Homework I

Problem 1. Vector spaces and Subspaces
Proof whether the following pets form subspaces (the scalar multiplication and vector addition are defined as usual)

 $0 \ \{ (x_1, x_2, x_3) \} \in \mathbb{R}^3 : x_1 = 2x_3$

Proof:

1) Prove that this set is in the zero vector! $x_1 = 2 \times 3$ So if x_1 ; x_2 ; $x_3 = 0$, then $x_1 = 2 \times 3$ —) 0 = 2(0) = 0.

10 14 $\times 1$; $\times 2$; \times

2) Addition proving - $V = (V_1, V_2, V_3)$; $W = (W_1, W_2, W_3) \in \mathbb{R}^3$ $V + W = (V_1 + W_1, V_2 + W_2, V_3 + W_3) \in \mathbb{S}$ because V_1, V_2, V_3, V_4, W_5 is real number. And for $V_1 = 2V_3$; $W_1 = 2W_3$ is also a real number; then $V + W = (2V_3 + 2W_3, V_2 + W_4, V_3 + W_3)$ is $E \subseteq \mathbb{S}$

?) Scalar multiplication proving

If χ is a nonzero real number, then $\chi \chi = (\chi \chi_1, \chi_2, \chi_3) \in \mathbb{R}^3$ because $\chi_1, \chi_2, \chi_3 \in \mathbb{R}$. Also $\chi_1 = 2\chi_3$. That means $\chi \chi = (2\chi_3, \chi_3) = (2\chi_3, \chi_4)$ and it is $\chi \chi = (2\chi_3, \chi_4) = (\chi_4) = (\chi_5) = (\chi_5)$

This statesfy all the condition. Thus the set is a subspaces

[b]
$$\{(x_1, x_2, x_3)\} \in \mathbb{R}^3 : x_1 = 3x_2 + C, C \in \mathbb{R} : any non-zero real constant$$

Proof:

1) Proof that this set is in the zero vector!

So if $X_2 = 0$, then $X_1 = 3X_2 + C$ will be $X_1 = 3(0) + C$. C is a nonnegatif constant SO $X_1 = C$ \Longrightarrow (C, 0,0) \neq zero vector.

Now if $X_1 = 0$, then

 $0 = 3 \times 2 + C$ $-3 \times 2 = C$ $-3 \times 2 = C$ $3 \times 2 = C$

If $x_1, x_2 = 0$, then 0 = 9(0) + C While $C \neq 0$. $\longrightarrow [$ The set cannot be in the zero vector 90 its not statify all the condition. Thus, the set is $\notin S$

- c) The set of linear combination of row A Proof:
 - 1) Prove that this linear combination of row A is jn the zero yector!

 A = \[\begin{align*} A_{11} & \dots &

matrix 4 is in the zero vector and it is in the subspaces.

2) Addition proving !

if we have V and W matrix. V+W will equal to

V+W = [(VII+WII) - --- (VIN+WIN)]. This will result the matrix is E RM.

(VMI+WMI) - --- (VMN+WMN)].

The addition of the matrix is in the subspaces.

3) Scalar multiplication proving!

Let's say C is a nonnegatif constant, then, C-A will be

C.A = [CAn, cAn]. C.An,, C.Amn is EIR. Thus the

cam ---- cam

matrix is in the subspaces.

We hear combination of row A

Now if (V + dw) it will be $V = \begin{bmatrix} V | 1/ - ... & V | 1 \\ V | ... & V | 1 \end{bmatrix}$ $\begin{bmatrix} (V_{11}, ... & V_{11}) & U_{11} \\ (V_{11}, ... & V_{11}) & U_{11} \end{bmatrix}$ $\begin{bmatrix} (V_{11}, ... & V_{11}) & U_{11} \\ (V_{11}, ... & V_{11}) & U_{11} \end{bmatrix}$ $\begin{bmatrix} (U_{11}, ... & V_{11}) & U_{11} \\ (V_{11}, ... & V_{11}) & U_{11} \end{bmatrix}$ $\begin{bmatrix} (C_{11} V_{11} + d_{11} w_{11}) & ... & (C_{11} V_{11} + d_{11} w_{11}) \\ (C_{11} V_{11} + d_{11} w_{11}) & ... & (C_{11} V_{11} + d_{11} w_{11}) \end{bmatrix}$ $C_{11} V_{11} V_{1$

d The set all solution to Ax = b

1) Prove that this set is in the zero vector! $A \times = b \quad \text{can be reperent as the Linear combination of column } A.$ If $X = \begin{bmatrix} xp + xn \\ yp + yn \end{bmatrix}$, then is xp = xn = yp = yn = 0, then if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $A \times = \begin{bmatrix} o + o \\ 0 + o \end{bmatrix}$ is a zero vector and $E \subseteq S$

2) Addition proving 1

if
$$\sqrt{X} = b_1$$
 and $wy = b_2$ then $\sqrt{X} + wy = b_1 + b_2$.
 $X = \begin{bmatrix} xp_1 + xn_1 \\ xp_2 + xn_3 \end{bmatrix}$ and $y = \begin{bmatrix} yp_1 + yn_1 \\ yp_2 + yn_1 \end{bmatrix}$, $v = \begin{bmatrix} v_1, v_2 \end{bmatrix}$ and $w = \begin{bmatrix} w_1, w_2 \end{bmatrix}$, then $\sqrt{X} + wy$ is equal to

 $V \times + W = [(\times_{p_1} + \times_{n_1}) \vee_1 + (\times_{p_2} + \times_{n_2}) \vee_2 + [(Y_{p_1} + Y_{n_2}) \vee_2] = [(\times_{p_1} + \times_{n_2} + \times_{p_2} + \times$

3) Scalar muliplication proving!

