Департамент образования и науки города Москвы ГАОУ ДПО ЦПМ ГБОУ Школа № 444

Технологический проект «Масштабируемая система для выращивания растений в городских условиях»

условиях»
Выполнил:
Трафняк Семён Львовович, ученик 11 класса
Руководитель:
Капитонов Даниил Дмитриевич

Москва 2022 год

Оглавление

Введение	4
Цель проекта	4
Задачи:	4
Оборудование, необходимое для изготовления системы	5
Актуальность	5
1 Теоретическая часть	7
1.1 Растениеводство в городской среде	7
1.2 Преимущества технологического проекта "Масштабируемая сист	гема для
выращивания растений в городских условиях"	7
1.3 Исследования, проведённые автором проекта	8
1.3.1 Исследование 1. Свет и его влияние на рост и развитие растег	ний 8
1.3.2 Исследование 2. Анализ актуальных проблем в вырац	цивании
растений в условиях города	11
1.3.3 Исследование 3. Растения - незаменимые помощники в бо	рьбе со
стрессом	12
1.4 Типы озеленения городских пространств	13
1.4.1 Открытые формы озеленения городского пространства	13
1.4.2 Закрытые формы озеленения, аналоги системы	15
1.6 Физический расчет модели	17
1.7 Подбор компонентов	19
2 Конструкторско-технологический этап	20
2.1 Состав макета:	20
2.2 Устройство макета	20
2.3.3d молель макета	21

2.4 Программы и алгоритмы работы системы	22
2.4.1 Принцип управления	22
2.4.2 Алгоритм работы системы поддержания микроклимата	22
3 Экономическая и экологическая оценка устройства	24
3.1 Материальные затраты	24
3.2 Расчет экономической целесообразности	25
3.3 Экологическая оценка	25
4 Создание рабочего прототипа в Красноярске	25
Заключение	28
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	29
Приложение 1 Изготовление модели корпуса	31
Приложение 2 Электрическая схема платы разводки питания и её внешн	ий вид
	37
Приложение 3 Эскизы проекта и фото прототипа	39

Введение

Растения окружают нас почти всё наше время, их значение для человечества трудно переоценить, ведь они вырабатывают кислород, очищают атмосферу, а также являются источниками большого количества питательных веществ для человека.

В рационе каждого из нас присутствуют или должны присутствовать фрукты, овощи, зелень и другие растительные продукты. Всеми этими видами растений нас обеспечивает агропромышленность, начавшая свое развитие вместе с развитием человечества, она с каждым годом совершенствует технологии по выращиванию растений. Но, даже несмотря на это, самой большой проблемой остаётся логистика. Это связано с тем, что далеко не все растения можно выращивать в любых условиях.

Ещё одна важная миссия растений — это помогать людям поддерживать их психоэмоциональное состояние, во многих научных статьях психологи отмечают исключительно положительное влияние зелёных насаждений на психологическое состояние человека, особенно в крупных городах и мегаполисах. Но тут тоже возникает проблема - сезонность. Зимой только хвойные виды деревьев и кустарников не сбрасывают свои иголки и большинство парков превращаются в белое "озеро", состоящее из снега и спящих деревьев.

Цель проекта

Рассмотреть возможность использования IT - технологий в сфере выращивания растений. Спроектировать и создать масштабируемую систему для выращивания растений в городских условиях, использующую современные технологии растениеводства в домашних и городских условиях и поддержания комфортного микроклимата выращенных растений.

Залачи:

- 1. изучить технологии выращивания растений различных видов и в условиях города подобрать необходимую литературу по растениеводству;
 - 2. актуализировать исследования по использованию света разного

спектра и интенсивности облучения в растениеводстве. Построить графики и проанализировать влияние определённых значений спектра на некоторые виды растений;

- 3. провести исследование о потребности населения в области выращивания растений в условиях городской среды;
- 4. познакомиться с литературой по ландшафтной архитектуре, проектирования городской среды и общественных пространств
- 5. проанализировать возможности внедрения подобной системы в городское пространство одного из городов России;
 - 6. разработать дизайн-проект для макета;
 - 7. спроектировать и сконструировать рабочую модель;
- 8. написать программу-приложение для дистанционного управления и мониторинга нашей системы;
 - 9. спроектировать и сконструировать станок для нарезки фасок;
- 10. спроектировать дизайн-макет интеграции установки в открытое городское пространство.

