

Microsoft Power BI

Шевцов Василий Викторович, директор ДИТ РУДН, shevtsov_vv@rudn.university

Правила форматирования


```
ИмяФункции()
ИмяФункции(Параметр1)
ИмяФункции(Параметр1;Параметр2)
ИмяФункции(Параметр1;Параметр2;...;ПараметрN)
```

Параметры функций

- значения (число, текст, дата)
- 'Таблица'
- 'Таблица'[Столбец]
- [Mepa]
- вложенная функция


```
Мера = Функция1(Функция2(Функция4([Мера]));Функция3(Функция5();
Функция6('Таблица'; 'Таблица'[Столбец])))
```

Функция1 – 2 параметра

Функция2 – 1 параметр

Функция3 – 2 параметра

Функция4 – 1 параметр

Функция5 – 0 параметров

Функция6 – 2 параметра

- 1. Имя столбца записывается полностью 'Таблица'[Столбец]
- 2. Имя меры записывается кратко [Мера]
- 3. Имя вычисляемого объекта на первой строке, код на остальных

```
Сумма Прибыли =
...
код DAX
...
```


4. Если используются операторы, пробелы до и после операторов

$$= 5 * 5 / 2$$

5. Если в формуле более одной функции, каждая функция на новой строке

=

Функция 1

+ Функция 2

6. Если в функции более одного параметра, каждый параметр на новой строке

```
=
Функция (
Параметр 1;
Параметр 2
```


7. Если в функции 1 параметр и он состоит из вложенной функции, то разбиваем DAX код на строки

```
=
Функция 1(
Функция 2()
)
```


8. Если в функции 1 параметр и он состоит просто из какого-либо значения или ссылки на таблицу, столбец и меру, то код пишем в 1 строку

= Функция (Значение)

9. Если в формуле есть операторы и код должен быть разбит на строки, то каждая новая строка начинается с оператора

```
=
'Таблица'[Столбец]
```

- + [Mepa 1]
- [Mepa 2]

10. Открывающая круглая скобка параметров всегда находится в той же строке, где и вызов функции

```
= Функция (
Параметр 1;
Параметр 2
```


11. Закрывающая круглая скобка параметров всегда находится в новой строке, под первой буквой вызова функции

```
=
Функция (
Параметр 1;
Параметр 2
```


12. Параметры, находящиеся в новых строках пишутся с отступом в 4 пробела (1 табуляция) от первой буквы имени функции

```
= Функция (
Параметр 1;
Параметр 2
)
```


13. Точка с запятой, разделяющая параметры находится на той же строке, что и предыдущий параметр

```
= Функция (
Параметр 1;
Параметр 2
```


Горячие клавиши:

- ALT+ENTER перенос курсора на начало новой строки
- SHIFT+ENTER перенос курсора на новую строку с автоматическим отступом в 4 символа


```
Мера = Функция1(Функция2(Функция4([Мера]));Функция3(Функция5();
Функция6('Таблица'; 'Таблица'[Столбец])))
Mepa =
                                             Функция1 – 2 параметра
Функция1(
                                             Функция2 – 1 параметр
       Функция2(
                                             Функция3 – 2 параметра
               Функция4([Мера])
                                             Функция4 – 1 параметр
                                             Функция5 – 0 параметров
       Функция3(
                                             Функция6 – 2 параметра
               Функция5();
               Функция6(
                      'Таблица';
                      'Таблица'[Столбец]
```


VAR u RETURN

VAR M RETURN

VAR Name 1 = Код Переменной 1 VAR Name 2 = Код Переменной 2 RETURN Name 1 * Name 2

Где:

- Name имя создаваемой переменной
- Код Переменной любая DAX формула, характеризующая саму переменную
- VAR служебное слово (специальная функция), всегда предшествующая объявлению имени переменной при ее создании
- RETURN служебное слово (специальная функция), оканчивающая создание (объявление) блока переменных, после него идет основной код формулы
- Name 1 * Name 2 основной код формулы (меры, вычисляемого столбца или таблицы)

Переменные:

- визуально упрощают сложный код формулы в DAX
- уменьшают время расчета сложного кода, который имеет повторяемые участки, так как переменная рассчитывается только 1 раз и ей можно заменить повторяемые участки кода в основной формуле
- «запоминают контекст строки», в котором переменная была вычислена

VAR u RETURN

```
1 Cτοπδεц =
2 VAR f1=[2015]
3 VAR f2=[2016]
4 RETURN
5 DIVIDE(f1;f2)
```


2015	_	2016	_	Столбец
	1550		1553	0,998068254990341
	1226		1221	1,004095004095
	1397		1390	1,00503597122302
	2333		2335	0,999143468950749
	1030		1023	1,00684261974585
	1010		1014	0,996055226824458
	651		648	1,00462962962963
	1120		1123	0,997328584149599
	1156		1156	1

В сложном коде могут встречаться одни и те же части, повторяемые несколько раз. И использование переменных позволяет не только сократить длину кода, написав этот код один раз в переменной, и далее просто ссылаться на имя этой переменной, так и сократить время вычисления этой большой формулы. Так как повторяемый код прописанный переменной вычисляется только один раз, а далее, при вызове имени переменной из основного кода, просто уже будет возвращаться вычисленный ранее результат переменной.

IF()

Синтаксис

IF (Условие; Выражение 1; Выражение 2)

Где:

- Условие логическое условие, результат которого равен либо значению TRUE, либо — FALSE
- Выражение 1 выражение, которое вступит в работу, если результат проверки условия будет равен TRUE
- Выражение 2 выражение, которое вступит в работу, если результат проверки условия будет равен FALSE

×	~	div =	div = [col1]/[col2	
col1		col2		div
	10		1	10
	20		0	∞
	30		3	10
	40			∞
	50		5	10
	60		6	10

Применение для управления интерфейсом

Визуальный элемент ограничивает область данных

Изменение видимости области данных доступно в мере

В зависимости от ограничения видимости данных меняется алгоритм вычислений


```
2005
2010
2011
2012
2013
2014
2015
2016
```



```
IF(
    VALUES('Год'[Год])=2005;
SUM('Численность населения'[2005]);
SUM('Численность населения'[2010])
)
```

Таблицы 'Год' и 'Численность населения' не связаны между собой!

Реализация

```
Cymma = IF(
 2
       VALUES('Год'[Год])=2005;
       SUM('Численность населения'[2005]);
 3
       IF(
           VALUES('Год'[Год])=2010;
           SUM('Численность населения'[2010]);
           IF(
                VALUES('Год'[Год])=2011;
 8
               SUM('Численность населения'[2011]);
 9
10
                IF(
                    VALUES('Год'[Год])=2012;
11
12
                    SUM('Численность населения'[2012]);
13
                    IF(
                        VALUES('Год'[Год])=2013;
                        SUM('Численность населения'[2013]);
15
16
                        IF(
17
                            VALUES('Год'[Год])=2014;
18
                            SUM('Численность населения'[2014]);
                            IF(
19
20
                                VALUES('Год'[Год])=2015;
                                SUM('Численность населения'[2015]);
                                SUM('Численность населения'[2016])
23
24
25
26
27
28
```


Switch()

Синтаксис

SWITCH (Выражение; Значение 1; Результат 1; Значение 2; Результат 2; Значение N; Результат N; Иначе)

Где:

- Выражение вычисляемое выражение, результат которого сравнивается с заранее подготовленными значениями Значение заранее подготовленное значение
- Результат заранее подготовленный результат, который возвратится, если результат вычисления выражения будет равен соответствующему заранее подготовленному значению
- Иначе заранее подготовленный результат, который возвратится, если результат вычисления выражения не будет равен ни одному заранее подготовленному значению

Switch()

```
Mecяц = SWITCH (
        [col2];
        1; "Январь";
       2; "Февраль";
       3; "Март";
       4; "Апрель";
       5; "Май";
       6; "Июнь";
       7; "Июль";
       8; "Август";
       9; "Сентябрь";
        10; "Октябрь";
        11; "Ноябрь";
"Декабрь")
```

col1	col2	div	Месяц
10	1	10	Январь
20	0		Декабрь
30	3	10	Март
40			Декабрь
50	5	10	Май
60	6	10	Июнь

