Heterogeneity, Uncertainty and Learning: Semiparametric Identification and Estimation

Jackson Bunting Paul Diegert Arnaud Maurel U. Washington

TSE

Duke U. and NBER

DSE Conference, UCL July 3, 2025

Motivation

- Panel data with continuous outcomes and discrete choices (Y_{it}, D_{it}) .
- \bullet (Y_{it}, D_{it}) depend on multidimensional (time invariant) latent variable, X_i^* .
- Some components of X_i^* initially unknown by the agents.
- Arises frequently in applications.
- E.g.: productivity partly unknown to workers when they enter the workforce.
- Workers update their beliefs about their productivity as they observe their wages.

Motivation

- Panel data with continuous outcomes and discrete choices (Y_{it}, D_{it}) .
- (Y_{it}, D_{it}) depend on multidimensional (time invariant) latent variable, X_i^* .
- Some components of X_i^* initially unknown by the agents.
- Arises frequently in applications.
- E.g.: productivity partly unknown to workers when they enter the workforce.
- Workers update their beliefs about their productivity as they observe their wages.

Motivation (Cont'd)

- Learning models are popular in economics, empirical micro in particular.
- Used in various fields, including Labor (Miller, 1984; Antonovics and Golan, 2012; Pastorino, 2024), Education (Arcidiacono, 2004; Stinebrickner and Stinebrickner, 2012; Arcidiacono et al., 2025); IO/Health (Ackerberg, 2003; Crawford and Shum, 2005; Aguirregabiria and Jeon, 2020).
- However, much remains to be known about identification.
- Standard to assume parametric outcome model (Gaussian), and specific learning process (RE with Bayesian updating).
- Even with these assumptions, no general identification result in the literature.

Motivation (Cont'd)

- Learning models are popular in economics, empirical micro in particular.
- Used in various fields, including Labor (Miller, 1984; Antonovics and Golan, 2012; Pastorino, 2024), Education (Arcidiacono, 2004; Stinebrickner and Stinebrickner, 2012; Arcidiacono et al., 2025); IO/Health (Ackerberg, 2003; Crawford and Shum, 2005; Aguirregabiria and Jeon, 2020).
- However, much remains to be known about identification.
- Standard to assume parametric outcome model (Gaussian), and specific learning process (RE with Bayesian updating).
- Even with these assumptions, no general identification result in the literature.

- We provide conditions for identification of a learning model (with private information) from sequence of individual choices and outcomes:
 - Maintain some structure on the outcome model (linearity and normality of the errors and unknown factor).
 - Very few restrictions on choice process and learning rule.
 - Do not rely on measurements of unobserved heterogeneity.
- In a learning model with only unknown heterogeneity, we establish identification without assuming normality.
- Computationally tractable semi-nonparametric estimator.
- Application to ability learning in the context of occupational choice

- We provide conditions for identification of a learning model (with private information) from sequence of individual choices and outcomes:
 - Maintain some structure on the outcome model (linearity and normality of the errors and unknown factor).
 - Very few restrictions on choice process and learning rule.
 - Do not rely on measurements of unobserved heterogeneity.
- In a learning model with only unknown heterogeneity, we establish identification without assuming normality.
- Computationally tractable semi-nonparametric estimator.
- Application to ability learning in the context of occupational choice

- We provide conditions for identification of a learning model (with private information) from sequence of individual choices and outcomes:
 - Maintain some structure on the outcome model (linearity and normality of the errors and unknown factor).
 - Very few restrictions on choice process and learning rule.
 - Do not rely on measurements of unobserved heterogeneity.
- In a learning model with only unknown heterogeneity, we establish identification without assuming normality.
- Computationally tractable semi-nonparametric estimator.
- Application to ability learning in the context of occupational choice

- We provide conditions for identification of a learning model (with private information) from sequence of individual choices and outcomes:
 - Maintain some structure on the outcome model (linearity and normality of the errors and unknown factor).
 - Very few restrictions on choice process and learning rule.
 - Do not rely on measurements of unobserved heterogeneity.
- In a learning model with only unknown heterogeneity, we establish identification without assuming normality.
- Computationally tractable semi-nonparametric estimator.
- Application to ability learning in the context of occupational choice

- We provide conditions for identification of a learning model (with private information) from sequence of individual choices and outcomes:
 - Maintain some structure on the outcome model (linearity and normality of the errors and unknown factor).
 - Very few restrictions on choice process and learning rule.
 - Do not rely on measurements of unobserved heterogeneity.
- In a learning model with only unknown heterogeneity, we establish identification without assuming normality.
- Computationally tractable semi-nonparametric estimator.
- Application to ability learning in the context of occupational choice.

Outline

- Model
- 2 Identification
- 3 Estimation
- 4 Simulations
- 6 Application

Setup

 We observe a short panel of discrete choices, continuous outcomes and covariates:

$$(D_{it}, Y_{it}, X_{it})_{t=1,2,...,T}$$

- Two types of latent variables:
 - $X_{i,k}^* \in \mathbb{R}$: known by the agent.
 - $X_{i,u}^{(n)} \in \mathbb{R}^p$: initially *unknown* by the agent.
- $\dim(X_{i,n}^*) = p \ge 2$: non-diagonal covariance matrix \to correlated learning
- Idiosyncratic shocks affecting the outcomes, ϵ_{it} .

Setup

 We observe a short panel of discrete choices, continuous outcomes and covariates:

$$(D_{it}, Y_{it}, X_{it})_{t=1,2,...,T}$$

- Two types of latent variables:
 - $X_{i,k}^* \in \mathbb{R}$: known by the agent.
 - $X_{i,u}^{\prime,\uparrow} \in \mathbb{R}^p$: initially *unknown* by the agent.
- $\dim(X_{i,u}^*) = p \ge 2$: non-diagonal covariance matrix \to correlated learning.
- Idiosyncratic shocks affecting the outcomes, ϵ_{it}

Setup

 We observe a short panel of discrete choices, continuous outcomes and covariates:

$$(D_{it}, Y_{it}, X_{it})_{t=1,2,...,T}$$

- Two types of latent variables:
 - $X_{i,k}^* \in \mathbb{R}$: known by the agent.
 - $X_{i,\mu}^{r,k} \in \mathbb{R}^p$: initially *unknown* by the agent.
- $\dim(X_{i,u}^*) = p \ge 2$: non-diagonal covariance matrix \to correlated learning.
- Idiosyncratic shocks affecting the outcomes, ϵ_{it} .

Setup - potential outcomes and choices

 Interactive fixed effect model for potential outcomes (omitting individual subscript i):

$$Y_t(d) = X_t^{\mathsf{T}} \beta_{t,d} + X_k^* \lambda_{t,d}^k + (X_u^*)^{\mathsf{T}} \lambda_{t,d}^u + \epsilon_t(d).$$

Key assumption on choices: do not directly depend on X_u*
 Specifically:

$$D_t \perp X_u^* \mid X^t, Y^{t-1}, D^{t-1}, X_k^*.$$

• Idiosyncratic shocks $\epsilon_t(d)$ are independent of $(X^t, Y^{t-1}, D^{t-1}, X^*)$ (with $X^* = (X_k^*, X_u^*)$).

