28 June 2024

Preorders as Categories

Let X be a set. A **preorder** on X is a reflexive and transitive relation $_ \leqslant _ \subseteq X \times X$. For example, any partial order is a preorder (but not all preorders are partial orders!). We will show that preordered sets form a special class of categories.

Exercise 1: Let (X, \leq) be a preordered set. Define a category $\mathcal{C}\ell(X, \leq)$ in the following manner.

- The objects of $\mathcal{C}\ell(X, \leq)$ are the elements of X.
- There is precisely one arrow $x \to y$ in $\mathcal{C}\ell(X, \leqslant)$ in the case that $x \leqslant y$.

Verify that $\mathcal{C}\ell(X,\leqslant)$ is a category. Can any of the hypotheses on the relation \leqslant be relaxed while still ensuring that $\mathcal{C}\ell(X,\leqslant)$ is a category?

The category $\mathcal{C}(X, \leq)$ is called the **classifying category** of the preorder (X, \leq) .

• • • • • • • •

Exercise 2:

- Unpack what it means for two objects x, y of $\mathcal{C}(X, \leqslant)$ to be isomorphic, in terms of the preordered set (X, \leqslant) .
- Unpack what is a functor $\mathcal{C}\ell(X,\leqslant)\to\mathcal{C}\ell(Y,\leqslant)$, in terms of a function between preordered sets $(X,\leqslant)\to (Y,\leqslant)$.
- The opposite category $\mathcal{C}(X,\leqslant)^{\mathsf{op}}$ is the classifying category of another preordered set (X',\leqslant) . What is this preordered set?

• • • • • • • • •

Exercise 3 : Let $\Omega \stackrel{\text{def}}{=} \{ \text{False}, \text{True} \}$ with the usual preordering $\text{False} \leqslant \text{True}$. To keep things clean, let's also write Ω for $\mathcal{C}\ell(\Omega,\leqslant)$. Given an object x of $\mathcal{C}\ell(X,\leqslant)$, we can write a functor $\downarrow x: \mathcal{C}\ell(X,\leqslant)^{\mathsf{op}} \to \Omega$):

$$\downarrow x(y) \stackrel{\mathrm{def}}{=} \begin{cases} \mathsf{True} & \text{if } y \leqslant x \\ \mathsf{False} & \text{otherwise}. \end{cases}$$

Write $\downarrow x \stackrel{\text{nat}}{\leqslant} \downarrow y$ in the case that, for any object z of $\mathcal{C}\ell(X,\leqslant)$, $\downarrow x(z) \leqslant \downarrow y(z)$. Show for any pair of elements $x,y\in X$,

$$x \leqslant y$$
 if and only if $\downarrow x \stackrel{\text{nat}}{\leqslant} \downarrow y$.

• • • • • • • •

Monads for Preorders (Extra)

Given two categories C, D and a functor $F: C \to D$, a **right adjoint** to F is a functor $G: D \to C$ satisfying the following universal property.

$$\frac{f:FX\to Y}{f^\dag:X\to GY}$$

We read this as: for any construction of an arrow from FX to Y in D, there exists a unique dual construction of an arrow form X to GY in G. In the case where G and G are the classifying categories of preordered sets, $G = \mathcal{C}\ell(X, \leqslant)$ and G and G are the classifying categories of preordered sets, G and G are the classifying categories of G and G are the classification of G and G

$$\frac{FX \leqslant Y}{X \leqslant GY}$$

This pair $F \dashv G$ is called a **Galois connection**.

Exercise 4 : Given a Galois connection $F \dashv G$, where $F : \mathcal{C}\ell(X, \leqslant) \to \mathcal{C}\ell(Y, \leqslant)$ and $G : \mathcal{C}\ell(Y, \leqslant) \to \mathcal{C}\ell(X, \leqslant)$, we can apply G after F to obtain a "loop":

$$GF: \mathcal{C}\ell(X,\leqslant) \to \mathcal{C}\ell(X,\leqslant).$$

Show that GF is a **closure operator**, i.e., for any object x of $\mathcal{C}\ell(X,\leqslant)$, $x\leqslant GFx$ and $GF(GFx)\leqslant GFx$.

• • • • • • • •

Exercise 5 : We can reverse the previous exercise. Apply *F* after *G* to obtain another "loop":

$$FG: \mathcal{C}\ell(Y, \leqslant) \to \mathcal{C}\ell(Y, \leqslant).$$

Show that FG is an **interior operator**, i.e., for any object y of $\mathcal{C}\ell(Y, \leqslant)$, $FGy \leqslant y$ and $FGy \leqslant FG(FGy)$. Here is an example of a closure operator which will appear in different forms later. Let (X, \leqslant)

be a preorder, as before. We saw in Exercise 3 that we can "embed" the elements of X into maps $\mathcal{C}\ell(X,\leqslant)^{\mathsf{op}}\to\Omega$. In fact, we can make the set of all such maps into a preorder using $\stackrel{\mathsf{nat}}{\leqslant}$. Given a pair of maps $F,F':\mathcal{C}\ell(X,\leqslant)^{\mathsf{op}}\to\Omega$, write $F\stackrel{\mathsf{nat}}{\leqslant} F'$ in the case that, for any element $x\in X$, we have

$$Fx \leq Fx'$$
.

A **Lawvere-Tierney topology** on (X, \leqslant) is a closure operator J on the set of maps $\mathcal{C}(X, \leqslant)^{\mathsf{op}} \to \Omega$ satisfying:

- J is **idempotent**: $J(JF) \overset{\text{nat}}{\leqslant} J(F)$ (and $J(F) \overset{\text{nat}}{\leqslant} J(J(F))$.
- ullet J preserves infima.