Pattern Discovery
Methods & Applications

DSA 8102: Data mining, data storage and retrieval

Objectives

- Describe the pattern mining concepts.
- Describe sequential pattern mining, constraint-based mining, graph pattern mining.
- Demonstrate basic classification and clustering algorithms.
- Demonstrate the Apriori algorithm in R using the market basket analysis.

Preliminary

- Data mining uses mathematical analysis to derive patterns and trends that exist in data (Microsoft, 2019).
- Discovering patterns in Big data is a non-trivial task without data mining.
- Some of the most fundamental data mining tasks are:
 - clustering, classification, pattern mining etc.

Data Mining Tasks

- Prediction methods
 - use some variables to predict unknown or future values of other variables.

 Earthquakes

Weather forecast
Cancer detection

- Description methods
 - find human-interpretable patterns that describe data.

Demographic description
Land description
Transaction description

Descriptive Data Mining

Pattern Mining

Patterns

- The term "pattern" refers to a subset of the data expressed in the form of rules (Gullo, 2015).
- A pattern means that your data are correlated into a relationship.
- Pattern mining concentrates on identifying rules (i.e., association) that describe specific patterns within the data (Britannica, n.d).

Patterns during the KDD Process (Gullo, 2015)

Key Terms

- Item: An item is any particular object.
 - Example: {Milk}
- Item set: Set of items that occur together or a collection of items.
 - Example: {Milk, Diaper, Beer}
- Association rule: This is a technique used to uncover how items are associated to each other. An implication expression of the form, X → Y, where X and Y are item sets.
 - Example: {Milk, Diaper} → {Beer}
- Frequent patterns: given a userdefined threshold, frequent item sets appear (in the data set's transactions) more than the threshold.

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Transactions of items

TID	Milk	Bread	Butter	Beer
1	1	o	1	1
2	1	1	1	0
3	0	1	1	0
4	1	0	o	1
5	1	1	1	1

Association Rules

- Let the rule discovered be:
 - $\{Milk, Diaper\} \rightarrow \{Beer\}$
- Beer as consequent => can be used to determine what should be done to boost its sales.
- Milk in the antecedent => can be used to see which products would be affected if the store discontinues selling milk.
- Milk in antecedent and Beer in consequent
 => can be used to see what products should be sold with Milk to promote sale of Beer!

Rule Quality: Evaluation Metrics


```
\sigma(\{\text{Milk, Diaper, Beer}\}) = 2
\sigma(\{\text{Milk, Diaper}\}) = 3
```

 Support (s): Fraction of transactions that contain an item set.

```
s(\{Milk, Diaper, Beer\}) = 2/5 = 0.4

s(\{Milk, Diaper\}) = 3/5 = 0.6

s(\{Beer\}) = 3/5 = 0.6
```

 Confidence (c): Measures how often items in Y appear in transactions that contain X.

```
c (X \rightarrow Y) = \sigma({Milk, Diaper, Beer}) / \sigma({Milk, Diaper}) = 2/3 = 0.67
```

 Lift (I): This is the ratio of the confidence of the rule and the expected confidence.

$$I = 0.67 / 0.6 = 1.11$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$Support = \frac{Frequency(X,Y)}{N}$$

$$Rule X \Rightarrow Y \qquad Confidence = \frac{Frequency(X,Y)}{Frequency(X)}$$

$$Lift = \frac{Confidence(X \rightarrow Y)}{Expected Confidence}$$

 $Expected\ Confidence = Support(Y)$

Apriori Algorithm

- This is used to mine frequent item sets and association rules (Agrawal and Srikant, 1994).
- First algorithm that was proposed for frequent item set mining (Muliono et al. 2019).
- Designed to work on databases that contain transactions.
- Advantage:
 - Easy to understand
 - Results are intuitive and easy to understand
- Disadvantage:
 - It requires a higher computation if the item sets are very large and if the min. support is kept very low
 - Entire database (transactions) needs to be scanned

Dat	Database C ₁		Database			С	2
TID	Items		Itemset	Support		Itemset	Support
100	134←		{1}	2		{1 2}	1
200	235		{2}	3	\rightarrow	{1 3}*	2
300	1235	_	{3}	3		{15}←	1
400	25		{5}	3		{2 3}*	2
		•				{2 5}*	3
						{3.5}*	2

Support

Itemset

Apriori Algorithm Pruning

Exercise

- Discuss FP-growth as an alternative to Apriori algorithm.
- Figure 2 contains transactional items, answer the following:
 - a. What is the support and support count of the items marked in red?
 - b. What is the confidence of the item set marked in red?

