to \mathbb{R}^m$ 为 向量值函数. 则 \vec{f} 连续当且仅当对 \mathbb{R}^m 中任意开集 G, 原像集 $\vec{f}^{-1}(G) = \{X \in \Omega \mid \vec{f}(X) \in G\}$ 均为开集.

证明: $\frac{\mathbf{n}}{\mathbf{n}}$ 一般性. 假设对于 \mathbb{R}^m 中的任意开集 G. 其原像集 $\vec{f}^{-1}(G)$ 为开集. 取 $X_0 \in \Omega$. $\forall \varepsilon > 0$, 令 $G = B(\vec{f}(X_0), \varepsilon)$. 由题设知 $\vec{f}^{-1}(G)$ 为包含 点 X_0 的开集, 则 $\exists \delta > 0$ 使 $B(X_0, \delta) \subseteq \vec{f}^{-1}(G)$, 即 $\forall X \in B(X_0, \delta)$, 均有 $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$. 因此 \vec{f} 在点 X_0 处连续, 从而 \vec{f} 为连续映射.

必要性. 假设 \vec{f} 为连续映射, 而 G 为 \mathbb{R}^m 中的 任意非空开集. $\forall X_0 \in \vec{f}^{-1}(G)$, 均有 $\vec{f}(X_0) \in G$. 又 G 为开集, 则 $\exists \varepsilon > 0$ 使得 $B(\vec{f}(X_0), \varepsilon) \subseteq G$. \vec{f} 在 X_0 连续, 则 $\exists \delta_1 > 0$ 使 $\forall X \in \Omega \cap B(X_0, \delta_1)$, 我们有 $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$. 又 $\Omega \cap B(X_0, \delta_1)$ 为开集, 故 $\exists \delta > 0$ 使 $B(X_0, \delta) \subseteq \Omega \cap B(X_0, \delta_1)$, 则 $\forall X \in B(X_0, \delta)$, 均有 $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$, 也即有 $B(X_0, \delta) \subseteq \vec{f}^{-1}(B(\vec{f}(X_0), \varepsilon)) \subseteq \vec{f}^{-1}(G)$, 故 X_0 为 $\vec{f}^{-1}(G)$ 的内点, 进而 $\vec{f}^{-1}(G)$ 为开集. 定理 4'. 设 $\Omega \subset \mathbb{R}^n$ 为开集, 而 $\vec{f}: \Omega \to \mathbb{R}^m$ 为 向量值函数. 则 \vec{f} 连续当且仅当对 \mathbb{R}^m 中任意 闭集 F, 原像集 $\vec{f}^{-1}(F) = \{X \in \Omega \mid \vec{f}(X) \in F\}$ 为 Ω 中的闭集. 注: 这里将 Ω 当作整个空间. 证明: $\frac{\mathbf{n}}{\mathbf{n}}$ 代 假设对于 \mathbb{R}^m 中的任意闭集 F, 原像集 $\vec{f}^{-1}(F)$ 为闭集. 则对于 \mathbb{R}^m 中的任意 开集 G, 其原像集 $\vec{f}^{-1}(G) = \Omega \setminus (\vec{f}^{-1}(\mathbb{R}^m \setminus G))$ 为开集,从而由定理 4 可知 \vec{f} 为连续映射.

必要性. 假设 \vec{f} 为连续映射, 而 F 为 \mathbb{R}^m 中的任意闭集. 则由定理 4 可知, 原像集

$$\vec{f}^{-1}(F) = \Omega \setminus (\vec{f}^{-1}(\mathbb{R}^m \setminus F))$$

为 Ω 中的闭集. 故所证成立.

$$f^{-1}(r) := \{ X \in \mathbb{R}^n \mid f(X) = r \}$$

为闭集, 由此可知通常的曲面均为闭集.

定理 5. (最值定理) 假设 $\Omega \subseteq \mathbb{R}^n$ 为有界闭集, 而 $f \in \mathscr{C}(\Omega)$, 则 f 在 Ω 上有最大值和最小值. 证明: 首先证明 f 在 Ω 上有界. 否则, $\forall k \in \mathbb{N}^*$, $\exists X_k \in \Omega$ 使得 $|f(X_k)| > k$. 由 Ω 的有界性可知 $\{X_k\}$ 有一个子列 $\{X_{\ell_k}\}$ 收敛, 设其极限为 A. 又 Ω 为闭集, 则 $A \in \Omega$, 再由 f 的连续性以及 夹逼原理可得 $f(A) = \lim_{k \to \infty} f(X_{\ell_k}) = \infty$. 矛盾! 故假设不成立, 从而 f 有界.

