Package 'survcomp'

October 24, 2023

October 24, 2023
Type Package
Title Performance Assessment and Comparison for Survival Analysis
Version 1.52.0
Date 2021-12-14
Description Assessment and Comparison for Performance of Risk Prediction (Survival) Models.
biocViews GeneExpression, DifferentialExpression, Visualization
Depends survival, prodlim, R (>= 3.4)
Suggests Hmisc, clinfun, xtable, Biobase, BiocManager
Imports ipred, SuppDists, KernSmooth, survivalROC, bootstrap, grid, rmeta, stats, graphics
License Artistic-2.0
URL http://www.pmgenomics.ca/bhklab/ git_url https://git.bioconductor.org/packages/survcomp git_branch RELEASE_3_18 git_last_commit_6e3bbe2 git_last_commit_date 2023-10-24 Date/Publication 2023-10-24 R topics documented:
survcomp-package 2 balanced.hazard.ratio 2 bhr.comp 3 breastCancerData 6 censor.time 9 cindex.comp 10 cindex.comp.meta 1 combine.est 1 combine.test 1 concordance.index 1

2 survcomp-package

concordanceIndexC							17
cvpl							18
D.index							19
dindex.comp							21
dindex.comp.meta							22
fisherz							23
forestplot.surv							25
getsurv2							26
get_concordanceIndex_onevariable							27
hazard.ratio							28
hr.comp							30
hr.comp.meta							31
hr.comp2							32
iauc.comp							34
ibsc.comp							35
km.coxph.plot							37
logpl							39
mainz7g							40
metaplot.surv							41
mrmr.cindex							43
mrmr.cindex.ensemble							44
mrmr_cIndex							46
mrmr_cIndex_ensemble_remove							46
nki7g							47
no.at.risk							49
sbrier.score2proba							50
1							51
td.sens.spec							53
tdrocc							54
test.hetero.est							55
							57
transbig7g							58
unt7g							59
upp7g							60
vdx7g							62
							64
urvcomp-package Performance Asses	ssment	and Cor	mpariso	on for Surv	vival Analy	vsis	

Description

Functions to perform the performance assessment and comparison of risk prediction (survival) models.

survcomp-package 3

Details

Package: survcomp Type: Package Version: 1.52.0 Date: 2021-12-14 License: Artistic-2.0

Author(s)

Benjamin Haibe-Kains

- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada

http://www.pmgenomics.ca/bhklab/

Former labs:

- Computational Biology and Functional Genomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA

http://compbio.dfci.harvard.edu/

- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- http://cccb.dfci.harvard.edu/index.html
- Machine Learning Group (MLG), Universite Libre de Bruxelles, Bruxelles, Belgium

http://www.ulb.ac.be/di/mlg/

- Breast Cancer Translational Research Laboratory (BCTRL), Institut Jules Bordet, Bruxelles, Belgium

http://www.bordet.be/en/services/medical/array/practical.htm

Markus Schroeder

- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland

http://bioinfo-casl.ucd.ie/cib/people/students/markusschroder

Maintainer:

Benjamin Haibe-Kains

<benjamin.haibe.kains@utoronto.ca>

Markus Schroeder

<markus.schroeder@ucdconnect.ie>

See Also

survival, Hmisc, Design, prodlim, survivalROC, ipred, bootstrap, clinfun

4 balanced.hazard.ratio

balanced.hazard.ratio Function to estimate the balanced hazard ratio through Cox regression

Description

Function to compute the balanced hazard ratio for a risk group prediction.

Usage

```
balanced.hazard.ratio(x, surv.time, surv.event, alpha = 0.05,
method.test = c("logrank", "likelihood.ratio", "wald"),
ties = c("efron", "breslow", "exact"), weights, strat, ...)
```

Arguments

x a vector of risk group predictions. surv.time a vector of event times.

surv.event a vector of event occurrence indicators.
alpha alpha level to compute confidence interval.

method.test ...
ties ...
weights ...
strat ...

... additional parameters to be passed to the hazard.ratio and the coxph func-

tions.

Details

The balanced hazard ratio is computed using the Cox model.

Value

balanced.hazard.ratio

balanced hazard ratio estimate.

coef coefficient (beta) estimated in the cox regression model.

se standard error of the coefficient (beta) estimate.

lower lower bound for the confidence interval.
upper upper bound for the confidence interval.

p.value p-value computed using the score (logrank) test whether the balanced hazard

ratio is different from 1.

n number of samples used for the estimation.

coxm coxph.object fitted on the survival data and x.

data list of data used to compute the balanced hazard ratio (x, surv.time and surv.event).

bhr.comp 5

Author(s)

Samuel Branders

References

Branders, S. and Dupont, P. (2015) "A balanced hazard ratio for risk group evaluation from survival data", *Statistics in Medicine*, **34**(17), pages 2528–2543.

See Also

```
hazard.ratio, coxph, coxph.object
```

Examples

bhr.comp

Function to statistically compare two balanced hazard ratios

Description

This function compares two balanced hazard ratios from their betas and standard errors as computed by a Cox model for instance. The statistical test is a Student t test for dependent samples. The two balanced hazard ratios must be computed from the same survival data.

Usage

```
bhr.comp(bhr1, bhr2)
```

Arguments

bhr1 first balanced hazard ratio. bhr2 second balanced hazard ratio.

Details

The two balanced hazard ratios must be computed from the same samples (and corresponding survival data). The function uses a Student t test for dependent samples.

6 breastCancerData

Value

p.value	p-value from the Student t test for the comparison beta1 > beta2 (equivalently bhr1 > bhr2)
l. l 4	color of the first beloved beyond notice

bhr1 value of the first balanced hazard ratio bhr2 value of the second balanced hazard ratio

Author(s)

Samuel Branders, Benjamin Haibe-Kains

References

Student 1908) "The Probable Error of a Mean", *Biometrika*, **6**, 1, pages 1–25.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

Branders, S. and Dupont, P. (2015) "A balanced hazard ratio for risk group evaluation from survival data", *Statistics in Medicine*, **34**(17), pages 2528–2543.

See Also

```
balanced.hazard.ratio,coxph,t.test
```

Examples

```
set.seed(12345)
age <- as.numeric(rnorm(100, 50, 10) >= 50)
size <- as.numeric(rexp(100,1) > 1)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
bhr1 <- balanced.hazard.ratio(x=age, surv.time=stime, surv.event=sevent)
bhr2 <- balanced.hazard.ratio(x=size, surv.time=stime, surv.event=sevent)
bhr.comp(bhr1=bhr1, bhr2=bhr2)</pre>
```

breastCancerData Sample data containing six datasets for gene expression, annotations and clinical data.

Description

This dataset contains a subset of the gene expression, annotations and clinical data from 6 different datasets (see section details). The subsets contain the seven gene signature introduced by Desmedt et al. 2008.

breastCancerData 7

Usage

```
data(breastCancerData)
```

Format

Six ExpressionSets. Example for 'mainz7g': eSet with 7 features and 200 samples, containing:

- exprs(mainz7g): Matrix containing gene expressions as measured by Affymetrix hgu133a technology (single-channel, oligonucleotides).
- fData(mainz7g): AnnotatedDataFrame containing annotations of Affy microarray platform hgu133a.
- pData(mainz7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(mainz7g): MIAME object containing information about the dataset.
- annotation(mainz7g): Name of the affy chip.

Details

This dataset represents subsets of the studies published by Schmidt et al. 2008 [mainz7g], Wang. et al. 2005 and Minn et al. 2007 [vdx7g], Miller et al. 2005 [upp7g], Sotiriou et al. 2006 [unt7g], Desmedt et al. 2007 and TRANSBIG [transbig7g], van't Veer et al. 2002 and van de Vijver et al. 2002 [nki7g]. Each subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as uPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

```
mainz: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11121
transbig: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390
upp: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494
unt: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2990
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532
vdx: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5327
nki: http://www.rii.com/publications/2002/vantveer.html
```

References

Marcus Schmidt, Daniel Boehm, Christian von Toerne, Eric Steiner, Alexander Puhl, Heryk Pilch, Hans-Anton Lehr, Jan G. Hengstler, Hainz Koelbl and Mathias Gehrmann (2008) "The Humoral Immune System Has a Key Prognostic Impact in Node-Negative Breast Cancer", *Cancer Research*, **68**(13):5405-5413

Christine Desmedt, Fanny Piette, Sherene Loi, Yixin Wang, Francoise Lallemand, Benjamin Haibe-Kains, Giuseppe Viale, Mauro Delorenzi, Yi Zhang, Mahasti Saghatchian d Assignies, Jonas Bergh,

8 breastCancerData

Rosette Lidereau, Paul Ellis, Adrian L. Harris, Jan G. M. Klijn, John A. Foekens, Fatima Cardoso, Martine J. Piccart, Marc Buyse and Christos Sotiriou (2007) "Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series", *Clinical Cancer Research*, **13**(11):3207-3214

Lance D. Miller, Johanna Smeds, Joshy George, Vinsensius B. Vega, Liza Vergara, Alexander Ploner, Yudi Pawitan, Per Hall, Sigrid Klaar, Edison T. Liu and Jonas Bergh (2005) "An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival" *Proceedings of the National Academy of Sciences of the United States of America* **102**(38):13550-13555

Christos Sotiriou, Pratyaksha Wirapati, Sherene Loi, Adrian Harris, Steve Fox, Johanna Smeds, Hans Nordgren, Pierre Farmer, Viviane Praz, Benjamin Haibe-Kains, Christine Desmedt, Denis Larsimont, Fatima Cardoso, Hans Peterse, Dimitry Nuyten, Marc Buyse, Marc J. Van de Vijver, Jonas Bergh, Martine Piccart and Mauro Delorenzi (2006) "Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis", *Journal of the National Cancer Institute*, **98**(4):262-272

Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins and J. A. Foekens (2005) "Gene-Expression Profiles to Predict Distant Metastasis of Lymph-Node-Negative Primary Breast Cancer", *Lancet*, **365**:671-679

