$\gamma: I \longrightarrow S$ curva W: I -> R³ campo diferenciable a la large de Y Se dice tangente a S W(t) \in T_{Y(t)}S \text{Y} \in I Decimos que W es paralelo a la largo de ∇ si $(W'(\xi))^T = 0$ Denvada covanante Junico campo W a lo largo de V TS

tal que es paralelo y que W(0)=Wo

este W se llama transporte paralelo de Wo a lo largo de J. y geodésica € y es paralelo $((Y')')^{\mathsf{T}} \equiv 0$

Ejemplo: ejercicio H7-E7 $W(t) = a(t) \times x_0 + b(t) \times y$ $\langle W', \times y_0 \rangle = 0 = \langle W', \times y_0 \rangle$

TEOREMA EGREGIUM GAUSS

Isometria local => X = X = (contraejemplo ej.2)

$$\begin{array}{l} \mathcal{J}: \mathbf{I} \longrightarrow S & \text{curva es } GEODÉSICA & \text{si } (\mathcal{J}'')^T = \mathbf{0} \\ \text{Es decir, } \mathcal{J}''(t) & \text{es normal a } S & \text{HeI} & \Longrightarrow \\ & \Longrightarrow ||\mathcal{J}'(t)|| = \text{cte. } \forall t \in \mathbf{I}. \\ & \uparrow \\ & (\mathcal{J}'')^T = \mathbf{0} & \Longleftrightarrow (\mathcal{J}'', \mathbf{v}) = \mathbf{0} & \forall \mathbf{v} \in T_p \mathbf{S} \\ & (\langle \mathcal{J}', \mathcal{J}' \rangle)^l = 2\langle \mathcal{J}'', \mathcal{J}' \rangle \end{array}$$

CURVAS

CURVAS PLANAS

VECTOR TANGENTE:
$$f(x(t)) = \frac{\alpha'(t)}{\|\alpha'(t)\|}$$
 • $S(t) = \int \|\alpha'(t)\| dt$

VECTOR NORMAL: $\Pi_{\infty}(t) = J H_{\infty}(t)$ con $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ matrix de giro de 90°

DIEDRO DE FRENET: base $\{H_{\alpha}(t), \Pi_{\alpha}(t)\}$ positivamente orientada CURVATURA: $K_{\alpha}(t) = \frac{\langle H_{\alpha}'(t), \Pi_{\alpha}(t) \rangle}{V_{\alpha}(t)}$ of $K_{\alpha}(t) = \frac{\det(\alpha'(t), \alpha''(t))}{V_{\alpha}(t)^3}$

$$K_{\alpha}(t) = \frac{\det(\alpha'(t), \alpha''(t))}{V_{\alpha}(t)^3}$$

VECTOR CURVATURA: IK (f) = Ka(f). ITa(f)

$$\alpha'(s) = H_{\alpha}(s) = \langle H_{\alpha}(s), e_1 \rangle e_1 + \langle H_{\alpha}(s), e_2 \rangle e_2 = 0$$

$$\cos \theta(s) \qquad sevi \theta(s) \qquad sevi \theta(s) \qquad de \quad K_{\alpha}(s)$$

Esto nos permite conseguir
$$\alpha(s)$$
 to partition $K_{\beta}(s) = E(\ell)$. $K_{\alpha}(\ell(s))$

REPARAMETRIZACIONES: $K_{\beta}(s) = E(\ell)$. $K_{\alpha}(\ell(s))$
 $K_{\beta}(s) = E(\ell)$. $K_{\alpha}(\ell(s))$
 $K_{\beta}(s) = K_{\alpha}(\ell(s))$

$$K_{\beta}(s) = E(\emptyset). K_{\alpha}(\emptyset(s))$$

$$\mathbb{D}_{\beta}(s) = \mathcal{E}(\ell) \cdot \mathbb{C}_{\kappa}(\ell(s)) \qquad \mathbb{K}_{\beta}(s) = \mathbb{K}_{\kappa}(\ell(s))$$

$$|K_{\beta}(s)| = |K_{\alpha}(\ell(s))|$$

CURVAS EN EL ESPACIO

VECTOR TANGENTE:
$$t_{\infty}(t) = \frac{\kappa'(t)}{\|\kappa'(t)\|}$$

$$(f_{\alpha}(t)) = \frac{\alpha''}{\|\alpha'\|} - \frac{\langle \alpha'', \alpha' \rangle}{\|\alpha'\|^3} \propto'$$

TRIEDO DE FRENET: base { Hx(+), Ma(+), ba(+)} positivamente orientada

TRIEDO DE FRENET: base | Lect| | CURVATURA:
$$K_{\alpha}(t) = \frac{\|H_{\alpha}(t)\|}{\|\alpha'(t)\|} > 0$$

