Answers of Exercises Module Spectrum And Fourier Series

Note:

 $\bullet\,$ The symbol [P] in the margin of an exercise denotes there is a pencast available.

Exercise 1

Exercise 2

Spectrum	(a)	(b)	(c)	(d)	(e)
FUNDAMENTAL FREQUENCY [Hz]	0.5	1	0.5	1.2	0.6
Signal	(3)	(5)	(1)	(2)	(4)

Exercise 3

$$x(t) = 8\sqrt{2}\cos(1000\pi t + \pi/4) + 4\cos(400\pi t - \pi/2)$$

Exercise 4

[P1]

a. .

b.

$$x(t) = 8\cos(2\pi 12.5t + \frac{\pi}{2}) + 6\cos(2\pi 35t - \frac{3\pi}{4}) + 4\cos(2\pi 55t + \frac{5\pi}{6})$$

Exercise 5

Exercise 6

[P2]

Exercise 7

a.

$$x(t) = 6 + 6\cos(400\pi t + \frac{\pi}{2}) + 8\cos(100\pi t)$$

b. $T_0 = 1/50 \text{ [sec]}$

c.

$$\alpha_0 = 6 \; ; \; \alpha_1 = \alpha_{-1}^* = 4 \; ; \; \alpha_4 = \alpha_{-4}^* = 3e^{j\frac{\pi}{2}}$$

All other Fourier weight α_k are equal to zero.

Exercise 8

a.
$$T_0 = 1/50[sec]$$

b.
$$\alpha_k = 0$$
 except for $\alpha_0 = 1$, $\alpha_3 = \alpha_{-3} = 3/2$ and $\alpha_5 = \alpha_{-5}^* = e^{-j\frac{3\pi}{4}}$

Exercise 9

 $\omega_0 = 200\pi$ [rad/sec]. Furthermore $\alpha_k = 0$ except for $\alpha_2 = \alpha_{-2}^* = 2e^{-j\frac{\pi}{2}}$ and $\alpha_5 = \alpha_{-5}^* = 4\sqrt{2}e^{j\frac{\pi}{4}}$.

Exercise 10

b.
$$F_0=250$$
 [Hz]. Furthermore $\alpha_k=0$ except for $\alpha_{39}=\alpha_{-39}^*=\frac{1}{4}\mathrm{e}^{-\dot{\mathbf{j}}\frac{\pi}{2}};\ \alpha_{40}=\alpha_{-40}=\frac{1}{2};$ $\alpha_{41}=\alpha_{-41}^*=\frac{1}{4}\mathrm{e}^{\dot{\mathbf{j}}\frac{\pi}{2}}$

Exercise 11

a. Yes, x(t) is periodic with $T_{0,x} = 40$ [msec].

b. The frequency of the new sinusoid is different from all the frequencies in the spectrum of x(t). The signal y(t) is periodic with $T_{0,y}=200$ [msec].

c. w(t) is not periodic .

Exercise 12

[P3] a.

b. $\alpha_0 = 1$

c.
$$\alpha_k = \frac{1 - (-1)^k}{k\pi} e^{-j\frac{\pi}{2}}$$

d. The result for N=1 is depicted in the figure:

e. $\beta_0 = 2\alpha_0 - 1$ and for $k \neq 0$ $\beta_k = 2(-1)^k \alpha_k$.

Exercise 13

a.

$$\beta_0 = 2\alpha_0 + 3$$

$$\beta_k = 2\alpha_k \qquad \text{for all k except $k = 0$.}$$

b.

$$\gamma_k = \alpha_k e^{-\mathbf{j}k\frac{\pi}{2}}$$
 $k = 0, \pm 1, \pm 2, \cdots$

Exercise 14

All values of α_k are equal to zero except for $\alpha_1=\alpha_{-1}=\frac{3}{8}$ and $\alpha_3=\alpha_{-3}=\frac{1}{8}$.

Exercise 15

R1 - R4, R2 - R7, R3 - R5, R6 - R8.

Exercise 16

a. The signal is a triangular wave form as depicted in the figure.

b.
$$\alpha_0 \frac{1}{2}$$

c.
$$\alpha_k = \frac{(-1)^k - 1}{\pi^2 k^2}$$

d. The approximation $\hat{x}(t)$ of the original square wave with the first harmonic is depicted in the figure:

