Matplotlib Practice - Solutions - Unibs 2021

Import matplotlib.pyplot package under name plt and print version

hint: import ... as, plt.__version__

Activate matplotlib inline

hint: ... inline

Base

Plot a line with formula y = 2x + 1

hint: np.arange, plt.figure, plt.plot, plt.title, plt.xlabel, plt.ylabel, plt.grid, plt.legend, plt.show

- Use points in range [1, 20]
- Figure size of (10,5)
- Set axis labels
- Set plot title
- Set line color as red
- Discontinued line (--) with star (*) on point
- Plot the legend with the formula in latex version (r"\$... \$")
- Set a dashed grid

Add to the previous plot the line with formula y=log(x)+1 in the same range

hint: np.log, plt.plot

- Set line color as blue
- Normal line (-) with square (s) char on point

Add to the previous plot the line with formula $y=x^2-1$ in the same range

hint: x**2, plt.plot

- Set line color as green
- Normal line (-) with + (plus) char on point

Replot the previous plot in different subplots in the same line without sharing axes

hint: plt.subplots, axes[].plot, axes[].set_title, axes[].set_xlabel,
axes[].set_ylabel, axes[].grid, axes[].legend, fig.tight_layout

Replot the previous plot sharing y between suplots

hint: sharey=True

Replot the previous plot using the for loop, lists and dictionaries

```
hint: functions = [...], {"title": ..., "y": ..., "label": ..., "linestyle":
...}, zip(functions, axes)
```


Plot functions $y_i=i\cdot x-5i$ with i in range (0, 10) in the same plot with size (10,5) and a different color for each function

Plot functions $y_i=i\cdot x-5i$ with i in range (0, 10) in different subplots with shared y and figure size (20,5)

Intermediate

Plot a red scatterplot of \boldsymbol{x} squared

hint: plt.scatter

Plot a blue step plot of \boldsymbol{x} squared with linewidth of 3

hint: plt.step

Plot an orange barplot plot of x squared with alpha of 0.25

hint: plt.bar

Plot the area between x squared and the $x \cdot log(x)$ function in green and alpha 0.5

hint: plt.fill_between

Replot previous plots in square grid (2,2)

hint: axes[][]

Plot purple histogram of 50 bins and pink cumulative instogram of 100K random samples in subplots

hint: np.random.randn, axes[].hist(), cumulative=True, bins=50