L> sin signo

VECTOR CURVATURA: $\|K_{\alpha}(t) = \frac{H_{\alpha}(t)}{\|\alpha'(t)\|} = \frac{\alpha''}{\|\alpha''(t)\|}$

TORSIÓN: $T_{\alpha}(t) = -\frac{\langle b_{\alpha}(t), |n_{\alpha}(t)\rangle}{\|\alpha'(t)\|}$

$$\begin{array}{ll} H'_{\alpha}(\ell) &= K_{\alpha}(\ell).V_{\alpha}(\ell).\Pi_{\alpha}(\ell) \\ \Pi'_{\alpha}(\ell) &= -K_{\alpha}(\ell).V_{\alpha}(\ell).H_{\alpha}(\ell) + T_{\alpha}V_{\alpha}H_{\alpha} \\ H'_{\alpha}(\ell) &= -T_{\alpha}V_{\alpha}\Pi_{\alpha} \end{array} \\ &= \begin{pmatrix} H'_{\alpha}(\ell) \\ \Pi'_{\alpha}(\ell) \\ H'_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ -K_{\alpha} & 0 & T_{\alpha} \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ -K_{\alpha} & 0 & T_{\alpha} \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ -K_{\alpha} & 0 & T_{\alpha} \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ -K_{\alpha} & 0 & T_{\alpha} \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ -K_{\alpha} & 0 & T_{\alpha} \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}(\ell) \end{pmatrix} = V_{\alpha} \begin{pmatrix} 0 & K_{\alpha} & 0 \\ 0 & -T_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} H_{\alpha}(\ell) \\ H_{\alpha}$$

PLANOS:

plano osculador
$$\rightarrow$$
 spandta(t), $(\text{Da}(t))$ + $(\text{A}(t))$ = $(\text{P-a}(t))$, $(\text{Ex}(t))$ + $(\text{Da}(t))$ = (

plano normal \rightarrow spand $(\text{III}_{\alpha}(t))$, $(\text{Da}(t))$ + $(\text{A}(t))$ = $(\text{P-a}(t))$, $(\text{Da}(t))$ + $(\text{Da}(t))$ = (

plano rectificante \rightarrow spandta(t), $(\text{Da}(t))$ + $(\text{A}(t))$ = $(\text{P-a}(t))$, $(\text{Ex}(t))$ + $(\text{Ex}(t))$ = (

$$\alpha(s) = \begin{pmatrix} x(s) \\ y(s) \\ z(s) \end{pmatrix}$$

$$X(S) = S - \frac{K_{\alpha}(S) \cdot S^{3}}{6} + (R_{x}) = H_{\alpha}(S)$$

$$Y(S) = \frac{K_{\alpha}(S) \cdot S^{2}}{2} + \frac{K_{\alpha}'(S) \cdot S^{3}}{6} + (R_{y}) = |D_{\alpha}(S)|$$

$$Z(S) = \frac{K_{\alpha}(S) \cdot T_{\alpha}(S)}{6} S^{3} + (R_{2}) = |D_{\alpha}(S)|$$

, REPARAMETRIZACIONES:

$$H_{\beta}(s) = \mathcal{E}(\ell) \cdot H_{\alpha}(\ell(s))$$

$$M_{\beta}(s) = M_{\alpha}(\ell(s))$$

$$H_{\beta}(s) = \mathcal{E}(\ell) \cdot h_{\beta}(\ell(s))$$

$$K_{\beta}(s) = K_{\kappa}(\ell(s))$$

 $T_{\beta}(s) = T_{\kappa}(\ell(s))$

CURVATURA Y TORSIÓN PARA CUALQUIER PARÁMETRO:

$$K_{\infty}(t) = \frac{\| \alpha'(t) \times \alpha''(t) \|}{\| \alpha^{\dagger}(t) \|^3}$$

$$T_{\alpha}(t) = \frac{\det(\alpha', \alpha'', \alpha''')}{\|\alpha' \times \alpha''\|^2}$$

$$e = \langle X_{uu}, N \rangle \qquad f = \langle X_{vu} \rangle, N \rangle \qquad g = \langle X_{vv}, N \rangle$$

$$I_{X} = \begin{pmatrix} \langle X_{uv}, N \rangle & \langle X_{uv}, N \rangle \\ \langle X_{uv}, N \rangle & \langle X_{wv}, N \rangle \end{pmatrix} \qquad \text{Esta es la matrix de forma bilineal en la basse } \{X_{u}, X_{v}\}$$

$$I_{X} : T_{p}S \times T_{p}S \longrightarrow \mathbb{R} \qquad p = X(u_{N})$$

$$I_{x} : T_{p}S \times T_{p}S \longrightarrow \mathbb{R} \qquad p = X(u_{N})$$

$$I_{x} : T_{p}S \times T_{p}S \longrightarrow \mathbb{R} \qquad p = X(u_{N})$$

$$I_{x} : T_{p}S \times T_{p}S \longrightarrow \mathbb{R}^{3} \qquad \text{lineal}$$