Switch()

```
Квартал = SWITCH(

TRUE();

[col2]<=3;"1 квартал";

[col2]<=6;"2 квартал";

[col2]<=9;"3 квартал";

[col2]<=12;"4 квартал"

)
```

col1		col2	div	Месяц	Квартал
Цанные	10	1	10	Январь	1 квартал
	20	0		Декабрь	1 квартал
	30	3	10	Март	1 квартал
	40			Декабрь	1 квартал
	50	5	10	Май	2 квартал
	60	6	10	Июнь	2 квартал

Динамический выбор меры

Создание таблицы

	Название	Сортировка	*
1	Алгоритм 1	1	
2	Алгоритм 2	2	
3	Алгоритм 3	3	
*			

Имя: ВыборМеры

Загрузить Изменить Отмена

col1	col2	div	Месяц	Квартал
10	1	10	Январь	1 квартал
20	0		Декабрь	1 квартал
30	3	10	Март	1 квартал
40			Декабрь	1 квартал
50	5	10	Май	2 квартал
60	6	10	Июнь	2 квартал

Mepa1 = SUM('tab1'[col1])

Mepa2 = AVERAGE('tab1'[col1])

Mepa3 = MIN('tab1'[col1])

X

Динамический выбор меры

```
Mepa выбор = SWITCH(
  TRUE();
  VALUES('ВыборМеры'[Название])="Алгоритм 1";[Мера1];
  VALUES('ВыборМеры'[Название])="Алгоритм 2";[Мера2];
  VALUES('ВыборМеры'[Название])="Алгоритм 3";[Мера3];
  BLANK()
                                     F1 ...
                                                  ВыборМеры
                     Название
                     Алгоритм 1
                                                    Название
                     □ Алгоритм 2
                     Алгоритм 3
                                                   Сортировка
                                        F1 ...
                                                                  F1 ...
                          Название
                                                    Название
 Название
                                                    □ Алгоритм 1
                          □ Алгоритм 1
 Алгоритм 1
```


□ Алгоритм 2

Алгоритм 3

Алгоритм 2

Алгоритм 3

□ Алгоритм 2

Алгоритм 3

CONTAINS

Синтаксис

Возвращает значение true, если значения для всех столбцов, на которые имеются ссылки, существуют или содержатся в этих столбцах; в противном случае возвращает значение false.

```
CONTAINS(
, <columnName>, <value>[, <columnName>, <value>]...
)
```

Параметры table - Любое выражение DAX, возвращающее таблицу данных.

columnName - Имя существующего столбца в стандартном синтаксисе DAX. Не может быть выражением.

value - Любое выражение DAX, возвращающее скалярное значение, поиск которого выполняется в столбце columnName. Выражение вычисляется только один раз перед его передачей в список аргументов.

Пример

Mepa = CONTAINS('tab1';tab1[col1];20)

col1	col2	div	Месяц	Квартал
10	1	10	Январь	1 квартал
20	0		Декабрь	1 квартал
30	3	10	Март	1 квартал
40			Декабрь	1 квартал
50	5	10	Май	2 квартал
60	6	10	Июнь	2 квартал

True Mepa

True

Мера

Отчет Мера = CONTAINS('tab1';tab1[col1];20;tab1[col2];0;tab1[Месяц];"Март")

col1	col2	div	Месяц	Квартал
10	1	10	Январь	1 квартал
20	0		Декабрь	1 квартал
30	3	10	Март	1 квартал
40			Декабрь	1 квартал
50	5	10	Май	2 квартал
60	6	10	Июнь	2 квартал

False

Mepa

ISONORAFTER

ISONORAFTER

- скалярное выражение Любое выражение, возвращающее скалярное значение, например ссылку на столбец, целое число или строковое значение. Обычно первый параметр является ссылкой на столбец, а второй-скалярным значением.
- порядок сортировки (необязательно) порядок сортировки столбца. Может быть восходящим (ASC) или нисходящим (DEC). По умолчанию порядок сортировки по возрастанию.

Функция ISONORAFTER возвращает TRUE, если любое из сравнений имеет значение TRUE, в противном случае возвращает FALSE.

