Lógica de primer orden: Repaso y notación

IIC3263

Lógica de primer orden: Vocabulario

Una fórmula en lógica de primer orden está definida sobre algunas constantes y predicados.

Un vocabulario $\mathcal L$ es la unión de dos conjuntos:

```
constantes : \{c_1, \ldots, c_\ell, \ldots\} relaciones : \{R_1, \ldots, R_n, \ldots\}
```

Lógica de primer orden: Vocabulario

Una fórmula en lógica de primer orden está definida sobre algunas constantes y predicados.

Un vocabulario $\mathcal L$ es la unión de dos conjuntos:

```
constantes : \{c_1, \ldots, c_\ell, \ldots\} relaciones : \{R_1, \ldots, R_n, \ldots\}
```

Notación

La aridad de una relación R es el número de argumentos de R.

Cada relación tiene una aridad mayor o igual a 0

Lógica de primer orden: Vocabulario

Ejemplo

Para los números naturales ${\mathcal L}$ es la unión de

constantes : $\{0, 1\}$

relaciones : {suma, mult, suc, <}

suma y mult son relaciones ternarias, suc y < son relaciones binarias.

Lógica de primer orden: Sintaxis

Las fórmulas de la lógica de primer orden se construyen usando:

- ▶ Conectivos lógicos: \neg , \lor , \land , \rightarrow y \leftrightarrow
- ► Paréntesis: (y)
- Relación binaria =
- Variables
- ► Cuantificadores: ∀ y ∃

Veamos algunos ejemplos, antes de introducir formalmente la sintaxis de la lógica de primer orden.

Sintaxis de la lógica de primer orden: Ejemplos

Sea
$$\mathcal{L} = \{0, 1, suma, mult, suc, <\}$$

- ► *suc*(0,1)
- ▶ $\forall x \forall y \ (suc(x, y) \rightarrow x < y)$ Usamos notación infija para relaciones comunes.
- $\blacktriangleright \forall x \exists y \ suma(y, y, x)$
- $\forall x \forall y \forall z \ ((suc(x,y) \land suc(x,z)) \rightarrow y = z)$

Sintaxis de la lógica de primer orden: Términos

Desde ahora en adelante: Suponemos dada una lista infinita de variables.

L-términos:

- ightharpoonup Cada constante c en \mathcal{L} es un \mathcal{L} -término
- ► Cada variable x es un *L*-término

Ejemplo

Términos en el vocabulario para los números naturales: 0, 1 y x.

El conjunto de \mathcal{L} -fórmulas es el menor conjunto que satisface las siguientes condiciones:

▶ Si t_1 y t_2 son \mathcal{L} -términos, entonces $t_1 = t_2$ es una \mathcal{L} -fórmula.

- ▶ Si t_1 y t_2 son \mathcal{L} -términos, entonces $t_1 = t_2$ es una \mathcal{L} -fórmula.
- ▶ Si t_1, \ldots, t_n son \mathcal{L} -términos y R es una relación n-aria en \mathcal{L} , entonces $R(t_1, \ldots, t_n)$ es una \mathcal{L} -fórmula.

- ▶ Si t_1 y t_2 son \mathcal{L} -términos, entonces $t_1 = t_2$ es una \mathcal{L} -fórmula.
- ▶ Si t_1 , ..., t_n son \mathcal{L} -términos y R es una relación n-aria en \mathcal{L} , entonces $R(t_1, \ldots, t_n)$ es una \mathcal{L} -fórmula.
- ► Si φ y ψ son \mathcal{L} -fórmulas, entonces $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$ y $(\varphi \leftrightarrow \psi)$ son \mathcal{L} -fórmulas.

- ▶ Si t_1 y t_2 son \mathcal{L} -términos, entonces $t_1 = t_2$ es una \mathcal{L} -fórmula.
- ▶ Si t_1 , ..., t_n son \mathcal{L} -términos y R es una relación n-aria en \mathcal{L} , entonces $R(t_1, \ldots, t_n)$ es una \mathcal{L} -fórmula.
- ▶ Si φ y ψ son \mathcal{L} -fórmulas, entonces $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$ y $(\varphi \leftrightarrow \psi)$ son \mathcal{L} -fórmulas.
- ▶ Si φ es una \mathcal{L} -fórmula y x es una variable, entonces $(\exists x \ \varphi)$ y $(\forall x \ \varphi)$ son \mathcal{L} -fórmulas.

