

Troisième étape: explorer les données

- OAnalyse bivariée:
 - Détecter les liaisons entre la variable cible et les variables explicatives
 - Garder les variables explicatives les plus discriminantes
 - Eliminer les variables explicatives sans aucun impact
 - Détecter les liaisons entre les variables explicatives entre elles, qui sont à éviter dans certaines techniques

ipes.boutyour@gmail.com

0.1

95

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée:
 - Détecter liaisons entre la variable cible et les variables
 - Deux variables quantitatives (représentées par le nuage de points)
 - Deux variables qualitatives (représentées par les diagrammes en barres)
 - Une variable qualitative et une variable quantitative (représentées par les boîtes parallèles)

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables quantitatives
 - Coefficient de corrélation linéaire (coefficient de Pearson)
 - Indicateur rendant compte numériquement de la manière dont deux variables quantitatives varient simultanément
 - · Mesure leur degré de liaison linéaire
 - Nécessite la mesure de la covariance

ipes.boutyour@gmail.com

0-

97

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables quantitatives
 - Coefficient de corrélation linéaire (coefficient de Pearson)
 - Soit deux variables $X=(x_1,...,x_n)$ et $Y=(y_1,...,y_n)$
 - $Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} [(x_i \bar{X})](y_i \bar{Y}) \rightarrow \text{Pas de signification concrète}$
 - Passer au coefficient de corrélation pour avoir une valeur interprétable

$$r = Cov(X, Y) / \sigma(X) \cdot \sigma(Y)$$

$$\sqrt{-1} < r < 1$$

√ r > 0 → X et Y varient dans le même sens

pes.boutyour@gmail.com

Compréhension des données Troisième étape: explorer les données Analyse bivariée: Deux variables quantitatives Coefficient de corrélation linéaire (coefficient de Pearson) Correlation Coefficient = 1 Correlation Coefficient = 0 Correlation Coefficient = 1 Some variable Tess.boutyour@gna11.com

Troisième étape: explorer les données

Analyse bivariée: Deux variables
quantitatives

Régression linéaire
Si X, Y correctement corrélées (|r| proche de 1) et X est cause de Y alors on cherche une fonction linéaire f(X) = aX + b de X approchant au mieux Y

Régression de Y sur X

100

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables quantitatives
 - Régression linéaire
 - Si X, Y correctement corrélées (|r| proche de 1) et X est cause de Y alors on cherche une fonction linéaire f(X) = aX + b de X approchant au mieux Y
 - → Régression de Y sur X
 - Chercher la droite qui passe au mieux dans le nuage de points sera obtenue à l'aide du « critère des moindres carrés » → droite de régression
 - Trouver a et b qui minimisent :

$$F(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

ipes.boutyour@gmail.com

101

Compréhension des données

Troisième étape: explorer les données

- Analyse bivariée: Deux variables quantitatives
 - Corrélation vs Régression linéaire
 - Corrélation :
 - · Liaison entre deux variables quantitatives X et Y
 - · Rôle symétrique
 - Régression :
 - Liaison entre deux variables quantitatives X et Y
 - Rôle asymétrique uniquement
 - X = variable explicative / Y = variable expliquée
 - X = variable indépendante / Y = variable dépendante
 - La corrélation mesure l'intensité de la liaison entre des variables, tandis que la régression analyse la relation d'une variable par rapport à une ou plusieurs autres.

pes.boutyour@gmail.com

Troisième étape: explorer les données

- Analyse bivariée: Deux variables quantitatives
 - Corrélation vs Régression linéaire
 - Corrélation :
 - La corrélation mesure l'intensité de la liaison entre des variables
 - Régression :
 - la régression analyse la relation d'une variable par rapport à une ou plusieurs autres.

On peut dire alors que la différence entre ces deux mesures statistiques est que la corrélation mesure le degré d'une relation entre deux variables (x et y), tandis que la régression est la façon dont une variable affecte une autre.

ipes.boutyour@gmail.com

103

Compréhension des données

Troisième étape: explorer les données

- Analyse bivariée: Deux variables quantitatives
 - Corrélation vs Régression linéaire
 - 1. Exemple : corrélation (positive)
 - X = ventes de paires de lunettes de soleil en été
 - Y = ventes de crèmes glacées en été
 - Il existe une liaison entre X et Y :
 - Quand X augmente, Y augmente (météo estivale)
 - Quand X diminue, Y diminue (météo pluvieuse)
 - La liaison est symétrique :
 - X est liée à Y, et Y est liée à X
 - mais X ne dépend pas de Y et Y ne dépend pas de X
 - on peut permuter X et Y en abscisses et en ordonnées
 - Y ne peut pas être prédite par X

