WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: G01N 33/574, 33/53, C12N 7/00, A61K

(11) International Publication Number:

WO 99/61916

39/42, 39/395, 39/21, 39/29, C07K 16/00

(43) International Publication Date:

2 December 1999 (02.12.99)

(21) International Application Number:

PCT/US99/12066

A1

(22) International Filing Date:

28 May 1999 (28.05.99)

(30) Priority Data:

60/087,192

29 May 1998 (29.05.98)

US

(71) Applicant (for all designated States except US): EPIMMUNE, INC. [US/US]; 5820 Nancy Ridge Drive, San Diego, CA 92121 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SETTE, Alessandro [IT/US]; 5551 Linda Rosa Avenue, La Jolla, CA 92037 (US). SOUTHWOOD, Scott [US/US]; 10679 Strathmore Drive, Santee, CA 92071 (US). SIDNEY, John [US/US]; 4395 Mistral Place, San Diego, CA 92130 (US).
- (74) Agents: WEBER, Ellen, Lauver et al.; Townsend and Townsend and Crew LLP, 8th floor, Two Embarcadero Center, San Francisco, CA 94111 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

- (54) Title: IDENTIFICATION OF BROADLY REACTIVE DR RESTRICTED EPITOPES
- (57) Abstract

The present invention is based, at least in part, on the discovery and validation of specific immunogenic peptide epitopes for various HLA class II DR molecules, representative of the worldwide population. Such peptides comprise an epitope, or analog thereof, which binds to an HLA class II molecule at an IC50 of less than or equal to 1,000 nM.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ircland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zcaland		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
cu	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/61916 PCT/US99/12066

IDENTIFICATION OF BROADLY REACTIVE DR RESTRICTED EPITOPES

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of Provisional U.S.S.N. 60/087,192 filed 5/29/98. The application is also related to U.S.S.N. 09/009953, filed January 21, 1998, U.S.S.N. 60/036,713, filed January 23, 1997, and U.S.S.N. 60/037,432 filed February 7, 1997.

BACKGROUND OF THE INVENTION

Helper T lymphocytes (HTL) play several important functions in immunity to pathogens. Firstly, they provide help for induction of both CTL and antibody responses. By both direct contact and by secreting lymphokines such as IL2 and IL4, HTL promote and support the expansion and differentiation of T and B cell precursors into effector cells. In addition, HTL can also be effectors in their own right, an activity also mediated by direct cell contact and secretion of lymphokines, such as IFNγ and TNFα. HTL have been shown to have direct effector activity in case of tumors, as well as viral, bacterial, parasitic, and fungal infections.

HTL recognize a complex formed between class II MHC molecules and antigenic peptides, usually between 10 and 20 residues long, and with an average size of between 13 and 16 amino acids. Peptide-class II interactions have been analyzed in detail, both at the structural and functional level, and peptide motifs specific for various human and mouse class II molecules have been proposed.

In the last few years, epitope based vaccines have received considerable attention as a possible mean to develop novel prophylactic vaccines and immunotherapeutic strategies. Selection of appropriate T and B cell epitopes should allow to focus the immune system toward conserved epitopes of pathogens which are characterized by high sequence variability (such as HIV, HCV and Malaria).

In addition, focusing the immune response towards selected determinants could be of value in the case of various chronic viral diseases and cancer, where T cells directed against the immunodominant epitopes might have been inactivated while T cells specific for subdominant epitopes might have escaped T cell tolerance. The use of epitope

based vaccines also allows to avoid "suppressive" T cell determinants which induce TH₂ responses, in conditions where a TH₁ response is desirable, or vice versa.

Finally, epitope based vaccines also offer the opportunity to include in the vaccine construct epitopes that have been engineered to modulate their potency, either by increasing MHC binding affinity, or by alteration of its TCR contact residues, or both. Inclusion of completely synthetic non-natural or generically unrelated to the pathogen epitopes (such as TT derived "universal" epitopes), also represents a possible mean of modulating the HTL response toward a TH₁, or TH₂ phenotype.

Once appropriate epitope determinants have been defined, they can be assorted and delivered by various means, which include lipopeptides, viral delivery vectors, particles of viral or synthetic origin, naked or particle absorbed cDNA.

However, before appropriate epitopes can be defined, one major obstacle has to be overcome, namely the very high degree of polymorphism of the MHC molecules expressed in the human population. In fact, more than two hundred different types of HLA class I and class II molecules have already been identified. It has been demonstrated that in the case of HLA class I molecules, peptides capable of binding several different HLA class I molecules can be identified. Over 60% of the known HLA class I molecules can, in fact, be grouped in four broad HLA supertypes, characterized by similar peptide binding specificities (HLA supermotifs).

In the case of class II molecules, it is also known that peptides capable of binding multiple HLA types and of being immunogenic in the context of different HLA molecules do indeed exist. Specific immunogenic peptide have not been readily identified, particularly those reaactive with a large number of allelic products.

The present invention addresses these and other needs.

SUMMARY OF THE INVENTION

The present invention is based, at least in part, on the discovery and validation of specific immunogenic peptide epitopes for various HLA class II DR molecules, representative of the worldwide population. Such peptides comprise an epitope, or analog thereof, which binds to an HLA class II molecule at an IC₅₀ of less than or equal to 1,000 nM. Epitopes of the invention have been identified in a variety of antigens including tumor associated antigens such as carcinoembryonic antigen (CEA), p53, MAGE-2, MAGE-3, or

Her2/neu; viral antigens such as those from HIV, HBV, or HCV; and parasites such as *Plasmodium falciparum*.

The HLA class II binding peptides of the invention may further comprise an epitope having an amino acid that is Y, F, W, L, I, V, or M at the first position from the N-terminus of the epitope and an amino acid of S, T, C, A, P, V, I, L, or M at the sixth position from the N-terminus of the epitope.

A peptide epitope of the invention, or a nucelic acid that encodes a peptide of the invention, may be used, *inter alia*, as a pharmaceutical composition to induce a helper T cell response in a patient by contacting a helper T cell with the epitope. One or more peptide epitopes of the invention may be included in such a composition. In a preferred embodiment, one or more epitopes is presented to a helper T cell by an antigen-presenting cell that has been pulsed with the peptide *ex vivo*.

Definitions

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of adjacent amino acids. The oligopeptides of the invention are typically less than about 50 residues in length and usually consist of between about 10 and about 30 residues, more usually between about 12 and 25, and often 15 and about 20 residues.

An "immunogenic peptide" is a peptide which comprises an allele-specific motif such that the peptide will bind an MHC molecule and induce an HTL response. Immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and inducing HTL response against the antigen from which the immunogenic peptide is derived.

With regard to a particular amino acid sequence, an "epitope" is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule.

5

A "conserved residue" is a conserved amino acid occupying a particular position in a peptide motif typically one where the MHC structure may provide a contact point with the immunogenic peptide. One to three, typically two, conserved residues within a peptide of defined length defines a motif for an immunogenic peptide. These residues are typically in close contact with the peptide binding groove, with their side chains buried in specific pockets of the groove itself.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

The term "supermotif" refers to motifs that, when present in an immunogenic peptide, allow the peptide to bind more than one HLA antigen. The supermotif preferably is recognized by at least one HLA allele having a wide distribution in the human population, preferably recognized by at least two alleles, more preferably recognized by at least three alleles, and most preferably recognized by more than three alleles.

A "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. For example, analog peptides can be created by altering the presence or absence of particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide comprising a particular motif or supermotif.

A "secondary anchor residue" is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at "secondary anchor positions." A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or intermediate affinity

binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

A "negative binding residue" is an amino acid which if present at certain positions (typically not primary anchor positions) of peptide epitope results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.

Throughout this disclosure, results are expressed in terms of "IC₅₀'s." IC₅₀ is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (i.e., limiting HLA proteins and labeled peptide concentrations), these values approximate $K_{\scriptscriptstyle D}$ values. It should be noted that IC₅₀ values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used (e.g., HLA preparation, etc.). For example, excessive concentrations of HLA molecules will increase the apparent measured IC₅₀ of a given ligand. Assays for determining binding are described in detail in PCT publications WO 94/20127 and WO 94/03205. Alternatively, binding is expressed relative to a reference peptide. As a particular assay becomes more, or less, sensitive, the IC₅₀'s of the peptides tested may change somewhat. However, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC_{50} of the reference peptide increases 10-fold, the IC_{50} values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC₅₀, relative to the IC₅₀ of a standard peptide.

As used herein, "high affinity" with respect to HLA class II molecules is defined as binding with an IC_{50} or K_D of less than 100 nM. "Intermediate affinity" is binding with an IC_{50} or K_D of between about 100 and about 1000 nM.

"Cross-reactive binding" indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany it as found in its native state. Thus, the peptides of this invention do not contain materials normally associated with their *in situ* environment, e.g., MHC I molecules on antigen presenting cells. Even where a protein has been isolated to a homogenous or dominant band, there are trace contaminants in the range of 5-10% of native protein which co-purify with the desired

protein. Isolated peptides of this invention do not contain such endogenous co-purified protein.

The term "residue" refers to an amino acid or amino acid mimetic incorporated in an oligopeptide by an amide bond or amide bond mimetic.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 presents a map of the positive or negative effect of each of the 20 naturally occurring amino acids on DR4w4 binding capacity when occupying a particular position, relative to the main P1-P6 anchors.

Figure 2A presents a map of the positive or negative effect of each of the 20 naturally occurring amino acids on DR1 binding capacity when occupying a particular position, relative to the main P1-P6 anchors.

Figure 2B presents a map of the positive or negative effect of each of the 20 naturally occurring amino acids on DR7 binding capacity when occupying a particular position, relative to the main P1-P6 anchors.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention relates to compositions and methods for preventing, treating or diagnosing a number of pathological states such as viral, fungal, bacterial and parasitic diseases and cancers. In particular, it provides novel peptides capable of binding selected major histocompatibility complex (MHC) class II molecules at an IC₅₀ of less than or equal to 1000 nM and inducing an immune response.

Peptide binding to MHC molecules is determined by the allelic type of the MHC molecule and the amino acid sequence of the peptide. MHC class II-binding peptides usually contain within their sequence two conserved ("anchor") residues that interact with corresponding binding pockets in the MHC molecule. Specific combination of anchor residues (usually referred to as "MHC motifs") required for binding by several allelic forms of human MHC (HLA, histocompatibility leukocyte antigens) are described in International Applications WO 94/03205 and WO 94/20127. Definition of specific MHC motifs allows one to predict from the amino acid sequence of an individual protein, which peptides have the potential of being immunogenic for HTL. These applications describe methods for preparation and use of immunogenic peptides in the treatment of disease.

An affinity threshold strongly correlated with immunogenicity in the context of HLA class II DR molecules has been delineated as disclosed herein. In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (*i.e.*, the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, i.e. binding affinities of less than 100 nM. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinities in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC₅₀ of 1000 nM or greater. Thus, 1000 nM, preferably 100 nM, can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.

The peptide epitopes described here can also be used in combination with peptide epitopes which induce a CTL response. See, also, WO 95/07077.

The peptide epitopes of the invention may also include analogs of the epitopes. Although the peptide epitopes may exhibit cross-reactive binding with multiple DR alleles, cross-reactivity is not always complete and in such cases procedures to further increase cross-reactivity of peptides can be useful; such procedures can also be used to modify other properties of the peptide epitopes. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (i.e., analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, (both amongst the known T cell epitopes, as well as the more extended set of peptides that contain the appropriate supermotifs), can be produced in accordance with the teachings herein.

The strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, though secondary anchors can also be modified. Analog peptides can be created by substituting amino acids residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class II binding peptides are shown in Table IX.

For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or

members of HLA supertypes that bind to the respective motif or supermotif. Accordingly, removal of residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of analyzed peptides, the incidence of cross-reactivity increases from 22% to 37% (see, e.g., Sidney, J. et al., Hu. Immunol. 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small "neutral" residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, residues associated with high affinity binding to multiple alleles within a superfamily are inserted.

To ensure that changes in the native or original epitope recognized by T cells do not lead to a failure to elicit helper T cells that cross-react with the wild type peptides, the variant peptide may be used to immunize T cells *in vitro* from individuals of the appropriate HLA allele, and the cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. In both class I and class II systems it will be desirable to use as targets, cells that have been either infected or transfected with the appropriate genes to establish whether endogenously produced antigen is also recognized by the relevant T cells.

Another embodiment of the invention to ensure adequate numbers of cross-reactive cellular binders is to create analogs of weak binding peptides. Class II peptides exhibiting binding affinities of above 1000 nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be "fixed" by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.

Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine (C) can be substituted out in favor of α -amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α -amino butyric acid for C not only alleviates this problem, but actually improves binding and crossbinding capability in certain instances (Review: A. Sette et al, In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, in press, 1998). Substitution of cysteine

with α -amino butyric acid may occur at any residue of a peptide epitope, i.e. at either anchor or non-anchor positions.

The DR-binding peptides of the present invention or nucleic acids encoding them can be administered to mammals, particularly humans, for prophylactic and/or therapeutic purposes. The DR peptide epitopes can be used to enhance immune responses against other immunogens administered with the peptides. For instance, CTLepitope/DR epitope mixtures may be used to treat and/or prevent viral infection and cancer. Alternatively, immunogens which induce antibody responses can be used. Examples of diseases which can be treated using the immunogenic mixtures of DR peptides and other immunogens include prostate cancer, hepatitis B, hepatitis C, AIDS, renal carcinoma, cervical carcinoma, lymphoma, CMV and condyloma acuminatum.

The DR-binding peptides or nucleic acids encoding them may also be used to treat a variety of conditions involving unwanted T cell reactivity. Examples of diseases which can be treated using DR-binding peptides include autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, and myasthenia gravis), allograft rejection, allergies (e.g., pollen allergies), lyme disease, hepatitis, LCMV, post-streptococcal endocarditis, or glomerulonephritis, and food hypersensitivities.

In therapeutic applications, the immunogenic compositions or the DR-binding peptides or nucleic acids of the invention are administered to an individual already suffering from cancer, autoimmune disease, or infected with the virus of interest. Those in the incubation phase or the acute phase of the disease may be treated with the DR-binding peptides or immunogenic conjugates separately or in conjunction with other treatments, as appropriate.

In therapeutic applications, compositions comprising immunogenic compositions are administered to a patient in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

Therapeutically effective amounts of the immunogenic compositions of the present invention are in t;he general range of immunogenically effective dosages described below. These doses may be followed by boosting dosages pursuant to a boosting regimen

over weeks to months depending upon the patient's response and condition by measuring specific HTL activity in the patient's blood.

It must be kept in mind that the compositions of the present invention may generally be employed in serious disease states, that is, life-threatening or potentially life-threatening situations. In such cases, in view of the minimization of extraneous substances and the relative nontoxic nature of the conjugates, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these compositions.

For prophylactic use, administration should be given to risk groups. For example, protection against malaria, hepatitis, or AIDS may be accomplished by prophylactically administering compositions of the invention, thereby increasing immune capacity. Therapeutic administration may begin at the first sign of disease or the detection or surgical removal of tumors or shortly after diagnosis in the case of acute infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. In chronic infection, loading doses followed by boosting doses may be required.

Treatment of an infected individual with the compositions of the invention may hasten resolution of the infection in acutely infected individuals. For those individuals susceptible (or predisposed) to developing chronic infection the compositions are particularly useful in methods for preventing the evolution from acute to chronic infection. Where the susceptible individuals are identified prior to or during infection, for instance, as described herein, the composition can be targeted to them, minimizing need for administration to a larger population.

The peptide mixtures or conjugates can also be used for the treatment of chronic infection and to stimulate the immune system to eliminate virus-infected cells in carriers. It is important to provide an amount of immuno-potentiating peptide in a formulation and mode of administration sufficient to effectively stimulate helper T cell response. Immunizing doses followed by boosting doses at established intervals, e.g., from one to four weeks, may be required, possibly for a prolonged period of time to effectively immunize an individual. In the case of chronic infection, administration should continue until at least clinical symptoms or laboratory tests indicate that the viral infection has been eliminated or substantially abated and for a period thereafter.