Оборудование, необходимое для изготовления системы

- 1. станок лазерной резки с ЧПУ Rabbit 6090;
- 2. 3d принтер Printbox;
- 3. паяльная станция;
- 4. специально разработанное приспособление для снятия фасок;
- 5. ручной инструмент для работ по дереву.

Актуальность

Современные города, особенно мегаполисы, ещё на долгие годы останутся привлекательными, опираясь на экономические, социальные и культурные аспекты, для жизни разных категорий населения. Поэтому совместить, казалось бы, несочетаемое: урбанизацию и природу, городскую инфраструктуру и естественный природный ландшафт для качественной жизни жителей - продолжает быть важным в развитии городов. Ведь основной движущей силой развития городов являются люди, у которых возникает

потребность в качественной экологической продукции, выращенной без применения ГМО и химических модификаторов. А с другой стороны, город заинтересован в том, чтобы каждый человек в нём работал наиболее эффективно. Поэтому, помимо потребностей в пище и крыше над головой, администрации городов активно вкладывают средства развитие благополучной среды, общественных зон, к примеру, озеленение территории в городе, что решает не только вопросы экологии, но и повышает визуальную привлекательность пространства, в котором человек хочет проводить большее количество времени. Это положительно сказывается на психоэмоциональном состоянии его жителей, а значит, их продуктивности и тем самым положительно влияет на экономические показатели городов.

1 Теоретическая часть

1.1 Растениеводство в городской среде

Роль растениеводства в становлении экономики, да и всего человечества, трудно переоценить. Именно растениеводство является основой продовольственной безопасности любой страны, и от его развития зависит обеспеченность населения питания. Зелёные продуктами насаждения нейтрализуют и ослабляют негативные воздействия промышленности и других видов жизнедеятельности города на человека.

Помимо большой роли в продовольственной и экономической сфере, растениеводство позволяет улучшить психоэмоциональное состояние человека. Учёными ежегодно проводится множество исследований, которые показывают, как наблюдение за растениями или их выращивание положительно сказываются на человеке [8].

В нашей системе выращивания растений применяются датчики для сбора и анализа информации о состоянии почвы, воздуха, температуры и влажности внутри каждого устройства. Анализируя эти данные и сопоставляя их с параметрами, заданными для конкретного вида растений, система способна оперативно, в автоматическом режиме, корректировать микроклимат внутри, поддерживая оптимальные условия для конкретного растения.

1.2 Преимущества технологического проекта "Масштабируемая система для выращивания растений в городских условиях"

Использование данной системы позволяет применять её как для выращивания потребляемой в пищу продукции, так и для выращивания любых других растений иной климатической зоны:

При выращивании съедобных культур вся продукция экологически чистая, выращена буквально на глазах потребителя, снижение аллергенности таких растений составляет примерно 20%, а при использовании в пищу, сохраняет 100% полезных свойств.

При выращивании декоративных видов растений создаются и поддерживаются наиболее благоприятные для роста и развития растения условия.

А также масштабируемый формат такой системы с лёгкостью встраивается в различные объекты городской инфраструктуры.

Описание проекта

Ранее мной была спроектирована и создана модульная система, состоящая из нескольких отдельных модулей для выращивания растений в домашних условиях. Каждый модуль оснащен системой полива, поддержания влажности воздуха и температурного режима. В каждом модуле предусмотрена уникальная система облучения растений светом разного спектра, разной интенсивности и продолжительности, что благотворно влияет на рост и развитие растений.

