2014 考研数学

冲刺篇

模拟试题5套

及详解

(数学一)

陈启浩 编著

集合精华题目

覆盖考试要点

2014 考研数学冲刺篇 (数学一) ——模拟试题 5 套及详解

陈启浩 编著

机械工业出版社

本书是考研数学冲刺阶段的复习指导书,适用于参加"数学一"考试的学生.书中包含了5套精心设计的模拟试题,题目难度保持或者稍高于考研题目难度.这些题目大部分为首次公开发布,非常适合考生用来检验复习效果和临考重点复习.本书的详解部分,不仅给出详尽解答,还特别针对考试重点和难点进行了扩展复习.

本书可作为考生自学的复习材料,也可作为考研培训班的辅导教材,还可供大学数学基础课程的相关教学人员参考.

图书在版编目 (CIP) 数据

2014 考研数学冲刺篇(数学一)模拟试题 5 套及详解/陈启浩编著. 一北京: 机械工业出版社,2013.10 (考研数学复习指导系列丛书) ISBN 978-7-111-43939-4

I. ①2… II. ①陈… III. ①高等数学 - 研究生 - 入学考试 - 题解 IV. ①013 - 44

中国版本图书馆 CIP 数据核字 (2013) 第 209738 号

机械工业出版社(北京市百万庄大街22号 邮政编码100037) 策划编辑: 韩效杰 责任编辑: 韩效杰 陈崇昱 责任校对: 张 媛 封面设计: 路恩中 责任印制:

印刷厂印刷

2013 年 10 月第 1 版第 1 次印刷 184mm×260mm·6.5 印张·158 千字 标准书号: ISBN 978-7-111-43939-4 定价: 元

凡购本书,如有缺页、倒页、脱页,由本社发行部调换 电话服务 网络服务

社服务中心: (010) 88361066 教材网: http://www.cmpedu.com销售一部: (010) 68326294 机工官网: http://www.cmpbook.com销售二部: (010) 88379649 机工官博: http://weibo.com/cmp1952

读者购书热线: (010) 88379203 封面无防伪标均为盗版

前 言

深入地读完我们编写的 2014 考研数学复习指导系列丛书(包括认真地推演了其中的每道例题和练习题)的考生,已经具有了较强的分析问题和解决问题的能力,具有了能够从容面对即将来临的研究生考试的实力.但是为了把准备工作做得更充分,为了践行"战前多流汗,战时少流血",应在考试前进行五场"实战演习"——认真、独立地做完五套模拟试题,作为最后的冲刺.

书中的五套试题是根据考研的数学大纲和编者的教学经验,精心设计的,它既涵盖性强,又重点突出,其中的问题新颖,既有较强的针对性,又有明显的前瞻性.书中给出了这五份试题的详细、规范的解答,每题之后都加有附注,用简明的词语,指明了与本题有关的概念、方法等值得注意的考点.当然,我们在"实战演习"时,不应一遇到困难就翻看解答,一定要认真、反复地思索,这样才能达到使用本书的冲刺目的——进一步提高应试能力,向着高分进发.

衷心祝愿考生们取得骄人的成绩,也欢迎考生们对本书提出宝贵意见,可发邮件到 cqh-shuxue@ gmail. com, 非常感谢!

北京邮电大学教授 陈启浩

目 录

前言
 莫拟试题(一) ····································
莫拟试题(二)
莫拟试题(三)
莫拟试题(四)
莫拟试题(五)
莫拟试题(一)解答
莫拟试题(二)解答49
莫拟试题(三)解答
莫拟试题(四) 解答 ··········· 74
莫拟试题(五)解答

模拟试题 (一)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
 - (1) 函数 $f(x) = x(x-2)^2 | x(x-2) |$ 的二阶不可导点个数为
 - (A) 0:
- (B) 1:
- (C) 2;
- (D) 3.

(2) 下列等式中不正确的是

(A)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^2$$
;

(B)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{2n} \sum_{i=1}^{2n} \left(\frac{i}{2n} \right)^2$$
;

(C)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{2n} \left(\frac{2i-1}{2n} \right)^2$$
;

(D)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^n \left(\frac{3i-1}{3n} \right)^2$$
.

- (3) 设二元函数 f(x, y) 在点 (x_0, y_0) 处的三个二阶偏导数 $f''_{xx}(x, y)$, $f''_{xy}(x, y)$, $f'''_{xy}(x, y)$, $f''_{xy}(x, y)$, $f'''_{xy}(x, y)$, f'''
 - (A) f''_{xy} (x_0, y_0) = f''_{yx} (x_0, y_0);
 - (B) $f'_{x}(x, y)$ 在点 (x_{0}, y_{0}) 处可微;
 - (C) f'_x (x, y) 在点 (x₀, y₀) 处连续;
 - (D) $f'_x(x, y_0)$ 在点 x_0 处可微.
 - (4) 设 $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$, 则以下各式正确的是
 - (A) $\iint_{O} \tan(x + y + z) dv = 1$;
 - (B) $\iint_{\Omega} \tan(x + y + z) dv = 0;$
 - $(C) \iint\limits_{\Omega} \tan(x+y+z) \, \mathrm{d}v = 8 \iint\limits_{\Omega_1} \tan(x+y+z) \, \mathrm{d}v (\Omega_1 \stackrel{\cdot}{\not=} \Omega \text{ 的第一卦限部分});$
 - (D) $\iint_{\Omega} \tan(x + y + z) dv = \iint_{\Omega} \tan(3x) dv.$
 - (5) 设A 是n 阶实矩阵,则方程组Ax = 0 有解是方程组 $A^{T}Ax = 0$ 有解的
 - (A) 必要而非充分条件;
 - (B) 充分而非必要条件;

]

.

]

- (C) 充分必要条件:
- (D) 既非充分也非必要条件.

[]

(6) 矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^4$$
 的最小特征值为

(A) -1;

(B) -2

(C) 1;

(D) 2.

(7) 设随机变量 $X \setminus Y$ 相互独立,概率密度都为 f(t),则随机变量 Z = X - 2Y 的概率密度 $f_{z}(z)$ 为

$$(A)f_Z(z) = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{z-x}{2}\right) dx;$$

$$(B)f_Z(z) = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{x-z}{2}\right) dx;$$

$$(C)f_Z(z) = 2\int_{-\infty}^{+\infty} f(x)f(2(z-x))dx;$$

(D)
$$f_Z(z) = 2 \int_{-\infty}^{+\infty} f(x) f(2(x-z)) dx$$
.

1

(8) 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N$ (0, σ^2) 的一个简单随机样本,则统计量 $Y = \frac{1}{n} \sum_{i=1}^n X_i^2$ 的数学期望与方差分别为

(A)
$$\frac{1}{n}\sigma^2$$
, $\frac{2}{n}\sigma^4$;

(B)
$$\frac{1}{n}\sigma^2$$
, $\frac{4}{n}\sigma^4$;

(C)
$$\sigma^2$$
, $\frac{2}{n}\sigma^4$;

(D)
$$\sigma^2$$
, $\frac{4}{n}\sigma^4$.

二、填空题: 9~14 小题,每小题 4分,共 24分,请将答案写在答题纸指定位置上.

(9) 设函数
$$f(x) = \begin{cases} (e^x + \sin x)^{\frac{1}{\ln(1+x)}}, & x > 0, \\ a, & x \leq 0 \end{cases}$$
连续,则常数 $a =$ _____.

(10) 设二元函数
$$f(u, v)$$
可微,则 $\frac{\partial}{\partial x} f\left(e^{xy}, \cos \frac{1}{x}\right) = ____.$

(11)
$$\sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} + (-1)^{\cos \frac{n}{2}\pi} \frac{1}{2^n} \right] = \underline{\hspace{1cm}}$$

(12) 设二阶常系数齐次线性微分方程 y"+py'+qy=0 的通解为

$$y = e^x \left(C_1 \cos x + C_2 \sin x \right),\,$$

则二阶非齐次线性微分方程 $y'' + py' + qy = e^x \cos x$ 应具有的特解形式为

(13) 设四阶矩阵

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

则 $A^* =$.

- (14) 某人向同一目标独立重复射击,每次射击命中目标的概率为 p (0 < p < 1),记 A 为 "此人第 4 次射击恰好第 2 次命中目标"这一事件,又记 X 为服从参数是 P (A) 的 0-1 分布的随机变量,则 E (X^2) =
- 分布的随机变量,则 $E(X^2) =$ ______. **三、解答题**: 15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15) (本题满分10分)

求不定积分
$$\int \frac{1}{\sin x \cos x} \sqrt{\sin^4 x + \cos^4 x} dx$$
.

(16)(本题满分10分)

已知
$$f_n(x)$$
满足 $f'_n(x)=f_n(x)+x^{n-1}\mathrm{e}^x$ 及 $f_n(1)=\frac{\mathrm{e}}{n}(n=1,2,\cdots)$,求
$$s(x)=\sum_{n=1}^{\infty}\frac{1}{n+1}f_n(x).$$

(17)(本题满分10分)

已知二元连续函数 f(x,y) 满足 $f(x,y) = y + \int_0^x f(x-t,y) dt$, g(x,y) 满足 $g'_x(x,y) = g'_y(x,y) = 1$ 及 g(0,0) = 0. 求二重积分 $\iint_D f(\sqrt{x}, g(x,y)) d\sigma$, 其中 D 是由曲线 $x = y^2$ 及直线 x = 1 围成的平面图形.

(18)(本题满分10分)

设曲线
$$L:\begin{cases} x = \sin z, \\ y = 0. \end{cases}$$

- (I) 求曲线积分 \int_{Ω} ($e^z \sin x + x z$) $dz + (e^z \cos x z) dx$,其中,OA 是由原点沿曲线 L 到点 $A(0,0,\pi)$ 的有向曲线;
 - (II) 记由曲线 $L(0 \le z \le \pi)$ 绕 z 轴旋转—周而成的曲面(外側) 为 Σ ,求曲面积分 $\iint_{\Sigma} xz \mathrm{d}y \mathrm{d}z + 2xy \mathrm{d}z \mathrm{d}x + 3xy \mathrm{d}x \mathrm{d}y.$

(19) (本题满分10分)

设函数 f(x) 在 [a, b] 上连续,在 (a, b) 内二阶可导,且 f'_+ (a) > 0,f(b) = 0. 此外存在 $c \in (a, b)$,使得 f(c) = 0,f'(c) < 0. 证明:存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

(20) (本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1, 0, a)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (b, 3, 5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, b)^T$ 线性表示,但 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由向量组 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示,求常数 a, b.

(21) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$ 以及 \mathbf{Q} 是三阶正交矩阵)下的标准形为 $y_1^2 + y_2^2 - y_3^2$,且 \mathbf{Q} 的第 3 列为 $\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$,求对称矩阵 \mathbf{A} 的伴随矩阵 \mathbf{A}^* .

(22) (本题满分11分)

设二维随机变量 (X, Y) 的概率密度为

$$f(x, y) = \begin{cases} \frac{1}{4} (1 - x^3 y - x y^3), & |x| < 1, & |y| < 1, \\ 0, & \text{ 其他}. \end{cases}$$

求 (I) 随机变量 $Z = X^2$ 的概率密度 $f_Z(z)$;

(Ⅱ) 随机变量 $W = (X - Y)^2$ 的数学期望.

(23) (本题满分11分)

(I) 设总体 X 的概率分布为

X	1	2	3
P	$1-\theta$	$\theta - \theta^2$	$ heta^2$

(其中, $\theta \in (0, 1)$ 是未知参数). 以 N_i 表示来自总体 X 的简单随机样本 X_1 , X_2 , … , X_n 中取值等于 i 的个数 (i=1, 2, 3) ,求常数 a_1 , a_2 , a_3 ,使得 $T = \sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量 .

(II) 当 n=300, $\theta=0.5$ 时,用中心极限定理计算上述样本中取值等于 2 的 N_2 的概率 $P(N_2>80)$. (标准正态分布函数 $\Phi(x)$ 的值: $\Phi(0.57)=0.7157$, $\Phi(0.67)=0.7486$, $\Phi(0.77)=0.7794$.)

模拟试题 (二)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.
 - (1) 方程 $2^x x^2 1 = 0$ 的不同实根个数为
 - (A) 1;

是

- (B) 2;
- (C) 3;
- (D) 4.

Г

(2) 设 $F(x) = \int_0^x \max\{e^{-t}, e^t\} dt$,则

$$(A)F(x) = \begin{cases} 1 - e^{-x}, x < 0, \\ e^{x} - 1, x \ge 0; \end{cases}$$

(B)
$$F(x) = \begin{cases} e^{-x} - 1, x < 0, \\ e^{x} - 1, x \ge 0; \end{cases}$$

$$(C)F(x) = \begin{cases} 1 - e^{-x} < 0, \\ 1 - e^{x} \ge 0; \end{cases}$$

(D)
$$F(x) = \begin{cases} e^{-x} - 1, x < 0, \\ 1 - e^{x}, x \ge 0. \end{cases}$$

(3) 设 $\{a_n\}$ 是单调减少收敛于零的正项数列,则当级数 $\sum_{n=1}^{\infty}a_n$ 发散时,下列结论正确的

- (A) 级数 $\sum_{n=1}^{\infty} a_{2n-1}$ 收敛,而级数 $\sum_{n=1}^{\infty} a_{2n}$ 发散;
- (B) 级数 $\sum_{n=1}^{\infty} a_{2n-1}$ 发散,而级数 $\sum_{n=1}^{\infty} a_{2n}$ 收敛;
- (C) 级数 $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 收敛;
- (D) 级数 $\sum_{n=1}^{\infty} (a_{2n-1} a_{2n})$ 收敛.

]

]

(4) 设 Σ 是半球面 $x^2+y^2+z^2=4(z\geq 0)$ 的上侧,则关于坐标的曲面积分 $\iint_{\Sigma}(x+2)\,\mathrm{d}y\,\mathrm{d}z$ + $z\mathrm{d}x\mathrm{d}y$ 等于

$$(A)2\iint_{D_{-}} \sqrt{4-y^2-z^2} dydz;$$

(B)2
$$\iint_{B_{z}} (\sqrt{4-y^2-z^2}+2) dydz + \iint_{B_{x}} \sqrt{4-x^2-y^2} dxdy;$$

(C)2
$$\iint_{B_z} \sqrt{4-y^2-z^2} dydz + \iint_{B_z} \sqrt{4-x^2-y^2} dxdy;$$

(D)
$$\iint\limits_{D_{1}} \sqrt{4-x^2-y^2} dx dy.$$

其中 D_{xx} , D_{yz} 分别是 Σ 在 xOy 平面与 yOz 平面的投影.

]

- (5) 设向量组 α, β, γ 线性无关,向量组 α, β, δ 线性相关,则
- (A)α 可由 β , γ , δ 线性表示;
- $(B)\delta$ 可由 α,β,γ 线性表示;
- $(C)\beta$ 不可由 α, γ, δ 线性表示;
- $(D)\delta$ 不可由 α,β,γ 线性表示.

- (6) 设 A 是 n 阶矩阵及命题
- ① $A \neq n$ 个不同的特征值;
- ② $A \in n$ 个线性无关的特征向量;
- ③ A 是实对称矩阵:
- ④ A 的每个 n_i 重特征值 λ_i 的特征矩阵 $\lambda_i E A$ 都满足 $r(\lambda_i E A) = n n_i$ (其中, E 是 n 阶单位矩阵),

则 A 可相似对角化的充分必要条件是

(A) 12;

(B)23;

(C)24;

(D) ①4.

- (7) 下列命题中不正确的是
- (A) 设二维随机变量(X,Y) 在矩形区域{(x,y) | $a \le x \le b$, $c \le y \le d$ }上服从均匀分布,则X与Y相互独立;
 - (B) 设二维随机变量(X,Y) 的概率密度

$$f(x,y) = \begin{cases} abe^{-(ax+by)}, & x > 0, y > 0, \\ 0, & \text{i.e.} \end{cases} (其中, a, b) \text{ and a second of the property},$$

则 X 与 Y 相互独立;

- (C) 设二维随机变量(X,Y) 在圆域{ $(x,y) | x^2 + y^2 \le R^2$ }上服从均匀分布(其中,R 是正数),则 X,Y 相互独立:
- (D) 设 X_1, X_2, X_3, X_4 是来自同一总体的简单随机样本,则随机变量 $X = f_1(X_1, X_2), Y = f_2(X_3, X_4)$ (其中, f_1, f_2 都是连续函数)相互独立.

.

(8) 设总体 $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$, 它们相互独立, 又设 $X_1, X_2, \cdots, X_{n_1}$ 和 Y_1, Y_2 , …, Y_n , 是分别来自 X 和 Y 的简单随机变量, 记

$$Z = \frac{\sum\limits_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum\limits_{j=1}^{n_2} (Y_i - \overline{Y})^2}{n_1 + n_2 - 2} (\not \! \! \pm \not \! \! \! \! + , \overrightarrow{X} = \frac{1}{n_1} \sum\limits_{i=1}^{n_1} X_i, \overrightarrow{Y} = \frac{1}{n_2} \sum\limits_{j=1}^{n_2} Y_j) \, ,$$

则 DZ 为

(A)
$$\sigma^2$$
; (B) $\frac{\sigma^2}{n_1 + n_2 - 2}$;

(C)
$$\frac{\sigma^4}{n_1 + n_2 - 2}$$
; (D) $\frac{2\sigma^4}{n_1 + n_2 - 2}$.

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

(9) 设极限
$$\lim_{x\to 0} \frac{x-\sin x+f(x)}{x^4} = 1$$
,则极限 $\lim_{x\to 0} \frac{f(x)}{x^3} =$ _______.

- (10) 设函数 z = f(x + y, yg(x)), 其中, f 具有二阶连续偏导数, 曲线 w = g(x) 在点 (0, 1) 处的切线方程为 w = 1 + x, 且 f(u, v) 的各阶偏数在 u = v 处的值都为 1, 则 $\frac{\partial^2 z}{\partial x \partial y} \Big|_{x=0}^{x=0} = \underline{\hspace{1cm}}.$
 - (11) 曲面 $z = x^2 + y^2$ 被上半球面 $x^2 + y^2 + z^2 = 2$ ($z \ge 0$) 截下部分 ∑ 的面积为_____
 - (12) 设函数 $f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ & \text{其余弦级数与正弦级数的和函数分别为} \\ 1 2x, & \frac{1}{2} < x \le 1, \end{cases}$
- $S_1(x)$ 与 $S_2(x)$,则 $S_1(-1)$ 与 $S_2(\frac{5}{2})$ 分别为______.
- (13) 设A, B 分别为二阶与四阶矩阵,且r(A)=1, r(B)=2, A^* , B^* 分别是A与B的伴随矩阵,则

$$r\begin{pmatrix} O & A^* \\ B^* & O \end{pmatrix} = \underline{\qquad}$$

- (14) 设随机变量 X 与 Y 相互独立,都服从参数为 1 的指数分布,即它们的概率密度都为 $f(t) = \begin{cases} e^{-t}, & t > 0, \\ 0, & \text{其他}. \end{cases}$ 则 $P(\max\{X, Y\} \leq 1) =$ ______.
- 三、解答题: $15 \sim 23$ 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15)(本题满分10分)

设函数 $\gamma(x)$ 在 $[0, +\infty)$ 上有连续导数,且满足

$$y(x) = 1 + x + 2 \int_{0}^{x} (x - t)y(t)y'(t) dt$$

求 $y^{(n)}(x)$.

(16) (本题满分10分)

求函数 $f(x, y, z) = 2x + 2y + x^2 + y^2 - z^2$ 在 Ω : $x^2 + y^2 + z^2 \le 1$ 上的最大值与最小值.

(17) (本题满分10分)

证明: 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $2\sin x + \tan x > 3x$.

(18) (本题满分10分)

设
$$\alpha = \lim_{x \to 0^+} \frac{x^2 \tan \frac{x}{2}}{1 - (1 + x)^{x \sin^2 \sqrt{x}}}$$
,求级数 $\sum_{n=1}^{\infty} n^2 \sin^{n-1} \alpha$ 的和.

(19)(本题满分10分)

计算曲线积分
$$I = \int_c \frac{1}{x^2 + y^2} (x \mathrm{d} y - y \mathrm{d} x)$$
,

其中,
$$C$$
 为曲线 $\begin{cases} x = a(t - \sin t) - a\pi, \\ y = a(1 - \cos t) \end{cases}$ ($a > 0$) 从 $t = 0$ 到 $t = 2\pi$ 的一段.

(20)(本题满分11分)

已知线性方程组(A)
$$\begin{cases} x_1 & +2x_2+x_3=3, \\ 2x_1+(a+4)x_2-5x_3=6, & 有无穷多解. \\ -x_1 & -2x_2+ax_3=-3 \end{cases}$$

(I) 求非零常数 a 的值:

(
$$II$$
) 对上述算得的 a 值,求方程组(A)与(B)
$$\begin{cases} x_1+x_2+x_3=0,\\ 2x_1+\lambda x_2=1 \end{cases}$$
 有公共解时的 λ 值及公共解 .

(21) (本题满分11分)

设 A 是三阶实对称矩阵, 其秩为 2, 且满足

$$A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

- (I) 求A* (A的伴随矩阵);
- (II) 求正交变换 $\mathbf{x} = \mathbf{C}\mathbf{y}$ (其中, $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$, \mathbf{C} 为正交矩阵), 使得二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} (\mathbf{A}^* + \mathbf{A}) \mathbf{x}$ 成为标准形,并写出该标准形.

(22) (本题满分11分)

设二维随机变量(U, V)的概率密度为

$$f(u, v) = \begin{cases} 1, & 0 < u < 1, & 0 < v < 2u, \\ 0, & \text{ 其他 } . \end{cases}$$

又设 X 与 Y 都是离散型随机变量,其中 X 只取 -1,0,1 三个值,Y 只取 -1,1 两个值,且 EX=0.2,EY=0.4, $P(X=-1,Y=1)=P(X=1,Y=-1)=P(X=0,Y=1)=\frac{1}{3}P\Big(V\leqslant\frac{1}{2}\,\Big|\,U\leqslant\frac{1}{2}\Big)$. 求

- (I)(X, Y)的概率分布;
- (\blacksquare) Cov(X, Y).

(23) (本题满分11分)

设二维随机变量 (X, Y) 的概率密度为

$$f(x, y) = \begin{cases} \frac{3}{\theta^3} x^2 e^{-(y-\theta)}, & 0 < x < \theta, \ \theta < y < +\infty, \\ 0, & \not\equiv \ell, \end{cases}$$

其中, θ 是未知参数, 又设 X_1 , X_2 , …, X_n 是来自总体 X 的简单随机样本,

- (I) 计算 θ 的矩估计量 $\hat{\theta}$, 并判断 $\hat{\theta}$ 是否为无偏估计量;
- (II) 求 $\hat{D}(\hat{\theta})$.

模拟试题 (三)

一、选择题: $1 \sim 8$ 小题,每小题 4 分,共 32 分。每小题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(1) 设函数
$$y = \frac{1}{(x-1)(x+2)}$$
, 则 $y^{(n)}$ 为

(A)
$$(-1)^n \frac{n!}{3} \left[\frac{1}{(x-1)^n} - \frac{1}{(n+2)^n} \right];$$

(B)
$$(-1)^n \frac{n!}{3} \left[\frac{1}{(x-1)^{n+1}} - \frac{1}{(n+2)^{n+1}} \right];$$

(C)
$$(-1)^{n+1} \frac{(n+1)!}{3} \left[\frac{1}{(x-1)^{n+1}} - \frac{1}{(x+2)^{n+1}} \right];$$

(D)
$$(-1)^{n+1} \frac{(n+1)!}{3} \left[\frac{1}{(x-1)^{n+2}} - \frac{1}{(x+2)^{n+2}} \right].$$

(2) $\mbox{iff } M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1 + x^2} \cos^2 x \, dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, dx,$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) dx, 则它们大小次序为$$

(A)M < N < P;

(B)N < M < P:

(C)P < M < N;

(D)P < N < M.

(3) 微分方程 $x^2y'' + xy' + y = 2\sinh x$ 应有的特解形式为

 $(A)a\cos\ln x + b\sin\ln x;$

(B) $(a\cos\ln x + b\sin\ln x) \ln x$;

(C) ax cosln x;

(D) $bx \sin \ln x$.

(4) 收敛半径 R = 1 是幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x = -1 处条件收敛的

(A) 充分而非必要条件;

(B) 必要而非充分条件:

(C) 充分必要条件:

(D) 既非必要又非充分条件.

(5) 设A 是n 阶可逆矩阵, α 是A 的对应特征值 λ 的特征向量,且存在n 阶可逆矩阵P,使得 $P^{-1}AP = B$,记B 的伴随矩阵为 B^* ,则

(A)**B*** 有特征值 λ 及对应的特征向量 **P**⁻¹ α ;

(B) \mathbf{B}^* 有特征值 λ 及对应的特征向量(\mathbf{P}^*) $^{-1}\alpha$;

(C)**B*** 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 $P^{-1}\alpha$;

1

Γ

[]

-

(D)**B*** 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 $(P^*)^{-1}\alpha$.

[]

1

- (6) 设有 n 维列向组(I): $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_m$ 和(II): $\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_m$ ($m \leq n$),记矩阵 $\boldsymbol{A}=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_m)$ 和 $\boldsymbol{B}=(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_m)$,则下列命题不正确的是
 - (A) 当(I) 与(II) 等价时,(I) 与(II) 等秩;
 - (B) 当(I)与(I)等秩时,(I)与(I)等价;
 - (C) 当A与B等价时,A与B等秩;
 - (D) 当A与B等秩时,A与B等价.

(7) 袋内有7个球,其中4个红球,3个白球.现不放回地取球,每次取1个,记

 $A = \{$ 第二次取球才取到白球 $\},$

 $B = \{$ 第二次取球取到的是白球 $\}$,

则它们的概率分别为

(A)
$$P(A) = P(B) = \frac{4}{7};$$
 (B) $P(A) = \frac{2}{7}, P(B) = \frac{3}{7};$

$$(C)P(A) = P(B) = \frac{3}{7};$$
 $(D)P(A) = P(B) = \frac{2}{7}.$

(8) 设 $X \sim N(a,\sigma^2)$, $Y \sim N(b,\sigma^2)$, 且相互独立. 现分别从总体 X 和 Y 各抽取容量为9和11的简单随机样本, 记它们的方差为 S_X^2 和 S_Y^2 , 并记 $S_{12}^2=\frac{1}{2}(S_X^2+S_Y^2)$, $S_{XY}^2=\frac{1}{18}(8S_X^2+10S_Y^2)$, 则上述四个统计量 S_X^2 , S_Y^2 , S_{12}^2 和 S_{XY}^2 中方差最小者为

- $(A)S_X^2;$ $(B)S_Y^2;$ $(C)S_{12}^2;$ $(D)S_{XY}^2.$
- 二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
- (9) 已知f(x) 是连续函数,且满足

$$\int_0^x [5f(t) - 2] dt = f(x) - e^{5x},$$

则f''(0) =______.

(10) 设二元可微函数
$$z=z(x,y)$$
 是由方程 $\int_{y}^{z} e^{t^2} dt + xy + yz = 0$ 确定, 则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0\\y=0}} =$

(11) 设有曲面 $S: x^2 + y^2 + z^2 = x$, 平面 $\Pi_1: x - y - \frac{1}{2}z = 2$ 和 $\Pi_2: x - y - z = 2$, 则垂直于 Π_1 与 Π_2 的 S 的切平面方程为

(12) 设
$$C$$
 是正向椭圆 $4x^2 + y^2 = 8x$,则曲线积分 $\oint_C e^{y^2} dx + x dy = _____.$

(13) 已知三阶矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, 记它的伴随矩阵为 A^* ,

则三阶行列式
$$\left|\left(\frac{1}{2}A^2\right)^{-1} - 3A^*\right| =$$
______.

