Bayesian Networks for Recommender Systems:

Going Beyond Ratings Prediction with "Most Relevant Explanation"

Michael L. Thompson & Jeevisha Anandani

COLLEGE OF BUSINESS

- 1. Background
- 2. Bayesian Network Ensemble Recommender System
- 3. Ratings Prediction
- 4. Audience Analysis
- 5. Potential Extensions for BayesiaLab
- 6. Lessons Learned
- 7. Questions?

Background

Case Profile

Recommendation

Approach: Build Ensemble of Bayesian Networks

- \blacksquare Build BBN for each movie, m_i
 - Tree-Augmented Naïve Bayes (TANB): Highly confirming/refuting other movies, Viewer & Movie Features
 - Avoids giant BBN containing all movies with either
 (a) limited connection to Viewer & Movie features –
 limiting their predictive value or
 (b) excessive connections to Viewer & Movie features –
 resulting in intractable inference
 - All movie nodes, including target, have states equal to Viewer Ratings (5-star scale)

 centered on each Viewer's median rating
- Exploit parallel processing

Bayesian Belief Network (BBN) for "Star Trek: The Motion Picture (1979)"

Approach: Selecting Nodes for Each BBN Generalized Bayes Factor & Weight of Evidence

Generalized Bayes Factor, GBF(H:E)
Rank order candidate movies as Evidence E given Hypotheses H*=Like Target Movie

Find F to Maximize: $GBF(H^* : E) = \frac{Odds(H = Like Target Movie | E = Like Candidate Movie)}{Odds(H = Like Target Movie)}$ $= \frac{P(E = Like Candidate Movie | H = Like Target Movie)}{P(E = Like Candidate Movie | H = Like Target Movie)}$

 $P(E=Like\ Candidate\ Movie\ |\ H'\ \neq Like\ Target\ Movie)$

Weight of Evidence is the logarithm of GBF

W(H*: E) = $\log_2 GBF(H^*: E)$; in decibans: W(H*: E) = $\mathbf{10} \times \log_{10} GBF(H^*: E)$

- ► Kass & Raftery: evidence provides substantial support if W(H:E) > 5 decibans = 1.66 bits
- ■I.J. Good: a person can only discern $\Delta W > 1$ deciban = 0.33 bits
- Build TANB: nodes for candidate movies w/top 10 | W(H:E) |

Finds movies either disproportionately liked or disliked

Example: Total = 1000 viewers, Movie A (pattern), Movie B (color)

"The observation 'Like B' is strong confirmatory evidence for the hypothesis 'Like A'."

Evidence: E = You are a "B Liker"

GBF(H:E) = Odds(H | E) / Odds(H) = 24/4 = 6

W(H:E) = 2.6 bits = 7.8 decibans.

Approach: Recommend Movies

- Apply Bayesian Inference
 - Compute posterior: P(Rating m_i | Case Profile, m_i Seen) $\forall m_i$
 - Rank movies by largest to smallest $\frac{Score(m_i) = Lower-Bound-of-95\%-Credible-Interval}{Score(m_i)}$
- Exploit parallel processing

Bayesian Belief Network (BBN) for "Star Trek: The Motion Picture (1979)"

Approach: Recommend Movies

Ratings Prediction under Incomplete Information

Case Profile

Recommendation

CAVEATS:

Database sample is sparse & biased

it is not representative of the US population w.r.t. gender, age, occupation.

10/26/2020

Issues: Sparsity & Bias

- Sparsity Sample does not capture enough people within many of the gender-age-occupation cohorts
 - Account for uncertainty by leveraging posterior distribution in forming recommendation rankings ->
 Use Lower-Bound-of-95%-Credible-Interval as metric for ranking movies
 - Also: Aggregation of states; Prior distributions on conditional probability tables (CPTs)
- Bias Sample proportions of gender-age-occupation cohorts differ greatly from those in the target population to which we wish to apply our models
 - Account for non-representativeness by applying post-stratification to aggregate predictions marginalized over the user features → Use Evidence Instantiation to transfer learned preferences within each gender-age-occupation cohort and marginalize over the joint distribution of gender, age, and occupation

Mitigating Issue of Sparsity: Quantify Uncertainty with Full Posterior

Mitigating Issue of Bias: Post-Stratify Outcomes with Population Distn.