ID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Frequent Pattern Mining Domains

Sequential Patterns Mining

CustID	TransID	Transactions
1	100	a,b,c,d
3	111	a,f,d,c
1	122	d,e,p
3	133	b,f,s,a
1	144	b,c,d,e
3	155	a,f,d,c
1	166	a,e,p

(a,f,d,c) (b,f,s,a) (a,f,d,c)

- Sequential pattern mining (SPM) is the process of finding frequent sequences of item sets in a dataset to identify patterns of ordered events.
 - Example: $S = \{a1, a2, a3, a4, a5\}$
 - In this sequence, S, a1 comes before a2, then a3, ...
- It generally intends to discover meaningful subsequences from a group of sequences.
 - Occurrence Frequency and time-bound are key!
- Applications areas:
 - Customer shopping sequences: buy a computer, then CDROM, and then digital camera within 3 months
 - Fraud detection
 - Telephone calling patterns
 - Natural disasters (e.g. earthquakes)
 - Stock markets

Constraint Pattern Mining

- Constraint-based mining involves searching for patterns or model space restricted by constraints (Nijssen, 2021).
- Goals of constraint pattern matching:
 - Increase the effectiveness of the search (ignore trivial patterns)
 - Reduce the number of patterns that are presented to the user
 - Make knowledge discovery more effective and useful
- Types of Constraints:
 - Knowledge type constraint: classification, association, etc.
 - Data constraint (using SQL-like queries): find product pairs sold together in stores in Pretoria in 2018.
 - Dimension / level constraint: In relevance to price, brand, customer, location, category, time, etc.
 - Rule (or pattern) constraint: Small sales (price < KES10) and fetch Big sales (Sum > KES 500)
 - Interestingness constraint: strong rules when (min support ≥ 3%, min confidence ≥ 60%)

Customer A: {TV} ... {DVD Player}

Customer B: {TV} ... {DVD Player}

The sequential pattern of interest is {TV}, {DVD Player} which suggests that people who buy TV will also soon buy DVD player.

Timing constraints: After 10 years, those who bought TV may not purchase a DVD

Graph Pattern Mining

- Most of existing mining algorithms are based on Flat transaction representation, i.e., sets of items.
- Motivation: Datasets with structures do not fit well in flat transactions.
 - E.g., protein sequences, chemical compounds etc.
 - Graphs are suitable for capturing arbitrary relations between the various elements. E.g., how connected articles are on the Internet, etc.
- Graph Mining is the problem of discovering repetitive subgraphs occurring in the input graphs
- Application areas:
 - Detection of financial crimes (Jedrzejek et. Al.)
 - Drug development (Christian Borgelt et al.)
 - Customer behaviour analysis (Yada, 2004)

Gradual Pattern Mining

id	date (day/month)	exercise (hours)	stress levels
r1	01/06	1	4
r2	04/06	2	2
r3	05/06	3	3
r4	10/06	1	2
r5	12/06	4	1

gradual pattern : $\{(exercise, \uparrow), (stress, \downarrow)\}$

GRITE - GRadual ITemset Extraction

depth-first precedence graph

■ support : $\frac{3}{5}$

GRAANK - **GRA**dual r**ANK**ing

- Kendall's τ gradual ranking (concordant pairs)
- 10 possible ordering pairs: [r1,r2],
 [r1,r3], [r1,r4], [r1,r5], [r2,r3], [r2,r4],
 [r2,r5], [r3,r4], [r3,r5], [r4,r5]
- 5 concordant pairs : [r1,r2], [r1,r5], [r2,r5], [r3,r5], [r4,r5]
- support : $\frac{5}{10}$

- Mines
 correlations
 between
 attributes of a
 data set through
 gradual
 rules/patterns
- Main algorithms: GRAANK and GRITE (Laurent 2009)

Application Areas

Recommender systems

 present users with selected and personalized subset of items from a huge set of distinct candidate items (Deldjoo et al. 2020; Beheshti et al. 2020).

