Medidas de dispersión

Desde la antigüedad la estadística resultó ser muy útil a todas las ciencias; esta se constituyó en una herramienta importante en los procesos de investigación, ya que permite planear, recolectar y organizar información referente a individuos u observaciones de un fenómeno, al cuál se le estudian características en común en una población o muestra.

Para analizar una serie de datos no basta con conocer las medidas de tendencia central, que son las que indican donde se sitúan la mayoría de datos, también es necesario estudiar las medidas de dispersión o variabilidad, para saber qué tan próxima está entre si la información. Estas medidas tienen sus aplicaciones en las tarifas sobre servicios públicos; temperaturas por semanas; estudios sobre comportamientos de cierta población, longitudes recorridas por corredores, entre otros.

Al finalizar esta unidad sabrás cómo agrupar datos en una tabla de distribución de frecuencias, conocerás la media aritmética, la varianza y la desviación típica; para datos agrupados y no agrupados, esto se abordará con problemas de la vida cotidiana.

1.1 Rango para datos no agrupados

Calcula la media aritmética, la mediana y la moda de las siguientes series de datos:

a) La cantidad de pares de zapatos vendidos en un almacén durante una semana:

Día	Cantidad de pares vendidos
lunes	10
martes	14
miércoles	15
jueves	12
viernes	16
sábado	18
domingo	16
Media (μ)	
Mediana	
Moda	

b) La duración en horas de la batería de 10 modelos de teléfonos celulares:

Modelo	Duración batería (en horas)
1	18
2	16
3	19
4	16
5	17
6	16
7	14
8	15
9	15
10	16.5
Media (μ)	
Mediana	
Moda	

Las **medidas de dispersión** indican qué tanto se dispersan o agrupan los datos con respecto a su media aritmética. El **rango** es una medida de dispersión que para una serie de datos no agrupados, es igual a la diferencia del dato mayor y el dato menor.

Al rango también se le llama **amplitud**.

Por ejemplo, las tablas de la derecha presentan la tarifa mensual (en dólares) por el servicio de agua potable en dos residenciales de San Salvador. Para la residencial 1, la tarifa más alta (dato mayor) es \$18, la más baja (dato menor) es \$11 y el rango es: 18 – 11 = 7.

Para la Residencial 2, la tarifa más alta (dato mayor) es \$14, la más baja (dato menor) es \$10 y el rango es: 14 - 10 = 4.

Residencial 1		
Casa	Tarifa Mensual (en dólares)	
1	12	
2	11	
3	12	
4	13	
5	12	
6	18	
2 3 4 5	11 12 13 12	

Residencial 2		
Casa	Tarifa Mensual (en dólares)	
1	10	
2	13	
3	12	
4	11	
5	12	
6	12	
7	14	

Por lo tanto, las tarifas de la Residencial 1 se encuentran más dispersas, ya que el rango es mayor.

1. En la tabla de la derecha se presentan las calificaciones de Beatriz y Miguel en 8 tareas. Completa la tabla y responde: ¿en cuál serie los datos están más dispersos? Justifica tu respuesta.

Escribe los procedimientos:

Tarea	Beatriz	Miguel
1	9.3	8.0
2	10.0	8.6
3	9.5	9.0
4	9.6	9.5
5	9.5	8.5
6	9.7	9.0
7	10.0	9.0
8	10.0	10.0
Media (μ)		
Mediana		
Moda		
Rango		

2. Juan registra el tiempo en minutos que tarda para llegar a su escuela durante dos semanas, los resultados aparecen en la tabla de la derecha. Completa la tabla y responde: ¿en cuál semana los datos se encuentran más dispersos?

Escribe los procedimientos:

D'	Tiempo en minutos		
Día	Semana 1	Semana 2	
lunes	28	29	
martes	26	27	
miércoles	30	27	
jueves	27	28	
viernes	15	30	
Media (μ)			
Mediana			
Rango			

1.2 Desviación respecto a la media

En la tabla se presenta el número de goles anotados en 6 partidos de fútbol por los equipos A y B. Completa la tabla y responde: ¿cuál equipo tiene los datos más dispersos? Justifica tu respuesta.

