Efficiently representing the integer factorization problem using binary decision diagrams A reduction of FACT to BDD SAT

David Skidmore

Department of Mathematics and Statistics Utah State University

27 April 2017

Boolean functions FACT

Boolean formulae Boolean normal forms Previous work BDD Fact to BDD SAT References NOT AND OR XOR

Boolean functions

for this presentation

A boolean function is a $\{0,1\}$ -valued function in a finite number of $\{0,1\}$ -valued (boolean) variables.

Boolean functions FACT Boolean formulae Boolean normal forms Previous work

Fact to BDD SAT References NOT AND OR XOR

Example

The unary operation \neg (negation, boolean NOT) is defined by

$$\begin{array}{c|c}
x & \neg x \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

It is common to use \overline{x} to denote $\neg x$.

NOT AND OR XOR

Example

The binary operation \land (conjunction, boolean AND, multiplication) is defined by

X	y	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

It is common to use xy to denote $x \wedge y$.

Boolean functions FACT Boolean formulae

Boolean formulae Boolean normal forms Previous work BDD Fact to BDD SAT References NOT AND OR XOR

Example

The binary operation \lor (disjunction, boolean OR) is defined by

X	y	$x \lor y$
0	0	0
0	1	1
1	0	1
1	1	1

References

NOT AND OR XOR

Example

The binary operation \oplus (exclusive disjunction, boolean XOR, modulo-2 additon) is defined by

X	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

References

The integer factorization problem (FACT)

Given a positive integer a > 1, find positive integers x, y > 1 such that

$$xy = a$$
.

If no such x and y exist then a is *prime*, otherwise a is *composite*, x and y are factors of a, and xy is a factorization of a.

Boolean functions FACT Boolean formulae Boolean normal forms

Previous work

Representing FACT Single System

BDD Fact to BDD SAT References

Representing FACT with boolean functions

Fix a positive integer n. For each nonnegative integer m there is a boolean function $f_m:\{0,1\}^{2n}\to\{0,1\}$ such that $f_m(x_0,x_1,\ldots,x_{n-1},y_0,y_1,\ldots,y_{n-1})$ (represented by $f_m(\vec{x},\vec{y})$) gives the the coefficient of 2^m in the binary expansion of the product

$$(x_0 + 2x_1 + \cdots + 2^{n-1}x_{n-1})(y_0 + 2y_1 + \cdots + 2^{n-1}y_{n-1}).$$

Representing FACT Single System

Let a>1 be a positive integer with binary expansion $a_0+2a_1+\cdots+2^{n-1}a_{n-1}$. Every factorization of a corresponds to a solution of

$$F_a(\vec{x}, \vec{y}) = 1$$

where

$$F_a(\vec{x}, \vec{y}) = \prod_{m=0}^{2n-1} [1 \oplus a_m \oplus f_m(\vec{x}, \vec{y})],$$

and if $m \ge n$ then let $a_m = 0$.

> Fact to BDD SAT References

Representing FACT Single System

 $F_a(\vec{x}, \vec{y}) = 1$ is equivalent to the system S_a ,

$$a_0 \oplus f_0(\vec{x}, \vec{y}) = 0$$

$$a_1 \oplus f_1(\vec{x}, \vec{y}) = 0$$

$$\vdots$$

$$a_{n-1} \oplus f_{n-1}(\vec{x}, \vec{y}) = 0$$

$$f_n(\vec{x}, \vec{y}) = 0$$

$$\vdots$$

$$f_{2n-1}(\vec{x}, \vec{y}) = 0$$

 $\begin{array}{l} \text{func} \leftarrow \textit{form} \\ \text{ite} \\ \text{SAT} \end{array}$

Boolean formulae

A boolean formula is a labeled directed rooted tree representing a mathematical term built from some collection of constant symbols $\{0,1\}$, and variable and operator symbols corresponding to boolean variables and functions.

Boolean functions FACT

References

Boolean formulae

Boolean normal forms Previous work BDD Fact to BDD SAT $\begin{array}{l} \text{func} \leftarrow \textit{form} \\ \text{ite} \\ \text{SAT} \end{array}$

Example

Formula: $((w \land x) \lor ((\neg y) \lor x))$

func ← form ite SAT

Boolean functions from formulae

• A boolean formula with an order on its variables defines a boolean function via substitution.

func ← form ite SAT

Boolean functions from formulae

- A boolean formula with an order on its variables defines a boolean function via substitution.
- Two boolean formula with the same variables are equivalent if they represent the same boolean function.

References

Example

The ternary operator $(\cdot \to \cdot, \cdot): \{0,1\}^3 \to \{0,1\}$ (if-then-else) is defined by the boolean formula in variables $\{x,y,z\}$ with order x < y < z,

$$(x \to y, z) = (\bar{x} \lor y) \land (x \lor z)$$

The boolean satisfiability problem (SAT)

Given a boolean formula $\phi(x_1,\ldots,x_n)$, find a solution to

$$\phi(x_1,\ldots,x_n)=1$$

or prove that no solution exists.

CNF DNF ANF ITE

Conjunctive normal form (CNF)

A *literal* is a boolean variable or its negation. A *clause* is a constant or a disjunction of literals. A boolean formula is in *conjunctive normal form* (CNF) if and only if it is a constant or a conjunction of clauses.

CNF DNF ANF ITE

Example

In variables $\{x, y, z\}$,

$$(\bar{y} \wedge ((x \vee y) \vee \bar{z})) \wedge (\bar{x} \vee y)$$

is in CNF but

$$((x \wedge \bar{y}) \vee (\bar{z} \wedge \bar{y})) \wedge (\bar{x} \vee y)$$

is not.

CNF DNF ANF ITE

Disjunctive normal form (DNF)

A conjunctive clause is a constant or a conjunction of literals. A boolean formula is in *disjunctive normal form* (DNF) if and only if it is a constant or a disjunction of conjunctive clauses.

CNF DNF ANF ITE

Example

In variables $\{x, y, z\}$,

$$(\bar{y} \lor ((x \land y) \land \bar{z})) \lor (\bar{x} \land y)$$

is in DNF but

$$((x \lor \bar{y}) \land (\bar{z} \lor \bar{y})) \lor (\bar{x} \land y)$$

is not.

CNF DNF ANF ITE

Algebraic normal form (ANF)

A monomial is a constant or a conjunction of variables. A boolean formula is in *algebraic normal form* (ANF) if and only if it is a constant or an exclusive disjunction of monomials.

CNF DNF ANF ITE

Example

In variables $\{x, y, z\}$,

$$(y \oplus ((xy)z)) \oplus (xy)$$

is in ANF but

$$y(1 \oplus (x(z \oplus 1)))$$

is not.

If-then-else normal form (ITE)

The collection of boolean formulae in *if-then-else* normal form (ITE) in the variables X is the smallest set ITE_X which satisfies,

- $0, 1 \in ITE_X$.
- ② If $x \in X$ and $y, z \in ITE_X$ then $(x \to y, z) \in ITE_X$.

CNF DNF ANF ITE

Example

In variables $\{x, y, z\}$,

$$(x \to (y \to 0, 1), (z \to 1, 0))$$

is in ITE but

$$(x \rightarrow \bar{y}, z)$$

is not.

FACT to CNF SAT FACT to ANF/DNF SAT

FACT to CNF SAT

- Several bachelor's theses have studied a variety of reductions of FACT to CNF SAT and the performance of different CNF SAT solvers on the resulting reductions [1] [2] [3].
- All such studies proceeded by applying the Tseytin (Tseitin) transformation to different binary multiplier circuits in order to obtain the various CNF SAT instances.
- In all cases, the data indicated an average case exponential time required to factor.

FACT to CNF SAT FACT to ANF/DNF SAT

FACT to ANF/DNF SAT

- In 2013 Samuel Lomonaco studied reductions of FACT to ANF and DNF SAT [4]. In his master's thesis S. Bagde further studied and expanded on a FACT to DNF SAT reduction algorithm created by Lomonaco [5].
- In the ANF case, an ad hoc method was used to find a solution to the resulting reduction. The results were poor (exponential time factoring).
- The methods used in the studies to produce the respective DNF SAT instances were found to take exponential time.

Size OBDD Construction

Binary decision diagrams (BDD)

 A binary decision diagram (BDD) is a labeled rooted directed acyclic graph corresponding to an equivalence class of boolean formulae.

Size OBDD Construction

Binary decision diagrams (BDD)

- A binary decision diagram (BDD) is a labeled rooted directed acyclic graph corresponding to an equivalence class of boolean formulae.
- Every node in a BDD is labeled by a variable or a constant.
 Nodes labeled by variables are called *nonterminal* and have outdegree one or two. Nodes labeled by constants are called *terminal* and have outdegree zero.

