University of Waterloo Statistics

Brent Scheibelhut

Compiled below are a list of useful properties, general formula manipulation, etc.

1 General

- a) $\frac{d}{dy} \sum f(x) = \sum \frac{d}{dy} f(x)$
- d)

b) $\prod f(x)^{1/y} = f(x)^{\sum 1/y}$

e)

c) $\sum_{i=1}^{n} y_i = n\bar{y}$

2 Graphs

- a) Tail of a graph is the smaller end that (possibly) can stretch for a while
- **b)** Negatively Skewed = Skewed to the left = Tail on left (small left end) = Mean less than median
- c) Positively Skewed = Skewed to the right = Tail on right (small right end) = Mean greater than median
- d) Correlation is measure of linear dependency

3 Basics

3.1 Expectation(Mean)

- a) $E(X) = \sum_{allx} x f(x)$ discrete random variable X, probability function f(x)
- b) $E(g(X)) = \sum_{allx} g(x) f(x)$
- c) Positively Skewed = Skewed to the right = Tail on right (small right end) = Mean greater than median
- d) Correlation is measure of linear dependency

3.2 Variance

a)

3.3 Gamma Function

a)
$$\gamma(\alpha) = (\alpha - 1)!$$

b)
$$\gamma(\alpha) = (\alpha - 1)\gamma(\alpha - 1)$$

c)
$$\gamma(0.5) = \sqrt{(\pi)}$$

d)
$$\gamma(-1) = \sqrt{2}$$

3.4 Ln Function

•
$$ln(x * y) = ln(x) + ln(y)$$

•
$$ln(x/y) = ln(x) - ln(y)$$

•
$$ln(x^y) = y * ln(x)$$

•
$$f(x) = ln(x) \Rightarrow f'(x) = \frac{1}{x}$$

•
$$\int ln(x)dx = x * (ln(x) - 1) + C$$

•
$$ln(x)$$
 is undefined when $x \leq 0$

•
$$ln(1) = 0$$

$$\bullet \lim_{x \to +\infty} \ln(x) = +\infty$$

$$\bullet \lim_{x \to 0^+} ln(x) = -\infty$$

3.5 Definite/Indefinite Integrals

If f(x) and g(x) are defined and continuous on [a, b], except maybe at a finite number of points and $c \in [a,b]$:

•
$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$
 *same for indefinite

•
$$\int_a^b (f(x) - g(x))dx = \int_a^b f(x)dx - \int_a^b g(x)dx$$
 *same for indefinite

•
$$\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$$
 for any arbitrary constant α *same for indefinite

•
$$\int_{c}^{c} f(x)dx = 0$$

•
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_b^c f(x)dx$$

•
$$\int_{b}^{a} f(x)dx = \int_{a}^{b} f(x)dx$$

4 Linear Combinations

4.1 Independence

a) If X and Y are independent than Cov(X,Y)=0

4.2 Linear Combinations

Note $E(X) = \mu$ and $Var(X) = \sigma^2$

- a) Suppose random variables X and Y are independent. Then, if g(X) and f(Y) are and two functions. E[g(X)f(Y)] = E[g(X)]E[f(Y)]
- **b)** E(aX + bY) = aE(X) + bE(Y), when a and b are constants
- c) E(X + Y) = E(X) + E(Y)
- **d)** E(X Y) = E(X) E(Y)
- e) $E(\sum a_i X_i) = \sum a_i E(X_i)$
- f) $E(\sum X_i) = \sum E(X_i)$
- g) $Let X_1, X_2, ..., X_n$ be random variables which have mean μ . The sample mean is $\overline{X} = \left(\frac{\sum_{i=1}^n X_i}{n}\right)$
- h) $Var(aX + bY) = a^2Var(X) + bVar(Y) + 2abCov(X, Y)$
- i) Var(X + Y) = Var(X Y) = Var(X) + Var(Y) if X and Y are independent.
- j) $\sum a_i^2 \sigma_1^2 + 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$
- **k)** $Var(\sum a_i X_i) = \sum a_i^2 Var(X_i) if X_1, ..., X_n$ are independent
- 1) $Var(\overline{X}) = \frac{\sigma^2}{n}$

5 Continuity Correction

Only apply continuity correction when approximating from discrete to continious

- If P(x = n) use P(n 0.5 < X < n + 0.5) (eg. P(x = 5) want values around 5)
- If P(x > n) use P(X > n + 0.5) (eg. P(x > 5) we don't want the 5)
- If $P(x \le n)$ use P(X < n + 0.5) (eg. $P(x \le 5)$ we do want the 5)
- If P(x < n) use P(X < n 0.5)
- If $P(x \ge n)$ use P(X > n 0.5)

6 Confidence Intervals

6.1 Two-sided Intervals

In general use c where $P(Z < c) = \frac{(1-100p\%)}{2} + 100p\%$

- For 99% confidence use z = 2.58
- For 98% confidence use z=2.326
- For 95% confidence use z = 1.96
- For 90% confidence use z=1.645

6.2 One-sided Intervals

• For 95% confidence use $[-\infty, 1.645]$

6.3 General

• $\hat{\mu} \pm c * \frac{\sigma}{\sqrt{n}}$

7 Z, t, Chi Calculations

Let n represent some number

- If P(Z < -n) use 1 P(Z < n) (so that we can use table)
- If P(Z > -n) use P(Z < n)
- If P(Z > n) use 1 P(Z < n)
- If P(-n < Z < n) = 2P(Z < n) 1 (if you have to rearrange then add 1 first)