Номер 1

$$\frac{9 - 40\sqrt[3]{6} - 6\sqrt[6]{36}}{1 - \sqrt[3]{6} - 3\sqrt[3]{36}} \in \mathbb{Q}(\sqrt[6]{6})$$

Делаю по алгосу с семинара.

Пусть $x=\sqrt[3]{6}$, тогда $x^3=6$ х есть алгебр. над $\mathbb Q$ с минимальным многочленом $h=x^3-6$. А также:

$$\mathbb{Q}(\sqrt[3]{6}) \simeq \mathbb{Q}[x]/(h)$$

Тогда:

$$\frac{9 - 40x - 6x^2}{1 - x - 3x^2} = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$9 - 40x - 6x^2 = (\beta_0 + \beta_1 x + \beta_2 x^2) \cdot (1 - x - 3x^2)$$

$$9 - 40x - 6x^2 = -3\beta_0 x^2 - \beta_0 x + \beta_0 - 3\beta_1 x^3 - \beta_1 x^2 + \beta_1 x - 3\beta_2 x^4 - \beta_2 x^3 + \beta_2 x^2$$

$$9 - 40x - 6x^2 = -3\beta_0 x^2 - \beta_0 x + \beta_0 - 18\beta_1 - \beta_1 x^2 + \beta_1 x - 18\beta_2 x - 6\beta_2 x + \beta_2 x^2$$

$$9 - 40x - 6x^2 = (\beta_0 - 18\beta_1 - 6\beta_2) - (\beta_0 - \beta_1 + 18\beta_2)x - (3\beta_0 + \beta_1 - \beta_2)x^2$$

Получаем СЛУ, которую нам нужно решить, а именно:

$$\begin{cases} \beta_0 - 18\beta_1 - 6\beta_2 = 9 \\ -(\beta_0 - \beta_1 + 18\beta_2) = -40 \\ -(3\beta_0 + \beta_1 - \beta_2) = -6 \end{cases}$$
$$\begin{cases} \beta_0 - 18\beta_1 - 6\beta_2 = 9 \\ \beta_0 - \beta_1 + 18\beta_2 = 40 \\ 3\beta_0 + \beta_1 - \beta_2 = 6 \end{cases}$$

Переводим в матричный вид и считаем:

$$\begin{pmatrix} 1 & -18 & -6 & | & 9 \\ 1 & -1 & 18 & | & 40 \\ 3 & 1 & -1 & | & 6 \end{pmatrix} = \begin{pmatrix} 1 & -18 & -6 & | & 9 \\ 1 & -1 & 18 & | & 40 \\ 0 & 4 & -55 & | & -114 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & -17 & -24 & | & -31 \\ 1 & -1 & 18 & | & 40 \\ 0 & 4 & -55 & | & -114 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 18 & | & 40 \\ 0 & -1 & -244 & | & -487 \\ 0 & 4 & -55 & | & -114 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & -1 & 18 \\ 0 & 1 & 244 \\ 0 & 0 & -1031 \end{pmatrix} = \begin{pmatrix} 40 \\ 487 \\ -2062 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 18 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0$$

Получаем, что:

$$\begin{cases} \beta_0 = 3\\ \beta_1 = -1\\ \beta_2 = 2 \end{cases}$$

А значит получаем вид:

$$2x^2 - x + 3 = 2\sqrt[3]{36} - \sqrt[3]{6} + 3$$

Ответ:

$$2\sqrt[3]{36} - \sqrt[3]{6} + 3$$

Номер 2

$$\sqrt{7} - \sqrt{3} + 1$$

Ищем какой-нибудь многочлен:

$$\alpha = \sqrt{7} - \sqrt{3} + 1$$

$$\alpha - 1 = \sqrt{7} - \sqrt{3}$$

$$(\alpha - 1)^2 = 10 - 2\sqrt{21}$$

$$(\alpha - 1)^2 - 10 = -2\sqrt{21}$$

$$((\alpha - 1)^2 - 10)^2 = 84$$

$$(a^2 - 2a - 9)^2 = 84$$

$$a^4 - 4a^3 - 14a^2 + 36a + 81 = 84$$

$$a^4 - 4a^3 - 14a^2 + 36a - 3 = 0$$

Теперь нужно показать, что найденный многочлен является минимальным, т.е $[\mathbb{Q}(\alpha):\mathbb{Q}]=4.$

