		TT	\mathbf{r}
L	· \ /	1/1	D
n		ν I	г

Кафедра ЭВМ

Отчет по лабораторной работе N = 05

Тема: «Исследование работы счётчиков»

Выполнил:

студент группы 150501 Божко И.И.

Проверил:

к.т.н., доцент Селезнёв И.Л.

Минск

1 ЦЕЛЬ РАБОТЫ

Целью работы является изучение работы счётчиков: двоичного, двоично-десятичного и реверсивного.

2 ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

- 1) Для выполнения работы используется лабораторный стенд, в состав которого входят:
 - базовый лабораторный стенд
 - лабораторный модуль dLab12 для изучения работы двоичного счётчика
 - лабораторный модуль dLab13 для изучения работы двоичнодесятичного счётчика
 - лабораторный модуль dLab14 для изучения работы реверсивного счётчика
- 2) Изучение работы счётчиков:
 - 2.1 Изучение работы двоичного счётчика:
 - 2.1.1 Построение временных диаграмм и таблицы истинности счётчика в статическом режиме работы
 - 2.1.2 Построение временных диаграмм и таблицы истинности счётчика в динамическом режиме работы
 - 2.2 Изучение работы двоично-десятичного счётчика:
 - 2.2.1 Построение временных диаграмм и таблицы истинности счётчика в статическом режиме работы
 - 2.2.2 Построение временных диаграмм и таблицы истинности счётчика в динамическом режиме работы
 - 2.3 Изучение работы реверсивного счётчика
 - 2.3.1 Построение временных диаграмм и таблицы истинности счётчика в статическом режиме работы
 - 2.3.2 Построение временных диаграмм и таблицы истинности счётчика в динамическом режиме работы

3 ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

3.1 Двоичный счётчик

Счётчиком называется устройство для подсчета числа входных импульсов При поступлении каждого импульса на тактовый вход С состояние счётчика изменяется на единицу. Счетчик можно реализовать на нескольких триггерах, при этом состояние счётчика будет определяться состоянием его триггеров. В суммирующих счетчиках каждый входной импульс увеличивает число на его

выходе на единицу, в вычитающих. счетчиках каждый импульс уменьшает это число на единицу, Наиболее простые счётчики — двоичные. На рис. 3.1 представлен суммирующий двоичный счётчик.

Рисунок 3.1 – суммирующий двоичный счётчик

При построении счётчика триггеры соединяются последовательно. Выход каждого триггера непосредственно действует на тактовый вход следующего. Для того чтобы реализовать суммирующий счётчик, необходимо счётный вход очередного триггера подключать и инверсному выходу предыдущего.

Счётчики характеризуются числом состояний в течение одного периода (цикла) счёта. Число состояний определяется количеством триггеров m в структуре счётчика. Так для двоичного счётчика при m=4 число состояний равно $2^4=16$.

Число состояний счётчика принято называть коэффициентом пересчёта $K_{\text{СЧ}}$. Этот коэффициент равен отношению числа импульсов на входе N_{BX} к числу импульсу на выходе N_{BMX} старшего разряда счётчика за период счёта.

$$K_{CY} = N_{BX} / N_{BbIX}$$
 (3.1)

Если на вход счётчика подавать периодическую последовательность импульсов с частотой f_{BX} , то частота $f_{BыX}$ на выходе старшего разряда будет меньше в $K_{C^{\rm H}}$ раз. Поэтому счётчики можно использовать в качестве делителей частоты, величина $K_{C^{\rm H}}$ в данном случае будет называться коэффициентом деления. Для увеличения данного коэффициента приходится увеличивать число триггеров в схеме счётчика.

На рис. 3.2 показано УГО двоичного счётчика К555ИЕ5, включенного с коэффициентом пересчёта 16 (Выход Q0 соединён со входом С0)

Рисунок 3.2 – УГО счётчика К555ИЕ5

Режимы работы микросхемы К555ИЕ5, включённой с коэффициентом пересчёта 16, приведены в табл. 3.1.

Режим		Bxod		Выход								
работы	R1	R2	C0	Q0	Q1	Q2	Q3					
Сброс	1	1	X	0	0	0	0					
	0	0	\									
Счёт	1	0	\	Увеличение кода								
	0	1	\									

Таблица 3.1 – режимы работы двоичного счётчика

Примечания: - символ х обозначает безразличное состояние входа

- символ \ обозначает срез тактового сигнала

3.2 Двоично-десятичный счётчик

Двоично-десятичные счетчики ведут счет в десятичной системе счисления. Каждая десятичная цифра от 0 до 9 кодируется четырехразрядным двоичным кодом, так называемой тетрадой. Эти устройства являются разновидностью счетчиков по модулю *п*. Данные триггеры реализуются на основе двоичных счётчиков путём ввода обратных связей.

