Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 ME2CO03 Basic Thermodynamics

Programme: Diploma Branch/Specialisation: ME **Duration: 3 Hrs. Maximum Marks: 60**

ers

Note:		•	y. Internal choices, if any, are indication in full instead of only a, b, c or of	
		n table is permitted.	interim fair instead of only u, o, e of t	
Q.1	i.	A close system may ref	er to	1
		(a) Control Mass	(b) Control Energy	
		(c) Control Volume	(d) Control Temperature	
	ii.	Which is NOT an inten	sive property of thermodynamics?	1
		(a) Temperature (b) He	at (c) Pressure (d) Density	
	iii.	The first law of them	nodynamics is based on which of	the 1
		following principle?		
		(a) Conservation of ma	s (b) Conservation of momentur	n
		(c) Action and reaction	(d) Conservation of energy	
	iv.	The correct represent	ation of first law of thermodyna	amics 1
		is		
		(a) $dQ = dU + dW$	(b) $\delta Q = dU + \delta W$	
		(c) $\delta Q = \delta U + \delta W$	(d) $dQ = dU + \delta W$	
	v.	In a Carnot cycle the he	at is transferred at	1
		(a) Constant Volume	(b) Constant Pressure	
		(c) Constant Temperatu	re (d) Constant entropy	
	vi.	A thermodynamic made	chine which produces work continu	uously 1
		without any input is cal	led	
		(a) Heat engine	(b) Refrigerator	
		(c) PMM-I	(d) PMM-II	
	vii.	At critical point, the lat	ent heat of vaporization is	1
		(a) 0 (b) Infin	te (c) 1 (d) Unpredictab	ole

P.T.O.

	viii.	Dryness fraction can be defined as the ratio of	1
		(a) Mass of vapour to mass of water	
		(b) Mass of water to mass of steam	
		(c) Mass of vapour to total mass	
		(d) Total mass to mass of vapour	
	ix.	The ratio of total volume to the clearance volume is known as	1
		(a) Cut-off ratio (b) Velocity ratio	
		(c) Compression ratio (d) Pressure ratio	
	х.	Otto cycle consists of following four processes-	1
		(a) Two isentropic and two isobaric	
		(b) Two isentropic and two isochoric	
		(c) Two isochoric and two isothermal	
		(d) Two isobaric and two isothermal	
Q.2	i.	State Zeroth law of thermodynamics with the help of diagram.	2
	ii.	Define thermodynamic system and enlist different types of	3
		system with example.	
	iii.	Differentiate between-	5
		(a) Extensive properties and intensive properties	
		(b) Point function and path function	
OR	iv.	Explain Quasi-static process and derive an expression for work	5
		done in an isothermal process.	
Q.3	i.	Define heat source and heat sink.	2
	ii.	State first law of thermodynamics for a process and a cycle with	3
		mathematical expression.	
	iii.	Give any five applications of steady flow energy equation	5
		[SFEE].	
OR	iv.	The fluid parameters at the inlet of the nozzle are: Enthalpy =	5
		2850 kJ/kg, velocity = 50 m/s and height from datum = 10 m. At	
		the discharge end the enthalpy is 2650 kJ/kg and height from the	
		nozzle is 8 m. Make calculation for the velocity of fluid at exit	
		of the nozzle.	

() .4	1.	State Kelvin Plank and Clausius statement of second law of	2
			thermodynamics.	•
		ii.	With neat sketch, define Heat engine and Refrigerator.	3
		iii.	Draw the P-v and T-s curve for a Carnot cycle and derive an	5
			expression for thermal efficiency of Carnot cycle.	
C)R	iv.	A reversible heat engine receives 450 KJ of heat from a reservoir	5
			at 300 K and delivers 275 KJ of work. Make calculations for the	
			engine efficiency and temperature of reservoir receiving heat from	
			the engine.	
(2.5	i.	Define dryness fraction and wetness fraction.	2
		ii.	Define critical point, triple point and saturation temperature.	3
		iii.	Draw phase change curve for water on T-Q and T-V coordinates	5
			with brief discussion.	
C)R	iv.	Calculate volume, enthalpy and entropy of 1 kg of steam at	5
			80°C and having dryness fraction of 0.85.	
Ç	2.6		Attempt any two:	
		i.	Define compression ratio and draw P-v and T-s curve for diesel	5
			cycle with various processes involved.	
		ii.	Derive an expression for air standard efficiency of Otto cycle.	5
		iii.	In an air standard Otto cycle engine, the temperature at the end	5
			of compression stroke is 650 K and the maximum cycle	
			temperature is 2400 K. If the engine delivers 700 kJ/kg of work,	
			find the thermal efficiency and compression ratio of the engine.	