The pharmaceutical compositions for therapeutic or prophylactic treatment are intended for parenteral, topical, oral or local administration. Typically, the pharmaceutical compositions are administered parenterally, e.g., intravenously, intrathecally,

subcutaneously, intradermally, or intramuscularly. Because of the ease of administration, the vaccine compositions of the invention are particularly suitable for oral administration. Thus, the invention provides compositions for parenteral administration which comprise a solution of the peptides or conjugates dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.9% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.

The concentration of DR and/or CTL stimulatory peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.

The peptides or conjugates of the invention may also be administered via liposomes, which serve to target the conjugates to a particular tissue, such as lymphoid tissue, or targeted selectively to infected cells, as well as increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to, e.g., a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes filled with a desired peptide or conjugate of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the selected therapeutic/immunogenic peptide compositions. Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability

13

of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9, 467 (1980), U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369, incorporated herein by reference.

For targeting to the immune cells, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide or conjugate may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the conjugate being delivered, and the stage of the disease being treated.

Alternatively, DNA or RNA encoding one or more DR peptides (and optionally, a polypeptide containing one or more CTL epitopes or antibody inducing epitopes) may be introduced into patients to obtain an immune response to the polypeptides which the nucleic acid encodes. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") delivery.

A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding one or multiple epitopes of the invention. The use of multi-epitope minigenes is described below and in, e.g. An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding nine dominant HLA-A*0201- and A11-restricted epitopes derived from the polymerase, envelope, and core proteins of HBV and HIV, the PADRE™ universal helper T cell (HTL) epitope, and an ER-translocating signal sequence was engineered. Immunization of HLA transgenic mice with this plasmid construct resulted in strong CTL induction responses against the nine epitopes tested, similar to those observed with a lipopeptide of known immunogenicity in humans, and significantly greater than immunization in oil-based adjuvants. Moreover, the immunogenicity of DNA-encoded epitopes in vivo correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid.

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that could be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, a leader sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an

15

PCT/US99/12066

appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF) or costimulatory molecules. Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving CTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by coexpression of immunosuppressive molecules (e.g. TGF-\beta) may be beneficial in certain diseases).

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by OIAGEN. Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

In vitro assays can be used as functional assays for expression of HTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is a suitable presenter of HTL epitopes.. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). The cells may then be assayed for the ability to elicit an HTL response using methods known in the art (see, e.g., Alexander et al., Immunity 1:751-761, 1994)

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations which include both CTL and HTL epitopes. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, IP for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested. For CTL effector cells, assays are conducted for cytolysis of peptide-loaded, chromium-51 labeled target cells using standard techniques. Lysis of target cells sensitized by HLA loading of peptides corresponding to minigene-encoded epitopes demonstrates DNA vaccine function for in vivo induction of CTLs.

Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers

previously listed, and generally 10-95% of active ingredient, that is, one or more conjugates of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of conjugates are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

In another aspect the present invention is directed to vaccines which contain as an active ingredient an immunogenically effective amount of an immunogenic DR peptide or a CTL\DR peptide conjugate or nucleic acid encoding them as described herein. The conjugate(s) may be introduced into a host, including humans, linked to its own carrier or as a homopolymer or heteropolymer of active peptide units. Such a polymer has the advantage of increased immunological reaction and, where different peptides are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the virus or tumor cells. Useful carriers are well known in the art, and include, e.g., thyroglobulin, albumins such as bovine serum albumin, tetanus toxoid. polyamino acids such as poly(lysine:glutamic acid), hepatitis B virus core protein, hepatitis B virus recombinant vaccine and the like. The vaccines can also contain a physiologically tolerable (acceptable) diluent such as water, phosphate buffered saline, or saline, and further typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are materials well known in the art. And, as mentioned above, CTL responses can be primed by conjugating peptides of the invention to lipids, such as P₃CSS. Upon immunization with a peptide composition as described herein, via injection, aerosol, oral, transdermal or other route, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen, and the host becomes at least partially immune to later infection, or resistant to developing chronic infection.

Vaccine compositions containing the DR peptides of the invention are administered to a patient susceptible to or otherwise at risk of disease, such as viral infection or cancer in an amount that will elicit an immune response against the antigen and thus enhance the patient's own immune response capabilities.

A therapeutically effective amount and an amount used for vaccine of a peptide disclosed herein is defined to be an "immunogenically effective dose." In this use, the precise amounts again depend on the patient's state of health and weight, the mode of administration, the nature of the formulation, etc., but generally occur in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient.

In some instances it may be desirable to combine the peptide vaccines of the invention with vaccines which induce neutralizing antibody responses to the virus of interest, particularly to viral envelope antigens. For instance, PADRE peptides can be combined with hepatitis vaccines to increase potency or broaden population coverage. Suitable hepatitis vaccines that can be used in this manner include, Recombivax HB® (Merck) and Engerix-B (Smith-Kline).

For therapeutic or immunization purposes, the peptides of the invention can also be expressed by attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a non-infected host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848, incorporated herein by reference. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover *et al.*, *Nature* 351, 456-460 (1991)) which is incorporated herein by reference. A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g., Salmonella typhi vectors and the like, will be apparent to those skilled in the art from the description herein.

The peptide epitopes of the invention may be administered to antigen presenting cells (APCs), preferably dendritic cells, ex vivo, as well. In a preferred embodiment, responses to a particular pathogen (infectious agent or tumor antigen) are induced by pulsing APCs with the peptide epitope and subsequently administering the pulsed

APC, wherein the cells then present the peptide in vivo. The pulsed APCs may be administered in vivo as described above for the peptides.

Peptides epitopes of the invention may also be used in conjunction with CTL epitopes to elicit CTL ex vivo as well. The resulting CTL can be used to treat infections or tumors. Ex vivo CTL responses to a particular pathogen are induced by incubating in tissue culture the patient's CTL precursor cells together with a source of antigen-presenting cells and the appropriate immunogenic peptide epitopes. After an appropriate incubation time *typically 1-4 weeks) in which the CTL precursor cells are activated and expanded into effector CTL, the cells are infused back into the patient, where they will destroy their specific target cell (an infected cell or a tumor cell).

The peptides of this invention may also be used to make monoclonal antibodies. Such antibodies may be useful as potential diagnostic or therapeutic agents.

The peptides may also find use as diagnostic reagents. For example, a peptide of the invention may be used to determine the susceptibility of a particular individual to a treatment regimen which employs the peptide or related peptides, and thus may be helpful in modifying an existing treatment protocol or in determining a prognosis for an affected individual. In addition, the peptides may also be used to predict which individuals will be at substantial risk for developing chronic infection.

Examples

Materials and Methods

Cells. The following Epstein-Barr virus (EBV) transformed homozygous cell lines were used as sources of human HLA class II molecules: LG2 [DRB1c0101 (DR1)1; GM3107 [DRB50101 (DR2w2a)]; MAT (DRB10301 (DR3)1; PREISS [DRB10401 (DR4w4)1; BIN40 [DRB10404 (DR4w14)1; SWEIG [DRB11101 (DR5w11)]; PITOUT [DRB10701 (DR7)] (a); KT3 [DRB10405 (DR4w15)]; Herluf [DRB11201 (DR5w12)]; HO301 [DRB11302 (DR6w19)]; OLL [DRB10802 (DR8w2)]; and HTC9074 [DRB10901 (DR9), supplied as a kind gift by Dr. Paul Harris, Columbia University]. In some instances, transfected fibroblasts were used: L466.1 [DRB11501 (DR2w2b)]; TR81.19 [DRB30101 (DR52a)]; and L257.6 [DRB40101 (DRw53)]. (Valli, et al. J. Clin. Invest. 91:616 (1993). Cells were maintained *in vitro* by culture in RPMI 1640 medium supplemented with 2mM L-glutamine [GIBCO, Grand Island, NY], 50μM 2-ME, and 10% heat-inactivated FCS [Irvine Scientific, Santa Ana, CA]. Cells were also supplemented with 100 μg/ml of

streptomycin and 10OU/ml of penicillin [Irvine Scientific]. Large quantities of cells were grown in spinner cultures.

Cells were lysed at a concentration of 10⁸ cells/ml in PBS containing 1% NP-40 [Fluka Biochemika, Buchs, Switzerland], 1mM PMSF [CalBioChem, La Jolla, CA], 5mM Na-orthovanadate, and 25mM iodoacetamide [Sigma Chemical, St. Louis, Mo]. The lysates were cleared of debris and nuclei by centrifugation at 10,000 x g for 20 min.

Affinity purification of HLA-DR molecules. Class II molecules were purified by affinity chromatography as previously described (Sette, et al. J. Immunol. 142:35 (1989) and Gorga, et al. J. Biol. Chem. 262:16087 (1987)) using the mAb LB3.1 coupled to Sepharose 4B beads. Lysates were filtered through 0.8 and 0.4 µM filters and then passed over the anti-DR column, which were then washed with 15-column volumes of 10mM TRIS in 1% NP-40, PBS and 2-column volumes of PBS containing 0.4% n-octylglucoside. Finally, the DR was eluted with 50mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2.0M Tris, pH 6.8, was added to the eluate to reduce the pH to ~8.0, and then concentrated by centrifugation in Centriprep 30 concentrators at 2000 rpm (Amicon, Beverly, MA).

Class II peptide-binding assays. A panel of 13 different specific DR-peptide assays were utilized in the present study. These assays were chosen as to be representative of the most common DR alleles. Table I lists for each DR antigen, the representative allelic product utilized, the cell line utilized as a source of DR, and the radiolabled probe utilized in the assay. Purified human class II molecules [5 to 500 nM] were incubated with various unlabeled peptide inhibitors and 1-10 nM ¹²⁵I-radiolabeled probe peptides for 48h in PBS containing 5% DMSO in the presence of a protease inhibitor cocktail. The radiolabeled probes used were HA Y307-319 (DR1), Tetanus Toxoid[TT] 830-843 (DR2w2a, DR5w111, DR7, DR8w2, DR8w3, DR9), MBP Y85-100 (DR2w2b), TT1272-1284 (DR52a), MT 65 kD Y3-13 with Y7 substituted with F for DR3, a non-natural peptide with the sequence YARFQSQTTLKQKT (DR4w4, DR4w15, DRw53) (Valli, et al. supra), and for DR5w12, a naturally processed peptide eluted from the cell line C1R, EALIHQLINPYVLS (DR5w12) and 650.22 peptide, (TT 830-843 A ® S836 analog), for DR6w19.

Radiolabeled peptides were iodinated using the chloramine-T method. Peptide inhibitors were typically tested at concentrations ranging from 120l µg/ml to 1.2 ng/ml. The data were then plotted and the dose yielding 50% inhibition (IC50) was measured. In appropriate stoichiometric conditions, the IC50 of an unlabeled test peptide to

the purified DR is a reasonable approximation of the affinity of interaction (Kd). Peptides were tested in two to four completely independent experiments. The final concentrations of protease inhibitors were: 1mM PMSF, 1.3nM 1.10 phenanthroline, 73 μM pepstatin A, 8mM EDTA, and 200 μM N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) [All protease inhibitors from CalBioChem, La Jolla, CA]. Final detergent concentration in the incubation mixture was 0.05% Nonidet P-40. Assays were performed at pH 7.0 with the exception of DR3, which was performed at pH 4.5, and DRw53, which was performed at pH 5.0. The pH was adjusted as previously described (Sette, et al. J. Immunol. 148:844 (1992)).

Class II peptide complexes were separated from free peptide by gel filtration on TSK2000 columns (TosoHaas 16215, Montgomeryville, PA), and the fraction of bound peptide calculated as previously described (Sette, et al., (1989) supra). In preliminary experiments, the DR prep was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of class II molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were the performed using these class II concentrations.

DRB1 specificity of DR4w15, DR6w19, DR8w2, DR8w3, and DR9 assays.

Because the antibody used for purification is α -chain specific, $\beta 1$ molecules are not separated from $\beta 3$ (and/or $\beta 4$ and $\beta 5$) molecules. Development and validation of assays in regard with DR β chain specificity has been described in detail elsewhere for many of the DR alleles listed above (108). Herein we describe for the first time DR4w15, DR6w19, DR8w2, DR8w3, and DR9 assays. Experiments addressing the β chain specificity of these new assays are described in the present section.

DR4w15. The β4 product DRw53 is co-expressed with DR4w15 and the determination of the specificity of the DR4w15 binding assay is complicated in that the same radiolabeled ligand is used for both the DR4w15 and DRw53 binding assays. Since typically β1 chains are expressed at 5-10 fold higher levels than other β chains, and all binding assays are performed utilizing limiting DR amounts, it would be predicted that the dominant specificity detected in the assay would be DR4w15. To verify that this was indeed the case, the binding pattern of a panel of 58 different synthetic peptides in the putative DR4w15 specific assay with that obtained in a DRw53 specific assay (which uses a DRw53 fibroblast as the source of class II molecules). Two very distinct binding patterns were noted, and in

several instances, a peptide bound to one DR molecule with high affinity, and did not bind to the other (data not shown).

DR6w19. The DR6w19 assay utilizes as the source of class II molecules the EBV transformed homozygous cell line H0301, which co-expresses DRB30301 (DR52a). While the radiolabeled ligand used in the DR6w19 assay is different than that used for the DR52a assay, the ligand is related (i.e., is a single substitution analog) to a high affinity DR52a binder. As was done in the case of DR4w15, the specificity of the assay was investigated by analyzing the binding capacity of a panel of naturally occurring peptides for DR6w19 and DR52a. The two assays demonstrated completely different binding specificities. For example, in terms of relative binding, TT 1272-1284 binds 63-fold better in the DR52a assay than in the DR6w19 assay. Conversely, the Invariant chain peptide binds 189-fold better in the DR6w19 assay. In conclusion, these data demonstrated that the binding of the radiolabeled peptide 650.22 to purified class II MHC from the H0301 cell line is specific for DR6w19.

DR8w2 and DR8w3. The β 1 specificity of the DR8w2 and DR8w3 assays is obvious in that no β 3 (and/or B4 and β 5) molecule is expressed.

DR9. The specificity of DR9 assay is inferred from previous studies which have shown that the TT 830-843 radiolabeled probe peptide does not bind to DRw53 molecules (Alexander, et al., Immunity 1:751 (1994)).

Results

DR binding affinity of antigenic peptides recognized by DR restricted T cells

To define a threshold DR binding affinity, to be considered as biologically significant, we compiled the affinities of a panel of 32 reported instances of DR restriction of a given T cell epitope. In approximately half of the cases, DR restriction was associated with affinities of less than 100 nM, and in the other half of the instances, with IC50% in the 100-1000 nM range. Only in 1 out of 32 cases (3.1%) DR restriction was associated with IC50% of 1000 nM or greater. It was noted that this distribution of affinities differs from what was previously reported for HLA class I epitopes, where a vast majority of epitopes bound with IC50% of 50 nM or less (Sette, et al., JI, 1994). This relatively lower affinity of class II restricted epitope interactions might explain why activation of class II restricted T cells in general requires more antigen relative to class I restricted T cells.

PCT/US99/12066

In conclusion, this analysis suggested that 1000 nM may be defined as an affinity threshold associated with immunogenicity in the context of DR molecules, and for this reason a suitable target for our studies.

P1 and P6 anchors are necessary but not sufficient for DRB10401 binding

Several independent studies have pointed to a crucial role in DRB10401 binding of a large aromatic or hydrophobic residue in position 1, near the N-terminus of the peptide and of a 9-residue core region (residues 1 through 9). In addition, an important role has been demonstrated for the residue in position six (P6) of this 9-residues core region. Short and/or hydrophobic residues were in general preferred in this position (O'Sullivan, et al., JI 147:2663, 1991; Sette, et al., JI 151:3163, 1993; Hammer, et al., Cell 74:197, 1993 and Marshall, et al., JI 154:5927, 1995).

