# NHẬP MÔN TIN HỌC

Chương 3

BIỂU DIỄN DỮ LIỆU



#### Tài liệu tham khảo

- J. Glenn Brookshear, *Computer Science: An Overview*, Pearson, 2015.
- N. Dell, J. Lewis, *Computer Science Illuminated* (6<sup>th</sup> Edition), Jones & Bartlett Learning, 2016.
- Tập bài giảng Nhập môn tin học Ninh Xuân Hương – ĐH Mở Tp HCM



#### Nội dung chương 3

- I. Khái niệm về biểu diễn dữ liệu
- II. Biểu diễn số nguyên
- III. Biểu diễn số thực
- IV. Biểu diễn ký tự
- V. Dữ liệu âm thanh, hình ảnh



## I. Khái niệm về biểu diễn dữ liệu

- 1. Dữ liệu trên máy tính
- 2. Hệ đếm theo vị trí
- 3. Các hệ đếm thông dụng
- 4. Chuyển đổi giữa các hệ đếm
- 5. Các phép toán



#### 1. Dữ liệu trên máy tính

- Máy tính là thiết bị đa phương tiện (multimedia device)
- Máy tính lưu trữ, xử lý, hiển thị các dạng dữ liệu:
  - Giá trị số (numbers)
  - Văn bản (text)
  - Hình ảnh (images, graphics)
  - Âm thanh (audio)
  - Hình ảnh động (video)



#### Nén dữ liệu (Data Compression)

- Mục tiêu: giảm kích thước lưu trữ dữ liệu
  - Tỉ số nén (Compression ratio)
- Có hai kỹ thuật chính:
  - Nén không mất dữ liệu (lossless): dữ liệu có thể được phục hồi nguyên vẹn từ dữ liệu nén
  - Nén có mất dữ liệu (lossly): có một phần dữ liệu bị mất khi nén



#### Dữ liệu dạng nhị phân

- Máy tính được thiết kế để sử dụng dữ liệu dạng nhị phân:
  - Giá thành thấp
  - Độ tin cậy cao
- BIT (<u>Binary digiT</u>): chữ số nhị phân



#### 2. Hệ đếm theo vị trí

Hệ đếm là tập các ký hiệu và quy tắc nhầm biểu diễn các giá trị số.

# M

### 2. Hệ đếm theo vị trí

#### Xét ví dụ 642 trong hệ đếm theo vị trí cơ số 10:

```
6 \times 10^{2} = 6 \times 100 = 600
+ 4 \times 10^{1} = 4 \times 10 = 40
+ 2 \times 10^{0} = 2 \times 1 = 2
```

= 642<sub>10</sub> (642 trong hệ đếm 10)

Hệ đếm cơ số 10

Số mũ thể hiện vị trí của chữ số

## Biểu thức tổng quát hệ đếm theo vị trí

$$X = d_{n-1}d_{n-2}...d_1d_0$$

R là cơ số của hệ đếm

$$d_{n-1} * R^{n-1} + d_{n-2} * R^{n-2} + ... + d_1 * R^1 + d_0$$

n là số chữ số trong giá trị X d<sub>i</sub> là chữ số tại vị trí thứ i trong giá trị X

$$642 = 6 * 10^2 + 4 * 10 + 2$$

# М,

## Ví dụ: 642 trong hệ đếm 12 (642<sub>12</sub>)

$$642_{12} = 6*12^{2} + 4*12 + 2$$

$$= 864 + 48 + 2$$

$$= 914_{10}$$

## 3. Các hệ đếm thông dụng

- Hệ thập phân (decimal) dùng 10 chữ số:
  - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Hệ nhị phân (binary) dùng 2 chữ số:
  - 0, 1
- Hệ bát phân (octal) dùng 8 chữ số:
  - 0, 1, 2, 3, 4, 5, 6, 7
- Hệ thập lục phân (hexadecimal) dùng 16 chữ số:
  - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F



# Một số giá trị cần nhớ

| Dec | Bin | Oct | Hex |
|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   |
| 1   | 1   | 1   | 1   |
| 2   | 10  | 2   | 2   |
| 3   | 11  | 3   | 3   |
| 4   | 100 | 4   | 4   |
| 5   | 101 | 5   | 5   |
| 6   | 110 | 6   | 6   |
| 7   | 111 | 7   | 7   |

| Dec | Bin  | Oct | Hex |
|-----|------|-----|-----|
| 8   | 1000 | 10  | 8   |
| 9   | 1001 | 11  | 9   |
| 10  | 1010 | 12  | Α   |
| 11  | 1011 | 13  | В   |
| 12  | 1100 | 14  | С   |
| 13  | 1101 | 15  | D   |
| 14  | 1110 | 16  | Е   |
| 15  | 1111 | 17  | F   |



|                       | Dec  |
|-----------------------|------|
| 2-2                   | 0.25 |
| 2-1                   | 0.5  |
| 20                    | 1    |
| 21                    | 2    |
| 22                    | 4    |
| <b>2</b> <sup>3</sup> | 8    |
| 24                    | 16   |
| <b>2</b> <sup>5</sup> | 32   |

|                 | Dec     |
|-----------------|---------|
| 26              | 64      |
| 27              | 128     |
| 28              | 256     |
| 29              | 512     |
| 2 <sup>10</sup> | 1024    |
| 211             | 2048    |
| 2 <sup>12</sup> | 4096    |
| 2 <sup>20</sup> | 1048576 |



## 4. Chuyển đổi giữa các hệ đếm

- Chuyển từ hệ 2, hệ 8, hệ 16 sang hệ 10
- Chuyển đổi giữa hệ 2 và hệ 8
- Chuyển đổi giữa hệ 2 và hệ 16
- Chuyển từ hệ 10 sang hệ 2
- Chuyển từ hệ 10 sang hệ đếm cơ số K

# Chuyển từ hệ 2, hệ 8, hệ 16 sang hệ 10

- Dùng định nghĩa hệ đếm theo vị trí
- Ví dụ

• 
$$10101_2 = 2^4 + 2^2 + 1 = 21_{10}$$

$$= 3*8^2 + 4*8 + 5 = 229_{10}$$

• 
$$AB1_{16}$$
 =  $10*16^2 + 11*16 + 1 = 2737_{10}$ 

## Chuyển đổi giữa hệ 2 và hệ 8

- Ba bit (nhị phân) tương đương 1 chữ số hệ 8
- Ví dụ:

```
• 101001110 = \underline{101} \ \underline{001} \ \underline{110} = \underline{516}_8
```

