# Understanding Uncertainty Course Notes

Jeffrey Woo

2025-06-09

# Contents

| P | refac          | e                                     | 5  |  |  |
|---|----------------|---------------------------------------|----|--|--|
|   | 0.1            | Examples                              | 5  |  |  |
|   | 0.2            |                                       | 8  |  |  |
|   | 0.3            | The Course: Understanding Uncertainty | 8  |  |  |
| 1 | Des            | scriptive Statistics                  | 9  |  |  |
|   | 1.1            | Uncertainty with Data                 | 9  |  |  |
|   | 1.2            | Visualizing Data                      | 10 |  |  |
|   | 1.3            | Ordered Statistics                    | 16 |  |  |
|   | 1.4            | Measures of Centrality                | 21 |  |  |
|   | 1.5            | Measures of Uncertainty               | 24 |  |  |
| 2 | Probability 27 |                                       |    |  |  |
|   | 2.1            | Probability                           | 27 |  |  |
|   | 2.2            | Key Concepts in Probability           | 28 |  |  |
|   | 2.3            | Conditional Probability               |    |  |  |
|   | 2.4            | Confusion of the Inverse              |    |  |  |

4 CONTENTS

# **Preface**

The examples in this preface is based on OpenIntro Statistics (Diez, Ceytinka-Rundel, Barr), Chapter 9.4 and 9.5, which provide more background information. You can access the book for free at https://www.openintro.org/book/os/

The main goal using data science is to understand data. Broadly speaking, this will involve building a statistical model for predicting, or estimating a response variable based on one or more predictors. Such models are used in a wide variety of fields such as finance, medicine, public policy, sports, and so on. We will look a couple of examples.

# 0.1 Examples

# 0.1.1 Example 1: Mario Kart Auction Prices

In this first example, we will look at Ebay auctions of a video game called Mario Kart that is played on Nintendo Wii. We want to predict the price of an auction based on whether the game is new or not, whether the auction's main photo is a stock photo, the duration of the auction in days, and the number of Wii wheels included with the auction.

A model that we can use for this example is the linear regression model:

```
library(openintro)

Data<-mariokart
##fit model
result<-lm(total_pr~cond+stock_photo+duration+wheels, data=Data)</pre>
```

Generally speaking, a linear regression equation takes the following form:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

where  $\hat{y}$  denotes the predicted value of the response variable, the price of the action in this example,  $x_1, x_2, \cdots, x_k$  denote the values of the predictors. This is example, we have:  $x_1$  for whether the game is new or not,  $x_2$  for whether the

6 CONTENTS

auction's main photo is a stock photo,  $x_3$  for the duration of the auction in days, and  $x_4$  for the number of Wii wheels included with the auction.  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  represent the estimated regression parameters. If we know what these values are, we can easily plug in the values of the predictors to obtain the predicted price of the auction.

Fitting the model in R, we obtain the estimated regression parameters:

```
##get estimated regression parameters
result
##
## Call:
## lm(formula = total_pr ~ cond + stock_photo + duration + wheels,
##
       data = Data)
##
## Coefficients:
##
      (Intercept)
                          condused stock_photoyes
                                                           duration
                                                                              wheels
##
          43.5201
                           -2.5816
                                           -6.7542
                                                             0.3788
                                                                              9.9476
```

so we have:

```
\hat{y} = 43.5201 - 2.5816x_1 - 6.7542x_2 + 0.3788x_3 + 9.9476x_4
```

So for an auction for Mario Kart game that is used, that uses a stock photo, is listed for 2 days, and comes with 0 wheels, the predicted price will be  $\hat{y} = 43.5201 - 2.5816 - 6.7542 + 0.3788 \times 2 = 34.94$  or about 35 dollars.

# 0.1.2 Example 2: Job Application Callback Rates

In this example, we look at data from an experiment that sought to evaluate the effect of race and gender on job application callback rates. For the experiment, researchers created fake resumes to job postings in Boston and Chicago to see which resumes resulted in a callback. The fake resumes included relevant information such as the applicant's educational attainment, how many year's of experience the applicant as well as a first and last name. The names on the fake resume were meant to imply the applicant's race and gender. Only two races were considered (Black or White) and only two genders were considered (Make or Female) for the experiment.

Prior to the experiment, the researchers conducted surveys to check for racial and gender associations for the names on the fake resumes; only names that passed a certain threshold from the surveys were included in the experiment.

A model that can be used in this example is the logistic regression model

```
Data2<-resume
##fit model
result2<-glm(received_callback~job_city + college_degree+years_experience+race+gender,</pre>
```

0.1. EXAMPLES 7

Generally speaking, a logistic regression equation takes the following form

$$\log(\frac{\hat{\pi}}{1-\hat{\pi}}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

where  $\hat{\pi}$  denotes the predicted probability that the applicant receives a call back.  $x_1, x_2, \cdots, x_k$  denote the values of the predictors. This is example, we have:  $x_1$  for which city is the job posting located in,  $x_2$  for whether the applicant has a college degree or not,  $x_3$  for the experience of the applicant,  $x_4$  for associated race of the applicant, and  $x_5$  for the associated gender of the applicant. Similar to linear regression,  $\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_k$  represent the estimated regression parameters. If we know what these values are, we can easily plug in the values of the predictors to obtain the predicted probability for an applicant with those characteristics to receive a callback.

Fitting the model in R, we obtain the estimated regression parameters

```
##get estimated regression parameters
result2
```

```
##
  Call: glm(formula = received_callback ~ job_city + college_degree +
       years_experience + race + gender, family = "binomial", data = Data2)
##
##
## Coefficients:
                      job cityChicago
                                         college_degree years_experience
##
        (Intercept)
                                                -0.06550
##
           -2.63974
                             -0.39206
                                                                   0.03152
                              genderm
##
          racewhite
##
            0.44299
                             -0.22814
##
## Degrees of Freedom: 4869 Total (i.e. Null); 4864 Residual
## Null Deviance:
                        2727
## Residual Deviance: 2680 AIC: 2692
so we have
```

$$\log(\frac{\hat{\pi}}{1-\hat{\pi}}) = -2.63974 - 0.39206x_1 - 0.0655x_2 + 0.03152x_3 + 0.44299x_4 - 0.22814x_5$$

So for an applicant in Boston, who has a college degree, has 10 years of experience and has a name that is associated with being a Black male, the logistic regression equation becomes  $\log(\frac{\hat{\pi}}{1-\hat{\pi}}) = -2.63974 - 0.0655 + 0.03152 \times 10 - 0.22814 = -2.61818$ . Doing a little bit of algebra to solve, we get  $\hat{\pi} = 0.06797751$ . Such an applicant has about a 6.8 percent chance of receiving a callback.

8 CONTENTS

# 0.2 How were Estimated Parameters Calculated?

In the two examples, notice how I used some R functions, supplied the names of the variables, and the R functions generated the values of the estimated parameters? One thing you will learn is how the functions actually calculate these numbers. It turns out that these calculations are based on foundational concepts associated with measures of uncertainty, probability, and expected values. We will be learning about these concepts in this class.

Why do we want to know how these calculations are performed? So that we understand the intuition and logic behind how these models are built. It becomes a lot easier to work with these models when we understand their logic (for example, we know when these models can be used or cannot be used, we know what steps to take when we notice our data have certain characteristics, etc), instead of memorizing a bunch of steps.