Partido	Equipo A	Equipo B
1	3	1
2	2	4
3	1	0
4	2	1
5	1	1
6	3	2
Media (μ)		
Mediana		
Rango		

En una distribución, a la diferencia de cada uno de los datos (x) y su media aritmética (μ) se le llama **desviación respecto a la media** (o simplemente **desviación**), se simboliza por $x - \mu$ e indica la distancia de cada uno de los datos a la media aritmética. La suma de todas las desviaciones se simboliza por $\sum (x - \mu)$ y siempre es igual a cero: *Suma de todas las desviaciones* = 0.

Es decir: $\sum (x - \mu) = 0$

Utilizando los datos calculados en el problema 1 de la clase anterior.

- a) Completa las tablas.
- b) Con base en la suma de los valores absolutos de las desviaciones responde: ¿en cuál distribución los datos se encuentran más dispersos con respecto a la media?

	Beatriz		
	\boldsymbol{x}	$x - \mu$	$ x - \mu $
	9.3		
	10.0		
	9.5		
	9.6		
	9.5		
	9.7		
	10.0		
	10.0		
Media (μ)		Suma:	Suma:
Mediana			
Rango			

	Miguel		
	\boldsymbol{x}	x – μ	$ x - \mu $
	8.0		
	8.6		
	9.0		
	9.5		
	8.5		
	9.0		
	9.0		
	10.0		
Media (μ)		Suma:	Suma:
Mediana			
Rango			

1.3 Varianza para datos no agrupados

1. Las mareas son ondas largas que se generan por el potencial gravitacional de la Luna y el Sol, su expresión más evidente es el ascenso y descenso del nivel del mar. La marea alta es la altura máxima del nivel del mar; durante seis días seguidos del mes de enero de 2017 se registró marea alta en los puertos La Unión (ubicado en el departamento de La Unión) y El Triunfo (ubicado en el departamento de Usulután), obteniendo los datos de la tabla que se presenta; completa cada una de ellas y determina en cuál serie los datos se encuentran más dispersos:

Altura (en metros) marea alta		
La Unión	El Triunfo	
2.7	2.5	
2.8	2.4	
2.8	2.5	
2.6	2.1	
2.8	2.6	
2.5	2.3	
	2.7 2.8 2.8 2.6 2.8	

2. Completa cada una de las tablas utilizando los datos calculados en el problema 2 de la clase 1.1, y con base en las desviaciones con respecto a la media responde: ¿en cuál distribución los datos se encuentran más dispersos con respecto a la media?

	Semana 1			
	\boldsymbol{x}	x – μ	$ x-\mu $	
	28			
	26			
	30			
	27			
	15			
)		Suma:	Suma:	

	Semana 2		
	$x x-\mu x-\mu $		
	29		
	27		
	27		
	28		
	30		
Media (μ)		Suma:	Suma:
Mediana			
Rango			

A la media aritmética de los cuadrados de las desviaciones se le llama **varianza**, se denota por σ^2 y se calcula:

$$Varianza = \frac{Suma\ de\ los\ cuadrados\ de\ las\ des viaciones}{Número\ de\ datos}$$

Es decir,
$$\sigma^2 = \frac{\sum (x - \mu)^2}{n}$$
.

Media (µ)
Mediana
Rango

Donde n es el número total de datos y μ es la media aritmética de la serie de datos. Esta medida es sensible a cada uno de los datos de la serie, la varianza revela aspectos en la dispersión que no refleja el rango. Cuanto mayor sea la varianza, más dispersos se encontrarán los datos con respecto a su media aritmética y puede recurrirse a la mediana como dato representativo de la distribución.

a)

	Beatriz	
x	x – μ	$(x - \mu)^2$
9.3		
10.0		
9.5		
9.6		
9.5		
9.7		
10.0		
10.0		

Varianza	(σ^2)	
----------	--------------	--

b)

	Miguel	
x	x – μ	$(x - \mu)^2$
8.0		
8.6		
9.0		
9.5		
8.5		
9.0		
9.0		
10.0		

1.4 Desviación típica para datos no agrupados

		El Triunf	fo
	\boldsymbol{x}	x – μ	$ x-\mu $
día 1	2.5		
día 2	2.4		
día 3	2.5		
día 4	2.1		
día 5	2.6		
día 6	2.3		
Media (μ)		Suma:	Suma:
Mediana			
Rango			

