RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: IDY-R02

Securing Intel PC for FIDO support: Industry standard to remove passwords

Nitin Sarangdhar

Senior Principal Engineer
Platform Security Division, Intel
@SarangdharNitin

Session Topics

- Why password-based user authentication creates security challenges
- How FIDO* solves user authentication without passwords
- The security role of Intel hardware & firmware in a PC that supports FIDO

Hardware plays a strong role in security

RS/Conference2019

Why password-based user authentication creates security challenges

Why passwords create a security nightmare?

- Password re-use, no update, poor strength
- Social engineering & key-logger hacks
- Sophisticated password guessing tools
- Unsecure transmission over networks
- Direct server attacks on central user-store
- Lack of ability to recognize fraudulent activity from stolen credential

Day in the life of a password user

RS/Conference2019

How FIDO solves user authentication without passwords

International Standards efforts to address authentication.

- NIST800-63-3 Digital Identity Guidelines
 - NIST 800-63-B Authentication and Lifecycle Management
- PKI
 - Public key infrastructure
 - ASIA PKI Consortium: Korea, Taiwan, Thailand, Macao, India
- ITU-T (SG17)
 - International Telecommunications Union, Security Study Group
- ISO/IEC JTC1 (SC27)
 - International Standards Organization IT Security Techniques

FIDO Introduction

- FIDO stands for Fast Identity Online
- FIDO protocol is adopted by W3C WebAuthn WG
- WIP Collaboration with
 - ITU-T (SG17) X.1277 & X.1278
 - ISO/IEC JTC1 SC37/SC27
- World's Largest Ecosystem for Standards-Based, Interoperable Authentication

FIDO as a Solution

Targeted Solutions

- Social engineering email messages
- Bank transactions
- Web-purchases
- VPN login for enterprise

Investment in FIDO can be one component to combat "in the news" attacks

- Spreading fake news articles
- Creating cyber-attacks on infrastructure
- Voter fraud

Better user authentication will help address password related security challenges

FIDO Authenticator

	Platform authenticators	Roaming authenticators	
Multi factor authentication (possession + knowledge/inherence)	PC with TPM & Smart phone with TPM biometric or pin capture & biometric or pin capture	Smart card with PIN or fingerprint sensor	Security key with PIN or fingerprint sensor
2nd factor (Login & Password + possession factor)	PC with TPM only	Smart card	Security key

FIDO System Architecture

FIDO* Authenticator Security Considerations

Block Diagram

Extensions

- Distinguishing Knowledge Factors: pin,
 biometric (face, fingerprint)
- Multiple Factors

FIDO Authenticator Metadata service

- Security Level 1: OS
- Security Level 2: TEE + TPM + Trusted IO
- Security Level 3: hardware attack protected TEE

Revocation/Lifecycle Management

 To manage security flaws discovered post field deployment by performing software/firmware updates

FIDO* Benefits

Better security for online services

 Service provider can perform proper risk assessment of FIDO user authentication security

Reduced cost for the enterprise

 Enterprise can deploy devices with properly maintained certified FIDO authenticator machines.

Simpler and safer for consumers

 Consumers do not have to worry about complex passwords as long as they use a properly maintained certified FIDO device.

RS/Conference2019

The role of Intel hardware & firmware in FIDO* security

FIDO* Authenticator Trusted Computing Block Analysis

Potential Threats

- Disabling security features: Secure Boot, TPM
- Unsigned software or firmware launch
- Unsigned / Delayed firmware or software update containing vulnerability fixes
- Interface Intrusion across various interfaces such as addition of filter drivers
- Untrusted IO (Camera, Finger Print)
 drivers
- Replay of previously captured data

Security Level 1 Authenticator

Block Diagram

OS-based authenticator

- Trusted Computing Block (TCB) relies upon OS, security
- Intel hardware & firmware:
 - Root of Trust for measurement: Trusted Execution Technology (TXT), Authenticated Code Module (Boot Guard)
 - Private key storage, Measured OS Boot, Integrated TPM (PTT)
 - Secure OS Boot: Intel reference BIOS
- Productized use cases
 - Apple MacBook*, Chromebook*, Windows* PCs

In mass deployment adoption model

Security Level 2, 3 Authenticator

TEE-based Authenticator

- Security Level 1 OS-based FIDO* authenticators can be compromised by sophisticated attackers on various interfaces between different OS modules due to large attack surface
 - E.g. Key-logger, TPM Key disable
- Security Level 2, 3 can be achieved by enabling Trusted Execution Environment (TEE) based Authenticators with smaller TCB + achieving additional requirements (e.g. software).
- Intel provides three hardware options for potential TEE
 - Security Engine
 - VT/VTd
 - Intel* Software Guard Extensions (Intel® SGX)

Security Engine Micro-architecture

Security Engine Architecture

Block Diagram

Security Engine based Authenticator

- Key Benefits
 - Embedded Secure Element inside Intel SOC
 - FIDO Security Level 3 Potentially Capable
- Productized use cases
 - Integrated TPM: Possession Factor
 - Protected Audio Video Path Key Exchange

Intel Software Guard Extensions (Intel SGX) Micro-Architecture

- CPU Hardware assisted Trusted Execution Environment
- Intel SGX supports 17 new instructions on CPU
- Applications (Enclaves) can set aside private regions of code and data.
- Better protection against direct attacks on executing code or data stored in memory.

Intel® Software Guard Extension FIDO Architecture

Block Diagram

Software

Trustlet

Hardware

Intel SGX based Authenticator

- Key Benefits
 - Small TCB that includes architectural enclaves and Intel HW/FW
 - Completely isolated from main OS, VMM and BIOS
- Productized use cases
 - FIDO U2F : Intel IOC
 - Displays OK button in a random location using Protected Audio Video Path, mitigates remote SW attacks

Virtualization Technology Architecture Overview

- VT HW provides memory space Read/Write/Execute access control as defined by Extended Memory Page Tables
- VTd HW support consists of ensuring DMA memory space access control as defined by the VTd Page Tables
- Enabled with Hypervisor and Trusted Applications running in a secure VM

Virtualization Technology FIDO Architecture

Block Diagram

Industry Standard Browser(s)

Secure VM-based FIDO Authenticator

Secure VM-based IO Driver(s)

Secure VM Kernel

VT/VTd Hardware USB / MIPI Controller

Intel based PC

VT/VTd Based Authenticator

- Key Benefits
 - Synergistic with OS & Browser initiatives (e.g. Windows VSM)
 - Enables trusted IO paths: Better protected from Host OS based replay attacks
- WIP use cases
 - Virtualization based protection WIP with customers / partners

To Summarize

- Intel hardware has a strong role in FIDO security
- Today we covered essentials of FIDO Security
 - Single factor: TPM only
 - Multiple factors: TPM + pin or TPM + biometrics
 - Level 1 (OS based), Level 2 and above (TEE based)
 - Revocation/Life-cycle management
- Intel hardware and firmware role in FIDO security.
 - CPU, TXT, TPM, VT/VTd, Intel SGX, Security Engine
 - Microcode, ACM, Security Engine Firmware, BIOS

Call to Action

- Stop by at Intel booth # to look for product demos
- Short Term
 - Encourage use of certified FIDO products on your client and server solutions
 - Ensure FIDO solutions are deployed with proper security configurations
 - As a relying party learn to discriminate between security levels
- Long Term
 - Deploy platforms with higher security levels of FIDO security
 - Solve major security challenges facing the industry together

Intel hardware has a strong role in FIDO security

