Letting Your Past Define Your Taxes:

Optimal History-Dependent Income Taxation in General Equilibrium

Ross Batzer*

University of Minnesota

January 24, 2022

^{*}Email: batz0025@umn.edu, Website: https://sites.google.com/view/ross-batzer, Most recent slides, Most recent draft

Introduction

- This paper studies optimal labor income taxation when taxes can depend on past income
- History dependence has large potential for reducing tax distortions
 - History dependent taxes can give incentives based on income history
 - Extract higher income from households with high earning potential
 - Give lower taxes, but only after investing in skills and earning high amounts
- In most countries, income taxes are based mostly on current income
 - But income history is recorded by governments and used in practice
 - e.g. public pensions/social security, income averaging in US (1964-1986)
- Question 1: How should labor income taxation vary with a household's income history?
- Question 2: What are the welfare implications of conditioning taxes on previous income?

What I Do

- Study history-dependent (HD) taxes in a model of life-cycle labor supply
 - Model ingredients
 - 1 Skill investment by households, e.g. decide to go to college or not
 - 2 Skill types are imperfectly substitutable in production, e.g. waiter vs. accountant
 - 3 Very general class of tax function
 - Average tax rate = any continuously differentiable function of entire income history
 - But taxes can only depend on income, not skills or hours worked
 - \bullet Record income history (36 years) + indv. state variables \implies up to 41 state variables

Background

- New feature: skill types are imperfectly substitutable in production
 - Widely held view of data: e.g. Katz and Murphy (1992), Acemoglu (2002)
 - Taxes have nontrivial effects on wages for labor
 - \uparrow output for one worker $\implies \uparrow$ marginal product (wage) of all workers
 - Creates role for history-dependence
 - Use HD to incentivize households with high earning potential to produce a lot
 - Can get large increases in wages for everyone else
- Existing literature on history-dependent taxation in dynamic models
 - Stantcheva (2017), Farhi and Werning (2013), Weinzierl (2011), and others
 - Common feature: skills are perfect substitutes in production
 - Wages received for labor are invariant to tax system (constant)
 - General finding: very small welfare benefits from HD taxes over just age-dependent

Methodology

- Imperfectly substitutable skills make standard solution methods intractable
 - Need to compute optimal taxes directly by specifying functional form for income taxes
- Need method to solve model with 41 state variables and compute welfare maximizing policy
 - Neural networks (NN) and new numerical libraries (e.g. Google's Tensorflow) make this possible
 - NN's designed to approximate high-dimensional functions quickly
 - Automatically allocate parameters to approximate functions with minimal parameters
- I use NN's to approximate optimal labor income tax function in steady state
 - Existing methods: use NN's to solve high-dimensional structural models
 - My method (Nested NN): use NN's to both solve the model and optimize income taxes
 - Flexible algorithm: can be applied to study optimal policies in a wide variety of models

Findings

- Optimal history-dependent (HD) tax function is:
 - For most people: tax rates (avg. & marginal) increase over life cycle
 - Wages are estimated to increase deterministically with age
 - Gov. increases taxes with age to smooth consumption
 - For high income history (top 5% of incomes): tax rates decrease over life cycle
 - As gov. learns which HH's have highest earning potential, rewards high earnings with lower taxes
 - Maintains high labor supply during working life
 - Incentivizes skill investment at beginning of life in anticipation of lower future taxes
 - High output \implies Higher avg. wages \implies Less redistribution/distortion under optimal tax
- Welfare gain from HD tax large compared to optimal age-dependent tax (2% lifetime cons.)
 - Welfare gains are cut in half when wages for each skill are taken as given
 - ullet Virtually no gains from HD taxation when wages and skills are taken as given
- 3 90% of potential welfare gains achieved with parametric tax: T(average past income, age)
 - Mimics full HD tax by making optimal taxes flatter in age with higher past income

Related Literature

Optimal taxation

- Parametric (aka Quantitative Ramsey): Heathcote, Storesletten and Violante (2017, 2020), Kapička (2020), Krueger and Ludwig (2016), Karabarbounis (2016), and others
- History dependent (aka Dynamic Mirrlees): Stantcheva (2017), Golosov, Troshkin and Tsyvinski (2016), Farhi and Werning (2013), Weinzierl (2011), and others
- Static with differentiated labor: Sachs, Tsyvinski and Werquin (2020), Scheuer and Werning (2016), Rothschild and Scheuer (2013), Stiglitz (1982, 1987), and others
- Contribution: General tax function that allows for history-dependence in model with differentiated labor

Neural networks to solve structural economic models

- Fernández-Villaverde, Nuño, Sorg-Langhans and Vogler (2020), Azinovic, Gaegauf and Scheidegger (2019), Maliar, Maliar and Winant (2019), and others
- Contribution: Application to optimal policy (nested neural network solution)

Plan

- Model
 - Economic environment
 - Optimal taxation problem
- 2 Parameter Selection
- Solution Method
- Results
 - Optimal taxes
 - Welfare analysis
 - Simple implementation

