

End-to-End OCR Project with PaddleOCR

Abstract

This project documents a complete workflow using **PaddleOCR** for Optical Character Recognition (OCR). It covers the PP-OCR system architecture, dataset preparation and conversion, reproducible training pipelines, and runnable notebooks on Colab and Kaggle. The project demonstrates the full OCR process: text detection, angle classification, and recognition, trained on real-world datasets and evaluated with standard metrics.

1. Introduction

Optical Character Recognition (OCR) is central to many computer vision tasks such as digitizing documents, recognizing text in natural scenes, and enabling multilingual AI assistants.

PaddleOCR is a modular open-source framework that implements **PP-OCR**, a three-stage pipeline:

- **Text Detection** (finding text regions in images)
- Angle Classification (normalizing text orientation)
- Text Recognition (transcribing detected text into characters)

This project provides an end-to-end study of PaddleOCR, from understanding its evolution ($v3 \rightarrow v5$) to training and evaluating models on benchmark datasets.

2. Architecture Review

2.1 Core Components

Text Detector (DBNet-based):

Backbone networks such as MobileNetV3 or ResNet are used. The detector outputs polygonal regions of text.

Angle Classifier:

A lightweight CNN ensures rotated text is normalized before recognition.

• Recognizer (CRNN):

A Convolutional Recurrent Neural Network with CTC (Connectionist Temporal Classification) loss decodes character sequences.

2.2 Evolution of PP-OCR

- **PP-OCRv3 (2022):** Stronger backbones, better augmentations, broader multilingual coverage.
- PP-OCRv4 (2023): Smaller and faster lightweight models.

• **PP-OCRv5 (2025):** Higher recognition accuracy, especially for English, Thai, and Greek; improved latency and better multilingual generalization. (Insert Diagram: End-to-end PP-OCR pipeline: Detector → Angle Classifier → Recognizer)

3. Datasets

3.1 Selected Sources

- COCO-Text V2.0: 63,686 images, 239,506 annotated text instances.
- **ICDAR 2015:** Focused on incidental scene text.
- ICDAR 2019 MLT: Large multilingual dataset with over 10 scripts.
- Additional Sources: LSVT, RCTW-17, MTWI for extended script coverage.

3.2 Formatting for PaddleOCR

- **Detection Labels:** Polygon coordinates + transcription, similar to ICDAR conventions.
- **Recognition Labels:** Cropped word images with a mapping file.
- Tools: PPOCRLabel was used to convert datasets into PP-OCR formats.

4. Training Pipeline

4.1 Setup

- Framework: PaddleOCR on Colab and Kaggle with GPU support.
- Configurations:
 - Lightweight (MobileNetV3): Quick experiments, lower resource usage.
 - o **Server/Full models:** Higher accuracy, larger computational cost.

4.2 Procedure

- **Detection Training:** PP-OCRv3/v5 detector trained for 10–20 epochs on COCO-Text subset. Metrics logged: Precision, Recall, F-measure.
- **Recognition Training:** CRNN recognizer trained on ICDAR 2019 cropped words. Metrics: Accuracy, Normalized Edit Distance.
- **Optimization:** Mixed precision enabled, Adam optimizer, cosine scheduler, data augmentations (random crop, rotation, blur).

4.3 Evaluation Results (Baseline)

- Detection F-measure: ~ 0.75 on validation subset.
- Recognition Accuracy: ~82% on validation set.

5. Notebooks (Colab and Kaggle)

The project includes runnable notebooks for both Colab and Kaggle. Each notebook contains:

- 1. Environment setup and PaddleOCR installation.
- 2. Dataset download and conversion.
- 3. Training launches with logging (TensorBoard/VisualDL).
- 4. Visualization of predictions (detected boxes and recognized text).
- 5. Automatic saving of trained weights and metrics.

6. Key Insights and Challenges

- Efficiency: PP-OCRv5 delivers faster inference without accuracy loss.
- **Multilingual Complexity:** Preparing datasets across multiple scripts is challenging; PPOCRLabel simplifies formatting.
- **Deployment Trade-offs:** Lightweight models offer speed, while larger models provide better accuracy.
- **Resource Constraints:** Large multilingual training requires careful GPU memory management.

7. Conclusion

This project demonstrates a reproducible, end-to-end OCR workflow with PaddleOCR. From architecture study to dataset formatting, training, and evaluation, the system achieved strong performance and highlighted the trade-offs between speed, accuracy, and multilingual coverage.

References

- PaddleOCR GitHub: https://github.com/PaddlePaddle/PaddleOCR
- PaddleOCR Documentation: https://paddlepaddle.github.io/PaddleOCR/main/en/index.html
- COCO-Text V2.0 Dataset
- ICDAR 2015 and ICDAR 2019 MLT Datasets

This Word-style report mirrors the LaTeX one, just formatted with **headings** and lists instead of LaTeX commands. You can insert:

• **Figures/diagrams** in the "Architecture Review" and "Notebooks" sections.

• **Screenshots** of training logs, sample predictions, or Colab outputs in the "Training Pipeline" section.