SUDA et al. Q65287
DISCHARGE LAMP DEVICE AND AN
INSULATING PLUG THEREFOR
Filed: July 6, 2001
Darryl Mexic 202-293-7060
1 of 6

FIG. 1

JDA et al. Q65287
SCHARGE LAMP DEVICE AND AN
INSULATING PLUG THEREFOR
Filed: July 6, 2001
Darryl Mexic 202-293-7060
2 of 6

SUDA et al.
DISCHARGE LAMP DEVICE AND AN
INSULATING PLUG THEREFOR
Filed: July 6, 2001
Darryl Mexic
3 of 6

FIG. 3

DA et al. Q65287
DISCHARGE LAMP DEVICE AND AN
INSULATING PLUG THEREFOR
Filed: July 6, 2001
Darryl Mexic 202-293-7060
4 of 6

FIG. 4

FIG. 5

OUDA et al.
DISCHARGE LAMP DEVICE AND AN
INSULATING PLUG THEREFOR
Filed: July 6, 2001
Darryl Mexic
5 of 6

FIG. 6

CONNECTOR FITTING STRENGTH

FIG. 7

TSUDA et al.
DISCHARGE LAMP DEVICE AND AN INSULATING PLUG THEREFOR Filed: July 6, 2001
Darryl Mexic 202-2

202-293-7060

Q65287

6 of 6

GLASS FIBER RATIO (%)	5	10 EFORMA_	15 DEFORMA_	20	30	40	20	09	70	08	06
HEAT RESISTANCE	DEVELOPED D	EVELOPED ×		NO ABNOR- MALITY O	NO ABNOR- MALITY O	NO ABNOR- NO ABN	NO ABNOR- MALITY O				
Lipetime Durability Lighting Time: 3000h≤	1786 (VOID CRACK)	2485 (VOID CRACK)	2733 (VOID CRACK)	3350	4680 O	5000≤	5000≤	5000≶ O	4680	3350	2174 (WELD CRACK)
CONNECTOR FITTING STRENGTH TEST 3.0(N·m)≤	1.9 ×	2.6 · ×	3.2 O	3.5	4.2 O	4,4	4.5	4.5	4.4	4.4	4.2
PLUG DIMENSIONAL ACCURACY PROCESS CAPABILITY:1.0≦	0.22 (LARGE SHRINKAGE)	0.43 LARGE SHRINKAGE ×	0.89 (LARGE SHRINKAGE)	0.1.0	1.55 O	1.70 O	1.72 O	17.1	1.68 O	07.1	17.1