Linear Regression

Lecture Series "Machine Learning"

Niels Landwehr

Research Group "Data Science" Institute of Computer Science University of Hildesheim

Agenda

- Linear regression model and normal equations
- Gradient descent for parameter estimation

Agenda

- Linear regression model and normal equations
- Gradient descent for parameter estimation

Review: Supervised Learning

Review: in supervised learning, the goal is to make predictions about objects

• To obtain predictions, we are looking for a **model** f that produces a prediction $f(\mathbf{x}) \in \mathcal{Y}$ for an input instance \mathbf{x}

$$f: \mathcal{X} \to \mathcal{Y}$$
 Input: instance $\mathbf{x} \mapsto f(\mathbf{x})$ Output: prediction $f(\mathbf{x})$

Model will be inferred from training data: a set of instances with observed targets

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$$
Training instances $\mathbf{x}_n \in \mathcal{X}$: observed objects in training data, for example flowers, images of digits, or emails

Observed labels or targets $y \in \mathcal{Y}$ in training data, for example classes of flowers, digits 0...9, or spam/legitimate classifications

Models as Parameterized Functions

- How does the model f look like?
- An important and frequently used class of models are parameterized functions:
 - The model, often written as $f_{\mathbf{\theta}}$, is a function parameterized by a vector of parameters $\mathbf{\theta} \in \mathbb{R}^D$
 - The model is determined by the structure of the function and its parameters $oldsymbol{\theta}$
 - The structure of the function is chosen a priori, the parameters are chosen during learning based on the training data
- In this setting, there are basically two ingredients to a machine learning approach:
 - We need to choose the set of models under consideration. This is determined by the structure of the function: it is given by the set

$$\mathcal{F} = \{ f_{\mathbf{\theta}} \mid \mathbf{\theta} \in \mathbb{R}^D \}$$

which is also called the model space

- Given the model space, we need to determine how we choose a particular model $f_{\theta^*} \in \mathcal{F}$ based on the training data. This is the actual learning algorithm.

Linear Regression

- A simple but important instance of parameterized functions in machine learning are so-called linear models, for regression (this lecture) and classification (next lecture)
- Linear Regression: a simple but widely used model for regression tasks
 - As discussed above, assume that instances are represented by vectors

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_M \end{pmatrix} \in \mathbb{R}^M$$

– In regression tasks, the targets are continuous, that is, we assume $y \in \mathbb{R}$

The parameterized function is given by

Function computes real-valued output based on instance $\mathbf{x} \in \mathbb{R}^{M}$

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_M x_M < \theta_1$$

Function is **linear** in input: the output is obtained by multiplying each feature x_m in the instance x by a corresponding model parameter θ_m

$$\mathbf{\theta} = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_M \end{pmatrix} \in \mathbb{R}^{M+1}$$

Linear Regression

- To write the linear regression model more compactly, we can replace the constant term in the regression function by an additional constant element in the input vector:
 - Assume we are including an artificial constant attribute x_0 in the input vector \mathbf{x} :

– Then, we can write the linear regression compactly as a dot product:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_M x_M$$
$$= \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_M x_M$$
$$= \mathbf{x}^{\mathrm{T}} \mathbf{\theta}$$

• In this notation, the constant term θ_0 is a model parameter like any other θ_m , only that it happens to be in front of a constant feature

Learning by Optimizing a Loss Function

 For linear regression, the linear regression equation defines the model space: it contains all functions that have this form, that is,

$$\mathcal{F} = \{ f_{\boldsymbol{\theta}} \mid f_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \boldsymbol{\theta}, \ \boldsymbol{\theta} \in \mathbb{R}^{D} \}$$

- It remains to specify how we choose the model parameters θ (and thereby a specific model out of the model space) based on the training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$
- How do we choose model parameters 0 based on training data?
 - 1. Need to quantify how good a model parameter vector θ is, based on training data: this is accomplished by defining a **loss function**
 - 2. Need to find model parameters that are good according to loss function: this results in an **optimization problem** that has to be solved by the machine learning algorithm