$$I_{x}(x_{1}y_{1}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{x}(x_{1}y_{2}) := (a_{1}, b_{1}) \left(\frac{e}{f} \frac{f}{g} \right) \left(\frac{a_{2}}{b_{2}} \right)$$

$$I_{$$

 $H = \frac{\text{traza}(W)}{2} = \frac{K_1 + K_2}{2} := \text{curvatura media}$

I, II: TpS x TpS _____ > IR bilineales simétricas <u>YROPIEDAD</u>: I(x,y) = I(W,x,y)Viendo I, II como matrices: W= I-4. II $K = \det(W) = \det I \cdot \det I^{-1} = \frac{eg - f^2}{FG - F^2}$ DEFINICION: S₁ +> S₂ aplicación diferenciable entre superficies Sy P Wy Sz f(p) df(p).Wz regulares · f isometría local si: $\langle df(p)W_1, df(p)W_2 \rangle = \langle W_1, W_2 \rangle$ $\forall p \in S_1, \ \forall W_1, W_2 \in TpS_1$ $\downarrow X_1 \leftarrow S_1 \\ | X_2 \leftarrow S_2 \\ | \overline{I_{X_1}} = \overline{I_{X_2}} |$ · f aplicacion conforme si I/V tal que: $\langle df(p)w_1, df(p)w_2 \rangle = \langle (p) \langle w_1, w_2 \rangle$ $\cong \sqrt{I_{X_1}} = \langle (p) I_{X_2}$ € conforme € f preserva aingulos · X: UCR2 -> S parametrización conforme si Ix = ((u,v) Id 1 à forma fundamental de un plane en coord. cartesianas

```
· Eliptico si K1, K2 > 0 ó K1, K2 < 0, e.d., K > 0
          · Hiperbólico si K1>0, K2<0 ó K1<0, K2>0, e.d., K<0
          · Parabolico si K1=0, K2 +0 ó K1 +0, K2=0, e.d, R=0, W+0
          · Plano si K1, K2 = 0, e.d., K=0, W=0.
  V \in T_{pS} asintótica si II(u_{1}v) = 0
                    I \mapsto \frac{1}{\alpha^{n}(t)}
 pes
R3 = TpS & Span Np
                                       or param. por arco
\alpha'' = (\alpha'')^{\mathsf{T}} + (\alpha'')^{\mathsf{L}}
                                       base de T_{\alpha(4)}R^3 = R^3 = \int \alpha'(t),
                \leq \alpha'', N > N
                                                                    Nace × x'(t),
X"=KxHd
                 Knia CURVATURA NORMAL
                                                                      Nace >
                  Ka< Ma, N>
                                      param. por arco
 \langle (\alpha'')^T, \alpha' \rangle = \langle \alpha'', \alpha' \rangle = 0
                   a' tangente
   => (\alpha'')^T està en la dirección de N \times \alpha' (\alpha'', N) = : K_{n,\alpha}
```

GEODÉSICA $K_{g,\alpha} = \langle \alpha'', N \times \alpha' \rangle$ $K_{n,\alpha} = K_{\alpha} \langle M_{\alpha}, N \rangle = \langle \alpha'', N \rangle = \prod_{i=1}^{n} (\alpha', \alpha')$

 $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $f \text{ difeomorfismo local } \Longrightarrow df(p) \text{ invertible } \forall p \in \mathcal{U}$ p vale para f entre superficies

K1, K2 son las curvaturas principales no se preservan necesariamente [por isometrias

 $K=K_1K_2$ si se preserva por isometrian \Longrightarrow T^{mo} Egregium de Gauss H (\equiv curvatura media) no tiene por qué preservarse

-> existe una isometria local entre un plano y un cilindro pero el plano en IR^3 tiene curvaturas principales 0 (multiplicidad 2), pero el cilindro tiene curv. ppales 0, $\pm \frac{1}{r}$.

Observación: Kr y Kz son el máx. y min. de todas las curvaturas normales de curvas en S.

$$II_{p}: T_{p}S \times T_{p}S \longrightarrow IR$$

$$II_{p}(v_{i}w) := \langle -(dN)_{p}v_{i}, w \rangle = \langle w_{p}.v_{i}, w \rangle = \langle v_{i}, w_{p}w \rangle$$

S superficie,
$$p \in S$$

 $I_P: T_PS \times T_PS \longrightarrow \mathbb{R}$, $I_P(v_1w) = \langle v_1w \rangle$
 $I_P: T_PS \times T_PS \longrightarrow \mathbb{R}$, $I_P(v_1w) = \langle w_Pv_1w \rangle$
 $B = \{v_1, v_2\} \text{ base de } T_PS \text{ (e.g. } \{x_u, x_v\})$
 $(W_P)_B = (I_P)_B^{-1} (I_P)_B$

$$X(u_{1}v)$$
 umbilical \iff las curvaturas principales en $X(u_{1}v)$ son iquales \iff $II = \lambda I$ para algun $\lambda \in IR$. \iff $H^{2} = K$

$$\left(\frac{K_{1}+K_{2}}{2}\right)^{2} = K_{1}K_{2} \implies K_{1}^{2}+K_{2}^{2}+2K_{1}K_{2} = 4K_{1}K_{2} \implies (K_{1}-K_{2})^{2}=0$$

