Espaces euclidiens

Vallaeys Pascal

4 avril 2024

1 Références:

Exercices de la banque CCINP : 39,63,66,68,71,76,77,78,79,80,81,82,92

Méthodes de base :

- Orthonormaliser une base.
- Justifier qu'une forme est un produit scalaire.
- Déterminer le projeté d'un vecteur sur un sous-espace vectoriel.
- Caractériser une matrice orthogonale.
- Déterminer un adjoint.
- Appliquer le théorème spectral.

2 Exercices incontournables:

Exercice 1: (CCINP MPi 2023)

Soit $(E, \|\cdot\|)$ un espace euclidien et $f \in \mathcal{L}(E)$ symétrique.

1. Montrer que

 $f \in S_n^+(\mathbb{R}) \iff \operatorname{Sp}(f) \subset \mathbb{R}_+$

$$f \in S_n^{++}(\mathbb{R}) \iff \operatorname{Sp}(f) \subset \mathbb{R}_+^*$$

- 2. Soit f symétrique positive, montrer qu'il existe un endomorphisme g symétrique et positif tel que $f = g^2$. Que dire si f est défini positif?
 - 3. Soit f défini positif et g positif, montrer que $f \circ g$ est diagonalisable.

Exercice 2: (CCINP MP 2023)

Soit
$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Donner un système de conditions nécessaires et suffisantes sur (a,b,c) pour que M soit dans $SO_3(\mathbb{R})$. On donne l'identité : $a^3 + b^3 + c^3 3abc = (a+b+c)^3 3(a+b+c)(ac+ab+cb)$.
- 2. On pose $\alpha = a + b + c$ et $\beta = ac + ab + cb$. D'après la question précédente, pour quelles valeurs de (α, β) , M est-elle dans $SO_3(\mathbb{R})$?
 - 3. Montrer que $M \in SO_3(\mathbb{R})$ si et seulement s'il existe $k \in [0, \frac{4}{27}]$ tel que a, b, c soient les racines de $X^3 X^2 + k$.
 - 4. Déterminer les triplets (a, b, c) tels que a = b et $M \in \mathcal{O}_3(\mathbb{R})$.

Exercice 3: (Centrale MP 2023)

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et $s \in \mathcal{L}(E)$.

- 1. Établir l'égalité du parallélogramme.
- 2. Montrer l'équivalence entre les deux propriétés suivantes :
- $(i) : \exists c \in \mathbb{R} : \forall (x,y) \in E^2, \ \langle s(x), s(y) \rangle = c \langle x, y \rangle.$
- $(ii): \forall (x,y) \in E^2, \ \langle x,y \rangle = 0 \Rightarrow \ \langle s(x),s(y) \rangle = 0.$
- 3. Trouver les $u \in \mathcal{L}(E)$ tels que : pour tout sous-espace V de E, $u(V^{\perp}) \subset u(V)^{\perp}$.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Pour la dernière question, il faut bien établir une analyse-synthèse en commençant par obtenir des conditions nécessaires sur des sous-espaces simples.

Exercice 4: (Mines télécom MP 2023)

Soit E un espace euclidien; soit $f \in \mathcal{L}(E)$ et $u = f^* \circ f$.

- 1. Montrer que u est diagonalisable et que ses valeurs propres sont dans \mathbb{R}_+ .
- 2. Montrer que Ker u = Ker f et $\text{Im } u = \text{Im } f^*$.

Exercice 5: (Mines télécom MP 2023)

Considérons le plan d'équation x + 2y - 3z = 0. Trouver la matrice dans la base canonique de la projection orthogonale sur ce plan.

Exercice 6: (CCINP MP 2022)

- 1) Montrer que pour toutes matrices A et B de $\mathfrak{M}_n(\mathbb{R})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. En déduire que deux matrices semblables ont la même trace.
 - 2) Soit p un projecteur orthogonal de rang r, montrer que tr p = r.
 - 3) Montrer que pour tout vecteur x, $\langle x, p(x) \rangle = \langle p(x), p(x) \rangle$.

