Máximos e mínimos

Nesta aula estaremos explorando alguns procedimentos estratégicos para determinar os valores extremos de uma função real de variável real f(x), ou seja, o valor máximo e o valor mínimo de uma função contínua f, em um intervalo $I \subset \mathbb{R}$, no qual f tem derivada exceto possivelmente em um número finito de pontos, sem recorrer a um esboço do gráfico de f nesse intervalo.

Um teorema da Análise Matemática, conhecido na literatura como *Teorema de Weierstrass*, nos garante:

(Teorema de Weierstrass) Se uma função f é contínua em um intervalo fechado $[\alpha,b]$ (sendo α e b números reais), então existem pontos x_0 e x_1 em $[\alpha,b]$ tais que $f(x_0)$ e $f(x_1)$ são, respectivamente, os valores máximo e mínimo de f(x), para x em $[\alpha,b]$.

Os pontos x_0 e x_1 aos quais se refere o teorema de Weierstrass são chamados ponto de mínimo de f e ponto de máximo de f, respectivamente, no intervalo [a,b]. O teorema é ilustrado na figura 8.1.

Elucidando os conceitos aqui apresentados, sendo $I \subset D(f)$ um intervalo (limitado ou ilimitado), dizemos que

1. $f(x_0)$ é o valor mínimo de f (ou de f(x)) em I se

$$f(x_0) \le f(x)$$
, para cada x em I.

2. $f(x_1)$ é o valor máximo de f (ou de f(x)) em I se

$$f(x_1) \ge f(x)$$
, para cada x em I.

Figura 8.1. A função f, contínua em [a,b], tem x_0 e x_1 como seus pontos de *mínimo* e de *máximo*, respectivamente. $f(x_0)$ e $f(x_1)$ são os valores mínimo de máximo de f(x) em [a,b].

Por exemplo, no intervalo I = [-1,3], a função dada por $f(x) = x^2$ tem um ponto de mínimo $x_0 = 0$, sendo f(0) = 0 seu valor mínimo, pois $x^2 \ge 0$ para todo $x \in I$.

Nesse intervalo, f tem também um ponto de máximo $x_1 = 3$ pois se $-1 \le x \le 3$ então $f(x) = x^2 \le 9$ e $f(x_1) = f(3) = 9$ é o valor máximo de f(x) em I.

Observação 8.1 (Ínfimo e supremo de uma função em um intervalo).

- No intervalo aberto $I =]1, +\infty[$ a função $g(x) = 3 + \frac{1}{x}$ não tem valor mínimo e nem valor máximo. Para x > 1 temos também $\frac{1}{x} > 0$, logo $g(x) = 3 + \frac{1}{x} > 3$ para todo $x \in I$. Além disso, $\lim_{x \to +\infty} g(x) = 3$. Mas 3 não é o valor mínimo de g(x) em I, pois não existe $x_0 \in I$ com $g(x_0) = 3$. Neste contexto os matemáticos dizem que 3 é o valor ínfimo da função g no intervalo I.
- Se $x \in I$, temos x > 1 e então $\frac{1}{x} < 1$, daí $g(x) = 3 + \frac{1}{x} < 4$. Também $\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} (3 + \frac{1}{x}) = 4$. Mas 4 não é o valor máximo de g(x) no intervalo I pois não existe $x_1 \in I$ tal que $g(x_1) = 4$. Neste contexto os matemáticos dizem que 4 é o valor supremo da função g no intervalo I.

8.1 Estratégias para determinar máximos e mínimos de uma função contínua, em um intervalo

Sendo f uma função contínua no intervalo fechado [a,b], derivável exceto possivelmente em um número finito de pontos, como determinar os pontos do intervalo [a,b] nos quais f atinge seus valores máximo e mínimo? Uma solução deste problema seria esboçar o gráfico de f nesse intervalo, conforme as estratégias desenvolvidas nas aulas 6 e 7, e

então localizar os valores extremos de f. Mas como determinar os valores máximo e mínimo de f, no intervalo [a,b], sem recorrer ao estudo do esboço de seu gráfico? É isto que trataremos de responder.

Recapitulando um conceito introduzido na aula 6, diremos que x_0 é um *ponto de mínimo local de* f se existe um intervalo aberto $I \subset D(f)$, com $x_0 \in I$, tal que

$$f(x_0) \le f(x)$$
, para todo x em I

E neste caso, $f(x_0)$ é um valor mínimo local de f.

