Autómatas finitos no deterministas

Repaso de Autómata finito determinístico

Mecanismos o sistemas estímulo-respuesta

• En cada momento la máquina está en un único y determinado estado

Para cada estímulo y en cada estado, hay una única respuesta (cambio de estado; output)

No existe actividad que no responda a un estímulo

Autómata finito no determinístico

Mecanismos o sistemas estímulo-respuesta

• En cada momento la máquina está en un único y determinado estado

Para cada estímulo y en cada estado, hay una única respuesta (cambio de estado; output)

No existe actividad que no responda a un estímulo

El problema de la puerta

Pero... Qué significa el estímulo "ninguno"? Significa que los sensores no detectan a ninguna persona cerca de la puerta, ni adelante, ni atrás. Es decir, el sistema detecta la ausencia de un estímulo.

¿Cómo podemos representar esa situación?

El problema de la puerta

Pero... Qué significa el estímulo "ninguno"?

Significa que los sensores no detectan a ninguna persona cerca de la puerta, ni adelante, ni atrás. Es decir, el sistema detecta la ausencia de un estímulo.

¿Cómo podemos representar esa situación? Con no determinismo!

Lenguaje reconocido:

 $({alguno}{alguno}^*) + = ({alguno}^*)^* = {alguno}^*$

Análisis de un AFND

Análisis de un AFND

Universidad Nacional de Quilmes

Aceptación de un AFND

Vamos a decir que un AFND acepta una cadena **si existe** una computación de la cadena que es aceptada por el AFND

Ejemplo: aa es aceptado por el AFND

Análisis de un AFND

Universidad Nacional de Quilmes

Rechazo de un AFND

Vamos a decir que un AFND rechaza una cadena si NO existe una computación de la cadena que es aceptada por el AFND

Ejemplo: aaa es rechazado por el AFND

Transiciones lambda

Notar que el cabezal no se mueve

$$\rightarrow q_0$$
 \xrightarrow{a} q_1 $\xrightarrow{\lambda}$ q_2 \xrightarrow{a} q_3

Otro ejemplo de AFND

Cual es el lenguaje de M?

Otro ejemplo de AFND

$$\begin{bmatrix} a & b \end{bmatrix}$$

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Los AFNDs son interesantes porque podemos expresar lenguajes con mayor facilidad que con los AFDs

Definición formal de AFND

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Conjunto de estados

Σ: Alfabeto de input

δ: Función de transición

 q_0 : Estado inicial ($q_0 \in Q$)

F: Conjunto de estados finales ($F \subset Q$)

$$\begin{split} \delta: \mathbf{Q} \times \boldsymbol{\Sigma}_{\{\lambda\}} &\to \boldsymbol{P}(Q) \\ donde & \boldsymbol{\Sigma}_{\{\lambda\}} = \boldsymbol{\Sigma} \cup \{\lambda\} \\ & \lambda \notin \boldsymbol{\Sigma} \end{split}$$

Función de transición

$$\delta(q, x) = \{q_1, q_2, \dots, q_k\}$$

Estados resultantes de seguir UNA transición con el símbolo x

Función de transición

$$\delta(q,x) = \{q_1,q_2,\ldots,q_k\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda)=\{q_2\}$$

Función de transición extendida δ^*

Caso especial: Para todo estado q, $q \in \delta^*(q, \lambda)$

Función de transición extendida δ^*

En general, $q_j \in \delta^*(q_i, w)$ indica que existe un camino desde $\mathbf{q_i}$ a $\mathbf{q_i}$ con la cadena w

Lenguaje de un AFND

El lenguaje aceptado por un AFND M es
$$L(M) = \{w_1, w_2, ..., w_n, ...\}$$
 donde $\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$

$$L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$$

Lenguaje de un AFND

$$L(M) = \{(ab)^n \mid n \ge 0\} \cup \{(ab)^n \mid n \ge 0\} \{aa\}$$

o bien

$$L(M) = \{ab\}^* \cup \{ab\}^* \{aa\} = \{ab\}^* (\{\lambda\} \cup \{aa\})$$

Equivalencia entre AFNDs y AFDs

Definición: Una máquina M_1 es equivalente a M_2 si L(M1) = L(M2)

Teorema: Lenguajes aceptados por **AFNDs** = Lenguajes aceptados por **AFDs**

Nota: AFNDs y AFDs tienen el mismo poder computacional

Demo: Mostramos que

- Lenguajes aceptados por **AFDs** Lenguajes aceptados por **AFNDs**
- Lenguajes aceptados por **AFNDs** Lenguajes aceptados por **AFDs**

Lenguajes aceptados por **AFDs** — Lenguajes aceptados por **AFNDs**

Trivial, todo AFD define trivialmente un AFND

Lenguajes aceptados por **AFNDs** — Lenguajes aceptados por **AFDs**

Todo AFND puede ser transformado en un AFD equivalente

Intuición:

Si **M** es un AFND, construimos un AFD **M**' cuyos estados serán conjuntos de estados de **M**, tal que, por cada passo no determinista de M,

 $\delta(q, a) = \{p, r\}$ definimos $\delta'(\{q\}, a) = \{p, r\}$, donde $\{q\}y\{p, r\}$ son estados de M'.

