Tema 2

Enero 2016

2.1. Un foco F_1 emite ondas sonoras planas de longitud de onda $\frac{1}{12}$ m, siendo la presión acústica en él $2\cos(9600\pi t + \pi/4)$ Pa. Un segundo foco F_2 , a 90 m de F_1 , emite ondas sonoras de la misma

longitud de onda, pero con intensidad cuádruple. Si en un punto (a), que dista 32 m de F_1 y 58 m de F_2 , se observa un mínimo para la amplitud de presión acústica, obtener:

- 1) La función de onda para la presión acústica generada por el foco F_2 , considerando que su fase inicial verifica la condición $0 < \phi < 2\pi$.
- 2) La función de onda para la presión acústica en el punto (a).
- 3) La impedancia y la densidad del medio, sabiendo que la intensidad en (a) es $\frac{25}{3}$ mW m⁻².

Abril 2018

- **2.2.** Un foco F_1 emite ondas sonoras en un medio de densidad $\frac{7}{4}$ kg m⁻³, de forma que en dos puntos
- (a) y (b), situados a $\frac{2}{3}$ m y $\frac{7}{6}$ m del foco, respectivamente, la velocidad de partícula es tal que:

$$v_{p_a} = -\frac{5}{28}\cos 3520\pi t \text{ m s}^{-1}; \qquad v_{p_b} = \frac{5}{28}\sin 3520\pi t \text{ m s}^{-1} \quad (t \text{ en s})$$

1) Determinar razonadamente la función de onda para la presión acústica, considerando su fase inicial entre 0 y π rad, si la velocidad de propagación de las ondas satisface la condición $250~\text{m}\,\text{s}^{-1} < v_s < 450~\text{m}\,\text{s}^{-1}$.

Se coloca un segundo foco F_2 , que emite ondas sonoras de la misma frecuencia que F_1 , pero retrasado $\frac{\pi}{2}$ rad respecto a él, de forma que los puntos (a) y (b) quedan sobre la línea que une ambos focos y entre ellos. De forma razonada, obtener:

2) La mínima distancia que debe separar los dos focos, para que en el punto (b) se observe un máximo de intensidad como consecuencia del proceso de interferencia.

Noviembre 2015

- **2.3.** Dos focos sonoros, F_1 y F_2 , emiten ondas planas de longitud de onda 4 m. Las presiones acústicas en cada uno de ellos son: $p_1(0,t) = 12\cos\left(\omega t + \frac{\pi}{3}\right)$ Pa; $p_2(0,t) = 4\cos\left(\omega t \frac{\pi}{6}\right)$ Pa. En un punto
- (a), situado entre ambos focos y a 14 m de F_1 , se observa que la intensidad es $10I_2$, siendo I_2 la correspondiente al foco F_2 . De forma razonada:
- 1) Obtener la distancia d entre los focos, si $76 \,\mathrm{m} < d < 79 \,\mathrm{m}$.
- 2) Determinar la impedancia característica del medio si $I_{(a)} = \frac{5}{28} \,\mathrm{W \, m^{-2}}$.

Junio 2018

2.4. Dos focos, F_1 y F_2 , separados entre sí 1,1 m, emiten en oposición de fase ondas sonoras planas, de longitud de onda 16 cm, en un medio cuya densidad es $800 \,\mathrm{kg} \,\mathrm{m}^{-3}$. La función de onda para el desplazamiento de las partículas del medio, en el foco F_1 , es:

$$\vec{\xi}_1(0,t) = \frac{4}{3\pi} \cos\left(15\pi \cdot 10^3 t - \frac{\pi}{4}\right) \vec{u}_y \, \mu \text{m} \, (t \text{ en s})$$

Si en un punto A, situado entre ambos focos y a 41 cm de F_1 , la intensidad es 240 Wm⁻², obtener de forma razonada:

- 1) Las funciones de onda para la presión acústica de las ondas emitidas por ambos focos, expresadas en notación exponencial.
- 2) La diferencia de nivel de intensidad entre el punto *A* y los puntos en los que se producen máximos de intensidad.

