

C'e' uno qui

che

se LUI andrà in vacanza alle Fiji a Natale

tutti

andranno in vacanza alle Fijji a Natale

16. Lezione Corso di Logica 2020/2021

4 dicembre 2020

Maria Emilia Maietti

email: maietti@math.unipd.it

SIMULAZIONE appello

venerdi' 18 dicembre 2020 (teorie)

+

giovedi' 7 gennaio 2021 (classificazione)

10.30-12.30

tautologia

vera in OGNI modello

opinione

falsa in un modello (= contromodello)

vera in altro modello

contraddizione

falsa in OGNI modello

	Linguaggio proposizionale	Linguaggio predicativo		
	Linguaggio proposizionale	Linguaggio predicativo		
sintassi	proposizione	predicati		
Variabili	A, B, C,	A, B, $A(x)$, $B(y)$, $C(x,y)$,		
verità globale	tabella di verità	l vari modelli		
verità locale	riga di tabella	UN modello		

	proposizionale	predicativa		
fr tautologia	=sua tabella con TUTTI 1	= vera in TUTTI i modelli		
fr opinione	= sua tabella con UNA riga 0 + = sua tabella con UNA riga 1	= falso in UN modello detto CONTROMODELLO di fr = vero in UN altro modello		
fr paradosso	= sua tabella con TUTTI 0	= falso in TUTTI i modelli		

Quando un predicato è vero?

per stabilire quando $\forall x A(x)$ è vera

OCCORRE definire **DOMINIO** di valori di quantificazione

dove le variabili *possono variare*!!!

Quando un predicato è vero?

scegliamo un **dominio** D (non vuoto!)

e definiamo un funzione

$$A(x)^{D}(-): D \longrightarrow \{0,1\}$$

decidendo se per un qualunque $d \in \mathcal{D}$

$$A(x)^{D}(d) = 1$$

$$A(x)^{D}(d) = 1$$
 o $A(x)^{D}(d) = 0$

notazione di un modello

un modello

con dominio $\mathbf D$ e funzione $A(x)^D$

per il linguaggio predicativo con il solo predicato atomico A(x) è una coppia

$$\mathcal{D} \equiv (D, A(x)^D)$$

indicata brevemente con la \mathcal{D} calligrafica

quantificazione universale vera

 $\forall x \ A(x) \ \text{è vera} \ \text{nel modello}$

$$\mathcal{D} \equiv (D, A(x)^D)$$

ovvero

$$(\forall x \ A(x))^D = 1$$
sse

PER OGNI $d \in D$ si ha $A(x)^D(d) = 1$

quantificazione esistenziale vera

$$\exists x \ A(x) \ \text{è vera} \ \text{nel modello}$$

$$\mathcal{D} \equiv (D, A(x)^D)$$

ovvero

$$(\exists x \ A(x))^D = 1$$
sse

ESISTE $d \in D$ tale che $A(x)^D(d) = 1$

esiste una TABELLA di verità per la quantificazione universale?

dipende dal numero degli elementi del dominio

che può avere INFINITI elementi

fissato dominio D

una tabella per $\forall x \ A(x)$

COLONNE= gli elementi in D

RIGHE= funzione $A(x)^{D}(-)$ che interpreta il predicato A(x)

$A(x)^D(\mathbf{D_1})$	$A(x)^D(d_2)$		$A(x)^D(d_n)$		$\forall x \ A(x)$
1	1	1111111111	1	11111111	1
0	1				0
1	1	0	•••		0
1	0	• • • • • •			0
			•••		0
0	0	0000000000	0	00000000	0

esiste una TABELLA di verità per la quantificazione esistenziale?

dipende dal numero degli elementi del dominio

che può avere INFINITI elementi

fissato dominio L

una tabella per $\forall x \ A(x)$

COLONNE= gli elementi in D

RIGHE= funzione $A(x)^{D}(-)$ che interpreta il predicato A(x)

