MEEN 621 Summary

Shivanand P

November 15, 2022

Contents

1	Pote	ential Flow
	1.1	Cartesian \Leftrightarrow Polar Velocities
	1.2	Stream Function \Leftrightarrow Potential Function \Leftrightarrow Velocities
	1.3	Complex Potentials in Cartesian Coordinates
	1.4	Complex Potentials in Polar Coordinates

1. Potential Flow

Complex Potential
$$F(z) = \phi(z) + i \psi(z)$$
 Complex Velocity $w(z) = u - iv = \frac{dF}{dz}$

1.1. Cartesian ⇔ Polar Velocities

$$u = v_r \cos \theta - v_\theta \sin \theta$$
$$v = v_r \sin \theta + v_\theta \cos \theta$$
$$v_r = u \cos \theta + v \sin \theta$$
$$v_\theta = -u \sin \theta + v \cos \theta$$

1.2. Stream Function → Potential Function → Velocities

Also called Cauchy Reimann Equations

$$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
$$v = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

1.3. Complex Potentials in Cartesian Coordinates

	ϕ	ψ	u	v
Uniform	$U(x\cos\alpha + y\sin\alpha)$	$U(y\cos\alpha - x\sin\alpha)$	$U\cos\alpha$	$U\sin\alpha$
Corner				
Source	$\frac{m}{4\pi} \ln[(x-x_0)^2 + (y-y_0)^2]$	$\frac{m}{2\pi} \arctan \frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi} \left(\frac{x}{x^2 + y^2} \right)$	$\frac{m}{2\pi} \left(\frac{y}{x^2 + y^2} \right)$

1.4. Complex Potentials in Polar Coordinates

	ϕ	ψ	v_r	$v_{ heta}$
Uniform	$Ur\cos(\theta - \alpha)$	$Ur\sin(\theta - \alpha)$	$U\cos(\theta - \alpha)$	$-U\sin(\theta-\alpha)$
Corner	$Cr^n\cos n\theta$	$Cr^n \sin n\theta$	$nCr^{n-1}\cos[(n-1)\theta]$	$-nCr^{n-1}\sin[(n-1)\theta]$
Source	$\frac{m}{2\pi} \ln r$	$\frac{m}{2\pi}\theta$	$rac{m}{2\pi r}$	0