```
证明:
```

 $A \cap B = A$

$\iff \forall x((x \in A \land x \in B) \leftrightarrow x \in A)$	(外延原则、集合交定义)
$\Longleftrightarrow \forall x (((x \in A \land x \in B) \to x \in A) \land (x \in A \to (x \in A \land x \in B)))$	(等价联结词定义)
$\Longleftrightarrow \forall x ((\neg (x \in A \land x \in B) \lor x \in A) \land (\neg x \in A \lor (x \in A \land x \in B)))$	(蕴涵等值式)
$\Longleftrightarrow \forall x((\neg x \in A \lor \neg x \in B \lor x \in A) \land (\neg x \in A \lor (x \in A \land x \in B)))$	(命题逻辑德·摩根律)
$\Longleftrightarrow \forall x((\neg x \in A \lor x \in A \lor \neg x \in B) \land (\neg x \in A \lor (x \in A \land x \in B)))$	(命题逻辑交换律)
$\iff \forall x((\neg x \in A \lor x \in A \lor \neg x \in B) \land$	
$((\neg x \in A \lor x \in A) \land (\neg x \in A \lor x \in B)))$	(命题逻辑分配律)
$\iff \forall x((1 \vee \neg x \in B) \land (1 \land (\neg x \in A \lor x \in B)))$	(命题逻辑排中律)
$\iff \forall x (1 \land (1 \land (\neg x \in A \lor x \in B)))$	(命题逻辑零律)
$\iff \forall x (\neg x \in A \lor x \in B)$	(命题逻辑同一律)
$\iff \forall x (x \in A \to x \in B)$	(蕴涵等值式)

(子集关系定义)

 $(B=\varnothing)$

(2) 答: $A \cup B = A$ 当且仅当 $B \subseteq A$ 。

证明:

 $\Longleftrightarrow A\subseteq B$

 $A \cup B = A$

$\iff \forall x((x \in A \lor x \in B) \leftrightarrow x \in A)$	(外延原则、集合并定	义)
$\Longleftrightarrow \forall x(((x\in A \lor x\in B) \to x\in A) \land (x\in A \to (x\in A \lor x\in B)))$	(等价联结词定义)	
$\Longleftrightarrow \forall x((\neg(x\in A \lor x\in B) \lor x\in A) \land (\neg x\in A \lor x\in A \lor x\in B))$	(蕴涵等值式)	
$\Longleftrightarrow \forall x(((\neg x \in A \land \neg x \in B) \lor x \in A) \land (\neg x \in A \lor x \in A \lor x \in B))$	(命题逻辑德·摩根律)	
$\Longleftrightarrow \forall x(((\neg x \in A \lor x \in A) \land (\neg x \in B \lor x \in A)) \land$		
$(\neg x \in A \lor x \in A \lor x \in B))$	(命题逻辑分配律)	
$\iff \forall x((1 \land (\neg x \in B \lor x \in A)) \land (1 \lor x \in B))$	(命题逻辑排中律)	
$\iff \forall x((1 \land (\neg x \in B \lor x \in A)) \land 1)$	(命题逻辑零律)	
$\iff \forall x (\neg x \in B \lor x \in A)$	(命题逻辑同一律)	
$\iff \forall x (x \in B \to x \in A)$	(蕴涵等值式)	
$\iff B \subseteq A$	(子集关系定义)	

(3) 答: $A \oplus B = A$ 当且仅当 $B = \emptyset$ 。

证明: 充分性。若 $B = \emptyset$,则:

 $A \oplus B = A \oplus \varnothing$

 $= (A \oplus A) \oplus B \tag{教材例 1.7(5)}$