Enero 2019

2.5. El desplazamiento de las partículas de un medio en el que se propaga una onda sonora es tal que:

$$\xi = \frac{2}{81} e^{i\left(540\pi t - \frac{3\pi}{2}y\right)} \text{mm (t en s, y en m)}. \text{ De forma razonada:}$$

- 1) Determinar cuál es la intensidad de la onda, si la presión acústica máxima en el medio es 6π Pa.
- 2) Obtener la función de onda para la velocidad vibratoria de las partículas.
- 3) Obtener la intensidad instantánea.

Abril 2017

- **2.6.** Dos focos F_1 y F_2 , separados entre sí 10 m, emiten ondas sonoras planas de longitud de onda 2 m, que se propagan en el agua $(Z = 15 \cdot 10^5 \, \text{rayl}, \, \rho_0 = 10^3 \, \text{kg m}^{-3})$, siendo la función de onda para la presión acústica en el foco F_1 : $p = 150 \cos(\omega t \pi/4) \, \text{Pa}$. Las ondas procedentes de ambos focos llegan en fase a un punto A, situado a 3 m del foco F_1 , y se observa que la intensidad en dicho punto es $\frac{375}{2} \, \text{mW m}^{-2}$. Obtener de forma razonada:
- 1) Las funciones de onda para la presión acústica de las ondas emitidas por cada uno de los focos, considerando la fase inicial en el foco F_2 comprendida entre 0 y 2π .
- 2) La expresión del desplazamiento de las partículas del medio en el punto A, indicando su amplitud y su fase inicial.

Octubre 2018

2.7. Un foco emite ondas sonoras planas, que se propagan con velocidad 400 m s⁻¹. En un punto que dista 50 cm del foco, las funciones de onda correspondientes a la presión acústica y al desplazamiento

de las partículas del medio, son:
$$p = 20\pi e^{i\left(2400\pi t - \frac{2\pi}{3}\right)}$$
 Pa; $\vec{\xi} = \frac{625}{18}e^{i\left(2400\pi t - \frac{7\pi}{6}\right)}\vec{u}_y$ µm $(t \text{ en s})$. Conside-

rando la fase inicial para la presión acústica en el foco comprendida entre $0\ y\ \pi$ rad , obtener razonadamente:

- 1) La función de onda para la velocidad vibratoria de las partículas del medio.
- 2) La densidad del medio y la intensidad instantánea de la onda.

Si, manteniendo constante la intensidad de la onda, se duplica la frecuencia de la señal, obtener de forma razonada:

3) La función de onda para el desplazamiento de las partículas del medio.

Enero 2018

2.8. Una onda sonora plana, de intensidad 45 Wm⁻², se propaga en un medio en el que genera una velocidad vibratoria cuyo módulo es $\cos\left(4000t - \frac{32}{9}y + \frac{\pi}{3}\right) \text{cm} \, \text{s}^{-1}$, donde t se mide en s e y en m.

De forma razonada, y sin hacer uso de la ecuación de Euler, obtener:

- 1) Las funciones de onda para la presión acústica y para el desplazamiento de las partículas del medio, expresando el resultado en notación compleja.
- 2) La impedancia de la onda y la densidad del medio.

```
E000 2016
  27 fryfz, and seners plans.
      X= 100
                                      1=900
 P. (0,6) = Zes (96007/ + 7) Pa
                                       J2 = 4 J,
                                      Superiors gabs ords x paperson en al
1) funcia de endo presión sendos Fi
                                        GRX, KILLY, K.F.XX
      0< 92 < ZT
 J(D) = J, (D) + J, (D) + 2 (J, (D) - J, (D) (0, S(D))
Join on pote A entenes es S(B) = -1, S(B) = (Zot1) TT
  S(B) = (ul-Kx+4)-(ul-Kx+4) = K(x-x+)+(4-42)
K = 2# = 247 pollo 91 = 4
X2 = 58 m
X1 = 32 m
  (Zn+1) # = 24# (58-32) + ( = -42)
 (20+1) T = 624T + T - P2 - Y2 = T - T - ZAT
      YZ = 2497 T - T + T - T - ZAT
    PZ = -3T = ZOT
5, 42 >0 -3T -2nT >0 0 <-3 = 0
            -ZOT < ZT+ 35 0 > - 11 27 - 1
                                 [n=-1]
Pz: -3# +2# = 4
```