When presenting models and data to people, some people may occasionally questions our methods and models. Why should we trust the model? Should we trust these numbers that seem to come out from some black box?

Notice we used two different models, linear regression and logistic regression, for examples 1 and 2. Why did we use these models? Could we have swapped the type of model used in these examples? The answer is actually no. One of the main considerations when deciding what model to use is to identify if our response variable is quantitative or categorical. You will learn why the linear regression model works when the response variable is quantitative, and why the logistic regression model works when the response variable is categorical.

# 0.3 The Course: Understanding Uncertainty

As mentioned in the previous section, we will be learning about foundational concepts associated with measures of uncertainty, probability, and expected values. All of these concepts will then help explain the intuition and how statistical models are built.

At the end of the course, we will apply these concepts and revisit the linear regression and logistic regression models. These are two of the most widely used models used in data science, as they are relatively easier to understand and explain. More modern methods (that you will learn about in future classes) such as decision trees and neural networks can be viewed as extensions of the linear and logistic regression models.

# Chapter 1

# Descriptive Statistics

This module is based on OpenIntro Statistics (Diez, Ceytinka-Rundel, Barr), Chapter 2.1. You can access the book for free at https://www.openintro.org/book/os/ Please note that I cover additional topics, and skip certain topics from the book.

# 1.1 Uncertainty with Data

When we are analyzing data, there is always going to be some degree of uncertainty, as there is randomness in a lot of phenomena that we observe in our world. An event is **random** if individual outcomes of the event are unpredictable. For example, the weight of the next baby born in a local hospital. Without knowing any information about the biological parents, we have a high degree of uncertainty if we try to predict this baby's weight. Even if we know detailed information about the biological parents (for example they are both very tall), we may feel more confident in predicting that the baby is likely to be heavier than average, but we cannot be certain about this prediction.

On the other end hand, an event is **deterministic** if we can predict individual outcomes of the event with certainty. For example, if we know the length of a cube is 2 inches, we know for sure that its volume is is  $2^3 = 8$  cubic inches, based on rules of mathematics. The volume of a cube with length 2 inches is always going to be 8 cubic inches, so the volume is deterministic.

Thought question: think about data that you see in real life. Write these down. Are these data random or deterministic?

We will explore tools to help us quantify uncertainty in data. In this module, we will explore fairly standard tools that are used to describe data and give us an idea about the degree of uncertainty we have in the data. When describing data that is quantitative, we usually describe the following: the shape of its distribution, its average or typical value, and its spread and uncertainty.

# 1.2 Visualizing Data

Data visualization is the representation of information in the form of pictures. Imagine have access to weights of all newborn babies at a local hospital. Examining each numerical value could be time consuming. So instead, we can use visualizations to give us an idea about the values of the weights. For example, what weights of newborns are common? What proportion of babies have dangerously low weights (which may indicate health risks)? Good data visualizations can give us such information fairly quickly. Next, we will explore some common visualizations that are used for quantitative (or numerical) variables.

## 1.2.1 Dot Plots

We will start with a **dot plot**, as it is the most basic visualization for a quantitative variable. We will use the loan50 dataset from the openintro package. The data originally consist of thousands of loans made through the Lending Club platform, but we will randomly select 50 of these loans. Let us study the interest rate the loans the 50 applicants received.

```
library(tidyverse)
library(openintro)

##create object for data
Data<-loan50</pre>
```

For simplicity, we will round the numerical values of the interest rates to the nearest whole number:

```
##round interest rate to whole number
Data<- Data%>%
  mutate(r_int_rate = round(interest_rate))
```

We can create the corresponding dot plot, per Figure 1.1:

```
##dotplot
ggplot(Data,aes(x=r_int_rate))+
  geom_dotplot(binwidth=1)+
  theme(
    axis.text.y = element_blank(), # Remove y-axis labels
    axis.title.y = element_blank(), # Remove y-axis title
    axis.ticks.y = element_blank() # Remove y-axis ticks
)+
labs(x="Interest Rates (Rounded)")
```

Notice there is 1 black dot that corresponds to an interest rate of 20 (presumably



Figure 1.1: Dot Plot for 50 Interest Rates (rounded)

in percent), so there is one applicant who has a rounded interest rate of 20 percent. There are 8 black dots that correspond to an interest rate to 10 percent, so there are 8 applicants with a rounded interest rate of 10 percent. So interest rates of 10 percent are much more commonly occurring than interest rate of 20 percent. So we can use the height, or number of dots, to help us glean how often the value of a certain interest rate occurs. Based on this dotplot, interest rates between 5 and 11 percent are common, with higher values being less common.

*Note:* do not get too torn up about the details in the code to produce this dot plot. I have chosen the present the dot plot this way to highlight how we use it, without getting bogged down in the details of how it can be produced. We will not be using dot plots in this class.

# 1.2.2 Histograms

It turns out that dot plots are often not useful for large data sets, but they provide the general idea of how other visualizations for larger data sets work. The height of the dots inform us the frequency of those values occurring.

A visualization that is more commonly used for larger data sets is a histogram. Instead of displaying how common each value of the variable exists, we think of the values as belonging to a **bin** of values. For example, we can create a bin that contains interest rates between 5 and 7.5 percent, another bin containing

interest rates between 7.5 and 10 percent, and so on. A few things to note about histograms:

- By convention, values that lie exactly on the boundary of a bin will belong to the lower bin. For example, an interest rate that is exactly 12.5 percent will belong to the bin between 10 and 12.5 percent, and not the bin between 12.5 to 15 percent.
- Each bin should have the same width. In our example, the width is 2.5.

We create this histogram (using the original interest rates) below, per Figure 1.2:

```
##set up sequence to specify the bins
s25<-seq(5,27.5,2.5)

ggplot(Data,aes(x=interest_rate))+
   geom_histogram(breaks=s25,fill="blue",color="orange")+
   labs(x="Interest Rate", title="Histogram of Interest Rates")</pre>
```



Figure 1.2: Historgram for 50 Interest Rates

Similar to the dot plot in Figure 1.1, the height of the histogram inform us what values are more commonly occurring. We can see from this histogram that interest rates between 5 and 10 percent are common, much more so than loans with interest rates greater than 20 percent. We could say that we have

more certainty that a randomly selected loan applicant will have an interest rate between 5 and 10 percent than an interest rate that is greater than 20 percent.

#### 1.2.2.1 Shapes of Distribution

Histograms can also give us an idea about the **shape** of the distribution of interest rates. For the histogram in Figure 1.2, most of the loans are less than 15 percent, with only a small number of loans greater than 20 percent. We can say that we have greater certainty that a loan will have an interest rate less than 15 percent. When the data tail off to the right as in our histogram, the shape is said to be **right-skewed**. When a variable is said to be right-skewed, large values of the variable are much less common than small values of the variable; smaller values are more likely occur.

- If the histogram has the reverse characteristic, i.e. the data tail off to the left instead, the shape is said to be **left-skewed**. This implies that small values of the variable are much less common than large values of the variable; larger values are more likely to occur.
- Histograms that trail off similarly in both directions are called **symmetric**. Large and small values are of the variable are equally likely.
- Histograms that have a peak in the middle, and then trail off on both sides are not only symmetic, but also **bell-shaped**, or have a **normal** distribution. Note: it turns out one of the assumptions in linear regression is that the response variable follow a normal distribution. This may seem restrictive, however, we will see in later modules that this assumption is not particular crucial under some circumstances.

