Data normalization

What is Data Normalization?

Data normalization means transforming your numerical features so that they're on the same scale.

Imagine two features:

Height (cm): [150, 160, 170, 180]

Salary (\$): [30000, 50000, 70000, 150000]

Without normalization, many ML algorithms will think salary is more important just because it's bigger in value — even if height matters more.

≪After normalization, all features have equal importance for the model.

✓ Min-Max Scaling

2 Result:

Scales values between 0 and 1

Sensitive to outliers: a single large value can distort the scale.

When to use:

Data is bounded and no extreme outliers

Required for neural networks, image pixels (0–255)

```
# Min-Max Scaling
```

scaler = MinMaxScaler()

df['Income_MinMax'] = scaler.fit_transform(df[['Income']])

print(df)

Income_MinMax

- 0 20000 0.00
- 1 30000 0.13
- 2 40000 0.25
- 3 50000 0.38
- 4 100000 1.00

✓ Standard Scaling (Z-score Normalization)

There is no fixed minimum or maximum in StandardScaler.

It centers the data around 0 with a standard deviation of 1.

output=[-0.83, -0.62, -0.21, 0.17, 1.48]

Equation:

$$z=rac{x-\mu}{\sigma}$$

Where:

- x = original value
- μ = mean of the feature/column
- σ = standard deviation of the feature/column
- z = standardized (scaled) value

stand	ard	_	OT	717	tı 🔿	n
STAIL	เสเน		-v	14		

Standard deviation tells us how spread out the values in a dataset are from the mean (average).:				
☐ If all values are very close to the mean, std is small				
☐ If values are widely spread, std is large				
☐ If all values are equal, std = 0				
This means:				
Values < mean → negative				
Values > mean → positive				
Q Result:				
Mean = 0, Standard Deviation = 1				
Keeps outliers but reduces impact				
✓ When to use:				
Data contains outliers				
Used for PCA, SVM, K-Means, Linear Models				
Summary: Why Std = 1?				
Reason	Benefit			
Equal feature weight	No one feature dominates others			
Speed & stability	Improves gradient descent			
Unit-free comparison	Z-scores make data universal			

```
Code:

scaler_std = StandardScaler()

df['Income_Standard'] = scaler_std.fit_transform(df[['Income']])

print(df)
```