### Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2018/2



INF/UFG - LFA 2018/2 - H. Longo (1 – 1 de

### Pushdown Automata

### Esquema básico





## Definição

### Definição 1.1

- ► Um Autômato com Pilha (*PDA Pushdown Automaton*) é uma sextupla  $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ , onde:
  - Σ : alfabeto de entrada;
  - Γ : alfabeto da pilha;
  - $S \neq \emptyset$ : conjunto finito de estados;
  - $s_0 \in S$ : estado inicial;
  - $\delta: S \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \mathcal{P}(S \times (\Gamma \cup \{\epsilon\}))$ : função de transição de estados; e
  - ►  $F \subseteq S$ : conjunto de estados finais (ou de aceitação).



### Processamento de um PDA

- $\delta(s_i, a, x) = \{(s_i, y), (s_k, z)\}.$ 
  - Duas transições possíveis quando o autômato está no estado si, lendo o símbolo a de entrada e com x no topo da pilha.
- ▶ A transição  $(s_i, y) \in \delta(s_i, a, x)$  força o autômato a:
  - 1. Mudar o estado corrente de  $s_i$  para  $s_i$ ;
  - 2. Processar o símbolo *a* (avançar a cabeça de leitura da fita);
  - 3. Remover o símbolo x do topo da pilha; e
  - 4. Colocar o símbolo y no topo da pilha.



- $\rightarrow a, b \rightarrow c$ :
  - $a = \varepsilon$ : transição sem ler símbolo de entrada.
  - $b = \varepsilon$ : transição sem ler símbolo da pilha.
  - $c = \varepsilon$ : transição sem escrever na pilha.

- ▶  $\delta(s_i, a, x) = \{(s_j, y)\}.$ 
  - ▶ O PDA muda do estado  $s_i$  para o  $s_j$ , lê a da fita de entrada, desempilha x e empilha y.





- $\delta(s_i, \varepsilon, x) = \{(s_i, \varepsilon)\}.$ 
  - Se a posição de entrada é  $\varepsilon$ , a transição não processa um símbolo de entrada, mas desempilha o x.





- $\delta(s_i, \varepsilon, \varepsilon) = \{(s_i, x)\}.$ 
  - Se a posição de entrada é  $\varepsilon$ , a transição não processa um símbolo de entrada, mas empilha o x.





- $\delta(s_i, a, \varepsilon) = \{(s_j, \varepsilon)\}.$ 
  - Transição equivalente a transição de um DFA.
  - Efeito determinado somente pelo estado corrente e pelo símbolo de entrada.
  - Transição não consulta e não altera a pilha.





### Processamento de um PDA

- $P = \langle \Sigma, \Gamma, S, s_{ini}, \delta, F \rangle.$
- $w = w_1 w_2 \dots w_m$ , com  $w_i \in \Sigma$ ,  $i = 1, \dots, m$ : cadeia de entrada.
- ▶  $s_0, s_1, ..., s_m \in Q$ : seqüência de estados.
- ▶  $u_0, u_1, \dots, u_m \in \Gamma^*$  : seqüência de conteúdos da pilha.



### Processamento de um PDA

- P aceita a cadeia w se:
  - 1.  $s_0 = s_{ini} e u_0 = \varepsilon$ .
    - ▶ P começa no estado inicial e com a pilha vazia.
  - 2.  $(s_{i+1}, u_{i+1}) \in \delta(s_i, w_{i+1}, u_i), i = 0, ..., m-1$ , onde  $u_i = av$  e  $u_{i+1} = bv'$  para  $a, b \in \Gamma \cup \{\varepsilon\}$  e  $v, v' \in \Gamma^*$ .
    - ▶ P move-se de acordo com o estado atual, a pilha e o próximo símbolo da cadeia.
  - 3.  $s_m \in F$ .
    - Um estado final ocorre no final da cadeia.



### Configuração de um PDA

### Definição 1.2

► Tripla  $[s_i, w, \alpha]$ , onde  $s_i$  é o estado corrente,  $w \in \Sigma^*$  é o conjunto de símbolos ainda não processados e  $\alpha$  é o conteúdo da pilha.

### Notação

- $\blacktriangleright \; \longmapsto_{_{\!\!\!\!M}} : \text{ define uma função de } S \times \Sigma^* \times \Gamma^* \; \text{em } S \times \Sigma^* \times \Gamma^*.$
- ►  $[s_i, w, \alpha] \underset{M}{\longmapsto} [s_j, v, \beta]$ : configuração  $[s_j, v, \beta]$  é obtida a partir de  $[s_i, w, \alpha]$  com apenas uma transição de estados.
- $\triangleright$   $\stackrel{*}{\underset{\scriptscriptstyle{M}}{\longmapsto}}$  : representa uma seqüência de transições.



## Exemplo de autômato com pilha

#### Exemplo 1.3

- ►  $P = \langle \Sigma = \{a, b\}, \Gamma = \{x\}, S = \{s_0, s_1\}, s_0, \delta, F = \{s_0, s_1\} \rangle$ , onde:
  - $\delta(s_0, a, \varepsilon) = \{(s_0, x)\}$
  - $\delta(s_0, b, x) = \{(s_1, \varepsilon)\}$
  - $\delta(s_1, b, x) = \{(s_1, \varepsilon)\}$
- $\mathcal{L}(P) = \{a^i b^i \mid i \ge 0\}$
- $\blacktriangleright [s_0, aabb, \varepsilon] \longmapsto [s_0, abb, x] \longmapsto [s_0, bb, xx] \longmapsto [s_1, b, x] \longmapsto [s_1, \varepsilon, \varepsilon]$





## Linguagem aceita por um PDA

### Definição 1.4

Seja  $P=\langle \Sigma,\Gamma,S,s_0,\delta,F\rangle$  um PDA. Uma cadeia  $w\in \Sigma^*$  é aceita por P se existe um processamento

$$[s_0, w, \varepsilon] \stackrel{*}{\longmapsto} [s_i, \varepsilon, \varepsilon],$$

onde  $s_i \in F$ . A linguagem de P, denotada  $\mathcal{L}(P)$ , é o conjunto de cadeias aceitas por P.



# Exemplo de autômato com pilha

#### Exemplo 1.5

- $L = \{wcw^R \mid w \in \{a, b\}^*\}.$
- $P = \langle \Sigma = \{a, b, c\}, \Gamma = \{a, b\}, S = \{s_0, s_1\}, s_0, \delta, F = \{s_1\} \rangle$ , onde:

$$\begin{split} \delta(s_0, a, \varepsilon) &= \{(s_0, a)\}\\ \delta(s_0, b, \varepsilon) &= \{(s_0, b)\}\\ \delta(s_0, c, \varepsilon) &= \{(s_1, \varepsilon)\}\\ \delta(s_1, a, a) &= \{(s_1, \varepsilon)\}\\ \delta(s_1, b, b) &= \{(s_1, \varepsilon)\} \end{split}$$



## Exemplo de autômato com pilha

### Exemplo 1.5

▶ Processamento da cadeia abcba:  $[s_0, abcba, \varepsilon] \mapsto [s_0, bcba, a] \mapsto [s_0, cba, ba]$ 

$$\longmapsto [s_1, ba, ba] \longmapsto [s_1, a, a] \longmapsto [s_1, \varepsilon, \varepsilon]$$





### Transições compatíveis

### Definição 1.6

- ▶ Duas transições  $(s_j, c) \in \delta(s_i, u, a)$  e  $(s_k, d) \in \delta(s_i, v, b)$  são compatíveis se alguma das condições a seguir é satisfeita:
  - 1. u = v e a = b;
  - 2.  $u = v e a = \varepsilon ou b = \varepsilon$ ;
  - 3.  $a = b e u = \varepsilon ou v = \varepsilon$ ;
  - 4.  $u = \varepsilon$  ou  $v = \varepsilon$  e  $a = \varepsilon$  ou  $b = \varepsilon$ ;
- Transições compatíveis podem ser aplicadas para a mesma configuração.