If pAx = pb and pis nonnegatif real number, then

the expersion can be proof as: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, x = \begin{bmatrix} xp + xn \\ yp + xn \end{bmatrix}, pAx = px \begin{bmatrix} q \\ c \end{bmatrix} + py \begin{bmatrix} b \\ d \end{bmatrix} = pb$

 $A = \begin{bmatrix} a & b \\ d & d \end{bmatrix}, x = \begin{bmatrix} x^{p+x_n} \\ y_{p+x_n} \end{bmatrix}, p A x = p x \begin{bmatrix} a \\ c \end{bmatrix} + p y \begin{bmatrix} a \\ d \end{bmatrix} = pb$ $(p \times p + p \times m) \begin{bmatrix} a \\ c \end{bmatrix} + (p y p + p y m) \begin{bmatrix} b \\ d \end{bmatrix} = b$ $(p \times p + p \times m) \begin{bmatrix} a \\ c \end{bmatrix} + (p y p + p y m) \begin{bmatrix} b \\ d \end{bmatrix} = b$

u) This also near that the linear combination of pAx + qBy is also in the susspaces with the expersion:

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad x = \begin{bmatrix} x_{p_1} + x_{n_1} \\ x_{p_2} + x_{n_2} \end{bmatrix}, \quad B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}, \quad y = \begin{bmatrix} y_{p_1} + y_{n_1} \\ y_{p_2} + y_{n_2} \end{bmatrix}$ $p \quad Ax + q \quad By = p \quad x_{p_1} \begin{bmatrix} a \\ c \end{bmatrix} + p_{x_{n_1}} \begin{bmatrix} a \\ c \end{bmatrix} + p_{x_{n_2}} \begin{bmatrix} b \\ d \end{bmatrix} + p_{x_{n_2}} \begin{bmatrix} b \\ d \end{bmatrix} + q_{y_{p_1}} \begin{bmatrix} e \\ g \end{bmatrix} + q_{y_{n_2}} \begin{bmatrix} e \\ d \end{bmatrix}$ $qy_{n_2} \begin{bmatrix} f \\ c \end{bmatrix} \in S \quad because \quad x_{p_1} + x_{n_1}, \quad x_{p_2} + x_{n_2}, \quad y_{p_1} + y_{n_1}, \quad y_{p_2} + y_{n_2}, \quad p_1, \quad q_1, \quad q_2, \quad q_3, \quad q_4 \in S$

the linear combination is resulting in real number. Thus the solution of x_1, x_2, y_1, y_2 is also a real number and it is $\in S$

Thus it statisfy all the cordition, that means solution Ax = b is in the subspaces.

@ The set of differentialble functions

1) Porve that the set of differentiable function is in the zero vector! Let's say $V = \begin{bmatrix} f(x) \\ g(x) \end{bmatrix}$. A differentiable function is a function that has derivative in every pulm in its domain. But not all function hower solutions for zero. For example

 $f(x)=x^2+1=0$ there is no solution for that equation. Hences the (ed of differentiable $x^2=-1$ function is not in the subspaces ES, and it fails to statisty the conditions!

 $\frac{\text{Problem 2}}{\text{Consider}}$ the set of linear equations Ax = b with

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 \end{bmatrix} , b = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$$

a) Find the null space of A (N(A))

$$row 3 = row 2 - row 1$$

$$row 3 = row 3 - 2 (row 1)$$

$$row 3 = row 3 - 2 (row 1)$$

$$row1 = row1 + \frac{1}{2}(row3) -$$

$$\begin{bmatrix}
1 & 0 & 0 & 1/2 & | & 1 \\
0 & -1 & 0 & -1 & | & -1 \\
0 & 0 & -2 & 1 & | & 0
\end{bmatrix}$$
with $r = 3$

free

To find Null spaces, find the solution for
$$A \times = 0$$

 $\begin{cases} 1 & 0 & 0 & \frac{1}{2} \\ 0 & -1 & 0 & -1 \\ 0 & 0 & -2 & 1 \end{cases}$
 $\begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$
 $\begin{cases} x_1 + \frac{1}{2}xu = 0 \\ 0 \end{cases}$

$$N(A) = C_1 S_1 + C_2 S_2$$

$$= C_1 \begin{bmatrix} -1/2 \\ -1 \\ 1/2 \end{bmatrix} + C_2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 6 & -1 & 0 & -1 \\ 0 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$X_1 + 1/2 X_4 = 1$$

 $-X_2 - X_4 = -1$
 $-2x_3 + X_4 = 0$

$$X_1 = 1 - \frac{1}{2}X_{4}$$

$$X_2 = 1 - X_{4}$$

$$X_3 = \frac{1}{2}X_{4}$$

Χu	X, X2 X3	
I	1/2 0 1/2	-) linear combination N(4)
0	1 1 0	→ Xp

$$A \times =b$$

$$A$$