Одной из особенностей проекта являлось дизайнерское исполнение корпусов для каждого модуля и соединение их между собой. Специально подобранный размер модуля наиболее удобен для восприятия глазом.

Этими идеями заинтересовалась администрация города Красноярска и поставила задачу адаптировать такую систему для использования в уличной инфраструктуре города Красноярска круглогодично. Были предложены варианты, которые представлены на рисунках 13-15.

Важной особенностью данного проекта является возможность масштабировать представленный вариант системы в зависимости от запросов заказчика, что позволяет использовать её в любом формате инфраструктуры города: в помещении или на улице.

1.3 Исследования, проведённые автором проекта

1.3.1 Исследование 1. Свет и его влияние на рост и развитие растений

Мы консультировались со специалистами в области светотехники компанией "BL-Group", и выяснили следующие очень существенные моменты:

Любая светоустановка имеет четыре настраиваемых параметра излучения (рисунок 1):

- 1. спектр излучения;
- 2. уровень облученности;
- 3. фотопериод;
- 4. структура светового поля.

Все эти параметры поддаются точной настройке, в результате чего можно добиться максимальной урожайности и качества выращиваемых культур.

Для каждого вида растений необходим свой подбор параметров облучения, так, например, "Уровень облученности" (интенсивность PPFD) для (рисунок 2):

- Фикус 290 350 mkmol/cм²;
- Герань 240-330 mkmol/см²;
- Тюльпан 150 200 mkmol/cм ²;
- Калла 160 200 mkmol/см ².

А фотопериод (длина светового дня) для тех же растений составляет: для фикуса - 10 - 12 часов, герань - 16 часов, тюльпан - 11 часов, калла - 14 часов.

Рис. 1 - Кривая чувствительности воздействия на растения света разного спектра (кривая МакКри)

ДИАПАЗОНЫ СПЕКТРА ПОЗИТИВНО ВЛИЯЮЩИЕ НА РОСТ РАСТЕНИЙ (ПОВЫШЕНИЕ УРОЖАЙНОСТИ ПРИМЕРНО НА 20%)	Ультрафиолет(315-380 нм)	Замедляет «вытягивание» растений и стимулируют образование витаминов. Ультрафиолетовые лучи с диапазоном 280-315 нм повышает устойчивость растений к холоду. Также ультрафиолет защитит растения от бактерий и вредителей.
	Фиолетовый, синий (380-490 нм)	Положительно влияет на скорость роста, стимулирует образование белков. Без этого цветового диапазона укроп теряет вкусовые качества.
	Оранжевый (595-620 нм), красный (620-720 нм)	Поставляют энергию для фотосинтеза. Применяют во время цветения и плодоношения растений. Однако, избыток этих лучей приводит к замедлению перехода к цветению, а, например, огурцы могут погибнуть
	Зеленый (490-565 нм), желтый (565-600 нм)	Особого влияния на растения не имеют.

Рис. 2 - Диапазоны спектра

Таким образом, подбирая точные параметры светового облучения и других факторов среды выращивания, можно добиться максимального качества и урожайности. а также сократить период созревания без применения химических удобрений и других нежелательных модификаторов (Рис. 3).

Рис. 3 - Ключевые факторы роста растений

1.3.2 Исследование 2. Анализ актуальных проблем в выращивании растений в условиях города

Проведенный анализ показал, что люди, занимающиеся выращиванием различных растений и ландшафтным дизайном, сталкиваются со сложностями в создании и поддержании благоприятных условий для растений — это вызвано тем, что города располагаются в разных природных зонах [13].

Для растений, включенных в городскую застройку, резко меняются радиационный, температурный и влажностные режимы, что пагубно воздействует на их экологическое состояние и требует специальных мер по охране зелёных насаждений.

Проведённый анализ растений: фикус, калла, герань - показал, что, к примеру, для города Красноярск в зимний период необходимо адаптировать условия микроклимата для комфортной жизни растений.

