DEVOIR DE MATHEMATIQUES N°5 - FEVRIER 2022 DUREE 02 HEURE

EXERCICE 1 (08 points)

Soit
$$P(z) = z^3 + 9iz^2 - (22 - 12i)z - 36 - 12i$$

1) Montrer que P(z) = 0 admet une solution imaginaire pure z_0 puis achever la résolution de l'équation.

Soit z_1 la solution réelle et z_2 l'autre solution.

2) On pose
$$Z = \frac{1+i(\sqrt{3}-3)-z_0}{z_2-1+5i}$$

a) Montrer que
$$Z = \frac{1+i\sqrt{3}}{1-i}$$

b) Donner la forme trigonométrique et algébrique de Z puis en déduire les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)et\,\sin\!\left(\frac{7\pi}{12}\right)$

PROBLEME (12 points)

Soit la fonction f définie par $f(x) = \frac{\ln x}{x} + \frac{x^2 - 1}{2x}$ et Cf sa courbe représentative dans le plan muni du repère (O, \vec{i}, \vec{j}) (unité graphique 2cm).

- 1) Calculer les limites de f(x) aux bornes de son domaine de définition D_f .
- 2) Soit *u* la fonction définie par $u(x) = x^2 + 3 2\ln x$
 - a) Etudier le sens de variation de u sur son domaine de définition D_u .
 - b) En déduire le signe de u(x) pour tout x de D_u .
- 3) Montrer que la dérivée f de f a pour expression $f'(x) = \frac{x^2 + 3 2\ln x}{2x^2}$
- 1) Dresser le tableau de variation de f.
- 2) Montrer que Cf admet une asymptote oblique (Δ) dont on donnera une équation. Etudier la position relative de Cf et (Δ) .
- 3) Montrer que l'équation f(x) = 2 admet une solution unique x_0 comprise entre 3 et 4. Donner une valeur approchée de x_0 à 0,1 près.
- 4) Montrer que Cf et (Δ) se coupent en un point A dont on donnera les coordonnées.
- 5) Tracer (f et (Δ) sur le même repère (O, \vec{i}, \vec{j}) .

Hu traail!