

Confort Co.		
HAVE I		
		na n
Thirty-		
Section 1		
		ah Marrian III a
50.0		
		garantes (m.
		and the second second
	The state of the s	
	DADARITTEDO I ICTIMO	
	PARAMETERS LISTING	
E01251		
		research in the
	SYSTEM	
	SYSTEM	tengana (i) (i
	SYSTEM	
	SYSTEM	and an expression of the second of the secon
	SYSTEM	
	SYSTEM	
	SYSTEM	
	SYSTEM (PALIS)	
	SYSTEM (PALIS)	
	SYSTEM	
	SYSTEM (PALIS)	

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

ISBN: 0-7729-4461-X

PARAMETERS LISTING SYSTEM (PALIS)

Drinking Water Section Water Resources Branch

March 1989

ACKNOWLEDGEMENTS

The Parameters Listing System and accompanying documentation were prepared by Patricia Lachmaniuk while on developmental assignment in the Policy and Assessment Group, of the Drinking Water Section, Water Resources Branch.

Considerable guidance and many useful suggestions were obtained from Drinking Water Section Staff during the preparation of the Handbook. The review and comments provided by Regional staff of the Ministry of the Environment are also gratefully acknowledged.

TABLE OF CONTENTS

Acknowledgements	i
Table of Contents	ii
Handbook For The Parameters Listing System (PALIS)	
Introduction	iii
PALIS	iv
Guide To The Use Of PALIS	vi
Headings: Chemical	vi
Agency	vi
Category	ix
Limit	ix
LType	xvii
Status	xvii
UOM	xvii
Refcode	xvii
PALIS System Parameter Report	1
PALIS System Alias Report	69
PALIS System Footnotes	73
Table 1: Units of Measure	74
Table 2: PALIS System Reference File Report	75
Appendix 1: Background Information on Guideline Setting Procedures	
Introduction	Al
Hazard Assessment	A2
Risk Assessment Management	A4
Drinking Water Guideline Calculation	A5
Appendix 2: Ontario Drinking Water Objectives	A7

HANDBOOK FOR THE PARAMETERS LISTING SYSTEM (PALIS)

INTRODUCTION

The parameters listing system (PALIS) consists of a Handbook and a listing of parameters, along with their corresponding guidelines, which can be applied to drinking water (PALIS SYSTEM PARAMETER REPORT). Guidelines from a number of different organizations and/or agencies have been provided, where they are available.

The handbook has been compiled to:-

- a) explain the formatting and nomenclature used in the listings
- b) provide guidance in the use of the system and define some precautions which are necessary.

The guidelines (or objectives or standards) from additional agencies may be added in the future as appropriate, and it is the intention to update this listing as expeditiously as possible when new information is available.

Users may wish to employ this document in conjunction with the Parameter Reference File of the Drinking Water Surveillance Program. The Parameter Reference File is a catalogue of properties, uses and treatment alternatives for chemicals associated with drinking water.

In addition, Appendix 1 provides background information on the procedures used in setting limits for substances in drinking water; this information is useful in understanding levels of risk and also explains why limits for a given substance may differ from agency to agency. Appendix 2 provides some specific information on the mechanism for the development of Ontario Drinking Water Objectives.

THE PARAMETERS LISTING SYSTEM

The Parameters Listing System (PALIS) is a catalogue of known guidelines applicable to drinking water. Each chemical is listed with the regulating agency, type of water, guideline values, type and status and reference material from which the guidelines were extracted. Guidelines may be health related or pertain to the aesthetic quality of drinking water.

A guideline value represents the level (a concentration or a number) of a constituent that ensures an aesthetically pleasing water and does not result in any significant risk to the health of the consumer over a lifetime. The guideline values describe a quality of water that is acceptable for lifelong consumption; therefore short term deviations above the guideline values do not necessarily mean that the water is unsuitable for consumption. The amount and duration that any guideline value can be exceeded without affecting public health depends on the specific substance involved.

GENERAL INFORMATION

The user of the system should be familiar with the information provided in the "Guide to the Use of PALIS", to ensure that the guidelines are used with an understanding of their correct application.

When an Ontario Drinking Water Objective (ODWO) is exceeded the steps outlined in the "Ontario Drinking Water Objectives" (ISBN 0-7743-8985-0) published in 1984 will be taken.

When another agency's guideline value is exceeded this should be a signal (i) to investigate the cause, with a possible view to taking remedial action; (ii) to consult the surveillance and public health agencies for advice on suitable action. Recommendations would be made taking into account the intake of the substance from sources other than drinking water (for chemical constituents), the likelihood of adverse effects and the practicability of remedial measures.

When using the PALIS information system it is important that reference be made to the information provided so that the limitations of each limit are recognized and applied in the correct circumstances with the right qualifications.

In the absence of Ontario Drinking Water Objectives and/or Canadian Drinking Water Objectives the most appropriate limits for use would be those developed specifically for drinking water from EPA and WHO.

In the case of an emergency spill situation when the duration of the exposure is expected to be short term it is probable that the EPA health advisories are most appropriate; this is what they are designed for. The term "ambient" tends to have a slightly different meaning dependant upon the agency. If "ambient" limits are to be used, reference should be made to the actual definition of the limits and their application given under the "LIMIT" section beginning on page x.

Where it is possible to do so, the risk levels associated with the limits should be stated, and these may vary from agency to agency.

Some of the limits listed are legally enforceable by the controlling agency; where information on enforceability was available, it is provided under the "LIMITS" section.

The limits established by the agencies have been derived from the best information currently available; however, the development of objectives is an on-going process. Scientific knowledge of the complex interrelationships that determine water quality continue to increase as does the understanding of the physiological effects of the substances present in water. Also, man continues to introduce new chemical substances into the environment which may contaminate water supplies. It will therefore be necessary to continually revise the established limits as new and more significant data becomes available.

GUIDE TO THE USE OF PALIS

The following headings are used in the system:

CHEMICAL

Because of the manner by which computers sort, chemicals prefixed with a number eg. 2,4,5-T are sorted by number first and then alphabetically. This will apply to those chemicals identified in normal usage by this nomencalture. To facilitate location of chemicals existing as isomers, chemical isomers will be listed by the name of the chemical followed by the numbers denoting the isomer eg. dinitrotoluene(2,4). The Chemical Abstracts Service Registry Numbers (CAS#) are listed with every chemical where available. These are unique numerical identifiers assigned to each chemical substance as it is registered. It has no chemical significance but is simply a machine-checkable number. The CAS# is a concise and unique means of substance identification which is independent of the many systems of chemical nomenclature.

The chemicals are normally cited by the name under which they were listed in the original reference document. If a chemical name can not be found in the parameter report it may be listed under an "alias". At the end of the parameter report is an alias report that lists the "fullname" of the chemical on the parameter list along with aliases (other names) by which the chemical may be known.

AGENCY

1. MOE

The Ontario Ministry of the Environment.

Ontario Drinking Water Objectives (ODWO) are published by the Ministry of the Environment (MOE) and generally are based on the Canadian Drinking Water Guidelines. Interim guidelines may also be proposed from time to time (see also Appendix 2).

2. FLORIDA ST.

The State of Florida, USA.

This state issued the "State of Florida Drinking Water Regulations, Public Drinking Water Systems, DER 1984".

3. CALIFORNIA ST. DHS

The State of California, USA, Department of Health Services.

This state agency published recommended Action Levels for substances in drinking water.

4. WHO

The World Health Organization.

The organization published "Guidelines for Drinking Water Quality, Geneva 1984". The WHO suggests guideline values and tentative guideline values.

5. H&W

Health and Welfare, Canada.

Guidelines for Canadian Drinking Water Quality are prepared by the Federal-Provincial Sub-Committee on Drinking Water of the Federal-Provincial Advisory Committee on Environmental and Occupational Health and published by authority of the Minister of National Health and Welfare.

Local conditions may necessitate modification of some of the recommended values by provincial agencies.

6. EEC

The European Economic Community.

The EEC published its "Drinking Water Directive" in 1980.

7. EPA

United States Environmental Protection Agency.

EPA provides drinking water regulations, proposed limits and health advisories applicable to drinking water and ambient water quality criteria.

8. NAS

The United States National Academy of Sciences.

This is a scientific advisory body that provides EPA with regular scientific guidance on contaminants in drinking water.

9. USSR

The Union of Soviet Socialist Republic.

Maximum Permissable Concentrations (MPC) for chemical substances existing in natural water or used as additives in the process of water treatment have been developed. These concentrations should not exceed the toxicological and organoleptic requirements of the USSR State Standard.

10.MOL

The Ontario Ministry of Labour.

This Ministry may supply guidelines to MOE when circumstances necessitate that an "approved" guideline be established for those compounds for which no Ontario Drinking Water Objective yet exists. Advice may be sought from the MOL on the

appropriate guideline to use for a specific case in Ontario.

11.NEW YORK

The State of New York, USA.

This state has published drinking water standards, ambient water quality standards and ground water standards. These are intended to provide numerical limits for substances in waters used as a potable water supply.

12.NEW JERSEY

The State of New Jersey, USA.

This state's Department of Environmental Protection has a comprehensive classification system which is used as an effective tool for optimizing ground water protection efforts, guidelines for levels of certain contaminants appropriate to the various ground water classifications are part of the process. Maps that are prepared on the basis of the classification system can be used to guide activities such as the development of standards for water supply, land use management, source controls and remedial action.

13.NIOSH

The United States National Institute for Occupational Safety and Health.

This organization has published guidelines for several organic chemicals in Drinking Water and Health volume 4, 1982.

14. HAWAII

The State of Hawaii, USA.

The Hawaii State Office of Environmental Quality Control has published Action Levels for several pesticides; these appeared in the American Water Works Association Journal (JAWWA.79 August 1987).

15.NACA

The United States National Agricultural Chemicals Association.

This organization has released a document which suggests a method regulatory officials can use to evaluate groundwater contamination.

16.AWWA

The American Water Works Association.

This association has published emergency limits for some chemical pollutants in OPFLOW, volume 9, number 3, March 1983.

CATEGORY

The following category designations for water are used for this listing system:

DW

Drinking water limits are for application to drinking waters, for most agencies they apply to drinking water at the consumers tap.

AMBIENT

Ambient water limits are applied to surface waters which may be used as a source of drinking water. The definition of "ambient" varies from agency to agency and reference should be made to the "LIMIT" section (page x) where the definition of each ambient limit is provided.

GW

Ground water is water that is held in the soil and ultimately will be used as a potable water supply, agricultural water or for the replenishment of surface waters. The states of New Jersey and New York have set limits which apply to such waters.

LIMIT

The following more fully explains the types of limits as well as some of the background information which relates to their applicability to drinking waters. It is important to recognize, given the differing methods used by agencies, and their varying legislative approaches, that each limit is usually associated with a particular level of risk or has been developed employing different uncertainty factors. For example, EPA's ambient water quality guidelines for carcinogens are given for a risk level of 1x10⁻⁶, whereas WHO's drinking water guideline values for these substances are associated with a risk of 1x10⁻⁵. Where it is possible to do so, the actual risk level associated with the limits is given in the PALIS listing. In many instances, these data are not readily available. As previously stated all drinking water limits are set to protect the consumer from significant health risk upon consumption of drinking water over a lifetime.

1. AL

"Action Limit" for drinking water supplies in the State of California; when such limits are exceeded the need for some action (which might include resampling, investigation of source and remediation) is indicated.

2. AO

"Aesthetic Objectives" set by Health and Welfare, Canada apply to certain substances or characteristics of drinking water which can affect its acceptance by consumers or interfere with good water supply practices.

3. ASL

"Action Step Levels" have been established by the New York State Department of Health to provide guidance in responding to organic chemical concerns at public water systems.

- a/ ASL1 if met or is exceeded prompts the use of that water source to be discontinued and initiates other appropriate action steps. A response to identify and verify the problem, develop a course of action and describe how a resolution to the problem will be tracked must be initiated (as per PWS 159).
- b/ ASL2 if met or exceeded prompts notification of the Bureau of Public Water Supply Protection and initiation of a response as per ASL1.

4. AWQC

The "Ambient Water Quality Criteria" are set by EPA in the USA and are designed to ensure that surface waters used as a source of drinking water and from which fish are eaten contain no level of chemical that can be construed as hazardous to human health. Chemicals may bio-accumulate or become concentrated in fish flesh and because this must be accounted for, the maximum allowable limits for chemicals in ambient waters may actually be lower than drinking water guidelines. AWQC reported by EPA, assumes a daily consumption by a 70 kg person from the same body of water to be 2 litres of water and 6.5 gm fish, over a lifetime. The criteria for known carcinogens are based on a risk level of 1x10⁻⁶ and are noted as such with a "**".

5. AWQS

"Ambient Water Quality Standards" set by the State of New York are the basis of effluent limitations for use in state "Pollutant Discharge Elimination System" permits. Waters used as a source of drinking water, if subjected to approved disinfection treatment, with additional treatment if necessary to remove naturally present impurities, will meet NYS drinking water standards. The AWQS limits are classified as human health related, aesthetic or chemical correlation. Chemical correlations are used for substances for which there are not sufficient data or studies carried out and are based on the relationship of that substance to structurally similar chemicals which have sufficient human health effects, animal toxicological data and aesthetic thresholds on which to base standards.

6. DWEL

A "Drinking Water Equivalent Level" set by EPA is defined as the medium-specific exposure which is interpreted to be protective for health effects not involving carcinogenicity over a lifetime of exposure. They are interpreted as lifetime Health Advisories when carcinogenicity is not suspected.

7. ELLTC

"Emergency Limits for Long-term Consumption" have been developed by health experts convened by the AWWA to assist water purveyors specifically for emergency situations where the impact on drinking water supplies is expected to be long-term (over a period of days, months, years).

8. ELSTC

"Emergency Limits for Short-term Consumption" have been developed by health experts convened by AWWA to assist water purveyors specifically for short-term emergencies ranging up to 3 days. Such limits could be used in situations such as a discrete spill of a chemical into a river which is only expected to impact drinking water supplies for a short time period.

9. GL

A "Guideline Level" is a concentration in drinking water of a given substance which should not ideally be exceeded. Guideline levels are intended for use by members of the European Economic Community as a basis for the development of their own standards.

10.GV

"Guideline Values" for drinking water quality are intended for use by countries as a basis for the development of standards, which, if properly implemented, will ensure the safety of drinking water supplies. The compilation of these guidelines covered a period of three years and involved the active participation of nearly 30 WHO Member states, scores of scientists and meetings of ten task groups.

For a number of organic substances that are carcinogens or suspected carcinogens guideline values have been recommended based on a linear, multi-stage extrapolation model which assumes that there is a finite risk from any exposure, however small, and that the risk is proportional to the dose. The guideline values are based upon the selection of an acceptable risk of less than 1 additional case of cancer per 100,000 (1x10⁻⁵) population assuming a daily consumption of 2 litres of drinking water by a 70 kg man. The "acceptable" risk of 1 in 100,000 per lifetime was arbitrarily selected by WHO. The uncertainties involved in this approach are significant and

are at least about two orders of magnitude ie. the true values could be between one tenth and ten times the calculated values (see also Appendix 1).

11.GW

A simplistic aquifer classification system based on total dissolved solids has been put into place as one of the factors that is considered in the setting of effluent limitations. It is used on a site-specific basis as one of the factors that determine permit limits.

a/ GW1

Class GW1 applies only to the Central Pine Barrens ground water. The limit ensures water that shall be suitable for potable water supply, agricultural water, and continual replenishment of surface waters to maintain the existing quantity and quality.

b/ GW2

Class GW2 applies to ground water having a natural total dissolved solid concentration of 500 mg/l or less. It shall be suitable for potable, industrial or agricultural water supply after conventional treatment for hardness, pH, iron, manganese and chlorination.

c/ GW3

Class GW3 is for ground water having a natural total dissolved solid concentration between 500 and 10000 mg/l. It shall be suitable for conversion to fresh potable water or other reasonable beneficial uses.

12.GWQS

"Ground Water Quality Standards" for the state of New York are for waters used as a source of potable water. These ground waters are found in the saturated zone of unconsolidated deposits and consolidated rock or bed-rock.

13.HA

"Health Advisories" set by EPA are intended to provide useful information in the setting of control priorities in cases where contamination occurs and may be provided on a case-by-case basis in emergency situations such as spills and accidents. They are not legally enforceable standards and are not issued as an official regulation.

a/ HA 1C

One day health advisory for a 10 kg child assuming he consumes 1 litre of water per day.

b/ HA 10C

Ten day health advisory for a 10 kg child assuming he consumes 1 litre of water a day.

c/ HALT C

Longer term health advisory (approximately 7 years, or 10% of an individuals lifetime) for a 10 kg child assuming the child consumes 1 litre of water per day.

d/ HALT A

Longer term health advisory (approximately 7 years, or 10% of an individuals lifetime) for a 70 kg adult assuming the adult consumes 2 litres of water per day.

e/ HA LIFE

Lifetime health advisory for a 70 kg adult assuming all exposure to the substance is from drinking water. In the March 31, 1987 EPA report on Health Advisories HA Life is quoted as a DWEL (Drinking Water Equivalent Level).

f/ HA LIFE A

Lifetime health advisory for a 70 kg adult assuming that 20% of the exposure to the substance is from drinking water and adjusting for additional uncertainty if the substance is a potential carcinogen.

14.HGL

"Health Guidance Levels" for pesticides are suggested by the US National Agricultural Chemical Association to evaluate ground water contamination. The lifetime chronic exposure level can be derived by multiplying by ten the acceptable daily intake.

15.IDWG

The "Interim Drinking Water Guideline" limit is provided by Health and Welfare Canada from their toxicological data to meet specific needs of the Province of Ontario when no applicable guidelines are available.

16.IMAC

The "Interim Maximum Acceptable Concentration" is used by Ontario and Health and Welfare, Canada to describe limits for substances of current concern with no known chronic effects in mammals and for which there are no established MAC's. Although toxicological, epidemiological and health data are available for such substances the data are subject to public and scientific debate before agreement on an MAC. The IMAC

will generally be a conservative value subject to change as more precise information becomes available.

17.LTAL

The "Long-term Action Level" developed by the State of Hawaii is based on a lifetime risk of cancer as 1 chance in 100,000. A plan will be implemented to reduce the level if it persists for more than several months.

18.LTG

The "Long-term Goal" developed by the State of Hawaii is based on a lifetime risk of cancer as 1 chance in 1,000,000. A plan will be developed to reduce the level if it persists for prolonged periods.

19.MAC

The "Maximum Acceptable Concentration" is used in Ontario and by Health and Welfare, Canada for limits applied to substances above which there are known or suspected adverse health effects. MACs from Health and Welfare Canada are not enforceable unless promulgated as such by the appropriate Provincial or Federal agency. MACs from Ontario can be made legally enforceable under the provisions of the Ontario Water Resources Act.

20.MADC

The European Economic Community provides "Maximum Admissable Concentrations"; these are concentrations below which substances in drinking water cannot, in the course of continuous ingestion, cause, or directly or indirectly result in any adverse health effects to a statistically representative sampling of the population. MADCs are intended for use by members of the EEC as a basis for the development of their own standards.

21.MCL

The EPA defines its "Maximum Contaminant Level" as a lifetime limit at the lowest practicable level of a substance representing a potential hazard to humans in order to minimize the amount of a toxicant contributed by water, particularly when other sources such as milk, food or air are known to represent the major exposure to man. These are legally enforceable and take into account occurrence, relative source contribution factors, treatment technology, monitoring capability and costs in addition to health effects.

22.MCLG

EPA provides a recommended "MCL health goal" which will be defined as the level at which no adverse health effects can be expected to occur. The MCLGs are not legally enforceable

but represent the ideal level from the public health perspective. The MCLGs do not accept any degree of risk, hence some MCLGs may be zero if the EPA accepts the hypothesis that any exposure to carcinogens is not safe.

23.MDC

The "Maximum Desirable Concentration" is a limit used in Ontario for substances which when present at higher concentrations are either aesthetically objectionable to an appreciable number of the population or may interfere with good water quality control practices.

24.MPC

The USSR State Committee on Standards approved and brought into force "Maximum Permissable Concentrations" to provide for safe drinking water in respect of epidemic, chemical and organoleptic properties.

25.SG

"Special Guidelines" may be provided by the Ontario Ministry of Labour when no other guidelines are available and inadequate toxicological data exist to proceed to full health-based objectives. Special guidelines are specific to individual cases and are provided only after consultation with scientific experts.

26.SMCL

The "Secondary Maximum Contaminant Level" carries the same definition as the MCL but is not legally enforceable.

27.SNAEL

"Suggested No-Adverse Effect Levels" are similar to health advisories. They provide useful information in the setting of control priorities in cases where contamination occurs and may be provided on a case-by-case basis in emergency situations such as spills and accidents.

28.SNARL

The "Suggested No-Adverse Response Level" is the level of a contaminant in drinking water at which adverse health effects would not be anticipated. A margin of safety is factored in so as to protect the most sensitive members of the general population. Developed by NAS, SNARLS are calculated for a 70 kg adult. In the USA, SNARLs may or may not lead ultimately to the issuance of national standards or MCLs. The latter must take into account occurrence, relative source contribution factors, treatment technology, monitoring capability and costs in addition to health effects. SNARLs are offered as advice to regional and state environmental and health officials, local public officials and water treatment facility personnel

who are responsible for the protection of public health when dealing with specific contamination situations.

a/ SNARL 1

A "Suggested No-Adverse Response Level 1" is the level of a contaminant in drinking water at which adverse health effects would not be anticipated for 24 hours.

b/ SNARL 7

A "Suggested No-Adverse Response Level 7" is the level of a contaminant in drinking water at which adverse health effects would not be anticipated for seven days.

c/ SNARL CHR

The "Chronic Suggested No-Adverse Response Level" is used for potential carcinogens where exposure is for more than 7 days; concentrations correspond to a one in one million cancer risk (1x10⁻⁶ risk).

d/ SNARL CHR*

The "Chronic Suggested No-Adverse Response Level-20%" is the same as SNARL-CHR but assumes that 20% of the acceptable daily intake is from water.

29.STAL

The "Short-Term Action Level" if exceeded initiates a complete shut-down or implementation of a plan to reduce levels within 24 hours, in the State of Hawaii.

30.TGV

A "Tentative Guideline Value" is recommended by WHO in some cases, when, although the carcinogenicity data does not justify a full guideline value, the compounds are considered to have important health implications when present in drinking water. The tentative values are, nevertheless, based on the available health-related data, if additional evidence cannot be obtained, the tentative level in the future may be withdrawn. Tentative guideline values are derived using the multi-stage model even though the selected chemicals do not reveal significant carcinogenic properties. Consequently the tentative values display a greater degree of uncertainty than those derived for the guideline values.

LTYPE

The "limit type" signifies the type of limit that is listed.

H
"H"ealth limits apply to certain substances that are known
or suspected to have adverse health effects.

A "A"esthetic limits apply to certain substances or conditions, the presence of which in excess of the limit does not present a risk to human health, but may render the water unpalatable or otherwise unacceptable to the consumer.

"C"hemical correlation limits are based on the relationship of that substance to structurally similar chemicals which have sufficient human health effects data, animal toxicological data and aesthetic thresholds on which to base standards. The chemicals must have similar functional groups and potential metabolic and toxicologic pathways.

STATUS

This indicates the actual "status" of the limit.

s
"S"et indicates that the limit is established and applied by
the regulatory agency

T
"T"entative indicates that the limit has been developed but
is awaiting public and scientific approval

P "P"roposed indicates that the limit has been developed and is still under scrutiny before being adopted by the proposing agency.

<u>UOM</u>

The "Unit of Measure" is provided for each of the limits. The unit used is that quoted in the original documentation. The units of measure are shown in Table 1 immediately following the PALIS SYSTEM PARAMETER REPORT, footnotes on p.74.

REFCODE

The "reference code" indicates the specific document from which the guideline/limit was quoted. In some instances, the documents were received directly from the agencies concerned; in others, the information was published in a journal or other publication; as full a reference as possible has been given. All original documents from which PALIS was derived are on file with the Drinking Water Section, Water Resources Branch.

The PALIS database contains an abbreviated reference file. The full reference file report is reproduced in Table 2 which immediately follows Table 1 on p.75.

