

Programmazione Lineare

ver 3.0.0

Fabrizio Marinelli

fabrizio.marinelli@staff.univpm.it tel. 071 - 2204823

Programmazione Lineare (introduzione)

(Vercellis cap. 3.1)

La Programmazione Lineare (PL)

Un modello di Programmazione Matematica

$$\max z = f(\mathbf{x})$$
$$\mathbf{x} \in X$$

Un modello di Programmazione Lineare

$$f(\mathbf{x}) = f(x_1, ..., x_n) = c_1 x_1 + ..., + c_n x_n = \sum_{i=1}^n c_i x_i$$
 funzione obiettivo lineare
$$X = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n a_{ji} x_i \le b_j, \quad j = 1, ..., m \right\}$$
 insieme finito di (dis)equazioni lineari

$$\max z = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
$$\mathbf{A} \mathbf{x} \le \mathbf{b}$$

- $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ funzione obiettivo
- $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$ regione ammissibile

Incognite del problema

- $\mathbf{x} \in \mathbb{R}^n$ vettore delle *variabili decisionali*. Ogni $\mathbf{x} \in X$ è una soluzione ammissibile (cioè un vettore che soddisfa <u>tutti</u> i vincoli) mentre ogni $\mathbf{y} \notin X$ è una soluzione inammissibile.
- $z \in \mathbb{R}$ valore che assume la funzione obiettivo in corrispondenza di una soluzione $\mathbf{x} \in X$

Parametri del problema

- $\mathbf{c} \in \mathbb{R}^n$ vettore dei coefficienti (di *costo* o di *profitto*) della f.o.
- $\mathbf{b} \in \mathbb{R}^m$ vettore dei *termini noti* dei vincoli
- $A \in \mathbb{R}^{m \times n}$ matrice dei coefficienti dei vincoli (matrice tecnologica)

Ipotesi della Programmazione Lineare

- Un problema è rappresentato correttamente da un modello di programmazione lineare se
 - Divisibilità: variabili con valori frazionari
 - Certezza: coefficienti costanti e noti a priori
 - Linearità: relazioni esclusivamente di tipo lineare:

$$c_1 x_1 + \dots + c_n x_n$$

- Proporzionalità: contributo proporzionale al valore assunto: non ci sono economie di scala
- Additività: i contributi possono essere solo sommati

'In un'approssimazione del primo ordine il mondo è lineare''
Robert Simons

Programmazione lineare (PL): esempio

Un esempio di problema di programmazione lineare con 2 variabili e 4 vincoli:

```
\max z = x_1 + 3x_2
C1: 6x_1 + 10x_2 \le 30
C2: 3x_1 + 2x_2 \ge 6
C3: x_1 - 2x_2 \ge -1
C4: x_2 \ge 1/2
Possiamo rappresentare graficamente il problema...
```

Esempio: un problema di PL in R²

Esempio: un problema di PL in R²

Esempio: un problema di PL in R²

- Isoipsa: luogo dei punti nei quali la funzione obiettivo c^Tx assume un prefissato valore \(\gamma'\) (in R² ogni isoipsa \(\epsi\) una retta).
 L'intersezione di una isoipsa \(\gamma' = \epsilon^T x \) con la regione ammissibile determina tutte le soluzioni del problema di valore \(\gamma' \).
- Direzione di massimo miglioramento: in un problema di massimo è dato dal gradiente della funzione obiettivo:

$$\nabla z = \frac{\partial z}{\partial x_i} \qquad i = 1, \dots, n$$

Nel caso di problema di minimo è l'antigradiente

- La soluzione y rende attivo il vincolo $\mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b$ se $\mathbf{a}^{\mathrm{T}}\mathbf{y} = b$
- La soluzione y rende inattivo il vincolo $\mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b$ se $\mathbf{a}^{\mathrm{T}}\mathbf{y} < b$
- Il vincolo $\mathbf{a}^T \mathbf{x} \leq b$ è ridondante rispetto al sistema di vincoli $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ se ogni soluzione di $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ è anche una soluzione di $\mathbf{a}^T \mathbf{x} \leq b$

Esempio: mix produttivo

[Problema] La società *Merlin* produce i concimi *prato starter* (tipo A) e *prato estate* (tipo B) che vende rispettivamente a 25 e 28 €/Kg. Considerando la composizione dei singoli concimi e le disponibilità in magazzino (vedi tabella) quanti Kg di tipo A e B deve produrre la società (ipotizzando una domanda illimitata) per massimizzare il ricavo dal magazzino esistente?

