SC4/SM8 Advanced Topics in Statistical Machine Learning Problem Sheet 3

- 1. In lectures, we derived the M-step updates for fitting Gaussian mixtures with EM algorithm, for the mixing proportions and for the cluster means, assuming the common covariance $\sigma^2 I$ is fixed and known.
 - (a) What happens to the algorithm if we set σ^2 to be very small? How does the resulting algorithm as $\sigma^2 \to 0$ relate to K-means?
 - (b) If σ^2 is in fact not known and is a parameter to be inferred as well, derive an M-step update for σ^2 .
- 2. We are given a labelled dataset $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \{0, 1\}^p$ and $y_i \in \{1, \dots, K\}$ and the naïve Bayes classifier model which assumes that different dimensions/features in vector X_i are independent given the class label $Y_i = k$, resulting in the joint probability

$$p(x_i, y_i; \{\pi_k\}, \{\phi_{kj}\}) = \sum_{k=1}^K \left\{ \mathbf{1} \left(y_i = k \right) \pi_k \prod_{j=1}^p \left[\left(\phi_{kj} \right)^{x_i^{(j)}} \left(1 - \phi_{kj} \right)^{1 - x_i^{(j)}} \right] \right\}.$$

where $\pi_k = \mathbb{P}(Y_i = k)$ are the marginal class probabilities and ϕ_{kj} is the probability of feature j being present in the class k, i.e., of $x_i^{(j)} = 1$ for an item x_i belonging to class k).

- (a) Derive the maximum likelihood estimates for π_k and ϕ_{kj} .
- (b) Assume that we are also given an additional set of *unlabelled data items* $\{x_i\}_{i=n+1}^{n+m}$. Using the same naïve Bayes model, and by treating missing labels as latent variables, describe an EM algorithm that makes use of this unlabelled dataset and give the E-step update for the variational distribution q and the M-step updates for parameters π_k and ϕ_{kj} . Discuss the difference of these results to those in part (a).
- 3. Verify that in the probabilistic PCA model from the lectures, E-step of the EM algorithm at iteration t+1 can be written as

$$q^{(t+1)}(y_i) = \mathcal{N}\left(y_i; b_i^{(t)}, R^{(t)}\right)$$

where

$$b_i^{(t)} = \left((L^{(t)})^\top L^{(t)} + (\sigma^2)^{(t)} I \right)^{-1} (L^{(t)})^\top x_i, \tag{1}$$

$$R^{(t)} = (\sigma^2)^{(t)} \left((L^{(t)})^\top L^{(t)} + (\sigma^2)^{(t)} I \right)^{-1}.$$
 (2)

- 4. Suppose we have a model $p(\mathbf{X}, \mathbf{z}|\theta)$ where \mathbf{X} is the observed dataset and \mathbf{z} are the latent variables. We would like to take a Bayesian approach to learning, treating the parameter θ to be a random variable as well, with some prior $p(\theta)$.
 - (a) Suppose that $q(\mathbf{z}, \theta)$ is a distribution over both \mathbf{z} and θ . Explain why the following is a lower bound on $p(\mathbf{X})$:

$$\mathcal{F}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{z}, \theta) - \log q(\mathbf{z}, \theta)]$$

(b) Show that the optimal $q(\mathbf{z}, \theta)$ is simply the posterior $p(\mathbf{z}, \theta | \mathbf{X})$.

- (c) Typically the posterior is intractable. Consider a factorised distribution $q(\mathbf{z}, \theta) = q_{\mathbf{z}}(\mathbf{z})q_{\theta}(\theta)$. In other words we assume that \mathbf{z} and θ are independent. Derive the optimal $q_{\mathbf{z}}$ given a q_{θ} , and hence describe an algorithm to optimise $\mathcal{F}(q)$ subject to assumption of independence between \mathbf{z} and q.
- 5. Verify steps (2) and (3) in the CAVI updates for the Latent Dirichlet Allocation model.
- 6. Consider a Bayesian approach to neural networks, where we are interested in working with a posterior distribution over parameters rather than just a point estimate. Say we have a Gaussian prior for parameters, and a likelihood parameterised by a neural network. For simplicity, consider:

$$\theta \sim \mathcal{N}(0, \sigma_0^2 I_p) \tag{3}$$

$$y_i|x_i, \theta \sim \mathcal{N}(\cdot|f_{\theta}(x_i), \sigma_y^2)$$
 (4)

where f_{θ} is the output of the NN with parameters θ .

- (a) Why is the posterior typically intractable? Give an example of a NN with a tractable posterior
- (b) How is the prior over θ related to weight decay?
- (c) Derive the formula for the KL divergence between two 1D Gaussians $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$. Verify that the KL divergence is non-negative in this case, and 0 only when the parameters of the Gaussians match.
- (d) We can take a variational approach to approximating the posterior, say with a Gaussian variational distribution $q_{\mu,\sigma^2}(\theta) = \mathcal{N}(\theta; \mu, \sigma^2)$, where μ and σ^2 are vectors of the same length as θ , and we assume that the covariance matrix is diagonal with entries given by σ^2 .

Describe an amortised variational inference approach to optimising the variational parameters μ and σ^2 . Write down the objective function, and describe how the reparameterisation trick can be used to provide unbiased estimates of the gradient of the objective with respect to the variational parameters.