Chapter 3

Inferential Statistics

Inferential Statistics

- Informal aim: draw inferences about the population on the basis of the sample information.
- The conclusions/inverences can be incorrect. To minimize the probability of incorrect decisions we use the methods of probability theory.
- Formal aim: statements about the characteristics of the attribute X (random variable or random vector)
- All relevant information about X can be recovered from the distribution function F of X, i.e. $F(x) = P(X \le x)$, since all necessary probabilities can be computed using F(x).

Example:

- ullet Delivery of 1000 pieces of a particular product; M pieces are defective
- M is unknown
- Random selection of n = 30 pieces ("sample")

The sample contains 2 defective

Possible aims:

- Estimate M (e.g. $\frac{2}{30} \cdot 1000 = 66.67$)
- Estimate an interval for M (e.g. $M \in [58; 84]$ with prob. of 95%)
- Test hypothesis that M > 50.

Step 1: fixing the family of distributions

Problem: The distribution function F of the variable of interest X is unknown in general.

- We have some preliminary information about F and use it to choose the family of potential distributions.
- The family of distributions \mathcal{F} is indexed by the parameter ϑ , i.e. $X \sim F_{\vartheta}, \ \vartheta \in \Theta$, where Θ is the set of parameter values.
- Thus $\mathcal{F} = \{F_{\vartheta} : \vartheta \in \Theta\}.$

Examples:

- Let X be the quality of produced bulbs (1 functioning, 0 defective).
 - Then $X \sim B(1, p)$ with p = P(X = 1).
 - It holds $\vartheta = p$, $\Theta = (0,1)$ and $\mathcal{F} = \{B(1,p) : p \in (0,1)\}.$
- ullet Let X be the body height. Many studies have shown that the body height is approximately normally distributed.
 - It holds $X \sim \mathcal{N}(\mu, \sigma^2)$.
 - Thus $\vartheta = (\mu, \sigma)$ and $\Theta = \mathbb{R} \times (0, \infty)$.

If $\Theta \subset \mathbb{R}^k$, then we speak about a parametric family of distributions.

Note:

- If X is a discrete RV, then the true distribution function is usually contained in the family (for example, the Bernoulli distribution)
- ullet If X is a continuous random variable, then the true distribution function is, in general, not contained in the family.
 - The family is used as an approximation.
 - The choice of the family follows from the analysis of the histogram.
 - The choice should be statistically justified. Exact procedures: goodness-of-fit tests (later).

Example: The asset returns are frequently assumed to follow the normal distribution, i.e. $\mathcal{F} = \{N(\mu, \sigma^2)\}$. But if the returns are in fact t-distributed, then the family does not contain the correct distribution.

Step 2: draw a sample

- To make statements about the parameter ϑ or the distribution function F, we run random experiments.
- We draw from the population samples of size n. This leads to the sample $x_1, ..., x_n$.
- Method: $x_1, ..., x_n$ are seen as realizations of random variables $X_1, ..., X_n$ which are called sample variables.
- It is usually assumed that $X_1, ..., X_n$ are independent and follow the same distribution as X (identically distributed).

Example:

- Pick up a sample of delivered products and control the quality. The sample is, e.g. 1,0,0,0,1,0...
- Pick up a sample students and measure the height. The sample is, e.g. 1.65, 1.86, 1.73, 1.91,

Step 3: Disciplines of the inferential statistics

a) Parameter estimation (point estimation)

Aim: Using the sample data we determine an estimator (value) for the unknown parameter ϑ

Example:

- estimate the fraction of the voters, who voted for a particular party, using an exit-poll
- expected lifetime of a particular product by running a selective quality control

b) Confidence intervals (interval estimation)

We determine the interval, where the true (but unknown) parameter lies with high probability.

Example: an interval, which contains the true fraction of voters who voted for a particular party and where this true fraction lies with probability of 95%.

c) Testing hypotheses

Would the party A reach (at least, at most) 20 % of votes, i.e. does it hold that $p \ge 0.20$ or $p \le 0.20$?

Parameter estimation

Assumptions: Let $X \sim F_{\vartheta}$, $x_1, ..., x_n$ is a sample and $X_1, ..., X_n$ are sample variables.

- By test statistics we denote a (measurable) function, which depends only on the sample variables $X_1, ..., X_n$.
- A test statistics $g(X_1, \ldots, X_n)$, which is used to estimate the parameter ϑ , is called the estimation function or shortly the estimator of ϑ .
- $g(x_1, \ldots, x_n)$ is the estimate of ϑ .

Notation: we denote the estimator/estimate of ϑ by $\hat{\vartheta}$.

Examples:

- Expectation E(X)
 - $E(X) = \sum_{i} x_i P(X = x_i)$ or $E(X) = \int_{-\infty}^{\infty} x f(x) dx$
- Since a-priori each value has the same probability, we obtain the estimator by replacing P(X = i) with 1/n.

Estimator for E(X)

Estimator:
$$\hat{\vartheta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Estimate: sample mean $\hat{\vartheta} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

- Variance
 - $Var(X) = \sum_{i} (x_i E(X))^2 P(X = x_i)$ or

$$E(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$$

Estimator for Var(X)

Estimator:
$$\hat{\vartheta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Estimate: empirical variance $\hat{\vartheta} = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$

Examples:

- Distribution function F: the empirical distribution function is an estimate/or for F.
- Density or probability function f: the histogram is an estimate/or of f.

We have a link between the characteristics of a data set (compare descriptive statistics) and the characteristics of a distribution function. The characteristics of a data set are estimators of the corresponding characteristics of the distribution function!!!

Maximum Likelihood (ML) estimation

Given:

- A random sample (x_1, \ldots, x_n)
- Likelihood function $L_{\vartheta}(x_1,\ldots,x_n)$: the joint density function $f(x_1,\ldots,x_n|\vartheta)$

$$f(x_1, \dots, x_n | \vartheta) = \prod_{i=1}^n f_{\vartheta}(x_i) = L_{\vartheta}(\underline{x})$$

If X is a discrete RV, then $L_{\vartheta}(x_1, \ldots, x_n)$ is the probability that we observe the particular sample assuming that the underlying parameter equals ϑ .

Typical ML-estimation

- **①** Write down the likelihood function : $L_{\vartheta}(x_1,\ldots,x_n)$
- **2** Take logs (optional): $\ln L_{\vartheta}(x_1, \ldots, x_n)$
- **3** Take derivatives: $\frac{\partial}{\partial \vartheta} [\ln] L_{\vartheta}(x_1, \dots, x_n) \stackrel{!}{=} 0$
- (usually thete are many parameters!)

Example: Bernoulli distribution

Success of a therapy: $X = \begin{cases} 1 & \text{if successful} \\ 0 & \text{if not} \end{cases} \sim B(1, p), p \in (0, 1)$

The sample variables $X_1, ..., X_n$ are independent and $X_i \sim B(1, p)$ for i = 1, ..., n.

Since $P_p(X_i = x_i) = f_i(x_i) = p^{x_i}(1-p)^{1-x_i}$ für $x_i \in \{0,1\}$ it holds that

$$L_p(x_1, \dots, x_n) = \prod_{i=1}^n f_i(x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$
$$= p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n (1-x_i)} = p^{n\bar{x}} (1-p)^{n-n\bar{x}}$$

Taking logarithm yields

$$\ln L_p(x_1, \dots, x_n) = n \bar{x} \ln p + (n - n \bar{x}) \ln(1 - p)$$

Maximum:

$$\frac{\partial}{\partial p} \ln L_p(x_1, \dots, x_n) = \frac{n \, \bar{x}}{p} - \frac{n \, (1 - \bar{x})}{(1 - p)} \stackrel{!}{=} 0.$$

We obtain $\hat{p} = \bar{x}$.

