

ک ک

The biorefinery concept

5

Potential → Exploiting the synergies among different processes:

- > Residual fuels (unconverted syngas, char, tar) can be used to produce heat and power both for internal use and for export.
- > Waste process heat can be efficiently recovered for heat & power production.
- Processes can use efficiently produced heat (steam).
- > No need to push chemical conversion processes if the unconverted feedstock is efficiently valorized as heat and / or power.

Drawback → Very complex system, entailing a number of technologies:

- > TC process island to convert biomass into easier intermediate (e.g. syngas).
- > Purification island to remove all unwanted and / or pollutant species.
- > Synthesis island to synthetize final products (fuels, chemicals).
- > Power island to recover waste heat a fuel as useful heat and power.

F. Viganò

POLITECNICO DI MILANO

Lecture outline

6

- The biorefinery concept
- Syngas cleaning
 - > Tar removal
- Syngas applications
 - > FT (Fisher-Tropsch) process
 - ➤ DME (DiMethyl Ether) process
- Examples of integrated bio-refineries
 - > Production of FT
 - Production of DME
 - Production of MixOH

F. Viganò

Syngas cleaning

7

Bio-syngas, as well as Coal-syngas, contains a set of compounds which may cause pollution, damage internal combustion engines (both gas turbines and reciprocating engines), as well as poison the catalyst materials used in synthesis reactors.

The main contaminants are:

- 1. TAR (heavy hydrocarbons)
- 2. ALKALI SALTS / METALS (CaCO₃, KCN, Na₂S...)
- 3. COS and H₂S
- 4. DUST (fly ashes + unconverted carbon particles entrained by the gas)
- 5. NH₃ (ammonia)
- 6. HCl (hydrochloric acid) and Cl (Chloride)

While boilers can accept these contaminants without major issues, gas engines, gas turbines and chemical reactors can accept only very limited amounts of these contaminants.

F. Viganò

Syngas cleaning

8

mg/Nm³	TAR	DUST	ALKALI	NH ₃	CHLORIDE	COS+H2S
Gas engines	< 50	< 50	< 1	< 50	< 10	< 100
Gas turbines	< 5	< 30	< 0.25	0*	0**	< 250 ppm**
Chemicals and syn-fuels production	< 5	0	0	0	0	0

Particles are removed by means of FILTERS and SCRUBBERS: at temperature

Alkali condense and solidify into small particles which can be captured by means of dust filters/scrubbers.

NH3 must be removed not only to preserve the downstream equipment but also to limit NO_X production since part of NH₃ is converted into NO_X during combustion. NH₃ can be destroyed/converted into N₂ and H₂ over Ni and Fe based catalysts. Ni and Fe based catalysts are usually adopted for tar reduction. As an alternative, NH3 can be removed by means of water scrubbing.

F. Viganò

 $^{^*}$ NH $_3$ and HCN would generate fuel bound NO $_\chi$ ** CI (HCI) and Sulphur species (H $_2$ S + COS) will cause rapid corrosion of hot section parts.

Tar removal (secondary reduction)

12

Fluidized bed and fixed bed gasifiers have the disadvantages of generating significant amount of tar which may cause clogging/plugging of the downstream equipment (as well as deactivation of catalysts).

Tar can be removed from the syngas stream by means of two approaches:

- 1. Physical removal devices (cyclones, barrier filters, wet scrubbers, wet electrostatic precipitators): they capture and remove also alkali salts which may be contained in the syngas. Below 600 °C alkali salts become solid particles ($< 5 \mu m$) which can be captured by filters and wet scrubbers or ESP.
- 2. Cracking systems: thermal or catalytic cracking.

F. Viganò

Physical removal

13

<u>Barrier filters</u>: candle filters (ceramic or metallic) are porous solids which do not allow the passage of the finest solid particles. These particles form a layer, called FILTER CAKE which stops tar molecules. Un-condensable gases (CO, CO_2 , H_2 etc.) can pass through the filter cake because of their smaller size. Fabric filters are based on the same operating principle of candle filters but can operate at lower temperatures (250 °C).

<u>Wet electrostatic precipitators</u>: An ESP is a particulate control device that uses electrostatic forces to move particles entrained within an exhaust stream onto collection surfaces. The entrained particles are electrostatically charged when they pass through a corona, a region where gaseous ions flow. Electrodes in the center of the flow path are maintained at high voltage and generate the electrical field that forces the particles to the collector walls.

F. Viganò

POLITECNICO DI MILANO

Physical removal

14

<u>Wet scrubbers</u>: have a very high removal efficiency ($\varepsilon_{TAR} \sim 90\%$), however they need a system to separate tars from the solvent (either water or oil).

Tar is absorbed by water because most of the molecules are polar. Scrubbers remove also NH₃, alkali, chlorides and dust.

F. Viganò

Cracking systems

15

Thermal cracking consists in increasing the syngas temperature up to 1100 °C by introducing extra oxygen into the syngas downstream of the gasifier. This method is effective and cheap but it decreases the CGE.

