Phylogenetic Identification and Functional Characterization of Orthologs and Paralogs across Human, Mouse, Fly, and Worm – Supplementary Material

Yi-Chieh Wu, Mukul S. Bansal, Matthew D. Rasmussen, Javier Herrero, Manolis Kellis

Supplemental Figures

Figure S1. Network similarity of different types of homologs. See Figure 3 for details.

Supplemental Tables

Table S1. Species tree parameters.

species	$\mathbf{parameter}^a$	value	reference
human-mouse	t	75	Mouse Genome Sequencing Consortium et al. (2002)
human	N_e	10,400	Yu et al. (2004)
human	g	20	Rasmussen and Kellis (2012)
mouse	N_e	460,000	Piganeau and Eyre-Walker (2009)
mouse	g	0.5	Piganeau and Eyre-Walker (2009)
fly^b	topology	-	Tamura et al. (2004)
fly root	t	62	Tamura et al. (2004)
$D.\ melanogaster$	N_e	10^{7}	Shapiro et al. (2007)
$D.\ melanogaster$	g	0.1	Sawyer and Hartl (1992)
worm^c	topology	-	Kiontke et al. (2004)
C. elegans-C. briggsae	t	18.6	Cutter (2008)
C. elegans	N_e	50,000	Rockman and Kruglyak (2009)
C. remanei	N_e	10^{6}	Hillier et al. (2007)
C. elegans	g	1/6	Cutter (2008)
outgroup			
$S.\ cerevisiae^d$	N_e	10^{7}	Tsai et al. (2008)
$S.\ cerevisiae^d$	g	0.9	Rasmussen and Kellis (2012)
all species	λ, μ	0.002,0.002	See footnote e

^a t: divergence time (myr); N_e : effective population size; g: generation time (yr); λ , μ : duplication, loss rate (events/site/myr)

Table S2. Statistics for the different homolog subtypes.

homolog class	$\#$ of homologs a	\mathbf{mean}^b	\mathbf{median}^b	p -value c	$ ho^c$
all orthologs	23,518	1.010	0.990	3.579×10^{-32}	-0.077
one-to-one orthologs	7,769	1.039	1.021	3.023×10^{-1}	-0.012
non-one-to-one orthologs	15,749	0.995	0.975		-0.051
all paralogs	140,191	1.006	1.003	2.515×10^{-233}	-0.087
inparalogs	88,186	1.013	1.013	2.033×10^{-66}	-0.058
within-species outparalogs	$23,\!422$	1.008	1.008	2.296×10^{-5}	-0.028
between-species outparalogs	28,583	0.981	0.965	9.864×10^{-9}	-0.034

 $[^]a$ Only homologs with sequence divergence ≤ 0.8 are retained.

 $^{^{}b}$ Parameters were assumed to be the same across all fly species.

^c Population size for *C. elegans* was propagated to other hermaphroditic species (*C. briggsae*), and population size for *C. remanei* was propagated to other dioecious species (*C. brenneri*, *C. japonica*). Generation time was assumed to be the same across all worm species.

 $[^]d$ Parameters were estimated from S. paradoxus.

 $^{^{}e}$ Parameters were estimated using the procedure of Rasmussen and Kellis (2011).

^f For branches outside of the major clades, population size and generation time were calculated by taking the average of the respective parameter for its children.

 $^{^{}b}$ Mean and median network similarity.

 $^{^{}c}$ Correlation test, with $p\text{-}\mathrm{value}$ and Spearman's correlation coefficient shown.

Table S3. Significance test for difference in network similarity between orthologs and paralogs, binned by sequence divergence.

sequence divergence	$\%$ difference a	$p ext{-value}_{ ext{orthologs}>_{ ext{paralogs}}}^{b}$	$p ext{-value}_{ ext{orthologs}< ext{paralogs}}^b$
[0.0, 0.1]	4.672 [6.706]	1	1.342×10^{-6}
[0.1, 0.2]	0.255 [1.041]	0.861	1.394×10^{-1}
[0.2, 0.3]	1.224 [0.606]	0.155	8.452×10^{-1}
[0.3, 0.4]	0.163[2.195]	1	3.073×10^{-6}
[0.4, 0.5]	0.590 [1.047]	0.966	3.382×10^{-2}
[0.5, 0.6]	0.172[1.221]	1	3.339×10^{-4}
[0.6, 0.7]	0.024 [1.227]	0.996	4.296×10^{-3}
[0.7, 0.8]	0.103 [1.712]	0.888	1.119×10^{-1}

 $^{^{}a}$ Percent difference between orthologs and paralogs in mean [median] network similarity.

