Announcement

- Limited Lab hours this week.
 - See course webpage for time / location.
- We will add more lab hours this coming week.
- GitHub repositories set up! Will update lab 1 and exercise
 1 by tomorrow (will announce on Piazza).

Bits, Bytes, and Integers (Cont.)

B&O Readings: 2.2-2.3

CSE 361: Introduction to Systems Software

Instructor:

I-Ting Angelina Lee

Implement a pop_count function, cont

How do you implement pop_count, that counts the number of bits set in a 4 byte memory? ex: pop_count(0x000000FF) = 8

```
int pop_count(unsigned int x) {
   int count = 0;
   for(; x != 0; x &= ~(x&(-x))) {
      count++;
   }
   return count;
}
```

The expression (x & (-x)) computes a mask with a single 1 set at the least-significant position where x has a bit 1 set .

Implement a pop_count function

How do you implement pop_count, that counts the number of bits set in a 4 byte memory? ex: pop_count(0x000000FF) = 8

```
#define MASK 0xF;
int count arr[16] =
        \{0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4\}
int pop count(unsigned int x) {
    int count = 0;
    while (x != 0) {
        count += count arr[x&MASK];
        x = x \gg 4;
    return count;
```


We can check 4 bits at a time!

Recap: What We Learned Thus Far

■ The right shift behaves differently depending on whether an expression is signed versus unsigned.

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition
 - How to detect overflow
 - Multiplication / Division
 - How to do these operations with shifts

Casting Between Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix: OU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Rule of Thumb: Keep bit representations and reinterpret!

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
Use -Werror and -Wall compiler flag
to catch this!
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage /* Declaration of library function memcpy */

```
void *memcpy(void *dest, void *src, size t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
    memcpy(user dest, kbuf, len);
    return len;
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, -MSIZE);
```

You end up allowing the user to copy lots of data from kernel!

Recap: What We Learned About Casting

- C allows one to cast from signed to unsigned and vise versa:
 - Bit pattern is maintained
 - But reinterpreted
 - Can have unexpected effects: adding or subtracting 2^w
- When an expression contains both signed and unsigned, it's implicitly treated as unsigned.

Understanding these quirks in C allows you to write correct and secure code.

When Should I Use Unsigned?

- **Don't** Use Just Because the Number are Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- *Do* Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Expression Evaluation Puzzles

Assuming int type (32 bits)

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

TMIN = -2147483647-1 (0x80000000) TMAX = 2147483647 (0x7FFFFFF)

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition
 - How to detect overflow
 - Multiplication / Division
 - How to do these operations with shifts
- Summary

Extension

- When operating with types of different width, C automatically performs extension
- Converting from smaller to larger integer data type
 - Given w-bit integer X
 - Convert it to w+k-bit integer X' with same value
- Two different kinds of extension:
 - zero extension: used for unsigned data types (similar: >> uses logical right shift for unsigned values)
 - sign extension: used for signed data types
 (similar: >> uses arithmetic right shift for signed values)

```
unsigned short sx = 361;
unsigned int x = sx; /* use zero extension */
short sy = -361;
int y = sy; /* use sign extension */
```

Zero Extension for Unsigned type

What It Does:

- Given w-bit unsigned integer X
- Convert it to w+k-bit unsigned integer X' with same value

Rule:

Prepend k bits of 0:

$$X' = 0, ..., 0, x_{w-1}, x_{w-2}, ..., x_0$$
 $k \text{ copies}$

Easy to see that the extension preserves the value: added bits don't contribute any weight to the value.

X'

17

Sign Extension

What It Does:

- Given w-bit signed integer X
- Convert it to w+k-bit unsigned integer X' with same value

X'

Rule:

Make k copies of the sign bit:

•
$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$
k copies of MSB

The extension preserves the value!

Sign Extension Preserves the Value

- X is positive:
 - easy to see: 0 bits don't add weight
- X is negative:

X'

MSB contributed weight -2^{w-1}

The 2^{nd} MSB and MSB contributed weight $2^{w-1} - 2^w = -2^{w-1}$

We can show that sign extension does not change the value by inducting on k.

Truncation

Task:

- Given w-bit signed integer X
- Convert it to k-bit integer X'with same value (maybe...)