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	MOU	REFCODE
****						****		
(4-	CHLORO-O-TOLOXY)ACE1	TIC ACID						
94-74-6	EPA	DW	HA LIFE	Н	S	18.000	UG/L	27
			HA LIFE A	H	S	3.600	UG/L	27
			HA1 C	H	S	.100	MG/L	27
			HA10 C	Н	S	.100	MG/L	27
			HALT A	Н	S	.350	MG/L	27
			HALT C	H	S	.100	MG/L	27
			SNAEL	н	S	.440	UG/L	10
	NEW YORK	GW	GWQS	Н	S	.440	UG/L	16
4	WARAVETHE I PEUE A							
	IYDROXYETHYLIDENE-1,1 NEW YORK	AMBIENT	AWQS	D	Р	50.000	Heat	16
		Andrew.						
2,4	,5-T							
93-76-5		DW	HA LIFE	H	S	.105	MG/L	27
			HA LIFE A	Н	S	.021	MG/L	27
			HA1 C	Н	S	.800	MG/L	27
			HA10 C	Н	S	.800	MG/L	27
			HALT A	Н	S	1.050	MG/L	27
			HALT C	Н	S	.300	MG/L	27
			SNAEL	H	S	.035	MG/L	10
	H&W	DW	MAC	н	S	.280	MG/L	5
	NEW YORK	GW	GWQS	Н	S	35.000	UG/L	16
2 /	,5-TP							
93-72-1	*	AMBIENT	AWQC	н	S	10.000	110.71	9
75 72 1	LFA	DW	HA LIFE	Н	S	260.000		7
		DW		Н		52.000		7
			HA LIFE A		S			7
			HA1 C HA10 C	H H	S S	200.000		7
			HALT C	Н	S	200.000 70.000		7
			MCL	Н	S		MG/L	28
			MCLG	Н	P		MG/L	8
			SNAEL	Н	S		UG/L	10
	FLORIDA ST.	DW	MCL	н	S		MG/L	2
	MOE	DW	MAC	н	S		MG/L	1
	NEW YORK	AMBIENT	AWQS	Н	S	10.000		16
	HEW TORK	DW	MCL	Н	S		MG/L	25
		GW	GWQS	Н	S		UG/L	16
		UW	GWMJ		J	.200	UG/L	10
2,4	-D							The second secon
94-75-7	AWWA	DW	ELLTC	Н	P	.100	MG/L	23

	CHEMICAL								
	******			YV NACTOVORDOSO	o manuscrifton	nonananananan Proje	H X D V MPGP-D	ar erganoan	Territoria del activación del
CAS#				LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
				****			****		
	2,4-0						No. on the		-
94-75-	7	AWWA	DW	ELSTC	Н	P	2.000		23
		EPA	AMBIENT	AWQC	Н	S	100.000		9
			DW	HA LIFE	Н	S	350.000	UG/L	7
				HA LIFE A	Н	S	70.000	UG/L	7
				HA1 C	Н	S	1,100.000	UG/L	7
				HA10 C	Н	S	300.000	UG/L	7
				MCL	Н	S	.100	MG/L	28
				MCLG	H	Р	.070	MG/L	8
				SNAEL	Н	S	4.400	UG/L	10
		FLORIDA ST.	DW	MCL	Н	S	.100	MG/L	2
		W&H	DW	MAC	н	S	.100	MG/L	5
	1	MOE	DW	MAC	Н	S	.100	MG/L	1
	ĺ	NACA	GW	HGL	Н	P	1.250	MG/L	22
	1	NEW YORK	AMBIENT	AWQS	Н	S	100.000	UG/L	16
			DW	MCL	н	S	.100	MG/L	25
			GW	GWQS	н	S	4.400	UG/L	16
	4	WHO	DW	GV	Н	S	100.000		4
	2.4-DIC	HLOROPHENOXYBUTYRIC A	CID						
	*	H&W	DW	IMAC	н	S	.018	MG/L	17
	3-CHLOR	0-1,2-PROPANEDIOL							
96-24-	2		DW	MPC	Α	S	.700	MG/L	12

	ACENAPH	THENE							
83-32-		NEW YORK	AMBIENT	AWQS	Α	S	20.000	UG/L	16

	ACEPHAT	E							
		NACA	GW	HGL	н	Р	250	MG/L	22
	ACETALD	EUVNE							
	0		DW	MPC	A	S	.200	MG / L	12
			UW .	Mrc	^			HG/ L	
	ACETONE								
17.77			DU.	cc		Р	1.000	MC /I	15
0/-04-	1	MUL	DW	SG	A	r		A 111.000	1

		CYANOHYDRIN	BUT	****	Sec.	•	001	MC (I	12
	5		DW	MPC	Н	S	.001	MG/L	12
	ACETOPH		***		100				4.0
98-86-	2	USSR	DW	MPC	Н	S	.100	MG/L	12

	CHEMIC	AL							
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	MOU	REFCODE
		*****	*******			***		***	
	ACETOP		BU .	MDG			070	NO (1	40
transferance de		USSR	DW	MPC	Α	S	.030	MG/L	12
	ACIFLU	OPEEN							
5094-6	6-6		DW	HA LIFE	Н	S	.440	MG/L	27
3077 0		2.77	2.0	HA LIFE A	В	S	9.000		27
				HA1 C	Н	S	2.000		27
				HA10 C	Н	S	2.000	MG/L	27
				HALT A	Н	S	.440	MG/L	27
				HALT C	Н	S	.130	MG/L	27
	ACROLE	IN							
107-02	-8	EPA	AMBIENT	AWQC	Н	S	320.000	UG/L	9
*****				************			*******		
	ACRYLA			ice one	re .	_	007		_
79-06-	1	EPA	DW	DWEL	H	S	.007		7
				HA1 C HA10 C	Н	S	1.500		7 7
					Н	S	.300		7
					Н		.020		7
				MCLG	Н	P		MG/L	8
	ACRYLI	C ACID							
79-10-	7		DW	MPC	Н	S	.500	MG/L	12
*****		*************							
	ACRYLO	NITRILE							
107-13	- 1	EPA	AMBIENT	AWQC	Н	S	.058	UG/L **	9
		USSR	DW	MPC	Н	S	2.000	MG/L	12
*****		****************						******	*******
	ADIPIC	ACID DINITRILE	977	was w	MITTED			Contract Contract	
		USSR	DW	MPC	Н	S	.100	MG/L	12
	AL ACIU	00							
15072-	ALACHL 60-8		DW	DWEL	H	s	350	MG/L	7
13772	00-0	EFA	Dw .	HA1 C	H	S	.100		7
				HA10 C	н	s		MG/L	7
				MCLG	н	P		MG/L	8
				SNAEL	Н	s		MG/L	10
		NEW YORK	GW	GWQS	H	S	35.000		16
	ALDICA	RB							
116-06	-3	CALIFORNIA ST. DHS	DW	AL	Н	S	10.000	UG/L	3

	CHEMIC.	AL								
CAS#		AGENCY	CATEGORY	LIMIT	LTYDE	STATUS	VALUE	UOM	REFC	ODE
CAS#		AGENCI	CATEGORY	LIMIT	LITTE	314103	VALUE	0011	KEIC	ODL
	ALDICA					2000				
116-06-	ALDICA	EPA	DW	HA LIFE	H	s	42.000	UG/L		7
110-00-	3	EFA	DW	HA LIFE A	H	s	9.000	UG/L		7
				HA1 C	Н	S	12.000	UG/L		7
				HA10 C	Н	S	12.000	UG/L		7
				HALT A	Н	S	42.000	UG/L		7
				HALT C	Н	S	12.000	UG/L		7
					Н	S	.350	UG/L		10
			D. (SNAEL	n	~	.009	MG/L		5
		H&W	DW	MAC	n u	S				
		NACA	GW	HGL	H	P		MG/L		22
		NEW YORK	AMBIENT	AWQS	Н	S	7.000		7	16
			DW	ASL1	Н	S	7.000	UG/L		26
				ASL2	Н	S	3.000			26
			GW	GWQS	Н	S	.350	UG/L		16
	ALDICA	RB(+SULFOXIDE AND SULF								-
		EPA	DM	MCLG	Н	Р	.009	MG/L		8

	ALDRIN									
309-00-	2	AWWA	DW	ELLTC	н	P		MG/L		23
				ELSTC	H	P		MG/L		23
		CALIFORNIA ST. DHS	DW	AL	Н	S	.050	UG/L		3
		EPA	AMBIENT	AWQC	H	S	.074	NG/L	**	9
		NAS	DW	SNARL CHR	Н	S	.107	UG/L	**	11
		USSR	DW	MPC	Α	S	.002	MG/L		12
	ALDRIN	AND DIELDRIN		w.						
309-00-	2+D	H&W	DW	MAC	Н	\$.700	UG/L		5
		MOE	DW	MAC	Н	S	.700	UG/L		1
		NEW JERSEY	GW	GW1	Α	S	.003	UG/L		21
				GW2	Α	S	.003	UG/L		21
				GW3	Α	S	.003	UG/L		21
		WHO	DW	GV	H	S	.030	UG/L		4
*****										***
	ALIPHA	TIC AMINES C10-C16								
		USSR	DW	MPC	Α	S	.040	MG/L		12
	ALIPHA	TIC AMINES C16-C20								
		USSR	DW	MPC	Α	S	.030	MG/L		12
										-
	ALIPHA	TIC AMINES C7-C9								
		USSR	DW	MPC	Α	S	.100	MG/L		12
		9								

CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

	ALKYL	BENZENESULFONATES							
		USSR	DW	MPC	Α	S	.500	MG/L	12
		SULFATES	*						
		USSR	DW	MPC	Α	S	.500	MG/L	12
	ALKYL	SULFONATES USSR	N/I			_	W44	and the court	
			DW	MPC	A	S	.500	MG/L	12
	ALUMIN	IUM							
7429-9	0-5	EEC	DW	GL	Α	S	.050	MG/L	6
				MADC	Α	S	.200	MG/L	6
		USSR	DW	MPC	H	s	.500	MG/L	12
		WHO	D₩	GV	Α	S	.200	MG/L	4

07/ 10	AMETRY				201				
834-12	-8	EPA	DW	HA LIFE	H	S		MG/L	27
				HA LIFE A	H	S	.060		27
				HA1 C HA10 C	H	s s	8.600		27
				HALT A	Н	S	8.600 3.000		27
				HALT C	H	S	.860		27 27
		NACA	GW	HGL	H	P	.125		22
	AMIBEN	<u>f</u>							
133-90	-4	EPA	DW	SNAEL	н	s	.087	MG/L	10
		NEW YORK	GW	GWQS	Н	\$	87.500	UG/L	16
	AMINOC								
		NEW YORK	AMBIENT	AWQS	A	S	1.000	UG/L	16
	AMTHOR	HENOL (ORTHO)							*********
95-55-			DW	MPC			010	W 71	46
			νw	mru	Α	S	.010	MG/L	12
	AMINOF	HENOL (PARA)							
	-8	USSR	DW	MPC	Α	s '	.050	MG/L	12
	AMMON I	A	ē,						
7664-4	1-7	NEW JERSEY	GW	GW1	Α	S	.500	UG/L	21
				GW2	Α	S	.500	UG/L	21
				GW3	Α	S		UG/L	21
		NEW YORK	AMBIENT	AWQS	Н	S	2,000.000	UG/L	16

CHEMICAL CATEGORY LIMIT LTYPE STATUS CAS# AGENCY VALUE UOP REFCODE AMMON1A 2.000 MG/L 12 7664-41-7 USSR AMMONIUM A S GL .050 MG/L EEC DW MADC .500 MG/L AMMONIUM PERCHLORATE H S 7791-98-9 USSR AMMONIUM SULFAMATE HA LIFE S 7.500 MG/L 27 7773-06-0 EPA DW 1.500 MG/L 27 HA LIFE A Н S HA1 C H 21.400 MG/L 27 5 H 21.400 MG/L 27 HA10 C S 75.000 MG/L 27 HALT A 21,400 MG/L S HALT C ANILINE 1.100 MG/L MPC H S 62-53-3 USSR DW .C50 MG/L MPC USSR DW ANTIMONY 7440-36-0 EEC 10.000 UG/L MADC H S DW AMBIENT 146.000 UG/L 9 AWQC H S EPA .050 MG/L 12 H S MPC ARSENIC 50.000 UG/L MADC H S 7440-38-2 EEC DW AWQC 2.200 NG/L ** 9 H S EPA AMBIENT HA LIFE 50.000 UG/L 7 DW Н S 50.000 UG/L 7 HA LIFE A H S 50.000 UG/L 7 Н S HA1 C 7 50.000 UG/L HA10 C H S 7 HALT A H 50.000 UG/L 50.000 UG/L 7 HALT C H S 28 .050 MG/L MCL H S 8 MCLG H P .050 MG/L MCL Н S .050 MG/L 2 DW FLORIDA ST. MAC H S .050 MG/L DW H&W

CHEMICAL AGENCY CAS# LIMIT CATEGORY LTYPE STATUS VALUE UOM REFCODE ARSENIC 7440-38-2 MOE DW MAC .050 MG/L H S 1 NEW YORK AMBIENT AWQS S 50.000 UG/L 16 DW MCL .050 MG/L GWQS .025 MG/L 16 USSR MPC 12 .050 MG/L WHO GV .050 MG/L 4 ARSENIC AND COMPOUNDS 7440-38-2+ NEW JERSEY GW1 A S .050 MG/L 21 GW2 A S .050 MG/L 21 GW3 S .050 MG/L ASBESTOS AMBIENT AWQC 30,000.000 F/L ** H S MCLG 7,100,000.000 F/L 8 ATRAZINE 1912-24-9 EPA HA LIFE H S .123 MG/L 27 HA LIFE A Н S 3.000 UG/L 27 S HA1 C H .100 MG/L 27 HA10 C S .100 MG/L 27 HALT A .123 MG/L 27 HALT C Н S .035 MG/L 27 SNAEL S 7.500 UG/L 10 H&W DW IMAC Н S .060 MG/L 5 NACA GW HGL P .375 MG/L 22 NAS DW SNARL CHR* H S 150.000 UG/L 11 NEW YORK ASL1 S 25.000 UG/L 26 ASL2 5.000 UG/L 7.500 UG/L 16 AZINPHOSMETHYL 86-50-0 **EPA** DW SNAEL Н S 4.400 UG/L 10 H&W DW .020 MG/L MAC H S 5 NACA GW HGL Н P .250 MG/L 22 NEW YORK GWQS S 4.400 UG/L 7440-39-3 EEC 100.000 UG/L DW GL S A 6 AWQC **EPA** AMBIENT H S 1.000 MG/L 9 1,800.000 UG/L 7 DW HA LIFE Н S

	- 4							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
BARIUM								
7440-39-3		DW	HA LIFE A	н	S	1,500.000	UG/L	7
			HA1 C	Н	S	.510		7
			HA10 C	H	S	.510		7
			HALT C	н	S	.510		7
			MCL	н	s	1.000		28
			MCLG	н	P	1.500		8
	FLORIDA ST.	DW	MCL	н	S	1.000		2
	H&W	DW	MAC	Н	s	1.000		5
	MOE	DW	MAC	н	s	1.000		1
	NEW JERSEY	GW	GW1	Α	S	1.000		21
	NEW VERSEI	GW.	GW2	A	S	1.000	2.04108	21
			GWZ GW3	A	S	1.000	1001	
	NEIL YORK	AMOTENT						21
	NEW YORK	AMBIENT	AWQS	Н	s	1,000.000		16
		DW	MCL	H	S	1.000		25
		GW	GWQS	Н	S	1.000		16
	USSR	DW	MPC	A	S	4.000	MG/L	12

BENDIO		9						_
22781-23-3	H&W	DW	MAC	Н	S	.040	MG/L	5
BENEFI	N							
DENEFI	EPA	DW	SNAEL	Н	S	75 000	ne a	10
		GW	GWQS	Н	S	35.000		
	NEW YORK	uw	GMM2	п	5	35.000	UG/L	16
BENTAZ	ON							
25057-89-0		DW	HA LIFE	Н	S	87.500	HC7E	27
23031-09-0	LFA	UW	HA LIFE A	Н	S	17.500	11 0 1480 11	27
ş.							illia e	
			HA1 C	H	S	.250		27
			HA10 C	H	S	.250		27
			HALT A	н	S	.875		27
			HALT C	Н	S	.250		27
	NACA	GW	HGL	Н	Р	11.750	MG/L	22
DENZEN								
BENZEN		NII	AT.	n		700	116.71	7
71-43-2	CALIFORNIA ST. DHS	DW	AL	H	S		UG/L	3
	EPA	AMBIENT	AWQC	H	S		UG/L '	
		DW	HA1 C	H	S	235.000		7
			HA10 C	Н	S	235.000		7
			MCL	Н	S	5.000		20
			MCLG	Н	S	.000		8
	FLORIDA ST.	DW	MCL	Н	S	1.000	UG/L	2

CHEN	IICAL							
			No. 845500 silv-sin	Bill Constitution of the	Ministra Addresses Avenue	market state of the effect		The Court of the C
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****		*****	****		*****	****		
BENZ								
71-43-2	H&W	DW	MAC	Н	S	.005		5
	NAS	DW	SNARL 7	Н	S	250.000	2012/11/20	11
	NIOSH	DW	SNARL 7	н	S	.250	Account to the	24
	USSR	DW	MPC	8	S	.500		12
	WHO	DW	GV	Н	S	10.000	UG/L	4
BENZ	IDINE			******				
92-87-5	EPA	AMBIENT	AWQC	Н	S	.120	NG/L **	9
	NEW JERSEY	GW	GW1	Α	S	.100	UG/L	21
			GW2	Α	S	.100	UG/L	21
			GW3	Α	S	.100	UG/L	21
*********								******
BENZ	ZINE							
	USSR	DW	MPC	Α	S	.100	MG/L	12
					*****		******	
	ZO(A)PYRENE	NII	MAG	u	c	010	TIC (I	-
50-32-8	H&W	DW	MAC	H	S		UG/L	5
	NEW YORK	AMBIENT	AWQS	Н	P		UG/L	16
	WHO	DW	GV	Ή.	S	.010	UG/L	- 4
BER)	/LL IUM							
7440-41-7	AWWA	DW	ELLTC	Н	Р	.000	MG/L	23
			ELSTC	Н	P		MG/L	23
	EPA	AMBIENT	AWQC	н	S		NG/L **	9
	USSR	DW	MPC	Н	S		UG/L	12
внс	(ALPHA)							
319-84-6	CALIFORNIA ST. DHS	DW	AL	Н	S	.700	UG/L	3
	EPA	AMBIENT	AWQC	Н	S	9.200	NG/L **	9

ВНС	(BETA)	Evi	4.		_	700	na ir	_
	CALIFORNIA ST. DHS	DW	AL	н	S		UG/L	3
	EPA	AMBIENT	AWQC	H	S	10.300	NG/L **	9
ВНС	(TECHNICAL)							
	EPA	AMBIENT	AWQC	Н	S	12.300	NG/L **	9
nio	/O ETHYLHEVYI SPHTHALAT							
117-81-7	-(2-ETHYLHEXYL)PHTHALATE EPA	: AMBIENT	AWQC	н	S	15.000	MC /I	9
117-01-7	NAS	DM	SNARL CHR*	Н	S	4,200.000		
	USSR	DW	MPC	A	S	1.000		11 12
	USSK	UW	MPL	A	3	1.000	UG/L	12

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

BOD (5 DAY)							
	NEW JERSEY	GW	GW1	Α	S	3.000	MG/L	21
	******		***************					
BORG	DN							
7440-42-8	AWWA	DW	ELLTC	Н	P	1.000	MG/L	23
			ELSTC	Н	P	25.000	MG/L	23
	EEC	DW	GL	Α	S	1,000.000	UG/L	6
	H&W	DW	MAC	Н	S	5.000	MG/L	5
	MOE	DW	MAC	Н	S	5.000	MG/L	1
****					****			
	MACIL							
314-40-9	EPA	DW	HA LIFE	Н	S	4.200		27
			HA LIFE A	Н	S	.080	MG/L	27
			HA1 C	H	S	4.600	MG/L	27
			HA10 C	Н	S	4.600		27
			HALT A	Н	S	8.700	MG/L	27
			HALT C	Н	S	2.500	MG/L	27
			SNAEL	Н	S	4.400	UG/L	10
	NACA	GW	HGL	н	Р	.125	MG/L	22
	NEW YORK	GW	GWQS	Н	S	4.400	UG/L	16
	IOXYNIL	200	2001.2		_			_
1689-84-5		DW	IMAC	Н	S	.005		5
	NACA	GW	HGL	Н	P	.025	MG/L	22
DUTA	CULOD							
BUIF	CHLOR	DW	CNACI	-ti	s	7 500	110.71	10
	EPA NEW YORK	GW	SNAEL GWQS	H	S	3.500 3.500		10 16
	NEW TURK	GW .	GMGS		3	3.300	OG/L	10
RIITY	'L ACRYLATE							
141-32-2	USSR	DW	MPC	Α	S	015	MG/L	12
	0001	νw						
RUTY	'L BENZENE							
5011	USSR	DW	MPC	Α	S	.100	MG/I	12
RUTY	'L XANTHATE							
	USSR	DW	MPC	Α	S	.001	MG/L	12
	B.F.C.V.							
BUTY	LATE							
2008-41-5		DW	HA LIFE	н	S	2.450	MG/L	27
		2 7	HA LIFE A	- н	S	.050		27
			HA1 C	н	S	2.400		27
			machin s —	3/1/		- W 10 T		

	IEMICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

	JTYLATE							
2008-41-5	EPA	DW	HA10 C	H	S	2.400	MG/L	27
BL	ITYLENE			******				
	USSR	DW	MPC	A	s	.200	MG/L	12
	Nutra	******************			******			*****
7440-43-9	DMIUM EEC	DW	MADC	н	S	5.000	HG /I	6
1110 13 /	EPA	AMBIENT	AWQC	Н.		10.000		9
		DW	HA LIFE	H.		18.000	COLUMN TO THE REAL PROPERTY OF THE PERTY OF	7
		5.00	HA LIFE A	н		5.000		7
			HA1 C	Н	S	43.000		7
			HA10 C	Н.	S	43.000		7
			HALT A	н	S	18.000		7
			HALT C	H ×		5.000		7
			MCL	Н	S		MG/L	28
			MCLG	Н	P		MG/L	8
	FLORIDA ST.	DW	MCL	н	S		MG/L	2
	H&W	DW	MAC	н	s		MG/L	5
	MOE	DW	MAC	H	S		MG/L	1
	NEW YORK	AMBIENT	AWQS	н	S	10.000		16
		DW	MCL	H	S		MG/L	25
		GW	GWQS	H.	S		MG/L	16
	USSR	DW	MPC	H.			MG/L	12
	WHO	DW	GV	H	S		MG/L	4
r^	DMIUM AND COMPOUNDS							
	+ NEW JERSEY	CU	GW2		6	010	MC /I	21
7440 43 7	NEW SERSE	GW	GWZ GW3	A	S		MG/L MG/L	21
				n		.010		
CA	LCIUM							
7440-70-2	EEC	DW	GL	Α	S	100.000	MG/L	6
CA	LCIUM CARBONATE							
471-34-1		DW	GV	Α	S	500.000	MG/L	4
CA	PTAN		************	*		**********		
133-06-2	CALIFORNIA ST. DHS	DW	AL	н	S	350	MG/L	3
.55 55 2	EPA	DW	SNAEL	H	S		MG/L	10
	NEW YORK	GW	GWQS	н	S	17.500		16

	RBARYL							
63-25-2	EPA	DW	HA LIFE	Н	S	3.500	MG/L	27

CHEMI								
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	LIOM	REFCODE

CARBOI	N TETRACHLORIDE							
56-23-5	FLORIDA ST.	DW	MCL	Н	S	3.000	UG/L	2
	H&W	DW	MAC	Н	S	.005	MG/L	5
	NAS	DW	SNARL 7	H	S	2,000.000	UG/L	11
			SNARL CHR	Н	S	6.670	UG/L **	11
	USSR	DW	MPC	H	S	.300		12
	WHO	DW	TGV	Н	S	3.000	UG/L	4
CARBOI	PHENOTHION							
786-19-6	CALIFORNIA ST DHS	DW	AL	Н	S	.007	MG/L	3
CARBOI	PHOS	******************			******			
	USSR	DW	MPC	A	\$.050	MG/L	12
CARBO	(IN							
5234-68-4		DW	HA LIFE	Н	s	3.500	MG/L	27
			HA LIFE A	Н	s	.700		27
			HA1 C	Н	S	1.000	MG/L	27
		*	HA10 C	н	S	1.000	MG/L	27
			HALT A	Н	S	3.500	MG/L	27
			HALT C	н -	S	1.000	MG/L	27
CELATO	ЭX							
	USSR	DW	MPC	Α	S	.500	MG/L	12
CESIU	1-137	****************						
	H&W	DW	MAC	H	S	50.000	BECQ/L	5
	MOE	DW	MAC	H	S	50.000	BECQ/L	1
CHINO	METHIONATE							
	NACA	GW	HGL	Ĥ	P	.300	MG/L	22
CHLOR	AMBEN							
	EPA	DW	HA LIFE	н	s	.525	MG/L	27
			HA LIFE A	н	S	.105	MG/L	27
			HA1 C	H	S	2.500	MG/L	27
			HA10 C	H	s	2.500	MG/L	27
			HALT A	H	S	.525		27
			HALT C	Н	S	.150		27
	NACA	GW	HGL	H 	Р	5.000	MG/L	22
CHLORA	ANIL							20.0
118-75-2	USSR	DW	MPC	Α	S	.010	MG/L	12

-									
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE	
	AGENCI	CATEGOR!							
	HLORDANE								
57-74-9	AWWA	DW	ELLTC	н	Р	.003	MG/L	23	
31-14-9	AWWA	DW	ELSTC	н	P	.060	MG/L	23	
	CALIFORNIA CT DUC	DW	AL	Н	S	.055		3	
	CALIFORNIA ST. DHS						NG/L **	9	
	EPA	AMBIENT	AWQC	H	S			7	
		DW	DWEL	н	S		UG/L #		
			HA1 C	Н	S	63.000		7	
			HA10 C	Н	S	63.000		7	
			MCLG	Н	Р	.000		8	
	H&W	D₩	MAC	н	S	.007		5	
	MOE	DW	MAC	Н	S		MG/L	1	
	NEW YORK	GW	GWQS	H	S	.100	UG/L	16	
	WHO	DW	GV	Н	S	.300	UG/L	4	
С	HLORIDE								
	EPA	DW	SMCL	Α .	S	250.000	MG/L	28	
	H&W	DW	AO	A	S	250.000	MG/L	5	
	MOE	DW	MDC	A	S	250.000	MG/L	1.	
	NEW JERSEY	GW	GW1	Α	S	10.000	MG/L	21	
			GW2	Α	S	250.000	MG/L	21	
	NEW YORK	AMBIENT	AWQS	Н	S	250,000.000	UG/L	16	
		DW	MCL	Н	S	250.000	MG/L	25	
		GW	GWQS	H	S	250.000	MG/L	16	
	WHO	DW	GV	Α	S	250.000	MG/L	4	
С	HLORIDES								
	EEC	DW	GL	Α	S	25.000	MG/L	6	
CHLORINATED BENZENES									
_	EPA	AMBIENT	AWQC	Н	S	488.000	UG/L	9	
CHLOROANILINE(PARA)									
106-47-8		DW	MPC	н	S	,200	MG/L	12	
100 41 0									
CHLOROBENZENE									
108-90-7		AMBIENT	AWQC	н	S	488.000	UG/L	9	
100 70 7	ber 20	DW	HA LIFE	н	s	1,510.000		7	
			HA LIFE A	н	s	300.000		7	
			HA1 C	н	S	4,300.000		7	
			HA10 C	н	S	4,300.000		7	
			HALT A	Ĥ	S	15,000.000		7	
			HALT C	Н	S	4,300.000		7	
			HALL U		3	4,300.000	00/6	,	

	CHEMICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
***	*****	******		****				
	CHLOROBENZENE							
108-90-		DW	MCLG	Н	Р	.060	1,0,100	8
	NEW YORK	AMBIENT	AWQS	Α	S	20.000		16
	USSR	DW	MPC	Н	S	.020	MG/L	12
	CHLOROETHYL ETHER (BI	(\$-2)						
	EPA	AMBIENT	AWQC	Н	S	.030	UG/L **	9
	CHLOROFORM	.,		Academic and Acade				**************************************
	EPA	DW	MCL	н	S	100.000	UG/L	11
67-66-3	EPA	AMBIENT	AWQC	н	s	100	UG/L **	• 9
	EPA	DW	MCL	Н	S	100.000		
	NAS	DW	SNARL 7	н	S	3,200.000		11
	NAS	UW	SNARL CHR	н	S	3.120		
	NEW YORK	AMBIENT	AWQS	Н	S	.200		16
	NEW TORK	GW	GWQS	н	S			16
	WHO	DW	GW45	H	S	100.000 30.000		4
	wno	DW				30.000		
1	CHLOROHEPTANOIC ACID							
	USSR	DW	MPC	Α	S	.050	MG/L	12
	CHLOROISOPROPYL(BIS-2	2)						
	EPA	AMBIENT	AWQC	Н	S	.035	MG/L	9
	CHLOROMETHYL ETHER (BIS)						
	EPA	AMBIENT	AWQC	Н	S	.004	PG/L *	* 9

	CHLORONAPHTHALENE(2)					40.000		
91-58-7	NEW YORK	AMBIENT	AWQS	С	S	10.000	UG/L	16
	CHLORONITROCYLCOHEXAN	NE						
	USSR	DW	MPC	Α	S	.005	MG/L	12
	CHLORONONANOIC ACID				********			
,	USSR	DW	MPC	Α	S	.300	MG/L	12
	CHLOROPHOS	- T				***		
	USSR	D₩	MPC	Α	S	.050	MG/L	12
	CHLOROPRENE							
	USSR	DW	MPC	Α	S	.100	MG/L	12

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
***	****	******		****			hale.	
CHLORO	PROPHAM							
	CALIFORNIA ST DHS	DW	AL	Н	S	.350	MG/L	3
CHLORO	THALONIL							
1897-45-6	EPA	DW	HA LIFE	Н	S	.525	MG/L	27
			HA1 C	Н	S	250.000		27
			HA10 C	H	S	250.000	UG/L	27
			HALT A	H	S	.525	MG/L	27
			HALT C	Н	S	150.000	UG/L	27
	NACA	GW	HGL	Н	P	.150	MG/L	22
CHLORO	OUNDECANOIC ACID							
	USSR	DW	MPC	Α	S	.100	MG/L	12

CHLORF	PYRIFOS							
	H&W	DW	MAC	Н	S	.090	MG/L	5
	NACA	GW	HGL	Н	P	.030	MG/L	22
CHROMI	IUM							
7440-47-3	EEC	DW	MADC	H	S	50.000	UG/L	6
	EPA	DW	HA LIFE	Н	S	170.000	UG/L	7
			HA LIFE A	Н	S	120.000	UG/L	7
			HA1 C	Н	S	1,400.000	UG/L	7
			HA10 C	Н	S	1,400.000	UG/L	7
			HALT A	Н	S	840.000	UG/L	7
			HALT C	Н	S	240.000	UG/L	7
			MCL	Н	S	.050	MG/L	28
			MCLG	Н	P	.120	MG/L	8
	FLORIDA ST.	DW	MCL	Н	S	.050	MG/L	2
	H&W	DW	MAC	Н	S	.050	MG/L	5
	MOE	DW	MAC	H	S	.050	MG/L	1
	NEW YORK	AMBIENT	AWQS	H	S	50.000	UG/L	16
		DW	MCL	Н	S	.050	MG/L	25
	WHO	DW	GV	н	S	.050	MG/L	4

	UM (HEX)			_	a a			
7440-47-3HEX		AMBIENT	AWQC	Н	S	50.000		9
	NEW YORK	AMBIENT	AWQS	Н	P	7.200		16
	USSR	DW	MPC	Α	S		MG/L	12
version to the property of the second				Н	S	.100	MG/L	12
CHROMI	UM (HEX) AND COMPOUND							
7440-47-3+	NEW JERSEY	GW	GW2	Α	S	.050	MG/L	21
	The second secon	- (Mr - 10)			-	.030		A.1

	MICAL							
CAS#		CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
	*****		****	*****				******
	OMIUM (HEX) AND COMPOUND							
7440-47-3+	NEW JERSEY	GW	GW3	A	S	.050	MG/L	21
CHR	OMIUM (TRI)							
7440-47-3T	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	AMBIENT	AWQC	H	S	170.000	MG/L	9
	USSR	DW	MPC	Α	S	.500	MG/L	12
CHD	OMIUM(HEX)						******	********
CHK	NEW YORK	GW	GWQS	н	s	.050	MG/L	16
CHS	5-2-1							
	USSR	DW	MPC	Α	S	10.000	MG/L	12
COB	BALT		***************					
7440-48-4		DW	MPC	Э	s	1.000	MG/L	12
COL	.I FORMS				_			20
	EPA	DW	MCL	Н	S	1.000	/100ML	28
COL	.OUR							
	EEC	DW	GL	Α	S	1.000	MG/L	6
			MADC	Α	S	20.000	MG/L	6
	EPA	DW	SMCL	Α	S	15.000	TCU	28
	H&W	DW	AO	Α	S	15.000	TCU	5
	MOE	DW	MDC	Α	S	5.000	TCU	1
	NEW YORK	DW	MCL	Α	S	15.000	TCU	25
	WHO	DW	GV	A	S	15.000	TCU	4
	INDIATIVITY							
CON	IDUCTIVITY EEC	DW	GL	Α	s	400.000	IIS/CM	6
		••••						
COP	PPER							
7440-50-8	EEC	DW	GL	A	S	100.000	UG/L	6
	EPA	DW	MCLG	н	P	1.300	MG/L	8
			SMCL	Α	S	1.000	MG/L	28
	H&₩	DW	AO	Α	S	1.000	MG/L	5
	MOE	DW	MDC	Α	S	1.000	MG/L	1
	NEW JERSEY	GW	GW1	Α	S	1.000	MG/L	21
			GW2	A	S	1.000	MG/L	21
			GW3	Α	S	1.000	MG/L	21
	NEW YORK	AMBIENT	AWQS	H	S	200.000	UG/L	16
		DW	MCL	Α	S	1.000	MG/L	25

	CHEMIC	AL							
		**							
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	MOU	REFCODE
		*****		***		*****		***	****
	COPPER								
7440-5	8-0	NEW YORK	GW	GWQS	Н	S	1.000	MG/L	16
		USSR	DW	MPC	Α	S	.100	MG/L	12
		WHO	DW	GV	Α	S	1.000	MG/L	4
******		*******							
	CRESYL	DITHIOPHOSPHATE				*1			
		USSR	DW	MPC	Α	S	.001	MG/L	12
	CROTON	ITRILE							
		USSR	DW	MPC	Н	S	.100	MG/L	12
	CRUDE	OIL (HIGH S)							
		USSR	DW	MPC	Α	S	.100	MG/L	12

	CRUDE	OIL (OTHER)							
		USSR	DW	MPC	A	S	.300	MG/L	12

	CYANAZ	INE							
21725-	46-2	EPA	DW	HA LIFE	н	S	46.000	UG/L	27
				HA LIFE A	н	S	9.000	UG/L	27
				HA1 C	н	S	.100	MG/L	27
				HA10 C	Н	S	.100	MG/L	27
				HALT A	Н	S	46.000	UG/L	27
				HALT C	H	S	13.000	UG/L	27
		H&W	DW	IMAC	Н	S	.010	MG/L	5
	CYANID	E							
		AWWA	DW	ELLTC	Н	P	.010	MG/L	23
				ELSTC	Н	P	5.000	MG/L	23
		EPA	AMBIENT	AWQC	Н	S	200.000	UG/L	9
			DW	HA LIFE	Н	S	770.000	UG/L	7
				HA1 C	H	S	220.000	UG/L	7
				HA10 C	Н	S	220.000	UG/L	7
				HALT A	Н	S	770.000	UG/L	7
				HALT C	Н	S	220.000		7
		NEW JERSEY	GW	GW1	A	S	.200	MG/L	21
				GW2	Α	S	.200	MG/L	21
				GW3	A	S	.200	MG/L	21
		NEW YORK	AMBIENT	AWQS	Н	S	100.000	UG/L	16
			GW	GWQS	Н	S	.200	MG/L	16
		USSR	DW	MPC	н	S	.100	MG/L	12
		WHO	DW	GV	H	S	.100	MG/L	4

CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	LIOM	REFCODE
	CYANID								
		H&₩	DW	MAC	н	S	.200	MG/I	5
		MOE	DW	MAC	н	S	.200		1
	CYANID	FS							
		EEC	DW	MADC	н	s	50.000	UG/L	6
		USSR	DW	MPC	н	S	.100		12
			•••					*******	
	CYANUR	IC ACID							
108-80-	-5		DW	MPC	Α	S	6.000	MG/L	12
	CYCLOH	EXANE							
110-82			DW	MPC	Н	S	.100	MG/L	12
	CYCLOH	EXANOL							
108-93	-0	USSR	DW	MPC	Н	S	.500	MG/L	12
	CYCLOH	EXANONE							
502-42	-1	USSR	DW	MPC	H	S	.200	MG/L	12
	CYCLOH	EXANONE OXIME							
		USSR	DW	MPC	H	S	1.000	MG/L	12
	CYCLOH	EXENE							
110-83	-8	USSR	DW	MPC	Н	S	.020	MG/L	12

	CYCLOH	EXYLCHLORIDE							
542-18	-7	USSR	DW	MPC	Α	S	.050	MG/L	12
	CYCLON	ITE							
121-82	- 4	USSR	DW	MPC	Н	S	.100	MG/L	12
		•••••	•••••						
	CYROMA	ZINE							
		NACA	GW	HGL	Н	P	.075	MG/L	22
			**************************			***********			
	DALAPO								
75-99-0	0	EPA	DW	HA LIFE	Н	S	2.800	MG/L	27
				HA LIFE A	н	S	.560	MG/L	27
				HA1 C	Н	S	4.300	MG/L	27
				HA10 C	Н	S	4.300	MG/L	27
				HALT A	Н	S	2.800	MG/L	27
				HALT C	Н	S	.800	MG/L	27

	• • •							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
DALAPO	NC							
75-99-0	USSR	DW	MPC	Α	S	2.000	MG/L	12
DBCP								
96-12-8	EPA	DW	HA1 C	Н	S	.200	MG/L	7
			HA10 C	Н	S	.050	MG/L	7
	HAWAII	GW	LTAL	Н	P	400.000	NG/L	19
			LTG	Н	P	40.000		19
			STAL	Н	P	1,700.000	NG/L	19

DCPA	FD.	B11			_			
1861-32-1	EPA	DM	HA LIFE	Н	S	17.500		27
			HA LIFE A	H	S	3.500		27
			HA1 C	H	S	75.000		27
			HA10 C	H	s s	75.000		27
	NACA	G₩	HALT C	H H	P	5.000		27
	naca	GW	HGL	п	P	5.000	MG/L	22
DDD							is.	
000	NEW YORK	AMBIENT	AWQS	Н	S	010	UG/L	16

DDE								
	NEW YORK	AMBIENT	AWQS	н	S	.010	UG/L	16
			.,					
DDT								
50-29-3	AWWA	DW	ELLTC	Н	P	.042	MG/L	23
		æ	ELSTC	Н	P	1.400	MG/L	23
	EPA	AMBIENT	AWQC	Н	S	.024	NG/L **	9
	H&₩	DW	MAC	Н	S	.030	MG/L	5
	MOE	DW	MAC	H	S	.030	MG/L	1
	NAS	DW	SNARL CHR	H	S	.083	UG/L **	11
	NEW YORK	AMBIENT	AWQS	H	S	.010	UG/L	16
	USSR	DW	MPC	Н	S	.100	MG/L	12
	WHO	DW	GV	Н	S	.001	MG/L	4
	ND METABOLITES	011	****		_	2.40		,2.0
50-29-3+	NEW JERSEY	GW	GW1	A	S		UG/L	21
			GW2	A	S		UG/L	21
	W		GW3	A	S	.001	UG/L	21
DEMETO	N							
DEMETO 8065-48-3		DW	MPC			010	NC.	10
3005-40-3	USSK	DW	MPC	A	S	.010	MG/L	12

	CHEMIC								
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
		*****			****	*****		MAKE.	
	DI(2-E	THYL HEXYL)							
		EPA	DW	SNAEL	Н	S	.210	MG/L	10
	DI-2-E	THYLHEXYL PHTHALATE							
		EPA	AMBIENT	AWQC	Н	S	15.000	MG/L	9
		NEW YORK	GW	GWQS	Н	S	4.200	MG/L	16
	DI-ALL	ATE							
	16-4		DW	MPC	Α	S	.030	MG/L	12
	DIAZIN	ION							
333-41		CALIFORNIA ST. DHS	DW	AL	н	S	14.000	UG/L	3
		EPA	DW	HA LIFE	Н	S		MG/L	27
				HA LIFE A	Н	S		UG/L	27
				HA1 C	Н	S		MG/L	27
				HA10 C	Н	S	.020	MG/L	27
				HALT A	Н	S	.018	MG/L	27
				HALT C	н	S	.005	MG/L	27
			^	SNAEL	Н	S	.700	UG/L	10
		H&W	DW	MAC	Н	S	.020	MG/L	5
		MOE	DW	MAC	Н	S	.014	MG/L	.1
		NACA	GW	HGL	H	P	.020	MG/L	22
		NEW YORK	GW	GWQS	Н	S	.700	UG/L	16
	DIBROM	OCHLOROPROPANE							
		CALIFORNIA ST. DHS	DW	AL	Н	S	.001	MG/L	3
		EPA	DW	MCLG	Н	P	.000	MG/L	8
	DIBUTY	L PHTHALATE							***********
84-74-	-2	EPA	AMBIENT	AWQC	Н	S	35.000	MG/L	9
			DW	SNAEL	Н	S	38.500	UG/L	10
	DIBUTY	L TIN CHLORIDE					*********		
		USSR	DW	MPC	H	S	.002	MG/L	12
	DIRUTY	LTIN DILAURATE				~~~~~~			
77-58-	.7		DW	MPC	н	s	.100	MG/L	12
	DICAND	×							
1018-0	DICAMB 00-9	E.	DW	HA LIFE	H	S	46.000	LIC /I	27
1718-0	70~9	EFM	DW	HA LIFE A		S	9.000		27 27
				HA LIFE A	H	S	.300		27
				nAT C	n	3	.300	MG/L	21

	CHEMIC	AL							
CAS#		 AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****		AGENO!		****			*****		
	DICAMB	A							
1918-00	0-9	EPA	DW	HA10 C	Н	S	.300	MG/L	27
				HALT A	H	S	50.000	UG/L	27
				HALT C	H	S	13.000	UG/L	27
				SNAEL	H	S	.440	UG/L	10
		H&W	DW	MAC	Н	S	.120	MG/L	5
		NEW YORK	GW	GWQS	Н	S	.440	UG/L	16
	DICHLO	NF							
117-80		USSR	DW	MPC	Н	S	.250	MG/L	12
	DICHLO	ROANILINE(2,5)							
95-82-9	9	USSR	DW	MPC	Α	S	.050	MG/L	12
		DOMEST THE 17 / 3							
95-76-		ROANILINE(3,4) USSR	DW	MPC	A	S	050	MG/L	12
93-10-		usak							
	DICHLO	ROBENZENE(1,2)							
95-50-		CALIFORNIA ST. DHS	DW .	AL	Α	S	10.000	UG/L	3
					Н	S	130.000	UG/L	3
		EPA	DW	HA LIFE	Н	S	3.130	MG/L	7
				HA LIFE A	H	S	620.000	UG/L	7
				HA1 C	Н	S	8.930		7
				HA10 C	Н	S	8.930	MG/L	7
				HALT A	Н	S	31.250		7
				HALT C	Н	S			7
			441	MCLG	Н	P	.620	MG/L	8
		H&W	DW	AO	A	S	.003		5
			NII.	MAC	H	S	.200		5
		USSR	DW	MPC	Α	S	.002	MG/L	12
	חוראות	ROBENZENE(1,3)							
541-73	-1		DW	AL	A	S	20.000	UG/L	3
541 15		ONE TOWN OF THE			н	s	130.000		3
		EPA	DW	HA LIFE	н	S	3.750		7
				HA LIFE A	Н	S	620.000		7
				HA1 C	Н	S	8.930	MG/L	7
				HA10 C	Н	S	8.930		7
				HALT A	Н	s	31.250		7
				HALT C	н	S	8.930		7
		NEW YORK	AMBIENT	AWQS	H	S	20.000		16
	DICHLO	ROBENZENE(1,4)							
106-46	-7	CALIFORNIA ST. DHS	DW	AL	Α	S	.300	UG/L	3

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	RE	FCODE
****								**	
DICHL	OROBENZENE(1,4)								
106-46-7	CALIFORNIA ST. DHS	DW	AL	н	S	130.000	UG/L		3
	EPA	DW	HA LIFE	Н	S	3.750			7
			HA LIFE A	н	S	.075			7
			HA1 C	н	S	10.700			7
			HA10 C	н	S	10.700			7
			HALT A	н	s	37.500			7
			HALT C	н	S	10,700			7
			MCL	н	S	75.000			20
			MCLG	Н	s	750.000			8
	н&₩	DW	AO	A	s	.001			5
	,	2.1	MAC	Н	S	.005			5
	NEW YORK	AMBIENT	AWQS	н	s	30,000			16
	USSR	DW	MPC	A	S		MG/L		12
	000K	DW	MEG		3	.002	MU/L		1.2
חזרוו	OROBENZENES								
Dichi	EPA	AMDICHT	AWQC	10-		/00.000	110.41		0
	EPM	AMBIENT	AWQU	Н	S	400.000	OG/L		9
DICUI	OROBENZIDINE	,							
DICHL	EPA	AMBIENT	AWQC	Н	s	010	110.71	**	9
	EPM	AMDIENI	AWGC	n	3	.010	UG/L		y
חזכשו	OROBUTENE								
DICHE	USSR	DW	MPC	٨	c	050	MC /I		12
	USSK	DW	MPC	Α	S	.070	MG/L	described to the second	12
DICHI	OROCYCLOHEXANE						22222		
DICHE	USSR	DW	MPC	Λ.	S	020	MC /I		12
	USSK	DW	MPC	Α	3	.020	MG/L		12
DICHI	OROETHANE								
DICHL	USSR	NII	MDC			3 000	NO (I		12
	USSK	DW	MPC	Α	S	2.000	MG/L		12
0.7000	0005711411574 35								
	OROETHANE(1,2)	B. C.				4 000			-
107-06-2	CALIFORNIA ST. DHS	DW	AL	Н	S	1.000			3
	EPA	AMBIENT	AWQC	Н	S	.940	15	**	9
		DW	HA1 C	Н	S	740.000			7
			HA10 C	Н	S	740.000			7
			HALT A	Н	S	2,600.000	UG/L		7
			HALT C	Н	S	740.000	UG/L		7
			MCL	Н	S	5.000	UG/L		20
			MCLG	H	S	.000	UG/L		8
	FLORIDA ST.	DW	MCL	Н	S	3.000	UG/L		2
	NAS	DW	SNARL CHR	Ή	S	1.420	UG/L	**	11
	NEW YORK	AMBIENT	AWQS	Н	S	.800	UG/L		16

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	LIOM	REFCODE
					31A103	VALUE		KETCODE
	DICHLOROETHANE(1,2)							
107-06-		DW	GV	н	s	10.000	UG/I	4
	DICHLOROETHYLENE(1,1)							
75-35-4		DW	AL	н	S	.100	UG/L	3
	EPA	DW	HA LIFE	Н	S	350.000		7
			HA LIFE A	Н	S	7.000		7
			HA1 C	н	S	2,000.000		7
			HA10 C	Н	S	1,000.000		7
			HALT A	Н	S	3,500.000		7
			HALT C	Н	S	1,000.000		7
			MCL	Н	S	7.000		20
			MCLG	Н	S	7.000		8
	WHO	DW	GV	н	S		UG/L	4
	DICHLOROETHYLENE(1,2-CIS)							
156-59-	2 EPA	DW	HA LIFE	Н	S	.350	MG/L	7
			HA LIFE A	H	S	70.000	UG/L	7
			HA1 C	Н	S	4.000	MG/L	7
			HA10 C	Н	S .	1.000	MG/L	7
			HALT A	Н	S	3.500	MG/L	7
			HALT C	Н	S	1.000	MG/L	7
			MCLG	Н	P	.070	MG/L	8
	DICHLOROETHYLENE(1,2-TRANS	S)						
156-60-	5 EPA	DW	HA LIFE	H	S	350.000	UG/L	7
			HA LIFE A	H	S	70.000	UG/L	7
			HA1 C	Н	S	20,000.000	UG/L	7
			HA10 C	Н	S	1,430.000	UG/L	7
			HALT A	Н	S	5,000.000	UG/L	7
			HALT C	Н	S	1,430.000	UG/L	7
			MCLG	H	P	.070	MG/L	8

	DICHLOROETHYLENES							
	EPA	AMBIENT	AWQC	Н	S	.033	UG/L *	** 9
	DICHLOROHYDRIN							
	USSR	DW	MPC	A	S	1.000	MG/L	12
	DICHLOROPHENOL				_	***	100 mg	
	USSR	DW	MPC	Α	S	.002	MG/L	12
	DICHLODODRENOL(2 /)							
120-83-	DICHLOROPHENOL(2,4) 2 EPA	AMBIENT	AUOC	U		7 000	MC /I	^
120-03-	C EPM	AMDICNI	AWQC	H	S	3.090	MG/L	9

	CHEMIC								
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
	DICHLO	ROPHENOL(2,4)							
120-83-		H&W	DW	AO	Α	S	.300	UG/L	5
				MAC	Н	S	.900	MG/L	5
		NEW YORK	AMBIENT	AWQS	A	S	.300	UG/L	16
	DICHLO	ROPROPANE(1,2)							
78-87-5	5	CALIFORNIA ST. DHS	DW	AL	Н	S	10.000	UG/L	3
		EPA	DW	HA10 C	Н	S	90.000	UG/L	7
				MCLG	Н	P	.006	MG/L	8
	DICHLO	ROPROPENE							
		EPA	AMBIENT	AWQC	Н	S	87.000	UG/L	9
		ROPROPENE(1,3)							
542-75-		EPA	DW	HA LIFE	H	S	11.000	UG/L	27
				HA1 C	Н	S	30.000	UG/L	27
				HA10 C	Н	S	30.000	UG/L	27
				HALT A	Н	S	105.000	UG/L	27
				HALT C	Н	S	30.000	UG/L	27
	DICHLO	ROVINYL DIMETHYL PHOSP	HATE						
		USSR	DW	MPC	Α	S	1.000	MG/L	12
	DICLOF	OP-METHYL							
		₩&W	DW	MAC	H	S	.009	MG/L	5
	DICYAN	ODIAMIDE							
461-58-		USSR	DW	MPC	Α	S	10.000	MG/L	12
	DIELDR								
60-57-1		AWWA	DW	ELLTC	Н	P	.017	MG/L	23
				ELSTC	Н	P	.050	MG/L	23
		CALIFORNIA ST. DHS	DW	AL	н	S	.050	UG/L	3
		EPA	AMBIENT	AWQC	н	S	.071	NG/L	** 9
			DW	HA LIFE	H	S	1.750	UG/L	27
				HA1 C	H	S	.500	UG/L	27
				HA10 C	н	S	.500	UG/L	27
				HALT C	H	S	.500	UG/L	27
		NAS	DW	SNARL CHR	Н	S	3.840	NG/L	11
	DIETHA	NOLAMINE							
111-42-		USSR	DW	MPC	A	S	.800	MG/L	12

	CHEMICA	AL							
CAS#		AGENCY		LIMIT	LTYPE	STATUS			
* * * *		ETHER				*****	V		
60-29-	7		DW	SG	Α	P	.300	MG/L	15
		USSR	DW	MPC	A	S	.300	MG/L	12
	DIETHY	L ETHER MALEATE USSR	DW	MPC	н	s	1.000	MG/L	12
	DIETHY	L MERCURY USSR	NU	MPC	н	s	.100	UG/I	12
		U33K							
	DIETHY	L PHOSPHORODITHOIC ACI	D						
		USSR	DW	MPC	Α	S	.200		12
		L PHTHALATE							
	2	EPA		AWQC	н	S	350.000	MG/L	9

100-80	DIETHY		nu	MPC	н	s	2.000	MG/L	12
		LENEGLYCOL			**				
111-46	5-6	USSR		MPC	H	S	1.000	MG/L	12
		LTIN DICAPRYLATE							
		USSR	DW	MPC	Н	S	.010	MG/L	12
******			****************						**********
	DIISOB	UTYLAMINE USSR	DW	MPC	Α	S	.070	MG/L	12

