SS 2024 Marc Kegel

Differentialtopologie

Blatt 4

Aufgabe 1.

- (a) Fertigen Sie Skizen von k-Henkeln und deren Anheftungen an den Rand einer n-Mannigfaltigkeit für $0 \le k \le n \le 4$ an. Markieren Sie die Anklebesphären, Gürtelsphären, Kerne und Kokerne.
- (b) Skizzieren Sie alle möglichen Henkelaufhebungen und Henkelverschiebungen in Dimensionen 1, 2 und 3. Markieren Sie die Anklebe- und Gürtelsphären und deren Schnitte.
- (c) Zeichnen Sie eine Einbettung der Fläche Σ_2 von Geschlecht 2 in den \mathbb{R}^3 , so dass die Höhenfunktion eine Morse-Funktion auf Σ_2 ist, welche eine Henkelzerlegung auf Σ_2 mit genau einem 0-Henkel und genau einem 2-Henkel induziert.
- (d) Beschreiben Sie eine Henkelzerlegung der Kleinschen Flasche mit genau einem 0-Henkel und genau einem 2-Henkel.
- (e) Zeigen Sie, dass man den 3-torus $T^3:=S^1\times S^1\times S^1$ aus einem Würfel $I\times I\times I$ durch identifizieren von gegenüberliegenden Seiten erhalten kann.
- (f) Beschreiben Sie eine Henkelzerlegung von T^3 (mit möglichst wenigen Henkeln).
- (g) Seien M und N Mannigfaltigkeiten mit Henkelzerlegungen. Beschreiben Sie eine Henkelzerlegung von $M \times N$.

Aufgabe 2.

- (a) Nutzen Sie den Satz von Cerf um zu zeigen, dass die Anzahl der Henkel modulo zwei in einer Henkelzerlegung einer Mannigfaltigkeit M eine Invariante von M ist. Folgern Sie, dass die 2-Sphäre eine Henkelzerlegung mit jeder geraden Anzahl von Henkeln besitzt, aber keine Henkelzerlegung mit einer ungeraden Anzahl an Henkeln.
- (b) Wir bezeichnen mit $\#h_k$ die Anzahl der k-Henkel in einer Henkelzerlegung einer Mannigfaltigkeit M. Wir definieren die **Euler-Charakteristik** als

$$\chi(M) = \sum_{k=1}^{\dim(M)} (-1)^k \# h_k.$$

 $\chi(M)$ ist eine Invariante von M.

- (c) Sei Σ_g eine Fläche von Geschlecht g. Berechnen Sie die Euler-Charakteristik von Σ_g . Was ists die Euler-Charakteristik von $M \times N$?
- (d) Bestimmen Sie die minimale Anzahl von Henkeln, die eine Henkelzerlegung von Σ_g hat.

Bonusaufgabe 1.

- (a) Beschreiben Sie eine explizite Morse-Funktion auf $\mathbb{R}P^2$, welche eine Henkelzerlegung mit genau einem 0-Henkel, genau einem 1-Henkel und genau einem 2-Henkel induziert.
- (b) Beschreiben Sie eine explizite Morse-Funktion auf $\mathbb{C}P^n$, welche genau n+1 kritische Punkte hat. Was sind die Indizes dieser kritischen Punkte?
- (c) Beschreiben Sie eine Henkelzerlegung von $\mathbb{C}P^2$. Geben Sie insbesondere auch die Anklebeabbildung der Henkel an.