На рис. 3.3 представлен счётчик с коэффициентом пересчёта 5.

Рисунок 3.3 - счётчик с $K_{C4} = 5$

На рисунке 3.4 приведено УГО двоично-десятичного счётчика К555ИЕ2, включенного с коэффициентом пересчёта 10.

Рисунок 3.4 – УГО счётчика К555ИЕ2

Режимы работы микросхемы К555ИЕ2, включённой с коэффициентом пересчёта 10, приведены в табл. 3.2.

Режим			Вход		Выход					
Работы	R1	R2	S1	S2	C0	Q0	Q1	Q2	Q3	
Сброс	1	1	0	X	X	0	0	0	0	
_	1	1	X	0	X	0	0	0	0	
Предварительная установка	X	X	1	1	X	1	0	0	1	
	0	X	0	X	\					
Счёт	X	0	X	0	\	Увеличение кода				
	0	X	X	0	\					
	v	Λ	Λ	v	\					

Таблица 3.2 – режимы работы двоично-десятичного счётчика

Примечания: - символ х обозначает безразличное состояние входа

- символ \ обозначает срез тактового сигнала

3.3 Реверсивный счётчик

Реверсивные счетчики могут работать как в режиме суммирования, так и в режиме вычитания. Направление счёта в реверсивном счётчике определяется способом передачи сигнала между триггерами соседних разрядов, таким образом, реверсивный счётчик должен обязательно содержать в своём составе устройства, выполняющие функцию управления последовательностью счёта. Счётчики находят широкое применение в вычислительнызх и управляющих устройствах, цифровых измерительных приборах.

В зависимости от выбранного способа управления внутренними триггерами реверсивные счётчики могут быть как асинхронными, так и синхронными.

Последовательные счётчики проще параллельных по устройству, но работают медленнее, кроме того, при переключении последовательной цепочки триггерв из-за задержки распространения тактового сигнала на их

выходах могут кратковременно возникать ложные комбинации сигналов, нарушающие работу счётчика.

Более совершенным является синхронный реверсивный счётчик, в котором счётные импульсы поступают одновременно на входы всех триггеров. Примером такого счётчика является интегральная микросхема К555ИЕ7. Уго данной микросхемы представлено на рис. 3.5.

Рисунок 3.5 – УГО счётчика К555ИЕ7

Режимы работы микросхемы К555ИЕ7 приведены в табл. 3.3

Таблица 3.3 – режимы работы реверсивного счётчика

Режим		Вход								Выход						
	R	L	CU	CD	Dθ	D 1	D2	D 3	$Q\theta$	Q 1	Q2	Q3	PU	PD		
Сброс	1	X	X	0	X	X	X	X	0	0	0	0	1	0		
	1	X	X	1	X	X	X	X	0	0	0	0	1	1		
	0	0	X	0	0	0	0	0	0	0	0	0	1	0		
Параллельная	0	0	X	1	0	0	0	0	0	0	0	0	1	1		
запись	0	0	0	X	1	1	1	1	1	1	1	1	0	1		
	0	0	1	X	1	1	1	1	1	1	1	1	1	1		
Счёт на	0	1	/	1	X	X	X	X	У	вели	чени	ие	1	1		
увеличение									кода							
Счёт на	0	1	1	/	X	X	X	X	Уменьшение			ие	1	1		
уменьшение										ко	да					

Примечания: - символ х обозначает безразличное состояние входа

- символ / обозначает фронт тактового сигнала

4 ВЫПОЛНЕНИЕ РАБОТЫ

4.1 Исследование работы двоичного счётчика

- 4.1.1 Изучение работы двоичного счётчика в статическом режиме работы Подавая сигнал на вход С 16 раз, заполняем диаграмму состояний (рис.
- 4.1) и таблицу истинности (рис. 4.2) счётчика. На рис. 4.3 приведено изображение лицевой панели при работе.

Диаграмма состояний двоичного счетчика

Рисунок 4.1 — диаграмма состояний двоичного счётчика в статическом режиме работы

Таблица истинности двоичного счетчика

	R2	R1	C	Q3	Q2	Q1	Q0	
Шаг 1	0	0	П	0	0	0	1	
Шаг 2	0	0	П	0	0	1	0	ш
Шаг 3	0	0	П	0	0	1	1	ш
Шаг 4	0	0	П	0	1	0	0	ш
Шаг 5	0	0	П	0	1	0	1	
Шаг 6	0	0	П	0	1	1	0	
Шаг 7	0	0	П	0	1	1	1	
Шаг 8	0	0	П	1	0	0	0	
Шаг 9	0	0	П	1	0	0	1	T
Шаг 10	0	0	П	1	0	1	0	
Шаг 11	0	0	П	1	0	1	1	
Шаг 12	0	0	П	1	1	0	0	
Шаг 13	0	0	П	1	1	0	1	
Шаг 14	0	0	П	1	1	1	0	ш
Шаг 15	0	0	П	1	1	1	1	
Шаг 16	0	0	П	0	0	0	0	
								T

