Homework-1

Question 1

You are given the following training data:

	WRITABLE	UPDATED	SIZE	CLASS
1	yes	no	small	text
2	yes	yes	large	text
3	no	yes	med	text
4	no	no	med	executable
5	yes	no	large	executable
6	no	no	large	executable

The target attribute is CLASS.

1

Compute the decision tree generated by first considering WRITABLE, then UPDATED, then SIZE.

 $\mathbf{2}$

What tree is generated by using ID3?

3

How would these trees classify the following two instances:

	WRITABLE	UPDATED	SIZE	CLASS
1	yes	yes	large	?
2	no	no	small	?

Question 2

You are given the following training data.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
label	Α	A	A	Α	В	A	A	A	A	В	В	В	В	A	В	В	В	В

1. What would be the classification of a test sample with x = 4.2 according to 1-NN?

Answer: A / B

2. What would be the classification of a test sample with x = 4.2 according to 2-NN?

Answer: A / B

3. What would be the classification of a test sample with x = 4.2 according to 3-NN?

Answer: A / B

4 Use "leave-one-out" cross validation to estimate the error of 1-NN. If you need to choose between two or more examples of identical distance, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$

5 Use "leave-one-out" cross validation to estimate the error of 2-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$

6 Use "leave-one-out" cross validation to estimate the error of 3-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$

7 Use "leave-one-out" cross validation to estimate the error of 4-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$

8 Use "leave-one-out" cross validation to estimate the error of 17-NN. Whenever you need to make a choice between equal distance data or determining a majority, make your choice so that the number of errors is maximized.

Answer: $\frac{?}{18}$