Vorkurs Mathematik 2019 | Lösungen zum Thema

Funktionen und Abbildungen II

× Aufgabe 1: Umkehrabbildungen

Bearbeite für die folgenden Abbildungen (1) bis (3) jeweils die folgenden Aufgaben:

- (a) Prüfe, ob die Umkehrabbildung definiert ist.
- (b) Wenn möglich, gib eine explizite Formel für die Umkehrabbildung an.
- (c) Wenn die Umkehrabbildung existiert, bestimme ihre Funktionswerte an den angegebenen Stellen.
- (1) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 5x + 3$ Falls f^{-1} existient, bestimme $f^{-1}(8)$ und $f^{-1}(-3)$. Lösung:
 - (a) Laut Definition der Umkehrabbildung ist die einzige Voraussetzung für die Existenz der Umkehrabbildung, dass f bijektiv ist. Genau das prüfen wir also:

injektiv: Seien $x_1, x_2 \in \mathbb{R}$ Elemente aus dem Definitionsbereich von f mit $f(x_1) = f(x_2)$. Dann ist

$$5x_1 + 3 = 5x_2 + 3 \implies 5x_1 = 5x_2 \implies x_1 = x_2$$

Also ist f injektiv.

surjektiv: Sei $y \in \mathbb{R}$ ein Element aus dem Wertevorrat von f. Gesucht ist ein $x \in \mathbb{R}$ (Element aus dem Definitionsbereich) mit f(x) = 5x + 3 = y. Diese Gleichung können wir nach x auflösen und erhalten $x = \frac{y-3}{5}$. Tatsächlich ist damit $f(x) = f\left(\frac{y-3}{5}\right) = 5 \cdot \frac{y-3}{5} + 3 = (y-3) + 3 = y$. Also ist f surjektiv.

Also ist f bijektiv und besitzt damit eine Umkehrabbildung.

(b) Laut Definition gilt für alle $y \in \mathbb{R}$:

$$f^{-1}(y) = \text{"das } x \in \mathbb{R}, \text{ welches die Bedingung } f(x) = y \text{ erfüllt"}$$

Wie wir zu gegebenem y ein solches x bestimmen, haben wir glücklicherweise schon bei der Überprüfung auf Surjektivität "nebenbei" herausgefunden:

$$x = \frac{y-3}{5} = f^{-1}(y)$$
. Es gilt also: $f^{-1} : \mathbb{R} \to \mathbb{R}, \ f^{-1}(x) = \frac{x-3}{5}$.

Formel für die Umkehrabbildung

(c) Zuletzt dürfen wir noch zwei Funktionswerte der Umkehrabbildung bestimmen, was dank der Formel nicht besonders schwierig ist:

$$f^{-1}(8) = \frac{8-3}{5} = \frac{5}{5} = 1$$

$$\circ f^{-1}(-3) = \frac{-3-3}{5} = \frac{-6}{5} = -\frac{6}{5}$$

- (2) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 4x^2 x$ Falls f^{-1} existient, bestimme $f^{-1}(1)$ und $f^{-1}(15)$. Lösung:
 - (a) Die erste Frage ist wieder, ob die Umkehrabbildung überhaupt definiert ist. Dazu wird f auf Bijektivität überprüft:

surjektiv: Um f auf Surjektivität zu prüfen, stellen wir für ein festes $y \in \mathbb{R}$ die Gleichung

$$f(x) = y \iff 4x^2 - x = y \iff x^2 - \frac{x}{4} - \frac{y}{4} = 0$$

auf und untersuchen, ob für jedes (beliebige aber feste) $y \in \mathbb{R}$ ein $x \in \mathbb{R}$ gefunden werden kann, welches die Gleichung erfüllt (z.B. mit p-q-Formel bzgl. x).

