25 - Oracle In-Memory Databases

- 1. Real-Time enterprises
 - A. efficient, agile, data driven
 - B. Hardware Trends
 - i. Larger, Faster disk and memory
 - C. Technology
 - i. TimesTen-In-Memory Database
 - ii. Database In-Memory
 - iii. In-Memory on Exadata storage
- 2. Background
 - A. Dual format
 - i. Row format: slower for OLAP, faster for OLTP
 - ii. Column format: faster for OLAP, slower for OLTP
 - iii. Since both format has pros and cons,So make row format at buffer cache and column format at in memory txn uses buffer cache, and analytics uses in-memory
 - B. In-memory column format
 - i. In-Memory Compression Unit
 - 1. Dictionary compress and bitmap them
 - 2. RLE compression (store data just once and map with count of contiguous same data)
 - OZIP compression (find pattern of RLE compression and compress it)
 - ii. SIMD vector Processing
 - A. Only process column that is needed

3. Top-5 Oracle Database In-Memory Innovation

A. Dual Format Architecture

- i. If some rows are modified, just set a bit to make invalid row. analytics will ignore invalid row by seeing invalid bit.
- ii. Fast Background Repopulation
 - 1. Double buffering: make new IMCU, if complete, switch it.
 - 2. Incremental Repopulation: when build new IMCU, use metadata to allow quick formatting
 - Column level invalidations:
 modifying data mostly touches some column, not all column
 So column level invalidation is possible
- iii. Accelerates Mixed Workloads
- B. Vectorized Analytics
 - i. SIMD vector Processing
 - ii. In-Memory Joins
 - iii. In-Memory Aggregates
- C. In-Memory + Exadata
 - i. Exadata
 - 1. Store nodes: do some filter and send data to compute nodes
 - 2. Compute nodes: doing higher level SQL operation
 - ii. Fault tolerance
 - 1. Each column duplicated across 2 or more nodes
- D. Intelligent Automation
 - i. Observe access patterns with "heatmap" (which is hot, which is cold, etc)
 - ii. Classify data, Populate data with this classification

- E. Converged Analytics
- 4. What is it?
 - A. Detailed logic of IMCU
 - B. Detailed logic of OZIP compression
 - C. Hot to decide which data is cold or hot