Shell variation in some populations of *Trichia hispida* (L.) from Poland

(Gastropoda: Pulmonata: Helicidae)

MAŁGORZATA PROĆKÓW Zoological Institute, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland

ABSTRACT. Twenty one populations of *Trichia hispida* from various localities in Poland were analysed biometrically with respect to 13 shell characters. Almost each of them differs statistically significantly from the remaining populations in at least one character (shell size, proportions, number of whorls). The least variable characters are: aperture height and breadth, relative height of body whorl and umbilicus relative diameter. The shell proportions, expressed as height/breadth ratio, are correlated with longitude the more eastwards the locality is situated, the more flat the shell. The growth of juvenile snails is allometric only in some populations; in others it is isometric. Besides the age, the degree of shell "hairiness" depends also on some other factor(s).

Key words: malacology, Gastropoda, Trichia hispida, biometrics, shell, geographic variation.

INTRODUCTION

The genus *Trichia*, distributed in Central and Eastern Europe (Shleyko 1978), includes 21 nominal species. Most of them are much variable which makes both revisions and identifications difficult (Forcart 1965). Seven or eight species occur in Poland (Riedel 1988), *T. hispida* being the most common. In the literature prior to 1965 the name *T. hispida* was applied to two, morphologically very close, species: *T. hispida* distributed more to the north, and *T. concinna* (Jeffreys, 1830) of a more southern distribution range.

Data on the Polish members of the genus *Trichia* pertain only to the distribution of particular species, and are very incomplete (Poliński 1918, 1924, RIEDEL 1988).

Distribution of the studied populations: 1 - Lubawka (WS 71), 2 - Wałbrzych (WS 92), 3 - Stęszew (XT 19), 4 - Chyby (XU 10), 5 - Poznań (XU 20), 6 - Muszkowice (XS 03), 7 - Oława (XS 64), 8 - Rąbczyn (XU 55), 9 - Jarocin1 (XT 75), 10 - Jarocin2 (XT 75), 11 - Węgierki (XT 89), 12 - Parzynów (YS 09), 13 - Gdynia (CF 34), 14 - Gliwice (CA 37), 15 - Radom (EB 19), 16 - Gołdap1 (EF 81), 17 - Gołdap2 (EF 81), 18 - Błądziszki (FF 02), 19 - Biłgoraj (FA 29), 20 - Staw (FB 67), 21 - Chełm (FB 76).

2. Similarity dendrogram based on mean values of shell parameters of the studied populations.

The genus has not been revised hitherto; inter- and intrapopulation ranges of shell variability have not been studied in any of its members. General data on the shell structure and reproductive system in *T. hispida* and several other European species were presented by Poliński (1924), Forcart (1965) and Shileyko (1978).

3, 4. Front view of the shells from Lubawka - "typical" (3) and Muszkowice (4). Scale bar 2.5 mm

The aim of this work was a detailed examination of geographic and individual shell variability in the most common Central European species - T. hispida. Such studies might reveal characters of low variation and thus possibly diagnostically useful.

5, 6. Front view of the shells from Parzynów (5) and Goldap (6). Scale bar 2.5 mm

T. hispida inhabits a considerable part of Europe, except its southern parts and westernmost fringes, where it is replaced by T. concinna (FORCART 1965); in the north it exceeds the Arctic Circle along the Atlatic coast of Scandinavia and in the east it reaches the Ural Mts (SHILEYKO 1978, RIEDEL 1988). In Poland it occurs in the whole

7, 8. Umbilical view of shells from Lubawka - "typical" (7) and Muszkowice (8). Scale bar 2.5 mm.

9. Mean adult height/breadth ratio plotted against longitude of the localities. y=0.723-0.005X, r=-0.612, df=19, P=0.003

10. Height/breadth ratio plotted against the number of whorls. Population from Węgierki. y=0.403+0.049x, r=0.357, df=84, P<0.001

11. Relative height of body whorl plotted against the number of whorls. Population from Jarocin 2. y=1.038-0.047x, r=-0.463, P<0.001

12. Umbilicus relative diameter plotted against the number of whorls. Population from Gliwice. y=0.033+0.034x, r=0.540, df=138, P<0.001

Table 1. Interpopulation variability of Trichia hispida in Poland.

No.	Locality	A.Mean B.SD C.NS D.Range E. v	Shell breadth A.Mean B.SD C.NS D.Range E. v	Aperture height A.Mean B.SD C.NS D.Range E. v	Aperture breadth A.Mean B.SD C.NS D.Range E. v.	Body whori height A.Mean B.SD C.NS D.Range E. v	AMean B.SD C.NS D.Range E. v	Umbilicus major diameter A.Mean B.SD C.NS D.Range E. v	Umbilicus minor diarneter A.Mean B.SD C.NS D.Range E. v	Whed number A.Mean B.SD C.NS D.Range E. v	Height/breadth natio A.Meam B.SD C.NS D.Range E. v	Ratio of umbilicus major diameter to shell diameter A.Mean B.SD C.NS D.Range E. v	Ratio of umbilious minor diameter to its major diameter A.Mesan B.SD C.NS D.Range E. v	Relative height of body whor! A.Mean B.SD C.NS D.Range E. V
1.	LUBAWKA	A.4.378 B.0.619 C.68 D.3.0-5.5 E.14.14	A.6.978 B.0.855 C.68 D.4.6-9.0 E.12.25	A.2.534 B.0.329 C.68 D.1.7-3.5 E.12.98	A.3.347 B.0.431 C.68 D.2.5-4.3 E.12.88	A.3.528 B.0.469 C.68 D.2.5-4.5 E.13.29	A.6.99 B.0.853 C.68 D.4.5-9.0 E.12.2	A.1.516 B.0.285 C.68 D.0.8-2.2 E.18.8	A.1.297 B.0.279 C.68 D.0.7-2.0 E.21.51	A.5.15 B.0.39 C.68 D.4.00-6.00 E.7.57	A.0.63 B. 0.040 C. 68 D.0.54-0.71 E.6.35	A.0.22 B.0.024 C.68 D.0.15-0.29 E.10.91	A.0.85 B.0.057 C.68 D.0.61-0.95 E.6.7	A.0.81 B.0.033 C.68 D.0.71-0.89 E.4.07
2.	WAŁ- BRZYCH	A.4.633 B.0.442 C.66 D.3.7-5.7 E.9.54	A.7.411 B.0.584 C.66 D.5.6-8.6 E.7.88	A.2.694 B.0.238 C.66 D.2.2-3.3 E.8.83	A.3.544 B.0.353 C.66 D.2.5-4.2 E.9.96	A.3.717 B.0.268 C.66 D.3.2-4.3 E.7.14	A.7.352 B.0.843 C.66 D.2.6-8.6 E.11.47	A.1.714 B.0.239 C.66 D.1.1-2.2 E.13.94	A.1.450 B.0.262 C.66 D.0.9-2.0 E.18.07	A.5.32 B.0.26 C.66 D.4.75-5.00 E.4.89	A.0.63 B.0.042 C.66 D.0.52-0.74 E.6.67	A.0.24 B.0.057 C.66 D.0.16-0.65 E.23.75	A.0.84 B.0.062 C.66 D.0.67-0.95 E.7.56	A.0.80 B.0.037 C.66 D.0.68-0.90 E.4.62
3.	STĘSZEW	A3.958 B.0.93 C.110 D.1.7-5.6 E.23.5	A.6.537 B.1.488 C.110 D.3.0-8.7 E.22.76	A.2.439 B.0.475 C.110 D.1.3-3.4 E.19.47	A.3.273 B.0.763 C.110 D.1.5-5.0 E.23.31	A.3.222 B.0.671 C.110 D.1.6-4.4 E.20.82	A.6.575 B.1.494 C.110 D.3.1-9.0 E.22.72	A.1.405 B.0.378 C.110 D.0.6-2.0 E.26.9	A.1.158 B.0.341 C.110 D.0.5-1.8 E.29.45	A.4.89 B.0.71 C.110 D.3.00-5.75 E.14.52	A0.60 B.0.038 C.110 D.0.52-0.72 E.6.33	A.0.21 B.0.024 C.110 D.0.13-0.27 E.11.43	A.0.82 B.0.085 C.110 D.0.61-1.00 E.10.36	A.0.82 B.0.053 C.110 D.0.67-0.96 E.6.46
4.	СНҮВҮ	A.4.027 B.0.478 C.56 D.2.8-4.8 E.11.86	A.6.659 B.0.779 C.56 D.4.7-8.5 E.11.7	A.2.441 B.0.298 C.56 D.2.0-3.3 E.12.21	A.3.288 B.0.426 C.56 D.2.5-4.0 E.12.96	A.3.268 B.0.371 C.56 D.2.5-4.0 E.11.35	A.6.659 B.0.779 C.56 D.4.7-8.5 E.11.7	A.1.514 B.0.269 C.56 D.0.8-2.2 E.17.77	A.1.259 B.0.244 C.56 D.0.7-2.0 E.19.38	A.5.18 B.0.39 C.56 D.3.75-5.75 E.7.53	A.0.61 B.0.039 C.56 D.0.53-0.70 E.6.39	A.0.23 B.0.026 C.56 D.0.15-0.27 E.11.3	A.0.83 B.0.076 C.56 D.0.67-1.00 E.9.16	A.0.81 B.0.039 C.56 D.0.75-0.93 E.4.81
5.	POZNAŇ	A.4.347 B.0.656 C.58 D.2.6-5.5 E.15.09	A.7.238 B.1.026 C.58 D.4.5-9.0 E.14.17	A.2.490 B.0.323 C.58 D.1.8-3.2 E.12.97	A.3.448 B.0.528 C.58 D.2.3-4.5 E.15.31	A.3.505 B.0.462 C.58 D.2.3-4.4 E.13.18	A.7.090 B.1.237 C.58 D.1.8-8.8 E.17.44	A.1.609 B.0.353 C.58 D.0.9-2.3 E.21.94	A.1.376 B.0.345 C.58 D.0.8-2.1 E.25.07	A.5.36 B.0.50 C.58 D.3.75-6.00 E.9.33	A.0.60 B.0.041 C.58 D.0.51-0.68 E.6.83	A.0.23 B.0.029 C.58 D.0.16-0.90 E.12.61	A.0.85 B.0.076 C.58 D.0.65-1.00 E.9.94	A.0.81 B.0.039 C.58 D.0.73-0.90 E.4.81
5.	MUSZKO- WICE	A.4.511 B.0.672 C.62 D.2.7-6.0 E.15.46	A.6.861 B.0.869 C.62 D.4.9-8.3 E.12.66	A.2.713 B.0.430 C.62 D.2.0-3.7 E.15.85	A.3.313 B.0.804 C.62 D.2.1-7.5 E.24.27	A.3.813 B.0.595 C.62 D.2.2-5.0 E.15.6	A.6.806 B.0.940 C.62 D.4.4-8.5 E.13.81	A.0.734 B.0.182 C.62 D.0.4-1.2 E.24.8	A.0.695 B.0.155 C.62 D.0.4-1.0 E.22.3	A.4.96 B.0.35 C.62 D.4.00-5.75 E.7.06	A.0.66 B.0.048 C.62 D.0.55-0.79 E.7.27	A.0.11 B.0.017 C.62 D.0.07-0.16 E.15.43	A.0.96 B.0.070 C.62 D.0.78-1.00 E.7.29	A.0.85 B.0.046 C.62 D.0.75-0.94 E.5.41
7.	OŁAWA	A.3.490 B.0.807 C.242 D.1.7-5.6 E.17.89	A.5.644 B.1.262 C.242 D.3.0-8.9 E.22.36	A.2.180 B.0.415 C.242 D.1.2-3.3 E.19.04	A.2.719 B.0.602 C.242 D.1.3-4.3 E.22.14	A.2.864 B.0.613 C.242 D.1.6-4.5 E.21.4	A.5.634 B.1.254 C.242 D.3.1-9.0 E.22.26	A.1.273 B.0.368 C.242 D.0.6-2.5 E.28.91	A.1.092 B.0.350 C.242 D.0.5-2.3 E.32.05	A.4.62 B.0.55 C.242 D.3.00-6.00 E.11.9	A.0.62 B.0.043 C.242 D.0.1-0.83 E.6.93	A.0.22 B.0.030 C.242 D.0.14-0.31 E.13.64	A.0.85 B.0.07 C.242 D.0.63-1.00 E.8.23	A.0.82 B.0.041 C.242 D.0.71-0.94 E.5

Table 1 continued. Interpopulation variability of Trichia hispida in Poland.

8.	RABCZYN	A.4.297	A.7.012	A.2.532	A.3.343	A.3.463	A.6.993	A.1.623	A.1.365	A.5.25	A.0.61	A.0.23	A.0.84	A.0.81
	1	B.0.541	B.0.755	B.0.255	B.0.381	B.0.376	B.0.769	B.0.257	B.0.258	B.0.30	B.0.043	B.0.021	B.0.072	B.0.042
	1	C.60	C.60	C.60	C.60	C.60								
	d .	D.2.9-5.5	D.5.0-8.8	D.1.9-3.0	D.2.3-4.2	D.2.5-4.0	D.5.0-8.8	D.1.0-2.2	D.0.8-2.0	D.4.33-5.75	D.0.53-0.75	D.0.18-0.29	D.0.67-1.00	D.0.70-0.90
	1	E.12.59	E.10.77	E.10.07	E.11.4	E.10.86	E.11	E.15.7	E.18.9	E.5.71	E.7.05	E.9.13	E.8.57	E.5.18
9.	JAROCIN 1	A.4.354	A.6.646	A.2.610	A.3.316	A.3.473	A.6.66	A.1.391	A.1.153	A.5.15	A.0.65	A.0.21	A.0.83	A.0.80
		B.0.702	B.1.017	B.0.350	B.0.521	B.0.476	B.1.020	B.0.312	B.0.253	B.0.51	B.0.043	B.0.026	B.0.070	B.0.047
		C.120	C.120	C.120	C.120	C.120								
	1	D.1.9-5.8	D.3.0-8.5	D.1.0-3.4	D.1.5-4.3	D.1.5-4.4	D.3.0-8.4	D.0.4-2.2	D.0.3-2.0	D.3.00-6.00	D.0.53-0.78	D.0.13-0.31	D.0.65-1.00	D.0.61-1.00
		E.16.12	E.15.3	E.13.41	E.15.71	E.13.7	E.15.31	E.22.43	E.21.94	E.9.9	E.6.61	E.12.38	E.8.43	E.5.87
10.	JAROCIN 2	A.4.073	A.6.264	A.2.419	A.3.152	A.3.255	A.6.247	A.1.440	A.1.160	A.5.00	A.0.65	A.0.23	A.0.80	A.0.80
	New York Control	B.0.662	B.0.986	B.0.306	B.0.470	B.0.455	B.0.967	B.0.304	B.0.263	B.0.51	B.0.034	B.0.025	B.0.071	B.0.042
	1	C.179	C.179	C.179	C.179	C.179								
	1	D.1.5-5.7	D.2.2-9.0	D.1.1-3.2	D.1.2-4.1	D.1.3-4.3	D.2.3-8.7	D.0.3-2.0	D.0.2-1.7	D.2.5-5.75	D.0.56-0.77	D.0.13-0.29	D.0.64-1.00	D.0.67-0.96
		E.16.25	E.15.74	E.12.65	E.14.91	E.13.98	E.15.48	E.21.11	E.22.67	E.10.2	E.5.23	E.17.87	E.8.87	E.5.25
11.	WĘGIERKI	A.3.888	A.6.101	A.2.333	A.3.044	A.3.164	A.6.108	A.1.178	A.0.925	A.4.80	A.0.64	A.0.19	A.0.78	A.0.82
	in Deskon Coorte	B.0.520	B.0.702	B.0.274	B.0.371	B.0.351	B.0.715	B.0.211	B.0.203	B.0.36	B.0.038	B.0.019	B.0.077	B.0.039
		C.101	C.101	C.101	C.101	C.101								
	1	D.2.8-6.0	D.4.8-8.6	D.1.8-3.3	D.2.2-4.4	D.2.4-4.3	D.4.7-8.7	D.0.8-2.0	D.0.6-1.9	D.3.75-6.00	D.0.51-0.74	D.0.15-0.24	D.0.57-1.00	D.0.67-0.94
		E.13.37	E.11.51	E.11.74	E.12.19	E.11.09	E.11.71	E.17.91	E.21.95	E.7.5	E.5.94	E.10	E.9.87	E.4.76
12.	PARZY-	A.3.791	A.6.057	A.2.485	A.2.950	A.3.154	A.6.141	A.1.309	A.1.161	A.4.60	A.0.62	A.0.21	A.0.87	A.0.84
	NÓW	B.1.453	B.2.133	B.0.854	B.1.049	B.1.144	B.2.217	B.0.552	B.0.534	B.0.92	B.0.054	B.0.024	B.0.066	B.0.045
		C.46	C.46	C.46	C.46	C.46								
		D.1.8-6.5	D.2.8-9.2	D.1.4-4.2	D.1.5-4.7	D.1.6-5.5	D.2.8-9.4	D.0.5-24	D.0.4-2.2	D.2,75-5.9	D.0.51-0.78	D.0.16-0.26	D.0.71-1.00	D.0.75-0.95
		E.38.32	E.35.21	E.34.37	E.35.56	E.36.27	E.36.1	E.42.17	E.45.99	E.2	E.8.71	E.11.43	E.7.59	E.5.36
3.	GDYNIA	A.4.359	A.7.026	A2516	A.3.337	A.3.478	A.7.075	A.1.633	A.1.386	A.5.30	A.0.62	A.0.23	A.0.85	A.0.80
		B.0.406	B.0.555	B.0.272	B.0.304	B.0.321	B.0.554	B.0.214	B.0.211	B.0.24	B.0.037	B.0.023	B.0.74	B.0.036
	1	C.51	C.51	C.51	C.51	C.51								
		D.3.3-5.5	D.5.7-8.3	D.2.0-3.2	D.2.7-4.2	D.2.7-4.3	D.5.7-8.4	D.1.2-2.2	D.1.0-1.8	D.4.75-5.75	D.0.52-0.70	D.0.19-0.27	D.0.71-1.00	D.0.69-0.87
		E.9.31	E.7.9	E.10.81	E.9.11	E.9.23	E.7.83	E.13.1	E.15.22	E.4.5	E.5.97	E.10	E.8.71	E.4.5
4.	GLIWICE	A.3.589	A.5.984	A.2.183	A.2.943	A.2.936	A.5.970	A.1.166	A.1.006	A.4.62	A.0.60	A.0.19	A.0.87	A.0.82
		B.0.632	B.0.863	B.0.373	B.0.460	B.0.515	B.0.863	B.0.294	B.0.261	B.0.44	B.0.039	B.0.028	B.0.063	B.0.053
- 13		C.149	C.149	C.149	C.149	C.149								
		D.1.5-5.5	D.2.5-8.1	D.0.5-3.2	D.1.0-4.0	D.1.0-4.2	D.2.4-7.6	D.0.3-2.0	D.0.3-1.9	D.2.50-5.50	D.0.49-0.70	D.0.12-0.27	D.0.67-1.00	D.0.46-0.93
		E.17.61	E.14.42	E.17.09	E.15.63	E.17.34	E.14.45	E.25.21	E.25.94	E.9.52	E.6.5	E.14.74	E.7.24	E.4.27
5.	RADOM	A.4.135	A.6.705	A.2.542	A.3.239	A.3.357	A.6.708	A.1.566	A.1.292	A.4.98	A.0.61	A.0.23	A.0.83	A.0.82
	1	B.1.036	B.1.580	B.0.509	B.0.776	B.0.769	B.1.577	B.0.449	B.0.374	B.0.77	B.0.033	B.0.023	B.0.070	B.0.048
		C.118	C.118	C.118	C.118	C.118								
- 1	e i	D.1.8-5.8	D.3.0-8.7	D.1.3-3.3	D.1.2-4.5	D.1.3-4.5	D.2.9-9.0	D.0.6-2.3	D.0.4-2.0	D.3.00-6.00	D.0.52-0.71	D.0.16-0.28	D.0.67-1.00	D.0.68-1.00
	Variation and the	E.25.05	E.23.56	E.20.02	E.23.96	E.22.91	E.23.51	E.28.67	E.28.95	E.15.46	E.5.41	E.10	E.8.43	E.5.85

Tabela 1 continued. Interpopulation variability of Trichia hispida in Poland.