	qtà per Kg			
	Azoto	Potassio	Magnesio	
tipo A	0.40	0.10	0.10	
tipo B	0.24	0.31	0.00	
disponibilità	240	160	50	

Mix produttivo: modello

Variabili decisionali

 $x_A \in R = \text{quantità}$ (in Kg) che <u>si decide</u> di produrre del concime di tipo A $x_B \in R = \text{quantità}$ (in Kg) che <u>si decide</u> di produrre del concime di tipo B

Funzione obiettivo

Il ricavo totale (che si vuole massimizzare) è dato da $25x_A + 28x_B$

Vincoli

1. La quantità totale di azoto richiesta non può essere superiore alla disponibilità di azoto in magazzino

$$0.4x_A + 0.24x_B \le 240$$

Lo stesso tipo di limitazione vale per il potassio e il magnesio

2. Le quantità che si decide di produrre non possono essere negative

$$x_A, x_B \ge 0$$

Mix produttivo: modello completo

$$z^* = \max 25x_A + 28x_B$$

C1: $0.4x_A + 0.24x_B \le 240$

C2: $0.1x_A + 0.31x_B \le 160$

C3: $0.1x_A \le 50$

C4: $x_A, x_B \ge 0$

Vincolo sulla disponibilità di azoto

Vincolo sulla disponibilità di potassio

Vincolo sulla disponibilità di magnesio

Vincoli di non negatività

Mix produttivo: soluzione geometrica

Mix produttivo: soluzione geometrica

$$z^* = \max 25x_A + 28x_B$$
C1: $0.4x_A + 0.24x_B \le 240$
C2: $0.1x_A + 0.31x_B \le 160$
C3: $0.1x_A \le 50$
C4: $x_A, x_B \ge 0$

la soluzione ottima è la soluzione del sistema

C1
$$\begin{cases} 0.4x_A + 0.24x_B = 240 \\ 0.1x_A + 0.31x_B = 160 \end{cases}$$

• Si trasla la funzione obiettivo lungo la direzione di crescita fintanto che l'intersezione con la regione ammissibile risulti non vuota. L'ultimo punto "toccato" è la soluzione ottima.

Algoritmo geometrico del simplesso (prob. max)

Step 1: definizione di regione ammissibile e funzione obiettivo

- 1. disegna la retta associata ad ogni vincolo e individua la regione del piano che soddisfa il vincolo:
 - un vincolo di uguaglianza è soddisfatto solo dai punti della retta;
 - un vincolo di \geq o \leq è soddisfatto da tutti i punti di un semipiano; per capire quale, prova il punto (0,0).
- 2. Evidenzia la regione ammissibile (l'intersezione di tutti i semipiani che soddisfano i vincoli)
- 3. Disegna la funzione obiettivo e il suo gradiente

Algoritmo geometrico del simplesso (prob. max)

Step 2: determinazione della soluzione ottima

- 1. Individua un vertice <u>x</u> di partenza e calcola il valore <u>z</u> della funzione obiettivo
- 2. Individua la coppia di vertici $\underline{\mathbf{y}}$ e $\underline{\mathbf{w}}$ adiacenti al vertice corrente e calcola i valori $\underline{\mathbf{y}}$ e $\underline{\mathbf{w}}$ della funzione obiettivo

un vertice si determina risolvendo un sistema lineare di (almeno) 2 equazioni in 2 incognite.

- 3. Se $\underline{z} \ge \underline{y}$ e $\underline{z} \ge \underline{w}$ allora \underline{x} è una soluzione ottima e \underline{z} è il valore ottimo. FINE
- 4. Se $\underline{x} < \underline{y}$ il punto \underline{y} è il nuovo vertice corrente altrimenti \underline{w} è il nuovo vertice corrente
- 5. Torna al passo 2.

