4. RANDOM VECTORS AND THEIR DISTRIBUTION

Sometimes a single random variable is not enough to describe the outcomes of a random experiments. For example, to record the height and weight of every person in a certain community, we need a pair (x, y), where the components respectively represents he height and weight of a particular individuals. In many cases it is necessary to consider the joint behavior of two or more random variables.

Definition 4.1 (*n*-dimensional random vector). Let X_1, X_2, \ldots, X_n be *n* real random variables defined on a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The function $\mathbf{X} : \Omega \to \mathbb{R}^n$ defined by

$$\mathbf{X}(\omega) := (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$$

is called an n-dimensional random vector.

Let **X** be a *n*-dimensional random vector defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then the function $P_{\mathbf{X}}$ on $\mathcal{B}(\mathbb{R}^n)$ defined by

$$P_{\mathbf{X}}(B) = \mathbb{P}(\mathbf{X} \in B), \quad B \in \mathcal{B}(\mathbb{R}^n)$$

is a probability measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. This is called distribution of **X**.

Definition 4.2 (Joint cumulative distribution function (joint cdf)). Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ be an *n*-dimensional random vector. The function $F_{(X_1, X_2, \dots, X_n)} : \mathbb{R}^n \to [0, 1]$ defined by

$$F_{(X_1,X_2,\ldots,X_n)}(x_1,x_2,\ldots,x_n) = \mathbb{P}(X_1 \le x_1,X_2 \le x_2,\ldots,X_n \le x_n)$$

is called the joint cumulative distribution function (joint cdf) of the random variables X_1, X_2, \ldots, X_n .

Marginal cumulative distribution function (marginal cdf): In the following, we consider n = 2, and the same results will hold for n > 2. Let X and Y be two random variables with joint cdf $F_{(X,Y)}$. One can find the cdf of X and Y from the joint cdf $F_{(X,Y)}$. Indeed

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}\left(\bigcup_y \left\{X \le x, Y \le y\right\}\right) = \lim_{y \to \infty} \mathbb{P}(X \le x, Y \le y) = \lim_{y \to \infty} F_{(X,Y)}(x,y)$$

Similarly, we also have

$$F_Y(y) = \lim_{x \to \infty} F_{(X,Y)}(x,y).$$

The distribution functions F_X and F_Y are sometimes referred to as **marginal cdf** of X and Y. One can easily show that joint cdf is nondecreasing and right continuous on each of its arguments. Moreover, for any $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ with $x_1 \leq x_2$ and $y_1 \leq y_2$, set

$$A := \{x \le x_2, y \le y_2\}, \quad B = \{x \le x_1, y \le y_2\}, \quad C = \{x \le x_2, y \le y_1\}, \quad D = \{x \le x_1, y \le y_1\}.$$

Observe that

$$K_1 := \{x_1 < x \le x_2, y \le y_1\} = C \setminus D \implies P_{\mathbf{X}}(K_1) = P_{\mathbf{X}}(C) - P_{\mathbf{X}}(D)$$

 $K_2 := \{x_1 < x \le x_2, y \le y_2\} = A \setminus B \implies P_{\mathbf{X}}(K_2) = P_{\mathbf{X}}(A) - P_{\mathbf{X}}(B).$

Since $K_2 \setminus K_1 = \{x_1 < x \le x_2, y_1 < y \le y_2\}$, we have

$$0 \le P_{\mathbf{X}}(\{x_1 < x \le x_2, y_1 < y \le y_2\}) = P_{\mathbf{X}}(K_2) - P_{\mathbf{X}}(K_1)$$

= $P_{\mathbf{X}}(A) - P_{\mathbf{X}}(B) - (P_{\mathbf{X}}(C) - P_{\mathbf{X}}(D))$
= $F_{(X,Y)}(x_2, y_2) + F_{(X,Y)}(x_1, y_1) - F_{(X,Y)}(x_1, y_2) - F_{(X,Y)}(x_2, y_1)$.

