Университет ИТМО

Основы профессиональной деятельности

Отчет по лабораторной работе №2 (Исследование работы БЭВМ)

ФИО студента: Готовко Алексей Владимирович

Номер варианта: 1904

Направление подготовки: 09.03.04 (СППО)

Учебная группа: Р3119

ФИО преподавателя: Клименков Сергей Викторович

1. Задания

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

170: 217A 171: E17B 172: + 0200 173: 6171 174: 417C 175: E17A 176: A170 177: 217A 178: E17B 179: 0100 17A: A170 17B: 0200 17C: E17B

2. Ход выполнения работы

2.1 Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии
170	217A	_	Хранение значения Z
171	E17B	_	Хранение значения Х
172	0200	CLA	Очистить аккумулятор
173	6171	SUB 171	Вычесть из значения аккумулятора содержимое ячейки памяти 171
174	417C	ADD 17C	Добавить к значению аккумулятора содержимое ячейки памяти 17С
175	E17A	ST 17A Записать значение аккумулятора в яч памяти 17A	
176	A170	LD 170	Загрузить в аккумулятор значение ячейки памяти 170
177	217A	AND 17A	Совершить со значением аккумулятора побитовую конъюнкцию со значением ячейки памяти 17А

178	E17B	ST 17B	Записать значение аккумулятора в ячейку
			памяти 17В
179	0100	HLT	Выключить тактовый генератор, перейти в
			пультовый режим
17A	A170	1	Хранение промежуточного значения Y – X
17B	0200	1	Хранение значения F
17C	E17B	_	Хранение значения Ү

2.2 Описание программы

Реализуемая функция	F = (Y - X) & Z,
	где F, X, Y, Z - значение ячеек
	памяти 17В, 171, 17С, 170
	соответственно
Область представления	Х, Ү – шестнадцатиразрядные
	целые знаковые числа.
	F, (Y - X), Z - наборы из
	шестнадцати логических
	однобитовых значений
Область допустимых значений	$-2^{15} \le Y - X \le 2^{15} - 1$
	Рассмотрим три случая:
	$(-2^{14} \le Y \le 2^{14} - 1$
	$\left\{ -2^{14} \le X \le 2^{14} \right\}$
	$Z_i \in \{0, 1\}, \ 0 \le i \le 15$
	$\left(2^{14} \le Y \le 2^{15} - 1 \right)$
	$\begin{cases} 0 \le X \le 2^{15} - 1 \end{cases}$
	$(Z_i \in \{0, 1\}, \ 0 \le i \le 15)$
	$(-2^{15} \le Y \le -2^{14} - 1)$
	$\begin{cases} -2^{15} \le X \le 0 \end{cases}$
	$Z_i \in \{0, 1\}, \ 0 \le i \le 15$

2.3 Программа с меньшим числом команд

Адрес	Код	Мнемоника	Комментарии
	команды		
170	217A		Хранение значения Х
171	E17B		Хранение значения Ү
172	A171	LD 171	Загрузить в аккумулятор значение ячейки
			памяти 171
173	6170	SUB 170	Вычесть из значения аккумулятора
			содержимое ячейки памяти 170

174	2177	AND 177	Совершить со значением аккумулятора
			побитовую конъюнкцию со значением ячейки
			памяти 177
175	E178	ST 178	Записать значение аккумулятора в ячейку
			памяти 178
176	0100	HLT	Выключить тактовый генератор, перейти в
			пультовый режим
177	0200	_	Хранение значения Z
178	E17B	_	Хранение значения F

2.4 Таблица трассировки

Задание для трассировки:

Y = '8', X = '0', Z = 0x7F. X и Y перевести как символы ASCII. Можно ли интерпретировать результат как символ ASCII?

$$Y = 0x38$$
, $X = 0x30$, $Z = 0x7F$

Выполняемая команда		Содержимое регистров процессора после выполнения команды						Ячейка, содержимое которой изменилось после выполнения команды			
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый
											код
172	A171	173	A171	171	0038	000	0172	0038	0000		
173	6171	174	6171	170	0030	000	0173	0008	0001		
174	2177	175	2177	177	007F	000	0174	0008	0001		
175	E178	176	E178	178	0008	000	0175	0008	0001	178	0008
176	0100	177	0100	176	0100	000	0176	0008	0001		

F = 0x8. В таблице ASCII значению 0x08 соответствует символ BS (backspace).

2.5 Дополнительное задание

Написать программу в БЭВМ, которая осуществляет операцию A mod N при помощи наложения одной побитовой маски (только для N, где возможно найти такую маску). Программа должна

вычислять такую маску по входному значению N, при этом гарантируется, что A и N соответствуют вашему ОДЗ.

ОД3:

Реализуемая функция	$F = A \mod N = A \& M$
Область допустимых значений	$0 \le F \le N - 1$
	$N = 2^n, 0 \le n \le 15$
	M = N - 1
	$-2^{15} \le A \le 2^{15}$

Программа:

Адрес	Код	Мнемоника	Комментарии
	команды		
000	0000	_	Хранение значения N
001	0000	_	Хранение значения А
002	A000	LD 000	Загрузить в аккумулятор значение ячейки памяти 000
003	0740	DEC	Декремент аккумулятора
004	2001	AND 001	Совершить со значением аккумулятора побитовую конъюнкцию со значением ячейки памяти 001
005	E007	ST 007	Записать значение аккумулятора в ячейку памяти 007
006	0100	HLT	Выключить тактовый генератор, перейти в пультовый режим
007	0000	_	Хранение значения F (A mod N)

3. Выводы

В процессе выполнения лабораторной работы удалось ознакомиться с основным способом взаимодействия с ОС UNIX – командным интерфейсом, – а также базовой функциональностью интерпретатора shell. Также были получены основные сведения о файловой системе и правах доступа к файлам.