Niech X i Y będą zbiorami.

Definicja 1 Relacją dwuargumentową (binarną) R nazywamy podzbiór iloczynu kartezjańskiego dwóch zbiorów, czyli $R \subseteq X \times Y$.

Przykład 2 1. $mniejszość \leq \mathbb{R} \times \mathbb{R} \ np.: \langle 2, 4 \rangle \in <$

2. $podzielność \mid \subseteq \mathbb{N}^+ \times \mathbb{N}^+ \ np.: \langle 2, 4 \rangle \in \mid$

Definicja 3 Niech $R \subseteq X \times Y$ będzie relacją. Zbiór $D_R = \{x \in X : \exists y \in Y \langle x, y \rangle \in R\}$ nazywamy dziedziną relacji R.

Na ogół piszemy xRy zamiast $\langle x, y \rangle \in R$.

Jeśli X = Y, to mówimy, że relacja $R \subseteq X \times X$ jest określona w zbiorze X.

Pustą relacją nazywamy relację nie zawierającą żadnej pary (czyli zbór pusty): $\emptyset \subseteq X \times Y$.

Relacją pełną nazywamy relację zawierającą wszystkie pary czyli $R = X \times Y$.

Definicja 4 Relacją odwrotną do relacji $R \subseteq X \times Y$ nazywamy relację $R^{-1} = \{ \langle y, x \rangle \in Y \times X : \langle x, y \rangle \in R \} \subseteq Y \times X.$

Definicja 5 Złożeniem relacji $R \subseteq X \times Y$ i $S \subseteq Y \times Z$ nazywamy relację $S \circ R = \{\langle x, z \rangle \in X \times Z : \exists y \ xRy \land ySz\}.$

Definicja 6 Relację $R \subseteq X \times X$ nazywamy:

- zwrotnq, $jeśli \forall x \in X \ xRx$. $Relacjami \ zwrotnymi \ sq \ np. =, \leq, |$
- symetrycznq, $jeśli \forall x, y \in X \ xRy \Rightarrow yRx$. $Relacjami \ symetrycznymi \ sq. np. =, ||$
- przechodnią, jeśli $\forall x,y,z \in X \ xRy \land yRz \Rightarrow xRz$. Relacjami przechodnimi są np. =, \leq
- antysymetryczną, jeśli $\forall x, y \in X \ xRy \land yRx \Rightarrow x = y$. Relacjami antysymetrycznymi są np. \leqslant , \subseteq
- przeciwzwrotną, jeśli $\forall x \in X \sim xRx$. Relacjami przeciwzwrotnymi są np. \neq , <
- przeciwsymetryczną, jeśli $\forall x,y \in X \ xRy \Rightarrow \sim yRx$. Relacją przeciwsymetryczną jest np. <
- $sp\acute{o}jnq$, $je\acute{s}li \ \forall x,y \in X \ xRy \lor yRx \lor x=y$. $Relacjami \ sp\acute{o}jnymi \ sq \ np. <, \leqslant$

Definicja 7 Relację $R \subseteq X \times X$ nazywamy relacją równoważności, jeśli jest zwrotna, symetryczna i przechodnia.

Przykład 8 Przykładami relacji równoważności są:

- 1. $Relacja\ r\'owno\'sci = \subseteq X \times X$, $dla\ dowolnego\ zbioru\ X$.
- 2. Relacja pełna $R = X \times X$, dla dowolnego zbioru X.

- 3. $Relacja \equiv_n \subseteq \mathbb{Z} \times \mathbb{Z} \ przystawania \ modulo \ n \in \mathbb{N}^+ \ (z_1 \equiv_n z_2 \iff n|z_1-z_2).$
- 4. Relacja $R \subseteq \mathbb{R} \times \mathbb{R}$ taka, że $xRy \iff \exists q \in \mathbb{Q} \ x + q = y$.
- 5. Niech $X = \{\langle \overline{a}, \overline{b} \rangle \mid \overline{a} = \langle a_1, \dots, a_n \rangle, \overline{b} = \langle b_1, \dots, b_n \rangle \in \mathbb{R}^n \}$. Relacja $R \subseteq X \times X$ taka, że $\langle \overline{a}, \overline{b} \rangle R \langle \overline{c}, \overline{d} \rangle \iff \forall i \in \{1, \dots, n\} \ b_i a_i = d_i c_i$.
- 6. Niech X będzie zbiorem formuł rachunku zdań. Relacja $R \subseteq X \times X$ taka, że $\alpha R\beta \Leftrightarrow \alpha \Rightarrow \beta \ i \ \beta \Rightarrow \alpha \ sq \ tautologiami.$

Definicja 9 Niech $\sim \subseteq X \times X$ będzie relacją równoważności i niech $a \in X$. Zbiór $[a]_{\sim} = \{x \in X : x \sim a\}$ nazywamy klasą abstrakcji elementu a. Element a nazywamy reprezentantem klasy.

Jeżeli z kontekstu wynika jaką relację równoważności rozważamy, to zamiast $[a]_{\sim}$ będziemy czasami pisać [a].

Własności klas abstrakcji relacji równoważności $\sim \subseteq X \times X$:

- 1. $\forall a \in X \ a \in [a]_{\sim}$
- 2. $\forall a, b \in X \ b \in [a]_{\sim} \Rightarrow a \in [b]_{\sim}$
- 3. $\forall a, b \in X \ [a]_{\sim} = [b]_{\sim} \Leftrightarrow a \sim b$
- 4. $\forall a, b \in X \ [a]_{\sim} = [b]_{\sim} \vee [a]_{\sim} \cap [b]_{\sim} = \emptyset$
- 5. $\bigcup_{a \in X} [a]_{\sim} = X$

Przykład 10 Niech X będzie zbiorem i niech $a \in X$.

- 1. $[a]_{=} = \{x \in X : x = a\} = \{a\}.$
- 2. Niech $R = X \times X$ będzie relacją pełną. Wtedy $[a]_R = \{x \in X : xRa\} = X$.
- 3. Niech $X=\mathbb{Z}$. Wtedy $[a]_{\equiv_n}=\{x\in\mathbb{Z}:x\equiv_n a\}=\{x\in\mathbb{Z}:n|x-a\}=\{a+k\cdot n:k\in\mathbb{Z}\}.$

Definicja 11 Niech \sim będzie relacją równoważności na zbiorze X. Zbiorem ilorazowym nazywamy zbiór klas abstrakcji relacji \sim i oznaczamy $X/_{\sim}$.

Przykład 12 $\mathbb{Z}/_{\equiv n} = \{[0]_{\equiv n}, [1]_{\equiv n}, \dots, [n-1]_{\equiv n}\}.$

Twierdzenie 13 Niech $\{A_i: i \in I\}$ będzie rodziną podzbiorów zbioru X taką, że:

- 1. $\forall i \in I \ A_i \neq \emptyset$
- 2. $\forall i, j \in I \ i \neq j \Rightarrow A_i \cap A_j = \emptyset$
- 3. $\bigcup_{i \in I} A_i = X$.

Wtedy istnieje relacja równoważności \sim na zbiorze X taka, że $X/_{\sim} = \{A_i : i \in I\}$.

Definicja 14 Niech X_1, \ldots, X_n będą zbiorami i niech $n \in \mathbb{N}$. Relacją n-arną nazywamy podzbiór iloczynu kartezjańskiego $R \subseteq X_1 \times \ldots \times X_n$.