Thought question: Can you think of real life variables that have symmetric, right-skewed, left-skewed distributions? Feel free to search the internet for examples.

# 1.2.2.2 Considerations with Histograms

With our interest rate example, you may have noticed that I made a specific choice to the width of the bins when I created the histograms. It turns out that the width of the bins can impact the shape of the histogram, and potentially, how we interpret the histogram.

Consider creating a histogram with bin width of 0.5, instead of 2.5, per Figure 1.3:

```
##set up sequence to specify the bins. width now 0.5
s05<-seq(5,27.5,0.5)

ggplot(Data,aes(x=interest_rate))+
   geom_histogram(breaks=s05,fill="blue",color="orange")+
   labs(x="Interest Rate", title="Histogram of Interest Rates")</pre>
```

Comparing Figure 1.3 with Figure 1.2, note the following:



Figure 1.3: Historgram for 50 Interest Rates, with Bin Width 0.5

- Visually, the histogram looks more jagged with smaller bin width, whereas the histogram looks smoother with a larger bin width.
- Smaller bin widths may be preferred if we need information about smaller ranges of interest rates. However, it can be difficult to write about general trends.
- Larger bin widths may be more useful if we are trying to look for more general trends in the interest rates.

Thought question: What happens if we create a histogram with a bin width that is too large?

# 1.2.3 Density Plots

Another visualization for a quantitative variable is a density plot. A density plot can be viewed as a smoothed version of the histogram. We can use the heights to inform us about what values are more common. We create a density plot for the interest rates in Figure 1.4:

```
##density plot
plot(density(Data$interest_rate), main="Density Plot of Interest Rates")
```

Based on Figure 1.4, we see that low interest rates (between 5 and 12.5 percent)

# **Density Plot of Interest Rates**



Figure 1.4: Density Plot for 50 Interest Rates

are much more common and high interest rates (higher than 20 percent). A few things to note about interpreting density plots:

- The area under the density plot is always equals to 1.
- To find the proportion of interest rates that are between two values, for example between 10 and 15 percent, we would integrate this density plot over this range, i.e.  $\int_{10}^{15} f(x)dx$ , where f(x) is a mathematical equation that describes the density plot.
- The values on the vertical axis do not equal to probabilities (a common misconception).

The density plot is found using a method called kernel density estimation (KDE). We will over details about KDE in a later module as we need to cover quite a bit of material before doing so.

## 1.2.3.1 Considerations with Density Plots

Similar to bins and histograms, density plots are affected by the **bandwidth**. Larger bandwidths lead to smoother density plots, while smaller bandwidths lead to more jagged density plots. We create a density plot that uses a bandwidth that is twice the default in Figure 1.5 below:

plot(density(Data\$interest\_rate, adjust=2), main="Density Plot of Interest Rates, with

# Density Plot of Interest Rates, with Bandwidth Twice the Default



Figure 1.5: Density Plot for 50 Interest Rates with Larger Bandwidth

Notice in Figure 1.5 that the little peak for interest rates between 15 and 20 (which existed in Figures 1.4 and also 1.2) no longer exists. Using bandwidths that are too large can smooth out some of these peaks.

Thought question: What if we create a density plot with a bandwidth that is too small?

Thought question: How are bin widths for histograms and bandwidths for density plots related?

# 1.3 Ordered Statistics

The idea behind ordered statistics is pretty self-explanatory: take your numerical variable, and order the values from smallest to largest. Going back to our example of the interest rates from 50 loan applicants, let X denote the interest rate. Then  $x_{(1)}$  will denote the interest rate that is the smallest,  $x_{(2)}$  denotes the second smallest interest rate, and  $x_{(50)}$  denotes the largest interest rate in our sample of 50.

# 1.3.1 Quantiles

Quantiles partition the range of numerical data into continuous intervals (groups) with (nearly) equal proportions. Common quartiles have their own names:

Quartiles: 4 groups Percentiles: 100 groups

There is one less quantiles than the number of groups. We will go over quartiles in more detail.

#### 1.3.1.1 Quartiles

Quartiles divide the data into 4 groups, and each group has (nearly) equal number of observations. So there will be three quartiles, denoted by  $Q_1, Q_2, Q_3$ .

- The first group will have values between negative infinity and  $Q_1$ .
- The second group will have values between negative  $Q_1$  and  $Q_2$ .
- The third group will have values between negative  $Q_2$  and  $Q_3$ .
- The fourth group will have values between negative  $Q_3$  and infinity.

 $Q_2$ , sometimes called the second quartile, is the easiest value to find. It is also called the **median** of the data. Going back to our interest rates from the 50 loan applicants. Using our ordered statistics, the median is the middle observation. Since we have an even number of observations, we have two middle observations,  $x_{(25)}$  and  $x_{(26)}$ . In this situation, the median will be the average of these two middle observations. Using R, we find the median to be:

#### median(Data\$interest\_rate)

#### ## [1] 9.93

So half the interest rates are less than 9.93 percent, and half the interest rates are greater than 9.93 percent. You might also recognize another term for the median: the 50th percentile, as 50 percent of the interest rates are less than 9.93.

To find the middle observation(s) based on a sample of size n:

- If n is even, the 2 middle observations will be position  $\frac{n}{2}$  and  $\frac{n}{2} + 1$  in the ordered statistics.
- If n is odd, the middle observation will be position  $\frac{n}{2} + 0.5$  in the ordered statistics.

 $Q_1$  and  $Q_3$  (also called the first and third quartiles) are found together, after finding  $Q_2$ . Note that  $Q_2$  divides the data into two groups. Using our interest rates example, one group contains  $x_{(1)}, \cdots, x_{(25)}$ , and another group contains  $x_{(26)}, \cdots, x_{(50)}$ .  $Q_1$  is the median of the first group, and  $Q_3$  is the median of the second group. So for our 50 loan applicants:

•  $Q_1$  is  $x_{(13)}$ , and

•  $Q_3$  is  $x_{(38)}$ .

To find these values in R, we could type:

```
quantile(Data$interest_rate, prob=c(0.25,0.75), type = 1)
```

```
## 25% 75%
## 7.96 14.08
```

So  $Q_1$  is 7.96 percent, and  $Q_3$  is 14.08 percent. It turns out that  $Q_1$  is also the 25th percentile, and  $Q_3$  is also the 75th percentile, by definition.

Remember we wrote the following earlier:

- The first group will have values between negative infinity and  $Q_1$ . So about a quarter of observations are have interest rates less than 7.96 percent.
- The second group will have values between negative  $Q_1$  and  $Q_2$ . So about a quarter of observations have interest rates between 7.96 and 9.93 percent.
- The third group will have values between negative  $Q_2$  and  $Q_3$ . So about a quarter of observations have interest rates between 9.93 and 14.08 percent.
- The fourth group will have values between negative  $Q_3$  and infinity. So about a quarter of observations have interest rates above 14.08 percent.

Note: you may notice that we used type = 1 inside the quantile() function. Using type = 1 gives the values of the first and third quartiles that are based on the method that was just described. There are actually several ways to find quantiles, which may result in slightly differing values, although they all generally meet the definition that  $Q_1$  is the 25th percentile, and  $Q_3$  is the 75th percentile.