Loss Functions

- Loss function: measure how well a model f_{θ} fits the training data
- Intuitively, the loss measures how close the predictions of the model on the training instances, $f_{\theta}(\mathbf{x}_n)$, are to the observed targets, y_n
 - Low loss: predictions of the model are close to target and the model captures the underlying (\mathbf{x}, y) -relationship in the data well
 - High loss: predictions of the model are far away from target and model does not capture underlying (\mathbf{x}, y) -relationship in the data
 - The loss function is also sometimes called cost function or objective function
- Loss on a single training example (\mathbf{x}_n, y_n) is defined by an instance-level loss function

$$\ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

Loss on entire data set is the average of the losses on all instances and defined by

Here, we make the dependence on the model parameters $\boldsymbol{\theta}$ explicit, because we want to optimize the loss in $\boldsymbol{\theta}$

$$\mathcal{L}(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

Loss Functions

- Example: squared and absolute loss for regression
 - Most common loss function for regression is the squared loss:

$$\ell(f_{\theta}(\mathbf{x}_n), y_n) = (f_{\theta}(\mathbf{x}_n) - y_n)^2$$
 Squared difference between prediction $f_{\theta}(\mathbf{x}_n)$ and target y_n . Penalizes outliers disproportionately.

Alternatively, the absolute loss can be used:

$$\ell(f_{\theta}(\mathbf{X}_n), y_n) = |f_{\theta}(\mathbf{X}_n) - y_n|$$
 Absolute difference between prediction $f_{\theta}(\mathbf{X}_n)$ and target y_n .

• Example: squared loss for linear regression $f_{\theta}(\mathbf{x}) = 0.5\mathbf{x} + 1$ with $\mathbf{x} \in \mathbb{R}$

One-dimensional linear regression model $f_{\theta}(\mathbf{x}) = 0.5\mathbf{x} + 1$ given by blue line in graph.

Loss is computed at $\mathbf{x}_n = 10$.

Function value at this point is $f_{\theta}(\mathbf{x}_n) = 6$, target at this point is $y_n = 10$

Squared loss is $\ell(f_{\theta}(\mathbf{x}_n), y_n) = (6-10)^2 = 16$.

Learning: Minimizing the Loss Function

- The loss function defines how well a model fits the training data, and thereby how well the model captures the underlying (\mathbf{x}, y) -relationship in the data
- Given the definition of a loss function, we can view the problem of learning the model f_{θ} from data as an optimization problem: find the model parameters with the lowest loss on the training data

Learning as optimization:

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} L(\mathbf{\theta})$$

$$= \arg\min_{\mathbf{\theta}} \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

- The model $f_{\mathbf{\theta}^*}$ with loss-minimizing parameters $\mathbf{\theta}^*$ is the learned model
- Remark: in addition to simply minimizing the loss on the training data, in practice often need to augment the optimization criterion with a regularization term to prevent overfitting. We will come back to this in a later lecture.

Training Data in Matrix Form

- How do we solve the optimization problem $\theta^* = \arg\min_{\theta} L(\theta)$?
 - Approximately or exactly?
 - Computational efficiency?
 - Numerical stability?
- To simplify notation, let us write the training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$ in matrix form:

All labels summarized as row vector $\mathbf{y} \in \mathbb{R}^N$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \dots \\ y_N \end{pmatrix} \in \mathbb{R}^N$$

Training Data in Matrix Form

- Let $\hat{y}_n = f_{\theta}(\mathbf{x}_n)$ denote the prediction of the model on the *n*-th instance
- The predictions of a linear model $f_{\theta}(\mathbf{x}) = \theta_1 x_1 + \theta_2 x_2 + ... + \theta_M x_M$ on the entire training data can now be written as

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{\theta} \in \mathbb{R}^N$$
Result of multiplying $N \times M$ matrix \mathbf{X} with M -dimensional vector $\hat{\mathbf{y}}$. By construction of the matrix \mathbf{X} , n-th element of result vector is $\theta_1 x_{n,1} + \theta_2 x_{n,2} + ... + \theta_M x_{n,M}$

- Here, we have left out the constant model term θ_0 because it can be incorporated into an additional constant feature as described above
- Define the L2-norm of a vector $\mathbf{z} \in \mathbb{R}^N$ as

$$\|\mathbf{z}\|_2 = \sqrt{z_1^2 + \dots + z_N^2}$$

The squared loss of the linear model $f_{\theta}(\mathbf{x})$ can be computed as

$$L(\mathbf{\theta}) = \frac{1}{N} \|\mathbf{y} - \mathbf{X}\mathbf{\theta}\|_{2}^{2}$$
 Here

