Tree instance segmentation using airborne images and LiDAR point clouds

Alexandre Bry

Section 1

Introduction

Introduction

Goal of the internship

Section 2

State-of-the-art

Models

• Model 1

Models

- Model 1
- Model 2

Datasets

Section 3

Creation of a new dataset

• Images:

- Images:
 - Airborne RGB with 8cm resolution

- Images:
 - Airborne RGB with 8cm resolution
 - Airborne CIR with 25cm resolution

- Images:
 - Airborne RGB with 8cm resolution
 - Airborne CIR with 25cm resolution
- LiDAR point clouds:

- Images:
 - Airborne RGB with 8cm resolution
 - Airborne CIR with 25cm resolution
- LiDAR point clouds:
 - AHN4 with 10-14 points/m²

- Images:
 - Airborne RGB with 8cm resolution
 - Airborne CIR with 25cm resolution
- LiDAR point clouds:
 - AHN4 with 10-14 points/m²
- Tree annotations:

- Images:
 - Airborne RGB with 8cm resolution
 - Airborne CIR with 25cm resolution
- LiDAR point clouds:
 - AHN4 with 10-14 points/m²
- Tree annotations:
 - Data from municipalities

- Images:
 - Airborne RGB with 8cm resolution
 - Airborne CIR with 25cm resolution
- LiDAR point clouds:
 - AHN4 with 10-14 points/m²
- Tree annotations:
 - Data from municipalities
 - Boomregister.nl