模块五 抛物线与方程

第1节 抛物线定义、标准方程及简单几何性质(★☆)

强化训练

1. (2023 • 四川成都模拟 • ★) 抛物线 $x = 4y^2$ 的准线方程是____.

答案: $x = -\frac{1}{16}$

解析: 先化标准方程, $x = 4y^2 \Rightarrow y^2 = \frac{1}{4}x$,所以抛物线开口向右,且 $2p = \frac{1}{4}$,故 $p = \frac{1}{8}$,

所以抛物线的准线方程是 $x = -\frac{1}{16}$.

2. $(2023 \cdot 全国乙卷 \cdot ★)$ 已知点 $A(1,\sqrt{5})$ 在抛物线 $C:y^2=2px$ 上,则点 A 到 C 的准线的距离为_

答案: $\frac{9}{4}$

解析: 点 $A(1,\sqrt{5})$ 在抛物线上 $\Rightarrow (\sqrt{5})^2 = 2p \cdot 1 \Rightarrow p = \frac{5}{2}$

所以抛物线的准线为 $x=-\frac{5}{4}$,

故 A 到该准线的距离 $d = 1 - (-\frac{5}{4}) = \frac{9}{4}$.

3. (2021・新高考 II 卷・★) 抛物线 $y^2 = 2px(p>0)$ 的焦点到直线 y=x+1 的距离为 $\sqrt{2}$,则 p=()

- (A) 1 (B) 2 (C) $2\sqrt{2}$ (D) 4

答案: B

解析: $y=x+1 \Rightarrow x-y+1=0$,由题意,焦点 $(\frac{p}{2},0)$ 到直线 x-y+1=0 的距离 $d=\frac{\left|\frac{p}{2}+1\right|}{\sqrt{1^2+(-1)^2}}=\sqrt{2}$,

结合 p > 0 可解得: p = 2.

4. $(2023 \cdot 内蒙古模拟 \cdot ★)$ 顶点在原点,对称轴为坐标轴,且经过 P(4,-2) 的抛物线的标准方程是(

$$(A) \quad y^2 = x \otimes x^2 = y$$

(B)
$$y^2 = -x \vec{x} x^2 = 8$$

(C)
$$x^2 = -8y$$
 或 $y^2 = x$

(A)
$$y^2 = x$$
 $\equiv x$ $\equiv x^2 = y$ (B) $y^2 = -x$ $\equiv x^2 = 8y$ (C) $x^2 = -8y$ $\equiv y^2 = x$ (D) $x^2 = -8y$ $\equiv y^2 = -x$

答案: C

解析: 抛物线过点 P(4,-2), 有如图所示的两种情况,下面分别考虑,

若开口向右,则可设其方程为 $y^2 = 2px(p>0)$,

将点 P(4,-2)代入可得 $(-2)^2 = 2p \cdot 4$,解得: $p = \frac{1}{2}$,所以抛物线的方程为 $y^2 = x$;

若开口向下,则可设其方程为 $x^2 = -2my(m > 0)$,

将点 P(4,-2)代入可得 $4^2 = -2m \cdot (-2)$,解得: m = 4,所以抛物线的方程为 $x^2 = -8y$; 故选 C.

5.(2023·陕西渭南二模·★★)将抛物线 $y^2 = mx$ 绕其顶点顺时针旋转 90°后,正好与抛物线 $y = 2x^2$ 重 合,则m=()

(A)
$$-\frac{1}{2}$$
 (B) $\frac{1}{2}$ (C) -2 (D) 2

(B)
$$\frac{1}{2}$$

$$(C)$$
 -2

答案: A

解析:给的是旋转后的抛物线,可找到其焦点,反向旋转回去,找到原来抛物线的焦点,

 $y = 2x^2 \Rightarrow x^2 = \frac{1}{2}y$, 所以该抛物线开口向上,且 $2p = \frac{1}{2}$, 所以 $p = \frac{1}{4}$, 故其焦点坐标为 $(0, \frac{1}{8})$,

将 $(0,\frac{1}{8})$ 绕原点逆时针旋转 90° 后会变成 $(-\frac{1}{8},0)$,所以抛物线 $y^2 = mx$ 的焦点为 $(-\frac{1}{8},0)$ ①,

故其开口向左,设其标准方程为 $y^2 = -2tx(t>0)$,则其焦点坐标为 $(-\frac{t}{2},0)$,

与①比较得 $-\frac{t}{2} = -\frac{1}{8}$,所以 $t = \frac{1}{4}$,故 $m = -2t = -\frac{1}{2}$.

