§4.1 矩阵的特征值与特征向量

数学系 梁卓滨

2016 - 2017 学年 I 暑修班

定义 设 A 是 n 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda\alpha$$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

例 设
$$A = \begin{pmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$$
, λ 为特征值, $\alpha = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ 为相应的特征向量, 求 a , b 和 λ 。

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

例 设
$$A = \begin{pmatrix} 3 & 2 & -1 \\ \alpha & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$$
, λ 为特征值, $\alpha = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ 为相应的特征向量,

求 a, b 和 λ 。

解 注意到

$$A\alpha = \lambda\alpha \Rightarrow \begin{pmatrix} 3 & 2 & -1 \\ \alpha & -2 & 2 \\ 3 & b & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda\alpha$$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

例 设
$$A = \begin{pmatrix} 3 & 2 & -1 \\ \alpha & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$$
, λ 为特征值, $\alpha = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ 为相应的特征向量,

求 a, b 和 λ 。

解 注意到

$$A\alpha = \lambda\alpha \Rightarrow \begin{pmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} -4 \\ a+10 \\ -2b \end{pmatrix} = \begin{pmatrix} \lambda \\ -2\lambda \\ 3\lambda \end{pmatrix}$$

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α . 满足

$$A\alpha = \lambda \alpha$$

则称 λ 是一个特征值. α 为对应特征值 λ 的特征向量。

例 设
$$A = \begin{pmatrix} 3 & 2 & -1 \\ \alpha & -2 & 2 \\ 3 & b & -1 \end{pmatrix}$$
, λ 为特征值, $\alpha = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ 为相应的特征向量, 求 a , b 和 λ 。

解 注意到

$$A\alpha = \lambda\alpha \Rightarrow \begin{pmatrix} 3 & 2 & -1 \\ \alpha & -2 & 2 \\ 3 & b & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} -4 \\ \alpha + 10 \\ -2b \end{pmatrix} = \begin{pmatrix} \lambda \\ -2\lambda \\ 3\lambda \end{pmatrix}$$

所以

TUL
$$\begin{cases} \lambda = -4 \\ a = -2 \\ b = 6 \end{cases}$$

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

定义 设 A 是 n 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\stackrel{\text{"}}{\Longrightarrow} \frac{\text{$\forall a = 0$}}{\text{$\forall a = 0$}}$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

定义 设 A 是 n 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\stackrel{\text{"}}{\Longrightarrow} \frac{\text{\odot}}{\text{\odot}}$ ($\lambda I - A$) $\alpha = 0$)

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ, α 步骤

1. 先求解特征值 λ :

2. 再求解对应 λ 的特征向量 α :

定义 设 A 是 n 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\stackrel{\text{"}}{\Longrightarrow} \frac{\text{$\forall a = 0$}}{\text{$\forall a = 0$}}$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

1. 先求解特征值 λ: 等价于求解

$$|\lambda I - A| = 0$$

2. 再求解对应 λ 的特征向量 α :

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\stackrel{\text{"}}{\Longrightarrow} \frac{\text{$\odot \text{$\odot$}} + \text{$\odot$}}{\text{$\odot$}}$ ($\lambda I - A$) $\alpha = 0$)

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

1. 先求解特征值 λ : 等价于求解

$$|\lambda I - A| = 0$$

2. 再求解对应 λ 的特征向量 α : 等价于求解

$$(\lambda I - A)x = 0$$

的所有非零解。

定义 设 A 是 n 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\stackrel{\text{"}}{\Longrightarrow} \frac{\text{$\forall \Delta I - A$}}{\text{$\forall \alpha = 0$}}$

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

1. 先求解特征值 λ: 等价于求解

$$|\lambda I - A| = 0$$

2. 再求解对应 λ 的特征向量 α : 等价于求解

$$(\lambda I - A)x = 0$$

的所有非零解。设 $\alpha_1, \dots, \alpha_s$ 是基础解系,则

$$\alpha = c_1 \alpha_1 + \cdots + c_s \alpha_s$$

定义 设 $A \in n$ 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\stackrel{\text{"}}{\Longrightarrow} \stackrel{\text{geom}}{\Longrightarrow} (\lambda I - A)\alpha = 0$)

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

1. 先求解特征值 λ: 等价于求解

$$|\lambda I - A| = 0$$

2. 再求解对应 λ 的特征向量 α : 等价于求解

$$(\lambda I - A)x = 0$$

的所有非零解。设 $\alpha_1, \dots, \alpha_s$ 是基础解系,则

$$\alpha = c_1 \alpha_1 + \cdots + c_s \alpha_s$$
, $(c_1, \cdots, c_s$ 不全为零)

定义 设 A 是 n 阶方阵。若存在数 λ 及非零 n 维向量 α ,满足

$$A\alpha = \lambda \alpha$$
 ($\xrightarrow{\text{"}} \text{$\stackrel{\oplus}{\Rightarrow}$} \text{$(\lambda I - A)}\alpha = 0$)

则称 λ 是一个特征值, α 为对应特征值 λ 的特征向量。

求解 λ , α 步骤

1. 先求解特征值 λ: 等价于求解

 $|\lambda I - A| = 0$

 $\Delta l = 0$

2. 再求解对应 λ 的特征向量 α : 等价于求解

$$(\lambda I - A)x = 0$$

的所有非零解。设 $\alpha_1, \dots, \alpha_s$ 是基础解系,则

$$\alpha = c_1 \alpha_1 + \cdots + c_s \alpha_s$$
, $(c_1, \cdots, c_s$ 不全为零)

特征方程

解

• 求解特征方程: $0 = |\lambda I - A|$

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} =$$

解

• 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda - 3)(\lambda + 1) - 5$

解

● 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = \lambda^2 - 2\lambda - 8$

解

• 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda - 4)(\lambda + 2)$

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda - 4)(\lambda + 2)$$

所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$.
- $\exists \lambda_1 = -2$, $\forall x \in (\lambda_1 I A)x = 0$:

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda - 4)(\lambda + 2)$$

所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。

• 当
$$\lambda_2 = 4$$
,求解 $(\lambda_2 I - A)x = 0$:

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。

• $\exists \lambda_2 = 4$, $\forall x \in (\lambda_2 I - A)x = 0$:

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda - 4)(\lambda + 2)$$

所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。

• $\exists \lambda_1 = -2, \ \Re R \ (\lambda_1 I - A) x = 0:$ $(-2I - A : 0) = \begin{pmatrix} -5 - 1 & 0 \\ -5 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $5x_1 + x_2 = 0$

• 当
$$\lambda_2 = 4$$
,求解 $(\lambda_2 I - A)x = 0$:

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- $\exists \lambda_1 = -2, \ \ \vec{x}\vec{m} \ (\lambda_1 I A)\vec{x} = 0:$ $(-2I A : 0) = \begin{pmatrix} -5 1 & 0 \\ -5 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $(-2I A : 0) = \begin{pmatrix} -5 1 & 0 \\ -5 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

• 当
$$\lambda_2 = 4$$
,求解 $(\lambda_2 I - A)x = 0$:

解

- * 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$, 求解 $(\lambda_1 I A)x = 0$:

$$(-2I - A \vdots 0) = \begin{pmatrix} -5 - 1 & 0 \\ -5 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} 5x_1 + x_2 = 0 \\ x_2 = -5x_1 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
。

解

- * 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$, 求解 $(\lambda_1 I A)x = 0$:

$$(-2I - A \vdots 0) = \begin{pmatrix} -5 - 1 & | & 0 \\ -5 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{cases} 5x_1 + x_2 = 0 \\ x_2 = -5x_1 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
。 $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

• $\exists \lambda_2 = 4$, $\forall x \in (\lambda_2 I - A)x = 0$:

解

- * 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$, 求解 $(\lambda_1 I A)x = 0$:

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

解

- * 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix}$$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

$$(-2I - A \vdots 0) = \begin{pmatrix} -5 - 1 & | & 0 \\ -5 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$
$$\begin{array}{c} 5x_1 + x_2 = 0 \\ x_2 = -5x_1 \end{array}$$

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -5 & 5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

解

- * 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ \end{array}$$

解

- * 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{cases} x_1 - x_2 & = 0 \\ x_1 & = x_2 \end{cases}$$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

• $\exists \lambda_2 = 4$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -5 & 5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ x_1 = x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。

解

• 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda - 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。

• $\exists \lambda_1 = -2$, $\forall M (\lambda_1 I - A) X = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

• $\exists \lambda_2 = 4$, \vec{x} \vec{x} $(\lambda_2 I - A)x = 0$:

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ x_1 = x_2 \end{array}$$

 $c_2\begin{pmatrix}1\\1\end{pmatrix}$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$ 。
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

• $\exists \lambda_2 = 4$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -5 & 5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ x_1 = x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。特征向量: $c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,其中 $c_2 \neq 0$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 3 & -1 \\ -5 & \lambda + 1 \end{vmatrix} = (\lambda 4)(\lambda + 2)$ 所以 $\lambda_1 = -2$, $\lambda_2 = 4$.
- 当 $\lambda_1 = -2$,求解 $(\lambda_1 I A)x = 0$:

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$,其中 $c_1 \neq 0$

• 当 $\lambda_2 = 4$,求解 $(\lambda_2 I - A)x = 0$:

$$(4I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -5 & 5 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 & = 0 \\ x_1 & = x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。特征向量: $c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,其中 $c_2 \neq 0$

解

求解特征方程: 0 = |λI − A|

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} =$$

解

• 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda - 2) - 1$

解

▼ 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = \lambda^2 - 4\lambda + 3$

解

* 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$
 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

• $\exists \lambda_1 = 1$, $x \in (\lambda_1 I - A)x = 0$:

• 当
$$\lambda_2 = 3$$
,求解 $(\lambda_2 I - A)x = 0$:

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

所以 $\lambda_1 = 1$, $\lambda_2 = 3$.

