Topological Chiral Field Synthesis

Anonymous

Abstract

We present a compact mechanism to generate chiral second-order random fields on the cubic three-torus $\mathbb{T}^3 = [0, L)^3$ using a measured-bundle projection with thread weights. Information degrees of freedom live on a base space B and are transported to \mathbb{T}^3 by a kernel factoring into a spatial envelope and a U(1) phase. A Hopf-type phase lift supplies nontrivial holonomy, which induces a helical part of the Fourier-space covariance. Under a finite, normalized fiber measure and a uniform pushforward of the thread density, the scalar power spectrum obeys the transfer law $P_{\Phi}(k) = \left| \widehat{G}_{\sigma}^{(T)}(k) \right|^2 P_{\psi}(k)$. For vector outputs, the covariance splits into scalar and helical pieces with the positivity bound $P_S(k) \geq |P_H(k)|$. We also record an optional anisotropic envelope that imprints angle dependence while preserving the same Gaussian falloff. Definitions and terminology for bundles follow standard sources [1, 2]; Hopf-type phases are motivated by recent observations and models of Hopf solitons [3, 4]. The "thread" terminology is deliberately analogous to statistical fiber-bundle models in materials physics [5, 6], while the helical projector formalism on \mathbb{T}^3 follows the vector analysis on tori [7]. Toroidal helical fields are classically discussed in [8].

1 Measured-bundle projection with threads

Definition 1.1 (Measured bundle and threads). Let $\pi: E \to B$ be a measurable bundle with typical fiber F. 1 Equip B with a base measure ν_B and F with a fiber measure ν_F . A thread density is a function $\lambda \in L^1(B, \nu_B)$; it induces a product measure on E:

$$d\nu_E(b, f) := \lambda(b) d\nu_B(b) d\nu_E(f).$$

An information observable is any $\psi \in L^2(E, \nu_E)$.

Definition 1.2 (Finite fiber and normalization). Assume the fiber measure is finite and normalized,

$$\nu_F(F) = 1.$$

Throughout we take $B = \mathbb{T}^3$ with the identity embedding $X : B \to \mathbb{T}^3$, X(b) = b, and a constant thread density $\lambda(b) = \Lambda/L^3$. We transport the observable ψ to a target field $\Phi : \mathbb{T}^3 \to \mathbb{C}$ (or $\Phi : \mathbb{T}^3 \to \mathbb{C}^3$) by

$$\Phi(x) = \int_{B} \int_{F} K(b, f; x) \, \psi(b, f) \, d\nu_F(f) \, \lambda(b) \, d\nu_B(b).$$

Definition 1.3 (Kernel structure). Let the kernel factor as

$$K(b, f; x) = U(b, f; x) G_{\sigma}^{(T)} (x - X(b)),$$

where $G_{\sigma}^{(T)}$ is the periodized Gaussian on \mathbb{T}^3 with width $\sigma > 0$, and U is a U(1) phase with |U| = 1. With Fourier wavevectors $k \in (2\pi/L)\mathbb{Z}^3$, the Fourier coefficients of the periodized Gaussian are

$$\widehat{G}_{\sigma}^{(T)}(k) = \exp\left(-\frac{1}{2}\sigma^2 ||k||^2\right).$$

Definition 1.4 (Uniform pushforward of threads). With the choices above, the pushforward of $\lambda d\nu_B$ under X is spatially uniform:

$$X_*(\lambda \, d\nu_B) = \frac{\Lambda}{L^3} d^3 x$$

on \mathbb{T}^3 .

¹For background on fiber bundles and notation, see [1, 2].

Fourier convention. We use

$$\widehat{\Phi}(k) = \frac{1}{L^3} \int_{\mathbb{T}^3} e^{-ik\cdot x} \, \Phi(x) \, d^3x, \quad \Phi(x) = \sum_{k \in (2\pi/L)\mathbb{Z}^3} \widehat{\Phi}(k) \, e^{ik\cdot x}.$$

2 Stationarity and the scalar transfer law

Assume ψ is centered and second-order with covariance $C_{\psi}((b, f), (b', f')) := \mathbb{E}[\psi(b, f)\overline{\psi(b', f')}]$, and that U has unit modulus.

