Algoritma Analizi

Giriş

- Algoritma tasarlamadan *önce bazı teknikleri bilmek* gerekir ve **bu tekniklerden sonra ancak algoritma** tasarlanır.
- ☐Algoritma analizi
 - 1. Performans (başarım)
 - 2. Kaynak kullanımı

üzerinde odaklanır.

Giriş

□ Programcılıkta başarımdan daha önemli neler vardır?

- modülerlik
- doğruluk
- bakım kolaylığı
- işlevsellik
- sağlamlık

- kullanıcı dostluğu
- programcı zamanı
- basitlik
- genişletilebilirlik
- güvenilirlik
- * Başarım (performans) olmazsa hızdan bahsedilemez ve hız olmayınca da diğerler durumlar gölgede kalacaktır.

Örnek: Sıralama Problemleri

Algoritma analizi için bir dizinin elemanlarını **artan sıraya** göre <u>sıralayan problemi ele alalım</u>.

Girdi: dizi $\langle a_1, a_2, ..., a_n \rangle$ sayıları.

Çıktı: permütasyon $\langle a'_1, a'_2, ..., a'_n \rangle$ öyle ki $a'_1 \le a'_2 \le \cdots \le a'_n$.

Örnek:

Girdi: 8 2 4 9 3 6

Çıktı: 2 3 4 6 8 9

Araya yerleştirme sıralaması (Insertion sort)

Araya yerleştirme sıralaması (Insertion sort)

Araya yerleştirme sıralaması (Insertion sort)

Araya Yerleştirme Algoritmasının Sözde Kodu

□Sözde (Kaba) kod, bir algoritmayı daha anlaşılır hale getirmek ve mümkün olduğunca daha kısa bir şekilde sunmayı sağlar.

'pseudocode"
(sözdekod)

```
\triangleleft A[1 \dots n]
INSERTION-SORT (A, n)
   for j \leftarrow 2 to n
            do key \leftarrow A[j]
                 i \leftarrow j - 1
                 while i > 0 and A[i] > key
                         do A[i+1] \leftarrow A[i]
                              i \leftarrow i - 1
                A[i+1] = key (anahtar)
```

Koşma süresi (Running time)

1. Girişe bağımlıdır:

Önceden sıralanmış bir diziyi sıralamak daha kolaydır.

Örneğin araya yerleştirme algoritması, sıralı bir dizide daha az iş yapar ve etkilidir. Fakat tersten sıralı olan bir dizide çok iş yapar.

2. Girişin boyutuna bağımlıdır.

Kısa dizileri sıralamak uzun dizilere oranla daha kolaydır.

*Genellikle, koşma süresinde <u>üst sınırları</u> ararız, çünkü herkes garantiden hoşlanır.

Çözümleme (Analiz) Türleri

- En kötü durum (Worst-case): (genellikle)
 - T(n) = n boyutlu bir girişte algoritmanın maksimum süresi
- Ortalama durum: (bazen)
 - T(n) = n boyutlu her girişte algoritmanın beklenen süresi.
 - Girişlerin istatistiksel dağılımı için varsayım gerekli.
- En iyi durum: (gerçek dışı)
 - Bir giriş yapısında hızlı çalışan yavaş bir algoritma ile hile yapmak.

Makineden-bağımsız zaman

- Araya yerleştirme sıralamasının en kötü zamanı nedir?
 - ☐ Bilgisayarın hızına bağlıdır:
 - bağıl (relative) zaman (aynı makinede),
 - mutlak (absolute) zaman (farklı makinelerde).
- BÜYÜK FİKİR (BIG IDEA):
 - ☐ Makineye bağımlı sabitleri görmezden gel.
 - $n \to \infty$ ' a yaklaştıkça, T(n)'nin *büyümesi*ne bakılır.
 - " Asimptotik Çözümleme"

Θ (Theta) simgelemi (notation)

□ *Matematik*:

 $\blacksquare\Theta(g(n)) = \{ f(n) : \text{Öyle } c_1, c_2, n_0 \text{ pozitif sabit sayıları} \}$

vardır ki tüm $n \ge n0$ } için $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$.

☐ Mühendislik:

- Düşük değerli terimleri at; ön sabitleri ihmal et.
- Örnek: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$
- * Bu notasyon **ortalama çalışma zamanını** matematiksel olarak gösteriminde kullanılmaktadır.

