香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九九九年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1999

附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER 2

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成 閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對, 但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取 此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考 試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上 述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。
After the examinations, marking schemes will be available for reference at the Teachers' Centres.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1999

99-CE-A MATHS 2-1

GENERAL INSTRUCTIONS TO MARKERS

1.	many Marke	ery important that all markers should adhere as closely as possible to the marking scheme. In cases, however, candidates would use alternative methods not specified in the marking scheme. It is should be patient in marking these alternative solutions. In general, a correct alternative on merits all the marks allocated to that part, unless a particular method is specified in the on.
2.	In the	marking scheme, marks are classified as follows:
	'M' m	arks – awarded for knowing a correct method of solution and attempting to apply it;
	'A' ma	arks - awarded for the accuracy of the answer;
	Marks	without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.
3.	In mar	king candidates' work, the benefit of doubt should be given in the candidates' favour.
4.	-	mbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Note the ing points:
	(a)	At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
	(b)	For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
	(c)	In any case, do not deduct any marks for p.p. in those steps where candidates could not score any marks.
	(d)	Note: if the final answers are not expressed in the simplest form, deduct 1 mark for p.p.
	(e)	Some cases in which marks should be deducted for p.p. are specified in the marking scheme. However, the lists are by no means exhaustive. Markers should exercise their professional judgement to give p.p.s in other situations.
5.	•	wmbol u-1) should be used to denote marks deducted for wrong/no units in the final answers (if able). Note the following points:
	(a)	At most deduct 1 mark for wrong/no units for the whole paper.
	(b)	Do not deduct any marks for wrong/no units in case candidate's answer was already wrong.
6.		entered in the Page Total Box should be the net total score on that page.
7.	In the	Marking Scheme, steps which can be omitted are enclosed by dotted rectangles ,
	where	as alternative answers are enclosed by solid rectangles .
8.	Unles accept	s otherwise specified in the question, numerical answers not given in exact values should not be red.
9	Unles	s otherwise specified in the question, use of notations different from those in the marking scheme

 Unless otherwise specified in the question, use of notations different from those in the marking schemshould not be penalised.

10. Unless the form of answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they were correct.

99-CE-A MATHS 2-2

Solution	Marks	Remarks
π		
$\int_0^{\frac{\pi}{2}} \cos^2 x dx$		
$=\int_0^{\frac{\pi}{2}}\frac{1}{2}(1+\cos 2x)\mathrm{d}x$	1A	
$= \left[\frac{1}{2} (x + \frac{1}{2} \sin 2x) \right]_{0}^{\frac{\pi}{2}}$	1A	
5 30	IA	
$=\frac{\pi}{4}$	_1A	
	_3	
Let $u = x + 2$.	1M	Accept other suitable substitutions
$\int x(x+2)^{99}\mathrm{d}x$		
$= \int (u-2) u^{99} du$	1A	Omit du in most cases (pp-1)
$= \int (u^{100} - 2u^{99}) \mathrm{d} u$		
$= \frac{u^{101}}{101} - \frac{u^{100}}{50} + c \qquad (c \text{ is a constant})$	1A	Awarded even if c was omitted
i		
$=\frac{(x+2)^{101}}{101}-\frac{(x+2)^{100}}{50}+c$	1A	Withhold this mark if c was omitted
Alternative solution		
$\int x(x+2)^{99} dx$		
$= \int x \sum_{i=0}^{99} {}_{99}C_i(2^{99-i})(x^i) dx$	l IM	For using binomial expansion
$= \sum_{i=0}^{99} c_i C_i(2^{99-i}) \int r^{i+1} dr$		
$= \sum_{i=0}^{99} {}_{99}C_i(2^{99-i}) \int x^{i+1} dx$ $= \sum_{i=0}^{99} {}_{99}C_i(2^{99-i}) x^{i+2} + c$		
$= \sum_{i=0}^{\infty} \frac{{}_{99}C_i(2^{3i})x^{1/2}}{(i+2)} + c$	3A	
$O(R) = \frac{x^{101}}{101} +_{99} C_1 \frac{x^{100}}{50} +_{99} C_2 \frac{4x^{99}}{99} + \dots + 2^{98} x^2 + c$	3A	Should at least contain first two term and last term.
$(OR) = \frac{1}{101} + \frac{1}{99} + \frac{1}{50} + \frac{1}{99} + \frac{1}{20} + \frac{1}{99} + \dots + \frac{1}{2} + \frac{1}{2$	JA	Deduct 1A for each wrong term, up zero.

