Apprentissage Artificiel Logistic Regression

Ewa Kijak

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel

Outline

Introduction

Principle

Learning by optimization

Going further

Apprentissage Artificiel

Sommaire

Introduction

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel

Logistic regression is classification

- ► Logistic regression ≠ Linear regression
- ▶ Logistic regression is a Generalized Linear Model (GLM)

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel

Introduction

Univariate linear regression

Example : Housing Prices

- ► m = Number of training examples
- $x^{(i)} = "input" variable / features of the$ *i*-th example
- $y^{(i)} =$ "output" variable / "target" variable of the *i*-th example

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	

Introductive examples borrowed from Andrew Ng

ESIR/Univ. Rennes ESIR2-IN/SI Apprentissage Artificiel

Univariate linear regression

- ► Supervised learning : Give the "right answer" for each example in the data.
- Regression problem : Predict real-valued output
- $\neq \textbf{Classification problem}: \mathsf{Discrete}\text{-}\mathsf{valued} \ \mathsf{output}$

Introducti

Univariate linear regression

ightharpoonup Univariate linear regression = Linear regression with one variable (x).

• Hypothesis : $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters : θ_0, θ_1

How to choose θ_i ?

ESIR2-IN/SI

Apprentissage Artificiel

Univariate linear regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Apprentissage Artificiel

Univariate linear regression

Idea : Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for the training examples $(x^{(i)},y^{(i)})$

Cost function :

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

► Goal :

minimize $J(\theta_0, \theta_1)$

ESIR/Univ. Rennes

Apprentissage Artificiel

Univariate linear regression

Simplified case (example) : $h_{\theta}(x) = \theta_1 x$

Apprentissage Artificiel

-Introduction

Multivariate linear regression

- ► Multivariate linear regression = Linear regression with multiple features (x_i) .
 - ightharpoonup d = number of features
 - $x^{(i)} = \text{"input" variable / features of the } i\text{-th example}$
 - $x_i^{(i)}$ = value of feature j in the i-th example

Example: Housing Prices

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

ESIR/Univ. Rennes ESIR2-IN/SI Apprentissage Artificiel

Multivariate linear regression

- ► Hypothesis : $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_d x_d$
- ▶ For convenience of notation, we define $x_0 = 1$.

- $\mathbf{x} = [x_0, x_1, x_2, \cdots, x_d]^T \in \mathbb{R}^{d+1}$
- $\bullet = [\theta_0, \theta_1, \theta_2, \cdots, \theta_d]^T \in \mathbb{R}^{d+1}$

$$h_{\theta}(\mathbf{x}) = \mathbf{\theta}^{\mathsf{T}} \mathbf{x}$$

ESIR/Univ. Rennes

Sommaire

Principle

ESIR2-IN/SI

Apprentissage Artificiel

Logistic regression

- Linear classification model
- ▶ Let $\mathbf{x} \in \mathbb{R}^d$
- Linear predictor :

$$I = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

▶ For convenience of notation, we define $x_0 = 1$ (then $\mathbf{x} \in \mathbb{R}^{d+1}$) :

$$I = \boldsymbol{\theta}^T \mathbf{x}$$

where $m{ heta}^T = [heta_0, heta_1, \cdots, heta_d] \in \mathbb{R}^{d+1}$ are the parameters of the model

▶ Binary classification task : $y \in \{0, 1\}$

Apprentissage Artificiel

Logistic regression model

► Hypothesis : $h_{\theta}(\mathbf{x}) = \mathbf{g}(\mathbf{\theta}^T \mathbf{x})$

with
$$g(z) = \frac{1}{1 + \exp(-z)}$$

$$h_{\theta}(\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{T} \mathbf{x})}$$

$$0 \leq h_{\theta}(\mathbf{x}) \leq 1$$

Sigmoid function = Logistic function

Apprentissage Artificiel

Interpretation of hypothesis output

 $h_{\theta}(\mathbf{x}) = \text{estimated probability that y=1, given } \mathbf{x}, \text{ parametrized by } \boldsymbol{\theta}$

$$h_{\theta}(\mathbf{x}) = P(\mathbf{y} = 1 | \mathbf{x}, \mathbf{\theta}) = \frac{1}{1 + \exp(-\mathbf{\theta}^T \mathbf{x})},$$

which implies that :

$$P(y = 0|\mathbf{x}, \boldsymbol{\theta}) = 1 - P(y = 1|\mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x})}$$

Decision boundary

- ▶ if $h_{\theta}(\mathbf{x}) \geq 0.5$, predict "y=1"
- ▶ if $h_{\theta}(x) < 0.5$, predict "y=0"

Because $g(Z) \ge 0.5$ when $z \ge 0$,

 $y = 1 \Leftrightarrow \boldsymbol{\theta}^T \mathbf{x} \geq 0$

∟ Principle

Decision boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\mbox{Predict "$y=1$" if $-3+x_1+x_2\geq 0$}$$

▶ if
$$x_1 + x_2 \ge 3$$
, predict "y=1"

• if
$$x_1 + x_2 < 3$$
, predict "y=0"

How to choose parameters θ ?