Andy J. Minn, Gaorav P. Gupta, David Padua, Paula Bos, Don X. Nguyen, Dimitry Nuyten, Bas Kreike, Yi Zhang, Yixin Wang, Hemant Ishwaran, John A. Foekens, Marc van de Vijver and Joan Massague (2007) "Lung metastasis genes couple breast tumor size and metastatic spread", *Proceedings of the National Academy of Sciences*, **104**(16):6740-6745

Laura J. van't Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, Augustinus A.M. Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, Rene Bernards and Stephen H. Friend (2002) "Gene expression profiling predicts clinical outcome of breast cancer", *Nature*, **415**:530-536

M. J. van de Vijver, Y. D. He, L. van't Veer, H. Dai, A. M. Hart, D. W. Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H. Friend and R. Bernards (2002) "A Gene Expression Signature as a Predictor of Survival in Breast Cancer", *New England Journal of Medicine*, **347**(25):1999-2009

Examples

load Biobase package
library(Biobase)
load the dataset
data(breastCancerData)
########
Example for the mainz7g dataset
########
show the first 5 columns of the expression data
exprs(mainz7g)[,1:5]
show the first 6 rows of the phenotype data
head(pData(mainz7g))
show first 20 feature names

censor.time 9

```
featureNames(mainz7g)
## show the experiment data summary
experimentData(mainz7g)
## show the used platform
annotation(mainz7g)
## show the abstract for this dataset
abstract(mainz7g)
```

censor.time

Function to artificially censor survival data

Description

The function censors the survival data at a specific point in time. This is is useful if you used datasets having different follow-up periods.

Usage

```
censor.time(surv.time, surv.event, time.cens = 0)
```

Arguments

surv.time vector of times to event occurrence
surv.event vector of indicators for event occurrence

time.cens point in time at which the survival data must be censored

Value

```
surv.time.cens

vector of censored times to event occurrence
surv.event.cens

vector of censored indicators for event occurrence
```

Author(s)

Benjamin Haibe-Kains

Examples

```
set.seed(12345)
stime <- rexp(30)
cens <- runif(30,0.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
censor.time(surv.time=stime, surv.event=sevent, time.cens=1)</pre>
```

10 cindex.comp

cindex.comp Function to compare two concordance indices			
	cindex.comp	Function to compare two concordance indices	

Description

This function compares two concordance indices computed from the same data by using the function concordance.index. The statistical test is a Student t test for dependent samples.

Usage

```
cindex.comp(cindex1, cindex2)
```

Arguments

cindex1	first concordance index as returned by the concordance.index function.
cindex2	second concordance index as returned by the concordance.index function.

Details

The two concordance indices must be computed from the same samples (and corresponding survival data). The function uses a Student t test for dependent samples.

Value

p.value	p-value from the Student t test for the comparison cindex $1 > \text{cindex } 2$.
cindex1	value of the first concordance index.
cindex2	value of the second concordance index.

Author(s)

Benjamin Haibe-Kains

References

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**(19), pages 2200–2208.

See Also

concordance.index.

cindex.comp.meta 11

Examples

```
set.seed(12345)
age <- rnorm(100, 50, 10)
size <- rexp(100,1)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
c1 <- concordance.index(x=age, surv.time=stime, surv.event=sevent, method="noether")
c2 <- concordance.index(x=size, surv.time=stime, surv.event=sevent, method="noether")
cindex.comp(c1, c2)</pre>
```

cindex.comp.meta

Function to compare two concordance indices

Description

This function compares two lists of concordance indices computed from the same survival data by using the function concordance.index. The statistical test is a Student t test for dependent samples.

Usage

```
cindex.comp.meta(list.cindex1, list.cindex2, hetero = FALSE)
```

Arguments

list.cindex1 first list of concordance indices as returned by the concordance.index function.

list.cindex2 second list of concordance indices as returned by the concordance.index function.

hetero if TRUE, a random effect model is use to compute the meta-estimators. Other-

wise a fixed effect model is used.

Details

In meta-analysis, we estimate the statistic of interest in several independent datasets. It results a list of estimates such as list of concordance indices. The two lists of concordance indices must be computed from the same samples (and corresponding survival data). The function computes a meta-estimator for the correlations between the two scores and uses a Student t test for dependent samples.

Value

p.value	p-value from the Student t test for the comparison cindex $1 > \text{cindex } 2$.
cindex1	meta-estimator of the first concordance index.
cindex2	meta-estimator of the second concordance index.

12 combine.est

Author(s)

Benjamin Haibe-Kains

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", *Biometrics*, **10**, pages 101–129.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

concordance.index.

Examples

```
#first dataset
set.seed(12345)
age <- rnorm(100, 50, 10)
size <- rexp(100,1)
stime <- rexp(100)
cens <- runif(100,.5,2)</pre>
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
c1.1 <- concordance.index(x=age, surv.time=stime, surv.event=sevent,</pre>
  method="noether")
c2.1 <- concordance.index(x=size, surv.time=stime, surv.event=sevent,</pre>
  method="noether")
#second dataset
set.seed(54321)
age <- rnorm(110, 53, 10)
size <- rexp(110,1.1)
stime <- rexp(110)
cens <- runif(110,.55,2)</pre>
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
c1.2 <- concordance.index(x=age, surv.time=stime, surv.event=sevent,</pre>
  method="noether")
c2.2 <- concordance.index(x=size, surv.time=stime, surv.event=sevent,</pre>
  method="noether")
cindex.comp.meta(list.cindex1=list("cindex.age1"=c1.1, "cindex.age2"=c1.2),
  list.cindex2=list("cindex.size1"=c2.1, "cindex.size2"=c2.2))
```

combine.est

Function to combine estimates

Description

The function combines several estimators using meta-analytical formula to compute a meta-estimate.

combine.est 13

Usage

```
combine.est(x, x.se, hetero = FALSE, na.rm = FALSE)
```

Arguments

x vector of estimates

x.se vector of standard errors of the corresponding estimates

hetero TRUE is the heterogeneity should be taken into account (random effect model),

FALSE otherwise (fixed effect model)

na.rm TRUE if the missing values should be removed from the data, FALSE otherwise

Value

estimate meta-estimate

se standard error of the meta-estimate

Author(s)

Benjamin Haibe-Kains

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", *Biometrics*, **10**, pages 101–129.

See Also

```
test.hetero.est
```

Examples

```
set.seed(12345)
x1 <- rnorm(100, 50, 10) + rnorm(100, 0, 2)
m1 <- mean(x1)
se1 <- sqrt(var(x1))
x2 <- rnorm(100, 75, 15) + rnorm(100, 0, 5)
m2 <- mean(x2)
se2 <- sqrt(var(x2))

#fixed effect model
combine.est(x=c(m1, m2), x.se=c(se1, se2), hetero=FALSE)
#random effect model
combine.est(x=c(m1, m2), x.se=c(se1, se2), hetero=TRUE)</pre>
```

14 combine.test

combine.test	Function to combine probabilities
--------------	-----------------------------------

Description

The function combines several p-value estimated from the same null hypothesis in different studies involving independent data.

Usage

```
combine.test(p, weight, method = c("fisher", "z.transform", "logit"),
hetero = FALSE, na.rm = FALSE)
```

Arguments

p	vector of p-values
weight	vector of weights (e.g. sample size of each study)
method	fisher for the Fisher's combined probability test, z.transform for the Z-transformed test, logit for the weighted Z-method
hetero	TRUE is the heterogeneity should be taken into account, FALSE otherwise
na.rm	TRUE if the missing values should be removed from the data, FALSE otherwise

Details

The p-values must be one-sided and computed from the same null hypothesis.

Value

p-value

Author(s)

Benjamin Haibe-Kains

References

Whitlock, M. C. (2005) "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach", *J. Evol. Biol.*, **18**, pages 1368–1373.

See Also

```
test.hetero.test
```

concordance.index 15

Examples

```
p <- c(0.01, 0.13, 0.07, 0.2)
w <- c(100, 50, 200, 30)

#with equal weights
combine.test(p=p, method="z.transform")
#with p-values weighted by the sample size of the studies
combine.test(p=p, weight=w, method="z.transform")</pre>
```

concordance.index

Function to compute the concordance index for survival or binary class prediction

Description

Function to compute the concordance index for a risk prediction, i.e. the probability that, for a pair of randomly chosen comparable samples, the sample with the higher risk prediction will experience an event before the other sample or belongs to a higher binary class.

Usage

```
concordance.index(x, surv.time, surv.event, cl, weights, comppairs=10,
strat, alpha = 0.05, outx = TRUE, method = c("conservative", "noether",
"nam"), alternative = c("two.sided", "less", "greater"), na.rm = FALSE)
```

Arguments

x a vector of risk predictions.

surv.time a vector of event times.

surv.event a vector of event occurence indicators.

cl a vector of binary class indicators.

weights weight of each sample.

comppairs threshold for compairable patients.

strat stratification indicator.

alpha apha level to compute confidence interval.

outx set to TRUE to not count pairs of observations tied on x as a relevant pair. This

results in a Goodman-Kruskal gamma type rank correlation.

method can take the value conservative, noether or name (see paper Pencina et al. for

details).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" (concordance index is greater than 0.5) or "less" (concor-

dance index is less than 0.5). You can specify just the initial letter.

na.rm TRUE if missing values should be removed.

16 concordance.index

Value

c.index concordance index estimate.
se standard error of the estimate.

lower lower bound for the confidence interval.
upper upper bound for the confidence interval.

p.value p-value for the statistical test if the estimate if different from 0.5.

n number of samples used for the estimation.

data list of data used to compute the index (x, surv.time and surv.event, or cl).

comppairs number of compairable pairs.

Note

The "direction" of the concordance index (< 0.5 or > 0.5) is the opposite than the rcorr.cens function in the Hmisc package. So you can easily get the same results than rcorr.cens by changing the sign of x.

Author(s)

Benjamin Haibe-Kains, Markus Schroeder

References

Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) "Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error", *Statistics in Medicine*, **15**, pages 361–387.

