## Министерство науки и высшего образования Российской Федерации



Калужский филиал федерального государственного бюджетного

образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

|                    | (КФ                       | 9 МГТУ им. Н.Э. Баул | иана)       |                             |   |
|--------------------|---------------------------|----------------------|-------------|-----------------------------|---|
| ФАКУЛЬТЕТ          | ИУК «Информатик           | а и управлени        | e»          |                             |   |
| КАФЕДРА            | ИУК4 «Программно          | ое обеспечение       | <b>ЭВ</b> ] | М,                          |   |
| информационн       | ње технологии»            |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
|                    | Лабораторна               | ая работа М          | <u>2</u> 5  |                             |   |
|                    |                           | •                    |             |                             |   |
| «Применение (      | базовых методов реш       | іения ДУЧП2 э        | ЛЛИ         | птического типа»            |   |
|                    |                           |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
| <b>ДИСЦИПЛИН</b> А | <b>А:</b> «Моделирование» |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
|                    |                           |                      |             |                             |   |
| Выполнил: студ     | цент гр. ИУК4-62Б         | (подпись)            | _ (         | Калашников А.С.<br>(Ф.И.О.) | , |
| Проверил:          |                           | (подшев)             | (           | Никитенко У.В.              | , |
| •                  |                           | (подпись)            |             | (Ф.И.О.)                    |   |
|                    |                           |                      |             |                             |   |
| Дата сдачи (заш    | циты):                    |                      |             |                             |   |
| Результаты сдач    | ли (зашиты).              |                      |             |                             |   |
| т озумыны ода      | и (защиты).<br>- Балльная | оценка:              |             |                             |   |

- Оценка:

**Цель работы**: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений и визуализации результатов численного или приближенно-аналитического решения ДУЧП2 эллиптического типа на основе сравнения результатов.

Задачи: решить уравнение, указанное в варианте численными методами и оценить точность аппроксимации. Оценить устойчивость и сходимость. Выбрать среду для проведения расчетов и вычислительного эксперимента. Написать программу, реализующую решение разностной задачи. Оценить результаты расчетов. Визуализировать результаты, сравнить результаты, выдвинуть и обосновать гипотезу целесообразности использования того или иного метода в зависимости от предложенной задачи и ее вариаций, точности результата, трудоемкости, сложности алгоритма, сложности обоснования применимости метода, вычислительной эффективности алгоритма.

#### Задание

Рассматривается задача Дирихле для эллиптического уравнения

$$-Lu = f(x, y), (x, y) \in G$$
  
$$u = \mu(x, y), (x, y) \in \Gamma$$

Пусть  $\bar{G}=G\cup\Gamma=\left\{0\leq x\leq l_x,0\leq y\leq l_y\right\}$  – прямоугольник, а

$$Lu = \frac{\partial}{\partial x} \left( p(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left( q(x, y) \frac{\partial u}{\partial y} \right)$$

Здесь p(x,y), q(x,y) — достаточное гладкие функции такие, что  $0 < c_1 \le p(x,y) \le c_2$ ,  $0 < d_1 \le q(x,y) \le d_2$ , где  $c_1$ ,  $c_2$ ,  $d_1$ ,  $d_2$  — постоянные

# Вариант №14

$$Lu=-f(x,y),$$
 где  $Lu=\frac{\partial}{\partial x}\left((3\,x+2)\frac{\partial u}{\partial x}\right)+\frac{\partial^2 u}{\partial y^2},\ 0< x<1,\ 0< y<1,$   $u(x,y)|_{\Gamma}=\mu(x,y)$ 

# Задание №4

Найти решение задачи попеременно-треугольным итерационным методом с Чебышевским набором параметров;

## Решение:

Имеем уравнение вида:

$$Lu = \frac{\partial}{\partial x} \left( p(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial x} \left( q(x, y) \frac{\partial u}{\partial x} \right)$$

Исходя из уравнения и условия задачи можем получить

$$p(x,y) = (3x + 2)$$

$$q(x,y) = 1$$

$$u^*(x,y) = x^2y^2(1+y)$$

$$l_x = 1$$

$$l_y = 1$$

 $0 < c_1 \le p(x,y) \le c_2$ ,  $0 < d_1 \le q(x,y) \le d_2$ , где  $c_1$ ,  $c_2$ ,  $d_1$ ,  $d_2$  — постоянные

$$c_1 = \frac{1}{3}$$

$$c_2 = 1$$

$$d_1 = 1$$

$$d_2 = 1$$

Расчетная формула для метода итерации с оптимальным параметром в общем случае:

$$\begin{split} u^k_{ij} &= u^{k-1}_{ij} + \tau (p_{i+\frac{1}{2}j} \frac{u^{k-1}_{i+1j} - u^{k-1}_{ij}}{h^2_x} - p_{i-\frac{1}{2}j} \frac{u^{k-1}_{ij} - u^{k-1}_{i-1j}}{h^2_x} + \\ &+ q_{ij+\frac{1}{2}} \frac{u^{k-1}_{ij+1} - u^{k-1}_{ij}}{h^2_y} - q_{ij-\frac{1}{2}} \frac{u^{k-1}_{ij} - u^{k-1}_{ij-1}}{h^2_y} + f_{ij}) \end{split}$$