(14) 设 X 是离散型随机变量,其分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{4}, & 0 \le x < 1, \\ \frac{1}{2}, & 1 \le x < 2, \\ 1, & x \ge 2, \end{cases}$$

Y是连续型随机变量,其概率密度为 $\varphi(y)=\left\{egin{aligned} &\mathrm{e}^{-y},y>0,\ 0,\ &\mathrm{id}\ a=P(X=1), 则概率 P(Y\geqslant a) \end{aligned}
ight.$

三、解答题:15~23 小题,共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

设区域 $D=\{(x,y)\mid 0\leq x\leq 2, \sqrt{2x-x^2}\leq y\leq \sqrt{4-x^2}\}$, 分别求 D 绕 x 轴和 y 轴旋转 一周而成的旋转体体积 V_x 与 V_y .

(16)(本题满分10分)

设二元函数
$$f(x,y) = \begin{cases} \frac{(x+y)^n}{x^2+y^2}, (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$
 为大于1的正整数. 分别计算使 $f(x,y) = (0,0)$

 γ) 在点(0,0) 处连续与可微的最小 n 值.

(17)(本题满分10分)

设数列
$$\{x_n\}$$
 满足 $x_1 > 0$ $, x_{n+1} = \frac{1}{3} \left(2x_n + \frac{1}{x_n^2} \right),$ 求极限
$$\lim_{n \to \infty} \frac{\mathrm{e}^{\tan(x_n - 1)} - \mathrm{e}^{\sin(x_n - 1)}}{\left(x_n - 1 \right)^3}.$$

(18)(本题满分10分)

求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n}$$
 的收敛域与和函数.

(19)(本题满分10分)

设对于半空间 x > 0 内任意光滑有向闭曲面 S,都有

$$\oint_{S} xf(x) dydz - xyf(x) dzdx - e^{2x}zdxdy = 0,$$

其中,函数 f(x) 在 $(0, +\infty)$ 内具有连续的导数,且 $\inf_{x \to \delta} (x) = 1$. 求 f(x).

(20)(本题满分11分)

设方程组 $Ax = \beta$ 有解 $(1,2,2,1)^{T}$ 和 $(1,-2,4,0)^{T}$,其中 $A = (\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})$ 的秩为3,且 $\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}$ 都是4维列向量,求方程组 $By = \alpha_{1} + 2\alpha_{2}$ 的通解,其中,矩阵 $B = (\alpha_{3},\alpha_{2},\alpha_{1},\beta-\alpha_{4})$.

(21)(本题满分11分)

设 $f(x_1,x_2,x_3) = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x}$,其中, $\boldsymbol{x} = (x_1,x_2,x_3)^{\mathsf{T}}$,

$$\mathbf{A} = \begin{pmatrix} 1 & 2b & 0 \\ 0 & a & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

- (I) 求二次型 $f(x_1,x_2,x_3)$ 的矩阵 $\boldsymbol{B}($ 实对称矩阵),并计算 \boldsymbol{B} 有特征值 $\lambda=0,1,4$ 时常数a,b 的值;
- (II) 对上述算得的 a ,b 值,用正交变换 x = Qy(Q 是正交矩阵, $y = (y_1, y_2, y_3)^T$)将 $f(x_1, x_2, x_3)$ 化为标准形.

(22)(本题满分11分)

设二维随机变量(X,Y) 的概率密度为 $f(x,y) = \begin{cases} e^{-y}, 0 < x < y, \\ 0, 其他. \end{cases}$

- (I) (X,Y) 的条件概率密度 $f_{X|Y}(x | y)(y > 0)$;
- (\coprod) 概率 $P(X>2\mid Y>4)$ 和 $P(X>2\mid Y=4)$.

(23)(本题满分11分) 设总体 X 的概率分布为

X	0	1	2	3	
		$2\theta(1-\theta)$			$(0 < \theta)$

- (I) 试利用总体 X 的简单随机样本值 3,1,3,0,3,1,2,3, 求 θ 的矩估计值 $\hat{\theta}$;
- (\mathbb{I}) 设 X_1, X_2, \cdots, X_n 是来自 X(其未知参数 θ 为(\mathbb{I}) 中确定的 $\hat{\theta}$) 的简单随机样本,则由中心极限定理知,当 n 充分大时,取值为 2 的样本个数 Y 近似地服从正态分布,求此正态分布的两个参数 μ 和 σ^2 .

 $<\frac{1}{2}$).

模拟试题(四)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

与 y = f(x), y = f'(x), $y = \int_0^x f(t) dt$ 的对应关系为

 $(A) L_1, L_2, L_3;$

(B) L_1 , L_2 , L_3 :

(C) L_2 , L_3 , L_1 ;

(D) L_3 , L_1 , L_2 .

(2) 设 f(x)是($-\infty$, $+\infty$)上连续的奇函数,则

- $(A) \int_{-\infty}^{+\infty} f(x) dx$ 收敛;
- (B) $\int_{-\infty}^{+\infty} f(x) dx$ 发散;
- (C) $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时, 其值必为零; (D) $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时, 其值不为零.

7

(3) 已知曲面 $S: x^2 + 2y^2 + 3z^2 = 1(y \ge 0, z \ge 0)$, 平面区域 $D: x^2 + 2y^2 \le 1(x \ge 0)$, 则

(A)
$$\iint_{S} x dS = \iint_{D} x dx dy$$
;

(B)
$$\iint_{S} y dS = \iint_{D} y dx dy$$
;

(C)
$$\iint x dS = \iint y dx dy;$$

(D)
$$\iint_{S} y dS = \iint_{D} x dx dy$$
.

(4) 设 $y_1 = e^x - e^{-x} \sin x$, $y_2 = e^x + e^{-x} \cos x$ 是二阶常系数非齐次线性微分方程 $y'' + py' + e^{-x} \cos x$ qy = f(x)的两个解,则 f(x)为

 $(A) 5e^x;$

(B) e^{3x} ;

(C) e^x ;

(D) e^{-x} .

(5) 设A, B 都是n 阶实矩阵, 且齐次线性方程组Ax = 0 与Bx = 0 有相同的基础解系 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$, 则方程组① $(\boldsymbol{A} + \boldsymbol{B})\boldsymbol{x} = \boldsymbol{0}$, ② $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}$, ③ $\boldsymbol{B}^* \boldsymbol{x} = \boldsymbol{0}$ 以及④ $\begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{B} \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 中,仍以 $\boldsymbol{\xi}_1$, ξ , 为基础解系的是

		関以试题(四)	. 23 .
	(A) ①②;	(B) 24;	
	(C) 34;	(D) ①③.	г 1
	(6) 设 A , B 都是 n 阶实	对称矩阵,则 A 与 B 合同的充分必要条件为	L J
	(A) $r(\boldsymbol{A}) = r(\boldsymbol{B})$;		
	$(B) \mid A \mid = \mid B \mid ;$		
		(作为特征方程重根的特征值按一个计算);	
	(D) 分别以 A , B 为矩阵	F的二次型有相同的规范形.	г л
		$\left(\frac{1}{2}, -1 < x < 0\right)$	
	(7) 设随机变量 X 的概率	区密度 $f(x) = \begin{cases} \frac{1}{2}, & -1 < x < 0, \\ \frac{1}{4}, & 0 \le x \le 2, \end{cases}$ 记 $Y = X^2$ 和二维贸0,其他,	的机变量(X,
		0, 其他,	
	的分布函数为 $F(x, y)$, 贝		
	(A) $\frac{1}{4}$;	(B) $\frac{1}{2}$;	
	(C) $\frac{3}{4}$;	(D) 1.	
足 <i>P</i>	(8) 设随机变量 <i>t</i> ~ <i>T</i> (<i>n</i>) P(<i>t</i> ≤ <i>b</i>) = α 的 <i>b</i> 等于	, 对 $\alpha \in (0, 1)$, $t_{\alpha}(n)$ 为满足 $P(t > t_{\alpha}(n)) = \alpha$ 的	[]
	(A) $t_{\frac{\alpha}{2}}(n)$;	(B) $t_{1-\frac{\alpha}{2}}(n)$;	
	(C) $t_{\frac{1-\alpha}{2}}(n)$;	(D) $t_{\frac{1+\alpha}{2}}(n)$.	
	二、填空题: 9~14 小题	,每小题 4 分,共 24 分,请将答案写在答题纸指定	[]
	(9) 函数 $y = y(x)$ 由微分	方程 $x^2y' + y + x^2e^{\frac{1}{x}} = 0$ 及 $y(1) = 0$ 确定,则曲线 y	=y(x)的斜
渐近	线方程为		
	(10) 设函数 $f(x, y)$ 在点		
		$f_x''(0, 0) = 1, f_y''(0, 0) = -1,$	
则极	限 $\lim_{t\to 0} \frac{f(2t, 0) + f(0, \sin t)}{t}$	$\frac{t)-2f(t, t)}{} = \underline{\qquad}.$	
		² + y ² (z≤1)的下侧,则曲面积分	
	$\iint_{\Sigma} x_{\underline{\cdot}}$	$y dy dz + x dz dx + x^2 dx dy = \underline{\qquad}.$	
		麦克劳林展开式为	
	(13) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 2 & \lambda \\ 1 & 2 \end{pmatrix}$	$\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ 及三阶矩阵 \boldsymbol{B} ,它们满足 $r(\boldsymbol{B}) = 2$, $r(\boldsymbol{A}\boldsymbol{B}) = 1$	1,则λ=

(14) 设 A, B, C 是相互独立事件,且 P(A) = 0.4,P(B) = P(C) = 0.5,则 $P(A - C \mid AB \cup C) = \underline{\hspace{1cm}}.$

三、解答题: $15 \sim 23$ 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数 $y(x) = \varphi(\psi(x))$, 其中

$$\varphi(x) = \begin{cases} x, & |x| \leq 1, \\ \sin x, & |x| > 1, \end{cases} \psi(x) = \begin{cases} x^2, & |x| \leq 2, \\ \cos x, & |x| > 2, \end{cases}$$

求 y''(x).

(16) (本题满分10分)

设函数 $f(x) = \int_0^x \left(3 - \frac{3}{2}\sqrt{t} - \frac{1}{\sqrt{t}}\right) \mathrm{d}t(x \ge 0)$,求由曲线 y = f(x) 及 x 轴围成的图形面积 .

(17) (本题满分10分)

(18) (本题满分10分)

设幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n} x^{2n} (-1 \le x \le 1)$$
的和函数为 $s(x)$. 求

- (I) *s*(*x*)的表达式;
- (\mathbb{I}) 函数 $f(x) = e^x s(x) (-1 \le x \le 0)$ 的最值.

(19) (本题满分10分)

设函数 f(x) 在 [0, 1] 上可微,且满足 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$. 证明:存在 $\xi \in (0, 1)$,使 得 $f(\xi) + \xi f'(\xi) = 0$.

(20) (本题满分11分)

设A 是三阶矩阵, α_1 , α_2 , α_3 是线性无关的三维列向量组. 已知

$$A\alpha_1 = \alpha_2 + \alpha_3$$
,
 $A\alpha_2 = \alpha_1 + a\alpha_3$,
 $A\alpha_3 = \alpha_1 + \alpha_2$,

问 a 为何值时, A 不能相似对角化?

(21) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T A \mathbf{x}$ (其中, $\mathbf{x} = (x_1, x_2, x_3)^T$, \mathbf{A} 是三阶实对称矩阵) 经过正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ (其中, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵) 化为标准形 $2y_1^2 - y_2^2 - y_3^2$. 又设 $\mathbf{A}^* \boldsymbol{\alpha} = \boldsymbol{\alpha}$ (其中 \mathbf{A}^* 是 \mathbf{A} 的伴随矩阵, $\boldsymbol{\alpha} = (1, 1, -1)^T$).

- (I) 求 Q, A;
- (II) 求可逆线性变换 $\mathbf{x} = \mathbf{C}\mathbf{z}(其中, \mathbf{z} = (z_1, z_2, z_3)^T)$, 将 $f(x_1, x_2, x_3)$ 化为规范形.

(22) (本题满分11分)

设随机变量 X 是连续型的,它的概率密度为 $f_X(x) = \begin{cases} e^{-x}, & x>0, \\ 0, & x\leq 0; \end{cases}$ 的,它的分布律为

Y	- 1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

- (I) 求 Z = XY 的分布函数 $F_Z(z)$;
- (\mathbb{I}) 求 Cov(X, X^2).

(23) (本题满分11分)

对某个目标独立重复射击,直到命中为止. 现对目标进行 $n(n \ge 1)$ 轮这样射击,各轮射击次数分别为 k_1, k_2, \dots, k_n ,求命中率 p 的矩估计值与最大似然估计值.

模拟试题(五)

一、选择题: 1~8/	小题,每小题4分,	共32分.	每小题给出的四个选项中,	只有一个
选项是符合题目要求的,	请将所选项前的学	字母填在答题		

- (1) x = 0 是函数 $f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} 1)}$ 的
- (A) 可去间断点;

(B) 跳跃间断点;

(C) 无穷间断点;

(D) 第二类间断点, 但不是无穷间断点,

7

7

- (2) 设f(x)是连续函数,则 $\int_{0}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (x \in (-\infty, +\infty)) 是 f(x)$ 为偶函数 的
 - (A) 充分而非必要条件;

(B) 必要而非充分条件:

(C) 充分必要条件;

- (D) 既非充分又非必要条件.
- (3) 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^{2}}} dx (\alpha > -1)$
- (A) 绝对收敛:

(B) 条件收敛:

(C) 发散;

(D) 收敛或发散与 α 取值有关.

(4)
$$\exists I_i = \iint_{D_i} \sqrt{x^2 + y^2} d\sigma(i = 1, 2, 3)$$
, 其中
$$D_1 = \{(x, y) \mid x^2 + y^2 \leq 1\},$$

$$D_2 = \{(x, y) \mid (x - 1)^2 + y^2 \leq 1\},$$

$$D_3 = \{(x, y) \mid x^2 + (y - 1)^2 \leq 1\},$$

则 I_1 , I_2 , I_3 的大小满足

(A) $I_1 < I_2 = I_3$;

(B) $I_2 = I_3 < I_1$;

(C) $I_2 < I_3 = I_1$;

(D) $I_3 < I_2 = I_1$.

 $(0)^{\mathrm{T}}$, $(1, 0, 1, 0)^{\mathrm{T}}$ 和 $(0, 0, 1, 1)^{\mathrm{T}}$ 是方程组 $A^*z = 0$ 的一个基础解系,则二次型 $f(x_1, 0)^{\mathrm{T}}$ $x_2, x_3, x_4) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} (\mathbf{x} = (x_1, x_2, x_3, x_4)^{\mathrm{T}})$ 的标准形应形如

(A) $a_1 y_1^2 + a_2 y_2^2 + a_3 y_3^2$;

(B) $b_1 y_1^2 + b_2 y_2^2$;

(C) $c_1 y_1^2$;

(D) $d_1 y_1^2 + d_2 y_2^2 + d_3 y_3^2 + d_4 y_4^2$.

(其中, a_1 , a_2 , a_3 , a_4 , b_1 , b_2 , c_1 , d_1 , d_2 , d_3 , d_4 都是非零常数).

1

$$f(x) = \begin{cases} \frac{\ln(1-x^3)}{x - \arcsin x}, & x < 0, \\ e^{-x} + \frac{1}{2}x^2 + x - 1 \\ \frac{x \sin \frac{x}{6}}{}, & x > 0, \end{cases} \qquad g(x) = \frac{e^{\frac{1}{x}} \arctan \frac{1}{x}}{1 + e^{\frac{2}{x}}}.$$

(16) (本题满足10分)

设 f''(x) 不变号,且曲线 y = f(x) 在点(1, 1) 处的曲率圆为 $x^2 + y^2 = 2$,证明函数 f(x) 在 (1, 2) 内无极值点但有唯一零点.

(17) (本题满分10分)

设
$$a_0=1$$
 , $a_1=2$, $a_2=\frac{7}{2}$, $a_{n+1}=-\left(1+\frac{1}{n+1}\right)a_n$ ($n\geqslant 2$) ,求幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 的和函数 $s(x)$,并求定积分 $\int_{-\frac{1}{2}}^{\frac{1}{2}}s(x)\,\mathrm{d}x$.

(18) (本题满分10分)

方程 $xe^{2x} - 2x - \cos x = 0$ 在(0, 1)内的实根个数.

(19) (本题满分10分)

记曲面积分 $\iint_S x^2 z dy dz + yz^2 dz dx + xz^2 dx dy$ (其中,S 是曲面 $z = x^2 + y^2$ ($z \le 1$) 的第一卦限部分上侧)的值为A,求满足f(0) = A,f'(0) = -A 的二阶可导函数f(x),使得 $y[f(x) + 3e^{2x}]$ dx + f'(x) dy 是某个二元函数的全微分.

(20) (本题满分11分)

设 α_1 , α_2 , α_3 , α_4 为四维列向量组, 其中, α_1 , α_2 , α_3 线性无关, α_4 = α_1 + α_2 + $2\alpha_3$. 已知方程组

$$(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)\boldsymbol{x} = \boldsymbol{\alpha}_4$$

有无穷多解.

- (I) 求常数 a 的值;
- (II) 对求得的 a 值, 计算方程组的通解.

(21) (本题满分11分)

已知矩阵
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{bmatrix}$$
可相似对角化.

- (I) 求常数 a 的值;
- (II) 对(I) 中求得的 a 值,求正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}($ 其中, $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}, \mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}, \mathbf{Q}$ 是正交矩阵),将二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x}$ 化为标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} xe^{-y}, & 0 < x < y, \\ 0, & \sharp \ell \ell, \end{cases}$$

- (I) 求随机变量 $U = \max\{X, Y\}$ 的概率密度 $\varphi(u)$;
- (**II**) 求概率 *P*(*U*≤*EU*).

- (23)设 $X_1,\ X_2,\ \cdots,\ X_n$ 是总体 $X\sim N(0,\ 1)$ 的简单随机样本, $\overline{X},\ S^2$ 分别是样本均值与方差,求
 - (I) $E(\overline{X}^2S^4)$;

模拟试题(一)解答

一、选择题

答案

(1)	(B)	(2)	(D)	(3)	(D)	(4)	(B)
(5)	(C)	(6)	(B)	(7)	(B)	(8)	(C)

(1) $f(x) = x | x | \cdot (x-2)^2 | x-2 |$, 可能不可导点为 x = 0 , 2. 在点 x = 0 附近,

$$f(x) = -x \mid x \mid (x-2)^3 = \begin{cases} x^2(x-2)^3, & x \le 0, \\ -x^2(x-2)^3, & x > 0, \end{cases}$$

$$f'(x) = \begin{cases} 2x(x-2)^3 + 3x^2(x-2)^2, & x \le 0, \\ -\left[2x(x-2)^3 + 3x^2(x-2)^2\right], & x > 0, \end{cases}$$

$$f''_{-}(0) = \lim_{x \to 0^{-}} \frac{2x(x-2)^3 + 3x^2(x-2)^2}{x} = -16, f''_{+}(0) = 16.$$

所以, x = 0 是 f(x) 的二阶不可导点.

在点x=2附近,

$$f(x) = x^{2}(x-2)^{2} | x-2 | = \begin{cases} -x^{2}(x-2)^{3}, & x \leq 2, \\ x^{2}(x-2)^{3}, & x > 2, \end{cases}$$

$$f'(x) = \begin{cases} -\left[2x(x-2)^{3} + 3x^{2}(x-2)^{2}\right], & x \leq 2, \\ 2x(x-2)^{3} + 3x^{2}(x-2)^{2}, & x > 2, \end{cases}$$

$$f''_{-}(0) = \lim_{x \to 2^{-}} \frac{-\left[2x(x-2)^{3} + 3x^{2}(x-2)^{2}\right]}{x-2} = 0, f''_{+}(0) = 0.$$

所以, x=2 是 f(x) 的二阶可导点. 因此选(B).

附注 如果记住以下结论,本题将快捷获解,

- (I) (x-a) | x-a | 在点 x=a 处二阶不可导, $(x-a)^2$ | x-a | 在点 x=a 处二阶可导:
- (II) 设 $f(x) = \varphi(x)g(x)$, 其中 $\varphi(x)$ 在点 x = a 处可导而二阶不可导,g(x) 在点 x = a 处二阶可导且 $g(a) \neq 0$,则 f(x) 在点 x = a 处二阶不可导.
- (2) 由于 x^2 在[0, 1]上连续,选项(A)、(B)、(C)右边都是 x^2 在[0, 1]上的积分和式的极限,它们都等于 $\int_0^1 x^2 dx$,即选项(A)、(B)、(C)都正确.因此选(D).

附注 也可以通过直接计算,确认选项(D)不正确:

$$\lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^{n} \left(\frac{3i-1}{3n} \right)^{2} = \lim_{n \to \infty} \frac{1}{27n^{3}} \sum_{i=1}^{n} \left(9i^{2} - 6i + 1 \right)$$

$$= \lim_{n \to \infty} \frac{1}{27n^{3}} \left[\frac{9}{6} n(n+1) \left(2n+1 \right) - \frac{6}{2} n(n+1) + n \right]$$

$$= \frac{1}{9} \neq \frac{1}{3} = \int_{0}^{1} x^{2} dx.$$

(3) 由于 $f''_{xx}(x_0, y_0) = \frac{\mathrm{d}}{\mathrm{d}x} f'_x(x, y_0) \Big|_{x=x_0}$,所以由 $f''_{xx}(x, y)$ 在点 (x_0, y_0) 处存在知 $f'_x(x, y_0)$ 在点 (x_0, y_0) 处可微. 因此选 (x_0, y_0)

附注 当题中所给的三个二阶偏导数在点 (x_0, y_0) 处连续时,选项(A)、(B)、(C)都正确,但仅假定这三个二阶偏导数在点 (x_0, y_0) 处存在时,未必能推出这三个选项都正确.

(4) 由于 Ω 关于平面 Π : x + y + z = 0 对称,设 $M_1(x_1, y_1, z_1)$ 与 $M_2(x_2, y_2, z_2)$ 为对称点,则线段 $\overline{M_1M_2}$ 的中点 $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$ 位于平面 Π 上,所以

$$\frac{x_1 + x_2}{2} + \frac{y_1 + y_2}{2} + \frac{z_1 + z_2}{2} = 0, \exists x_1 + y_1 + z_1 = -(x_2 + y_2 + z_2).$$

从而 $\tan(x_1+y_1+z_1)=-\tan(x_2+y_2+z_2)$,即 $\tan(x+y+z)$ 在对称点处的值互为相反数,于是有

$$\iint_{\Omega} \tan(x + y + z) dv = 0.$$

因此选(B).

附注 计算三重积分时,应先按积分区域的对称性进行化简,然后计算. 对于三重积分 $\iint_{\Omega} f(x,y,z) \, \mathrm{d}v$,如果 Ω 具有某种对称性,按此对称性 Ω 被划分成 Ω ₁ 与 Ω ₂ 两部分,则

当f(x,y,z) 在对称点处的值互为相反数时, $\iint_{\Omega} f(x,y,z) dv = 0$;

当f(x,y,z) 在对称点处的值彼此相等时, $\iint_{\Omega} f(x,y,z) \, \mathrm{d}v = 2 \iint_{\Omega_1} f(x,y,z) \, \mathrm{d}v.$

(5) 由于方程组 Ax = 0 的解 x_0 可使 $A^TAx_0 = 0$,即 x_0 也是方程组 $A^TAx = 0$ 的解. 反之,设 $A^TAx = 0$ 有解 ξ ,则

$$\boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\xi} = \boldsymbol{0}, \mathbb{H}(\boldsymbol{A} \boldsymbol{\xi})^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{\xi}) = \boldsymbol{0}.$$

记 $A\xi = (\xi_1, \xi_2, \dots, \xi_n)^T$, 则由上式得 $\xi_1^2 + \xi_2^2 + \dots + \xi_n^2 = 0$, 即 $\xi_1 = \xi_2 = \dots = \xi_n = 0$. 所以有 $A\xi = 0$, 即 ξ 也是方程 Ax = 0 的解. 因此选(C).

附注 本题表明:设A是n阶矩阵,则Ax = 0与 $A^{T}Ax = 0$ 是同解方程组.

这一结论可推广为:

设 $A \not\equiv m \times n$ 矩阵, $B \not\equiv n \times l$ 矩阵,则 Bx = 0 与 ABx = 0 是同解方程组的充分必要条件 是 r(AB) = r(B).

(6) 由于
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^4 = \begin{pmatrix} 0 & 4 & 16 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$
所以 $|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda & -4 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = 0(\mathbf{E}$ 是三阶单位矩阵) 有解 $\lambda = -2$, 2, 3. 从而 \mathbf{A} 的

最小特征值为 - 2. 因此选(B)

附注 题解中,注意到 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 都是初等矩阵,它们的三次方与四次方

分别左乘、右乘于 $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 表明,对 \mathbf{B} 施行三次"交换第一、二行"的初等变换后,再

施行四次"将第二列加到第三列"的初等变换,所以很快获解.

(7) 记
$$U = -2Y$$
 (对应的函数 $u = -2y$, 即 $y = -\frac{u}{2}$), 则 U 的概率密度

$$f_U(u) = f\left(-\frac{u}{2}\right) \left| \frac{\mathrm{d}\left(-\frac{u}{2}\right)}{\mathrm{d}u} \right| = \frac{1}{2} f\left(-\frac{u}{2}\right),$$

从而 Z = X - 2Y = X + U 的概率密度为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x) f_U(z-x) \, \mathrm{d}x = \frac{1}{2} \int_{-\infty}^{+\infty} f(x) f\left(\frac{x-z}{2}\right) \mathrm{d}x.$$

因此选(B).

附注 常用的随机变量函数的概率密度计算公式:

(I) 设随机变量 X 的概率密度为 f(x), 记 Y = g(X) (其中 y = g(x) 在 $f(x) \neq 0$ 的区间内是单调函数,且除个别点外处处可导),则 Y 的概率密度为

$$f_{Y}(y) = \begin{cases} f(h(y)) \mid h'(y) \mid, & y \in I, \\ 0, & \text{ i.i. } \end{cases}$$

其中 $I \neq g(x)$ 在 $f_x(x) \neq 0$ 的区间上的值域, $x = h(y) \neq g(x)$ 在该区间的反函数.

(\mathbb{I}) 设二维随机变量(X, Y)的概率密度为f(x, y), 则随机变量 Z = aX + bY + c(a, b, c) 都为常数)的概率密度为

$$\stackrel{\text{def}}{=} b \neq 0 \text{ ft, } f_Z(z) = \int_{-\infty}^{+\infty} f\left(x, \frac{z - ax - c}{b}\right) \frac{1}{|b|} dx,$$

$$\stackrel{\underline{\mathsf{u}}}{=} a \neq 0$$
 时, $f_Z(z) = \int_{-\infty}^{+\infty} f\left(\frac{z - by - c}{a}, y\right) \frac{1}{|a|} \mathrm{d}y.$

如果记住了(Ⅱ),则本题可快捷获解.

(8) 由于
$$\sum_{i=1}^{n} \frac{X_i^2}{\sigma^2} \sim \chi^2(n)$$
,所以

$$EY = \frac{\sigma^2}{n} E\left(\sum_{i=1}^n \frac{X_i^2}{\sigma^2}\right) = \frac{\sigma^2}{n} \cdot n = \sigma^2,$$

$$DY = \frac{\sigma^4}{n^2} D\left(\sum_{i=1}^n \frac{X_i^2}{\sigma^2}\right) = \frac{\sigma^4}{n^2} \cdot 2n = \frac{2}{n} \sigma^4.$$

因此选(C).

附注 应记住以下结论:

(I) 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,则 $\sum_{i=1}^n \frac{(X_i - X)^2}{\sigma^2} \sim$

$$\chi^{2}(n-1)$$
, $\sum_{i=1}^{n} \frac{(X_{i}-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n)$.

(II) 设 $X \sim \chi^2(n)$, 则EX = n, DX = 2n.