Asimptotik başarım

n yeterince büyürse, $\Theta(n^2)$ algoritması bir $\Theta(n^3)$ algoritmasından her zaman daha hızlıdır.

- Öte yandan asimptotik açıdan yavaş algoritmaları ihmal etmemeliyiz.
- Gerçek dünyada tasarımın mühendislik hedefleriyle dikkatle dengelenmesi gereklidir.
 - Asimptotik çözümleme düşüncemizi yapılandırmada önemli bir araçtır.

☐ Her bir satır için maliyet ve adet sütunlarını yazarız.

IN	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	<i>c</i> ₈	n-1

 \Box Çalışma zamanı : T(n)'yi hesaplamak için maliyetlerin ve adet sütunlarının çarpımına eşittir.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

- □ <u>En iyi durumda (Best-case) çalışma zamanı:</u> Dizi sıralı bir şekilde geldiğini varsayarız.
- 5. Satırda $A[i] \le key$ olur. Böylece j=2,3,...n için $t_j=1$ olur.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

- Bu çalışma zamanını a ve b sabitler (c_i maliyetlerine bağlı) olmak üzere an+b olarak ifade edebiliriz.
- □Bu ise n ye göre doğrusal (linear) bir fonksiyondur.

□ <u>En kötü durumda (Worst case) çalışma zamanı:</u> Dizi ters bir şekilde sıralı olduğunu varsayırız.

Bu durumda her bir A[j] elemanını sıralı A[1,...,j-1] dizisinin her elemanı ile <u>karşılaştırmalıyız</u>. Böylece j=2,3,...,n için $t_i=j$ olur.

Araya yerleştirme sıralama algoritmasının toplam zamanın hesaplanması bir **aritmetik seri hesaplaması** olarak görülebilir.

Hatırlatma:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n$$

$$\sum_{k=1}^{n} k = \frac{1}{2} n(n+1)$$

$$= \Theta(n^2)$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
 5. Satur (While döngüsü)

and

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$
 6. ve 7. Satır (While döngüsü içi)

□En Kötü Çalışma Zamanı:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right).$$

- \bullet En kötü çalışma zamanı c_i maliyetine bağlı olan a, b ve c sabitleri için $an^2 + bn + c$ olarak if ade edebiliriz.
- ♣ Bu durumda çalışma zamanı n'ye bağlı kuadratik fonksiyon (ikinci dereceden) olur.
 n

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$

□ Ortalama durumda (Avarage-case) çalışma zamanı:

Varsayalım ki rastgele **n** tane sayıyı seçilir.

Ortalama olarak dizi elemanlarının yarısı A[j]'den küçük yarısıda A[j]'den büyüktür.

Bu yüzden ortalama olarak A[1,...,j-1] alt dizisinin yarısını kontrol ederiz. Böylece yaklaşık olarak $t_i=j/2$ olur.

□ Ortalama durum, en kötü durumdaki gibi girdi boyutunun kuadratik bir fonksiyonudur.

n

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

- Ortalama durum analizinin kapsamı sınırlıdır. Çünkü özel bir problem için 'ortalama' girdinin ne olacağı anlaşılmayabilir.
- Genellikle bir verilen boyutta tüm girdilerin eşit olasılıkta olduğu kabul edilir.
- Fakat pratikte beklenen çalışma zamanını sağlamak için <u>rassal</u> <u>algoritmalar kullanılır.</u>

- En kötü durum analizi ile hesaplanan çalışma zamanı bize çalışma zamanı hakkında <u>üst sınırı verir.</u>
- Bazı algoritmalar için genellikle en kötü durum meydana gelir.
 - Örneğin bir veritabanında bir veri parçası aratıldığında verinin bulunmama durumu ile karşılaşılabilir.


```
Times
                                                                  Cost
BUBBLESORT(A)
                        \sum_{j=1}^{n} t_{j} 
 \text{exchange } A[j] \text{ with } A[j-1] 
 \text{c3} 
 \text{c4} 
 \sum_{j=1}^{n} t_{j} 
 \text{c4} 
     for i = 1 to A.length -1
            for j = A. length downto i + 1
                  if A[j] < A[j-1]
       T(n)=c_1*n+c_2\sum_{i=1}^n t_i + c_3\sum_{i=1}^n t_i + c_4\sum_{i=1}^n t_i
```

```
BUBLESORT(B)
Data: Input array A//
Result: Sorted A//
int i, j, k;
N = length(A);
for j = 1 to N do
   for i = 0 to N-1 do
     if A[i] > A[i+1] then
    | temp = A[i];
      A[i] = A[i+1];

A[i+1] = temp;
   end
end
```

```
T(n) = c1*n+c2*n(n+1)/2+c3*n(n+1)/2+c4*n(n+1)/2

T(n) = \theta(n^2)
```