2. Utilizando los resultados de la clase 1.3, completa cada una de las tablas y calcula la varianza de cada serie (aproxima hasta las centésimas); con base en ella, justifica en cuál serie los datos se encuentran más dispersos:

Rango

	Seman	a 1
\boldsymbol{x}	x – μ	$(x - \mu)^2$
28		
26		
30		
27		
15		

Varianza (σ²)	

	Semana	2
\boldsymbol{x}	$x - \mu$	$(x - \mu)^2$
29		
27		
27		
28		
30		

 $^{\prime}$ A la raíz cuadrada de la varianza se le denomina **desviación típica**, se denota por σ y se calcula:

=
$$\sqrt{\frac{Suma\ de\ los\ cuadrados\ de\ las\ desviaciones}{Número\ de\ datos}}$$

A la desviación típica también se le llama desviación estándar.

Es decir,
$$\sigma^2 = \frac{\sum (x - \mu)^2}{n}$$

La desviación típica da un tipo de promedio de las distancias de cada dato a su media aritmética, algo que no hace la varianza por expresarse en unidades cuadradas. Cuanto mayor sea la desviación típica, más dispersos se encontrarán los datos con respecto a su media aritmética y puede recurrirse a la mediana como medida representativa de la serie de datos. La desviación típica siempre es un número mayor que cero o igual a cero (en su defecto), nunca será negativa.

Calcula la desviación típica de las calificaciones de Beatriz y Miguel (revisa el problema de la clase 1.3), aproxima hasta las centésimas.

1.5 Agrupación de datos

1. Utilizando los resultados de la clase 1.4, calcula la varianza de cada serie de datos de los puertos La Unión y El Triunfo (aproxima hasta las centésimas). Justifica en cuál serie los datos se encuentran más dispersos y compáralo con el resultado obtenido en la clase anterior:

	La Uni	ón
x	x – μ	$(x - \mu)^2$
2.7		
2.8		
2.8		
2.6		
2.8		
2.5		

	El Triu	nfo
\boldsymbol{x}	x - μ	$(x - \mu)^2$
2.5		
2.4		
2.5		
2.1		
2.6		
2.3		

Varianza (σ²)

2. Utilizando los resultados de la clase 1.4 calcula la desviación típica, en cada semana, del tiempo que tardó Juan para llegar a su escuela (aproxima hasta las centésimas).

Día	Tiempo en minutos		
Dia	Semana 1	Semana 2	
lunes	28	29	
martes	26	27	
miércoles	30	27	
jueves	27	28	
viernes	15	30	

La tabla en que se organizan los grupos de datos de una serie como la que aparece a la derecha se llama tabla de distribución de frecuencias, a los grupos de datos formados se les llama clases y el total de datos que corresponde a cada clase se le llama frecuencia. Al tamaño de una clase se le llama ancho de clase y a los valores extremos límites de clase; por ejemplo, para la primera clase los límites de clase son 5 y 10, el límite inferior es 5, el límite superior es 10 y el ancho de clase es 5. El número que está en el centro de cada clase se le llama punto medio, se denota por *Pm* y se determina mediante la ecuación:

$$Pm = \frac{Limite\ superior + Limite\ inferior}{2}$$

El punto medio de la primera clase es:
$$Pm = \frac{5+10}{2} = 7.5$$

Cantidad de	Número de días		
cuadernos vendidos	Carlos	Antonio	
5 a 10	3	4	
10 a 15	7	8	
15 a 20	10	9	
20 a 25	8	8	
25 a 30	1	1	
30 a 35	1	0	
TOTAL	30	30	

En dos municipios de San Salvador se realizó un estudio a 40 niños sobre la edad en meses en que comenzaron a caminar, obteniendo los siguientes resultados:

Municipio A (edad en meses)				
10	14	13	15	14
14	13	16	11	15
17	14	13	14	12
10	13	14	13	16
14	10	13	12	10
11	10	11	11	12
12	11	12	13	13
10	12	10	11	13

	Municipio B (edad en meses)				
9	15	13	14	15	
10	10	16	13	11	
12	14	11	14	12	
11	10	13	9	13	
13	13	16	13	11	
13	14	11	12	10	
16	15	12	13	11	
15	14	15	14	15	

a) Clasifica la edad en meses de los niños de cada municipio en 5 grupos de 2 en 2, inicia en 8 y termina en 18.

b) Organiza los datos en una tabla de distribución de frecuencias.