Setup - potential outcomes and choices

 Interactive fixed effect model for potential outcomes (omitting individual subscript i):

$$Y_t(d) = X_t^{\mathsf{T}} \beta_{t,d} + X_k^* \lambda_{t,d}^k + (X_u^*)^{\mathsf{T}} \lambda_{t,d}^u + \epsilon_t(d).$$

• Key assumption on choices: do not directly depend on X_u^* . Specifically:

$$D_t \perp \!\!\! \perp X_u^* \mid X^t, Y^{t-1}, D^{t-1}, X_k^*.$$

• Idiosyncratic shocks $\epsilon_t(d)$ are independent of $(X^t,Y^{t-1},D^{t-1},X^*)$ (with $X^*=(X_k^*,X_u^*)$).

Setup - potential outcomes and choices (Cont'd)

Together with a law of motion for X_t , this can be summarized in the following assumption:

Assumption 1 (Conditional Independence)

For any $t \geq 2$ and $d \in Supp(D_t)$,

$$F_{\epsilon_t(d),D_t,X_t|Y^{t-1},D^{t-1},X^{t-1},X^*} = F_{\epsilon_t(d)}F_{D_t|X^t,Y^{t-1},D^{t-1},X_k^*}F_{X_t|Y^{t-1},D^{t-1},X^{t-1}}.$$

For any
$$d \in Supp(D_1)$$
, $F_{\epsilon_1(d),D_1,X_1|X^*} = F_{\epsilon_1(d)}F_{D_1|X_1,X^*_{\iota}}F_{X_1|X^*}$.

Connection with learning

ullet Denote by \mathcal{I}_t the agent's information set in period t. For t>1:

$$\mathcal{I}_t = (Y_1, \dots, Y_{(t-1)}, D_1, \dots D_{(t-1)}, X_1, \dots, X_t, X_k^*)$$

and, for t = 1,

$$\mathcal{I}_1 = (X_1, X_k^*)$$

- Model consistent with agents forming their beliefs about X_u^* based on (subsets of) \mathcal{I}_t .
- Accommodates Bayesian updating under rational expectations.
- Also allows for various other models of expectations formation, including biased beliefs, or myopic expectations.

Connection with learning

• Denote by \mathcal{I}_t the agent's information set in period t. For t > 1:

$$\mathcal{I}_t = (Y_1, \dots, Y_{(t-1)}, D_1, \dots D_{(t-1)}, X_1, \dots, X_t, X_k^*)$$

and, for t = 1,

$$\mathcal{I}_1 = (X_1, X_k^*)$$

- Model consistent with agents forming their beliefs about X_u^* based on (subsets of) \mathcal{I}_t .
- Accommodates Bayesian updating under rational expectations.
- Also allows for various other models of expectations formation, including biased beliefs, or myopic expectations.

Outline

- Model
- 2 Identification
- 3 Estimation
- 4 Simulations
- 6 Application

Identification

Model parameters (θ) :

- Outcome equation parameters (β, λ) .
- Distribution of the unobservables $(X_k^*, X_u^*, \epsilon_t)$.
- Conditional choice probabilities $\mathbb{P}(D_t = d | \mathcal{I}_t)$ (CCP).
- Covariate process $(X_t|Y^{t-1}, D^{t-1}, X^{t-1})$.

Two cases

- Unknown unobserved heterogeneity only (Pure Learning)
- Known and unknown unobserved heterogeneity (Learning with Private Information).

Identification

Model parameters (θ) :

- Outcome equation parameters (β, λ) .
- Distribution of the unobservables $(X_k^*, X_u^*, \epsilon_t)$.
- Conditional choice probabilities $\mathbb{P}(D_t = d | \mathcal{I}_t)$ (CCP).
- Covariate process $(X_t|Y^{t-1}, D^{t-1}, X^{t-1})$.

Two cases:

- 1 Unknown unobserved heterogeneity only (Pure Learning).
- Known and unknown unobserved heterogeneity (Learning with Private Information).

Intuition

• Selection problem: identify the interactive fixed effects model

$$Y_t(d) = \lambda_{t,d}^{\mathsf{T}} X^* + \epsilon_t(d)$$

from the distribution of (Y^T, D^T) .

- Key idea: use CCPs to adjust for selection
- Suppose supp $(D_t) = \{0, 1\}$, and consider the distribution of $Y^T(1) \equiv (Y_1(1), Y_2(1), \dots, Y_T(1))$.

Intuition

• Selection problem: identify the interactive fixed effects model

$$Y_t(d) = \lambda_{t,d}^{\mathsf{T}} X^* + \epsilon_t(d)$$

from the distribution of (Y^T, D^T) .

- Key idea: use CCPs to adjust for selection.
- Suppose supp $(D_t) = \{0, 1\}$, and consider the distribution of $Y^T(1) \equiv (Y_1(1), Y_2(1), \dots, Y_T(1))$.

Intuition (Cont'd)

• First, note that

$$f_{Y^T|D^T}(y^T|1)\frac{f_{D^T}(1)}{f_{D^T|Y^T(1)}(1|y^T)} = f_{Y^T(1)}(y^T).$$

• With no covariates and $X^* = X_u^*$, it follows from Assumption 1 that the inverse selection weight, $f_{D^T|Y^T(1)}$, is identified as follows:

$$f_{D^T|Y^T(1)}(1|y^T) = f_{D_t|Y^{t-1},D^{t-1}}(1|y^{t-1},1)f_{D^{t-1}|Y^{t-2},D^{t-2}}(1|y^{t-2},1)...f_{D_1}(1|y^{t-1},1)f_{D^{t-1}|Y^{t-2},D^{t-2}}(1|y^{t-2},1)...f_{D_1}(1|y^{t-1},D^{t$$

- Identifies in turn the distribution of $Y^T(1)$.
- Back to standard interactive fixed effects setup (Freyberger, 2018)

Intuition (Cont'd)

• First, note that

$$f_{Y^T|D^T}(y^T|1) \frac{f_{D^T}(1)}{f_{D^T|Y^T(1)}(1|y^T)} = f_{Y^T(1)}(y^T).$$

• With no covariates and $X^* = X_u^*$, it follows from Assumption 1 that the inverse selection weight, $f_{D^T|Y^T(1)}$, is identified as follows:

$$\mathbf{f}_{D^T|Y^T(1)}(1|y^T) = \mathbf{f}_{D_t|Y^{t-1},D^{t-1}}(1|y^{t-1},1)\mathbf{f}_{D^{t-1}|Y^{t-2},D^{t-2}}(1|y^{t-2},1)...\mathbf{f}_{D_1}(1).$$

- Identifies in turn the distribution of $Y^T(1)$.
- Back to standard interactive fixed effects setup (Freyberger, 2018).

Pure Learning

- Generalize the previous ideas to include covariates and multiple potential outcomes.
- Since $X^* = X_u^*$, $\mathcal{I}_t = \{Y^{t-1}, D^{t-1}, X^t\}$ and $f_{D_t, X_t | \mathcal{I}_t}$ and $f_{D_1 | X_1}$ are identified from the data (selection on obs.).
- Assume for simplicity that $X_t \perp \!\!\! \perp X^* | X_{t-1}$ (relaxed in the paper
- \bullet It follows that $f_{Y^T(d^T)|X^T}(y^T;x^T)$ is identified:

$$\frac{f_{Y^T,D^T,X^T}(y^T,d^T,x^T)}{f_{D_1,X_1}(d_1,z_1)\prod_{t=2}^T f_{D_t,X_t|\mathcal{I}_t}(d_t,x_t;h_t)} = f_{Y^T(d^T)|X^T}(y^T;x^T)$$

• One can then use results from the interactive fixed effect literature (e.g. Freyberger 2018) to identify the outcome eq. parameters and the distributions of (X^*, ε_{ir}) .