Exercice 7: (CCINP MP 2022)

On note $E = \mathcal{C}^0([-1,1],\mathbb{R})$ et φ définie sur E^2 par $\varphi(f,g) = \int_{-1}^1 fg$. On note \mathcal{P} le sous-espace vectoriel des fonctions paires et \mathcal{I} celui des fonctions impaires.

- 1. Montrez $\mathcal{P} \oplus \mathcal{I} = E$.
- 2. Montrez que φ est un produit scalaire sur E.
- 3. Montrez $\mathcal{P}^{\perp} = \mathcal{I}$.
- 4. Exprimez \hat{f} l'image de $f \in E$ par la symétrie orthogonale par rapport à \mathcal{P} .

Exercice 8: (Mines MP 2022) (avec préparation)

Soit (E, (.|.)) un espace euclidien et f un endomorphisme de E tel que :

 $\forall (x,y) \in E, (x|y) = 0 \Rightarrow (f(x)|f(y)) = 0$

Montrer qu'il existe $k \ge 0$ tel que $\forall x \in E, ||f(x)|| = k.||x||$.

Exercice 9: (CCINP MP 2021)

Soit E un espace euclidien, u un endomorphisme symétrique (=auto-adjoint) de E.

- 1. Soit $\alpha = \min(\operatorname{Sp}(u)), \ \beta = \max(\operatorname{Sp}(u)).$ Montrer que $\forall x \in E, \ \alpha ||x||^2 \le \langle u(x), x \rangle \le \beta ||x||^2.$
- 2. Montrer que $\mathrm{Sp}(u) \subset \mathbb{R}_+ \iff \forall x \in E, \ \langle u(x), x \rangle \geq 0,$

puis que $\operatorname{Sp}(u) \subset \mathbb{R}_+^* \iff \forall x \in E \setminus \{0\}, \ \langle u(x), x \rangle > 0.$

- 3. On suppose que $\operatorname{Sp}(u) \subset \mathbb{R}_+$. Montrer que $\forall x \in E, \ u(x) = 0 \Longleftrightarrow \langle u(x), x \rangle = 0$.
- 4. Soit v un autre endomorphisme symétrique de E. On suppose $\mathrm{Sp}(u) \subset \mathbb{R}_+$ et $\mathrm{Sp}(v) \subset \mathbb{R}_+$.
- a) Montrer que $Sp(u+v) \subset \mathbb{R}_+$.
- b) Montrer que $Ker(u + v) = Ker(u) \cap Ker(v)$.
- c) Montrer que Im(u + v) = Im(u) + Im(v).

Exercice 10: (CCINP MP 2021)

Soit $n \in \mathbb{N}^*$. On définit une application ϕ par :

$$\forall (M, N) \in \mathcal{M}_n(\mathbb{R})^2, \ \phi(M, N) = \operatorname{tr}(M^\top N)$$

Montrer que ϕ définit un produit scalaire.

Pour $(M, N) \in O_n(\mathbb{R})^2$, montrer que $\phi(M, N) \leq n$.

Pour $(A, B) \in S_n(\mathbb{R})^2$, montrer que $\operatorname{tr}((AB)^2) \le \operatorname{tr}(A^2B^2)$

Pour $(A, B) \in S_n(\mathbb{R})^2$, montrer que $\operatorname{tr}((AB + BA)^2) \leq 4\operatorname{tr}(A^2B^2)$.

Exercice 11: (Mines PSI 2021)

On pose $\mathcal{S}_n^+(\mathbb{R}) = \{ M \in \mathcal{S}_n(\mathbb{R}) / \operatorname{Sp}(M) \subset \mathbb{R}_+ \}.$

