PARCIAL 2013

- 1. V o F. Justifique.
- (a) Sea $\tau = (\emptyset, \{f^1\}, \emptyset, a)$ y sea $T = (\{\forall x_1 \exists x_2 (f(x_2) \equiv x_1)\}, \tau)$. Si A y B son modelos finitos de \widehat{T} con la misma cantidad de elementos, entonces $A \cong B$.
- / (b) Sea $\varphi := \varphi(x_1) \in F^{\tau}$. Entonces $\forall x_1 \forall x_2 ((\varphi(x_1) \land (x_1 \equiv x_2)) \rightarrow \varphi(x_2))$ es universalmente válida.
- / (c) Sea A una τ -álgebra, y supongamos a es definible en A. Entonces (a,a) es definible en A \times A.
 - (d) Existe un tipo τ tal que (∅; τ) es inconsistente.
- v 2. Sean $\tau_1 = (\emptyset, \{f^2, g^1\}, \emptyset, a_1)$ y $\tau_2 = (\emptyset, \{h^1\}, \emptyset, a_2)$. Sea A una τ_1 -álgebra, y sea t := t(x) un término de τ_1 . Definimos la τ_2 -álgebra A' por:
 - i) universo de A' = A
 - ii) $h^{\mathbf{A}'}(a) = t^{\mathbf{A}}[a],$ para todo $a \in A$.
 - Pruebe que si θ es una congruencia de A entonces lo es de A'. ¿Puede asegurarse que las congruencias de A' son congruencias de A?
 - √3. Sea $\tau = (\{c\}, \emptyset, \{\leq^2\}, a)$, y sea $A = (\mathcal{P}(0, 1, 2), \subseteq, \{0\})$ considerada como estructura de τ . Decida cuales son los elementos definibles de A. Justifique.