

EXCERSISE 1

DECEMBER 19, 2023

Nima Khazayi

Dr. Tabatabei

University of Guilan

0.1 Calculus

0.1.1 Differentiation

The curve y = f(x) has a slope at point x = a given by the derivative of f with respect to x at a:

$$f'(a) = \frac{df}{dx}|_{a} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}.$$
 (1)

A few particular derivatives are:

$$f(x) = ax^{n} f'(x) = anx^{n-1}$$

$$f(x) = e^{\lambda x} f'(x) = \lambda e^{\lambda x}$$

$$f(x) = u(x)v(x) f'(x) = u'(x)v(x)|u(x)v'(x)$$

$$f(x) - u(x)/v(x) f'(x) - [u'(x)v(x) - u(x)v'(x)]/v^{2}(x).$$

0.1.2 Integration

Integration is the opposite of differentiation:

$$\int_{a}^{b} f'(x)dx = [f(x)]_{a}^{b} = f(b) - f(a) \quad or \quad \int f'(x)dx = f(x)$$
 (2)

and it may also be seen as giving the area under a curve - so the integral $\int_a^b f(x)dx$ gives the area under the curve y=f(x) between x=a and x=b. Some specific integrals are:

$$\int x^n dx = x^{n+1}/(n+1) \text{ for } n \neq -1 \qquad \int x^{-1} dx = \ln x$$

$$\int e^{\lambda x} dx = e^{\lambda x}/\lambda \qquad \int u(x)v'(x) dx = [u(x)v(x)] - \int u'(x)v(x) dx$$

0.2 Lines and Circles

The vector equation of a straight line in three-dimensional space is

$$\underline{x} \quad \underline{a} + v\underline{b} \text{ with } u \in (-\infty, \infty) \text{ a real scalar.}$$
 (3)

- 1. Identify the set of variables, the objective function, the set of constraints, the sign confitions and the solution set of the following Mathematical Programming problem.
 - (a) Min x + ys.t. $2x + y \leq 3$ $x, y \ge 0$
 - (b) Max $x^2 + y^2 + z^2$ s.t. $x + y \leq 6$ $x + 3y \le 8$ $x+2y+z \leq 20$ $x, y \ge 0$
- 2. Draw two level curves for each of the following functions.

(a)
$$f(x,y) = 3x - 2y$$

(b)
$$q(x,y) = x^2 + y^2$$

(a)
$$f(x,y) = 3x - 2y$$
 (b) $g(x,y) = x^2 + y^2$ (c) $h(x,y) = x + 5y$

- 3. Draw the following sets and say if they are closed and/or bounded sets.
 - (a) $S = \{(x, y) \in \mathbb{R}^2 / x + y \le 6, 2x + y \ge 3, x \ge 0, y \ge 0\}$

(b)
$$S = \{(x, y) \in \mathbb{R}^2 / x + y \le 6, x + 2y \ge 3, y \ge 0\}$$

(c)
$$S = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 9\}$$

4. Solve the following problems graphically.

I)Max. x+y	II)Max. 2x + 3y	III)Max. x - y
$s.t. \ 2x + y \ge 3$	$s.t. \ x + 2y \le 10$	$s.t. \ 3x + 2y \le 5$
$x + 2y \ge 3$	$x \ge 20$	$x \ge 0, y \ge 0$
$x + y \le 6$	$x \ge 0, y \ge 0$	
$x \ge 0, y \ge 0$		

$$[IV)Max. \quad x^{2} + y^{2} \qquad V)Max. \quad x^{2} + y^{2} \qquad VI)Max. \quad x + y$$

$$s.t. \quad x + y = 1 \qquad s.t. \quad x + y = 1 \qquad s.t. \quad x + 4y \ge 5$$

$$x \ge 0, y \ge 0$$

Function: IsThisNumberPrime