Pure Learning

- Generalize the previous ideas to include covariates and multiple potential outcomes.
- Since $X^* = X_u^*$, $\mathcal{I}_t = \{Y^{t-1}, D^{t-1}, X^t\}$ and $f_{D_t, X_t | \mathcal{I}_t}$ and $f_{D_1 | X_1}$ are identified from the data (selection on obs.).
- Assume for simplicity that $X_t \perp X^* | X_{t-1}$ (relaxed in the paper).
- It follows that $f_{Y^T(d^T)|X^T}(y^T; x^T)$ is identified:

$$\frac{f_{Y^T,D^T,X^T}(y^T,d^T,x^T)}{f_{D_1,X_1}(d_1,z_1)\prod_{t=2}^T f_{D_t,X_t|\mathcal{I}_t}(d_t,x_t;h_t)} = f_{Y^T(d^T)|X^T}(y^T;x^T)$$

• One can then use results from the interactive fixed effect literature (e.g., Freyberger 2018) to identify the outcome eq. parameters and the distributions of (X^*, ϵ_{it}) .

Learning with private information

- ullet With private information, $X^* = (X_k^*, X_u^*)$, $\mathcal{I}_t = \{Y^{t-1}, D^{t-1}, X^t, X_k^*\}$.
- Key difference: CCPs are no longer identified directly from the data.
- Under a normality assumption, we show identification of the joint distribution of (Y^T, D^T, X^T, X^{*}_ν).
- Having recovered the distribution of \mathcal{I}_t , identification follows from similar arguments as in the pure learning case.

Learning with private information

- With private information, $X^* = (X_k^*, X_u^*)$, $\mathcal{I}_t = \{Y^{t-1}, D^{t-1}, X^t, X_k^*\}$.
- Key difference: CCPs are no longer identified directly from the data.
- Under a normality assumption, we show identification of the joint distribution of (Y^T, D^T, X^T, X_k^*) .
- Having recovered the distribution of \mathcal{I}_t , identification follows from similar arguments as in the pure learning case.

Learning with private information - Normality

Assumption 2 (Normality)

 (X_u^*, ϵ) are distributed according to

$$X_u^* \mid (X_1 = x_1, X_k^* = x_k^*) \sim \mathcal{N}(0, \Sigma_u(x_1))$$

$$\epsilon_t(d) \sim \mathcal{N}(0, \sigma_t(d)^2)$$

- Standard in applied learning papers, which also use this assumption to specify a learning and choice model (e.g. Thomas, 2019; Arcidiacono et al., 2025).
- We maintain the restriction on the outcome model, but:
 - Remain flexible on the learning and choice process.
 - Do not assume a specific distribution for the known heterogeneity component (X_k^*) .

Learning with private information - Normality

Assumption 2 (Normality)

 (X_{u}^{*}, ϵ) are distributed according to

$$X_u^* \mid (X_1 = x_1, X_k^* = x_k^*) \sim \mathcal{N}(0, \Sigma_u(x_1))$$

$$\epsilon_t(d) \sim \mathcal{N}(0, \sigma_t(d)^2)$$

- Standard in applied learning papers, which also use this assumption to specify a learning and choice model (e.g. Thomas, 2019; Arcidiacono et al., 2025).
- We maintain the restriction on the outcome model, but:

Learning with private information - Normality

Assumption 2 (Normality)

 (X_{u}^{*}, ϵ) are distributed according to

$$X_u^* \mid (X_1 \equiv x_1, X_k^* \equiv x_k^*) \sim \mathcal{N}(0, \Sigma_u(x_1))$$

$$\epsilon_t(d) \sim \mathcal{N}(0, \sigma_t(d)^2)$$

- Standard in applied learning papers, which also use this assumption to specify a learning and choice model (e.g. Thomas, 2019; Arcidiacono et al., 2025).
- We maintain the restriction on the outcome model, but:
 - Remain flexible on the learning and choice process.
 - Do not assume a specific distribution for the known heterogeneity component (X_k^*) .

Learning with private information - Distribution of X_{ν}^*

Assumption 3 (Compact support)

The support of X_{k}^{*} is compact.

- Structural models typically assume the existence of a finite (and known) number of unobserved heterogeneity types.
- Allows for discrete or continuous distribution of X_k^{*}.

Learning with private information - Distribution of X_k^*

Assumption 3 (Compact support)

The support of X_k^* is compact.

- Structural models typically assume the existence of a finite (and known) number of unobserved heterogeneity types.
- Allows for discrete or continuous distribution of X_{ν}^{*} .
- Compactness plays an important role to identify $f_{X_L^*}$.

Additional assumptions

- (C) Rank conditions: For any d^T , all $p \times p$ submatrices of $[\lambda_{1,d_1}^u \cdots \lambda_{T,d_T}^u]$ are full rank; $f_{X_{\iota}^*|Y^{t-1},D^t,X^t} > 0$ almost surely.
- (R) Regularity conditions, mostly ruling out knife-edge cases because of linearity, e.g., for all d, $\lambda_{t,d}^k \neq (\lambda_{t,d}^u)^\mathsf{T} \Sigma_t \sum_{s=1}^{t-1} \lambda_{s,d_s}^k \frac{\lambda_{s,d_s}^k}{\sigma_{s,d_s}^2}$. \to Aggregate effect of X_{ι}^* on outcomes is non-zero.
- (N) Normalizations: there is a d s.t. $\lambda_{1,d}^k=1$; there is a sequence d^p such that $[\lambda_{t_1,d_1}^u\cdots\lambda_{t_p,d_p}^u]=I_p$.

► Assumptions

Theorem 1

Suppose the distribution of $(Y_t, D_t, X_t)_{t=1}^T$ is known for T = 2p + 1 and Assumptions 1-3, and (C), (R), (N) hold. Then θ is point identified.

- As in the model without private information, no assumption placed on the learning process.
- Existing identification results (Hotz and Miller, 1993; Arcidiacono and Miller, 2011) can then be applied to establish identification of particular choice models from the CCPs (f_{D+|T+}).
- Proof uses implication of Assumptions 1-2 that cross-sectional wages are a Gaussian mixture conditional on history; use Bruni and Koch (1985) to identify conditional distributions of X_{**}^{*} .

Theorem 1

Suppose the distribution of $(Y_t, D_t, X_t)_{t=1}^T$ is known for T = 2p + 1 and Assumptions 1-3, and (C), (R), (N) hold. Then θ is point identified.

- As in the model without private information, no assumption placed on the learning process.
- Existing identification results (Hotz and Miller, 1993; Arcidiacono and Miller, 2011) can then be applied to establish identification of particular choice models from the CCPs $(f_{D_t|\mathcal{I}_t})$.
- Proof uses implication of Assumptions 1-2 that cross-sectional wages are a Gaussian mixture conditional on history; use Bruni and Koch (1985) to identify conditional distributions of X_{ν}^{*} .

Theorem 1

Suppose the distribution of $(Y_t, D_t, X_t)_{t=1}^T$ is known for T = 2p + 1 and Assumptions 1-3, and (C), (R), (N) hold. Then θ is point identified.

