В окрестности точки t=0 найдём фундаментальную матрицу решений X(t) такую, что $X({\rm O}_2)=E_2.$

$$X(t) = \begin{pmatrix} x_1(t) & x_2(t) \\ y_1(t) & y_2(t) \end{pmatrix} \qquad \begin{pmatrix} x_1(t) & x_2(t) \\ y_1(t) & y_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$x_1(t) = 1 \qquad \qquad x_2(t) = \begin{cases} 0, \text{ если } t \in [-1; 0] \\ at, \text{ если } t \in (0; 1] \end{cases}$$

$$y_1(t) = \begin{cases} bt, \text{ если } t \in [0; 1] \end{cases}$$

$$y_2(t) = 1$$

Матрица монодромии C такова, что для всех X(t+2) = X(t)C. В частности, X(1) = X(-1)C и $C = (X(-1))^{-1}X(1)$.

$$X(-1) = \begin{pmatrix} 1 & 0 \\ -b & 1 \end{pmatrix}; \quad \left(X(-1)\right)^{-1} = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}; \quad X(1) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}; \quad C = \begin{pmatrix} 1 & a \\ b & ab + 1 \end{pmatrix}.$$

Вековое уравнение имеет вид

$$\det(C - \rho E) = (\rho - 1)(\rho - ab - 1) - ab = \rho^2 - (ab + 2)\rho + 1 = 0.$$

Критерий (устойчивости по мультипликаторам).

Пусть дана линейная однородная система с периодическими коэффициентами

- Для асимптотической устойчивости нулевого решения необходимо и достаточно, чтобы все мультипликаторы лежали внутри единичного круга $|\rho| < 1$.
- Для устойчивости необходимо и достаточно, чтобы
 - 1. все мультипликаторы лежали в замкнутом единичном круге $|\rho| \leqslant 1$;
 - 2. каждый мультипликатор ρ_k , лежащий на единичной окружности (т.е. $\left|\rho_k\right|=1$), имел кратность как корень характеристического (векового) уравнения $\det(C-\rho E)=0$, равную дефекту $\operatorname{null}(C-\rho_k E)$.

Уравнение и факт устойчивости эффективно зависит только от ab, так что для удобства переобозначим $ab=\gamma$. Исследовать будем уравнение $f(\rho)=\rho^2-(\gamma+2)\rho+1=0$. 1) Случай $D=\gamma(\gamma+4)>0$. $\gamma\in(-\infty;-4)\cup(0;+\infty)$. Оба корня вещественны. Условия $\rho_1\in[-1;1]$ и $\rho_2\in[-1;1]$ равносильны выполнению: $f(-1)\geqslant 0$, $f(1)\geqslant 0$ и $\gamma_0=\frac{\gamma+2}{2}\in[-1;1]$. При этом одновременное выполнение $f(1)=-\gamma>0$ и $f(-1)=4+\gamma>0$ означает, что $\gamma\in[-4;0]$. Последнее несовместимо с предыдущим, так что при всех $\gamma\in(-\infty;-4)\cup(0;+\infty)$ нулевое решение неустойчиво.

2) Случай
$$D = \gamma(\gamma+4) < 0$$
. $\gamma \in (-4;0)$.
$$\rho_1 = \frac{\gamma+2+\sqrt{-\gamma(\gamma+4)}i}{2}$$
.
$$\rho_2 = \frac{\gamma+2-\sqrt{-\gamma(\gamma+4)}i}{2}$$
.
$$|\rho_1| = |\rho_2| = \frac{(\gamma+2)^2-\gamma(\gamma+4)}{4} = 1$$
.

Поскольку в этом случае $\gamma = ab \neq 0$, обе матрицы $C - \rho_1 E$ и $C - \rho_2 E$ ненулевые, а потому их дефекты равняются 1. Таким образом, в этом случае нулевое решение устойчиво, но не асимптотически.

3) Случай
$$\gamma = ab = -4$$
. $b = -\frac{4}{a}$. $\rho_1 = \rho_2 = -1$. $C - \rho_1 E = \begin{pmatrix} 2 & a \\ b & ab + 2 \end{pmatrix} = \begin{pmatrix} 2 & a \\ -\frac{4}{a} & -2 \end{pmatrix}$.

$${\rm rank} \big(C - {
ho_1} E \big) = 1,\, {\rm null} \big(C - {
ho_1} E \big) = 2 - 1 = 1.\,$$
 Итак, нулевое решение неустойчиво.

4) Случай
$$\gamma = ab = 0$$
. $\rho_1 = \rho_2 = 1$. $C - \rho_1 E = \begin{pmatrix} 0 & a \\ b & ab \end{pmatrix} = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$.

- Если $a^2+b^2>0$, то $\mathrm{rank}(C-\rho_1E)=1$, $\mathrm{null}(C-\rho_1E)=2-1=1$, и нулевое решение неустойчиво.
- Если a = 0 и b = 0, то rank $(C \rho_1 E) = \text{rank } O_2 = 0$, null $(C \rho_1 E) = 2$, и нулевое решение устойчиво, но не асимптотически.

Окончательно получаем, что при $ab \in (-4;0)$, а также, если a=0, b=0, нулевое решение устойчиво, но не асимптотически; во всех остальных случаях нулевое решение неустойчиво.