Supplementary File 1

January 2023

Supplementary File 1 for "Rapid literature mapping on the recent use of machine learning for wildlife imagery"

Supplementary methods

Benchmarking set of papers

We used a set of 10 manually-located relevant papers from our scoping searches as a benchmark set during search string development. This benchmarking set was used for benchmarking precision of search strings for Scopus database to ensure that most of the relevant can be captured while minimising the number of irrelevant hits.

References of articles in the benchmarking set:

- 1. Whytock, R.C., Swiezewski, J., Zwerts, J.A., Bara-Slupski, T., Koumba Pambo, A.F., Rogala, M., Bahaa-el-din, L., Boekee, K., Brittain, S., Cardoso, A.W., Henschel, P., Lehmann, D., Momboua, B., Kiebou Opepa, C., Orbell, C., Pitman, R.T., Robinson, H.S., Abernethy, K.A. Robust ecological analysis of camera trap data labelled by a machine learning model (2021) Methods in Ecology and Evolution, 12 (6), pp. 1080-1092. DOI: 10.1111/2041-210X.1357
- 2. Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J. A deep active learning system for species identification and counting in camera trap images (2021) Methods in Ecology and Evolution, 12 (1), pp. 150-161. DOI: 10.1111/2041-210X.13504
- 3. Villon, S., Mouillot, D., Chaumont, M., Subsol, G., Claverie, T., Villeger, S. A new method to control error rates in automated species identification with deep learning algorithms (2020) Scientific Reports, 10 (1), art. no. 10972. DOI: 10.1038/s41598-020-67573-7
- Ferreira, A.C., Silva, L.R., Renna, F., Brandl, H.B., Renoult, J.P., Farine, D.R., Covas, R., Doutrelant, C. Deep learning-based methods for individual recognition in small birds (2020) Methods in Ecology and Evolution, 11 (9), pp. 1072-1085. DOI: 10.1111/2041-210X.13436
- 5. Patel, A., Cheung, L., Khatod, N., Matijosaitiene, I., Arteaga, A., Gilkey, J.W., Jr. Revealing the unknown: Real-time recognition of galápagos snake species using deep learning (2020) Animals, 10 (5), art. no. 806. DOI: 10.3390/ani10050806
- Cheng, K., Cheng, X., Wang, Y., Bi, H., Benfield, M.C. Enhanced convolutional neural network for plankton identification and enumeration (2019) PLoS ONE, 14 (7), art. no. e0219570. DOI: 10.1371/journal.pone.0219570
- 7. Tabak, M.A., Norouzzadeh, M.S., Wolfson, D.W., Sweeney, S.J., Vercauteren, K.C., Snow, N.P., Halseth, J.M., Di Salvo, P.A., Lewis, J.S., White, M.D., Teton, B., Beasley, J.C., Schlichting, P.E., Boughton, R.K., Wight, B., Newkirk, E.S., Ivan, J.S., Odell, E.A., Brook, R.K., Lukacs, P.M., Moeller, A.K., Mandeville, E.G., Clune, J., Miller, R.S. Machine learning to classify animal species in camera trap images: Applications in ecology (2019) Methods in Ecology and Evolution, 10 (4), pp. 585-590. DOI: 10.1111/2041-210X.13120
- 8. Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., Fortson, L. Identifying animal species in camera trap images using deep learning and citizen science (2019) Methods in Ecology and Evolution, 10 (1), pp. 80-91. DOI: 10.1111/2041-210X.13099
- 9. Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning (2018) Proceedings of the National Academy of Sciences of the United States of America, 115 (25), pp. E5716-E5725. DOI: 10.1073/pnas.1719367115

10. Gomez Villa, A., Salazar, A., Vargas, F. Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks (2017) Ecological Informatics, 41, pp. 24-32. DOI: 10.1016/j.ecoinf.2017.07.004

DOI-based Scopus search string for retrieving articles in the benchmarking set: ((DOI ($10.3390/\mathrm{ani}10050806$) OR DOI ($10.1038/\mathrm{s}41598-020-67573-7$) OR DOI (10.1111/2041-210x.13576) OR DOI (10.1111/2041-210x.13099) OR DOI (10.1111/2041-210x.13504) OR DOI (10.1111/2041-210x.13120) OR DOI (10.1111/2041-210x.13436) OR DOI ($10.1073/\mathrm{pnas}.1719367115$) OR DOI ($10.1016/\mathrm{j.ecoinf}.2017.07.004$) OR DOI ($10.1371/\mathrm{journal.pone}.0219570$))

Search string development for Scopus database:

- 1. Returning 27,730 hits, 9/10 sensitivity: (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR environment* OR biodiversity OR ecolog*))) AND PUBYEAR > 2016
- 2. Returning 7,074 hits, 9/10 sensitivity: (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR (behav* AND within/ 5 classif*)) AND PUBYEAR > 2016
- 3. Returning 3,331 hits, 9/10 sensitivity:

 (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR (behav* AND within/ 5 classif*)) AND NOT ("natural language" OR acoust* OR vocal* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR forest* OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug*))) AND PUBYEAR > 2016
- 4. Returning 2,451 hits, 9/10 sensitivity:

 (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network" OR "random forest*" OR "convolutional neural" OR "convolutional network" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR (behavio* AND within/ 5 classif*) OR (behavio* AND within/ 5 recogn*)) AND NOT ("natural language" OR acoust* OR vocal* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR forest* OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR speech OR proceedings))) AND PUBYEAR > 2016
- 5. Returning 2,853 hits, 10/10 sensitivity:

 (TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR "species label*" OR "species richness" OR (behavio* AND within/ 10 classif*) OR (behavio* AND within/ 10 recogn*)) AND

NOT ("natural language" OR accelomet* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR "tree growth" OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR employee* OR speech OR proceedings))) AND PUBYEAR > 2016

6. Returning 2,051 hits, 9/10 sensitivity:

(TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm" OR "Support Vector") AND (image* OR camera* OR video* OR vision) AND (animal* OR population* OR "species identif*" OR "species label*" OR "species richness" OR (behavio* AND within/ 10 classif*) OR (behavio* AND within/ 10 recogn*)) AND NOT ("natural language" OR "sign language" OR accelomet* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR "tree growth" OR forestry OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR "land cover" OR "land use" OR "vegetation map*" OR galax* OR "Google Earth" OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR employee* OR speech OR proceedings))) AND PUBYEAR > 2016

Literature search

We run a search in Scopus on 2021/10/10 using a pre-piloted search string:

(TITLE-ABS-KEY ((*automatic* OR "machine learning" OR "computer learning" OR "deep learning" OR "neural network*" OR "random forest*" OR "convolutional neural" OR "convolutional network*" OR "learning algorithm*" OR "Support Vector*") AND (image* OR camera* OR video* OR vision) AND (*wild* OR population* OR "species identif*" OR "species label*" OR "species richness" OR (behavio* AND within/ 10 classif*) OR (behavio* AND within/ 10 recogn*)) AND NOT ("natural language" OR "sign language" OR accelomet* OR clinical* OR industr* OR agricult* OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR "tree growth" OR forestry OR hydrolog* OR engineer* OR "oxygen species" OR molec* OR bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR "land cover" OR "land use" OR "vegetation map*" OR galax* OR "Google Earth" OR scan* OR "X-ray" OR "health care" OR participant* OR emotion* OR employee* OR speech OR proceedings)) AND PUBYEAR > 2016

We downloaded 2251 bibliographic records for screening.

The search was updated on to 2022/12/30 to capture all publications from 2021. The search string above was modified by changing PUBYEAR > 2016 to PUBYEAR = 2021. Out of the 751 downloaded records, weremoved all records that have been already screened in the original search and screened remaining 311 records for inclusion. We also considered additional six publications suggested by one of the manuscript reviewer. After screening, we added all extracted records from the search update to the original data set and updated all our analyses.

Inclusion criteria at the title and abstract screening phase

Following PICO framework, we included articles if all criteria below were fulfilled:

• **Population:** wild or semi-wild vertebrate species (exclude domestic or farmed animals, invertebrates, museum specimens).

- Intervention / Innovation: use of computer vision machine learning algorithms (include neural-network type methods, such as deep learning, CNN), support vector, random forest) for automated or semi-automated processing of image data (e.g. from camera traps, video tracking, thermal imaging) at a scale where individual animals are visible (include aerial and drone images (exclude images gathered from satellites, biologing, X-ray, MRI images or equivalent *).
- Comparator / Context: images taken in the wild or semi-wild (includes zoo enclosures, excludes lab-based or agricultural/aquaculture/pet studies).
- Outcomes: analyses focus on animal / species individual recognition/classification or animal behaviour recognition/classification.
- Additional criteria: studies published in last 5 years (2017-2021), peer-reviewed (including full-text conference proceedings).

*Note: Aerial and drone images are used to capture images of medium to large vertebrates, such as birds and ungulates; however, satellite images are only useful for huge mammals such as elephants and whales and require different processing pipelines. Biologging image-based studies attach small cameras to animals to record their movements and activities only and usually require capturing the animals before releasing them back in the wild. X-ray and MRI images are typically used in a laboratory setting or at sub-individual scale and were excluded.