- 1. Soit $S \in S_n(\mathbb{R})$. Montrer que : $M \in \mathcal{S}_n^+(\mathbb{R}) \iff \forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ {}^t X S X \geqslant 0$.
- 2. Montrer que : $\forall A \in \mathcal{M}_n(\mathbb{R}), \ ^t\!AA \in \mathcal{S}_n^+(\mathbb{R}).$
- 3. Montrer que : $\forall S \in \mathcal{S}_n^+(\mathbb{R}), \ \exists A \in \mathcal{M}_n(\mathbb{R}) \ / \ S = {}^t\!AA.$
- 4. Montrer que : $\forall S, T \in \mathcal{S}_n^+(\mathbb{R}), S + T \in \mathcal{S}_n^+(\mathbb{R}).$
- 5. $\mathcal{S}_n^+(\mathbb{R})$ est-il un sous-espace vectoriel?
- 6. Montrer que : $\forall (U, V) \in GL_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R}), \ \chi_{UV} = \chi_{VU}.$
- 7. On suppose seulement $U \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe une suite (U_k) d'éléments de $\mathrm{GL}_n(\mathbb{R})$ telle que $U_k \underset{k \to +\infty}{\longrightarrow} U$.

En déduire que $\chi_{UV} = \chi_{VU}$.

Exercice 12 : (Mines télécom MP 2021)

Soit $A \in S_n^{++}(\mathbb{R})$. Montrer qu'il existe une unique matrice $B \in S_n^{++}(\mathbb{R})$ telle que $B^2 = A$.

Exercice 13: (Mines-Ponts 2019)

Soit E un espace euclidien et $p \in L(E)$ une projection. Montrer que les propositions suivantes sont équivalentes:

- a) p est un endomorphisme symétrique.
- b) p est une projection orthogonale.
- c) $\forall x \in E, ||p(x)|| \le ||x||$.

Exercice 14: (Mines-Ponts 2019)

Montrer qu'une matrice antisymétrique réelle est de rang pair.

Que dire de ses valeurs propres réelles? Montrer que A est diagonalisable sur $\mathbb C$ à spectre imaginaire pur.

Exercice 15: (CCINP MP 2019)

1. Soit $E = C^0([-1,1],\mathbb{R})$. Montrer qu'en posant $\langle f,g \rangle = \int_{-1}^{1} fg$ on définit un produit scalaire sur E.

2. Déterminer inf
$$\left\{ \int_{-1}^{1} (e^t - at - b)^2 dt; (a, b) \in \mathbb{R}^2 \right\}$$
.

Exercice 16:

On travaille dans l'espace préhilbertien $\mathbb{R}[X]$, muni du produit scalaire $(P/Q) = \int_{A}^{1} PQ$. Pour tout entier naturel n, on pose $P_n\left(X\right) = \frac{1}{2^n.n!} \cdot \frac{d^n}{dX^n} \left(\left(X^2 - 1\right)^n\right)$, avec $P_0\left(X\right) = 1$. 1) Donner les degré et coefficient dominant de P_n .

- 2) Quelle est la parité éventuelle du polynôme P_n ?
- 3) Calculer $P_n(1)$ et $P_n(-1)$.
- 4) Montrer que P_n admet n racines distinctes entre -1 et 1.
- 5) Montrer que P_n est orthogonal à $\mathbb{R}_{n-1}[X]$.
- 6) La famille $(P_n)_{n \in \aleph}$ est-elle orthogonale?
- 7) Calculer $||P_n||$.
- 8) Montrer que $\frac{d}{dX}\left(\left(X^2-1\right).\frac{dP_n}{dX}(X)\right)$ est orthogonal à $\mathbb{R}_{n-1}[X]$. 9) En déduire que P_n est solution de l'équation différentielle : $(x^2-1)y''+2x.y'-n(n+1)y=0$

Exercice 17:

Soit $A \in M_n(\mathbb{R})$.

- a) Montrer que $Ker(A^T.A) = Ker(A)$ et que $Ker(A.A^T) = Ker(A^T)$.
- b) Montrer la même genre de relation pour les images.

Exercice 18:

Soit n un entier supérieur ou égal à 2. Montrer que :

a)
$$\sum_{k=1}^{n} k.\sqrt{k} \le \frac{n(n+1)\sqrt{2n+1}}{2\sqrt{3}}.$$

b)
$$\sum_{k=1}^{n-1} \frac{k}{(n-k)^2} \ge \frac{2}{n(n-1)} \left(\sum_{k=1}^{n-1} \frac{k}{n-k} \right)^2$$
.

Exercice 19 : Soit $(e_1,...,e_n)$ une famille orthonormée d'un espace préhilbertien réel E, telle que $\forall x \in E$, $||x||^2 = \sum_{i=1}^{n} (x/e_i)^2$. Montrer que E est un espace euclidien (Mines-Ponts PC amélioré)

Exercices de niveau 1: 3

Exercice 20: (Mines télécom MP 2023)

- 1. Rappeler le théorème spectral.
- 2. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ du produit scalaire usuel. Soit $A \in S_n(\mathbb{R})$. Montrer que les sous-espaces propres de A sont deux à deux orthogonaux.
 - 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et on suppose que $(A + A^T)$ est nilpotente. Montrer que A est antisymétrique.

Exercice 21: (CCINP MP 2023)

Soit $n \ge 2$. On munit \mathbb{R}^n du produit scalaire usuel : pour $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ dans \mathbb{R}^n , on pose: $(x|y) = \sum_{i=1}^{n} x_i y_i$. Soit $F = \{x = (x_1, ..., x_n) \in \mathbb{R}^n \mid x_1 = x_n\}$.

- 1. Montrer que F est un hyperplan.
- 2. Trouver une base orthonormée de F.

- 3. Déterminer F^{\perp} .
- 4. Écrire la matrice de la projection orthogonale sur F dans la base canonique de \mathbb{R}^n .
- 5. Calculer $d(e_1, F)$.

Exercice 22 : (Mines télécom MP 2023)

1. Définition de la distance d'un vecteur à un sous-espace vectoriel et formule de la distance avec le projeté orthogonal (démonstration)

Soit
$$F = \operatorname{Vect} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right)$$
.
On donne le produit scalaire dans $\mathfrak{M}_2(\mathbb{R})$.

- 2. Trouver une base orthonormé de F.
- 3. Soit $A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$. Calculer d(A, F).

Exercice 23: (ENSEA ENSIIE MP 2023)

Soit E un espace euclidien de dimension d > 0. Soient a et b deux vecteurs unitaires et linéairement indépendants de E. Soit u l'endomorphisme de E défini par u(x) = (a|x)a + (b|x)b pour tout x.

- 1. Montrer que u est un endomorphisme symétrique.
- 2. Déterminer Ker(u) et Im(u).
- 3. Déterminer les valeurs propres et les vecteurs propres de u.

Exercice 24: (CCINP MP 2023)

On considère le produit scalaire suivant : $\langle P|Q\rangle = \int_0^{+\infty} P(x)Q(x)e^{-x} dx$.

- 1. Vérifier qu'il s'agit bien d'un produit scalaire.
- 2. Calculer $\langle X^p|X^q\rangle$ pour tout $(p,q)\in\mathbb{N}^2$.
- 3. Déterminer le projeté orthogonal de X^3 sur $F = \mathbb{R}_2[X]$.

Exercice 25: (CCINP MP 2022)

Soient $(E, \langle ., . \rangle)$ un espace euclidien et F un sous-espace vectoriel de E. Soit p la projection orthogonale sur F.

- 1. (a) Montrer que $F = \{x \in E \mid ||x|| = ||p(x)||\}.$
- (b) Montrer que : $\forall x \in E, \|p(x)\| \leq \|x\|$.
- (c) Montrer que $\forall x, y \in E, \langle p(x), y \rangle = \langle x, p(y) \rangle$. Qu'en déduire?
- 2. Soient F, G et H des sous-espaces vectoriels de E. On note p_F , p_G et p_H les projections orthogonales sur ces sous-espaces. On suppose que $p_F \circ p_G = p_H$.
 - (a) Montrer que $F \cap G = H$.
 - (b) Montrer que $p_F \circ p_G = p_G \circ p_F$.
- (c) On suppose réciproquement que F et G sont des sous-espaces vectoriels de E tels que $p_F \circ p_G = p_G \circ p_F$. Montrer qu'il existe H sous-espace vectoriel de E tel que $p_H = p_F \circ p_G$.

Exercice 26: (CCINP MP 2022)

Soit $n \in \mathbb{N}^*$. On note $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R}) = \{M \in \mathcal{M}_n(\mathbb{R}) \mid$ $M^T = -M$ l'ensemble des matrices antisymétriques.

