REPORT

[데이터통신]

학 과	컴퓨터공학부
<u> </u>	컴퓨터공학전공
교수님	서경룡 교수님
학 번	201911608
이 름	김지환
제출일	2022.04.04

< 목 차 >

1.	아날로그, 디지털 시그널 전송 3	
	1) 전송 방법 비교	
	2) 장단점 비교	
2.	BitRate, baud rate 4	
3.	Baseband전송, Broadband전송4	
4.	baudrate를 주어진 비트열 전송4	
	1) NRZ 파형, 설명	5
	2) Manchester 파형, 설명	5
	3) AMI 파형, 설명	6
	4) 8B6T 파형, 설명	. 6
	5) 대역폭과 전송률(bps) 구하기	7
5.	Scrambling 7	

1. 아날로그 시그널 전송과 디지털 시그널 전송을 비교 (방법, 장단점)

디지털 시그널 전송 방법		아날로그 시그널 전송 방법	
digital to digital	LineCoding으로 digital data를 digital signal로 변환 후 전송하는 작업이다. (O과 1을 +,-,0 변환 후 전송) Unipolar, polar, Bipolar, Multil evel. Multitarnsition 크게 5개의스키마로 변환하는 방법이 있다. 5개의 스키마의 직류 성분 문제, 자기동기화 등의 단점을 보완하기위해 4B/5B, Scrambling, B8ZS, HDB3과 같이 사용한다.	digital to analog	digital 신호(0,1)에 따라 진폭 , 주 파수, 위상을 ASK, FSK, PSK 기 법으로 변환 Constellation diagr am, QAM을 통해 진폭과 위상을 정의하기 용이하다.
analog to digital	analog signal을 digital data로 바꾸기 위해 PCM(Pulse Code M odulation) 기법을 사용한다. analog signal sampling -> qua ntizing -> encoding -> digital data -> digital signal	analog to analog	analog signal을 analog inform ation으로 변환. AM, PM, FM 변 조 기법이 있다.
장점	 특정 부분 삭제나 추가 같은 조작이 가능 원하는 유한개의 샘플 수집 아날로그에 비해 매우 빠름 압축, 전송에서 오류 검출 정정 가능 신호의 왜곡과 손실 방지 거의 완벽한 복제가 가능함 영원한 보관 가능 	장점	1. 단순한 회로는 디지털보다 복 잡하지 않고 비교적 낮은 비용 2. 단순한 처리와 쉽고 직관적 3. 표현의 범위 넓음 4. 품질 우수 5. 보존성 우수 (어느 정도의 손상 이 있어도 재생가능)
단점	 압축으로 인한 손실률 초고주파 영역에서 동작 속도 가 느림 0과 1로 이루어진 신호라서 미세한 표현(정밀도)이 어려움 회로의 구조가 복잡해짐 	단점	 시스템 설계 복잡 디지털에 비해 가격이 비쌈 잡음 제거가 불가능 부품 노후화에 따른 손실률 신뢰성이 낮음 미세한 입력 변화에 민감

2. bit rate와 baud rate를 비교 설명

bit rate (비트율)		baud rate (보오율)	
단위	baud(보오)	단위	bps(초당 비트 수)
다른 명칭	pulse rate(펄스율),		
	modulation rate(변조율),	다른 명칭	data rate (데이터 전송률)
	signal rate(신호 전송률)		
정의	1초당 전송된	저이	1초당 전송된 신호 요소의
	데이터(비트)요소의 개수	정의	개수를 의미
식 (S=)	c(경우 요인) * N(비트율)	식 (N=)	1/c(경우요인) * S(보오율)
	* 1/r(데이터 요소)		* r(데이터요소)

3. Baseband 전송과 Broadband 전송 비교

Baseband 전송		Broadband 전송	
정의	채널을 통해 변조하지 않고	정의	디지털 신호를 아날로그 신호로
	디지털 신호 그대로 전송		변조 후 전송
거리	근거리	거리	장거리
채널	단일	채널	다중
전송	야바향	전송	단방향
용도	데이터 전송	용도	음성, 영상, 데이터 전송
변복조	없음	변복조	필요
다중화	시분할 다중화	다중화	주파수 분할 다중화

4. 00000000 11111111 01010101 00110011의 비트열 전송시 baudrat e를 1000으로 한다.

- a) 이 때 NRZ, Manchester, AMI, 8B6T로 라인코딩 할 때 각 신호의 파형을 그리고 설명하라.
- b) 위의 경우 각각 필요한 채널의 대역폭과 전송율(bps)를 구하라.

1) NRZ(NON-Return-To-Zero) Unipolar 단극형에서 사용되는 NRZ 방식은 1은 +출력, 0은 아무 출력을 하지 않는 방식이다. 비용이 많이 들고 digital data에서 0이나 1값이 긴 경우자체 동기화가 없다.

