第三章 多维随机变量及其分布

3.1 二维随机变量及其联合分布函数

设 ξ , η 为同一样本空间 Ω 上的随机变量,则称向量(ξ , η)为 Ω 上的二维随 机变量或二维随机向量,对任意实数 x,y,称二元函数 $F(x,y)=P(\xi \leq x,\eta \leq y)$ 为 (ξ,η) 的联合分布函数,它具有下述性质:

(1)F(x,y)是 x 或 y 的不减函数. 即对任意固定的 y, 当 $x_1 < x_2$ 时, $F(x_1,y) \leq F(x_2,y)$;对于任意固定的 x, 当 $y_1 < y_2$ 时, $F(x,y_1) \leq F(x,y_2)$.

(2)F(x,y)关于 x 右连续,关于 y 也右连续,即在其间断点 (x_0,y_0) 处,有

$$\lim_{x\to x_0^+} F(x,y_0) = F(x_0,y_0), \qquad \lim_{y\to y_0^+} F(x_0,y) = F(x_0,y_0).$$

 $(3)0 \leq F(x,y) \leq 1$,且对于任意固定的 y,有

 $F(-\infty,y)=P(\xi<-\infty,\eta\leq y)=0.$

对于任意固定的
$$x$$
, 有
$$F(x,-\infty)=P(\xi \leqslant x,\eta <-\infty)=0,$$

$$F(-\infty,-\infty)=\lim_{n\to\infty}F(x,y)=0,$$

设 ξ , η 为同一样本空间 Ω 上的随机变量,则称向量(ξ , η)为 Ω 上的二维随 机变量或二维随机向量. 对任意实数 x,y,称二元函数 $F(x,y)=P(\xi \leqslant x,\eta \leqslant y)$ 为 (ξ,η) 的联合分布函数,它具有下述性质:

(1)F(x,y)是 x 或 y 的不减函数. 即对任意固定的 y, 当 $x_1 < x_2$ 时, $F(x_1,y) \le F(x_2,y)$;对于任意固定的 x, 当 $y_1 < y_2$ 时, $F(x,y_1) \le F(x,y_2)$.

(2)F(x,y)关于 x 右连续,关于 y 也右连续,即在其间断点 (x_0,y_0) 处,有

$$\lim_{x \to x_0^+} F(x, y_0) = F(x_0, y_0), \qquad \lim_{y \to y_0^+} F(x_0, y) = F(x_0, y_0).$$

(3)0≤F(x,y)≤1,且对于任意固定的 y,有

$$F(-\infty, y) = P(\xi < -\infty, \eta \le y) = 0.$$

对于任意固定的 x,有

$$F(x,-\infty)=P(\xi \leqslant x,\eta < -\infty)=0$$

$$F(-\infty, -\infty) = \lim_{\substack{x \to -\infty \\ y \to -\infty}} F(x, y) = 0, \quad F(+\infty, +\infty) = \lim_{\substack{x \to +\infty \\ y \to +\infty}} F(x, y) = 1.$$

(4)对于任意的 $x_1 < x_2, y_1 < y_2, 有$

$$F(x_2,y_2)-F(x_1,y_2)-F(x_2,y_1)+F(x_1,y_1)\geq 0.$$

3.2 二维随机变量的边沿分布函数

设 (ξ,η) 是二维随机变量,x,y为任意实数,称一元函数 $F_{\varepsilon}(x)=P(\xi \leqslant x)=$ $P(\xi \leq x, \eta < +\infty)$ 为 (ξ, η) 关于 ξ 的边沿分布函数;称一元函数 $F_{\eta}(y) = P(\eta \leq$ $y)=P(\xi<+\infty,\eta\leq y)$ 为 (ξ,η) 关于 η 的边沿分布函数.

3.3 二维离散型随机变量

如果二维随机变量 (ξ,η) 的可能值为有限个或可列个实数对 $(x_i,y_j)(i,j=$ 1,2,…),则称(ξ,η)为二维离散型随机变量.

$$\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} p_{ij} = 1 (i=1,2,\cdots;j=1,2,\cdots),$$

称表达式 $P(\xi=x_i,\eta=y_j)=p_{ij}(i=1,2,\cdots;j=1,2,\cdots)$ 为二维离散型随机变量 (ξ,η) 的联合概率分布列,简称联合分布列.