• 10101 
$$= \underline{10} \ \underline{101} = 25_8$$

• 
$$175_8 = \underline{001} \, \underline{111} \, \underline{101} = 11111101_2$$

### Chuyển đổi giữa hệ 2 và hệ 16

- Bốn bit (nhị phân) tương đương 1 chữ số hệ 16
- Ví dụ:

```
• 10100111 = \underline{1010} \ \underline{0111} = A7_{16}
```

• 110110 
$$= \underline{11} \ \underline{0110} = 36_{16}$$

• 
$$175_{16} = \underline{0001} \ \underline{0111} \ \underline{0101} = 101110101_2$$



#### Chuyển từ hệ 10 sang hệ 2

Hai phương pháp thông dụng:

- Phân tích thành tổng các lũy thừa của 2
- Thực hiện các phép chia cho 2

# M,

#### Phân tích thành tổng các lũy thừa của 2

■ Ví dụ:  $45_{10} \rightarrow ?_2$ 

$$= 45 = 32 + 8 + 4 + 1$$

$$= 2^{5} + 2^{3} + 2^{2} + 2^{0}$$

$$= 101101_{2}$$

Thực hiện các phép chia cho 2

■ Ví dụ:  $45_{10} \rightarrow ?_2$ 

45

22

1 (

5

2

1

0



NMTH - Chương 3

Trang 21/C3



## Chuyển từ hệ 10 sang hệ đếm cơ số K

#### Giá trị thập phân X

- Thực hiện các phép chia X và các thương số có được cho K, cho đến khi thương số là 0
- Kết quả là các dư số được lấy theo chiều ngược lại (từ đáy lên đỉnh.)



# Ví dụ: $45_{10} \rightarrow ?_3$



#### Bài tập 1

- Đổi các số thập phân sau đây sang hệ 2, hệ 8, hệ 16:
  - 50, 129, 200, 257, 300
- Đổi các số thập phân sau sang hệ 3, hệ 7:
  - 50, 150



#### 5. Các phép toán

- Phép toán số học gồm: cộng, trừ, nhân, chia, chia nguyên, lũy thừa, đồng dư (mod).
- Phép toán so sánh gồm: >, >=, <, <=, =, <>
- Phép toán logic gồm: AND, OR, NOT



## Phép toán số học

- Thứ tự ưu tiên thực hiện các phép toán:
  - □ Uu tiên cao nhất: phép toán trong cặp dấu ngoặc.
  - □Ưu tiên 2: lũy thừa, đồng dư.
  - □ Ưu tiên 3: Nhân, chia, chia nguyên.
  - □ Uu tiên sau cùng: Cộng, trừ.



- Phép công
- Phép trừ
- Phép nhân
- Phép chia



#### Phép cộng

Là phép tính làm cơ sở cho các phép tính khác.



#### Phép cộng

Khi thực hiện phép cộng cần lưu ý:

$$0 + 0 = 0$$
;

$$0 + 1 = 1$$
;

1 + 1 = 0 nhớ 1 (đem qua bít cao hơn).



- Phép cộng
- Ví dụ:1001+ 01011110



- Phép cộng
- Lưu ý:
  - □ Nếu số bit 1 chẵn, kết quả là 0;
  - Nếu số bit 1 lẻ kết quả là 1
  - □ Và cứ 1 cặp số 1 cho 1 số nhớ (bỏ qua số 1 dư, thí dụ với 5 số 1 ta kể là 2 cặp)



#### Phép trừ

- Phép trừ 2 số nguyên X-Y = X+(-Y).
- Nguyên tắc: Lấy bù 2 của Y để được –Y, rồi cộng với X
- Khi thực hiện phép trừ cần lưu ý:

$$0 - 0 = 0$$
;

$$1 - 1 = 0$$
;

$$1 - 0 = 1$$
;



- Phép trừ
- Ví dụ: 1001
  - <u>0101</u> 0100



#### Phép nhân

Khi thực hiện phép nhân cần lưu ý:

$$0 \times 0 = 0$$
;

$$0 \times 1 = 0$$
;

$$1 \times 1 = 1$$



#### Phép nhân

```
■ Ví dụ:
     1001
 x 0101
     1001
    000
  1001
 0000
 0101101
```



- Phép chia
- Thực hiện giống phép chia bình thường



## Các phép toán số học

- Phép chia
- Ví dụ:

```
101101 101
```

**-** 101 1001

0101



#### Bài tập 2

- Thực hiện các phép toán sau
- 1. 10101 + 1011; 10110 + 1110
- 2. 11001-101; 11010-1110
- 3. 10101\*101
- 4. 1101010:111



## Nội dung chương 2

- I. Khái niệm về biểu diễn dữ liệu
- II. Biểu diễn số nguyên
- III. Biểu diễn số thực
- IV. Biểu diễn ký tự
- V. Dữ liệu âm thanh, hình ảnh



# II. Biểu diễn số nguyên

- 1. Các khái niệm
- 2. Số nguyên không dấu
- 3. Số nguyên có dấu



#### 1. Các khái niệm

- Giá trị X được biểu diễn trên n bit
  - X: giá trị cần biểu diễn
  - n: kích thước biểu diễn
  - Với n bit chỉ biểu diễn được các giá trị X trong một khoảng biểu diễn
- Số nguyên không dấu (unsigned integer)
- Số nguyên có dấu (signed integer)

# M

## 2. Số nguyên không dấu

Dùng biểu diễn nhị phân của giá trị X

#### Ví du:

$$X = 10_{10}, n = 4$$
  $\rightarrow X = 1010_{2}$   
 $X = 10_{10}, n = 8$   $\rightarrow X = 00001010_{2}$   
 $X = 100_{10}, n = 8$   $\rightarrow X = 01100100_{2}$ 

