

Optical filter lens

Publication number: DE3806879

Publication date: 1989-03-30

Inventor:

Applicant:

Classification:

- international: *F21V5/04; G02B3/00; G02B3/08; F21V5/00; G02B3/00; G02B3/08; (IPC1-7): F21V5/04; G01J1/04; G02B3/08*

- european: F21V5/04; G02B3/00; G02B3/08

Application number: DE19883806879 19880303

Priority number(s): DE19883806879 19880303

[Report a data error here](#)

Abstract of DE3806879

An optical filter lens is proposed in which, for the purpose of implementing an intensity profile of the lens which is as uniform as possible, matching the emission characteristics of the light source co-operating with the lens, areas are present which cannot be imaged, whose size decreases from the centre to the edge of the lens, the areas being present in an approximately uniform distribution.

Data supplied from the **esp@cenet** database - Worldwide

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Patentschrift**
(11) **DE 3806879 C1**

(51) Int. Cl. 4:

G 02 B 3/08

G 01 J 1/04

F 21 Y 57/04

Behördeneigentum

(21) Aktenzeichen: P 38 06 879.6-51
(22) Anmeldetag: 3. 3. 88
(43) Offenlegungstag: —
(45) Veröffentlichungstag der Patenterteilung: 30. 3. 89

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Leopold Kostal GmbH & Co KG, 5880 Lüdenscheid,
DE

(72) Erfinder:

Bendicks, Norbert, 5860 Iserlohn, DE; Heuser, Peter,
5870 Hemer, DE; Wiegleb, Gerhard, 8752
Geiselbach, DE

(56) Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:

DE 30 45 203 C2
DE 36 36 684 A1
DE-OS 21 30 564
US 44 57 593

(54) Optische Filterlinse

Es wird eine optische Filterlinse vorgeschlagen, bei der zwecks Realisierung eines möglichst gleichförmigen Intensitätsprofils der Linse in Abstimmung auf die Abstrahlcharakteristik der mit der Linse kooperierenden Lichtquelle nicht abbildungsfähigen Bereiche mit einer vom Zentrum zum Rand der Linse hin abnehmenden Größe und einer etwa gleichmäßigen Verteilung vorhanden sind.

DE 3806879 C1

DE 3806879 C1

Patentansprüche

1. Optische Filterlinse, bestehend aus einer ein reelles Bild in der Bildebene erzeugenden, eine sammelnde Wirkung aufweisenden Linse und einer mit der Linse einstückig ausgebildeten, ortsabhängige optische Transmissionseigenschaften zur Beeinflussung der Intensitätsverteilung des Bildes in der Bildebene aufweisenden transmissionsbeeinflussenden Einrichtung, dadurch gekennzeichnet, daß die Linse (L) als eine mit einer Mittenzone (M_z) und mehreren hierzu konzentrisch liegenden Ringzonen (R_{z1}, R_{z2}) versehene Fresnel-Linse ausgebildet ist und
daß die transmissionsbeeinflussende Einrichtung aus in den einzelnen Zonen (M_z, R_{z1}, R_{z2}) in jeweils etwa gleichmäßiger Verteilung vorhandenen, nicht abbildungsfähige Bereiche (A_1-A_3) bildenden Strukturen der Oberfläche der Linse (L) besteht.
2. Optische Filterlinse nach Anspruch 1, dadurch gekennzeichnet, daß die die nicht abbildungsfähigen Bereiche (A_1-A_3) bildenden Strukturen durch in den Zonen (M_z, R_{z1}, R_{z2}) vorhandenen, radial verlaufenden, über den Umfang derselben gleichmäßig verteilten Schlitzungen der Oberfläche der Linse (L) realisiert sind.
3. Optische Filterlinse nach Anspruch 2, dadurch gekennzeichnet, daß die Schlitzungen in den Zonen (M_z, R_{z1}, R_{z2}) in einer vom Zentrum (Z) zum Rand (R) der Linse (L) hin größer werdenden Anzahl vorhanden sind.
4. Optische Filterlinse nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Schlitzungen in den einzelnen Zonen (M_z, R_{z1}, R_{z2}) einen konischen Verlauf aufweisen.
5. Optische Filterlinse nach Anspruch 1, dadurch gekennzeichnet, daß die die nicht abbildungsfähigen Bereiche (A_1-A_3) bildenden Strukturen durch in den einzelnen Zonen (M_z, R_{z1}, R_{z2}) in nahezu regelmäßigm Abstand voneinander vorhandenen profilierten Einprägungen der Ober- oder Unterseite der Linse (L) realisiert sind.
6. Optische Filterlinse nach Anspruch 5, dadurch gekennzeichnet, daß die profilierten Einprägungen eine kreisförmige Kontur aufweisen.

Beschreibung

Die vorliegende Erfindung geht von einer gemäß dem Oberbegriff des Hauptanspruches konzipierten, insbesondere für einen Strahlenleitkörper einer Sensoreinrichtung vorgesehenen optischen Filterlinse aus.

Solche Linsen werden in optischen Geräten als Sammellinsen für Beleuchtungs- und Signalzwecke verwendet. Sie haben dabei den Vorteil einer sehr flachen Bauform.

Bei den allgemeinen bekannten Ausführungsformen dieser Art ist festzustellen, daß diese eine Intensitätsverteilung aufweisen, welche in der optischen Achse ihr Maximum hat. Werden einer herkömmlichen Linse eine Strahlenquelle mit einer bestimmten Abstrahlcharakteristik (Strahlenkeule) zugeordnet, so verstärkt sich dieser Effekt in einem beachtlichen Ausmaß.