二、填空题

(9) 由于 f(x) 在点 x=0 处连续, 所以

$$a = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (e^{x} + \sin x)^{\frac{1}{\ln(1+x)}}$$
$$= e^{\lim_{x \to 0^{+}} \frac{\ln(e^{x} + \sin x)}{\ln(1+x)}}, \tag{1}$$

其中, $\lim_{x\to 0^+} \frac{\ln(e^x + \sin x)}{\ln(1+x)} = \lim_{x\to 0^+} \frac{\ln[1+(e^x - 1 + \sin x)]}{x} = \lim_{x\to 0^+} \frac{e^x - 1 + \sin x}{x} = 2.$

代入式(1)得 $a = e^2$

附注 (I) 计算 $\frac{0}{0}$ 型未定式极限 $\lim \frac{f(x)}{g(x)}$ 时, 首先要对 $\lim \frac{f(x)}{g(x)}$ 进行化简, 其中对 f(x) 或 g(x) 作等价无穷小代替是最常用的、也是最有效的化简方法.

(Π) 计算 0^0 , 1^∞ , ∞^0 型未定式极限 $\lim [f(x)]^{g(x)}$ 时, 应首先将函数指数化, 即 $[f(x)]^{g(x)} = e^{g(x)\ln f(x)}$,于是

$$\lim[f(x)]^{g(x)} = e^{\lim g(x)\ln f(x)} = \begin{cases} e^A, & \lim g(x)\ln f(x) = A, \\ 0, & \lim g(x)\ln f(x) = -\infty, \\ \infty, & \lim g(x)\ln f(x) = +\infty. \end{cases}$$

$$(10) \frac{\partial}{\partial x} f\left(e^{xy}, \cos\frac{1}{x}\right) = f'_{u} \frac{\partial}{\partial x} e^{xy} + f'_{v} \frac{\partial}{\partial x} \cos\frac{1}{x}$$
$$= y e^{xy} f'_{u} + \frac{1}{x^{2}} \sin\frac{1}{x} f'_{v}.$$

附注 计算多元复合函数的偏导数时,应先画出该函数与自变量之间的复合关系图,例如本题的关系图为

$$z = f\left(e^{xy}, \cos\frac{1}{x}\right) \bigvee_{v = x}^{x}$$

所以
$$\sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} + (-1)^{\cos \frac{n}{2}\pi} \frac{1}{2^n} \right] = 1 + \frac{1}{3} = \frac{4}{3}.$$

附注 应记住
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
. 顺便计算 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)}$.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1}$$

$$= 2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} - 1$$

$$= 2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n \Big|_{x=1} - 1$$

$$= 2 \ln(1+x) \Big|_{x=1} - 1$$

$$= 2 \ln 2 - 1.$$

(12) 由 y'' + py' + qy = 0 的通解可知, 1 + i 是它的特征方程的根. 所以 $y'' + py' + qy = e^x \cos x$ 的特解形式应为

$$xe^{x}[(A_{0} + A_{1}x)\cos x + (B_{0} + B_{1}x)\sin x].$$

附注 对于二阶常系数非齐次线性微分方程

$$y'' + py' + qy = f(x),$$

当 $f(x) = e^{\alpha x} [P_l(x) \cos \beta x + Q_m(x) \sin \beta x] (P_l(x), Q_m(x))$ 分别是 x 的 l 次,m 次多项式)时,该方程应有的特解形式为

$$y^* = x^k e^{\alpha x} [R_n^{(1)}(x) \cos \beta x + R_n^{(1)}(x) \sin \beta x],$$

其中, k 是按 $\alpha + \beta$ i 是特征方程 $\lambda^2 + p\lambda + q = 0$ 的零重根与一重根对应地取 0, 1, $R_n^{(1)}(x)$, $R_n^{(2)}(x)$ 是 x 的 $n = \max\{l, m\}$ 次多项式.

(13) 由于 $A^* = |A|A^{-1}$, 其中

附注 如果记住以下公式,将快捷算出 A^* .

设A, B 都是n 阶可逆矩阵, 则

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} \mid B \mid A^* & O \\ O & \mid A \mid B^* \end{pmatrix},$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{pmatrix} O & \mid A \mid B^* \\ \mid B \mid A^* & O \end{pmatrix}.$$

(14) 由于
$$P(A) = C_{3p}^{1}(1-p)^{2} \cdot p = 3p^{2}(1-p)^{2}$$
, 则 X 的概率分布为

所以 $E(X^2) = 1^2 \cdot 3p^2(1-p)^2 = 3p^2(1-p)^2$

服从参数为 λ 的0-1分布的随机变量X的分布律为

由此可以算得X的数字特征,例如

$$EX = E(X^2) = \lambda, D(X) = \lambda(1 - \lambda)$$

等.

三、解答题

$$(15) \int \frac{1}{\sin x \cos x} \frac{1}{\sqrt{\sin^4 x + \cos^4 x}} dx = \int \frac{1}{\frac{1}{2} \sin 2x} \frac{1}{\sqrt{1 - \frac{1}{2} \sin^2 2x}} dx$$

$$= \int \frac{1}{\sqrt{\csc^2 2x - \frac{1}{2}}} \frac{d2x}{\sin^2 2x}$$

$$= -\int \frac{1}{\sqrt{\cot^2 2x + \frac{1}{2}}} d \cot 2x$$

$$= -\ln\left(\cot 2x + \sqrt{\cot^2 2x + \frac{1}{2}}\right) + C.$$

附注 可考虑类似的不定积分: $\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx$. 解答如下:

$$\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx = \frac{1}{2} \int \frac{\cos x + \sin x}{\sqrt{2 + \sin 2x}} dx - \frac{1}{2} \int \frac{\cos x - \sin x}{\sqrt{2 + \sin 2x}} dx$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{3 - (\sin x - \cos x)^2}} d(\sin x - \cos x) - \frac{1}{2} \int \frac{1}{\sqrt{1 + (\sin x + \cos x)^2}} d(\sin x + \cos x)$$

$$= \frac{1}{2} \arcsin \frac{\sin x - \cos x}{\sqrt{3}} - \frac{1}{2} \ln(\sin x + \cos x + \sqrt{2 + \sin 2x}) + C.$$

(16) 由于 $f_n(x)$ 满足

$$f'_{n}(x) - f_{n}(x) = x^{n-1}e^{x},$$

所以,
$$f_n(x) = e^{\int dx} (C + \int x^{n-1} e^x \cdot e^{-\int dx} dx)$$

$$= e^{x} (C + \int x^{n-1} dx) = e^{x} (C + \frac{1}{n} x^{n}).$$

将
$$f_n(1) = \frac{e}{n}$$
代入上式得 $C = 0$,所以 $f_n(x) = \frac{1}{n}x^n e^x (n = 1, 2, \dots)$. 从而

$$s(x) = \sum_{n=1}^{\infty} \frac{1}{n+1} f_n(x) = e^x \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^n = e^x \left(\sum_{n=1}^{\infty} \frac{1}{n} x^n - \sum_{n=1}^{\infty} \frac{1}{n+1} x^n \right)$$

$$= e^x \left(\sum_{n=1}^{\infty} \frac{1}{n} x^n - \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1} \right)$$

$$= e^x \left\{ -\ln(1-x) - \frac{1}{x} \left[-\ln(1-x) - x \right] \right\}$$

$$= -e^x \left[\left(1 - \frac{1}{x} \right) \ln(1-x) - 1 \right] \quad (x \in [-1,0) \cup (0,1)).$$

此外, s(0) = 0. 所以

$$s(x) = \begin{cases} -e^{x} \left[\left(1 - \frac{1}{x} \right) \ln(1 - x) - 1 \right], & x \in [-1, 0) \cup (0, 1), \\ 0, & x = 0. \end{cases}$$

附注 题解中直接利用 $-\ln(1-x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n (x \in (-1,1))$,比较快捷.

(17) 由于
$$\int_0^x f(x-t,y) dt = \int_0^x f(u,y) du$$
 (其中, $u = x - t$),

所以
$$f(x,y) = y + \int_{0}^{x} f(u,y) du$$
. 从而 $f(0, y) = y$, 且

$$f_{x}'(x,y) = f(x,y),$$

由此得到 $f(x, y) = ye^x$. 此外, 由题设 $g'_x(x, y) = 1$ 得

$$g(x,y) = x + C(y). \tag{1}$$

$$dg(x, y) = g'_x(x, y) dx + g'_y(x, y) dy = d(x + y),$$

所以 $g(x, y) = x + y + C_0$. 从而由 g(0, 0) = 0 得 $C_0 = 0$.

$$g(x, y) = x + y.$$

由以上得到的f, g 得

$$f(\sqrt{x},g(x,y)) = e^{\sqrt{x}}(x+y).$$

从前
$$\iint_D f(\sqrt{x}, g(x, y)) d\sigma = \iint_D e^{\sqrt{x}} (x + y) d\sigma$$

$$= \int_0^1 dx \int_{-\sqrt{x}}^{\sqrt{x}} e^{\sqrt{x}} (x + y) dy = 2 \int_0^1 x^{\frac{3}{2}} e^{\sqrt{x}} dx$$

$$\xrightarrow{\frac{c}{2}} t = \sqrt{x}} 4 \int_0^1 t^4 e^t dt = 36e - 96.$$

附注 题解中值得注意是:

为了对 $f(x,y) = y + \int_0^x f(x-t,y) dt$ 的两边关于 x 求偏导数,需将被积函数中的 x 移走,故令 u = x - t.

(18) (I)
$$\widehat{OA}$$
如图 1-18 所示、由于
$$\int_{\partial A} (e^{z} \sin x + x - z) dz + (e^{z} \cos x - z) dx$$

$$= -\int_{\partial O} (e^{z} \sin x + x - z) dz + (e^{z} \cos x - z) dx$$

$$= -\int_{\partial O} (e^{z} \sin x + x - z) dz + (e^{z} \cos x - z) dx + \int_{\partial A} (e^{z} \sin x + x - z) dz + (e^{z} \cos x - z) dx + \int_{\partial A} (e^{z} \sin x + x - z) dz + (e^{z} \cos x - z) dx$$

$$\frac{R + R + R + R}{R} - \int_{\partial A} \left[\frac{\partial (e^{z} \cos x - z)}{\partial z} - \frac{\partial (e^{z} \sin x + x - z)}{\partial x} \right] d\sigma + \int_{\partial A}^{\pi} - z dz$$

$$(\cancel{R} + D \cancel{R} + \cancel{R} + D \cancel{R} + \cancel{R} + D \cancel{R} + D$$

附注 题解中有两点值得注意:

(I) 由于 \widehat{AO} 不是闭曲线,所以添上线段 \widehat{OA} ,使得 \widehat{AO} + \widehat{OA} 成为闭曲线,然后应用格林公式计算所给的曲线积分,比较快捷。

- (II)由于 Σ 是闭曲面,且是外侧,所以对所给的曲面积分直接应用高斯公式计算,比较快捷.此外,计算 $\iint_{\Omega} z dv$ 时,由于 Ω 是旋转曲面,且被积函数与x, y 无关,所以采用先x, y, 后z 的方法.
 - (19) c 将[a, b]分成两个小区间[a, c]与[c, b].

由于 $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} > 0$,所以存在 $x_{1} \in (a, c)$,使得 $f(x_{1}) > f(a)$.由于

$$f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} < 0, \text{ 所以存在 } x_2 \in (x_1, \ c), \text{ 使得 } f(x_2) > f(c). \text{ 因此 } f(x) \text{ 在} [a, \ c]$$

上的最大值在(a, c)内取到,于是由费马定理知,存在 $\eta_1 \in (a, c)$,使得 $f'(\eta_2) = 0$.

此外,由 f(c)=f(b)=0 知, f(x) 在 [c,b] 上满足罗尔定理条件,所以存在 $\eta_2\in(c,b)$,使得 $f'(\eta_2)=0$.

由题设及以上证明知, f'(x)在[η_1 , η_2]上满足罗尔定理条件, 所以存在 $\xi \in (\eta_1, \eta_2)$ $\subset (a, b)$, 使得 $f''(\xi) = 0$.

附注 当函数 f(x) 在 [a, b] 上有连续导数时,如果 $f'_{+}(a) \cdot f'_{-}(b) < 0$,则容易知道,存在 $\xi \in (a, b)$,使得 $f'(\xi) = 0$. 但是,从本题的证明可知,"当 f(x) 在 [a, b] 上可导 (未必有连续导数)时,如果 $f'_{+}(a) \cdot f'_{-}(b) < 0$,则存在 $\xi \in (a, b)$,使得 $f'(\xi) = 0$."记住这个结论,有助快捷解题.

(20) 由于 α_1 , α_2 , α_3 不能由 β_1 , β_2 , β_3 线性表示, 所以矩阵方程

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$$

无解,从而

$$r(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3} \mid \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3}) > r(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3}).$$
由于(\beta_{1},\beta_{2},\beta_{3} \mathred{\alpha}_{1},\beta_{2},\beta_{3} \mathred{\alpha}_{2},\beta_{3}) = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & b & a & 1 & 5 \end{pmatrix} \frac{\delta\text{dyF}\text{|\beta\text{CyF}|}}{(\text{UF}\text{|\beta\text{|}})} \\
\begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 0 & 1 & 1 & -1 & 1 & 3 - b \\ 0 & 2 & b - 3 & a - 1 & 1 & 5 - b \end{pmatrix} \\
\begin{pmatrix} 1 & 1 & 3 & b & a & 1 & 0 & b \\ 0 & 1 & 1 & -1 & 1 & 3 - b \\ 0 & 0 & b - 5 & a + 1 & -1 & b - 1 \end{pmatrix} \\
\end{pmatrix}

所以, b=5 时, $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3 | \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 3 > 2 = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$, 即此时, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 不能由 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 线性表示.

由于 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1$ + $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1$ + $\boldsymbol{\alpha}_2$ + $\boldsymbol{\alpha}_3$ 线性表示,所以矩阵方程

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) Y = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$$

有解,从而

$$r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3|\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)=r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3).$$
将 $b=5$ 代入得

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3} | \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}) = \begin{bmatrix} 1 & 1 & 6 & 1 & 1 & 3 \\ 0 & 1 & 4 & 1 & 2 & 4 \\ a & a + 1 & a + 6 & 1 & 3 & 5 \end{bmatrix}$$

$$\xrightarrow{\text{NI$\forall Fightarrow}} \begin{bmatrix} 1 & 1 & 6 & 1 & 1 & 3 \\ 0 & 1 & 4 & 1 & 2 & 4 \\ 0 & 1 & 6 - 5a & 1 - a & 3 - a & 5 - 3a \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 1 & 6 & 1 & 1 & 3 \\ 0 & 1 & 4 & 1 & 2 & 4 \\ 0 & 0 & 2 - 5a & -a & 1 - a & 1 - 3a \end{bmatrix} .$$

所以, $a \neq \frac{2}{5}$ 时, $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 | \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)$ (=3),即此时, $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示.

于是, 所求的 $a \neq \frac{2}{5}$, b = 5.

附注 题解中有两点值得注意:

(I) 矩阵方程 AX = B 有解的充分必要条件是

$$r(A \mid B) = r(A).$$

而无解的充分必要条件是

$$r(A \mid B) > r(A)$$
.

- (II) 设有两个 n 维向量组(A): α_1 , α_2 , ..., α_n , (B): β_1 , β_2 , ..., β_n , 则
- (A)可由(B)线性表示,且表示式唯一的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_s)X = (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_s)(\sharp P,X \not\equiv s \times n \not\equiv m \not\equiv m)$$

有唯一解:

(A)可由(B)线性表示,但表示式不唯一的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r)$$

有无穷多解;

(A)不可由(B)线性表示的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r)$$

无解.

(21) 由 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2 - y_3^2$ 知 \mathbf{A} 有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -1$, 且对应 $\lambda_3 = -1$ 的特征向量为 $\boldsymbol{\alpha}_3 = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$.

设 $\lambda_1 = \lambda_2 = 1$ 对应的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则由 A 是实对称矩阵知, $\alpha 与 \alpha_3$ 正交、即

$$a_1 + a_3 = 0.$$

它的基础解系为 $\alpha_1 = (0, 1, 0)^T$ 及 $\alpha_2 = (-1, 0, 1)^T$,它们即为 A 的对应 $\lambda_1 = \lambda_2 = 1$ 的特征向量. α_1 , α_2 , α_3 是正交向量组,现将它们单位化:

$$\boldsymbol{\xi}_{1} = \boldsymbol{\alpha}_{1} = (0,1,0)^{\mathrm{T}}, \boldsymbol{\xi}_{2} = \frac{\boldsymbol{\alpha}_{2}}{\|\boldsymbol{\alpha}_{2}\|} = \left(-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^{\mathrm{T}}, \boldsymbol{\xi}_{3} = \boldsymbol{\alpha}_{3} = \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^{\mathrm{T}},$$

它们是A的分别对应特征值为1,1,-1的特征向量.

由此可知 A^* 的特征值为

$$\mu_1 = \frac{|A|}{\lambda_1} = -1, \mu_2 = \frac{|A|}{\lambda_2} = -1, \mu_3 = \frac{|A|}{\lambda_3} = 1,$$

它们对应的特征向量分别为 ξ_1 , ξ_2 , ξ_3 , 记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则由 A^* 是实对称矩阵得

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}^{*}\boldsymbol{Q} = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix},$$

附注 题解中有两点值得注意:

- (I) 设A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 ξ ,则 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 ξ .
- (II) 设 A 是可逆实对称矩阵,正交矩阵 Q 可使它正交相似对角化,则 Q 也可使 A^* 正 交相似对角化.
 - (22) (I) 关于 X 的边缘概率密度

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{-1}^{1} \frac{1}{4} (1 - x^{3}y - xy^{3}) \, \mathrm{d}y, & |x| < 1, \\ 0, & \text{ 其他} \end{cases}$$
$$= \begin{cases} \frac{1}{2}, & |x| < 1, \\ 0, & \text{ 其他}. \end{cases}$$

记 Z 的分布函数为 F(z), 则 $F(z) = P(Z \le z)$.

当
$$z \le 0$$
时, $P(Z \le z) = P(X^2 \le z) = 0$,

当
$$0 < z < 1$$
 时, $P(Z \le z) = P(X^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z})$

$$= \int_{-\sqrt{z}}^{\sqrt{z}} \frac{1}{2} \mathrm{d}x = \sqrt{z},$$

当
$$z \ge 1$$
时, $P(Z \le z) = P(X^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z})$

$$=\int_{-1}^{1}\frac{1}{2}dx=1.$$

所以,
$$F(z) = \begin{cases} 0, & z \leq 0, \\ \sqrt{z}, & 0 < z < 1, 从而 f_Z(z) = \begin{cases} \frac{1}{2\sqrt{z}}, & 0 < z < 1, \\ 0, & 其他. \end{cases}$$

$$(II) EW = E(X - Y)^2 = E(X^2) + E(Y^2) - 2E(XY)$$
,

其中
$$E(X^2) = D(X^2) + (EX)^2 = \frac{1}{12} \times 2^2 + 0^2 = \frac{1}{3}$$
. 同样可得 $E(Y^2) = \frac{1}{3}$. 此外,

$$E(XY) = \int_{xO_{y} = \overline{|\Omega|}} xyf(x,y) d\sigma = \int_{\substack{|x| < 1 \\ |y| < 1}} xy \cdot \frac{1}{4} (1 - x^{3}y - xy^{3}) d\sigma$$

$$= \frac{1}{4} \left(\int_{\substack{|x| < 1 \\ |y| < 1}} xy d\sigma - 2 \int_{\substack{|x| < 1 \\ |y| < 1}} x^{4}y^{2} d\sigma \right)$$

$$= \frac{1}{4} \left(0 - 2 \cdot \frac{1}{5}x^{5} \Big|_{-1}^{1} \cdot \frac{1}{3}y^{3} \Big|_{-1}^{1} \right)$$

$$= -\frac{2}{15},$$

所以

$$EW = \frac{1}{3} + \frac{1}{3} - 2 \times \left(-\frac{2}{15} \right) = \frac{14}{15}$$

附注 $E(X-Y)^2$ 也可按定义计算:

$$E(X - Y)^{2} = \iint_{x0y \neq \text{mi}} (x - y)^{2} f(x, y) d\sigma = \iint_{\begin{vmatrix} x \\ y \end{vmatrix} \le 1} (x - y)^{2} \cdot \frac{1}{4} (1 - x^{3}y - xy^{3}) d\sigma$$

$$= \frac{1}{4} \int_{-1}^{1} dx \int_{-1}^{1} (x - y)^{2} (1 - x^{3}y - xy^{3}) dy$$

$$= \frac{1}{4} \int_{-1}^{1} dx \int_{-1}^{1} (x^{2} + y^{2} + 2x^{4}y^{2} + 2x^{2}y^{4} - 2xy - 2x^{3}y^{5} - x^{5}y - xy^{5}) dy$$

$$= \frac{1}{2} \int_{-1}^{1} dx \int_{0}^{1} (x^{2} + y^{2} + 2x^{4}y^{2} + 2x^{2}y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{1} \left(\frac{1}{2} + \frac{2}{2}x^{4} + \frac{7}{5}x^{2} \right) dx = \int_{-1}^{1} \left(\frac{1}{2} + \frac{2}{2}x^{4} + \frac{7}{5}x^{2} \right) dx = \frac{14}{15}.$$

(23) (I) 由于
$$N_1 \sim B(n, 1-\theta)$$
, $N_2 \sim B(n, \theta-\theta^2)$, $N_3 \sim B(n, \theta^2)$, 所以 $EN_1 = n(1-\theta)$, $EN_2 = n(\theta-\theta^2)$, $EN_3 = n\theta^2$.

因此,
$$ET = E(a_1N_1 + a_2N_2 + a_3N_3) = a_1EN_1 + a_2EN_2 + a_3EN_3$$

= $a_1n(1-\theta) + a_2n(\theta-\theta^2) + a_3n\theta^2$
= $a_1n + (-a_1n + a_2n)\theta + (-a_2n + a_3n)\theta^2$.

欲使 $T \in \theta$ 的无偏估计量、必须 $ET = \theta$ 、即

$$a_1 n + (-a_1 n + a_2 n) \theta + (-a_2 n + a_2 n) \theta^2 = \theta.$$

比较 θ 同次幂的系数得

$$\begin{cases} a_1 n = 0\,, \\ -\,a_1 n \,+\,a_2 n \,=\, 1\,, \mbox{\ensuremath{\mathbb{R}}} \mbox{\ensuremath{\mathbb{R}}} \mbox{\ensuremath{a}}_1 \,=\, 0\,, a_2 \,=\, a_3 \,=\, \frac{1}{n}. \\ -\,a_2 n \,+\,a_3 n \,=\, 0\,, \end{cases}$$

(II) 由于 $N_2 \sim B(n, \theta - \theta^2) = B\left(300, \frac{1}{4}\right)$, 所以 $EN_2 = 75$, $DN_2 = \frac{225}{4}$, 因此由中心极限定理(具体的是棣莫弗-拉普拉斯中心极限定理)知

$$\begin{split} P(N_2 > 80) &= 1 - P(N_2 \le 80) \\ &\approx 1 - \varPhi \bigg(\frac{80 - EN_2}{\sqrt{DN_2}} \bigg) = 1 - \varPhi \bigg(\frac{80 - 75}{\sqrt{\frac{225}{4}}} \bigg) \\ &= 1 - \varPhi(0.67) = 1 - 0.7486 = 0.2514. \end{split}$$

附注 本题的关键,是从总体 X 的概率分布,推出 N_i (i=1, 2, 3) 的各自分布,即 $N_1 \sim B(n, 1-\theta)$, $N_2 \sim B(n, \theta-\theta^2)$, $N_3 \sim B(n, \theta^2)$. 顺便计算 DT.

由于
$$T = \frac{1}{n}(N_2 + N_3) = 1 - \frac{1}{n}N_1$$
,所以
$$DT = D\left(1 - \frac{1}{n}N_1\right) = \frac{1}{n^2}DN_1 = \frac{1}{n^2} \cdot n(1-\theta)\theta = \frac{1}{n}\theta(1-\theta).$$

模拟试题(二)解答

一、选择题

答案

(1)	(C)	(2)	(A)	(3)	(D)	(4)	(C)
(5)	(B)	(6)	(C)	(7)	(C)	(8)	(D)

(1) 显然 x = 0, 1 都是方程的实根. 记 $f(x) = 2^x - x^2 - 1$, 则 f(x) 连续. 且

$$f(2) \cdot \lim_{x \to +\infty} f(x) < 0$$

 $f(2) \cdot \lim_{x \to +\infty} f(x) < 0,$ 所以由零点定理推广形式知所给方程 f(x) = 0 在 $(2, +\infty)$ 上有实根,记为 x_0 .

如果方程 f(x) = 0 还有不同实根 x_1 ,不妨 $x_1 > x_0$,则由 f(x) 可导,且 f(0) = f(1) = f(1) $f(x_0) = f(x_1)$ 及罗尔定理(高阶导数形式)知,存在 $\xi \in (0, x_1)$,使得 $f'''(\xi) = 0$. (1)

另一方面,计算
$$f(x)$$
 的三阶导数得 $f'''(\xi) = 2^{\xi} (\ln 2)^3 \neq 0.$ (2)

式(1)与式(2)矛盾知,方程 $2^x - x^2 - 1 = 0$ 除实根 $0, 1, x_0$ 外别无其他实根,因此选 (C).

附注 (I)零点定理的一种推广形式

设函数 f(x) 在 $[a, +\infty)$ 上连续,且 $f(a) \cdot \lim_{n \to \infty} f(x) < 0$,则存在 $\xi \in (a, +\infty)$,使得 $f(\xi) = 0.$

(Ⅱ) 罗尔定理的高阶导数形式

设函数 f(x) 在(a, b)内二阶可导,且有 $x_1, x_2, x_3 \in (a, b)$ (其中, $x_1 < x_2 < x_3$),使得 $f(x_1) = f(x_2) = f(x_3)$,则存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

设函数 f(x) 在(a, b)内三阶可导,且有 $x_1, x_2, x_3, x_4 \in (a, b)$ (其中, $x_1 < x_2 < x_3 < x_4 \in (a, b)$) x_4),使得 $f(x_1)=f(x_2)=f(x_3)=f(x_4)$,则存在 $\xi\in(a,b)$,使得 $f'''(\xi)=0$.

(2) 由于
$$\max\{e^{-t}, e^t\} = \begin{cases} e^{-t}, & t \leq 0, \text{ 所以} \\ e^t, & t > 0, \end{cases}$$

$$F(x) = \int_0^x \max\{e^{-t}, e^t\} dt = \begin{cases} \int_0^x e^{-t} dt, & x \leq 0, \\ \int_0^x e^t dt, & x > 0 \end{cases} = \begin{cases} 1 - e^{-x}, & x \leq 0, \\ e^x - 1, & x > 0. \end{cases}$$

因此选(A).

附注 同样可以计算 $\int_{-\infty}^{x} \min\{e^{-t}, e^{t}\} dt$, 具体如下:

由于
$$\min\{e^{-t}, e^{t}\} = \begin{cases} e^{t}, & t \leq 0, \\ e^{-t}, & t > 0, \end{cases}$$
 所以

$$\int_{-\infty}^{x} \min\left\{ e^{-t}, e^{t} \right\} dt = \begin{cases} \int_{-\infty}^{x} e^{t} dt, & x \leq 0, \\ \int_{-\infty}^{0} e^{t} dt + \int_{0}^{x} e^{-t} dt, & x > 0 \end{cases}$$

$$= \begin{cases} e^x, & x \le 0, \\ 2 - e^{-x}, & x > 0. \end{cases}$$

(3) 由 $\{a_n\}$ 是单调减少收敛于零的正项数列知 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛. 所以对它两项两项地加括号所得级数

$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$$

收敛. 因此选(D).

