Fluidos Não Newtonianos

David Fiorillo e Gabriel de Castro

Sumário

- O que é um Fluido?;
- Tensão Cisalhante e Taxa de Deformação;
- Cálculo de Tensão de Cisalhamento;
- Categoria dos Fluidos Não Newtonianos;
- Reopexia e Tixotropia;
- Aplicações Industriais;
- Exercício;
- Referências Bibliográficas.

O que é um fluido?

Um fluido é uma substância que quando sujeita à uma tensão de cisalhamento se deforma continuamente não importando o quão pequeno seja o valor da tensão.

Fonte: FOX [1]

Fluido Não-Newtoniano

São os fluidos para os quais a tensão de cisalhamento não é diretamente proporcional a taxa de deformação.

$$\tau_{yx} = k \left(\frac{du}{dy}\right)^n$$

- n → índice de comportamento do escoamento
- k → índice de consistência

IMPORTANTE

A relação de tensão apresentada é um modelo para escoamentos unidimensionais

Igualdade de Sinais

$$\eta = k \left| \frac{du}{dy} \right|^{n-1}$$

→ viscosidade aparente do fluido

Fluido Não Newtoniano

- O modelo apresentado para o cálculo da tensão de cisalhamento é conhecido como power-law.
- É o modelo mais simples de todos.

Fluido Não Newtoniano

A seguir estão alguns exemplos de fluidos não newtonianos.

Grupo similar	Fluidos
Fluidos biológicos	sangue, saliva, muco pulmonar, etc
Granulados	argila, lava vulcânica, neve, areia úmida, polpa de papel, pasta de ci- mento, lamas de perfuração, etc
Alimentos	sorvetes, chocolate, maionese, ket- chup, queijos, yogurtes, manteiga, geléias, gelatinas, etc
Derivados de petróleo	óleo pesado, betume, parafina, pi- che, graxas, lubrificantes, plásticos, etc
Cosméticos	cremes, shampoos, espuma de bar- bear, pasta de dente, etc
Soluções poliméricas	
Material de revestimento	tintas, vernizes, colas, adesivos, etc
outros	emulsões, espumas, borrachas, etc

Categoria dos Fluidos Não Newtonianos

- Pseudoplásticos
- Dilantantes
- Plástico de Bingham (Plástico Ideal)

Tornam-se mais finos com a aplicação da tensão, a viscosidade decresce com o aumento da deformação

A viscosidade aparente cresce com a taxa de deformação.

Categoria dos Fluidos Não Newtonianos

- Pseudoplásticos
- Dilantantes
- Plástico de Bingham (Plástico Ideal)

Plástico de Bingham

Se comporta como sólido até que uma tensão limítrofe seja excedida e, subsequentemente, exibe uma relação linear

Categoria dos Fluidos Não Newtonianos

 Explicação do comportamento dos fluidos

https://www.youtube.com/embe
d/X_cLJvUBlxw?feature=oemb
ed
https://www.youtube.com/embe
d/G1Op_1yG6lQ?feature=oemb
ed

Fonte: Edson J. Soares [2]

Exemplos

• Exemplos de fluidos com os comportamentos abordados.

Reopexia e Tixotropia (Dependência do Tempo)

A viscosidade varia em função do tempo a uma dada taxa de cisalhamento.

- Tixotrópicos: diminuição da viscosidade
- Reopéticos: aumento da viscosidade

IMPORTANTE

Todo fluido tixotrópico é pseudóplástico, mas nem todo fluido pseudoplástico é tixotrópico.

Todo fluido reopético é dilatante, mas nem todo fluido dilatante é reopético

Fonte: Edson J. Soares [2]

Reopexia e Tixotropia (Dependência do Tempo)

Comportamento da viscosidade ao longo do tempo.

Exemplos:

- Tixotrópicos: neve, lama, larva vulcânica, pasta de cimento, fluidos abrasivos etc.
- Reopéticos: gesso, clara em neve etc.

Aplicações Industriais

São comumente encontrados em operações de bombeamento, destilação, absorção, perfuração etc.

Exercício

Considere um reômetro com uma geometria do tipo placa-placa. Um fluido é colocado no centro da base e a placa superior, com diâmetro de 49,935mm, é abaixada até formar um folga de 1 mm. O torque e a rotação medidos pelo equipamento é dado na próxima tabela. Esboce a curva de viscosidade pela taxa de cisalhamento e encontre a viscosidade do fluido em questão para uma taxa de cisalhamento 100 1/s.

Dados

Torque	Rotação
(N.m)	(rad/s)
33,47233	8,052939
28,15942	10,06617
17,81128	18,11911
11,17779	34,25114
7,64668	58,30537
6,044321	80,52939
5,022991	106,6753

Considerações

- Não há escoamento na direção vertical
- Não há escoamento na direção radial
- A folga é muito menor que o diâmetro da placa

Condições de contorno:

•
$$u_{\theta}(z=0) = 0$$
 e $u_{\theta}(z=\delta) = \omega r$

Perfil de velocidade:

•
$$u_{\theta}(r) = \frac{\omega r}{\delta} z$$

Tensão de cisalhamento:

•
$$\tau = \mu \left(\frac{\omega r}{\delta} \right)$$

Força:

•
$$dF_{\theta} = \tau \ 2\pi r \ dr$$

Torque:

•
$$T = \int_0^R dF_\theta r = \frac{\mu\pi\omega R^4}{2\delta}$$

Solução

Ver Excel

Referências Bibliográficas

- FOX, R. W.; MCDONALD, A. T. Introdução à mecânica dos fluidos. 6a edição. São Paulo: LTC Editora, 2001;
- Soares, Edson José. Introdução à reologia: escoamento e caracterização de materiais complexos. – Vitória, ES: Universidade Federal do Espírito Santo.Ltda., 2014;
- Hauschildt, M. D.; Nascimento, R. S.; da Silva, T. B.; Pio, V. H. P.; Caracterização reológica de fluidos não newtonianos através do viscosímetro de stormer. Conic-Semesp , 2013;
- https://cienciahoje.org.br/artigo/sobre-sangue-cafe-oleo-e-coletes-a-prova-de-bala/ (acessado em 29/11/2020)