ESIR/Univ. Rennes ESIR2-IN/SI Apprentissage Artificiel

Learning by optimization

Sommaire

Learning by optimization

ESIR2-IN/SI

Learning by optimization

Find parameters heta

Minimization of a cost function

► We could define :

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \mathsf{loss}(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)})$$

with:

$$\mathsf{loss}(h_{\theta}(\mathbf{x}), y) = \frac{1}{2}(h_{\theta}(\mathbf{x}) - y)^{2}$$

- ▶ But : $J(\theta)$ non-convex function of the parameters θ ! (because $h_{\theta}(x)$ non-linear function)
- Solution: change the cost function to a convex one.

ESIR2-IN/SI

Apprentissage Artificiel Learning by optimization

Convexity

- Convex functions: can be solved quickly and reliably up to very large
 - e.g. gradient descent, Lagrange method

ESIR/Univ. Rennes ESIR2-IN/SI

Apprentissage Artificiel

Learning by optimization

Find parameters $oldsymbol{ heta}$

$$\operatorname{loss}(h_{\theta}(\boldsymbol{x}), y) = \left\{ \begin{array}{cc} -\log(h_{\theta}(\boldsymbol{x})) & \text{if} \quad y = 1 \\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if} \quad y = 0 \end{array} \right.$$

▶ If $h_{\theta}(\mathbf{x}) = P(y = 1 | \mathbf{x}, \boldsymbol{\theta}) = 0$, but y = 1, the learning algorithm will be penalized with a very large cost

Apprentissage Artificiel
Learning by optimization

Logistic regression cost function

To fit parameters $oldsymbol{ heta}$: $\min_{ heta} J(oldsymbol{ heta})$

$$\begin{split} J(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \mathsf{loss}(h_{\theta}(\pmb{x}^{(i)}), y^{(i)}) \\ &= -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(\pmb{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\pmb{x}^{(i)})) \end{split}$$

The cost function is:

- convex
- derived from maximum likelihood estimation
- also called cross-entropy error function

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel

Learning by optimization

Logistic regression cost function

$$\min_{\theta} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(\mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathbf{x}^{(i)}))$$

Solution: gradient descent

ightharpoonup simultaneously update all θ_i

ESIR/Univ. Rennes ESIR2-IN/SI Apprentissage Artificiel

Sommaire

Going further

ESIR/Univ. Rennes ESIR2-IN/SI Apprentissage Artificiel Going further

Going further

- Gradient descent parameters and properties
- Underfitting and adding features to get non linear classifier
- Overfitting and regularization
- Multinomial logistic regression

Apprentissage Artificiel Going further

Basis expansion

1

- ▶ Data is likely to be non-linearly separable
- What if we still wanted to use a linear regression?
- ► How to marry non-linear data to a linear method?

The trick is to transform the data: Map the data onto another features space, such that the data is linear in that space.

→ Including higher order terms increases the capacity/complexity of the model: it allows to learn decision boundaries that would be unreachable using simply the original features. This is because a linear decision boundary (which is what logistic regression fits) learned on nonlinear transformations of features will ultimately be nonlinear in terms of the original features.

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel

Apprentissage Artificiel

Problem of underfitting/overfitting

is too simple or uses too few features.

Basis expansion

2

- ▶ Denote this transformation $\varphi : \mathbb{R}^d \to \mathbb{R}^n$.
- ▶ If x is the original set of features $\varphi(x)$ denotes the new set of features

High bias or underfitting is when the form of our hypothesis maps poorly to the trend of the data. It is usually caused by a function that

At the other extreme, overfitting or high variance is caused by a

hypothesis function that fits the available data but does not generalize well to predict new data. It is usually caused by a complicated function that creates a lot of unnecessary curves and angles unrelated to the

Example: Polynomial regression

- suppose there is just one feature x.
- define $\varphi: \mathbb{R} \to \mathbb{R}^2$ such that $\varphi_1(x) = x$ and $\varphi_2(x) = x^2$
- ► the linear predictor becomes

 $\theta^T \varphi(x) = \theta_0 + \theta_1 \varphi_1(x) + \theta_2 \varphi_2(x) = \theta_0 + \theta_1 x + \theta_2 x^2$

More generally, a polynomial basis is the set of attributes that are powers of **x**.