Edad en	Cantidad	de niños
meses	Municipio A	Municipio B
TOTAL		

1.6 Media aritmética y rango para datos agrupados

1. Utiliza los resultados de la clase 1.5 para calcular la desviación típica de cada serie (aproxima hasta las centésimas).

La Unión	El Triunfo
2.7	2.5
2.8	2.4
2.8	2.5
2.6	2.1
2.8	2.6
2.5	2.3

Varianza (σ²)	
Desviación típica (σ)	

2. Se hace un estudio de la estatura en centímetros de los estudiantes de noveno grado de dos escuelas de El Salvador, obteniendo los siguientes resultados:

Escue	Escuela A (estatura en centímetros)			
164	168	167	160	178
170	155	172	169	165
176	167	164	158	173
160	165	157	168	165
165	174	165	164	170
167	166	163	167	162
162	169	161	164	166

Escuela B (estatura en centímetros)				
160	169	169	165	163
167	167	163	170	177
163	160	172	174	178
170	165	174	165	167
166	164	165	168	169
163	173	160	172	164
157	162	170	162	166
172	168	164	174	160

Clasifica las estaturas de los estudiantes de cada escuela en 5 grupos de 5 en 5, inicia en 155 y termina en 180. Luego organiza los datos en una tabla de distribución de frecuencias.

Escuela A

Estatura en	Cantidad de estudiantes		
cm	Escuela A	Escuela B	
Total			

El **rango** para una serie de datos agrupados es la diferencia del límite superior de la última clase con frecuencia distinta de cero y el límite inferior de la primera clase con frecuencia distinta de cero. La **media aritmética** para series de datos agrupados se calcula de la siguiente manera:

$$\mu = \frac{Suma\ de\ los\ productos\ f \times Pm}{N\'umero\ de\ datos}$$

Por ejemplo, en la tabla se presenta una serie de datos agrupados. El límite superior de la última clase con frecuencia distinta de cero es **30** y el límite inferior de la primera clase con frecuencia distinta de cero es **5**. El rango de la serie es:

30 – 5 = **25**

	Cantidad de cuadernos	Número de días
Primera clase con	vendidos	Antonio (f_x)
frecuencia distinta	5 a 10	4
de cero.	10 a 15	8
	15 a 20	9
Última clase con	20 a 25	8
frecuencia distinta	25 a 30	1
de cero.	30 a 35	0
	Total	30

Con los datos del estudio realizado en dos municipios de San Salvador sobre la edad en meses en que comenzaron a caminar 40 niños (ver clase 1.5) realiza lo siguiente:

a) Completa la siguiente tabla y calcula la media aritmética de cada municipio.

Edad en	Número	de niños	Punto medio de cada clase (<i>Pm</i>)	$f_{\scriptscriptstyle A} \times Pm$	$f_{\scriptscriptstyle B} \times Pm$
meses	Municipio A (f_A)	Municipio B (f_B)			se (Pm)
Total					,

b) Calcula el rango de cada municipio, ¿en cuál serie los datos se encuentran más dispersos? Justifica tu respuesta.

1.7 Varianza para datos agrupados

1. Durante el mes de noviembre se registró cada día la cantidad de lluvia en milímetros en los departamentos de Santa Ana y San Salvador, obteniendo los siguientes datos:

Cantid	lad de lluv	via (en m	m) por día	a, Santa A	na
400	100	0	200	100	250
300	50	50	0	0	0
300	100	150	160	260	100
200	400	100	150	0	0
250	160	100	100	360	100

Cantida	ad de lluvi	a (en mm) por día, :	San Salvad	dor
450	250	180	50	100	0
300	200	90	200	0	100
400	150	50	100	120	0
360	160	100	50	0	100
400	200	60	80	0	100

En tu cuaderno, clasifica la cantidad de lluvia en 5 grupos, inicia en 0 y termina en 500. Luego organiza los datos en la tabla de distribución de frecuencias.