- Bir dizi verildiğinde N, ilk yineleme (N 1)karşılaştırmalar yapar.
- İkinci yineleme (N 2)karşılaştırmalar gerçekleştirir.
- Bu şekilde, toplam karşılaştırma sayısı şöyle olacaktır:

$$(N-1) + (N-2) + (N-3) + \dots + 3 + 2 + 1 = \frac{N(N-1)}{2} = \mathcal{O}(N^2)$$

- Bu nedenle, içinde ortalama durumda , zaman karmaşıklığı tür olurdu $\mathbf{T}(\mathbf{n}) = \boldsymbol{\theta}(n^2)$ olur.
- Eğer dizi sıralanmış bir şekilde verilmiş olursa **en iyi durumda** yine benzer kıyaslama yapmak durumundayız ve $T(n) = \theta(n^2)$ olur.
- Eğer dizi ters sıralanmış bir şekilde verilmiş olursa $T(n) = \theta(n^2)$ olur.

Örnek: Kabarcık (Buble) Sıralama Algoritması İyileştirme

Improved Bubble Sort

```
Data: Input array A//
Result: Sorted A//
int i, j, k;
indicator = 1;
N = length(A);
for j = 1; j \le (N-1) \land indicator == 1; j + + do
   indicator = 0;
   for i = 1 \text{ to } N-1; i++ \mathbf{do}
       if A/i/ > A/i+1/ then
         temp = A/i;
         A[i] = A[i+1];
         A[i+1] = temp;
         indicator = 1;
       end
   end
end
```

- Indicator adında bir değişken ile değiştirilen öğelerin kaydını tutmak için yeni bir değişken ekledik.
- Ayrıca bu yineleme sırasında bu dizinin sıralanmış olup olmadığını gösterebilir.
- Bu durumda ortalama ve en kötü durumda yine $T(n) = \theta(n^2)$ olacaktır.
- Eğer dizi sıralanmış ise yani en iyi durumda $T(n) = \theta(n)$ olacaktır.

- Birleştirme sıralama algoritması, böl ve yönet (fethet) yaklaşımını takip etmektedir.
- Böl: Aynı problemi daha küçük alt problemlere ayır.
- Yönet (Fethet): Alt problemler özyineleme ile çözülür. Eğer alt problem boyutları yeteri kadar küçükse daha kolay bir şekilde çözülürler.
- Birleştir: Alt problemlerin çözümleri orijinal problemin çözümü için birleştirilir.

- 1. Eğer n = 1 ise, işlem bitti.
- 2. A[1..[n/2]] ve A[[n/2]+1...n]'yi özyinelemeli sırala.
- 3. 2 sıralanmış listeyi "Birleştir".

Anahtar altyordam: Birleştirme

Böl (Divide)

Fethet (Conquer) ve Birleştir


```
T(n)
Suistimal

1. Eğer n = 1'se, bitir.

2. Yinelemeli olarak A[1...\lceil n/2 \rceil] ve
A[\lceil n/2 \rceil + 1...n \rceil ]'yi sırala.
3. İki sıralı listeyi "Birleştir"
```

Birleştirme-Siralaması A[1 ... n]

Özensizlik: $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$ olması gerekir, ama asimptotik açıdan bu önemli değildir. Yani sonuca etki etmeyecektir.

$$T(n) = \begin{cases} \Theta(1) \text{ eğer } n = 1 \text{ ise;} \\ 2T(n/2) + \Theta(n) \text{ eğer } n > 1 \text{ ise.} \end{cases}$$

• Genellikle n'nin küçük değerleri için taban durumu (base case) olan $T(n) = \Theta(1)$ 'i hesaplara katmayacağız; ama bunu sadece yinelemenin asimptotik çözümünü etkilemiyorsa yapacağız.

Yineleme ağacı

İşlemi daha basit ifade etmek için Θ(n) yerine c*n diyebiliriz.