Bei einer Reihe von Anwendungsfällen, insbesondere bei der Messung von auf einer zugeordneten Detektionsfläche sich darstellenden Gegebenheiten (z. B. Regentropfen auf einer Glasscheibe) führt dies zu einem irregulären Meßergebnis, da die aus den Randzonen

resultierenden Signale schwächer als die aus der Mittenzone sind.

Durch die DE-OS 21 30 564 ist eine dem Oberbegriff des Hauptanspruchs entsprechende, für ein optisches Detektionssystem vorgesehene Linse bekanntgeworden. Dabei wird eine im wesentlichen gleichmäßige Intensitätsverteilung durch ein Bestandteil der Linse bildendes, ortsabhängige optische Transmissionseigenschaften sowie eine im wesentlichen zur optischen Achse rotationssymmetrische Durchlässigkeitsverteilung aufweisendes Filter erreicht.

Des weiteren ist durch die US-PS 44 57 593 ein Linsensystem bekanntgeworden, wobei auf einer Linse zur Beeinflussung der Intensität diskrete, keine Abbildungseigenschaften besitzende Bereiche ausgebildet sind, die eine vom Zentrum der Linse zum Linsenrand hin abnehmende Größe bei einer etwa gleichmäßigen Verteilung aufweisen.

Außerdem hat die DE-OS 36 36 684 eine Linse zum Inhalt, bei der durch ein der Linse zugeordnetes, zur Kompensation des Helligkeitsabfalls in der Bildebene vorgesehenes Filter ein vom Bildwinkel abhängiger vorgegebener Verlauf der Transmission realisiert wird, und zwar indem das Filter mit konzentrisch zum zentralen kreisförmigen Bereich liegenden Ringzonen versehen ist, die jeweils einen konstanten Transmissionswert aufweisen.

Im übrigen ist durch die DE-OS 30 45 203 eine für einen Lichtsensor vorgesehene Fresnel-Linse bekanntgeworden, der ein Filter zugeordnet ist, um das Licht im sichtbaren Bereich zu absolvieren.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine optische Filterlinse zu schaffen, die sich durch eine besonders dünne Bauform auszeichnet.

Erfindungsgemäß wird das Problem durch die im kennzeichnenden Teil des Hauptanspruches angegebenen Merkmale gelöst. Besonders vorteilhaft bei einer derartigen Ausführung einer optischen Filterlinse ist, daß dieselbe relativ einfach herzustellen ist.

Weitere besonders günstige Ausgestaltungen des erfindungsgemäßen Gegenstandes sind in den Unteransprüchen angegeben und werden anhand von zwei in der Zeichnung dargestellten Ausführungsbeispielen desselben näher erläutert.

In den Figuren sind gleichartige Positionen mit gleichen Bezugszeichen versehen.

Wie aus der die Oberseite einer optischen Linse (Fresnel-Linse) darstellenden Fig. 1 hervorgeht, weist die Linse L eine Mittenzone M_z und zwei konzentrisch dazu liegend Ringzonen R_{z1}, R_{z2} auf. In der Oberfläche der Mittenzone M_z und in den Oberflächen der beiden Ringzonen R_{z1}, R_{z2} sind nunmehr radial verlaufende, als nicht abbildungsfähige Bereiche A_1 bis A_3 anzusehende, durch Schlitzungen gebildete Strukturen vorgesehen, die in den einzelnen Zonen gleichmäßig verteilt angeordnet sind. Durch das etwa sternförmige Profil wird die Linse L also in abbildungsfähige und nicht abbildungsfähige Bereiche (Störstellen) für die Strahlung unterteilt, und zwar dadurch, daß die Lichtstrahlen in den Schlitzungen divergieren, d. h. lediglich Streulicht hervorufen. Der Mittelabstand der Schlitzungen ist dabei so gewählt, daß er in jeder Zone etwa gleich ist. Die Schlitzungen selbst weisen eine vom Zentrum Z zum Rand R der Linse L hin abnehmende Breite auf, und zwar um zu gewährleisten, daß der Mittelwert der Strahlenintensität in den einzelnen Zonen nahezu konstant ist. Die Anzahl und die Breite der Schlitzungen steht dabei in

Abhängigkeit von der Abstrahlencharakteristik der zu geordneten Lichtquelle, wobei die einzelnen Schlitzungen ggf. einen konischen Verlauf aufweisen können.

Wie aus der wiederum die Oberseite einer ebenfalls eine Mittenzone Mz und zwei konzentrisch dazu liegenden Ringzonen Rz_1 , Rz_2 aufweisenden optischen Linse (Fresnel-Linse) darstellenden Fig. 2 hervorgeht, sind bei dieser Ausführungsform die die Strukturen darstellenden, nicht abbildungsfähigen Bereiche $A_1 - A_3$ der Linse L als etwa gleichmäßig in den Oberflächen der einzelnen Zonen verteilte, profilierte, d. h. kreisförmige Störstellen ausgebildet, wobei der Durchmesser der Störstellen vom Zentrum Z zum Rand R der Linse L hin zonenweise verkleinert ist. Diese kreisförmigen Störstellen können durch auf der Ober- oder Unterseite der Linse L vorgesehene, eine Strahlendivergenz hervorruhende Einprägungen realisiert sein. Der Abstand bzw. das Raster der Störstellen in den einzelnen Zonen bestimmt sich dabei aus den sich z. B. auf eine Detektionsfläche darstellenden, beispielsweise als Regentropfen vorliegenden Gegebenheiten, die erfaßt werden sollen. Natürlich können die Störstellen auch anders z. B. rechteckförmig profiliert sein.

Hierzu 1 Blatt Zeichnungen

25

30

35

40

45

50

55

60

65

- Leerseite -

Fig. 1

Fig. 2