3. 二维离散型随机变量的边沿分布

设二维离散型随机变量的联合分布列

$$P(\xi=x_i,\eta=y_j)=p_{ij} \quad (i,j=1,2,\cdots),$$

3. 二维离散型随机变量的边沿分布

设二维离散型随机变量的联合分布列

$$P(\xi=x_i,\eta=y_j)=p_{ij} \quad (i,j=1,2,\cdots),$$

则称 $P(\xi=x_i)=\sum p_{i,i} \triangle p_i$. $(i=1,2,\cdots)$ 为 (ξ,η) 关于 ξ 的边沿分布,记作

$$p_i$$
;称
$$P(\eta = y_j) = \sum_{i=1}^{\infty} p_{ij} \triangle p_{ij} \quad (j=1,2,\cdots)$$

为 (ξ,η) 关于 η 的边沿分布,记作 p_{-1}

联合分布与边沿分布可用表表示.

ξ ^η	<i>y</i> ₁	y_2	 91	 pi.
x_1	p 11	P12	 P1j	 p_1 .
x_2	P21	P22	 p_{2j}	 p_2 .
:	1			:
x_i	pa	Piz	 Pij	 pi.
:	:	:	:	:
p.,	p.1	p.2	 p.,	 - 1

3.4 二维连续型随机变量及其联合概率密度

设二维随机变量 (ξ,η) 的联合分布函数为F(x,y),若存在非负可积二元函 数 f(x,y),使对任意实数 x 和 y 都有

$$F(x,y) = P(\xi \leqslant x, \eta \leqslant y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv,$$

这里的 $f(x,y) \ge 0$ 且 $\int_{-\infty}^{+\infty} f(x,y) dx dy = 1$ 是二维连续型随机变量的 联合概率密度必须具有的性质.

2. 二维连续型随机变量的边沿概率密度

设二维连续型随机变量(ξ , η)的联合概率密度为f(x,y),称一元函数 $f_{\ell}(x) = \int_{-\infty}^{+\infty} f(x,y) dy h(\xi,\eta)$ 关于 ℓ 的边沿概率密度;称一元函数 $f_{\eta}(y) = \int_{-\infty}^{+\infty} f(x,y) dy h(\xi,\eta)$ f(x,y)dx 为(ξ,η)关于 η 的边沿概率密度.

3. 二维连续型随机变量的联合分布函数与联合概率密度、边沿分布函数与 边沿概率密度及事件概率的关系

(1)已知二维连续型随机变量(ξ , η)的联合概率密度为 f(x,y),则(ξ , η)的 联合分布函数

$$F(x,y) = \int_{-\infty}^{x} du \int_{-\infty}^{y} f(u,v) dv.$$

关于 ξ 的边沿分布函数

$$F_{\ell}(x) = \int_{-\infty}^{x} \left(\int_{-\infty}^{+\infty} f(u, y) dy \right) du.$$

关于η的边沿分布函数

$$F_{\eta}(y) = \int_{-\infty}^{y} \left(\int_{-\infty}^{+\infty} f(x, v) dx \right) dv.$$

关于 ξ 的边沿概率密度

$$f_{\varepsilon}(x) = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}y.$$

关于η的边沿概率密度

$$f_{\eta}(y) = \int_{-\infty}^{+\infty} f(x,y) dx.$$

(ξ,η)落在 xOy 平面上区域 D 内的概率

$$P((\xi,\eta)\!\in\!D)\!=\int\!\!\!\!\!\!\int f(x,y)\mathrm{d}x\mathrm{d}y.$$

(2)已知二维连续型随机变量(ξ , η)的联合分布函数为F(x,y),则在(ξ , η)的联合概率密度f(x,y)的连续点(x,y)处有

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
.

(ξ,η)关于ξ,η的边沿分布函数分别为

$$F_{\ell}(x) = F(x, +\infty), \quad F_{\eta}(y) = F(+\infty, y).$$

事件 $(a < \xi \leq b, c < \eta \leq d)$ 的概率

 $P(a < \xi \leq b, c < \eta \leq d) = F(b,d) - F(b,c) - F(a,d) + F(a,c).$

3.5 均匀分布与正态分布

常见的二维连续型随机变量是二维均匀分布和二维正态分布.

1. 均匀分布

称 (ξ,η) 服从区域G上的均匀分布,若 (ξ,η) 的密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S(G)}, & (x,y) \in G; \\ 0, & \text{其他}, \end{cases}$$

S(G)为 G 的面积, $0 < S(G) < +\infty$.

