

TECNOLOGÍA Y ARQUITECTURA ROBÓTICA

Tema 2. Tecnologías robóticas

Sesión 3

- Percepción en robots
- Sensores internos

Adquisición/Percepción

- Adquisición (o sensorización) es convertir una cantidad que se desea medir en una señal útil (usualmente electrónica).
- Percepción es la interpretación o comprensión de estas señales.
- Ejemplo:
 - Adquisición: Ondas de sonido → oído humano → señales al cerebro.
 - Percepción: Comprender que estamos hablando sobre sensores.

¿Por qué los robots necesitan sensores?

¿Cuál es el ángulo de mi brazo?

Información Interna

¿Por qué los robots necesitan sensores?

¿Dónde estoy?

Localización

¿Por qué los robots necesitan sensores?

¿chocaré con algo?

Detección de Obstáculos

Sentidos Para Tareas Específicas

¿Dónde está la línea para la recolección?

Cosechador Autónomo

Sentidos Para Tareas Específicas

¿dónde están los agujeros para las horquillas?

Manejo Autónomo de Materiales

Sentidos Para Tareas Específicas

¿dónde está la cara?

Detección y Seguimiento de Rostros

Conocer qué está pasando

- La percepción del entorno es crucial para conseguir alcanzar los objetivos marcados de forma exitosa.
- □ ¿Por qué es complicado esto?
 - El entorno es dinámico
 - Sólo se tiene información parcial del mundo real
 - Los sensores proporcionan información limitada e introducen ruido
 - Hay una gran cantidad de información a percibir
- Recordemos que los sensores son dispositivos que simplemente miden determinadas magnitudes físicas.

Ejemplos de sensores

Propiedad física

contacto
distancia
nivel de sonido
rotación
aceleración

Sensor

interruptor ultrasonidos, infrarrojos micrófono encoders y potenciómetros giróscopos, acelerómetros

Complejidad de los sensores

- Los sensores proporcionan medidas que han de ser procesadas.
- Dependiendo de cuánta información nos den, los sensores son simples o complejos.
- □ Sensores simples:
 - Un interruptor: proporciona 1 bit de información (on, off)
- Sensores complejos:
 - Una cámara: 4 Mpixels
 - Retina humana: más de 100 millones de células fotosensibles

Otras categorías

- Sensores pasivos
 - Miden una propiedad física del entorno
- Sensores activos
 - Envían una señal y usan la interacción de la señal con el entorno
 - Consisten en un emisor y un detector (receptor)

Sensores internos

- Sensores que proporcionan información sobre el estado interno del robot, como:
 - Movimiento
 - Posición (x, y, z)
 - Orientación
 - Velocidad, aceleración
 - Temperatura
 - Nivel de batería
- Ejemplos:
 - Encoders
 - GPS
 - Giróscopos

Sensores internos: Sensores de posición

- Definen la posición del robot, referida a:
 - En qué punto de su recorrido permitido se encuentra una articulación en brazos robóticos
 - En robots móviles permiten estimar su posición en el entorno sin sensores externos
- En general, los encontramos dentro de los motores que permiten el movimiento de un robot.
- El sensor deberá tener una estructura mecánica adaptada a la medición de ángulos o de distancias.
- Existen dos tipos fundamentales: eléctricos y ópticos.

Optointerruptores

- Son sensores de posición de tipo óptico.
- Son especialmente importantes por ser los más usados, y basados en ellos nos encontramos con los codificadores o encoders ópticos de posición.

- No usan contactos mecánicos, sino un fotodiodo (o fotoresistencia) y un LED (diodo emisor de luz) que emite frente a él.
- Al moverse el motor, un disco o tope acoplado interrumpe la luz del LED, dando en el fotodiodo valor '0' que es detectado por la circuitería apropiada.
- Hay versión tanto lineal como angular.

Codificadores o Encoders

- Se construyen como los optointerruptores, pero con numerosas muescas apropiadamente distribuidas.
- El disco que gira está impreso de tal modo que resulta opaco en ciertas áreas, de modo que se pueden contar el número de transiciones entre "claro" y "oscuro".
- Esta cuenta permite conocer la posición en la que se encuentra el encoder, es decir, cuánto se ha girado.

Motores de robots Lego

El encoder interno proporciona 360 cuentas por vuelta, es decir, tiene una resolución de 1°.

Sensores de navegación

- Son de gran interés en robótica móvil.
- Tratan de medir posiciones, orientaciones, velocidades y aceleraciones de un determinado vehículo.
- □ Entre otros, existen los siguientes tipos:
 - Sensores Doppler
 - Giróscopos
 - Sensores GPS
- También es muy común el uso de balizas para determinar la posición del robot

Giróscopos

- Los <u>giróscopos</u> permiten mantener de forma constante su orientación respecto a un sistema de ejes de referencia.
- Estos sensores pueden determinar la rotación y la orientación del robot en varios ejes, con lo que se pueden medir los ángulos con precisión.
- El giro del EV3 mide la velocidad de rotación en grados por segundo.
- También guarda el ángulo de rotación total y, por tanto, permite medir hasta dónde ha girado el robot.
- La precisión del sensor es de ± 3 grados para un giro de 90 grados.

Balizas (activas o pasivas)

- □ Tratan de resolver el problema de la localización en robots móviles.
- Las balizas son dispositivos que permiten guiar al robot proporcionando un conocimiento preciso de su posición.
- En robótica las balizas se suelen emplear en entornos conocidos mediante el desplazamiento en el escenario de navegación de un determinado número de balizas de posición conocidas.
- Balizas activas o pasivas (landmarks)

Sensores GPS

- La estimación de la posición absoluta en navegación en exteriores se puede realizar con el conocido sistema GPS (Global Positioning System).
- En el sistema GPS hay dos grandes bloques: el segmento espacial y el segmento de control.
- En el segmento espacial hay una constelación de 24 satélites, a una altura aproximada de 20200 km.
- □ En un receptor GPS existen de 6 a 12 satélites a la vista en un momento dado, en cualquier punto de la tierra.
- Cada satélite envía una señal característica que lo identifica y en la que incluye información sobre su posición, estado, tiempo, y otros datos.

Sensores GPS

- Un receptor GPS mide el tiempo que tarda la señal del satélite en llegar desde éste hasta el receptor.
- Si el receptor tuviera un reloj perfecto, sincronizado de forma perfecta con los de los satélites, bastarían tres medidas para determinar las tres coordenadas de la posición.
- Como esos relojes son muy costosos, se emplea un cuarto satélite para determinar el error del reloj del receptor.

