L. Mereu – A. Nanni Successioni numeriche

3. Successioni monotone

Una successione $\{a_n\}$ si dice

•	crescente	se	$\forall n \in \mathbb{N}$	risulta	$a_n < a_{n+1}$
•	decrescente	se	$\foralln\in\mathbb{N}$	risulta	$a_n > a_{n+1}$
•	non decrescente	se	$\forall n\in\mathbb{N}$	risulta	$a_n \le a_{n+1}$
•	non crescente	se	$\forall n \in \mathbb{N}$	risulta	$a_n \ge a_{n+1}$

In ciascuno di questi casi la successione si dice monotona.

Le successioni monotone sono sempre *regolari* cioè sono *convergenti* se sono limitate, *divergenti* se sono illimitate.

Vale il seguente

Teorema

Una successione crescente o non decrescente [decrescente o non crescente] ha come limite l'estremo superiore [inferiore] dell'insieme numerico costituito dai suoi termini.

Esempio

Stabilire per la seguente successione se è :

- a. Monotona
- b. Calcolare il limite per $n \rightarrow \infty$, se esiste

Sia

$$a_n = \frac{3n+2}{n+1}$$

Per ogni coppia n_1 , $n_2 \in N$ con $n_1 < n_2$ risulta

$$a_{n_1} = \frac{3n_1+2}{n_1+1} = \frac{3(n_1+1)-1}{n_1+1} = 3 - \frac{1}{n_1+1}$$

Si ha inoltre:

$$n_1 < n_2 \Rightarrow \frac{1}{n_1+1} > \frac{1}{n_2+1} \Rightarrow -\frac{1}{n_1+1} < -\frac{1}{n_2+1} \Rightarrow 3 - \frac{1}{n_1+1} < 3 - \frac{1}{n_2+1}$$

cioè $n_1 < n_2 \Rightarrow a_{n_1} < a_{n_2}$ perciò la funzione è monotona crescente e risulta

$$\lim_{n\to\infty} \frac{3n+2}{n+1} = 3$$

L. Mereu – A. Nanni Successioni numeriche

Esercizi

Stabilire per ciascuna delle seguenti successioni se è :

a. Monotona

b. Calcolare il limite per $n \rightarrow \infty$, se esiste

1)
$$a_n = \frac{n+1}{n^2}$$

2)
$$a_n = \frac{1}{\sqrt{n+1}}$$

*3)
$$a_n = \sqrt{n+2} - \sqrt{n+1}$$

$$4) a_n = \log \frac{1}{n+3}$$

5)
$$a_n = e^{-n+1}$$

*6)
$$a_n = (-2)^{n+1}$$

$$7) a_n = \left(\frac{1}{4}\right)^{-n}$$

*8)
$$a_n = (-1)^n \left(\frac{7}{8}\right)^n$$

*9)
$$a_n = (-1)^n \left(t g \frac{\pi}{3} \right)^n$$

*10)
$$a_n = e^{\cos(n+1)\pi}$$

Soluzioni

1. S. a) decrescente; b) 0; **2.S.** a) decrescente; b) 0;

*3.S. a) decrescente; (il termine a_n , razionalizzando, si può scrivere :

$$a_n = \sqrt{n+2} - \sqrt{n+1} = \frac{1}{\sqrt{n+2} + \sqrt{n+1}}$$
,

ora, per ogni coppia n_1 , $n_2 \in N$ con $n_1 < n_2$ risulta

$$\sqrt{n_1+2} + \sqrt{n_1+1} < \sqrt{n_2+2} + \sqrt{n_2+1}$$

pertanto, passando ai reciproci, si ha $a_{n_1} > a_{n_2}$; b) 0;

4.S. a) decrescente; b) $-\infty$; **5.S.** a) decrescente; b) 0;

*6.S. scritti alcuni termini della successione : 4, -8, 16, -32, ... osserviamo che essi sono alternativamente positivi e negativi e crescenti in valore assoluto, pertanto la successione non ammette limite essendo indeterminata;

7.S. a) crescente; b) $+\infty$;

L. Mereu – A. Nanni

*8.S. a) non monotona poiché i termini sono alternativamente negativi e positivi ;

b) poiché
$$0 < \frac{7}{8} < 1$$
, risulta $\lim_{n \to \infty} (-1)^n \left(\frac{7}{8}\right)^n = 0$;

- *9.S. $tg\frac{\pi}{3} = \sqrt{3} > 1$, i termini della successione cambiano segno alternativamente e crescono in valore assoluto, pertanto la successione non ammette limite essendo indeterminata;
- *10.S. a) non monotona, infatti $cos(n+1)\pi$ è uguale a 1 se n è dispari a -1 se n è pari, i termini della serie sono alternativamente uguali a e o a e^{-1} ; b) non esiste poiché la successione è indeterminata;