3. 생산시스템 제어

Contents

- Numeric control
- Part program
- Manufacturing system control
 - Machining process control
 - Machining condition optimization

Numeric control (1)

Numeric control

- Control of machines based on the numeric data
 - Position control of tool and workpiece, tool change, ...

Numeric control (2)

- Computer aided manufacturing system control
 - Motion control (computerized numerical control, CNC)

Numeric control (3)

- Computer aided manufacturing system control
 - Process control (programmable logic controller, PLC)

Numeric control (4)

Data exchange among hardware

- Analog voltage
 - Single data (force, acceleration, ...)

- Digital
 - Contact point: on/off signal (limit, ...)

- Communication: Transmit or receive several numeric data
 - ✓ Ethernet, RS232, CAN, DVI, Bluetooth, IR(remote controller), ...

Protocol of IT remote controller

Ethernet data

Part program (1)

Basic concepts

- The NC information is arranged in <u>block</u>s.
- Block = a segment on the part → a tool transfer from one point to the next point.
- Typical format
 - N001 G01 X50 Y60 F40 S800
- √ N: Sequence number
- ✓ G: Preparatory word
- ✓ X, Y: Coordinates
- ✓ F: Feedrate
- √ S: Spindle speed
- ✓ T: Tool section
- ✓ M: Miscellaneous command
- The block consists of words
 - G01 → word, G → word address

Part program (2)

Preparatory Word, G

Word Description		
G00	Rapid linear motion	
G01	Linear interpolation	
G02	Circular Interpolation CW	
G03	Circular Interpolation CCW	
G04	Dwell (a programmed time delay)	
G17, 18, 19	X-Y Plane; Z-X Plane; Y-Z Plane (needed for circular interpolation)	
G90	Absolute Dimensions	
G91	Incremental Dimensions	

Part program (3)

Miscellaneous Words, M

Word Description	
M00	Program stop (stop spindle, coolant and feed)
M02	End of program (stop spindle, coolant and feed)
M03	Start spindle; clockwise rotation
M04	Start spindle; counterclockwise rotation
M05	Spindle off
M06	Tool change
M30	Similar to m02 + tape rewind in NC

Part program (4)

Example1: Manual Part Programming

- Feed: 0.05 mm/rev (F0.05)
- Spindle: 1000 rpm (S1000)
- Move between holes: G00 (PtP)
- Drilling: G01 (linear interpolation in Z-direction)
- Millimeter: G21
- Absolute coordinate: G90
- Define origin: G92

Part program (5)

Example1: Manual Part Programming

- N001 G21 G90 G92 X0 Y-050.0 Z010.0 ;
 - N001: Sequence number
 - G21: Values are in millimeters
 - G90: Absolute coordinate
 - G92: Specify location of starting point
 - X0: X = 0
 - Y-050.0: Y = -50
 - Z010.0: Z = 10
- N002 G00 X070.0 Y030.0 ;

Part program (6)

Example1: Manual Part Programming

- N003 G01 G95 Z-015.0 F0.05 S1000 M03 ;
 - G95: Specify feed/rev for drill
- N004 G01 Z010.0;
- N005 G00 Y060.0 ;
- **–** ...
- N012 M30;

Part program (7)

Example2: Cutter offset compensation

- G40: Cancel cutter offset compensation
- G41: For left side of part (Clockwise)
- G42: For right side of part (Counterclockwise)

Part program (8)

Example2: Cutter offset compensation

- N001 G21 G90 G92 X0 Y-50.0 Z10.0 ; Define origin of axis
- N002 G00 Z-25.0 S1000 M03; Rapid to cutter depth, Turn spindle on
- N003 G01 G94 G42 Y0 D5 F40 ; Engage part, start cutter offset

G94: specify feed per minute in milling and drilling

G42: offset comp. for right-side of the part

D5: Cutter diameter is in register #5

F40: set feed to 40 mm/min

- N005 G01 Y60.0 ; Mill right straight edge
- N006 G17 G03 X130.0 Y90.0 R30.0 ; Circ. interpolation around arc

G03: Circ. Interpolation, ccw

R30: Radius of the circle is 30

Part program (9)

Example2: Cutter offset compensation

- N007 G01 X35.0 ; Mill upper edge
- N008 G01 X0 Y0 ; Mill left part edge
- N009 G40 G00 X-40.0 M05; Rapid exit from part, cancel offset

G40: Cancel offset comp. M05 (=M5): Spindle stop

- N010 G00 X0 Y-50.0; Rapid move to starting point
- N011 M30 ; EOP, stop machine

Machining process control (1)

Definition

Modification of tool trajectory to improve productivity
 (machining accuracy, machining speed, ...)

Examples

- Adjusting feeds and speeds to suppress chatter
- Initiating an emergency stop in response to a tool breakage
- Rewriting a part program to minimize burr formation
- **.** . . .

Machining process control (2)

Milling: Tool deflection compensation

Machining process control (3)

EDM: Tool wear compensation

EDM machine tool

Compensated tool path

Simulated cavity

Machining process control (4)

Modeling & compensation of ball screw torsion

Machining process control (5)

Intelligent cutting-oil supplier

Real-time monitoring of feed drive torque + G-code

- → Calculation of machining status (direction, side or slot milling, ...)
- → Automatic control of nozzle position

Machining condition optimization (1)

Machine tool energy consumption reduction

■ Measurement & analysis of the energy consumption

Servo Drives 17% Servo Drives 17% System 5/9 System 5/9 Servo Drives 17% Servo Drives 17% System 5/9 System 19% Start 17% System 5/9 System 19% System 19

→ Limited application to a variety of machine tools and machining conditions

Machining condition optimization (2)

Approach: CPS based energy saving

Application of the energy consumption reduction techniques (design optimization, process control, optimization of the machining conditions, ...)

→ Various energy consumption reduction techniques can be tested using VMT without waste of resources

Machining condition optimization (3)

CPS based energy saving

Result

Machining condition	W	V	Machining time (<i>sec</i>)	E (kJ)
1	4000	15	270	12.9
2	8000	30	139	7.0
3	12000	45	97	5.5
4	16000	63	73	3.9
5	20000	75	64	3.8
6	12,380 – 15,740	63 – 75	66	3.3