Informazioni fornite dalla soluzione

- Il ricavo massimo è $\chi^* = 25.360 + 28.400 = 20200$ € e si ottiene producendo $x_A = 360$ Kg di *prato starter* e $x_B = 400$ Kg di *prato estate*.
- Le disponibilità critiche di magazzino sono l'azoto e il potassio, infatti i vincoli C1
 e C2 sono soddisfatti all'uguaglianza dalla soluzione ottima.
- D'altra parte il magnesio è disponibile in quantità sovrabbondante: all'ottimo si ha:
 - $0.1 \cdot 360 = 36 < 50$

e quindi avanzano 14 Kg di magnesio

Esercizi

Risolvere geometricamente i seguenti problemi di PL:

$$\max z = 6x_1 + 5x_2$$

$$\frac{5}{2}x_1 + \frac{5}{4}x_2 \le 10$$

$$\frac{5}{3}x_1 + 2x_2 \le 10$$

$$x_1, x_2 \ge 0$$

$$\max z = 5x_1 + 15x_2$$

$$x_2 \le 5$$

$$x_1 + x_2 \le 8$$

$$\frac{16}{3}x_1 + 2x_2 \le 32$$

$$x_1, x_2 \ge 0$$

$$\min z = x_1 + 4x_2 x_1 \ge 2 x_1 + 4x_2 \ge 8 x_1 - x_2 \le 4 x_1, x_2 \ge 0$$

$$\min z = x_1 + x_2 2x_1 + x_2 \ge 16 x_1 + \frac{3}{2}x_2 \ge 12 x_1, x_2 \ge 0$$

Domande

- Esiste sempre una soluzione ottima di un problema di PL? E le soluzioni ottime hanno proprietà particolari ?
- Come può essere descritta la regione ammissibile di un problema di PL? E quali proprietà della regione ammissibile possono essere utilizzate per risolvere il problema?
- Esiste una procedura generale per risolvere un problema di PL? Se sì, quanto è onerosa in termini di tempo di calcolo?
- Come cambiano le soluzioni ottime quando cambiano i parametri del problema?

Programmazione lineare con n > 3 variabili

Per esempio in un problema di PL con 4 variabili

$$\max z = 4x_1 + 3x_2 + 10x_3 + 7x_4$$
C1:
$$5x_1 + 2x_2 + x_3 - x_4 \le 7$$
C2:
$$2x_1 - 3x_2 + 2x_3 - x_4 \le 12$$
C3:
$$-x_1 + 5x_2 + 3x_3 + 3x_4 \le 9$$

la funzione obiettivo e i vincoli definiscono oggetti 3-dimensionali in \mathbb{R}^4 la cui intersezione... cos'è?

Esiste sempre una soluzione ottima di un problema di PL? E le soluzioni ottime hanno proprietà particolari ?

Ottimizzazione convessa e Programmazione Lineare

(Vercellis cap. 7.3)

Ottimizzazione convessa

problema di ottimizzazione convessa (in forma di minimo)

$$z = \min f(\mathbf{x})$$
$$\mathbf{x} \in X$$

la funzione obiettivo

 $f: X \to \mathbb{R} \ e \ \underline{\text{convessa}}$

la regione ammissibile X è un insieme convesso

Funzioni convesse

[Definizione] una funzione $f: \mathbb{R}^n \to \mathbb{R}^n$ è convessa se $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\lambda \in [0,1]$ e $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ si ha

$$f(\mathbf{z}) \le \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y})$$

Funzioni convesse

- una funzione f è concava se -f è convessa.
- Una funzione lineare è contemporaneamente concava e convessa

Combinazioni convesse

[Definizione] il vettore \mathbf{w} è combinazione convessa di m vettori $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ se e solo se può essere scritto come

$$\mathbf{w} = \sum_{i=1}^{m} \lambda_i \mathbf{x}_i \quad \text{con} \quad \sum_{i=1}^{m} \lambda_i = 1, \ \lambda_1, \dots, \lambda_m \ge 0$$

il vettore $\mathbf{w} = (4,5)$ è combinazione convessa dei vettori

$$\mathbf{x}_1 = (8,1), \ \mathbf{x}_2 = (2,4) \ e \ \mathbf{x}_3 = (5,7)$$

con coefficienti

$$\lambda_1 = 1/9, \, \lambda_2 = 4/9, \, \lambda_3 = 4/9$$

Insiemi convessi

[Definizione] un insieme $Q \subseteq \mathbb{R}^n$ è convesso se $\forall x, y \in \mathbb{Q}$ con $x \neq y$ ogni loro combinazione convessa appartiene a \mathbb{Q} , cioè:

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in Q$$
 per ogni $\lambda \in [0,1]$

Punti estremi

[Definizione] un punto \mathbf{w} di un insieme convesso Q si dice estremo se non esiste alcuna coppia di punti distinti $\mathbf{x}, \mathbf{y} \in Q$ tale che \mathbf{w} sia combinazione convessa *non banale* di \mathbf{x} e \mathbf{y} cioè:

$$\forall 0 < \lambda < 1 \text{ e } \forall \mathbf{x}, \mathbf{y} \in Q \text{ risulta } \mathbf{w} \neq \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$$

L'insieme dei punti estremi di Q si indica con ext(Q).