Montrer que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.

Montrer que $S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp}$. On note $M = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$. Calculer la distance de M à $S_3(\mathbb{R})$.

Soit $H = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0 \}.$

- a) Montrer que H est un espace vectoriel de dimension à déterminer.
- b) On note J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont 1. Calculer la distance de J à H.

Exercice 27: (Mines télécom MP 2022)

Soit $n \in \mathbb{N}^*$ et $X \in \mathcal{M}_n(\mathbb{R})$ telle que $XX^TX = -I_n$.

Montrer que X est symétrique.

Déterminer X.

Exercice 28: (CCINP MP 2022)

Soit E un espace vectoriel euclidien de dimension finie non nulle.

Soit p un projecteur orthogonal.

1) Montrer que p est symétrique.

Soient p et q deux projecteurs orthogonaux.

- 2) Montrer que $p \circ q \circ p$ est symétrique.
- 3) Montrer que l'on a : $(\operatorname{Ker} p + \operatorname{Im} q)^{\perp} = \operatorname{Im} p \cap \operatorname{Ker} q$.
- 4) En déduire que $p \circ q$ est diagonalisable.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Question 3 de l'exercice 2: Rappelé car utilisé dans la première inclusion : pour p projecteur orthogonal, on a $E = \operatorname{Ker} p \oplus^{\perp} \operatorname{Im} p$

Exercice 29: (Mines télécom MP 2022)

Soit E un espace vectoriel de dimension n, muni du produit scalaire $\langle \cdot, \cdot \rangle$, et $a \in E$ un vecteur normé.

Soit $\alpha \in \mathbb{R}$ et $f_{\alpha} : x \mapsto x + \alpha \langle a, x \rangle a$, endomorphisme de E.

- a) Monter que : $\forall (\alpha, \beta) \in \mathbb{R}^2$, $f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta+\alpha\beta}$.
- b) Déterminer les α tels que f_{α} soit bijectif.
- c) Trouver les valeurs propres de f_{α} .

Exercice 30: (Mines télécom PSI 2021)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique non nulle.

Montrer que
$$\frac{\operatorname{tr}(A)^2}{\operatorname{tr}(A^2)} \leqslant \operatorname{rg}(A)$$
.

Exercice 31:

Soit a un réel et
$$M = \frac{1}{a^2 + a + 1} \begin{pmatrix} a & a(a+1) & a+1 \\ a+1 & a & -a(a+1) \\ a(a+1) & -a-1 & a \end{pmatrix}$$
.

A quelle condition sur a cette matrice appartient-elle à $O_3(\mathbb{R})$, puis $SO_3(\mathbb{R})$?

Exercices de niveau 2: 4

Exercice 32: (Navale MP 2023)

On munit $E = \mathbb{R}_n[X]$ du produit scalaire défini par :

$$\forall P, Q \in \mathbb{R}_n[X], \ (P|Q) = \int_0^1 PQ.$$

On munit
$$E = \mathbb{R}_n[X]$$
 du produit scalaire defini p $\forall P, Q \in \mathbb{R}_n[X]$, $(P|Q) = \int_0^1 PQ$.
1. Montrer que l'application u définie sur E par : $\forall P \in E, \ u(P) = \int_0^1 (X+t)^n P(t) \, \mathrm{d}t$ est un endomorphisme autoadjoint de E .

est un endomorphisme autoadjoint de E.

- 2. En déduire qu'il existe une base orthonormée (P_0, \ldots, P_n) formée de vecteurs propres de u. On note $\lambda_0 \dots, \lambda_n$ les valeurs propres associées.
 - 3. Montrer que : $\forall (x,y) \in \mathbb{R}^2, \ (x+y)^n = \sum_{k=0}^n \lambda_k P_k(x) P_k(y).$

En déduire la valeur de tr(u).

