

Data Science

Session 5 - Imbalanced data and deidentification

Introduction

What did we do last time?

The CRISP-DM method

Cross-Industry Standard Process for Data Mining

- → Published in 1999
- Common in the industry
- → Still relevant today

Course outline

Data science course

Session 1: Understanding data

Session 2: Collaborative development

Session 3: Preparing data - Managing missing data

Session 4: Preparing data - Dimensionality reduction

Session 5: Imbalanced data and deidentification

Session 6: Working with text

Machine learning course

What is class imbalance?

Classifier with balanced class

Classifier with imbalanced class

How to deal with class imbalance

How can you deal with class imbalance?

How can you deal with class imbalance?

There are many methods to deal with class imbalance

- Undersampling your data
- Oversampling your data
- Generating artificial data
- Using imbalance-aware machine learning algorithms
 - ⇒ More on that in the ML course

Undersampling and oversampling

Undersampling

⇒ Removing data from the majority class

Addresses class imbalance
Reduces computational charge
Loss of information due to removing instances
Can introduce bias
Risk of underfitting when the imbalance is severe

Oversampling

⇒ Duplicating data from the minority class

Addresses class imbalance
No loss of information
Risk of overfitting
May introduce noise from the minority class

Synthetic Minority Oversampling Technique

Synthetic Minority Oversampling Technique

Principle

- Choose a value for k
- For each instance in the minority class, identify the k nearest neighbours
- Interpolate new values linearly

Variations

- ADASYN: Focuses on examples in low-density areas
- SMOTE-Tomek: Removes borderline noisy instances
- Borderline-SMOTE: Focuses on borderline instances

PERFORM RESAMPLING AFTER THE TRAIN-TEST SPLIT

Data leakage will <u>artificially inflate</u> your results

Practical work

Get the latest version of the notebook from GitHub

What is the deidentification of data?

Question 1: 8 billion people ⇒ 4 billion men

Who teaches in Centrale Lille...

Question 2: 4 billion men \Rightarrow < ~300 male teachers

And is pursuing a PhD for AI in healthcare!

Deidentification is more complex than simple anonymization

Anonymization is not enough to hide someone's identity

- Data linkage can lead to reidentification
- Unique features can let you identify some people easily (e.g. few people are over 100 years old)

There are several techniques to deidentify data

- **Data masking**: hiding part of the value
- **Aggregation**: e.g. grouping ages within ranges
- **Generalization**: e.g. replacing dates with years
- **Data perturbation**: e.g. introducing noise
- Data swapping
- Removing isolated data (sometimes legally required)

1 The more you modify the data, the higher risk of reducing the algorithms' performance ⇒ find a compromise

Exercise

Try your hand at deidentification

Don't forget to upload your work!

Debrief

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?