Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_st-nat*

Test 10

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul real a, a > 1, pentru care numerele a 1, 3 și a + 7 sunt termeni consecutivi ai unei progresii geometrice.
- **5p** 2. Determinați suma absciselor punctelor de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = -x 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $3^{x+2} 3^x 8 = 0$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr n din mulțimea $A = \{2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să verifice inegalitatea $C_n^2 \le 3C_n^1$.
- **5p** | **5.** Determinați numerele reale m, $m \ne 2$, pentru care vectorii $\vec{u} = 4\vec{i} + m\vec{j}$ și $\vec{v} = (m-2)\vec{i} + 2\vec{j}$ sunt coliniari.
- **5p 6.** Determinați perimetrul triunghiului ABC, știind că AB = 5, AC = 4 și $m(\angle A) = 60^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră sistemul de ecuații $\begin{cases} (m^2 1)x + my + 4z = 1 \\ x + y + z = 0 \\ mx + 3y + z = -1 \end{cases}$, unde m este număr real.
- **5p** a) Determinați numărul real m pentru care tripletul (-1,0,1) este soluție a sistemului de ecuații.
- **5p b**) Determinați mulțimea valorilor reale ale lui *m* pentru care sistemul de ecuații admite soluție unică.
- **5p** c) Determinați numerele $m \in \mathbb{Z} \setminus \{-7, 2\}$, pentru care sistemul de ecuații admite soluția (x_0, y_0, z_0) , cu $x_0, y_0, z_0 \in \mathbb{Z}$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = x + y + 11xy$.
- **5p** a) Demonstrați că $x \circ y = 11\left(x + \frac{1}{11}\right)\left(y + \frac{1}{11}\right) \frac{1}{11}$, pentru orice numere reale x și y.
- **5p b**) Determinați numerele reale x, pentru care $x \circ x = \frac{8}{11}$.
- **5p** c) Calculați partea întreagă a numărului $a = \left(1 \frac{1}{11}\right) \circ \left(1 \frac{2}{11}\right) \circ \left(1 \frac{3}{11}\right) \circ \left(1 \frac{4}{11}\right)$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{2}{3}x\sqrt{x} x$.
- **5p a)** Arătați că $f'(x) = \sqrt{x} 1, x \in (0, +\infty).$
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul $A\left(1, -\frac{1}{3}\right)$.
- **5p** c) Demonstrați că $x(2\sqrt{x}-3) \ge -1$, pentru orice $x \in (0,+\infty)$.
 - **2.** Pentru fiecare număr natural nenul n, se consideră funcția $f_n:(-1,+\infty)\to\mathbb{R}$, $f_n(x)=\frac{x^n}{x^n+1}$.
- **5p** a) Determinați primitiva $G:(-1,+\infty) \to \mathbb{R}$ a funcției $g:(-1,+\infty) \to \mathbb{R}$, $g(x)=(x^3+1)f_3(x)$, știind că G(0)=2020.

- **5p b)** Calculați $\int_{0}^{1} f_{1}(x) dx$.
- **5p** c) Demonstrați că $\int_{0}^{1} f_n(x) dx \le \frac{1}{n+1}$, pentru orice număr natural nenul n.