Statistiques descriptives avec R

1 Statistiques descriptives : représentation de variables

1.1 Représenter une variable qualitative

Nous allons rentrer des données « à la main » pour une variable qualitative. Cette variable représente l'appartenance à un groupe (parmi 3 groupes) et prend 3 modalités g1, g2 et g3. Les 2 premiers individus sont dans le groupe 1, les 3 suivants dans le groupe 2 et le dernier dans le groupe 3 :

```
ybrut <- c("g1", "g1", "g2", "g2", "g2", "g3")
print(ybrut)
summary(ybrut)
Que fait le dernier ordre ci-dessus? Nous devons transformer ce vecteur (de caractères) en variable qualitative (nommée
factor sous R):
y <- factor(ybrut)</pre>
Que font les ordres suivants?
levels(y)
nlevels(y)
table(y)
sum(table(y))
table(y)/sum(table(y))*100
Tracer les effectifs de chaque modalité dans un diagramme en barre :
barplot(table(y))
Tracer les pourcentages de chaque modalité dans un diagramme en barre :
barplot(table(y)/sum(table(y))*100,ylab="pourcentages",xlab="groupes")
Que font les options xlab et ylab?
Copier le dernier graphique dans un document word ou openoffice.
Que fait le résumé numérique d'une variable qualitative?
summary(y)
```

1.2 Représenter une variable quantitative continue

Représentons une variable quantitative continue. Ouvrir le fichier varquant.r et exécuter son contenu (couper coller son contenu ou utiliser l'icône de tinn-R).

```
Que fait le résumé numérique d'une variable quantitative (continue)?
```

```
summary(y)
```

Trouver sur les deux graphiques ci-dessous la différence et expliquez la.

```
hist(y,freq=TRUE)
hist(y,freq=FALSE)
```

```
Que font toutes les options pour ce graphique
hist(y,freq=FALSE,breaks=10,xlab="huile",main="Histogramme")
Que fait cette option
hist(y,freq=FALSE,breaks=c(15,18,25,30,36))
Expliquer tous les ordres ci-dessous
boxplot(y,xlab="",ylab="teneur en huile")
mean(y)
abline(h=mean(y))
quantile(y)
median(y)
abline(h=median(y),col=2)
Conclusion: l'histogramme est tracé grae à hist avec l'option freq=FALSE.
```

Un autre estimateur de la densité (estimateur à noyau) est disponible afin d'estimer la densité par une fonction continue

```
density(x, ...)
```

Retourne les coordonnées x et y d'un estimateur de la densité du vecteur de données x. L'argument bw indique la largeur de fenetre (plus elle est grande plus la courbe est lisse)

```
> normal=rnorm(100)
> ndens=density(normal, width=1.2)
> hist(normal, probability=T)
> lines(ndens)
```

1.3 Représenter une variable quantitative discrète

Représentons une variable quantitative discrète : le nombre d'enfant par famille. Nous allons rentrer des données « à la main » les valeurs de cette variable. La première famille possède 5 enfants, la second n'en a pas, la troisième en possède 2 enfants, la quatrième 2 et la cinquième n'en a pas.

```
y < -c(5,0,2,2,0)
Que font les commandes suivantes
unique(y)
sort(unique(y))
table(y)
```

Le diagramme en barre des effectifs est le diagramme suivant

```
plot(sort(unique(y)),table(y),type="h",ylim=c(0,max(table(y))))
```

En général, dès que les valeurs possibles sont assez nombreuses (par exemple 7 ou 10 ou plus) la variable quantitative discrète est assimilée à une variable quantitative continue. La distinction quantitatif discret ou continue n'existe pas sous R, les deux sont des variables numériques (numeric).

1.4 Données des tournesols

1. Importer le tableau tournesol.csv qui contient les variables décrites dans le tableau 1. Ce tableau sera affecté dans un objet appelé tpropre.

Code variable	Descriptif variable
ecotype	code plante
plt	numéro du plant d'un écotype donné
etat	état d'origine de la plante (aux USA)
longitude	longitude du lieu de collecte (aux USA)
latitude	latitude du lieu de collecte (aux USA)
haut	hauteur des plants
semflo	jour de floraison (écart en jour par rapport au premier mai)
rambas	note de ramification basale (entre 0 aucune et 4 maximum)
long feu	longueur du cumulée du limbe et du pétiole (cm?)
grlon	longueur maxi de la graine (mm, moyenne sur 15 graines minimum)
huile	pourcentage d'huile

Table 1 – Variables mesurées sur les tournesols (dans la station d'essai aux environs de Montpellier).