		ROPYLAMINE		400	716	•	500	MG/L	12
108-18	3-9	USSR	DW	MPC	Н	S		MG/L	
	DIISOP	ROPYLBENZENE(PARA)							
		USSR	DW	MPC	H	S	.050	MG/L	12
	DIKOTE	· · · · · · · · · · · · · · · · · · ·							
	DIKUIL	USSR	DW	MPC	Α	S	.250	MG/L	12
******						*********	*******		
40 54	DIMETH		DU	AL	н	s	140	MG/L	3
60-51-	.)	CALIFORNIA ST. DHS H&W	DW DW	IMAC	H	S		MG/L	. 5
		*****					******		
	DIMETH			WIL 2.4					
67239-	16-1	EPA	DW	HA LIFE	Н	S	10.500	MG/L	27

USSR

DW

PALIS SYSTEM PARAMETER REPORT---05/12/88

CHEMICAL LTYPE STATUS VALUE UOM CATEGORY LIMIT REFCODE AGENCY CAS# - - - -____ DIMETHRIN HA LIFE A Н S 2.100 MG/L 27 DW 67239-16-1 EPA HA1 C H 12.000 MG/L 27 S HA10 C 12.000 MG/L 27 H S HALT A 42.000 MG/L 27 HALT C 12.000 MG/L DIMETHYL PHENOL(2,4) .400 MG/L 3 105-67-9 CALIFORNIA ST. DHS AL Н S DIMETHYL PHTHALATE AWQC 313.000 MG/L AMBIENT Н S ______ DIMETHYL TEREPHTHALATE MPC S 1.500 MG/L 12 120-61-6 USSR DIMETHYLAMINE .100 MG/L H 12 DW MPC S 124-40-3 USSR DIMETHYLDIOXANE MPC .005 MG/L Н DW DIMETHYLDITHIOCARBAMATE MPC S .500 MG/L 12 USSR DIMETHYLDITHIOPHOSPHORIC ACID MPC S .100 MG/L USSR DIMETHYLPHENYLCARBINOL .050 MG/L MPC 12 S DW DINITRO-O-CRESOL(2,4) AWQC 13.400 UG/L 9 H S AMBIENT DINITROBENZENE .500 MG/L 12 DW MPC S USSR DINITROCHLOROBENZENE .500 MG/L 12 MPC A S USSR DINITRONAPHTHALENE

MPC

A S

1.000 MG/L

12

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE	
		******	****			****			
*	DINITROPHENOL								
	NIOSH	DW	SNARL CHR	H	S	.110	MG/L	24	
	************************					*********			
	DINITROPHENOL(2,4)				_	070			
51-28-	5 USSR	DW	MPC	H	S	.030	MG/L	12	
	DINITRODUENOI C								
	DINITROPHENOLS EPA	AMBIENT	AWQC	н	s	70.000	UG/L	9	
	EFM	Andrea							
	DINITROTOLUENE(2,4)								
	EPA	AMBIENT	AWQC	H	S	.110	UG/L	** 9	
	DINOSEB								
88-85-	7 EPA	DW	HA LIFE	н	S	35.000	UG/L	27	
			HA LIFE A	Н	S	7.000	UG/L	27	
			HA1 C	Н	S	.300	MG/L	27	
			HA10 C	H	S	.300	MG/L	27	
			HALT A	Н	S	35.000	UG/L	27	
			HALT C	Н	S	10.000	UG/L	27	
*****					*****				
	DIOXANE(PARA)							_	
	EPA	DW	HA1 C	н	S	4.120			
~			HA10 C	Н	S	.412	MG/L	7	

	DIOXIN(D2CDD)	NII	IMAC	н	D	15,000.000	DC /I	19	
	MOE	DW	IMAC	n. 	. F				
	DIOXIN(H6CDD)								
		DW	IMAC	н	P	150.000	PG/L	++ 18	1
	HOL.								
	DIOXIN(H7CDD)		1						
	MOE	DW	IMAC	Н	P	1,500.000	PG/L	++ 18	ś
	DIOXIN(M1CDD)								
	MOE	DW	IMAC	H	P	150,000.000	PG/L	++ 18	ŝ
	DIOXIN(OSCDD)								
	MOE	DW	IMAC	Н	Ρ.	150,000.000	PG/L	++ 18	5
*****									10
	DIOXIN(P5CDD)								
	MOE	DW	IMAC	Н	P	150.000	PG/L	++ 18	5
									ř
	DIOXIN(T3CDD)		144.0			1 500 000	DC /	44 40	۵
	MOE	DW	IMAC	н	Р	1,500.000	PG/L	++ 18	3

040#			01750004							
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REF	CODE
	D. LOVIII	· · · · · · · · · · · · · · · · · · ·	*****	*****						
	DIOXIN	(T4CDD)								
		MOE	DW	IMAC	Н	P	1,500.000	PG/L	++	18
*****			******************							
		(T4CDD-2,3,7,8)								
1746-0	01-6	EPA	AMBIENT	AWQC	Н	S	.010	PG/L	**	9
			DW	DWEL	Н	S	.035	NG/L		7
				HA1 C	Н	S	1.000	NG/L		7
				HA10 C	H	S	.100	NG/L		7
4				HALT A	H	S	.035	NG/L		7
9		ë .		HALT C	H	S	.010	NG/L		7
		MOE	DW	IMAC	H	P	15.000	PG/L	++	18
		NEW YORK	GW	GWQS	H	S	.035	NG/L		16
			• • • • • • • • • • • • • • • • • • • •							
	DIOXIN	(TCDD)								
		EPA	DW	SNAEL	Н	S	.035	NG/L		10
	DIPHEN.	AMID								
957-51	1-7.	CALIFORNIA ST. DHS	DW	AL	н	s	.040	MG/L		3
		EPA	DW	HA LIFE	Н	S	1.000			27
		×		HA LIFE A	Н	S	.200			27
				HA1 C	н	S	.300			27
				HA10 C	н	S	.300			27
				HALT C	н	s	.300			
							.500	MG/L		27
	DIPHEN	YLHYDRAZINE								
122-66		EPA	AMBIENT	AWQC	Н	S	/2 000	110.71	**	_
				ANGC	.n 		42.000	NG/L		9
	DIPHEN	YLOLPROPANE								
4	DITTIEN	USSR	DW	MPC			040			
				MPC	A	S	.010	MG/L		12
	DIDDOD	YLAMINE								
142-84		USSR	NI	una	4	_				
142-04	K- K	USSK	DW	MPC	A	S	.500	MG/L		12
	DIGUAT									
0F 00	DIQUAT		NII							
65-00-	.7	H&W	DW	MAC	H	S	.070	MG/L		5
	DIOUAT	DIDDOUIDE								
	DIQUAI	DIBROMIDE								
		NACA	GW	HGL	Н	P	.050	MG/L		22
	DISODI	JM MONOALKYLSULFOSUCCII								
		USSR	DW	MPC	A	S	.500	MG/L		12
	DISULF									
298-04	-4	EPA	DW	HA LIFE	H	S	1.000	UG/L		27
				w						

CHEMIC								
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
DISULF		* * * * * * * * * * * * * * * * * * * *				*****		
298-04-4		DW	HA LIFE A	Н	S	.300	UG/L	27
			HA1 C	Н	S	10.000	UG/L	27
			HA10 C	H	S	10.000	UG/L	27
			HALT A	Н	S	9.000	UG/L	27
			HALT C	H	S	3.000	UG/L	27
			SNAEL	H	S	.035	UG/L	10
	NACA	GW	HGL	н	Р	.025	MG/L	22
DITHAN	NE							
	NEW YORK	GW	GWQS	н	S	1.750	UG/L	16
DIURO	N							
330-54-1	EPA	DW	HA LIFE	H	S	.070	MG/L	27
			HA LIFE A	Н	S	.014	MG/L	27
			HA1 C	н	S	1.000	MG/L	27
			HA10 C	н	S	1.000	MG/L	27
			HALT A	Н	S	.880	MG/L	27
		y	HALT C	H .	S	.250		27
	H&W	DW	MAC	Н	S	.150	MG/L	5
	NACA	GW	HGL	H	P	.063	MG/L	22
	USSR	DW	MPC	Α	S	1.000	MG/L	12
DRY RE	ESIDUE							
	EEC	DW	MADC	Α	S	1,500.000	MG/L	6
DYPHYL	LLINE							
479-18-5	NEW YORK	AMBIENT	AWQS	С	S	50.000	UG/L	16
ENDOSL	ULFAN							
115-29-7		AMBIENT	AWQC	н	S	74.000	UG/L	9
	NACA	GW	HGL	н	Р		MG/L	22
ENDOTH								
145-73-3		DW	HA LIFE	н	s	.700	MG/L	27
			HA LIFE A	н	S	.140	MG/L	27
			HA1 C	Н	S	.800	MG/L	27
			HA10 C	Н	S	.800	MG/L	27
			HALT C	Н	S	.200	MG/L	27
ENDRIM	N							
72-20-8	AWWA	DW	ELLTC	Н	P	.001	MG/L	23

	HEMICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****	*****	******		44344		****	***	*****
	NDRIN							
72-20-8	AWWA	DW	ELSTC	Н	Р		MG/L	23
	EPA	AMBIENT	AWQC	Н	S	1.000	101 SUMM 1551	9
		DW	HA LIFE	Н	S	1.600		7
			HA LIFE A	н	S		UG/L	7
			HA1 C	н	S	20,000	Company and	7
			HA10 C	н	S	5.000		7
			HALT A	н	S	16.000		7
			HALT C	Н	S	4.500		7
	FLORIDA ST.	DW	MCL	Н	S		UG/L	28
	MOE	DW	MCL	Н	S		UG/L	2
	NEW JERSEY	GW	MAC GW1	н	S		UG/L	1
	NEW JERSET	GW	GW2	A	S		UG/L	21
			GW3	A	S		UG/L	21
	NEW YORK	AMBIENT		A	S		UG/L	21
	NEW TORK	DM DM	AWQS	н	S		UG/L	16
		DW	MCL	Н	S	.200	UG/L	25
EF	PICHLOROHYDRIN							
106-89-8		DW	DWEL	н	S	.070	MG/L	7
		- 22	HA1 C	н	S		MG/L	7
			HA10 C	Н	S		MG/L	7
			HALT A	н	S		MG/L	7
			MCLG	Н	P		MG/L	8
	USSR	DW	MPC	Н	S		MG/L	12
F1	THALFLURALIN		****	*******		**********		
E1	NACA	CII	Uer			2 250		
	NACA	GW	HGL	Н	Р	3.750	MG/L	22
E1	THER SULFONATE							
	USSR	DW	MPC	A	S	.200	MG/L	12
	TUTOU					***		
	THION CALIFORNIA ST. DHS	DW	Al	u	c	075	NO 11	-
JOJ 12 2	NACA ST. DIIS	GW	AL HGL	H	S P		MG/L	3
	NACA	uw	nuL			.050	MG/L	22
ET	THYL ACRYLATE							
140-88-5		DW	MPC	Α	S	.005	MG/L	12

	THYL BENZENE							
100-41-4	EPA	AMBIENT	AWQC	Н	S	1.400		9
		DW	HA LIFE	Н	S	3,400.000	UG/L	7

	CHEMIC								
J. J. W				v December					
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****						*****	****		******
		BENZENE							
100-41-	4	EPA	DW	HA LIFE A	Н	S	680.000		7
				HA1 C	H	S	32,000.000		7
				HA10 C	Н	S	3,200.000	UG/L	7
				HALT C	Н	S	.970	MG/L	7
				MCLG	Н	P	.680	MG/L	8
		H&W	DW	AO	Α	S	2.400	UG/L	5
		USSR	DW	MPC	Α	S	.010	UG/L	12
	ETHYLAN	MINE							
75-04-7			DW	MPC	A	S	500	MG/L	12
	ETHYLE								
74-85-1			DW	MPC	Α	S	.500	MG/L	12
		NE CHLOROHYDRIN			******				
107-07-		AWWA	DW	ELSTC	н	Р	2.000	MG/L	23

	ETHYLE	NE DIBROMIDE							
106-93-	4	CALIFORNIA ST. DHS	DW	AL	Н	S	.050	UG/L	3
		EPA	DW	HA1 C	Н	S	.008	MG/L	7
				HA10 C	Н	S	.008	MG/L	7
				MCLG	Н	P	.000	MG/L	8
		FLORIDA ST.	DW	MCL	Н	S	.020	UG/L	2
		HAWAII	GW	LTAL	H	P	20.000	NG/L	19
				LTG	Н	P	2.000	NG/L	19
				STAL	Н	P	85.000	NG/L	19
	ETHYLEN	NE GLYCOL		******					
107-21-			DW	DWEL	н	s	35,000.000	110.71	7
101 21			DW	HA LIFE A	Н	S	100 400 1 1 1 1 1 1 1		7
				HA1 C	Н	S	7,000.000		7
				HA10 C		S	19,000.000		7
				HALT A	Н	S	5,500.000 19,250.000		7
				HALT C	Н	S			7
		USSR	DW	MPC	н	S	5,500.000 1.000		7 12
							1.000		
		NE THIOUREA							
96-45-7		EPA	DW	HA LIFE	H	S	1.050	UG/L	27
				HA1 C	Н	S	.250	MG/L	27
				HA10 C	Н	S	.250	MG/L	27
				HALT A	H:	S	.440	MGL	27

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
No. of	*****	******	****	****				
ETHYL	ENE THIOUREA							
96-45-7	EPA	DW	HALT C	Н	S	.125	MG/L	27
***********		*******			******			
ETHYL	MERCURIC CHLORIDE							
107-27-7	USSR	DW	MPC	н	S	.100	UG/L	12

FECAL	COLIFORMS							
	EEC	DW	MADC	H	S	.000	COUNT/ML	6
	H&W	DW	MAC	Н	S	.000	COUNT/ML	28
	• • • • • • • • • • • • • • • • • • • •			*****				
FECAL	STREPTOCOCCI							
	EEC	DW	MADC	Н	S	.000	COUNT/ML	6
FENAM	IPHOS							
22224-92-6	EPA	DW	HA LIFE	Н	S	9.000	UG/L	27
			HA LIFE A	Н	S	1.800	UG/L	27
			HA1 C	Н	S	9.000	UG/L	27
			HA10 C	Н	S	9.000	UG/L	27
			HALT A	H	S	18.000	UG/L	27
			HALT C	H	S	5.000	UG/L	27
	NACA	GW	HGL	н	P	.025	MG/L	22
	NACA	GW		н			MG/L	
	NACA LFOTHION	GW		Н			MG/L	
	LFOTHION	en en		н н		.025	MG/L	
FENSU	LFOTHION NACA	***************************************	HGL .		P	.025	********	22
FENSU 115-90-2 FENTH	LFOTHION NACA	***************************************	HGL .		P	.025	********	22
FENSU 115-90-2	LFOTHION NACA	***************************************	HGL		P	.025	MG/L	22
FENSU 115-90-2 FENTH	LFOTHION NACA	GW	HGL	Н	P	.025	MG/L	22
FENSU 115-90-2 FENTH	LFOTHION NACA ION NACA	GW	HGL	Н	P	.025	MG/L	22
FENSU 115-90-2 FENTH 55-38-9	LFOTHION NACA ION NACA	GW	HGL	Н	P	.025	MG/L MG/L	22
FENSU 115-90-2 FENTH 55-38-9	LFOTHION NACA ION NACA	GW	HGL HGL	н	P P	.025	MG/L MG/L	22
FENSUI 115-90-2 FENTH 55-38-9 FERBAI	LFOTHION NACA ION NACA M NEW YORK CYANIDES	GW	HGL HGL	н	P P	.025	MG/L MG/L	22
FENSUI 115-90-2 FENTH 55-38-9 FERBAI	LFOTHION NACA ION NACA M NEW YORK	GW	HGL HGL GWQS	н	P P S	.025	MG/L MG/L UG/L	22
FENSUI 115-90-2 FENTH 55-38-9 FERBAI	LFOTHION NACA ION NACA M NEW YORK CYANIDES	GM GM	HGL HGL GWQS	н	P P S	.025	MG/L MG/L UG/L	22 22 22 16
FENSU 115-90-2 FENTH 55-38-9 FERBAL	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR	GM GM	HGL HGL GWQS	н	P P S	.025	MG/L MG/L UG/L	22 22 22 16
FENSU 115-90-2 FENTH 55-38-9 FERBAL	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR	GM GM	HGL HGL GWQS	н	P P S	.025 .018 .075 4.180	MG/L MG/L UG/L	22 22 22 16
FENSUI 115-90-2 FENTH 55-38-9 FERBAI FERRO	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR LORALIN NACA	GM GM	HGL HGL GWQS	н н н	P P S	.025 .018 .075 4.180	MG/L MG/L UG/L MG/L	22 22 22 16
FENSUI 115-90-2 FENTH 55-38-9 FERROI FLUCH	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR LORALIN NACA	GM GM	HGL HGL GWQS	н н н	P P S	.025 .018 .075 4.180	MG/L MG/L UG/L MG/L	22 22 22 16
FENSUI 115-90-2 FENTH 55-38-9 FERBAI FERRO	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR LORALIN NACA	GM GM	HGL HGL GWQS MPC HGL HA LIFE	н н н	P P S S	.025 .018 .075 4.180 1.250	MG/L MG/L MG/L MG/L MG/L	22 22 22 16
FENSUI 115-90-2 FENTH 55-38-9 FERROI FLUCH	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR LORALIN NACA	GM GM	HGL HGL GWQS MPC HGL HA LIFE HA LIFE A	H H H	P P S S S S	.025 .018 .075 4.180 1.250 .030	MG/L MG/L MG/L MG/L MG/L MG/L MG/L	22 22 22 16 12
FENSUI 115-90-2 FENTH 55-38-9 FERROI FLUCH	LFOTHION NACA ION NACA M NEW YORK CYANIDES USSR LORALIN NACA	GM GM	HGL HGL GWQS MPC HGL HA LIFE HA LIFE A HA1 C	н н н	P P S S S S	.025 .018 .075 4.180 1.250	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	22 22 22 16 12 22

	C	H	E	M	I	C	A	L	
	-		-	-	-	4	-		
CAS#								A	G

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	LIOM	REFCODE
	******							RETCODE
FLUOMI	ETURON							
2164-17-2		D₩	HALT A	н	s	5.300	MG/L	27
			HALT C	Н		1.500		27

FLUOR	ANTHENE							
206-44-0	EPA	AMBIENT	AWQC	H	S	42.000	UG/L	9
FLUOR	IDE				*********			
	EEC	DW	MADC	A	s	700.000	UG/L	6
	EPA	DW	MCL	Н	S	4.000		28
			SMCL	Α	s	2.000		28
	H&W	DW	MAC	Н	s	1.500		5
	MOE	DW	MAC	н	s	2.400		1
	NEW JERSEY	GW	GW1	Α	S	2.000	MG/L	21
			GW2	A	S	2.000	MG/L	21
			GW3	Α	S	2.000	MG/L	21
	NEW YORK	AMBIENT	AWQS	н	S	1,500.000	UG/L	16
		DW	MCL	Н	S	2.200	MG/L	25
		GW	GWQS	Н	S	1.500	MG/L	16
	USSR	DW	MPC	Н	S	1.500	MG/L	12
	WHO	DW	GV	Н	S	1.500	MG/L	4
FLUOR	INE							
7782-41-4	USSR	DW	MPC	н	S	1.500	MG/L	12

FOAMI	NG AGENTS							
	EPA	DW	SMCL	Α	S	.500	MG/L	28
	NEW JERSEY	GW	GW1	Α	S	.500	MG/L	21
			GW2	Α	S	.500	MG/L	21
			GW3	Α	S	.500	MG/L	21
	NEW YORK	GW	GWQS	Н	S	.500	MG/L	16
FOLPE	T							
133-07-3	EPA	DW	SNAEL	Н	s	.056	MG/L	10
	NEW YORK	GW	GWQS	Н	S	56.000	UG/L	16
FONOF	 os							**********
944-22-9		DW	HA LIFE	н	S	70.000	UG/L	27
	a-11		HA LIFE A	н	S	14.000		27
			HA1 C	н	S	20.000		27
			HA10 C	н	s	20.000		27
			HALT A	H	s	70.000		27
					-			-,-

	•••							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

FONOF	os							
944-22-9	EPA	DW	HALT C	н	S	20.000	UG/L	27
FORMA	LDEHYDE							
50-00-0	USSR	DW	MPC	H	S	.500	MG/L	12

FURAN								
110-00-9	USSR	DW	MPC	Н	S	.200	MG/L	12
************			*************	*****			*****	
FURAN	(D2CDF)							
	MOE	DW	IMAC	Н	P	150,000.000	PG/L ++	18
	· · · · · · · · · · · · · · · · · · ·							
FURAN	(H6CDF)							
	MOE	DW	IMAC	Н	Р	150.000	PG/L ++	18
FUDAN								
FUKAN	(H7CDF)	BU .	****		_	2 882 382		
	MOE	DW	IMAC	Н	Р	1,500.000	PG/L ++	18
ELIDANI	(M1CDF)							
FURAN	MOE	DW	IMAC	n		150 000 000	DO //	10
			INAC	Н	Р	150,000.000	PG/L ++	18
FLIRAN	(08CDF)							
T Olone	MOE	DW	IMAC	н	D	150,000.000	DC /I	10
						150,000.000	PG/L **	10
FURAN	(P5CDF)							
	MOE	DW	IMAC	н	P	30,000	PG/L ++	18

FURAN	(T3CDF)							
	MOE	D₩	IMAC	н	P	1,500.000	PG/L ++	18
		***************************************				.,,		
FURAN ((T4CDF)							
	MOE	DW	IMAC	H	P	30.000	PG/L ++	18
FURFUE	ROL							
	USSR	DW	MPC	Α	S	1.000	MG/L	12

GLYPHO		*						
1071-83-6	EPA	DW	HA LIFE	Н	S	3.500	MG/L	27
			HA LIFE A	Н	S	.700	MG/L	27
		151	HA1 C	Н	S	17.500	MG/L	27
			HA10 C	Н	S	17.500	MG/L	27
	H&W	DW	IMAC	Н	S	.280	MG/L	5

	CHEMIC	AL							
CAS#		AGENCY	CATEGORY	LIMIT	ITVDE	STATUS	VALUE	LIOM	DEECODE
		AGENC!	CATEGORY			314103	VALUE	004	REFCODE
	GROSS	ALPHA RADIATION							
	anooo	EPA	DW	MCL	н	s	15.000	PCT/I	28
			AMBIENT	AWQS	н	s	15.000		16
	GROSS	BETA RADIATION							
			AMBIENT	AWQS	н	s	1,000.000	PCI/L	16
	HALOME	THANES							
		EPA	AMBIENT	AWQC	H	S	.190	UG/L **	9
	нсв								
		EPA	DW	SNAEL	H	S	.350	UG/L	10

	HEPTAC	HLOR							
76-44-8	8	AWWA	DW	ELLTC	Н	Р	.018	MG/L	23
				ELSTC	H	Р	.100	MG/L	23
		CALIFORNIA ST. DHS	DW	AL	H	S	.020	UG/L	3
		EPA	AMBIENT	AWQC	н	S	.280	NG/L **	9
			DW	DWEL	н	S	17.500	UG/L	7
				HA1 C	Н	S	.010	MG/L	7
				HA10 C	Н	S	.010	MG/L	7
				HALT C	H	S	1.500	UG/L	7
				MCLG	н	Р	.000	MG/L	8
		USSR	DW	MPC	Н	S	.050	MG/L	12
		WHO	DW	GV	H	S	.100	UG/L	4
		HLOR & HEPTACHLOR EPOX							
76-44-8	8+HE	H&W	DW	MAC	Н	S		MG/L	5
		MOE	DW	MAC	Н	S		MG/L	1
			AMBIENT	AWQS	Н	S		UG/L	16
		MHO	DW	GV	н	S	.100	UG/L	4
4010 5		HLOR EPOXIDE		ei i ea	·	_	040		2.7
1042-5	7-3	AWWA	DM	ELLTC	Н	P		MG/L	23
			A	ELSTC	н	P		MG/L	23
		CALIFORNIA ST. DHS	DW	AL	H	S		UG/L	3
		EPA	DW	DWEL	H	S		UG/L	7
				HA1 C	н	S		MG/L	7
				HA10 C	н	S		MG/L	7
				HALT C	H	S	1.500		7
				MCLG	Н	Р	.000	MG/L	8
	UEDTY:	AL COUOL							
	HEPITL	ALCOHOL	DU	MDC	u .	c	005	MC /I	12
		USSR	DW	MPC	Н	S	.005	MG/L	12

	CHEMICAL							

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	MOU	REFCODE
****	*****	******		****	Alexand -	*****	***	
	HEXACHLORANE							
	USSR	DW	MPC	Α	S	.020	MG/L	12
	HEXACHLOROBENZENE		W.C. September	60-00		and the same of th		
118-74-	1 EPA	AMBIENT	AWQC	Н	S		NG/L **	
		DW	DWEL	Н	S	28.000		7
			HA1 C	Н	S	50.000		7
			HA10 C	Н	S	50.000		7
			HALT A	Н	S	175.000		7
			HALT C	н	S	50.000	UG/L	7
	NEW YORK	GW	GWQS	н	S	.350	UG/L	16
	USSR	DW	MPC	н	S	.050	MG/L	12
	WHO	DW	GV	н	S	.010	UG/L	4