Wenn man nun bereits die Vermutung hat, dass f nicht surjektiv ist, kann man direkt versuchen, ein Gegenbeispiel zur Surjektivität von f zu finden. Alternativ könnte man die p-q-Formel auch zunächst mit allgemeinem y lösen und dann schauen, ob die gefundene Lösung für x, in der ja y auftaucht, für jedes y aus dem Wertevorrat von f definiert ist. Ein Gegenbeispiel zur Surjektivität ist das folgende:

Sei y=-1 ein Element aus dem Wertevorrat. Angenommen, f wäre surjektiv, dann gäbe es ein $x \in \mathbb{R}$ mit $f(x)=4x^2-x=-1$, also $x^2-\frac{x}{4}+\frac{1}{4}=0$. Mit Hilfe der p-q-Formel ergäbe sich als Lösung hierfür

$$x = \frac{1}{8} \pm \sqrt{\frac{\frac{1}{64} - 1}{<0}},$$

was jedoch in \mathbb{R} nicht definiert ist, da die Wurzel in \mathbb{R} nur aus nichtnegativen reellen Zahlen gezogen werden kann. Es gibt also für y=-1 kein Urbild unter f. Das betrachtete Beispiel ist also ein Gegenbeispiel zur Surjektivität von f.

(Hätte man diese Rechnung mit allgemeinem y gemacht, so hätten wir

$$x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + y}$$

erhalten und hätten an dieser Stelle die Einschränkung $y \ge -\frac{1}{64}$ treffen müssen, damit der Ausdruck unter der Wurzel nicht-negativ und die rechte Seite der Gleichung definiert ist. Also wäre es uns nicht möglich, für alle y aus dem Wertevorrat $\mathbb R$ von f ein Urbild zu finden – genauer werden alle $y < -\frac{1}{64}$ von f nicht getroffen.)

(alternativ) injektiv: Wir vermuten, dass f nicht injektiv ist. Um dies zu zeigen, nehmen wir an, f sei injektiv, d.h. für alle y aus dem Wertevorrat

gibt es höchstens ein x mit f(x) = y. Insbesondere gilt dies für y = 0. Sei also f(x) = 0, d.h. $4x^2 - x = 0$. Dies ist äquivalent zu x(4x - 1) = 0, was jedoch sowohl für x = 0 als auch für 4x - 1 = 0, also $x = \frac{1}{4}$ erfüllt ist. Daher ist f nicht injektiv.

Damit sind wir fertig, denn ohne Surjektivität bzw. Injektivität keine Bijektivität und ohne Bijektivität keine Umkehrabbildung.

- (b) –
- (c) -
- !(3) $f: \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto \log(x^2)$ Falls f^{-1} existient, bestimme $f^{-1}(1)$ und $f^{-1}(0)$.

 Lösung:
 - (a) Wieder prüfen wir auf Bijektivität:

injektiv: Seien $x_1, x_2 \in \mathbb{R}_+$ zwei Elemente aus dem Definitionsbereich mit $f(x_1) = f(x_2)$. Dann ist

$$\log(x_1^2) = \log(x_2^2) \implies \exp(\log(x_1^2)) = \exp(\log(x_2^2)) \implies x_1^2 = x_2^2$$

Da $x_1, x_2 \in \mathbb{R}_+$ sind, ist $x_1 = x_2$. Also ist f injektiv.

surjektiv: Sei $y \in \mathbb{R}$ ein Element aus dem Wertevorrat. Gesucht ist $x \in \mathbb{R}_+$ (ein Element aus dem Definitionsbereich) mit $f(x) = \log(x^2) = y$. Diese Gleichung können wir nach x auflösen:

$$\log(x^2) = y \quad \Leftrightarrow \quad x^2 = \exp(y) \quad \stackrel{x \ge 0}{\Leftrightarrow} \quad x = \sqrt{\exp(y)}$$

Wir erhalten also $x = \sqrt{\exp(y)}$. Tatsächlich gilt für dieses x:

$$f(x) = \log(x^2) = \log\left(\sqrt{\exp(y)}^2\right) = \log(\exp(y)) = y$$

Also ist f surjektiv.

f ist also bijektiv und die Umkehrabbildung ist definiert.

