Korrelationen

für ordinale & bivariat-normalverteilte Variablen

Samuel Merk

Inhalte dieses Erklärvideos

- $\stackrel{\bullet}{\blacksquare}$ Assoziation zweier (mindestens) ordinalskalierter Variablen (Kendal's τ_b)
- ightharpoonup
 ightharpoonup
 m Assoziation (zweier) bivariat-normalverteilter Variablen (Pearson's <math>r)

Zusammenh. von Bildungsabschl.

Definition Kendall's τ_a (1938)

Kendall's
$$\tau_A = \frac{\#(\text{konkordante Paare}) - \#(\text{diskordante Paare})}{\#(\text{alle Paare})}$$

$$=\frac{5-1}{6}=\frac{4}{6}=.\overline{6}$$

Problem Kendall's $au_{ m a}$

Rangbindungen (engl. »ties«) nennt man Paarvergleiche, bei denen (mindestens) eine der beiden Variablen gleich ausgeprägt ist. Kendall's τ_A , verhält sich problematisch wenn Rangbindungen vorliegen.

Definition Kendall's au_{b}

Gelten folgende Bezeichnungen

- $n_{\rm K}$: Anzahl aller konkordanten Paare
- n_D : Anzahl aller diskordanten Paare
- $n_{B(X)}$: Anzahl aller Rangbindungen in der Variable X
- $n_{B(Y)}$: Anzahl aller Rangbindungen in der Variable Y

ist Kendall's tau_b wie folgt definiert

$$\tau_{\rm b}(X, Y) = \frac{n_{\rm K} - n_{\rm D}}{\sqrt{\left(n_{\rm K} + n_{\rm D} + n_{\rm B(X)}\right) \cdot \left(n_{\rm K} + n_{\rm D} + n_{\rm B(Y)}\right)}}$$

Visualisierung Kendall's $au_{ m b}$

$$\tau_{\rm b}(X,Y) = \frac{n_{\rm K} - n_{\rm D}}{\sqrt{(n_{\rm K} + n_{\rm D} +) \cdot (n_{\rm K} + n_{\rm D} + n_{\rm B}(Y))}} = \frac{10 - 1}{\sqrt{(10 + 1 +) \cdot (10 + 1 + 2)}} \approx .69$$

Eigenschaften Kendall's au_{b}

Visual Guessing Kendall's au_b

Aufgabe:

Schätzen Sie Kendall's τ^b aus den unten graphisch dargestellten Daten. Diese enthalten die ordinalen Variabler »Variable 1« (mit den Ausprägungen A < B < C < D) und »Variable 2« (mit den Ausprägungen a < b < c < d < e)

Förderungsumfang & -erfolg

Förderungsumfang & -erfolg

Förderungsumfang & -erfolg

Gleiche Daten - untersch. Steigung?

Stand. Steig. der Ausgleichsgerade

Stand. Steig. der Ausgleichsgerade

Stand. Steig. der Ausgleichsgerade

Misst man die Steigung einer »Ausgleichsgerade« in Standardabweichungen, erhält man den Pearson Korrelationskoeffizienten r

Ableitung: Formel Pearsons's r

$$r_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Eigenschaften Pearson's r

Visual Guessing Pearson's r

Aufgabe:

Schätzen Sie Pearsons's r aus den unten graphisch dargestellten Dater

Literatur

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (Second). New Jersey: Lawrence Erlbaum.

Kendall, M. G. (1938). A new measure of rank correlation. *Biometrika*, 30(1-2), 81–93.