Tr ~ 1	1 17	1 0	U
Таблина І	I — Помаратепи	LOMPOULTION	среды растений
таолица і	1 - 110Kasa1CJIII	ROMWODINON	сосды растепии
7			1 7 1

Растение	Растение Температура		Температура Влажность		Основной спектр
			света		
Фикус	25 - 28° C	60-80%	480-500 нм		
Калла	22 - 24° C	50-60%	410-450 нм		
Герань	25 - 27° C	40-60%	580-620 нм		

Также исследование показало, что есть потребность:

- в свежих и здоровых продуктах для питания, особенно в больших городах;
- самостоятельно выращивать растения, требующие особых условий микроклимата;
- использования растений в украшении общественных мест (остановки, фасады зданий, парки и д.р.);
 - в адаптировании посевного материала;

- в зелёных в городе даже во время зимы.

1.3.3 Исследование 3. Растения - незаменимые помощники в борьбе со стрессом

С ростом количества больших городов психологи начали исследовать проблему ухудшения психоэмоционального и психофизиологического состояния человека, проживающего в мегаполисе. В своём исследовании психолог из Новосибирска [9] выделил три группы реакций в ответ на стрессогенное воздействие городской среды:

- 1. меняются состояния человека. Возникает тревога, фобии, апатия, депрессия. В результате информационных нагрузок и ощущения спешки возникают неврозы. Появляется деформация протекания когнитивных процессов. Усиливается чувство анонимности и обезличенности. Отсутствует сбалансированная физическая нагрузка. Малоподвижный образ жизни, нарушенный режим сна и питания, злоупотребление фармакологическими препаратами негативно влияют на здоровье жителей;
- 2. меняются отношения с другими людьми. Появляется нечувствительность к проблемам других людей, усиливается чувство одиночества, доверительное личностное общение заменяется ролевым: в городе люди взаимодействуют в узкоспециализированных функциональных рамках (клиент, пассажир). Время на отдельные контакты сокращается, нет желания вступать в контакт с незнакомыми людьми. Возникает конкурентная борьба за «минимальные выгоды» пробки, очереди, толкучка;
- 3. меняется поведение людей. Повышается уровень агрессии, возникает вандализм, криминальное и зависимое поведение, которое выражается в злоупотреблении химическими веществами и другими видами зависимостей как желание избавиться от напряжения.

Также ко всему вышеперечисленному во многих Российских городах добавляются ещё несколько факторов ухудшения психологического состояния человека [10] — это большие перепады температур от сезона к сезону, а также

малое количество солнечного света и низкие температуры зимой. Все эти факторы негативно сказываются на психоэмоциональном состоянии человека.

Для решения подобных проблем администрации городов строят и облагораживают парки и лесопарки внутри города или его окрестностях. О положительном влиянии таких мер на психоэмоциональное состояние людей упоминается во многих научных работах [11][12].

Основные плюсы, выделяемые исследователями, это: способность расслабиться и отдохнуть в тишине после тяжёлого рабочего дня, возможность насладиться видами зелёных растений и обитателями местной флоры и фауны, подышать свежим воздухом и т.д. Все эти аспекты помогают жителям мегаполисов нивелировать негативное воздействие крупного города на их психологическое состояние.

А также подобные парковые зоны помогают улучшить экологическую обстановку внутри города, являясь своего рода "лёгкими" для города. Они занимаются очисткой воздуха от пыли и вредных частиц и выработкой кислорода.

1.4 Типы озеленения городских пространств

1.4.1 Открытые формы озеленения городского пространства

В городе активно поддерживают и благоустраивают ранее созданные зеленые зоны внутри города, а также активно создают новые формы для благоустройства городской территории (Рис. 4-6).

Рис. 4 - Организация зеленых пространств внутри производственной, офисной и жилой архитектуры

Рису. 5 - Организация зеленого пространства на крыше городского автобуса

Рис. 6 - Автобусная остановка

Данные пространства теряют свою эффективность использования из-за сезонности, разности климатических условий, длительности светового дня.

