Lecture 25

dont time une gave 2 algorithme to solve initial value différential equation

$$\begin{cases} \frac{dy}{dx} = f(x,y) \\ \frac{dy}{dx} = f(x,y) \end{cases}$$

a= 20 < 2 < 6

D Euler's method

yn+1 = yn + h f(xu, m)

n=0,1,2,- --, N

 $\chi_n = a + nh$. h = step-size = (b-a)/N $y_n = approximation of y at <math>x_n$.

Euler's method has a lot of orros. However it is stable

One can expand y at a $nthd y x_0$ $y(x_1) = y_0 + (x_1 - x_0) y'(x_0) + (x_1 - x_0)^2 y''(x_0)$ $+ - - - + (x_1 - x_0)^k y^{(k)}(x_0)$ k!

+ (x-x) (k+1 (k+1))
(K+1))

$$y' = f(x,y)$$
 $y'' = f' = fx + fy = fx + fy f$
 $y''' = f_{xx} + 2f_{xy}f + f_{y}f^{2} + f_{x}f_{y} + f_{y}f$

and so on

Taylor's algorithim (of order k)
dy = f(x,y)
y(a) = %
y(a) = % a x x & b
.2 .1 1 1 -0
1) chance a step-size $h = \frac{b-a}{N}$
, N
$x_n = a + nh$
> 1 1 + 1 + 1 + 1 ×)
2) Generale approximation yn to ylan)
from the recurricy
•
m+1 = m + h Tk (2, m)
M41 C M

Disaduentages of Taylori method Need to compute deviative y f(2, y(x)? This requires symbolic differentiation. This is difficult to implement in FORTRAN Error estimate and convergence of Eulen Methol y (nu) = % dy = f(xy) Assum 1 fy (2,77) < L and /y"(27) < > an Cro, b] en = y(x)-yn satisfies Ien 1 < hy (e (2n-20) L -1)

Runge-kutta Methodo short form R-K methods. Enter's method is not very useful in practical problems because it requires a very small step size for reasonable accuracy. Taylor's algorithim of higher order is enacceptable as a general purpue procedure because of the need to obtain higher total derivative of y(x) RK methods attempt to obtain greater accusey and at he same time avoid the need for higher derivatives by evaluating f(x,y) at selected points at each Subiternal

RK-method of order 2 We chare a formula of the following ynti = Yn + ak, + bkz t, = hf(xn, m) k2 = h f(xn+ah, m+Bk1) a, b, &, B are constants to be determined so that (x) will agree with Toylor algerithm of as high an order as possible. On enpanding y(xnx,) in a Taylor series thurst term of order h3 we obtain $y(2n+1) = y(2n) + hy(2n) + \frac{1}{2}y''(x_n) + \frac{1}{6}y''(x_n) + o(x')$ = $y(2n) + h f(2n, 3n) + \frac{h^2}{2} (f_x + ff_y)_y$ + $\frac{h^3}{4} (f_{xx} + 2ff_{xy} + f_{yy} + f_x + f_y + f_z + f_y)_y + o(h^y)$ (v v)

	By Taylori empansin y function of two
	The state of the s
	variables we get that-
	Ka Ca Laka
	$\frac{K_2}{h} = f(x_n + \alpha h, y_m + \beta k_1)$
	= f(xn, m) + ~ hfx + Bk, fy +
	= +1M1, m (1 ~ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
	2 fxx + ah 13k, fx, + 132 k2 fyy
	2 12
	+ 0(h3)
	we plugin value of kz into (*)
	$y_{n+1} = y_n + ak_1 + bk_2$ $= y_n + ahf(x_n, x_n) + bk_2$
	- u + ahf(2 m) + bkz
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
12	$h = m + (a+b)hf + bh^2(afx + \beta ffy)$
	$+bh^{3}\left(\frac{\alpha^{2}f_{xx}}{2}+\alpha\beta f_{xy}+\frac{\beta^{2}}{2}f^{2}f_{yy}\right)$
,	1.
	+ Q(h)
	Comparing above eln with (#*) we get
	the state of the same and the power of the
	Compain abone eon with (**) we get that to make corresponding power of h and h2 to agree we must have
	una n 43 10 12 12

$$a+b=1$$

$$b\alpha=b \mid s=\frac{1}{2}$$
4 unknown, 3 equation so we have

one degree of freedom in (***)

simplere
$$a=b=\frac{1}{2}$$

$$\alpha=\beta=1$$

$$Rk method of order 2$$

$$Algorithm dy = f(x,7)$$

$$dn$$

$$y(x_0) = x_0$$

generate approximations on to $y(x_0+nh)$
for h fixed and $n=0,1,2,-$ uning the
formula
$$y_n+1=y_n+\frac{1}{2}(k_1+k_2)$$
 with $k_1=h$ f(x_n, x_n)
$$k_2=h$$
 f(x_n+h, x_n+k_1)

$$y(\chi_{n+1}) - y_{n+1} = \frac{h^3}{12} (f_{xx} + 2 - f_{xy} + f^2 f_y) + 2 - 2 - f_y^2$$

Thus local error is $O(h^3)$ whereas local error in Euleris method
is $O(h^2)$

Example

Exact ans
$$y(x) = (x+1)^2 - \frac{1}{2}e^{2x}$$

	Exect 1	RK ordu 2	
Ri	y (ne)	Y;	Error
0	0.2	0.2 w	٥
9. 5	0-8292984	0.826000	0-0032981
6- 4	1-2140877	1.20692	0.00 71677
0-6	1-6489406	1.6372424	0.0116485
6.8	2-1272795	2-1102357	0.0166633
1.0	2.640859)	2-6176876	0-0231715
1-2	3-1799415	3.1495789	0-0303627
1-4	3-7324000	3.6936862	0.0387138
الم. ا	4-2834838	4.2350932	0.0482864
(-8	4.8151763	4.7556185	0.0595577
2.0	5.30 54720	5.2330546	0-0724173

