Recursive Least Squeares Adaptive Filters

Jesper Rindom Jensen, jrj@es.aau.dk

Advanced Signal Processing, Electronic Systems, Aalborg University

Adaptive filtering – Least Squares Solution

 Consider an adaptive filter setup:

• We introduce vectors containing the signal and filter values:

$$\mathbf{w}(n) = \begin{bmatrix} w_0(n) & w_1(n) & \cdots & w_{M-1}(n) \end{bmatrix}^T$$

$$\mathbf{u}(n) = \begin{bmatrix} u(n) & u(n-1) & \cdots & u(n-M+1) \end{bmatrix}^T$$

$$\mathbf{A}(n) = \begin{bmatrix} \mathbf{u}(1) & \mathbf{u}(2) & \cdots & \mathbf{u}(n) \end{bmatrix}^T$$

$$\mathbf{d}(n) = \begin{bmatrix} d(1) & d(2) & \cdots & d(n) \end{bmatrix}^T$$

$$\mathbf{e}(n) = \begin{bmatrix} e(1) & e(2) & \cdots & e(n) \end{bmatrix}^T$$

Adaptive filtering – Least Squares Solution

With the vector notation, we have that

$$\mathbf{e}(n) = \mathbf{d}(n) - \mathbf{A}(n)\mathbf{w}(n)$$

The LS cost function can then be written as

$$J_2(\mathbf{w}(n)) = \mathbf{e}^T(n)\mathbf{e}(n) = (\mathbf{d}(n) - \mathbf{A}(n)\mathbf{w}(n))^T(\mathbf{d}(n) - \mathbf{A}(n)\mathbf{w}(n))$$
$$= \mathbf{d}^T(n)\mathbf{d}(n) + \mathbf{w}^T(n)\mathbf{A}^T(n)\mathbf{A}(n)\mathbf{w}(n) - 2\mathbf{w}^T(n)\mathbf{A}^T(n)\mathbf{d}(n)$$

• Based on this, the optimal filter in the LS sense is

$$\mathbf{w}_o(n) = (\mathbf{A}^T(n)\mathbf{A}(n))^{-1}\mathbf{A}^T(n)\mathbf{d}(n)$$

• **Problem:** A(n) and d(n) keeps growing as n is increasing!

Weighted Least Squares

New data should be assigned greater weight than old data

$$J_{\beta}(\mathbf{w}(n)) = \sum_{i=1}^{n} \beta(n,i)e^{2}(i) = \mathbf{e}^{T}(n)\mathbf{B}(n)\mathbf{e}(n)$$

where

$$\mathbf{B}(n) = \begin{bmatrix} \beta(n,1) & 0 & \cdots & 0 \\ 0 & \beta(n,2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \beta(n,n) \end{bmatrix}$$

• Use the 5-step procedure to design the filters.

Filter design – step 1

Construct the cost function

$$J_{\beta}(\mathbf{w}(n)) = \mathbf{e}^{T}(n)\mathbf{B}(n)\mathbf{e}(n) = (\mathbf{d}(n) - \mathbf{A}(n)\mathbf{w}(n))^{T}\mathbf{B}(n)(\mathbf{d}(n) - \mathbf{A}(n)\mathbf{w}(n))$$
$$= \mathbf{d}^{T}(n)\mathbf{B}(n)\mathbf{d}(n) + \mathbf{w}^{T}(n)\mathbf{\Phi}(n)\mathbf{w}(n) - 2\mathbf{w}^{T}(n)\boldsymbol{\varphi}(n)$$

with

$$\Phi(n) = \mathbf{A}^T(n)\mathbf{B}(n)\mathbf{A}(n)$$

 $\varphi(n) = \mathbf{A}^T(n)\mathbf{B}(n)\mathbf{d}(n)$

- We refer to $\Phi(n)$ and $\varphi(n)$ as the correlation matrix and the cross-correlation vector, respectively.
- They are scaled and weighted estimates of \mathbf{R}_u and \mathbf{r}_{ud}

Filter design – step 2+3

• Step 2: Find the gradient

$$\mathbf{g}(\mathbf{w}(n)) = \frac{\partial J_{\beta}(\mathbf{w}(n))}{\partial \mathbf{w}(n)} = (\mathbf{\Phi}(n) + \mathbf{\Phi}^{T}(n))\mathbf{w}(n) - 2\boldsymbol{\varphi}(n) = 2\mathbf{\Phi}(n)\mathbf{w}(n) - 2\boldsymbol{\varphi}(n)$$

