

Chapter 9

Benefit/Cost Analysis

Lecture slides to accompany

Engineering Economy

8th edition

Leland Blank
Anthony Tarquin

LEARNING OUTCOMES

- 1. Explain difference in public vs. private sector projects
- 2. Calculate B/C ratio for single project
- 3. Select better of two alternatives using B/C method
- 4. Select best of multiple alternatives using B/C method
- 5. Use cost-effectiveness analysis (CEA) to evaluate service sector projects
- Describe how ethical compromises may enter public sector projects

Differences: Public vs. Private Projects

<u>Characteristic</u> Size of Investment	Public Large	<u>Private</u> Small, medium, large
Life	Longer (30 – 50+ years)	Shorter (2 – 25 years)
Annual CF	No profit	Profit-driven
Funding	Taxes, fees, bonds, etc.	Stocks, bonds, loans, etc.
Interest rate	Lower	Higher
Selection criteria	Multiple criteria	Primarily ROR
Environment of evaluation	Politically inclined	Economic

Types of Contracts

Contractors does not share project risk

- > Fixed price lump-sum payment
- Cost reimbursable Cost plus, as negotiated

Contractor shares in project risk

- Public-private partnerships (PPP), such as:
 - Design-build projects Contractor responsible from design stage to operations stage
 - Design-build-operate-maintain-finance (DBOMF) projects -Turnkey project with contractor managing financing (manage cash flow); government obtains funding for project
 - BTO(Build-Transfer-Operate): does not guarantee proper profit by the government →수익형민자사업
 - BTL(Build-Transfer-Lease): guarantee proper profit by the government → 임대형민자사업

Cash Flow Classifications and B/C Relations

Must identify each cash flow as either benefit, _____, or cost

Benefit (B) -- Advantages to the *public*

Disbenefit (D) -- Disadvantages to the *public*

Cost (C) -- Expenditures by the *government*

Conventional B/C ratio = (B–D) / C

Modified B/C ratio = [(B–D) – C] / Initial Investment

Profitability Index = NCF_{i≠0} / Initial Investment

Note 1: All terms must be expressed in same units, i.e., PW, AW, or FW

Note 2: Do not use _____ sign ahead of costs

Decision Guidelines for B/C and Pl Benefit/cost analysis

If B/C ≥ 1.0, project is economically justified at discount rate applied

If B/C < 1.0, project is ____ economically acceptable

Profitability index analysis of revenue projects

If PI ≥ 1.0, project is economically justified at discount rate applied

If PI < 1.0, project is ____ economically acceptable

B/C Analysis – Single Project

Conventional B/C ratio =
$$\frac{B-D}{C}$$
 If B/C \geq 1.0, accept project; otherwise, reject

PI = $\frac{PW \text{ of NCF}_{t\neq 0}}{PW \text{ of initial investment}}$ Denominator is investment

If PI ≥ 1.0, accept project; otherwise, reject

B/C Analysis – Single Project

$$\frac{B}{I + M} \qquad OR \qquad \frac{B - M}{I} \qquad ?$$

	Annual value			IDD	В	B - M	
	I	В	М	PV	IRR	I + M	1
a	8,024	23,856	7,880	7,952	15%	1.50	1.99
b	8,024	16,500	524	7,952	15%	1.93	1.99
С	8,024	17,500	1,524	7,952	15%	1.83	1.99
d	8,024	18,500	2,524	7,952	15%	1.75	1.99

Example: B/C Analysis – Single Project

A flood control project will have a first cost of \$1.4 million with an annual maintenance cost of \$40,000 and a 10 year life. Reduced flood damage is expected to amount to \$175,000 per year. Lost income to farmers is estimated to be \$25,000 per year. At an interest rate of 6% per year, should the project be undertaken?

```
Solution: Express all values in _____ terms and find _____ B/C ratio
B = \$175,000
D = \$25,000
C = 1,400,000(A/P,6\%,10) + \$40,000 = \$230,218
B/C = (175,000 - 25,000)/230,218
= 0.65 < 1.0
```

Do not build project

Defender, Challenger and Do Nothing Alternatives

When selecting from two or more ME alternatives, there is a:

- ✓ Defender in-place system or currently selected alternative
- ✓ Challenger Alternative challenging the defender
- ✓ Do-nothing option Status quo system

General approach for incremental B/C analysis of two ME alternatives:

- Lower total cost alternative is first compared to ______(DN)
- If B/C for the lower cost alternative is < 1.0, the DN option is compared to B/C of the higher-cost alternative
- If both alternatives lose out to DN option, DN prevails, unless overriding needs requires selection of one of the alternatives

Alternative Selection Using Incremental B/C Analysis – Two or More ME Alternatives

Procedure similar to _____ analysis for multiple alternatives

- (1) Determine equivalent total cost for each alternative
- (2) Order alternatives by _____ total cost
- (3) Identify B and D for each alternative
- (4) Calculate B/C for each alternative and eliminate all with B/C < 1.0
- (5) Determine _____ costs and benefits for first two alternatives
- (6) Calculate $\triangle B/C$; if >1.0, ____ cost alternative becomes defender
- (7) Repeat steps 5 and 6 until only one alternative remains

Example: Incremental B/C Analysis

Compare two alternatives using i = 10% and B/C ratio

Alternative	X	Y
First cost, \$	320,000	540,000
M&O costs, \$/year	45,000	35,000
Benefits, \$/year	110,000	150,000
Disbenefits, \$/year	20,000	45,000
Life, years	10	20