El conjunto de \mathcal{L} -fórmulas es el menor conjunto que satisface las siguientes condiciones:

- ▶ Si t_1 y t_2 son \mathcal{L} -términos, entonces $t_1 = t_2$ es una \mathcal{L} -fórmula.
- ▶ Si t_1 , ..., t_n son \mathcal{L} -términos y R es una relación n-aria en \mathcal{L} , entonces $R(t_1, \ldots, t_n)$ es una \mathcal{L} -fórmula.
- ▶ Si φ y ψ son \mathcal{L} -fórmulas, entonces $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$ y $(\varphi \leftrightarrow \psi)$ son \mathcal{L} -fórmulas.
- Si φ es una \mathcal{L} -fórmula y x es una variable, entonces $(\exists x \varphi)$ y $(\forall x \varphi)$ son \mathcal{L} -fórmulas.

Notación

 $t_1 = t_2 \ y \ R(t_1, \dots, t_n)$ son llamadas fórmulas atómicas.

Lógica de primer orden: Semántica

Notación

Omitimos paréntesis si no se produce ambigüedad.

¿Es $\forall x \exists y \ suma(y, y, x)$ cierta en $\mathcal{L} = \{0, 1, suma, mult, suc, <\}$?

- Si pensamos en los números naturales es falsa.
- Pero L también puede usarse como vocabulario para los números reales, y en este conjunto la fórmula es cierta.

El valor de verdad de una fórmula depende de la **interpretación** que se da a las constante y relaciones.

► Tenemos que introducir la noción de estructura.

Semántica de la lógica de primer orden: Estructuras

Una $\mathcal{L}\text{-estructura}$ interpreta todos los componentes de \mathcal{L} en un dominio.

Una \mathcal{L} -estructura \mathfrak{A} contiene:

- ► Un dominio A no vacío.
- ▶ Para cada constante $c \in \mathcal{L}$, una interpretación $c^{\mathfrak{A}} \in A$ de c.
- ▶ Para cada relación *n*-aria $R \in \mathcal{L}$, una interpretación $R^{\mathfrak{A}} \subseteq A^n$ de R.

Notación

$$\mathfrak{A} = \langle A, c^{\mathfrak{A}}, \ldots, R^{\mathfrak{A}}, \ldots \rangle$$

Algunos ejemplos de estructuras

Para representar grafos usamos un vocabulario $\mathcal{L} = \{E\}$. Por ejemplo, el siguiente grafo:

es representado por la estructura $\mathfrak{A} = \langle A, E^{\mathfrak{A}} \rangle$, donde:

$$A = \{1, 2, 3, 4\}$$

$$E^{\mathfrak{A}} = \{(1, 2), (1, 3), (3, 2), (4, 1), (4, 2)\}$$

Algunos ejemplos de estructuras

Los números naturales son representados por la estructura:

$$\mathfrak{N} = \langle \mathbb{N}, 0^{\mathfrak{N}}, 1^{\mathfrak{N}}, suma^{\mathfrak{N}}, mult^{\mathfrak{N}}, suc^{\mathfrak{N}}, <^{\mathfrak{N}} \rangle,$$

Mientras que los números reales son representados por la estructura:

$$\mathfrak{R} = \langle \mathbb{R}, 0^{\mathfrak{R}}, 1^{\mathfrak{R}}, suma^{\mathfrak{R}}, mult^{\mathfrak{R}}, suc^{\mathfrak{R}}, <^{\mathfrak{R}} \rangle.$$

Ahora podemos decir que $\mathfrak N$ no satisface $\forall x \exists y \; suma(y,y,x)$ y que $\mathfrak R$ si satisface esta fórmula.

Semántica de la lógica de primer orden: Variables libres

Sea $V(\varphi)$ el conjunto de variables de una fórmula φ .

El conjunto de variables libres de una \mathcal{L} -fórmula φ se define como:

- ▶ Si φ es una fórmula atómica, entonces $VL(\varphi) = V(\varphi)$.
- ▶ Si $\varphi = (\neg \psi)$, entonces $VL(\varphi) = VL(\psi)$.
- ► Si $\varphi = (\psi \star \theta) \ (\star \in \{\lor, \land, \rightarrow, \leftrightarrow\})$, entonces $VL(\varphi) = VL(\psi) \cup VL(\theta)$.
- ▶ Si $\varphi = (\exists x \ \psi)$ o $\varphi = (\forall x \ \psi)$, entonces $VL(\varphi) = VL(\psi) \setminus \{x\}$.