Pencina, M. J. and D'Agostino, R. B. (2004) "Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation", *Statistics in Medicine*, **23**, pages 2109–2123, 2004.

See Also

```
rcorr.cens, coxphCPE
```

Examples

concordanceIndexC 17

```
cat("binary class prediction:\n")
## is age predictive of sex?
concordance.index(x=age, cl=sex, strat=strat, method="noether")
```

concordanceIndexC

Concordance index C

Description

Concordance index C

Arguments

msurv ustrat x2 c12 st se ${\tt weights}$ strat outx ... ch dh uh rph lenS lenU

Author(s)

Catharina Colsen, Zhaleh Safikhani, Benjamin Haibe-Kains

18 cvpl

cvp1 Function to compute the CVPL	cvpl	Function to compute the CVPL	
-----------------------------------	------	------------------------------	--

Description

The function computes the cross-validated partial likelihood (CVPL) for the Cox model.

Usage

```
cvpl(x, surv.time, surv.event, strata, nfold = 1, setseed,
  na.rm = FALSE, verbose = FALSE)
```

Arguments

X	data matrix
surv.time	vector of times to event occurrence
surv.event	vector of indicators for event occurrence
strata	stratification variable
nfold	number of folds for the cross-validation
setseed	seed for the random generator
na.rm	TRUE if the missing values should be removed from the data, FALSE otherwise
verbose	verbosity of the function

Value

cvpl	mean cross-validated partial likelihood (lower is better)
pl	vector of cross-validated partial likelihoods
convergence	vector of booleans reporting the convergence of the Cox model in each fold
n	number of observations used to estimate the cross-validated partial likelihood

Author(s)

Benjamin Haibe-Kains

References

Verweij PJM. and van Houwelingen H (1993) "Cross-validation in survival analysis", *Statistics in Medicine*, **12**, pages 2305–2314

van Houwelingen H, Bruinsma T, Hart AA, van't Veer LJ, and Wessels LFA (2006) "Cross-validated Cox regression on microarray gene expression data", *Statistics in Medicine*, **25**, pages 3201–3216.

See Also

```
logpl, coxph
```

D.index 19

Examples

D.index

Function to compute the D index

Description

Function to compute the D index for a risk prediction, i.e. an estimate of the log hazard ratio comparing two equal-sized prognostic groups. This is a natural measure of separation between two independent survival distributions under the proportional hazards assumption.

Usage

```
D.index(x, surv.time, surv.event, weights, strat, alpha = 0.05,
method.test = c("logrank", "likelihood.ratio", "wald"), na.rm = FALSE, ...)
```

Arguments

Х a vector of risk predictions. surv.time a vector of event times. surv.event a vector of event occurrence indicators. weight of each sample. weights strat stratification indicator. alpha apha level to compute confidence interval. method.test Statistical test to use in order to compute the p-values related to a D. index, see summary.coxph for more details. TRUE if missing values should be removed. na.rm additional parameters to be passed to the coxph function.

Details

The D index is computed using the Cox model fitted on the scaled rankits of the risk scores instead of the risk scores themselves. The scaled rankits are the expected standard Normal order statistics scaled by kappa = sqrt(8/pi). See (Royston and Sauerbrei, 2004) for details.

Note that the value D reported in (Royston and Sauerbrei, 2004) is given

D.index

Value

d.index	The d.index value is the robust hazard ratio (coefficient exponentiated).
coef	D index as reported in (Royston and Sauerbrei, 2004), ie. coefficient fitted in the cox regression model.
se	standard error of the estimate.
lower	lower bound for the confidence interval.
upper	upper bound for the confidence interval.
p.value	p-value for the statistical test if the estimate if different from 0.5.
n	number of samples used for the estimation.
coxm	coxph.object fitted on the survival data and z (see below).
data	list of data used to compute the index (x, z, surv.time and surv.event). The item z contains the scaled rankits which are the expected standard Normal order statistics scaled by kappa.

Author(s)

Benjamin Haibe-Kains

References

Royston, P. and Sauerbrei, W. (2004) "A new measure of prognostic separation in survival data", Statistics in Medicine, **23**, pages 723–748.

See Also

```
coxph, coxph.object, normOrder
```

Examples

dindex.comp 21

Function to compare two D indices

Description

This function compares two D indices from their betas and standard errors as computed by a Cox model for instance. The statistical test is a Student t test for dependent samples. The two D indices must be computed using the D. index function from the same survival data.

Usage

```
dindex.comp(dindex1, dindex2)
```

Arguments

dindex1	first D index
dindex2	second D index

Details

The two D indices must be computed using the D.index function from the same samples (and corresponding survival data). The function uses a Student t test for dependent samples.

Value

p.value	p-value from the Wilcoxon rank sum test for the comparison dindex1 > dindex2
dindex1	value of the first D index
dindex2	value of the second D index

Author(s)

Benjamin Haibe-Kains

References

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

```
D.index, t.test
```

22 dindex.comp.meta

Examples

```
set.seed(12345)
age <- rnorm(100, 50, 10)
size <- rexp(100,1)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
d1 <- D.index(x=age, surv.time=stime, surv.event=sevent)
d2 <- D.index(x=size, surv.time=stime, surv.event=sevent)
dindex.comp(d1, d2)</pre>
```

dindex.comp.meta

Function to compare two D indices

Description

This function compares two lists of D indices computed from the same survival data by using the function D. index. The statistical test is a Student t test for dependent samples.

Usage

```
dindex.comp.meta(list.dindex1, list.dindex2, hetero = FALSE)
```

Arguments

list.dindex1 first list of D indices as returned by the D.index function.

list.dindex2 second list of D indices as returned by the D.index function.

hetero if TRUE, a random effect model is use to compute the meta-estimators. Other-

wise a fixed effect model is used.

Details

In meta-analysis, we estimate the statistic of interest in several independent datasets. It results a list of estimates such as list of D indices. The two lists of D indices must be computed from the same samples (and corresponding survival data). The function computes a meta-estimator for the correlations between the two scores and uses a Student t test for dependent samples.

Value

p.value p-value from the Student t test for the comparison dindex1 > dindex2.

dindex1 meta-estimator of the first D index.
dindex2 meta-estimator of the second D index.

Author(s)

Benjamin Haibe-Kains

fisherz 23

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", *Biometrics*, **10**, pages 101–129.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

concordance.index.

Examples

```
#first dataset
set.seed(12345)
age <- rnorm(100, 50, 10)
size <- rexp(100,1)
stime <- \text{rexp}(100)
cens <- runif(100, .5, 2)
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
d1.1 <- D.index(x=age, surv.time=stime, surv.event=sevent)</pre>
d2.1 <- D.index(x=size, surv.time=stime, surv.event=sevent)
#second dataset
set.seed(54321)
age <- rnorm(110, 53, 10)
size <- \text{rexp}(110, 1.1)
stime <- \text{rexp}(110)
cens <- runif(110,.55,2)
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
d1.2 <- D.index(x=age, surv.time=stime, surv.event=sevent)</pre>
d2.2 <- D.index(x=size, surv.time=stime, surv.event=sevent)</pre>
dindex.comp.meta(list.dindex1=list("dindex.age1"=d1.1, "dindex.age2"=d1.2),
  list.dindex2=list("dindex.size1"=d2.1, "dindex.size2"=d2.2))
```

fisherz

Function to compute Fisher z transformation

Description

The function computes the Fisher z transformation useful to calculate the confidence interval of Pearson's correlation coefficient.

Usage

```
fisherz(x, inv = FALSE, eps = 1e-16)
```

24 fisherz

Arguments

x value, e.g. Pearson's correlation coefficient

inv TRUE for inverse Fisher z transformation, FALSE otherwise

eps tolerance for extreme cases, i.e.

latex

when inv = FALSE and

latex

when inv = TRUE

Details

The sampling distribution of Pearson's *latex* is not normally distributed. R. A. Fisher developed a transformation now called "Fisher's z transformation" that converts Pearson's *latex* to the normally distributed variable z. The formula for the transformation is

latex

Two attributes of the distribution of the z statistic: (1) It is normally distributed and (2) it has a known standard error of

latex

where latex is the number of samples.

Fisher's z is used for computing confidence intervals on Pearson's correlation and for confidence intervals on the difference between correlations.

Value

Fisher's z statistic

Author(s)

Benjamin Haibe-Kains

References

R. A. Fisher (1915) "Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population". *Biometrika*, **10**,pages 507–521.

See Also

cor

forestplot.surv 25

Examples

```
set.seed(12345)
x1 <- rnorm(100, 50, 10)
x2 <- runif(100, .5, 2)
cc <- cor(x1, x2)
z <- fisherz(x=cc, inv=FALSE)
z.se <- 1 / sqrt(100 - 3)
fisherz(z, inv=TRUE)</pre>
```

forestplot.surv

Forest plots enables to display performance estimates of survival models

Description

Draw a forest plot together with a table of text.

Usage

```
forestplot.surv(labeltext, mean, lower, upper, align = NULL,
is.summary = FALSE, clip = c(-Inf, Inf), xlab = "", zero = 0,
graphwidth = unit(2, "inches"), col, xlog = FALSE,
box.size = NULL, x.ticks = NULL, ...)
```

Arguments

labeltext	Matrix of strings or NAs for blank spaces
mean	Vector of centers of confidence intervals (or NAs for blank space)
lower	Vector of lower ends of confidence intervals
upper	Vector of upper ends of confidence intervals
align	Vector giving alignment (1,r,c) for columns of table
is.summary	Vector of logicals. Summary lines have bold text and diamond confidence intervals.
clip	Lower and upper limits for clipping confidence intervals to arrows
xlab	x-axis label
zero	x-axis coordinate for zero line
graphwidth	Width of confidence interval graph
col	See meta.colors
xlog	If TRUE, x-axis tick marks are exponentiated
box.size	Override the default box size based on precision
x.ticks	Optional user-specified x-axis tick marks. Specify NULL to use the defaults, $numeric(0)$ to omit the x-axis.
	Not used.

26 getsurv2

Details

This function is more flexible than metaplot and the plot methods for meta-analysis objects, but requires more work by the user.