Since

$$\frac{\partial^2}{\partial p^2} \ln L_p(x_1, \dots, x_n) = -\frac{n \,\bar{x}}{p^2} - \frac{n \,(1 - \bar{x})}{(1 - p)^2} < 0$$

the ML estimator for p is $\hat{\Theta} = \bar{X}$.

Example: Exponential distribution

Let $X_i \sim Exp(\lambda)$ for i = 1, ..., n. Then

$$L_{\lambda}(x_1, \dots, x_n) = \prod_{i=1}^n \lambda \exp(-\lambda x_i) = \lambda^n \exp(-\lambda n \bar{x}),$$

$$\ln L_{\lambda}(x_1, \dots, x_n) = n \ln \lambda - n \lambda \bar{x}.$$

The solution is

$$\frac{d}{d\lambda}(\ln L_{\lambda}(x_1,\dots,x_n)) = n/\lambda - n\,\bar{x} \stackrel{!}{=} 0$$

leading to $\hat{\lambda} = 1/\bar{x}$.

ML-estimators

Distribution	ϑ	ML-estimates
B(1;p)	$p (= \mu)$	X
$\operatorname{Exp}(\lambda)$	λ	$rac{1}{ar{X}}$
$P(\lambda)$	$\lambda \ (= \mu = \sigma^2)$	\widehat{X}
$N(\mu; \sigma^2)$	μ	$ar{X}$
$N(\mu; \sigma^2)$	σ^2	$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$
$\mathrm{N}_k(oldsymbol{\mu};oldsymbol{\Sigma})$	μ	$\frac{1}{n}X1$
$\mathrm{N}_k(oldsymbol{\mu};oldsymbol{\Sigma})$	$oldsymbol{\Sigma}$	$rac{1}{n}X(I-rac{1}{n}11')X'$

Bayes estimation

Idea: the true parameters are unknown and thus can be treated as realisations of some random variables.

- Given:
 - A random sample (x_1, \ldots, x_n)
 - Joint density (Likelihood function) $f(x_1, \ldots, x_n | \vartheta)$
 - Prior information about ϑ (assessment of the analyst) in form of a priori density $\varphi(\vartheta)$
- a posteriori density $\psi(\vartheta|x_1,\ldots,x_n)$

Recall the Bayes formula

$$P(A_j|B) = \frac{P(B|A_j) \cdot P(A_j)}{\sum_{i} P(B|A_i) \cdot P(A_i)}$$

with

$$\begin{array}{ll} P(A_j|B) & \text{replaced by} & \psi(\vartheta|x_1,\ldots,x_n) \\ P(B|A_j) & \text{replaced by} & f(x_1,\ldots,x_n|\vartheta) \\ P(A_j) & \text{replaced by} & \varphi(\vartheta) \end{array}$$

$$\Rightarrow \psi(\vartheta|x_1, \dots, x_n) = \begin{cases} \frac{f(x_1, \dots, x_n | \vartheta_i) \cdot \varphi(\vartheta_i)}{\sum\limits_j f(x_1, \dots, x_n | \vartheta_j) \cdot \varphi(\vartheta_j)} & \text{discrete case} \\ \frac{f(x_1, \dots, x_n | \vartheta) \cdot \varphi(\vartheta)}{\sum\limits_{-\infty}^{\infty} f(x_1, \dots, x_n | \vartheta) \cdot \varphi(\vartheta) \, d\vartheta} & \text{continuous case} \end{cases}$$

Bayes-estimation

- **1** fix the a priori density: $\varphi(\vartheta)$
- **2** Build the joint density: $f(x_1, \ldots, x_n | \vartheta)$
- **3** determine the posteriori density: $\psi(\vartheta|x_1,\ldots,x_n)$
- For example, determine the location parameters of the posterior density
 - median,
 - mean, etc.

What is a "good" estimator?

Idea 1: the estimator should be close (?) to the true value.

• Bias: should be small (if zero → unbiased)

$$Bias(\hat{\vartheta}) = E(\hat{\vartheta}) - \vartheta$$

 \bullet Variance: should be small \leadsto efficiency

$$Var(\hat{\vartheta}) = E[\hat{\vartheta} - E(\hat{\vartheta})]^2$$

• MSE - mean-squared error: trade-off between bias and variance

$$MSE(\hat{\vartheta}) = [Bias(\hat{\vartheta})]^2 + Var(\hat{\vartheta})\}$$

Example:

Are

$$\hat{\Theta} = \bar{X}_n, \quad \hat{\Theta}' = \frac{X_1 + X_n}{2}, \quad \hat{\Theta}'' = \frac{1}{n-1} \sum_{i=1}^n X_i$$

unbiased for $E(X_i) = \mu$?

- $E(\hat{\Theta}) = E(\bar{X}_n) = \mu$ $\Rightarrow \text{unbiased}$
- $E(\hat{\Theta}') = E(\frac{X_1 + X_n}{2}) = \frac{1}{2}[E(X_1) + E(X_n)] = \frac{1}{2}(\mu + \mu) = \mu$ \Rightarrow unbiased
- $E(\hat{\Theta}'') = E\left(\frac{1}{n-1}\sum_{i=1}^{n}X_i\right) = \frac{1}{n-1}\sum_{i=1}^{n}E(X_i) = \frac{1}{n-1}\sum_{i=1}^{n}\mu = \frac{n}{n-1}\cdot\mu\underset{n\to\infty}{\longrightarrow}\mu$ \Rightarrow asymptotically unbiased.

Which estimator better?

Efficiency

• Let $\hat{\Theta}$ be $\hat{\Theta}'$ two unbiased estimators of θ . Then $\hat{\Theta}$ is more efficient than $\hat{\Theta}'$, if independently of the numeric value of θ holds:

$$Var(\hat{\Theta}) < Var(\hat{\Theta}')$$

Example:

$$Var(\hat{\Theta}) = Var(\bar{X}) = \frac{\sigma^2}{n} <$$

$$< Var(\hat{\Theta}') = Var\left(\frac{X_1 + X_n}{2}\right) = \frac{1}{4}(\sigma^2 + \sigma^2) = \frac{\sigma^2}{2}$$

(if n > 2) $\hat{\Theta}$ is more efficient than $\hat{\Theta}'$.

An unbiased estimator with the smallest possible variance (within a particular model) is called the most efficient estimator.

Idea 2: what happens to the estimator if the sample size increases? A sequence of estimators $\hat{\vartheta}_n$

$$\hat{\Theta}_1 = g_1(X_1)
\hat{\Theta}_2 = g_2(X_1, X_2)
\vdots
\hat{\Theta}_n = g_n(X_1, \dots, X_n)$$

is **consistent** for θ , if for all c > 0 it holds:

$$P(|\hat{\Theta}_n - \theta| \ge c) \xrightarrow[n \to \infty]{} 0$$

Convergence in probability

A sequence of RV's z_n converges in probability to a constant c if for all $\varepsilon > 0$

$$P(|z_n - c| > \varepsilon) \longrightarrow 0$$
, as $n \to \infty$.

We write $z_n \xrightarrow{p} z$ and say that c is the probability limit of z_n , i.e. $p \lim z_n = c$.

