Chapter 1: Formal Logic

Dr. Fang (Daisy) Tang ftang@cpp.edu www.cpp.edu/~ftang/

Logic: The Foundation of Reasoning

- Definition: the foundation for the organized, careful method of thinking that characterizes any reasoned activity
- It is the study of reasoning: specifically concerned if it is true or false
- A statement (or proposition) is a sentence that is either true or false but not both.
- Which ones are statements?
 - 1. 5 is greater than 10.
 - 2. What is your favorite pet's name?
 - 3. You are a genius.
 - 4. All mathematicians wear sandals.
- 1 and 4 are statements. 2 and 3 are not statements.
- Convention: when there is a non-specific item in the statement, then
 it is not considered a statement
 - For example, "X+2 is greater than 0" is not a statement.
- Usually, we use capital letters A, B, and C to represent statements

Practice

- Which of the following sentences are statements?
 - The moon is made of green cheese.
 - He is certainly a tall man.
 - Next year interest rates will fall.
 - -X-4=0

Statements and Logic

- Logic focuses on the relationship between statements as opposed to the content of any particular statement.
- An example to illustrate how logic helps us:
 - A. All mathematicians love apples.
 - B. Anyone who loves apples is smart.
 - C. Therefore, all mathematicians are smart.
- Logic cannot help us to determine the individual truth of the above statements, however, if statements A and B are true, what can we say about C?
- Logical methods are used in mathematics to prove theorems and in computer science to prove that programs do what they are supposed to do.

Logical Connectives and Truth Values

Compound statement

- It is made of statement variables (such as A, B, and C) and logical connectives (such as Λ , V, \leftrightarrow , \rightarrow).
- Its truth value depends on the truth values of its components and their relationships (logical connectives).

Logical connectives

Negation A', not A

conjunctionA Λ B, A and BdisjunctionA V B, A or B

- implication $A \rightarrow B$, if A, then B

Equivalence A↔B, A if and only if B

 A truth table is a table which displays the truth values of a compound statement that correspond to all different combinations of truth values of the statement variables.

Connective #1: Negation

- If A is a statement variable, the negation of A is "not A" and is denoted A'.
- It has the opposite truth value from A: if A is true, then A' is false; if A is false, then A' is true.
- True(T) is usually 1; False(F) is usually 0
- Other forms: "It is false that A ...", "It is not true that A ...", etc.
- Unary connective, instead of binary connective

Α	Α'
Т	F
F	Τ

Connective #2: Conjunction

- If A and B are statement variables, the conjunction of A and B is A ∧ B, which is read "A and B"
- A Λ B is true when both A and B are true. A Λ B is false when at least one of A or B is false.
- A and B are called the conjuncts of A Λ B.
- English words: and; but; also; in addition; moreover

Α	В	ΑΛВ
Т	H	Т
Т	F	F
F	Т	F
F	H	F

Connective #3: Disjunction

- If A and B are statement variables, the disjunction of A and B is A V B, which is read "A or B"
- A V B is true when at least one of A or B is true. A V B is false when both A and B are false
- A and B are called the disjuncts of A V B
- English word: or

Α	В	AVB
Т	H	Т
Т	L	Т
F	Т	Т
F	F	F

Examples

- A = It will rain tomorrow. What's A'?
 - It is false that it will rain tomorrow.
 - It will not rain tomorrow.
- B = Peter is tall and thin. What's B'?
 - (1) Peter is not tall or he is not thin.
 - (2) Peter is short and fat.
 - (3) Peter is short or fat.
- C = The river is shallow or polluted. C'?
 - (1) The river is neither shallow nor polluted.
 - (2) The river is not shallow or not polluted.
 - (3) The river is deep and unpolluted.

De Morgan's Laws

- $(A V B)' = A' \Lambda B'$
- $(A \wedge B)' = A' \vee B'$

Connective #4: Implication

- If A and B are statement variables, the symbolic form of "if A then B" is A→B.
- Here A is called the hypothesis/antecedent statement and B is called the conclusion/consequent statement.
- "If A then B" is false when A is true and B is false, and it is true otherwise.
- Other forms:
 - A implies B.
 - B if A.
 - Whenever A, B
 - A, therefore B.
 - B follows from A.
 - A is a sufficient condition for B.
 - B is a necessary condition for A.
 - A only if B.