#### 1.3.1.2 Percentiles

Another common quantile is the percentile. In general the **k-th percentile** is the value of the data point below which k percent of observations are found. So in our earlier example, we said that  $Q_3$  of the interest rates is 14.08 percent, and this is also the 75th percentile. So 75 percent of interest rates are less than 14.08 percent.

We will not go over the details of finding percentiles by hand.

# 1.3.2 Box Plots

Another visualization used to summarize quantitative data is the box plot. A **box plot** summarizes the 5-number summary. The 5 numbers are the minimum,  $Q_1, Q_2, Q_3$ , and the maximum. Using our interest rate data, the box plot is shown in Figure 1.6:

```
##box plot
ggplot(Data,aes(y=interest_rate))+
```

```
geom_boxplot()+
labs(y="Interest Rate", title="Box Plot of Interest Rates")
```



Figure 1.6: Box Plot of Interest Rates

Some people call a box plot a box and whisker plot.

- The boundaries of the box represent  $Q_1$  and  $Q_3$ .
- The thick line in the box represents the median.
- The two whiskers on either side of the box extend to the minimum and maximum, if outliers do not exist. If outliers exist, the whiskers extend to the minimum and maximum values that are not outliers.

Generally, when we have one quantitative variable, an outlier is an observation whose numerical value is far away from the rest of the data. In other words, it is a lot smaller or larger relative to the rest of the data.

So for our 50 loans, there are two loan applicants with interest rates around 25 percent that are flagged as being a lot larger than the rest of the loans, which is reasonable since most of the loans are a lot smaller than 20 percent.

We will not go over the details of how outliers are determined in box plots. If you are interested, you can read Chapter 2.1.5 from OpenIntro Statistics (Diez, Ceytinka-Rundel, Barr).

Notice how much further large values  $(Q_3$  and maximum) are from the median, compared to the distance of the small values  $(Q_1$  and minimum) from the median. This indicates that the distribution of interest rates are right-skewed. Compare the boxplot of the interest rates in Figure 1.6 with its corresponding histogram (Figure 1.2) and density plot (Figure 1.4).

Thought question: can you sketch a box plot that represents a variable that is left-skewed? How about a variable that is symmetric?

#### 1.3.3 **Empirical Cumulative Distribution Function**

From the previous sections, we can see how we could use histograms, density plots, and box plots to inform us about what proportion of observations take certain values, and the values of the data that correspond to certain percentiles. However, we are limited to quartiles and not any percentile when using box plots, and we need to find areas under the density plot (using integration, not a trivial task), or add up frequencies on a histogram (can be time consuming).

A plot that can easily give us values of the variable that correspond to percentiles is the empirical cumulative distribution function (ECDF) plot.

Let X denote a random variable, and we have observed n observations of Xdenoted by  $x_1, \dots, x_n$ . Let  $x_{(1)}, \dots x_{(n)}$  denote the ordered statistics of the n observations. The ECDF, denoted by  $F_n(x)$  is the proportion of sample observations less than or equal to the value x of the random variable. Mathematically, the ECDF is:

$$\hat{F}_n(x) = \begin{cases} 0, & \text{for } x < x_{(1)} \\ \frac{k}{n}, & \text{for } x_{(k)} \leq x < x_{(k+1)}, k = 1, \cdots, n-1 \\ 1, & \text{for } x \geq x_{(n)}. \end{cases}$$

We shall use a simple toy example to illustrate how an ECDF is constructed. Suppose we ask 5 people how many times to go to the gym (at least 20 minutes) in a typical work week. The answers are: 3, 0, 1, 5, 3. The random variable X is how many times a person goes to the gym for at least 20 minutes, and the ordered statistics are  $x_{(1)} = 0, x_{(2)} = 1, x_{(3)} = 3, x_{(4)} = 3, and x_{(5)} = 5$ . Using the mathematical definition for the ECDF, we have:

- $\hat{F}_n(x) = 0$  for  $x < x_{(1)} = 0$ .
- $\hat{F}_n(x) = \frac{1}{5}$  for  $0 \le x < x_{(2)} = 1$ .
- $\hat{F}_n(x) = \frac{2}{5}$  for  $1 \le x < x_{(3)} = 3$ .
- $\hat{F}_n(x) = \frac{4}{5}$  for  $3 \le x < x_{(5)} = 5$ . This value is special for this example since we have two observations where x = 3.  $\hat{F}_n(x) = 1$  for  $x \ge 5$ .

The corresponding ECDF plot is shown in Figure 1.7:

```
##toy data
y < -c(3, 0, 1, 5, 3)
##ECDF plot
plot(ecdf(y), main = "ECDF for Toy Example")
```

# ECDF for Toy Example



Figure 1.7: ECDF Plot for Toy Example

We can easily find percentiles from this plot, for example, the 40th percentile is equal to 1, going to the gym once a week. About 20 percent of observations go to the gym less than 1 time a week.

Next, we create the ECDF plot for the interest rates from the 50 loan applicants.

```
plot(ecdf(Data$interest_rate), main = "ECDF Plot of Interest Rates")
abline(h=0.8)
```

I overlaid a horizontal line for the 80th percentile, so we can read on the horizontal axis that this corresponds to an interest rate of about 17 percent. So about 80 percent of loan applicants have an interest rate less than 17 percent.

Thought question: try using the histogram and density plot for the interest rates (Figures 1.2 and 1.4) to find the interest rate that corresponds to the 80th percentile. Was this easy to perform?

# 1.4 Measures of Centrality

So far, we have used visualizations to summarize the shape of the distribution of a quantitative variable. Next, we look at common measures of centrality. Loosely speaking, measures of centrality are measures that describe the average or typical value of a quantitative variable. The common measures of centrality

# 

#### **ECDF Plot of Interest Rates**

Figure 1.8: ECDF Plot of Interest Rates

Х

are the mean, median, and mode.

# 1.4.1 Mean

The sample **mean** is simply the average value of the variable in our sample. The sample mean for a random variable X is denoted by  $\bar{x}$ , and is found by:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}.\tag{1.1}$$

So, for our toy example of the 5 people and how often they go to the gym in a week, their sample mean is  $\bar{x} = \frac{3+0+1+5+3}{5} = 2.4$ .

# 1.4.2 Median

We went over how to find the median in section 1.3.1.1. The **median** is the value of the middle observation in ordered statistics. It is also called  $Q_2$ , the second quartile, and the 50th percentile, so approximately 50 percent of observations have values smaller than the median.

So, for our toy example of the 5 people and how often they go to the gym in a week, their sample median is  $x_{(3)} = 3$ . So about 50 percent of people went to gym less than 3 times in a week.

## 1.4.3 Mode

Another measure is the mode. Mathematically speaking, the **mode** is the most commonly occurring value in the data. So for our toy example, the mode is 3, since 3 occurs twice and occurs the most often in our data.