Insiemi convessi

[Proposizione] L'intersezione di 2 insiemi convessi X e Y è un insieme convesso.

[Dim]

Siano \mathbf{x} e \mathbf{y} due punti arbitrari dell'insieme $X \cap Y$.

Per ogni $\lambda \in [0,1]$

- il punto $\mathbf{z} = \lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in X$ perché X è convesso
- il punto $\mathbf{z} = \lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in Y$ perché Y è convesso quindi il punto $\mathbf{z} \in X \cap Y$

[Corollario] Date m funzioni convesse $g_i: \mathbb{R}^n \to \mathbb{R}$, l'insieme

$$X = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \le 0, i = 1,..,m \}$$

è un insieme convesso

Minimi locali e globali

[Proposizione] Sia P un problema di ottimizzazione convessa (in forma di minimo). Ogni minimo locale \mathbf{x}' di P è anche un minimo globale.

Sia $\mathbf{z} = \lambda \mathbf{x'} + (1 - \lambda)\mathbf{y}$ con $\lambda \in (0,1)$ una comb. convessa di $\mathbf{x'}$ e \mathbf{y} contenuta nell'intorno di ottimalità di $\mathbf{x'}$

- $\mathbf{z} \in X$
- $f(\mathbf{x'}) \le f(\mathbf{z})$
- $f(\mathbf{z}) = f(\lambda \mathbf{x'} + (1 \lambda)\mathbf{y})$ $\leq \lambda f(\mathbf{x'}) + (1 - \lambda) f(\mathbf{y})$

perché X è un insieme convesso; dato che \mathbf{x}' è un minimo locale;

dato che f è convessa;

cioè $(1 - \lambda) f(\mathbf{x'}) \le (1 - \lambda) f(\mathbf{y})$ dividendo per $(1 - \lambda) > 0$ si ottiene la tesi.

iperpiani e semispazi affini

• [Definizione] Siano $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$.

L'insieme $H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b \} \subseteq \mathbb{R}^n$ si dice iperpiano.

L'insieme $S = \{ \mathbf{x} \in \mathbf{R}^n : \mathbf{a}^T \mathbf{x} \le b \} \subseteq \mathbf{R}^n$ si dice semispazio (affine) chiuso.

■ [Esempio] In R^2 gli iperpiani sono rette e i semispazi affini sono semipiani. $H = \{\mathbf{x} \in R^2 : 5x_1 + 2x_2 = 10\}$

Il vettore **a** è detto vettore normale di *H* perché è sempre ortogonale a *H*

[Dim]

- se \mathbf{x} e $\mathbf{y} \in H$ allora $\mathbf{a}^{\mathrm{T}}\mathbf{x} = b$ e $\mathbf{a}^{\mathrm{T}}\mathbf{y} = b$
- segue che $\mathbf{a}^{\mathrm{T}}(\mathbf{x} \mathbf{y}) = 0$
- cioè a è ortogonale al vettore (x y)
 che evidentemente giace su H

iperpiani e semispazi affini: convessità

[Proposizione] semispazi chiusi e iperpiani sono insiemi convessi

[Dim] applicazione diretta della definizione di convessità

Sia $S = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le b\} \subseteq \mathbb{R}^n$ un semispazio chiuso. Per ogni $\mathbf{x}, \mathbf{y} \in S$ e $\lambda \in [0,1]$ si ha

$$\mathbf{a}^{\mathrm{T}}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$$

$$= \lambda \mathbf{a}^{\mathrm{T}}\mathbf{x} + (1 - \lambda)\mathbf{a}^{\mathrm{T}}\mathbf{y}$$

$$\leq \lambda b + (1 - \lambda)b = b$$

Quindi $\mathbf{z} = (\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \in \mathcal{S}$.

Essendo un iperpiano l'intersezione di due semispazi chiusi segue che anche l'iperpiano è un insieme convesso.

Ottimizzazione convessa e PL

- [Proposizione] Un problema di PL è un problema di ottimizzazione convessa. Infatti,
 - 1. la f.o. è lineare quindi convessa;
 - 2. ogni vincolo è un iperpiano o un semispazio affine quindi un insieme convesso;
 - 3. l'intersezione di insiemi convessi è un insieme convesso.
- [Corollario] Un ottimo locale di un problema di PL è una soluzione ottima del problema
- [Corollario] Le soluzioni ottime di un problema di PL sono *punti di frontiera* della sua regione ammissibile.

