Оглавление

1	Век	торные пространства	2
	1.1	Определение и примеры	2
	1.2	Линейные комбинации и линейная зависимость	2
	1.3	Порождающие системы	5
	1 4	Базис	5

Глава 1

Векторные пространства

1.1 Определение и примеры

Определение 1. K – поле, V – множество. Заданы опреации сложения на V ($V \times V \to V$) и умножения на скаляр ($V \times K \to V$)

Множество V называется веторным пространством над K, если выполнены следующие свойства:

- 1. V абелева группа по сложению
- 2. Дистрибутивность: $a(u+v)=au+av, \qquad \forall a\in K, \quad u,v\in V$
- 3. Дистрибутивность: $(a+b)u=au+bu, \qquad \forall a,b\in K, \quad u\in V$
- 4. Ассоциативность: a(bu) = (ab)u, $\forall a, b \in K$, $u \in U$
- 5. $1 \cdot u = u$, $1 \in K$, $\forall u \in U$

Элементы V называют векторами, элементы K – скалярами

Примеры.

- 1. Геометрические векторы на плоскости векторное пространство над $\mathbb R$
- 2. \mathbb{R}^n векторное пространство над \mathbb{R}
- 3. K^n , где K поле векторное пространство над K
- 4. $M_{m \times n}$ векторное пространство над \mathbb{R}
- 5. \mathbb{C} векторное пространство над \mathbb{R}
- 6. K[x] векторное пространство над K
- 7. Множество многочленов степени $\leq n$ векторное пространство над K

Свойства.

- 1. $0 \cdot u = \overrightarrow{0}$, $\forall u \in V$ Доказательство. $0 \cdot u = (0+0)u = 0 \cdot u + 0 \cdot u$ $0 = 0 \cdot u = 0 \cdot u + 0 \cdot u$ $0 = 0 \cdot u$
- $2. \ a \cdot \overrightarrow{0} = \overrightarrow{0}, \qquad \forall a \in K$
- 3. $a \cdot u = 0 \implies a = 0$ или $u = \overrightarrow{0}$

1.2 Линейные комбинации и линейная зависимость

Определение 2. Линейной комбинацией векторов $u_1, ..., u_k \in V$ называется вектор

$$a_1u_1 + \ldots + a_ku_k, \quad a_i \in K$$

 a_i – коэффициенты

Определение 3. Линейная комбинация называется тривиальной, если все коэффициенты равны нулю

Определение 4. Векторы u_i называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулю

Иначе – линейно независимые

Свойства.

1. (а) Векторы линейно зависимы 👄 один из векторов является ЛК остальных

Доказательство.

• <=

Пусть u_1 – ЛК, то есть $u_1=a_2u_2+\ldots+a_nu_n$ (-1) $u_1+a_2u_2+\ldots+a_nu_n=0$ – нетривиальная ЛК

 $\bullet \implies$

Пусть $a_1u_1 + ... + a_nu_n = 0$ – нетривиальная ЛК

Пусть $a_1 \neq 0$

$$a_1 = -\frac{a_2}{u_1}u_2 - \dots - \frac{a_n}{u_1}u_n$$

(b) Если $u_1, ..., u_n$ ЛНЗ, а $u_1, ..., u_n, v$ ЛЗ, то v является ЛК остальных

Доказательство. $u_1,...,u_n,v$ ЛЗ \iff $\exists a_1,...,a_n$ (не все нули) : $a_1u_1+...+a_nu_n+a_{n+1}v=0$

- Если $a_{n+1} \neq 0$, то можно выразить v
- Если $a_{n+1} = 0$, то:

Не все a_i равны $0, a_1u_1 + ... + a_nu_n = 0$ – нетривиальная. Противоречие

2. (а) Если к ЛЗ добавить несколько векторов, то она останется ЛЗ

(b) Если из ЛНЗ убрать несколько векторов, то она останется ЛНЗ

3. (a) $c \neq 0 \in K$. $u_1, ..., u_n$ ЛЗ $\iff cu_1, ..., cu_n$ ЛЗ

(b) $c \in K$

 $u_1, ..., u_n \exists \exists \iff u_1 + cu_2, u_2, ..., u_n \exists \exists$

Доказательство.

$$u_1' \coloneqq \begin{cases} cu_1 & (3\mathbf{a}) \\ u_1 + cu_2 & (3\mathbf{a}) \end{cases}$$

$$u_1 = \begin{cases} \frac{1}{c}u_1' & (3a) \\ u_1' + (-c)u_2 & (3a) \end{cases}$$

Набор $u_1,...,u_n$ получается из $u'_1,u_2,...,u_n$ преобразованием того же типа Достаточно доказать \Longrightarrow