$$J(\Delta) = 5J_1 + 2. J_1 J_2 . J_3 . (-1)$$

$$J(\Delta) = 5J_1 - 4J_2 = J_1$$

$$J(\Delta) = 5J_1 - 4J_2 = J_2$$

$$J_1 = \frac{\gamma_{CL}}{\gamma_{CL}} = \frac{4}{\gamma_{CL}}$$

$$J_2 = \frac{\gamma_{CL}}{\gamma_{CL}} = \frac{4}{\gamma_{CL}}$$

$$J_3 = \frac{\gamma_{CL}}{\gamma_{CL}} = \frac{4}{\gamma_{CL}}$$

$$P(a) = P_{1}(a) + P_{2}(a)$$

$$P_{1}(x_{1} = 32, t) = 2 cs \left(9600 \pi 6 + 24\pi .32 + \frac{\pi}{4}\right) = 2 cs \left(9600 \pi 6 + \frac{5\pi}{4}\right)$$

$$P_{1}(x_{1} = 32, t) = 4 cs \left(9600 \pi 6 + 24\pi .58 + \frac{5\pi}{4}\right) = 4 cs \left(9600 \pi 6 + \frac{5\pi}{4}\right)$$

$$P_{2}(x_{2} = 58, 6) = 4 cs \left(9600 \pi 6 + \frac{5\pi}{4}\right)$$

$$P_{2}(x_{2}=55, t) = \frac{9}{4} (5t)$$

$$P_{1} = \frac{7}{2} (6) (9600\pi t + \frac{\pi}{4} + \pi - \pi) = -\frac{1}{2} (9600\pi t + \frac{5\pi}{4}) = \frac{1}{2} (9600\pi t + \frac{5\pi}{4}) P_{2}$$

$$P_{1} = \frac{7}{2} (6) (9600\pi t + \frac{5\pi}{4}) + \frac{1}{2} (9600\pi t + \frac{5\pi}{4}) + \frac{1}{2} (9600\pi t + \frac{5\pi}{4}) P_{2}$$

$$P_{1} = \frac{7}{2} (6) (9600\pi t + \frac{5\pi}{4}) + \frac{1}{2} (9600\pi t + \frac{5\pi}{4}) + \frac{1}{2} (9600\pi t + \frac{5\pi}{4}) P_{2}$$

$$\begin{cases}
7 = \frac{4}{2 \cdot p_{0}}, & P_{0}^{2} \neq 1 \\
7 = \frac{4}{2 \cdot p_{0}}, & P_{0}^{2} \neq 1
\end{cases}$$