In the present set of experiments, a library of 384 peptides was analyzed for DRB10401 binding capacity and screened for the presence of the P1-P6 motif (that is, F, W, Y, L, I, V or M in P1 and S, T, C, A, P, V, I, L or M in P6, at least 9 residues apart from the peptide C-terminus. This set of 384 peptides contained a total of 80 DR4w4 binders (specifically 27 good binders [IC50 of 100 nM or less], and 53 intermediate binders [IC50 of the 100-1000 range]. Seventy-seven out of the 80 DR4w4 binders (96%) carried the P1-P6 motif. However, it should be noted that most non-DR4w4 binding peptides also contained the P1-P6 motif. Of 384 peptides included in our database, only 125 were "P1-P6 negative." Only three of them (6%) bound appreciably to purified DR4w4 as opposed to 77/259 (30%) of the "P1-P6 positive" peptides. Therefore, these results demonstrate that presence of suitable P1 and P6 anchors are necessary but not sufficient for DRB10401 binding. A detailed map of DRB10401 peptide interactions

Next, for each P1-P6 aligned core region, in analogy with what the strategy previously utilized to detail peptide class I interactions the average binding affinity of peptides carrying a particular residue, relative to the remainder of the group, were calculated for each position. Following this method a table of average relative binding (ARB) values was compiled. This table also represents a map of the positive or negative effect of each of the 20 naturally occurring amino acids on DRB10401 binding capacity when occupying a particular position, relative to the main P1-P6 anchors (Figure 1).

Variations in ARB values greater than four fold (ARB ³ 4 or £ 0.25) were arbitrarily considered significant and indicative of secondary effects of a given residue on

DR-peptide interactions. Most secondary effects were associated with positions 4, 7, and 9. These positions correspond to secondary anchors engaging shallow pockets on the DR molecule. In addition, significant secondary effects were detected for M in position 3 (ARB = 12.8) T in position 3 (ARB = 4.34) and I in position 5 (ARB = 4.4).

Development of a DRB10401 specific algorithm

Next, the ARB table was utilized to develop a DRB10401 specific algorithm. In order to predict 0401 binding propensity, each aligned P1-P6 sequence was scored by multiplying, for each position, the ARB value of the appropriate amino acid. According to this procedure, a numerical "algorithm score" was derived. If multiple P1-P6 alignments were possible, binding scores were calculated for each one and the best score was selected. The efficacy of this method in predicting 0401 binding capacity is shown in Table IIa.

Considering only peptides with algorithm scores above -17.00 narrowed the set of predicted peptides to 156. This set still contained 72 out of 80 (90%) of the total high or intermediate DR binders. Raising the cut-off to an algorithm score of -16.44 or higher still allowed identification of 60 out of 80 (75%) of the DR4w4 binding peptides. Of the whole 107 peptide set, twenty-five of them were either good or intermediate binders. In other words, as expected, increasing the algorithm score stringency predicted a smaller fraction of the total binders present in the set, but at the same time less false positive peptides were identified.

Blind test of the predictive power of the DRB10401 specific algorithm

To verify that the predictive capacity of our algorithm was not merely a reflection of having utilized the same data set to test and define the algorithm itself, we further examined its efficacy in a blind prediction test. For this scope we utilized data from an independent set of 50 peptides, whose binding affinities were known, but that had not been utilized in the derivation of the algorithm. As shown in Table IIb, the algorithm was effective in predicting DR4w4 binding capacity of this independent peptide set. The algorithm score of -17.00 identified a total 18 peptides. This set contained 3/3 (100%) of all good binders, and 8/11 (70%) of all intermediate binders in the entire test set of 50 peptides. Increasing the cut-off value to -16.44, identified a set of nine peptides. Seven of them (78%) were either good or intermediate binders. This set contained 7 out of 14 (50%) of the

binders contained in the blind prediction peptide set. In conclusion, these data supports the validity of the DR4w4 specific algorithm described above.

Detailed maps of DRB10401, DRB10101, and DRB10701 peptide binding specificities

Next, we analyzed the binding to purified DR1 and DR7 molecules for the same set of 384 peptides utilized to define the DR4w4 algorithm. It was found that this set contained 120 and 59 binders for the DR1 and DR7 alleles, respectively. A total of 158 peptides were capable of binding either DR1, DR4w4 or DR7. A large fraction of them (73/158; 46%) were also degenerate binders, which bound two or more of the three alleles thus far considered. Furthermore, we also found that more than 90% of the DR1 or DR7 good and intermediate binders carried the P1-P6 motif. Most importantly, 72 out of 73 (99%) degenerate DR binders carried this motif (data not shown). In conclusion, this analysis suggests that P1-P6 based algorithms might be utilized to effectively predict degenerate DR binders.

In analogy with what was described above for DR4w4 molecules, specific algorithms were designed for the DR1 and DR7 alleles. Figures 2A and 2B detail the allele specific maps defined according to this method.

As in the case of DRB10401, most secondary effects were concentrated in positions 4, 7 and 9. Position 4 was especially prominent in the case of DR1, while position 7 was the most prominent secondary anchor for DR7. Specific algorithms were developed based on these maps, and it was found that the cut-off values necessary to predict 75% or 90% of the binders were -19.32 and -20.28 for DR1, and 20.91 and -21.63 for DR7, respectively. Depending on the particular allele or cut off value selected, 40 to 60% of the predicted peptides were in fact good or intermediate binders (data not shown).

Development of a DR1-4-7 combined algorithm

Finally, we examined whether a combined algorithm would allow to predict degenerate binders. For this purpose, the sequences of the 384 peptides in our database were simultaneously screened with the three (DR1, 4w4, and 7) specific algorithms. It was found that an even 100 peptides were predicted (using the 75% cut off) to bind either two or three of the alleles considered. This set contained 59 out of 73 (81%) of the peptides which were in fact capable of degenerate 1-4-7 binding (defined as the capacity to bind to more than one of the DR1, 4w4 or 7 alleles) (Table III).

Definition of a target set of DR specificities, representative of the world population

The data presented in the preceding sections illustrates how peptides capable of binding multiple DR alleles can be identified by the use of a combined "1-4-7" algorithm. Next, we wished to examine whether the peptides exhibiting degenerate 1-4-7 binding behavior would also bind other common DR types as well. As a first step in our experimental strategy, we sought to define a set of target DR types representative of a large (3 80%) fraction of the world population, irrespective of the ethnic population of origin. For this purpose, seven additional DR antigens were considered. For each one of the DR antigens considered in this study, (including DR1, 4 and 7), the estimated frequency in various ethnicities, according to the most recent HLA workshop (11th, 1991) is shown in Table IVa, together with the main subtypes thus far identified.

For the purpose of measuring peptide binding affinity to the various DR molecules, one representative subtype for each DR antigen was chosen (Table I). It should be noted that for most antigens, either one subtype is by far the most abundant, or alternatively a significant degree of similarity in the binding pattern displayed by the different, most abundant subtypes of each DR antigen is likely to exist (see comments column of Table IVb). One exception to this general trend is represented by the DR4 antigen, for which significant differences in peptide specificity between the 0401 and 0405 have been reported. Since both alleles are quite frequent (in Caucasians and Orientals, respectively) we included both DR 0401 and 0405 in the set of representative DR binding assays.

Our set of representative assays is mostly focused on allelic products of the gene, because these molecules appear to be the most abundantly expressed, serve as the dominant restricting element of most human class III responses analyzed thus far, and accurate methods for serologic and DNA typing most readily available. However, we have also considered in our analysis assays representative of DRB3/4/5 molecules (Table IVc). These molecules serve as a functional restriction element, and their peptide binding specificity has been previously shown to have certain similarities to the specificity of several common DR β_1 allelic products.

A general strategy for prediction of DR-degenerate binders.

WO 99/61916 PCT/US99/12066 27

To test whether the 1-4-7 combined algorithm would also predict degenerate binding to other common DR types, we measured the capacity of three different groups of synthetic peptides to bind the panel of purified HLA DR molecules. The three different peptide sets were: A) 36 peptides which did not score positive in the combined 1-4-7 algorithm (non-predictions), B) 36 peptides which did score positive for the 1-4-7 algorithm. at the 75% cut off level, but had been found upon actual testing not to be degenerate 1-4-7 binders ("wrong" predictions), and C) 29 peptides which scored positive in the 1-4-7 algorithm, and also proved upon experimental testing, to be actual 1-4-7 degenerate binders (correct predictions). The results of this analysis are shown in Table V.

Within the set of "non-predictions" peptides (Table Va) only 3 out of 34 (9%) bound at least two of the DR1, 4w4 or 7 molecules. Interestingly, 2 (1136.04 and 1136.29) out of 3 of these peptides were also rather crossreactive, and bound additional DR types (DR2w2 \(\beta \), DR4w15, 5w11 and 8w2 in the case of 1136.04, and 2w2 \(\beta \), 4w15, 9 and 5w12 in the case of 1136.29). Peptides from the "wrong predictions" peptide set (Table V5), by definition bound at the most only one of the DR1, 4w4 or DR7 molecules, and were also poorly degenerate or other DR types with only two peptides (1136.22 and 1188.35) binding a total of three DR molecules. Within this peptide set, no peptide bound four or more of the DR molecules tested (data not shown).

These results are contrasted by data obtained with the peptide set corresponding to peptides which were first predicted by the use of the combined 1, 4, 7 algorithm, and then experimentally found to be degenerate DR1-4-7 binding. Fourteen out of 29 peptides tested (48%) bound a total of five or more alleles. Four of them were remarkably degenerate (1188.16, 1188.32, 1188.34 and F107.09) and bound a total of nine out of the 11 DR molecules tested. In conclusion, these results suggest that a strategy based on the sequential use of a combined DR1, 4, 7 algorithm and quantitative DR1, 4, 7 binding assays can be utilized to identify broadly crossreactive DR binding peptides.

Definition of the HLA-DR 1-4-7 supertype

The data presented above also suggested that several common DR types are characterized by largely overlapping peptide binding repertoires. When this issue was analyzed in more detail, by analyzing the binding pattern of the thirty-two peptides from Table Va and b which were actual DR1-4-7 degenerate binders. Thirty-one of them (97%) bound DR1, 22 (69%) DR4w4 and 21 (66%) DR7. These files are contrasted with the low percentages of binding observed amongst the remainder non-degenerate binding peptides (17/67 (25%), 8/67 (12%) and 7/67 (10%), for DR1, 4w4 and 7, respectively) (Table VII).

Interestingly, a large fraction of the 1-4-7 degenerate binders also bound certain other common DR types. Sixteen (50%) bound DR2w2a, 18 (56%) DR6w19, 18 (56%) DR2w2b and 20 (62%) DR9. In all cases, the frequency of binding in the non-1-4-7 degenerate peptide set was much lower (Table VIII).

Significant, albeit lower, frequencies of cross reactivity were noted also for DR4w15, DR5w11, and DR8w2 (in the 28 to 37% range). Finally, negligible levels of cross reactivity were observed in the case of DR3 and 5w12 and DR53. Further studies will address whether either of these two group of molecules (DR4w15, 5w11, and 8w2 on one hand, and DR3, DR53 and 5w12 on the other) might belong to different DR supertypes.

In conclusion, these data demonstrates that a large set of DR molecules encompassing DR1, 4w4, 2w2a, 2w2b, 7, 9 and 6w19 is characterized by largely overlapping peptide binding repertoires.

Discussion

In the present report we have analyzed the peptide binding specificity of a set of 13 different DR molecules, representative of DR types common among the worldwide population. Detailed maps of secondary anchors and secondary interactions have been derived for three of them (DR4w4, DR1 and DR7). Furthermore, we demonstrated that a set of at least seven different DR types share overlapping peptide binding repertoires; and consequently that broadly degenerate HLA DR binding peptides are a relatively common occurrence. This study also describes computerized procedures which should greatly assist in the task of identification of such degenerate peptides.

We would like to discuss the data in the context of our current understanding of peptide-class II interactions, as well as in the context of the recently described class I supermotifs. Finally, the potential implications of broadly degenerate class II epitopes for epitope based vaccine design should also be considered.

Firstly, our studies illustrate how the vast majority of the peptides binding with good affinity to DR4w4, DR1, DR7 and most of the other DR types analyzed in the current study (data not shown), are all characterized by a P1-P6 motif consistent with the one originally proposed by O'Sullivan, et al. Crystallographic analysis of DR1-peptide complexes revealed that the residues occupying these positions engage two complementary

pockets on the DR1 molecule, with the P1 position corresponding to the most crucial anchor residue and the deepest hydrophobic pocket. Our analysis also illustrates how other "secondary anchor" positions drastically influence in an allele-specific manner peptide binding capacity. Position 4 was found to be particularly crucial for DR1 binding, position 9 for DR4w4, and position 7 for DR7. These data are consistent with previous results which originally described such allele-specific anchors, and with crystallographic data which illustrates how these residues engage shallow pockets on the DR molecule.

Secondly, our studies illustrate how an approach based on alignment and calculation of average relative binding values of large peptide libraries allows definition of quantitative algorithms to predict binding capacity. The present study extends those observations to two other common HLA-DR types, and also illustrates how the combined use of the 1-4-7 algorithms can be of aid in identifying broadly degenerate DR binding peptides.

The data presented herein suggest that a group of common DR alleles. including at least DR1, DR2w2a, DR2w2b, DR4w4, DR6w19, DR7 and DR9 share a largely overlapping peptide repertoire. Degenerate peptide binding to multiple DR alleles, and recognition of the same epitope in the context of multiple DR types was originally described by Lanzavechia, Sinigallia's and Rothbard's groups. The present study provides a classification of alleles belonging to a main HLA-DR supertype (DR1-4-7-like) which includes DR1, DR2w2a, DR2w2b, DR4w4, DR7, DR9, DR6w19. On the basis of the data presented herein, at least two additional groups of alleles exist. The first group encodes for molecules with significant, albeit much reduced overlap with the 1-4-7-like supertype (DR4w15, 8w2, 5w11). The second group of alleles (5w12, 3w17, and w53) clearly has little repertoire association with the 1-4-7 supertype. In this context it is interesting to note that Hammer, et al. noted that good DR5w11 binding peptides are frequently characterized by positively charged P6 anchor (which would be poorly compatible) with the herein proposed 1-4-7 supermotif. It is also interesting to note that Sidney, et al. proposed that DR3w17 binds a set of peptides largely distinct from those bound by other common DR types. Future studies will have to determine whether any of the molecules listed above can be grouped in additional DR supertypes. Our group is currently investigating whether analysis of polymorphic residues lining the peptide binding pockets of DR can be utilized to aid in the classification and prediction of HLA DR supertypes.

We would like to comment on similarities and differences between the HLA DR supertype described herein and the recently described HLA class I supermotifs. Class I supermotifs are clear-cut and, as a rule, non-overlapping. Four of them have been described all approximately equally frequent amongst the worldwide population. By contrast, the repertoire defining the HLA DR supertype herein described is not clear-cut and overlaps, at least in part, with the repertoire of other alleles. It also appears that on the basis of the data presented in Tables I and IV, even if other DR supertypes exist, the DR1-4-7 is going to be by far the most abundantly represented worldwide.

Finally, we would like to point out the possible relevance of these data in terms of development of epitope based vaccines. Class II restricted HTL have been implicated in protection from, and termination of many important diseases. Inclusion of well defined class II epitopes in prophylactic or therapeutic vaccines may allow the immune response to focus towards conserved or subdominant epitopes, and avoid suppressive determinants. Based on the data presented herein (Table IV), the DR1-4-7 supertype would allow coverage in the 50 to 80% range, depending on the ethnicities considered. It is thus possible that broad and not ethnically biased population coverage could be achieved by considering a very limited number of peptide binding specificities.

Based on the results present above, the sequences of various antigens of interest were scanned for the presence of the DR 1-4-7 motifs. Peptides identified using this approach are broadly cross reactive, class II restricted T cell epitopes. Table VIII presents a listing of such peptides derived from various antigens and includes representive epitopes that bind one or more DR alleles at an IC₅₀ of 1000 nM or less. The information in Table VIII includes the antigen from which the peptide was derived, and binding data expressed as IC₅₀ values for the designated DR alleles as shown.