	只限教師參閱 FOR TEAC	HERS' (JSE ONLY
	Solution	Marks	Remarks
(a)	The y-intercept of L_1 is $\frac{1}{2}$.	1A	(pp-1) for $(0,\frac{1}{2})$
(b)	Distance between L_1 and L_2		
	$2(0) + 2(\frac{1}{2}) - 13$		A control of the late of the
	$=\frac{2(0)+2(\frac{1}{2})-13}{\sqrt{2^2+2^2}}$	1M	Accept omitting absolute sign
	$=3\sqrt{2}.$	1A	
	Alternative solution (1)		
	Distance = $\left \frac{-13 - (-1)}{\sqrt{2^2 + 2^2}} \right $	1M	For using the formula $d = \frac{c_1 - c_2}{\sqrt{a^2 + b^2}}$
	$=3\sqrt{2}$	1A	Į į
	Alternative solution (2)		†
	y-intercept of $L_2 = \frac{13}{2}$		
	Distance = $(\frac{13}{2} - \frac{1}{2}) \sin 45^\circ$	1M	
	$= 3\sqrt{2}$	1A	
(c)	Let the equation of L_3 be $2x + 2y + c = 0$.		
	1		QR
	$\left \frac{2(0) + 2(\frac{1}{2}) + c}{\sqrt{2^2 + 2^2}} \right = 3\sqrt{2}$	1M	$ \begin{array}{ c c } \hline QR \\ c - (-1) = -1 - (-13) \end{array} $
	$\sqrt{2^2+2^2}$		c = 11
	1+c = 12 c = 11 or -13 (rejected)		
	$\therefore \text{ the equation of } L_3 \text{ is } 2x + 2y + 11 = 0.$	1A	Accept equivalent forms
	Alternative solution (1) Let the equation of L_3 be $2x + 2y + c = 0$.		
	1,	1M	
	$\left \frac{c - (-1)}{\sqrt{2^2 + 2^2}} \right = 3\sqrt{2}$	l IIVI	
	1+c =12		
	c=11 or -13 (rejected)		
	$\therefore \text{ the equation of } L_3 \text{ is } 2x + 2y + 11 = 0.$	1A	
	Alternative solution (2)		
	y-intercept of $L_1 = \frac{1}{2}$ and y-intercept of $L_2 = \frac{13}{2}$		
	: y-intercept of $L_3 = \frac{1}{2} - (\frac{13}{2} - \frac{1}{2})$		
	$=-\frac{11}{2}$	} 1M	
	Slope of L_3 = slope of L_1 = -1		
	· Faustion of L. is		
	$\frac{y - \left(-\frac{11}{2}\right)}{x} = -1$		
	$\frac{1}{x} = -1$		
	2x+2y+11=0	1A	

Solution	Marks	Remarks
Alternative solution (3) Let (x, y) be a point on L_3 . $\left \frac{2x + 2y - 1}{\sqrt{2^2 + 2^2}} \right = 3\sqrt{2}$ $\left 2x + 2y - 1 \right = 12$	1M	
$2x+2y+11=0 \text{or} 2x+2y-13=0 \text{(rejected)}$ $\therefore \text{ the equation of } L_3 \text{ is } 2x+2y+11=0.$	1A	

只阪教師参阅 FOR TEA	CHERS'	JSE UNLY
Solution _	Marks	Remarks
Marking criteria Area $A = \int_{a}^{b} y dx$	1M	
 A correct expression for the shaded area 	2A	A correct expression for the area under a certain portion of a curve – award 1A
 One correct primitive function Answer 	1A 1A	carre award 111
Area = $\int_0^1 (6x^2 - 3x^2) dx + \int_1^2 (6x - 3x^2) dx$	1M+2A	Omit dx in most cases $(pp-1)$
$= \int_0^1 3x^2 dx + \int_1^2 (6x - 3x^2) dx$		
$= \left[x^3\right]_0^1 + \left[3x^2 - x^3\right]_1^2$	1A	For primitive function, awarded i
= 1 + (12 - 8) - (3 - 1) $= 3$	1A	one was correct
Alternative solution (1)		
Area = $\int_0^2 (6x - 3x^2) dx - \int_0^1 (6x - 6x^2) dx$	1M+2A	
$= \left[3x^2 - x^3\right]_0^2 - \left[3x^2 - 2x^3\right]_0^1$	1A	
= 4 - 1 = 3	1A	
Alternative solution (2)		
Area = $\int_0^1 6x^2 dx + \int_1^2 6x dx - \int_0^2 3x^2 dx$	1M+2A	
$= \left[2x^{3}\right]_{0}^{1} + \left[3x^{2}\right]_{1}^{2} - \left[x^{3}\right]_{0}^{2}$	1A	
=2+9-8 = 3	1A	
Alternative solution (3)		†
Area = $\int_0^6 \left(\sqrt{\frac{y}{3}} - \sqrt{\frac{y}{6}} \right) dy + \int_6^{12} \left(\sqrt{\frac{y}{3}} - \frac{y}{6} \right) dy$	1M+2A	
$= \left[\frac{2}{3\sqrt{3}} y^{\frac{3}{2}} - \frac{2}{3\sqrt{6}} y^{\frac{3}{2}} \right]_0^6 + \left[\frac{2}{3\sqrt{3}} y^{\frac{3}{2}} - \frac{y^2}{12} \right]_6^{12}$	1A	
$= 4\sqrt{2} - 4 + (16 - 12) - (4\sqrt{2} - 3)$ $= 3$	1A	
	5	
		