附注 本题获解的关键是,由莱布尼茨定理确定 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛.此外,应记住以下的收敛级数性质:

设 $\sum\limits_{n=1}^{\infty}c_n$ 收敛,则对它任意加括号所得级数仍收敛,但反之未必正确,即级数 $\sum\limits_{n=1}^{\infty}c_n$ 任意加括号后所得的级数收敛时,原级数未必收敛.

(4)
$$\exists f \iint_{\Sigma} (x+2) \, dy dz + z dx dy$$

$$= \iint_{D_{yz}} (\sqrt{4-y^2-z^2}+2) \, dy dz - \iint_{D_{yz}} (-\sqrt{4-y^2-z^2}+2) \, dy dz + \iint_{D_{xx}} \sqrt{4-x^2-y^2} \, dx dy$$

$$= 2 \iint_{D_{xx}} \sqrt{4-y^2-z^2} \, dy dz + \iint_{D_{xx}} \sqrt{4-x^2-y^2} \, dx dy.$$

所以选(C).

附注 题中计算 $\iint_{\Sigma} (x+2) \, dy dz$ 时, 需用平面 x=0 将 Σ 划分成两部分: $\Sigma_1 : x = \sqrt{4-y^2-z^2}$ (前侧) 与 $\Sigma_2 : x = -\sqrt{4-y^2-z^2}$ (后侧), 它们在 yOz 平面的投影都为 D_y .

(5) 由 α , β , γ 线性无关知 α , β 线性无关, 从而由 α , β , δ 线性相关知 δ 可由 α , β 线表示, 即 δ 可由 α , β , γ 线性表示. 因此选(B).

附注 关于向量组的线性相关性的以下结论应记住:

(I) 设向量组(A): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$.

如果(A)线性无关,则它的任一部分组也线性无关;

如果(A)的某一部分组线性相关,则(A)线性相关.

(Ⅱ) 设向量组(A): α_1 , α_2 , …, α_m , β .

如果(A)线性相关,则至少存在一个向量可用其余向量线性表示;

如果(A)线性相关,但 α_1 , α_2 ,…, α_m 线性无关,则 β 可由 α_1 , α_2 ,…, α_n 线性表示、且表示式是唯一的。

(6) ②④都是 A 可相似对角化的充分必要条件, 因此选(C).

附注 应记住以下的结论:

设A 是n 阶矩阵,则"A 有n 个线性无关的特征向量",或"A 的每个 n_i 重特征值 λ_i 的

特征矩阵 $\lambda_i E - A$ (其中, $E \neq n$ 阶单位矩阵) 都满足 $r(\lambda_i E - A) = n - n_i$ ",都是 A 可相似对角化的充分必要条件。而 A 有 n 个不同的特征值,或 A 是实对称矩阵,则是 A 可相似对角化的充分而非必要条件。

(7) 对于选项(C),
$$(X, Y)$$
的概率密度 $f(x, y) = \begin{cases} \frac{1}{\pi R^2}, & x^2 + y^2 \leq R^2, \\ 0, & \text{其他,} \end{cases}$

的边缘概率密度分别为

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_{-\sqrt{R^{2} - x^{2}}}^{\sqrt{R^{2} - x^{2}}} \frac{1}{\pi R^{2}} \mathrm{d}y, & -R \leq x \leq R, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - x^{2}}, & -R \leq x \leq R, \\ 0, & \text{ 其他}, \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - y^{2}}, & -R \leq y \leq R, \\ 0, & \text{ 其他}, \end{cases}$$

显然 $f_X(x)f_Y(y) = f(x, y)$ 不是几乎处处成立的,所以 X 与 Y 不相互独立.因此选(C).

附注 应记住选项(A), (B), (C)的结论.

(8)
$$\pm \frac{1}{\sigma^2} \sum_{i=1}^{n_1} (X_i - \overline{X})^2 \sim \chi^2(n_1 - 1), \frac{1}{\sigma^2} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2 \sim \chi^2(n_2 - 1), \underline{\exists} \frac{1}{\sigma^2} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$$

与 $\frac{1}{\sigma^2}\sum_{i=1}^{n^2}(Y_i-\overline{Y})^2$ 相互独立,所以由 χ^2 分布的可加性得

$$\begin{split} \frac{1}{\sigma^2} \sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2 + \frac{1}{\sigma^2} \sum_{j=1}^{n_2} \left(Y_j - \overline{Y} \right)^2 &\sim \chi^2 (n_1 + n - 2). \\ \mp E D(Z) &= \frac{\sigma^4}{(n_1 + n_2 - 2)^2} D \Big[\frac{1}{\sigma^2} \sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2 + \frac{1}{\sigma^2} \sum_{j=1}^{n_2} \left(Y_j - \overline{Y} \right)^2 \Big] \\ &= \frac{\sigma^4}{(n_1 + n_2 - 2)^2} \cdot 2 (n_1 + n_2 - 2) = \frac{2\sigma^4}{n_1 + n_2 - 2}. \end{split}$$

因此选(D).

附注 要记住以下的关于 χ^2 分布的结论:

- (I) 设 $\chi \sim \chi^2(n)$. 则EX = n. DX = 2n:
- (III) 设 $\chi \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$ 且它们相互独立, 则 $X + Y \sim \chi^2(n_1 + n_2)$.

二、填空题

附注 类似地可考虑:

设
$$\lim_{x\to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3$$
,求 $\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}}$. 具体计算如下:

曲
$$\lim_{x\to 0} \left[1 + x + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e^3$$
 得 $\lim_{x\to 0} \frac{\ln\left[1 + x + \frac{f(x)}{x}\right]}{x} = 3$. 由此可得 $\lim_{x\to 0} \left[x + \frac{f(x)}{x}\right] = 0$,从而有

所以,
$$\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}} = e_{x\to 0}^{\lim_{x\to 0} \frac{\ln\left[1 + \frac{f(x)}{x}\right]}{x}} = e_{x\to 0}^{\lim_{x\to 0} \frac{f(x)}{x^2}} = e^2.$$

(10) 由
$$\frac{\partial z}{\partial x} = f'_u(x+y,yg(x)) + f'_v(x+y,yg(x))yg'(x)$$
得

$$\frac{\partial z(0,y)}{\partial x} = f'_{u}(y,y) + f'_{v}(y,y)y(\text{Alfl } g(0) = g'(0) = 1)$$

$$= f'_{x}(y,y) + f'_{y}(y,y)y = 1 + y(\text{Alfl } f'_{x}(y,y) = f'_{y}(y,y) = 1),$$

所以,
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0\\y=1}} = \frac{\mathrm{d}}{\mathrm{d}y}(1+y)\Big|_{y=1} = 1.$$

附注 由于 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=0} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\partial z}{\partial x} \Big|_{x=0} \right) \Big|_{y=1}$,所以可先算出 $\frac{\partial z(0,y)}{\partial x}$,记为 $\varphi(y)$,然后计算

$$\frac{\mathrm{d}\varphi(y)}{\mathrm{d}y} \left| \left. \underset{y=1}{\sup} \frac{\partial^2 z}{\partial x \partial y} \right|_{x=0}, \text{这样计算比先算出} \frac{\partial^2 z}{\partial x \partial y}, \text{然后将 } x=0, y=1 \text{ 代入计算} \frac{\partial^2 z}{\partial x \partial y} \right|_{x=0} \text{快捷}.$$

(11) 由于曲面
$$z = x^2 + y^2$$
 与 $x^2 + y^2 + z^2 = 2$ ($z \ge 0$) 的交线为 $\begin{cases} z = x^2 + y^2, \\ x^2 + y^2 + z^2 = 2. \end{cases}$ 即

 $\begin{cases} x^2 + y^2 = 1, \\ z = 1. \end{cases}$ 所以 Σ 在 xOy 平面的投影为 $D = \{(x, y) \mid x^2 + y^2 \leq 1\},$ 从而 Σ 的面积

$$S = \iint_{\Sigma} dS = \iint_{D} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} \Big|_{z=x^{2}+y^{2}} d\sigma$$

$$= \iint_{D} \sqrt{1 + 4(x^{2} + y^{2})} d\sigma$$

$$= \frac{\frac{1}{2}}{\frac{1}{2}} \int_{0}^{2\pi} d\theta \int_{0}^{1} \sqrt{1 + 4r^{2}} r dr$$

$$= \frac{\pi}{6} (1 + 4r^{2})^{\frac{3}{2}} \Big|_{0}^{1} = \frac{\pi}{6} (5\sqrt{5} - 1).$$

附注 顺便计算上半球面 $x^2+y^2+z^2=2$ ($z\geqslant 0$)位于曲面 $z=x^2+y^2$ 之内部分 Σ_1 的面积 S_1 :

$$S_{1} = \iint_{\Sigma_{1}} dS = \iint_{D} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} \Big|_{z = \sqrt{2 - x^{2} - y^{2}}} d\sigma$$
$$= \sqrt{2} \iint_{D} \frac{1}{\sqrt{2 - x^{2} - y^{2}}} d\sigma$$

$$=$$
 极坐标 $\sqrt{2}\int_0^{2\pi} d\theta \int_0^1 \frac{r}{\sqrt{2-r^2}} dr = 2(2-\sqrt{2})\pi$.

(12) 将 f(x) 偶延拓为周期是 2 的周期函数 $f_1(x)$, 其中在[-1,1]上

$$f_1(x) = \begin{cases} f(x), & 0 \le x \le 1 \\ f(-x), & -1 \le x < 0, \end{cases}$$

所以,

$$S_1(-1) = \frac{1}{2} [f_1(1) + f_1(-1)] = f(1) = -1.$$

将 f(x) 奇延拓为周期为 2 的周期函数 $f_2(x)$, 其中在(-1, 1]上

$$f_2(x) = \begin{cases} f(x), & 0 \le x \le 1, \\ -f(-x), & -1 < x < 0, \end{cases}$$

所以

$$S_2\left(\frac{5}{2}\right) = S_2\left(\frac{1}{2}\right)$$
 (由于 S_2 是以 2 为周期的周期函数)
= $\frac{1}{2}\left[f_2\left(\left(\frac{1}{2}\right)^-\right) + f_2\left(\left(\frac{1}{2}\right)^+\right)\right]$
= $\frac{1}{2}\left[f\left(\left(\frac{1}{2}\right)^-\right) + f\left(\left(\frac{1}{2}\right)^+\right)\right] = \frac{1}{2}\left(\frac{1}{2} - 0\right) = \frac{1}{4}$.

附注 应记住:要计算 $f(x)(0 \le x \le l)$ 的余弦级数(正弦级数)时,应将 f(x)作偶延拓(奇延拓).此外应掌握用狄利克雷收敛定理计算函数的傅里叶级数的和函数的方法.

其中, A 是二阶矩阵, 所以当 r(A) = 1 时, $r(A^*) = 1$; B 是四阶矩阵, 所以当 r(B) = 2 时, $r(B^*) = 0$.

从而
$$r\begin{pmatrix} \boldsymbol{O} & \boldsymbol{A}^* \\ \boldsymbol{B}^* & \boldsymbol{O} \end{pmatrix} = 1 + 0 = 1.$$

附注 应记住以下公式:

设 $A \neq n$ 阶矩阵, $A^* \neq A$ 的伴随矩阵, 则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n-1, \\ 0, & r(A) < n-1. \end{cases}$$

(14)
$$P(\max\{X,Y\} \le 1) = P(X \le 1, Y \le 1)$$

= $P(X \le 1)P(Y \le 1) = (\int_{-\infty}^{1} f(t) dt)^{2}$
= $(\int_{0}^{1} e^{-t} dt)^{2} = (1 - e^{-1})^{2}$.

附注 应记住以下公式:

设随机变量 $X \setminus Y$ 相互独立,它们的分布函数分别为 $F_{Y}(x)$ 与 $F_{Y}(y)$,则

 $Z_1 = \max\{X, Y\}$ 的分布函数 $F_{Z_1}(z) = F_X(z)F_Y(z)$;

 $Z_2 = \min\{X, Y\}$ 的分布函数 $F_{Z_2}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)].$

三、解答题

 $(15) \gamma(0) = 1$, 此外,

曲
$$y(x) = 1 + x + 2x \int_0^x y(t) y'(t) dt - 2 \int_0^x t y(t) y'(t) dt$$
 得
$$y' = 1 + 2 \int_0^x y(t) y'(t) dt = 1 + y^2 - y^2(0) = y^2,$$
 所以 $\frac{d}{dx} \left(\frac{1}{y} \right) = -1$,从而 $\frac{1}{y} = -x + C$. 将 $y(0) = 1$ 代入得 $C = 1$. 因此 $y = \frac{1}{1-x}$. 从而
$$y^{(n)} = \frac{n!}{(1-x)^{n+1}}.$$

附注 $y_0^x(x-t)y(t)y'(t) dt$ 求导时,必须首先将被积函数中的 x提到积分号之外, 故将它改写成

$$x \int_{0}^{x} y(t)y'(t) dt - \int_{0}^{x} ty(t)y'(t) dt.$$
(16) 由于 $f'_{x} = 2(x+1)$, $f'_{y} = 2(y+1)$, $f'_{z} = -2z$, 所以方程组
$$\begin{cases} f'_{x} = 0, \\ f'_{y} = 0, \\ f'_{z} = 0 \end{cases} \begin{cases} 2(x+1) = 0, \\ 2(y+1) = 0, \\ -2z = 0 \end{cases}$$

在 Ω 内部无解,即f(x, y, z)在 Ω 内部无可能极值点

下面计算 f(x, y, z) 在 Ω 的表面上的最值.

记
$$F(x, y, z) = 2x + 2y + x^2 + y^2 - z^2 + \lambda(x^2 + y^2 + z^2 - 1)$$
,则
$$F'_x = 2(1 + x + \lambda x), \quad F'_y = 2(1 + y + \lambda y), \quad F'_z = 2(-1 + \lambda)z.$$

干是方程组

$$\begin{cases} F'_{x} = 0, \\ F'_{y} = 0, \\ F'_{z} = 0, \\ x^{2} + y^{2} + z^{2} = 1, \end{cases} = \begin{cases} 1 + (1 + \lambda)x = 0, \\ 1 + (1 + \lambda)y = 0, \\ (-1 + \lambda)z = 0, \\ x^{2} + y^{2} + z^{2} = 1. \end{cases}$$
(1)

$$\begin{cases} x^2 + y^2 + z^2 = 1 & \begin{cases} x^2 + y^2 + z^2 = 1. \end{cases}$$
 (4)

由式(1)与式(2)知 x = y, 由式(3)知 z = 0 或 $\lambda = 1$.

将 x = y, z = 0 代入式(4) 得 $x = y = \pm \frac{1}{2}$. 这时可能极值点为

$$M_1\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$
 $\neq 1$ $M_2\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$.

将 x=y, $\lambda=1$ 代入式(1)、式(2)得 $x=y=-\frac{1}{2}$,将它们代入式(4)得 $z=\pm\frac{1}{2}$,这时可 能极值点为

$$M_3\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{\sqrt{2}}\right), \quad M_4\left(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{\sqrt{2}}\right).$$

由于
$$f \Big|_{M_1} = 2\sqrt{2} + 1$$
, $f \Big|_{M_2} = -2\sqrt{2} + 1$, $f \Big|_{M_3} = f \Big|_{M_4} = -2$,

所以 f(x, y, z) 在 Ω 上的最大值为 $2\sqrt{2}+1$,最小值为 -2.

附注 计算三元函数 f(x, y, z) 在有界闭区域 Ω 上的最值,通常可按以下步骤进行:

- (I) 计算 f(x, y, z) 在 Ω 内部的所有可能极值点,记为 M_1, M_2, \dots, M_n .
- (Ⅱ) 计算f(x, y, z)在 Ω 的边界上的最值(通常使用拉格朗日乘数法),记最大值为 M. 最小值为 m.
- (Ⅲ) 比较 $f(M_1)$, $f(M_2)$, …, $f(M_n)$, M, m 的大小, 则最大者与最小者, 分别为 f(x, y, z)在 Ω 上的最大值与最小值.
 - (17) $i = f(x) = 2\sin x + \tan x 3x$, i = 0

$$f'(x) = 2\cos x + \sec^2 x - 3 = \tan^2 x - 2(1 - \cos x)$$
$$> \tan^2 x - 2 \cdot \frac{x^2}{2} > 0 \left(x \in \left(0, \frac{\pi}{2} \right) \right),$$

即 f(x)在 $\left(0, \frac{\pi}{2}\right)$ 内单调增加,所以,对 $x \in \left(0, \frac{\pi}{2}\right)$,有

$$f(x) > \lim_{x \to 0^{+}} f(x) = 0$$
, \mathbb{H} $2\sin x + \tan x > 3x$.

附注 要证明函数不等式 $f(x) > g(x)(x \in (a, b))(其中, f(x) 与 g(x) 在(a, b))$ 内可 导). 总是按以下步骤进行:

- (I) 作辅助函数 $\varphi(x) = f(x) g(x)$;
- (**I**) 计算 φ′(x).

如果 $\varphi'(x) > 0(x \in (a, b))$, 且 $\lim \varphi(x) = A \ge 0$, 则有

$$\varphi(x) > 0, \exists f(x) > g(x)(x \in (a,b)).$$

如果 $\varphi'(x) < 0(x \in (a, b))$,且 $\lim \varphi(x) = B \ge 0$,则有

$$\varphi(x) > 0, \mathbb{H} f(x) > g(x)(x \in (a,b)).$$

$$\varphi(x) > 0, \text{即} f(x) > g(x)(x \in (a,b)).$$
如果 $\varphi'(x)$
$$\begin{cases} <0, \ a < x < x_0, \\ =0, \ x = x_0, & \text{且 } \varphi(x_0) = C > 0, \text{ 则有} \\ >0, \ x_0 < x < b, \\ \varphi(x) > 0, \text{即} f(x) > g(x)(x \in (a,b)). \end{cases}$$

(18)
$$\alpha = \lim_{x \to 0^{+}} \frac{x^{2} \tan \frac{x}{2}}{1 - (1 + x)^{x \sin^{2} \sqrt{x}}} = -\frac{1}{2} \lim_{x \to 0^{+}} \frac{x^{3}}{e^{x \sin^{2} \sqrt{x} \ln(1 + x)}} - 1$$

$$= -\frac{1}{2} \lim_{x \to 0^{+}} \frac{x^{3}}{x \sin^{2} \sqrt{x} \ln(1 + x)} = -\frac{1}{2} \lim_{x \to 0^{+}} \frac{x^{3}}{x \cdot x \cdot x} = -\frac{1}{2}.$$

由于当|x|<1 时有

$$\sum_{n=1}^{\infty} n^2 x^{n-1} = \sum_{n=1}^{\infty} (x^{n+1})'' - \sum_{n=1}^{\infty} (x^n)'$$

$$= \left(\sum_{n=1}^{\infty} x^{n+1}\right)'' - \left(\sum_{n=1}^{\infty} x^n\right)'$$

$$= \left(\frac{x^2}{1-x}\right)'' - \left(\frac{x}{1-x}\right)'$$

$$= \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2} = \frac{1+x}{(1-x)^3},$$

所以,
$$\sum_{n=1}^{\infty} n^2 \sin^{n-1} \alpha = \left(\sum_{n=1}^{\infty} n^2 x^{n-1}\right) \Big|_{x = \sin\left(-\frac{1}{2}\right)} = \frac{1+x}{(1-x)^3} \Big|_{x = -\sin\frac{1}{2}}$$
$$= \frac{1-\sin\frac{1}{2}}{\left(1+\sin\frac{1}{2}\right)^3}.$$

附注 利用幂级数计算级数 $\sum_{n=0}^{\infty} a_n x_0^n$ 和的步骤如下:

- (I) 构造幂级数 $\sum_{n=0}^{\infty} a_n x^n$,
- (II) 计算上述幂级数的收敛域I与和函数S(x),
- (III) 如果 $x_0 \in I$,则 $\sum_{n=0}^{\infty} a_n x_0^n = S(x_0)$,

本题就是如此计算的.

(19) C 如图 2-19 所示的 \widehat{AB} , 其中, $A = (-a\pi, 0)$, $B = (a\pi, 0)$.

作正向闭曲线 $\Gamma = \overrightarrow{BA} + \overrightarrow{AN} + \overrightarrow{NM} + \overrightarrow{MB}$, 其中, \overrightarrow{AN} , \overrightarrow{MB} 是位于 x 轴上的线段, \overrightarrow{NM} 是上半圆 $x^2 + y^2 = \varepsilon^2$ ($y \ge 0$), ε 是充分小的正数,使得 \overrightarrow{NM} 位于 \overrightarrow{BA} 下方.记上述 闭曲线围成的区域为 D,则由格林公式得

$$I = \int_{C} \frac{1}{x^{2} + y^{2}} (x dy - y dx)$$

$$= -\int_{\widehat{B}A} \frac{-y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy$$

$$= -\left[\oint_{T} \frac{-y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy - \int_{\widehat{AN}} \frac{-y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy - \int_{\widehat{MB}} \frac{-y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy \right]$$

$$= -\iint_{D} \left[\frac{\partial \left(\frac{x}{x^{2} + y^{2}} \right)}{\partial x} - \frac{\partial \left(-\frac{y}{x^{2} + y^{2}} \right)}{\partial y} \right] d\sigma + \int_{\pi}^{0} \frac{1}{\varepsilon^{2}} \left(\varepsilon^{2} \sin^{2} t + \varepsilon^{2} \cos^{2} t \right) dt \right]$$

$$(\mathring{\Sigma} \underline{B} + \mathring{N} \underline{M} + \mathring{B} +$$

 $= - \pi$.

附注 由于 C 不是闭曲线,不能直接应用格林公式计算所给的曲线积分,所以要添上一段曲线 C_1 ,使之成为正向闭曲线 Γ ,这里对 C_1 有以下要求:

- (I) 要求 $\frac{-y}{x^2+y^2}$, $\frac{x}{x^2+y^2}$ 在 Γ 围成的闭区域上具有连续的偏导数;
- (II) 要求在 C_1 上的曲线积分比较容易计算.

题中所取的 $C_1(\mathbb{P}_{AN} + NM + MB)$ 就是接此要求确定的.

(20)(I)方程组(A)的增广矩阵

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & a+4 & -5 & 6 \\ -1 & -2 & a & -3 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & a & -7 & 0 \\ 0 & 0 & a+1 & 0 \end{pmatrix},$$

所以, 线性方程(A)有无穷多解时, 有a+1=0, 即a=-1.

(Ⅱ) 当 a = -1 时,方程组(A)与(B)组成的方程组化简后为

(C)
$$\begin{cases} x_1 + 2x_2 + x_3 = 3, \\ 2x_1 + 3x_2 - 5x_3 = 6, \\ x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1. \end{cases}$$

对(C)的增广矩阵施行初等行变换:

$$\begin{pmatrix}
1 & 2 & 1 & 3 \\
2 & 3 & -5 & 6 \\
1 & 1 & 1 & 0 \\
2 & \lambda & 0 & 1
\end{pmatrix}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
2 & 3 & -5 & 6 \\
1 & 2 & 1 & 3 \\
2 & \lambda & 0 & 1
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & -7 & 6 \\
0 & 1 & 0 & 3 \\
0 & \lambda - 2 & -2 & 1
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & -7 & 3 \\
0 & 0 & -2 & 7 - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & \frac{43}{7} - 3\lambda
\end{pmatrix}}
\xrightarrow{\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0$$

由此可知,有公共解时 $\frac{43}{7}$ – 3λ = 0,即 $\lambda = \frac{43}{21}$. 公共解为 $x_1 = -\frac{18}{7}$, $x_2 = 3$, $x_3 = -\frac{3}{7}$.

附注 设方程组 $A_1x = b_1$, $A_2x = b_2$ (其中 A_1 , A_2 分别是 $m_1 \times n$ 与 $m_2 \times n$ 矩阵, b_1 , b_2 分别是 m_1 维与 m_2 维列向量,则这两个方程组有公共解的充分必要条件为方程组、

$$\begin{cases} A_1 x = b_1, \\ A_2 x = b_2 \end{cases}$$

有解.

所以,矩阵 A 有特征值 $\lambda = -1$, 1. 由 r(A) = 2 知 A 还有特征值 $\lambda = 0$. 显然对应 $\lambda = -1$, 1 分别有特征向量 $\alpha_1 = (1, 0, -1)^T$ 和 $\alpha_2 = (1, 0, 1)^T$. 设对应 $\lambda = 0$ 的特征向量为 $\alpha_3 = (x_1, x_2, x_3)^T$,则 $\alpha_3 = \alpha_1$, α_2 都正交,故有

$$\begin{cases} (\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_1) = 0, \\ (\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_2) = 0, \end{cases} \begin{cases} x_1 - x_3 = 0, \\ x_1 + x_3 = 0. \end{cases}$$

所以可取 $\alpha_3 = (0, 1, 0)^T$. 显然 $\alpha_1, \alpha_2, \alpha_3$ 是正交向量组,现将它们单位化得

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}_{1}}{\parallel \boldsymbol{\alpha}_{1} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\alpha}_{2}}{\parallel \boldsymbol{\alpha}_{2} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \boldsymbol{\alpha}_{3} = (0, 1, 0)^{T}.$$

记
$$\mathbf{Q} = (\boldsymbol{\xi}_1, \, \boldsymbol{\xi}_2, \, \boldsymbol{\xi}_3)$$
 (正交矩阵),则 $\mathbf{Q}^{\mathsf{T}} A \mathbf{Q} = \begin{pmatrix} -1 \\ & 1 \\ & & 0 \end{pmatrix}$. 于是

$$A = \mathbf{Q} \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix} \mathbf{Q}^{\mathrm{T}} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$

从而按伴随矩阵的定义得 $A^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

(II) 显然 |
$$Q \mid = -1$$
, 所以 $Q^* = \mid Q \mid Q^{-1} = -Q^T$, 因此
$$Q^T A^* A = -Q^* A^* (-Q^T)^* = (Q^T A Q)^*.$$
于是 $Q^T (A^* + A) Q = Q^T A^* Q + Q^T A Q$

$$= (Q^T A Q)^* + Q^T A Q$$

$$= \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & 0 \end{pmatrix}^* + \begin{pmatrix} -1 & & \\ & & 1 \\ & & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \\ & & -1 \end{pmatrix} + \begin{pmatrix} -1 & & \\ & & 1 \\ & & & 0 \end{pmatrix} = \begin{pmatrix} -1 & & \\ & & & 1 \\ & & & & -1 \end{pmatrix}. \tag{1}$$

由此可知,取 C = Q,则在正交变换 x = Cy = Qy 下,二次型 $f(x_1, x_2, x_3)$ 化为标准形 $y_1^2 + y_2^2 - y_3^2$.

附注 题解中有两点值得注意:

- (I)由于IAI = 0,所以不能由A的特征值与 A^* 的特征值的关系计算 A^* 的特征值,从而要算出 A^* ,必须按伴随矩阵的定义计算.
 - (Ⅱ) 利用式(1)的推演知,实对称矩阵 $A^* + A$ 可利用 Q 相似对角化,由此得到 C 和

$$f(x_1, x_2, x_3)$$
的标准形,计算比较快捷. 当然 C 也可由 $A^* + A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 直接计算得

到.

(22) (I)由于(U, V)关于 U 的边缘概率密度为

$$f_{U}(u) = \int_{-\infty}^{+\infty} f(u,v) \, \mathrm{d}v = \begin{cases} \int_{0}^{2u} \mathrm{d}v, 0 < u < 1, \\ 0, \quad \pm \mathrm{d}v, \end{cases} = \begin{cases} 2u, 0 < u < 1, \\ 0, \quad \pm \mathrm{d}v, \end{cases}$$
所以, $P\left(V \leqslant \frac{1}{2} \mid U \leqslant \frac{1}{2}\right) = \frac{P\left(U \leqslant \frac{1}{2}, \quad V \leqslant \frac{1}{2}\right)}{P\left(U \leqslant \frac{1}{2}\right)},$ (1)

其中,
$$P(U \leq \frac{1}{2}, V \leq \frac{1}{2}) = \int_{\substack{u \leq \frac{1}{2} \\ v \leq \frac{1}{2}}} f(u, v) d\sigma$$

$$= \int_{D} d\sigma (其中, D) 如图 2-22 的阴影部分所示的梯形)$$

$$= \frac{1}{2} \times \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4}\right) = \frac{3}{16},$$

$$P\left(U \leq \frac{1}{2}\right) = \int_{-\infty}^{\frac{1}{2}} f_u(u) \, \mathrm{d}u = \int_{0}^{\frac{1}{2}} 2u \mathrm{d}u = \frac{1}{4}.$$

所以,由式(1)得 $P(V \le \frac{1}{2} \mid U \le \frac{1}{2}) = \frac{3/16}{1/4} = \frac{3}{4}.$

于是P(X = -1, Y = 1) = P(X = 1, Y = -1) = P(X = 0, Y = 1) = 0.25.

