- **Q1**. If $a \in A$ and $A \subseteq B$ is it necessarily true that $a \in B$?
- **Q2**. If $A = \{1, 2, \{1\}, \{2, 3\}\}$ then which of the following are true or false.
 - i. $1 \in A$.
 - ii. $\{1\} \in A$.
 - iii. $2 \subset A$.
 - iv. $\{1\} \subset A$.
 - v. $3 \in A$.
 - vi. $\{1, 2\} \subset A$.
 - vii. $\{2, \{2\}\} \subset A$.
- viii. $\{2, \{1\}\} \subset A$.
- ix. $\{1, \{1\}\} \subset A$.
- **Q3**. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{4, 5, 6, 7\},\$$

$$C = \{5, 6, 7, 8, 9\},\$$

$$A = \{1, 2, 3, 4, 5\}, \qquad B = \{4, 5, 6, 7\}, \qquad C = \{5, 6, 7, 8, 9\},$$

$$D = \{1, 3, 5, 7, 9\}, \qquad E = \{2, 4, 6, 8\}, \qquad F = \{1, 5, 9\}$$

$$E = \{2, 4, 6, 8\},\$$

$$F = \{1, 5, 9\}$$

Find each of the following (note that all complements should be taken relative to U):

- i. $A \cup B$
- ii. $A \cap B$
- iii. $A \cup C$
- iv. $A \cap C$
- v. $D \cup F$
- vi. $D \cap F$
- vii. A^C
- viii. B^C
- ix. D^C
- x. E^C
- xi. A B
- xii. B A
- xiii. D-E
- xiv. F D
- xv. $A\Delta B$
- xvi. $C\Delta D$
- xvii. $E\Delta F$

Q4. The set $\mathbb{N} = \{1, 2, 3, \dots$ is the set of positive integers. List the members of the following subsets of \mathbb{N} .

i.
$$A = \{x \in \mathbb{N} : 3 < x < 9\}$$

ii.
$$B = \{x \in \mathbb{N} : x \text{ is even, and } x < 11\}$$

iii.
$$C = \{x \in \mathbb{N} : 4 + x = 3\}$$

Q5. If
$$A = \{3, 4, 7, 9, -1\}$$
, $B = \{1, -1, 15, 3\}$ and $C = \{3, 4, 5, 6, 7, 8, 9\}$ then what is

- i. The complement of A in B.
- ii. The complement of B in A.
- iii. The complement of $A \cap B$ in C.
- iv. The complement of $A \cup B$ in C.
- v. The complement of A B in C.
- vi. The complement of B A in C.

Q6. Give an example of three sets A, B and C for which $A - (B - C) \neq (A - B) - C$. We say that set difference isn't associative.

- **Q7**. Explain why $A = (A B) \cup (A \cap B)$ is always true for any two sets A and B.
- **Q8**. Determine the power set of $A = \{a, b, c, d\}$.
- **Q9**. Consider the sets

$$A = \{1, 2, \dots, 9\},$$
 $B = \{2, 4, 6, 8\},$ $C = \{1, 3, 5, 7, 9\},$ $D = \{3, 4, 5\},$ $E = \{3, 5\}$

Which of these sets could substitute for the set X in each of the following conditions:

i.
$$X \cap B = \emptyset$$

ii.
$$X \subseteq D, X \nsubseteq B$$

iii.
$$X \subseteq A, X \nsubseteq C$$

iv.
$$X \subseteq C, X \not\subset A$$

Q10. For each of the following pairs of sets write down the Cartesian product $A \times B$

i.
$$A = \{1\}, B = \{2, 5\}$$

ii.
$$A = \{1\}, \{B = \{-2, 7\}\}$$

iii.
$$A = \{2, 4\}, B = \{1, 9\}$$

iv.
$$A = \{1, 2\}$$
 and $B = \{a, b, c\}$

Q11. What do you think should be the Cartesian product if one of the sets is the null set \emptyset ?

Q12. If $A = \{2, 4\}$ and $B = \{1, 9\}$ what is $B \times A$? Compare the results with Q6 part (iii). What do you conclude?