Solution _	Marks	Remarks
(a) Put $x = 5$, $y = 0$:		
-3 + k(5+1) = 0	1M	
, 1		
$k=\frac{1}{2}$		
$\therefore \text{ the equation of } L_1 \text{ is } y-3+\frac{1}{2}(x-y+1)=0$		
x+y-5=0.	1A	Accept equivalent forms
Alternative solution (1)		
$\int y - 3 = 0$		
$\int x - y + 1 = 0$		
	1M	
Solve the equations, $x = 2$ and $y = 3$.		
The equation of L_1 is		
$\frac{y-3}{x-2} = \frac{0-3}{5-2}$		
x + y - 5 = 0	1A	
Alternative solution (2)		
y-3+k(x-y+1)=0		
kx + (1-k)y + (k-3) = 0		
Put $y = 0$: $x = \frac{3-k}{k} = 5$	1M	
3-k=5k		
$k=\frac{1}{2}$		
\therefore the equation of L_1 is $x+y-5=0$.	1A	
(b) The equation of L_2 is $y-3=0$.	2A	
Alternative colution		<u> </u>
Alternative solution kx+(1-k)y+(k-3)=0		
Slope $=\frac{-k}{1-k}=0$	1M	
k = 0		
$\kappa = 0$ ∴ the equation of L_2 is $y-3=0$.	1A	
the equation of L_2 is $y = 3 - 0$.		,
(c) Slope of $L_1 = -1$		
Let θ be the acute angle between L_1 and L_2 .		
ton () _ 1	lM	$OR \tan \theta = \left \frac{-1 - 0}{1 + (-1)(0)} \right $
$\tan \theta = -1 $	INI	1+(-1)(0)
π .		
$\theta = 45^{\circ} \left(\frac{QR}{4} \right)$	_1A	Accept omitting absolute sign
·	_6	

		Solution	Marks	Remarks
6.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg _{(2,0)}=0$		
		$3(2)^2 - 2(2) + k = 0$	1M	
		k = -8	1A	
	(b)	$y = \int (3x^2 - 2x - 8) \mathrm{d}x$	1M	Withhold this mark if " $y=$ " is omitted
		$= x^3 - x^2 - 8x + c \qquad (c \text{ is a constant})$	IM	Awarded even if c is omitted
		Put $x = 2$, $y = 0$: $0 = 2^3 - 2^2 - 8(2) + c$	1M	For finding c
		c = 12	1A	
		\therefore the equation of the curve is $y = x^3 - x^2 - 8x + 12$.		
		· :	_6	
7.	(a)	$(1+2x)^n = 1 +_n C_1(2x) +_n C_2(2x)^2 +_n C_3(2x)^3 + \cdots$	1A	Omit dots (pp-1) in all cases
		$= 1 + 2_n C_1 x + 4_n C_2 x^2 + 8_n C_3 x^3 + \cdots$	1A	Deduct 1A for each wrong term, up to zer
		$= 1 + 2nx + 2n(n-1)x^{2} + \frac{4}{3}n(n-1)(n-2)x^{3} +$,	
	(b)	$(x-\frac{3}{x})^2 (1+2x)^n$		
		$= (x^2 - 6 + \frac{9}{x^2}) (1 + 2_n C_1 x + 4_n C_2 x^2 + \cdots)$	1A	For expanding $(x-\frac{3}{x})^2$
		$-6 + 36_n C_2 = 210$ ${}_{n}C_2 = 6$	1M	
		$\frac{n(n-1)}{2} = 6$	1M	For ${}_{n}C_{2} = \frac{n(n-1)}{2} (OR = \frac{n!}{2!(n-2)!})$
		2		(can be awarded in (a)) $2!(n-2)!$
		$n^2 - n - 12 = 0$		
		(n+3)(n-4)=0		
		n=4 or $=-3$ (rejected)		
		$\therefore n=4$	_1A _6	-

