

Termoquímica: equações, gráficos e entalpia de formação

Resumo

Conceitos gerais

A maior parte das transformações físicas e químicas envolvem perda ou ganho de calor, e ele é sem dúvida a forma mais comum de energia que acompanha as reações químicas. E isso acaba resultando a importância do estudo do calor das reações na físico-química, denominamos termoquímica.

Termoquímica é o estudo das quantidades de calor liberadas ou absorvidas durante as reações químicas.

Para a Termoquímica, as reações químicas se classificam em:

1) Reações exotérmicas (ΔH < 0): São as que produzem ou liberam calor, como por exemplo:

A queima do carvão: C + O₂ → CO₂ + Calor

A combustão da gasolina: $C_8H_{18} + \frac{25}{2}O_2 \rightarrow 8 CO_2 + 9 H_2O + Calor$

Observe que, nesses exemplos, estamos considerando o calor como se fosse um dos "produtos" da reação

2) **Reações endotérmicas** ($\Delta H > 0$): São as que absorvem calor, como por exemplo:

A decomposição do carbonato de cálcio: CaCO₃ + Calor → CaO + CO₂

A síntese do óxido nítrico: N₂ + O₂ +Calor → 2 NO

Já nesses caso, veja que estamos considerando o calor como um "reagente" necessário ao andamento da reação.

Existem alguns conceitos básicos, porém importantes, da termoquímica e da calorimetria, como por exemplo:

- a) 1 caloria é quantidade de energia necessária pra aquecer 1,0 grama de água pura em 1°C (1 kcal = 4,18 kJ)
- b) Entalpia (H) é uma grandeza física que mede a energia térmica de um sistema e sua unidade pelo sistema internacional é dado em Joule (J). O rompimento e reagrupamento das ligações nas moléculas que geram esse calor, não há forma de se determinar a entalpia, porém conseguimos determinar com precisão a variação de entalpia (H) que é a medida da quantidade de calor liberada ou absorvida pela reação, a pressão constante.

A energia dos alimentos

A caloria é uma unidade de energia usada para expressar a quantidade de energia que os alimentos nos fornecem. Quimicamente a caloria é conhecida como quilocaloria (kcal, que também pode ser expressa na unidade de Joule). Essa energia é fundamental para a manutenção do nosso organismo e é gasta para a realização diversas atividades, como por exemplo a respiração, a atividade dos órgãos, caminhar e etc.

As calorias são obtidas através dos nutrientes dos alimentos: carboidratos, proteínas, glicidios, lipidios. Quando nosso organismo ingere mais calorias do que gasta, há um excesso de calorias que começa a ser armazenado na forma de gordura gerando o excesso de peso e a obesidade.

Nos dias de hoje podemos ver observar nos rótulos dos alimentos que ingerimos: os nutrientes e a quantidade de energia por eles fornecida.

PÃO DE FORMA

INFORMAÇÃO NUTRICIONAL Porção: 50g (2 fatias)				
Quantidade por porção		% VD (*)		
Valor Energético	137kcal = 575kJ	7%		
Carboidratos	25g	8%		
Proteínas	4,1g	5%		
Gorduras totais	2,3g	4%		
Gorduras saturadas	0,6g	3%		
Gorduras trans	0g	**		
Fibra alimentar	1,1g	4%		
Sódio	240mg	10%		

[&]quot; Valores Diários com base em uma dieta de 2000 kcal ou 8400 kJ. Seus valores diários podem ser maiores ou menores dependendo de suas necessidades energéticas "Valor não estabelecido

Gráficos termoquímicos

Reação exotérmica

Reação endotérmica

Vemos que o gráfico 1 representa uma reação exotérmica, ou seja, identificamos que a energia dos produtos é menor que a energia dos reagentes, logo houve uma liberação de calor. Em contrapartida, no gráfico 2 percebemos que a energia do produtos é maior do que a energia dos reagentes, logo, houve uma absorção de calor por parte dos reagentes.

Cálculo da variação de entalpia

Na termoquímica, como havíamos dito, não é possível medir a entalpia das substâncias. O que se pode medir e calcular com precisão é a variação de entalpia ao longo das transformações químicas destas substâncias. Definimos então a variação de entalpia(ΔH) algebricamente como:

$$\Delta H = H_{produtos} - H_{reagentes}$$

Considere o seguinte exemplo, com todas as substâncias no estado padrão:

$$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(l)}$$
 $\Delta H = -286,6 \text{ kJ/mol}$

Podemos interpretar o gráfico da seguinte maneira: o $H_{2(g)}$ e o $\frac{1}{2}$ $O_{2(g)}$ estão no nível **zero**, logo tem valor de entalpia igual a zero, pois são substâncias **simples** e estão no **estado padrão**.

