Aaronia GHz Spurs

• 4GHz+-50MHz

18 October 2022

Aaronia Setup

- a) Terminated load, No Amplifier
- b) Terminated load and Amplifiers

LNA ZX60_63GLN+@4GHz

: 2 * 27.2dB N.F. 1, IP3 24.6 dBm

LNA Gain from Datasheet*:

3.6GHz	27.65dB
4 GHz	27.18dE
4.4GHz	26.87dB

5GHz 26.27dB 6GHz 24.46dB

^{*} https://www.minicircuits.com/pdfs/ZX60-63GLN+.pdf

- a) IQ Spectrum Instant. Data, No averaging
- b) 2D plot, Data in Time and Frequency
- c) Spectrum data with Averaging (average of 1-1e6 samples)

FFT 1M Bin 870404 Span 102 MHz RBW 117 Hz Fc= 4 GHz Terminated Load, No Amplifier

-139 dBm

-146 dBm

Spur at centre:

Fc@1.33 MHz BW

FFT 1M Bin 870404 Span 102 MHz **RBW 117 Hz** Fc= 4 GHz

 Terminated Load, No Amplifier, Half span

- ~ -134dBm
- -137dBm

Sensitivity

Sensitivity at 4 GHz with 1e6 averaging : $-153 \text{ dBm} - 10*\log 10(117) = -173 \text{dBm/Hz}$

Notch Filter for Spurs Removal

Data after single-bin removal

• NEXT:

- 1- Spurs between 50MHz-350MHz (vs. ROACH)
- 3- Long-run data Averaging
- 4-DP Constraints @ 4.1 GHz (~HEPCAT REDO)
 Gain and AF

Spurs around 4GHz (Detection and Removal)

Aaronia - Further development

1GHz RTBW, with server x

pos	qty	article number	description	unit price EUR	total price EUR
1	1 Stk	102/025	SPECTRAN® V6 Enterprise-6 Real-time Spectrum Analyzer (10MHz - 6GHz) according to industry standard 19" 2U Server Blade with eight Rx inputs, RTBW 960MHz, 4380GHz/s sweep speed incl. redundant PSU, pre-configured OS and 'RTSA-Suite PRO' Software	249.980,00	249.980,00 !?

RSA2000X + Preamp + extension to 8GHz + > extension to 245MHz RTBW + 1M FFT ~ 22K EUR

pos	qt	У	article number	description	unit price EUR	total price EUR
1	1	Stk	102/003	SPECTRAN® V6 RSA2000X USB Real-time Spectrum Analyzer (10MHz -6GHz), 2 Rx inputs and 1 Tx output, RTBW 160MHz incl. PC software "RTSA-Suite PRO" on USB stick, power supply and USB cables	9.998,00	9.998,00

Noise Averaging, with two amplifiers and terminated load

On Preamp and Amp - Aaronia

- https://v6-forum.aaronia.de/forum/topic/amplifier-selection/#postid-1544
- "SPECTRAN V6 offers a superb NF of 4 dB
- The internal amplifier offers around 17 dB, the optional pre-amplifier around 20 dB of gain but as mentioned you can not go below the physical limit of 170dBm/Hz DANL with 4dB system NF so a regular external amplifier can't improve those specs.

• The only way to get higher sensitivity would be to use an external super low noise amplifier with a NF below 0,5dB. In this case you might be able to optimise the performance by another 1-1,5dB to reach around -171,5dBm/Hz DANL."

Negative frequencies Maths.