#### PDA determinístico

### Definição 1.7

- Um PDA é determinístico se existe no máximo uma transição para cada combinação de estado, símbolo de entrada e símbolo no topo da pilha.
- ▶ Um PDA é determinístico se não contém transições compatíveis distintas.



### Exemplo 1.8

- ►  $L = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$ 
  - A transição  $\varepsilon$  a partir de  $s_0$  permite chegar a  $s_2$  depois de processar toda a cadeia de entrada.
  - Esta transição introduz o não determinismo ao PDA.





### Exemplo 1.9

- ►  $L = \{ww^R \mid w \in \{a, b\}^*\}.$ 
  - O não determinismo permite ao PDA "adivinhar" quando a metade da cadeia de entrada foi processada.





### Processamento de um PDA

- Definição formal não contém mecanismos para testar pilha vazia.
- Um PDA pode simular esse mecanismo com um símbolo particular (por exemplo, \$):
  - \$ é o primeiro símbolo a ser colocado na pilha.
  - Quando o PDA ler novamente o \$, então a pilha está vazia.



#### Exemplo 1.10

- $L = \{0^n 1^n \mid n \ge 0\}.$
- $ightharpoonup P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ , onde:
  - $S = \{s_0, s_1, s_2, s_3\}.$
  - $\Sigma = \{0, 1\}.$
  - $\Gamma = \{0, \$\}.$
  - ►  $F = \{s_0, s_3\}.$



### Exemplo 1.10

▶  $\delta$  é definida na tabela a seguir, onde entradas em branco significam  $\emptyset$ :

| Entrada               | 0 |    |               | 1                                                      |    |   | ε |                          |                |
|-----------------------|---|----|---------------|--------------------------------------------------------|----|---|---|--------------------------|----------------|
| Pilha                 | 0 | \$ | ε             | 0                                                      | \$ | ε | 0 | \$                       | ε              |
| <i>s</i> <sub>0</sub> |   |    |               |                                                        |    |   |   |                          | $\{(s_1,\$)\}$ |
| $s_1$                 |   |    | $\{(s_1,0)\}$ | $\{(s_2, \varepsilon)\}\$<br>$\{(s_2, \varepsilon)\}\$ |    |   |   |                          |                |
| <i>s</i> <sub>2</sub> |   |    |               | $\{(s_2,\varepsilon)\}$                                |    |   |   | $\{(s_3, \varepsilon)\}$ |                |
| <i>s</i> <sub>3</sub> |   |    |               |                                                        |    |   |   |                          |                |



#### Exemplo 1.10





#### Exemplo 1.11

- $\mathcal{L} = \{a^i b^j c^k \in \{a, b, c\}^* \mid i, j, k \ge 0 \text{ e } i = j \text{ ou } i = k\}.$ 
  - ► PDA lê e empilha todos os a's.
  - Os símbolos a's devem ser 'casados' com b's ou c's?
  - ► Não determinismo é essencial para reconhecer £!





#### Exemplo 1.12

•  $\mathcal{L} = \{(ab)^i c^k a^j \in \{a, b, c\}^* \mid j \ge i \ge 1, k \ge 1\}.$ 





### PDA atômico

#### Definição 1.13

- ► A transição de um PDA acarreta três ações: processar um símbolo da cadeia, retirar um símbolo da pilha e colocar outro símbolo na pilha.
- Um PDA é chamado de atômico se cada transição causa apenas uma dessas ações.
- Transições em um PDA atômico têm a forma:

$$(s_i, \varepsilon) \in \delta(s_i, a, \varepsilon)$$

$$(s_j, \varepsilon) \in \delta(s_i, \varepsilon, a)$$

$$(s_j, a) \in \delta(s_i, \varepsilon, \varepsilon)$$



### PDA atômico

#### Teorema 1.14

▶ Se P é um PDA, então existe um PDA atômico P' com  $\mathcal{L}(P') = \mathcal{L}(P)$ .

- ▶ Para construir P', cada transição não atômica de P deve ser trocada por uma sequência de transições atômicas.
  - ▶ Dada a transição  $(s_j, b) \in \delta(s_i, a, a)$  de P, são necessários dois novos estados  $s_1$  e  $s_2$  e as transições:

$$(s_1, \varepsilon) \in \delta(s_i, a, \varepsilon),$$
  
$$\delta(s_1, \varepsilon, a) = \{(s_2, \varepsilon)\},$$
  
$$\delta(s_2, \varepsilon, \varepsilon) = \{(s_j, b)\}.$$



### PDA atômico

#### Teorema 1.14

▶ Se P é um PDA, então existe um PDA atômico P' com  $\mathcal{L}(P') = \mathcal{L}(P)$ .

- De forma similar, uma transição que consiste na mudança de estado e que acarreta apenas duas ações, pode ser trocada por uma sequência de duas transições atômicas.
- A remoção de todas transições não atômicas produz um PDA atômico equivalente.





#### Definição 1.15

- Uma transição estendida, em um PDA, empilha uma cadeia de caracteres e não apenas um único símbolo.
  - ► Ex.: a transição  $(s_i, bcd) \in \delta(s_i, u, a)$  empilha bcd, com b ficando no topo da pilha.
- Um PDA estendido é aquele que contém transições estendidas.



#### Teorema 1.16

▶ Se P é um PDA estendido, então existe um PDA P' com  $\mathcal{L}(P') = \mathcal{L}(P)$ .

- ▶ Para construir P', cada transição estendida P deve ser trocada por uma sequência de transições.
  - ▶ Dada a transição  $(s_j, bcd) \in \delta(s_i, u, a)$  de P, são necessários dois novos estados  $s_1$  e  $s_2$  e as transições:

$$(s_1, d) \in \delta(s_i, u, a),$$
  
$$\delta(s_1, \varepsilon, \varepsilon) = \{(s_2, c)\},$$
  
$$\delta(s_2, \varepsilon, \varepsilon) = \{(s_j, b)\}.$$



### Exemplo 1.17

►  $L = \{a^i b^{2i} \mid i \ge 1\}.$ 

| PDA                                                    | PDA atômico                                             | PDA estendido                                 |
|--------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|
| $S = \{s_0, s_1, s_2\}$                                | $S = \{s_0, s_1, s_2, s_3, s_4\}$                       | $S = \{s_0, s_1\}$                            |
| $\delta(s_0, a, \varepsilon) = \{(s_2, a)\}\$          | $\delta(s_0, a, \varepsilon) = \{(s_3, \varepsilon)\}\$ | $\delta(s_0, a, \varepsilon) = \{(s_0, aa)\}$ |
| $\delta(s_2, \varepsilon, \varepsilon) = \{(s_0, a)\}$ | $\delta(s_3, \varepsilon, \varepsilon) = \{(s_2, a)\}$  | $\delta(s_0, b, a) = \{(s_1, \varepsilon)\}\$ |
| $\delta(s_0, b, a) = \{(s_1, \varepsilon)\}\$          | $\delta(s_2, \varepsilon, \varepsilon) = \{(s_0, a)\}\$ | $\delta(s_1, b, a) = \{(s_1, \varepsilon)\}\$ |
| $\delta(s_1, b, a) = \{(s_1, \varepsilon)\}\$          | $\delta(s_0, b, \varepsilon) = \{(s_4, \varepsilon)\}\$ |                                               |
|                                                        | $\delta(s_4, \varepsilon, a) = \{(s_1, \varepsilon)\}\$ |                                               |
|                                                        | $\delta(s_1,b,\varepsilon) = \{(s_4,\varepsilon)\}$     |                                               |
|                                                        |                                                         |                                               |



