

변수 (Variable)

프로그램 실행 시 사용할 값(Data)이 있다면 그 값은 먼저 메모리에 기록 되어야 함

프로그램 작동 원리

메모리(RAM)에 값을 기록하기 위한 공간

✓ 변수를 사용하지 않으면

```
System.out.println(2 * 3.141592653589793 * 10);
System.out.println(3.141592653589793 * 10 * 10);
System.out.println(3.141592653589793 * 10 * 10 * 20);
System.out.println(4 * 3.141592653589793 * 10 * 10);
```

✓ 변수를 사용하면

```
double pi = 3.141592653589793;
int r = 10;
int h = 20;

System.out.println(2 * pi * r);
System.out.println(pi * r * r);
System.out.println(pi * r * r * h);
System.out.println(4 * pi * r * r);
```

▶ 변수의 선언

메모리 공간에 데이터를 저장할 수 있는 공간을 할당하는 것

자료형

변수명 ;

마짇

변수타입지정

변수명지정

✓ 선언 예시

```
// 논리형 변수 선언
boolean isTrue;

// 문자형 변수 선언
char ch;

//문자열 변수 선언
String str;

// 본리형 변수 선언
String str;

// 정수형 변수 선언
byte bNum;
short sNum;
int iNum;
long lNum;

// 실수형 변수 선언
float fNum;
double dNum;
```


▶ 자료형(Type)

▶ 데이터 저장 단위

저장 공간이 제한적이기 때문에 저장 크기에 대한 기준과 CPU가 데이터를 처리할 때 일정한 기준 필요

✓ 비트(bit)

컴퓨터가 나타내는 데이터의 저장 최소 단위로서 2진수 값 하나를 저장할 수 있는 메모리공간을 의미

✓ 바이트(byte)

데이터 처리 또는 문자의 최소 단위로서 8개의 비트가 모여 하나의 바이트가 구성됨

▶ 변수 저장 가능 범위

자료형	범위	크기 (bit)	크기 (byte)	기본 값
boolean	true, false	8	1	false
char	0~65,535(유니코드문자)	16	2	′₩u0000′
byte	-128 ~ 127	8	1	0
short	-32,768 ~ 32,767	16	2	0
int	-2,147,483,648 ~ 2,147,483,647		4	0
long	-9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807	64	8	0L
float	±1.4E-45 ~ 3.4E38	32	4	0.0f
double	±4.9E-324 ~ 1.8E308	64	8	0.0 또는 0.0d

컴퓨터는 2진수로 인지하기 때문에 2ⁿ(n = 비트 크기)로 범위 할당

▶ 변수의 명명 규칙

- 1. 대소문자가 구분되며 길이 제한이 없다.
- 2. 예약어를 사용하면 안 된다. ex) true, final, String 등
- **3. 숫자로 시작하면 안 된다.** ex) age1은 가능하지만 1age는 불가능
- 4. 특수문자는 '_'와 '\$'만을 허용한다.
 - '\$'는 내부 클래스에서 사용
 - '_' 사용 시 컴파일 에러는 없지만 관례상 사용하지 않는 것이 좋음 ex) sh@rp는 불가능하지만 \$harp는 가능
- 5. 여러 단어 이름은 단어의 첫 글자를 대문자로 한다. 단, 첫 시작 글자는 소문자로 하는 것이 관례이다. ex) ageOfVampire, userName

▶ 주요 예약어

abstract	default	if	package	this
assert	do	goto	private	throw
boolean	double	implements	protected	throws
break	else	import	public	transient
byte	enum	instanceof	return	true
case	extends	int	short	try
catch	false	interface	static	void
char	final	long	strictfp	volatile
class	finally	native	super	while
const	float	new	switch	
continue	for	null	synchronized	

✓ 값 대입

생성한 변수(저장 공간)에 값을 대입하는 것

```
int age;
age = 10;
age = 20;
```

* 변수는 한 개의 데이터만 보관, 마지막에 대입한 값만 보관

✓ 리터럴

변수에 대입되는 값 자체

```
short s = 32767;
int i = 100;
long l = 10000L;
float f = 0.123f;
double d = 3.14;
```

char c = 'A'; String str = "ABC";

- ✓ 선언 후 초기화int age;age = 100;
- ✓ 선언과 동시에 초기화int age = 100;

▶ 상수란?

수학에서는 변하지 않는 값 의미 컴퓨터(Java)에서는 한 번만 저장(기록)할 수 있는 메모리 의미

✓ 상수 선언 방법

final int AGE;

✓ 상수 초기화 방법

- **1) 선언과 동시에 초기화** final int NUM = 100;
- 2) 선언 후 초기화 final int NUM; NUM = 100;
- * 초기화 이후 다른 데이터(값)을 대입할 수 없다.