• Step 3: Solve $g(\mathbf{w}(n)) = \mathbf{0}$ for $\mathbf{w}(n)$

$$\begin{aligned} \mathbf{g}(\mathbf{w}(n)) &= 2\mathbf{\Phi}(n)\mathbf{w}(n) - 2\boldsymbol{\varphi}(n) \\ \mathbf{\Phi}(n)\mathbf{w}(n) &= \boldsymbol{\varphi}(n) \end{aligned} \qquad \text{(weighted normal equations)} \\ \mathbf{w}(n) &= \mathbf{\Phi}^{-1}(n)\boldsymbol{\varphi}(n) \qquad \text{(if correlation matrix is invertible)} \end{aligned}$$

Filter design – step 4+5

• Step 4: Find the Hessian

$$\mathbf{H}(\mathbf{w}(n)) = 2\mathbf{\Phi}(n)$$

• Positive definite for all $\mathbf{w}(n)$ if $\mathbf{A}(n)$ is full rank and $\beta(n,i) > 0$ for all $n \ge i > 0$.

- Step 5: Implication
 - $J_{\beta}(\mathbf{w}(n))$ is a convex function, and
 - $\mathbf{w}_o(n) = \mathbf{\Phi}^{-1}(n) \boldsymbol{\varphi}(n)$ is the global minimiser
- Solution ($\mathbf{w}_o(n)$) often referred to as WLS solution.

Estimation of the (Cross-)Correlation

Comparing weighted normal equations and Wiener-Hopf equations:

$$\hat{\mathbf{R}}_u(n) = c(n,\beta)\mathbf{\Phi}(n) = c(n,\beta)\mathbf{A}^T(n)\mathbf{B}(n)\mathbf{A}(n) = c(n,\beta)\sum_{i=1}^n \beta(n,i)\mathbf{u}(i)\mathbf{u}^T(i)$$

$$\hat{\mathbf{r}}_{ud}(n) = c(n,\beta)\boldsymbol{\varphi}(n) = c(n,\beta)\mathbf{A}^{T}(n)\mathbf{B}(n)\mathbf{d}(n) = c(n,\beta)\sum_{i=1}^{n}\beta(n,i)\mathbf{u}(i)d(i)$$

- Constant $c(n, \beta)$ depends on n and weighting $\beta(n,i)$.
- Can be selected so the (cross-)correlation estimates are unbiased

Growing Window Weight Function

• The growing window weight function

$$\beta(n,i) = \begin{cases} 1 & 0 < i \le n \\ 0 & \text{otherwise} \end{cases}$$

- Reduces WLS to the standard LS problem.
- In order to obtained unbiases estimates of $\mathbf{R}_{\mu}(n)$ and $\mathbf{r}_{\mu\sigma}(n)$:

$$c(n,\beta) = \frac{1}{n}$$

Sliding Window Weight Function

• The sliding window weight function:

$$\beta(n,i) = \begin{cases} 1 & n-L < i \le n \\ 0 & \text{otherwise} \end{cases}$$

Selecting L = n, the sliding window reduces to the growing window.

n

• In order to obtained unbiases estimates of $\mathbf{R}_{\mu}(n)$ and $\mathbf{r}_{\mu\sigma}(n)$:

$$c(n,\beta) = \frac{1}{L}$$

Exponential Weight Function

• The exponential window weight function:

$$\beta(n,i) = \begin{cases} \lambda^{n-i} & 0 < i \le n \\ 0 & \text{otherwise} \end{cases}$$

- If we select $\lambda = 1$, the exponential window reduces to the growing window.
- In order to obtained unbiases estimates of $\mathbf{R}_{u}(n)$ and $\mathbf{r}_{ud}(n)$:

$$c(n,\beta) = \begin{cases} \frac{1-\lambda}{1-\lambda^n} & 0 < \lambda < 1\\ \frac{1}{n} & \lambda = 1 \end{cases}$$

Recursive Least-Squares Algorithm (Exponential Weight Function)

 In an online algorithm, we solve the weighted normal equations for every time index n

$$\mathbf{\Phi}(n)\mathbf{w}(n) = \boldsymbol{\varphi}(n)$$

• Direct solution:

$$\mathbf{w}(n) = \mathbf{\Phi}^{-1}(n)\boldsymbol{\varphi}(n)$$

- Computationally complex since:
 - **1.** A(n), B(n), and d(n) grows with $n \rightarrow direction$ solution infeasible without finite window.
 - 2. Complexity scales cubically with filter order: $\mathcal{O}(M^3)$
- RLS algorithm solves both problems!