- Each TANB BBN captures the joint distribution $P(Rating m_i, \{Other Movie Ratings\}, \{Movie features\}, \{Viewer features\})$
- Factors into conditional & marginal P(Rating m_i , {Other Movie Ratings }, {Movie features} | {Viewer features}) X P({Viewer features}) Captures Viewer Feature Distribution: Biased
- Impose Representative Viewer-Feature Distribution P({Viewer features}*)
 - Supply distribution on Gender-Age-Occupation cohorts from U.S. Bureau of Labor Statistics
 - Augment TANB with node "Distribution Source" ∈ {Sample, Population} and arcs P({Viewer features} | Distribution Source)
 - Assert evidence "Distribution Source" = Population
 - Use BayesiaLab's "Evidence Instantiation" to create new TANB conditional probability tables consistent with $P(Rating m_i, \{Other Movie Ratings\}, \{Movie features\}, \{Viewer features\}^*)$

Marginal Distributions of Viewer Features

Post-Stratification:

BayesiaLab's "Evidence Instantiation"

Post-Stratification:

BayesiaLab's "Evidence Instantiation"

17

Audience Analysis

Finding Folks who are Likely to Love the Film

Most Relevant Explanation (MRE)
Fix Evidence E=E*, search over candidate Hypotheses H

Find H to Maximize:

GBF(H:E*) = $\frac{P(E = E^* = Like Target Movie | H = \{Viewer Features\})}{P(E = E^* = Like Target Movie | H \neq \{Viewer Features\})} = \frac{Odds(H|E^*)}{Odds(H)}$

Example: Observing someone likes "Star Trek: The Motion Picture (1979)" strongly confirms that person is an engineer if Likers are far more prevalent among engineers than they are among Non-engineers.

Gives same

order for E as does P(H* | E).

Which type of Viewers
have a higher
prevalence of people
who Like the movie than
exists among people
different than that type
of Viewer?

■ Most Confirmatory Clues (MCC)

Fix Hypothesis H=H*, search over candidate Evidence sets E

Find E to Maximize:

GBF(H*: E) = $\frac{P(E = \{Viewer Features\} \mid H = H^* = Like Target Movie)}{P(E = \{Viewer Features\} \mid H \neq Like Target Movie)} = \frac{Odds(H^*|E)}{Odds(H^*)}$

Example: Observing someone is an engineer strongly confirms that person will like "Star Trek: The Motion Picture (1979)" **if engineers are far more prevalent among Likers than they are among Non-Likers.**

Which type of Viewers are far more prevalent among the people who Like the movie than they are among the people who dislike or didn't see the movie?

Audience Analysis:

BayesiaLab's "Most Relevant Explanation"

Most Relevant Explanation: Three Key Issues

20

Most Relevant Explanation: Three Key Issues

Most Relevant Explanation: Three Key Issues

21

Modified MRE

23

Potential Extensions for BayesiaLab: Generalize MRE feature

- Allow "Most Confirmatory Clues", MCC
 - argmax E: GBF(H*: E) currently, "Most Relevant Explanation", MRE, is argmax H: GBF(H: E*); generalizes Target Optimization P(H*|E): H* can involve multiple nodes (compound hypothesis)
 - Checkbox to signal fixing Hypothesis and searching over Evidence combos
- Allow threshold on solutions as well as number of solutions
 - Entry field to accept minimum acceptable GBF (or W)
- Allow threshold on joint P(E,H) to avoid returning solutions that are just noise
 - Entry field to accept minimum acceptable P(E,H) for a solution, whether MRE or MCC; default equal 0, thus no imposition of threshold
- Allow tolerance in comparing GBF to account for human discernibility & noise
 - ► Entry field to accept minimum acceptable difference in GBF for two solutions to be considered different; default equal to 1 deciban per I.J. Good W(H:E) in decibans is 10 X log10(GBF(H:E)).
- Allow minimization of GBF for "LRE", Least Relevant Explanation, & "LCC", Least Confirmatory Clues
 - Checkbox to signal searching for strongest Refutation rather than Confirmation

Lessons Learned

- Analysis over entire Joint Probability Distribution is a powerful feature of BBN
 - Caveat: Be wary of chasing noise analysis in the tails is much less robust than analysis of conditional expectations in the body of the distribution
- Bayesian methods allow principled post-stratification & uncertainty quantification
 - Caveat: "Garbage In, Garbage Out" No amount of reweighting can compensate for extreme sparsity and/or selection bias, esp. if unobserved context changes behavior of sample cohorts relative to the same population cohorts
- BayesiaLab offers state-of-the-art capabilities for Bayesian Analysis
 - Caveat: Even BayesiaLab can be made more powerful!

Questions?