

Agenda

Introduktion

Impulsrespons

Stabilitet

Frekvensresponsanalyse

Grafisk bestemmelse af frekvensrespons

Opsummering

Datakonvertering og digital signalbehandling herunder:¹

- ▶ ideel og praktisk sampling og rekonstruktion
- aliasing
- kvantisering og dynamikområde
- ► konverteringsprincipper (A/D og D/A)
- ► implementationsprincipper (Sample & Hold, A/D, D/A)
- multirate sampling
- diskret-tid signaler og systemer i tids- og frekvensdomænet
- ► Z-transformationen
- overføringsfunktion for lineære tidsinvariante systemer
- systemanalyse
- frekvensanalyse
- lineær fase systemer
- realisationsstrukturer for diskret-tid systemer
- ► hovedanvendelse af digital signalbehandling herunder digitale IIR-filtre og transformation af analoge filtre samt digitale FIR-filtre og vindues-funktioner

Baseret på https://odin.sdu.dk/sitecore/index.php?a=fagbesk&id=65003&listid=9093&lang=da

Introduktion Lektionsplan

- ► **Lektion 1**: Filterfunktioner
- ► **Lektion 2**: Sampling og rekonstruktion
- ► **Lektion 3**: Fast Fourier transformation (I)
- ► **Lektion 4**: Fast Fourier transformation (II)
- ► **Lektion 5**: Introduktion til *z*-transformation
- ► **Lektion 6**: Systemanalyse i *z*-domæne
- ► **Lektion 7**: Digitale realisationsstrukturer
- ► Lektion 8: Introduktion til IIR-filtre
- ► Lektion 9: Design af IIR-filtre
- ► **Lektion 10**: Introduktion til FIR-filtre
- ► Lektion 11: Design af FIR-filtre
- Lektion 12: Anvendelse af digital signalbehandling

Introduktion

Impulsrespons

Stabilitet

Frekvensresponsanalyse

Grafisk bestemmelse af frekvensrespons

Opsummering

Impulsresponset for et tidsdiskret system kaldes h(n), og er identisk med systemets udgangssekvens når inputsekvensen er en enhedssample $\delta(n)$ (Kronecker delta funktion).

Princippet er illustreret i følgende figur.

Impulsrespons Definition

Impulsresponset for et tidsdiskret system kaldes h(n), og er identisk med systemets udgangssekvens når inputsekvensen er en enhedssample $\delta(n)$ (Kronecker delta funktion).

Princippet er illustreret i følgende figur.

Udgangsresponset i z-domæne er givet ved (da $\mathcal{Z}(\delta(n)) = 1$)

$$Y(z) = H(z)X(z)$$
$$= H(z)$$

Udgangsresponset i z-domæne er givet ved (da $\mathcal{Z}(\delta(n)) = 1$)

$$Y(z) = H(z)X(z)$$
$$= H(z)$$

Impulsresponssekvensen kan udregnes ved invers z-transformation af H(z), dvs.

$$h(n) = \mathcal{Z}^{-1}(H(z))$$

Udgangsresponset i *z*-domæne er givet ved (da $\mathcal{Z}(\delta(n)) = 1$)

$$Y(z) = H(z)X(z)$$
$$= H(z)$$

Impulsresponssekvensen kan udregnes ved invers z-transformation af H(z), dvs.

$$h(n) = \mathcal{Z}^{-1}(H(z))$$

Konklusion: Et systems impulsresponssekvens h(n) findes ved invers z-transformation af systemets overføringsfunktion H(z).

$$H(z) = \frac{1 + 0.4z^{-1}}{1 - 0.7z^{-1} + 0.1z^{-2}}$$

Bestem systems impuls responssekvens h(n).

$$H(z) = \frac{1 + 0.4z^{-1}}{1 - 0.7z^{-1} + 0.1z^{-2}}$$

Bestem systems impulsiesponssekvens h(n).

Proceduren fra Lektion 5 anvendes, hvorfor H(z) skrives med positive potenser

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

$$H(z) = \frac{1 + 0, 4z^{-1}}{1 - 0, 7z^{-1} + 0, 1z^{-2}}$$

Bestem systems impulsiesponssekvens h(n).

