AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (Original) An optical sheet comprising:

a retardation film; and

a transparent layer provided on one of opposite surfaces of said retardation film;

wherein said retardation film exhibits Nz = (nx - nz)/(nx - ny) in a range of from 0.6 to 0.9 and (nx - ny)d in a range of from 200 to 350 nm in which \underline{d} is a thickness of said retardation film, nz is a refractive index in a direction of a Z axis expressing a direction of the thickness \underline{d} of said retardation film, nx is a refractive index in a direction of an X axis expressing a direction of said retardation film in a plane perpendicular to said Z axis while said X axis also expresses a direction of the highest in-plane refractive index, and ny is a refractive index in a direction of a Y axis expressing a direction of said retardation film perpendicular both to said Z axis and to said X axis; and

wherein said transparent layer has a thickness not larger than 10 μ m and exhibits refractive index anisotropy of nx \Rightarrow ny > nz.

2. (Original) An optical sheet according to claim 1, wherein said transparent layer is made of a coating film of an organic material.

- 3. (Original) An optical sheet according to claim 1, wherein said transparent layer is constituted by a cholesteric liquid-crystal layer.
 - 4. (Currently Amended) A polarizer comprising:

 a laminate of an optical sheet according to claim 1; and
 a polarizing film disposed on said optical sheet,

 said optical sheet optical sheet comprising:

a retardation film; and

a transparent layer provided on one of opposite surfaces of said retardation film; wherein said retardation film exhibits Nz = (nx - nz)/(nx - ny) in a range of from 0.6 to 0.9 and (nx -ny)d in a range of from 200 to 350 nm in which d is a thickness of said retardation film, nz is a refractive index in a direction of a Z axis expressing a direction of the thickness d of said retardation film, nx is a refractive index in a direction of an X axis expressing a direction of said retardation film in a plane perpendicular to said Z axis while said X axis also expresses a direction of the highest in-plane refractive index, and ny is a refractive index in a direction of a Y axis expressing a direction of said retardation film perpendicular both to said Z axis and to said X axis; and

wherein said transparent layer has a thickness not larger than 10 μ m and exhibits refractive index anisotropy of nx \Rightarrow ny > nz.

- 5. (Original) A polarizer according to claim 4, wherein said polarizing film is disposed on a side of said optical sheet opposite to the transparent layer side of said optical sheet so that said X axis direction of said retardation film of said optical sheet is parallel with an axis of absorption of said retardation film.
 - 6. (Currently Amended) A liquid-crystal display device comprising: a vertically oriented liquid-crystal cell; and

a pair of polarizers each according to claim 5 comprising an optical sheet and a polarizing film disposed on said optical sheet, said pair of polarizers being provided on opposite sides of said cell;

wherein a transparent layer in each of said pair of polarizers is positioned on corresponding one of opposite sides of said cell; and

wherein said pair of polarizers provided on said opposite sides of said cell are disposed in the form of crossed-Nicol,

said optical sheet optical sheet comprising:

a retardation film; and

a transparent layer provided on one of opposite surfaces of said retardation film;

wherein said retardation film exhibits Nz = (nx - nz)/(nx - ny) in a range of from

0.6 to 0.9 and (nx -ny)d in a range of from 200 to 350 nm in which d is a thickness of

said retardation film, nz is a refractive index in a direction of a Z axis expressing a

direction of the thickness d of said retardation film, nx is a refractive index in a direction

of an X axis expressing a direction of said retardation film in a plane perpendicular to said Z axis while said X axis also expresses a direction of the highest in-plane refractive index, and ny is a refractive index in a direction of a Y axis expressing a direction of said retardation film perpendicular both to said Z axis and to said X axis; and

wherein said transparent layer has a thickness not larger than 10 μ m and exhibits refractive index anisotropy of nx = ny > nz.

- 7. (Original) A liquid-crystal display device according to claim 6, wherein a sum of absolute values of thicknesswise retardations each defined by a product of $\{(nx + ny)/2 nz\}$ and a layer thickness of said transparent layer in each of said pair of polarizers disposed on the opposite sides of said liquid-crystal cell is in a range of from 0.5 times to 1.3 times as large as an absolute value of a thicknesswise retardation of said liquid-crystal cell.
 - 8. (Currently Amended) A liquid-crystal display device comprising: a vertically oriented liquid-crystal cell;
- a pair of polarizers each according to claim 5 comprising an optical sheet and a polarizing film disposed on said optical sheet, said pair of polarizers being disposed in the form of crossed-Nicol on opposite sides of said liquid-crystal cell; and

at least one phase retarder disposed between said liquid-crystal cell and one or both of said polarizers;

wherein said phase retarder exhibits refractive index anisotropy of nx = ny > nz; and

wherein a sum of absolute values of thicknesswise retardations defined by a product of $\{(nx + ny)/2 - nz\}$ and a layer thickness of each of transparent layers of said polarizers disposed on said opposite sides of said liquid-crystal cell and an absolute value of a thicknesswise retardation of said phase retarder is in a range of from 0.5 times to 1.3 times as large as an absolute value of a thicknesswise retardation of said liquid-crystal cell.

said optical sheet optical sheet comprising:

a retardation film; and

a transparent layer provided on one of opposite surfaces of said retardation film; wherein said retardation film exhibits Nz = (nx - nz)/(nx - ny) in a range of from 0.6 to 0.9 and (nx -ny)d in a range of from 200 to 350 nm in which d is a thickness of said retardation film, nz is a refractive index in a direction of a Z axis expressing a direction of the thickness d of said retardation film, nx is a refractive index in a direction of an X axis expressing a direction of said retardation film in a plane perpendicular to said Z axis while said X axis also expresses a direction of the highest in-plane refractive index, and ny is a refractive index in a direction of a Y axis expressing a direction of said retardation film perpendicular both to said Z axis and to said X axis; and

wherein said transparent layer has a thickness not larger than 10 μ m and exhibits refractive index anisotropy of nx = ny > nz.