16.	GOLDAP 1	A.4.564	A.7.635	A2.761	A.3.653	A.3.729	A.7.646	A.1.756	A.1.512	A.5.36	A.0.60	A.0.23	A.0.83	A.0.82
	!	B.0.466	B.0.787	B.0.256	B.0.402	B.0.329	B.0.778	B.0.274	B.0.244	B.0.31	B.0.037	B.0.023	B.0.065	B.0.034
	i	C.156	C.156	C.156	C.156	C.156								
	1	D.2.5-5.5	D.4.1-9.5	D.1.8-3.3	D.2.1-4.8	D.2.2-4.5	D.4.1-9.4	D.0.8-2.6	D.0.7-2.0	D.3.75-5.75	D.0.51-0.70	D.0.16-0.29	D.0.73-0.89	D.0.73-0.89
		E.10.21	E.10.31	E.9.27	E.11	E.8.82	E.10.17	E.15.6	E.16.14	E.5.78	E.5.17	E.10	E.7.83	E.4.15
17.	GOŁDAP 2	A.3.947	A.6.526	A.2.451	A.3.157	A.3.288	A.6.522	A.1.426	A.1.276	A.5.02	A.0.61	A.0.22	A.0.90	A.0.84
		B.0.566	B.0.973	B.0.270	B.0.441	B.0.412	B.0.963	B.0.346	B.0.308	B.0.42	B.0.033	B.0.023	B.0.055	B.0.041
	1	C.72	C.72	C.72	C.72	C.72								
	12	D.2.7-5.2	D.4.6-8.3	D.1.8-3.2	D.2.2-4.4	D.2.2-4.2	D.4.7-8.4	D.0.9-2.3	D.0.7-2.0	D.4.25-5.75	D.0.55-0.70	D.0.17-0.28	D.0.78-1.00	D.0.71-0.93
		E.14.34	E.14.91	E.11.02	E.15.97	E.12.53	E.14.76	E.24.26	E.24.14	E.8.37	E.5.41	E.10.45	E.6.11	E.4.88
8.	BŁĄDZIS2K	A.3.374	A.5.581	A.1.993	A.2.636	A.2.730	A.5.583	A.1.128	A.0.982	A.4.87	A.0.60	A.0.20	A.0.87	A.0.81
	1	B.0.510	B.0.662	B.0.318	B.0.331	B.0.428	B.0.667	B.0.20	B.0.181	B.0.42	B.0.040	B.0.021	B.0.063	B.0.049
		C.90	C.90	C.90	C.90	C.90								
		D.2.2-4.8	D.3.9-7.6	D.1.3-3.0	D.2.0-3.5	D.1.8-4.0	D.3.8-7.7	D.0.6-1.9	D.0.5-1.7	D.3.75-5.66	D.0.5-0.70	D.0.13-0.25	D.0.7-1.0	D.0.71-0.93
		E.15.51	E.11.86	E.15.94	E.12.56	E.15.68	E.11.95	E.17.73	E.18.43	E.8.62	E.6.67	E.10.5	E.7.24	E.6.05
19.	BIŁGORAJ	A.3.418	A.5.758	A.2.259	A.2.797	A.2.884	A.5.733	A.1.235	A.1.072	A.4.66	A.0.59	A.0.21	A.0.87	A.0.85
		B.0.522	B.0.838	B.0.206	B.0.354	B.0.375	B.0.855	B.0.252	B.0.228	B.0.40	B.0.03	B.0.025	B.0.077	B.0.036
		C.114	C.114	C.114	C.114	C.114								
	1 6	D.2.3-5.3	D.4.1-8.2	D.1.7-2.9	D.1.9-4.0	D.2.0-4.1	D.3.2-8.2	D.0.8-1.9	D.0.7-1.8	D.3.5-5.75	D.0.51-0.69	D.0.15-0.31	D.0.65-1.00	D.0.73-0.93
		E.15.27	E.14.55	E.9.12	E.12.66	E.13	E.14.91	E,20.39	E.21.27	E.8.58	E.5.08	E.11.9	E.9.85	E.4.23
20.	STAW	A.3.958	A.6.880	A.2.282	A.3.130	A.3.209	A.6.877	A.1.793	A.1.601	A.5.42	A.0.57	A.0.26	A.0.89	A.0.81
		B.0.670	B.0.906	B.0.268	B.0.455	B.0.481	B.0.898	B.0.334	B.0.314	B.0.49	B.0.041	B.0.026	B.0.064	B.0.041
	6 8	C.203	C.203	. C.203	C.203	C.203	C.203	C.203	C.203	C.203	C.203	C.203	C.203	C.203
		D.2.0-5.5	D.3.1-8.7	D.1.2-3.0	D.1.5-4.0	D.1.8-4.2	D.3.2-8.5	D.0.8-2.4	D.0.7-2.3	D.3.50-6.00	D.0.47-0.74	D.0.18-0.38	D.0.45-1.00	D.0.71-0.95
0000		E.15.93	E.13.17	E.11.74	E.14.54	E.14.99	E.13.06	E.18.63	E.19.61	E.9.04	E.7.19	E.10	E.7.19	E.5.06
1.	CHELM	A.3.936	A.6.828	A.2.401	A.3.191	A.3.242	A.6.827	A.1.727	A.1.464	A.5.27	A_0.58	A.0.25	A.0.85	A.0.82
	Commence of the control of the contr	B.0.429	B.0.705	B.0.237	B.0.341	B.0.315	B.0.714	B.0.296	B.0.283	B.0.31	B.0.029	B.0.024	B.0.063	B.0.035
		C.113	C.113	C.113	C.113	C.113								
		D.2.8-5.0	D.5.1-8.9	D.1.8-3.2	D.2.5-4.3	D.2.4-4.2	D.5.1-8.9	D.1.1-2.6	D.0.9-2.3	D.4.33-5.75	D.0.51-0.66	D.0.2-0.31	D.0.69-1.00	D.0,74-0.91
		E.10.9	E.10.32	E.9.87	E.10.69	E.9.72	E.10.46	E.17.14	E.19.33	E.5.88	E.5	E.9.6	E.7.41	E.4.27

Table 2. Interpopulation variability of adult specimens of <i>Trichia hispida</i> in Polar	Table 2. Interpopulat	ion variability of adult	specimens of Trichi	a hispida in Polan
--	-----------------------	--------------------------	---------------------	--------------------

Na.	Locality	Shell height A. Mean B. SD C. NS D. Range E. v	Shell breadth A. Moan B. SD C. NS D.Range E.v	Aperture beight A. Mesn B. SD C. NS D. Range E.v	Aperture breadth A Mean B. SD C. NS D. Range E. v	Body whorf height A. Moan B. SD C. NS D. Range E. v	Shell diameter A. Mean B. SD C. NS D. Range E. v	Umbilicus major diameter A. Mean B. SD C. NS D. Range E. v	Umbilicus minor diameter A. Moun B. SD C. NS D. Rango E. v	Whori number A.Mean B. SD C. NS D. Range E. v	Height/breadth ratio A. Mean B. SD C. NS D. Range E. v	Umbilious major diameter to shell diameter A.Mean B. SD C. NS D. Range E. v	Umbilious minor diameter to its major diameter A.Moss B.SD C.NS D.Range E. v	Relative height of body whor! A. Mean B. SD C. NS D. Range E. v
1.	LUBAWKA	A.4.814 B.0.442 C.35 D.4.2-5.5 E.9.18	A.7.566 B.0.638 C.35 D.6.3-9.0 E.8.43	A.2.709 B.0.309 C.35 D.2.1-3.5 E.11.41	A.3.640 B.0.307 C.35 D.3.0-4.3 E.8.43	A.3.860 B.0.316 C.35 D.3.3-4.5 E.8.19	A.7.554 B.0.659 C.35 D.6.3-9.0 E.8.72	A.1.631 B.0.262 C.35 D.1.0-2.1 E.16.06	A.1.391 B.0.285 C.35 D.0.8-2.0 E.20.49	A.5.45 B.0.24 C.35 D.5.25-6.00 E.4.4	A.0.63 B.0.039 C.35 D.0.56-0.71 E.6.19	A.0.21 B.0.023 C.35 D.0.15-0.26 E.10.95	A.0.85 B.0.070 C.35 D.0.61-0.95 E.8.23	A.0.80 B.0.028 C.35 D.0.75-0.86 E.3.5
2.	WAŁ- BRZYCH	A.4.802 B.0.393 C.46 D.3.9-5.7 E.8.18	A7.643 B.0.475 C.46 D.6.5-8.9 E.6.21	A.2.757 B.0.244 C.46 D.2.2-3.3 E.8.85	A.3.626 B.0.346 C.46 D.2.5-4.2 E.9.54	A.3.811 B.0.247 C.46 D.3.3-4.3 E.6.48	A.7.552 B.0.899 C.46 D.2.6-8.6 E.11.9	A.1.796 B.0.209 C.46 D.1.4-2.2 E.11.64	A.1.539 B.0.227 C.46 D.1.2-2.0 E.14.75	A.5.46 B.0.18 C.46 D.5.25-6.00 E.3.3	A.0.63 B.0.043 C.46 D.0.53-0.74 E.6.82	A.0.24 B.0.066 C.46 D.0.18-0.65 E.27.5	A.0.86 B.0.057 C.46 D.0.72-0.95 E.6.63	A.0.79 B.0.034 C.46 D.0.68-0.87 E.4.3
3.	STĘSZEW	A.4.587 B.0.348 C.55 D.4.0-5.6 E.7.59	A.7.533 B.0.461 C.55 D.6.5-8.7 E.5.44	A.2.716 B.0.277 C.55 D.2.0-3.4 E.10.2	A.3.735 B.0.357 C.55 D.3.0-4.7 E.9.56	A.3.649 B.0.292 C.55 D.3.1-4.4 E.8.02	A.7.564 B.0.529 C.55 D.6.5-9.0 E.6.99	A1.625 B.0.217 C.55 D.1.1-2.0 E.13.35	A.1.358 B.0.198 C.55 D.0.9-1.8 E.14.58	A.5.40 B.0.15 C.55 D.5.25-5.75 E.2.78	A.0.61 B.0.040 C.55 D.0.53-0.72 E.6.56	A.0.21 B.0.025 C.55 D.0.13-0.26 E.11.9	A.0.84 B.0.066 C.55 D.0.65-1.00 E.7.86	A.0.80 B.0.041 C.55 D.0.67-0.88 E.5.12
4.	СНҮВҮ	A.4.276 B.0.282 C.38 D.3.7-4.8 E.6.59	A.7.063 B.0.481 C.38 D.6.2-8.5 E.6.81	A.2.537 B.0.282 C.38 D.2.0-3.3 E.11.11	A.3.489 B.0.316 C.38 D.2.7-4.0 E.9.06	A.3.447 B.0.277 C.38 D.2.8-4.0 E.8.04	A.7.061 B.0.497 C.38 D.6.3-8.5 E.7.04	A.1.618 B.0.22 C.38 D.1.2-2.2 E.13.6	A.1.355 B.0.205 C.38 D.1.0-2.0 E.15.13	A.5.41 B.0.14 C.38 D.5.25-5.75 E.2.59	A.0.61 B.0.037 C.38 D.0.53-0.68 E.6.07	A.0.23 B.0.023 C.38 D.0.18-0.27 E.10	A.0.84 B.0.078 C.38 D.0.71-1.00 E.9.29	A.0.81 B.0.040 C.38 D.0.75-0.93 E.4.94
5.	POZNAŃ	A.4.582 B.0.465 C.45 D.3.5-5.5 E.10.14	A.7.631 B.0.673 C.45 D.6.0-9.0 E.8.82	A.2.553 B.0.307 C.45 D.1.9-3.2 E.12.02	A.3.633 B.0.407 C.45 D.2.9-4.5 E.11.12	A.3.667 B.0.334 C.45 D.2.8-4.4 E.9.11	A.7.442 B.0.593 C.45 D.5.8-8.8 E.7.97	A.1.724 B.0.284 C.45 D.1.0-2.3 E.16.47	A.1.476 B.0.309 C.45 D.0.8-2.1 E.20.93	A.5.58 B.0.26 C.45 D.5.25-6.00 E.4.66	A0.60 B0.044 C.45 D.0.51-0.68 E.7.33	A.0.24 B.0.10 C.45 D.0.17-0.89 E.41.66	A.0.85 B.0.079 C.45 D.0.65-1.00 E.9.29	A.0.81 B.0.036 C.45 D.0.73-0.87 E.4.44
6.	MUSZKO- WICE	A.5.061 B.0.346 C.23 D.4.5-6.0 E.6.84	A.7.639 B.0.346 C.23 D.7.0-8.3 E.4.53	A.2.904 B.0.364 C.23 D.2.4-3.7 E.12.53	A.3.874 B.0.366 C.23 D.3.1-7.5 E.9.45	A.4.287 B.0.338 C.23 D.3.8-5.0 E.7.88	A.7.678 B.0.448 C.23 D.6.7-8.5 E.5.83	A.0.896 B.0.126 C.23 D.0.6-1.2 E.14.06	A.0.822 B.0.113 C.23 D.0.6-1.0 E.13.75	A.5.30 B.0.14 C.23 D.5.15-5.75 E.2.64	A.0.66 B.0.048 C.23 D.0.60-0.79 E.7.27	A.0.12 B.0.016 C.23 D.0.08-0.16 E.13.33	A.0.92 B.0.077 C.23 D.0.78-1.00 E.8.37	A.0.85 B.0.044 C.23 D.0.78-0.91 E.5.18
7.	OŁAWA	A.4.625 B.0.422 C.53 D.3.8-5.6 E.9.08	A.7.442 B.0.674 C.53 D.6.0-8.9 E.9.06	A.2.664 B.0.262 C.53 D.2.2-3.3 E.9.83	A.3.498 B.0.353 C.53 D.2.8-4.3 E.10.09	A.3.702 B.0.317 C.53 D.3.2-4.5 E.8.56	A.7.442 B.0.660 C.53 D.6.0-9.0 E.8.87	A1.791 B.0.3 C.53 D.1.2-2.5 E.16.75	A.1.583 B.0.294 C.53 D.1.0-2.2 E.18.57	A.5.43 B.0.18 C.53 D.5.25-6.00 E.3.31	A.0.62 B.0.056 C.53 D.0.51-0.83 E.9.03	A.0.24 B.0.032 C.53 D.0.16-0.31 E.13.33	A.0.88 B.0.073 C.53 D.0.63-1.00 E.8.29	A.0.80 B.0.038 C.53 D.0.73-0.89 E.4.75

Table 2 continued. Interpopulation variability of adult specimens of Trichia hispida in Poland.

8.	RABCZYN	A.4.466 B.0.484 C.41 D.3.0-5.5 E.10.84	A.7.249 B.0.659 C.41 D.5.5-8.8 E.9.09	A.2.576 B.0.234 C.41 D.1.9-3.0 E.9.08	A.3.456 B.0.308 C.41 D.2.6-4.2 E.8.91	A.3.566 B.0.348 C.41 D.2.5-4.0 E.9.76	A.7.232 B.0.673 C.41 D.5.5-8.8 E.9.31	A.1.690 B.0.231 C.41 D.1.1-2.2 E.13.67	A.1.417 B.0.252 C.41 D.1.0-2.0 E.17.78	A.5.41 B.0.15 C.41 D.5.25-5.75 E.2.77	A.0.62 B.0.048 C.41 D.0.53-0.75 E.7.74	A.0.23 B.0.022 C.41 D.0.18-0.29 E.9.56	A.0.84 B.0.081 C.41 D.0.67-1.00 E.9.64	A.0.80 B.0.043 C.41 D.0.70-0.88 E.5.37
9.	JAROCIN I	A.4.730 B.0.422 C.74 D.3.9-5.8 E.8.92	A.7.187 B.0.594 C.74 D.5.8-8.5 E.8.26	A.2.757 B.0.219 C.74 D.2.1-3.4 E.7.94	A.3.569 B.0.332 C.74 D.2.8-4.3 E.9.3	A.3.705 B.0.291 C.74 D.3.0-4.4 E.7.85	A.7.197 B.0.598 C.74 D.6.0-8.4 E.8.31	A1.543 B.0.240 C.74 D.1.0-2.2 E.15.55	A.1.273 B.0.205 C.74 D.0.9-2.0 E.16.1	A.5.45 B.0.19 C.74 D.5.25-6.00 E.3.49	A.0.66 B.0.040 C.74 D.0.53-0.74 E.6.06	A.0.21 B.0.026 C.74 D.0.16-0.31 E.12.38	A.0.83 B.0.072 C.74 D.0.65-1.00 E.8.67	A.0.78 B.0.041 C.74 D.0.61-0.88 E.5.26
10.	JAROCIN 2	A.4.571 B.0.380 C.83 D.3.7-5.7 E.8.31	A.6.98 B.0.565 C.83 D.5.8-9.0 E.8.09	A.2.588 B.0.225 C.83 D.2.0-3.2 E.8.69	A.3.484 B.0.290 C.83 D.2.7-4.1 E.8.32	A.3.580 B.0.276 C.83 D.3.0-4.3 E.7.71	A.6.960 B.0.538 C.83 D.5.8-8.7 E.8.31	A1.636 B.0.188 C.83 D.1.2-2.0 E.11.49	A.1.319 B.0.174 C.83 D.1.0-1.7 E.13.19	A.5.41 B.0.16 C.83 D.5.10-5.75 E.2.96	A.0.65 B.0.033 C.83 D.0.58-0.75 E.5.08	A.0.23 B.0.022 C.83 D.0.17-0.28 E.9.56	A.0.81 B.0.068 C.83 D.0.65-1.00 E.8.39	A.0.78 B.0.030 C.83 D.0.67-0.85 E.3.85
11.	WĘGIERKI	A.4.673 B.0.516 C.15 D.4.0-6.0 E.11.04	A.7.073 B.0.788 C.15 D.5.9-8.6 E.11.14	A.2.653 B.0.311 C.15 D.2.2-3.3 E.11.72	A.3.527 B.0.388 C.15 D.3.0-4.4 E.11	A.3.687 B.0.318 C.15 D.3.2-4.3 E.8.62	A.7.107 B.0.792 C.15 D.6.0-8.7 E.11.14	A1.447 B.0.236 C.15 D.1.1-2.0 E.16.31	A.1.173 B.0.266 C.15 D.0.8-1.9 E.22.67	A.5.38 B.0.22 C.15 D.5.25-6.00 E.4.09	A.0.66 B.0.037 C.15 D.0.60-0.74 E.5.61	A.0.20 B.0.017 C.15 D.0.18-0.24 E.8.5	A.0.81 B.0.072 C.15 D.0.67-0.95 E.8.89	A.0.79 B.0.042 C.15 D.0.67-0.84 E.5.32
12.	PARZY- NÓW	A.5.182 B.0.563 C.22 D.4.3-6.5 E.10.86	A.8.091 B.0.593 C.22 D.6.8-9.2 E.7.33	A.3.273 B.0.482 C.22 D.2.7-4.2 E.14.73	A.3.955 B.0.328 C.22 D.3.2-4.7 E.8.29	A.4.255 B.0.477 C.22 D.3.5-5.5 E.11.21	A.8.277 B.0.562 C.22 D.7.0-9.4 E.6.79	A1.823 B.0.239 C.22 D.1.4-2.4 E.13.11	A.1.664 B.0.228 C.22 D.1.3-2.2 E.13.7	A.5.45 B.0.24 C.22 D.5.10-5.90 E.4.4	A.0.64 B.0.060 C.22 D.0.55-0.78 E.9.37	A.0.22 B.0.024 C.22 D.0.16-0.26 E.10.91	A.0.91 B.0.055 C.22 D.0.76-1.00 E.6.04	A.0.82 B.0.033 C.22 D.0.77-0.89 E.4.02
13.	GDYNIA	A.4.514 B.0.342 C.36 D.4.0-5.5 E.7.58	A.7.253 B.0.423 C.36 D.6.4-8.3 E.5.83	A.2.581 B.0.266 C.36 D.2.1-3.2 E.10.31	A.3.436 B.0.287 C.36 D.3.0- 4.28.35	A3.589 B.0.275 C.36 D.3.1-4.3 E.7.66	A.7.306 B.0.404 C.36 D.6.5-8.4 E.5.53	A1.686 B.0.193 C.36 D.1.3-2.2 E.11.45	A.1.428 B.0.194 C.36 D.1.1-1.8 E.13.58	A.5.43 B.0.15 C.36 D.5.25-5.75 E.2.76	A.0.62 B.0.036 C.36 D.0.56-0.69 E.5.81	A.0.23 B.0.024 C.36 D.0.19-0.27 E.10.43	A.0.85 B.0.073 C.36 D.0.71-1.00 E.8.59	A.0.80 B.0.034 C.36 D.0.71-0.87 E.4.25
14.	GLIWICE	A.4.522 B.0.447 C.9 D.3.7-5.0 E.9.88	A.7.111 B.0.431 C.9 D.6.4-7.6 E.6.06	A.2.522 B.0.254 C.9 D.2.2-3.0 E.10.07	A.3.556 B.0.317 C.9 D.3.0-4.0 E.8.91	A3.600 B.0.316 C.9 D.3.2-4.0 E.8.78	A.7.044 B.0.422 C.9 D.6.4-7.5 E.5.99	A1.611 B.0.280 C.9 D.1.2-2.0 E.17.38	A.1.422 B.0.273 C.9 D.1.0-1.9 E.19.2	A.5.29 B.0.09 C.9 D.5.20-5.50 E.1.7	A.0.63 B.0.042 C.9 D.0.55-0.68 E.6.66	A.0.23 B.0.031 C.9 D.0.18-0.27 E.13.48	A.0.88 B.0.036 C.9 D.0.83-0.95 E.4.09	A.0.80 B.0.037 C.9 D.0.72-0.86 E.4.62
15.	RADOM	A.4.837 B.0.390 C.70 D.4.1-5.8 E.8.06	A.7.764 B.0.501 C.70 D.6.7-8.7 E.6.45	A.2.860 B.0.190 C.70 D.2.5-3.3 E.6.64	A.3.737 B.0.314 C.70 D.2.8-4.5 E.8.4	A3.854 B.0.264 C.70 D.3.3-4.5 E.6.85	A.7.769 B.0.492 C.70 D.6.7-9.0 E.6.33	A1.860 B.0.170 C.70 D.1.5-2.3 E.9.14	A.1.530 B.0.176 C.70 D.1.1-2.0 E.11.5	A.5.51 B.0.20 C.70 D.5.25-6.00 E.3.63	A.0.62 B.0.033 C.70 D.0.56-0.71 E.5.32	A.0.24 B.0.015 C.70 D.0.20-0.28 E.6.25	A.0.82 B.0.058 C.70 D.0.67-0.94 E.7.07	A.0.80 B.0.027 C.70 D.0.74-0.86 E.3.37
16.	GOŁDAP I	A.4.733 B.0.348 C.117 D.4.0-5.5 E.7.35	A.7.930 B.0.564 C.117 D.6.3-9.5 E.7.11	A.2.809 B.0.237 C.117 D.2.2-3.3 E.8.44	A.3.787 B.0.327 C.117 D.3.1-4.8 E.8.63	A.3.837 B.0.254 C.117 D.3.1-4.5 E.6.62	A.7.935 B.0.562 C.117 D.6.4-9.4 E.7.08	A.1.835 B.0.243 C.117 D.1.2-2.6 E.13.24	A.1.575 B.0.228 C.117 D.0.9-2.0 E.14.48	A.5.49 B.0.16 C.117 D.5.20-5.75 E.2.91	A.0.60 B.0.039 C.117 D.0.51-0.70 E.6.5	A.0.23 B.0.023 C.117 D.0.16-0.29 E.10	A.0.86 B.0.060 C.117 D.0.60-1.00 E.6.98	A.0.81 B.0.032 C.117 D.0.73-0.90 E.3.95

Table 2 continued. Interpopulation variability of adult specimens of Trichia hispida in Poland.