2. 二维正态分布

若二维随机变量(ξ,η)的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}\right]\right\}$$

$$2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \bigg] \bigg\},$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2$ 和 ρ 都是常量,且 $\sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1, 称(ε, η) 为服从参数 <math>\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二维正态分布,记为(ε, η) $\sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, ε, η 的边沿分布分别为 $N(\mu_1, \sigma_1^2)$, $N(\mu_1, \sigma_2^2)$, ε β η 独立的充要条件是 ρ = 0.

3.6 二维随机变量的相互独立性

设 (ξ,η) 为二维随机变量,若对任意实数x,y,有

 $P(\xi \leqslant_x, \eta \leqslant_y) = P((\xi \leqslant_x) \cap (\eta \leqslant_y)) = P(\xi \leqslant_x) \cdot P(\eta \leqslant_y)$

则称随机变量 *ξ、η* 相互独立.

设 (ξ,η) 为二维随机变量,若对任意实数x,y,有

 $P(\xi \leqslant x, \eta \leqslant y) = P((\xi \leqslant x) \cap (\eta \leqslant y)) = P(\xi \leqslant x) \cdot P(\eta \leqslant y)$

则称随机变量 *ξ、η* 相互独立.

(1)设二维随机变量 (ξ,η) 的联合分布函数为 $F(x,y),\xi$ 与 η 的边沿分布函数分别为 $F_t(x),F_\eta(y)$,则随机变量 ξ 与 η 相互独立的充要条件是,对任意实数x,y有 $F(x,y)=F_t(x)\cdot F_\eta(y).$

(2)设 (ξ,y) 是高散型二维随机变量,其联合分布列及边沿分布列分别为 p_{ij},p_{i},p_{i},p_{j} ,则 ξ 与 η 相互独立的充要条件是

at two contracts

$$p_{ij}=p_i$$
. • $p_{i,j}$

(3)设(ξ , η)是连续型二维随机变量,其联合密度函数及边沿密度函数分别 为 f(x,y), $f_t(x)$, $f_t(y)$,则 ξ 与 η 相互独立的充要条件是,对任意实数 x,y, $f(x,y) = f_t(x) \cdot f_t(y)$.

3.7 条件分布

1. 二维离散型随机变量的条件分布

设 (ξ,η) 为二维随机变量,若对于固定的i,有 $P(\xi=x_i)>0$,则称

$$P(\eta = y_j | \xi = x_i) = \frac{P(\xi = x_i, \eta = y_j)}{p(\xi = x_i)} = \frac{p_{ij}}{p_{ij}} \quad (j = 1, 2, \dots)$$

为在 $\xi = x_i$ 的条件下随机变量 η 的条件分布列.

同样,对固定的 j,若 $P(\eta=y_j)>0$,则称

$$P(\xi = x_i | \eta = y_j) = \frac{P(\xi = x_i, \eta = y_j)}{P(\eta = y_j)} = \frac{p_{ij}}{p_{.j}} \quad (i = 1, 2, \dots)$$

为在 $\eta = y_i$ 的条件下随机变量 ξ 的条件分布列.

如果 ξ 与 η 相互独立,则

$$P(\eta = y_i | \xi = x_i) = p_{i,j}, P(\xi = x_i | \eta = y_j) = p_i.$$

2. 二维连续型随机变量的条件概率密度

设 (ξ,η) 为二维连续随机变量,其联合概率密度为f(x,y),若 $f_{\eta}(y)>0$,则称

$$f_{\xi|\eta}(x|y) = \frac{f(x,y)}{f_{\eta}(y)}$$

为在 η=y 条件下 ξ 的条件概率密度;若 f_ξ(x)>0,则称

2. 二维连续型随机变量的条件概率密度

设 (ξ,η) 为二维连续随机变量,其联合概率密度为f(x,y),若 $f_{\eta}(y)>0$,则称

$$f_{\xi|\eta}(x|y) = \frac{f(x,y)}{f_{\eta}(y)}$$

为在 $\eta = y$ 条件下 ξ 的条件概率密度;若 $f_{\xi}(x) > 0$,则称

$$f_{\eta|\xi}(y|x) = \frac{f(x,y)}{f_{\xi}(x)}$$

为在 $\xi = x$ 条件下 η 的条件概率密度.