Thus an estimator is consistent if

$$p\lim_{n\to\infty}\hat{\vartheta}=\vartheta$$

The weak low of large numbers

• Tschebyscheff inequality

$$P(|X - E(X)| \ge c) \le \frac{Var(X)}{c^2}$$

2 applying to $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ results in

$$P(|\bar{X}_n - \mu| \ge c) \le \frac{\sigma^2}{n \cdot c^2}$$

3 as $n \to \infty \Rightarrow$ low of large numbers (LLN):

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge c) = 0 \quad \text{or} \quad \lim_{n \to \infty} P(|\bar{X}_n - \mu| \le c) = 1$$

Checking the limit in the definition of consistency is not trivial. But from Tschebysheff inequality we have the following sufficient conditions for consistency:

$$\left(\lim_{n\to\infty}\right)E(\hat{\Theta}_n)=\theta$$
 and $\lim_{n\to\infty}Var(\hat{\Theta}_n)=0.$

Example: Is \bar{X}_n consistent for μ ?

Es gilt:

- $E(\bar{X}_n) = \mu$, i.e. \bar{X}_n is unbiased for μ .
- $Var(\bar{X}_n) = \frac{\sigma^2}{n} \xrightarrow[n \to \infty]{} 0$, i.e. the variance converges to zero.

Thus \bar{X}_n is consistent for μ .

Example: toss a die

$$X_i = \begin{cases} 1 & \text{if you toss a 6} \\ 0 & \text{if you toss other number} \end{cases}$$

Since
$$X_i \sim B(1, 1/6)$$
 then $E(\bar{X}) = 1/6$ and $Var(\bar{X}) = \frac{1}{n} \cdot Var(X_i) = \frac{5}{36 \, n}$.

 $1\,073\,741\,824$

Thus: any estimator should be:

- Unbiased: $E(\hat{\vartheta}) = \vartheta$
- Efficient: $Var(\hat{\vartheta})$ is the smallest among all other unbiased estimators of ϑ
- or asymptotically efficient: $\lim_{n\to\infty} Var(\hat{\vartheta}) = [I(\vartheta)]^{-1}$ converges to the smallest possible variance given by the Cramer-Rao lower bound

$$I(\vartheta) = -E\left[\frac{\partial^2 \ell(x_1, ..., x_n | \vartheta)}{\partial \vartheta \partial \vartheta'}\right] = E\left[\frac{\partial \ell(x_1, ..., x_n | \vartheta)}{\partial \vartheta} \frac{\partial \ell(x_1, ..., x_n | \vartheta)}{\partial \vartheta'}\right]$$

• Consistent:

$$p \lim_{n \to \infty} \hat{\vartheta} = \vartheta$$

• Robust: $\hat{\vartheta}$ is still a good estimator even if the distributional assumptions are not satisfied.

Note: frequently is is important to know the distribution of $\hat{\vartheta}$ or at least its asymptotic distribution

Example: Let $\vartheta = \mu$ and $\hat{\vartheta} = \bar{x}$.

• If the sample is drawn from a normal distribution then

$$\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n).$$

• What happens if the sample is not normal? \rightsquigarrow CLT

Central limit theorem (CLT)

The CLT gives a statement about the asymptotic behavior of the mean (or any simple function of the sample)

Example: X_1 , X_2 , X_3 in [0; 1] uniformly distributed; $Z_1 = X_1$, $Z_2 = X_1 + X_2$, $Z_3 = X_1 + X_2 + X_3$

Standardisation:

$$Y_n = \frac{\bar{X}_n - \mu}{\sigma \cdot \frac{1}{\sqrt{n}}} = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$$

Central Limit Theorem

$$\lim_{n \to \infty} P(Y_n \le x) = \lim_{n \to \infty} P\left(\sqrt{n} \frac{X_n - \mu}{\sigma} \le x\right) = \Phi(x)$$

3 We write

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1)$$

Example: wear parts of a machine

(a) A machine contains 100 wear parts. Each part should be replaced during the next year with the prob. of $\frac{1}{6}$. What is the prob. that we have to replace more than 10 but less than 21 parts?

$$P\left(10 < \sum_{i=1}^{100} X_i \le 20\right) = F_{B(100,\frac{1}{6})}(20) - F_{B(100,\frac{1}{6})}(10)$$
$$= \sum_{i=11}^{20} {100 \choose i} \left(\frac{1}{6}\right)^i \left(\frac{5}{6}\right)^{100-i}$$

Problem: $F_{B(100,\frac{1}{a})}(x)$ for 1 < x < 100!

(b) Approximation with CLT
$$(n = 100, E(X_i) = \frac{1}{6}, Var(X_i) = \frac{5}{36})$$

$$P\left(10 < \sum_{i=1}^{100} X_i \le 20\right) = P\left(0.1 < \bar{X} \le 0.2\right)$$

$$= P\left(\sqrt{100} \frac{0.1 - \frac{1}{6}}{\sqrt{\frac{5}{36}}} < \sqrt{100} \frac{\bar{X} - \frac{1}{6}}{\sqrt{\frac{5}{36}}} \le \sqrt{100} \frac{0.2 - \frac{1}{6}}{\sqrt{\frac{5}{36}}}\right)$$

$$\approx \Phi(0.8944) - \Phi(-1.7888)$$

$$= \Phi(0.8944) - 1 + \Phi(1.7888)$$

$$= 0.8143 - 1 + 0.9631$$

$$= 0.7774$$

Theorem (Multivariate Central Limit Theorem)

If X_1, \ldots, X_n are a random sample from an arbitrary multivariate distribution with finite mean μ and positive definite covariance matrix Σ , then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \Sigma)$.

Theorem (Multivariate Central Limit Theorem with unequal moments (Lindberg-Feller))

If X_1, \ldots, X_n are a set of RVs with finite means μ_i and finite positive definite covariance matrices Σ_i . Let $\bar{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_i$ and $\bar{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n \Sigma_i$. If no single term dominates the average variance, i.e. $\lim_{n\to\infty} (n\bar{\Sigma}_n)^{-1}\Sigma_i = \mathbf{O}$, and if the average variance converges to a finite constant $\bar{\Sigma} = \lim_{n \to \infty} \bar{\Sigma}_n^2$, then

$$\sqrt{n}(\bar{X}_n - \bar{\mu}_n) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \bar{\Sigma}).$$

Theorem (Limiting normal distribution of a function (Delta-method))

If $\sqrt{n}(z_n - \mu) \xrightarrow{d} M(0, \sigma^2)$ and if $g(\cdot)$ is a continuous function not involving n, then

$$\sqrt{n}(g(z_n) - g(\mu)) \xrightarrow{d} \mathcal{N}(0, [g'(\mu)]^2 \sigma^2).$$

Theorem (Limiting normal distribution of a multivariate function (Delta-method))

If \mathbf{z}_n is a sequence of $k \times 1$ -dimensional vector-valued RVs such that $\sqrt{n}(\mathbf{z}_n - \boldsymbol{\mu}) \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ and if $\mathbf{c}(\cdot) : \mathbb{R}^k \to \mathbb{R}^J$ is a continuous function not involving n, then

$$\sqrt{n}(\boldsymbol{c}(\boldsymbol{z}_n) - \boldsymbol{c}(\boldsymbol{\mu})) \stackrel{d}{\longrightarrow} \mathcal{N}_J(\boldsymbol{0}, \boldsymbol{C}(\boldsymbol{\mu})\boldsymbol{\Sigma}\boldsymbol{C}(\boldsymbol{\mu})')$$

where $C(\mu)$ is the $J \times k$ matrix of first partial derivatives $\partial c(\mu)/\partial \mu'$.