Proceduren fra Lektion 5 anvendes, hvorfor H(z) skrives med positive potenser

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

og det ses at de to **nulpunkter** er $z_1=0$ og $z_2=-0,4$ og de to **poler** er $p_1=0,5$ og $p_2=0,2$.

$$H(z) = \frac{1 + 0.4z^{-1}}{1 - 0.7z^{-1} + 0.1z^{-2}}$$

Bestem systems impulsiesponssekvens h(n).

Proceduren fra Lektion 5 anvendes, hvorfor H(z) skrives med positive potenser

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

og det ses at de to **nulpunkter** er $z_1=0$ og $z_2=-0,4$ og de to **poler** er $p_1=0,5$ og $p_2=0,2$.

Dermed kan overføringsfunktionen faktoriseres som

$$H(z) = \frac{z(z+0,4)}{(z-0,5)(z-0,2)}$$

Impulsrespons Eksempel (II)

8

Ved partialbrøkopløsning fås

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2}$$

hvor

$$k_1 = (z - p_1) \frac{H(z)}{z} |_{z=p_1} = \frac{z + 0, 4}{z - 0, 2} |_{z=0, 5} = 3$$

$$k_2 = (z - p_2) \frac{H(z)}{z} |_{z=p_2} = \frac{z + 0, 4}{z - 0, 5} |_{z=0, 2} = -2$$

Ved partialbrøkopløsning fås

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2}$$

hvor

$$k_1 = (z - p_1) \frac{H(z)}{z} |_{z=p_1} = \frac{z + 0, 4}{z - 0, 2} |_{z=0, 5} = 3$$

$$k_2 = (z - p_2) \frac{H(z)}{z} |_{z=p_2} = \frac{z + 0, 4}{z - 0, 5} |_{z=0, 2} = -2$$

Dermed bliver overføringsfunktionen

$$H(z) = 3\frac{z}{z - 0.5} - 2\frac{z}{z - 0.2}$$

Ved partialbrøkopløsning fås

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2}$$

hvor

$$k_1 = (z - p_1) \frac{H(z)}{z} |_{z=p_1} = \frac{z + 0.4}{z - 0.2} |_{z=0.5} = 3$$

$$k_2 = (z - p_2) \frac{H(z)}{z} |_{z=p_2} = \frac{z + 0.4}{z - 0.5} |_{z=0.2} = -2$$

Dermed bliver overføringsfunktionen

$$H(z) = 3\frac{z}{z-0.5} - 2\frac{z}{z-0.2}$$

Ved tabelopslag fås

$$h(n) = \mathcal{Z}^{-1}[H(z)] = 3 \cdot 0, 5^n - 2 \cdot 0, 2^n = 3e^{-0.693n} - 2e^{-1.61n}$$

Impulsrespons System med simple poler (1)

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

hvor z_i for $i=1,\ldots,N$ er overføringsfunktionens nulpunkter og p_i for $i=1,\ldots,N$ er overføringsfunktionens poler.

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

Antag at alle poler er simple (alle poler har multiplicitet 1).

10

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

Ved brug af partialbrøkopsplitning kan overføringsfunktionen skrives

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2} + \dots + \frac{k_N}{z - p_N}$$

hvor k_1, k_2, \ldots, k_N er koefficienter.

10

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

Ved brug af partialbrøkopsplitning kan overføringsfunktionen skrives

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2} + \dots + \frac{k_N}{z - p_N}$$

hvor k_1, k_2, \ldots, k_N er koefficienter. Dermed haves

$$H(z) = k_1 \frac{z}{z - p_1} + k_2 \frac{z}{z - p_2} + \dots + k_N \frac{z}{z - p_N}$$

System med simple poler (1)

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

Ved brug af partialbrøkopsplitning kan overføringsfunktionen skrives

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2} + \dots + \frac{k_N}{z - p_N}$$

hvor k_1, k_2, \ldots, k_N er koefficienter. Dermed haves

$$H(z) = k_1 \frac{z}{z - p_1} + k_2 \frac{z}{z - p_2} + \dots + k_N \frac{z}{z - p_N}$$

