Chapter 4. Vector Geometry

▼ 4.1 Vectors and Lines

Vectors in =³

Definition:
$$= 3 = \left\{ v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} ; x, y, z = 2 \right\}$$

FIGURE 1

• Point
$$P(x, y, z)$$
 4 vector $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = [xyz]^T$.

0

▼ Length and Direction

Let
$$\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be a vector.

(1)
$$\|\mathbf{v}\| = \sqrt{x^2 + y^2 + z^2}$$
.

- (2) $\mathbf{v} = \mathbf{0}$ if and only if $\|\mathbf{v}\| = 0$
- (3) $||a\mathbf{v}|| = |a| ||\mathbf{v}||$ for all scalars a.

Exam 1

If
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 then $\|\mathbf{v}\| = \sqrt{4+1+9} = \sqrt{14}$. Similarly if $\mathbf{v} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ in 2-space then $\|\mathbf{v}\| = \sqrt{9+16} = 5$.

Theorem 2

Let $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{w} \neq \mathbf{0}$ be vectors in \mathbb{R}^3 . Then $\mathbf{v} = \mathbf{w}$ as matrices if and only if \mathbf{v} and \mathbf{w} have the same direction and the same length.

O

▼ Geometry vector

Definition:

Suppose that A and B are any two points in \mathbb{R}^3 . In Figure 4 the line segment from A to B is denoted \overrightarrow{AB} and is called the **geometric vector** from A to B. Point A is called the **tail** of \overrightarrow{AB} , B is called the **tip** of \overrightarrow{AB} , and the **length** of \overrightarrow{AB} is denoted $\|\overrightarrow{AB}\|$.

- A vector $v = [x \ y \ z]^T$ can be represented by many geometry vectors \overrightarrow{AB}
- **Theorem**

Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be two points. Then:

1.
$$\overrightarrow{P_1P_2} = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix}$$

- 2. The distance between P_1 and P_2 is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$.
- **Exam**

The distance between $P_1(2, -1, 3)$ and $P_2(1, 1, 4)$ is $\sqrt{(-1)^2 + (2)^2 + (1)^2} = \sqrt{6}$, and the vector from P_1 to P_2 is $\overrightarrow{P_1P_2} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.

O

▼ Theorem 5

Theorem 5

Two nonzero vectors \mathbf{v} and \mathbf{w} are parallel if and only if one is a scalar multiple of the other.

Exam

Given points P(2, -1, 4), Q(3, -1, 3), A(0, 2, 1), and B(1, 3, 0), determine if \overrightarrow{PQ} and \overrightarrow{AB} are parallel.

▼ Vector Equation of Line

Definition:

O

A nonzero vector $d \le 0$ is called a *direction vector* for the line if it is parallel to \overrightarrow{AB} for some pair of distinct points A and B on the line.

Vector Equation of a Line

The line parallel to $\mathbf{d} \neq \mathbf{0}$ through the point with vector \mathbf{p}_0 is given by

$$\mathbf{p} = \mathbf{p}_0 + t\mathbf{d}$$
 t any scalar

In other words, the point \mathbf{p} is on this line if and only if a real number t exists such that $\mathbf{p} = \mathbf{p}_0 + t\mathbf{d}$.

In component form the vector equation becomes

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Equating components gives a different description of the line.

Parametric Equations of a Line

The line through $P_0(x_0, y_0, z_0)$ with direction vector $\mathbf{d} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \neq \mathbf{0}$ is given by

$$x = x_0 + ta$$

 $y = y_0 + tb$ t any scalar
 $z = z_0 + tc$

In other words, the point P(x, y, z) is on this line if and only if a real number t exists such that $x = x_0 + ta$, $y = y_0 + tb$, and $z = z_0 + tc$.

Exam 8

Find the equations of the line through the points $P_0(2, 0, 1)$ and $P_1(4, -1, 1)$.

Solution \blacktriangleright Let $\mathbf{d} = \overrightarrow{P_0P_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ denote the vector from P_0 to P_1 . Then \mathbf{d} is

parallel to the line (P_0 and P_1 are on the line), so **d** serves as a direction vector for the line. Using P_0 as the point on the line leads to the parametric equations

$$x = 2 + 2t$$

 $y = -t$ t a parameter $z = 1$

Note that if P_1 is used (rather than P_0), the equations are

$$x = 4 + 2s$$

 $y = -1 - s$ s a parameter
 $z = 1$

These are different from the preceding equations, but this is merely the result of a change of parameter. In fact, s = t - 1.