6. (2022 · 上海模拟 · ★★) 已知点 F 为抛物线 $y^2 = 2px(p>0)$ 的焦点,点 P 在抛物线上且横坐标为 8,

O 为原点,若 $\triangle OFP$ 的面积为 $2\sqrt{2}$,则该抛物线的准线方程为____.

答案: x = -1

解析:如图,给了点P的横坐标,可代入抛物线的方程求其纵坐标,并用它计算 ΔOFP 的面积,

由题意, $F(\frac{p}{2},0)$, $|OF| = \frac{p}{2}$, $x_p = 8 \Rightarrow y_p^2 = 2px_p = 16p \Rightarrow y_p = \pm 4\sqrt{p}$,

所以 $S_{\Delta OFP} = \frac{1}{2}|OF|\cdot|y_P| = \frac{1}{2} \times \frac{p}{2} \times 4\sqrt{p} = p\sqrt{p}$,又 $S_{\Delta OFP} = 2\sqrt{2}$,所以 $p\sqrt{p} = 2\sqrt{2}$,故 p = 2,

所以抛物线的准线方程为x=-1.

7. $(2020 \cdot 11)$ · 北京卷 · ★)设抛物线的顶点为 O,焦点为 F,准线为 I,P 是抛物线上异于 O 的一点,过 P作 $PQ \perp l$ 于 Q,则线段 FQ 的垂直平分线 ()

- (A) 经过点 O (B) 经过点 P (C) 平行于直线 OP (D) 垂直于直线 OP

答案: B

解析:由抛物线定义,|PF|=|PQ|,所以 ΔPQF 为等腰三角形,线段FQ的垂直平分线过点P.

8. (2022 • 广东模拟 • ★★) 已知点 A(m,2) 为抛物线 $C: y^2 = 2px(p>0)$ 上一点,过 A 作 C 的准线的垂线, 垂足为B,若 ΔAOB 的面积为2,其中O为原点,则p等于()

- (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 4

答案: C

解析:条件给了 S_{MOB} ,故用它建立方程求p,观察图形发现以AB为底,高即为点A的纵坐标,是已知的, 而|AB|可用A的横坐标来算,已知纵坐标,代入抛物线方程就能求得横坐标,

因为A(m,2)在抛物线C上,所以 $2^2 = 2p \cdot m$,故 $m = \frac{2}{n}$,

又抛物线 *C* 的准线方程为 $x = -\frac{p}{2}$, 所以 $|AB| = \frac{2}{p} + \frac{p}{2}$,

故
$$S_{\triangle AOB} = \frac{1}{2} \times (\frac{2}{p} + \frac{p}{2}) \times 2 = \frac{2}{p} + \frac{p}{2}$$
,

由题意, $S_{\Delta AOB} = 2$,所以 $\frac{2}{p} + \frac{p}{2} = 2$,解得: p = 2.

9. (2022•北京模拟•★★★) 已知点 $Q(2\sqrt{2},0)$ 及抛物线 $x^2 = 4y$ 上一动点P(x,y),则y + |PQ|的最小值 是()

- (A) $\frac{1}{2}$
- (B) 1 (C) 2
- (D) 3

答案: C

解析:如图,直接分析y+|PQ|的最小值不易,可考虑把y凑成y+1,用定义转化为|PF|再看,

抛物线的焦点为F(0,1), 准线为y=-1, 由抛物线定义, |PF|=y+1, 所以y=|PF|-1,

故
$$y + |PQ| = |PF| - 1 + |PQ| = |PF| + |PQ| - 1$$
 ①,

由三角形两边之和大于第三边可得 $|PF|+|PQ| \ge |FQ|$,

结合①可得 $y+|PQ|\geq |FQ|-1=\sqrt{(2\sqrt{2}-0)^2+(0-1)^2}-1=2$, 当且仅当 P 与图中 P_0 重合时取等号,所以 $(y+|PQ|)_{min}=2$.

《一数•高考数学核心方法》