RK method of order 4	•
dy = f(2,7)	
dre	a=26 < x < p
y(20) = %	
$\frac{dy}{dx} = f(x,y)$ $\frac{dy}{dx} = \frac{1}{2}(x_0) = \frac{1}{2}y_0$ Generalize appriments on to	y (20+nh) for
h fixed and n = 0,1,	, 2, using the formula

Yn+1 = yn + 1 (k1+2k2+2k3+k4)

 $k_1 = h f(xn, ym)$

K2= hf(2n+ h/2, m+1k,)

K3= hf(xn+h, かもえ k2)

Ky = h f(2n+h, m+k3)

local errol is of o(h5)

again the force we pay for the favoureth discretization error is that four function evaluations are required per step.

Remark 1-Suppore we are solving 7(20) = 30 Euler with h = 0.025RK-method of order 2 with h = 0.05RK-method of order 4 with h = 0.1then most of the time RK-method y order 4 will give more accurate Note the #function evaluation in all three methods in (x) is the same

Multi-Step formulas

Euler's method, Taylor algorithm of order k and RK-methods are one-step method. They require information about he solution at a single pt $x=z_n$ from which the methods proceed to obtain y at the next pt $x=z_{n+1}$.

Multistep methods make use of information about the solution at more than one point.

het us assume that we already obtained approximation to y at a number of equally spaced points say 20, 21, -, 2.

One dan of multistep methods is based on the forinciple of numerical integrations. If we integrate the differential equation

y'=f(x,y) from x_m to x_{n+1} we will have

Newton's divided-diff formula can be expressed in a simplified form who 26, 24. - . 2 are arranged consecutively with equal spacing. i= 0,1, - - 1 n-1 Set h = Niti - 7i $x = x_0 + 3h$ $Note \quad x_0 = x_0 + ch$ $x - x_0 = (s - c)h$ Pn(2) = Pn(20+sh) = f[x6] + shf[x6, x] + s(s-1)h2f(x6, x, x) +- - · + S(S-1)(S-2)--- (S-n+1) 4 f[x,x,-x] We use binomial well $\binom{s}{k} = \frac{3(s-1)-\cdots(s-k+1)}{k!}$ $f_{n}(n) = f(x_{0}) + \sum_{k} {s \choose k} k! h! f(x_{0}, x_{1}, ..., x_{k})$

forward diff operator
$$\triangle$$

$$\Delta f(x_i) = f(x_{i+1}) - f(x_i)$$

$$\Delta^2 f(x_i) = \Delta (\Delta f(x_i))$$

$$= \Delta (f(x_{i+1}) - f(x_i))$$

$$= f(x_{i+1}) - \lambda f(x_{i+1}) + f(x_i)$$
and so on $\Delta^k f(x_i) = \Delta (\Delta^k f(x_i))$

$$= \Delta (\Delta^k f(x_i)) + \Delta^k f(x_i)$$

$$= \Delta \Delta^k f(x_i)$$

$$= \Delta \Delta^k f(x_i)$$

$$= \Delta \Delta^k f(x_i)$$

$$= \Delta \Delta^k f(x_i)$$
In general
$$f(x_0, x_1, x_1) = \Delta^k f(x_i)$$

$$= \Delta^k f(x_i)$$

$$= \Delta^k f(x_i)$$

$$= \Delta^k f(x_i)$$

$$= \Delta^k f(x_i)$$

 $f_{N}(n) = f(n_0) + \sum_{k=1}^{\infty} {s \choose k} \Delta^k f(x_0)$ This is called Newton's Forward diff formule. If the interpolating nodes are reordered from last to first as 2m, 2m, --, 2, 20 we can write the interpolatory formula as Pr(n) = f[xn] + f[xn, xn-1](x-xn) +f[xn, 2n-1, 2n-2] (x-2n)(x-2n-1)(x-2n-1) + f[xn, xn-1,-, 4,] (x-xn)(x-xn-1)- - (x-xp) If in adelitia nodes are equally spaced 2= 2+ (s+n-i)4

$$P_{n}(x) = P_{n}(x_{n} + sh)$$

$$= f(x_{n}) + sh f(x_{n}, x_{n-1}) + s(s+1)h^{2}f(x_{n}, x_{n-1}, x_{n-1})$$

$$+ constant + s(s+1) - (s+n-1)h^{n}f(x_{n}, x_{n-1}, x_{n-1})$$

$$+ constant + s(s+1)h^{n}f(x_{n}, x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1})$$

$$+ constant + s(s+1)h^{n}f(x_{n}, x_{n-1}, x_{$$

$$f[x_{n}, x_{n-1}, x_{n-2}] = \frac{1}{2h^{2}} \nabla^{2} f(x_{n})$$

$$f[x_{n}, x_{n-1}, ..., x_{n-k}] = \frac{1}{k!} \nabla^{k} f(x_{n})$$

$$f[x_{n}, x_{n-k}, ..., x_{n-k}] = \frac{1}{k!} \nabla^{k} f(x_{n})$$

$$f[x_{n}, x_{n-k}, x_{n-k}, ..., x_{n-k}]$$

$$f[x_{n}, x_{n-k}, x_{n$$

	Newtons	backward	diff	fermule	_
	Pn(x) =	f(xn)+	m Z (-1) ^k ((-s) \(\nabla^k f(\x_n)\)	
•					