Yineleme ağacı

T(n) = 2T(n/2) + cn'i çözün; burada c > 0 bir sabittir. $h = \lg n \quad cn/4 \quad cn/4 \quad cn/4 \quad cn/4 \quad cn/4 \quad cn/4 \quad cn$ yaprak sayısı = nToplam = $\Theta(n \lg n)$

Sonuç

• $\Theta(n \lg n)$, $\Theta(n^2)$ 'dan daha yavaş büyür.

- En kötü durumda, birleştirme sıralaması asimptotik olarak araya yerleştirme sıralamasından daha iyidir.
- Pratikte, birleştirme sıralaması araya yerleştirme sıralamasını n > 30 değerlerinde geçer.

35

Algoritmanın Büyüme Oranları

- □ Büyüme oranlarına bakarak iki algoritmanın verimliliğini karşılaştırabiliriz.
- □ Algoritma tasarımcılarının amacı, çalışma zaman fonksiyonu olan f(n) nin mümkün olduğu kadar <u>düşük büyüme oranı sahip bir algoritma</u> olmasıdır.

Büyüme oranı fonksiyonlarının karşılaştırılması

□Örnek : Verilen zaman karmaşıklığı ile algoritmalar için yürütme zamanı

n	f(n)=n	f(n)=nlogn	f(n)=n²	f(n)=2 ⁿ
20	0.02 μs	0.086 μs	0.4 μs	1 ms
10 ⁶	1 μs	19.93 ms	16.7 dk	31.7 yıl
10 ⁹	1s	29.9 s	31.7 yıl	!!! yüzyıllar

Algoritmanın Büyüme Oranları

- Algoritmadaki emirlerin **icra sayısı, kesin olarak tespit ediliyorsa**; bu algoritmanın koşma zamanı sabit değerler ile gösterilir.
- n'nin büyüyen değerine karşın algoritma çok az değer ile yavaşlıyorsa algoritmanın logaritmik bir karakteristiği olduğu söylenebilir. Bu karakteristik problemi <u>alt problemlere bölerek çözen algoritmalarda görülür.</u>
- n Giriş değerlerine bağlı olarak çalışma zamanını **lineer olarak değiştiği** algoritmalar bu sınıfa girer.
 - Bu durum algoritmada beklenen en iyi karakteristiktir.
- nlogn Bu tarz büyüme oranına sahip algoritma problemi, alt problemlere bölüp, oluşan alt problemleri bağımsız olarak çözen ve son aşamada bu sonuçları birleştiren algoritmalarda görülür.
 - n² İç içe döngüler yardımı ile verileri ikişerli olarak ele alıp, tüm verileri inceleyen algoritmalarda görülür. İşlenecek veri uzunluğu fazla olmadığı zamanlarda kullanılır.
 - n³ İç içe döngüler yardımı ile verileri üçerli olarak ele alıp, tüm verileri inceleyen algoritmalarda görülür. (örn: matris çarpımı) İşlenecek veri uzunluğu fazla olmadığı zamanlarda kullanılır.
 - **2ⁿ** Bu tarz algoritmada **mümkün <u>tüm durumların denenmesi</u>** söz konusu olmaktadır.

- □Bir algoritmanın <u>orantılı zaman gereksinimi</u> büyüme oranı (veya büyüme hızı)olarak bilinir.
- □T(n) nin büyüme oranı, algoritmanın hesaplama karmaşıklığıdır.
- □Karmaşıklığı belirtmek için **asimtotik notasyon(simgelem) ifadeleri kullanılmaktadır.**
- Genel olarak, az sayıda parametreler için karmaşıklıkla ilgilenilmez; eleman sayısı n'nin sonsuza gitmesi durumunda T(n) büyümesine bakılır.

Asimptotik Notasyon (Simgelem)

1. O-simgelemi (üst sınırlar):

Tüm $n \ge n_0$ değerleri için sabitler c > 0, $n_0 > 0$ ise $0 \le f(n) \le cg(n)$ durumunda f(n)=O(g(n)) yazabiliriz.

Örnek:
$$2n^2 = Q(n^3)$$
 $(c = 1, n_0 = 2)$ komik, "tek yönlü" eşitlik değerler değil

Notasyonlarda eşitlik"=" gösterimi

- A=B ise B = A anlamında olabilir.
- Fakat, f(n) = O(g(n)), O(g(n)) = f(n) anlamına gelmez. Burada tek eşitlik söz konusudur.
- O Burada "=", üyelik işlemi (€) olarak tercih edilmiştir.
- $f(n) = O(g(n)) \rightarrow f(n) \in O(g(n)) dir$
- O(g(n)) bir küme anlamına gelir.
- $f(n) = O(g(n)) \rightarrow O(g(n)) = \{ f(n) \}$ gösterimi doğrudur.

