Universiteit Antwerpen

Fysica

MASTERPROEF

Semilineaire spectraalanalyse met meerdere eindmembers

Auteur:
Thorvald Dox

 $\begin{array}{c} \textit{Promotor:} \\ \text{Paul Scheunders} \\ \textit{Copromotor:} \\ \text{Rob Heylen} \end{array}$

Inhoudsopgave

Al	Abstract									
In	leidiı	ng	4							
	0.1	aardopservatie	4							
1	ontr	nengen	5							
	1.1	spectrale analyse	5							
		1.1.1 atmosferische correctie	5							
	1.2	ontmengen	5							
	1.3	lineair ontmengen	5							
		1.3.1 implementatie in matlab	6							
	1.4	multilineair ontmengen	6							
		1.4.1 berekening	6							
		1.4.2 reflectancy vs albedo	6							
		1.4.3 afhankelijke vs onafhankelijke P waarden	6							
		1.4.4 Ondergrens van P waarde	6							
		1.4.5 implementatie in matlab	6							
2	Sele	ecteren	7							
	2.1	Variabiliteit	7							
	2.2	MESMA	7							
		2.2.1 ontmengingsmethode naar keuz (lineair vs multilineair)	7							
		2.2.2 implementatie in matlab	7							
	2.3	AAM	7							
		2.3.1 implementatie in matlab	8							
3	Met	shodes	9							
	3.1	Semi-lineair model	9							
		3.1.1 Theoretische controle dmv monte carlo simulaties	9							
	3.2	multilineair AAM	9							
4	experimentele vergelijking van verschillende methodes									
-	4.1	Alina dataset	10							
	4.2	Lijst en korte uitleg bij alle methodes	10							
	4.3	Bepreking lineair vs semi-linair	11							

α	• 1	•		3 (T) (C) (A
Sam	1	ında	$1r_{\Omega}$	MESMA
ω_{CIII}	LL.	шиса	\mathbf{I}	TATEMENTAL

Inhoudsopgave

4.4	Bespreking semi-lineair vs multilineair	11			
4.5	Bespreking P-afhankelijkheid	11			
4.6	Bespreking P-ondergrens	11			
4.7	Bepreking multilinair AAM vs semilinair model	11			
Appendices					
Bibliografie					

Abstract

Inleiding

0.1 aardopservatie

ontmengen

1.1 spectrale analyse

- spectra als functies (eigenschappen van licht)
- \bullet spectra als vector (endmembers) \rightarrow matlab implementatie
- mengen van endmembers (abundancies)

1.1.1 atmosferische correctie

1.2 ontmengen

- optimalisatieprobleem
- reconstructie
- reconstructieerror
- vrijheidsgraden

1.3 lineair ontmengen

Least-Squares \rightarrow Berekening

Semilineaire MESMA ontmengen

niet-negativiteit

sum to one

1.3.1 implementatie in matlab

1.4 multilineair ontmengen

Uitleg \rightarrow lichtstraal heeft kans om te reflecteren

- 1.4.1 berekening
- 1.4.2 reflectancy vs albedo
- 1.4.3 afhankelijke vs onafhankelijke P waarden
- 1.4.4 Ondergrens van P waarde

Of dat P > 0 moet gebruikt worden als voorwaarde of niet.

1.4.5 implementatie in matlab

Selecteren

2.1 Variabiliteit

- variabiliteit
- bibliotheek \rightarrow model
- pixel-afhankelijke selectie

2.2 MESMA

- Ontmengen aan de hand van elke subset
- Selectie op basis van niet-negativiteitsvoorwaarde

2.2.1 ontmengingsmethode naar keuz (lineair vs multilineair)

2.2.2 implementatie in matlab

2.3 AAM

- concept hoek in hoogdimentonale ruimtes
- AAM

Semilineaire MESMA Selecteren

2.3.1 implementatie in matlab

Methodes

3.1 Semi-lineair model

ontkoppeling van Ontmenging in MESMA bij selectie tov ontmenging voor abundancies

3.1.1 Theoretische controle dmv monte carlo simulaties

3.2 multilineair AAM

experimentele vergelijking van verschillende methodes

4.1 Alina dataset

4.2 Lijst en korte uitleg bij alle methodes

Elke methode is hiervoor beschreven, maar dit beschrijft kort de verschillen in de methodes en hoe deze geimplementeerd zijn door middel van 'schakelaars' in de code. Ook een uitleg bij de weergave van de resultaten.

- lineair MESMA
- semi-lineair MESMA
- multi-lineair MESMA
- lineair AAM
- multilineair AAM

 \rightarrow Voor de multilineaire modellen wordt ook al dan nie
tP>0en Pmateriaalafhankelijk vergeleken.

4.3 Bepreking lineair vs semi-linair

Verschil voor hoge reflectie (bomen) \rightarrow semilinair geeft betere resultaten voor dezelfde runtime

4.4 Bespreking semi-lineair vs multilineair

→ semilineair geeft vergelijkbare resultaten op kortere tijd

4.5 Bespreking P-afhankelijkheid

 \rightarrow P-afhankelijkheid geeft vergelijkbare resultaten op gelijke tijd, maar heeft meer vrijheidsgraden

4.6 Bespreking P-ondergrens

verschil voor lage reflectie (asfalt) \rightarrow Weglaten van ondergrens geeft betere resultaten op gelijke tijd.

4.7 Bepreking multilinair AAM vs semilinair model

 \rightarrow zelfde resultaten voor kortere tijd.

Appendices

Bibliografie

- [1] Jose M. Biouscas-dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheunders, Nasser M. Nasrabadi, and Jocelyn Chanussot, *Hyperspectral remote sensing data analysis and future challenges*, Geoscience and remote sensing magazine (2013), 6–36.
- [2] Jose M. Biouscas-dias, Antonio Plaza, Nicolas Dobigeon, Mario Parente, Qian Du, Pual Grader, and Jocelyn Chanussot, *Hyperspehyper unmixing overview: Geometrical, statistical and sparse regression based approaches.*, Journal of selected topics in applied earth opservation and remote sensing 5 (2012), no. 2, 354–376.
- [3] Xiaoxiao Du, Alina Zare, Paul Gader, and Dmitri Dranishnikov, *Spatial and spectral unmixing using the beta compositional model*, Journal of selected topics in applied earth opservation and remote sensing **7** (2014), no. 6, 1994–2003.
- [4] Rob Heylen and Paul Scheunders, A multilinear mixing model for nonlinear spectral unmixing.
- [5] Rob Heylen, Alina Zare, Paul Gader, and Paul Scheunders, Hyperspectral unmixing with endmember variability via alternating angle minimization.
- [6] MATLAB, version 8.5.0 (r2015a), The MathWorks Inc., Natick, Massachusetts, 2015.