Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

(Đề thi 20 câu / 2 trang)

ĐỀ THI GIỮA HỌC KỲ NẶM HỌC 2012-2013 Môn thi: Đại số - Ca 2

Ngày thi 02/12/2012. Thời gian làm bài: 45 phút.

Đề 1206

Câu 1. Cho A, B là 2 ma trận v A 12.	vuông, cấp 3 thỏa $ A =2, B =$ B 24.	$= 3. \text{ Tính } 2AB $ $\bigcirc 48.$	D Các câu khác sai.
Câu 2. Giá trị nào của m thì $r($	(A) lớn nhất , với		
	$A = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 1 \\ 3 & 2 & 1 & 2 \\ 5 & 10 & 3 & m \end{pmatrix}$	
(A) m = 1.	(B) $m \neq 1$.	(C) m = 2.	(D) $m \neq 2$.
Câu 3. Trong không gian véc to			<i>— ,</i>
Cuu Si			
N / T7 d ? [z }, $F = {2x; 3x + 2y; x - y}$	(z+z),
	$[u]_F = (1;2;1)^T$. Tim $[u]_E$?	\bigcirc [] $\langle 0, 1, c \rangle T$	
_		_	_
Câu 4. Cho $\{x, y, z\}$ là tập sinh			?
	(B) z là tổ hợp tuyến tính của		
\bigcirc $\{x,y,z\}$ phụ thuộc tuyến		\bigcirc $2x - y, 3y, x + y$ phụ thu	uộc tuyên tính.
Câu 5. Cho $\{x, y, z\}$ là cơ sở c		_	
	ằng 2. phụ thuộc tuyến tính.	\bigcirc B x không là tổ hợp tuyến t	ính của $\{3x, 4y, 5z\}$
Câu 6. Tìm m để nghiệm của h	nệ phương trình $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{bmatrix}$	cũng là nghiệm của hệ phươi	ng trình $\left[\begin{array}{cc c} 1 & 0 & 1 & 2 \\ 2 & 1 & 4 & m \end{array} \right]$
	$\boxed{\mathbf{B}} m = 1.$	\bigcirc $\forall m$	\bigcirc $\not\exists m.$
Câu 7. Tìm m để hệ phương trì	ình sau có nghiêm không tầm t	hường	
,,			
	$\begin{cases} x_1 \\ x_1 + x \\ x \end{cases}$	$ \begin{array}{rcl} + & x_3 & = & 0 \\ 2 & + & x_3 & = & 0 \\ 2 & + & mx_3 & = & 0 \end{array} $	
(A) $m=0.$	(B) $m \neq 0$.	(C) $m=2$	\bigcirc $m \neq 2$.
Câu 8. Cho 2 ma trận		<i>"</i>	<i>""</i> " " " " " " " " " " " " " " " " " "
Cau o. One 2 mm u.m.	$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \end{pmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \\ 2 & 1 \end{pmatrix}$	
Dịnh thức AB là			
(A) 0.	B −1.	(C) 6.	(D) không tồn tại.
Câu 9. Áp dụng phép biến đổi	· -		
			D Các câu khác sai
Câu 10. Cho A, B là 2 ma trận v		$= 3. \text{ Tính } (3A)^{-1}B $	0.4
\bigcirc $\frac{1}{2}$.	$\frac{1}{18}$.	$\bigcirc \frac{9}{2}$.	$\bigcirc \frac{81}{2}$
Câu 11. Trong không gian véc to	10	2	-
A $\{x,y,z\}$ là tập sinh của V		B $\{x,y,z\}$ phụ thuộc tuyến	
\bigcirc $\{x,y,z\}$ có hạng bằng 3.		$\stackrel{\bullet}{\mathbb{D}}$ x là tổ hợp tuyến tính của	

Câu 12. Cho A là ma trận cấp 3 khả nghị thế nào?	_	_	na trận nghịch đảo thay đổi nhu
(A) Hàng 1 đổi chỗ cho hàng 2. (C) Ma trận nghịch đảo đổi dấu.	(B) (D)	Cột 1 đổi chỗ cho cột 2. Các câu khác sai.	
Câu 13. Cho 2 ma trận	$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix},$	$B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}.$	
Phép toán nào sau đây thực hiện ABP_{AB} .	_	$A^{-1}B$.	\bigcirc AP_B .
Câu 14. Trong R_3 , cho họ véc tơ $M=\{$ $M=1$.	$\neq 1$.	$ \exists m. $	ủa R_3 . \bigcirc $orall m$.
Câu 15. Tìm m để hệ phương trình sau c	ó nghiệm $\begin{bmatrix} 1 & 1 \\ 2 & m \\ 1 & 2-2m & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ -m & 4+m \end{bmatrix}$	
		$\forall m$.	\bigcirc $\not\exists m$.
Câu 16. Tìm m để $r(P_A)=2$, biết rằng	$A = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 2 & 1 \\ 0 & -1 \end{pmatrix}$	$ \begin{array}{ccc} 1 & 0 \\ -1 & 0 \\ -2 & 0 \\ 1 & m \end{array} $	
		$\forall m$.	\bigcirc $\not\exists m.$
Câu 17. Cho số phức $z = i\sqrt{3} - 1$. Argu A $\frac{2\pi}{3}$.	iment của z^4 là \Box .	$-\frac{2\pi}{3}$.	D Các câu khác sai.
Câu 18. Trong R_3 , cho các véc tơ $x = (1$	(z; 2; 1), y = (2; 4; 2), z = (2;	1; 3). Khẳng định nào sau	đây đúng?
A $\{y, z\}$ có hạng bằng 2. B $\{x\}$ C $\{z\}$ là tổ hợp tuyến tính của $\{x, y\}$		$\{x,y,z\}$ là một tập sinh c	của $R_3.$
Câu 19. Cho A là ma trận cấp 3. Thực hi ứng với phép nhân ma trận nào s	sau đây?		
A Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$	(B)	Nhân bên phải ${\cal A}$ ma trận	
C Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$ Cân 20. Cho z_1 , z_2 là nghiệm của phươn	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	Nhân bên trái A ma trận	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
cua zo. eno z ₁ , z ₂ la lignioni cua phaon,	$S^{\text{HIIII}} \approx +2z+2 9i = 0$		
A 4. B 0.	(C)	6i.	\bigcirc $-4i$.
		CHỦ NHIỆ	M BỘ MÔN