Dermed kan impulsresponssekvensen skrives som

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

hvor

$$h_i(n) = k_i \mathcal{Z}^{-1} \left[\frac{z}{z - p_i} \right]$$

11

For at bestemme impulsresponssekvensen

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

hvor

$$h_i(n) = k_i \mathcal{Z}^{-1} \left\{ \frac{z}{z - p_i} \right\}$$

betragtes overføringsfunktionen $H_i(z)=z/(z-p_i)$ hvor polen er givet ved (vi antager at $k_i=1$)

$$z = p_i = e^{s_i T} = e^{\sigma_i T} e^{j\omega_i T}$$

Impulsrespons System med simple poler (2)

For at bestemme impulsresponssekvensen

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

hvor

$$h_i(n) = k_i \mathcal{Z}^{-1} \left\{ \frac{z}{z - p_i} \right\}$$

betragtes overføringsfunktionen $H_i(z) = z/(z-p_i)$ hvor polen er givet ved (vi antager at $k_i = 1$

$$z = p_i = e^{s_i T} = e^{\sigma_i T} e^{j\omega_i T}$$

Impulsresponset findes via invers *z*-transformation

$$h_i(n) = \mathcal{Z}^{-1}[H_i(z)] = \mathcal{Z}^{-1}\left\{\frac{z}{z - p_i}\right\} = e^{s_i nT} = e^{\sigma_i nT}e^{j\omega_i nT}$$

Impulsrespons System med simple poler (3)

Impulsresponssekvensen for et system med overføringsfunktion H(z) der har poler $p_1, p_2, \ldots, p_N \in \mathbb{C}$ kan skrives

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

med

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT}$$

hvor polen er $p_i = e^{\sigma_i T} e^{j\omega_i T}$.

Impulsrespons System med simple poler (3)

Impulsresponssekvensen for et system med overføringsfunktion H(z) der har poler $p_1, p_2, \ldots, p_N \in \mathbb{C}$ kan skrives

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

med

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT}$$

hvor polen er $p_i = e^{\sigma_i T} e^{j\omega_i T}$.

Når $\sigma_i < 0$ så gælder det at

$$\lim_{n \to \infty} |h_i(n)| = 0$$

Impulsrespons System med simple poler (3)

Impulsresponssekvensen for et system med overføringsfunktion H(z) der har poler $p_1, p_2, \ldots, p_N \in \mathbb{C}$ kan skrives

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

med

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT}$$

hvor polen er $p_i = e^{\sigma_i T} e^{j\omega_i T}$.

Når $\sigma_i < 0$ så gælder det at

$$\lim_{n \to \infty} |h_i(n)| = 0$$

På tilsvarende vis ses det at ændringen af fasen for $h_i(n)$ er $\omega_i T$ per sample.

Relation imellem polplacering og impulsrespons

Vi betragter følgende impulsrespons

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT} = e^{\sigma_i nT} \angle \omega_i nT$$

Relation imellem polplacering og impulsrespons

Vi betragter følgende impulsrespons

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT} = e^{\sigma_i nT} \angle \omega_i nT$$

Relation imellem polplacering og impulsrespons

Vi betragter følgende impulsrespons

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT} = e^{\sigma_i nT} \angle \omega_i nT$$

Relation imellem polplacering og impulsrespons

Vi betragter følgende impulsrespons

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT} = e^{\sigma_i nT} \angle \omega_i nT$$

Relation imellem polplacering og impulsrespons

Vi betragter følgende impulsrespons

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT} = e^{\sigma_i nT} \angle \omega_i nT$$

givet af polen $p_i = e^{\sigma_i T} e^{j\omega_i T}$ som på polær form er $p_i = e^{\sigma_i T} \angle \omega_i T$.

Fra impulsresponssekvensen $h_i(n)$ ses det at

- ▶ **Modulo** af $h_i(n)$ ændres med en faktor $e^{\sigma_i T}$ mellem to på hinanden følgende samples.
- Argumentet af $h_i(n)$ ændres med $\omega_i T$ mellem to på hinanden følgende samples.

Impulsrespons
Relation til pol placering (Simple poler)

På baggrund af impulsresponset

$$h_i(n) = e^{\sigma_i nT} e^{j\omega_i nT} = e^{\sigma_i nT} \angle \omega_i nT$$

givet af polen $p_i = e^{\sigma_i T} e^{j\omega_i T}$ kan følgende diagram opstilles.

