Homework #2 Due September 7, 4:30pm in 4016 SC

Problem 1) Use Kirchoff's Current Law (KCL) to find the unknown currents I_1 , I_2 , and I_3 in the circuit shown.

Problem 2) The voltage source in the circuit shown is supplying 60 mW of power ($P=-60~\mathrm{mW}$). Use KCL to find the labeled currents I_1 , I_2 , and I_3 .

Problem 3) Find the unknown voltages V_1 , V_2 , and V_3 using Kirchoff's Voltage Law (KVL) for the circuit shown.

Problem 4) Use KVL to find the three unknown voltages V_1 , V_2 , and V_{ab} as labeled in the circuit.

Last update: 8/30/2018 4:41pm Page 1

Problem 5) Find the current I and the voltages V_1 , V_2 , and V_{xy} for the single loop circuit shown.

Problem 6) Find the labeled voltages V_1 , V_2 , and V_3 in the circuit shown below.

Problem 7) (A) Find the currents I_1 and I_2 and the power absorbed in the $2.2~\Omega$ resistor. (B) To what value can the $2.2~\Omega$ resistor be changed so that the new resistor absorbs $2.5~\mathrm{W}$ of power? Hint: There are two possible values, suggesting that a quadratic equation will be involved.

Problem 8) Determine the value of I_0 for the current source that will result in $V_0=9~\mathrm{V}$.

Last update: 8/30/2018 4:41pm Page 2