Polar Coordinates

Problem Statement

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

A complex number \$z\$

\$\$z = x + yj\$\$\$ is completely determined by its real part \$x\$\$ and imaginary part \$y\$\$. Here, \$j\$\$ is the imaginary unit.

A polar coordinate (r, ϕ)

is completely determined by modulus \$r\$ and phase angle \$\phi\$.

If we convert complex number \$z\$ to its polar coordinate, we find:

r: Distance from \$z\$ to origin, i.e., $\sqrt{x^2 + y^2}$ \$

 ϕ : Counter clockwise angle measured from the positive x-axis to the line segment that joins z to the origin.

Python's cmath module provides access to the mathematical functions for complex numbers.

\$cmath.phase\$

This tool returns the phase of complex number \$z\$ (also known as the argument of \$z\$).

>>> phase(complex(-1.0, 0.0)) 3.1415926535897931

\$abs\$

This tool returns the modulus (absolute value) of complex number \$z\$.

>>> abs(complex(-1.0, 0.0))

Task

You are given a complex \$z\$. Your task is to convert it to polar coordinates.

Input Format

A single line containing the complex number \$z\$.

Output Format

Output two lines:

The first line should contain the value of \$r\$.

The second line should contain the value of ϕ .

Sample Input

1+2j

Sample Output

2.23606797749979 1.1071487177940904

Note: The output should be correct up to 3 decimal places.