- As in the model without private information, no assumption placed on the learning process.
- Existing identification results (Hotz and Miller, 1993; Arcidiacono and Miller, 2011) can then be applied to establish identification of particular choice models from the CCPs $(f_{D_t|\mathcal{I}_t})$.
- Proof uses implication of Assumptions 1-2 that cross-sectional wages are a Gaussian mixture conditional on history; use Bruni and Koch (1985) to

Theorem 1

Suppose the distribution of $(Y_t, D_t, X_t)_{t=1}^T$ is known for T = 2p + 1 and Assumptions 1-3, and (C), (R), (N) hold. Then θ is point identified.

- As in the model without private information, no assumption placed on the learning process.
- Existing identification results (Hotz and Miller, 1993; Arcidiacono and Miller, 2011) can then be applied to establish identification of particular choice models from the CCPs $(f_{D_t|\mathcal{I}_t})$.
- Proof uses implication of Assumptions 1-2 that cross-sectional wages are a Gaussian mixture conditional on history; use Bruni and Koch (1985) to identify conditional distributions of X_k^* . Proof Sketch

Outline

- Model
- 2 Identification
- 3 Estimation
- 4 Simulations
- 6 Application

Sieve MLE estimation

- We focus here on learning under private information.
- Given an i.i.d. sample of data $(Y_{it}, D_{it}, X_{it}: t=1,2,\ldots,T)_{i=1}^N$, we estimate the model parameters via sieve MLE. •• Likelihood
- Nonparametric objects include the distribution of X_{ν}^* and the CCPs
- Establish consistency for fixed $T \ge 2p + 1$.

Sieve MLE estimation

- We focus here on learning under private information.
- Given an i.i.d. sample of data $(Y_{it}, D_{it}, X_{it} : t = 1, 2, ..., T)_{i=1}^N$, we estimate the model parameters via sieve MLE. ** Likelihood
- Nonparametric objects include the distribution of X_k^* and the CCPs.
- Establish consistency for fixed $T \ge 2p + 1$.

Sieve MLE estimation - Implementation

• We consider a sieve space for $F_{X_{\nu}^*}$ based on Koenker and Mizera (2014):

$$\mathcal{F}_n = \left\{ v \mapsto \sum_{s=1}^{q_n} \omega_s \mathbf{1} \{ v \leq \bar{v}_{sn} \} \left| \sum_{s}^{q_n} \omega_s = 1 \right\} \right\}$$

where $S_n = \{\bar{v}_{1n}, \dots, \bar{v}_{q_nn}\}$, for some q_n , as a grid of support points for X_{ι}^* .

- Profile likelihood estimation, where we maximize over $F_{X_k^*}$ given $\theta \setminus F_{X_k^*}$ in an inner step.
- Fixing the other parameters, this is a convex optimization problem that can be solved very efficiently.
- Can be implemented using our Python package spmlex

Sieve MLE estimation - Implementation

• We consider a sieve space for $F_{X_t^*}$ based on Koenker and Mizera (2014):

$$\mathcal{F}_{\textit{n}} = \left\{ \left. \textit{v} \mapsto \sum_{\textit{s}=1}^{q_{\textit{n}}} \omega_{\textit{s}} \mathbf{1} \{ \textit{v} \leq \bar{\textit{v}}_{\textit{sn}} \} \right| \sum_{\textit{s}}^{q_{\textit{n}}} \omega_{\textit{s}} = 1 \right\}$$

where $S_n = \{\bar{v}_{1n}, \dots, \bar{v}_{q_nn}\}$, for some q_n , as a grid of support points for X_k^* .

- Profile likelihood estimation, where we maximize over $F_{X_k^*}$ given $\theta \setminus F_{X_k^*}$ in an inner step.
- Fixing the other parameters, this is a convex optimization problem that can be solved very efficiently.
- Can be implemented using our Python package spmlex.

Sieve MLE estimation (Cont'd)

- Often interested in particular functions of the model parameters.
- Example: decomposition of discounted lifetime earnings into a predictable and unpredictable components (Cunha et al., 2005; Cunha and Heckman, 2008, 2016).

Sieve MLE estimation (Cont'd)

- Often interested in particular functions of the model parameters.
- Example: decomposition of discounted lifetime earnings into a predictable and unpredictable components (Cunha et al., 2005; Cunha and Heckman, 2008, 2016).
- We consider a plug-in sieve estimator, and provide sufficient conditions for consistency and asymptotic normality for a family of functionals of the model parameters.
- Special case: variances of the predictable and unpredictable components of outcomes.

▶ Family of functionals

Outline

- Model
- 2 Identification
- 3 Estimation
- 4 Simulations
- 5 Application

Simulation design

- T=3, $\dim(X_u^*)=1$, binary choice $d\in\mathcal{D}_{it}=\{1,2\}$, 2 covariates.
- Biased beliefs

$$\mathcal{E}_i(Y_{it}(d)|\mathcal{I}_{it}) = \mathbb{E}(Y_{it}(d)|\mathcal{I}_{it}) + \gamma_d X_{k,i}^*$$

Choice process

$$D_{it} = \operatorname{argmax}_{d} u_{it}(d|\mathcal{I}_{it}) + \eta_{it}(d)$$

where
$$u_{it}(d|\mathcal{I}_{it}) = \rho \mathcal{E}_i (Y_{it}(d)|\mathcal{I}_{it})$$
 and $\eta_{it}(d)$ is i.i.d. Type 1 EV.

• $X_{k,i}^*$ is a finite mixture of truncated normal r.v.'s., while $X_{u,i}^* \sim N(0, \sigma_u^2)$ and $\varepsilon_{it}(d) \sim N(0, \sigma^2(d))$.

Simulation design

- T=3, $\dim(X_u^*)=1$, binary choice $d\in\mathcal{D}_{it}=\{1,2\}$, 2 covariates.
- Biased beliefs:

$$\mathcal{E}_{i}(Y_{it}(d)|\mathcal{I}_{it}) = \mathbb{E}(Y_{it}(d)|\mathcal{I}_{it}) + \gamma_{d}X_{k,i}^{*}$$

Choice process:

$$D_{it} = \operatorname{argmax}_d u_{it}(d|\mathcal{I}_{it}) + \eta_{it}(d)$$

where $u_{it}(d|\mathcal{I}_{it}) = \rho \mathcal{E}_i(Y_{it}(d)|\mathcal{I}_{it})$ and $\eta_{it}(d)$ is i.i.d. Type 1 EV.

• $X_{k,i}^*$ is a finite mixture of truncated normal r.v.'s., while $X_{u,i}^* \sim N(0, \sigma_u^2)$ and $\varepsilon_{it}(d) \sim N(0, \sigma^2(d))$.

Simulation design

- T=3, $\dim(X_u^*)=1$, binary choice $d\in\mathcal{D}_{it}=\{1,2\}$, 2 covariates.
- Biased beliefs:

$$\mathcal{E}_{i}(Y_{it}(d)|\mathcal{I}_{it}) = \mathbb{E}(Y_{it}(d)|\mathcal{I}_{it}) + \gamma_{d}X_{k,i}^{*}$$

Choice process:

$$D_{it} = \operatorname{argmax}_{d} u_{it}(d|\mathcal{I}_{it}) + \eta_{it}(d)$$

where $u_{it}(d|\mathcal{I}_{it}) = \rho \mathcal{E}_i(Y_{it}(d)|\mathcal{I}_{it})$ and $\eta_{it}(d)$ is i.i.d. Type 1 EV.

