2023年9月16日进展汇报

• 目标:研究图分析领域的"并发点对点查询",投IEEE TC

1. 背景调研

1.1 点对点查询

典型的图形应用程序仅在访问每个连接的顶点(多次)后才会终止,比如一个单源图查询,只有在访问了图中的所有连通顶点之后才能完成,因此会导致计算和通信方面的巨大开销。图应用程序的这种详尽(exhaustive)的性质导致无法以亚秒级延迟实现图查询。幸运的是,最近的研究人员观察到,对于许多现实场景来说,回答"点对点"成对查询(只需要访问图中的一小部分顶点,减少了很多计算量)就足够了,而不是计算详尽的"一对所有"单源查询。

点到点图查询 *Q* (s → d)

访问部分顶点

1.2 已有工作

项目	贡献	缺点
PnP: Pruning and Prediction for Point-To-Point Iterative Graph Analytics	1,提出"图查询很复杂,很难快速完成,但是 点对点版本的查询比较简单,有优化潜力"这 个结论。 2,使用"上界剪枝"减少计算量。 3,提出不同查询方向对查询速度的影响很 大。	1, "上界剪枝"中对于"上界" 的确认的工作量很大 2, 指出方向对查询性能很重 要, 但是采用的方式有些奇 怪, 提出了一个两阶段算 法: 第一阶段确定方向, 第 二阶段在这个方向上查询 (是否有更合适的方法?)
Tripoline: Generalized Incremental Graph Processing via Graph Triangle Inequality	1,提出"三角不等式"概念,更好地解释PnP中的"上界剪枝" 2,在日常维护一些"常设顶点",这些顶点作为"中介"可以提供近似的"上界",这样实现了"无先验知识"的上界查询。 3,支持对动态图的处理	1,是一个共享内存系统。 2,仅用"上界剪枝",效果有 限。
SGraph—— Achieving Sub-second Pairwise Query over Evolving Graphs	1,提出基于"上界+下界"的剪枝方法 2,对于"三角不等式"的阐述更加通透,提出更高层次,更抽象的通用处理逻辑。支持BFS,PPSP,Reachability Connectivity,PPWP,PPNP,Viterbi等算法,计算时只需将算法中的 Value 类型的 +/-/≥ 定义重写为抽象运算符 ⊕/⊖/≥ 的实际逻辑即可 3,设计了特殊的快照结构,图查询和图更新可以并发执行 4,分布式系统	1,没有考虑高负载场景下, 并发点对点查询需求。

2. 进展

- 读完论文: PnP、Tripoline、SGraph、GraphM
- 跑通SGraph代码,测试了一个小图(数据集cnr-2000,有325557个顶点,3216152条边),但是还 没有做横向对比。

3. 思考

- 基于剪枝的方法只能适用于单调图算法,有没有适用于非单调图算法的方法。
- SGraph的代码是基于gemini修改来的,对比发现,比较大的改动是加入了对分布式系统的支持, 其它的很相似。想看看有没有针对gemini的优化可以用到这上面。
- GraphM论文的主要思路是"用数据来触发相应的任务",从而提高数据利用率,这样做的前提是任 务和数据的对应关系是已知的。但是对于查询来说,这个对应关系恰恰是不知道的。所以要如何执 行数据共享?
- 之前的工作每次查询到结果后,并没有做一些结果重用,下次再次查询,还是要重新查一遍。能不能做一些重用工作?

4. 待办

- 确定好有可行性的优化思路。
- 测试动态更新+查询。