$A(x)^D(\mathbf{D_1})$	$A(x)^D(d_2)$		$A(x)^D(d_n)$		$\exists x \ A(x)$
0	0	0000000000	0	000000000	0
0	1				1
1	1	0			1
1	0				1
					1
1	1	11111111111	1	1111111111	1

modello per un linguaggio predicativo $\mathcal L$

dato linguaggio predicativo $\mathcal L$ con costanti c_j e predicati atomici $P_k(x_1,\dots,x_n)$ un **modello** per $\mathcal L$

indicato con la scrittura è dato da

- un dominio (=insieme non vuoto) *D*
- ullet un'interpretazione di costanti come elementi di D e di predicati atomici come funzioni come segue

costante $c_j \sim$ elemento di dominio $c_j{}^D arepsilon D$

predicato atomico
$$P_k(x_1,\ldots,x_n)$$
 \leadsto funzione $P_k(x_1,\ldots,x_n)^D(-):D^n\longrightarrow \{0,1\}$

Interpretazione di una formula generica

l'interpretazione di una formula generica $fr(x_1,\ldots,x_n)$

in un modello con dominio

D

è una funzione

 $\mathbf{fr}(x_1,\ldots,x_n)^D(-):D^n\longrightarrow\{0,1\}$

interpretazione di una formula con costante

in un modello con dominio D

l'interpretazione di una formula fr(c) con constante

si ottiene applicando l'interpretazione della formula fr(x) a quello della costante:

$$(\mathtt{fr}(c))^D \equiv (\mathtt{fr}(x))^D(c^D)$$

Convenzione su scrittura formule con variabili libere

conveniamo che con la scrittura

$$fr(x_1,\ldots,x_n)$$

si intende una formula α ovvero

 $\mathbf{fr}(x_1,\ldots,x_n) \equiv \alpha$ con variabili libere incluse nella lista

$$x_1,\ldots,x_n$$

ovvero
$$\mathbf{VL}(\alpha) \subseteq \{x_1, \ldots, x_n\}$$

ed inoltre

se una variabile x_n NON compare proprio in $\mathbf{fr}(x_1,\ldots,x_n) \equiv \alpha$ ovvero $x_n \not\in \mathbf{VL}(\alpha)$ allora per ogni n-upla (d_1,\ldots,d_n) in \mathcal{D}^n

lista di
$$n$$
-elementi con d_n lista di $n-1$ -elementi SENZA d_n
$$\mathbf{fr}(x_1,\ldots,x_n)^D(\mathbf{D_1},\ldots,d_{n-1},d_n) = \alpha^D(\mathbf{D_1},\ldots,d_{n-1})$$

se in $\mathbf{fr}(x_1,\ldots,x_n) \equiv lpha$ SENZA variabili libere

allora per ogni n-upla (d_1,\ldots,d_n) in \mathcal{D}^n

$$D(\mathbf{D}_1, d, d)$$

lista di
$$n$$
-elementi con d_n costante proposizionale
$$\mathbf{fr}(x_1,\ldots,x_n)^D(\mathbf{D_1},\ldots,d_{n-1},d_n) = \mathbf{fr}(x_1,\ldots,x_n)^D = \alpha^D$$

interpretazione delle formule in un modello

in un modello con dominio D l'interpretazione di una formula GENERICA

$$fr(x_1,\ldots,x_n)$$

$$fr(x_1,...,x_n)^D(-,...,-):D^n \to \{0,1\}$$

è definita per induzione come segue:

fissati
$$(d_1,\ldots,d_n)$$
 in D^n

$$(
egreentering \mathbf{fr_1}(x_1,\ldots,x_n))^D(d_1,\ldots,d_n)$$
 $=$
 $egreentering (\mathbf{fr_1}(x_1,\ldots,x_n))^D(d_1,\ldots,d_n))$
 $=$ $\mathbf{1}$
 \mathbf{sse}
 $\mathbf{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)=\mathbf{0}$

$$(\operatorname{fr_1}(x_1,\ldots,x_n) \& \operatorname{fr_2}(x_1,\ldots,x_n))^D(d_1,\ldots,d_n)$$
 =
$$\operatorname{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n) \& \operatorname{fr_2}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)$$
 = $\mathbf{1}$ sse
$$\operatorname{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n) = \mathbf{1}$$
 E $\operatorname{fr_2}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n) = \mathbf{1}$

