STURM LIOUVILLE BOUNDARY VALUE PROBLEM

A report submitted on completion of summer project

by

Aswin V.

Roll no. 16019 Indian Institute of Science Education and Research Berhampur

Under the guidance of Dr.vellat Krishna Kumar Kerala School of Mathematics Kozhikode, India $July \ 2018$

Sturm-Liouville problem

Abstract

Sturm-Liouville problem is a system consisting of a differential equation coupled with certain boundary condition in such a way that the differential operator is self-adjoint or Hermitian.Like any other eigenvalue problem, here we look for eigenfunctions that satisfy both differential equation and boundary conditions.

Introduction

Let [a,b] be a bounded interval in R . $C^2([a,b])$ denotes the space of functions with derivatives of second order continuous upto the endpoints. $C_0^2([a,b])$ is the subspace of functions that vanish near the endpoints.

The differential equation

$$(p(x)y'(x))' - q(x)y(x) + \lambda r(x)y = 0, a \le x \le b \tag{1}$$

along with the boundary conditions

$$c_1 y(a) + c_2 y'(a) = 0,$$
 $d_1 y(b) + d_2 y'(b) = 0$ (2)

is called a Sturm-Liouville equation (SLE). A value of the parameter λ for which a non- trivial solution ($y \neq 0$) exists for the boundary value problem (BVP)(1)&(2) is called an eigenvalue of the problem and corresponding nontrivial solutions y(x)

of BVP are called eigenfunctions which is associated with that eigenvalue.

REMARKS: Boundary condition:Let $u \in C_c^0([a, b])$. Boundary condition can be generalized as

$$Bu = \alpha u(a) + \beta u(b) + \gamma u'(a) + \delta u'(b)$$

where α , β , γ , δ are real numbers.

- 1. Dirichlet Condition: $B_1u = u(a), B_2u = u(b)$
- 2. Neumann Condition: $B_1u = u'(a), B_2u = u'(b)$
- 3. Robin Condition: $B_1u = u'(a) \alpha u(a)$, $B_2u = u'(b) + \beta u(b)$ Aforementioned conditions are said to be separated as each one is defined at a unique point.
- 4. Periodic Condition: $B_1u = u(b) u(a)$, $B_2u = u'(b) u'(a)$

A system with a periodic boundary condition is not considered as a Sturm-Liouville problem because the boundary conditions are not separated.

The Sturm-Liouville Operator

Consider the Sturm-Liouville differential operator

$$L[y] = -(p(x)y'(x))' + q(x)y(x)$$

where p > 0, r > 0 and p',q and r are continuous on [a,b]. The differential equation takes the operational form

$$L[y] - r(x)y(x) = 0, \quad a \le x \le b$$

$$c_1 y(a) + c_2 y'(a) = 0$$

 $d_1 y(b) + d_2 y'(b) = 0$

Lagrange's Identity

Let u and v be functions having continous second derivatives on the interval $a \le x \le b$.

$$\int_{a}^{b} L[u]vdx = \int_{a}^{b} [-(pu')'v + quv]dx$$

$$\int_{a}^{b} L[u]v dx = -p(x)u'(x)v(x)|_{a}^{b} + p(x)u(x)v'(x)|_{a}^{b} + \int_{a}^{b} [-u(pv')' + uqv] dx$$
$$= -p(x)[u'(x)v(x) - u(x)v'(x)]|_{a}^{b} + \int_{a}^{b} uL[v] dx$$

upon transposing the integral on the right side, we have

$$\int_{a}^{b} L[u]v - uL[v]dx = -p(x)[u'(x)v(x) - u(x)v'(x)]|_{a}^{b},$$

which is Lagrange's identity.