• 当 $\lambda_1 = 1$,求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A \mid 0) = \begin{pmatrix} -1 - 1 \mid 0 \\ -1 - 1 \mid 0 \end{pmatrix}$$

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$
 所以 $\lambda_1 = 1$, $\lambda_2 = 3$.

• $\exists \lambda_1 = 1$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | & 0 \\ -1 - 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$
 所以 $\lambda_1 = 1$, $\lambda_2 = 3$.

• 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ 0 & 0 & 0 \end{array}$$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。
- 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{cases}$$

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
。

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
。 $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

• $\exists \lambda_2 = 3$, $x \in (\lambda_2 I - A)x = 0$:

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。
- 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{array}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

解

• 求解特征方程:
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$$

所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = 0 \\ x_1 & = -x_2 \end{matrix}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -1 & 1 & | & 0 \end{pmatrix}$$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$.
- 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。
- 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & | 0 \\ -1 - 1 & | 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | 0 \\ 0 & 0 & | 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & = 0 \\ x_1 & = -x_2 \end{matrix}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ \end{array}$$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。
- 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ \downarrow \\ x_1 = -x_2 \end{array}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} x_1 - x_2 = 0 \\ y_1 = x_2 \end{cases}$$

解

• 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$.

• 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{matrix} x_1 + x_2 & 0 \\ x_1 & -x_2 \end{matrix}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

• $\exists \lambda_2 = 3$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ x_1 = x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。

Æ

* 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

• 当 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{cases}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

• $\exists \lambda_2 = 3$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(3I - A : 0) = \begin{pmatrix} 1 & -1 & | & 0 \\ -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ x_1 = x_2 \end{array}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。 $c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

解

• 求解特征方程: $0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。

• $\exists \lambda_1 = 1$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(1I - A : 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{array}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

• 当 $\lambda_2 = 3$,求解 $(\lambda_2 I - A)x = 0$:

$$(3I - A \mid 0) = \begin{pmatrix} 1 & -1 \mid 0 \\ -1 & 1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 - 1 \mid 0 \\ 0 & 0 \mid 0 \end{pmatrix} \qquad \begin{matrix} x_1 - x_2 = 0 \\ x_1 = x_2 \end{matrix}$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。特征向量: $c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,其中 $c_2 \neq 0$

解

- 求解特征方程: $0 = |\lambda I A| = \begin{vmatrix} \lambda 2 & -1 \\ -1 & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 3)$ 所以 $\lambda_1 = 1$, $\lambda_2 = 3$ 。
- $\frac{1}{2} \lambda_1 = 1$, $x \in (\lambda_1 I A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} -1 - 1 & 0 \\ -1 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 = 0 \\ x_1 = -x_2 \end{array}$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。特征向量: $c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$,其中 $c_1 \neq 0$

- 当 $\lambda_2 = 3$,求解 $(\lambda_2 I A)x = 0$:
- $(3I A \mid 0) = \begin{pmatrix} 1 & -1 \mid 0 \\ -1 & 1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 1 \mid 0 \\ 0 & 0 \mid 0 \end{pmatrix} \qquad \begin{matrix} x_1 x_2 = 0 \\ x_1 = x_2 \end{matrix}$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。特征向量: $c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$,其中 $c_2 \neq 0$

例求矩阵 $A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$ 的特征值与特征向量。

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A|$$

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\overline{x}$$
 \mathbf{H} $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$ • Details

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details 得: $\lambda_1 = -1, \quad \lambda_2 = 8$

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details 得: $\lambda_1 = -1$, $\lambda_2 = 8$

•
$$\exists \lambda_1 = -1$$
, $\forall x \in (\lambda_1 I - A)x = 0$ • Details

• 当
$$\lambda_2 = 8$$
, 求解 $(\lambda_2 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\pi R = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details $\pi = -1$, $\lambda_2 = 8$

• 当
$$\lambda_1 = -1$$
,求解 $(\lambda_1 I - A)x = 0$ • Details 得基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$.

•
$$\exists \lambda_2 = 8$$
, $\forall x \in (\lambda_2 I - A)x = 0$ • Details

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1 = -1$$
,求解 $(\lambda_1 I - A)x = 0$ Potails 得基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$ 。 $c_1 \alpha_1 + c_2 \alpha_2$

•
$$\exists \lambda_2 = 8$$
, $\forall x \in (\lambda_2 I - A)x = 0$ • Details

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details 得:

$$\lambda_1 = -1, \quad \lambda_2 = 8$$

•
$$\exists \lambda_1 = -1$$
, $\forall x \in (\lambda_1 I - A)x = 0$ • Details

得基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$.

对应 $\lambda_1 = -1$ 特征向量: $c_1\alpha_1 + c_2\alpha_2$, 其中 c_1 , c_2 不全为零。

• 当
$$\lambda_2 = 8$$
, 求解 $(\lambda_2 I - A)x = 0$ • Details

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details 得:

$$\lambda_1 = -1, \qquad \lambda_2 = 8$$

得基础解系:
$$\alpha_1=\begin{pmatrix}1\\-2\\0\end{pmatrix}$$
, $\alpha_2=\begin{pmatrix}0\\-2\\1\end{pmatrix}$ 。
对应 $\lambda_1=-1$ 特征向量: $c_1\alpha_1+c_2\alpha_2$, 其中 c_1 , c_2 不全为零。

• 当
$$\lambda_2 = 8$$
,求解 $(\lambda_2 I - A)x = 0$ • Details 得基础解系: $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ 。

• $\exists \lambda_1 = -1$, $\forall M (\lambda_1 I - A) X = 0$

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解 $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$ Details 得:

• $\exists \lambda_1 = -1$, $\forall M (\lambda_1 I - A) X = 0$ 得基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$.

对应 $\lambda_1 = -1$ 特征向量: $c_1\alpha_1 + c_2\alpha_2$, 其中 c_1 , c_2 不全为零。

 $\lambda_1 = -1, \quad \lambda_2 = 8$

• 当 $\lambda_2 = 8$,求解 $(\lambda_2 I - A)x = 0$ 得基础解系: $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details $a : \lambda_1 = -1, \quad \lambda_2 = 8$

得基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$.

• $\exists \lambda_1 = -1$, $\forall M (\lambda_1 I - A) X = 0$

得基础解系: $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

对应 $\lambda_1 = -1$ 特征向量: $c_1\alpha_1 + c_2\alpha_2$, 其中 c_1 , c_2 不全为零。

矩阵的特征值与特征向量

对应 $\lambda_2 = 8$ 特征向量: $c_3 \alpha_3$, 其中 $c_3 \neq 0$ 。

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• $\exists \lambda_1 = -1$, $\forall M (\lambda_1 I - A) x = 0$

解

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Details $a : \lambda_1 = -1, \quad \lambda_2 = 8$

得基础解系:
$$\alpha_1=\begin{pmatrix}1\\-2\\0\end{pmatrix}$$
, $\alpha_2=\begin{pmatrix}0\\-2\\1\end{pmatrix}$ 。
对应 $\lambda_1=-1$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

• 当 $\lambda_2 = 8$,求解 $(\lambda_2 I - A)x = 0$ Details 得基础解系: $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

对应 $\lambda_2 = 8$ 特征向量: $c_3\alpha_3$, 其中 $c_3 \neq 0$ 。

例求矩阵
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
 的特征值与特征向量。

• $\exists \lambda_1 = -1$, $\forall M (\lambda_1 I - A) x = 0$

 $\lambda_1 = -1$ 二重特征値 $\lambda_2 = 8$ 一重特征値

解

• 求解
$$0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 8)$$
 Petails 得: $\lambda_1 = -1$, $\lambda_2 = 8$