### Exemplo 1.17

►  $L = \{a^i b^{2i} \mid i \ge 1\}.$ 

#### ► PDA:



► PDA estendido:



► PDA atômico:





### Definição 1.18

▶ Seja o PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ . A aceitação da cadeia  $w \in \Sigma^*$  é definida por estado final se existe um processamento

$$[s_0, w, \varepsilon] \stackrel{*}{\longmapsto} [s_i, \varepsilon, \alpha],$$

onde  $s_i \in F$  e  $\alpha \in \Gamma^*$ .

- Definir aceitação em termos do estado final ou da configuração da pilha não altera o conjunto de linguagens reconhecidas pelos autômatos finitos.
- ▶ A linguagem aceita por estado final é denotada  $\mathcal{L}_F$ .



#### Lema 1.19

▶ Se  $\mathcal{L}(P)$  é a linguagem aceita pelo PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ , com aceitação definida por estado final, então existe um PDA P' que aceita  $\mathcal{L}(P)$ , com aceitação definida por estado final e pilha vazia.

- $P' = \langle \Sigma, \Gamma, S \cup \{s_f\}, s_0, \delta', \{s_f\} \rangle.$
- a função  $\delta'$  é igual à função  $\delta$  acrescida das transições:

$$\begin{split} \delta'(s_i,\varepsilon,\varepsilon) &= \{(s_f,\varepsilon)\}, \quad \forall \ s_i \in F; \\ \delta'(s_f,\varepsilon,a) &= \{(s_f,\varepsilon)\}, \quad \forall \ a \in \Gamma. \end{split}$$



#### Lema 1.19

▶ Se  $\mathcal{L}(P)$  é a linguagem aceita pelo PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ , com aceitação definida por estado final, então existe um PDA P' que aceita  $\mathcal{L}(P)$ , com aceitação definida por estado final e pilha vazia.

- ▶ Seja o processamento  $[s_0, w, \varepsilon] \stackrel{*}{\underset{p}{\longmapsto}} [s_i, \varepsilon, \alpha]$  que aceita w por estado final.
- O equivalente em P' é:

$$[s_0, w, \varepsilon] \stackrel{*}{\vdash_p} [s_i, \varepsilon, \alpha] \stackrel{}{\longmapsto_{p'}} [s_f, \varepsilon, \alpha] \stackrel{*}{\vdash_{p'}} [s_f, \varepsilon, \varepsilon].$$



#### Lema 1.19

▶ Se  $\mathcal{L}(P)$  é a linguagem aceita pelo PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta, F \rangle$ , com aceitação definida por estado final, então existe um PDA P' que aceita  $\mathcal{L}(P)$ , com aceitação definida por estado final e pilha vazia.

- As novas transições não levam P' a aceitar cadeias que não pertençam à  $\mathcal{L}(P)$ :
  - O único estado final de P' é  $s_f$ , o qual é alcançável a partir de qualquer estado final de P.
  - As transições a partir de  $s_f$  desempilham símbolos, mas não processam a cadeia de entrada.



## Aceitação por pilha vazia

### Definição 1.20

▶ Seja o PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta \rangle$ . A aceitação da cadeia  $w \in \Sigma^*$  é definida por pilha vazia se existe um processamento

$$[s_0, w, \varepsilon] \stackrel{\scriptscriptstyle{+}}{\longmapsto} [s_i, \varepsilon, \varepsilon],$$

onde não há restrição quanto ao estado  $s_i$  de parada do processamento.

- ▶ É necessário pelo menos uma transição para permitir a aceitação de linguagens que não contenham a cadeia vazia.
- ▶ A linguagem aceita por pilha vazia é denotada  $\mathcal{L}_E$ .



## Aceitação por pilha vazia

#### Lema 1.21

▶ Se  $\mathcal{L}(P)$  é a linguagem aceita pelo PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta \rangle$ , com aceitação definida por pilha vazia, então existe um PDA P' que aceita  $\mathcal{L}(P)$ , com aceitação definida por estado final e pilha vazia.

- $P' = \langle \Sigma, \Gamma, S \cup \{s'_0\}, s'_0, \delta', S \rangle, \text{ onde:}$   $\delta'(s_i, a, x) = \delta(s_i, a, x) \in \delta'(s'_0, a, x) = \delta(s_0, a, x),$   $\forall \ s_i \in S, a \in \Sigma \cup \{\varepsilon\} \ \text{ex} \ \varepsilon \ \Gamma \cup \{\varepsilon\}.$ 
  - Os processamentos de P e P' são idênticos, exceto que o estado inicial de P é s<sub>0</sub> e o inicial de P' é s'<sub>0</sub>.



## Aceitação por pilha vazia

#### Lema 1.21

▶ Se  $\mathcal{L}(P)$  é a linguagem aceita pelo PDA  $P = \langle \Sigma, \Gamma, S, s_0, \delta \rangle$ , com aceitação definida por pilha vazia, então existe um PDA P' que aceita  $\mathcal{L}(P)$ , com aceitação definida por estado final e pilha vazia.

- ▶ Todo processamento em P', de comprimento um ou maior, que para com pilha vazia também para em um estado final.
- ▶ Como  $s'_0$  não é final,  $\varepsilon$  é aceito por P' só se é aceita por P.
- ▶ Portanto,  $\mathcal{L}(P') = \mathcal{L}_F(P)$ .



# Linguagens aceitas por PDA's

#### Teorema 1.22

- As três condições a seguir são equivalentes:
  - 1. a linguagem  $\mathcal{L}(P)$  é aceita pelo PDA P;
  - 2. existe um PDA  $P_1$  tal que  $\mathcal{L}_F(P_1) = \mathcal{L}(P)$ ; e
  - 3. existe um PDA  $P_2$  tal que  $\mathcal{L}_E(P_2) = \mathcal{L}(P)$ .



#### Conversão de GLC em PDA

- ► Toda LLC é aceita por um PDA estendido.
  - As regras de derivação podem ser usadas para gerar as transições do PDA.
- ▶ Seja  $\mathcal L$  uma LLC e G uma gramática na forma normal de Greibach com  $\mathcal L(G) = \mathcal L$ .
  - ▶ As regras de G, exceto  $S \to \varepsilon$ , tem a forma  $A \to aA_1A_2...A_n$ .
  - ► Em uma derivação à esquerda, as variáveis  $A_i$  são substituídas na seqüência  $A_1, A_2, ..., A_n$ .
- Empilhar  $A_1, A_2, \ldots, A_n$ , com  $A_1$  no topo da pilha, armazena as variáveis na ordem requerida pela derivação.