The above examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art. All publications, patents, and patent applications cited herein are hereby incorporated by reference for all purposes.

HLA-DR binding assays utilized in the present study.

	•	1					31							
	Comments	OI is the most prevalent DR1 aliele.	0101 is the most prevalent DR2 alleie.	01 is the most prevalent DR3 allele in most major populations. 01 and 02 are split fairly evenly in NA Blacks.	01 is the most prevalent DR4 alicle. 05 is the most prevalent DR4 allete in the Orient.	01/02 vary at 1 pos, which is outside the binding groove.	02 is dominant in most major population groups. 02 and 03 have nearly identical binding specificities (J. Sidney and A. Sette, unpublished observations).	DR9 spilis are products of a silent mutation.	Of is the most prevalent DR11 allele, by far.	01/02 are evenly distributed. These alleles differ at pos. 67, which does not appear strongly influence peptide binding.	02 is slightly more prevalent overall than 01. These alleles vary at pos. 86(critical in determining the P1 anchor specificity.	0101 is the most prevalent split.	0101 is essentially the only allete.	
	Ref.	(8)	€	6 0	(8) This paper	69	This paper	This paper	(9)	6	()	6	©	
live Assay	Radiolabeled Probe	HA Y307-319 "	MDP 88-102Y "	MT 65kD Y3-13 analog "	Non-natural peptide YAR 49 Non-natural peptide YAR	TT 830-843 ⁵³	TT 830-843	TT 830-843	TT 830-843	CIR derived peptide 9	650.22 (TT 830-843 analog) ⁷¹	TT 830-843 %	Non-natural peptide YAR ⁴³	
Representative Assay	Cell Line	727	1.466.1	MAT	Press KT3	Pitout	OLL	(GIH) 7/06	Sweig	Herluf	H0301	CM3107	1.257.6	
	Alias	(DR1)	(DR2w2b)	(DR3w17)	(DR4w1) (DR4w15)	(DR2)	(DR8w2)	(DR9)	(DRSw11)	(DR5w12)	(DR6w19)	(DR2w2a)	(DR4, DR7, DR9)	
	Allele	DRB1-0101	DRB1*1501	DRB1*0301	DRB1*0405	DRB1-0701	DRB1-0802	DRB1*0901	DRB1*1101	DRB1*1201	DRB1*1302	DRB5*0101	DRB4-0101	
	Antigen	DRI	DR2	DR3	DR4	DR7	DR8	DR9	DR11	DR12	DR13	DRS1	DRS3	

1) YPKYVKQNTLKLAT
2) VVIJFKNIVTPRITPY
3) YKTIAFDEEARR

6) EALITQLKINFYVLS
7) QYIKANAKFIGITE
8) Valil et al. J. Clin. Invest 91516, 1993.

Table II

An algorithm to predict DRB1*0401 binding capacity.
a) Original peptide set.

		No. of			
	Selection Criteria	High ≤100	Inter. 100-1000	Non >1000	Total
	None	27	53	304	384
	P1-P6	27	50	182	259
er.	-17.00 ¹³	27	45	84	156
	-16.44 ²⁰	25	35	47	107

¹⁾ Algorithm score which predicts 90% of all binders.

²⁾ Algorithm score which predicts 75% of all binders.

WO 99/61916 PCT/US99/12066

33

Table II

b) Blind test of the predictive power of the DRB1*0401 algorithm.

	No. of peptides (Binding nM)				
High ≤100	Inter. 100-1000	Non >1000	Total		
3	11	36	50		
.3	9	28	40		
3	8	7	18		
3	4	2	9		
	High ≤100	High Inter. ≤100 100-1000 3 11 3 9 3 8	High Inter. Non ≤100 100-1000 >1000 3 11 36 3 9 28 3 8 7		

34

Table III

A combined "1-4-7" algorithm.

Selection Criteria	Degenerate Binders ¹⁾	Percent of Total Degenerate Binders
None	73/384	100%
P1-P6	72/259	99%
Combined Algorithms (90% Cutoff Value)	67/147	92%
Combined Algorithms (75% Cutoff Value)	59/100	81%

¹⁾ Degenerate binders are defined as peptides binding at least two out of the three DR1, 4w4, and 7 molecules with an IC50 of 1 μ M or less.

Table IV

Phenotypic frequencies of 10 prevalent HLA-DR antigens

enorypic ireque			Phe	notypic	Frequer	೧೧೮	
Antigen	Alleles	Cauc.	Blk	jpn.	Chn.	Hisp.	Avg.
DRI	DRB1*0101-03	18.5	8.4	10.7	4.5	10.1	10.4
DR2	DRB1*1501-03	19.9	14.8	30.9	22.0	15.0	20.5
DR3	DRE1*0301-2	17.7	19.5	0.4	7.3	14.4	11.9
DR4	DRB1*0401-12	23.6	6.1	40.4	21.9	29.8	24.4
DR7	DRB1*0701-02	26.2	11.1	1.0	- 15.0	16.6	14.0
DR8	DRB1-0801-5	5.5	10.9	25.0	10.7	23.3	15.1
DR9	DRB1*09011,09012	3.6	4.7	24.5	19.9	6.7	11.9
DR11	DRB1:1101-05	17.0	18.0	4.9	19.4	18.1	15.5
DR12	DRB1*1201-02	2.8	5.5	13.1	17.6	5.7	8. 9
DR13	DRB1*1301-06	21.7	16.5	14.6	12.2	10.5	15.
Total		97.0	83.9	98.8	95.5	95.6	94.

Table V A) Non Predictions.

PRIA/7 DRIA/7 DRIA-75 DRIA-75 DRIA-15 DRIA-1						-								
DRI DRIVAL DRZ DRIN-15 DRI			DR1,4,7					0	iher Alleli		·			
31 4127 133 111 468 — 745 6530 — 1770 164 71 191 1131 114 468 — 445 163 — 1770 1643 71 191 191 1170 — 150 167 — 1581 447 116 — 70 645 — 150 167 — 1581 — 1581 — 1581 — 1581 — 1581 — 1581 — — 1581 — 1581 — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — — 1581 — 1581 — — 1581 —	ąg ę	DRI	DRIM	DRO	DR2w2b	DR2w2e	DRO	DR4w15	1	DR6w19		DRØ	DR5w12	Total Alleles Bound
13 13 13 13 14 14 15 15 15 15 15 15						937		3,45	03.69		2970	183	1000	7
71 1913 1313 165 1730 -	£.	~ :	43%	87 E	1.1	8 7	۱ .	3	S	1	S	2885	1	9
116	50	~	20	mr.	57	5		1	81	1667	5052	3128	1	-
116	6.19	182	1915	77.	6	2 1		2 5	3	1	1881	4167	1606	~
116	6.49	i	1	8	1	787	1	3	5		-	1	222	E,
116	6.02.01a	90	1	ı	284	9	1	• }	N.		2 2		1371	•
77 1554 255		116	1	1	2459	ı	ı	980	126	2	ş	1	<u> </u>	
77 8654 2003 241 1350 - 1649 - 7733 3447 1923 1354 - 2 23 13 6477 - 636 6130 - 1976 197 - 1777 1779 1779 1779 1779 1779 1779	5		1007	556	3957	1667	1	3	٠,	,	1	7419	١ ;	•
1923 1364	2	28	8654	2003	243	1250	i	1689	1	ı	22	381	1/65	٠,
942 -	2	183	1361		1	313	22.5	. !	. 069	8750	.1	1	1	• 1
37 177	3 5	CYB	,	1	792		777	. •	1	3182	1	1	1	٠,
91 516	3 5	1,	1	ı	17.7	1739	ŧ	929	6250	,	1976	i .	ı	7 (
534 780 - 6351 (400 - 6364	3 5	; 5	1	ı	6773	6250	1	2600	1635	2	3161	ı	2	•
1873	877	305	280	1	ı	ı	1	6552	000	1	3	1	l -,	٠,
1875	, me	1	. 1		1	449		-1	38°	1	2220	3000	1	٠.
6133 - 4630 1542 2857 - 1950 - 1225 2614 - 477 - 2857 - 1950 - 1225 2614 1163 - 4630 28 3846 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(7)	1	1875	i	ı	269	1	t	9524	8750	ı		'	
1100		CLUB	1	1	1	ı	1	1	.	192	1	1	ì	
1163	A B B	061	;	4630	1542	2857	1	'n	1880	1	123	192	=	
1163		•	40	. ,	1	3	ı		-I	t	ı	1	F :	- •
1163 — 6250 28 3866 — — — 2917 — 5000 1515 545 3147 — 5688 — — 1767 — 5000 — 17931 204 — — 225 — — 1767 — 5000 — — 17931 205 1516 833 — 1718 — 6667 7143 — 7000 — — 17931 206 — 2500 — 2500 — 2500 — 2500 — 2	3 2	,	9375	3788	7.3	ı	ı	1	1	1		7007	' ;	
1415 5415 3147	30	1161	ı	6250	28	3846		ı	t :	2917	1	1	2	
204	3 5	3	25	3247	1	i	1	ı	ı	1	ı	200	1	
4515 1546 6333 - 4318 - 5607 - 7000 -	5 7	707	} 1	1	\$688	i	1	I,	ŧ	1		12931	ı	
4515 1546 8333 1 4318 2 6667 7143 7 5506 1 1675 1 1 3506 1 1 3506 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3	1	225	1	ı	1	1	1367	1	200	1	1	ı	
4545 1546 8333	9	ì	ı	1	1	ı	1.	1	. t	z	1	2769	ı	- <
1873	4.0	1545	1546	e cons	ı	4318	1	. 1	×1.	98.	1	1	1	•
1 4500 5101 5101 5100	5	1	1875	1	,	ı	1	1999	7143	L .	250	1	1	•
8654 - 6500 - 5758 1616 - 5104 - 1616 - 5104	3 3	ı	9	1	1	1	ı	3916	·1	3200		1	1	•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1	RASA	ı	.0059	1	•	8738	1626	ı	2 <u>1</u> 2	5	l	> 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5			ı	ı	- 1	1		st:	1	1	787	ı	> 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 77	•	1	ł	1	1		.f.	.I∞	•	1	1		- 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	97 7			1	. 1	1	ı		1 .	1	1	1	1	> <
1 1002 1 1 1003	8 5		١		•	•	1	1	¥	ı	1	1	ı	
1905 - 7692 - 7693			1	ı	ı	1	•	1	e k.	:	1	ı		•
	7/6/				1	1905	1		7697	t	4298	1		•

- Indicates binding affinity 210,000nM.

7 nut of 34 (5.9%) degenerate on 5 or more DR types.

Table V

B) Correct Predictions.

		DR1.4.7					3	Other Alleles	3				
Pentide	DRI	DRAW	DIG	DRWZb	DRZwZa	DRG	DR4w15	t	DRSw11 DR6w19	DR8w2	DR9	DRSw12	Total Alleles Bound
i								ş	538	å	22	1	0
16	3.7	7.1	=	1231	p.	1	•	3 :		2	126	851	^
	3.8	3	167	ι	23	ı	702	= {	: :	: :	2	767	٥
7 .	=	2	*	370	148	133	959	2700	3.7	2 ;	<u>.</u>	.	. 0
ት }	: :	: :	: 2	8005	286	, t	326	3	469	SE SE	S :	1 1	
8	;	إ :	à :	1	171	1	ı	ī	20	B	28	2495	•
~	= ;	787	2 1	י אַ	נכ	151	1057	1531	3.9	28	92	1	
. . \$	28	0.6	À :	207] ;	. 1	741	3571	1296	488	3	33	
91.	<u>9:</u>	214	9	2	ξ;	l	5	1313	259	1420	22	ı	_
177	1.1	5	25	184	79	1	3 :	112	۱	529	1974	ı	_
=	0.69	8	2615	\$	197	1	5	616	•	108	3		_
	=	643	R	310	3499	t	1999	921	2 7	3 5	, o	t)a	_
. .	: 3		475	210	เช	1	ı	421	ri i	///	ŝ	2	
<u> </u>	3	•	1	55	743	1	13	000	1842	1	794	1	
7	₹ 1	2	5 5	=	35.51	ı	1410	243	88	1	208	719	-
2	53	5/3/	8	2 :	2786	1	ı	R	જ	1672	\$	7321	
8	78	4146	ZQZ	2			5	1538	ı	ı	375	1	••
123	5.	776	X	1	7171		Ş		1400	ŧ	77.33	3488	
71.5	5.3	1321	. 2	8	135	1	76,		1	,	١,	1	
1136.74	182	58.4	391	2 6	9524	1	/32/	I	3 4	. 1	\$	1	
	3		797	357	1	ı	1 .	1	3 6	1	10	1	
	116		8	382	1	ı	1069	1) i	1	¥.	1	
	120		29	807	1	1	1647	1		0772	8	3478	
	:		1	1	1	4878	570S	í	٤:	3	3	. 1	
1.17	i :			6133	ı	1	6770	1	ĭ	1		l	
7.73	2 ;		: :	7	3128	1	1583	1	343	2917	3	ı	
6.12	105		<u>ş</u>	: }	1	1	CSES	4255		1	1	1	
6.47	่น		2119	3	667	I	2777	PC50	3162	7538	1	4478	
1136.28	0.0		3623	2,7	183	ı	į	3131	2005	ł	ı	ı	
1136 55	3		2451	1	ı	ŧ	1.7	}		1	ı	1	
410 SS 77.11	130		i	1	&	1	3140	١ ;	164	E007	1	1	
27 616	1100		718	653	ı	ı	1	71/9	5				
												•	

- Indicates binding affinity 210,000mM.

16 out of 29 (55%) degenerate on 5 or more DR types.

Table VI Degenerate "1-4-7" binders.