In particular, it allows for a table of text, and clips confidence intervals to arrows when they exceed specified limits.

Value

None

References

rmeta package, CRAN, Thomas Lumley <tlumley@u.washington.edu>. Functions for simple fixed and random effects meta-analysis for two-sample comparisons and cumulative meta-analyses. Draws standard summary plots, funnel plots, and computes summaries and tests for association and heterogeneity.

See Also

```
metaplot, forestplot
```

Examples

getsurv2

Function to retrieve the survival probabilities at a specific point in time

Description

The function retrieves the survival probabilities from a survfit object, for a specific point in time.

Usage

```
getsurv2(sf, time, which.est = c("point", "lower", "upper"))
```

Arguments

sf survfit object

time at which the survival probabilities must be retrieved

which estimation to be returned? point for the point estimate, lower for the

lower bound and upper for the upper bound

Details

The survival probabilities are estimated through the survfit function.

Value

vector of survival probabilities

Author(s)

Benjamin Haibe-Kains

See Also

survfit

Examples

```
set.seed(12345)
age <- rnorm(30, 50, 10)
stime <- rexp(30)
cens <- runif(30,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
sf <- survfit(Surv(stime, sevent) ~ 1)
getsurv2(sf, time=1)</pre>
```

```
get_concordanceIndex_onevariable
```

Get concordance index

Description

Get the concordance index

28 hazard.ratio

Arguments

 Rmsurv
 ...

 Rustrat
 ...

 Rx2
 ...

 Rc12
 ...

 Rst
 ...

 Rse
 ...

 Rweights
 ...

 Rstrat
 ...

 RN
 ...

 Routx
 ...

 RlenS
 ...

 RlenU
 ...

Author(s)

Catharina Colsen

hazard.ratio

Function to estimate the hazard ratio through Cox regression

Description

Function to compute the hazard ratio for a risk prediction.

Usage

```
hazard.ratio(x, surv.time, surv.event, weights, strat, alpha = 0.05,
method.test = c("logrank", "likelihood.ratio", "wald"), na.rm = FALSE, ...)
```

Arguments

x a vector of risk predictions. surv.time a vector of event times.

surv.event a vector of event occurrence indicators.

weights weight of each sample. strat stratification indicator.

alpha apha level to compute confidence interval.

method.test Statistical test to use in order to compute the p-values related to a D. index, see

summary.coxph for more details.

na.rm TRUE if missing values should be removed.

. . . additional parameters to be passed to the coxph function.

hazard.ratio 29

Details

The hazard ratio is computed using the Cox model.

Value

hazard.ratio hazard ratio estimate. coefficient (beta) estimated in the cox regression model. coef se standard error of the coefficient (beta) estimate. lower bound for the confidence interval. lower upper bound for the confidence interval. upper p-value computed using the likelihood ratio test whether the hazard ratio is difp.value ferent from 1. number of samples used for the estimation. n coxm coxph.object fitted on the survival data and x (see below).

list of data used to compute the hazard ratio (x, surv.time and surv.event).

Author(s)

data

Benjamin Haibe-Kains

References

Cox, D. R. (1972) "Regression Models and Life Tables", *Journal of the Royal Statistical Society Series B*, **34**, pages 187–220.

See Also

```
coxph, coxph.object
```

Examples

30 hr.comp

hr.comp Function to statistically compare two hazard ratios	
---	--

Description

This function compares two hazard ratios from their betas and standard errors as computed by a Cox model for instance. The statistical test is a Student t test for dependent samples. The two hazard ratios must be computed from the same survival data.

Usage

```
hr.comp(hr1, hr2)
```

Arguments

hr1 first hazard ratio. hr2 second hazard ratio.

Details

The two hazard ratios must be computed from the same samples (and corresponding survival data). The function uses a Student t test for dependent samples.

Value

p.value	p-value from the Student t	test for the comparison beta1 >	beta2 (equivalently

hr1 > hr2

hr1 value of the first hazard ratio hr2 value of the second hazard ratio

Author(s)

Benjamin Haibe-Kains

References

Student 1908) "The Probable Error of a Mean", Biometrika, 6, 1, pages 1–25.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

```
coxph, t.test
```

31 hr.comp.meta

Examples

```
set.seed(12345)
age <- as.numeric(rnorm(100, 50, 10) >= 50)
size \leftarrow as.numeric(rexp(100,1) > 1)
stime <- \text{rexp}(100)
cens <- runif(100,.5,2)</pre>
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
hr1 <- hazard.ratio(x=age, surv.time=stime, surv.event=sevent)</pre>
hr2 <- hazard.ratio(x=size, surv.time=stime, surv.event=sevent)</pre>
hr.comp(hr1=hr1, hr2=hr2)
```

hr.comp.meta

Function to compare two concordance indices

Description

This function compares two lists of hazard ratios computed from the same survival data by using the function hazard.ratio. The statistical test is a Student t test for dependent samples.

Usage

```
hr.comp.meta(list.hr1, list.hr2, hetero = FALSE)
```

Arguments

list.hr1 first list of D indices as returned by the hazard.ratio function. list.hr2 second list of D indices as returned by the hazard.ratio function. hetero

if TRUE, a random effect model is use to compute the meta-estimators. Other-

wise a fixed effect model is used.

Details

In meta-analysis, we estimate the statistic of interest in several independent datasets. It results a list of estimates such as list of hazard ratios. The two lists of hazard ratios must be computed from the same samples (and corresponding survival data). The function computes a meta-estimator for the correlations between the two scores and uses a Student t test for dependent samples.

Value

p-value from the Student t test for the comparison hr1 > hr2. p.value

hr1 meta-estimator of the first D index. meta-estimator of the second D index. hr2

Author(s)

Benjamin Haibe-Kains

32 hr.comp2

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", *Biometrics*, **10**, pages 101–129.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

concordance.index.

Examples

```
#first dataset
set.seed(12345)
age <- rnorm(100, 50, 10)
size \leftarrow rexp(100,1)
stime <- \text{rexp}(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
h1.1 <- hazard.ratio(x=age, surv.time=stime, surv.event=sevent)</pre>
h2.1 <- hazard.ratio(x=size, surv.time=stime, surv.event=sevent)
#second dataset
set.seed(54321)
age <- rnorm(110, 53, 10)
size <- rexp(110,1.1)
stime <- rexp(110)</pre>
cens <- runif(110,.55,2)
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
h1.2 <- hazard.ratio(x=age, surv.time=stime, surv.event=sevent)</pre>
h2.2 <- hazard.ratio(x=size, surv.time=stime, surv.event=sevent)
hr.comp.meta(list.hr1=list("hr.age1"=h1.1, "hr.age2"=h1.2),
  list.hr2=list("hr.size1"=h2.1, "hr.size2"=h2.2))
```

hr.comp2

Function to statistically compare two hazard ratios (alternative interface)

Description

This function compares two hazard ratios from their betas and standard errors as computed by a Cox model for instance. The statistical test is a Student t test for dependent samples. The two hazard ratios must be computed from the same survival data.

Usage

```
hr.comp2(x1, beta1, se1, x2, beta2, se2, n)
```

hr.comp2 33

Arguments

x1	risk score used to estimate the first hazard ratio.
beta1	beta estimate for the first hazard ratio.
se1	standard error of beta estimate for the first hazard ratio.
x2	risk score used to estimate the second hazard ratio.
beta2	beta estimate for the second hazard ratio.
se2	standard error of beta estimate for the first hazard ratio.
n	number of samples from which the hazard ratios were estimated.

Details

The two hazard ratios must be computed from the same samples (and corresponding survival data). The function uses a Student t test for dependent samples.

Value

p.value	p-value from the Student t test for the comparison beta $1 > \text{beta} 2$ (equivalently $\text{hr} 1 > \text{hr} 2$)
hr1	value of the first hazard ratio
hr2	value of the second hazard ratio

Author(s)

Benjamin Haibe-Kains

References

Student 1908) "The Probable Error of a Mean", Biometrika, 6, 1, pages 1–25.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

```
coxph, t.test
```

Examples

```
set.seed(12345)
age <- as.numeric(rnorm(100, 50, 10) >= 50)
size <- as.numeric(rexp(100,1) > 1)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
coxm1 <- coxph(Surv(stime, sevent) ~ age)
coxm2 <- coxph(Surv(stime, sevent) ~ size)
hr.comp2(x1=age, beta1=coxm1$coefficients, se1=drop(sqrt(coxm1$var)),
    x2=size, beta2=coxm2$coefficients, se2=drop(sqrt(coxm2$var)), n=100)</pre>
```

iauc.comp

iauc.comp	Function to compare two IAUCs through time-dependent ROC curves
	•

Description

This function compares two integrated areas under the curves (IAUC) through the results of time-dependent ROC curves at some points in time. The statistical test is a Wilcoxon rank sum test for dependent samples.

Usage

```
iauc.comp(auc1, auc2, time)
```

Arguments

auc1	vector of AUCs computed from the first time-dependent ROC curves for some points in time
auc2	vector of AUCs computed from the second time-dependent ROC curves for some points in time
time	vector of points in time for which the AUCs are computed

Details

The two vectors of AUCs must be computed from the same samples (and corresponding survival data) and for the same points in time. The function uses a Wilcoxon rank sum test for dependent samples.