Impulsrespons
Impulsrespons for 2. ordens system (I)

Vi betragter et 2. ordens system givet ved følgende overføringsfunktion

$$H(z) = \frac{z}{z^2 + 1,697z + 1,44}$$

Vi betragter et 2. ordens system givet ved følgende overføringsfunktion

$$H(z) = \frac{z}{z^2 + 1,697z + 1,44}$$

Overføringsfunktionen H(z) har et **nulpunkt** i z=0 og to poler $p_1=1, 2\cdot e^{j3\pi/4}$ og $p_2=1, 2\cdot e^{-j3\pi/4}.$

Vi betragter et 2. ordens system givet ved følgende overføringsfunktion

$$H(z) = \frac{z}{z^2 + 1.697z + 1.44}$$

Overføringsfunktionen H(z) har et **nulpunkt** i z=0 og to poler $p_1=1, 2 \cdot e^{j3\pi/4}$ og $p_2=1, 2 \cdot e^{-j3\pi/4}$.

Impulsresponset for systemet udregnes via partialbrøkopsplitning

$$\frac{H(z)}{z} = \frac{k_1}{z - p_1} + \frac{k_2}{z - p_2}$$

hvor (og $k_2 = k_1^*$)

$$k_1 = (z - p_1) \frac{H(z)}{z} |_{z=p_1} = \frac{1}{p_1 - p_2} = \frac{1}{1, 2(e^{j3\pi/4} - e^{-j3\pi/4})} = \frac{1}{1, 2 \cdot 2 \cdot \sin(3\pi/4)j}$$
$$= \frac{1}{2, 4 \cdot \sin(3\pi/4)} e^{-j\pi/2}$$

Impulsresponset kan nu udregnes via invers z-transformation af

$$H(z) = \frac{1}{2, 4 \cdot \sin(3\pi/4)} \left(e^{-j\pi/2} \frac{z}{z - 1, 2 \cdot e^{j3\pi/4}} + e^{j\pi/2} \frac{z}{z - 1, 2 \cdot e^{-j3\pi/4}} \right)$$

Impulsresponset kan nu udregnes via invers z-transformation af

$$H(z) = \frac{1}{2, 4 \cdot \sin(3\pi/4)} \left(e^{-j\pi/2} \frac{z}{z - 1, 2 \cdot e^{j3\pi/4}} + e^{j\pi/2} \frac{z}{z - 1, 2 \cdot e^{-j3\pi/4}} \right)$$

Ved brug af regel ZT4 fås

$$h(n) = \frac{1}{2, 4 \cdot \sin(3\pi/4)} \left(e^{-j\pi/2} 1, 2^n \cdot e^{jn3\pi/4} + e^{j\pi/2} 1, 2^n \cdot e^{-jn3\pi/4} \right)$$

$$= \frac{1}{2, 4 \cdot \sin(3\pi/4)} \cdot 1, 2^n \left(e^{j(n3\pi/4 - \pi/2)} + e^{-j(n3\pi/4 - \pi/2)} \right)$$

$$= \frac{1}{1, 2 \cdot \sin(3\pi/4)} \cdot 1, 2^n \cos(\frac{3\pi}{4}n - \frac{\pi}{2})$$

$$= \frac{1}{1, 2 \cdot \sin(3\pi/4)} \cdot e^{0,1823n} \sin(\frac{3\pi}{4}n)$$

Impulsrespons Impulsrespons for 2. ordens system (III)

Stabilitet

Introduktion

Impulsrespons

Stabilitet

Frekvensresponsanalyse

Grafisk bestemmelse af frekvensrespons

Opsummering

Et systems stabilitetstilstand kan være en af følgende

▶ **Stabilt system**: Et system er *stabilt* hvis dets impulsrespons h(n) går mod nul når n går med uendelig

$$|h(n)| \to 0 \text{ for } n \to \infty$$

- ▶ Marginalt stabilt system: Et system er marginalt stabilt hvis dets impulsrespons h(n) går mod konstant værdi forskellig fra nul eller oscillerer med konstant amplitude og frekvens når n går mod uendelig.
- ▶ **Ustabilt system**: Et system er *ustabilt* hvis dets impulsrespons h(n) vokser ubegrænset når n går med uendelig

$$|h(n)| \to \infty$$
 for $n \to \infty$

Stabilitet Bestemmelse af stabilitet

Hvordan kan vi *let* bestemme om et tidsdiskret system er stabilt?