$$(\operatorname{fr_1}(x_1,\ldots,x_n) \vee \operatorname{fr_2}(x_1,\ldots,x_n))^D(d_1,\ldots,d_n)$$
 $=$ $\operatorname{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n) \vee \operatorname{fr_2}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)$ $=$ $\mathbf{1}$ sse $\operatorname{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n) = \mathbf{1}$ O $\operatorname{fr_2}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n) = \mathbf{1}$

$$(\mathbf{fr_1}(x_1,\ldots,x_n)\to\mathbf{fr_2}(x_1,\ldots,x_n))^D(d_1,\ldots,d_n)\\ =\\ \mathbf{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)\to\mathbf{fr_2}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)\\ =\mathbf{1}\\ \mathrm{sse}\\ \mathbf{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)=\mathbf{0}\\ \mathrm{oppure\ vale\ che}\\ \mathrm{SE}\ \mathbf{fr_1}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)=\mathbf{1}\ \mathrm{ALLORA}\ \mathbf{fr_2}(x_1,\ldots,x_n)^D(d_1,\ldots,d_n)=\mathbf{1}$$

$$(\,orall x_n\, extstyle{fr}(x_1,\dots x_{n-1},x_n)\,)^D(d_1,\dots,d_{n-1})=\mathbf{1}$$
 sse

PER OGNI d $\mathbf{fr}(x_1,\ldots x_{n-1},x_n)^D(d_1,\ldots,d_{n-1},d)=\mathbf{1}$

$$(\exists x_n \; \mathbf{fr_1}(x_1, \dots x_{n-1}, x_n) \,)^D(d_1, \dots, d_{n-1}) = \mathbf{1}$$
 sse

ESISTE
$$d$$
 $\mathbf{fr_1}(x_1, \dots x_{n-1}, x_n)^D(d_1, \dots, d_{n-1}, d) = \mathbf{1}$

Esempi

$$(\mathbf{R}(x) \to \forall x \, \mathbf{R}(x))^D(d) = (\mathbf{R}(x))^D(d) \to (\forall x \, \mathbf{R}(x))^D$$

in quanto **NON** ci sono variabili libere in $\forall x \ R(x)$

$$(R(x) \to R(y))^D(\mathbf{D_1}, d_2) = R(x)^D(\mathbf{D_1}) \to R(y)^D(d_2)$$

convenendo di usare l'ordine alfabetico per variabili NON indicizzate

verità formula in UN modello

una formula

 $\mathtt{fr}(y_1,\ldots,y_n)$ è **VERA** in un modello con dominio D

se e solo se

PER OGNI
$$(d_1,\ldots,d_n)arepsilon D^n$$
 $extbf{fr}(y_1,\ldots,y_n)^{\mathcal{D}}(d_1,\ldots,d_n)=\mathbf{1}$

se e solo se

$$(\forall \mathbf{y_1} \forall \mathbf{y_2} \dots \forall \mathbf{y_n} \mathbf{fr}(\mathbf{y_1, y_2, \dots, y_n}))^{\mathcal{D}} = \mathbf{1}$$

cosa è un modello rispetto alla logica classica predicativa

ogni **modello** ${\mathcal D}$ rende vere

le regole + loro inverse della logica classica predicativa con uguaglianza LC=

frè tautologia sse \vdash frè derivabile in $LC_=$

modello/contromodello di una formula

def. modello \mathcal{D} di un enunciato \mathbf{fr} di \mathcal{L}

=modello (della logica classica) in cui fr è vera

def. contromodello \mathcal{D} di un enunciato \mathbf{fr} di \mathcal{L}

= modello (della logica classica) in cui fr è falsa

interpretare è operazione inversa di formalizzare

formalizzazione

 $semantica \mapsto sintassi$

frasi in lingua corrente \mapsto formule

interpretazione

 $sintassi \mapsto semantica$

formule \mapsto significato in dominio

Esempio

una formalizzazione di

"Minni è femmina ma Topolino no".

