

Aufgabenstellung fürs Kursprojekt

Lösung des Traveling Salesman Problems mithilfe von Ameisen-Systemen im Rahmen eines XP-Projekts

Gesucht: Software mit graphischer Umsetzung

Hauptanforderungen

Graphische Oberfläche:

- 1. Menü mit Optionen und Eingabefenster
- 2. Visualisierung der Städte und Touren
- 3. Ausgabefenster

Testfälle:

Symmetrische TSPs in 2D aus der library TSPLIB

(Siehe http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ and/or http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/)

Konfigurationsmöglichkeiten, Parameter Ameisen-Algorithmus:

- 1. Anzahl von Ameisen
- 2. Anzahl von Städte
- 3. Anzahl von Iterationen
- 4. Werte für die Parameter:
 - α , Pheromon Parameter ($\alpha > 0$)
 - β , heuristischer Parameter für die lokale Information ($\beta > 0$)
 - ρ , Verdunstungsfaktor (0 < $\rho \le 1$)
 - $\tau 0$, initiale Pheromon-Werte ($\tau 0 > 0$)
 - Q, heuristischer Parameter für Pheromon-Update (Q > 0)
- 5. Stoppkriterium (Anzahl von Iterationen erreicht und/oder Lösung gefunden und/oder Schwellenwert für Tourlänge)

Bonuspunkte:

* Städte per Mausklick positionieren (interaktiv neue TSPs erzeugen)

Fachübergreifendes Labor (IT4111)

3. Semester, Jahrgang 2011 Prof. Dr. Dagmar Monett Díaz

Ausgabe:

- 1. Optimierungsprozess (Suchprozess d.h. Verbindungen zw. den Städte graphisch zeigen und dabei beste Tour unterscheiden)
 - 2. Länge der zurzeit besten Tour
 - * der aktuellen Iteration und global
 - 3. Länge der durchschnittlichen Tour
 - * der aktuellen Iteration und global
 - 4. die bisher vergangene Zeit in Millisekunden

Viel Spaß!

Berlin, 21.08.2012