MA 101 (Mathematics - I)

Integration: Exercise set 2: Hints and Solutions

Fundamental Theorems of Calculus

1. Let $f:[a,b]\to\mathbb{R}$ be continuous. Assume that there exist distinct constants α and β such that for all $c\in[a,b]$, we have $\alpha\int_a^c f(x)dx+\beta\int_c^b f(x)dx=0$. Show that f=0.

Solution: Define $F(x) = \int_a^x f$. Then $\alpha F(c) + \beta (F(b) - F(c)) = 0$ for every $c \in [a, b]$, that is, $F(x) = \frac{\beta}{\beta - \alpha} F(b)$ for all $x \in [a, b]$. Hence, f(x) = F'(x) = 0.

2. Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable. Let $F(x) = \int_0^{g(x)} t^2 dt$. Prove that $F'(x) = g^2(x)g'(x)$ for all $x \in \mathbb{R}$. If $G(x) = \int_{h(x)}^{g(x)} t^2 dt$, then what is G'(x)?

Solution: By Leibniz Rule [1.41] $G'(x) = (g(x))^2 g'(x) - (h(x))^2 h'(x)$.

3. Let $f:[a,b]\to\mathbb{R}$ be continuous and $g:[c,d]\to[a.b]$ be differentiable. Define $\phi(x)=\int_a^{g(x)}f(t)dt$. Prove that ϕ is differentiable and compute its derivative.

Solution: As in [1.41], show that $\phi'(x) = f(g(x))g'(x)$.

4. If f'' is continuous on [a, b], show that $\int_a^b x f''(x) dx = [bf'(b) - f(b)] - [af'(a) - f(a)]$.

Solution: Use intigration by parts, $\int_a^b x f''(x) dx = (xf'(x))\Big|_a^b - \int_a^b f'(x) dx = \cdots$.

5. Let f > 0 be continuous on $[1, \infty)$ and suppose that for x > 0, $\int_1^x f(t)dt \leq (f(x))^2$. Prove that $f(x) \geq \frac{1}{2}(x-1)$.

Solution: Let $g(x) := \int_1^x f(t)dt$. Then $0 \le g(x) \le (f(x))^2$ and, so $g'(x) = f(x) \ge (g(x))^{1/2}$, i.e., $(g(x))^{-1/2}g'(x) \ge 1$. Thus,

$$x - 1 = \int_{1}^{x} 1 \le \int_{1}^{x} (g(t))^{-1/2} g'(t) dt = 2(g(t))^{1/2} \Big|_{1}^{x} = 2(g(x))^{1/2} \le 2f(x).$$

6. If $f:[a,b]\to\mathbb{R}$ is continuously differentiable, show that $\lim_{n\to\infty}\int_a^b f(x)\cos nx\,dx=0$.

Solution: Since f' is continuous on [a,b], f' is bounded. Let $M = \max\{|f'(x)| : x \in$ [a,b]. Now, applying integration by parts, we find that

$$\int_{a}^{b} f(x) \cos nx \, dx = \frac{1}{n} \left(f(x) \sin nx \right) \Big|_{a}^{b} - \frac{1}{n} \int_{a}^{b} f'(x) \sin nx \, dx$$
$$\leq \frac{1}{n} (|f(a)| + |f(b)| + M(b - a)) \to 0, \text{ as } n \to \infty.$$

Hence the result follows.

7. If $f:[0;1]\to\mathbb{R}$ is continuous, then show that $\int_0^x \left(\int_0^u f(t)dt\right)du=\int_0^x (x-u)f(u)du$.

Solution: Let $F(u) = \int_0^u f(t)dt$ for $u \in [0,1]$. Then LHS $= \int_0^x F(u) \cdot 1du$. Integration by parts gives the RHS. (Note that F'(u) = f(u) for $u \in [0,1]$.) (Alternative: We differentiate both sides with respect to x.)

8. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and let $g(x) = \int_0^x (x-t)f(t)dt$ for $x \in \mathbb{R}$. Prove that g''(x) = f(x) for all $x \in \mathbb{R}$.

Solution: We have $g(x) = x \int_0^x f(t)dt - \int_0^x t f(t)dt$ for $x \in \mathbb{R}$. Since f is continuous, by the \hat{A} -first fundamental theorem of calculus, $g: \mathbb{R} \to \mathbb{R}$ is differentiable and g'(x) = $\int_0^x f(t)dt + xf(x) - xf(x) = \int_0^x f(t)dt$ for $x \in \mathbb{R}$. Again, since f is continuous, by the first fundamental theorem of calculus, $g': \mathbb{R} \to \mathbb{R}$ is differentiable and g''(x) = f(x) for $x \in \mathbb{R}$.