Intrusion detection

 classifies the characteristics of signatures used in misuse intrusion detection (Obeidat and AlZubi, 2019; Aldwairi et al., 2020).

Transaction data systems

 understand sequences in customers' transaction history -- what they have previously bought (important for promotions) (Li et al. 2018; Sarma and Roy, 2010)

Business process logs

 discover process models from event logs in both software processes and business(Bogarin & Cerezo, 2018)

Spatial data

 arrangement of individual entities in space and the geographic relationships among them (Shekhar, Evans, Kang, & Mohan, 2011)

Biological sequences

 help biologists understand the functions of and relationships among different genes (Wu et al. 2013; Chen and Wu, 2013)

Exercise

- 1. Explain the difference between frequent pattern mining and gradual pattern mining?
- 2. Constraint patterns are richer in knowledge than sequential patterns. Explain.

Predictive Data Mining

Pre-requisite

- Apart for descriptive analysis, another data mining task involves measuring how alike (similar) or how unalike (dissimilar) two objects are.
- Proximity measures is one way that can be used to check how close objects are to one another using distance.
- Correlation measures checks relationship/connection between 2 variables (i.e., a change in one variable causes a change in another variable)
- Similarity measure:
 - Crisp (0 dissimilar or 1 similar)
 - Fuzzy (scale of 0 1, how similar/dissimilar)

Clustering

Cluster Analysis

- Clustering is attempting to group objects with similar traits together; such that:
 - objects in the same group are more similar to themselves and are dissimilar to objects in other groups

Application areas:

- Marketing and personalized advertisements: grouping customers with similar tastes
- Content analysis: classify documents, search results etc.
- Online fraud detection: cluster common habits in authentic users
- List goes on ...

Cluster Analysis

Src: https://analyticsbuddhu.wordpress.com/2016/11/01/types-of-cluster-analysis-and-techniques-using-r/

Cluster Analysis (Cont.)

Category:

- unsupervised learning classifier
- predictive/descriptive

Main Objectives:

- intra-cluster distance is minimized.
- inter-cluster distance is maximized.

Challenges:

- determining optimum number of clusters.
- determining the minimum inter/intra distance

Clustering Algorithms

1. Connectivity Models

- Group object (data points) based on the distance between them
- Objects with small distances between them are classified as similar and vice versa.
- Can be further categorized based on proximity measure: Euclidean distance, Manhattan distance etc.
- Examples: threshold-based clustering

2. Centroid Models

- Similarity is derived from the distance from the centroid of the cluster.
- Number of centroids/clusters is user-defined
- Examples: K-Means clustering

3. Distribution Models

- Considers the probability of an object belonging to a certain cluster (NOT proximity distance)
- May require a probability function to determine similarity

4. Density Models

 Scans the distribution of data points in the space and clusters according to density of the points

- Descriptive data analysis techniques tell us more about correlation between variables. Discuss using real examples.
- Cluster analysis tell us more about proximity of objects. Discuss using real examples.

Supervised Techniques

Key Terms

- Target label/class: variable to be predicted/identified.
- Predictors: variables used to learn the boundary.
 conditions that can be used identify each target label
- Model (Classification/Prediction): has the boundary conditions.
- Classifier: algorithm used to build the model.
- Training data set: data set with both target variable and predictor variables, and it is used to build the model.
- Testing data set: data set with both target variable and predictor variables, and it is used to test model's performance. Labels are hidden from model to see how accurately it can identify them.
- Prediction: data set without target variable. The ultimate goal of the model.