ipes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables quantitatives
 - Corrélation vs Régression linéaire
 - 2. Exemple : corrélation (négative)
 - X = ventes de paires de lunettes de soleil en été
 - Y = ventes de parapluies en été
 - Il existe une ligison entre X et Y :
 - Quand X augmente, Y diminue (météo estivale)
 - Quand X diminue, Y augmente (météo pluvieuse)
 - La liaison est symétrique :
 - X est liée à Y, et Y est liée à X
 - · mais X ne dépend pas de Y et Y ne dépend pas de X
 - on peut permuter X et Y en abscisses et en ordonnées
 - Y ne peut pas être prédite par X

ipes.boutyour@gmail.com

3-mail ----- 1/

105

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables quantitatives
 - Corrélation vs Régression linéaire
 - 3. Exemple: régression
 - X = âge (de 0 à 15 ans)
 - Y = taille (cm)
 - Il existe une liaison entre X et Y :
 - · Quand l'âge augmente, la taille augmente
 - · Quand l'âge diminue, la taille diminue
 - La liaison est asymétrique :
 - la taille dépend de l'âge mais l'âge ne dépend pas de la taille
 - on ne peut pas permuter X et Y en abscisses et en ordonnées
 - On peut prédire la taille par l'âge à l'aide d'une équation de droite ou de courbe de régression

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables quantitatives
 - Corrélation vs Régression linéaire

	Corrélation	Régression
Variables	X est quantitative Y est quantitative	X est quantitative Y est quantitative
Symétrie de la liaison	Oui/Non Y liée à X X liée à Y	Non Y dépend de X -
Exemples	Y = cons. cigarettes X = Temp. Moy. annuelle	Y = taille X = âge
Prédiction	Non	Oui

107

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Présenter les données sous forme d'une table de contingence
 - Soit deux variables X et Y
 - X à r modalités notées x₁,...,x_r
 - Y à c modalités notées y₁,...,y_c

	y_1	 У _h	 Уc	Total
X ₁	n ₁₁	 X _{1h}	 X _{1c}	n ₁₊
x ₁	n ₁₁	 x _{1h}	 x _{1c}	n ₁₊
X _r	n _{r1}	n _{rh}	n _{rc}	n _{r+}
Total	n ₊₁	n_{+h}	n _{+c}	n

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Exemple : On veut dresser le tableau de contingence de la variable sexe par rapport à la variable couleur des yeux.

 Données

Données triées par sexe, puis par couleur

	Prénom	Sexe	Couleur d'yeux
1	Bernadette	F	Bleus
6	Sophie	F	Bleus
4	Marie	F	Noirs
2	Jean-Pierre	M	Bleus
3	Marc	M	Noirs
5	Pierre	M	Noirs

ipes.boutyour@gmail.com

109

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Exemple : On veut dresser le tableau de contingence de la variable sexe par rapport à la variable couleur des yeux.

 Données

	Se	xe	
Couleur des yeux	F	M	Total
Bleus			
Noirs			
Total			

Données triées par sexe, puis par couleur

	Prénom	Sexe	Couleur d'yeux
1	Bernadette	F	Bleus
6	Sophie	F	Bleus
4	Marie	F	Noirs
2	Jean-Pierre	M	Bleus
3	Marc	M	Noirs
5	Pierre	M	Noirs

pes.boutyour@gmail.com

Troisième étape: explorer les données

- Analyse bivariée: Deux variables qualitatives
 - Exemple : On veut dresser le tableau de contingence de la variable sexe par rapport à la variable couleur des yeux.

Données triées par sexe, puis par couleur

	Se	xe	
Couleur des yeux	F	M	Total
Bleus	2	1	3
Noirs	1	2	3
Total	3	3	6

	Prénom	Sexe	Couleur d'yeux
1	Bernadette	F	Bleus
6	Sophie	F	Bleus
4	Marie	F	Noirs
2	Jean-Pierre	M	Bleus
3	Marc	M	Noirs
5	Pierre	M	Noirs

111

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives : test du khi-deux
 - Un test du Khi deux est un test d'hypothèse qui compare la loi de distribution observée de vos données à une loi attendue. $\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i}$ avec \mathbf{o}_i = effectifs observés et e_i = effectifs théoriques
 - Test d'ajustement du Khi deux : Cette analyse permet de vérifier à quel point un échantillon de données de catégorie est ajusté à une loi théorique.
 - Tests d'association et d'indépendance du Khi deux :
 - Test d'association : on peut utiliser un test d'association afin de déterminer si une variable est associée à une autre.
 - Test d'indépendance : on utilise un test d'indépendance afin de déterminer si la valeur observée d'une variable dépend de la valeur observée d'une autre variable.

