Policy Iteration and Value Iteration Proof of Convergence

Value Iteration

- Algorithm
 - we start with an arbitrary initial value function V_0
 - at each iteration k, we calculate $V_{k+1} = \mathcal{T}V_k$
- Convergence: show that $\lim_{k\to\infty} V_k = V^*$.
- proof

$$||V_{k+1} - V^*||_{\infty} = ||\mathcal{T}V_k - \mathcal{T}V^*||_{\infty} \le \gamma ||V_k - V^*||_{\infty} \le \dots$$

 $\le \gamma^{k+1} ||V_0 - V^*||_{\infty} \longrightarrow 0$

Policy Iteration

Algorithm

- we start with an arbitrary initial policy π_0
- at each iteration k, given the current policy π_k
 - **Policy Evaluation:** we calculate the value function V^{π_k}
 - Policy Improvement: we calculate the new policy π_{k+1} as

$$\pi_{k+1}(s) \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^{\pi_k}(s') \right]$$

policy π_{k+1} is **greedy** w.r.t. the value function V^{π_k} (i.e., $\mathcal{T}^{\pi_{k+1}}V^{\pi_k}=\mathcal{T}V^{\pi_k}$)

• we stop when $V^{\pi_{k+1}} = V^{\pi_k}$.

Policy Iteration

• show that $V^{\pi_{k+1}} \geq V^{\pi_k}$

proof: from the definitions, we have

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}$$

because of the monotonicity of $\mathcal{T}^{\pi_{k+1}}$, from $V^{\pi_k} \leq \mathcal{T}^{\pi_{k+1}}V^{\pi_k}$, we may deduce

$$V^{\pi_k} \leq \mathcal{T}^{\pi_{k+1}} V^{\pi_k} \leq (\mathcal{T}^{\pi_{k+1}})^2 V^{\pi_k} \leq \ldots \leq \lim_{n \to \infty} (\mathcal{T}^{\pi_{k+1}})^n V^{\pi_k} = V^{\pi_{k+1}}$$

Policy Iteration

• algorithm stops after a finite number of steps q with the optimal policy $V^{\pi_q} = V^*$

proof: since there exists only a finite number of policies, the algorithm stops after a finite number of steps q with $V^{\pi_q} = V^{\pi_{q+1}}$

$$V^{\pi_q} = V^{\pi_{q+1}} = \mathcal{T}^{\pi_{q+1}} V^{\pi_{q+1}} = \mathcal{T}^{\pi_{q+1}} V^{\pi_q} = \mathcal{T} V^{\pi_q}$$

so V^{π_q} is a fixed point of \mathcal{T} . Since \mathcal{T} has a unique fixed point, we may deduce that $V^{\pi_q} = V^*$, and thus, π_q is an optimal policy.