

Les suites numériques

I. Comportement d'une suite numérique :

Définition:

Une suite est une application de l'ensemble $\mathbb N$ dans l'ensemble $\mathbb R$.

$$(U_n): \mathbb{N} \longrightarrow \mathbb{N}$$
 $n \longrightarrow U_n$.

Définitions:

- 1. Une suite $(U_n)_{n\in\mathbb{N}}$ est croissante $\Leftrightarrow \forall n\in\mathbb{N},\ U_n\leq U_{n+1}$.
- 2. Une suite $(U_n)_{n\in\mathbb{N}}$ est décroissante $\Leftrightarrow \ \forall n\in\mathbb{N},\ U_n\geq U_{n+1}$.
- 3. Une suite $(U_n)_{n\in\mathbb{N}}$ est monotone signifie qu'elle est soit croissante soit décroissante.

REMARQUES:

- 1. On parle aussi de suite $(U_n)_{n\in\mathbb{N}}$ croissante à partir d'un rang $n_0\in\mathbb{N}\Leftrightarrow\ \forall n\geq n_0,\ U_n\geq U_{n+1}$
- 2. On définit aussi les suites strictement croissantes ou décroissante en remplaçant les inégalités par des inégalités strictes .

MÉTHODE 1 :

Considérons la suite (U_n) définie par $\forall n \in \mathbb{N}$, $U_n = n^2$ $U_{n+1} - U_n = (n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > 1$. (car n est un entier naturel donc positif) donc $U_{n+1} - U_n > 0 \Leftrightarrow U_{n+1} > U_n$ donc la suite (U_n) est strictement croissante sur \mathbb{N} .

MÉTHODE 2 :

Pour une suite (U_n) à termes strictement positifs : comparer $\frac{U_{n+1}}{U_n}$. et 1.

Considérons la suite (U_n) définie par $\forall n \in \mathbb{N} \,,\, U_n = expn^2$

$$\frac{U_{n+1}}{U_n} = \frac{exp(n+1)^2)}{expn^2} = exp(n+1)^2 - n^2 = expn^2 + 2n + 1 - n^2 = exp2n + 1 > \text{car la } xp0$$

fonction exp est strictement croissante sur $\mathbb R$ et 2n+1>0 .

$$\operatorname{donc} \frac{U_{n+1}}{U_n} > 1 \operatorname{car} \exp 0 =$$

$$\mathrm{ainsi}\, \frac{U_{n+1}\times\,U_n}{U_n}\,>1\,\times\,U_n$$

 $\operatorname{\mathsf{car}}\left(U_{n}\right)$ est à termes strictement positifs .

 $U_{n+1} > U_n$ donc (U_n) est strictement croissante sur $\mathbb N$.

Définitions :

- 1. Une suite (U_n) est majorée lorsqu'il existe un réel M (un majorant) tel que $\forall n\in\mathbb{N}$, $U_n\leq M$.
- 2. Une suite (U_n) est minorée lorsqu'il existe un réel m tel que $\forall n \in \mathbb{N} \,,\, U_n \geq M$.
- 3. Une suite (U_n) est bornée lorsqu'elle est majorée et minorée .

REMARQUES:

- 1. Si (U_n) est une suite croissante, alors elle est minorée par son premier terme U_0 : $U_0 \le U_1 \le U_2 \le \le U_n \le$
- 2. Si (U_n) est une suite décroissante, alors elle est majorée par son premier terme U_0 : $U_0 \geq U_1 \geq U_2 \geq \geq U_n \leq$

EXEMPLES:

1. La suite (U_n) définie par $\forall n \in \mathbb{N}$, $U_n = expn + 1$ est strictement croissante, elle est minorée par

1 par contre, elle n'est pas majorée.

- 2. La suite (V_n) définie par $\forall n \in \mathbb{N}$, $V_n = -2n-4$ est strictement décroissante, majorée par -4, par contre elle n'est pas minorée .
- 3. La suite (W_n) définie par $\forall n \in \mathbb{N}$, $W_n = sinn$ est bornée, majorée par 1 et minorée par -1.