																																		l
	Total	Bound 10	۰.	•			. 1	1 0 (٠,			. ~	. ~	•	•	•	•	S	~	S	so	v.	•	. •	•	-	-			~	7	7	. !	
	2																					1		1	. 1	. 1	. 1		. 1	1	3	ı		
. !	DR5w12		٠ ٠	•	ı.	1	ı	ŧ	ı	ı	1	•	. 1	, ,	,	•		•	·	•														
	200		+ -	•	+	+	+	+	1	+	+	+	•	÷ 1	•	٠ ٠	-	• •	- 1	•	• • •	+	1	1	+	1	+ , '	•	, ,	, 1		•		
	l .				_		•	+	•	+	ı	1	+	1 -		1	ì	ı	t '	,		1	1	1	1	1 -	1	1	ı	1	1	1	ı	
	9 DRB		•		•	•															٠.	_		•		+	+		ı	1	1	1	ı	
Heles	DR6w1		+	+	+	+	•	+	:	ł	•	1	+	+	ı	+	ı	+	i		• •	•	•	•	•									١
Other Alleles	DEALLIS DESCRIP DRAWS		.1	+	+	+	ŧ	+	+	:	1	1	1	+.	+	+	1	+	ı	1	1	1	ì	1		1	ı	1	1	:	1	ı	1	
0	E											_	,	,		1		ı	+		í	t 1	1	ı,	ı	ı	1-	- 1 .	+	1	ı	:	1	
	Ž		+	ì	+	+		•	•	. T	•	•		w.	·																		1	w.v
	1	2	ŀ	1	ı			• !	1	. 1	1	ŧ	1	ı	1		1	ı	1	1	1	1	: 1	•	١	1	'	•	•	•	•	·		
1		2w2			::		•	- i	- 4 • •	• •		• •		• ···		ı	+	í	1	+	4.	1	1.4	. 1	: i	- 1	; t	- 1	Ş .	+	1	. 1.	, I,	••,••.
		DRZwzb DRZwza										_			,	_				•	•		.		- 1		. ,1	•	. 1	1	+	. 1	1	
		DRZw		. 1	l	į	1	•	ı	+	1				•	•	•	•																
	1																. 1	١ -			. +	+	+	1.	1 .		•	:	i 1		١ -	- 1	1	
	- 1	DR7	1	•	•	+	+	•	•	•	•	•	•																					
	DKIA	DR4w4		•	+	+	+	+	+	•	•	+	ŧ	+	١ .	+	1 -	•		•	1 1	1	1	+	+	1	1 :	+	•	•	•	•	• •	•
1	2	DR1.		+	+	+	+	+	•	+	+	+	+	+	+	+	+ ·	+	+ •	•	+ +	•	+	+	+	+	+	+	+	+ '	•	1	+ -	+
. 1	1																			•		٠									. •		. د	
				AMKL	<u>~</u>	-7	Z	LAMKL	PYAG	مد	¥	γ.	ξ	3	VCVE	2	>	ы	<u>.</u>	2,20	ي يو	2001	VLLCG	MISL	<u>.</u>	7	7D	CEP	೫	ZSZ	RAET	걸	LWWSTMYLTHIIYFYDL	WLFPRFKFVWVTYASW
				¥24	GAAT	MAGIL	AGLIGN		ATPY	בובו	INF	TYKY	GFAFG	SIGL	Z Z	Z	SPLF	I ISC	NCKE	ASSAT	15061		STVLI	CGA	VICEL L	SCLIM	DIE	ATTPXA	PPTA	NYIE	VSTP	VFLFF	M.T.	Z
			ě	INWVNIAVPL	CLAYKFVVPGAATIY	KSKYKLATSVU	AYYI ATSVI AG	A I WWWI I AVP	AYKEVVPGAAT	WEPASFFIKITILA	I ISOFFIL ALIVETWL	POEWKFAITVKVLPA	CPITALRSFGFAFGYM	SSVFNVVNSSIGLIM	VKNVICPFMK	LHIYYFLSEKAPGSTV	MRKLAILSVSSFLFV	SSIIFGAFI'SI JISGCC	LVNLLIFIINGKIIK	EPOCSTYAASSATSVD	FATCELIPLTSQFFLP	SILVENSICE OF THE STATE OF THE	AGLICAVST	THEIYFVDLIGGAMLSL	IKLPIRAFATCFUP	VFNVVNSSIGLIMVL	NISNWLATITICALDI	KFVVPCAATPYAGEP	LAAIIFLEGPFTALRS	QEIDPLSYNYIPVNSN	RVYQEPQVSPPQRAET	NVKYLVIVELIFTDL	WSTIM	FFFF
			Sequence	IINM	CLAY	KSKY	}	NI NI	AYYE	3	1.50	IOE	CFI	SSVR	25	LHI	MRK	SSIIF	<u>N</u>	Ë	FAT	2	ָלָטָ בּ	TO LL	KL	N ₁	NLS	Ϋ́	3	OEL			3	•
			*	=	2		2 5		-	. :			; R	~	4	3	繋	2	8	7	£.3	a :	2 5	13% (7	1136.12	F107.23	113624	F107.17	1136.28	1136.55	1136.59.014	21.415	1136.46	1136.44.01
			Peptide	188	2	71 88 16	8	* 100.00			71. 72.11	13%	1136.29	D397	70.07	1136.04	738	1136.38	2 .60	1136.71	1136.14	77.384	1168.13	7	13	FIG	2	100	Ξ	113	Ξ	B	=	Ξ

indicates Harding affinity \$1000nM.

7

Ħ

3

Table VII

	Frequency	of Binders
OR Type	1-4-7 Degenerate Binders (%)	Non 1-4-7 Degenerate Binders (%)
1	31/32 (97)	17/67 (25)
4w4	22/32 (69)	8/67 (12)
7	21/32 (66)	7/67 (10)
9	20/32 (62)	2/67 (3.0)
6w19	18/32 (56)	6/67 (8.9)
2w2ßb	18/32 (56)	16/67 (24)
2w2ßa	16/32 (50)	10/67 (15)
4w15	12/32 (37)	4/67 (6.0)
8w2	10/32 (31)	3/67 (4.5)
5w11	9/32 (28)	6/67 (8.9)
5w12	3/32 (9.4)	4/67 (6.0)
3w17	1/32 (3.1)	0/67 (0)
w53	2/16 (13)	7/43 (16)

	Table VIII, page 1
DRw53 nM	
3 5	• • • • • • • • • • • • • • • • • • •
DRew2 cM	400.3 400.3 500.0 E 105.0 E 1065.2 1065.2 1065.2 1065.2 1065.2 1065.2 1065.2 1065.2 1065.2 1065.3 106.3 106.9 10
E Z	28 8 28 8 28 8 52 4 46 1820.8) 27.5 8 41.0 20.8) 27.5 8 41.1 (19230.8) 1100.4 8 1100.4
DRews	39.3 318.2 1.0 2.9 11.3 3866.9 2.3 5833.3 5833.3 2038.8 125.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0
ORENTS	
DASW1	222.2 586.2 586.2 586.2 520.0 230.0 23.8 370.4 370.4 370.4 42.6 4478.0 (40000.0) 5000.0 4000.0 128.0 41.8 140.0
ž 2	4835,1000
In ICSO Format	
DR44	1000.00 (10000.0) (10000.0
8 <u>5</u>	
OR2w202 nM	(28571.4) 153848 1333.3 (28571.4) 2105.3 6080.6 12522.2 22222.2 22222.2 357.1 1818.2 22222.2 357.1 1818.2 2222.2 357.1 1818.2 357.1 3
OH2w201 OH2w202	85.9 56.9 56.9 56.9 56.9 109.6 11300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1300.0 1313.8
ž ž	(12500 b) 46.45 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Source	P LSA1 14 CEA 10 CEA 10 CEA 50 CEA 50 CEA 104 CEA 104 CEA 114 CEA 114 CEA 114 CEA 114 CEA 114 CEA 114 CEA 116 CEA 116 CEA 116 CEA 116 CEA 117 CEA 127 CEA 202 CEA 203
Sequence	MLEMARGURA FALLIMAN DOLLG GENTHANDLOND GENTHANDLOND GENTHANDLOND THE PRESSERIER FRESSERIER FRES
•0pd.	1,0216 1,0216 1,0216 1,0221 1,0222 1,0223 1,0233 1,

41

Table VIII, page 2

DAw53																																																
2 Te											_								_											_	-											Ŧ						
DA8w2		8,000					15806	6505. €			(122500.0)					3 84.5		12894.7	(122500.0)		٠					ZB.0	_	_		(8,444.4)												(14705.8) (54444.4)		1.				
₹	871176	250.0	(22727.3)	(22727.3)	(22727.3)	[22727]	10.07	2 12	(22727.3)	(22727.3)	. 6621	(22727.3)	1823.1	2053.3	(22727.3)	(22727.3)			257.7	10000.0	(22727.3)	(22727.3)	(9615.4)	(13888.9)	(13686.9)	20.3	135714.3	10869.6	(35714.3)	(13888.9)	4/02.											(14705.1						
ORGW19 Ma		2692.3	(11686.7)			•	į	7.07	•	•	2333.3	•					7000.0	165	8750.0							7.0	97			;	6.7											720.2						
DRSw12											_																				=											6	•					
DASW11	1	4347.8	900					740.7	(40000.0)		(40000.0)						645.2	7.0007	14000.01				4			100.0	2500.0				(25000.0)	No.								i		(25000 0)			٠.,	25.2	and to	
rmst OR4w16 nM						-,																												•.										eee				
ICSO Format DRAWIA DRA						٠.																						_																				
DR444		(14062.5)	788.5	1958.5	(14062.5)	114062.5	(14062.5)	281.3	6426 6	(14082.5)	1916.9)	(14062.5)	(14062.5)	3750.0	66233	(14062.5)	762.7	409.1	1875.0	4090.9	(14062.5)	(14062.5)	(50250.D)	(56250.0	(58250.0)	5.4	803.6	(16886.7)	4500.0	(16666.7)			_	:=	=:	==	:=	=	=				=	-	=	_ =	=	=
8 3					Ž.	Ş)														÷											937.5		51724.1				1111111		(11211.1)	/ 1420.0	76923.1		937.5	\$ 95.90	(111111.1	40000		
DR2w2fi2 nM			4761.8					8	22222			(acaca)					18.2	686.7	(20571.4)	15384.6	•						540.5				(1,128571,4)	_											50000.0 (15165.7) (28571.4)					
DR2w281 DR2w262		.!	186.5					1681	1978.3			2498.9					70	3033.3	\$35.3	4550.0							5 2 2 S			_	188 J												(15166					
ĒZ		(10000.0)	7.0	(10000.0)	(10000.0)	7142.9	(10000.0)	(10000 0)	\$65.2	(10000.0)	2631.6	416.7	2000	7.188	416.7	(16868.7)	2.151	. 55	98.0	200.0	24.5	(18686.7)	1162.8	111.1	1823.1	2272.7	5 5 5	10000.0	\$000	(10000.0)	125.0	Š											20000					
Source		Her2/nev.038	Hor2/neu.943	Herzineu. 1028	Her2/new.1124	Har2/new.1142	Har2/new 1234	NAGE250	MAGEZ.102	MAGE2.187	MAGEZ. 193	MAGE2.198	MAGEZ.199	MAGES.CO	MAGE2.202	MAGE2 296	MAGE273.22	MAGE 3.102	MAGES 148	MAGES 158	LAGE 3.173	MAGE 1.187	LAGES 183	MAGE 1198	MAGE3.201	MAGE3.296	p53, 108	953.130	53.248	p53.305	653.324	CEA.110	CEA 128	CEA 127	CEA 137	CEA 162	CEA 210	CEA232	CEA 294	CEA.315	CEA 332	CEA.40	CEA.368	CEA.392	CEA 396	CEA 430	CEA 493	CEA.518 CEA.582
Bequence		GERLPOPECTOW	OPPICTIONNAILANK	DVYMANCHMINSE	TICKNAN ICSPORE	CONFORMED	PSTFKGTPTABNPEY	LIGEVPANDSPSPPHS	ESECUARSPICANE.	GEWEWPISHIN	NOVAPKTGLUMA	KTOLLIMANNE	TGLIMMED	GLIMAMEGO	I ING ABAIECTICA	EPHESTPRI EPHUR	ALC: VCAOAPATEEQ	ESCFOALSPINABL	MWONTHAN SWASS	C VEGRALENDE	GH. YFATCLES SYD	DC11GONORPRAGE.	HOWPKAGLLIMA	KAGILIMANARE	I INTAINREGUC	GPISYPPUEWAR	GRICALISTAKSV	INDAPOCI ACTOPYO	MCGARTHY CITIL	CALPINETSSPOR	DOENFILOROPER	ONICHOTEPATUM	CSTLVNEEATGOTTV	SOLMEEATGOFFW	NEATGO-HWITELY	AVAPICEPETODATY	TASMCETCHPVSAR	MALYGPDAPTISPLY	SESTIMENTALIA	TITAYAEPPKPFITS	SHPVEDEDAVALTOE	AVALTCEPEIONTTY	NOSI PASTALLISA BIO SADARILITAS	ECOLO EL SACI EDP	CARE SVOI-ED-MUN	AMAYCHOOPIES ST	TITVSAELPKPSISS	AVAFTCEPEACHTY SOPVILIM YOPOTP
Pepdde		40.0076	39.0276	39.0277	39.0278	19 0250	39.0281	38.0262	\$8.0263	39.0264	36.0263	38.0287	39.0288	39.0291	28.0282	30.020	39.0295	39.0286	39.0297	38.0286	38 0300	39.0301	39.0302	39.0303	39.0304	30.0306	39.0307	39,0308	38.0308	38.0310	39.0312	39.0313	38.0314	39.0316	30.0317	30.0316	39.0320	120.01	39.0322	39.035	38.0325	39.0326	39.0327	38 0358	10.0330	38 0331	39.0333	19.0334

															•	Ta	ıb.	le	. 1	/I	I	Ι,	1	oa	ge	2	3																								
DRw53																																																			
£ 3																									•																										
DRB#2 nM													1484.8	!	(84444.4)	:					7656.3			4900	9			1/9000																							
P. M.													9	2	(14705.0)	•					1923.1			1047 0	(14705.0)			(17857.1)														•									
CR6w10 nA				•									!	7	4.5						4375.0			:	13,000 0)	in more	2500.0	(32000.0)																							
DRBW12 nM							٠																			_		_										:											•		
DRS#11	e .	v		ψ.				. • .		-		-		0.000	10 000.50	(a annez)					AATRO				74.1	(25000.0)	370.4	(25000.0)	- 107.			٠.	4	~	ر دراهی در		-				e.			none.						1	•
DEGWIG DRAWIS	27.1		• • • • •									6	:			\$* .c.						٠.						.71	an e		.,.				**.		~.,.	•			45.	***		**,*		•••				Ĺ	
In ICSO Formative Contract Con			•																																																
DR4w4																															_					-	~	-	= :	-											
£ 8	81081.1		5759.2	10344.8	1363.6	(1111111)	85714		40447.5	0111111	36144.6	311.5	(1,111,11)	D67.7	13636.4	333 3	11111			0.11.10	(111111)	837.5	40000	6362V.B			Ξ	9.0	4225 4	1875.0	(120000.0)	4781.8	12000.0	\$6666.7	(120000.0)	11111	(120000.0	(120000.0)	(120000.0)	3370 8	00000	76823.1	41688.7	2142.8	111111	15788.5	23076.9	2000	1500.0		
DR2w2fi2 nM																(20571.4)						33.9	•		8080 B	(28571.4)			1333																						
DREWZÓ1 DRZWZNZ nM nM																6000.7						608.7				1421.0		0.0	(15168.7)			-						:													
ž į			:												2	10 00000						119.3				147.1	2000	7.8(1,385.1																						
Bource		CEA 808	Her2/neu.34	Har2nbu.70	Her2/neu. 84	Harzineu. 104	Nerzhen 180	Herz/heu.228	Her2/meu.271	Her2/new.301	Herzinee.319	Herzhen 34	Her 2/may 376	Her2/neu.389 .	Har 2/neu. 405	Hot2/neu.477	Merzyneu. 402	Herz/neu.574	Herzhou. 601	Herz/men.013	HorZmen.632	Her2/neu.007	Cord/neu 751	Her2/neu.784	Her 2/neu. 832	Her2/neu.839	Herz/neu.867	Her 2/neu. Bill	Her2/neu.958	Her2/nen.969	Herz/neu 976	Har2/heu.1005	Her2/neu.1008	Herzheu 1013	Herzinau, 1058	Her2/neu. 1063	Her2/neu.1109	Herzinga. 1117	Her2/neu.1200	Her2/nev. 1218	MAGE2.04	MAGE2.98	MAGE2.104	MAGE2.159	MADES. 101	MAGE2 206	MAGE2.208	MAGE2.218	MAGE2.243	MAGEREN	
Bequence		CAN WEST KASHES	R PASPETI LOM PH	SISPLODOPAGEN	VI JUHNONOMORIOR	GTOLPEDNYALAND	DILMOR IGNO.	ALTICOL MESTACE	VINNIDIESHIN	WAY STONGSCIEVE	NOEVIAEGITOPOBK	CYCLOMENTREVIEW	BLATIPESHULLING BESETZERANIAN	TANDEGLOWER	WITHWITT	WITNPWOOLFFIRM ID	WOOLTHINDWING .	TOTAL PROPERTY.	PSGAGOUSTAPHAK	MAGPOES ACCOPOR	HECYCLOSICOPAED	MPPLLOCTELVERLI	OVERLY THE PROPERTY.	ARWINENI SPRANTA	CASH EDARIN FOL	WILMFIDLANTOMAN	APLLDIDETENHADO	ETEN-MOGGNPROV	WANTESCHOOL CO.	FPELVSETS WANTED	FSFUMPDPOPPWID	PWCMEDGPAST.	RSTEDOWEDLYDA	GOLVOMERNINFOCO	OCHCPDPAPOACCM	SOUTOCOLGAGAMG				NA WANDOPHENGA	COULT FOR ESTOAA	POLESBOAMSPIX	EFONASRIOAVELVH		CICISTOCICONO		IIAPODCAPEDUM		_	WILLWIN EMON	
•pgd•		19.0336	75.00	10 0339	00.00	39,0341	39.0342	39.0343	39.0344	30.0343	39.0347	39.0346	39.0349	38.0350	39 0352	39,0353	19.0354	39.0155	39.035	39 0354	39.0359	19.0360	39.0361	39.0362	19.036	39.0365	38.0366	30.0367	39.0355	39.0370	39.0371	39.0372	39.03/3	39.0375	39.0376	39.65	39.0379	39,0380	39.0381	39.0382	7070786	38.0387	39 0366	39.0389	39.0380	39.0391	19.0382	39,039	39.0395	30.038	