得基础解系:
$$\alpha_1=\begin{pmatrix}1\\-2\\0\end{pmatrix}$$
, $\alpha_2=\begin{pmatrix}0\\-2\\1\end{pmatrix}$ 。
对应 $\lambda_1=-1$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

对应 $\lambda_2 = 8$ 特征向量: $c_3\alpha_3$, 其中 $c_3 \neq 0$ 。

例求矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 的特征值与特征向量。

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A|$$

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\overline{x}$$
 \mathbf{H} $\mathbf{$

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$
 Details 得: $\lambda_1 = 2$, $\lambda_2 = 6$

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$
 Details 得: $\lambda_1 = 2$, $\lambda_2 = 6$

•
$$\exists \lambda_1 = 2$$
, $\forall x \in (\lambda_1 I - A)x = 0$ • Details

•
$$\exists \lambda_2 = 6$$
, $\forall x \in (\lambda_2 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1 = 2$$
,求解 $(\lambda_1 I - A)x = 0$ Details 得基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1 = 2$$
,求解 $(\lambda_1 I - A)x = 0$ • Details 得基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. $c_1 \alpha_1 + c_2 \alpha_2$

•
$$\exists \lambda_2 = 6$$
, $\forall x \in (\lambda_2 I - A)x = 0$ • Details

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1=2$$
,求解 $(\lambda_1I-A)x=0$ • Details 得基础解系: $\alpha_1=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\alpha_2=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ 。 对应 $\lambda_1=2$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

• 当
$$\lambda_2 = 6$$
, 求解 $(\lambda_2 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1=2$$
,求解 $(\lambda_1I-A)x=0$ • Details 得基础解系: $\alpha_1=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\alpha_2=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ 。 对应 $\lambda_1=2$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 求解
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$
 Details 得:
 $\lambda_1 = 2, \quad \lambda_2 = 6$

• 当
$$\lambda_1=2$$
,求解 $(\lambda_1I-A)x=0$ • Details 得基础解系: $\alpha_1=\begin{pmatrix} -1\\1\\0\end{pmatrix}$, $\alpha_2=\begin{pmatrix} 1\\0\\1\end{pmatrix}$ 。 对应 $\lambda_1=2$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 求解 $0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$ Details 得: $\lambda_1 = 2, \quad \lambda_2 = 6$

得基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

对应 $\lambda_1=2$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

• 当 $\lambda_2 = 6$,求解 $(\lambda_2 I - A)x = 0$ • Details 得基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ 。

对应 $\lambda_2 = 6$ 特征向量: $c_3 \alpha_3$, 其中 $c_3 \neq 0$ 。

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1=2$$
,求解 $(\lambda_1I-A)x=0$ • Details 得基础解系: $\alpha_1=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\alpha_2=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ 。 对应 $\lambda_1=2$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

对应 $\lambda_2 = 6$ 特征向量: $c_3 \alpha_3$, 其中 $c_3 \neq 0$ 。

例求矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 的特征值与特征向量。
$$\lambda_1 = 2 \quad \text{二重特征值}$$
 解

• 当
$$\lambda_1=2$$
,求解 $(\lambda_1 I-A)x=0$ • Details 得基础解系: $\alpha_1=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $\alpha_2=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ 。 对应 $\lambda_1=2$ 特征向量: $c_1\alpha_1+c_2\alpha_2$,其中 c_1 , c_2 不全为零。

对应 $\lambda_2 = 6$ 特征向量: $c_3 \alpha_3$, 其中 $c_3 \neq 0$ 。

例求矩阵 $A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ 的特征值与特征向量。

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\mathbf{M} = |\lambda I - A|$$

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\mathbf{H} \ 0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 • Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Details 得: $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = 4$

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Details 得: $\lambda_1 = 0, \quad \lambda_2 = 3, \quad \lambda_3 = 4$

•
$$\exists \lambda_1 = 0$$
, $\bowtie (\lambda_1 I - A)x = 0$ • Details

•
$$\exists \lambda_2 = 3$$
, $\Re (\lambda_2 I - A)x = 0$ Details

•
$$\exists \lambda_3 = 4$$
, $\mathbb{R}(\lambda_3 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\mathbf{H} \ 0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 • Details \mathcal{H} : $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = 4$

•
$$\exists \lambda_1 = 0$$
, $m(\lambda_1 I - A)x = 0$ Details $\exists A : \alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

•
$$\exists \lambda_2 = 3$$
, $\bowtie (\lambda_2 I - A)x = 0$ • Details

•
$$\exists \lambda_3 = 4$$
, $\mathbb{R}(\lambda_3 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

• 当
$$\lambda_1 = 0$$
,解 $(\lambda_1 I - A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ $c_1 \alpha_1$

•
$$\exists \lambda_2 = 3$$
, $\bowtie (\lambda_2 I - A)x = 0$ • Details

• $\exists \lambda_3 = 4$, $\mathbb{R}(\lambda_3 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\text{ }M\text{ }0=|\lambda I-A|=\lambda(\lambda-3)(\lambda-4)$$
 • Details $\text{ }\text{ }\theta\text{:}$ $\lambda_1=0,\quad \lambda_2=3,\quad \lambda_3=4$

- 当 $\lambda_1=0$,解 $(\lambda_1I-A)x=0$ Details 基础解系: $\alpha_1=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ 对应 $\lambda_1=0$ 的特征向量: $c_1\alpha_1$,其中 $c_1\neq 0$ 。

• $\exists \lambda_3 = 4$, $\mathbb{R}(\lambda_3 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Details 得: $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = 4$

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1 \alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$, 解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

• $\exists \lambda_3 = 4$, $\mathbb{R}(\lambda_3 I - A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Details 得: $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = 4$

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1\alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $c_2 \alpha_2$
- $\exists \lambda_3 = 4$, $\mathbb{R}(\lambda_3 I A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Details 得: $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = 4$

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1\alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 对应 $\lambda_2 = 3$ 特征向量: $c_2 \alpha_2$,其中 $c_2 \neq 0$ 。
- $\exists \lambda_3 = 4$, $\mathbb{R}(\lambda_3 I A)x = 0$ Details

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1 \alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 对应 $\lambda_2 = 3$ 特征向量: $c_2 \alpha_2$,其中 $c_2 \neq 0$ 。
- 当 $\lambda_3 = 4$,解 $(\lambda_3 I A)x = 0$ Details 基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

例求矩阵
$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 的特征值与特征向量。

•
$$\mathbf{H} \ 0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 • Details $\mathcal{H}: \lambda_1 = 0, \quad \lambda_2 = 3, \quad \lambda_3 = 4$

• 当
$$\lambda_1 = 0$$
,解 $(\lambda_1 I - A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1\alpha_1$,其中 $c_1 \neq 0$ 。

- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 对应 $\lambda_2 = 3$ 特征向量: $c_2 \alpha_2$,其中 $c_2 \neq 0$ 。
- 当 $\lambda_3 = 4$,解 $(\lambda_3 I A)x = 0$ Details 基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

例求矩阵 $A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ 的特征值与特征向量。

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1\alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 对应 $\lambda_2 = 3$ 特征向量: $c_2 \alpha_2$,其中 $c_2 \neq 0$ 。
- 当 $\lambda_3 = 4$,解 $(\lambda_3 I A)x = 0$ Details 基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_3 = 4$ 特征向量: $c_3 \alpha_3$,其中 $c_3 \neq 0$ 。

例求矩阵 $A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ 的特征值与特征向量。

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Details 得: $\lambda_1 = 0, \quad \lambda_2 = 3, \quad \lambda_3 = 4$

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1 \alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 对应 $\lambda_2 = 3$ 特征向量: $c_2 \alpha_2$,其中 $c_2 \neq 0$ 。
- 当 $\lambda_3 = 4$,解 $(\lambda_3 I A)x = 0$ Details 基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_3 = 4$ 特征向量: $c_3 \alpha_3$,其中 $c_3 \neq 0$ 。

例求矩阵 $A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ 的特征值与特征向量。 $\begin{array}{c} \lambda_1 = 0 & -\text{重特征值} \\ \lambda_2 = 3 & -\text{重特征值} \\ \lambda_3 = 4 & -\text{重特征值} \end{array}$

• 解
$$0 = |\lambda I - A| = \lambda(\lambda - 3)(\lambda - 4)$$
 Petails 得: $\lambda_1 = 0$, $\lambda_2 = 3$, $\lambda_3 = 4$

