МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ УКРАЇНИ

«КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики. Кафедра програмного забезпечення комп'ютерних систем

3ВІТ з лабораторної роботи № 1 «Нелінійні рівняння з одним невідомим»

Виконав:

студент 3-го курсу, групи КП-83, спеціальності 121 — Інженерія програмного забезпечення Коваль Андрій Олександрович

Перевірив:

Онай Микола Володимирович

Мета роботи: опанувати методи наближеного розв'язання нелінійних рівнянь.

Завдання

- 1. Розробити програму на мові програмування С# у середовищі розробки Visual Studio 2013 (або вище), яка буде працювати у віконному режимі та реалізовувати метод Лобачевського розв'язання алгебраїчних рівнянь і дозволяти уточнювати (точність та проміжок локалізації задаються користувачем з клавіатури) корені будь-яких нелінійних рівнянь методами, що задані за варіантом. Розроблена програма повинна виводити на екран всі проміжні результати.
- 2. За допомогою розробленої програми з п.1 розв'язати задані за варіантом рівняння на заданому проміжку з точністю $\varepsilon < 10^{-7}$.
- 3. При виконанні завдання з п.2 необхідно побудувати графіки залежності наближеного значення кореня рівняння від кількості ітерацій починаючи з початкового наближення. Якщо рівняння має більше двох коренів, то побудувати графіки для двох будьяких коренів.
- 4. Знайти верхню та нижню границю додатних і від'ємних коренів заданого за варіантом алгебраїчного рівняння.
- 5. За допомогою розробленої програми з п.1, знайти корені, заданого за варіантом алгебраїчного рівняння, методом Лобачевського та уточнити отримані корені будь-яким методом розв'язання нелінійних рівнянь.
- 6. Задані за варіантом, рівняння розв'язати у MatLab 7.0 (або вище) або у MathCAD 15.0 (або вище), або у Mathematica 7.0 (або вище). Задане за варіантом, алгебраїчного рівняння необхідно розв'язати, як мінімум двома функціями наявними у відповідному математичному пакеті. Наприклад, в математичному пакеті MatLab

7.0 наявна функція solve для розв'язання будьякого нелінійного рівняння та функція roots для розв'язання алгебраїчного рівняння.

№ за списком викладача: 8

Варіант № 24

Рівняння 18:

20 00		10 to
18	$\cos^3 x + x^3 e^x = x^6 + 35$	$(-\infty;\infty)$

Рис 1. рівняння 18

Спрощений метод Ньтютона

Рівняння 31

$31 x^3 ch$	$x + \pi - 9\pi x = 0$	[-10.0; 10.0]
---------------	------------------------	---------------

Рис 2. рівняння 31

Метод поділу навпіл

Метод простих ітерацій

Коефіцієнти алгебраїчного рівняння

24	18	84	-225	-811	565	842	-437	-62
			Pk.	N 20			3	

Рис 3. Коефіцієнти алгебраїчного рівняння

Математичне підгрунття для виконання роботи

1. Перевірка наявності лише одного кореня в уведеному проміжку

Перед початком роботи з введеним проміжком локалізації [a;b], слід впевнитися, що на цьому проміжку існує корінь, причому один і тільки один. Для цього потрібно впевнитися, що

- f(a) * f(b) < 0 (на даному проміжку функція хоча б один раз обертається на 0);
- функція є монотонною на даному проміжку

Після виконання обох умов ми можемо бути впевненими, що на проміжку [a;b] функція набуває значення 0 один і тільки один раз.

2. Спрощений метод Ньютона

Точку x_0 знаходимо за такою умовою $f(x_0) * f''(x_0) > 0$.

Якщо жодна з проміжку не виконує цю умову, то на даному проміжку немає коренів.

Основна ітераційна формула	Критерій зупмнки
$x_{k+1} = x_k - \frac{f(x_k)}{f(x_0)}$	$\left f(x_{k+1}) - f(x_k) \right < \varepsilon$

3. Метод поділу навпіл

Метод поділу навпіл реалізує найпростіший спосіб вибору пробної точки — поділ проміжку існування кореня навпіл. Середина, т. т. Якщо f(a) * f(m) > 0, то a = m і, навпаки, якщо f(b) * f(m) > 0, то b = m

Основна ітераційна формула	Критерій зупмнки
$m = (a+b)/2$ $f(a) * f(m) > 0 \implies a = m$ $f(b) * f(m) > 0 \implies b = m$	$ a-b <\varepsilon$

4. Метод простих ітерацій

Основна ітераційна формула	Критерій зупмнки
$x_{k+1} = \varphi(x_k)$ $x = x - \lambda \varphi(x)$	Ускладнений $\begin{vmatrix} x_{k+1} - x_k \end{vmatrix} \le \frac{1-q}{q} \varepsilon$ Спрощений $\begin{vmatrix} x_{k+1} - x_k \end{vmatrix} \le \varepsilon$

Підрахунок λ та q, вибор початкового значення х0

$$\alpha = min(f'(x)), x \in [a; b]$$

$$\gamma = max(f'(x)), x \in [a; b]$$

$$\lambda = 2 / (\alpha + \gamma)$$

$$q = max\{|1 - \alpha\lambda|; |1 - \gamma\lambda|\}$$

За x_0 зазвичай приймається будь-який з кінців проміжку [a;b], або середина проміжку.