记(X, Y)的概率分布为

图 2-22

Y X	-1	1
– 1	P_1	0. 25
0	P_2	0. 25
1	0. 25	P_3

$$\left\{ \begin{aligned} & P_1 + P_2 + P_3 + 0.75 = 1 \,, \\ & - \left(P_1 + 0.25 \right) + \left(0.25 + P_3 \right) = 0.2 \,, \\ & - \left(P_1 + P_2 + 0.25 \right) + \left(0.5 + P_3 \right) = 0.4 \,, \end{aligned} \right. \\ \left\{ \begin{aligned} & P_1 + P_2 + P_3 = 0.25 \,, \\ & - P_1 & + P_3 = 0.2 \,, \\ & - P_1 - P_2 + P_3 = 0.15 \,. \end{aligned} \right.$$

所以 $P_1 = 0$, $P_2 = 0.05$, $P_3 = 0.2$. 因此(X, Y)的概率分布为

Y X	-1	1
– 1	0	0. 25
0	0. 05	0. 25
1	0. 25	0. 2

(\coprod) Cov(X, Y) = $E(XY) - EX \cdot EY$,

其中
$$E(XY) = (-1) \times (-1) \times 0 + (-1) \times 1 \times 0.25 + 0 \times (-1) \times 0.05 + 0 \times 1 \times 0.25 + 1 \times (-1) \times 0.25 + 1 \times 1 \times 0.2 = -0.3$$
,

所以, $Cov(X, Y) = -0.3 - 0.2 \times 0.4 = -0.38$.

附注 本题是连续型随机变量与离散型随机变量结合的综合题,需计算许多元素,因此 对题目审视后应确定计算各个元素的先后顺序:

先计算
$$P\left(V \leq \frac{1}{2} \mid U \leq \frac{1}{2}\right)$$
, 为此需先算出关于 U 的边缘概率密度 $f_{U}(u)$;

然后确定(X, Y)的概率分布表,将已知的概率填入,对于未知的概率用 P_1, P_2, P_3 等表示,并利用已知条件逐一确定这些未知的概率.

最后根据(X, Y)的概率分布算出 Cov(X, Y).

(23)(I)由于关于 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{\theta}^{+\infty} \frac{3}{\theta^3} x^2 \mathrm{e}^{-(y-\theta)} \, \mathrm{d}y, 0 < x < \theta, \\ 0, & \text{ 其他,} \end{cases}$$

其中,
$$\int_{\theta}^{+\infty} \frac{3}{\theta^3} x^2 e^{-(y-\theta)} dy = -\frac{3}{\theta^3} x^2 e^{-(y-\theta)} \Big|_{\theta}^{+\infty} = \frac{3}{\theta^3} x^2,$$
所以

$$f_X(x) = \begin{cases} \frac{3}{\theta^3} x^2, & 0 < x < \theta, \\ 0, & \text{ 其他.} \end{cases}$$

由于 $EX = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^{\theta} \frac{3}{\theta^3} x^3 dx = \frac{3}{4} \theta$,所以由矩估计法,令 $EX = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,即 $\frac{3}{4} \theta$

 $=\overline{X}$. 由此得到 θ 的矩估计量为 $\hat{\theta}=\frac{4}{3}\overline{X}$.

由于
$$E\hat{\theta} = E\left(\frac{4}{3}\overline{X}\right) = \frac{4}{3} \cdot \frac{1}{n} \sum_{i=1}^{n} EX_i = \frac{4}{3}EX = \frac{4}{3} \cdot \frac{3}{4}\theta = \theta$$
,所以 $\hat{\theta}$ 是无偏估计量.

$$(II) D(\hat{\theta}) = D(\frac{4}{3}\overline{X}) = \frac{16}{9}D\overline{X} = \frac{16}{9} \cdot \frac{1}{n}DX = \frac{16}{9n}[E(X^2) - (EX)^2],$$

其中,
$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx = \int_0^{\theta} \frac{3}{\theta^3} x^4 dx = \frac{3}{5} \theta^2$$
. 所以

$$D(\hat{\theta}) = \frac{16}{9n} \left[\frac{3}{5} \theta^2 - \left(\frac{3}{4} \theta \right)^2 \right] = \frac{1}{15n} \theta^2.$$

附注 要熟练掌握末知参数的两种点估计方法:矩估计法与最大似然估计法.

模拟试题(三)解答

一、选择题

答案 (1) (B) (2) (C) (3) (B) (4) (B) (5) (C) (6) (B) (7) (B) (8) (D)

(1) 由于
$$y = \frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right)$$
,所以

$$y^{(n)} = \frac{1}{3} \left[(-1)^n \frac{n!}{(x-1)^{n+1}} - (-1)^n \frac{n!}{(x+2)^{n+1}} \right]$$
$$= (-1)^n \frac{n!}{3} \left[\frac{1}{(x-1)^{n+1}} - \frac{1}{(x+2)^{n+1}} \right],$$

所以选(B).

附注 要记住公式: $\left(\frac{1}{x-a}\right)^{(n)} = (-1)^n \frac{n!}{(x-a)^{n+1}}$.

(2) 由于利用对称区间上定积分的性质可得

$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1 + x^2} \cos^2 x dx = 0$$
 (被积函数是奇函数),

$$\begin{split} N &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, \mathrm{d}x = 2 \int_0^{\frac{\pi}{2}} \cos^4 x \, \mathrm{d}x > 0 \\ &\quad (\sin^3 x \, \text{是奇函数}, \cos^4 x \, \text{是偶函数}, \text{在}\left[0, \frac{\pi}{2}\right] \bot \\ &\quad \cos^4 x \geq 0, \text{且仅在点} \, x = \frac{\pi}{2} \, \text{处取等号}) \,, \end{split}$$

$$\begin{split} P &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) \, \mathrm{d}x \, = \, - \, 2 \int_0^{\frac{\pi}{2}} \cos^7 x \, \mathrm{d}x \, < \, 0 (x^2 \sin^3 x \, \text{是奇函数}, \cos^7 x \, \text{是偶函数}, \, \text{在} \\ & \left[0 \, , \frac{\pi}{2} \right] \! \! \perp \cos^7 \! x \geq 0 \, , \, \text{且仅在点} \, x \, = \, \frac{\pi}{2} \, \text{处取等号}). \end{split}$$

所以 P < M < N. 因此选(C).

附注 应记住对称区间上定积分的性质:设f(x)在[-a,a](a>0)上连续,则

$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & f(x) \text{ 是偶函数,} \\ 0, & f(x) \text{ 是奇函数.} \end{cases}$$

此外, 当 f(x) 是非奇非偶函数时有

$$\int_a^a f(x) dx = \int_a^a [f(x) + f(-x)] dx.$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + y = 2\sin t.$$

所以,原方程有形如 $y = t(a\cos t + b\sin t) = (a\cosh x + b\sinh x) \ln x$ 的特解. 因此选

(B).

附注 所给微分方程是二阶欧拉方程, 令 $x = e^t$ 可以转换成二阶常系数线性微分方程, 由此即可确定应具有的特解形式.

(4) 当 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为1时,它在x = -1 处可能条件收敛(如 $\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$),也可能不是条件收敛(如 $\sum_{n=0}^{\infty} x^n$ 或 $\sum_{n=0}^{\infty} \frac{1}{(n+1)^2} x^{n+1}$),但当 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x = -1 处条件收敛时,它的收敛半径必为1. 于是收敛半径为1 是 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x = -1 处条件收敛的必要而非充分条件. 因此选(B).

附注 对于幂级数 $\sum_{n=0}^{\infty} a_n x^n$,当其收敛半径为 R(正数) 时, $\sum_{n=0}^{\infty} a_n x^n$ 在(-R, R) 内绝对收敛,但在端点 x = -R,R 处可能收敛(条件收敛或绝对收敛),也可能发散,应视 $\{a_n\}$ 而定。

(5) 由于 $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$,所以当 \mathbf{A} 有特征值 λ 及对应的特征向量为 α 时, \mathbf{B} 有特征值 λ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$. 因此由 \mathbf{A} 可逆知 \mathbf{B} 可逆,所以 \mathbf{B}^* 有特征值 $\frac{|\mathbf{B}|}{\lambda} = \frac{|\mathbf{A}|}{\lambda}$ 及对应的特征向量 $\mathbf{P}^{-1}\alpha$. 因此选(C).

附注 应记住以下结论:

设 A 是 n 阶矩阵,有特征值 λ 及对应的特征向量 α ,则 $B = P^{-1}AP(P$ 是 n 阶可逆矩阵)有特征值 λ 和对应的特征向量 $P^{-1}\alpha$;当 A 可逆时,A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

(6) 由于当(\mathbb{I})与(\mathbb{I})等价时,(\mathbb{I})与(\mathbb{I})等秩;当A与B等价时,A与B等秩,反之也对,所以选项(\mathbb{A})、(\mathbb{C})、(\mathbb{D})都正确,因此选(\mathbb{B})

附注 当(I)与(II)等秩时,(I)与(II)未必等价. 例如, $\alpha_1 = (1, 0, 0)^T$, $\alpha_2 = (0, 1, 0)^T$, $\beta_1 = (1, 0, 0)^T$, $\beta_2 = (0, 0, 1)^T$. 显然 $r(\alpha_1, \alpha_2) = r(\beta_1, \beta_2)$, 但是 α_2 不能由 β_1 , β_2 线性表示,即 α_1 , α_2 与 β_1 , β_2 不等价.

由本题可知:题中的(I)、(II)等价与A、B等价是有区别的,应注意这一点.

(7) 记 $C_i = \{ \% i \text{ 次取球取到的是白球} \} (i=1, 2), 则$

$$A = \overline{C}_1 C_2$$
, $B = \overline{C}_1 C_2 \cup C_1 C_2$,

所以 $P(A) = P(\overline{C}_1C_2) = P(\overline{C}_1)P(C_2 \mid \overline{C}_1) = \frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$,

 $P(B) = P(\overline{C}_1C_2) + P(C_1C_2) = P(\overline{C}_1)P(C_2 \mid \overline{C}_1) + P(C_1)P(C_2 \mid C_1) = \frac{2}{7} + \frac{3}{7} \times \frac{2}{6} = \frac{3}{7}.$ 因此选(B).

附注 本题有两点值得注意:

- (I) $\,\{$ 第二次取球才取到白球 $\,\}$ 与 $\,\{$ 第二次取球取到的是白球 $\,\}$ 这两个随机事件是有区别的 .
 - (Ⅱ) 随机事件{第i次取球取到白球}(i=1, 2, 3)的概率是相等的,都为 $\frac{3}{7}$.

(8) 由于
$$\frac{8}{\sigma^2}S_X^2 \sim \chi^2$$
(8), $\frac{10}{\sigma^2}S_Y^2 \sim \chi^2$ (10), 所以
$$D(S_X^2) = \frac{\sigma^4}{8^2}D\left(\frac{8}{\sigma^2}S_X^2\right) = \frac{\sigma^4}{8^2} \times 2 \times 8 = \frac{1}{4}\sigma^4,$$

$$D(S_Y^2) = \frac{\sigma^4}{10^2}D\left(\frac{10}{\sigma^2}S_Y^2\right) = \frac{\sigma^4}{10^2} \times 2 \times 10 = \frac{1}{5}\sigma^4,$$

且 $D(S_{12}^2) = \frac{1}{4} [D(S_X^2) + D(S_Y^2)] = \frac{9}{80} \sigma^4$, $D(S_{XY}^2) = \frac{1}{18^2} [64D(S_X^2) + 100D(S_Y^2)] = \frac{1}{9} \sigma^4$,所以,四个统计量中方差最小者为 S_{XY}^2 ,因此选(D).

附注 记住以下结论:

设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,则 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, $E(S^2) = \sigma^2$, $D(S^2) = \frac{2\sigma^4}{n-1}$.

二、填空题

(9) 由
$$\int_0^x [5f(t) - 2] dt = f(x) - e^{5x}$$
 得
$$5f(x) - 2 = f'(x) - 5e^{5x} \quad 以及 f(0) = 1, f'(0) = 8,$$
 所以有
$$\frac{f'(x) - 8}{x} = \frac{5[f(x) - f(0)] + 5(e^{5x} - 1)}{x},$$

$$f''(0) = 5f'(0) + 5 \times 5 = 65.$$

附注 本题也可以解答如下:由于对所给等式两边关于 x 求导得

$$5f(x) - 2 = f'(x) - 5e^{5x}$$
,

上式对 x 求导得

$$5f'(x) = f''(x) - 25e^{5x}$$
, $\mathbb{E}[f''(x)] = 5f'(x) + 25e^{5x}$.

于是利用 f(0) = 1, f'(0) = 8 得

$$f''(0) = 5 \times 8 + 25 \times 1 = 65.$$

(10) 显然 x = 0, y = 0 时, 所给方程成为 $\int_0^z e^{t^2} dt = 0$, 从而 z(0,0) = 0.

此外, 所给方程两边对 x 求偏导数得

$$e^{z^2} \frac{\partial z}{\partial x} + y + y \frac{\partial z}{\partial x} = 0$$
, $\mathbb{R} \mathbb{I} \frac{\partial z}{\partial x} = \frac{-y}{e^{z^2} + y}$, $\mathbb{H} \frac{\partial z(0,0)}{\partial x} = 0$.

$$\text{Mem} \frac{\partial^2 z}{\partial x \partial y} \Big|_{\substack{x=0 \\ y=0}} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\partial z(0,y)}{\partial x} \right) \Big|_{\substack{y=0}} = \lim_{\substack{y \to 0}} \frac{\frac{\partial z(0,y)}{\partial x} - \frac{\partial z(0,0)}{\partial x}}{y}$$

$$= \lim_{y \to 0} \frac{\frac{-y}{e^{z^2(0,y)} + y} - 0}{y} = -\lim_{y \to 0} \frac{1}{e^{z^2(0,y)} + y} = -\frac{1}{1 + 0} = -1.$$

附注 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=0}}$ 也可以由 $\frac{\partial z}{\partial x}$ 对 y 求偏导数算出 $\frac{\partial^2 z}{\partial x \partial y}$,然后将 x=y=z=0 代入计算得到. 但

题解中由 $\frac{\partial z}{\partial x}$ 按定义计算 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=0}}$ 更加快捷些.

(11) 设切点为 $M(x_0,y_0,z_0)$,则 S 在点 M 的法向量为($2x_0-1,2y_0,2z_0$),于是由切平面与 π_1 与 π_2 都垂直知

所以
$$\begin{cases} 2x_0 - 1 = \frac{1}{2}\mu, \\ 2y_0 = \frac{1}{2}\mu, \end{cases}$$
 即 $x_0 = \frac{1}{4}\mu + \frac{1}{2}, y_0 = \frac{1}{4}\mu, z_0 = 0.$ $2z_0 = 0,$

由 $M \in S$ 知, $x_0^2 + y_0^2 + z_0^2 = x_0$, 即

$$\left(\frac{1}{4}\mu + \frac{1}{2}\right)^2 + \left(\frac{1}{4}\mu\right)^2 = \frac{1}{4}\mu + \frac{1}{2}$$
,解此方程得 $\mu = \pm\sqrt{2}$.

所以切点为 $M_1\left(\frac{\sqrt{2}}{4} + \frac{1}{2}, \frac{\sqrt{2}}{4}, 0\right)$ 和 $M_2\left(-\frac{\sqrt{2}}{4} + \frac{1}{2}, -\frac{\sqrt{2}}{4}, 0\right)$, 因此所求的切平面方程为

$$\frac{1}{2}\left(x - \frac{\sqrt{2}}{4} - \frac{1}{2}\right) + \frac{1}{2}\left(y - \frac{\sqrt{2}}{4}\right) = 0, \text{ BI } x + y = \frac{\sqrt{2} + 1}{2},$$

和

$$\frac{1}{2}\left(x + \frac{\sqrt{2}}{4} - \frac{1}{2}\right) + \frac{1}{2}\left(y + \frac{\sqrt{2}}{4}\right) = 0, \text{ (II) } x + y = \frac{-\sqrt{2} + 1}{2}.$$

附注 计算曲面 S 的切平面时,如果未知切点坐标,总是根据有关条件先计算切点坐标,然后写出切平面方程.

(12)
$$\oint_D e^{y^2} dx + x dy = \frac{\text{MAMACL}}{\int_D \left(\frac{\partial x}{\partial x} - \frac{\partial e^{y^2}}{\partial y} \right)} d\sigma(其中, D = \{(x,y) \mid 4x^2 + y^2 \leq 8x\}$$

$$= \{(x,y) \mid (x-1)^2 + \frac{y^2}{4} \leq 1\})$$

$$= \iint_D (1 - 2ye^{y^2}) d\sigma = \iint_D d\sigma - 2 \iint_D ye^{y^2} dy = 2\pi.$$
(这是由于 $\iint_D d\sigma = D$ 的面积 = $\pi \cdot 1 \cdot 2 = 2\pi$,此外由于 D 关于 x 轴对称,在对称点处 ye^{y^2} 的值互为相反数,所以 $\iint_D ye^{y^2} d\sigma = 0$).

附注 题解中有两点值得注意:

(I) 当曲线 C 是正向平面闭曲线时,曲线积分 $\oint_{c} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y$ 通常用格林公式计算比较快捷.

(II) 对于二重积分,应先利用积分区域的对称性化简以后再行计算,具体说,设D满足某种对称性,则二重积分

$$\iint\limits_{D} f(x,y) \, \mathrm{d}\sigma = \begin{cases} 2 \iint\limits_{D_{1}} f(x,y) \, \mathrm{d}\sigma, \\ = \int\limits_{D_{1}} 2 \iint\limits_{D_{1}} f(x,y) \, \mathrm{d}\sigma,$$

称性划分成的两部分之一.

(13) 显然 |A| = 2, 此外, 记三阶单位矩阵为 E, 则

$$\left(\frac{1}{2}A^{2}\right)^{-1}-3A^{*}=2(A^{-1})^{2}-3|A|A^{-1}=(A^{-1})^{2}\cdot 2(E-3A),$$

所以
$$\left| \left(\frac{1}{2} A^2 \right)^{-1} - 3A^* \right| = |A^{-1}|^2 \cdot 8|E - 3A|$$

$$= \left(\frac{1}{2}\right)^2 \times 8 \begin{vmatrix} -2 & -3 & 0 \\ 0 & -2 & -3 \\ -3 & -3 & -5 \end{vmatrix} = -58.$$

附注 计算矩阵的行列式时,以下结论是常用的:

设 $A \setminus B$ 都是n 阶矩阵,则

当 A 可逆时, $|A^{-1}| = \frac{1}{|A|}$.

(14) 由于
$$a = P(X = 1) = F(1) - F(1^-) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
,所以

$$P(y \ge a) = P(y \ge \frac{1}{4}) = \int_{\frac{1}{4}}^{+\infty} \varphi(t) \, \mathrm{d}t = \int_{\frac{1}{4}}^{+\infty} \mathrm{e}^{-t} \mathrm{d}t = \mathrm{e}^{-\frac{1}{4}}.$$

附注 由于 F(x) 只有间断点 x = 0,1,2 所以 X 的分布列为

X	0	1	2	
P	F(0) - F(0 ⁻)	F(1) - F(1 ⁻)	$F(2) - F(2^{-})$	
印				
X	0	1	2	
P	P $\frac{1}{4}$		1/2	

三、解答题

(15) D 如图 3-15 的阴影部分所示,所以

$$V_x = \pi \int_0^2 \left[(\sqrt{4 - x^2})^2 - (\sqrt{2x - x^2})^2 \right] dx$$
$$= \pi \int_0^2 (4 - 2x) dx = 4\pi.$$
$$V_y = 2\pi \int_0^2 x (\sqrt{4 - x^2} - \sqrt{2x - x^2}) dx,$$

其中
$$\int_0^2 x \sqrt{4 - x^2} dx = -\frac{1}{3} (4 - x^2)^{\frac{3}{2}} \Big|_0^2 = \frac{8}{3},$$

$$\int_0^2 x \sqrt{2x - x^2} dx = \int_0^2 x \sqrt{1 - (x - 1)^2} dx$$

$$\frac{\Rightarrow t = x - 1}{=} \int_{-1}^1 (t + 1) \sqrt{1 - t^2} dt = \int_{-1}^1 \sqrt{1 - t^2} dt$$

$$= \frac{\pi}{2}.$$

所以
$$V_y = 2\pi \left(\frac{8}{3} + \frac{\pi}{2}\right) = \frac{16}{3}\pi + \pi^2$$
.

附注 应记住以下公式

设 $f_1(x)$, $f_2(x)$ 都是连续函数,且 $0 \le f_1(x) \le f_2(x)$ ($0 \le a \le x \le b$).

记 $D = \{(x,y) \mid 0 \le a \le x \le b, f_1(x) \le y \le f_2(x)\}$,则 D 绕 x 轴旋转一周而成的旋转体体积

$$V_{x} = \pi \int_{a}^{b} \left[f_{2}^{2}(x) - f_{1}^{2}(x) \right] dx,$$

D 绕 y 轴旋转一周而成的旋转体体积

$$V_y = 2\pi \int_a^b x [f_2(x) - f_1(x)] dx.$$

(16)
$$n = 2$$
 时,由于 $\lim_{\substack{(x,y)\to(0,0)\\ \text{沿直线}y=x}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\ \text{沿直线}y=x}} \frac{(x+y)^2}{x^2+y^2}$
$$= \lim_{x\to 0} \frac{4x^2}{2x^2} = 2,$$

$$\lim_{\substack{(x,y)\to(0,0)\\ \text{Highs}_{y}=-x}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\ \text{Highs}_{y}=-x}} \frac{(x+y)^{2}}{x^{2}+y^{2}} = 0,$$

所以,此时 f(x,y) 在点(0,0)处不连续。

 $n \ge 3$ 时,由于当(x,y)→(0,0)时由

$$|f(x,y)| = \left| \frac{(x+y)^n}{x^2 + y^2} \right| = \frac{(x+y)^2}{x^2 + y^2} |x+y|^{n-2} \le 2|x+y|^{n-2}$$

知 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$,所以此时 f(x,y) 在点(0,0)处连续,因此使 f(x,y) 在点(0,0)处连续的最小 n 值为 3.

$$n=3$$
 时, $f'_{x}(0,0) = \lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = \lim_{x\to 0} \frac{x^{3}}{x^{3}} = 1$,同样有 $f'_{y}(0,0) = 1$. 由于

$$\lim_{\substack{(x,y)\to(0,0)\\ \text{$h\bar{1}$dx = y}}} \frac{f(x,y) - f(0,0) - f_x'(0,0)x - f_y'(0,0)y}{\sqrt{x^2 + y^2}}$$

$$= \lim_{\substack{(x,y)\to(0,0)\\\text{High}_{x}=y}} \frac{(x+y)^3 - (x+y)(x^2+y^2)}{(x^2+y^2)^{\frac{3}{2}}} = \lim_{x\to 0} \frac{4x^3}{2\sqrt{2}x^3} = \sqrt{2} \neq 0,$$

所以,此时f(x,y)在点(0,0)处不可微。

$$n \ge 4 \text{ 时 } f'_{x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{x^{4}}{x^{3}} = 0, 同样有f'_{y}(0,0) = 0. \text{ 由}$$

$$\left| \frac{f(x,y) - f(0,0) - f'_{x}(0,0)x - f'_{y}(0,0)y}{\sqrt{x^{2} + y^{2}}} \right| = \frac{(x+y)^{n}}{(x^{2} + y^{2})^{\frac{3}{2}}}$$

$$= \frac{(x+y)^{3}}{(x^{2} + y^{2})^{\frac{3}{2}}} \cdot |x+y|^{n-3} \le \frac{\left[2(x^{2} + y^{2})\right]^{\frac{3}{2}}}{(x^{2} + y^{2})^{\frac{3}{2}}} |x+y|^{n-3} = 2\sqrt{2}|x+y|^{n-3}$$

$$\text{知 } , \lim_{(x,y) \to (0,0)} \frac{f(x,y) - f(0,0) - f'_{x}(0,0)x - f'_{y}(0,0)y}{\sqrt{x^{2} + y^{2}}} = 0,$$

所以,此时 f(x,y) 在点(0,0)处可微. 因此使 f(x,y) 在点(0,0)处可微的最小 n 值为 4.

附注 本题的 f(x,y) 在点(0,0) 处连续或可微都是由定义证明的.

设二元函数 g(x,y) 在点 (x_0,y_0) 处的某个邻域内有定义,如果

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)-f(x_0,y_0)-f'_x(x_0,y_0)(x-x_0)-f'_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0,$$

则f(x,y)在点 (x_0,y_0) 处可微.

(17) 由题设知 $\{x_n\}$ 是正项数列,且对n=1,2,...有

知 $\{x_n\}$ 有下界.此时,由 $x_n \ge 1(n=2,3,\cdots)$ 知

$$x_{n+1} - x_n = \frac{1}{3} \left(2x_n + \frac{1}{x_n^2} \right) - x_n = \frac{1}{3} \left(\frac{1}{x_n^2} - x_n \right) \le 0 (n = 2, 3, \dots),$$

即 $\{x_n\}$ 单调不增.因此由数列极限存在准则 \mathbb{I} 知 $\lim_{n\to\infty}x_n$ 存在,记为 A. 对所给递推式两边令 $n\to\infty$ 取极限得

$$A = \frac{1}{3} \left(2A + \frac{1}{A^2} \right)$$
, $\mathbb{R} \mathbb{I} A = 1$.

由此得到 $\lim_{n\to\infty} x_n = 1$.

考虑极限 $\lim_{x\to 1} \frac{e^{\tan(x-1)} - e^{\sin(x-1)}}{(x-1)^3}$ (即将欲求的极限式中的 x_n 改为 x,则当 $n\to\infty$ 时, $x\to 1$):

$$\lim_{x \to 1} \frac{e^{\tan(x-1)} - e^{\sin(x-1)}}{(x-1)^3} \stackrel{\text{(a)}}{=} \frac{t = x-1}{t} \lim_{t \to 0} \frac{e^{\tan t} - e^{\sin t}}{t^3}$$

$$= \lim_{t \to 0} \left(e^{\sin t} \cdot \frac{e^{\tan t - \sin t} - 1}{t^3} \right) = \lim_{t \to 0} \frac{\tan t - \sin t}{t^3}$$

$$= \lim_{t \to 0} \left(\frac{\sin t}{t} \cdot \frac{1 - \cos t}{t^2} \cdot \frac{1}{\cos t} \right) = 1 \times \frac{1}{2} \times 1 = \frac{1}{2},$$

所以, $\lim_{n\to\infty} \frac{e^{\tan(x_n-1)} - e^{\sin(x_n-1)}}{(x_n-1)^3} = \frac{1}{2}.$

附注 数列极限有两个存在准则:

准则 I: 设数列 $\{x_n\}$, $\{y_n\}$ 及 $\{z_n\}$ 满足

$$y_n \leq x_n \leq z_n (n = 1, 2, \cdots),$$

且. $\lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n = A$, 则 $\lim_{n\to\infty} x_n = A$.

准则 II: 设数列 $\{x_n\}$ 是由递推式 $x_1, x_{n+1} = f(x_n) (n=1, 2, \dots)$ 确定.