- $\mathcal{L} = \{a^i b^i \mid i > 0\}.$
- Gramática G na forma normal de Greibach que aceita  $\mathcal{L}$ :

$$G: \left\{ \begin{array}{l} S \to aAB \mid aB, \\ A \to aAB \mid aB, \\ B \to b \end{array} \right\}.$$



### Exemplo 1.23

► PDA  $P = \langle \Sigma = \{a, b\}, \Gamma = \{A, B\}, S = \{s_0, s_1\}, s_0, \delta, F = \{s_1\} \rangle$ , onde:

$$\delta(s_0, a, \varepsilon) = \{(s_1, AB), (s_1, B)\},\$$
  
$$\delta(s_1, a, A) = \{(s_1, AB), (s_1, B)\},\$$
  
$$\delta(s_1, b, B) = \{(s_1, \varepsilon)\}.$$



▶ Uma regra da forma  $S \rightarrow aA_1A_2...A_n$  gera uma transição que processa a, empilha  $A_1, A_2, ..., A_n$  e entra no estado  $s_1$ .



### Exemplo 1.23

► Derivação da cadeia *aaabbb* por *G* e processamento por *P*:

| $S \Rightarrow aAB$   | $[s_0, aaabbb, \varepsilon] \longmapsto [s_1, aabbb, AB]$ |  |
|-----------------------|-----------------------------------------------------------|--|
| $\Rightarrow aaABB$   | $\longmapsto [s_1, abbb, ABB]$                            |  |
| $\Rightarrow aaaBBB$  | $\longmapsto [s_1, bbb, BBB]$                             |  |
| $\Rightarrow aaabBB$  | $\longmapsto [s_1, bb, BB]$                               |  |
| $\Rightarrow aaabbB$  | $\longmapsto [s_1, b, B]$                                 |  |
| $\Rightarrow aaabbb.$ | $\longmapsto [s_1, \varepsilon, \varepsilon].$            |  |



#### Conversão de GLC em PDA - Alternativa

- $\blacktriangleright \mathcal{L}: LLC.$
- G: GLC que gera  $\mathcal{L}$ .
- Conversão de G em um PDA P.
  - Se G gera w, então P aceita w.
  - ► P determina se existe uma derivação para w.
- Quais produções devem ser utilizadas na derivação?
  - P deve ser não determinístico.



#### Funcionamento do PDA P

- 1. Variável inicial na pilha.
- 2. Série de cadeias intermediárias: substituições uma a uma.
  - Pode chegar a uma cadeia que só contém símbolos terminais.
  - P aceita essa cadeia se é igual à cadeia w.
- Tratamento das cadeias intermediárias:
  - P tem acesso somente ao topo da pilha, que pode ser um terminal ou uma variável.
  - Retirar parte da cadeia intermediária (primeira variável) da pilha.
  - 'Casar' qualquer terminal anterior com os símbolos da cadeia de entrada.



### Exemplo 1.24

► PDA P com a cadeia intermediária A1A0 a pilha:





#### Funcionamento do PDA P

- 1. Inserir símbolo \$ na pilha.
- 2. Inserir variável inicial na pilha.
- 3. Repetir os passos:
  - 3.1 Se topo da pilha é uma variável *A*, escolher (não determinístico) uma produção para *A* e substituir *A* pelo lado direito da produção.
  - 3.2 Se topo da pilha é um terminal *a*, ler próximo símbolo da cadeia de entrada e comparar com *a*. Se iguais, repetir, senão rejeitar.
  - 3.3 Se topo da pilha é o símbolo \$, ir para estado final. Se cadeia de entrada foi toda lida, então foi aceita.



- ► Construção do *PDA P* =  $\langle \Sigma, \Gamma, Q, q_0, \delta, F \rangle$ :
  - $p q', q \in Q$
  - $a \in \Sigma$ ,
  - $u \in \Gamma$ ,
  - ▶ P passa do estado q' para o  $q \Rightarrow P$  lê a e desempilha u.



- ►  $(q, w) \in \delta(q', a, u) \Rightarrow q'$  é o estado do PDA, a é o próximo símbolo de entrada e u é o topo da pilha.
  - ▶ O PDA deve ler a, desempilhar u, empilhar a cadeia w e ir para o estado q.
- ▶ Exemplo para  $(q, xyz) \in \delta(q', a, u)$ :





- ▶ Empilhar toda a cadeia  $w = w_1 \dots w_\ell$  ao mesmo tempo:
  - Novos estados  $q_1, \ldots, q_{\ell-1}$  e transição  $\delta(q, a, u)$  tal que:

$$(q_1, w_{\ell}) \in \delta(q, a, u),$$

$$\delta(q_1, \varepsilon, \varepsilon) = \{(q_2, w_{\ell-1})\},$$

$$\delta(q_2, \varepsilon, \varepsilon) = \{(q_3, w_{\ell-2})\},$$

$$\vdots$$

$$\delta(q_{\ell-1}, \varepsilon, \varepsilon) = \{(q, w_{\ell})\}.$$



- ▶  $PDA P = \langle \Sigma, \Gamma, Q, q_0, \delta, F \rangle$ .
  - $Q = \{q_{ini}, q', q, q_{fim}\} \cup E$ .
    - ► *E* : novos estados para a notação simplificada para transições.
  - $ightharpoonup q_0 = q_{ini}$ .
  - $F = \{q_{fim}\}.$
  - $\delta(q_{ini}, \varepsilon, \varepsilon) = \{(q', \$)\}.$ 
    - A pilha é iniciada com \$.
  - $\delta(q', \varepsilon, \varepsilon) = \{(q, S)\}.$ 
    - A variável inicial S é colocada na pilha.
  - $\delta(q, \varepsilon, A) = \{(q, a)\}, \text{ onde } (A \rightarrow a) \in R.$ 
    - O topo da pilha contém uma variável.
  - - O topo da pilha contém um terminal.
  - $\delta(q, \varepsilon, \$) = \{(q_{fim}, \varepsilon)\}.$ 
    - Marcador de pilha vazia (\$) está no topo.



### Esquema de construção do PDA

▶ Diagrama simplificado de estados para o PDA P:





- ► GLC  $G = (V = \{S, T\}, \Sigma = \{a, b\}, R = \{S \rightarrow aTb \mid b, T \rightarrow Ta \mid \varepsilon\}, S).$
- ▶ Diagrama de estados do *PDA* que simula *G*:





#### Teorema 1.26

▶ Se £ é uma LLC, então existe um PDA M que aceita £.

- ▶ Seja  $G = (V, \Sigma, P, S)$ , na FNG, que aceita  $\mathcal{L}$ .
- ► Seja o PDA estendido  $M = \langle \Sigma_M = \Sigma, \Gamma_M = V \{S\}, S_M = \{s_0, s_1\}, s_0, \delta, F_M = \{s_1\}\rangle$ , onde:

$$\begin{split} &\delta(s_0,a,\varepsilon) = \{(s_1,w) \mid (S \to aw) \in P \text{ e } w \in V^*\}, \\ &\delta(s_1,a,A) = \{(s_1,w) \mid (A \to aw) \in P, \ A \in V - \{S\} \text{ e } w \in V^*\}, \\ &\delta(s_0,\varepsilon,\varepsilon) = \{(s_1,\varepsilon) \text{ se } (S \to \varepsilon) \in P\}. \end{split}$$





#### Teorema 1.26

► Se £ é uma LLC, então existe um PDA M que aceita £.