ISONORAFTER

На основе порядка сортировки первый параметр сравнивается со вторым параметром. Если порядок сортировки по возрастанию, сравнение выполняется с первым параметром, который больше или равен второму параметру. Если порядок сортировки по убыванию, сравнение выполняется по второму параметру, меньшему или равному первому параметру.

```
= ISONORAFTER (2, 0, DESC, 2, 1, DESC): эта формула DAX возвращает FALSE, потому что и 0, и 1 не больше 2.
```

= ISONORAFTER (2, 5, DESC, 2, 1, DESC): эта формула DAX возвращает TRUE, потому что 5 больше 2.

```
ISONORAFTER(0;1;ASC)=FALSE
ISONORAFTER(0;1;DESC)=TRUE
ISONORAFTER(0;1;DESC;0;1; DESC) =TRUE
ISONORAFTER(0;1;DESC;0;1;ASC)=TRUE
ISONORAFTER(0;1;DESC;1;0;DESC)=TRUE
ISONORAFTER(1;0;DESC;1;0;DESC)=FALSE
```


KEEPFILTERS

Различное поведение в CALCULATE()

```
EVALUATE ROW(
  "$$ in WA"
    , CALCULATE('Internet Sales'[Internet Total Sales]
                , 'Geography'[State Province Code]="WA"
 "$$ in WA and OR"
    , CALCULATE('Internet Sales'[Internet Total Sales]
               , 'Geography'[State Province Code]="WA"
                 || 'Geography'[State Province Code]="OR"
. "$$ in WA and BC"
    , CALCULATE('Internet Sales'[Internet Total Sales]
               , 'Geography'[State Province Code]="WA"
                 || 'Geography'[State Province Code]="BC"
, "$$ in WA and OR ??"
    , CALCULATE(
          CALCULATE('Internet Sales'[Internet Total Sales]
                    ,'Geography'[State Province Code]="WA"
                      || 'Geography'[State Province Code]="OR"
          , 'Geography'[State Province Code]="WA"
            || 'Geography' [State Province Code] = "BC"
. "$$ in WA !!"
    , CALCULATE(
          CALCULATE('Internet Sales'[Internet Total Sales]
                   , KEEPFILTERS('Geography'[State Province Code]="WA"
                              || 'Geography'[State Province Code]="OR"
          , 'Geography'[State Province Code]="WA"
            || 'Geography'[State Province Code]="BC"
```

Индивидуальные фильтры для каждой строки

Внешний фильтр, накладываемый на все строки

Различное поведение фильтров в CALCULATE()

```
EVALUATE ROW(
  "$$ in WA"
    , CALCULATE('Internet Sales'[Internet Total Sales]
                , 'Geography'[State Province Code]="WA"
. "$$ in WA and OR"
    , CALCULATE('Internet Sales'[Internet Total Sales]
               , 'Geography'[State Province Code]="WA"
                 || 'Geography'[State Province Code]="OR"
, "$$ in WA and BC"
   , CALCULATE('Internet Sales'[Internet Total Sales]
               , 'Geography'[State Province Code]="WA"
                 || 'Geography'[State Province Code]="BC"
 "$$ in WA and OR ??"
   , CALCULATE(
         CALCULATE('Internet Sales'[Internet Total Sales]
                    ,'Geography'[State Province Code]="WA"
                      || 'Geography'[State Province Code]="OR"
          , 'Geography'[State Province Code]="WA"
           || 'Geography' [State Province Code]="BC"
 "$$ in WA !!"
    , CALCULATE(
          CALCULATE('Internet Sales'[Internet Total Sales]
                   , KEEPFILTERS('Geography'[State Province Code]="WA"
                              || 'Geography'[State Province Code]="OR"
           'Geography'[State Province Code]="WA"
            || 'Geography'[State Province Code]="BC"
```

Column	Value
[\$\$ in WA]	\$ 2,467,248.34
[\$\$ in WA and OR]	\$ 3,638,239.88
[\$\$ in WA and BC]	\$ 4,422,588.44
[\$\$ in WA and OR ??]	\$ 3,638,239.88
[\$\$ in WA !!]	\$ 2,467,248.34

Совпадают первый и последний расчет.

