

Panorama General

Importancia del Cálculo Integral en Aplicaciones

Dr. Juan Luis Palacios Soto palacios.s.j.l@gmail.com

Contenido

- Definición
- 4 Historia del cálculo integral y el método de exhaución
- 3 ¿Cómo calcular el área bajo una curva?
- 4 Ejemplos en donde se aplica el cálculo integral

Definición (Cálculo Integral)

El cálculo integral es una rama de las matemáticas que se encarga del proceso de antiderivación (análisis de sumas infinitesimales).

Historia del cálculo integral

- Eudoxo (390 a. C.-337 a. C). Cálculo de volúmenes: pirámide, cono, esfera, etc. Método de exhaución.
- Arquímedes (287 a. C.-212 a. C.) Cálculo de centros de gravedad, superficie de esferas, volúmenes de esferas, etc. Entre otros el método de exhaución.
- Cavalieri (Milán, 1598-Bolonia, 1647). Método de los indivisibles.
- John Wallis (Ashford, 23 de noviembre de 1616 Oxford, 28 de octubre de 1703). Concepto y notación del infinito ∞ .
- Descartes (31 de marzo de 1596-Estocolmo, 11 de febrero de 1650). Geometría analítica.
- Isaac Newton (4 de enero de 1643-31 de marzo de 1727). Desarrollo actual del cálculo integral.
- Gottfried Wilhelm Leibniz (Leipzig, 1 de julio de 1646-Hannover, 14 de noviembre de 1716).
 Desarrollo actual del cálculo integral

Definición (Método de exhaución)

El método de exhaución consiste en aproximar el área del círculo por áreas de polígonos regulares inscritos y/o circunscritos.

¿Cómo calcular el área bajo una curva?

 En matemáticas nos sirven para calcular áreas, volúmenes, centros de masa o centros de gravedad, series de Fourier, series de Taylor, transformada de Laplace, transformada de Radón, etc.

• En astronáutica sirve para el análisis de las trayectorias de satélites, determinar alturas, velocidades, direcciones o el cálculo de longitud de una órbita.

 En administración sirven para determinar costos de una empresa, utilidades, o márgenes de pérdida.

• En electrónica nos sirve para calcular el comportamiento de corrientes, resistencias, capacitaciones, descargas y tiempos de carga dentro de un circuito.

• En química se utilizan para determinar ritmos y reacciones, y decaimiento radioactivo.

• En estadística ayudan a determinar probabilidades

• En sistemas informáticos sirve para la fabricación de chips, desarrollo de semiconductores, digitalización de imágenes, videos y música.

