Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko lehenengo zatia: AFD, AFED eta ε -AFED-en diseinua Bilboko Ingeniaritza Eskola (UPV/EHU) 1,6 puntu

2016-01-11

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 a sinboloaz hasi eta bai b eta bai c kopuru bakoitian dituzten hitzez eratutako L_1 lengoaia (0,250 puntu)

Lehenengo osagai bezala a sinboloa edukitzeaz gain, b sinboloa kopuru bakoitian eta c sinboloa kopuru bakoitian dituzten hitzez eratutako L_1 lengoaia. Adibidez, acbbb, abbaaabc, aacb eta accbbcabaa hitzak L_1 lengoaiakoak dira baina ε , a, aaa, abbcc, b, aacabac, aabcbc eta bccccc hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w| \ge 1 \land w(1) = a \land |w|_b \bmod 2 \ne 0 \land |w|_c \bmod 2 \ne 0 \}$$

1.2 a sinboloaz hasi edo b kopuru bakoitian edo c kopuru bakoitian duten hitzez eratutako L_2 lengoaia (0,250 puntu)

Gutxienez honako hiru baldintza hauetakoren bat betetzen duten hitzez osatutako L_2 lengoaia:

- Lehenengo sinboloa a izatea edo
- b kopurua bakoitia izatea edo
- c kopurua bakoitia izatea.

Adibidez, aa, aaa, abbcc, abaabc, aaab, ccc, baa, baacc, baac eta bbcb hitzak L_2 lengoaiakoak dira baina ε , ccaa, bccaabbba eta bbcbbc hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land (\exists v (v \in A^* \land w = av) \lor |w|_b \bmod 2 \neq 0 \lor |w|_c \bmod 2 \neq 0) \}$$

2 Automata finitu ez-deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

ε trantsizioak dituzten automata finitu ez-deterministen (ε-AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

4 Konputazio deterministen garapena (0,100 puntu)

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, aaaa)$
- 2. $\delta^*(q_0, bbaa)$
- 3. $\delta^*(q_0, cba)$
- 4. $\delta^*(q_0, cb)$
- 5. $\delta^*(q_0, \varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez: a

- 1. $\nu^*(r_0, aaac)$
- 2. $\nu^*(r_0, caaa)$
- 3. $\nu^*(r_0, bbc)$
- 4. $\nu^*(r_0, baa)$
- 5. $\nu^*(r_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\lambda^*(s_0, abac)$
- 2. $\lambda^*(s_0, abab)$
- 3. $\lambda^*(s_0, aba)$
- 4. $\lambda^*(s_0, abb)$
- 5. $\lambda^*(s_0, \varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

AFD honi dagokion δ trantsizio-funtzioa honako taula honen bidez adieraz daiteke:

δ	a	b	c
q_0	q_1	q_5	q_9
q_1	q_1	q_2	q_1
q_2	q_4	q_4	q_3
q_3	q_1	q_2	q_3
q_4	q_4	q_4	q_4
q_5	q_7	q_7	q_6
q_6	q_6	q_5	q_6
q_7	q_7	q_7	q_7
q_8	q_7	q_7	q_6
q_9	q_0	q_8	q_0