We consider the ranked-NNI graph (the distance on ranked topologies inherited from τ -space).

Lemma 1. Let T be a ranked tree on n > 2 leaves. Then

$$n-1 \le \deg(T) \le 2(n-2).$$

Proof. Obvious.

Lemma 2. (1) $\frac{\deg(T)}{\deg(R)} > \frac{1}{2}$.

(2) deg(T) - deg(R) > n - 3.

Proof. Follows from previous Lemma.

Lemma 3. $d_{\tau}(T,R) = 1 \Rightarrow |N_1(T) \cap N_1(R)| \in \{0,1\}.$

Proof. Obvious. \Box

Lemma 4. Assume uniform random walk and $d_{\tau}(T,R) = 1$. Then

$$\kappa(T,R) \le \frac{1}{2(n-2)}.$$

Proof. Follows from Lemma 5.2 in [?].

What does this Lemma say about full and topological τ -spaces? In full τ -space, $\kappa(T, R) \leq 0$ [?] for some random walk. For which one?

Question 1. Assume some (e.g. uniform, lazy, ...) random walk. What are the m and M such that

$$m(\deg x, \deg y, \ldots) \le \kappa(x, y) \le M(\deg x, \deg y, \ldots)$$
?