Теория на мярката и интеграла (интеграл на Лебег)

Задачи за изпит

1. Можем да продължим лебеговата мярка *m* върху краен затворен интервал до такава върху цялата реална права по следния начин. Разбиваме реалната права на изброимо много крайни затворени интервали с положителна дължина:

$$\mathbb{R} = \bigcup_{k=1}^{\infty} I_k,$$

като всеки два интервала могат да имат най-много една обща точка. Казваме, че множестовото $S\subseteq\mathbb{R}$ е измеримо, ако $S\cap I_k$ е измеримо за всяко k. В този случай полагаме

$$m(S) = \sum_{k=1}^{\infty} m(S \cap I_k).$$

Докажете, че:

- (a) дефиницията на m(S), $S \subseteq \mathbb{R}$, не зависи от разбиването $\{I_k\}$;
- (б) множеството от измеримите подмножества на \mathbb{R} е σ -алгебра;
- (в) m върху \mathbb{R} е пълно адитивна.
- 2. Нека (X,\mathcal{F},μ) е пространство с мярка, $f\in M^+(X,\mu)$ и $\lambda>0$. Докажете неравенството на Чебишов

$$\mu(\lbrace x \in X : f(x) > \lambda \rbrace) \le \frac{1}{\lambda} \int_X f \, d\mu.$$

Докажете с негова помощ, че ако $f\in M^+(X,\mu)$ и $\int_X f\,d\mu=0$, то f(x)=0 п.н.

3. Нека (X, \mathcal{F}, μ) е пространство с мярка, $f \in M^+(X, \mu)$ и t > 0. Полагаме

$$S_f(t) = \{x \in X : f(x) > t\}$$
 и $\Psi_f(t) = \mu(S_f(t)).$

Докажете, че

$$\int_X f \, d\mu = \int_0^\infty \Psi_f(t) \, dt.$$

Упътване: Първо докажете твърдението за прости функции. След това го обобщете с помощта на теоремата на Б. Леви.

- 4. Установете връзка между крайните борелови знакопроменливи мерки върху краен затворен интервал и функциите с ограничена вариация върху същия интервал.
- 5. Нека $f,g\in L(\mathbb{R},m)$, където m е лебеговата мярка върху реалната права. Докажете, че:
 - (a) функцията f(x-t)g(t) е сумируема, като функция на t за почти всяко x;
 - (б) $h \in L(\mathbb{R}, m)$, където сме положили

$$h(x) = \int_{\mathbb{R}} f(x-t)g(t) \, dm(t);$$

(B) $||h||_L \leq ||f||_L ||g||_L$.

Функцията h се нарича конволюция на f и g и се означава с f * g. Може да се докаже, че тази операция е комутативна, асоциативна и дистрибутивна (по отношение на събирането).

Улътване: Първо забележете, че функцията f(x-t)g(t) е измерима като функция на променливите (x,t); приложете теоремите на Тонели и Фубини; използвайте, че $\int_{\mathbb{R}} F(x-t)\,dm(t) = \int_{\mathbb{R}} F(t)\,dm(t)$ за всеки $F\in M^+(\mathbb{R},m)$ и $x\in\mathbb{R}$.