• $X_{k,i}^*$ is a finite mixture of truncated normal r.v.'s., while $X_{u,i}^* \sim N(0, \sigma_u^2)$ and $\epsilon_{it}(d) \sim N(0, \sigma^2(d))$.

Monte Carlo results: squared bias and variance ($\times 1,000$)

	N = 250		N = 500		N = 1,000		N = 2,000		N = 4,000	
	sq bias	var	sq bias	var	sq bias	var	sq bias	var	sq bias	var
$\lambda_{1,1}^k$	2.746	27.521	1.701	12.890	0.624	7.268	0.009	3.684	0.001	1.468
$\lambda_{2,1}^{\bar{k}'}$	1.148	25.977	0.558	10.825	0.226	4.777	0.004	2.594	0.000	1.089
$\lambda_{2,2}^{\overline{k},-}$	0.869	10.978	0.254	5.825	0.073	2.654	0.007	1.383	0.000	0.743
$\lambda_{1,1}^{k}$ $\lambda_{2,1}^{k}$ $\lambda_{2,2}^{k}$ $\lambda_{3,1}^{k}$ $\lambda_{3,2}^{k}$	3.986	33.663	0.873	13.719	0.178	5.683	0.003	3.069	0.000	1.330
$\lambda_{3,2}^{k}$	5.702	36.861	0.674	12.556	0.224	5.305	0.011	2.408	0.005	1.080
$\lambda_{1,2}^{u}$	0.979	13.945	0.306	4.733	0.170	2.438	0.015	1.330	0.000	0.605
$\lambda_{2.1}^u$	0.040	8.317	0.027	5.139	0.036	1.947	0.014	1.003	0.002	0.481
$\lambda_{2,2}^{u'}$	1.478	14.880	0.494	6.218	0.130	3.324	0.009	1.522	0.004	0.643
$\lambda_{3.1}^u$	0.446	9.912	0.093	5.003	0.062	2.187	0.030	0.968	0.023	0.469
$\lambda_{3,2}^{u'}$ $\sigma^2(1)$	0.106	21.919	0.101	8.903	0.112	4.148	0.004	2.140	0.005	0.936
$\sigma^2(1)$	0.453	2.477	0.091	1.241	0.030	0.672	0.007	0.298	0.001	0.136
$\sigma^2(2)$	1.228	4.449	0.242	2.237	0.027	1.058	0.016	0.701	0.008	0.332

Quantiles of distribution of X_k^*

Outline

- Model
- 2 Identification
- 3 Estimation
- 4 Simulations
- 5 Application

Occupational choice and learning

- We apply our framework to study occupational choice.
- Focus on the role of uncertainty vs. heterogeneity, in a context where agents may learn over time.
- We do not rely on an auxiliary measurement system, unlike much of the empirical literature (e.g. Cunha and Heckman, 2008; Arcidiacono et al., 2025)
- Data: National Longitudinal Survey of Youth 1997 (NLSY97)
 - Sample of 2,453 white men born between 1980 and 1984
 - Restrict to full-time workers between ages 27 and 32
 - Outcome variable (Y): Log hourly wage; choice variable (D): high- or low-skill occupation.

Occupational choice and learning

- We apply our framework to study occupational choice.
- Focus on the role of uncertainty vs. heterogeneity, in a context where agents may learn over time.
- We do not rely on an auxiliary measurement system, unlike much of the empirical literature (e.g. Cunha and Heckman, 2008; Arcidiacono et al., 2025).
- Data: National Longitudinal Survey of Youth 1997 (NLSY97)
 - Sample of 2,453 white men born between 1980 and 1984
 - Restrict to full-time workers between ages 27 and 32
 - Outcome variable (Y): Log hourly wage; choice variable (D): high- or low-skill occupation.

Occupational choice and learning

- We apply our framework to study occupational choice.
- Focus on the role of uncertainty vs. heterogeneity, in a context where agents may learn over time.
- We do not rely on an auxiliary measurement system, unlike much of the empirical literature (e.g. Cunha and Heckman, 2008; Arcidiacono et al., 2025).
- Data: National Longitudinal Survey of Youth 1997 (NLSY97).
 - Sample of 2,453 white men born between 1980 and 1984.
 - Restrict to full-time workers between ages 27 and 32.
 - Outcome variable (Y): Log hourly wage; choice variable (D): high- or low-skill occupation.

- T=3, $\dim(X_u^*)=1$, $\mathcal{D}_t=\{0,1\}$ for $t\in\{1,2,3\}$ (low- or high-skill sector).
- Potential outcomes $(Y_t(d))$: log hourly wages in period t (two-year average)
- Where, for $d \in \{0, 1\}$

$$Y_t(d) = \beta_{t,d} + X_k^* \lambda_{t,d}^k + X_u^* \lambda_{t,d}^u + \epsilon_t(d)$$

CCPs

•
$$h_t(X_k^*, Y^{t-1}, D^{t-1}) := P(D_t = 1 | X_k^*, Y^{t-1}, D^{t-1})$$

- Estimation via sieve MLE
- We use a flexible logit for the CCPs h_t , and the sieve space \mathcal{F}_n for $F_{X_k^*}$ (with 56 eq. spaced support points).

- T=3, $\dim(X_u^*)=1$, $\mathcal{D}_t=\{0,1\}$ for $t\in\{1,2,3\}$ (low- or high-skill sector).
- ullet Potential outcomes $(Y_t(d))$: log hourly wages in period t (two-year average).
- Where, for $d \in \{0, 1\}$:

$$Y_t(d) = \beta_{t,d} + X_k^* \lambda_{t,d}^k + X_u^* \lambda_{t,d}^u + \epsilon_t(d).$$

CCPs

•
$$h_t(X_k^*, Y^{t-1}, D^{t-1}) := P(D_t = 1 | X_k^*, Y^{t-1}, D^{t-1})$$

- Estimation via sieve MLE
- We use a flexible logit for the CCPs h_t , and the sieve space \mathcal{F}_n for $F_{X_k^*}$ (with 56 eq. spaced support points).

- T=3, $\dim(X_u^*)=1$, $\mathcal{D}_t=\{0,1\}$ for $t\in\{1,2,3\}$ (low- or high-skill sector).
- ullet Potential outcomes $(Y_t(d))$: log hourly wages in period t (two-year average).
- Where, for $d \in \{0, 1\}$:

$$Y_t(d) = \beta_{t,d} + X_k^* \lambda_{t,d}^k + X_u^* \lambda_{t,d}^u + \epsilon_t(d).$$

CCPs:

•
$$h_t(X_k^*, Y^{t-1}, D^{t-1}) := P(D_t = 1 | X_k^*, Y^{t-1}, D^{t-1})$$

- Estimation via sieve MLE
- We use a flexible logit for the CCPs h_t , and the sieve space \mathcal{F}_n for $F_{X_k^*}$ (with 56 eq. spaced support points).