Rule:

Drop high-order w-k bits

Effect:

- Can change the value of X (overflow)
- Unsigned: mathematical mod on X
- Signed: reinterpret the bits (add -2^k if the most-significant bit is 1)

Code Puzzle

What is the output of the following code? Assume that int is 32 bits, short is 16 bits, and the representation is two's complement.

```
unsigned short y = 0xFFFF;
int x = y;
printf("%x", x); /* print in hexadecimal */
```

A) 0xFFFF B) 0xFFFFFFF C) None of the above

Answer: A) 0xFFFF

DO NOT write code like this!

Recap: What We Learned Thus Far

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Unsigned: keep the last k bits; like a mod operation
 - Signed: keep the last k bits, and reinterpret the bits as signed
 - For small numbers yields expected behavior; for large number, can change the value.
- Know how an expression with mixed types is treated but avoid writing code like that to avoid unintended behavior!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition
 - How to detect overflow
 - Multiplication / Division
 - How to do these operations with shifts
- Summary

Integer Addition

Rule of thumb 1: Do the normal binary operations assuming enough bits, and chop off the extra bits that cannot fit.

Rule of thumb 2: The hardware does not care about whether the variables are signed versus unsigned; the operations are the same for both.

Unsigned Addition

$$0 \le u, v \le 2^w-1$$

$$0 \le u + v \le 2^{w+1} - 2$$

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Standard Addition Function

Ignores carry output

How to Detect Overflow in UAdd?

Hint: try performing UAdd with 4-bit values.

- What's the range of value that a 4-bit variable can represent?
- How does one interpret the result with overflow?

Detecting Overflow in Unsigned Addition

When overflow:

- Assume w-bit operands
- If overflow, true sum $\ge 2^w$ but can overflow by 1 bit only
- Uadd(u,v) = true sum mod 2^w = $u + v - 2^w$ = $u + (v - 2^w)$ or $v + (u - 2^w)$

To detect overflow in UAdd, check if UAdd(u,v) < u or < v</p>

Two's Complement Addition

$$-2^{w-1} \le u, v \le 2^{w-1}-1$$

 $-2^w \le u + v \le 2^w - 2$

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

TAdd and UAdd have Identical Bit-Level Behavior

```
int s, t, u, v;
... /* initialize their values */
s = (int) ((unsigned) u + (unsigned) v);
t = u + v;
assert(s == t); /* always true! */
```

Same bit pattern, different interpretation for sign vs. unsigned.

How to Detect Overflow in TAdd?

Hint: try performing TAdd with 4-bit signed values.

- What's the range of value that a 4-bit signed variable can represent?
- Try adding two largest values together
 - 0111 + 0111 = 1110 (-2)
 - Overflow to the MSB
- Try adding two smallest values together
 - 1000 + 1000 = 10000 -> 0000 (0)
 - Overflow to a bit that gets truncated
 - The MSB must be 0

TAdd Overflow

TAdd Overflow

Positive overflow:

- Adding two positive values, where $(u + v) > 2^{w-1}-1$ (TMax)
- w^{th} bit contributes to true sum weight of 2^{w-1} but to TAdd sum -2^{w-1}

■ TAdd sum = true sum –
$$2^w$$
 (negative) $< (2^w-1)$

TAdd Overflow

Negative overflow:

- Adding two negative values, where $(u + v) < -2^{w-1}$ (TMin)
- Missing the carry $(w+1)^{th}$ bit (which would have contributed weight -2^w)
- TAdd sum = true sum + 2^w (positive) $< (2^w-1)$

Detecting Overflow in Two's Complement Addition

Positive overflow:

- the carry-bit overflow into the most-significant bit (MSB)
- true sum $\geq 2^{w-1}$ -1, MSB contributes negative weight instead of positive
- TAdd(u,v) = $(u+v) 2^w$ (which results a negative value)

Negative overflow:

- If true sum $< -2^{w-1}$, the carry-bit overflow into the bit that got truncated
- The $(w+1)^{th}$ bit would have contributed -2^w weight
- TAdd(u,v) = $(u+v) + 2^w$ (which results positive value)
- To detect overflow in Tadd, check if signs of input operands and output differ.

Recap: What We Learned Thus Far

- For w-bit operands, need w+1 bits for true sum
- For fixed-width integer addition, do the usual addition and truncate extra bits
- For unsigned addition
 - Check for overflow by checking if the output is smaller than either input
- For two's complement addition
 - Can only overflow when both operands have the same sign
 - Check for overflow by checking if the signs of inputs and output differ
- Knowing when overflow might occur and how to check for them enables you to write correct code.