Figura 8.2. Pontos de mínimo típicos de uma função contínua no intervalo [α, b].

Figura 8.3. Pontos de máximo típicos de uma função contínua no intervalo [a, b].

Analogamente, diremos que x_1 é um ponto de máximo local de f, e que $f(x_1)$ é um valor máximo local de f, se existe um intervalo aberto $I \subset D(f)$, com $x_1 \in I$, tal que

$$f(x_1) \ge f(x)$$
, para todo x em I

Teorema 8.1. Se f tem derivada em um intervalo aberto I, e se $x_0 \in I$ é ponto de mínimo local de f, então $f'(x_0) = 0$. Se $x_1 \in I$ é ponto de máximo local de f, então $f'(x_1) = 0$.

AULA 8

Demonstração. Suponhamos que x_0 é ponto de mínimo local de f e que existe $f'(x_0)$. Então $f(x_0)$ é o valor mínimo de f(x) para x em um certo intervalo aberto $J \subset I$.

Mostraremos que $f'(x_0) = 0$, usando a definição de derivada.

Tome $\Delta x \neq 0$, com $x_0 + \Delta x \in J$.

Então
$$f(x_0) \le f(x_0 + \Delta x)$$
 e daí $\Delta f = f(x_0 + \Delta x) - f(x_0) \ge 0$.

Se
$$\Delta x > 0$$
, temos $\frac{\Delta f}{\Delta x} \ge 0$, e se $\Delta x < 0$, temos $\frac{\Delta f}{\Delta x} \le 0$.

Temos
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$
.

Neste caso,
$$f'(x_0) = \lim_{\Delta x \to 0^+} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{\Delta f}{\Delta x}.$$

$$\text{Mas } \lim_{\Delta x \to 0^+} \frac{\Delta f}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x > 0}} \frac{\Delta f}{\Delta x} \geq 0 \text{ e } \lim_{\substack{\Delta x \to 0^- \\ \Delta x < 0}} \frac{\Delta f}{\Delta x} = \lim_{\substack{\Delta x \to 0 \\ \Delta x < 0}} \frac{\Delta f}{\Delta x} \leq 0.$$

Logo,
$$f'(x_0) \ge 0$$
 e $f'(x_0) \le 0$, e portanto $f'(x_0) = 0$.

Deixamos ao leitor a dedução do resultado para pontos de máximo locais.

Observação 8.2. Observemos que se x_0 é um ponto de mínimo (absoluto) de f, então x_0 tem uma das seguintes características:

- (i) x_0 é também um ponto de mínimo local de f, e f tem derivada em x_0 . Neste caso, conforme o teorema 8.1, $f'(x_0) = 0$.
- (ii) x_0 é um ponto de mínimo local de f, mas f não tem derivada no ponto x_0 .
- (iii) x_0 é um dos extremos do intervalo [a,b], ou seja, $x_0 = a$ ou $x_0 = b$.

Os casos (i), (ii) e (iii) são ilustrados na figura 8.2.

Observação 8.3. Analogamente, se x_1 é um ponto de máximo de f, então x_1 tem uma das três seguintes características:

- (i) x_1 é também um ponto de máximo local de f, e f tem derivada em x_1 . Neste caso, conforme o teorema 8.1, $f'(x_1) = 0$.
- (ii) x_1 é um ponto de máximo local de f, mas f não tem derivada no ponto x_1 .
- (iii) x_1 é um dos extremos do intervalo [a,b], ou seja, $x_1 = a$ ou $x_1 = b$.

Esses casos são ilustrados na figura 8.3.

Definição 8.1. Um número real x é chamado um ponto crítico de f quando f'(x) = 0 ou quando f é contínua em x mas não existe f'(x).

Assim, um ponto de máximo ou de mínimo de uma função f, em um intervalo [a,b], é um ponto crítico de f ou uma das extremidades do intervalo, conforme a definição 8.1 e as observações 8.2 e 8.3 feitas anteriormente.

Exemplo 8.1. Determinar os valores máximo e mínimo de $f(x) = 2x^3 + 3x^2 - 12x$, no intervalo [-3,3].

Solução. A função f é contínua no intervalo [-3,3].

Temos
$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2)$$
.

As soluções de f'(x) = 0 são $x_1 = -2$ e $x_2 = 1$. Estes são os pontos críticos de f no intervalo [-3,3].

