ЛАБОРАТОРНАЯ РАБОТА

ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ СИСТЕМЫ СВЯЗАННЫХ ТЕЛ

1. Цель работы: освоить метод экспериментального определения кинематических и динамических параметров движения связанных тел.

2. Подготовка к работе

Прочитать в учебниках следующие параграфы: [1] – §§ 3.4, 4.1 – 4.3; [2] – §§ 11 – 13, 16 – 19. Для выполнения работы студент должен: а) знать законы динамики поступательного и вра-

щательного движения и закон сохранения энергия; б) уметь пользоваться измерительными приборами; в) знать порядок выполнения работы, методику проведений измерений на установке; г) уметь рассчитывать погрешности измерений.

3. Выполнение работы

3.1. Описание лабораторной установки

Экспериментальная установка состоит из стойки с укреплённым на ней с помощью подшипника шкива и столика, жёстко связанного со шкивом. Шкив и сто-

Рис. 8.1. Схема экспериментальной установки

лик имеют общую ось вращения (рис. 8.1). На шкив наматывается нить. Ко второму концу нити, перекинутой через неподвижный блок, подвешивается груз массой m. Опускаясь с высоты h, груз приводит во вращательное движение шкив со столиком. В работе

изучается движение системы связанных тел – груза и шкива со столиком.

3.2. Методика измерений и расчёта

При равноускоренном движении груза массой m уравнение для координаты y будет иметь вид

$$y = \frac{at^2}{2},\tag{8.1}$$

где a — ускорение груза; t — время его движения с высоты h до пола.

Расчётные формулы для конечной скорости груза

$$v = \frac{2h}{t} \tag{8.2}$$

и его ускорения

$$a = \frac{2h}{t^2}. (8.3)$$

Расчётные формулы для кинематических характеристик вращательного движения столика со шкивом:

$$\omega = \frac{\upsilon}{r} = \frac{2h}{rt};\tag{8.4}$$

$$\varepsilon = \frac{a_{\tau}}{r} = \frac{2h}{rt^2};\tag{8.5}$$

$$\varphi = \frac{\varepsilon t^2}{2} \quad \text{или} \quad \varphi = \frac{h}{r}, \tag{8.6}$$

где ω — угловая скорость столика со шкивом в конце его ускоренного вращения; ϵ — угловое ускорение столика со шкивом; ϕ — угол поворота шкива радиуса r за время движения груза.

За время ускоренного движения груза массой m столик со шкивом сделает N оборотов:

$$N = \frac{\varphi}{2\pi}.\tag{8.6}$$

Модуль силы натяжения нити, связывающей шкив с грузом массой m, равен

$$F_{\rm H} = m(g - a). \tag{8.7}$$

В конце движения груз имеет скорость υ , импульс $P=m\upsilon$; кинетическую энергию $E_{\kappa_{\rm rp}}=m\upsilon^2/2$; начальная потенциальная энергия груза $E_{\Pi}=mgh$.

Уравнение динамики вращательного движения столика со шкивом имеет вид:

$$\vec{M}_{\rm H} + \vec{M}_{\rm Tp} = J\vec{\epsilon}, \qquad (8.8)$$

где $\vec{M}_{\rm H} = [\vec{r}\vec{F}_{\rm H}]$ — момент силы натяжения нити; $M_{\rm Tp}$ — момент силы трения; J — момент инерции шкива со столиком; ϵ — их угловое ускорение.

В проекции на ось вращения OO' уравнение (8.8) записывается в виде

$$M_{\rm H} - M_{\rm TD} = J\varepsilon, \tag{8.9}$$

откуда момент инерции J столика со шкивом равен

$$J = \frac{M_{\rm H} - M_{\rm Tp}}{\varepsilon}.$$
 (8.10)

Момент силы натяжения нити равен

$$M_{\rm H} = mr(g - a), \tag{8.11}$$

где m — масса груза; a — его ускорение; r — радиус шкива.

Момент силы трения $M_{\rm Tp}$ можно определить экспериментально подбором минимальной массы груза m_0 , при которой его движение будет равномерным (a=0). Уравнение движения (8.7) груза для этого случая имеет вид $F_{HO}=m_0g$.

Момент этой силы равен

$$M_{\rm Tp} = M_{HO} = m_0 gr.$$
 (8.12)

Кинетическая энергия вращения столика в конце ускоренного вращения равна

$$E_{\rm K_{\rm CT}} = \frac{J\omega^2}{2}.$$
 (8.13)

Работа момента сил трения за время ускоренного вращения столика будет определяться

$$A_{\rm Tp} = M_{\rm Tp} \varphi. \tag{8.14}$$

Момент импульса столика в конце ускоренного вращения равен

$$L = J\omega. \tag{8.15}$$

3.3. Измерение кинематических характеристик

3.3.1. Намотайте на шкив нить, перекиньте её через блок и к свободному концу нити прикрепите груз. С помощью масштабной рейки задайте высоту h груза над полом (во всех опытах эта величина должна быть одинаковой). Отпуская груз, одновременно включите секундомер. Выключите его, когда груз достигнет пола. Опыт повторить 5 раз. Данные измерений и вычислений кинематических величин по формулам (8.2) - (8.6) занесите в табл. 8.1.

Таблица 8.1 Измеренные и рассчитанные характеристики движения груза и столика со шкивом

№ π/π	t, c	$\langle t \rangle$,	υ, _M /c	а, м/c ²	c^{-1}	ε, c ⁻²	φ, рад	<i>N</i> , об	
1									
2									
3									
4									
5									
	r =	M	$m = \kappa\Gamma$			h = M			

- **3.3.2.** Штангенциркулем измерьте диаметр шкива и вычислите его радиус r = d/2. Определите массу груза m.
- **3.3.3.** Положите на столик какое-либо исследуемое тело (стержень или диск). Повторите измерения времени. Вычислите кинематические характеристики груза и столика с телом. Результаты занесите в табл. 8.2.

Таблица 8.2 Измеренные и рассчитанные характеристики движения груза, столика со шкивом и исследуемым телом

№ п/п	t, c	$\langle t \rangle$,	υ, _{м/c}	a , m/c^2	c^{0} ,	ε, c ⁻²	φ, рад	<i>N</i> , об
1								
2								
3								
4								
5								

3.4. Расчет динамических характеристик

- **3.4.1.** Занесите результаты вычислений в табл. 8.3. Значения ускорения a и скорости υ выпишите из табл. 8.1 и 8.2.
- **3.4.2.** По формуле (8.12) рассчитайте момент силы трения $M_{\mathrm{тр}}$ для каждого опыта;
- **3.4.3.** По формуле (8.10) рассчитайте момент инерции столика со шкивом J_1 (значение углового ускорения ε_1 возьмите из табл. 8.1) и системы столик со шкивом тело J_2 . Момент инерции исследуемого тела $J_{\text{тела}}$ находится как разность J_2 и J_1 :

$$J_{\text{тела}} = J_2 - J_1$$
.

Таблица 8.3 Результаты расчёта динамических характеристик поступательного движения груза

Характеристики	а	$F_{\scriptscriptstyle m H}$	υ	P	$E_{ m \kappa_{rp}}$	E_{Π}
Условия опытов	$\rm m/c^2$	Н	м/с	кг·м/с	Дж	Дж
Без тела на столике						
С телом на столике						

Рассчитайте теоретическое значение момента инерции тела:

$$-$$
 для стержня $J_{\text{теор}} = \frac{1}{12} m_{\text{ст}} l^2$, (8.12)

где $m_{\rm cT}$ — масса стержня; l — его длина;

$$-$$
 для диска $J_{\text{Teop}} = \frac{1}{2} m_{\text{д}} R^2$, (8.13)

где $m_{\rm д}$ – масса диска; R – его радиус.

3.4.4. По формуле (8.13)–(8.15) рассчитайте приобретенную кинетическую энергию в конце вращения $E_{\rm K}$, работу момента силы трения $A_{\rm Tp}$, момент импульса системы тел L. Занесите результаты вычислений в табл. 8.4.

3.5. Сделайте вывод.

Таблица 8.4 Результаты расчёта динамических характеристик вращательного движения столика

Характе- ристики	$M_{_{ m H}}$	m_0	M_{Tp}	J_1	J_2	$J_{ m Teop}$	$E_{\kappa_{ m ct}}$	A_{Tp}	L
Условия опытов	Н·м	КГ	Н·м	кг·м ²	кг·м ²	кг·м ²	Дж	Дж	<u>кг·м</u> с
Без тела на									
столике									
С телом на									
столике									