此答卷无效

东南大学考试卷(A卷)

课程名	称相	既率论与数	理统计	考试:	学期 12				
	业	全校	考	试形式	闭卷	考证	考试时间长度 120 分钟		
题号			三	四	五	六	七	八	
得分									
	4	-t²/2dt 表元							
Ф(-1.64	(5) = 0.05	; Φ(-1.90	6) = 0.025	$\Phi(0) = 0$	$0.5; \Phi(1)$	= 0.8413			
		Ф(1.					2.26		
$t_{0.05}(8)$	= 1.86	$t_{0.025}(8)$	= 2.31,	$t_{0.05}(9)$	$=1.83, t_0$	_{0.025} (9) =	=2.20		
一、填充	·题(每空	格 2', 共	36')						
1)	已知 P(B))=0.2, P(A	(A)=0.3, P(A)	A B)=0.5,	则 P(B-A)		_;P(AUB)=	=o	
2)	一盒中有	2个白球	, 3 个黑玛	k, 每次抽	取一球,]	取后放回,	连续抽取	又 5 次,则第	
	5 次首2	欠取到黑#	求的概率	为	,第-	一次和第	五次都取	到白球概率	
	为								
•			工太公东		D(17 - 2)				
3)		≦量 X 服从							
4)	随机变量	t X, Y 服	从二元正法	态分布, E	X=EY=1,D	X=DY=4,	X和Y的	的相关系数为	
	0.5,则 I	P(X-Y>2)=		o.					
5)	随机变	量 X,	Y的联个	合分布律	▶ 为: P(∑	X=1,Y=1)=	=0.1; P(X	(=1,Y=2)=0.4	
	P(X=2,Y)	=1)=0.4; P	(X=2,Y=2))=0.1. 则 〕	X-Y 分布律	聿为		•	
	X 的边缘	分布律为		0		iş.			
6)	随机变量	ł X, Y 的	相互独立,	DX=DY	=1,则 co	v(X-2Y, 2	X+Y)=		
7)	设随相	机 变 量	序列 {	Xn,n=1,2,.	} 独 立	同分	布于 1	N(1,1) , 贝	
	$\frac{1}{n}(X_1^2)$	+ X ₂ ² +	$(+X_n^2)$	<i>_p</i> →	°		2		

8) 设总体 X 服从正态分布 $N(1,2), X_1, X_2, ..., X_{10}$ 是来此该总体的样本, \overline{X}, S^2 分别

表示样本均值和样本方差,则 $\mathbf{D}(\bar{X})=$ ______, $\mathbf{D}(S^2)=$ ______。

- 9) 随机变量 X 的分布律为 P(X= 2)=0.1, P(X=3)=0.2, P(X=4)=0.7,则其分布函数为____。
- 10) 随机变量 X 服从均值为 1 的指数分布,则 Y= 2X+1 的密度函数为____。
- 11) 设 X_1, X_2, X_3, X_4 是来自正态总体 N(0,9) 的简单随机样本,若 $c(X_1^2 + X_2^2 + X_4^2)$ 服 从 $\chi^2(3)$ 分 布 , 则 c= ______,若 $b\frac{X_1^2}{X_2^2 + X_3^2 + X_4^2} \sim F(1,3)$,则常数b= ______。
- 12) 设某假设检验问题在水平 α =0.1 时,根据样本得到的结论是拒绝原假设。若 α =0.2,则基于同样的样本和检验统计量得到的结论是_____。
- 13) 设总体 $X \sim f(x,a)$, a 为未知参数,若 $X_1, X_2, ..., X_n$ 是来自该总体的简单随机样本, \bar{X}, S^2 分别表示表示样本均值和样本方差。设 $\frac{\bar{X} a}{S}$ 的密度函数为 g(t)=2t,0 < t < 1, g(t)=0, 其他,则 <math>a 的置信度为 95%的置信区间为______。

二、(10°) 设有甲乙两个箱子,甲中有红球 3 只,白球 2 只; 乙箱中有红球 4 只,白球 1 只。随机地选一箱子,然后再随机的从该箱中任选一球。(1) 求取出的球为红球的概率; (2) 如果取出的球为红球,则该球取自甲箱的概率是多少?

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} a & x > 0, y > 0, x + y < 1 \\ 0 & \text{ 其它} \end{cases},$$

求(1)常数 a; (2)Y 的边缘密度函数; (3)求条件概率 P(Y<0.2|X=0.5)。

答卷

无

效

姓名

四、(10')设随机变量 X 和 Y 相互独立且都服从标准正态分布。令 $Z=X^2+Y^2$,求随机变量 Z 的概率密度函数 $f_Z(z)$ 。

五、(10') 某灯泡企业每月生产 20 万只节能灯泡,每只灯泡的寿命服从均值为 1000 小时的指数分布。现在从一大批灯泡中随机抽取 100 只进行检验。试用中心极限定理求 100 只灯泡的平均寿命超过 1200 小时的概率.

六、(10°)设总体 X 的概率分布密度函数如下,

$$f(x,a) = \begin{cases} e^{-(x-a)} & x \ge a \\ 0 & x < a \end{cases}$$

 $X_1,...X_n$ 为来自该总体的样本,(1)求参数 a 的最大似然估计量 \hat{a} ,(2) \hat{a} 是否是 a的 无偏估计量,说明理由。.

七、 (9')设总体 X 服从正态分布 N (u,b),u,b 未知。 现有来自该总体样本容量为 9 的样本, 其样本均值为 2.4,样本方差为 4. 试检验 H_0 : u=2.0 v.s. H_1 : u>2.0.(检验水平 $\alpha=0.05$)