Suppose that u and v satisfies the boundary conditions(2).

$$c_1 u(a) + c_2 u'(a) = 0$$

 $c_1 v(a) + c_2 v'(a) = 0$

In matrix form this is equivalent to,

$$\begin{pmatrix} u(a) & u'(a) \\ v(a) & v'(a) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Since $(c_1, c_2) \neq (0, 0)$, this equation can only hold if the matrix on the left is non-invertible. That is,

$$0 = \begin{vmatrix} u(a) & u'(a) \\ v(a) & v'(a) \end{vmatrix} = u(a)v'(a) - v(a)u'(a)$$

This shows that, $[u'(x)v(x)-u(x)v'(x)]|_a^b=0$ in accordance with the above argument. Then Lagrange's identity reduces to

$$\int_{a}^{b} (L[u]v - uL[v])dx = 0$$

The inner product (.,.) of two real valued functions u and v on an interval $a \leq x \leq b$ is defined as

$$(u,v) = \int_a^b u(x)v(x)r(x)dx$$

, where r(x) is said to be the weight function and for the eigenspace is a hilbert space, we need r(x)>0. Using the notion of inner product, the reduced Lagrange's identity can be written as

$$(\frac{1}{r}L[u], v) - (u, \frac{1}{r}L[v]) = 0$$

i.e,

$$(\frac{1}{r}L[u], v) = (u, \frac{1}{r}L[v])$$

then L is said to be a **Hermitian operator**.

L being a hermitian operator has analogous properties as that of a hermitian matrix.

Let X and Y be two complex vectors such that $X = (x_1, x_2, x_3, ..., x_n)$ and $Y = (y_1, y_2, y_3, ..., y_n)$. An inner product can be defined as

$$(X,Y) = \sum_{i=1}^{n} x_i \bar{y}_i$$

Let A be a n*n matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

The inner product $(AX, Y) = \bar{y_1}(a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n) + \bar{y_2}(a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n) + ... + \bar{y_n}(a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n)$. Adjoint of the matrix A is

$$A^{\dagger} = \begin{bmatrix} \bar{a}_{11} & \bar{a}_{21} & \cdots & \bar{a}_{n1} \\ \bar{a}_{12} & \bar{a}_{22} & \cdots & \bar{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{1n} & \bar{a}_{2n} & \cdots & \bar{a}_{nn} \end{bmatrix}$$

The inner product, $(X, A^{\dagger}Y) = \bar{y_1}(a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n) + \bar{y_2}(a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n) + ... + \bar{y_n}(a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n)$ Hence,

$$(AX, Y) = (X, A^{\dagger}Y)$$

If $A^{\dagger} = A$ then A is said to be self-adjoint or Hermitian ,which implies (AX,Y)=(X,AY).

Theorem 1. All the eigenvalues of the Sturm Liouville problem are real.

Proof. Suppose that λ is a (possibly complex) eigenvalue of the Sturm-Liouville problem and that ϕ is a corresponding eigenfunction, also possibly complex-valued. Let us write $\lambda = \mu + i\nu$ and $\phi(x) = U(x) + iV(x)$, where μ, ν , U(x), and V(x) are real. Then, if we let $u = \phi$ and also $v = \phi$, we have

$$(L[\phi], \phi) = (\phi, L[\phi])$$

We have $L[\phi] = \lambda r \phi$, so $(\lambda r \phi, \phi) = (\phi, \lambda r \phi)$.

$$\int_{a}^{b} \lambda r(x)\phi(x)\bar{\phi}(x)dx = \int_{a}^{b} \phi(x)\bar{\lambda}\bar{r}(x)\bar{\phi}(x)$$

Since r(x) is real, $\bar{r}(x) = r(x)$, $(\lambda - \bar{\lambda}) \int_a^b r(x) \phi(x) \bar{\phi}(x) dx = 0$ The integrand in the above equation is non-negative and not-identically zero. Since the integrand is also continuous, it follows that the integral is positive. Therefore, the factor $(\lambda - \bar{\lambda}) = 2i\nu$ must be zero. Hence λ is real, so the theorem is proved.