Regression

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Aim: learn "line-of-best-fit".
- Greatly studied in statistics, neural network fields.
- Applications:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.
 - List goes on ...

Regression Algorithms

- 1. Simple linear regression
- 2. Lasso regression
- 3. Ridge regression
- 4. List goes on ...

Classification

Classification

- Assumptions:
 - given a collection of records (training set),
 - each record contains a set of attributes/features:
 one of the attributes is the class.
- Training Task:
 - find a model for the class (attribute) as a function of the values of the other attributes.
- Goal (after training):
 - apply the model on <u>previously unseen</u> records and it should assign them a class as accurately as possible.

Classification Example

Classification (Cont.)

- Classification is the process of predicting a categorical label of a data set based on its features.
- Aim: learn "line-ofbest-split" that separates data into classes.
- Classification can be taken to be a type of regression where data can be separated into discrete classes

Name		Mood	Rating	Class
Money Heist	Α	Dark	Adult	Dislike
Prison Break	В	Semi-Dark	Adult	Dislike
Overcomer	С	Bright	Family	Like
House of Cards	D	Semi-Dark	Adult	Dislike
Selina	Ε	Bright	Family	Like
24	F	Bright	Adult	Like
Extraction	Н	Bright	Adult	Like
Boss Baby	G	Bright	Children	??

Classification (Cont.)

- Category:
 - Supervised learning
 - Predictive
- Challenges:
 - Feature selection
 - Computation power
- Application areas:
 - Weather forecast
 - Pattern recognition
 - Investment suggestions
 - Disease predictions
 - Object recognition (i.e., voice, handwriting, movement)
 - List goes on ...

Supervised Learning

Classification Algorithms

- 1. Logistic Regression
- 2. Decision Trees
- 3. Support Vector Machines
- 4. Naïve Bayes
- 5. Artificial Neural Networks
- 6. K-Nearest Neighbor

1. Logistic Regression

- Performs
 classification, not
 regression
- Predicts value of a categorical variable (preferably binary)
- Target variable is binary: yes/no, like/dislike, 0/1 etc.

LOGISTIC REGRESSION MODELLING

W1,w2,w3,w4-Amount of each individual medical problem P(x)-Probability Calculation

Src: https://medium.com/@slsarath2/logistic-regression-361edb3551fd

2. Decision Trees

- Decision trees represent a series of choices in the form of a tree.
- Uses predictor variables to decide which class the target variable lies in.
- Uses divide-andconquer approach to divide objects repeatedly until a final decision/choice is made.

# .		Class		
	Outlook	Company	Sailboat	Sail?
1	sunny	big	small	yes
2	sunny	med	small	yes
3	sunny	med	big	yes
4	sunny	no	small	yes
5	sunny	big	big	yes
6	rainy	no	small	no
7	rainy	med	small	yes
8	rainy	big	big	yes
9	rainy	no	big	no
10	rainy	med	big	no

Exercise

- 1. Explain the difference between "line of best fit" and "line of best split".
- 2. Using an example, describe the difference between linear regression and logistic regression.
- 3. Is it correct to think of decision trees as a group of nested if-else conditions? Explain your answer.

Research Perspectives

References

Gullo, F., 2015. From patterns in data to knowledge discovery: What data mining can do. *Physics Procedia*, *62*, pp.18-22.

Fournier-Viger, P., He, G., Cheng, C., Li, J., Zhou, M., Lin, J.C.W. and Yun, U., 2020. A survey of pattern mining in dynamic graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(6), p.e1372.

Essalmi, H., 2021. An Efficient Method for Mining Distributed Frequent Itemsets: MDFI. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(5), pp.895-902.

Laurent, A., Lesot, M.J. and Rifqi, M., 2009, October. Graank: Exploiting rank correlations for extracting gradual itemsets. In *International Conference on Flexible Query Answering Systems* (pp. 382-393). Springer, Berlin, Heidelberg.

https://techvidvan.com/tutorials/cluster-analysis-in-r/

Thank you!

Any Questions?