Chapteradd Text Part-1 Internal Memory

Semiconductor Memory

- RAM (Random Access Memory)
 - Misnamed as all semiconductor mem. are random access
 - Read/Write
 - Volatile
 - Temporary storage
 - Static or dynamic
- ROM (Read only memory)
 - Permanent storage
 - Read only

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory (static RAM would be too expensive)

Dynamic RAM

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache (here the faster the better)

Read Only Memory (ROM)

- Permanent storage
- Microprogramming (see later)
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV (it can take up to 20 minuts)
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - a single byte can be erased
 - Flash memory
 - Erase memory electrically "block-at-a-time"

Physical Characteristics

- Decay (refresh time)
- Volatility (needs power source)
- Erasable
- Power consumption

Organisation

- Physical arrangement of bits into words
- Not always obvious
 - e.g. interleaved

Basic Organization (1)

- Basic element: memory cell
 - has 2 stable states: one represent 0, the other 1
 - can be written at least once
 - can be read

Basic Organization (2)

Basic organization of a 512x512 bits chip

Module Organisation

- Basic organization of a 256KB chip
- 8 times a 512x512 bits chip

 ...For a 1 MB chip replicate 4 times this organization...

Module Organisation (1 MByte)

Organisation for larger sizes

- The larger the size the higher the number of address pins
- For 2^k words, k pins are needed
- A solution to reduce the number of address pins
 - Multiplex row address and column address
 - k/2 pins to address 2^k Bytes
 - Adding one more pin doubles range of values so x4 capacity

Typical 16 Mb DRAM (4M x 4)

Refreshing (Dynamic RAM)

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Packaging

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM

Error Correction

- Hard Failure
 - Permanent defect
- Soft Error
 - Random, non-destructive
 - No permanent damage to memory
- Detected using Hamming error correcting code
 - it is able to detect and correct 1-bit errors

Error Correcting Code Function

A simple example of correction (1)

- Correcting errors in 4 bits words
- 3 control groups

In each control group add 1 parity bit

A simple example of correction (2)

One of the bits change value

Using control bit the right value is restored

Compare Circuit

- it takes two K-length binary strings X, Y as input
 - X=X_K...X₁
 - Y=Y_K...Y₁
- it returns a K-length binary string Z (syndrome)
 - $Z=Z_K...Z_1$
 - $Z_i = X_i \oplus Y_i$ for each i = 1,...,K
- Z=0...0 means no error

Relation between M and K

- Z may assume 2^K values
- the value Z=0...0 means no error
- the error may be in any bit among the M+K bits
- it must be

$$2^K - 1 \ge M + K$$

Data bits (M)	Control Bits (K)	Additional Memory (%)		
4	3	75		
8	4	50		
16	5	31,25		
32	6	18,75		
64	7	10,94		
128	8	6,25		
256	9	3,52		

How to arrange the M+K bits

- the M+K bits are arranged so that
 - if Z contains a single bit equal to 1
 - error occured in the corresponding control bit
 - if Z contains more than one bit equal to 1
 - error occured in the +th bit where i is the value (in binary) of Z

The case M=4

bit position	7	6	5	4	3	2	1
position number	111	110	101	100	011	010	001
data bits	D4	D3	D2		D1		
control bits				C4		C2	C1

 $C1 = D1 \oplus D2 \oplus D4$

 $C2 = D1 \oplus D3 \oplus D4$

 $C4 = D2 \oplus D3 \oplus D4$

Exercise

- Design a Hamming error correcting code for 8-bit words
- See the textbook for the solution

Chapter 5 Part 2

External Memory

Types of External Memory

- **#**Magnetic Disk
 - **△**RAID
- ****** Magnetic Tape
- **#**Optical
 - **△**CD-ROM
 - **△**CD-R
 - **△**CD-RW
 - **△**DVD

Magnetic Disk

- #Metal or plastic disk coated, on one or both sides, with *magnetizable material*
- #Data read and written through a magnetic head (coil) by means of induction

Disk Data Layout

Data Organization and Formatting

- **#**Concentric rings or tracks
 - □ Gaps between tracks
- #Tracks divided into sectors
- **₩** Data read/written in blocks