如果 $\{x_n\}$ 单调不减有上界或单调不增有下界,则 $\lim_{n\to\infty}x_n$ 存在.

当数列 $\{x_n\}$ 由递推式确定时,通常总是利用数列极限存在准则 II,先确定 $\lim_{n\to\infty} x_n$ 存在,然后对所给递推式两边令 $n\to\infty$ 取极限算出极限值.

(18)
$$i \exists a_n = (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n} (n=1, 2, \dots), \quad \emptyset$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{1}{(2n+1)(2n+3)}}{\frac{1}{(2n-1)(2n+1)}} |x|^2 = |x|^2,$$

且当x = -1, 1时, 所给幂级数都成为收敛级数

$$\sum_{i=1}^{n} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)}.$$

所以所给级数的收敛域为[-1,1].

对
$$x \in [-1, 0) \cup (0, 1]$$
有

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n}$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n} - \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} x^{2n}$$

$$= \frac{1}{2} x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1} - \frac{1}{2x} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} x^{2n+1}$$

$$= \frac{1}{2} x \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n-1} t^{2n-2} dt + \frac{1}{2x} \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n} t^{2n} dt$$

$$= \frac{1}{2} x \int_{0}^{x} \frac{1}{1+t^{2}} dt - \frac{1}{2x} \int_{0}^{x} \frac{t^{2}}{1+t^{2}} dt$$

$$= \frac{1}{2} x \arctan x - \frac{1}{2x} (x - \arctan x)$$

$$= \frac{1}{2} \left(x + \frac{1}{x} \right) \arctan x - \frac{1}{2},$$
且当 $x = 0$ 时, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n} = 0$,所以所给幂级数的和函数为
$$s(x) = \begin{cases} \frac{1}{2} \left(x + \frac{1}{x} \right) \arctan x - \frac{1}{2}, & x \in [-1, 0) \cup (0, 1], \\ 0, & x = 0. \end{cases}$$

附注 本题解答有两点值得注意:

(I)所给幂级数是缺项幂级数,所以应将幂级数记为 $\sum_{n=1}^{\infty} a_n$,然后用比值法确定这个幂级数的收敛域.

(II)
$$x \in [-1,0) \cup (0,1]$$
 时 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} x^{2n}$ 的和函数 $s(x)$ 也可计算如下:
由于 $\arctan x = \int_{0}^{x} \frac{1}{1+t^{2}} dt = \int_{0}^{x} \sum_{n=0}^{\infty} (-t^{2})^{n} dt$
$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{2n+1} x^{2n+1}$$
$$= \sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1},$$

所以

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)(2n+1)} x^{2n} = \frac{1}{2} \left[\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n} - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1} x^{2n} \right]$$

$$= \frac{1}{2} x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n-1} + \frac{1}{2x} \sum_{n=1}^{\infty} (-1)^{n} \frac{1}{2n+1} x^{2n+1}$$

$$= \frac{1}{2} x \arctan x + \frac{1}{2x} \arctan x - \frac{1}{2}.$$

(19) 记S(不妨设其为外侧)围成的空间区域为 Ω ,则由高斯公式得

$$\iint\limits_{\Omega} \Big\{ \frac{\partial \big[\, x f(x) \, \big]}{\partial x} \, + \, \frac{\partial \big[\, - \, x y f(x) \, \big]}{\partial y} \, + \, \frac{\partial \big(\, - \, \mathrm{e}^{2x} z \big)}{\partial z} \Big\} \mathrm{d}v \, = \, 0.$$

由于S是半空间x>0内任意有向闭曲面,所以由上式得

$$\frac{\partial \left[xf(x)\right]}{\partial x} + \frac{\partial \left[-xyf(x)\right]}{\partial y} + \frac{\partial \left(-e^{2x}z\right)}{\partial z} = 0(x > 0),$$
即
$$f'(x) + \left(\frac{1}{x} - 1\right)f(x) = \frac{1}{x}e^{2x}(x > 0).$$
它的通解为
$$f(x) = e^{-\int \left(\frac{1}{x} - 1\right)lx}\left(C + \int \frac{1}{x}e^{2x} \cdot e^{\int \left(\frac{1}{x} - 1\right)lx}dx\right)$$

$$= \frac{e^{x}}{x}\left(C + \int e^{x}dx\right)$$

$$= \frac{e^{x}}{x}(C + e^{x})(x > 0).$$
(1)

上式两边令 $x \to + \infty$ 取极限,且与题设 $\lim_{x \to 0^+} f(x) = 1$ 比较得

$$\lim_{x \to 0^{+}} \frac{e^{x} (C + e^{x})}{x} = 1,$$

所以 C = -1, 将它代入式(1)得 $f(x) = \frac{e^x}{x} (e^x - 1)(x > 0)$.

附注 闭曲面上的关于坐标的曲面积分通常用高斯公式计算比较快捷. 高斯公式为: 设 Σ 是光滑或分块光滑有向闭曲面(外侧), 它围成的空间闭区域为 Ω , P(x, y, z), Q(x, y, z), R(x, y, z)都在 Ω 上具有连续偏导数,则

$$\oint\limits_{\Sigma}\!\!P\mathrm{d}y\mathrm{d}z \,+\, Q\mathrm{d}z\mathrm{d}x \,+\, R\mathrm{d}x\mathrm{d}y \,=\, \iint\limits_{\Omega}\!\left(\frac{\partial P}{\partial x} \,+\, \frac{\partial Q}{\partial y} \,+\, \frac{\partial R}{\partial z}\right)\!\mathrm{d}v.$$

(20) 由题设知 $(1, 2, 2, 1)^{T}$ – $(1, -2, 4, 0)^{T}$ = $(0, 4, -2, 1)^{T}$ 是方程组 $Ax = \mathbf{0}$ 的解,所以有

$$4\boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4 = 0$$
, $\mathbb{P} \boldsymbol{\alpha}_4 = -4\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3$.

于是由 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的秩为 3 知, $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

此外,由题设 $\alpha = (1, -2, 4, 0)^{T}$ 是方程组 $Ax = \beta$ 的解得

$$\boldsymbol{\beta} = \boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3,$$

于是方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$, 即为

$$(\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 + 3\boldsymbol{\alpha}_3) \boldsymbol{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2. \tag{1}$$

由于式(1)的系数矩阵的秩为 3,且对应的齐次方程组有基础解系(3, -2, 1, -1)^T. 此外,式(1)有特解(-3, 4, 0, 1)^T. 所以方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$ 的通解为

$$y = C(3, -2, 1, -1)^{T} + (-3, 4, 0, 1)^{T}$$
(其中, C是任意常数).

附注 要记住齐次线性方程组 $Ax = \mathbf{0}$ (其中, $A \in m \times n$ 矩阵, $x \in n$ 维未知列向量)的基础解系中所包含的线性无关的解向量个数为 n - r(A).

(21)(I)由于

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = x_1^2 + 2bx_1x_2 + 2x_1x_3 + ax_2^2 + 2x_2x_3 + x_3^2$$
$$= \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{x},$$

所以 $f(x_1, x_2, x_2)$ 的矩阵 $\mathbf{B} = \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

由于B有特征值为 $\lambda=0$, 1, 4, 所以有

$$\begin{cases} 1+a+1=0+1+4, & \text{if } a=3, b=1. \\ \mid \textbf{\textit{B}}\mid =0\times 4\times 1, \end{cases}$$

(II)由以上计算知 $\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

设 **B** 对应 $\lambda = 0$ 的特征向量为 $\alpha = (a_1, a_2, a_3)$,则 α 满足

$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0},$$
 (1)

$$\begin{pmatrix}
-1 & -1 & -1 \\
-1 & -3 & -1 \\
-1 & -1 & -1
\end{pmatrix}
\xrightarrow{\text{disffreph}}
\begin{pmatrix}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix},$$

所以式(1)与方程组 $\begin{cases} x_1 & +x_3=0, \\ x_2 & =0 \end{cases}$ 同解,可取它的基础解系为 α ,即 $\alpha=(1,0,-1)^T$.

设 **B** 对应 **λ** = 1 的特征向量为**β** = $(b_1, b_2, b_3)^T$,则**β**满足

$$\begin{pmatrix} 0 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

由于

$$\begin{pmatrix}
0 & -1 & -1 \\
-1 & -2 & -1 \\
-1 & -1 & 0
\end{pmatrix}
\xrightarrow{\text{初等行变换}}
\begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix},$$

所以式(2)与方程组 $\begin{cases} x_2 + x_3 = 0, \\ x_1 + x_2 = 0 \end{cases}$ 同解,可取它的基础解系为 $\boldsymbol{\beta}$,即 $\boldsymbol{\beta} = (-1, 1, -1)^T$.

设 \boldsymbol{B} 对应 λ = 4 的特征向量为 $\boldsymbol{\gamma} = (c_1, c_2, c_3)^{\mathrm{T}}$,则 $\boldsymbol{\gamma} 与 \boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 都正交,于是有

$$\begin{cases}
c_1 - c_3 = 0, \\
-c_1 + c_2 - c_3 = 0,
\end{cases}$$

可取它的基础解系为 γ , 即 $\gamma = (1, 2, 1)^{T}$. 显然 α , β , γ 两两正交, 现将它们单位化.

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\beta}}{\parallel \boldsymbol{\beta} \parallel} = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}.$$

使得 $f(x_1, x_2, x_3) = y_2^2 + 4y_3^2$ (标准形).

附注 题中的 A 不是实对称矩阵,所以要用正交变换将 $f(x_1, x_2, x_3) = x^T A x$ 化为标准形,必须首先将 $f(x_1, x_2, x_3)$ 改写成 $x^T B x$ (其中,B 是实对称矩阵)。此外,要熟练掌握,用正交变换把二次型化成标准形的方法.

(22)(I)由于当 y>0 时,

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \int_{0}^{y} \mathrm{e}^{-y} \mathrm{d}x = y \mathrm{e}^{-y} > 0,$$
 所以, $f_{X \mid Y}(x \mid y) = \frac{f(x,y)}{f_{Y}(y)} = \begin{cases} \frac{1}{y}, & 0 < x < y, \\ 0, & 其他. \end{cases}$

(II)
$$P(X > 2 \mid Y > 4) = \frac{P(X > 2, Y > 4)}{P(Y > 4)}, \sharp \oplus,$$

$$P(X > 2, Y > 4) = \iint_{\substack{x > 2 \\ y > 4}} f(x, y) d\sigma$$

$$= \iint_{\substack{x > 2 \\ y > 4}} e^{-y} d\sigma(\sharp \oplus, D = \{(x, y) \mid 2 < x < y, y > 4\})$$

$$= \int_{4}^{+\infty} dy \int_{2}^{y} e^{-y} dx$$

$$= \int_{4}^{+\infty} e^{-y} (y - 2) dy$$

$$= -\left[(y - 2) e^{-y} \Big|_{4}^{+\infty} - \int_{4}^{+\infty} e^{-y} dy \right] = 3e^{-4}.$$

$$P(X > 2 \mid Y = 4) = \int_{2}^{+\infty} f_{X \mid Y}(x \mid 4) dx = \int_{2}^{4} \frac{1}{4} dx = \frac{1}{2}.$$

附注 对于二维连续型随机变量(X, Y), 必须掌握其两种条件概率 $P(X \ge a \mid Y \ge b)$ 和 $P(X \ge a \mid Y = b)$ 的计算方法.

(23)(I)由于
$$EX = 0 \cdot \theta^2 + 1 \cdot 2\theta(1-\theta) + 2 \cdot \theta^2 + 3 \cdot (1-2\theta) = 3-4\theta$$
.

样本值的平均值 $\bar{x} = \frac{1}{8}(3+1+3+0+3+1+2+3) = 2$,

所以由矩估计法, 令 $EX = \bar{x}$, 即 3 $-4\theta = 2$ 得 θ 的矩估计值 $\hat{\theta} = \frac{1}{4}$.

(II)由题设知 $Y \sim B(n, \hat{\theta}^2) = B\left(n, \frac{1}{16}\right)$,所以对于任意实数 y,由中心极限定理(具体是棣莫弗-拉普拉斯定理)得

$$P(Y \le y) = P\left(\frac{y - \frac{n}{16}}{\sqrt{n \cdot \frac{1}{16} \cdot \frac{15}{16}}} \le \frac{y - \frac{n}{16}}{\frac{\sqrt{15}n}{16}}\right)$$

$$\approx \int_{-\infty}^{\frac{y - \frac{n}{16}}{\sqrt{15n/16}}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx. \tag{1}$$

因此,所求的参数为 $\mu = \frac{n}{16}, \sigma^2 = \frac{15n}{16^2}$.

附注 计算关于随机变量 $X \sim N(\mu, \sigma^2)$ 的概率问题时,总是引入标准化随机变量 $X^0 = \frac{X - \mu}{\sigma}$,则 $X^0 \sim N(0,1)$ (标准正态分布),于是 X 的分布函数 $F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$ (其中, $\Phi(u)$ 是

标准正态分布函数),即 $P(X \le x) = \int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$.

由此可知,当 $P(X \le x) = \int_{-\infty}^{\frac{x-a}{b}} \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{t^2}{2}} \mathrm{d}t$ 时, $X \sim N(a,b^2)$. 本题中的参数就是如此得到的.

模拟试题(四)解答

一、选择题

答案	(1)	(A)	(2)	(C)	(3)	(C)	(4)	(A)
	(5)	(B)	(6)	(D)	(7)	(C)	(8)	(C)

(1) 如果取 L_1 为 y = f(x) 的图形,则 $f'(x) > 0(x \in (0, x_2))$,这与 L_2 为 y = f'(x) 图形相符,也与 L_3 为 $y = \int_{-x}^{x} f(t) dt$ 的图形相符.所以选(A).

附注 本题是先选定 L_1 为 y = f(x) 的图形, 然后检验 L_2 , L_3 是否为 y = f'(x), $y = \int_0^x f(t) dt$ 的曲线. 如果如此选定不行,则再考虑 L_2 为 y = f(x) 的图形,等等,直到得到正确选项为止.

(2) 当 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时,有

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} f(x) \, \mathrm{d}x + \int_{0}^{+\infty} f(x) \, \mathrm{d}x$$

$$= \int_{0}^{+\infty} f(-t) \, \mathrm{d}t + \int_{0}^{+\infty} f(x) \, \mathrm{d}x (\mbox{\rlap/$!}\mbox{\rlap/$!}\mbox{\rlap/$!}\mbox{\rlap/$!}\mbox{\rlap/$!}\mbox{\rlap/$!}\mbox{\rlap/$!}\mbox{\rlap/}\mbox{$$

所以选(C).

附注 当 f(x) 在 $(-\infty, +\infty)$ 上连续,且 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛时有 $\int_{-\infty}^{+\infty} f(x) dx = \begin{cases} 0, & f(x) \text{ 是奇函数}, \\ 2 \int_{0}^{+\infty} f(x) dx, & f(x) \text{ 是偶函数}. \end{cases}$

(3) 由于 S 关于平面 x=0 对称,x 在对称点处的值互为相反数,所以 $\iint_S x dS=0$. 由于 D 关于 x 轴对称,y 在对称点处的值互为相反数,所以 $\iint_S y dx dy=0$,因此选(C).

附注 当曲面 S 关于某个坐标平面对称时,如果被积函数 f(x, y, z) 在对称点处的值彼此相等(或互为相反数),则

$$\iint_{S} f(x,y,z) dS = 2 \iint_{S_{t}} f(x,y,z) dS(\vec{x},0),$$

其中, S_1 是S被此坐标平面划分成的两部分之一。

记住这一结论,往往能化简关于面积的曲面积分的计算.

(4) 容易看到 $y_2 - y_1 = e^{-x}(\cos x + \sin x)$ 是 y'' + py' + qy = 0 的特解,从而 $e^{-x}(C_1\cos x + \sin x)$

 $(C_1, C_2, Sinx)$ ($(C_1, C_2, E$ 任意常数)是该微分方程的通解,所以

$$p = -[(-1+i)+(-1-i)] = 2, q = (-1+i)(-1-i) = 2.$$

此外,由题设 e^x 是 $y'' + py' + qy = f(x)$,即 $y'' + 2y' + 2y = f(x)$ 的特解,所以 $f(x) = (e^x)'' + 2(e^x)' + 2e^x = 5e^x.$

因此选(A).

附注 由 $e^{-x}(\cos x + \sin x)$ 是 y'' + py' + qy = 0 的特解知, $e^{-x}\cos x$ 与 $e^{-x}\sin x$ 都是该微分方程的特解,且它们线性无关,所以微分方程 y'' + py' + qy = 0 的通解为 $e^{-x}\cos x + C_2\sin x$ 的

(5) 由于 $A^{T}Ax = 0$ 与Ax = 0是同解方程组,所以 ξ_1, ξ_2 必是 $A^{T}Ax = 0$ 的基础解系.

由于 Ax = 0 与 Bx = 0 都有基础解系 ξ_1 , ξ_2 , 所以 ξ_1 , ξ_2 也是 $\binom{A}{B}x = 0$ 的基础解系, 因此选(B).

附注 $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$ 未必是 $\boldsymbol{A} + \boldsymbol{B}$ 的基础解系,例如 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 和 $\begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \boldsymbol{x} = \boldsymbol{0}$ 有相同的基础解系 $(0, 1)^T$,但它不是 $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$ 的基础解系,所以(A)与(D)都不能选.

 ξ_1 , ξ_2 也未必是 $B^*x = 0$ 的基础解系,例如 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 有基础解系 $(0, 0, 1)^T$,但 不是 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 的基础解系,这是因为 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ 的秩为 2 = 3 - 1,所以 $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x = 0$ 的基础解系中应有两个线性无关的解向量。因此 (C) 不能选。

(6) 实对称矩阵 A, B 合同的充分必要条件是分别以 A, B 为矩阵的二次型有相同的规范形.因此选(D).

附注 (I)选项(A)是A与B合同的必要条件而不是充分条件,而选项(B)、(C)既不是必要条件,也不是充分条件。

- (II) 两个 n 阶实对称矩阵 A, B 合同的充分必要条件有两种:
- (i) A, B 的特征值分别相等(当某个特征值 k 重时,按 k 个计算);
- (ii) 以 A, B 为矩阵的二次型有相同的规范形.
- (7) $F(1,4) = P(X \le 1, Y \le 4) = P(X \le 1, X^2 \le 4) = P(-2 \le X \le 1)$ = $\int_{-2}^{1} f(x) dx = \int_{-2}^{-1} 0 dx + \int_{-1}^{0} \frac{1}{2} dx + \int_{0}^{1} \frac{1}{4} dx = \frac{3}{4}$.

因此选(C).

附注 顺便计算 X 的分布函数 $G(x) = P(X \le x)$.

当
$$x \le -1$$
时, $P(X \le x) = \int_{-\infty}^{x} 0 dx = 0$,

当
$$-1 < x < 0$$
 时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-1}^{x} \frac{1}{2} dx = \frac{1}{2}(x+1)$,
当 $0 \le x \le 2$ 时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-1}^{0} \frac{1}{2} dx + \int_{0}^{x} \frac{1}{4} dx = \frac{1}{2} + \frac{1}{4}x$,
当 $x > 2$ 时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{+\infty} f(x) dx = 1$.

所以, $G(x) = \begin{cases} 0, & x \le -1, \\ \frac{1}{2}(x+1), & -1 < x < 0, \\ \frac{1}{2} + \frac{1}{4}x, & 0 \le x \le 2, \end{cases}$

(8) 由于随机变量 t 的概率密度曲线关于纵轴对称,所以由 $\alpha = P(\mid t \mid \leq b) = 1 - P(\mid t \mid > b) = 1 - P(t > b) - P(t < -b) = 1 - 2P(t > b)$

得 $P(t > b) = \frac{1-\alpha}{2}$,从而由 $t_{\alpha}(n)$ 的定义得 $b = t_{\frac{1-\alpha}{2}}(n)$.

因此选(C).

附注 应当记住:

当 $X \sim N(0, 1)$ 时,满足 $P(\mid X \mid \leq b) = \alpha$ 的 $b = u_{\frac{1-\alpha}{2}}$ (其中, u_{α} 为满足 $P(X > u_{\alpha}) = \alpha$ 的实数);

当 $X \sim T(n)$ 时,满足 $P(\mid X \mid \leq b) = \alpha$ 的 $b = t_{\frac{1-\alpha}{2}}(n)$ (其中, $t_{\alpha}(n)$ 为满足 $P(X > t_{\alpha}(n)) = \alpha$ 的实数).

二、填空题

(9) 所给微分方程可改写成

$$y' + \frac{1}{x^2}y = -e^{\frac{1}{x}},$$

它的通解为 $y = e^{-\int_{x^2}^1 dx} \left(C - \int e^{\frac{1}{x}} e^{\int_{x^2}^1 dx} dx \right) = e^{\frac{1}{x}} (C - x).$

将 y(1) = 0 代入得 C = 1, 所以 $y = e^{\frac{1}{x}}(1-x)$. 从而由

$$a = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{e^{\frac{1}{x}} (1 - x)}{x} = -1,$$

$$b = \lim_{x \to \infty} (y - ax) = \lim_{x \to \infty} \left[e^{\frac{1}{x}} (1 - x) + x \right] = \lim_{x \to \infty} \left(e^{\frac{1}{x}} - \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} \right) = 0$$

得曲线 y = y(x) 的斜渐近线方程为 y = -x.

附注 计算曲线 $\gamma = f(x)$ 的斜渐近线方程时, 总是先计算

如果这两个极限中至少有一个不存在,则计算

和

$$a_2 = \lim_{x \to +\infty} \frac{f(x)}{x} \pi b_2 = \lim_{x \to +\infty} (f(x) - a_2 x).$$

(10)
$$\exists \exists \lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t}$$

$$= 2 \lim_{t \to 0} \frac{f(2t, 0) - f(0, 0)}{2t} + \lim_{t \to 0} \left(\frac{f(0, \sin t) - f(0, 0)}{\sin t} \cdot \frac{\sin t}{t} \right) - 2 \lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t}, \tag{1}$$

其中,
$$\lim_{t\to 0} \frac{f(2t, 0) - f(0, 0)}{2t} = f'_x(0, 0) = 1$$
,

$$\lim_{t\to 0} \left[\frac{f(0, \sin t) - f(0, 0)}{\sin t} \cdot \frac{\sin t}{t} \right] = f_y'(0, 0) \cdot 1 = -1,$$

$$\lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t} = \lim_{t \to 0} \frac{f_x'(0, 0)t + f_y'(0, 0)t + o(\sqrt{t^2 + t^2})}{t}$$
$$= f_x'(0, 0) + f_y'(0, 0) = 0.$$

将它们代入式(1)得

$$\lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t} = 2 \times 1 - 1 + 2 \times 0 = 1.$$

附注 由于 f(x, y) 仅在点(0, 0) 处可微,所以需用偏导数的定义与全微分的定义计算本题的极限。

(11) 平面 z=1 被 Σ 所截下的有限部分上侧记为 S,它在 xOy 平面的投影为 $D=\{(x,y)\mid x^2+y^2\leq 1\}$,则由高斯公式有

附注 由于题中的 Σ 不是闭曲面,所以添上一块 S,构成闭曲面,然后应用高斯公式计算所给的曲面积分. 这是计算关于坐标的曲面积分的常用方法.

(12) f(x) 的麦克劳林展开式为

$$f(x) = \sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x$$

$$= \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} (2x)^{2n}$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^{2n-1}}{(2n)!} x^{2n} (-\infty < x < +\infty).$$

附注 (I) 写出 f(x)的泰勒展开式或麦克劳林展开式时,应写出泰勒级数或麦克劳林级数的通项,还应写出展开式的成立范围。

(Ⅱ) 初等函数的麦克劳林展开式总是用间接法计算,即利用常用函数 e^x , $\sin x$, $\cos x$, $\ln(1+x)\mathcal{D}(1+x)^\mu$ 的麦克劳林展开式及幂级数的加、减运算和求导、积分运算等计算.

(13) 由
$$r(A) + r(B) - 3 \le r(AB)$$
 得 $r(A) \le 2$,所以

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & \lambda & 3 \\ 0 & 2 & 2 \end{vmatrix} = 2(\lambda - 3) = 0$$
,由此得到 $\lambda = 3$.

附注 应记住关于矩阵秩运算的以下两个公式:

(I)设A, B都是 $m \times n$ 矩阵,则

$$r(\mathbf{A} + \mathbf{B}) \leq r(\mathbf{A}) + r(\mathbf{B}).$$

(II) 设A, B 分别是 $m \times n$ 和 $n \times l$ 矩阵, 则

$$r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{AB}) \leq \min\{r(\mathbf{A}), r(\mathbf{B})\}.$$

$$(14)\ P(A-C\mid AB\cup C) = \frac{P((A-C)(AB\cup C))}{P(AB\cup C)}$$

其中, $P((A-C)(AB\cup C)) = P(A \overline{C}(AB\cup C))$

$$=P(AB\overline{C})=P(A)P(B)(1-P(C))=0.1,$$

$$P(AB \cup C) = P(AB) + P(C) - P(ABC)$$

= $P(A)P(B) + P(C) - P(A)P(B)P(C) = 0.6$,

所以,
$$P(A-C \mid AB \cup C) = \frac{0.1}{0.6} = \frac{1}{6}$$
.

附注 对于比较复杂的随机事件概率,总是可以利用简单的随机事件概率和概率计算公式计算.概率计算公式主要有

设A. B 都是事件. 则

 $P(\overline{A}) = 1 - P(A)$ (逆概公式):

$$P(A \cup B) = P(A) + P(B) - P(AB)$$
 (加法公式);

特别当 A, B 互不相容时, $P(A \cup B) = P(A) + P(B)$;

$$P(AB) = \begin{cases} P(A)P(B \mid A), & P(A) > 0, \\ P(B)P(A \mid B), & P(B) > 0 \end{cases}$$
 (乘法公式);

设 A_1 , A_2 , …, A_n 是一个完全事件组,则当 $P(A_i)>0$ (i=1, 2, …, n) 时,对任意随机事件 B 有

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$$
 (全概率公式).

三、解答题

(15)
$$\delta y(x) = \varphi(\psi(x)) = \begin{cases} x^2, & |x| < 1, \\ \sin x^2, & 1 < |x| \leq 2, \exists 1, \\ \cos x, & |x| > 2 \end{cases}$$

| x | < 1 | $\forall y'(x) = 2x$;

1 < |x| < 2 时, $y'(x) = 2x\cos^2 x$.

|x| > 2 时, $y'(x) = -\sin x$,

并且
$$y'(1) = \lim_{x \to 1^-} y'(x) = 2$$
, $y'_+(1) = \lim_{x \to 1^+} y'(x) = 2\cos 1$,

并且
$$y'_{-}(1) = \lim_{x \to 1^{-}} y'(x) = 2$$
, $y'_{+}(1) = \lim_{x \to 1^{+}} y'(x) = 2\cos 1$, $y'_{-}(2) = \lim_{x \to 2^{-}} y'(x) = 4\cos 4$, $y'_{+}(2) = \lim_{x \to 2^{+}} y'(x) = -\sin 2$,

所以 y'(x) 在点 x=1, 2 处不存在,由于 f(x) 是偶函数,所以 y'(x) 在点 x=-1, -2 处也 不存在,从而

$$y'(x) = \begin{cases} 2x, & |x| < 1, \\ 2x\cos x^{2}, & 1 < |x| < 2, \\ -\sin x, & |x| > 2, \end{cases}$$
$$y''(x) = \begin{cases} 2, & |x| < 1, \\ 2\cos x^{2} - 4x^{2}\sin x^{2}, 1 < |x| < 2, \\ -\cos x, & |x| > 2. \end{cases}$$

因此

附注 本题的题解有两点值得注意:

(I)要计算分段函数复合函数的导数,应先算出复合函数的表达式.