## 1.4.4 Considerations

A few things to consider when using these measures of centrality:

- The mean is a measure that most people are comfortable with, however, caution needs to be used if the variable is skewed, as extreme outliers and drastically alter the value of the mean. Using our toy example with the gym, suppose the person who visits the gym the most visits 50 times, instead of 5. The numerical value of the sample mean explodes, and does not give a good representation of the central value of how many visits to the gym a person makes in a week. The mean is fine if the variable is symmetric.
- The median is a measure that is recommended for skewed distributions, since the order associated with ordered statistics is not influenced by extreme outliers. Using the gym example, in the previous bullet point, the median is unaffected.
- The mean being larger than the median is an indication that the distribution is right-skewed. Using our interest rate example, we have:

```
mean(Data$interest_rate)
```

```
## [1] 11.5672
```

```
median(Data$interest rate)
```

```
## [1] 9.93
```

which is consistent with the right skew we saw in the histogram and density plot in Figures 1.2 and 1.4. Conversely, a left-skewed distribution usually has a mean that is smaller than the median. A symmetric distribution typically has similar values for the mean and median.

- The mean is considered a sensitive measure, since its numerical value can
  be drastically affected by outliers. The median is considered a robust
  measure, since its numerical value is more resistant and is less affected by
  outliers.
- The mathematical definition of mode can be difficult to use for variables that are continuous, since it is likely that there are no observations that have the same value when the variable is continuous. In this instance, the mode typically refers to the bin in the histogram that has is the tallest. So, using the histogram in Figure 1.2 for the interest rates, the mode is between 7.5 to 10 percent.

# 1.5 Measures of Uncertainty

In the previous sections, we learned about summarizing features a quantitative variable, by using visualizations to summarize its shape, and by using some measures of centrality that describe the average or typical values of the variable. One more feature we can summarize is the spread, associated with the values of a quantitative variable. Measures of spread are considered a way to measure uncertainty. Data that have larger spread have more uncertainty.

#### 1.5.1 Variance and Standard Deviation

One measure of spread is the variance. The sample **variance** for a random variable X is denoted by  $s^2$ , or sometimes  $s_x^2$ , and is found by:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}.$$
 (1.2)

The variance can be interpreted as the approximate average squared distance of the observations from the mean. The formula in equation (1.2) may look a bit complicated, but let us use the toy example where we asked 5 people how often they go to the gym in a workweek. The answers are: 3, 0, 1, 5, 3, and we had earlier found the sample mean to be  $\bar{x} = 2.4$ . To calculate the sample variance:

$$\begin{split} s^2 &= \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1} \\ &= \frac{(3-2.4)^2 + (0-2.4)^2 + (1-2.4)^2 + (5-2.4)^2 + (3-2.4)^2}{5-1} \\ &= 3.8 \end{split}$$

Notice what we did in the numerator of equation (1.2): we take the difference between each observed value from the sample mean, square these differences, then add up the squared differences. We then divide by n-1, rather than n, hence the sample variance being the approximate averaged squared distance of the observations from the mean. There is some nuance in the mathematics as to why we divide by n-1 instead of n, and may not be intuitive as to why we do so. It turns out dividing by n-1 makes the sample variance an unbiased estimator of the true variance in the population (denoted by  $\sigma^2$ ) and is more reliable than if we had divided by n. We will go over this in more detail in a later module after covering a few additional concepts.

Larger values of the sample variance indicate that the observations are generally further away from the sample mean, indicating larger spread, and a higher degree of uncertainty about future values.

Thought question: What does it mean if the sample variance of a set of observations is 0? Why does this indicate their there is little (or no) uncertainty about the set of observations?

Another related measure is the sample **standard deviation**, which is the square root of the sample variance. Similar to the variance, larger values indicated more spread in the data.

# 1.5.2 Interquartile Range

Another measure of spread is the **interquartile range (IQR)**, and it is the difference between the third and first queartiles,

$$IQR = Q_3 - Q_1. (1.3)$$

The IQR is considered a robust measure of spread, while the sample variance and standard deviations are considered to be sensitive.

# Chapter 2

# Probability

This module is based on Introduction to Probability (Blitzstein, Hwang), Chapters 1 and 2. You can access the book for free at https://stat110.hsites.harvard.edu/ (and then click on Book). Please note that I cover additional topics, and skip certain topics from the book. You may skip Sections 1.4 and 1.5, and examples 2.4.5 and 2.5.12 from the book.

# 2.1 Probability

A way of quantifying uncertainty is through probability. Think about these statements: "I am 100% certain that it will rain in the next hour" and "I am 50% certain that it will rain in the next hour". The percentages are used to reflect the degree of certainty about the event happening. The first statement reflects certainty; the second reflects uncertainty as the statement implies the belief that it is equally likely that it will rain or not. In this module, we will learn about the basic concepts about probability.

# 2.1.1 Why Study Probability?

The book (Section 1.1) lists 10 different applications of probability, and there are many more applications. I will go as far as to say that anything that deals with data will also deal with probability.

# 2.1.2 Frequentiest and Bayesian View of Probability

There are a couple of main viewpoints on how to interpret probability: **frequentist** and **Bayesian**. Consider the statement that "if we flip a fair coin, the coin has a 50% chance of landing heads".

• The frequentist viewpoint views probability as the relative frequency associated with an event that is repeated for an infinite number of times.

It will interpret the 50% probability as: if we were to flip the coin many many times, 50% of these times will result in the coin landing heads.

• The Bayesian viewpoint views probability as a measure of belief, or certainty, that an event will happen. It will interpret the 50% probability as: heads and tails are equally likely to occur with a coin flip.

In this coin flip example, both interpretations are reasonable. However, in some instances, the frequentist interpretation may not be as interpretable if we cannot repeat the event many times. For example, the earlier statement about rain: "I am 50% certain that it will rain in the next hour". Whether it will rain or not in the next hour is not a repeatable event, so the frequentist interpretation makes less sense here.

# 2.2 Key Concepts in Probability

In this section, we will cover the basic terminology and foundational ideas in probability.

# 2.2.1 Sample Space

The **sample space** of an experiment, denoted by S, is the set of all possible outcomes of an experiment.

For the rest of this module, we will use the following as an example: consider a standard deck of 52 cards, and we draw one card at random. What is the card drawn? The sample space for this experiment can be viewed as a list of all 52 cards, per Figure 2.1 below.



Figure 2.1: Sample Space of Drawing One Card from Standard Deck. Picture from https://en.wikipedia.org/wiki/Standard\_52-card\_deck

While the definition of sample space may appear elementary, writing out the

sample space is almost always the first step in performing any probability calculations.

# **2.2.2** Event

An **event** is a subset of the sample space, and is usually denoted by an upper case letter. For example, let A denote the event that I draw a card with a black suit (spades or clubs), and let B denote the event I draw a picture card (Jack, Queen, or King). Events A and B are each shown in Figures Figure 2.2 and Figure 2.3 below.



Figure 2.2: Event A (in Blue)



Figure 2.3: Event B (in gold)

The sample space of the experiment can be finite or infinite. In our card example, our sample space is finite since we can actually write out all possible outcomes.

If the number of possible outcomes is infinite (i.e. we cannot write out the entire list of all possible outcomes), the sample space is infinite.

We assign a probability to each event. The probability of event A happening is P(A). If each outcome of a sample space is equally likely and we have a finite sample space, the probability of the event is the number of outcomes belonging to the event divided by the number of outcomes in the sample space. Using our card example,  $P(A) = \frac{26}{52} = \frac{1}{2}$  and  $P(B) = \frac{12}{52} = \frac{3}{13}$ .