Semántica de la lógica de primer orden: Variables libres

Ejemplos

$$VL(P(x) \wedge \exists y \ Q(x,y)) = \{x\}$$

 $VL(P(z) \wedge \exists z \ R(z)) = \{z\}$

Semántica de la lógica de primer orden: Variables libres

Ejemplos

$$VL(P(x) \land \exists y \ Q(x,y)) = \{x\}$$

$$VL(P(z) \land \exists z \ R(z)) = \{z\}$$

Notación

- Si φ es una fórmula, entonces usamos $\varphi(x_1, \dots, x_k)$ para indicar que $VL(\varphi) = \{x_1, \dots, x_k\}$.
- Decimos que φ es una oración si $VL(\varphi) = \emptyset$.

Si una fórmula contiene variables libres, entonces no podemos decir directamente que es verdadera o falsa en una estructura.

 \triangleright ¿Es suc(0,x) cierta en \mathfrak{N} ?

El valor de verdad de una fórmula con variables libres depende de los valores dados a estas variables.

▶ Si x es 2, entonces suc(0,x) es falsa en \mathfrak{N} . Pero si x es 1, entonces es cierta.

Dada una \mathcal{L} -estructura $\mathfrak A$ con dominio A, una asignación σ es una función tal que:

- ▶ $\sigma(x) \in A$ para cada variable x,
- $\sigma(c) = c^{\mathfrak{A}}$ para cada constante c en \mathcal{L} .

Dada una \mathcal{L} -estructura $\mathfrak A$ con dominio A, una asignación σ es una función tal que:

- $\sigma(x) \in A$ para cada variable x,
- $ightharpoonup \sigma(c) = c^{\mathfrak{A}}$ para cada constante c en \mathcal{L} .

Definición

Decimos que (\mathfrak{A}, σ) satisface una \mathcal{L} -fórmula φ , denotado como $(\mathfrak{A}, \sigma) \models \varphi$, si y sólo si:

- $ho \varphi = R(t_1,\ldots,t_n) \quad y \ (\sigma(t_1),\ldots,\sigma(t_n)) \in R^{\mathfrak{A}}.$
- $\triangleright \varphi = (\psi \lor \theta) \quad y \ (\mathfrak{A}, \sigma) \models \psi \ o (\mathfrak{A}, \sigma) \models \theta.$

- $ho = (\psi \wedge \theta), (\mathfrak{A}, \sigma) \models \psi \quad \text{y} \quad (\mathfrak{A}, \sigma) \models \theta.$
- $ightharpoonup \varphi = (\psi \to \theta) \quad \text{y} \quad (\mathfrak{A}, \sigma) \not\models \psi \circ (\mathfrak{A}, \sigma) \models \theta.$
- $\varphi = (\psi \leftrightarrow \theta) \quad \text{y ambos } (\mathfrak{A}, \sigma) \models \psi, \ (\mathfrak{A}, \sigma) \models \theta \text{ o ambos } (\mathfrak{A}, \sigma) \not\models \psi, \ (\mathfrak{A}, \sigma) \not\models \theta.$
- $ho \varphi = (\exists x \ \psi)$ y existe $a \in A$ tal que $(\mathfrak{A}, \sigma[x/a]) \models \psi$, donde

$$\sigma[x/a](y) = \begin{cases} a & y = x \\ \sigma(y) & y \neq x \end{cases}$$

▶ $\varphi = (\forall x \ \psi)$ y para todo $a \in A$ se tiene que $(\mathfrak{A}, \sigma[x/a]) \models \psi$.

Nota: Si φ es una oración, podemos decir que $\mathfrak{A} \models \varphi$.

Semántica de la lógica de primer orden

Ejemplo

Sea
$$\mathfrak{A}=\langle A,E^{\mathfrak{A}}\rangle$$
, donde $A=\{1,2,3,4\}$ y $E^{\mathfrak{A}}=\{(1,2),\ (1,3),\ (3,2),\ (4,1),\ (4,2)\}.$

▶ ¿Cuáles de las siguientes fórmulas son ciertas en \mathfrak{A} : $\exists x \forall y \ E(x,y), \ \forall x \exists y \ E(x,y), \ \exists x \forall y \ \neg E(x,y), \ \forall x \exists y \ \neg E(x,y)$?