 $L(\mathbf{\theta}) = \frac{1}{N} \|\mathbf{y} - \mathbf{X}\mathbf{\theta}\|_{2}^{2}$ Here, the squared L2-norm sums up the squared differences between the targets in \mathbf{y} and the predictions in $\mathbf{X}\mathbf{\theta}$

Normal Equations for Linear Regression

The model parameters minimizing the squared loss,

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} \frac{1}{N} \|\mathbf{y} - \mathbf{X}\mathbf{\theta}\|_2^2$$

$$= \arg\min_{\mathbf{\theta}} \|\mathbf{y} - \mathbf{X}\mathbf{\theta}\|_2^2 \qquad \text{constant 1/N does not affect minimum}$$

are also called the least squares estimates, because they minimize the squared errors

• The least squares estimates can be computed by solving for θ the so-called normal equations:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

• Solving the normal equations means solving a system of M linear equations: solve

$$A\theta = b$$

with
$$\mathbf{A} = \mathbf{X}^{\mathrm{T}} \mathbf{X} \in \mathbb{R}^{M \times M}$$
 and $\mathbf{b} = \mathbf{X}^{\mathrm{T}} \mathbf{y} \in \mathbb{R}^{M}$

 Different algorithmic methods available: e.g. Gaussian elimination, Cholesky decomposition, QR decomposition

Normal Equations for Linear Regression

- Why does solving the normal equations yield the least squares model parameters?
- For two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^N$ let $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{n=1}^N a_n b_n$ denote their dot product
- Note that $\|\mathbf{a}\|_2^2 = \langle \mathbf{a}, \mathbf{a} \rangle$, namely the sum of squared vector elements
- The squared loss of the model $f_{\theta}(\mathbf{x}_n)$ can be written as

$$\frac{1}{N} \|\mathbf{y} - \mathbf{X}\mathbf{\theta}\|_{2}^{2} = \frac{1}{N} \langle \mathbf{y} - \mathbf{X}\mathbf{\theta}, \mathbf{y} - \mathbf{X}\mathbf{\theta} \rangle$$
Like the squared norm, the dot product also sums up the the squared vector elements

To find the minimum, we can set the derivative to zero

Derived by chain rule: we have an expression of the form $\langle \mathbf{z}, \mathbf{z} \rangle$, with $\mathbf{z} = \mathbf{y} - \mathbf{X} \mathbf{\theta}$. The outer derivative is $\frac{\partial}{\partial \mathbf{z}} \langle \mathbf{z}, \mathbf{z} \rangle = 2\mathbf{z} = 2(\mathbf{y} - \mathbf{X} \mathbf{\theta})$, similarly as in scalar calculus $\frac{\partial}{\partial x} x^2 = 2x$. The inner derivative is $\frac{\partial}{\partial \theta} \mathbf{z} = -\mathbf{X}$. The two are multiplied resulting in $(-\mathbf{X})^T 2(\mathbf{y} - \mathbf{X} \mathbf{\theta})$.

$$\frac{\partial}{\partial \mathbf{\theta}} \frac{1}{N} \langle \mathbf{y} - \mathbf{X} \mathbf{\theta}, \mathbf{y} - \mathbf{X} \mathbf{\theta} \rangle = \frac{1}{N} (-\mathbf{X})^{\mathrm{T}} 2 (\mathbf{y} - \mathbf{X} \mathbf{\theta}) = -\frac{2}{N} (\mathbf{X}^{\mathrm{T}} \mathbf{y} - \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{\theta}) \stackrel{!}{=} 0$$
Resolving product
$$\Rightarrow \mathbf{X}^{\mathrm{T}} \mathbf{y} = \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{\theta}$$
results in normal equations

The phase is a variable of the product of

Normal Equations for Linear Regression

Learning a linear regression model using normal equations, formulated as algorithm:

Algorithm learn-linreg-NormEq

Input: training data $\mathcal{D} := \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$

Output: learned model parameters θ

1.
$$\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$$

1. $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^{\mathrm{T}}$ Summarize training instances in matrix \mathbf{X} 2. $\mathbf{y} = (y_1, ..., y_N)^{\mathrm{T}}$ and training labels in vector \mathbf{y}

