به نام خدا

دانشگاه صنعتی شریف - دانشکده مهندسی کامپیوتر

آمار و احتمال مهندسی

پاییز 1401

تمرین عملی بخش دوم طراحان: محمدجواد ماهرالنقش، محمدمهدی ابوترابی

موعد تحویل: 14 آبان همفکری در سنه می شود در عین حال از شما خواسته می شود تا تمام بیادهسازی را به تنهایی و بدون مشاهده کد دیگران انجام دهید

لطفا در فایل ارسالی تمام بلوکهای کد اجرا شده و شامل نمودارها و خروجیهای لازم باشند

اميررضا آذرى

99101087

سوال اول

دیتافریم airquality یکی از دیتا فریمهای biult-in است که اطلاعاتی در مورد و ضعیت آبوهوای نیویورک در یک بازه ی زمانی میدهد.

In [1]: # AmirReza Azari
99101087
head(airquality)

A data.frame: 6 × 6

	Ozone	Solar.R	Wind	Temp	Month	Day
	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<int></int>
1	41	190	7.4	67	5	1
2	36	118	8.0	72	5	2
3	12	149	12.6	74	5	3
4	18	313	11.5	62	5	4
5	NA	NA	14.3	56	5	5
6	28	NA	14.9	66	5	6

الف) به کمک boxplotها یک نمودار مناسب ارائه دهید که وضعیت دما (temp) را بر حسب ماههای مختلف نشان دهد.

```
In [3]: library(ggplot2)
    ggplot(airquality) +
        geom_boxplot(aes(x = Month, y = Temp, group = Month), fill = "violet")
```


ب) بخش الف را برای میانگین باد و میانگین غلظت اوزون و میانگین تابش خورشید بر حسب ماههای مختلف تکرار کنید و نتایج خود را از این 4 نمودار شرح دهید.

Warning message:

"Removed 37 rows containing non-finite values (`stat boxplot()`)."

Warning message:

"Removed 7 rows containing non-finite values (`stat_boxplot()`)."

ج) به کمک boxplotها رنج اعداد مختلف در پارامترهای متفاوت را در این دیتاست را بررسی کنید.

In [2]: # Temp: ما، همانطور که مشخص است، در ماه 5ام ، پیشتر رنج دما بین 60 تا 68 می باشد و مبانگین کلی هم تقریبا پرابر 66 درجه می باشد # اما دما های دیگری خارج از این بازه هم وجود دارد که کمترین آن حدود 56 و بیشترین حدود 81 می باشد #. ام، رنج بین 76 تا 83 می باشد و مبانگین حدودا 83 می باشد. داده های خارج از محدوده که کیس های خاص ب حساب می آیند هم # قابل مشاهده است #. .به ترتیب برای ماه های دیگر نیز، رنج دمایی و مبانگین دمای آن ماه به طور مشخص قابل مشاهده می باشد # # Wind: .همانطور که دکر کردیم، بارامتر باد و دما نسبت عکس به هم دارند # .در ماه 5ام با مبانگین دمای 66، رنج میزان باد حدود 8.5 تا 14.5 می باشد و مبانگین برابر 11.5 است # .در ماه 6ام نیز رنج به بین 6 تا 11 می باشد و میانگین چیزی حدود 9.5 است # .ماه های دیگر نیز به همین منوال داده هایشان نشان داده شده و رابطه بین دما و باد مشخص می باشد # # Ozone: ،رابطه بین غلظت اوزون و دما نیز گوبا مستقیم است و هرگاه در ماهی، میانگین دمای بیشتری داشته ایم # .مىزان غلظت اوزون هم بيشتر بوده است # .برای مثال در ماه 5ام رنج بیشتر آن در حدود 10 تا 30 با میانگین حدودی 20 می باشد # .اما برای مثال در ماه 7 ام طبف تفاوت داده ها بیشتر از ماه 6ام و 5ام می باشد # ،و همچنین شاهد هستیم که ماه 17م دارای بالاترین میانگین غلظت اورون می باشد زیرا بالاترین میانگین دما نیز # در اختیار ماه 7ام است #. # Solar.R: .میزان تابش خورشید را می توان با مقایسه پارامتر های دیگر منطقی دانست # ،برای مثال در مقایسه ماه 7ام و 8ام، هر دو میانگین باد تقریبا یکسانی دارند # .اما ب دلیل میانگین دمایی بالاتر در ماه 17م، میزان تابش خورشید و همچنین میزان غلظت اوزون نیز بیشتر است # ،نکته دیگر که قابل ذکر می باشد، این است که در ماه 5ام طبف تایش خورشید پیشتر است اما در ماه 17م # .طبف کوچکتری را در بر گرفته است اما به دلیل بالاتر بودن این رنج، باعث افزایش دما نیز شده است # boxplot(airquality, col = "khaki")