	T	able VIII, page 4	
DRw53		432.6	17575.6 38686.7 1705.8 813.7 4141.3 1442.9 1142.9 1134.0 6041.7
8.5			
ORBw2	3760.2 16886.6		48.0 49.0 10652.2 14000.0 14000.0 182789.5 17500.0 2682.4 5444.4
PO 45	9258.3 (17857.1)	1000.0 237.8 35.1 165.6 156.6 403.2 403.2 404.2 2777.8 500.0 620.8 463.0	(1250.0) 227.3 268.8 25.0 48.0 131.8 252.8 51.0 32.0 32.0 32.0 30.0 30.0 30.0 30.0 30
DA6#18	2.89.2 2.89.2		3
DRSwit D			38210 38210
DRSwitt C	(28000.0)	133.3 4000.0 117.6 117.6 117.6 24.19 24.19 24.14 4000.0 217.4 4000.0 140.5 140.5 140.5	The control of the second control of the common states
9 7			1441.5000 1745.1000 1055.2000 1055.7000 17461.5000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000 1747.7000
ICSO Format DR4#14 DR4wis		9.1 2500.0 25000.0 55000.0 55000.0 10000.0 10000.0 55000.0 55000.0 55000.0 55000.0 55000.0 55000.0 55000.0 55000.0 55000.0	250.0 1128.1 2272.7 2272.7 250000.0 50000.0 294.1 264.1 266.2 178.6 178.6 178.6 178.6 178.6 178.6 178.6 178.6 178.6
In IC		5.8 45.0 45.1 45.1 45.0 45.0 45.0 47.5 47.5 40.0 40.0	408 187.5 250.0 21.42.9 6035.7 12162.2 458 88.2 112.5 40.0 80.0 80.0 80.0 80.0 81.4 11.3 11.3 11.3 11.3 11.3 11.3 11.3 1
15 No.	(120000.0) 1122000.0) 1122000.0) 111111.1 20000 18.7 (120000.0) 31724.1 447.8 1071.4 (120000.0) 6171.4 (120000.0)	112000 0 1 125 0 1	150000 0 130434 8 48153 8 3280.9 103448.3
DR2#202	(20000.0)	2840 28000 20000 20000 15.4 141.8 161.9 261.2 30.9 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11	571.4 5333.3 1428.6 102.8 25.0 25.0 25.3 25.8 418.8 371.4 371.4 371.4 370.4 37
DR2w261 DR2w202	16686.7 (1598.5 (20006.0)	9.1 11375.0	635.3 22750.0 47.6 137.0 80.1 86.8 18.0 18.0
£ 3	18066.7	204.1.2.204.1.2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	9.5.7 11.2.2 11.2.2 11.3.2 11.3.6 11.
·	224 225 225 225 225 225 225 225 225 225	53.142 53.182 53.182 53.182 53.182 53.182 53.222 55.323 55	HA 307-319 smalog Ove 15-28 CS 302-398 CS 302-398 Bais Verron 79-84 TT 630-64-3 TT 630-64-3 analog KSS-TT 830-64-3 analog ASS-TT 830-64-3 analog
Source	MAGE: 284 MAGE: 289 MAGE: 104 MAGE: 104 MAGE: 181 MAGE: 281 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287 MAGE: 287	P53.182 P53.180 P53.180 P53.180 P53.282 P53.28	>
Sequence	WALHTURGERH TUGGERESTOMASH FRUESTOMASH GUGGERESTOMASH GUGGERESTOMASH GUGGERESTOM TUGGEREST	PAGNACIPPEGIN PAGNACIPULAT PAGNACIPUL	PKYNCONTULAH KUAGENESYHWNN KUAGENESYHWNN DIEVOLAGENESYHWNN DIEVOLAGENESYHWN DIEVOLAGENESYHWN KNESYHWI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESYHMI KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII KNESYHWNESHAII
Pepilde	39,0397 39,0398 39,0398 39,0400 39,0400 39,0400 39,0400 39,0400 39,0400 39,0410 39,0410	39,0412 39,0414 39,0414 39,0417 39,0417 39,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,042 30,0	515.14 519.00 528.03 541.14 551.02 551.02 551.23 551.24 551.26 55

44

Table VIII, page 5

														٠			1	ac) I (e	٧.	Ļļ		,	P	ag	ze	-	,																									
DRw83	ą							•						120.3				• .																																				
8	Į											:					٠																						ž.													:		
ORB#2	Į															'				٠.																													-,,				or est	
6	7		16231	2	2	(1315.6)	8/.3	3000	X	378.6	362.3	9.90	0.0001	2,72	7.7	2	55.2	78.9	2	22.5	7	9 10	342.5	7.07	271.7	367.6	820.8	125.0	3 5	2003	173.1	1785.7	357.1	189.4	2 2	2.23	157	332.1	160.3	160.3	9 5	2.5	240.4	219.3	18.7	5102	982	122.9	138.0	60	104.2	£,5	22127	٠
9	No.													٠,											-																													
	S T					.,		: -					٠.			٠																																						
	DRSw11		60009	2000	6866.7	215.1	4.2	487.8	25.0	2 3	30	2	¥.	2	28	22.2		0.000	15.4	2057.1	1536.5	4	420	2 :		88	7	450	185.3	2	180.2	1178.6	2	88	7	₹	9	2 P	176.5	20.	812.8	0.000	23.5	2692	7.5	36.7	53.5	2	166.3	5 5		107.0	0.000	A. Apr
Į.	ORAw16			:																	v a	w.	Yel:	X.C	***	de see				· .		-				• •	*::::			•					٠.		. :			•		·.	•	
IC50 Format	DR4w14		588.2	500000.0	517.8	205.0				20000				4545.5	200.0							25000.0	12500.0	12500.0	50000.0	0.00002	25000.0	131.9	\$00000	900000	200000	12500.0	200000	25000.0	2083.3	16888.7	25000.0	0.00001	20000	25000	16666.7	200000	200000	200000	200000	2,4000.0	1562.5	25000.0	25000	200000	25000.0	16666	\$0000	:
	DR4w4		106 6	302.0	2500.0	1000	9.09	86.2	576.9	15000	2000	27.4	1668.7	623.3	23	3	24 2	37.5	S.	7377	204.5	40.9	25.0	5	35.1	28.5	2 6	99	90.0	109.8	3	2	9	125.0	20.3	107	\$4.2	8	102.3	9 0	20.5	115.4	62.5	7.	107.1	9	24.7	5	9	3	8 8	3 2	135.2	
	星星			75000.0	3000000	100000	-							3000000	13043.5							•																						· .								.·.	100000.0	
-	DREw282		7.6	645.2	0.07	2500.0	64.1	\$55.0	47.6	133	67.0	23.6	- 6	2857.1	18.2	97.6	48.9	95.7	204.1	(27.5	101	40.7	55.4	T	61.3	37.5		0.0	131.6	0.08	467.8	- 3	3/1.4	8	2	18.2	116.3	7	20.5		72	232.6	182.6	122.0	a	322.8	212	25.7	28.7	2	485.1	!
	DREWZDI DREWZDZ MA nM						413.0		•		•					:		; ;										٠.									,	•																:.
	£		, 10	1000	6.0	-	2	3 2	202	3	1.14	Ď	46.7		<u> </u>	1		12.8	7.7	125.0	100.0			2 2	7.0	5	9.6	2	= ;		2 6	-	-	2.8	132	7	:	7	2	17		4 (5 . =	2	2	2	1666.7	553.6				=	œ .	!
	Source	1:		Human Reflectore	Super Ove 323-339	MT 211-228	19K LIT 1-15	HA 307-322	KA 301-322	Tel Tor 870-848	Tat. Tox. 827-643	Tet. Tox. 827.041	Tet. Tox 627-639	Ē	= :		HA 304-324			Tel. Tox. 831-843	Tet. Tox. 827-640	Tet. Tox. 827-838		14 307 318 malog	HA JUL-118 manda	307-318		307-319	307-318	307.319	HA 307-319 analog	HA 307-318 ampled	HA 307-319 analog		HA 307-319 analog	HA 307-319 analog	HA 307-319 analog	HA 307-319 Mailed	HA 307-319 enalog	HA 307-319 anatog	HA 307-319 analog	HA 307-319 analog	HA 307-319 anelog	HA 307-319 analog	HA 307-319 Entered	HA 307-319 analog	HA 307-319 analog	HA 307-319 smales	HA 507-319 snatog	HA 307-319 analog	HA 307-319 maloo	HA 307-319 analog	HA 307-319 analog	1tv 02-uplob. 7:22
	Sequence			WKDAWKDAWKDAWK	WASAVRAYETT	AMEDINALVISIONS	YEHMORGLTVAVAGA	PKYNKONTJOATOMR	YMCHILYCATCHE	LUCYKANSKPIGITELICK	OTBOARSACIATIONS * LECTOR AND REPORTED	I DOWN ANSWERED	ILMOYIKANSKFI	BUADYBCANSK	PANETYSPM. JRVPRVSASH	YPKFYKONTURLAT	CACPIONICONTURATUM	GACPACIPACA ILINEA	EVACORTI KLATCARR	YRCANSICPICATE	LMOYKANSKFIG	LAOTIKANSKE	PRYNCONTUCAT	AKYVKONITUR AT	KONKOMIKA	SCHWILDY IN AT	DENACONT IS AT	PSYMONULAI	PKFYKOMIJKLAT	PKYLKONTUKLAT	PKYKKONTUGAT	PICCOCHILICAT	PKWKONIDKA	PKWSONILIDAT	PKYVKWITJQAT	PKYVALIMLALAT	PKYNKTINTIALAT	PKYWKOOTLYKAT	PKYWKUI ILULAI	PROMONELICAT	PKYWKCHWURAT	PRYNKONTINGLAT	PKYYKONTOIGAT	PKYYKOMTURILAT	PKYVKONTLELAT	PKYWOWIESIAI	PKYWCMI KKAT	PKYWONTIJOAT	PKYYKONTINGST	PKYYKOWIJAGT	PICTAROPHINOLIC	PKYWCINILACAS	PKYWKONTUKLAY	IONISH PABNIKINF
	Peptide			664.02	564.03	570.36	571.01	573.04	573.07	973.10	573.11	573.13	573.17	673.18	513.01	594.05	597.01	597.02	587.03	107.03	507.08	\$87.09	10.10	601.02	601.03	10.104	601.03	20103	90109	11.10	601.12	100	100	601.13	101.17	601.18	601.10	601.20	12.109	501.22	601.25	601.28	601.28	601 28	601.30		201.32	100	801.35	801.30		801.38	601.40	601.02

BEST AVAILABLE COF

45			
Table	VIII,	page	6

																					T	at	1	e	V	ΙΙ	I	,	P	aį	ze	•	•																						
DA _w 63																		•																																					
2 3																																																							
DH6w2	Ē																																																				_		
6 0	Ę	:	2 2	113.6	1138.4	290.7	510.2	£ .			17R5.7	0	7	250.0	2272.7	287.4	220.4	(5000.u)	202	11.4	200	131.0	7.7	2 7	9	5	17.9	208.3	47.2	17.9	= :	2 2 2	2	17.7	271.7	9 1	Zi.	26.4	0529	108.7	757.8	7	2.00	2 5	2 6	27.2	\$20. 6	168.7	3	2 2	373.	1138.4	(6250.0		
DROWIS	Ę																																	P																					
DRSw1E	Į																																:									_													
	Ŧ		200000 0	156.3		2 5 5	2323.3	272.6	1111	107.0	144.8	909	Ë	7	900000	364.6	200.0	740.7	1665.7	666.7		9211	86.8	67.1	2222.2	2222		2 2	9 7	9	3	1063	90.0	63.3	11/1	5.3	833.8	100.0	35.8		2 5	200000	2000	11.8	2	31.7	7	25.2	90	200	57.1	1111		:	
nat	7																																												-			•				_	۰	_	
ICSO Format	M		16666.7	\$00000	25000.0	357.1	25000.0	200000	25000.0	80000.0	16666.7	6000000	80000.0	25000.0	50000.u	200000	7142 9	600000.0	2000.0	199	25000.0	-20000.	50000 B	-50000.0				-\$0000	-20000		1 704						0.00008.								23000.0			-20000-					500000.0		
_	DR4w4		375.0	30.0	0.09			Z 2		7.07	7	67.2	23.7	9.0	5.3	47.4	9	2	4500.0	(22500.0)	(15000.0)	(15000.0)	(15000.0)	1250.01	(11250.0)				(11250.0)							428.6		2000	7500.0	937.5	(7500.0)	7500.0	(7300.0)	(7500.0)	(7500.0)	(7500.0)	(12000.0	(7500.0)	(7590.0)	(1300.0)	(15000.0	7.7	115.4	53.3	
ì	2 5		0 000000																0.00024	0.0000000	4166.7	0.00001	1000001	7894.7	0 000000	300000	37500.0	21420.0	1567.3	30000000	1060.8	13/88.3	0.000	2000	17847.1	300000.0	37500.0	1714.3	16666.7	5555.0	2727.3	15000.0	63333	77777	2459.0	6383.0	8333.3	6084.7	6172.4	15789.5	14265.7			1) 42857.1	
	DRZw202 nM				1.04	. 46.8	350.9	4.3	=	27.1	2 :	178.5	2 2	10.2	0.0	117.8	0.0	250.0	9	2	28.6	5 0	153.6	19.5	= ;	125.0	8	8	47.6	(2000.0)	32.3	57.1	- 2	2 6	1999	(1176.5)	129	476.2	18.7	13.3	25.0	117.0	7.1	57.1	<u>.</u>	18.1	200	10.7	27.6	5	2	. 4	1818.2	10000.0	
	DRZwzni DRzwznz nM nM					,		<u></u>																									_								•				_					•	_		:	. =	
	E S			25.0	2 2	2	8	3	1.7	2	8	3	<u>.</u>	7	3	8		9	3	8	ģ	000	178.6	58.1	10.2	8 3	2	7	\$ º	284.1	43.0	(92.3 (92.3	3	0.5		3	=	4.00.		21.8	12.6	2	12.3	7	2	2		3	8	Ξ	20.	5.5	2.82	7	
	Bource			va 145-158			MA 307-319 manage	KA 307-318 Antioo	HA 307-319 anabog	HA 307-319 andog	HA 307-318 anadog	HA 307-319 analog	307-318	307-318	America 815-100 AH		A 207-318 and on	HA 307-319 analog	NA 307-319 analog	LEP collorative	Pouse reflerative	Tel. 102, 830-82	Tel Tor 630-843	2	104	Tel. Tox 830-843	ž,	jor.	į	100 50000	Ė	별	ğ	Ž	호,	Tet. Tot. 630-843		40,	¥0,	ğ		741 The 630-843	1	널	ğ	70%	20 10	Tet. Tot. 630-643	Ter Tor #30-843	Tel Tox 830-843	Tet. Tox. 630-843	Ξ		2 5	;
	Sequence 80			•	_	_ `			PKYVKONI ALAI				_					PKYNKINIUWAI						LYRANSKITE							OVERSIGNATE	CVICAL ENERGIE	CHICALIN MAIL	ONKAMICHE .	CYTICANAKPIGITE	OYNCANSSFIGITE	OVIKANSEFIGIE	OVERNISORITE	OYNOMISMISMISM	GYNAMSKYIGHE	CONTRANSFINATION	CHICARSKENGIE	CHICAGO	CANADACKHATE	CANTANAMAN	CATICANSIGNATIE	CYKANSOPICI.TE	OYYCANSYCFIGHOE	ONICAESOFICE	CYTICANSPORTERS	CYNCANSIONIS	DYTHONSIGHTY	AC-AAYAAAAAKAAA.	Ac-unyarasaskosa	VIEWERST TOTAL STREET
	•		-		_	_		70.							==		===			19 63	40.04	50.01	50.02	50.03	50.04	50.05	50.00	20.05	50.11	50.12	150.15	120.17	20.10	20.18	150.22	150.23	850.24	650.25	850.60	650.28	650.30	650.31	650.32	650.33	650.34	620.23	650.37	650.38	630.39	620.40	650.41	50.62	102.09	102.10	103.03

