Einführung in Data Science & maschinelles Lernen

Abschlusspräsentation

Gruppe 1: Manuel Böhm, Sophia Gentner, Teresa Giek & Robert Mühldorfer

Erstellte Variablen

Gästeübernachtungen je Monat

 Daten für ganz Schleswig-Holstein wurden entfernt, da Kiel selbst weniger touristisch geprägt ist als sein Umland.

Seeschifffahrt je Monat

 Daten für ganz Schleswig-Holstein wurden zunächst beibehalten, da Kiel als wichtiger Fähr- und Kreuzfahrthafen eine zentrale Rolle spielt.

Events

Berücksichtigung besonderer Ereignisse wie Weihnachtsmärkte und Feiertage.

Temperaturkategorien

Klassifizierung in "Sehr kalt", "Kalt", "Mild", "Warm" und "Heiß".

Balkendiagramme mit Konfidenzintervallen

Optimierung des linearen Modells

Lineares Modell

= 38.02 + 23.41 Brot + 312.58 Brötchen + 66.17 Croissant – 9.46 Konditorei + 182.94 Kuchen + 20.88 Monat_2 + 11.56 Monat_3 + 30.45 Monat_4 + 37.40 Monat_5 + 42.71 Monat_6 + 94.09 Monat_7 + 122.02 Monat_8 + 44.20 Monat_9 + 42.79 Monat_10 + 13.62 Monat_11 + 59.72 Monat_12 + 53.30 national_holiday – 47.58 christmas_market + 35.97 KielerWoche + 2.20 temp_bins_kalt + 2.84 temp_bins_mild + 7.91 temp_bins_warm + 28.50 temp_bins_heiß – 4.50 Wochentag_Di – 4.16 Wochentag_Mi + 1.46 Wochentag_Do + 3.75 Wochentag_Fr + 48.90 Wochentag_Sa + 54.99 Wochentag_So

```
mod = smf.ols('Umsatz ~ Brot + Broetchen +
Croissant + Konditorei + Kuchen + Monat_2 +
Monat_3 + Monat_4 + Monat_5 + Monat_6 +
Monat_7 + Monat_8 + Monat_9 + Monat_10 +
Monat_11 + Monat_12 + national_holiday +
christmas_market + KielerWoche +
temp_bins_kalt + temp_bins_mild +
temp_bins_warm + temp_bins_heiß +
Wochentag_Di + Wochentag_Mi + Wochentag_Do +
Wochentag_Fr + Wochentag_Sa + Wochentag_So',
data=df_training).fit()
# Output the summary of the fitted model
print(mod.summary())
```

```
R-squared: 0.741
Adj. R-squared: 0.740
F-statistic: 737.4
Prob (F-statistic): 0.00
Log-Likelihood: -42962.
AIC: 8.598e+04
BIC: 8.619e+04
```

Umgang mit fehlenden Werten

Listwise Deletion

Einfügung fehlender Umsatz-Werte

- Jede Warengruppe an jedem Tag (z.B. Saisonbrot außerhalb der Saison)
 - o Umsatz von 0, wenn es eine Warengruppe ohne fehlenden Wert am gleichen Tag gibt
- Umsatz von 0 an plausiblen Schließzeiten (z.B. 25.12.)

Imputation: k-Nearest Neighbours (NN = 5)

Variable	Fehlenden Werte	
	n	prozentual
Umsatz	402	4,13 %
Temp_bins	29	0,30 %

Listwise Deletion

• Modellgüte des neuronalen Netzes sank → Entscheidung für listwise deletion

Optimierung des neuronalen Netzes

 Source Code zur Definition des neuronalen Netzes

 Learning Rate Scheduler hinzugefügt, epochs = 50

```
# Model Definition
model = Sequential([
    InputLayer(shape=(training_features.shape[1], )),
    BatchNormalization(),
    Dense(32, activation='relu'),
    Dropout(0.1),
    Dense(16, activation='relu'),
    Dense(1, activation='linear')
])
```

```
# Compile
optimizer = Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss='mse', metrics=['mae', 'mape'])
# Training with Learning Rate Scheduler
def scheduler(epoch, lr):
    return lr * 0.9
```

Optimierung des neuronalen Netzes

- Darstellung der Loss-Funktionen für Trainings- und Validierungsdatensatz
- MAPEs für den Trainings- und Validierungsdatensatz insgesamt

MAPE on the Training Data: 29.12% MAPE on the Validation Data: 27.81%

MAPEs f
ür jede Warengruppe einzeln

MAPE für Training Data:

Brot: 33.26%

Broetchen: 18.44% Croissant: 22.73% Konditorei: 29.04%

Kuchen: 16.26%

Saisonbrot: 189.84%

MAPE für Validation Data:

Brot: 29.75%

Broetchen: 22.96% Croissant: 22.04% Konditorei: 28.32%

Kuchen: 18.24%

Saisonbrot: 158.56%

"Worst Fail"

1 Lineares Modell: negativer R-squared

```
Mean Squared Error: 37799.071133370024

R-squared: -0.26031566281171625

Model Coefficients: [-9.08597778e+00 -1.59872116e-14 -6.33983762e+00 -4.36397897e+00 -8.70572713e+00 5.12331823e-01 -4.71260964e+01 -1.30793096e+01 -1.86484548e+01 -6.50800604e+01 -9.24441329e+00 1.29404963e+02 2.37733715e+01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 Intercept: 448.5990372583461
```

Neuronales Modell: Gerade als Vorhersage

Neuronales Modell: sehr hoher MAPE