0

Exam 9

EXAMPLE 9

Find the equations of the line through $P_0(3, -1, 2)$ parallel to the line with equations

$$x = -1 + 2t$$
$$y = 1 + t$$
$$z = -3 + 4t$$

Solution \triangleright The coefficients of t give a direction vector $\mathbf{d} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ of the given

line. Because the line we seek is parallel to this line, \mathbf{d} also serves as a direction vector for the new line. It passes through P_0 , so the parametric equations are

$$x = 3 + 2t$$
$$y = -1 + t$$
$$z = 2 + 4t$$

▼ 4.2 Projections and Planes

▼ Dot Product of two vectors

Given vectors
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, their **dot product** $\mathbf{v} \cdot \mathbf{w}$ is a number defined
$$\mathbf{v} \cdot \mathbf{w} = x_1 x_2 + y_1 y_2 + z_1 z_2 = \mathbf{v}^T \mathbf{w}$$

Because $\mathbf{v} \cdot \mathbf{w}$ is a number, it is sometimes called the scalar product of \mathbf{v} and \mathbf{w} .

▼ Exam1

EXAMPLE 1

If
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$, then $\mathbf{v} \cdot \mathbf{w} = 2 \cdot 1 + (-1) \cdot 4 + 3 \cdot (-1) = -5$.

0

▼ Angle of two vectors

Now let \mathbf{v} and \mathbf{w} be nonzero vectors positioned with a common tail as in Figure 3. Then they determine a unique angle θ in the range

$$0 \le \theta \le \pi$$

■ FIGURE 3

Theoerem

Theorem 2

Let \mathbf{v} and \mathbf{w} be nonzero vectors. If θ is the angle between \mathbf{v} and \mathbf{w} , then

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

Exam

EXAMPLE 3

Compute the angle between $\mathbf{u} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$.

Solution \blacktriangleright Compute $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{-2 + 1 - 2}{\sqrt{6}\sqrt{6}} = -\frac{1}{2}$. Now recall that

 $\cos\theta$ and $\sin\theta$ are defined so that $(\cos\theta,\sin\theta)$ is the point on the unit circle determined by the angle θ (drawn counterclockwise, starting from the positive x axis). In the present case, we know that $\cos\theta=-\frac{1}{2}$ and that $0\leq\theta\leq\pi$. Because $\cos\frac{\pi}{3}=\frac{1}{2}$, it follows that $\theta=\frac{2\pi}{3}$ (see the diagram).

O

O ▼ Def

Definition 4.5

Two vectors ${\bf v}$ and ${\bf w}$ are said to be **orthogonal** if ${\bf v}={\bf 0}$ or ${\bf w}={\bf 0}$ or the angle between them is $\frac{\pi}{2}$.

V

Theorem

Theorem 3

Two vectors \mathbf{v} and \mathbf{w} are orthogonal if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

EXAMPLE 4

Show that the points P(3, -1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right triangle.

Solution ▶ The vectors along the sides of the triangle are

$$\overrightarrow{PQ} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \overrightarrow{PR} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}, \text{ and } \overrightarrow{QR} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

Evidently $\overrightarrow{PQ} \cdot \overrightarrow{QR} = 2 - 2 + 0 = 0$, so \overrightarrow{PQ} and \overrightarrow{QR} are orthogonal vectors. This means sides PQ and QR are perpendicular—that is, the angle at Q is a right angle.

O

•

C

Projection

The vector $\mathbf{u}_1 = \overrightarrow{QP}_1$ in Figure 5 is called **the projection of u on d.** It is denoted

$$\mathbf{u}_1 = \operatorname{proj}_{\mathbf{d}} \mathbf{u}$$

(b)

■ FIGURE 5

Theorem 4

Theorem 4

Let \mathbf{u} and $\mathbf{d} \neq \mathbf{0}$ be vectors.

- 1. The projection of \mathbf{u} on \mathbf{d} is given by $\operatorname{proj}_{\mathbf{d}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d}$.
- 2. The vector $\mathbf{u} \operatorname{proj}_{\mathbf{d}} \mathbf{u}$ is orthogonal to \mathbf{d} .

O

▼ Exam 7

Find the projection of $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ on $\mathbf{d} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and express $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ where \mathbf{u}_1 is parallel to \mathbf{d} and \mathbf{u}_2 is orthogonal to \mathbf{d} .

