REAL ANALYSIS GENERAL EXAM FALL 2022

Solve as many problems as you can. Full solutions on a smaller number of problems will be worth more than partial solutions on several problems.

Problem 1.

Let (X, μ) be a σ -finite measure space and $p \in [1, +\infty)$. Let $(f_n)_{n=1}^{\infty}$ be a sequence in $L^p(X, \mu)$ and suppose that $||f_n||_p \le 1$, and that f_n converges a.e. to a measurable function f. Show that $||f||_p \le 1$.

Problem 2.

Let μ be a Borel probability measure on \mathbb{R} without atoms. Suppose that $E \subseteq \mathbb{R}$ is a Borel set with $\mu(E) > 0$. Show that there is a $t \in \mathbb{R}$ with $\mu(E \cap (-\infty, t)) = \frac{1}{2}\mu(E)$.

Problem 3.

Let X be a set equipped with a σ -algebra of sets Σ . Suppose that $\mu, \nu \colon \Sigma \to [0, +\infty)$ are finite measures. Set $\lambda = \mu + \nu$. Let $f \colon X \to \mathbb{R}$ be any Σ -measurable function so that

$$\nu(E) = \int_{E} f \, d\lambda$$

for all $E \in \Sigma$.

- (i) Show that $0 \le f \le 1$ λ -a.e.
- (ii) If $F = \{x : f(x) = 1\}$, show that $\mu(F) = 0$.
- (iii) If $A \subseteq \{x : 0 \le f(x) < 1\}$ and $\mu(A) = 0$, show that $\nu(A) = 0$.

Problem 4.

Fix $p \in [1, +\infty)$. Let $W^p([0, 1])$ consist of all absolutely continuous functions $f: [0, 1] \to \mathbb{C}$ so that $f' \in L^p([0, 1])$. For $f \in W^p([0, 1])$ define

$$||f|| = |f(0)| + ||f'||_p$$

Show that $\|\cdot\|$ is a norm which makes $W^p([0,1])$ into a Banach space. (You are allowed to use that $L^p([0,1])$ is a Banach space).

Problem 5.

Let m be Lebesgue measure on \mathbb{R} . Let $\Omega = \{1_E : E \subseteq \mathbb{R} \text{ is Borel and } m(E) < +\infty\}$ regarded as a subset of $L^1(\mathbb{R})$ (recall that we identify two elements of L^1 if they agree almost everywhere). Throughout this problem regard Ω as a metric space equipped with the L^1 -distance.

(i) If a < b are real numbers, show that the function $\Omega \to \mathbb{R}$ given by

$$1_E \mapsto m(E \cap [a,b])$$

is a continuous function.

(ii) If a < b are real numbers, let $U_{a,b}$ be the subset of Ω consiting of all 1_E where $E \subseteq \mathbb{R}$ is Borel and

$$0 < m(E \cap [a,b]) < b-a.$$

Show that $U_{a,b}$ is open and dense in Ω .

(iii) Let D be the set of all 1_E where $E \subseteq \mathbb{R}$ is Borel and so that for every interval I of positive measure we have U (ii)

$$0 < m(E \cap I) < m(I).$$

Show that there is a countable collection $\{U_j\}_{j\in J}$ of open and dense subsets of Ω with

$$D \supseteq \bigcap_{j \in J} U_j.$$

REAL ANALYSIS GENERAL EXAM FALL 2022

Solve as many problems as you can. Full solutions on a smaller number of problems will be worth more than partial solutions on several problems.

Problem 1.

Compute

$$\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} \, dx.$$

Problem 2.

