

Quenching of spectroscopic factors in ^{10,12}Be(d, ³He) reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE, LPC-Caen and FRIB

Zakopane 2024 Conference

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left.\frac{d\sigma}{d\Omega}\right|_{exp} = C^2S \cdot \left.\frac{d\sigma}{d\Omega}\right|_{s.p}, \quad C^2S = \begin{cases} (2j+1) \text{ removing} \\ 1 & \text{adding} \end{cases} \quad \text{in IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- Short-range correlations: tensor forces,...
- Long-range: vibrations, giant resonances,...

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv S_n - S_p$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Many-body dynamics and/or core excitations

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to establish more systematics for this parameter

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d, ³He) reactions to:

Experimental setup

Tradional solid target experiment @ LISE

A glance at the analysis

3 E_x from missing mass technique $E_{\text{beam}} + (E, \theta)_{\text{lab}} \rightarrow E_x$

Results: 10Be(d, 3He)9Li

Results: 10Be(d, 3He)9Li

The **first** excited state $1/2^-$ is also accessible.

First direct measurement: $C^2S = 0.237(46)$

SM calculation by Acculina:
$$C^2S=0.207$$

Results: ¹⁰Be(d, ³He)⁹Li

Results: ¹²Be(d, ³He) ¹¹Li

- $C^2S = 0.33$ with Haixia + HT1p
- Need to solve puzzle with different OMPs

Fulfils expectation of: $0.65 (\text{quenching}) \cdot 0.5 (\text{GMF})$ This is true with Pang but not with HT1p...

Results: ¹²Be(d, ³He)¹¹Li

Conclusions

The reduction factor $R_{\rm S}$ is computed using SM C^2S from the SFO-tls interaction.

And now what?

Acknowledgments

The E748 collaboration:

- Santiago:B. Fernández
- LPC-Caen: A. Matta

F. Delaunay

N. L. Achouri

F. Flavigny

J. Gibelin

M. Marques

N. Orr

IJCLab:D. Beaumel

M Assié

Y. Blumenfeld

S. Franchoo

A. Georgiadou

V. Girard-Alcindor

F. Hammache

N. de Séreville

A. Meyer

I Stefan

- GANIL:
 - B. Jacquot
 - O. Kamalou

A. Lemasson

M. Rejmund

T. Roger

O. Sorlin

J.C. Thomas

M. Vandebrouck

B. Bastin

F. de Oliveira

C. Stodel

RIKEN:S. KoyamaD. Suzuki

Surrey:

N. Timofeyuk

Elastic cross sections

Normalization of all cross-sections was obtained from fits to the elastic data using the Haixa potential.

Best OMP: new ones DA1p and Haixia!

Crosscheck: 10Be(d,t)9Be

Best fit is a $\ell = 1$ $C^2S = 2.370(69)$

In accordance with $\sim 60\,\%$ quenching of SFs

Crosscheck: 10Be(d,t)9Be

Best fit is a $\ell = 1$ $C^2S = 2.370(69)$

In accordance with $\sim 60\,\%$ guenching of SFs

Kinematical lines

