Aula 1 - Introdução a Sistemas Operacionais

Sistemas Operacionais Ciência da Computação IFB - Campus Taguatinga

Hoje

- Introdução
- O que é um sistema operacional e quais suas principais funções?
- História dos Sistemas Operacionais

Introdução

Computador moderno

- Consiste em um ou mais processadores, alguma memória principal, discos, impressoras, um teclado, um mouse, um monitor, interfaces de rede e vários outros dispositivos de entrada e saída.
 - Como um todo, trata-se de um sistema complexo
- Gerenciar todos esses componentes e usá-los de maneira otimizada é um trabalho extremamente desafiador.
 - Por essa razão, computadores são equipados com um dispositivo de software chamado de sistema operacional

Introdução

Sistema operacional

- Função: fornecer aos programas do usuário um modelo do computador melhor, mais simples e mais limpo, assim como lidar com o gerenciamento de todos os recursos mencionados.
- Exemplos: Windows, Linux, FreeBSD, OS X, dentre outros
- Programa usado para interagir com um sistema operacional:
 - Shell (ou interpretador de comandos) ou
 - GUI (Graphical User Interface)

Modos de Operação

- Maioria dos computadores possui dois modos de operação
 - Modo Núcleo (supervisor)
 - Acesso completo a todo o hardware
 - Pode executar qualquer instrução que a máquina for capaz de executar
 - Modo Usuário
 - Apenas um subconjunto das instruções da máquina está disponível.
 - Instruções que afetam o controle da máquina ou realizam E/S (Entrada/Saída)
 são proibidas para programas de modo usuário.
- Sistema Operacional opera em modo núcleo e proporciona a base para os outros softwares

Visão simplificada de onde o sistema operacional se encaixa em um computador

Distinções entre SO e softwares normais

- Se um usuário não gosta de um leitor de e-mail em particular, ele é livre para conseguir um leitor diferente ou escrever o seu próprio, se assim quiser
 - Contudo, ele n\u00e3o \u00e9 livre para escrever seu pr\u00f3prio tratador de interrup\u00e7\u00e3o
 de rel\u00e3gio
 - Faz parte do sistema operacional e é protegido por hardware contra tentativas dos usuários de modificá-lo.
- SO's são enormes, complexos e têm vida longa
 - Códigos fontes do coração de SOs costumam ter cerca de 5 milhões de linhas
 - o Por serem complexos, tendem a ter uma longa vida, sendo apenas atualizados
 - Ex.: Windows NT/2000/XP/Vista/Windows 7

O que é um sistema operacional?

Difícil definir...

- Software que opera em modo núcleo nem sempre é verdade.
- Parte do problema é que os sistemas operacionais realizam duas funções essencialmente não relacionadas:
 - Fornecer a programadores um conjunto de recursos abstratos limpos em vez de recursos confusos de hardware (SO como uma máquina estendida)
 - Gerenciar esses recursos de hardware.
- Dependendo de quem fala, você poderá ouvir mais a respeito de uma função do que de outra
 - Vamos examinar essas duas definições

Sistema operacional como uma máquina estendida

Arquitetura de Computadores

- Conjunto de instruções, organização de memória, E/S e estrutura de barramento
- Primitiva e complicada de programar, especialmente para entrada/saída.
 - **Exemplo:** Um livro (ANDERSON, 2007) descrevendo a versão inicial da interface do disco tinha mais de 450 páginas!
 - Nenhum programador iria querer/poder entender 450 páginas para lidar com esse disco específico
 - Em vez disso, um software chamado driver de disco, lida com o hardware e fornece uma interface para ler e escrever blocos de dados, sem entrar em muitos detalhes de programação

Sistema operacional como uma máquina estendida

- A interface dos drivers de disco ainda é muito complexa para a maioria das aplicações
 - Por essa razão, todos os sistemas operacionais fornecem mais um nível de abstração para se utilizarem discos: arquivos
 - Usando essa abstração, os programas podem criar, escrever e ler arquivos, sem ter de lidar com os detalhes complexos de como o hardware realmente funciona
- Função dos sistemas operacionais: criar boas abstrações e então implementar e gerenciar os objetos abstratos criados desse modo.