Apprentissage Artificiel

Going further

Basis expansion

3

- Data transformation, also known as basis expansion, is a general
- There are many possible choices of $\boldsymbol{\varphi}$

Example 2: Radial basis function

A radial basis function is a function of the form $\varphi(x) = \Phi(||x - z||)$ where z is a constant

• e.g.
$$\varphi(\mathbf{x}) = ||\mathbf{x} - \mathbf{z}||$$
 or $\varphi(\mathbf{x}) = \exp(-\frac{1}{\sigma} ||\mathbf{x} - \mathbf{z}||^2)$

Apprentissage Artificiel Going furthe

Basis expansion

4

- Basis expansion can significantly increase the utility of methods, especially, linear methods
- In the above examples, one limitation is that the transformation needs to be defined beforehand
- ightharpoonup One idea is to *learn* the transformation φ from data (e.g., Artificial Neural Networks)
- ▶ Another powerful extension is the use of the *kernel trick* (e.g. SVM)

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel Going further

Regularization

Problem of underfitting/overfitting

There are two main options to address the issue of overfitting:

- 1. Reduce the number of features.
 - Manually select which features to keep.
 - Use a model selection algorithm.
- 2. Regularization
 - Keep all the features, but reduce the parameters.

ESIR2-IN/SI

Apprentissage Artificiel Going furthe

Regularized logistic regression

1

The principle of regularization is to limit the overfitting by simultaneously controlling the model error on the learning set and the values of the model coefficients.

Intuition

Controlling these coefficients is a way to control the complexity of the

This control consists in constraining the coefficients to belong to a subset of \mathbb{R}^{d+1} rather than being able to take any value in this space. This restricts the set of possible solutions.

Regularization works well when we have a lot of slightly useful features.

ESIR2-IN/SI

Apprentissage Artificiel Going further

Regularized logistic regression

2

Cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathsf{loss}(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)}) + \frac{\lambda}{\lambda} \mathsf{reg}(\theta)$$

- $loss(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)}) = y^{(i)} log(h_{\theta}(\mathbf{x}^{(i)})) + (1 y^{(i)}) log(1 h_{\theta}(\mathbf{x}^{(i)}))$ for logistic regression.
- $ightharpoonup \lambda$ is the regularization parameter
 - $ightharpoonup \operatorname{reg}(heta)$ is a constraint term on the model coefficients heta
 - λ is an **hyperparameter** of the logistic regression.
 - If λ is chosen to too large, it may smooth out the function too much and cause underfitting.

ESIR/Univ. Rennes

ESIR2-IN/SI

Apprentissage Artificiel

Regularized logistic regression

3

Ridge regularization (clustering)

$$\mathsf{reg}_r(oldsymbol{ heta}) = \parallel oldsymbol{ heta} \parallel_2^2 = \sum_{j=1}^d heta_j^2$$

- $ightharpoonup \sum_{j=1}^d \theta_j^2$ excludes the bias term θ_0
- ightharpoonup ridge regression uses the l_2 norm of $oldsymbol{ heta}$ as a regularizer
- it has a clustering effect on correlated variables, as correlated variables will have similar coefficients
- it is a convex optimization problem (quadratic form) that always admits an explicit (analytical) single solution

ESIR2-IN/SI

Apprentissage Artificie

Going further

Regularized logistic regression

4

Lasso regularization (sparsity)

$$\operatorname{\mathsf{reg}}_l(oldsymbol{ heta}) = \parallel oldsymbol{ heta} \parallel_1 = \sum_{i=1}^d \mid heta_i \mid$$

- $ightharpoonup \sum_{j=1}^{d} |\theta_j|$ excludes the bias term θ_0
- ▶ lasso regression uses the l_1 norm of θ as a regularizer
- it acts as feature selection as it creates a sparse model : some coefficients will be null, leading the corresponding variables to be removed from the model
- it has nor analytical solution, neither always a unique solution, gradient descent should be used.

