

SAPTHAGIRI NPS UNIVERSITY

Department of MathematicsMODEL QUESTION PAPER-II

Semester	:	1st sem B.Tech	Maximum marks	:	100
Course Title	:	Linear Algebra and Calculus	Duration	••	3 hours
Course Code	:	24BEELY102	(E cycle)		

Part-A

Answer any Ten questions		10X02=20
1	Define singular and non-singular matrix.	02
2	Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$.	02
3	Solve by using Gauss elimination method: $ 2x + 3y = 7 $ $x - 2y = -3 $	02
4	Find the n th derivative of x^2e^x .	02
5	If $y = \tan^{-1}x$, find the second order derivative.	02
6	Write the Pedal equation in polar form.	02
7	If $u = \frac{x}{y}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.	02
8	State Euler's theorem for homogeneous function of two variables.	02
9	If $x = r\cos\theta$, $y = r\sin\theta$, find $J\left[\frac{x,y}{r,\theta}\right]$.	02
10	Evaluate $\int_{0}^{2} \int_{1}^{2} (x^{2} + y^{2}) dx dy$.	02
11	Find the integrating factor for $ydx - xdy = 0$.	02
12	Write the complementary function for $(D^2 + 1)y = 0$.	02

Part-B

	Answer any seven questions 0		
13	Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$	05	
14	Solve the following system of equations by using Gauss Jordan method $2x + 3y - z = 5$; $4x + 4y - 3z = 3$; $2x - 3y + 2z = 2$.	05	
15	If $y = a\cos(\log x) + b\sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0.$	05	
16	Show that the following pair of curves intersect each other orthogonally $r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$.	05	

17	If $= tan^{-1} \left(\frac{y}{x} \right)$, show that $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$.				
18	If $u = e^{(x^3y^3/x^2+y^2)}$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 4 u \log u$.				
19	Evaluate $\int_0^{\pi} \frac{\sin^4 \theta}{(1+\cos \theta)^2} d\theta$ by using reduction formula.				
20	Check whether the given differential equation is exact or not. $y e^{xy} dx + (xe^{xy} + 2y) dy = 0.$				
21	$Solve \frac{d^3y}{dx^3} - y = 3\cos 2x.$				
		Part-C	22715 45		
	1	Answer any Three full questions	03X15=45		
22	a)	Solve the following system of equation by Gauss-Seidel Method: $5x + 2y + z = 12$; $x + 4y + 2z = 15$; $x + 2y + 5z = 20$ by taking initial approximation as $(1, 0, 3)$.	07		
22	b)	Find the dominant eigen value and corresponding eigen vector of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by Rayleigh's Power Method, taking the initial eigen vector as $(1,1,1)^{T}$.			
23	a)				
	b)	Find the pedal equation of the following curves: $\frac{2a}{r} = (1 + \cos \theta)$.	08		
24	a)	If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, find the value of $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.	07		
	b)	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.	08		
25	a)	Evaluate $\int_0^1 \int_0^{\sqrt{1-y^2}} x^3 y dx dy.$	07		
	b)	Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} \frac{dz dy dx}{(1+x+y+z)^3}$.	08		
26	a)	Solve $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$ by using Bernoulli's differential equation.	07		
	b)	Solve $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = x^2 - 4x - 6$.	08		