2.
$$\mathbf{y} = (y_1, ..., y_N)^T$$

3.
$$\mathbf{A} = \mathbf{X}^{\mathrm{T}} \mathbf{X}$$

Compute expressions **A**, **b** for normal equations

4.
$$\mathbf{b} = \mathbf{X}^{\mathrm{T}} \mathbf{y}$$

5. $\theta = \text{solve-linear-equations}(\mathbf{A}, \mathbf{b})$

6. return θ

Solving system of equations (using one of the methods mentioned above) yields final model parameters

Computational Complexity

- What is the computational complexity of learning a linear regression model via the normal equations?
- Dimensions of input:

Matrix
$$\mathbf{X} \in \mathbb{R}^{N \times M}$$
 ($N = \text{number of instances}, M = \text{number of features}$)
Vector $\mathbf{y} \in \mathbb{R}^{N}$

• Main computational steps:

Matrix product $\mathbf{X}^{\mathrm{T}}\mathbf{X}$: $M \times N$ times $N \times M$ matrix multiplication, $O(NM^2)$ Solve system of M linear equations: $O(M^3)$

runtime [s]

27.902

• Overall runtime: $O(NM^2 + M^3)$

	100	0.002	
	200	0.004	
Linear dependence on N is ok,	400	0.022	
but computation time rises quickly with M	800	0.086	/I . I ! 5 760 0 0 MII
but computation time rises quickly with M	1600	0.555	(Intel i5-760 2.8 MHz,
	3200	6.275	2010, Python numpy)

6400

Agenda

- Linear regression model and normal equations
- Gradient descent for parameter estimation

Motivation: Gradient Descent

- For the linear regression model, the parameter vector minimizing the squared loss can be obtained by simply solving a system of linear equations
- However, this is due to the particularly simple form of the model and the particular loss function (squared loss)
- In general, for most combinations of models and loss functions, finding the model parameters that minimize the loss function is less straightforward
- Even for linear regression, computational complexity might prevent us from using normal equations to solve for the parameters minimizing the loss
- **Gradient descent**: An alternative approach for finding model parameters that (approximately) minimize the loss
 - Iterative optimization algorithm
 - Finds global optimum if the problem of loss-minimization is convex in parameters
 - Otherwise, finds a local optimum (still good & useful in many practical setttings)
 - Very flexible for different models and losses, widely used in practice

Learning: How to Solve the Optimization Problem?

- Formally speaking, to find the loss-minimizing parameter vector $\, \theta \,$ we need to solve an optimization problem
 - Given a model class $\mathcal{F} = \{ f_{\boldsymbol{\theta}} \mid \boldsymbol{\theta} \in \mathbb{R}^D \}$
 - Given a loss function $\ell(f(\mathbf{x}), y)$
 - Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$
 - Find

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} L(\mathbf{\theta})$$

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

- Challenges:
 - Optimization variable θ can be high-dimensional (depending on model class)
 - Data set can be large (in terms of number of instances and/or features)
 - $L(\theta)$ can be a complex, generally non-convex function in θ
- How to solve optimization problem?

Optimization: Gradient Descent

• Gradient descent: find the model parameter vector $\mathbf{\theta}^*$ by "walking" in the space \mathbb{R}^D of model parameters always in the direction of steepest descent

Loss Function Surface

- More formally: the loss function defines a surface over the *D*-dimensional θ -space
- The loss function $L(\mathbf{\theta})$ maps parameter vectors to a real number: $L: \mathbb{R}^D \to \mathbb{R}$
- Can be visualized as a loss surface / landscape:

Want to find the "lowest point":

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

- Note: parameter space is high-dimensional (often millions of parameters and therefore dimensions). 2D-visualizations can be misleading.
- Shape of loss surface will depend on loss function, structure of model, data

Gradient of Function

- Idea: follow the slope. How do we get the local slope of the loss function?
- Gradient:

Let $f(\mathbf{x})$ with $f: \mathbb{R}^D \to \mathbb{R}$ denote a scaler-valued differentiable function. The gradient of f, written ∇f , is a function $\nabla f: \mathbb{R}^D \to \mathbb{R}^D$ defined by

Gradient of Function

- Idea: follow the slope. How do we get the local slope of the loss function?
- Example for gradient (k=3):

$$f: \mathbb{R}^3 \to \mathbb{R}$$
 with $f(\mathbf{x}) = 3x_1^2x_2 + 2x_2^2 - x_1x_3$ $\mathbf{x} = (x_1, x_2, x_3)^T$

