## INTRODUCTION TO COMPUTER VISION

Lecture 7 – Recap & Overview

#### **Gyeongsik Moon**

Visual Computing and Al Lab

Korea University



## Recap and Overview

- We've covered lots of mathematical stuff
- Let's take a break and recap what we've learned so far
- I hope you won't get lost, as the many slides can make it hard to find direction

All the entire pipeline: multi-view geometry theory



## Homogeneous Coordinates (Lecture 2)

- Introduce an additional scalar to represent coordinates
- We can explain perspective distortion in the homogeneous space
- We can represent all projections only with matrix multiplication
  - Linear system → computation much exite

## Coordinate systems (Lecture 2)

- World coordinate system (3D)
  - A reference (canonical) coordinate system
  - Fixed coordinate system
  - You can define your own one
- Camera coordinate system (3D)
  - Defined for each camera
  - Camera-relative coordinate system
- Image coordinate system (2D)
  - Defined for each camera
  - Projected space from the camera coordinate system



## **Projection Models**

#### **Slide from Lecture 2**



Different from simply zooming in the 2D image space

## **Summary**

#### **Slide from Lecture 2**

- World coordinates (Blue)
  - A reference 3D coordinate system
- Camera coordinates (Orange)
  - Defined in the 3D space for each camera
- Image coordinates (Black)

Defined in the 2D space for each camera



## Image Matching (Lecture 3)

- Find correspondences between images
- Detect repeatable and distinctive features
  - SIFT
- Find the closest matching between detected features

## Multi-View Geometry (MVG) Theory

According to MVG (we'll learn this later), if we know

- Camera intrinsic/extrinsic parameters (we learnt what are they in prev. classes)
- Matched points across multiple viewpoints (same-colored dots in images)
- , then, we can lift the multi-view observations to the 3D space



## **Matching with Features**

**Problem 1**: How to **detect** the **same** points **independently** in both images?



no chance to match!

We need a **repeatable** feature **detector**. Repeatable means that the detector should be able to re-detect the same feature in different images of the same scene.

This property is called **Repeatability** of a feature **detector**.

## **Matching with Features**

**Problem 2**: For each point, how to **match** its **corresponding point** in the other image



We need a **distinctive** feature descriptor. A descriptor is a "description" of the pixel information around a feature (e.g., patch intensity values, gradient values, etc.). Distinctive means that the descriptor uniquely identifies a feature from other features without ambiguity. This property is called **Distinctiveness** of a feature **descriptor**.

The descriptor must also be **robust to geometric and photometric** changes.

# Local extrema of DoG images across Scale and Space

Some <u>distinct</u> points can be extracted from DoG (differences of Gaussians)

Local patches without distinct textures should not have big differences

• For the visualization, draw a circle at the position of the local extrema where the radius of the circle is from selected scale (dominant rotations are not included for the visualization)

the visualization)



## How it is implemented in practice

#### Slide from Lecture 3

#### 1. Build a Space-Scale Pyramid:

- The initial image is incrementally convolved with Gaussians  $G(k^i\sigma)$  to produce blurred images separated by a constant factor k in scale space (shown stacked in the left column).
  - The initial Gaussian  $G(\sigma)$  has  $\sigma=1.6$
  - k is chosen:  $k = 2^{1/s}$ , where s is the number of intervals into which each octave of scale space is divided
  - Each octave consists of *s* images, blurred with different stds.
- Adjacent blurred images are then subtracted to produce the Difference-of-Gaussian (DoG) images

#### 2. Scale-Space extrema detection

Detect local maxima and minima in space-scales



## Camera Calibration (Lecture 4)

- Given 1) matched 2D points and 2) 3D measurements, find camera intrinsic/extrinsic parameters
- Often use checkerboards
  - Easy to detect 2D points
  - Know actual 3D sizes and positions

## Tsai's Method: Calibration from 3D Objects

- This method was proposed in 1987 by Tsai and consists of measuring the 3D position of  $n \ge 6$  control points on a 3D calibration target and the 2D coordinates of their projection in the image.
- Assumption: we know 2D and 3D coordinates of control points
  - 2D: image pre-processing (e.g., corner detectors)
  - 3D: we know actual size of the 3D object and actual positions of control points as well



Slide from Lecture 4

Tsai, Roger Y. (1987) "A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses," *IEEE Journal of Robotics and Automation*, 1987. PDF.

## Reprojection Error

場。好多かり RANSAC Algo

• The reprojection error is the **Euclidean distance** (in pixels) between an **observed image point** and the **corresponding** 3D point **reprojected** onto the camera frame.

Reprojection

error

 $||p^i - \pi(P_W^i, K, R, T)||$ 

• The reprojection error gives us a **quantitative measure of the accuracy** of the calibration (**ideally it should be zero**).

