The SIMEX method bcam Bilbao

Helmut Küchenhoff Statistical Consulting Unit Ludwig-Maximilians-Universität München

> Bilbao 30-05-2019

2. GENERAL SIMEX IDEA

Linear regression with additive measurement error

$$\begin{split} Y_i &= \beta_0 + \beta_1 X_i + \epsilon_i \quad \left(i = 1, ..., n\right) \\ Var\left(X_i\right) &= \sigma_X^2 \ \& \ \epsilon_i \sim N\!\left(0, \sigma_\epsilon^2\right) \\ X_i^* &= X_i + \sigma U_i \quad with \ \left(U_i, X_i, \epsilon_i\right) independent \\ U_i &\sim N\!\left(0, 1\right) \end{split}$$

• Ignoring measurement error (U_i) \Rightarrow naïve estimation in $Y_i = \beta_0^* + \beta_1^* X_i^* + \epsilon_i^*$

$$\beta_1^{\bullet} = p \lim \hat{\beta}_{\text{naive}} = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_1^2} \beta_1$$

⇒ Attenuation increases with measurement error variance

LINEAR REGRESSION

SIMEX idea (Cook & Stefanski, 1994)

- Assume
 - σ is known
 - Observe $(Y_i, X_i^*, Z_i)_{i=1}^n$ instead of $(Y_i, X_i, Z_i)_{i=1}^n$
- SIMulation step: generate more measurement error + calculate naïve estimators

1. Simulate pseudo-data
$$X_{b,i}^{\star}(\lambda) = X_i^{\star} + \sqrt{\lambda} \sigma U_{b,i}$$
 for a fixed grid $\lambda_0 (\equiv 0), \lambda_1, \lambda_2, ..., \lambda_m$

$$\Rightarrow Var(X_{h,i}(\lambda)) = \sigma_x^2 + (1+\lambda)\sigma^2$$

- 2. Do this B times (b=1, ..., B)
- 3. Calculate mean: $\hat{\beta}(\lambda_k) = \frac{1}{B} \sum_{k=1}^{B} \hat{\beta}_{NAIVE} \left[\left(Y_i, X_{b,i}^*(\lambda_k), Z_i \right)_{i=1}^n \right]$

- **EX**trapolation step: extrapolate back to $\lambda = -1$ to estimate β
 - 1. Fit parametrically relation $(\lambda_k, \hat{\beta}(\lambda_k))$ (k = 0,...,m)
 - 2. Find $\hat{\beta}_{\text{SIMEX}} \equiv \hat{\beta}(-1)$ for all regression coefficients

$$\label{eq:final_example} \begin{split} \textbf{Example} & Y_i = 1 + \textbf{5} X_i + \epsilon_i \ \left(i = 1, \dots, 200\right) \qquad X_i \sim N \big(0, 2^2\big) \, \& \, \epsilon_i \sim N \big(0, 1\big) \\ & Y_i = \beta_0^{ \cdot} + \beta_1^{ \cdot} \left(X_i + \textcolor{red}{U_i}\right) + \epsilon_i \qquad \qquad U_i \sim N \big(0, 1\big) \end{split}$$

$$\begin{array}{lll} \text{ cample } & Y_i = 1 + \frac{5}{5} X_i + \epsilon_i \ \left(i = 1, \ldots, 200 \right) & X_i \sim N \left(0, 2^2 \right) \& \ \epsilon_i \sim N \left(0, 1 \right) \\ & Y_i = \beta_0^* + \beta_1^* \left(X_i + U_i \right) + \epsilon_i & U_i \sim N \left(0, 1 \right) \end{array}$$

$$\label{eq:final_equation} \begin{array}{ll} \textbf{Example} & Y_i = 1 + \textbf{5} X_i + \epsilon_i \ \left(i = 1, \ldots, 200\right) & X_i \sim N \big(0, 2^2\big) \, \& \, \epsilon_i \sim N \big(0, 1\big) \\ & Y_i = \beta_0^{ \cdot} + \beta_1^{ \cdot} \left(X_i + \textbf{U}_i\right) + \epsilon_i & U_i \sim N \big(0, 1\big) \end{array}$$

$$\begin{split} Y_i &= 1 + \frac{5}{5} X_i + \epsilon_i \ \left(i = 1, \dots, 200\right) & X_i \sim N \left(0, 2^2\right) \& \ \epsilon_i \sim N \left(0, 1\right) \\ Y_i &= \beta_0^* + \frac{\beta_1^*}{5} \left(X_i + U_i\right) + \epsilon_i & U_i \sim N \left(0, 1\right) \end{split}$$

$$\label{eq:final_equation} \begin{array}{ll} \textbf{Example} & Y_i = 1 + \textbf{5} X_i + \epsilon_i \ \left(i = 1, \ldots, 200\right) & X_i \sim N \big(0, 2^2\big) \, \& \, \epsilon_i \sim N \big(0, 1\big) \\ & Y_i = \beta_0^{ \cdot} + \beta_1^{ \cdot} \left(X_i + \textbf{U}_i\right) + \epsilon_i & U_i \sim N \big(0, 1\big) \end{array}$$

Average of extrapolated estimate = $\hat{\beta}_{\text{1,SIMEX}} = 4.86$

Extrapolation functions

Linear :
$$g(\lambda) = \gamma_0 + \gamma_1 \lambda$$

Quadratic :
$$g(\lambda) = \gamma_0 + \gamma_1 \lambda + \gamma_2 * \lambda^2$$

Nonlinear :
$$g(\lambda) = \gamma_1 + \frac{\gamma_2}{\gamma_3 * \lambda}$$

- ► Nonlinear is motivated by linear regression
- ► Quadratic works fine in many examples
- ► Motivation by Taylor Series expansions

