Term Project Proposal

Towards Intelligent Financial Fraud Detection: Exploring Modern Techniques for Existing Threats

Professor: Chantri Polprasert

Presented by: Team Duo st124997 - Suryansh Srivastava st125457 - Ulugbek Shernazarov

Overview

- **01** Introduction
- **02** Problem Statement
- 03 Related Work
- 04 Methodology
- 05 Model Evaluation
- 06 Discussions
- 07 Conclusion

- **4.1** EDA
- 4.2 Data Preprocessing
- 5.1 Pipeline
- 5.2 Machine Learning Model

```
# Modeling
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
X_train.shape, X_test.shape

((5090096, 6), (1272524, 6))
```

Train test split

Pipeline design

SMOTE

```
categorical_transformer = Pipeline(steps=[
    ('encoder', OneHotEncoder()),
# No need for imputation - no missing values
numerical transformer = Pipeline(steps=[
    ('scaler', StandardScaler())
preprocessor = ColumnTransformer(transformers=[
    ('num', numerical_transformer, num_columns),
    ('cat', categorical_transformer, cat_columns),
X train preprocessed = preprocessor.fit transform(X train)
X_test_preprocessed = preprocessor.transform(X test)
```

Train test split

Pipeline design

SMOTE

```
smote = SMOTE(random_state=42)
X_train_preprocessed_resampled, y_train_resampled = smote.fit_resample(X_train_preprocessed, y_train)
print(f"Before smote class distribution: {collections.Counter(y_train)}\nAfter: {collections.Counter(y_train_resampled)}")

Before smote class distribution: Counter({0: 5083526, 1: 6570})
After: Counter({0: 5083526, 1: 5083526})
```

Train test split

SMOTE

Pipeline design

model = LogisticRegression(class_weight='balanced', random_state=42)
model.fit(X_train_preprocessed_resampled, y_train_resampled)

y_pred = model.predict(X_test_preprocessed)

Train test split

Pipeline design

SMOTE

ML Models

Models:

- Logistic Regression, Support Vector Machine Classifier, Random Forest
- Gradient Boosting Classifier
- Feedforward Neural Network
- Kolmogorov Arnolds Networks


```
param_grid = [
        'classifier': [LogisticRegression(max_iter=500)],
        'classifier__C': [0.1, 1, 10]
        'classifier': [SVC()],
        'classifier__C': [0.1, 1, 10],
        'classifier__kernel': ['linear', 'rbf']
        'classifier': [RandomForestClassifier()],
        'classifier__n_estimators': [100, 200],
        'classifier__max_depth': [10, 20],
        'classifier__min_samples_split': [2, 5, 10],
        'classifier__min_samples_leaf': [1, 2, 4],
        'classifier_bootstrap': [True, False]
        'classifier': [GradientBoostingClassifier()],
        'classifier__n_estimators': [100, 200],
        'classifier_learning_rate': [0.01, 0.1, 0.2],
        'classifier__max_depth': [3, 5, 7],
        'classifier__min_samples_split': [2, 5],
        'classifier__min_samples_leaf': [1, 2]
```

Param search

```
sgf=StratifiedGroupKFold(n_splits=5)

vgrid_search = GridSearchCV(
    estimator=model_pipeline,
    param_grid=param_grid,
    cv=sgf,
    scoring='roc_auc',
    verbose=2,
    n_jobs=-1 # Use parallel processi
)
```

ML Models

Data size: >10m rows

Grid search run took almost 50 hours

To avoid data leakage, on the fly preprocessing pipeline is given to each stratified kfold

Scoring focus is auc_roc

Also run gridsearch for each model to find best params per model

Federated Learning

- Decentralized Machine Learning
- Data Privacy Preserved
- Training Across Multiple Devices
- No Raw Data Sharing
- Collaborative Model Updates
- Secure Aggregation
- Ideal for Sensitive Data

Neural network

```
class Ff1(nn.Module):
    def __init__(self, num_features, embed_dim):
        super(Ff1, self).__init__()
        self.embedding = nn.Embedding(num_features, embed_dim)
        self.fc1 = nn.Linear(embed_dim, 64)
        self.fc2 = nn.Linear(64, 32)
        self.fc3 = nn.Linear(32, 2)

def forward(self, x):
        x = self.embedding(x).view(-1, self.embed_dim)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