Exercice 33: (Centrale MP 2023)

Soit $\varepsilon = \{A \in M_n(\mathbb{R}) | A \text{ symétrique positive de trace 1} \}$

- 1. Rappeler la définition d'un ensemble convexe et montrer que ε est convexe.
- 2. Montrer que $(A \in \varepsilon \text{ et } rg(A) = 1) \Leftrightarrow (A \text{ est la matrice, dans une base orthonormée, d'une projection orthogonale sur$
- 3. Autre question non traitée

Exercice 34: (Mines MP 2023)

Soient $A \in \mathcal{S}_n(\mathbb{R})$ et a < b des réels tels que $\forall X \in \mathbb{R}^n, a \|X\|^2 \leqslant \langle X, AX \rangle \leqslant b \|X\|^2$.

Soit
$$P \in \mathbb{R}[X]$$
 tel que : $\forall x \in [a, b], P(x) > 0$.

Montrer que P(A) est symétrique définie positive.

Commentaires divers : l'examinateur m'a demandé de redémontrer qu'une matrice est symétrique définie positive ssi ses valeurs propres sont strictement positives.

Exercice 35 : (Mines MP 2022) (donné à l'oral)

Soit $E = \mathbb{R}^n$ muni du produit scalaire canonique noté $\langle \cdot, \cdot \rangle$ associé à la norme $\| \cdot \|$. On note N une norme quelconque sur E.

1. Soit $x \in E$ Après avoir justifié l'existence de ces nombres, montrer que

$$\sup_{y \in E \setminus \{0\}} \frac{\langle x, y \rangle}{N(y)} = \sup_{y \in E, N(y) = 1} \langle x, y \rangle \in \mathbb{R}_+.$$

On note dorénavant cette quantité $N^*(x)$.

- 2. Montrer que N^* définit une norme sur E (l'examinateur m'explique qu'on l'appelle « norme duale » de
 - 3. Donner N^* dans les cas où $N = \|\cdot\|$, $N = \|\cdot\|_{\infty}$ et $N = \|\cdot\|_1$. On rappelle que si $\alpha > 0$ alors $\|(x_1, \dots, x_n)^T\|_{\alpha} = (\sum_{k=1}^n |x_k|^{\alpha})^{\frac{1}{\alpha}}$.

Exercice 36: (Mines télécom MP)

Soit $A \in \mathcal{S}_n(\mathbb{R})$ ayant des valeurs propres positives. Soit $U \in O_n(\mathbb{R})$.

Montrer que : $tr(AU) \leq tr(A)$.

Exercice 37: (Centrale MP 2022)

On se place dans un espace préhilbertien $(E,\langle\cdot,\cdot\rangle)$. Pour x_1,\ldots,x_d vecteurs de E, on pose $G(x_1,\ldots,x_d)$ $(\langle x_i, x_j \rangle)_{1 \leq i,j \leq d}$ la matrice de Gram associée.

- 1. a) Justifier que $G(x_1, \ldots, x_d)$ est diagonalisable.
- b) Montrer que si (x_1, \ldots, x_d) est lié, alors $G(x_1, \ldots, x_d)$ n'est pas inversible.
- 2. Soit F un sous-espace vectoriel de E de dimension finie. On fixe (x_1, \ldots, x_d) une base de F. Après avoir justifier que $G(x_1, \ldots, x_d)$ est inversible, montrer que pour tout $x \in E$,

therefore que
$$G(x_1, \ldots, x_d)$$
 est inversible, montrer que pour tout x .
$$d(x, F)^2 = \frac{\det(G(x, x_1, \ldots, x_d))}{\det(G(x_1, \ldots, x_d))}$$
3. On se place dans $E = \mathcal{C}([0, 1], \mathbb{R})$ munit du produit scalaire

3. On se place dans
$$E = C([0, 1])$$

 $(f,g) \mapsto \langle f,g \rangle = \int_0^1 f(t)g(t) dt.$
Pour $f \in \mathbb{R}^*$, on note $\phi_r : x \mapsto x$

Pour $r \in \mathbb{R}_+^*$, on note $\phi_r : x \mapsto x^r$ définie et continue sur \mathbb{R}_+ .

Soit r_1, \ldots, r_d des réels distincts strictement positifs, on note $F = \text{Vect}(\phi_{r_1}, \ldots, \phi_{r_d})$. Pour $r \in \mathbb{R}_+^*$, déterminer $d(\phi_r, F)$.