Model

Agents

- Households (measure one, indexed by $i \in [0,1]$)
 - Work for A periods, age indexed by a = 0, ..., A-1
 - Choose one time, permanent investment in skills, s, before entering labor market
 - Each period choose consumption c_a , savings b_{a+1} and hours h_a
- ullet Firm: produces consumption good using labor differentiated by skill s
- Government
 - Collects revenue from nonparametric history-dependent income taxes, T(.)
 - Uses tax revenue to fund expenditures, $G = g \times Y$ (constant % of output)
 - Taxes distort labor supply and skill investment: limit on optimal progressivity

Technology

ullet Output is a CES aggregate over continuum of skill types s

$$Y = \left(\int_0^\infty \left[N(s)f_s(s)\right]^{\frac{\omega-1}{\omega}} ds\right)^{\frac{\omega}{\omega-1}}$$

- N(s) is total labor supply and $f_s(s)$ is density for type s
- ω is elasticity of substitution between skills
- Note: higher skills not inherently more productive, but more valuable because rarer
 - Price for skills/skill premium: $p(s) = \left[\frac{Y}{N(s)f_s(s)}\right]^{\frac{1}{\omega}}$
 - Higher wage when Y larger \implies spillovers from higher output
- Linear savings technology: households can transform one unit of consumption at a into 1+r units at a+1 risk-free
- Resource constraint

$$\sum_{a=0}^{A-1} \int (c_{ia} + b_{ia+1}) di + gY = (1+r) \sum_{a=0}^{A-1} \int b_{ia} di + Y$$

Individual Wages and Income

• Hourly productivity:

$$\log \theta_{ia} = x(a) + z_{ia} + \varepsilon_{ia}$$

- x(a): deterministic age-productivity profile
- $z_{ia} = z_{ia-1} + \eta_{ia}$, $\eta_{ia} \sim N(0, v_{\eta})$: permanent shocks
- $\varepsilon_{ia} \sim N(0, v_{\varepsilon})$: transitory shocks
- Total labor income:

$$y_{ia} = \underbrace{p(s_i)}_{\text{skill price}} \times \underbrace{\theta_{ia}}_{\text{productivity}} \times \underbrace{h_{ia}}_{\text{hours worked}}$$

• p(s): skill price of type s labor = marginal product of type s

Preferences

• Preferences over consumption c, hours h, and skill-investment s for an individual i

$$U_{i} = -v_{i}(s_{i}) + E_{0} \left[\left(\frac{1-\beta}{1-\beta^{A}} \right) \sum_{a=0}^{A-1} \beta^{a} u_{i}(c_{ia}, h_{ia}) \right]$$

where disutility from skill investment is

$$v_i(s_i) = \kappa_i^{-\frac{1}{\psi}} \frac{s_i^{1+\frac{1}{\psi}}}{1+\frac{1}{\psi}}, \ \kappa_i \sim Exp(1)$$

and utility from consumption and labor is

$$u_i(c_{ia}, h_{ia}) = \frac{\left[c_{ia}^{\phi_i} (1 - h_{ia})^{1 - \phi_i}\right]^{1 - \gamma}}{1 - \gamma}$$

where
$$\phi_i = \frac{1}{1 + \exp \tilde{\phi}_i}$$
, $\tilde{\phi}_i \sim N(m_{\phi}, v_{\phi})$

Household Problem

• Denote the vector of individual state variables as

$$S_{ia} \equiv (s_i, \phi_i, b_{ia}, z_{ia}, \varepsilon_{ia}, a, \{y_t\}_{t=0}^{a-1})$$

- 41 individual state variables
 - 4 exogenous: $(\phi_i, z_{ia}, \varepsilon_{ia}, a)$
 - 2+a-1 (37 when a=A-1) endogenous: $(s_i,b_{ia},\{y_t\}_{t=0}^{a-1})$
- Individuals enter with zero savings $b_{i0} = 0$ and solve

$$v_{ia}(S_{ia}) = \max_{c_{ia}, h_{ia}, b_{ia+1}} u_i(c_{ia}, h_{ia}) + \beta E_a [v_{ia+1}(S_{ia+1})]$$

subject to

$$c_{ia} + b_{ia+1} = (1+r)b_{ia} + y_{ia} - T_a(y_{ia}; \{y_{ij}\}_{j=0}^{a-1})$$

and

$$c_{ia}, b_{ia+1} \ge 0, \ h_{ia} \in [0, 1]$$

Equilibrium

- Stationary equilibrium is allocation functions $(s, \{c_a, h_a, b_{a+1}\}_{a=0}^{A-1})$ and prices p(s) such that
 - Households solve their problem
 - Skill price p(s) is the marginal product of type s

$$p(s) = \left[\frac{Y}{N(s)f_s(s)}\right]^{\frac{1}{\omega}}$$

- Densities for skills f_s and savings f_b are consistent with individual choices
- Government budget is satisfied

$$gY \le \sum_{a=0}^{A-1} \int T_a \left(y_{ia}; \{ y_{it} \}_{t=0}^{a-1} \right) di$$

