1 Motivation: das Newton-Verfahren

Die Newtoniteration ist gegeben durch die Abbildung

$$\Phi(x) = z - \frac{f(z)}{f'(z)}$$

Dabei ist für einen Startwert z_0 folgendes Verhalten denkbar

- ullet Das Newton-Verfahren konvergiert gegen eine Nullstelle von f
- Das Newton-Verfahren konvergiert nicht.

Das Newton-Verfahren konvergiert lokal. Wie ist das Konvergenzverhalten außerhalb dieser Konvergenzumgebung?

 \longrightarrow Newton-Fraktale.

Abbildung 1: Newton-Fraktal für $f(z) = z^4 - 1$

Dies motiviert das Konzept der Fatou- bzw. Juliamenge:

Fatou-Menge Die Startwerte aus dieser Menge führen unter Iteration zu einer "stetigen" Dynamik, das heißt, eine kleine Änderung des Startwert führt zu einer ähnlichen Dynamik.

Julia-Menge Beschreibt die Menge der Startpunkte, die zu den "instabilen" Prozessen gehören. Jede noch so kleine Änderung des Startwerts führt zu einer komplett anderen Dynamik.

Notation: F(f) bezeichnet die Fatoumenge von f und J(f) analog die Juliamenge von f.

2 Allgemeine Definitionen

Definition 1

Sei z_0 periodischer Punkt bzgl. f mit Periode n, d.h. $f^n(z_0) = z_0$. Dann heißt er

- stark anziehend, falls $|(f^n)'(z_0)| = 0$,
- anziehend, falls $0 < |(f^n)'(z_0)| < 1$,
- indifferent, wenn $|(f^n)'(z_0)| = 1$,
- $absto\beta end$, wenn $|(f^n)'(z_0)| > 1$.

Definition 2 (Einzugsgebiet)

Ist z_0 ein anziehender periodischer Punkt von f, dann ist die Menge

$$A(z_0) = \{ z \in \overline{\mathbb{C}} : \lim_{L \ni k \to \infty} f^k(z) = z_0, L \subset \mathbb{N} \}$$

das Einzugsgebiet (engl. basin of attraction) von z_0 .

Definition 3 (Julia-Menge)

Wir definieren die Julia-Menge durch

$$J(f) := \overline{\{z \in \overline{\mathbb{C}} : z \text{ abstossender periodischer Punkt von } f\}}$$

Und die Fatou-Menge durch $F(f) = J(f)^c$

3 Normale Familien und exzeptionelle Punkte

Definition 4

Eine Familie $\{F_n\}$ analytischer Funktionen operiert normal auf U, falls jede Folge $(F_{n_i})_{i\in\mathbb{N}}$ eine Teilfolge $(F_{n_{i_j}})_{j\in\mathbb{N}}$ besitzt, sodass einer der beiden Eigenschaften erfüllt ist:

- $F_{n_{i_i}}$ konvergiert gleichmäßig auf kompakten Mengen $K \subset U$.
- $F_{n_{i,i}}$ divergiert gleichmäßig gegen ∞ auf U.

Eine Familie $\{F_n\}$ analytischer Funktionen operiert *nicht normal* bei z_0 , falls er in keiner Umgebung normal operiert.

Beispiel 5

Betrachte die Funktion F, gegeben durch F(x) = ax. Definiere die Familie $\{F^n\}$.

Fall 1: |a| < 1, so konvergiert für jede kompakte Teilmenge die Funktionenfolge $F^n(z) = a^n \cdot z$ gleichmäßig gegen 0.

$$\longrightarrow F(f) = \overline{\mathbb{C}}, A(0) = \mathbb{C}, A(\infty) = \{\infty\}.$$

Fall 2: |a| > 1. Die Familie $\{F\}$ operiert nicht normal bei 0, denn für $z \neq 0$ divergiert jede beliebige Teilfolge.

$$\longrightarrow J(F) = \{0\}, A(0) = \{0\}, A(\infty) = \bar{\mathbb{C}} \setminus \{0\}.$$

Proposition 6

Sei F analytisch, z_0 ein abstoßender periodischer Punkt bzgl. F. Dann operiert die Familie $\{F^n\}_{n\in\mathbb{N}}$ nicht normal bei z_0 .

Beweis (Für Fixpunkte)

Angenommen $\{F^n\}$ operiert normal auf einer Umgebung U von z_0 . Da für alle $n \in \mathbb{N}$ $F^n(z_0) = z_0$, folgt insbesondere, dass F^n nicht (gleichmäßig) gegen ∞ auf U divergiert. Also gibt es zu der Folge $(F^n)_{n\in\mathbb{N}}$ eine Teilfolge $(F^{n_i})_{i\in\mathbb{N}}$ die auf allen kompakten Teilmengen $K \subset U$ gleichmäßig konvergiert. Insbesondere ist die Grenzfunktion G holomorph und es gilt $(F^{n_i})'(z_0) \to G'(z_0)$. Nun ist z_0 abstoßender Fixpunkt und damit folgt induktiv:

$$|(F^{n_i})'(z_0)| = (F^{n_i-1} \circ F)'(z_0)| = |(F^{n_i-1})'(\underbrace{F(z_0)}_{=z_0})| \cdot |F'(z_0)| \stackrel{\text{ind.}}{=} \underbrace{|F'(z_0)|}_{>1} \stackrel{n \to \infty}{\to} \infty.$$

Es ergibt sich der Widerspruch zur Konvergenz und damit Beschränktheit.