- T=3, $\dim(X_u^*)=1$, $\mathcal{D}_t=\{0,1\}$ for $t\in\{1,2,3\}$ (low- or high-skill sector).
- Potential outcomes $(Y_t(d))$: log hourly wages in period t (two-year average).
- Where, for $d \in \{0, 1\}$:

$$Y_t(d) = \beta_{t,d} + X_k^* \lambda_{t,d}^k + X_u^* \lambda_{t,d}^u + \epsilon_t(d).$$

CCPs:

•
$$h_t(X_k^*, Y^{t-1}, D^{t-1}) := P(D_t = 1 | X_k^*, Y^{t-1}, D^{t-1})$$

- Estimation via sieve MLE.
- We use a flexible logit for the CCPs h_t , and the sieve space \mathcal{F}_n for $F_{X_k^*}$ (with 56 eq. spaced support points).

Model fit

	ν	Y ₁		' 2	Y ₃			
	Est.	Data	Est.	2 Data	Est.	Data		
A. No periods in high-skill occupation								
Mean								
	2.45	2.45	2.51	2.52	2.57	2.57		
Covariance	Covariance Matrix							
Y_1	0.18	0.17	0.15	0.14	0.14	0.13		
Y_2	_	_	0.18	0.19	0.17	0.17		
Y ₃					0.22	0.21		
B. Some pe	B. Some periods in high-skill occupation							
Mean								
	2.58	2.58	2.65	2.68	2.82	2.80		
Covariance	Covariance Matrix							
Y_1	0.18	0.21	0.12	0.14	0.13	0.12		
Y_2 Y_3	_	_	0.18	0.20	0.15	0.13		
Y_3	_	_	_	_	0.22	0.19		
C. All periods in high-skill occupation								
Mean								
	2.78	2.76	2.91	2.91	3.01	3.00		
Covariance Matrix								
Y_1	0.24	0.26	0.16	0.16	0.16	0.17		
Y_2	_	_	0.23	0.21	0.16	0.19		
Y ₃	_	_	_	_	0.25	0.26		

Selection patterns

Figure: Selection into high-skill occupation.

32 / 46

Heterogeneity vs. Uncertainty

- We estimate the share of the variance of future wages that is due to heterogeneity (forecastable) vs. uncertainty (unforecastable).
- Focus on the discounted value of wages of the later two periods: $\overline{Y}(d_2) = \sum_{t=2}^{3} (1-\rho)^{t-2} Y_t(d_2)$, for $d_2 \in \{0,1\}$, where $\rho = .05$
- Compute the share of variance that is forecastable before (t = 0) and after (t = 1) the first period of labor market experience.

Heterogeneity vs. Uncertainty

- We estimate the share of the variance of future wages that is due to heterogeneity (forecastable) vs. uncertainty (unforecastable).
- Focus on the discounted value of wages of the later two periods: $\overline{Y}(d_2) = \sum_{t=2}^{3} (1-\rho)^{t-2} Y_t(d_2)$, for $d_2 \in \{0,1\}$, where $\rho = .05$
- Compute the share of variance that is forecastable before (t = 0) and after (t = 1) the first period of labor market experience.

Heterogeneity vs. Uncertainty (Cont'd)

	=	$\overline{\overline{Y}}(1)$	$\overline{Y}(0)$			
(t, D^t)	Total Variance	Share Forecastable	Total Variance	Share Forecastable		
(0,∅)	0.66	0.12	1.07	0.43		
	(0.52, 0.77)	(0.07, 0.23)	(0.73, 3.93)	(0.20, 0.85)		
(1,0)	0.57	0.65	0.64	0.80		
	(0.44, 0.69)	(0.59, 0.74)	(0.56, 0.75)	(0.76, 0.85)		
(1, 1)	0.70	0.53	1.27	0.76		
	(0.57, 0.81)	(0.41, 0.69)	(0.80, 5.40)	(0.64, 0.96)		

Table: Decomposition of variance of wages into forecastable and unforecastable

COMPONENTS. Note: Each row reports the variance decomposition conditional on a sequence of prior choices. The first row is the variance decomposition at period 0 before the first choices are made. The second and third rows are the variance decomposition conditional on the first occupational choice. The total variance is the variance of $\overline{Y}(d_2)$, conditional having made the choice D^t , which can therefore be a selected sample. The share forecastable is the ratio of the forecastable variance (including both the variance coming from X_k^* and the posterior mean of X_u^* after observing D^t) to the total variance. Bootstrap 95% confidence intervals are given in parentheses.

- We establish identification of a potential outcomes model where a portion of the unobserved heterogeneity may be unknown at the time of decisions.
 - Setup with normally distributed errors and unknown heterogeneity, but distribution-free on the known heterogeneity component.
 - Very few restrictions on decision process and learning rule.
 - No auxiliary measurements.
- When individuals do not have private information, relax normality.
- Computationally tractable semi-nonparametric estimation procedure that performs well in finite samples (Python package spmlex available on GitHub)
- Illustration to uncertainty and learning in occupational choice.
- Evidence of fast ability revelation based on realized wages

- We establish identification of a potential outcomes model where a portion of the unobserved heterogeneity may be unknown at the time of decisions.
 - Setup with normally distributed errors and unknown heterogeneity, but distribution-free on the known heterogeneity component.
 - Very few restrictions on decision process and learning rule.
 - No auxiliary measurements.
- When individuals do not have private information, relax normality.
- Computationally tractable semi-nonparametric estimation procedure that performs well in finite samples (Python package spmlex available on GitHub).
- Illustration to uncertainty and learning in occupational choice.
- Evidence of fast ability revelation based on realized wages

- We establish identification of a potential outcomes model where a portion of the unobserved heterogeneity may be unknown at the time of decisions.
 - Setup with normally distributed errors and unknown heterogeneity, but distribution-free on the known heterogeneity component.
 - Very few restrictions on decision process and learning rule.
 - No auxiliary measurements.
- When individuals do not have private information, relax normality.
- Computationally tractable semi-nonparametric estimation procedure that performs well in finite samples (Python package spmlex available on GitHub).
- Illustration to uncertainty and learning in occupational choice
- Evidence of fast ability revelation based on realized wages

- We establish identification of a potential outcomes model where a portion of the unobserved heterogeneity may be unknown at the time of decisions.
 - Setup with normally distributed errors and unknown heterogeneity, but distribution-free on the known heterogeneity component.
 - Very few restrictions on decision process and learning rule.
 - No auxiliary measurements.
- When individuals do not have private information, relax normality.
- Computationally tractable semi-nonparametric estimation procedure that performs well in finite samples (Python package spmlex available on GitHub).
- Illustration to uncertainty and learning in occupational choice.
- Evidence of fast ability revelation based on realized wages.

Assumptions

KL1 For any $d \in \text{Supp}(D_t)$

$$F_{\epsilon_t(d),D_t,Z_t|Y^{t-1},D^{t-1},Z^{t-1}X^*} = F_{\epsilon_t(d)}F_{D_t|Y^{t-1},D^{t-1},Z^t,X_k^*}F_{Z_t|Y^{t-1},D^{t-1},Z_{t-1}}.$$

$$\mathsf{KL2}\ (\lambda_u \mid Z_1 = \mathsf{z}_1, X_k^* = \mathsf{v}_k) \sim \mathit{N}\ (\mathsf{0}, \Sigma_u(\mathsf{z}_1, \mathsf{v}_k)) \ \mathsf{and} \ \varepsilon_t(d) \sim \mathit{N}\ (\mathsf{0}, \sigma_t(d)^2).$$

Assumptions (Cont'd)

KL3 (A) For some d_1 , $\alpha_1(d_1) = 0$, $F_{k1}(d_1) = 1$. (B) For some (d_1, d_2, \ldots, d_p) , $(F_{u1}(d_1)F_{u2}(d_2)\ldots F_{up}(d_p)) = I_{p\times p}$.

