ELEC 3300 Introduction to Embedded Systems

Topic 3

Basic Computer Structure
Prof. Vinod Prasad

Expected Outcomes

- On successful completion of this topic, you will be able to
 - Understand the basic system components and operations including
 - Data buses
 - Address buses
 - Control buses
 - Memory
 - Understand basic concepts of advanced computer architecture
 - Memory-mapped I/O
 - Bus Protocols
 - Analyze CPU Timing diagram of instruction codes

Basic System Components and Operations

The Address Bus

The address bus indicates which memory locations and I/O devices to be / being accessed.

e.g. a 8088 or 8086 has 20-bit address buses, and their address spaces contain $2^{20} = 1M$ addressable memory locations

Processor	Address Bus width	Address Space	In bytes
8088, 8086	20-bit	1,048,576	1MByte
286, 386SX	24-bit	16,777,216	16MBytes
386DX, 80486 Pentium	32-bit	4,294,976,296	4Gbytes

The Data Bus

The data bus transfers information between a particular memory location or I/O device

Example, a 100-MHz 32-bit bus can send 4 bytes of data to the CPU 100 million times per second.

A 66-MHz 16-bit bus can send 2 bytes of data 66 million times per second.

The Control Bus

 Control bus includes a set of signals controlling how the processor communicates with the rest of a system

Memory Organization

- Memory can be thought of as a linear array of bytes
- Most of processors support byte-addressable memory (i.e. The basic memory unit is byte)
- Therefore, with 20, 24 and 32-bit address lines, the processors can address $2^{20} = 1$ Mbyte, $2^{24} = 16$ Mbytes and $2^{32} = 4$ Gbytes of memory

Alternative: Big-endian Most significant value in the sequence is stored first.

Little-endian Addressing (e.g. Intel machine codes)

Least significant value in the sequence is stored first.

Cache Memory

ETM9 Interface Data Instruction TCM interface TCM interface ARM[®] Data Instruction cache ARM9EJ-S™ cache core MMU MMU Write buffer ш Control Logic and Bus Interface Unit 9 2 9 AMBA AHB interface Coprocessor Interface Instruction Data

ARM architecture

Source: ARM Corporation

Advanced Computer Architecture: Memory-mapped I/O

- CPU needs to talk with I/O devices such as keyboard, mouse, video, disk driver, LEDs, etc.
- In design, not all the I/O devices are being accessed simultaneously. Do those devices share the I/O port of CPU and access them at different time? Can we increase the I/O capacity?

Tradeoff?

ELEC 3300 : Fall 2022-23 Tim Woo 10

An Example: 8255 Programmable Peripheral Interface

8255 occupies 4 memory locations: Port A, Port B, Port C and Control Register (CR).

Port A, Port B, Port C are configurable I/O ports They are configured by the **Control Word** which is kept in the Control Register (CR).

A1, A0 are the selectors for Port A, Port B, Port C and CR.

How do you write the driver of 8255A for transferring data between microcontroller and peripherals?

Step 1: Initialization
Configure the type of Ports
(input and/or output ports)

Step 2: Implementation
Select an appropriate port
Set a write/read operation command

Advanced Computer Architecture: Bus Protocols

 Protocol refers to the set rules agreed upon by both the bus master and bus slave

- Synchronous bus transfers occur in relation to successive edges of a clock
- Asynchronous bus transfer bear no particular timing relationship
- Semi-synchronous bus operations/control initiate asynchronously but data transfer occurs synchronously

About Timing Diagram

 The timing diagram represents a set of signals in the time domain. It describes how the device is being operated.

Example: the timing diagram of the port P1 when the following instructions

are executed one-by-one.

MOV P1, R0; at time 0; R0 = 36H

MOV P2, R4; at time 1; R4 = 4AH

MOV P1, R1; at time 2; R1 = 58H

Assume all are 8-bit ports

About Timing Diagram

For simplicity, it usually represents as

MOV P1, R0 ; at time 0; R0 = 36H MOV P2, R4 ; at time 1; R4 = 4AH MOV P1, R1 ; at time 2; R1 = 58H

Assume all are 8-bit ports

About Timing Diagram – Data Sheet

An example of EEPROM Timing diagram for Read Access

About Timing Diagram

Here is a timing diagram of a character type LCD device

ELEC 3300 : Fall 2022-23 Tim Woo = 16

In-class activities

For Android devices, search **HKUST iLearn** at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Lecture 3

Reflection (Self-evaluation)

- Could you
 - List out the basic system components and operations?
 - Understand the following items and their operating principles in advanced computer architecture ?
 - Memory-mapped I/O
 - Bus Protocols
 - State the two basic steps in writing a device driver?
 - List 64-bit computing in computer architecture?
 - Read CPU Timing diagram of instruction codes?