- (b) Eine explizite Formel für f^{-1} finden wir wieder im Beweis der Surjektivität, nämlich $f^{-1}(y) = \sqrt{\exp(y)}$.
- (c) Mit der expliziten Formel wird der geforderte Funktionswert von f^{-1} bestimmt:

$$f^{-1}(1) = \sqrt{\exp(1)} = \sqrt{e}$$

$$f^{-1}(0) = \sqrt{\exp(0)} = \sqrt{1} = 1$$

Aufgabe 2: Exponentialfunktion

Vereinfache so weit wie möglich:

 $1. \exp(3) \cdot \exp(-6)$

4. $\left(\frac{\exp(-2)}{\exp(-3)}\right)^2 \cdot \exp\left(\frac{8}{9}\right)$

 $2. \left(\frac{1}{\exp_5(4)}\right)^8$

5. $\left(\exp\left(\frac{5}{2}\right) \cdot \exp\left(-\frac{1}{3}\right) \cdot \exp\left(\frac{1}{2}\right)\right)^{-1}$

3. $\frac{\exp(2)^{-3}}{\exp(-4)}$

Lösung:

1. $\exp(3) \cdot \exp(-6) \stackrel{E2}{=} \exp(3 + (-6)) = \exp(-3)$

2. $\left(\frac{1}{\exp_5(4)}\right)^8 \stackrel{E4}{=} (\exp_5(-4))^8 \stackrel{E3}{=} \exp_5(-4 \cdot 8) = \exp_5(-32)$

3. $\frac{\exp(2)^{-3}}{\exp(-4)} \stackrel{E3}{=} \frac{\exp(2 \cdot (-3))}{\exp(-4)} = \exp(-6) \cdot \frac{1}{\exp(-4)} \stackrel{E4}{=} \exp(-6) \cdot \exp(4)$ $\stackrel{E2}{=} \exp(-6 + 4) = \exp(-2)$

4. $\left(\frac{\exp(-2)}{\exp(-3)}\right)^2 \cdot \exp\left(\frac{8}{9}\right) \stackrel{E4}{=} \left(\exp(-2) \cdot \exp(3)\right)^2 \cdot \exp\left(\frac{8}{9}\right) \stackrel{E2}{=} \left(\exp(1)\right)^2 \cdot \exp\left(\frac{8}{9}\right)$ $\stackrel{E3}{=} \exp(1 \cdot 2) \cdot \exp\left(\frac{8}{9}\right) \stackrel{E2}{=} \exp(2 + \frac{8}{9}) = \exp\left(\frac{26}{9}\right)$

5. $\left(\exp(\frac{5}{2}) \cdot \exp(-\frac{1}{3}) \cdot \exp(\frac{1}{2})\right)^{-1} \stackrel{E2}{=} \left(\exp(\frac{5}{2} - \frac{1}{3} + \frac{1}{2})\right)^{-1} = \exp(\frac{8}{3})^{-1} \stackrel{E3}{=} \exp(\frac{8}{3} \cdot (-1)) = \exp(-\frac{8}{3})$

Aufgabe 3: Logarithmus

Vereinfache so weit wie möglich:

1. $\ln(5) - \ln(4)$

4. $4\ln(2\exp(\frac{1}{2})) - \ln(8)$

2. $3\ln(2) + 2\ln(\frac{1}{4})$

5. $\exp(\ln(7) - 3\ln(2))$

3. $\ln(3) + \ln(5) - 2\ln(3) - \ln(\frac{5}{3})$

Lösung:

1. $\ln(5) - \ln(4) \stackrel{L4}{=} \ln(5) + \ln(\frac{1}{4}) \stackrel{L2}{=} \ln(5 \cdot \frac{1}{4}) = \ln(\frac{5}{4})$

2. $3\ln(2) + 2\ln(\frac{1}{4}) \stackrel{L3}{=} \ln(2^3) + \ln((\frac{1}{4})^2) = \ln(8) + \ln(\frac{1}{16})$ $\stackrel{L2}{=} \ln(8 \cdot \frac{1}{16}) = \ln(\frac{1}{2})$

3. $\ln(3) + \ln(5) - 2\ln(3) - \ln(\frac{5}{3}) = -\ln(3) + \ln(5) - \ln(\frac{5}{3})$ $\stackrel{L4}{=} \ln(\frac{1}{3}) + \ln(5) + \ln(\frac{3}{5}) \stackrel{L2}{=} \ln(\frac{1}{3} \cdot 5 \cdot \frac{3}{5}) = \ln(1) \stackrel{L1}{=} 0$

