1 CAPO - Pseudo Algorithm

Algorithm 1 CAPO: Cost-Aware Prompt Optimization

Require: Dataset $\mathcal{D} = \{(X_i, y_i)\}_{i=1}^n$, Meta-LLM $\Phi(x)$, Downstream LLM $\phi(x)$, Initial instructions $\Lambda = \{\lambda_1, \ldots, \lambda_p\}$, Population size p, Block size b, Number of iterations n, Number of crossovers per iteration c

```
1: for \lambda \in \Lambda do
 2:
          num shots \sim U(lower, upper)
          \xi \leftarrow \text{sample}(X, \text{num shots})
                                                                                            ▷ Sample few shot examples
 3:
          \theta \leftarrow \phi(\lambda||\xi)
                                                                               ▷ Generate few shots with reasoning
 4:
          \pi \leftarrow (\lambda, \theta)
 5:
          \Pi \leftarrow \Pi.append(\pi)
 6:
 7: end for
 8: Divide dataset \mathcal{D} into blocks \mathcal{B} = \{B_1, ..., B_k\} where |B_i| = b
 9: for i = 1 to n do
          \Pi_{\text{off}} \leftarrow \text{cross\_over}(\Pi, c)
10:
          \Pi_{\text{off}} \leftarrow \text{mutate}(\Pi_{\text{off}})
11:
          \Pi \leftarrow \text{do racing}(\Pi \cup \Pi_{\text{off}}, k = p)
12:
13: end for
14: best prompt \leftarrow do racing(\Pi, k = 1)
15: return best prompt
```

Is reasoning for few-shots always necessary? Maybe this is not important for simple tasks and costs a lot of tokens. (Idea: some few shot examples can be included without reasoning)

Algorithm 2 cross_over

Require: Population Π , Meta-LLM $\Phi(x)$, Cross-Over-Meta-Prompt $\lambda_{\mathbb{C}}$, Number of crossovers c

- 1: $\Pi_{\text{off}} \leftarrow []$
- 2: **for** j = 1 to c **do**
- 3: $P_1 \leftarrow \text{sample}(\Pi, 1)$ $\triangleright P_1 = (\lambda_1, \theta_1)$
- 4: $P_2 \leftarrow \text{sample}(\Pi, 1)$ $\triangleright P_2 = (\lambda_2, \theta_2)$
- 5: $\lambda_{\text{off}} \leftarrow \Phi(\lambda_{\text{C}}||\lambda_1||\lambda_2)$ > Let Meta-LLM cross over the prompts
- 6: $\theta_{\text{off},j} \leftarrow \text{sample}(\theta_1 \cup \theta_2, \left\lfloor \frac{|\theta_1| + |\theta_2|}{2} \right\rfloor)$ \triangleright Sample from all few-shot examples
- 7: $\pi_{\text{off},j} \leftarrow (\lambda_{\text{off},j}, \theta_{\text{off},j})$
- 8: $\Pi_{\text{off}} \leftarrow \Pi_{\text{off.append}}(\pi_{\text{off},j})$
- 9: end for
- 10: return Π_{off}

Currently we do a random parent selection. In EvoPrompt they do a roulette wheel selection based on the fitness scores. This would require us to find a way of already having scores here.

We have to clarify where the new few-shot examples are coming from.

Extra Split:

- + no data leakage (fair, comparable assessment of prompts)
- constrained pool of few-shot examples (how to get this pool?) potentially smaller dev Split

From Train Split:

- data leakage (prompts that contain eval data point already as few-shot examples which are already confirmed as correct have advantages)
- + we can use the full train set

Algorithm 3 mutate

Require: Population of offsprings Π_{off} , Meta-LLM $\Phi(x)$, Mutation-Meta-Prompt λ_{M} , Dataset samples X

- 1: for $\pi_{\text{off}} \in \Pi_{\text{off}}$ do
- 2: $\lambda_{\text{off}} \leftarrow \Phi(\lambda_{\text{M}} || \lambda_{\text{off}})$
- 3: $num_shots \sim U(lower, upper)$
- 4: $num_new_shots \sim U(lower, num_shots)$
- 5: $\xi \leftarrow \text{sample}(X, \text{num_new_shots})$ \triangleright Sample new few shot examples
- 6: $\theta_{\text{new}} \leftarrow \phi(\lambda_{\text{off}}||\xi)$ \triangleright Generate few shots with reasoning
- 7: $\theta_{\text{old}} \leftarrow \text{sample}(\theta_{\text{off}}, \text{num_shots} \text{num_new_shots})$
- 8: $\theta \leftarrow \theta_{\text{old}} \cup \theta_{\text{new}}$
- 9: $\theta \leftarrow \text{shuffle}(\theta)$
- 10: $\pi_{\text{off}} \leftarrow (\lambda_{\text{off}}, \theta)$
- 11: end for
- 12: **return** Π_{off}

Algorithm 4 do_racing

Require: Prompts Π , Top-k k, blocks \mathcal{B} , Downstream LLM $\phi(x)$, Max number of evaluated blocks max_n_blocks_eval

- 1: $i \leftarrow 0$
- 2: scores $\leftarrow [0] * len(\Pi)$
- 3: $shuffle(\mathcal{B})$

▶ Whether to shuffle is left as a HP

- 4: while $len(\Pi) > k \land i < max_n_blocks_eval do$
- 5: $i \leftarrow i + 1$
- 6: scores $\leftarrow \frac{1}{i}$ (evaluate(Π, B_i) + (i-1) * scores) \triangleright Already evaluated blocks are cached
- 7: $\Pi \leftarrow \text{racing_elimination}(\Pi, \text{scores}, \alpha, k)$
- 8: end while
- 9: if $len(\Pi) > k$ then
- 10: $\Pi \leftarrow \text{top}_k(\Pi)$

▶ Make sure to return only k prompts

- 11: end if
- 12: return Π

Algorithm 5 racing_elimination

Require: Survivors Π , scores S, confidence level α , top-k k

- 1: $c_{\alpha} \leftarrow \text{getCriticalValue}(\alpha)$
- 2: for $\pi_i \in \Pi$ do
- 3: $\operatorname{n_sig_better} \leftarrow \sum_{j \neq i} \mathbf{1}_{[\operatorname{getTestStatistic}(s_j, s_i) > c_{\alpha}]}$
- 4: **if** n sig better $\geq k$ **then**
- 5: $\Pi \leftarrow \Pi \setminus \{\pi_i\}$

 \triangleright Eliminate π_i

- 6: end if
- 7: end for
- 8: return Π

Potential test statistics:

- Hoeffding races: $\varepsilon = \sqrt{\frac{B^2 \log(2/\delta)}{2n}}$
- z-score: $z = (s_i s_j)/\sqrt{n}$
- t-score: $t = (s_i s_j) / \sqrt{\frac{2s_i(1-s_i)}{n}}$
- Mann-Whitney-U-test
- Friedmann test (via ranks per block)

Further Ideas:

Multi-objective optimization (predictive performance and cost(e.g. prompt length)) - how to consider both objectives in the test statistic? -> only then we are "cost aware" (also reduces cost of optimization because of shorter prompt, fewer few-shot examples, ...)

Multi-fidelity can be e.g. done by first using a smaller model to determine a promising population and then continue with a larger model.