

Generation intervals in space: understanding the effects of spatial and network structure on links between generation interval and growth rate

Jonathan Dushoff¹, Sang Woo Park¹, and David Champredon²

¹McMaster University, Hamilton, Ontario, Canada; ²York University, Toronto, Ontario

Introduction

- ► Generation interval (GI) measures time between when a person is infected and when that person infects another person
- ▶ GI distributions, $g(\tau)$, link speed, r, and strength, \mathcal{R} , of an epidemic

$$1/\mathcal{R} = \int g(au) \exp(-r au) d au$$

- ▶ Previous work [?] showed that measuring GI through contact tracing data introduces bias
- ightharpoonup Network structure can affect GI distributions ([TRAPMAN] considered changes in \mathcal{R})

Longer generation interval requires higher \mathcal{R} given fixed exponential growth rate r.

Result of 500 stochastic simulations using SEIR model.

▶ During the exponential growth phase, the observed GI distributions is proportional to $g(\tau) \exp(-r\tau)$.

Spatial/network effect

Fill