Constant: m, g, c_L , ρ_A , ρ_w , S, A_f

A_{fa}, A_{fw}, v, c_{DS}, c_{Df}, W, vary by time, but will be discretized by state lift & drag of the tail are small and vary on desired moment, so ignored each state transition is instantaneous

$$F_{L} = .5c_{L}\rho_{A}V_{x}^{2}S \qquad F_{D_{S}} = .5c_{D_{S}}\rho_{A}V_{x}^{2}S$$

$$F_{B} = vg\rho_{w} \qquad F_{D_{a}} = .5c_{D_{f}}\rho_{A}V_{x}^{2}A_{f_{a}}$$

$$F_{G} = mg \qquad F_{D_{w}} = W^{*}A_{f_{w}}^{*}V_{x}^{2}$$

$$F_{T} = T(V_{x}) \qquad A_{f} = A_{f_{a}} + A_{f_{w}}$$

$$F_T - F_{D_S} - F_{D_a} - F_{D_w} = m \frac{d^2x}{dt^2}$$

some C_{D_S} , C_{D_f} , A_{f_a} , A_{f_w} , W
 $F_L + F_B - F_G = 0$
some V (not needed)

$$F_T - F_{D_S} - F_{D_a} - F_{D_w} = m \frac{d^2x}{dt^2}$$

some C_{D_S} , C_{D_f} , A_{f_a} , A_{f_w} , W
 $F_L + F_B - F_G = 0$
some V (not needed)

$$F_{T} - F_{D_{S}} - F_{D_{a}} = m \frac{d^{2}x}{dt^{2}}$$
some $\mathbf{c}_{D_{S}}$, $\mathbf{c}_{D_{f}}$

$$F_{L} - F_{G} = m \frac{d^{2}y}{dt^{2}}$$

X_{liftoff}

How does F_T affect x?