International Stude

From 9th Jan, you must log class attendance via the SafeZone app to be visa compliant.

How do I use it?

- 1. Download the SafeZone app
- 2. Sign in with your student email address
- 3. Grant location and battery optimization permissions when prompted
- 4. Tap 'Check In' at the start of each class (If the app has not checked you out after your last class, tap 'Check Out' and then 'Check In').
- 5. Do this any time you attend an on-campus class. This could be a lecture, lab, seminar, tutorial, etc.

Revision of introduction to epidemiology

Professor David A McAllister

Aim

To review the epidemiological concepts covered in previous courses

BASIC EPIDEMIOLOGICAL TERMS

Mortality rates

- Am I worried?
 - 50 people died from flu
 - 50 people in Glasgow died from flu
 - 50 people in Glasgow died from flu in past 100 years
- Meaningful statistics need
 - A denominator population
 - A time frame

Scotland's population 2013

Other denominators

- Health board
- City
- Hospital
- Disease register
- Recruited to a study

THE DENOMINATOR MUST CORRESPOND TO THE NUMERATOR

Two sorts of time

- Person-time
 - 10 deaths per 10,000 person years
 - 10,000 people for 1 year
 - 5,000 people for 2 years
 - 2,000 people for 5 years
- n-year follow-up
 - 5-year mortality of 10 per 10,000 people
- Without denominator population and time death rates are meaningless

Incidence

- Number of new cases
 - person-time, eg 5 per 10,000 person years
 - n years of follow-up, 10-year cancer incidence rate is 1 per 10,000

Prevalence

- Proportion of population that has disease
 - at a specified time, eg 1% of population had COPD in 2010
 - over a specified period, eg lifetime prevalence of dementia 40%

Compare/contrast

Prevalence

- A proportion
- Useful for planning services
- Depends partly on incidence

Incidence

- A rate or a proportion
- Useful for identifying causes of diseases
- Occurs, by definition, only in people without the disease

How incidence relates to prevalence

Example - heart failure

ASSOCIATIONS BETWEEN EXPOSURES AND OUTCOMES

Outcomes

- Outcomes
 - death
 - hospitalisation
 - first diagnosis with a disease
 - recurrence, eg cancer
 - quality of life
 - surrogates blood pressure, lung function

Exposures

- Non-modifiable
 - age, sex, genotype
- Modifiable
 - smoking, weight, diet, alcohol consumption
- Interventions a special kind of exposure
 - drug therapy
 - surgery
 - lifestyle advice

Association

- a and b are associated when a and b are not independent
 - P(a|b) = P(a)
 - -P(b|a) = P(b)
- Knowing something about a tells you nothing about b
- Knowing something about b tells you nothing about a

Effect estimates

	Died	N	Proportion
Thrombolysis	100	1000	10%
No thrombolysis	130	1000	13%

$$RR = \frac{risk_{exposed}}{risk_{unexposed}}$$

$$ARR = risk_{unexposed} - risk_{exposed}$$

Measure	Result
Risk ratio (RR)	=10/13 = 0.77
Relative risk reduction (RRR)	100 x (1-0.77) = 23%
Risk difference (absolute risk reduction – ARR)	= 13-10 = 3%
Number needed to treat (NNT)	= 1/0.03 = 33

$$RRR = 100 \times (1 - RR)$$

$$NNT = \frac{1}{ARR}$$

Other commonly encountered measures

- Odds ratio commonly used estimate of risk ratio
- Rate ratio ratio between two mortality rates, hospitalisation rates etc
- Hazard ratio a special kind of rate ratio

CONFIDENCE INTERVALS

Confidence intervals

- Vital to reading <u>ANY</u>! research paper
- Formal definitions are counterintuitive
- Pragmatically
 - "A confidence interval can be thought of as a range of plausible values"
 - Values near the limits are much less plausible than those in the middle

EXAMPLE – AS IN TABLE EFFECT ESTIMATES - THROMBOLYSIS

95% CI represented visually

Relative risk

Relative risk reduction

Risk difference (absolute risk reduction)

Number needed to treat (NNT)

Confidence intervals

- Can be presented for any statistic/effect measure
- Represents range of plausible values
- More extreme values less likely
- Very useful in appraising published research

DESCRIPTIVE EPIDEMIOLOGY

Crude mortality

State	Deaths in 2013	Population in 2013	Crude annual mortality
New York City	48,000	8,000,000	6 per 1,000
Florida	19,000	19,000,000	10 per 1000
		Rate ratio	1.67

Standardised mortality ratio (SMR)

State	Deaths	Expected deaths	SMR
New York City	48,000	50,000	96
Florida	19,000	22,000	86

- Calculate expected deaths based on
 - age-sex specific mortality rates in whole of US
 - age and sex of people in NY and Florida
- Both places have lower than expected mortality
- New York has a higher SMR than Florida

CONFOUNDING

NY vs Florida was an example of confounding

- True relationship confused by a third factor
- Can deal with confounding
 - study design
 - data analysis eg via standardisation

Bias

- Systematic error in
 - what data are collected
 - how data are collected
 - how data are analysed
 - how data are interpreted
 - how data are reported
- Bias leads to wrong conclusions about
 - disease causation
 - treatment effectiveness

Bias - examples

- Systematic error in
 - what data are collected novel treatments
 - how data are collected different follow-up
 - how data are analysed misconduct
 - how data are interpreted highlight certain findings
 - how data are reported publication bias
- Causes wrong conclusions about
 - disease causation
 - treatment effectiveness

Empirical assessment of effect of publication bias on meta-analyses BMJ 2000;320:1574

DIFFERENT TYPES OF STUDY ARE MORE/LESS PRONE TO CONFOUNDING AND BIAS

Hierarchy of evidence

Case-control study

- Select CASES with a disease eg lung cancer
- Select CONTROLS without that disease
- Find our what EXPOSURES the cases and controls had eg smoking
- Compare exposures in cases and controls
- Identify if association

Cohort study

- Select people without a disease (eg heart disease)
- Classify them according to an exposure eg
 - high cholesterol
 - low cholesterol
- Follow-them, eg for 10 years
- Compare RISK of disease in exposed and unexposed

Randomised controlled trial (RCT)

- Like cohort study, except
- ALLOCATE PEOPLE TO INTERVENTION
 - cohort study 'observe exposure'
 - randomised controlled trial 'allocate intervention'
- Compare RISK of outcome in treatment and control groups

Cross-sectional study

- Sample a population
- Estimate the proportion of people with
 - different exposures (eg smoking, alcohol consumption, income)
 - different symptoms (eg breathlessness, cough)
 - different diseases (eg angina)
- Use these data
 - to describe disease burden
 - to explore associations

Hierarchy of evidence

Topics covered

- Basic epidemiological terms
- Confidence intervals
- Confounding
- Bias
- Case-control and cohort studies
- The hierarchy of evidence

Questions?