Confidence intervals

Assumption: it holds $X_i \sim F_{\vartheta}$, $\vartheta \in \Theta$, where X_1, \ldots, X_n are the sample variables

Aim: provide an area (e. g. interval), where the unknown parameter ϑ will belong to with a high probability

Let $T_1(\mathbf{X})$, $T_2(\mathbf{X})$ be functions of the sample with $T_1 \leq T_2$ and $\alpha \in (0,1)$.

The interval $[T_1(\boldsymbol{X}), T_2(\boldsymbol{X})]$ with

$$P_{\vartheta}(T_1 \le \vartheta \le T_2) = 1 - \alpha \quad \forall \vartheta \in \Theta$$
 (*)

is an exact (two-sided) confidence interval (CI) for ϑ with the confidence level $1 - \alpha$.

Note: In practice we select α often equal to 0.1, 0.05 or 0.01.

Interpretation: If $[T_1, T_2]$ is a 90%-CI, then the unknown parameter ϑ belongs to this interval with the probability of 90%.

 $[T_1(\boldsymbol{X}), \infty)$ is a one-sided lower confidence interval at the confidence level $1 - \alpha$, if

$$P_{\vartheta}(T_1 \le \vartheta) = 1 - \alpha \quad \forall \, \vartheta \in \Theta$$

and $(-\infty, T_2(\mathbf{X})]$ is a one-sided upper confidence interval at the confidence level $1-\alpha$, if

$$P_{\vartheta}(\vartheta \le T_2) = 1 - \alpha \quad \forall \, \vartheta \in \Theta$$

Example:

- Assume that the parameter measures the riskiness of an asset. Then we are interested in the upper confidence interval, since ϑ should be bounded from above.
- If ϑ denotes the tear strength of a rope, then we consider the lower confidence interval, since the lower bound cannot be undershot.

Construction of confidence intervals Confidence interval for normally distributed random variables

Assumption: The sample variables $X_1, ..., X_n$ are independent and normally distributed with $X_i \sim N(\mu, \sigma^2)$ for i = 1, ..., n.

i) Confidence interval for μ (σ is known)

Starting point: estimate μ with \bar{X}

Since $Var(\bar{X}) = \sigma^2/n$, we postulate the following structure of the confidence interval

$$[\bar{X} + c_1 \frac{\sigma}{\sqrt{n}}, \bar{X} + c_2 \frac{\sigma}{\sqrt{n}}]$$

with suitable constants $c_1 < 0 < c_2$. c_1 and c_2 will depend on α , i.e. of (*).

Since $\bar{X} \sim N(\mu, \sigma^2/n)$, i.e. the distribution is symmetric around μ , we select $c_2 = c = -c_1$.

Thus

$$\mu \in \left[\bar{X} - c \, \frac{\sigma}{\sqrt{n}}, \bar{X} + c \, \frac{\sigma}{\sqrt{n}} \right] \iff \sqrt{n} \, \frac{|\bar{X} - \mu|}{\sigma} \leq c$$

Since $\sqrt{n}(\bar{X}-\mu)/\sigma \sim \Phi$, we determine c in such way, that

$$P_{\mu}\left(\sqrt{n}\frac{|X-\mu|}{\sigma} \le c\right)$$

$$= P_{\mu}\left(\sqrt{n}\frac{\bar{X}-\mu}{\sigma} \le c\right) - P_{\mu}\left(\sqrt{n}\frac{\bar{X}-\mu}{\sigma} < -c\right)$$

$$= \Phi(c) - \Phi(-c) = 2\Phi(c) - 1 \stackrel{!}{=} 1 - \alpha.$$

This implies $c = z_{1-\alpha/2}$

The exact CI for μ at the level $1-\alpha$

$$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Example: demand for a particular product

A manufacturer had on average $\bar{X}=100$ orders per day for a particular product during the last n=100 days. From experience they know that the standard deviation σ is 100. To satisfy the demand, the company is interested in the confidence interval for the expected demand.

Assuming normally distributed random variables and taking $\alpha=0.05$ we obtain $z_{0.975}=1.96$ and

$$\bar{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} = 100 \pm 1.96 \frac{100}{\sqrt{100}} = 100 \pm 19.6$$

The 95%-CI for μ is given by [80.4, 119.6].

ii) Confidence interval for μ (σ is unknown)

To derive the CI we use the same procedure as above. We estimate the σ^2 by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

The derivation is more complicated, since we have to determine the distribution of

$$\sqrt{n} \, \frac{\bar{X} - \mu}{S} \, \sim \, t_{n-1}.$$

Exact confidence interval for μ (σ is unknown) at the level $1 - \alpha$

$$\left[\bar{X} - t_{n-1;1-\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1;1-\alpha/2} \frac{S}{\sqrt{n}} \right]$$

Example: length of bolts in cm

The average length of n=125 bolts is $\bar{x}=10.25$. Moreover, s=0.3. For $\alpha=0.1$ we obtain $t_{124;0.95}=1.6576$, and

$$\left[10.25 - 1.6576 \cdot \frac{0.3}{\sqrt{125}}, 10.25 + 1.6576 \cdot \frac{0.3}{\sqrt{125}}\right]$$

$$\approx [10.206, 10.294]$$

iii) Confidence intervals for σ^2

Estimator for
$$\sigma^2$$
: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

It can be shown that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

 χ^2_{n-1} denotes the (central) χ^2 -distribution with n-1 degrees of freedom.

Since the χ^2 -distribution is not symmetric, the CI for σ^2 is also not symmetric. We take

$$P_{\sigma}\left(c_{1} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq c_{2}\right) = \chi_{n-1}^{2}(c_{2}) - \chi_{n-1}^{2}(c_{1}) \stackrel{!}{=} 1 - \alpha$$

Since the equation contains two independent quantities, it cannot be solved uniquely. For this reason we assume

$$\chi_{n-1}^2(c_2) = 1 - \frac{\alpha}{2}, \quad \chi_{n-1}^2(c_1) = \frac{\alpha}{2}.$$

We use the notation $c_2 = \chi^2_{n-1;1-\alpha/2}$ and $c_1 = \chi^2_{n-1;\alpha/2}$.

Since

$$c_1 \le \frac{(n-1)S^2}{\sigma^2} \le c_2 \quad \Leftrightarrow \quad \frac{(n-1)S^2}{c_2} \le \sigma^2 \le \frac{(n-1)S^2}{c_1},$$

the exact confidence interval for σ^2 at the level $1 - \alpha$ is given by

$$\left[\frac{\left(n-1\right)S^2}{\chi^2_{n-1;1-\alpha/2}},\frac{\left(n-1\right)S^2}{\chi^2_{n-1;\alpha/2}}\right]$$

Example: the length of bolts in cm

Let
$$\alpha = 0.1$$
, $n = 100$, $s^2 = 0.1$.
Since $\chi^2_{99:0.05} = 77.93$ and $\chi^2_{99:0.95} = 124.3$, the CI is given by

$$\left[\frac{99 \cdot 0.1}{124.3}, \frac{99 \cdot 0.1}{77.93}\right]$$

$$\approx [0.08, 0.13]$$

now: Asymptotic confidence intervals

Using the the CLT we can derive the asymptotic CI. It holds

$$\lim_{n \to \infty} P_{\vartheta}(T_1(\boldsymbol{X}) \le \vartheta \le T_2(\boldsymbol{X})) = 1 - \alpha \quad \forall \, \vartheta \in \Theta.$$

Example: Let $X_1, ..., X_n$ be iid with $E(X_i) = \mu$ for all $i \ge 1$. The objective is a CI for μ .

i)
$$\sigma^2 = Var(X_i)$$
 is known

The CI has the same structure as in the case of normal distribution

$$\left[\bar{X} - c\,\frac{\sigma}{\sqrt{n}}, \bar{X} + c\,\frac{\sigma}{\sqrt{n}}\right]$$

Problem: The exact distribution of $\sqrt{n}(\bar{X} - \mu)/\sigma$ is unknown.