ESIR/Univ. Rennes

Apprentissage Artificiel

Going furthe

Regularized logistic regression

5

Elastic Net regularization

regularizer

$$\mathsf{reg}_{el}(\boldsymbol{\theta}) = ((1 - \alpha) \parallel \boldsymbol{\theta} \parallel_2^2 + \alpha \parallel \boldsymbol{\theta} \parallel_1)$$

- \blacktriangleright elastic net regression combines both the l_1 and l_2 norm of θ in the
 - $ightharpoonup I_1$ norm allows to obtain a more easily interpretable model
 - while l2 norm avoids the overfitting
- ▶ it is parametrized by $\alpha \in [0,1]$

ESIR/Univ. Rennes ESIR2-IN/SI

prentissage Artificie Going further

Higher level view

Logistic regression is a specific type of Generalized Linear Models (GLM).

- with binomial conditional distribution of the response (Y)
- parameter p = P(Y = 1|X = x)
- linear predictor $\theta^T X$
- the **logit** function is used to map the linear predictor $\theta^T X$ to a

$$\mathsf{logit}(\mathsf{p}) = \mathsf{log}\left[\frac{p}{1-p}\right] = \boldsymbol{\theta}^T X \Leftrightarrow p = \frac{1}{1+e^{-\boldsymbol{\theta}^T X}}$$

Because logistic regression predicts probabilities, it can be fitted using likelihood.

ESIR2-IN/SI

oprentissage Artificiel -Going further

Multinomial logistic regression

- generalizes logistic regression to multiclass problems
- generalization of the logistic sigmoid: normalized exponential, softmax function

$$P(Y = k | \mathbf{x}; \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta}_k^{\top} \mathbf{x})}{\sum_{c=1}^{C} \exp(\boldsymbol{\theta}_c^{\top} \mathbf{x})}$$

also known as : multiclass LR, softmax regression, multinomial logit, maximum entropy (MaxEnt) classifier, conditional maximum entropy

ESIR2-IN/SI

Apprentissage Artificiel

Going further

Terminology

Loss function

 $\mathcal{L}(y, h_{\theta}(x))$ computes the error for a single training example

▶ example : 0/1 loss, hinge loss, cross-entropy loss, exponential loss

Cost function

usually more general: average of the loss function over the entire training set (empirical risk)

$$C(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y^{(i)}, h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}))$$

Objective function

- Most general term for any function optimized during the training
- weighted sum of cost function and regularization

Apprentissage Artificiel

Maximum likelihood estimation

Logistic regression assumes a Bernoulli distribution defined as:

$$P(Y = 1) = p \text{ and } P(Y = 0) = 1 - p; \text{ with } p \in [0, 1]$$

equivalently:

$$P(Y = y) = p^{y}(1-p)^{(1-y)}$$
; for $y \in \{0, 1\}$

For the logistic regression model:

$$p = h_{\theta}(\mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$$

Assuming independence of examples in the training set, the likelihood is :

$$L(\theta) = P(y^{(1)}, y^{(2)}, \dots, y^{(m)} | \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}) = \prod_{i=1}^{m} P(y^{(i)} | \mathbf{x}^{(i)})$$

Apprentissage Artificie Going further

Maximum likelihood estimation

$$L(\theta) = \prod_{i=1}^{m} P(y^{(i)}|\mathbf{x}^{(i)})$$
$$= \prod_{i=1}^{m} p^{y^{(i)}} (1-p)^{(1-y^{(i)})}$$

"Log trick": Instead of maximizing the likelihood, maximise its logarithm (log-likelihood)

$$\log L(\theta) = \log(\prod_{i=1}^{m} P(y^{(i)}|\mathbf{x}^{(i)})) = \sum_{i=1}^{m} \log(P(y^{(i)}|\mathbf{x}^{(i)}))$$
$$= \sum_{i=1}^{m} y^{(i)} \log(p) + (1 - y^{(i)}) \log(1 - p)$$

ESIR/Univ. Rennes

Going further

Cross-entropy

The negative log-likelihood for a single data point is the cross-entropy :

$$-\log(P(y|x)) = -y\log(p) - (1-y)\log(1-p) = H(y,p)$$

Maximise the log-likelihood ⇔ Minimise the binary cross-entropy

same formula, but two different interpretations

Exercice - Calcul du gradient

Compute the gradient of the loss fonction (log-likelihood) for a given example $\mathbf{x} \in \mathbb{R}^n$:

$$L(\theta) = L(\theta_0, \theta_1, \cdots, \theta_n) = y \log(p) + (1 - y) \log(1 - p)$$

with
$$p = h_{ heta}(\mathbf{x}) = \frac{1}{1 + \exp(-oldsymbol{ heta}^{ au}\mathbf{x})}$$

and show that :

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = [y - h_{\boldsymbol{\theta}}(\boldsymbol{x})] \boldsymbol{x}$$

ESIR/Univ. Rennes

ESIR2-IN/SI

43 / 43