Analisando o $\Delta H < 0$, concluímos que a reação é exotérmica e que o sistema em reação perde energia (calor) para o meio ambiente. Consequentemente, o produto final ($H_2O_{(I)}$) ficará em um nível de energia mais baixo (- 286,6 kJ).

Podemos então provar o ΔH dado como:

$$\Delta H = H_{produtos} - H_{reagentes}$$

$$\Delta H = H_{H2O} - (H_{H2} + H_{O2}) \rightarrow \Delta H = -286,6 - (zero + zero) \rightarrow \Delta H = -286,6 Kj$$

Esse valor é chamado de entalpia (ou calor) padrão de formação do $H_2O_{(I)}$ e é designado por Δ H^0_f , em que o expoente zero indica o estado padrão, e o índice f indica que se trata da entalpia de formação.

Entalpia de formação

As entalpias de formação, ou calor de formação, são as entalpias oriundas das reações denominadas reações de formação, são aquelas em que ocorre a formação de 1 mol de uma substância a partir de substâncias simples, no estado-padrão e no seu estado alotropico mais estavel.

Veja o exemplo:

$$C_{(grafite)} + O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H = -393 \text{ kJ } (25^{\circ}\text{C, 1 atm})$

$$\Delta H = H_{produtos} - H_{reagentes}$$
 $\Delta H = (H_{CO2}) - (H_{C(grafite)} + H_{O2})$
 $-393 \text{ kJ} = (H_{CO2}) - (0 + 0)$
 $H_{CO2} = -393 \text{ kJ}$

Repare que a entalpia de formação de substâncias simples, no estado-padrão e no seu estado alotropico mais estave é igual a zero.

Graficamente podemos represental essa reação de formação da seguinte forma:

Caso tenhamos a formação de uma substância a partir de outros alotropos das nosssas substâncias simples, o valor da entalpia se altera, pois esses valores não seria igual a zero.

$$C_{\text{(diamante)}} + O_{2(q)} \rightarrow CO_{2(q)}$$
 $\Delta H = -395,9 \text{ kJ/mol}$

Entalpia de formas alotropicas

Na termoquímica costumamos escutar a seguinte afirmativa: "Substâncias simples possuem entalpia de formação igual a zero no seu estado padrão", mas temos que tomar muito cuidado com tal afirmação. Pois se convencionou que tem entalpia de formação igual a zero somente as substâncias simples que estão no seu estado alotropico mais estavel. É válido lembrar que é impossível calcular o valor absoluto das entalpias de cada substância, mas é possível calcular a variação da entalpia que ocorre na reação, por meio de um calorímetro.

Átomos de um mesmo elemento químico podem formar diferentes substâncias simples, isso pode ocorre por dois motivos, o primeiro chamamos de alotropia por atomicidade, quando o mesmo elemento químico forma substâncias simples com diferentes quantidades de átomos, por exemplo:

$$\Delta$$
Hf O₂(g) = 0 kJ/mol
 Δ Hf O₃(g) = 142,1 kJ/mol

No segundo tipo de alotropia o que diferencia as variedades alotrópicas é o arranjo espacial dos átomos, no carbono por exemplo:

 Δ Hf C(grafite) = 0 kJ/mol Δ Hf C(diamante) = 1,9 kJ/mol

Repare que em ambos os exemplos, somente uma das formas alotropicas possui a entalpia de formação igual a zero, essa é a forma alotropica mais estável.

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. Durante a manifestação das reações químicas, ocorrem variações de energia. A quantidade de energia envolvida está associada às características químicas dos reagentes consumidos e dos produtos que serão formados.

O gráfico abaixo representa um diagrama de variação de energia de uma reação química hipotética em que a mistura dos reagentes A e B levam à formação dos produtos C e D.

Com base no diagrama, no sentido direto da reação, conclui-se que a

- a) energia de ativação da reação sem o catalisador é igual a 15 kJ.
- b) energia de ativação da reação com o catalisador é igual a 40 kJ.
- c) reação é endotérmica.
- d) variação de entalpia da reação é igual a -30 kJ.
- e) variação de entalpia da reação é igual a -70 kJ.
- **2.** Normalmente uma reação química libera ou absorve calor. Esse processo é representado no seguinte diagrama, considerando uma reação específica.