Abstract screening procedure and results

We used Rayyan QCRI software to screen unique bibliographic records downloaded from Scopus. Three researchers (ML, JT, RF) independently performed the screening assessing titles abstracts and keywords of each article. This screening resulted in 225 articles included for full-text assessment and data extraction. Search update brought up additional 42 potentially relevant articles for full-text assessment and data extraction.

Inclusion criteria at full-text screening

- Full text available
- Full-text studies should fulfill the same criteria as defined for the title and abstract screening phase

Full text screening and data extraction

Out of the 225 papers provisionally included after title and abstract screening, we obtained full-text for 215 papers from the original search. Search update resulted in 41 new articles with full text that were considered for final eligibility and data extraction. One manuscript reviewer suggested 6 additional articles, of which 3 were new and potentially eligible.

For data extraction we used a two-part custom questionnaire implemented as a Google Form (Table S1). To pilot the form, we randomly selected 14 papers for independent screening and extraction by three researchers (ML, JT, RF). We resolved disagreements by discussion until consensus was reached, and we refined the questionnaire form before the main round of full-text screening and data extraction.

One researcher (ML) performed full-text screening and data extraction for the remaining 195 papers. Second researcher (RF) cross-checked 58 of these papers for accuracy and to potentially resolve cases where information provided in the papers was unclear. Data extraction update was performed by ML.

We used GoogleSheet to record data checks and any additional comments. There, we also recorded whether a given paper was used in the pilot rounds, and if it was included or excluded from the final dataset, with a note on the main reason for exclusion.

Table S1 - full-text assessment and data extraction form

Question	Answer options
Paper's title:	[text]
First author's family name:	[text]
Publication year:	[number]
Journal name:	[text]
Article doi:	[text]
C1. Peer-reviewed empirical study	[yes; no; unsure/other]
C2. Is full text available in English?	[yes; no; unsure/other]
C3. Population: wild or semi-wild vertebrate species?	[yes; no; unsure/other]
C4. Intervention / Innovation: use of computer vision machine	[yes; no; unsure/other]
learning algorithms (for automated or semi-automated processing of	
image data at a scale where individual animals are visible)?:	
C5. Comparator / Context: are the studied animals in the wild or semi-wild?	[yes; no; unsure/other]
C6. Outcomes: focus on animal / species individual recognition /	[yes; no; unsure/other]
classification or animal behaviour recognition / classification?:	
Q1. Number of studied species	[number]
Q2. Study species (Latin name)	[text]
Q3. Studied species group:	[mammals; birds; reptiles;
• • •	amphibians; fishes; other/unclear]*
Q4. Used image type source:	[camera trap or surveillance camera
	(fixed); aerial (including drone);
	hand camera (or mobile phone
	camera); other/unclear]*
Q5. Study context or setting:	[wild; semi-wild; unclear/other]*
Q6. Location country/region:	[text]
Q7. Location details:	[text]
Q8. Algorithm type:	[Neural Network; Random forest;
	Gradient boosting model; Support
	Vector Machines; Rule-based
	learners; Decision trees; K-Nearest
	Neighbour; unclear/other]*
Q9. Outcome type:	[counting individuals (at given
•	time); individual recognition
	(re-identification); species
	recognition/classification
	(class/object detection); behaviour
	detection (at given time); tracking
	(following through space);
	behaviour classification (changes
	over time); unclear/other]*
Q10. Analysis code	[yes; no; unclear/other]
	[Jos, 115, different/outer]

Note: * indicates plural variables (i.e. more than one answer option can be chosen).

Each question in the data extraction form (**Table S1**) was followed by a dedicated comment field used to record any additional details, including relevant quotes from the paper. We excluded any papers that were coded as "no" at questions C1 to C6 (full-text screening questions - whether the paper fulfills our inclusion criteria), i.e. these papers were not subject to any further data extraction and analyses.

After data extraction additional data were added to the GoogleSheet, as follows:

- Q7_coordinates: latitude and longitude of the study location, as in the paper or from Google Maps, if not reported
- Q7_location_unclear: 0 = "clear" (location at least at the level of national park, state, province, city, or equivalent reported in the article or inferred from the data set name); 1 = "unclear", location either not reported or cannot be assigned to a specific location (e.g., global data, broad regions such as Arctic, Northern Atlantic, Africa, America)
- Pilot: whether study was used in the piloting phase
- Checked: whether record was cross-checked by an indpendent researcher
- Checking comments: any comments from data extraction checking
- Changed: whether record was changed after cross-checking
- Changed_comment: how record was changed after cross-checking
- Included: whether study was included in the final data set for extraction
- Exclusion reason: main reason for excluding study from the final data set for extraction, if excluded
- Journal category: based on the journal title and Scimago Journal & Country Rank (https://www.scimagojr.com/). The following journals were categorised as multidisciplinary: "Scientific Reports", "Science Advances", "Proceedings of the National Academy of Sciences of the United States of America", "PLoS ONE". The following journals had "ecology" in SUBJECT AREA AND CATEGORY information, or in their title and were thus classified as "ecology": "Behavioral Ecology and Sociobiology", "Ethology", "Biology", Global Ecology and Conservation", "Integrative Zoology", "Mammal Study", "Mammalian Biology", "Wildlife Society Bulletin", "Journal of Coastal Research", "Condor", "Methods in Ecology and Evolution", "Environmental Monitoring and Assessment", "Remote Sensing in Ecology and Conservation", "Ornis Fennica", "Ecology and Evolution", "European Journal of Wildlife Research", "Frontiers in Marine Science", "Conservation Biology", "Animals", "Ecological Informatics". The remaining journals were classified as computer science / technology".

Supplementary Results

This section contains additional tables and plots complementing results presented in the main text of the manuscript.

We screened 257 articles with full-text and extracted data from 223 eligible full-text articles.

```
rawdata <- read_excel(here("data", "mapping_dataset_reconciled_2021_new.xlsx"), sheet = 1)
# dim(rawdata)</pre>
```

Table S2 List of articles excluded at full-text screening, with main reasons for exclusion.

```
#make a table of excluded studies
kbl(rawdata_excl,
    format = "latex",
    align = "l",
    booktabs = TRUE,
    longtable = TRUE,
    linesep = "") %>%
    column_spec(1, width = "1.5cm") %>%
    column_spec(2, width = "5cm") %>%
    column_spec(3, width = "3cm") %>%
    kable_styling(latex_options = c("hold_position", "repeat_header"), font_size = 6)
```

First_author	Title	Journal	Year	Exclusion_reason
Adam	The Role of Citizen Science and Deep	Sustainability	2021	not empirical
Baralle	Learning in Camera Trapping Individual identification of cheetah (Acinonyx jubatus) based on close-range remote sensing: First steps of a new	Remote Sensing	2021	analysing footprints, not animals
Beaver	monitoring technique Evaluating the Use of Drones Equipped with Thermal Sensors as an Effective Method for Estimating Wildlife	Wildlife Society Bulletin	2020	not using machine learning
Borchers	A latent capture history model for digital aerial surveys	Biometrics	2020	not wild or semi-wild vertebrate species
Brack	Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges	Methods in Ecology and Evolution	2018	not empirical
Bruijning	trackdem: Automated particle tracking to obtain population counts and size distributions from videos in r	Methods in Ecology and Evolution	2018	not wild or semi-wild vertebrate species
Colefax	Reliability of marine faunal detections in drone-based monitoring	Ocean and Coastal Management	2019	not using machine learning
Cunha	Filtering empty camera trap images in embedded systems	IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. Workshops	2021	not focusing on animal $\!\!\!/$ species individual recognition $\!\!\!/$ classi
Florko	Narwhal (Monodon monoceros) detection by infrared flukeprints from aerial survey imagery	Ecosphere	2021	not using machine learning
Ilich	Integrating towed underwater video and multibeam acoustics for marine benthic habitat mapping and fish population estimation	Geosciences (Switzerland)	2021	not focusing on animal $\!\!\!/$ species individual recognition $\!\!\!/$ classi
Jia	Neural Architecture Search Based on Model Statistics for Wildlife Identification	Journal of the Franklin Institute	2020	no full-text
Kalafi	Comparison of fully automated and semi-automated methods for species identification	Folia Biologica (Czech Republic)	2018	not wild or semi-wild vertebrate species
Kellenberger	AIDE: Accelerating image-based ecological surveys with interactive machine learning	Methods in Ecology and Evolution	2020	not wild or semi-wild vertebrate species
Kim	Intelligent intrusion detection system featuring a virtual fence, active intruder detection, classification, tracking, and action recognition	Annals of Nuclear Energy	2018	not focusing on animal $/$ species individual recognition $/$ classi
Lee	Backbone alignment and cascade tiny object detecting techniques for dolphin detection and classification	IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences	2021	no full-text
Lopez- Marcano	The slow rise of technology: Computer vision techniques in fish population	Aquatic Conservation: Marine and Freshwater	2021	not empirical
	connectivity	Ecosystems	2025	
Łopucki	The city changes the daily activity of urban adapters: Camera-traps study of Apodemus agrarius behaviour and new approaches to data analysis	Ecological Indicators	2020	not using machine learning
Maheswari	Identification and classification of multiple species of wild animals using convolutional neural networks	Journal of Green Engineering	2020	no full-text
McInnes	A new model study species: high accuracy of discrimination between individual freckled hawkfish (Paracirrhites forsteri) using natural markings	Journal of Fish Biology	2020	not using machine learning