Soluzione di un problema di PL

- Un problema di PL (in forma di massimo) può
 - 1. essere *ammissibile* con una o più *soluzioni ottime finite*. La soluzione $\mathbf{x} \in X$ è ottima se $\forall \mathbf{y} \in X$ $\mathbf{c}^T\mathbf{x} \geq \mathbf{c}^T\mathbf{y}$.
 - 2. essere vuoto o *inammissibile* $(X = \emptyset)$
 - 3. essere *illimitato* superiormente; ciò accade quando $\forall \delta \in \mathbb{R} \ \exists \mathbf{x} \in X : \mathbf{c}^T \mathbf{x} > \delta$

Risolvere un problema di PL significa determinare se è *illimitato* o *inammissibile*, ovvero produrre **una** soluzione *ottima finita*.

Soluzione: ottimo di valore finito

Soluzione: problema inammissibile

 L'intersezione dei tre semipiani A, B e C è vuota; nessun punto soddisfa contemporaneamente i tre vincoli del problema

Soluzione: problema illimitato

- Il valore della funzione obiettivo può crescere senza limite.
- [Nota] Un problema illimitato ha necessariamente una regione ammissibile illimitata ma in generale <u>non è vero il contrario</u>: un problema con regione ammissibile illimitata può avere una soluzione ottima finita.

Soluzione di un problema di PL (...ancora)

- Un problema di PL (in forma di minimo) può
 - 1. essere ammissibile con una o più soluzioni ottime finite. La soluzione $\mathbf{x} \in X$ è ottima se $\forall \mathbf{y} \in X$ $\mathbf{c}^T\mathbf{x} \leq \mathbf{c}^T\mathbf{y}$.
 - 2. essere vuoto o inammissibile $(X = \emptyset)$
 - 3. essere *illimitato* inferiormente; ciò accade quando $\forall \delta \in \mathbb{R} \ \exists \mathbf{x} \in X : \mathbf{c}^T \mathbf{x} < \delta$

Soluzione di un problema di PL in pratica

- Nella maggior parte dei casi pratici (<u>ma non sempre!</u>) un problema reale di ottimizzazione ammette una soluzione ottima finita (non ha molto senso un profitto che tende a +∞ o impossibile da realizzare ...). Tuttavia il modello di PL che descrive il problema potrebbe
 - 1. avere *infinite soluzioni ottime*: il modello probabilmente non tiene conto di ulteriori criteri di utilità e/o vincoli che nel problema reale sono rilevanti.
 - 2. essere *inammissibile*: alcuni vincoli sono erroneamente in contraddizione.
 - 3. essere *illimitato*: il modello non tiene conto di vincoli che nel problema reale sono rilevanti.

Equivalenza tra problemi di PL

Due problemi di PL, P_1 con regione ammissibile X_1 e P_2 con regione ammissibile X_2 , sono equivalenti se e solo se

- sono entrambi inammissibili, oppure se
- sono entrambi illimitati, oppure se
- esistono due trasformazioni $\theta: X_1 \to X_2$ e $\sigma: X_2 \to X_1$ tali che $\forall \mathbf{x} \in P_1$ esiste una soluzione $\theta(\mathbf{x})$ di P_2 di pari costo e $\forall \mathbf{x} \in P_2$ esiste una soluzione $\sigma(\mathbf{x})$ di P_1 di pari costo

[Nota] L'equivalenza dei problemi di PL non riguarda la dimensione dei problemi (numero di variabili e vincoli)

Equivalenza tra problemi di PL: esempio

$$P_1: \min z = 2 x_1$$

$$x_1 \le 3$$

$$x_1 \ge 1$$

$$\theta(x_1) = (x_1, 3 - x_1)$$
 $\sigma(x_1, x_2) = (x_1)$

P₂: min
$$z = 2 x_1$$

$$x_1 + x_2 = 3$$

$$x_1 \ge 1$$

$$x_2 \ge 0$$

Fabrizio Marinelli - Programmazione Lineare

Trasformazioni (1)

Le seguenti regole trasformano un problema di PL in uno equivalente che tuttavia può avere un **numero diverso** di variabili e vincoli.