Khoảng biểu diễn:  $0 \rightarrow 2^{n}-1$ 

•n = 8: 
$$0 \rightarrow 255$$

$$\bullet n = 16: 0 \rightarrow 65535$$



#### Bài tập 3

- Tìm biểu diễn nhị phân, bát phân, thập lục phân của các số thập phân không dấu sau đây:
  - 81, 102, 250 với n = 8
  - 1000, 2050 với n = 16



## 3. Số nguyên có dấu

- a. Mã độ lớn có dấu (dấu lượng) (signed magnitude)
- b. Mã bù 1 (one's complement)
- c. Mã bù 2 (two's complement)
- d. Mã quá N (excess N, biased)

# 2

## a. Mã độ lớn có dấu

- Dùng 1 bit thể hiện dấu:
  - 0: số dương (+)
  - 1: số âm (-)
- (n-1) bit còn lại là biểu diễn nhị phân của độ lớn X (trị tuyệt đối của X)
- Ví dụ:

• 
$$X = 5, n = 8$$

$$\rightarrow$$
 X = 00000101

• 
$$X = -5, n = 8$$

$$\rightarrow$$
 X = 10000101

# M,

## Mã độ lớn có dấu(tt)

■ Khoảng biểu diễn:

$$-(2^{n-1}-1) \rightarrow +(2^{n-1}-1)$$

- n = 8:  $-127_{10} \rightarrow +127_{10}$
- n = 16:  $-32767_{10} \rightarrow +32767_{10}$
- Nhận xét: với n = 8
  - 000000000 = +0
  - 10000000 = -0
- Được sử dụng trên các máy tính thế hệ đầu, ví dụ IBM 7090



#### b. Mã bù 1

- Dùng phép toán **bitwise NOT** (đối bit 1 thành bit 0, bit 0 thành bit 1) để tạo số âm.
- Ví dụ: với n = 4
  - 0101 = +5
  - $1010 = -5 \rightarrow m\tilde{a}$  bù 1 của -5 là 1010
- Nhận xét: có 1 bit dấu (0:dương, 1:âm)
- Khoảng biểu diễn:

$$-(2^{n-1}-1) \rightarrow +(2^{n-1}-1)$$

• 
$$n = 8$$
:  $-127_{10} \rightarrow +127_{10}$ 

• 
$$n = 16$$
:  $-32767_{10} \rightarrow +32767_{10}$ 



### Mã bù 1 (tt)

- Nhận xét: với n = 8
  - 000000000 = +0
  - 111111111 = -0
- Được sử dụng trên các máy tính thế hệ đầu, ví dụ PDP-1, UNIVAC 1100



#### c. Mã bù 2

- Mã bù 2 của một số âm bằng mã bù 1 cộng thêm 1
- Ví dụ: với n = 4
  - 0101 = +5
  - 1010 = -5 (mã bù 1 của -5 là 1010)
    1011 (mã bù 2 của -5 là 1011)
- Nhận xét: có 1 bit dấu (0:dương, 1:âm)



#### Mã bù 2 (tt)

■ Khoảng biểu diễn:

$$-2^{n-1} \rightarrow +(2^{n-1}-1)$$

• 
$$n = 8$$
:  $-128_{10} \rightarrow +127_{10}$ 

• 
$$n = 16$$
:  $-32768_{10} \rightarrow +32767_{10}$ 

■ Được sử dụng trên các máy tính hiện đại (trong CPU, ngôn ngữ lập trình)



#### Tìm mã bù 2

X: giá trị cần biểu diễn, n: số bit dùng biểu diễn

- X dương: mã bù 2 là biểu diễn nhị phân dùng n bit của X
  - X=5, n=8, mã bù 2 của 5 là 00000101

#### ■ X âm:

- Biểu diễn trị tuyệt đối X dùng n bit
- Đổi bit 1 thành bit 0 và bit 0 thành bit 1
- Cộng thêm 1



#### Tìm mã bù 2 (tt)

- Ví dụ: X = -10, n = 8
  - $10 = 00001010_2$
  - Đổi 1→0, 0→1: 11110101
  - Cộng thêm 1: mã bù 2 của -10 là 11110110



#### Tìm mã bù 2 (tt)

- Phương pháp đơn giản cho X âm
  - Biểu diễn trị tuyệt đối của X dùng n bit
  - Tìm bit 1 đầu tiên từ bên phải
  - Đổi 1→0, 0→1 tất cả các bit bên trái bit 1 đã tìm
- Ví dụ: X = -10, n = 8
  - 10 = 00001010
  - Tìm bit 1 đầu tiên từ bên phải 00001010
  - Mã bù 2 của -10 là 11110110



## d. Mã quá N

- Còn gọi là phương pháp di chuyển (biased)
- Sử dụng một số nguyên N cho trước làm giá trị dịch.
- Một giá trị thập phân (tức giá trị cần biểu diễn) sẽ được biểu diễn bằng dạng nhị phân của một số dương nào đó sao cho, giá trị của số dương này lớn hơn giá trị cần biểu diễn N đơn vị.



### d. Mã quá N

- Ví dụ: giả sử cần biểu diễn giá trị 2<sub>10</sub> theo số quá 5 (mẫu 8 bit):
- Bước 1: ta có:
  - □Giá trị cần biểu diễn: 2
  - $\square N = 5$
- Bước 2: xác định số dương lớn hơn 2<sub>10</sub> năm đơn vị, đó là số 7.

Vậy 2<sub>10</sub> được biểu diễn bằng dạng nhị phân của 7: 00000111.