17.	GOLDAP 2	A.4.419 B.0.308 C.32 D.3.8-5.2 E.6.97	A.7.341 B.0.532 C.32 D.6.2-8.3 E.7.25	A.2.553 B.0.268 C.32 D.2.1-3.2 E.10.5	A3.503 B.0.291 C.32 D.2.9-4.4 E.8.31	A.3.594 B.0.263 C.32 D.3.2-4.2 E.7.32	A.7.353 B.0.529 C.32 D.6.2-8.4 E.7.19	A.1.666 B.0.263 C.32 D.1.2-2.3 E.15.79	A.1.484 B.0.245 C.32 D.1.1-2.0 E.16.51	A.5.42 B.0.16 C.32 D.5.25-5.75 E.2.95	A.0.60 B.0.034 C.32 D.0.55-0.69 E.5.67	A.0.23 B.0.028 C.32 D.0.17-0.28 E.12.17	A.0.89 B.0.051 C.32 D.0.80-1.00 E.5.73	A.0.81 B.0.034 C.32 D.0.71-0.88 E.4.2
18.	BŁĄDZISZ- KI	A.3.862 B.0.369 C.26 D.3.3-4.8 E.9.55	A.6.212 B.0.443 C.26 D.5.7-7.6 E.7.13	A.2.254 B.0.315 C.26 D.1.8-3.0 E.13.97	A.2.927 B.0.243 C.26 D.2.5-3.5 E.8.3	A.3.142 B.0.330 C.26 D.2.5-4.0 E.10.5	A.6.235 B.0.463 C.26 D.5.7-7.7 E.7.43	A.1.312 B.0.168 C.26 D.1.1-1.9 E.12.8	A.1.150 B.0.153 C.26 D.1.0-1.7 E.13.3	A.5.33 B.0.15 C.26 D.5.10-5.66 E.2.81	A.0.62 B.0.034 C.26 D.0.56-0.69 E.5.48	A.0.21 B.0.019 C.26 D.0.16-0.25 E.9.05	A.0.88 B.0.052 C.26 D.0.80-1.00 E.5.91	A.0.81 B.0.046 C.26 D.0.73-0.89 E.5.68
19.	BILGORAJ	A.4.460 B.0.366 C.15 D.3.9-5.3 E.8.21	A.7.360 B.0.614 C.15 D.6.1-8.2 E.8.34	A.2.487 B.0.233 C.15 D.2.2-2.9 E.9.37	A.3.433 B.0.289 C.15 D.3.0-4.0 E.8.42	A3.567 B.0.313 C.15 D.3.0-4.1 E.8.77	A.7.3 B.0.578 C.15 D.6.2-8.2 E.7.92	A.1.627 B.0.205 C.15 D.1.2-1.9 E.12.6	A.1.447 B.0.196 C.15 D.1.1-1.8 E.13.54	A.5.42 B.0.16 C.15 D.5.25-5.75 E.2.95	A.0.61 B.0.033 C.15 D.0.54-0.65 E.5.41	A.0.22 B.0.020 C.15 D.0.18-0.25 E.9.09	A.0.89 B.0.060 C.15 D.0.76-1.00 E.6.74	A.0.80 B.0.032 C.15 D.0.73-0.85 E.4
20.	STAW	A.4.306 B.0.387 C.141 D.3.5-5.5 E.8.99	A.7.355 B.0.457 C.141 D.6.4-8.7 E.6.21	A.2.380 B.0.199 C.141 D.1.9-3.0 E.8.36	A.3.335 B.0.279 C.141 D.2.7-4.0 E.8.37	A3.454 B.0.275 C.141 D.2.9-4.2 E.7.96	A.7.348 B.0.456 C.141 D.6.3-8.5 E.6.21	A.1.958 B.0.193 C.141 D.1.5-2.4 E.9.86	A.1.755 B.0.193 C.141 D.1.2-23 E.11	A.5.68 B.0.22 C.141 D.5.25-6.00 E.3.87	A.0.58 B.0.034 C.141 D.0.50-0.70 E.5.86	A.0.27 B.0.018 C.141 D.0.21-0.33 E.6.67	A.0.90 B.0.055 C.141 D.0.68-1.00 E.6.11	A.0.80 B.0.035 C.141 D.0.73-0.89 E.4.37
21.	CHEŁM	A.4.069 B.0.346 C.85 D.3.5-4.9 E.8.5	A.7.053 B.0.542 C.85 D.6.1-8.7 E.7.68	A.2.438 B.0.220 C.85 D.2.0-3.2 E.9.02	A3.276 B0.295 C.85 D.2.6-4.2 E.9	A.3.333 B.0.252 C.85 D.2.8-4.0 E.7.56	A.7.055 B.0.551 C.85 D.6.1-8.9 E.7.81	A.1.815 B.0.243 C.85 D.1.3-2.6 E.13.39	A.1.546 B.0.232 C.85 D.1.0-2.3 E.15	A.5.41 B.0.17 C.85 D.5.00-5.75 E.3.14	A.0.58 B.0.030 C.85 D.0.51-0.66 E.5.17	A.0.26 B.0.022 C.85 D.0.20-0.31 E.8.46	A.0.85 B.0.061 C.85 D.0.71-1.00 E.7.18	A.0.82 B.0.034 C.85 D.0.75-0.91 E.4.15

Table 3. Interpopulation variability of juvenile specimens of Trichia hispida in Poland.

No.	Locality	Shell height A. Mean B. SD C. NS D. Range E. v	Shell hreadth A. Mean B. SD C. NS D. Range E. V	Aperture height A. Mean B. SD C. NS D. Range E. v	Aperture breadth A. Mosm B. SD C. NS D. Range E. v	Body whord height A. Moun B. SD C. NS D. Range E. v	Shell diameter A. Mean B. SD C. NS D. Range E. v	Umbilious major diameter A. Mosn B. SD C. NS D. Range E. v	Ur-bilicus minor diameter A. Mean B. SD C. NS D. Range E. v	Whorl number A. Mean B. SD C. NS D. Range E. v	Height/break h ratio A. Mean B. SD C. NS D. Range E. v	Umbilicus major diameter to shell diameter A.Mean B. SD C. NS D. Range E. v	Umbilicus minor diameter to its major diameter A.Mean B.SD C.NS D.Range E. v	Wysokość ostatniego skrytu/Wyso-kość muszki A Średnia B. SD C. NS D. Zakres E. y
1.	LUBAWKA	A.3.915 B.0.406 C.33 D.3.0-4.8 E.10.37	A.6.355 B.0.567 C.33 D.4.6-7.7 E.8.92	A.2.348 B.0.236 C.33 D.1.7-2.7 E.10.05	A.3.036 B.0.308 C.33 D.2.5-3.7 E.10.14	A3.176 B.0.325 C.33 D.2.5-3.8 E.10.23	A.6.391 B.0.584 C.33 D.4.5-7.7 E.9.14	A1.394 B.0.26 C.33 D.0.8-2.2 E.18.65	A.1.197 B.0.236 C.33 D.0.7-1.9 E.19.72	A.4.84 B.0.24 C.33 D.4.00-5.00 E.4.96	A.0.62 B.0.039 C.33 D.0.54-0.70 E.6.29	A.0.22 B.0.026 C.33 D.0.17-0.29 E.11.82	A.0.86 B.0.041 C.33 D.0.79-0.93 E.4.77	A.0.81 B.0.037 C.33 D.0.71-0.89 E.4.57
2.	WAL- BRZYCH	A.4.245 B.0.274 C.20 D.3.7-4.6 E.7.64	A.6.875 B.0.446 C.20 D.5.6-7.5 E.6.49	A.2.550 B.0.147 C.20 D.2.2-2.8 E.5.76	A.3.355 B.0.296 C.20 D.2.7-4.0 E.8.82	A.3.500 B.0.172 C.20 D.3.2-3.8 E.4.91	A.6.890 B.0.441 C.20 D.5.9-7.6 E.6.4	A.1.525 B.0.197 C.20 D.1.1-1.8 E.12.92	A.1.245 B.0.221 C.20 D.0.9-1.6 E.17.75	A.5.01 B.0.12 C.20 D.4.75-5.00 E.2.39	A.0.62 B.0.040 C.20 D.0.52-0.70 E.6.45	A.0.22 B.0.024 C.20 D.0.16-0.26 E.10.91	A.0.81 B.0.063 C.20 D.0.67-0.89 E.7.78	A.0.83 B.0.038 C.20 D.0.76-0.90 E.4.58
3.	STĘSZEW	A3.329 B.0.904 C.55 D.1.7-5.0 E.27.15	A.5.542 B.1.497 C.55 D.3.0-8.5 E.27.01	A.2.162 B.0.470 C.55 D.1.3-3.3 E.21.74	A.2.811 B.0.783 C.55 D.1.5-5.0 E.27.85	A.2.795 B.0.672 C.55 D.1.6-4.0 E.24.04	A.5.585 B.1.494 C.55 D.3.1-8.5 E.26.75	A.1.184 B.0.377 C.55 D.0.6-1.9 E.31.84	A.0.958 B.0.337 C.55 D.0.5-1.6 E.35.18	A.4.37 B.0.68 C.55 D.3.00-5.00 E.15.56	A.0.60 B.0.037 C.55 D.0.52-0.72 E.6.17	A.0.21 B.0.024 C.55 D.0.17-0.27 E.11.43	A.0.81 B.0.099 C.55 D.0.61-1.00 E.12.22	A.0.85 B.0.051 C.55 D.0.73-0.96 E.6
4.	СНҮВҮ	A.3.500 B.0.366 C.18 D.2.8-4.0 E.10.46	A.5.806 B.0.571 C.18 D.4.7-7.1 E.9.83	A.2.239 B.0.225 C.18 D.2.0-2.9 E.10.05	A.2.861 B.0.293 C.18 D.2.5-3.5 E.10.24	A.2.889 B.0.235 C.18 D.2.5-3.3 E.8.13	A.5.811 B.0.549 C.18 D.4.7-7.0 E.9.45	A.1.294 B.0.229 C.18 D.0.8-1.7 E.17.7	A.1.056 B.0.192 C.18 D.0.7-1.3 E.18.18	A.4.71 B.0.31 C.18 D.3.75-5.00 E.6.58	A.0.60 B.0.044 C.18 D.0.53-0.70 E.7.33	A.0.22 B.0.030 C.18 D.0.15-0.27 E.13.64	A.0.82 B.0.073 C.18 D.0.67-0.92 E.8.9	A.0.83 B.0.032 C.18 D.0.75-0.89 E.3.85
5.	POZNAŃ	A3.531 B.0.566 C.13 D.2.6-4.5 E.16.03	A.5.877 B.0.864 C.13 D.4.5-7.7 E.14.7	A.2.269 B.0.287 C.13 D.1.8-2.8 E.12.65	A.2.808 B.0.375 C.13 D.2.3-3.6 E.13.28	A.2.646 B.0.412 C.13 D.2.3-3.8 E.15.57	A.5.869 B.0.899 C.13 D.4.6-8.0 E.15.32	A.1.208 B.0.266 C.13 D.0.9-1.7 E.22.02	A.1.031 B.0.221 C.13 D.0.8-1.5 E.21.43	A.4.62 B.0.39 C.13 D.3.75-5.00 E.8.41	A.0.60 B.0.032 C.13 D.0.54-0.68 E.5.33	A.0.20 B.0.023 C.13 D.0.16-0.25 E.11.5	A.0.86 B.0.068 C.13 D.0.75-1.00 E.7.91	A.0.84 B.0.038 C.13 D.0.77-0.90 E.4.52
6.	MUSZKO- WICE	A.4.187 B.0.605 C.39 D.2.7-5.2 E.14.45	A.6.403 B.0.749 C.39 D.4.9-7.9 E.11.7	A.2.600 B.0.430 C.39 D.2.0-3.7 E.16.54	A.2.982 B.0.550 C.39 D.2.1-4.0 E.18.43	A3.533 B.0.534 C.39 D.2.2-4.5 E.15.11	A.6.292 B.0.755 C.39 D.4.4-7.9 E.12	A.6.38 B.0.137 C.39 D.0.4-0.9 E.21.47	A.0.621 B.0.126 C.39 D.0.4-0.9 E.20.29	A.4.76 B.0.27 C.39 D.4.00-5.00 E.5.67	A.0.65 B.0.048 C.39 D.0.55-0.76 E.7.38	A.0.10 B.0.015 C.39 D.0.07-0.13 E.15	A.0.98 B.0.058 C.39 D.0.78-1.00 E.5.92	A.0.84 B.0.048 C.39 D.0.74-0.94 E.5.71
7.	OŁAWA	A3.172 B.0.567 C.189 D.1.7-4.9 E.17.87	A.5.140 B.0.865 C.189 D.3.0-8.4 E.16.83	A2.044 B.0.342 C.189 D.1.2-3.0 E.16.73	A.2.501 B.0.459 C.189 D.1.3-4.0 E.18.35	A.2.629 B.0.447 C.189 D.1.6-4.0 E.17	A.5.128 B.0.846 C.189 D.3.1-8.4 E.16.5	A.1.128 B.0.228 C.189 D.0.6-2.3 E.20.21	A.0.959 B.0.226 C.189 D.0.5-2.3 E.23.57	A.4.40 B.0.38 C.189 D.3.00-5.00 E.8.64	A.0.62 B.0.038 C.189 D.0.51-0.75 E.6.13	A.0.22 B.0.027 C.189 D.0.14-0.28 E.12.27	A.0.84 B.0.066 C.189 D.0.70-1.00 E.7.86	A.0.83 B.0.039 C.189 D.0.71-0.94 E.4.7

Table 3 continued. Interpopulation variability of juvenile specimens of Trichia hispida in Poland.

8.	RABCZYN	A.3.932	A.6.500	A.2.437	A.3.100	A.3.242	A.6.479	A.1.479	A.1.253	A.4.89	A.0.60	A.0.23	A.0.85	A.0.83
	1	B.0.482	B.0.705	B.0.279	B.0.416	B.0.344	B.0.725	B.0.257	B.0.239	B.0.22	B.0.032	B.0.019	B.0.049	B.0.033
	1	C.19	C.19	C.19	C.19	C.19								
	1	D.2.9-4.5	D.5.0-7.6	D.1.9-2.9	D.2.3-3.6	D.2.5-3.6	D.5.0-7.5	D.1.0-1.9	D.0.8-1.6	D.4.33-5.00	D.0.0-0.64	D.0.19-0.26	D.0.71-0.90	D.0.77-0.89
		E.12.26	E.10.85	E.11.45	E.13.42	E.10.61	E.11.19	E.17.38	E.19.07	E.4.5	E.5.55	E.8.26	E.5.76	E.3.97
9.	JAROCIN 1	A.3.750	A.5.776	A.2.374	A.2.909	A.3.098	A.5.796	A.1.146	A.0.961	A.4.66	A.0.65	A.0.19	A.0.84	A.0.83
	1	B.0.640	B.0.955	B.0.391	B.0.515	B.0.479	B.0.967	B.0.255	B.0.199	B.0.47	B.0.040	B.0.023	B.0.067	B.0.043
		C.46	C.46	C.46	C.46	C.46								
	1	D.1.9-4.8	D.3.0-7.5	D.1.0-3.0	D.1.5-4.0	D.1.5-3.9	D.3.0-7.6	D.0.4-1.7	D.0.3-1.3	D.3.00-5.15	D.0.57-0.78	D.0.13-0.24	D.0.73-1.00	D.0.77-1.00
		E.17.07	E.16.53	E.16.47	E.17.7	E.15.46	E.16.68	E.22.25	E.20.71	E.10.08	E.6.15	E.12.1	E.7.98	E.5.18
10.	JAROCIN 2	A.3.642	A.5.638	A.2.273	A.2.865	A.2.975	A.5.631	A.1.271	A.1.022	A.4.65	A.0.65	A.0.22	A.0.80	A.0.82
	1	B.0.541	B.0.832	B.0.291	B.0.401	B.0.389	B.0.821	B.0.284	B.0.249	B.0.43	B.0.035	B.0.027	B.0.073	B.0.044
	1	C.96	C.96	C.96	C.96	C.96								
	1	D.1.5-4.7	D.2.2-7.0	D.1.1-2.9	D.1.2-3.5	D.1.3-3.8	D.2.3-7.0	D.0.3-1.9	D.0.2-1.6	D.2.50-5.00	D.0.56-0.77	D.0.13-0.28	D.0.64-1.00	D.0.69-0.96
		E.14.85	E.14.76	E.12.8	E.14	E.13.08	E.14.58	E.22.34	E.24.36	E.9.24	E.5.38	E.12.27	E.9.12	E.5.37
11.	WĘGIERKI	A.3.751	A.5.931	A.2.277	A.2.959	A.3.073	A.5.934	A.1.131	A.0.881	A.4.70	A.0.63	A.0.19	A.0.78	A.0.82
	i	B.0.385	B.0.531	B.0.226	B.0.297	B.0.268	B.0.539	B.0.168	B.0.155	B.0.27	B.0.037	B.0.019	B.0.077	B.0.037
	1	C.86	C.86	C.86	C.86	C.86								
	i	D.2.8-4.5	D.4.8-7.0	D.1.8-2.8	D.2.2-3.7	D.2.4-3.7	D.4.7-7.0	D.0.8-1.6	D.0.6-1.3	D.3.75-5.00	D.0.51-0.73	D.0.15-0.23	D.0.57-1.00	D.0.73-0.94
		E.10.26	E.8.95	E.9.92	E.10.04	E.8.72	E.9.08	E.14.85	E.17.59	E.5.74	E.5.87	E.10	E.9.87	E.4.51
12.	PARZY-	A.2.517	A.4.192	A.1.763	A.2.029	A.2.146	A.4.183	A.0.838	A.0.700	A.3.85	A.0.60	A.0.20	A.0.84	A.0.86
	NÓW	B.0.547	B.0.996	B.0.278	B.0.451	B.0.367	B.0.982	B.0.243	B.0.219	B.0.55	B.0.040	B.0.020	B.0.047	B.0.078
		C.24	C.24	C.24	C.24	C.24								
		D.1.8-4.0	D.2.8-7.8	D.1.4-2.5	D.1.5-3.5	D.1.6-3.0	D.2.8-7.7	D.0.5-1.7	D.0.4-1.5	D.2.75-5.00	D.0.51-0.67	D.0.17-0.25	D.0.71-0.91	D.0.75-0.95
		E.21.73	E.23.76	E.15.77	E.22.23	E.17.1	E.23.48	E.29	E.31.28	E.14.28	E.6.67	E.10	E.5.59	E.9.07
13.	GDYNIA	A.3.987	A.6.487	A.2.360	A.3.100	A.3.213	A.6.520	A.1.507	A.1.287	A.4.98	A.0.62	A.0.23	A.0.85	A.0.81
		B.0.292	B.0.455	B.0.226	B.0.196	B.0.270	B.0.472	B.0.215	B.0.225	B.0.064	B.0.040	B.0.023	B.0.080	B.0.041
	l .	C.15	C.15	C.15	C.15	C.15								
		D.3.3-4.5	D.5.7-7.4	D.2.0-2.7	D.2.7-3.5	D.2.7-3.6	D.5.7-7.4	D.1.2-1.9	D.1.0-1.7	D.4.75-5.00	D.0.52-0.70	D.0.19-0.27	D.0.72-1.00	D.0.69-0.86
		E.7.32	E.7.01	E.9.58	E.6.32	E.8.4	E.7.24	E.14.27	E.17.48	E.1.28	E.6.45	E.10	E.9.41	E.5.06
14.	GLIWICE	A.3.529	A.5.911	A.2.161	A.2.904	A.2.894	A.5.901	A.1.138	A.0.979	A.4.58	A.0.60	A.0.19	A.0.86	A.0.82
	1	B.0.595	B.0.834	B.0.370	B.0.440	B.0.496	B.0.839	B.0.272	B.0.237	B.0.42	B.0.038	B.0.027	B.0.064	B.0.054
		C.140	C.140	C.140	C.140	C.140								
	1	D.1.5-5.5	D.2.5-8.1	D.0.5-3.2	D.1.0-3.8	D.1.0-4.2	D.2.4-7.6	D.0.3-1.8	D.0.3-1.6	D.2.50-5.10	D.0.49-0.70	D.0.12-0.25	D.0.67-1.00	D.0.56-0.93
		E.16.86	E.14.11	E.17.12	E.15.15	E.17.14	E.14.22	E.23.9	E.24.21	E.9.17	E.6.33	E.14.21	E.7.44	E.6.58
5.	RADOM	A.3.110	A.5.160	A.2.079	A.2.513	A.2.631	A.5.160	A.0.138	A.0.944	A.4.20	A.0.60	A.0.22	A.0.83	A.0.85
		B.0.8	B.1.318	B.0.472	B.0.666	B.0.68	B.1.309	B.0.378	B.0.306	B.0.64	B.0.30	B.0.027	B.0.085	B.0.057
		C.48	C.48	C.48	C.48	C.48								
		D.1.8-4.7	D.3.0-8.4	D.1.3-3.1	D.1.2-4.1	D.1.3-3.9	D.2.9-8.1	D.0.6-2.1	D.0.4-1.7	D,3.00-5.00	D.0.52-0.67	D.0.16-0.28	D.0.67-1.00	D.0.68-1.00
		E.25.72	E.25.54	E.22.7	E.26.5	E.25.85	E.25.37	E.33.22	E.32.24	E.15.24	E.5	E.12.27	E.10.24	E.6.71

Table 3 continued. Interpopulation variability of juvenile specimens of Trichia hispida in Poland.

