Analyse der NBA 1997 Daten durch 4 verschiedene Benutzer-Rollen

Offenheit der SAS Analytic Plattform für unterschiedliche Zugriffsarten

One Integrated Solution for Different User Types

Offenheit der SAS Analytic Plattform für unterschiedliche Zugriffsarten

Erfüllung der individuellen Anforderungen

Code Generators

Python API

Opening the SAS Analytic Platform via Different Interfaces

Start the SAS Cloud Analytic Server Load the DeepLearning Action Set

Convolution

convigts-dist(ofilters-32, width-5, height-5, stride-1, init-'enrol'), sessays

poolingOpts-dictridate-2, height-2, stride-2, pool- new 1, srclavers-1 count

Max Pooling

Convolution

ully Connected

Kangrang Mang

SAS Viya

exching demo Last Olectiport 30 renutes ago (unsaved charges)

111753 (_sessingprop_tetsessopt_caslib='CASUSER',timeout=1.1536E7')

12912932

[2] J. L. S. Greetendel Codeledictinates Conditt Coeplace Comp. Types CMC.

s.widlayer(model-'convert', name-'convi', type-'convolution',

s.addLayer(model='convlot', name='conv2', type='convolution',

a.addLayer(model+'conviet', name='publi', type='ponling',

Define the Network Layers

SASF17 / SASForum

inputOpts-dictinchannels-1, sidth-24, height-24, scale-11)

s.addLayer(sodel='convert', name='data', type='input',

Define the Network Architecture

34x24x3

Column from Cotoff TP FF FR TH Sensitivity Specificity

Michael Jordan under pressure

http://stats.nba.com

Analyse der NBA 1997 Daten durch 4 verschiedene Benutzer-Rollen

SAS Visual Analytics und SAS Visual Statistics für den Business Analyst

One Integrated Solution for Different User Types

SAS Visual Statistics für den Business Analyst

Point&Click Zugriff auf Machine Learning Methoden

SAS Visual Statistics für den Business Analyst

Point&Click Zugriff auf Machine Learning Methoden

Analyse der NBA 1997 Daten durch 4 verschiedene Benutzer-Rollen

SAS-Python Integration für den Open Source Data Scientist

One Integrated Solution for Different User Types

How good was Jordan under pressure?

Some Graphs benefiting from the open source community

http://savvastjortjoglou.com/nba-shot-sharts.html

How good was Jordan under pressure?

Clustering the Court into Shot Zones using CAS action set

```
clust=sess.clustering.kClus(
      table={
          "name": "jordan mining"
      inputs={"LOC X", "LOC Y MINUS"},
      nClusters=30,
      maxIters=10,
      distanceNom="RELATIVEFREQ",
      estimateNClusters={
          "method": "ABC",
          "B":10,
          "minClusters":15.
          "criterion": "ALL",
          "align": "PCA"
      kPrototypeParams={
          "method": "USERGAMMA",
          "value":10
      output={"CasOut":{"name":"kClusOutputScore", "replace":True},
             "copyVars": {"LOC X", "LOC Y", "LOC Y MINUS", "Made", "Lead Player
      display={"names":{"Modelinfo", "ClusterSumIntNom"}}
```


How good was Jordan under pressure?

