

Apuntes

Nicolas Muñoz

EDO Licenciatura en Matemática Pontificia Universidad Católica - Chile

18 de septiembre de 2025

ÉDO ÍNDICE

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introducción a las EDO´s	2
	1.1. Generalidades y Definiciones	2
	1.2. Curiosidades y Reducción de Orden	
2.	Problemas de Cauchy	3
3.	Resolución para EDOs de Primer Orden	3
	3.1. Variables Separables	3
	3.2. EDOs Lineales de Primer Orden	
4.	Soluciones de EDOs Autónomas de Primer Orden	3
	4.1. Intervalo Maximal de Existencia	4
5.	Problema de Cauchy: existencia y unicidad	4
	5.1. Aplicaciones contractivas: teorema del punto fijo de Baanch	5
	5.2. Un poco más de análisis Funcional	
	5.3. Prolongación de soluciones para EDOs	

1. Introducción a las EDO's

1.1. Generalidades y Definiciones

Definición 1.1. Una **ecuación diferencial ordinaria (EDO)** de orden $k \in \mathbb{N}$ es una relación funcional entre la variable real $t \in I$ (donde $I \subset \mathbb{R}$ es un intervalo abierto), una función $y: I \to \mathbb{R}^m$, y sus derivadas $y', y'', \dots, y^{(k)}$. Esta relación se expresa a través de la fórmula:

$$F(t, y(t), y'(t), \dots, y^{(k)}(t)) = 0, \quad \forall t \in I \quad (*)$$

donde $F:J\times\mathbb{R}^m\times\cdots\times\mathbb{R}^m\to\mathbb{R}^n$ es una función dada.

Definición 1.2. Una **solución** de la EDO (*) es una función $\phi \in C^k(I; \mathbb{R}^m)$ tal que $F(t, \phi(t), \phi'(t), \dots, \phi^{(k)}(t)) = 0$ para todo $t \in I$.

Se asume que la EDO se puede resolver con respecto a la derivada de mayor orden $y^{(k)}$, resultando en la forma canónica:

$$y^{(k)}(t) = f(t, y(t), y'(t), \dots, y^{(k-1)}(t)), \quad \forall t \in I$$

donde $f \in C(I \times \mathbb{R}^m \times \cdots \times \mathbb{R}^m; \mathbb{R}^m)$. Esto es una hipótesis razonable por el Teorema de la Función Implícita, asumiendo que $\frac{\partial F}{\partial y^{(k)}} \neq 0$.

Definición 1.3. Una EDO en su forma canónica se dice **lineal** cuando tiene la forma:

$$y^{(k)}(t) = \sum_{j=0}^{k-1} a_j(t) y^{(j)}(t) + g(t), \quad \forall t \in I$$

donde $a_i \in C(I, M_{m \times m}(\mathbb{R}))$ y $g \in C(I; \mathbb{R}^m)$ son funciones dadas.

Observación 1.4. Un sistema lineal es:

- **Homogéneo** si $g(t) \equiv 0$.
- **Autónomo** si f no depende de $t \in I$.

1.2. Curiosidades y Reducción de Orden

- 1. Las funciones $\phi_1(t) = e^{-2t}$ y $\phi_2(t) = e^{-3t}$ son soluciones de la EDO y''(t) + 5y'(t) + 6y(t) = 0. Por el principio de superposición, cualquier combinación lineal $c_1\phi_1(t) + c_2\phi_2(t)$ también es una solución, lo que implica infinitas soluciones.
- 2. La única solución real de la EDO $(y(t))^2 + (y'(t))^2 = 0$ para todo $t \in \mathbb{R}$ es la función idénticamente nula.
- 3. **Invariancia por traslación:** Si ϕ es una solución de un sistema autónomo, entonces $\overline{\phi}(t) = \phi(t t_0)$ también es una solución para cualquier constante t_0 .
- 4. **Reducción a un sistema autónomo de primer orden:** Cualquier sistema de EDOs se puede reducir a un sistema autónomo del primer orden. Para un sistema de orden $k \geq 2$, se definen nuevas variables $u_0 = y, u_1 = y', \ldots, u_{k-1} = y^{(k-1)}$. Esto lleva a un sistema de primer orden. Si se introduce una variable adicional $u_k = t$, se puede obtener un sistema de primer orden autónomo.

2. Problemas de Cauchy

Definición 2.1 (Problema de Cauchy (PC)). Un **problema de Cauchy** para un sistema de EDOs de primer orden es un problema de valor inicial que se expresa como:

$$(PC)\begin{cases} y'(t) = f(t, y(t)) & \forall t \in I \\ y(t_0) = y_0 \end{cases}$$

donde $t_0 \in I$ es el punto inicial y $y_0 \in \mathbb{R}^m$ es el valor inicial. Para que la solución sea única, se necesita agregar una condición inicial.

Para EDOs de orden superior, el problema de Cauchy incluye condiciones iniciales para la función y sus primeras k-1 derivadas.

$$\begin{cases} y^{(k)}(t) = f(t, y(t), y'(t), \dots, y^{(k-1)}(t)) & \forall t \in I \\ y(t_0) = y_0, y'(t_0) = y_1, \dots, y^{(k-1)}(t_0) = y_{k-1} \end{cases}$$

3. Resolución para EDOs de Primer Orden

3.1. Variables Separables

Una EDO de variables separables tiene la forma y' = g(t)/h(y), donde g y h son funciones continuas y $h(y) \neq 0$. La solución se encuentra al separar las variables e integrar:

$$h(\phi(t))\phi'(t) = g(t) \Rightarrow \int h(y)dy = \int g(t)dt + C$$

Esto da una representación implícita de la solución.

3.2. EDOs Lineales de Primer Orden

Una EDO lineal de primer orden tiene la forma y'(t) + p(t)y(t) = f(t). El método de resolución implica dos pasos:

- 1. **Resolver la ecuación homogénea asociada:** y'(t) + p(t)y(t) = 0. La solución homogénea es $y_h(t) = Ce^{-\int p(t)dt}$.
- 2. **Encontrar una solución particular:** Una solución particular $y_p(t)$ se encuentra multiplicando la ecuación no-homogénea por el factor integrante $e^{\int p(t)dt}$ y luego integrando. La solución general es la suma de las soluciones homogénea y particular: $y(t) = y_h(t) + y_p(t)$.