Improper Integrals

- 9. Compute the following improper integrals or prove their divergence.
- (a) $\int_{1}^{\infty} \frac{dx}{x^4}$ (b) $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ (c) $\int_{0}^{\infty} e^{-ax} dx$, a > 0 (d) $\int_{0}^{1} \frac{dx}{\sqrt{1 x^2}}$

- (e) $\int_0^1 \frac{dx}{x \ln x}$ (f) $\int_0^1 \frac{dx}{x \ln |\ln x|}$ (g) $\int_0^1 \frac{dx}{x |\ln x|^{3/2}}$ (h) $\int_0^1 \frac{\sqrt{x} dx}{(1+x)^2}$

Solution: (a) $\int_{1}^{\infty} \frac{dx}{x^4} = \lim_{t \to \infty} \int_{1}^{t} \frac{dx}{x^4} = \frac{1}{3} \lim_{t \to \infty} \left(1 - \frac{1}{t^3} \right) = 1/3.$

- (b) Diverges.
- (c) Converges. $\int_{0}^{\infty} e^{-ax} dx = \lim_{t \to \infty} \int_{0}^{t} e^{-ax} dx = \frac{-1}{a} \lim_{t \to \infty} (e^{-at} e^{0}) = 1/a$

- (d) Convrges. $\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \lim_{t\to 1-} \int_0^t \frac{dx}{\sqrt{1-x^2}}$. Change variable: $y=\sin t$, integrate and take limit. Ans. $\pi/2$
- (e) Diverges. Note that $x \ln x \to 0$ as $x \to 1$. Also, $x \ln x \to 0$ as $x \to 0$ (Use L'Hópital rule). So, we consider the two improper integrals $\int_0^{1/2} \frac{dx}{x \ln x}$ and $\int_{1/2}^1 \frac{dx}{x \ln x}$. The given integral converges if and only if these two integrals converge. Now,

integral converges if and only if these two integrals converge. Now,
$$\int_0^{1/2} \frac{dx}{x \ln x} = \lim_{t \to 0+} \int_t^{1/2} \frac{dx}{x \ln x} = \lim_{t \to 0+} \int_{\ln t}^{\ln(1/2)} \frac{dy}{y} = \lim_{t \to 0+} (\ln|\ln(1/2)| - \ln|\ln t|) = -\infty.$$
 Similarly,
$$\int_{1/2}^1 \frac{dx}{x \ln x} = \lim_{t \to 1-} \int_{1/2}^t \frac{dx}{x \ln x} = \lim_{t \to 0+} (\ln|\ln t| - \ln|\ln t|) = -\infty.$$

- (f) Diverges: Camprare $\frac{1}{x|\ln|\ln x|} \ge \frac{1}{x|\ln x|}$ and use (e)
- (g) Diverges: as in (f)
- (h) This is in fact a Riemann integral: With the variable change $x=\tan^2 t$, the integral becomes $\int_0^{\pi/4} 2\sin^2 t \, dt = \frac{1}{2} + \frac{\pi}{4}$.
- 10. Test the following improper integrals for convergence.

(a)
$$\int_0^1 \frac{\sqrt{x}}{\sqrt{1-x^4}} dx$$
 (b) $\int_0^{\pi/2} \frac{\ln \sin x}{\sqrt{x}} dx$

Solution: (a) Converges. We have
$$f(x) = \frac{\sqrt{x}}{\sqrt{(1+x^2)(1+x)}} \cdot \frac{1}{\sqrt{1-x}}$$
.
 Let $g(x) = \frac{1}{\sqrt{1-x}}$. Then $\lim_{x\to 1^-} \frac{f(x)}{g(x)} = 1/2$. Since $\int_0^1 \frac{1}{\sqrt{1-x}} dx$ is convergent, the result follows

- (b) Converges: Let $f(x) = \frac{\ln \sin x}{\sqrt{x}}$, $g(x) = \frac{1}{x^{3/4}}$. Show that $\frac{f(x)}{g(x)} \to 0$ as $x \to 0+$. Since $\int_0^1 g(x) dx$ is covergent, the result follows.
- 11. Determine the values of k for which the following integrals converge.

(a)
$$\int_a^b \frac{dx}{(b-x)^k}, \ (b < a)$$
 (b)
$$\int_0^\pi \frac{dx}{\sin^k x}$$

Solution: (a)
$$k < 1$$
 (b) $k < 1$.

12. For what values of k and t the integral $\int_0^\infty \frac{x^k}{1+x^t} dx$ is convergent?

Solution: If both k > -1 and t > k + 1 hold. Note: $\int_0^1 \frac{x^k}{1 + x^t} dx$ converges if and only if k > -1 (Compare with $1/x^{-k}$), and $\int_1^\infty \frac{x^k}{1 + x^t} dx$ if and only if t - k > 1 (compare with $1/x^{t-k}$).