Calculando os valores de f nos extremos do intervalo e nos pontos críticos, temos:

$$f(x_1) = f(-2) = 20$$
, $f(x_2) = f(1) = -7$, $f(-3) = 9$ e $f(3) = 45$.

Assim sendo, por comparação dos valores obtidos, o ponto de mínimo de f, para $-3 \le x \le 3$, é $x_{min} = x_2 = 1$, sendo f(1) = -7 o valor mínimo de f nesse intervalo.

Já o ponto de máximo de f, para $-3 \le x \le 3$, é $x_{\text{max}} = 3$, sendo f(3) = 45 o valor máximo de f nesse intervalo. Como ilustração, temos um esboço do gráfico de f, no intervalo [-3,3], na figura 8.4.

Exemplo 8.2. Determinar os valores máximo e mínimo de $f(x) = \sqrt[3]{x^2} \cdot (x-2)^2$, no intervalo $-1 \le x \le 1$.

Solução. A função f é contínua no intervalo [-1,1]. $f'(x) = \frac{4(2x^2 - 5x + 2)}{3\sqrt[3]{x}}$.

Temos f'(x) = 0 se e somente se x = 2 ou x = 1/2.

Agora, 0 também é um ponto crítico de f, uma vez que f é contínua no ponto 0, mas não se define f'(0).

Assim, Como $2 \notin [-1, 1]$, os pontos críticos de f são $x_1 = 1/2$ e $x_2 = 0$.

Calculando os valores de f nos extremos do intervalo e nos pontos críticos, temos:

$$f(x_1) = f(1/2) = \frac{9}{4\sqrt[3]{4}} \approx 1,4$$
 $(\sqrt[3]{4} \approx 1,6)$, $f(0) = 0$, $f(-1) = 9$ e $f(1) = 1$.

Portanto, f(0) = 0 é o valor mínimo de f, enquanto que f(-1) = 9 é seu valor máximo.

Figura 8.4. No intervalo [-3,3], -2 é ponto de máximo local de f e 3 é o ponto de máximo absoluto. O ponto 1 é ponto de mínimo local e absoluto de f. f(1) = -7 e f(3) = 45 são os valores mínimo e máximo de f no intervalo.

Questão Como determinar os pontos de um intervalo $I \subset D(f)$, nos quais f atinge seus valores máximo e mínimo, se I é um intervalo aberto ou ilimitado, e f é contínua em I?

Para esta pergunta a resposta é:

Sendo f contínua em um intervalo I, comparamos os valores de f nos extremos que efetivamente pertencem ao intervalo com os valores de f nos seus pontos críticos desse intervalo. Comparamos ainda esses valores com os limites de f(x) quando x tende a extremos que não pertencem ao intervalo.

Como reforço estratégico na pesquisa de máximos e mínimos locais, temos também o seguinte teorema.

Teorema 8.2. Sendo f uma função contínua, com f' também contínua, em um intervalo aberto I, e x_0 um ponto de I,

- 1. se $f'(x_0) = 0$ e $f''(x_0) > 0$, então x_0 é um ponto de mínimo local de f;
- 2. se $f'(x_0) = 0$ e $f''(x_0) < 0$, então x_0 é um ponto de máximo local de f;

Não faremos a demonstração do teorema 8.2 aqui, mas faremos a seguinte observação geométrica, que o torna intuitivamente óbvio.

Figura 8.5. O teste da segunda derivada quando $f'(x_0) = 0$. Se $f''(x_0) > 0$, x_0 é ponto de mínimo local. Se $f''(x_0) < 0$, x_0 é ponto de máximo local.

Se $f'(x_0) = 0$, a reta tangente ao gráfico de f, em $P = (x_0, f(x_0))$, é horizontal.

Se, além disso, $f''(x_0) > 0$, temos a concavidade do gráfico de f, em P, voltada para cima, e assim x_0 é um ponto de mínimo local de f. Se $f''(x_0) < 0$, a concavidade do gráfico de f, em P, é voltada para baixo, e x_0 é então um ponto de máximo local de f. Estas duas possibilidades são ilustradas na figura 8.5.

Exemplo 8.3. Determinar os valores máximo e mínimo de $f(x) = x + \frac{1}{x}$, para x > 0.

Solução. Estamos procurando os valores máximo e mínimo de f no intervalo $]0,+\infty[$. Temos $f'(x)=1-\frac{1}{x^2}$, e portanto f'(x)=0 (com x>0) se e somente se x=1.