16.	GOŁDAP I	A.4.056	A.6.751	A.2.618	A.3.251	A.3.408	A.6.777	A.1.518	A.1.321	A.4.94	A.0.60	A.0.22	A.0.87	A.0.84
		B.0.403	B.0.698	B.0.262	B.0.332	B.0.323	B.0.687	B.0.220	B.0.187	B.0.26	B.0.027	B.0.023	B.0.076	B.0.032
	1	C.39	C.39	C.39	C.39	C.39								
	1	D.2.5-4.7	D.4.1-8.0	D.1.8-3.0	D.2.1-3.6	D.2.2-3.8	D.4.1-8.0	D.0.8-1.9	D.0.7-1.7	D.3.75-5.15	D.0.53-0.65	D.0.16-0.27	D.0.75-1.07	D.0.77-0.89
		E.9.94	E.10.34	E.10.01	E.10.21	E.9.48	E.10.14	E.14.49	E.14.16	E.5.26	E.4.5	E.17.45	E.8.74	E.3.81
7.	GOLDAP 2	A.3.570	A.5.875	A.2.370	A.2.880	A.3.043	A.5.858	A.1.235	A.1.110	A.4.70	A.0.61	A.0.21	A.0.90	A.0.85
		B.0.423	B.0.721	B.0.245	B.0.331	B.3.41	B.0.667	B.0.279	B.0.248	B.0.26	B.0.032	B.0.029	B.0.059	B.0.038
		C.40	C.40	C.40	C.40	C.40								
		D.2.7-4.5	D.4.6-7.5	D.1.8-2.8	D.2.2-3.5	D.2.2-3.8	D.4.7-7.3	D.0.9-1.9	D.0.7-1.7	D.4.25-5.00	D.0.55-0.70	D.0.17-0.28	D.0.78-1.00	D.0.78-0.93
		E.11.85	E.12.27	E.10.34	E.11.49	E.11.21	E.11.39	E.22.59	E.22.34	E.5.53	E.5.24	E.13.81	E.6.55	E.4.47
8.	BLADZISZ-	A.3.177	A.5.325	A.1.888	A.2.517	A.2.563	A.5.319	A.1.053	A.0.914	A.4.69	A.0.60	A.0.20	A.0.87	A.0.81
	KI	B.0.419	B.0.557	B.0.253	B.0.286	B.0.342	B.0.545	B.0.160	B.0.144	B.0.34	B.0.041	B.0.021	B.0.068	B.0.050
		C.64	C.64	C.64	C.64	C.64								
		D.2.2-4.2	D.3.9-6.4	D.1.3-2.5	D.2.0-3.3	D.1.8-3.2	D.3.8-6.5	D.0.6-1.4	D.0.5-1.2	D.3.75-5.00	D.0.50-0.70	D.0.13-0.24	D.0.70-1.00	D.0.71-0.93
		E.13.19	E.10.46	E.13.4	E.11.36	E.13.43	E.10.25	E.15.19	E.15.75	E.7.25	E.6.83	E.10.5	E.7.82	E.6.17
9.	BILGORAJ	A.3.260	A.5.515	A.2.224	A.2.701	A.2.781	A.5.496	A1.176	A.1.015	A.4.54	A.0.59	A.0.21	A.0.88	A.0.85
		B.0.322	B.0.550	B.0.178	B.0.247	B.0.257	B.0.602	B.0.201	B.0.173	B.0.28	B.0.029	B.0.025	B.0.079	B.0.031
	f	C.99	C.99	C.99	C.99	C.99								
	1	D.2.3-4.3	D.4.1-7.0	D.1.7-2.7	D.1.9-3.3	D.2.0-3.3	D.3.2-7.0	D.0.8-1.8	D.0.7-1.5	D.3.50-5.00	D.0.51-0.69	D.0.15-0.31	D.0.65-1.00	D.0.77-0.93
	line and the	E.9.88	E.9.97	E.8	E.9.14	E.9.24	E.10.95	E.17.09	E.17.04	E.6.17	E.4.91	E.11.9	E.8.98	E.3.65
0.	STAW	A.3.166	A.5.800	A.2.058	A.2.661	A.2.652	A.5.805	A.1.416	A.1.252	A.4.82	A.0.55	A.0.24	A.0.88	A.0.84
		B.0.474	B.0.730	B.0.273	B.0.431	B.0.374	B.0.716	B.0.277	B.0.251	B.0.40	B.0.041	B.0.033	B.0.082	B.0.043
	1	C.62	C.62	C.62	C.62	C.62								
- 6		D.2.0-4.2	D.3.1-6.8	D.1.2-2.6	D.1.5-3.3	D.1.8-3.4	D.3.2-6.8	D.0.8-2.0	D.0.7-1.8	D.3.50-5.00	D.0.46-0.74	D.0.18-0.38	D.0.45-1.00	D.0.71-0.95
		E.14.97	E.12.59	E.13.26	E.16.2	E.14.1	E.12.39	E.19.56	E.20.05	E.8.3	E.7.45	E.13.75	E.9.32	E.5.12
1.	CHELM	A.3.532	A.6.146	A.2.289	A.2.932	A.2.964	A.6.132	A.1.457	A.1.214	A.4.84	A.0.57	A.0.24	A.0.83	A.0.84
2000		B.0.409	B.0.712	B.0.257	B.0.343	B.0.328	B.0.710	B.0.282	B.0.281	B.0.24	B.0.027	B.0.023	B.0.070	B.0.056
		C.28	C.28	C.28	C.28	C.28								
		D.2.8-5.0	D.5.1-8.9	D.1.8-3.0	D.2.5-4.3	D.2.4-4.2	D.5.1-8.8	D.1.1-2.4	D.0.9-2.1	D.4.33-5.00	D.0.53-0.65	D.0.20-0.29	D.0.69-1.00	D.0.74-0.91
- 9		E.11.58	E.11.58	E.11.23	E.11.7	E.11.07	E.11.58	E.19.35	E.23.15	E.4.96	E.4.74	E.9.58	E.8.43	E.6.67

	1.	2	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.
1.	132.72	w=1446 P>0.05	w=1859 P<0.02	w=1729 P<0.001	w=1624 P<0.05	w=912.5 P>0.05	w=1770 P>0.05	w=1631 P<0.002	w=2064 P>0.05	w=2513 P<0.01	w=9493 P>0.05	w=8770 P<0.02	w=1500 P<0.05	w=838 P>0.05	w=1822 P>0.05	w=2878 P>0.05	w=1464 P<0.001	w=1495 P<0.001	w=1009 P<0.01	w=4592 P<0.001	w=3307 P<0.001
2.	t=0.85 P>0.1		w=2398 P<0.001	t=7.13 P<0.001	t=2.38 P<0.05	w=1022 P<0.01	t=2.16 P<0.02	w=1421 P<0.001	t=0.95 P>0.1	t=3.23 P<0.002	w=3689 P>0.05	t=2.85 P<0.01	t=3.54 P<0.001	t≈1.75 P<0.1	t=0.47 P>0.1	w≈9306 P>0.1	t=4.82 P<0.001	t=10.14 P<0.001	t=3.08 P<0.01	w=11175 P<0.001	w=3959 P<0.001
3.	t=0.26 P>0.1	t=1.17 P>0.1	30X(2)	w=3124 P<0.001	w=2775 P>0.05	w=1734 P<0.001	w=2965 P>0.05	w=2820 P>0.05	w=3116 P<0.05	w=3882 P>0.05	w=1951 P>0.05	w=1758 P<0.001	w=2664 P>0.05	w=1788 P>0.05	w=2760 P<0.001	w=4036 P<0.02	w=2694 P<0.01	w=2856 P<0.001	w=2036 P>0.05	w=7101 P<0.001	w=5541 P<0.001
4.	t=3.78 P<0.001	t=5.53 P<0.001	t=4.71 P<0.001		t=3.68 P<0.001	w=1135 P<0.001	t=4.73 P<0.001	w=1883 P<0.02	t=6.77 P<0.001	t=4.76 P<0.001	w=548 P<0.001	t=7.05 P<0.001	t=3.26 P<0.002	t=1.58 P>0.1	t=8.59 P<0.001	w=1065 P<0.001	t=2.01 P<0.05	t=4.48 P<0.001	t=1.75 P<0.05	w=12679 P>0.05	w=4692 P<0.001
5.	t=0.44 P>0.1	t=0.10 P>0.1	t=0,83 P>0.1	t=4.47 P<0.001		w=1087 P<0.001	t=0.42 P>0.1	w=1679 P>0.05	t=1.68 P<0.1	t=0.20 P>0.1	w=463.5 P>0.05	t=4.29 P<0.001	t=0.76 P>0.1	t=0.39 P>0.1	t=2.99 P<0.01	w=10012 P>0.05	t=1.85 P<0.05	t=7.18 P<0.001	t=1.08 P>0.1	w=12061 P<0.001	w=4386 P<0.001
6.	t=0.56 P>0.1	t=0.04 P>0.1	t=1.11 P>0.1	t=5.42 P<0.001	t=0.06 P>0.1		w=1227 P<0.001	w=1099 P<0.001	w=1496 P<0.002	w=1877 P<0.001	w=552 P<0.002	w=506.5 P>0.05	w=1007 P<0.001	w=449 P>0.002	w=1366 P<0.01	w≈2281 P<0.001	w=960 P<0.001	w=868.5 P<0.001	w=5895 P<0.001	w=3303 P<0.001	w≈2201 P<0.001
7.	t=0.87 P>0.1	t=1.73 P<0.1	t=0.82 P>0.1	t=3.13 P<0.01	t=1.38 P>0.1	t=1.68 P<0.1		w=1761 P>0.05	t=1.38 P>0.1	t=0.72 P>0.1	w=517 P>0.05	t=4.18 P<0.001	t=1.36 P>0.1	1=0.64 P>0.1	t=2.85 P<0.01	w=10534 P>0.05	1=2.59 P<0.02	t=1.23 P<0.001	t=1.49 P>0.1	w=12144 P<0.001	w=4369 P<0.001
8.	w=1404 P<0.05	w=1468 P<0.001	w=1750 P<0.05	w=1863 P<0.05	w=1499 P<0.001	w=1149 P<0.001	w=1836 P>0.05		w=1888 P<0.001	w=2370 P>0.05	w=1129 P>0.05	w=1002 P<0.001	w=1581 P>0.05	w=1025 P>0.05	w=1634 P>0.05	w=2436 P<0.001	w=1590 P>0.05	w=1772 P<0.001	w=1194 P>0.05	w=4526.5 P<0.001	₩=3570 P<0.001
9.	t=2.96 P<0.01	t=4.64 P<0.001	t=3.72 P<0.001	t=1.19 P>0.1	t=3.65 P<0.001	t=4.53 P<0.001	t=2.21 P<0.05	w=2483 P>0.05		t=2.47 P<0.02	w=579.5 P>0.05	t=3.49 P<0.001	t=2.87 P<0.01	t=1.33 P>0.1	t=1.58 P>0.1	w=11169 P>0.05	t=4.24 P<0.001	t=9.93 P<0.001	t=2.54 P<0.02	w=12419 P<0.001	w=4409 P<0.001
10.	t=4.71 P<0.001	t=7.09 P<0.001	t=6.30 P<0.001	t=0.83 P>0.1	t=5.52 P<0.001	t=6.93 P<0.001	t=4.15 P<0.001	w=3142 P<0.05	t=2.23 P<0.05		w=763.5 P>0.05	t=4.81 P<0.001	t=0.81 P>0.1	t=0.32 P>0.1	t=4.25 P<0.001	w=12919 P<0.001	t=2.22 P<0.05	t=8.49 P<0.001	t=1.07 P>0.1	w=13556 P<0.001	w=4822 P<0.001
11.	t=2.14 P<0.05	t=2.65 P>0.01	t=2.16 P<0.05	t=0.05 P>0.1	t=2.46 P<0.02	t=2.62 P<0.1	t=1.65 P>0.1	w=1247 P>0.05	t=0.53 P>0.1	t=5.19 P<0.001		w=1934 P<0.001	w=4260 P>0.05	w=1895 P>0.05	w=479.5 P>0.05	w=826.5 P>0.05	w=432 P<0.05	w=479.5 P<0.001	w=256 P>0.05	w=1641.5 P<0.001	w=1209 P<0.001
12.	t=3.16 P<0.01	t=3.10 P<0.01	t=3.96 P<0.001	t=6.92 P<0.001	t=2.85 P<0.01	t=3.10 P<0.01	t=4.14 P<0.001	w=994.5 P<0.001	t=6.27 P<0.001	t=7.82 P<0.001	t=4.25 P<0.001		t=5.03 P<0.001	t=3.45 P<0.002	t=2.68 P<0.01	w=7562.5 P<0.001	t=5.79 P<0.001	t=11.33 P<0.001	t=4.73 P<0.001	w=10278 P<0.001	w=3711 P<0.001
13.	t=2.43 P<0.02	t=3.92 P<0.001	t=2.98 P<0.01	t=1.81 P<0.1	t=3.08 P<0.01	t=3.83 P<0.001	t=1.62 P>0.1	w=1683 P>0.05	t=0.68 P>0.1	t=2.91 P<0.01	t=0.84 P>0.1	t=5.79 P<0.001		t=0.05 P>0.1	t=4.60 P<0.001	w=9743 P<0.001	t=1.20 P>0.1	t=7.08 P<0.001	t=0.49 P>0.1	w=11719 P<0.001	w=4217 P<0.001
14.	t=2.53 P<0.02	t=2.33 P<0.05	t=2.70 P=0.01	t=0.29 P>0.1	t=2.97 P<0.01	t=3.28 P<0.01	t=1.94 P<0.1	w=1088 P>0.05	t=0.48 P>0.1	t=0.84 P>0.1	t=0.15 P>0.1	t=5.12 P<0.001	t=0.89 P>0.1		t=2.02 P<0.05	w=7545 P>0.05	t=0.65 P>0.1	t=3.980 P<0.001	t=0.35 P>0.1	w=10430 P>0.05	w≈3816 P<0.001
15.	w=3942 P>0.05	w=4279 P>0.05	w-4918 P<0.001	w=4759 P<0.001	w=4214 P>0.05	w=3391 P>0.05	w=4898 P<0.001	w=1645 P<0.001	w=6398 P<0.001	w=7481 P<0.001	w=3315 P<0.001	w=2974 P<0.001	w=4452 P<0.001	w=3013 P<0.001		t=10394 P>0.05	t=5.83 P<0.001	t=11.33 P<0.001	t=3.38 P<0.001	w=11606 P<0.001	w=4065 P<0.001
16.	t=3.04 P<0.01	t=3.29 P<0.002	t=4.89 P<0.001	t=9.24 P<0.001	t=2.64 P<0.01	t=3.27 P<0.002	t=4.59 P<0.001	w=1885 P<0.001	t=8.59 P<0.001	t=11.72 P<0.001	t=4.08 P<0.001	t=1.18 P>0.1	t=7.72 P<0.001	t=5.36 P<0.001	w=5869 P<0.05		w=9724 P<0.001	w=95009 P<0.001	w≈8136 P<0.001	w=20081 P<0.001	w-4259 P<0.001
7.	t=1.57 P>0.1	t=2.57 P<0.02	t=1.70 P<0.1	t=2.27 P<0.05	t=2.11 P<0.05	t=2.51 P<0.02	t=0.76 P>0.1	w=1475 P>0.05	t=1.32 P>0.1	t=3.20 P<0.002	t=1.20 P>0.1	t=4.76 P<0.001	1=0/25 P>0.1	t=1.34 P>0.1	w=4073 P<0.001	t=5.48 P<0.001		t=6.15 P<0.001	t=0.38 P>0.1	w=11777 P>0.05	w=4279 P<0.001
8.	w=386.5 P<0.001	w=384.5 P<0.001	w=399 P<0.001	w=436 P<0.001	w=409.5 P<0.001	w=632.5 P<0.001	w=460 P<0.001	w=1802 P<0.001	w=359 P<0.001	w=632 P<0.001	w=417.5 P<0.001	w=358.5 P<0.001	w=4060 P<0.001	w=365.5 P<0.001	w=4270 P<0.001	w=403 P<0.001	w=3982 P<0.001		t=5.02 P<0.001	w=12947 P<0.001	w=5133 P<0.001
9.	t=1.07 P>0.1	t=1.63 P>0.1	t=0.02 P>0.1	t=1.78 P<0.1	t=1.44 P>0.1	t=1.60 P>0.1	t=0.45 P>0.1	w=1128 P>0.05	t=1.00 P>0.1	t=2.23 P<0.05	t=1.11 P>0.1	t=3.60 P<0.001	t=0.62 P>0.1	t=1.16 P>0.1	w=3181 P>0.02	1=3.41 P<0.001	t=0.10 P>0.1	w=382 P<0.001		w=10833 P>0.05	w=3930 P<0.001
0.	w=11939 P<0.05	w=2042 P<0.001	w=2918 P<0.001	w≈3633 P<0.001	w=22585 P<0.001	w=958.5 P<0.001	w=3286 P>0.05	w=3782 P>0.05	w=5875 P<0.05	w=8366 P<0.001	w=1398 P>0.05	w=324.5 P<0.001	w=2864 P>0.05	w=801.5 P>0.05	w=9715 P<0.001	w=3435 P<0.001	w=2219 P>0.05	w=526.5 P<0.001	w=9593 P>0.05		w=5523 P<0.001
1.	t=4.18 P<0.001	t=6.44 P<0.001	t=5.61 P<0.001	t=0.0002 P>0.1	t=4.97 P<0.001	t=6.30 P<0.001	t=3.55 P<0.001	w=3113 P<0.001	t=1.48 P>0.1	t=0.85 P>0.1	t=0.09 P>0.1	t=7.44 P<0.001	t=2.18 P<0.05	t=5.12 P<0.001	w=7477 P<0.001	t=11.16 P<0.001	t=2.60 P<0.02	w=575.5 P<0.001	t=1.82 P<0.1	t=4.26 P<0.001	

Table 4a. Statistical significance of differences between the studied populations. Shell breadth - L.