- 2. Donner pour chaque variable son type (variable qualitative, quantitative discrète, quantitative continue).
- 3. Effectuer un résumé numérique du tableau de données tpropre : summary(tpropre)
- 4. Quelles sont les variables qui sont reconnues comme variables quantitatives et comme variables qualitatives?
- 5. Donner à chaque variable le type voulu grâce à factor ou as.numeric

1.5 Deux variables quantitatives continues

Par defaut R trace des points (type="p") aux coordonnées fournies (ci-dessous l'ordonnée est la variable huile et l'abscisse la variable grlon). Détailler le rôle des options

```
plot(huile~grlon,data=tpropre)
plot(huile~grlon,data=tpropre,pch="+")
plot(huile~grlon,data=tpropre,col=2,pch="+")
Traçons des lignes
plot(huile~grlon,data=tpropre,type="l")
Qu'a t-on fait?
```

1.6 Deux variables qualitatives : tableau de contingence

```
Utilisez l'ordre suivant
table(tpropre[,"ecotype"],tpropre[,"etat"])
Que renvoit il?
```

1.7 Données des tournesols (suite)

- 1. Calculer la moyenne empirique des variables huile, grlon et longfeu.
- 2. Pour ces mêmes variables donner leurs quartiles empiriques.

- 3. Pour ces mêmes variables les représenter par un boxplot.
- 4. Pour ces mêmes variables calculer leur variance empirique.
- 5. Représenter graphiquement chacune des variables et exporter ces représentations graphiques dans un document word ou openoffice.

2 Manipuler des données

2.1 Importation (exercice)

Importer les tableaux test1.csv, test2.csv et test3.csv dans les variables don1, don2, don3.

2.2 Fusionner des tableaux

Exécuter et commenter :

- > toto.1 <- cbind(don1,don3)</pre>
- > toto.1
- > montab = rbind(don1,don2)
- > montab
- > rbind(don1,don3)
- > objects()
- > rm(toto.1,montab)
- > objects()

2.3 Fusionner des tableaux

Il est possible de fusionner deux tableaux selon une clef (cf. fusion de 2 tables dans les bases de données), grâce à l'ordre classique merge

FIGURE 1 - Fusion par clef: merge(X,Y,by="clef") où clef est le nom d'une variable commune à X et Y.

Importer les données du fichier tournesol_propre.csv (dans que l'on nommera tpropre) ainsi que celle du fichier meteo_tournesol.csv (dans un tableau nommé meteo). Faire fusionner les tableaux tpropre et meteo grâce à la clef ecotype.

3 Facteurs et fonctions

- 1. Réimporter éventuellement l'objet mtcars grâce à data(mtcars).
- 2. Donner un résumé numérique de chaque variable de la matrice mtcars (voir summary).
- 3. Créer un facteur (de nom conso) en découpant en classe la variable mpg (de la matrice mtcars). Le découpage sera fait de 5 en 5 en partant de 10 (voir cut, seq).
- 4. Afficher les niveaux (ou modalités) de conso (levels).
- 5. Créer conso2 égal à conso.
- 6. Fusionner la premiere et la seconde modalité de conso2 en une seule de nom "fuse" (levels).
- 7. Transformer conso en facteur ordonné (ordered).
- 8. Voir les effectif de chaque modalité (table)
- 9. Voir les pourcentages de chaque modalité (table, length)
- 10. Faire un résumé numérique de conso et voir la différence avec une variable numérique (question 2).
- 11. Faire une moyenne de chaque variable de la matrice mtcars (apply ET colMeans).
- 12. Faire une somme de chaque variable de la matrice mtcars (apply et ET colSums ET par une boucle)).
- 13. Calculer la médiane somme de chaque variable de la matrice mtcars (apply)).
- 14. Créer une fonction pour calculer $n! = 1 \times 2 \times \dots (n-1) \times n$
 - par une boucle for,
 - par une boucle while,
 - sans boucle (prod),
 - par une fonction mathématique intégrée.
- 15. Créer une fonction pour les écarts absolus à la moyenne d'un vecteur \mathbf{x} $(MAD = \frac{1}{n} \sum_{i=1}^{n} |x_i \bar{x}|)$ où $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- 16. utiliser cette fonction pour calculer l'écart à la moyenne (MAD) pour chaque colonne de la matrice mtcars (apply).
- 17. Calculer la moyenne, pour chaque niveau de conso, de toutes les colonnes de la matrice mtcars (apply)) sauf la première ie.
- 18. Calculer la moyenne par niveau de conso de toutes les colonnes de la matrice mtcars sauf la première (ipour les 10 colonnes de mtcars il faut 5 moyennes, une par niveau de conso); voir aggregate.