Solution	Marks	Remarks
(a) $\cos 3\theta = \cos(\theta + 2\theta)$		
$= \cos\theta \cos 2\theta - \sin\theta \sin 2\theta$	1A	For expanding $cos(a+b)$
$= \cos\theta (2\cos^2\theta - 1) - \sin\theta (2\sin\theta\cos\theta)$	•••	Tor orpanding cos(a (b)
$= \cos\theta (2\cos^2\theta - 1) - 2\cos\theta (1 - \cos^2\theta)$	} 1M	For expressing in terms of $\cos \theta$
$= 4\cos^{3}\theta - 3\cos\theta$ $= 4\cos^{3}\theta - 3\cos\theta$	1	
= 4 cos 0 = 3 cos 0	1	
Alternative solution (1)		
$4\cos^3\theta - 3\cos\theta$		
$=\cos\theta(4\cos^2\theta-3)$		
$=\cos\theta[2(1+\cos2\theta)-3]$	1M	For $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$
$= 2\cos\theta\cos 2\theta - \cos\theta$		
$=\cos 3\theta + \cos \theta - \cos \theta$	1A	
$=\cos 3\theta$	1	
Alternative solution (2) $(\cos \theta + i \sin \theta)^3 = \cos 3\theta + i \sin 3\theta$)	
	1	
$(\cos\theta + i\sin\theta)^3 = \cos^3\theta + 3\cos^2\theta(i\sin\theta) +$	} 1A	
$3\cos\theta(i\sin\theta)^2 + (i\sin\theta)^3$	J	
Equate real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta (\sin^2 \theta)$	1 M	
	1141	
$= \cos^3 \theta - 3\cos \theta (1 - \cos^2 \theta)$		
$=4\cos^3\theta-3\cos\theta$	1	
(b) $\cos 6x + 4\cos 2x = 0$		-
$4\cos^3 2x - 3\cos 2x + 4\cos 2x = 0$	1A	
$4\cos^3 2x + \cos 2x = 0$	171	
$\cos 2x = 0$ or $4\cos^2 2x + 1 = 0$	1.4	
$\cos 2x = 0 \text{or} 4\cos^{-}2x + 1 = 0$	1A	
$\cos 2x = 0$ or $\cos^2 2x = -\frac{1}{4}$ (rejected)		
11		
$2x = 2k\pi \pm \frac{\pi}{2}$ (k is an integer)	1M	For $2x = 2n\pi \pm \alpha$
~ \		
$x = k\pi \pm \frac{\pi}{4}$ [OR $x = \frac{1}{4}(2n+1)\pi$ (<i>n</i> is an integer)]	1A	Accept degrees
4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	•••	
Alternative solution		$k\pi \pm 45^{\circ}$ etc. (pp – 1)
$\cos 6x + 4\cos 2x = 0$		
$\cos 6x + \cos 2x + 3\cos 2x = 0$	1A	
$2\cos 4x \cos 2x + 3\cos 2x = 0 \cos 2x = 0 \text{ or } 2\cos 4x + 3 = 0$	1A	
$\cos 2x - 0 \text{or} 2\cos 4x + 3 = 0$	171	
$\cos 2x = 0$ or $\cos 4x = -\frac{3}{2}$ (rejected)	-	
2		
π		
$2x = 2k\pi \pm \frac{\pi}{2}$	1 M	For $2x = 2n\pi \pm \alpha$
$x = k\pi \pm \frac{\pi}{4} [OR x = \frac{1}{4}(2n+1)\pi]$		
$\frac{x - nn \pm 4}{4} \underbrace{\left(2n \pm 1\right)n}_{4}$	1A	Ц
	7	

	Solution	Marks	Remarks
(a)	The equation of L is $y = mx + 1$.	1A	
	Substitute $y = mx + 1$ into $x^2 = 4y$:		
	$x^2 = 4(mx+1)$	1M	
	$x^2 - 4mx - 4 = 0$		
	$\therefore x_1, x_2$ are the roots of the equation $x^2 - 4mx - 4 = 0$.	1	
	, , , , , , , , , , , , , , , , , , , ,	3	
(b)	$\int x_1 + x_2 = 4m$	1 A	
(0)	$\begin{cases} x_1 + x_2 = 4m \\ x_1 x_2 = -4 \end{cases}$	IA	
	$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$	1M	
	$=(4m)^2-4(-4)$		
	$=16(m^2+1)$	1 A	
	$AB^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$		
	$= (x_1 - x_2)^2 + (mx_1 + 1 - mx_2 - 1)^2$	1M	For expressing y_1, y_2 in terms of x_1, x_2
			$OR = (x_1 - x_2)^2 + (\frac{1}{4}x_1^2 - \frac{1}{4}x_2^2)^2$
	$=(x_1-x_2)^2+(mx_1-mx_2)^2$		7 7
	$= (1+m^2)(x_1-x_2)^2$		
	$= (1 + m^2) [16(m^2 + 1)]$	1M	For using the above result
	$AB = 4(1+m^2)$	_1	_
		_6	
(c)	(i) x-coordinate of centre of $C = \frac{x_1 + x_2}{2}$ = 2m y-coordinate of centre of $C = \frac{y_1 + y_2}{2}$	1A	OR y = m(2m) + 1
	$= \frac{mx_1 + 1 + mx_2 + 1}{2}$ $= \frac{m}{2}(4m) + 1$ $= 2m^2 + 1$ ∴ the coordinates of the centre are $(2m, 2m^2 + 1)$.	1 A	$=2m^2+1$
	Radius of $C = \frac{AB}{2}$		
)	$= 2(1+m^2)$	1A	
	(ii) Distance from centre of C to $y+1=0$		
	$= 2m^2 + 1 - (-1) $ $OR = (2m^2 + 1) + 1 $	1 M	Accept omitting absolute sign
	$= 2m^{2} + 1 - (-1) $ $= 2(m^{2} + 1)$ $= 2(m^{2} + 1)$ $= 2(m^{2} + 1)$	1A	· -
	,		
	As the distance from centre of C to $y+1=0$ is equal to the radius of C , the line $y+1=0$ is a tangent to C . (OR The line $y+1=0$ and C meet at one point.)	} 1M+1A	1M for comparing the radius and the distance

