GELFAND COMPACTNESS

FRANK MURPHY-HERNANDEZ

Abstract.

Introduction

In this paper the rings are associative but we do not ask them to have unit.

1. Preliminaries

[2]

2. Rings with local units

Definition 2.1. Let R be a ring. We say that R is a ring with local units, if for any finitely many $x_1, \ldots, x_n \in R$ there is an idempotent $e \in R$ with $a_1, \ldots, a_n \in eRe$.

Definition 2.2. Let R be a ring. We say that R has enough idempotents, if there exists a family $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ of pairwise orthogonal idempotents of elements in R with $R=\bigoplus_{{\lambda}\in\Lambda}Re_{\lambda}=\bigoplus_{{\lambda}\in\Lambda}e_{\lambda}R$. In this case $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ is called a complete family of idempotents in R.

Definition 2.3. Let R be a ring. We say that R is a s-unital ring, if for any finitely many $x_1, \ldots, x_n \in R$ there is $y \in R$ with $x_i y = x_i = y x_i$ for $i = 1, \ldots, n$.

Definition 2.4. Let R be a ring. We say that R is a firm ring, if the canonical morphism $\mu \colon R \otimes_R R \longrightarrow R$ given by $\mu(r \otimes s) = rs$ is an isomorphism.

Definition 2.5. Let R be a ring. We say that R is idempotent, if $R^2 = R$, that is, that for any $x \in R$ there are $x_1, \ldots, x_n, y_1, \ldots, y_n \in R$ such that $x = \sum_{i=1}^n x_i y_i$.

3. Paracompact space

[1]

4. Metacompact space

5. Orthocompact space

References

- [1] JA Dieudonné. Une généralisation des espaces compacts. J. Math. Pures. Appl., 23:65–76, 1944.
- [2] Robert Wisbauer. Foundations of module and ring theory. Routledge, 2018.

FACULTAD DE CIENCIAS, UNAM, MEXICO CITY Email address: murphy@ciencias.unam.mx

Date: October 8, 2019.
2000 Mathematics Subject Classification. Primary ****, ****; Secondary ****, ****.
Key words and phrases. ,,