	HEXACHLOROBUTAD I ENE							
87-68-3		AMBIENT	AWQC	н	S		UG/L **	9
	NEW YORK	AMBIENT	AWQS	н	S		UG/L	16
	USSR	DW	MPC	Α	S	.010	MG/L	12
	UEVACUI ODODUTANE	*****************						
	HEXACHLOROBUTANE				nut:		- 4	
danili da mende	USSR	DW	MPC	Α	S	.010	MG/L	12
	UEVACUI ODOCVCI ODEUTAD	tene		*********				********
77-47-4	HEXACHLOROCYCLOPENTAD		*****		_			_
11-41-4		AMBIENT	AWQC	н.	S	206.000	-10 210 5 1001	9
	NEW YORK	AMBIENT	AWQS	Н	S	1.000	-10.00	16
W 2012 20 10 10 10 10 10 10 10 10 10 10 10 10 10	USSR	DW	MPC	Α	\$.001	MG/L	12
	HEXACHLOROETHANE							
67-72-1		AMBIENT	AWQC			1 000	116.41	
01-12-1	USSR	DM	MPC	H A	s s	1.900		9
		UW	mrc	^	3	.010	MG/L	12
	HEXACHLOROPHENE							
	EPA	DW	SNAEL	н	s	750	110.71	10
70 30 4	NEW YORK	GW .	GWQS	Н	S	.350 7.000		10 16
	NEW TORK	GW	GMGS	п	3	7.000	UG/L	10
	HEXAMETHYLENE DIAMINE				2,2,0,2,0,000,000			
	4 USSR	DW	MPC	н	s	.010	MC /I	12
			rir G			.010	MG/L	12
	HEXANATE				INCREMENT OF SCHOOL SCHOOLS			
	USSR	DW	MPC	н	S	5.000	MC /I	12
		MW.	rir G	0		5.000	MU/L	12
	HEXANE		And the second s					
	3 EPA	DW	HA1 C	н	s	13.000	MG/I	7
110 34	S EIA	0 4	IIA I G	11	3	13.000	MU/L	,

0.4.0.44	S. A. A. C.							
CAS#	AGENCY	CATEGORY	LIMIT	LITPE	STATUS	VALUE	UOM	REFCODE
****	*****						***	
HEXA	NE			1914	_		wa ni	7
110-54-3	EPA	DW	HA10 C	Н	S	4.000		7
			HALT A	H	S	14.000		7
			HALT C	н	S	4.000	MG/L	,
	ZINONE	DW	HA LIFE	н	S	1.050	MG/L	27
51235-04-2	EPA	DW	HA LIFE A	H	S	.210		27
			HA1 C	н	S	2.500		27
			HA10 C	H	S	2.500		27
			HALT A	н	s	8.750		27
			HALT C	н	S	2.500		27
	NACA	GW	HGL	н	P	.125		22
	NACA							
HADE	RAZINE							
302-01-2		DW	MPC	н	s	.010	MG/L	12
НҮДГ	ROQUINONE							
123-31-9		DW	MPC	Α	S	.200	UG/L	12

100	INE-131							
	H&W	DW	MAC	Н	S	10.000	BECQ/L	5
	MOE	DW	MAC	H	S	10.000	BECQ/L	1
IRO							********	,
7439-89-6	EEC	DW	GL	Α	S	50.000		6
			MADC	Α	S	200.000		6
	EPA	AMBIENT	AWQC	. В	S		MG/L	9
		DW	SMCL	A	S		MG/L	28
	H&W	DW	AO	A	S		MG/L	5
	MOE	DW	MDC	A	S		MG/L	1
	NEW JERSEY	GW	GW1	A	S		MG/L	21
			GW2	Α	S		MG/L	21
			GW3	Α	S		MG/L	21
	NEW YORK	AMBIENT	AWQS	н	S	300.000		16
		DW	MCL	Н	S		MG/L	25
		GW	GWQS	Н	S		MG/L	16
	USSR	DW	MPC	A	S	.500		12
				Н	S	,500		12
	WHO	DW	GV	A	S	.300	MG/L	4
	BUTYLENE	NU	MDC	, i	c	500	MG/L	12
115-11-7	USSR	DW	MPC	A	S	.500	MG/ L	16

CHEMICAL AGENCY CATEGORY LIMIT VALUE UOM LTYPE STATUS REFCODE --------------ISOCROTONITRILE MPC H S .100 MG/L NACA GW HGL H P .050 MG/L 22 ISOPHORONE 78-59-1 EPA AMBIENT AWQC Н S 5.200 MG/L 9 ISOPRENE 78-79-5 USSR DW MPC .005 MG/L 12 ISOPROPYLAMINE 75-31-0 USSR DW MPC H S 2.000 MG/L ISOPROPYLBENZENE HYDROPEROXIDE USSR MPC S .500 MG/L 12 ISOPROPYLCHLOROPHENYLCARBAMATE MPC A S 1.000 MG/L 12 ISOPROPYLPHENYLCARBAMATE MPC A S .200 MG/L 12 KEROSENE 8008-20-6 USSR DW MPC S .100 MG/L 12 KJELDAHL NITROGEN DW MADC Α S 1.000 MG/L 6 LEAD 7439-92-1 EEC MADC Н S 50.000 UG/L **EPA** AMBIENT AWQC H S 50.000 UG/L DW HA LIFE S .020 UG/L 7 HALT A .020 MG/L 7 MCL S .050 MG/L 13 MCLG H .020 MG/L 8 FLORIDA ST. DW MCL H S .050 MG/L 2 H&W DW MAC S .050 MG/L 5 MOE DW MAC H S .050 MG/L 1 NEW YORK AMBIENT AWQS S 50.000 UG/L 16 DW MCL S .050 MG/L 25

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
***	*****	******	****	*****	*****		***	
LEAD								
7439-92-1	NEW YORK	GW	GWQS	н	S	.025	MG/L	16
	USSR	DW	MPC	H	S	.100	MG/L	12
	WHO	DW	GV	Н	S	.050	MG/L	4
LEAD A	AND COMPOUNDS							
7439-92-1+	NEW JERSEY	GW	GW1	Α	S	.050	MG/L	21
			GW2	Α	S	.050	MG/L	21
			GW3	A	S	.050	MG/L	21
		******						******
LINDAN	IE .							
58-89-9	AWWA	DW	ELLTC	Н	P	.056		23
			ELSTC	Н	P	2.000	MG/L	23
	EPA	AMBIENT	AWQC	H	S	18.600	NG/L **	9
		DW	HA LIFE	Н	\$.010	MG/L	7
			HA LIFE A	Н	S	.200	UG/L	7
			HA1 C	н	S	1.200	MG/L	7
			HA10 C	Н	S	1.200	MG/L	7
			HALT A	Н	S	.120	MG/L	7
			HALT C	н	S	.033	MG/L	7
			MCL	Н	S	.400	UG/L	28
			MCLG	Н	P	.200	UG/L	8
	FLORIDA ST.	DW	MCL	Н	S	.004	MG/L	2
	H&W	DW	MAC	H	\$.004	MG/L	5
	MOE	DW	MAC	H	S	.004	MG/L	1
	NAS	DW	SNARL 7	Н	S	500.000	UG/L	11
	NEW YORK	DW	MCL	Н	S	4.000	UG/L	25
	WHO	DW	GV	н	S	.003	MG/L	4
		***************				******		
LINURO								
330-55-2	NACA	GW	HGL	н	P	.063	MG/L	22
**********						*****	*******	
LUTIDI	NE(2,5)							
	USSR	DW	MPC	Н	S	.050	MG/L	12

M-81								
	USSR	DW	MPC	Α	S	.001	MG/L	12
	DROANILINE							
108-42-9	USSR	DW	MPC	Н	S	.200	MG/L	12
		***************					******	*******
M-DIIS	COPROPYLBENZENE							
	USSR	DW	MPC	Н	S	.050	MG/L	12

CHEMI								
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
		*****			****	****	receive.	****
	ROPHENOL							
554-84-7	NIOSH	DW	SNARL 7	Н	S	.290	MG/L	24
	USSR	DW	MPC	н	S	.060	MG/L	17
MAGNE	SIUM							
7439-95-4	EEC	DW	GL	Α	S	30.000	MG/L	9
			MADC	Α	S	50.000	MG/L	1
	NEW YORK	AMBIENT	AWQS	н	S	35,000.000	UG/L	1.
MALAT	HION							
121-75-5	CALIFORNIA ST. DHS	DW	AL	H	S	160.000	UG/L	1
	EPA	DW	SNAEL	н	S	7.000	UG/L	10
	H&W	DW	MAC	Н	S	.190	MG/L	ų,
	NEW YORK	GW	GWQS	Н	S	7.000	UG/L	10
	C ACID							
110-16-7	USSR	DW	MPC	Α	S	1.000	MG/L	1
MALEI	C HYDRAZIDE							
123-33-1	EPA	DW	HA LIFE	н	S	17.500	MG/L	2
			HA LIFE A	Н	S	3.500	MG/L	2
			HA1 C		S	10.000	MG/L	2
			HA10 C	H	S	10.000	MG/L	2
			HALT A	Н	S	17.500	MG/L	2
			HALT C	н	S	5.000	MG/L	2
MANEB					de eleceratere e e e			
	NEW YORK	GW	GWQS	Н	S	1.750	UG/L	1
MANEB	(&ZINEB)							
	EPA	DŴ	SNAEL	Н	S	1.750	UG/L	1
MANGA	NESE		************					
7439-96-5		DW	GL	Α	S	20.000	UG/L	
			MADC	Α	S	50.000	UG/L	
	EPA	AMBIENT	AWQC	Н	S	50.000	UG/L	
		DW	SMCL	Α	S	.050	MG/L	2
	н&₩	DW	AO	Α	S	.050	MG/L	
	MOE	DW	MDC	Α	S	.050	MG/L	
	NEW JERSEY	GW	GW1	Α	S	.050	MG/L	2
			GW2	Α	S	.050	MG/L	2
			GW3	Α	S	050	MG/L	2

	MICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	LIOM	REFCODE
	Adenti	*******	*****			*****		RET CODE
MAN	GANESE							
7439-96-5	NEW YORK	AMBIENT	AWQS	н	S	300.000	UG/L	16
		DW	MCL	Н	S	.300	.00	25
		GW	GWQS	н	S	.300	MG/L	16
	WHO	DW	GV	Α	S	.100	MG/L	4
MER	CAPTODIETHYLAMINE(BE	TA)			rememente enterrendimentent			*******
	USSR	DW	MPC	A	S	.100	MG/L	12
MER	CURY							
7439-97-6	EEC	DW	MADC	Н	S	1.000	UG/L	6
	EPA	AMBIENT	AWQC	н	S	144.000	NG/L	9
		DW	HA LIFE	.H.	S	5.500	UG/L	7
			HA LIFE A	H	S	1.100	UG/L	7
			HA1 C	Н	\$	1.580	UG/L	7
			HA10 C	Н	S	1.580	UG/L	7
			HALT C	Н	S	1.580	UG/L	7
			MCL	H	S	.002	MG/L	28
			MCLG	Н	P	.003	MG/L	8
	FLORIDA ST.	DW	MCL	Н	S	.002	MG/L	2
	H&W	DW	MAC	Н	S	.001	MG/L	5
	MOE	DW	MAC	H	S	.001	MG/L	1
	NEW YORK	AMBIENT	AWQS	н	S	2.000	UG/L	16
		DW	MCL	Н	S	.002	MG/L	25
		GW	GWQS	Н	S	.002	MG/L	16
	USSR	DW	MPC	Н	S	.005	MG/L	12
	WHO	DW	GV	Н	S	.001	MG/L	4
MER	CURY AND COMPOUNDS							
9439-97-6+	NEW JERSEY	GW	GW1	Α	S	.002	MG/L	21
			GW2	Α	S	.002	MG/L	21
			GW3	Α	S	.002	MG/L	21
MET	A-ACRYLAMIDE							
	USSR	DW	MPC	н	S	.100	MG/L	12
MET	ALAXYL							
	NACA	GW	HGL	н	Р	.250	MG/L	22
MET	HACRYLIC ACID	*******						
79-41-4		DW	SNAEL	н	S	35.000	UG/L	10
MET	HANE			*******				
74-82-8	MOE	DW	MDC	A	S	3.000	L/M3	1

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****							***	
METHOM	YL							
16752-77-5	EPA	DW	HA LIFE	Н	S	.875	MG/L	27
			HA LIFE A	Н	S	.175	MG/L	27
			HA1 C	Н	S	.250		27
			HA10 C	н	S	.250		27
			HALT C	Н	S	.250		27
	NACA	GW	HGL	н	P		MG/L	22
METHOX	YCHLOR							
72-43-5	AWWA	DW	ELLTC	Н	P	.035	MG/L	23
			ELSTC	Н	P	2.800	MG/L	23
	EPA	AMBIENT	AWQC	Н	S	100.000	UG/L	9
		DW	HA LIFE	Н	S	1,700.000	UG/L	7
			HA LIFE A	Н	S	340.000	UG/L	7
			HA1 C	н	S	6,400.000	UG/L	7
			HA10 C	н	S	2,000.000	UG/L	7
			HALT C	Н	S	.500	MG/L	7
			MCL	Н	S	.100	MG/L	28
			MCLG	н	Р	.340	MG/L	8
			SNAEL	Н	S	35.000		10
	FLORIDA ST.	DW	MCL	Н	S	.100		2
	H&W	D₩	MAC	Н	S	.900		5
	MOE	DW	MAC	н	S	.100		1
	NEW YORK	AMBIENT	AWQS	Н	S	35.000		16
	THE TWENT	DW	MCL	н	S	.100		25
		GW	GWQS	н	S	35.000		16
	WHO	DW	GV	н	s	30.000		4
*****		***************						
METHYL	ACETATE							
79-20-9	USSR	DW	MPC	н	s	. 100	MG/L	12

METHYL	ACRYLATE							
96-33-3	USSR	DW	MPC	Α	S	.020	MG/L	12

METHYL	DEMETON							
8022-00-2	USSR	DW	MPC	Α	S	.010	MG/L	12

METHYL	DITHIOCARBAMATE							
	USSR	DW	MPC	A	S	.020	MG/L	12

METHYL	ETHYL KETONE							
78-93-3		DW	HA LIFE	Н	s	.860	MG/L	7
			and the second					

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****	*****			****		*****		KET CODE
METHYL	ETHYL KETONE							
78-93-3	EPA	DW	HA LIFE A	Н	s	170.000	UG/I	7
			HA1 C	н	S	75.000		7
			HA10 C	н	S	7.500		7
			HALT A	Н	S	8.600	MG/L	. 7
			HALT C	Н	s		MG/L	7
	USSR	DW	MPC	A	s	1.000		12

METHYL	METHACRYLATE							
80-62-6	NEW YORK	GW	GWQS	Н	S	.700	MG/L	16
***************************************		***********			-			
METHYL	PARATHION							
298-00-0	CALIFORNIA ST. DHS	DW	AL	н	S	.030	MG/L	3
	EPA	DW	HA LIFE	Н	S	9.000		27
			HA LIFE A	Н	S	2.000	100	27
			HA1 C	Н	s	.310		27
			HA10 C	н	s	.310		27
			HALT A	H	s		UG/L	27
			HALT C	Н	S	30.000		27
	H&W	DW	MAC	н	s	.007	100	5
	MOE	DW	MAC	Н	S		MG/L	1
	USSR	DW	MPC	A	s		MG/L	12
************						********		
METHYL	AMINE							
74-89-5	USSR	DW	MPC	H	S	1.000	MG/L	12
************	• • • • • • • • • • • • • • • • • • • •							
	ENE CHLORIDE							
75-09-2	CALIFORNIA ST. DHS	DW	AL	H	S	40.000	UG/L	3
	EPA	DW	HA LIFE	H	S	1,750.000	UG/L	7
			HA1 C	Н	S	13,300.000	UG/L	7
			HA10 C	Н	S	1,500.000	UG/L	7
	H&W	DW	MAC	Н	S	.050	MG/L	5
	NAS	DW	SNARL 7	Н	S	5,000.000	UG/L	11
	USSR	DW	MPC	Α	S	7.500	UG/L	12
METHYLM	NITROPHOS							
	USSR	DW	MPC	A	S	.250	MG/L	12

METHYLO	DL META-ACRYLAMIDE							
	USSR	DW	MPC	H	S	.100	MG/L	12
	STYRENE(ALPHA)							
	USSR	DW	MPC	Α	S	.100	MG/L	12

•								
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
		******		****				
	ETOLACHLOR							
51218-45	-2 EPA	DW	HA LIFE	H	S	.525	MG/L	27
			HA LIFE A	н	S	.010	MG/L	27
			HA1 C	Н	S	1.400	MG/L	27
			HA10 C	H	S	1.400	MG/L	27
			HALT A	н	S	1.050		27
			HALT C	Н	S	.300		27
	H&W	DW	IMAC	H	S		MG/L	5
	ETRIBUZIN							
21087-64	-9 EPA	DW	HA LIFE	Н	s	.875	MG/L	27
			HA LIFE A	Н	S	.175		27
		MI	HA1 C	н	S	4.500		27
			HA10 C	Н	S	4.500		27
			HALT A	н	s	.875		27
			HALT C	Н	S		MG/L	27
	H&W	DW	MAC	H	s		MG/L	5
	NACA	GW	HGL	H	P		MG/L	
********						.250	MG/ L	22
MI	NERAL OIL							
	USSR	DW	MPC	A	s	100	MC /I	45
				n 		.100	MG/L	12
MI	NERAL OILS			nes pormer such successorem en any rees a				
	EEC	DW	MADC	Α		10 000	T16 11	.a-
		νπ	MADC	M	S	10.000	UG/L	6
MC	LYBDENUM							
7439-98-7		DW	MPC	.6		500		
			MFC	Н	S	.500	MG/L	12
MO	NOCHLOROBENZENE							
108-90-7		DW	MCLC			***		2
100 70 1		DW	MCLG	Н	Р	.060	MG/L	8
MO	NOPROPYLAMINE							
HO	USSR	DW						
	USSK	DW	MPC	A	S	.500	MG/L	12
МО	NOSOD I UMCYANURA	TE				*********		*******
PIO	USSR		was b.	2				
	USSK	DW	MPC	Α	S	25.000	MG/L	12
NO.	NURON							
		877						
150-68-5	USSR	DW	MPC	Α	S	5.000	MG/L	12
	N.DINETUVI DISE	DIUD TURK O	***************					
N,	N-DIMETHYL-PIPE		and the					
	NACA	G₩	HGL	Н	P	5.000	MG/L	22

CAS# AGENCY CATEGORY LIMIT LTYPE STATUS VALUE UOM REFCCO		nem road							
N-BUTYL ALCOHOL 71-36-3 USSR DN MPC A S 1.000 MG/L 1 N-BUTYL PHTHALATE EPA DU SNAEL H S 38.500 UG/L 1 N-N-NITROSO-DIPHENYLANIDE 86-30-6 NEW YORK AMBIENT AMOS H P 14.000 UG/L 1 NAPHTHALENE 91-20-3 NEW YORK AMBIENT AMOS A S 10.000 UG/L 1 NAPHTHOL(1) 90-15-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 135-19-3 USSR DN MPC A S .400 MG/L 1 NAPHTHOL(2) 135-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-0 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-0 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-0 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-1 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-2 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-3 USSR DN MPC A S .100 MG/L 1 NAPHTHOL(2) 155-19-10 MC/L 1 NAPHTHOL(2) 155-19-10 MC/L							VALUE	UOM	REFCODE
N-BUTYL PHITHALATE					****		*		*****
SABEL N S 38,500 UG/L 1	71-36-3	USSR		MPC	A	s	1.000	MG/L	12
SABEL N S 38,500 UG/L 1									
N-NITROSO-DIPHENYLAMIDE 86-30-6 NEW YORK AMBIENT AWGS H P 14.000 UG/L 1 NAPHTHALENE 91-20-3 NEW YORK AMBIENT AWGS A S 10.000 UG/L 1 NAPHTHOL(1) 90-15-3 USSR DW MPC A S .100 MG/L 1 NAPHTHOL(2) 135-19-3 USSR DW MPC H S .400 MG/L 1 NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1 NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1 NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1 NAPROAMIDE NACA GW HGL H P 3.000 MG/L 2 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWGS H S 500.000 UG/L 1 NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L 1 EPA AMBIENT AWGC H S 15.400 UG/L 1 HALIFE H S 350.000 UG/L 1 HALIFE H S 150.000 UG/L 1 HALIT A H S 1.000 MG/L 1 HALIT A H S 1.000 MG/L 1 NITRALIN EPA DW SNAEL H S 35.000 UG/L 10 NITRALIN EPA DW SNAEL H S 35.000 UG/L 10 NITRAPYRIN			DW	SNAEL	Н	s			
86-30-6 NEW YORK AMBIENT AWQS H P 14.000 UG/L 1 NAPHTHALENE 91-20-3 NEW YORK AMBIENT AWQS A S 10.000 UG/L 1 NAPHTHOL(1) 90-15-3 USSR DW MPC A S .100 MG/L 1 NAPHTHOL(2) 135-19-3 USSR DW MPC H S .400 MG/L 1 NAPHTHOL(2,DHA) USSR DW MPC A S .100 MG/L 1 NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1 NAPROAMIDE NACA GW HGL H P 3.000 MG/L 2 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWQS H S 500.000 UG/L 1 NICKEL 7440-02-0 EEC DW MADC H S 35.000 UG/L 1 NICKEL 7440-02-0 EEC DW MADC H S 35.000 UG/L 1 NICKEL 1441 C H S 150.000 UG/L 1 NAPICAL HALIFE H S 350.000 UG/L 1 NAPICAL H		- NITROPO-DIDUENVI ANIDE	****************						
NAPHTHALENE 91-20-3 NEW YORK AMBIENT AWOS A S 10.000 UG/L 1 NAPHTHOL(1) 90-15-3 USSR DW MPC A S .100 MG/L 1: NAPHTHOL(2) 135-19-3 USSR DW MPC A S .400 MG/L 1: NAPHTHOL(2, 1) NAPHTHOL(2,	86-30-6	NEW YORK	AMBIENT		н	Р	14.000	UG/L	16
91-20-3 NEW YORK AMBIENT AWGS A S 10.000 UG/L 1 NAPHTHOL(1) 90-15-3 USSR DW MPC A S .100 MG/L 1 NAPHTHOL(2) 135-19-3 USSR DW MPC H S .400 MG/L 1 NAPHTHOL(2,LPHA) USSR DW MPC A S .100 MG/L 1 NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1 NAPROAMIDE NACA GW HGL H P 3.000 MG/L 2 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWGS H S 500.000 UG/L 1 NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L 1 NICKEL 7440-02-0 EEC DW MADC H S 350.000 UG/L 1 NICKEL AMBIENT AWGC H S 13,400 UG/L 1 NICKEL HALIFE H S 350.000 UG/L 1 HALIFE H S 150.000 UG/L 10									
NAPHTHOL(1) 90-15-3 USSR DW MPC A S .100 MG/L 1: NAPHTHOL(2) 135-19-3 USSR DW MPC H S .400 MG/L 1: NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1: NAPROAMIDE NACA GW HGL H P 3.000 MG/L 2: NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWOS H S 500.000 UG/L 1: NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L 1: DW MADC H S 350.000 UG/L 1: AMBIENT AWOC H S 350.000 UG/L 1: AMBIENT AWOC H S 13.400 UG/L 1: HA LIFE A H S 150.000 UG/L 1: HA LIFE A H S 150.000 UG/L 1: HA1 C H S 1.000 MG/L 1: NITRALIN EPA DW SNAEL H S 35.000 UG/L 1: NITRALIN EPA DW SNAEL H S 35.000 UG/L 1: NITRAPYEIN	91-20-3	NEW YORK	AMBIENT	AWQS	Α	S	10.000	UG/L	16
90-15-3 USSR DW MPC A S .100 MG/L 1: NAPHTHOL(2) 135-19-3 USSR DW MPC H S .400 MG/L 1: NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 1: NAPROAMIDE NACA GW HGL H P 3.000 MG/L 2: NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWOS H S 500.000 UG/L 1: NICKEL 7440-02-0 EEC DW MADC H S 500.000 UG/L 1: EPA AMBIENT AHQC H S 13.400 UG/L 1: HA LIFE H S 350.000 UG/L 1: HA LIFE A H S 150.000 UG/L 1: HA LIFE A H S 150.000 UG/L 1: HA LIFE A H S 150.000 UG/L 1: HALIT C H S 1.000 MG/L 1: NITRALIN EPA DW SNAEL H S 35.000 UG/L 1: NITRALIN EPA DW SNAEL H S 35.000 UG/L 1: NITRALIN EPA DW SNAEL H S 35.000 UG/L 1: NITRALYRIN			*						
NAPHTHOL(2) 135-19-3 USSR DW MPC H S .400 MG/L 13 NAPHTHOL(ALPHA) USSR DW MPC A S .100 MG/L 13 NAPROAMIDE NACA GW HGL H P 3.000 MG/L 23 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWOS H S 500.000 UG/L 14 NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L 16 EPA AMBIENT AWOC H S 13.400 UG/L 16 DW HA LIFE H S 350.000 UG/L 16 HA LIFE A H S 150.000 UG/L 17 HA LIFE A H S 150.000 UG/L 18 HA10 C H S 1,000 MG/L 18 HA10 C H S 1,000 MG/L 18 HA10 C H S 1,000 MG/L 18 HA11 A H S .350 MG/L 18 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN SNAEL H S 35.000 UG/L 16 NITRAPYRK GW GWOS H S 35.000 UG/L 16	90-15-3	USSR			Α	s	.100	MG/L	12
MAPHTHOL (ALPHA) USSR									
USSR DW MPC A S .100 MG/L 13 NAPROMIDE NACA GW HGL H P 3.000 MG/L 23 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWQS H S 500.000 UG/L 16 NICKEL 7440-02-0 EEC DW MADC H S 13.400 UG/L 6 EPA AMBIENT AWQC H S 13.400 UG/L 6 DW HA LIFE H S 350.000 UG/L 16 HA LIFE A H S 150.000 UG/L 16 HA1 C H S 1.000 MG/L 16 HALT A H S .350 MG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16	135-19-3	USSR		MPC	Н	s	.400	MG/L	12
USSR DW MPC A S .100 MG/L 13 NAPROMIDE NACA GW HGL H P 3.000 MG/L 23 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWQS H S 500.000 UG/L 16 NICKEL 7440-02-0 EEC DW MADC H S 13.400 UG/L 6 EPA AMBIENT AWQC H S 13.400 UG/L 6 DW HA LIFE H S 350.000 UG/L 16 HA LIFE A H S 150.000 UG/L 16 HA1 C H S 1.000 MG/L 16 HALT A H S .350 MG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NITRALIN EPA DW SNAEL H S 35.000 UG/L 16	N/	APHTHOL(ALPHA)							
NAPROAMIDE NACA GW HGL H P 3.000 MG/L 22 NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWQS H S 500.000 UG/L 10 NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L 60 EPA AMBIENT AWQC H S 13.400 UG/L 60 DW HA LIFE H S 350.000 UG/L 60 HA LIFE A H S 150.000 UG/L 61 HA1 C H S 1.000 MG/L 61 HA1 C H S 350 MG		USSR		MPC	Α	s			12
NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWQS H S 500,000 UG/L 10 NICKEL 7440-02-0 EEC DW MADC H S 50,000 UG/L 6 EPA AMBIENT AWQC H S 13,400 UG/L 6 DW HA LIFE H S 350,000 UG/L 7 HA LIFE A H S 150,000 UG/L 7 HA1 C H S 1,000 MG/L 7 HA10 C H S 1,000,000 UG/L 7 HA1T A H S .350 MG/L 7 HALT A H S .350 MG/L 7 NITRALIN EPA DW SNAEL H S 35,000 UG/L 10 NITRAPYRIN	NA	APROAMIDE							
NIACINAMIDE 98-92-0 NEW YORK AMBIENT AWQS H S 500.000 UG/L 10 NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L 0 EPA AMBIENT AWQC H S 13.400 UG/L 0 DW HA LIFE H S 350.000 UG/L 1 HA LIFE A H S 150.000 UG/L 1 HA1 C H S 1.000.000 UG/L 1 HA1 C H S 1,000.000 UG/L 1 HALT A H S .350 MG/L 1 HALT C H S .100 MG/L 1 NITRALIN EPA DW SNAEL H S 35.000 UG/L 10 NITRALYRIN NITRAPYRIN				HGL	Н	P	3.000	MG/L	22
NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L EPA AMBIENT AWQC H S 13.400 UG/L DW HA LIFE H S 350.000 UG/L HA LIFE A H S 150.000 UG/L HA1 C H S 1.000 MG/L HA1 C H S 1,000.000 UG/L HALT A H S .350 MG/L HALT C H S .100 MG/L NITRALIN EPA DW SNAEL H S 35.000 UG/L NEW YORK GW GWQS H S 35.000 UG/L NITRAPYRIN	N I	IACINAMIDE							
NICKEL 7440-02-0 EEC DW MADC H S 50.000 UG/L G EPA AMBIENT AWQC H S 13.400 UG/L G DW HA LIFE H S 350.000 UG/L H HA LIFE A H S 150.000 UG/L H HA1 C H S 1.000 MG/L H HA10 C H S 1,000.000 UG/L H HAT A H S .350 MG/L H HALT A H S .350 MG/L T HALT C H S .100 MG/L T HALT C H S .100 MG/L T HALT C H S .350 UG/L T NITRALIN EPA DW SNAEL H S 35.000 UG/L 16 NEW YORK GW GWQS H S 35.000 UG/L 16								UG/L	16
7440-02-0 EEC DW MADC H S 50.000 UG/L 60 EPA AMBIENT AWQC H S 13.400 UG/L 50 DW HA LIFE H S 350.000 UG/L 50 HA LIFE A H S 150.000 UG/L 50 HA1 C H S 1.000 MG/L 50 HA1 C H S 1.000.000 UG/L 50 HALT A H S .350 MG/L 50 HALT C H S .100 MG/L 50 HALT C H	NI	ICKEL							
EPA AMBIENT AWQC H S 13.400 UG/L DW HA LIFE H S 350.000 UG/L HA LIFE A H S 150.000 UG/L HA1 C H S 1.000 MG/L HA10 C H S 1,000.000 UG/L HALT A H S .350 MG/L HALT C H S .100 MG/L NITRALIN EPA DW SNAEL H S 35.000 UG/L NEW YORK GW GWQS H S 35.000 UG/L 16			DW	MADC	н	S	50.000	UG/I	6
DW . HA LIFE H S 350.000 UG/L HA LIFE A H S 150.000 UG/L HA1 C H S 1.000 MG/L HA10 C H S 1,000.000 UG/L HALT A H S .350 MG/L HALT C H S .100 MG/L NITRALIN EPA DW SNAEL H S 35.000 UG/L NEW YORK GW GWQS H S 35.000 UG/L 16		EPA	AMBIENT						9
HA LIFE A H S 150.000 UG/L HA1 C H S 1.000 MG/L HA10 C H S 1,000.000 UG/L HALT A H S .350 MG/L HALT C H S .100 MG/L NITRALIN EPA DW SNAEL H S 35.000 UG/L NEW YORK GW GWQS H S 35.000 UG/L 16			DW .	HA LIFE	н	S			7
HA10 C H S 1,000.000 UG/L HALT A H S .350 MG/L HALT C H S .100 MG/L NITRALIN EPÄ DW SNAEL H S 35.000 UG/L 10 NEW YORK GW GWQS H S 35.000 UG/L 16 NITRAPYRIN				HA LIFE A	н	S	150.000	UG/L	7
HALT A H S .350 MG/L THALT C H S .100 MG/L THALT C H S .100 MG/L THALT C H S .100 MG/L THALT C H S .35.000 UG/L 10 NEW YÖRK GW GWQS H S .35.000 UG/L 16 NITRAPYRIN						S	1.000	MG/L	7
HALT C H S .100 MG/L 7 NITRALIN EPA DW SNAEL H S 35.000 UG/L 10 NEW YORK GW GWQS H S 35.000 UG/L 16 NITRAPYRIN						S	1,000.000	UG/L	7
NITRALIN EPÄ DW SNAEL H S 35.000 UG/L 10 NEW YÖRK GW GWQS H S 35.000 UG/L 16 NITRAPYRIN							.350	MG/L	7
NITRALIN EPA DW SNAEL H S 35.000 UG/L 10 NEW YORK GW GWQS H S 35.000 UG/L 16 NITRAPYRIN				HALT C	Н	S	.100	MG/L	7
NEW YORK GW GWQS H S 35.000 UG/L 16	NI				*********	*******			********
NITRAPYRIN NACA									10
NACA		NEW YURK	GW	GWQS	Н	S	35.000	UG/L	16
NACA	NI	TRAPYRIN					**********		***********
			GW	HGL	н	Р	.015	MG/L	22

