

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Ilha Solteira

Faculdade de Engenharia

TRABALHO DE MOTORES DE COMBUSTÃO INTERNA

Nome	RA
Alícia Ramos Modesto	181052725
Gabriel Duarte da Silva	182054047
Higor Balsarini	182055302
Matheus Henrique Panini	182053857
Yuri Fernando Oliveira Kazitani Cunha	231052669

Docente: Gabriel Coelho Rodrigues Alvares

Ilha Solteira – SP Dezembro de 2023

LISTA DE ILUSTRAÇÕES

Figura 1 –	Àrea de Cortina em uma Válvula	6
Figura 2 –	Área de Garganta em uma Válvula	6

LISTA DE TABELAS

SUMÁRIO

1	INTRODUÇÃO	. 5
2	METODOLOGIA	. 6
2.1	Revisão da Literatura	6
2.1.1	Áreas	6
2.1.2	Coeficiente de Descarga	6
2.1.3	Pressão Média	6
2.1.4	Carga Lateral	7
2.1.5	Velocidade do pistão	7
2.1.6	Número de Mach	7
2.2	Montagem Experimental	7
2.3	Procedimento Experimental	7
3	RESULTADOS	. 8
3.1	Resultados medidos	8
3.2	Resultados calculados	8
3.2.1	Ensaio de Fluxo no Cabeçote	8
3.2.2	Ensaio Dinamométrico	8
4	DISCUSSÃO E CONCLUSÃO	. 9
	Referências	. 10

1 INTRODUÇÃO

2 METODOLOGIA

2.1 Revisão da Literatura

Os conceitos teóricos explicados a seguir são baseados nas notas de aula, na obra de Heywood (2018), Ferguson e Kirkpatrick (2015).

2.1.1 Áreas

Parâmetros geométricos são de suma importância para o motor. Áreas relacionadas às válvulas são necessárias para a compreensão do desempenho do motor. Á área de cortina é a região ao redor da haste da válvula que é projetada para direcionar o fluxo de fluidos, como mostra a Fig. 1. A área de garganta representa a seção mais estreita do canal de passagem, como mostra a Fig. 2 influenciando a quantidade de massa fresca que entra na câmara de combustão.

Figura 1 – Área de Cortina em uma Válvula

Nota: A área hachurada representa a área de cortina.

Fonte: elaborado pelos autores.

Figura 2 – Área de Garganta em uma Válvula

Nota: A área hachurada representa a área de garganta.

Fonte: elaborado pelos autores.

2.1.2 Coeficiente de Descarga

O coeficiente de descarga é a razão entre o fluxo de ar que está passando através do componente durante o ensaio, pelo fluxo de ar que deveriapassar pelo componente durante o ensaio caso o escoamento isentrópico.

$$C_d = \frac{V_r}{V_t} \tag{2.1}$$

onde V_r o fluxo de massa real e V_t é o fluxo de massa caso o escoamento fosse isentrópico.

2.1.3 Pressão Média

A pressão média indicada (IMEP) é aquela determinada baseada na geometria do motor e considerando as transformações do ciclo como irreversiveis. A pressão média de atrito

(FMEP) indica a pressão perdida devido ao atrito e o bombeamento. A pressão média efetiva (BMEP) é a pressão que o motor de fato tem trabalho líquido. A BMEP pode ser calculada como mostra a seguir:

$$BMEP = \frac{120\dot{W}_b}{nV_dN} \tag{2.2}$$

onde \dot{W}_b e a potência, n é quantidade de cilindros do motor, V_d e o volume deslocado e N é a rotação do motor em RPM.

2.1.4 Carga Lateral

A carga lateral do pistão é obtida através da análise de forças no pistão a partir das leis da mecânica dos sólidos e é dada por:

$$F_L = \frac{\pi dP(R/L)\sin\alpha}{4\sqrt{1 - (R/L)^2\sin^2\alpha}}$$
(2.3)

onde d é o diâmetro do pistão, P é a pressão exercida, R é o comprimento da biela, L é o comprimento da manivela e α é o ângulo percorrido pela manivela a partir do ponto morto superior (PMS).

2.1.5 Velocidade do pistão

A partir de geometria simples, é possível determinar a posição do cilindro em relação ao ângulo de rotação da manivela. Sabendo que $\alpha = \omega t$, determina-se a velocidade através da derivada da posição do cilindro:

$$v(t) = R\omega \sin(\omega t) + \frac{R^2 \omega \sin(\omega t) \cos(\omega t)}{L\sqrt{1 - \frac{R^2 \sin^2(\omega t)}{L^2}}}$$
(2.4)

2.1.6 Número de Mach

O número de Mach é um termo adimensional definido pela seguinte expressão:

$$Ma = \frac{V}{c} = \frac{\text{velocidade do escoamento}}{\text{velocidade do som}}$$
 (2.5)

que descreve a velocidade do escoamento. Quando Ma = 1 o escoamento é considerado sônico; quando Ma < 1, subsônico; quando Ma > 1, supersônico e quando $Ma \gg 1$, hipersônico (CENGEL; CIMBALA, 2015).

2.2 Montagem Experimental

2.3 Procedimento Experimental

3 RESULTADOS

3.1 Resultados medidos

As condições iniciais proposta foram: (i) para o ensaio de fluxo no cabeçote do motor EA211 TSI, a pressão é de 25 pol $\rm H_2O\approx6,2271~kPa$, variando a abertura das válvulas entre 0 e 10 mm, com passo de 1 mm; (ii) para o ensaio dinamométrico, o motor avaliado é um John Deere 6068 Tier 3, com condição de carga de 75%.

3.2 Resultados calculados

3.2.1 Ensaio de Fluxo no Cabeçote

Áreas

Coeficiente de descarga

3.2.2 Ensaio Dinamométrico

Pressão Média

Torque

Potência

Carga Lateral

Velocidade

Pressão de Boost

Índice de Mach

4 DISCUSSÃO E CONCLUSÃO

REFERÊNCIAS

CENGEL, Yunus A; CIMBALA, John M. *Mecânica dos Fluidos: Fundamentos e Aplicações*. [S.l.]: AMGH Editora, 2015.

FERGUSON, Colin R; KIRKPATRICK, Allan T. *Internal combustion engines: applied thermosciences*. [S.l.]: John Wiley & Sons, 2015.

HEYWOOD, John B. *Internal combustion engine fundamentals*. [S.l.]: McGraw-Hill Education, 2018.