(a) Пусть $a_1u_1 + ... + a_nu_n = 0$, не все a_i равны 0

$$\frac{a}{c}u_1' + a_2u_2 + ... + a_nu_n = 0$$
, не все коэфф. равны 0

(b) $a_1u_1 + a_2u_2 + ... + a_nu_n = 0$, не все a_i равны 0

$$a_1u_1' + (a_2 - ca_1)u_2 + \dots + a_nu_n = 0$$

$$a_1(u_1 + cu_2) + \dots$$

Пусть
$$a_1 = a_2 - ca_1 = a_3 = \dots = a_n = 0$$

Теорема 1 (линейная зависимость линейных комбинаций). Пусть k > m и векторы $v_1, v_2, ..., v_k$ являются ЛК векторов $u_1, ..., u_m$ Тогда $v_1, ..., v_k$ ЛЗ

Доказательство. Индукция по m

• База. m = 1

Есть вектор u_1 . Все остальные – его ЛК:

$$v_1 = a_1 u_1, \qquad v_2 = a_2 u_2, \dots$$

$$-a_1=0 \implies v_1=0, \qquad 1$$

$$-a_1 = 0 \implies v_1 = 0, \qquad 1 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3 + \dots = 0$$

$$-a_1 \neq 0$$

$$v_2 = a_2 u_1 = a_2 \cdot \frac{v_1}{a_1}$$

$$\frac{a_2}{a_1}v_1 + (-1)\cdot v_2 + 0\cdot v_3 + \dots = 0$$

• Переход. $m-1 \rightarrow m$

$$v_1 = a_{11}u_1 + a_{12}u_2 + \dots + a_{1m}u_m$$

$$v_k = a_{k1}u_! + a_{k2}u_2 + \ldots + a_{km}u_m$$

Исключим u_1 из всех векторов, кроме первого:

$$- a_{11} = a_{21} = \dots = a_{k1} = 0$$

Применяем индукционное предположение к $v_1,...,v_k$ и $u_2,...,u_m$

— Пусть не все a_{i1} равны нулю. НУО считаем, что $a_{i1} \neq 0$ При i>1 положим $v_i'=v_i-\frac{a_{i1}}{a_{11}}v_1$ Векторы $v_2',v_3',...,v_k'$ являются ЛК $u_2,u_3,...,u_m$

k - 1 > m - 1

По индукционному предположению, $v_2', ..., v_k'$ ЛЗ

Добавим к этому набору v_1 (пользуемся свойством 2a)

Воспользуемся свойством 3b:

 $v_1, v_2, ..., v_k$ ЛЗ

1.3 Порождающие системы

Определение 5. Пусть V – векторное пространство

Множество векторов $\{v_i\}$ называется порождающим для V, если любой вектор $v \in V$ является ЛК некоторого конечного подмножества $\{v_i\}$

Определение 6. Если у V есть конечная порождаяющая система, то V называется конечномерным Иначе — бесконечномерным

Свойство. Пусть V – конечномерное

Тогда в V не существует сколь угодно больших ЛНЗ систем

Другая формулировка. $\exists N : \forall k > N \quad \forall v_1, ..., v_k \in V \quad v_1, ..., v_k$ ЛЗ

Доказательство. Пусть $u_1,...,u_N$ — конечная порождающая система. По теореме о линейной зависимости линейных комбинаций $v_1,...,v_k$ ЛЗ

Теорема 2 (порождающие и ЛНЗ системы). Пусть V – конечномерное пространство

1. Пусть $u_1, ..., u_n$ — минимальная по включению порождающая система. Тогда она ЛНЗ

Доказательство. Пусть $u_1, ..., u_n - \Pi 3$

Тогда некоторый вектор – ЛК остальных. Пусть это u_n

$$u_n = c_1 u_1 + c_2 u_2 + \dots + c_{n-1} u_{n-1}$$

Докажем, что $u_1,...,u_{n-1},u_n$ — не минимальная, то есть, что $u_1,...,u_{n-1}$ — тоже порождающая Пусть $v\in V,$ $v=a_1u_1+...+a_{n-1}u_{n-1}+a_nu_n$

$$v = a_1 u_1 + \dots + a_n \left(c_1 u_1 + \dots \right) = (a_1 - a_n c_1) u_1 + \dots + (a_{n-1} + a_n c_{n-1}) u_{n-1}$$

 a Если из неё убрать вектор, она перестанет быть порождающей. Не обязательно минимальная по количеству векторов

2. Пусть $u_1, ..., u_n$ – максимальная по включению ЛНЗ. Тогда она порождающая

Доказательство. Пусть $v \in V$

 $u_1,...,u_n$ – ЛНЗ, $u_1,...,u_n,v$ – ЛЗ (т. к. u_i – минимальная) Применяем свойство 1b

1.4 Базис

Определение 7. Пусть V – конечномерное векторное пространство Система векторов называется базисом V, если она ЛНЗ и порождающая

Теорема 3 (равносильные определения базиса). Следующие утверждения равносильны:

- 1. $u_1, ..., u_n$ базис V
- 2. $u_1, ..., u_n$ максимальная по включению ЛНЗ
- 3. $u_1, ..., u_n$ минимальная по включению порождающая система
- 4. Любой вектор можно единственным образом представить в виде ЛК u_i