99-CE-A MATHS 2-10

	Solution	Marks	Remarks
0. (a)	$PA = \sqrt{3} PB$		
	$\sqrt{(x+3)^2 + y^2} = \sqrt{3} \sqrt{(x+1)^2 + y^2}$	1A	(can be omitted)
	$x^2 + 6x + 9 + y^2 = 3(x^2 + 2x + 1 + y^2)$	1M	For squaring and expanding both side
	$x^2 + y^2 = 3$	1	Tot squaring and expanding both side
		3	
(b)	Differentiate $x^2 + y^2 = 3$ with respect to x :		
	$2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$)	
	dx		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$		
	Equation of tangent at $T(a, b)$ is	lM	
	_	TIVI	
	$\frac{y-b}{x-a} = \frac{-a}{b}$	J	
	$by - b^2 = -ax + a^2$		·
	$ax + by = a^2 + b^2$ QR $ax + by = 3$	1A	
	Alternative solution Using the formula $xx_1 + yy_1 = 3$, the equation of the		
	tangent at T is $ax + by = 3$.	2A	· ·
		_2	
(c)	Substitute $A(-3, 0)$ into the equation of tangent:		
	a(-3) + b(0) = 3	1M	
	a = -1	1A	
	$b = \sqrt{3 - (-1)^2}$ (: S lies in the 2nd quadrant.)		
	$=\sqrt{2}$	1A	
	\therefore the coordinates of S are $(-1, \sqrt{2})$.		
	Alternative solution		\sqcap
	S(x,y)		
	4		
	φ ×		
	A(-30) \ 0		
	Let ϕ be the angle between OS and the negative x-axis.		
	$\angle OSA = \frac{\pi}{2}$		
	$-x = OS \cos \phi$	1 M	
		11.1	
	$=\sqrt{3}\left(\frac{\sqrt{3}}{3}\right)$		
	x = -1	1A	
	$y = OS \sin \phi$		
	$=\sqrt{3}\left(\frac{\sqrt{6}}{3}\right)$		
	$=\sqrt{2}$	1A	
	: the coordinates of S are $(-1, \sqrt{2})$.		
	i and coordinates of Date (i, v2).		1 1

	Solution	-	Marks	Remarks
(d)	(i) The coordinates of Q are (-3)	$+r\cos\theta, r\sin\theta$).	1A+1A	
	(ii) (1) Substitute $(-3+r\cos\theta, r\sin\theta)$	in θ) into C :		
	$(-3+r\cos\theta)^2+(r\sin\theta)^2$	= 3	1M	
	$9 - 6r\cos\theta + r^2\cos^2\theta + r$	$e^2 \sin^2 \theta = 3$		<i>i</i>
	$r^2 - 6r\cos\theta + 6 = 0$	(*)		
	Since $AH = r_1$, $AK = r_2$, r of (*).	r_1 and r_2 are the roots	1	
	(2) Since ℓ cuts C at two dist two distinct real roots.	inct points, (*) has		
	$(6\cos\theta)^2 - 4(6) > 0$		lM	
	$\cos^2 \theta > \frac{2}{3}$		1A	Can be awarded even if
	3			considering $\Delta = 0$ or $\Delta \ge 0$
	[2	[2		Considering A v of Az v
	$\cos \theta > \sqrt{\frac{2}{3}}$ or $\cos \theta < -$		1A)
	(rejected	$\because -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$		
	t			
	$\therefore -0.615 < \theta < 0.615$ (co	rrect to 3 sig. figures)	1A	$(OR -35.3^{\circ} < \theta < 35.3^{\circ})$
	Alternative solution			
	Let α be the angle between	n AS and the x -axis.		
	A)	,		
	S(-1,12) A(-3,c) B(-1,c) O	×		
	$\tan \alpha = \frac{SB}{AB}$ OR $\sin \alpha = \frac{C}{C}$	$\frac{\partial S}{\partial A} OR \sin \alpha = \frac{SB}{SA}$	lM	OR S is a point on the locus
	$=\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{3} \qquad = \frac{\sqrt{2}}{\sqrt{6}} = \frac{1}{\sqrt{3}}$	1 A	$\therefore SA = \sqrt{3} SB$ $\therefore \sin \alpha = \frac{SB}{SA} = \frac{1}{\sqrt{3}}$
	$\alpha = 35.3^{\circ}$ (correct to 3 signals)	g. figures)	1A	
	Since ℓ cuts the circle at $-0.615 < \theta < 0.615$.		1A	
	•			