(II) 对分段函数
$$f(x) = \begin{cases} f_1(x), & x \leq x_0, \\ f_2(x), & x > x_0, \end{cases}$$
 如果已算出 $f_1'(x)(x < x_0)$ 与 $f_2'(x)(x > x_0)$,则

当 $\lim_{x \to x_0^{-1}} f_1'(x)$ 与 $\lim_{x \to x_0^{-1}} f_2'(x)$ 都存在时, $f_-'(x_0) = \lim_{x \to x_0^{-1}} f_1'(x)$, $f_+'(x_0) = \lim_{x \to x_0^{-1}} f_2'(x)$.

这个结论在2009年数学一考题中已涉及, 所以可以作为定理在解题过程中直接使用.

(16) 因为
$$f(x) = \int_0^x \left(3 - \frac{3}{2}\sqrt{t} - \frac{1}{\sqrt{t}}\right) dt = 3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}$$
$$= -x^{\frac{1}{2}}(x^{\frac{1}{2}} - 1)(x^{\frac{1}{2}} - 2),$$

并且 $x \in (0, 1) \cup (4, +\infty)$ 时 $f(x) < 0, x \in (1, 4)$ 时 f(x) > 0 以及 f(0) = f(1) = f(4) = 0, 所以 $y = f(x)(x \ge 0)$ 的图形如图 4-16 所示,因此,所求的面积为

$$A = \int_0^1 - (3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}) dx + \int_1^4 (3x - x^{\frac{3}{2}} - 2x^{\frac{1}{2}}) dx$$
$$= -\left(\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}}\right)\Big|_0^1 +$$
$$\left(\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} - \frac{4}{3}x^{\frac{3}{2}}\right)\Big|_1^4 = 1.$$

附注 计算平面图形的面积时,应先画出该

图 4-16

图形.

当平面图形 D 是由曲线 $y = f_1(x)$, $y = f_2(x)(f_1(x), f_2(x)$ 在[a, b]上连续)及直线 x = a, x = b 围成,则 D 的面积

$$S = \int_{a}^{b} |f_1(x) - f_2(x)| dx.$$

本题的平面图形可理解为是由曲线 y = f(x), 直线 y = 0, x = 0, x = 4 围成的, 所以

$$A = \int_0^4 |f(x) - 0| dx = \int_0^4 |f(x)| dx$$
$$= \int_0^1 -f(x) dx + \int_1^4 f(x) dx.$$

(17) 由于
$$f(x)g(y-x) = \begin{cases} e^x, x \ge 0, & 0 \le y - x \le 2, \\ 1, & x < 0, & 0 \le y - x \le 2, \\ 0, & 其他, \end{cases}$$

所以, f(x)g(y-x) 仅在图 4-17 阴影部分取非零值, 而在 xOy 平面的其他部分都取零值. 因此

图 4-17

$$\int_{C} f(x)g(y-x) ds = \int_{AB} e^{x} ds + \int_{BC} ds + \int_{CD} ds, \qquad (1)$$

其中,
$$\overline{AB}$$
: $\begin{cases} x = t, \\ y = 1 - t. \end{cases}$ $0 \le t \le \frac{1}{2}$,所以

$$\int_{0}^{\infty} e^{x} ds = \int_{0}^{\frac{1}{2}} e^{t} \sqrt{(t')^{2} + [(1-t)']^{2}} dt = \sqrt{2}e^{t} \Big|_{0}^{\frac{1}{2}} = \sqrt{2}(e^{\frac{1}{2}} - 1);$$

$$\overline{BC}$$
: $\begin{cases} x = t, \\ y = 1 + t, \end{cases}$ $-1 \le t \le 0$,所以

$$\int_{\overline{PC}} ds = \int_{-1}^{0} \sqrt{(t')^{2} + [(1+t)']^{2}} dt = \sqrt{2};$$

$$\overline{CD}$$
: $\begin{cases} x = t, \\ y = -1, -t, \end{cases}$ $-1 \le t \le -\frac{1}{2}$, 所以

$$\int_{CD} ds = \int_{-1}^{-\frac{1}{2}} \sqrt{(t')^2 + [(-1-t)']^2} dt = \frac{1}{2} \sqrt{2}.$$

将它们代入式(1) 得

$$\int_{C} f(x)g(y-x) ds = \sqrt{2}(e^{\frac{1}{2}}-1) + \sqrt{2} + \frac{1}{2}\sqrt{2} = \sqrt{2}e + \frac{1}{2}\sqrt{2}.$$

附注 关于弧长的平面曲线积分计算公式是:

设 f(x, y) 是连续函数,曲线 $C: \begin{cases} x = x(t), \\ y = y(t) \end{cases}$ ($t_0 \le t \le t_1$),其中 x(t),y(t) 在[t_0 , t_1]上 具有连续的导数,则

$$\int_{t_0} f(x,y) ds = \int_{t_0}^{t_1} f(x(t),y(t)) \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

(18) (I) 利用
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n (x \in (-1,1))$$
 得

$$s(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n} x^{2n} = \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (x^2)^n$$
$$= \frac{1}{2} \ln(1 + x^2) (x \in [-1, 1]).$$

(II) $f(x) = e^x s(x) = \frac{1}{2} e^x \ln(1+x^2)$ 在[-1,1]上连续,在(0,1)内可导且

$$f'(x) = e^x \left[\frac{x}{1+x^2} + \frac{1}{2} \ln(1+x^2) \right].$$

显然在(0, 1)内f'(x) > 0,且f'(0) = 0. 下面证明在(-1, 0)内f'(x) < 0.

$$\varphi'(x) = \frac{1 - x^2}{(1 + x^2)^2} + \frac{x}{1 + x^2} = \frac{x^3 - x^2 + x + 1}{(1 + x^2)^2}.$$

记 $\psi(x) = x^3 - x^2 + x + 1$,则 $\psi'(x) = 3x^2 - 2x + 1 > 0(x \in (-1, 0))$,且 $\psi(-1) < 0$, $\psi(0) > 0$,所以存在 $x_0 \in (-1, 0)$,使得

$$\psi(x) \begin{cases} <0, & -1 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 0. \end{cases}$$

由此得到
$$\varphi'(x)$$
 $\begin{cases} <0, & -1 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 0. \end{cases}$

于是,由 $\varphi(-1) = -\frac{1}{2} + \frac{1}{2} \ln 2 < 0$, $\varphi(0) = 0$ 知 $\varphi(x) < 0$,即 f'(x) < 0 ($x \in (-1, 0)$).

由此得到 f(x) 在 (-1, 1) 内有唯一驻点 x = 0,于是 f(x) 在 [-1, 1] 上的最大值为 $\max\{f(0), f(-1), f(1)\} = \frac{e}{2} \ln 2$,最小值为 $\min\{f(0), f(-1), f(1)\} = 0$.

附注 解本题(II)的关键是证明 $f'(x) < 0(x \in (-1, 0))$,即证明不等式

$$\frac{x}{1+x^2} + \frac{1}{2} \ln(1+x^2) < 0(x \in (-1, 0)).$$

题解中采用了导数方法.

(19) 由于 $f(\xi) + \xi f'(\xi) = 0$ 即为 $[xf(x)]'|_{x=\xi} = 0$. 所以作辅助函数 F(x) = xf(x),它在[0, 1]上连续,在(0, 1)内可导,且由

$$f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx = x_1, f(x_1) \left(x_1 \in \left[0, \frac{1}{2}\right]\right) (根据积分中值定理)$$

知 $F(1) = F(x_1)$,所以由罗尔定理知,存在 $\xi \in (x_1, 1) \subset (0, 1)$,使得 $F'(\xi) = 0$,即 $f(\xi) + \xi f'(\xi) = 0$.

附注 题解中综合使用了罗尔定理与积分中值定理.

(20)
$$A(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2)$$

$$= (\boldsymbol{\alpha}_1 \quad \boldsymbol{\alpha}_2 \quad \boldsymbol{\alpha}_3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}.$$

记
$$P = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3), 则 P$$
可逆, 且 $P^{-1}AP = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}$, 即

$$A \sim \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}$$
 记 E 为三阶单位矩阵,

則由
$$f(\lambda) = |\lambda E - B| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -a & \lambda \end{vmatrix} = \begin{vmatrix} \lambda + 1 & -(\lambda + 1) & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ -1 & -a & \lambda \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} 1 & -1 & 0 \\ 0 & \lambda + a & -(\lambda + 1) \\ 1 & a & -\lambda \end{vmatrix} = -(\lambda + 1) [\lambda^2 - \lambda - (1 + a)]$$
知

方程 $f(\lambda) = 0$ 不可能有三重根,这是因为此时 $\lambda = -1$ 是 $\lambda^2 - \lambda - (1+a) = 0$ 的二重根;但是当 $\lambda = -1$ 是 $\lambda^2 - \lambda - (1+a) = 0$ 的根时 a = 1,此时 $\lambda^2 - \lambda - (1+a) = 0$ 成为 $\lambda^2 - \lambda - 2 = 0$,这与 $\lambda = -1$ 是它的二重根矛盾.

方程 $f(\lambda) = 0$ 有二重根时,应分两种情形讨论:

(i) $\lambda = -1$ 是方程的二重根,则由以上计算此时 a = 1,并且由

知 r(-E-B)=1=3-2(即矩阵 B 的阶数与 $\lambda=-1$ 的重数之差),所以此时 B 可相似对角化.由于 $A\sim B$,所以此时 A 可相似对角化.

(ii) $\lambda = -1$ 不是方程的二重根时,方程 $\lambda^2 - \lambda - (1+a) = 0$ 必有二重根,从而 $(-1)^2 - 4[-(1+a)] = 0$,即 $a = -\frac{5}{4}$,并且此时的二重特征根为 $\lambda = \frac{1}{2}$.

$$\frac{1}{2}E - B = \begin{pmatrix} \frac{1}{2} & -1 & -1 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & -2 & -2 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -2 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -2 \\ 0 & -\frac{3}{2} & -3 \\ 0 & -\frac{3}{4} & -\frac{3}{2} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -2 \\ 0 & -\frac{3}{2} & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

知 $r\left(\frac{1}{2}E - B\right) = 2 \neq 1 = 3 - 2$ (即矩阵 B 的阶数与 $\lambda = \frac{1}{2}$ 的重数之差),所以此时 B 不可相似对角化,从而 A 不可相似对角化.

综上所述, 当 $a = -\frac{5}{4}$ 时, A 不可相似对角化.

附注 设A 是n 阶矩阵,则A 可相似对角化的充分必要条件有下列两种:

- (I) A 有 n 个线性无关的特征向量;
- (II) A 的每个特征值 λ_i (即特征方程 | $\lambda E A$ | =0 的根,这里 E 是 n 阶单位矩阵) 都满足 $r(\lambda_i E A) = n n_i (n_i$ 是 λ_i 的重数).

本题的求解是利用第(Ⅱ)种充分必要条件.

(21) (I) 由题设知, *A* 有特征值 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -1$. 从而 λ_1 对应 A^* 的特征值 $\mu_1 = \frac{|A|}{\lambda_1} = 1$, 所以由 $A^*\alpha = \alpha$ 知 $\mu_1 = 1$ 对应的特征向量为 $\alpha = (1, 1, -1)^T$, 由此可知 *A* 的对应 $\lambda_1 = 1$ 的特征向量为 α .

设 $\lambda_2 = \lambda_3 = -1$ 对应的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)$,则由 \boldsymbol{A} 是实对称矩阵知 $\boldsymbol{\beta}$ 与 $\boldsymbol{\alpha}$ 正 交,即

$$b_1 + b_2 - b_3 = 0.$$

故可取 β 为它们的基础解系,即

$$\boldsymbol{\beta}_1 = (-1, 1, 0)^T, \quad \boldsymbol{\beta}_2 = (1, 0, 1)^T.$$

现将它们正交化:

$$\boldsymbol{\gamma}_{1} = \boldsymbol{\beta}_{1} = (-1, 1, 0)^{T},$$

$$\boldsymbol{\gamma}_{2} = \boldsymbol{\beta}_{2} = \frac{(\boldsymbol{\beta}_{2}, \boldsymbol{\gamma}_{2})}{(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2})} \boldsymbol{\gamma}_{1} = \left(\frac{1}{2}, \frac{1}{2}, 1\right)^{T}.$$

显然, α , γ_1 , γ_2 是正交向量组, 现将它们单位化得

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\gamma}_{1}}{\parallel \boldsymbol{\gamma}_{1} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}_{2}}{\parallel \boldsymbol{\gamma}_{2} \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{T}.$$

于是所求的正交矩阵为 $Q = (\xi_1, \xi_2, \xi_3)$,它使

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{pmatrix} 2 & & & \\ & -1 & & \\ & & -1 \end{pmatrix},$$

所以
$$\mathbf{A} = \mathbf{Q} \begin{pmatrix} 2 & & \\ & -1 & \\ & & -1 \end{pmatrix} \mathbf{Q}^{\mathrm{T}}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

(II) 由于 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $2y_1^2 - y_2^2 - y_3^2$,

故令
$$\begin{cases} z_1 = \sqrt{2}y_1, \\ z_2 = y_2, \\ z_3 = y_3, \end{cases}$$
 即
$$\begin{cases} y_1 = \frac{1}{\sqrt{2}}z_1, \\ y_2 = z_2, \\ y_3 = z_3, \end{cases}$$
 或 $\mathbf{y} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 1 \\ 1 \end{pmatrix} z, \ \mathcal{M}$

 $2y_1^2 - y_2^2 - y_3^2 = z_1^2 - z_2^2 - z_3^2$ (规范形).

从而 $f(x_1, x_2, x_3)$ 在可逆线性变换

$$x = Qy = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 1 \\ & 1 \end{pmatrix} z$$
$$= \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} z$$

下化为规范形,即

$$f(x_1, x_2, x_3) = z_1^2 - z_2^2 - z_3^2$$
.

附注(I) 设A 是n 阶可逆矩阵,有特征值 λ 及对应的特征向量 α ,则A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

- (Ⅱ)要熟练掌握用正交变换化二次型为标准形的方法.
- (22) (I) 由于 $F_Z(z) = P(Z \leq z)$,

其中 $P(Z \le z) = P(XY \le z)$

$$\begin{split} &= P(Y=-1)P(XY \leqslant z \mid Y=-1) + \\ &P(Y=0)P(XY \leqslant z \mid Y=0) + \\ &P(Y=1)P(XY \leqslant z \mid Y=1) \\ &= \frac{1}{3} [P(X \geqslant -z) + P(0 \leqslant z) + P(X \leqslant z)] \\ &= \begin{cases} \frac{1}{3} \int_{-z}^{+\infty} e^{-x} dx, & z < 0, \\ \frac{1}{3} \left(\int_{0}^{+\infty} e^{-x} dx + 1 + \int_{0}^{z} e^{-x} dx \right), & z \geqslant 0 \end{cases} \\ &= \begin{cases} \frac{1}{3} e^{z}, & z < 0, \\ 1 - \frac{1}{3} e^{-z}, & z \geqslant 0. \end{cases} \\ &= \begin{cases} \frac{1}{3} e^{z}, & z < 0, \\ 1 - \frac{1}{3} e^{-z}, & z \geqslant 0. \end{cases} \\ &\text{II} \quad Cov(X, X^{2}) = E(X^{3}) - EX \cdot E(X^{2}), \\ &\text{III} + EX = 1, E(X^{2}) = D(X) + (EX)^{2} = 1 + 1^{2} = 2, \\ &E(X^{3}) = \int_{-\infty}^{+\infty} x^{3} f_{X}(x) dx = \int_{0}^{+\infty} x^{3} e^{-x} dx = - \int_{0}^{+\infty} x^{3} de^{-x} dx \\ &= - \left(x^{3} e^{-x} \right|_{0}^{+\infty} - 3 \int_{0}^{+\infty} x^{2} e^{-x} dx \right) = 3 \int_{0}^{+\infty} x^{2} e^{-x} dx \\ &= 3 \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = 3 E(X^{2}), \end{split}$$

所以, $Cov(X, X^2) = 3E(X^2) - E(X^2) = 2E(X^2) = 4$.

附注 由于 Z = XY 是连续型随机变量与离散型随机变量之积,所以要计算它的分布函数应从定义出发,即从计算概率

$$P(Z \le z) = P(XY \le z)$$

入手.

(23) 记 X 为独立重复射击中,直到命中时的射击次数,则 k_1 , k_2 , … , k_n 为来自总体 X 的简单独立样本值.由于

$$P(X = k) = (1 - p)^{k-1} p(k = 1, 2, \cdots),$$
所以, $EX = \sum_{k=1}^{\infty} k(1 - p)^{k-1} p = -p \frac{\mathrm{d}}{\mathrm{d}p} \sum_{k=1}^{\infty} (1 - p)^k$

$$= -p \frac{\mathrm{d}}{\mathrm{d}p} \left(\frac{1 - p}{p}\right) = \frac{1}{p}$$
令 $EX = \overline{k} = \frac{1}{n} \sum_{i=1}^{n} k_i, \text{即} \frac{1}{p} = \overline{k}, \text{于是由矩估计法得 } p \text{ 的矩估计值 } \hat{p} = \frac{1}{\overline{k}}.$

最大似然函数为

$$\begin{split} L(p) &= (1-p)^{k_1-1} p \cdot (1-p)^{k_2-1} p \cdot \dots \cdot (1-p)^{k_n-1} p \\ &= p^n (1-p)^{\sum\limits_{i=1}^n k_i - n}, \\ 取对数 \ln L(p) &= n \ln p + \Big(\sum\limits_{i=1}^n k_i - n \Big) \ln (1-p). \ \diamondsuit \\ &\frac{\mathrm{d} \ln L(p)}{\mathrm{d} p} = 0, \ \square \frac{n}{p} - \frac{n(\bar{k}-1)}{1-p} = 0, \end{split}$$

解此方程得 $p = \frac{1}{k}$. 于是由最大似然估计法知 p 的最大似然估计值 $\hat{p} = \frac{1}{k}$.

附注 应熟练掌总体未知参数的两种点估法方法:矩估计法与最大似然估计法.

模拟试题(五)解答

一、选择题

答案
(1) (A) (2) (C) (3) (B) (4) (B)
(5) (A) (6) (B) (7) (B) (8) (C)

所以, x=1 是 f(x) 的可去间断点. 因此选(A).

附注 应记住: $\lim_{x\to 0^{-}} e^{\frac{1}{x}} = 0$, $\lim_{x\to 0^{+}} e^{\frac{1}{x}} = + \infty$.

(2) 当f(x) 是偶函数时,由定积分性质知 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 成立. 反之,当 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 时,等式两边对x 求导得f(x) + f(-x) = 2f(x),即 $f(x) = f(-x)(-\infty < x < +\infty)$. 所以f(x) 是偶函数. 因此选(C).

附注 应记住本题的结论:

设 f(x) 是连续函数,则 $\int_{-x}^{x} f(t) dt = 2 \int_{0}^{x} f(t) dt (-\infty < x < +\infty)$ 是 f(x) 为偶函数的充分必要条件.

(3)
$$\[\mathrm{id} \ a_n = \int_0^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^2}} \mathrm{d}x, \] \[u_n > 0 \] \[n = 1,2,\cdots), \] \[\mathrm{id} \ \{a_n\} \]$$
 单调减少,收敛于零,所以所

给级数收敛. 但是由于 $-1 < \alpha \le 0$ 时,由 $a_n > \frac{1}{\sqrt{2}} \int_0^{\frac{1}{n}} x^{\alpha} dx = \frac{1}{\sqrt{2}(\alpha+1)} \left(\frac{1}{n}\right)^{\alpha+1} (n=1,2,\cdots)$

及 $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{1+\alpha}$ 发散,知 $\sum_{n=1}^{\infty} a_n$ 发散,从而所给级数在 $\alpha > -1$ 时不是绝对收敛.

综上所述, 所给级数条件收敛. 因此选(B).

附注 本题的题解,实际上表明所给级数在 $\alpha > -1$ 时是收敛的,但不是对任意 $\alpha \in (-1, +\infty)$ 都是绝对收敛的,因此对所有的 $\alpha > -1$,所给级数收敛性的结论是条件收敛.

(4) 由于
$$I_1 = \iint_{D_1} \sqrt{x^2 + y^2} d\sigma = \frac{\frac{\overline{W} + \overline{w}}{\overline{w}}}{\frac{\overline{w} + \overline{w}}{\overline{w}}} \int_0^{2\pi} d\theta \int_0^1 r^2 dr = \frac{2\pi}{3},$$

$$I_2 = \iint_{D_2} \sqrt{x^2 + y^2} d\sigma = \frac{\overline{W} + \overline{w}}{\overline{w}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^{\cos \theta} r^2 dr$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{3} \cos^3 \theta d\theta = \frac{2}{3} \int_0^{\frac{\pi}{2}} \cos^3 \theta d\theta = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9},$$

 $I_3 = I_2$ (这是由于 D_2 与 D_3 关于直线 y = x 对称,在对称点(x, y)与(y, x)处, $\sqrt{x^2 + y^2}$ 的值彼此相等,所以 $I_2 = I_3$),因此选(B).

附注 题解中,用极坐标计算得出 I_1 , I_2 的值,但 $I_2 = I_3$ 是利用对称性得到的. 在二重积分计算中,应充分利用积分区域的对称性,以化简计算.

(5) 由题设知 $r(A^*)=4-3=1$,从而 r(A)=4-1=3. 所以 A 的特征值中有且仅有三个不为零. 由此推得 $f(x_1, x_2, x_3, x_4)$ 的标准形应形如 $a_1y_1^2+a_2y_2^2+a_3y_3^2(a_1, a_2, a_3)$ 零). 因此选(A).

附注 题解中利用了以下两个结论:

(I) 设A 是n 阶矩阵, A^* 是它的伴随矩阵, 则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n-1, \\ 0, & r(A) < n-1. \end{cases}$$

- (II) 设A 是实对称矩阵,则A 可相似对角化.
- (6) 由于方程组 $Ax = b(A \not\in m \times n$ 矩阵, $x \not\in n$ 维未知列向量, $b \not\in m$ 维列向量)有无穷多解的充分必要条件是

$$r(\mathbf{A} \mid \mathbf{b}) = r(\mathbf{A}) < n.$$

记 $B = (b_1, b_2, \dots, b_l)(b_1, b_2, \dots, b_l)$ 都是 m 维列向量), $X = (x_1, x_2, \dots, x_n)$ (x_1, x_2, \dots, x_n) 都是 n 维列向量), 则 AX = B 有无穷多解的充分必要条件是

$$r(A \mid b_1) = r(A) \leq n, \dots, r(A \mid b_1) = r(A) \leq n$$

(其中至少有一式只取不等号),即

$$r(\mathbf{A} \mid \mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_l) = r(\mathbf{A}) < n.$$

由此得到. 矩阵方程 AX = B 有无穷多解的充分必要条件是

$$r(\mathbf{A} \mid \mathbf{B}) = r(\mathbf{A}) < n.$$

因此选(B).

附注 应记住关于矩阵方程 $AX = B(A \neq m \times n$ 矩阵, $B \neq m \times l$, $X \neq n \times l$ 未知矩阵) 的有解性结论:

该方程有无穷多解的充分必要条件是 $r(A \mid B) = r(A) < n$; 有唯一解的充分必要条件是 $r(A \mid B) = r(A) = n$; 无解的充分必要条件是 $r(A \mid B) > r(A)$.

(7) 由于f(x)是概率密度,所以 $\int_{-\infty}^{+\infty} f(x) dx = 1$,即

$$a \int_{-\infty}^{1} f_1(x) dx + b \int_{1}^{+\infty} f_2(x) dx = 1.$$
 (1)

由 $f_1(x)$ 是 $X \sim N(1, 1)$ 的概率密度知, $\int_{-\infty}^1 f_1(x) dx = \frac{1}{2}$.

由 $f_2(x)$ 是Y的概率密度知 $\int_{1}^{+\infty} f_2(x) dx = 1$. 将它代入式(1) 得 $\frac{1}{2}a + b = 1$. 因此选(B).

附注 题解中利用了以下结论:

(I)设 $X \sim N(a, \sigma^2)$,则它的概率密度 f(x)满足

$$\int_{-\infty}^{a} f(x) dx = \int_{a}^{+\infty} f(x) dx = \frac{1}{2}.$$

(II) 设 X 的概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda(x-a)}, & x \leq a, \\ 0, & x > a, \end{cases}$ ($\lambda > 0$),则

(8) 当 μ =0时,

$$\frac{\sqrt{nX}}{\sigma} = \frac{\overline{X}}{\sigma/\sqrt{n}} \sim N(0,1),$$

$$\frac{Q^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{\sigma^2} \sim X^2(n-1),$$

$$\frac{\sqrt{n(n-1)X}}{Q} = \frac{\frac{\sqrt{nX}}{\sigma}}{\sqrt{(Q^2/\sigma^2)/(n-1)}} \sim t(n-1).$$

所以

因此本题选(C).

附注 应记住数理统计中服从三个抽样分布的随机变量的构成:

(I) 设 X_1 , X_2 , …, X_n 都服从N(0,1)的相互独立的随机变量,则

$$X_1^2 + X_2^2 + \cdots + X_n^2 \sim X^2(n).$$

(II) 设 $X \sim N(0, 1)$, $Y \sim X^2(n)$, 且X与Y相互独立,则

$$\frac{X}{\sqrt{Y/n}} \sim t(n).$$

(III) 设 $X \sim X^2(n_1)$, $Y \sim X^2(n_2)$, 且X 与 Y相互独立, 则

$$\frac{X/n_1}{Y/n_2} \sim F(n_1, n_2).$$

二、填空题

$$(9) f(x) = \cos^{2} x = \frac{1}{2} + \frac{1}{2} \cos 2x$$

$$= \frac{1}{2} + \frac{1}{2} \left[1 - \frac{1}{2!} x^{2} + \frac{1}{4!} (\cos 2x)^{(4)} \Big|_{x=\xi} \cdot x^{4} \right]$$

$$= 1 - \frac{1}{4} x^{2} + \frac{1}{48} \cdot 2^{4} \cos \left(2\xi + 4 \times \frac{\pi}{2} \right) x^{4}$$

$$= 1 - \frac{1}{4} x^{2} + \frac{1}{3} \cos 2\xi \cdot x^{4} (\xi \cancel{E} \cancel{\Upsilon} + 0 \cancel{S} \cancel{X} + 2) \cancel{X} = 0$$

附注 $\sin x$ 的 2n-1 阶带拉格朗日型余项的麦克劳林公式为

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + \frac{1}{(2n+1)!}\sin(\xi + (2n+1) \cdot \frac{\pi}{2})x^{2n+1},$$

而不是

$$\sin x = x - \frac{1}{3!}x^3 + \dots + (-1)^{n-1} \frac{1}{(2n-1)!}x^{2n-1} + \frac{1}{(2n)!}\sin(\xi + 2n \cdot \frac{\pi}{2})x^{2n}.$$

同样. $\cos x$ 的 2n 阶带拉格朗日型余项的麦克劳林公式为

$$\cos x = 1 - \frac{1}{2!}x^{2} + \dots + (-1)^{n} \frac{1}{(2n)!}x^{2n} + \frac{1}{(2n+2)!}\cos(\xi + (2n+2) \cdot \frac{\pi}{2})x^{2n+2},$$

而不是

$$\cos x = 1 - \frac{1}{2!}x^2 + \dots + (-1)^n \frac{1}{(2n)!}x^{2n} + \frac{1}{(2n+1)!}\cos\left(\xi + (2n+1) \cdot \frac{\pi}{2}\right)x^{2n+1},$$

以上的 ξ 都是介于0与x之间的实数

$$(10) \int_0^a x \sqrt{ax - x^2} dx = \int_0^a x \sqrt{\left(\frac{a}{2}\right)^2 - \left(x - \frac{a}{2}\right)^2} dx$$

$$\frac{\Rightarrow t = x - \frac{a}{2}}{= \frac{a}{2}} \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(t + \frac{a}{2}\right) \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} t \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt + \frac{a}{2} \int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt$$

$$= \frac{a}{2} \cdot \frac{\pi}{2} \left(\frac{a}{2}\right)^2 = \frac{\pi}{16} a^3.$$

附注 题解中 $\int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt = \frac{\pi}{2} \left(\frac{a}{2}\right)^2 = \frac{\pi}{8} a^2$ 是根据定积分的几何意义直接得到

(11) 由于所给微分方程可改写成

$$(x^2 dy + 2xy dx) - dy - \cos x dx = 0,$$

$$d(x^2 y - y - \sin x) = 0,$$

即

的.