PGS. TS. Nguyễn Đình Huy

Đề 1206 ĐÁP ÁN

Câu 1. C Câu 8. C **Câu 15.** (B) **Câu 18.** (A) Câu 4. D Câu 11. B Câu 5. B **Câu 12.** (B) Câu 2. D **Câu 16.** (D) **Câu 19.** (A) Câu 9. D Câu 6. D Câu 13. (A) Câu 7. (A) **Câu 17.** (A) **Câu 20.** (C) Câu 3. B **Câu 14.** (B) **Câu 10.** (B)

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ THI GIỮA HỌC KỲ NĂM HỌC 2012-2013 Môn thi: Đại số - Ca 2

Ngày thi 02/12/2012. Thời gian làm bài: 45 phút.

Đề 1207

			201207
Câu 1. Tìm m để hệ phương t	trình sau có nghiệm $\begin{bmatrix} 1 \\ 2 \\ 1 & 2 \end{bmatrix}$	$ \begin{bmatrix} 1 & 1 & 1 \\ m & 1 & 0 \\ -2m & 1-m & 4+m \end{bmatrix} $	
lack A $ exists m$.	$ B m \neq \pm 1. $	$\bigcirc m \neq 1.$	\bigcirc $\forall m$.
Câu 2. Trong R_3 , cho các véc	x = (1; 2; 1), y = (2; 4; 2; 4; 2; 4; 2; 4; 2; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4;	(2),z=(2;1;3). Khẳng định	h nào sau đây đúng?
A $\{x, y, z\}$ là một tập sinh	ı của R_3 .	$\{y,z\}$ có hạng b	ằng 2.
\bigcirc $\{x,y,z\}$ độc lập tuyến t	tính.	\bigcirc D) $\{z\}$ là tổ hợp tuy	\hat{x} ến tính của $\{x,y\}$.
Câu 3. Cho A, B là 2 ma trận			0
	$\bigcirc B \frac{1}{2}$.	$\frac{1}{18}$.	$\bigcirc \frac{9}{2}$.
Câu 4. Cho 2 ma trận	2	10	_
	$A = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$	$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$
Định thức AB là			
A không tồn tại.	B 0.	\bigcirc -1.	D 6.
Câu 5. Cho <i>A</i> là ma trận cấp thế nào?	3 khả nghịch. Nếu đổi chỗ h	àng 1 cho hàng 2 của ma trá	${ m \hat{n}}\ A$ thì ma trận nghịch đảo thay đổi như
A Các câu khác sai. D Ma trận nghịch đảo đổi	B Hàng 1 đổi chỗ cho l dấu.	hàng 2.	C Cột 1 đổi chỗ cho cột 2.
Câu 6. Trong R_3 , cho họ véc	to $M = \{(1; 2; 1), (2; 1; 1),$	$(-1;4;m)$ }. Tìm m để M l	là cơ sở của R_3 .
igatharpoonup Mm.	\bigcirc $M=1.$	$ \bigcirc $ $m \neq 1$.	\bigcirc $ exists 2m$.
ứng với phép nhân ma	a trận nào sau đây?		$+c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương
lack A Nhân bên trái A ma trận	$ \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} $	B Nhân bên phải A	I ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
A Nhân bên trái A ma trận C Nhân bên phải A ma trậ	$ \text{in} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} $	B Nhân bên phải AD Nhân bên trái A	ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
Câu 8. Cho $\{x, y, z\}$ là tập si	nh của không gian véc tơ V .	Khẳng định nào sau đây lu	ôn đúng?
\bigcirc z là tổ hợp tuyến tính củ		\bigcirc $\{x,y,z\}$ phụ thư	iộc tuyến tính
Câu 9. Tìm m để $r(P_A) = 2$,	, biết rằng		

$$A = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & 0 & -1 & 0 \\ 2 & 1 & -2 & 0 \\ 0 & -1 & 1 & m \end{pmatrix}$$

Câu 10. Tìm m để hệ phương trình sau có nghiệm **không tầm thường**

(B) m = 0.

$$\begin{cases} x_1 & + & x_3 & = & 0 \\ x_1 & + & x_2 & + & x_3 & = & 0 \\ & & x_2 & + & mx_3 & = & 0 \end{cases}$$