- 当 $\lambda_1 = 0$,解 $(\lambda_1 I A)x = 0$ Details 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_1 = 0$ 的特征向量: $c_1 \alpha_1$,其中 $c_1 \neq 0$ 。
- 当 $\lambda_2 = 3$,解 $(\lambda_2 I A)x = 0$ Details 基础解系: $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 对应 $\lambda_2 = 3$ 特征向量: $c_2 \alpha_2$,其中 $c_2 \neq 0$ 。
- 当 $\lambda_3 = 4$,解 $(\lambda_3 I A)x = 0$ Details 基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 对应 $\lambda_3 = 4$ 特征向量: $c_3\alpha_3$,其中 $c_3 \neq 0$ 。

$$\lambda = 0$$
是 A 的特征值 \Leftrightarrow

$$\lambda = 0$$
是 A 的特征值 \iff $\lambda = 0$ 是 $|\lambda I - A| = 0$ 的解

$$\lambda = 0$$
是 A 的特征值 $\iff \lambda = 0$ 是 $|\lambda I - A| = 0$ 的解 $\Leftrightarrow |-A| = 0$

$$\lambda=0$$
是 A 的特征值 \iff $\lambda=0$ 是 $|\lambda I-A|=0$ 的解
$$\Leftrightarrow |-A|=0 \qquad |-A|=|(-1)A|$$

$$\Leftrightarrow |A|=0$$

证明

$$\lambda=0$$
是 A 的特征值 \iff $\lambda=0$ 是 $|\lambda I-A|=0$ 的解
$$\Leftrightarrow |-A|=0 \qquad |-A|=|(-1)A|$$

$$\Leftrightarrow |A|=0$$

证明

$$\lambda=0$$
是 A 的特征值 \iff $\lambda=0$ 是 $|\lambda I-A|=0$ 的解
$$\Leftrightarrow |-A|=0 \qquad |-A|=|(-1)A|$$

$$\Leftrightarrow |A|=0$$

证明

$$\lambda=0$$
是 A 的特征值 $\iff \lambda=0$ 是 $|\lambda I-A|=0$ 的解
$$\Leftrightarrow |-A|=0 \qquad |-A|=|(-1)A| = (-1)^n|A|$$

$$\Leftrightarrow |A|=0$$

$$\Leftrightarrow A$$
是奇异

证明

$$\lambda=0$$
是 A 的特征值 \iff $\lambda=0$ 是 $|\lambda I-A|=0$ 的解
$$\Leftrightarrow |-A|=0 \qquad |-A|=|(-1)A| = (-1)^n|A|$$

$$\Leftrightarrow |A|=0 \qquad \Leftrightarrow A$$
是奇异

 \underline{i} n 阶矩阵 A 可逆的充分必要条件是 0 不是 A 的特征值

1. A^2 有特征值 λ^2 ;

1. A^2 有特征值 λ^2 ;

1. A^2 有特征值 λ^2 ;

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 ($\alpha \neq 0$),即 $A\alpha = \lambda \alpha$.

$$A^2$$

$$=\lambda^2$$

1. A^2 有特征值 λ^2 :

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 ($\alpha \neq 0$),即 $A\alpha = \lambda \alpha$.

$$A^2 \alpha$$

$$=\lambda^2$$

1. A^2 有特征值 λ^2 ;

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$,即 $A\alpha = \lambda \alpha$.

1. 验证:

$$A^2 \alpha = A(A\alpha)$$

 $=\lambda^2$

1. A^2 有特征值 λ^2 ;

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$,即 $A\alpha = \lambda \alpha$.

1. 验证:

$$A^2 \alpha = A(A\alpha) = A(\lambda \alpha)$$

 $=\lambda^2$

1. A^2 有特征值 λ^2 ;

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$,即 $A\alpha = \lambda \alpha$.

$$A^{2}\alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha$$
 $= \lambda^{2}$

1. A^2 有特征值 λ^2 ;

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$,即 $A\alpha = \lambda \alpha$.

$$A^{2}\alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2}$$

1. A^2 有特征值 λ^2 ;

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$,即 $A\alpha = \lambda \alpha$.

$$A^{2}\alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda\alpha = \lambda^{2}\alpha$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

证明 设
$$\alpha$$
 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$, 即 $A\alpha = \lambda \alpha$.

$$A^{2}\alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda\alpha = \lambda^{2}\alpha$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:
$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI)$$

$$= (b\lambda^{2} + c\lambda + d)$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:
$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha$$

$$= (b\lambda^{2} + c\lambda + d)$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:
$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha =$$

$$= (b\lambda^{2} + c\lambda + d)$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:
$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha +$$

$$= (b\lambda^{2} + c\lambda + d)$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d)$$

1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量 ($\alpha \neq 0$),即 $A\alpha = \lambda \alpha$.

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

$$A^* = \frac{|A|}{\lambda}$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量($\alpha \neq 0$),即 $A\alpha = \lambda\alpha$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

$$A^*A = |A|I$$

$$A^* = \frac{|A|}{\lambda}$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量($\alpha \neq 0$),即 $A\alpha = \lambda\alpha$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

$$A^*A\alpha = |A|I\alpha$$

$$A^* = \frac{|A|}{\lambda}$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量($\alpha \neq 0$),即 $A\alpha = \lambda \alpha.$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

$$A^*A\alpha = |A|I\alpha = |A|\alpha$$
 $A^* = \frac{|A|}{\lambda}$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量($\alpha \neq 0$),即 $A\alpha = \lambda \alpha.$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

$$A^*(\lambda \alpha) = A^*A\alpha = |A|I\alpha = |A|\alpha$$

$$A^* = \frac{|A|}{\lambda}$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2+cA+dI$ 有特征值 $b\lambda^2+c\lambda+d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量($\alpha \neq 0$),即 $A\alpha = \lambda \alpha.$

1. 验证:

$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

$$A^*(\lambda \alpha) = A^*A\alpha = |A|I\alpha = |A|\alpha \implies A^*\alpha = \frac{|A|}{\lambda}\alpha$$

- 1. A^2 有特征值 λ^2 ; 一般地, $bA^2 + cA + dI$ 有特征值 $b\lambda^2 + c\lambda + d$
- 2. 若 A 可逆,则 A^* 有特征值 $\frac{1}{\lambda}|A|$ 。

证明 设 α 是 A 的对应特征值 λ 的特征向量 $(\alpha \neq 0)$, 即 $A\alpha = \lambda \alpha$.

1. 验证:
$$A^{2} \alpha = A(A\alpha) = A(\lambda\alpha) = \lambda A\alpha = \lambda \cdot \lambda \alpha = \lambda^{2} \alpha$$

$$(bA^{2} + cA + dI) \alpha = bA^{2} \alpha + cA\alpha + dI\alpha = b\lambda^{2} \alpha + c\lambda\alpha + d\alpha$$

$$= (b\lambda^{2} + c\lambda + d) \alpha$$

2. 验证:

$$A^*(\lambda \alpha) = A^*A\alpha = |A|I\alpha = |A|\alpha \implies A^*\alpha = \frac{|A|}{\lambda}\alpha$$

(用到 A可逆 $\Rightarrow \lambda \neq 0$)

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |\lambda I - A^T|$$

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |\lambda I - A^T|$$

所以

 λ 是A特征值

⇔ $\lambda E A^T$ 特征值

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |\lambda I - A^T|$$

$$\lambda$$
是A特征值 \Leftrightarrow $|\lambda I - A| = 0$

⇔
$$\lambda E A^T$$
特征值

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |\lambda I - A^T|$$

$$\lambda$$
是A特征值 \Leftrightarrow $|\lambda I - A| = 0$ \Leftrightarrow $|\lambda I - A^T| = 0$ \Leftrightarrow λ 是 A^T 特征值

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A|$$
 $|\lambda I - A^T|$

$$\lambda$$
是A特征值 \Leftrightarrow $|\lambda I - A| = 0$

$$\Leftrightarrow |\lambda I - A^T| = 0$$

⇔
$$\lambda E A^T$$
特征值

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |(\lambda I - A)^T| \qquad |\lambda I - A^T|$$

$$\lambda$$
是A特征值 \Leftrightarrow $|\lambda I - A| = 0$ \Leftrightarrow $|\lambda I - A^T| = 0$ \Leftrightarrow λ 是 A^T 特征值

特征值与特征向量的基本性质

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |(\lambda I - A)^T| = |\lambda I^T - A^T| \quad |\lambda I - A^T|$$

所以

$$\lambda$$
是A特征值 \Leftrightarrow $|\lambda I - A| = 0$ \Leftrightarrow $|\lambda I - A^T| = 0$ \Leftrightarrow λ 是 A^T 特征值