• Markets clear

$$\sum_{a=0}^{A-1} \int c_{ia} di + gY = r \sum_{a=0}^{A-1} \int b_{ia} di + Y \text{ and } N(s) = \sum_{a=0}^{A-1} \int h_{ia}(s) \exp\{x(a) + z_{ia} + \varepsilon_{ia}\} di$$

Optimal Tax Problem

• Government's social welfare function is ex-ante expected utility of a household born into a stationary equilibrium

$$W = \int U_i di = \int \left\{ -v_i(s_i) + E_0 \left[\left(\frac{1-\beta}{1-\beta^A} \right) \sum_{a=0}^{A-1} \beta^a u_i(c_{ia}, h_{ia}) \right] \right\} di$$

• Government chooses the tax function T(.) to maximize W subject to its budget

$$gY = \sum_{a=0}^{A-1} \int T_a \left(y_{ia}; \{ y_{ij} \}_{j=0}^{a-1} \right) di$$

and that households solve their problem given the tax function

• Tax function T(.) is of the form

$$T_a\left(y_a; \{y_j\}_{j=0}^{a-1}\right) = \tau_a\left(y_a; \{y_j\}_{j=0}^{a-1}\right) y_a$$

- τ_a is a continuously differentiable function that depends on age and income history
- Can prove this form has a unique mapping between tax rates and equilibrium allocations

Parameter Selection

Wage Estimation

- I estimate processes for wage shocks using data from the PSID
 - Regress log wages on a polynomial in age and demographic dummies

$$\log w_{ia} = x_0 + x_1 a + x_2 a^2 + D_i + \epsilon_{ia}$$

- Gives age profile $x(a) = x_0 + x_1 a + x_2 a^2$ and stochastic component of wages ϵ_{ia}
- Assume ϵ_{ia} is composed of permanent component z and transitory component ϵ

$$\epsilon_{ia} = z_{ia} + \varepsilon_{ia}$$

where

$$z_{ia+1} = z_{ia} + \eta_{ia+1}, \ \eta_{ia} \sim N(0, v_{\eta})$$

 $z_{i0} \sim N(0, v_z) \text{ and } \varepsilon_{ia} \sim N(0, v_{\varepsilon})$

• Estimate values of $(v_{\eta}, v_z, v_{\varepsilon})$ to match $var(\epsilon_{ia}), var(\epsilon_{ia+2} - \epsilon_{ia})$ and $var(\epsilon_{ia+4} - \epsilon_{ia})$

Wage Parameters

Parameter	Description	Value
$\overline{x_1}$	Linear component of life cycle profile	0.031
x_2	Quadratic component of life cycle profile	-0.0005
v_z	Variance of initial condition z_0	0.120
v_{η}	Variance of permanent shocks z	0.003
$v_{arepsilon}$	Variance of transitory shocks ε	0.135

Table: Summary of Parameters for Wage Process

Fixed Parameters

Parameter	Description	Value	Source/Target
\overline{A}	Years of working life	36	Heathcote et al. (2020)
ψ	Elasticity of skill investment to return	0.65	
ω	Elasticity of substitution across skills	3.124	
g	Government spending (% of output)	0.19	
eta	Discount Factor	0.98	Golosov et al. (2016)
R	Return on savings	1/0.98	
$m_{oldsymbol{\phi}}$	Mean of leisure disutilty	0.275	H = 0.33
v_{ϕ}	Variance of labor disutilty utility	0.026	$var(\log h_i) = 0.12$

Table: Summary of Fixed Parameters

Solution Method

Solving the Optimal Tax Problem

- Optimizing tax function directly requires keeping track of every previous level of income
 - With A = 36 periods of work, optimal tax has up to 36 arguments
 - Every argument of tax function becomes a state variable in HH problem
- Question: How do I approximate a nonlinear function with at least 36 arguments?

Polynomial vs NN Approximation

- Suppose I tried to approximate the same tax function with polynomials and NN's
- With polynomials (e.g. Chebychev, splines)
 - **1** Additive: additional parameters improve approx. for only a single dimension
 - 2 Manual: I have to choose where to place additional parameters
 - With A=36 and affine/linear functions in each dim, would need $2^{36}\approx 70$ billion parameters
 - $\bullet\,$ Approximation is infeasible, even for crude approximation
- With neural networks
 - Compositional: additional parameters improve approx. for all dimensions simultaneously
 - 2 Automatic: self-allocates parameters to find best low-dimensional representation of full data
 - Only have to approximate several thousand of parameters ($\approx 5,000$) instead of billions