Variance estimation

- ▶ Delta method (Carroll et al.(1996))
- ► For known error variance the variance can be also be estimated by extrapolation, Stefanski and Cook (1995)
- ► Bootstrap (computer intensive)

Case study: Occupational Dust and chronic bronchitis

HK/Carroll (1997) and Goessl /HK(2001)

Research question: Relationship between occupational dust and chronic bronchitis

Data form N=1246 workers:

X: log(1+average occupational dust exposure)

Y: Chronic bronchitis (CBR)

 X^* : Measurements and expert ratings

 Z_1 : Smoking

 Z_2 : Duration of exposure

Results for the TLV

Method	TLV- $ au_0$	Nom s. e.	boot s.e.
Naive	1.27	.41	.24
Pseudo-MLE	1.76	.17	.21
Regression Calibration	1.75	.12	.19
simex: linear	1.37	.23	.23
simex: quadratic	1.40	.23	.34
simex: nonlinear	1.40	.23	.86

Misclassification SIMEX

General Regression model with misclassification matrix Π

$$\beta^*(\Pi) := p \lim \hat{\beta}_{naive}$$

 $\beta^*(I_{k \times k}) = \beta$

Problem: $\beta^*(\Pi)$ is a function of a matrix.

We define:

$$\lambda \to \beta^*(\Pi^{\lambda})$$

 Π^{λ} is defined by $\Pi^{0} = I_{k \times k}$, $\Pi^{n+1} = \Pi^{n} * \Pi$ for $\lambda = 0, 1, 2...$

 $\Pi^{\lambda} := E \Lambda^{\lambda} E^{-1}$

E := Matrix of eigenvectors

 $\Lambda := Diagonal matrix of eigenvalues$

Parameter Estimation in Relationship to the amount of misclassification

Logistic regression with misclassified X ($\pi_{11} = \pi_{00} = 0.8$)

Properties of the function $\beta^*(\Pi^{\lambda})$

- $\triangleright \beta^*(\Pi^0) = \beta$
- ▶ differentiable

If X^* is misclassified in relation to X by MC-matrix Π $X^*(\lambda)$, is misclassified in relation to X^* by MC-matrix Π^{λ} , \Rightarrow $X^*(\lambda)$ is misclassified in relation to X by MC-matrix $\Pi^{\lambda+1}$

The MC-SIMEX Procedure

Data $(Y_i, X_i^*, Z_i)_{i=1}^n$,

 X^* is observed instead of X with MC-matrix Π

Naive estimator: $\hat{\beta}_{naive}[(Y_i, X_i^*, Z_i)_{i=1}^n].$

Simulation

For a fixed grid $\lambda_1 \dots \lambda_m$ B new pseudo data are generated by

$$X_{b,i}^*(\lambda_k) := MC[\Pi_k^{\lambda}](X_i^*), i = 1, ..., n; b = 1, ... B;$$

There $MC[M](X_i^*)$ is simulated from X_i^* using the misclassification matrix M.

$$\hat{\beta}(\lambda_k) := B^{-1} \sum_{h=1}^{B} \hat{\beta}_{na} \left[(Y_i, X_{b,i}^*(\lambda_k), Z_i)_{i=1}^n \right], k = 1, \dots m.$$

Extrapolation function

Parametric model:

$$\beta(\Pi^{\lambda}) = \mathcal{G}(\lambda, \Gamma) = \gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2$$

Fit by least squares from data $[\lambda_k, \hat{\beta}(\lambda_k)]_{k=0}^m$.

$$\hat{\beta}_{SIMEX} := \mathcal{G}(-1, \hat{\Gamma})$$

Calculate true function $\beta(\Pi)$ in several examples and simulation studies

- ► Funktion monotonic
- ► Quadratische Extrapolation suitable
- ► Loglinear Extrapolant

Remarks

- **Existence** of Π^{λ} for $\lambda < 1$ has to be checked
- ▶ If β vector then use MC-SIMEX for every component
- ▶ The procedure also works for misclassified *Y* or more general cases
- $\hat{\beta}_{SIMEX}$ is consistent, if the extrapolating function is correctly specified.
- ▶ In general MC-SIMEX is approximately consistent, if $\mathcal{G}(\lambda, \Gamma)$ is a good approximation of $\beta^*(\Pi^{\lambda})$.

Delta Method Variance Estimation

- ► All Estimators are solution of (biased) estimating equations
- ► Asymptotic expansions on averages of different estimating equations
- ► Extrapolation is a differentiable transformation
- ▶ Estimation of misclassification matrix can be included

7. APPLICATION TO THE SIGNAL TANDMOBIEL STUDY®

- Oral health study involving 4468 children in Flanders (Belgium)
- Children were examined annually by one of 16 dental examiners
- Binary response Y=1 if tooth is decayed, filled or extracted due to caries
- GEE analysis for caries (combined response & individual teeth) on 4 first molars as a function of covariates
- Questions:
 - East-West gradient in caries experience on the first 4 molars?
 - Does the trend remain the same in time?

But: dental examiners showed high & different misclassification ⇔ benchmark scorer

STS: East-West trend in caries experience (1st year's cross-sectional results)

STS: Dental examiners are active in restricted geographical areas

⇒ East-West gradient?

Results SIMEX approach (individual teeth)

• X-coordinate

Results SIMEX approach (individual teeth)

- East-West gradient confirmed
- East-West gradient increases over the years

•

Software

- ► R-Package available (W. Lederer)
- ► Flexible statement for the main model
- ► Misclassification and additive measurement error
- ► Graphic display for the results

Lederer, HK R-news (2006)

Summary

- ► Very general computer intensive method
- ▶ Illustration of the effect of misclassification
- ▶ MC in X,Y or both, differential MC etc. can be handled
- ▶ Misclassification known or can be estimated by validation data