4. Soluciones de EDOs Autónomas de Primer Orden

Para una EDO autónoma de primer orden de la forma y'(t) = f(y(t)) con una condición inicial $y(0) = y_0$. Si $f(y_0) \neq 0$, se puede encontrar una solución única al integrar la ecuación $\frac{y'(t)}{f(y(t))} = 1$. Esto lleva a la expresión $\int_{y_0}^{y(t)} \frac{du}{f(u)} = t$. Si $\psi(y) = \int_{y_0}^{y} \frac{du}{f(u)}$, la solución es $\phi(t) = \psi^{-1}(t)$.

Proposición 4.1. Si $f: I \to \mathbb{R}$ es continua y $y_0 \in I$ tal que $f(y_0) \neq 0$, la solución al problema de valor inicial es monótona en su intervalo de definición.

4.1. Intervalo Maximal de Existencia

El intervalo de existencia de la solución puede ser finito. Por ejemplo, en el caso de $y'=y^2$ con $y(0)=y_0>0$, la solución es $\phi(t)=\frac{y_0}{1-y_0t}$, que solo existe en el intervalo $(-\infty,1/y_0)$ y .explota.en $t=1/y_0$. Este es un ejemplo de una **solución maximal**.

Es importante notar que las soluciones pueden no ser únicas si $f(y_0) = 0$ en la condición inicial.

POR COMPLETAR

5. Problema de Cauchy: existencia y unicidad

Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto, que por lo general será de la forma $\Omega = I \times \widetilde{\Omega}$, con $I \subset \mathbb{R}$ un intervalo abierto y $\widetilde{\Omega} \subset \mathbb{R}^n$ un conjunto abierto. Dada una función

$$f \in C(\Omega; \mathbb{R}^n)$$

consideramos nuevamente el problema de Cauchy

$$(PC) \begin{cases} y'(x) = f(x, y(x)), & \forall x \in I \text{ con } x_0 \in I \text{ y} \\ y(x_0) = y_0, & y \in \mathbb{R}^n \end{cases}$$

El (PC) puede ser formulado de manera equivalente, pero relativamente" más débil:

Lema 5.1. Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto de la forma $\Omega = I \times \widetilde{\Omega}, \ I \subset \mathbb{R}$ intervalo abierto y $\widetilde{\Omega} \subset \mathbb{R}^n$ conjunto abierto. Dados $x_0 \in I, \ y_0 \in \mathbb{R}^n$ y $f \in C(\Omega; \mathbb{R}^n)$, una función $\varphi : I \to \mathbb{R}^n$ es solución de (PC) si y sólo si:

- 1. $\varphi \in C(I; \mathbb{R}^n)$;
- 2. $(x, \varphi(x)) \in \Omega \quad \forall x \in I;$
- 3. $\varphi(x) = y_0 + \int_{x_0}^x f(s, \varphi(s)) ds \quad \forall x \in I.$

(i, ii y iii es formulación integral del (PC)).

Observación 5.2. La formulación integral nos permite estudiar el (PC) desde una perspectiva más abstracta. Supongamos por ahora que

$$\Omega = \mathbb{R}^{n+1}, \ I = \mathbb{R}, \ \widetilde{\Omega} = \mathbb{R}^n \ \mathrm{y} \ f \in C(\mathbb{R}^{n+1}; \mathbb{R}^n).$$

Dados $y_0 \in \mathbb{R}^n$ y $x_0 \in \mathbb{R}$, consideramos la aplicación $T: C(\mathbb{R}; \mathbb{R}^n) \to C(\mathbb{R}; \mathbb{R}^n)$.

$$T(\varphi)(x) = y_0 + \int_{x_0}^x f(s, \varphi(s)) ds \quad \forall x \in \mathbb{R}$$

Por el lema precedente, es evidente que $\varphi \in C(\mathbb{R}; \mathbb{R}^n)$ es solución de (PC) si y sólo si $T(\varphi) \equiv \varphi$ (i.e., φ es punto fijo de T).

Sea $\Omega \subset \mathbb{R}^{n+1}$, $\Omega = I \times \widetilde{\Omega}$ con $I \subset \mathbb{R}$ intervalo abierto y $\widetilde{\Omega} \subset \mathbb{R}^n$ conjunto abierto.

$$(PC) \begin{cases} y'(x) = f(x, y(x)) & \forall x \in I, \\ y(x_0) = y_0 & (x_0 \in I, y_0 \in \mathbb{R}^n) \end{cases}$$

1. Resolver localmente el problema (PC) corresponde a encontrar un intervalo $J \subset I$ y una función $\varphi \in C^1(J; \mathbb{R}^n)$ tales que:

$$x_0 \in J, (x, \varphi(x)) \in \Omega \ \forall x \in J, \ \varphi'(x) = f(x, \varphi(x)) \ \forall x \in J;$$

- 2. Si J_1 , $J_2 \subset I$ son intervalos abiertos que contienen a x_0 , y $\phi_1 \in C^1(J_1; \mathbb{R}^n)$ y $\phi_2 \in C^1(J_2; \mathbb{R}^n)$ son soluciones locales de (PC), decimos que ϕ_2 extiende a ϕ_1 es una restricción de ϕ_2 ;
- 3. Una solución es maximal cuando no admite extensiones;
- 4. Una solución local, definida sobre $J \subset I$, es global si J = I.

Recuerdo. Dados a < b números reales, el espaacio vectorial

$$C([a,b];\mathbb{R}^n)$$

dotado de la norma $\|\varphi\|_{\infty} = \max_{x \in [a,b]} |\varphi(x)| \quad \forall \varphi \in C([a,b];\mathbb{R}^n)$, es un espacio de Banach.

- Todo sub-conjunto cerradeo de $(C([a,b];\mathbb{R}^n);\|\cdot\|_{\infty})$ es un espacio métrico completo.
- Todo sub-conjunto vectorial cerrado de $(C([a,b];\mathbb{R}^n);\|\cdot\|_{\infty})$ es un espacio de Banach.

5.1. Aplicaciones contractivas: teorema del punto fijo de Baanch

Definición 5.3 (aplicación contractiva). Sea (X, d) un espacio métrico completo. Decimos que una aplicación $T: X \to X$ es contractiva si existe $\alpha \in [0, 1)$ tal que

$$d(T(x), T(y)) < \alpha d(x, y) \quad \forall x, y \in X$$

Teorema 5.4 (punto fijo de Banach). Sea (X, d) un espacio métrico completo y $T: X \to X$ una aplicación contractiva. Entonces, existe un único $\hat{x} \in X$ tal que $T(\hat{x}) = \hat{x}$.