Sistema operacional como uma máquina estendida

- Uma das principais tarefas dos sistemas operacionais é esconder o hardware e em vez disso apresentar programas (e seus programadores) com abstrações de qualidade, limpas, elegantes e consistentes com as quais trabalhar.
- "Sistemas operacionais transformam o feio em belo". Tanenbaum e Bos

Fonte:TANENBAUM, Andrew S e Bos, Herbert. Sistemas Operacionais Modernos. 4.ed. Pearson/Prentice-Hall. 2016.

SO como um gerenciador de recursos

- Função: fornecer uma alocação ordenada e controlada dos processadores, memórias e dispositivos de E/S entre os vários programas competindo por eles
 - Exemplo: Três programas sejam executados ao mesmo tempo
 - O que aconteceria se os três programas tentassem imprimir sua saída ao mesmo tempo?
 - Papel do SO: cuidar para que uma impressão não interfira em outra

Sistema Operacional como um gerenciador de recursos

• **Exemplo:** Computador com mais de um usuários

- Necessidade de gerenciar e proteger a memória, dispositivos de E/S e outros recursos,
 tendo em vista que os usuários poderiam interferir um com o outro.
- Usuários muitas vezes precisam compartilhar não apenas o hardware, mas a informação (arquivos, bancos de dados etc.)

Principal função de um SO:

- Manter um controle sobre quais programas estão usando qual recurso, conceder recursos requisitados, contabilizar o seu uso, assim como mediar requisições conflitantes de diferentes programas e usuários.
- Exemplo: tabela de processos, htop

Sistema Operacional como um gerenciador de recursos

Multiplexação (compartilhamento) de recursos é feita de dois modos:

- Tempo: diferentes programas ou usuários se revezam. Primeiro, um deles usa o recurso, então outro e assim por diante.
 - Ex.: Uso da CPU e fila de impressão
- **Espaço:** Em vez de os clientes se revezarem, cada um tem direito a uma parte do recurso
 - Ex.: Memória principal dividida entre vários programas sendo executados
 - Mais eficiente manter vários programas na memória ao mesmo tempo do que dar a um deles toda memória
- Isso gera questões de justiça, proteção e outros critérios que o SO deve resolver

História dos Sistemas operacionais

História dos sistemas operacionais

- História dos SOs está intimamente ligada às arquiteturas nas quais eles foram executados
 - Novos desenvolvimentos n\u00e3o esperaram que os anteriores tivessem terminado adequadamente antes de come\u00e7arem.
- Primeiro Computador digital foi projetado pelo matemático inglês Charles Babbage (1792-1871)
 - Nunca conseguiu colocá-la para funcionar, devido a limitações tecnológicas da época
 - Sua máquina analítica, obviamente ainda não possuía SO

A primeira geração (1945-1955): válvulas

- Computadores usavam, válvulas, painéis e alguns outros eram programáveis
 - Todos eram muito primitivos e levavam segundos para realizar cálculos simples
- A programação era feita em código de máquina absoluto, ou, pior ainda, ligando circuitos elétricos através da conexão de milhares de cabos a painéis de ligações para controlar as funções básicas da máquina.
 - Linguagens de programação eram desconhecidas (mesmo a linguagem de montagem era desconhecida). Ninguém tinha ouvido falar ainda de sistemas operacionais.

