Zadanie 1. Liczba szkód w każdym z czterech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

$$Pr(N = n) = 1/10 \text{ dla } n = 0, 1, ..., 9.$$

Liczby szkód w kolejnych latach są niezależnymi zmiennymi losowymi.

Prawdopodobieństwo, że w ciągu 4 lat ubezpieczony będzie miał łącznie dokładnie 9 szkód wynosi (podaj najbliższą wartość):

- (A) 1,2%
- (B) 1,7%
- (C) 2,2%
- (D) 2,7%
- (E) 3,2%

Zadanie 2. Towarzystwo Ubezpieczeń Majątkowych S. A. w pierwszym roku działalności prowadzonej wyłącznie w grupie 8 działu II odnotowało następujące wyniki:

Składka przypisana		3 000 000 zł
Rezerwa składki	na	
koniec roku		1 000 000 zł
Rezerwa szkodowa	na	
koniec roku		500 000 zł
(w tym IBNR)		300 000 zł

Nie tworzono rezerwy IBNR na udziale reasekuratora. Towarzystwo było chronione umową typu Excess of loss 1 000 000 zł XS 200 000 zł. Towarzystwo odnotowało w ciągu roku 4 szkody. Posiadane na koniec roku informacje pozwalają na ocenę ich wysokości na kwoty:

- 200 000 zł
- 200 000 zł
- 400 000 zł
- 1 000 000 zł

Margines wypłacalności na koniec roku (w zaokrągleniu do tysiąca złotych) wyniósł:

- (A) 270 000 zł
- (B) 283 000 zł
- (C) 286 000 zł
- (D) 299 000 zł
- (E) 313 000 zł

Zadanie 3. Ubezpieczyciel ma następujący portfel niezależnych ryzyk o prawdopodobieństwie pojedynczej szkody równym *p* (nie ma szkód częściowych):

Ilość	Suma ubezpieczenia
300	30 000 zł
100	40 000 zł
40	50 000 zł

Reasekurator zgodnie z umową typu Surplus będzie płacił nadwyżkę szkody ponad pewien limit. Narzut procentowy na składkę netto jest taki sam dla udziału ubezpieczyciela jak i dla udziału reasekuratora. Stosunek składki reasekuracyjnej do składki brutto dla całego portfela wynosi 9,2%.

Szkody na udziałe ubezpieczyciela z prawdopodobieństwem 0,95 nie przekroczą 2 717 000 zł. Przy oszacowaniu tym użyto przybliżenia łącznej wartości szkód rozkładem normalnym (dla zmiennej X o standaryzowanym rozkładzie normalnym zachodzi $\Pr(X > 1,645) \approx 0,95$).

Wartość p wynosi:

- (A) 0,15
- (B) 0.17
- (C) 0,19
- (D) 0,21
- (E) 0,23

Zadanie 4. Towarzystwo ubezpieczeniowe A ma portfel, w którym ilość szkód jest zmienną losową o rozkładzie Poissona z wartością oczekiwaną $\lambda = 20$. Wartość pojedynczej szkody jest równa 5 000 zł z prawdopodobieństwem jedna trzecia i 10 000 zł z prawdopodobieństwem dwie trzecie.

Towarzystwo ubezpieczeniowe B ma portfel, w którym ilość szkód jest zmienną losową o rozkładzie Poissona ze średnią $\lambda = 30$. Wartość pojedynczej szkody jest zmienną losową o rozkładzie jednostajnym na przedziale (7 500 zł, 12 500 zł).

Towarzystwa tworzą pool i każde z nich uczestniczy w każdej szkodzie w takiej proporcji w jakiej jest wartość oczekiwana łącznych szkód danego towarzystwa do wartości oczekiwanej sumy szkód obydwu towarzystw.

Wariancja wartości wypłat towarzystwa A zmniejszyła się o:

- (A) 18%
- (B) 22%
- (C) 30%
- (D) 48%
- (E) 64%

Zadanie 5. Nadwyżka jest złożonym procesem Poissona, w którym:

- θ to stosunkowy narzut bezpieczeństwa na składkę netto,
- L to maksymalna całkowita strata,
- L_1 to wartość, o którą nadwyżka spada po raz pierwszy poniżej poziomu wyjściowego (o ile do takiego spadku dochodzi),
- X to wartość pojedynczej szkody.

Wiemy, że
$$E(L) = 20$$
, $E(L_1) = 6$, $E(X) = 10$.

VAR(X) oraz θ wynoszą:

(A)
$$VAR(X) = 10$$
, $\theta = 0.1$

(B)
$$VAR(X) = 20, \quad \theta = 0.1$$

(C)
$$VAR(X) = 10, \quad \theta = 0.3$$

(D)
$$VAR(X) = 20, \quad \theta = 0.3$$

(E) podane informacje nie są wystarczające do wyznaczenia obu wartości

Zadanie 6. Wartość szkody w danej grupie ryzyk ma rozkład o gęstości:

$$f(x) = \begin{cases} \frac{1}{10000^{\alpha} \cdot \Gamma(\alpha)} \cdot x^{\alpha - 1} \cdot \exp\left(-\frac{x}{10000}\right) & dlax > 0\\ 0 & dlax \le 0 \end{cases}$$