è $A(m) \& \neg A(t)$

con

A(x)= x è femmina

t= Topolino

m= Minni

esempio I di MODELLO per A(x) con constanti t ed m

costruiamo un modello che riflette esattamente il significato della frase formalizzata

$$\mathbf{D_1}$$
= { Topolino, Minni }
 $\mathbf{A(x)^{D_1}}(d)$ =1 sse d è femmina
 $\mathbf{t^{D_1}}$ =Topolino
 $\mathbf{m^{D_1}}$ =Minni

e in tal modello
$$(\forall x \, A(x))^{\mathbf{D_1}} = \mathbf{0}$$
 perchè Topolino non è una femmina $\mathbf{A}(\mathbf{t})^{\mathbf{D_1}} = \mathbf{A}(\mathbf{x})^{\mathbf{D_1}}(\mathbf{t^{D_1}}) = \mathbf{A}(\mathbf{x})^{\mathbf{D_1}}(\mathsf{Topolino}) = \mathbf{0}$ inoltre $\mathbf{A}(\mathbf{m})^{\mathbf{D_1}} = \mathbf{A}(\mathbf{x})^{\mathbf{D_1}}(\mathbf{m^{D_1}}) = \mathbf{A}(\mathbf{x})^{\mathbf{D_1}}(\mathsf{Minni}) = \mathbf{1}$ e quindi $(\mathbf{A}(\mathbf{m}) \& \neg \mathbf{A}(\mathbf{t}))^{\mathbf{D_1}} = \mathbf{1} \& \neg \mathbf{0} = \mathbf{1}$ ed anche $(\exists \mathbf{x} \, \mathbf{A}(\mathbf{x}))^{\mathbf{D_1}} = \mathbf{1}$ perchè $\mathbf{A}(\mathbf{m})^{\mathbf{D_1}} = \mathbf{1}$

esempio II di MODELLO per A(x) con constanti t ed m

in questo altro modello *cambiamo* il significato di A(x) con

$$A(x)=x$$
 è maschio

$$egin{aligned} \mathbf{D_2} = \{ & \text{Topolino} \ , & \text{Minni} \ \} \ & \mathbf{A(x)^{D_2}}(d) = & \mathbf{1} \ \text{sse} \ d \ \dot{e} \ \textit{maschio} \ & \mathbf{t^{D_2}} = & \text{Topolino} \ & \mathbf{m^{D_2}} = & \text{Minni} \end{aligned}$$

e in tal modello
$$(\forall x \ A(x))^{\mathbf{D_2}} = \mathbf{0}$$
 perchè Minni non è un maschio $\mathbf{A}(\mathbf{m})^{\mathbf{D_2}} = \mathbf{A}(\mathbf{x})^{\mathbf{D_2}}(\mathbf{m}^{\mathbf{D_2}}) = \mathbf{A}(\mathbf{x})^{\mathbf{D_2}}(\mathsf{Minni}) = \mathbf{0}$ inoltre $\mathbf{A}(\mathbf{t})^{\mathbf{D_2}} = \mathbf{A}(\mathbf{x})^{\mathbf{D_2}}(\mathbf{t}^{\mathbf{D_2}}) = \mathbf{A}(\mathbf{x})^{\mathbf{D_2}}(\mathsf{Topolino}) = \mathbf{1}$ e quindi $(\mathbf{A}(\mathbf{m}) \ \& \ \neg \mathbf{A}(\mathbf{t}))^{\mathbf{D_2}} = \mathbf{0} \ \& \ \neg \mathbf{1} = \mathbf{0}$ ed anche $(\exists \mathbf{x} \ \mathbf{A}(\mathbf{x}))^{\mathbf{D_2}} = \mathbf{1}$ perchè $\mathbf{A}(\mathbf{t})^{\mathbf{D_2}} = \mathbf{1}$

esempio III di MODELLO per A(x) con constanti t ed m

in questo terzo modello manteniamo il significato di A(x)=x è femmina ma invertiamo l'interpretazione delle costanti

$$egin{aligned} \mathbf{D_3} = \{ & ext{Topolino} \ , & ext{Minni} \ \} \ & \mathbf{A(x)^{D_3}}(d) = & ext{1 sse } d \ e \ femmina \ & \mathbf{m^{D_3}} = & ext{Topolino} \ & \mathbf{t^{D_3}} = & ext{Minni} \end{aligned}$$