Cantidad	Núme	ro de días
de lluvia	Santa Ana	San Salvador
Total		

- 2. Con los datos de las estaturas en centímetros de los estudiantes de noveno grado de las Escuelas A y B (ver la clase 1.6) realiza lo siguiente:
 - a) Completa la tabla de abajo y calcula la media aritmética de cada escuela:

Estaturas en	Cantidad de	estudiantes	Punto medio de	$f_A \times Pm$	$f_{_{B}} \times Pm$
centímetros	Escuela A (f_A)	Escuela B (f_B)	cada clase (Pm)	I A T III	J _B ∧1 III
Total					

b) Calcula el rango de cada escuela. ¿Es suficiente para determinar en cuál escuela los datos se encuentran más dispersos? Justifica tu respuesta.

La varianza de una serie de datos agrupados se calcula de la siguiente forma:

$$Varianza = \frac{Suma\ de\ los\ productos\ f \times (Pm - \mu)^2}{Número\ de\ datos}$$

Es decir,
$$\sigma^2 = \frac{\sum f \times (Pm - \mu)^2}{n}$$
.

Donde n es el número total de datos, \square es el símbolo de sumatoria, f es la frecuencia de cada clase, Pm es el punto medio de cada clase y μ es la media aritmética de la serie de datos. Cuanto mayor sea la varianza, más dispersos se encontraran los datos con respecto a su media aritmética.

Por ejemplo, en la tabla aparecen los datos correspondientes a la cantidad de cuadernos vendidos por Carlos durante 30 días; además, se han calculado las diferencias $Pm - \mu$, los cuadrados $(Pm - \mu)^2$ y los productos $f_C (Pm - \mu)^2$ como se muestra en las últimas tres columnas:

Cantidad de	Número de días	Punto medio	<i>Рт</i> – µ	$(Pm - \mu)^2$	$f_C(Pm-\mu)^2$
cuadernos vendidos	Carlos (f_C)	(Pm)	p	р	, , , , , , , , , , , , , , , , , , ,
5 a 10	3	7.5	7.5 – 17.5 = –10	$(-10)^2 = 100$	3(100) = 300
10 a 15	7	12.5	-5	25	175
15 a 20	10	17.5	0	0	0
20 a 25	8	22.5	5	25	200
25 a 30	1	27.5	10	100	100
30 a 35	1	32.5	15	225	225
Total	30				
Media aritmética (u)	17.5				

La varianza para la serie de Carlos se calcula sumando los resultados de la última columna y dividiendo por el total de los datos, es decir:

$$\sigma^{2} = \frac{300 + 175 + 0 + 200 + 100 + 225}{30}$$

$$= \frac{1,000}{30}$$

$$\approx 33.33 \text{ Por lo tanto, la varianza es } 33.33$$

Completa las siguientes tablas con los datos del estudio realizado en dos municipios de San Salvador, sobre la edad en meses en que comenzaron a caminar 40 niños (revisa la clase 1.6). Luego calcula la varianza de cada serie (aproxima hasta las centésimas) y determina en cuál municipio los datos se encuentran más dispersos:

Edad en meses	Número de niños Municipio A (f_A)	Punto medio (Pm)	<i>Pm</i> – μ	$(Pm - \mu)^2$	$f_A \times (Pm - \mu)^2$
	mame.pio/it(yA)	, ,			
Total					
Media (u)]			

Edad en meses	Número de niños Municipio B (f_B)	Punto medio (Pm)	Pm – μ	$(Pm - \mu)^2$	$f_B(Pm-\mu)^2$
Total					
Media (μ)					

1.8 Desviación típica para datos agrupados

- 1. Con los datos registrados en noviembre sobre la cantidad de lluvia en milímetros, por día, en los departamentos de Santa Ana y San Salvador (revisa la clase 1.7) realiza lo siguiente:
 - a) Completa la tabla y calcula la media aritmética de cada departamento.