Recursive Computation of (Cross-)Correlation

• (Cross-)correlation estimates can be recursively updated by rewriting:

$$\begin{split} & \boldsymbol{\Phi}(n) = \mathbf{A}^T(n)\mathbf{B}(n)\mathbf{A}(n) = \sum_{i=1}^n \lambda^{n-i}\mathbf{u}(i)\mathbf{u}^T(i) \\ &= \lambda^0\mathbf{u}(n)\mathbf{u}^T(n) + \sum_{i=1}^{n-1} \lambda^{n-i}\mathbf{u}(i)\mathbf{u}^T(i) = \mathbf{u}(n)\mathbf{u}^T(n) + \lambda\sum_{i=1}^{n-1} \lambda^{n-1-i}\mathbf{u}(i)\mathbf{u}^T(i) \\ &= \mathbf{u}(n)\mathbf{u}^T(n) + \lambda\boldsymbol{\Phi}(n-1) & \text{Reduced computational complexity!} \\ & \boldsymbol{\varphi}(n) = \mathbf{A}^T(n)\mathbf{B}(n)\mathbf{d}(n) = \sum_{i=1}^n \lambda^{n-i}\mathbf{u}(i)d(i) \\ &= \lambda^0\mathbf{u}(n)d(n) + \sum_{i=1}^{n-1} \lambda^{n-i}\mathbf{u}(i)d(i) = \mathbf{u}(n)d(n) + \lambda\sum_{i=1}^{n-1} \lambda^{n-1-i}\mathbf{u}(i)d(i) \\ &= \mathbf{u}(n)d(n) + \lambda\boldsymbol{\varphi}(n-1) & \end{split}$$

Inversion of Correlation Matrix

Matrix inversion lemma (MIL)

$$(X + UYV)^{-1} = X^{-1} - X^{-1}U(Y^{-1} + VX^{-1}U)^{-1}VX^{-1}$$

By choosing...

$$\mathbf{X} = \lambda \mathbf{\Phi}(n-1)$$

$$\mathbf{U} = \mathbf{u}(n)$$

$$\mathbf{V} = \mathbf{u}^{T}(n)$$

$$\mathbf{Y} = 1$$

and invoking the MIL on the recursive update equation, we get...

$$\mathbf{\Phi}^{-1}(n) = \lambda^{-1}\mathbf{\Phi}^{-1}(n-1) - \lambda^{-2}\frac{\mathbf{\Phi}^{-1}(n-1)\mathbf{u}(n)\mathbf{u}^{T}(n)\mathbf{\Phi}^{-1}(n-1)}{1+\lambda^{-1}\mathbf{u}^{T}(n)\mathbf{\Phi}^{-1}(n-1)\mathbf{u}(n)}$$

Simplifying notation

By introducing the notation...

$$\mathbf{P}(n) = \mathbf{\Phi}^{-1}(n)$$

$$\mathbf{k}(n) = \frac{\mathbf{P}(n-1)\mathbf{u}(n)}{\lambda + \mathbf{u}^{T}(n)\mathbf{P}(n-1)\mathbf{u}(n)}$$

 we may rewrite the recursive update of the inverse correlation matrix...

$$\mathbf{P}(n) = \lambda^{-1} [\mathbf{P}(n-1) - \mathbf{k}(n)\mathbf{u}^{T}(n)\mathbf{P}(n-1)]$$

$$\mathbf{k}(n) = \lambda^{-1} [\mathbf{P}(n-1) - \mathbf{k}(n)\mathbf{u}^{T}(n)\mathbf{P}(n-1)]\mathbf{u}(n)$$

$$= \mathbf{P}(n)\mathbf{u}(n)$$

Recursive Filter Update

• From here, we can develop the recursive filter update as...