Funciones Lipschitz: $\Omega \subset \mathbb{R}^{n+1}$, $(x,y) \in \Omega$, $x \in \mathbb{R}$, $y, y \in \mathbb{R}^n$

Definición 5.5 (función globalmente Lipschitz). Sea $\Omega \subset \mathbb{R}^{n+1}$ abierto, y $f: \Omega \to \mathbb{R}^n$ una función. Decimos que f es globalmente Lipschitz respecto a la variable y en Ω si existe una constante L > 0 tal que

$$|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2| \quad \forall (x,y_1), (x,y_2) \in \Omega$$

Nota 5.6. Lip $(y; \Omega)$ denota el espacio vectorial de todas las funciones $f : \Omega \to \mathbb{R}^n$ que son globalmente Lipschitz respecto a y en Ω .

Definición 5.7 (función localmente Lipschitz). Sea $\Omega \subset \mathbb{R}^n$ abierto. Se dice que una función $f: \Omega \to \mathbb{R}^n$ es <u>localmente</u> Lipschitz respecto a la variable y en Ω si: para cualquier punto $(\overline{x}, \overline{y}) \in \Omega$, existe $\varepsilon > 0$ y una constante L > 0 tales que $B((\overline{x}, \overline{y}), \varepsilon) \subset \Omega$, y

$$|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2| \quad \forall (x,y_1), (x,y_2) \in B((\overline{x},\overline{y},\varepsilon).$$

Nota 5.8. $\operatorname{Lip}_{loc}(y;\Omega)$.

1. Si $f \in \text{Lip}(y; \Omega)$, entonces f es uniformemente continua respecto a y en Ω : $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall (x, y_1), (x, y_2) \in \Omega$,

$$|y_1 - y_2| \le \delta \implies |f(x, y_1) - f(x, y_2)| \le \varepsilon$$

2. Si $f \in \text{Lip}_{loc}(y; \Omega)$, entonces f es continua respecto a la variable y en Ω : para todo $(\overline{x}, \overline{y}) \in \Omega$:

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ |y - \overline{y}| \le \delta \implies (\overline{x}, \overline{y}) \in \Omega \ y \ |f(\overline{x}, \overline{y}) - f(\overline{x}, y)| \le \varepsilon$$

Observación 5.9. En general, $\operatorname{Lip}(y;\Omega) \not\subseteq C(\Omega;\mathbb{R}^n)$. Por ejemplo,

$$f(x,y) = \begin{cases} 0 & \text{si } x \le 0 \\ y & \text{si } x > 0 \end{cases}$$

pertenece a Lip $(y; \mathbb{R}^2)$, pero es discontinua en el conjunto $\{(x, y) \in \mathbb{R}^2 \mid x = 0\}$. Recíprocamente, la continuidad (.en pareja") de una función no implica ningún tipo de Lipschitzianidad (local o global).

 $\hat{f}(x,y) = \sqrt{|y|} \quad \forall (x,y) \in \mathbb{R}^2$. Vemos que no es localmente Lipszhitz: $\hat{f} \not\in \text{Lip}_{loc}(y;\mathbb{R}^2)$: por contradicción, debiese existir $\varepsilon > 0$ tal que $f \in \text{Lip}(y;B((0,0),\varepsilon))$. Por ende, existe una constante L > 0 tal que

$$\left| f(0,0) - f\left(0, \frac{\varepsilon}{n}\right) \right| \le L \cdot \frac{\varepsilon}{n} \quad \forall n \ge 2,$$

$$\iff \sqrt{\frac{\varepsilon}{n}} \le \frac{L\varepsilon}{n}$$

$$\iff \sqrt{n} \le L\sqrt{\varepsilon} \quad \forall n \ge 2,$$

lo cual es absurdo!

Teorema 5.10. Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto y

$$f = (f_1, f_2, \dots, f_n) : \Omega \to \mathbb{R}^n$$

una función tal que las derivadas parciales $\frac{\partial f_i}{\partial y_j} \ \forall i, j \in \{1, \dots, n\}$ existen y son continuas en Ω . Entonces:

1. $f \in \text{Lip}_{loc}(y; \Omega);$

2. Si, además, Ω es convexo, $f \in \text{Lip}(y; \Omega)$ si y sólo si

$$\sup_{(x,y)\in\Omega} \left| \frac{\partial f_i}{\partial y_j}(x,y) \right| < \infty \quad \forall i,j \in \{1,\dots,n\}$$

Observación 5.11. Consideramos las funciones $f_1, f_2, f_3 : \mathbb{R}^2 \to \mathbb{R}$ definidos por:

$$f_1(x,y) = \frac{1}{1+y^2}, \ f_2(x,y) = \frac{x}{1+y^2}, \ f_3(x,y) = \begin{cases} xy & \text{si } x > 0; \\ y & \text{si } x \le 0. \end{cases}$$

Se puede demostrar que:

- 1. $f_1 \in \text{Lip}(y; \mathbb{R}^2);$
- 2. $f_2 \in \text{Lip}(y; \mathbb{R}^2)$, pero $f_2 \in \text{Lip}(y; \Omega)$ para cualquir dominio $\Omega \subset \mathbb{R}^2$ que sea acorada en al dirección de x;
- 3. $f_3 \in \text{Lip}(y; \mathbb{R}^2)$ y $f_3 \in \text{Lip}(y; \Omega)$ para cualquier dominio $\Omega \subset \mathbb{R}^2$ que sea acotado en la dirección de x. No obstante, $\frac{\partial f_3}{\partial y}$ no es continua en \mathbb{R}^2 .

Teorema 5.12. Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto. Si $f \in \text{Lip}_{\text{loc}}(y;\Omega)$ y $K \subset \Omega$ es un conjunto compacto tal que $\sup_{(x,y)\in K} |f(x,y)| < \infty$, entonces $f \in \text{Lip}(y;K)$.

Teorema 5.13 (Picard-Lindelöf). Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto y $f \in C(\Omega; \mathbb{R}^n) \cap \operatorname{Lip}_{\operatorname{loc}}(y; \Omega)$. Entonces, para cada $(x_0, y_0) \in \Omega$, existe un $\delta > 0$ tal que, si denotamos

$$I_{\delta} = [x_0 - \delta, x_0 + \delta],$$

el problema de Cauchy

$$(PC) \begin{cases} y'(x) = f(x, y(x)) & \forall x \in I_{\delta}, \\ y(x_0) = y_0 \end{cases}$$

admite una única solución.

Demostración. Como Ω es abierto y $(x_0,y_0)\in\Omega$, existen $a_0>0$ y $b_0>0$ tal que, si ponemos

$$R = [x_0 - a_0, x_0 - a_0] \times \overline{B(y_0, b_0)},$$

entonces $R \subset \Omega$ y $f \in \text{Lip}(y; R)$.