▶ 문자열

✓ 문자열 표현

컴퓨터에서 "기차", "출력하세요"등과 같이 단어나 문장을 문자열이라고 표현 ""로 묶여 있으면 문자열로 인식하며 Java에서는 String 객체를 이용하여 저장

✓ 문자열 초기화

```
String str = "기차";
String str = new String("기차");
String str = "기차" + "칙칙폭폭";
String str = new String("기차" + "칙칙폭폭");
String str = "기차" + 123 + 45 + "출발";
Che 자료형 + "문자열" → 문자열" + 다른 자료형 → 문자열" + 다른 자료형 → 문자열
```


값(Data)의 자료형을 바꾸는 것 (boolean 제외)

✓ 컴퓨터의 값 처리 원칙

같은 종류 자료형만 대입 가능 같은 종류 자료형만 계산 가능 계산의 결과도 같은 종류의 값이 나와야 함

→ 이러한 원칙이 지켜지지 않은 경우에 형변환이 필요함

√ 형변환 예시

123456789 → 123456789.0

(int) (double)

'A' → 65

(char) (int)

3.14f → 3

(float) (int)

→ 형변환 하고자 하는 값과 자료형의 표현 범위 차이에 따라 형변환 방법이 나뉨 (자동 형변환, 강제 형변환)

▶ 형변환(casting)

✓ 자동 형변환

컴파일러가 자동으로 값의 범위가 작은 자료형을 값의 범위가 큰 자료형으로 변환

예시) int a = 12; double d = 3.3; double result = a + d;

$$a + d \longrightarrow 12 + 3.3 \longrightarrow 12.0 + 3.3 \longrightarrow 15.3$$

* 단, byte와 short 자료형 값의 계산 결과는 무조건 int로 처리한다.

▶ 형변환(casting)

✓ 강제 형변환

값의 범위가 큰 자료형을 값의 범위가 작은 자료형으로 변환 강제 형변환 시 <mark>데이터 손실</mark>이 발생할 수 있음 → 데이터의 변형, 손실을 감수하고 강제 변환

```
double temp;
int name = (int)temp;
```

✓ 데이터 손실

▶ 데이터 오버플로우

127 -128 -127 -126

byte형

0	1	1	1	1	1	1	1
---	---	---	---	---	---	---	---

127+1을 하면 범위를 초과한 128이 되고 허용된 범위 이상의 비트를 침범하게 되는데 이를 **오버플로우**라고 한다.

1 0 0 0 0 0 0	1	0	0	0	0	0	0	0
---------------	---	---	---	---	---	---	---	---

byte형 허용범위 최소값인 -128이 되는 것이다.

RAM 구조

static예약어로 선정된 필드, 메소드가 저장되는 공간 클래스 변수 등

new연산자에 의해 동적으로 할당하고 저장되는 공간, 객체 , 배열 등

메소드를 호출하면 자동생성 메소드가 끝나면 자동소멸 지역변수, 매개변수, 메소드 호출 스택 등 **Static**

HEAP

STACK

▶ 출력메소드

✓ System.out.print()

() 안의 변수, 문자, 숫자, 논리 값을 모니터에 출력해주는 메소드

✓ System.out.println()

print문과 동일하게 출력은 해주지만 출력 후 자동으로 출력창에 줄바꿈을 해주는 메소드

```
예) System.out.print("안녕하세요"); System.out.println("안녕하세요"); System.out.print(123); System.out.print(변수명); System.out.println(변수명);
```

▶ 출력메소드

✓ System.out.printf("%형식", 변수 등)

정해져 있는 형식에 맞춰서 그 형식에 맞는 값(변수)을 줄바꿈 하지 않고 출력

%d: 정수형, %o: 8진수, %x: 16진수

%c: 문자, %s: 문자열

%f: 실수(소수점 아래 6자리), %e: 지수형태표현, %g: 대입 값 그대로

%A: 16진수 실수

%b : 논리형

정렬방법

- %5d: 5칸을 확보하고 오른쪽 정렬

- %-5d : 5칸을 확보하고 왼쪽 정렬

- %.2f: 소수점 아래 2자리까지만 표시

▶ escape 문자

특수문자	문자 리터럴	비고
tab	₩t	정해진 공간만큼 띄어쓰기
new line	₩n	출력하고 다음라인으로 옮김
역슬래쉬	₩₩	
작은 따옴표	₩′	│ 특수문자 사용시 백슬러시(₩)를 │
큰 따옴표	₩"	
유니코드	₩u	유니코드 표시할 때 사용

KH KH 정보교육원

Scanner

✓ Scanner Class

사용자로부터 입력되는 정수, 실수, 문자열을 처리하는 클래스

✓ import 작성

import java.util.Scanner;

✓ Scanner 생성

Scanner sc = new Scanner(System.in);

✓ 키보드 입력값 받기

- 1. 정수 : sc.nextInt();
- 2. 실수: sc.nextFloat(); 또는 sc.nextDouble();
- 3. 문자열: sc.next(); 또는 sc.nextLine();

next()는 띄어쓰기 입력불가, 띄어쓰기를 구분인자로 생각하여 각각 저장, 줄 구분까지 저장하지 않음 nextLine()은 문자열에 띄어쓰기 가능, 줄 구분까지 저장