KL4 (A) Θ_1 is a compact set. (B) $\operatorname{Supp}(X_k^*)$ is a compact set. (C) For each t, $F_{ut}^\intercal(d_t)\Sigma_tF_{ut}(d_t)+\sigma_t^2(d_t)\neq 0$, $\sigma_t(d_t)\neq 0$ and $\Sigma_u(z_1,v_k)$ is non-singular. (D) $dF_{X_k^*|Y^{t-1},Z^t,D^t}(v_k;y^{t-1},z^t,d^t)>0$ for all for all t and v_k in the support of X_k^* . (E) For each t, the variance-covariance matrix of $(1_n,Z_{it})$ is non-singular.

Assumptions (Cont'd)

KL5 (A) For each d_t there are sequences d^{t-1} , \tilde{d}^{t-1} such that $F_{ut}(d_t)^{\mathsf{T}}\Sigma_t\sum_{s=1}^{t-1}\left(F_{us}(d_s)\frac{F_{ks}(d_s)}{\sigma_s^2(d_s)}-F_{us}(\tilde{d}_s)\frac{F_{ks}(\tilde{d}_s)}{\sigma_s^2(\tilde{d}_s)}\right)\neq 0$. (B) For all d_t , $F_{kt}(d_t)\neq 0$. (C) For all d_t , $F_{kt}(d_t)-F_{ut}(d_t)^{\mathsf{T}}\Sigma_t\sum_{s=1}^{t-1}F_{us}(d_s)\frac{F_{ks}(d_s)}{\sigma_s^2(d_s)}\neq 0$. (D) For each (d_2,d_1) , $F_{u2}(d_2)^{\mathsf{T}}\Sigma_2(\lambda_{ui})F_{u1}(d_1)\frac{F_{k1}(d_1)}{\sigma_1^2(d_1)}\neq 0$ (E) There are sets $\{d_{2,i}:i=1,2,\ldots,k\}$, $\{\tilde{d}_{2,i}:i=1,2,\ldots,k\}$ which are subsets of $\mathsf{Supp}(D_2)$ and satisfy

$$(F_{u2}(d_{2,1})F_{u2}(d_{2,2})\dots F_{u2}(d_{2,k}))^{-\intercal}\operatorname{vec}(F_{k2}(d_{2,1}),\dots,F_{k2}(d_{2,k}))$$

$$\neq (F_{u2}(\tilde{d}_{2,1})F_{u2}(\tilde{d}_{2,2})\dots F_{u2}(\tilde{d}_{2,k}))^{-\intercal}\operatorname{vec}(F_{k2}(\tilde{d}_{2,1}),\dots,F_{k2}(\tilde{d}_{2,k})).$$

(F) Any $p \times p$ submatrix of $(F_{u1}(d_1)F_{u2}(d_2)\dots F_{uT}(d_T))$ has full rank

Unknown factor only: assumptions

L1 For any $d \in \mathsf{Supp}(D_t)$

$$F_{\epsilon_t(d),D_t,Z_t|Y^{t-1},D^{t-1},Z^{t-1},X_u^*} = F_{\epsilon_t(d)}F_{D_t|Y^{t-1},D^{t-1},Z^t}F_{Z_t|Y^{t-1},D^{t-1},Z^{t-1}}.$$

L2 (A) The joint PDF of (Y, X_u^*) conditional on Z is bounded and continuous, as are all its marginal and conditional densities. (B) $X_u^* \mid Z$ has full support. (C) The characteristic function of $\varepsilon_t(d)$ is non-vanishing, and $\mathsf{E}[\varepsilon_t \mid Z, X_u^*] = 0$.

BDM

Unknown factor only: assumptions (Cont'd)

L3 For some choice sequence
$$(d_t: t = 1, 2, ..., p)$$
, (A) $(F_1(d_1)...F_p(d_p)) = I_{p \times p}$ and (B) $\alpha_t(d_t) = 0$ for each $t = 1, 2, ..., p$.

L4 (A) $f_{Y^{t-1},Z^t,D^t}(y^{t-1},z^t,d^t) > 0$ for all t. (B) The variance-covariance matrix of $X_u^t \mid Z$ is full rank.

L5 Any $p \times p$ sub-matrix of $F(d) = (F_1(d_1)F_2(d_2)\dots F_T(d_T))$ is full rank.

▶ Back

- $Y_t|Y^{t-1}, D^t, X^t$ is a mixture of normal distributions, with weights $f_{X_k^*|D^t, Y^{t-1}, X^t}(x_k)$ (Lemma 1).
 - Under compact support and regularity conditions, rely on Bruni and Koch (1985, Th.3) to identify the distribution $Y_t|Y^{t-1}, D^t, X^t, X_k^*$ and mixture weights, up to a one-to-one transformation π of X_k^* .
- \bullet $E(Y_t|Y^{t-1}, D^t, X^t, X_k^*)$ is linear in $X_k^* \to \pi$ linear.
 - Rank conditions and factor normalizations $\to \pi = \mathrm{Id} \Rightarrow \mathrm{Identification}$ of the distribution of $(Y^T, D^T, X^T, X^*_{\nu})$.
 - Outcome eq. parameters, distribution of unknown component X_u^* and id. shocks: from the distribution of $(Y^T, D^T, X^T | X_k^*)$, weighted by conditional choice probability.

- $Y_t|Y^{t-1}, D^t, X^t$ is a mixture of normal distributions, with weights $f_{X_k^t|D^t, Y^{t-1}, X^t}(x_k)$ (Lemma 1).
- **②** Under compact support and regularity conditions, rely on Bruni and Koch (1985, Th.3) to identify the distribution $Y_t|Y^{t-1}$, D^t , X^t , X_k^t and mixture weights, up to a one-to-one transformation π of X_k^* .
- ullet $E(Y_t|Y^{t-1},D^t,X^t,X_k^*)$ is linear in $X_k^* o\pi$ linear.
- Rank conditions and factor normalizations $\to \pi = \mathrm{Id} \Rightarrow \mathrm{Identification}$ of the distribution of $(Y^T, D^T, X^T, X^*_{\iota})$.
- Outcome eq. parameters, distribution of unknown component X_u^* and id. shocks: from the distribution of $(Y^T, D^T, X^T | X_k^*)$, weighted by conditional choice probability.

- $Y_t | Y^{t-1}, D^t, X^t$ is a mixture of normal distributions, with weights $f_{X_{t}^{*}|D^{t},Y^{t-1},X^{t}}(x_{k})$ (Lemma 1).
- Under compact support and regularity conditions, rely on Bruni and Koch (1985, Th.3) to identify the distribution $Y_t | Y^{t-1}, D^t, X^t, X_k^*$ and mixture weights, up to a one-to-one transformation π of X_{k}^{*} .
- **3** $E(Y_t|Y^{t-1},D^t,X^t,X_k^*)$ is linear in $X_k^*\to\pi$ linear.
- **1** Rank conditions and factor normalizations $\rightarrow \pi = \mathrm{Id} \Rightarrow \mathsf{Identification}$ of the distribution of (Y^T, D^T, X^T, X_k^*) .