• Sea L > 0 una constante de Lipschitsz para f en R (respecto a y):

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2| \quad \forall (x, y_1), (x, y_2) \in R.$$

• Denotemos por $M = \max_{(x,y) \in R} |f(x,y)|$.

Fijemos un número $\delta > 0$ tal que

$$0 < \delta < \min\left\{a_0, \frac{b_0}{M}, \frac{1}{L}\right\}$$

y consideremos el conjunto:

$$X = \{ \varphi \in C(I_{\delta}; \mathbb{R}^n) \mid |\varphi(x) - y_0| \le b_0 \quad \forall x \in I_{\delta} \}$$

donde (X, d) es un espacio métrico completo con la distancia usual en $C(I_{\delta}, \mathbb{R}^{n})$. Definimos la aplicación $T: X \to C(I_{\delta}; \mathbb{R}^{n})$ por

$$T(\varphi)(x) = y_0 + \int_{x_0}^x f(s, \varphi(s)) ds \quad \forall \varphi \in X, \ \forall x \in I_\delta.$$

Notemos que, dado $\varphi \in X$, φ es solución de (PC) en I_{δ} si y sólo si φ es un punto fijo de la aplicación T en X.

$$\varphi \in C(I_{\delta}; \mathbb{R}^n) : (x, \varphi(x)) \in \Omega \quad \forall x \in I_{\delta}; \ \varphi(x_0) = y_0$$

PDQ: $|\varphi(x) - y_0| \le b_0 \quad \forall x \in I_\delta.$

Demostración. Por contradicción, supongamos que $\exists \hat{x} \in I_{\delta} : |\varphi(x) - y_0| > b_0$. Por continuidad, existe $\hat{x}_0 \in I_{\delta}$ tal que

$$|\varphi(\hat{x}_0 - y_0)| = b_0 \text{ y } |\varphi(x) - y_0| \quad x \in (x_0, \hat{x}_0).$$

$$b_0 = |\varphi(\hat{x}_0) - y_0|$$

$$lc = \left| \int_{x_0}^{\hat{x}_0} f(s, \varphi(s)) ds \right|$$

$$\leq \left| \int_{x_0}^{\hat{x}_0} |f(s, \varphi(s))| ds \right|$$

$$\leq M|\hat{x}_0 - x_0| \leq M\delta < b_0.$$

Dada $\varphi \in X$, ciertamente $T(\varphi) \in C(I_{\delta}; \mathbb{R}^n)$. Además, $\forall x \in I_{\delta}$,

$$|T(\varphi)(x) - y_0| = \left| \int_{x_0}^x f(s, \varphi(s)) ds \right|$$

$$\leq \left| \int_{x_0}^x |f(s, \varphi(s)) ds| \right|$$

$$\leq M|x - x_0| \leq M\delta < b_0.$$

entonces, $T(\varphi) \in X$. Demostremos ahora que T es una contracción: dados $\varphi, \psi \in X$,

$$|T(\varphi)(x) - T(\psi)(x)| = \left| \int_{x_0}^x (f(s, \varphi(s)) - f(s, \psi(s))) ds \right|$$

$$\leq \left| \int_{x_0}^x |f(s, \varphi(s)) - f(s, \psi(s))| ds \right|$$

$$\leq L \left| \int_{x_0}^x |\varphi(s) - \psi(s)| ds \right|$$

$$\leq L|x - x_0| \|\varphi - \psi_0\|_{\infty} \leq L\delta \|\varphi - \psi\|_{\infty},$$

con $L\delta < 1$. Luego, $T: X \to X$ es una contracción, y entonces admite un único punto fijo $\hat{\varphi} \in X$, que constituye la única solución del (PC) en I_{δ} .

i

Teorema 5.14 (Picard-Lindelöf para EDOs de orden superior). Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto y

$$g \in C(\Omega; \mathbb{R}) \cap \text{lip}_{loc}(y, y', \dots, y^{n-1}; \mathbb{R}).$$

dado cualquier punto $(x_0, y_0, y'_0, \dots, y_0^{n-1}) \in \Omega$, existe $\delta > 0$ tal que, si ponemos $I_{\delta} = [x_0 - \delta, x_0 + \delta]$, el problema de Cauchy

$$\begin{cases} y^m(x) = g(x, y(x), y'(x), \dots, y^{n-1}(x)) & \forall x \in I_{\delta} \\ y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{n-1}(x_0) = y_0^{n-1}, \end{cases}$$

admite una única solución.

Ejemplo 5.15 (Ecuaciones integrales). Sea a < b números reales, $I = [a, b], f \in C(I; \mathbb{R}), k \in C(I \times I : \mathbb{R})$ y $\lambda \in \mathbb{R}$ elementos dados. El problema de Volterra (de segunda especie) consiste en hallar una función $\varphi_{\lambda} \in C(I; \mathbb{R})$ tal que

$$\varphi_{\lambda}(x) = f(x) + \lambda \int_{a}^{x} k(x, t) \varphi_{\lambda}(t) dt. \quad \forall x \in [a, b].$$

5.2. Un poco más de análisis Funcional.

Recordamos que en cualquier espacio métrico, un sub-conjunto es compacto si y sólo si es secuecialmente compacto.

Definición 5.16. Sean a < b números reales, I = [a, b] Dada una familia de funciones $F \subset C(I; \mathbb{R})$, decimos que

- 1. F es relativamente compacto si \overline{F} es compacto, vale decir para cualquier sucesión $(\varphi_n)_{n\in\mathbb{N}}\subset F$, existen $\hat{\varphi}\in C(I;\mathbb{R})$ y una sub-sucesión $(\varphi_{n_k})_{k\in\mathbb{N}}$ tales que $\varphi_{n_k}\xrightarrow{k\to\infty}\hat{\varphi}$ es $C(I;\mathbb{R})$
- 2. F es equicontinua si $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x_1, x_2 \in I) \quad |x_1 x_2| < \delta \Rightarrow |\varphi(x_1) \varphi(x_2)| < \epsilon \forall \varphi \in F$
- 3. Fes acotada si $\sup_{\varphi \in F} |\varphi|_{\infty} < \infty$

Teorema 5.17 (Arzelà-Ascoli). Sean a < b números reales y I = [a, b]. Dada una familia $F \subset C(I; \mathbb{R})$, se tiene que F es relativamente compacto si y sólo si F es equicontinua y acotada.

