## Drill Problem: Digitization (1)





### Drill Problem: Digitization (2)

|   |                  | _ га [(0.9                                    | $(n)^n$ $n \ge 0$ |
|---|------------------|-----------------------------------------------|-------------------|
| n | x[n] (DT signal) | $x[n] = \begin{cases} (0.9) \\ 0 \end{cases}$ | n < 0             |
| 0 | 1                |                                               |                   |
| 1 | 0.9              |                                               |                   |
| 2 | 0.81             |                                               |                   |
| 3 | 0.729            |                                               |                   |
| 4 | 0.6561           |                                               |                   |
| 5 | 0.59049          |                                               |                   |
| 6 | 0.531441         |                                               |                   |
| 7 | 0.4782969        |                                               |                   |
| 8 | 0.43046721       |                                               |                   |
| 9 | 0.387420489      |                                               |                   |
|   |                  |                                               |                   |

## Drill Problem: Digiti $x[n] = \begin{cases} (0.9)^n \\ x \end{cases} n \ge 0$



## Drill Problem: Digitization (4)





## $L=2^n$ $n=\frac{\text{No. of bits (i.e.}}{\text{Binary digit) per}}$

## $\hfill \square$ Dynamic Range (DR): Capability of transmitting a large Transmission range of signal amplitudes

□DR is the ratio of largest possible magnitude to the smallest magnitude

$$DR = \frac{x_{Max}}{x_{Min}}$$
 
$$DR = 20 \log_{10} \frac{x_{Max}}{x_{Min}}$$

# Drill Problem: Digitization $x[n] = \begin{cases} 0 & \text{or } 1 \\ 0 & \text{or } n < 0 \end{cases}$

□.

|   |                  |                     |                 | ( "        |  |
|---|------------------|---------------------|-----------------|------------|--|
| n | x[n] (DT signal) | $x_q[n]$ (Rounding) | $e_q[n] = x[n]$ | $]-x_q[n]$ |  |
| 0 | 1                | 1.0                 | 0.0             |            |  |
| 1 | 0.9              | 0.9                 | 0.0             |            |  |
| 2 | 0.81             | 0.8                 | -0.01           |            |  |
| 3 | 0.729            | 0.7                 | -0.029          |            |  |
| 4 | 0.6561           | 0.7                 | 0.0439          |            |  |
| 5 | 0.59049          | 0.6                 | 0.00951         |            |  |
| 6 | 0.531441         | 0.5                 | -0.031441       |            |  |
| 7 | 0.4782969        | 0.5                 | 0.0217031       |            |  |
| 8 | 0.43046721       | 0.4                 | -0.03046721     |            |  |
| 9 | 0.387420489      | 0.4                 | 0.012579511     |            |  |
|   |                  |                     |                 |            |  |

## Drill Problem: Digitization (6)





### Quantization Error or Noise (3)

 $\square$  Quantization error/Noise lies in the range (- $\Delta$ /2, + $\Delta$ /2), the "time average" mean square quantizing error (MSQE) from quantization is

$$\bar{q}^2 = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} q^2 dq = \frac{\Delta^2}{12} = \frac{\left(2m_p/L\right)^2}{12} = \frac{m_p^2}{3L^2}$$

Mean square value (time average) or Average power  $N_q=\overline{q}^2=\frac{\Delta^2}{12}=\frac{m_p^2}{3L^2}$ of the Quantizing noise

noise (Nq) is proportional to the stepsize ( $\Delta$ ). Reducing the stepsize reduces the quantization noise. OR by increasing the quantization levels.

f Q  $N_q$  is proportional to the fluctuation of the error signal, called quantization  $m_a(t) = m(t) + q(t)$ 

☐ Quantization SNR: SNR is an important measure of the distortion induced by the quantization process. Larger SQNR, better quality Signal (message) power

$$SNR_q = \frac{S_0}{N_q} = \frac{\overline{m}^2(t)}{\Delta^2/12} = 3L^2 \, \frac{\overline{m}^2(t)}{m_p^2} \qquad \qquad \begin{array}{ll} S_0 \text{ is proportional to the square of m(t), thus} \\ S_0 = \overline{m}^2(t) \end{array}$$

#### Quantization Error or Noise (4)

☐ To measure of the quality of received signal (that is, the ratio of the strength of the received signal S<sub>a</sub> relative to the strength of the error N<sub>q</sub> due to quantization).

 $SNR_q = \frac{S_0}{N_q} = \frac{\overline{m}^2(t)}{\Delta^2/12} = 3L^2 \left\{ \frac{\overline{m}^2(t)}{m_p^2} \right\}$ 

Quantization SNR depends on the power of the input signal.

 $SNR_{q}(dB) = 10 \log_{10}(L^{2}) + 10 \log_{10}\left\{\frac{3\overline{m}^{2}(t)}{m_{p}^{2}}\right\}$ 

 $SNR_q(dB) = 10\log_{10}(2^{2n}) + 10\log_{10}\left\{\frac{3\overline{m}^2(t)}{m_p^2}\right\}$ 

 $SNR_q(dB) = 20n\log_{10}(2) + 10\log_{10}\left\{\frac{3\overline{m}^2(t)}{m_p^2}\right\} \ \, \text{Each additional bit reduces} \\ \text{the quantization error by} \\ \text{about 6 dB}$ 

 $SNR_q(dB) = 6.02n + 10\log_{10} \left\{ \frac{3\overline{m}^2(t)}{m_{\tilde{p}}^2} \right\} \text{ As } \text{ n increases } 1 \text{ bit, SNR}$  \$\text{ SNR (in dB) of a Quantizer increases linearly and depends on n. If n increases 1 bit,}

SNR increases by 6 dB. To increase SNR of a Quantizer means more bits are required and therefore either a higher bandwidth or a longer time period is required to ransmit the PCM. This relationship shows that each added binary digit increases the SNR ratio by 6 dB.

### **Practice Problem**

- ☐ A digital communications link carries binary-coded words representing samples of an input signal  $x(t) = 3\cos 600\pi t +$ 2cos1800nt, the link is operated at 10,000 bits/s and each input sample is quantized into 1024 different levels.
  - a) What is the sampling frequency Fs?
  - b) What is the Nyquist rate for the signal x(t)?
  - What are the frequencies in the resulting discrete-time signal x[n]?
  - What is the resolution  $\Delta$  ?

a) Fs = 10k/log(1024) = 1k

b)  $Nq = Fmax^2 = 2^900 = 1800$ 

c) f1 = 300, f2 = 900. No aliasing  $x[n] = 3\cos(600npi/Fs) + 2\cos(1800npi/Fs)$ 

f1 = 0.3, f2 = 0.5

d) delta = (xmax - xmin)/(1024)= (3-2)/1024 = 1/1024

### Example (1)

- ☐ Given a 3-bit ADC channel accepts analog input ranging from 0 to 5 volts, determine the following:
  - a) number of quantization levels
  - b) step size of the quantizer or resolution
  - c) quantization level when the analog voltage is 3.2 volts
  - d) binary code produced by the ADC