Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 2

Michael Hartisch

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science April 22, 2024

Recap: Organisation

- StudOn: Decision Theory
- Two bi-weekly tutorial groups (start this week)

FAU M. Hartisch Decision Theory April 22, 2024 2/63

Recap: Types of Decision Theory

- Normative DT
 - Start from axioms (fundamental assumptions) to determine rational decisions
 - More philosophical
- Descriptive DT
 - Observe how decisions are being made
 - More psychology or sociology
- Prescriptive DT
 - Also called decision analysis, focus on methods for decision making
 - Focus not on discussing axioms

Recap: Why are decisions hard?

Examples:

- Uncertainty
- Multiple criteria
- Too many alternatives
- Difficult evaluation
- Unknown choices and unknown consequences

Recap: What do we require from a rational decision?

- How we formulate the problem should not affect decision
 - Will not always be true in reality
- Previous decisions irrelevant (future orientation)
- Relation: transitivity and completeness

FAU M. Hartisch Decision Theory April 22, 2024 5/63

Recap: Omelette Example

Build a decision matrix to model the problem

$$a_1$$
 (good) a_2 (foul)
 a_1 (6,0,0) (0,5,0)
 a_2 (6,0,1) (5,0,1)
 a_3 (5,1,0) (5,0,0)

with

- a_1 , a_2 , a_3 possible alternatives
- s_1 , s_2 possible scenarios
- (x^1, x^2, x^3) outcomes with three criteria

Today

- Modelling
- Types of models
- Types of scales
- Basic models
- Probabilities

What kind of models do you know?

Model

- Simplified representation of a real situation
- Tool for describing, explaining, predicting, and designing real situations
- Errors are made by simplifying
- Requires:
 - Structural equality (isomorphism), or
 - Structural similarity (homomorphism) with reality

Modelling

- Reduction of complexity and focus on relevant aspects:
 - Aggregation of individual variables
 - Omission of irrelevant features
 - Formation of interfaces to the relevant model environment (partial models); keyword: digital twin
 - Hierarchization, decomposition of decision problems

FAU M. Hartisch Decision Theory April 22, 2024 10/63

Reasons for Abstraction

- Information not available
- Information costs too high
- Other features not relevant
- Impossibility of the model or too high methodical effort in relation to the expected improvement of results

FAU M. Hartisch Decision Theory April 22, 2024 11/63

Modelling

Step 1

Formulation of the question to be investigated (verbal problem description)

Step 2

Selection of relevant variables and their relationships (1st abstraction level)

Step 3

Search for a structure-preserving mapping through their coordination (2nd abstraction level)

FAU M. Hartisch Decision Theory April 22, 2024 12/63

Types of Models: Descriptive Model

- Also known as a capture or investigation model
- For the descriptive capture and simplified (selective) representation of real situations
- Examples:
 - Map
 - Business accounting
 - National economic accounting
 - Determination of price floors

Types of Models: Explanatory Model

- For theory-based representation and explanation of real situations based on existing/suspected causalities
- Special form: forecast model
- Basis for means-end analyses and for forecasting the consequences of events and actions
- Examples:
 - COVID models
 - Climate models
 - Economic models
 - Economic cycle model
 - Price-sales function of a product

Types of Models: Decision Model

- To support a decision-maker in choosing among several decision alternatives
- To gain insights into how upcoming decisions can be optimally made
- Complete achievement of a given goal
- Directed towards deriving a recommendation for action
- Examples:
 - Investment models
 - Contribution margin maximization model
 - Classical lot-sizing model

Reality, Model, Model Analysis: Five steps

- 1. Determination of the portion of reality to be captured by the model
- 2. Abstract transfer of the portion of reality into the symbol system of a formalized decision model
- 3. Analysis/Solution of the model, provides computational model result
- 4. Model result includes a recommendation for action; translation from formal language to verbal statement
- 5. Conclusions are drawn from the recommendation for action and implemented in decisions that affect reality

FAU M. Hartisch Decision Theory April 22, 2024 17/63

What scales do you know?