Agora, $\lim_{x\to 0^+} f(x) = 0 + \frac{1}{0^+} = +\infty$ e $\lim_{x\to +\infty} f(x) = +\infty$. Portanto, f não tem valor máximo em $]0, +\infty[$.

Temos ainda $f''(x) = \frac{2}{x^3}$ e f''(1) > 0. Assim, $x_1 = 1$ é ponto de mínimo local de f. Como f não tem outros pontos críticos, 1 é o ponto de mínimo global de f, sendo f(1) = 2 o valor mínimo de f no intervalo $]0, +\infty[$.

8.2 Aplicações a problemas de otimização

Exemplo 8.4. Qual é a maior área retangular que pode ser cercada com 200 m de tela de arame?

Solução.

(Passo 1) Analisamos o problema, e desenhamos um diagrama incluindo toda a informação. Introduzimos variáveis.

Fazemos isto na figura 8.6.

Aula~8

Figura 8.6. O perímetro do retângulo é 2x + 2y = 200 m.

(Passo 2) Expressamos a quantidade a ser otimizada como uma função de uma variável. Determinamos o domínio dessa função a partir das condições do problema.

A área A do retângulo deve ser maximizada, sob a condição de que o perímetro é

$$2x + 2y = 200$$
 metros

Essa área é dada por A = xy. Como y = 100 - x, temos

$$A = A(x) = x(100 - x)$$

e, nas condições do problema, temos $0 \le x \le 100$.

(Passo 3) Determinamos o ponto de máximo e o valor máximo da função, no intervalo em que ela está definida.

Usando os procedimentos discutidos anteriormente, sendo $A(x) = 100x - x^2$, temos A'(x) = 100 - 2x.

A'(x) = 0 se e somente se x = 50. Temos $A(50) = 50 \cdot (100 - 50) = 50^2 = 2500$. Temos ainda A(0) = A(100) = 0 (valor mínimo da área).

Assim, o valor máximo de A(x) é atingido quando x = 50 m. Assim, o retângulo de perímetro 200 m, com área máxima, é um quadrado de 50 m de lado.

Exemplo 8.5. Uma grande caixa deve ser construída cortando-se quadrados iguais dos quatro cantos de uma folha retangular de zinco, de 3 m por 8 m, dobrando-se os quatro lados (abas laterais) para cima e soldando-se as arestas verticais que ficaram justapostas. Encontre o maior volume possível para esta caixa.

Solução.

(1) Um diagrama contendo todas as informações do problema, bem como a introdução de uma variável, é mostrado na figura 8.7

Figura 8.7. Um quadrado de lado x será recortado de cada canto da folha retangular. A parte remanescente da folha será dobrada segundo a linha tracejada para formar a caixa.

(2) O volume da caixa ilustrada no diagrama da figura 8.7 é dado por

$$V = V(x) = x(8-2x)(3-2x)$$
, para $0 \le x \le 3/2$

Note que o lado x do quadrado recortado não pode exceder a metado do lado menor do retângulo, daí a condição $x \le 3/2$. A rigor deveríamos considerar x no intervalo]0,3/2[, mas vamos tomar o intervalo fechado para descomplicar.

(3) V'(x) = 0 se e somente se x = 2/3 ou x = 3 (esta última solução está descartada, pois $3 \notin [0, 3/2]$).

O único ponto crítico de V é 2/3. Nas extremidades do intervalo [0,3/2] temos V=0. Como $V\geq 0$, o ponto crítico só pode ser um ponto de máximo local, e portanto de máximo absoluto.

Assim, $x_0 = 2/3$ é ponto de máximo de V, e as dimensões da caixa de volume máximo são $8 - x_0 = 20/3$, $3 - 2x_0 = 5/3$ e $x_0 = 2/3$ m, tendo ela volume 200/27 m³.

Exemplo 8.6. Deseja-se construir uma lata cilíndrica totalmente fechada, de volume v, gastando-se, em sua confecção, a menor quantidade de material possível. Determine a razão entre a altura e o diâmetro dessa lata.

Solução.

- (1) Diagramas contendo todas as informações do problema, bem como a introdução de uma variável, estão na figura 8.8.
- (2) A superfície externa total da lata cilíndrica, ilustrada na figura 8.8, é dada por

$$S = 2\pi r^2 + 2\pi rh$$

Figura 8.8. Dedução da área externa total de um cilindro de raio da base r e altura h.

Como $\pi r^2 h = \nu$, temos $h = \frac{\nu}{\pi r^2}$, e então

$$S = S(r) = 2\pi r^2 + \frac{2\nu}{r}$$

sendo S(r) definida somente para r > 0.