- 1.  $\mathcal{L} \subseteq \mathcal{L}(M)$ .
- **2**.  $\mathcal{L}(M) \subseteq \mathcal{L}$ .





#### Teorema 1.26

▶ Se £ é uma LLC, então existe um PDA M que aceita £.

## Demonstração.

- 1.  $\mathcal{L} \subseteq \mathcal{L}(M)$ .
  - ▶ Seja a derivação  $S \stackrel{*}{\Longrightarrow} uw$ , com  $u \in \Sigma^+$  e  $w \in V^*$ .
  - ► Existe um processamento  $[s_0, u, \varepsilon] \stackrel{\circ}{\longmapsto} [s_1, \varepsilon, w]$ .
    - (Indução no comprimento da derivação):
      - Base:
         Derivações S ⇒ aw de comprimento 1. A transição gerada pela regra S → aw é o processamento requerido.



П

#### Teorema 1.26

▶ Se £ é uma LLC, então existe um PDA M que aceita £.

## Demonstração.

- 1.  $\mathcal{L} \subseteq \mathcal{L}(M)$ .
  - ▶ Seja a derivação  $S \stackrel{*}{\Longrightarrow} uw$ , com  $u \in \Sigma^+$  e  $w \in V^*$ .
  - Existe um processamento  $[s_0, u, \varepsilon] \xrightarrow{*} [s_1, \varepsilon, w]$ . (Indução no comprimento da derivação):
    - ► Hipótese:
      - $\dot{S}$  Suponha que para todas cadeias uw geradas por derivações  $S \stackrel{n}{\Longrightarrow} uw$  existe em M um processamento  $[s_0,u,\varepsilon] \stackrel{*}{\longmapsto} [s_1,\varepsilon,w]$ .



П

#### Teorema 1.26

▶ Se £ é uma LLC, então existe um PDA M que aceita £.

- 1.  $\mathcal{L} \subseteq \mathcal{L}(M)$ .
  - Passo indutivo:
    - ▶ Seja a derivação  $S \stackrel{n+1}{\Longrightarrow} uw$ , com  $u = va \in \Sigma^+$  e  $w \in V^*$ .
    - $S \stackrel{n}{\Longrightarrow} vAw_2 \Longrightarrow uw$ , onde  $w = w_1w_2$  e  $(A \to aw_1) \in P$ .
    - ▶ Por HI e  $(s_1, w_1) \in \delta(s_1, a, A)$ :

$$[s_0, va, \varepsilon] \stackrel{*}{\longmapsto} [s_1, a, Aw_2]$$
$$\longmapsto [s_1, \varepsilon, w_1 w_2].$$





#### Teorema 1.26

▶ Se £ é uma LLC, então existe um PDA M que aceita £.

- 1.  $\mathcal{L} \subseteq \mathcal{L}(M)$ .
  - Passo indutivo:
    - Para toda  $u \in \mathcal{L}$ , com |u| > 0, a aceitação de u por M é mostrada pelo processamento correspondente à derivação  $S \stackrel{*}{\Longrightarrow} u$ .
    - ▶ Se  $\varepsilon \in \mathcal{L}$ , então  $(S \to \varepsilon) \in P$  e o processamento  $[s_0, \varepsilon, \varepsilon] \longmapsto [s_1, \varepsilon, \varepsilon]$  aceita  $\varepsilon$ .





#### Teorema 1.26

▶ Se £ é uma LLC, então existe um PDA M que aceita £.

- 2.  $\mathcal{L}(M) \subseteq \mathcal{L}$ .
  - ▶ Mostrar que para todo processamento  $[s_0, u, \varepsilon] \stackrel{\cdot}{\longmapsto} [s_1, \varepsilon, w]$  existe a correspondente derivação  $S \stackrel{\cdot}{\Longrightarrow} uw$  em G.
    - Prova por indução.





- Toda linguagem aceita por um PDA é uma LLC.
  - As regras de derivação da GLC são construídas a partir das transições do PDA.
  - A gramática é construída de modo que a aplicação de uma regra de derivação corresponda a uma transição no PDA.
- ▶ Seja o PDA  $M = \langle \Sigma_M, \Gamma_M, S_M, S_0, \delta, F_M \rangle$ . Um PDA estendido M' é construído a partir de M aumentando-se a função  $\delta$  com as transições:
  - 1.  $(s_i, \varepsilon) \in \delta(s_i, u, \varepsilon) \Rightarrow (s_i, X) \in \delta'(s_i, u, X), \forall X \in \Gamma$ .
  - **2.**  $(s_i, Y) \in \delta(s_i, u, \varepsilon) \Rightarrow (s_i, YX) \in \delta'(s_i, u, X), \ \forall \ X \in \Gamma.$



- A gramática  $G = (V, \Sigma, P, S)$  é construída a partir das transições de M':
  - $\Sigma = \Sigma_{M'}$ .
  - $V = \{S\} \cup \{\langle s_i, X, s_j \rangle\}$ , onde  $s_i, s_j \in S_{M'}$  e  $X \in \Gamma \cup \{\varepsilon\}$ .
    - ▶  $\langle s_i, X, s_i \rangle$ : processamento em M' que inicia em  $s_i$ , encerra em  $s_i$  e desempilha X.



- ▶ A gramática  $G = (V, \Sigma, P, S)$  é construída a partir das transições de M':
  - ► Conjunto *P* de regras de derivação:
    - 1.  $S \rightarrow \langle s_0, \varepsilon, s_i \rangle, \forall s_i \in F_{M'},$
    - 2. Cada transição  $(s_i, Y) \in \delta'(s_i, u, X)$ , onde  $X, Y \in \Gamma \cup \{\varepsilon\}$ , gera

$$\{\langle s_i, X, s_k \rangle \to u \langle s_j, Y, s_k \rangle \mid s_k \in S_{M'}\},$$

3. Cada transição  $(s_j, YX) \in \delta'(s_i, u, X)$ , onde  $X, Y \in \Gamma$ , gera

$$\{\langle s_i, X, s_k \rangle \to u \langle s_j, Y, s_n \rangle \langle s_n, X, s_k \rangle \mid s_k, s_n \in S_{M'}\},\$$

4.  $\langle s_k, \varepsilon, s_k \rangle \to \varepsilon, \ \forall \ s_k \in S_{M'}$ .



- Uma derivação começa com uma regra do tipo 1:
  - ightharpoonup O lado direito representa um processamento que começa no estado  $s_0$  e termina em um estado final com pilha vazia.
  - ▶ Um processamento de sucesso no PDA M'.
- Regras do tipo 2 e 3 mapeiam as ações do PDA.
  - Regras do tipo 3 correspondem a transições estendidas de M', as quais aumentam o tamanho da pilha. O efeito na derivação é introduzir uma variável adicional.
- Regras do tipo 4 são usadas para terminar a derivação.
  - ▶ Representam um processamento a partir de um estado  $s_k$  para  $s_k$  que não altera a pilha (processamento nulo).



