

P2P lending: a case study

Loan screening and default prediction with Machine Learning and Deep Neural Networks

Aim of Research

- Automation of loan screening and acceptance through Machine Learning
- Accurate prediction of default risk through Big Data analytics and Machine Learning techniques
- P2P lending data investigated to understand limitations of default predictability

Data Characterisation

- Open Dataset from The Lending Club (USA P2P lender)
- 15mln+ evaluated loans from 2007-2017
- Few available features for rejected loans
- 1mln issued loans from 2007-2017
- 150 available features for issued loans

Process and Data Flow

Method: Two-Phase Model

Representative diagram outlining the two phases of the model with machine learning methods applied and features considered for each phase

Interpretability: Neural Network Visualisation

Neural network representation with node size and colour representing total outgoing weight and edge width proportional to the weight.

Phase 1: Loan Selection

Loan Selection Results						
Model	Recall Train AUC Test Recall Recall Ac-Recall Re- Macro Test cepted Test jected Test					
LR	79.8%	86.5%	77.4%	69.1%	85.7%	
SVM	77.5%	-	75.2%	66.5%	84.0%	

Results for the ML algorithms applied to the 1st model phase.

- Simple Logistic Regression model replicates analyst rejections with recall above 85%
- Target feature class imbalance in training set affects class scores.
 Would benefit from more training data
- Replicability of screening leads to more complex models applied to default prediction

Phase 2: Loan Default Prediction

Loan Default Prediction Results							
Model	Recall Train	AUC Test	Recall Macro Test	Recall De- fault Test	Recall Paid Test		
LR	64.3%	69.0%	63.7%	63.8%	63.6%		
SVM	-	64.3%	62.15%	58.7%	65.6%		
LNN ^a	-	67.8%	-	60.0%	-		
LNN ^b	-	67.8%	-	60.0%	-		
LNN ^c	-	69%	-	65%	-		
DNN ^d	-	68%	-	67%	-		
DNN ^e	71%	66%	-	75%	-		
DNN ^f	68%	69%	-	72%	-		

aLNN with numerical features only

Results for the ML algorithms applied to the 2nd model phase.

Increasing complexity of the model captures the complex phenomenon of default, with DNNs outperforming in recall

^bLNN with numerical and categorical features

^cLNN with numerical and categorical features, L2 regularised

^dDNN with arbitrary node numbers [20, 5]

^eDNN with node numbers fine-tuned to [30, 1]

^fDNN with node numbers fine-tuned to [5, 3]

Small Business - First Phase

Table 3: Small business loan acceptance results and parameters for SVM and LR grids trained and tested on the data's "small business" subset.

Model	Grid metric	α	Training Score	AUC Test	Recall Rejected	Recall Accepted
LR	AUC	0.1	88.9%	65.7%	48.5%	62.9%
LR	recall macro	0.1	78.5%	65.5%	48.6%	57.0%
SVM	recall macro	0.01	-	89.3%	47.8%	62.9%
SVM	AUC	10	-	83.6%	46.4%	76.1%

Table 4: Small business loan acceptance results and parameters for SVM and LR grids trained on the entire dataset and tested on its "small business" subset.

Model	Grid metric	α	Training Score	AUC Test	Recall Rejected	Recall Accepted
LR	AUC	1	89.0%	71.9%	53.5%	60.2%
LR	recall macro	0.1	77.9%	71.7%	54.0%	59.9%
LR	fixed	0.001	80.0%	71.1%	55.2%	65.2%
LR	fixed	0.0001	80.1%	71.0%	55.9%	62.9%
SVM	recall macro	0.01	-	77.5%	52.6%	68.4%
SVM	AUC	10	-	89.0%	97.3%	43.3%

Small Business - Second Phase

Table 5: Small business loan default results and parameters for SVM and LR grids trained and tested on the data's "small business" subset.

Model	Grid metric	α	Training Score	AUC Test	Recall Defaulted	Recall Paid
LR	AUC	0.1	64.8%	66.4%	65.2%	57.4%
LR	recall macro	0.01	60.4%	65.3%	64.6%	53.3%
SVM	recall macro	0.01	-	59.9%	59.8%	58.8%
SVM	AUC	0.1	-	64.2%	50.8%	65.8%

Table 6: Small business loan default results and parameters for SVM and LR grids trained on the entire dataset and tested on its "small business" subset.

Model	Grid metric	α	Training Score	AUC Test	Recall Defaulted	Recall Paid
LR	AUC	0.001 (L1)	69.8%	68.9%	81.0%	43.3%
LR	AUC	0.001	69.7%	69.2%	86.4%	35.0%
LR	recall macro	0.001	64.2%	69.2%	86.4%	35.0%
SVM	recall macro	0.001	-	64.1%	77.7%	48.3%
SVM	AUC	0.001	-	69.7%	77.7%	48.3%

Second Phase – Decision Trees

Accuracy: 0.659 Precision: 0.856 Recall: 0.649

Second Phase – Decision Trees

Second Phase – Decision Trees

Geography – Income vs. Default

Geography – Housing Price vs. Default

Conclusion

- P2P lending has grown exponentially in the past years, becoming a relevant market for regulators
- This Proof of Concept shows how Machine Learning can be applied to automate processes in P2P (and regular) lending
- Deep learning is shown to increase performance without much feature engineering
- A potential solution for the interpretability of parsimonious DNNs is proposed
- Predictability is present in the analysed data, suggesting that more data and further work might allow to precisely evaluate the default probability (hence the risk) in a P2P loan portfolio