Maximum Likelihood Inference

Why is tree inference so difficult?

Too many trees to look at

Too many calculations to do

Likelihood function = P(data| tree)

Key to all phylogenetics!

Too many trees

No. of binary unrooted trees with nn

tips: =
$$1 \times 3 \times 5 \cdots \times (2nn - \frac{5}{2})$$

= $(2nn - \frac{3}{2})!(\frac{5}{2})(nn - \frac{3}{2})$

•	Tips	Binary unrooted trees
	5	15
	10	2,027,025
	20	2.22×10^{18}
	30	8.69 x 10 ³⁶
	40	1.31 x 10 ⁵⁵
	50	2.84 x 10 ⁷⁴
	i	i i

Summit@ORNL

World's fastest and largest supercomputer Peak Flops: 200.8 x 10¹⁵

 \sim 2.07 x 10²¹ billion years

Too many calculations

Branch length estimation

Model parameter optimization

•

$$F(\mathbf{x}_h|\theta) = \sum_{x_0} \sum_{x_6} \sum_{x_7} \sum_{x_8} \left[\pi_{x_0} p_{x_0 x_6}(t_6) p_{x_6 x_7}(t_7) p_{x_7 T}(t_1) p_{x_7 C}(t_2) p_{x_6 A}(t_3) p_{x_0 x_8}(t_8) p_{x_8 C}(t_4) p_{x_8 C}(t_5) \right].$$

concatenation

Maximum-likelihood (ML):

RAXML, IQ-TREE, PhyML, FastTree ...

Bayesian Inference:

PhyloBayes, MrBayes, BEAST...

'two-step' coalescent

Substitution models

Describes how genes evolve gives probability for each transition

DNA models:

			То			
	р	From	Т	С	Α	G
JC69 (Jukes and Cantor 1969)	1	T		λ	λ	λ
		C	λ		λ	λ
		Α	λ	λ	40	λ
		G	λ	λ	λ	
K80 (Kimura 1980)	2	T	0.0	а	β	β
		C	а	7.2	β	β
		Α	β	β	19	а
		G	β	β	а	*
F81 (Felsenstein 1981)	4	Т		π_{C}	π_A	π_G
		C	π_T	93*00	π_A	π_G
		Α	π_T	π_{C}	*8	π_G
		G	π_T	π_C	π_A	30 ⁷⁷⁷
HKY85 (Hasegawa et al. 1984,	5	Т		$a\pi_C$	$\beta \pi_A$	$\beta \pi_G$
1985)		C	an_T	•	$\beta \pi_A$	$\beta \pi_G$
		Α	βn_T	$\beta \pi_C$	in the second	αn_G
		G	βn_T	$\beta \pi_C$	$a\pi_A$	
F84 (Felsenstein, DNAML	5	T		$(1 + \kappa/\pi_Y)\beta\pi_C$	$\beta \pi_A$	$\beta \pi_G$
program since 1984)		C	$(1 + \kappa/\pi_Y)\beta\pi_T$	2.0	$\beta \pi_A$	$\beta \pi_G$
		Α	$\beta \pi_T$	$\beta \pi_T$	•	$(1 + \kappa/\pi_R)\beta\pi_0$
2		G	$\beta \pi_T$	$\beta \pi_C$	$(1 + \kappa/\pi_R)\beta\pi_A$	*
TN93 (Tamura and Nei 1993)	6	Т	8.	$a_1\pi_C$	$\beta \pi_A$	$\beta \pi_G$
		C	$a_1\pi_T$	(18)	$\beta \pi_A$	$\beta \pi_G$
		Α	$\beta \pi_T$	$\beta \pi_C$	•	$a_2\pi_G$
		G	$\beta \pi_T$	$\beta \pi_C$	$a_2\pi_A$	9
GTR (REV) (Tavaré 1986; Yang	9	T	82	an_C	$b\pi_A$	$c\pi_G$
1994b; Zharkikh 1994)		C	$a\pi_T$		$d\pi_A$	$e\pi_G$
		Α	$b\pi_T$	$d\pi_C$		$f\pi_G$
		G	$c\pi_T$	$e\pi_C$	$f\pi_A$	