Proposition 2.1 (Stationarity and transfer). Under the uniform pushforward and $\nu_F(F) = 1$, the scalar output Φ defined above is stationary on \mathbb{T}^3 . Its power spectrum satisfies

$$P_{\Phi}(k) = \left| \widehat{G}_{\sigma}^{(T)}(k) \right|^2 P_{\psi}(k),$$

where $P_{\psi}(k)$ is the spectrum induced by the pushforward of C_{ψ} to \mathbb{T}^3 . In particular, if the pushforward correlations are white, then $P_{\Phi}(k) = \Lambda \left| \widehat{G}_{\sigma}^{(T)}(k) \right|^2$.

Proof sketch. Translation of x acts only through $G_{\sigma}^{(T)}(x-X(b))$, so the covariance of Φ depends on x-y once $\nu_F(F)=1$ and the uniform pushforward are used. Fourier transforming pulls out $\left|\widehat{G}_{\sigma}^{(T)}(k)\right|^2$, yielding the transfer law.

3 Hopf lift and chirality

We now endow the kernel with a phase that encodes nontrivial holonomy.

Definition 3.1 (Hopf-type phase). Let $h: B \to S^2$ be smooth and let A denote a U(1) connection on the Hopf fibration $S^3 \to S^2$; pull back A to B and push it forward to a 1-form A on A0 via A1. For coupling A1 define

$$U(b, f; x) := \exp\left(iq \int_{\gamma_{X(b)\to x}} a\right),$$

where $\gamma_{X(b)\to x}$ is the straight geodesic segment on \mathbb{T}^3 (coordinate differences taken modulo L with $|\Delta x_i| \leq L/2$).

Gauge note. The open-path phase depends on the gauge choice for a; however, closed-loop Wilson holonomies are gauge-invariant. In the present construction, the two-point spectrum depends on a only through the curvature two-form F = da pulled back from $h^*(dA)$, so P_S and P_H are gauge-invariant. See [3, 4] for physically realized Hopf textures.

For vector outputs $\Phi: \mathbb{T}^3 \to \mathbb{C}^3$, write the spectral covariance as

$$\langle \widehat{\Phi}_i(k) \overline{\widehat{\Phi}_j(k)} \rangle = P_S(k) \Pi_{ij}^{(S)}(k) + i P_H(k) \Pi_{ij}^{(H)}(k),$$

with $\hat{k} = k/||k||$, $\Pi_{ij}^{(S)} = \delta_{ij} - \hat{k}_i \hat{k}_j$ and $\Pi_{ij}^{(H)} = \epsilon_{ijl} \hat{k}_l$ (cf. helical projectors on \mathbb{T}^3 [7]).

Proposition 3.1 (Helical power and positivity). If $q \neq 0$ and the pulled curvature has nonzero Chern number on some 2-cycle in B,

$$\frac{1}{2\pi} \int_{\Sigma} h^*(dA) = m \in \mathbb{Z} \setminus \{0\},\,$$

then the phase induces a nonzero helical spectrum $P_H(k)$ supported by the same Gaussian envelope as $P_S(k)$. Moreover, $P_S(k) \ge |P_H(k)|$ for all k, and the left/right helical powers are $P_{\pm}(k) = P_S(k) \pm P_H(k)$.

Remark 1 (Envelope and shape). The scalar part follows the transfer law $P_S(k) = \left| \widehat{G}_{\sigma}^{(T)}(k) \right|^2 P_{\psi}(k)$, and $P_H(k)$ shares the same envelope, with amplitude controlled by q and m.