所以, $x^2y-y-\sin x=C$. 将 x=0, y=1 代入得 C=-1. 因此所求的特解为 $x^2y-y-\sin x=-1.$

附注 本题也可以用以下方法求解:

将所给微分方程改写成

$$y' + \frac{2x}{x^2 - 1}y = \frac{\cos x}{x^2 - 1}(-\text{阶线性微分方程}),$$

它的通解为

$$y = e^{-\int \frac{2x}{x^2 - 1} dx} \left(C + \int \frac{\cos x}{x^2 - 1} e^{\int \frac{2x}{x^2 - 1} dx} dx \right)$$
$$= \frac{1}{x^2 - 1} (C + \int \cos x dx) = \frac{1}{x^2 - 1} (C + \sin x).$$

将 $\gamma(0) = 1$ 代入上式得 C = -1. 所以所求的特解为

$$y = \frac{1}{x^2 - 1} (\sin x - 1).$$

(12)
$$\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} f(r\cos\theta, r\sin\theta) r dr = \iint_{D} f(x, y) d\sigma,$$
其中,
$$D = \left\{ (r, \theta) \middle| \frac{1}{\cos\theta + \sin\theta} \leqslant r \leqslant 1, \ 0 \leqslant \theta \leqslant \frac{\pi}{2} \right\}$$

$$= 第一象限内由直线 x + y = 1 和圆 x^{2} + y^{2} = 1 围成的闭区域$$

$$= \left\{ (x, y) \middle| 1 - x \leqslant y \leqslant \sqrt{1 - x^{2}}, \ 0 \leqslant x \leqslant 1 \right\}.$$
所以
$$\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} f(r\cos\theta, r\sin\theta) r dr = \int_{0}^{1} dx \int_{0}^{\sqrt{1 - x^{2}}} f(x, y) dy$$

所以 $\int_0^{\frac{\pi}{2}} d\theta \int_{-\frac{1}{2}}^1 f(r\cos\theta, r\sin\theta) r dr = \int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} f(x, y) dy.$

附注 本题是分两步完成的:

首先,将所给的极坐标系中的二次积分转换成直角坐标系中的二重积分,此时被积函数 为f(x, y), 积分区域为D.

然后,将所得到的二重积分转换成先 γ 后x的二次积分.

(13)
$$\mathbf{B} = \mathbf{A}^2 - \mathbf{A} - 2\mathbf{E} = (\mathbf{A} + \mathbf{E})(\mathbf{A} - 2\mathbf{E}).$$
 (1)

由 $A^3 = E \ \partial A^3 + E = 2E$, 即 $(A + E) \cdot \frac{1}{2}(A^2 - A + E) = E$, 所以

A+E可逆,且

$$(A + E)^{-1} = \frac{1}{2}(A^2 - A + E).$$
 (2)

由 $A^3 = E \ \partial A^3 - 8E = -7E$, 即 $(A - 2E) \cdot \left(-\frac{1}{7}\right)(A^2 + 2A + 4E) = E$, 所以

A-2E 可逆、且

$$(A-2E)^{-1} = -\frac{1}{7}(A^2 + 2A + 4E).$$
 (3)

由式(1)~(3)知 B 可逆,且

$$B^{-1} = (A - 2E)^{-1}(A + E)^{-1}$$

$$= -\frac{1}{7}(A^2 + 2A + 4E) \cdot \frac{1}{2}(A^2 - A + E)$$

$$= -\frac{1}{14}(A^4 - A^3 + A^2 + 2A^3 - 2A^2 + 2A + 4A^2 - 4A + 4E)$$

$$= -\frac{1}{14}(A^4 + A^3 + 3A^2 - 2A + 4E)$$

$$= -\frac{1}{14}(A + E + 3A^2 - 2A + 4E)$$

$$= -\frac{1}{14}(3A^2 - A + 5E).$$

附注 本题的A + E 与 A - 2E 的逆矩阵都按定义计算的:

设A, B 都是n 阶矩阵, 如果 $AB = E(E \in n)$ 阶单位矩阵), 则A, B 都是可逆矩阵, 且 $A^{-1} = B$, $B^{-1} = A$.

(14) 由于
$$\frac{a(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}} = \frac{\frac{a}{\sqrt{3}\sigma}(X_1 + X_2)}{\sqrt{(X_3^2 + X_4^2 + X_5^2)/3\sigma^2}}$$
服从 t 分布(实际上是服从 $t(3)$ 分布),

显然,其中 $(X_3^2 + X_4^2 + X_5^2)/\sigma^2 \sim \chi^2(3)$,所以必有

$$\frac{a}{\sqrt{3}\sigma}(X_1 + X_2) \sim N(0,1).$$

从而由
$$D\left(\frac{a}{\sqrt{3}\sigma}(X_1+X_2)\right)=1$$
,即 $\frac{a^2}{3\sigma^2}\cdot 2\sigma^2=1$.由此得到 $a=\sqrt{\frac{3}{2}}$.

附注 服从 t(n) 的随机变量定义如下:

设随机变量 $X \sim N(0, 1)$, $Y \sim \chi^2(n)$, 且 X 与 Y 相互独立,则随机变量 $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$.

三、解答题

(15) 由于x < 0时, g(x) < 0; x > 0时, g(x) > 0, 并且由

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{e^{\frac{1}{x}} \arctan \frac{1}{x}}{1 + e^{\frac{2}{x}}} = 0,$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{e^{-\frac{1}{x}} \arctan \frac{1}{x}}{e^{-\frac{2}{x}} + 1} = 0$$

知 $\lim_{x\to 0} g(x) = 0$. 因此

$$\lim_{x \to 0^{-}} f(g(x)) \xrightarrow{\frac{1}{2}u = g(x)} \lim_{u \to 0^{-}} f(u)$$

$$= \lim_{u \to 0^{-}} \frac{\ln(1 - u^{3})}{u - \arcsin u} = -\lim_{u \to 0^{-}} \frac{u^{3}}{u - \arcsin u}$$

$$\xrightarrow{\overset{\text{洛及法规}}{\underline{\qquad}}} - 3 \lim_{u \to 0^{-}} \frac{u^{2}}{1 - \frac{1}{\sqrt{1 - u^{2}}}}$$

$$= -3 \lim_{u \to 0^{-}} \frac{u^{2}}{\sqrt{1 - u^{2}} - 1} = -3 \lim_{u \to 0^{-}} \frac{1}{-\frac{1}{2}} = 6,$$

$$\lim_{x \to 0^{+}} f(g(x)) \xrightarrow{\overset{\text{@}}{\underline{\qquad}} u = g(x)} \lim_{u \to 0^{+}} f(u)$$

$$= \lim_{u \to 0^{+}} \frac{e^{-u} + \frac{1}{2}u^{2} + u - 1}{u \sin \frac{u}{6}} = 6 \lim_{u \to 0^{+}} \frac{e^{-u} + \frac{1}{2}u^{2} + u - 1}{u^{2}}$$

$$\overset{\text{@}}{\underline{\qquad}} \overset{\text{@}}{\underline{\qquad}} \overset{\text{@}}{\underline{\qquad}$$

曲此得到 $\lim_{x\to 0^+} f(g(x)) = 6.$

附注 题解中先计算出 $\lim_{x\to 0} g(x) = 0$,然后计算 $\lim_{x\to 0} f(u)$,这样计算 $\lim_{x\to 0} f(g(x))$ 比较快捷 些.

 $= 3\left(-\lim_{u\to 0^+} \frac{e^{-u}-1}{u}+1\right) = 6,$

(16) 由于曲线 y = f(x) 与曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处有相同的切线,从而

$$f'(1) = y'(1) = -1$$
(曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处的切线斜率为 -1). (1)

此外,曲线 y = f(x) 与曲率圆 $x^2 + y^2 = 2$ 在点(1, 1)处有相同的凹凸性,而 $x^2 + y^2 = 2$ 在点(1, 1)处是凸的,从而 f''(1) < 0. 由于 f''(x) 不变号,所以在(1, 2)内 f''(x) < 0,从而 f'(x) 单调减少,故 $f'(x) < f'(1) = -1 < 0(x \in (1, 2))$,因此 f(x) 在(1, 2)内无极值点.

$$f(2) = f(1) + [f(2) - f(1)] = 1 + f'(\xi)$$
(其中, $\xi \in (1,2)$) <1 + $f'(1) = 0$

知 f(1)f(2) < 0,并且上面已证 $f'(x) < 0(x \in (0, 1))$,所以 f(x) 在 (1, 2) 内有唯一零点. **附注** 曲率圆定义如下:

设函数 y=f(x) 在点 x_0 处二阶可导,则当曲线 y=f(x) 在点 (x_0,y_0) (其中, $y_0=f(x_0)$) 处的曲率 $K\neq 0$ 时,称以点 D 为圆心, $R=\frac{1}{K}$ 为半径的圆为该曲线在点 (x_0,y_0) 的曲率圆,

其中 D 位于该曲线的在点 (x_0, y_0) 处的法线(在凹的一侧)上,与点 (x_0, y_0) 的距离为 R.

曲率圆与曲线 y = f(x) 在点 (x_0, y_0) 处有相同的切线及凹凸性.

(17) 由于
$$a_n = -\left(1 + \frac{1}{n}\right)a_{n-1} = (-1)^2\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n-1}\right)a_{n-2}$$

 $= \dots = (-1)^{n-2}\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n-1}\right)\dots\frac{4}{3}a_2$
 $= (-1)^{n-2}\frac{7}{6}(n+1) = (-1)^n\frac{7}{6}(n+1)(n=3, 4, \dots),$

所以 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n+1}{n} = 1$,即 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 1,

曲于
$$x = -1$$
, 1 时, $\sum_{n=0}^{\infty} a_n x^n = 1 - 2x + \frac{7}{2}x^2 + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6}(n+1)x^n$ 分别成为
$$\frac{13}{12} + \sum_{n=3}^{\infty} \frac{7}{6}(n+1), \frac{5}{2} + \sum_{n=3}^{\infty} (-1)^n \cdot \frac{7}{6}(n+1),$$

它们都是发散. 因此 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域为(-1,1). 对任意 $x \in (-1,1)$,有

$$s(x) = \sum_{n=0}^{\infty} a_n x^n = 1 - 2x + \frac{7}{2} x^2 + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6} (n+1) x^n$$

$$= 1 - 2x + \frac{7}{2} x^2 - \frac{7}{6} \frac{d}{dx} \sum_{n=3}^{\infty} (-x)^{n+1}$$

$$= 1 - 2x + \frac{7}{2} x^2 - \frac{7}{6} \frac{d}{dx} \left(\frac{x^4}{1+x} \right)$$

$$= 1 - 2x + \frac{7}{2} x^2 - \frac{7}{6} \frac{d}{dx} \left(x^3 - x^2 + x - 1 + \frac{1}{x+1} \right)$$

$$= -\frac{1}{6} + \frac{1}{3} x + \frac{7}{6(x+1)^2}.$$

因此
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} s(x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[-\frac{1}{6} + \frac{1}{3}x + \frac{7}{6(1+x)^2} \right] dx$$
$$= -\frac{1}{6} - \frac{7}{6} \frac{1}{1+x} \Big|_{-\frac{1}{3}}^{\frac{1}{2}} = \frac{25}{18}.$$

附注 当计算幂级数的和函数 s(x)时,应先算出该幂级数的收敛域,即确定 s(x)的定义域.

(18) 记 $f(x) = xe^{2x} - 2x - \cos x$, 则 f(x) 在[0, 1]上有连续的导数,在(0, 1)内二阶可导,且由

$$f'(x) = e^{2x} + 2xe^{2x} - 2 + \sin x,$$

$$f''(x) = 4(1+x)e^{2x} + \cos x > 0$$

知 f'(x)在(0, 1)内单调增加, $f'(0)f'(1) = (-1) \cdot (3e^2 - 2 + \sin 1) < 0$, 所以存在唯一 $x_0 \in (0, 1)$, 使得 $f'(x_0) = 0$. 由此得到

$$f'(x) \begin{cases} <0, & 0 < x < x_0, \\ =0, & x = x_0, \\ >0, & x_0 < x < 1. \end{cases}$$

因此 由 f(0) = -1 < 0,知 $f(x) < 0(x \in (0, x_0])$,即方程 f(x) = 0 在 $(0, x_0]$ 上无实根. 此外,由 $f(x_0)f(1) < 0$ 及 $f'(x) > 0(x \in (x_0, 1))$ 知方程 f(x) = 0 在 $(x_0, 1)$ 上有唯一实根.

综上所述, 所给方程 $xe^{2x} - 2x - \cos x = 0$ 在(0, 1)内有唯一实根.

附注 由题解中分析可知, 曲线 y = f(x) 如图 5-18 所示, 由图可知方程 f(x) = 0 在 (0,1) 内有且仅有一个实根.

(19) 记 S 切下 yOz 平面、xOz 平面及平面 z=1 的部分为 S_1 (前侧), S_2 (右侧)及 S_3 (下侧), 则

$$\begin{split} & \iint_{S} x^{2}z \mathrm{d}y \mathrm{d}z \, + \, yz^{2} \, \mathrm{d}z \mathrm{d}x \, + \, xz^{2} \, \mathrm{d}x \mathrm{d}y \\ & = \iint_{S+S_{1}+S_{2}+S_{3}} x^{2}z \mathrm{d}y \mathrm{d}z \, + \, yz^{2} \, \mathrm{d}z \mathrm{d}x \, + \, xz^{2} \, \mathrm{d}x \mathrm{d}y \, - \, \iint_{S_{1}} x^{2}z \mathrm{d}y \mathrm{d}z \, + \, yz^{2} \, \mathrm{d}z \mathrm{d}x \, + \, xz^{2} \, \mathrm{d}x \mathrm{d}y \, - \, \\ & \iint_{S_{2}} x^{2}z \mathrm{d}y \mathrm{d}z \, + \, yz^{2} \, \mathrm{d}z \mathrm{d}x \, + \, xz^{2} \, \mathrm{d}x \mathrm{d}y \, - \, \iint_{S_{2}} x^{2}z \, \mathrm{d}y \mathrm{d}z \, + \, yz^{2} \, \mathrm{d}z \mathrm{d}x \, + \, xz^{2} \, \mathrm{d}x \mathrm{d}y \, , \end{split}$$

$$\begin{split} \iint_{S_3} & x^2 z \mathrm{d}y \mathrm{d}z + y z^2 \mathrm{d}z \mathrm{d}x + x z^2 \mathrm{d}x \mathrm{d}y = -\iint_{D_{xy}} & x \mathrm{d}x \mathrm{d}y (\not \pm \not + , D_{xy} = \left\{ \left(x,y \right) \mid x^2 + y^2 \leqslant 1 \,, x \geqslant 0 \,, y \geqslant 0 \right\} \right) \\ & = -\int_0^{\frac{\pi}{2}} \! \mathrm{d}\theta \int_0^1 & r \mathrm{cos} \,\, \theta \cdot r \mathrm{d}r = -\frac{1}{3}. \end{split}$$

所以,
$$A = -\frac{4}{7} + \frac{1}{3} = -\frac{5}{21}$$
.

由于
$$y[f(x) + 3e^{2x}] dx + f'(x) dy$$
 是某个二元函数的全微分,所以
$$\frac{\partial f'(x)}{\partial x} = \frac{\partial \{y[f(x) + 3e^{2x}]\}}{\partial y}, 即 f''(x) - f(x) = 3e^{2x},$$

它有通解 $f(x) = C_1 e^x + C_2 e^{-x} + e^{2x}$, 且

$$f'(x) = C_1 e^x - C_2 e^{-x} + 2e^{2x}$$
.

将
$$f(0)=A=-\frac{5}{21},\;f'(0)=-A=\frac{5}{21}$$
代入以上两式得 $C_1=-\frac{3}{2},\;C_2=\frac{11}{42}.$

所以,
$$f(x) = -\frac{3}{2}e^x + \frac{11}{42}e^{-x} + e^{2x}$$
.

附注 题解中有两点值得注意:

(I) 利用高斯公式计算所给的曲面积分,故需添上 S_1 , S_2 , S_3 , 但由此构成的闭曲面方向为内侧,故有

$$\iint\limits_{S+S_1+S_2+S_3} x^2z\mathrm{d}y\mathrm{d}z \,+\, yz^2\mathrm{d}z\mathrm{d}x \,+\, xz^2\mathrm{d}x\mathrm{d}y \,=\, -\, \iint\limits_{\varOmega} \left[\frac{\partial \,\left(x^2z\right)}{\partial \,x} \,+\, \frac{\partial \,\left(yz^2\right)}{\partial \,y} \,+\, \frac{\partial \,\left(xz^2\right)}{\partial \,z}\right]\!\mathrm{d}v.$$

(II) $f''(x) - f(x) = 3e^{2x}$ 的通解为 $f(x) = C_1e^x + C_2e^{-x} + e^{2x}$ 是这样算得的: 首先,对应的齐次线性微分方程 f''(x) - f(x) = 0 的通解为 $y = C_1e^x + C_2e^{-x}$.

其次, $f''(x) - f(x) = 3e^{2x}$ 有特解 $y^* = Ae^{2x}$, 将它代入这个非齐次线性微分方程得 A = 1, 即 $y^* = e^{2x}$. 所以通解 $f(x) = y + y^* = Ce^x + C_2e^{-x} + e^{2x}$.

(20)(I)由于所给方程组

$$(\boldsymbol{\alpha}_{1} - \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}, -\boldsymbol{\alpha}_{1} + a\boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}) = \boldsymbol{\alpha}_{4},$$
即为($\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$)
$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} x = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

于是由 α_1 , α_2 , α_3 线性无关, 即 $(\alpha_1, \alpha_2, \alpha_3)$ 是可逆矩阵, 得所给方程组的同解方程组

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \tag{1}$$

对式(1)的增广矩阵 $\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & a & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$ 施行初等行变换得

$$\overline{A} \to \begin{pmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & a - 1 & | & 2 \\ 0 & 1 & 1 & | & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 0 & a - 2 & | & 0 \\ 0 & 1 & 1 & | & 2 \end{pmatrix},$$

所以,当所给方程组有无穷多解时, $r(\overline{A}) = r(A) < 3$ (其中,A 是式(1)的系数矩阵),于是a-2=0,即 a=2.

(Ⅱ) 当 a=2 时,式(1),即所给方程组与

$$\begin{cases} x_1 & -x_3 = 1, \\ x_2 + x_3 = 2 \end{cases} \tag{2}$$

同解. 它对应的导出组通解为 $C(1, -1, 1)^{\mathrm{T}}$, 且式(2)有特解(1, 2, 0) $^{\mathrm{T}}$. 所以式(2),即 所给方程组的通解为

$$x = C(1, -1,1)^{\mathrm{T}} + (1,2,0)^{\mathrm{T}} (C$$
是任意常数).

附注 本题(I)获解的关键是根据 α_1 , α_2 , α_3 线性无关,将所给的线性方程组化简为等价方程组(1).

(21) (I)记
$$E$$
 为三阶单位矩阵,则由 $|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & 0 \\ 0 & -a & \lambda - 6 \end{vmatrix} = (\lambda + 2)(\lambda + 2)$

 $(-6)^2$ 知 $(-6)^2$ 집 $(-6)^2$ $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ 집 $(-6)^2$ $(-6)^2$ 집 $(-6)^2$ (

$$r(6E - A) = 3 - 2 = 1, (1)$$

其中, $6E - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & -a & 0 \end{pmatrix}$, 因此,满足式(1)的 a = 0,即当 A

可相似对角化时, a=0.

(II)
$$a = 0$$
 时, $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$, 所以

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x} = 2x_1^2 + 10x_1x_2 + 2x_2^2 + 6x_3^2$$
$$= \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \mathbf{x}.$$

记
$$\mathbf{B} = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 (实对称矩阵),则

所以 B 有特征值 $\lambda = -3$, 6, 7.

设对应 $\lambda = -3$ 的特征向量为 $\boldsymbol{\alpha} = (a_1, a_2, a_3)^{\mathrm{T}}$,则 $\boldsymbol{\alpha}$ 满足

$$\begin{pmatrix} -5 & -5 & 0 \\ -5 & -5 & 0 \\ 0 & 0 & -9 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}, \exists \mathbf{1} \begin{cases} a_1 + a_2 & = 0, \\ a_3 = 0. \end{cases}$$

于是取 α 为它的基础解系、即 $\alpha = (-1, 1, 0)^{T}$.

设对应 $\lambda = 6$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 $\boldsymbol{\beta}$ 满足

$$\begin{pmatrix} 4 & -5 & 0 \\ -5 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = 0, \text{ EF} \begin{cases} 4b_1 - 5b_2 = 0, \\ -5a_1 + 4b_2 = 0, \end{cases}$$

于是取**\beta** 为它的基础解系,即**\beta** = $(0, 0, 1)^T$.

设对应 $\lambda = 7$ 的特征向量为 $\gamma = (c_1, c_2, c_3)^T$,则 $\gamma 与 \alpha$, β 都正交,即

$$\begin{cases} -c_1 + c_2 &= 0, \\ c_3 &= 0, \end{cases}$$

于是取 γ 为它的基础解系,即 $\gamma = (1, 1, 0)^{T}$

 α , β , γ 是正交向量组, 现将它们单位化, 即

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\beta}}{\parallel \boldsymbol{\beta} \parallel} = (0, 0, 1)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T}.$$

记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则所求的正交变换为

$$x = Qy = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} y,$$

它将二次型 $f(x_1, x_2, x_3)$ 化为标准形 $-3y_1^2 + 6y_2^2 + 7y_3^2$.

附注 用正交变换将二次型 $f(x_1, x_2, x_3)$ 化为标准形,首先要将该二次型表示成 $x^T B x$ (其中, B 是实对称矩阵),这是本题获解的关键.此外,应熟练掌握用正交变换化二次型为标准形的方法.

(22) (I) 记
$$U$$
 的分布函数为 $F(u)$, 则
$$F(u) = P(U \le u) = P \mid \max\{X,Y\} \le u\}$$

$$= P(X \le u, Y \le u) = \iint_{\substack{x \le u \\ y \le u}} f(x,y) \, d\sigma$$

$$= \begin{cases} \int_0^u dx \int_x^u x e^{-y} dy, & u > 0, \\ 0, & u \le 0 \end{cases}$$

$$\left(u > 0 \text{ 时}, 有 \iint_{\substack{x \le u \\ y \le u}} f(x,y) \, d\sigma = \iint_{\Delta} x e^{-y} d\sigma, \Delta \text{ 如图 5-22 的带阴影的三角形} \right)$$

$$= \begin{cases} 1 - e^{-u} - u e^{-u} - \frac{1}{2} u^2 e^{-u}, & u > 0, \\ 0, & u \le 0 \end{cases}$$

所以, U的概率密度

$$\varphi(u) = \frac{\mathrm{d}F(u)}{\mathrm{d}u} = \begin{cases} \frac{1}{2}u^2\mathrm{e}^{-u}, & u > 0, \\ 0, & u \leq 0. \end{cases}$$

$$(II) 因为 EU = \int_{-\infty}^{+\infty} u\varphi(u) \, \mathrm{d}u = \int_{0}^{+\infty} \frac{1}{2}u^3\mathrm{e}^{-u} \, \mathrm{d}u = -\frac{1}{2}\int_{0}^{+\infty} u^3\mathrm{d}\mathrm{e}^{-u} \\ = -\frac{1}{2}\left(u^3\mathrm{e}^{-u}\Big|_{0}^{+\infty} - 3\int_{0}^{+\infty} u^2\mathrm{e}^{-u} \, \mathrm{d}u\right)$$

$$= \frac{3}{2}ET^2\Big(其中, T \sim E(1), 即 T 的概率密度为 f_T(t) = \begin{cases} \mathrm{e}^{-t}, & t > 0, \\ 0, & t \leq 0 \end{cases} \Big)$$

$$= \frac{3}{2}[DT + (ET)^2] = \frac{3}{2}(1 + 1^2) = 3,$$
所以 $P(U \leq EU) = P(U \leq 3) = \int_{-\infty}^{3} \varphi(u) \, \mathrm{d}u$

$$= \int_{0}^{3} \frac{1}{2}u^2\mathrm{e}^{-u} \, \mathrm{d}u = -\frac{1}{2}\int_{0}^{3}u^2\mathrm{d}\mathrm{e}^{-u}$$

$$= -\frac{1}{2}\left(u^2\mathrm{e}^{-u}\Big|_{0}^{3} - 2\int_{0}^{3}u\mathrm{e}^{-u} \, \mathrm{d}u\right)$$

$$= -\frac{9}{2}\mathrm{e}^{-3} - \int_{0}^{3}u\mathrm{d}\mathrm{e}^{-u} = -\frac{9}{2}\mathrm{e}^{-3} - \left(u\mathrm{e}^{-u}\Big|_{0}^{3} - \int_{0}^{3}\mathrm{e}^{-u} \, \mathrm{d}u\right)$$

$$= 1 - \frac{17}{2}\mathrm{e}^{-3}.$$

附注 当 X 与 Y 相互独立,且概率密度分别为 $f_1(x)$, $f_2(y)$ 时, $U=\max\{X,Y\}$ 的概率密度为

$$\varphi(u) = f_1(u)F_2(u) + f_2(u)F_1(u)$$
,

其中 $F_1(x)$, $F_2(y)$ 分别是X与Y的分布函数.

当 X 与 Y 不相互独立,但(X, Y)的概率密度为 f(x, y)时, $U = \max\{X, Y\}$ 的概率密度应按题中的方法计算,不能直接套用上述公式.

(23) (I)由于 \overline{X} 与 S^2 相互独立,所以 \overline{X}^2 与 S^4 也相互独立,因此,

$$E(\overline{X}^2S^4) = E(\overline{X}^2)E(S^4), \qquad (1)$$

其中, 由 $\overline{X} \sim N\left(0, \frac{1}{n}\right)$ 知, EX = 0, $D\overline{X} = \frac{1}{n}$. 所以,

$$E(\overline{X}^2) = D(\overline{X}) + (E\overline{X})^2 = \frac{1}{n} + 0 = \frac{1}{n},$$

由 $(n-1)S^2 \sim \chi^2(n-1)$ 知 $E(S^2) = 1$, $D(S^2) = \frac{2}{n-1}$, 所以

$$E(S^4) = D(S^2) + [E(S^2)]^2 = \frac{2}{n-1} + 1 = \frac{n+1}{n-1}.$$

将它们代入式(1)得

$$E(\overline{X}^2S^4) = \frac{n+1}{n(n-1)}.$$

(II) 由
$$\overline{X} \sim N\left(0, \frac{1}{n}\right)$$
知 $\sqrt{nX} = \frac{\overline{X}}{\sqrt{\frac{1}{n}}} \sim N(0, 1)$,所以

$$n \overline{X}^2 = (\sqrt{n} \overline{X})^2 \sim \chi^2(1).$$

从而,
$$D(\overline{X}^2) = D\left(\frac{1}{n} \cdot n \, \overline{X}^2\right) = \frac{1}{n^2} D(n \, \overline{X}^2) = \frac{1}{n^2} \cdot 2 = \frac{2}{n^2}.$$

附注 应记住以下结论:

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

则
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$
并且

$$E\overline{X} = \mu$$
, $D\overline{X} = \frac{\sigma^2}{n}$,

$$E(S^2) = \sigma^2, \quad D(S^2) = \frac{2}{n-1}\sigma^4.$$