(3)
$$S'(r) = 4\pi r - \frac{2\nu}{r^2}$$
.

S'=0 se e somente se $r=\sqrt[3]{\frac{\nu}{2\pi}}$, e este é o único ponto crítico de S no intervalo r>0.

Temos também que $\lim_{r\to 0} S(r) = +\infty$ e $\lim_{r\to +\infty} S(r) = +\infty$. Assim, S(r) não tem valor máximo, e seu único ponto crítico só pode ser ponto de mínimo local. Isto é confirmado observando-se que $S''(r) = 4\pi + \frac{4\nu}{r^3} > 0$ para todo r > 0. Portanto, o gráfico de S = S(r) tem convavidade voltada para cima, o que confirma $r = \sqrt[3]{\frac{\nu}{2\pi}}$ como seu ponto de mínimo local, e também ponto de mínimo absoluto da função S.

Sendo $r = \sqrt[3]{\nu/(2\pi)}$, temos

$$\frac{h}{r} = \frac{v}{\pi r^3} = \frac{v}{\pi \left(\sqrt[3]{\frac{v}{2\pi}}\right)^3} = \frac{v}{\pi \left(\frac{v}{2\pi}\right)} = 2$$

Portanto, h = 2r, ou seja, a altura da lata deve ser igual ao diâmetro da base se quisermos minimizar o material a ser gasto em sua confecção.

Este é o padrão, ao menos aproximado, de algumas latas de conservas, tais como latas de creme de leite e latas de compotas de frutas. Por questões de praticidade, muitas latas fogem deste padrão, como por exemplo as latas de óleo comestível.

8.3 Problemas

Encontre os pontos de máximo (x_{max}) e de mínimo (x_{min}) , bem como os valores $f(x_{max})$ e $f(x_{min})$, máximo e mínimo, de cada função f(x) dada, no intervalo indicado.

1.
$$f(x) = \sqrt[3]{x}(x+4)$$
, $x \in [-4,2]$
Resposta. $x_{min} = -1$, $x_{max} = 2$, $f(-1) = -3$, $f(2) = 6\sqrt[3]{2} \approx 7$, 6.

2.
$$f(x) = x^2 + 2x - 4$$
, $x \in [-2, 2]$.
Resposta. $x_{min} = -1$, $x_{max} = 2$, $f(-1) = -5$, $f(2) = 4$.

3.
$$f(x) = \frac{x}{1 + x^2}$$
, $x \in \mathbb{R}$.
Resposta. $x_{min} = -1$, $x_{max} = 1$, $f(-1) = -1/2$, $f(1) = 1/2$.

4.
$$f(x) = \frac{x}{1-x^2}, x \neq \pm 1.$$

Resposta. f não tem valor máximo e nem mínimo.

Resolva os seguintes problemas de otimização.

1. Um recipiente de lata, de forma cilíndrica e aberto no topo, deve ter capacidade de ν litros. Determine a razão entre a altura h e o diâmetro d da base de modo que a quantidade de lata usada na sua fabricação seja a menor possível.

Resposta.
$$h/d = 1/2$$
.

2. Um estudante quer construir um viveiro retângular para seu hamster, usando parte de uma parede como um dos lados e cercando os demais três lados com 3 metros de tela disponíveis, obtendo a maior área retangular possível. Quais devem ser as dimensões de seu viveiro?

Resposta. O viveiro deve ter 1,5 m na frente e 0,75 m nos lados.

3. Determine as dimensões de um cilindro, de volume máximo, inscrito em uma esfera de raio R. Determine então a razão entre o diâmetro da base e a altura do cilindro.

Sugestão. Faça um desenho visualizando o cilindro de perfil dentro da esfera. No desenho, você terá um retângulo dentro de um círculo. Demarque a altura h do cilindro, e diâmetro da sua base, 2r. Demarque também o raio R da esfera dentro do retângulo. Use o teorema de Pitágoras obter uma relação entre h e r. O volume do cilindro é dado por V = (área da base) · (altura) = $\pi r^2 \cdot h$.

Resposta.
$$r = raio da base = \sqrt{\frac{2}{3}}R$$
, $h = altura do cilindro = $\sqrt{2}r$. $2r/h = \sqrt{3}/2$.$

4. Determine as dimensões de um cilindro, inscrito em uma esfera de raio R, cuja área da superfície externa total é a máxima possível. Determine então a razão entre o diâmetro da base e a altura do cilindro.

