

METODO DELLE SUCCESSIVE BISEZIONI Ipotesi: f continuo, faifebleo Idee: ripitationente si suddivide l'intervalle in 2 servicintervalle e si onseeva quello du verifice le ipoteci. graficamente: 0 X. passo 1 Passo 3 1 X3 Xo, X1, X2, X3, ... Sons le successive appossimes, sui di & generate de metodo.

	Fc	ኃሲሊ	no	lm	rerī	te	:										
	dá	ti	\int)	(ک (ک	6	,	DOM	ίω	WΔ	•						
	O(°	1:=	ص ا	ر ب	اره) اره)	= 6	/ /	ром Х ⁽⁰	\ :=	۵"	2) (%)	e	(ter	<i>کر'ہ</i>	1 %
	μi	1	291	u'	Į.	< =	0	, 1,	2,								
		(1)	Se U SC	£	(× ⁽	KI)	= ^E)	pon	n\0 200	wo	α	É	×	KI ,	٤
				Şe	-	f (0	D ^(K)	1)£	(x	(KI)	<	0	/				
						pon	11°0-	mo	Q,	CK+11 :	= 0) (K)	, P	K+1) :	=>	< ^{(k}	1
				alt	~` M	nent	Ti Ni a	Mo	O.	CK+1	= X	(KJ	, P	[K+1)	: ~	Pck	- 1
		(3)	2 ≥0	ιίο	w		×	.+(I) :=	Q.	CK+1	1+	b Ck+	-1J			
	gia Lia	ue		l								2					
0	7 7	en	<i>√</i>	416	M A 1												
	3 0		90	416	,,,,,,	_											
			ol	gpr	Lt.	M	ာ	87	Q	nne	ste		'n.	N	m		

mmy	o finit	o di	D52'	Solo	5c	
pen qu						
L L	,		\			
Attaine	M(5-	genur	ono (1	ne Fu	ee.m	
\ O_(K) \	9 1 P		/x (A)			
	J ' () KEN		K64		
Toli d						
•	2(K) € X($(k) \leq p_{(k)}$	} H KER	1		
	(e[a(K))					
	$\chi^{(k)} \longrightarrow \chi$	in Mo	do monotor	o crusente		
	$K \rightarrow + \infty$					
	$0 \xrightarrow{(k)} $	in Mo	do monotón	o dienisa	me	
	$\langle (k) \rightarrow \chi $					
• 1	O = (X)				,	
La, m	behilite	dy	si Nea	l'14.	l even	6
a punt						
il contro		aryour.				
E 2058: 1	z mu	edine c	z paioni	il min	ne no a	し
hose suf	l'eine	م ٥	jonant in	2 Mre		
pess, seng mediter	minata	godt	e dell) भीकः	es, mos	ione.
				Ų		
Vedomo) Com	:				

Sions
$$I(k) = [a(k), b(k)] = [a(k), b(k)]$$

Pen agni $k \ge 0$. All one E he : lumpus deith $[a(k), b(k)]$

1) $[x(k) - a] \le 1/2 |b(k) - a(k)|$
 $[x(k) - a] \le 1/2 |b(k) - a(k)|$

2) $[x(k)] = 1/2 |x(k)| = 1/2 |x(k)| = 1/2 |x(k)|$
 $[x(k) - a] \le 1/2 |x(k)| = 1/2 |x(k)| = 1/2 |x(k)|$

Unundo 1) $[x(k)] = 1/2 |x(k)| = 1/2 |x(k)|$

Suffaniono di John Colodon une approsimation $[x(k)] = 1/2 |x(k)| = 1/2 |x(k)|$

Suffaniono di John Colodon une approsimation $[x(k)] = 1/2 |x(k)| = 1/2 |x(k)|$

(bogiamo in $[x(k)] = 1/2 |x(k)| = 1/2 |x(k)|$

(bogiamo in $[x(k)] = 1/2 |x(k)| = 1/2 |x(k)|$
 $[x(k)] - x(k) = 1/2 |x(k)|$

(bogiamo in $[x(k)] = 1/2 |x(k)|$
 $[x(k)] - x(k) = 1/2 |x(k)|$

(bogiamo in $[x(k)] = 1/2 |x(k)|$
 $[x(k)] - x(k) = 1/2 |x(k)|$

(bogiamo in $[x(k)] = 1/2 |x(k)|$
 $[x(k)] - x(k) = 1/2 |x(k)|$
 $[$

1) stima ennone assoluts:

1 | | (K) - a(K) | < E

tollerouse 2) stime ennone relativo: 1/2/b - a(k) / < E) o esvisolentemente 16 - a(k) < E 3) Residuo: 1 (x(k)) < E

