Day 2 Notes

Class Goals

- Become more familiar with the Laplace Transform
- Understand how to use tables to compute L.T.
- Know that if two function have the same L.T. then they are basically equal
- Solve D.E. using L.T.
- Intuition about the Inverse Laplace Transform
- Initial Value Theorem for Laplace Transform
- Final Value Theorem for Laplace Transform

More with Laplace Transform Remember that the Laplace Transform is given by:

$$\mathcal{L}(f)(s) = F(s) = \int_0^\infty f(t)e^{-st}dt$$

What kind of functions have a Laplace Transform Not every function has a Laplace Transform. Only functions that allow the improper integral to converge will work for the

Definition A function f(t) is defined for $t \ge 0$ is said to be of **exponential** order if for some constant a and some constant M > 0 the inequality

$$|f(t)| \le Me^{at}$$

If a function is of **exponential order** then the function has a Laplace Transform.

One of the nice things about a Laplace transform is that a function that comes from an integral is always continuous even if the function that is being integrated isn't continuous. So if f(t) has discontinuity F(s) will not.

Dictionary for Laplace Transforms

Function $f(t)$	Laplace Transform $F(s)$	Comment
C t^{n} e^{at} $t^{n}e^{at}$ $\sin(bt)$ $\cos(bt)$ $e^{at}\sin(bt)$ $e^{at}\cos(bt)$	C/s $n!/s^{n+1}$ $1/(s-a)$ $n!/(s-a)^{n+1}$ $b/(s^2+b^2)$ $s/(s^2+b^2)$ $b/((s-a)^2+b^2)$ $(s-a)/((s-a)^2+b^2)$	n is an integer $s > a$ n is an integer

Laplace Transform of the derivatives

$$\mathcal{L}(f')(s) = sF(s) - f(0)$$

Proof: Use integration by parts.

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f') - f'(0)$$

$$\mathcal{L}(f'')(s) = s(sF(s) - f(0)) - f'(0)$$

$$\mathcal{L}(f'')(s) = s^2F(s) - sf(0) - f'(0)$$

Proof: Use integration by parts.

Example Solve the following differential equation using the Laplace Transform:

$$u''(t) + 4u'(t) + 3u(t) = 0$$
$$u(0) = 2, u'(0) = 4$$

First Shifting Theorem

$$\mathcal{L}(e^{at}f(t)) = F(s-a)$$

Inverse Laplace Transform The main point here is that if $U_1(s) = U_2(s)$ then $u_1(t) = u_2(t)$ except for a finite number of points where u_i has a jump discontinuity.

Intuition about the Inverse Laplace Transform Most of the information about what functions are involved in the Laplace Transform comes from the denominator. If we have a function in the s-domain then we should look at the factors of the denominator to determine what functions are involved.

Initial Value Theorem for Laplace Transform If $\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} sF(s)$

Final Value Theorem for Laplace Transform If every pole of F(s) is of the form a+bi with a<0 or if F has a pole at s=0 then these poles are of multiplicity 1. Then $\lim_{t\to\infty}$ exists and $\lim_{t\to\infty} f(t) = \lim_{s\to 0^+} sF(s)$

Practice Exercise 5.2.7: Compute the Laplace transform of e^{it} , treating i as a constant by taking a = i in Table 5.1. Compare the result to the Laplace transform of $\cos(t) + i\sin(t)$. Try simplifying the difference. Do the rules of Table 5.1 seem to work for complex exponents?