```
class Ff2(nn.Module):
    def __init__(self, input_dim, hidden_dims=[64, 32], dropout=0.2):
        super(Ff2, self).__init__()
        self.layers = nn.ModuleList()
        self.batch_norms = nn.ModuleList()

        self.layers.append(nn.Linear(input_dim, hidden_dims[0]))
        self.batch_norms.append(nn.BatchNorm1d(hidden_dims[0]))

        for i in range(1, len(hidden_dims)):
            self.layers.append(nn.Linear(hidden_dims[i-1], hidden_dims[i]))
            self.batch_norms.append(nn.BatchNorm1d(hidden_dims[i]))

        self.output = nn.Linear(hidden_dims[-1], 2)

        self.dropout = nn.Dropout(dropout)
```

Tested several custom architectures

Kolmogorov Arnold Networks

- Inspired by Kolmogorov–Arnold Theorem
- Function Approximation Framework
- Decomposes Multivariate Functions
- High Theoretical Expressivity
- Layered Structure of Simple Functions
- Efficient for Complex Tasks

- Precision/Recall
- AUC-ROC
- Confussion matrix

Logistic Regression - C=10, num_epochs=1000

The Logistic Regression model achieved the following performance metrics:

AUC-ROC: 0.95

TABLE I LOGISTIC REGRESSION RESULTS

Class	P	i incomi il ocore omp			
0	0.9999	0.9462	0.9724	1,270,881	
1	0.0225	0.9550	0.0439	1,643	
Accuracy	0.9463				
Macro Avg	0.5112	0.9506	0.5081	1,272,524	
Weighted Avg	0.9987	0.9463	0.9712	1,272,524	

Fig. 7. ROC Curve for Baseline Logistic Regression Model

TABLE III RANDOM FOREST RESULTS

Class	Precision	Recall	F1-Score	Support	
0	0.9999	0.9835	0.9917	1,270,881	
1	0.0723	0.9939	0.1348	1,643	
Accuracy	0.9835				
Macro Avg	0.5361	0.9887	0.5632	1,272,524	
Weighted Avg	0.9988	0.9835	0.9906	1,272,524	

Fig. 10. ROC Curve for Random Forest Model

Random Forest with n_estimators=200, max_depth=10, min_split=2, min_leaf=2, bootstrap=True

Random Forest classifier achieved the second-best results, with the following metrics:

• AUC: 0.989

TABLE II GRADIENT BOOSTING RESULTS

Class	Precision	Recall	F1-Score	Support	
0	0.9999	0.9827	0.9913	1,270,881	
1	0.0693	0.9976	0.1295	1,643	
Accuracy	0.9827				
Macro Avg	0.5346	0.9901	0.5604	1,272,524	
Weighted Avg	0.9988	0.9827	0.9901	1,272,524	

Fig. 8. ROC Curve for Gradient Boosting Model

Gradient Boosting with n_estimators=200, lr=0.01, max_depth=7, min_split=2, min_leaf=2

Gradient Boosting provided the best results, achieving superior performance on both training and test sets:

• Train AUC: 0.9989

• Test AUC: 0.9983

Using a Neural Feedforward Network within the Feder ated Learning framework, the model achieved the following performance metrics:

• AUC-ROC: 0.9979

Balanced Accuracy: 0.9781
Accuracy: 0.9801

1220320 50963 1265712 4768

NEURAL FEEDFORWARD NETWORK REPORT

Class	Precision	Precision Recall F1-Score Suppo				
0	0.9961	0.9601	0.9778	1,270,283		
1	0.9613	0.9963	0.9785	1,270,480		
Accuracy	0.9801					
Macro Avg	0.9787	0.9782	0.9781	2,540,763		
Weighted Avg	0.9787	0.9801	0.9781	2,540,763		

Fig. 11. ROC Curve for Neural Network with Federated Learning

Using Kolmogorov–Arnold Networks (KANs) within the Federated Learning framework, the model achieved the following performance metrics:

• AUC-ROC: 0.9992

• Precision: 0.1233

• Recall: 0.9970

• Accuracy: 0.9908

[1259231 11650] 5 1638]

TABLE V
FEDERATED LEARNING WITH KANS CLASSIFICATION REPORT

Class	Precision	Recall	F1-Score	Support	
0	0.9999	0.9908	0.9954	1,270,881	
1	0.1233	0.9970	0.2194	1,643	
Accuracy	0.9908				
Macro Avg	0.5616	0.9939	0.6074	1,272,524	
Weighted Avg	0.9989	0.9908	0.9944	1,272,524	

Fig. 14. Training Progress for Kolmogorov–Arnold Networks with Federated Learning