[Regola 1]

$$\max \mathbf{c}^{\mathrm{T}} \mathbf{x} \equiv -\min (-\mathbf{c})^{\mathrm{T}} \mathbf{x}$$

Un problema di massimo si trasforma in un problema di minimo equivalente cambiando il segno ai coefficienti di costo

[Regola 2]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \le b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} + s = b \\ s \ge 0 \end{cases}$$

Un vincolo di \leq si trasforma in un vincolo di uguaglianza <u>sommando</u> a $\mathbf{a}^{\mathrm{T}}\mathbf{x}$ una variabile non negativa (detta *variabile di slack*)

• [Regola 3]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} - s = b \\ s \ge 0 \end{cases}$$

Un vincolo di \geq si trasforma in un vincolo di uguaglianza <u>sottraendo</u> a $\mathbf{a}^{\mathrm{T}}\mathbf{x}$ una variabile non negativa (detta *variabile di surplus*)

Trasformazioni (2)

[Regola 4]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge b \equiv (-\mathbf{a})^{\mathrm{T}}\mathbf{x} \le -b$$

Un vincolo di ≥ si trasforma in un vincolo di ≤ (e viceversa) cambiando il segno dei coefficienti e del termine noto

• [Regola 5]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} = b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b \\ \mathbf{a}^{\mathrm{T}}\mathbf{x} \geq b \end{cases}$$

Un vincolo di uguaglianza può essere sostituito da una coppia di vincoli di \leq e \geq

[Regola 6]

$$x \in \mathbf{R} \equiv \begin{cases} x = x^{+} - x^{-} \\ x^{+} \ge 0, x^{-} \ge 0 \end{cases}$$

Una variabile non vincolata può essere rimpiazzata dalla differenza di due variabili vincolate. In alternativa *x* può essere ricavata da una equazione e sostituita negli altri vincoli.

Forme dei problemi di PL

- Problema in forma generale: $z = \max\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$ $z = \min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$
- Problema in *forma standard*: $z = \max/\min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$

 ◆ Utilizzando le Regole 1 – 6, un problema in forma generale può sempre essere posto in forma standard e viceversa.

[Proposizione] Ogni problema di PL può essere posto in forma generale o standard.

Esempio

Si vuole trasformare il seguente problema in forma standard di max

1. Trasformo il problema in problema di massimo [Regola 1]

$$z = -\max - 5x_1 - 8x_2 + 3x_3$$

$$5x_1 - 2x_2 \le 15$$

$$x_1 + 2x_3 \ge 9$$

$$4x_1 - 7x_2 - 2x_3 = 13$$

$$x_1 \ge 0$$

$$x_3 \le 0$$

Esempio (cont.)

2. Cambio il segno alla variabile x_3 [Regola 4]

$$z = -\max - 5x_1 - 8x_2 - 3x_3$$

$$5x_1 - 2x_2 \le 15$$

$$x_1 - 2x_3 \ge 9$$

$$4x_1 - 7x_2 + 2x_3 = 13$$

$$x_1 \ge 0$$

$$x_3 \ge 0$$

3. Elimino la variabile libera x_2 [Regola 6]

$$\chi = -\max - 5x_1 - 8(x_2^+ - x_2^-) - 3x_3$$

$$5x_1 - 2(x_2^+ - x_2^-) \le 15$$

$$x_1 - 2x_3 \ge 9$$

$$4x_1 - 7(x_2^+ - x_2^-) + 2x_3 = 13$$

$$x_1, x_2^-, x_2^+, x_3^- \ge 0$$

Esempio (cont.)

4. Trasformo il vincolo di ≤ in un vincolo di uguaglianza [Regola 2]

$$\chi = -\max - 5x_1 - 8x_2^{+} + 8x_2^{-} - 3x_3$$

$$5x_1 - 2x_2^{+} + 2x_2^{-} + s_1 = 15$$

$$x_1 - 2x_3 \ge 9$$

$$4x_1 - 7x_2^{+} + 7x_2^{-} + 2x_3 = 13$$

$$x_1, x_2^{-}, x_2^{+}, x_3, s_1 \ge 0$$

5. Trasformo il vincolo di ≥ in un vincolo di uguaglianza [Regola 3]

$$z = -\max - 5x_1 - 8x_2^{+} + 8x_2^{-} - 3x_3$$

$$5x_1 - 2x_2^{+} + 2x_2^{-} + s_1 = 15$$

$$x_1 - 2x_3 - s_2 = 9$$

$$4x_1 - 7x_2^{+} + 7x_2^{-} + 2x_3 = 13$$

$$x_1, x_2^{-}, x_2^{+}, x_3, s_1, s_2 \ge 0$$