Fix a < b in \mathbb{R} . Recall that $h: [a,b] \to \mathbb{C}$ is absolutely continuous if for every $\varepsilon > 0$ there is a $\delta > 0$ so that if $((a_j,b_j))_{j=1}^k$ are disjoint intervals in [a,b] with $\sum_{j=1}^k (b_j - a_j) < \delta$, then $\sum_{j=1}^k (f(b_j) - f(a_j)) < \varepsilon$. For a Lipschitz function $g: [a,b] \to \mathbb{C}$ we set

$$||g||_{Lip} = \sup_{x \neq y, x, y \in [a,b]} \frac{|g(x) - g(y)|}{|x - y|}.$$

- (a) Show that $f:[a,b] \to \mathbb{C}$ is Lipschitz if and only if f is absolutely continuous and $f' \in L^{\infty}([a,b])$.
- (b) If $f: [a, b] \to \mathbb{C}$ is Lipschitz, show that $||f||_{Lip} = ||f'||_{\infty}$.

Problem 3.

Let (X, μ) be a σ -finite measure space. Show that if $f, g \in L^1(X, \mu)$ wih $0 \le f, g$ a.e., then

$$||f - g||_1 = \int_0^\infty \mu(\{x : f(x) > t\} \Delta \{x : g(x) > t\}) dt.$$

Here $E\Delta F = E \setminus F \cup F \setminus E$ for sets $E, F \subseteq X$. Suggestion: it might be helpful to first show that for $a, b \in [0, \infty)$ we have

$$|a-b| = \int_0^\infty |1_{(t,\infty)}(a) - 1_{(t,\infty)}(b)| dt,$$

Note: for this problem you may take for granted that the function $X \times (0, \infty) \to \{0,1\}$ given by $(y,t) \mapsto 1_{\{x:f(x)>t\}}(y)$ and that the function $t \mapsto \mu(\{x:f(x)>t\}\Delta\{x:g(x)>t\})$ are measurable functions.

Problem 4.

Let (X, Σ) be a measurable space. Recall that if η is a signed measure on Σ , then $|\eta| = \eta_1 + \eta_2$ where η_1, η_2 are the unique nonnegative measures with $\eta = \eta_1 - \eta_2$ and $\eta_1 \perp \eta_2$. Further, $||\eta||_{TV} = |\eta|(X)$. Suppose that μ, ν are signed measures on Σ , that $||\mu||_{TV}, ||\nu||_{TV} < +\infty$ and that $|\mu|, |\nu|$ are mutually singular.

- (a) If $\mu = \mu_1 \mu_2$, $\nu = \nu_1 \nu_2$ with μ_i, ν_j nonnegative measures and $\mu_1 \perp \mu_2$, $\nu_1 \perp \nu_2$, show that $\mu_i \perp \nu_j$ for all $i, j \in \{1, 2\}$.
- (b) Show that

$$\|\mu + \nu\|_{TV} = \|\mu\|_{TV} + \|\nu\|_{TV}.$$

Problem 5.

(a) For $f \in L^1([0,1])$, set L_f be the set of $x \in [0,1]$ so that

$$\lim_{r \to 0} \frac{1}{2r} \int_{(x-r,x+r)} |f(y) - f(x)| \, dy = 0.$$

State the conclusion of the Lebesgue's differentiation theorem for L_f . (b) For $n \in \mathbb{N}$, and $0 \le j \le 2^n - 1$, set $I_{n,j} = [j2^{-n}, (j+1)2^{-n})$. For $f \in L^1([0,1])$, define

$$E_n f = \sum_{j=0}^{2^n - 1} \left(\frac{1}{m(I_{n,j})} \int_{I_{n,j}} f(t) dt \right) 1_{I_{n,j}}.$$

Show that

$$\lim_{n\to\infty} (E_n f)(x) = f(x) \text{ for almost every } x \in [0,1].$$

Instructions. 2 hours. Closed book examination. Be neat in your presentation. When invoking a theorem from previous courses, name the theorem and thoroughly check its hypotheses. You must solve a significant portion of each of the three problems in order to pass the exam.

1. Let (X, \mathcal{M}, μ) be a measure space. Let (f_n) be a sequence of nonnegative functions functions in $L^1(X, \mathcal{M}, \mu)$ and let f be a nonnegative function in $L^1(X, \mathcal{M}, \mu)$. Suppose that

$$\int_{X} f_n \, \mathrm{d}\mu \, \longrightarrow \, \int_{X} f \, \mathrm{d}\mu$$

and that $f_n \to f$ pointwise. Prove that f_n converges to f in $L^1(X, \mathcal{M}, \mu)$. Hint: consider $g_n = \min(f, f_n)$.