# 2.2.3 Complements

The **complement** of an event is the set of all outcomes that do not belong to the event. For example, the complement of A, denoted by  $A^c$ , will be drawing a card with a red suit (hearts or diamonds). One way to think about complements is that the complement of an event is the event not happening. Loking at Figure 2.2, this will be the cards that are not outlined in blue. In this example,  $P(A^c) = \frac{26}{52} = \frac{1}{2}$ .

Thought question: What is the probability of drawing a non picture card?

From these examples, you might realize the probability associated with the complement of an event can be found by subtracting the probability of the event from 1, i.e.

$$P(A^c) = 1 - P(A). (2.1)$$

Sometimes, the calculation for the probability of the complement of an event is much less tedious than the probability of the event. In such an instance, equation (2.1) will be useful.

# **2.2.4** Unions

The **union** of events is when **at least one** of the events happen. For example, the union of events A and B, denoted by  $A \cup B$ , is the event that the card drawn is either a black suit, or a picture card, or both a black suit and a picture card. This is reflected in Figure 2.4.

To find  $P(A \cup B)$ , we can refer to Figure 2.4 and just count the number of outcomes to belong to either event A (is black suit) or event B (is picture card), and find this is  $\frac{32}{52}$ .

The union of A and B can be viewed as the event where either event A or B (or both) happens.



Figure 2.4: Union of A, B (in blue or gold, or both blue and gold)

## 2.2.5 Intersections

The **intersection** of events is when **all** of the events happen. Using our example, the intersection of events A and B is denoted by  $A \cap B$ , is the event that the card drawn is both a black suit and a picture card. Using Figure 2.4, the outcomes belonging to  $A \cap B$  are the cards that are outlined in blue and gold. This probability is  $P(A \cap B) = \frac{6}{32}$ .

## 2.2.6 Addition rule

A common mistake that can be made in calculating  $P(A \cup B)$  is to just add up the probabilities of each individual event, so the mistake will say this probability is  $\frac{26}{52} + \frac{12}{52} = \frac{38}{52}$ . The problem with this approach is that the outcomes that belong to both events (black picture cards) get counted twice, when we only want to count them once. This leads to the following formula for calculating probabilities involving unions of two events, and is sometimes called the **addition rule** in probability:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B). \tag{2.2}$$

Using equation (2.2),  $P(A \cup B) = \frac{26}{52} + \frac{12}{52} - \frac{6}{32} = \frac{32}{52}$ .

## 2.2.7 Disjoint or Mutually Exclusive Events

The previous discussion leads to the idea of **disjoint**, or **mutually exclusive** events. Events are disjoint if they cannot happen simultaneously. In our card example, events A and B are not disjoint, since A and B can happen simultaneously, since a card that is drawn can be both black and a picture card, e.g. we draw a king of spades.

Using Figure 2.4 as a visual example, we can see that events A and B are not disjoint since the outcomes in blue overlap with the outcomes in gold.

Suppose we define another event, C, to denote that the card drawn is an Ace. The events B and C are disjoint since a card that is drawn cannot be both a picture card and an ace. This definition of disjoint events leads to the following: for events are disjoint, the probability of their intersection will be 0.

Using Figure 2.5 below as a visual example, we can see that events B and C are disjoint since the outcomes in gold and pink do not overlap.



Figure 2.5: Events B, C (in gold and pink respectively)

Applying this idea to equation (2.2), we have the following for disjoint events: for disjoint events, the probability of at least one event happening is the sum of the probabilities for each event.

## 2.2.8 Axioms of Probability

The following are called the axioms of probability, which are considered foundation properties associated with probability:

- 1. The probability of any event, E, is non negative, i.e.  $P(E) \geq 0$ .
- 2. The probability that at least one outcome in the sample space occurs is 1, i.e. P(S) = 1.
- 3. If  $A_1, A_2, \cdots$  are all disjoint events, then

$$P(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i).$$

In other words, for disjoint events, the probability that at least one event happens is the sum of their individual probabilities.

Note: most writers list these as three axioms. Our book combines the first two axioms into 1, and so write these as two axioms.

We can easily see how equations (2.1) and (2.2) can be derived from these axioms. Note that these equations and the axioms apply in all circumstances, regardless of whether the sample space is finite or not.

# 2.3 Conditional Probability

The concept of conditional probability appears in almost all statistical and data science models. In statistical models such as logistic regression, we are trying to use observable data (called predictors, input variables, etc) to model the probabilities associated with the different values of an outcome that is random (called response variable, output variable, etc). If the observable data are predictive of the outcome, then the probabilities associated with the outcome should indicate greater certainty, than if we do not have the observable data. Conditional probabilities allows us to incorporate observable data, or evidence, when evaluating uncertainty with random outcomes.

Consider that we are headed out for lunch, and we need to decide if we want to bring an umbrella (assuming we only bring an umbrella if we think it is going to rain). If we had been working in a windowless basement with no internet, we will have a high degree of uncertainty when evaluating if it will rain or not. However, if we were to look outside and observe the current weather conditions before heading out, we are likely to have a higher degree of certainty when evaluating if it will rain or not. Conditional probabilities allow us to incorporate what we see into our prediction of a random event.

If we were to use the language of probability to denote this example, let R denote the event that it will rain when we go for lunch. If we had been working in the windowless basement with no internet, we will be calculating P(R), the probability it will rain when we go to lunch. If we are able to incorporate the current weather conditions, this probability will be denoted as P(R|data), where data denotes the current observe weather conditions. P(R|data) can be read as the probability that it will rain when we go to lunch, given what we have observed with the weather. With this example, we can see that P(R) and P(R|data) will be different, since we update our probability given useful information. Notice the | symbol inside the probability. This symbol implies that we are working with a conditional probability, with the given or observed information listed after the |.

## 2.3.1 Definition

If X and Y are events, with P(X) > 0, the conditional probability of Y given X, denoted by P(Y|X), is

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)}. (2.3)$$

In this definition, we want to update the probability of Y happening, given that we have observed X. X can be viewed as the observable data or the evidence we want to incorporate.

In the Bayesian viewpoint of probability, P(Y) is called the **prior** probability of Y since it reflects our belief about Y before observing any data. P(Y|X) is called the **posterior** probability of Y, as it reflects an update on our belief about Y after incorporating observed data.

Let us go back to the standard deck of cards example. Let us find P(B|A), the probability that our card is a picture card, given that we know the card is a black suit. Visually, we can use the definition of conditional probability using Figure 2.6 below.



Figure 2.6: Events A, given B

We are told that our card is a black suit, so we have only 26 possible outcomes to consider, as the red cards are eliminated and are crossed out in Figure 2.6. out of these 26 outcomes, how many are picture cards? So this probability P(B|A) is  $\frac{6}{26}$ .

Figure 2.6 represents the frequentist viewpoint of conditional probability: P(B|A) represents the long run proportion of picture cards among cards that are black suits.

We can also apply equation (2.3):  $P(B|A) = \frac{\frac{6}{52}}{\frac{1}{2}} = \frac{6}{26}$  which gives the same answer.

Thought question: work out the probability that the card drawn is a black suit, given that we know the card is a picture card.