Teorema 5.18 (Punto fijo de Brower). Sea $K\subset\mathbb{R}^n$ un conjunto compacto, conexo y no-vácio. Sea $T:K\to K$ una aplicación continua. Entonces existe, al menos, un punto fijo de T en K

Teorema 5.19 (Punto fijo de Schauder). Sea \mathcal{X} un espacio de Banach sobre \mathbb{R} , y $K \subset \mathcal{X}$ un conjunto conexo, cerrado, acotado y no vacío. Consideremos una aplicación $T: K \to K$ continua y tal que T(K) es relativamente compacto, Entonces existe, al menos, un punto fijo de T en K.

Observación 5.20. T(k) es relativamente compactio si y sólo si $\overline{T(K)}$ es compacto, si y sólo si cualquier sucesión $(X_n)_{n\in\mathbb{N}}\subset\mathcal{X}$ resulta que $(T(X_n))_{n\in\mathbb{N}}$ admite una sub-sucesión convergente (a un límite que no necesariamente pertenece a T(K)).

Teorema 5.21 (Peano). Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto y $f \in C(\Omega; \mathbb{R}^n)$. Entonces, para cualquier $(x_0, y_0) \in \Omega$, existe $\delta > 0$ tal que, si ponemos $I_{\delta} = [x_o - \delta, x_o + \delta]$, el problema de Cauchy

$$\begin{cases} y(x) = f(x, y(x)) & x \in I_{\delta} \\ y(x_0) = y_0 \end{cases}$$

Admite (al menos) una solución

Demostración. Como Ω es abierto, existen $a_0 > 0$ y $b_0 > 0$ tales que, si denotamos $R = [x_0 - a_0, x_0 + a_0] \times \overline{B(y_0, b_0)}$, entonces $R \subset \Omega$. Sea $M = \max_{(x,y) \in \mathbb{R}} |f(x,y)|$ y tomamos $\delta > 0$ tales que $0 < \delta < \min\left\{a_0, \frac{b_0}{M}\right\}$. Definamos

$$K = \{ \varphi \in C(I_{\delta}; \mathbb{R}^n) | \varphi(x_0) = y_0; \quad |\varphi(x) - y_0| \le b_o \quad \forall x \in I_{\delta} \}$$

que es no vacío, conexo, conexo y acotado. Definamos ahroa la aplicación $T: K \to C(I_{\delta}; \mathbb{R}^n)$ mediante la fórmula

$$T(\varphi)(x) = y_0 + \int_{x_0}^x f(s, \varphi(s)) ds \quad \forall \varphi \in K, \quad \forall x \in I_\delta$$

Notamos que $T(\varphi) \in C(I_{\delta}; \mathbb{R}^n) \quad \forall \varphi \in K$. Además, si $\varphi \in K$, se tiene que $(x, \varphi(x) \in \mathbb{R}, \forall x \in I_{\delta} \text{ y así:}$

$$|T(\varphi)(x) - y_0| \le \left| \int_{x_0}^x |f(s, \varphi(s))| ds \right| \le M|x - x_0| \le M\delta - b_0 \quad \forall x \in I_\delta$$

y como $T(\varphi)(x_0) = y_0$, entonces $T(\varphi) \in K \quad \forall \varphi \in K$.. Ahora, afirmamos que $T: K \to K$ es continua, sea $\epsilon > 0$. Como f es uniformemente continua en \mathbb{R} , exite $\delta_0 > 0$ tal que $: \forall (s, y_1), (s, y_2) \in \mathbb{R}$,

$$|y_1 - y_2| \le \delta_0 \Rightarrow |f(s, y_1) - f(s, y_2)| \le \frac{\epsilon}{\delta}$$

Por ende, si $\varphi_1, \varphi_2 \in K$ son tales que $|\varphi_1, \varphi_2|_{\infty} \leq \delta_0$, entonces $|\varphi_1(s) - \varphi_2(s)| \leq \delta_0 \quad \forall s \in I_{\delta}$. Entonces

$$|f(s,\varphi_1(s)) - f(s,\varphi_2(s))| \le \frac{\epsilon}{\delta} \quad \forall s \in I_{\delta}$$

Luego,

$$|t(\varphi_1)(x) - T(\varphi_2)(x)| \le \left| \int_{x_0}^x |f(s, \varphi_1(s)) - f(s, \varphi_2(s))| \right| \le \frac{\epsilon}{\delta} |x - x_0| \le \epsilon \quad \forall x \in I_\delta$$

Entonces $||T(\varphi_1) - T(\varphi_2)||_{\infty} \leq \epsilon \quad \forall \varphi_1, \varphi_2 \in K$ tales que $||\varphi_1 - \varphi_2||_{\infty} \leq \delta_0$ con esto, demostramos que la familia $T(K) \subset C(I_{\delta}; \mathbb{R}^n)$ es equicontinua. Dados $x_1, x_2 \in I_{\delta}$ y $\varphi \in K$, notamos que

$$|T(\varphi)(x_1) - T(\varphi)(x_2)| \le \left| \int_{x_1}^{x_2} |f(s, \varphi(s))| ds \right| \le M|x_1 - x_2|$$

Así, dado $\epsilon > 0$, escogemos $\delta_1 = \frac{\epsilon}{M}$, de modo que

$$(\forall x_1, x_2 \in I_\delta) \quad |x_1 - x_2| \le \delta_1 \Rightarrow |T(\varphi)(x_1) - T(\varphi)(x_2)| \le \epsilon \quad \forall \varphi \in K$$

Entonces, demostramos que la fórmula T(K) es acotada:

$$\sup_{\varphi \in K} ||T(K)||_{\infty} < \infty$$

Dado $\varphi \in K$ y $x \in I_{\delta}$, se tiene

$$|T(\varphi)(x)| \le \left| y_0 + \int_{x_0}^x f(s, \varphi(s)) ds \right| \le |y_0| + \left| \int_{x_0}^x f(s, \varphi(s)) ds \right|$$

$$\le |y_0| + M|x - x_0| \le |y_0| + M\delta \le |y_0| + b_0$$

Por lo tanto

$$||T(\varphi)|| \le |y_0| + b_0 \quad \forall \varphi \in K$$

El teorema de Arzelà-Ascoli asegura entonces que T(K) es relativamente compacto. Luego, se cumplen todas las hipótesis del teorema de punto fijo de Schauder, y así, $(\exists \hat{\varphi} \in K) \quad T(\hat{\varphi}) = \hat{\varphi}$, entonces:

$$\hat{\varphi} \in C(I_{\delta}; \mathbb{R}^n)$$
 es solución de (PC)

Teorema 5.22. Sea $\Omega \subseteq \mathbb{R}^{n+1}$ un conjunto abierto y $g \in C(\Omega, \mathbb{R})$. Para cualquier $(x_0, y_0, y'_0, \dots, y_0^{(n-1)}) \in \Omega$, existe $\delta > 0$ tal que, si ponemos $I_{\delta} = [x_0 - \delta, x_0 + \delta]$, el problema de Cauchy

$$(PC) \begin{cases} y^{(n)}(x) = g(x, y(x), y'(x), \dots, y^{(n-1)}(x)) & \forall x \in I_{\delta}, \\ y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

admite, al menos, una solución.

