

ASSOCIATION RULE MINING FINDING FREQUENT PATTERN APRIORI ALGORITHM

Prof. Dr. Hikmat Ullah Khan Department of Information Technology

UNIVERSITY OF SARGODHA, SARGODHA

Lesson from Holy Quran

Observe the table

- 1.Check the frequent items?
- 2. Which items are frequent wrt other items?
- 3. This makes Pattern.

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

What Is Frequent Pattern Analysis?

- □ Frequent Occurances: a pattern
- What is a Pattern?
- □ (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- History
- □ First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of two concepts, we study here
 - Finding Frequent Itemsets
 - Finding Association Rule.

What Is Frequent Pattern Analysis?

- Motivation: Finding inherent regularities in data
 - What products were often purchased together?—
 - E.g., Milk and Bread
 - What are the subsequent purchases after buying a PC?
 - Peripheral devices
 - What kinds of DNA are sensitive to this new drug?
 - Can you add more examples???

Applications

- □ Basket data analysis,
 - cross-marketing/sale campaign analysis,
- Document Analysis
- Web Analysis
 - Usage Analysis (Log (click stream) analysis)
 - Content Analysis (C0-Occurance of)
 - Structure Analysis (
- Expert Group Finding
- Social Network Analysis
 - Similar Interest Finding
 - Terrorist Network

Document analysis

A text document data set. Each document is treated as a "bag" of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

Support & Confidence

- □ Itemset $X = \{x_1, ..., x_k\}$
- □ Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

```
Let sup_{min} = 50\%, conf_{min} = 50\%

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

A \rightarrow D (60%, 100%)

D \rightarrow A (60%, 75%)
```

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

An example

- Take Transaction data
- An example frequent itemset: {Chicken, Clothes, Milk}

Find the support of this frequent itemset

Assume any rule and find its Confidence

t1: Beef, Chicken, Milk

t2: Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese,

Milk

t6: Chicken, Clothes, Milk

t7: Chicken, Milk, Clothes

How many itemsets are there?

Given d items, there are 2^d possible itemsets

Apriori Principle

- How to avoid to many computations?
- Solution:
 - Apriori Pruning principle

Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! Method:

llustrating the Apriori principle

The Apriori Algorithm—An Example

B, C, E

A, B, C, E

B, E

20

30

40

1st scan

Itemset	sup	
{A}	2	
{B}	3	
{C}	3	_
{D}	1	
{E}	3	

	Itemset	sup
	{A}	2
	{B}	3
•	{C}	3
	{E}	3

The Apriori Algorithm—An Example

The Apriori Algorithm—An Example

The Apriori Algorithm — Exercise

Database D

TID	Items
100	1 3 4
200	2 3 5
300	1235
400	2 5

The Apriori Algorithm — Exercise Solved

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k != \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
    increment the count of all candidates in C_{k+1} that are contained in t
  L_{k+1} = candidates in C_{k+1} with min_support
  end
return \bigcup_k L_k;
```

Implementation of Apriori: Optional but recommended

- Options
- Languages
 - ■Python/R
- API/Libraries
- □ Python/R

Success is following the pattern of life one enjoys most. - Al Capp