Α	В	A→B
Τ	T	
Т	F	F
F	Т	Т
F	F	Т

Another Form of Implication

- Representation of If-Then as Or
- A' = "You do your homework"
- B = "You will flunk"
- A' V B = "Either you do your homework or you will flunk"
- A → B = "If you do not do your homework, then you will flunk"
- Thus, $A \rightarrow B \equiv A' V B$
- Example: write the negation of the following statement:
 - If the food is good, then the service is excellent.

Α	В	A→B
Т	H	Т
Т	F	F
F	Т	Т
F	F	Т

Α	В	A'	A' V B
Т	H	Щ	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Example of Implication

- Your friend says: "If I pass my math test, then I'll go to the movie Friday"
 - If your friend doesn't pass the test, then whether he or she goes to the movie or not, you could not claim that the remark was false.
 - In logic, the truth value of A→B is true if A is false and B is true.
- "I'll be there <u>only if</u> it rains."
 - So, if I'm there, you know it rains. That means "I'm there" is a sufficient condition for "it rains".

Connective #5: Equivalence

- If A and B are statement variables, the symbolic form of "A if, and only if, B" and is denoted A ↔ B.
- It is true if both A and B have the same truth values and is false if A and B have opposite truth values.
- Other forms: "A is necessary and sufficient for B", "A is equivalent to B", "A if and only if B".

Note: A \leftrightarrow B is a short form for (A \rightarrow B) \land (B \rightarrow A)

Α	В	А↔В
Т	\vdash	Т
Т	F	F
F	Т	F
F	H	Т

Α	В	A→B	В→А	$(A \rightarrow B) \land (B \rightarrow A)$
Т	Т			
Т	F			
F	Т			
F	F			

Practice

- What's the truth value of the following:
 - 8 is even or 6 is odd.
 - 8 is even and 6 is odd.
 - If 8 is odd, then 6 is odd.
 - If 8 is even, then 6 is even.

Practice

- Write the negation
 - If the food is good, then the service is excellent.
 - Either the food is good or the service is excellent.
 - Neither the food is good nor the service excellent.

Well-Formed Formula (wff)

- We can string statement letters, connectives, and parentheses (or brackets) together to form new expressions
- A legitimate string is called a well-formed formula, or wff
- For example, (A→B)V(B→A) is a wff, but A))VB(→C) is not
- Formally:
 - (1) All propositional variables and the constants True and False are wffs.
 - (2) If A and B are wffs, then A', B', A^B, AvB, A \rightarrow B, A \leftrightarrow B, (A'), (B'), (A^B), (AvB), (A \rightarrow B), (A \leftrightarrow B) are wffs.

Well-Formed Formula

- To reduce the number of parentheses, an order is stipulated in which the connectives can be applied, called the order of precedence which is as follows:
 - Connectives within parentheses, innermost parentheses first
 - Negation (')
 - Conjunction (Λ)
 - Disjunction (V)
 - Implication (\rightarrow)
 - Equivalence (\leftrightarrow)
- Hence, A V B → C is the same as (A V B) → C

Practice

- Common English has many ways to describe logical connectives. Write a wff for each of the following expressions
 - Either A or B
 - Neither A nor B

Practice

- The main connective is the one that is applied last
- Construct truth tables for the following wffs and identify what is the main connective.
 - $A \lor A' \rightarrow B \land B'$
 - $(A \rightarrow B) \rightarrow B' \land C$

Tautology and Contradiction

• Letters like P, Q, R, S, etc. are used for representing wffs, e.g. $[(A \ V \ B) \ \Lambda \ C'] \rightarrow A' \ V \ C$ can be represented by $P \rightarrow Q$ where P is the wff $(A \ V \ B) \ \Lambda \ C'$ and Q represents A' V C

<u>Definition of tautology</u>:

- A wff which is intrinsically true, i.e. no matter what the truth value of the statements that comprise the wff.
- e.g. It will rain today or it will not rain today (A V A')
- e.g. $P \leftrightarrow Q$ where P is A \rightarrow B and Q is A' V B

Definition of a contradiction:

- A wff which is intrinsically false, i.e. no matter what the truth value of the statements that comprise the wff.
- e.g. It will rain today and it will not rain today (A Λ A')
- (A Λ B) Λ A'
- Usually, tautology is represented by 1 and contradiction by 0

Tautological Equivalences

- Two statement forms are called logically equivalent if, and only if, they
 have identical truth values for each row of the truth table.
- The logical equivalence of statement forms P and Q is denoted by writing $P \Leftrightarrow Q$ or $P \equiv Q$.
- Prove by constructing truth table
- (A V B) V C ⇔ A V (B V C)

Α	В	С	AVB	ВVС	(A V B) V C	AV(BVC)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	F	F	F

Some Common Equivalences

Commutative	$A\;V\;B \Leftrightarrow B\;V\;A$	$A \land B \Leftrightarrow B \land A$	
Associative	$(A V B) V C \Leftrightarrow A V (B V C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	
Distributive	$A V (B \Lambda C) \Leftrightarrow (A V B) \Lambda (A V C)$	$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$	
Identity	A V 0 ⇔ A	A ∧ 1 ⇔ A	
Complement	A V A′ ⇔ 1	A ∧ A′ ⇔ 0	

- The equivalences are listed in pairs, hence they are called dual of each other
- One can be obtained from the other by replacing V with Λ and 0 with 1 or vice versa
- How to verify the equivalences?

Additional Equivalences (1)

- De Morgan's Laws
 - $(A \lor B)' \Leftrightarrow A' \land B'$
 - $(A \land B)' \Leftrightarrow A' \lor B'$
 - e.g. "Julie likes butter but hates cream"
- Double negation: (A')' ⇔ A
- Rewriting implication: (A → B) ⇔ A' v B
- Contraposition: $(A \rightarrow B) \Leftrightarrow (B' \rightarrow A')$
- Conditional proof: A → (B → C) ⇔ (A ^ B) → C
 - "If I miss the train today, then I can arrive only 5 minutes late, assuming that the next train is on time."

Additional Equivalences (2)

 Suppose P and Q are equivalent wffs. Then P can be replaced by Q in any wff R containing P, resulting in a wff R_Q that is equivalent to R

Example:

- R: $(A \rightarrow B) \rightarrow B$
- P: A \rightarrow B, Q: B' \rightarrow A'
- $R_Q : (B' \rightarrow A') \rightarrow B$

Logic Connectives in Computer Science

- Web search engine
- Conditional statement in programming use logical connectives with statements
- Example 7 in Section 1.1 (page 11)

```
if ((outflow > inflow) and
  not ((outflow > inflow) and (pressure < 1000)))
  do something;</pre>
```

else

do something else;

- A: outflow > inflow
- B: pressure < 1000
- A Λ (A Λ B)'
- Can we simply this somehow?

Review of Section 1.1

Techniques:

- construct truth tables for compound wffs
- recognize tautologies and contradictions

Main ideas:

- wffs are symbolic representation of statements
- truth values for compound wffs depend on the truth value of their components and the types of connectives used
- tautologies are intrinsically true wffs true for all truth values

Practices

- The negation of "the answer is either 2 or 3":
 - Neither 2 nor 3 is the answer.
 - The answer is not 2 or not 3.
 - The answer is not 2 and it is not 3.
- The negation of "Cucumbers are green and seedy":
 - Cucumbers are not green and not seedy.
 - Cucumbers are not green or not seedy.
 - Cucumbers are green and not seedy.

Practices, Continue...

- Write the negation of the following statement:
 - Either the food is good or the service is excellent.
 - If the price is high, then the food is good and the service is excellent.
 - The processor is fast but the printer is slow.
- Prove the following tautology by converting the left side into the right side
 - $(A \land B')' \lor B \leftrightarrow A' \lor B$