4

Lösungen – Lösungen – Lösungen – Lösungen – Lösungen

```
4. 4\ln(2\exp(\frac{1}{2})) - \ln(8) \stackrel{L^3}{=} \ln((2\exp(\frac{1}{2}))^4) - \ln(8) \stackrel{L^4}{=} \ln((2\exp(\frac{1}{2}))^4) + \ln(\frac{1}{8})

= \ln(16 \cdot \exp(\frac{1}{2})^4) + \ln(\frac{1}{8}) \stackrel{E^3}{=} \ln(16 \cdot \exp(\frac{1}{2} \cdot 4)) + \ln(\frac{1}{8})

= \ln(16 \cdot \exp(2)) + \ln(\frac{1}{8}) \stackrel{L^2}{=} \ln(16 \cdot \exp(2) \cdot \frac{1}{8}) = \ln(2 \cdot \exp(2))

\stackrel{L^2}{=} \ln(2) + \ln(\exp(2)) = \ln(2) + 2

5. \exp(\ln(7) - 3\ln(2)) \stackrel{L^3}{=} \exp(\ln(7) - \ln(8)) \stackrel{L^4}{=} \exp(\ln(7) + \ln(\frac{1}{8}))
```

5.
$$\exp(\ln(7) - 3\ln(2)) \stackrel{L3}{=} \exp(\ln(7) - \ln(8)) \stackrel{L4}{=} \exp(\ln(7) + \ln(\frac{1}{8}))$$

 $\stackrel{L2}{=} \exp(\ln(7 \cdot \frac{1}{8})) = 7 \cdot \frac{1}{8} = \frac{7}{8}$

! Aufgabe 4: Beweis der Rechenregeln

1. Beweise die folgenden Rechenregeln für die Exponentialfunktion. Benutze dazu nur die Definition der Exponentialfunktion und die Rechenregeln für allgemeine Potenzen. Es sei $a \in \mathbb{R}_{>0}$.

E2:
$$\forall x, y \in \mathbb{R} : \exp(x+y) = \exp(x) \cdot \exp(y)$$

E3:
$$\forall x, y \in \mathbb{R} : \exp_a(x \cdot y) = (\exp_a(x))^y$$

E4:
$$\forall x \in \mathbb{R} : \exp(-x) = \frac{1}{\exp(x)}$$

Lösung:

E2 Seien
$$x, y \in \mathbb{R}$$
. Dann: $\exp(x+y) \stackrel{Def.}{=} e^{x+y} \stackrel{Pot.ges.}{=} e^x \cdot e^y \stackrel{Def.}{=} \exp(x) \cdot \exp(y)$

E3 Seien
$$x, y \in \mathbb{R}$$
. Dann: $\exp_a(x \cdot y) \stackrel{Def.}{=} a^{x \cdot y} \stackrel{Pot.ges.}{=} (a^x)^y \stackrel{Def.}{=} \exp_a(x)^y$

E4 Sei
$$x \in \mathbb{R}$$
. Dann: $\exp(-x) = \exp(x \cdot (-1)) \stackrel{E3}{=} \exp(x)^{-1} = \frac{1}{\exp(x)}$

2. Beweise die folgenden Rechenregeln für den Logarithmus. Benutze dazu nur die Rechenregeln für die Exponentialfunktion, die Definition des Logarithmus und Satz 12.2.

L3:
$$\forall x \in \mathbb{R}_+, z \in \mathbb{R} : z \cdot \ln(x) = \ln(x^z)$$

L4:
$$\forall x \in \mathbb{R} : -\ln(x) = \ln(\frac{1}{x})$$

Lösung:

L3 Seien
$$x \in \mathbb{R}_+, z \in \mathbb{R}$$
. Dann: $z \cdot \ln(x) = \operatorname{id}(z \cdot \ln(x)) = \ln(\exp(z \cdot \ln(x)))$
 $\stackrel{E_3}{=} \ln(\exp(\ln(x))^z) = \ln(\operatorname{id}(x)^z) = \ln(x^z)$