How it Works

- Sketch of optimal tax algorithm:
 - 1 Approximate tax function as a neural network
 - 2 Calculate change in social welfare from changes in tax function $(\partial W/\partial \tau)$
 - Calculate how individual choices and GE prices change under perturbed tax function $(\partial c/\partial \tau)$
 - **3** Update tax function to maximize welfare (gradient descent: $\tau_{new} = \tau_{old} + \frac{\partial W}{\partial \tau}$)
- Similar to variational method used in optimal tax literature to derive optimal nonlinear tax in static economy (e.g. Saez (2001))
 - Optimal tax function is such that no change produces a welfare gain $(\partial W/\partial \tau = 0)$

Results

Outline of Results

- Optimal taxes
 - Baseline: CES Production Here
 - Counterfactual 1: Fixed prices Here
 - Counterfactual 2: Fixed prices and skills Here
- 2 Compare steady state welfare under HD optimum to different tax functions Phere
 - Parametric and nonparametric on current income, T(y), then current income and age, T(y,a)
- 3 Simple implementation Here
 - Parametric tax in avg. lifetime income gets most welfare gains from full HD policy

Results with Separable Utility

Conclusion

- What I did
 - Developed nested NN method to compute optimal history-dependent taxes in an OLG economy
 - Method can be applied to wide variety of problems to compute optimal policies
- What I found
 - Welfare gain from history-dependence can be large
 - Elasticity of substitution between skill types is critical to optimal policy:
 - Key elasticity to be estimated in future work in optimal taxation
- Why it was useful
 - Demonstrates new possible source of welfare gains from income taxation
 - Full HD optimal tax provides a benchmark to compare with more implementable policies
 - Here, function in just age and avg past income gets close to full HD optimum

Thank You!

References

- Azinovic, Marlon, Luca Gaegauf, and Simon Scheidegger (2019) "Deep Equilibrium Nets," Working Paper.
- Benabou, Roland (2000) "Unequal Societies: Income Distribution and the Social Contract," American Economic Review, 90 (1), 96-129.
- (2002) "Tax and Education Policy in a Heterogeneous-Agent Economy: What Levels of Redistribution Maximize Growth and Efficiency?" Econometrica, 70 (2), 481–517.
- Farhi, Emmanuel and Ivan Werning (2013) "Insurance and Taxation over the Life Cycle," Review of Economic Studies, 810 (2), 596-635.
- Fernández-Villaverde, Jesús, Galo Nuño, George Sorg-Langhans, and Maximilian Vogler (2020) "Solving High-Dimensional Dynamic Programming Problems using Deep Learning," Working Paper.
- Golosov, Mikhail, Maxim Troshkin, and Aleh Tsyvinski (2016) "Redistribution and Social Insurance," American Economic Review, 106 (2), 359-386.
- Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante (2017) "Optimal Tax Progressivity: An Analytical Framework," Quarterly Journal of Economics, 132 (4), 1693-1754.
- ——— (2020) "Optimal Progressivity with Age-Dependent Taxation," Journal of Public Economics.
- Kapička, Marik (2020) "Quantifying the Welfare Gains from History Dependent Income Taxation," Working paper.
- Karabarbounis, Marios (2016) "A road map for efficiently taxing heterogeneous agents," American Economic Journal: Macroeconomics, 8, 182-214.
- Krueger, Dirk and Alexander Ludwig (2016) "On the optimal provision of social insurance: Progressive taxation versus education subsidies in general equilibrium," Journal of Monetary Economics, 77, 72-98.
- Maliar, Lilia, Serguei Maliar, and Pablo Winant (2019) "Will Artificial Intelligence Replace Computational Economists Any Time Soon?" CEPR Working Paper.
- Rothschild, Casey and Florian Scheuer (2013) "Redistributive Taxation in the Roy Model," Quarterly Journal of Economics, 128 (2), 623-668.
- Sachs, Dominik, Aleh Tsyvinski, and Nicolas Werquin (2020) "Nonlinear Tax Incidence and Optimal Taxation in General Equilibrium," Econometrica, 88 (2), 469-493.
- Saez, Emmanuel (2001) "Using Elasticities to Derive Optimal Income Tax Rates," Review of Economic Studies, 68, 205-229.
- Scheuer, Florian and Ivan Werning (2016) "Mirrlees meets Diamond-Mirrlees," NBER Working Paper (22076).
- Stantcheva, Stefanie (2017) "Optimal Taxation and Human Capital Policies over the Life Cycle," Journal of Political Economy, 125 (6).
- Stiglitz, Joseph (1982) "Self-Selection and Pareto Efficient Taxation," Journal of Public Economics, 17, 213-240.
- ——— (1987) "Pareto Efficient and Optimal Taxation and the New New Welfare Economics," Handbook of Public Economics, 2, 991–1042.
- Weinzierl, Matthew (2011) "The Surprising Power of Age-Dependent Taxes," Review of Economic Studies, 78 (4), 1490-1518.