Якщо q < 0.5 то беремо спрощений критерій зупинки. Навпаки - ускладнений

5. Метод Лобачевського

Основною ітераційною формулою ϵ формула заміни коефіцієнтів при квадруванні поліному:

$$b_k = a_k^2 + 2 \cdot \sum_{j=1}^{n-k} (-1)^j a_{k-j} a_{k+j}, \ k = 0...n$$

Процес квадрування продовжується, поки подвійні добутки не перестануть впливати на перші головні члени коефіцієнтів перетвореного рівняння. Коротко можна записати:

$$b_k \approx a_k^2$$

Квадрування коренів відбувається через необхідну умову використання методу, тобто корені мають бути сильно віддаленими один від одного

$$|x_1| \gg |x_2| \gg \dots \gg |x_n|$$

Формула для знаходження коренів:

$$|x_k| = \sqrt[2p]{\frac{b_{n+k-2}}{b_{n+k-1}}}$$

де р - к-ть ітерацій квадрування

Локалізація коренів

(2) (5)		§ 50
18	$\cos^3 x + x^3 e^x = x^6 + 35$	$(-\infty;\infty)$

Рис 4. Рівняння 18

Рис 5. Графік рівняння 18

31	$x^3chx + \pi - 9\pi x = 0$	[-10.0; 10.0]
407		• CONTRACTOR OF THE CONTRACTOR

Рис 6. Рівняння 31

Рис 7. Графік рівняння 31

Значення коренів рівнянь

Рівняння 1

2 50		70
18	$\cos^3 x + x^3 e^x = x^6 + 35$	$\left(-\infty;\infty\right)$

Метод	C#	WolframAlpha
Спрощений метод Ньютона	4,548030221093484	4.548030122881073576 91118478

Рівняння 2

$x^{3}chx + \pi - 9\pi x = 0$ [-	10.0; 10.0]
----------------------------------	-------------

Метод	C#	WolframAlpha
Метод поділу навпіл	-2,357247054576874 0,11115998029708862 2,3053465485572815	-2.35724707770657529 0.111159991067432630 2.305346509335099944
Метод простих ітерацій	-2,3572470976285747 0,1111600002190207 2,3053465319243114	-2.35724707770657529 0.111159991067432630 2.305346509335099944

Графіки залежності наближеного значення кореня рівняння від кількості ітерацій починаючи з початкового наближення

Рис 8. Спрощений метод ньютона. Границі [4.3; 4.7]

Рис 8. Метод поділу навпіл. Границі [2.2; 2.5]

Рис 8. Метод простих ітерацій. Границі [2.2; 2.5]

Знаходження верхньої та нижньої додатньої та від'ємної границі коренів поліному

$$R = 1 + \frac{A}{|a_n|}$$

$$r = \frac{1}{1 + \frac{B}{|a_0|}}$$

$$A = max\{|a_{n-1}|, |a_{n-2}|, ..., |a_0|\}$$

$$B = max\{|a_n|, |a_{n-1}|, |a_{n-2}|, ..., |a_1|\}$$

A = 842

B = 842

$$R=1+842/18=47,(7)$$

$$r=1/(1+842/62)=0.06858407$$

Отже границі додатніх коренів (0.06858407; 47,(7)), а від'ємних (-47,(7); -0.06858407)

Знаходження коренів заданого алгебраїчного рівняння

Рівняння:

$$18x^{7} + 84x^{6} - 225x^{5} - 811x^{4} + 565x^{3} + 842x^{2} - 437x - 62 = 0$$

Метод	<i>C</i> #	Wolfram
-------	------------	---------

Лобачевського	-5,2678142445025875	-5.267768964300571
Лобачевського	-3,20/81424430238/3	-3.20//089043003/1
	-2,722363290693533	-2.77209791556021794
	-1,0949667151047355	-1.08572062815764756
	-0,11765421055170447	-0.11765421055171511
	0,6465052371130404	0.64658500641891822
	0,9543038436792931	0.96231206734737475
	-3,0218683497988175	2.96767797813719171

При уточненні коренів спрощеним методом ньютона були отримані такі результати:

Метод	C#
Метод простих ітерацій	-5,267768964642444 -2,7720979140005024 -1,0857206282590817 -0,11765421055171561 0,6465850026510652 0,9623120668638421

Висновки

Я опанував методи наближеного розв'язання нелінійних рівнянь за допомогою спрощеного метода Ньютона, метода поділу навпіл та метода простих ітерацій. Алгоритм рішення було написано на мові програмування С#. Я порівняв результати роботи своєї системи з результати з Wolfram|Alpha та Desmos, після чого впевнився у достатній точності власних значень. Також, я опанував метод наближеного розв'язання лінійних рівнянь, метод Лобачевського, і перевірив його у такий самий спосіб, отримавши задовільні результати.