CS C341 / IS C361 Data Structures & Algorithms

GRAPH ALGORITHMS

Graph Generation - Static vs. Dynamic Traversals

Depth First Search

- Algorithm
- Properties and Time Complexity
- Applications

Breadth First Search

GRAPH GENERATION

- Graph generation can be static or dynamic :
 - If the graph on which an algorithm is to be applied is already available then it is static
 - If the graph can change during execution i.e. insertions / deletions may happen - then it is dynamic
- Examples
 - Traffic networks
 - Set of states in program execution
 - World Wide Web (web pages and hyperlinks)

GRAPH TRAVERSAL

- Given a graph G, a traversal is a systematic procedure for exploring G by examining its vertices (and edges)
 - E.g. web spider / crawler
 - E.g. find operation in Unix/Linux
 - E.g. A broadcast in a network
- Depth First Search (DFS) in an undirected graph:
 - A traversal which explores one path completely before exploring another would be "depth" first.
 - "Backtrack" to explore the next path
 - i.e. consider a branch not taken in exploring the previous path

DEPTH FIRST SEARCH

Outline:

- Start at a given "root" vertex v and recursively visit adjacent vertices;
- If you encounter an explored edge or an explored vertex then backtrack;
 - Keep track of explored edges and vertices

DEPTH FIRST SEARCH

- OFS(G,v) // v is "visited"
 - for each vertex u that is adjacent to v such that (v,u) is "unexplored"
 - oif u is "not visited"
 - omark u as "visited"
 - label (v,u) as "discovery edge" (or as "tree edge")
 - OFS(G,u)
 - else
 - omark (v,u) as "back edge"

DEPTH FIRST SEARCH - PROPERTIES

- Claim DFS1:
 - DFS(G,v) visits all vertices in the connected component of v
- Definition : Connected Component
 - A connected component G' = V',E' of a graph G=V,E, is such that
 - °V' is a subset of V
 - °E' is a subset of E
 - oand between any pair of vertices u and v in V', there is a path in E'.

DEPTH FIRST SEARCH - PROPERTIES

• Claim DFS2:

- The discovery edges marked in DFS(G,v) form a "spanning tree" of the connected component of v.
 - The spanning tree is referred to as the "DFS tree"
 - The edges are referred to as "tree edges"
- Definition: Spanning Tree
 - Given a connected graph G = (V,E), a spanning tree T is a tree (V,E') such that E' is a subset of E.
 - Note that a tree is connected by definition.

04/14/14

DEPTH FIRST SEARCH - IMPLEMENTATION

- Assume an adjacency lists representation for G.
- DFS(G,v) // v is "visited"
 - for each vertex u that is adjacent to v such that (v,u) is "unexplored"
 - o if u is "not visited"
 - mark u as "visited"
 - label (v,u) as "discovery edge" (or as "tree edge")

Space Complexity:

Recursion /

backtracking

- DFS(G,u)
- else
- •O(d(w)) time per vértex w
- Total time:
- •Total time:
- $\sum_{w \text{ in } G'} d(w)$ where G' is the connected component of root
- i.e. O(m) where m = |E'| and G'=(V',E')

DFS

• Theorem:

 A DFS traversal of G can be performed in O(|V|+|E|) time.

```
dft(G) { // DFS traversal - G may not be
  connected
  Let (V,E)=G.
  for j = 1 to |V| {
     if (j is "not visited") { mark j as "visited"; dfs(G,v); }
  }
}
```

ALGORITHMS USING DFS

Corollary:

- O(|V|+|E|) time DFS-based algorithms exist for the following problems:
 - Test whether G is connected
 - Find the connected components of G
 - Find a spanning forest of G
 - Find a path between two vertices of G, if it exists
 - Find a cycle in G if it exists

BREADTH FIRST SEARCH (BFS)

- Traverse level-by-level
 - Discovery edges
 - Cross edges
 - BFS Tree Spanning Tree
- BFS outline
 - Start with a root vertex and at level 0
 - Maintain a FIFO queue
 - Insert all vertices at a level into the queue
 Discover edges from current level to next level
 - Discover edges from current level to flext lev
 - Traverse until queue is empty