

统计方法与机器学习

第一章: 方差分析

倪葎

DaSE@ECNU (lni@dase.ecnu.edu.cn)

目录

① 多重比较 水平均值差的置信区间 多重比较问题 Tukey 方法

- 在单因子方差分析模型中, 经检验, **因子** A **是显著的。**
- 有**充分的理由**认为因子 A 的各个水平中**至少存在一对水平**的均值是不相等的。
- 但这并不说明,所有的水平均值都不相等的。

- 问题: 我们想要知道哪些水平的均值是不相等的。
- 一个自然的想法: 给定一对水平 (i,i'),构造 $\mu_i \mu_{i'}$ 的 区间估计。

回顾: 枢轴量法

• 分布为

$$\bar{y}_{i.} \sim N(\mu_i, \sigma^2 m^{-1})$$
 \bar{m} $\bar{y}_{i'.} \sim N(\mu_{i'}, \sigma^2 m^{-1})$

- *ȳ_i*. 和 *ȳ_{i'}*. 是独立的。
- 于是,

$$\bar{y}_{i\cdot} - \bar{y}_{i'\cdot} \sim N(\mu_i - \mu_{i'}, 2\sigma^2 m^{-1}).$$

- 但是,这个分布中 σ^2 是未知的。
- 我们用 $\hat{\sigma}^2$ 代替 σ^2 。

回顾: 枢轴量法

• 因为

$$SS_E/\sigma^2 \sim \chi^2(n-a)$$

且与 $\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}$ 独立。

• 方差的估计为

$$\hat{\sigma}^2 = \frac{SS_E}{n-a}$$

• 因此, 枢轴量为

$$\frac{(\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}) - (\mu_i - \mu_{i'})}{\sqrt{\frac{2}{m}}\hat{\sigma}} \sim t(n-a).$$

- 问题: 我们想要知道哪些水平的均值是不相等的。
- 一个自然的想法: 给定一对水平 (i,i'),构造 $\mu_i \mu_{i'}$ 的 区间估计。
- 置信水平为 $1-\alpha$ 的置信区间为

$$(\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}) \pm \sqrt{\frac{2}{m}} \hat{\sigma} \cdot t_{1-\alpha/2}(n-a)$$

概述

- 置信区间与双侧假设检验是存在对应关系的。
- 置信水平为 $1-\alpha$ 的置信区间为

$$(\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}) \pm \sqrt{\frac{2}{m}} \hat{\sigma} \cdot t_{1-\alpha/2}(n-a)$$

可以转化为两正态总体均值差的检验问题

$$H_0: \mu_i = \mu_{i'}$$
 vs $H_0: \mu_i \neq \mu_{i'}$

的接受域。

- 如果置信区间覆盖零,则认为 μ_i 与 $\mu_{i'}$ 无明显差异;
- 若置信区间未覆盖零,则认为 μ_i 与 $\mu_{i'}$ 之间存在明显的差异。

概述

• 由于因子 A 总共有 a 个不同的水平,总共有

$$\binom{a}{2} = \frac{a(a-1)}{2}.$$

• 对不同的水平组合。对于每一对水平 (i, i'),

$$(\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}) \pm \sqrt{\frac{2}{m}} \hat{\sigma} \cdot t_{1-\alpha/2}(n-a)$$

是 $\mu_i - \mu_{i'}$ 的置信区间,置信水平为 $1 - \alpha$ 。

• 然而,总共有 a(a-1)/2 个区间,要求其同时成立,其 联合置信水平就无法达到 $1-\alpha$ 。

概述

• 若 A_1, A_2, \dots, A_k 表示 k 个随机事件,且每个事件发生的概率均为 $1-\alpha$,即 $P(A_i)=1-\alpha, i=1,2\cdots,k$,则其共同发生的概率为

$$P\left(\bigcap_{i=1}^{k} A_{i}\right) \leq P(A_{1}) = 1 - \alpha$$

$$P\left(\bigcap_{i=1}^{k} A_{i}\right) = 1 - P\left(\bigcup_{i=1}^{k} \overline{A}_{i}\right)$$

$$\geq 1 - \sum_{i=1}^{k} P(\overline{A}_{i}) = 1 - k(1 - (1 - \alpha))$$

$$= 1 - k\alpha.$$

• 这表明了它们同时发生的概率实际上应介于 $1 - k\alpha$ 和 $1 - \alpha$ 之间,可能比 $1 - \alpha$ 小得多。

- 为了使得它们同时发生的概率不低于 1α ,一个很自然的方法是把每一个事件发生的概率提高。
- 具体来说,将 $t_{1-\alpha/2}(n-a)$ 调整为 $t_{1-\alpha/(a(a-1))}(n-a)$;
- 这样使得每个置信区间的置信水平提高到 $1-\alpha/(a(a-1)/2)$;
- 于是,

$$P\left(\bigcap_{i=1}^{a(a-1)/2} A_i\right) \ge 1 - a(a-1)/2 \cdot \frac{\alpha}{a(a-1)/2} = 1 - \alpha.$$