		Solution	Marks	Remarks
1.	(a)	Consider $\triangle ABD$:		
		By Sine Law,		
•		•		
		$\frac{AD}{\sin \angle ABD} = \frac{\ell}{\sin \angle ADB}$	1M	
			•	
		$\frac{AD}{\sin(180^{\circ} - \alpha)} = \frac{\ell}{\sin(\alpha - 10^{\circ})}$		
		$AD = \frac{\ell \sin \alpha}{\sin(\alpha - 10^{\circ})} \mathrm{m}$	1	
		$\frac{AD}{\sin(\alpha-10^{\circ})}^{\text{III}}$	ı	
		(i) Consider ΔACD :		
		$CD = AD \sin 10^{\circ}$		
		.		
		$= \frac{\ell \sin \alpha \sin 10^{\circ}}{\sin(\alpha - 10^{\circ})} \mathrm{m}$	1A	
		(ii) Consider ΔADH:		
		$\frac{AD}{D} = \frac{DH}{D}$		
		$\frac{1}{\sin(\alpha-\beta)} = \frac{1}{\sin(\beta-10^\circ)}$	1 M	
		$DH = AD \frac{\sin(\beta - 10^{\circ})}{\sin(\alpha - \beta)} = \frac{\ell \sin \alpha \sin(\beta - 10^{\circ})}{\sin(\alpha - 10^{\circ})\sin(\alpha - \beta)}$		N .
		Consider ΔDHG :		
		$h = DH \sin \alpha$	1M	
		$= \frac{\ell \sin^2 \alpha \sin(\beta - 10^\circ)}{\sin(\alpha - 10^\circ) \sin(\alpha - \beta)}$	_1	
		, , , ,	_6	
	(b)	(i) (1) Using (a) (ii):		
		height of pole = $\frac{97 \sin^2 15^\circ \sin(10.2^\circ - 10^\circ)}{\sin(15^\circ - 10^\circ) \sin(15^\circ - 10.2^\circ)}$		1
		1000000000000000000000000000000000000		
		= 3.1100		
		= 3.1 m (correct to 2 sig. fig.)	1 A	Omit/wrong unit $(u-1)$
		(2) Using (a) (i):		
		height of tower $CD = \frac{97 \sin 15^{\circ} \sin 10^{\circ}}{1000 \cos 1000}$		
		sin(15°-10°)		
		= 50.020		
		= 50 m (correct to 2 sig. fig.)) 1A	
		radius of tower = $\frac{h}{1.00}$		
		tan 15°		
		$=\frac{3.1100}{3.000}$	1 M	
		tan 15° = 11.607		
		= 11.607 $= 12 m (correct to 2 sig. fig.)$	1A	
		- 12 iii (correct to 2 sig. lig.)		
				I.

	只限教師参阅 FOR TEACHERS, USE ONLY		
Solution	Marks	- Remarks	
(ii) (1)		·	
A B O			
A B O			
`\			
I P			
Consider AMPO			
Consider $\triangle HPO$: $tan \angle HPO = \frac{OH}{OP}$			
O1			
$OP = \frac{OH}{\tan 15^{\circ}}$	2M		
$= \frac{3.1100 + 50.020}{}$	13.4	For $OH = h + CD$	
tan 15°	1M	For $OH - n + CD$	
= 198.28 = 200 m (correct to 2 sig. fig.)	1A		
Alternative solution		<u> </u> 	
OP = OB	1M	(can be omitted)	
OP = OC + CB	1M		
$=r+\frac{CD}{\tan\alpha}$			
$= 11.607 + \frac{50.020}{\tan 15^{\circ}}$	1M		
tan 15° = 198.28			
= 200 m (correct to 2 sig. fig.)	1A		
1	:		
(2) $\angle BPO = \frac{1}{2}(180^{\circ} - 45^{\circ})$	1 A	(Awarded 1M for other correct methods	
= 67.5° Bearing of B from P is $N(67.5^{\circ} - 45^{\circ})W$,			
i.e. N22.5°W.	_1A	337.5° (<u>OR</u> 340°)	
(OR N23°W correct to 2 sig. fig.)	10		
•			
- · · · · · · · · · · · · · · · · · · ·			
	i		