NRZ-I, NRZ-L 등 많은 NRZ방식이 있다. 대표적으로 NRZ-L은 비트가 1일 경우 high, 0일 경우 LOW, NRZ-I는 전기 신호가 high일 경우 비트 1을 만나면 LOW, LOW일 경우 비트 1을 만나면 HIGH로 바뀐다.

평균 신호율 : N/2 Baud

2) Manchester

Manchester는 자체 동기화가 된다. r=1/2로 동기화를 위해 비트 중간에서 반전을 한다. 0은 high에서 low로 1은 low->high의 파동을 가진다.

평균 신호율 = N baud로 NRZ보다 2배 높다.

3) AMI (Alternate Mark Inversion)

AMI 방식은 digital data의 값이 1일 때 시작은 high로 low와 교대로 반전이 된다. digital data의 값이 0일 때는 아무 값도 출력하지 않는다. digital data 값이 0이 연속으로 있을 때 자체 동기화 문제가 있다. 평균 신호율 = N/2 Baud

4) 8B6T (8Binary 6Ternary)

 $2^8 <= 3^6$, $2^8 = 256$ 개의 data 패턴 $3^6 = 478$ 개의 신호 패턴으로 자체 동기화가 된다.

478-256=222개의 남은 신호는 동기화나 오류 검색에 사용된다.

digital signal로 변환하는 과정은 입력받은 digital data를 16진수로 변환 후 해당 값에 맞는 data를 8B6T table에서 찾을 수 있다.

평균 신호율 = 3N/4 Baud

- b) 각각 필요한 채널의 대역폭과 전송률(bps)를 구하여라.
- 1) NRZ (Baudrate = 1000)

B_{min} = c * N * (1/r) = 1000, N = 1/c * N * r, S_{avg} = N/2 c(경우요인)은 0과 1 둘 중 하나이므로 평균 값 1/2, NRZ에서 r(데이터요소)=1,

N=2*1000*1=2000 , $S_{avg} = N/2 = 2000/2 = 1000$

- ∴ 대역폭 : 1000Hz, 전송률 : 2000bps
- 2) Menchester (Baudrate = 1000)

 $B_{min} = c * N * (1/r) = 1000, N = 1/c * N * r, S_{avg} = N$

c(경우요인)은 0과 1 둘 중 하나이므로 평균 값 1/2, Menchester에서 r(데이터요소)=1/2,

 $N=2*1000*1/2 = 1000, S_{avg} = N = 1000$

- : 대역폭 : 1000Hz, 전송률 : 1000bps
- 3) AMI (Baudrate = 1000)

 $B_{min} = c * N * (1/r) = 1000, N = 1/c * N * r, S_{avg} = N/2$

c(경우요인)은 0과 1 둘 중 하나이므로 평균 값 1/2, AMI에서 r(데이터요소)=1,

N=2*1000*1=2000, $S_{avg} = N/2 = 2000/2 = 1000$

- ∴ 대역폭 : 1000Hz, 전송률 : 2000bps
- 4) 8B6T (Baudrate = 1000)

 $B_{min} = c * N * (1/r) = 1000, N = 1/c * N * r, S_{avg} = 3N/4$

c(경우요인)은 0과 1 둘 중 하나이므로 평균 값 1/2, 8B6T에서 r(데이터요소)=3/4,

N=2*1000*3/4=1500, $S_{avg} = 3N/4 = 4500/4 = 1125$

- ∴ 대역폭 : 1125Hz, 전송률 : 1500bps
- 5. Scrambling 의 필요성에 대하여 설명하고 간단한 예를 보여라

스크램블링은 Line Coding에서 NRZ, AMI와 같은 자체동기화가 없는 문제를 해결할 수 있다. 말 그대로 뒤섞어서 문제를 해결한다. 크게 2가지 방식이 있다.

 B8ZS-양극 8열 대치	8개의 연속된 00000000 신호를 000VB0VB로 뒤섞
	이며 V는 0 앞에 있는 값의 펄스를 가지고, B는 0
(Bipolar with 8 zero substitution)	앞에 있는 값의 반대 펄스를 가진다.
HDB3-고밀도 양극 3영	연속된 4개의 0을 000V나 B00V로 뒤섞는다. 0앞
(High-density bipolar 3-zero)	에 있는 펄스가 짝수면 BOOV O앞에 있는 펄스가
	홀 수면 000V로 뒤섞는다.

- B8ZS => 100000000 => 1000VB0VB =>
 - 1=high, ----_ (1이 high 이므로 첫 V부분은 high)

1= low, _---_ (1이 low 이므로 첫 V 부분은 low)

- HDB3 => 0011000010000000000 => 0이 4개가 연속되는 부분 중 red 앞에는 펄스가 2개(even), blue 앞에는 펄스가 1개(odd), purple 앞에는 0개(even)

=> 0011B00V1000VB00V0 => B가 V 앞에 있어 B와 V는 같은 펄스, B00V 이후에는 펄스의 극성이 바뀌게 된다.