e in tal modello
$$(\forall x\,A(x))^{\mathbf{D_3}}=\mathbf{0}$$
 perchè Topolino non è una femmina $\mathbf{A}(\mathbf{m})^{\mathbf{D_3}}=\mathbf{A}(\mathbf{x})^{\mathbf{D_3}}(\mathbf{m}^{\mathbf{D_3}})=\mathbf{A}(\mathbf{x})^{\mathbf{D_3}}(\mathsf{Topolino})=\mathbf{0}$ inoltre $\mathbf{A}(\mathbf{t})^{\mathbf{D_3}}=\mathbf{A}(\mathbf{x})^{\mathbf{D_3}}(\mathbf{t}^{\mathbf{D_3}})=\mathbf{A}(\mathbf{x})^{\mathbf{D_3}}(\mathsf{Minni})=\mathbf{1}$ e quindi $(\mathbf{A}(\mathbf{m})\ \&\ \neg\mathbf{A}(\mathbf{t})\)^{\mathbf{D_3}}=\mathbf{0}\ \&\ \neg\mathbf{1}=\mathbf{0}$ ed anche $(\exists\mathbf{x}\,\mathbf{A}(\mathbf{x}))^{\mathbf{D_3}}=\mathbf{1}$ perchè $\mathbf{A}(\mathbf{m})^{\mathbf{D_3}}=\mathbf{1}$

esempi di modelli per M(x) e U(x) e \overline{s}

 $\mathbf{D_1}$ = Esseri viventi $\mathbf{D_1}$ per $\mathbf{d} \in \mathbf{D_1}$ $\mathbf{M(x)^{D_1}(d)}$ =1 sempre

$$\mathbf{U}(\mathbf{x})^{\mathbf{D_1}}(\mathbf{d})$$
=1 sse "**d** è un uomo"

$$oxedsymbol{\overline{s}^{D_1}}$$
 = Simone vale $(orall \mathbf{x} \ \mathbf{M}(\mathbf{x})\,)^{\mathbf{D_1}} = \mathbf{1}$

 $\mathbf{D_1}$ = Esseri viventi per $\mathbf{d} \in \mathbf{D_2}$

$$\mathbf{M}(\mathbf{x})^{\mathbf{D_2}}(\mathbf{d})$$
 =1 sse $\mathbf{d}
eq extsf{Simone}$

$$\mathbf{U}(\mathbf{x})^{\mathbf{D_2}}(\mathbf{d})$$
=1 sse " \mathbf{d} è un uomo"

$$egin{aligned} \overline{s}^{\mathbf{D_2}} &= \text{``Simone''} \ \end{aligned}$$
 vale $(\ orall \mathbf{x}\ \mathbf{M}(\mathbf{x})\)^{\mathbf{D_2}} = \mathbf{0} \ \end{aligned}$ perchè $\mathbf{M}(\mathbf{ar{s}})^{\mathbf{D_2}} = \mathbf{M}(\mathbf{x})^{\mathbf{D_2}} (\mathsf{Simone}) = \mathbf{0} \ \end{aligned}$

l'interpretazione dell'uguaglianza è la stessa in OGNI MODELLO

in ogni modello con dominio D

l'interpretazione dell'uguaglianza è così definita (quindi NON varia!!!)

$$(x=y)^D(-): D \times D \longrightarrow \{0,1\}$$

$$(x=y)^D(\mathbf{d_1},\mathbf{d_2}) \, \equiv \, egin{cases} 1 & \mathsf{se}\,\mathbf{d_1} = \mathbf{d_2} \ 0 & \mathsf{se}\,\mathbf{d_1}
eq \mathbf{d_2} \end{cases}$$

nel caso di due costanti

$$(c_1 = c_2)^D \in \{0, 1\}$$

$$(c_1=c_2)^D \equiv egin{cases} 1 & \sec{c_1}^D = c_2^D \ 0 & \sec{c_1}^D
eq c_2^D \end{cases}$$

e nel caso di una costante e variabile

$$(\mathbf{x} = \mathbf{c})^D(-) : D \longrightarrow \{0, 1\}$$

$$(oldsymbol{x}=oldsymbol{c})^D(oldsymbol{d}) \, \equiv \, egin{cases} 1 & oldsymbol{\operatorname{se}}\,oldsymbol{d}=oldsymbol{c}^D \ 0 & oldsymbol{\operatorname{se}}\,oldsymbol{d}
eq oldsymbol{c}^D \end{cases}$$