Tar molecules are broken into smaller molecules: CO, H_2 , CH_4 and H_2O . However, due to the post-combustion taking place at the injection of O_2 into the syngas, part of the fuel species (CH_4 , CO, H_2) are oxidized and then the syngas LHV is decreased. As a result, the CGE of the overall gasification unit (with tar cracking system) is penalized.

F. Viganò

POLITECNICO DI MILANO

Cracking systems

16

Catalytic cracking consists in passing the tar rich syngas through a catalytic bed which favors the achievement of the full chemical equilibrium (it pushes the syngas composition toward chemical equilibrium, where no tar is present).

Depending on the syngas composition, the catalyst promotes the following two reactions:

$$C_{n}H_{m} + nH_{2}O \rightarrow (n + \frac{m}{2})H_{2} + nCO$$
 STEAM _ REFORMING _ OF _ HYDROCARBONS
$$C_{n}H_{m} + nCO_{2} \rightarrow \frac{m}{2}H_{2} + 2nCO$$
 DRY _ REFORMING

These catalysts are the same adopted in the oil industry to process hydrocarbons and are commercially available. They operate at temperatures of 800 - 900 °C. Issues are due to the deactivation and attrition of the catalyst. Bio-syngas is rich of entrained solid particles and metal/alkali compounds which damage the catalyst surface reducing progressively its effectiveness.

Catalytic tar crackers convert also NH₃ into N₂ and H₂.

F. Viganò

Fischer Tropsch (FT) process

21

Encouraging performance led to World War II fuel supply \rightarrow First plant built in Germany in 1934, by 1938, 660,000 tons per-annum produced.

http://wiredspace.wits.ac.za/jspui/bitstream/10539/11587/4/Chapter%202%20-%20Literature%20review%20-%20FTS.pdf

Year	Company or companies	Technology	Production level (bpd)	Country
1955	Sasol	Sasol I	500	South
1733	Sasoi	Sasori	300	Africa
1980	Sasol	Sasol II	11 000 (later 20 000)	South Africa
1982	Sasol	Sasol III	11 000 (later 20 000)	South Africa
1992	PetroSA	Sasol's slurry phase technology	20 000	South Africa
1993	Shell	Shell middle distillate synthesis (SMDS) fixed-bed technology	15 000	Malaysia
2005	Sasol and Qatar Petroleum, in alliance with Chevron	Sasol's slurry phase technology	34 000	Qatar
2007	Chevron Nigeria (Sasol/Chevron alliance) and Nigeria National Petroleum Company	Sasol's slurry phase technology	34 000	Nigeria
2009	Shell and Qatar Petroleum	Shell middle distillate synthesis (SMDS) fixed-bed technology	140 000	Qatar
2011	Exxon Mobile and Qatar Petroleum	Advanced gas conversion for the 21st century (AGC-21) technology	154 000	Qatar

Reaction step / mechanism

22

- Associative adsorption of CO and splitting of C/O bond
- Dissociative adsorption of 2 H₂
- > Transfer of 2 H to the oxygen to give H₂O
- Desorption of H₂O
- > Transfer of 2 H to the carbon to give CH₂

Alkane (paraffins) formation

$$nCO + (2n+1)H_2 \rightarrow C_nH_{2n+2} + nH_2O$$

- \triangleright Favored by high H_2 /CO ratio.
- > Strong hydrogenating catalyst is needed.

Alkene (olefins) formation

$$nCO + 2nH_2 \rightarrow C_nH_{2n} + nH_2O$$

- ➤ Favored by low H₂/CO ratio.
- > Less strong hydrogenating catalyst is needed.

Water gas shift reaction helps adjusting H_2/CO ratio.

F. Viganò

DME – DiMethyl Ether & Methanol							
	DME	Diesel	Propane	Butane	Methanol		
Formula	CH ₃ OCH ₃	CH _{1.83}	C ₃ H ₈	C ₄ H ₁₀	CH₃OH		
MM, kg/kmol	46.07	190~220	44.11	58.13	32.01		
Boiling point, °C	-24.9	180~360	-42	-0.5	65		
Vapour pressure, bar	5.1		8.4	2.1	0.32		
Liquid density, kg/m ³	668	840	501	610	790		
Liquid viscosity x 10 ⁴ , Pa*s	0.15	5.35~6.28	0.10	0.18	0.768		
LHV, MJ/kg	28.43	42.5	46.36	45.74	19.5		
Cetane number	55~60	40~55	Octane number →		112		
Vaporization heat, kJ/kg	410	250	370	358	1110		
C, % by mass	52.2	86.7	81.8	82.8	37.5		
O, % by mass	34.8	0	0.0	0.0	50.0		
H, % by mass	13.0	13.3	18.2	17.2	12.5		
g of CO ₂ per MJ of LHV	67.3	74.2	64.7	66.4	70.5		
F. Viganò POLITECNIO							

DME - WHY?