INF/UFG - LFA 2018/2 - H. Longo PDA's e GLC's (65 - 88 de 89

- - $M = \langle \Sigma_M, \Gamma_M, S_M, s_0, \delta, F_M \rangle$ :
    - $\Sigma_M = \{a, b, c\};$
    - ▶  $\Gamma_M = \{X\};$
    - $S_M = \{s_0, s_1\};$
    - ►  $F_M = \{s_1\};$

    - $\delta(s_0, c, \varepsilon) = \{(s_1, \varepsilon)\};$





- $\mathcal{L} = \{a^n c b^n \mid n \geqslant 0\}.$ 
  - $M' = \langle \Sigma_M, \Gamma_M, S_M, s_0, \delta', F_M \rangle :$ 
    - $\Sigma_M = \{a, b, c\};$
    - ▶  $\Gamma_M = \{X\}$ ;
    - $S_M = \{s_0, s_1\};$
    - $F_M = \{s_1\};$

    - $\delta'(s_0, c, \varepsilon) = \{(s_1, \varepsilon)\};$
    - $\delta'(s_1, b, X) = \{(s_1, \varepsilon)\};$
    - $\delta'(s_0, a, X) = \{(s_0, XX)\};$
    - $\delta'(s_0, c, X) = \{(s_1, X)\}.$





- $\mathcal{L} = \{a^n c b^n \mid n \geqslant 0\}.$
- $ightharpoonup G = (V, \Sigma, P, S)$ :
  - $\Sigma = \Sigma_M$ .
  - $V = \{S\} \cup \{\langle s_i, X, s_j \rangle\}$ , onde  $s_i, s_j \in S_M$  e  $X \in \Gamma \cup \{\varepsilon\}$ .

$$\mathcal{L} = \{a^n c b^n \mid n \geqslant 0\}.$$

| Transições                                         | Regras de derivação                                                                                 |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                    | $S \to \langle s_0, \varepsilon, s_0 \rangle$                                                       |
|                                                    | $S \to \langle s_0, \varepsilon, s_1 \rangle$                                                       |
| $\delta'(s_0,a,\varepsilon)=\{(s_0,X)\}$           | $\langle s_0, \varepsilon, s_0 \rangle \to a \langle s_0, X, s_0 \rangle$                           |
|                                                    | $\langle s_0, \varepsilon, s_1 \rangle \to a \langle s_0, X, s_1 \rangle$                           |
| $\delta'(s_0,c,\varepsilon)=\{(s_1,\varepsilon)\}$ | $\langle s_0, \varepsilon, s_0 \rangle \to c \langle s_1, \varepsilon, s_0 \rangle$                 |
|                                                    | $\langle s_0, \varepsilon, s_1 \rangle \to c \langle s_1, \varepsilon, s_1 \rangle$                 |
| $\delta'(s_0, c, X) = \{(s_1, X)\}$                | $\langle s_0, X, s_0 \rangle \to c \langle s_1, X, s_0 \rangle$                                     |
|                                                    | $\langle s_0, X, s_1 \rangle \to c \langle s_1, X, s_1 \rangle$                                     |
| $\delta'(s_1,b,X) = \{(s_1,\varepsilon)\}$         | $\langle s_1, X, s_0 \rangle \to b \langle s_1, \varepsilon, s_0 \rangle$                           |
|                                                    | $\langle s_1, X, s_1 \rangle \to b \langle s_1, \varepsilon, s_1 \rangle$                           |
| $\delta'(s_0,a,X)=\{(s_0,XX)\}$                    | $\langle s_0, X, s_0 \rangle \rightarrow a \langle s_0, X, s_0 \rangle \langle s_0, X, s_0 \rangle$ |
|                                                    | $\langle s_0, X, s_0 \rangle \to a \langle s_0, X, s_1 \rangle \langle s_1, X, s_0 \rangle$         |
|                                                    | $\langle s_0, X, s_1 \rangle \to a \langle s_0, X, s_0 \rangle \langle s_0, X, s_1 \rangle$         |
|                                                    | $\langle s_0, X, s_1 \rangle \to a \langle s_0, X, s_1 \rangle \langle s_1, X, s_1 \rangle$         |
|                                                    | $\langle s_0, \varepsilon, s_0 \rangle \to \varepsilon$                                             |
|                                                    | $\langle s_1, \varepsilon, s_1 \rangle \to \varepsilon$                                             |



$$\mathcal{L} = \{a^n c b^n \mid n \ge 0\}.$$

| Variável | Variável original                       |
|----------|-----------------------------------------|
| A        | $\langle s_0, \varepsilon, s_0 \rangle$ |
| B        | $\langle s_0, \varepsilon, s_1 \rangle$ |
| C        | $\langle s_1, \varepsilon, s_0 \rangle$ |
| D        | $\langle s_1, \varepsilon, s_1 \rangle$ |
| E        | $\langle s_0, X, s_0 \rangle$           |
| F        | $\langle s_0, X, s_1 \rangle$           |
| G        | $\langle s_1, X, s_0 \rangle$           |
| H        | $\langle s_1, X, s_1 \rangle$           |



$$\mathcal{L} = \{a^n c b^n \mid n \geqslant 0\}.$$

| Transisãos                                              | Dogras de deriveção |
|---------------------------------------------------------|---------------------|
| Transições                                              | Regras de derivação |
|                                                         | $S \to A$           |
|                                                         | $S \to B$           |
| $\delta(s_0, a, \varepsilon) = \{(s_0, X)\}\$           | $A \rightarrow aE$  |
|                                                         | $B \rightarrow aF$  |
| $\delta(s_0, c, \varepsilon) = \{(s_1, \varepsilon)\}\$ | $A \rightarrow cC$  |
|                                                         | $B \to cD$          |
| $\delta(s_0, c, X) = \{(s_1, X)\}$                      | $E \rightarrow cG$  |
|                                                         | $F \rightarrow cH$  |
| $\delta(s_1, b, X) = \{(s_1, \varepsilon)\}\$           | $G \rightarrow bC$  |
|                                                         | $H \rightarrow bD$  |
| $\delta(s_0, a, X) = \{(s_0, XX)\}$                     | $E \rightarrow aEE$ |
|                                                         | $E \rightarrow aFG$ |
|                                                         | $F \rightarrow aEF$ |
|                                                         | $F \rightarrow aFH$ |
|                                                         | 4                   |
|                                                         | $A \to \varepsilon$ |
|                                                         | $D \to \varepsilon$ |



$$\mathcal{L} = \{ a^n c b^n \mid n \geqslant 0 \}.$$

• 
$$G = (V, \Sigma, P, S)$$
:

$$V = \{S, B, D, F, H\} \equiv \{S, F\}.$$

$$\Sigma = \{a, b, c\}.$$

$$P = \left\{ \begin{array}{l} S \to A \mid B, \\ A \to \varepsilon, \\ B \to aF \mid cD, \\ D \to \varepsilon, \\ F \to aFH \mid cH, \\ H \to bD \end{array} \right\} \equiv \left\{ \begin{array}{l} S \to \varepsilon \mid aF \mid c, \\ F \to aFb \mid cb \end{array} \right\}$$



## Exemplo 1.28

•  $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$ 





#### Exemplo 1.28

▶  $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$ ▶  $M = \langle \Sigma_M, \Gamma_M, S_M, s_0, \delta, F_M \rangle$ :

