Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Numpy, Pandas, Document Features

Professor Eric C. Larson

Class Logistics and Agenda

- Canvas? Anaconda Installs?
- In-person versus Zoom and other classes
- Agenda:
 - Finish Table Data, Numpy
 - Data Quality
 - Attributes Representation
 - ·documents
 - The Pandas eco-system
 - loading and manipulating attributes
- Needing some more help?
 - fast.ai has great, free resources

Class Overview, by topic

Review: Example Classification: Malware

- Classify files as malware based on size and naming.
- Approach:
 - Use already classified malware files
 - Must translate name to set of features
 - {malware, not malware} decision forms the class attribute
 - Collect various malware examples and a number of safe files, providing labels for each and a set of features

Training Set

TID	Name	Size	Class
1	erte.dll	916 b	not
2	fufu.bin	1M	yes
3	exe.exe	1G	not
4	ex.py	113 b	not

Unknown

TID	Name	Size
1	asdf.dll	11b

Review: Example Regression: Housing Price

- Predict a value of a given continuous valued variable based on the values of other variables
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Predicting House Sales

Training Set

TI	# Rms	Sq Ft	Zip	Price
1	2	1125	74012	150K
2	2	2525	75155	200k
3	10	4678	90210	3M
4	4	2678	75154	350k

Unknown

TI	# Rms	Sq Ft	Zip
1	2	2200	75115

Example Classifying: Objects in Images

Image Net:

- 14 million images
- 200 Labeled Categories
- 1000 Location Labels

Attributes:

Images

Self Test

- A. Classification
 - **B.** Regression
 - **C. Not Machine Learning**
- Dividing up customers by potential profitability?
- Extracting frequency of sound?

Types of Data and Categorization

Table Data

 Table Data: Collection of data instances and their features

Python: Pandas Dataframe

R: Data.frame

Matlab: Table Class

C++: Trick Question

Objects, records, rows, points, samples, cases, entities, instances

TID	Pregnant	ВМІ	Age	Diabetes
1	Υ	33.6	41-50	positive
2	N	26.6	31-40	negative
3	Υ	23.3	31-40	positive
4	Ν	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	21-30	negative
9	N	30.5	51-60	positive
10	Υ	37.6	51-60	positive

Feature Type Representation

	Attribute	Representation Transformation	Comments
ete	Nominal	Permutation of values only. one hot encoding or hash function	If all employee ID numbers were reassigned, would it make any difference?
Discrete	Ordinal	Order must be preserved new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Continuous	Interval	<pre>new_value = f(old_value) + b f is monotonic through origin float</pre>	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Col	Ratio	<pre>new_value = f(old_value) f is monotonic through origin float</pre>	Length can be measured in meters or feet, but zero is zero

Demo

"Finish"
Jupyter Notebooks

01_Numpy and Pandas Intro.ipynb

Data Quality

programmers commenting their code

Review of Feature Data

Data Quality Problems

- Missing
 - Easy to find, NaNs
- Duplicated
 - Easy to find, hard to verify
- Noise or Outlier
 - Hard to define
 - Hard to catch

Information is not collected (e.g., people decline to give their age and weight)

Features **not applicable** (e.g., annual income for children)

UCI ML Repository: 90% of repositories have missing data

TID	Hair Color	Height	Age	Arrested
1	Brown	5'2"	23	no
2	Hazel	1.5m	12	no
3	Bl	5	999	no
4	Brown	5'2"	23	no