Solution \triangleright The projection \mathbf{u}_1 of \mathbf{u} on \mathbf{d} is

$$\mathbf{u}_1 = \operatorname{proj}_{\mathbf{d}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d} = \frac{2+3+3}{1^2 + (-1)^2 + 3^2} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \frac{8}{11} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

Hence $\mathbf{u}_2 = \mathbf{u} - \mathbf{u}_1 = \frac{1}{11} \begin{bmatrix} 14 \\ -25 \\ -13 \end{bmatrix}$, and this is orthogonal to \mathbf{d} by Theorem 4 (alternatively, observe that $\mathbf{d} \cdot \mathbf{u}_2 = 0$). Since $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, we are done.

O

Exam 8

EXAMPLE 8

Find the shortest distance (see diagram) from the point P(1, 3, -2) to the line through $P_0(2, 0, -1)$ with direction vector $\mathbf{d} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. Also find the point Q that lies on the line and is closest to P.

Solution Let $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix}$ denote the vector from P_0 to P, and let

 \mathbf{u}_1 denote the projection of \mathbf{u} on \mathbf{d} . Thus

$$\mathbf{u}_1 = \frac{\mathbf{u} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d} = \frac{-1 - 3 + 0}{1^2 + (-1)^2 + 0^2} \mathbf{d} = -2\mathbf{d} = \begin{bmatrix} -2\\2\\0 \end{bmatrix}$$

by Theorem 4. We see geometrically that the point Q on the line is closest to P, so the distance is

$$\|\overrightarrow{QP}\| = \|\mathbf{u} - \mathbf{u}_1\| = \begin{bmatrix} 1\\1\\-1 \end{bmatrix} = \sqrt{3}$$

To find the coordinates of Q, let \mathbf{p}_0 and \mathbf{q} denote the vectors of P_0 and Q,

respectively. Then
$$\mathbf{p}_0 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$
 and $\mathbf{q} = \mathbf{p}_0 + \mathbf{u}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$.

Hence Q(0, 2, -1) is the required point. It can be checked that the distance from Q to P is $\sqrt{3}$, as expected.

▼ Plane

Definition 4.7

A nonzero vector \mathbf{n} is called a **normal** for a plane if it is orthogonal to every vector in the plane.

■ FIGURE 6

▼ Scalar Equation of a Plane

Scalar Equation of a Plane

The plane through $P_0(x_0, y_0, z_0)$ with normal $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \neq \mathbf{0}$ as a normal vector is given by

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this equation.

 \blacksquare

EXAMPLE 9

Find an equation of the plane through $P_0(1, -1, 3)$ with $\mathbf{n} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ as normal.

Solution ▶ Here the general scalar equation becomes

$$3(x-1) - (y+1) + 2(z-3) = 0$$

This simplifies to 3x - y + 2z = 10.

O

O

Vector equation of a plane

Vector Equation of a Plane

The plane with normal $\mathbf{n} \neq \mathbf{0}$ through the point with vector \mathbf{p}_0 is given by

$$\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$$

In other words, the point with vector \mathbf{p} is on the plane if and only if \mathbf{p} satisfies this condition.

O

O

▼ Cross product

Definition 4.8

Given vectors
$$\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, define the **cross product** $\mathbf{v}_1 \times \mathbf{v}_2$ by
$$\mathbf{v}_1 \times \mathbf{v}_2 = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$

▼ Detreminant form of Cross Product

FIGURE 7

$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \, \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \, \text{and } \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

Determinant Form of the Cross Product

If
$$\mathbf{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ are two vectors, then

$$\mathbf{v}_1 \times \mathbf{v}_2 = \det \begin{bmatrix} \mathbf{i} & x_1 & x_2 \\ \mathbf{j} & y_1 & y_2 \\ \mathbf{k} & z_1 & z_2 \end{bmatrix} = \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \mathbf{k}$$

where the determinant is expanded along the first column.

If
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}$, then
$$\mathbf{v}_1 \times \mathbf{v}_2 = \det \begin{bmatrix} \mathbf{i} & 2 & 1 \\ \mathbf{j} & -1 & 3 \\ \mathbf{k} & 4 & 7 \end{bmatrix} = \begin{vmatrix} -1 & 3 \\ 4 & 7 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 1 \\ 4 & 7 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} \mathbf{k}$$

$$= -19\mathbf{i} - 10\mathbf{j} + 7\mathbf{k}$$

$$= \begin{bmatrix} -19 \\ -10 \\ 7 \end{bmatrix}$$

O

Theorem

Theorem 5

Let **v** and **w** be vectors in \mathbb{R}^3 .