PIZARRA POR COMPLETAR

Ejemplo 5.23 (Iteraciones de punto fijo.). Consideramos el siguiente problema de Cauchy (PC):

$$(PC) \quad \begin{cases} y'(t) = y(t) + t - 1 & \forall t \in \mathbb{R}, \\ y(0) = 1, \end{cases}$$

cuya (única) solución es $y(t) = e^t - t \quad \forall t \in \mathbb{R}$. La formulación integral de (PC) es:

$$Y(t) = 1 + \int_0^t [Y(s) + s - 1] ds \quad \forall t \in \mathbb{R}.$$

Consideremos la sucesión de funciones $(\varphi_n)_{n\in\mathbb{N}}\subset C(\mathbb{R};\mathbb{R})$ dada por:

$$\varphi_0(t) = 1 \quad \forall t \in \mathbb{R}, \quad \varphi_{n+1}(t) = 1 + \int_0^t [\varphi_n(s) + s - 1] \, ds \quad \forall n \in \mathbb{N}, \forall t \in \mathbb{R}.$$

Calculamos los primeros términos:

$$\varphi_1(t) = 1 + \int_0^t (\varphi_0(s) + s - 1) \, ds = 1 + \int_0^t (1 + s - 1) \, ds = 1 + \int_0^t s \, ds$$

$$= 1 + \frac{t^2}{2} = 1 + \frac{t^2}{2!} \quad \forall t \in \mathbb{R}.$$

$$\varphi_2(t) = 1 + \int_0^t (\varphi_1(s) + s - 1) \, ds = 1 + \int_0^t \left(1 + \frac{s^2}{2!} + s - 1\right) \, ds$$

$$= 1 + \int_0^t \left(\frac{s^2}{2} + s\right) \, ds = 1 + \frac{t^3}{6} + \frac{t^2}{2} = 1 + \frac{t^2}{2!} + \frac{t^3}{3!} \quad \forall t \in \mathbb{R}.$$

Por inducción, se puede demostrar que:

$$\varphi_n(t) = 1 + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots + \frac{t^{n+1}}{(n+1)!} = 1 + \sum_{k=2}^{n+1} \frac{t^k}{k!}.$$

Tomando el límite cuando $n \to \infty$:

$$\lim_{n \to \infty} \varphi_n(t) = 1 + \sum_{k=2}^{\infty} \frac{t^k}{k!} = \left(\sum_{k=0}^{\infty} \frac{t^k}{k!}\right) - t = e^t - t \quad \forall t \in \mathbb{R}.$$

Con convergencia uniforme en cada intervalo compacto de \mathbb{R} .

Ejemplo 5.24. Consideremos el siguiente problema de Cauchy (PC):

$$(PC) \begin{cases} y'(t) = \frac{t+2}{t^2 + (y(t))^2} & \forall t \in I \subset \mathbb{R}, \\ y(0) = 1 \end{cases}$$

Sea $\Omega = \mathbb{R} \setminus \{(0,0)\}$ y $f(x,y) = \frac{x+2}{x^2+y^2}$ $\forall (x,y) \in \Omega$. Como $f \in C^{\infty}(\Omega) \Longrightarrow f \in \text{Lip}_{loc}(y;\Omega)$, y así, existe $\delta > 0$ tal que (PC) admite una única solución en $I_{\delta} = [-\delta, \delta]$, que denotamos por $\varphi \in C^1(I_{\delta};\mathbb{R})$. De hecho, $\varphi \in C^{\infty}((\delta,\delta);\mathbb{R})$ y podemos escribir un polinomio de MacLaurin de orden 2 con resto de Peano:

$$\varphi(t) = \varphi(0) + \varphi'(0)t + \frac{\varphi''(0)}{2}t^2 + o(t^2)$$

para $t \to 0$. Sabemos que $\varphi(0) = 1$ y $\varphi'(0) = \frac{0+2}{0+1} = 2$. Además, derivando $(PC)_{(1)}$ se obtiene:

$$\varphi''(t) = \frac{t^2 + (\varphi(t))^2 - (t+2)(2t+2\varphi(t)\varphi'(t))}{(t^2 + (\varphi(t))^2)^2} \quad \forall t \in \mathring{I}_{\delta},$$

con lo que: $\varphi''(0) = -7$. Luego:

$$\varphi(t) = 1 + 2t - \frac{7}{2}t^2 + o(t^2)$$

para $t \to 0$.

Unicidad global y solución global del problema de Cauchy

Lema 5.25 (Grönwall). Sean $x_0 < x_1$ números reales, $h \in \mathbb{R}$ y $u, k \in C([x_0, x_1]; \mathbb{R})$ funciones tales que $k(x) \geq 0 \quad \forall x \in [x_0, x_1]$. Entonces,

(A) Si $u(x) \le h + \int_{x_0}^x k(s)u(s)ds \quad \forall x \in [x_0, x_1]$, entonces

$$u(x) \le h \cdot \exp\left(\int_{x_0}^x h(s)ds\right) \quad \forall x \in [x_0, x_1]$$

(B) Si $u(x) \le h + \int_x^{x_1} h(s)u(s)ds \quad \forall x \in [x_0, x_1]$, entonces:

$$u(x) \le h \cdot \exp\left(\int_{x}^{x_1} h(s)ds\right) \quad \forall x \in [x_0, x_1]$$

Demostración. (sólo apartado (A)) Definamos la función

$$v(x) = \int_{x_0}^x k(s)u(s)ds \quad \forall x \in [x_0, x_1],$$

y así, $v \in C^1([x_0, x_1]; \mathbb{R}), \ v(x_0) = 0$ y $v'(x) = k(x)u(x) \ \forall x \in (x_0, x_1)$. Como $u(x) \le h + v(x) \ \forall x \in [x_0, x_1]$, entonces

$$h(x)u(x) \le h \cdot k(x) + v(x)k(x) \quad \forall x \in [x_0, x_1]$$

$$\iff v'(x) \le h \cdot k(x) + k(x)v(x) \quad \forall x \in [x_0, x_1].$$

Luego:

$$\exp\left(-\int_{x_0}^x h(s)ds\right)v'(x) - \exp\left(-\int_{x_0}^x h(s)ds\right)k(x)v(x)$$

$$\leq h \cdot k(x)\exp\left(-\int_{x_0}^x k(s)ds\right)$$

$$\iff \frac{d}{dx}\left[\exp\left(-\int_{x_0}^x k(s)ds\right)v(x)\right] \leq -h\frac{d}{dx}\left[\exp\left(-\int_{x_0}^x h(s)ds\right)\right].$$