SUPERFICIES REGULARES & PRIMERA FORMA MUNUAMENTAL

DEFINICIÓN SUPERFICIE REGULAR: En IR^3 una superficie regular es un subconjunto no vacío de S de IR^3 tal que para todo punto $p \in S$, existe un abierto UCIR², un entorno V de p en SCIR³ y una aplicación X $X: \mathcal{U} \longrightarrow VCSCIR^3$ tal que: 1. $X: \mathcal{U} \longrightarrow VCSCIR^3$ tal que: 1. $X: \mathcal{U} \longrightarrow VCSCIR^3$ tal que:

3. para todo $q \in \mathcal{U}$, la diferencial $DX(q): \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ es inyective. La aplicación X se llama PARAMETRIZACIÓN O SISTEMA DE COORDENADAS de S'. Su inversa se llama CARTA $X: UCR^2 \longrightarrow VCSCR^3$ $X(u_{iv}) = (x(u_{iv}), y(u_{iv}), z(u_{iv}))$

VECTORES $Xu(u_1v) = \frac{\partial X}{\partial u}(u_1v) = (X_u(u_1v), Y_u(u_1v), Z_u(u_1v))$ COORDENADOS $Xu(u_1v) = \frac{\partial X}{\partial v}(u_1v) = (X_v(u_1v), Y_v(u_1v), Z_v(u_1v))$ $Xv(u_1v) = \frac{\partial X}{\partial v}(u_1v) = (X_v(u_1v), Y_v(u_1v), Z_v(u_1v))$

La condición 3 de la definición equivale a que Xu(u,v) y X, (u,v) sean linealmente independientes.

LANO TANGENTE Q ESPACIO/RECTA NORMAL

S superficie regular en \mathbb{R}^3 y $p \in S$. Un vector $x \in \mathbb{R}^3$ diremos que es un vector tangente a S en p si existe una curva diferenciable $\alpha: (-E,E) \longrightarrow S \subset \mathbb{R}^3$ tal que $\alpha: (0) = p$ y $\alpha'(0) = x$. En esta definición se puede tomar cualquier otro intervalo de definición para $\alpha: (-E,E) \longrightarrow S \subset \mathbb{R}^3$ tal que $\alpha: (0) = p$ y $\alpha'(0) = x$. En esta definición se puede tomar cualquier otro intervalo de definición para $\alpha: y$ simplemente reparametrizando la curva $\alpha: (-E,E) \longrightarrow S \subset \mathbb{R}^3$ do terlos los vectores tangentes en $\alpha: (-E,E) \longrightarrow S \subset \mathbb{R}^3$ do terlos los vectores tangentes en $\alpha: (-E,E) \longrightarrow S \subset \mathbb{R}^3$

El subconjunto de 123 de todos los vectores tangentes en p a S TpS = $\frac{1}{2} \times \epsilon \mathbb{R}^3$: existe $\propto : (-\epsilon, \epsilon) \longrightarrow S$ diferenciable $\epsilon = \frac{1}{2} \times \epsilon \mathbb{R}^3$: existe $\approx : (-\epsilon, \epsilon) \longrightarrow S$ diferenciable $\epsilon = \frac{1}{2} \times \epsilon \mathbb{R}^3$ resulta ser un subespacio vectorial de 12ª de dimensión 2 y, de hecho, $TpS = dX(q)(IR^2) = DX_q(R^2)$, para malquier parametrización $X: U \longrightarrow S$, donde $p \in U$ tal que X(q) = p. A este subespació vectorial TPS se le llama plano tangente (o espacio tangente) a S en P.

Al plano afin p+TpS le llamamos plano tangente afin a S en Podemos considerar el subespació vectorial de 12º perpendicular a TpS: $(T_pS)^{\frac{1}{2}} = \frac{1}{2} \times \epsilon IR^3$ $(\times_i y) = 0$ para todo $y \in T_pS$ que se le llama recta normal (o espacio normal), y sus elementos se le Planar vectores normales.

Base $T_pS = \frac{1}{2}X_u(q)$, $X_v(q)$ con X(q) = p. $R^3 = T_pS \oplus (T_pS)^{\perp}$ N(p)Base de $N(p) = \frac{1}{2} \times 10^{10} \times$

DIFERENCIAL DE UNA APLICACIÓN DEFINIDA EN UNA SUPERFICIE:

Sea f: S -> IR una funcion diferenciable definida en una superficie regular S, y sea pe S. La DIFERENCIAL de f en p es la aplicación lineal $df(p): T_pS \longrightarrow S$, $df(p)x := (f \circ x)'(0)$ donde $x:(-\epsilon,\epsilon) \longrightarrow S$ es una curva diferenciable en S tal que x(0) = p y x'(0) = x. Se rueba así que df(p)x está bien definida y $(f \circ x)'(0)$ es independiente de x (siempre que x(0) = p y x'(0) = x).