4 Optional anisotropic envelope

To imprint angle dependence, replace the isotropic Gaussian by an anisotropic one. Let $n: B \to S^2$ be a director field and choose $\sigma_{\parallel}, \sigma_{\perp} > 0$. Set

$$G_{\Sigma(b)}^{(T)}(x - X(b)) \propto \exp\left(-\frac{1}{2}(x - X(b))^{\top}\Sigma(b)^{-1}(x - X(b))\right),$$

$$\Sigma(b) = \sigma_{\perp}^2 I + (\sigma_{\parallel}^2 - \sigma_{\perp}^2) n(b) n(b)^{\top}.$$

For slowly varying n (on scales $\gg \sigma_{\perp}, \sigma_{\parallel}$) one obtains

$$P_{\Phi}(k) \approx \exp\left(-\frac{1}{2}k^2 \left[\sigma_{\perp}^2 + (\sigma_{\parallel}^2 - \sigma_{\perp}^2)\mathbb{E}_B\left[(\hat{k} \cdot n)^2\right]\right]\right) P_{\psi}(k),$$

which is parity-even by itself, yet modulates the chirality fraction $\chi(k) := P_H(k)/P_S(k)$ when combined with the Hopf phase.

5 Diagnostics and minimal recipe

Spectral helicity. For any realization,

$$H(k) := \Im\left(\widehat{\Phi}(k)^* \cdot (\widehat{k} \times \widehat{\Phi}(k))\right), \quad \mathbb{E}[H(k)] = 2P_H(k).$$

Minimal implementation. Choose $B = \mathbb{T}^3$, X, λ , and σ . Pick h with $(2\pi)^{-1} \int_{\Sigma} h^*(dA) = m \neq 0$ and a coupling q. Use the kernel above to synthesize Φ . In a helical basis $\{e_{\pm}(k)\}$, draw complex Gaussians $a_{\pm}(k)$ with variances $P_{\pm}(k)$ and set $\widehat{\Phi}(k) = a_{+}(k)e_{+}(k) + a_{-}(k)e_{-}(k)$. For a real-valued output field, the Fourier coefficients must satisfy the reality condition $\widehat{\Phi}(-k) = \widehat{\widehat{\Phi}(k)}$.

A Periodized Gaussian on \mathbb{T}^3

Let $g_{\sigma}(x) = (2\pi\sigma^2)^{-3/2} \exp(-\|x\|^2/2\sigma^2)$ on \mathbb{R}^3 . The periodization is

$$G_{\sigma}^{(T)}(x) = \sum_{n \in \mathbb{Z}^3} g_{\sigma}(x + Ln),$$

with Fourier coefficients $\exp\left(-\frac{1}{2}\sigma^2||k||^2\right)$ for $k \in (2\pi/L)\mathbb{Z}^3$.

B Assumptions at a glance

Finite fiber measure: $\nu_F(F) = 1$.

Uniform pushforward: $X_*(\lambda d\nu_B) = (\Lambda/L^3)d^3x$.

Unit-modulus phase U. These ensure stationarity on \mathbb{T}^3 and the Gaussian transfer envelope; adding the Hopf phase yields controlled, physically interpretable chirality.

References

- [1] Fiber bundle (Wikipedia), https://en.wikipedia.org/wiki/Fiber_bundle.
- [2] Wolfram MathWorld, Fiber Bundle, https://mathworld.wolfram.com/FiberBundle.html.
- [3] J. S. B. Tai et al., "Geometric transformation and three-dimensional hopping of Hopf solitons in nematic liquid crystals," Nature Communications 13, 2909 (2022). DOI: 10.1038/s41467-022-30494-2.
- [4] R. Voinescu et al., "Hopf Solitons in Helical and Conical Backgrounds of Chiral Magnetic Solids," Phys. Rev. Lett. 125, 057201 (2020). DOI: 10.1103/PhysRevLett.125.057201.
- [5] ScienceDirect Topics, Fiber Bundle an overview, https://www.sciencedirect.com/topics/mathematics/fiber-bundle.
- [6] H. E. Daniels, "The Statistical Theory of the Strength of Bundles of Threads. I," Proc. Royal Soc. A 183, 405–435 (1945). DOI: 10.1098/rspa.1945.0011.
- [7] K. Araki, K. Suzuki, K. Kishida, S. Kishiba, "Multiresolution approximation of the vector fields on \mathbb{T}^3 ," arXiv:math-ph/9904015 (1999).
- [8] M. Y. Kucinski, I. L. Caldas, "Toroidal Helical Fields," Zeitschrift für Naturforschung A 42(10), 1124–1132 (1987). DOI: 10.1515/zna-1987-1010.