ME2CO03 Basic Thermodynamics

Marking Scheme

Q.1	i.	A close system may refer to	1
	ii.	(a) Control Which is NOT an intensive property of thermodynamics?	1
	iii.	(b) HeatThe first law of thermodynamics is based on which of the following principle?(d) conservation of energy	1
	iv.	The correct representation of first law of thermodynamics is (b) $\delta Q = dU + \delta W$	1
	v.	In a Carnot cycle the heat is transferred at (c) Constant Temperature	1
	vi.	A thermodynamic machine which produces work continuously without any input is called	1
	vii.	At critical point, the latent heat of vaporization is (a) 0	1
	viii.	Dryness fraction can be defined as the ratio of	1
	ix.	The ratio of total volume to the clearance volume is known as	1
	х.	(c) Compression ratioOtto cycle consists of following four processes-(c) Two isochoric and two isothermal	1
Q.2	i.	Statement – 1 mark Diagram – 1 mark	2
	ii.	Definition thermodynamic system – 1 mark Types of system – 1 mark Example – 1 mark	3
	iii.	 (a) Extensive properties and intensive properties Minimum 2 differences – 2 marks (b) Point function and path function Minimum 3 differences - 3 marks 	5
OR	iv.	Definition – 1 mark P-v and T-s diagram – 1 mark Derivation – 2 marks Final expression – 1 mark	5

Q	.3	1.	Difference between heat and work.	2
		ii.	Minimum 2 differences – 2 marks	3
		11.	Statement for process – 1 mark Statement for cycle – 1 mark	3
			Mathematical expression – 1 mark	
		iii.	Five applications of steady flow energy equation [SFEE].	5
			1 mark for each application (minimum 5 applications) (1 mark	
			* $5 = 5 \text{ marks}$)	
O	R	iv.	Given data – 1 mark	5
		1,,	Diagram – 1 mark	
			Step wise solution – 2 marks	
			Final answer – 1 mark	
Q	.4	i.	State Kelvin Plank and Clausius statement of second law of	2
			thermodynamics.	
			Kelvin Plank statement – 1 mark	
			Clausius statement – 1 mark	
		ii.	With neat sketch, define Heat engine and Refrigerator.	3
			Definition of heat engine – 1 mark	
			Diagram - 0.5 marks	
			Definition of refrigerator – 1 mark	
			Diagram - 0.5 marks	_
		iii.	P-v and T-s diagram – 1 mark	5
			Name of processes involved – 1 mark Derivation – 2 marks	
			Final expression – 1 mark	
O	R	iv.	Diagram – 1 mark	5
0.		11.	Step wise solution – 2 marks	
			Final answer efficiency – 1 mark	
			Final answer temperature – 1 mark	
Q	.5	i.	Definition of dryness fraction – 1 mark	2
			Definition of wetness fraction – 1 mark	
		ii.	Definition of critical point – 1 mark	3
			Definition of triple point – 1 mark	
			Definition of saturation temperature – 1 mark	
		iii.	T-Q curve - 1.5 marks	5
			Discussion – 1 mark	
			T-V curve - 1.5 marks	
			Discussion – 1 mark	

OR	iv.	Steam table data – 2 marks Volume formula - 0.5 mark Answer - 0.5 mark Enthalpy formula - 0.5 mark Answer - 0.5 mark Entropy formula - 0.5 mark Answer - 0.5 mark	5
Q.6		Attempt any two:	
	i.	Definition of compression ratio – 1 mark P-v and T-s diagram – 2 marks Name of processes involved – 2 marks	5
	ii.	P-v and T-s diagram – 1 mark Name of processes involved – 1 mark Derivation – 2 marks Final expression – 1 mark	5
	iii.	Given data – 1 mark P-v and T-s diagram – 1 mark Efficiency formula — 1 mark Answer - 0.5 mark Compression ratio formula — 1 mark Answer - 0.5 mark	5