Theorem 4.1. A function $F: \mathbb{R}^2 \to [0,1]$ is a joint cdf of some two dimensional random vector if and only if it satisfies the following conditions:

a) F is nondecreasing and right continuous with respect to each arguments.

b)
$$\lim_{y \to -\infty} F(x,y) = 0 = \lim_{x \to -\infty} F(x,y)$$
 and $\lim_{(x,y) \to (\infty,\infty)} F(x,y) = 1$.

c) For any $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ with $x_1 \leq x_2$ and $y_1 \leq y_2$,

$$F(x_2, y_2) + F(x_1, y_1) - F(x_1, y_2) - F(x_2, y_1) \ge 0.$$

Example 4.1. The function $F : \mathbb{R}^2 \to [0,1]$ given by

$$F(x,y) = \begin{cases} 0, & x < 0, \text{ or } y < 0, \text{ or } x + y < 1, \\ 1, & \text{otherwise} \end{cases}$$

is NOT a joint cdf of any two dimensional random vector. If so, then

$$0 \le \mathbb{P}(\frac{1}{3} < X \le 1, \frac{1}{3} < Y \le 1) = F(1, 1) + F(\frac{1}{3}, \frac{1}{3}) - F(1, \frac{1}{3}) - F(\frac{1}{3}, 1) = 1 + 0 - 1 - 1 = -1 < 0.$$

Definition 4.3 (Discrete random vector). A random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$ is said to be discrete if the random variables X_1, X_2, \dots, X_n are all discrete i.e., there exists a countable set $E \subseteq \mathbb{R}^n$ such that $\mathbb{P}(\mathbf{X} \in E) = 1$.

Definition 4.4 (Joint probability mass function). Let **X** be a discrete random vector. The function $p_{\mathbf{X}} : \mathbb{R}^n \to [0,1]$ defined by

$$p_{\mathbf{X}}(\mathbf{x}) = \begin{cases} \mathbb{P}(\mathbf{X} = \mathbf{x}), & \text{if } \mathbf{x} \text{ belongs to the image of } \mathbf{X} \\ 0, & \text{otherwise} \end{cases}$$

is called joint probability mass function (joint mpf) of X.

Marginal pmf: Let X and Y be two discrete random variable with joint pmf $p_{(X,Y)}$. Then we can compute pmf of X and Y in terms of $p_{(X,Y)}$ as follows:

$$p_X(x) = \mathbb{P}(X = x) = \mathbb{P}(\bigcup_y \{X = x, Y = y\}) = \sum_y \mathbb{P}(X = x, Y = y) = \sum_y p_{(X,Y)}(x,y)$$
$$p_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(\bigcup_x \{X = x, Y = y\}) = \sum_x \mathbb{P}(X = x, Y = y) = \sum_x p_{(X,Y)}(x,y).$$

 p_X and p_Y sometimes are referred as **marginal pmf** of X and Y.

Example 4.2. A fair coin is tossed three times. Let X be the number of heads in three tossing, and let Y denotes the difference between number of heads and number of tails in absolute value. Then $X \in \{0,1,2,3\}$ and $Y \in \{1,3\}$. In this case, $\Omega = \{H,T\}^3$. We define $\mathbb{P}(A) = \frac{|A|}{8}$. Thus, for example

$$\mathbb{P}(X=1,Y=1) = \mathbb{P}(\{HTT,THT,TTH\}) = \frac{3}{8}, \quad \mathbb{P}(X=2,Y=1) = \mathbb{P}(\{HHT,HTH,THH\}) = \frac{3}{8}.$$

The joint pmf and the marginal pmf are given in the following table:

Like in one variable case, joint cdf can be determined in terms of joint pmf. Indeed, since image of (X,Y) is the countable set $E = \{(x_i, y_j) : i = 0, 1, ..., j = 0, 1, 2, ...\}$, we see that, for any $(x,y) \in \mathbb{R}^2$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X \le x, Y \le y) = \sum_{x_i \le x, y_i \le y} \mathbb{P}(X = x_i, Y = y_i) = \sum_{x_i \le x, y_i \le y} p_{(X,Y)}(x_i, y_j).$$

Example 4.3. A fair die is rolled and a fair coin is tossed independently. Let X be the face value of the die and let

$$Y = \begin{cases} 0, & \text{if tail turns up} \\ 1, & \text{if head turns up} \end{cases}$$

FIGURE 1. Joint pmf and Marginal pmf

where the joint pmf of X and Y are given by

$$p_{(X,Y)}(x,y) = \begin{cases} \frac{1}{12}, & \textit{if } (x,y) \textit{ is image of } (X,Y) \\ 0, & \textit{otherwise}. \end{cases}$$

Find the joint cdf of X and Y.