Reprojected point  $\pi(P_W^i, K, R, T)$  Observed point

R, T

## Non-Linear Calibration Refinement

#### Slide from Lecture 4

• The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

$$K, R, T, lens \ distortion =$$

$$argmin_{K,R,T,lens} \sum_{i=1}^{n} ||p^{i} - \pi(P_{W}^{i}, K, R, T)||^{2}$$

- This time we also include the lens distortion (can be set to 0 for initialization)
- Can be minimized using Levenberg—Marquardt (more robust than Gauss-Newton to local minima)





Control points (observed points)

• Reprojected points  $\pi(P_W^i, K, R, T)$ 

# Zhang's Algorithm: Calibration from Planar Grids

- Tsai's calibration requires that the world's 3D points are non-coplanar, which is not very practical
- Today's camera calibration toolboxes (<u>Matlab</u>, <u>OpenCV</u>) use multiple views of a planar grid (e.g., a checker
- board)
- They are based on a method developed in 2000 by Zhang (Microsoft Research)



Slide from Lecture 4

Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. PDF.

# Camera Localization (or Perspective from n Points: PnP)

- This is the problem of determining the **6DoF pose of a camera** (position and orientation) with respect to the world frame **from a set of 3D-2D point correspondences**.
- It assumes the camera to be already calibrated
- In other words, the goal is getting extrinsics (R and T) while intrinsics are given
- The DLT can be used to solve this problem but is suboptimal. We want to study algebraic solutions to the problem.



# Epipolar Geometry (Lecture 5)

- Given matched 2D points, find camera intrinsic and extrinsic parameters (with scale ambiguity)
- Often used when we do not have checkboards but still need camera parameters

### Camera Calibration vs. Epipolar Geometry

- If we know extrinsics with camera calibrations and checkerboard
  - E.g., you calibrate cameras with checkerboards
  - Skip all things we'll learn today
  - Just triangulate (we'll learn this later) 2D points to the 3D space
- If we do not know extrinsics (today's focus)
  - E.g., taking a video with your mobile phone without any calibrations/checkerboards
  - Epipolar geometry!
  - We get essential/fundamental matrices
  - We do not have checkerboard, which provides actual 3D measurements -> we get extrinsics up to scale

## **Epipolar Geometry**

- Baseline (Yellow line)
  - The line between the two camera centers O<sub>1</sub> and O<sub>2</sub>
- Epipolar plane (gray plane)
  - Defined by P, O<sub>1</sub>, and O<sub>2</sub>; contains baseline and P
- Epipoles (e and e')
  - $\cap$  of baseline and image plane
  - Projection of the other camera center
- Epipolar lines (Blue lines)
  - $\cap$  of epipolar plane with the image plane



## **Epipolar Constraint**

- Essential matrix vs. Fundamental matrix
  - Similarity about cumera parameter
    - Both relate the matching image points
      - - Encode epipolar geometry of two views & camera parameters
  - Differences
    - E (essential matrix) encodes only the camera extrinsic parameter Minimal Mecessary information,
    - F (fundamental matrix) also encodes the intrinsic parameters

$$\mathbf{p}'^T E \mathbf{p} = 0$$
$$E = [\mathbf{t}_{\times}] R$$

**Essential matrix** 

$$\mathbf{p}'^T F \mathbf{p} = 0$$

$$F = K'^{-1} [\mathbf{t}_{\times}] R K^{-1}$$

Fundamental matrix

## **Epipolar Constraint**

- Properties of the Fundamental matrix
  - -3 by 3
  - homogeneous (has scale ambiguity)
  - $-\operatorname{rank}(F) = 2$ 
    - The potential matching point is located on a line
  - -F has 7 degrees of freedom (3x3 1 (rank2)
    - -1 (scale ambiguity) = 7)

$$\mathbf{p}'^{T}F\mathbf{p} = 0 F = K'^{-T}[\mathbf{t}_{\times}]RK^{-1}$$

Slide from Lecture 5

Fundamental matrix has rank 2 : det(F) = 0.





Left: Uncorrected F – epipolar lines are not coincident.

Right: Epipolar lines from corrected F.

## Triangulation and Bundle Adjustment (Lecture 6)

- Triangulation
  - Given 1) matched 2D points and 2) camera parameters, lift the 2D points to the 3D space
  - DLT is used Zanning of PLT & SND
- Bundle adjustment
  - Further optimize camera parameters and 3D coordinates based on 2D matching results
  - RANSAC is used to reject outliers

# Triangulation



## Bundle Adjustment

- From initial triangulated 3D points, jointly optimizing 3D coordinates and camera parameters by minimizing the reprojection error
- Similar to the non-linear calibration refinement of Lecture 4

### RANSAC for 3D lifting

#### **Slide from Lecture 6**





#### Algorithm:

- 1. Sample (randomly) the number of points required for the triangulation
- 2. Triangulate the selected 2D points to the 3D space
- 3. Project the triangulated 3D points to all image space and check reprojection error. Reject viewpoints with huge error.

Repeat 1-3 until the best model is found with high confidence

### Overview



## First inspiring experience in computer vision

- Object tracking with particle filter
- Fourth-year undergraduate (2014)





## Personal experiences with computer vision

- We can see the results that makes it exciting
- Very practical and applicable engineering