 \bigcirc $m \neq 0$. (B) m=0.(D) m=2

 \bigcirc $\forall m.$

Phép toán nào sau đây to AP_B .	B BP_{AB} .	\bigcirc AB^{-1} .	\bigcirc $A^{-1}B$.
Dhán toán nào cau đâu đ		$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}.$	
Câu 20. Cho 2 ma trận		/9 1 \	
Câu 19. Cho số phức $z=i\sqrt{3}$ - A Các câu khác sai.	B $\frac{2\pi}{3}$.	\bigcirc $\frac{4\pi}{3}$.	$\bigcirc -\frac{2\pi}{3}$.
(A) $[u]_E = (9; -7; 6)^T$.	$[u]_F = (1; 2; 1)^T$. Tîm $[u]_E$? $[u]_E = (9; 3; 1)^T$.	$(u)_E = (2; -7; 6)^T.$	
	$E = \{x + y; y + z; x + y +$	z }, $F = {2x; 3x + 2y; x - y}$	(z+z)
Câu 18. Trong không gian véc t	σV , cho 2 cơ sở		
	\bigcirc $M=1.$	$ \bigcirc $ $m \neq 1$.	\bigcirc $m=2.$
f Clpha u 17. $$ Giá trị nào của m thì $r($	` ′	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} \text{(A)} -4i. \\ \text{(B)} & \text{(A)} \end{array}$	B 4.	(C) 0.	(D) 6i.
Câu 16. Cho z_1, z_2 là nghiệm cư	_		
\bigcirc $\{x,y,z\}$ phụ thuộc tuyến		\bigcirc $\{x, y, z\}$ có hạng bằng 3.	
\bigcirc A \bigcirc		B $\{x,y,z\}$ là tập sinh của	-
Câu 15. Trong không gian véc t	-		
Câu 14. Áp dụng phép biến đổi (A) Các câu khác sai	nào sau đây làm thay đôi hạng	_	
$(A) \not\equiv m.$	_	m=1.	\bigcirc $\forall m$
	hệ phương trình $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{bmatrix}$	_	
A Các câu khác sai.	With the second $ \mathcal{I} = 2$, $ \mathcal{B} = 2$.	\bigcirc 24.	D 48.
\mathbf{C} $\hat{\mathbf{a}}$ không là to hợp tuyên t \mathbf{C} $\hat{\mathbf{a}}$ u 12. Cho A, B là 2 ma trận v			phụ thuộc tuyên tinh.
A z không là tổ hợp tuyến t	ính của $\{x+y,x-y\}.$ ính của $\{3x,4y,5z\}$		oằng 2.
	của không gian véc tơ V . Khẳng		

CHU NHIỆM BỘ MỚN

PGS. TS. Nguyễn Đình Huy

Đề 1207 **ĐÁP ÁN**

Câu 1. C Câu 5. C Câu 9. (A) **Câu 17.** (A) Câu 13. (A) Câu 2. B Câu 6. C **Câu 14.** (A) **Câu 18.** (C) Câu 10. B Câu 3. C Câu 15. (C) Câu 7. B **Câu 11.** (C) **Câu 19.** (B) Câu 8. (A) Câu 4. D **Câu 12.** D **Câu 16.** D **Câu 20.** (B)

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỨC

 $(\partial \hat{e} thi \ 20 \ cau / 2 \ trang)$

Phép toán nào sau đây thực hiện được

(B) AP_B .

 \bigcirc BP_{AB} .

ĐỀ THI GIỮA HỌC KỲ NĂM HỌC 2012-2013 Môn thi: Đại số - Ca 2

Ngày thi 02/12/2012. Thời gian làm bài: 45 phút.