Cantidad de Iluvia	Cantida	d de días	Punto medio	$f_{A \times} Pm$	$f_{S \times} Pm$
en milímetros	Santa Ana (f_A)	San Salvador (f_S)	(Pm)	I _A ×I III	Is × 1 III
Total					1

- b) Calcula el rango de cada departamento. ¿Puedes determinar en cuál de los departamentos los datos se encuentran más dispersos? Justifica tu respuesta.
- 2. Completa las siguientes tablas con los datos de las estaturas de los estudiantes de 9° grado de las Escuelas A y B (ver la clase 1.7). Calcula la varianza en cada escuela (aproxima hasta las centésimas) y determina en cuál de ellas los datos se encuentran más dispersos:

Estaturas (cm)	Cantidad de estudiantes	Punto medio (Pm)	P m – μ	(Pm – μ) ²	$f_A(Pm-\mu)^2$
(6111)	Escuela A (f_A)	(, ,,,			
Total					
Media (μ)					

Estaturas	Cantidad de estudiantes	Punto medio	Pm – μ	(Pm – μ) ²	$f_B(Pm-\mu)^2$
(cm)	Escuela B (f_B)	(Pm)	<i>F III</i> – μ	$(\mathbf{F}m - \mu)$	$r_B(\mathbf{r}m - \mu r)$
Total					
Media (μ)					

La desviación típica de una serie de datos agrupados se calcula:

$$= \sqrt{\frac{Suma\ de\ los\ productos\ f(Pm - \mu)^2}{N\'umero\ de\ datos}}$$

Es decir,
$$\sigma^2 = \frac{\sum f(Pm - \mu)^2}{n}$$

Donde n es el número total de datos, \square es el símbolo de sumatoria, f es la frecuencia de cada clase, Pm es el punto medio de cada clase y μ es la media aritmética de la serie de datos. Tanto para datos agrupados como no agrupados, la desviación típica siempre es un número mayor que cero o igual a cero (en su defecto), nunca será un número negativo.

Por ejemplo, dos series de datos agrupados tienen varianzas 33.33 y 29 respectivamente. Para la primera, la desviación típica es:

$$\sigma = \sqrt{33.33}$$

Y para la segunda es:
$$\sigma = \sqrt{29}$$

Como la desviación típica de la primera serie es mayor que la de la segunda entonces los datos de la primera se encuentran más dispersos con respecto a su media aritmética.

Calcula la desviación típica de las series de datos agrupados de los dos municipios de San Salvador, sobre la edad en meses en que comenzaron a caminar 40 niños (ver clase anterior), aproxima hasta las centésimas. Con base en ello, justifica en cuál comunidad los datos se encuentran más dispersos.

1.9 Autoevaluación de lo aprendido

Resuelve y marca con una "x" la casilla que consideres adecuada de acuerdo a lo que aprendiste. Sé consciente con lo que respondas.

		ĺtem			Sí	Podría mejorar	No	Comentario
en	culo media aritn series de datos n uiente serie: 60, 5	o agrupad	dos. Por	ejemplo, en la				
	Media aritmética (μ)							
	Mediana							
	Moda							
	Rango							
cue mé	ntifico series de entran más disper tica, comparando dia. Por ejemplo,	sos con re las desv	specto a iaciones	su media arit- respecto a la eries:				
	x		x					
	15.5		14	x - μ				
	16		16.5					
	16.5		14.5					
	14		14					
	15		15					
	16		16					
end arit	ntifico series de cuentren más dis mética, utilizando uientes series:	persos co o la varian	n respec za. Por e	to a su media				
		Serie 1	Serie 2	-				
		165	174 170	+				
		170	170	+				
		168	169	+				
		172	165	7				
		166	168	7				
		168	162					
		162	167					
		168	165					
		165	168					
	Varianza (σ²)							
	Desviación típica (σ)			-				
		1	<u> </u>	_				

1.10 Autoevaluación de lo aprendido

Resuelve y marca con una "x" la casilla que consideres adecuada de acuerdo a lo que aprendiste. Sé consciente con lo que respondas.

