PTC3314 - Ondas e Linhas

2º Exercício de Simulação Computacional - (publicado em 01/10/2024)

Data para entrega: 27 de outubro de 2024.

Este exercício computacional contará como um dos testes da disciplina.

A listagem completa e os gráficos solicitados, juntamente com as respostas às questões propostas (preencher a TABELA DE RESPOSTAS ANEXA), deverão ser entregues na data acima, impreterivelmente.

As simulações solicitadas devem ser feitas utilizando-se o programa Spice (utilizando-se modelos de linha de transmissão ou programas similares). Opcionalmente, a questão número 1 pode ser resolvida utilizando-se o programa Matlab ou similar.

Para qualquer informação adicional, contatar o monitor ou os professores.

1. Considere a linha sem perdas, mostrada na figura abaixo, em que deve ser feito o "casamento" com toco simples (com impedância característica de 75 Ω e $u=2\times10^8$ m/s) para a frequência de 100 MHz. A impedância da carga é Z_L =4mn,p Ω , de acordo com os 3 últimos algarismos do seu número USP (exemplo: nusp=2264123 => Z_L =412,3 Ω). Este trabalho poderá ser realizado em grupos de, no máximo, 3 alunos (todos de uma mesma turma de PTC3314) e, neste caso, o número USP do primeiro aluno, em ordem alfabética, deverá ser o utilizado para a escolha dos parâmetros

- a) (0,5) Calcule a máxima potência disponível do gerador de impedância interna 75 Ω .
- b) **(0,5)** Determine a menor distância, $d = d_{min}$, para a qual a admitância, normalizada em relação a $1/Z_0$, é igual a 1+j b na frequência de 100 MHz.
- c) **(0,5)** Qual o valor de *b*?
- d) (0,5) Qual deve ser o comprimento, l_t , do toco em curto para que a sua admitância de entrada seja igual a -j b?
- e) (2,5) Faça gráficos da potência dissipada na carga (em dB relativos à máxima potência disponível no gerador) em função da frequência (para 80 MHz $\leq f \leq 120$ MHz, em passos de 0,1 MHz), e determine o valor máximo dessa potência (em dB relativos à máxima potência disponível no gerador) bem como a largura de banda (BW), em MHz, para a qual a potência está acima de -2 dB, para os seguintes casos:
 - i sem o toco;
 - ii com o toco colocado na posição determinada no item (b) $(d = d_{min})$ e com o comprimento determinado no item (c);
 - iii com o toco colocado 3 m mais próximo do gerador ($d = 3 \text{ m} + d_{min}$).
- f) (0,5) Comparando os gráficos, responda:
 - O que deve ocorrer com a largura de banda se a distância d for aumentada ainda mais (sempre em múltiplos de meio comprimento de onda)?

Sugestão (outras possibilidades existem e podem ser usadas):

Para obter os gráficos da relação em dB entre a potência dissipada na carga e a máxima potência disponível no gerador (P_d) , acrescente um amplificador ideal, de ganho numericamente igual a $1/\sqrt{P_d \cdot Z_L}$ $(P_d$ em W e Z_L em Ω), ligado à tensão na carga, e plote a tensão na saída desse amplificador (em dB).

Obs.: Utilize as mesmas escalas em todos os gráficos para facilitar as comparações.

2. Considere a linha sem perdas, mostrada na figura abaixo, com impedância característica de 75 Ω e $u = 2 \times 10^8$ m/s, e comprimento 4,4 m. A linha é excitada por um gerador senoidal na frequência de 100 MHz, com 15 V de amplitude. Esse gerador é ligado no instante t=0.

$$E_g(t) = 15 H(t) \cos(2\pi f_0 t)$$
 V $f_0 = 100 MHz$

A impedância do gerador é Z_g =12m,np Ω , de acordo com os 3 últimos algarismos do seu número USP (exemplo: nusp=2264**123** => Z_g =12**1,23** Ω). A impedância da carga é igual à do gerador: Z_L = Z_g . Este trabalho poderá ser realizado em grupos de, no máximo, 3 alunos (todos de uma mesma turma de PTC3314) e, neste caso, o número USP do primeiro aluno, em ordem alfabética, deverá ser o utilizado para a escolha dos parâmetros

Faça a simulação (transiente) do modelo acima para $0 \le t \le 0.3$ µs usando "print step" ≤ 2 ps e "step ceiling" ≤ 2 ps)

- a) (2,0) Plote os gráficos das tensões na entrada da linha, $v_0(t)$, e na carga, $v_L(t)$, para 0 < t < 0.3 µs. Quais os valores de pico observados em regime ? Quais os valores esperados?
- b) (2,0) Plote os gráficos da tensão e da corrente na entrada da linha (num mesmo eixo) para 30 ns< t < 60 ns. Multiplique o gráfico da corrente por 75 Ω para melhor visualização. Verifique a defasagem (em graus) entre corrente e tensão nesse ponto da linha em função do tempo e as suas amplitudes. Quais os valores das impedâncias nesse ponto para t < 44 ns e para t > 44 ns? Comente.
- c) (1,0) Repita o item anterior para 0,28 μ s< t <0,3 μ s. Qual a defasagem neste caso? Qual a impedância? Qual o valor esperado para esta impedância?

TABELA DE RESPOSTAS

questão	parâmetro	valor
1-a (0,5)	$P_d =$	W
1-b (0,5)	$d_{min}=$	m
1-c (0,5)	<i>b</i> =	(sem unidade)
1-d (0,5)	$l_t =$	m
1-e-i (0,5)	P_{max} (sem toco)	dB
ii (0,5)	$P_{\max} (d = d_{\min})$	dB
ii (0,5)	$BW (d = d_{min})$	MHz
iii (0,5)	$P_{\max} (d = 3 \text{ m} + d_{\min})$	dB
iii (0,5)	$BW (d = 3 m + d_{min})$	MHz
1-f (0,5)	Como muda BW?	
2-a (0,5)	V_0 - esperado	V
(0,5)	V_0 - observado	V
(0,5)	V_L - esperado	V
(0,5)	$V_{\rm L}$ - observado	V
2-b (1,0)	Z(z=0, t < 44 ns)	$+j$ Ω
(1,0)	Z(z=0, t > 44 ns)	$+j$ Ω
2-c (1,0)	$Z(z=0; 0.28 \mu s < t < 0.3 \mu s)$	$+j$ Ω

Observações:

- A precisão nos cálculos dos comprimentos e distâncias deve ser de, no mínimo, 1 mm.
- A precisão nos cálculos das tensões esperadas deve ser de, no mínimo, mV
- A precisão nos cálculos de impedâncias deve ser de, no mínimo, $0,1~\Omega$
- A banda BW do item 1e deve ter precisão de 0,1 MHz