- **2**. Let (X, \mathcal{M}, μ) be a measure space. Let $p \in [1, \infty)$.
 - (a) Let (f_n) be a sequence of functions in $L^p(X, \mathcal{M}, \mu)$ and let f be a function in $L^p(X, \mathcal{M}, \mu)$. Suppose that f_n converges to f in $L^p(X, \mathcal{M}, \mu)$. Prove that there exists a subsequence (f_{n_k}) such that for μ -almost all x, $\lim_{k\to\infty} f_{n_k}(x) = f(x)$. Hint: remember the proof of completeness of L^p .
 - (b) Let h be a measurable function on X. Let

$$D = \{ f \in L^p(X, \mathcal{M}, \mu) \mid hf \in L^p(X, \mathcal{M}, \mu) \}$$

Let (f_n) be a sequence of elements of D, and let $f, g \in L^p(X, \mathcal{M}, \mu)$ be such that f_n converges to f in L^p , and hf_n converges to g in L^p . Show that $f \in D$ and g = hf.

3. For μ a Borel probability measure on \mathbb{R} , we will denote by $\widehat{\mu}$ the function $\mathbb{R} \to \mathbb{C}$ given by

$$\widehat{\mu}(t) = \int_{\mathbb{R}} e^{itx} d\mu(x) .$$

We will also adopt the notational convention $\operatorname{sinc}(x) = \frac{\sin x}{x}$ if $x \neq 0$ and $\operatorname{sinc}(0) = 1$.

- (a) Show that $\hat{\mu}$ is a bounded continuous function.
- (b) Let $\delta > 0$. Show that

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} (1 - \operatorname{Re}(\widehat{\mu}(t))) dt = \int_{\mathbb{R}} (1 - \operatorname{sinc}(\delta x)) d\mu(x).$$

(c) Show that for all $u \in \mathbb{R}$,

$$1 - \operatorname{sinc}(u) \ge \frac{1}{2} \chi_{(-\infty, -2) \cup (2, \infty)}(u)$$
,

and deduce that

$$\mu(\{x \in \mathbb{R} \mid |x| > 2\delta^{-1}\}) \leq \frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \operatorname{Re}(\widehat{\mu}(t))) \, dt .$$

(d) Let μ_n be a sequence of Borel probability measures on \mathbb{R} . Suppose that for all t, the limit $\Phi(t) = \lim_{n \to \infty} \widehat{\mu_n}(t)$ exists and that the resulting function $\Phi(t)$ is continuous at t = 0. Prove that for all $\epsilon > 0$, there exists a compact set K inside \mathbb{R} such that, for all n, $\mu_n(K) \geq 1 - \epsilon$.

Real analysis Qualifying exam, January 2021

DO NOT WRITE YOUR NAME ON YOUR WORK

My cellphone in case of zoom disconnection: ***

In order to receive the full credit for a problem, a detailed argument (rather than a sketch of the proof) is needed. Whenever applying one of the standard theorems, please indicate that clearly. Full solutions on a smaller number of problems will be worth more than partial solutions on more problems.

- **1.** Let $f_n, n \geq 1$, and f be measurable functions on a space $(\Omega, \mathcal{F}, \mu)$, such that $f_n \to f$ in measure. Does this imply that there exists a measurable set $A \subseteq \Omega$ with $\mu(\Omega \setminus A) = 0$ such that $f_n(x) \to f(x)$ for all $x \in A$?