Đề 1208

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Câu 1. Cho $\{x, y, z\}$ là tập sinh của không gian véc tơ V . Khẳng định nào sau đây luôn đúng?			
$\begin{array}{c} \textbf{Câu 2.} \ \textbf{Cho } A, B \ \textbf{là 2} \ \textbf{ma trận vuông, cấp 3 thỏa} \ A = 2, B = 3. \ \textbf{Tính} \ (3A)^{-1}B \\ \hline \textbf{A} \ \frac{1}{2}. \\ \hline \textbf{B} \ \frac{\textbf{81}}{2} \\ \hline \textbf{Câu 3.} \\ \textbf{Tim } m \ dế nghiệm của hệ phương trình} \\ \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ \end{bmatrix} \begin{bmatrix} 1 $		\bigcirc B $2x - y, 3y, x + y$ phụ th	uộc tuyến tính.	
$\begin{array}{c} \left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	\bigcirc z là tổ hợp tuyến tính của	$\mathbf{a}\left\{ x,y\right\} .$	\bigcirc $\{x, y, z\}$ phụ thuộc tuyến	ı tính
$\begin{array}{c} \textbf{Câu 5.} & \textbf{Tim } m \text{ dể nghiệm của hệ phương trình } \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \end{bmatrix}$	Câu 2. Cho A, B là 2 ma trận	vuông, cấp 3 thỏa $ A =2, B $	$= 3. \text{ Tính } (3A)^{-1}B $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\bigcirc $\frac{1}{2}$.	B	$\frac{1}{18}$.	$\bigcirc \frac{9}{2}$.
$A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ -1 & 2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \\ 2 & 1 \end{pmatrix}$ $Dinh thức AB là $	Câu 3. Tìm m để nghiệm của $^{\circ}$	hệ phương trình $\left[egin{array}{ccc} 1 & 0 & 1 & 1 \ 2 & 1 & 0 & 0 \end{array} ight]$	cũng là nghiệm của hệ phươ	ng trình $\left[\begin{array}{cc c} 1 & 0 & 1 & 2 \\ 2 & 1 & 4 & m \end{array} \right]$
$A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ -1 & 2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \\ 2 & 1 \end{pmatrix}$ $Dịnh thức AB là (A) 0. (B) Không tổn tại. (C) -1. (D) 6. (Câu 5. Trong không gian véc tơ V, cho 2 cơ sở E = \{x + y; y + z; x + y + z\}, F = \{2x; 3x + 2y; x - y + z\}, và véc tơ u \in V thỏa [u]_F = (1; 2; 1)^T. Tim [u]_E? (A) [u]_E = (9; 3; 1)^T. (B) [u]_E = (9; -7; 6)^T. (C) [u]_E = (2; -7; 6)^T. (D) [u]_E = (2; 1; 6)^T. (Câu 6. Cho A, B là 2 ma trận vuông, cấp 3 thỏa A = 2, B = 3. Tính 2AB (A) 12. (B) Các câu khác sai. (C) 24. (D) 48. (Câu 7. Cho số phức z = i\sqrt{3} - 1. Argument của z^4 là (A) \frac{2\pi}{3}. (B) Các câu khác sai. (C) \frac{4\pi}{3}. (D) -\frac{2\pi}{3}. (Câu 8. Trong R_3, cho các véc tơ x = (1; 2; 1), y = (2; 4; 2), z = (2; 1; 3). Khẳng định nào sau đây dúng? (A) \{y, z\} độc lập tuyến tính. (D) \{z\} là tổ hợp tuyến tính của \{x, y\}. (Câu 9. Cho z_1, z_2 là nghiệm của phương trình z^2 + 2z + 2 - 3i = 0. Tim w = z_1^2 + z_2^2 (A) 4. (B) -4i. (D) -4i. (D$			$\bigcirc m=1.$	\bigcirc $\forall m$
$\begin{array}{c} \text{Dịnh thức AB là} \\ \text{(A)} \ 0. \qquad \text{(B)} \ \text{không tổn tại.} \qquad \text{(C)} \ -1. \qquad \text{(D)} \ 6. \\ \text{Câu 5. Trong không gian véc tơ V, cho 2 cơ sở} \\ E = \{x + y; y + z; x + y + z\}, F = \{2x; 3x + 2y; x - y + z\}, \\ \text{và véc tơ $u \in V$ thòa $[u]_F = (1; 2; 1)^T$. Tim $[u]_E$?} \\ \text{(A)} \ [u]_E = (9; 3; 1)^T. \qquad \text{(B)} \ [u]_E = (9; -7; 6)^T. \qquad \text{(C)} \ [u]_E = (2; -7; 6)^T. \qquad \text{(D)} \ [u]_E = (2; 1; 6)^T. \\ \text{Câu 6. Cho A, B là 2 ma trận vuông, cấp 3 thỏa $ A = 2$, $ B = 3$. Tính $ 2AB $ \\ \text{(A)} \ 12. \qquad \text{(B)} \ \text{Các câu khác sai.} \qquad \text{(C)} \ 24. \qquad \text{(D)} \ 48. \\ \text{Câu 7. Cho số phức $z = i\sqrt{3} - 1$. Argument của z^4 là} \\ \text{(A)} \ \frac{2\pi}{3}. \qquad \text{(B)} \ \text{Các câu khác sai.} \qquad \text{(C)} \ \frac{4\pi}{3}. \qquad \text{(D)} \ -\frac{2\pi}{3}. \\ \text{Câu 8. Trong R_3, cho các véc tơ $x = (1; 2; 1)$, $y = (2; 4; 2)$, $z = (2; 1; 3)$. Khẳng định nào sau đây dúng? \\ \text{(A)} \ \{y, z\}$ cố hạng bằng 2 . \qquad \text{(B)} \ \{x, y, z\}$ là một tập sinh của R_3. \\ \text{(C)} \ \{x, y, z\}$ dộc lập tuyến tính. \qquad \text{(D)} \ \{z\}$ là tổ hợp tuyến tính của $\{x, y\}$. \\ \text{Câu 9. Cho z_1, z_2 là nghiệm của phương trình $z^2 + 2z + 2 - 3i = 0$. Tim $w = z_1^2 + z_2^2$ \\ \text{(A)} \ 4. \qquad \text{(B)} \ -4i. \qquad \text{(C)} \ 0. \qquad \text{(D)} \ 6i. \\ \text{Câu 10.} \ \text{Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây? \\ \text{(A)} \ Nhân bên phải A ma trận \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{(B)} \ Nhân bên trái A ma trận \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{(D)} \ Nhân bên trái A ma trận \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$	Câu 4. Cho 2 ma trận		/	