#### Mã quá N (tt)

Khoảng biểu diễn

$$-N \rightarrow +(2^{n}-1-N)$$

• 
$$n = 8$$
,  $N = 127$ :  $-127_{10} \rightarrow +128_{10}$ 

■ Mã quá N dùng trong biểu diễn số dấu chấm động theo tiêu chuẩn IEEE 754



# Các dạng mã hoá số nguyên với n = 4

| Decimal | Unsigned | Sign and<br>Magnitude | Ones' | Two's<br>Complement | Excess-7<br>(Biased) |
|---------|----------|-----------------------|-------|---------------------|----------------------|
| +8      | 1000     | N/A                   | N/A   | N/A                 | 1111                 |
| +7      | 0111     | 0111                  | 0111  | 0111                | 1110                 |
| +6      | 0110     | 0110                  | 0110  | 0110                | 1101                 |
| +5      | 0101     | 0101                  | 0101  | 0101                | 1100                 |
| +4      | 0100     | 0100                  | 0100  | 0100                | 1011                 |
| +3      | 0011     | 0011                  | 0011  | 0011                | 1010                 |
| +2      | 0010     | 0010                  | 0010  | 0010                | 1001                 |
| +1      | 0001     | 0001                  | 0001  | 0001                | 1000                 |
| (+)0    | 0000     | 0000                  | 0000  | 0000                | 0111                 |
| (-)0    | N/A      | 1000                  | 1111  | N/A                 | N/A                  |
| -1      | N/A      | 1001                  | 1110  | 1111                | 0110                 |
| -2      | N/A      | 1010                  | 1101  | 1110                | 0101                 |
| -3      | N/A      | 1011                  | 1100  | 1101                | 0100                 |
| -4      | N/A      | 1100                  | 1011  | 1100                | 0011                 |
| -5      | N/A      | 1101                  | 1010  | 1011                | 0010                 |
| -6      | N/A      | 1110                  | 1001  | 1010                | 0001                 |
| -7      | N/A      | 1111                  | 1000  | 1001                | 0000                 |
| -8      | N/A      | N/A                   | N/A   | 1000                | N/A                  |



#### Bài tập 4

- 1. Biểu diễn các số nguyên có dấu sau đây bằng 8 bit: B = 92
- 2. Xác định giá trị của các số nguyên có dấu biểu diễn dưới đây (dùng dấu độ lớn):
  - $C = 0110 \ 1010; \ D = 1100 \ 0011 \ (bù 2)$
- Xác định giá trị của các số nguyên có dấu được biểu diễn dưới đây (dùng mã bù 2):
   F = 1101 1010



### Bài tập 4

- Cho n = 8, tìm mã độ lớn có dấu, mã bù 1, mã bù 2, mã quá 127 của các số thập phân sau đây:
  - 61, 102
  - -55, -100
- Xác định giá trị của các số nguyên có dấu được biểu diễn dưới đây (dùng mã bù 2):
   F = 1011 1110



## III. Biểu diễn số thực

- 1. Khái niệm về số thực
- 2. Số dấu chấm tĩnh
- 3. Số dấu chấm động
- 4. Tiêu chuẩn số dấu chấm động IEEE 754



- Trục số thực: chia làm 7 vùng
- Trong khoảng biểu diễn có vô số số thực
  - Ví dụ: 20/3 = 6.666...
  - Có thể có sai số khi biểu diễn số thực





#### 2. Số dấu chấm tĩnh

- Ví dụ:
  - $+3.25_{10}$ ,  $-11.01_2$
- Dùng n+m+1 bit để biểu diễn:
  - 1 bit dấu (0: dương, 1: âm)
  - n bit: phần nguyên
  - m bit: phần phân số đúng

1 bit

n bit

m bit

Bit dấu

Phần nguyên

Phần phân số đúng



## Ví dụ số dấu chấm tĩnh

$$X = 3.375_{10}, n = 7, m = 8$$

- $00000011.01100000_2 = 03.60_{16}$
- $X = -7.25_{10}$ , n = 7, m = 8
  - $10000111.01000000_2 = 87.40_{16}$



# Ứng dụng số dấu chấm tĩnh

Dùng trong các chương trình tính toán thương mại (các ứng dụng spreadsheet), và được hỗ trợ trên một số ngôn ngữ lập trình



#### Bài tập 5

- Cho n=7, m=8, tìm biểu diễn số dấu chấm tĩnh của các số thập phân sau đây:
  - 100.625, -70.3125, -120.4375

## 3. Số dấu chấm động

■ X là số bất kỳ, có thể phân tích dưới dạng:

$$X = m^*a^e \qquad (1)$$

trong đó:

a gọi là cơ số (radix)

m gọi là phần định trị (mantissa)

e gọi là phần bậc (exponent)



## Số dấu chấm động (tt)

#### ■ Ví dụ:

- a = 10, X = 3.14 $X = 3.14 = 0.314*10^{1} = 31.4*10^{-1}$
- a = 2, X = 11.101 $X = (11.101)_2 = (1.1101*10^{1})_2 = (0.11101*10^{10})_2$
- Với cơ số a cho trước, có nhiều cách phân tích X theo dạng (1)
- Vị trí ngăn cách giữa phần nguyên và phần phân số phụ thuộc phần bậc e không cố định như trong biểu diễn số dấu chấm tĩnh → biểu diễn số dấu chấm động



## Số dấu chấm động (tt)

- Nếu đặt thêm điều kiện  $a^{-1} \le |m| < 1$  thì cách phân tích là duy nhất: dạng chuẩn
- Xét lại ví dụ trên:

$$a = 10, X = 3.14_{10} = 0.314*10^{1}$$
  
 $a = 2, X = (11.101)_2 = (0.11101*10^{10})_2$ 



## 4. Tiêu chuẩn số dấu chấm động IEEE 754

- Do tổ chức IEEE (Institute of Electrical and Electronic Engineers)
  - Mở rộng thành tiêu chuẩn IEEE 854
- Được sử dụng phổ biến trên các đơn vị số dấu chấm động (FPU, Floating-Point Unit) trong các bộ xử lý, và trên các ngôn ngữ lập trình



## Tiêu chuẩn IEEE754 (tt)

- Tiêu chuẩn IEEE 754 gồm các dạng số chấm động tiêu chuẩn (normalized):
  - Số chính xác đơn Single-precision 32 bit
     (Số single)
  - Số chính xác kép Double-precision 64 bit (Số double)
  - Số chính xác kép mở rộng –
     Double-Extended precision 80 bit (Số extended)
- Số extended dùng để giảm các lỗi khi làm tròn số và chỉ dùng bên trong các FPU

# Mag

## Tiêu chuẩn IEEE754 (tt)

Các số dấu chấm động IEEE 754 có dạng:

$$X = S*2^e$$

trong đó:

S là phần định trị (significand)

e là phần bậc (exponent)

với

$$1.0 \le |S| \le 2$$

S có thể viết thành S = 1.f

trong đó f là phần phân số (fraction)

$$X = \pm 1.f * 2^e$$



## Số chính xác đơn (số single)

- Số chính xác đơn có 32 bit:
  - 1 bit dấu (0:dương, 1:âm)
  - 8 bit phần bậc dùng mã quá 127
  - 23 bit phần phân số (thuộc phần định trị)

1 bit

8 bit

23 bit

Bit dấu

Phần bậc

Phần phân số

# Ví dụ số single

- $X = 0.5_{10}$ 
  - $0.5 = 1.0 * 2^{-1}$
  - Bit dấu: 0
  - Phần bậc: -1 mã quá 127 của -1 là -1+127 = 126  $126_{10} = 011111110_2$
  - Phần định trị S = 1.0, phần phân số = 0
- Biểu diễn dạng số chính xác đơn của 0.5:
  - $0.011111110 \ \underline{00..00_2} = 3F000000_{16}$ 23 BIT 0

# Ví dụ số single (tt)

- $X = -20_{10}$ 
  - -20 = -1.25 \* 24
  - Bit dấu: 1
  - Phần bậc: 4
    mã quá 127 của 4 là 4+127 = 131
    131<sub>10</sub> = 10000011<sub>2</sub>
  - Phần định trị S = 1.25, phần phân số = 0.25 0.25<sub>10</sub> = 0.01<sub>2</sub>
- Biểu diễn dang số chính xác đơn của -20<sub>10</sub>:
  - 1 10000011 01 $\underline{0..00_2}$  = C1A00000 $\underline{0.00_1}$ 6



# Số chính xác kép (số double)

- Số chính xác kép có 64 bit:
  - 1 bit dấu (0:dương, 1:âm)
  - 11 bit phần bậc dùng mã quá 1023
  - 52 bit phần phân số (thuộc phần định trị)

1 bit

**11** bit

**52** bit

Bit dấu

Phần bậc

Phần phân số

# Số chính xác kép mở rộng (Số extended)

- Số chính xác kép mở rộng có 80 bit:
  - 1 bit dấu (0:dương, 1:âm)
  - 15 bit phần bậc dùng mã quá 16383
  - 64 bit phần phân số (thuộc phần định trị)

1 bit 15 bit 64 bit

Bit dấu Phần bậc Phần phân số

# Các đặc điểm chính của số single, số double

|                      | Số single              | Số double               |
|----------------------|------------------------|-------------------------|
| Số bit dấu           | 1                      | 1                       |
| Số bit phần bậc      | 8                      | 11                      |
| Số bit phần định trị | 23                     | 52                      |
| Tổng số bit          | 32                     | 64                      |
| Biểu diễn phần bậc   | Mã quá 127             | Mã quá 1023             |
| Khoảng phần bậc      | -126 <del>→</del> +127 | -1022 <del>→</del> 1023 |

# Các đặc điểm chính của số single, số double (tt)

|                                        | Số single                               | Số double                                 |
|----------------------------------------|-----------------------------------------|-------------------------------------------|
| Giá trị nhỏ nhất                       | 2-126                                   | 2-1022                                    |
| Giá trị lớn nhất                       | ≈ 2 <sup>+128</sup>                     | ≈ 2+1024                                  |
| Khoảng biểu diễn (theo thập phân)      | ≈ 10 <sup>-38</sup> → 10 <sup>+38</sup> | ≈ 10 <sup>-308</sup> → 10 <sup>+308</sup> |
| Giá trị nhỏ nhất<br>(dạng số đặc biệt) | ≈ 10 <sup>-45</sup>                     | ≈ 10 <sup>-324</sup>                      |

# Các dạng số đặc biệt

| Số tiêu chuẩn (Normalized)       | +/- | 0 <exponent<max< th=""><th>Tùy ý</th></exponent<max<> | Tùy ý           |
|----------------------------------|-----|-------------------------------------------------------|-----------------|
| Số không chuẩn<br>(Denornalized) | +/- | 0                                                     | Tùy ý<br>khác 0 |
| Zero                             | +/- | 0                                                     | 0               |
| Vô cực / Vô cùng<br>(Infinity)   | +/- | 1111                                                  | 0               |
| NaN<br>(Not a Number)            | +/- | 1111                                                  | Tùy ý<br>khác 0 |

NMTH - Chương 3



# Các dạng số đặc biệt (tt)

- Số dạng denormalized dùng để biểu diễn số rất nhỏ
  - Số nhỏ nhất là  $2^{-23} * 2^{-127} = 2^{-150}$
- Có thể biểu diễn 2 số 0 (+0, -0)
- Số vô cực có thể dùng làm toán hạng tuân theo các quy tắc toán học cho số vô cực
- Khi kết quả phép toán không xác định, ví dụ ∞/∞ thì dùng dạng NaN (Not a Number)

# Νė

# Làm tròn số (rounding)

- Tiêu chuẩn IEEE 754 có các dạng làm tròn số:
  - Unbiased: round to nearest
    - Làm tròn về số gần nhất
    - Nếu số cần làm tròn ở giữa 2 giá trị thì làm tròn về số có bit cuối bên phải là 0
  - Toward zero: làm tròn về zero
  - Toward positive infinity: làm tròn về +∞
  - Toward negative infinity: làm tròn về -∞



Đối các giá trị thập phân sau đây sang dạng số single (IEEE 754), trình bày kết quả ở dạng hệ 16:

- -15.5, 20.5, -34
- Đổi các số dạng single sau đây về dạng thập phân:
  - 42E48000H, 3F880000H



# IV. Biểu diễn ký tự

- 1. Bộ mã ASCII
- 2. Bộ mã Unicode



### 1. Bộ mã ASCII

American Standard Code for Information Interchange

- Do ANSI (American National Standards Institude) công bố năm 1967, cập nhật năm 1986
- Bảng mã ASCII dùng biểu diễn ký tự trên máy tính và các thiết bị truyền thông