Partial derivatives:

$$\frac{\partial f}{\partial x_1} = 6x_1x_2 - x_3$$

$$\frac{\partial f}{\partial x_2} = 3x_1^2 + 4x_2$$

Gradient at $\mathbf{x} = (1, 2, 3)^{T}$:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \frac{\partial f}{\partial x_3}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} 12 - 3 \\ 3 + 8 \\ -1 \end{pmatrix} = \begin{pmatrix} 9 \\ 11 \\ -1 \end{pmatrix}$$

Gradient of Loss Function

- Idea: follow the slope. How do we get the local slope of the loss function?
- Negative gradient points into the direction of steepest descent

- For $\theta \in \mathbb{R}^D$, the vector $-\nabla L(\theta) \in \mathbb{R}^D$ points into the direction of steepest descent
- Locally moving into the direction of negative gradient will decrease loss

$$L(\mathbf{\theta} - \eta \nabla L(\mathbf{\theta})) \le L(\mathbf{\theta})$$
 for small enough $\eta > 0$

Gradient Descent Algorithm (Fixed Step Size)

- Idea: follow the slope. How do we get the local slope of the loss function?
- Gradient descent: iterative small steps in direction of negative gradient
 - Step size: how far to move along direction of gradient? Parameter η
 - For small enough η , will converge to local optimum

Gradient descent algorithm

- 1. θ_0 = randomInitialization()
- 2. for $i = 0,...,i_{max}$:
- 3. $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i \eta \nabla L(\mathbf{\theta}_i)$
- 4. if $L(\mathbf{\theta}_i) L(\mathbf{\theta}_{i+1}) < \epsilon$:
- 5. return θ_{i+1}
- 6. raise Exception("Not converged in i_{max} iterations")

Computing the Gradient

- To carry out the gradient descent algorithm, we need to compute the gradient $\nabla L(\mathbf{\theta})$ for any given $\mathbf{\theta} \in \mathbb{R}^D$
- The function $L(\theta)$ can be quite complex
 - parameter vector $\mathbf{\theta} \in \mathbb{R}^D$ can be high-dimensional
 - computation of $L(\theta)$ involves computing model predictions, the loss function, and a sum over data instances

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

How can we compute the gradient in practice?

Numerical Gradients

• First idea: numerical gradient based on difference quotient

Let
$$\mathbf{\theta} = (\theta_1, ..., \theta_D)^T \in \mathbb{R}^D$$
, that is, $L : \mathbb{R}^D \to \mathbb{R}$.

Gradient is
$$\nabla L(\mathbf{\theta}) = \left(\frac{\partial L}{\partial \theta_1}(\mathbf{\theta}), ..., \frac{\partial L}{\partial \theta_D}(\mathbf{\theta})\right)^T$$

Partial derivative is limes of difference quotient:

$$\frac{\partial L}{\partial \theta_d}(\mathbf{\theta}) = \lim_{h \to 0} \frac{L(\mathbf{\theta} + h\mathbf{u}_d) - L(\mathbf{\theta})}{h}$$

$$\mathbf{u}_d = (0, 0, ..., 0, 1, 0, ..., 0)^{\mathrm{T}} \in \mathbb{R}^D$$

$$\uparrow \text{ d-th position}$$

Approximate d-th entry in gradient by

$$\frac{\partial L}{\partial \theta_d}(\mathbf{\theta}) \approx \frac{L(\mathbf{\theta} + h\mathbf{u}_d) - L(\mathbf{\theta})}{h}$$
 where h is a small number (e.g. $h = 10^{-4}$)

Numerical Gradients

- First idea: numerical gradient based on difference quotient
- To compute entire gradient, have to compute the approximation

$$\frac{\partial L}{\partial \theta_d}(\mathbf{\theta}) \approx \frac{L(\mathbf{\theta} + h\mathbf{u}_d) - L(\mathbf{\theta})}{h} \quad \text{for each } d \in \{1, ..., D\}$$

- As number of parameters *D* can be large this is usually not efficient: Would have to compute the entire loss many times to get a single gradient
- Also, solution is only approximate and not always numerically stable
- However, numerical gradients are easy to implement and can be used to verify (debug)
 other, more efficient implementations of gradient computations