		$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \end{pmatrix}$	$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \\ 2 & 1 \end{pmatrix}$	
Câu 5. Trong không gian véc tơ V , cho 2 cơ sở $E = \{x + y; y + z; x + y + z\}, F = \{2x; 3x + 2y; x - y + z\},$ và véc tơ $u \in V$ thỏa $[u]_F = (1; 2; 1)^T$. Tim $[u]_E$? (A) $[u]_E = (9; 3; 1)^T$. (B) $[u]_E = (9; -7; 6)^T$. (C) $[u]_E = (2; -7; 6)^T$. (D) $[u]_E = (2; 1; 6)^T$. (Câu 6. Cho A, B là 2 ma trận vuông, cấp 3 thỏa $ A = 2, B = 3$. Tính $ 2AB $ (A) 12. (B) Các câu khác sai. (C) 24. (D) 48. (Câu 7. Cho số phức $z = i\sqrt{3} - 1$. Argument của z^4 là (A) $\frac{2\pi}{3}$. (B) Các câu khác sai. (C) $\frac{4\pi}{3}$. (D) $-\frac{2\pi}{3}$. (Câu 8. Trong R_3 , cho các véc tơ $x = (1; 2; 1), y = (2; 4; 2), z = (2; 1; 3)$. Khẳng định nào sau dây dúng? (A) $\{y, z\}$ có hạng bằng 2. (B) $\{x, y, z\}$ là một tập sinh của R_3 . (C) $\{x, y, z\}$ độc lập tuyến tính. (D) $\{z\}$ là tổ hợp tuyến tính của $\{x, y\}$. (Câu 9. Cho z_1, z_2 là nghiệm của phương trình $z^2 + 2z + 2 - 3i = 0$. Tim $w = z_1^2 + z_2^2$ (A) 4. (B) $-4i$. (C) 0. (D) $6i$. (Câu 10. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ đổi với ma trận A tương ứng với phép nhân ma trận nào sau đây? (A) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (B) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (C) Nhân bên phải A ma trận A	\bullet Định thức AB là			
$E = \{x + y; y + z; x + y + z\}, \qquad F = \{2x; 3x + 2y; x - y + z\},$ và véc tơ $u \in V$ thỏa $[u]_F = (1; 2; 1)^T$. Tim $[u]_E$?			(C) −1.	(D) 6.
và véc tơ $u \in V$ thỏa $[u]_F = (1;2;1)^T$. Tim $[u]_E$? (A) $[u]_E = (9;3;1)^T$. (B) $[u]_E = (9;-7;6)^T$. (C) $[u]_E = (2;-7;6)^T$. (D) $[u]_E = (2;1;6)^T$. (Câu 6. Cho A , B là 2 ma trận vương, cấp 3 thỏa $ A = 2$, $ B = 3$. Tính $ 2AB $ (A) 12. (B) Các câu khác sai. (C) 24. (D) 48. (Câu 7. Cho số phức $z = i\sqrt{3} - 1$. Argument của z^4 là (A) $\frac{2\pi}{3}$. (B) Các câu khác sai. (C) $\frac{4\pi}{3}$. (D) $-\frac{2\pi}{3}$. (Câu 8. Trong R_3 , cho các véc tơ $x = (1;2;1)$, $y = (2;4;2)$, $z = (2;1;3)$. Khẳng định nào sau đây dúng? (A) $\{y,z\}$ có hạng bằng 2 . (B) $\{x,y,z\}$ là một tập sinh của R_3 . (C) $\{x,y,z\}$ dộc lập tuyến tính. (D) $\{z\}$ là tổ hợp tuyến tính của $\{x,y\}$. (Câu 9. Cho z_1, z_2 là nghiệm của phương trình $z^2 + 2z + 2 - 3i = 0$. Tim $w = z_1^2 + z_2^2$ (A) 4. (B) $-4i$. (C) 0. (D) $6i$. (Câu 10. Cho A là ma trận cấp 3 . Thực hiện liên tiếp 2 phép biến dối sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ dối với ma trận a 0 tương trình a 1 tương ứng với phép nhân ma trận nào sau dây? (B) Nhân bên trái a 2 ma trận a 3 ma trận a 4 tương (C) Nhân bên phải a 3 ma trận a 4 ma trận a 5 (D) Nhân bên trái a 5 (D) Nhân bên trái a 6 ma trận a 7 (D) Nhân bên trái a 7 ma trận a 8 (D) Nhân bên trái a 8 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 ma trận a 9 (D) Nhân bên trái a 9 (D) Nhân bên t	Câu 5. Trong không gian véc t	$\operatorname{co} V$, cho 2 $\operatorname{co} \operatorname{s\mathring{o}}$		
		$E = \{x + y; y + z; x + y +$	z }, $F = {2x; 3x + 2y; x - y}$	(z+z),
Câu 6. Cho A, B là 2 ma trận vuông, cấp 3 thỏa $ A =2, B =3$. Tính $ 2AB $ (A) 12. B) Các câu khác sai. C) 24. D) 48. Câu 7. Cho số phức $z=i\sqrt{3}-1$. Argument của z^4 là (A) $\frac{2\pi}{3}$. B) Các câu khác sai. C) $\frac{4\pi}{3}$. D) $-\frac{2\pi}{3}$. Câu 8. Trong R_3 , cho các véc tơ $x=(1;2;1), y=(2;4;2), z=(2;1;3)$. Khẳng định nào sau đây đúng? (A) $\{y,z\}$ có hạng bằng 2. B) $\{x,y,z\}$ là một tập sinh của R_3 . C) $\{x,y,z\}$ độc lập tuyến tính. D) $\{z\}$ là tổ hợp tuyến tính của $\{x,y\}$. Câu 9. Cho z_1, z_2 là nghiệm của phương trình $z^2+2z+2-3i=0$. Tim $w=z_1^2+z_2^2$ (A) 4. B) $-4i$. C) 0. D) $6i$. Câu 10. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1+c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây? (A) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (B) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (Câu 11. Cho 2 ma trận			_	_
