

Description

The AP050N03Q uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

General Features

V_{DS} =30V,I_D =65

$$\begin{split} R_{DS(ON)} = &4.5 m\Omega \text{ (typical) } @ \text{ V}_{GS} = &10 \text{V} \\ R_{DS(ON)} = &6.5 m\Omega \text{ (typical) } @ \text{ V}_{GS} = &4.5 \text{V} \end{split}$$

- High density cell design for ultra low Rdson
- Very low on-resistance R_{DS(on)}
- Good stability and uniformity with high E_{AS}
- 150 °C operating temperature
- Pb-free lead plating

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AP050N03Q	050N03Q	DFN 3.3X3.3-8L	-	-	-

Absolute Maximum Ratings (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	65	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	46	Α
Pulsed Drain Current	I _{DM}	260	Α
Maximum Power Dissipation	P _D	45	W
Derating factor		0.36	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	150	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ hetaJC}$	2.8	°C/W

Electrical Characteristics (TC=25℃unless otherwise noted)

Parameter	Parameter Symbol Condition		Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	1	1.5	2.2	٧
Drain-Source On-State Resistance	Б	V _{GS} =10V, I _D =20A	-	4.5	6.0	- mΩ
Dialif-Source Off-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A	-	6.5	8.5	
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =20A	30	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{Iss}	V _{DS} =15V,V _{GS} =0V,	-	1784		PF
Output Capacitance	Coss	F=1.0MHz	-	266	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0MHZ	-	212		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}			7		nS
Turn-on Rise Time	t _r	$V_{DD}=5V$, $I_{D}=20A$	-	6		nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =6 Ω		30	=	nS
Turn-Off Fall Time	t _f		_	8	-	nS
Total Gate Charge	Qg	V -15VI -20A	-	38.4	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=15V, I_{D}=20A,$ $V_{GS}=10V$	-	5.8	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} - IOV	-	7.9	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	0.85	1.2	٧
Diode Forward Current (Note 2)	Is		-	-	65	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, I _F = 20A	-	-	47	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	-	25	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Figure 4 Rdson-Junction Temperature

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Qg Gate Charge (nC)

Figure 3 Rdson- Drain Current

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)

0.01

0.1

0.01 0.00001 Single Pulse

0.0001

0.001

100

 T_{on}

10

DFN3.3X3.3-8L Package Information

Symbol	Dimensions In Millimeters				
Symbol	Min.	Nom.	Max.		
А	0.70	0.75	0.80		
b	0.25	0.30	0.35		
С	0.10	0.15	0.25		
D	3.25	3.35	3.45		
D1	3.00	3.10	3.20		
D2	1.48	1.58	1.68		
D3	-	0.13	-		
E	3.20	3.30	3.40		
E1	3.00	3.15	3.20		
E2	2.39	2.49	2.59		
е	0.65BSC				
Н	0.30	0.39	0.50		
L	0.30	0.40	0.50		
L1	-	0.13	-		
M	*	*	0.15		
θ		10 [°]	12 [°]		