 $using\ natural\ markings$

continued)				
First_author	Title	Journal	Year	Exclusion_reason
Nayab	Wildlife monitoring in zoological parks using RASPBERRYPI and machine learning	International Journal of Recent Technology and	2019	not empirical
Nilssen	Active Learning for the Classification of Species in Underwater Images from a Fixed Observatory	Engineering IEEE/CVF International Conference on Computer Vision Workshop	2017	not wild or semi-wild vertebrate species
Pardo	Snapshot Safari: A large-scale collaborative to monitor Africa,Äôs remarkable	(ICCVW) South African Journal of Science	2021	not empirical
Peng	biodiversity Implementation of Smart Animal Tracking System Based on Artificial Intelligence Technique	IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW)	2020	not empirical
Pulido	Methodology for mammal classification in camera trap images	Proceedings of SPIE - The International Society for Optical Engineering	2017	no full-text
Ravoor	Deep Learning Methods for Multi-Species Animal Re-identification and Tracking a Survey	Computer Science Review	2020	not empirical
Sullivan	Automated detection, tracking, and counting of gray whales	Proceedings of SPIE - The International Society for Optical Engineering (Proceedings of SPIE)	2020	no full-text
Tariq	Snow leopard recognition using deep convolution neural network	ACM's International Conference Proceedings Series (ICPS)	2018	no full-text
Teto	Automatically identifying of animals in the wilderness: Comparative studies between CNN and C-Capsule Network	ACM's International Conference Proceedings Series (ICPS)	2019	no full-text
Uwanuakwa	Traffic Warning System for Wildlife Road Crossing Accidents Using Artificial Intelligence	International Conference on Transportation and Development	2020	no full-text
Vishnuvardhan	Automatic detection of flying bird species using computer vision techniques	Journal of Physics: Conference Series (JPCS)	2019	not empirical
Wang	Classification of Wildlife Based on Transfer Learning	ACM International Conference Proceeding Series (ICPS)	2020	no full-text
Yu	AniWatch: Camera trap data processor for deep learning-based automatic identification of wildlife species	Asian Conference on Remote Sensing (ACRS)	2018	no full-text
Zhuang	Wildfish: A large benchmark for fish recognition in the wild	Proceedings of the ACM Multimedia Conference (MM)	2018	no full-text
Can	A fine-grained classification method based on self-attention siamese network	International Conference on Video and Image Processing	2021	no full-text
Dabalos	Identifying Giant Clams Species using Machine Learning Techniques	ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES	2021	not wild or semi-wild vertebrate species
Holzner	Occupancy of wild southern pig-tailed macaques in intact and degraded forests in Peninsular Malaysia	PeerJ	2021	not using machine learning
Corregidor- Castro	Semi-automated counts on drone imagery of breeding seabirds using free accessible software	POLISH JOURNAL OF ECOLOGY	2021	no full-text
Kastrikin	A new method for calculating the population density of terrestrial animals using camera traps with an assessment of the roe deer (capreolus pygargus pallas, 1771) (cervidae, mammalia) population density in khingan nature reserve as an example	Biology Bulletin	2021	not using machine learning
Drews-Jr	Underwater image segmentation in the wild using deep learning	Journal of the Brazilian Computer Society	2021	not focusing on animal $\!\!/$ species individual recognition $\!\!/$ classi
Petluk	Point cloud capture and segmentation of animal images using classification and clustering	HANIMOB '21: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility	2021	not wild or semi-wild vertebrate species
Zhang	Panthera unica recognition based on data expansion and resnest with few samples	Journal of Beijing Forestry University	2021	no full-text
Ballesta	Assessing the reliability of an automated method for measuring dominance hierarchy in non-human primates	Primates	2021	not using machine learning

(continued)

$First_author$	Title	Journal	Year	Exclusion_reason
Duraipandy	Automatic animal detection and collision avoidance system (adcas) using thermal camera	Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security	2021	no full-text
Brust	Carpe diem: a lifelong learning tool for automated wildlife surveillance: implementing active and incremental learning for object detection	INFORMATIK 2021. Gesellschaft für Informatik	2021	not wild or semi-wild vertebrate species
Santhanam	Animal detection for road safety using deep learning	2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)	2021	not wild or semi-wild vertebrate species
Dai	Wildlife recognition from camera trap data using computer vision algorithms	Proceedings Volume 12155, International Conference on Computer Vision, Application, and Design (CVAD 2021)	2021	no full-text
Munian	Active advanced arousal system to alert and avoid the crepuscular animal based vehicle collision	Intelligent Decision Technologies	2021	no full-text
Sai Ramesh	Multi-Scale Fish Segmentation Refinement Using Contour Based Segmentation	Advances in Parallel Computing; Advances in Parallel Computation	2021	not wild or semi-wild vertebrate species

```
#kable_styling(full_width = T)
```

 Table S3
 List of included articles with key bibliographic information.

```
#remove 4 excluded studies and remove all columns with "Comment", "checked" and first 2 columns
rawdata_incl <- rawdata %>% filter(Included == "1") %>%
  select(c("First author's family name:", "Paper's title:", "Journal name:", "Publication year:"))
#make a table of included studies
names(rawdata_incl) <- c("First_author", "Title", "Journal", "Year")</pre>
#make a table of included studies
kbl(rawdata_incl,
    format = "latex",
    align = "1",
    booktabs = TRUE,
   longtable = TRUE,
   linesep = "") %>%
  column_spec(1, width = "1.5cm") %>%
  column_spec(2, width = "8cm") %>%
  column_spec(3, width = "5cm") %>%
  kable_styling(latex_options = c("hold_position", "repeat_header"), font_size = 6)
```

First_author	Title	Journal	Year
Afan	Drone Monitoring of Breeding Waterbird Populations: The Case of the Glossy Ibis	Drones	2018
Akcay	Automated bird counting with deep learning for regional bird distribution mapping	Animals	2020
Allken	A real-world dataset and data simulation algorithm for automated fish species identification	Geoscience Data Journal	2021
Alqaralleh	Reliable Multi-Object Tracking Model Using Deep Learning and Energy Efficient Wireless Multimedia Sensor Networks	IEEE Access	2020
Amir	${\bf Image} \ {\bf classification} \ {\bf for} \ {\bf snake} \ {\bf species} \ {\bf using} \ {\bf machine} \ {\bf learning} \ \\ {\bf techniques}$	Advances in Intelligent Systems and Computing	2017