A primeira geração (1945-1955): válvulas

- Na década de 50, houve uma melhoria na rotina de operação com a introdução dos cartões perfurados
 - Era possível agora escrever programas em cartões e lê-los em vez de se usarem painéis de programação;

By Pete Birkinshaw from Manchester, UK - Used Punchcard, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=49758093

A segunda geração (1955-1965): transistores e sistemas em lote (batch)

- Surgimento dos transistores em meados dos anos 1950
 - Aumento na confiança de que o computador iria funcionar por mais tempo (viabilidade comercial)
- Clara separação entre projetistas, construtores, operadores, programadores e pessoal de manutenção (sistema operacional formado por pessoas?).
- Essas máquinas eram chamadas de

Computadores de grande porte (Mainframes)

- o Ficavam isoladas em salas grandes e climatizadas
- Apenas grandes corporações ou importantes agências do governo ou universidades conseguiam pagar o valor alto para tê-las

A segunda geração (1955-1965): transistores e sistemas em lote (batch)

Sistema em lote (batch)

 Reunir um lote de tarefas na sala de entradas e então passá-lo para uma fita magnética usando um computador pequeno e (relativamente) barato, como um IBM 1401, que era muito bom na leitura de cartões, cópia de fitas e impressão de saídas, mas ruim em cálculos numéricos.

- (a) Programadores levavam cartões para o 1401.
- (b) O 1401 lia o lote de tarefas em uma fita.
- (c) O operador levava a fita de entrada para o 7094.
- (d) O 7094 executava o processamento.
- (e) O operador levava a fita de saída para o 1401.
- (f) O 1401 imprimia as saídas.

- 2 Linhas de Produto incompatíveis na década de 60
 - Computadores científicos de grande escala, orientados por palavras, como o 7094, usados para cálculos numéricos complexos na ciência e engenharia.
 - Computadores comerciais, orientados por caracteres, como o 1401, que eram amplamente usados para ordenação e impressão de fitas por bancos e companhias de seguro.
 - Desenvolver e manter duas linhas de produtos completamente diferentes era uma proposição cara para os fabricantes
 - Muitos clientes novos de computadores inicialmente precisavam de uma máquina pequena, no entanto mais tarde a sobreutilizavam e queriam uma máquina maior que executassem todos os seus programas antigos, porém mais rápidos
 - IBM tentou solucionar ambos os problemas com uma única tacada, introduzindo o System/360.

System/360

- Série de máquinas com softwares compatíveis, desde modelos do porte do 1401 a modelos muito maiores e potentes que o poderoso 7094
- As máquinas diferiam apenas em preço e desempenho
- Tendo em vista que todos tinham a mesma arquitetura e conjunto de instruções, programas escritos para uma máquina podiam operar em todas as outras — pelo menos na teoria.
 - Uma única máquina satisfazia os interesses de de ambas linhas de produto
 - Científica e comercial

- IBM 360 foi a primeira linha importante de computadores a usar Cls (Circuitos Integrados) de pequena escala
 - Vantagem significativa na relação preço/desempenho sobre as máquinas de segunda geração
 - o **O forte da ideia da "família única"** foi ao mesmo tempo seu maior ponto fraco
 - Ele tinha de funcionar em sistemas pequenos (como os que rodavam no 1401) quanto em sistemas muito grandes (como os que rodavam no 7094)
 - Resultado: SO extremamente grande e complexo
 - o milhões de linhas de linguagem de montagem escritas por milhares de programadores
 - Continha dezenas de milhares de erros
 - Cada nova versão corrigia alguns erros e introduzia novos, de maneira que o número de erros provavelmente seguiu constante através do tempo.

No 7094 (segunda geração)

- Quando a tarefa atual fazia uma pausa para esperar por uma fita ou outra operação de E/S terminar, a CPU simplesmente ficava ociosa até o término da E/S
 - Para cálculos científicos com uso intenso da CPU, a E/S é esporádica, de maneira que o tempo ocioso não é significativo
 - Para o processamento de dados comercial, o tempo de espera de E/S pode muitas vezes representar de 80 a 90% do tempo total de maneira que algo tem de ser feito para evitar que a CPU (cara) fique ociosa tanto tempo.
- O que podemos fazer para evitar que a CPU fique ociosa?