如果 €,7 相互独立,则

$$f_{\xi|\eta}(x|y) = f_{\xi}(x), f_{\eta|\xi}(y|x) = f_{\eta}(y).$$

3.8 随机变量函数的分布

1. Z=ξ+η 的分布

$$f_z(z) = \int_{-\infty}^{+\infty} f(z - y, y) \mathrm{d}y = \int_{-\infty}^{+\infty} f(x, z - x) \mathrm{d}x.$$

特别地,若《与 n 相互独立,则

1. Z=ξ+η 的分布

$$f_{z}(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy = \int_{-\infty}^{+\infty} f(x,z-x) dx.$$

特别地,若《与》相互独立,则

$$\begin{split} f_Z(z) &= \int_{-\infty}^{+\infty} f_{\xi}(z-y) \cdot f_{\eta}(y) \mathrm{d}y \\ &= \int_{-\infty}^{+\infty} f_{\xi}(x) \cdot f_{\eta}(z-x) \mathrm{d}x. \end{split}$$

 $2.Z = \frac{\xi}{n}$ 的分布

$$f_{z}(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy.$$

特别地,当 ξ 与 η 相互独立时,

$$f_{z}(z) = \int_{-\infty}^{+\infty} |y| f_{t}(yz) f_{t}(y) dy.$$

3. $M = \max(\xi, \eta)$ 及 $N = \min(\xi, \eta)$ 的分布

设 ξ,η 是两个相互独立的随机变量,分布函数分别为 $F_{\varepsilon}(x),F_{\eta}(y),$ 则

$$F_{\text{max}}(z) = F_{\xi}(z) F_{\eta}(z)$$
,

$3. M = \max(\xi, \eta)$ 及 $N = \min(\xi, \eta)$ 的分布

设 ξ , η 是两个相互独立的随机变量, 分布函数分别为 $F_{\xi}(x)$, $F_{\eta}(y)$, 则 $F_{\text{max}}(z) = F_{\xi}(z)F_{\eta}(z)$,

$$F_{\min}(z) = 1 - \big[1 - F_{\ell}(z)\big] \big[1 - F_{\eta}(z)\big].$$

设 $\xi_1, \xi_2, \dots, \xi_n$ 是 n 个相互独立的随机变量,分布函数分别为 $F_{\xi_i}(x_i)(i=1,$ $2,\cdots,n$),则 $M=\max(\xi_1,\xi_2,\cdots,\xi_n)$ 及 $N=\min(\xi_1,\xi_2,\cdots,\xi_n)$ 的分布函数分别为 $F_{\max}(z) = F_{\xi_1}(z) F_{\xi_2}(z) \cdots F_{\xi_n}(z)$,

$$F_{\min}(z) = 1 - [1 - F_{\ell_{\epsilon}}(z)][1 - F_{\ell_{\epsilon}}(z)] \cdots [1 - F_{\ell_{\epsilon}}(z)].$$

特别地,若 ξ_1,ξ_2,\cdots,ξ_n 相互独立且具有相同分布函数F(x),则

$$F_{\max}(z) = [F(z)]^n$$
,

$$F_{\min}(z) = 1 - [1 - F(z)]^n$$
.

问 如何理解 $F(x,-\infty)=0, F(-\infty,y)=0, F(-\infty,-\infty)=0$ 和 $F(+\infty,+\infty)=1$?

答 随机变量 (ξ,η) 的分布函数 $F(x,y)=P(\xi \leqslant x,\eta \leqslant y)$ 可看作 (ξ,η) 落在 无穷矩形区域: $\{\xi \leqslant x, \eta \leqslant y\}$ 内的概率. 所以对二维随机变量分布函数几个重要 取值 $F(x,-\infty)=0$, $F(-\infty,y)=0$, $F(-\infty,-\infty)=0$ 和 $F(+\infty,+\infty)=1$, 有如下几何意义,

 $F(x,-\infty)$ 就是将矩形的上边界无限向下移,则" (ξ,η) 落在无穷矩形内"趋 于不可能事件,概率趋于0;

 $F(-\infty,y)$ 就是将矩形的右边界无限向左移,则" (ξ,η) 落在无穷矩形内"趋 于不可能事件,概率趋于 0.