1.4.2 Закрытые формы озеленения, аналоги системы

К подобным закрытым типам можно отнести и моё устройство. Использование технических решений, позволяющих поддерживать нужный микроклимат, дает нам возможность свободно встраивать устройства, содержащие растения в любые формы строений, таких как: остановки общественного транспорта, открытые арт-пространства, парковые зоны. И поддерживать этот микроклимат круглогодично.

В мире создано огромное количество самых разных систем по поддержанию микроклимата, но большинство из них — это теплицы. Однако те проблемы, которые мы хотели решить, по-прежнему остаются актуальными (рисунки 7,8).

Рис. 7 - Ультралокальная система выращивания растений

Рис. 8 - Флорариум в парке Зарядье г. Москва

1.6 Физический расчет модели

Рассчитывается, что проектируемый объект будет располагаться на улицах города. Изделие должно выдерживать различные погодные и температурные условия. Также, так как устройство располагается на открытых улицах городов, необходима вандалоустойчивость.

Исходя из проведённых исследований были сформулированы минимальные требования к теплоизоляции и влагоизоляции установки. Влагозащищенность требуется для отсеков, отвечающих за управление всеми системами, в остальных нишах и полостях достаточно сделать дренажную систему.

Разница температур зимой и летом в Красноярске составляет от +25 до - 30 градусов по Цельсию. Исходя из минимальной температуры, были произведены расчёты необходимой теплоизоляции (рис. 9,10).

Таблица 2 – Сопротивление теплопередаче

Температура холодной пятидневки с обеспеченностью 0.92	-37	°C
Продолжительность отопительного периода	234	суток
Средняя температура воздуха отопительного периода	-6.6	°C
Условия эксплуатации помещения	A	
Количество градусо-суток отопительного периода (ГСОП)	6458	°С•сут
Требуемое сопротивление теплопередаче		

Продолжение таблицы 2

Санитарно-гигиенические требования [Rc]	1.67	(M ² •°C)/BT
Нормируемое значение поэлементных требований [Rэ]	2.31	(M ² •°C)/BT
Базовое значение поэлементных требований [Rт]	3.66	(M ² •°C)/BT

Сопротивление теплопередаче: 0.32 (м²•°С)/Вт

Рис. 9 - График падения температуры

Рис. 10 - Тепловые потери через квадратный метр ограждающей конструкции

Таблица 3 – Расчёт тепло потерь

Сопротивление теплопередаче	R	±R, %	Q	±Q, Вт•ч
Санитарно- гигиенические требования [Rc]	1.67	426.90	36.60	-156.25
Нормируемое значение поэлементных требований [Rэ]	2.31	629.04	26.45	-166.39
Базовое значение поэлементных требований [Rт]	3.66	1057.21	16.66	-176.18
Сопротивление теплопередаче ограждающей конструкции [R]	0.32	0.00	192.85	0.00
R + 10%	0.35	10.00	175.31	-17.53
R + 25%	0.40	25.00	154.28	-38.57
R + 50%	0.47	50.00	128.56	-64.28
R + 100%	0.63	100.00	96.42	-96.42

Потери тепла за отопительный сезон: 543.29 кВт•ч

1.7 Подбор компонентов

Проектируемый объект должен обеспечивать необходимый микроклимат для благоприятного роста разных видов растений. Для этого устройство должно содержать системы: поддержания заданной температуры и

влажности, орошения почвы, а также, правильное освещение.

Также для удобства администрирования всеми спроектированными социальными объектами должна быть заложена возможность объединения в одну информационную систему.

2 Конструкторско-технологический этап

2.1 Состав макета:

- микроконтроллер esp8266;
- плата;
- датчик температуры и влажности воздуха am2301;
- ТЭН (нагревательный элемент в системе вентиляции);
- кулер;
- мембранный насос 385;
- блок из 4 реле WAVGAT 5 вольт;
- модернизированный светодиодный источник освещения;
- бак для воды с силиконовыми трубками.