▶  $\Sigma_M = \{a, b\};$ ▶  $\Gamma_M = \{X\};$ ▶  $S_M = \{s_0, s_1, s_2\};$ ▶  $F_M = \{s_1, s_2\};$ ▶  $\delta(s_0, a, \varepsilon) = \{(s_0, X)\};$ ▶  $\delta(s_0, b, X) = \{(s_1, \varepsilon)\};$ ▶  $\delta(s_0, \varepsilon, \varepsilon) = \{(s_2, \varepsilon)\};$ ▶  $\delta(s_1, b, X) = \{(s_1, \varepsilon)\};$ ▶  $\delta(s_2, \varepsilon, X) = \{(s_2, \varepsilon)\}.$ 

#### Exemplo 1.28

•  $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$  $M' = \langle \Sigma_M, \Gamma_M, S_M, s_0, \delta', F_M \rangle$ :  $\Sigma_M = \{a, b\};$ ▶  $\Gamma_M = \{X\}$ ;  $S_M = \{s_0, s_1, s_2\};$  $F_M = \{s_1, s_2\};$  $\delta'(s_0, a, \varepsilon) = \{(s_0, X)\};$ •  $\delta'(s_0, b, X) = \{(s_1, \varepsilon)\};$  $\delta'(s_0, \varepsilon, \varepsilon) = \{(s_2, \varepsilon)\};$ •  $\delta'(s_1, b, X) = \{(s_1, \varepsilon)\};$  $\delta'(s_2, \varepsilon, X) = \{(s_2, \varepsilon)\};$  $\delta'(s_0, a, X) = \{(s_0, XX)\};$ •  $\delta'(s_0, \varepsilon, X) = \{(s_2, X)\}.$ 

- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- $ightharpoonup G = (V, \Sigma, P, S)$ :
  - $\Sigma = \Sigma_M$ .
  - ▶  $V = \{S\} \cup \{\langle s_i, X, s_j \rangle\}$ , onde  $s_i, s_j \in S_M$  e  $X \in \Gamma \cup \{\varepsilon\}$ .

• 
$$\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$$

| Transições                                                        | Regras de derivação                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | $S \to \langle s_0, \varepsilon, s_1 \rangle$<br>$S \to \langle s_0, \varepsilon, s_2 \rangle$                                                                                                                                                                                                  |
| $\delta'(s_0, a, \varepsilon) = \{(s_0, X)\}\$                    | $ \langle s_0, \varepsilon, s_0 \rangle \to a \langle s_0, X, s_0 \rangle  \langle s_0, \varepsilon, s_1 \rangle \to a \langle s_0, X, s_1 \rangle  \langle s_0, \varepsilon, s_2 \rangle \to a \langle s_0, X, s_2 \rangle $                                                                   |
| $\delta'(s_0, b, X) = \{(s_1, \varepsilon)\}\$                    | $ \langle s_0, X, s_0 \rangle \to b \langle s_1, \varepsilon, s_0 \rangle $ $ \langle s_0, X, s_1 \rangle \to b \langle s_1, \varepsilon, s_1 \rangle $ $ \langle s_0, X, s_2 \rangle \to b \langle s_1, \varepsilon, s_2 \rangle $                                                             |
| $\delta'(s_0, \varepsilon, \varepsilon) = \{(s_2, \varepsilon)\}$ | $ \langle s_0, \varepsilon, s_0 \rangle \to \varepsilon \langle s_2, \varepsilon, s_0 \rangle $ $ \langle s_0, \varepsilon, s_1 \rangle \to \varepsilon \langle s_2, \varepsilon, s_1 \rangle $ $ \langle s_0, \varepsilon, s_2 \rangle \to \varepsilon \langle s_2, \varepsilon, s_2 \rangle $ |
| $\delta'(s_0, \varepsilon, X) = \{(s_2, X)\}$                     | $ \begin{aligned} \langle s_0, X, s_0 \rangle &\to \varepsilon \langle s_2, X, s_0 \rangle \\ \langle s_0, X, s_1 \rangle &\to \varepsilon \langle s_2, X, s_1 \rangle \\ \langle s_0, X, s_2 \rangle &\to \varepsilon \langle s_2, X, s_2 \rangle \end{aligned} $                              |



• 
$$\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$$

| Transições                           | Regras de derivação                                                                         |
|--------------------------------------|---------------------------------------------------------------------------------------------|
| $\delta'(s_0, a, X) = \{(s_0, XX)\}$ | $\langle s_0, X, s_0 \rangle \to a \langle s_0, X, s_0 \rangle \langle s_0, X, s_0 \rangle$ |
|                                      | $\langle s_0, X, s_1 \rangle \to a \langle s_0, X, s_0 \rangle \langle s_0, X, s_1 \rangle$ |
|                                      | $\langle s_0, X, s_2 \rangle \to a \langle s_0, X, s_0 \rangle \langle s_0, X, s_2 \rangle$ |
|                                      | $\langle s_0, X, s_0 \rangle \to a \langle s_0, X, s_1 \rangle \langle s_1, X, s_0 \rangle$ |
|                                      | $\langle s_0, X, s_1 \rangle \to a \langle s_0, X, s_1 \rangle \langle s_1, X, s_1 \rangle$ |
|                                      | $\langle s_0, X, s_2 \rangle \to a \langle s_0, X, s_1 \rangle \langle s_1, X, s_2 \rangle$ |
|                                      | $\langle s_0, X, s_0 \rangle \to a \langle s_0, X, s_2 \rangle \langle s_2, X, s_0 \rangle$ |
|                                      | $\langle s_0, X, s_1 \rangle \to a \langle s_0, X, s_2 \rangle \langle s_2, X, s_1 \rangle$ |
|                                      | $\langle s_0, X, s_2 \rangle \to a \langle s_0, X, s_2 \rangle \langle s_2, X, s_2 \rangle$ |



| Transições                                              | Regras de derivação                                                                                                                                                                                                                                         |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\delta'(s_1, b, X) = \{(s_1, \varepsilon)\}\$          | $\langle s_1, X, s_0 \rangle \to b \langle s_1, \varepsilon, s_0 \rangle$ $\langle s_1, X, s_1 \rangle \to b \langle s_1, \varepsilon, s_1 \rangle$ $\langle s_1, X, s_2 \rangle \to b \langle s_1, \varepsilon, s_2 \rangle$                               |
| $\delta'(s_2, \varepsilon, X) = \{(s_2, \varepsilon)\}$ | $ \langle s_2, X, s_0 \rangle \to \varepsilon \langle s_2, \varepsilon, s_0 \rangle  \langle s_2, X, s_1 \rangle \to \varepsilon \langle s_2, \varepsilon, s_1 \rangle  \langle s_2, X, s_2 \rangle \to \varepsilon \langle s_2, \varepsilon, s_2 \rangle $ |
|                                                         | $\langle s_0, \varepsilon, s_0 \rangle \to \varepsilon$                                                                                                                                                                                                     |
|                                                         | $\langle s_1, \varepsilon, s_1 \rangle \to \varepsilon$                                                                                                                                                                                                     |
|                                                         | $\langle s_2, \varepsilon, s_2 \rangle \to \varepsilon$                                                                                                                                                                                                     |
|                                                         |                                                                                                                                                                                                                                                             |