	(A) $[u]_E = (9; 3; 1)^T$.	(B) $[u]_E = (9; -7; 6)^T$.	(C) $[u]_E = (2; -7; 6)^T$.	(D) $[u]_E = (2;1;6)^T.$
Câu 7. Cho số phức $z=i\sqrt{3}-1$. Argument của z^4 là $\boxed{A} \frac{2\pi}{3}. \qquad \boxed{B} \text{ Các câu khác sai.} \qquad \boxed{C} \frac{4\pi}{3}. \qquad \boxed{D} -\frac{2\pi}{3}.$ Câu 8. Trong R_3 , cho các véc tơ $x=(1;2;1),y=(2;4;2),z=(2;1;3)$. Khẳng định nào sau đây dúng? $\boxed{A} \begin{array}{c} \{y,z\} \text{ có hạng bằng } 2 \\ \hline A \end{array} \begin{array}{c} \{y,z\} \text{ có hạng bằng } 2 \\ \hline A \end{array} \begin{array}{c} \{y,z\} \text{ dộc lập tuyến tính.} \\ \hline Câu 9. \text{ Cho } z_1,z_2 \text{ là nghiệm của phương trình } z^2+2z+2-3i=0. \text{ Tim } w=z_1^2+z_2^2 \\ \hline A \end{array} \begin{array}{c} A \end{array} \begin{array}{c} A \end{array} \begin{array}{c} A \end{array} \begin{array}{c} \{x,y\} \end{array} \begin{array}{c} A $	Câu 6. Cho A, B là 2 ma trận	vuông, cấp 3 thỏa $ A = 2, B $	=3. Tính 2AB	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(A) 12.	B Các câu khác sai.	C 24.	D 48.
Câu 8. Trong R_3 , cho các véc tơ $x=(1;2;1), y=(2;4;2), z=(2;1;3)$. Khẳng định nào sau đây đúng? A $\{y,z\}$ có hạng bằng 2 . B $\{x,y,z\}$ là một tập sinh của R_3 . C $\{x,y,z\}$ độc lập tuyến tính. D $\{z\}$ là tổ hợp tuyến tính của $\{x,y\}$. Câu 9. Cho z_1, z_2 là nghiệm của phương trình $z^2+2z+2-3i=0$. Tim $w=z_1^2+z_2^2$ A 4. B $-4i$. C 0. D $6i$. Câu 10. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1+c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây? A Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ B Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ C Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ D Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	Câu 7. Cho số phức $z = i\sqrt{3}$	$-$ 1. Argument của z^4 là		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B Các câu khác sai.	$\frac{4\pi}{3}$.	\bigcirc $-\frac{2\pi}{3}$.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Câu 8. Trong R_3 , cho các véc	to $x = (1; 2; 1), y = (2; 4; 2), z$	z=(2;1;3). Khẳng định nào sau	ı đây đúng?
Câu 9. Cho z_1, z_2 là nghiệm của phương trình $z^2 + 2z + 2 - 3i = 0$. Tim $w = z_1^2 + z_2^2$ (A) 4. (B) $-4i$. (C) 0. (D) $6i$. Câu 10. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây? (A) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (B) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (Câu 11. Cho 2 ma trận	\bigcirc $\{y,z\}$ có hạng bằng 2.	$igorplus \{x,y,z\}$ là một tập sinh	của R_3 .	
(A) 4. (B) $-4i$. (C) 0. (D) $6i$. (Câu 10. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây? (A) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (B) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (Câu 11. Cho 2 ma trận	\bigcirc $\{x,y,z\}$ độc lập tuyến tí	nh.	\bigcirc $\{z\}$ là tổ hợp tuyến tính \bigcirc	của $\{x,y\}$.
Câu 10. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây? (A) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (B) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (Câu 11. Cho 2 ma trận	Câu 9. Cho z_1, z_2 là nghiệm c	ủa phương trình $z^2 + 2z + 2 -$	$3i = 0$. Tim $w = z_1^2 + z_2^2$	_
The wing voi phép nhân ma trận nào sau đẩy? (A) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (B) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (C) Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ (D) Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ (Câu 11. Cho 2 ma trận				
Câu 11. Cho 2 ma trận	ững với phép nhân ma	trận nào sau đây?		
Câu 11. Cho 2 ma trận	lacksquare Nhân bên phải A ma trận	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lacksquare Nhân bên trái A ma trận	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
		$ \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} $	\bigcirc Nhân bên trái A ma trận	$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}.$	Câu 11. Cho 2 ma trận		(0 1)	
		$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}.$	