- $Y_t | Y^{t-1}, D^t, X^t$ is a mixture of normal distributions, with weights $f_{X_{t}^{*}|D^{t},Y^{t-1},X^{t}}(x_{k})$ (Lemma 1).
- Under compact support and regularity conditions, rely on Bruni and Koch (1985, Th.3) to identify the distribution $Y_t | Y^{t-1}, D^t, X^t, X_k^*$ and mixture weights, up to a one-to-one transformation π of X_{k}^{*} .
- **3** $E(Y_t|Y^{t-1},D^t,X^t,X_{\nu}^*)$ is linear in $X_{\nu}^*\to\pi$ linear.
- **1** Rank conditions and factor normalizations $\rightarrow \pi = \mathrm{Id} \Rightarrow \mathsf{Identification}$ of the distribution of (Y^T, D^T, X^T, X_t^*) .
- **1** Outcome eq. parameters, distribution of unknown component X_{ij}^* and id. shocks: from the distribution of $(Y^T, D^T, X^T | X_{\nu}^*)$, weighted by conditional choice probability.

Likelihood

The individual log-likelihood contribution is:

$$\begin{split} &\log \int \prod_{t=1}^{T} \left(\frac{1}{\sigma_{t}\left(d_{t}\right)} \phi_{1}\left(\frac{y_{t} - \alpha_{t}\left(d_{t}\right) - z_{t}'\beta_{t}\left(d_{t}\right) - v_{u}'F_{ut}\left(d_{t}\right) - v_{k}F_{kt}\left(d_{t}\right) \right) \\ &\times \bar{h}_{t}(d_{t}, z_{t}, v_{k}, x_{t}) \right) \times \prod_{t=1}^{T-1} g_{t}(z_{t+1} \mid z_{t}, y_{t}, d_{t}) \\ &\times \frac{1}{\sqrt{\left|\sum_{u}\left(z_{1}, v_{k}\right)\right|}} \phi_{p}\left(\sum_{u}^{-\frac{1}{2}}\left(z_{1}, v_{k}\right) v_{u}\right) \times \frac{dF_{X_{k}^{*}}\left(v_{k}; \mathbf{z}_{1}\right)}{dv_{u}} \end{split}$$

→ Back

CCP sieve space

Utility:

- Linear index in $(Y_1, \ldots, Y_{t-1}, X_k^*)$ where coefficients are conditional on full choice sequence.
- Nonlinear transformation of the linear index by a polynomial of order $m_n \to \infty$.

$$u_{t}(d|h) = f^{m_{n}} (\pi_{0,t}(d^{t-1}) + \pi_{1,t}(d^{t-1})y_{1} + \ldots + \pi_{t-1,t}(d^{t-1})y_{t-1} + \pi_{k,t}(d^{t-1})x_{ik}^{*}$$

$$f^{m_{n}}(y) = \sum_{s=1}^{m_{n}} f_{s}y^{s-1}$$

Probabilities obtained by assuming an EV1 additive choice shock

$$p_t(d|h) = \frac{\exp(u_t(d|h))}{\sum_{d'} \exp(u_t(d'|h))}$$

Sieve MLE estimation - functionals

• Simple example with static choice (e.g. occupational choice). For a rate of time preference ρ , the present value of lifetime earnings is:

$$\widetilde{Y}_{t_0}(d) = \sum_{t=t_0}^{T} \frac{Y_t(d)}{(1+\rho)^{t-t_0}}$$

ullet Predictable component is given by, denoting by \mathcal{I}_{t_0} the information set at time $t=t_0$:

$$E(\widetilde{Y}_{t_0}(d)|\mathcal{I}_{t_0})$$

where we assume that $\mathcal{I}_{t_0} = \{X_k^*, W^{t_0}\}$ with $W^t = (Y^{t-1}, D^{t-1}, Z^t)$

Sieve MLE estimation - functionals

• Simple example with static choice (e.g. occupational choice). For a rate of time preference ρ , the present value of lifetime earnings is:

$$\widetilde{Y}_{t_0}(d) = \sum_{t=t_0}^{T} \frac{Y_t(d)}{(1+\rho)^{t-t_0}}$$

ullet Predictable component is given by, denoting by \mathcal{I}_{t_0} the information set at time $t=t_0$:

$$E(\widetilde{Y}_{t_0}(d)|\mathcal{I}_{t_0})$$

where we assume that $\mathcal{I}_{t_0} = \{X_k^*, W^{t_0}\}$ with $W^t = (Y^{t-1}, D^{t-1}, Z^t)$.

Sieve MLE estimation - functionals (Cont'd)

Variance of the predictable and unpredictable components of $\widetilde{Y}_{t_0}(d)$ are given by:

$$\begin{split} \sigma_{k,t_0}^2(d) &= \int \left(E(\widetilde{Y}_{t_0}(d)|\mathcal{I}_{t_0}) - E(\widetilde{Y}_{t_0}(d)) \right)^2 dF_{X_k^*,W^{t_0}}(x_k^*,w^{t_0}) \\ \sigma_{u,t_0}^2(d) &= \int \text{Var}(\widetilde{Y}_{t_0}(d)|\mathcal{I}_{t_0}) dF_{X_k^*,W^{t_0}}(x_k^*,w^{t_0}) \end{split}$$

- As agents learn and update their beliefs about $X_u^* \Rightarrow$ Evolution over time of share of predictable/unpredictable earnings variance.
- We wish to estimate and conduct inference on these types of parameters.

Sieve MLE estimation - functionals (Cont'd)

• We provide in the paper general results for the following class of functionals. Namely, consider a function f_1 which maps (θ, w, x_k^*) to $\mathbb R$ such that $f_1(\theta, w, x_k^*)$ is given by:

$$g\left(\mathsf{E}\left[\sum_{i\in I_t}\omega_i\mathsf{Y}_{\mathsf{t}_i}(d_i)\mid W^t=w, X_k^*=x_k^*\right], \mathsf{Var}\left[\sum_{i\in I_t}\omega_i\mathsf{Y}_{\mathsf{t}_i}(d_i)\mid W^t=w, X_k^*=x_k^*\right]\right)$$

• We define the functional of θ as

$$f(\theta) = \int f_1(\theta, w, x_k^*) dF_{W^t, X_k^*}(w, x_k^*).$$

 \Rightarrow We propose to estimate $f(\theta^*)$ via plug-in sieve MLE, and establish consistency and asymptotic normality.

Sieve MLE estimation - functionals (Cont'd)

• We provide in the paper general results for the following class of functionals. Namely, consider a function f_1 which maps (θ, w, x_k^*) to $\mathbb R$ such that $f_1(\theta, w, x_k^*)$ is given by:

$$g\left(\mathsf{E}\left[\sum_{i\in I_t}\omega_i\mathsf{Y}_{\mathsf{t}_i}(d_i)\mid W^t=w, \mathsf{X}_k^*=\mathsf{x}_k^*\right], \mathsf{Var}\left[\sum_{i\in I_t}\omega_i\mathsf{Y}_{\mathsf{t}_i}(d_i)\mid W^t=w, \mathsf{X}_k^*=\mathsf{x}_k^*\right]\right)$$

• We define the functional of θ as

$$f(\theta) = \int f_1(\theta, w, x_k^*) dF_{W^t, X_k^*}(w, x_k^*).$$

 \Rightarrow We propose to estimate $f(\theta^*)$ via plug-in sieve MLE, and establish consistency and asymptotic normality.