46 Table VIII, page 7

								ICSO Format	•		DRSw12 DRI	DR6×16	26	DRB#Z	8 3	DR _M S3
	!		Ē	DR2w2Bi	DREwalls	8 7	DAAwa	DRAWIA DRAWIS		7		콛		ž	i	
Paptida	Contract			Ę	Ē	Ĕ	[
					•				_		·					
	1												0.7901			
					406.2		182.4	1138.4		2500.0			403.2			
105.04	CPLAMSALAUVITGANDS	3 Ove 30-49	3		200000	30000000	<u>.</u>			3333.3			255.1			
105.08	LUMMGITTONE SSSAML SCI	Ove 287-318	S		1000.0	3000000	P 4	00000		425.5			0000			
705.08	BSSANLEGISSAESLIDSON	A DV2 307-309	2		21.1	20000000	, k	162.5		200.0			2000			
710.00	PKWKONTUCATCANE	5	277.8		.000	(150000.0)	7	2500.0		1250.0		-	31.3			
711.01	PERMINEN		714.3		7		115.4	3646.2		568.2			8780			
711.02	PACIFIC STATES	1	4.2		a i		145.2	500000.0		307.7			2500.0			
711.04	WORLDAND	HA 307-319 A	12.6		377.4		25.0	500000.0		1000			7 527			
713.02	PRYECHICAL	307-319	Ξ		77.7		21.4	26000.0		207.7			4168.7			
713.03	PKYMENIUMA	307-319	14.3		194.2		132.4	500000.0		200000.0			320.5			
73.04	PRIVACEINA		9		2 90 5		8 10	25000.0	•	3			627.9			
113.05	PKYVKUNIENA	HA 307-319 enadog	38.5		211		57.0	6000000		2.00			208.3			
713.07	PRIVACE IN A	307-318	9.0				16.7	6.00009		117.0			42.7			:
113.08	A DI CONCORDI	307-319	~		2 2	0.0000000	16.7	110.0		2			12500.0			9.0
	*ABSCHOTTLANA	combinatodal	8.2		1	3000000	0.	90.0		9 .			2777.8			
716.01	A A DECORATE HONG		158.3			0.000000	7.0	18.5		2 2			25.0			
717.01	VAREOSOTTI KAKT-NFZ		5.0			15789.5	11.0	6250.0		2000			250000.0			
717.02	VASENSOT ACREEN HER	combinetorial	9		0 0 0 0	4000.D	4.4	7 8.7					8333.3			
20.02	VAEEDAEKILIAAS+#G	combinatorial;	N (3000000	3.2	7.0		900000			250000.0			¥1
	A A B FOSOTTUKANG-		2		2000	3000000	ž	80B.5					3571.4			}
90.55	YABOSETTECHOTHE	combinetorial;	217		55.0	3000000	9.9	12.6		7 5			250000.0			
5	VAPOROTTI KAAA NPC	combinatorial;	2		4.141	37500.0	4	1.5		:			86 1.5			
:::	AC-VARFORDTH KAA-	comb.; 717.01	. ·		23.6		2.0						3571.4			
***	YARFOSI TTLKANT-NFIZ	•			106.3		2			18.2			1823.1			
	YARFOSOSTUGACT NEC	• -	2 6		869.6		25	23.0		8			2083			
717 17	YAHFOSOETLIANG-N#2	117.02			142.9		3.2	7.61		0.00			0005			
717.18	YARFOSQTTIKAKT-NHZ	717 02	=		07.0		12.5	200.0		9.0			2002			
117 20	YARFOSOTTOWAT 4#2		2.2		62.5		50	99.7		7.0.7			2777.8			
717.21	YARFOSOTTI.PAKT HER		2		908.0		9.	. 1.		25.3			2000			
717.22	YARGSOTTEAKINE	217 CD analog	294.1		215.1			10.6		13.3			4186.7			
117.23	YARFOSOTTIASAI ANA		Ş		2.5		9	20.0		9.5			00009			
117.25	TALL COLUMN TO STANK	717.02	7	_	4 18.4		20.5	12.0		18.7			3571.4			
. 717.26	CAN-COLOR MANAGEMENT	717.02	4.5		766		90.08	41.7		20000			4166.7			
717.28	AAA-CACI LACACETE	77.00	255.0		1010.2		7.8	7.5		22			675.7			
117.29	CHAPTER TANGET	71.02	6.7		9		8	10.8		000			150.6			
717.30	WASTER KANTAGE	217.00	4.5				5.7	10.4					0.130			
717.31	WASSON TO KAICHER	17.02	7.8		7 5%		107.5	8333.3		20.00			250000.0			
717.32		717.00	1966.7		2		9.0	67.5					6250.0			
717.33			2		974.0		0.01	15.2					8333.3			
75.71		•	- 1 - 3		000		10.7	10.7					5571.4			
2.71			0.0		166.7		4.8	5		6			25000.0			
	VAKEDSOTTIKAKT NIPP	27.02	ě		666.7		32.1	62.8					250000.0			
	YAFFOSOTTUMOT-NP.2	717.02	3	•	363.6		-	20.7		2			2000.0			
			9 9		0.09		4.2	*·		8.5			3571.4			
					8		36	7		3			4166.7			
		71.02	9 5	•	40.0		17	, e		28.2			4100.7			
					7777		=	7.4					6250.0			
317.47		117.02	= =		40.6		2	9					4166.7			
		2.68	- 1		117.6			:		2			4186.7			
07 616		717.02	7		274.0		-			9 85			6250.0			
					. 68.7		9	7.7		2			1136.4			
		717.02			15.4		4.5	31.3	_	2002			3571.4			
717 52		2.05			166.7			2.0	_	8.5			675.7			
717.53			. 4		9		; ;			=			2000			
717.54		ALE 717.02 SMEIOS			808		-	12.1	_	21.12			0.0020			
717.55				_	117.6	000000	: 2	Ξ		7.2			10001			
717.60	YARFASOTTI KAKI +#42	3 2 2	ī	_	165.7	SULPANO.	; ?									
717.6																

BEST AVAILABLE COP

Table VIII, page 8

							Ξ	1C50 Format	Het.	\-\^		:	1		8	SAFO SAFO
age of	Sequence	Source	£	DRZwZB1	OR2w282	. B. 3		DR4w14 nM	DR4w15 nM	DASWI	ONSw12	DR0=10	i i	1	Ŧ	콘
ļ				ŧ	ŧ	l										١
													:			
			:		717	1000	96.5	10.4		2			1.00			
11.58	YOPANANSKITK	Tel Tox ONV	100		8	3000000	1153.6	4166.7		<u>.</u>			12500.0			
9	YAAVWUAAHUSS	•	~		3	3000000		6.7					1562.6			
20.61	AC-TANTUM I COM		15.7		Z	3000000	_	200000		g			15.0			
720.01	VIAEL POATAKO AT	Cytochrome	2		9	(150000.0)	2	780		6688.7			286.8			
10.627	808	DO pept, from Ove 145-	9. Y		1333.3	(100000.0)		7.		370.4			1386.9			
132.01	SUPPLIES STATES	DQ papt, from human	277.B		200000.0	(100000.0)		7 0201		10000			123.8			
	SOUTH VERY MASCENCE	DO pept, from human	<u>-</u>		2057.1	2000		704 2		2500 0			925.0			
77.07	DATA WASHINGTON	DO pape, from human	Ž.		1816.2	15/0/		1521		1333.3			12500.0			
	KSKTATSATORLAKSLYH	DQ pept, from amplin 1-	312.5		ZODON.	200000		13.2		129.0			1.575			
	TSATION ANS WISSANTO	DO pept from armylin 6-	Ξ		0.00001	2000		12.8		202.0		٠	555.6			
735 03	PLANSI VINSSMIPONI SS	DO pept. from emptin	1		1000.0	15780 4	2 2	12.6		250.0			5.5			
735.04	LMISSAN-GALASTINGS	DO pept. from fumplin	19		9000	0 000000		375.0		20000			12500.0			
735.05	CANATOALESTANGANE	d-protected 735.04			467.			151.5		2222			12121			
736.06	ANL AMAMAKANA-1842	Poly A descendent of	2		105.9		257.1	\$00000.D		1333.3			7.50			
738.12	JIY MANANCAAA-NHZ	Poly A descendant of	, c	7 8	2857.1	73000.0	0.0008	333.3		1000			387.8			
753.01	AM EDPYTHYSSKY HER		-	į	30.0	33333	28.1	45.5					12500.0			
156.01	OFVIMIASSVAKTD	THE IGHT WITH A	9		1818.2		145.2	5555.5		2.00			7.6			
160.07	elessitessissy-MHZ	ranks A courts, control for	23		1.2	0.375.0	ģ ;	8333.3		788			1506.7			
76.01	ALL ARACACHET A TOTAL	N and C stabilized DR1	1.1		27.4			0.00621-		, e	•		4.469			
762.03	- AVARAGETAKAA-1012	H and C stabilized DR1	1.		105.3	3000000	2 2	0.0241		1			991.6			
762.02	A STATE STATE STATE AND A STATE OF THE STATE		312.6		2500.0			5.55		2000			157.2			
10.00	CM ATASTROHAMING P.	Mouse MBP 11-50/	90000		10000		3	7 5		18.7			90			
705.02	BAADHAMASA		5.5		158.3			1 650		250.0			694.4			
200	AFAAATLKA-1912		2			3000000	3 2	102.0		£03.8			224.7			
730.02	AC-AFAAAATLKA-HH2	Truncated poly A	25.7		2500		100	80.0		0.0008			2.5			
224.00	DALESBATTKSVSFR	Rables virus	7		2127.2		28.1	82.5		=======================================			00000			
778.00	LVWB.PSTSS	Ach Roc 257-289	9 :		3000		7.7	13.9		(2222.2)		,	250000.0			
20.00	FOROTTLYAA-NPE	•	2		37.7		2.0	7 2		1.4			150000			
781.00	YARFOROTTUKAAAHEZ		2 5		800.0		 	38.8		1.8			950000			
781.13	yAFOROTTIKAA.	Submed	į :		153.0	3000000	-5	28.3		0			1777			
701.14	YALFOROTTLXAA:	Stab			1550		=	7.0		2			250000.0			
71.16	yAAFORDTTI.XAAAHIR	S13 P	5 5		3333.3		. . .	9.0		57.5			6250.0			
761.19	yAFOKOTTUKAA	Siabilized commissions			190.5	3000000		14.7		2			543.6			
712.02	YARFASOTTUKAKI +4FE		7		16.5		37.5	200000.0					250000.0			
763.01	GAAYAAAAAAA	1	90.0		3333.3			284.1		2000			1007.0			
192.01	SOMEON MEAT	HA 307-319 analog	108.7		27.4			2000000		413			50.2			
192.02	SELVE ON SERVICE THE TRO	188	172.4		4000			2.69		2000			154.3			
2000	HOW STEAM GHICH	Ē	Ï		1538.5	2.818.2		9.9		200000			3	-		
	NPA TT ASPLSSIFSRU	Pro S (2) Apr 33-49	71.3		2000.0					9000	٠		6250.0		•	
802.03	CMOBIATIATIWGWLED	ũ	72	*	20000					1538.5,			7/1			
102.04	CHETVERLYSTGW	Ö	972			300000	2	41.7		Š			0.26.0			
803.08	SFAAACTAAAA-CONIHZ	7 60.			412								5			
803.07	BAFAAXTAAAA.	2	977 A		=		381.4		_				7			
80 6 .02	AcyOFIKANSKFKGIGFI-	DHZ compension			0	23076.9	21.4	4545.0		3;			14.7			
101.03	YAAYYYQ TAARKFA HIFZ	2 2	7		=		9		1				367.1			
601.04	ACTIVATIVE AND		8		0.5		- E	10000.		2			7.1			
12.0	CHIRCHES CALL CALL		13.0		3.6		37.5						#: :			
70.21	LANDERSKEITE	_	13.2		7		1831.7			8.3			9.0			
	CYNCANSIOFICITE	_	2		10.2		220.0			6.7						
12.05	MONTRANSIGHER				ğ		45.9			125.0			1852			
11.01	PIGNOSHIJIGAG	HA 307-319 enatog	7		206.3		112.5	••		200.4			2500.0			
118.02	PARMONINGE	307.319	X		175.4		2 2			1 1			403.2			
3 3	POWICHIGAN	HA 307-319 analog	5		95.2		230 8	800.7		1170.5			8333.3			
80 21	PICYNCONTGREAT	307-318	P. C.		2		İ			. 24.						

																				T P		. 1		Ţ	т.	T T		Į		a 4		q																								
		•	ı																	ľ	ai	1.	. =	٧	_		• •	ŀ	ď	5 '	-	,		-													*	!		13.2	7.0					
OPw53	i .					•																																									4481 5	•	4	2	138					
8	Ē																																																						•	
DFBw2	Į,																																																3							
ā					_					. «	•	_										0.0	9	9 5	9 6	3 4	2 5		2	9	9	9,	.	, 5		. .	ų	0.0	=	<u>.</u>	7 .	-	7 2	3	27.3	208.3	9	7.7	2 .	77.7	37.3	8.5	204.1	9		
8	죨			ğ	000		200	3		9 6	13.5		600		1250		707	7.5	6	2	3	25000	25000	200	2002	364	0036	9.05	902	2500	1250.0	=	8.58	7 ;	3 5	- 15	5,196	250	9	3571.4	7	= 7		: =	Z	2	2	₹ ;	<i>i</i>	2 5	3 4	2	. 2	å		
DRBW19	Ę																			,																																				
DR6w12	Į		l																																	٠																				
	1	se e .		0.000	219.8	1333.3	161.3	2500.0	106.7	4 0. 8	53.5	1530.5	7	523	\$ 2	22.2	205	, .	7	0.0	700		23.3	10.0	31.4	2	2.5	7.8	0.0000		204	107.5	030	42.1	416.7	19.	N 200	7.28	686.7	160.5	5.5	0	900	55.1	10000	i wi		68.7	45.6	70.7	2	57.1	6006.7	8	,	
•				•																														•															812.9000							
IC50 Format	Pier Pier			000000	1219.5	5555.0	510.2	25000.0	111.1	183.2	20.8	6333.3	6250.0	0.00001	158.7	11.4		666.7	16686.7	9000.0	7142.0	0.0002		13	20.0	22.7	₹. Ε	8.3	6000000	4186.7	Ž.		25000.0	25000.0	500000.0	25000.0	16666.7	7.587.	14283	10000	8	10.0	\$00000	\$00000	200000.0	. :	7 06	3333.9	45454.3	22.7	-	643.5	1020.4	1136.4		
=	DRAMA Park				24.0					ä	0.0	4.6	155.2	214.3	5.3	7.6	21.4	40.4	3461.5	59.5	90.0	46.B	•	, v	9	8.0	4.4	9	1955.5	9	222.1	2 7		9	7	2	92	2	52.0	17.	7	-	562.5	1,091	6.1.8				725.8	6.5	2	16.7	633.6	978.3))	
	8 Z																0.0000000	(150000.0)	3000000	1150000.03		,	3000000	3000000	0.00000	3000000	3000000	3000000	0.00008	3000000.0	150000.0	3000000	300000.0							1 13867	375000	15000.0				14285.7	5860.4	1351.4		0.00008	(100000.0)	(100000.0)	21428.0	17847.1		
	OR2*262	ŀ			en e			2	1 2 2					2 9		9	٥			19		36		9.00			7.	6.07	35.1	408.2	2857.1	266.7	1886.7	9	2500	1818.2	9.699	633.3	200.7	22			12.3	9	15.4	18.2	0.	- ;		2 22	911	2	268.7	2	2	
	DRZw281 ORZw262	Ē																																																						
	Ē	ł			•	9		7.	S	19 (2		2 :		2 :				; =		1.7	0	12.0	2	7 :	2 :		7	7	7	1	£17.4	7	7		8	6	237.1	£.	g :	7	•	: ;	3	7	27	23	9	2	3 3	5 5	4	22.3	2.2	
	Source				A 307-319 analog .	HA 307-319 mulog		HA 307-318 analog	HA 307-319 enelog	HA 307-319 enalog	HA 307-319 analog	control for N-capped.	Symmetrical paptide	760.15 analog	60.15 enalog	760.15 anadog	00.15 analog	HBVs. LAT. 10-30	HA comb. Form Au	HA COMO, ITOM AN	KA KIRK BUSTBURKI	Macanala neodites	frag 717 stabilizad	has 717 stabilized	Ing 717 exabilized	Frag 717 Stabilized	try 717 stabilized	irag 781 Improved	rap rat improved	acid combinatedal	acid combinatorial	Heo 6 core 120-135	8 cos 120-130	07-319 analog: /	- Boreva	HA 307-318 analog; Ash	HA 307-319 Ended, Part		HA 307-319 Englos: Am	HA 307-319 analog;			Union der-amagomist	Tet Tox antegonist	Tel ton antigones	T Coll Contact Scan (4	T Cel Contact Scan (6	T Cell Contact Scan (5	_		906.55 M analog	760.50 M enalog	513.51 m manual	/ Rase 81-100	1 Nase 101-120	
	Sequence So				PERSONALI MATERIAL HA		_	_	_	_	-	_		BAFAAAAPKAAAB-HHIZ 70		EAFAAAATKAAAB4962 71	Ľ	9					CANADAMINATAR A	_	_	-	_	-	₹	-	PKWECI SLIMME	200			PINYMONTULAT	PKYNYKONTUGAT	PICTAICHTIAGAT	PKYWOWILKIA	PKYWCHILMLAI	POWDATUDAN	THE LEV	EKFAKAATI KAAL HBIZ	ENFIXAAATLIKAAR-HER	AAFAKANSKFIAAAA	DAFAKANSKFIAAA	BAFAKAATKFIAR	EXPANANTIANAMENT	KENKAKIT KAALIBIZ	KESDYDANISIGNEAM	KSSOMWINGTE	EVICVENATUKAF®HP	BAXAAMKTAAAA-NHZ	PICYNGANTLYCAT 513.01 M a	ATSTOCH REPAILMANCE MEET 1-100 ATTACKER AYTYACKAN Nase 81-100	EALWROOLAKVANYTONN NASS 101-120	
	3	Į			2					=	2	1			-	_	200	¥ 10.		8.	٠.	-		70.			_		_	_	-:	~			_				_					79.01	79.02	79.03	68	20.80		34.34	36.01	14.02	137.01	4ASE 001-		929

