Data preprocessing

Python for AI

What is Data?

Objects

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Why Data Preprocessing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - noisy: containing errors or outliers
 - inconsistent: containing discrepancies in codes or names
- No quality data, no quality mining results!

How to Handle Missing

- Ignore the tuple: usually done when class label is missing (assuming the task is classification—not effective in certain cases)
- Fill in the missing value manually: tedious + infeasible?
- Use a global constant to fill in the missing value: e.g., "unknown", a new class?!
- Use the attribute mean to fill in the missing value
- Use the attribute mean for all samples of the same class to fill in the missing value: smarter
- Use the most probable value to fill in the missing value:
 inference-based such as regression, Bayesian formula, decision tree

How to Handle Noisy Data?

- Binning method:
 - first sort data and partition into (equi-depth) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
 - used also for discretization (discussed later)
- Clustering
 - detect and remove outliers
- Semi-automated method: combined computer and human inspection
 - detect suspicious values and check manually
- Regression
 - smooth by fitting the data into regression functions

Data smoothing

 Data smoothing is executed by making use of a specialized algorithm for removing noise from the given data set.

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Binning Methods for Data Smoothing

- * Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Data Transformation: Normalization

Particularly useful for classification (NNs, distance measurements, nn classification, etc)

min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalization

$$v' = \frac{v - mean_A}{stand _dev_A}$$

normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max($|v'|$)<1

Discretization/Quantization

- Three types of attributes:
 - Nominal values from an unordered set
 - Ordinal values from an ordered set
 - Continuous real numbers
- Discretization/Quantization:
 - divide the range of a continuous attribute into intervals
 x2
 x3
 x4
 x5

- Some classification algorithms only accept categorical attributes.
- Reduce data size by discretization
- Prepare for further analysis

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Example and code

- Download code in the classroom
- On class: follow a step by step tutorial