Orthonormal Columns in a Cive
$$Q'a = 1$$
 identity matrix 符号 $Q = 1$ identity matrix 符号 $Q = 1$ identity matrix 分子 $Q = 1$ identity matrix $Q = 1$ identity $Q = 1$

(Householder reflections)
$$\Rightarrow -\frac{1}{2}$$
 reflection matrix

O start with $U^{T}U^{-1}$

OHECH $H^{T}H^{-1}I^{-1}$
 $\Rightarrow (I-2uu^{T})^{T}(I-2uu^{T})$
 $= I-4uu^{T}+4uu^{T}uu^{T}$
 $= I$

The	eigenvectors	49	symmetric	matrix	Orro	orthogohal
			/.			

Problem for Lecture 3

- Decause u and v one unit vectors, u(uiv) is the projection from v to u,
- 3 so w=v-u(u,v) is orthogonal to u.
- 4. Key property of every orthogonal matrix: $||Qx||^2 = ||x||^2$ for every vector x. More than this, show that $(Qx)^2(Qy) = \chi^2y$ for every vector x and y. So lengths and angles are not changed by Q. Computations with Q never overflow y.

6. A permutation matrix has the same columns as the identity matrix (in some order). Explain why this permutation matrix and every permutation matrix is orthogonal: P= 0000 has orthonormal columns 80 PP=I and P-1 = PT. When a matrix is symmetric or orthogonal, it will have orthogonal eigenvectors. This is the most important source of orthogonal rectors in applied mathematics.