Théorème :

- 1. Une suite croissante et majorée est convergente .
- 2. Une suite décroissante et minorée est convergente .

Théorème:

- 1. Toute suite croissante non majorée, diverge vers $+\infty$.
- 2. Tout suite décroissante non minorée diverge vers $-\infty$.

EXEMPLE:

- 1. La suite (U_n) définie par $\forall n \in \mathbb{N}$, $U_n = expn + 1$ est strictement croissante, elle n'est pas majorée donc diverge vers $+\infty$.
- 2. La suite (V_n) définie par $\forall n\in\mathbb{N}$, $V_n=-2n-4$ est strictement décroissante, elle n'est pas minorée donc diverge vers $-\infty$.
- 3. La suite (W_n) définie par $\forall n \in \mathbb{N}$, $W_n = sinn$ est bornée, elle est dite divergente.

Théorème :

Soit (U_n) définie par U_0 et $\forall n \in \mathbb{N}, U_n = ...$

Si (U_n) converge vers l et si f est continue en l alors cette limite l vérifie $f(l) \, = \, l$.

EXEMPLE:

Considérons (U_n) définie par $U_0=$ et $\forall n \in \mathbb{N}, \ U_{n+1}=rac{U_n^2}{3}$.

 (U_n) est décroissante et minorée par 0 (à montrer...).

Donc (U_n) converge vers l d'après le théorème précédent .

Posons
$$\forall x \in \mathbb{R}^+, \ f(x) = \frac{x^2}{3}$$

On est amené à résoudre $f(l) \,=\, l \Longleftrightarrow rac{l^2}{3} = l \Longleftrightarrow l imes (rac{l}{3} - 1) = 0 \Longleftrightarrow l = 0$

or

$$\forall n \in \mathbb{N}, U_n \leq 2, 5$$

donc $l \neq 0$

d'où

$$l = 0 =$$

II . Suites adjacentes :

Définition:

Dire que deux suites (U_n) et (V_n) sont adjacentes signifie que :

- 1. L'une est croissante.
- 2. L'autre est décroissante.

3.
$$\lim_{n \to +\infty} (U_n - V_n) = 0.$$

EXEMPLE:

Considérons les deux suites numériques suivantes :

$$\forall n \geq 1, \ U_n =$$

$$\forall n \geq 1, \ U_{n+1} = \sum_{k=1}^{n+1} \frac{1}{k^2} = \sum_{k=1}^{n} \frac{1}{k^2} + \frac{1}{(n+1)^2} = U_n + \frac{1}{(n+1)^2}.$$

Donc
$$U_{n+1} - U_n = \frac{1}{n+1^2} > 0$$

donc (U_n) est croissante.

$$\forall n \geq 1, \ V_{n+1} - V_n = U_{n+1} + \frac{1}{n+1} - U_n - \frac{1}{n} = U_{n+1} - U_n - \frac{1}{n(n+1)}.$$

$$\forall n \ge 1, \ V_{n+1} - V_n = U_{n+1} + \frac{1}{n+1} - U_n - \frac{1}{n} = \frac{1}{n+1^2} - \frac{1}{n(n+1)}$$

$$\forall n \geq 1, \ V_{n+1} - V_n = U_{n+1} + \frac{1}{n+1} - U_n - \frac{1}{n} = \frac{n}{n(n+1)^2} - \frac{n+1}{n(n+1)^2}$$

$$\forall n \geq 1, \ V_{n+1} - V_n = U_{n+1} + \frac{1}{n+1} - U_n - \frac{1}{n} = -\frac{1}{n(n+1)^2} < 0$$

donc (V_n) est décroissante .

$$V_n - U_n = \frac{1}{n}$$

A Invalid Equation

CONCLUSION:

Les deux suites (U_n) et (V_n) sont adjacentes .

Définition:

Si deux suites sont adjacentes alors elles convergent vers la même limite.

EXEMPLE:

Reprenons notre exemple précédente :

$$\forall n \geq 1, \ U_n =$$

Les deux suites (U_n) et (V_n) sont adjacentes donc elles sont convergentes et convergent vers la même limite .

Nous pourrions montrer que:

