3. Grid-based path planning A* path planner

Youngsun Kwon 2020. 07. 09. KAIST SGVR Lab.

Preparation of tutorial

Checking your system for this tutorial

ROS Melodic	https://www.ros.org/	
SuperRay library	https://github.com/PinocchioYS/SuperRay	Mapping and collision detection in 2-D
Clion	https://www.jetbrains.com/ko-kr/clion/	IDE for C++
Tutorial sources	https://github.com/PinocchioYS/path_planning_tutorial	
CoppeliaSim(V-REP)	https://www.coppeliarobotics.com/	Simulation

Tutorial 0: collision detection

Bounding volume: circle

- Use the "2D Pose Estimate" tool of RViz to make a circle and test a collision.
- Turn off the option, "#define USE_OBB_MODEL", to use the circle shape.

Default value of radius: 0.3m

Collision (red color)

No collision (green color)

Tutorial 0: collision detection

- Bounding volume: oriented bounding box (OBB)
 - Use the "2D Pose Estimate" tool of RViz to make an OBB and test a collision.
 - Turn on the option, "#define USE_OBB_MODEL", to use the OBB shape.

Default values of width and height: 0.55m and 0.45m

Collision (red color)

No collision (green color)

Tutorial 1: A* planner using a circle

Planning in 2-D configuration space

4-different propagationsturn off the option:
#define USE 8 MOVEMENT

Motions (from green to blue circles) and trajectory (red line)

Tutorial 1: A* planner using a circle

Planning in 2-D configuration space

8-different propagations turn on the option: #define USE_8_MOVEMENT

Motions (from green to blue circles) and trajectory (red line)

Tutorial 1: A* planner using a circle

Planning in 2-D configuration space

- Use the "2D Pose Estimate" and "2D Nav Goal" tools of RViz to initialize the start and goal configurations respectively.
- The big circle cannot pass a narrow space.
 → no path

Circles having two different radii: 0.3m(left) and 0.2m(right)

Planning in 3-D configuration space

6-different propagationsturn off the option:
#define USE_26_MOVEMENT

Motions (from green to blue circles) and trajectory (red line)

- Planning in 3-D configuration space
 - NOTE: implementation issue about designing a cost function

X - Y configuration space partitioning

R configuration space partitioning

A configuration: (1, 2, 7) = (1, 2, -1)

B configuration: ► (-1, -2, 1)= (-1, -2, -7)

Cost from B to A

$$= \sqrt{\Delta X^{2} + \Delta Y^{2} + \Delta R^{2}}$$

$$\Delta X = 1 - (-1) = 2$$

$$\Delta Y = 2 - (-2) = 4$$

$$\Delta R = (-1) - 1 = -2$$

• Planning in 3-D configuration space

26-different propagations turn on the option: #define USE_26_MOVEMENT

Motions (from green to blue circles) and trajectory (red line)

Planning in 3-D configuration space

• Use the "2D Pose Estimate" and "2D Nav Goal" tools of RViz to initialize the start and goal configurations respectively.

Non-holonomic constraint turn on the option: #define USE_NON_HOLONOMIC_CONSTRAINT

Tutorial 3: from planning to navigation

- Application of planning to mobile robot navigation
 - ROS + CoppeliaSim(V-REP)

Tutorial 3: from planning to navigation

- Application of planning to mobile robot navigation
 - Real mobile robot, Kobuki, equipping with a RGB-D sensor

Q&A

Thank you for listening