Analytic Gradients

• Second idea: analytically derive gradient

Example from above:

$$f: \mathbb{R}^3 \to \mathbb{R} \quad \text{with} \quad f(\mathbf{x}) = 3x_1^2 x_2 + 2x_2^2 - x_1 x_3$$

$$\frac{\partial f}{\partial x_1} = 6x_1 x_2 - x_3 \qquad \frac{\partial f}{\partial x_2} = 3x_1^2 + 4x_2 \qquad \frac{\partial f}{\partial x_3} = -x_1$$

- Advantages: exact solution, potentially faster
- This is a widely used approach for model classes and loss functions that are not too complex, such that corresponding closed-form solutions for the gradient can still be derived
- Will see examples below and in further lectures

Automatic Differentiation

- Alternative for models for which deriving analytic gradients is not (easily) possible:
 automatic differentiation
 - algorithmic approach to compute gradient vector given model, loss, data
 - look at the overall expression defining $L(\theta)$ as a graph of elementary operations ("computation graph" or "data flow graph")
 - if we know the derivates of the individual operations, we can efficiently compute the overall derivative by the chain rule
 - widely used for neural networks

No details here, will discuss this in more detail when talking about neural networks

Step Sizes in Gradient Descent

- For the gradient descent algorithm, we need to specify a step size η
- A step size is needed, because the negative gradient $-\nabla L(\theta)$ only points into the direction of steepest descent in an infinitisimal neighborhood of θ
- Therefore, a decrease in loss is only guaranteed for small enough η

- If step size is too large, algorithm might not find any good $oldsymbol{\theta}$
- If step size is too small, algorithm will take very long to find good θ

Selecting Step Sizes in Gradient Descent

- How to select step size?
- Option 1: fixed step size which is a tunable hyperparameter (that is, have to empirically test different step sizes and pick the one that works best)
- Option 2: policy to reduce step size over time or adapt it heuristically (e.g. by monitoring how much parameters change at each iteration)
- Option 3: rather than using a fixed step size, perform a line search along the direction of the negative gradient

Local Minima

- In general, the function $L(\theta)$ can have several different **local minima**, that is, parameters θ with $\nabla L(\theta) = 0$
- Gradient descent will find one of the local minima, which is not necessarily globally optimal
- The gradient can also become zero at a saddle point, and (simple) gradient descent can then get "stuck"

Convexity

• A function $L: \mathbb{R}^D \to \mathbb{R}$ is called **convex** if for any $\theta_1, \theta_2 \in \mathbb{R}^D$ and any $t \in [0,1]$

$$L(t\boldsymbol{\theta}_1 + (1-t)\boldsymbol{\theta}_2) \le tL(\boldsymbol{\theta}_1) + (1-t)L(\boldsymbol{\theta}_2)$$

- For a convex function, any local minimum is also a global minimum
- For a convex function, gradient descent will thus find a global optimum, given sufficiently small step sizes

Convexity

• If the function $L: \mathbb{R}^D \to \mathbb{R}$ is twice differentiable, it is convex if the Hessian matrix

$$\mathbf{H} = \begin{pmatrix} \frac{\partial L}{\partial \theta_{1} \partial \theta_{1}} & \dots & \frac{\partial L}{\partial \theta_{1} \partial \theta_{D}} \\ \dots & \dots & \dots \\ \frac{\partial L}{\partial \theta_{D} \partial \theta_{1}} & \dots & \frac{\partial L}{\partial \theta_{D} \partial \theta_{D}} \end{pmatrix}$$

is positive semidefinite for all $\theta \in \mathbb{R}^D$ (remember that H depends on θ)

- The matrix \mathbf{H} is positive semidefinite if for all $\overline{\mathbf{\theta}} \in \mathbb{R}^D$ it holds that $\overline{\mathbf{\theta}}^{\mathrm{T}} \mathbf{H} \overline{\mathbf{\theta}} \geq 0$
- For any matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$, the matrix $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is positive semidefinite
- For linear regression with squared loss, the Hessian of the loss of the model in the model parameters is $(2/N)\mathbf{X}^{T}\mathbf{X}$ (can be derived similarly as for normal equations)
 - Loss is therefore convex and gradient descent will find global optimum