Com relação a esse processo, assinale a equação química correta.

a)
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)} - 68,3 \text{ kcal}$$

b)
$$H_2O_{(\ell)} - 68.3 \text{ kcal} \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$$

c)
$$H_2O_{(\ell)} \to H_{2(g)} + \frac{1}{2}O_{2(g)} + 68,3 \text{ kcal}$$

d)
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)} + 68,3 \text{ kcal}$$

e)
$$H_2O_{(\ell)} \to H_{2(g)} + \frac{1}{2}O_{2(g)} + 68,3 \text{ kcal}$$

3. A areia comum tem como constituinte principal o mineral quartzo (SiO₂), a partir do qual pode ser obtido o silício, que é utilizado na fabricação de *microchips*.

A obtenção do silício para uso na fabricação de processadores envolve uma série de etapas. Na primeira, obtém-se o silício metalúrgico, por reação do óxido com coque, em forno de arco elétrico, à temperatura superior a 1 900 °C. Uma das equações que descreve o processo de obtenção do silício é apresentada a seguir:

$$SiO_2(s) + 2C(s) \rightarrow Si(\ell) + 2CO(g)$$

Dados:

$$\Delta H_f^0 \text{ SiO}_2 = -910,9 \text{ kJ} \cdot \text{mol}^{-1}$$

 $\Delta H_f^0 \text{ CO} = -110,5 \text{ kJ} \cdot \text{mol}^{-1}$

De acordo com as informações do texto, é correto afirmar que o processo descrito para a obtenção do silício metalúrgico corresponde a uma reação

- a) endotérmica e de oxirredução, na qual o Si⁴⁺ é reduzido a Si.
- b) espontânea, na qual ocorre a combustão do carbono.
- c) exotérmica, na qual ocorre a substituição do Si por C.
- d) exotérmica, na qual ocorre a redução do óxido de silício.
- e) endotérmica e de dupla troca.
- O metanol é um álcool utilizado como combustível em alguns tipos de competição automotiva, por exemplo, na Fórmula Indy. A queima completa (ver reação termoquímica abaixo) de 1L de metanol (densidade 0,80 g mL⁻¹) produz energia na forma de calor (em kJ) e CO₂ (em gramas) nas seguintes quantidades respectivamente:

$$2 \; CH_{3}OH_{(\ell)} + 3 \; O_{2(g)} \rightarrow 4 \; H_{2}O_{(\ell)} + 2 \; CO_{2(g)}; \Delta H = -1453 \; kJ$$

Considere: $M(CH_3OH) = 32 \text{ g mol}^{-1}$

$$M(CO_2) = 44 \text{ g mol}^{-1}$$

- a) $18.2 \times 10^3 \text{ e } 1.1 \times 10^3$
- **b)** $21.3 \times 10^3 \text{ e } 0.8 \times 10^3$
- c) $21.3 \times 10^3 \text{ e } 1.1 \times 10^3$
- d) $18.2 \times 10^3 \text{ e } 0.8 \times 10^3$
- **e)** 36.4×10^3 e 1.8×10^3

5. Em uma seleção realizada por uma indústria, para chegarem à etapa final, os candidatos deveriam elaborar quatro afirmativas sobre o gráfico apresentado a seguir e acertar, pelo menos, três delas.

Um dos candidatos construiu as seguintes afirmações:

- I. A reação pode ser catalisada, com formação do complexo ativado, quando se atinge a energia de 320 kJ.
- II. O valor da quantidade de energia E₃ determina a variação de entalpia (∆H) da reação, que é de -52 k.l.
- III. A reação é endotérmica, pois ocorre mediante aumento de energia no sistema.
- IV. A energia denominada no gráfico de E₂ é chamada de energia de ativação que, para essa reação, é de 182 kJ.

Quanto à passagem para a etapa final da seleção, esse candidato foi

- a) aprovado, pois acertou as afirmações I, II e IV.
- b) aprovado, pois acertou as afirmações II, III e IV.
- c) reprovado, pois acertou, apenas, a afirmação II.
- d) reprovado, pois acertou, apenas, as afirmações I e III.
- e) reprovado, pois acertou, apenas, as afirmações II e IV.

6. Os alimentos ao serem consumidos são digeridos e metabolizados liberando energia química. Uma barra de cereal *light* de avelã com chocolate, que contém 77% de carboidratos, 4% de proteínas e 7% de lipídios, é um dos alimentos utilizados para adquirir energia, uma vez que a energia de combustão das proteínas e dos carboidratos é de 4 kcal g⁻¹ e, dos lipídios é de 9 kcal g⁻¹.