First_author	Title	Journal	Year
Arshad	Where is my Deer?-Wildlife Tracking and Counting via Edge Computing and Deep Learning	Proceedings of IEEE Sensors	2020
Atanbori	Classification of bird species from video using appearance and motion features	Ecological Informatics	2018
Bain	Count, crop and recognise: Fine-grained recognition in the wild	Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019	2019
Banupriya	Animal detection using deep learning algorithm	Journal of Critical Reviews	2020
Beery Ben Tamou	Recognition in Terra Incognita Transfer Learning with deep Convolutional Neural Network for Underwater Live Fish Recognition	Lecture Notes in Computer Science 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS)	2018 2018
Bogucki	Applying deep learning to right whale photo identification	Conservation Biology	2019
Borowicz	Social Sensors for Wildlife: Ecological Opportunities in the Era of Camera Ubiquity	Frontiers in Marine Science	2021
Bouma	Individual Common Dolphin Identification Via Metric Embedding Learning	International Conference on Image and Vision Computing New Zealand	2019
Bowley	Detecting wildlife in uncontrolled outdoor video using convolutional neural networks	Proceedings of the IEEE International Conference on e-Science	2017
Bowley	Toward using citizen scientists to drive automated ecological object detection in aerial imagery	Proceedings of the IEEE International Conference on e-Science	2017
Bowley	Detection in aerial imagery Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback	Lecture Notes in Computer Science	2018
Brust	loop Towards automated visual monitoring of individual gorillas in the wild	Proceedings of the EEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2017
Butgereit	On Safari with TensorFlow: Assisting Tourism in Rural Southern Africa Using Machine Learning	International Conference on Advances in Big Data, Computing and Data Communication Systems, icABCD	2018
Carl	Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model	European Journal of Wildlife Research	2020
Castro	Humpback Whale's Flukes Segmentation Algorithms	Communications in Computer and Information Science	2021
Chamidullin Cheema	A deep learning method for visual recognition of snake species Automatic Detection and Recognition of Individuals in Patterned Species	CEUR Workshop Proceedings Lecture Notes in Computer Science	$2021 \\ 2017$
Chehrsimin Cheng Choudhury	Automatic individual identification of Saimaa ringed seals Detection Features as Attention (Defat): A Keypoint-Free Approach to Amur Tiger Re-Identification Detection of one-horned rhino from green environment background	IET Computer Vision Proceedings - International Conference on Image Processing, ICIP Journal of Green Engineering	2018 2020 2020
	using deep learning		
Clapham Corcoran	Automated facial recognition for wildlife that lack unique markings: A deep learning approach for brown bears Evaluating new technology for biodiversity monitoring: Are drone	Ecology and Evolution Ecology and Evolution	2020 2021
Corcoran	surveys biased? New technologies in the mix: Assessing N-mixture models for	Ecology and Evolution	2020
oorooran	abundance estimation using automated detection data from drone surveys	Zeologi, una Ziolation	2020
Corcoran	Automated detection of koalas using low-level aerial surveillance and machine learning	Scientific Reports	2019
Concoran	Modelling wildlife species abundance using automated detections from drone surveillance	International Congress on Modelling and Simulation - Supporting evidence-based decision making: the role of modelling and	2019
Coro	An intelligent and cost-effective remote underwater video device for fish size monitoring	simulation MODSIM 2019 Ecological Informatics	2021
Corregidor- Castro	Counting breeding gulls with unmanned aerial vehicles: Camera quality and flying height affects precision of a semi-automatic counting method	Ornis Fennica	2021
Curtin	Deep Learning for Inexpensive Image Classification of Wildlife on the Raspberry Pi	IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)	2019
Datar	Detection of Birds in the Wild using Deep Learning Methods	IEEE International Conference for Convergence in Technology (I2CT),	2018
Dawkins	An open-source platform for underwater image $\&$ video analytics	IEEE Winter Conference on Applications of Computer Vision (WACV)	2017
De Arruda	Recognition of Endangered Pantanal Animal Species using Deep Learning Methods	Proceedings of the International Joint Conference on Neural Networks	2018
Deep	Underwater Fish Species Recognition Using Deep Learning Techniques	International Conference on Signal Processing and Integrated Networks (SPIN)	2019
Delplanque	Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks	Remote Sensing in Ecology and Conservation	2021
			2020
Ditria	Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats	Environmental Monitoring and Assessment	2020

First_author	Title	Journal	Year
Dlamini	Comparing class-aware and pairwise loss functions for deep metric learning in wildlife re-identification	Sensors	2021
Duggan	An approach to rapid processing of camera trap images with minimal human input	Ecology and Evolution	2021
Eikelboom	Improving the precision and accuracy of animal population estimates	Methods in Ecology and Evolution	2019
Elias	with aerial image object detection Where's the bear?- Automating wildlife image processing using IoT and edge cloud systems	IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI)	2017
Falzon	ClassifyMe: A field-scouting software for the identification of wildlife in camera trap images	Animals	2020
Fan Fang	Multi-Background Island Bird Detection Based on Faster R-CNN A Detection Algorithm of Giant Panda in Wild Video Image Based on Wavelet-SSD Network	Cybernetics and Systems IEEE Transactions on Systems, Man, and Cybernetics: Systems	2020 2020
Favorskaya	Selecting informative samples for animal recognition in the wildlife	Smart Innovation, Systems and Technologies	2019
Favorskaya	Animal species recognition in the wildlife based on muzzle and shape features using joint CNN	Procedia Computer Science	2019
Feng Feng	Action recognition using a spatial-temporal network for wild felines A novel hierarchical coding progressive transmission method for WMSN wildlife images	Animals Sensors (Switzerland)	2021 2019
Feng	High-Efficiency Progressive Transmission and Automatic Recognition of Wildlife Monitoring Images with WISNs	IEEE Access	2019
Ferreira Ferreira	Deep learning-based methods for individual recognition in small birds Dashcam based wildlife detection and classification using fused data sets of digital photographic and simulated imagery	Methods in Ecology and Evolution Proceedings of the International Conference	$2020 \\ 2020$
Francis	sets of digital photographic and simulated imagery Counting mixed breeding aggregations of animal species using drones: Lessons from waterbirds on semi-automation	on Information Fusion Remote Sensing	2020
Gabriel	Wildlife detection and recognition in digital images using YOLOv3: Extended abstract	Proceedings of the IEEE Cloud Summit Conference	2020
Gao	CycleGAN-Based Image Translation for Near-Infrared Camera-Trap Image Recognition	Lecture Notes in Computer Science	2020
Gavali	Bird Species Identification using Deep Learning on GPU platform	International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)	2020
Ghosh	Amur Tiger Detection for Wildlife Monitoring and Security	Communications in Computer and Information Science	2021
Gomez	Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks	Ecological Informatics	2017
Gorkin	Sharkeye: Real-time autonomous personal shark alerting via aerial surveillance	Drones	2020
Granados	Classifying False Alarms in Camera Trap Images using Convolutional Neural Networks	International Conference on Computer Science and Computational Intelligence (ICCSCI)	2020
Gray	Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry	Methods in Ecology and Evolution	2019
Gray	A convolutional neural network for detecting sea turtles in drone imagery	Methods in Ecology and Evolution	2019
Guo	Varied channels region proposal and classification network for wildlife image classification under complex environment	IET Image Processing	2020
Hahn- Klimroth	Deep learning-based pose estimation for African ungulates in zoos	Ecology and Evolution	2021
Hans	On-road deer detection for advanced driver assistance using convolutional neural network	International Journal of Advanced Computer Science and Applications	2020
Harjoseputro	MobileNets: Efficient Convolutional Neural Network for Identification of Protected Birds	International Journal on Advanced Science, Engineering and Information Technology	2020
Hayes	Drones and deep learning produce accurate and efficient monitoring of large-scale seabird colonies	Condor	2021
Hj Hsu	Photo identification of sea turtles using alexnet and multi-class SVM Dolphin Recognition with Adaptive Hybrid Saliency Detection for Deep Learning Based on DenseNet Recognition	Frontiers in Artificial Intelligence IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)	2020 2019
Ibraheam	Animal Species Recognition Using Deep Learning	Advances in Intelligent Systems and Computing	2020
Islam	Bird species classification from an image using VGG-16 network	ACM's International Conference Proceedings Series (ICPS)	2019
Islam	Identification of Wild Species in Texas from Camera-trap Images using Deep Neural Network for Conservation Monitoring	Annual Computing and Communication Workshop and Conference (CCWC)	2020
Islam	Herpetofauna Species Classification from Images with Deep Neural Network	Intermountain Engineering, Technology and Computing (IETC)	2020
Jalal	Fish detection and species classification in underwater environments using deep learning with temporal information	Ecological Informatics	2020
Jamil	Deep Learning and Computer Vision-based a Novel Framework for Himalayan Bear, Marco Polo Sheep and Snow Leopard Detection	International Conference on Information Science and Communication Technology (ICISCT)	2020
Jasko	Animal detection from traffic scenarios based on monocular color vision $$	International Conference on Intelligent Computer Communication and Processing (ICCP)	2017

