Chapter 1

Introduction

This chapter presents the motivation behind this project 1.1, the main contributions 1.2 we hope to make with this work and a brief outline 1.3 on this document's structure.

pridomando fraco

1.1 Motivation

The Hash Code programming competition is a yearly event held by Google where teams are asked to solve complex and challenging engineering problems using any tools and programming languages of their choice in four hours. **available**. The problems are typically inspired **W**issues arising in real-world situations, such as vehicle routing, task scheduling, and Wi-Fi router placement. They are posed as "open" research problems for which there exists a variety of solutions of different qualities. In fact, the great majority of these are essentially Combinatorial Optimization (CO) problems concerning the search for the best solutions among a potentially large set of candidate solutions thus being of utmost importance the adoption of efficient search strategies that take the available time budget into account, Moreover, in the context of the competition, the contestants must also read, understand the problem and find a suitable representation for it, which is to say that, not all the available time For solving CO problems, a variety of algorithms exist that offen offer a com-

promise between the time and quality of the solutions found. The heuristics are a set of procedures, often problem-specific, that attempt to quickly solve generally in a greedy fashion. A superset of these algorithms is called metaheuristics, and contrary to regular heuristics, these are generic and can be applied to a broad range of problems. Natural processes and phenomena, such as collective behavior, natural selection, and some physical properties of materials, inspire several meta-heuristics search processes making them flexible and adaptable, although more computationally intensive than heuristics.

solve it

A suite of optimization tools of different natures is available to practitioners longe number

1.1. Motivation are guaranteed to thela

> for solving CO problems, thus constituting a challenge to enumerate them all. In particular, there exist a set of tools that rely upon more mathematical and exact approaches yielding optimal solutions although not being used in a competition context due to their poor time performance on challenging problems, large such as the Hash Code challenges.

> In the context of the Google Hash Code competition, competitors frequently make use of greedy the heuristic strategies tailored to the challenge. Moreover, meta-heuristics in this situation are not as popular due to the time constraints imposed by the competition format. At first instance, the majority of optimization problems are structurally different from each other, which makes it demanding to write general-purpose heuristic solvers that can be easily reused. On the other hand, it might not be worth the effort spent in the implementation of such solvers, and provided that the benefit of using a simple heuristic strategy might outweigh the development and the running cost

of meta-heuristic solvers e.g., evolutionary algorithms.

Algorithms such as meta-heuristics usually follow some notion of an optimization strategy that guides the procedure in the search for solutions. Some of the main strategies are constructive and local search. Constructive search algorithms work by starting with an empty or partially complete solution and building a complete and feasible solution by iteratively adding components based on the solution current state and the problem constraints. In contrast, local search algorithms develop a given initial solution to the problem by introducing small changes that aim to improve it to a local optimum rather, deally than a global one. A common usage of these strategies in competition is to sequence them, starting with a constructive search stage, improving solutions to a certain stagnation point and then taking advantage of a local search strategy in an attempt to enhance the solutions even further.

> Solver Solution **Problem**

Figure 1.1: Modelling and Problem Solving

It is evident that algorithms or solvers that utilize these search strategies are highly dependent on the specific problem they are trying to solve. The solver plays a crucial role in the problem-solving process as it is responsible for finding a solution. However, without a comprehensive model that can provide the solver with relevant information about the problem, the solver's effectiveness may be impaired.

The model serves as a means of presenting the various aspects of the problem the computer, which will subsequently utilize a solver to find a solution. When constructing a model, it is important to include relevant features such as the representation of the problem and solution, a description of how components can be added or removed from the solution, and methods for evaluating the solution, calculating bounds, and obtaining other heuristic information.

accessing

A good model should encode in all the relevant information from the problem and ask the right questions to obtain it, adhering to the philosophy that — "understanding the question is half the answer". Additionally, if a model was to be built in a standardized way, this would allow the development of a suite of generic and reusable (meta-heuristic) solvers that could find solutions in a black-box fashion. This idea has already been explored to some extent in previous work [18, 21] and will be further deepened.

were Condici

It is worth noting that the modelling aspect in this field has often been neglected by the community, which has been primarily focused on the development of meta-heuristics algorithms (solvers). This discrepancy can be contrasted with the mathematical perspective, where practitioners and researchers have emphasized the importance of clearly separating the model and the algorithm (solver), and have placed a significant emphasis on the modelling perspective. This gap highlights the importance of considering the modelling aspect in this field.

There has also been precent growing interest within the community in the development of optimization benchmark problems that are both relevant in practical applications and amenable to theoretical analysis. The Hash Code problems may be suitable candidates for this purpose, as they pose significant challenges from a modelling perspective while also being easily describable. Furthermore, these problems have already been partially solved in a competitive setting and have a wealth of empirical data available on the most effective known solutions. Overall, these factors make the Hash Code problems an ideal testing ground for both modelling and the evaluation of meta-heuristics.

to describe > to some extent

1.2 Contribution

The main goal of this work is to develop and implement effective heuristic and meta-heuristic approaches for solving Hash Code problems, with a particular focus on the modelling aspect and the clear separation between solvers and models. By doing so, we hope to develop more structured and efficient problem-solving strategies that can effectively address a range of challenges. Additionally, some effort will be made to address other key areas that are crucial to the success of this work, namely:

- Development and refinement of the frameworks that separate models from solvers currently materialized in an Application Programming Interface (API) designed only for constructive search [18]. The main goal is to optimize and "fine-tune" this API in order to improve its efficacy and utility, by using the Hash Code problems as benchmarks.
- Expansion of the aforementioned API to support local search strategies in a problem-independent manner. This will allow for its application to a wider range of problems and contexts.
- Implementation of a small set of general-purpose meta-heuristic solvers and utilities that can be used to not only generate and test solutions

horse hus reference reference constitue antique many puro.

tive s know testing

1.2 1.3. Outline 4

meriod

for the multiple Hash Code benchmark problems, but also to verify the a adopted correctness of the results.

Last but not least, the objective of this work is to engage in a critical examination of the strengths and limitations of our proposed approach to problem modelling and solver development. This discussion will be relevant to metaheuristic researchers, software developers, and practitioners alike. The analysis will consider various performance dimensions, including the effort required for problem modelling and solver development, the computational efficiency of the implemented software, and the quality of the solutions obtained.

Outline 1.3

The remainder of this document is structured as follows:

• Chapter 2 Provides some background on some essential aspects of optimization, search strategies, meta-heuristics, and modelling. Moreover, it presents the modelling frameworks and current state of the art of the API [18] that supports this work. to be achieved

• Chapter 3: Analyzes the main objectives that we hope to achieve, along with the methodology required to successfully accomplish them. In addition, a work plan is presented outlining the tasks to be carried out in the upcoming semester. Finally, some comments are made regarding the usability and ease of use of the tools that will be utilized, given their Is now esta inglicido ou usabilità current state.

• Chapter ?? Gives some insight into the Google Hash Code competition and typical problems presented to contestants. Furthermore, it makes a brief categorization of all the problems from previous editions, with particular emphasis on the ones analyzed so far. on a short list

• Chapter to Focuses on the work that was completed during the first semester. Specifically, it describes the modelling of the problems examined and the results obtained.

• Chapter 54 Presents a summary of the work completed and some observations about the next steps to be taken.