2ª Folha de Exercícios

Análise de circuitos

(Leis de Kirchhoff; Análise das correntes nos ramos, análise das malhas e análise nodal; Teorema da sobreposição; Teoremas de Thévenin e Norton; Teorema da máxima potência; Teorema de Millman)

 Calcule o valor (e sentido) das correntes nas resistências, e a queda de tensão em cada resistência

Solução (parcial):
$$I_{R1} = 5A$$
; $I_{R2} = 4A$; $I_{R3} = 1A$

2. Verifique que a ponte se encontra desbalanceada. Calcule as correntes nas três malhas do circuito. Transforme o triângulo superior da ponte numa estrela, e simplifique o circuito de forma a encontrar o valor da resistência total do circuito.

3. Considere o circuito ao lado, e calcule as correntes nas resistências (a) usando o Teorema da sobreposição e (b) usando a Análise das malhas. Verifique que o resultado é o mesmo.

Solução:
$$I_{R1}$$
 = 0,75 A \uparrow ; I_{R2} = 0,75 A \rightarrow ; I_{R3} = 0,0875 \downarrow ; I_{R4} = 0,0125A \rightarrow

4. Encontre o circuito de Thévenin equivalente ao da figura. Usando o equivalente de Thévenin, calcule a corrente na carga.

Solução:
$$U_{TH} = 75V$$
, $R_{TH} = 50 \Omega$, I (na carga) = 0,75A

Para o exercício anterior, calcule (a) a potência fornecida pela fonte de tensão de Thévenin, (b) a energia consumida pela carga(em Joule) durante 10 minutos e (c) o rendimento.

6. Encontre o circuito de Norton equivalente ao da figura ao lado. Usando o equivalente de Norton, calcule a corrente na carga.

Solução:
$$I_N = 1.5 \text{ A}$$
, $R_{TH} = 50 \Omega$, I (na carga) = 0.75A

7. Para o exercício anterior, calcule (a) a potência fornecida pela fonte de corrente de Norton, (b) a energia consumida pela carga(em Joule) durante 10 minutos e (c) o rendimento.

Solução: (a) P
$$_{out}$$
 = 56,25 W; (b) W $_{carga}$ = 16 875 J; η = 50%

- **8.** Ainda em relação ao circuito acima, converta a fonte de tensão numa fonte de corrente (na conversão considere a resistência de 20 Ω que se encontra em série com a fonte de tensão) e encontre (a) o circuito de Thévenin equivalente e o (b) circuito de Norton equivalente. Verifique que são iguais aos obtidos na resolução das questões 4 e 6.
- **9.** Imagine que no circuito acima representado, a carga (de 50 Ω) era substituída por uma resistência de 200 Ω. Usando o circuito equivalente de Thévenin encontrado na questão 4., calcule (a) a corrente na carga, (b) a potência fornecida pela fonte de tensão de Thévenin, (c) a potência consumida pela carga e (d) o rendimento.
- **10.** Resolva o exercício 9, mas tendo por base o circuito equivalente de Norton encontrado na questão 6.
- **11.** Considere o circuito ao lado, supondo que R2 é a carga. Simplifique-o usando o teorema de Millman e calcule a corrente na carga R_2 .

Solução:
$$I_{eq}$$
 = 14 A; R_{eq} (R1 | | R3) = 0,8 Ω ; E_{eq} = 11,2 V

