

Ferienkurs

Theoretische Physik 1 (Mechanik)

SS 2018

Aufgabenblatt 1

Daniel Sick Maximilian Ries

1 Aufgabe 1:

Differenzieren Sie die folgenden Funktionen und entwickeln Sie diese für kleine Argumente x (unter ANgabe von jeweils 3 Termen).

$$\sqrt{1-x}$$
, $\frac{1}{\sqrt{1+x}}$, $\frac{1}{(a+bx)^3}$, $\frac{x}{\sqrt{1+x}-1}$, $\frac{\sin(\sqrt{x})}{\sqrt{x}}$

2 Aufgabe 2

Leiten Sie die Ausdrücke für die Geschwindigkeit $\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$ und die Beschleunigung $\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}$ in Kugelkoordinaten her. Entwickeln Sie die Vektoren \vec{v} und \vec{a} nach den drei orthogonalen Einheitsvektoren (in Kugelkoordinaten). Geben Sie außerdem den Ausdruck für die kinetische Energie $T = \frac{m\vec{v}^2}{2}$ in Kugelkoordinaten an.

3 Aufgabe 3

Ein kugelförmiger Wassertropfen (Radius R(t), Volumen V(t), Masse m(t) und konstante Dichte ρ) fällt in der mit Wasserdampf gesättigten Atmosphäre unter dem Einfluss der Schwerkraft senkrecht nach unten.

Durch Kondensation wächst das Volumen des Wassertropfens proportional zu seiner Oberfläche an (Proportionalitätskonstante α). Bestimmen Sie den Radius R(t) als Funktion der Zeit zur Anfangsbedingung $R(0) = R_0$.

Stellen SIe nun die Bewegungsgleichung auf und lösen Sie diese unter der Annahme, dass sich der Wassertropfen zum Zeitpunkt t=0 in Ruhe befindet. Untersuchen Sie das Verhalten von v(t) für kleine und große Zeiten t. Berechnen Sie aus v(t) die Falltiefe x(t) zur Anfangsbedingung x(0)=0.

4 Aufgabe 4

Bei der Bewegung eines abstürzenden Erdsatelliten, welcher der Gravitationskraft und einer Reibungskraft unterliegt, ergebe sich folgende ortsabhängige Beschleunigung:

$$\vec{a} = -\frac{C}{r^2}\vec{e_r} - \gamma(r)\vec{v}, \quad C, \, \gamma(r) > 0,$$

wobei r den Abstand vom Erdmitelpunkt bezeichnet.

Welche Bestimmungsgleichungen erfüllen die Komponenten a_r, a_θ, a_ϕ der Beschleunigung in Kugelkoordinaten?

Wie müssen $\gamma(r)$ und β gewählt werden, damit die Funktionen

$$r(t) = r_0(1 - \beta t)^{\frac{2}{3}}, \quad \theta(t) = -\frac{2\theta_0}{3}\ln(1 - \beta t), \quad \phi(t) = \text{const}$$

dier Bestimmungsgleichungen lösen?

Tipp: Drücken Sie \dot{r} , \ddot{r} , $\dot{\theta}$, $\ddot{\theta}$ als Funktion von r aus.

Berechnen Sie den Betrag der Geschwindigkeit und zeigen Sie, dass $\left|\vec{v}\right|=\sqrt{\frac{C}{r}}$ gilt.