1 Basics

Exercise 1.1: The interpreter

Open the Python interpeter. What happens when you input the following statements:

- (a) 3 + 1
- (b) 3 * 3
- (c) 2 ** 3
- (d) "Hello, world!"

Exercise 1.2: Scripts

Now copy the above to a script, and save it as script1.py. What happens if you run the script? (try: python script1.py). Can you fix this (hint: use the print function)

Exercise 1.3: More interpreter

Explain the output of the following statements if executed subsequently:

- (a) 'py' + 'thon'
- (b) 'py' * 3 + 'thon'
- (c) 'py' 'py'
- (d) '3' + 3
- (e) 3 * '3'
- (f) a
- (g) a = 3
- (h) a

Exercise 1.4: Booleans

Explain the output of the following statements:

- (a) 1 == 1
- (b) 1 == True
- (c) 0 == True
- (d) 0 == False
- (e) 3 == 1 * 3
- (f) (3 == 1) * 3
- (g) (3 == 3) * 4 + 3 == 1
- (h) 3**5 >= 4**4

Exercise 1.5: Integers

Explain the output of the following statements:

- (a) 5 / 3
- (b) 5 % 3
- (c) 5.0 / 3
- (d) 5 / 3.0
- (e) 5.2 % 3

(f) 2001 ** 200

Exercise 1.6: Floats

Explain the output of the following statements:

- (a) 2000.3 ** 200 (compare with above)
- (b) 1.0 + 1.0 1.0
- (c) 1.0 + 1.0e20 1.0e20

Exercise 1.7: Variables

Write a script where the variable name holds a string with your name. Then, assuming for now your name is *John Doe*, have the script output: Hello, John Doe! (and obviously, do not use print "Hello, John Doe!".

Exercise 1.8: Type casting

Very often, one wants to "cast" variables of a certain type into another type. Suppose we have variable x = '123', but really we would like x to be an integer.

This is easy to do in Python, just use desiredtype(x), e.g. int(x) to obtain an integer.

Try the following and explain the output

- (a) float(123)
- (b) float('123')
- (c) float('123.23')
- (d) int(123.23)
- (e) int('123.23')
- (f) int(float('123.23'))
- (g) str(12)
- (h) str(12.2)
- (i) bool('a')
- (j) bool(0)
- (k) bool(0.1)

2 Control flow

Disclaimer: Some of the following problems are inspired by problems from www.projecteuler.net. Have a look if you are interested, there are some great challenges and Python is an excellent tool for solving them.

Exercise 2.1: Range

Type range(5) in the interpreter, what does the interpreter return? So what does for i in range(5) mean?

Let's also find out whether the interpreter can help us understand the object 'range(5)' better. Type type(range(5)) in the interpreter. More on this soon!

Exercise 2.2: For loops

Use a for loop to:

(a) Print the numbers 0 to 100

- (b) Print the numbers 0 to 100 that are divisible by 7
- (c) Print the numbers 1 to 100 that are divisible by 5 but not by 3
- (d) Print for each of the numbers $x=2,\ldots 20$, all numbers that divide x, excluding 1 and x. Hence, for 18, it should print 2 3 6 9.

Hint: see https://docs.python.org/2.7/library/functions.html#range.

Exercise 2.3: Simple while loops

Instead of using a for loop, use a while loop to:

- (a) Print the numbers 0 to 100
- (b) Print the numbers 0 to 100 that are divisible by 7

Exercise 2.4: While loops

Use a while loop to find the first 20 numbers that are divisible by 5, 7 and 11, and print them Hint: store the number found so far in a variable.

Pseudo-code:

```
number found = 0
x = 11
while number found is less than 20:
    if x is divisible by 5, 7 and 11:
        print x
        increase number found by 1
    increase x by 1
```

Exercise 2.5: More while loops

The smallest number that is divisible by 2, 3 and 4 is 12. Find the smallest number that is divisible by all integers between 1 and 10.

Exercise 2.6: Collatz sequence

A Collatz sequence is formed as follows: We start with some number x_0 , and we find the next number in the sequence by

$$x_{i+1} = \begin{cases} x_i/2 & \text{if } x_i \text{ is even} \\ 3x_i + 1 & \text{if } x_i \text{ is odd} \end{cases}$$

If $x_i = 1$, we stop iterating and have found the full sequence.

For example, if we start with $x_0 = 5$, we obtain the sequence:

```
5 16 8 4 2 1
```

It is conjectured, though not proven, that every chain eventually ends at 1.

Print the Collatz sequence starting at $x_0 = 103$.