Checking the Approximation • Back

• I can check if the NN is finding a maximum of the HH problem by manually computing derivatives around the final allocations

Percentile of Distribution

	10%	25%	50%	75%	90%	Average
First $(\partial V/\partial h)$	-1.4×10^{-2}	-6.5×10^{-3}	-1.6×10^{-4}	6.4×10^{-3}	1.5×10^{-2}	7.9×10^{-4}
Second $(\partial^2 V/\partial h^2)$	-0.228	-0.193	-0.134	-0.110	-0.086	-0.151

Table: Derivatives of Household Value Function at Approximation

• First derivatives are near zero and second derivatives are negative \implies NN is finding a maximum

Checking the Approximation (Back)

Figure: Histogram of Derivatives of HH Value Function $(\partial V/\partial h)$

Tax Rates Over the Life-cycle Back

Figure: Optimal History-Dependent Tax by Age

- Follow HH's that receive low (25th percentile), middle (75th) and high (99th) income each period
 - Middle income: taxes increase with deterministic life-cycle profile of wages
 - High income: taxes decrease as government learns their earning potential
 - Maintain high labor supply during life
 - Increase skill investment through expectation of lower future taxes

Discussion (Back)

- Why does history-dependent (HD) taxation increase skill investment?
- Optimality condition for skill investment:

- HH's w/ high earning potential anticipate low taxes after many years of high earnings
 - High effective after-tax wage early in life via lower future taxes: low $\partial T_k/\partial y_{ia}$
- But households can't borrow, so high after-tax wage \implies high consumption, c_{ia}
- High after-tax wage + low consumption = high skill investment
- Result: high skill investment \implies high output $Y \implies$ high $p(s) = \left[\frac{Y}{N(s)f_s(s)}\right]^{\frac{1}{\omega}}$ for all s

Optimal HD Tax: Consumption and Income Profiles (Back)

Figure: Life-cycle Percentiles of Consumption and Income

- Consumption and income growth for 25th, 75th and 99th percentile of consumption and income
- Consumption is smooth for middle income HH's, but strongly increases for highest incomes

CF 1: Optimal HD Tax with Fixed Wages

Figure: Optimal History-Dependent Tax by Age

- Fix prices (under US tax system): optimal taxes with endogenous skills, but fixed wage for each skill
- Taxes now about flat for high income history
 - History-dependence used less than before: less benefit from maintaining high output

CF 1: Optimal HD Tax with Fixed Wages

Figure: Optimal History-Dependent Tax by Age

Marginal taxes also flatter than with imperfect substitutability

CF 2: Optimal HD Tax with Fixed Wages and Skills

Figure: Optimal History-Dependent Tax by Age

- Fix prices and skills (under US tax system)
- Taxes for high income history increase like others: virtually no benefit from increasing output
 - History-dependent optimum achievable with age-dependent tax

CF 2: Optimal HD Tax with Fixed Wages and Skills (Back)

(a) Marginal Tax Rates, Baseline Model (Endogenous) (b) Marginal Tax Rates, Exogenous Wages and Skills

Figure: Optimal History-Dependent Tax by Age

• Marginal taxes also increasing in age for all income histories (not much need for HD taxes)

Consumption Equivalent Welfare Gains (Back)

- To compare welfare impact of each policy, I use consumption equivalent welfare
- Consumption-equivalent welfare gain of moving to a new tax function T^* from T is the a such that

$$W\left(s^*, \{(c_a^*, h_a^*\}_{a=0}^{A-1}; T^*\right) = W\left(s, \{(1+g)c_a, h_a\}_{a=0}^{A-1}; T\right)$$

where W is social welfare

$$W\left(s, \{c_a, h_a\}_{a=0}^{A-1}; T\right) = \int \left\{-v_i(s_i(T)) + E_0\left[\left(\frac{1-\beta}{1-\beta^A}\right) \sum_{a=0}^{A-1} \beta^a u_i(c_{ia}(T), h_{ia}(T))\right]\right\} di$$

q: percent gain of lifetime consumption necessary to deliver same welfare as T^*

Comparison with Restricted Tax Systems

- I compare the full history-dependent tax to more restricted systems
- Parametric tax functions that depend on (log-linear class used by Benabou (2000, 2002), Karabarbounis (2016) and Heathcote, Storesletten and Violante (2017, 2020))
 - Current income

$$T(y) = y - (1 - \tau)y^{\rho}$$

• Current income and age

$$T_a(y) = y - (1 - \tau(a))y^{\rho(a)}$$

$$\tau(a) = \tau_0 + \tau_1 a + \tau_2 a^2 \text{ and } \rho(a) = \rho_0 + \rho_1 a + \rho_2 a^2$$

- Nonparametric tax functions that can depend on
 - Only current income

$$T(y) = \tau(y)y$$

• Age and current income

$$T_a(y) = \tau(y, a)y$$

40

where τ can be any differentiable function

Welfare Gains (Back)

• Gains of moving to most complex policy from more restricted tax systems:

