Apuntes Semana 11 - 06/05/2025

Jose Carlos Umaña Rivera Instituto Tecnológico de Costa Rica Cartago, Costa Rica

Abstract—Este documento recopila los apuntes correspondientes a la clase del dia. Se presentan algunas observaciones respecto a la Tarea 2 y el Proyecto 2 además de un repaso teórico sobre redes neuronales convolucionales. Luego se realiza la introducción a las arquitecturas convolucionales, mencionando algunas de las arquitecturas más utilizadas actualmente.

I. Dudas Tarea 2

De parte del grupo no hubo dudas de la Tarea, el profesor preguntó en general que cambios eran necesarios para lograr cambiar la red para resolver un problema de regresión.

II. RECOMENDACIONES DEL PROYECTO 2

El profesor preguntó al grupo que tal iban avanzando en cuanto al proyecto, surgieron algunas dudas y entre las recomendaciones que se dieron fueron las de generar las imagenes necesarias de los dataset antes y no durante el entrenamiento del modelo, pues esto podía ser un proceso muy pesado si se hace durante la ejecución, entonces de esta manera solo se tendría que realizar una vez y no multiples veces. Además el profesor dió la recomendación de probar utilizar una parte reducida del dataset, para así observar si igualmente con menos datos igual se logran muy buenos resultados y de esta manera reducir la carga.

III. REPASO CONVOLUTIONAL NEURAL NETWORKS

A. Fully Connected

Se recibe un input de caracteristicas que son transformadas con una serie de capas ocultas y se tiene una capa de salida. Pero se tiene un problema en el cual se podria llegar a tener muchos pesos o parámetros, lo cual hace el proceso lento y poco escalable.

B. ConvNet

ConvNet permite tener una neurona en 3 dimensiones (largo, ancho y profundidad), donde estas neuronas estarán conectadas a pequeñas regiones de la capa anterior, en lugar de fullyconnected. Permitiendo reducir la imagen a un solo vector.

- 1) Arquitectura ConvNet:
- Convolutional Layer: Se producen filtros que extraen cierta información necesaria.
- Pooling Layer: Es la capa encargada de realizar el downsampling a lo largo y ancho de la imagen. Esta se puede decidir cada cuanto se realiza, no es solamente despues de realizar toda la convolución.
- Fully Connected: Calcula las probabilidades para realizar la clasificación final.

C. Capa de Convolución

- 1) Filtro o Kernel: Son matrices que puede variar en dimensiones y están encargadas de realizar la convolución y asi generar otras imágenes. Cada uno extrae cierta informaciñon de la imagen.
- 2) Campo receptivo: Es equivalente al filtro, siendo la region local de la imagen a la cual está conectada una neurona.
- 3) Stride: Es el número de pasos en el que se aplicará el filtro.
- 4) Padding: Técnica para agregar pixeles alrededor de la imagen donde:

$$p = \frac{k-1}{2}$$
, $k = \text{tamaño del filtro}$

y la dimensión de salida se calcula de la manera:

$${\rm Dimensi\acute{o}n}=\frac{m-k+2p}{s}-1$$

donde m es la cantidad de pesos, k el tamaño del filtro, p el tamaño del padding y s la cantidad de pasos.

D. Pesos Compartidos

Para reducir los pesos se usan pesos compartidos, utilizando el mismo filtro para toda la imagen.

E. Pooling Layer

Tiene como función reducir el tamaño espacial de las imágenes a lo largo y ancho. Y se introduce periódicamente en medio de capas convolucionales, teniendo como objetivo reducir la cantidad de parámetros y computación de la red. Se utilizan tecnicas como el Max pooling, que toma la información más valiosa.

1) Dimensionalidad del Pooling: Entrada WxHxD, recibe el tamaño del kernel k, el Stride s y mantiene la profundidad D.

$$W_2 = \frac{W - k}{s} + 1$$

- 2) Técnicas:
- Average pooling: Toma el promedio de la región.
- L2-Norm pooling: Usa el valor segun la norma L2.

F. Fully-Connected Layer

Se encarga de unir las arquitecturas y es el clasificador final.

IV. ARQUITECTURAS CONVOLUCIONALES

Se prefiere stacks con convoluciones pequeñas. Y algunas de las reglas que se tendrán:

- Imagenes divisibles por 2 muchas veces. (32, 64, 96, 224)
- Campos receptivos pequeños, Stride = 1.
- Padding que no altere el espacio. (usar 0)
- Capa de pooling (max pooling suele ser el más común)

A. Arquitecturas

- 1) LeNet: Básicamente la arquitectura vanilla. Desarrollada por Yann LeCun. Consta de 5 capas (2 conv, 2 pooling, 1 fully connected).
- 2) AlexNet: Tenia un problema y es que tiene muchos filtros grandes (11x11, 5x5 y 3x3). Usa 5 capas convolucionales y 3 densas
- 3) ZFNet: Reduce los kernels de AlexNet. Utilizando filtros de 7x7 primeramente y luego aplicando de 3x3.
- 4) GoogleNet: Reduce la cantidad de parametros de 60 Millones en AlexNet a 4 Millones, utiliza average pooling. Usa módulos Inception, que combinan múltiples tipos de convolución y pooling en paralelo para extraer distintas características en una misma capa.
- 5) VGG16: El 16 en su nombre es porque posee 16 capas, además aplica deep learning.
- 6) ResNet: Permite entrenar redes muy profundas gracias a las conexiones residuales.
- 7) DenseNet: Parecido a ResNet, en lugar de hacer conexiones entre bloques, hace conexiones entre todas las capas. Cada capa recibe como entrada la salida de todas las capas anteriores.