$$\mathbf{w}(n) = \mathbf{P}(n)\boldsymbol{\varphi}(n)$$

$$= \mathbf{P}(n)[\mathbf{u}(n)d(n) + \lambda\boldsymbol{\varphi}(n-1)] = \lambda\mathbf{P}(n)\mathbf{P}^{-1}(n-1)\mathbf{w}(n-1) + \mathbf{k}(n)d(n)$$

$$= [\mathbf{P}(n-1) - \mathbf{k}(n)\mathbf{u}^{T}(n)\mathbf{P}(n-1)]\mathbf{P}^{-1}(n-1)\mathbf{w}(n-1) + \mathbf{k}(n)d(n)$$

$$= \mathbf{w}(n-1) - \mathbf{k}(n)\mathbf{u}^{T}(n)\mathbf{w}(n-1) + \mathbf{k}(n)d(n)$$

$$= \mathbf{w}(n-1) + \mathbf{k}(n)\xi(n)$$

• where the a priori error is defined as...

$$\xi(n) = d(n) - \mathbf{u}^{T}(n)\mathbf{w}(n-1)$$

The RLS Algorithm

• Based on this, we can formulate the RLS algorithm:

$$\mathbf{\pi}(n) = \mathbf{P}(n-1)\mathbf{u}$$

$$\mathbf{k}(n) = \frac{\mathbf{\pi}(n)}{\lambda + \mathbf{u}^{T}(n)\mathbf{\pi}(n)}$$

$$\xi(n) = d(n) - \mathbf{u}^{T}(n)\mathbf{w}(n-1)$$

$$\mathbf{w}(n) = \mathbf{w}(n-1) + \mathbf{k}(n)\xi(n)$$

$$\mathbf{P}(n) = \lambda^{-1}[\mathbf{P}(n-1) - \mathbf{k}(n)\mathbf{\pi}^{T}(n)]$$

• Requires $O(M^2)$ operations to run one iteration for M-tap FIR filter.

Initialization

• **Biased** (decreasing bias for large *n*):

$$\mathbf{P}(0) = \delta^{-1}\mathbf{I}$$

$$\mathbf{w}(0) = \mathbf{0}$$

$$u(n) = 0, \quad \text{for } -M+1 < n < 1$$

 Unbiased (requires knowledge of future samples):

$$\mathbf{P}(0) = \left[\sum_{i=-M+1}^{0} \lambda^{-1} \mathbf{u}(i) \mathbf{u}^{T}(i)\right]^{-1}$$
$$\boldsymbol{\varphi}(0) = \sum_{i=-M+1}^{0} \lambda^{-i} \mathbf{u}(i) d(i)$$

Forgetting Factor vs. Window Length

• The forgetting factor can be interpreted as a window length:

$$\lim_{n\to\infty} \sum_{i=1}^n \lambda^{n-i} = \lim_{n\to\infty} \sum_{i=n-L_{\text{eff}}+1}^n 1 = L_{\text{eff}}$$

• For $0 < \lambda < 1$, this leads to...

$$\lim_{n \to \infty} \sum_{i=1}^{n} \lambda^{n-1} = \lim_{n \to \infty} \sum_{k=0}^{n-1} \lambda^{k} = \lim_{n \to \infty} \frac{1 - \lambda^{n}}{1 - \lambda} = \frac{1}{1 - \lambda}$$

• Thus, we have that...

$$L_{\text{eff}} = \frac{1}{1-\lambda}$$

Steady-State Analysis

It can be shown that...

$$J_{\rm ex} = J_2(\mathbf{w}(\infty)) - J_{\rm min} \approx J_{\rm min} \frac{(1-\lambda)M}{1+\lambda-(1-\lambda)M} \qquad \text{(EMSE)}$$

$$\mathcal{M} = \frac{J_{\rm ex}}{J_{\rm min}} \approx \frac{(1-\lambda)M}{1+\lambda-(1-\lambda)M} \qquad \qquad \text{(Misadjustment)}$$

$$E[\|\Delta\mathbf{w}(\infty)\|^2] \approx J_{\rm ex} \sum_{m=1}^M \frac{1}{\lambda_m} \qquad \qquad \text{(MSD)}$$

Computational Cost

• Breakdown of the computational cost of the RLS algorithm

Term	×	+ or -	/
$\boldsymbol{\pi}(n) = \boldsymbol{P}(n-1)\boldsymbol{u}(n)$	M^2	M(M-1)	
$oldsymbol{k}(n) = oldsymbol{\pi}(n)/(\lambda + oldsymbol{u}^T(n)oldsymbol{\pi}(n))$	M	M	M
$\xi(n) = d(n) - \boldsymbol{u}^{T}(n)\boldsymbol{w}(n-1)$	M	M	
$\boldsymbol{w}(n) = \boldsymbol{w}(n-1) + \boldsymbol{k}(n)\xi(n)$	M	M	
$\mathbf{P}(n) = (\mathbf{P}(n-1) - \mathbf{k}(n)\mathbf{\pi}^{T}(n))/\lambda$	M^2	M^2	M^2
Total	$2M^2 + 3M$	$2M^2 + 2M$	$M^2 + M$

