一、纵向联邦学习背景

纵向: GUEST 方和 HOST 方的数据特征维度有差异,但用户(ID)重合度高,适用于跨行业应用的场景。

二、数据准备

双方数据规模如下图所示,ID 存在重叠,特征不同,guest 方为有标签的一方:按 7:3 比例分割好训练集和测试集共四份数据 heterotrain g.csv/heterotest g.csv/heterotrain h.csv/heterotest h.csv。

二、上传数据

Guest 端:

```
上传训练集: python fate_flow_client.py -f upload -c examples/upload_try_g.json
```

```
pupload_try_g.json 文件如下:

{

   "file": "/home/app/projects/heterotrain_g.csv",
   "head": 1,
   "partition": 50,

   "work_mode": 1,
   "namespace": "fate_testg",
   "table_name": "datag"
}
```

```
file": "/home/app/projects/heterotrain_g.csv",
    "head": 1,
    "partition": 50,
    "work_mode": 1,
    "namespace": "fate_testg",
    "table_name": "datag"
}
```

file: 文件路径

{

head: 数据文件是否包含表头 partition: 用于存储数据的分区数

work_mode: 指定的工作模式, 0 代表单机版, 1 代表集群版

table_name&namespace: 存储数据表的标识符号

上传测试集: python fate flow client.py -f upload -c

examples/upload_try_gg.json

```
▶ upload_try_gg.json 文件如下:
```

```
"file": "/home/app/projects/heterotest_g.csv",
    "head": 1,
    "partition": 50,
    "work mode": 1,
    "namespace": "fate_testgg",
    "table_name": "datagg"
  }
Host 端:
上传训练集: python fate_flow_client.py -f upload -c examples/upload_try_h.json
   upload_try_h.json 文件如下:
{
    "file": "/home/app/projects/heterotrain_h.csv",
    "head": 1,
    "partition": 50,
    "work mode": 1,
    "namespace": "fate_testh",
    "table_name": "datah"
  }
```

```
{
    "file": "/home/app/projects/heterotrain_h.csv",
    "head": 1,
    "partition": 50,
    "work_mode": 1,
    "namespace": "fate_testh",
    "table_name": "datah"
}
```

上传测试集: python fate_flow_client.py -f upload -c examples/upload_try_hh.json

```
pupload_try_hh.json 文件如下:
{

"file": "/home/app/projects/heterotest_h.csv",

"head": 1,

"partition": 50,

"work_mode": 1,

"namespace": "fate_testhh",

"table_name": "datahh"
}
```

```
file": "/home/app/projects/heterotest_h.csv",
    "head": 1,
    "partition": 50,
    "work_mode": 1,
    "namespace": "fate_testhh",
    "table_name": "datahh"
}
```

三、提交任务

Guest 端:

```
提交训练任务:
python fate flow client.py -f submit job -d
examples/test_hetero_lr_job_dsl.json -c
examples/test hetero Ir job conf.json
    test_hetero_lr_job_conf.json 文件如下:
{
    "initiator": {
         "role": "guest",
         "party id": 9999
    "job_parameters": {
         "work_mode": 1
    },
    "role": {
         "guest": [9999],
         "host": [10000],
         "arbiter": [10000]
    },
    "role_parameters": {
         "guest": {
              "args": {
                   "data": {
                        "train_data": [{"name": "datag", "namespace":
"fate_testg"}],
                        "eval data":[
                             {
                               "name": "datagg",
                               "namespace": "fate_testgg"
                             }
                          ]
                   }
              },
              "dataio_0":{
                   "with_label": [true],
```

```
"label name": ["y"],
                   "label type": ["int"],
                   "output_format": ["dense"]
              }
         },
         "host": {
              "args": {
                   "data": {
                        "train_data": [{"name": "datah", "namespace":
"fate_testh"}],
                        "eval data":[
                             {
                                "name": "datahh",
                                "namespace": "fate_testhh"
                             }
                           ]
                   }
              },
               "dataio_0":{
                   "with_label": [false],
                   "output_format": ["dense"]
              }
         }
    },
    "algorithm_parameters": {
          "feature scale 0": {
              "method": "standard_scale",
              "need run": true
            },
            "hetero_feature_binning_0": {
              "method": "quantile",
              "compress thres": 10000,
              "head size": 10000,
              "error": 0.001,
              "bin num": 10,
              "cols": -1,
              "adjustment factor": 0.5,
              "local only": false,
              "need run": true,
              "transform_param": {
                 "transform_cols": -1,
                 "transform type": "bin num"
              }
            },
```

```
"hetero feature selection 0": {
       "select cols": -1,
       "filter_methods": [
          "unique value",
          "iv value thres",
          "coefficient of variation value thres",
          "iv percentile",
          "outlier_cols"
       ],
       "local only": false,
       "unique param": {
          "eps": 1e-6
       },
       "iv_value_param": {
          "value_threshold": 1.0
       },
       "iv percentile param": {
          "percentile threshold": 0.9
       },
       "variance_coe_param": {
          "value threshold": 0.3
       },
       "outlier_param": {
          "percentile": 0.95,
          "upper threshold": 10
       },
       "need run": true
    },
"hetero_lr_0": {
    "penalty": "L2",
    "optimizer": "rmsprop",
    "eps": 1e-5,
     "alpha": 0.01,
     "max_iter": 100,
     "converge_func": "diff",
     "batch_size": -1,
    "learning rate": 0.15,
     "init param": {
         "init_method": "random_uniform"
    }
"intersect 0": {
     "intersect_method": "rsa",
     "sync intersect ids": true,
```