$First_author$	Title	Journal	Year
Jawad	Deep Learning Technologies to Mitigate Deer-Vehicle Collisions	Studies in Computational Intelligence	2021
Jones	Processing citizen science- and machine-annotated time-lapse imagery	Scientific Data	2020
-	for biologically meaningful metrics		
Jose	Genus and Species-Level Classification of Wrasse Fishes Using Multidomain Features and Extreme Learning Machine Classifier	International Journal of Pattern Recognition and Artificial Intelligence	2020
Kabani	Improving Right Whale recognition by fine-tuning alignment and	Conference on Electrical and Computer	2017
	using wide localization network	Engineering (CCECE)	
Kellenberger	Half a percent of labels is enough: Efficient animal detection in UAV	IEEE Transactions on Geoscience and	2019
Vallanhanan	imagery using deep CNNs and active learning	Remote Sensing	2017
Kellenberger	Fast animal detection in UAV images using convolutional neural networks	Dig Int Geosci Remote Sens Symp (IGARSS)	2017
Kierdorf	What Identifies A Whale by Its Fluke? On the Benefit of	The International Archives of the	2020
	Interpretable Machine Learning for Whale Identification	Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS	
Kishore	Deep CNN Based Automatic Detection and Identification of Bengal Tigers	Archives) Communications in Computer and Information Science (CCIS)	2021
Kong	Feature cascade underwater object detection based on stereo	Journal of Coastal Research	2020
	segmentation		
Kupyn	Fast and efficient model for real-time tiger detection in the wild	International Conference on Computer Vision Workshop (ICCVW)	2019
Labao	Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild	Ecological Informatics	2019
Latupapua	Performance evaluation of convolutional neural networks and	International Journal of Advanced Trends	2020
	optimizers on wildlife animal classification	in Computer Science and Engineering	
Lee	Beluga whale detection in the Cumberland Sound Bay using	Canadian Journal of Remote Sensing	2021
Lee	convolutional neural networks Feasibility analyses of real-time detection of wildlife using uav-derived	Remote Sensing	2021
Li	thermal and rgb images Enhanced Bird Detection from Low-Resolution Aerial Image Using	Neural Processing Letters	2019
Li	Deep Neural Networks ATRW: A Benchmark for Amur Tiger Re-identification in the Wild	ACM International Conference on	2020
		Multimedia (ACM Multimedia)	
Lili	Gait Recognition of Amur Tiger Based on Deep Learning	Journal of Physics: Conference Series (JPCS)	2021
Lin	Learning niche features to improve image-based species identification	Ecological Informatics	2021
Liu	Towards Efficient Machine Learning Methods for Penguin Counting in	IEEE OES Autonomous Underwater Vehicle	2020
Loos	Unmanned Aerial System Imagery Towards automatic detection of animals in camera-trap images	Symposium (AUV) European Signal Processing Conference (EUSIPCO)	2018
Lu	Turtle species identification design based on CNN	Journal of Physics: Conference Series (JPCS)	2019
Manasa	Wildlife surveillance using deep learning with YOLOv3 model	International Conference on Communication and Electronics Systems (ICCES)	2021
Mannocci	Leveraging social media and deep learning to detect rare megafauna in	Conservation Biology	2021
Mathur	video surveys Crosspooled FishNet: transfer learning based fish species classification model	Multimedia Tools and Applications	2020
McCarthy	Drone-based thermal remote sensing provides an effective new tool for	Remote Sensing in Ecology and	2021
J. C.	monitoring the abundance of roosting fruit bats	Conservation	
Mo	Large-scale automatic species identification	Lecture Notes in Computer Science	2017
Moallem	An explainable deep vision system for animal classification and detection in trail-camera images with automatic post-deployment	Knowledge-Based Systems	2021
Moskvyak	retraining Learning Landmark Guided Embeddings for Animal Re-identification	IEEE Winter Conference on Applications of	2020
Munian	Intelligent System for Detection of Wild Animals Using HOG and	Computer Vision Workshops (WACVW) International Conference on Information,	2020
	CNN in Automobile Applications	Intelligence, Systems and Applications (IISA)	
Munian	Design and Implementation of a Nocturnal Animal Detection Intelligent System in Transportation Applications	International Conference on Transportation and Development	2021
Murugaiyan	Fish species recognition using transfer learning techniques	International Journal of Advances in Intelligent Informatics	2021
Naddaf-Sh	Design and Implementation of an Assistive Real-Time Red Lionfish	Complexity	2018
N. 11.4	Detection System for AUV/ROVs	G	0000
Nakhatovich	Applications of classical and deep learning techniques for polar bear detection and recognition from aero photography	Communications in Computer and Information Science	2020
Nepovinnykh	Identification of Saimaa Ringed Seal Individuals Using Transfer Learning	Lecture Notes in Computer Science	2018
Nguyen	Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring	IEEE International Conference on Data Science and Advanced Analytics (DSAA)	2017
Nipko	Identifying Individual Jaguars and Ocelots via Pattern-Recognition Software: Comparing HotSpotter and Wild-ID	Wildlife Society Bulletin	2020
Nipko			
Norouzzadeh	A deep active learning system for species identification and counting in camera trap images	Methods in Ecology and Evolution	2021

$First_author$	Title	Journal	Year
Okafor	Comparative study between deep learning and bag of visual words for	IEEE Symposium Series on Computational	2017
Otani	wild-animal recognition Potency of Individual Identification of Japanese Macaques (Macaca fuscata) Using a Face Recognition System and a Limited Number of Learning Images	Intelligence (IEEE SSCI) Mammal Study	2021
Padubidri	Counting sea lions and elephants from aerial photography using deep learning with density maps	Animal Biotelemetry	2021
Palencia	Innovations in movement and behavioural ecology from camera traps: Day range as model parameter	Methods in Ecology and Evolution	2021
Parham	Animal population censusing at scale with citizen science and photographic identification	AAAI Spring Symposium Series Technical Reports	2017
Park	Marine Vertebrate Predator Detection and Recognition in Underwater Videos by Region Convolutional Neural Network	Lecture Notes in Computer Science	2019
Patel	Revealing the unknown: Real-time recognition of Galapagos snake species using deep learning	Animals	2020
Pena	Hammerhead Shark Species Monitoring with Deep Learning	Communications in Computer and Information Science	2021
Pena	Tracking Hammerhead Sharks with Deep Learning	IEEE Colombian Conference on Applications in Computational Intelligence	2020
Picek	Overview of SnakeCLEF 2021: Automatic snake species identification with country-level focus	CEUR Workshop Proceedings	2021
Pramunendar	New workflow for marine fish classification based on combination features and CLAHE enhancement technique	International Journal of Intelligent Engineering and Systems	2020
Pramunendar	Fish classification based on underwater image interpolation and back-propagation neural network	International Conference on Science and Technology (ICST)	2019
Pramunendar	A robust image enhancement techniques for underwater fish classification in marine environment	International Journal of Intelligent Engineering and Systems	2019
Ragib	PakhiChini: Automatic bird species identification using deep learning	World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4)	2020
Reno	Exploiting species-distinctive visual cues towards the automated photo-identification of the Risso's dolphin Grampus griseus	IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea)	2019
Rey	Detecting animals in African Savanna with UAVs and the crowds	Remote Sensing of Environment	2017
Rohilla	\ensuremath{GPU} based Re-trainable Pruned CNN design for Camera Trapping at the Edge	International Conference on Electronics and Sustainable Communication Systems (ICESC)	2020
Rum	$\label{eq:FishDeTec: A Fish Identification Application using Image Recognition} \\ \textbf{Approach}$	International Journal of Advanced Computer Science and Applications	2021
Saqib	Real-Time Drone Surveillance and Population Estimation of Marine Animals from Aerial Imagery	International Conference Image and Vision Computing New Zealand	2019
Saxena	An Animal Detection and Collision Avoidance System Using Deep Learning	Lecture Notes in Electrical Engineering	2021
Sayed	An Automated Fish Species Identification System Based on Crow Search Algorithm	Advances in Intelligent Systems and Computing	2018
Schindler Schneider	Saving costs for video data annotation in wildlife monitoring Three critical factors affecting automated image species recognition	Ecological Informatics Ecology and Evolution	2021 2020
Schneider	performance for camera traps Deep learning object detection methods for ecological camera trap	Conference on Computer and Robot Vision	2018
Schneider	data Similarity Learning Networks for Animal Individual	(CRV) IEEE Winter Conference on Applications of	2020
Schofield	Re-Identification-Beyond the Capabilities of a Human Observer Chimpanzee face recognition from videos in the wild using deep	Computer Vision Workshops (WACVW) Science Advances	2019
Shahinfar	learning How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring	Ecological Informatics	2020
Shepley	U-infuse: Democratization of customizable deep learning for object detection	Sensors	2021
Shepley	Automated location invariant animal detection in camera trap images using publicly available data sources	Ecology and Evolution	2021
Shi	Amur tiger stripes: individual identification based on deep convolutional neural network	Integrative Zoology	2020
Shukla	A hybrid approach to tiger re-identification	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2019
Shukla Singh	Primate Face Identification in the Wild Animal Localization in Camera-Trap Images with Complex	Lecture Notes in Computer Science Proc IEEE Southwest Symp Image Anal	2019 2020
	Backgrounds	Interpret	
Sinha Song	Exploring bias in primate face detection and recognition CNN Based Wildlife Recognition with Super-Pixel Segmentation for Ecological Surveillance	Lecture Notes in Computer Science Annual International Conference on CYBER Technology in Automation,	2019 2019
Stavelin	Applying object detection to marine data and exploring explainability of a fully convolutional neural network using principal component	Control, and Intelligent Systems, CYBER Ecological Informatics	2021
Suhas	analysis Performance analysis of SVM with quadratic kernel and logistic regression in classification of wild animals	Compusoft	2018