L4 Sei
$$x \in \mathbb{R}$$
. Dann: $-\ln(x) = (-1) \cdot \ln(x) \stackrel{L3}{=} \ln(x^{-1}) = \ln(\frac{1}{x})$

Lösungen – Lösungen – Lösungen – Lösungen – Lösungen

Aufgabe 5: Polynomfunktionen dritten Grades

Wir betrachten eine Polynomfunktion dritten Grades $f: \mathbb{R} \to \mathbb{R}$ der Form

$$f(x) = ax^3 + bx^2 + cx + d$$
, $a, b, c, d \in \mathbb{R}, a \neq 0$.

- (a) Bestimme die Nullstellen von f, falls $a=1,\,b=2,\,c=-1$ und d=-2 ist.
- (b) Leite die Funktion ab und bringe die Ableitung in Scheitelpunktsform.
 - (i) Was sagt das Vorzeichen von a über den Graphen der Funktion f aus?
 - (ii) Falls a > 0 ist, wann wird die Ableitung der Funktion minimal? Falls a < 0 ist, wann wird die Ableitung der Funktion maximal?
- (c) Gegeben seien die folgenden drei Funktionsgraphen von Ableitungen dreier Polynomfunktionen dritten Grades.

Zeichne in jede Skizze je eine mögliche Polynomfunktion, deren Ableitung der jeweils abgebildete Funktionsgraph sein könnte.

Lösung:

- (a) Mit Polynomdivision erhalten wir die Nullstellen $x_1 = -1$, $x_2 = -2$ und $x_3 = 1$.
- (b) Als Ableitung von f erhalten wir $f'(x) = 3a \cdot x^2 + 2b \cdot x + c$. Umstellen in Scheitelpunktsform mittels quadratischer Ergänzung liefert

$$f'(x) = 3a \cdot \left(x + \underbrace{\frac{b}{3a}}_{=:d_1}\right)^2 + \underbrace{\frac{b^2}{3a} + c}_{=:d_2}$$

- (i) Das Vorzeichen von a sagt über die Ableitungsfunktion von f aus, ob diese nach oben oder unten geöffnet ist, wie wir in der Vorlesung gesehen haben. Als Folgerung bestimmt das Vorzeichen von a, ob die Funktion f "von -∞ kommt und nach +∞ geht" oder ob sie "von +∞ kommt und nach -∞ geht".
- (ii) In beiden Fällen wir die Ableitung minimal bzw. maximal bei $d_1 = -\frac{b}{3a}$. An dieser Stelle hat f die Steigung $d_2 = \frac{b^2}{3a} + c$.
- (c) Wir erhalten beispielsweise folgende mögliche Polynomfunktionen f:

Hintergrundinformation zu f und f' (nicht Teil der Aufgabenbearbeitung!):

$$f'(x) = 9x^{2} + 8x$$
$$f(x) = 3x^{3} + 4x^{2} + 2$$

Hintergrundinformation zu f und f' (nicht Teil der Aufgabenbearbeitung!):

$$f'(x) = 3x^{2} + \frac{1}{2}$$
$$f(x) = x^{3} + \frac{1}{2}x - \frac{1}{4}$$

Hintergrundinformation zu f und f' (nicht Teil der Aufgabenbearbeitung!):

$$f'(x) = -2x^2 - 4x - 2$$
, $f(x) = -\frac{2}{3}x^3 - 2x^2 - 2x + 1$

Bemerkung: Da es nicht nur eine Stammfunktion gibt, sind diese Polynomfunktionen nicht eindeutig. Jede andere Funktion mit gleichem Graphen, der lediglich vertikal verschoben ist, ist ebenso korrekt.

Aufgabe 6: Sinus und Kosinus

Wir wollen uns in dieser letzten Aufgabe noch mit zwei Funktionen beschäftigen, welche sich geometrisch sehr schön veranschaulichen lassen: der Sinus- und Kosinusfunktion.

