計算機通論資料(7)

図6.10 第5章で作成した単一クロック・サイクルのデータパス(図5.17に類似)。命令の各ステップは左から右の順でデータパスの各部に対応する。ただし、PC 更新と書き込みは例外である。PC 更新では ALU での演算結果が、書き込みではメモリから読み出されたデータが、それぞれ左側へ送られてレジスタに書き込まれる(通常は緑で示すのは制御線であるが、この図ではデータ線である)。

表 7.1 基本的命令と使用ステージ, 実行時間(単位:nsec)

ステージ	ロード	ストア	算術論理	分岐
IF(メモリアクセス)	2	2	2	2
ID(レジスタアクセス)	1	1	1	1
EX (ALU 処理)	1	1	1	1
MA(メモリアクセス)	2	2	使用せず	使用せず
WB(レジスタアクセス)	1	使用せず	1	使用せず
各命令の実行時間	7	6	5	4

図 7.6 RISC 型 CPU でのパイプライン処理

図 7.7 構造ハザード:ハードウェア資源の競合例

図 7.9 制御ハザード対処法:分岐遅延スロットを入れる

図 7.11 データハザード対処法:ストールを入れる