### Mã ASCII (tt)

- Mã ASCII chuẩn dùng 7 bit, biểu diễn được 128 ký tự, bao gồm:
  - Các ký tự điều khiển (control characters) có giá trị (mã) từ 0 đến 1Fh
  - Các ký tự in được (printable characters) có giá trị (mã) từ 20h đến 7Fh
- Mã ASCII mở rộng dùng 8 bit, bao gồm:
  - Phần ASCII chuẩn
  - Các ký tự đặc biệt có giá trị (mã) từ 80h đến
     FFh



# Mã ASCII chuẩn

| _ [ | Ctrl | Dec | Hex | Char | Code |   | Dec | Hex    | Char                            |   | Dec | Hex | Char             | Dec | Hex | Char         |         |
|-----|------|-----|-----|------|------|---|-----|--------|---------------------------------|---|-----|-----|------------------|-----|-----|--------------|---------|
| - [ | ^@   | 0   | 00  |      | NUL  |   | 32  | 20     |                                 |   | 64  | 40  | @                | 96  | 60  | ,            |         |
| - 1 | ^A   | 1   | 01  |      | SOH  | П | 33  | 21     | !                               |   | 65  | 41  | I A I            | 97  | 61  | a            |         |
| - 1 | ^в   | 2   | 02  |      | STX  | П | 34  | 22     | ::                              |   | 66  | 42  | B<br>  C         | 98  | 62  | b            |         |
| - 1 | ^C   | 3   | 03  |      | ETX  | П | 35  | 23     | #                               |   | 67  | 43  | C                | 99  | 63  | C            |         |
| - 1 | ^D   | 4   | 04  |      | EOT  | П | 36  | 24     | \$                              |   | 68  | 44  | l D I            | 100 | 64  | d            |         |
| - 1 | ^E   | 5   | 05  |      | ENQ  | П | 37  | 25     | %                               |   | 69  | 45  | E  <br>F         | 101 | 65  | e            |         |
| - 1 | ^F   | 6   | 06  |      | ACK  | П | 38  | 26     | &                               |   | 70  | 46  | F                | 102 | 66  | f            |         |
| - 1 | ^G   | 7   | 07  |      | BEL  | П | 39  | 27     | '                               |   | 71  | 47  | IGI              | 103 | 67  | g<br>h       |         |
| - 1 | ^н   | 8   | 08  |      | BS   | П | 40  | 28     | (                               |   | 72  | 48  | H                | 104 | 68  | h            |         |
| - 1 | ^1   | 9   | 09  |      | нт   | П | 41  | 29     | )                               |   | 73  | 49  | I                | 105 | 69  | i            |         |
| - 1 | ^j   | 10  | 0A  |      | LF   | П | 42  | 2A     | *                               |   | 74  | 4A  | J                | 106 | 6A  | j            |         |
| - 1 | ^K   | 11  | 0В  |      | VT   | П | 43  | 2B     | +                               |   | 75  | 4B  | K                | 107 | 6B  | k            |         |
| - 1 | ^L   | 12  | 0C  |      | FF   | П | 44  | 2C     | `                               |   | 76  | 4C  | L                | 108 | 6C  |              |         |
| - 1 | ^м   | 13  | 0D  |      | CR   | П | 45  | 2D     | -                               |   | 77  | 4D  | M                | 109 | 6D  | m            |         |
| - 1 | ^N   | 14  | 0E  |      | so   | П | 46  | 2E     | :                               |   | 78  | 4E  | N                | 110 | 6E  | n            |         |
| - 1 | ^0   | 15  | 0F  |      | SI   | П | 47  | 2F     | /                               |   | 79  | 4F  | 0                | 111 | 6F  | 0            |         |
| - 1 | ^P   | 16  | 10  |      | DLE  | П | 48  | 30     | 0                               |   | 80  | 50  | P                | 112 | 70  | p            |         |
| - 1 | ^Q   | 17  | 11  |      | DC1  | П | 49  | 31     | 1                               |   | 81  | 51  | Q<br>R<br>S<br>T | 113 | 71  | q            |         |
| - 1 | ^R   | 18  | 12  |      | DC2  | П | 50  | 32     | 2                               |   | 82  | 52  | R                | 114 | 72  | r            |         |
| - 1 | ^s   | 19  | 13  |      | DC3  | П | 51  | 33     | 3                               |   | 83  | 53  | S                | 115 | 73  | s            |         |
| - 1 | ^T   | 20  | 14  |      | DC4  | П | 52  | 34     | 4                               |   | 84  | 54  |                  | 116 | 74  | t            |         |
| - 1 | ^U   | 21  | 15  |      | NAK  | П | 53  | 35     | 1<br>2<br>3<br>4<br>5<br>6<br>7 |   | 85  | 55  | U                | 117 | 75  | u            |         |
| - 1 | ^v   | 22  | 16  |      | SYN  | П | 54  | 36     | 6                               |   | 86  | 56  | V                | 118 | 76  | V            |         |
| - 1 | ^w   | 23  | 17  |      | ETB  | П | 55  | 37     |                                 |   | 87  | 57  | W                | 119 | 77  | w            |         |
| - 1 | ^X   | 24  | 18  |      | CAN  | П | 56  | 38     | 8                               |   | 88  | 58  | X                | 120 | 78  | X            |         |
| - 1 | ^Y   | 25  | 19  |      | EM   | П | 57  | 39     | 9                               |   | 89  | 59  | Y                | 121 | 79  | У            |         |
| - 1 | ^Z   | 26  | 1A  |      | SUB  | П | 58  | 3A     | :                               |   | 90  | 5A  | Ż                | 122 | 7A  | Z            |         |
| - 1 | ]^   | 27  | 1B  |      | ESC  | П | 59  | 3B     | ;                               |   | 91  | 5B  | [                | 123 | 7B  | {            |         |
|     | ^\   | 28  | 1C  |      | FS   |   | 60  | 3C     | <                               |   | 92  | 5C  | \                | 124 | 7C  | {<br>        |         |
|     | ^]   | 29  | 1D  |      | GS   |   | 61  | 3D     | =                               |   | 93  | 5D  | ]                | 125 | 7D  | }            |         |
|     | ^^   | 30  | 1E  | ▲    | RS   |   |     | NØÆH - | Chươn                           | g | 394 | 5E  | ^                | 126 | 7E  | <b>∵</b> ran | g 86/C3 |
|     | ^-   | 31  | 1F  | •    | us   |   | 63  | 3F     | ?                               |   | 95  | 5F  | _                | 127 | 7F  | ۵            |         |