We can see from this example that in general  $P(Y|X) \neq P(X|Y)$ . This informs us that we need to be extremely careful when writing out our conditional probabilities and interpreting them, and knowing which one matters to our analysis. For example, the probability that I feel unwell given that I have the flu is close to 1, but the probability that I have the flu given that I feel unwell is not close to 1 (since there are many things that can me me feel unwell). This confusion regarding conditional probabilities is sometimes called the confusion of the inverse or the prosecutor's fallacy. This fallacy wrongly assumes that if the probability of a fingerprint match given that the person is innocent is small, it means that the probability that the person is innocent given a fingerprint match must also be small. Before going over this fallacy in more detail, we need to cover a few more concepts.

# 2.3.2 Multiplication Rule

From equation (2.3), we have the **multiplication rule** in probability

$$P(Y \cap X) = P(Y|X) \times P(X) = P(X|Y) \times P(Y). \tag{2.4}$$

The multiplication rule is useful in finding the probability of multiple events happening, aespecially if the events happen sequentially. As an example, consider drawing two cards, without replacement, from a standard deck of cards. Without replacement means that after drawing the first card, it is not returned to the deck, so there will be 51 cards remaining after the first draw. Let  $D_1$  and  $D_2$  denote the events that the first draw is a diamond suit and the second draw is a diamond suit respectively. We want to find the probability that both cards drawn are diamond suits. This probability can be written as  $P(D_1 \cap D_2) = P(D_1) \times P(D_2|D_1) = \frac{13}{52} \times \frac{12}{51} = \frac{156}{2652}$ .

# 2.3.3 Independent Events

Events are independent if knowledge about whether one event happens or not does not change the probability of the other event happening. This implies that if X and Y are independent events, then the definition of conditional probability simplifies to P(Y|X) = P(Y). Likewise P(X|Y) = P(X). Applying this to the multiplication rule, we have the following for multiplication rule for independent events

$$P(Y \cap X) = P(Y) \times P(X). \tag{2.5}$$

The probability of all events happening is just the product of the probabilities for each individual event, if the events are all independent.

Going back to our example with the standard deck of cards, where A denotes the event that I draw a card with a black suit (spades or clubs), and B denotes

the event I draw a picture card (Jack, Queen, or King). We had earlier found that  $P(B) = \frac{12}{52}$  and that  $P(B|A) = \frac{6}{26}$ . Notice that these two probabilities are numerically equal, which informs us that the events are independent. Knowing whether the card is a black suit or not does not change the probability that the card is a picture card. This makes sense intuitively since the proportion of cars that are picture is the same for black and red suits.

# 2.3.4 Bayes' Rule

The definition of conditional probability in equation (2.3) and the multiplication rule in equation (2.4) give us **Bayes' rule** 

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}. (2.6)$$

Bayes' rule is useful if we want to find P(Y|X) but we only have information regarding P(X|Y) available. A fairly popular model is called linear discriminant analysis, and it models the conditional probability using Bayes' rule.

#### 2.3.5 Odds

The **odds** of an event Y are

$$odds(Y) = \frac{P(Y)}{P(Y^c)}. (2.7)$$

You may realize that the left hand side of equation @ref{eq:odds} is equal to the left hand side of a logistic regression equation.

Using equation (2.7), we can switch from odds to probability easily

$$P(Y) = \frac{odds(Y)}{1 + odds(Y)}. (2.8)$$

# 2.3.6 Odds Form of Bayes' Rule

Using Bayes' rule in equation (2.6) and the definition of odds in equation (2.7), we have the **odds form for Bayes' rule** 

$$\frac{P(Y|X)}{P(Y^c|X)} = \frac{P(X|Y)}{P(X|Y^c)} \frac{P(Y)}{P(Y^c)}.$$
 (2.9)

# 2.3.7 Law of Total Probability

Let  $Y_1, Y_2, \dots, Y_n$  be a partition of the sample space  $(Y_1, Y_2, \dots, Y_n$  are disjoint and their union is the sample space), with  $P(Y_i) > 0$  for all i. Then

The law of total probability informs us of a way to find the probability of X. We can divide the sample space in disjoint sets  $Y_i$ , find the conditional probability of X within each set, and then take a weighted sum of these conditional probabilities, weighted by  $P(Y_i)$ . This is useful if the conditional probability for each set is easy to obtain.

The law of total probability in equation (2.10) can be applied to the denominator of Bayes' rule in equation (2.6) to have the following variation of Bayes' rule:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{\sum_{i=1}^{n} P(X|Y_i) \times P(Y_i)}.$$
 (2.11)

# 2.3.8 Worked Example

# 2.3.8.1 Approach 1: Using Bayes' Rule

We consider this worked example on how to apply Bayes' rule and the law of total probability. Suppose my email can be divided into three categories:  $E_1$  denotes spam email,  $E_2$  denotes important email, and  $E_3$  denotes not important email. An email must belong to only one of these categories. Let F denote the event that the email contains the word "free". From past data, I have the following information:

- $P(E_1) = 0.2, P(E_2) = 0.5, P(E_3) = 0.3.$
- The word "free" appears in 99% of spam email, so  $P(F|E_1) = 0.99$ .
- The word "free" appears in 10% of important email, so  $P(F|E_2) = 0.1$ .
- The word "free" appears in 5% of important email, so  $P(F|E_3) = 0.05$ .

I receive an email that has the word free. What is the probability that it is spam? So we want to find  $P(E_1|F)$ . Using equation (2.11), we have

$$\begin{split} P(E_1|F) &= \frac{P(E_1 \cap F)}{P(F)} \\ &= \frac{P(F|E_1) \times P(E_1)}{P(F|E_1) \times P(E_1) + P(F|E_2) \times P(E_2) + P(F|E_3) \times P(E_3)} \\ &= \frac{0.99 \times 0.2}{0.99 \times 0.2 + 0.1 \times 0.5 + 0.05 \times 0.3} \\ &= 0.7528517 \end{split}$$

## 2.3.8.2 Approach 2: Using Tree Diagrams

A tree diagram is useful in finding conditional probabilities and probabilities involving intersections. It is a visual way of displaying the information you have at hand, when you have conditional probabilities over disjoint sets and probabilities for each disjoint set. In our toy example, the disjoint sets are the type of email I receive,  $E_1, E_2, E_3$ , and the conditional probabilities we have are over these disjoint sets, i.e.  $P(F|E_1), P(F|E_2)$  and  $P(F|E_3)$ . We can put this information visual by first splitting our sample space into the disjoint sets  $E_1, E_2, E_3$ , and then splitting each disjoint set on whether the email has the word "free" (F) or not  $(F^c)$ . This information is displayed in a tree diagram as in Figure 2.7.

Each split is represented by a branch, and we write the corresponding probability on each branch. We want to find the probability that a received email is spam given that it contains the word "free",  $P(E_1|F)$ , and using the definition of conditional probability in equation (2.3)

$$P(E_1|F) = \frac{P(E_1 \cap F)}{P(F)}.$$

Looking at the tree diagram in Figure 2.7, we can label the branches that lead to the numerator  $P(E_1 \cap F)$ , the probability that the email is spam and contains the word free. This is shown on the tree diagram below in Figure 2.8 below by highlighting the corresponding branches in blue.