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition
 - How to detect overflow
 - Multiplication / Division
 - How to do these operations with shifts
- Summary

Integer Multiplication

- Rule of thumb 1: Do the normal binary operations assuming enough bits, and chop off the extra bits that cannot fit.
- Rule of thumb 2: The hardware does not care about whether the variables are signed versus unsigned; the operations are the same for both.
- Same Rules as Integer Addition!

Unsigned Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication in C

				u			• • •		
Operands: w bits			*	v			• • •	П	
- True Product: 2*w bits	u·v	• • •					• • •		
Discard w hits: w hits		TMu	ılt _w (i	u, v	^{')}		• • •		

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits
- Same treatment as unsigned, just reinterpret the bits

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

k

Examples

- u << 3 23
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Power-of-2 Multiply with Shift Example

Q: How do you computing $X \cdot 6$ by using left shift?

Power-of-2 Multiply with Shift Example

Q: How do you computing $X \cdot 6$ by using left shift?

$$6 = 0...0110$$
 (in binary)

$$x \cdot 6 = x \cdot (2^2 + 2^1)$$

= $x << 2 + x << 1$

Or, equivalently (assuming no overflow),

$$x \cdot 6 = x \cdot (2^3 - 2^1)$$

= x << 3 - x << 1

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when x < 0 (normal division rounds towards 0)

Recap: What We Learned Thus Far

- Integer Multiplication:
 - For w-bit operands, need 2w bits for true product
 - Signed vs unsigned values are treated the same way
- Multiplication by 2^k can be done with left shift
- Division by 2^k can be done with right shift
 - Unsigned: logical shift
 - Signed: arithmetic shift
 - Watch out: for negative numbers, round away from zero!
- Use 2w-bit integer data type for w-bit multiplications to avoid overflow.
- Whenever possible, use shifts for multiplication / division

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition
 - How to detect overflow
 - Multiplication / Division
 - How to do these operations with shifts

Summary

Code Security Example

SUN XDR library

Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

malloc(ele cnt * ele size)

"In this array I've got pointers to 4 chunks of data. I'd like you to allocate a block of memory and store all these chunks in that block."

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
   void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability on 32-bit System

```
malloc(ele_cnt * ele_size)
```

What if:

- ele_cnt $= 2^{20} + 1$
- **ele_size** = 4096 = 2¹²
- Allocation = ??

XDR Vulnerability on 32-bit System

```
malloc(ele_cnt * ele_size)
```

What if:

- ele_cnt = 2²⁰ + 1
 ele size = 4096 = 2¹²
- Allocation = $2^{12} (2^{20} + 1) = 2^{32} + 2^{12}$
 - = 4096 bytes (just shy of the 4.3 billion needed) You're going to overwrite a lot of data in your program.

Integer C Puzzles

Initialization

```
1. x < 0
                   \Rightarrow ((x*2) < 0)
2. x > 0
                   \Rightarrow ((x*2) > 0)
3. ux >= 0
4. x \& 7 == 7 \implies (x << 30) < 0
5. ux > -1
6. x > y \Rightarrow -x < -y
7. x * x >= 0
8. x > 0 \& \& y > 0 \implies x + y > 0
9. \quad x >= 0 \implies -x <= 0
10. x \ll 0 \implies -x \gg 0
11. (x|-x) >> 31 == -1
12. ux >> 3 == ux/8
```

13. $x \gg 3 == x/8$

14. x & (x-1) != 0

Integer C Puzzles Answers

- 1. No (TMin can overflow)
- 2. No (0x0100000...0 shift becomes Tmin)
- 3. Yes (same bits reinterpreted)
- 4. Yes (the 3 LSB are all 1's, after shift, 0x1100...0)
- 5. No (actually it's never true, since -1 is evaluated as unsigned)
- 6. No (think of TMin ... the range of signed value is asymmetric)
- 7. No (overflow)

Integer C Puzzles Answers, Cont

- 8. No (overflow 1. No (TMin can overflow)
- 9. Yes (the range is asymetric, but for every positive value representable, its negative value is also within the range)
- 10. No (again, TMin)
- 11. No (counter example: 0)
- 12. Yes (since it always rounds towards 0)
- 13. No (x/8 will round towards 0 if x < 0)
- 14. No (simple counter example: 0)