

Ranking web

11 de octubre de 2014

Métodos Numéricos Trabajo Práctico Nro. 2

Integrante	LU	Correo electrónico
Martin Carreiro	45/10	martin301290@gmail.com
Kevin Kujawski	459/10	kevinkuja@gmail.com
Juan Manuel Ortíz de Zárate	403/10	jmanuoz@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

$$\label{eq:tensor} \begin{split} \text{Tel/Fax: (54 11) 4576-3359} \\ \text{http://www.fcen.uba.ar} \end{split}$$

${\rm \acute{I}ndice}$

1.	Resumen	3
2.	. Introducción teórica	4
	2.1. Matriz Dispersa	4
	2.2. DOK vs CRS vs CSC	4
3.	Desarrollo	5
	3.1. Page Rank	5
	3.2. HITS	5
	3.3. Indeg	5
4.	. Experimentación Y Resultados	6
	4.1. Casos de prueba	6
	4.2. Comparación de Normas	6
	4.3. PageRank	6
	4.4. Comparación de Tiempos	6
5.	. Discusión	7
6	Conclusiones	Q

 $2^{do.}$ cuatrimestre de 2014

1. Resumen

Introducción teórica 2.

2.1. Matriz Dispersa

Se define una matrix dispersa aquella a la que la mayoría de sus elementos son cero.

$$\begin{bmatrix} 0 & 0 & 0 & 0 & a_{04} \\ 0 & a_{11} & a_{12} & 0 & 0 \\ 0 & 0 & 0 & a_{23} & 0 \\ 0 & 0 & 0 & a_{33} & 0 \\ a_{40} & 0 & 0 & 0 & 0 \end{bmatrix}$$

DOK vs CRS vs CSC 2.2.

La matriz dispersa al tener la propiedad de tener muy pocos valores no-cero es conveniente solo guardar estos y asumir el resto como cero. Existen varias estructuras como Dictionary of Keys (dok), Compressed Sparse Row (CSR) o Compressed Sparse Column (CSC). En el desarrollo de este TP, utilizamos DOK por facilidad en el uso del mismo. Tanto CSR o CSC se basan en la estructura Yale y se diferencian en como guardan los mismos valores, uno priorizando las columnas y otro las filas respectivamente.

La estructura Yale consiste en a partir de la matriz original obtener tres vectores que contengan

- A = los elementos no—cero de arriba-abajo,izquierda-derecha
- IA = los indices para cada fila i del primer elemento no-cero de dicha fila
- JA = los indices de columna para cada valor de A

Si bien en caso de que haya en una fila muchos números no-ceros es más beneficioso la utilización de esta estructura, la facilidad con DOK permite hacer pruebas más rápido.

3. Desarrollo

3.1. Page Rank

3.2. HITS

3.3. Indeg

Algorithm 1 Indeg

- $1: result \leftarrow [];$
- 2: $result \leftarrow initializaWithZeros(sizeOfLinksMatrix[0]);\ linksReferencedForAPageinlinksMatrix\ linkinlinksReferencedForAPage\ result[link]+=1;$

$\overline{\mathbf{Algorithm}}$ 2 randomKill()

- 1: randomRemoveFrom(allLeaches);
- 2: recalculateByBandMatrix();

▶ All Leaches is loaded with matrix

4. Experimentación Y Resultados

4.1. Casos de prueba

A continución se listarán los casos utilizados y después se compararán los resultados.

■ MOVIES: Este caso incluye 5797 páginas

■ ABORTION: Este caso incluye 2293 páginas

• GENETIC: Este caso incluye 3468 páginas

STANFORD: Este caso incluye 281903 páginas

4.2. Comparación de Normas

4.3. PageRank

Para evaluar el comportamiento de la norma manhattan variando la probabilidad del navegante aleatorio $(a.k.a\ c)$

Claramente podemos notar que a medida que el C crece, el algoritmo toma más iteraciones en achicar la norma. Esto se debe a que el grado de aleatoriedad elimina el peso de la unión entre los sitios e indica una uniformidad en el comportamiento, entonces la matriz si bien estocástica ahora se encuentra distribuida esa suma = 1 por columna en varias filas. Esto produce mayor cantidad de iteraciones en el método de la potencia[1]

4.4. Comparación de Tiempos

 $2^{do.}$ cuatrimestre de 2014

5. Discusión

 $2^{do.}$ cuatrimestre de 2014

6. Conclusiones

Referencias

 $[1] \ http://personales.upv.es/\ pedroche/inv/_docs/fpedrochev4(sema).pdf$