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12	13.	14.	15.	16.	17.	18.	19.	20.	21
1.		t=0.76 P>0.1	t=0.11 P>0.1	t=2.48 P<0.02	t=2.25 P<0.05	w=7962 P<0.05	w=2266 P>0.05	w=1587 P<0.05	w≈4245 P>0.05	w=4573 P<0.05	t=0.59 P>0.1	t=4.63 P<0.01	t=1.87 P<0.1	t=1.88 P<0.1	w=4668 P<0.05	w=9453 P<0.05	t=4.21 P<0.001	w=488.5 P<0.001	t=2.79 P<0.01	w=10886 P<0.001	w≈4318 P<0.001
2	w=1440 P>0.05	W. S.	t=0.79 P>0.1	t=3.78 P<0.001	t=3.50 P<0.001	w=5405 P<0.05	w=1804 P<0.001	w=1077 P<0.001	w=3465 P>0.05	w=3940 P<0,001	t=1.18 P>0.1	t=4.46 P<0.001	t=3.08 P<0.01	t=2.55 P<0.02	w=3313 P<0.05	w=8138 P>0.05	t=3.43 P<0.001	w=4024 P<0.001	t=3.85 P<0.001	w=10269 P<0.001	w=3881 P<0.001
3.	t=1.34 P>0.1	w=2170 P>0.05		t=3.03 P<0.01	t=2.76 P<0.01	w=1075 P<0.05	w=2690 P>0.05	w=1646 P<0.001	w=4999 P>0.05	w=5102 P<0.001	t=0.71 P>0.1	t=5.09 P<0.001	t=2.33 P<0.05	t=2.09 P<0.05	w=5065 P<0.001	w=10818 P<0.001	t=2.70 P<0.01	w=545.5 P<0.001	t=3.23 P<0.01	w=11245 P<0.001	w=4627 P<0.001
4.	t=2.07 P<0.05	w=2164 P>0.05	t=3.50 P<0.001		t=0.25 P>0.1	w=966.5 P<0.001	w=2696 P<0.05	w=1740 P>0.05	w=4856 P<0.001	w=5274 P>0.05	t=1.25 P>0.1	t=6.54 P<0.001	t=0.69 P>0.1	t=0.16 P>0.1	w=4696 P<0.001	w=10340 P<0.001	t=0.24 P>0.1	w=569 P<0.001	t=0.66 P>0.1	w=11766 P<0.001	w=4921 P>0.05
5.	t=0.09 P>0.1	w=2143 P>0.05	t=1.32 P>0.1	t=1.81 P<0.1	njestenštv	w=1070 P<0.001	w=2862 P<0.05	w=1847 P>0.05	w=5144 P<0.001	w=5492 P>0.05	t=1.08 P>0.1	t=6.40 P<0.001	t=0.44 P>0.1	t=0.32 P>0.1	w=5003 P<0.001	w=1087 P<0.001	t=0 P>0.1	w=617 P<0.001	t=0.87 P>0.1	w=11988 P<0.001	w=5064 P<0.05
6.	w=7294 P>0.05	w=1735 P>0.05	w=911 P>0.05	w=868.5 P<0.001	w~873 P>0.05		w=1121 P<0.001	w=1003 P<0.001	w=1288 P<0.05	w=1721 P<0.001	w=522.5 P<0.05	w=416.5 P<0.001	w=906 P<0.001	₩=444.5 P<0.001	w=3313 P>0.05	w=1731 P>0.1	w=855.5 P<0.001	w=823 P<0.001	t=4.31 P<0.001	w=3261 P<0.001	w=2005 P<0.001
7.	t=4.00 P<0.001	w=2621 P<0.001	t=3.47 P<0.001	t=0.13 P>0.1	t=1.74 P<0.1	w=1105 P<0.01		w=2681 P<0.05	w=2914 P<0.02	w=3947 P<0.05	w=1841 P>0.05	w=1579 P<0.001	w=2547 P>0.05	w=1744 P>0.05	w=5194 P<0.001	w=3499 P<0.001	w=2476 P>0.05	w=2612 P<0.001	t=2.52 P<0.02	w=7425 P<0.001	w=4782 P<0.001
8.	w=1135 P<0.001	w=2335 P<0.001	w=1457 P<0.001	w=1584 P>0.05	w=1548 P<0.05	w=941.5 P<0.001	w=940.5 P>0.05		w=1716 P<0.001	w=2555 P>0.05	w=1135 P>0.05	w=929.5 P<0.001	w=1620 P>0.05	w=1079 P>0.05	w~4869 P<0.001	w=2030 P<0.001	w=1581 P>0.05	w=1728 P<0.001	t=1.26 P>0.1	w=5232 P<0.001	w=3275 P<0.001
9.	t=1.10 P>0.1	w=2991 P>0.05	t=2.69 P<0.01	t=1.25 P>0.1	t=0.89 P>0.1	w=1339 P>0.05	t=1.15 P>0.1	w=2115 P>0.05	Shanton's	w=7124 P<0.001	w=3494 P>0.05	w=3075 P<0.001	w=4647 P<0.001	w=3287 P<0.001	w=5788 P<0.001	w=6508 P>0.05	w=4514 P<0.001	w~4481 P<0.001	1≈4.13 P<0.001	w=12129 P<0.001	w=8151 P<0.001
10.	t=2.56 P<0.02	w=3226 P<0.001	1=4.35 P<0.001	t=0.08 P>0.1	t=2.17 P<0.05	w=1600 P<0.001	t=0.24 P>0.1	w=2515 P>0.05	t=1.70 P>0.1	(1) 12 (A)	w=4053 P>0.05	w=3645 P<0.001	w=5035 P>0.05	w=3930 P>0.05	w=7251 P<0.001	w=14183 P<0.001	w=4958 P>0.05	w=5272 P<0.001	t=1.55 P>0.1	w=12367 P<0.001	w=8374 P<0.001
11.	t=1.00 P>0.1	w=1514 P>0.05	t=1.87 P<0.1	t=0.34 P>0.1	t=0.90 P>0.1	w=507.5 P>0.05	t=0.66 P>0.1	w=1158 P>0.05	t=0.39 P>0.1	t=0.41 P>0.1		t=4.75 P<0.001	t=0.78 P>0.1	t=1.12 P>0.1	w=3267 P<0.001	w=8097 P<0.02	t=1.07 P>0.1	w-414.5 P<0.001	t=1.65 P>0.1	w=10482 P<0.001	w=4014 P<0.001
12.	t=3.62 P<0.001	w=1320 P<0.001	t=2.59 P<0.02	t=5.37 P<0.001	t=3.48 P<0.001	w~441 P<0.001	t=5.37 P<0.001	w=971 P>0.05	t=4.83 P<0.001	t=6.13 P<0.001	t=3.84 P<0.001		t=6.18 P<0.001	t=5.41 P<0.001	w=2870 P<0.001	w=7474 P<0.001	t=6.36 P<0.001	w=374.5 P<0.001	t=6.35 P<0.001	w=10060 P<0.001	w=3717 P<0.001
13.	t=2.89 P<0.01	w=2222 P<0.001	t=4.41 P<0.001	t=6.76 P<0.001	t=2.55 P<0.02	w=885 P<0.001	t=0.91 P>0.1	w=1667 P>0.05	t=2.16 P<0.05	t=0.83 P>0.1	t=0.82 P>0.1	t=6.13 P<0.001		t=0.62 P>0.1	w=4502 P<0.001	w=10014 P<0.001	t=0.43 P>0.1	w=532 P<0.001	t=1.26 P>0.1	w=11443 P<0.001	w=4702 P<0.01
14.	t=0.71 P>0.1	w=1311 P>0.05	t=1.46 P>0.1	t=0.57 P>0.1	t=0.63 P>0.1	w=406 P>0.05	t=0.50 P>0.1	w=1008 P>0.05	t=0.12 P>0.1	t=0.73 P>0.1	t=0.20 P>0.1	t=3.15 P<0.01	t=1.11 P>0.1		w=3024 P<0.001	w=7040 P<0.001	t=0.33 P>0.1	w=402 P<0.001	t=0.34 P>0.1	w=10448 P>0.05	w=3966 P>0.05
15.	t=1.51 P>0.1	w=2417 P<0.05	t=0.03 P>0.1	t=3.90 P<0.001	t=1.46 P>0.1	w=1065 P>0.05	1=3.90 P<0.001	w=1595 P<0.001	t=3.12 P<0.01	t=5.14 P<0.001	t=1.96 P<0.1	t=2.75 P<0.01	t=4.95 P<0.001	t=1.61 P>0.1		w≈7037 P>0.05	w=4332 P<0.001	w~4158 P<0.001	w=3414 P<0.001	w=11909 P<0.001	w=7992 P<0.001
16.	t=2.45 P<0.02	w=3098 P<0.001	t=0.91 P>0.1	t=5.01 P<0.001	t=2.27 P<0.05	w=1512 P>0.05	t=5.06 P<0.001	w=1526 P<0.001	t=4.45 P<0.001	t=6.90 P<0.001	t=2.48 P<0.02	t=2.20 P<0.05	t=6.20 P<0.001	t=2.10 P<0.05	1=1.04 P>0.1		w=7963 P<0.001	w=9650 P<0.001	w=\$361 P<0.001	w=21894 P<0.001	w=15562 P<0.001
_			-							-					-						

t=0.31 P>0.1

w=519 P<0.001

t=0.63

P>0.1

w=4057

P<0.001

w=5726 P<0.001

t=0.21 P>0.1

w=387 P<0.001

t=0.75 P>0.1

t=744

P>0.05

w=4048 P<0.02

t=5.21

P<0.001

P<0.001

t=5.10

P-0.001

w=260 P<0.001

t=0.95 P>0.1

w=424

P<0.001

P>0.1

w=2055

P>0.05

w=4686 P<0.001

t=0.45 P>0.1

P-0.001

t=0.95

P>0.1

w=383

P<0.05

w=3848 P<0.02

t=3.67

P<0.001

w=403.5

P<0.001

1=3.64

P<0.001

w=1657

P<0.001

w=4475

t=4.16 P<0.001

w=403

P<0.001

L=4.40

P<0.001

w=2437

P<0.001

w=4839

t=3.84 P<0.001

P<0.001

w=833

P<0.001

w=398.5 P<0.001

t=0.77 P>0.1

w=1520 P<0.001

w-4378

t=0.86 P>0.1

P>0.05

w=6768

w=11420 P<0.001

P<0.001

P>0.05

P<0.05

w=925.5

P<0.001

w=4240

w=5078

P<0.05

P>0.05

w=7182 P<0.001 Table 5a. Statistical significance of differences between the studied populations. Aperture width - S.

t=0.70 P>0.1

w=367.5

P<0.001

t=0.73

P>0.1

w=6194

P<0.001

w=1486

P>0.05

w=1820 P<0.001

w=1207

P>0.05

w=4595 P<0.001

w=3307 P<0.001

t=1.03 P>0.1

w=467.5 P<0.001

t=1.62

P>0.1

w=10127

P<0.001

t=1.87 P<0.1

w=387 P<0.001

t=2.28

P<0.05

w=4436

P<0.001

w=4214

w=2023 P<0.001

w=20091

P<0.001

P<0.001

w=6024

P<0.001

w=4215

t=3.29 P<0.002

t=3.40

P<0.001

w~7843

P<0.001

w=4394

t=0.19

P>0.1

w=4353

P<0.001

t=0.62

w=4255

P<0.001

w=4607

P>0.1

t=1.63

P>0.1

P<0.05

w=5623

P<0.001

w=4584 P<0.001

w=777 P<0.001

w=857.5 P<0.001

P<0.001

w=2872

P<0.001

w=1911 P<0.001

Table 5. Statistical significance of differences between the studied populations. Aperture height - W.

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21
ı.	71.0	w=1822 P>0.05	t=3.18 P<0.01	t=5.82 P<0.001	t=2.64 P<0.01	1=4.83 P<0.001	w=2085 P<0.02	w=1268 P<0.001	w=8893 P>0.05	w=4241 P<0.001	t=1.77 P<0.1	t=3.44 P<0.002	t=3.85 P<0.001	t=1.20 P>0.1	w=3686 P>0.05	t=0.39 P>0.1	t=7.99 P<0.001	t=8.56 P<0.001	t=3.02 P<0.01	w=10844 P<0.001	w=3934 P<0.001
2	w=1971 P>0.05		w=2747 P<0.001	w=2540 P<0.001	w=2420 P<0.01	w=1215 P<0.001	w=2775 P>0.05	w=2385 P<0.001	w=3542 P>0.05	w=3869 P<0.001	w=1508 P>0.05	w=1286 P<0.001	w=2290 P<0.001	w=1359 P>0.05	w=2522 P>0.05	w=3542 P>0.05	w=2147 P<0.001	w=2202 P<0.001	w=1567 P<0.01	w=6504 P<0.001	w=4650 P<0.001
3.	w=2501 P>0.05	w=2518 P>0.05	A. X. S.	t=3.38 P<0.002	t=0.28 P>0.1	t=7.90 P<0.001	w=2897 P>0.05	w=1908 P>0.05	w=11362 P<0.001	w=5446 P>0.05	t=0.42 P>0.1	t=5.56 P<0.001	t=0.99 P>0.1	t=0.44 P>0.1	w=5186 P<0.001	t=4.10 P<0.001	t=5.83 P<0.001	t=6.69 P<0.001	t=0.91 P>0.1	w=12361 P<0.001	w-4604 P<0.001
4.	t=3.58 P<0.001	w=2460 P<0.001	w=3139 P<0.001		t=3.28 P<0.002	t=10.05 P<0.001	w=2859 P<0.001	w=1875 P<0.02	w=10692 P<0.001	w=5446 P>0.02	t=2.56 P<0.02	t≈7.27 P<0.001	t=2.21 P<0.05	t=1.34 P>0.1	w=4755 P<0.001	t=7.69 P<0.001	t=2.37 P<0.05	t=3.87 P<0.001	t=1.30 P>0.1	w=12092 P>0.05	w=4842 P<0.05
5.	w=1809 P>0.05	w=2198 P>0.05	w=2777 P>0.05	w=2277 P<0.001		t=7.18 P<0.001	w=2664 P>0.05	w=1701 P>0.05	w=10433 P<0.001	w=5080 P>0.05	t=0.21 P>0.1	t=5.19 P<0.001	t=1.15 P>0.1	t=0.57 P>0.1	w~4609 P<0.001	t=1.27 P>0.1	t=5.47 P<0.001	t=6.43 P<0.001	t=1.05 P>0.1	w=11907 P<0.001	w=4416 P<0.001
5.	t=0.85 P>0.1	w=1596 P>0.05	w=2057 P>0.05	t=5.00 P<0.001	w=1489 P>0.05		w=1560 P<0.001	w=897 P<0.001	w=730.5 P<0.001	w=3574 P<0.001	t=5.54 P<0.001	t=0.26 P>0.1	t=8.30 P<0.001	t=5.43 P<0.001	w=2744 P<0.001	t=6.06 P<0.001	t=11.76 P<0.001	t=11.96 P<0.001	t≈6.71 P<0.001	w=10101 P<0.001	w=3669 P<0.001
7.	t=0.78 P>0.1	w=2579 P<0.05	w=3158 P>0.05	t=3.14 P<0.01	w=2334 P>0.05	t=1.81 P<0.1		w=2690 P>0.05	w=3658 P<0.001	w=4062 P>0.05	w=1832 P>0.05	w=1618 P<0.001	w=2562 P>0.05	w=1709 P>0.05	w=2728 P<0.001	w=3658 P<0.001	w=2424 P>0.05	w=2674 P<0.001	w=1912 P>0.05	w=6818 P<0.001	w=5110 P<0.001
3.	w=1392 P>0.05	w=2341 P<0.001	w=2927 P>0.05	w=1840 P<0.05	w=2168 P>0.05	w=1136 P<0.001	w=1836 P>0.05		w=2157 P<0.001	w=2670 P>0.05	w=1126 P>0.05	w=952.5 P<0.001	w=1650 P>0.05	w=1042 P>0.05	w=1610 P<0.001	w=2157 P<0.001	w=1550 P>0.05	w=1747 P<0.001	w=1183 P>0.05	w=4651 P<0.001	w=3475 P<0.001
).	w=3696 P<0.01	₩=3457 P<0.001	₩=4186 P<0.001	w=4426 P>0.05	w=3168 P<0.001	w=3235 P<0.001	w=4389 P>0.05	w=2469 P>0.05		w=4250 P<0.001	w=8041 P>0.05	w=7482 P<0.001	w=9999 P<0.001	w=7647 P<0.05	w=902.5 P>0.05	w~3747 P>0.05	w=9712 P<0.001	w=9767 P<0.001	w=\$202 P<0.001	w=20888 P<0.001	w=16028 P<0.001
0.	t=4.64 P<0.001	w≈4190 P<0.001	w=5198 P<0.001	t=1.01 P>0.1	w=3870 P<0.001	t=6.50 P<0.001	t=4.45 P<0.001	w=3151 P<0.001	w=6660 P<0.001		w=3992 P>0.05	w=3656 P<0.001	w=4962 P>0.05	w=3839 P>0.05	w=4878 P<0.001	w=5850 P<0.001	w=4767 P>0.05	w=5323 P<0.001	w=4120 P>0.05	w=10953 P<0.001	w=8768 P<0.001
1.	t=1.91 P<0.1	w=1556 P<0.001	w=2132 P<0.001	t=0.21 P>0.1	w=1491 P<0.05	t=2.54 P<0.02	t=1.50 P>0.1	w=1235 P>0.05	w=3409 P>0.05	t=0.69 P>0.1	1-0.05	t=4.35 P<0.001	t=1.04 P>0.1	t=0.65 P>0.1	w=3173 P<0.05	t=1.76	t=4.16	t=5.21 P<0.001	t=1.04 P>0.1	w=10620 P<0.001	w=3898 P<0.001
2.	t=4.42 P<0.001	w=1282 P<0.001	w=1745 P<0.001	t=8.42 P<0.001	w=1239 P<0.001	t=3.94 P<0.001	t=5.56 P<0.001	w=947.5 P<0.001	w≈2920 P<0.001	t=9.86 P<0.001	t=4.94 P<0.001		t=5.97 P<0.001	t=4.47 P<0.001	w=2840 P<0.001	t=4.00 P<0.001	t=8.59 P<0.001	t=9.23 P<0.001	t=5.30 P<0.001	w=10187 P<0.001	w=3700 P<0.001
3.	t=1.90 P<0.1	w=2263 P<0.001	w=2838 P<0.001	t=2.33 P<0.05	w=2046 P>0.05	t=3.23 P<0.002	t=1.20 P>0.1	w=1633 P>0.05	w=4031 P>0.05	t=3.86 P<0.001	t=0.92 P>0.1	t=7.06 P<0.001		t=0.09 P>0.1	w=4390 P<0.001	t=4.82 P<0.001	t=0.08 P>0.1	t=5.64 P<0.001	t=0.24 P>0.1	w=11810 P<0.001	₩=4394 P<0.001
4.	t=2.84 P<0.01	w=1422 P<0.001	w=1922 P<0.001	t=0.10 P>0.1	w=1329 P<0.05	t=3.75 P<0.001	t=2.38 P<0.05	w=1097 P>0.05	w=3173 P>0.05	t=0.55 P>0.1	t=0.25 P>0.1	t=6.66 P<0.001	t=1.68 P<0.1		w=2935 P>0.05	t=2.20 P<0.05	t=2.66 P<0.02	t=3.70 P<0.001	t=0.25 P>0.1	w=10470 P>0.05	w=3859 P<0.02
5.	t=1.71 P<0.1	w=2487 P>0.05	w=2972 P<0.001	t=7.09 P<0.001	w=2311 P>0.05	t=0.82 P<0.1	t=3.03 P<0.01	w=1630 P<0.001	w=4041 P<0.001	t=9.71 P<0.001	t=3.11 P<0.01	r=3.81 P<0.001	t=5.18 P<0.001	t=4.75 P<0.001	1200	w=6675 P>0.05	₩~4171 P<0.001	w=4205 P<0.001	w=3275 P<0.001	w=10872 P<0.001	w=7975 P<0.001
6.	t=3.10 P<0.002	w=3025 P<0.001	w=3509 P<0.001	t=9.12 P<0.001	w=2813 P<0.001	t=2.40 P<0.02	t=4.72 P<0.001	w=1890 P<0.001	w=4459 P<0.001	t=12.39 P<0.001	t=3.92 P<0.001	t=2.62 P<0.02	t=7.40 P<0.001	1=5.94 P<0.001	t=2.11 P<0.05	120.00	t=4.68 P<0.001	t=10.09 P<0.001	t=3.20 P<0.002	w=12523 P<0.001	w=4475 P<0.001
7.	t=1.38 P>0.1	w=2040 P<0.001	w=2594 P>0.05	t≈2.36 P<0.05	w=1886 P>0.05	t=2.46 P<0.02	t=0.68 P>0.1	w=1477 P>0.05	w=3798 P>0.05	t=3.55 P<0.001	t=1.09 P>0.1	t=6.08 P<0.001	t=0.41 P>0.1	t=1.83 P<0.1	t=3.77 P<0.001	t=5.44 P<0.001	7 4.001	t=5.67 P<0.001	t=2.94 P<0.01	w=11561 P<0.001	w=4293 P<0.001
8.	w=392.5 P<0.001	w=2213 P<0.001	w=2929 P<0.001	w=449 P<0.001	w=2103 P<0.001	w=365.5 P<0.001	w=456.5	w=1790	w=4491	w=655.5 P<0.001	w=414.5	w=354.5	w≈400 P<0.001	w=373 P<0.001	w=393.3 P<0.001	w=408.5 P<0.001	w=406 P<0.001	1-0.001	t=4.10 P<0.001	w=12903 P<0.001	w=5204 P<0.001
9.	t=1.36 P>0.1	₩=1537 P>0.05	w=2036	t=1.41	w=1439	t=2.15	P<0.001 t=0.81	P<0.001 w=1150	P<0.001 w=3271	t=2.12	P<0.001 t=0.76	P<0.001 t=5.10	t=0.04	t=1.25	t=2.92	E-4.02	t=0.30 P>0.1	w=380.5 P<0.001	7 4.001	w=10824 P>0.05	w=4017
0.	w=1973	w=5516	P>0.05 w=6391	P>0.1 w=3614	P>0.05 w=4855	P<0.05 w=950	P>0.1 w=3311	P>0.05 w=3730	P>0.05 w=7446	P<0.1 w=8454	P>0.1 w=1347	P<0.001 w=328	P>0.1 w=2685	P>0.1 w=\$49.5	P<0.01 w=2556	P<0.001 w≈3377	w=2188	w=543.5	w=18888	P-0.05	P<0.001 w=17433
1.	P>0.05 w=4464	P<0.001 w=4156	P<0.001 w=5105	P<0.1 w=5231	P<0.05 w=3801	P<0.001 w=4009	P>0.05 w=5034	P>0.05 w=3052	P>0.05 w=6493	P<0.001 746913	P>0.05 w=4278	P<0.001 w=3778	P>0.05 w=4681	P>0.05 w=4020	P<0.001 w=4613	P<0.001 w=4930	P>0.05 w=595.5	P<0.001 w=595.5	P>0.1	w=18131	P<0.001

21. w-4464 w-4156 w-5105 w-5231 w-3801 w-4009 w-5034 w-3032 w-6493 | 746913 w-4278 | w-4681 |

Table 7 Stati	istical significance of	differences between	the studied populations	Umbilious major diameter -P