	Solution	Marks	Remarks
2. (a)	For $n = 1$, LHS = $\cos \theta$.		
	$RHS = \frac{\sin 2\theta}{2\sin \theta}$		
•			
	$= \frac{2\sin\theta\cos\theta}{2\sin\theta} = \cos\theta = \text{LHS}.$	1	
	$2\sin\theta$ $\therefore \text{ the statement is true for } n=1.$		
	Assume $\cos\theta + \cos 3\theta + \cos 5\theta + \dots + \cos(2k-1)\theta = \frac{\sin 2k\theta}{2\sin\theta}$	1	
	for some $+$ ve integer k .		
	Then $\cos\theta + \cos 3\theta + \cos 5\theta + \dots + \cos(2k-1)\theta + \cos[2(k+1)]\theta$	 −1] <i>θ</i>	
	$\sin 2k\theta$,	
	$= \frac{\sin 2k\theta}{2\sin \theta} + \cos(2k+1)\theta$	1	
	$\sin 2k\theta + 2\sin \theta \cos(2k+1)\theta$		
	$={2\sin\theta}$		
	$= \frac{\sin 2k\theta + \sin(2k+2)\theta - \sin 2k\theta}{2k\theta + \sin(2k+2)\theta - \sin 2k\theta}$	1	(cannot be omitted)
	$2\sin\theta$	•	(camiot be omitted)
	$=\frac{\sin 2(k+1)\theta}{2\sin \theta}$	1	
	$2\sin\theta$	-	
	The statement is also true for $n = k + 1$ if it is		
	true for $n = k$.		
	By the principle of mathematical induction,		
	the statement is two for all positive integers a	1	
	the statement is true for all positive integers n .	6	
(b)	Using (a): $\cos \theta + \cos 3\theta + \cos 5\theta = \frac{\sin 6\theta}{2\sin \theta}$,	1 A	(can be omitted)
	$2 \sin \theta$ where $\sin \theta \neq 0$.		
	Put $\theta = \frac{\pi}{2} - x$:		
	-		,
	$\cos(\frac{\pi}{2} - x) + \cos 3(\frac{\pi}{2} - x) + \cos 5(\frac{\pi}{2} - x) = \frac{\sin 6(\frac{\pi}{2} - x)}{2\sin(\frac{\pi}{2} - x)}$		
	$\cos(\frac{-x}{2} + \cos 3(\frac{-x}{2}) + \cos 5(\frac{-x}{2}) = \frac{-x}{2} = \frac{-x}{2}$		
	$\cos(\frac{\pi}{2} - x) + \cos(\frac{3\pi}{2} - 3x) + \cos(\frac{5\pi}{2} - 5x) = \frac{\sin(3\pi - 6x)}{2\sin(\frac{\pi}{2} - x)}$		
	$\frac{2}{2} \frac{xy + \cos(\frac{x}{2}) + \cos(\frac{x}{2})}{2} \frac{2\sin(\frac{\pi}{2} - x)}{2\sin(\frac{\pi}{2} - x)}$		
	2		
	$\sin x - \sin 3x + \sin 5x = \frac{\sin 6x}{2\cos x}$	1	
	,,		
	(where $\sin(\frac{\pi}{2} - x) = \cos x \neq 0$)		
	2		
			- -
	Alternative solution Consider 2 cos y(sin x - sin 3x + sin 5x)		
	Consider $2\cos x(\sin x - \sin 3x + \sin 5x)$	1A	
	$= \sin 2x - (\sin 4x + \sin 2x) + (\sin 6x + \sin 4x)$	'^	
	$=\sin 6x$		
	$\therefore \sin x - \sin 3x + \sin 5x = \frac{\sin 6x}{2\cos x}, \text{ where } \cos x \neq 0.$	1	
	2 cos x	-	+
		_2	