tautologia $(\mathtt{fr})^D = \mathbf{1}$ in **OGNI** modello $\mathcal D$

contraddizione $(\mathtt{fr})^D = \mathbf{0} \text{ in OGNI modello } \mathcal{D}$

esempio di classificazione di enunciato con uguaglianza

Stabilire se la formula

$$\forall \mathbf{x} \ \forall \mathbf{y} \ \mathbf{x} = \mathbf{y}$$

è tautologia/opinione/paradosso

esempio di classificazione di enunciato con uguaglianza

per classificare

$$\forall x \, \forall y \, x = y$$

$$\frac{\vdash \mathbf{w} = \mathbf{z}}{\vdash \forall \mathbf{y} \ \mathbf{w} = \mathbf{y}} \ \forall -D$$
$$\vdash \forall \mathbf{x} \ \forall \mathbf{y} \ \mathbf{x} = \mathbf{y}$$

proviamo a derivarlo

applicando le regole $\forall -D$ con variabili **NUOVE**

e si vede che il sequente NON si può derivare...

Ma per essere certi costruiamo un contromodello

falsificando $\vdash w = z$

il che significa che **dobbiamo necessariamente scegliere un dominio con 2 elementi diversi!** (evidenziato dalla presenza di due variabili diverse!!!!)

quindi scegliamo un dominio con due elementi

(e questo basta per definire un modello per l'uguaglianza!!!)

 $\mathbf{D_{contra}} = \{ \text{Topolino}, \text{Minni} \}$

ove chiaramente

$$({m w}=z)^{D_{contra}}({ t Minni},{ t Topolino})={m 0}$$
e quindi $(\ orall x\ orall y\ x=y\)^{D_{contra}}={m 0}$

ovvero $\forall \mathbf{x} \ \forall \mathbf{y} \ \mathbf{x} = \mathbf{y}$ NON è una tautologia

cerchiamo un modello di $\forall x \ \forall y \ x = y$

per trovare un modello che rende vero

$$\forall x \, \forall y \, x = y$$

 $\frac{\forall \mathbf{x} \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y} \,, \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y} \,, \, \mathbf{x} = \mathbf{x} \, \vdash}{\forall \mathbf{x} \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y} \,, \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y} \, \vdash}{\forall \mathbf{x} \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y} \, \vdash} \, \forall -S}$ $\frac{\forall \mathbf{x} \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y} \, \vdash}{\vdash \neg \, \forall \mathbf{x} \, \forall \mathbf{y} \, \mathbf{x} = \mathbf{y}} \, \neg -D$

proviamo a derivare la sua negazione

applicando le regole $\forall -S$ con le stesse variabili secondo il **vademecum**

(senza aumentare le variabili vincolate dopo l'applicazione di $\forall -S !!$)

e si vede che si potrebbe andare avanti all'infinito ad applicare $\forall -S$... ma questo NON basta per concludere che **NON è derivabile**....!!!

Per essere certi che

$$\vdash \neg \forall x \forall y \ x = y$$
 NON è derivabile

costruiamo un contromodello

falsificando la foglia

$$\forall \mathbf{x} \ \forall \mathbf{y} \ \mathbf{w} = \mathbf{y} \ , \ \forall \mathbf{y} \ \mathbf{x} = \mathbf{y} \ , \ \mathbf{x} = \mathbf{x} \vdash$$

il che significa che dobbiamo necessariamente scegliere un dominio con UN SOLO elemento (evidenziato dalla formula sempre vera x=x) quindi scegliamo

$$\mathbf{D_{contraNeg}} = \{ \text{Minni} \}$$

ove chiaramente
$$(\forall x \forall y \ x = y)^{D_{contraNeg}} = \mathbf{1}$$
 e quindi

$$\mathbf{D_{contraNeg}}$$
 definisce un **contromodello** di $\neg \ \forall x \ \forall y \ x = y$ **modello** di $\forall x \ \forall y \ x = y$

quindi

grazie al contromodello $\mathbf{D_{contra}}$ e al modello $\mathbf{D_{contra}Neg}$

concludiamo che

$$\forall x \, \forall y \, x = y$$

è una **OPINIONE**