Si X es una parametrización de S alrededor de p, e.d., p = X(llo, vo) } entoncer la matriz asociada a df(p) en la base \(\fix\) \(\lambda\) (llo, vo) \(\frac{1}{2} \) es la matriz fila ((fo)), (uo,vo), (fo), (uo,vo))

Si f constante \Longrightarrow $df(p) = 0 \forall p \in S$.

5 conexa y df(p) = 0 $\forall p \in S \implies f$ es constante en S.

Si f tiene un extremo relativo en $p \implies df(p) = 0$.

 $f: S_1 \longrightarrow S_2$ aplicación diferenciable entre dos superficies regulares, $p \in S_1$, $S_2 \longrightarrow S_2$ aplicación diferenciable entre dos superficies regulares, $p \in S_1$, $S_2 \longrightarrow S_2 \longrightarrow S_2$ define la diferencial de f en p como $df(p): T_pS_1 \longrightarrow T_{q(p)}S_2 \longrightarrow S_2$ $df(p) \times := (f \circ x)^1(0)$ (iqual que arriba). Sean X_1 , X_2 param reg. de S_1 y S_2 de S_2 de S_3 y S_4 erca de p y f(p). Entonces la expresión en coordena das de $f = X_2^{-1} \circ f \circ X_1$ $\left| \overline{V}_{u}(u_{0},v_{0}) - \overline{V}_{v}(u_{0},v_{0}) \right|$

Sea S una superficie regular en R³ y PES. La PRIMERA FORMA FUNDAMENTAL de S en P es la forma bilineal simétrica definida positiva Ip: TpS x TpS --> R, Ip(xiy) := <xiy> Es decir, no es más que el producto escalar de \mathbb{R}^3 restringido a cada plano tangente. A veces se le llama IFF a la forma cuadrática asociada, $x \in T_pS \longrightarrow T_p(x,x) = \langle x,x \rangle$. Si tenemos una parametrización $X: UCIR^2 \longrightarrow SCIR^3$ y $P = X(u_0, v_0) = X(q_0)$ entonces la matriz de la SFF de S en p en la base B={Xu(4), Xv/4. como: $(I_p)_B = (F_F) = (\langle X_u, X_u \rangle \langle X_u, X_v \rangle)$ hemos omitido q por sencilles $\langle X_u, X_v \rangle$ Así si x,y ∈ TpS tienen coordenadas (x1,x2) y (y1,y2) en la base √Xu, Xv/ se tiene que $I_p(x_1y) = \langle x_1y \rangle = (x_1,x_2) \begin{pmatrix} E & F \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ Ibservación: I a veces se escribe como: $I = Edu^2 + 2Fdudv + Gdv^2$ os coeficientes E, F, G son funciones diferenciables en el abierto U y_1 además, E>0, G>0 y $EG-F^2>0$. Observa que si x: I -> 5 es una curva diferenciable en S dada por la imagen por X de una curva en $V \subset \mathbb{R}^2$, e.d., $\alpha(\mathcal{C}) = X(u(\mathcal{C}), v(\mathcal{C}))$, entonces la longitud por segmento de curva x/[a,b] con [a,b] CI se puede calcular ama: 1/111 puede calcular como: $L(\alpha|\alpha,b) = \int_{a}^{b} \sqrt{I_{\alpha(e)}(\alpha'(e),\alpha'(e))} dt = \int_{a}^{b} \sqrt{E_{u}'(e)^{2} + 2Fu'(e)v'(e) + 6v(e)}$ donde E, F, G han de evaluarse en (u(t), v(t)). Asimismo, si R es una región de la superficie 5 confenida en X(U)

entonces se define su área mediante:

once se aequie su ont
$$A(R) := \int_{X^{-1}(R)} ||X_{1} \times X_{2}|| dudv = \int_{X^{-1}(R)} ||EG - F^{2}| dudv$$

I SOMETRÍAS Y APLICACIONES CONFORMES

Una aplicación diferenciable f: S1 -> S2 entre superficies regulares se llama isometría LOCAL si conserva la 1FF, e.d., &:

 $\langle df(p)x, df(p)y \rangle = \langle x,y \rangle \forall x,y \in T_pS_x y todo p \in S_x$.

f es isometría local \iff $df(p): TpS_1 \longrightarrow TpS_2$ es isometría local entre

espacios vectoriales $\forall p \in S_A$.

Las isometrias locales preservan el producto escalar, por lo tanto preservan angulos, areas y longitudes.