В формуле есть следующие элементы:

$$h_{x} = \frac{l_{x}}{N}$$

$$h_{y} = \frac{l_{y}}{M}$$

$$x_{i} = ih_{x}$$

$$y_{i} = jh_{y}$$

$$\omega = \frac{2}{\sqrt{\delta \Delta}}, \gamma_{1} = \frac{\delta}{(2 + 2\sqrt{n})}, \gamma_{2} = \frac{2}{h^{2}} \sin \frac{h}{2}$$

$$\delta = \frac{8}{h^{2}} \sin^{2} \pi \frac{h}{2}, \Delta = \frac{8}{h^{2}}, n = \sin^{2} \pi \frac{h}{2}, \omega = \frac{h^{2}}{4 \sin \pi \frac{h}{2}}$$

$$\gamma_{1} = \frac{4 \sin^{2} \pi \frac{h}{2}}{h^{2} (1 + \sin \pi \frac{h}{2})}$$

$$\gamma_{2} = \frac{2}{h^{2}} \sin \pi \frac{h}{2}$$

Граничные условия:

$$u_{i0}^{k} = \mu(x_{i}, 0) = 0$$

$$u_{iM}^{k} = \mu(x_{i}, l_{y}) = 2x_{i}$$

$$u_{0J}^{k} = \mu(0, y_{j}) = 0$$

$$u_{N0}^{k} = \mu(l_{x}, y_{j}) = y_{j}(1 + y_{j})$$

 $\tau_k = \frac{2}{\gamma_2 + \gamma_1 + (\gamma_2 - \gamma_1)\cos\frac{2k - 1}{2n}\pi}, \quad k = 1, 2, ..., n;$ 

Решение:



**Рис. 1.** График функции  $\| \text{ F-Au^*} \| = 9.149172613007357$   $\| \text{ F-AU^0} \| = 1750.6355565067051$   $k_{max} = 23$ 

| k  | <br> - | F - AU^k  | rel.d  | I | U^k - U* |   | rel.error | 1.1 | U^k - U^(k-1) |
|----|--------|-----------|--------|---|----------|---|-----------|-----|---------------|
| Ð  | 1      | 1750.6356 | 1.0    | Ī | 1.5703   |   | 1.0       |     | 2.0           |
| 1  |        | 1179.5041 | 0.6738 | I | 1.2308   | 1 | 0.7838    | 1   | 0.3654        |
| 2  |        | 829.9393  | 0.4741 | I | 1.1844   | 1 | 0.7543    |     | 0.2487        |
| 3  |        | 603.1116  | 0.3445 | I | 1.1307   | 1 | 0.72      | 1   | 0.1786        |
| 4  |        | 448.9429  | 0.2564 | I | 1.0655   | 1 | 0.6785    |     | 0.1339        |
| 5  | 1      | 375.3049  | 0.2144 | I | 0.9945   | 1 | 0.6333    | 1   | 0.1039        |
| 6  |        | 313.2817  | 0.179  | I | 0.9213   |   | 0.5867    |     | 0.0917        |
| 7  | 1      | 259.7275  | 0.1484 | I | 0.8691   | 1 | 0.5534    | 1   | 0.0817        |
| 8  |        | 231.7233  | 0.1324 | I | 0.8403   |   | 0.5351    |     | 0.0732        |
| 9  | L      | 204.0063  | 0.1165 | I | 0.8061   | 1 | 0.5133    | 1   | 0.0702        |
| 10 |        | 176.4754  | 0.1008 | I | 0.7664   |   | 0.4881    |     | 0.0651        |
| 11 |        | 149.8826  | 0.0856 | I | 0.7212   | 1 | 0.4592    | 1   | 0.0587        |
| 12 |        | 127.0285  | 0.0726 | I | 0.6702   |   | 0.4268    |     | 0.0421        |
| 13 |        | 108.602   | 0.062  | I | 0.6147   |   | 0.3915    |     | 0.0332        |
| 14 |        | 89.7403   | 0.0513 | I | 0.577    |   | 0.3674    | I   | 0.0201        |
| 15 |        | 73.6088   | 0.042  | I | 0.5324   |   | 0.339     |     | 0.0163        |
| 16 |        | 58.6886   | 0.0335 | I | 0.4758   | 1 | 0.303     | 1   | 0.0101        |
| 17 |        | 45.3815   | 0.0259 | I | 0.4108   |   | 0.2616    |     | 0.0094        |
| 18 |        | 31.8216   | 0.0182 | I | 0.5123   |   | 0.2202    | I   | 0.0087        |
| 19 |        | 20.2442   | 0.0116 | I | 0.4786   |   | 0.3001    |     | 0.0077        |
| 20 |        | 9.7232    | 0.0056 | I | 0.3401   | I | 0.2328    |     | 0.0071        |
| 21 |        | 5.7483    | 0.0033 | I | 0.1828   |   | 0.1253    |     | 0.0067        |
| 22 |        | 6.0221    | 0.0032 | I | 0.0889   |   | 0.0832    |     | 0.0063        |
| 23 | I      | 6.0221    | 0.0032 | I | 0.0455   | I | 0.051     |     | 0.006         |