$$\begin{cases}
7 = \frac{4}{2 \cdot p_{0}}, & P_{0}^{2} \neq 1
\end{cases}$$

$$\begin{cases}
2 = \frac{p}{2 \cdot p_{0}}, & \frac{98007}{297}, & \frac{90007}{297}, & \frac{90007}{297}, & \frac{90007}{297}, & \frac{103}{297}, & \frac{3}{2}, & \frac{1}{2} & \frac{1}{$$

```
Dbal 2013.
  2.2.
  Po = 7 ks/m3
                                                          how smplted
                              7/60
                                                            on ords phon
   Upon = - 5 co 3520 Tt MIS = 5 co 13520 Tt +T)
 DP6 = 5 28 DP (352071) 115 = 5 CE (352071-7)
                        Onderplans:
1) fine: en de endo:
                          Z = Vp P = 6 Vs · Vp
    0 < 4 < T
 25cmb < 25 < 45cmls
                          Zm = Po Vs
  Sierpro que igusiems la econoión soment a un punto que no ses el fuo,
  Disdir 2017 (nº indeterrisado de vielto)
            P= Po ls (3520 Tt - Kx+4) (voice general.
 S: X= 43 (a) 3520 TE - K3+4= 3520 TE + T + 201 T - - 3 k+4= T+201 T
5: X=76 (b) 3520 TE - K 76+4= 3520 TE - 7 +202 TT - - 76 K+4= -7 +20
   \left\{n = n_4 - n_2\right\} \left(a\right) - \left(b\right) = \left(\frac{7}{6} - \frac{3}{3}\right) K = \pi + 2n_1 \pi + \frac{\pi}{2} - 2n_2 \pi
               W > 250 → 3π+4nπ < 3520π

X
                                                        n < 2,77
 250 mls 2 Vs 2450 mls
                   W < 450 → 3 T 1 40 TT > 3520T . 0 > 7,2
  1/3 = K -0
                                           7,52-3 = 4,52 = 1,2
       [k = 3T + 8T = 11T rod/or]
```

3520
$$\pi$$
 (-11 π , $\frac{7}{3}$ + $\frac{7}{2}$ = 3520 π (1 π) 2 π π (π = π)- π)

3520 π t - 11 π , $\frac{7}{2}$ | $\frac{7}{2}$ = 3520 π t $\frac{\pi}{2}$ + 2 π 2 π (π = π)- π = π 1 - 2)

 $\begin{array}{c}
\varphi = \pi + 2\pi\pi \pi + \frac{22}{3}\pi \\
\psi = -\frac{\pi}{2} + 2\pi\pi \pi + \frac{77\pi}{6}
\end{array}$
 $\begin{array}{c}
\varphi = \pi + 2\pi\pi \pi + \frac{22}{3}\pi
\end{array}$
 $\begin{array}{c}
\varphi = \pi + 2\pi\pi \pi + \frac{77\pi}{6}
\end{array}$
 $\begin{array}{c}
\chi = \frac{7}{3}\pi \times \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi \times \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$
 $\begin{array}{c}
\chi = \pi$
 $\begin{array}{c}
\chi = \pi
\end{array}$

2.2)
$$f'$$

$$\begin{array}{c}
A & B & f_2 \\
\hline
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
\end{array}$$

obtene dotores mínimo, por ge en B haya en oraximo de intersidad.

Jobs en el pute B = 265 (B) = 1 + 5(B) = 20 TT

Jobs en el pute B = 265 (B) = 1 + 5(B) = 20 TT

$$S(B) = (wt - kx_1 + \ell_1) - (wt - kx_1 + \ell_2)$$

$$S(B) = (x_2 - x_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - x_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - x_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (\ell_1 - \ell_2)$$

$$S(B) = (k_2 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_2 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_2) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 - k_1) k + (k_1 - k_2)$$

$$S(B) = (k_1 -$$

$$d = \frac{12}{11} + \frac{151}{66} = \frac{79}{66} = \frac{7,196}{66}$$

2.3. Novier be 2015

4. Distances d , s. 76 m < d < 79 m

Supermos que x proposon por el Gio X., KII ux, K.F = K.X

$$\left\{ I = \frac{1}{2 R_0 U_0^2}, P_0^2 \right\}$$

$$\frac{J_1}{J_2} = \frac{P_0 r^2}{P_0 r^2} \rightarrow \left\{ I_1 = 9 I_2 \right\}$$

$$\frac{S = 0}{2 R_0 U_0^2}$$

Je Poz

Jatofisores en A, & noto:
$$C_6S=0$$

Jatofisores en A, & noto: $C_6S=0$
 $J(\Delta) = J_1(\Delta) + J_2(\Delta) \rightarrow \left[20J_2 = 9J_2 + J_2 + 2\sqrt{9J_2 \cdot J_2} \cdot c_9S(D) \right]$