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21
١.		w=2160 P<0.001	w=2480 P>0.05	t=0.23 P>0.1	t=1.52 P>0.1	t=14.27 P<0.001	t=2.64 P<0.02	t=1.03 P>0.1	w=9796 P<0.001	w=4928 P>0.05	t=1.89 P<0.1	t=2.84 P<0.01	t=1.00 P>0.1	t=0.19 P>0.1	₩=4329 P<0.001	t=4.11 P<0.001	t=0.54 P>0.1	w=491.5 P<0.001	t=0.06 P>0.1	w=14156 P<0.001	w=5683 P<0.001
2.	w=2117 P<0.05	Server.	w=2871 P<0.001	w=2360 P<0.001	w=2266 P>0.05	w=2139 P<0.001	w=2299 P>0.05	w=2246 P>0.05	w=3497 P>0.05	w=3758 P<0.001	w=1679 P<0.001	w=1556 P>0.05	w=2151 P<0.02	w=1372 P>0.05	w=2346 P<0.05	w=3497 P>0.05	w=2054 P>0.01	w=2226 P<0.001	₩=1571 P>0.01	w=2856 P<0.001	w=2860 P>0.05
3.	t=0.60 P>0.1	w=2895 P<0.001		w=2653 P>0.05	w=2542 P<0.05	w=2801 P<0.001	w=2502 P<0.001	w=2480 P>0.05	w=3227 P<0.001	w=3782 P>0.05	w=2148 P<0.001	w=1878 P<0.001	w=2405 P>0.05	₩=1804 P>0.05	w=2282 P<0.001	w=3227 P<0.001	w=2390 P>0.05	w=2787 P<0.001	w=1956 P>0.05	w=2470 P<0.001	w=2889 P<0.001
4.	w=1338 P>0.05	w=2358 P<0.001	w=1743 P>0.05	, No. 5	t=1.91 P<0.1	t=16.29 P<0.001	t=3.17 P<0.002	t=1.42 P>0.1	w=10248 P<0.001	w=5198 P>0.05	t=2.42 P<0.02	t=3.29 P<0.002	t=1.41 P>0.1	t=0.07 P>0.1	w=4651 P<0.001	t=5.15 P<0.001	t=0.82 P>0.1	w=474 P<0.001	t=0.14 P>0.1	w=14696 P<0.001	w=6005 P<0.001
5.	t=1.27 P>0.1	w=2246 P>0.05	t=2.22 P<0.05	w≈1382 P<0.05		t=16.62 P<0.001	t=1.13 P>0.1	t=0.61 P>0.1	w=10163 P<0.001	w=4989 P>0.05	t≈3.73 P<0.001	t=2.49 P<0.02	t=0.71 P>0.1	t=1.10 P>0.1	w=4539 P<0.001	t=2.32 P<0.05	t=0.92 P>0.1	w=460 P<0.001	t=1.43 P>0.1	w=14778 P<0.001	w=5929 P>0.05
6.	w=303 P<0.001	w=2139 P<0.001	w=288 P<0.001	w=16098 P<0.001	w=292.5 P<0.001		t=18.31 P<0.001	t=17.79 P<0.001	w=95938 P<0.001	w=5394 P<0.001	t=8.30 P<0.001	t=16.17 P<0.001	t=19.02 P<0.001	t=7.37 P<0.00	w=40952 P<0.001	t=27.56 P<0.001	t=14.42 P<0.001	w=942.5 P<0.001	t=12.37 P<0.001	w=13254 P<0.001	w=5610 P<0.001
7.	t=3.05 P<0.01	w=2137 P>0.05	t=4.65 P<0.001	w=1260 P<0.001	t=1.75 P<0.1	w=280 P<0.001		t=1.84 P<0.1	w=10270 P<0.001	₩~4959 P<0.001	t=4.68 P<0.001	t=0.49 P>0.1	t=2.01 P<0.02	t=1.76 P<0.1	w=4592 P>0.05	t=0.94 P>0.1	t=2.01 P.0.05	w=474.5 P<0.001	t=2.44 P<0.02	w=15029 P<0.001	w=5955 P>0.05
8.	t=0.42 P>0.01	w=2261 P<0.05	t=1.24 P>0.1	w=1388 P>0.05	t=0.97 P>0.1	w=281 P<0.001	t=2.94 P<0.01		w=10059 P<0.001	w=4920 P>0.05	t=3.43 P<0.002	t=2.13 P<0.05	t=0.08 P>0.1	t=0.79 P>0.1	w=4229 P<0.001	t=3.41 P<0.002	t=0.41 P>0.1	w=458.5 P<0.001	t=0.98 P>0.1	w=14722 P<0.001	w=5853 P<0.001
9.	w=3716 P<0.05	w=3837 P<0.001	w=4303 P<0.01	w=2454 P>0.05	w=3764 P<0.001	w=312 P<0.001	w=3543 P<0.001	w=3767 P<0.001	1.05	w=9999 P<0.001	₩=8442 P<0.001	w=8253 P<0.001	w=9801 P<0.001	w=7675 P<0.05	w=767 P>0.05	w=3742 P>0.05	w=9504 P<0.001	w=9802 P<0.001	w=8213 P<0.001	w=12677 P<0.001	w=12267 P<0.001
10.	w=4686 P>0.05	w=4005 P<0.001	w=5506 P>0.1	w=2421 P>0.05	w=4758 P<0.001	w=292 P<0.001	w=4464 P<0.001	w=4775 P<0.05	w=5363 P>0.05		w=4418 P<0.001	w=3996 P<0.001	w=4800 P>0.05	w=3859 P>0.05	w=4605 P<0.001	w=6059 P<0.001	w=4778 P>0.05	w=5423 P<0.001	w=4127 P>0.05	w~4799 P<0.001	w=5513 P<0.001
11.	t=2.83 P<0.01	w=1689 P<0.001	t=2.51 P<0.02	w=1173 P<0.001	t=2.45 P<0.05	w=302.5 P<0.001	t=5.15 P<0.001	t=3.13 P<0.01	w=3507 P<0.05	w=4392 P<0.001		t=4.73 P<0.001	t=3.47 P<0.001	t=1.47 P>0.1	w=3442 P<0.001	t=5.97 P<0.001	t=2.86 P<0.01	w=471 P<0.05	t=2.23 P<0.05	w=11995 P<0.001	w~4765 P<0.001
2.	t=3.99 P<0.001	w=1430 P<0.001	t=5.52 P<0.001	w=866.5 P<0.001	t=3.70 P<0.001	w=276 P<0.001	t=1.28 P>0.1	t=3.95 P<0.001	w=2934 P<0.001	w=3694 P<0.001	t=5.83 P<0.001		t=2.27 P<0.05	t=1.99 P<0.1	w=3339 P<0.001	t=0.21 P>0.1	t=2.01 P<0.05	w=372 P<0.001	t=2.67 P<0.05	w=12116 P<0.001	w=4563 P>0.1
13.	t=0.64 P>0.1	w=2134 P<0.05	t=1.67 P>0.1	w=1272 P>0.05	t=0.92 P>0.1	w=276 P<0.001	t=3.00 P<0.01	t=0.22 P>0.1	w=3547 P<0.001	w=4525 P<0.001	t=3.36 P<0.002	t=4.04 P<0.001		t=0.76 P>0.1	w=4384 P<0.001	t≈3.80 P<0.001	t=0.35 P>0.1	w=411.5 P<0.001	t=0.95 P>0.1	w≈14297 P<0.001	w=5681 P<0.001
4.	t=0.30 P>0.1	w=1343 P>0.05	t=0.67 P>0.1	w=885 P>0.05	t=0.45 P>0.1	w=278 P<0.001	t=1.61 P>0.1	t=0.05 P>0.1	w=2996 P>0.05	w=3779 P>0.05	t=2.18 P<0.05	t=2.35 P<0.05	t=0.06 P>0.1		w=2964 P<0.001	1=2.33 P<0.05	t=0.53 P>0.1	w=390.5 P<0.001	t=0.15 P>0.1	w=11064 P<0.001	w=4193 P<0.001
5.	t=2.64 P<0.02	w=2662 P<0.001	t=5.06 P<0.001	w=1391 P<0.001	t=3.04 P<0.01	w=276 P<0.001	t=1.16 P>0.1	t=2.53 P<0.02	w=3637 P<0.001	w=4650 P<0.001	t=4.97 P<0.001	t=2.53 P<0.02	1=2.64 P<0.02	t=1.16 P>0.1		w=6811 P>0.05	w=4149 P<0.001	w=42586 P<0.001	w=3328 P<0.001	w=5796 P<0.001	w=6218 P>0.05
6.	w=9717 P<0.001	w=3656 P>0.05	w=1817 P<0.001	w=1740 P<0.001	w=10094 P<0.001	w=284 P<0.001	w=976 P>0.05	w=10146 P<0.001	w=4145 P<0.001	w=5302 P<0.001	w=8456 P<0.001	w=7939 P>0.05	w=9808 P<0.001	w=7623 P>0.05	w=11486 P>0.05		t=3.27 P<0.002	w=493.5 P<0.001	t=3.62 P<0.001	w=20737 P<0.001	w=8236 P>0.05
7.	w=1180 P>0.05	w=1922 P>0.05	w=1631 P<0.05	w=1167 P<0.05	w=1251 P<0.1	w=276 P<0.001	w≈1186 P>0.05	w=1263 P>0.05	w=3394 P<0.001	w~4335 P<0.001	w=929 P<0.001	w=730 P<0.001	w=1156 P>0.05	w=689.5 P>0.05	w=1456 P>0.05	w=9254 P>0.05		w=444 P<0.001	t=0.55 P>0.1	w=13697 P<0.001	w=5488 P<0.001
8.	w=552 P<0.001	w=2199 P<0.001	w=615 P<0.001	w=1543 P<0.001	w=551 P<0.001	w=288 P<0.001	w=511 P<0.001	w=554 P<0.001	w=4119 P<0.001	w=5177 P<0.001	w=538 P>0.05	w=368 P<0.001	w=460 P<0.001	w=392 P<0.001	w~456.5 P<0.001	w=9754 P<0.001	w=1277 P<0.001		w=397 P<0.001	w=13618 P<0.001	w=5776 P<0.001
9.	t=0.80 P>0.1	w=1500 P>0.05	t=1.57 P>0.1	w=946 P>0.05	t=1.04 P>0.1	w=276 P<0.001	t=2.10 P<0.05	t=0.47 P>0.1	w=3070 P<0.001	w=3885 P<0.05	t=3.21 P<0.05	t=3.09 P<0.01	t=0.32 P>0.1	t=0.24 P>0.1	t=1.51 P>0.1	w=8075 P<0.05	w=7785 P>0.05	w=391 P<0.001		w=409.5 P<0.001	w=589 P<0.001
0.	w=14213 P<0.001	w=25908 P<0.001	w=7540 P<0.001	w=1183 P<0.001	w=14905 P<0.001	w=276 P<0.001	w=15071 P<0,001	w=14956 P<0.001	w=3281 P<0.001	w=4080 P<0.001	w=2001 P<0.001	w=11960 P>0.05	w=14459 P<0.001	w=1072 P<0.001	w=17964 P<0.001	w=1520 P<0.001	w=1428 P<0.001	w=418 P<0.001	w=1839 P<0.001		w=1835 P<0.001
1.	w=5602	w=2956 P>0.05	w=7065 P<0.001	w=1577 P<0.001	w=5851 P>0.05	w=278 P<0.001	w=5673 P>0.05	w=5901 P<0.001	w=3935 P<0.001	w=5049 P<0.001	w=4767 P<0.001	w=4315 P<0.05	w=5647 P<0.001	w=4159 P>0.05	w=6759 P>0.05	w=2322 P>0.05	w=1665 P>0.05	w=517 P<0.001	w=4451 P>0.05	w=19232 P<0.001	

Table 7a. Statistical significance of differences between the studied populations. Umbilicus minor diameter -PM.

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12	13.	14.	15.	16.	17.	18.	19.	20.	21
		t=0 P>0.1	t=2.35 P<0.05	t=2.24 P<0.05	t=3.23 P<0.01	₩=791.5 P>0.05	t=0.99 P>0.1	t=1.00 P>0.1	t=3.72 P<0.01	t=2.66 P<0.01	t=2.58 P<0.02	t=0.69 P>0.1	t=1.12 P>0.1	t=0 P>0.1	r=1.30 P>0.1	t=3.99 P<0.001	t=3.36 P<0.002	t=1.07 P>0.1	t=1.86 P<0.1	t=6.96 P<0.001	t=6.80 P<0.00
2.	t=1.45 P>0.1		t=2.40 P<0.05	t=2.29 P<0.05	t=3.29 P<0.01	w=1051 P<0.001	t=1.00 P>0.1	t=1.02 P>0.1	t=3.82 P<0.001	t=2.74 P<0.01	t=2.62 P<0.02	t=0.70 P>0.1	t=1.15 P>0.1	t=0 P>0.1	t=1.34 P>0.1	t=4.11 P<0.001	t=3.43 P<0.002	t=1.09 P>0.1	t=1.88 P<0.1	t=7.19 P<0.001	t=7.02 P<0.001
3.	t=0 P>0.1	t=1.34 P>0.1	1000	t=0 P>0.1	t=1.18 P>0.1	w=1323 P<0.001	t=1.06 P>0.1	t=1.08 P>0.1	t=7.02 P<0.001	t=6.16 P<0.001	1=4.56 P<0.001	t=2.16 P<0.05	t=1.24 P>0.1	t=0.33 P>0.1	t=1.50 P>0.1	t=1.54 P>0.1	t=1.24 P>0.1	t=1.17 P>0.1	t=0 P>0.1	t=4.91 P<0.001	t=4.76 P<0.001
	w=1402 P<0.001	w=1712 P>0.05	w=1848 P<0.001		t=1.12 P>0.1	w=1017 P<0.001	t=1.02 P>0.1	t=1.04 P>0.1	t=6.58 P<0.01	t=5.71 P<0.001	t=4.43 P<0.001	t=2.12 P<0.05	t=1.18 P>0.1	t=1.31 P>0.1	t=1.39 P>0.1	t=1.43 P>0.1	t=1.18 P>0.1	t=1.11 P>0.1	t=0 P>0.1	t=4.51 P<0.001	t≈4.39 P<0.001
5.	w=1778 P>0.05	w=2092 P<0.05	w=2285 P>0.05	w=1654 P>0.05	alter.	w=1142 P<0.001	t=1.98 P<0.1	t=2.01 P<0.05	t=7.03 P<0.001	t=6.23 P<0.001	t=5.03 P<0.001	t=2.73 P<0.01	1=2.14 P<0.05	t=1.39 P>0.1	t=2.50 P<0.02	t=0 P>0.1	t=0 P>0.1	t=2.04 P<0.05	t=0.90 P>0.1	t=2.59 P<0.02	t=2.54 P<0.02
5.	w=904 P<0.001	w=1136 P<0.001	w=1288 P<0.001	w=958 P<0.001	w=1250 P<0.001		w=1159 P<0.001	w=997 P<0.001	₩=1124 P>0.05	w=1287 P>0.05	w=443 P>0.05	w=607.5 P>0.05	w=892.5 P<0.001	w=408 P>0.05	w=1492 P<0.001	w=2606 P<0.001	w=912 P<0.001	w=731 P<0.001	₩=571 P<0.001	w=3299 P<0.001	w=2165 P<0.001
7.	t=0 P>0.1	t=1.38 P>0.1	t=0 P>0.1	w=1817 P>0.05	w=2223 P>0.05	w=1233 P<0.001		t=0 P>0.1	t=4.45 P<0.001	t=3.53 P<0.001	t=3.26 P<0.002	t=1.34 P>0.1	t=0 P>0.1	t=1.74 P<0.1	t=0 P>0.1	t=2.35 P<0.05	t=2.05 P<0.05	t=0 P>0.1	1=0.87 P>0.1	t=4.87 P<0.001	t=4.79 P<0.001
3.	t=0 P>0.1	t=1.19 P>0.1	t=0 P>0.1	w=1565 P>0.05	w=1955 P>0.05	w=1013 P<0.001	t=0 P>0.1		t=4.53 P<0.001	t=3.60 P<0.001	t=3.29 P<0.002	t=1.35 P>0.1	1=0 P>0.1	t=0.63 P>0.1	t=0 P>0.1	t=2.40 P<0.05	t=2.08 P<0.05	t=0 P>0.1	r=0.88 P>0.1	t=4.98 P<0.001	t=4.89 P<0.001
).	w=3678 P<0.01	w=4145 P>0.05	w~4390 P<0.05	w=2547 P<0.01	w=3045 P>0.05	w=1756 P<0.001	w=4319 P>0.05	w=3988 P>0.05		t=1.70 P<0.1	t=0 P>0.1	t=1.47 P>0.1	t=5.27 P<0.001	t=0.63 P>0.1	t=6.56 P<0.001	t=10.20 P<0.001	t=7.90 P<0.001	t=4.92 P<0.001	t=5.15 P<0.001	t=14.56 P<0.001	t=14.10 P<0.001
0.	t=3.47 P<0.001	t=1.67 P>0.1	t=3.11 P<0.01	w≈2821 P<0.001	w=3373 P<0.05	w=1968 P<0.001	t=3.24 P<0.05	t=2.67 P<0.01	w=5975 P>0.05		t=0.08 P>0.1	t=0.75 P>0.1	t=4.28 P<0.001	t=2.03 P<0.05	t=5.60 P<0.001	t=9.78 P<0.001	t=7.12 P<0.001	t=2.95 P<0.01	1≈4.32 P<0.001	t=15.16 P<0.001	t=14.38 P<0.001
1.	w=352.5 P>0.05	w=457 P>0.05	w=509.5 P>0.05	w=1065 P>0.05	w=1389 P>0.05	₩=560 P<0.001	w=494.5 P>0.05	w=411 P>0.05	w=3232 P>0.05	w=8848 P>0.05		t=1.25 P>0.1	t=1.77 P<0.1	t=1.77 P>0.1	t=3.87 P<0.001	t=5.88 P<0.001	t=5.32 P<0.001	t=3.43 P<0.002	t=3.90 P<0.001	t=8.02 P<0.001	t=7.93 P<0.001
2.	t=2.36 P<0.05	t=3.47 P<0.001	t=2.23 P<0.05	w=1049 P>0.05	w=1371 P>0.05	w=616 P<0.05	t=2.28 P<0.05	t=2.06 P<0.05	w=3148 P<0.001	t=5.15 P<0.001	w=215.5 P<0.05		t=1.42 P>0.1	t=0.53 P<0.1	t=1.49 P>0.1	t=3.01 P<0.01	t=2.83 P<0.01	t=1.39 P>0.1	t=1.95 P<0.1	1=4.58 P<0.001	t=4.55 P<0.001
3.	:=0 P>0.1	t=1.32 P>0.1	t=0 P>0.1	w=1499 P>0.05	w=1889 P>0.05	w=947 P<0.001	t=0 P>0.1	t=0 P>0.1	w=3894 P>0.05	t=3.05 P<0.01	w=394 P>0.05	t=2.21 P<0.05		t=0.66 P>0.1	t=0 P>0.1	t=2.86 P<0.01	t=2.35 P<0.05	t=0 P>0.1	t=0.96 P>0.1	t=6.02 P<0.001	t=5.86 P<0.001
4.	t=0 P>0.1	t=0.75 P>0.1	t=0 P>0.1	w=928.5 P>0.05	w=1236 P>0.05	w=439.5 P<0.001	t=0 P>0.1	t=0 P>0.1	w=3030 P>0.05	t=1.57 P>0.1	w=181.5 P>0.05	t=1.4 P>0.1	t=0 P>0.1		t=0.69 P>0.1	t=2.07 P<0.05	t=0.97 P>0.1	t=0.66 P>0.1	t=1.22 P>0.1	t=3.50 P<0.001	t=3.48 P<0.001
5.	1=0 P>0.1	t=1.68 P<0.1	t=0 · P>0.1	w=2210 P>0.05	w=2620 P>0.05	w=1593 P<0.001	t=0 P>0.1	t=0 P>0.1	w=4791 P<0.02	t=4.34 P<0.001	w=627 P>0.05	t=2.58 P<0.02	t=0 P>0.1	t=0 P>0.1		t=3.74 P<0.001	t=2.78 P<0.01	t=0 P>0.1	t=1.06 P>0.1	t=8.21 P<0.001	t=7.82 P<0.001
6.	t=1.79 P<0.1	t=3.44 P<0.001	t=1.59 P>0.1	w=2210 P>0.05	w=3148 P>0.05	w≈2243 P<0.001	t=1.67 P>0.1	t=1.36 P>0.1	w=5277 P<0.001	t=6.78 P<0.001	w=761.5 P<0.05	t=1.31 P>0.1	t=1.56 P>0.1	t=0.76 P>0.1	t=2.28 P<0.05		t=0 P>0.1	t=2.64 P<0.02	t=1.08 P>0.1	t=4.34 P<0.001	t=4.12 P<0.001
7.	t=1.31 P>0.1	t=2.55 P<0.02	t=1.22 P>0.1	w=1226 P>0.05	w=1567 P>0.05	w=786.5 P<0.01	t=1.26 P>0.1	t=1.11 P>0.1	w=3398 P<0.001	t=4.38 P<0.001	w=278.5 P>0.05	t=1.08 P>0.1	t=1.21 P>0.1	t=0.73 P>0.1	t=1.47 P>0.1	t=0 P>0.1		t=2.23 P<0.05	r=0.96 P>0.1	t=3.00 P<0.01	t=2.93 P<0.01
8.	t=0.98	t=1.94 P<0.1	t=0.94 P>0.1	w=1150 P>0.05	w=1506 P>0.05	w=675.5 P<0.05	t=0.96 P>0.1	t=0.89 P>0.1	w=3371 P<0.001	t=3.12 P<0.01	w=257 P>0.05	t=0.87 P>0.1	t=0.94 P>0.1	t=0.61 P>0.1	t=1.04 P>0.1	t=0 P>0.1	t=0 P>0.1		t=0.92 P>0.1	t=5.51 P<0.001	t=5.39 P<0.001
9.		t=1.03 P>0.1	t=0 P>0.1	w=1046 P>0.05	w=1369 P>0.05	w=551	t=0 P>0.1	t=0 P>0.1	w=3198 P>0.05	t=2.25 P<0.05	w=224.5 P>0.05	t=1.84 P<0.1	t=0 P>0.1	t=0 P>0.1	t=0 P>0.1	t=1.14 P>0.1	t=0.98 P>0.1	t=0.82 P>0.1		t=3.34 P<0.002	t=3.29 P<0.002
0.		t=1.72 P<0.1	t=0 P>0.1	w=3450 P>0.05	w=3981 P>0.05		t=0 P>0.1	t=0 P>0.1	w=6533 P<0.001	t=4.52 P<0.001	w=1026 P>0.05	t=2.62 P<0.02	t=0 P>0.1	t=0 P>0.1	t=0 P>0.1	t=2.39 P<0.02	t=1.49 P>0.1	t=1.05 P>0.1	t=0 P>0.1		t=0 P>0.1
1.	t=3.33	t=4.82	t=3.01	w=1964	w=2482	w=1609	t=3.13	t=2.61	w=4405	t=8.09	w=519	t=0	t=2.96	t=1.55	t=4.08	1=2.11	t=1.42	t=1.03	t=2.21	t=4.24	

Table 8a. Statistical significance of differences between the studied populations. Relative height of body whorl -HA/H.