Value

p.value	p-value from the Wilcoxon rank sum test for the comparison iauc1 > iauc2
iauc1	value of the IAUC for the first set of time-depdent ROC curves
iauc2	value of the IAUC for the second set of time-depdent ROC curves

Author(s)

Benjamin Haibe-Kains

References

Wilcoxon, F. (1945) "Individual comparisons by ranking methods", *Biometrics Bulletin*, **1**, pages 80–83.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

ibsc.comp 35

See Also

```
tdrocc, wilcox.test
```

Examples

```
set.seed(12345)
age <- rnorm(30, 50, 10)
size \leftarrow rexp(30,1)
stime <- rexp(30)</pre>
cens <- runif(30,.5,2)
sevent <- as.numeric(stime <= cens)</pre>
stime <- pmin(stime, cens)</pre>
##time-dependent ROC curves
tt <- unique(sort(stime[sevent == 1]))</pre>
##size
mytdroc1 <- NULL
for(i in 1:length(tt)) {
rr <- tdrocc(x=size, surv.time=stime, surv.event=sevent, time=tt[i],</pre>
    na.rm=TRUE, verbose=FALSE)
mytdroc1 <- c(mytdroc1, list(rr))</pre>
auc1 <- unlist(lapply(mytdroc1, function(x) { return(x$AUC) }))</pre>
##age
mytdroc2 <- NULL
for(i in 1:length(tt)) {
rr <- tdrocc(x=age, surv.time=stime, surv.event=sevent, time=tt[i],</pre>
    na.rm=TRUE, verbose=FALSE)
mytdroc2 <- c(mytdroc2, list(rr))</pre>
auc2 <- unlist(lapply(mytdroc2, function(x) { return(x$AUC) }))</pre>
iauc.comp(auc1=auc1, auc2=auc2, time=tt)
```

ibsc.comp

Function to compare two IBSCs

Description

This function compares two integrated Briers scores (IBSC) through the estimation of the Brier scores (BSC) at some points in time. The statistical test is a Wilcoxon rank sum test for dependent samples.

Usage

```
ibsc.comp(bsc1, bsc2, time)
```

36 ibsc.comp

Arguments

bsc1	vector of BSCs computed from	the first predicted	probabilities for some po	oints

in time

bsc2 vector of BSCs computed from the second predicted probabilities for some

points in time

time vector of points in time for which the BSCs are computed

Details

The two vectors of BSCs must be computed from the same samples (and corresponding survival data) and for the same points in time. The function uses a Wilcoxon rank sum test for dependent samples.

Value

p.value p-value from the Wilcoxon rank sum test for the comparison ibsc1 < ibsc2

ibsc1 value of the IBSC for the first set of BSCs ibsc2 value of the IBSC for the second set of BSCs

Author(s)

Benjamin Haibe-Kains

References

Wilcoxon, F. (1945) "Individual comparisons by ranking methods", *Biometrics Bulletin*, **1**, pages 80–83.

Haibe-Kains, B. and Desmedt, C. and Sotiriou, C. and Bontempi, G. (2008) "A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?", *Bioinformatics*, **24**, 19, pages 2200–2208.

See Also

```
sbrier.score2proba, sbrier
```

Examples

```
set.seed(12345)
age <- rnorm(30, 50, 10)
size <- rexp(30,1)
stime <- rexp(30)
cens <- runif(30,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
##Brier scores
##size
dd <- data.frame("time"=stime, "event"=sevent, "score"=size)
bsc1 <- sbrier.score2proba(data.tr=dd, data.ts=dd, method="cox")
##size</pre>
```

km.coxph.plot

```
dd <- data.frame("time"=stime, "event"=sevent, "score"=age)
bsc2 <- sbrier.score2proba(data.tr=dd, data.ts=dd, method="cox")
if(!all(bsc1$time == bsc2$time)) {
   stop("the two vector of BSCs must be computed for the same points in time!") }
ibsc.comp(bsc1=bsc1$bsc, bsc2=bsc2$bsc, time=bsc1$time)</pre>
```

km.coxph.plot

Function to plot several Kaplan-Meier survival curves

Description

Function to plot several Kaplan-Meier survival curves with number of individuals at risk at some time points.

Usage

```
km.coxph.plot(formula.s, data.s, weight.s, x.label, y.label, main.title, sub.title,
leg.text, leg.pos = "bottomright", leg.bty = "o", leg.inset = 0.05, o.text, v.line,
h.line, .col = 1:4, .lty = 1, .lwd = 1, show.n.risk = FALSE, n.risk.step,
n.risk.cex = 0.85, verbose = TRUE, ...)
```

Arguments

formula.s	formula composed of a Surv object and a strata variable (i.e. stratification).
data.s	data frame composed of the variables used in the formula.
weight.s	vector of weights of length nrow(data.s).
x.label	label for the y-axis.
y.label	label for the x-axis.
main.title	main title at the top of the plot.
sub.title	subtitle at the bottom of the plot.
leg.text	text in the legend.
leg.pos	the location may also be specified by setting 'x' to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location.
leg.bty	the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n".
leg.inset	inset distance from the margins as a fraction of the plot region. Default value is 0.05 .
o.text	plot the logrank p-value.
v.line	x coordinate(s) for vertical line(s).
h.line	y coordinate(s) for horizontal line(s).
.col	vector of colors for the different survival curves.

38 km.coxph.plot

.lty	vector of line types for the different survival curves
.lwd	vector of line widths for the different survival curves.
show.n.risk	if TRUE, show the numbers of samples at risk for each time step.
n.risk.step	vector specifying the time to be the steps for displaying the number of individuals at risk.
n.risk.cex	size of the number of individuals at risk. Default value is 0.85.
verbose	verbosity level (TRUE or FALSE). Default value is TRUE.
	additional parameters to be passed to the plot function.

Details

The original version of this function was kindly provided by Dr Christos Hatzis (January, 17th 2006).

Value

Several Kaplan-Meier survival curves with number of individuals at risk at some time points.

Author(s)

Christos Hatzis, Benjamin Haibe-Kains

See Also

```
survfit, coxph
```

logpl 39

logpl	Function to compute the log partial likelihood of a	Cox model
06-	Timetren to compute the too per that the timetric out of a	con moner

Description

The function computes the log partial likelihood of a set of coefficients given some survival data.

Usage

```
logpl(pred, surv.time, surv.event, strata, na.rm = FALSE, verbose = FALSE)
```

Arguments

surv.time vector of times to event occurrence
surv.event vector of indicators for event occurrence
pred linear predictors computed using the Cox model
strata stratification variable
na.rm TRUE if the missing values should be removed from the data, FALSE otherwise
verbose verbosity of the function

Value

vector of two elements: logpl and event for the estimation of the log partial likelihood and the number of events, respectively

Author(s)

Benjamin Haibe-Kains

References

Cox, D. R. (1972) "Regression Models and Life Tables", *Journal of the Royal Statistical Society Series B*, **34**, pages 187–220.

See Also

```
coxph, cvpl
```

```
set.seed(12345)
age <- rnorm(100, 50, 10)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
dd <- data.frame("stime"=stime, "sevent"=sevent, "age"=age)</pre>
```

40 mainz7g

```
##Cox model
coxm <- coxph(Surv(stime, sevent) ~ age, data=dd)
##log partial likelihood of the null model
logpl(pred=rep(0, nrow(dd)), surv.time=stime, surv.event=sevent)
##log partial likelihood of the Cox model
logpl(pred=predict(object=coxm, newdata=dd), surv.time=stime, surv.event=sevent)
##equivalent to
coxm$loglik</pre>
```

mainz7g

Subset of MAINZ dataset containing gene expression, annotations and clinical data.

Description

This dataset contains a subset of the gene expression, annotations and clinical data from the MAINZ datasets (see section details). The subset contains the seven genes introduced by Desmedt et al. 2008

Format

ExpressionSet with 7 features and 200 samples, containing:

- exprs(mainz7g): Matrix containing gene expressions as measured by Affymetrix hgu133a technology (single-channel, oligonucleotides).
- fData(mainz7g): AnnotatedDataFrame containing annotations of Affy microarray platform hgu133a.
- pData(mainz7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(mainz7g): MIAME object containing information about the dataset.
- annotation(mainz7g): Name of the affy chip.

Details

This dataset represents a subset of the study published by Schmidt et al. 2008. The subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as UPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

mainz:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11121

metaplot.surv 41

References

Marcus Schmidt, Daniel Boehm, Christian von Toerne, Eric Steiner, Alexander Puhl, Heryk Pilch, Hans-Anton Lehr, Jan G. Hengstler, Hainz Koelbl and Mathias Gehrmann (2008) "The Humoral Immune System Has a Key Prognostic Impact in Node-Negative Breast Cancer", *Cancer Research*, **68**(13):5405-5413

Examples

```
## load Biobase package
library(Biobase)
## load the dataset
data(breastCancerData)
## show the first 5 columns of the expression data
exprs(mainz7g)[ ,1:5]
## show the first 6 rows of the phenotype data
head(pData(mainz7g))
## show first 20 feature names
featureNames(mainz7g)
## show the experiment data summary
experimentData(mainz7g)
## show the used platform
annotation(mainz7g)
## show the abstract for this dataset
abstract(mainz7g)
```

metaplot.surv

Meta-analysis plot (forest plot)

Description

Plot confidence intervals with boxes indicating the sample size/precision and optionally a diamond indicating a summary confidence interval. This function is usually called by plot methods for meta-analysis objects. Additional, you can specify your own lower and upper boarder from the confidence interval.

Usage

```
metaplot.surv(mn, se=NULL, lower=NULL, upper=NULL, nn=NULL,
    labels=NULL, conf.level = .95, xlab = "", ylab = "", xlim = NULL,
    summn = NULL, sumse = NULL, sumlower = NULL, sumupper = NULL,
    sumnn = NULL, summlabel = "Summary", logeffect = FALSE,
    lwd = 2, boxsize = 1, zero = as.numeric(logeffect),
    colors, xaxt="s", logticks=TRUE, ...)
```

Arguments

```
mn point estimates from studies
se standard errors of mn
```

42 metaplot.surv

lowerVector of lower ends of confidence intervalsupperVector of upper ends of confidence intervals

nn precision: box ares is proportional to this. 1/se^2 is the default

labels labels for each interval

conf.level Confidence level for confidence intervals

xlab label for the point estimate axis

ylab label for the axis indexing the different studies

xlim the range for the x axis. summn summary estimate

sumse standard error of summary estimate

sumlower lower end of confidence intervals of summary estimate sumupper upper end of confidence intervals of summary estimate

sumnnprecision of summary estimatesummlabellabel for summary estimatelogeffectTRUE to display on a log scale

lwd line width

boxsize Scale factor for box size zero "Null" effect value

use "n" for no x-axis (to add a customised one)

logticks if TRUE and logscale, have tick values approximately equally spaced on a log

scale

•

colors see meta.colors

... Other graphical parameters

Value

This function is used for its side-effect.