Table VIII, page 10

					POSI	POSITION				
MOTIFS	1° anchor 1	[2]	ത	(4)		1°a	1° anchor 6		<u></u>	<u>(</u>
DR4 preferred deleterious	FMYLIVW	×	⊬	≫	p⊷4	VST	VST <i>CPALIM</i>	MH R	•	MH WDE
DR1 preferred	MFLIVWY		į	PAMQ	GW)	VM	VMATSP <i>LIC</i>	M GDF	Δ	AVM
deleterious DR7 preferred deleterious	MFLIVWY	υ Σ υ	5 ≽	FD A B		IVN	[VMSA <i>CTPL</i>	M GRD	z	≥ 5
DR Supermotif	MFLIVWY					ΝΛ	VMSTA <i>CPLI</i>			
DR3 MOTIFS	l° anchor l	(<u>a</u>)	<u></u>	1° anchor 4	lor 4	01	1° anchor 6			
motif a preferred	LIVMFY			Q			•			
motif b preferred	LIVMFAY			DNQEST	E	KRH			*.	
Italicized residues indicate less preferred or "tolerated" residues.	indicate less p	referred	or "tolerat	ed" residues.						

BEST AVAILABLE COE

WHAT IS CLAIMED IS:

- 1. A pharmaceutical composition comprising a unit dose form of a peptide comprising an epitope from Table VIII or analog thereof which binds to an HLA class II molecule at an IC_{50} of less than or equal to 1,000 nM.
- 2. The composition of claim 1, wherein the peptide is derived from a tumor antigen which is selected from the group consisting of carcinoembryonic antigen (CEA), p53, MAGE-2, MAGE-3, or Her2/neu.
- 3. The composition of claim 1, wherein the immunogenic peptide is derived from a viral antigen.
- 4. The composition of claim 3, wherein the viral antigen is from HIV, HBV, or HCV.
- 5. The composition of claim 5, wherein the antigen is *Plasmodium* falciparum.
- 6. A composition of claim 1 wherein the epitope comprises an amino acid that is Y, F, W, L, I, V, or M at the first position from the N-terminus of the epitope and an amino acid of S, T, C, A, P, V, I, L, or M at the sixth position from the N-terminus of the epitope.
- 7. A composition of claim 1 wherein the composition is a nucleic acid that encodes the peptide.
- 8. A method of inducing a helper T cell response in a patient, the method comprising contacting a helper T cell with a composition of claim 1.
- 9. The method of claim 9, wherein the composition is a nucleic acid that encodes the peptide.

WO 99/61916 PCT/US99/12066

51

- 10. A composition comprising an epitope from Table VIII or analog thereof which binds to an HLA class II molecule at an IC $_{50}$ of less than or equal to 1,000 nM wherein the epitope is bound to an HLA class II molecule present on an antigen presenting cell.
 - 11. A composition that comprises at least two peptides of claim 1.
 - 12. A composition that comprises at least three peptides of claim 1.
- 13. A composition of claim 1, wherein a unit dose form of the peptide is in the range of between 500 μ g and 50,000 μ g.

	wo	99/6	1916															P	CT/U	JS99/1
											1/3								· · · · · · · · · · · · · · · · · · ·	
6	1.10	0.52	1.54	1.64	2.18	1.62	0.83	2.75	1.53	4.05	1.12	10.22	0.35	5.15	1.22	0.55	0.62	1.64	10.24	10.25
8	0.28	1.19	2.93	1.76	2.12	0.82	1.08	1.66	0.54	1.98	1.34	0.35	0.61	1.40	0.41	0.64	0.71	0.43	0.53	0.61
7	0.94	0.49	1.23	3.07	2.83	98.0	1.36	2.36	0.69	8.11	1.84	0.39	0.44	13.77	(0.14	0.62	0.31	0.84	0.58	0.29
D6 ANCHOR			1.11	1.86	98.0	0.65	0.67	0.98	2.36	0.74					·· <u>-</u> .					
5	33	0.48	1.76	1.32	2.46	0.59	1.11	4.39	0.70	0.32	1.58	0.91	1.41	0.93	0.39	0.40	2.09	1.89	0.40	0.42
4	1.12	0.43	1.29	0.89	1.44	1.57	1.28	1.91	1.05	2.77	08.0	110.21	0.39	1.14	69.0	0.53	19.1	1.42	1.40	0.42
3	0.74	0.64	1.31	4.34	0.31	1.04	1.88	1.01	0.93	1.49	1.85	2.52	1.51	0.15	0.50	1.25	0.38	1.72	0.33	1.09
2	0.57	1.14	1.55	1.00	0.56	96.0	98.0	1.74	3.34	12.79	3.66	2.04	0.74	0.78	1.09	1.44	0.40	0.44	0.34	0.31
DI ANCHOR	1		•				0.81	0.79	0.79	1.14	2.33	0.82	1.07							
TIDILE	2	g	S	T	ы	A	H	Н	۸	Σ	Ĺ	M	Y	н	r.	쏘	a	z	Q	ы

											2/3									
6	0.35	0.44	1.03	2.32	1.52	4.09	0.83	1.32	5.89	4.39	0.79	0.58	0.42	0.55	0.83	0.44	1.54	1.15	0.39	0.27
ω	0.45	1.58	1.25	1.73	1.63	1.25	3.10	0.67	0.57	1.01	0.89	0.35	0.26	1.20	1.43	2.24	3.65	0.43	//0:08//	0.53
7	0.31	10.23	1.03	1.51	1.78	1.89	2.02	3.47	2.89	7.27	0.91	0.61	0.99	1.81	1.08	1.33	1.06	1.16	/0.11//	<i>[</i> 0:16]
p6 ANCHOR	0.14		0.74	1.26	0.63	2.42	0.85	0.75	1.16	2.67				•	y 87-48-	Y	-	,		
5	10.061	1.73	0.58	1.59	2.57	1.59	2.32	1.30	1.97	0.93	0.40	//0.14//	2.04	1.57	0.37	0.67	1.58	0.75	10:21	0.57
4	0.49	2.13	0.32	0.30	5.42	4.14	3.08	1.10	0.79	7.66	1/6.22/	0.56	0.36	0.68	0.43	0.49	7.07	1.20	10.20	0.59
3	16.15	3.38	0.48	2.08	0.88	3.51	0.64	1.59	1.08	2.62	0.49	69.0	1.22	//0.11//	0.49	2.32	1.27	1.41	0.31	0.47
2	110.22	1.29	0.87	0.57	0.43	1.93	1.20	3.84	2.95	1.07	2.05	0.63	0.51	0.51	08.0	2.69	1.38	0.63	0.85	0.31
p1 ANCHOR							0.97	1.00	0.74	2.82	1.51	0.30	0.88					-	, .	
RESIDUE	Ü	5	S	E	Ь	Æ	1	I	>	Σ	ĹŦ	M	Y	E	M.	×	Ø	Z	۵	ы

FIG. 2.

6	04	227	89	92	78	61	97	69	49	42	06	99	.74	.13	.67	48	.36	88.	.30	.16
	1.		0	1.	1	0	0	5.	5.	3.	1.	0	0		2.	0	0	0	0	r-i
8	0.53	1.30	1.67	0.94	09.0	0.89	1.18	1.52	0.80	3.01	2.39	0.95	0.74	1.02	0.59	1.26	2.68	10.24	0.44	0.57
7	1.38	10.23	1.95	1.54	1.06	0.74	1.88	1.11	1.36	9.03	2.50	0.81	0.64	1.10	0.21	1.40	1.01	1.62	0.19	0.45
p6 ANCHOR	0.45		1.14	0.79	0.49	1.51	68.0	1.11	2.25	1.21			·							<u> </u>
2	0.26	0.54	2.39	1.78	0.46	0.89	0.83	2.88	0.92	0.33	1.07	0.58	3.32	2.09	1.31	98.0	1.4	1.68	0.26	0.74
4	0.30	10.25	1.11	1.88	2.01	4.78	1.09	2.17	0.57	3.74	06.0	0.81	0.62	0.62	0.45	0.47	2.09	98.0	0.27	1.23
3	0.58	0.43	99.0	6.53	0.37	2.63	1.08	96.0	0.47	2.54	0.68	4.07	3.34	0.36	0.70	1.32	0.82	2.35	0.41	0.59
2	10.17	0.45	1.86	0.72	0.36	1.43	1.04	1.99	2.15	5.75	1.43	1.32	0.78	1.67	1.29	1.45	1.70	1.42	0.61	0.48
pl ANCHOR							0.87	0.77	0.82	1.45	1.97	0.93	0.90							
RESIDUE	U	ပ	S	Ľ	Ъ	A	ı	I	>	Σ	ſĿ	M	7	н	W.	X	a	z	Q	G

FIG. 3.

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet)(July 1992)*

International application No. PCT/US99/12066

A. CLA	SSIFICATION OF SUBJECT MATTER			
	:Please See Extra Sheet.			
1	:Please See Extra Sheet.			
	to International Patent Classification (IPC) or to bot	h national	classification and IPC	
	LDS SEARCHED			
i	locumentation searched (classification system follow	•	•	
	435/7.23, 7.24, 343.2, 344; 424/160.1, 159.1, 174.1 389.4			
Documenta none	tion searched other than minimum documentation to th	e extent th	at such documents are included	in the fields searched
Electronic o	data base consulted during the international search (r	name of da	ta base and, where practicable	e, search terms used)
DIALOG	, BIOSIS, DISSERTATION ABSTRACTS ONLINE, HLA, MAGE, HIV, CLASS II, tumor antigen		•	· 1
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate	, of the relevant passages	Relevant to claim No.
Y	VALMORI ET AL. Analysis of M Lymphocytes in Human Leukocyte Ar Cancer Research. 15 February 1997.	ntigen-A	2 Melanoma Patients.	1-13
. Sectoral control	especially Abstract.		and the state of the state of	and the second s
v	HADDISON ET AL A Desside kindi		f for I Ar7 the Class	1 12
Y	HARRISON ET AL. A Peptide-binding II Major Histocompatibility Complex (_	<u> </u>	1-13
<u>.</u> ••• •	Biozzi AB/H Mice. J. Exp. Med. 17 l pages 1013-1021, especially Abstract.			
	, , , , , , , , , , , , , , , , , , , ,		•	
!				•
	· ,			;
X Furth	er documents are listed in the continuation of Box (c. 🔲	See patent family annex.	
• Sp	ocial categories of cited documents:	.I.	later document published after the inte	
	cument defining the general state of the art which is not considered be of particular relevance		the principle or theory underlying the	
"B" car	lier document published on or after the international filing date	•x•	document of particular relevance; the considered novel or cannot be consider	
cita	nument which may throw doubts on priority claim(s) or which is do to establish the publication date of another citation or other scial reason (as specified)	•γ•	when the document is taken alone document of particular relevance; the	
"O" do	nument referring to an oral disclosure, use, exhibition or other		considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	documents, such combination
	sument published prior to the international filing date but later than priority date claimed	181	document member of the same patent	fam ily
Date of the	actual completion of the international search	Date of	nailing of the international sea	arch report
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks a, D.C. 20231	Authoriz	RIEL DRX, PH.D.	Slem for
	a (703) 305-3230	Telembor	No. (703) 308-0196	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/12066

	· · · · · · · · · · · · · · · · · · ·	•
C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	FRAZIANO ET AL. The Presence of Antibodies against HIV Peptides in the Sera of Alloimmune Mice and Thalassemic Patients Is Due to a Polyclonal Activation mechanism. Clinical Immunology and Immunopathology. August 1997. Vol 84. No. 2. pages 202-207, especially Abstract.	1-13
Y	BREMERS, ET AL. The Use of Epstein-Barr Virus-Transformed B Lymphocyte Cell Lines in a Peptide-Reconstitution Assay: Identification of CEA-Related HLA-A *0301-Restricted potential Cytotoxic T-Lymphocyte Epitopes. J. Immunotherapy. August 1995. Vol 18. No. 2. pages 77-85, especially Abstract.	1-13
ď	ZAREMBA ET AL. Identification of an Enhancer Agonist Cytotoxic T lymphocyte Peptide from Human Carcinoembryonic Antigen. Cancer Research. 15 October 1997. Vol 57. pages 4570-4577, especially Abstract.	1-13
	professional designation of the contract of th	
asperr - ,	RAS ET AL. Identification of Potential HLA-A *0201 Restricted CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology, January 1997, Vol 53, pages 81-89, especially	1-13
enger t _{e s} a	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle	1-13
sym - ,	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
Agent 1, a	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
· · · · · · · · · · · · · · · · · · ·	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
· · · · · · · · · · · · · · · · · · ·	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
N/T	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13
	CTL Epitopes Derived from the Epithelial Cell Adhesion Moleucle (Ep-CAM) and the Carcinoembryonic Antigen (CEA). Human Immunology. January 1997. Vol 53. pages 81-89, especially	1-13

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/12066

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

G01N 33/574, 33/53; C12N 7/00; A61K 39/42, 39/395, 39/21, 39/29; C07K 16/00

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/7.23, 7.24, 343.2, 344; 424/160.1, 159.1, 174.1, 188.1, 189.1, 208.1, 227.1; 530/388.35, 388.3, 388.75, 388.8, 389.4