Lad H(z) være overføringsfunktionen for et tidsdiskret system med poler $p_1,p_2,\dots,p_N\in\mathbb{C}.$ Så gælder det at

► Systemet er **stabilt** hvis alle poler ligger indenfor enhedscirklen, dvs.

$$|p_i| < 1$$
 for $i = 1, 2, ..., N$

Systemet er **marginalt stabilt** hvis mindst en pol (fx p_j) ligger på enhedscirklen, mens de øvrige poler ligger indenfor enhedscirklen, dvs.

$$|p_i| \le 1$$
 for $i = 1, 2, ..., N$

og

$$|p_j| = 1$$
 for $j \in \{1, 2, \dots, N\}$

ightharpoonup Systemet er **ustabilt** hvis en pol (fx p_j) ligger udenfor enhedscirklen, dvs.

$$|p_j| > 1$$
 for $j \in \{1, 2, \dots, N\}$

Frekvensresponsanalyse

Introduktion

Impulsrespons

Stabilitet

Frekvensresponsanalyse

Grafisk bestemmelse af frekvensrespons

Opsummering

Frekvensresponsanalyse Introduktion

Frekvensresponsanalyse Introduktion

En frekvensresponsanalyse giver et systems respons ved en sinusformet indgangssekvens. Her antages det at den sinusformede sekvens har været påtrykt fra tid $-\infty$ (analysen ser bort fra transient respons).

Frekvensresponsanalyse Spørgsmål

Når et tidsdiskret system påtrykkes en sinusformet indgangssekvens, hvad kan så siges om udgangssekvensen?

Et systems **frekvensrespons** er responset (udgangssignalet) når et sinudialt input påtrykkes et system.

Et systems **frekvensrespons** er responset (udgangssignalet) når et sinudialt input påtrykkes et system.

Udgangssignalet for et system med indgangssignal e^{st} kan bestemmes ved brug af overføringsfunktionen H(s) som

$$y(t) = H(s)e^{st}$$

Et systems **frekvensrespons** er responset (udgangssignalet) når et sinudialt input påtrykkes et system.

Udgangssignalet for et system med indgangssignal e^{st} kan bestemmes ved brug af overføringsfunktionen H(s) som

$$y(t) = H(s)e^{st}$$

Da

$$A\cos(\omega t) = \frac{A}{2}(e^{j\omega t} + e^{-j\omega t})$$

kan responset skrives (grundet superposition)

$$y(t) = \frac{A}{2} \left(H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t} \right)$$

Da

$$A\cos(\omega t) = \frac{A}{2}(e^{j\omega t} + e^{-j\omega t})$$

kan responset skrives (grundet superposition)

$$y(t) = \frac{A}{2} \left(H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t} \right)$$

På polær form er $H(j\omega)=M(\omega)e^{j\varphi(\omega)}$, så

$$y(t) = \frac{A}{2}M(\omega) \left(e^{j(\omega t + \varphi(\omega))} + e^{-(j\omega t + \varphi(\omega))} \right)$$
$$= AM(\omega) \cos(\omega t + \varphi(\omega))$$

hvor

$$M(\omega) = |H(j\omega)|$$
 og $\varphi(\omega) = \angle H(j\omega)$

Frekvensresponsanalyse Bode plot (tidskontinuert)

Et **Bode plot** benyttes til at visualisere frekvensresponset, og tegnes normalt i logaritmisk skala.

Frekvensresponsanalyse Udregning af frekvensrespons

For at studere et systems respons til sinusformede signaler kan der kigges udelukkende på værdier for z, der ligger på enhedscirklen, dvs.

$$z = e^{j\omega T}$$

Frekvensresponsanalyse Udregning af frekvensrespons

For at studere et systems respons til sinusformede signaler kan der kigges udelukkende på værdier for z, der ligger på enhedscirklen, dvs.

$$z = e^{j\omega T}$$

Frekvensresponset for et tidsdiskret system H(z) er dermed givet som

$$H(e^{j\omega T}) = \frac{Y(e^{j\omega T})}{X(e^{j\omega T})} = H(z)|_{z=e^{j\omega T}}$$