特征值与特征向量的基本性质

定理 n 阶方阵 A 与其转置矩阵 A^T 有相同特征值

证明 由于

$$|\lambda I - A| = |(\lambda I - A)^T| = |\lambda I^T - A^T| = |\lambda I - A^T|$$

所以

$$\lambda$$
是A特征值 \Leftrightarrow $|\lambda I - A| = 0$ \Leftrightarrow $|\lambda I - A^T| = 0$ \Leftrightarrow λ 是 A^T 特征值

证明 数学归纳法。

证明 数学归纳法。m=1 时,

证明 数学归纳法。m=1 时,显然。

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

$$k_1 = \cdots = k_{m-1} = k_m = 0$$

$$k_1 = \cdots = k_{m-1} = k_m = 0, \ \alpha_1, \ldots, \alpha_m$$
 线性无关。

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。假设 $k_1\alpha_1+\cdots+k_{m-1}\alpha_{m-1}+k_m\alpha_m=0$ (1) 两边左乘 A. 得

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\lambda_1 \alpha_1$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\lambda_1 \alpha_1 \qquad \qquad \lambda_{m-1} \alpha_{m-1}$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \cdots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A. 得

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\lambda_1 \alpha_1 \qquad \qquad \lambda_{m-1} \alpha_{m-1} \qquad \lambda_m \alpha_m$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \cdots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1\lambda_1\alpha_1 + \dots + k_{m-1}\lambda_{m-1}\alpha_{m-1} + k_m\lambda_m\alpha_m = 0 \quad (2)$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0 \quad (1)$$

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1 \lambda_m \alpha_1 + \dots + k_{m-1} \lambda_m \alpha_{m-1} + k_m \lambda_m \alpha_m = 0$$
 (1)

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设 $k_1 \lambda_m \alpha_1 + \dots + k_{m-1} \lambda_m \alpha_{m-1} + k_m \lambda_m \alpha_m = 0$ (1)

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m - \lambda_1)\alpha_1 + \dots + k_{m-1}(\lambda_m - \lambda_{m-1})\alpha_{m-1} = 0$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

$$k_1 A \alpha_1 + \cdots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m - \lambda_1)\alpha_1 + \dots + k_{m-1}(\lambda_m - \lambda_{m-1})\alpha_{m-1} = 0$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A,得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m - \lambda_1)\alpha_1 + \dots + k_{m-1}(\lambda_m - \lambda_{m-1})\alpha_{m-1} = 0$$

由归纳假设 $\alpha_1, \ldots, \alpha_{m-1}$ 线性无关,所以

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A,得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m - \lambda_1)\alpha_1 + \dots + k_{m-1}(\lambda_m - \lambda_{m-1})\alpha_{m-1} = 0$$

由归纳假设 $\alpha_1, \ldots, \alpha_{m-1}$ 线性无关,所以

$$k_1(\lambda_m-\lambda_1)=\cdots=k_{m-1}(\lambda_m-\lambda_{m-1})=0$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A,得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m - \lambda_1)\alpha_1 + \dots + k_{m-1}(\lambda_m - \lambda_{m-1})\alpha_{m-1} = 0$$

由归纳假设 $\alpha_1, \ldots, \alpha_{m-1}$ 线性无关,所以

$$k_1(\lambda_m - \lambda_1) = \cdots = k_{m-1}(\lambda_m - \lambda_{m-1}) = 0 \Rightarrow k_1 = \cdots = k_{m-1} = 0$$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A,得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m-\lambda_1)\alpha_1+\cdots+k_{m-1}(\lambda_m-\lambda_{m-1})\alpha_{m-1}=0$$

由归纳假设 $\alpha_1, \ldots, \alpha_{m-1}$ 线性无关,所以

$$k_1(\lambda_m - \lambda_1) = \cdots = k_{m-1}(\lambda_m - \lambda_{m-1}) = 0 \Rightarrow k_1 = \cdots = k_{m-1} = 0$$

进而 $k_m \alpha_m = 0$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A,得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m-\lambda_1)\alpha_1+\cdots+k_{m-1}(\lambda_m-\lambda_{m-1})\alpha_{m-1}=0$$

由归纳假设 $\alpha_1, \ldots, \alpha_{m-1}$ 线性无关,所以

$$k_1(\lambda_m - \lambda_1) = \cdots = k_{m-1}(\lambda_m - \lambda_{m-1}) = 0 \Rightarrow k_1 = \cdots = k_{m-1} = 0$$

进而 $k_m \alpha_m = 0 \implies k_m = 0$

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A. 得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m-\lambda_1)\alpha_1+\cdots+k_{m-1}(\lambda_m-\lambda_{m-1})\alpha_{m-1}=0$$

由归纳假设 $\alpha_1, \ldots, \alpha_{m-1}$ 线性无关,所以

$$k_1(\lambda_m - \lambda_1) = \cdots = k_{m-1}(\lambda_m - \lambda_{m-1}) = 0$$
 \Rightarrow $k_1 = \cdots = k_{m-1} = 0$
进而 $k_m \alpha_m = 0$ \Rightarrow $k_m = 0$

所以 $k_1 = \cdots = k_{m-1} = k_m = 0$

进而

证明 数学归纳法。m=1 时,显然。假设结论对 m-1 成立。

假设
$$k_1\alpha_1 + \dots + k_{m-1}\alpha_{m-1} + k_m\alpha_m = 0$$
 (1)

两边左乘 A,得

$$k_1 A \alpha_1 + \dots + k_{m-1} A \alpha_{m-1} + k_m A \alpha_m = 0$$

$$\Rightarrow k_1 \lambda_1 \alpha_1 + \dots + k_{m-1} \lambda_{m-1} \alpha_{m-1} + k_m \lambda_m \alpha_m = 0 \quad (2)$$

$$\lambda_m \times (1) - (2)$$
 得:

$$k_1(\lambda_m-\lambda_1)\alpha_1+\cdots+k_{m-1}(\lambda_m-\lambda_{m-1})\alpha_{m-1}=0$$

由归纳假设 $\alpha_1,\ldots,\alpha_{m-1}$ 线性无关,所以

$$k_1(\lambda_m - \lambda_1) = \cdots = k_{m-1}(\lambda_m - \lambda_{m-1}) = 0 \Rightarrow k_1 = \cdots = k_{m-1} = 0$$

进而
$$k_m \alpha_m = 0 \Rightarrow k_m = 0$$

所以
$$k_1 = \cdots = k_{m-1} = k_m = 0$$
, $\alpha_1, \ldots, \alpha_m$ 线性无关。

设
$$A = (a_{ij})_{3\times 3}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

设
$$A=(a_{ij})_{3\times 3}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

设
$$A = (a_{ij})_{3\times3}$$
,
$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \begin{vmatrix} \lambda & -a_{12} & -a_{13} \\ 0 & \lambda - a_{22} & -a_{23} \\ 0 & -a_{32} & \lambda - a_{33} \end{vmatrix} + \begin{vmatrix} -a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

设
$$A=(a_{ij})_{3\times 3}$$
,

$$\begin{aligned} |\lambda I - A| &= \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix} \\ &= \begin{vmatrix} \lambda & -a_{12} & -a_{13} \\ 0 & \lambda - a_{22} & -a_{23} \\ 0 & -a_{32} & \lambda - a_{33} \end{vmatrix} + \begin{vmatrix} -a_{11} & 0 - a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & 0 - a_{32} & \lambda - a_{33} \end{vmatrix}$$

设
$$A = (a_{ij})_{3\times3}$$
,
$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \begin{vmatrix} \lambda & -a_{12} & -a_{13} \\ 0 & \lambda - a_{22} & -a_{23} \\ 0 & -a_{32} & \lambda - a_{33} \end{vmatrix} + \begin{vmatrix} -a_{11} & 0 - a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & 0 - a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \cdots$$

设
$$A = (a_{ij})_{3\times3}$$
,
$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \begin{vmatrix} \lambda & -a_{12} & -a_{13} \\ 0 & \lambda - a_{22} & -a_{23} \\ 0 & -a_{32} & \lambda - a_{33} \end{vmatrix} + \begin{vmatrix} -a_{11} & 0 - a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & 0 - a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \cdots$$

$$= \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2$$

设
$$A = (a_{ij})_{3\times3}$$
,
$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \begin{vmatrix} \lambda & -a_{12} & -a_{13} \\ 0 & \lambda - a_{22} & -a_{23} \\ 0 & -a_{32} & \lambda - a_{33} \end{vmatrix} + \begin{vmatrix} -a_{11} & 0 - a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & 0 - a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \cdots$$

$$= \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2$$

$$+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$$

设
$$A = (a_{ij})_{3 \times 3}$$
,
$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ 0 - a_{21} & \lambda - a_{22} & -a_{23} \\ 0 - a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \begin{vmatrix} \lambda & -a_{12} & -a_{13} \\ 0 & \lambda - a_{22} & -a_{23} \\ 0 & -a_{32} & \lambda - a_{33} \end{vmatrix} + \begin{vmatrix} -a_{11} & 0 - a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & 0 - a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= \cdots$$

$$= \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2$$

$$+ (-1)^2 \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \lambda$$

$$+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

设
$$A = (a_{ij})_{3\times3}$$
,
 $|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$

$$+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$$

$$+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

设
$$A = (a_{ij})_{3\times3}$$
,
$$|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$$

$$+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$$

$$+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 $\lambda_1, \lambda_2, \lambda_3$

