

In the claims:

Presented below are the claims, as amended, with changes entered and not marked.

1

1 1. (Currently Amended) A system comprising a central processing unit (CPU)
2 including power management logic to enable the CPU to ~~operate in~~ execute a first
3 quantity of instructions per cycle ~~execution mode~~ whenever the temperature of the CPU
4 exceeds ~~the~~ a predetermined threshold and to ~~operate in~~ execute a second quantity of
5 instructions per cycle ~~execution mode~~ whenever the temperature of the CPU is below the
6 predetermined threshold, ~~wherein the CPU executes a first quantity of instructions per~~
7 ~~cycle in the first execution mode and executes a second quantity of instructions per cycle~~
8 ~~in the second execution mode.~~

1 2. (Original) The system of claim 1 wherein the power management logic comprises:
2 a thermal sensor;
3 a digital filter coupled to the thermal sensor; and
4 an interrupt generating hardware coupled to the digital filter, wherein the interrupt
5 generating hardware generates a first interrupt whenever the temperature of the CPU
6 exceeds the predetermined threshold and generates a second interrupt whenever the
7 temperature of the CPU is below the predetermined threshold.

1 3. (Original) The system of claim 2 wherein the power management logic
2 further comprises an analog to digital converter coupled between the thermal sensor and
3 the digital filter.

1 4. (Original) The system of claim 2 further comprising programmable array
2 logic (PAL), wherein the PAL includes an interrupt handler for receiving the first and
3 second interrupts.

1 5. (Original) The system of claim 4 wherein the power management logic
2 further comprises:
3 an instruction execution unit coupled to the interrupt handler; and
4 an artificial activity generator coupled to the interrupt handler.

1 6. (Previously Presented) The system of claim 5 wherein the instruction
2 execution unit executes six instructions per cycle in the first execution mode whenever
3 the die temperature is below the predetermined threshold temperature and executes one
4 instruction per cycle in the second execution whenever the die temperature is above the
5 predetermined threshold temperature.

1 7. (Original) The system of claim 5 wherein the artificial activity generator
2 causes the CPU artificial activity generator to suspend artificial activity within the CPU
3 whenever the die temperature is above the predetermined threshold temperature.

1 8. (Currently Amended) A method comprising:
2 determining whether the temperature of a central processing unit (CPU) exceeds a
3 predetermined threshold;
4 executing a first quantity of instructions per cycle generating a first interrupt if the
5 temperature of the CPU exceeds the predetermined threshold; and

6 executing a second quantity of instructions per cycle if the temperature of the
7 CPU is below the predetermined threshold.

8 transitioning from a first execution mode to a second execution mode, wherein the
9 CPU executes a first quantity of instructions per cycle in the first execution mode and
10 executes a second quantity of instructions per cycle in the second execution mode.

1 9. (Currently Amended) The method of claim 8 further comprising wherein the
2 process of transitioning from the first execution mode to the second execution mode
3 comprises:

4 generating a first interrupt if the temperature of the CPU exceeds the
5 predetermined threshold;

6 interrupting an artificial activity mode; and

7 transitioning from a full instruction execution mode to a single instruction
8 execution mode.

1 10. (Original) The method of claim 9 further comprising:

2 suspending the execution of code at the CPU after generating the first interrupt;
3 and

4 resuming the execution of code at the CPU after transitioning to the single
5 instruction execution mode.

1 11. (Original) The method of claim 10 further comprising:

2 determining whether the temperature of the CPU exceeds the predetermined
3 threshold after transitioning to the single instruction execution mode; and

4 terminating the operation of the CPU if the temperature of the CPU exceeds the
5 predetermined threshold after transitioning to the single instruction execution mode.

1 12. (Original) The method of claim 10 further comprising:
2 determining whether the temperature of the CPU exceeds the predetermined
3 threshold after transitioning to the single instruction execution mode; and
4 generating a second interrupt if the CPU does not exceed the predetermined
5 threshold after transitioning to the single instruction execution mode.

1 13. (Original) The method of claim 12 further comprising transitioning from the
2 second execution mode to the first execution mode.

1 14. (Original) The method of claim 13 wherein the process of transitioning from
2 the second execution mode to the first execution mode comprises:
3 resuming the artificial activity mode; and
4 transitioning from the single instruction execution mode to the full instruction
5 execution mode.

1 15. (Original) The method of claim 12 wherein the first interrupt is a high
2 temperature interrupt and the second interrupt is a normal temperature interrupt.

1 16. (Previously Presented) A central processing unit (CPU) comprising:
2 a thermal sensor; and
3 an instruction execution unit to generate a first quantity of instructions per cycle
4 in a first execution mode whenever the thermal sensor measures temperature exceeding a
5 predetermined threshold and to generate a second quantity of instructions per cycle in a

6 second execution mode whenever the thermal sensor measures temperature below the
7 predetermined threshold.

1 17. (Previously Presented) The CPU of claim 16 further comprising:
2 interrupt generating hardware coupled to generate a first interrupt whenever the
3 thermal sensor measures a temperature that exceeds the predetermined threshold and
4 generates a second interrupt whenever the thermal sensor measures a temperature below
5 the predetermined threshold.

1 18. (Previously Presented) The CPU of claim 17 further comprising an
2 artificial activity generator.

1 19. (Previously Presented) The CPU of claim 18 wherein the artificial activity
2 generator causes the artificial activity generator to suspend artificial activity within the
3 CPU whenever the die temperature is above the predetermined threshold temperature.

1 20. (Currently Amended) Power management logic comprising:
2 a thermal sensor; and
3 an instruction execution unit to generate a first quantity of instructions per cycle
4 in a first execution mode whenever the thermal sensor measures a temperature exceeding
5 a predetermined threshold and to generate a second quantity of instructions per cycle in a
6 second execution mode whenever the thermal sensor measures temperature below the
7 predetermined threshold; and
8 interrupt generating hardware to generate a first interrupt whenever the thermal
9 sensor measures a temperature that exceeds the predetermined threshold and generates a

10 second interrupt whenever the thermal sensor measures a temperature below the
11 predetermined threshold.

1 21. (Currently Amended) The power management logic of claim 20 further
2 comprising:

3 ~~interrupt generating hardware to generate a first interrupt whenever the thermal~~
4 ~~sensor measures a temperature that exceeds the predetermined threshold and generates a~~
5 ~~second interrupt whenever the thermal sensor measures a temperature below the~~
6 ~~predetermined threshold~~

7 an analog to digital converter coupled to the thermal sensor.

1 22. (Previously Presented) The power management logic of claim 20 further
2 comprising an artificial activity generator.

1 23. (Previously Presented) The power management logic of claim 22 wherein
2 the artificial activity generator causes the artificial activity generator to suspend artificial
3 activity within the CPU whenever the die temperature is above the predetermined
4 threshold temperature.

1 24. (Currently Amended) The power management logic of claim 21 further
2 comprising:
3 ~~an analog to digital converter coupled to the thermal sensor; and~~
4 a digital filter coupled to the analog to digital converter and the interrupt
5 generating hardware.