Рис. 2. Решения

```
\ x | 0.0 |
               0.2
                         0.4
                                   0.6
                                             0.8
                                                      1.0
     0.0
               0.0
                         0.0
                    П
                                   0.0
                                             0.0
     | 0.0 | 0.00192 | 0.00768 | 0.01728 | 0.03072 | 0.048
     | 0.0 | 0.00896 | 0.03584 | 0.08064 | 0.14336 | 0.224
0.4
0.6
     | 0.0 | 0.02304 | 0.09216 | 0.20736 | 0.36864 | 0.576
     | 0.0 | 0.04608 | 0.18432 | 0.41472 | 0.73728 | 1.152
0.8
1.0
     0.0 |
               0.08
                         0.32
                                   0.72
                                             1.28
                                                      2.0
```

Рис. 3. Точное решение на крупной сетке

|     |   |     |   |        |   | 0.4    |   |        |   |        |   |       |
|-----|---|-----|---|--------|---|--------|---|--------|---|--------|---|-------|
|     | + |     | + |        | + |        | + |        | + |        | + |       |
| 0.0 | I | 0.0 |   | 0.0    |   | 0.0    |   | 0.0    |   | 0.0    | I | 0.0   |
| 0.2 | I | 0.0 |   | 0.0115 |   | 0.0222 |   | 0.0303 |   | 0.0412 |   | 0.053 |
| 0.4 |   | 0.0 |   | 0.0493 |   | 0.0903 |   | 0.1424 |   | 0.1905 | I | 0.231 |
| 0.6 | I | 0.0 | I | 0.1231 |   | 0.2411 | I | 0.3586 |   | 0.4732 | Ī | 0.589 |
| 0.8 |   | 0.0 |   | 0.2417 |   | 0.4722 |   | 0.6999 |   | 0.9338 |   | 1.162 |
| 1.0 |   | 0.0 |   | 0.4    |   | 0.8    |   | 1.2    |   | 1.6    |   | 2.0   |

Рис. 4. Решение на крупной сетке

**Вывод**: в ходе выполнения работы были сформированы практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений и визуализации результатов численного или приближенно-аналитического решения ДУЧП2 параболического типа на основе сравнения результатов.