Que exista una isometría local entre 5, y 52 no quiere decir que Sean superficies localmente isométricas, pero si existe una isométrica local sobreyectiva $f: S_1 \longrightarrow S_2$, entonces S_1 y S_2 son localm. isométrica

Si f: S1 -> S2 es una isometría local, entonces tpe S1 existe X1: U-> S1 alrededor de p y X2: U-> S2 alrededor de f(p) tales que $E_1 = E_2$, $F_1 = F_2$ y $G_1 = G_2$. En otras palabras, la matriz asociada a la primera forma fundamental de Sz en la base 1(Xs), (Xs), le coincide con la matriz asociada a la 1FF de S2 en la base {(X2)u, (X2)v}. Recúprocamente, si S1 y S2 sup. reg. tienen parametrizaciones X_{Δ} y X_{Σ} fales que $E_1 = E_{\Sigma}$, $F_1 = F_{\Sigma}$, $G_1 = G_{\Sigma} \Longrightarrow$

 \Rightarrow $f = X_2 \circ X_4^{-1} : X_1(\mathcal{U}) \longrightarrow X_2(\mathcal{U})$ es una isometria global entre

los abiertos $\%(u) \subset S_4 + \%z(u) \subset S_2$.

Un concepto más débil que el de isometria local es el de aplicación CONFORME. $f: S_1 \longrightarrow S_2$ es conforme si existe una aplicación diferenciable positiva $\lambda: S_1 \longrightarrow \mathbb{R}$ tal que: <df(p) x, df(p) y> = \(\lambda (p) \lambda x, y \) \(\tau \), \(

Se puede caracterizar los aplicaciones conformes de modo similar a las isometrias. Los coeficientes de la AFF se preservan Salvo por multi-limites Salvo por multiplicación por una función diferenciable positiva 7.

GEOMETRÍA EXTRÍNSECA DE SUPERFICIES

LA APLICACIÓN DE GAUSS: Sea S una superficie regular en 1R3 y X: UCIR2 -> S una param. de S. Sea S un campo unitario normal diferenciable definido localmente en S. Podemos tomar N(X(u,v)) = Xu(u,v) x Xv(u,v) Entonces N define una aplicación $N: X(\mathcal{U}) \subset S \to S^2$ denominada $||Xu(u,v) \times X_{V}(u,v)||$ aplicación de Gauss.

OPERADOR DE WEWGARTEN Y SEGUNDA FORMA FUNDAMENTAL

Para entender como se curva S en p analizamos como varía N cerco de p. Para eso consideramos la diferencial de N en p, e.d: (dN)(p): TpS -> TpS, esto nos permite definir el OPERADOR DE NEINGARTEN Wp de S en p como esa diferencial con el signo cambiada $W_P: T_PS \longrightarrow T_PS$ $W_P(x) := -(dN)(p)x$

050: Wes para cada pES.

El operador de Weingarten es autoadjunto: < Wpx, y> = <x, Wpy > \frac{1}{25} La SEGUNDA FORMA FUNDAMENTAL se define a partir de de Wp. Esta es una forma bilineal simétrica en TpS (pero no tiene por qué ser definirla assitiva) como: definida positiva) como:

 $\underline{\text{Tr}}_{p} : \overline{\text{Tr}}_{p} \times \overline{\text$

FORMAS MATRICIALES DE W y II \Rightarrow apl. lineal \Rightarrow apl. bilineal \Rightarrow apl. bilineal \Rightarrow apl. bilineal \Rightarrow apl. lineal \Rightarrow apl. bilineal \Rightarrow apl. bilineal \Rightarrow apl. lineal \Rightarrow apl. bilineal \Rightarrow apl. bilineal \Rightarrow apl. lineal \Rightarrow apl. bilineal \Rightarrow apl. Al ser Wp autoadjunto, si B es ortogonal => (Wp)_B matriz simétrica. Br el contrario: (IIp)_B = $\left(\frac{\text{IIp}(V_{1},V_{1})}{\text{IIp}(V_{2},V_{2})}\right)$ IIp $\left(\frac{V_{2},V_{2}}{\text{IIp}(V_{2},V_{2})}\right)$

Así si $x_1y \in TpS$ tienen coordenadas (x_1, x_2) y (y_1, y_2) en la base B, se puede calcular $IIp(x_1y)$ como: $IIp(x_1y) = (x_1, x_2) (IIp)_B(y_2)$. A diferencia de $(y_1)_{11}$ (Wp)B, la matriz (IIp)B es siempre simétrica.

If y W A PARTIR DE UNH THRIPPE IREPLAND

X: $UCR^2 \longrightarrow R^3$ una parametrización de una superficie regular S.

N campo normal unitario diferenciable en X(U).