Frekvensresponsanalyse Udregning af frekvensrespons

For at studere et systems respons til sinusformede signaler kan der kigges udelukkende på værdier for z, der ligger på enhedscirklen, dvs.

$$z = e^{j\omega T}$$

Frekvensresponset for et tidsdiskret system H(z) er dermed givet som

$$H(e^{j\omega T}) = \frac{Y(e^{j\omega T})}{X(e^{j\omega T})} = H(z)|_{z=e^{j\omega T}}$$

For at forkorte notationen skrives

$$H(j\omega) = H(z)|_{z=e^{j\omega T}}$$

Frekvensresponsanalyse Udregning af frekvensrespons

For at studere et systems respons til sinusformede signaler kan der kigges udelukkende på værdier for z, der ligger på enhedscirklen, dvs.

$$z = e^{j\omega T}$$

Frekvensresponset for et tidsdiskret system H(z) er dermed givet som

$$H(e^{j\omega T}) = \frac{Y(e^{j\omega T})}{X(e^{j\omega T})} = H(z)|_{z=e^{j\omega T}}$$

For at forkorte notationen skrives

$$H(j\omega) = H(z)|_{z=e^{j\omega T}}$$

På polær form er frekvensresponset

$$H(j\omega) = |H(\omega)| \angle \varphi(\omega)$$

Frekvensresponsanalyse Udregning af frekvensrespons

For at studere et systems respons til sinusformede signaler kan der kigges udelukkende på værdier for z, der ligger på enhedscirklen, dvs.

$$z = e^{j\omega T}$$

Frekvensresponset for et tidsdiskret system H(z) er dermed givet som

$$H(e^{j\omega T}) = \frac{Y(e^{j\omega T})}{X(e^{j\omega T})} = H(z)|_{z=e^{j\omega T}}$$

For at forkorte notationen skrives

$$H(j\omega) = H(z)|_{z=e^{j\omega T}}$$

På polær form er frekvensresponset

$$H(j\omega) = |H(\omega)| \angle \varphi(\omega)$$

Amplituden er oftest givet i dB, dvs.

$$|H(\omega)| = 20 \log \frac{|Y(j\omega)|}{|X(j\omega)|}$$
 [dB

Frekvensresponsanalyse Eksempel (I)

Betragt overføringsfunktionen

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

Betragt overføringsfunktionen

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

Vi ønsker at analysere frekvensresponset ved indgangssignal

$$x(n) = \sin(\omega nT)$$

Betragt overføringsfunktionen

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

Vi ønsker at analysere frekvensresponset ved indgangssignal

$$x(n) = \sin(\omega nT)$$

For at bestemme frekvensresponset udregnes $H(j\omega)$, dvs.

$$H(j\omega) = \frac{e^{j2\omega T} + 0,4e^{j\omega T}}{e^{j2\omega T} - 0,7e^{j\omega T} + 0,1}$$

Frekvensresponsanalyse Eksempel (I)

Betragt overføringsfunktionen

$$H(z) = \frac{z^2 + 0.4z}{z^2 - 0.7z + 0.1}$$

Vi ønsker at analysere frekvensresponset ved indgangssignal

$$x(n) = \sin(\omega nT)$$

For at bestemme frekvensresponset udregnes $H(j\omega)$, dvs.

$$H(j\omega) = \frac{e^{j2\omega T} + 0,4e^{j\omega T}}{e^{j2\omega T} - 0,7e^{j\omega T} + 0,1}$$

For
$$\omega T = 1$$

$$H(j\omega) = 0.92 - j1.37 = 1.65 \angle - 56^{\circ}$$

Følgende respons fås ved at påtrykke indgangssignalet

$$x(n) = \sin(\omega nT)$$

Følgende respons fås ved at påtrykke indgangssignalet

$$x(n) = \sin(\omega nT)$$

Bemærk det transiente forløb i starten af simuleringen, som frekvensresponsanalysen ikke betragter.

Grafisk bestemmelse af frekvensrespons

Introduktion

Impulsrespons

Stabilitet

Frekvensresponsanalyse

Grafisk bestemmelse af frekvensrespons

Opsummering

Grafisk bestemmelse af frekvensrespons

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

hvor z_i for $i=1,\ldots,N$ er overføringsfunktionens nulpunkter og p_i for $i=1,\ldots,N$ er overføringsfunktionens poler.