Remark: This result is analogous to the case of a Hermitian matrix, where all eigenvalues are real.

Theorem 2. If ϕ_m and ϕ_n are two independent eigenfunctions of the Sturm–Liouville problem corresponding to eigenvalues λ_m and λ_n , respectively, and if, then

$$\int_{a}^{b} r(x)\phi_{m}(x)\phi_{n}(x) = 0$$

Proof. $L[\phi_m] = \lambda_m r \phi_m, L[\phi_n] = \lambda_n r \phi_n$ By Lagrange's identity for Sturm-Liouville case,

$$(L[\phi_m], \phi_n) = (\phi_m, L[\phi_n])$$

i.e, $\int_a^b \lambda_m r \phi_m \bar{\phi}_n dx - \int_a^b \phi_m \bar{\lambda}_n \bar{r} \bar{\phi}_n = 0$ As $\phi_n(x), \lambda_n, r(x)$ are real,

$$(\lambda_m - \lambda_n) \int_a^b r(x)\phi_m(x)\phi_n(x) = 0$$

As $(\lambda_m - \lambda_n) \neq 0$ implies,

$$(\phi_m, \phi_n) = \int_a^b r(x)\phi_m(x)\phi_n(x) = 0$$

The eigenfunctions of a regular Sturm-Liouville boundary value problem corresponding to distinct eigenvalues are othogonal w.r.t. weight function r(x) on [a,b].

We state without proof

Theorem 3. The Sturm-Liouville problem has an infinite number of eigenvalues, which can be written in increasing order as $\lambda_1 < \lambda_2 < ... < \lambda_n < ...$ such that $\lim_{n\to\infty} \lambda_n = \infty$.

Example: Consider the differential equation,

$$y'' + \lambda y = 0, y(0) = y(1) = 0$$

This is a Sturm-Liouville equation with p(x)=1,q(x)=0 and r(x)=1. If $\lambda=0$, the general solution is

$$y = ax + b$$

The two boundary conditions require that a=b=0. So the boundary problem has no non-trivial solutions when $\lambda=0$. Hence $\lambda=0$ is not an eigenvalue.

If $\lambda > 0$, we have the general solution as

$$y = a\sin(\sqrt{\lambda}x) + b\cos(\sqrt{\lambda}x)$$

.On computation, the boundary condition require that b=0. For having a non-trivial solution $a \neq 0$ and $a \sin(\sqrt{\lambda}) = 0 \Rightarrow \sqrt{\lambda} = n\pi$. So the eigenfunction and eigenvalue are respectively

$$\lambda_n = n^2 \pi^2, y_n = a \sin(n\pi x)$$

The eigenvalues here, form an infinite sequence, as said in the previous theorem.

Example: Consider the differential equation,

$$y'' + \lambda y = 0, y(0) = 0, y'(1) + y(1) = 0$$

This is a Sturm-Liouville equation with p(x)=1,q(x)=0 and r(x)=1. If $\lambda=0$, the general solution is

$$y = ax + b$$

The two boundary conditions require that a=b=0. So the boundary problem has no non-trivial solutions when $\lambda=0$. Hence $\lambda=0$ is not an eigenvalue.

If $\lambda>0$, a plausible option for y is e^{rx} , then we have the characteristic equation as $r^2+\lambda=0$ i.e, $r=\pm i\sqrt{\lambda}$, which implies the general solution is a linear combination of $e^{i\sqrt{\lambda}x}$ and $e^{-i\sqrt{\lambda}x}$. Using Euler's identity the general solution can be expressed as

$$y = a\sin(\sqrt{\lambda}x) + b\cos(\sqrt{\lambda}x)$$

The boundary condition at x=0 require that, b=0 and at x=1 require

$$a(\sin(\sqrt{\lambda}) + \sqrt{\lambda}\cos(\sqrt{\lambda}) = 0.$$

For a non-trivial solution, we need $a \neq 0$ and the eigenvalue λ must satisfy the condition