 $F(-\infty,-\infty)$ 就是将矩形的右上边界无限向左下移,则"(ξ,η)落在无穷矩 形内"趋于不可能事件,概率趋于 0;

 $F(+\infty,+\infty)$ 就是将无穷矩形扩大为全平面,则"(ξ,η)落在无穷矩形内" 趋于必然事件,概率趋于1.

综合练习题三

(1)设二维随机变量(ξ,η)的联合分布函数为

(1) 议二维随机变量(
$$\epsilon$$
- r) 的联合分布函数为
$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-(x+y)}, & x>0, y>0; \\ 0, & \text{其他}. \end{cases}$$
 则 $F_{\epsilon}(x) = \underbrace{}_{r}P(\xi \leqslant 1, \eta \leqslant 2) = \underbrace{}_{r}.$

解 当 x>0 时

$$F_{\xi}(x) = F(x, +\infty) = \lim_{y \to +\infty} F(x, y)$$

= $\lim_{y \to +\infty} (1 - e^{-x} - e^{-y} + e^{-(x+y)}) = 1 - e^{-x},$

当
$$x \le 0$$
 时, $F_{\ell}(x) = 0$,故 $F_{\ell}(x) = \begin{cases} 1 - e^{-x}, & x > 0; \\ 0, & x \le 0. \end{cases}$

$$P(\xi \leq 1, \eta \leq 2) = F(1,2) = 1 - e^{-1} - e^{-2} + e^{-3}.$$

(2)设二维随机变量(ξ,η)的密度函数为

$$f(x,y) = \begin{cases} A\sin(x+y), & 0 \leqslant x \leqslant \frac{\pi}{2}, 0 \leqslant y \leqslant \frac{\pi}{2}; \\ 0, & 其他. \end{cases}$$

解 由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$$
,得

$$1 = \int_0^{\frac{\pi}{2}} dx \int_0^{\frac{\pi}{2}} A \sin(x+y) dy = A \int_0^{\frac{\pi}{2}} \left[-\cos(x+y) \right] \Big|_0^{\frac{\pi}{2}} dx$$
$$= A \int_0^{\frac{\pi}{2}} \left[\cos x - \cos\left(\frac{\pi}{2} + x\right) \right] dx$$

故
$$A=\frac{1}{2}$$
.

(3)设二维随机变量(ξ,η)的密度函数为

$$f(x,y) = \begin{cases} 15xy^2, & 0 \le y \le x \le 1; \\ 0, & \text{ i.e.} \end{cases}$$

则
$$f_{\xi}(x) = _____; \quad f_{\eta}(y) = _____$$

解 当 0≤x≤1 时,

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{x} 15xy^{2} dy = 5x^{4},$$

故
$$f_{\ell}(x) = \begin{cases} 5x^4, & 0 \leqslant x \leqslant 1; \\ 0, &$$
其他.

当 0≤y≤1 时,

$$f_{y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \int_{y}^{1} 15xy^{2} dx = \frac{15}{2}y^{2}(1-y^{2}),$$

故
$$f_{\eta}(y) = \begin{cases} \frac{15}{2} y^2 (1 - y^2), & 0 \leqslant y \leqslant 1; \\ 0, & 其他. \end{cases}$$

(4)若二维随机变量 $(\xi,\eta)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则 $\xi\sim$ _____; $\eta\sim$;且 ξ 与 η 相互独立的充要条件为_____.

解
$$\diamondsuitexigms \frac{x-\mu_1}{\sigma_1} = u$$
, $\frac{y-\mu_2}{\sigma_2} = v$, $\frac{1}{2\pi} \& exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho u v + v^2\right]\right\} dv$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right\} dy$$

$$= \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-\rho^2)} \cdot (u^2 - 2\rho u v + v^2)\right\} dv$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{u^2}{2}\right\} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi(1-\rho^2)}} \exp\left\{-\frac{\rho^2 u^2 - 2\rho u v + v^2}{2(1-\rho^2)}\right\} dv$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{u^2}{2}\right\} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi(1-\rho^2)}} \exp\left\{-\frac{(v-\mu_2)^2}{2(1-\rho^2)}\right\} dv$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{u^2}{2}\right\} = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left\{\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\} \quad (-\infty < x < +\infty),$$

(5)设二维随机变量(ξ,η)的联合分布为

解 ξ,η的边沿分布如下:

ŧ	1	2	η	1	2
P	$\frac{1}{2}$	$\alpha + \beta$	P	$\frac{1}{6} + \alpha$	$\frac{1}{3} + \beta$

由 ξ,η 相互独立的充要条件有:

$$\begin{split} &P(\xi=1,\eta=1) = P(\xi=1) \cdot P(\eta=1), \quad \frac{1}{6} = \frac{1}{2} \cdot (\frac{1}{6} + a) \Rightarrow a = \frac{1}{6}. \\ &P(\xi=1,\eta=2) = P(\xi=1) \cdot P(\eta=2), \quad \frac{1}{3} = \frac{1}{2} \cdot (\frac{1}{3} + \beta) \Rightarrow \beta = \frac{1}{3}. \end{split}$$

经检验,当 $\alpha = \frac{1}{6}$, $\beta = \frac{1}{3}$ 时, ξ , η 相互独立.

2. 选择题

(1)设随机变量 ٤,7 的密度函数为

$$f(x) = \begin{cases} e^{-x}, & x > 0; \\ 0, & x \leq 0. \end{cases}$$

则(ξ,η)的联合密度函数为().

$$(A) f(x,y) = \begin{cases} 2e^{-(x+y)}, & x > 0, y < 0; \\ 0, & \text{if } & (B) f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y < 0; \\ 0, & \text{if } & (B) f(x,y) \end{cases}$$

(B)
$$f(x,y) = \begin{cases} e^{-(x+y)}, & x>0,y\\ 0, & \text{if the } \end{cases}$$

(C)
$$f(x,y) = \begin{cases} e^{-x} + e^{-y}, & x > 0, y < 0; \\ 0, & \text{if the} \end{cases}$$

解 选择(D),因为 ξ,η 不一定相互独立.

(2)设随机变量 ξ 和 η 相互独立,其分布列分别为

(= / 6		, .				
	ξ	0	1	η	0	1
	P	$\frac{1}{2}$	$\frac{1}{2}$	P	$\frac{1}{2}$	$\frac{1}{2}$
则以下结论正确的是().						

(2)设随机变量 ξ 和 η 相互独立,其分布列分别为

	ξ	0	1	η	0	1	
	P	$\frac{1}{2}$	1/2	P	$\frac{1}{2}$	$\frac{1}{2}$	
则以下约	吉论正确的	是()					
(A) £-n				(R)P(f=n)=1			

(A) $\xi = \eta$ (B) $P(\xi = \eta) = 1$ (C) $P(\xi = \eta) = \frac{1}{2}$ (D)以上都不正确

 $P(\xi=\eta)=P(\xi=0,\eta=0)+P(\xi=1,\eta=1)$

 $=P(\xi=0) \cdot P(\eta=0) + P(\xi=1)P(\eta=1)$ (因为 ξ, η 独立)

 $=\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}.$

故选(C).

(3)设 ξ~N(0,1),η~N(1,1),且它们相互独立,则().

(A)
$$P(\xi + \eta \le 0) = \frac{1}{2}$$
 (B) $P(\xi + \eta \le 1) = \frac{1}{2}$

$$(A)P(\xi+\eta \leqslant 0) = \frac{1}{2}$$

$$(B)P(\xi+\eta \leqslant 1) = \frac{1}{2}$$

$$(C)P(\xi-\eta \leqslant 0) = \frac{1}{2}$$

$$(D)P(\xi-\eta \leqslant 1) = \frac{1}{2}$$

解 因为
$$\xi \sim N(0,1), \eta \sim N(1,1),$$
 所以 $\xi + \eta \sim N(1,2), \frac{\xi + \eta - 1}{\sqrt{2}} \sim N(0,1),$

1),故由对称性知
$$P(\frac{\xi+\eta-1}{\sqrt{2}}\leqslant 0)=\frac{1}{2}$$
,即 $P(\xi+\eta-1\leqslant 0)=\frac{1}{2}$,于是 $P(\xi+\eta\leqslant 1)=\frac{1}{2}$,故选(B).

注 一般地,设随机变量 ξ 和 η 相互独立,且 $\xi \sim N(\mu_1, \sigma_1^2), \eta \sim N(\mu_2, \sigma_2^2)$,

$$\xi + \eta \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2), \xi - \eta \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2),$$

本题中 $\xi+\eta\sim N(1,2)$, $\xi\sim\eta\sim N(-1,2)$,然后把它们化成标准正态分布.