Comparison of variable/fixed density

(a) Constant angular velocity

(b) Constant linear velocity

Finding Sectors

- #Must be able to identify start of track and sector #Format disk
 - △Additional information not available to user

An example format

8

Characteristics of magnetic disks

- **#**Single or double (usually) sided
- ***Removable** or fixed
- #Fixed or movable head
- **#**Single or multiple platter
- **#**Head mechanism
- **#**Speed

9

Removable or Not

****** Removable disk

- □Can be removed from drive and replaced with another disk
- Provides unlimited storage capacity (by changing disk)

****Nonremovable disk**

□ Permanently mounted in the drive

Fixed/Movable Head Disk

#Fixed head

- One read/write head per track
- Heads mounted on a fixed arm

₩ Movable head

- One read/write head per side

Multiple Platters

- **X** One head per side
- # Heads are joined and aligned
- **X** Aligned tracks on each platter form cylinders
- ★ Data is striped by cylinder

 - ☑ increases speed (transfer rate)

12

Head mechanism

- **#**Contact
- #Fixed gap
- ******Aerodynamic gap or flying head
 - Winchester

Winchester Hard Disk (1)

- #Developed by IBM in Winchester (USA)
- **#**Sealed unit
- **#**One or more platters (disks)
- #Heads fly on boundary layer of air as disk spins
- **#**Very small head-to-disk gap
- **#**Getting more robust

Winchester Hard Disk (2)

- **#**Universal
- **#**Cheap
- #Fastest external storage
- **#**Getting larger all the time

Speed

- **#**Seek time
- **(Rotational)** latency
 - Waiting for data to rotate under head
- ******Access time = Seek + Latency
- **X**Transfer rate: speed of copying bytes from disk

16

Cont'd

TRANSFER TIME The transfer time to or from the disk depends on the rotation speed of the disk in the following fashion:

$$T = \frac{b}{rN}$$

where

T = transfer time

b = number of bytes to be transferred

N = number of bytes on a track

r =rotation speed, in revolutions per second

Thus the total average access time can be expressed as

$$T_a = T_s + \frac{1}{2r} + \frac{b}{rN}$$

RAID

- ****Redundant Array of Independent Disks**
- ******At least 7 different versions in common use (Not a hierarchy)
- Set of physical disks viewed as single logical drive by the operating system
- ***** Data distributed (**striped**) across physical drives
- ****Can use redundant capacity to store parity information and provide fault tolerance**

Magnetic Tape

- **#**Only sequential access
- **#**Slower than magnetic and optical disks
- ★ Very very cheap
- **#**Backup and archive

Optical Storage: CD-ROM

- ★ Originally for audio
- # Polycarbonate coated with highly reflective coat, usually aluminum
- ★ Data stored as pits
- ****** Read by reflecting laser
- **X** Audio is single speed
 - Constant linear velocity
 - △1.2 m/s
 - ☐ Track (spiral) is 5.27km long
 - ☐ Gives 4391 seconds = 73.2 minutes

Random Access on CD-ROM

- #Difficult, due to constant density and single track
- ****** Move head to rough position
- **#**Set correct speed
- **Read address**
- **#**Adjust to required location

CD-ROM Pros and Cons

- **#**Large capacity
- **#**Easy to mass produce
- **#**Removable
- **#**Robust

- **#** Expensive for small runs
- **#**Slower than magnetic disk
- **#**Read only

Other Optical Storage

- **#CD-R** (for Recordable)
 - ☑Writable, but ... Write Once Read Many (WORM)
 - Now affordable
- **#CD-RW** (for ReWritable)
 - □ Erasable, hence writable many times (~1000)
 - □ Different technology (phase change vs pit)
 - □ Getting cheaper

DVD - Digital Video/Versatile Disk

- **#**Optical (CD-sized) disk with a very high capacity:
 - △4.7 GB per layer (smaller pits and closer tracks)
 - □ Up to 2 layers on each of the 2 sides (total 17 GB)
- # Drives are CD-ROM compatible
- ******Also writable (DVD-R, DVD-RW), but not yet fully standardized