$$\sin(\sqrt{\lambda}) + \sqrt{\lambda}\cos(\sqrt{\lambda} = 0$$

. If in any case $\cos(\sqrt{\lambda})=0$, then $\sin(\sqrt{\lambda})=1$ and then the above condition doesn't hold. So assuming $\cos(\sqrt{\lambda})\neq 0$, we have $\sqrt{\lambda}=-\tan(\sqrt{\lambda})$, whose solution can be determined graphically by plotting $\sqrt{\lambda}$ and $\tan(\sqrt{\lambda})$ on a common axes and identifying the points of intersection.

Figure 1: graphical solution of $\sqrt{\lambda} = -\tan(\sqrt{\lambda})$

The first three positive solutions of Eq. $\sqrt{\lambda} = -\tan(\sqrt{\lambda})$ are $\lambda_1 \cong 2.029$, λ_2 , $\cong 4.913$, and $\lambda \cong 7.979$.

From the figure, we can approximate other roots as

$$\sqrt{\lambda} \cong (2n-1)\pi/2$$
, for n=4,5,6,...

The solutions of the differential equation i.e, the eigenfunction corresponding to eigenvalue λ_n is

$$\phi_n(x, \lambda_n) = k_n \sin(\sqrt{\lambda_n} x); n = 1, 2, ...,$$

where k_n is an arbitrary constant.

Considering the case $\lambda < 0$.Let $\lambda = -\mu$, so that $\mu > 0$. Then

$$y'' - \mu y = 0,$$

and it's general solution is,

$$y = a \sinh(\sqrt{\mu}x) + b \cosh(\sqrt{\mu}x)$$

where $\mu > 0$. Proceeding as in the previous case, we find that must satisfy the equation

$$\sqrt{\mu} = -\tanh(\sqrt{\mu})$$

The solutions of this equation can be graphically determined by identifying the points of intersection.

Figure 2: graphical solution of $\sqrt{\mu} = -\tanh(\sqrt{\mu})$

it is clear that the graphs of $f(\sqrt{\mu}) = \sqrt{\mu}$ and $g(\sqrt{\mu}) = -\tanh(\sqrt{\mu})$ intersect only at the origin. Hence there are no positive values of that satisfy the equation, $\sqrt{\mu} = -\tanh(\sqrt{\mu})$ and hence the boundary value problem has no negative eigenvalues.

Nonhomogenous Boundary Value Problems

Consider the differential equation,

$$L[y] = -[p(x)y']' + q(x)y = \mu r(x)y + f(x)$$

where μ is a constant and f is a given function on $a \le x \le b$, along with the boundary conditions

$$c_1y(0) + c_2y'(a) = 0, d_1y(b) + d_2y'(b) = 0$$

. Assume that p,p',q and r are continuous on $a \le x \le b$ and that p(x) > 0 and r(x) > 0.

One way to solve non-homogenous problem is using the eigenfunction expansion for the corresponding homogeneous Sturm-Liouville problem.

Consider the non-homogeneous Sturm- Liouville problem

$$(p(x)y')' + q(x)y + \mu r(x)y = f(x)$$

with boundary conditions

$$c_1y(0) + c_2y'(a) = 0, d_1y(b) + d_2y'(b) = 0$$

Suppose λ_n and y_n are the eigenvalues and eigenfunctions of the homogeneous problem

$$(p(x)y')' + q(x)y + \lambda r(x)y = 0$$

with the same boundary conditions.