Size OBDD Construction

Binary decision diagrams (BDD)

- A binary decision diagram (BDD) is a labeled rooted directed acyclic graph corresponding to an equivalence class of boolean formulae.
- Every node in a BDD is labeled by a variable or a constant.
 Nodes labeled by variables are called *nonterminal* and have outdegree one or two. Nodes labeled by constants are called *terminal* and have outdegree zero.
- Every edge in a BDD is one of two types, 0 (drawn dashed) or 1 (drawn solid). Two edges leaving the same node must have different types.

Boolean functions

Size OBDD Construction

Example

Formula:
$$(w \to (x \to (w \to 0, 1), (y \to 1, 0)), (y \to 0, 1))$$

Size OBDD Construction

BDD size

The size of a BDD is its number of vertices.

Example

The following BDD has size 4:

Size OBDD Construction

OBDD

A BDD is *ordered* (OBDD) if all paths from its root to a terminal node respect a given linear order on its variable labels.

References

Size OBDD Construction

Example

Function: $f(w, x, y, z) = w \oplus x \oplus y \oplus z$

Order: w < x < y < z

Size OBDD Construction

In an OBDD,

- Every path from the root to a 1-labeled terminal node corresponds to an assignment for which the corresponding boolean function evaluates to 1.
- Every path from the root to a 0-labeled terminal node corresponds to an assignment for which the corresponding boolean function evaluates to 0.

References

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Order: w < x < y < z

$$wx \oplus yz$$
 w

References

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Order: w < x < y < z

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Boolean functions

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Boolean functions

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

FACT Boolean formulae Boolean normal forms Previous work BDD Fact to BDD SAT

Boolean functions

References

Size OBDD Construction

Example (Construction)

Function: $f(w, x, y, z) = wx \oplus yz$

References

Proceed Problem Future work

FACT to BDD SAT

- Each of the f_m making up F_a can be represented by an OBDD.
- In 2005 Philipp Woelfel showed that regardless of the linear order used, f_{n-1} will have size greater than $2^{\lfloor n/2 \rfloor}/61-4$ [6].
- Using F_a as defined previously results in an exponential size representation.
- Conclusion: using F_a as previously defined is infeasible.

References

Proceed Problem Future work

How to proceed?

Find an equivalent function (system) to F_a (S_a) and corresponding replacements for each $1 \oplus a_m \oplus f_m$ with smaller OBDD representations.

References

Proceed Problem Future work

How to proceed?

Find an equivalent function (system) to F_a (S_a) and corresponding replacements for each $1 \oplus a_m \oplus f_m$ with smaller OBDD representations. \checkmark

References

Proceed Problem Future work

Replacement for each $1 \oplus a_m \oplus f_m$, g_m , has an OBDD size of less than $6(2n)^3$. This results in a replacement for F_a , G_a , with a BDD representation of polynomial size $O(n^4)$.

Boolean functions FACT Boolean formulae Boolean normal forms Previous work BDD

Proceed Problem Future work

Fact to BDD SAT References

Problem

The linear order used for each g_m is not the same.

References

Proceed Problem Future work

To extract a factorization of *a* from the BDD, we must find a path from the root to the 1-terminal node such that in the path

- We never leave a node with a label t along a 0 edge and then later leave another node with the same label t along a 1 edge.
- We never leave a node with a label t along a 1 edge and then later leave another node with the same label t along a 0 edge.

References

Proceed Problem Future work

Open questions and directions for future work

- Compare other normal form representations besides BDDs for G_a to F_a .
- Compare the performance of some CNF SAT solvers on CNF SAT instances obtained from G_a to those obtained from F_a .
- Check the performance of some BDD-based SAT solving algorithms on G_a .

References I

J. Eriksson and J. Hoglund, "A comparison of reductions from fact to cnf-sat," independent thesis basic level, KTH, School of Computer Science and Communication, Stockholm, Sweden. 2014.

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A769762&dswid=3154.

References II

E. Forsblom and D. Lunden, "Factoring integers with parallel sat solvers," degree project, KTH, School of Computer Science and Communication, Stockholm, Sweden, 2015.

http://kth.diva-portal.org/smash/get/diva2:
811047/FULLTEXT01.pdf.

S. J. Lomonaco, "Symbolic arithmetic and integer factorization," *ArXiv e-prints*, apr 2013. https://arxiv.org/abs/1304.1944v1.

References III

http://contentdm.ad.umbc.edu/cdm/ref/collection/ETD/id/24868.

P. Woelfel, "Bounds on the obdd-size of integer multiplication via universal hashing," *Journal of Computer and System Sciences*, vol. 71, no. 4, pp. 520 – 534, 2005.

http://www.sciencedirect.com/science/article/pii/S002200000500067X