Korrolar 7

Sei F analytische Funktion. Die Familie $\{F^n\}$ operiert nicht normal für $z \in J(F)$.

Beweis

Die Menge der abstoßenden periodischen Punkte liegt dicht in J(F). Also finden wir in jeder Umgebung einen abstoßenden, periodischen Punkt. Auf allen Umgebungen operiert kann nach Proposition 6 $\{F^n\}$ nicht normal für $z \in J(F)$. Insbesondere operiert $\{F^n\}$ nicht normal bei $z \in J(F)$. \square

Theorem 8 (Montels Theorem)

Sei $\{F_n\}$ eine Familie analytischer Funktionen auf einer Umgebung U. Angenommen es gibt $a,b \in \mathbb{C}, a \neq b$, sodass $F_n(z) \neq a \land F_n(z) \neq b$ für alle $n \in \mathbb{N}$ und $z \in U$. Dann operiert $\{F_n\}$ normal auf U. (ohne Beweis)

Korrolar 9

Sei F eine analytische Funktion. Sei $z_0 \in J(F)$ und sei U eine beliebige Umgebung von z_0 . Dann existiert höchstens ein $a \in \mathbb{C}$ mit

$$a \notin \bigcup_{n=1}^{\infty} F^n(U).$$

Wir nennen einen solchen Punkt exzeptionellen Punkt.

Beweis

Angenommen es gibt $a \neq b, a, b \in \mathbb{C}$ mit $a, b \notin \bigcup_{n=1}^{\infty} F^n(U)$. Also gilt für alle $n \in \mathbb{N}$ und für alle $z \in U$ $F^n(z) \neq a$ und $F^n(z) \neq b$. Aus Theorem 8 (Montels Theorem) folgt, dass $\{F^n\}$ normal auf U operiert. Nach Korollar 7 operiert $\{F^n\}$ nicht normal bei z_0 und damit insbesondere auf U. Es ergibt sich der Widerspruch.

Theorem 10

Sei P ein Polynom mit Grad ≥ 2 . Angenommen es gibt einen Punkt $z_0 \in J(P)$ und ein $a \in \mathbb{C}$, sodass

$$\bigcup_{n=0}^{\infty} = \mathbb{C} \setminus \{a\}$$

so folgt $P(z) = a + \lambda (z - a)^k$ für $\lambda \in \mathbb{C}, k \in \mathbb{N}$ geeignet. Insbesondere ist P mit Grad $n \geq 2$ konjugiert zu $Q: z \mapsto z^n$, d.h. das ein Homöomorphismus H existiert mit $Q \circ H = H \circ P$.

Beweis

Wähle $b \in \mathbb{C}$, sodass P(b) = a. Es folgt, dass für beliebige $z \in U$ und $n \in \mathbb{N}$ folgt $P^n(z) \neq b$, denn sonst würde folgen $P^{n+1}(z) = P(b) = a$. Also ist b ein exzeptioneller Punkt nach Korollar 9 folgt a = b. Also ist $a \in \mathbb{C}$ Fixpunkt. Insbesondere ist a das einzige Urbild von a und es existiert ein $k \in \mathbb{N}$, sodass

$$G(z) = \frac{P(z) - a}{(z - a)^k}, a$$

wobei G ein Polynom mit $G(a) \neq 0$. Da a einziger Fixpunkt von P ist folgt $P(z) - a \neq 0$ für $z \neq a$ und insbesondere

$$G(z) = \frac{P(z) - a}{(z - a)^k} \neq 0, z \neq a.$$

G besitzt keine Nullstellen und ist nach dem Fundamentalsatz damit konstant $G \equiv \lambda \neq 0$.

Definiere im Folgenden $H(z) := \sqrt{\lambda}(z-a)$. Es ist leicht nachzurechnen, dass $Q \circ H = H \circ P$.

Bemerkung 11

Für $Q(z)=z^n, n\geq 2$ folgt $J(Q)=S^1$. Außerdem ist a=0 exzeptioneller Punkt.

Beweis

Sei z ein periodischer Punkt, so gilt mit $z = r \cdot e^{i\varphi}$. FIXME:

4 Periodische Punkte

Theorem 12 (Koenigs Linearisationstheorem)

Sei f eine analytische Funktion mit f(0) = 0 und $f'(0) = \lambda$ mit $|\lambda| \neq 0, 1$, dann existiert ein Diffeomorphismus $\varphi : U \to V$ mit $\varphi(0) = 0$, sodass

$$\varphi \circ f(z) = \lambda \cdot \varphi(z)$$

für $z \in U$, wobei U und V Umgebungen von 0 sind. Dieses φ ist bis auf einen Multiplikation mit einer Konstanten eindeutig.

Proposition 13

Sei z_0 ein anziehender periodischer Punkt bzgl. f, so existiert eine Umgebung U um z_0 , sodass $U \subset A(z_0)$. Wir nennen die Zusammenhangskomponente von $z_0 \in A(z_0)$ auch das unmittelbare Einzugsgebiet.

Lemma 14

Sei |a| < 1. Definiere

$$T_a(z) := \frac{z - a}{1 - \bar{a}z}$$

 T_a ist analytisch für $|z| < |a|^{-1}$. Desweiteren ist $T_a^{-1} = T_{-a}$, für |z| < 1 und $T_a : \mathbb{D} \to \mathbb{D}$.

Theorem 15

Sei P ein Polynom vom Grad $n \geq 2$ und sei z_0 ein anziehender periodischer Punkt von P. Dann liegt im Einzugsgebiet von z_0 ein kritischer Punkt.