 If yes, prove this. If no, give a counterexample.
- **2.** Let B be a measurable subset of the two-dimensional plane such that the intersection of B with every vertical line is finite or countable. Find $\mu(B)$, where μ is the two-dimensional Lebesgue measure. Justify your answer.
- **3.** Let (Ω, \mathcal{F}) be a measurable space, and μ, ν, ρ be three finite positive measures on (Ω, \mathcal{F}) such that $\mu \ll \nu$ (i.e., μ is absolutely continuous with respect to ν). Show that there exists a measurable function f on Ω such that for all $E \in \mathcal{F}$ we have

$$\mu(E) = \int_{E} f \, d\nu + \int_{E} (f - 1) \, d\rho.$$

(Hint: use Radon-Nikodym's Theorem)

4. Let f, g be nonnegative measurable functions on [0, 1], and $a, b, c, d \ge 0$ be arbitrary nonnegative numbers. Show that then

$$\left(ac + bd + \int_0^1 f(x)g(x) \, dx\right)^3 \le \left(a^3 + b^3 + \int_0^1 (f(x))^3 \, dx\right) \left(c^{3/2} + d^{3/2} + \int_0^1 (g(x))^{3/2} \, dx\right)^2.$$

Partial credit is given for proving the inequality in the particular case a = b = c = d = 0.

5. Let f(x) be a continuous function on [0,1]. Show that for every $\varepsilon > 0$ there exists $n \in \mathbb{Z}_{\geq 0}$ and constants $a_0, a_1, \ldots, a_n \in \mathbb{R}$ such that for the differential operator

$$D := \sum_{k=0}^{n} a_k \left(\frac{d}{dx}\right)^k = a_0 + a_1 \frac{d}{dx} + a_2 \left(\frac{d}{dx}\right)^2 + \ldots + a_n \left(\frac{d}{dx}\right)^n$$

we have $|f(x) - e^{x^2}(De^{-x^2})| < \varepsilon$ for all $x \in [0, 1]$. Here $e^{x^2}(De^{-x^2})$ is the function obtained by applying D to e^{-x^2} and after that multiplying the result by e^{x^2} .

Real analysis Qualifying exam, August 2020

Make sure that you have signed the Honor Pledge on Collab.

In order to receive the full credit for a problem, a detailed argument (rather than a sketch of the proof) is needed. Whenever applying one of the standard theorems, please indicate that clearly.

Cantor function increasing and consinuous such that derivative is 0 a.e.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, almost everywhere differentiable, and such that f'(x) = 1 almost everywhere. (Both "almost everywhere" properties are assumed with respect to the Lebesgue measure on \mathbb{R} .) Does this imply that f(2) - f(1) = 1?

If yes, prove this. If no, give a counterexample.

2. Is every open set in \mathbb{R}^2 a countable union of closed sets?

If yes, prove this. If no, give a counterexample.

3. Let \mathcal{H} be a separable complex Hilbert space with basis (complete orthonormal system) f_1, f_2, f_3, \ldots Define a linear operator P in \mathcal{H} by setting

$$P(f_n) = f_{n+1}, \qquad n = 1, 2, \dots$$

- (a) Find the adjoint P^* to P.
- (b) Find the operators PP^* and P^*P .
- **4.** Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) = 1$. Let $f_n \colon X \to \mathbb{R}$ be measurable functions such that for all $t \in \mathbb{R}$,

$$\lim_{n \to +\infty} \mu\left(x \colon f_n(x) \le t\right) = \begin{cases} 0, & t < 0; \\ 1, & t \ge 0. \end{cases}$$

Show that $f_n \to 0$ in measure.

5. Show that the operator

$$(Tf)(x) := \int_0^\infty \frac{f(y)}{x+y} \, dy$$

1

is bounded in the space $L^p(\mathbb{R}_{>0})$ for all 1 .

Real analysis general exam, January 2020

- 1. Let μ be the Lebesgue measure on \mathbb{R} . For a Lebesgue measurable set $A \subset [0,1]$, is it true that
 - (a) $\mu(A) = \sup_{U \subset A, U \text{ open}} \mu(U)$? If true, prove this. If false, give a counterexample.
 - (b) $\mu(A) = \inf_{U \supset A, \ U \text{ open}} \mu(U)$? If true, prove this. If false, give a counterexample.
- 2. Find a polynomial P(x) of degree at most 3 such that $\int_{-1}^{1} |x^4 P(x)|^2 dx$ is minimal.
- 3. Let X be a compact metric space, and C(X) be the space of all real-valued continuous functions on X with the supremum norm. Assume that the subset $A \subset C(X)$ satisfies the following properties:
 - (algebra) For all $f, g \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{R}$ we have $\alpha f + \beta g \in \mathcal{A}$ and $fg \in \mathcal{A}$.
 - (separates points) For any $x \neq y$ from X there exists a function $f \in \mathcal{A}$ such that $f(x) \neq f(y)$.

