VR-Crosswalk: wie verhalten sich die Achsen?

Fragestellung:

Wie verhalten sich die zwei Achsen bei einer gleichbleibenden Geschwindigkeit?

Es ist davon auszugehen, dass sich die erste Achse wie ein "Tangens" und die zweite Achse wie ein "Cosinus" verhält.

$$\alpha = \operatorname{atan}\left(\frac{2}{2}\right) \times \frac{180}{\pi}$$

$$L = \sqrt{2^2 + 2^2}$$

$$\alpha = \operatorname{atan}\left(\frac{3}{2}\right) \times \frac{180}{\pi}$$

$$L = \sqrt{2^2 + 3^2}$$

α

0°

27°

45°

56°

2,2

2,8

3,6

0

3

Darstellung der Achsenposition als Graph Hier werden die Werte für nochmals

dargestellt, in Abhängigkeit der Zeit (t) für einen Schritt.

t	S	α	L
0	0	0°	2
1	1	27°	2,2
2	2	45°	2,8
3	3	56°	3,6
4	4	63°	4,5

$$\alpha = \operatorname{atan}\left(\frac{s}{2}\right) \times \frac{180}{\pi}$$

$$L = \sqrt{2^2 + s^2}$$
 oder auch $L = \frac{2}{\cos(\alpha)}$

Schrittfolgen: Achsenpositionen

Schrittfolgen: Geschwindigkeiten und Positionen

Schrittfolgen: Beschleunigungen