Com base nisso, calcule a quantidade de energia fornecida a um indivíduo que consome uma unidade de 22 gramas dessa barra de cereal.

- a) 3,87 kcal.
- **b)** 7,37 kcal.
- c) 162,1 kcal.
- **d)** 85,1 kcal.
- 387,0 kcal.
- **7.** Substâncias com calor de dissolução endotérmico são empregadas na fabricação de balas e chicletes, por causarem sensação de frescor. Um exemplo é o xilitol, que possui as seguintes propriedades:

Propriedade	Valor	
massa molar	152g/mol	
entalpia de dissolução	+5,5kcal/mol	
solubilidade	60,8g/100g de água a 25°C	

Considere M a massa de xilitol necessária para a formação de 8,04 g de solução aquosa saturada de xilitol, a 25°C. A energia, em quilocalorias, absorvida na dissolução de M corresponde a:

- a) 0,02
- **b)** 0,11
- c) 0.27
- d) 0,48
- **e)** 0,24

8. A partir de considerações teóricas, foi feita uma estimativa do poder calorífico (isto é, da quantidade de calor liberada na combustão completa de 1 kg de combustível) de grande número de hidrocarbonetos. Dessa maneira, foi obtido o seguinte gráfico de valores teóricos:

Com base no gráfico, um hidrocarboneto que libera 10.700 kcal/kg em sua combustão completa pode ser representado pela fórmula

Dados: Massas molares (g/mol), C=12,0; H=1,00.

- **a)** CH₄
- **b)** C₂H₄
- **c)** C₄H₁₀
- **d)** C₅H₈
- **e)** C₆H₆

9. A indústria siderúrgica utiliza-se da redução de minério de ferro para obter o ferro fundido, que é empregado na obtenção de aço. A reação de obtenção do ferro fundido é representada pela reação:

$$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$$

A entalpia de reação (ΔH°_r) a 25°C é:

Dados: Entalpia de formação (ΔH°_{f}) a 25°C, kJ/mol.

ΔH° _f , kJ/mol.	Fe ₂ O ₃	Fe	СО	CO ₂
	- 824,2	0	– 110,5	- 393,5

- **a)** 24,8 kJ/mol
- **b)** -24.8 kJ/mol
- **c)** 541,2 kJ/mol
- d) -541,2 kJ/mol
- e) 1328,2 kJ/mol
- 10. O etanol, produzido por meio da fermentação do açúcar extraído da cana-de-açúcar, é um combustível renovável extremamente difundido no território nacional, e possui entalpia-padrão de combustão de −1.368 kJ⋅mol⁻¹.

Considerando-se os dados fornecidos na tabela abaixo, é correto afirmar que, a entalpia-padrão de formação do etanol é de

Substância	H⁰ _f (kJ⋅mol ⁻¹)
CO _{2(g)}	-394
$H_2O_{(\ell)}$	-286

- a) +278 kJ⋅mol⁻¹
- **b)** $+3.014 \text{ kJ} \cdot \text{mol}^{-1}$
- **c)** + 1.507 kJ.mol⁻¹
- **d)** $-278 \text{ kJ} \cdot \text{mol}^{-1}$
- **e)** $-3.014 \text{ kJ} \cdot \text{mol}^{-1}$

Gabarito

1. D

Alternativa [A]: Falsa. A energia de ativação sem catalisador vale 40 kJ.

Alternativa [B]: Falsa. A energia de ativação com catalisador vale 25 kJ.

Alternativa [C]: Falsa. A reação é exotérmica, pois a energia dos produtos é menor em relação à energia dos reagentes, indicando que a reação liberou calor.

Alternativa [D]: Verdadeira. $\Delta H = H_{PRODUTOS} - H_{REAGENTES} = -10 - 20 = -30 \text{kJ}$.

Alternativa [E]: Falsa. $\Delta H = H_{PRODUTOS} - H_{REAGENTES} = -10 - 20 = -30 \text{kJ}$.

2. D

Ocorre liberação de energia, logo a quantidade de calor deve aparecer do lado direito da equação química: $H_2O_{(\ell)} \to H_{2(g)} + \frac{1}{2}O_{2(g)} + 68,3$ kcal.

Energia liberada

3. A

Teremos:

$$SiO_2(s) + 2C(s) \rightarrow Si(\ell) + 2CO(g)$$

-910,9 kJ 0 0 2(-110,5 kJ)

$$\Delta H = H_{Pr\,odutos} - H_{Re\,agentes}$$

$$\Delta H = 2(-110,5 \text{ kJ}) - (-910,9 \text{ kJ}) = +689,9 \text{ kJ}$$

ΔH > 0; a reação é endotérmica.