See Also

forestplot. surv for more flexible plots

```
metaplot.surv(mn=c(\emptyset.4,\emptyset.5,\emptyset.6), lower=c(\emptyset.35,\emptyset.4,\emptyset.57), upper=c(\emptyset.45,\emptyset.6,\emptyset.63), labels=c("A","B","C"), xlim=c(\emptyset.2,\emptyset.8), boxsize=\emptyset.5, zero=\emptyset.5, col=rmeta::meta.colors(box="royalblue",line="darkblue",zero="firebrick"))
```

mrmr.cindex 43

mrmr.cindex	Function to compute the concordance index for survival or binary class prediction

Description

Function to compute the minimum redundancy - maximum relevance (mRMR) ranking for a risk prediction or a binary classification task based on the concordance index. The mRMR feature selection has been adapted to use the concordance index to estimate the correlation between a variable and the output (binary or survival) data.

Usage

```
mrmr.cindex(x, surv.time, surv.event, cl, weights, comppairs=10, strat,
alpha = 0.05, outx = TRUE, method = c("conservative", "noether", "nam"),
alternative = c("two.sided", "less", "greater"), na.rm = FALSE)
```

Arguments

X	a vector of risk predictions.
surv.time	a vector of event times.
surv.event	a vector of event occurence indicators.
cl	a vector of binary class indicators.
weights	weight of each sample.
comppairs	threshold for compairable patients.
strat	stratification indicator.
alpha	apha level to compute confidence interval.
outx	set to TRUE to not count pairs of observations tied on x as a relevant pair. This results in a Goodman-Kruskal gamma type rank correlation.
method	can take the value conservative, noether or name (see paper Pencina et al. for details).
alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" (concordance index is greater than 0.5) or "less" (concordance index is less than 0.5). You can specify just the initial letter.
na.rm	TRUE if missing values should be removed.

Value

A mRMR ranking

Note

The "direction" of the concordance index (< 0.5 or > 0.5) is the opposite than the rcorr.cens function in the Hmisc package. So you can easily get the same results than rcorr.cens by changing the sign of x.

44 mrmr.cindex.ensemble

Author(s)

Benjamin Haibe-Kains, Markus Schroeder

References

Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) "Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error", *Statistics in Medicine*, **15**, pages 361–387.

Pencina, M. J. and D'Agostino, R. B. (2004) "Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation", *Statistics in Medicine*, **23**, pages 2109–2123, 2004.

See Also

```
rcorr.cens, coxphCPE
```

Examples

mrmr.cindex.ensemble Function to compute the concordance index for survival or binary class prediction

Description

Function to compute the minimum redundancy - maximum relevance (mRMR) ranking for a risk prediction or a binary classification task based on the concordance index. The mRMR feature selection has been adapted to use the concordance index to estimate the correlation between a variable and the output (binary or survival) data.

mrmr.cindex.ensemble 45

Usage

```
mrmr.cindex.ensemble(x, surv.time, surv.event, cl, weights, comppairs=10,
strat, alpha = 0.05, outx = TRUE, method = c("conservative", "noether",
"nam"), alternative = c("two.sided", "less", "greater"), maxparents,
maxnsol, nboot = 200, na.rm = FALSE)
```

Arguments

x a vector of risk predictions.

surv.time a vector of event times.

surv.event a vector of event occurence indicators.

cl a vector of binary class indicators.

weights weight of each sample.

comppairs threshold for compairable patients.

strat stratification indicator.

alpha apha level to compute confidence interval.

outx set to TRUE to not count pairs of observations tied on x as a relevant pair. This

results in a Goodman-Kruskal gamma type rank correlation.

method can take the value conservative, noether or name (see paper Pencina et al. for

details).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" (concordance index is greater than 0.5) or "less" (concor-

dance index is less than 0.5). You can specify just the initial letter.

maxparents maximum number of candidate variables to be added in the ranking solutions

tree.

maximum number of ranking solutions to be considered.

nboot number of bootstraps to compute standard error of a ranking solution.

na.rm TRUE if missing values should be removed.

Value

A mRMR ranking

Note

The "direction" of the concordance index (< 0.5 or > 0.5) is the opposite than the rcorr.cens function in the Hmisc package. So you can easily get the same results than rcorr.cens by changing the sign of x.

Author(s)

Benjamin Haibe-Kains, Markus Schroeder

References

Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) "Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error", *Statistics in Medicine*, **15**, pages 361–387.

Pencina, M. J. and D'Agostino, R. B. (2004) "Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation", *Statistics in Medicine*, **23**, pages 2109–2123, 2004.

See Also

rcorr.cens, coxphCPE

Description

mRMR cIndex

Arguments

Rdata ...
Rnamat ...
RcIndex ...
Rnvar ...
Rnsample ...
Rthreshold ...

Author(s)

Catharina Colsen

```
mrmr_cIndex_ensemble_remove

mRMR cIndex Ensemble Remove
```

Description

mRMR cIndex Ensemble Remove

nki7g 47

Arguments

Rdata Rnamat Rmaxparents Rnvar ••• Rnsample Rpredn ••• Rnpredn ••• Rrep_boot Rmaxnsol ••• Rthreshold Rmsurv Rustrat Rc12 Rst Rse ... ${\it Rweights}$ Rstrat RN Routx ••• RlenS RlenU ...

Author(s)

Catharina Colsen

nki7g	Subset of NKI dataset containing gene expression, annotations and clinical data.
	cimeat and.

Description

This dataset contains a subset of the gene expression, annotations and clinical data from the NKI datasets (see section details). The subset contains the seven genes introduced by Desmedt et al. 2008

48 nki7g

Format

ExpressionSet with 7 features and 337 samples, containing:

• exprs(nki7g): Matrix containing gene expressions as measured by Agilent technology (dual-channel, oligonucleotides).

- fData(nki7g): AnnotatedDataFrame containing annotations of Agilent microarray platform.
- pData(nki7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(nki7g): MIAME object containing information about the dataset.
- annotation(nki7g): Name of the agilent chip.

Details

This dataset represents a subset of the study published by van't Veer et al. 2002 and van de Vijver et al. 2002. The subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as UPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

nki:

http://www.rii.com/publications/2002/vantveer.html

References

Laura J. van't Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, Augustinus A.M. Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, Rene Bernards and Stephen H. Friend (2002) "Gene expression profiling predicts clinical outcome of breast cancer", *Nature*, **415**:530-536

M. J. van de Vijver, Y. D. He, L. van't Veer, H. Dai, A. M. Hart, D. W. Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H. Friend and R. Bernards (2002) "A Gene Expression Signature as a Predictor of Survival in Breast Cancer", *New England Journal of Medicine*, **347**(25):1999-2009

```
## load Biobase package
library(Biobase)
## load the dataset
data(breastCancerData)
## show the first 5 columns of the expression data
exprs(nki7g)[ ,1:5]
## show the first 6 rows of the phenotype data
head(pData(nki7g))
## show first 20 feature names
```

no.at.risk 49

```
featureNames(nki7g)
## show the experiment data summary
experimentData(nki7g)
## show the used platform
annotation(nki7g)
## show the abstract for this dataset
abstract(nki7g)
```

no.at.risk

Function to compute the number of individuals at risk

Description

Function to compute the number of individuals at risk at certain time points, as used in the Kaplan-Meier estimator for instance, depending on stratification.

Usage

```
no.at.risk(formula.s, data.s, sub.s = "all", t.step, t.end)
```

Arguments

formula.s	formula composed of a Surv object and a strata variable (i.e. stratification).
data.s	data frame composed of the variables used in the formula.
sub.s	vector of booleans specifying if only a subset of the data should be considered.
t.step	time step at which the number of individuals at risk is computed.
t.end	maximum time to be considered.

Details

The original version of this function was kindly provided by Dr Christos Hatzis (January, 17th 2006).

Value

number of individuals at risk at each time step specified in t.step up to t.end.

Author(s)

Christos Hatzis, Benjamin Haibe-Kains

See Also

```
survfit, km.coxph.plot
```

50 sbrier.score2proba

Examples

```
set.seed(12345)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
strat <- sample(1:3, 100, replace=TRUE)
dd <- data.frame("surv.time"=stime, "surv.event"=sevent, "strat"=strat)
no.at.risk(formula.s=Surv(surv.time,surv.event) ~ strat, data.s=dd,
    sub.s="all", t.step=0.05, t.end=1)</pre>
```

sbrier.score2proba

Function to compute the BSCs from a risk score, for all the times of event occurrence

Description

The function computes all the Brier scores (BSC) and the corresponding integrated Briser score (IBSC) from a risk score, for all the times of event occurrence. The risk score is first transformed in survival probabilities using either a Cox model or the product-limit estimator.

Usage

```
sbrier.score2proba(data.tr, data.ts, method = c("cox", "prodlim"))
```

Arguments

data.tr	the data frame for the training set. This data frame must contain three columns for the times, the event occurrence and the risk score. These columns are called "time", "event" and "score" respectively.
data.ts	the data frame for the test set. This data frame must contain three columns for the times, the event occurrence and the risk score. These columns are called "time", "event" and "score" respectively.
method	method for survival probabilities estimation using either a Cox model or the product-limit estimator

Value

time vector of points in time bsc vector of Brier scores (BSC) at ome points in time bsc.integrated

value of the integrated Brier score (IBSC)

Author(s)

Benjamin Haibe-Kains

score2proba 51

References

Brier, G. W. (1950) "Verification of forecasts expressed in terms of probabilities", *Monthly Weather Review*, **78**, pages 1–3.

Graf, E. and Schmoor, C. and Sauerbrei, W. and Schumacher, M. (1999) "Assessment and comparison of prognostic classification schemes for survival data", *Statistics in Medicine*, **18**, pages 2529–2545.

Cox, D. R. (1972) "Regression Models and Life Tables", *Journal of the Royal Statistical Society Series B*, **34**, pages 187–220.