CHEMICAL CAS# AGENCY CATEGORY LIMIT LTYPE STATUS VALUE UOM REFCODE -----NITRATE 10.000 MG/L ## 10.000 MG/L HA10 C 7 MCLG 8 NEW YORK AMBIENT 10,000.000 UG/L AWQS H S 16 MCL H S 10.000 MG/L 25 GWOS S 10.000 MG/L 16 NITRATE AS N EPA DW MCL Н P 10.000 MG/L FLORIDA ST. DW MCL Н S 10.000 MG/L 2 H&W DW MAC 10.000 MG/L MOE DW MAC 10.000 MG/L 1 USSR DW MPC 10.000 MG/L WHO 10.000 MG/L NITRATE-NITROGEN NEW JERSEY GW GW1 A S 2.000 MG/L 21 GW2 S 10.000 MG/L GW3 S 10.000 MG/L NITRATES EEC GL S 25.000 MG/L MADC S 50.000 MG/L 6 EPA AMBIENT AWQC 10.000 MG/L NITRILOTRIACETIC ACID(NTA) 139-13-9 H&W MAC H S .050 MG/L MOE DW MAC .050 MG/L NITRITE EPA HA10 C Н S 1.000 MG/L ## MCLG 1.000 MG/L 8 NITRITE AS N H&W DW MAC H S 1.000 MG/L MAC H 1.000 MG/L 1 NITRITES EEC MADC S .100 MG/L NITROBENZENE 98-95-3 EPA AMBIENT AWQC H S 19.800 MG/L

9

	CHEMICAL								
CAS#	AG	ENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
							*****	***	
00.05	NITROBENZ								
98-95-	S NEI		AMBIENT DW	AWQS		S	30.000		16
	NI	Jon	UW	SNARL 1 SNARL 7	H	S	.035		24
					0 		.000	MG/L	24
	NITROCHLO	ROBENZENE							
	US	SR	DW	MPC	Н	S	.050	MG/L	12
*******	NITROCYCLO	DUEVANE							
	US:		DW	MPC	Н	s	.100	MC (I	13
******							.100	MG/L	12
	NITROPHEN	OL(ORTHO)							
	5 US:		DW	MPC	H	S	.060	MG/L	12
		OL CDADAS							
100-02-	NITROPHENO -7 US:		DW	MPC	н	S	.020	MC /I	13
******		 			 		.020		12
	NITROPHEN	/LACETYLAMINOETHANOI	L(P)						
	USS	SR	DW	MPC	A	S	1.000	MG/L	12
	MITDODUEN	/I AMINOETUANOLOVVAN	/px						
	USS	/LAMINOETHANOLOXYAM SR	DW .	MPC	Α	c	.500	MC /I	12
			**********			•			
	NITROPHENY	/LCHLOROMETHYLCARBI	N(P)						
	USS	SR	DW	MPC	A.	S	.200	MG/L	12
	NITROSAMIN	IEC	**********						
	EP/		AMBIENT	AWQC	н	S	900	NC/I **	9
								NG/L	· · · · · · · · · · · · · · · ·
	NITROSODIE	BUTYLAMINE N							
	EPA	•	AMBIENT	AWQC	H	S	6.400	NG/L **	9
	MITPOCODIE	TUVI ANTHE N							
55-18-5		THYLAMINE N	AMBIENT	AWQC	н	c	900	NG/L **	9
		, (********************					.000	NG/L	٠
	NITROSODIM	ETHYLAMINE N							
62-75-9	P EPA		AMBIENT	AWQC	Н	S	1.400	NG/L **	9
	NITOCOOD	WENN ANTHE					******		
	NITROSODIF	PHENYLAMINE N	AMRIENT	AUGC	u	6	/ 000 000	W671 ++	-
	EFA	· 	AMBIENT	AWQC	H	S	4,900.000	NG/L **	9
	NITROSOPYR	ROLIDINE N							
	EPA		AMBIENT	AWQC	H	S	16.000	NG/L **	9

	CHEMIC								
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
		ALCOHOL						***	
143-08	-8		DW	MPC	Н	s	.010	MG/L	12
	ODOUR				******		******		
		NEW YORK	DW	MCL	Α	S	3.000	D#	25
		EEC	DW	GL	Α	S	.000	D#	6
				MADC	Α	S	3.000	D#	6
		EPA	DW	SMCL	Α	S	3.000	D#	28
	ORGANI	C NITROGEN							
		MOE	DW	MDC	Α	S	.150	MG/L ***	1
	ORGANO	PHOSPHORUS&CARBAMATE	PESTI		*****				
		AWWA	DW	ELLTC	н	P	.100	MG/L	23
				ELSTC	Н	P	2.000	MG/L	23
	ORYZAL	IN							
		NACA	GW	HGL	H	P	.090	MG/L	22
	OXAMYL			*********	*****				
		EPA	DW	HA LIFE	н	S	.875	MG/L	7
				HA LIFE A	н	S	175.000	UG/L	7
				HA1 C	H	S	.175	MG/L	7
				HA10 C	Н.	S	.175	MG/L	7
				HALT A	Н	S	.175	MG/L	7
		NACA	GW	HGL	H	Р	.250	MG/L	22
	OXYDEM	ETON-METHYL							
301-12-	2	NACA	GW	HGL	Н	P	.050	MG/L	22
	PARAQU	AT				• • • • • • • • • • • • • • • • • • • •			
1910-42	2-5	EPA	DW	HA LIFE	Н	S	.160	MG/L	27
				HA LIFE A	Н	S	.003	MG/L	27
				HA1 C	Н	S	.100	MG/L	27
				HA10 C	Н	S	.100	MG/L	27
				HALT A	H	S	.160	MG/L	27
				HALT C	H	S	.045	MG/L	27
				SNAEL	Н	S	.003	MG/L	10
		H&₩	DW	IMAC	Н	S	.010	MG/L	5
		NEW YORK	GW	GWQS	Н	S	2.980	UG/L	16
	PARATH	ION	*********	*******		*********			
56-38-2	2	CALIFORNIA ST. DHS	DW	AL	H	s	.030	MG/L	3

		• •							
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
	PARATH	ION							
56-38-	-2	H&W	DW	MAC	Н	S	.050	MG/L	5
		MOE	DW	MAC	Ĥ	S		MG/L	1
		USSR	DW	MPC	A	S	.003	MG/L	12

	PARATH	ION AND METHYL PARATHI	ON						
		EPA	DW	SNAEL	Н	S	1.500	UG/L	10
		NEW YORK	GW	GWQS	Н	S	1.500	UG/L	16
******		••••							
	PCB								
		NEW YORK	AMBIENT	AWQS	Н	S	.010	UG/L	16
			DW	ASL1	Н	S	1.000	UG/L	26
				ASL2	Н	S	.100	UG/L	26
			GW	GWQS	Н	S	.100	UG/L	16

	PCB'S								
		EPA	AMBIENT	AWQC	H	S	.079	NG/L **	9
	PCB'S(POLYCHLORINATED BIPHEN		mai a		_	***		
		EPA	DW	MCLG	H	P		MG/L	8
		MOE	DW	IMAC	H	S		MG/L	1
		NEW JERSEY	GW	GW1	A	s		UG/L	21
				GW2	A	s		UG/L	21
				GW3	Α	S	.001	UG/L	21
	DCR/TE	TRACHLOROBIPHENYLS TOT	AL N						
	reb(1L	NAS	DW	SNARL 7	Н	s	50.000	HC /I	11
		**************	***************************************					00/L	11
	PCB(TR	ICHLOROBIPHENYLS TOTAL)						
		NAS	ĎW	SNARL 7	н	s	50.000	HG/L	11
						• • • • • • • • • • • • • • • • • • • •			
	PDB								
		EPA	DW	SNAEL	H	S	4.700	UG/L	10
		NEW YORK	GW	GWQS	Н	S	4.700		16
	PENTAC	HLOROBENZENE							
		EPA	AMBIENT	AWQC	Н	S	74.000	UG/L	9
	PENTAC	HLOROBUTANE							
		USSR	DW	MPC	Α	S	.020	MG/L	12
		HLORONITROBENZENE	,						
82-68-	8	CALIFORNIA ST. DHS	DW	AL	H	S	.900	UG/L	3

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

PENT	ACHLOROPHENOL							
87-86-5	CALIFORNIA ST. DHS	DW	AL	Н	S	30.000	UG/L	3
	EPA	AMBIENT	AWQC	н	S	1.010	1,000	9
		DW	HA LIFE	н	S	1,050.000	UG/L	7
			HA LIFE A	н	S	220.000		7
			HA1 C	н	S	1,000.000	UG/L	7
			HA10 C	н	S	300.000	UG/L	7
			HALT A	Н	S	1,050.000	UG/L	7
			HALT C	н	S	300.000	UG/L	7
			MCLG	Н	P	.220	MG/L	8
			SNAEL	Н	S	1.050	UG/L	10
	H&W	DW	AO	Α	S	.030	MG/L	5
			MAC	н	S	.060	MG/L	5
	NAS	DW	SNARL CHR*	н	S	21.000	UG/L	11
	NEW YORK	GW	GWQS	н	S	21.000	UG/L	16
	USSR	DW	MPC	Α	S	.300	MG/L	12
	WHO	DW	GV	H.	S	10.000	UG/L	4
*******			*****					******
PENT	ANATE							
	USSR	DM	MPC	Н	S	2.500	MG/L	12

PEST	ICIDES							
	EEC	DW	MADC	Н	S		UG/L	6
	₩8H	DW	MAC	Н	S	.100	MG/L	5
PH		MELON)	basic at					4
	EEC	DW	MADC	Α	S	9.500		6
	EPA	DW	SMCL	A	S		STD U+++	28
	H&W	DW	MAC	A	S		STDU +++	5
	NEW JERSEY	GW	GW1	A	S	4.200		21
			GW2	A	S	5.000	STDU	21
	Sharir manana	200	GW3	Α	S	5.000		21
	NEW YORK	GW	GWQS	Н	S	6.500	STD U	16
	WHO	DW	GV	Α	S	6.800	STDU +++	28
PHEN		611	41			1 000	06.0	
108-95-2	CALIFORNIA ST. DHS	DW	AL	A	S	1.000		3
	EPA	AMBIENT	AWQC	н	s s	3.500		9
	NEW JERSEY	GW	GW1	A		.300		21
			GW2	A	S	3.500		21
	Heen	DI II	GW3	A	S	3.500		21
	USSR	DW	MPC	А	S	.001	MG/L	12

	CHEMIC								
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
****		*****		****					
	PHENOL								
108-95	5-2	USSR	DW	MPC	H	S	.001	MG/L	12
	PHENOI	IC COMPOUNDS							**********
	HEHOE	NEW YORK	AMBIENT	AWQS	Н	S	1.000	UG/I	16
			***************************************			- 			
	PHENOL	S							
		EEC	DW	MADC	Α	S	.500	UG/L	6
			DW	MDC	A	S	.002	MG/L	1
		NEW YORK	GW	GWQS	H	S	.001	MG/L	16
	PHENYL	ETHED				********	*		
101-84		NEW YORK	AMBIENT	AWQS	A	¢	10.000	HC /I	16
		*********		***************	n 		10.000		10
	PHENYL	ENEDIAMINE (PARA)							
106-50	1-3	USSR	DW	MPC	H	S	.100	MG/L	12
			*******	************			********		*******
400 47		HYDRAZINE		1 46A1 F					
	-0	USSR	DW	MPC	H	S	.010	MG/L	12
	PHORAT								
	-2		DW	SNAEL	Н	S	035	UG/L	10
		H&W	DW	IMAC	н	S		MG/L	10 5
*****							*****		
	PHOSBU	TYL							
		USSR	DW	MPC	A	S	.030	MG/L	12
	PHOSME								
		NACA	GW	HGL	н	D	200	W0 //	
			· · · · · · · · · · · · · · · · · · ·			Р	.200	MG/L	22
	PHOSPH	AMIDE	,						
		USSR	DW	MPC	Α	S	.030	MG/L	12
			********				******		
	PHOSPH	ATE, TOTAL							
		NEW JERSEY	GW	GW1	A	S	.700	MG/L	21
	DUOCDU	onue		*******					
7723 - 1	PHOSPHO 4-0	EEC	DW	Ć!			/00 000	115.41	
1123-1	4-0	EEC	DW	GL MADC	A A	S S	400.000		6
				TINDU			5,000.000	UG/L	6
	PHTHAL	OPHOS							
		USSR	DW	MPC	A	S	.200	MG/L	12
								33-6	, _

CAS#		CATEGORY	LIMIT	LEVOE				
	Adenti	CATEGORT	LIMII.	LITPE	STATUS	VALUE	UOM	REFCODE
	PICHLORAM						***	*****
1918-02		GW	HGL	н	Р	350	N6 (1	
					r 	.250	MG/L	22
	PICLORAM							
1918-02	?-01 EPA	DW	HA LIFE	н	S	2.450	MC /I	27
			HA LIFE A	н	S	.490		27
			HA1 C	н		20.000		27
			HA10 C	Н		20.000	100	27
			HALT A	Н		2.450		27
			HALT C	Н		.700		27
	PICOLINE(ALPHA)							
	8 USSR	DW	MPC	Н	S	.050	MG/L	12

	PICRIC ACID							
88-89-1	USSR	DW	MPC	A	S	.500	MG/L	12

	POLYACRYLAMIDE	623000						
	USSR	DW	MPC	Н	S	2.000	MG/L	12
	DOLYCIII ODODINENE	*****************						
	POLYCHLOROPINENE USSR	NII						
	USSK	DW	MPC	Н	S	.200	MG/L	12
	POLYCYCLIC AROMATIC HYDROCA	DDONG				*****		********
	EEC AKOMATTO HTDROCA	DW	MADO		_			
		DW	MADC	Н	S	.200	UG/L	6
Ĭ	POLYETHYLHYDROSILOXANE							
	USSR	DW	MPC	A	c	10.000		
				M	S	10.000	MG/L	12
1	POLYETHYLSILOXANE							
		DW	MPC	Α	9	10.000	MC /I	13
		•		.n		10.000	MG/L	12
	POLYMETHYLHYDROSILOXANE							
	USSR	DW	MPC	Α	s	2.000	MG/L	12
1	POLYNUCLEAR AROMATIC HYDROCA	ARBON						
	EPA	AMBIENT	AWQC	н	S	2.800	NG/L *	* 9

	POTASSIUM							
7440-09	-7 EEC	DW	GL	Α	S	10.000	MG/L	6
			MADC	A	S	12.000		6

F	POTASSIUM DIETHYLPHOSPHORODI	OIHTI						
	USSR	DW	MPC	Α	S	.500	MG/L	12

-									
CAS#	AGENCY	,	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

PC	DTASSIUM DII	SOPROPYLDITHIOPH	IOS						
	USSR		DW	MPC	A	S	.020	MG/L	12

	OTASSIUM PER		Ber McDC	I Discour	239	26			NC.
7722-64-1	7 EEC		DW	GL	A		2.000		6
		and the second s		MADC	A	S	5.000	MG/L	6
DI	ROFENOFOS								
ri	NACA		GW	HGL	Н	P	005	MG/L	22
PI	ROMETON								
	O EPA		DW	HA LIFE	н	S	.525	MG/L	27
				HA LIFE A		S		MG/L	27
					Н	S		MG/L	27
					Н	S		MG/L	27
				HALT C	Н	S		MG/L	27
PI	ROMETRYNE								
7287-19-6	6 H&W		DW	IMAC	H	S	.001	MG/L	5
	NACA		GW	HGL	Н	P	.375	MG/L	22
	USSR		DW	MPC	Α	S	3.000		12

PF	RONAMIDE								
23950-58	-5 EPA		DW	HA LIFE	Н	S	2.600	MG/L	27
				HA LIFE A	Н	S	.052	MG/L	27
				HA1 C	Н	S	.052	MG/L	27
				HA10 C	Н	S	.052	MG/L	27
	ROPACHLÓR						140 150 250		
1918-16-7	7 EPA		DW	HA LIFE	Н	S		MG/L	27
				HA LIFE A	Н	S		MG/L	27
				HA1 C	Н	S		MG/L	27
				HA10 C	Н	S		MG/L	27
				HALT A	Н	S		MG/L	27
				HALT C	н	S		MG/L	27
				SNAEL	Н	S		MG/L	10
	NEW YO	DRK	GW	GWQS	Н	S	35.000	UG/L	16
	DODANT!								
709-98-8	ROPANIL	æ	nu	CNAEL	ш	c	7.000	HG71	10
104-40-0	EPA NEW YO	nev.	GW .	SNAEL GWQS	H H	S S	7.000		16
	NEW IL	/N.N.	uw	OM/49	n 				10
DI	ROPAZIN					7.7			
	USSR		DW	MPC	A	s	1.000	MG/I	12
	UJJK		× 11	, 0	-		1.000		1.2

	CHEMICAL								
CAS#	AGENCY		CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
						*****	*****		
	PROPAZINE								
139-40-	2 EPA		DW	HA LIFE	Н	S	.700	MG/L	27
				HA LIFE A	Н	S	.014	MG/L	27
				HA1 C	Н	S	1.000	MG/L	27
				HA10 C	Н	S	1.000	MG/L	27
				HALT A	Н	S	1.750	MG/L	27
				HALT C	Н	S	.500	MG/L	27
				SNAEL	Н	S	16.000	UG/L	10
	NEW YORK	C	GW	GWQS	Н	S	16.000	UG/L	16
	PROPHAM								
122-42-	9 EPA		DW	HA LIFE	H	S		MG/L	27
				HA LIFE A	Н	S	.120		27
				HA1 C	Н	S	5.000		27
				HA10 C	H	S	5.000		27
				HALT A	H	S	17.500		27
			ar an Ambanat at Africa and Ambana and Africa Am	HALT C	Н	S	5.000	MG/L	27
	PROPOXUR								
	1 CALIFORN	IIA ST. DHS	DW	AL	Н	s	.090	MG/L	3
	EPA		DW	HA LIFE	н	S	.140		27
				HA LIFE A	н	s	3.000		27
			*	HA1 C	H	S	.045		27
				HA10 C	Н	S	.040		27
				HALT A	Н	S	100.000		27
				HALT C	н	S	40.000		27
	PROPYLBENZENE								
103-65-	1 USSR		DW	MPC	Α	S	.200	MG/L	12
	PROPYLENE						uno-Sa est		27.4
115-07-			DW	MPC	Α	S	.500	MG/L	12

	PYRIDINE		N.I.	400			200	110 (1	12
110-86-	1 USSR		DW	MPC	Н	S	.200	MG/L	12
	QUINONE DIOXAME	(DADA)							
	USSR	(FARA)	DW	MPC	Н	s	100	MG/L	12
	USSK			nr u			.100	71G/ L	
	RADIUM 226 + RA	ADIUM 228							
	EPA	- SIL MAY	DW	MCL	Н	s	5.000	PCI/L	28
	NEW YORK	(AMBIENT	AWQS	н	S		PCI/L	16
			A man distributed by	S 11 17 ACT	-				