3 Functions

Exercise 3.1: Hello

- (a) Write a function hello_world that prints 'Hello, world!'
- (b) Write a function hello_name(name) that prints 'Hello, name!' where name is a string.

(c) Explain the difference between the print and return keywords. What would change if instead of print you would use return?

Exercise 3.2: Polynomial

Write a function that evaluates the polynomial $3x^2 - x + 2$.

Exercise 3.3: Maximum

Write a function $my_max(x,y)$ that returns the maximum of x and y. Do not use the max function, but use if instead in following two ways:

- (a) Use both if and else.
- (b) Use if but not else (nor elif).

Exercise 3.4: Primes

- (a) Write a function is_prime(n) that returns True only if n is prime.
- (b) Note that apart from 2 and 3, all primes are of the form $6k \pm 1$ (though not all numbers of the form $6k \pm 1$ are prime of course). Using this, we can improve the computation time by a factor 3. Update your function to use this.
- (c) Write a function that returns all primes up to n.
- (d) Write a function that returns the first n primes.

Exercise 3.5: Root finding

Suppose f is a continuous function and f(a) < 0 and f(b) > 0 for some known a and b. For simplicity, assume a < b. Then, there must exist some c such that f(c) = 0.

- (a) Write a function root(f, a, b) that takes a function f and two floats a and b and returns the root c. Hint: check the sign at the midpoint of the interval.
- (b) Remove the assumption that a < b, and that f(a) < 0 and f(b) > 0, if your current code relies on them.
- (c) Add a check that prints 'function evals have same sign' if f(a) > 0 and f(b) > 0 or if f(a) < 0 and f(b) < 0.

4 Lists

Exercise 4.1: Short questions

- (a) Write a function that prints the elements of a list
- (b) Write a function that prints the elements of a list in reverse
- (c) Write your own implementation of the len function that returns the number of elements in a list.

Exercise 4.2: Copying lists

- (a) Create a list a with some entries.
- (b) Now set b = a
- (c) Change b[1]
- (d) What happened to a?
- (e) Now set c = a[:]
- (f) Change c[2]

(g) What happened to a?

Now create a function set_first_elem_to_zero(1) that takes a list, sets its first entry to zero, and returns the list.

What happens to the original list?

Exercise 4.3: Lists of lists

What is the difference between a and b:

```
a = [[]] * 3
b = [[] for _ in xrange(3)]
```

Exercise 4.4: Lists and functions

Write a function that takes a list and an index, and sets the value of the list at the given index to 0.

Exercise 4.5: Primes

In Section 3 you wrote a function that prints all primes up to n, and a function that prints the first n primes. Update these functions such that they return lists instead.

Exercise 4.6: List comprehensions

```
Let i, j = 1, \ldots, n
```

- (a) Generate a list with elements [i,j].
- (b) Generate a list with elements [i,j] with i < j
- (c) Generate a list with elements i + j with both i and j prime and i > j.
- (d) Write a function that evaluates an arbitrary polynomial $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ using a list comprehension, where you are given x and a list with coefficients coefs (hint: use enumerate)

Exercise 4.7: Filter

In lecture we have seen how to implement map using list comprehensions. Implement filter using list comprehensions. Name your functions myfilter so you can compare with Python's standard filter.

Exercise 4.8: Flatten a list of lists

Consider having a list with lists as elements, e.g. [[1,3], [3,6]].

Write a function that takes such a list, and returns a list with as elements the elements of the sublists, e.g. [1, 3, 3, 6].

Exercise 4.9: Finding the longest word

Write a function that returns the longest word in a variable text that contains a sentence. While text may contain punctuation, these should not be taken into account. What happens with ties?

As an example, consider: "Hello, how was the football match earlier today???"

Exercise 4.10: Collatz sequence, part 2

Recall the Collatz sequence problem from Section 6. Our goal is to find the number n < 1,000,000 that leads to the longest Collatz sequence.

- (a) Write a function that for any n, returns its Collatz sequence as a list
- (b) Write a function that finds the integer x that leads to the longest Collatz sequence with x < n.

Exercise 4.11: Pivots

Write a function that takes a value x and a list ys, and returns a list that contains the value x and all elements of ys such that all values y in ys that are smaller than x come first, then we element x and then the rest of the values in ys

For example, the output of f(3, [6, 4, 1, 7]) should be [1, 3, 6, 4, 7]

Exercise 4.12: Prime challenge

Write the function primes(n) that return a list with all prime numbers up to n using three (or less) lines of code.

- Hint 1: Use lambda functions and list comprehensions.
- Hint 2: Use the first two lines to define two helper (lambda) functions.