Рисунок 4.2 – таблица истинности двоичного счётчика в статическом режиме работы

Рисунок 4.3 – лицевая панель при изучении двоичного счётчика в статическом режиме работы

Коэффициент пересчёта $K_{CY} = 16$

4.1.2 Изучение работы двоичного счётчика в динамическом режиме работы

Для изучения работы регистра в динамическом режиме включаем генератор импульсов и, изменяя входные сигналы R1 и R2 счётчика, отражаем на диаграмме состояний (рис. 4.4) режимы работы счётчика. На рис. 4.5 приведено изображение лицевой панели при работе.

Рисунок 4.4 — диаграмма состояний двоичного счётчика в динамическом режиме работы

Рисунок 4.5 — лицевая панель при изучении двоичного счётчика в динамическом режиме работы

Переключение счётчика происходит по перепаду импульсов "1" – "0" на входе C.

4.2 Исследование работы двоично-десятичного счётчика

4.2.1 Изучение работы двоично-десятичного счётчика в статическом режиме работы

Устанавливаем следующие значения сигналов: S0 = 0, S1 = 0, R1 = 0, R2 = 0. Подавая сигнал на вход С 10 раз для получения полного цикла пересчёта счётчика, заполняем диаграмму состояний (рис. 4.6) и таблицу истинности (рис. 4.7) счётчика. На рис. 4.8 приведено изображение лицевой панели при работе.

Рисунок 4.6 – диаграмма состояний двоично-десятичного счётчика в статическом режиме работы

	52	51	R2	R1	C	Q3	Q2	Q1	Q0	
Шаг 1	0	0	0	0	П	0	0	0	1	
Шаг 2	0	0	0	0	п	0	0	1	0	
Шаг 3	0	0	0	0	п	0	0	1	1	
Шаг 4	0	0	0	0	П	0	1	0	0	
Шаг 5	0	0	0	0	П	0	1	0	1	
Шаг 6	0	0	0	0	п	0	1	1	0	T
Шаг 7	0	0	0	0	П	0	1	1	1	
Шаг 8	0	0	0	0	П	1	0	0	0	
Шаг 9	0	0	0	0	п	1	0	0	1	
Шаг 10	0	0	0	0	П	0	0	0	0	
					S 5				(c)	7

Рисунок 4.7 – таблица истинности двоично-десятичного счётчика в статическом режиме работы

Рисунок 4.8 – лицевая панель при изучении двоично-десятичного счётчика в статическом режиме работы

Коэффициент пересчёта $K_{C^{\mathrm{H}}}=10$

4.2.2 Изучение работы двоично-десятичного счётчика в динамическом режиме работы

Изменяя состояния входов R1, R2, заполняем диаграмму состояний (рис. 4.9) счётчика. На рис. 4.10 приведено изображение лицевой панели при работе.

Рисунок 4.9 – диаграмма состояний счётчика в динамическом режиме работы

Рисунок 4.10 — лицевая панель при изучении двоично-десятичного счётчика в динамическом режиме работы

Изменяя состояния входов S1, S2, заполняем диаграмму состояний (рис. 4.11) счётчика. На рис. 4.12 приведено изображение лицевой панели при работе.

Рисунок 4.11 — диаграмма состояний счётчика в динамическом режиме работы

Рисунок 4.12 — лицевая панель при изучении двоично-десятичного счётчика в динамическом режиме работы

4.3 Исследование работы реверсивного счётчика

4.2.1 Изучение работы реверсивного счётчика в статическом режиме работы

Реверсивный счётчик может работать в трёх режимах: режим счёта на увеличение, режим счёта на уменьшение и режим параллельной загрузки

Режим счёта на увеличение:

Устанавливаем входные сигналы: L = 1, R = 0. Подавая импульс на вход CU, заполняем диаграмму состояний (рис. 4.13) и таблицу истинности (4.14) счётчика. На рис. 4.15 приведено изображение лицевой панели при работе.