Scale Forms

- How do I capture data and information?
- Nominal scale
- Ordinal scale
- Interval scale
- Ratio scale
- Absolute scale

FAU M. Hartisch Decision Theory April 22, 2024 19/63

Nominal Scale

- Differences can be named
- But cannot be otherwise valued
- For example:
 - Colors
 - Shapes
 - Gender

FAU M. Hartisch Decision Theory April 22, 2024 20/63

Ordinal Scale

- Ranking possible
- For example:
 - Creditworthiness: "good", "medium", "bad"
 - Military rank: "General", "Major", "Lieutenant"

FAU M. Hartisch Decision Theory April 22, 2024 21/63

Interval Scale

- Arbitrary but fixed unit of measurement
- Distances can be compared and interpreted
- Zero point is arbitrarily chosen, conversions possible
- Ratios not meaningful
- For example:
 - Temperature: celsius and fahrenheit

FAU M. Hartisch Decision Theory April 22, 2024 22/63

23/63

Ratio Scale

- Absolute zero point exists
- Unit is therefore irrelevant
- Ratios meaningful
- For example:
 - Area
 - Sales quantity
 - Fuel consumption

FAU M. Hartisch Decision Theory April 22, 2024

Absolute Scale

- Ratio scale with a fixed unit
- Ratios and differences possible
- For example:
 - Income

FAU M. Hartisch Decision Theory April 22, 2024 24/63

Basic Models of Decision Theory

- Now learning two ways to formalize a decision problem
- result matrix / decision matrix
- Decision tree (not the same as in Al)

FAU M. Hartisch Decision Theory April 22, 2024 26/63

Formulation of a basic model

Action Field or Action Space

• Finite or infinite set of mutually exclusive action alternatives a_i , i = 1, 2, ..., m, = Action field

Environmental States or State Space

- Finite number of outcome-influencing factors, the so-called environmental states s_j , j = 1, 2, ..., n
- Determine the decision-maker's action consequences

Requirements for Action Space

- Must include all alternatives (including non-action alternative, if possible)
- The decision-maker must and may choose exactly one alternative
- Finite or infinite number of actions possible

FAU M. Hartisch Decision Theory April 22, 2024 28/63

What does *n* mean?

- n is the number of environmental states
- Two types of decision situations:
 - \circ *n* = 1: Decisions under certainty
 - ► Future development can be precisely predicted
 - ► We already know the occurring environmental state
 - \circ n > 1: Decisions under risk or uncertainty
 - ► Future cannot be predicted with certainty
 - ► Have an idea of the alternatively possible environmental states

FAU M. Hartisch Decision Theory April 22, 2024 29/63

Consequences

- Outcome e_{ij} when the decision-maker chooses action alternative a_i and state s_i occurs
- The decision-maker aims, for example, for the highest possible value
- Problems can be modeled by a decision matrix:

	<i>S</i> ₁	<i>S</i> ₂		\mathcal{S}_j		Sn
a_1	<i>e</i> ₁₁	<i>e</i> ₁₂		<i>e</i> _{1<i>j</i>}		e_{1n}
a_2	<i>e</i> ₂₁	e_{22}		e_{2j}		e_{2n}
÷	ŧ	ŧ	÷	:	÷	÷
a_i	e_{i1}	e_{i2}		e_{ij}		e _{in}
÷	ŧ	:	÷	:	÷	÷
a_m	e_{m1}	e_{m2}		e_{mj}		e _{mn}

General form of the Decision Matrix

- e = g(a, s) is the assignment that indicates the action consequence e for a combination (a, s).
- Assumptions for the occurrence of individual s_i independent of the choice of alternative

Example (finite number of actions)

- Investor has a budget of 200,000 EUR, which he can use as follows:
 - Financial investment in any amount
 - Investment in a maximum of one machine of type A (Investment amount 120,000 EUR)
 - Investment in one or more machines of type B (Investment amount 90,000 EUR)
 - Investment in one or more machines of type C (Investment amount 70,000 EUR)
- Action space includes more than 4 alternatives

FAU M. Hartisch Decision Theory April 22, 2024 32/63

Example (finite number of actions)

i	index	actions
	1	financial investment of 200,000€
	2	invest once in A and financial investment of 80,000€
	3	invest once in A and once in C and financial investment of 10,000€
	4	invest once in B and financial investment of 110,000€
	5	invest twice in B and financial investment of 20,000€
	6	invest once in B and once in C and financial investment of 40,000€
	7	invest once in C and financial investment of 130,000€
	8	invest twice in C and financial investment of 60,000€