Troisième étape: explorer les données

OAnalyse bivariée: Deux variables qualitatives : test du khi-deux

VALEURS DES CENTILES (χ_p^2) pour la DISTRIBUTION du KHI-DEUX en fonction du nombre ν de degrés de liberté (aire en grisé = p)

1 2 3 4 1 4	7,88 10,6 12,8 14,9	6,63 9,21 11,3 13,3	5,02 7,38 9,35 11,1	3,84 5,99 7,81 9,49	2,71 4,61 6,25 7,78	1,32 2,77 4,11 5,39	0,455 1,39 2,37 3,36	0,102 0,575 1,21 1,92	0,0158 0,211 0,584	0,0039 0,103 0,352	0,0010 0,0506 0,216	0,0002 0,0201 0,115	0,0000 0,0100 0,072
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12,8 14,9 16,7	11,3 13,3	9,35 11,1	7,81	6,25	4,11	2,37	1,21	0,584	0,352	0,216		
5 1	14,9	13,3	11,1									0,115	0.072
5 1	16,7	100		9,49	7,78	5,39	3,36	1 99	1 00				
		15.1						1406	1,06	0,711	0,484	0,297	0,207
			12,8	11,1	9,24	6,63	4,35	2,67	1,61	1,15	0,831	0,554	0,412
6 1	18,5	16,8	14,4	12,6	10,6	7,84	5,35	3,45	2,20	1,64	1,24	0,872	0,676
7 2	20,3	18,5	16,0	14,1	12,0	9,04	6,35	4,25	2,83	2,17	1,69	1,24	0,989
8 2	22,0	20,1	17,5 -	15,5	13,4	10,2	7,34	5,07	3,49	2,73	2,18	1,65	1,34
9 2	23,6	21,7	19,0	16,9	14,7	11,4	8,34	5,90	4,17	3,33	2,70	2,09	1,73
10 2	25,2	23,2	20,5	18,3	16,0	12,5	9,34	6,74	4,87	3,94	3,25	2,56	2,16
11 2	26,8	24,7	21,9	19,7	17,3	13,7	10,3	7,58	5,58	4,57	3,82	3,05	2,60
12 2	28,3	26,2	23,3	21,0	18,5	14,8	11,3	8,44	6,30	5,23	4,40	3,57	3,07
	29,8	27,7	24,7	22,4	19,8	16,0	12,3	9,30	7,04	5,89	5,01	4,11	3,57
	31,3	29,1	26,1	23,7	21,1	17,1	13,3	10,2	7,79	6,57	5,63	4,66	4,07

ipes.boutyour@gmail.com

113

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives : test du khi-deux
 - Exemple de calcul du Khi deux d'ajustement :
 - Pour tester si un dé n'est pas truqué, on le jette 150 fois et on note les résultats obtenus :

En posant comme hypothèse nulle « le dé n'est pas truqué », on s'attend à ce que les effectifs observés ne diffèrent pas des effectifs théoriques, qui sont 25, 25, 25, ..., 25 (150 divisé par 6)

$$\chi^2_{observ\acute{e}} = \frac{(17-25)^2}{25} + \frac{(26-25)^2}{25} + \frac{(38-25)^2}{25} + \frac{(22-25)^2}{25} + \frac{(25-25)^2}{25} + \frac{(22-25)^2}{25} = \textbf{10.08}$$

On fixe le seuil de significativité à 10% par exemple, le nombre de degrés de liberté est égal à 6-1=5.

On lit dans la table : $X^2_{0.90}$ à $v = 5 \rightarrow \chi^2_{th\acute{e}orique} = 9.24$

Dans notre cas, $\chi^2_{observ\acute{e}} > \chi^2_{th\acute{e}orique}$, on rejette H_0 (et on conclut que le dé est truqué) avec 10 chances sur 100 de se tromper.

