Sprawozdanie:

1. Opis problemu

Dane jest m maszyn oraz zbiór $J=\{1,2,...,j,...,N\}$ zadań. Zadania charakteryzują się jednym parametrem – czasem wykonania pj. Należy tak rozdzielić zadania pomiędzy maszyny, by czas wykonywania wszystkich N zadań był jak najkrótszy.

2. Opis przeprowadzonego eksperymentu numerycznego: procesor, pamięć. Przeprowadzono eksperymenty numeryczne dla algorytmów LSA, LPT i programowania dynamicznego P2 | Cmax z użyciem procesora AMD Ryzen 7 5800U i 16 GB pamięci RAM. Dane zakładały użycie dwóch maszyn, eksperymenty różniły się jedynie zadaniami i ich liczbą.

Tabela 1. Wartość kryterium, w nawiasach kwadratowych błąd względny (w %) oraz czas działania zaimplementowanych algorytmów.

Rozmiar	Wartość	Czas	Wartość	Czas	Wartość	Czas dział.
instancji	kryterium	dział. alg.	kryterium	dział. alg.	kryterium	alg. PD
(liczba	LSA	LSA	LPT	LPT	alg. PD	P2 Cmax
maszyn i					P2 Cmax	
zadań),						
przedział						
p_j						
2/10	22	7,5 ms	24	12,8 ms	21	4,2 ms
[1-10]	[4,76%]		[14,28%]			
2/10	78	7,3 ms	81	12,6 ms	77	12,9 ms
[10-20]	[1,30%]		[5,19%]			
2/20	57	9,5 ms	55 [0%]	25,2 ms	55	14,3 ms
[1-10]	[3,63%]					
2/20	158	10 ms	155	26,5 ms	152	33,7 ms
[10-20]	[3,95%]		[1,97%]			
2/20	785	11,2 ms	768	24,7 ms	756	197,8 ms
[50-100]	[3,84%]		[1,59%]			
2/50	140	21,1 ms	140	73,5 ms	138	55,9 ms
[1-10]	[1,45%]		[1,45%]			
2/50	390	22,2 ms	390	74,8 ms	388	215,2 ms
[10-20]	[0,52%]		[0,52%]			
2/50	1892	24,2 ms	1885	750 ms	1872	950,8 ms
[50-100]	[1,07%]		[0,69%]			

3. Wnioski, uwagi, co zauważył_ś, co było problemem.

Algorytm LSA jest znacznie szybszy od algorytmu LPT. Ten drugi jednak daje w wyniku odrobinę mniejszy Cmax. Najlepsze wyniki uzyskano algorytmem programowania dynamicznego. Pozostałe algorytmy dawały wyniki minimalnie większe, przy krótszym czasie działania. Czas działania algorytmu LSA rośnie w stopniu minimalnym, gdyż w minimalnym stopniu jest zależny od liczby zadań. Czas działania programowania dynamicznego jest głównie zależny od wartości pj w zadaniach a w drugiej kolejności od ich liczby. Czas działania LSA i LPT zależy raczej od liczby zadań, wartość pj nie ma tak znacznego wpływu.