First_author	Title	Journal	Year
Surender	Automatic Identification of Bird Species from the Image Through the Approaches of Segmentation	Lecture Notes in Networks and Systems	2019
Swarup Tabak	Giant panda behaviour recognition using images Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images:	Global Ecology and Conservation Ecology and Evolution	2021 2020
Tabak	MLWIC2 Machine learning to classify animal species in camera trap images:	Methods in Ecology and Evolution	2019
Tamou Tekeli	Applications in ecology Underwater live fish recognition by deep learning Elimination of useless images from raw camera-trap data	Lecture Notes in Computer Science Turkish Journal of Electrical Engineering	2018 2019
Thangarasu	Recognition of animal species on camera trap images using machine learning and deep learning models	and Computer Sciences International Journal of Scientific and Technology Research	2019
Timm	Large-scale ecological analyses of animals in the wild using computer vision	IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops	2018
Torney	A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images	Methods in Ecology and Evolution	2019
Trnovszky	Animal recognition system based on convolutional neural network	Advances in Electrical and Electronic Engineering	2017
Ueano	Automatically detecting and tracking free-ranging Japanese macaques in video recordings with deep learning and particle filters	Ethology	2019
Ulhaq	Automated detection of animals in low-resolution airborne thermal imagery	Remote Sensing	2021
Ulloa	Hammerhead shark detection using regions with convolutional neural networks	IEEE ANDESCON, ANDESCON	2020
Vaca- Castano	Multispectral camera design and algorithms for python snake detection in the Florida Everglades	Proceedings of SPIE - The International Society for Optical Engineering (Proceedings of SPIE)	2019
Vasmatkar	Snake species identification and recognition	IEEE Bombay Section Signature Conference (IBSSC)	2020
Verma	Wild Animal Detection from Highly Cluttered Images Using Deep Convolutional Neural Network	International Journal of Computational Intelligence and Applications	2018
Villon	A Deep learning method for accurate and fast identification of coral reef fishes in underwater images	Ecological Informatics	2018
Villon	A new method to control error rates in automated species identification with deep learning algorithms	Scientific Reports	2020
Wang	New approach for detection of giant panda head in wild environment	Acta Technica CSAV (Ceskoslovensk Akademie Ved)	2017
Wang	Study on Freshwater Fish Image Recognition Integrating SPP and DenseNet Network	IEEE Int. Conf. Mechatronics Autom., ICMA	2020
Wang	Learning deep features for giant panda gender classification using face images $$	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2019
Wang	Grouping Feature Learning for Giant Panda Face Recognition	IEEE Transactions on Systems, Man, and Cybernetics: Systems	2020
Wang Wei	Giant Panda Identification Zilong: A tool to identify empty images in camera-trap data	IEEE Transactions on Image Processing Ecological Informatics	2021 2020
Whytock	Robust ecological analysis of camera trap data labelled by a machine learning model	Methods in Ecology and Evolution	2021
Willi	Identifying animal species in camera trap images using deep learning and citizen science	Methods in Ecology and Evolution	2019
Williams	Deep learning analysis of nest camera video recordings reveals temperature-sensitive incubation behavior in the purple martin (Progne subis)	Behavioral Ecology and Sociobiology	2020
Xie	An integrated wildlife recognition model based on multi-branch aggregation and squeeze-and-excitation network	Applied Sciences (Switzerland)	2019
Xu	Underwater fish detection using deep learning for water power applications	International Conference on Computer Science and Computational Intelligence (ICCSCI)	2018
Yang	An Adaptive Automatic Approach to Filtering Empty Images from Camera Traps Using a Deep Learning Model	Wildlife Society Bulletin	2021
Yu	A strong baseline for tiger Re-ID and its bag of tricks	IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2019
Yu	Animal detection in highly cluttered natural scenes by using faster R-CNN	International Journal of Recent Technology and Engineering	2019
Zhang Zhao	Omni-supervised joint detection and pose estimation for wild animals Image-Based Recognition of Individual Trouts in the Wild	Pattern Recognition Letters European Workshop on Visual Information	$2020 \\ 2019$
Zhu	Towards Automatic Wild Animal Detection in Low Quality Camera-Trap Images Using Two-Channeled Perceiving Residual	Processing (EUVIP) IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)	2017
Zotin	Pyramid Networks Animal detection using a series of images under complex shooting conditions	The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives)	2019
Zualkernan	Towards an IoT-based Deep Learning Architecture for Camera Trap Image Classification	IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT)	2020

First_author	Title	Journal	Year
Zuffi	Three-D safari: Learning to estimate zebra pose, shape, and texture from images 'in the wild'	Proceedings of IEEE International Conference on Computer Vision	2019
Iakushkin	Automated Marking of Underwater Animals Using a Cascade of Neural Networks	International Conference on Computational Science and Its Applications	2021
Zhang	Chinese White Dolphin Detection in the Wild	MMAsia '21: ACM Multimedia Asia	2021
Kutugata	Automatic Camera-Trap Classification Using Wildlife-Specific Deep Learning in Nilgai Management	Journal of Fish and Wildlife Management	2021
Sengan	Real-time automatic investigation of indian roadway animals by 3d reconstruction detection using deep learning for r-3d-yolov3 image classification and filtering	Electronics	2021
Petso	Automatic animal identification from drone camera based on point pattern analysis of herd behaviour	Ecological Informatics	2021
Bain	Automated audiovisual behavior recognition in wild primates	Science Advances	2021
Jang	Multi-class parrot image classification including subspecies with similar appearance	Biology	2021
Miao	Iterative human and automated identification of wildlife images	Nature Machine Intelligence	2021
Pillai	Applying deep learning kernel function for species identification system	2021 IEEE 4th International Conference on Computing, Power and Communication Technologies	2021
Srijan	Mobile application for bird species identification using transfer learning	2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)	2021
Njeru	Mammalian species detection using a cascade of unet and squeezenet	2021 IEEE AFRICON	2021
Roopashree	Monitoring the movements of wild animals and alert system using deep learning algorithm	2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)	2021
Reddy	Detection of wild elephants using machine learning algorithms	2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC)	2021
Zhang	Integration between cascade region-based convolutional neural network and bidirectional feature pyramid network for live object tracking and detection	Traitement du Signal	2021
Mathur	Fishresnet: automatic fish classification approach in underwater scenario	SN Computer Science	2021
Gomez	Egg recognition: the importance of quantifying multiple repeatable features as visual identity signals	PLoS One	2021
Ogawa	Automated counting wild birds on uav image using deep learning	2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS	2021
Auer	Minimizing the annotation effort for detecting wildlife in camera trap images with active learning	INFORMATIK 2021. Gesellschaft für Informatik,	2021
Cao	Few-shot object detection for plateau wildlife images	2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE)	2021
Joska	Acinoset: a 3d pose estimation dataset and baseline models for cheetahs in the wild	2021 IEEE International Conference on Robotics and Automation (ICRA)	2021
Gunasekara	A convolutional neural network based early warning system to prevent elephant-train collisions	2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS)	2021
Altobel	Tiger detection using faster r-cnn for wildlife conservation	14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2020 . ICAFS 2020. Advances in Intelligent Systems and Computing	2021
Moskvyak	Robust re-identification of manta rays from natural markings by learning pose invariant embeddings	2021 Digital Image Computing: Techniques and Applications (DICTA)	2021
Tang	Suas and machine learning integration in waterfowl population surveys	2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI),	2021
marcos	Animal tracking within a formation of drones	2021 IEEE 24th International Conference on Information Fusion (FUSION)	2021
Zheng	Self-supervised pretraining and controlled augmentation improve rare wildlife recognition in uav images	2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)	2021
Cheeseman	Advanced image recognition: a fully automated, high-accuracy photo-identification matching system for humpback whales	Mammalian Biology	2021
Zhuang Buehlera	Wildfish++: a comprehensive fish benchmark for multimedia research An automated program to find animals and crop photographs for	IEEE Transactions on Multimedia, Ecological Informatics	$2021 \\ 2019$
Miele	individual recognition Revisiting animal photo-identification using deep metric learning and	Methods in Ecology and Evolution	2021
	network analysis ELPephants: A Fine-Grained Dataset for Elephant Re-Identification	2019 IEEE/CVF International Conference	2019

```
#kable_styling(full_width = T)
```

Preprocessing extracted data

Data cleaning before generating summaries and plotting.

```
#remove unnecessary columns
rawdata incl <- rawdata %>%
  filter(Included == "1") %>%
  select(-starts_with("C")) %>%
  select(-c("Timestamp", "Respondent's initials:", "Pilot", "Included", "Exclusion reason"))
#replace column names with shorter variable names for rawdata_incl analyses
names(rawdata_incl) <- c("Title",</pre>
                 "Author",
                 "Year",
                 "Journal",
                 "DOI",
                 "Species_number",
                 "Study_species",
                 "Studied_species_type",
                 "Image_source_type",
                 "Study_setting",
                 "Location country",
                 "Location_details",
                 "Location_coordinates",
                 "Location_unclear",
                 "Algorithm_type",
                 "Outcome_type",
                 "Analysis_code")
#unique(rawdata_incl$Journal)
# classify journals into comp.sci vs. ecology journals
rawdata incl$Journal discipline <-
 recode(rawdata incl$Journal,
       "Behavioral Ecology and Sociobiology" = "ecology",
       "Ethology" = "ecology",
       "Global Ecology and Conservation" = "ecology",
       "Integrative Zoology" = "ecology",
       "Mammal Study" = "ecology",
       "Mammalian Biology" = "ecology",
       "Wildlife Society Bulletin" = "ecology",
       "Journal of Coastal Research" = "ecology",
       "Condor" = "ecology", "Methods in Ecology and Evolution" = "ecology",
       "Environmental Monitoring and Assessment" = "ecology",
       "Remote Sensing in Ecology and Conservation" = "ecology",
       "Ornis Fennica" = "ecology",
       "Ecology and Evolution" = "ecology",
       "European Journal of Wildlife Research" = "ecology",
       "Frontiers in Marine Science" = "ecology",
       "Conservation Biology" = "ecology",
       "Biology" = "ecology", "Animals" = "ecology",
```

```
"Ecological Informatics" = "ecology",
    "Scientific Reports" = "multidisciplinary",
    "PLoS One" = "multidisciplinary",
    "Science Advances" = "multidisciplinary",
    "Proceedings of the National Academy of Sciences of the United States of America" = "multidiscip.default = "computer science / technology")
#table(rawdata_incl$Journal_discipline)
```

Supplementary data summaries and plots

Figure S1 Displaying annual counts of included articles.

```
count(rawdata_incl, Year) %>%
  mutate(class = factor(Year, levels = Year)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 5) +
  scale_y_continuous(breaks = seq(0, 60, 10)) +
  labs(x = "", y = "Article count", title = "When it was published?")
```

When it was published?

