

Semester: October 2021 – February 2022 Examination: ESE Examination						
Programme code: 01 Programme: B.TECH		C	lass: FY	Semester: I (SVU 2020)		
Name of the Constituent College:			Name of the Department			
K. J. Somaiya College of Engineering			COMP/ETRX/EXTC/IT/MECH			
Course Code: 116U06C101	Name of the Course: Applied Mathematics - I					
Duration: 1 Hour 45 Minutes	Maximum Marks: 50					
Instructions:						
1)Draw neat diagrams 2) Assume suitable data if necessary						

Question No.		Max Marks	
Q1 (A)	Choose One correct Option for the following Questions (2 marks Each)		
(i)	$\int_{\log 1}^{\log 2} \operatorname{sech}^2 x \ dx =$		
	(a) $\frac{3}{5}$ (b) $\frac{5}{3}$ (c) $\frac{-2}{5}$ (d) $\frac{2}{3}$		
(ii)	The first order partial derivative of $f(x, y, z) = e^{3x} \cos y \ z^3$ w.r.t. x is		
	(a) $\frac{\partial f}{\partial x} = 3e^{3x}$ (b) $\frac{\partial f}{\partial x} = 3e^{3x}\cos y \ z^3$		
	(c) $\frac{\partial f}{\partial x} = 3e^{3x} + \cos y \ z^3$ (d) $\frac{\partial f}{\partial x} = 3e^{3x} + \cos y + z^3$		
(iii)	The trace and determinant of a 2×2 matrix are 5 and -50 respectively. What are the Eigenvalues of the matrix?		
	(a) $5,10$ (b) $5,-10$ (c) $-5,10$ (d) $-5,-10$		
(iv)	Which of the following statements is TRUE ?		
	(I) The diagonal elements of a Hermitian matrix are all real.		
	(II) The diagonal elements of a Skew-Hermitian matrix are all real		
	(III) The diagonal elements of a skew symmetric matrix are zero.		
	(a) Only (I) (b) (I) and (II) (c) (I) and (III) (d) (I), (II) and (III)		
(v)	If $u = x^3 \cos^{-1}\left(\frac{x}{y}\right)$, the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at (3,3) is		
	(a) 81 (b) 0 (c) 27 (d) 27π		
Q1 (B)	Solve the following questions. (2 marks Each)	10	
(i)	Solve the equation $17 \cosh x + 18 \sinh x = 1$ for real values of x		
(ii)	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 1 \\ 4 & 3 & 2 \end{bmatrix}$		
(iii)	A square symmetric matrix of order 3 has eigenvalues $3, -3, 9$. Two of the eigenvectors are $[2, 2, -1]'$ and $[2, -1, 2]'$. Find the third Eigen vector.		
	OR		
	Find the Minimal Polynomial of the matrix $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$		

(iv)	If $z = x^2 + y^2$, $x = cost$, $y = sint$, find $\frac{dz}{dt}$ at $t = \pi$ using composite rule.		
	OR		
	Find $\frac{\partial(u,v)}{\partial(x,y)}$ for $u = xy$, $v = x + y$		
(v)	If A and B are Hermitian matrices then prove that $(AB + BA)$ is Hermitian and		
	(AB - BA) is skew – Hermitian.		
Q. 2	Solve the following questions. (5 marks Each)		
(a)	Solve $x^5 = 1 + i$ and find the continued product of all the roots.		
(b)	Solve the following equations by Gauss – Seidel method (4 Iterations)		
	28x + 4y - z = 32, $2x + 17y + 4z = 35$, $x + 3y + 10z = 24$		
	OR		
	$2x_1 + x_2 = a$		
	Show that if $\lambda \neq 0$, the system of equations $x_1 + \lambda x_2 - x_3 = b$ has a unique solution		
	$x_2 + 2x_3 = c$ for every choice of a, b, c. If $\lambda = 0$, determine the relation satisfied by a, b, c such that		
	the system is consistent.		
Q. 3	Solve any Two of the following questions. (5 marks Each)	10	
(a)	Show that the matrix $A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonisable. Find the diagonal form D and the diagonalising matrix M		
(b)	Use Cayley Hamilton Theorem to find $2A^5 - 3A^4 + A^2 - 4I$ where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$		
(c)	If $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, find 5^A .		
Q. 4	Solve the following questions. (5 marks Each)		
(a)	If $u = \frac{1}{3} \log \left(\frac{x^3 + y^3}{x^2 + y^2} \right)$, find the value of		
	(i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$. (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.		
(b)	Find the extreme values of the function $x^3 + y^3 - 63(x + y) + 12xy$		
	OR		
	If $x = e^u cosec \ v, y = e^u \cot v \ and \ z$ is a function of x and y , prove that $\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 - sin^2 v \left(\frac{\partial z}{\partial v}\right)^2 \right]$		