• 
$$\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$$

| Variável original                       |
|-----------------------------------------|
| $\langle s_0, \varepsilon, s_0 \rangle$ |
| $\langle s_0, \varepsilon, s_1 \rangle$ |
| $\langle s_0, \varepsilon, s_2 \rangle$ |
| $\langle s_1, \varepsilon, s_0 \rangle$ |
| $\langle s_1, \varepsilon, s_1 \rangle$ |
| $\langle s_1, \varepsilon, s_2 \rangle$ |
| $\langle s_2, \varepsilon, s_0 \rangle$ |
| $\langle s_2, \varepsilon, s_1 \rangle$ |
| $\langle s_2, \varepsilon, s_2 \rangle$ |
|                                         |

| Variável | Variável original             |
|----------|-------------------------------|
| J        | $\langle s_0, X, s_0 \rangle$ |
| K        | $\langle s_0, X, s_1 \rangle$ |
| L        | $\langle s_0, X, s_2 \rangle$ |
| M        | $\langle s_1, X, s_0 \rangle$ |
| N        | $\langle s_1, X, s_1 \rangle$ |
| O        | $\langle s_1, X, s_2 \rangle$ |
| P        | $\langle s_2, X, s_0 \rangle$ |
| Q        | $\langle s_2, X, s_1 \rangle$ |
| R        | $\langle s_2, X, s_2 \rangle$ |
|          |                               |



$$\mathcal{L} = \{a^i \mid i \geqslant 0\} \cup \{a^i b^i \mid i \geqslant 0\}.$$

| Transições                                                       | Regras de derivação   |
|------------------------------------------------------------------|-----------------------|
|                                                                  | $S \to B$             |
|                                                                  | $S \to C$             |
| $\delta(s_0, a, \varepsilon) = \{(s_0, X)\}\$                    | $A \rightarrow aJ$    |
|                                                                  | $B \to aK$ $C \to aL$ |
| $\delta(s_0,b,X)=\{(s_1,\varepsilon)\}$                          | $J \rightarrow bD$    |
|                                                                  | $K \to bE$            |
|                                                                  | $L \to bF$            |
| $\delta(s_0, \varepsilon, \varepsilon) = \{(s_2, \varepsilon)\}$ | $A \to G$             |
|                                                                  | $B \to H$             |
|                                                                  | $C \to I$             |
| $\delta(s_0, \varepsilon, X) = \{(s_2, X)\}\$                    | $J \to P$             |
|                                                                  | $K \to Q$             |
|                                                                  | $L \to R$             |



• 
$$\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$$

| Transições                          | Regras de derivação |
|-------------------------------------|---------------------|
| $\delta(s_0, a, X) = \{(s_0, XX)\}$ | $J \rightarrow aJJ$ |
|                                     | $K \rightarrow aJK$ |
|                                     | $L \rightarrow aJL$ |
|                                     | $J \rightarrow aKM$ |
|                                     | $K \rightarrow aKN$ |
|                                     | $L \rightarrow aKO$ |
|                                     | $J \rightarrow aLP$ |
|                                     | $K \rightarrow aLQ$ |
|                                     | $L \rightarrow aLR$ |
|                                     |                     |



• 
$$\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$$

| Transições                                              | Regras de derivação         |
|---------------------------------------------------------|-----------------------------|
| $\delta(s_1, b, X) = \{(s_1, \varepsilon)\}\$           | $M \rightarrow bD$          |
|                                                         | $N \rightarrow bE$          |
|                                                         | $O \rightarrow bF$          |
| $\delta(s_2, \varepsilon, X) = \{(s_2, \varepsilon)\}\$ | $P \rightarrow G$           |
|                                                         | $Q \rightarrow H$           |
|                                                         | $R \rightarrow I$           |
|                                                         | $A \to \varepsilon$         |
|                                                         | $E \rightarrow \varepsilon$ |
|                                                         | $I \rightarrow \varepsilon$ |
|                                                         |                             |

- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- ►  $G = (V = \{S, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R\}, \Sigma = \{a, b\}, P, S)$ :

$$P = \left\{ \begin{array}{l} S \rightarrow B \mid C, \\ A \rightarrow aJ \mid G \mid \varepsilon, \\ B \rightarrow aK \mid H, \\ C \rightarrow aL \mid I, \\ E \rightarrow \varepsilon, \\ I \rightarrow \varepsilon, \\ J \rightarrow bD \mid P \mid aJJ \mid aKM \mid aLP, \\ K \rightarrow bE \mid Q \mid aJK \mid aKN \mid aLQ, \\ L \rightarrow bF \mid R \mid aJL \mid aKO \mid aLR, \\ M \rightarrow bD, \\ N \rightarrow bE, \\ O \rightarrow bF, \\ P \rightarrow G, \\ Q \rightarrow H, \\ R \rightarrow I \end{array} \right\}$$



- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- ►  $G_1 = (V_1 = \{S, B, C, E, I, J, K, L, N, R\}, \Sigma = \{a, b\}, P_1, S)$ :

$$P_{1} = \left\{ \begin{array}{l} S \rightarrow B \mid C, \\ B \rightarrow aK, \\ C \rightarrow aL \mid I, \\ E \rightarrow \varepsilon, \\ I \rightarrow \varepsilon, \\ J \rightarrow aJJ, \\ K \rightarrow bE \mid aJK \mid aKN, \\ L \rightarrow R \mid aJL \mid aLR, \\ N \rightarrow bE, \\ R \rightarrow bI \end{array} \right\}$$



- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- $G_2 = (V_2 = \{S, B, C, E, I, K, L, N, R\}, \Sigma = \{a, b\}, P_2, S)$ :

$$P_{2} = \left\{ \begin{array}{l} S \rightarrow B \mid C, \\ B \rightarrow aK, \\ C \rightarrow aL \mid I, \\ E \rightarrow \varepsilon, \\ I \rightarrow \varepsilon, \\ K \rightarrow bE \mid aKN, \\ L \rightarrow R \mid aLR, \\ N \rightarrow bE, \\ R \rightarrow I \end{array} \right\}$$



- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- ►  $G_3 = (V_3 = \{S, K, L\}, \Sigma = \{a, b\}, P_3, S)$ :

$$P_{3} = \left\{ \begin{array}{l} S \to aK \mid aL \mid \varepsilon, \\ K \to b \mid aKb, \\ L \to \varepsilon \mid aL \end{array} \right\}$$



## Equivalência com GLC

#### Corolário 1.29

Toda linguagem regular é livre de contexto.

### Demonstração.

- ► Toda linguagem regular é reconhecida por um autômato finito.
- Todo autômato finito é um autômato com pilha que simplesmente ignora a sua pilha.
- ► Toda linguagem regular é também livre de contexto.

Linguagens Livres de Contexto
(Autômato com Pilha – PDA)

Linguagens Regulares

Linguagens Regulares (Autômato Finito – DFA)



#### Livros texto



#### R. P. Grimaldi

Discrete and Combinatorial Mathematics – An Applied Introduction. Addison Wesley, 1994.



#### D. J. Velleman

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.



#### J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação. Ed. Campus.



#### T. A. Sudkamp.

Languages and Machines – An Introduction to the Theory of Computer Science.

Addison Wesley Longman, Inc. 1998.



#### J. Carroll; D. Long.

Theory of Finite Automata – With an Introduction to Formal Languages. Prentice-Hall. 1989.



#### M. Sipser.

Introduction to the Theory of Computation. PWS Publishing Company, 1997.



#### H. R. Lewis; C. H. Papadimitriou

Elementos de Teoria da Computação.

Bookman, 2000.