Exercice 38: (Mines télécom MP 2022)

On considère $S \in \mathcal{S}_n(\mathbb{R})$. On suppose que S admet n valeurs propres strictement positives deux à deux distinctes. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme euclidienne.

Pour
$$X \in \mathcal{M}_{n,1}(\mathbb{R})$$
 non nul, on pose : $\forall k \in \mathbb{N}^*, Y_k = \frac{S^k X}{\parallel S^k X \parallel}$.

Montrer que la suite $(Y_k)_{k\geqslant 1}$ converge vers un vecteur propre de S.

Exercice 39: (Mines PSI 2021)

Soit $A, B \in \mathcal{S}_n(\mathbb{R})$ telles que $B = A^3 + A + I_n$. Montrer que $A \in \mathbb{R}[B]$.

Exercice 40: (Mines PSI 2021)

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Soit $\alpha \geqslant 0$.

- 1. Le produit de matrices carrées symétriques est-il symétrique?
- 2. Montrer que $I_n + \alpha A$ est inversible.
- 3. Montrer que $M = (I_n \alpha A)(I_n + \alpha A)^{-1}$ est symétrique.

Exercice 41:

Donner un exemple d'une matrice symétrique non diagonalisable.

Exercice 42 : (Centrale MP)

Soit n un entier naturel. On note $S_n(\mathbb{R}) \subset M_n(\mathbb{R})$ le sous-espace constitué des matrices symétriques. Soit $A \in M_n(\mathbb{R}).$

On pose
$$\varphi_A: \begin{array}{l} S_n\left(\mathbb{R}\right) \to S_n\left(\mathbb{R}\right) \\ M \to {}^tA.M.A \end{array}$$
.

- a) Justifier rapidement le fait que $S_n(\mathbb{R})$, muni de (A/B) = Tr(A.B) est un espace euclidien.
- b) Montrer que si A est diagonale $D\acute{e}t(\varphi_A) = D\acute{e}t(A)^{n+1}$.
- c) Montrer le même résultat si $A \in S_n(\mathbb{R})$.
- d) Dans le cas général :
- (i) Déterminer l'adjoint de φ_A .
- (ii) Montrer que $(D\acute{e}t(\varphi_A))^2 = D\acute{e}t(\varphi_{A,^tA}).$
- (iii) Calculer le déterminant de φ_A pour toute matrice A de $M_n(\mathbb{R})$.

Exercice 43: (Mines-Ponts MP)

Soit n un entier naturel.

- a) Montrer qu'il existe un unique polynôme $A \in \mathbb{R}_n[X]$ tel que : $\forall P \in \mathbb{R}_n[X], P(1) = \int_{-1}^{1} \frac{A(t).P(t)}{\sqrt{1-t^2}} dt$.
- b) Peut-on remplacer $\mathbb{R}_n[X]$ par $\mathbb{R}[X]$?

Exercices de niveau 3: 5

Exercice 44: (Mines MP 2022)

Trouver une condition nécessaire et suffisante pour que A, dans $M_n(\mathbb{R})$, puisse s'écrire $A = S^2 + S + I_n$, avec S matrice symétrique réelle. Puis, lorsque A vérifie cette condition, condition nécessaire et suffisante pour l'existence et l'unicité de S.

Exercice 45: (Mines MP 2021)

Soit $A \in S_n(\mathbb{R})$. On note $(\lambda_1, \dots, \lambda_n)$ ses valeurs propres comptées avec multiplicité telles que $\lambda_1 \geq \dots \geq \lambda_n$.

Montrer que
$$\forall k \in [1; n], \sum_{j=1}^{k} a_{j,j} \leq \sum_{j=1}^{k} \lambda_{j}.$$

Indications:

- Montrer que pour toutes bases orthonormées $(u_i)_{i \in [\![1;n]\!]}$ et $(v_j)_{j \in [\![1;n]\!]}$ de \mathbb{R}^n , $\forall i \in [\![1;n]\!]$, $\sum_{i=1}^n \langle u_i, v_j \rangle^2 = 1$.
- Montrer que $\forall j \in [1; n]$, $a_{j,j} = \sum_{i=1}^{n} \lambda_i p_{i,j}^2$ où $p_{i,j}$ est le produit scalaire entre deux vecteurs appartenant à des bases orthonormées.