- 1. $\mathbf{v} \times \mathbf{w}$ is a vector orthogonal to both \mathbf{v} and \mathbf{w} .
- 2. If \mathbf{v} and \mathbf{w} are nonzero, then $\mathbf{v} \times \mathbf{w} = \mathbf{0}$ if and only if \mathbf{v} and \mathbf{w} are parallel.

Exam 13

EXAMPLE 13

Find the equation of the plane through P(1, 3, -2), Q(1, 1, 5), and R(2, -2, 3).

Solution \blacktriangleright The vectors $\overrightarrow{PQ} = \begin{bmatrix} 0 \\ -2 \\ 7 \end{bmatrix}$ and $\overrightarrow{PR} = \begin{bmatrix} 1 \\ -5 \\ 5 \end{bmatrix}$ lie in the plane, so

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \det \begin{bmatrix} \mathbf{i} & 0 & 1 \\ \mathbf{j} & -2 & -5 \\ \mathbf{k} & 7 & 5 \end{bmatrix} = 25\mathbf{i} + 7\mathbf{j} + 2\mathbf{k} = \begin{bmatrix} 25 \\ 7 \\ 2 \end{bmatrix}$$

is a normal for the plane (being orthogonal to both \overrightarrow{PQ} and \overrightarrow{PR}). Hence the plane has equation

$$25x + 7y + 2z = d$$
 for some number d.

Find the shortest distance between the nonparallel lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Then find the points A and B on the lines that are closest together.

sol

Solution ▶ Direction vectors for the two lines are $\mathbf{d}_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{d}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, so

$$\mathbf{n} = \mathbf{d}_1 \times \mathbf{d}_2 = \det \begin{bmatrix} \mathbf{i} & 2 & 1 \\ \mathbf{j} & 0 & 1 \\ \mathbf{k} & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$$

is perpendicular to both lines. Consider the plane shaded in the diagram containing the first line with $\bf n$ as normal. This plane contains $P_1(1, 0, -1)$ and is parallel to the second line. Because $P_2(3, 1, 0)$ is on the second line, the distance in question is just the shortest distance between $P_2(3, 1, 0)$ and this

plane. The vector **u** from P_1 to P_2 is $\mathbf{u} = \overrightarrow{P_1P_2} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ and so, as in Example 11,

the distance is the length of the projection of \mathbf{u} on \mathbf{n} .

distance =
$$\left\| \frac{\mathbf{u} \cdot \mathbf{n}}{\|\mathbf{n}\|^2} \mathbf{n} \right\| = \frac{|\mathbf{u} \cdot \mathbf{n}|}{\|\mathbf{n}\|} = \frac{3}{\sqrt{14}} = \frac{3\sqrt{14}}{14}$$

Note that it is necessary that $\mathbf{n} = \mathbf{d}_1 \times \mathbf{d}_2$ be nonzero for this calculation to be possible. As is shown later (Theorem 4 Section 4.3), this is guaranteed by the fact that \mathbf{d}_1 and \mathbf{d}_2 are *not* parallel.

The points A and B have coordinates A(1 + 2t, 0, t - 1) and

$$B(3+s, 1+s, -s) \text{ for some } s \text{ and } t, \text{ so } \overrightarrow{AB} = \begin{bmatrix} 2+s-2t \\ 1+s \\ 1-s-t \end{bmatrix}. \text{ This vector is }$$

orthogonal to both \mathbf{d}_1 and \mathbf{d}_2 , and the conditions $\overrightarrow{AB} \cdot \mathbf{d}_1 = 0$ and $\overrightarrow{AB} \cdot \mathbf{d}_2 = 0$ give equations 5t - s = 5 and t - 3s = 2. The solution is $s = \frac{-5}{14}$ and $t = \frac{13}{14}$, so the points are $A\left(\frac{40}{14}, 0, \frac{-1}{14}\right)$ and $B\left(\frac{37}{14}, \frac{9}{14}, \frac{5}{14}\right)$. We have $\|\overrightarrow{AB}\| = \frac{3\sqrt{14}}{14}$, as before.

▼ 4.3 More on the Cross Product

▼ Theorem2

Theorem 1

If
$$\mathbf{u} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{bmatrix}$.

FIGURE 2

The volume of the parallelepiped determined by three vectors \mathbf{w} , \mathbf{u} , and \mathbf{v} (Figure 2) is given by $|\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$.

Exam

EXAMPLE 2

Find the volume of the parallelepiped determined by the vectors

$$\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}.$$

Solution ▶ By Theorem 1, $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \det \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = -3.$

Hence the volume is $|\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})| = |-3| = 3$ by Theorem 5.