This question has two parts:

- (a) Show by example that \mathcal{A} need not be dense in C(X), explicitly checking all the properties of your example \mathcal{A} ,
- (b) In order to conclude that A is dense by Stone-Weierstrass Theorem, what additional condition(s) should be added?
- 4. Let μ be a measure on $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the Borel σ -algebra. Let $\mu(\mathbb{R}) = 1$. Next, let $\mathcal{F} \subset \mathcal{B}$ be the sub- σ -algebra of symmetric Borel sets, that is, \mathcal{F} generated by all intervals of the form (-a, a) with a > 0.

Let $f \in L^1(\mathbb{R}, \mathcal{B}, \mu)$. Find a function g such that:

- (a) $g \in L^1(\mathbb{R}, \mathcal{F}, \mu)$ (in particular, g is \mathcal{F} -measurable).
- (b) For all $E \in \mathcal{F}$ we have $\int_E g \, d\mu = \int_E f \, d\mu$.
- 5. Let μ be a finite measure on some measurable space (X, \mathcal{F}) .

Show that a sequence of \mathcal{F} -measurable functions f_n converges to a function f in measure if and only if $\int_X \min\{1, |f_n - f|\} \mu(dx) \to 0$ as $n \to +\infty$.

Real analysis Qualifying exam, August 2019

- 1. Let \mathcal{C} be the Cantor set on [0,1]. Recall that it is obtained by iteratively deleting the open middle third: $(\frac{1}{3}, \frac{2}{3})$, then $(\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$, and so on.
 - (a) Show that $C + C := \{a + b : a, b \in C\}$ is the full segment [0, 2].
 - (b) Find two sets $A, B \subset \mathbb{R}$, each of which is closed and has Lebesgue measure zero, such that $A + B = \{a + b : a \in A, b \in B\}$ is the full line \mathbb{R} .
- 2. Does there exist a measure space (X, \mathcal{F}, μ) with a finite measure μ , and a sequence of μ -measurable functions $\{f_n\}_{n=1,2,...}$ on X such that:
 - $f_n(x) \ge 0$ for all n, x:
 - $f_n(x) \to 0$ as $n \to +\infty$ for all x;
 - $\int f_n(x)\mu(dx) \to 0 \text{ as } n \to +\infty;$
 - $\Phi(x) := \sup_n f_n(x)$ has infinite integral?

If yes, give an example of such a sequence $\{f_n\}$. If no, give a proof of nonexistence.

- 3. Let μ be a signed Borel measure on \mathbb{R}^n which is bounded on bounded sets. Suppose that $\int f d\mu = 0$ for all continuous functions f with bounded support. Show that then $\mu = 0$.
- 4. Let $L^1(\mathbb{R})$ be the space of Lebesgue integrable functions on \mathbb{R} . For a positive function $f \in L^1(\mathbb{R})$ show that the function $\frac{1}{f(x)}$ does not belong to $L^1(\mathbb{R})$.

(Hint: look at the function $1 = f^{1/2}f^{-1/2}$.)

- 5. Applying the Gram-Schmidt orthogonalization to $1, x, x^2, ...$ in the Hilbert space $L^2([-1, 1])$ (with Lebesgue measure), one gets the Legendre polynomials $L_n(x)$, n = 0, 1, 2, ...
 - (a) Show that the Legendre polynomials form a basis (= complete orthogonal system) in the Hilbert space $L^2([-1,1])$
 - (b) Show that the Legendre polynomials are given by the formula $L_n(x) = c_n \frac{d^n}{dx^n} (x^2 1)^n$ (you do not need to specify c_n).

(Hint: employ integration by parts.)