# Mã ASCII chuẩn

### Standard ASCII

|   | 0   | 1        | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | A   | В   | C  | D  | E  | F  |
|---|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|
| 0 | NUL | SOH      | STX | ETX | EOT | ENQ | ACK | BEL | BS  | TAB | LF  | VT  | FF | CR | so | SI |
| 1 | DLE | DC1      | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN | EM  | SUB | ESC | FS | GS | RS | US |
| 2 |     | <u>!</u> | 11  | #   | \$  | ક   | &   | •   | (   | )   | *   | +   | ,  | -  | •  | /  |
| 3 | 0   | 1        | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | :   | ;   | <  | =  | >  | ?  |
| 4 | 9   | A        | В   | С   | D   | E   | F   | G   | Н   | I   | J   | K   | L  | М  | N  | 0  |
| 5 | P   | Q        | R   | S   | Т   | U   | V   | W   | Х   | Y   | Z   | [   | \  | ]  | ٨  | _  |
| 6 | `   | а        | b   | С   | d   | е   | f   | g   | h   | i   | j   | k   | 1  | m  | n  | 0  |
| 7 | р   | q        | r   | ន   | t   | u   | V   | W   | Х   | У   | Z   | {   | 1  | }  | ~  |    |



# Mã ASCII mở rộng

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9   | A | В               | C  | D   | E   | F |
|---|---|---|---|---|---|---|---|---|---|-----|---|-----------------|----|-----|-----|---|
| 8 | € |   | , | f | " |   | † | ‡ | ^ | 0,0 | Š | <               | Œ  |     | Ž   |   |
| 9 |   | 1 | , | W | " | • | - | _ | ~ | TM  | š | >               | œ  |     | ž   | Ÿ |
| A |   | i | ¢ | £ | ¤ | ¥ |   | § |   | ©   | a | «               | ٦  |     | ®   | _ |
| В | 0 | ± | 2 | 3 | , | μ | P | • | ٤ | 1   | 0 | <b>&gt;&gt;</b> | 14 | 1/2 | 3/4 | į |
| C | À | Á | Â | Ã | Ä | Å | Æ | Ç | È | É   | Ê | Ë               | Ì  | Í   | Î   | Ï |
| D | Đ | Ñ | Ò | Ó | ô | Õ | Ö | × | Ø | Ù   | Ú | Û               | Ü  | Ý   | Þ   | ß |
| E | à | á | â | ã | ä | å | æ | Ç | è | é   | ê | ë               | ì  | í   | î   | ï |
| F | ð | ñ | ò | ó | ô | ő | ö | ÷ | Ø | ù   | ú | û               | ü  | ý   | þ   | ÿ |



# 2. Bộ mã Unicode

- a. Giới thiệu Unicode
- b. Các đặc điểm chính



### a. Giới thiệu Unicode

- Unicode là tiêu chuẩn mã hóa ký tự của Hiệp hội Unicode (Unicode Consortium) bao gồm các nhà sản xuất IBM, Apple, HP, MicroSoft, Adobe, ...
- Unicode là một hiện thực của chuẩn ISO 10646 UCS 2 (Universal Character Set)
- Unicode được hỗ trợ trên các hệ điều hành, trình duyệt web, các tiêu chuẩn phần mềm hiện đại như XML, Java, LDAP, CORBA, ...



### Giới thiệu Unicode (tt)

- Mục tiêu của Unicode là cung cấp mã (code point) duy nhất cho ký tự, ký hiệu trên tất cả các ngôn ngữ, hệ thống chữ viết (writing systems)
  - Việc hiển thị ký tự (font) do chương trình ứng dụng (web, word processor, ...) thực hiên
- Unicode là mã 16 bit biểu diễn được 65536 ký tự, và có thể mở rộng đến trên 1 triệu ký tự

## b. Các đặc điểm chính

- Có các phiên bản Unicode: 1.0, 1.1, 2.0, ..., 7.0
- Cách thể hiện mã ký tự theo Unicode: U+xxxx, với x là 1 chữ số hệ 16, ví dụ:
  - Latin -1 {U+0080..U+00FF}
  - Latin Extended A, B {U+0100..U+024F}
  - Combining Diacritical Marks {U+0300..
     U+036F}
  - Latin Extended Additional {U+1E00..U+1EFF}
  - Đơn vị tiền tệ Việt Nam (Đồng): 

     <sup>₫</sup> U+20AB



### Các sơ đồ mã hóa chính

### UTF (Unicode Transformation Format)

- UTF 16:
  - Dạng mã hóa chuẩn, dùng 1 hay 2 số nguyên 16 bit
  - Được dùng trong Windows API, .NET, Java
- UTF 8:
  - Gồm 1 đến 4 byte
  - Được thiết kế để tương thích với mã ASCII và các giao thức trên byte
  - Dùng trên Web Browsers, E-Mail



Cho biết giá trị các ký tự trong bảng mã ASCII dưới dạng hệ 16 là:

| Ký tự       | A  | В  | С  | D  | Е  | F  | G  | Н  | I     |
|-------------|----|----|----|----|----|----|----|----|-------|
| ASCII hệ 16 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49    |
|             | J  | K  | L  | M  | N  | 0  | Р  | Q  | R     |
|             | 4A | 4B | 4C | 4D | 4E | 4F | 50 | 51 | 52    |
|             | S  | Т  | U  | V  | W  | X  | Y  | Z  | space |
|             | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A | 20    |

Hãy mã hóa thông điệp: "BITCOIN TANG" theo bảng mã ASCII mở rộng (8 bit) dưới dạng hệ 2.