Example (infinite number of actions)

A company can produce two chemicals. Both chemicals go through laboratory 1, laboratory 2, and quality control. The following capacities are used:

product	lab 1	lab 2	quality control
chemical 1	10 time units	5 tu	15 tu
chemical 2	8 tu	10 tu	12 tu
capacity	2400 tu	1500 tu	3000 tu

FAU M. Hartisch Decision Theory April 22, 2024 34/63

Example (infinite number of actions)

Action space:

$$10x_1 + 8x_2 \le 2,400$$

$$5x_1 + 10x_2 \le 1,500$$

$$15x_1 + 12x_2 \le 3,000$$

$$x_1, x_2 \ge 0$$

State

Possible constellation of factors relevant in a situation (value combination of different relevant environmental data)

State Space

The set $S = \{s_1, s_2, \dots, s_n\}$ of all relevant environmental states or situations s_1, s_2, \dots, s_n is called the state space.

Cases regarding knowledge of the true environmental states:

- Certainty: today's or future true environmental state is known
- Risk: probabilities can be assigned to states
- Uncertainty: no probabilities can be assigned to states

Example

- Retailer can increase the selling price by 18% to 11.80 EUR (a_1) or not (a_2)
- In the first case, sales quantities (x) of 100 or 120 are possible
- In the second case, quantities of 120 or 140 are possible
- The following approach is intuitive but incorrect:

	S_1	<i>S</i> ₂	<i>S</i> ₃
	(x = 100)	(x = 120)	(x = 140)
a_1	1,180	1,416	1,652
a_2	1,000	1,200	1,400

Incorrect Example

- here, a_1 is clearly the better alternative
- but state s_3 cannot occur when choosing a_1
- state s₁ cannot occur when choosing a₂

Incorrect Example

- here, a_1 is clearly the better alternative
- but state s_3 cannot occur when choosing a_1
- state s₁ cannot occur when choosing a₂

FAU M. Hartisch Decision Theory

Example

- Better model: environmental states are the alternative possible combinations of sales quantities achievable at prices of 10EUR and 11.80EUR
- Thus, four alternative possible combinations

FAU M. Hartisch Decision Theory April 22, 2024 39/63

Example

• With each combination as an environmental state, the result matrix is obtained

- Correct model
- a_1 no longer clearly better

Reminder: Result Matrix in General Form

	<i>S</i> ₁	<i>S</i> ₂		S_j		Sn
a_1	<i>e</i> ₁₁	<i>e</i> ₁₂		<i>e</i> _{1<i>j</i>}		e_{1n}
a_2	<i>e</i> ₂₁	e_{22}		e_{2j}		e_{2n}
		i				
a_i	e_{i1}	e_{i2}		e _{ij}		e _{in}
•	ŧ	ŧ	į	i	į	ŧ
a _m	e_{m1}	e_{m2}		e _{mj}		e _{mn}

Extension:

- Multiple criteria
- Multiple time steps

Extension: Multi-Criteria

• Instead of a one-dimensional result e_{ij} , multiple criteria $1, \ldots, k$

	s_1	Sn
a_1	$(e_{11}^1,\ldots,e_{11}^k) \ (e_{21}^1,\ldots,e_{21}^k)$	 $(e_{1n}^1,\ldots,e_{1n}^k)$
a_2	$(e_{21}^1,\ldots,e_{21}^k)$	 $(e_{2n}^1,\ldots,e_{2n}^k)$
÷		:
a_m	$(e_{m1}^1,\ldots,e_{m1}^k)$	 $(e_{mn}^1,\ldots,e_{mn}^k)$

FAU M. Hartisch Decision Theory April 22, 2024 42/63

Extension: Multi-Criteria and Multiple Time Steps

• Instead of a one-dimensional result e_{ij} , multiple criteria $1, \ldots, k$ and multiple time steps $1, \ldots, t$