 \bigcirc AB^{-1} .

 $\bigcirc D A^{-1}B.$

		$\{1;4;m\}$. Tìm m để M là cơ sở	
(A) $m = 1$. Câu 13. Tîm m để hệ phương tr	B ∀m. rình sau có nghiệm không tầ n		\bigcirc $\not\exists m$.
and the second s	,	$ \begin{array}{rcl} & + & x_3 & = & 0 \\ x_2 & + & x_3 & = & 0 \\ x_2 & + & mx_3 & = & 0 \end{array} $	
(A) $m=0$. Câu 14. Tìm m để hệ phương tr	(B) $m \neq 2$. Finh sau có nghiệm $\begin{bmatrix} 1 & 1 \\ 2 & n \\ 1 & 2 - \end{bmatrix}$	$ \begin{array}{c cc} \hline C & m \neq 0. \\ 1 & 1 & 1 \\ n & 1 & 0 \\ 2m & 1 - m & 4 + m \end{array} $	\bigcirc $m=2$
(A) $m \neq \pm 1$. Câu 15. Cho $\{x, y, z\}$ là cơ sở c (A) $\{x + y, x - y\}$ có hạng t (C) x không là tổ hợp tuyến t Câu 16. Giá trị nào của m thì r	bằng 2. $ an (A)$ lớn nhất, với		(D) $\forall m$. tính của $\{x+y, x-y\}$. $\forall x \in \mathbb{R}$ phụ thuộc tuyến tính.
		$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 3 & 2 & 1 & 2 \\ 5 & 10 & 3 & m \end{pmatrix}$	
 (A) m = 1. Câu 17. Cho A là ma trận cấp 3 thế nào? (A) Hàng 1 đổi chỗ cho hàng (D) Ma trận nghịch đảo đổi d 	khả nghịch. Nếu đổi chỗ hàn	$\begin{tabular}{ c c c c c }\hline \hline & m \neq 1. \\ \hline & g & 1 & cho & hàng & 2 & của ma trận & A & thì \\ \hline & & & & & & & & & & & & & & & & & &$	$\stackrel{\textstyle \bigcirc}{\textstyle \bigcirc} m=2.$ ma trận nghịch đảo thay đổi như $\stackrel{\textstyle \bigcirc}{\textstyle \bigcirc}$ Cột 1 đổi chỗ cho cột 2.
Câu 18. Trong không gian véc t (A) $\{x, y, z\}$ là tập sinh của $\{x, y, z\}$ phụ thuộc tuyếr	o V , cho z là tổ hợp tuyến tín V . n tính.	h của $\{x,y\}$. Khẳng định nào sau B x là tổ hợp tuyến tính củ D $\{x,y,z\}$ có hạng bằng 3	a $\{y,z\}$.
Câu 19. Áp dụng phép biến đổi A $h_2 \longrightarrow 5h_3 - 6h_2$ Câu 20. Tìm m để $r(P_A) = 2,1$	B Các câu khác sai biết rằng	ng của ma trận cấp 3 c $c_2 \longrightarrow c_2 - 3c_1$. c $c_2 \longrightarrow c_2 - 3c_1$. c c c c c c c c c c	
	B ∄m.		\bigcirc $\forall m$.

CHỦ NHIỆM BỘ MÔN

PGS. TS. Nguyễn Đình Huy

 $f D \hat{e} \ 1208$

Câu 5. C Câu 12. (C) **Câu 15.** (C) **Câu 18.** (C) Câu 1. B Câu 8. A Câu 9. D Câu 2. C Câu 6. D **Câu 13.** (A) **Câu 16.** (B) **Câu 19.** B Câu 10. (A) Câu 3. B Câu 7. (A) Câu 11. (A) **Câu 14.** (C) **Câu 17.** (C) **Câu 20.** B Câu 4. D

Khoa Khoa học ứng dụng - Toán ứng dụng

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐÊ THI GIỮA HOC KỲ NĂM HOC 2012-2013 Môn thi: Đai số - Ca 2

Ngày thi 02/12/2012. Thời gian làm bài: 45 phút.

Đề 1209

(D) Các câu khác sai

Tìm m để hệ phương trình sau có nghiệm $\left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 \\ 2 & m & 1 & 0 \\ 1 & 2-2m & 1-m & 4+m \end{array} \right]$ Câu 1. (A) $m \neq \pm 1$.

Câu 2. Cho A là ma trận cấp 3. Thực hiện liên tiếp 2 phép biến đổi sơ cấp $c_1 \longrightarrow c_1 + c_2, c_2 \longleftrightarrow c_3$ đối với ma trận A tương ứng với phép nhân ma trận nào sau đây?

Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Nhân bên phải A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

B Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ D Nhân bên trái A ma trận $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Câu 3. Trong R_3 , cho họ véc tơ $M = \{(1;2;1), (2;1;1), (-1;4;m)\}$. Tìm m để M là cơ sở của R_3 .

 $(B) \not\exists m.$ (C) $m \neq 1$. (A) m = 1. $(D) \forall m.$

Câu 4. Áp dụng phép biến đổi nào sau đây làm thay đổi hạng của ma trận cấp 3

(A) $h_2 \longrightarrow 5h_3 - 6h_2$ (B) $c_1 \longleftrightarrow c_2$.

Câu 5. Tìm m để hệ phương trình sau có nghiệm **không tầm thường**

$$\left\{ \begin{array}{ccccccc} x_1 & & + & x_3 & = & 0 \\ x_1 & + & x_2 & + & x_3 & = & 0 \\ & & x_2 & + & mx_3 & = & 0 \end{array} \right.$$

(A) m = 0.(B) m=2(C) $m \neq 0$. (D) $m \neq 2$.