Andersen, P. K. and Borgan, O. and Gill, R. D. and Keiding, N. (1993) "Statistical Models Based on Counting Processes", *Springer*.

See Also

```
sbrier, coxph, prodlim
```

Examples

```
set.seed(12345)
age <- rnorm(30, 50, 10)
stime <- rexp(30)
cens <- runif(30,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
dd <- data.frame("time"=stime, "event"=sevent, "score"=age)

#Cox's model
sbrier.score2proba(data.tr=dd, data.ts=dd, method="cox")
#product-limit estimator
sbrier.score2proba(data.tr=dd, data.ts=dd, method="prodlim")</pre>
```

score2proba

Function to compute the survival probabilities from a risk score

Description

the function uses either a Cox model or the product-limit estimator to compute the survival probabilities from a risk score for a specific point in time.

Usage

```
score2proba(data.tr, score, yr, method = c("cox", "prodlim"),
  conf.int = 0.95, which.est= c ("point", "lower", "upper"))
```

52 score2proba

Arguments

data.tr	the data frame for the training set. This data frame must contain three columns for the times, the event occurrence and the risk score. These columns are called "time", "event" and "score" respectively
score	risk score for the test set
yr	a point in time for which the survival probabilities must be computed
method	method for survival probabilities estimation, either cox or prodlim for the Cox model or the product-limit estimator, respectively
conf.int	value in [0,1]. Default at 0.95
which.est	which estimation to be returned? point for the point estimate, lower for the lower bound and upper for the upper bound

Value

vector of predicted survival probabilities

Author(s)

Benjamin Haibe-Kains

References

Cox, D. R. (1972) "Regression Models and Life Tables", *Journal of the Royal Statistical Society Series B*, **34**, pages 187–220.

Andersen, P. K. and Borgan, O. and Gill, R. D. and Keiding, N. (1993) "Statistical Models Based on Counting Processes", *Springer*.

See Also

coxph, prodlim

```
set.seed(12345)
age <- rnorm(30, 50, 10)
stime <- rexp(30)
cens <- runif(30,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
dd <- data.frame("time"=stime, "event"=sevent, "score"=age)

#Cox's model
score2proba(data.tr=dd, score=dd$score, yr=1, method="cox")
#product-limit estimator
score2proba(data.tr=dd, score=dd$score, yr=1, method="prodlim")</pre>
```

td.sens.spec 53

td.sens.spec	Function to compute sensitivity and specificity for a binary classification of survival data
td.sens.spec	

Description

The function is a wrapper for the survivalROC.C function in order to compute sensitivity and specificity for a binary classification of survival data.

Usage

```
td.sens.spec(cl, surv.time, surv.event, time, span = 0, sampling = FALSE,
na.rm = FALSE, ...)
```

Arguments

cl	vector of binary classes.
surv.time	vector of times to event occurrence.
surv.event	vector of event occurrence indicators.
time	time point for sensitivity and specificity estimations.
span	Span for the NNE. Default value is 0.
sampling	jackknife procedure to estimate the standard error of sensitivity and specificity estimations.
na.rm	TRUE if the missing values should be removed from the data, FALSE otherwise.
	additional arguments to be passed to the survivalROC function.

Details

Only NNE method is used to estimate sensitivity and specificity (see survivalROC.C). The standard error for sensitivity and specificity is estimated through jackknife procedure (see jackknife).

Value

sens	sensitivity estimate
sens.se	standard error for sensitivity estimate
spec	specificity estimate
spec.se	standard error for specificity estimate

Author(s)

Benjamin Haibe-Kains

54 tdrocc

References

Heagerty, P. J. and Lumley, T. L. and Pepe, M. S. (2000) "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker", *Biometrics*, **56**, pages 337–344.

Efron, B. and Tibshirani, R. (1986). "The Bootstrap Method for standard errors, confidence intervals, and other measures of statistical accuracy", *Statistical Science*, **1** (1), pages 1–35.

See Also

survivalROC

Examples

```
set.seed(12345)
gender <- sample(c(0,1), 100, replace=TRUE)
stime <- rexp(100)
cens <- runif(100,.5,2)
sevent <- as.numeric(stime <= cens)
stime <- pmin(stime, cens)
mysenspec <- td.sens.spec(cl=gender, surv.time=stime, surv.event=sevent,
    time=1, span=0, na.rm=FALSE)</pre>
```

tdrocc

Function to compute time-dependent ROC curves

Description

The function is a wrapper for the survivalROC function in order to compute the time-dependent ROC curves.

Usage

```
tdrocc(x, surv.time, surv.event, surv.entry = NULL, time, cutpts = NA,
    na.rm = FALSE, verbose = FALSE, span = 0, lambda = 0, ...)
```

Arguments

Χ	vector of risk scores.
surv.time	vector of times to event occurrence.
surv.event	vector of event occurrence indicators.
surv.entry	entry time for the subjects.
time	time point for the ROC curve.
cutpts	cut points for the risk score.
na.rm	TRUE if the missing values should be removed from the data, FALSE otherwise.
verbose	verbosity of the function.
span	Span for the NNE, need either lambda or span for NNE.
lambda	smoothing parameter for NNE.
	additional arguments to be passed to the survivalROC function.

test.hetero.est 55

Value

spec	specificity estimates
sens	sensitivity estimates
rule	rule to compute the predictions at each cutoff
cuts	cutoffs
time	time point at which the time-dependent ROC is computed
survival	overall survival at the time point
AUC	Area Under the Curve (AUC) of teh time-dependent ROC curve
data	survival data and risk score used to compute the time-dependent ROC curve

Author(s)

Benjamin Haibe-Kains

References

Heagerty, P. J. and Lumley, T. L. and Pepe, M. S. (2000) "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker", *Biometrics*, **56**, pages 337–344.

See Also

survivalROC

Examples

test.hetero.est

Function to test the heterogeneity of set of probabilities

Description

The function tests whether a set of p-values are heterogeneous.

56 test.hetero.est

Usage

```
test.hetero.est(x, x.se, na.rm = FALSE)
```

Arguments

X	vector of estimates	

x.se vector of standard errors of the corresponding estimates

na.rm TRUE if the missing values should be removed from the data, FALSE otherwise

Details

The heterogeneity test is known to be very conservative. Consider a p-value < 0.1 as significant.

Value

```
Q Q statistic
```

p.value p-value of the heterogeneity test

Author(s)

Benjamin Haibe-Kains

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", *Biometrics*, **10**, pages 101–129.

See Also

```
combine.test
```

```
set.seed(12345)
x1 <- rnorm(100, 50, 10) + rnorm(100, 0, 2)
m1 <- mean(x1)
se1 <- sqrt(var(x1))
x2 <- rnorm(100, 75, 15) + rnorm(100, 0, 5)
m2 <- mean(x2)
se2 <- sqrt(var(x2))
test.hetero.est(x=c(m1, m2), x.se=c(se1, se2))</pre>
```

test.hetero.test 57

test.hetero.test

Function to test the heterogeneity of set of probabilities

Description

The function tests whether a set of p-values are heterogeneous.

Usage

```
test.hetero.test(p, weight, na.rm = FALSE)
```

Arguments

p vector of p-values

weight vector of weights (e.g. sample size of each study)

na.rm TRUE if the missing values should be removed from the data, FALSE otherwise

Details

The p-values should be one-sided and computed from the same null hypothesis.

Value

Q Q statistic

p.value p-value of the heterogeneity test

Author(s)

Benjamin Haibe-Kains

References

Cochrane, W. G. (1954) "The combination of estimates from different experiments", *Biometrics*, **10**, pages 101–129.

Whitlock, M. C. (2005) "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach", *J. Evol. Biol.*, **18**, pages 1368–1373.

See Also

combine.test

58 transbig7g

Examples

```
p <- c(0.01, 0.13, 0.07, 0.2)
w <- c(100, 50, 200, 30)

#with equal weights
test.hetero.test(p=p)
#with p-values weighted by the sample size of the studies
test.hetero.test(p=p, weight=w)</pre>
```

transbig7g

Subset of the TRANSBIG dataset containing gene expression, annotations and clinical data.

Description

This dataset contains a subset of the gene expression, annotations and clinical data from the TRANS-BIG dataset (see section details). The subset contains the seven genes introduced by Desmedt et al. 2008

Format

ExpressionSet with 7 features and 198 samples, containing:

- exprs(transbig7g): Matrix containing gene expressions as measured by Affymetrix hgu133a technology (single-channel, oligonucleotides).
- fData(transbig7g): AnnotatedDataFrame containing annotations of Affy microarray platform hgu133a.
- pData(transbig7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(transbig7g): MIAME object containing information about the dataset.
- annotation(transbig7g): Name of the affy chip.

Details

This dataset represents a subset of the study published by Desmedt et al. 2007. The subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as UPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

transbig:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390

unt7g 59

References

Christine Desmedt, Fanny Piette, Sherene Loi, Yixin Wang, Francoise Lallemand, Benjamin Haibe-Kains, Giuseppe Viale, Mauro Delorenzi, Yi Zhang, Mahasti Saghatchian d Assignies, Jonas Bergh, Rosette Lidereau, Paul Ellis, Adrian L. Harris, Jan G. M. Klijn, John A. Foekens, Fatima Cardoso, Martine J. Piccart, Marc Buyse and Christos Sotiriou (2007) "Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series", *Clinical Cancer Research*, **13**(11):3207-3214

Examples

```
## load Biobase package
library(Biobase)
## load the dataset
data(breastCancerData)
## show the first 5 columns of the expression data
exprs(transbig7g)[ ,1:5]
## show the first 6 rows of the phenotype data
head(pData(transbig7g))
## show first 20 feature names
featureNames(transbig7g)
## show the experiment data summary
experimentData(transbig7g)
## show the used platform
annotation(transbig7g)
## show the abstract for this dataset
abstract(transbig7g)
```

unt7g

Subset of UNT dataset containing gene expression, annotations and clinical data.