},

```
"only_output_key": false
          }
     }
}
    test_hetero_lr_job_dsl.json 文件如下:
{
     "components" : {
          "dataio_0": {
               "module": "DataIO",
               "input": {
                    "data": {
                         "data": [
                              "args.train_data"
                         ]
                    }
               },
               "output": {
                    "data": ["train"],
                   "model": ["dataio"]
               },
    "need_deploy": true
           },
           "dataio_1": {
               "module": "DataIO",
               "input": {
                    "data": {
                         "data": [
                              "args.eval_data"
                         ]
                    },
                    "model": [
                         "dataio_0.dataio"
                   ]
               },
               "output": {
                    "data": ["eval_data"],
                    "model": ["dataio"]
               }
           },
           "intersection_0": {
               "module": "Intersection",
               "input": {
```

```
"data": {
               "data": [
                    "dataio_0.train"
               ]
          }
     },
     "output": {
          "data": ["train"]
     }
},
"intersection\_1": \{
     "module": "Intersection",
     "input": {
          "data": {
               "data": ["dataio_1.eval_data"]
          }
     },
     "output": {
          "data": ["eval_data"]
     }
},
"feature_scale_0": {
     "module": "FeatureScale",
     "input": {
          "data": {
               "data": [
                    "intersection_0.train"
               ]
          }
     },
     "output": {
          "data": ["train"],
          "model": ["feature scale"]
     }
},
"feature_scale_1": {
     "module": "FeatureScale",
     "input": {
          "data": {
               "data": [
                    "intersection_1.eval_data"
               ]
          },
          "model":["feature_scale_0.feature_scale"]
```

```
},
    "output": {
          "data": ["eval_data"],
          "model": ["feature scale"]
    }
},
"hetero feature binning 0": {
     "module": "HeteroFeatureBinning",
     "input": {
          "data": {
              "data": [
                    "feature scale 0.train"
              ]
          }
    },
     "output": {
          "data": ["transform data"],
         "model": ["binning_model"]
    },
     "need_deploy": false
},
"hetero feature binning 1": {
     "module": "HeteroFeatureBinning",
     "input": {
          "data": {
               "data": [
                   "feature scale 1.eval data"
              ]
          },
          "model":["hetero feature binning 0.binning model"]
    },
    "output": {
          "data": ["transform data test"],
          "model": ["binning_model"]
    },
     "need_deploy": false
},
"hetero_feature_selection_0": {
     "module": "HeteroFeatureSelection",
     "input": {
          "data": {
               "data": [
                   "hetero_feature_binning_0.transform_data"
              ]
```

```
},
          "isometric model": [
               "hetero_feature_binning_0.binning_model"
         1
    },
     "output": {
         "data": ["train"],
          "model": ["selected"]
    }
},
"hetero feature selection 1": {
     "module": "HeteroFeatureSelection",
     "input": {
          "data": {
               "data": [
                   "hetero feature binning 1.transform data test"
              ]
         },
          "model":["hetero_feature_selection_0.selected"],
          "isometric_model": [
               "hetero feature binning 1.binning model"
         ]
    },
     "output": {
          "data": ["eval_data"],
          "model": ["selected"]
    }
},
"hetero_lr_0": {
     "module": "HeteroLR",
     "input": {
          "data": {
               "train data": ["hetero feature selection 0.train"],
              "eval_data": ["hetero_feature_selection_1.eval_data"]
         }
    },
     "output": {
          "data": ["hetero_lr_data"],
          "model": ["hetero_lr"]
    }
},
"evaluation 0": {
     "module": "Evaluation",
     "input": {
```

