0. Introduction for Identification of RNA Modifications

This module provides step-by-step functions required for epitranscriptome reads mapping and identification of RNA modifications.

Align Reads to Genome

Several commonly used aligners are wrapped to align epitranscriptome reads to genome. Currently, <u>Tophat2</u>, <u>Bowtie2</u>, <u>STAR</u>, <u>HISAT2</u>, <u>bwa-mem</u>.

Tools	Description	Input	Output	Time (test data)	Reference
Tophat2	Tophat2 is a spliced aligner, which aligns short reads by calling Bowtie2 but alows for variable-length indels with respect to the reference genome.			~50s	Kim et al., 2013, Genome Biology
Bowtie2	Bowtie2 is a short read aligner which achieves a combination of high speed, sensitivity and accuracy by combining the strengths of the full-text minute index with the flexibility and speed of			~10 s	Langmead et al., 2012, Nature Methods

	hardware- accelerated dynamic programming algorithms, therefore bowtie2 is suitable for large genomes	Epitranscriptome sequencing reads in FASTQ format and reference genome sequences in	Read alignments in SAM/BAM format		
STAR	STAR is an ultrafast universal RNA-Seq aligner and can discover non-canonical splices and chimeric (fusion) transcripts	FASTA format		~16s	Dobin et al., 2013, Bioinformatics
HISAT2	HISAT2 is an ultrafast spliced aligner with low memory requirements. It supports genomes of any size, including those larger than 4 billion bases			~8s	Kim et al., 2015, Nature Methods
bwa- mem	bwa-mem is a relatively early aligner based on backward search with Burrows– Wheeler Transform			~10s	<u>Li et al., 2009,</u> <u>Bioinformatics</u>

Identify RNA Modifications

Identify RNA Modifications implements three pipelines for MeRIP-Seq, CeU-Seq and RNA-BSSeq, respectively.

Tools	Description	Input	Output	Time (test data)	Reference
Peak Calling from the MeRIP-Seq data	Identify enriched genomic regions from MeRIP-Seq experiment	Read alignments of IP and input in SAM/BAM format and reference genome sequences in FASTA format	RNA modifications in BED format	~36s	Zhai et al., 2018, Bioinformatics
Calling m ⁵ C from the RNA- BSseq data	Perform bisulfite sequencing (BS-Seq) read mapping, comprehensive methylation calling using meRanTK	Sequencing reads in FASTQ format and reference genome sequences in FASTA format	m ⁵ C sites in BED format	~10 mins using 2 threads	Rieder et al., 2016, Bioinformatics
Calling Ψ from CeU- Seq data	Identify pseudouridylation from CeU-Seq	Read alignments in SAM/BAM format and cDNA sequences in FASTA format	Pseudoridylation sites in BED format	~1 mins	Li et al., 2015, Nature Chemical Biology

1. Align reads to genome

Currently, deepEA wrapped five aligners to map epitranscriptome reads to genome, here, we take <u>Tophat2</u> as an example to show how to use deepEA to run reads mapping, the other four aligners are similar.

Input

- Epitranscriptome sequencing reads in FASTQ format
- Reference genome in FASTA format

Output

- Alignments in BAM format
- Alignment summary generated by tophat2

How to use this function

- **Step 1**: upload the data in directory test_data/Identification_of_RNA_Modifications/Align_Reads_to_Genome/ to history panel, if you are not clear about how to upload local data to deepEA server, please see here for details
- **Step 2**: see the following screenshot to run this function

2. Peak calling from the MeRIP-Seq data

Peak calling is used to identify enriched genomic regions in MeRIP-seq or ChIP-seq experiments. The function is implemented using the **peakCalling** function in PEA package (zhai *et al.*, 2018)

Input

- IP sample: The IP experiment in BAM format
- Input sample: The input control experiment in BAM format
- Reference genome: The Reference genome sequences with FASTA format
- **Reference annotation file:** The Reference genome annotation file with GTF/GFF3 format (required for methods: **exomePeak**, **MeTPeak** and **BayesPeak**)

Output

- The enriched peak region matrix in BED format
 - For **SlidingWindow** method:

Chromosome	Start(1- based)	End	Bin number	Mean FDR	Max FDR	Minimum FDR	Mean Ratio	Max Ratio	Minimum Ratio
1	67476	67575	4	0.0136	0.0328	0.0001	-1.0012	-0.6334	-1.581
1	330776	330875	4	0.0215	0.0381	0.0007	-1.576	-1.4077	-1.788
1	389201	389300	4	0.0024	0.0070	0.0002	-1.115	-1.0598	-1.190

• For **exomePeak** metod:

Chromosome	Start (0-based)	End	Gene ID	P.value	Strand
1	30663	30723	AT1G01040	0.0026	+
1	73831	74096	AT1G01160	2.5e-30	+
1	117530	117710	AT1G01300	2.4e-07	+

- For MetPeak method: it's the same as exomePeak
- For BayesPeak method:

chr	start	end	PP	job
1	3748	3848	0.0231	2
1	6848	6948	0.0178	2
1	6898	6998	0.9960	1

• For macs2 method: please see macs2

How to use this function

please see here for details

- **Step 1**: upload the data in directory test_data/Identification_of_RNA_Modifications/Peak Calling from the MeRIP-Seq data/ to history panel, if you are not clear about how to upload local data to deepEA server,
- **Step 2**: see the following screenshot to run this function

3. Calling m⁵C from the RNA-BSseq data

This function integrated meRanTK (Rieder *et al.*, 2016, *Bioinformatics*) to perform RNA bisulfite sequencing (BS-Seq) read mapping, comprehensive methylation calling.

Input

• FASTQ file: The FASTQ format sequencing file

Output

• **m5C_out_peaks:** The detected m⁵C sites

How to use this function

• **Step 1**: upload the data in directory

test_data/Identification_of_RNA_Modifications/Calling m5C from the RNA-BSseq

data/ to history panel, if you are not clear about how to upload local data to deepEA server,

please see here for details

• **Step 2**: see the following screenshot to run this function

4. Calling Ψ from CeU-Seq data

This function is used to identify pseudouridylation from CeU-Seq (Li *et al.*, 2015). To be specific, for any given position on a reference transcript, the stop rate of position i was calculated using the equation N_i _stop/(N_i _stop + N_i _readthrough), where N_i _stop (stop reads) is the number of reads with the mapping position starting at base i+1 (one nucleotide 3' to position i), and N_i _readthrough (readthrough reads) is the number of reads reading through position i; Then a position i is identified to be Ψ only when all of the following criteria were met:

- the stop reads of position i (N_i_stop) must be no less than 5 in the N3-CMC(+) sample;
- the stop rate in N3-CMC(–) samples must be less than 0.10;
- the difference of stop rate for position i between the N3-CMC(+) samples and the matched N3-CMC(-) samples must be at least 0.30.

Input

- Pulldown sample in BAM format: The pulldown sample in BAM format
- Input sample in BAM format: The input sample in BAM format
- Input transcriptome in FASTA format: The transcriptome in FASTA format

Output

• A matrix containing the candidate pseudouridine sites

How to use this function

- **Step 1**: upload the data in directory

 test_data/Identification_of_RNA_Modifications/Calling pseudouridylation from
 CeU-Seq/ to history panel, if you are not clear about how to upload local data to deepEA
 server, please see here for details
- **Step 2**: see the following screenshot to run this function

