Initialize your Stata edition

Notes:

- Unicode is supported; see help unicode_advice.
- 2. Maximum number of variables is set to 5,000; see help set_maxvar.

I began experimenting with the popular Stata system file, the auto.dta dataset is the most popular. It's nice and easy

We begin by inspecting the dataset with the simple describe command.

```
In [6]: %%stata describe
```

Contains data from	C:\Program	Files\Stata17/ado\base/a/auto.dta
Observations:	74	1978 automobile data
Variables:	12	13 Apr 2020 17:45
		(dta has notes)

Variable name	Storage type	Display format	Value label	Variable label
make price mpg rep78 headroom trunk weight length turn displacement gear_ratio foreign	str18 int int float int int int int byte	%-18s %8.0gc %8.0g %8.0g %6.1f %8.0g %8.0gc %8.0gc %8.0g %8.0g %8.0g	origin	Make and model Price Mileage (mpg) Repair record 1978 Headroom (in.) Trunk space (cu. ft.) Weight (lbs.) Length (in.) Turn circle (ft.) Displacement (cu. in.) Gear ratio Car origin
101 61811	5) 66	700.08	01 18111	641 01 18111

Sorted by: foreign

Scatter plot analysis

We can check if an association exists between the price of the car and its weight.

```
In [7]: %%stata
        twoway (scatter price weight, mcolor(black%65)) ///
        (lfit price weight, lcolor(black%65) lpattern(shortdash) lwidth(thick)), ///
        ytitle(Price, size(medsmall) color(black) ///
        margin(medsmall)) ///
        xtitle(Weight, size(medsmall) ///
        color(black) margin(medsmall)) ///
        ylabel(#5, format(%9.1f) angle(horizontal) labsize(small) nogrid) ///
        xlabel(, format(%9.1f) labsize(small)) ///
        legend(rows(1) symxsize(*0.5)) ///
        graphregion(lcolor(black) lwidth(thin) fcolor(white))
       . twoway (scatter price weight, mcolor(black%65)) ///
       > (lfit price weight, lcolor(black%65) lpattern(shortdash) lwidth(thick)), ///
       > ytitle(Price, size(medsmall) color(black) ///
       > margin(medsmall)) ///
       > xtitle(Weight, size(medsmall) ///
       > color(black) margin(medsmall)) ///
       > ylabel(#5, format(%9.1f) angle(horizontal) labsize(small) nogrid) ///
       > xlabel(, format(%9.1f) labsize(small)) ///
       > legend(rows(1) symxsize(*0.5)) ///
```

> graphregion(lcolor(black) lwidth(thin) fcolor(white))

.

Time to do something fancy.

In [8]: **%%stata**

The code chunk below changes the working directory and loads a dataset on imports and exports from Malawi.

```
global path "C:\Users\lucio\OneDrive\Desktop\Jupiter\01_tutorials"
global raw "${path}\raw"
global intermediate "${path}\outputs"
global outputs "${path}\outputs"
global final "${path}\final"

. global path "C:\Users\lucio\OneDrive\Desktop\Jupiter\01_tutorials"

. global raw "${path}\raw"

. global intermediate "${path}\intermediate"

. global outputs "${path}\outputs"

. global final "${path}\final"

.

In [10]: %%stata
use "$final\mwi_trade.dta", clear
describe
```

```
. use "$final\mwi_trade.dta", clear
(Trade statistics for Malawi. 1964 - 2022)
```

. describe

Contains data from C:\Users\lucio\OneDrive\Desktop\Jupiter\01_tutorials\final\m

> wi_trade.dta

Observations: 59 Trade statistics for Malawi.

1964 - 2022

Variables: 14 Jun 2025 14:05

Variable	Storage	Display	Value	Variable label
name	type	format	label	
t m x lm lx	float double long float float	%ty %8.0g %8.0g %9.0g %9.0g		Imports, Millions Malawi Kwacha Exports, Millions Malawi Kwacha Log of imports Log of exports

Sorted by: t

We can investigate the stationarity properties of these two variables: the log of imports and the log of exports, using the traditional Phillips-Perron Unit root test.

In [16]: **%stata** varsoc lm

Lag-order selection criteria

Sample: 1968 thru 2022 Number of obs = 55

- 1				df	р	FPE		HQIC	SBIC
	-								5.46012
	1	9.66102	315.62*	1	0.000	.044315*	278583*	250355*	205589*
	2	10.3043	1.2866	1	0.257	.044897	265612	223271	156121
	3	10.3332	.0577	1	0.810	.046518	230298	173843	08431
	4	10.6697	.67298	1	0.412	.047666	20617	135602	023685

-----+

* optimal lag Endogenous: 1m

Exogenous: _cons

In [18]: **%%stata**

pperron lm, lags(1)

Phillips-Perron test for unit root Variable: lm

Number of obs = 58 Newey-West lags = 1

H0: Random walk without drift, d = 0

			Dickey-Fuller	
	Test	(critical value	
	statistic	1%	5%	10%
Z(rho)	0.158	-19.044	-13.364	-10.748
Z(t)	0.402	-3.569	-2.924	-2.597

MacKinnon approximate p-value for Z(t) = 0.9816.

In [19]: **%%stata** varsoc lx

Lag-order selection criteria

Sample: 1968 thru 2022 Number of obs = 55

									SBIC	:
:	· .				•			•		:
	0	-144.52				11.6319	5.29162	5.30573	5.32812	
	1	.295846	289.63	1	0.000	.062295	.061969	.090197	.134963*	
	2	2.252	3.9123*	1	0.048	.060171*	.0272*	.069541*	.136691	
	3	2.76659	1.0292	1	0.310	.061251	.044851	.101306	.190839	
	4	3.81224	2.0913	1	0.148	.061165	.043191	.11376	.225676	

* optimal lag Endogenous: lx Exogenous: _cons

In [20]: **%%stata**

pperron lx, lags(2)

Phillips-Perron test for unit root Number of obs = 58 Variable: 1x Newey-West lags = 2

H0: Random walk without drift, d = 0

			Dickey-Fuller	
	Test	(critical value	
	statistic	1%	5%	10%
Z(rho) Z(t)	0.010 0.026	-19.044 -3.569	-13.364 -2.924	-10.748 -2.597

MacKinnon approximate p-value for Z(t) = 0.9606.

We stop here for now!

Have you tried this setup? I would be happy to learn more. I will be exploring this integration further.

In []: