Project: 2 CS 170. Introduction to Artificial Intelligence

Due Date: Thursday of finals week at 11:59pm

Feature Selection with Nearest Neighbor

Important: I am leaving the country for two weeks shortly after this deadline. I will be offline the whole time. Therefore, I will not offer any extensions. If you are late, you will have to take a low/failing grade, or ask for an incomplete (which is a huge pain for both of us).

As we have seen in class this quarter, the nearest neighbor algorithm is a very simple, yet very competitive classification algorithm. It does have one major drawback however; it is very sensitive to irrelevant features. With this in mind you will code up the nearest neighbor classifier, and then use it inside a "wrapper" which does two kinds of searches (listed below)

- 1) Forward Selection
- 2) Backward Elimination

Don't be scared by the phrase "search algorithm", in this case it is really simply nested loops, nothing else.

To make life simple, you can assume the following. I will only give you datasets that have two classes. I will only give you datasets that have continuous features.

Think carefully before you start coding this. Students in the past seem to have made this more complicated than it need be. In particular, in Matlab I was able to write the nearest neighbor algorithm in 8 lines of code, and the two search algorithms in another 17 lines of code.

C++ and Java programs tend to be longer, but even so, I would be surprised if this took more than 100 lines of code (although I will not penalize you for this).

Very important: Make sure your nearest neighbor algorithm is working correctly before you attempt the search algorithms. We will provide some test datasets for this purpose.

You may use some predefined utility routines, for example sorting routines. However I expect all the major code to be original. You must document any book, webpage, person or other resources you consult in doing this project (see the first day's handout).

You may consult colleagues at a high level, discussing ways to implement the tree data structure for example. But you may **not** share code. At most, you might illustrate something to a colleague with pseudocode.

You will hand in a report, see Project_2_sample_report.pdf

You must keep the evolving versions of your code, so that, if necessary you can demonstrate to the course staff how you went about solving this problem (in other words, we may ask you to prove that you did the work, rather than copy it from somewhere).

You can use a simple text line interface or a more sophisticated GUI (but don't waste time making it pretty unless you are sure it works and you have lots free time). However, your program should have a trace like the one below, so that it can be tested.

The data files will be in the following format. ASCII Text, IEEE standard for 8 place floating numbers. This is a common format; you should be able to find some code to load the data into your program, rather that writing it from scratch (as always, document borrowed code). The first column is the class, these values will always be either "1"s or "2"s. The other columns contain the features, which are **not** normalized. There may be an arbitrary number of features (for simplicity I will cap the maximum number at 64). There may an arbitrary number of instances (rows), for simplicity I will cap the maximum number at 2,048. Below is a trivial sample dataset. The first record is class "2", the second is class "1" etc. This example has just two features.

```
2.0000000e+000 1.2340000e+010 2.3440000e+000
1.0000000e+000 6.0668000e+000 5.0770000e+000
2.0000000e+000 2.3400000e+010 3.6460000e+000
1.0000000e+000 4.5645400e+010 3.0045000e+000
```

Welcome to Bertie <u>Woosters</u> Feature Selection Algorithm.

Type in the name of the file to test: **eamonns_test_2.txt**

Type the number of the algorithm you want to run.

- 1) Forward Selection
- 2) Backward Elimination

1

This dataset has 4 features (not including the class attribute), with 345 instances.

Running nearest neighbor with all 4 features, using "leaving-one-out" evaluation, I get an accuracy of 75.4%

Beginning search.

```
Using feature(s) {1} accuracy is 45.4% Using feature(s) {2} accuracy is 63.7% Using feature(s) {3} accuracy is 71.4% Using feature(s) {4} accuracy is 48.1%
```

Feature set {3} was best, accuracy is 71.4%

```
Using feature(s) {1,3} accuracy is 48.9% Using feature(s) {2,3} accuracy is 70.4% Using feature(s) {4,3} accuracy is 78.1%
```

Feature set {4,3} was best, accuracy is 78.1%

```
Using feature(s) {1,4,3} accuracy is 56.9% Using feature(s) {2,4,3} accuracy is 73.4%
```

(Warning, Accuracy has decreased! Continuing search in case of local maxima) Feature set {2,4,3} was best, accuracy is 73.4%

```
Using feature(s) {1,2,4,3} accuracy is 75.4%
```

Finished search!! The best feature subset is {4,3}, which has an accuracy of 78.1%

SID	LAST NAME	FIRST NAME	Small Large	66		7814	M	Ar	32	90
	5249 AI	Cł	81 118	67		7689	M	In	99	32
	0030 Ar	CF	105 81	68		4812	M	Ra	64	99
	7833 Ar	Lu	53 105	69		9022	Na	Ja	109	64
	7884 Ar	Li	79 53	70		7874	Ng	Ra	5	109
	0805 Ba	H:	94 79	71		6909	No	AI	16	5
	0322 Ba	Cr	104 94	72		6910	No	Za	10	16
-	5321 BH	Ka Al	48 104	73		2778	Od	TH	106	10
	6336 Bd 4471 Bd	Ju	38 48 11 38	74		4043	Pa	Zi	33	106
	3453 Bd	Ar	39 11	75		7380	Pa	Br	61	33
	1115 Bu	Fr	67 39	76		1854	Pa	Ju	78	61
	1761 Ca	Jo	24 67	77		3965	PH	Hi	46	78
	1945 CH	Ja	74 24	78		8256	Ph	Ar	4	46
	2333 CH	Ni	103 74	79		2843	Ph	Et	108	4
	0396 CH	Br	91 103	80		7794	Pc	Ez	8	108
	5214 Ch	Cr	23 91	81		1940	Pr	Kε	122	8
	6340 CH	Ar	28 23	82		5850	Ra	Cr	113	122
	3516 Cc	Al	97 28	83		9641	Ra	Ac Al	65	113
	8465 Cd	Di	36 97	84		7355	Ra	AI	56	65
	8616 Da	Za	70 36	85	1	7957		Di	85	56
	5551 De	Ja Er	116 70	86		2100		N:	100	85
	8565 De 2286 De	Cē	15 116 93 15	87		3417		Zε	114	100
	4795 De	M	57 93	88		8714		Br	27	114
	3921 Do	H	77 57	89		5098		Sk	110	27
	1078 Fu	M	73 77	90		3625		Is	121	110
	6117 Ga	Ar	49 73	91		7096		Ni	84	121
	5609 Ga	Jo	112 49	92		7285		Br	75	84
	6679 Gi	Ju	2 112	93		9033		Al	45	75
	2487 G	D:	82 2	94		8895		Ra	102	45
	9874 Ha	Ki	87 82	95		8900		Di	66	102
	4078 Ha	Dy	76 87	96		6109		H	50	66
	6392 H€	Ju	72 76	97		0103		Cc	86	50
	1318 Hd	Ci	1 72	98		8533		M	68	86
	1603 Hs	Al Jir	98 1 117 98	99		3701		Sa	123	68
	0164 Hu 2398 Hu	Aā	117 98	100		3492		Ja	18	123
	7512 Hu	Ac	69 119	101		5893		Al	115	18
	6343 Ici	Ke	89 69	102		5936		Je	3	115
	5931 In	Ju	83 89	103		9395	1	Ri	19	3
	3588 Is	Sh M	62 83	104		7455		Va	7	19
	2815 Ja	М	40 62	105		9565		lu	63	7
	2375 Jo	M	54 40	106		5356		Ju Ju Ri	34	63
	6673 Ka	Er Ra	25 54	107		2585		Ri	9	34
	6702 Ka	Ra	71 25	108		7364		M	37	9
	8343 Ki	М	52 71	109		7045		Ri	80	37
	3293 Kd 4132 Ku	N:	43 52 29 43	110		6532		CH	47	80
	3377 Le	Jo Hi	30 29	111		6246		Cr At Zr Cr Dr Re	58	47
	9014 Le	G	20 30	112		7611		ZI	13	58
	2209 Li:	GI Ke	35 20	113		6463		Cr	41	13
	2222 Lis	Qi	120 35	114		8683		Di	59	41
	5458 Lii	Br	22 120	115		5068		Re	124	59
	6646 Li	Br Az Di Ja Vi Ar Jo Di Tr	95 22	116		7627		Te	107	124
	7832 Li	Di	17 95	117		9826		Fd	31	107
	1776 Lo	Ja	101 17	118		3679		Ec Je Ze	125	31
	3384 M	Vi	14 101	119		4632		76	92	125
	2182 M	Ar	111 14	120		7553		M	60	92
	5676 M	Jo	55 111	121		2938		Ra	26	60
	9627 M	Di	51 55	122		7767		Rame	21	26
	6756 M		44 51				20		96	21
	1538 M	U: Ar Ar	42 44 12 42		123 Sample data 124 Sample data			Sue	6	96
	6780 M 7065 M	Δι	90 12					Joe		
	IVI C007	A	50 12	125	Sample	uala		Van	88	6