O

Theorem 4

If **u** and **v** are two nonzero vectors and θ is the angle between **u** and **v**, then

- 1. $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \text{area of the parallelogram determined by } \mathbf{u} \text{ and } \mathbf{v}.$
- 2. \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

▼ Exam

EXAMPLE 1

Find the area of the triangle with vertices P(2, 1, 0), Q(3, -1, 1), and R(1, 0, 1).

Solution We have $\overrightarrow{RP} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ and $\overrightarrow{RQ} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$. The area of the triangle is half

the area of the parallelogram (see the diagram), and so equals $\frac{1}{2} \| \overrightarrow{RP} \times \overrightarrow{RQ} \|$. We have

$$\overrightarrow{RP} \times \overrightarrow{RQ} = \det \begin{bmatrix} \mathbf{i} & 1 & 2 \\ \mathbf{j} & 1 & -1 \\ \mathbf{k} & -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix},$$

so the area of the triangle is $\frac{1}{2} \| \overrightarrow{RP} \times \overrightarrow{RQ} \| = \frac{1}{2} \sqrt{1 + 4 + 9} = \frac{1}{2} \sqrt{14}$.

0

▼ 4.4. Linear Operators on =³

▼ Linear Operators

Recall that a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called *linear* if $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ and $T(a\mathbf{x}) = aT(\mathbf{x})$ holds for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n and all scalars a. In this case we showed (in Theorem 2 Section 2.6) that there exists an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n , and we say that T is the **matrix transformation induced** by A.

Definition 4.9

A linear transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n$

is called a linear operator on \mathbb{R}^n .

Definition:

A transformation $T:=^3/=^3$ is said to be **distance preserving** if the distance between T(v) and T(w) is the same as the distance between v and w for all v, $w = 2^3$ that is, $||T(v)|| \leq |v|| \leq |v||$

Clearly reflections and rotations are distance preserving, and both carry 0 to 0.

Theorem

Theorem 1

If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is distance preserving, and if $T(\mathbf{0}) = \mathbf{0}$, then T is linear.

0

▼ Reflections and Projections

Let L denote the line through the origin in \mathbb{R}^3 with direction vector $\mathbf{d} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \neq \mathbf{0}$. Then P_L and Q_L are both linear and

$$P_L$$
 has matrix $\frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$,

$$Q_L \text{ has matrix } \frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} a^2 - b^2 - c^2 & 2ab & 2ac \\ 2ab & b^2 - a^2 - c^2 & 2bc \\ 2ac & 2bc & c^2 - a^2 - b^2 \end{bmatrix}.$$

Theorem 3

Let M denote the plane through the origin in \mathbb{R}^3 with normal $\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \neq \mathbf{0}$. Then P_M and Q_M are both linear and

$$P_M$$
 has matrix $\frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} b^2 + c^2 & -ab & -ac \\ -ab & a^2 + c^2 & -bc \\ -ac & -bc & a^2 + b^2 \end{bmatrix}$

$$Q_M \text{ has matrix } \frac{1}{a^2 + b^2 + c^2} \begin{bmatrix} b^2 + c^2 - a^2 & -2ab & -2ac \\ -2ab & a^2 + c^2 - b^2 & -2bc \\ -2ac & -2bc & a^2 + b^2 - c^2 \end{bmatrix}.$$

Let $R_{z,\theta}: \mathbb{R}^3 \to \mathbb{R}^3$ denote rotation of \mathbb{R}^3 about the z axis through an angle θ from the positive x axis toward the positive y axis. Show that $R_{z,\theta}$ is linear and find its matrix.

Solution First R is distance preserving and so is linear by Theorem 1. Hence we apply Theorem 2 Section 2.6 to obtain the matrix of $R_{z,\theta}$.

Let
$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ denote the standard basis of \mathbb{R}^3 ; we must find

 $R_{z,\theta}(\mathbf{i})$, $R_{z,\theta}(\mathbf{j})$, and $R_{z,\theta}(\mathbf{k})$. Clearly $R_{z,\theta}(\mathbf{k}) = \mathbf{k}$. The effect of $R_{z,\theta}$ on the x-y plane is to rotate it counterclockwise through the angle θ . Hence Figure 4 gives

$$R_{z,\theta}(\mathbf{i}) = \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}, \quad R_{z,\theta}(\mathbf{j}) = \begin{bmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{bmatrix}$$