$$7 = \frac{P}{V_{p}} - \left[2m = 8 V_{s}\right]$$

$$7(s) = 10 T_{s} = \frac{S}{28} + \left[T_{s} = \frac{1}{56}\right]$$

$$T_{s} = \frac{R_{s}^{2}}{28 V_{s}} + \left[8 V_{s} = \frac{1}{36}\right] = \frac{4^{2} \cdot 56}{2} = \frac{448}{2}$$

$$T_{s} = \frac{R_{s}^{2}}{28 V_{s}} + \left[8 V_{s} = \frac{1}{36}\right]$$

for the (opening too) d = 1.10 Cods xnew place 2 = 16cm = 0,16m Pe = 800 ks/m2 a ho porticular at mode and .Ft : 5, 30 10 (150 10 1 - 7) of prof (ms) Francisco de ende por el diplicado I (A) = 240 W/02 1) Funcione de endo poro la presión xentes (notación experiens) ilul- 11/18) P(Et) = Po (5 (wt-kr +4) = Po (5.1) = Po e 5 1 my - KII - KP - KY] 5: en 4=0 + En = 34 (3 (454 402 (- 1/4) my Conti Got = 4 pm on tedo y d so Codo Plano. W= 45840 Dd/s K = 27 . 27 = 25 T rod/m Francis de codo de deplosante en el f1. i 5. (x, l) = 4 60 (15 11 103 (- 251 x - 4) 11 / 1/m in The Re NIx codo ormanio: 5 11 20 proten (2) = = Vp = 26 + Vp = 25 Experience : E = E = (wt - Ky - 4) Up = 1 w Sot e i(wt-ky-4+) = Sot we i(wt-ky-4+ + +)

Anie 2018

2) Diference de production de en el prote Dy la puts ges x produces orstipos

Prots dove x produces proxims id Interneded (CS(8)=1 + S=ZAT

Irox = Jerox + Jerox

$$J_{max} = J_{trax} + J_{trax}$$

$$\Delta s = S(D) - S(máxica) = 40 les \frac{J(D)}{50} - 40 les \frac{J_{rax}}{50}$$

Dogue him Intersided rixing as S = 1, S = ZTO

Just = In + Iz + Z
$$\int J_1 I_2 = \left(\int J_1 + \int J_2 \right)^2$$

$$\int J_1 = \frac{1}{2 \operatorname{Re} 2 \operatorname{Re}} \operatorname{Re}^2 \int J_2 = \left(\int J_1 + \int J_2 \right)^2 \int J_2 = \left(\int J_2 + \int J_2 \right)^2 \int J_3 = \left(\int J_4 + \int J_4 \right)^2 \int J_4 = \left(\int J_4 + \int J_4 \right)^2 \int J_5 = \left(\int J_4 + \int J_4 \right)^2 \int J_5 = \left(\int J_4 + \int J_4 \right)^2 \int J_5 = \left(\int J_4 + \int J_5 \right)^2 \int J_5 = \left(\int J_4 + \int J_5 \right)^2 \int J_5 = \left(\int J_5 + \int J_5 \right)^2 \int$$

pestión dels puls de intensidad móxico:

Y= 0-14

Para la poto del feco 1

$$2n\pi = \frac{55\pi}{4} - \frac{25\pi}{4} + \frac{59}{4}$$

$$2n - \frac{59}{4} = -25 \times 4 - \frac{59}{4}$$

```
Enco 2019.
  Deplotoriote de la porticula: 8 = 37 e 1(540TH - 37)
1. Intensided at endo: , prosion roxino: 64 Pa [Prox =647a]
G= 80 € (WE-Kr+4)
Kir = { F = x ex + x ex + ky ex + kz ex } c ky y
KII my, Care ho codo seccios en endos legitodinho Es II mão,
Ex= = men, w= 540 + 10d/s, ky= 3+ , 4=0
20 = 25, V=iw = e ((w(-37) .103 .m/s
 (i= e iT/2) DPO = EO W
 2p= 26. e ilu6-37y+ 2) onls
Z= Te = {codoploso} = Bo 25 { p= Po, Po 25 } po = 2.2po
Lo presión ociótes se horo róxino conde cel ut-ky + T/2) = ±1
Porox = 6 TPa → I= 1 Po 25 [7 = Po.25]
                              Z = Po = 6TT = 450 pyl
Us = W = 540T = 360 M/8
[J= 2 2m = 702 = 2 450 (6T) = 25 W/02]
              [ ] = 25 W/m2
```

Db. 1 2077 2 = 15 10 toyl 2=20 2.6. De fos Fisti. 8 = 103 K5/m3 Pr = 150 05 (at - 4/4) Pa J(b) = 375 0 W/m2 1. Funciones de ords eritidos por coos fec Superems que les ordes se preposer en el eje X. L'all ux 0 < 42 < 25 Cere las cross serveros se cross long. Fidires De las. J(A) = J, (D) + J2 (A) , Z (J7. J2 . (5 S(A)) $|| N = \frac{2\pi}{\lambda} - \pi || pd || m|$ $|| S = \frac{2}{R^2} - \frac{15 \cdot 10^5}{10^3} = \frac{1500 \text{ m/s}}{\lambda} = \frac{\omega}{\lambda}$ J= 2 - 2 Po25 Z = Po = { cros plano} = Po. 75 p=Pocs(ut-K.F+4), p=Pocs(ut-kx+4) Po = ote - Po = 750 Pa] 4= - 7 rod Je(0) = 1/2 = 7,5 mV/m2 S(D) = (wt - K, x, + P,) - (wt - K x2 + 42) = k/x2-x1) + (4-42)

[face of pite D: 4-42=0] [x1=30)

S(D) = 9. (7-3) = 4T Dd. - [45 S(D) = 1]

$$S(b) = 2n \text{ Tr en fore } 1: \left[P_{i} = 150 \cos \left(\frac{\pi \cos \pi (1 - \pi x - \frac{\pi}{4})}{\pi} \right) P_{0} \right]$$

$$S(b) = k \left(\frac{x_{i} - x_{i}}{\pi} \right) + \left(\frac{y_{i} - y_{i}}{\pi} \right)$$

$$2n \pi = 4\pi + \left(-\frac{\pi}{4} - \frac{p_{i}}{\pi} \right) - 0 \quad \text{if } \frac{45}{8} = 1,675$$

$$\left[\frac{15}{4} - 2n \right] \ge 2\pi - 0 \quad \text{if } \frac{45}{8} = 1,675$$

$$\left[\frac{15}{4} - 2n \right] \ge 2\pi - 0 \quad \text{if } \frac{15}{4} - \frac{7}{4} = 0,875$$

$$\left[\frac{15}{4} - 2n \right] \ge 2\pi - 0 \quad \text{if } \frac{15}{4} - \frac{7}{4} = 0,875$$

$$\left[\frac{15}{4} - 2n \right] \ge 2\pi - 0 \quad \text{if } \frac{15}{4} - \frac{7}{4} = 0,875$$

$$\left[\frac{15}{4} - 2n \right] \ge 2\pi - 0 \quad \text{if } \frac{15}{4} - \frac{7}{4} = 0,875$$

$$\left[\frac{15}{4} - 2n \right] \ge 2\pi - 0 \quad \text{if } \frac{15}{4} - \frac{7}{4} = 0,875$$

$$\left[\frac{15}{4} - \frac{7}{4} \cos \frac{\pi}{4} \right] = \frac{7}{4} \cos \frac{\pi}{4} = 0$$

$$\left[\frac{15}{4} - \frac{7}{4} \cos \frac{\pi}{4} \right] = \frac{15}{4} = \frac$$

