1-2 銳角三角函數

一、畢氏定理

設直角三角形的兩股長分別為 $a \cdot b$,其斜邊長為c,則 $c^2 = a^2 + b^2$ 。

二、銳角三角函數的定義

1. 三角函數核心思想

當銳角內改變時,任兩邊邊長的比值也會隨之改變,則角度與比值產生了函數的 「_____」,此對應關係的函數我們即稱為「三角函數」。

2. 定義

- (1) 正弦函數: $\sin \theta = \frac{a}{c} = \frac{\#}{\#}$ (4) 餘割函數: $\csc \theta = \frac{c}{a} = \frac{\#}{\#}$
- (2) 餘弦函數: $\cos \theta = \frac{b}{c} = \frac{\cancel{\#}}{\cancel{\#}}$ (5) 正割函數: $\sec \theta = \frac{c}{b} = \frac{\cancel{\#}}{\cancel{\#}}$
- (3) 正切函數: $\tan \theta = \frac{a}{b} = \frac{\underline{y}\underline{\vartheta}}{\underline{x}\underline{\vartheta}}$ (6) 餘切函數: $\cot \theta = \frac{b}{a} = \frac{\underline{x}\underline{\vartheta}}{\underline{y}\underline{\vartheta}}$
- 3. 已知一個三角函數值,即可得知另外五個三角函數值。

三、三角函數的恆等式

- 1. 倒數關係
 - (1) $\sin \theta \times \csc \theta = 1$
 - (2) $\cos \theta \times \sec \theta = 1$
 - (3) $\tan \theta \times \cot \theta = 1$ 〈說明〉

2. 商數關係

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

(2)
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

〈説明〉

3. 平方關係

(1)
$$sin^2\theta + cos^2\theta = 1$$

(2)
$$tan^2\theta + 1 = sec^2\theta$$

(3)
$$1 + cot^2\theta = csc^2\theta$$
 〈 說明 〉

4. 餘角關係

(1)
$$\begin{cases} \sin \theta = \cos(90^{\circ} - \theta) \\ \cos \theta = \sin(90^{\circ} - \theta) \end{cases}$$

(2)
$$\begin{cases} \tan \theta = \cot(90^{\circ} - \theta) \\ \cot \theta = \tan(90^{\circ} - \theta) \end{cases}$$

(3)
$$\begin{cases} \sec \theta = \csc(90^{\circ} - \theta) \\ \csc \theta = \sec(90^{\circ} - \theta) \end{cases}$$
 〈説明〉

四、銳角的三角函數值

1. 三角函數值表

•					
	15°	30°	45°	60°	75°
$\sin heta$					
$\cos \theta$					
tan θ					
$\cot heta$	$2+\sqrt{3}$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	$2-\sqrt{3}$
sec θ	$\sqrt{6}-\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	$\sqrt{6} + \sqrt{2}$
csc θ	$\sqrt{6} + \sqrt{2}$	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	$\sqrt{6}-\sqrt{2}$

2.	函數	11
/	沙安	\mathcal{T}

(1) 遞增函數:	•	•	c
-----------	---	---	---

(3)	改變函數不等號的分界點在	度	0
	〈說明〉		

⁽²⁾ 遞減函數:____、___、,___。