Solution: First, calculate equivalent total cost

AW of $costs_x = 320,000(A/P,10\%,10) + 45,000 = $97,080$

AW of $costs_y = 540,000(A/P,10\%,20) + 35,000 = $98,428$

Order of analysis is X, then Y

X vs. DN: (B-D)/C = (110,000 - 20,000) / 97,080 = 0.93

Eliminate ___

Y vs. DN:

(150,000 - 45,000) / 98,428 = 1.07

Eliminate ____

Select __

Example: △B/C Analysis; Selection Required

Must select one of two alternatives using i = 10% and $\Delta B/C$ ratio

Alternative	X	Υ
First cost, \$	320,000	540,000
M&O costs, \$/year	45,000	35,000
Benefits, \$/year	110,000	150,000
Disbenefits, \$/year	20,000	45,000
Life, years	10	20

Solution: Must select X or Y; ___ not an option, <u>compare Y to X</u>

AW of $costs_x = $97,080$ AW of $costs_y = $98,428$

Incremental values: $\Delta B = 150,000 - 110,000 = $40,000$

 $\Delta D = 45,000 - 20,000 = $25,000$

 $\Delta C = 98,428 - 97,080 = $1,348$

Y vs. X: $(\Delta B - \Delta D) / \Delta C = (40,000 - 25,000) / 1,348 =$ **11.1Eliminate**

Select

B/C Analysis of Independent Projects

- Independent projects comparison does not require analysis
- Compare each alternative's overall B/C with DN option
- + No budget limit: Accept ___ alternatives with B/C ≥ 1.0
- + **Budget limit specified:** capital budgeting problem; selection follows different procedure (______ Problem)

Cost Effectiveness Analysis

Service sector projects primarily involve ______, not physical facilities; examples include health care, security programs, credit card services, etc.

Cost-effectiveness analysis (CEA) combines monetary cost estimates with **non-____** benefit estimates to calculate the

Cost-effectiveness ratio (CER)

CER Analysis for Independent Projects

Procedure is as follows:

- (1) Determine equivalent total cost C, total effectiveness measure E and CER
- (2) Order projects by _____ to largest CER
- (3) Determine cumulative cost of projects and compare to budget limit b
- (4) Fund all projects such that **b** is not exceeded

Example: The effectiveness measure *E* is the number of graduates from adult training programs. For the CERs shown, determine which *independent* programs should be selected; b = \$500,000.

Program	CER, \$/graduate	Program Cost, \$
A	1203	305,000
В	752	98,000
С	2010	126,000
D	1830	365,000

Example: CER for Independent Projects

First, rank p	rograms according to	CER:		
Program	CER, \$/graduate	Program Cost, \$	Cumulative Cost, \$	
В	752	98,000	98,000	
Α	1203	305,000	403,000	
D	1830	365,000	768,000	
С	2010	126,000	894,000	

Next, select programs until budget is not exceeded

Select programs B and A at total cost of \$403,000

Note: To expend the entire \$500,000, accept as many additional individuals as possible from D at the per-student rate

CER Analysis for Mutually Exclusive Projects

Procedure is as follows

- (1) Order alternatives smallest to largest by effectiveness measure E
- (2) Calculate CER for first alternative (defender) and compare to DN option
- (3) Calculate incremental cost (Δ C), effectiveness (Δ E), and incremental measure Δ C/E for challenger (next higher E measure)
- (4) If $\Delta C/E_{challenger} < C/E_{defender}$ challenger becomes defender (dominance); otherwise, no dominance is present and both alternatives are retained
- (5) **Dominance present:** Eliminate defender and compare next alternative to new defender per steps (3) and (4).
 - Dominance not present: Current challenger becomes new defender again next challenger, but old defender remains viable
- (6) Continue steps (3) through (5) until only 1 alternative remains or only non-dominated alternatives remain
- (7) Apply budget limit or other criteria to **determine which of remaining**non-dominated alternatives can be funded

Example: CER for ME Service Projects

The effectiveness measure **E** is wins per person. From the cost and effectiveness values shown, determine which alternative to select.

	Cost (C)	Effectiveness (E)	CER	
Program	\$/person	wins/person	<u>\$/win</u>	
Α	2200	4	550	
В	1400	2	700	
С	6860	7	980	

Example: CER for ME Service Projects

Solution:

Order programs according to increasing effectiveness measure E

Program		Cost (C) \$/person	Effectiveness (E) wins/person	CER \$/win
	В	1,400	2	700
	Α	2,200	4	550
	С	6,860	7	980

B vs. DN: $C/E_B = 1400/2 = 700$

A vs. B: $\Delta C/E = (2200 - 1400)/(4 - 2) = 400$ Dominance; eliminate B

C vs. A: $\Delta C/E = (6860 - 2200)/(7 - 4) = 1553$ No dominance; retain C

Must use other criteria to select either A or C

Ethical Considerations

Engineers are routinely involved in two areas where ethics may be compromised:

<u>Public policy making</u> – **Development of strategy**, e.g., water system management (supply/demand strategy; ground vs. surface sources)

Public planning - Development of projects, e.g., water operations (distribution, rates, sales to outlying areas)

Engineers must maintain integrity and impartiality and always adhere to Code of Ethics

Summary of Important Points

Ethical dilemmas are **especially prevalent** in public sector projects

HOMEWORK

- 1. Please solve every Examples in your textbook. You do not have to submit your works.
- 2. Please upload following "PROBLEMS" solution file on "Assignment" menu in e-Class.
 - 9.16
 - **2 9.26**
 - **3** 9.35
 - 9.44