Learning Linear Regression by Gradient Descent

- Instead of solving the normal equations, we can also use gradient descent to learn a linear regression model
- For linear regression, the gradient of the loss function is (result copied from derivation of normal equations above):

$$\nabla L(\mathbf{\theta}) = \frac{\partial}{\partial \mathbf{\theta}} \frac{1}{N} \| \mathbf{X} \mathbf{\theta} - \mathbf{y} \|_{2}^{2} = \frac{1}{N} (-\mathbf{X})^{\mathrm{T}} 2(\mathbf{y} - \mathbf{X} \mathbf{\theta})$$

- Can be computed readily from training data and current parameter vector
- Pick learning rate η and run gradient descent algorithm:

Gradient descent algorithm

- 1. θ_0 = randomInitialization()
- 2. for $i = 0,...,i_{max}$:
- 3. $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i \eta \nabla L(\mathbf{\theta}_i)$
- 4. if $L(\mathbf{\theta}_i) L(\mathbf{\theta}_{i+1}) < \epsilon$:
- 5. return θ_{i+1}
- 6. raise Exception("Not converged in i_{max} iterations")

Sparsity in Linear Regression

- In some application domains, instance vectors $\mathbf{x} \in \mathbb{R}^M$ will be high-dimensional but sparse, meaning that most of the entries in a vector are typically zero
- For example, using a word indicator representation for spam classification: there are tens of thousands of words, but only a few of them appear in the average message
- In gradient descent, we can take advantage of this sparsity:

Multiplication of sparse matrix with dense vector is efficient: only go over non-zero entries in matrix

$$\nabla L(\mathbf{\theta}) = \frac{1}{N} (-\mathbf{X})^{\mathrm{T}} 2(\mathbf{y} - \mathbf{X}\mathbf{\theta})$$

Again, multiplication of sparse matrix with dense vector

- Computational complexity of gradient descent is then $O(I(NM_{nz} + M))$
 - I is number of iterations, M_{nz} average number of nonzero elements in row of ${f X}$
- In contrast, approaches to solving the normal equations cannot easily take advantage
 of sparsity

Example: Linear Regression

• Example: gradient descent for linear regression

One-dimensional model $f: \mathbb{R} \to \mathbb{R}$, using a constant attribute $x_2 = 1$:

$$f_{\theta}(\mathbf{x}) = \theta_1 x_1 + \theta_2 x_2 = \theta_1 x_1 + \theta_2$$
input

Assume three training instances. The training data can be given in matrix form with $\mathbf{X} \in \mathbb{R}^{3\times 2}$ and $\mathbf{y} \in \mathbb{R}^3$:

$$\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}$$
 inputs $x_1 \uparrow \qquad \uparrow$ constant attribute x_2

$$\mathbf{y} = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$$
 targets $\mathbf{y} \uparrow$

Example: Linear Regression

Example: gradient descent for linear regression

We can train the model using a squared loss function and gradient descent:

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} L(\mathbf{\theta})$$

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$
$$L(\boldsymbol{\theta}) = \frac{1}{3} \sum_{n=1}^{3} (f_{\boldsymbol{\theta}}(\mathbf{x}_n) - y_n)^2$$

Gradient descent algorithm

- 1. θ_0 = randomInitialization()
- 2. for $i = 0,...,i_{max}$:

For example, initialize to zeros

- $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i \eta \nabla L(\mathbf{\theta}_i)$
- 4. if $L(\mathbf{\theta}_i) L(\mathbf{\theta}_{i+1}) < \epsilon$:
- return θ_{i+1}
- 3. raise Exception("Not converged in i_{max} iterations")

Gradient Descent: Example

• Example: gradient descent for linear regression

Development of model parameters θ_1, θ_2 during gradient descent

Gradient Descent: Example

• Example: gradient descent for linear regression

Development of loss function during gradient descent

Summary

- Linear regression is a simple but widely used model for regression problems
- The model can be learned from data by minimizing a **loss function**, e.g. squared loss
- Minimizing the loss function is an optimization problem, which for linear regression can be solved by solving the normal equations (system of linear equations)
- Alternatively, gradient descent is a flexible iterative optimization method that can be used to learn linear regression and also many other models
 - start with random parameter vector
 - repeatedly update the parameter vector by following the direction of steepest descent, given by the negative gradient