	Income History	Age and Current Income	Only Current Income
Nonparametric	0.0%	1.82%	5.43%
Log-linear		1.98%	6.31%

Table: Welfare Gain of Moving to Nonparametric, History Dependent Taxes

- Gain of HD tax over AD tax equivalent to 1.82 percent increase in lifetime consumption
- About 10-20 times bigger than existing studied of HD taxation (< 0.2%)

Optimal Restricted Tax Functions Summary of Tax Functions Allocations Present Value of Taxes Paid

Welfare Gains in Alternate Economies (Back)

• Gains of moving to optimal HD tax system from more restricted tax systems:

Economy	Age-Dependent	Current Income Only
Endogenous Skills and Wages (Baseline)	1.82%	5.43%
Endogenous Skills, Exogenous Wages	0.81%	4.36%
Exogenous Skills and Wages	0.10%	4.20%

Table: Welfare Gain of Moving to History-Dependent Tax System from Optimal Restricted Tax

- Removing endogenous effects on wages eliminates most gains from HD over age-dependent
- ullet Removing effects on both wages and skill investment virtually eliminates all gains from HD
 - Consistent with existing studies of HD taxation

What does this mean for policy? •Back

- Non-parametric HD policy not easily implemented in reality and hard to interpret
 - What simple parametric policy can achieve similar levels of welfare?
- Full optimum gives you guidance on which simpler policies can achieve highest possible welfare
 - E.g., let log-linear tax vary with age and average lifetime income $(\bar{y} = \frac{1}{a-1} \sum_{t=0}^{a-1} y_t)$

$$T(y; a, \bar{y}) = y - (1 - \tau(a, \bar{y}))y^{\rho(a, \bar{y})}$$

$$\tau(a, \bar{y}) = \tau_0 + \tau_1 a + \tau_2 a^2 + \frac{\tau_3 a \bar{y}}{\tau_4 a^2} + \frac{\tau_4 a^2 \bar{y}}{\tau_4 a^2} \text{ and } \rho(a, \bar{y}) = \rho_0 + \rho_1 a + \rho_2 a^2 + \frac{\rho_3 a \bar{y}}{\tau_4 a^2} + \frac{\rho_4 a^2 \bar{y}}{\tau_4 a^2}$$

- Turns out to capture 90% of welfare gain of HD tax compared to just parametric AD tax
 - Only lose 0.2% of consumption compared to full non-parametric HD tax

History-Dependent Parametric Tax (Back)

Figure: Optimal Parametric History-Dependent Tax

- Captures key feature of full HD policy: HH's are rewarded for high past output with smaller increase
 - Low income history \implies taxes increase quickly with age
 - High income history \implies taxes increase more slowly with age

Marginal tax Rate

How Neural Networks Work

• Neural Network: nonlinear transformation of weighted sums

$$y(x;w) \approx \sum_{i=1}^{m} w_{2,i} f\left(\sum_{j=0}^{n} w_{1,j,i} x_j\right)$$

- y is the function being approximated
- x is the vector of n state variables
- m is the degree of approximation (determines accuracy)
- f is a nonlinear function, e.g. tanh
- Number of parameters w to estimate $= m + m \times (n+1) \implies$ grows linearly in size of state x
- NN finds weighted sums of state variables as low dimension representation of full state
 - In many cases, some average can accurately represent key features of the full state
 - Especially useful with a large number of state variables that behave "similarly"
 - e.g. many locations, countries, sectors, wage shocks, previous income levels
- Universal Approximation Theorem: NN can approximate any continuous function

Deep Learning Back

- More complex functions can be approximated by adding additional transformations of data (layers)
- With more layers, parameters still grow linearly with number of state variables (n)
- Two layers

$$y(x; w) \approx \sum_{i_2=1}^m w_{3,i_2} f\left(\sum_{i_1=1}^m w_{2,i_1,i_2} f\left(\sum_{j=1}^n w_{1,j,i_{i_1}} x_j\right)\right)$$

num. parameters = $n \times m + m^2 + m$

• L layers (usually at most 5)

$$y(x;w) \approx \sum_{i_L=1}^m w_{L,i_L} f\left(\sum_{i_{L-1}=1}^m w_{L-1,i_{L-1},i_L} f\left(\cdots \sum_{i_2=1}^m w_{3,i_2,i_3} f\left(\sum_{i_1=1}^m w_{2,i_1,i_2} f\left(\sum_{j=1}^n w_{1,j,i_{i_1}} x_j\right)\right) \cdots\right)\right)$$

num. parameters = $n \times m + (L-1)m^2 + m$

Comparing Approximation Methods (Back)

Standard Polynomial Approximation: weighted sum of nonlinear transformations

$$T(x;w) \approx \sum_{i_a=1}^n \cdots \sum_{i_0=1}^n w_{i_0,\dots,i_a} f_{i_0,\dots,i_a}(x)$$
, where $x = (\{y_t\}_{t=0}^{a-1}, a)$