Корпус:

- детали из прозрачного оргстекла 4мм, изготовленные на ЧПУ станке;
 - детали из синего оргстекла 3мм, изготовленные на ЧПУ станке;
 - основание из фанеры 6мм, изготовленное на ЧПУ станке.

2.2 Устройство макета

В устройство входит прочный корпус, система вентиляции (обеспечивает поддержание температуры и влажности), специальное светодиодное освещение, система полива (рис. 11).

Рис. 11 – Схема подведения коммуникаций

2.3 3d модель макета

Каракас был разработан в виде 3D модели в программе Autodesk Fusion 360 (рисунок 12).

Рис. 12 - 3D модель модуля

2.4 Программы и алгоритмы работы системы

2.4.1 Принцип управления

У модели есть главный «бортовой компьютер» - Микроконтроллер esp8266, который отправляет общие команды системам, задействует разные устройства в модуле. Управление исполняющими устройствами происходит на основании показаний датчиков.

Изменение параметров микроклимата происходит через приложение, которое общается с сервером по протоколу mqtt.

Языки программирования: программа управления модуля написана на языке C++.

2.4.2 Алгоритм работы системы поддержания микроклимата

Рис. 13 - Схема алгоритма

Мобильное приложение для управления модулем

Для простоты управления модулем было создано Приложение. Любой пользователь сможет получать детальную информацию о микроклимате в модуле и его корректировать из любой точки мира (Рис. 14).

Рис. 14 - Интерфейс приложения

3 Экономическая и экологическая оценка устройства

3.1 Материальные затраты

Таблица 4 - Материальные затраты

Комплектующие	Кол-во	Стоимость за	единицуОбщая
		(руб.)	стоимость
Микроконтроллер	1	115	115
esp8266			
Датчик am2301	1	300	300
ТЭН	1	130	130
Кулер	1	100	100
Помпа	1	175	175
Блок реле	1	120	120
Фанера бмм	1	600	600
Оргстекло 4мм	1	400	400
Оргстекло 4мм	1	600	600
Крепежные		40	80
элементы	2уп.		
Бак для воды	1	250	250
Силиконовые	2	60	120
трубки			
Итого:			2990руб.

Это стоимость только материалов, без учета потраченного времени на обработку материалов, сборку, программирование, разработку дизайна, затраты на электроэнергию и т.д. Это себестоимость одной модели, однако было несколько версий каждого из элементов, поэтому цена разработки намного выше себестоимости одной модели (таблица 4).

3.2 Расчет экономической целесообразности

Создание экологически благополучной среды — это не только улучшение качества воздуха, это еще и внимательное отношение к природе в целом, создание технологий, позволяющих бережно управлять климатическими явлениями, не разрушая при этом природный контекст [14].

Городские территории сегодня активно конкурируют между собой. Выигрывают, а значит, и эффективно монетизируются, те, где человеку хочется проводить больше времени [14].

3.3 Экологическая оценка

Наша система создана для выращивания экологически чистой и безопасной продукции. И подобная система позволяет в целом улучшить экологическую обстановку города за счёт увеличения количества зелёных насаждений.

Корпус каждого модуля изготовлен из фанеры и после окончания срока эксплуатации может быть легко утилизирован.

Большая часть электронных компонентов по окончании эксплуатации модуля может быть использована повторно.

Ручки, детали крепежа и другие мелкие детали использованы в незначительном количестве и не нанесут вреда экологии при утилизации. К тому же они, наверняка, пригодятся в домашнем хозяйстве.

Единственная составляющая нашего модуля, способная навредить экологии, это аккумулятор. После окончания срока его службы его придется сдать в специальный пункт сбора таких ресурсов, где есть целая технология их утилизации.

4 Создание рабочего прототипа в Красноярске

С нами связалась администрация города Красноярска по поводу нашего проекта. Их заинтересовала концепция, которая позволяла поддерживать микроклимат растения, необходимый для его выживания. Их идея

заключалась в том, чтобы установить в парке какое-то большое растение, чтобы в их суровые зимы оно своим живым видом радовало жителей города, а летом собирала вокруг себя молодёжь.