Number of species / animal classes used Most data sets have prespecified number of animal species / classes present. Class can represent a species or a higher taxonomic group, such as genus, family, order, super-order, etc. (even "animals" can ba a class). Classes of non-animal objects (e.g. humans, vehicles) were not counted. When more than one dataset was used, the number was extracted for the biggest dataset.

A brief summary statistics on the number of animal species/classes per study.

```
## # A tibble: 1 x 6
## min max mean sd median n
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <201</pre>
## 1 1 16583 108. 1155. 3 207
```

Table S4 List of papers with > 100 species/animal classes.

```
#Filter studies and select a few relevant columns
rawdata_incl %>%
  filter(Species_number != "NA") %>%
  mutate(Species_number_NUM = as.integer(Species_number)) %>%
  filter(Species_number_NUM > 100) %>%
  select(c("Author", "Title", "Journal", "Year", "Studied_species_type", "Species_number")) ->
  rawdata_topspeciesnumbers
#make a table of included studies
kbl(rawdata topspeciesnumbers,
   format = "latex",
   align = "l",
   booktabs = TRUE,
   longtable = TRUE,
   linesep = "") %>%
  column_spec(1, width = "1.5cm") %>%
  column_spec(2, width = "6cm") %>%
  column_spec(3, width = "3cm") %>%
  column_spec(4, width = "1cm") %>%
  column_spec(5, width = "2cm") %>%
  kable_styling(latex_options = c("hold_position", "repeat_header"), font_size = 6)
```

Author	Title	Journal	Year	Studied_spec	ies_typ&pecies_number
Chamidullin	A deep learning method for visual recognition of snake species	CEUR Workshop Proceedings	2021	reptiles	772
Gavali	Bird Species Identification using Deep Learning on GPU platform	International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)	2020	birds	200

Author	Title	Journal	Year	Studied_species_t	yp&pecies_number
Li	Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks	Neural Processing Letters	2019	birds	200
Мо	Large-scale automatic species identification	Lecture Notes in Computer Science	2017	mammals, birds, reptiles, amphibians, fishes, other	16583
Norouzzadeh	A deep active learning system for species identification and counting in camera trap images	Methods in Ecology and Evolution	2021	mammals, birds	270
Picek	Overview of SnakeCLEF 2021: Automatic snake species identification with country-level focus	CEUR Workshop Proceedings	2021	reptiles	772
Ragib	PakhiChini: Automatic bird species identification using deep learning	World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4)	2020	birds	200
Sayed	An Automated Fish Species Identification System Based on Crow Search Algorithm	Advances in Intelligent Systems and Computing	2018	fishes	260
Shahinfar	How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring	Ecological Informatics	2020	mammals, birds	126
Surender	Automatic Identification of Bird Species from the Image Through the Approaches of Segmentation	Lecture Notes in Networks and Systems	2019	birds	200
Willi	Identifying animal species in camera trap images using deep learning and citizen science	Methods in Ecology and Evolution	2019	mammals, birds	139
Srijan	Mobile application for bird species identification using transfer learning	2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (HCAIET)	2021	birds	260
Zhuang	$\label{eq:wildfish++:} Wildfish++: a comprehensive fish benchmark for multimedia research$	IEEE Transactions on Multimedia,	2021	fishes	685

Figure S2 Displaying total counts of papers by the settings in which animal images were taken. Note: a single study could be coded as using one or more categories of settings, e.g. mix of images from the wild and captive (semi-wild) animals.

```
#table(rawdata_incl$Study_setting, useNA = "always") #0 NA, need to split at comma
rawdata_incl$Study_setting <- recode(rawdata_incl$Study_setting,</pre>
                                      "unclear/other" = "other / unclear") #standarise wording
Study_setting_sep <- separate_rows(rawdata_incl,</pre>
                                   Study_setting, sep = ", ") #split rows with multiple values
Study_setting_sep$Study_setting <- as.factor(Study_setting_sep$Study_setting)</pre>
#table(Study_setting_sep$Study_setting, useNA = "always")
Study_setting_sep %>%
  filter(!is.na(Study_setting)) %>%
  count(Study_setting) %>%
  arrange(n) %>%
  mutate(class = factor(Study_setting, levels = Study_setting)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge y = 1) +
  coord_flip() +
  scale y continuous(breaks = seq(0, 150, 10)) +
  labs(x = "", y = "Article count", title = "What types of settings were studied?",
       caption = "Note: some studies used more than one")
```

What types of settings were studied?

Note: some studies used more than one

Figure S3

Barplot of counts of a country or a larger region where animal images were collected. A single study could be coded as using images from one or more countries/regions. Some studies using images of captive animals kept in zoos likely across mutiple countries were coded as "global" (often images sourced from the Internet/social platforms).

```
#table(rawdata incl$Location country, useNA = "always") #0 NA, need to fix some names
rawdata_incl$Location_country <- gsub("Botswanam Australia", "Botswana, Australia",
                                       rawdata incl$Location country)
rawdata_incl$Location_country <- gsub("Falkland \\(Malvinas\\)) Islands", "Falkland Islands",
                                       rawdata incl$Location country)
rawdata incl$Location country <- gsub("Asutralia", "Australia",
                                       rawdata incl$Location country)
rawdata_incl$Location_country <- gsub("Soith Africa", "South Africa",</pre>
                                       rawdata_incl$Location_country)
rawdata_incl$Location_country <- gsub("The Netherlands" , "Netherlands" ,</pre>
                                       rawdata_incl$Location_country)
rawdata_incl$Location_country <- gsub("NZ", "New Zealand",
                                       rawdata_incl$Location_country)
rawdata_incl$Location_country <- gsub("Korea", "South Korea",</pre>
                                       rawdata_incl$Location_country)
rawdata_incl$Location_country <- gsub("Congo", "Republic of Congo",</pre>
                                       rawdata_incl$Location_country)
rawdata incl$Location country <- gsub("UAE", "United Arab Emirates",
                                       rawdata_incl$Location_country)
Location country sep <- separate rows(rawdata incl, Location country, sep = ", ")
Location_country_sep$Location_country <- as.factor(Location_country_sep$Location_country)</pre>
```

Figure S4

A barplot of the counts of articles using images form a given country / larger region. "Global" are usually datasets based on images collected from the Internet or social media.

Note: some studies used more than one

Figure S5

Location coordinates representing either a specific location (green circles) or centroids of a broader region (orange circles) where animal images originated from. Darker circles indicate a larger number of studies for a given location. "Global" image datasets (e.g. gathered from the Internet or social media) are not shown.

```
#table(rawdata_incl$Location_unclear, useNA = "always")
# 1 = yes for 78 studies, 3 is NA (global or multi-location studies)
#table(is.na(rawdata_incl$Location_coordinates), useNA = "always")
# 133 have coordinates, 59 have no

#table(rawdata_incl$Study_setting, rawdata_incl$Location_unclear, useNA = "always")
# 97+7 wild/semi-wild have clear location
```

```
\#table(is.na(rawdata\_incl\$Location\_coordinates), rawdata\_incl\$Location\_unclear, useNA = "always")
# 110 have coordinates and clear location, 56 of 78 with unclear location have no coordinates
#table(is.na(rawdata_incl$Location_coordinates), rawdata_incl$Study_setting, useNA = "always")
# 116 of the wild-based studies has coordinates
# to plot dots at coordinates for wild-based studies only -
# first filter data and split coordinates column into longitude and latitude:
rawdata incl %>% filter(Study setting == "wild" | Study setting == "wild, semi-wild") %>%
  filter(is.na(Location_coordinates) == FALSE) %>%
  separate(col = Location_coordinates, into = c("Latitude", "Longitude") , sep = ", ") ->
  coordinates sep
coordinates_sep$Longitude <- as.numeric(coordinates_sep$Longitude)</pre>
coordinates sep$Latitude <- as.numeric(coordinates sep$Latitude)</pre>
coordinates_sep$Approximate_location <- recode(coordinates_sep$Location_unclear,</pre>
                                                "0" = "no", "1" = "yes")
map.world <- map_data("world")</pre>
#make a plot
ggplot() +
  geom_map(
    data = map.world, map = map.world,
    aes(long, lat, map_id = region),
    color = "white", fill = "lightgray", size = 0.1
  geom_point(
   data = coordinates sep,
    aes(Longitude, Latitude, color = Approximate_location), size = 4,
   alpha = 0.4, position = position_jitter(width = 2, height = 2)
  ) +
  scale_colour_manual(values = c("darkgreen", "orange")) +
  theme(legend.position = "top")
```


Figure S6
Barplot of the main types of machine learning algorithms used in the included studies. A single study could be coded as using one or more types.

```
#table(rawdata_incl$Alqorithm_type, useNA = "always") #0 NA, need to split at comma
Algorithm_type_sep <- separate_rows(rawdata_incl, Algorithm_type, sep = ", ")</pre>
Algorithm_type_sep$Algorithm_type <- recode(Algorithm_type_sep$Algorithm_type,
                                            "unclear/other" = "other / unclear")
Algorithm_type_sep$Algorithm_type <- as.factor(Algorithm_type_sep$Algorithm_type)
Algorithm type sep %>%
  filter(!is.na(Algorithm_type)) %>%
  count(Algorithm_type) %>%
  arrange(n) %>%
  mutate(class = factor(Algorithm_type, levels = Algorithm_type)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 250, 50)) +
  labs(x = "", y = "Article count", title = "What types of algorithms were used?",
      caption = "Note: some studies used more than one")
```

What types of algorithms were used?