د) به کمک نمودار scatter نمودار میانگین غلظت اوزون بر حسب دما را رسم کنید و آن را تحلیل کنبد

ه) نمودار نقطه ای (scatter) را براساس ویژگیهای جذر میانگین غلظت اوزون و ماه و باد رسم کنید. سعی کنید نمودار رسم شده اطلاعات را به خوبی نشان دهد. نتایج خود را بیان کنید. (به وابستگی میان متغیرها توجه کنید.)

```
In [4]: # one solution is making 3 scatter:
        # with(airquality, scatter.smooth(Temp, sqrt(Ozone), lpars = list(col = "red",
                                                                       lwd = 3.5, ltv = 2)))
        # with(airquality, scatter.smooth(Temp, sqrt(Wind), lpars = list(col = "blue",
                                                                            Lwd = 3.5, Ltv = 2)))
        # with(airquality, scatter.smooth(Temp, sqrt(Solar.R), lpars = list(col = "purple",
                                                                            Lwd = 3.5, Ltv = 2)))
        # another solution with 1 scatter:
        ggplot(airquality, aes(x=Wind, y=sqrt(Ozone), size=Month, color = Month)) +
          geom point()
        همانطور که مشاهده می شود، وابستگی متغیر ها به دما و نتیجه ای که از کشیدنboxplot #
        ها گرفته بودیم، در این نمودار ها واضح است #.
        ،دما و علظت اوزون رابطه ای تقریبا مستقیم دارند و هر چه دما بالاتر رفته است #
        به طور میانگین غلظت اوزون هم بیشتر شده است #.
        ،رابطه بین دما و باد اما بدین شکل نیست و همانطور که مشخض می باشد #
        نوعی رابطه معکوس با هم دارند #.
        رابطه میان دما و تابش خورشید نیز جالب به نظر می آید #
        ،تقریباً می توان گفت نسبت مستقیمی به هم دارن و با افزایش دما #
        تابش خورشید هم زیاد شده است و بالعکس!! #
```

Warning message:

"Removed 37 rows containing missing values (`geom point()`)."

localhost:8888/notebooks/HW2 99101087.ipynb#

و) نمودار هیستوگرام برای باد و تابش خورشید رسم کنید، این دو نمودار را با هم و با نمودار توزیع نرمال مقایسه کنید و نتیجهی خود را آن بیان کنید.

سوال دوم

در یک فرایند پواسون زمان بین دو اتفاق از یک توزیع نمایی پیروی میکند. اگر بخواهیم زمان اتفاق nام را پیشبینی کنیم از توزیع گاما استفاده میکنیم. $T_n = \sum_{i=1}^n X_i, \ X_i s \ are \ i.i.d \ and \ X_i \sim Exp(\lambda)$

 $T_n \sim Gamma(n,\lambda)$ ود مشتریان به یک رستوران از توزیع نمایی پیروی میکند به طوری

```
In [9]: # first way:
        # times <- rexp(2000, 1/5)
        # plot <- ggplot(data.frame(times))+</pre>
           geom_histogram(aes(x = times , y = after_stat(density)),colour = 3, fill = "white") +
            geom\ density(aes(x = times), lwd = 1, colour = 5,
                          alpha = 0.25)
        # plot(plot)
        # second way:
        phe <- function(range, rate) {</pre>
        hist data <- rexp(n = 2000, rate)
        hist(hist_data, probability = T, ylab = "P(X=k)", xlab = "k", col = 'seagreen2')
        points data \leftarrow dexp(x = range, rate)
        points(range, points_data, col = 'red', pch = 16)
        legend("topright", legend=c("data", "Exp"), pch = c(20, 20),
               col = c('seagreen2', 'red'))
        phe(c(1:2000), 1/5)
```

localhost:8888/notebooks/HW2 99101087.ipynb#

ب) بی حافظگی توزیع نمایی را با داده های تولید شده در قسمت قبل را با استفاده از داده های تولید شده در قسمت قبل و رسم نمو دار به همان شکل نشان دهید.

```
In [3]: data <- rexp(2000, 1/5)
        new data <- data[data > 6] - 6
        hist(new data, col='seagreen2', probability = T,breaks = 25)
        points(dexp(seq(0,30), 1/5), col='Red', pch=16)
        # second solution:
        times = rexp(2000, 0.2)
        x \leftarrow seq(0, max(times), by = 0.1)
        CDF = function(a,sample){
          return(length(sample[sample<=a])/2000)
        t0 = 1
        cdf s = sapply(x,function(s) 1-CDF(s,times))
        cdf conditinal = sapply(x, function(s) (1-CDF(s+t0,times)) / (1-CDF(t0,times)))
        d1 = data.frame(x=x, p = cdf s)
        d2 = data.frame(x=x , p = cdf conditinal)
        p <- ggplot() +</pre>
          # blue plot = p(x > s)
          geom_smooth(data=d1, aes(x=x, y=p, colour = "p(x > s)"),
                       size=1,alpha=0.1)+
          # red plot = p(x > s + t0 + | x > t0)
          geom smooth(data=d2, aes(x=x, y=p, colour = "p(x> s + t0 + \mid x > t0)"),
                       size=1 , alpha = 0.1)
        plot(p)
```