С августа мы начали с ними активно сотрудничать по проекту. Было дано название "живое дерево" и место установки - пр. Мира, 2Б - возле Красноярской филармонии. К началу сентября нами уже были сформированы общие задачи по реализации проекта:

- определить виды выращиваемых растений и их потребности для жизнедеятельности;
- нарисовать несколько вариантов дизайна будущей установки "живое дерево";
 - утвердить дизайн и размеры итоговой установки;
 - согласовать использование материалов для реализации установки;
 - написать руководство по сборке установки;
 - прописать рекомендации по уходу за растением;
 - произвести монтаж установки на улице Красноярска;
 - ввести проект "живое дерево" в эксплуатацию (рис. 16).

Во время постепенного выполнения всех этапов работы над проектом мы столкнулись с рядом трудностей, связанных с отсутствием опыта реализации подобных масштабных проектов в реальных условиях. Ещё одним осложняющим фактором послужил режим коммуникации - у нас была возможность общаться только удалённо, что значительно усложняет этот процесс и, на наше удивление, сильно увеличивает сроки сдачи.

Несмотря на все трудности, проект "живое дерево" был успешно реализован, и по сей день установка стоит в городе Красноярск. Про наш совместный проект писало много региональных изданий, большинство положительно отзывалось о получившемся новом городском пространстве.

Несмотря на наши попытки предусмотреть все возможные проблемы, итоговый вариант проекта не лишён недостатков. В реализованной установке мы столкнулись с проблемой пересушивания воздуха из-за систем нагрева

воздуха. Система регулирования влажности воздуха позволила сгладить негативное влияние на растения, но не полностью. Сейчас раз в 2-3 дня сотрудники парка вынуждены заходить в теплицу и искусственно опрыскивать все растения водой.

Также проблемой стало смешивание состава для полива. Из-за сжатых сроков реализации проекта в финальную версию прототипа не был внедрен резервуар для смешивания жидкостей. Из-за этого раз в неделю в общий бак для воды сотрудник парка заливает удобрения.

Рис. 15 - Рабочий прототип проекта

Рис. 16 - Прототип на площади

Заключение

В результате работы:

- 1. познакомился с литературой по растениеводству, стал изучать различия в выращивании растений с использованием грунта или гидропоники, познакомился с литературой по правильному и здоровому питанию.
- 2. познакомился с исследованиями по использованию света разного спектра и интенсивности в растениеводстве, провёл исследование потребности населения в области выращивания растений в условиях городской среды;
- 3. изучил различные светоустановки и значительно продвинулся в разработке масштабируемой системы освещения;
- 4. познакомился с современными принципами ландшафтной архитектуры;
- 5. познакомился с современными материалами для изготовления корпуса и их характеристиками.
- 6. спроектировал и собрал прототип устройства по поддержанию благоприятных условий для выращивания растений;
- 7. изучил и применил возможность общения устройств посредством сети WI-FI;
- 8. принял участие в разработке дизайн-макета для реального городского пространства города Красноярска;
- 9. спроектировал масштабную модель системы для её интеграции в городское пространство.

