Introduction

Cxxxstrxxucture Coxxxtérisés par Imagerie

Xxxxx YYY

Ecole Centrale de Nantes

Directeur de thèse : xxx yyy Co-encadrants : xxx ddd

хх ууу

Introduction

• unbiased mean values of homogenized properties

- smaller dispersions than classical homog extraction
 - much tighter bounds ($[S_{\Sigma}^{app-1}(SUBC), C_{E}^{app}(KUBC)]$
 - for the case PERIODIC is not easy or impossible to to be applied
 - a cheaper computational cost than classical homogenization extraction but more accurate

2/30

Objective of This Work

- unbiased mean values of homogenized properties
- smaller dispersions than classical homog extraction
 - much tighter bounds ([$S_{\Sigma}^{app-1}(SUBC), C_{E}^{app}(KUBC)$])
 - for the case PERIODIC is not easy or impossible to to be applied
 - a cheaper computational cost than classical homogenization extraction but more accurate

Introduction

- unbiased mean values of homogenized properties
- smaller dispersions than classical homog extraction
 - much tighter bounds ($[S_{\Sigma}^{app-1}(SUBC), C_{E}^{app}(KUBC)]$)
 - for the case PERIODIC is not easy or impossible to to be applied
 - a cheaper computational cost than classical homogenization extraction but more accurate

Three-scale Strategies

Introduction

000

Outline of Presentation

Introduction

- Image-based Homogenization
 - Computational Homogenization
 - X-FEM/Levelset for Boundary Value Problem
 - Validation Examples
 - Numerical Examples
- 2 Edge Effects
 - Determination of Sample Numbers
 - Existence of Edge Effect
 - Numerical Examples
- Three-scale Scheme
 - Three-scale
- 4 Conclusions

Boundary Value Problem

Various Numerical Strategies

X-FEM/Levelset Modeling

Meshing Strategies

Calculation of Levelset

Image Segmentation

Model Assessment via Effective Properties

Model Assessment via Analysis of Local Quantities

A Ceramic-metallic Composite Material

```
dfadsf}
dfasdfsdaf
dfsdafsda
dfasfsda
```

14/30

A Cereal Solid Food

Concluding Remarks

Edge Effects

•000000000

Random Subsampling Homogenization

- dfasdsa
- odfasdfsda

Sample Numbers

sdfsdf

- sdfsadf
- dfsadfsa
- dfdasfsa
- 4 dfasdf

Apparent Properties

Definition

sdfsdfsdf sdfsaf

Edge Effects

Subdomain Extraction Process

Determination of Edge Effects Region

Matrix-Fiber Example for $E_f/\overline{E}_m = 0.01$

Random Checkerboard

Concluding Remarks

Conclusions et Perspectives

Conclusions

Introduction

The remarkable advantage of subdomain extraction

- unbiased mean values of homogenized properties
 - smaller dispersions than classical homog extraction
 - much tighter bounds ([$S_{\Sigma}^{app-1}(SUBC), C_{E}^{app}(KUBC)$])
 - for the case PERIODIC is not easy or impossible to to be applied
 - a cheaper computational cost than classical homogenization extraction but more accurate

Conclusions

The remarkable advantage of subdomain extraction

- unbiased mean values of homogenized properties
 - smaller dispersions than classical homog extraction
 - much tighter bounds ($[S_{\Sigma}^{app-1}(SUBC), C_{F}^{app}(KUBC)]$)

Conclusions

Introduction

The remarkable advantage of subdomain extraction

- unbiased mean values of homogenized properties
 - smaller dispersions than classical homog extraction
 - much tighter bounds ([$S_{\Sigma}^{app-1}(SUBC), C_{E}^{app}(KUBC)$])
 - for the case PERIODIC is not easy or impossible to to be applied
 - a cheaper computational cost than classical homogenization extraction but more accurate

Perspectives

Thanks for Your Attention.

Introduction 000	Image-based Homogenization 00000000000	Edge Effects	Three-scale Scheme	Conclusions	30/30