Warning message:

```
"Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead."
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```

Histogram of new_data

ج) با تولید n=10 متغیر تصادفی نمایی، ویژگی گفته شده در صورت سوال را بررسی کنید. برای این کار میتوانید برای شبیه سازی هر متغیر تصادفی مانند قسمت الف عمل کنید.

```
In [18]: n <- 2000
         lambda <- 1/5
          num <- 10
         collection <- rep(0, n)</pre>
         for (i in 1:num) {
           collection <- collection + rexp(n, lambda)</pre>
         data exp <- data.frame(x=collection)</pre>
         data_gamma <- data.frame(x=rgamma(n, num, lambda))</pre>
          # ggplot() +
             ggtitle("Exponential") +
             geom_histogram(data=data_exp, aes(x), fill="red3", bins = 60, alpha = .6)
          # ggplot() +
             ggtitle("Gamma") +
             geom_histogram(data=data_gamma, aes(x), fill="steelblue", bins = 60, alpha = .6)
          ggplot() +
           ggtitle("Intersection") +
           geom_histogram(data=data_exp, aes(x), fill="red3", bins = 60, alpha = .6) +
           geom_histogram(data=data_gamma, aes(x), fill="steelblue", bins = 60, alpha = .6)
```


سوال سوم

دیتاست مربوط به در آمد در پیوست موجود است. الف) به وسیلهٔ دستور read.csv اطلاعات دیتاست را بخوانید. (دیتاست adult.csv)

In [4]: data_income <- read.csv("adult.csv")</pre>

نمودار مربوط به در آمد را برحسب سن/جنسیت به کمک نمودار های زیر بکشید.

ب) نمودار Bar Plot (درآمد برحسب جنسیت و سن)

ج) نمودار Scatter Plot

د) نمودار Histogram (مربوط به سن که اطلاعات زن و مرد در یک نمودار به طور تلفیقی باشد)

```
In [22]: # solution 1:
    ggplot(data_income, aes(x=age, fill=income, color=gender)) +
        geom_histogram(position="identity", bins=120, alpha = .6)
    # solution 2:
    ggplot(data_income,aes(x=age, fill=income))+
        geom_histogram(bins = 10)+
        facet_grid(~gender)+
        theme_get()
    # optional solution:
    # ggplot(data_income, aes(x=age, fill=gender, color=gender)) +
    # geom_histogram(position="identity", bins=120, alpha = .6)
    # ggplot(data_income, aes(x=age, fill=income, color=income)) +
    # geom_histogram(position="identity", bins=120, alpha = .5)
```


ه) نمودار Density Plot (مربوط به سن که اطلاعات زن و مرد در یک نمودار به طور تلفیقی باشد)

```
In [23]: ggplot(data_income, aes(x=age, fill=income)) +
    geom_density(alpha = .4) +
    facet_grid(~gender)
# or
ggplot(data_income, aes(x=age, fill=gender)) +
    geom_density(alpha = .4) +
    facet_grid(~income)
```


و) نمودار Trend Plot

سوال چهارم

نمودار توزیع های احتمالی زیر را با توجه به به بارامتر های داده شده رسم کنید. الف) نمودار توزیع پوآسون (در بازهٔ 0 تا 50 با پارامتر 10)

ب) نمودار توزیع برنولی (در بازهٔ 0 تا 5 با پارامتر 0.6)

ج) نمودار توزیع دو جمله ای (در بازهٔ 0 تا 20 با پارامتر 0.2)

$$(n = 3)$$
 و $p = 0.2$ د) نمودار توزیع هندسی (در بازهٔ $p = 0.1$ تا $p = 0.2$ د) نمودار توزیع

ه) نمودار توزیع نرمال (در بازهٔ 4- تا 4)

```
In [29]: x = seq(-4, 4, by = 0.05)
    plot(x, dnorm(x), col="orange")
    df <- data.frame(x=x, y=dnorm(x))
    ggplot(data = df, aes(x = x, y = y)) +
        geom_bar(stat = "identity", fill = "burlywood") + theme_get()</pre>
```


و) نمودار توزیع نمایی (در بازهٔ 0 تا 10 با پارامتر 1.5)

Histogram of data

ز) نمودار توزیع یکنواخت (در بازهٔ 4- تا 4)

Histogram of data

