Tiempo total: 2 horas 20 minutos (Cuestiones 35 min.-25%-, Problemas 105 min.-75%-) Test monorespuesta con penalización por respuesta incorrecta de 1/3. Código de prueba: 230 11511 01 1 01

course de practi	u. Mou IIIII			

1	¿Cuál de los siguisotrópicos espaca) 0°	ciados λ/4 prodi	s progresivos en uce una mayor c) -90°	directividad?	ón uniforme de 12 element	os
2	(manteniendo C), s	su longitud efecti	va cambia según	un factor:	forma de circular a cuadra	da
	a) 1	b) $\sqrt{\pi/4}$	c) $\pi/4$	d) $(\pi/4)^2$		
3	Con objeto de aur reflector manteni afirmaciones siem a) La eficienci b) La iluminación La eficienci	mentar la directi endo constante	vidad sin cambi s los demás p n aumenta. imenta ento aumenta.	iar el alimentad	na con el alimentador utilizador, se aumenta el diámetro di dique cuál de las siguient	lel
4	Una agrupación ca fase progresiva α= a 1	aracterizada por 60°. ¿Cuál es el n b 2	el polinomio P(úmero de ceros c 3	z)=(z+j)(z+2) p en el espacio re d 4	osee un espaciado d=λ/2 y unal?	na
5	En una agrupación relación lóbulo prima, ∞			ados d=λ/2 y co	on desfase progresivo $\alpha=90^{\circ}$,	la
6	¿Cuál es la direct a 2	ividad de una a b 2.5		al con corrient d 4	es 1:2:3:4 si $d=\lambda/2$?	
7	El diagrama de radia	ción de una anter	na es uniforme en	n el sector angul	ar $(0 \le \theta \le \pi/2, 0 \le \phi \le \pi/4)$	1)
	y cero fuera. Su din a) 2		c) 8	d) 16		
8	La longitud efectiva a) λ/π	de un dipolo de b) $2\lambda/\pi$	longitud de braz c) 5λ/4	o H= $5\lambda/4$ es: d) $5\lambda/2$		
9	Si en el monopolo do varillas paralelas, ¿α a) 0 Ω				nexión en el extremo de las de	OS
10	En una bocina pir constante el tamaño	ramidal óptima o de la apertura	en ambos plan cuál de las sigu	os, si aumenta ientes afirmacio	mos su longitud manteniend ones es falsa?	lo

- a) Disminuye la directividad.
- b) Aumenta el NLPS.
- c) Los nulos se hacen más profundos.d) Disminuye el error de fase en la apertura.

11 ¿Cuáles son las dimensiones en plano H de una bocina óptima que para θ =30° produce un nivel de campo relativo al máximo de -11 dB? (Ver figura 2)

a)
$$a_1 = 2.1\lambda$$
, $\ell_H = 2.2\lambda$

b)
$$a_1 = 3\lambda$$
 , $\ell_H = 3\lambda$

c)
$$a_1 = 2.1 \lambda_{\rm m} \ell_{\rm H} = 3 \lambda_{\rm m}$$

b)
$$a_1 = 3\lambda$$
 , $\ell_H = 3\lambda$
c) $a_1 = 2.1\lambda$, $\ell_H = 3\lambda$
d) $a_1 = 3\lambda$, $\ell_H = 2.2\lambda$

- 12 Queremos apuntar una antena de TV-SAT hacia el satélite ASTRA. Si el diámetro de la antena es de 60cm y la frecuencia del orden de 10GHz, ¿con qué precisión hay que hacer el apuntamiento para estar seguros de que el haz principal apunta hacia el satélite?
 - a) 20°
- b. 2°
- c) 0.2°

Figura 1

Figura 2

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÈCNICA DE CATALUNYA
DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

ANTENAS

15 de Junio de 2009

Fecha notas provisionales: 25 de Junio Periodo de alegaciones: 25 Junio – 1 Julio

Fecha notas revisadas: 3 de Julio

Profesores: S. Blanch, J. M. Rius, J. Romeu.

Informaciones adicionales:

- Duración 105 minutos.
- Las respuestas de los diferentes ejercicios se entregarán en hojas separadas.
- No se permiten libros ni apuntes.

Ejercicio 1) Una antena está formada por dos dipolos de media onda, situados delante de una plano conductor infinito, tal como indica la figura. Encontrar:

La expresión de los campos radiados por la antena

by La relación de corrientes I_2/I_1 para que el máximo del diagrama esté en la dirección del eje x y el ancho de haz a -3dB en el plano H sea de 86°.

SEncontrar las impedancias de entrada de los dipolos.

Encontrar la directividad de la antena.

$$\begin{pmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\phi} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$

$$\vec{N}(\hat{r}) = \hat{z} \, 2 \, I_m \frac{\cos(kH\cos\theta) - \cos(kH)}{k \sin^2\theta}$$

D (λ)	Z_{12} dip. paralelos (Ω)	d (λ)	Z_{12} dip. paralelos (Ω)
0	73 + j 42	1.25	15 – j 3
0.25	41 −j 28	1.5	-2-j 12
0.5	-12-j30	1.75	-11 + j1
0.75	-23 + j7	2.0	1+j9
1.0	4 + j 18	2.25	8-j1

Ejercicio 2) Se desea diseñar una agrupación uniforme de siete elementos cuyo haz debe ser capaz de explorar +- 25° respecto la dirección broadside. El requisito de diseño es que en el peor caso el lóbulo de difracción tenga un valor 3 dB inferior al del mayor lóbulo secundario.

Calcule el NPLS de la agrupación y expréselo en dB.

- b) Encuentre el máximo espaciado permisible de la agrupación para que se cumpla el requisito de diseño.
- c) Encuentre el ancho de haz entre ceros en la dirección broadside y para el máximo ángulo de exploración.

Ejercicio 3) Se desea diseñar un reflector Cassegrain (reflector parabólico con subreflector hiperbólico) equivalente a un reflector simple con f/Da = 1,5. La frecuencia de trabajo es de 2,5 GHz y se desea obtener una directividad de 48dB y un NLPS de 32 dB.

- a) Razone si un diámetro de 12m es suficiente para conseguir una directividad de 48 dB.
- b) Según las gráficas adjuntas, diseñe las dimensiones de una bocina piramidal óptima que en el plano H produzca el decaimiento en bordes del reflector necesario para conseguir un NLPS de 32 dB.
- c) Si el diámetro del subreflector es de 1,2m y es éste parámetro el que determina el bloqueo de campo en la apertura del reflector principal, deduzca y razone las pérdidas por bloqueo.

Diagrama de campo eléctrico normalizado de una bocina plano H