Table 9	Statistical significance	of differences between	n the studied nonulation	ns I Imbilious minor diam	eter to its major diameter -PM/P.

ab	le 9. St	atistical	signifi	cance c	of differ	ences t	etween	the stu	idied p	opulati	ons. U	mbilicus	minor	diamet	er to its	major	diamet	er -PM	/P.		
	1.	2	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21
1.	Salzara S	w=1411 P>0.05	w=1747 P>0.05	w=1344 P>0.05	w=1384 P>0.05	w=#37 P<0.001	w=1282 P<0.05	w=1424 P>0.05	w=2216 P>0.05	w=2665 P<0.001	w=998 P<0.05	w=793 P<0.001	w=1302 P>0.05	w=760 P<0.05	w=2221 P<0.05	w=2602 P>0.05	w=1007 P<0.05	w=1029 P<0.05	w=819.5 P>0.05	w=2124 P<0.001	w=2173 P>0.05
2.	w=2301 P<0.001	1-21-60/6 - 2-36/6	w=2609 P>0.05	w=2063 P>0.05	w=2095 P>0.05	w=1369 P<0.001	w=1971 P>0.01	w=2152 P>0.05	w=7237 P<0.02	w=3830 P<0.001	w=1582 P<0.001	w=1302 P<0.001	w=1994 P>0.05	w=1265 P>0.05	w=3242 P<0.001	₩=3799 P>0.05	w=1592 P<0.02	w=1608 P>0.05	w=1331 P>0.05	w=3124 P<0.001	w=3204 P>0.05
3.	w=2619 P>0.05	w=2889 P<0.001	100 10.11	t=0 P>0.1	t=0.68 P>0.1	w=1296 P<0.001	w=3516 P<0.001	t=0 P>0.1	t=0.82 P>0.1	t=2.58 P<0.02	t=1.46 P>0.1	t=4.75 P<0.001	t=0.66 P>0.1	t=2.68 P<0.02	w=4193 P>0.05	t=1.91 P<0.1	t=3.95 P<0.001	w=1322 P<0.001	1=2.80 P<0.01	w=15947 P<0.001	t=0.90 P>0.1
4.	t=3.71 P<0.001	w=1115 P<0.001	w=1540 P<0.001	11.474	t=0.58 P>0.1	w=933.5 P<0.001	w=2766 P<0.001	t=0 P>0.1	t=0.66 P>0.1	t=2.04 P<0.05	t=1.33 P>0.1	t=4.06 P<0.001	t=0.57 P>0.1	t=2.29 P<0.05	₩=3643 P>0.05	t=1.45 P>0.1	r=3.22 P<0.01	w=975 P>0.05	t=2.50 P<0.02	w=13828 P<0.001	t=0.70 P>0.1
5.	w=2108 P<0.01	w=2265 P>0.05	w=2429 P<0.05	w=1073 P<0.001		w=1023 P<0.001	w=2904 P<0.05	t=0.58 P>0.1	t=1.38 P>0.1	1=2.87 P<0.01	t=1.81	t=3.61 P<0.001	t=0 P>0.1	t=1.78 P<0.1	w=3588 P<0.001	t=0.77 P>0.1	r=2.70 P<0.01	w-988 P>0.05	t=2.05 P<0.05	w=14176 P<0.001	
6.	t=17.56 P<0.001	w=1093 P<0.001	w=1540 P<0.001	t=21.98 P<0.001	w=1058 P<0.001	1~0.001	w=1030 P>0.05	w=996.5 P<0.001	w=1651 P<0.001	w=1925 P<0.001	w=576.5 P<0.001	w=542 P>0.05	w=896 P<0.001	₩~421.5 P>0.05	₩-1615 P<0.001	w=2210 P<0.001	w=738 P>0.05	₩-676 P<0.05	₩~497 ₽>0.05	w=2158 P>0.05	₩-1732 P<0.001
7.	t=5.11 P<0.001	w=2143 P>0.05	w=2259 P<0.001	t=1.73 P<0.1	w=1916 P<0.001	t=21.75 P<0.001	17-0.05	w=2894 P<0.001	₩~4307 P~0.001	₩~4953 P<0.001	w=2076 P<0.001	w=1837 P<0.05	w=2708 P<0.001	₩=1707 P>0.05	₩=4327 P<0.001	₩=5364 P<0.001	w=2272 P>0.05	w=2250 P>0.05	₩-1832 P>0.05	w=4882 P<0.05	w=4438 P<0.001
8.	t=3.85 P<0.001	w=2044 P>0.05	w=2191 P<0.001	t=0 P>0.1	w=1854 P>0.05	1=2.97 P<0.001	t=1.79 P<0.1	1-0.001	t=0.66 P>0.1	t=2.04 P<0.05	t=1.33 P>0.1	1=4.06 P<0.001	t=0.57	t=2.29 P<0.05	w=3728 P>0.05	t=1.45 P>0.1	t=3.22 P<0.002	w=1015 P>0.05	1=2.50 P<0.02	₩=14183 P<0.001	t=0.70 P>0.1
9.	1=0 P>0.1	w=3596 P<0.001	w=3745 P>0.05	t=4.16 P<0.001	w=3225 P<0.001	t=19.97 P<0.001	t=5.62 P<0.001	t=4.37 P<0.001		t=1.78 P<0.1	t=0.98 P>0.1	t=5.55 P<0.001	t=1.31 P>0.1	t=3.42 P<0.002	w=5019 P>0.05	t=2.99 P<0.01	t=4.88 P<0.001	w=1697 P<0.001	1=3.41 P<0.002	w=18142 P<0.001	t=1.87
10.	t=4.37 P<0.001	w=2940 P>0.05	w=2732 P<0.001	t=0 P>0.1	w=2559 P>0.05	1=26.71 P<0.001	t=1.99 P<0.1	t=0 P>0.1	t=5.17 P<0.001	K 4.0	1=0 P>0.1	t=7.68 P<0.001	t=2.80 P<0.01	t=4.95 P<0.001	w=5507 P>0.05	t=5.38 P<0.001	1=6.83 P<0.001	w=2061 P<0.001	t=4.65 P<0.001	₩=19977 P<0.001	t=4.01 P<0.001
11.	t=1.70 P<0.1	w=1682 P<0.001	w=2122 P<0.05	t=5.21 P<0.001	w=1566 P<0.001	t=14.51 P<0.001	t=6.44 P<0.001	t=5.38 P<0.001	t=1.88 P<0.1	t=5.99 P<0.001	160.17	t=4.55 P<0.001	t=1.80 P<0.1	t=3.16 P<0.001	w=3097 P>0.05	t=2.58 P<0.02	t=3.87 P<0.001	w=662 P<0.001	t=3.31 P<0.002	₩-11876 P<0.001	t=2.03 P<0.05
12.	t=1.56 P>0.1	w=1745 P<0.05	w=2081 P>0.05	r=1.58 P>0.1	w=1604 P>0.05	t=16.37 P<0.001	t=2.96 P<0.01	t=1.62 P>0.1	t=1.68 P<0.1	t=1.77 P<0.1	t=2.97 P<0.01	1 0.00	t=3.55 P<0.001	t=1.79 P<0.1	w=2662 P<0.001	t=3.85 P<0.001	t=4.35 P<0.001	w=504 P<0.001	t=1.03 P>0.1	w=11213 P>0.05	1=4.46 P<0.001
13.	t=3.58 P<0.001	w=2084 P>0.05	w=2231 P<0.01	t=0 P>0.1	w=1808 P>0.05	t=21.12 P<0.001	t=1.68 P<0.1	t=0 P>0.1	1=4.00 P<0.001	I=0 P>0.1	1=5.05 P<0.001	t=0.25 P>0.1	70.001	t=1.75 P<0.1	w=3477 P>0.05	1=0.75 P>0.1	1=2.64 P<0.02	w=915.5 P<0.001	t=2.03 P<0.05	w=13612 P<0.001	1=0 P>0.1
14.	t=1.81 P<0.1	w=1317 P>0.05	w=1718 P>0.05	t=0 P>0.1	w=1237 P>0.05	t=10.13 P<0.001	1=0.89 P>0.1	t=0 P>0.1	t=1.86 P<0.1	1=0 P>0.1	t=2.67 P<0.01	t=0.19 P>0.1	r=0 P>0.1	i a	w=2619 P<0.001	t=1.51 P>0.1	t=0.67 P>0.1	w=446 P>0.05	1=0.51 P>0.1	w-10776 P>0.05	t=2.19 P<0.05
5.	t=7.01 P<0.001	w=2496 P>0.05	w=2238 P<0.001	t=2.42 P<0.02	w=2129 P<0.001	t=31.68 P<0.001	1=0 P>0.1	t=2.58 P<0.02	t=8.54 P<0.001	t=3.32 P<0.002	t=8.44 P<0.001	t=3.69 P<0.001	t=2.28 P<0.05	t=0.95 P>0.1		w=5305 P<0.001	w=2920 P<0.001	w=2939 P<0.001	₩=2710 P<0.001	₩~4107 P<0.001	₩~4752 P<0.01
6.	t=4.51 P<0.001	w=4014 P>0.05	w=3617 P<0.001	t=0 P>0 1	w=3469 P>0.05	t=27.80 P<0.001	t=2.05 P<0.05	t=0 P>0.1	t=5.41 P<0.001	t=0 P>0.1	t=6.15 P<0.001	t=1.80 P<0.1	t=0 P>0.1	t=0 P>0.1	t=3.59 P<0.001		t=2.83 P<0.01	w=2167 P<0.001	t=1.82 P<0.1	₩-21315 P-0.001	t=1.16 P>0.1
7.	t=3.18 P<0.01	w=1985 P>0.05	w=2285 P>0.05	t=0 P>0.1	w=1816 P>0.05	t=18.43 P<0.001	t=1.51 P>0.1	t=0 P>0.1	1=3.45 P<0.001	t=0 P>0.1	1=4.53 P<0.001	t=1.40 P>0.1	t=0 P>0.1	t=0 P>0.1	r=1.90 P<0.1	t=0 P>0.1	. 4.01	w=671.5 P>0.05	(=0 P>0.1	w=12407 P>0.05	t=3.58 P<0.001
8.	w≈7605 P>0.05	w=2040 P<0.001	w=2428 P>0.05	w=351 P<0.001	₩=1879 P<0.001	w=351 P<0.001	w=636.6 P<0.001	w=565 P<0.001	w=1227 P>0.05	w=754	w=604 P>0.05	w=543.5 P>0.05	w=6015 P<0.001	₩=4235 P>0.05	₩=554 P<0.001	₩=1076 P<0.001	w=628.5 P<0.05	1700	w=501.5 P>0.05	w=1764 P>0.05	w=1730 P>0.05
9.	t=1.55	w=1532	w=1879	t=1.57	w=1407	t=16.27	t=2.95	t=1.61	t=1.67	P<0.001 t=1.75	t=2.95	t=0	t=1.53	t=0.87	t=3.66	t=1.79	t=1.40	w=477.5 P>0.05	120.05	w=11142	t=2.37
ю.	P>0.1 t=14.38	P>0.05	P>0.05	P>0.1 t=9.93	P>0.05 w=1901	P<0.001	P<0.01 t=6.45	P>0.1 t=10.65	P<0.1 t=17.74	P<0.1 t=14.03	P<0.01 t=15.07	P>0.1 t=9.37	P>0.1 t=9.35	P>0.1	P<0.001 t=12.78	P<0.1 t=15.32	P>0.1 t=7.73	w-410.5	t=9.29	P>0.05	P<0.05 w=18683
1.	P<0.001 t=10.96	P<0.001 w=2083	P<0.001 w=1918	P<0.001 1=6.77	P>0.05 w=1840	P<0.001 t=34.13	P<0.001 t=4.00	P<0.001 t=7.17	P<0.001 t=12.98	P<0.001 t=8.84	P<0.001 t=12.0	P<0.001 t=7.08	P<0.001 t=6.44	P<0.001 t=2.83	P<0.001 t=6.70	P<0.001 t=9.39	P<0.001 t=5.46	P<0.001 w=469	P<0.001 t=7.03	t=3.54	P<0.001
_	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	₽<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.01	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	12 C S W

Table 9a. Statistical significance of differences between the studied populations. Umbilicus major diameter to shell diameter -P/M.

\neg	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21
-	5 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	w=1326	w=1621	w=1251	w=1164	w=1192	w-1513	w=1323	w=1811	w=2067	w=955.5	w=1005	w=1225	w=853 P<0.05	w=1629 P>0.02	w≈2229 P<0.05	w=1117 P>0.05	w=1207 P>0.05	w=187 P>0.05	n=1751 P<0.001	w=2143 P>0.05
-	200	P>0.05	P>0.05 w=2588	P>0.05 w=2075	P<0.05	P=0,001 w=1925	P>0.05 w=2438	P>0.05 w=2163	P>0.05 w=2863	P>0.05 w=3279	P>0.05 w=1576	P>0.05 w=1609	P>0.05 w=1978	W=1418	w=2430	w=3409	w=1914	w-1941	w-1475	w=2501	w=3374
		Historia.	P>0.05	P>0.05	P<0.05	P<0.001	P>0.05	P>0.05	P>0.05	P>0.05	P<0.001	P>0.05	P>0.105	P<0.001	P>0.05	P>0.05	P>0.05	P<0.001	P>0.05	P<0.001	P>0.05 w=3831
			(22 w.	w=2497 P>0.05	w=2272 P<0.001	w=2445 P<0.001	w=2\$77 P>0.05	w=2602 P>0.05	w=3291 P>0.05	w=3729 P>0.05	w=2063 P>0.05	w=2084 P>0.05	w=2426 P>0.105	w=1902 P<0.02	w=2798 P<0.001	w=3727 P<0.001	w=2368 P>0.05	w=2351 P<0.05	w=1931 P>0.05	P<0.001	P>0.05
.		1	1,500,000	12005	w=1286	w=1428	w=1750	w=1541	w=2054	w=2367	w=1138	w=1129	w=1391	w=1014	w=1660	w=2324	w=1360	w=1410	w=1032 P>0.05	w=1583 P<0.001	₩~2442 P>0.05
_		_	_	\$400 M	P-92.001	P<0.001	P>0.05	P>0.05	P>0.05	P>0.05	P>0.02	P>0.05	P>0.05	P<0.001	P<0.001 w≈2796	P<0.001 w=4105	P>0.05 w=2011	P<0.01 w=1963	w=1496	w=3408	w=3709
.						w=1911 P<0.001	w=2627 P<0.001	w=2295 P<0.001	w=3169 P<0.001	₩-3592 P<0.001	₩=1561 P<0.001	₩=1669 P>0.05	w=2113 P<0.001	w=1384 P<0.001	P>0.05	P>0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001
		1				7711.70	w=587	w=505	w-677	w=781	w=418	w~430	w=473	w=378	w=510	w=726	w=466 P<0.001	w=531 P>0.05	w=364 P<0.001	w~495 P<0.001	w=825 P<0.001
-		-	<u> </u>			agencies of	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05	P<0.001 w=1993	P<0.001 w=2360	P>0.05	P<0.001 w=27\$5	P<0.001 w=3803	w=2296	₩=2352	w=1839	w=2846	w=3819
								w=2542 P>0.05	w=3278 P>0.05	w=3706 P>0.05	P<0.05	P>0.05	P>0.05	P<0.001	P<0.001	P<0.001	P>0.05	P<0.01	P>0.05	P<0.001	P>0.05
								200	w=2250	w=2579	w=1273	w=1280	w=1553 P>0.05	w=1145 P<0.001	w=1852 P<0.001	₩=2585 P<0.001	w=1514 P>0.05	w=1566 P<0.05	w=1168 P>0.05	w=1829 P<0.001	w=2661 P>0.05
		-	-			-	-	20125.61	P>0.05	P>0.05	P<0.05 w=3536	P>0.05 w=3604	W=4160	w=3294	W-4846	w=6400	w=4053	w-4104	w-3378	w=5045	w=6300
. 1			1	0.000		L			May 4	P>0.05	P<0.05	P>0.05	P>0.05	P<0.001	₽<0,05	P>0.05	P>0.05	P<0.001	P>0.05	P<0.001	P>0.05 w=7095
0.					128/22						w=4296 P>0.05	₩~4328 P>0.05	w=4873 P>0.05	w=4043 P<0.01	w=5500 P<0.001	w=6978 P<0,001	w=4790 P>0.05	w=4888 P<0.05	P>0.05	P<0.001	P>0.05
1.			_			 	-			28.622. 32.	12003	w=242	w=292	w=200	w=350	w=535	w=284.5	w=319.5	₩=196.5 P>0.05	w=374.5 P<0.001	w=578.5 P>0.05
									-		JAMES I.A.	P>0.05	P<0.05	P>0.05	P<0.001	P<0.001	P>0.05 w=624.5	P>0.05 w=628	w=429	w-978	₩=1287
2.					Ü					1			P>0.05	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05	P<0.001	P>0.05
3.													7.50	w=919 P<0.001	w=1612 P<0.05	w=2291 P<0.05	w=1270 P>0.05	w=1309 P<0.01	w=952 P>0.05	w=1570 P<0.001	w=2330 P>0.05
4.	_			-		-	-	-	\vdash				2007 - 54, 000	170,001	w=124	w=194.5	w=115.5	w=144	w=77.5	w=103.5	w=247.5
•													_	100	P<0.001	P<0.001	P<0.02	P>0.05	P<0.05 w=3168	P<0.001 w=5283	P<0.01 w=6444
5.							1110-0-2-11.14.									w=6715 P>0.05	w=3928 P<0.01	w=3911 P<0.001	P<0.05	P<0.001	P<0.001
6.									_								w=9257 P<0.05	w=9259 P<0.001	w=\$022 P>0.05	w=11062 P<0.001	w=13388 P<0.001
7.						-	-		1	-				1		30,000 2000		w=1077	w=769.5	w=1334	w=1942
-										L					-		.79	P<0.05	P>0.05	P<0.001 w≈687.5	P>0.05
8.							1								Jan 1				P<0.05	P<0.001	P<0.05
. 1						1							 			-			OH IN	w=478.5	w=778
-						-	_		-					+	-	-	-	-	N	P<0.001	P>0.05 w=20155
).														- оше						C. 40 S.	P<0.001
					S-472-0-				-												

Table 11. List of characters which differ statistically significantly between each pair of the studied populations