October 2018

7.7.
$$V_{1} = 400 \text{ m/s}$$

F

10. $V_{2} = 400 \text{ m/s}$

F

11. $V_{3} = 400 \text{ m/s}$

F

12. $V_{4} = 400 \text{ m/s}$

F

12. $V_{5} = 400 \text{ m/s}$

F

13. $V_{7} = 400 \text{ m/s}$

F

14. $V_{7} = 400 \text{ m/s}$

15. $V_{7} = 400 \text{ m/s}$

16. $V_{7} = 400 \text{ m/s}$

17. $V_{7} = 400 \text{ m/s}$

18. $V_{7} = 400 \text{ m/s}$

19. $V_{7} = 400 \text{ m/s}$

19. $V_{7} = 400 \text{ m/s}$

10. $V_{7} = 4$

$$V_{p} = V_{po} e^{i(\omega t - k\gamma + \Psi)}$$

$$V_{e} = \frac{675}{75} \cdot 2400\pi + te^{-6} m/s = \frac{\pi}{12} m/s$$

$$K = 64 \text{ Notion}$$

$$V_{e} = \frac{\pi}{3} \cdot \gamma = 50.$$

$$V_{po} \cdot e^{i(\omega t - 6\pi, o, s) + (\psi + 2\pi o)} = V_{po} \cdot e^{i(\omega t - \frac{2\pi}{6} + \frac{\pi}{2})}$$

$$V_{po} \cdot e^{i(\omega t - 6\pi, o, s) + (\psi + 2\pi o)} = V_{po} \cdot e^{i(\omega t - \frac{2\pi}{6} + \frac{\pi}{2})} = \frac{\pi}{3} \int_{0}^{\infty} \frac{(epshvisis)}{(epshvisis)}$$

$$V_{p} = \frac{\pi}{12} e^{i(2400\pi t - 6\pi)} + \frac{\pi}{3} \int_{0}^{\infty} \frac{(epshvisis)}{(epshvisis)}$$

$$V_{p} = \frac{\pi}{12} e^{i(2400\pi t - 6\pi)} + \frac{\pi}{3} \int_{0}^{\infty} \frac{(epshvisis)}{(epshvisis)}$$

$$V_{p} = \frac{\pi}{12} e^{i(2400\pi t - 6\pi)} + \frac{\pi}{3} \int_{0}^{\infty} \frac{(epshvisis)}{(epshvisis)}$$

Po =
$$\frac{P_0}{V_0.25} = \frac{3}{72} \cdot 400 = \frac{3}{5} \frac{K_5}{m^3}$$

3) Osphoreto
$$w_2 = 2w_1$$
 - $w = 4600 \text{ Findls}$
 $\frac{7}{20} = \frac{36}{36}$
 $\frac{6}{3} = \frac{7}{18}$
 $\frac{7}{20} = \frac{7}{18}$
 $\frac{7}{20} = \frac{625}{18}$
 $\frac{7}{20} = \frac{7}{18}$
 $\frac{7}{20} = \frac{$

$$v_{p_0} = \varepsilon_{p_0} \cdot \omega - \varepsilon_{p_0} = \frac{v_{p_0}}{\omega} = \frac{v_{p_0}}{v_{s_{00}}} = \frac{v_{p_0}}{v_{s_00}} = \frac{v_{p$$

Grove Zors up = cs (4006 + 32 y + 3) cols 7.8 I+ 45 W/m2 to ende some plans a propose of the del eye Y Killery, al proof leg to do to you like K = 32 100/10 26 = 40 20/8 Y= 3 100 w = 4000 rods I = 70 V 4) Función de del proce destes, dispharacte (note a cepto) Us = W = 4000 = 1125 m/s Z= Po = { codo plom} = Po De Po = Po Us Veo J = (Po Vs) 2 = Po Vs . Vgo Po = 2. I = 2.45 = 800 kg/m3 Po = Po Vs · Upo = 800 · 1125 · 10-2 = 9.103 Pa

P= 9 2 (40001 - 32 y + 3) kPa

20 - 25 + 5 = 5 2p. d6 = Ses (40001 - 32 x + 5) de = 8 = 10, sen (40001 - 32 y + 3) - 2,5 is (40001 - 32 y + 3 - 2) po 5-2,5 140001- 32 1-6) ay 100

3) Typesoes de h cold. , densided del redic.