Rentonces la matriz de la segunda forma fundamental de S en m punto $p = X(u_0, v_0)$ con respecto a la base $B = \{X_u(u_0, v_0), X_v(u_0, v_0)\}$ de vectores coordenados es: $IIp = \{e \ f \ g\} = \{X_uu, N\} (X_uv, N)\}$ Induction for a dependencia con $\{u_0, v_0\}$.

Además como $\{x_1, w_0\} = \{X_u, N\} = \{X_v, Nu\} \}$ of $\{x_1, x_2\} = \{X_v, Nv\} = \{X_v, Nv\} = \{X_v, Nv\} \}$.

Además como $\{x_1, w_0\} = \{Ip\}_B(w_0)_B(y_0)_$

CURVATURAS PRINCIPALES, CURVATURA DE GAUSS Y CURVATURA MEDIA El operador de Weingarten respecto a una base ortonormal es siempre simétrica (su matriz) por lo que es diagonalizable con autovalores reales. Sea B= ges, ez f una base ortonormal: Wpes=Ks(p)es y Wpes=Kz(p)ez Los autoralores K1(p) y K2(p) de Wp se llaman curraturas principales de S en p. Cualquier autovector de Wp se denomina DIRECCIÓN PRINCIPAL de S en p. Así si K1(p) + K2(p) las direcciones principales son les múltiples no nules de es y ez, y si $K_1(p) = K_2(p)$ todo vector no nulo es dirección principal. Una LÍNEA DE CURVATURA es una curva diferenciable x: I -> S tal que x'(t) es dirección principal $\forall t \in I$, e.d., $W_{x(t)} x'(t) = \lambda(t) x'(t)$ y cierta función de curvatura 1:I→R. Una DIRECCIÓN ASINTÓTICA de S en P es un vector XE TPS no nulo tal que $II_p(x_ix) = 0$. Una <u>LÍNEA ASINTÓTICA</u> de S es una curva diferenciable $\alpha: I \to S$ tal que $\alpha'(\mathcal{E})$ es dirección asintótica $\forall \mathcal{E} \in I$, es decir $\Pi_0(\alpha'(x), \alpha'(x)) = 0$.

La curvatura de Gauss de S en p se define como: K(p):= det Wp o, equivalentemente, K(p) = K2(p). K2(p) La curvattura MEDIA de S en p es $|H(p):=\frac{1}{2}traza(Wp)|$, o equivalentemente $|H(p) = \frac{1}{2}(K_1(p) + K_2(p))|^2$ La curvatura de Gauss es invariante al cambio de signo de N, pero H(p) st. En coordenadas locales, las curvaturas de Gauss y media se pueden escribir como: $K = \frac{eg - f^2}{EG - F^2}$ $H = \frac{1}{2} \cdot \frac{eG + gE - 2fF}{EG - F^2}$ Un punto p en S es exactamente de uno de estos cuatro tipos: • Elíptico, si $K(p) > 0 = K_2(p)$ y $K_2(p)$ mismo signo • Hiperbólico, si $K(p) < 0 = K_{2}(p)$ y $K_{2}(p)$ signo opuesto $V_{1}(p) = 0$ y • Parabólico, si K(p) = 0 pero $W_p \neq 0$, e.d., $K_1(p) \neq 0$ y $K_2(p) \neq 0$ • Plano, si V(n) = 0• Plano, si K(p) = 0 y $Wp = 0 = K_1(p) = 0$ y $K_2(p) = 0$. Además, un punto p se dice Umbilical si K1(p) = K2(p). Una superficie es totalmente umbilical si todos sus puntos son umbilicales. Sup. regular conexa y orientable es totalm. umbilical => abto. de un plano o una esfera.

LA ACELERACIÓN DE UNA CURVA: CURVATURAS GEODÉSICA Y NORMAL Podemos suponer que « esta param. por longitud de arco. «"(s) no tiene por qué ser tangente ni normal a S. Puesto que ∀p∈S podemos des componer 123 como TpS ⊕ span {N(p)}, podemos considerar las componentes (o proyecciones) tangencial (a") y normal $(\alpha'')^{\perp}$ de α'' , de forma que $\alpha''(s) = \alpha''(s)^{\perp} + \alpha''(s)^{\perp}$ se I. TRIEDRO DE DARBOUX de « eu s, base ortonormal positivamente unientad de \mathbb{R}^3 , es: $\left\{\alpha'(s), N(\alpha(s)) \times \alpha'(s), N(\alpha(s))\right\}$ Como \propto param. por arco $\Rightarrow \langle \alpha'', \alpha' \rangle = 0 \ \forall s \Rightarrow \langle (\alpha'')^T, \alpha' \rangle = 0 \ \forall s$ $=>\langle (\alpha'')^T, N\circ \alpha \rangle =0 \Rightarrow (\alpha'')^T$ proporcional a (Nox) $\times \alpha'$ $\forall s \in I$. C(x")T tangente a S YSEI A la correspondiente constante de proporcionalidad se le denomina CURVATURA GEODÉSICA de \propto eu S: $\langle K_{g,\alpha}(s) \rangle = \langle \alpha^{11}, N(\alpha(s)) \times \alpha^{11} \rangle =$ $= \langle \alpha^{11}, (N \circ \alpha) \times \alpha^{1} \rangle = K_{\alpha} \langle H_{\alpha}, (N \circ \alpha) \times \alpha^{1} \rangle$ Por otro lado (x") es un campo de vectores (normal a S) definido como $(x'')^{+} = \langle \alpha'', Nox \rangle N(\alpha(s))$. Se define <u>curvatura normal</u> de α en:

como el coeficiente de diche expresión: $K_{n,\alpha} = \langle \alpha'', Nox \rangle$ $s \in I$ Usando de nuevo que $\alpha'' = K\alpha H\alpha$ se tiene que: $K_{n,\alpha} = K\alpha \langle H\alpha, No\alpha \rangle$ Dado el Triedro de Darboux (base ortonormal) se tiene que: $\alpha'' = Kg_{ix}(No\alpha) \times \alpha' + Kn_{ix}(No\alpha)$, y tomando normas: $K_{\alpha}^{2} = K_{g_{ix}}^{2} + K_{n_{ix}}^{2}$

$$Kg_{1}x = Kx \langle M_{x_{1}}(N_{0}x) \times H_{x} \rangle = \frac{1}{|x'|^{2}} \langle x'', (N_{0}x) \times x' \rangle$$

$$K_{n_{1}x} = K_{x} \langle M_{x_{1}}, N_{0}x \rangle = \frac{1}{|x'|^{2}} \langle x'', N_{0}x \rangle$$

Curvatura NORMAL Y SEGUNDA FORMA FUNDAMENTAL

Superficie regular en IR^3 con campo normal unitario N $\alpha: I \rightarrow S$ curva diferenciable en S.

Derivando $\langle \alpha'(t), N(\alpha(t)) \rangle = 0$ se obtiene: $II_{\alpha(t)}(\alpha'(t), \alpha'(t)) = \langle \alpha''(t), N(\alpha(t)) \rangle$, Si α es regular se obtiene una relación entre la curvatura normal de α y la 2FF: $\left[K_{n,\alpha} = K_{\alpha} < H_{\alpha}, N \circ \alpha \right] = II\left(H_{\alpha, H_{\alpha}}\right)$ Así es posible definir la curvatura normal $K_n(p, x)$ de $K_n(p, x)$

· f: S, -> Sz isombel local $\langle (2f)(p)v, (df)(p)w\rangle = \langle v,w\rangle, \forall p \in S_1$ $\forall v,w \in T_p S_1$ $df(p): T_p S_n \longrightarrow T_{g(p)} S_2$ · J: Sn - s Sz isomh's Els isomh's local + biyechia " S1, S2 localmende isomhicas

(Let) Vp ES1, I'M enters abto de p en S1 y f: U -> f(U) CS2 ou fisante. Hge Sz. 7 V. et. leg. S. Pop. Si encurées ipentate local j: Si > Se sobre => Si es localité intrice a se Ej. Ciliaha plas.

4

e e e

•

Def 1 f: Sn - > S2 conforme. cos 20 = 1+ cos 20 Def. 2 X: UCRICR3 S parametrizain. es cufone si (Ix) = \(\(\frac{1}{2}\pi\)] Id. (4(\$(x,y)): {J (x(x); y(4)) ~ (+)=\$0p(4) a amas u=g=ate for \$\bar{D}_{\times} $\langle \alpha'(t), \Phi_{\chi}(\beta(t)) \rangle = 0$ (x'(+)= 1x(B(+)) +x'(+) + Dy(P(+)) y'(+) $= \langle \mathcal{P}_{x}(p(+)) \times (H) + \mathcal{P}_{y}(p(+)) \mathcal{F}'(H) + \mathcal{P}_{x}(p(+)) \mathcal{F}'(H) \rangle = 0$ = E(p(+)) x'(+) + F(p(+)), y(+) (x', y') (F G) (0) = 0tode en la bezo } \$\frac{1}{2}x, \frac{1}{2}\frac{1}{2}

 $M(x,y) = x^2y - e^{x+y^3}$ $dy = 2 \times dx + x^2 dy - e^{x+y^3} (dx + 3y^2 dy)$

[u(x,y) = 7]

I (x,y) = Dy dx + cop dno! -

g.

ŧ

•

(V'(+), x~>=0= <V'(+), X~)

(af+6, c++d) Ixility - Xu Xv orbogereles J=0 => Xx Xv direc. ppeles a/ x = x (u(+), v(+)) (x') = Dx' = (xun u!) + + xuv v') + J(+)= x(1(+),1(+)) 8(H) = Xun @+ XVV [=118'(+) 11= E(u')2 + fu'v' + G(v')2