В первом случае CALCULATE переопределяет внешние фильтры ("WA"||"BC") и заменяет их собственными фильтрами ("WA"). (также в 2,3,4 случаях. в 4 случае фильтры переопределяются на вложенные во второй CALCULATE).

В последнем случае внутри CALCULATE применяются совпадающие фильтры KEEPFILTERS ("WA"||"OR") и внешний ("WA"||"BC").

В итоге применяется только фильтр ("WA").

HASONEVALUE

Возвращает значение TRUE, если контекст для columnName был отфильтрован до одного конкретного значения. В противном случае - значение FALSE.

HASONEVALUE(<columnName>)
Эквивалентное выражение для HASONEVALUE() — COUNTROWS(VALUES(<columnName>)) = 1.

Страна	Округ	Область	Год 💌	Численность 💌
Р З З З З З З З З З В з з з з з з з з з з з з	Центральный федеральный округ	Белгородская область	2005	1512
Российская Федерация	Центральный федеральный округ	Белгородская область	2010	1532
Российская Федерация	Центральный федеральный округ	Белгородская область	2011	1536
Российская Федерация	Центральный федеральный округ	Белгородская область	2012	1541
Российская Федерация	Центральный федеральный округ	Белгородская область	2013	1544
Российская Федерация	Центральный федеральный округ	Белгородская область	2014	1548
Российская Федерация	Центральный федеральный округ	Белгородская область	2015	1550
Российская Федерация	Центральный федеральный округ	Белгородская область	2016	1553
Российская Федерация	Центральный федеральный округ	Белгородская область	2017	1550
Российская Федерация	Центральный федеральный округ	Белгородская область	2018	1548
Российская Федерация	Центральный федеральный округ	Брянская область	2005	1327
Российская Федерация	Центральный федеральный округ	Брянская область	2010	1275
Российская Федерация	Центральный федеральный округ	Брянская область	2011	1264

147 тыс.

Численность

1 млн

Численность

Го	Д
	2005
	2010
	2011
	2012

2017

2018

146,80 ТЫС.

выберите год

Мера

IN {...}

IN {...}

```
1 RedOrBlack Sales OR :=
2 CALCULATE (
3     [Sales Amount],
4     Products[Color] = "Red" || Products[Color] = "Black"
5    )
```



```
1 RedOrBlack Sales IN :=
2 CALCULATE (
3      [Sales Amount],
4      Products[Color] IN { "Red", "Black" }
5    )
```

```
1  Other Colors 3 :=
2  CALCULATE (
3     [Sales Amount],
4     NOT ( Products[Color] IN VALUES ( Products[Color] ) )
5  )
```


IN {...}

Оператор IN позволяет сравнивать несколько столбцов в одной операции

```
1
      NY 2007 ALL :=
 2
      CALCULATE (
          [Sales Amount],
 3
          FILTER (
 4
 5
              ALL ( 'Calendar' ),
               ( 'Calendar'[Year], 'Calendar'[MonthName] )
 6
 7
                   IN {
                       ( 2006, "December" ),
 8
                       ( 2007, "January" )
 9
10
11
12
```


TOPN()

```
Таблица =
TOPN(
      3;
      SUMMARIZE(
              'Численность населения';
             'Численность населения'[Округ];
             "ЧисленностьОкруга";
             SUM('Численность населения'[Численность])
       );
       [ЧисленностьОкруга];
      DESC
```

Округ	численность Округа
Сибирский федеральный округ	172379
Центральный федеральный округ	388544
Приволжский федеральный округ	297621

+ CONCATENATEX

```
федеральный округ 388544;
Mepa 2 =
                              Приволжский федеральный округ
CONCATENATEX(
                                            297621
       TOPN(
                                              Mepa 2
              SUMMARIZE(
                     'Численность населения';
                     'Численность населения'[Округ];
                     "ЧисленностьОкруга";
                     SUM('Численность населения'[Численность])
              [ЧисленностьОкруга];
              DESC
       [Округ] & " " & [ЧисленностьОкруга];
```


Сибирский федеральный округ

172379; Центральный

Спасибо за внимание!

Шевцов Василий Викторович

shevtsov_vv@rudn.university +7(903)144-53-57