- Number of parameters w to estimate = $n^A \implies$ grows exponentially
- Neural Network: nonlinear transformation of weighted sums

$$T(x; w) \approx \sum_{i=1}^{m} w_{2,i} f\left(\sum_{j=0}^{a} w_{1,j,i} x_j\right), \text{ where } x = (\{y_t\}_{t=0}^{a-1}, a)$$

- Number of parameters w to estimate $= m + m \times (a+1) \implies$ grows linearly
- NN finds weighted sum of state variables as low dimension representation of state
 - Usually some average can accurately represent the full state vector
 - Especially if state variables are similar (like with income history)

Solution Method for Optimal Taxes

• Tax function, individual choices and prices are approximated as separate NN's

$$T(y_a; a, \{y_t\}_{t=0}^{a-1} \mid w_T), \ c(b, z, \varepsilon, s, \phi, a, \{y_t\}_{t=0}^{a-1} \mid w_c; w_p, w_T) \text{ and } p(s \mid w_p; w_c, w_T)$$

- Consider a perturbation to one weight of the tax function: $w_T + \Delta = (w_1, \dots, w_i + \delta, \dots, w_n)$
 - Update individual choices (and skill prices) under the perturbed tax function by gradient descent

$$\tilde{w}_c = w_c + \frac{\partial U(w_c; w_T + \Delta, \tilde{w}_p)}{\partial w_c}$$

- Compute social welfare under the perturbed tax function: $W(\tilde{w}_c, \tilde{w}_p, w_T + \Delta)$
- Optimal tax system is the w_T such that a perturbation produces no welfare gain

$$\frac{\partial W(w_c, w_p, w_T + \Delta)}{\partial \delta} = 0$$

• All optimization done by computer: no taking foc's by hand

Optimal Tax on Current Income

Figure: Optimal Tax on Current Income

(b) Optimal Nonparametric Tax, T(y)

• Optimal taxes have similar progressivity to US system

(a) Optimal Parametric Tax, $T(y) = y - (1 - \tau)y^{\rho}$

• Nonparametric tax has lower marginal tax rates for low and middle incomes (< \$100K)

Manadani Tan Batas

Optimal Age-Dependent Tax (Back)

Figure: Optimal Age-Dependent Tax on Current Income

- Optimal taxes increase and become less progressive with age
- Mostly similar except nonparametric has low taxes on young with very high income

▶ Present Values

Current Income, Thousands of Dollars

	10	25	50	100	200	500
US System	5%	17%	25%	32%	39%	47%
Parametric	4%	22%	25%	34%	41%	49%
Nonparametric	3%	15%	24%	40%	40%	47%

Table: Marginal Tax Rates, Taxes on Current Income

Age-Dependent Marginal Tax Rates • Back

Current Income, Thousands of Dollars

Age	10	25	50	100	200	500
30	-21%	1%	15%	28%	38%	50%
45	10%	22%	29%	36%	43%	50%
60	26%	36%	43%	49%	55%	61%

Table: Marginal Tax Rates, Parametric Age-Dependent Tax

Current Income, Thousands of Dollars

Age	10	25	50	100	200	500
30	-20%	0%	16%	28%	39%	19%
45	10%	21%	29%	36%	42%	50%
60	26%	35%	42%	48%	53%	59%

Table: Marginal Tax Rates, Nonparametric Age-Dependent Tax

Allocations with HD Policy (Back)

- Compare steady state allocations under HD tax to allocations under AD tax
- Average gain of switching from AD tax to HD tax by present value of income:

$$PV_i(y) = \left(\frac{1 - R^{-1}}{1 - R^{-A}}\right) \sum_{a=0}^{A-1} R^{-a} y_{ia}$$

Quartile, Present Value of Income

	0-25%	25-50%	50-75%	75-100%	Total
Income $(PV(y))$	-0.82%	-0.56%	-0.17%	5.20%	2.12%
Consumption $(PV(c))$	0.35%	-0.10%	-0.23%	7.08%	2.85%
Leisure $(PV(1-h))$	0.38%	0.40%	0.38%	-1.15%	0.01%
Skills (s)	-2.26%	-0.66%	0.65%	1.64%	0.51%
Skill Price $(p(s))$	-0.39%	0.19%	0.75%	1.72%	0.70%

Table: Percent Gain in Average Allocations by Quartile of Present Value of Income, AD to HD Tax

- Note: $\phi = 0.275$, so leisure is valued about 3.6× consumption
- Higher $Y \implies$ higher $p(s) = (Y/[N(s)f_s(s)])^{\frac{1}{\omega}} \implies$ similar c with lower h and s

Present Value of Taxes Paid (Back)

Figure: Present Value of Taxes Paid by Present Value of Income

- Compare present value of taxes paid in initial period: $PV_i(T) = \left(\frac{1-R^{-1}}{1-R^{-A}}\right) \sum_{a=0}^{A-1} R^{-a} T_a(y_{ia})$
 - PV of taxes paid are similar in all three for incomes below \$100K
 - Nonparametric taxes flatter for incomes over \$200K
 - HD taxes more dispersed for incomes over \$100K

