

SQL vs NoSQL vs NewSQL

Secondo Progetto Big Data

Gaetano Bonofiglio, Veronica Iovinella

Contesto

- È davvero impossibile avere Consistency, Availability e Partitioning allo stesso tempo ("CAP theorem")?
- I database relazionali non offrono la scalabilità necessaria per gestire i Big Data
- I database NoSQL non offrono consistenza e transazioni ACID
- Il movimento NewSQL si propone di colmare il divario tra i 2 approcci con un nuovo tipo di database relazionale scalabile, o un framework per rendere scalabili i DBMS SQL esistenti

	Old SQL	NoSQL	NewSQL
Relational	Yes	Ş	Yes
SQL	Yes	Ş	Yes
ACID transactions	Yes	j	Yes
Horizontal scalability	No	Yes	Yes
Performance / big volume	No	Yes	Yes
Schema-less	No	Yes	No

CAP Theorem should relax

Partition tolerance – no system failure except the total failure is allowed to cause the system to respond incorrectly

Cosa abbiamo fatto?

- Abbiamo configurato e lanciato uno o più container Docker per ogni DBMS esaminato. Per alcuni di essi abbiamo configurato e lanciato un cluster.
- Abbiamo creato, mediante Python e Jupyter Notebook, un framework per lanciare i container, eseguire i comandi sui container e misurare i tempi e il throughput.
- Abbiamo studiato l'architettura di tutti i DBMS esaminati (e anche qualcuno in più) per interpretare i dati e trarne le dovute conclusioni.

Le tecnologie utilizzate

- Basato su Google Spanner e con le interfacce di Postgres
- Obiettivo principale è la «survivability» (da cui il nome) tramite tecniche di consensus replication e self-healing

Cockroach

VOLTDB

- In memory, con architettura shared-nothing distribuito in sharding con fattore di replicazione 0, 1 o 2
- Scala linearmente in cluster fino a 120 nodi

- In memory, multi-modello, shardato con 2 tipi di nodi: aggregator (manager) e leaf (executor)
- Offre streaming, etl e le stesse interfacce di MySQL

- Distribuito con replicazione totale
- Scala moltiplicando i Transaction Engine (TE) e aumenta la durability moltiplicando gli Storage Manager (SM). L'aviability richiede almeno un host con TE e almeno uno (anche lo stesso) con SM.

Risultati dell'esperimento: Nodo singolo

Tempo di importazione del dataset

Tempo medio di lettura indicizzata

Tempo medio di lettura non indicizzata

Tempo medio di aggregazione

Tempo medio di Join

Throughput di lettura indicizzata

Throughput di scrittura

Risultati dell'esperimento: Cluster

Tempo di importazione del dataset

Throughput di lettura indicizzata

Conclusioni e sviluppi futuri

- I sistemi NoSQL restano in generale i più veloci. Inoltre spesso offrono quasi tutte le funzionalità dei sistemi SQL (MongoDB sta lavorando per estendere le transazioni ACID alle collezioni e non solo ai documenti) e l'enorme vantaggio di essere schema-less e talvolta object-oriented.
- Tuttavia se si ritiene SQL fondamentale per il progetto o il modello di astrazione, i sistemi NewSQL hanno mantenuto le aspettative, fornendo interfacce compatibili con i sistemi SQL più diffusi e soprattutto la possibilità di scalare su più nodi, «imbrogliando» il CAP Theorem.

Conclusioni e sviluppi futuri

• I sistemi NoSQL restano in generale i più veloci. Inoltre spesso offrono quasi tutte le funzionalità dei sistemi SQL (MongoDB sta lavorando per estendere le transazioni ACID alle collezioni e non solo ai

object-oriented.

• Tuttavia se si ritiene SQL fondamentale per il proggio o il mastrazione, i sistemi NewSQL hanno mantenuto fornendo interfacce compatibili con i sistemi SQL soprattutto la possibilità di scalare su più nodi, «il la possibilità di scalare su più nodi più nodi

documenti) e l'enorme vantaggio di essere schema-less e tal

Conclusioni e sviluppi futuri

• Per il futuro è da verificare l'effettiva «survivability» di questi sistemi con dei test automatici. Al momento sono stati effettuati solo dei test manuali i cui risultati sono stati inclusi nella relazione.

Grazie per l'attenzione

