Solution notes

Logic and Proof 2005 - Paper 5 Question 9 (LCP)

Context: lectures 7–8.

(a) As pointed out in the course notes, the separate parts of the formula can be converted into clauses separately. We begin by negating the conclusion, namely $\forall x \, S(x)$, to obtain $\exists x \, \neg S(x)$. After Skolemization, we obtain the clause

$$\{\neg S(a)\}.$$

From $\forall x [P(x) \lor Q \to \neg R(x)]$, we obtain $\forall x [\neg (P(x) \lor Q) \lor \neg R(x)]$ and thus (distributing) $\forall x [(\neg P(x) \lor \neg R(x)) \land (\neg Q \lor \neg R(x))]$. We obtain two additional clauses:

$$\{\neg P(x), \neg R(x)\}$$
 $\{\neg Q, \neg R(x)\}.$

From $\forall x [(Q \to \neg S(x)) \to (P(x) \land R(x))]$, we obtain $\forall x [\neg (\neg Q \lor \neg S(x)) \lor (P(x) \land R(x))]$ and then $\forall x [(Q \land S(x)) \lor (P(x) \land R(x))]$. Distributing yields four additional clauses:

$${Q, P(x)} {Q, R(x)} {S(x), P(x)} {S(x), R(x)}$$

Context: lectures 9–10.

- (b) It is impossible because the clauses are satisfiable. Let P(x,y) denote x < y and let f(x) denote x+1, with variables ranging over the integers. Then the clauses say $x \nleq x$, x < x+1 and $x < y \land y < z \rightarrow x < z$, which are all true.
- (c) We derive the empty clause as follows.

Resolve $\{\neg S(x), \neg R(x), Q(x)\}$ and $\{S(b)\}$ to obtain $\{\neg R(b), Q(b)\}$.

Resolve $\{\neg R(b), Q(b)\}$ and $\{R(b)\}$ to obtain $\{Q(b)\}$.

Resolve $\{\neg Q(x), P(x), \neg R(y), \neg Q(y)\}$ and $\{R(b)\}$ to obtain $\{\neg Q(x), P(x), \neg Q(b)\}$

Resolve $\{\neg Q(x), P(x), \neg Q(b)\}$ and $\{Q(b)\}$ to obtain $\{\neg Q(x), P(x)\}$

Resolve $\{\neg Q(x), P(x)\}$ and $\{Q(a)\}$ to obtain $\{P(a)\}$.

Resolve $\{P(a)\}\$ and $\{\neg P(a)\}\$ to obtain \square .