

网络安全 Seed Project 实验报告 ——本地 DNS 攻击实验

学生姓名:于澜

指导老师: 王伟平

专业班级: 信安 1401 班

学院:信息科学与工程学院

日期: 2016年11月

目录:

– ,	、 实验目的	Ċ
二、	、实验环境	3
三、	、实验步骤	4
	1) 安装并配置 DNS 服务器	4
	2) 配置用户机器	7
	3) 配置攻击机	8
	4) 预期产出	8
	5) 安装 Wireshark	8
四、	、实验原理	8

本地 DNS 攻击实验

一、实验目的

DNS(域名系统)是互联网的电话簿; 它将主机名转换为 IP 地址(或 IP 地址到主机名)。 这种翻译是通过 DNS 解析,发生在场景后面。 DNS Pharming 攻击以各种方式操纵这个解析过程,意图误导用户到其他目的 地,这通常是恶意的。本实验的目的是了解这种情况的攻击工作。

二、实验环境

需要建立实验室环境像。为了简化实验室环境,我们让用户的计算机,DNS 服务器和攻击者的计算机在一台物理机上,但使用不同的虚拟机。本实验中使用的网站可以是任何网站。配置是基于 Ubuntu,这是在预构建的虚拟机中使用的操作系统。设置了 DNS 服务器,用户机和攻击机同一个局域网。我测试三台虚拟机的 ip 分别为 10.0.2.4,10.0.2.5,10.0.2.6。

- 1. 使用虚拟机软件。
- 2. 使用 Wireshark, Netwag 和 Netwox 工具。
- 3. 配置 DNS 服务器。

三台虚拟机如图

三、实验步骤

- 1) 安装并配置 DNS 服务器
- 1. 装载并启动 bind9

```
[11/17/2016 18:35] root@ubuntu:/home/seed# service bind9 start

* Starting domain name service... bind9 [ OK ]
```

- 2. 创建 named. conf. options 文件
- 一开始我一直失败,后来才知道在这之前要获取权限,看一下哪些文件 是可以被修改的。

然后对 named. conf. options 文件编辑

```
[11/17/2016 18:35] root@ubuntu:/home/seed# service bind9 start
                                                                          [ OK ]
* Starting domain name service... bind9
[11/17/2016 18:40] root@ubuntu:/home/seed# vi /etc/bind
[11/17/2016 18:41] root@ubuntu:/home/seed# cd /etc/bind
[11/17/2016 18:41] root@ubuntu:/etc/bind# ls
pind.keys db.empty
                      named.conf.default-zones zones.rfc1918
db.0
          db.local
                       named.conf.local
db.127
          db.root
                      named.conf.options
          named.conf rndc.key
db. 255
[11/17/2016 18:41] root@ubuntu:/etc/bind# vi named.conf.options
[11/17/2016 18:43] root@ubuntu:/etc/bind# cati named.conf.options
```

添加以下内容到文件

```
options {
dump-file
  "/var/cache/bind/dump.db";
};
```

添加后用 cat 指令查看一下:

```
[11/17/2016 18:43] root@ubuntu:/etc/bind# cat named.conf.options
options {
      directory "/var/cache/bind";
      dump-file "/var/cache/bind/dump.db";
      // If there is a firewall between you and nameservers you want
      // to talk to, you may need to fix the firewall to allow multiple
      // ports to talk. See http://www.kb.cert.org/vuls/id/800113
      // If your ISP provided one or more IP addresses for stable
      // nameservers, you probably want to use them as forwarders.
      // Uncomment the following block, and insert the addresses replacing
      // the all-0's placeholder.
      // forwarders {
             0.0.0.0;
      // };
      //-----
      // If BIND logs error messages about the root key being expired,
      // you will need to update your keys. See https://www.isc.org/bind-keys
      dnssec-validation auto;
      auth-nxdomain no; # conform to RFC1035
      listen-on-v6 { any; };
};
```

注意:文件/var/cache/bind/dump.db用于转储DNS服务器的缓存。

3、DNS 服务器通过添加以下内容到/etc/bind/named.conf

```
zone "example.com" {
type master;
file "/var/cache/bind/example.com.db";
};
zone "0.0.10.in-addr.arpa" {
type master;
file "/var/cache/bind/10.0.2"}
```

注意 ip 段不同,添加的内容也不同

4、设置区域文件。

上述区域中的 file 关键字后面的文件名称为区域文件。实际的 DNS 解析被放在区域文件中。

(1) 在/var/cache/bind/目录,撰写下面的 example.com.db 区域文件注意:

配置文件可以从实验室的网页下载,输入这些文件可能会引入错误。

```
[11/18/2016 04:07] root@ubuntu:/var/cache/bind# touch example.com.db
[11/18/2016 04:07] root@ubuntu:/var/cache/bind# vi example.com.db
[11/18/2016 04:08] root@ubuntu:/var/cache/bind# cat example.com.db
    LibreOffice Impress
                      ns.example.com. admin.example.com. (
                      ;serial, today's date + today's serial number
        2008111001
                       ;refresh, seconds
        8H
        2H
                       ;retry, seconds
                      ;expire, seconds
        4W
        1D)
                      ;minimum, seconds
        IN
                NS
                      ns.example.com. ;Address of name server
        IN
                MX
                      10 mail.example.com. ; Primary Mail Exchanger
                      10.0.2.7 ; Address of www.example.com
WWW
        IN
                A
mail
        IN
                A
                      10.0.2.8 :Address of mail.example.com
                      10.0.2.4 ;Address of ns.example.com
        IN
                A
ns
                      10.0.3.6 ;Address for other URL in
*.example.com. IN A
                                    ;example.com. domain
[11/18/2016 04:08] root@ubuntu:/var/cache/bind# cd /etc/bind
[11/18/2016 04:10] root@ubuntu:/etc/bind# rm example.com.db
```

符号"@"是一个特殊符号,表示来自 named. conf 的源。因此,'@'在这里代表 example. com。"IN"是指互联网。"SOA"是开始权限的缩写。此区域文件包含7个资源记录(RR):SOA(开始权限)RR,NS(名称服务器)RR,MX(邮件 eXchanger)RR和4A(主机地址)RR。

(2) 我们还需要设置 DNS 反向查找文件。 在目录/var/cache/bind/中,反向 DNS 查找文件名为 10.0.2 的 example.com 域.

```
$TTL 3D
        IN
                 SOA
                          ns.example.com. admin.example.com. (
                 2008111001
                 8 H
                 2 H
                 4 W
                 1D)
@
        IN
                 NS
                          ns.example.com.
101
        IN
                 PTR
                          www.example.com.
102
        IN
                 PTR
                          mail.example.com.
10
        IN
                 PTR
                          ns.example.com.
```

找了半天虚拟机的编辑截图,找不到了……哭泣

5、启动 DNS 服务器。

```
[11/18/2016 04:18] root@ubuntu:~# sudo /etc/init.d/bind9 restart

* Stopping domain name service... bind9

waiting for pid 855 to die

[ OK ]

* Starting domain name service..._bind9
```

- 2) 配置用户机器
- 1、在用户计算机上,需要让机器 10.0.2.4 成为默认 DNS 服务器。通过 更改用户计算机的 DNS 设置文件/etc/resolv.conf 来实现这一点:

```
[11/18/2016 04:26] seed@ubuntu:/etc$ su
Password:
[11/18/2016 04:26] root@ubuntu:/etc# cat resolv.conf
# Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolv conf(8)
# DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN nameserver 127.0.0.1
[11/18/2016 04:27] root@ubuntu:/etc# vi resolv.conf
[11/18/2016 04:28] root@ubuntu:/etc# cat resolv.conf
# Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolv conf(8)
# DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN nameserver 10.0.2.4
```

注意:确保这是/etc/resolv.conf 中唯一的名称服务器条目。还要注意,在 Ubuntu, /etc/resolv.conf 可能被 DHCP 客户端覆盖。为了避免这种情况,请禁用 DHCP

```
Click "System Settings" -> "Network",
Click "Options" in "Wired" Tab,
Select "IPv4 Settings" -> "Method" -> "Automatic(DHCP) Addresses Only"
and update only "DNS Servers" entry with IP address of BIND DNS Server.
```

Now Click the "Network Icon" on the top right corner and Select "Auto eth0". This will refresh the wired network connection and updates the changes.

然后重新启动 Ubuntu 计算机以使修改的设置生效。

3) 配置攻击机

在攻击者机器上,没有太多配置。

4) 预期产出

根据上述步骤设置实验室环境后,DNS 服务器已准备就绪。在用户计算机上,发出以下命令: %dig www.example.com

运行结果

5) 安装 Wireshark

Wireshark 是这个实验室非常重要的工具,可以嗅探每一个经历的包裹 LAN。

四、实验原理

当一个 DNS 服务器 Apollo 收到一个查询时,如果主机名不在 Apollo 的域内,它将会请求其他 DNS 服务器获取主机名解析。注意,在我们的实验室设置中,我们的 DNS 域服务器是 example.com; 因此,对于其他域(例如 www. google.com)的 DNS 查询, DNS 服务器 Apollo 将询问其他 DNS 服务器。然而,在询问其他 DNS 服务器之前,它首先从自己的缓存中寻找答案;如果答案是肯定的,DNS 服务器会简单地回复与来自其缓存的信息。如果答案不在缓存中,DNS 服务器将尝试获取答案从其他 DNS 服务器。当 Apollo 得到答案时,它会将答案存储在缓存中,所以接下来没有必要问其他 DNS 服务器。因此,如果攻击者可以欺骗来自其他 DNS 服务器的响应,Apollo 将保留欺骗响应在其缓存中一段时间。下一次,当用户的机器想要解决相同的主机名,Apollo 将使用在缓存中的欺骗响应来回复。这样,攻击者只需要一次欺骗,并且影响将持续直到缓存的信息过期。这种攻击称为 DNS 缓存中毒。

上下是两种不同方式