设
$$A = (a_{ij})_{3\times3}$$
,
$$|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 + \\ + (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda \\ + (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 λ_1 , λ_2 , λ_3 ,则

 $|\lambda I - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$

设
$$A = (a_{ij})_{3\times3}$$
, $|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$ $+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$ $+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ 设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 λ_1 , λ_2 , λ_3 ,则 $|\lambda I - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$ $= \lambda^3 - (\lambda_1 + \lambda_2 + \lambda_3)\lambda^2 +$

设
$$A = (a_{ij})_{3\times3}$$
, $|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$ $+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$ $+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ 设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 λ_1 , λ_2 , λ_3 , 则 $|\lambda I - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$ $= \lambda^3 - (\lambda_1 + \lambda_2 + \lambda_3)\lambda^2 +$ $+ (-1)^2 (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3)\lambda + (-1)^3 \lambda_1 \lambda_2 \lambda_3$

设
$$A = (a_{ij})_{3\times3}$$
, $|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$ $+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$ $+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ 设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 λ_1 , λ_2 , λ_3 , 则 $|\lambda I - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$ $= \lambda^3 - (\lambda_1 + \lambda_2 + \lambda_3)\lambda^2 +$ $+ (-1)^2(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)\lambda + (-1)^3\lambda_1\lambda_2\lambda_3$ 对比可知 $\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33}$

整局大導
 MAN UNIVERSIT

设
$$A = (a_{ij})_{3\times3}$$
, $|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$ $+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$ $+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ 设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 λ_1 , λ_2 , λ_3 ,则 $|\lambda I - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$

$$=\lambda^3-(\lambda_1+\lambda_2+\lambda_3)\lambda^2+$$

$$+(-1)^2(\lambda_1\lambda_2+\lambda_1\lambda_3+\lambda_2\lambda_3)\lambda+(-1)^3\lambda_1\lambda_2\lambda_3$$

对比可知
$$\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33}$$

$$\lambda_1\lambda_2\lambda_3 = |A|$$

设
$$A = (a_{ij})_{3\times3}$$
, $|\lambda I - A| = \lambda^3 - (a_{11} + a_{22} + a_{33})\lambda^2 +$ $+ (-1)^2 \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} \right) \lambda$ $+ (-1)^3 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ 设 $|\lambda I - A| = 0$ 的全部 3 个根(含重根)为 λ_1 , λ_2 , λ_3 , 则 $|\lambda I - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$ $= \lambda^3 - (\lambda_1 + \lambda_2 + \lambda_3)\lambda^2 +$

对比可知

$$\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33}$$

 $\lambda_1 \lambda_2 \lambda_3 = |A|$

 $+(-1)^2(\lambda_1\lambda_2+\lambda_1\lambda_3+\lambda_2\lambda_3)\lambda+(-1)^3\lambda_1\lambda_2\lambda_3$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + |-A|$$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

设
$$|\lambda I - A| = 0$$
 的全部 n 个根(含重根)为 $\lambda_1, \lambda_2, \ldots, \lambda_n$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

设
$$|\lambda I - A| = 0$$
 的全部 n 个根(含重根)为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ ●Rmk

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

设
$$A=(a_{ij})_{n\times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

$$= \lambda^{n} - (\lambda_{1} + \lambda_{2} + \dots + \lambda_{n})\lambda^{n-1} + \dots + *\lambda + (-1)^{n}\lambda_{1}\lambda_{2} \dots \lambda_{n}$$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

$$= \lambda^{n} - (\lambda_{1} + \lambda_{2} + \dots + \lambda_{n})\lambda^{n-1} + \dots + *\lambda + (-1)^{n}\lambda_{1}\lambda_{2} \dots \lambda_{n}$$

对比可知

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}$$
$$\lambda_1 \lambda_2 \cdots \lambda_n = |A|$$

设
$$A = (a_{ij})_{n \times n}$$
,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n} - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1} + \cdots + *\lambda + \underbrace{|-A|}_{(-1)^{n}|A|}$$

$$= \lambda^{n} - (\lambda_{1} + \lambda_{2} + \dots + \lambda_{n})\lambda^{n-1} + \dots + *\lambda + (-1)^{n}\lambda_{1}\lambda_{2} \dots \lambda_{n}$$

对比可知

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}$$
$$\lambda_1 \lambda_2 \dots \lambda_n = |A|$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
, 已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, 求 x

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
, 已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, 求 x

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \end{cases}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
, 已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, 求 x

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{vmatrix} \end{cases}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
, 已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, 求 x

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & x \end{vmatrix}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
, 已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, 求 x

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & x \end{vmatrix} = x + 2 \end{cases}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
,已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$,求 x

解 由特征值与矩阵系数关系:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & x \end{vmatrix} = x + 2 \end{cases}$$

$$\begin{cases} 1+2+\lambda_3=2+x \\ 1\cdot 2\cdot \lambda_3=x+2 \end{cases}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
,已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$,求 x

解 由特征值与矩阵系数关系:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & x \end{vmatrix} = x + 2 \end{cases}$$

$$\begin{cases} 1+2+\lambda_3=2+x \\ 1\cdot 2\cdot \lambda_3=x+2 \end{cases} \Rightarrow \begin{cases} \lambda_3-x=-1 \\ 2\lambda_3-x=2 \end{cases}$$

例 设
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{pmatrix}$$
,已知 A 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$,求 x

解 由特征值与矩阵系数关系:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 1 + x + 1 \\ \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & x & 0 \\ 4 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & x \end{vmatrix} = x + 2 \end{cases}$$

$$\begin{cases} 1+2+\lambda_3=2+x \\ 1\cdot 2\cdot \lambda_3=x+2 \end{cases} \Rightarrow \begin{cases} \lambda_3-x=-1 \\ 2\lambda_3-x=2 \end{cases} \Rightarrow \begin{cases} \lambda_3=3 \\ x=4 \end{cases}$$

例 已知 $A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$ 有特征值 2, 6, 求 x 的值。

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2 + 6 + \lambda_3 = x + 4 + 5 \\ \end{cases}$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix}$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

 \mathbf{M} 设 \mathbf{A} 的第三个特征值为 \mathbf{A} ,由特征值与矩阵系数关系:

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix}$$

$$\begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} = \frac{r_2 + 2r_1}{r_3 - 5r_1}$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix}$$

$$\begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} = \frac{r_2 + 2r_1}{r_3 - 5r_1} \begin{vmatrix} x & -1 & 1 \\ 2 + 2x & 2 & 0 \\ -3 - 5x & 2 & 0 \end{vmatrix}$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix}$$

$$\begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} = \begin{vmatrix} \frac{r_2 + 2r_1}{r_3 - 5r_1} & \begin{vmatrix} x & -1 & 1 \\ 2 + 2x & 2 & 0 \\ -3 - 5x & 2 & 0 \end{vmatrix} = \begin{vmatrix} 2 + 2x & 2 \\ -3 - 5x & 2 \end{vmatrix}$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix}$$

$$\begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} = \begin{vmatrix} \frac{r_2 + 2r_1}{r_3 - 5r_1} & \begin{vmatrix} x & -1 & 1 \\ 2 + 2x & 2 & 0 \\ -3 - 5x & 2 & 0 \end{vmatrix} = \begin{vmatrix} 2 + 2x & 2 \\ -3 - 5x & 2 \end{vmatrix} = 2(7x + 5)$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix}$$

其中

$$\begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} = \begin{vmatrix} \frac{r_2 + 2r_1}{r_3 - 5r_1} & \begin{vmatrix} x & -1 & 1 \\ 2 + 2x & 2 & 0 \\ -3 - 5x & 2 & 0 \end{vmatrix} = \begin{vmatrix} 2 + 2x & 2 \\ -3 - 5x & 2 \end{vmatrix} = 2(7x + 5)$$

$$\begin{cases} \lambda_3 - x = 1 \\ 6\lambda_3 - 7x = 5 \end{cases}$$

例 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

$$\begin{cases} 2+6+\lambda_3 = x+4+5\\ 2\cdot 6\cdot \lambda_3 = \begin{vmatrix} x & -1 & 1\\ 2 & 4 & -2\\ -3 & -3 & 5 \end{vmatrix}$$