Allocations with HD Policy (Back)

Present Value of Income Quartile

	0-25%	25-50%	50-75%	75-100%	Total
Income $(PV(y))$	37,991	58,902	82,549	149,060	82,124
Consumption $(PV(c))$	36,466	51,568	67,279	106,729	65,510
Taxes $(PV(T))$	1,525	7,333	15,267	42,315	16,610
Avg. Tax Rates $(PV(T/y))$	-4.4%	3.9%	9.4%	17.6%	6.6%
Leisure $(PV(1-h))$	0.648	0.643	0.639	0.634	0.641
Skills (s)	0.221	0.333	0.460	0.823	0.459
Skill Price $(p(s))$	0.179	0.197	0.218	0.279	0.218

Table: Average Allocations by Quartile of PV Income Distribution, AD Tax

Quartile Present Value of Income

	Quartile, Fresent value of filcome					
	0-25%	25-50%	50-75%	75-100%	Total	
Income $(PV(y))$	37,679	58,573	82,407	156,819	83,868	
Consumption $(PV(c))$	36,588	51,518	67,124	114,281	67,377	
Taxes $(PV(T))$	1,164	7,117	15,288	42,588	16,539	
Avg. Tax Rates $(PV(T/y))$	-5.6%	3.1%	9.0%	17.4%	6.0%	
Leisure $(PV(l))$	0.650	0.646	0.642	0.626	0.641	
Skills (s)	0.216	0.331	0.463	0.837	0.462	
Skill Price $(p(s))$	0.178	0.198	0.219	0.284	0.220	

Table: Average Allocations by Quartile of PV Income Distribution, HD Tax

Parametric History-Dependent Marginal Tax Rates

Current Income, Thousands of Dollars

Age	10	25	50	100	200	500
30	-25%	-1%	14%	27%	38%	50%
45	13%	23%	30%	36%	42%	49%
60	33%	41%	47%	52%	57%	62%

Table: Marginal Tax Rates, Parametric History-Dependent Tax, $\bar{y} = \$50,000$

Current Income, Thousands of Dollars

Age	10	25	50	100	200	500
30	7%	16%	23%	29%	35%	42%
45	9%	20%	28%	35%	42%	49%
60	12%	25%	34%	42%	49%	57%

Table: Marginal Tax Rates, Parametric History-Dependent Tax, $\bar{y} = \$500,000$

Separable Utility (Back)

Now consider the same exercise, but with a separable utility function

$$u_i(c_{ia}, h_{ia}) = \log c_{ia} - \exp \varphi_i \frac{h_{ia}^{1 + \frac{1}{\nu}}}{1 + \frac{1}{\nu}}, \ \varphi \sim N(m_{\varphi}, v_{\varphi})$$

- Labor supply elasticity now constant for all households and equals ν
- Set $\nu = 0.5$ (standard value), re-calibrate $(m_{\varphi}, v_{\varphi})$ and compute welfare gains as before

	Income History	Age and Current Income	Only Current Income
Nonparametric	0.0%	1.55%	5.20%
Log-linear		1.65%	5.33%

Table: Welfare Gain of Moving to Nonparametric, History Dependent Taxes

Separable Utility: Tax on Current Income

Figure: Optimal Tax on Current Income, Separable Utility

• Dotted line is parametric approximation of US income tax system as $T_{US}(y) = y - (1 - \tau_{US})y^{\rho_{US}}$

Separable Utility: Age-Dependent Tax (Back)

Figure: Optimal Age-Dependent Tax on Current Income, Separable Utility

Separable Utility: History-Dependent Tax (Back)

Figure: Optimal Non-parametric History-Dependent Tax, Nonseparable Utility

• Tax rates of two households who each earn \$50K and \$400K for first 10, 20 and 30 years of working life

Separable Utility: History-Dependent Marginal Tax Rates

	Age			
	30	40	50	60
Low Income History (\$50K)	-25%	30%	35%	49%
Middle Income History (\$100K)	-5%	21%	38%	49%
High Income History (\$400K)	29%	33%	20%	9%

Table: Average Tax Rates, History-Dependent Tax, Separable Utility

	Age			
	30	40	50	60
Low Income History (\$50K)	6%	36%	39%	49%
Middle Income History (\$100K)	20%	32%	41%	49%
High Income History (\$400K)	37%	40%	32%	26%

Table: Marginal Tax Rates, History-Dependent Tax, Separable Utility

Summary of Tax Functions (Back)

	History of Income	Age and Current Income	Only Current Income
Nonparametric	$T(y; \{y_t\}_{t=0}^{a-1}, a)$	T(y;a)	T(y)
Log-linear		$y-(1-\tau(a))y^{\rho(a)}$	$y-(1-\tau)y^\rho$

Table: Summary of Tax Functions