So  $P(E_1 \cap F) = 0.2 \times 0.99 = 0.198$ . We then need to find the denominator P(F). Looking at Figure 2.7, we can see three branches that lead to an email containing the word free:  $P(E_1 \cap F)$  or  $P(E_2 \cap F)$  or  $P(E_3 \cap F)$ . This is shown on the tree diagram below in Figure 2.9 below by highlighting the corresponding branches in gold.

We know the probability for each branch, and we add them up to obtain the denominator  $P(F) = 0.2 \times 0.99 + 0.5 \times 0.1 + 0.3 \times 0.05 = 0.263$ . Putting the pieces together, we have

$$P(E_1|F) = \frac{P(E_1 \cap F)}{P(F)} = \frac{0.198}{0.263} = 0.7528517.$$



Figure 2.7: Tree Diagram for Email Example



Figure 2.8: Tree Diagram for Email Example, Branch for Numerator in Blue



Figure 2.9: Tree Diagram for Email Example, Branches for Denominator in  $\operatorname{Gold}$ 

Note: If you compare the intermediate calculations in approach, you end up using the calculations in approach 1, without referring to any of the associated equations.

# 2.4 Confusion of the Inverse

We are now ready to talk about the prosecutor's fallacy, or the **confusion of** the inverse, that we had earlier mention in section 2.3.1. In essence, the confusion happens when we falsely equate P(X|Y) to be equal to P(Y|X). In fact, a large value for P(X|Y) does not necessarily imply that P(Y|X) is also large. The term prosecutor's fallacy when this confusion is applied in a criminal trial, e.g. the probability that an abusive relationship ends in murder could be small, but the probability that there was abuse in a relationship that ended in murder could be a lot higher.

We will go over some examples that are based on real life.

# 2.4.1 Disease Diagnostics

Suppose we are testing a patient if he has a rare disease, which is estimated to be prevalent in 0.5% of all people. Suppose we have a medical test for this disease that is accurate. There can be a number of definitions of accuracy. In disease diagnostics, a couple of measures are sensitivity, which is the proportion of people with the disease who test positive, and specificity, the proportion of people without the disease who test negative. A positive test indicates the person has the disease. Suppose the sensitivity and specificity are both high: 0.95 and 0.9 respectively. Suppose the patient tests positive, what is the probability that the patient actually has the disease? Assume the test always indicates positive or negative.

For this example, let D denote the event the patient has the disease, and let + denote the event the patient tests positive on the test, and - denote the event the patient tests negative on the test. Given the information, we have

- P(D) = 0.005.
- P(+|D) = 0.95.
- $P(-|D^c) = 0.9$ .

We wish to find P(D|+). Using Bayes rule and the Law of Total probability, this is

$$\begin{split} P(D|+) &= \frac{P(D\cap +)}{P(+)} \\ &= \frac{P(+|D) \times P(D)}{P(+|D) \times P(D) + P(+|D^c) \times P(D^c)} \\ &= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.1 \times 0.995} \\ &= 0.04556355 \end{split}$$

which is a small probability, so the patient is highly unlikely to actually have the rare disease. So while the test has high sensitivity with P(+|D)=0.95, this does not imply that a patient who tests positive actually has the disease, since P(D|+) is low. The implication is that for a rare disease, a positive test does not imply you have a high probability of having the disease, even if the test is accurate.

Why does this result make sense? Essentially, a large proportion of a small population could still be numerically much smaller than a small proportion of a large population. The disease is rare, so we have a small population of people with the disease, and almost all of them are detected by the test. We also have an extremely large population of people without the disease, and even a small proportion of them who erroneously test positive could still be a fairly large number. So among all the positive tests, most of the people do not have the disease. We consider the following table based on a population of 20 thousand people.

|            | Positive | Negative | Total |
|------------|----------|----------|-------|
| Disease    | 95       | 5        | 100   |
| No Disease | 1990     | 17910    | 19900 |
| Total      | 2085     | 17915    | 20000 |

Look at the first column, which shows number of people who test positive. A see that a large proportion of diseased people are detected, but since there are relatively few people with the disease, this number is small, 95. A small proportion of people who do not have the disease test positive for the disease, and a small proportion of this large population results in a relatively larger number, 1990. So most of the people who test positive, 95 + 1990 = 2085 actually do not have the disease. Therefore  $P(D|+) = \frac{95}{2085} = 0.04556355$ .

We can also explain this result through the Bayes' viewpoint of probability. Without knowing any information about the results of the test, the prior probability P(D) = 0.005. However, upon seeing that the person positive, we updated the posterior probability P(D|+) = 0.04556355, which is an increase from 0.005 when we knowing. The updated posterior probability is about 9 times

the prior. So we believe the person is more likely to have the disease upon viewing the positive test, than if we knew nothing about the test result. The posterior probability is still small since its value depends on two pieces of information: the prior P(D) and the sensitivity P(+|D). The product of these values belong to the numerator when calculating P(D|+). The denominator is  $P(+|D) \times P(D) + P(+|D^c) \times P(D^c)$ . If the prior P(D) is extremely low, then  $P(D^c)$  is extremely close to 1, since the person either has the disease or does not have the disease. With P(D) belong extremely low, the numerator is close to 0, and the value of the denominator is close to  $P(+|D^c) \times P(D^c)$ , therefore P(D|+) is small.

Notice how we have talking about rare diseases? This confusion of the inverse, thinking that a high sensitivity implies that a person likely to have the disease if they test positive, only applies to rare diseases. If the disease is more prevalent, a high sensitivity is more likely to imply the person has the disease if they test positive.

So why should we take such tests for rare diseases? What should we do? We should go through the test again. It turns out that if you test positive twice for a rare disease, the probability that you have the disease increases by a lot than if you only tested once and tested positive.

To perform this calculation, we will use the odds form for Bayes' rule, per equation (2.9)

$$\begin{split} \frac{P(D|T_1\cap T_2)}{P(D^c|T_1\cap T_2)} &= \frac{P(T_1\cap T_2|D)}{P(T_1\cap T_2|D^c)} \frac{P(D)}{P(D^c)} \\ &= \frac{0.95^2}{0.1^2} \frac{0.005}{0.995} \\ &= 0.4535176 \end{split}$$

where  $T_1$  and  $T_2$  denote the events the person test positive in the first test and second test respectively. We also assume that the results from each test are independent with previous tests.

The odds of having the disease given that the person positive twice is 0.4535176. Therefore, using equation (2.8), the corresponding probability of having the disease given that the person tested positive twice is  $P(D|T_1 \cap T_2) = \frac{0.4535176}{1+0.4535176} = 0.3120138$ . See how this posterior probability has increased with two positive tests, from 1 positive test.

Thought question: perform the calculations to show that the posterior probability that the person has the disease if the person tests positive on 3 tests is 0.8116199.

Thought question: do you notice a certain pattern emerging when performing these calculations as the person undergoes more tests? Could you write either

a mathematical equation, or even a function in R, that allows us to quickly compute the probability the person has the disease given that the person tested positive k times, where k can denote any non negative integer?

# 2.4.2 Prosecutor's Fallacy

The confusion of the inverse is also called the prosecutor's fallacy (sometimes also called the defense attorney's fallacy depending on which side is making the mistake) when it occurs in a legal setting. Generally, the confusion comes from equating P(evidence|innocent) with P(innocent|evidence).

The book provides a discussion about this in Section 2.8, examples 2.8.1 and 2.8.2.