	Ítem			Sí	Podría mejorar	No	Comentario
1. Clasifico y ord de frecuencias siguientes dato y terminando e	s. Por ejemp s en 6 grupos	o, clasifica y	ordena los				
		0 00					
15	 	0 28	24				
16		2 36	32				
17		5 35	25				
20	+	8 30	23				
22	20 2	2 20	21				
2. Calculo la medidatos agrupado		o, en las siguie					
	10 a 14	Serie 13					
	10 a 14 14 a 18	15					
	14 a 18	12					
	22 a 26	10					
		10					
	Media (μ) Rango						
	_						
3. Calculo la varia ejemplo, en la s			rupados. Por				
			rupados. Por				
		2:	rupados. Por				
	siguiente serie	Serie	rupados. Por				
	siguiente serie	Serie 5	rupados. Por				
	5 a 10 10 a 15	Serie 5 7	rupados. Por				
	5 a 10 10 a 15 15 a 20	Serie 5 7 10	rupados. Por				
	5 a 10 10 a 15 15 a 20 20 a 25	Serie 5 7 10 11	rupados. Por				
	5 a 10 10 a 15 15 a 20 20 a 25 25 a 30 Varianza (σ^2)	Serie 5 7 10 11 7 de de datos agr					
ejemplo, en la s	5 a 10 10 a 15 15 a 20 20 a 25 25 a 30 Varianza (σ^2)	Serie 5 7 10 11 7 de de datos agr					
ejemplo, en la s	5 a 10 10 a 15 15 a 20 20 a 25 25 a 30 Varianza (σ^2)	Serie 5 7 10 11 7 de de datos agr					
ejemplo, en la s	5 a 10 10 a 15 15 a 20 20 a 25 25 a 30 Varianza (σ²) anza en series	Serie 5 7 10 11 7 de de datos agr					
ejemplo, en la s	5 a 10 10 a 15 15 a 20 20 a 25 25 a 30 Varianza (σ²) anza en series siguiente series 100 a 106	Serie 5 7 10 11 7 de datos agree: Serie 2					
ejemplo, en la s	5 a 10 10 a 15 15 a 20 20 a 25 25 a 30 Varianza (σ²) anza en series siguiente series 100 a 106 106 a 112	Serie 5 7 10 11 7 Serie 2 4					

2.1 Desviación típica de una variable más una constante

Con los datos registrados sobre la cantidad de lluvia (en milímetros) durante el mes de noviembre en los departamentos de Santa Ana y San Salvador (revisa la clase 1.8) realiza lo siguiente:

a) Completa las tablas:

Cantidad de	Cantidad de días	Punto medio (<i>Pm</i>)	<i>Pm</i> – μ	$(Pm - \mu)^2$	$f_A(Pm-\mu)^2$
Iluvia (mm)	Santa Ana (f_A)				
Total					
Media (μ)					

Cantidad de Iluvia (<i>mm</i>)	Cantidad de días San Salvador (f_S)	Punto medio (Pm)	<i>Pm</i> – μ	(Pm – μ) ²	$f_S(Pm-\mu)^2$
Total					
Media (μ)					

b) Calcula la varianza y la desviación típica en cada serie (aproxima hasta las centésimas). ¿En cuál departamento los datos se encuentran más dispersos?

Si a cada uno de los datos de una distribución A se les suma la misma constante c (c es un número cualquiera) dando como resultado otra distribución B, entonces la desviación típica de la distribución B es igual a la desviación típica de la distribución A. Por ejemplo, en la tabla, a cada uno de los datos de la distribución 1 se le ha sumado 50, dando como resultado la distribución 2:

Distribución 1	Distribución 2
485	535
488	538
486	536
489	539
486	536
485	535
486.5	536.5

Media (μ)

Se calcula la desviación típica de la distribución 1:

$$\sigma = \sqrt{\frac{(485 - 486.5)^2 + (488 - 486.5)^2 + (486 - 486.5)^2 + (489 - 486.5)^2 + (486 - 486.5)^2 + (485 - 486.5)^2}{6}}$$
= 1.5

Entonces la desviación típica de la distribución 2 es 1.5, igual a la de la distribución 1.

1. Determina si las series A y B tienen la misma desviación típica. Justifica tu respuesta y calcula el valor de la misma.

Serie A	Serie B
100.3	105.4
101.2	106.3
100.5	105.6
100.8	105.9
101.1	106.2

2. Con los datos presentados en la tabla, determina cuál de las series (2, 3 o 4) tiene igual desviación típica que la serie 1. Justifica tu respuesta.

Serie 1	Serie 2	Serie 3	Serie 4
25	28	35.5	30
24	27	34.5	29
25	26	35.5	30
26	29	36.5	31
23	26	33.5	28
21	21	31.5	26
22	28	32.5	27

3. En una serie de datos, la media aritmética es 61 y la desviación típica es 0.89. Si a todos los datos se les suma 5.5, ¿cuál será el nuevo valor de la media aritmética y de la desviación típica?