Ejemplo 1

Ejemplo 2

Procedimiento de conversión

Dado un AFND M, generar un AFD M' tal que L(M) = L(M')

Paso 1:

Si q₀ es el estado inicial del AFND M, entonces {q₀} es el estado inicial del AFD M'

Paso 2:

Para todo estado actual del AFD ({ $q_i, q_j, ..., q_m$ }), para cada a calculamos $\delta(q_i, a)$ $oldsymbol{ } oldsymbol{ } oldsymbol{$

$$\delta'(\{q_i, q_i, ..., q_m\}, a) = \{q'_k, q'_l, ..., q'_n\}$$

Procedimiento de conversión

Paso 3:

Repetimos el paso 2 para cada estado en AFD y cada símbolo en sigma hasta que no puedan agregarse más estados al AFD

Paso 4:

Para cada estado del AFD M' de la forma ({ q_i , q_i , ..., q_m }), **si** algún q_i **es estado final** en el AFND M, entonces ($\{q_i, q_i, ..., q_m\}$) es estado final de M'

Lema: Si convertimos el AFND M en el AFD M' de acuerdo con el procedimiento anterior, **entonces** L(M) = L(M')

Demo: Mostramos que 1) $L(M) \subseteq L(M')$ y 2) $L(M) \supseteq L(M')$

Para mostrar 1, demostramos que si $w \in L(M)$ entonces $w \in L(M')$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$
 AFND $M: \rightarrow q_0 \overset{\sigma_1}{\nearrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_k}{\nearrow} \overset{\sigma_k}{\nearrow}$

Más genéricamente si el string arbitrario $v = a_1 a_2 ... a_n$

Por inducción sobre | v |

• Caso base |v| = 1, con $v = a_1$, es cierto por construcción de M'

AFND
$$M: \neg q_0 \stackrel{a_1}{\smile} q_i \qquad q_i \in \delta(q_0, a_1)$$

AFD
$$M': \longrightarrow_{\{q_0\}} \stackrel{a_1}{\longrightarrow}_{\{q_1,...,q_r\}} \delta'(\{q_0\}, a_1) = \{q_i,...q_r\}$$

• Caso inductivo
$$|v| = k + 1$$
, $v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$

Hipótesis inductiva: $1 \le |v| \le k$, $v = a_1 a_2 \cdots a_k$ (Asumimos que vale)

$$\mathsf{AFD}\ M' \colon \xrightarrow{\{q_0\}} \overset{a_1}{\underset{\{q_i,\ldots\}}{}} \overset{a_2}{\underset{\{q_j,\ldots\}}{}} \overset{a_k}{\underset{\{q_c,\ldots\}}{}} \overset{a_k}{\underset{\{q_d,\ldots\}}{}}$$

• Caso inductivo
$$|v| = k + 1$$
, $v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$

Vemos que

En consecuencia, $w \in L(M)$

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$AFND M : \rightarrow q_0 \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} \xrightarrow{\sigma_k} \xrightarrow{\sigma_k} \xrightarrow{q_f, \dots}$$

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$\downarrow q_f \qquad \downarrow q_f \qquad$$

Por lo tanto, $L(M) \subseteq L(M')$. Análogamente podemos demostrar $L(M) \supseteq L(M')$

$$L(M) = L(M')$$

Ejemplo

Construimos un AFD para $\{a^{2i+3j} \mid i \ge 0, j \ge 0\}$

Descomponemos el problema en dos subproblemas más sencillos y los combinamos

Conversión a AFD

$$\begin{split} &\delta(\{q_0\},a) = \{q_1,p_1\} & \delta(\{q_1,p_1\},a) = \{q_0,p_2\} \\ &\delta(\{q_0,p_2\},a) = \{q_1,p_1,p_0\} & \delta(\{q_1,p_1,p_0\},a) = \{q_0,p_2,p_1\} \\ &\delta(\{q_0,p_2,p_1\},a) = \{q_1,p_1,p_0,p_2\} & \delta(\{q_1,p_1,p_0,p_2\},a) = \{q_0,p_2,p_1,p_0\} \\ &\delta(\{q_0,p_2,p_1\},a) = \{q_1,p_1,p_0,p_2\} & \delta(\{q_1,p_1,p_0,p_2\},a) = \{q_0,p_2,p_1,p_0\} \\ &\delta(\{q_0,p_2,p_1,p_0\},a) = \{q_1,p_1,p_0,p_2\} & \delta(\{q_1,p_1,p_0,p_2\},a) = \{q_1,p_1,p_0,q_2\} & \delta(\{q_1,p_1,p_0,q_2\},a) = \{q_1,q_1,q_1,q_0,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) = \{q_1,q_1,q_1,q_1,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) = \{q_1,q_1,q_1,q_1,q_1,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) = \{q_1,q_1,q_1,q_1,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) = \{q_1,q_1,q_1,q_1,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) = \{q_1,q_1,q_1,q_1,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) = \{q_1,q_1,q_1,q_1,q_2\} & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) & \delta(\{q_1,q_1,q_1,q_1,q_2\},a) & \delta(\{q_1,q_1,q_1,q_2\},a) & \delta(\{q_1,q_1,q$$

Minimización

Con λ calculamos:

$$\begin{split} E_{0N} &= \\ & \{ \{ \{q_0\}, \{q_0, p_2\}, \{q_1, p_1, p_0\}, \{q_0, p_2, p_1\}, \{q_1, p_1, p_0, p_2\}, \{q_0, p_2, p_1, p_0\}\}, \{q_1, p_1\}\} \\ & \text{Agregando } a \text{ obtenemos} \end{split}$$

$$\begin{split} E_{1N} &= \\ & \{ \{q_0\}, \{ \{q_0, p_2\}, \{q_1, p_1, p_0\}, \{q_0, p_2, p_1\}, \{q_1, p_1, p_0, p_2\}, \{q_0, p_2, p_1, p_0\}\}, \{q_1, p_1\}\} \end{split}$$

Agregando aa obtenemos $E_{2N} = E_{1N}$ y termina el proceso