Description

This dataset contains a subset of the gene expression, annotations and clinical data from the UNT datasets (see section details). The subset contains the seven genes introduced by Desmedt et al. 2008

Format

ExpressionSet with 7 features and 137 samples, containing:

- exprs(unt7g): Matrix containing gene expressions as measured by Affymetrix hgu133a and hgu133b technology (single-channel, oligonucleotides).
- fData(unt7g): AnnotatedDataFrame containing annotations of Affy microarray platform hgu133a and hgu133b.
- pData(unt7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(unt7g): MIAME object containing information about the dataset.
- annotation(unt7g): Name of the affy chip.

upp7g

Details

This dataset represents a subset of the study published by Sotiriou et al. 2006. The subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as UPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

unt:

```
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2990
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532
```

References

Christos Sotiriou, Pratyaksha Wirapati, Sherene Loi, Adrian Harris, Steve Fox, Johanna Smeds, Hans Nordgren, Pierre Farmer, Viviane Praz, Benjamin Haibe-Kains, Christine Desmedt, Denis Larsimont, Fatima Cardoso, Hans Peterse, Dimitry Nuyten, Marc Buyse, Marc J. Van de Vijver, Jonas Bergh, Martine Piccart and Mauro Delorenzi (2006) "Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis", *Journal of the National Cancer Institute*, **98**(4):262-272

```
## load Biobase package
library(Biobase)
## load the dataset
data(breastCancerData)
## show the first 5 columns of the expression data
exprs(unt7g)[ ,1:5]
## show the first 6 rows of the phenotype data
head(pData(unt7g))
## show first 20 feature names
featureNames(unt7g)
## show the experiment data summary
experimentData(unt7g)
## show the used platform
annotation(unt7g)
## show the abstract for this dataset
abstract(unt7g)
```

upp7g 61

Description

This dataset contains a subset of the gene expression, annotations and clinical data from the UPP datasets (see section details). The subset contains the seven genes introduced by Desmedt et al. 2008

Format

ExpressionSet with 7 features and 251 samples, containing:

- exprs(upp7g): Matrix containing gene expressions as measured by Affymetrix hgu133a and hgu133b technology (single-channel, oligonucleotides).
- fData(upp7g): AnnotatedDataFrame containing annotations of Affy microarray platform hgu133a and hgu133b.
- pData(upp7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(upp7g): MIAME object containing information about the dataset.
- annotation(upp7g): Name of the affy chip.

Details

This dataset represents a subset of the study published by Miller et al. 2005. The subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as UPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

upp:

```
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494
```

References

Lance D. Miller, Johanna Smeds, Joshy George, Vinsensius B. Vega, Liza Vergara, Alexander Ploner, Yudi Pawitan, Per Hall, Sigrid Klaar, Edison T. Liu and Jonas Bergh (2005) "An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival" *Proceedings of the National Academy of Sciences of the United States of America* **102**(38):13550-13555

```
## load Biobase package
library(Biobase)
## load the dataset
data(breastCancerData)
## show the first 5 columns of the expression data
exprs(upp7g)[ ,1:5]
## show the first 6 rows of the phenotype data
```

62 vdx7g

```
head(pData(upp7g))
## show first 20 feature names
featureNames(upp7g)
## show the experiment data summary
experimentData(upp7g)
## show the used platform
annotation(upp7g)
## show the abstract for this dataset
abstract(upp7g)
```

vdx7g

Subset of VDX dataset containing gene expression, annotations and clinical data.

Description

This dataset contains a subset of the gene expression, annotations and clinical data from the VDX datasets (see section details). The subset contains the seven genes introduced by Desmedt et al. 2008

Format

ExpressionSet with 7 features and 344 samples, containing:

- exprs(vdx7g): Matrix containing gene expressions as measured by Affymetrix hgu133a technology (single-channel, oligonucleotides).
- fData(vdx7g): AnnotatedDataFrame containing annotations of Affy microarray platform hgu133a.
- pData(vdx7g): AnnotatedDataFrame containing Clinical information of the breast cancer patients whose tumors were hybridized.
- experimentalData(vdx7g): MIAME object containing information about the dataset.
- annotation(vdx7g): Name of the affy chip.

Details

This dataset represents a subset of the study published by Wang. et al. 2005 and Minn et al. 2007. The subset contains the genes AURKA (also known as STK6, STK7, or STK15), PLAU (also known as UPA), STAT1, VEGF, CASP3, ESR1, and ERBB2, as introduced by Desmedt et al. 2008. The seven genes represent the proliferation, tumor invasion/metastasis, immune response, angiogenesis, apoptosis phenotypes, and the ER and HER2 signaling, respectively.

Source

vdx:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034

vdx7g 63

References

Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins and J. A. Foekens (2005) "Gene-Expression Profiles to Predict Distant Metastasis of Lymph-Node-Negative Primary Breast Cancer", *Lancet*, **365**:671-679

Andy J. Minn, Gaorav P. Gupta, David Padua, Paula Bos, Don X. Nguyen, Dimitry Nuyten, Bas Kreike, Yi Zhang, Yixin Wang, Hemant Ishwaran, John A. Foekens, Marc van de Vijver and Joan Massague (2007) "Lung metastasis genes couple breast tumor size and metastatic spread", *Proceedings of the National Academy of Sciences*, **104**(16):6740-6745

```
## load Biobase package
library(Biobase)
## load the dataset
data(breastCancerData)
\#\# show the first 5 columns of the expression data
exprs(vdx7g)[ ,1:5]
## show the first 6 rows of the phenotype data
head(pData(vdx7g))
## show first 20 feature names
featureNames(vdx7g)
## show the experiment data summary
experimentData(vdx7g)
## show the used platform
annotation(vdx7g)
## show the abstract for this dataset
abstract(vdx7g)
```

Index

* datasets	D.index, 19
breastCancerData, 6	dindex.comp, 21
mainz7g, 40	dindex.comp.meta, 22
nki7g,47	getsurv2, <mark>26</mark>
transbig7g,58	hazard.ratio, 28
unt7g, 59	hr.comp,30
upp7g, 60	hr.comp.meta,31
vdx7g, 62	hr.comp2,32
* hplot	iauc.comp, 34
forestplot.surv, 25	ibsc.comp, 35
metaplot.surv,41	km.coxph.plot, 37
* htest	logp1, 39
bhr.comp, 5	mrmr.cindex, 43
cindex.comp, 10	mrmr.cindex.ensemble, 44
cindex.comp.meta, 11	no.at.risk,49
dindex.comp, 21	sbrier.score2proba, 50
dindex.comp.meta, 22	score2proba, 51
hr.comp, 30	survcomp-package, 2
hr.comp.meta,31	td.sens.spec, 53
h	tdrocc, 54
hr.comp2, 32	
iauc.comp, 34	* univar
• •	* univar balanced.hazard.ratio,4
iauc.comp, 34	* univar balanced.hazard.ratio,4 combine.est,12
iauc.comp, 34 ibsc.comp, 35	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable, 27</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44 no.at.risk, 49
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44 no.at.risk, 49
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	* univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44 no.at.risk, 49 sbrier.score2proba, 50
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	*univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44 no.at.risk, 49 sbrier.score2proba, 50 balanced.hazard.ratio, 4, 6
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	*univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44 no.at.risk, 49 sbrier.score2proba, 50 balanced.hazard.ratio, 4, 6 bhr.comp, 5 breastCancerData, 6
<pre>iauc.comp, 34 ibsc.comp, 35 survcomp-package, 2 test.hetero.est, 55 test.hetero.test, 57 * methods concordanceIndexC, 17 get_concordanceIndex_onevariable,</pre>	*univar balanced.hazard.ratio, 4 combine.est, 12 combine.test, 14 concordance.index, 15 D.index, 19 fisherz, 23 hazard.ratio, 28 km.coxph.plot, 37 mrmr.cindex, 43 mrmr.cindex.ensemble, 44 no.at.risk, 49 sbrier.score2proba, 50 balanced.hazard.ratio, 4, 6 bhr.comp, 5

INDEX 65

cindex.comp.meta, 11	rcorr.cens, 16, 43-46
combine.est, 12	abatan 26 51
combine.test, 14	sbrier, 36, 51
concordance.index, 10, 12, 15, 23, 32	sbrier.score2proba, 36, 50
concordanceIndexC, 17	score2proba, 51
cor, 24	summary.coxph, <i>19</i> , <i>28</i>
coxph, 4–6, 18–20, 28–30, 33, 38, 39, 51, 52	survcomp(survcomp-package), 2
coxph.object, 4, 5, 20, 29	survcomp-package, 2
coxphCPE, 16, 44, 46	survfit, 27, 38, 49
cvpl, 18, 39	survivalROC, 53-55
CVP1, 10, 37	survivalROC.C, 53
D. index, 19, 21	
dindex.comp, 21	t.test, 6, 21, 30, 33
	td.sens.spec, 53
dindex.comp.meta, 22	tdrocc, <i>35</i> , 54
C:-h 22	test.hetero.est, 55
fisherz, 23	
forestplot.surv, 25, 42	test.hetero.test, 57
	transbig7g,58
<pre>get_concordanceIndex_onevariable, 27</pre>	
getsurv2, 26	unt7g, 59
	upp7g, 60
hazard.ratio, 4 , 5 , 28	
hr.comp, 30	vdx7g, 62
hr.comp.meta, 31	wilesy test 25
hr.comp2, 32	wilcox.test, 35
iauc.comp, 34	
ibsc.comp, 35	
jackknife, 53	
Jackkiite, 33	
km.coxph.plot, 37, 49	
logpl, 18, 39	
mainz7g, 40	
meta.colors, 25, 42	
metaplot, 26	
metaplot.surv, 41	
mrmr.cindex, 43	
mrmr.cindex.ensemble, 44	
mrmr_cIndex, 46	
mrmr_cIndex_ensemble_remove, 46	
nki7g 47	
nki7g, 47	
no.at.risk,49	
normOrder, 20	
nlot 38	
plot, 38	
prodlim, <i>51</i> , <i>52</i>	