其中

$$\begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} = \begin{vmatrix} \frac{r_2 + 2r_1}{r_3 - 5r_1} & \begin{vmatrix} x & -1 & 1 \\ 2 + 2x & 2 & 0 \\ -3 - 5x & 2 & 0 \end{vmatrix} = \begin{vmatrix} 2 + 2x & 2 \\ -3 - 5x & 2 \end{vmatrix} = 2(7x + 5)$$

$$\begin{cases} \lambda_3 - x = 1 \\ 6\lambda_3 - 7x = 5 \end{cases} \Rightarrow \begin{cases} \lambda_3 = 2 \\ x = 1 \end{cases}$$

_____The End_____

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$r_3 - 2r_2$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$
$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$
$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 - 2 - 4 \\ -2 & \lambda & -2 \\ 0 & -2 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 - 2 - 4 \\ -2 & \lambda & -2 \\ 0 & -2 & 1 \end{vmatrix} \xrightarrow{\frac{c_2 + 2c_3}{2}}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 - 2 - 4 \\ -2 & \lambda - 2 \\ 0 & -2 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda + 1) \begin{vmatrix} \lambda - 3 & -10 & -4 \\ -2 & \lambda - 4 - 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 - 2 - 4 \\ -2 & \lambda & -2 \\ 0 & -2 & 1 \end{vmatrix} \frac{c_2 + 2c_3}{2} (\lambda + 1) \begin{vmatrix} \lambda - 3 & -10 & -4 \\ -2 & \lambda - 4 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 & -10 \\ -2 & \lambda - 4 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 - 2 - 4 \\ -2 & \lambda - 2 \\ 0 & -2 & 1 \end{vmatrix} \xrightarrow{c_2 + 2c_3} (\lambda + 1) \begin{vmatrix} \lambda - 3 - 10 & -4 \\ -2 & \lambda - 4 - 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 & -10 \\ -2 & \lambda - 4 \end{vmatrix}$$

$$= (\lambda + 1) (\lambda^2 - 7\lambda - 8) =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 3 - 2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{2} \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ 0 & -2 - 2\lambda & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 - 2 - 4 \\ -2 & \lambda - 2 \\ 0 & -2 & 1 \end{vmatrix} \frac{c_2 + 2c_3}{2} (\lambda + 1) \begin{vmatrix} \lambda - 3 & -10 & -4 \\ -2 & \lambda - 4 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 3 & -10 \\ -2 & \lambda - 4 \end{vmatrix}$$

$$= (\lambda + 1) (\lambda^2 - 7\lambda - 8) = (\lambda + 1)^2 (\lambda - 8)$$

$$(-I - A : 0) =$$

$$(-I - A \vdots 0) = \begin{pmatrix} -4 & -2 & -4 & 0 \\ -2 & -1 & -2 & 0 \\ -4 & -2 & -4 & 0 \end{pmatrix} \rightarrow$$

$$(-I - A \vdots 0) = \begin{pmatrix} -4 & -2 & -4 & | & 0 \\ -2 & -1 & -2 & | & 0 \\ -4 & -2 & -4 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & | & 0 \\ 2 & 1 & 2 & | & 0 \\ 2 & 1 & 2 & | & 0 \end{pmatrix}$$

$$(-I - A \vdots 0) = \begin{pmatrix} -4 & -2 & -4 & 0 \\ -2 & -1 & -2 & 0 \\ -4 & -2 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(-I - A \vdots 0) = \begin{pmatrix} -4 & -2 & -4 & 0 \\ -2 & -1 & -2 & 0 \\ -4 & -2 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$2x_1 + x_2 + 2x_3 = 0$$

$$(-I - A \vdots 0) = \begin{pmatrix} -4 & -2 & -4 & 0 \\ -2 & -1 & -2 & 0 \\ -4 & -2 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$2x_1 + x_2 + 2x_3 = 0 \Rightarrow x_2 = -2x_1 - 2x_3$$

$$(-I - A : 0) = \begin{pmatrix} -4 & -2 & -4 & 0 \\ -2 & -1 & -2 & 0 \\ -4 & -2 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$2x_1 + x_2 + 2x_3 = 0 \quad \Rightarrow \quad x_2 = -2x_1 - 2x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(-I - A \mid 0) = \begin{pmatrix} -4 & -2 & -4 \mid 0 \\ -2 & -1 & -2 \mid 0 \\ -4 & -2 & -4 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 \mid 0 \\ 2 & 1 & 2 \mid 0 \\ 2 & 1 & 2 \mid 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$2x_1 + x_2 + 2x_3 = 0 \quad \Rightarrow \quad x_2 = -2x_1 - 2x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(-I - A : 0) = \begin{pmatrix} -4 & -2 & -4 & 0 \\ -2 & -1 & -2 & 0 \\ -4 & -2 & -4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$2x_1 + x_2 + 2x_3 = 0 \quad \Rightarrow \quad x_2 = -2x_1 - 2x_3$$

基础解系:
$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$

• $\exists \lambda_2 = 8$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(8I - A : 0) =$$

$$(8I - A \vdots 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$(8I - A \vdots 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$(8I - A \vdots 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\frac{r_1 - 5r_2}{r_2 + 4r_2}$$

$$(8I - A : 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+4r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{array} \right)$$

$$(8I - A : 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+4r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(8I - A \vdots 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+4r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{ccc|c} 1 & -2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(8I - A : 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+4r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{ccc|c} 1 & -2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 - 2x_2 = 0 \end{cases}$$

$$(8I - A \vdots 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+4r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{ccc|c} 1 & -2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$\text{EFLY} \qquad \left(\begin{array}{ccc|c} x_1 - 2x_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 - 2x_2 = 0 \\ -2x_2 + x_3 = 0 \end{cases}$$

$$(8I - A : 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+4r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{ccc|c} 1 & -2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 - 2x_2 &= 0 \\ -2x_2 + x_3 &= 0 \end{cases} \Rightarrow \begin{cases} x_1 = 2x_2 \\ x_3 = 2x_2 \end{cases}$$

$$(8I - A : 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\frac{r_1 - 5r_2}{r_3 + 4r_2} \begin{pmatrix}
0 & 18 & -9 & 0 \\
1 & -4 & 1 & 0 \\
0 & -18 & 9 & 0
\end{pmatrix} \longrightarrow \begin{pmatrix}
1 & -4 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$r_1 - r_2 \begin{pmatrix}
1 & -2 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{pmatrix}$$

$$\xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & -2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(x_1 - 2x_2)$$

所以 $\begin{cases} x_1 - 2x_2 = 0 \\ -2x_2 + x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 2x_2 \\ x_3 = 2x_2 \end{cases}$

$$(8I - A \vdots 0) = \begin{pmatrix} 5 & -2 & -4 & 0 \\ -2 & 8 & -2 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & -2 & -4 & 0 \\ 1 & -4 & 1 & 0 \\ -4 & -2 & 5 & 0 \end{pmatrix}$$

$$\frac{r_1 - 5r_2}{r_3 + 4r_2} \begin{pmatrix} 0 & 18 & -9 & 0 \\ 1 & -4 & 1 & 0 \\ 0 & -18 & 9 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -4 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & -2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(x_1 - 2x_2)$$

所以 $\begin{cases} x_1 - 2x_2 &= 0 \\ -2x_2 + x_3 &= 0 \end{cases} \Rightarrow \begin{cases} x_1 = 2x_2 \\ x_3 = 2x_2 \end{cases}$

基础解系:
$$\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$\frac{c_3 + c_2}{3} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$
$$\frac{c_3 + c_2}{2} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & 1 \\ 3 & 3 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$
$$\frac{c_3 + c_2}{2} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & 1 \\ 3 & 3 & 1 \end{vmatrix} \frac{r_2 - r_3}{2}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$\frac{c_3 + c_2}{=} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & 1 \\ 3 & 3 & 1 \end{vmatrix} \frac{r_2 - r_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -5 & \lambda - 7 & 0 \\ 3 & 3 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$\frac{c_3 + c_2}{2} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & 1 \\ 3 & 3 & 1 \end{vmatrix} \xrightarrow{r_2 - r_3} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -5 & \lambda - 7 & 0 \\ 3 & 3 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 \\ -5 & \lambda - 7 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$\frac{c_3 + c_2}{=} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & 1 \\ -2 & 3 & 3 & 1 \end{vmatrix} = \frac{r_2 - r_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -5 & 3 & 3 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 \\ -5 & \lambda - 7 \end{vmatrix}$$

$$= (\lambda - 2) (\lambda^2 - 8\lambda + 12) =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -1 \\ -2 & \lambda - 4 & 2 \\ 3 & 3 & \lambda - 5 \end{vmatrix}$$

$$\frac{c_3 + c_2}{2} \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & \lambda - 2 \\ 3 & 3 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -2 & \lambda - 4 & 1 \\ 3 & 3 & 1 \end{vmatrix} \xrightarrow{r_2 - r_3} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 & 0 \\ -5 & \lambda - 7 & 0 \\ 3 & 3 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 \\ -5 & \lambda - 7 \end{vmatrix}$$

$$= (\lambda - 2) (\lambda^2 - 8\lambda + 12) = (\lambda - 2)^2 (\lambda - 6)$$

• $\exists \lambda_1 = 2$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(2I - A : 0) =$$