Resposta.
$$r = raio da base = \sqrt{\frac{5+\sqrt{5}}{10}}R$$
, $h = altura do cilindro = $2\sqrt{\frac{5-\sqrt{5}}{10}}R$. $2r/h = \frac{\sqrt{5}+1}{2}$ (esta é a *razão área maior*¹).$

Sugestão. Uma atenção necessária. Escolhendo r como variável, em algum momento serão buscadas soluções da equação $r\sqrt{R^2-r^2}=2r^2-R^2$. Quadrando ambos os membros chegaremos a $r^2=\frac{5\pm\sqrt{5}}{10}R^2$. Mas se $r^2=\frac{5-\sqrt{5}}{10}R^2$ então $2r^2-R^2<0$, o que descarta um dos valores de r^2 .

5. Determine as dimensões de um retângulo inscrito na elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, de área máxima, com dois de seus lados paralelos ao eixo x (e os outros dois paralelos ao eixo y). Sugestão. Os quatro vértices do retângulo, todos pertencentes à elipse, serão pontos (x,y), (-x,y), (x,-y) e (-x,-y).

Resposta. O retângulo tem dimensões $\sqrt{2}\alpha$ e $\sqrt{2}b$.

6. Quer-se construir um tanque de aço para armazenar gás propano, com a forma de um cilindro circular reto, com um hemisfério (semi-esfera) em cada extremidade. Se a capacidade desejada para o tanque é 100 decímetros cúbicos (litros), quais as dimensões que exigem a menor quantidade de aço? (Despreze a espessura das paredes do tanque).

Resposta. O tanque deve ser esférico, de raio $\sqrt[3]{75/\pi} \approx 2,88$ metros.

- 7. Qual ponto da parábola $y = x^2 + 1$ está mais próximo do ponto A = (3,1)? Sugestão. A distância de um ponto qualquer P = (x,y) ao ponto A é dada por $d = \sqrt{(x-3)^2 + (y-1)^2}$. Se P é um ponto da parábola, temos $y = x^2 + 1$, e então $d = \sqrt{(x-3)^2 + x^4}$. Como $d \ge 0$, temos que d terá seu valor mínimo quando d^2 assumir seu valor mínimo. Assim, basta procurarmos o valor mínimo de $f(x) = (x-3)^2 + x^4$. Resposta. (1,2).
- 8. Um veterinário tem 100 m de tela de arame. Com isto deseja construir seis canis, primeiro cercando uma região retangular e depois subdividindo essa região em seis retângulos menores, através de cinco cercas divisórias internas, paralelas a um dos lados. Que dimensões externas, dessa região retangular, maximizam sua área total, se o veterinário gasta os 100 m de tela nessa construção?

Resposta. 25 m por $50/7 \approx 7,14$ m.

 $^{^1\}text{O}$ número $\varphi=\frac{\sqrt{5}+1}{2}$, chamado *razão áurea maior* aparece em geometria como a razão entre a diagonal e o lado de um pentágono regular. Seu inverso $\varphi^{-1}=\frac{\sqrt{5}-1}{2}=\varphi-1$ é a *razão áurea menor*.

9. Ao procurar o ponto da hipérbole $x^2 - y^2 = 1$ mais próximo da origem, Joãozinho raciocinou da seguinte maneira.

Temos que procurar, dentre os pontos da hipérbole, aquele para o qual $d=\sqrt{x^2+y^2}$ tem valor mínimo. Como $d\geq 0$, d será mínimo quando d^2 for mínimo. Agora, sendo P=(x,y) um ponto da hipérbole, temos $y^2=x^2-1$, logo $d^2=x^2+y^2=2x^2-1$.

Procurando o valor mínimo de $d^2 = f(x) = 2x^2 - 1$, calculamos f'(x) = 4x. Temos f'(x) = 0 se e somente se x = 0. Para x = 0 porém, temos $y^2 = 0^2 - 1 = -1$, uma impossibilidade. Logo, não há nenhum ponto da hipérbole cuja distância à origem seja mínima.

Explique o erro no raciocínio de Joãozinho, já que um esboço da hipérbole (faça-o) revela que os pontos $(\pm 1,0)$ são seus pontos mais próximos da origem.

Sugestão. Analisando-se a equação da hipérbole, em quais intervalos de valores de x define-se a coordenada y? Isto define o domínio da função d.