For this reason one applies the CLT.

$$\lim_{n \to \infty} P_{\mu}(\mu \in \left[\bar{X} - c \frac{\sigma}{\sqrt{n}}, \bar{X} + c \frac{\sigma}{\sqrt{n}} \right]) = \lim_{n \to \infty} P_{\mu} \left(\sqrt{n} \frac{|\bar{X} - \mu|}{\sigma} \le c \right)$$

$$= \lim_{n \to \infty} P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} \le c \right) - \lim_{n \to \infty} P_{\mu} \left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} < -c \right)$$

$$= \Phi(c) - \Phi(-c) = 2\Phi(c) - 1 \stackrel{!}{=} 1 - \alpha.$$

Consequently $c = z_{1-\alpha/2}$ and an asymptotic CI for μ is given by

$$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Rule of thumb: n > 30

Statistical Tests

Basics: Jerzy Neyman (1894–1981) and Egon S. Pearson (1895–1980)

Example: is the filling capacity of bottles exactly 500ml as argued?

- It is a decision problem between two hypotheses.
- We speak of a test problem.
- These hypotheses can be expressed using the parameter of interest (here μ).

Jerzy Neyman (1894–1981) Egon S. Pearson (1895–1980)

Let $X \sim F_{\vartheta}$, $\vartheta \in \Theta$. Θ_0 and Θ_1 are disjunct and $\Theta_0 \cup \Theta_1 = \Theta$.

The question regarding ϑ is expressed in terms two hypotheses H_0 (null hypothesis) and H_1 alternative hypothesis:

$$H_0: \vartheta \in \Theta_0 \quad \text{versus} \quad H_1: \vartheta \in \Theta_1$$
.

Action: On the basis of the sample x_1, \ldots, x_n we should make a decision whether if $\mu = 500 \, ml$ is fulfilled or not.

Such a decision rule is called a statistical test.

Here we shortly sketch how does a test look like:

Example: filling capacity of bottles

$$H_0: \mu = 500ml$$
 vs $H_1: \mu \neq 500ml$.

Starting point: Estimator for μ , here $\hat{\mu} = \bar{x}$

Consideration

Reject H_0 , when $|\bar{x}-500|$ is large enough , e.g. when $|\bar{x}-500|>c$ for some constant $c>0 \leadsto$ i.e. reject H_0 if we have sufficient evidence against H_0 .

Decision rule

$$|\bar{x} - 500| > c \quad \leadsto \quad \text{reject } H_0 \text{ (accept } H_1),$$

$$|\bar{x} - 500| \le c \quad \leadsto \quad \text{do not reject } H_0 \text{ (H_0 CANNOT be accepted)}.$$

Note: If the hypothesis is an inequality, then it must be chosen as H_1 . A hypothesis with equality is always in H_0 .

One sample Z-test

- We assume
 - $G \sim N(\mu; \sigma)$ with known σ
 - random sample X_1, \ldots, X_n
- Different pairs of hypotheses

two-sided

$$H_0 : \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

one-sided test

right-sided test
$$H_0: \mu \leq \mu_0$$
 $H_1: \mu > \mu_0$ left-sided test $H_0: \mu \geq \mu_0$ $H_1: \mu < \mu_0$

• X_1, \ldots, X_{25} with $X_i = \text{capacity of the } i\text{-th bottle} \sim N(\mu; 1.5^2)$ null hypotheses $H_0: \mu = 500$, i.e. $\mu_0 = 500$

Possible errors: rejection of H_0 , if H_0 is correct and non-rejection of H_0 , if H_0 is wrong:

Decision	Reality	
	rain	no rain
take umbrella	correct decision	error
do not take umbrella	error	correct decision

 $\{H_1\}$: decide to reject H_0 $\{H_0\}$: decide not to reject H_0

decision	Reality	
	H_0 is correct	H_0 is not correct (H_1 is correct)
H_0 is not rejected: $\{H_0\}$	correct decision $ \{H_0\} H_0 $ $P(\{H_0\} H_0) = 1 - \alpha $	error of the 2nd type $ \{H_0\} H_1 $ $P(\{H_0\} H_1) = \beta $
H_0 is rejected: $\{H_1\}$	error of the 1st type $ \{H_1\} H_0 $ $P(\{H_1\} H_0) = \alpha $	correct decision $ \{H_1\} H_1 $ $P(\{H_1\} H_1) = 1 - \beta $

Level of significance α :

the highest allowed probability of the type 1 error.

Test statistic (test function)

• for testing pusposes we aggregate the information in the sample to a test statistic

$$V = V(X_1, ..., X_n).$$

- The functional form of V depends on the test/hypotheses, ect.
- The distribution of V under H_0 should be known (at least asymptotically), i.e. if H_0 is correct

$$F(v|\mu_0)$$

- Using this distribution split the set of possible values of the test statistics into
 - rejection area if v takes a value here then H_0 is rejected
 - \bullet non-rejection area if v takes a value here then H_0 is NOT rejected

Critical values

The rejection area (or critical values) is determined in such was, that the probability of getting a test statistic in this area (assuming that H_0 is correct) is not higher then the given α

$$P(V \in \text{ rejection area of } H_0 \mid \mu_0) \leq \alpha$$

$$P(V \in \text{non-rejection area of } H_0 \mid \mu_0) \ge 1 - \alpha$$

• two-sided test

$$H_0: \mu = \mu_0 \qquad H_1: \mu \neq \mu_0$$

ullet non-rejection area $[c_u; c_o]$

$$P(c_u \le V \le c_o \mid \mu_0) = 1 - \alpha$$

• rejection area $B = (-\infty; c_u) \cup (c_0; \infty)$

$$P(V \le c_u \mid \mu_0) + P(V \ge c_o \mid \mu_0) = \alpha/2 + \alpha/2 = \alpha$$

• test statistic

$$V = \sqrt{n} \frac{|\bar{x} - \mu_0|}{\sigma}$$

• Relying on the symmetry of the normal distribution:

$$P(|V| > c) = P(V > c \text{ or } -V > c) = P(V > c \text{ or } V < -c)$$

$$= P(V > c) + P(V < -c) = 2 \cdot P(V > c)$$

$$= 2 \cdot [1 - P(V \le c)] = 2 \cdot [1 - \Phi(c)] \stackrel{!}{=} \alpha \iff$$

$$\Phi(c) = 1 - \frac{\alpha}{2} \iff c = z_{1 - \frac{\alpha}{2}}$$

 H_0 is rejected if $|v| > z_{1-\frac{\alpha}{2}}$.

• $B = (-\infty; -z_{1-\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2}}; \infty)$ is the rejection area.