### V. Dữ liệu âm thanh, hình ảnh

- 1. Dữ liệu âm thanh (audio)
- 2. Dữ liệu hình ảnh (images, graphics)
- 3. Dữ liệu hình ảnh động (video)



### 1. Dữ liệu âm thanh

- Con người cảm nhận âm thanh do sóng âm tác động trên tai, và tai truyền tín hiệu lên não
- Thiết bị loa tạo âm thanh do các tín hiệu điện dạng tương tự (analog)
- Khi số hóa dữ liệu âm thanh thì sẽ định kỳ đo điện áp tín hiệu và lưu lại trên các giá trị số thích hợp
  - Sampling: Quá trình lấy mẫu



# Lấy mẫu âm thanh





# Lấy mẫu âm thanh (tt)

- Âm thanh nghe được
  - $20Hz \rightarrow 20000Hz$
- Về nguyên tắc, tốc độ lấy mẫu khoảng 40000 lần/giây là có thể lưu trữ, phục hồi âm thanh với chất lượng tốt

# Các định dạng file âm thanh thông dụng

- Dạng không nén (uncompressed)
  - PCM (Pulse Code Modulation)
  - Dang file .wav
- Dạng nén mất dữ liệu (lossy compression)
  - MPEG-1 layer 3 (MP3), Vorbis, lossy Windows Media Audio (WMA)
- Dạng nén không mất dữ liệu (lossless compression)
  - Apple lossless, lossless WMA



## 2. Dữ liệu hình ảnh

- Mắt người phân biệt màu sắc dựa trên tần số ánh sáng tác động trên võng mạc
- Võng mạc có các tế bào nhận màu sắc theo ba nhóm chính: Red, Green, Blue
- Màu sắc biểu diễn trên máy tính thường dựa trên các giá trị R,G,B thể hiện thành phần của các màu cơ bản



# Ví dụ màu theo RGB

| R   | GB Valu | Actual Color |              |
|-----|---------|--------------|--------------|
| Red | Green   | Blue         | Actual Color |
| 0   | 0       | 0            | black        |
| 255 | 255     | 255          | white        |
| 255 | 255     | 0            | yellow       |
| 255 | 130     | 255          | pink         |
| 146 | 81      | 0            | brown        |
| 157 | 95      | 82           | purple       |
| 140 | 0       | 0            | maroon       |



# Biểu diễn màu sắc

- Color depth: số lượng dữ liệu dùng để biểu diễn màu
  - Hi Color: 16 bit, True Color: 32 bit
- Một chương trình ứng dụng có thể chỉ thế hiện một số lượng màu hạn chế theo color palette (bảng màu)





### Dữ liệu hình ảnh

- Bao gồm tập hợp các điểm ảnh (pixel)
- Resolution (độ phân giải): số điểm ảnh thể hiện một hình ảnh
  - 800x600
  - 1024x800



### Raster graphic format

- Dữ liệu hình ảnh được lưu dựa trên thông tin các điểm ảnh: raster graphic format
- Các định dạng file thông dụng:
  - BMP (BitMaP), dang uncompressed
  - GIF (Graphic Interchange Format) dang lossless data compression
  - PNG (Portable Network Graphics) dạng lossless data compression, thay thế dạng GIF
  - JPEG (Joint Photographic Experts Group) dang lossy data compression



# Vector graphic format

- Dữ liệu hình ảnh được lưu theo các dạng hình học (điểm, đường thẳng, đường cong, ...) và màu sắc: vector graphic format
- Hình ảnh dạng vector graphic có thể thay đổi kích thước theo toán học
- Không phù hợp cho hình ảnh thực



### Vector graphic format (tt)

- Các định dạng file thông dụng
  - swf (Small Web Format/ShockWave Flash)
  - ps (PostScript)
  - wmf (Windows Metafile)
  - pdf (Portable Document Format)



## 3. Dữ liệu hình ảnh động

- Hình ảnh động (video) bao gồm các hình ảnh liên tục
- Thông số chính: frames per second
  - Phim: 24 frames/sec
- Video Codec (COmpressor/DECompressor): là phương pháp chuyển hình ảnh động thành dữ liệu trên máy tính



## Dữ liệu hình ảnh động (tt)

- Hầu hết các video codec đều là dạng nén mất dữ liệu (lossless compression)
- Có 2 dạng nén chính
  - Temporal: dựa trên sự khác nhau giữa các frame liên tục
  - Spatial: dựa trên dữ liệu có trên từng frame (tương tự nén ảnh tĩnh)



### Các định dạng file thông dụng

- Container format: định dạng file nén theo các codec
- Các định dạng container thông dụng:
  - avi (chuẩn trên Windows)
  - asf (dùng cho WMA, WMV)
  - mov (Quicktime container)
  - Mpeg-2, Mpeg4 (Moving Picture Experts Group)
  - RealMedia (dùng cho Real Video, Real audio)
  - DivX media format



- Đổi số thập phân sau đây sang Hệ 2, Hệ 8, Hệ 16: 187
- 2. Đổi các số sau sang HỆ NHỊ PHÂN 210<sub>8</sub>, 6D2<sub>16</sub>
- 3. Đổi các số sau sang H**Ệ THẬP PHÂN** 101101, 131<sub>8</sub>, C2<sub>16</sub>



1. Xác định giá trị của số nguyên có dấu được biểu diễn dưới dạng mã bù 2:

F = 11101100

2. Cho n = 8, hãy biểu diễn dưới các dạng: Độ lớn có dấu, Mã bù 1, Mã bù 2, Mã quá N= 127 của số nguyên có dấu -97.



- 1. Cho n=7, m=8, tìm biểu diễn số dấu chấm tĩnh của các số thập phân: 85.625
- Đối giá trị thập phân sau đây sang dạng số single (IEEE 754), trình bày kết quả ở dạng hệ 16: -72
- 3. Đổi số dạng single sau đây về dạng thập phân:

9E42000<sub>H</sub>



Cho biết giá trị các ký tự trong bảng mã ASCII dưới dạng hệ 16 là:

| Ký tự       | A  | В  | С  | D  | Е  | F  | G  | Н  | L     |
|-------------|----|----|----|----|----|----|----|----|-------|
| ASCII hệ 16 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49    |
|             | J  | K  | L  | M  | N  | 0  | Р  | Q  | R     |
|             | 4A | 4B | 4C | 4D | 4E | 4F | 50 | 51 | 52    |
|             | S  | Т  | U  | V  | W  | X  | Y  | Z  | space |
|             | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A | 20    |

Hãy mã hóa thông điệp: "Khoa CNTT" theo bảng mã ASCII mở rộng (8 bit) dưới dạng hệ 10.