```
 1.61 \left(-\sin \left(0.55 x_3+9.34\right)+0.12 \tan \left(0.57 x_1-9.4\right)+0.25 \tanh \left(1.81 x_2-4.89\right)-0.28 \tanh \left(2.29 x_4-4.25\right)+0.43\right)^2-153.19 e^{0.12 \sin \left(2.56 x_1+3.0\right)+0.21 \tanh \left(10.0 x_4-8.8\right)-0.16 \left[1.59 x_3-6.98\right]} \\ 0.01 \sin \left(4.91 \sin \left(1.43 x_1+1.21\right)+0.01 \tan \left(0.75 x_4-3.48\right)-1.43 \tanh \left(2.67 x_2-10.0\right)+2.27 \tanh \left(2.18 x_3-9.12\right)+9.85\right)+
```

 $63.66 \tanh \left(248.65 \left(1-0.16 x_1\right)^4+0.36 \sin \left(2.83 x_4+1.75\right)-1.56 \tanh \left(1.13 x_3-3.4\right)-0.23 \left|3.23 x_2-9.88\right|+1.2\right)+14.34$

formula1, formula2 = model.symbolic formula()[0]

```
\frac{1.61 \left(-\sin \left(0.55 x_3+9.34\right)+0.12 \tan \left(0.57 x_1-9.4\right)+0.25 \tanh \left(1.81 x_2-4.89\right)-0.28 \tanh \left(2.29 x_4-4.25\right)+0.43\right)^2-153.19 e^{0.12 \sin \left(2.56 x_1+3.0\right)+0.21 \tanh \left(10.0 x_4-8.8\right)-0.16 \left|1.59 x_3-6.98\right|}{0.01 \sin \left(4.91 \sin \left(1.43 x_1+1.21\right)+0.01 \tan \left(0.75 x_4-3.48\right)-1.43 \tanh \left(2.67 x_2-10.0\right)+2.27 \tanh \left(2.18 x_3-9.12\right)+9.85\right)+63.66 \tanh \left(248.65 \left(1-0.16 x_1\right)^4+0.36 \sin \left(2.83 x_4+1.75\right)-1.56 \tanh \left(1.13 x_3-3.4\right)-0.23 \left|3.23 x_2-9.88\right|+1.2\right)+14.34
```

Discussions

TABLE VII

PERFORMANCE OF PAYSIM MODEL

Metric	Precision	Recall	F1-Score	AUC-
	(Fraud)	(Fraud)	(Fraud)	ROC
PaySim Model	1.0000	0.0019	0.0039	0.5010

- Compare to Paysim Model
- Compare to Kaggle one of the best solutions

Our Solution: Significantly outperforms PaySim across all key metrics. Paysim dataset has isFraud and isFlaggedFraud

PaySim Model Analysis:
Perfect precision (1.0000), but extremely low recall (0.0019).
F1-score is very low (0.0039), indicating poor balance.
AUC-ROC (0.5010) is close to random

guessing.

Discussions

https://www.kaggle.com/code/waleedfahee m/credit-card-fraud-detection-auc-0-9#-Model-Building-

TABLE IX COMPARISON OF OUR SOLUTION AND KAGGLE SOLUTION

Model	Pr	Rec	F1-	AUC-
			Score	ROC
Kaggle Solution	0.9700	0.7700	0.8600	0.9750
Neural Feedforward Network (FL)	0.9613	0.9963	0.9785	0.9979
KANs (FL)	0.1233	0.9970	0.2194	0.9992

Our Solution: Kaggle model is strong, but our Neural Network and KANs deliver superior performance across key metrics, ensuring robust fraud detection.

- Compare to Paysim Model
- Compare to Kaggle one of the best solutions

Kaggle solution, authored by Waleed Faheem, analysis:

• AUC-ROC: Neural Network (0.9979) and KANs (0.9992) outperform Kaggle solution (0.975).

Recall: Neural Network (0.9963) and KANs (0.9970) excel vs. Kaggle (0.7700), identifying nearly all fraudulent cases.
Precision: Kaggle (0.9700) slightly higher than Neural Network (0.9613), but recall and El improvements.

but recall and F1 improvements outweigh this.

Conclusion

- Developed and evaluated various models for fraud detection using the PaySim dataset.
- Federated Learning-based Models
- Achieved superior performance compared to baseline models and existing solutions.
- Implemented a user-friendly Web Platform (Model Zoo)
- KANs + Federated learning new research approach not explored yet
- Allows users to select and utilize different trained models