Integrando en $[x_0, x]$, con $x \in (x_0, x_1]$, se obtiene:

$$\exp\left(-\int_{x_0}^x k(s)ds\right)v(x) \le h\left[1 - \exp\left(-\int_{x_0}^x k(s)ds\right)\right]$$

$$\implies v(x) \le h \cdot \exp\left(\int_{x_0}^x k(s)ds\right) - h$$

$$\iff u(x) \le h + v(x) \le h \cdot \exp\left(\int_{x_0}^x k(s)ds\right) \quad \forall x \in [x_0, x_1]$$

Observación 5.26.

- 1. Si h = 0, el lema de Grönwall asefura que $u(x) \le 0 \quad \forall x \in [x_0, x_1]$;
- 2. Es posible utilizar una única formulación que agrupe las dos condiciones del lema:

$$u(x) \le h + \left| \int_{x_0}^x k(s)u(s)ds \right| \quad \forall x, x_0 \in I$$

$$\implies u(x) \le h \cdot \exp\left(\left| \int_{x_0}^x k(s)ds \right| \right).$$

Teorema 5.27 (unicidad global). Sea $\Omega \subset \mathbb{R}^{n+1}$ un conjunto abierto, $(x_0, y_0) \in \Omega$ y $f \in C(\Omega; \mathbb{R}^n) \cap \text{Lip}_{loc}(y; \Omega)$. Si (I_1, φ_1) y (I_2, φ_2) son soluciones locales del problema de Cauchy

$$(PC) \begin{cases} y'(x) = f(x, y(x)) & \forall x \in I \subset \mathbb{R}, \\ y(x_0) = y_0 \end{cases}$$

entonces $\varphi_1(x) = \varphi_2(x) \quad \forall x \in I_1 \cap I_2 \text{ (acá, } I_1, I_2 \subset \mathbb{R} \text{ son intervalos que conienen a } x_0).$

Demostración. Sabemos que $(I_1 \cap I_2) \setminus \{x_0\} \neq \emptyset$, y así, tomemos $x_1 \in (I_1 \cap I_2) \setminus \{x_0\}$, con $x_1 > x_0$. Definamos el conjunto:

$$K = \{(s, \varphi_1(s)) \mid s \in [x_0, x_1]\} \cup \{(s, \varphi_2(s) \mid s \in [x_0, x_1]\}$$

Luego, $K \subset \Omega$ es compacto. Como f es continua en Ω , resulta que: $\sup_{(x,y)\in K} |f(x,y)| < \infty \implies f \in \operatorname{Lip}(y;K)$, y sea $L_k > 0$ una constante de Lipschitz (global) para f, respecto a su segunda variable en K. Sabemos que $\varphi_i(x) = y_0 + \int_{x_0}^x f(s,\varphi(s))ds \quad \forall x \in [x_0,x_1], \ \forall i \in \{1,2\}$. Entonces,

$$|\varphi_1(x) - \varphi_2(x)| = \left| \int_{x_0}^x [f(s, \varphi_1(s)) - f(s, \varphi_2(s))] ds \right|$$

$$\leq \int_{x_0}^x |f(s, \varphi_1(s)) - f(s, \varphi(s))| ds$$

$$\leq L_K \int_{x_0}^x |\varphi_1(s) - \varphi_2(s)| ds \quad \forall x \in [x_0, x_1].$$

Así (gracias al lema de Grönwall), $|\varphi_1(x) - \varphi_2(x)| = 0 \quad \forall x \in [x_0, x_1] \implies \varphi_1(x) = \varphi_2(x) \quad \forall x \in [x_0, x_1].$

5.3. Prolongación de soluciones para EDOs

Dada $(x_0, y_0) \in \Omega$, sabemos que existen $a_0, b_0 > 0$ tales que

$$R := [x_0 - a_0, x_0 + a_0] \times \overline{B(y_0, b_0)} \subseteq \Omega$$
 (inclusión estricta)

Sea $M := \max_{(x,y) \in R} |f(x,y)|$ y $L_R > 0$ una constante de Lipschitz (local) para $f^{(x,y) \in R}$ en R respecto a y.

En el Teorema de Picard-Lindelöf se escogía $\delta > 0$ tal que

$$0 < \delta \le \min\{a_0, b_0/M, 1/L_R\}$$

De hecho, se puede llegar a la misma conclusión seleccionando $\delta > 0$ tal que

$$0 < \delta < \min\{a_0, b_0/M\}$$
 (Teorema de Peano - unicidad global)

En cualquier caso, el intervalo de existencia de la solución puede extenderse algo más allá de $[x_0 - \delta, x_0 + \delta]$. Notemos que

$$(x_0 + \delta, \varphi(x_0 + \delta)) \in \Omega$$

Es admisible, entonces, plantear el siguiente problema de Cauchy:

$$(\tilde{PC}) \begin{cases} y'(x) = f(x, y(x)) \\ y(x_0 + \delta) = \varphi(x_0 + \delta) \end{cases}$$

De igual forma, existirá $\delta_1 > 0$ tal que (\tilde{PC}) admite una única solución $\tilde{\varphi}$ en $[x_0 + \delta - \delta_1, x_0 + \delta + \delta_1]$. Gracias al Teorema de unicidad global, $\tilde{\varphi}$ se puede considerar como una prolongación de φ hasta el punto $x_0 + \delta + \delta_1$.

Definición 5.28. Dada $(I, \varphi) \in S(x_0, y_0)$, decimos que es:

- 1. Solución prolongable por la derecha si existe $(\tilde{I}, \tilde{\varphi}) \in S(x_0, y_0)$ tal que $I \subseteq \tilde{I}, I \neq \tilde{I}$ y $\sup(I) \in \operatorname{int}(\tilde{I})$. En tal caso $\tilde{\varphi}|_{I} \equiv \tilde{\varphi}$.
- 2. Solución prolongable por la izquierda si existe $(\tilde{I}, \tilde{\varphi}) \in S(x_0, y_0)$ tal que $I \subseteq \tilde{I}, I \neq \tilde{I}$ y $\inf(I) \in \operatorname{int}(\tilde{I})$.
- 3. Solución prolongable cuando es prolongable por la derecha, o por la izquierda, o por ambos extremos.
- 4. Solución maximal cuando no es prolongable.