1	2.	3.	4.	5	6.	7.	8.	9.	10.	11.	12	13.	14.	15.	16.	17.	18.	19.	20.	21
1.	P.PM. P/M	HA	H,W,S, M,HA PAM,H/L, HA/H	HL,W. HA,H/L, P/MLS	H.W.S.P. HAPM, PMHA/ H.PMP, LS	H.S.HA. P.PM. PM/P. P/M	HLW.S. M.HA. PM.PM	LS,M, HAP, PM, HA/H	HLLW, S.M.HA, HLLPM HA/H, PM/P	L.PM, H/L, PM/P	HLW,S, MHAP, PMHAH PMP	H,L,S,HA P/M	LMLS, PM/P	H.P.PM, PM/P, P/M.W, LS	L,S,M,P, PM,H/L, P/M,W, L/S	HLLS,M HA,H/L, PM/P, P/M/W	HL,W,S, M,HA,P, PM,PM/ P	H.W.S. HA.PM P	H.W.S. P.HA.L. PM.H.L. PM.P. PMLS	HLWS MHAP PMHL HAH PM
2.		ннар, Рмни, Рм	HLWP. HAPM HLHA MPM	HW, HA,H/L, HA/H, LS	HHAP, PMHL, HAH,W, PMP, PMLS	H,W,S,M	HLWS, HAPM	HLM, PM,H/L, PM/P, P/M	HLW, S,MHA, P,PM, H/L, PM/P	L.P.PM. H/L.M. PM/P. LS	HLW,S, MHAPM HAH PMP	HLW,S, HAP, PM,M	LW,X(W.PM. PM/P,S. P	L.M.S. H/L	HL,W, HA,HL, HAHP, PMP,S, M	HLW,S, MHAP. PMP/M, MLS	H,W,S,	HLW,S HAPP MHLP MP,MP MLS	HL,W,S MHA,P HL,HA H,PM
3.			HLW.S, M.HA PM, HA/H	W.PMIL S.P.PM LS	H.W.HA P.PM HL.PM HA/H, PM/P.LS	S,P,PM, PMP, P/M	L,W,S, P/M	HLW, SMP. HAPM, H/L, HAM	L,W,S, M,H/L, P/M,HA /H,PM/P	L,M.P. PM,H/L. P/M	HLW.S, M.HA.P, PM.H/L.H A/H, PM/P	L.W.S.M. P/M	L,W,M,P M/P,LS	HLW, MHAP, PMPM LS	HLW. MHAP. PMP/M LS	H.W.S. HA.PM. PM/P	HL,W,S, MHAP. PM,PM/ PLS	S,PM/P, W	HLWS MHAP PMHL PMP, PM	HLW,S M,HA,P, PM,HA,L HA/H, P/M
4.				HLM HAPM PMLS	HLW.S. MHAP. PM.H/L. HA/H. PM/P,LS	HLWP. MHA PMPMP	HLHA M	H,W,HA ,H/L,P, HA/H	HHA H/L HA/A PM/P	HHAP. PMH/L LS	HLLW,S, MHAP. PM,H/L, PM/P	HS,M, HA	PM/PLS	HLW, S,M,HA, P,PM, LS	HLW, S,MHA, P,PM, LS	HLM PM, PM/P	HLW,S, MHAP, PMPM, PMPLS	ҢРМ/Р	LW.S.P. PM.H/L. PM/P. LS	H,S, HA,P,PM H/L,HA/ H
5.					H.W.HA. P.PM. H/L.P/M. HA/H. PM/P,LS	HILLS, W.PMP, PM	LS,H/L LS	LWM PPM HA,H/L, P/MLS	LS,M, PM,H/L, HA/H, PM/P, LS	LP.PM. H/L,M. P/M,LS	HLLW,S, M,HA,P, PM,H/L, PM/P, HA/H	LS,H/L,	LMLS	HW, HA,PM, P,H/L, PM/P, P/M	L,W,S, M,P,PM	HL.HA PM/P,LS	HLWS, MHAP, PMHL PMLS	S,PM/P, LS	HLW,S HAPP MHLP MP,ML S	H,L,W,S, M,HA, H/L,P/M LS,HA/H
6.						H.W.S. HA.P.PM P.M.H/L. HAMLS	HLWS, MHAP. PMHAV HM, HLPM, PMPLS	HLMH AP. PMPM, HAHP MPLS, WHAH	HL,W,S ,M,HA,P ,PM,P/ M,HA/H ,PM/P, LS	H.W.M HA.P. PM.PM HA/H. PM/P	LWMP. PMPM HAHLS, S	HLW,S, MHAP, PMHAH PMP,H/ LPMLS	н.у. Мнар. Рмрм Нан	HHAP, PMHL HAH, PMP, LS	HLMP HAPM HAMP MP,H/L PAGLS, S	HLWS, MHAP, PMH/L, HA/H, P/MLS	HLW,S, MHAP, PM,HA/ HPM/P, HL,P/M	H.W.S. M.HA.P. PM.H/L. PM. HA/H. LS	HLW.S MHAP MP.HA/ HLH/LP/ MLS	HLW.S, MHAP, PMHA/ HJH/LP/ MPM/P, LS
7.							PM.W. PM/P	L,W.P.P M,H/L, PM/P, HA,P/M, LS	L.M.P. PM.H/L. HA/H, PM/P.W	P.PM. H/L.P/M ,PM/P, LS	HLW,S, M,HA, HA/H P/M,PM/P	P,PM, PM/P	MT2	HLWS MHA PMP. LS	L.W.S. M.HA. H/L.PAM .PM/P. LS	ли,ч,н	HLWS, MHAP, PMPM LS	W.P.PM P/M.W	H.W.S. HA.PM, P.H/L, P/M.PM/ P.LS	HLW,S, M,HA, H/L,P/M, HA/H, P/M/P
8.								HWP.H APM H/LP/M	LM, PM,H/L, HA/H, PM/P	PM,H/L, P/M,LS	HL,W, HA,P,PM, HA/H PM/P,M		LS	LWS MHAP MPP/ MLS	HLLW, S,M,HA, P,PM, H/LLS	H/L, PM/P	HLWS, MHAP, PMPM LS	PM/P	H.W.S.P M.P.PM, PM/P.H/ L.PM/L S, HA	H,W,S,L, HA,P,PM ,HL,PAM ,HAH,M
Э.									HL.W, MHA.P, PM	P.PM,LS	HL,W,S, MHA,PM P,HA/H PM/P	H.W.S.P. HA.PM, H/L.P/M, PM/P	W.PM.P. HA.P.LS	L,W,S, M,PM, HAVH, H/L,P/M ,LS	L,S,M,P M,H/L,P M,HA/ H,PM/P	H,W, HA,P, PM,H/L, P/M, HA/H, PM/P	HL,W,S, MHA.P. PM,H/L, HA/H,P MP,LS	H.W.PM P.H/L, PM/P, HA	HLW,S HAPM, P,HAH, H/L,P/M P/M/P, LS	ң W,S,P. Нарм, Н/L,Р/М, Наңм

10.					L,P,PM, P/M	HLW,S, MHA,PM ,P,HAH, PM/P	L,MPM, H/L, HA/H, PM/P	H/L, PM/P,LS	HL,W,S PM,M, HA,H/L, PM/P,P, LS	HLLW, S,M,HA, P,PM, H/L HA/H, LS	HLMP MH/L HA/H PM/P	HL,W,S, M,HAP, PM,HAV H,PM/P, LS,H/L, P/M	L.PM, H/L, HA/H, PM/P	HLW, SMHA, P.PM, H/L,HA/ H.PMP, P/MLS	H.W.S. HA.P.PM H/L.P/M HA/H, PM/P
11.						HLW,S, M,HA,PM P,HAH, PMP,H/L	P.PM. P/M,LS	PMP/M PM/P	LWM P.PM.H L.P/M.L S.HA	LSMP. PMHL PMP. PMW. LS	H,HA,P M,P,PM/ P,H/L,P/ M,HA/H	HLW.S. M.HA. H/L.P. PM/P	P.PM. H/L,P/M ,PM/P	H.W. HA.P. PM.H/L. P/M. PM/P.LS	H.W.S.P. HA.PM. HA.PM. PM/P. HA/H
12.							HLLW.S. MHAP. PM. HAM. PMP	HLW. S,MHA PM	HLW, SMHA, P,PMP/ MHA/H ,PM/P	H,W,S, M,HA, H/L, HA/H	HLW. S.M.HA. P.PM. H/L. PM/P	HLW.S, MHAP, PM, PM/P	HL.W. S.M.HA. P.PM	HLW. S.M.HA. P.H/L.P/ M.HA/H LS	HLWS, MHA PMHL PMP, PM
13.								រេ	HLW, S,M,HA, P,PM, P,MLS	HLLW, S,M,HA, P,PM, H/L,LS	H/L, PM/P	HL,W,S, MHA,P, PM,P/M, PM/P,LS	PM/P	H.W.P. HA.H/L. PM/P. P/M.LS	HLWS, MPPM H/L HAAL PAMHA
14.									HLW, MHA P,PMP, LS	LWS, MHAP. HILLS	HALS	HL,W,S, M,HA,P, PM	ĹS	S,PM.P. H/L, P/M,LS	HLLS.P. HA.H/L. P/ML PM/PLS
15.										LMHL HAH PMP, PM	H,L,W,S, P,M,HA H/L, PM/P,LS	HLW,S, MHAP, PMP/M PMP/LS	HLW, S,M,HA, P,PM/P, P/M,LS	HLLW, S.M.HA, P.PM.H/ L.PM/P, PAMLS	HLLW,S, M.HA, HLLPM, HAM, PMP,LS
16.											HLW. S,MHA, P,PMP, LS	HLW,S, MHAP, PMH/L, PM, PM/PLS	HLW, S,M,HA, P,PM	HLW, S,M,HA, P,PM,H/ L,HA/H, PM/P,LS	HLW,S, MHA HL,PM, HAM, LS
17.												HLW,S, MHAP, PM,H/L, LS	НА	W,S,PM, P,H/L, P/M,LS, HA	HLW,S, M,PM/P, H/L,P/M, HA,P
18.													HJ.W. S,M.HA, P,PM,LS	HLSM HAPM PHLP/ MLSW	HLW.S, MHAP. PMH/L PMLS
19.														P.PM. HJL.PM LS	ҢНА,Р МР,НА/ ҢРМР, НИ,РМ
20.															HLWM HAPP MHAH PMP, PMLS

area except the Carpathians (RIEDEL 1988); in the Sudetes it reaches 800 m a.s.l. (WIKTOR and WIKTOR 1968). It inhabits a variety of habitats of varying humidity, from dry meadows and anthropogenic habitats to forest edges. There are no data on the area occupied by populations of the species, but in a mosaic, fragmented habitat populations are probably small and to a large degree isolated.

MATERIAL AND METHODS

Twenty one populations from various localities in Poland were examined (fig.1). The material, comprising 1490 shells, is deposited in the following collections: Museum of Natural History, Wrocław University, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, and Department of General Zoology, A. Mickiewicz University, Poznań.

The following measurements were taken: shell height, shell breadth, body whorl height, aperture height, aperture breadth, shell diameter, umbilicus major diameter, umbilicus minor diameter. In order to characterize shell proportions the following coefficients were used: a/ height/breadth ratio (H/L), b/ relative height of body whorl, i.e. ratio of the body whorl height to the shell height (HA/H); c/ umbilicus relative diameter, i.e. ratio of umbilicus major diameter to shell diameter (P/M); d/ ratio of umbilicus major to its minor diameter (PM/P). The degree of "hairiness" of the shell was estimated according to the three-degree scale: 0 - no hairs, 1 - hairs partly damaged, 3 - hairs complete. Whorls were counted according to EHRMANN's (1933) method.

For each parameter and each population arithmetic mean, standard deviation (SD), variability coefficient (V) and variability range were calculated, considering juvenile and adult shells separately, and all shells jointly (tabs.1-3). The data were statistically analysed with respect to the significance of differences between populations (Student t-test and Mann-Whitney test). For parameters suspected of allometric growth Pearson correlation coefficient (r) and regression equation parameters were calculated.

RESULTS

Almost each of the studied populations differs statistically significantly from the remaining populations in at least one character. Most populations differ in shell size (tabs 4-7) and proportions (tabs 8-9), and in the number of whorls (tab.10). Characters showing statistically significant inter-population differences are summarized in table 11. Some pairs of populations differ in all or nearly all the parameters examined, e.g. those from Muszkowice, Parzynów and Błądziszki. Likewise, populations from Chełm and Staw differ from the remaining ones in such characters as shell height, body whorl height or height/breadth ratio.

The least variable characters are: aperture height and breadth, relative height of body whorl and umbilicus relative diameter.

The similarity dendrogram (fig. 2), based on mean values of all the studied characters, confirms the results presented in table 12. Populations from Muszkowice, Parzynów and Błądziszki distinctly depart from the remaining ones. Shells from the first two populations differ most of all in higher values of shell height and breadth (mean values of these characters for specimens from Muszkowice and Parzynów amount to 5.1 and 7.6 mm, and 5.2 and 8.1 mm, respectively). Their height/breadth ratio and relative height of body whorl are also higher. Besides, shells from Muszkowice are characterized by ca. twice narrower umbilicus, while those from Błądziszki are smaller than the shells from the remaining populations (height, breadth and diameter). Figs 3-8 represent shells of specimens from those populations, and a representative of a "typical" population.

None of the studied characters is correlated with latitude; some are correlated with longitude (tab. 12). This pertains to shell height, body whorl height and aperture breadth. Shell proportions, expressed as height/breadth ratio, change depending on longitude - the more eastwards the locality is situated, the more flat the shell (fig.9).

Table 12. Shell parameters correlated with longitude

parameter	equation	r	df	P
shell height	y=56.197-0.562x	-0.0495	19	0.023
body whorl height	y=44.882-0.431x	-0.4402	19	0.045
aperture breadth	y=42.740-0.386x	-0.4684	19	0.030
height/breadth ratio	y=0.732-0.005x	-0.6117	19	0.003

Analysis of the way of growth of *T. hispida*, consisting in calculating correlation between the number of whorls and the coefficients, describing shell propotions indicates, that the growth of juvenile snails is allometric only in some populations (Błądziszki, Muszkowice, Oława, Gliwice, Węgierki), whereas in others it is isometric. The results are summarized in table 13. Figure 10 represents changes in the height/breadth ratio, depending on the number of whorls, in one of such populations. In some populations the relative height of body whorl is correlated with the number of whorls (fig. 11); the same is true of the umbilicus relative diameter (fig. 12).

Table 13. Allometric growth of various shells parameters, depending on the number of whorls

population	parameter	equation	r	df	P
Błądziszki	h/b r.	y=0.427+0.036x	0.306	62	0.014
Gliwice	h/b r.	y=0.498+0.021x	0.237	138	0.005
Muszkowice	h/b r.	y=0.215+0.092x	0.522	37	0.001
Oława	h/b r.	y=0.539+0.018x	0.178	187	0.014
Węgierki	h/b r.	y=0.403+0.049x	0.357	84	0.001

population	parameter	equation	r	df	P
Chełm	u.r.d.	y=0.004+0.048x	0.503	26	0.006
Gliwice	u.r.d.	y=0.033+0.034x	0.540	138	0.001
Goldap2	u.r.d.	y=0.040+0.036x	0.330	38	0.037
Jarocin2	u.r.d.	y=0.065+0.034x	0.543	94	0.001
Rąbczyn	u.r.d.	y=-0.098+0.066x	0.757	17	0.001
Staw	u.r.d.	y=0.144+0.021x	0.252	60	0.05
Błądziszki	r.h.b.w.	y=1.035-0.484x	-0.331	62	0.007
Chyby	r.h.b.w.	y=1.092-0.056x	-0.540	16	0.021
Jarocin1	r.h.b.w.	y=1.016-0.040x	-0.439	44	0.002
Jarocin2	r.h.b.w.	y=1.038-0.047x	-0.463	94	0.001
Oława	r.h.b.w.	y=0.933-0.023x	-0.229	187	0.001
Parzynów	r.h.b.w.	y=1.075-0.056x	-0.644	22	0.001
Poznań	r.h.b.w.	y=1.122-0.061x	-0.624	11	0.02
Rąbczyn	r.h.b.w.	y=1.201-0.076x	-0.508	17	0.026
Staw	r.h.b.w.	y=1.064-0.046x	-0.428	60	0.001
Stęszew	r.h.b.w.	y=1.063-0.049x	-0.648	53	0.001
Węgierki	r.h.b.w.	y=1.142-0.068x	-0.500	84	0.001

h/b r.-height/breadth ratio, u.r.d.-umbilicus relative diameter, r.h.b.w.-relative height of body whorl

When analysing the degree of "hairiness", it can be seen that they hairs are lost with age. Shells of three populations were divided in three age classes, and the percentage of "hairy" shells was as follws:

Staw: juevnile - 100%, subadult - 72.1%, adult - 47.7% Oława: juvenile - 93.1%, subadult - 69%, adult - 14.3% Gliwice: juvenile - 80%, subadult - 63.8%, adult - 11.1%.

DISCUSSION

Forcart (1965) pointed out the difficulties involved in identification of a group of closely related species of the subgenus Trichia s. str.: T. hispida (L.), T. concinna (Jeffreys), T. plebeia (Draparnaud), T. suberecta (Clessin), T. striolata (Hartmann) and T. caelata (Studer). Riedel (1988) listed 7 species of Trichia from Poland, two of which belong to that group. Of these, T. plebeia has few localities in the Sudetes (Riedel 1988), and distinguishing it from T. hispida is not very difficult (Forcart 1965). T. concinna, whose occurrence in Poland is doubtful (Riedel 1988) and the shell variability range poorly studied, was listed by Forcart (1965) from two localities near Warsaw and Bydgoszcz. According to that author it differs from T. hispida in a more flattened shell with wider umblicus and twice shorter penial flagellum. Shielyko (1978) presented a description and figure of the reproductive

system of *T. concinna*, based on 7 examined specimens from two populations in the former Czechoslovakia. Both the description and figure correspond to the characters of *T. hispida*, but the shell according to that author is flattened, and the umblicus wide.

A wide distribution of T. hispida and the fact that the species inhabits a variety of habitats, suggest a possibility of considerable individual and inter-population variability. Such a variation of the shell size and proportions was actually observed (cf. tabs 1-3). This may result partly from the degree of isolation of particular populations. There were no systematic studies on the areas occupied by snail populations; on the other hand T. hispida, though common, occurs very locally (own, unpublished observations). No doubt some of the observed differences between populations may have ecological reasons (direct effect of habitat factors), but the habitat data are too incomplete to correlate them with shell variation.

Snails from some of the studied populations have flattened shells with a broad umbilicus (Goldap1, Goldap2, Staw, Chełm, Poznań) which might correspond to the description of T. concinna given by Forcart (1965) and Shileyko (1978). The first four of these populations, in which the characetrs mentioned were the strongest expressed, come from the eastern fringes of Poland - an area situated outside the distribution range of T. concinna (Forcart 1965). All the anatomically examined specimens from such populations (a total of 35 specimens from 2 populations) had penes provided with long flagella. With respect to other characters of the reproductive system they did not depart from the snails which in their shell morphology corresponded to the description of T. hispida. On the other hand, the shell variability range in T. concinna is unknown. Forcart (1965) did not list the number of specimens at his disposal, but in his shell description he did not consider any variation.

Shells of *T. hispida* from some localities are strongly flattened, thus resembling those of *T. concinna*. The structure of the reproductive system of the specimens described by Shilleyko (1978) as *T. concinna* did not depart from such a structure in *T. hispida*, and the specimens dissected by that author came from an area where both species are likely to occur (Forcart 1965). These facts indicate that Shilleyko (1978) could actually deal with specimens of *T. hispida* of strongly flattened shells. The problem of diagnostic characters, variability and distribution borders of both those species requires a more detailed study.

Shell characters in *T. hispida* that display the lowest inter- and intrapopulation variability are: aperture height and breadth, realtive height of body whorl, and umbilicus realtive diameter (cf. tabs 5, 8a, 9a). The shell shape is rather constant, except for the three populations which distinctly depart from the "typical" pattern (cf. figs 3-8). Considering the shell variability in *T. hispida* on the one hand, and its similarity to *T. concinna* on the other (FORCART 1965), it appears that at least until shell variability in *T. concinna* is studied in detail, the only character enabling the identification of both those species will be the structure of their male genitalia.

None of the studied characters is correlated with latitude. The correlation of shell proportions with longitude indicates a geographic trend. A similar dependence was found by PAUL (1975) for populations of *Columella edentula* from the British Isles;

however, he found no correlation with any habitat factor. The only factor that changes gradually with longitude in Poland is an eastwards increasing aridisation (Starkel 1991). The problem requires further studies, which would include populations from the entire distribution area.

Allometric growth was previously studied only in a few species, and only those in which juvenile shells distinctly differ in their proportions from the adults. Growth regression equations were calculated for three species of Columella (Pokryszko 1987) and for Carychium tridentatum (Bulman 1990). Shell proportions in juvenile and adult T. hispida do not differ in any obvious manner, but in some populations they actually change with growth (cf. tab. 13 and figs 10-12). The most often found dependence in the studied populations was a negative correlation between the relative height of body whorl and the number of whorls. At the same time it was the strongest correlation (the highest values of Pearson's coefficient, cf. tab.13). Such a change in the shell proportions with growth means that in adult shells the spire is more elevated, compared with specimens from populations displaying an isometric growth. It was observed in 11 of the studied populations (Błądziszki, Chyby, Jarocin 1, Jarocin 2, Oława, Parzynów, Poznań, Rabczyn, Staw, Stęszew and Węgierki). Nine of them come from the western part of Poland. Such a change in shell proportions is compatible with the above presented negative correlation between the longitude and the height/beradth ratio (cf. fig.9). At the same time I found no correlation between the longitude and the number of whorls; the mean whorl number in the eastern and western populations is very similar. On this basis it could be conjectured that the higher values of the height/breadth ratio (more elevated spire), observed in the adult shells from western populations, result from their allometric growth.

Variation in the shell "hairiness" was studied in three of the populations. It is known that the hairs are progressively lost with age (e.g. Urbanski 1957, Forcart 1965), but systematic studies on the problem are lacking. The three populations studied in this respect differ considerably. In two of them (Oława, Gliwice) almost all the adult specimens, a considerable proportion of subadults and a part of juveniles were devoid of hairs. In the third one (Staw) nearly 50% adults and all the juveniles were hairy. This indicates that besides the age, the degree of "hairiness" depends also on some other factor(s).

ACKNOWNLEDGMENTS

I wish to express my sincere gratitude to Dr. Beata M. Pokryszko, Museum of Natural History, Wrocław University for the help, encouragment and translating the text into English. I am also grateful to Mr Tomasz Kokurewicz, M. Sc. for his help with statistical analysis.

REFERENCES

Bulman, K., 1990. Life history of Carychium tridentatum (Risso, 1826) (Gastropoda: Pulmonata: Ellobiidae) in the laboratory. J. Conch. London, 33: 321-333.

- EHRMANN, P., 1933. Mollusken (Weichtiere). W: Die Tierwelt Mitteleuropas, II, 1. Leipzig, 264 pp. Forcart, L., 1965. New researches on *Trichia hispida* (Linnaeus) and related forms. Proc. First Europ. Malac. Congr., London: 79-93.
- PAUL, C. R. C., 1975, Columella in the British Isles, J. Conch. London, 6: 371-383.
- Pokryszko, B. M. 1987. European Columella reconsidered (Gastropoda: Pulmonata: Vertiginidae). Malakol. Abh. Dresden, 12: 133-257.
- Poliński, W., 1918. Rozsiedlenie geograficzne Helicidów w Polsce. Prz. Geogr., Warszawa, 1: 269-280.
- POLINSKI, W., 1924. Anatomisch systematische und zoogeographische Studien über die Heliciden Polens. Bull. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat., B, Cracovie, 1924: 131-279.
- Riedel, A., 1988. Ślimaki lądowe (Gastropoda terrestria). Katalog Fauny Polski (Catalogus faunae Poloniae), Warszawa, 316 pp.
- SHILEYKO, A.A., 1978. Naziemnyje molljuski nadsemejstva Helicoidea. Fauna SSSR, N.S., 117, Molljuski III, 6. Leningrad, 384 pp.
- STARKEL, L., 1991. Geografia Polski. Środowisko przyrodnicze. Wydawnictwo Naukowe PWN, Warszawa, 670 pp.
- Wiktor, J., Wiktor, A., 1968. Charakterystyka fauny mięczaków polskiej części Karkonoszy ze szczególnym uwzględnieniem Karkonoskiego Parku Narodowego. Ochr. Przyr., Kraków, 33: 193-214.