Protein models:

- Empirical model
 - exchangeability matrix
 - equilibrium frequencies

	р	From	То				
			Т	С	Α	G	
JC69 (Jukes and Cantor 1969)	1	Т		λ	λ	λ	
		C	λ		λ	λ	
		Α	λ	λ	4.0	λ	
		G	λ	λ	λ		
GTR (REV) (Tavaré 1986; Yang	9	Т		$a\pi_C$	$b\pi_A$	$c\pi_G$	
1994b; Zharkikh 1994)		C	$a\pi_T$		$d\pi_A$	$e\pi_G$	
		Α	$b\pi_T$	$d\pi_C$		$f\pi_G$	
		G	$c\pi_T$	$e\pi_C$	$f\pi_A$		

GAMMA model for rate variation

Alpha is the shape paramter

The basic idea is that the rate at each site is drawn independently from a distribution of rates. The most widely used choice is the Gamma distributiont

Gamma distributions are governed by two parameters: a shape parameter (Alpha) and a scale parameter (Beta). The mean of a G-distribution is equal to the product of these, ab.

we set the mean of the G-distribution equal to 1 by constraining b = 1/a. By varying this single parameter, a, the distribution can take on a variety of different shapes.

Fast phylogenetic approaches

- Too many trees to look at
 - Heuristic search of the tree space

- Too many calculations to do
 - Approximate likelihood calculation

Other techniques for fast phylogenetics

Heuristic tree search

Nearest Neighbor Interchange (NNI)

Nearest Neighbor Interchange (NNI)

Subtree Pruning and Re-grafting (SPR)

Heuristic search of tree space

Tree space

Heuristic tree search

Approximate likelihood calculation

Global optimization vs. local optimization

- Exhaustive optimization vs. approximate optimization
 - Diminished return from extra efforts
 - Subsequent topological changes can invalidate extra efforts

Other techniques for fast phylogenetics

GAMMA vs CAT

Fast approaches for node support

Parallelization

• . . .

RAXML - Randomized Axelerated Maximum Likelihood

- Parsimony starting tree:
 - Parsimony is connected with ML
 - Speed and randomization!

- Lazy SPR
 - Only pre-scoring during one SPRiteration
 - SPRs leading to better scores are immediately implied
 - Dynamic adjustment of Lazy SPR radius

IQ-TREE

A pool of starting trees

A pool of candidate trees

NNI- instead of IQP-based perturbation

- Simultaneous NNI modifications
 - Reduced NNI neighborhood

Nguyen et al (2015) Mol. Biol. Evol.

Escape from local optima: IQ-TREE

Tree space

Other techniques for fast phylogenetics

GAMMA vs CAT

GAMMA vs CAT

GAMMA

- model rate heterogeneity among sites using the gamma distribution
- each site has certain probability belonging to each rate category

CAT

- assign sites into fixed number of rate categories
- each site belongs to a specific rate category

Other techniques for fast phylogenetics

GAMMA vs CAT

Fast approaches for node support

Standard Bootstrap

Rapid bootstrap (RAxML)

Additional shortcuts:

- LSR radius randomly chosen between 5 and 15;
- 2 iterations of LSR;
- More aggressive subtree skipping;
- Thorough optimization for best 5 instead of 20;

Ultra-fast bootstrap (IQ-TREE)

Other techniques for fast phylogenetics

GAMMA vs CAT

Fast approaches for node support

Parallelization

Parallelization

Multi-threading and MPI

- Parallel tree searches:
 - MPI: RAxML, PhyML, IQ-TREE
- Likelihood calculation
 - RAxML/IQ-TREE

Important remarks

• Different software can give different scores on the same tree

Trees with the same topology can still get different scores

Recommendations:

Multiple searches using distinct starting trees

- More than one phylogenetic software
 - SPR-based software for trees with many taxa