

Fondamenti di Automatica – A.A. 2023/2024

Esercitazione 08: Criteri di stabilità di Nyquist e Bode, margini di stabilità

Ingegneria Informatica Prof. Fredy Ruiz

Caratterizzazione risposta in frequenza

Diagramma di Bode

 \triangleright Idea di base: vogliamo rappresentare nel piano complesso la funzione $G(j\omega)$ al variare di ω .

• $G(j\omega)$ può essere visto come un vettore nel piano complesso di modulo $|G(j\omega)|$ e fase $\not \Delta G(j\omega)$

Per creare il diagramma di Nyquist **partiamo dal diagramma di Bode** che ci descrive l'andamento di modulo $|G(j\omega)|$ e fase $\not = G(j\omega)$

$$\omega \rightarrow 10^0$$

$$|G(j10^0)|_{dB} \cong 17dB$$

$$|G(j10^0)| \cong 7.07$$

$$\mathbf{\omega} \rightarrow \infty$$

$$|G(j\infty)|_{dB} \cong 16dB$$
 $|G(j\infty)| \cong 6.3$
 $\angle G(j\infty) = -45^{\circ}$

$$\angle G(j\infty) = -45^\circ$$

$$|G(j\infty)| \cong 6.3$$

Esempio: 10 G(j0) $G(j\infty)$ \mathbb{R} e $G(j10^{0})$

Diagramma polare ($\omega > 0$)

Criteri per stabilità in anello chiuso

Come possiamo analizzare la stabilità di sistemi complessi interconnessi in retroazione?

Criterio di Nyquist

Criterio di Bode

NOTA: Ovviamente è sempre possibile valutare i poli di $F(s) = \frac{L(s)}{1 + L(s)}$

Criterio di Nyquist

- > Dato il sistema retroazionato in Figura
- Definiamo le seguenti quantità:

• N: numero di giri compiuti dal diagramma di Nyquist intorno al punto -1 dell'asse reale, contati positivamente se compiuti in senso antiorario e negativamente se in senso orario. N non è ben definito se il diagramma passa per il punto -1.

Il sistema retroazionato è asintoticamente stabile se e solo se N è ben definito e risulta:

$$P = N$$

Criterio di Nyquist

Esempio:
$$L(s) = \frac{10}{(s+1)}$$

$$-1$$

$$-1$$

$$\mathbb{R}e$$

• P: numero di **poli a parte reale** strettamente **positiva** di L(s).

$$P = 0$$

 N: numero di giri compiuti dal diagramma di Nyquist intorno al punto -1 dell'asse reale.

$$N = 0$$

$$V = P$$

$$N = P$$

Il sistema retroazionato è ASINTOTICAMENTE STABILE

Robustezza a incertezza del guadagno - Nyquist

 \succ Cosa succede alla stabilità del sistema se aggiungiamo nell'anello un guadagno μ ?

Proviamo a confrontare il diagramma di Bode di L(s) e $\mu L(s)$

Assumiamo $\mu > 0$

Robustezza a incertezza del guadagno - Nyquist

> II diagramma del modulo trasla: sale se $\mu > 1$ scende se $\mu < 1$

 \succ II diagramma della fase resta uguale (dato che $\mu > 0$)

Traduciamo questo comportamento nel diagramma di Nyquist

Robustezza a incertezza del guadagno - Nyquist

$$L(s) = \frac{10}{(s+1)}$$

$$L(s)=2\frac{10}{(s+1)}$$

$$L(s) = 0.5 \frac{10}{(s+1)}$$

Corollario di Nyquist per guadagno incerto

- > Dato il sistema retroazionato in Figura
- > Definiamo le seguenti quantità:

- P: numero di **poli a parte reale** strettamente **positiva** di L(s)
- N: numero di giri compiuti dal diagramma di Nyquist intorno al punto $-\frac{1}{\mu}$ dell'asse reale, contati positivamente se compiuti in senso antiorario e negativamente se in senso orario. N non è ben definito se il diagramma passa per il punto $-\frac{1}{\mu}$.

Il sistema retroazionato è asintoticamente stabile se e solo se N è ben definito e risulta:

$$P = N$$

Criteri per stabilità in anello chiuso

Come possiamo analizzare la stabilità di sistemi complessi interconnessi in retroazione?

Criterio di Nyquist

Criterio di Bode

NOTA: Ovviamente è sempre possibile valutare i poli di $F(s) = \frac{L(s)}{1 + L(s)}$

Criterio di Bode

Si consideri il sistema retroazionato in figura.

Condizioni di applicabilità del criterio di Bode:

- L(s) non ha poli a parte reale strettamente positiva
- Il diagramma di Bode del modulo di L(s) attraversa una sola volta l'asse a 0 dB, nel punto ω_c (pulsazione critica), dove pertanto risulta che $|L(j\omega_c)|=1$

Definiamo le seguenti quantità:

- μ_L : Guadagno di L(s)
- φ_m : margine di fase ottenuto come $\varphi_m = 180^\circ |\varphi_c|$, dove $\varphi_c = 4L(j\omega_c)$ è detta fase critica

Se le condizioni di applicabilità sono verificate, il sistema retroazionato è asintoticamente stabile se e solo se $\mu_L>0$ e $\varphi_m>0^\circ$

Criterio di Bode graficamente

$$L(s) = \frac{10}{(s+1)}$$

Le condizioni di applicabilità sono verificate

Il sistema retroazionato è asintoticamente stabile

$$\mu_L = 10 > 0$$
 $\varphi_m = 180^{\circ} - |\varphi_c|$
 $= 95^{\circ} > 0$

Robustezza tramite diagramma di Bode

- Il margine di fase φ_m può essere interpretato come una misura del grado di robustezza della stabilità a fronte di possibili incertezze sulla fase della funzione d'anello in corrispondenza della pulsazione critica, o, equivalentemente, a fronte di eventuali <u>ritardi di tempo.</u>
 - Sfasamento introdotto da un ritardo:

$$\Delta \varphi_{\tau} = -\tau \omega_c \frac{180^{\circ}}{\pi}$$

Robustezza tramite diagramma di Bode

• Il margine di guadagno k_m fornisce una misura del grado di robustezza della stabilità a fronte di possibili incertezze sul guadagno d'anello.

$$k_m = \frac{1}{|L(j\omega_{\pi})|}$$

Se $k_m > \mu$ il sistema retroazionato resterà asintoticamente stabile.