Problema 2.1

1) $p_2(x,t) = 4\cos(9600\pi t - 24\pi x + 5\pi/4)$ Pa

2)
$$p_{(a)} = 2\cos(9600\pi t - 3\pi/4) \text{ Pa}$$

3)
$$Z = 240 \text{ rayl}; \quad \rho_0 = \frac{3}{5} \text{ kg m}^{-3}$$

Problema 2.2

1) $p = 100 \cos(3520\pi t - 11\pi x + \pi/3) \text{ Pa}$

2)
$$d_{min} = \frac{79}{66}$$
 m

Problema 2.3

1) d = 78 m

2)
$$Z_m = 448 \text{ rayl}$$

Problema 2.4

1)
$$p_1 = 19.2 e^{i\left(15\pi \cdot 10^3 t - \frac{25\pi}{2}y_1 + \frac{\pi}{4}\right)} \text{ kPa}; \quad p_2 = 9.6 e^{i\left(15\pi \cdot 10^3 t - \frac{25\pi}{2}y_2 - \frac{3\pi}{4}\right)} \text{ kPa}$$

$$2) \quad \Delta S = 10 \log \frac{5}{9} \, dB$$

Problema 2.5

1)
$$I = \frac{\pi^2}{25} \text{ Wm}^{-2}$$

2)
$$\vec{v}_p = \frac{\pi}{75} e^{i\left(540\pi t - \frac{3\pi}{2}y + \frac{\pi}{2}\right)} \vec{u}_y \text{ m s}^{-1}$$

3)
$$I_{inst} = \frac{2\pi^2}{25} \cos^2 \left(540\pi t - \frac{3\pi}{2} y + \frac{\pi}{2} \right) \text{Wm}^{-2}$$

Problema 2.6

1)
$$p_1 = 150 \cos \left(1500 \pi t - \pi x_1 - \frac{\pi}{4} \right) \text{Pa}; \quad p_2 = 600 \cos \left(1500 \pi t - \pi x_2 + \frac{7\pi}{4} \right) \text{Pa}$$

2)
$$\vec{\xi}_A = \frac{1}{3\pi} \operatorname{sen} \left(1500\pi t - \frac{5\pi}{4} \right) \vec{u}_x \ \mu \text{m}$$

Problema 2.7

1)
$$\vec{v}_p = \frac{\pi}{12} e^{i\left(2400\pi t - 6\pi y + \frac{\pi}{3}\right)} \vec{u}_y \text{ ms}^{-1} (t \text{ en s, } y \text{ en m})$$

2)
$$\rho_0 = 0.6 \text{ kg m}^{-3}$$
; $I_{inst} = \frac{5\pi^2}{3} \cos^2 \left(2400\pi t - 6\pi y + \frac{\pi}{3} \right) \text{Wm}^{-2} \left(t \text{ en s}, y \text{ en m} \right)$

3)
$$\vec{\xi}' = \frac{625}{36} e^{i\left(4800\pi t - 12\pi y - \frac{\pi}{6}\right)} \vec{u}_y \, \mu \text{m} \, (t \text{ en s}, y \text{ en m})$$

Problema 2.8

1)
$$p = 9 e^{i\left(4000t - \frac{32}{9}y + \frac{\pi}{3}\right)} \text{kPa}; \quad \vec{\xi} = \frac{5}{2} e^{i\left(4000t - \frac{32}{9}y - \frac{\pi}{6}\right)} \vec{u}_y \text{ } \mu\text{m}$$

2)
$$Z = 9.10^5 \text{ rayl}; \quad \rho_0 = 800 \text{ kg m}^{-3}$$