General Approach to Data Science

Bhuvan M S

msbhuvanbhuvi@gmail.com

Contents

- Scope of Data Science
- Skills for a Data Scientist
- How to approach towards a data centric solution to a problem?
 - Analysis Pipeline
- Tools for implementing
- Deployment Framework
- Note on NLP specific approach

Scope of Data Science

Data Engineer

Coding and development

Ensure quality flow, end-to-end

Data Scientist

Statistics

Improve algorithm models to boost bottom-line

Business Analyst

Customer-related data

Cross-department analysis

Data Science Venn Diagram v2.0

Languages

R, SAS, Python, Matlab, SQL, Hive, Pig, Spark

Skills & Talents

- ✓ Distributed computing
- ✓ Predictive modeling
- ✓ Story-telling and visualizing
- ✓ Math, Stats, Machine Learning

DATA SCIENTIST "AS RARE AS UNICORNS"

Role

Cleans, massages and organizes (big) data

Mindset

Curious data wizard

Skills of a Data Scientist

HARD SKILLS

SOFT SKILLS

Business	ML / Big Data	Math / OR	Programming	Statistics
Product Developement	Unstructured Data	Optimization Math	Systems Administration	Visualization
Business	Structured Data	Graphical	Back End Programming	Temporal Statistics
	Machine Learning	Models Bayesian /	Front End Programming	Surveys and Marketing
	Big and Distributed	Monte Carlo Statistics		Spatial Statistics
	Data	Algorithms		Science
		Simulation		Data Manipulation
				Classical Statistics

The Process and Workflow

Data Science Process

THE ANALYTICS LIFECYCLE

Domain Expert Makes Decisions Evaluates Processes and ROI

IT SYSTEMS/ MANAGEMENT

Model Validation Model Deployment Model Monitoring Data Preparation

Data Exploration Data Visualization

Exploratory Analysis Descriptive Segmentation Predictive Modeling

Exploratory Data Analysis

- Slicing and Dicing
- Suggest hypotheses about the <u>causes</u> of observed <u>phenomena</u>
- Assess assumptions on which <u>statistical inference</u> will be based
- Support the selection of appropriate statistical tools and techniques
- Provide a basis for further data collection through <u>surveys</u> or experiments.

Feature Engineering

- Features: The dimensions of the data!
- Data Types: Binary, Numeric, Categorical, Ordinal
- Features Identification
- Features Extraction

Data Preprocessing

- Data Distribution and Data Scale observation
- Data Integration
- Data cleaning
 - Missing values
 - Noise
- Dimensionality reduction
 - PCA
 - Correlation Analysis
- Data Transformation: Normalization
 - Data Type specific

Machine Learning

ML pipeline

Typical Steps in ML Pipeline

ML Techniques

- Supervised:
 - Classification
- Unsupervised
 - ► Rule Based Classification
 - Clustering
- Association Rule Mining

Feature Importance Mining

- Feature Weights
- Ablation Study
- Random Forests

Deep Learning

- Neural Networks
 - Classification
- Auto-encoders
 - Automatic Feature Learning
- Self Organizing Maps
 - Clustering

Evaluation and Tuning

- Accuracy
- RMSE
- ► F1 measure
- Precision and Recall
- Receiver Operating Characteristics (ROC)

relevant elements false negatives true negatives 0 true positives false positives selected elements

We evaluate performance of the model

Evaluation of a Campaign

 Confusion Matrix 			True Class (y _i)		
			Churner $(y_i=1)$	Non-Churner(y_i =0)	
	Predicted	Churner (c_i =1)	TP	FP	
	class (c_i)	Non-Churner (c_i =0)	FN	TN	

• Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

• Recall =
$$\frac{TP}{TP+FN}$$

• Precision =
$$\frac{TP}{TP+FP}$$

• F1-Score =
$$2 \frac{Precision * Recall}{Precision + Recall}$$

Tools

- Programming
 - Python: Scikit-Learn, Py-Weka, NLTK, PyBrain
 - PySpark: mllib (distributed)
 - R
 - ► Matlab, Neural Network Toolkit, Image Processing Toolkit
- Experimentation
 - ► Weka: Explorer, Experimenter, Knowledge Flow
- Visualization
 - ► Python: matplotlib
 - ► Tableau
 - D3 js

Deployment Frameworks

- Database: Scalable, Distributed
 - Graph Based: Neo4j
 - Document Store: MangoDB
 - Other: HDFS, Spark (RDD)
- Handle Big Data Map Reduce Programming Paradigm
 - Apache Spark
 - ► MLLIB
 - Streaming
 - Apache Storm
 - ► Topology Spout, Bolt

NLP - Natural Language Processing

Questions?

Thank you