▶ 若页面如图所示,则说明提交成功啦~

四、查看任务

▶ 根据 Jobid 识别任务,可在右侧添加备注(目前 1.4.2 仅支持英文备注)

到达 board 界面可在上方查看到三方的流程图如下:

➤ 点击不同的组件后按 view the outputs 可查看具体的信息

查看模型详情:

Guest 端:点击 hetero_lr_0

Model output: 仅能查看自身的模型信息,包括最大迭代次数、模型是否收敛以及特征权重列表。

Data output: 查看模型训练后输出的预测标签结果。

Host 端: 点击 hetero_lr_0

Model output: 仅能查看自身的模型信息,包括最大迭代次数、模型是否收敛以及特征权重列表。

Aribter 端: 点击 hetero_lr_0

Model output: 只可查看 loss 曲线图,除此以外无法查看 guest 及 host 方相关的其他信息。

Data output: 不输出数据

模型评估:点击 evalution 组件

Guest 端:评估指标表可查看模型在各数据集下的 AUC,KS, precision 和 recall 值、混淆矩阵、PSI 稳定度指标(population stability index,PSI)可衡量测试样本及模型开发样本评分的的分布差异,为最常见的模型稳定度评估指标。

PSI Summary

index	predict_score	Expected %	Actual %	PSI
1	[0.027543, 0.101071)	4.9969%	4.2500%	0.001209
2	[0.101071, 0.130105)	4.9344%	3.2500%	0.007034
3	[0.130105, 0.161776)	5.0593%	5.5000%	0.000368
4	[0.161776, 0.191201)	4.9969%	4.2500%	0.001209
5	[0.191201, 0.220312)	4.9969%	6.0000%	0.001835
6	[0.220312, 0.249588)	4.9969%	3.7500%	0.003579
7	[0.249588, 0.274496)	4.9969%	4.2500%	0.001209
8	[0.274496, 0.300849)	4.9969%	4.0000%	0.002218
9	[0.300849, 0.333434)	4.9969%	5.7500%	0.001057
10	[0.333434, 0.368767)	4.9969%	6.2500%	0.002804
11	[0.368767, 0.401316)	4.9969%	5.7500%	0.001057

Quantile D		预测得分 区间 位于预测得分区间的总样本数 正样本比例				
index	predict_score	train		validation		
IIIdex		instance_count(%total)	event_ratio	instance_count(%total)	event_ratio	
1	[0.054496, 0.165254)	80 (4.9969%)	17.5000%	19 (4.7382%)	10.5263%	
2	[0.165254, 0.211279)	80 (4.9969%)	7.5000%	16 (3.9900%)	25.0000%	
3	[0.211279, 0.246403)	80 (4.9969%)	13.7500%	22 (5.4863%)	22.7273%	
4	[0.246403, 0.287403)	80 (4.9969%)	18.7500%	23 (5.7357%)	21.7391%	
5	[0.287403, 0.315589)	79 (4.9344%)	26.5823%	24 (5.9850%)	16.6667%	
6	[0.315589, 0.348073)	81 (5.0593%)	20.9877%	19 (4.7382%)	21.0526%	
7	[0.348073, 0.372187)	80 (4.9969%)	18.7500%	20 (4.9875%)	25.0000%	
8	[0.372187, 0.397597)	79 (4.9344%)	26.5823%	17 (4.2394%)	23.5294%	
	10 207707 0 422777	na ir nennii i	24 504 50	40.70.044007	20.70000	

图表区域可选择查看模型在各数据集下的 ROC,K-S,Lift,Gain,PR 和 Accuracy 曲线:

Host 端: 查看不到模型指标