Similarly for one sided tests

H_0 is rejected if $v \in B$ with

$$B = (-\infty; -z_{1-\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2}}; \infty) \quad \text{case a})$$

$$B = (-\infty; -z_{1-\alpha}) \quad \text{case b})$$

$$B = (z_{1-\alpha}; \infty) \quad \text{case c})$$

Example

$$X_1, \dots, X_{25}$$
 with $X_i \sim N(\mu; 1.5^2)$ and $\bar{x} = 499.28$
Test $H_0: \mu = 500, H_1: \mu \neq 500$ with $\alpha = 0.01$

- $\alpha = 0.01$
- $v = \frac{499.28 500}{1.5} \cdot \sqrt{25} = -2.4$
- **3** N(0;1): $z_{1-\frac{\alpha}{2}} = z_{1-0.005} = z_{0.995} = 2.576$ ⇒ $B = (-\infty; -2.576) \cup (2.576; \infty)$
- $v \notin B \Rightarrow H_0$ not rejected

 \leadsto With significance level of 5% we cannot prove that the capacity is less than argued.

p-value

- If you change α you have to run the test again \leadsto stat software do not ask for α , but compute the p-value which allows you to run the test for any α
- p-value is the largest level of significance for which H_0 is still not rejected
- The smaller the p-value is, the more evidence the sample contains against H_0
- decision rule

$$\begin{array}{l} \alpha > \alpha' \ \Rightarrow H_0 \ {\rm rejected} \\ \alpha \leq \alpha' \ \Rightarrow H_0 \ {\rm not \ rejected} \end{array}$$

Case a: two-sided Z-test

The smallest value of α , for which H_0 is still not rejected, satisfies

$$\begin{cases} -z_{1-\frac{\alpha'}{2}} = z_{\frac{\alpha'}{2}} = v, & \text{if } v < 0 \\ z_{1-\frac{\alpha'}{2}} = -z_{\frac{\alpha'}{2}} = v, & \text{if } v > 0 \end{cases}$$

We are looking for such a value of α' , that $\Phi(v) = \frac{\alpha'}{2}$ (if v < 0) or $\Phi(v) = 1 - \frac{\alpha'}{2}$ (if v > 0).

Example

Using the quantiles of $\mathcal{N}(0,1)$ we obtain

$$\Phi(-2.4) = 1 - \Phi(2.4) = 1 - 0.9918 = 0.0082 = \frac{\alpha'}{2}.$$

Thus $\alpha' = 0.0164$

Let $\alpha = 0.01$. Since $\alpha' > \alpha$, we cannot reject H_0 at $\alpha = 0.01$.

Let $\alpha = 0.05$. Since $\alpha' < \alpha$, we reject H_0 at $\alpha = 0.05$.

 \rightsquigarrow For all $\alpha' < \alpha$ we can reject H_0 .

Case b: left-sided Z-test

The smaller value of α , for which H_0 is still not rejected, satisfies

$$-z_{1-\alpha'}=z_{\alpha'}=v$$

We are looking for such value of α' , that $\Phi(v) = \alpha'$.

Note:

In Case a) we can also run the test using the confidence intervals: We compute for given α the symmetric CI $[v_u; v_o]$ centered at \bar{x} and reject $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ if $\mu_0 \notin [v_u; v_o]$.

Here: CI for μ :

$$1 - \alpha = 1 - 0.01 = 0.99$$

2 N(0;1):
$$c = z_{1-\frac{\alpha}{2}} = z_{1-\frac{0.01}{2}} = z_{0.995} = 2.576$$

6
$$\bar{x} = 499.28$$

$$6 [499.28 - 0.77; 499.28 + 0.77] = [498.51; 500.05]$$

$$\mu_0 = 500 \in [498.51; 500.05] \Rightarrow H_0$$
 cannot be rejected

Other tests

- Test of $H_0: \mu = \mu_0$ with $X_i \sim N(\mu, \sigma^2)$, but σ^2 is unknown
 - Estimate σ^2 by s^2
 - $V = \sqrt{n} \frac{|X \mu_0|}{s} \sim t_{n-1}$
 - The rejection area for a two-sided test is

$$B = (-\infty; -t_{n-1;1-\alpha/2}) \cup (t_{n-1;1-\alpha/2}; +\infty)$$

- Test of $H_0: \mu = \mu_0$ if the distribution is unknown (asymptotic Z-test)
 - Rely on the CLT
 - $V = \sqrt{n} \frac{|X \mu_0|}{s} \overset{approx}{\sim} \mathcal{N}(0, 1)$
 - The rejection areas as for the simple Z-test

Other tests

- Test of $H_0: p = p_0$, with $X_i \sim B(n, p)$
 - Check if $5 \le \sum x_i \le n-5$
 - Estimate $\hat{p} = \bar{x}$
 - Compute the test statistic $v = \sqrt{n} \frac{\bar{x} p_0}{\sqrt{p_0(1 p_0)}} \stackrel{asymp}{\sim} \mathcal{N}(0, 1)$
 - \bullet Follow the idea of the asymptotic \dot{Z} -test
- Test of $H_0: \sigma^2 = \sigma_0^2$, with $X_i \sim N(\mu, \sigma^2)$
 - Estimate σ^2 by s^2
 - $V = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$
 - The rejection area for a two-sided test is

$$B = (0; \chi^2_{n-1;\alpha/2}) \cup (\chi^2_{n-1;1-\alpha/2}; +\infty)$$

Example

$$X_1, \ldots, X_{2000} \sim B(1; p)$$
 mit

$$X_i = \begin{cases} 1, & \text{falls } i \text{th person voted for the party A} \\ 0, & \text{sonst} \end{cases}$$

$$\sum_{i=1}^{2000} x_i = 108$$

Test $H_0: p \le 0.05$ vs. $H_1: p > 0.05$ with $\alpha = 2\%$

Asymptotic Z-test, Case (c); $5 \le \sum x_i \le n-5$: $5 \le 108 \le 2000-5$

- **1** $\alpha = 0.02$
- $v = \frac{\frac{108}{2000} 0.05}{\sqrt{0.05 \cdot (1 0.05)}} \sqrt{2000} = 0.82$
- **8** N(0;1): $z_{1-\alpha} = z_{0.98} = 2.05 \Rightarrow B = (2.05; \infty)$
- $v \notin B \Rightarrow H_0 \text{ not rejected}$

Two-sample tests

- Given
 - two independent samples X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} with
 - sample sizes n_1 and n_2
 - expectations $E(X_i) = \mu_1$ and $E(Y_i) = \mu_2$
 - variances $Var(X_i) = \sigma_1^2$ and $Var(Y_i) = \sigma_2^2$
 - means \bar{X} and \bar{Y}
 - sample variances S_1^2 and S_2^2
- Object of interest:
 - Comparison of means/expectations $\mu_1 \leq \mu_2$
 - Comparison of variances $\sigma_1^2 \leq \sigma_2^2$

Comparison of means

Hypotheses

a)
$$H_0: \mu_1 = \mu_2$$
 $H_1: \mu_1 \neq \mu_2$
b) $H_0: \mu_1 \geq \mu_2$ $H_1: \mu_1 < \mu_2$
c) $H_0: \mu_1 \leq \mu_2$ $H_1: \mu_1 > \mu_2$ (2)

Estimator for $\mu_1 - \mu_2$: $\bar{X} - \bar{Y}$

Two-sample Z-test

If the variance σ_1^2 and σ_2^2 are known, then

$$Var(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}.$$

Thus the test statistics is

$$V = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}.$$

Under H_0 ($\mu_1 = \mu_2$) and for Gaussian samples it holds

$$V \sim N(0, 1)$$
.