Grafisk bestemmelse af frekvensrespons

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

hvor z_i for $i=1,\ldots,N$ er overføringsfunktionens nulpunkter og p_i for $i=1,\ldots,N$ er overføringsfunktionens poler.

For at bestemme frekvensresponset skal amplituden og fasen for H(z) findes til flere z-værdier. **Amplituden** bliver

$$|H(z)| = a_0 \frac{|z - z_1||z - z_2| \cdots |z - z_N|}{|z - p_1||z - p_2| \cdots |z - p_N|}$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$|H(z)| = a_0 \frac{|z - z_1|}{|z - p_1||z - p_1^*|}$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$|H(z)| = a_0 \frac{|z - z_1|}{|z - p_1||z - p_1^*|}$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$|H(z)| = a_0 \frac{|z - z_1|}{|z - p_1||z - p_1^*|}$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$|H(z)| = a_0 \frac{|z - z_1|}{|z - p_1||z - p_1^*|}$$

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

hvor z_i for $i=1,\ldots,N$ er overføringsfunktionens nulpunkter og p_i for $i=1,\ldots,N$ er overføringsfunktionens poler.

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

hvor z_i for $i=1,\ldots,N$ er overføringsfunktionens nulpunkter og p_i for $i=1,\ldots,N$ er overføringsfunktionens poler.

For at bestemme frekvensresponset skal amplituden og fasen for H(z) findes til flere z-værdier. **Fasen** bliver

$$\angle H(z) = \psi_1 + \psi_2 + \dots + \psi_N - (\theta_1 + \theta_2 + \dots + \theta_N)$$

hvor
$$\psi_i = \angle(z - z_i)$$
 og $\theta_i = \angle(z - p_i)$.

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$\angle H(z) = \psi_1 - \theta_1 - \theta_2$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$\angle H(z) = \psi_1 - \theta_1 - \theta_2$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$\angle H(z) = \psi_1 - \theta_1 - \theta_2$$

Vi betragter overføringsfunktionen

$$H(z) = a_0 \frac{(z - z_1)}{(z - p_1)(z - p_1^*)}$$

$$\angle H(z) = \psi_1 - \theta_1 - \theta_2$$

Hvordan ser frekvensresponset ud for en overføringsfunktion med følgende pol-nulpunktsdiagram?

Grafisk bestemmelse af frekvensrespons Samplefrekvens

Samplefrekvensens betydning for frekvensresponset er kun at flytte grafen langs frekvensaksen.

Opsummering

Introduktion

Impulsrespons

Stabilitet

Frekvensresponsanalyse

Grafisk bestemmelse af frekvensrespons

Opsummering

En overføringsfunktion kan faktoriseres som

$$H(z) = a_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

hvor z_i for $i=1,\ldots,N$ er overføringsfunktionens nulpunkter og $p_i=e^{s_iT}=e^{\sigma_iT}e^{j\omega_iT}$ for $i=1,\ldots,N$ er overføringsfunktionens poler.

Antag at alle poler er simple (alle poler har multiplicitet 1). Så kan impulsresponssekvensen skrives som

$$h(n) = h_1(n) + h_2(n) + \dots + h_N(n)$$

hvor
$$(k_i \in \mathbb{C})$$

$$h_i(n) = k_i \mathcal{Z}^{-1} \left\{ \frac{z}{z - p_i} \right\} = k_i e^{\sigma_i n T} e^{j\omega_i n T}$$

Et systems stabilitetstilstand kan være en af følgende

▶ Stabilt system: Et system er stabilt hvis dets impulsrespons h(n) går mod nul når n går med uendelig

$$|h(n)| \to 0 \text{ for } n \to \infty$$

- ▶ Marginalt stabilt system: Et system er marginalt stabilt hvis dets impulsrespons h(n) går mod konstant værdi forskellig fra nul eller oscillerer med konstant amplitude og frekvens når n går mod uendelig.
- ▶ **Ustabilt system**: Et system er *ustabilt* hvis dets impulsrespons h(n) vokser ubegrænset når n går med uendelig

$$|h(n)| \to \infty$$
 for $n \to \infty$

Opsummering Frekvensrespons