33

- Excellent diesel cycle fuel (high cetane)
- Easy to store and transport (liquefies at low pressure & no venting)
- Clean (near zero soot) combustion (no DPF)
- Cost Effective
- High well-to-wheel efficiency
- Low Global Warming Potential
 - GWP = 1.2 @ 20 yr; .3 @100 yr
- · Synthesis from variety bio based feedstocks
 - High biomass to fuel conversion efficiency
- · Synthesis from natural gas
- · Power density for long-haul
- · Non toxic

3

Actions Needed to Move Forward 39

Engine Development

- Combustion optimization
- · Emission development and certification
- · Component refinement and cost
- · Reliability and durability demonstration

Fuel Infrastructure

- Fuel certification
- Infrastructure build out starting with dedicated and regional fleets
- Process refinement: efficiency & cost

10

Production of FT → Syngas cooling

73

Syngas must be cooled down to ambient temperature for the Rectisol purification.

Syngas cooling takes place in two steps:

1) Water quench (950°C → 210°C) + possible scrubber

Removal of entrained particulate

Removal of water-soluble compounds (HCN, chlorides and alkali)

Removal of possible condensed tar

2) Thermal recovery (210°C \rightarrow 35°C, with Fe catalyst; 410°C \rightarrow 35°C with Co catalyst)

Superheating of LP steam

Evaporation of LP steam

Preheating of LP feedwater

Evaporation of HP steam

Preheating of IP and HP steam

Evaporation of IP steam

F. Viganò

POLITECNICO DI MILANO

Production of FT → WGS (with Co catalyst)

74

 $\rm H_2/CO$ ratio in syngas from biomass gasification is circa one. FT Co-based catalyst requires $\rm H_2/CO$ ratio equal to 2. A WGS (Water-Gas-Shift) unit is required to change syngas composition.

Specs for acidic CoMoS catalyst:

Range of operating temperature = 250°C - 500°C

Concentration of $H_2S \ge 300 \text{ ppm}$

Since biomass syngas contains about 100 ppm of H_2S , an $\underline{H_2S}$ -rich stream is recirculated from the Rectisol unit to upstream of WGS reactor.

	Fe catalyst	Co catalyst
	2 GTs GE6FA	2 GTs GE6FA
	Biomass: 89.30 kg/s	Biomass: 98.17 kg/s
W/o	Th. input: 724 MW (PCI)	Th. input: 796 MW (PCI)
recirc.	Production FT: 2372 bbl/day	Production FT: 2644 bbl/day
	168 MW	187 MW
	Net electric power: 199 MW	Net electric power: 197 MW
	1 GT GE6FA	1 GT GE6FA
	Biomass: 71.10 kg/s	Biomass: 75.35 kg/s
With	Th. input: 577 MW (PCI)	Th. input: 611 MW (PCI)
recirc.	Production FT: 2992 bbl/day	Production FT: 3310 bbl/day
	212 MW	234 MW
	Net electric power: 94 MW	Net electric power: 91 MW

DME separation Gas-liquid separation 60.6 bar, 40 °C
Operating conditions 260 °C, 62.5 bar Saturated steam produced 38 bar DME separation Gas-liquid separation 60.6 bar, 40 °C
Saturated steam produced 38 bar DME separation Gas-liquid separation 60.6 bar, 40 °C
DME separation Gas-liquid separation 60.6 bar, 40 °C
Gas-liquid separation 60.6 bar, 40 °C
DME purity 99.80%
Methanol dehydration reactor
Operating conditions Inlet T, p: 250 °C, 15 bar; Adiabatic, conversion efficiency 80%

Production of MixOH 93 $CO + 2H_2 \leftrightarrow CH_3OH$ $\Delta H_{298}^0 = -94,084 \text{ kJ/mol}$ $CH_3OH + H_2 \rightarrow CH_4 + H_2O$ ΔH^{0}_{298} = -115,394 kJ/mol $\Delta H_{298}^{0} = -165,294 \text{ kJ/mol}$ $CH_3OH + CO + 2H_2 \rightarrow C_2H_5OH + H_2O$ $C_2H_5OH + CO + 2H_2 \rightarrow C_3H_7OH + H_2O \Delta H_{298}^0 = -151,534 \text{ kJ/mol}$ ΔH^{0}_{298} = - 41,270 kJ/mol $CO + H_2O \leftrightarrow H_2 + CO_2$ > Ru-based homogenous catalyst > It is a modified methanol synthesis catalyst (alkali-doped ZnO/chromia or Cu-based) ➤ Fischer-Tropsch like catalysts (supported Co and Fe) ➤ MoS₂-based catalysts with alkali promoters > Sulphur tolerant > Shift active > Selective toward linear alcohols F. Viganò

Production of MixOH → Reactor specs Clean syngas parameters | H₂S molar fraction ~50 ppm | Unconverted syngas recycle ratio | 90% | Methanol recycle ratio | 100% | Reactor | Type: fixed bed | Reaction temperature ~350 °C | Pressure ~100 bar | GHSV ~3000 liters/h/kg of catalyst | Molecular sieve | 20% ethanol and 97% water are removed to purge gas