- 称该方法为 Bonferroni 方法。
- 虽然简单,但是会导致所得到的置信区间过于保守,精度很差。

概述

- 在方差分析中,经 F 检验拒绝原假设,表明因子 A 是显著的,即 a 个水平的均值不全相等。
- 进一步,我们需要确定哪些水平之间是存在差异的,哪些水平之间是没有差异的。
- 在 a(a > 2) 个水平均值中同时比较任意两个水平均值 间有无明显差异的问题称为**多重比较**。
- 也就是说,在显著性水平为 α 同时检验 a(a-1)/2 个 假设

$$H_0^{ii'}: \mu_i = \mu_{i'}, \quad 1 \le i < i' \le a.$$

• 当 $H_0^{ii'}$ 成立时, $|\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}|$ 不应过大, 过大就应拒绝 $H_0^{ii'}$ 。

概述

• 于是,在同时考察 a(a-1)/2 个假设 $H_0^{ii'}$ 时,这些 $H_0^{ii'}$ 中至少有一个不成立就构成了多重比较检验问题的拒绝域,即拒绝域的形式为

$$W = \bigcup_{1 \le i < i' \le a} \{ |\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}| \ge c_{ii'} \},\,$$

其中 $c_{ii'}$ 是临界值,由原假设 $H_0^{ii'}$ 成立时 $P(W) = \alpha$ 而确定。

- 我们需要求 a(a-1)/2 个临界值 $\{c_{ii'}: 1 \le i < i' \le a\}$;
- 为了简化这个问题,我们可以对所求的临界值提出一些合理的假设;
- 由于各个水平下重复次数均相等,基于对称性一个很自然的要求是 $c_{ii'}$ 是相等的,我们记为 c。

概述

• 考虑多重比较的检验问题

$$H_0^{ii'}: \mu_i = \mu_{i'}, \quad 1 \le i < i' \le a$$

• 在原假设成立时, $\mu_1 = \mu_2 = \cdots = \mu_a = \mu$.

概述

• 我们有

$$\begin{split} P(W) &= P\left(\bigcup_{1 \leq i < i' \leq a} \{|\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}| \geq c\}\right) \\ &= 1 - P\left(\bigcap_{1 \leq i < i' \leq a} \{|\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}| < c\}\right) \\ &= 1 - P\left(\max_{1 \leq i < i' \leq a} |\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}| < c\right) \\ &= P\left(\max_{1 \leq i < i' \leq a} |\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}| \geq c\right) \\ &= P\left(\max_{1 \leq i < i' \leq a} \left|\frac{(\bar{y}_{i\cdot} - \mu) - (\bar{y}_{i'\cdot} - \mu)}{\hat{\sigma}/\sqrt{m}}\right| \geq \frac{c}{\hat{\sigma}/\sqrt{m}}\right) \\ &= P\left(\max_{i} \frac{\bar{y}_{i\cdot} - \mu}{\hat{\sigma}/\sqrt{m}} - \min_{i} \frac{\bar{y}_{i\cdot} - \mu}{\hat{\sigma}/\sqrt{m}} \geq \frac{c}{\hat{\sigma}/\sqrt{m}}\right). \end{split}$$

概述

• 今

$$q(a, df) = \max_{i} \frac{\bar{y}_{i \cdot} - \mu}{\hat{\sigma} / \sqrt{m}} - \min_{i} \frac{\bar{y}_{i \cdot} - \mu}{\hat{\sigma} / \sqrt{m}}.$$

• 因为

$$\frac{\bar{y}_{i\cdot} - \mu}{\hat{\sigma}/\sqrt{m}} \sim t(n-a),$$

- q(a, df) 可以看作 a 个独立同分布的自由度为 df 的 t 分布的随机变量的极差;
- 所以,一般称 q 为 t 化极差统计量。
- 这个分布并不是我们常见的分布之一,这个分布与水平数目 a 和 t 分布的自由度 df = n a 有关,但与 μ, σ^2, m 都无关。

概述

- 如何获得 t 化极差统计量的分布?
- 该分布可以通过蒙特卡洛的方法获得。
- 具体算法如下。

算法 t 化极差统计量的蒙特卡洛分布

Require: 水平数目 a, t 分布的自由度 df, 重复次数 N;

Ensure: t 化极差统计量的 N 个观测值

- 1: for $n = 1, 2, \dots, N$ do
- 2: 从标准正态分布 N(0,1) 产生 a 个随机数: x_1, x_2, \dots, x_a ;
- 3: 将 a 个数据进行排序,令 x_{max} 为最大值, x_{min} 为最小值;
- 4: 从自由度为 df 的 χ^2 分布产生一个随机数 y;
- 5: 计算 $q_n = (x_{\text{max}} x_{\text{min}}) / \sqrt{y/df}$;

概述

• 于是,由

$$P(W) = P(q(a, df) \ge \sqrt{mc/\hat{\sigma}}) = \alpha$$

可推出

$$c = q_{1-\alpha}(a, df)\hat{\sigma}/\sqrt{m}$$

其中, $q_{\alpha}(a, df)$ 表示 q(a, df) 的 α 分位数。

步骤

- 在给定的显著性水平 α 下,确定 t 化极差统计量的分位数 $q_{1-\alpha}(a,df)$,并计算 $c = q_{1-\alpha}(a,df)\hat{\sigma}/\sqrt{m}$;
- 比较每一组样本均值的差 $|\bar{y}_{i\cdot} \bar{y}_{i'\cdot}|$ 临界值 c 的大小;
- 如果

$$|\bar{y}_{i\cdot} - \bar{y}_{i'\cdot}| \geq c$$

 那么认为水平 *i* 与水平 *i'* 之间有显著差异;反之,则 认为这两个水平无差异。