1. O-simgelemi (üst sınırlar):

□ Bu notasyon **en kötü durumdaki zamanın** belirlenmesinde kullanılabilir.

Notasyon	İsim
O(1)	Sabit
O(logn)	Logaritmik
O([logn] ^c)	Polilogaritmik
O(n ²)	Karesel
O(n ^c), c>1	Polinomial veya cebirsel
O(c ⁿ), c>1	Üssel veya geometrik
O(n!)	Faktöriyel veya kombinatöryel
O(n ⁿ)	Geokombinatör

1. O-simgelemi (üst sınırlar):

- Örnek: (1/2)n²+ 3n için üst sınırın O(n²) olduğunu gösteriniz.
 - **○** *c*=1 *için*
 - \circ (1/2) n^2 + 3n ≤ n^2
 - $3n ≤ 1/2n^2$
 - o 6 ≤ n,
 - \circ $n_0 = 6$

Çözüm kümesini sağlayan kaç tane **n**₀ ve **c** çifti olduğu önemli değildir. Tek bir çift olması notasyonun doğruluğu için yeterlidir.

- 2. $\Omega(Omega)$ simgelemi (alt sınırlar):
- O Bu notasyon **algoritmaların** <u>en iyi durumdaki</u> **çalışma zamanını** <u>ifade etmek için kullanılır.</u>
- O Giriş değerleri analiz edildikten sonra algoritmanın O notasyonu Ω ile ifade edilir.

```
\Omega(g(n)) = \{ f(n) : \text{tüm } n \ge n\_0 \text{ değerlerinde} 
c > 0, n\_0 > 0 \text{ ise,} 
0 \le cg(n) \le f(n) \}
```

2. $\Omega(Omega)$ simgelemi (alt sınırlar):

Her durumda f(n) ≥ c g(n) ve n ≥ n₀ koşullarını sağlayan pozitif, sabit c ve n₀ değerleri bulunabiliyorsa f(n)=Ω(g(n)) dir.

2. Ω(Omega) simgelemi (alt sınırlar)- Örnek

- o $2n + 5 \in \Omega(n)$ olduğunu gösteriniz
 - n_0 ≥0, 2n+5 ≥ n, olduğundan sonuç elde etmek için c=1 ve n_0 = 0 (eşitliği sağlayan değer) alabiliriz.
 - $5*n^2 3*n = \Omega(n^2)$ olduğunu gösteriniz.
 - $5*n^2$ $3*n ≥ n^2$, c=1, n_0 =0 değerleri için sağlar.

- 3. $\theta(Theta)$ simgelemi:
- Ortalama çalışma zamanı algoritma karakteristiğine ve çözülen probleme göre değişecektir.
- O $f(n) = \theta(g(n))$ olması için tüm $n \ge k$ değerinde $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ olacak şekilde pozitif c_1 , c_1 ve k sabitleri tanımlı olması gerekir.
- *Bu sabitler, fonksiyona bağlı fakat g'den bağımsızdır.

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

4. o simgelemi (sıkı olmayan üst sınırlar):

- O Örneğin $2*n^2=O(n^2)$ asimtotik olarak sıkı bir üst sınırdır.
- Fakat $2*n = O(n^2)$ sıkı bir üst sınır değildir. Yani sonsuz değer alır.
- o notasyonu matematiksel tanımı

O ile o notasyonlarının tanımları birbirine benzerdir.

Temel fark:

- **Her durumda** $c_1.g(n) \le f(n) \le c_2.g(n)$ ve $n \ge n_0$ koşullarını sağlayan pozitif, sabit c₁,c₂ ve n₀ değerleri b<u>ulunabiliyorsa</u> f(n) = o(g(n)) ifadesi doğrudur.
- Her durumda olmuyorsa O notasyonu geçerli olmaktadır.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

4. o simgelemi (sıkı olmayan üst sınırlar)- Örnek

- $f(n) = 2n + 5 \in O(n)$.
 - o 2n ≤ 2n+5 ≤ 3n, tüm n ≥ o için
- $f(n) = 5*n^2 3*n \in 0(n^2)$.
 - $o 4*n^2 ≤ 5*n^2 3*n ≤ 5*n^2$, tüm n ≥ 4 için

