MLR: Potential Problems

DS 301

Iowa State University

Assumptions for linear regression

- 1. Relationship between Y and $X = (X_1, X_2, \dots, X_p)$ is approximately linear.
- 2. $E(\epsilon) = 0$.
- 3. $Var(\epsilon) = \sigma^2$.
- 4. ϵ 's are uncorrelated.

When do each of the assumptions kick in?

$$Y = f(x) + g$$

$$y = f(x)^{p}$$

$$C(i) \Rightarrow f(x)^{p}$$

$$Y = Bo + B_{1} \times i + B_{2} \times 2 + \cdots + B_{p} \times p$$

$$Y = Bo + B_{1} \times i + B_{2} \times 2 + \cdots + B_{p} \times p + g$$

$$y = Bo + B_{1} \times i + B_{2} \times 2 + \cdots + B_{p} \times p + g$$

$$y = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times p + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + \cdots + B_{p} \times i + g$$

$$E(Y) = Bo + B_{1} \times i + G$$

$$E(Y) = Bo + B_{1} \times i + G$$

$$E(Y) = Bo + B_{1} \times i + G$$

$$E(Y) = Bo + B_{1} \times i + G$$

$$E(Y) = Bo + B_{1$$

Non-constant variance of error terms

We assume that the error terms have a constant variance:

$$Var(\epsilon_i) = \sigma^2$$
.

 $\Rightarrow Var(Y_i) = \sigma^2 : \sigma^2 \text{ is unknown,}$
 $\Rightarrow \text{we estimate it from data.}$

- The standard errors of our estimates rely on this assumption.
- Additionally, carrying out hypothesis tests, constructing prediction intervals, and confidence intervals associated with the linear model also rely upon this assumption.

Non-constant variance of error terms

- It may be the case that the variances of the error terms are non-constant.
- For example, the variances of the error terms may increase with the value of the response.
- How might we identify whether or not this is a problem with our model?
 Does this constant variance assumption hold?

Residual plot

To diagnose this, we can plot residuals (e_i) vs. fitted values $(\hat{y_i})$ from our model. If the constant variance assumption holds, your plot should exhibit random scatter (no discernible pattern) If you see a funnel shape, there is a problem.

Non-constant variance of error terms

One possible solution: transform the response Y using a concave function such as $\log Y$ or \sqrt{Y} .

Non-linearity of the data

- The linear regression model assumes that there is a straight-line relationship between the predictors and the response.
- If the true relationship is far from linear, then virtually all of the conclusions that we draw from the model are suspect.
- Additionally, the prediction accuracy of the model can be significantly reduced.

How to diagnose non-linearity when you have multiple predictors?

Residual plots: e_i verus \hat{y}_i

Ideally, the residual plot will show no discernible pattern. The presence of a pattern may indicate a problem with some aspect of the linear model.

ideal: random scatter. If the residual plot indicates that there are non-linear associations in the data, then a simple approach is to use non-linear transformations of the predictors, such as $\log(X)$, \sqrt{X} , and X^2 , in the regression model.

Polynomial Regression

$$Y = B_0 + B_1 X_1 + B_2 X_2 + E$$

$$Y = B_0 + B_1 X_1 + B_2 X_1^2 + B_3 X_2 + E$$

$$Y = B_0 + B_1 X_1 + B_2 X_1^2 + B_9 X_1^3 + B_1 X_2 + E$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_d X_d + \epsilon_i.$$

The coefficients here can be easily estimated using least squares because this is **still considered a standard linear model**.

Importantly, this means that all the inference tools for linear models (standard errors, F-tests, etc.) are all available in this setting.

Dealing with non-linear relationships

- This process depends heavily on insight from exploratory data analysis. No shortcuts here.
- 'Linear' regression models actually includes a huge range of models.
 - · Transform Y. (non-constant Variance)
 - Transform predictors X. (lineanity problem)
 - → Polynomial regression.
 - Other models: piecewise polynomial regression, regression splines.

Example

See R script: $MLR_Transformations.R$

Multicollinearity

```
when you have predictors that
                        are correlated, you may
> summary(lm1)
                               observe this phenomenon
                                    ( sig-F. fest,
Call:
lm(formula = y \sim X1 + X2 + X3)
                                        non-sig to tests)
Residuals:
    Min
             10 Median
                             30
                                   Max
-17.4784 -5.9323 -0.3146 5.9889 19.3380
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3611
                     0.8718 -0.414 0.680
X1
           0.6551
                     2.0999 0.312 0.756
X2
          2.5562
                     2.3803 1.074 0.286
Х3
            3.5838
                     2.2600 1.586 0.116
Residual standard error: 8.65 on 96 degrees of freedom
Multiple R-squared: 0.3806, Adjusted R-squared: 0.3612
```

F-statistic: 19.66 on 3 and 96 DF, p-value: 5.107e-10

Multicollinearity

Refers to the situation when two or more predictors are highly correlated.

weight
$$Y \sim X_1 + X_2 + X_3$$

whole level $y \sim X_1 + X_2 + X_3$

the ght

- When two or more predictors are highly correlated, it makes it difficult to separate out individual effects of predictors on the response.
- Incorporating redundant information in your model.
- Given X₁ is in the model, X₂ is not helping to explain much of Y (and vice versa).

Consequences of multicollinearity

 $y \sim x_1 + x_2$, x_1 and x_2 are perfectly correlated. $x_1 = a + x_2$, a, b are constants

Dara set:

teast square estimates Bo, Bi, B2 that minimizes
$$\frac{1}{2}$$
 (yi- (Bo+Bi Xii+ B2 Xi2))2

=
$$(2 - (\hat{B_0} + \hat{B_1}(1) + \hat{B_2}(17)^2 + (3 - (\hat{B_0} + \hat{B_1}(15) + \hat{B_2}(1.5))^2$$

+ $(6 - (\hat{B_0} + \hat{B_1}(3) + \hat{B_2}(3))^2$

Consequences of multicollinearity

- When your predictors are perfectly correlated, there is no unique set of least square solutions.
- In real applications, it is more likely you will have predictors that are **highly correlated** (not necessarily perfectly correlated). In this case, we can still obtain unique least square solutions but there is a great deal of uncertainty in our estimates $\hat{\beta}$.
- That means the standard errors for our least square estimates could be very large.

Consequences of multicollinearity

$$X_1, X_2 \rightarrow B_1, B_2$$

- Reduces accuracy of $\hat{\beta}_j$ for those predictors X_j that are correlated.
- ullet Results in increased standard errors for those \hat{eta}_j 's.
- Inference becomes problematic:

by hypothesis testing: by wider CI. PI

Ho:
$$B_j = 0$$
 vs. $H_1: B_0 \neq 0$.

 $ts = \frac{\hat{B_j} - B_j}{Se(\hat{B_j})} \implies Se(\hat{B_j}) \uparrow$

then

 $ts \neq 0$

- · we may fail to reject the due to instated secrif
- · reduced power of test.

How to detect multicollinearity among 2 or more predictors?

Variance Inflation Factor: VIF

 \bullet VIF > 4 or VIF > 10 may indicate a problem.

For implementation, see R script: example_multicollinearity.R