Câu 6. Cho A,B là 2 ma trận vuông, cấp 3 thỏa |A|=2, |B|=3. Tính $|(3A)^{-1}B|$

Câu 7. Tìm m để $r(P_A) = 2$, biết rằng

$$A = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & 0 & -1 & 0 \\ 2 & 1 & -2 & 0 \\ 0 & -1 & 1 & m \end{pmatrix}$$

(A) m = 0. $(B) \forall m.$ (C) $m \neq 1$. $(D) \not\exists m.$

Câu 8. Cho 2 ma trận

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}.$$

Phép toán nào sau đây thực hiện được

(C) AB^{-1} . (B) $A^{-1}B$. (D) AP_B . (A) BP_{AB} .

Câu 9. Trong không gian véc tơ V, cho 2 cơ sở

$$E = \{x + y; y + z; x + y + z\}, \quad F = \{2x; 3x + 2y; x - y + z\},$$

và véc tơ $u \in V$ thỏa $[u]_F = (1; 2; 1)^T$. Tìm $[u]_E$?

(A) $[u]_E = (9; 3; 1)^T$. **B** $[u]_E = (2;1;6)^T$. (C) $[u]_E = (2; -7; 6)^T$. (D) $[u]_E = (9, -7, 6)^T$.

Câu 10. Trong R_3 , cho các véc tơ x = (1; 2; 1), y = (2; 4; 2), z = (2; 1; 3). Khẳng định nào sau đây **đúng?**

(A) $\{y,z\}$ có hạng bằng 2. (B) $\{z\}$ là tổ hợp tuyến tính của $\{x,y\}$.

(C) $\{x, y, z\}$ độc lập tuyến tính. (D) $\{x, y, z\}$ là một tập sinh của R_3 .

A Hàng 1 đổi chỗ cho hàng 2.	B Ma trận nghịch	n đảo đổi dấu.
C Cột 1 đổi chỗ cho cột 2. D Các	câu khác sai.	
Câu 12. Cho số phức $z = i\sqrt{3} - 1$. Argum	nent của z^4 là	
(A) $\frac{2\pi}{3}$. (B) $-\frac{2\pi}{3}$. 0	D Các câu khác sai.
Câu 13. Cho A, B là 2 ma trận vuông, cấp		
(A) 12. (B) 48.	(C) 24.	D Các câu khác sai.
Câu 14. Cho 2 ma trận	/ 1	1\
	$A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ -1 & 2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
Dịnh thức AB là	(C) −1.	D không tồn tại.
	trình $\left[egin{array}{cc c} 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{array} ight]$ cũng là nghiệm củ	-
	m=1.	\bigcirc $\nexists m$.
Câu 16. Cho z_1, z_2 là nghiệm của phương the 4 .	$ \begin{array}{c} \text{trình } z^2+2z+2-3i=0. \text{ Tìm } w=z_1^2 \\ \hline \bigcirc 0. \end{array} $	$+z_2^2$ \bigcirc \bigcirc $-4i$.
Câu 17. Cho $\{x, y, z\}$ là cơ sở của không g		
A $\{x+y, x-y\}$ có hạng bằng 2. C x không là tổ hợp tuyến tính của $\{3a\}$		-z,2y+z phụ thuộc tuyến tính.
		nợp tuyến tính của $\{x+y, x-y\}$.
Câu 18. Trong không gian véc tơ V , cho z		
(A) $\{x, y, z\}$ là tập sinh của V . (C) $\{x, y, z\}$ phụ thuộc tuyến tính.	(B) $\{x, y, z\}$ có hạ (D) x là tổ hợp tuy	
Câu 19. Giá trị nào của m thì $r(A)$ lớn nh :	,	(g, ∞) .
	$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 3 & 2 & 1 & 2 \\ 5 & 10 & 3 & m \end{pmatrix}$	
	$\approx 2.$ $\bigcirc m \neq 1.$	\bigcirc $m \neq 2$.
Câu 20. Cho $\{x, y, z\}$ là tập sinh của khôn	g gian véc tơ V . Khẳng định nào sau đây $\mathbb R$	luôn đúng?
	$\{y,z\}$ phụ thuộc tuyến tính	
\bigcirc z là tổ hợp tuyến tính của $\{x,y\}$.		+y phụ thuộc tuyến tính.
	\underline{c}	CHỦ NHIỆM BỘ MÔN
	PG	S. TS. Nguyễn Đình Huy

 $\mathbf{C\hat{a}u}$ 11. Cho A là ma trận cấp 3 khả nghịch. Nếu đổi chỗ hàng 1 cho hàng 2 của ma trận A thì ma trận nghịch đảo thay đổi như

thế nào?

Trang 2/2- Đề 1209

 $\mathbf{\hat{D}}\hat{\mathbf{e}}$ 1209 $\mathbf{\hat{D}}\mathbf{\hat{A}}\mathbf{\hat{P}}\mathbf{\hat{A}}\mathbf{\hat{N}}$

Câu 1. C Câu 4. D Câu 8. A **Câu 19.** D Câu 11. (C) Câu 15. (D) Câu 5. (A) Câu 12. (A) **Câu 16.** (B) **Câu 20.** ① Câu 2. A Câu 9. C Câu 6. C **Câu 17.** (C) **Câu 13.** (B) Câu 3. C Câu 7. D **Câu 10.** (A) **Câu 14.** (B) **Câu 18.** (C)