# Приложение

#### Листинг

```
import numpy as np
import matplotlib.pyplot as plt
from prettytable import PrettyTable
f p = lambda x = None, y = None: 1 + x/2
f q = lambda x = None, y = None: 1
f_f = lambda x, y: -6*x*y - 2*x - y**2*(y + 1)/2
f mu = lambda x, y: x^{**}2^{*}y^{**}2^{*}(1 + y)
1 x = 1
1 y = 1
c 1 = 1/3
c^{2} = 1
d_1 = 1
d_2 = 1
f u exact = lambda x, y: x^{**}2^{*}y^{**}2^{*}(1 + y)
l_u = lambda x, y, u, i, j, h_x, h_y: \
    f p(x + h x/2, y) * (u[i + 1, j] - u[i, j]) / pow(h x, 2) \
    - f p(x - h x/2, y) * (u[i, j] - u[i - 1, j]) / pow(h x, 2) \
    + f_q(x, y + h_y/2) * (u[i, j + 1] - u[i, j]) / pow(h_y, 2) 
    - f_q(x, y - h_y/2) * (u[i, j] - u[i, j - 1]) / pow(h_y, 2)
def FU(x, y, h_x, h_y, last_u, i, j, k):
    tau k = 2/(Delta + delta + (Delta - delta)*np.cos((2*k-1)*np.pi/(2*n)))
    p_plus = f_p(x + h_x/2, y)
    p_{minus} = f_p(x - h_x/2, y)
    q_plus = f_q(x, y + h_y/2)
    q_{minus} = f_q(x, y - h_y/2)
    return last_u[i, j] + tau_k*(p_plus*(last_u[i + 1, j] - last_u[i,
j])/h x**2 - \
                                  p minus*(last u[i, j] - last u[i - 1,
j])/h x**2 + 
                                  q plus*(last u[i, j + 1] - last u[i,
j])/h y**2 - \
                                  q_minus*(last_u[i, j] - last_u[i, j -
1])/h y**2 + 
                                     f f(x, y)
lambda_max = 1 - pow(h_x, 2) / 4 * delta
lambda_min = 1 - pow(h_x, 2) / 4 * Delta
k list = []
exact diff = []
last diff = []
rel d = []
rel error = []
discrepancies = []
# diff = []
# rhos = []
```

```
u_exact = np.array([[f_u_exact(x, y) for x in xs] for y in ys])
k = 0
eps = 5e-2
k \max = np.log(1/eps) / 4 / eps
LU = np.zeros((N, M))
F = np.zeros((N, M))
for i in range (1, N-1):
    for j in range(1, M-1):
        LU[i, j] = l_u(xs[i], ys[j], u_exact, i, j, h_x, h_y)
        F[i, j] = f f(xs[i], ys[j])
print(f'|| F-Au^* || = \{np.amax(np.abs(LU + F))\}')
u = np.zeros((N, M))
LU = np.zeros((N, M))
F = np.zeros((N, M))
last u = np.copy(u)
last last u = np.copy(u)
u[:, 0] = f mu(xs, 0)
u[:, -1] = f mu(xs, l x)
u[0, :] = f mu(0, ys)
u[-1, :] = f_mu(l_y, ys)
for i in range(1, N-1):
    for j in range (1, M-1):
        u[i, j] = FU(xs[i], ys[j], h_x, h_y, last_u, i, j, 0)
for i in range(1, N-1):
    for j in range(1, M-1):
        LU[i, j] = l_u(xs[i], ys[j], u, i, j, h_x, h_y)
        F[i, j] = f f(xs[i], ys[j])
discrepancy_0 = np.amax(np.abs(LU + F))
print(f'|| F-AU^0|| = {discrepancy 0}')
u = np.zeros((N, M))
while len(exact_diff) == 0 or exact_diff[-1] > eps:
    last last u = np.copy(last u)
    last u = np.copy(u)
    u[:, 0] = f mu(xs, 0)
    u[:, -1] = f mu(xs, l x)
    u[0, :] = f mu(0, ys)
    u[-1, :] = f_mu(l_y, ys)
    for i in range (1, N-1):
        for j in range (1, M-1):
            u[i, j] = FU(xs[i], ys[j], h_x, h_y, last_u, i, j, k)
    LU = np.zeros((N, M))
```

```
F = np.zeros((N, M))
    for i in range (1, N-1):
        for j in range(1, M-1):
            LU[i, j] = l_u(xs[i], ys[j], u, i, j, h_x, h_y)
            F[i, j] = f_f(xs[i], ys[j])
    if k == 0:
        u = np.copy(u)
        u \ 0 \ diff = np.amax(np.abs(u \ 0 - u \ exact))
    # rhos.append(np.amax(np.abs(u - last u))/np.amax(np.abs(last u -
last_last_u)))
    k_list.append(k)
    exact_diff.append(np.amax(np.abs(u - u_exact)))
    last diff.append(np.amax(np.abs(u - last u)))
    rel error.append(np.amax(np.abs(u - u_exact))/u_0_diff)
    discrepancies.append(np.amax(np.abs(LU + F)))
    rel d.append(discrepancies[-1] / discrepancy 0)
    #diff.append(rho * np.amax(np.abs(u - last u)) / (1 - rho))
    k += 1
    if k > n: break
for k in range(130):
    last_u = np.copy(U)
    U[:, 0] = f mu(xs, 0)
    U[:, -1] = f_mu(xs, l_x)
    U[0, :] = f mu(0, ys)
    U[-1, :] = f_mu(l_y, ys)
    for i in range (1, 5):
        for j in range (1, 5):
            U[i, j] = FU(xs[i], ys[j], h x, h y, last u, i, j, k)
fig = plt.figure()
ax = plt.axes(projection='3d')
X, Y = np.meshgrid(xs, ys)
ax.plot_surface(X, Y, U, rstride=1, cstride=1,
    cmap='OrRd', edgecolor='none')
ax.set xlabel('$x$')
ax.set_ylabel('$y$')
ax.set zlabel('$u$')
plt.show()
table.add column("y \ x", ys)
for k in range(len(xs)):
    table.add column(f"{xs[k]}", U[:, k])
print("Решение на крупной сетке")
print(table)
u exact = np.array([[f u exact(x, y) for x in xs] for y in ys])
table = PrettyTable()
xs = xs.round(5)
```

```
ys = ys.round(5)
u_exact = u_exact.round(5)
table.add_column("y \ x", ys)
for k in range(len(xs)):
    table.add_column(f"{xs[k]}", u_exact[:, k])
print("Точное решение на крупной сетке")
print(table)
```