В настоящее время проект выполнен, сделаны макет и прототип проекта (рис. 15), который расположен в городе Красноярск по адресу: Проспект Мира д.2Б. В сквере рядом с Красноярской филармонией (рис. 16).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Васько В.Т. Теоретические основы растениеводства и земледелия / В.Т.Васько.- М.: Профи-информ, 2017.- 247 с.
- 2 Иванова, Г.С. Технология программирования. М.: Издательство: МГТУ им. Н.Э. Баумана, 2002 241 с.
- 3 Нечаев, В.И. Развитие инновационной деятельности в растениеводстве / Нечаев В.И.- М.: КолосС, 2017.-867 с.
- 4 Скальный А. Микроэлементы. Бодрость, здоровье, долголетие. М.: Эксмо, 2010 288 с.
- 5 Соколова, Т.А. Декоративное растениеводство. Цветоводство. Учебник / Т.А.Соколова. – М.: Академия, 2016.-432 с.
- 6 Системы освещения автоматизированных многоярусных фитоустановок URL: https://youtube.com/watch?v=Y3G5pGT_r40&feature=share (Дата обращения 10.01.22)
- 7 Техническая спецификация контроллеров esp8266 URL: https://www.google.com/url?sa=t&source=web&rct=j&url=https://espressif.com/sites/default/files/documentation/0a-
- esp8266ex_datasheet_en.pdf&ved=2ahUKEwivldyZmtnnAhVgy8QBHR1pAEAQ FjAAegQIARAB&usg=AO vVaw0teH8Qd8wMW9ICXxdEvzq- (Дата обращения 10.11.2)
- 8 Почему сад и огород делает нас счастливее: 5 причин URL: https://www.7ya.ru/article/Pochemu-sad-i-ogorod-delaet-nas-schastlivee-5-prichin/(Дата обращения 26.01.22)
- 9 Поведение жителей мегаполисов в результате воздействия городских стресс-факторов URL: https://www.b17.ru/article/326811/ (Дата обращения 26.01.22)
- 10 11 Crazy Ways The Weather Influences Your Health And Behavior URL: https://www.huffpost.com/entry/weather-and-
- health_n_570facd9e4b08a2d32b92ae9 (Дата обращения 30.01.22)

- 11 Массеров Д. А. Лесопарки городов как фактор сближения человека и природы URL: https://cyberleninka.ru/article/n/lesoparki-gorodov-kak-faktor-sblizheniya-cheloveka-i-prirody/viewer (Дата обращения 30.01.22)
- 12 Нагибина, И. Ю. Значение парковых зон для жителей городской среды / И. Ю. Нагибина, Е. Ю. Журова. Текст: непосредственный // Молодой ученый. 2014. № 20 (79). С. 84-85. URL: https://moluch.ru/archive/79/14035/ (дата обращения: 10.02.2022).
- 13 Городские зеленые насаждения на Севере и в Сибири URL: http://landscape.totalarch.com/node/19 (Дата обращения 01.02.22)
- 14 Зелень в городе повышает "индекс счастья" горожан URL: https://plus-one.ru/ecology/2019/10/25/zelen-v-gorode-povyshaet-indeks-schastyagorozhan (Дата обращения 05.02.22)

Приложение 1 Изготовление модели корпуса

Следующие детали разработаны с помощью программы Fusion360, изготовлены на лазерном ЧПУ станке, а также на 3D принтере. В качестве пластика выбран биоразлагаемый PLA 1.75mm белого цвета.

Универсальная ТК Изготовления деталей корпуса модуля (теплицы) (лазерная резка)

Название	технологической	Инструменты и приспособления
операции		
Моделирование		Компьютер, программа Fusion360
Подготовка задан	ия станку Rabbit	Компьютер, программа LazerCut
6090		
Шлифовка		Наждачная бумага

Далее представлены чертежи деталей каркаса макета.

Приложение 2 Электрическая схема платы разводки питания и её внешний вид

Этапы изготовления платы

Название	Инструменты и приспособления
технологической	
операции	
Моделирование	KiCad
электрической схемы	
Изготовление рисунка	KiCad
печатной платы	
Резка	Ножовка по металлу
Печать рисунка	УФ-принтер
Травление	Раствор персульфата аммония/хлорного
	железа/перекиси водорода+лимонной
	кислоты
Накернивание	Кернер, киянка
Сверление	Сверлильный станок, стальная призма,
	сверло
Удаление защитного	Растворитель, ватный диск
рельефа	
Монтаж элементов	Паяльник, флюс для пайки, радиоэлементы.

Приложение 3 Эскизы проекта и фото прототипа

Эскизы проекта

Концепты организации пространства вокруг установки