Table S4. Significance test for difference in network similarity between orthologs and paralogs, binned by divergence time.

divergence time	$\%$ difference a	$p ext{-value}_{ ext{orthologs}>_{ ext{paralogs}}}^b$	p-value _{orthologs<paralogs< sub="">^b</paralogs<>}
[400, 450]	1.520 [0.406]	1.570×10^{-6}	1
[450, 500]	1.492 [0.116]	3.757×10^{-9}	1
[500, 550]	1.526 [0.630]	2.978×10^{-2}	0.970
[550, 600]	4.751 [2.935]	3.561×10^{-6}	1
[600, 650]	5.207 [2.528]	3.592×10^{-4}	1
[650, 700]	5.745 [4.480]	1.057×10^{-3}	0.999
[700, 750]	3.728 [2.587]	2.074×10^{-4}	1
[750, 800]	1.620 [2.416]	9.773×10^{-1}	0.023
[800, 850]	5.471 [5.631]	3.461×10^{-4}	1

 $^{^{}a}$ Percent difference between orthologs and paralogs in mean [median] network similarity.

Table S5. Significance test for difference in network similarity between homolog subtypes.^a

	1-1 orthologs	non 1-1 orthologs	inparalogs	ws outparalogs	bs outparalogs
1-1 orthologs	_	4.335 [4.647]	2.521 [0.834]	3.083 [1.320]	5.698 [5.726]
		$5.7979 \times 10^{-151} (>)$	$2.516 \times 10^{-32} (>)$	$8.391 \times 10^{-47} (>)$	$9.827 \times 10^{-302} (>)$
non 1-1 orthologs		_	1.815 [3.813]	1.252 [3.328]	1.364 [1.080]
			$1.255 \times 10^{-154} (<)$	$2.065 \times 10^{-78} (<)$	$4.935 \times 10^{-26} (>)$
inparalogs			_	0.563 [0.486]	3.179 [4.893]
				$2.14 \times 10^{-11} (>)$	$< 2.225 \times 10^{-308} (>)$
ws outparalogs				_	2.616 [4.407]
					$1.276 \times 10^{-272} (>)$
bs outparalogs					_

 $^{^{}a}$ In the first row of each cell are percent differences in mean [median] network similarity. In the second row of each cell are p-values based on one-tailed Mann-Whitney tests, with the alternative hypothesis shown in parenthesis; that is, > (<) tests the alternative hypothesis that the row header is more (less) similar than the column header.

 $[^]b$ P-values based on one-tailed Mann-Whitney tests.

 $[^]b$ P-values based on one-tailed Mann-Whitney tests.

References

- Cutter A. D. 2008. Divergence times in *Caenorhabditis* and *Drosophila* inferred from direct estimates of the neutral mutation rate. Mol Biol Evol 25:778–786.
- Hillier D. W, Miller R. D, Baird S. E, Chinwalla A, Fulton L. A, Koboldt D. C and Waterston R. H. 2007. Comparison of *C. elegans* and *C. briggsae* genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol 5:e167.
- Kiontke K, Gavin N. P, Raynes Y, Roehrig C, Piano F and Fitch D. H. A. 2004. *Caenorhabditis* phylogeny predicts convergence of hermaphroditism and extensive intron loss. PNAS **101**:9003–9008.
- Mouse Genome Sequencing Consortium, Chinwalla A. T, Cook L. L, Delehaunty K. D, et al. (319 co-authors). 2002. Initial sequencing and comparative analysis of the mouse genome. Nature **420**:520–562.
- Piganeau G and Eyre-Walker A. 2009. Evidence for variation in the effective population size of animal mitochondrial dna. PLoS One 4:e4396.
- Rasmussen M. D and Kellis M. 2011. A Bayesian approach for fast and accurate gene tree reconstruction. Mol Biol Evol 28:273–290.
- Rasmussen M. D and Kellis M. 2012. Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Res 22:755–765.
- Rockman M. V and Kruglyak L. 2009. Recombinational landscape and population genomics of *Caenorhabditis Elegans*. PLoS Genet **5**:e1000419.
- Sawyer S. A and Hartl D. L. 1992. Population genetics of polymorphism and divergence. Genetics 132:1161–1176.
- Shapiro J. A, Huang W, Zhang C, Hubisz M. J, et al. (13 co-authors). 2007. Adaptive genic evolution in the *Drosophila* genomes. PNAS **104**:2271–2276.
- Tamura K, Subramanian S and Kumar S. 2004. Temporal patterns of fruit fly (*Drosophila*) evolution revealed by mutation clocks. Mol Biol Evol **21**:36–44.
- Tsai I. J, Bensasson D, Burt A and Koufopanou V. 2008. Population genomics of the wild yeast *saccharomyces paradoxus*: Quantifying the life cycle. PNAS **105**:4957–4962.
- Yu N, Jensen-Seaman M. I, Chemnick L, Ryder O and Li W.-H. 2004. Nucleotide diversity in gorillas. Genetics 166:1375–1383.