Prova 2 - Métodos Numéricos

Daniel Alves de Lima

Questão 1. (a) y = -0.512 + 1.6655x.

- (b) $y = 0.085 0.311x + 1.129x^2$.
- (c) $y = -0.018 + 0.248x + 0.402x^2 + 0.266x^3$.
- (d) $y = 0.0457e^{2.707x}$

Basta por $y = be^{ax}$ na forma ln(y) = ln(b) + ax e usar o mesmo método da letra (a) para os os pontos $(x_i, ln(y_i))$.

(e) $y = 0.95x^{1.872}$.

Basta por $y = bx^a$ na forma ln(y) = ln(b) + aln(x) e usar o mesmo método da letra (a) para os os pontos $(ln(x_i), ln(y_i))$.

(f) $y = \frac{0.4}{-0.39 + x}$.

Basta por y = a/(b+x) na forma $y = \frac{a}{b} - \frac{1}{b}yx$ e usar o mesmo método da letra (a) para os os pontos $(x_i, x_i y_i)$.

(g) Devido ao meu scilab ser uma versão do windows rodando no linux, não consegui plotar os gráficos.

Questão 2. Os valores aproximados com erro inferior a 10^{-5} são $x \approx 0.25975$, $y \approx 0.30273$ e $z \approx 0.04589$.

Basta aplicar o método de newton para sistemas não lineares. O arquivo com este calculo está em anexo no e-mail.

- Questão 3. (a) Encontramos uma solução aproximada de x para a equação Ax = b.
 - (b) Temos a condição inicial $x = [x_0]$, a função F(x) = [f(x)] e sua jacobiana $J_F(x) = [f'(x)]$. Então, $[x_{n+1}] = [x_n] J_F(x_n)^{-1} \cdot F(x_n)$ é equivalente a $x_{n+1} = x_n f(x_n)/f'(x_n)$.