СН	IEMICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
	****	******	****			*****		
RA	DIUM-226							
	H&W	DW	MAC	н	S	1.000	BECQ/L	5
	MOE	DW	MAC	н	S	1.000	BECQ/L	1
	NEW YORK	AMBIENT	AWQS	н	S	3.000	PCI/L	16
		• • • • • • • • • • • • • • • • • • • •						
SA	PONIN							
	USSR	DW	MPC	Α	S	.200	MG/L	12
	LENIUM	***						
7782-49-2		DW	MADC	н	S	10.000		6
	EPA	AMBIENT	AWQC	н	S	10.000	UG/L	9
		DW	MCL	н	P	.010	MG/L	13
			MCLG	Н	Р	.045	MG/L	8
	FLORIDA ST.	DW	MCL	н	S	.010	MG/L	2
	H&W	DW	MAC	н	S	.010	MG/L	5
	MOE	DW	MAC	н	S	.010	MG/L	1
	NEW YORK	AMBIENT	AWQS	н	S	10.000	UG/L	16
		DW	MCL	Н	S	.010	MG/L	25
		GW	GWQS	н	S	.020	MG/L	16
	USSR	DW	MPC	н	S	.001	MG/L	12
	WHO	DW	GV	н	S	.010	MG/L	4
ÇF.	LENIUM AND COMPOUNDS				*********			*******
	+ NEW JERSEY	, GW	GW2	Α	S	010	MG/L	21
		GW .	GW3	Â	S		MG/L	21 21
						.010	rid/ L	۱
SE	THOXYDIM							
	NACA	GW	HGL	н	P	1.800	MG/L	22
*******	*************	*******						
	LVER							
7440-22-4	EEC	DW	MADC	Α	S	10.000	UG/L	6
	EPA	AMBIENT	AWQC	н	S	50.000	UG/L	9
		DW	MCL	н	P	.050	MG/L	13
	FLORIDA ST.	DW	MCL	н	S	.050	MG/L	2
	MOE	DW	MAC	н	S	.050	MG/L	1
	NEW YORK	AMBIENT	AWQS	н	S	50.000	UG/L	16
		DW	MCL	н	S	.050	MG/L	25
		GW	GWQS	н	S	.050	MG/L	16
0.11	LVED AND CONDOLINGS	***************************************	***************************************				******	
7440-22-4	LVER AND COMPOUNDS	CII	0114					2
1440-22-4	+ NEW JERSEY	GW	GW1	A	S		MG/L	21
			GW2	. A	S	.050	MG/L	21

	CHEMICA	AL							
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
					*				*****
7440-2	SILVER 22-4+	AND COMPOUNDS NEW JERSEY	G₩	GW3	A	s	.050	MG/L	21
	SIMAZII	NE							
122-34	4-9	EPA	DW	HA LIFE	Н	S	175.000	UG/L	27
				HA LIFE A	Н	S	35.000	UG/L	27
				HA1 C	H	S	50.000	UG/L	27
				HA10 C	Н	S	50.000	UG/L	27
				HALT A	Н	S	175.000	UG/L	27
				HALT C	н	S	50.000	UG/L	27
				SNAEL	Н	S	75.250	UG/L	10
		H&W	DW	IMAC	Н	S	.010	MG/L	5
		NACA	GW	HGL	H	P	.500	MG/L	22
		NAS	DW	SNARL CHR*	Н	S	1,505.000	UG/L	11
		NEW YORK	GW	GWQS	Н	S	75.250	UG/L	16
		USSR	DW	MPC	Α	S	.000	MG/L	12
	SIMAZI	NE(2-OXYDERIVATI	VE)						
		USSR	DW	MPC	Α	S	.000	MG/L	12
	SIMAZI	NE(PLUS D-ETHYL	SIMAZINE)						
		H&W CANADA	DW	IDWG	Н	T	.010	MG/L	17

	SODIUM								
7440-2	23-5	EEC	DW	GL	Α	S	20.000		6
				MADC	Α	S	150.000	MG/L	6
		FLORIDA ST.	DW	MCL	Н	S	160.000		2
		NEW JERSEY	GW	GW1	Α	S	10.000		21
				GW2	Α	S	50.000		21
		WHO	DW	GV	Α	S	200.000	MG/L	4
	SODIUM	ADIPATE							
		USSR	D₩	MPC	H	S	1.000	MG/L	12
-2	SODIUM	CHLORATE							
7775-0	09-9	USSR	DW	MPC	Α	S	20.000	MG/L	12
	SODIUM	DICHLOROPHENOXY	ACETATE						
		USSR	DW	MPC	Α	S	1.000	MG/L	12
	SODILIM	ETHYLSILICONATE							
	2221011	USSR	DW	MPC	Α	S	2,000	MG/L	12

SULFATE

EPA

NEW JERSEY

NEW YORK

DW

AMBIENT

PALIS SYSTEM PARAMETER REPORT---05/12/88

CHEMICAL CAS# AGENCY CATEGORY LIMIT LTYPE STATUS VALUE UOM SODIUM METHYLSILICONATE MPC 2.000 MG/L SODIUM PENTACHLOROPHENOLATE USSR MPC A S 5.000 MG/L 12 SODIUM VINYLSILICONATE USSR MPC 2.000 MG/L 12 SOLIDS DISSOLVED AND SALINITY . EPA AWQC AMBIENT Н S 250.000 MG/L SOLIDS TOTAL DISSOLVED WHO DW GV Α S 1,000.000 MG/L STRONTIUM 7440-24-6 USSR DW MPC S 2.000 MG/L 12 STRONTIUM-90 FLORIDA ST. DW MCL H S 8.000 PCI/L 2 H&W DW MAC Н S 10.000 BECQ/L 5 MOE DW MAC Н S 10.000 BECQ/L 1 NEW YORK AWQS AMBIENT Н S 8.000 PCI/L STYRENE 100-42-5 EPA HA LIFE 7,000.000 UG/L Н S 7 HA LIFE A S 140.000 UG/L HA1 C 22,500.000 UG/L S 2,000.000 UG/L HA10 C S 7 HALT A Н S 7,000.000 UG/L 7 HALT C н S 2,000.000 UG/L 7 MCLG Н P .140 MG/L SNAEL 46.500 UG/L 10 NEW YORK AMBIENT AWQS S 50.000 UG/L 16 GWQS S 931.000 UG/L 16 DW MPC S .100 MG/L 12

SMCL

GW1

GW2

AWQS

Α

Α

S

S

S

250.000 MG/L

15.000 MG/L

250.000 MG/L

250,000.000 UG/L

28

21

21

16

	CHEMIC								
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE

	SULFAT	E							
		NEW YORK	DW	MAC	Α	S	250.000	MG/L	25
			G₩	GWQS	Н	S	250.000		16
		WHO	DW	GV	A	S	400.000		4
	SULPHA	TE							
		H&W	DW	AO	A	s	150.000	MC /I	
			* · ·	MAC	Н	S	500.000		5 5
		MOE	DW	MDC	Α.	S		-	
				PIDG	- A	3	500.000	MG/L	1
	SULPHA	TES							
	SOLFIIA		NII	21		_			
		EEC	DW	GL	A	S	25.000		6
				MADC	Α	S	250.000	MG/L	6

	SULPHI								
		H&W	DW	AO	Α	S	.050	MG/L	5

	SURFAC								
		EEC	DW	MADC	A	S	.200	MG/L	6

	TASTE								
		EEC	DW	GL	Α	S	.000	D#	6
				MADC	Α	S	3.000	D#	6
	TEBUTH	IURON							
34014-	18-1	EPA	DW	HA LIFE	н	S	1.750	MG/I	27
				HA LIFE A	н	S	.350		27
				HA1 C	н	s	2.500		
				HA10 C	Н	S			27
							2.500		27
				HALT A	H	S	.438		27
		NACA	011	HALT C	Н	S	.125		27
		NACA	GW	HGL	Н	P	2.000	MG/L	22
	TELLUS	****							
	TELLUR								
13494-	80-9	USSR	DW	MPC	Н	S	.010	MG/L	12

	TEMEPHO								
		H&W	DW	IMAC	Н	S	.280	MG/L	5
	TEMPERA	ATURE							
		EEC -	DW	GL	Α	s	12.000	DEG C	6
					A	S	25.000		6
									Ū

	CHEMIC	CAL							
CAS#		AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
	TEMPER	ATURE	******	****			*****	***	******
	TEMPER	H&W	DW	AO	A	s	15 000	DEC C	-
		MOE	DW	MDC	A	s	15.000 15.000		5 1
						•	15.000	DEG C	
	TERBAC	SIL							
5902-5	1-2	EPA	DW	HA LIFE	Н	s	.440	MG/L	27
				HA LIFE A	Н	S		MG/L	27
				HA1 C	Н	S	.240	MG/L	27
				HA10 C	Н	S	.250	MG/L	27
				HALT A	Н	S	.875	MG/L	27
				HALT C	Н	S	.250	MG/L	27
		NACA	GW	HGL	Н	P	.125	MG/L	22

	TERBUF		W29775						
13071-	79-9	EPA	DW	HA LIFE	Н	S		UG/L	27
				HA LIFE A	Н	S		UG/L	27
				HA1 C	Н	s	5.000		27
				HA10 C	H	S	5.000		27
				HALT A		S	.880		27
		H&W	DW	HALT C	H H	S		UG/L	27
		пож	DM	IMAC	П	S	.001	MG/L	5
	TETRAC	CHLOROBENZENE							
		USSR	DW	MPC	н	s	.010	MG/I	12

	TETRAC	CHLOROBENZENE(1,2,4,5)							
		EPA	AMBIENT	AWQC	Ĥ	S	38.000	UG/L	9
			*****	******					
	TETRAC	HLOROBENZENES							
		NEW YORK	AMBIENT	AWQS	Α	S	10.000	UG/L	16

	TETRAC	CHLOROETHANE							
		USSR	DW	MPC	Α	S	.200	MG/L	12
	TETDAC	ULODOETHANE (1 1 2 2)							
70-7/-	5	CHLOROETHANE(1,1,2,2) EPA	AMDIENT	41100			170	110.71	
19-34-	, 	EFA	AMBIENT	AWQC	Н	S	.170	UG/L	9
	TETRAC	HLOROETHYLENE	110 d d d d d d d d d d d d d d d d d d						
127-18		CALIFORNIA ST. DHS	DW	AL	Н	s	4.000	LIG/L	3
		EPA	AMBIENT	AWQC	н	S		UG/L **	9
			DW	DWEL	H	S	.500		7
			-	HA LIFE A	H	S	10.000		7
				Such mark to the		-	.0.000	. Tuy L	

	and the second s							
		CATECODY	LIMIT	LTVDE	OTATUO	1741 178	11011	DEFAODE
CAS#	AGENCY	CATEGORY	LIMIT	LITPE	STATUS	VALUE	UUM	REFCODE
	CHLOROETHYLENE	N/I	wat o		_	2 200		_
127-18-4	EPA	DW	HA1 C	Н	S	2.000		7
			HA10 C	Н	S	2.000	MG/L	7
			HALT A	Н	S	5.000	MG/L	7
		Tel: 272	HALT C	н	S	1.400		7
	FLORIDA ST.	DW	MCL	Н	S	3.000		2
	NAS	DW	SNARL 7		S	24,500.000		11
			SNARL CHR	Н	S		UG/L **	
	WHO	DW	TGV	Н	S	10.000	UG/L	4
TETRA	CHLOROHEPTANE							
	USSR	DW	MPC	Α	S	.002	MG/L	12
TETRA	CHLORONONANE				ш			
	USSR	DW	MPC	A	S	.003	MG/L	12

TETRA	CHLOROPENTANE							
	USSR	DW	MPC	A	S	.005	MG/L	12
TETRA	CHLOROPHENOL(2,3,4,6)							
	H&₩	DW	AO	A	S		MG/L	5
			MAC	Н	S	.100	MG/L	5
TETRA	CHLOROPROPANE							
	USSR	DW	MPC	A	S	.010	MG/L	12

TETRA	CHLOROUNDECANE					414		A.u.
	USSR	DW	MPC	Α	S	.007	MG/L	12
TETRA	ETHYL TIN					22.5	No. and No.	
	USSR	DW	MPC	Н	S	.200	UG/L	12
TETRA	HYDROQUINONE							
	USSR	DW	MPC	A	S	.050	MG/L	12

	NITROMETHANE							
509-14-8		DW	MPC	Α	S	.500	MG/L	12
THALL					No.			
7440-28-0	EPA	AMBIENT	AWQC	H	S	13.000	UG/L	9
	HYLLINE						Carronal Control	ville of the
58-55-9	NEW YORK	AMBIENT	AWQS	Н	S	40.000	UG/L	16

8001-35-2

AWWA

DW

PALIS SYSTEM PARAMETER REPORT---05/12/88

CHEMICAL AGENCY CAS# CATEGORY LIMIT LTYPE STATUS VALUE UOM REFCODE THIOCYANATES MPC S .100 MG/L 12 THIODICARB NACA GW HGL Ρ .300 MG/L THIOPHENE MPC S 2.000 MG/L THIRAM 137-26-8 EPA SNAEL Н S 1.750 UG/L 10 NEW YORK GWQS Н S 1.750 UG/L TOLUENE 108-88-3 CALIFORNIA ST. DHS S 100.000 UG/L AMBIENT AWQC S 14.300 MG/L DW HA LIFE 12,100.000 UG/L S HA LIFE A S 2,420.000 UG/L 7 HA1 C Н S 21,500.000 UG/L 7 HA10 C Н S 3,460.000 UG/L 7 HALT C Н S 3,460.000 UG/L MCLG 2.000 MG/L 8 H&W DW AO S .024 MG/L 5 NAS SNARL 7 H S 35,000.000 UG/L 11 SNARL CHR H S 340.000 UG/L 11 USSR .500 MG/L 12 TOTAL COLIFORMS EEC DW MADC Н S .000 COUNT/ML NEW JERSEY GW TOTAL DISSOLVED SOLIDS **EPA** DW SMCL S 500.000 MG/L 28 H&W DW AO 500.000 MG/L 5 MOE DW MDC A 500.000 MG/L S 1 NEW JERSEY GW1 100.000 MG/L 21 GW2 500.000 MG/L TOTAL ORGANIC CARBON S 5.000 MG/L TOXAPHENE

ELLTC

.005 MG/L

23

	CHEMICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
			***	****				
1	TOXAPHENE							
8001-35-	-2 AWWA	DW	ELSTC	H	P	1.400	MG/L	23
	EPA	AMBIENT	AWQC	Н	S	.710	NG/L **	9
		DW	DWEL	н	S	112.000	UG/L	7
			HA1 C	Н	S	500.000	UG/L	7
			HA10 C	Н	S	40.000	UG/L	7
			MCL	Н	S	.005	MG/L	13
			MCLG	H	P	.000	MG/L	8
			SNAEL	H.	S	.440	UG/L	10
	FLORIDA ST.	DW	MCL.	Н	S	.005	MG/L	2
	MOE	DW	MAC	Н	S	.005	MG/L	1
	NEW JERSEY	GW	GW1	Α	S	.005	UG/L	21
			GW2	Α	S	.005	UG/L	21
			GW3	Α	S		UG/L	21
	NEW YORK	DW	MCL	Н	S	5.000	UG/L	25
	TRIADIMEFON	011	1101			25.0		
	NACA	GW	HGL	Н	Р	.250	MG/L	22
	TOTALIATE							
7	TRIALLATE H&W	DW	MAC	н	S	270	MG/L	5
	now		MAC	n		.230	MG/L	
1	TRIBUTYL PHOSPHATE							
126-73-8		DW	MPC	Α	S	.010	MG/L	12

1	TRICHLORFON							
52-68-6	NACA	GW	HGL	Ĥ	P	1.250	MG/L	22
1	TRICHLOROBENZENE(1,2,4)							
	NEW YORK	AMBIENT	AWQS	Α	S	10.000	UG/L	16
1	TRICHLOROBENZENES							
	NEW YORK	AMBIENT	AWQS	Α	\$	10.000	UG/L	16
	USSR	DW	MPC	н	S	30.000		12
	TRICHLOROETHANE(1,1,1)							
71-55-6		DW	SNAEL	H	S	1,000.000		3
	EPA	AMBIENT	AWQC	Н	S	18.400		9
		DW	HA LIFE		S	1,000.000		7
			HA LIFE A		S	200.000		7
			HA1 C	Н	S	140,000.000		7
			HA10 C	н	S	35,000.000	UG/L	7

CAS#	AGENCY	CATEGORY	LIMIT	LTVDE	CTATUC	(m) tie	11001	
5A3#	AGENCI	CATEGORI	LIMIT	LITPE	STATUS	VALUE	UOM	REFCODE
	HLOROETHANE(1,1,1)				*****	72.55		
71-55-6	EPA	DW	HALT A	В	s	125,000.000	HC /I	7
~ . ~		***	HALT C	н	s	35,000.000		7
			MCL		S	200.000		20
			MCLG	Н		200.000		8
	FLORIDA ST.	DW	MCL	Н	S	200.000		2

TRICE	HLOROETHANE(1,1,2)							
79-00-5	EPA	AMBIENT	AWQC	H	S	.600	UG/L **	9
	NEW YORK	AMBIENT	AWQS	Н	S	.600	UG/L	16
		*************	**********					
	HLOROETHYLENE	ži.						
79-01-6	CALIFORNIA ST. DHS	DW	AL	Н	S	5.000		3
	EPA	AMBIENT	AWQC	Н	S		UG/L **	9
		DW	HA LIFE	Н	S	260.000		7
			MCL	Н	S	5.000		20
		e	MCLG	Н	S	.000		8
	FLORIDA ST.	DW	MCL	Н	S	3.000		2
	NAS	DW	SNARL 7	Н	S	15,000.000		11
	NEW YORK	GW	GWQS	Н	S	10.000		16
	USSR	DW	MPC	Α	S	.500	7.	12
	WHO	DW	TGV	н	S	.030	MG/L	4
TRICE	HLOROMETAPHOS-3							
IKICI	USSR	DW	MPC		c	400		
			MPC	Α	S	.400	MG/L	12
TRICH	ILOROPHENOL							
	USSR	DW	MPC	Α	S	400	UG/L	12
TRICH	HLOROPHENOL(2,4,5)							
95-95-4	EPA	AMBIENT	AWQC	н	S	2,600.000	UG/L	9

	ILOROPHENOL(2,4,6)							
88-06-2	EPA	AMBIENT	AWQC	H	S	1.200	UG/L **	9
	H&W	DW	AO	A	S	.002	MG/L	5
			MAC	Н	S	.005	MG/L	5
	NIOSH	DW	SNARL 1	Н	S	17.500	MG/L	24
	WHO	DW	GV	Α	S	10.000	UG/L	4
				H	S	10.000	UG/L	4
	U 000000000000000000000000000000000000					*********		
	ILOROPROPANE(1,2,3)	lou.						
96-18-4	HAWAII	GW	LTAL	н	Р	2,000.000	NG/L	19

	CHEMICAL							
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
	*****		****					
1	RICHLOROPROPANE(1,2,3)							
96-18-4	HAWA I I	GW	LTG	Н	P	800.000	NG/L	19
			STAL	Н	Р	8,000.000	NG/L	19
1	RICLOPYR							
	NACA	GW	HGL	н	Р	.250	MG/L	22
1	RIETHANOLAMINE							
102-71-6	5 USSR	DW	MPC	A	S	1.400	MG/L	12
1	RIETHYLAMINE							
121-44-8		DW	MPC	н	S	2.000	MG/L	12

7	RIFLUOROCHLOROPROPANE USSR	DW	MPC	н	s	100	MC /I	10
	USSK		Mrc	n		.100	MG/L	12
1	RIFLURALIN							
1582-09-	8 EPA	DW	HA LIFE	н	S	87.000	UG/L	27
			HA LIFE A	н	S	2.000	UG/L	27
			HA1 C	Н	S	.025	MG/L	27
			HA10 C	н	S	.025	MG/L	27
			HALT C	Н	S	.025	100000000000000000000000000000000000000	27
			SNAEL	н	S	.035		10
	NACA	GW	HGL	Н	Р	1.000		22
	NEW YORK	GW	GWQS	Н	S	35.000	UG/L	16
1	RIHALOMETHANES							
	CALIFORNIA ST. D	HS DW	MCL	Й	S	.100	MG/L +	3
	EPA	DW	MCL	н	S		MG/L +	
	FLORIDA ST.	DW	MCL	н	S		MG/L +	
	H&W	DW	MAC	H	S		MG/L +	5
	MOE	DW	MAC	Н	S		MG/L +	1
	DINITONETHANE	***************					*****	
	RINITROMETHANE	511	400			242		
517-25-9	USSR	DW	MPC	Α	S	.010	MG/L	12
9	RINITROPHENOL							
	NIOSH	DW	SNARL 1	Н	S	4.900	MG/L	24
			SNARL 7	Н	S	.200	MG/L	24
	TO INIT POTOLUENE							
	RINITROTOLUENE 7 AWWA	DW	ELLTC	н	P	005	MG/L	23
110-70-1	OWWO.	DW	ELLIC	п	r	.005	MU/L	63

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	UOM	REFCODE
		******				*****		
TRINI	TROTOLUENE							
118-96-7	AWWA	DW	ELSTC	н	Р	.750	MG/L	23
TRITI	UM							
10028-17-8	FLORIDA ST.	DW	MCL	Н	S	20,000.000	PCI/L	2
	H&W	DW	MAC	Н	S	40,000.000		5
	MOE	DW	MAC	Н	S	40,000.000	BECQ/L	1
	NEW YORK	AMBIENT	AWQS	н	S	20,000.000	PCI/L	16
TUNCS								
TUNGS 7440-33-7	USSR	DW	MPC	8				
7440-33-7		DW	MPL	Н	S	.100	MG/L	12
TURBI	DITY	8						
	EEC	DW	GL	A	s	1.000	MG/I	6
			MADC	A	s	10.000		6
	EPA	DW	MCL	Н	S	1.500		28
			MCLG	H.	P	.100	NTU	8
	H&W	DW	AO	Α	S	5.000		5
			MAC	н	S	1.000	NTU	5
	MOE	DW	MAC	Н	S	1.000	FTU	1
	WHO	DW	GV	Α	S	5.000	NTU	4
***********				,		*******		
TURPE		SIN I						
	USSR	DW	MPC	A	S	.200	MG/L	12
URANII	IM				* * * * * * * * * * *			
7440-61-1		DW	MAC	H	s	100	MC /I	c
	MOE	DW	IMAC	Н	S	.100		5

UROTRO	DPIN							
	USSR	DW	MPC	Н	S	.500	MG/L	12
VANAD	TUM							
7440-62-2	USSR	DW	MPC	Н	S	.100	MG/L	12
VINCLO								
	NACA	GW	HGL	Н	P	2.430	MG/L	22
Why	ACETATE							
108-05-4	ACETATE USSR	DW	MPC	u.		200	MO //	**
100-03-4	OGGR	VW	Mru	H	S	.200	MG/L	12
VINYL	CHLORIDE							
	CALIFORNIA ST. DHS	DW	AL	Н	s	2,000	UG/I	3
2 27 31	manuscriptores in the second	The same				2,000	OU/ L	3

CHE	MICAL	*						
CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	ПОМ	REFCODE
	AGENCI				31A103	VALUE		REFCODE
VIN	IYL CHLORIDE							
75-01-4	EPA	AMBIENT	AWQC	н	S	2,000	UG/L *	* 9
		DW	HA1 C	Н	S	2,600.000		7
			HA10 C	н	S	2,600.000		7
			HALT A	Н	S	46.000	UG/L	7
			HALT C	Н	S	13.000	UG/L	7
			MCL	H	S	2.000	UG/L	20
			MCLG	Н	S	.000	UG/L	8
	FLORIDA ST.	DW	MCL	Н	S	1.000	UG/L	2
	NAS	DW	SNARL CHR	Н	S	1.960	UG/L *	* 11
	NEW YORK	DW	ASL1	Н	S	5.000	UG/L	26
			ASL2	Н	S	1.000	UG/L	26
		GW	GWQS	H	S	5.000	UG/L	16
XYL	ENE		******					
1330-20-7		DW	HA LIFE	н	s	2,200.000	UGZL	7
			HA LIFE A	Н	S	400.000		7
			HA1 C	н	S	12,000.000		7
			HA10 C	Н	S	7,800.000		7
			HALT A	Н	S	27,300.000		7
			HALT C	н	S	7,800.000		7
			MCLG	Н	Р	.440		8
	NEW YORK	DW	ASL1	H	S	50.000	UG/L	26
			ASL2	Н	S	10.000	UG/L	26
	USSR	DW	MPC	A	S	.050	MG/L	12
	PUR /METAN							********
108-38-3	ENE(META) CALIFORNIA ST. DHS	DW	AL	Н	S	420	MG/L·	7
100-30-3	CALIFORNIA 31. DII3		AL	n	3	.020	MG/L	3
XYL	ENE(ORTHO)							
	CALIFORNIA ST. DHS	DW	AL	Н	S	.620	MG/L	3

XYL	ENE(PARA)							
106-42-3	CALIFORNIA ST. DHS	DW	AL	Н	S	.620	MG/L	3
XYL	ENES							
	H&W	DW	AO	A	S	.300	MG/L	5
ZIN		m.r.				400 000	He a	-
7440-66-6	EEC	D₩	GL	A	S	100.000		6
	EPA	DW	SMCL	A	S	5.000	21	28
	H&W	DW	AO	A	S	5.000	MG/L	5

CAS#	AGENCY	CATEGORY	LIMIT	LTYPE	STATUS	VALUE	MOU	REFCODE
			****		****			
ZINC								
7440-66-6	MOE	DW	MDC	Α	S	5.000	MG/L	1
	NEW YORK	AMBIENT	AWQS	н	S	300.000	UG/L	16
		DW	MAC	Α	S	5.000	MG/L	25
		GW	GWQS	Н	S	5.000	MG/L	16
	USSR	DW	MPC	Н	S	1.000	MG/L	12
	WHO	DW	GV	A	S	5.000	MG/L	4
	AND COMPOUNDS NEW JERSEY	GW	GW1 GW2 GW3	A A A	s s s	5.000 5.000 5.000	MG/L	21 21 21
ZINEB		GW	GWQS	н	s	1.750	UG/L	16
ZIRAM		GW	GWQS	н	S	4.180	UG/L	16
ZIRAM	(AND FERBAM) EPA	DW	SNAEL	н	S	.004	MG/L	10