Solution: Observe that $X \in \{1, 2, 3, 4, 5, 6\}$ and $Y \in \{0, 1\}$. By using the relation $F_{(X,Y)}(x,y) = \sum_{x_i \leq x, y_i \leq y} p_{(X,Y)}(x_i, y_j)$, we have

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x < 1, -\infty < y < \infty; & -\infty < x < \infty, y < 0 \\ \frac{1}{12}, & 1 \le x < 2, 0 \le y < 1 \\ \frac{1}{6}, & 2 \le x < 3, 0 \le y < 1; & 1 \le x < 2, y \ge 1 \\ \frac{1}{4}, & 3 \le x < 4, 0 \le y < 1 \\ \frac{1}{3}, & 4 \le x < 5, 0 \le y < 1; & 2 \le x < 3, y \ge 1 \\ \frac{5}{12}, & 5 \le x < 6, 0 \le y < 1 \\ \frac{1}{2}, & 6 \le x, 0 \le y < 1; & 3 \le x < 4, y \ge 1 \\ \frac{2}{3}, & 4 \le x < 5, y \ge 1 \\ 1, & x \ge 6, y \ge 1. \end{cases}$$

Definition 4.5. We say that X and Y are jointly continuous if there exists a nonnegative function $f_{(X,Y)}(\cdot,\cdot)$ defined for all real x and y, having the property that, for every Borel set $C \in \mathcal{B}(\mathbb{R}^2)$ such that

$$\mathbb{P}((X,Y) \in C) = \iint_{(x,y) \in C} f_{(X,Y)}(x,y) \, dx \, dy.$$

The function $f_{(X,Y)}(\cdot,\cdot)$ is called the joint probability density function (joint pdf) of X and Y.

Take $C = \{(x, y) : x \in A, y \in B\}$ where $A, B \in \mathcal{B}(\mathbb{R})$. Then we have

$$\mathbb{P}(X \in A, Y \in B) = \int_{B} \int_{A} f_{(X,Y)}(x,y) \, dx \, dy.$$

Thus, we have

$$F_{(X,Y)}(a,b) = \mathbb{P}(X \in (-\infty, a], Y \in (-\infty, b]) = \int_{-\infty}^{b} \int_{-\infty}^{a} f_{(X,Y)}(x,y) \, dx \, dy$$

$$\implies f_{(X,Y)}(a,b) = \frac{\partial^2}{\partial x \partial y} F_{(X,Y)}(a,b) = \frac{\partial^2}{\partial y \partial x} F_{(X,Y)}(a,b).$$

Take

$$f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dx.$$

Then $f_X \geq 0$ and $\int_{-\infty}^{\infty} f_X(x) dx = 1$. Same holds for $f_Y(\cdot)$. Moreover, for any $A, B \in \mathcal{B}(\mathbb{R})$, we have

$$\mathbb{P}(X \in A) = \mathbb{P}(X \in A, Y \in (-\infty, \infty)) = \int_{-\infty}^{\infty} \int_{A} f_{(X,Y)}(x,y) \, dx \, dy = \int_{A} f_{X}(x) \, dx$$
$$\mathbb{P}(Y \in B) = \mathbb{P}(X \in (-\infty, \infty), Y \in B) = \int_{B} \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dx \, dy = \int_{B} f_{Y}(y) \, dy.$$

The functions $f_X(\cdot)$ and $f_Y(\cdot)$ are referred as marginal probability density function (marginal pdf) of X and Y.

Example 4.4. The joint pdf of X and Y is given by

$$f_{(X,Y)}(x,y) = \begin{cases} 2e^{-x}e^{-2y}, & x > 0, y > 0\\ 0, & otherwise \end{cases}$$

Then compute: i) $\mathbb{P}(X > 1, Y < 1)$, ii) $\mathbb{P}(X > Y)$, iii) $\mathbb{P}(X < a)$. **Solution:** Note that $\mathbb{P}(X > 1, Y < 1) = \mathbb{P}(X \in A, Y \in B)$ where $A = (1, \infty)$, $B = (-\infty, 1)$. Thus, we have

$$\mathbb{P}(X > 1, Y < 1) = \int_{-\infty}^{1} \int_{1}^{\infty} f_{(X,Y)}(x,y) \, dx \, dy = \int_{0}^{1} \int_{1}^{\infty} 2e^{-x}e^{-2y} \, dx \, dy = \int_{0}^{1} 2e^{-2y} \Big[-e^{-x} \Big]_{1}^{\infty} \, dy$$
$$= e^{-1} \int_{0}^{1} 2e^{-2y} \, dy = e^{-1} (1 - e^{-2}) \, .$$