Two-sample t-test

If the variances σ_1^2 and σ_2^2 are unknown, but $\sigma_1^2 = \sigma_2^2 = \sigma^2$, then estimate σ^2 with

$$\tilde{\sigma}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

with (under H_0)

$$\frac{(n_1 + n_2 - 2)\tilde{\sigma}^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2).$$

The test statistic is

$$V = \frac{\bar{X} - \bar{Y}}{\sqrt{\tilde{\sigma}^2 \frac{n_1 + n_2}{n_1 n_2}}}.$$

Under H_0 ($\mu_1 = \mu_2$) it holds

$$V \sim t_{n_1 + n_2 - 2}$$
.

Asymptotic two-sample Z-test

If the variances σ_1^2 and σ_2^2 are unknown and arbitrary, then the test statistic is

$$V = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}.$$

Under H_0 ($\mu_1 = \mu_2$) and from the CLT it holds

$$V \stackrel{\text{approx.}}{\sim} N(0,1).$$

The rejection area is given in all three situation by

$$B = (-\infty; -x_{1-\frac{\alpha}{2}}) \cup (x_{1-\frac{\alpha}{2}}; \infty)$$
 in case a)

$$B = (-\infty; -x_{1-\alpha})$$
 in case b)

$$B = (x_{1-\alpha}; \infty)$$
 in case c)

with the corresponding quantiles defined by the above distributions of the test statistics.

	Assumption	test statistics V	Distr. of V under H_0
1.	$X_i \sim N(\mu_1; \sigma_1^2)$ $Y_i \sim N(\mu_2; \sigma_2^2)$ σ_1^2 and σ_2^2 known	$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$V \sim N(0; 1)$
2.	$X_i \sim N(\mu_1; \sigma_1^2)$ $Y_i \sim N(\mu_2; \sigma_2^2)$ $\sigma_1^2 \text{ and } \sigma_2^2 \text{ unknown}$ but $\sigma_1^2 = \sigma_2^2$	$\frac{\vec{X} - \vec{Y}}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \cdot \frac{n_1 + n_2}{n_1 n_2}}$	$V \sim t_{n_1 + n_2 - 2}$
3.	$\begin{aligned} X_i &\sim N(\mu_1; \sigma_1^2) \\ Y_i &\sim N(\mu_2; \sigma_2^2) \\ \sigma_1^2 \text{ and } \sigma_2^2 \text{ unknown,} \\ \text{but } \sigma_1^2 \neq \sigma_2^2, n_1 = n_2 = n \end{aligned}$	$\frac{\vec{X} - \vec{Y}}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \cdot \frac{n_1 + n_2}{n_1 n_2}}$	$V \overset{\text{approx.}}{\sim} t_{(n-1)\left[1 + \frac{2}{s_1^2/s_2^2 + s_2^2/s_1^2}\right]}$
4.	$X_i \sim B(1; p_1)$ $Y_i \sim B(1; p_2)$ $5 \le \sum x_i \le n_1 - 5$ $5 \le \sum y_i \le n_2 - 5$	$\frac{\vec{X} - \vec{Y}}{\sqrt{\frac{(\sum X_i + \sum Y_i)(n_1 + n_2 - \sum X_i - \sum Y_i)}{(n_1 + n_2)n_1n_2}}}$	$V \stackrel{\text{approx.}}{\sim} N(0;1)$
5.	X_i, Y_i arbitr. distr. $n_1 > 30; n_2 > 30$ σ_1^2, σ_2^2 unknown	$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$V \stackrel{\text{approx.}}{\sim} N(0;1)$
6.	X_i, Y_i arbitr. distr. $n_1 > 30; n_2 > 30$ σ_1^2, σ_2^2 unknown	$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$V \stackrel{\text{approx.}}{\sim} N(0;1)$

 $1.\ {\it two-sample}\ Z{\it -test};\ \ 2./3.\ {\it two-sample}\ t{\it -test};$

4./5./6. approx. Z-test

Example: has the expected return of an asset increased after the announcement of the acquisition?

Let X_1 be the return before the announcement and X_2 the return after. Assume $X_i \sim N(\mu_i, \sigma_i)$ and X_1 and X_2 are independent. D

$$H_0: \mu_1 \ge \mu_2 \qquad vs \qquad H_1: \mu_1 < \mu_2$$

 $n_1 = 115, \, \bar{x}_1 = 6.5, \, s_1 = 0.4, \, n_2 = 110, \, \bar{x}_2 = 8.14 \, \text{and} \, s_2 = 0.78.$ Thus

$$v = \frac{6.5 - 8.14}{\sqrt{\frac{0.4^2}{115} + \frac{0.78^2}{110}}} = -19.71.$$

We obtain $z_{0.99} = 2.3263$ and $B = (-\infty; -2.3263)$. Since v < -2.3263we reject H_0 and conclude that the expected return is significantly larger after the announcement.

Example:

$$X_1, \ldots, X_{80} \sim B(1; p_1)$$

with

$$X_i = \begin{cases} 1, & \text{if the } i \text{th product is defective} \\ 0, & \text{else} \end{cases}$$
, $\sum_{i=1}^{80} x_i = 20$

$$Y_1, \ldots, Y_{100} \sim B(1; p_2)$$

with

$$Y_i = \begin{cases} 1, & \text{if the } i \text{th product is defective} \\ 0, & \text{else} \end{cases}$$
, $\sum_{i=1}^{100} y_i = 50$

Can we argue that the probability of being defective is higher for Type 1 products than for Type 2 products?

3 N(0;1):
$$z_{1-\alpha} = z_{0.9} = 1.282 \Rightarrow B = (-\infty; -1.282)$$

•
$$v \in B \Rightarrow H_0$$
 rejected, i.e. $p_1 < p_2$ is confirmed

Test for correlation/dependence

Assumption: let (X,Y) follow a 2-dim. normal distribution

$$E(X) = \mu_x , Var(X) = \sigma_x^2,$$

$$E(Y) = \mu_y , Var(Y) = \sigma_y^2.$$

Let

$$\rho = Corr(X, Y) := \frac{Cov(X, Y)}{\sigma_x \sigma_y} = \frac{E((X - \mu_x)(Y - \mu_y))}{\sigma_x \sigma_y}.$$

Note: if the samples are normal, then zero correlation implies independence.

The estimator for ρ is

$$r_{XY} = \hat{\rho} = \frac{s_{XY}}{s_X s_Y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (y_i - \bar{y})^2}}$$

Note: similar tests can be derived the contingency tables and for the rank correlation of Spearman.

Test problem

- $H_0: \rho = 0$ (i.e. X and Y are independent) vs
- $H_1: \rho \neq 0$ (i.e. X and Y are dependent)
- Test statistics: $v = \sqrt{n-2} \frac{\hat{\rho}}{\sqrt{1-\hat{\rho}^2}}$.
- Under H_0 it holds $V \stackrel{approx}{\sim} \mathcal{N}(0,1)$
- Rejection area

$$B = (-\infty; -t_{n-2;1-\frac{\alpha}{2}}) \cup (t_{n-2;1-\frac{\alpha}{2}}; \infty)$$

Example: test with $\alpha = 0.05$ if the is a significant correlation between the body height of fathers (Y) and sons at the age of 5 (X)?

$$x_i$$
 109
 114
 116
 105
 114
 116
 114
 108
 108
 122
 117
 115

 115
 112
 122
 113
 108
 109
 115
 108
 118
 110
 113
 111
 116

 y_i
 167
 176
 186
 175
 175
 182
 180
 172
 185
 186
 183
 178

 175
 175
 180
 181
 172
 179
 170
 172
 172
 172
 176
 180
 182

It holds $n=25, \bar{x}=113.12, s_X=4.352, \bar{y}=177.24, s_Y=5.206$ and $s_{XY}=10.05333$. Thus $\hat{\rho}=0.44365$ and

$$v = \sqrt{23} \frac{0.44365}{\sqrt{1 - 0.44365^2}} = 2.374$$
.

