Nom i Cognoms:

1) Mireu les següents figures de la interficie del bus USB:

Bus State	Signaling Levels				
	At originating source connector (at end of bit time)	At final target connector			
		Required	Acceptable		
Differential "1"	D+ > VoH (min) and D- < VoL (max)	(D+) - (D-) > 200mV and D+ > VIH (min)	(D+) - (D-) > 200mV		
Differential "0"	D- > Voн (min) and D+ < VoL (max)	(D-) - (D+) > 200mV and D- > VIн (min)	(D-) - (D+) > 200mV		
Single-ended 0 (SE0)	D+ and D- < Vol (max)	D+ and D- < VIL (max)	D+ and D- < Vін (min)		

i ompliu la següent taula, indicant quins valors lògics hi haurà als receptors 'single-ended' D+ i D- (1 punt):

Situació:	No hi ha cap	S'ha connectat un	Hi ha un "1"	Hi ha un "0"
	dispositiu	dispositiu 'full speed' i	diferencial al bus	diferencial al
	connectat	encara no circulen dades		bus
Receptor D+	0	1	1	0
Receptor D-	0	0	0	1

2) Si volguéssim modificar el bus USB perquè seguís sent diferencial, seguís donant alimentació elèctrica als dispositius, però fos *full-dupplex*, quants cables hauria de tenir? Justifica la resposta (0,5 punts).

3) Es realitzarà una prova de **comunicacions sèrie** amb un bus configurat *half-dupplex*, amb una velocitat de 115200 bps, 8 bits per byte, sense paritat i amb 1 bit d'stop. Concretament, una màquina A enviarà a una màquina B un paquet de 4096 bytes i immediatament després la màquina B tornarà el mateix paquet per comprovar si hi ha errors. Calcula el temps que durarà la prova (1,5 punts):

4) Mireu la següent configuració del bus **SPI**, comptant que hi ha 6 dispositius (K=5), que l'SPI clock és de 2MHz, que cada dispositiu té 8 bits de dades i que la selecció d'un dispositiu (Rxi = '0') requereix 1µs de temps, quin és el temps mínim que necessitem per llegir les dades de tots els dispositius? Justifica la resposta. (1 punt)

Note RX is an unused I/O port MOSI stands for master out, slave in MISO stands for master in, slave out

Figure 10.5 Single-master and multiple-slave device connection (method 1)

Nom i Cognoms:

5) Quin seria el valor que configuraria correctament el registre ADCON2 si es vol que el resultat estigui justificat a l'esquerra, l'oscil·lador del sistema és de 16MHz i assegurant que TAD > 0.8 µseg i TACQ > 2.45 µseg? Utilitzant aquest valor de configuració quin és el temps total que trigaria un mostreig (considerant el temps de conversió i el temps d'adquisició)? (2 punts)

6) Quin seria el flux de dades (KBytes/seg) que es generaria al adquirir un senyal d'àudio estèreo (2 canals, de fins a 20 KHz) mitjançant un únic conversor AD de 16 bits multiplexat en el temps? El temps total de mostreig de l'A/D és de 2,45 µseg i el temps de multiplexació (canvi de canal) és de 1,23 µseg. Es suposa que el senyal és adquirit utilitzant la freqüència mínima que estableix Nyquist. (1 punt)

7) A quines unitats físiques equivaldria el bit menys significatiu d'un conversor A/D de 8 bits al adquirir el senyal proporcionat per un sensor de força que té una sensibilitat de 0,2 volts per Newton? El conversor A/D està alimentat asimètricament amb tensions de referència -VREF i +VREF de 1.5 i 3 volts respectivament. (1 punt)