Chemins spécifiques pour la classification dans les réseaux de neurones profonds

Bouzidi Belkassim - Elhouiti Chakib - Kezzoul Massili

Université de Montpellier

2 juin 2021

Introduction

Les réseaux de neurones profonds Problèmatique Solution proposée

- Organisation
- Analyse des données
- 4 Développement de l'architecture
- 6 Analyse des résultats
- Conclusion

Présentation des réseaux de neurones

Les réseaux de neurones sont constitués de plusieurs couches consécutives de neurones interconnectées.

Fonctionnement

Bias Nodes

Input Nodes Hidden Nodes

Output Nodes

4/34

Boite noire

5/34

Problèmatique

Objectifs

L'objectif est de comprendre le fonctionnement interne d'un réseau de neurones et de repérer des signatures d'activations.

- À partir de quelle couche le modèle change de comportement pour reconnaître une image?
- Les signatures des images de 7, sont-elles différentes de ceux des 1?
- ▶ Si on passe une image de 3 au modèle, à quoi va ressembler sa signature?

Bouzidi, Elhouiti, Kezzoul Chemins spécifiques 2 juin 2021

Solution proposée

- Construire des réseaux de neurones.
- Récupérer, pour chaque donnée, la sortie des couches cachées.
- Extraire les signatures grâce à des algorithmes de clustering.
- ▶ Réaliser une interface de visualisation en utilisant différentes techniques.

7/34

- Introduction
- Organisation
- Analyse des données
- Ø Développement de l'architecture
- 6 Analyse des résultats
- 6 Conclusion

Organisation du projet

- Introduction
- Organisation
- 3 Analyse des données

Seléction des données

- 4 Développement de l'architecture
- 6 Analyse des résultats
- Conclusion

Le jeu de données

Mixed National Institute of Standards and Technology

Base de données composée de 70000 images de chiffre manuscrit.

Seléction des données

- Garder un nombre précis d'images pour un ensemble de chiffres définis.
- Faciliter la phase de développement.
- Pouvoir mieux visualiser les résultats sur un petit ensemble de données.

Prétraitement

Scaling

Normalisation: Mettre les valeurs des images entre 0 et 1 au lieu de 0 et 255.

Flattening

Applatir les images pour avoir un tableau à une seule dimension au lieu d'une matrice.

One-hot encoding

Transformation des labels en un vecteur binaire contenant que des 0 et des 1.

- Pour un $1 \Longrightarrow [1,0,0]$.
- Pour un $3 \implies [0,1,0]$.
- Pour un $7 \implies [0,0,1]$.

- Introduction
- Organisation
- S Analyse des données
- 4 Développement de l'architecture

Modèle d'apprentissage Interface de visualisation

- 6 Analyse des résultats
- Conclusion

Jupyter notebook

Tensorflow, Keras

Voilà

Création du modèle

Modèle

- 2 couches cachées :
- ▶ 32 neurones pour la première;
- 64 pour la deuxième;
- ▶ fonction d'activation *relu* pour les couches internes ;
- ▶ et *softmax* pour la dernière couche.

```
self.model = Sequential([Dense(32, input_shape=(784, ), activation='relu')] +

corrected by the self.model = Sequential([Dense(32, input_shape=(784, ), activation='relu')] +

corrected by the self.model.compile(] optimizer=Adam(learning_rate=0.0001), activation='relu')] +

self.model.compile(] optimizer=Adam(learning_rate=0.0001), activation='relu')] +

corrected by the self.model.compile(] optimizer=Adam(learning_rate=0.0001), activation='relu')] + (activation='relu')] +
```

Clustering

K-means

K-means prend en paramètres les données et un certain K donnée par l'utilisateur, puis construit K clusters qui regroupent les données qui sont proches (en terme de distance euclidienne).

2 juin 2021

19 / 34

Choix du K

Choix du K

Concrétement, cette méthode consiste à calculer pour un clustering, la moyenne du score *Silhouette* de chaque point.

UMAP

UMAP

(Uniform Manifold Approximation and Projection) Utilise des algorithmes de mise en page graphique pour organiser les données dans un espace de faible dimension.

Diagramme de Sankey

Un diagramme de Sankey est un type de diagramme de flux dans lequel la largeur des flèches est proportionnelle au flux représenté.

Application web

Page web

Transformation d'un Jupyter notebook contenant les différentes visualisations et faisant le lien entre eux.

Application web

Page d'accueil

Création d'une page d'accueil personnalisée présentant nos différentes expérimentations.

site web a ete realise par requipe witt. Plus de detalls sur le projet sont disponibles su

- Introduction
- Organisation
- Analyse des données
- ① Développement de l'architecture
- 6 Analyse des résultats

Réponses aux questions

Conclusion

Résultats

26 / 34

Changement de comportement

Notre modèle arrive, dès la première couche cachée, à reconnaître une image.

Différence de signatures

On observe que les signatures des 1 sont majoritairement différentes de celles des 7. Sauf pour quelques rares exceptions.

Figure – Les images de 7 ressemblant à des 1

Insertion d'anomalies

Figure - Insertion d'images de 4

Insertion d'anomalies

Figure – Insertion d'images de 3

- Introduction
- Organisation
- Analyse des données
- Ø Développement de l'architecture
- 6 Analyse des résultats
- **6** Conclusion

Conclusion

- Un outil de visualisation ;
- Apports du projet ;
- Perspective.

Merci pour votre attention.

