CLAIMS

What is claimed is:

- 2 monitoring utilization of a platform device by one or more virtual
- 3 machines; and
- 4 managing power consumption of the platform device based on the
- 5 monitoring.
- 1 2. The method of claim 1 wherein monitoring further comprises
- 2 determining resource allocation of the platform device to each of said one or
- 3 more virtual machines when each of said one or more virtual machines is
- 4 either started or stopped.
- 1 3. The method of claim 1 wherein monitoring further comprises:
- 2 identifying a change in operation of said one or more virtual machines;
- 3 and
- 4 determining resource allocation of the platform device to said one or
- 5 more virtual machines based on the change in operation.
- 1 4. The method of claim 1 further comprising notifying a guest operating
- 2 system before modifying a power consumption state of the platform device.

- 1 5. The method of claim 1 wherein the platform device is a power-
- 2 manageable platform device.
- 1 6. The method of claim 1 wherein the platform device is a non-power-
- 2 manageable platform device.
- 1 7. The method of claim 1 further comprising:
- identifying a decrease in power available to a computing platform;
- observing that one of said one or more virtual machines is quiescent;
- 4 saving the state of the one of said one or more virtual machines; and
- stopping the one of said one or more virtual machines to free resources
- 6 allocated to the one of said one or more virtual machines.
- 1 8. The method of claim 1 further comprising:
- 2 identifying a decrease in power available to a computing platform;
- observing that none of said one or more virtual machines is quiescent;
- 4 determining which subsets of said one or more virtual machines can
- 5 remain active without exceeding the power available to the computing
- 6 platform;
- 7 selecting a subset that has a maximum value to a user from the subsets
- 8 of said one or more virtual machines;
- saving the state of each virtual machine that is not included in the
- 2 subset that has the maximum value to the user; and

- 3 stopping said each virtual machine to free resources allocated to said
- 4 each virtual machine.
- 1 9. The method of claim 8 wherein the subset that has the maximum value
- 2 to the user is selected based on a policy specified by the user.
- 1 10. The method of claim 9 further comprising receiving notification of the
- 2 policy from an application running in one of said one or more VMs.
- 1 11. The method of claim 7 further comprising reconstructing the state of
- 2 said one or more virtual machines upon receiving a resource request from
- 3 said one or more virtual machines.
- 1 12. The method of claim 1 wherein any of said one or more virtual
- 2 machines runs a guest operating system that lacks the capacity to handle
- 3 power-management signals sent by a computing platform.
- 1 13. The method of claim 12 further comprising:
- 2 intercepting a power-management signal sent by the computing
- 3 platform to the guest operating system; and
- 4 preserving the state of a corresponding virtual machine if the power-
- 5 management signal indicates that the computing platform will be powered
- 6 down.

1 1/2	! ∕ A	system	comprising
-------	--------------	--------	------------

- 2 a computing platform to implement, at least, a virtual machine monitor
- 3 (VMM) and one or more virtual machines;
- 4 the VMM to monitor utilization of a platform device by said one or
- 5 more virtual machines and to manage power consumption of the platform
- 6 device based on the monitoring.
- 1 15. The system of claim 14 wherein the VMM is to monitor utilization of
- 2 the platform device by determining resource allocation of the platform device
- 3 to each of said one or more virtual machines when each of said one or more
- 4 virtual machines is either started or stopped.
- 1 16. The system of claim 14 wherein the VMM is to monitor utilization of
- 2 the platform device by identifying a change in operation of said one or more
- 3 virtual machines and determining resource allocation of the platform device
- 4 to said one or more virtual machines based on the change in operation.
- 1 17. An apparatus for providing power management, the apparatus
- 2 comprising:
- a resource watch module to monitor utilization of a platform device by
- 4 one or more virtual machines; and
- 5 a virtual machine monitor (VMM) coupled with the resource watch
- 6 module, the VMM is to manage power consumption of the platform device
- 7 based on the monitoring.

- 2 determine resource allocation of the platform device to each of said one or
- 3 more virtual machines when each of said one or more virtual machines is
- 4 either started or stopped.
- 1 19. The apparatus of claim 17 wherein the resource watch module is to
- 2 identify a change in operation of said one or more virtual machines and to
- 3 determine resource allocation of the platform device to said one or more
- 4 virtual machines based on the change in operation.
- 1 20. The apparatus of claim 17 wherein the VMM is to notify a guest
- 2 operating system before modifying a power consumption state of the
- 3 platform device.
- 1 21. The apparatus of claim 17 wherein the platform device is a power-
- 2 manageable platform device.
- 1 22. The apparatus of claim 17 wherein the platform device is a non-power-
- 2 manageable platform device.
- 1 23. The apparatus of claim 17 wherein the VMM is to
- 2 identify a decrease in power available to a computing platform,
- 3 observe that one of said one or more virtual machines is
- 4 quiescent;

5		save the state of the one of said one or more virtual machines;
6		and
7		stop the one of said one or more virtual machines to free
8		resources allocated to the one of said one or more virtual machines.
1	24.	The apparatus of claim 17 wherein the VMM is to further
2		identify a decrease in power available to a computing platform,
3		observe that none of said one or more virtual machines is
4		quiescent,
5		determine which subsets of said one or more virtual machines
6		can remain active without exceeding the power available to the
7		computing platform,
8		select a subset that has a maximum value to a user from the
9	i	subsets of said one or more virtual machines,
10		save the state of each virtual machine that is not included in the
11		subset that has the maximum value to the user, and
12		stop said each virtual machine to free resources allocated to said
13		each virtual machine.
1	25.	The apparatus of claim 24 wherein the subset that has the maximum
2	value t	to the user is selected based on a policy specified by the user.
1	26.	The apparatus of claim 25 wherein the VMM is to receive a notification
2	of the j	policy from an application running in one of said one or more VMs.

- 1 27. The apparatus of claim 17 wherein any of said one or more virtual
- 2 machines runs a guest operating system that lacks the capacity to handle
- 3 power-management signals sent by a computing platform.
- 1 28. The apparatus of claim 27 wherein the VMM is to intercept a power-
- 2 management signal sent by the computing platform to the guest operating
- 3 system and to preserve the state of a corresponding virtual machine if the
- 4 power-manageable signal indicates that the computing platform will be
- 5 powered down.
- 1 29. A computer readable medium that provides instructions, which when
- 2 executed on a processor, cause said processor to perform operations
- 3 comprising:
- 4 monitoring utilization of a platform device by one or more virtual
- 5 machines; and
- 6 managing power consumption of the platform device based on the
- 7 monitoring.
- 1 30. The computer readable medium of claim 29 providing further
- 2 instructions causing the processor to perform operations comprising:
- 3 identifying a decrease in power available to a computing platform;
- 4 observing that said one or more virtual machines are quiescent;
- 5 saving the state of said one or more virtual machines; and

- 6 stopping said one or more virtual machines to free resources allocated
- 7 to said one or more virtual machines.
- 1 31. The computer readable medium of claim 29 comprising further
- 2 instructions causing the processor to perform operations comprising:
- intercepting a power-management signal sent by the computing
- 2 platform to a guest operating system; and
- 3 preserving the state of a corresponding virtual machine if the power-
- 4 management signal indicates that the computing platform will be powered
- 5 down.