Suppose we can write $y(x) = \sum_n b_n y_n(x)$, here b_n is unknown. we have $(p(x)y'_n)' + q(x)y_n + \lambda_n r(x)y_n = 0$ as y_n is an eigenfunction corresponding to eigenvlue λ_n of the homogenous problem. We can write,

$$(p(x)y_n')' + q(x)y_n + \mu r(x)y_n = (\mu - \lambda_n)r(x)y_n$$

$$(p(x)y')' + q(x)y + \mu r(x)y = \sum_{n} b_n ((p(x)y'_n)' + q(x)y_n + \mu r(x)y_n)$$

i.e,

$$f(x) = \sum_{n} b_n(\mu - \lambda_n) r(x) y_n$$

if $\frac{f(x)}{r(x)} = \sum_{n} c_n y_n$, such that $c_n = b_n (\mu - \lambda_n)$

The coefficient c_n can be found out by using the property of orthogonality.

$$\int_a^b \frac{f(x)}{r(x)} y_n r(x) dx = c_n \int_a^b y_n^2(x) r(x)$$

which implies

$$c_n = \frac{\int_a^b f(x)y_n dx}{\int_a^b y_n^2(x)r(x)}$$

Now we can get the expression for b_n from the above equation for c_n . The solution for the non-homogenous problem can be expressed as

$$y(x) = \sum_{n=1}^{\infty} \frac{c_n}{\mu - \lambda_n} y_n(x)$$

There is a possibility that μ can be equal to one of the eigenvalue of corresponding homogenous problem, $\mu = \lambda_n$. Then the equation relating b_n and c_n takes the form as $(0 * b_n - c_n = 0)$. Then there arises two cases, when $\mu = \lambda_n$ and $c_n \neq 0$, then there is no value for b_n that satisfies $(0 * b_n - c_n = 0)(*)$ so there is no solution for the non-homogenous problem. The second case arises when $\mu = \lambda_n$ and $c_n = 0$, then the eqn (*) is satisfied regardless of b_n and there

exist solution for the non-homogenous problem.

The expression for c_n is given by

$$c_n = \int_a^b f(x)y_n(x)dx$$

as $c_n=0$,

$$\int_{a}^{b} f(x)y_n(x)dx = 0$$

which implies, when $\mu = \lambda_n$ the non-homogenous boundary value problem is solvable only if f is orthogonal to the eigenfunction corresponding to λ_n .

Example: Consider the non-homogenous boundary value problem

$$y'' + 2y = x, y(0) = 0, y(1) = 0$$

the corresponding homogenous problem is

$$y'' + 2y = 0, y(0) = 0, y(1) = 0$$

Let y_n denote the solution of the homogenous problem. Thus we can write the solution of non-homogenous problem as $y(x) = \sum_n b_n y_n(x)$. We have the eigenfunctions of homogenous problem $y_n = \sin(n\pi x)$ and eigenvalues $\lambda_n = (n\pi)^2$. We have

$$c_n = \frac{\int_a^b f(x)y_n dx}{\int_a^b y_n^2(x)r(x)}$$

here in this problem f(x) = x and r(x) = 1.On computing we get

$$c_n = 2\int_0^1 x \sin(n\pi x) dx = \frac{2}{n\pi} (-1)^{n+1}$$

From c_n we can find b_n

$$b_n = \frac{2}{n\pi(2 - (n\pi)^2)}(-1)^{n+1}$$

. The solution of the non-homogenous problem can be expressed as

$$y(x) = \sum_{n=0}^{\infty} \frac{2}{n\pi(2 - (n\pi)^2)} (-1)^{n+1} \sin(n\pi x)$$

In this case μ and λ_n will never be equal.

Remark : The nonhomogeneous boundary value problem has a unique solution for each continuous f whenever μ is different from all the eigenvalues of the corresponding homogeneous problem; the solution can be expressed as

$$y(x) = \sum_{n=1}^{\infty} \frac{c_n}{\mu - \lambda_n} y_n(x)$$

and this series converges for each x in $a \leq x \leq b$. If μ is equal to an eigenvalue λ_m of the corresponding homogeneous problem, then the nonhomogeneous boundary value problem has no solution unless f is orthogonal to eigenfunction corresponding to λ_m .

Reference

1. Elementary Differential Equations and Boundary Value Problems, Boyce & DiPrima