下证 f 在 Ω 上有最值. 用反证法, 假设 f 没有 最大值或最小值. 不失一般性, 可假设 ƒ 没有 最大值, 否则可以考虑 -f. 令 $M = \sup f(\Omega)$. 则 $\forall X \in \Omega$, f(X) < M. 定义 $F(X) = \frac{1}{M - f(X)}$, 则 $F \in \mathcal{C}(\Omega)$. 又由 M 的定义可知, $\forall k \in \mathbb{N}^*$, $\exists X_k \in \Omega$ 使得 $f(X_k) > M - \frac{1}{k}$, 故 $F(X_k) > k$, 从而 F 在 Ω 上没有上界. 矛盾! 故所证成立.

\mathbb{R}^n 中集合的弧连通 (道路连通)

- 称集合 $D \subseteq \mathbb{R}^n$ 为弧连通, 如果 $\forall X, Y \in D$, 均存在 D 中的连续曲线将 X, Y 连接起来, 即存在向量值连续函数 $\gamma : [0,1] \to D$ 使得我们有 $\gamma(0) = X$, $\gamma(1) = Y$.
- 折线连通集也为弧连通集. 可以证明弧连通 开集为折线连通.
- 由连续函数介值定理立刻可知, \mathbb{R} 的子集 D 为弧连通集当且仅当它为区间.

定理 6. (连通性) 若 $\vec{f} \in \mathcal{C}(\Omega; \mathbb{R}^m)$ 而 $\Omega \subseteq \mathbb{R}^n$ 为 弧连通, 则 $\vec{f}(\Omega)$ 为弧连通集.

证明: $\forall A, B \in \vec{f}(\Omega)$, $\exists X, Y \in \Omega$ 使得 $A = \vec{f}(X)$, $B = \vec{f}(Y)$. 因 Ω 为弧连通,则存在向量值连续 函数 $\gamma:[0,1]\to\Omega$ 使得 $\gamma(0)=X$, $\gamma(1)=Y$. $\hat{\varphi} \tilde{\gamma} = \vec{f} \circ \gamma$. 则 $\tilde{\gamma} : [0,1] \to \vec{f}(\Omega)$ 为向量值连续 函数且 $\widetilde{\gamma}(0) = A$, $\widetilde{\gamma}(1) = B$. 故 $\overrightarrow{f}(\Omega)$ 为弧连通. 定理 7. (介值定理) 假设 $\Omega \subseteq \mathbb{R}^n$ 为弧连通集,

而 $f \in \mathscr{C}(\Omega)$, 则 $\forall X_1, X_2 \in \Omega$ 以及介于 $f(X_1)$,

 $f(X_2)$ 之间的实数 μ , $\exists X_0 \in \Omega$ 使得 $f(X_0) = \mu$.

证明:由 定理 6 可知 $f(\Omega)$ 为 \mathbb{R} 的 弧 连 通 子 集,

从而为区间. $\forall X_1, X_2 \in \Omega$, $f(X_1), f(X_2) \in f(\Omega)$,

则以这两点为端点的区间包含于 $f(\Omega)$. 得证.

例 9. 证明: 存在正实数 m, M 使得对于任意的

$$X=(x_1,\ldots,x_n)\in\mathbb{R}^n$$
, 均有

$$m \sum_{j=1}^{n} |x_j| \le ||X|| \le M \sum_{j=1}^{n} |x_j|.$$

分析: 当 X 为零向量时, 上式成立. 若 X 不为零向量, 则该不等式等价于 $\frac{1}{M} \leq \sum_{i=1}^{n} \left| \frac{x_i}{\|X\|} \right| \leq \frac{1}{m}$.

而所证不等式则等价于

$$\frac{1}{M} \leqslant f(Y) := \sum_{j=1}^{n} |y_j| \leqslant \frac{1}{m}.$$

也即要证明 f 在单位球面上有正的上、下界.

证明: 定义
$$S = \{Y \in \mathbb{R}^n \mid ||Y||_n = 1\}$$
, 则 S 为 有界闭集. $\forall Y = (y_1, \dots, y_n) \in S$, 令

$$f(Y) = \sum_{j=1}^{n} |y_j| > 0.$$

则 f 连续, 从而有最小值 a > 0, 最大值 b.

选取 $m = \frac{1}{b}$, $M = \frac{1}{a}$. $\forall X \in \mathbb{R}^n$ (X 不为零向量), 设 $Y = \frac{1}{\|X\|_n}(x_1, \dots, x_n) \in S$, 则 $a \leqslant f(Y) \leqslant b$.

也即 $a \leq \frac{1}{\|X\|_n} \sum_{j=1}^n |x_j| \leq b$, 从而我们有

$$\frac{1}{b}\sum_{j=1}^{n}|x_{j}| \leq ||X||_{n} \leq \frac{1}{a}\sum_{j=1}^{n}|x_{j}|,$$

也就是说我们有 $m\sum_{j=1}^{n}|x_{j}| \leq ||X||_{n} \leq M\sum_{j=1}^{n}|x_{j}|.$

而 X 为零向量时, 该式也成立, 故所证成立.

谢谢大家!