4. \omega simgelemi (sıkı olmayan alt sınırlar):

- \mathbf{O} $\Omega(Omega)$ ve $\boldsymbol{\omega}$ simgelemesi arasındaki ilişkide \mathbf{O} ve \mathbf{o} arasındaki benzerliğe sahiptir.
- \bullet sıkı olmayan alt sınırı ifade eder.
- O Örneğin $n^2/2 = \omega(n)$, fakat $n^2/2 \neq \omega(n^2)$ bu durum aşağıdaki gibi bir ifade doğurur.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Yukarıdaki ifadeye göre **n sonsuza giderken** <u>f (n)'nin g(n)'e göre ç**ok b**ü**y**ü**k oldu**ğ**unu g**ö**sterir.**</u>

o-notasyonu ve ω-notasyonu

- \circ o-notasyonu ve ω -notasyonu < ve > gibidir.
- o-notasyonunda üst sınıra, ω notasyonununda ise alt sınıra eşitlik yoktur. Bundan dolayı üst ve alt sınırları sıkı bir asimptotik notasyon değildir.
- Öncekinden tek farklılığı, c katsayısı ve bir n₀
 değeri var demek yerine, <u>her c</u> katsayısı için başka bir n₀
 olacağını kabul etmek.

Asimptotik Notasyonların Karşılaştırılması

Geçişlilik (Transitivity):

- $f(n) = \Theta(g(n))$ ve $g(n) = \Theta(h(n))$ ise $f(n) = \Theta(h(n))$,
- f(n) = O(g(n)) ve g(n) = O(h(n)) ise f(n) = O(h(n)),
- $f(n) = \Omega(g(n))$ ve $g(n) = \Omega(h(n))$ ise $f(n) = \Omega(h(n))$,
- f(n) = o(g(n)) ve g(n) = o(h(n)) ise f(n) = o(h(n)),
- $f(n) = \omega(g(n))$ ve $g(n) = \omega(h(n))$ ise $f(n) = \omega(h(n))$.
- Obnüşlülük veya yansıma(Reflexivity):
- $f(n) = \Theta(f(n)),$
- f(n) = O(f(n)),
- $f(n) = \Omega(f(n))$.

Asimptotik Notasyonların Karşılaştırılması

- Simetri(Symmetry):
- g(n) = Θ(f(n)) olduğu durumda, f(n) = Θ(g(n))
- Transpose (Ters Simetri):
- $g(n) = \Omega(f(n))$ olduğu durumda, f(n) = O(g(n)),
- g(n) = ω(f(n)) olduğu durumda, f(n) = o(g(n)).

Not: Eğer f(n)=o(g(n)) ise f(n)'in g(n)'den <u>asimptotik küçük</u> eğer $f(n)=\omega(g(n))$ ise f(n)'in g(n)'den <u>asimptotik büyük</u> olduğunu söyleyebiliriz.

Asimptotik Notasyonların Karşılaştırılması

UYGULAMALAR

- ■3 tane A, B ve C adında 1000 elemanlı bir dizi oluşturunuz.
 - A dizisi, 1,2,3, ...1000 şeklinde sıralı olsun.
 - B dizisi 1000, 999, 998, ...1 şeklinde tersten sıralı olsun.
 - C dizisi ise rastgele sayı üreten (1 ile 1000 arasında) bir fonksiyon tarafından üretilecek 1000 adet bir sayısı içerisinde barındırsın.
- ■A, B ve C dizisinin elemanlarını aşağıdaki algoritmalar kullanarak sıralayınız.
 - Araya yerleştirme algoritması
 - Kabarcık sıralama algoritması
 - Birleştirme sıralama algoritması
- ■Bu üç algoritmanın performansını karşılaştırınız.

Not: Herhangi bir programlama dili ile kodlama yapabilirsiniz

Kaynakça

- ► Algoritmalar : Prof. Dr. Vasif NABİYEV, Seçkin Yayıncılık
- ► Algoritmalara Giriş: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Palme YAYINCILIK
- ► Algoritmalar : Robert Sedgewick , Kevin Wayne, Nobel Akademik Yayıncılık
- ▶ M.Ali Akcayol, Gazi Üniversitesi, Algoritma Analizi Ders Notları
- Doç. Dr. Erkan TANYILDIZI, Fırat Üniversitesi, Algoritma Analizi Ders Notları