For $\alpha = 0.05$ it holds $t_{23;0.975} = 2.069$ and

$$B = (-\infty; -2.069) \cup (2.069; +\infty)$$
.

Since $v \in B$, we conclude that $H_0: \rho = 0$ can be rejected.

Kolmogorov-Smirnov Goodness-of-Fit Test

Requirement: an independent random sample X_1, \ldots, X_n with $X_i \sim F$ for $i = 1, \ldots, n$

Testing problem:

$$H_0: F = F_0$$
 against $H_1: F \neq F_0$,

where F_0 is a given and known distribution, e.g. $N(\mu_0, \sigma_0^2)$.

Idea of the test: Comparison of the empirical distribution function with F_0 .

Distribution function:

$$F_0(x) = P(X \le x) = \int_{-\infty}^x f(y)dy$$

- $0 < F_0(x) < 1$;
- $F_0(x)$ is a non-decreasing function;
- $F_0(x)$ is right-continuous.

Example: Distribution function of the normal distribution (blue) and the empirical distribution function (red) for DAX returns

Test statistic:
$$D = \max_{x \in \mathbb{R}} |\hat{F}(x) - F_0(x)|$$

The distribution of D under H_0 is a non-standard distribution and is independent from F_0 if F_0 is continuous!

Decision: using the p-value-approach.

In practice: Let F_0 be continuous and $x_1 \le x_2 \le ... \le x_T$.

$$\rightarrow D = \max_{1 \le t \le T} \{ \hat{F}(x_t) - F_0(x_t), F_0(x_t) - \hat{F}(x_{t-1}) \},$$

where $\hat{F}(x_0) := 0$.

Now: F_0 is a non-predetermined distribution, but a class of distributions, e.g. $N(\cdot, \cdot)$.

Testing problem:

$$H_0: F \in \mathcal{F}_0 := \left\{ F_0 \left(\frac{x - \mu}{\sigma} \right) : \mu \in \mathbb{R}, \sigma > 0 \right\}$$

 $H_1: F \in \mathcal{D} - \mathcal{F}_0$.

where F_0 is known (e.g. $F_0 = \Phi$).

Modified Kolmogorov-Smirnov Test

Test statistic:
$$D^* = \max_{x \in \mathbb{R}} \left| \hat{F}(x) - \Phi((x - \hat{\mu})/\hat{\sigma}) \right|$$

If $D^* > c^*$, then H_0 is rejected.

Example:

For the DAX-Index with $F_0 = \mathcal{N}(5.7854 \cdot 10^{-6}; 2.5551 \cdot 10^{-4})$ we get

> ks.test(rdax, "pnorm", mean=mean(rdax), sd= sd(rdax))

One-sample Kolmogorov-Smirnov test

data: rdax

D = 0.0736, p-value = 1.067e-12 alternative hypothesis: two-sided

 \Rightarrow The returns are not normally distributed.

Power of a test

• Parametric test:

$$H_0: \vartheta \in \Theta_0 \quad \text{vs} \quad H_1: \vartheta \in \Theta_1$$

with $\Theta_0 \cup \Theta_1 = \Theta \subseteq \mathbb{R}$.

- Performance measures of a test:
 - **4** Prob. of type I error should not exceed α .
 - **1** Prob. of type II error should be a small as possible.

Prob. of rejection H_0 depending on the true value of the parameter

$$G(\mu) = P(V \in \text{rejection area} H_0|\mu) = P(\{H_1\}|\mu)$$

- Is $\vartheta \in \Theta_0$ so we made a wrong decision $(\{H_1\}|H_0)$.
- The power function is in this case the prob. of type I error:

$$G(\mu) = P(\{H_1\}|\mu) \le \alpha \text{ for all } \mu \in \Theta_0$$

- Is $\vartheta \in \Theta_0$ so we made the correct decision $(\{H_1\}|H_1)$.
- The prob. of type II error:

$$G(\mu) = P(\{H_1\}|\mu) \le \alpha \text{ for all } \mu \in \Theta_0$$

Power function of the test for the mean

Assumption: α and n are fixed, normal distribution and σ^2 is known.

$$G(\mu)$$
 = $P(V \in \text{ rejection area } H_0|\mu)$
= $P(\{H_1\}|\mu)$
= $1 - P(V \in \text{ non-rejection area } H_0|\mu)$
= $1 - P(\{H_0\}|\mu)$

two-sided test

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$$

 H_0 is correct only if $\mu = \mu_0$.

$$G(\mu) = 1 - P(-z_{1-\alpha/2} \le V \le z_{1-\alpha/2} \mid \mu)$$

$$= 1 - P\left(-z_{1-\alpha/2} \le \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n} \le z_{1-\alpha/2} \mid \mu\right)$$

$$= 1 - P\left(-z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le (\bar{X} - \mu_0) \le z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \mid \mu\right)$$

$$= 1 - P\left(-z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} + \mu_0 - \mu \le (\bar{X} - \mu) \le z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} + \mu_0 - \mu \mid \mu\right)$$

$$= 1 - P\left(-z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sigma} \sqrt{n} \le \frac{\bar{X} - \mu}{\sigma} \sqrt{n} \le z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sigma} \sqrt{n} \mid \mu\right)$$

Since μ is the true mean, it holds $\frac{X-\mu}{2}\sqrt{n} \sim N(0.1)$.

$$\begin{split} G(\mu) &= 1 - \left[P \Big(\frac{\bar{X} - \mu}{\sigma} \sqrt{n} \le z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sigma} \sqrt{n} \Big) \right. \\ &\left. - \left[P \Big(-z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sigma} \sqrt{n} \le \frac{\bar{X} - \mu}{\sigma} \sqrt{n} \Big) \right] \\ &= 1 - \left[\Phi \Big(z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sigma} \sqrt{n} \Big) - \Phi \Big(-z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sigma} \sqrt{n} \Big) \right] \end{split}$$

$$G(\mu) = \begin{cases} \alpha = P(\{H_1\}|\mu), & \text{for } \mu = \mu_0 \\ 1 - \beta(\mu) = P(\{H_1\}|\mu), & \text{for } \mu \neq \mu_0 \end{cases}$$

Example: target filling capacity $\mu_0 = 1000$. Let $\sigma = 10$, $\alpha = 0.05$, n = 25. What is the prob. of type II error, if the true filling capacity is $\mu = 1002$?

$$G(1002) = 1 - \left[\Phi\left(1.96 + \frac{1000 - 1002}{10}\sqrt{25}\right) - \Phi\left(-1.96 + \frac{1000 - 1002}{10}\sqrt{25}\right)\right] = 0.170066 = 1 - \beta$$

$$P(\{H_0\}|\mu = 1002) = \beta = 1 - G(1002) = 0.83$$

We will not detect the deviation of 2ml from the target capacity of 1000ml in 83% of the cases!!!

Let $\mu = 989$. Then G(989) = 0.9998 and $\beta = 0.0002$.

If the true capacity is $\mu=989$, then we will NOT detect it only in 0.02% of all samples of size n=25

Power function for different sample sizes $n_1 < n_2 < n_3 < n_4$

 \rightarrow increasing the sample size reduces the prob. of type II error (ceteris paribus).

Power function as a function of α

- \rightarrow increasing the prob. of type I error reduces the prob. of type II error (ceteris paribus)
- → both probabilities cannot be reduced simultaneously!!!