- Solução para o problema de ociosidade da CPU Multiprogramação
 - o Dividir a memória em várias partes, com uma tarefa diferente em cada partição
 - Enquanto uma tarefa ficava esperando pelo término da E/S, outra podia usar a CPU
 - CPU podia se manter ocupada quase 100% do tempo
 - Exige um hardware especial para proteger cada tarefa contra interferências e transgressões por parte das outras

Desejo por um tempo de resposta mais rápido levou o desenvolvimento do

Timesharing (Compartilhamento de tempo)

- Uma variante de multiprogramação, na qual cada usuário tem um terminal on-line.
- Se 20 usuários estão conectados e 17 deles estão pensando, falando ou tomando café, a CPU pode ser alocada por sua vez para as três tarefas que demandam serviço
- O primeiro sistema de compartilhamento de tempo para fins diversos, foi chamado de CTSS
 (Compatible Time Sharing System Sistema compatível de tempo compartilhado) do M.I.T

- Após o CTSS, o M.I.T, a Bell Labs, e a General Eletric decidiram embarcar no desenvolvimento de um Computador utilitário
 - O Capaz de fornecer suporte a centenas de usuários simultâneos com compartilhamento de tempo
 - Usava o modelo de eletricidade
 - Quando você precisa de energia elétrica, basta conectar um pino na tomada e terá tanta energia quanto necessário
 - MULTICS (MULTiplexed Information and Computing Service Serviço de Computação e Informação Multiplexada)
 - Sonhavam com um computador fornecendo energia computacional para todas as pessoas
 na área de Boston
 - Problemas: Linguagem de programação PL/I (Compilador precário)
 - **Prós:** Introduziu diversas ideias importantíssimas para a evolução da computação

MULTICS

- Instalado por mais ou menos 80 empresas e universidades importantes mundo afora
- Embora seus números fossem pequenos, os usuários do MULTICS eram muito leais
 - A General Motors, a Ford e a Agência de Segurança Nacional Norte-Americana, por exemplo, abandonaram os seus sistemas MULTICS apenas no fim da década de 1990
- No fim do século XX, o conceito de um computador utilitário havia perdido força, mas ele pode voltar para valer na forma da computação na nuvem (cloud computing)
 - Computadores pequenos estão conectados a servidores em vastos e distantes centros de processamento de dados
 - Toda a computação é feita pelo servidor com o computador local apenas executando a interface com o usuário.
 - Motivação: a maioria das pessoas não quer administrar um sistema computacional
 - preferem que esse trabalho seja realizado por uma equipe de profissionais

Crescimento dos minicomputadores

- PDP-1 (1961) tinha apenas 4K de palavras de 18 bits, mas a US\$ 120.000 por máquina (menos de 5% do preço de um 7094), sendo sucesso de vendas
- Um dos cientistas de computação no Bell Labs que havia trabalhado no projeto **MULTICS**, **Ken Thompson**, descobriu subsequentemente um minicomputador pequeno PDP-7 que ninguém estava usando e decidiu escrever uma versão despojada e para um usuário do **MULTICS**
- Mais tarde esse trabalho desenvolveu-se no sistema operacional UNIX
 - Versões importantes do UNIX na época: System V da AT&T e BSD da universidade de Califórnia
 - Para tornar possível escrever programas que pudessem ser executados em qualquer sistema UNIX, o IEEE desenvolveu um padrão para o UNIX, chamado POSIX (Portable Operating System Interface interface portátil para sistemas operacionais), ao qual a maioria das versões do UNIX dá suporte hoje em dia

- Em 1987, Andrew S. Tanenbaum, lançou um clone do UNIX, chamado MINIX, para fins educacionais
- Muito similar ao UNIX, incluindo o suporte ao POSIX, hoje está na sua terceira versão
 - Capacidade de detectar e substituir módulos defeituosos ou mesmo danificados em funcionamento, sem reinicializá-lo e sem perturbar os programas em execução
- Desejo de produzir uma versão gratuita do MINIX levou um estudante finlandês, Linus Torvalds, a escrever o Linux
 - Diretamente inspirado pelo MINIX, desenvolvido sobre ele e originalmente fornecendo suporte a vários aspectos do MINIX.
 - Desde então, foi ampliado de muitas maneiras por muitas pessoas, mas ainda mantém algumas estruturas subjacentes comuns ao MINIX e ao UNIX.