Teorema 5.29. Sea $\Omega \subseteq \mathbb{R}^{n+1}$ un conjunto abierto y $f \in C(\Omega, \mathbb{R}^n) \cap \text{Lip}_{\text{loc}}(y, \Omega)$. Para cada $(x_0, y_0) \in \Omega$ existe una única solución maximal del problema

$$(PC) \begin{cases} y'(x) = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}$$

y el intervalo $I \subseteq \mathbb{R}$ donde está definida la solución es abierto.

Demostración. (existencia, unicidad, estructura de una solución maximal)

- a) En caso de existir una solución maximal, su dominio de definición es un intervalo abierto.
- b) Existe, a lo más, una solución maximal. Supongamos que existen dos soluciones maximales (I_1, φ_1) e (I_2, φ_2) , con $x_0 \in I_1 \cap I_2$. Podemos definir $I = I_1 \cup I_2$ (que es un intervalo que contiene a x_0) y la función

$$\varphi(x) = \begin{cases} \varphi_1(x), & x \in I_1 \\ \varphi_2(x), & x \in I_2 \end{cases}$$

Notar que φ está bien definida gracias al Teorema de Unicidad global. Dado que (I_1, φ_1) e (I_2, φ_2) son soluciones maximales, entonces necesariamente debe ocurrir que $I_1 = I_2$, y por ende, $\varphi_1 \equiv \varphi_2$.

c) Existencia de una solución maximal. Definamos

$$I(x_0, y_0) := \bigcup_{\substack{(I, \varphi) \in S(x_0, y_0), I \text{ abierto}}} I.$$

Sabemos que $I(x_0, y_0) \neq \emptyset$ y que $I(x_0, y_0)$ es un intervalo, pues $x_0 \in I$ para cada $(I, \varphi) \in S(x_0, y_0)$. Denotemos por

$$\alpha = \inf I(x_0, y_0), \quad \beta = \sup I(x_0, y_0).$$

Sabemos que $\alpha < x_0 < \beta$, pues al menos existe una solución en $([x_0 - \delta, x_0 + \delta], \varphi) \in S(x_0, y_0)$. Definimos ahora la función:

$$\tilde{\varphi}: I(x_0, y_0) \to \mathbb{R}^n$$

del siguiente modo:

Para cada $x \in I(x_0, y_0)$ existe, al menos, un intervalo abierto $I \subseteq \mathbb{R}$ (con $x \in I$) y una correspondiente solución local $\varphi \in C^1(I; \mathbb{R}^n)$ de (PC) en I. Ponemos $\tilde{\varphi}(x) = \varphi(x)$. Por unicidad global sabemos que no hay ambigüedad en la definición de $\tilde{\varphi}$. Además

- $\bullet \ \tilde{\varphi}(x_0) = \varphi(x_0) = y_0;$
- \bullet $\tilde{\varphi}$ es de clase C^1 en x:
- $\tilde{\varphi}'(x) = \varphi(x) = f(x, \tilde{\varphi}(x)).$

Nota 5.30. Se denotará por $\varphi(\cdot; x_0, y_0)$ a la solución maximal del (PC), y a $I(x_0, y_0) \subseteq \mathbb{R}$ su intervalo (abierto) de definición.

Teorema 5.31. Sean $T_1 < T_2$ números reales y $\Omega := (T_1, T_2) \times \mathbb{R}^n$. Supongamos que $f \in C(\bar{\Omega}, \mathbb{R}^n) \cap \text{Lip}_{\text{loc}}(y, \Omega)$ y que existen dos constantes $k_1, k_2 \in \mathbb{R}$ tales que

$$|f(x,y)| \le k_1 + k_2|y| \quad \forall (x,y) \in \bar{\Omega}$$

Entonces, dado cualquier $(x_0, y_0) \in \Omega$, existe una única solución del (PC) en $[T_1, T_2]$.

Demostración. Dado $(x_0, y_0) \in \Omega$, existe $a_0 > 0$ tal que

$$[x_0 - a_0, x_0 + a_0] \subseteq [T_1, T_2]$$

Sea $b_0 := k_1 + k_2 |y_0|$, en modo tal que

$$R := [x_0 - a_0, x_0 + a_0] \times \overline{B(y_0, b_0)} \subseteq \overline{\Omega}$$

Notemos, por ende, que

$$\max_{(x,y)\in R} |f(x,y)| \le \max_{y\in B(y_0,b_0)} (k_1 + k_2|y|) \le k_1 + k_2b_0 + k_2|y_0| = b_0(1+k_2)$$

Es decir, $M \leq b_0(1+k_2)$ y así,

$$\min\{a_0, b_0/M\} \ge \min\{a_0, 1/(1+k_2)\} > 0.$$

y esta cantidad no depende de (x_0, y_0) . Por ende, repitiendo la demostración del Teorema de Peano, se puede seleccionar $\delta > 0$ tal que

$$0 < \delta \le \min\{a_0, 1/(1+k_2)\}\$$

y garantizar existencia de la solución de (PC) en $[x_0 - \delta, x_0 + \delta]$.

Nota 5.32. La condición

$$(\exists A, B > 0) \quad |f(x, y)| \le A + B|y| \quad \forall (x, y) \in \bar{\Omega},$$

expresa un crecimiento lineal de f en y, uniformemente respecto a x. Tal comportamiento se puede garantizar en los siguientes casos:

- i) $f \in L^{\infty}(\Omega)$ (f acotada en Ω).
- ii) $f(\cdot,0)$ es acotada y $f \in \text{Lip}(y,\bar{\Omega})$. En efecto, sabemos que existe L>0 tal que

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2| \quad \forall (x, y_1), (x, y_2) \in \tilde{\Omega}$$

Luego, para $(x,y) \in \tilde{\Omega}$ se tiene que

$$|f(x,y)| \le |f(x,y) - f(x,0)| + |f(x,0)| \le L|y| + \max_{x \in [T_1,T_2]} |f(x,0)|$$

iii) $f(\cdot,0)$ es acotada, $f \in \text{Lip}_{loc}(y;\tilde{\Omega})$ y sus derivadas parciales $\frac{\partial f}{\partial y_i}$, $i = \{1,\ldots,n\}$ existen, son continuas y acotadas en $\bar{\Omega}$.