STATISTIK – ÜBUNGEN TEIL II – ZUFALL UND WAHRSCHEINLICHKEIT

- 1) Simuliere die Folge von 100 Münzwürfen mit dem Computer. Wir gehen dabei von einer "fairen" Münze aus, d.h. von einer Münze, die nach einem Wurf zu je 50 % "Kopf" oder "Zahl" zeigt.
 - Erzeuge dazu ein Feld (einen Vektor) mit 100 Komponenten, in den mit je 50 % Wahrscheinlichkeit "0" ("Kopf") oder "1" ("Zahl") eingetragen werden. Betrachte die entstehenden Muster. Wie oft treten 3 oder mehrere gleiche Ergebnisse in Serie auf? Wie (statistisch) bedeutsam sind diese Häufungen von Ereignissen?
- 2) Simuliere die Folge von 100 Würfen eines Würfels mit dem Computer. Wir gehen dabei von einem "fairen" Würfel aus, bei dem die Zahl "6" mit einer Wahrscheinlichkeit von 1/6 gewürfelt wird.
 - Erzeuge dazu ein Feld (einen Vektor) mit 100 Komponenten, in den mit 1/6 Wahrscheinlichkeit "1" ("Sechs") oder mit Wahrscheinlichkeit 5/6 "0" ("nicht Sechs") eingetragen werden. Betrachte die entstehenden Muster. Wie oft treten 3 oder mehrere Sechser in Serie auf?
- Erzeuge eine Menge von N auf dem Intervall [-1, +1] gleichverteilten Zufallszahlen mit dem Computer. Verwende diese Zufallszahlen um daraus eine Menge W von N/2
 Punkten in der Ebene zu erzeugen. Sie liegen alle in einem Quadrat Q zwischen
 -1 ≤ x ≤ +1 und -1 ≤ y ≤ +1.

Nähere mit diesen Zufallszahlen die Zahl π mit einer Monte-Carlo-Simulation. Dazu werden jene Zufallszahlen auf Q, die innerhalb eines Kreises mit dem Radius 1 liegen (in Q eingeschriebener Kreis) durch die Gesamtanzahl I**W**I der Punkte auf Q dividiert (und damit das Verhältnis der Kreisfläche zur Quadratfläche geschätzt).

Wie entwickelt sich die Schätzung für π in Abhängigkeit von N?

- 4) Aus Alkoholkontrollen nach Verkehrsunfällen schätzt man, dass rund vier Prozent der verunfallten Lenker einen unzulässig hohen Alkoholpegel hatten. Gleichzeitig wurden 17 % der Unfälle mit tödlichen Folgen von alkoholisierten Lenkern verursacht.
 - a) Daraus ergibt sich, dass bei 83 % der Unfälle mit tödlichen Folgen kein Alkohol mit im Spiel war. Sind also alkoholisierte Autofahrer doch die sichereren Fahrer? (Beantworten Sie diese Frage am besten nach Klärung von Punkt b)
 - b) Sei U_{mort} das Ereignis "Unfall mit tödlichen Folgen" und $\mathbf{P}(U_{\mathrm{mort}} \mid U \cap \mathrm{alk})$ die Wahrscheinlichkeit (das Risiko) für tödliche Folgen bei einem Unfall unter Alkoholeinfluss. Benennen wir gleichermaßen mit $\mathbf{P}(U_{\mathrm{mort}} \mid U \cap \neg \mathrm{alk})$ die Wahrscheinlichkeit (das Risiko) in nüchternem Zustand einen Unfall mit tödlichen Folgen zu verursachen. Wie groß ist das Verhältnis der beiden Risiken, d.h. das Verhältnis von $\mathbf{P}(U_{\mathrm{mort}} \mid U \cap \mathrm{alk})$ zu $\mathbf{P}(U_{\mathrm{mort}} \mid U \cap \neg \mathrm{alk})$?
- 5) Die Auswertung von gemeldeten Autounfällen hat für 10.000 beteiligte Insassen folgendes Ergebnis ergeben:

90 der 190 dabei verstorbenen Insassen waren nicht angegurtet. Den größten Teil machen jene 8.910 Personen aus, die angegurtet waren und den Unfall überlebt haben.

- a) Erstelle aus den Angaben eine Kontingenztabelle und vervollständige sie.
- b) Welcher Anteil der verunfallten Personen war insgesamt angegurtet?
- c) Sind das Überleben mit und ohne Gurt unabhängige Ereignisse?
- d) Um wieviel höher ist das Risiko tödlich zu verunglücken für Insassen ohne Gurt im Vergleich zu angegurteten Insassen?
- 6) In einer Produktion wurde über eine längere Periode mittels 100%-Endkontrolle der pro Woche entdeckte Ausschuss festgehalten.

Anzahl Wochen	Anzahl Ausschuss [Stk.]	Wahrscheinlichkeit, den in Spalte 2 gegebenen wöchentlichen Ausschuss zu produzieren
29	0 Stk.	
21	1 Stk.	
40	3 Stk.	
9	4 Stk.	
1	5 Stk.	

Ergänze die Tabelle und berechne den Erwartungswert. Was gibt dieser an?