MATH 101 CHEAT SHEET

This packet is not meant to go over everything that we have done in the course but rather to summarize a lot of information. In fact, you'll notice that I did not mention composition and inverses of functions here, yet I would highly recommend studying these. Please make sure to do the practice finals on canvas and in the workbook. It is impossible to learn/understand math without doing math; this includes writing all your work down!

1. Functions

- (1) A **function** is a relationship between two variable in which every input has exactly one output.
- (2) A function is generally written as f(x), where x is our input variable and f(x) is our output variable. As an example, we write f(3) = 5 to say that "when we plug in 3 into the function f(x), the output is 5".
- (3) The **domain** of a function is the set of values we are allowed to plug into the function. Think: the x-values we can plug in.
- (4) The range of a function is the set of values we can get out of the function. Think: the y-values we can get out.
- (5) The average rate of a function f(x) on the interval [a, b] is given by

$$\frac{f(b)-f(a)}{b-a}$$
.

2. Types of Functions

- (1) A linear function is a function of the form y = mx + b, where $m = \frac{\text{change in } y}{\text{change in } x}$ is the slope (average rate of change) of the line and (0, b) is the y-intercept.
- (2) An exponential function is a function of the form $y = ab^t$, where a is called the initial value and b is called the **growth factor**. Often we consider r = 1 - b, which we call the **growth rate**.

3. Linear Functions

- (1) **Point-Slope Form:** Given a point (x_0, y_0) on a line with slope m, the equation of the line is $y = m(x - x_0) + y_0.$
- (2) Slope-intercept Form A line with slope m and y-intercept (0,b) is given by the equation y=mx+b.

4. Exponential Functions/ Compound Growth

- (1) Here are some properties of exponents:
 - (a) $a^x \cdot a^y = a^{x+y}$.

 - (b) $\frac{a^x}{a^y} = a^{x-y}$. (c) $(a^x)^y = a^{xy}$.
 - (d) $a^0 = 1$.
- (2) The amount accumulated in an account bearing interest **compounded** n-times per year is given

$$A(t) = P_0 \left(1 + \frac{r}{n} \right)^{nt},$$

noindent where P_0 is the principal (initial) value, r is the nominal interest rate, and t is the number of years.

(3) **CAUTION!** The growth factor of $A(t) = P_0 \left(1 + \frac{r}{n}\right)^{nt}$ is $\left(1 + \frac{r}{n}\right)^n$ **not** $\left(1 + \frac{r}{n}\right)^n$

(4) The effective annual rate of an account bearing interest r and compouded n-times per year is given by

$$\left(1 + \frac{r}{n}\right)^n - 1$$

(5) The amount accumulated in an account bearing interest **compounded continuously per year** is given by

$$C(t) = P_0 e^{rt},$$

where P_0 is the principal (initial) value, r is the continuous interest rate, and t is the number of years.