13. Examine whether the following integrals are convergent

(a)
$$\int_0^\infty \sin(x^2) dx$$
, (b)
$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx$$
.

Solution: (a) Converges. Use Dirichlet test: $\sin x^2 = (2x \sin x^2) \frac{1}{2x}$.

(b) Converges. Take $f(x) = \frac{\ln x}{\sqrt{x}}$ and $g(x) = 1/(x^{3/4})$. Then $\frac{f(x)}{g(x)} \to 0$ as $x \to 0+$. Since $\int_0^1 g$ is convergent, $\int_0^1 f$ converges.

Note: Comparison test and limit comparison test are valid also in Improper integrals on bounded intervals.

14. The integral $\int_a^{\infty} f(x)dx$ is said converge **absolutely** if $\int_a^{\infty} |f(x)|dx$ is convergent. If the integral $\int_a^{\infty} f(x)dx$ converges, but not absolutely, then it is said to converge **conditionally**. Show that $\int_1^{\infty} \frac{\sin x}{x^p} dx$ converges absolutely if p > 1 and conditionally if 0 .

Solution: For p > 1, use comparison $\left| \frac{\sin x}{x^p} \right|$ with $\frac{1}{x^p}$. For $0 , use Dirichlet test with <math>f(x) = \frac{1}{x^p}$ and $g(x) = \sin x$ to show $\int_1^\infty \frac{\sin x}{x^p} dx$ converges.

Finally, For $0 , <math>\int_{1}^{\infty} \frac{|\sin x|}{x^{p}} dx$ diverges, because if $\int_{1}^{\infty} \frac{|\sin x|}{x^{p}} dx$ converges, then $\int_{1}^{\infty} \frac{\sin^{2} x}{x^{p}} dx$ converges (as $\sin^{2} x \le |\sin x|$). By Dirichlet test $\int_{1}^{\infty} \frac{\cos 2x}{x^{p}} dx$ converges. Thus, $\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} \frac{2\sin^{2} x + \cos 2x}{x^{p}} dx$ converges, a contradiction.

Solution: More from Notes:

[2.21](c) Examine for convergence: $\int_{1}^{\infty} e^{-t} t^{p} dt.$

If $p \le 0$, then $0 < e^{-t}t^p \le e^{-t}$ and $\int_0^\infty e^{-t}dt = e$. By comparison, the integral converges. If p > 0, let m = [p]. Then, $e^t > \frac{t^{m+3}}{(m+3)!}$, that is, $e^{-t} < \frac{(m+3)!}{t^{m+3}}$. Therefore,

 $0 < e^{-t}t^p < e^{-t}t^{m+1} < \frac{(m+3)!}{t^2}$. Use camparison test again.

Solution: [2.26] Determine all real numbers p for which the integral $\int_0^\infty \frac{e^{-x}-1}{x^p} dx$ is convergent.

Let $f(x) = -\frac{e^{-x}-1}{x^p} dx$. Let $g(x) = \frac{1}{x^{p-1}}$ for $x \in (0,1]$. Then $\frac{f(x)}{g(x)} \to 1$. Therefore, $\int_0^1 \frac{e^{-x}-1}{x^p} dx$ is convergent if and only if p-1 < 1, i.e., p < 1. Similarly, comapring with $1/x^p$, show that $\int_1^\infty \frac{e^{-x}-1}{x^p} dx$ is convergent if and only if p > 1. Hence, convergent if and only if 1 .

Applications of integrals

- 15. Find the area of the region enclosed by the curve $y = \sqrt{|x+1|}$ and the line 5y = x + 7.
- 16. Find the area enclosed by the curve $r = a \cos 3\theta$, $-\pi/6 \le \theta \le \pi/6$.

Solution: The curve will form a loop.

17. Sketch the curve $x = a \sin 2t$, $y = a \sin t$ and find the area of one of its loops.

Solution: $4a^2/3$

18. Find the length of the curve $y = \int_0^x \sqrt{\cos 2t} \, dt$, $0 \le x \le \frac{\pi}{4}$.

Solution: 1

19. A curve is given by the equation

$$x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta).$$

Find the length of the arc from $\theta = 0$ to $\theta = \alpha$.

Solution: $\frac{1}{2}a\alpha^2$.

20. Consider the funnel formed by revolving the curve $y = \frac{1}{x}$ about the x-axis, between x = 1 and x = a, where a > 1. If V_a and S_a denote respectively the volume and the surface area of the funnel, then show that $\lim_{a \to \infty} V_a = \pi$ and $\lim_{a \to \infty} S_a = \infty$.

- 21. Find the volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis, and bounded by the section $x = x_1$.
- 22. Show that the area of the surface obtained by revolving the cardioid $r=1+\cos\theta$ about the x-axis is $\frac{32}{5}\pi a^2$.