Dos nociones útiles

Decimos que una \mathcal{L} -fórmula φ es satisfacible si existe una \mathcal{L} -estructura \mathfrak{A} y una asignación σ para \mathfrak{A} tal que $(\mathfrak{A}, \sigma) \models \varphi$.

▶ Si φ es oración, entonces φ es satisfacible si existe $\mathfrak A$ tal que $\mathfrak A \models \varphi$

Decimos que una \mathcal{L} -fórmula φ es válida si para toda \mathcal{L} -estructura \mathfrak{A} y toda asignación σ para \mathfrak{A} se tiene que $(\mathfrak{A}, \sigma) \models \varphi$.

▶ Si φ es oración, entonces φ es válida si para todo $\mathfrak A$ se tiene que $\mathfrak A \models \varphi$

Ejercicio

Construya una fórmula válida.

Dos nociones útiles

Al igual que en la lógica proposicional, la lógica de primer orden tiene asociados algunos problemas de decisión:

```
\begin{array}{lll} \mathsf{SAT} &=& \{\varphi \mid \varphi \text{ es una oración satisfacible}\} \\ \mathsf{VAL} &=& \{\varphi \mid \varphi \text{ es una oración válida}\} \end{array}
```

Dos nociones útiles

Al igual que en la lógica proposicional, la lógica de primer orden tiene asociados algunos problemas de decisión:

```
\begin{array}{lll} \mathsf{SAT} &=& \{\varphi \mid \varphi \text{ es una oración satisfacible}\} \\ \mathsf{VAL} &=& \{\varphi \mid \varphi \text{ es una oración válida}\} \end{array}
```

Teorema (Church) *VAL y SAT son indecidibles.*

La noción de consecuencia lógica

Dado: Conjunto de \mathcal{L} -oraciones $\Sigma \cup \{\varphi\}$.

Decimos que φ es consecuencia lógica de Σ si para cada $\mathcal L$ -estructura $\mathfrak A$ tal que $\mathfrak A\models \Sigma$, se tiene que $\mathfrak A\models \varphi$

Notación

$$\Sigma \models \varphi$$

La noción de consecuencia lógica

Dado: Conjunto de \mathcal{L} -oraciones $\Sigma \cup \{\varphi\}$.

Decimos que φ es consecuencia lógica de Σ si para cada \mathcal{L} -estructura $\mathfrak A$ tal que $\mathfrak A \models \Sigma$, se tiene que $\mathfrak A \models \varphi$

Notación

$$\Sigma \models \varphi$$

Ejemplo

$$\{\forall x R(x,x)\} \models \forall x \exists y R(x,y)$$

El sistema de deducción de Hilbert para la lógica de primer orden está formado por los siguientes elementos:

- Esquemas para generar fórmulas válidas:

 - $(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$
 - $(\neg \varphi \to \neg \psi) \to ((\neg \varphi \to \psi) \to \varphi)$
 - $(\forall x \varphi(x)) \rightarrow \varphi(t)$, donde t es un término cualquiera
 - $\varphi(t) \to (\exists x \, \varphi(x))$, donde t es un término cualquiera
 - $\blacktriangleright (\exists x \, \varphi) \leftrightarrow (\neg \forall x \, \neg \varphi)$

- Axiomas para la igualdad:
 - $\forall x (x = x)$

 - $\forall x \forall y \forall z ((x = y \land y = z) \rightarrow x = z)$
 - ▶ Para todo predicado *m*-ario *P*:

$$\forall x_1 \cdots \forall x_m \forall y_1 \cdots \forall y_m ((P(x_1, \dots, x_m) \land x_1 = y_1 \land \cdots \land x_m = y_m) \rightarrow P(y_1, \dots, y_m))$$

- Reglas de inferencia:
 - ► Modus Ponens:

$$\begin{array}{c}
\varphi \to \psi \\
\varphi \\
\hline
\psi
\end{array}$$

• Generalización: Si y no aparece libre en φ , entonces

$$\frac{\varphi \to \psi(y)}{\varphi \to \forall x \psi(x)}$$

Dado un conjunto de fórmulas $\Sigma \cup \{\varphi\}$, una deducción formal de φ desde Σ es una secuencia de fórmulas $\varphi_1, \varphi_2, \ldots, \varphi_n$ tal que:

- ▶ Para cada $i \le n$:
 - $ightharpoonup \varphi_i \in \Sigma$ o
 - $ightharpoonup \varphi_i$ es un axioma lógico o
 - existen j,k < i tales que φ_i es obtenido desde φ_j y φ_k usando modus ponens o
 - existe j < i tal que φ_i es obtenido desde φ_j usando la regla de generalización.
- $ightharpoonup \varphi_n = \varphi$

Dado un conjunto de fórmulas $\Sigma \cup \{\varphi\}$, una deducción formal de φ desde Σ es una secuencia de fórmulas $\varphi_1, \varphi_2, \ldots, \varphi_n$ tal que:

- ▶ Para cada i < n:
 - $\varphi_i \in \Sigma$ o
 - $ightharpoonup arphi_i$ es un axioma lógico o
 - existen j,k < i tales que φ_i es obtenido desde φ_j y φ_k usando modus ponens o
 - existe j < i tal que φ_i es obtenido desde φ_j usando la regla de generalización.
- $\triangleright \varphi_n = \varphi$

Notación

$$\Sigma \vdash \varphi$$

El sistema de Hilbert: Propiedades

El sistema de Hilbert: Propiedades

Teorema (Corrección) Si $\Sigma \vdash \varphi$, entonces $\Sigma \models \varphi$.

El sistema de Hilbert: Propiedades

Teorema (Corrección) Si $\Sigma \vdash \varphi$, entonces $\Sigma \models \varphi$.

Teorema (Completidad de Gödel) $Si \Sigma \models \varphi$, entonces $\Sigma \vdash \varphi$.

El teorema de Compacidad

Notación

Decimos que un conjunto Σ de fórmulas es finitamente satisfacible si cada subconjunto finito de Σ es satisfacible.

El teorema de Compacidad

Notación

Decimos que un conjunto Σ de fórmulas es finitamente satisfacible si cada subconjunto finito de Σ es satisfacible.

Teorema (Compacidad)

Un conjunto de fórmulas Σ es satisfacible si y sólo si Σ es finitamente satisfacible.

El teorema de Compacidad

Notación

Decimos que un conjunto Σ de fórmulas es finitamente satisfacible si cada subconjunto finito de Σ es satisfacible.

Teorema (Compacidad)

Un conjunto de fórmulas Σ es satisfacible si y sólo si Σ es finitamente satisfacible.

Ejercicio

Demuestre el corolario.

Poder expresivo de una lógica

Notación

Dado un vocabulario \mathcal{L} , ALLSTRUCT[\mathcal{L}] es el conjunto de todas las \mathcal{L} -estructuras.

Una propiedad $\mathcal P$ de las $\mathcal L$ -estructuras es un subconjunto de $\mathrm{AllStruct}[\mathcal L].$

Ejemplo

El conjunto de las \mathcal{L} -estructuras con dos elementos en el dominio.

Poder expresivo de una lógica

Decimos que una propiedad \mathcal{P} es expresable en lógica de primer orden si existe una \mathcal{L} -oración φ tal que para toda $\mathfrak{A} \in \operatorname{AllStruct}[\mathcal{L}]$:

$$\mathfrak{A} \in \mathcal{P}$$
 si y sólo si $\mathfrak{A} \models \varphi$

Poder expresivo de una lógica

Decimos que una propiedad \mathcal{P} es expresable en lógica de primer orden si existe una \mathcal{L} -oración φ tal que para toda $\mathfrak{A} \in \operatorname{AllStruct}[\mathcal{L}]$:

$$\mathfrak{A} \in \mathcal{P}$$
 si y sólo si $\mathfrak{A} \models \varphi$

Ejemplo

El conjunto de las \mathcal{L} -estructuras con dos elementos en el dominio es definible en lógica de primer orden.

Poder expresivo de una lógica: Teorema de compacidad

Ejercicios

Usando el teorema de compacidad, demuestre que las siguientes propiedades no son expresables en lógica de primer orden.

- 1. Sea \mathcal{L}_1 un vocabulario cualquiera y \mathcal{P}_1 el conjunto de todas las \mathcal{L}_1 -estructuras con dominio finito.
- 2. Sea $\mathcal{L}_2 = \{E(\cdot, \cdot), a, b\}$, donde a y b son constantes, y \mathcal{P}_2 el conjunto de todas las \mathcal{L}_2 -estructuras que tienen un camino de largo finito entre a y b.