Exercice 46: (X-ENS PSI 2021)

Soit $E = \mathcal{L}^2([-1,1],\mathbb{R})$ muni du produit scalaire $\langle f,g \rangle = \int_{-1}^1 f(t)g(t)dt$ et de la norme associée.

On dit que la suite converge fortement vers f si la suite $[\|f_n - f\|]$ converge vers 0. On dit que la suite converge faiblement vers f si $\forall \varphi \in C^1([-1,1],\mathbb{R}), \langle f_n, \varphi \rangle_{\substack{n \to +\infty}} \langle f, \varphi \rangle$.

- 1. Montrer que si (f_n) converge uniformément vers f, alors (f_n) converge fortement vers f. La réciproque est-elle vraie?
 - 2. Montrer que si (f_n) converge fortement vers f, alors (f_n) converge faiblement vers f.
- 3. Montrer que si (f_n) converge faiblement vers f de classe C^1 et si la suite $(||f_n||)$ converge vers ||f|| alors (f_n) converge fortement vers f.
- 4. Montrer que si (φ_n) est une suite de fonctions C^1 qui converge uniformément vers φ et si (φ'_n) converge aussi uniformément et si (f_n) est une suite bornée qui converge faiblement vers f, alors $\langle f_n, \varphi_n \rangle \longrightarrow \langle f, \varphi \rangle$.
 - 5. On pose $f_n: x \mapsto \sin(nx)$. Montrer que (f_n) converge faiblement vers la fonction nulle.

Exercice 47: (X-ENS PSI 2021)

Soit E euclidien de dimension n.

Soit $x_1, ..., x_k \in E$ tels que $\forall i \neq j, \langle x_i, x_j \rangle < 0$. Montrer que k ne peut pas être trop grand et trouver cette limite.

Exercice 48: (ENS MP 2021)

Question de cours

- 1. Montrer que $(A,B) \mapsto \operatorname{Tr}({}^tAB)$ est un produit scalaire sur $\mathfrak{M}_n(\mathbb{R})$. On note $\|\cdot\|$ la norme associée.
- 2. Soient $B \in \mathfrak{M}_n(\mathbb{R})$ et $P, Q \in \mathcal{O}_n(\mathbb{R})$. Montrer que ||PBQ|| = ||B||.

Exercice | Soit $B \in \mathfrak{M}_n(\mathbb{R})$, montrer qu'il existe $P, Q \in O_n(\mathbb{R})$ et D diagonale à valeurs propres positives tels que B = PDQ.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Cas particulier : B inversible

Exercice 49: (ENS MP 2022)

1. A une matrice $M \in \mathcal{S}_n(\mathbb{R})$ on associe le n-uplet $(\lambda_1(M), \lambda_2(M), \dots, \lambda_n(M))$ les valeurs propres de M vérifiant

$$\lambda_1(M) \geqslant \lambda_2(M) \geqslant \cdots \geqslant \lambda_n(M).$$

Soit $A, B \in \mathcal{S}_n(\mathbb{R})$. Montrer que :

 $\forall i \leqslant j, \ i+j-1 \leqslant n \Rightarrow \lambda_{i+j-1}(A+B) \leqslant \lambda_i(A) + \lambda_j(B) \\ 2. \ \text{Soit} \ i \in \llbracket 0,n \rrbracket. \ \text{Montrer que l'application} \ \psi \ \text{de} \ \mathcal{S}_n(\mathbb{R}) \ \text{dans} \ \mathbb{R} \ \text{définie par} : \\ \forall A \in \mathcal{S}_n(\mathbb{R}), \psi(A) = \lambda_i(A) \\ \text{est continue.} \\ \text{Indication(s) fournie(s) par l'examinateur pendant l'épreuve1} : \\ \text{Affiner l'encadrement de} \ \frac{\langle AX|X\rangle}{||X||^2} \ \text{en restreignant} \ X \ \text{à un certain espace.}$