4. A

$$d = \frac{m}{V} \Rightarrow 0.8 = \frac{m}{1000} \therefore m = 800g \text{ de metanol}$$

$$x=18,2\cdot 10^3 kJ$$

$$x = 1,1 \cdot 10^3 g$$

5. C

6. D

Quantidade energética:

carboidrato: 4 kcal/g

proteínas: 4 kcal/g

lipídeos: 9 kcal/g

$$\begin{cases} 77\% = 16,94 \text{ g de carboidratos } (\times 4) = 67,76 \text{ kcal} \\ 4\% = 0,88 \text{ g de proteínas } (\times 4) = 3,52 \text{ kcal} \\ 7\% = 1,54 \text{ g de lipídeos } (\times 9) = 13,86 \text{ kcal} \\ 67,76 + 3,52 + 13,86 = 85,14 \text{ kcal} \end{cases}$$

7. B

Teremos em 100 g de água:

$$\begin{split} m_{xilitol} &= 60,8 \ g \\ m_{soluc\~ao} &= 100,0 \ g + 60,8 \ g = 160,8 \ g \end{split}$$

160,8 g (solução) — 60,8 g (xilitol)
8,04 g (solução) —
$$m_{xilitol}$$

 $m_{xilitol} = 3,04 g$

$$n_{xilitol} = \frac{m_{xilitol}}{M_{xilitol}} \Rightarrow n_{xilitol} = \frac{3,04}{152} = 0,02 \text{ mol}$$

A entalpia de dissolução do xilitol é de 5,5kcal/mol, então:

$$E = 0,11 \text{ kcal}$$

8. B

Com base no gráfico, para um hidrocarboneto que libera 10.700 kcal/kg, teremos:

$$n = \frac{m}{M} \Rightarrow m = n \times M$$
, então :

$$\frac{n_{carbono} \times M_{carbono}}{n_{hidrog\hat{e}nio} \times M_{hidrog\hat{e}nio}} = 6$$

$$\frac{n_{\,carbono} \times 12 \,\, g \, / \, mol}{n_{\,hidrog\hat{e}nio} \times 1 \, g \, / \, mol} = 6 \Rightarrow \frac{n_{\,carbono}}{n_{\,hidrog\hat{e}nio}} = \frac{6}{12} \Rightarrow \frac{n_{\,hidrog\hat{e}nio}}{n_{\,carbono}} = \frac{12}{6} = 2$$

$$\label{eq:nhidrogenio} n_{\, hidrog\hat{e}nio} = 2 \times n_{\, carbono} \, \Rightarrow C_2 H_4.$$

9. B

Teremos:

$$\begin{array}{lll} & \underbrace{\text{Fe}_2\text{O}_3}_{-824,2\text{ kJ}} + 3\text{ CO} & \rightarrow 2\text{ Fe} + \underbrace{3\text{ CO}_2}_{3\times(-393,5\text{ kJ})} \\ \Delta H = & [3\times(-393,5\text{ kJ}) + 0] - [-824,2\text{ kJ} + 3(-110,5\text{ kJ})] \\ \Delta H = & -24,8\text{ kJ/mol} \end{array}$$

10. D

$$\begin{array}{l} \text{Etanol} \\ \hline C_2 H_6 O \\ + \ 3 O_2 \\ \hline \end{array} \longrightarrow \begin{array}{l} 2 C O_2 \\ + \ 3 H_2 O \\ \hline \end{array} \longrightarrow \begin{array}{l} \Delta H_{combust\~ao} = -1.368 \ \text{kJ/mol} \\ H_{etanol} \\ \hline 0 \ \text{kJ} \\ \hline 2 \times (-394 \ \text{kJ}) \\ 3 \times (-286 \ \text{kJ}) \\ \hline 3 \times (-286 \ \text{kJ}) \\ \hline \Delta H = H_{produtos} \\ - H_{reagentes} \\ \hline -1.368 \ \text{kJ} = [2 \times (-394 \ \text{kJ}) + 3 \times (-286 \ \text{kJ})] \\ - [H_{etanol} \\ + 0 \ \text{kJ}] \\ H_{etanol} = (1.368 - 788 - 858 + 0) \ \text{kJ} \\ H_{etanol} = -278 \ \text{kJ/mol} \end{array}$$