Коэффициент пересчёта $K_{CH} = 16$

Диаграмма состояний реверсивного счетчика

Рисунок 4.13 – диаграмма состояний счётчика в режиме счёта на увеличение

Таблица истинности реверсивного счетчика

	R	L	D3	D2	D1	D0	CU	CD	Q3	Q2	Q1	Q0	PU	PD	
Шаг 1	0	1	0	0	0	0	LГ	1	0	0	0	1	1	1	
Шаг 2	0	1	0	0	0	0	LF	1	0	0	1	0	1	1	1
Шаг 3	0	1	0	0	0	0	LF	1	0	0	1	1	1	1	П
Шаг 4	0	1	0	0	0	0	LF	1	0	1	0	0	1	1	1
Шаг 5	0	1	0	0	0	0	LF	1	0	1	0	1	1	1	
Шаг 6	0	1	0	0	0	0	LГ	1	0	1	1	0	1	1	П
Шаг 7	0	1	0	0	0	0	LГ	1	0	1	1	1	1	1	П
Шаг 8	0	1	0	0	0	0	LГ	1	1	0	0	0	1	1	Ш
Шаг 9	0	1	0	0	0	0	LΓ	1	1	0	0	1	1	1	T
Шаг 10	0	1	0	0	0	0	LГ	1	1	0	1	0	1	1	
Шаг 11	0	1	0	0	0	0	LF	1	1	0	1	1	1	1	Ш
Шаг 12	0	1	0	0	0	0	LF	1	1	1	0	0	1	1	Ш
Шаг 13	0	1	0	0	0	0	LF	1	1	1	0	1	1	1	Ш
Шаг 14	0	1	0	0	0	0	LГ	1	1	1	1	0	1	1	
Шаг 15	0	1	0	0	0	0	LГ	1	1	1	1	1	1	1	111
Шаг 16	0	1	0	0	0	0	LГ	1	0	0	0	0	1	1	
			,							17					T

Рисунок 4.14 – таблица истинности счётчика в режиме счёта на увеличение

Рисунок 4.15 — лицевая панель при работе с счётчиком в режиме счёта на увеличение

Режим счёта на уменьшение:

Устанавливаем входные сигналы: L = 1, R = 0. Подавая импульсы на вход CD, заполняем диаграмму состояний (рис. 4.16) и таблицу истинности (4.17) счётчика. На рис. 4.18 приведено изображение лицевой панели при работе.

Коэффициент пересчёта $K_{CY} = 16$

Рисунок 4.16 – диаграмма состояний счётчика в режиме счёта на уменьшение

Таблица истинности реверсивного счетчика CU CD Q3 Q2 Q1 Q0 PU PD Шаг 1 LΓ Шаг 2 LF Шаг 3 LF Шаг 4 LF Шаг 5 LF Шаг 6 LF Шаг 7 LF Шаг 8 LF Шаг 9 LF Шаг 10 LF Шаг 11 LF Шаг 12 LF Шаг 13 LF Шаг 14 LF Шаг 15 LF Шаг 16

Рисунок 4.17 – таблица истинности счётчика в режиме счёта на уменьшение

Рисунок 4.18 — лицевая панель при работе с счётчиком в режиме счёта на уменьшение

Режим параллельной загрузки:

Загрузка происходит при L=0. Значения сигналов с входов D0-D3 поступают на выходы Q0-Q3 счётчика. Изображения счётчиков при работе в режиме параллельной загрузки приведены на рисунках 4.19 (a, 6, в).

Рисунок 4.19 – лицевая панель при работе с счётчиком в режиме параллельной загрузки

4.2.2 Изучение работы реверсивного счётчика в динамическом режиме работы

Загружаем в счётчик значения 1010. Подавая импульсы на вход CU, а после получения сигнала PU, на вход CD заполняем диаграмму состояний (рис. 4.20) счётчика.

Рисунок 4.20 — диаграмма состояний счётчика в динамическом режиме работы

Получаем сигналы PU и PD на диаграмме состояний (рис. 4.21) при подаче сигналов на входы счётчика без счёта

Рисунок 4.21 — диаграмма состояний счётчика в динамическом режиме работы

5. ВЫВОДЫ

Требовалось изучить работу счётчиков: двоичного, двоично-десятичного и реверсивного.

Была изучена работа двоичного счётчика в статическом и динамическом режимах работы. Был получен цикл полного пересчёта счётчика и рассчитан коэффициент пересчёта счётчика. Для всех режимов работы были построены таблицы истинности и диаграммы классов.

Была изучена работа двоично-десятичного счётчика в статическом и динамическом режимах работы. Был получен цикл полного пересчёта счётчика и рассчитан коэффициент пересчёта счётчика. Для всех режимов работы были построены таблицы истинности и диаграммы классов. В динамическом режиме было изучено влияние входов S и R на работу счётчика.

Была изучена работа реверсивного в статическом и динамическом режимах работы. Были изучены режимы счёта на увеличение, счёта на уменьшение и параллельной загрузки. Для всех режимов были построены таблицы истинности и диаграммы классов. В динамическом режиме работы были получены сигналы переносов. Были рассчитаны коэффициенты пересчёта для исследуемых счётчиков.