Using CAS Regression to investigate performance under pressure

Logistic

```
lr = sess.regression.logistic(
In [691:
              table={"name":"kClusOutputScore"}.
              classVars=[{"vars":{" CLUSTER ID ", "Lead Player Before", "Homegame", "ACTION TYPE", "end of game", "Overtime", "close game",
              model={
                 "depVars":[{"name":"Made", "options":{"event":"1"}}],
                 "effects":[{"vars":{"SHOT DISTANCE"," CLUSTER ID ", "ACTION
                                                                                             Out [69] t & Fetch
                                                                                                      Selected Rows from Table ROUND
              outputTables={"names":"parameterestimates"}
                                                                                                                                    OF Estimate StdErr
                                                                                                                                                      ChiSa ProbChiSa
                                                                                                         Parameter
                                                                                                                                    1.0 14 322
                                                                                                                                               94.876
                                                                                                                                                      0.023
                                                                                                                                                             0.880
                                                                                                         Intercept
           sess.dataStep.runCode(
              code="""data round; set parameterestimates(keep=Parameter DF
                                                                                                                                    1.0 -0.385
                                                                                                                                               0.188
                                                                                                                                                       4.193
                                                                                                                                                             0.041
                                                                                                         pressure 1
           do i = 1 to dim( nums);
                                                                                                         pressure 0
                                                                                                                                    0.0 0.000
                                                                                                                                                NaN.
                                                                                                                                                       NaN.
                                                                                                                                                             NaN
               nums\{i\} = round(nums\{i\},.001);
                                                                                                         Overtime Regular
                                                                                                                                    1.0 0 382
                                                                                                                                               0.370
                                                                                                                                                       1.069
                                                                                                                                                             0.301
            end:
                                                                                                         Overtime Overtime
                                                                                                                                    0.0 0.000
                                                                                                                                               NaN.
                                                                                                                                                       NaN.
                                                                                                                                                             NaN
            drop i;
           run; """
                                                                                                         SHOT DISTANCE
                                                                                                                                    1.0 -0.035
                                                                                                                                               0.014
                                                                                                                                                       6.500
                                                                                                                                                             0.011
                                                                                                                                    1.0 -13.135
                                                                                                                                                94 875
                                                                                                                                                       0.019
                                                                                                                                                             0.690
                                                                                                         ACTION TYPE Tip Shot
           sess.fetch(table="round")
                                                                                                         ACTION TYPE Slam Dunk Shot
                                                                                                                                    1.0 0.027
                                                                                                                                                128.564
                                                                                                                                                       0.000
                                                                                                                                                             1.000
                                                                                                                                                      0.018
                                                                                                         ACTION TYPE Running Jump Shat
                                                                                                                                     1.0 -12.634
                                                                                                                                                94.876
                                                                                                                                                             0.894
                                                                                                         ACTION TYPE Layur Shot
                                                                                                                                     1.0 -13.064
                                                                                                                                                94 875
                                                                                                                                                      0.019
                                                                                                       10 ACTION TYPE Jump Shot
                                                                                                                                    1.0 -14 106
                                                                                                                                                94 875
                                                                                                                                                      0.022
                                                                                                                                                             0.882
                                                                                                      11 ACTION TYPE Hook Shot
                                                                                                                                    1 8 -12 552
                                                                                                                                                94 882
                                                                                                                                                       0.017
                                                                                                                                                             0.895
                                                                                                      12 ACTION TYPE Dunk Shot
                                                                                                                                    1.0 -10.540
                                                                                                                                               94 875
                                                                                                                                                      0.012
                                                                                                                                                             0.912
                                                                                                      13 ACTION_TYPE Driving Layup Shot
                                                                                                                                    1.0 -11.510
                                                                                                                                               94 875
                                                                                                                                                      0.015
                                                                                                                                                             0.903
                                                                                                      14 ACTION_TYPE Driving Dunk Shot | 0.0 | 0.000
                                                                                                                                                      NaN
```


Analyse der NBA 1997 Daten durch 4 verschiedene Benutzer-Rollen

SAS Procedures für den SAS Data Scientist

One Integrated Solution for Different User Types

Vorhersage der Treffer-Wahrscheinlichkeit von Jordan im [-25,25]x[0,27] Grid


```
proc logselect data=sfdcas.Jordan;
where Shot_Distance <= 30;
effect spl = spline(X Y / degree=2);
model Shot_Made(event='1') = spl ;
output out=sfdcas.Jordan_pred
pred=p copyvars=(x y shot_distance
shot_made);
Code file='/opt/sasinside/
DemoData/SFD/JordanPred_0.sas';
run;</pre>
```


Vorhersage der Treffer-Wahrscheinlichkeit von Jordan getrennt nach Pressure ja/nein

Analyse der NBA 1997 Daten durch 4 verschiedene Benutzer-Rollen

Data Mining/Machine Learnings Tasks im SAS Studio für den "New-to-SAS" Statistician

One Integrated Solution for Different User Types **Types** **Typ

Data Mining und Machine Learnings Tasks im SAS Studio

Beispiel: Random Forests

- // Linear Regression
- Logistic Regression
- Decision Tree
- ♦ Neural Network
- % Forest
- & Gradient Boosting
- Factorization Machine
- Support Vector Machine
- ▲ Levaluate and Implement
 - Assess
 - Scoring

FOREST

Forest or PROC FOREST used for classification models.

Generates many trees from different samples of training data.

Mode of all predictions is final prediction

Forest Competitive Differentiators

- Distributed and massively parallel
- Faster, more memory-efficient, and more scalable algorithm
- Deployable Generated rules

Vordefinierte Tasks

SAS Studio

Code Generierung mit Tasks

Vordefinierte Tasks

SAS Studio

Code Generierung mit Tasks

Vordefinierte Tasks

SAS Studio

Code Generierung mit Tasks

SAS Studio Code Generierung mit Tasks

Tuner Results Default and Best Configurations					
Evaluation	Maximum Tree Levels	Number of Trees	Number of Variables to Try	Bootstrap	Misclassification Error Percentage
0	21	100	14	0.600000	41.30
12	14	80	5	0.795267	40.06
45	14	80	5	0.791425	40.26
39	12	72	7	0.725718	40.54
30	12	70	7	0.705657	40.61
3	2	20	14	0.277778	40.68
17	5	34	12	0.403667	40.68
22	4	22	13	0.335616	40.68
24	5	34	12	0.394741	40.68
32	2	20	14	0.218658	40.68
33	6	33	12	0.415225	40.68

SAS Studio Code Generierung mit Tasks