PALIS SYSTEM ALIAS REPORT---04/18/88

	PARM	CAS	FULLNAME	SYN
	(4-CHLORO-O-TOLOXY)ACETIC ACID	94-74-6	(4-CHLORO-O-TOLOXY)ACETIC ACID	(4-CHLORO-2-METHYLPHENOXY)ACETIC 2-METHYL-4-CHLOROPHENOXYACETIC AGROXONE MCP MCPA METHOXONE
	2,4,5-T	93-76-5	2,4,5-T	(TRICHLOROPHENOXY)ACETIC ACID
	2,4,5-TP	93-72-1	2,4,5-TP	(TRICHLOROPHENOXY)PROPIONIC ACID
	2,4-D	94-75-7	2,4-D	(DICHLOROPHENOXY)ACETIC ACID 2,4-D
	2,4-DICHLOROPHENOXYBUTYRIC ACID		2,4-DICHLOROPHENOXYBUTYRIC ACID	2,4-DB
	3-CHLORO-1,2-PROPANEDIOL	96-24-2	3-CHLORO-1,2-PROPANEDIOL	MONOCHLOROHYDRIN
	AMETRYN	834-12-8	AMETRYN	AMETREX AMETRYNE
	BENTAZON	25057-89-0	BENTAZON	BENTAZONE
	BHC(ALPHA)	319-84-6	BHC(ALPHA)	ALPHA-BENZENE HEXACHLORIDE HEXACHLOROCYCLOHEXANE(ALPHA)
	BHC(BETA)		ВНС(ВЕТА)	BETA-BENZENE HEXACHLORIDE HEXACHLOROCYCLOHEXANE(BETA)
	BHC(TECHNICAL)		BHC(TECHNICAL)	HEXACHLOROCYCLOHEXANE (TECHNICAL)
44.000.00	CARBARYL	63-25-2	CARBARYL	SEVIN
	CARBOPHENOTHION	786-19-6	CARBOPHENOTHION	TRITHION
	CHLORAMBEN		CHLORAMBEN	AMBIBEN AMIBEN AMIBIN AMOBEN CHLORAMBED CHLORAMBENE
	CHLOROBENZENE	108-90-7	CHLOROBENZENE	MONOCHLOROBENZENE
	CHLOROPROPHAM		CHLOROPROPHAM	CIPC ISOPROPYL N(3-CHLOROPHENYL)CARBA
	CYANAZINE	21725-46-2	CYANAZINE	BLADEX

PALIS SYSTEM ALIAS REPORT---04/18/88

PARM	CAS	FULLNAME	SYN
CYCLOHEXYLCHLORIDE	542-18-7	CYCLOHEXYLCHLORIDE	CHLOROCYCLOHEXANE
CYCLONITE	121-82-4	CYCLONITE	HEXOGEN
DACTHAL		DACTHAL	CHLOROTHAL DACTHALOR DCP DCPA
DALAPON	75-99-0	DALAPON	DICHLOROPROPIONIC(2,2) ACID
DBCP	96-12-8	DBCP	1,2-DIBROMO-3-CHLOROPROPANE 3-CHLORO-1,2-DIBROMOPROPANE FUMAZONE NEMAFUME NEMAGON
DEMETON	8065-48-3	DEMETON	MERCAPTOPHOS
DI-ALLATE	2303-16-4	DI-ALLATE	AVADEX
DICHLONE	117-80-6	DICHLONE	2,3-DICHLORO-1,4-NAPHTHO
DICHLOROBENZENE(1,2)	95-50-1	1,2-DICHLOROBENZENE	O-DICHLOROBENZENE ORTHO-DICHLOROBENZENE
DICHLOROBENZENE(1,4)	106-46-7	1,4-DICHLOROBENZENE	PARA-DICHLOROBENZENE
DICHLOROETHANE(1,2)	107-06-2	1,2-DICHLOROETHANE	DICHLOROETHANE-1,2 ETHYLENE DICHLORIDE SYM-DICHLOROETHANE
DICHLOROETHYLENE(1,1)	75-35-4	1,1-DICHLOROETHYLENE	1,1-DICHLOROETHENE
DICHLOROETHYLENE(1,2-CIS)	156-59-2	1,2-DICHLOROETHYLENE CIS	1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHYLENE
DICHLOROETHYLENE(1,2-TRANS)	156-60-5	1,2-DICHLOROETHYLENE TRANS	TRANS-1,2-DICHLOROETHYLENE
DICHLOROPHENOL(2,4)	120-83-2	2,4-DICHLOROPHENOL	DICHLOROPHENOL 2,4
DIOXIN(D2CDD)		D2CDD	DICHLORODIBENZO-P-DIOXIN
DIOXIN(H6CDD)		H6CDD	HEXACHLORODIBENZO-P-DIOXIN
DIOXIN(M1CDD)		M1CDD	MONOCHLOROD I BENZO - P - D I OX I N
DIOXIN(O8CDD)		O8CDD	OCTACHLOROD I BENZO - P - D I OX I N
DIOXIN(P5CDD)		P5CDD	PENTACHLORODIBENZO-P-DIOXIN

PALIS SYSTEM ALIAS REPORT---04/18/88

	PARM	CAS	FULLNAME	SYN
	DIOXIN(T3CDD)	***	T3CDD	TRICHLORODIBENZO-P-DIOXIN
	DIOXIN(T4CDD)		T4CDD	TETRACHLORODIBENZO-P-DIOXIN
	ETHYLAMINE	75-04-7	ETHYLAMINE	MONOETHYLAMINE
	ETHYLENE DIBROMIDE	106-93-4	ETHYLENE DIBROMIDE	1,2-DIBROMOMETHANE EDB
	FURAN(D2CDF)		D2CDF	DICHLORODIBENZOFURAN
	FURAN(H6CDF)	************	H6CDF	HEXACHLOROD I BENZOFURAN
***************************************	FURAN(M1CDF)		M1CDF	MONOCHLORODIBENZOFURAN
	FURAN(O8CDF)		O8CDF	OCTACHLORODIBENZOFURAN
	FURAN(P5CDF)		P5CDF	PENTACHLOROD I BENZOFURAN
	FURAN(T3CDF)		T3CDF	TRICHLORODIBENZOFURAN
	FURAN(T4CDF)		T4CDF	TETRACHLORODIBENZOFURAN
	HEPTACHLOR & HEPTACHLOR EPOXIDE	76-44-8+HE	HEPTACHLOR & HEPTACHLOR EPOXIDE	HEPTACHLOR
	LINDANE	58-89-9	LINDANE	HEXACHLOROCYCLOHEXANE-GAMMA
	METHACRYLIC ACID	79-41-4	METHACRYLIC ACID	METHYL METHACRYLATE
	METHYL DEMETON	8022-00-2	METHYL DEMETON	METHYL SYSTOX
	METHYL PARATHION	298-00-0	METHYL PARATHION	METAPHOS
	METHYLENE CHLORIDE	75-09-2	METHYLENE CHLORIDE	DICHLOROMETHANE
	NAPHTHOL(2)	135-19-3	2-NAPHTHOL	B-NAPHTHOL
	PARATHION	56-38-2	PARATHION	THIOPHOS
	PCB		PCB	PCB'S POLYCHLORINATED BIPHENYL
	PENTACHLORONITROBENZENE	82-68-8	PENTACHLORONITROBENZENE	TERRACHLOR
	PENTACHLOROPHENOL	87-86-5	PENTACHLOROPHENOL	PCP
	PROMETRYNE	7287-19-6	PROMETRYNE	PROMETRINE
3	PROPAZIN		PROPAZIN	PROPAZINE

PALIS SYSTEM ALIAS REPORT---04/18/88

............

PARM PROPOXUR	CAS 114-26-1	FULLNAME PROPOXUR	SYN BAYGON
 SULFATE		SULFATE	SULPHATE
 SULPHATE		SULPHATE	SULFATE
 ТСР		ТСР	1,2,3-TRICHLOROPROPANE
TETRACHLOROETHANE(1,1,2,2)		1,1,2,2-TETRACHLOROETHANE	ACETYLENE TETRACHLORIDE BONOFORM CELLON SYM-TETRACHLOROETHANE TETRACHLOROETHANE
		TETRACHLOROETHYLENE	TETRACHLOROETHENE
 TRICHLOROETHYLENE		TRICHLOROETHYLENE	TRICHLOROETHENE
 TRINITROMETHANE	517-25-9	TRINITROMETHANE	NITROFORM

FOOTNOTES

*	limit represents a cancer risk of less than 1x10 ⁻⁵ for a lifetime exposure
**	limit presented as a 1x10 ⁻⁶ risk level
+	term "trihalomethanes" comprises chloroform, bromodichloromethane, chlorodibromomethane, and bromoform
++	limit based on 5% of the maximum allowable daily intake (10pg/kg/day) for a 60 kg individual consuming 2 L/day
***	total kjeldahl nitrogen minus ammonia nitrogen
#	limit based on a 1x10 ⁻⁶ cancer risk
##	limit based on a 4 kg infant
###	as MG/L SiO2
+++	pH is quoted as a range from 6.5-8.5

TABLE 1

UNITS OF MEASURE

MG/L	milligrams per litre (parts per million)
UG/L	micrograms per litre (parts per billion)
NG/L	nanograms per litre (parts per trillion)
PG/L	picograms per litre (parts per quadrillion)
NTU	nephelometric turbidity unit
FTU	formazin turbidity unit
BECQ/L	becquerel per litre (1 BECQ/L = 27 PCI/L)
PCI/L	picocurie per litre
D#	dilution number at 25 °C
F/L	fibres per litre
us/CM	microsiemens per centimetre at 20 $^{\circ}\mathrm{C}$
TCU	true colour units (platinum cobalt scale)
L/M3	litres per cubic metre
STDU	standard unit of measure

Page 75

TABLE 2

PALIS SYTEM REFERENCE FILE REPORT

Refcode	Reference
1	Ontario Drinking Water Objectives, revised 1983, Ontario Ministry of the Environment, ISBN 0-7743-8985-0.
2	Public Drinking Water Systems, DER 1984, 17-22.104(1) 17-22.104(1)(a)3 (Florida State).
3	California State Department of Health Services, Sanitary Engineering Branch, Revision 110483.
4	Guidelines For Drinking Water Quality Volumel: Recommendations, World Health Organization, 1984 ISBN 92 4 154168 7.
5	Guidelines for Canadian Drinking Water Quality 1978, Ministry of National Health and Welfare ISBN 0-660-10429-6 (updated 1988).
6	EEC Drinking Water Directive, International Environment Reporter, January 14, 1981, 151:0706 151:0712.
7	United States Environmental Protection Agency Health Advisories, Office of Drinking Water, March 31,1987
8	EPA Moves Toward Final Drinking Water Regs, AWWA Mainstream, December 1985.
9	Ambient Water Quality Criteria, U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Update 1.0 September 2, 1986.
10	Organic Pesticides and Other Organic Contaminants in Drinking Water, Concentration, Toxicity and Suggested No-Adverse-Effect Levels, Drinking Water and Health, National Academy of Science.

Page	76

Refcode	Reference
11	Limits for Target Organics in Drinking Water, Journal AWWA volume 77#7 pp.88-96, 1985.
12	The Maximum Permissable Concentrations in the USSR for Harmful Substances in Drinking Water, D. Stofen, Toxicology 1, pp. 187-195, 1973.
13	Comparison of United States and Canada Drinking Water Regulations, Edward J. Calabrese, Regulatory Toxicology and Pharmacology 3, pp. 417-427, 1983.
14	Pesticides Interim Guideline Concentrations, Issue Report - Pesticides In Well Water, January 9, 1986, 86/IR-008 (superceded by update to reference 5).
15	Memo Re: Gloucester Waste Disposal Site Clean Up - Water Quality Objectives, Dr. E. McCloskey, Ontario Ministry of Labour, May 1987.
16	Water Quality Regulations, Surface Water and Groundwater Classifications and Standards, New York State, Department of Environmental Conservation.
17	Interim Drinking Water Guidelines Province of Ontario, Provided by Health and Welfare Canada, August 1986.
18	Proposed IMAC for PCDDs and PCDFs in Drinking Water Fact Sheet on Dioxin - Dioxin Background, Ontario Ministry of Environment, 1986.
19	Organic Contamination in Groundwater, Journal AWWA Volume 79 pp. 37-42, August 1987.
20	Information Alert - Volatile Organic Compounds From US Environmental Protection Agency, R. MacFarlane, Hazardous Contaminants Branch, Ontario Ministry of Environment, July 1987.
21	Ground Water Quality Protection, State and Local Strategies, National Academy Press, Washington D.C. 1986.

Page 77	
Refcode	Reference
* 22	Information Alert - Pesticides From National Agricultural Chemicals Association, R. MacFarlane, Hazardous Contaminants Branch, Ontario Ministry of Environment, November 1985.
23	Handling the Threat of Contaminated Water Supplies, Opflow Volume 9 number 3 pp.3-4, March 1983.
24	Drinking Water and Health, Volume 4 pg.203, National Academy Press, Washington D.C. 1982.
25	10 NYCRR Part 5: Drinking Water Regulations, New York State Water Quality Regulations.
26	Organic Chemical Action Steps for Drinking Water, Bureau of Public Water Supply Protection, New York State Department of Health - Office of Public Health, December 1985.
27	Health Advisories on Pesticides, US Environmental Protection Agency, PB88-113543/LA, August 1987.
28	International Standards for Drinking Water, I.M. Sayre, Journal AWWA Volume 80 #1 pp.54-60, 1988

APPENDIX 1

BACKGROUND INFORMATION ON GUIDELINE-SETTING PROCEDURES

INTRODUCTION

Even when drinking water is obtained from relatively unpolluted sources it can be expected to contain a wide variety of inorganic, chemicals, both organic and very concentrations. This knowledge has lead to concern about the possibility of long term health effects from consumption of such waters. Drinking Water standards, objectives or guidelines are designed to make sure that any water intended for human consumption contains no disease causing organisms, or hazardous concentrations of toxic chemicals or radioactive substances. Aesthetic parameters such as temperature, taste, odour and colour which determine the pleasantness of water to drink should also be controlled. Consumers may seek other, possibly hazardous sources of drinking water, if the municipal supply is aesthetically unsatisfactory.

Similarly other water quality guidelines may ensure that surface waters used as a source for drinking water and/or from which fish are eaten, and groundwaters contain no chemicals at levels that can be construed as hazardous.

Agencies may monitor for many different substances in drinking and other waters. While many chemicals may be reported as occurring in drinking waters throughout the world not all can be targeted for guidelines. Some are found sporadically, very few occur regularly. Substances for which drinking water guidelines are set generally are selected using certain criteria which may vary from agency to agency.

The selection criteria used by WHO are:

- documented evidence that the substance can cause acute or chronic illness
- evidence that the substance is known to occur in significant concentrations in drinking water
- evidence that the substance has a relatively high frequency of detection in water
- availability of reliable analytical methods for monitoring and control purposes
- 5. evidence that the concentration of the substances in water can be controlled.

Page A2

Prior to establishing any numerical limits, the risk of a substance to the population must be assessed. The potential hazard of a given chemical combined with the level of exposure are the two major components in defining the risk of adverse effects occurring in a given population.

HAZARD + EXPOSURE = RISK

Because hazard is a property of the chemical itself, if the risk to the population is unacceptable the exposure must change, and specific controls may be imposed in order to eliminate or reduce the risk to an acceptable level. One method of controlling exposure is to set guidelines for the amount of a chemical substance which is allowable in drinking water.

There are two major steps in the guideline-setting procedure - Hazard Assessment and Risk Assessment/Management.

HAZARD ASSESSMENT

The first step in guideline (numerical limit) development is therefore hazard assessment. This involves qualitative and quantitative analysis to determine the potential effect a chemical could have in terms of health, safety or environmental consequences. Data sources might include the results of animal or non-animal tests, results of epidemiological studies, physical and chemical properties and structure. There is considerable uncertainty associated with this process for the following reasons:

- types of health effects may vary with varying exposure and concentration of the same chemical
- different species of animals respond differently to the same concentration of the same chemical
- individuals of the same species may show a wide range in sensitivity to the same chemical
- not all studies reported in the literature are adequately designed or conducted
- chemicals can interact to enhance or diminish a toxic effect.

To determine the amount of a chemical substance that may be ingested without significant risk to the individual a different approach is used for carcinogens (cancer causing substances) as opposed to non-carcinogens.

a) Acceptable Daily Intake-Safe Factor (ADI-SF) Approach

The Acceptable Daily Intake (ADI) of a chemical is defined as the dose that is anticipated to be without lifetime risk when taken daily. This approach is usually applied to substances which are non-carcinogens. It is based on the determination of the amount of chemical that shows no adverse effect in animal studies (this is known as the no-observed adverse effect level (NOAEL)), divided by a suitable uncertainty ("safety") factor. The uncertainty factor chosen can range from 10 to 10,000 or more depending on criteria such as:

- completeness of data
- nature of toxicological data
- severity of lesions
- chemical and kinetic characteristics
- differences in species response

ADI = NOAEL / safety factor (uncertainty)

Some examples of Safety factors which may be applied are:

Differences between species		x10
Differences within species (sensitive members)	(additional)	x10
Sub-chronic to long term extrapolation	(additional)	x10
Non-reversible effects	(additional)	x2-x25

Safety factors therefore can be as small as 10, or as large as 25000.

In many instances, a qualitative assessment or professional judgement will be necessary when assigning the safety factors; this may differ from agency to agency, as may the criteria used and the magnitude of the safety factors. Thus, the ADI values developed by different agencies may not be the same.

The ADI-SF approach assumes a threshold in dose response (ie. there is some dose or exposure where no adverse effect is observed). The safety factor provides the added confidence that

no adverse effect will occur at lower levels of exposure even to the most sensitive members of the population.

b) Unit Risk Estimate Approach

In the case of carcinogens, the concept of "threshold" has not found wide acceptance ie. it is felt that exposure to any level of the substance produces some effect. It is now more common to estimate the level of risk than it is to estimate the ADI for a carcinogen. This yields a 'unit risk estimate' rather than an Estimation of risk involves development of suitable dose-response data in a lifetime exposure (carcinogenicity) bioassay of animals and extrapolation from the observed dose-response to low-dose exposures in humans. A number of mathematical models may be used to estimate the dose that is expected to be associated with a specific level of risk (probability) of an adverse health outcome (eq. the linear one-hit model, the multi-stage model etc); each model may provide a widely differing value for the same level of risk. For carcinogens, therefore, agreement between agencies on unit risk estimates will only be good if similar risk estimation models are used. Some agencies will have the risk assessment model which must be used to determine the guideline level specified by their regulations. A risk level of 1 in 100,000 or in 1,000,000 is commonly used in the calculations. The unit risk estimate is thus the amount of a chemical which may be ingested over a lifetime without significant risk.

Because of the number and magnitude of safety factors used in the ADI-SF approach and the nature of the risk assessment models, risks are usually overestimated rather than under estimated ie. the levels of substances determined by either method to be without significant risk are highly conservative.

2. RISK ASSESSMENT/MANAGEMENT

The second step of the evaluation process leading to a numerical limit (exposure limit) involves risk management. Development of a numerical limit for a substance in drinking water by a jurisdiction takes into account the ADI or unit risk estimates calculated for the substance under review and several other factors such as:

- estimates of intake of the contaminant via all routes of exposure (air, water, food and consumer products) and the percentage of the total daily intake that comes from the exposure route under consideration, in this case drinking water;

Page A5

- local differences in exposures (variations in consumption patterns, specific sites with high level contamination, etc.);
- existence of special populations at risk (pregnant women, infants, fish eaters, native population);
- the level at which analytical methodologies can detect, measure and confirm the presence of the contaminant;
- the costs and benefits of restricting or banning a manufactured chemical;
- available treatment technologies; and
- constraints prescribed or implied in law regarding the intent, development and use of numerical limits.

Since the application of these factors will tend to vary from agency to agency, different numerical limits may well result, even if the same "ADI" or "unit risk estimate" is used initially.

Example:

DRINKING WATER GUIDELINE CALCULATION

Generally drinking water is not the major source of exposure to chemicals and account must be made for exposure from food, air, occupation and lifestyle. Twenty percent of the ADI is customarily allocated to drinking water. Where most of the intake may be accounted for by either air or food, as may be the case with pesticides, one percent is allocated to drinking water. For drinking water, most guidelines are based on the assumption that 2 l/day will be consumed by a 70 kg person over a period of 70 years, again these assumptions may vary slightly from jurisdiction to jurisdiction. Drinking water guidelines are determined based on the ADI or unit risk estimate of a chemical, as follows:-

ADI for a certain chemical or unit risk estimate = 10mg/day/kg (intake associated with a given level of risk)

ADI or unit risk estimate for a 70 kg man = 700 mg/day

20% allocation to drinking water = 140 mg/day

Assuming 2 litres/day consumption = 70 mg/litre

Hence: drinking water guideline for that chemical= 70 mg/litre

Page A6

This value may be modified upon application of the other factors involved in risk assessment/management such as cost/benefits of restrictions, local conditions, available treatment technologies etc.

Although most agencies have the same general goals of protecting the public's health from pollutants in water, how they go about achieving their goals may vary markedly.

A case in point is provided by drinking water guidelines for trihalomethanes (THM) developed by the USEPA and Canada. At the 100 ug/l MCL, EPA has estimated, using the multi-stage model for cancer risk estimates, that up to four cases of cancer (liver and/or kidney) may occur per 10,000 people who consume 2 litres of water per day over 70 years. The Canadian process used the more conservative linear one-hit model and at the 350 ug/l MAC, estimates predict that one cancer case (kidney) may occur per 2.5 million people per year who consume 2 litres of water per day; this amounts to 3.5 persons per 100,000 over 70 years if put into USEPA terminology. The level of 350 ug/l is considered a maximum level not to be exceeded while the 100 ug/l MCL of the EPA is applied to an average of four quarterly values. The Canadian standard is based on human health considerations, while in the EPA regulation achievability and the premise that control of THM levels during the water treatment process will also control levels of other chlorinated organics were also factors considered in setting the final limit.

It is of great potential benefit to compare and evaluate the guidelines developed by other agencies. However it is necessary to carefully examine and recognize the different approaches and assumptions used in establishing them and also to recognise the risk level associated with each guideline.

APPENDIX 2

ONTARIO DRINKING WATER OBJECTIVES @

Ontario Drinking Water Objectives were first approved by the Ontario Water Resources Commission in 1964. The parameters given objectives were principally those contained in the 1962 document "United States Public Health Service Drinking Water Standards". This document has also served as the basis for "Canadian Drinking Water Standards and Objectives" published in 1968. In 1974, a Federal/Provincial Working Group on Drinking Water was formed under the auspices of the Federal/Provincial Advisory Committee on Environmental and Occupational Health. The Working Group was formed to ensure consistency in health parameters on a national scale. The parameters considered were chemical, physical, microbiological, radiological and aesthetic in nature. It was decided, after the latest (1978) Federal Guidelines for Drinking Water Quality were completed, to raise the status of the Working Group to a permanent Sub-Committee on Drinking Water.

The Federal/Provincial Sub-Committee on Drinking Water was set up to:

- set priorities for parameters needing limits;
- review recommendations (based on toxicological data) put forward by Health and Welfare Canada; and
- ultimately arrive at a limit based on toxicological data, levels and frequency of occurrence and socio-economic considerations.

As new data becomes available, these guidelines are periodically reviewed.

Ontario usually adopts the Canadian Drinking Water Guidelines, as Ontario Drinking Water Objectives, although for certain parameters Ontario's limits may be more stringent; further, Ontario may set its own limits for some substances, should the need arise.

Criteria for Ontario Drinking Water Objectives (ODWO)

There are three types of criteria set; MAC's (Maximum Acceptable Concentrations), IMAC's (Interim MAC's) and MDC's (Maximum Desirable Concentrations).

MACs are health based numbers that should not cause adverse health effects with exposure to that level for a lifetime. They are frequently based on animal feeding studies because sufficient human toxicological information is rarely available.

IMACs are set for substances with known chronic effects in mammals and for which there are no established maximum acceptable concentrations. Although toxicological, epidemiological and health data are available for such substances the data are subject to public and scientific debate before agreement on a maximum acceptable concentration.

MDCs are set for those parameters that effect the aesthetic quality of the water or may interfere with good water quality control practices.

Generally, municipalities are responsible for plumbing inspection and water distribution for communal water systems covered by the Ontario Water Resources Act (OWRA). Public Utilities Commissions are responsible for the treatment and distribution of water under the auspices of the municipality; hence the municipality has the ultimate responsibility for the quality of water reaching consumers. Private operators of water supply systems governed by the OWRA, are responsible for their water quality and local health agencies are responsible for water supplies not included under the Act (those serving 5 or fewer private residences).

To ensure the provision of water of adequate quality and quantity, a Certificate of Approval is issued to a proponent for the construction of a new waterworks or for alteration to an existing works stating the terms and specific conditions. Factors which influence the authorization to use a certain water source will depend on the following:

- satisfactory quality and adequate quantity of the water source;
- adequate treatment facilities to consistently produce water free from health hazards and to minimize undesirable aspects of finished water quality;
- adequate capacity to meet peak demands without development of low pressures which could result in health hazards;

Page A9

- enforcement of requirements to prevent development of health hazards and
- records of laboratory analysis showing consistent compliance with the water quality limits stated.

The Ministry of the Environment provides courses in complete operator education and ensures that proper monitoring programs are maintained. When routine sampling indicates guideline exceedence, monitoring is intensified (see ODWO*). If necessary, appropriate remedial measures are determined by the Ministry. Occasional short-term exceedences may be tolerated if medical evaluation indicates that injury to health will not occur.

@ extracted in part from a document prepared for the Hazardous Contaminants Coordination Branch by Bev Alder while on developmental assignment.

* Ontario Drinking Water Objectives revised 1983. Ontario Ministry of Environment ISBN 0-7743-8985-0 1984