Zróżnicowanie parametru α pomiędzy grupami ryzyk opisuje rozkład jednostajny na przedziale (1, 10). Dysponujemy próbką pięciu obserwacji (zanotowanymi wartościami pięciu szkód) pochodzącymi z jednej grupy ryzyk. Wartość oczekiwaną szkody dla tej grupy ryzyk estymujemy optymalnym niehomogenicznym (non-homogenous) estymatorem liniowym zgodnie z klasycznym modelem Bühlmanna. Jeśli nasze obserwacje wynoszą: X_1 = 30 000 zł, X_2 = 45 000 zł, X_3 = 65 000 zł, X_4 = 80 000 zł, X_5 = 80 000 zł, to wartość estymatora wyniesie:

- (A) 57 500 zł
- (B) 58 000 zł
- (C) 58 800 zł
- (D) 59 300 zł
- (E) 60 000 zł

Zadanie 7. Dla każdego z dziesięciu ryzyk w naszym portfelu może zajść co najwyżej jedna szkoda. Prawdopodobieństwa zajścia szkód q_i dla kolejnych ryzyk $i=1,\,2,\,\dots$, 10 wynosza:

{6%, 7%, 8%, 9%, 10%, 10%, 11%, 12%, 13%, 14%}.

Niech N oznacza łączną wartość szkód z tego portfela. Rozkład zmiennej N aproksymujemy za pomocą zmiennej \tilde{N} o rozkładzie Bernoulli'ego z parametrami: $\begin{pmatrix} 10, & q \end{pmatrix}$ oraz wartością q dobraną tak, aby wartości oczekiwane zmiennych \tilde{N} oraz N były równe.

Różnica: $VAR(\tilde{N}) - VAR(N)$ wynosi:

- (A) 0.006
- (B) 0.012
- (C) 0.036
- (D) 0.064
- (E) 0.100

Zadanie 8. Przyjmijmy oznaczenie:

$$\overline{x}_{d} = \begin{cases} x - d & jeśli & x > d \\ 0 & jeśli & x \le d \end{cases}$$

Jeśli więc zmienna losowa X wyraża wartość szkody, to zmienna \overline{X}_d nadwyżkę szkody ponad d. Założmy teraz, że X ma rozkład dyskretny określony na liczbach naturalnych. Jeśli w dodatku ograniczymy zainteresowanie do zmiennych \overline{X}_d dla wartości d=0,1,2,3,..., to wartości oczekiwane tych zmiennych spełniają zależność rekurencyjną:

$$E(\overline{X}_{d+1}) = E(\overline{X}_d) - \Pr(X > d)$$

Jeśli wiesz, jak pokazać prawdziwość powyższej zależności, łatwo wskażesz, która z zależności poniższych (dotyczących momentów zwykłych drugiego rzędu) jest prawdziwa:

(A)
$$E(\overline{X}_{d+1}^2) = E(\overline{X}_d^2) - 2 \cdot E(\overline{X}_d) + \Pr(X > d)$$

(B)
$$E(\overline{X}_{d+1}^2) = E(\overline{X}_d^2) - 2 \cdot \Pr(X > d)$$

(C)
$$E(\overline{X}_{d+1}^2) = E(\overline{X}_d^2) - 2 \cdot E(\overline{X}_d) - \Pr(X > d)$$

(D)
$$E(\overline{X}_{d+1}^2) = E(\overline{X}_d^2) - 2 \cdot E(\overline{X}_d)$$

(E)
$$E(\overline{X}_{d+1}^2) = E(\overline{X}_d^2) - E(\overline{X}_d)$$

Zadanie 9. Rozkład wartości szkody X dany jest gęstością:

$$f_X(x) = \begin{cases} \frac{4}{(1+x)^5} & dla & x > 0\\ 0 & dla & x \le 0 \end{cases}$$

Jeśli ilość szkód ma rozkład Poissona z wartością oczekiwaną 0.3, a ubezpieczyciel pokrywa nadwyżkę każdej szkody ponad 1, to składka netto wynosi:

- (A) $\frac{1}{20}$
- (B) $\frac{1}{30}$
- (C) $\frac{1}{40}$
- (D) $\frac{1}{60}$
- (E) $\frac{1}{80}$

Zadanie 10. W kolejnych okresach czasu ubezpieczony charakteryzujący się wartością q parametru ryzyka $Q \in (0,1)$ generuje szkody w ilości N_t :

$$Pr(N_t = 1 / Q = q) = q = 1 - Pr(N_t = 0 / Q = q), \quad t = 1, 2;$$

przy czym zmienne $N_1,\ N_2,\ {\rm sa}$ warunkowo (tzn przy ustalonym Q) niezależne.

Efekt losowania ubezpieczonego z populacji ubezpieczonych opisuje rozkład:

$$f_{\mathcal{Q}}(x) = \begin{cases} 2 \cdot (1-x) & dla \ x \in (0,1) \\ 0 & dla \ x \notin (0,1) \end{cases}$$

W efekcie doświadczenia dwuetapowego (wylosowanie ubezpieczonego, następnie wygenerowanie przez niego szkód w ilości N_1 i potem N_2),

 $COV(N_1, N_2)$ wynosi:

- (A) $\frac{1}{6}$
- (B) $\frac{1}{12}$
- (C) $\frac{1}{18}$
- (D) 0
- (E) $-\frac{1}{18}$

Egzamin dla Aktuariuszy z 28 lutego 1998 r.

Matematyka ubezpieczeń majątkowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI	
Dacal		

Zadanie nr	Odpowiedź	Punktacja*
1	С	
2	С	
3	В	
4	E	
5	D	
6	D	
7	A	
8	A	
9	Е	
10	С	

 $^{^{\}ast}$ Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.