- Desenvolvimento dos circuitos integrados em larga escala LSI
 - Chips contendo milhares de transistores em um centímetro quadrado de silicone
 - Surgiu então a era dos computadores pessoais, também chamados de microcomputadores
- Em 1974 a intel lança o 8080
 - Primeira CPU de 8 bits de uso geral
 - o Gary Kildall, consultor da intel fica encarregado de construir um SO para o 8080
 - Construiu, primeiramente, um controlador para um disco flexível de 8 polegadas e o inseriram no 8080 (Gerando o primeiro microcomputador com disco)
 - Após isso escreveu um SO baseado em disco chamado CP/M (Control Program for
 Microcomputers programa de controle para microcomputadores)
 - Intel não achava que microcomputadores baseados em disco tinha muito futuro
 - Kildall forma então a Digital Research, para desenvolver o CP/M e vendê-lo

- Início da década de 80, a IBM projeta o IBM PC
 - A IBM então contrata BIII Gates que indica a Digital Research para
 elaborar um sistema operacional para sua máquina e para trabalhar com o interpretador BASIC
 - Kildall recusa a proposta da IBM
 - Gates procura uma fabricante de computadores local, Seattle Computer Products, E compra o sistema operacional DOS (Disk Operating System) por apenas 75.000 dólares
 - Gates oferece à IBM o pacote DOS/BASIC, e após algumas modificações feitas por um dos escritores do DOS, Tim Patterson, surge o MS-DOS (MicroSoft Disk Operating System)
 - Fator chave de sucesso de Gates: Vender o SO em conjunto com o hardware
 - Kildall vendia apenas o CP/M diretamente aos usuários finais
 - Mais tarde o MS-DOS foi amplamente usado nos 80386 e no 80486

- O CP/M, MS-DOS e outros sistemas operacionais para os primeiros microcomputadores eram todos baseados na digitação de comandos no teclado pelos usuários
 - Anos mais tarde, Engelbart inventou a Graphical User Interface (GUI Interface Gráfica do Usuário)
 - Possuía janelas, ícones, menus e mouse. Essas ideias foram adotadas por pesquisadores na Xerox PARC e incorporadas nas máquinas que eles produziram.
 - Steve Jobs, que coinventou o computador Apple em sua garagem, visitou a PARC, viu uma GUI e
 no mesmo instante percebeu o seu valor potencial
 - Produção do primeiro Apple com o GUI: o chamado LISA
 - Fracasso Comercial
 - Na segunda tentativa, criou o Apple Macintosh, sucesso comercial

Apple Macintosh

- Amigável ao usuário
 - Dirigido a usuários que não apenas não sabiam nada sobre computadores como não tinham intenção alguma de aprender sobre eles
- Em 1999, a Apple adotou um núcleo derivado do micronúcleo Mach da Universidade Carnegie
 Mellon que foi originalmente desenvolvido para substituir o núcleo do BSD UNIX.
- Desse modo, o MAC OS X é um sistema operacional baseado no UNIX, embora com uma interface bastante distinta
- Fortemente influenciou a microsoft a criar um SO com GUI, o chamado
 Microsoft Windows
 - Um ambiente gráfico sobre o MS-DOS

Windows 95

- Versão independente Incorporando muitos aspectos de SO
- Usa o MS-DOS subjacente apenas para sua inicialização e para executar velhos programas do MS-DOS

Welcome to Windows 95 First color Fine phonored Fine phonored

What's New Online Regulation

Close

Windows 98

 Evolução do windows 95, mas ainda possuindo uma grande quantidade de linguagem de montagem de 16 bits da intel

Windows NT

- Compatível com windows 95 até um certo nível, foi totalmente reescrito em um sistema de 32
 bits
- Projetado para substituir completamente o MS-DOS, só conseguiu atingir seu objetivo no Windows NT 4.0
- Na sua versão 5.0 foi renomeado para Windows 2000, que deveria ser o sucessor do Windows 98