	<i>S</i> ₁		S _n
a ₁	$\left(egin{matrix} e_{11}^{11} & \dots & e_{11}^{k1} \\ \vdots & \vdots & \vdots \\ e_{1}^{1t} & & e_{1}^{kt} \end{matrix} \right)$		$\begin{pmatrix} e_{1n}^{11} & \dots & e_{1n}^{k1} \\ \vdots & \vdots & \vdots \\ e_{1t}^{1t} & e_{1t}^{kt} \end{pmatrix}$
:	\e ₁₁ e ₁₁ /	:	: \\e_{1n} \cdots \e_{1n} \/ \cdots
	$\left(egin{array}{cccc} e_{m1}^{11} & \dots & e_{m1}^{k1} \\ \vdots & \vdots & \vdots \end{array}\right)$		$\left(egin{matrix} e_{mn}^{11} & \dots & e_{mn}^{k1} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & kt \end{matrix} \right)$
a _m	$\left(\begin{array}{ccc} \vdots & \vdots & \vdots \\ e_{m1}^{1t} & \dots & e_{m1}^{kt} \end{array}\right)$	•••	$\left(egin{array}{cccc} \vdots & \vdots & \vdots & \vdots \ e_{mn}^{1t} & \ldots & e_{mn}^{kt} \end{array} ight)$

FAU M. Hartisch Decision Theory April 22, 2024 43/63

Preferences

How do I convert results

$$g(a_i, s_j) = \begin{pmatrix} e_{ij}^{11} & \dots & e_{ij}^{k1} \\ \vdots & \vdots & \vdots \\ e_{ij}^{1t} & \dots & e_{ij}^{kt} \end{pmatrix}$$

into a single value $\Phi(a_i)$?

- Height preference relation
- Type preference relation
- Time preference
- Risk or uncertainty preference relation

Preferences

- Height preference relation
 - Maximum?
 - Minimum?
 - At least a certain value?
 - A more complex function?

FAU M. Hartisch Decision Theory April 22, 2024 45/63

Preferences

- Type preference relation
 - O How to weigh the criteria against each other?
 - o For example, weights

FAU M. Hartisch Decision Theory April 22, 2024 46/63

Preferences

- Time preference
 - Our How to weigh the time steps against each other?
 - For example, weights (tomorrow more important than the day after tomorrow)
 - For example, "prosperity in 100 years"

FAU M. Hartisch Decision Theory April 22, 2024 47/63

Preferences

- Risk or uncertainty preference relation
 - \circ How to weigh different states s_1, \ldots, s_n against each other?
 - For example: Expected value
 - For example: Worst-case

FAU M. Hartisch Decision Theory April 22, 2024 48/63

Decision Trees

- Alternative to decision matrix
- Easier to show different consequences
- Decision:
- Event: O
- State: ◀

FAU M. Hartisch Decision Theory

Decision Trees: Example

- Company is faced with the question of whether product development should be continued or abandoned
- Estimated probability of successful completion of development is 30%
- If successful, the decision must be made whether to build large or small production capacity
- Estimated probability of high demand is 60%, for low demand is 40%

FAU M. Hartisch Decision Theory April 22, 2024 50/63

Conversion: Decision Tree ← Decision Matrices

	Successful development high demand	Successful development low demand	Development fails
	$p_1 = 0.18$	$p_2 = 0.12$	$p_3 = 0.7$
Continue development. If successful, large capacity	Consequence 1	Consequence 2	Consequence 5
Continue development. If successful, small capacity	Consequence 3	Consequence 4	Consequence 5
Abort development	Consequence 6	Consequence 6	Consequence 6

FAU M. Hartisch Decision Theory

Example

- We can either invest in Stock A or Stock B
- Probabilities and outcomes for...
 - Stock A rises: 60%, +10 Euro
 - Stock A falls: 40%, -20 Euro
 - Stock B rises: 50%, +5 Euro
 - Stock B falls: 50%, -5 Euro

FAU M. Hartisch Decision Theory April 22, 2024 53/63

Example: Decision Tree

Example

• **Incorrect** decision matrix:

- What is the problem?
 - Undefined states
 - Probabilities sum up to a value over 1

FAU M. Hartisch Decision Theory

Example, correct:

Correct model:

• Also correct:

Example

See example on blackboard

FAU M. Hartisch Decision Theory April 22, 2024 57/63

Decision Under uncertainty

- 1. Game situation: s_i depends on the decisions of rational (opponent) players (e.g., Prisoner's Dilemma)
- 2. s_j is determined "by nature" (blind opponent)
 - Uncertainty: no known probabilities
 - Risk: probabilities are known

FAU M. Hartisch Decision Theory April 22, 2024 58/63

Risk Situations

- Probabilities p_j for s_j , $\sum_{j \in [n]} p_j = 1$ known
- Subjective probabilities: formed by speculation or conviction
- Objective probabilities: formed by statistical observation

FAU M. Hartisch Decision Theory April 22, 2024 59/63

Brief Summary: Probabilities

Ingredients:

- Set Ω , the sample space
 - e.g., {1, 2, 3, 4, 5, 6} when rolling a dice
- σ -algebra Σ on Ω
 - $\circ \Omega \in \Sigma$
 - $\circ A \in \Sigma \Rightarrow \Omega \setminus A \in \Sigma$
 - $\circ A_1, A_2, \ldots \in \Sigma \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$
 - \circ e.g., Σ includes all subsets of $\{1, 2, 3, 4, 5, 6\}$ when rolling a dice
- $P: \Sigma \to [0, 1]$ is a probability distribution if
 - $\circ P(\Omega) = 1$
 - $\circ P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for pairwise disjoint $A_i \in \Sigma$
 - \circ e.g., $P(A) = \frac{1}{6}|A|$ when rolling a dice

Example: Rolling a Dice

- *A* ="even number"
 - \circ $A = \{2, 4, 6\}$
 - P(A) = 3/6
- B = "odd number"
 - \circ *B* = {1,3,5}
 - P(B) = 3/6
- $A \cup B$ = "even or odd number"
 - \circ $A \cup B = \{1, 2, 3, 4, 5, 6\}$
 - \circ $P(A \cup B) = 1$

Brief Summary: Probabilities

- Ω = all possible outcomes = all points
- Σ = subsets; $A, B \in \Sigma$
- Rules:
 - $\circ P(\emptyset) = 0$
 - $\circ P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - \circ if A, B are disjoint: $P(A \cup B) = P(A) + P(B)$
 - $P(A|B) = P(A \cap B)/P(B)$ conditional probability
 - $P(A \cap B) = P(A) \cdot P(B) \Leftrightarrow A,B$ are independent

Quiz

Question 1 (Yes/No)

When rolling a dice, the outcomes "even number" and "4" are independent.

Question 2 (Yes/No)

The omelette problem is a case of decision under risk.

Question 3

Convert this decision matrix into a tree:

	S_1	s_2
	0.5	0.5
a_1	6	4
a_2	8	2

Quiz

Question 1 (Yes/No)

When rolling a dice, the outcomes "even number" and "4" are independent.

No.

Question 2 (Yes/No)

The omelette problem is a case of decision under risk.

Question 3

Convert this decision matrix into a tree:

	S_1	<i>S</i> ₂
	0.5	0.5
a_1	6	4
a_2	8	2

Quiz

Question 1 (Yes/No)

When rolling a dice, the outcomes "even number" and "4" are independent.

No.

Question 2 (Yes/No)

The omelette problem is a case of decision under risk.

Yes: uncertain with probabilities

Question 3

Convert this decision matrix into a tree:

	S_1	S_2
	0.5	0.5
a_1	6	4
a_2	8	2

Quiz

Question 1 (Yes/No)

When rolling a dice, the outcomes "even number" and "4" are independent.

No.

Question 2 (Yes/No)

The omelette problem is a case of decision under risk.

Yes: uncertain with probabilities

Question 3

Convert this decision matrix into a tree:

	<i>S</i> ₁	<i>S</i> ₂
	0.5	0.5
a_1	6	4
a_2	8	2

See drawing

Quiz

Question 1 (Yes/No)

When rolling a dice, the outcomes "even number" and "4" are independent.

No.

Question 2 (Yes/No)

The omelette problem is a case of decision under risk.

Yes: uncertain with probabilities

Question 3

Convert this decision matrix into a tree:

	<i>S</i> ₁	<i>S</i> ₂
	0.5	0.5
a_1	6	4
a_2	8	2

See drawing

Thank you!