	Solution	Marks	Remarks
(c)	$\int_{0.1}^{0.5} \left(\frac{\sin x - \sin 3x + \sin 5x}{\cos x + \cos 3x + \cos 5x} \right)^2 dx$ $= \int_{0.1}^{0.5} \left[\frac{\sin 6x}{2 \cos x} / \frac{\sin 6x}{2 \sin x} \right]^2 dx$ $= \int_{0.1}^{0.5} \tan^2 x dx$	1A	For integrand only
	$= \int_{0.1}^{0.5} (\sec^2 x - 1) \mathrm{d}x$	1M	For $\tan^2 x = \sec^2 x - 1$
	= $[\tan x - x]_{0.1}^{0.5}$ = 0.046 (correct to 2 sig. fig.)	1A _1A	For primitive function only
(d)	$\int_{-\frac{\pi}{3}}^{\frac{\pi}{2}} (\sin x + 3\sin 3x + 5\sin 5x + 7\sin 7x + \dots + 1999\sin 1999x) dx$ $= \frac{\pi}{3}$		1M for integrating each term
	$= \left[-\cos x - \cos 3x - \cos 5x - \cos 7x - \dots - \cos 1999x\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ $= -\frac{1}{2} \left[\frac{\sin 2000x}{\sin x}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$	1M+1A 1A	(At least two terms)
	$= -\frac{1}{2} \left(\frac{\sin 1000\pi}{\sin \frac{\pi}{2}} - \frac{\sin \frac{2000\pi}{3}}{\sin \frac{\pi}{3}} \right)$ $= \frac{1}{2} \left(\frac{\sin 1000\pi}{\sin \frac{\pi}{2}} - \frac{\sin \frac{\pi}{3}}{\sin \frac{\pi}{3}} \right)$	1A	
	2 Alternative solution		<u> </u>
	$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\sin x + 3\sin 3x + 5\sin 5x + 7\sin 7x + \dots + 1999\sin 1999x) dx$ $= [-\cos x - \cos 3x - \cos 5x - \cos 7x - \dots - \cos 1999x]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$	lM+1A	1M for integrating each term
	$= \left[-\cos\frac{\pi}{2} - \cos\frac{3\pi}{2} - \cos\frac{5\pi}{2} - \dots - \cos\frac{1999\pi}{2}\right] - \left[-\cos\frac{\pi}{3} - \cos\pi - \cos\frac{5\pi}{3} - \cos\frac{7\pi}{3} - \dots - \cos\frac{1999\pi}{3}\right]$		
	$= 0 - \left[\left(-\frac{1}{2} + 1 - \frac{1}{2} \right) + \left(-\frac{1}{2} + 1 - \frac{1}{2} \right) + \dots + \left(-\frac{1}{2} + 1 - \frac{1}{2} \right) - \frac{1}{2} \right]$ $= \frac{1}{2}$	1A	(can be omitted)
		17	1

	Solution	Marks	Remarks
. (a)	•		-
	$r = \sqrt{4 + 3(2)^2}$ $= 4$	1M _1A _2	- -
(b)	V = Volume of lower cylindrical part + volume of upper part		
	Volume of lower cylindrical part = $\pi r^2 h$		
	$= \pi(4)^2(2)$ $= 32\pi$	1M 1A	
	Alternative solution		
	Volume of lower cylindrical part = $\pi \int_0^2 x^2 dy$		
	$=\pi \int_0^2 4^2 \mathrm{d}y$	1M	
	$=32\pi$	1A	
	Volume of upper part = $\pi \int_{2}^{h} x^{2} dy$	1M	·
	$=\pi \int_2^h (4+3y^2) \mathrm{d}y$	1A	
	$=\pi[4y+y^3]_2^h$	1A	For $\pi[4y+y^3]$ only
	$=(h^3+4h-16)\pi$	1A	
	$\therefore V = 32\pi + (h^3 + 4h - 16)\pi$		
	$= (h^3 + 4h + 16)\pi $ cubic units	7	
(c)	(i) Let h units be the depth of water at time t .		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pi (3h^2 + 4) \frac{\mathrm{d}h}{\mathrm{d}t}$	1M+1A	1 M for chain rule
	Put $\frac{dV}{dt} = -2\pi$ and $h = 3$:		
	$-2\pi = \pi[3(3)^2 + 4]\frac{\mathrm{d}h}{\mathrm{d}t}$	1M	For substitution
			(Accept substitute $\frac{\mathrm{d}V}{\mathrm{d}t} = 2\pi$)
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-2}{31} \text{ units per sec.} (OR \ s^{-1})$	1A	omit/wrong unit $(u-1)$
	(OR The depth decreases at a rate $\frac{2}{31}$ units per sec	e.)	
		1	

Solution	Marks	Remarks
(ii) When $h=1$, the water remained is in the cylindrica part only.	1	·
$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\text{base area of cylilnder}}$	1M	(can be omitted)
$=\frac{-2\pi}{\pi(4)^2}$	lM	For substitution
		(Accept substitute $\frac{\mathrm{d}V}{\mathrm{d}t} = 2\pi$)
$= -\frac{1}{8} \text{ units per sec. } (\underline{OR} \ s^{-1})$	1A	
(OR The depth decreases at a rate $\frac{1}{8}$ units per second	ec.)	
Alternative solution		\uparrow
$V = \pi(4)^2 h$ $= 16\pi h$	1M	
$\frac{\mathrm{d}V}{\mathrm{d}t} = 16\pi \frac{\mathrm{d}h}{\mathrm{d}t}$	1M	
$-2\pi = 16\pi \frac{\mathrm{d}h}{\mathrm{d}t}$		
$\therefore \frac{dh}{dt} = -\frac{1}{8} \text{ units per sec. } (\underline{OR} \text{ s}^{-1})$	1A	
	7	-
	-	