Важно заметить, что:

$$1 \in \mathbb{Q} \to \mathbb{Q}(1) = \mathbb{Q}$$

Далее:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{3})(\sqrt{7}) = K$$
$$[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$$

Покажем теперь, что $\sqrt{7} \notin \mathbb{Q}(\sqrt{3})$:

Пусть лежит, тогда:

$$\sqrt{7} = a + b\sqrt{3}$$

$$7 = a^2 + 2\sqrt{3}ab + 3b^2$$

Значит:

$$\begin{cases} 7 = a^2 + 3b^2 \\ 2\sqrt{3}ab = 0 \end{cases}$$

А значит либо a=0, либо $b=0 \to$ нет решений.

Итак, $\sqrt{7} \notin \mathbb{Q}(\sqrt{3}) \to x^2 - 7$ это мин.многочлен для $\sqrt{7}$ над $\mathbb{Q}(\sqrt{3})$, тогда:

$$[K:\mathbb{Q}(\sqrt{3})]=2\to [K:\mathbb{Q}]=4$$

Причем базис K над \mathbb{Q} – это $1, \sqrt{3}, \sqrt{7}, \sqrt{21}$

$$\alpha = \sqrt{7} - \sqrt{3} + 1 \in \mathbb{Q}(\alpha)$$

Тогда:

$$(\alpha - 1)^2 \in \mathbb{Q}(\alpha)$$
$$(\alpha - 1)^2 = 10 - 2\sqrt{21} \to 10 \in \mathbb{Q}(\alpha) \to \sqrt{21} \in \mathbb{Q}(\alpha)$$

Но тогда и:

$$\alpha\sqrt{21} \in \mathbb{Q}(\alpha) \to 7\sqrt{3} - 3\sqrt{7} \in \mathbb{Q}(\alpha)$$

А также:

$$\alpha = \sqrt{7} - \sqrt{3} + 1 \in \mathbb{Q}(\alpha)$$
$$\alpha - 1 = \sqrt{7} - \sqrt{3} \in \mathbb{Q}(\alpha) \to \sqrt{7} - \sqrt{3} \in \mathbb{Q}(\alpha)$$

$$\begin{cases} 7\sqrt{3} - 3\sqrt{7} \in \mathbb{Q}(\alpha) \\ \sqrt{7} - \sqrt{3} \in \mathbb{Q}(\alpha) \end{cases} \to \sqrt{3} \in \mathbb{Q}(\alpha), \sqrt{7} \in \mathbb{Q}(\alpha)$$

Вывод:

$$1, \sqrt{3}, \sqrt{7}, \sqrt{21} \in \mathbb{Q}(\alpha)$$

Важно:

$$\mathbb{Q}(\alpha) \subseteq K = \mathbb{Q}(\sqrt{3})(\sqrt{7}) \to$$
$$\to \mathbb{Q}(\alpha) = K \to [\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$$

Значит это действительно минимальный многочлен

Ответ:

$$a^4 - 4a^3 - 14a^2 + 36a - 3$$

Номер 3

Поле \mathbb{F}_8

Заметим, что $8 = 2^3$

Ищем неприводимый многочлен в $\mathbb{Z}_2[x]$ степени 3: $h = x^3 + ax^2 + bx + c$ Чтобы он был неприводимым, требуем:

$$\begin{cases} h(0) \neq 0 : c \neq 0 \\ h(1) \neq 0 : 1 + a + b + c \neq 0 \end{cases}$$

Подойдет x^3+x+1 , т.к в 0 он обращается в 1, в 1 обращается в 3 (условие выше выполнено)

Тогда:

[не рисую overline, т.к получается как-то очень некрасиво + чтобы сэкономить время]

$$\mathbb{F}_8 = \mathbb{Z}[x]/(x^3 + x + 1) = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x, x^2 + x + 1\}$$

Теперь составляем таблицу сложения:

+	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
1	1	0	x+1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
x	x	x+1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
x+1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x+1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x+1	x
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x+1	0	1
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	x	1	0

Формула понижения степени:

$$x^3 = x + 1$$

Теперь составляем таблицу умножения:

×	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
x^2	0	x^2	x+1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x+1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x+1	x	x^2
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x^2	x+1

Умер пока считал + техал :(