Note: some studies used more than one

Figure S7
Barplot of the main types of outcomes / purposes of analyses in the included studies. A single study could be coded as using one or more types.

```
#table(rawdata_incl$Outcome_type, useNA = "always") #1 NA, need to split at comma
Outcome type sep <- separate rows(rawdata incl, Outcome type, sep = ", ")
Outcome type sep$Outcome type <- recode(Outcome type sep$Outcome type,
                                         "unclear/other (add comment)" = "other / unclear")
Outcome_type_sep$Outcome_type <- as.factor(Outcome_type_sep$Outcome_type)</pre>
# berplot of article counts for different outcomes (separated)
Outcome_type_sep %>%
  filter(!is.na(Outcome_type)) %>%
  count(Outcome_type,) %>%
  arrange(n) %>%
  mutate(class=factor(Outcome_type, levels = Outcome_type)) %>%
  ggplot(aes(x = class, y = n)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 250, 50), limits = c(0, 220)) +
  labs(x = "", y = "Article count", title = "What types of outcomes were analysed?",
       caption = "Note: some studies used more than one")
```

What types of outcomes were analysed?

Note: some studies used more than one

Figure S8

Barplot of total counts of journals by discipline.

```
rawdata_incl %>%
  filter(!is.na(Journal_discipline)) %>%
  count(Journal_discipline) %>%
  arrange(n) %>%
  mutate(class = factor(Journal_discipline, levels = Journal_discipline)) %>%
  ggplot(aes(x = class, y = n, fill = Journal_discipline)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(aes(label = as.integer(scales::comma(n))), hjust = 0, nudge_y = 1) +
  coord_flip() +
  scale_y_continuous(breaks = seq(0, 250, 50)) +
  scale_fill_manual(values = c("#E57E7E", "#C3E57E", "#E5B17E")) +
  theme(legend.position = "none") +
  labs(x = "", y = "Article count", title = "What disciplines journals represent?")
```

What disciplines journals represent?

Bibliometric analyses

##

These analyses are based on the information extracted from bibliographic records downloaded from Scopus. Initial preprocessing and summaries using bibliometrix R package. Subsequently this data was combined with manually coded data from the full texts.

Load and export author affiliation country from bibliographic records (scopus_AI_1and2.bib).

```
##
## Converting your wos collection into a bibliographic dataframe
##
##
## Warning:
## In your file, some mandatory metadata are missing. Bibliometrix functions may not work properly!
##
## Please, take a look at the vignettes:
## - 'Data Importing and Converting' (https://www.bibliometrix.org/vignettes/Data-Importing-and-Convert
## - 'A brief introduction to bibliometrix' (https://www.bibliometrix.org/vignettes/Introduction_to_bib
##
## Missing fields: ID CR
## Done!
```

```
## Generating affiliation field tag AU_UN from C1: Done!

# Initial data cleaning and merging with manually coded data frame.

# Remove all non-alphanumeric, punctuation and extra white spaces in bib object
bib$TI2 <- gsub("[^[:alnum:]]", "", bib$TI) %>% str_replace_all(.,"[]+", " ")

# Remove all non-alphanumeric, punctuation and extra white spaces in rawdata_incl object
rawdata_incl$TI2 <- str_to_upper(gsub("[^[:alnum:]]", "", rawdata_incl$Title)) %>%
    str_replace_all(.,"[]+", " ")

# Clean-up of 6 non-matching titles before merging -
# replace title TI2 in bib (not-matching) with TI2 from rawdata_incl
bib[bib$TI2 %like% "MODELLING WILDLIFE SPECIES ABUNDANCE USING", "TI2"] <-
    rawdata_incl[rawdata_incl$TI2 %like% "MODELLING WILDLIFE SPECIES ABUNDANCE USING", "TI2"]
bib[bib$TI2 %like% "COUNTING BREEDING GULLS", "TI2"] <-
    rawdata_incl[rawdata_incl$TI2 %like% "COUNTING BREEDING GULLS", "TI2"]
bib[bib$TI2 %like% "COMPARING CLASSAWARE AND PAIRWISE LOSS FUNCTIONS", "TI2"]
rawdata_incl[rawdata_incl$TI2 %like% "COMPARING CLASSAWARE AND PAIRWISE LOSS FUNCTIONS", "TI2"]</pre>
```

rawdata_incl[rawdata_incl\$TI2 %like% "REVEALING THE UNKNOWN REALTIME RECOGNITION OF", "TI2"] #Join the data frames bib_title <- left_join(rawdata_incl, bib, by = "TI2") results <- biblioAnalysis(bib_title, sep = ";") #this calculates the main bibliometric measures, #sum(results\$CountryCollaboration\$SCP) #197 single-country papers sum(results\$CountryCollaboration\$MCP) #3 multi-country papers

rawdata_incl[rawdata_incl\$TI2 %like% "BELUGA WHALE DETECTION IN THE CUMBERLAND", "TI2"]

bib[bib\$TI2 %like% "BELUGA WHALE DETECTION IN THE CUMBERLAND", "TI2"] <-

bib[bib\$TI2 %like% "REVEALING THE UNKNOWN REALTIME RECOGNITION OF", "TI2"] <-

[1] 3

##

Figure S9

A barplot of country assigned to each publication based on the affiliation country of the first author. Co-authorship type is based on country of all authors of a given publication. SCP indicates all authors were affiliated with the same country. MCP indicates international co-authorship.

caption = "SCP: Single Country Publications, MCP: Multiple Country Publications")

labs(x = "", y = "Proportion", title = "Author collaboration type by country?",

Author collaboration type by country?

SCP: Single Country Publications, MCP: Multiple Country Publications

Code sharing analyses

Combining manually coded data on code sharing.

Note: we were not checking if code complete or working) from the full texts with publication year, journal and discipline of a study.

Figure S10

```
#table(rawdata_incl$Analysis_code, useNA = "always")

rawdata_incl %>%
    filter(!is.na(Analysis_code)) %>%
    count(Analysis_code, Year) %>%
    ggplot(aes(x = Year, y = n, fill = Analysis_code)) +
    geom_area(stat = "identity", position = "fill") +
    theme_classic() +
    theme(legend.position = "bottom",
        legend.direction = "horizontal",
        legend.title = element_blank()) +
    scale_fill_manual(values = c("#886EB2", "#E7D4E8"))+
    labs(x = "", y = "Proportion of articles", title = "Code sharing by year")
```


Figure S11

labs(x = "", y = "Proportion", title = "Code sharing by journal discipline")

Figure S12

```
#get names of journals with at least 3 articles (top 9 journals)
count(rawdata_incl, Journal) %>%
   arrange(n) %>% top_n(9) -> top9_journals
#subset the main dataset to journals with at least 3 articles
```

```
rawdata_incl %>% filter(Journal %in% top9_journals$Journal) -> rawdata_incl_top9j

table_code_top9j <- data.frame(table(rawdata_incl_top9j$Journal, rawdata_incl_top9j$Analysis_code)) #ch
colnames(table_code_top9j) <- c("journal", "code_shared", "count") #rename table columns
table_code_top9j$journal <- ordered(table_code_top9j$journal, levels = c(top9_journals$Journal)) #reord

ggplot(table_code_top9j, aes(fill = code_shared, y = count, x = journal)) +
    geom_bar(position = "fill", stat = "identity") +
    theme_classic() +
    scale_fill_manual(values = c("#886EB2", "#E7D4E8")) +
    coord_flip() +
    theme(legend.position = "right") +
    labs(x = "", y = "Proportion", title = "Code sharing by journal")</pre>
```


Note: "Methods in Ecology and Evolution", "Ecological Informatics", "Ecology and Evolution", "Animals" are classfied as ecology journals. Journals with >2 included papers are shown sorted by descending frequency order.