2.2 Desviación típica de una variable multiplicada por una constante

1. Con las series de datos presentadas en la tabla realiza lo siguiente:

a) Calcula la desviación típica de los datos de la serie A.

 b) A partir de los resultados del literal anterior y sin utilizar la fórmula, calcula la desviación típica de las series de datos B y C.

Serie A	Serie B	Serie C
12.5	15	15.8
12.4	14.9	15.7
12.6	15.1	15.9
12.5	15	15.8
12.3	14.8	15.6
12.7	15.2	16

2. En el mes de mayo, seis comerciantes registran los precios por quintal de café que aparecen en la tabla de la derecha.

a) Calcula la media aritmética y la desviación típica.

b) Si para el mes de julio se prevé que el precio del quintal de café aumente \$4.50, ¿cuál será el nuevo valor de la media aritmética y de la desviación típica?

Comerciante	Precio del quintal de café (en dólares)
1	142.75
2	142.00
3	143.90
4	141.90
5	142.50
6	143.00

Si a cada uno de los datos de una distribución A se les multiplica por la misma constante c (c es un número cualquiera) dando como resultado otra distribución B, entonces la desviación típica de la distribución B es igual a multiplicar la desviación típica de la distribución A por la constante c.

1. Con las series de datos presentadas en la tabla realiza lo siguiente:

a) Calcula la desviación típica de la serie 1.

Serie 1	Serie 2	Serie 3
55	220	605
52	208	572
54	216	594
51	204	561
53	212	583
50	200	550

b) A partir del literal anterior y sin utilizar calculadora, determina la desviación típica de las series de datos 2 y 3:

2. En una serie de datos, la media aritmética es 105 y la desviación típica es 1.45. Si todos los datos se multiplican por 6, ¿cuál será el nuevo valor de la media aritmética y de la desviación típica?

Problemas de aplicación

Estadísticas nacionales. La Dirección General de Estadística y Censos (DIGESTYC) es un organismo nacional que se encarga de estudiar, analizar y producir información estadística para diferentes usuarios nacionales e internacionales, entre algunas de sus funciones se encuentran: plantear, levantar y publicar los censos de población, edificios y vivienda, agropecuario, industrial y comercial y cualesquiera otros que demanden las necesidades del país; además de publicar continuamente estadísticas demográficas, culturales, de transporte, industriales, entre otros, con el fin de ampliar sus campos de investigación estadística cuando las conveniencias y necesidades públicas así lo exijan.

1. Población de 0 a 4 años. En la siguiente tabla se muestra el porcentaje que representan los niños y niñas de 0 a 4 años respecto a la población total, desde 2006 hasta el 2013 según el área de residencia en El Salvador.

Puedes encontrar datos estadísticos nacionales en la siguiente dirección: www.digestyc.gob.sv

Encuentra la desviación típica para cada serie. ¿En que serie están más dispersos los datos?

Año	Rural ($x_{_{ m R}}$)	Urbana ($x_{_{\cup}}$)	$x_R - \mu$	$(x_{R} - \mu)^{2}$	$x_{\cup} - \mu$	$(x_{_{\cup}} - \mu)^2$
2006	10.8	8.7				
2007	9.7	7.9				
2008	9.9	8.2				
2009	9.6	8.3				
2010	9.4	7.9				
2011	9.2	7.3				
2012	9.3	7.2				
2013	9.4	7.4				
Total						
μ						

- **2. Tratamiento de enfermedades.** En la siguiente tabla se muestra el porcentaje de la población nacional que se enfermó y no consultó con ninguna persona sobre su enfermedad, para los años desde 2006 hasta 2013, se incluyen las personas que tuvieron enfermedad, solo síntomas o lesión.
 - a) Calcula la desviación típica para cada serie. ¿En qué serie están más dispersos los datos?
 - b) ¿Qué conclusión puedes obtener con los datos proporcionados?

Año	Rural ($x_{_{ m R}}$)	Urbana ($x_{_{\cup}}$)	$x_R - \mu$	$(x_R - \mu)^2$	$x_{\cup} - \mu$	$(x_{_{\cup}} - \mu)^2$
2006	48.5	38.8				
2007	18.8	15.3				
2008	53.3	45.0				
2009	45.2	35.1				
2010	46.7	36.9				
2011	46.2	39.6				
2012	44.5	38.2				
2013	43.3	35.6				
Total						
μ						