• $\exists \lambda_1 = 2$, $\forall M (\lambda_1 I - A) X = 0$:

$$(2I-A:0) = \begin{pmatrix} 1 & 1 & -1 & 0 \\ -2 & -2 & 2 & 0 \\ 3 & 3 & -3 & 0 \end{pmatrix}$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ -2 & -2 & 2 & | & 0 \\ 3 & 3 & -3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

• $\exists \lambda_1 = 2$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & 1 & -1 & 0 \\ -2 & -2 & 2 & 0 \\ 3 & 3 & -3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 - x_3 = 0$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ -2 & -2 & 2 & | & 0 \\ 3 & 3 & -3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 - x_3 = 0 \implies x_1 = -x_2 + x_3$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ -2 & -2 & 2 & | & 0 \\ 3 & 3 & -3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 - x_3 = 0$$
 \Rightarrow $x_1 = -x_2 + x_3$ 基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

→ Back

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & 1 & -1 & 0 \\ -2 & -2 & 2 & 0 \\ 3 & 3 & -3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 - x_3 = 0 \Rightarrow x_1 = -x_2 + x_3$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & 1 & -1 & 0 \\ -2 & -2 & 2 & 0 \\ 3 & 3 & -3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 - x_3 = 0 \Rightarrow x_1 = -x_2 + x_3$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

→ Back

• $\exists \lambda_2 = 6$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(6I - A : 0) =$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$(6I - A : 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\frac{r_1 - 5r_2}{r_3 + 3r_2}$$

$$(6I - A : 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array} \right)$$

$$(6I - A : 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 + r_2} \left(\begin{array}{ccc|c} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 + r_2} \left(\begin{array}{ccc|c} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \end{cases}$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 + r_2} \left(\begin{array}{ccc|c} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \\ x_2 + \frac{2}{3}x_3 = 0 \end{cases}$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_1-5r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 + r_2} \left(\begin{array}{ccc|c} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \\ x_2 + \frac{2}{3}x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = -\frac{2}{3}x_3 \end{cases}$$

$$(6I - A \vdots 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_3+3r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以
$$\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \\ x_2 + \frac{2}{3}x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = -\frac{2}{3}x_3 \end{cases}$$

基础解系:

$$(6I - A : 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_2]{r_3+3r_2} \left(\begin{array}{ccc|c} 0 & 6 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 0 & 6 & 4 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & -1 & -1 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\xrightarrow{\frac{1}{3} \times r_2} \begin{pmatrix} 1 & -1 & -1 & | & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & | & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以 $\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \\ x_2 + \frac{2}{3}x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = -\frac{2}{3}x_3 \end{cases}$

基础解系: $\alpha_3 = \begin{pmatrix} & & \\ & & \\ & 3 & \end{pmatrix}$

$$(6I - A : 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1-5r_2} \begin{pmatrix} 0 & 6 & 4 & | & 0 \\ 1 & -1 & -1 & | & 0 \\ 0 & 6 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & -1 & | & 0 \\ 0 & 3 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{3} \times r_2} \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以 $\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \\ x_2 + \frac{2}{3}x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = -\frac{2}{3}x_3 \end{cases}$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$(6I - A : 0) = \begin{pmatrix} 5 & 1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{2}r_2} \begin{pmatrix} 5 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 1 & 0 \end{pmatrix}$$

$$\frac{r_1 - 5r_2}{r_3 + 3r_2} \begin{pmatrix}
0 & 6 & 4 & | & 0 \\
1 & -1 & -1 & | & 0 \\
0 & 6 & 4 & | & 0
\end{pmatrix} \longrightarrow \begin{pmatrix}
1 & -1 & -1 & | & 0 \\
0 & 3 & 2 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{3} \times r_2} \begin{pmatrix} 1 & -1 & -1 & | & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & | & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以
$$\begin{cases} x_1 - 2x_2 - \frac{1}{3}x_3 = 0 \\ x_2 + \frac{2}{3}x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = -\frac{2}{3}x_3 \end{cases}$$

基础解系: $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 3 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 3 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 3 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & -2 \\ -2 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 3 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & -2 \\ -2 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) (\lambda^2 - 4\lambda) =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 3 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 3) \begin{vmatrix} \lambda - 2 & -2 \\ -2 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) (\lambda^2 - 4\lambda) = (\lambda - 3)(\lambda - 4)\lambda$$

$$(0I - A : 0) =$$

• $\exists \lambda_1 = 0$, $\forall M (\lambda_1 I - A) X = 0$:

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix}$$

• $\exists \lambda_1 = 0$, $\forall M (\lambda_1 I - A) X = 0$:

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 + x_3 = 0 \end{cases}$$

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & +x_3 = 0 \\ & x_2 & = 0 \end{cases}$$

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & +x_3=0 \\ & x_2 & =0 \end{cases} \Rightarrow \begin{cases} x_1=-x_3 \\ x_2=0 \end{cases}$$

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & +x_3 = 0 \\ x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} & & \\ & 1 & \end{pmatrix}$$

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & +x_3 = 0 \\ x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$(0I - A \vdots 0) = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 0 & -3 & 0 & 0 \\ -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & +x_3 = 0 \\ x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$$

基础解系:
$$\alpha_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

• $\exists \lambda_2 = 3$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(3I - A : 0) =$$

•
$$\exists \lambda_2 = 3$$
, $\forall M (\lambda_2 I - A) = 0$:

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix}$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$\begin{cases} x_1 &= 0 \end{cases}$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$\begin{cases} x_1 & = 0 \\ x_3 = 0 \end{cases}$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$\begin{cases} x_1 & = 0 \\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以

$$\begin{cases} x_1 & = 0 \\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$$

基础解系: $\alpha_3 = \begin{pmatrix} 1 \end{pmatrix}$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以

$$\begin{cases} x_1 & = 0 \\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$$

基础解系: $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(3I - A \vdots 0) = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$\begin{cases} x_1 & = 0 \\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_3 = 0 \end{cases}$$

基础解系:
$$\alpha_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

• $\exists \lambda_3 = 4$, $\forall x \in (\lambda_3 I - A)x = 0$:

$$(4I - A : 0) =$$

$$(4I - A \vdots 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix}$$

$$(4I - A \stackrel{?}{\cdot} 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(4I - A \vdots 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 \end{cases}$$

$$(4I - A \vdots 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 & = 0 \end{cases}$$

$$(4I - A \stackrel{?}{\cdot} 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = 0 \end{cases}$$

$$(4I - A \vdots 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 \\ & x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = 0 \end{cases}$$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(4I - A \vdots 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 \\ & x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = 0 \end{cases}$$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(4I - A \vdots 0) = \begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 & -x_3 = 0 \\ & x_2 & = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = 0 \end{cases}$$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n = 0$$

$$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n = 0$$

例
$$1 \lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$

$$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n = 0$$

例
$$1 \lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$
 \Rightarrow $(\lambda - 1)(\lambda - 2)^2 = 0$

$$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n = 0$$

例
$$1$$
 $\lambda^3-5\lambda^2+8\lambda-4=0$ \Rightarrow $(\lambda-1)(\lambda-2)^2=0$ 有三个根 $\lambda_1=1$, $\lambda_2=2$, $\lambda_3=2$

$$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n = 0$$

例
$$1 \lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$
 \Rightarrow $(\lambda - 1)(\lambda - 2)^2 = 0$ 有三个根 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 2$

例
$$2\lambda^2 + 1 = 0$$

$$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n = 0$$

例
$$1 \lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$
 \Rightarrow $(\lambda - 1)(\lambda - 2)^2 = 0$ 有三个根 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 2$

$$M = \lambda^2 + 1 = 0$$
 有两个(复)根

$$\lambda_1 = \sqrt{-1}, \quad \lambda_2 = -\sqrt{-1}$$