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives : test du khi-deux
 - Exemple de calcul du Khi deux de croisement :
 - On travaille à partir du tableau de contingence qui sert à calculer les effectifs théoriques :
 - En général,

	A	В	totaux marginaux totaux de ligne
X	e ₁₁	e ₁₂	L ₁
Y	e ₂₁	e ₂₂	L ₂
totaux marginaux totaux de colonne	C ₁	C ₂	N

	non-fumeurs	fumeurs	
hommes	350	150	500
femmes	400	100	500
	750	250	1000

$$e_{11} = (L_1 \times C_1)/N$$

$$e_{21} = (L_2 \times C_1)/N$$

$$\chi^2 = \frac{1000 \times (350 \times 100 - 400 \times 150)^2}{500 \times 500 \times 750 \times 250} = 13.33$$

115

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Autres tests liés au khi-deux : mesures d'association
 - Le coefficient de contingence :

$$C = \sqrt{\frac{\chi^2}{\chi^2 + N}}$$

$$C = \sqrt{\frac{\chi^2}{\chi^2 + N}}$$
 Exemple1 : $C = \sqrt{\frac{13.33}{13.33 + 10}} = 0.11$

Le coefficient Phi-deux ϕ^2 :

$$\boldsymbol{\phi} = \sqrt{\frac{\chi^2}{N}}$$

Le coefficient V de Cramer :

$$V = \sqrt{\frac{\Phi^2}{\min(K_1 - 1, K_2 - 1)}}$$

$$V = \sqrt{\frac{\chi^2}{n \cdot min(K_1 - 1, K_2 - 1)}}$$

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Autres tests liés au khi-deux : mesures d'association
 - Le coefficient T de Tshuprow :

$$T = \sqrt{\frac{\phi^2}{\sqrt{(r-1)}(c-1)}} \qquad 0 \le \mathsf{T} \le 1$$

Plus T est grand, plus la liaison est forte

- Les coefficients de **Cramer** et de **Tshuprow** très utilisés dans la pratique.
- Plus souvent compris entre 0,1 et 0,3, rarement supérieurs à 0,5
- Pour plus d'infos consulter les références suivantes:
 - ✓ Revue de statistique appliquée
 - ✓ Tests du khi-deux

ipes.boutyour@gmail.com

1.1

117

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Autres tests liés au khi-deux : mesures d'association
 - Interprétation du coefficient de Cramer

Valeur de Cramer	Intensité de la relation entre les variables
< 0.10	Relation nulle ou très faible
>=0.10 et <0.20	Relation faible
>=0.20 et <0.30	Relation moyenne
>=0.3	Relation forte

es.boutyour@gmail.com

-11

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Autres tests liés au khi-deux : mesures d'association
 - Exemple d'application : Étant donné khi-deux = 12,85, calculer C, phi-deux, T et V

	Y1	Y2	Y3	Total
X1	10	15	15	40
X2	20	5	35	60
Total	30	20	50	100

119

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Deux variables qualitatives
 - Autres tests liés au khi-deux : mesures d'association
 - Exemple d'application : Étant donné khi-deux = 12.85, calculer C, phi-deux, T et V

	Y1	Y2	Y3	Total
X1	10	15	15	40
X2	20	5	35	60
Total	30	20	50	100

$$C = \sqrt{\frac{12.85}{12.85 + 100}} \qquad \phi = \sqrt{\frac{12.85}{100}} \qquad V = \sqrt{\frac{\chi^2}{100.\min((2-1), (3-1))}} \quad T = \sqrt{\frac{\phi^2}{\sqrt{(2-1)}(3-1)}}$$

Troisième étape: explorer les données

- OAnalyse bivariée: Une variable quantitative et une variable qualitative
 - Soient X variable qualitative à r modalités notées X₁,... X_L,...,Xr et Y variable quantitative
 - La classe courante, notée C_L, contient les individus ayant la modalité X_L de X
 - n_{L} effectif de la classe $C_{L} \rightarrow \sum n_{L} = n$ effectif total
 - On peut définir pour chaque classe C₁:
 - Moyenne partielle de Y :

$$\widehat{y}_L = \frac{1}{n_L} \sum_{i \in C_L} y_i$$

Variance partielle de Y :

$$s_L^2 = \frac{1}{n_L} \sum_{i \in C_L} (y_i - \hat{y}_L)^2$$

ipes.boutyour@gmail.com

121

Compréhension des données

Troisième étape: explorer les données

- OAnalyse bivariée: Une variable quantitative et une variable qualitative
 - Représentation graphique:
 - boîtes parallèles → boîte à moustache de Y dans chaque classe courante C_L

ipes.boutyour@gmail.com

Troisième étape: explorer les données

OAnalyse bivariée: Une variable quantitative et une variable qualitative

Rapport de corrélation :

- S²_Y est décomposée telle que $S^2_Y = S^2_E + S^2_R$
- S²_E variance expliquée par X (variance inter-classes)
 - Mesure de l'influence des valeurs de X sur Y
 - Ce que serait S^2_{Y} si la valeur de Y était constante (= \hat{y}_{L}) dans chaque classe C_{L}
- S²_R variance résiduelle ou variance intra-classes

ipes.boutyour@gmail.com

123