- Windows ME (Millenium Edition)
 - Após o fracasso do Windows 2000, o Windows produziu uma nova versão do Windows 98, o Windows ME
- Windows XP
 - Em 2001, foi lançada uma versão ligeiramente atualizada do Windows 2000, o Windows XP
- Após isso a microsoft dividiu a família windows em duas famílias: a de clientes e a de Servidores
 - Clientes: Windows XP e seus sucessores
 - Servidores: Windows 2003 e Windows 2008
- Essas versões aumentaram suas variações na forma de Pacotes de Serviço (Service Packs)

Windows Vista =\

- Lançado em 2007 como o sucessor do Windows XP
- Nova interface gráfica, segurança mais firme e muitos programas para os usuários novos ou atualizados
- Nunca conseguiu substituir completamente o Windows XP
- Em vez disso, ele recebeu muitas críticas e uma cobertura negativa da imprensa, sobretudo por causa das exigências elevadas do sistema, termos de licenciamento restritivos e suporte para o Digital Rights Management, técnicas que tornaram mais difícil para os usuários copiarem material protegido

Windows 7

- O Windows 7 não introduziu muitos aspectos novos, mas era relativamente pequeno e bastante estável
- Em menos de três semanas, o Windows 7 havia conquistado um mercado maior do que o Vista em sete meses

Coffees Shared Offices Shared Offices Shared Share Sha

Windows 8

- Em 2012, a Microsoft lançou o sucessor, Windows 8, um sistema operacional com visual e sensação completamente diferentes, voltado para telas de toque
- Embora com bastante novidades, o windows 7 permaneceu forte no mercado, com uma comunidade resistente em atualizá-lo para versões mais novas

Windows 10

Windows "atual" :)

Competidor da Microsoft: UNIX (e seus derivativos)

- Forte em servidores de rede e de empresas
- Também presente em computadores, notebooks, tablets e smartphones
- Bastante populares nas arquiteturas x86 (32 bits) e x64 (64 bits)
- OS X da apple usa uma versão modificada do FreeBSD, que é derivado do antigo BSD
- UNIX também é padrão em estações de trabalho equipadas com chips RISC de alto desempenho
- Também extensamente usados em dispositivos móveis, como no iOS 7 e no Android

GUI UNIX

- Sistemas UNIX d\u00e3o suporte a um sistema de janelas chamado de X Window System (tamb\u00e9m
 conhecido como X11) produzido no M.I.T
 - Cuida do gerenciamento básico de janelas, permitindo que os usuários criem, removam,
 movam e redimensionem as janelas usando o mouse
 - Muitas vezes uma GUI completa, como Gnome ou KDE, está disponível para ser executada em cima do X11, dando ao UNIX uma aparência e sensação semelhantes ao Macintosh ou Microsoft Windows, para aqueles usuários do UNIX que buscam isso

SO de Rede

- Usuários estão conscientes da existência de múltiplos computadores e podem conectar-se a máquinas remotas e copiar arquivos de uma máquina para outra
- Cada máquina executa seu próprio sistema operacional e tem seu próprio usuário local (ou usuários)

SO Distribuído

- Aparece para os seus usuários como um sistema monoprocessador tradicional, embora seja na realidade composto de múltiplos processadores
- Os usuários não precisam saber onde os programas estão sendo executados ou onde estão localizados os seus arquivos; isso tudo deve ser cuidado automática e eficientemente pelo sistema operacional

A quinta geração (1990-presente): computadores móveis

- Telefone móvel está presente em quase 90% da população global.
- Primeiro Smartphone: Nokia N9000
 - Combinava um telefone e um PDA (Personal Digital Assistant)
- Em 1997 a Ericksson cunhou o termo smartphone para o
 'Penelope' GS88
- Atualmente os dois SOs dominantes no mercado são:
 - Android
 - o iOS

Referências

TANENBAUM, Andrew S e Bos, Herbert.
 Sistemas Operacionais Modernos. 4.ed.
 Pearson/Prentice-Hall. 2016.