Basic Adaptive Filtering Overview

Name	Algorithm	Cost	Mean-Square Stability	EMSE	Misadjustment	MSD	
SD	$g(w(n)) = 2R_uw(n) - 2r_{ud}(n)$	$\mathcal{O}(M)$	$0 < \mu < \frac{2}{\lambda_{\max}}$	0	0	0	
	$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) - \frac{\mu}{2}\boldsymbol{g}(\boldsymbol{w}(n))$						
LMS	$e(n) = d(n) - \boldsymbol{u}^T(n)\boldsymbol{w}(n)$	$\mathcal{O}(M)$	$0 < \mu < \frac{2}{\operatorname{tr}(\boldsymbol{R}_{tr})}$	$\frac{\mu}{2}J_{\min}\mathrm{tr}(oldsymbol{R}_u)$	$rac{\mu}{2} \mathrm{tr}(oldsymbol{R}_u)$	$rac{\mu}{2}J_{\min}M$	
	$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) + \mu \boldsymbol{u}(n) e(n)$		(_	_	_	
NLMS	$e(n) = d(n) - \boldsymbol{u}^T(n)\boldsymbol{w}(n)$	$\mathcal{O}(M)$	$0<\beta<2$	$rac{eta}{2}J_{ m min}$	$rac{eta}{2}$	$rac{eta J_{\min}}{2 \mathrm{tr}(oldsymbol{R}_u)}$	
	$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) + \frac{\beta}{\epsilon + \ \boldsymbol{u}(n)\ ^2} \boldsymbol{u}(n) e(n)$, ,	
APA	$oldsymbol{e}(n) = oldsymbol{d}(n) - oldsymbol{U}^T(n) oldsymbol{w}(n)$	$\mathcal{O}(MK^2)$	$0 < \beta < 2$	$rac{eta}{2}J_{\min}K$	$rac{eta}{2}K$	no simple expression	
$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) + \beta \boldsymbol{U}(n) [\epsilon \boldsymbol{I} + \boldsymbol{U}^T(n) \boldsymbol{U}(n)]^{-1} \boldsymbol{e}(n)$							
RLS	$\boldsymbol{\pi}(n) = \boldsymbol{P}(n-1)\boldsymbol{u}(n)$	$\mathcal{O}(M^2)$	$0<\lambda\leq 1$	$\frac{J_{\min} \frac{1-\lambda}{1+\lambda} M}{1 - \frac{1-\lambda}{1+\lambda} M}$	$\frac{\frac{1-\lambda}{1+\lambda}M}{1-\frac{1-\lambda}{1+\lambda}M}$	$\frac{J_{\min} \frac{1-\lambda}{1+\lambda} M}{1 - \frac{1-\lambda}{1+\lambda} M} \sum_{m=1}^{M} \frac{1}{\lambda_m}$	
	$\boldsymbol{k}(n) = \frac{\boldsymbol{\pi}(n)}{\lambda + \boldsymbol{u}^T(n)\boldsymbol{\pi}(n)}$						
	$\xi(n) = d(n) - \boldsymbol{u}^{T}(n)\boldsymbol{w}(n-1)$						
	$\boldsymbol{w}(n+1) = \boldsymbol{w}(n-1) + \boldsymbol{k}(n)\xi(n)$						
	$\mathbf{P}(n) = \lambda^{-1} \left[\mathbf{P}(n-1) - \mathbf{k}(n) \mathbf{\pi}^{T}(n) \right]$						

Exercise 1

- Consider a situation, where you are listening to music in an environment with background noise. Luckily you have placed a microphone, which is able to pickup the background noise. Your job is now to design a filter, which can remove a significant part of the background noise from the noisy music.
- Implement and compare the performance of LMS, normalised LMS and RLS
- To get inspiration you can look at the MATLAB file Filters.m which provides an example solution.

Exercise 2

• Implement an RLS algorithm for system identification of a stationary signal. Play around with forgetting factor and filter orders. To get inspiration you can look at the MATLAB file sys_rd_rls.m which provides an example solution.