Aus der Schule ist sicherlich noch bekannt, dass man einen Winkel in Grad (°) messen. So bezeichnen wir einen Winkel von 90° als rechten Winkel. Ein anderes verbreitetes Winkelmaß ist das Bogenmaß. Das Bogenmaß eines Winkels α beschreibt genau diejenige Strecke, die ein Zeiger auf einem Kreis mit Radius 1 zurücklegt, um den Winkel α zu überstreichen. Dieser Zusammenhang ist in der folgenden Abbildung dargestellt:

Abbildung 1: Einige Winkel im Bogenmaß (ausgehend von der positiven x-Achse)

So entspricht ein Winkel von 45° einem Bogenmaß von $\frac{1}{4}\pi$ – oder anders ausgedrückt: Die Winkel $\alpha = 45^{\circ}$ und $\beta = \frac{1}{4}\pi$ sind gleich groß:

Abbildung 2: Einige Winkel im Bogenmaß (ausgehend von der positiven x-Achse)

Wie können wir allgemein wissen, wie groß ein gewisser Winkel im Bogenmaß in Grad ist? Dazu können wir ausnutzen, dass der Umfang eines Kreises mit Radius 1 genau 2π beträgt. Somit entspricht ein Winkel von 180° gerade π oder ein Winkel von $\frac{\pi}{3}$ (dies ist $\frac{1}{6}$ des Kreisumfangs 2π) gerade $\frac{1}{6}$ von 360° , also 60° . Mit diesen Überlegungen kann man die folgende Umrechnungsformel zwischen Gradzahl und Bogenmaß aufschreiben:

$$\frac{\alpha(\text{in Grad})}{360^{\circ}} = \frac{\alpha(\text{in Bogenmaß})}{2\pi}$$

Wir werden im weiteren Verlauf hauptsächlich mit dem Bogenmaß arbeiten.

Erinnerung 1 (Sinus und Kosinus)

Gegeben sei ein rechtwinkliges Dreieck. Betrachten wir einen Winkel $\alpha \neq 90^\circ$ (d.h. $\alpha \neq \frac{\pi}{2}$) des Dreiecks, so gilt für diesen

$$\sin (\alpha) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
$$\cos (\alpha) = \frac{\text{Ankathete}}{\text{Hypotenuse}}$$

(a) Betrachten wir die folgende Abbildung eines Kreises mit Radius 1. Der eingezeichnete Pfeil schließe mit der waagerechten Achse einen Winkel von $\alpha = \frac{\pi}{3}$ ein.

Lösungen – Lösungen – Lösungen – Lösungen – Lösungen

- (i) Finde in obiger Abbildung ein rechtwinkliges Dreieck und zeichne in dieses Dreieck $\sin(\alpha)$ und $\cos(\alpha)$ ein.
- (ii) Bestimme mittels deiner Skizze die ungefähren Werte von $\sin{(\alpha)}$ und $\cos{(\alpha)}$ für $\alpha = \frac{\pi}{3}$.
- (b) Wir betrachten Abbildung 1 und bezeichnen das Bogenmaß mit x. Wenn wir x varieren (dies entspricht dem Drehen der Zeigers), so erhalten wir für jedes Bogenmaß x einen Wert $\sin(x)$ und einen Wert $\cos(x)$. Zeichne mit Hilfe deiner Erkenntnisse aus Aufgabenteil (a) die beiden Funktion, welche $\sin(x)$ in Abhängigkeit von x und welche $\cos(x)$ in Abhängigkeit von x beschreibt. Dieses sind gerade die beiden trigonometrischen Funktionen Sinus und Kosinus.

 $L\ddot{o}sung$:

(a) (i) Wir zeichnen in die Abbildung $\sin(\alpha)$ und $\cos(\alpha)$ für $\alpha = \frac{\pi}{3}$ ein:

(ii) Die ungefähren Werte von $\sin(\alpha)$ und $\cos(\alpha)$ für $\alpha = \frac{\pi}{3}$ sind

$$\sin\left(\frac{\pi}{3}\right) \approx 0.85$$
 und $\cos\left(\alpha\right) \approx 0.5$.

(Der Kosinus-Wert ist sogar exakt!)

(b) Wir erhalten die folgenden Funktionsgraphen für Sinus und Kosinus:

Abbildung 3: Funktionsgraphen von Sinus und Kosinus.