For ii), we proceed as follows:

$$\mathbb{P}(X < Y) = \iint_{(x,y):x < y} 2e^{-x}e^{-2y} \, dx \, dy = 2 \int_0^\infty \int_0^y e^{-x}e^{-2y} \, dx \, dy = \int_0^\infty 2e^{-2y} (1 - e^{-y}) \, dy = \frac{1}{3}.$$

Observe that $\mathbb{P}(X < a) = \mathbb{P}(X \in A)$ where $A = (-\infty, a)$. Thus, we have

$$\mathbb{P}(X < a) = \int_{-\infty}^{a} f_X(x) \, dx = \int_{-\infty}^{a} \left(\int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dy \right) dx$$
$$= \int_{0}^{a} \left(\int_{0}^{\infty} 2e^{-2y} e^{-x} \, dy \right) dx = \int_{0}^{a} e^{-x} \, dx = 1 - e^{-a}.$$

4.1. **Independent random variables:** Recall that $E, F \in \mathcal{F}$ are independent if $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$. Let X and Y be two given random variables. For any $A, B \in \mathcal{B}(\mathbb{R})$, $E = \{X \in A\}$ and $F = \{Y \in B\}$ are elements of \mathcal{F} . We can examine whether E and F are independent events or not.

Definition 4.6 (Independent random variables). Let X and Y be two real-valued random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We say that X and Y are independent if for any $A, B \in \mathcal{B}(\mathbb{R})$

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B). \tag{4.1}$$

Taking $A = (-\infty, x]$ and $B = (-\infty, y]$, we see that condition of independence (4.1) is equivalent to

$$\mathbb{P}(X \leq x, Y \leq y) = \mathbb{P}(X \leq x)\mathbb{P}(Y \leq y) \text{ i.e., } F_{(X|Y)}(x,y) = F_X(x)F_Y(y) \quad \forall x, y.$$

When X and Y are discrete random variables, the condition (4.1) is equivalent to

$$p_{(X,Y)}(x,y) = p_X(x)p_Y(y) \quad \forall x, y.$$

Indeed, taking $A = \{x\}$ and $B = \{y\}$, we have

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$$
 i.e., $p_{(X,Y)}(x,y) = p_X(x)p_Y(y)$.

Conversely, let $p_{(X,Y)}(x,y) = p_X(x)p_Y(y)$. For any $A, B \in \mathcal{B}(\mathbb{R})$, we have

$$\mathbb{P}(X \in A, Y \in B) = \sum_{y \in B} \sum_{x \in A} p_{(X,Y)}(x,y) = \sum_{y \in B} \sum_{x \in A} p_X(x) p_Y(y)$$
$$= \sum_{x \in A} p_X(x) \sum_{y \in B} p_Y(y) = \mathbb{P}(X \in A) \mathbb{P}(Y \in B).$$

In the jointly continuous case, the condition of independence is equivalent to

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y) \quad \forall \ x,y.$$

Theorem 4.2. Let X and Y be independent random variables. Then for any Borel measurable functions f and g, the random variables f(X) and g(Y) are independent.

Proof. We need to show that, for any $(x,y) \in \mathbb{R}^2$,

$$\mathbb{P}(f(X) \leq x, g(Y) \leq y) = \mathbb{P}(f(X) \leq x) \mathbb{P}(g(Y) \leq y).$$

Indeed, we have

$$\mathbb{P}(f(X) \le x, g(Y) \le y) = \mathbb{P}(X \in f^{-1}(-\infty, x], Y \in g^{-1}(-\infty, y])$$
$$= \mathbb{P}(X \in f^{-1}(-\infty, x])\mathbb{P}(Y \in g^{-1}(-\infty, y]) = \mathbb{P}(f(X) \le x)\mathbb{P}(g(Y) \le y),$$

where in the second equality, we have used that X and Y are independent. This completes the proof.

A necessary and sufficient condition for the random variables X and Y to be independent is given in the following theorem.

Theorem 4.3. The continuous (discrete) random variables X and Y are independent if and only iff their joint pdf (pmf) can be expressed as

$$f(X,Y)(x,y) = h(x)g(y), \quad -\infty < x < \infty, \quad -\infty < y < \infty.$$

The concept of independence can be generalised for n random variables as follows: X_1, X_2, \ldots, X_n are said to be independent if for any $A_1, A_2, \ldots, A_n \in \mathcal{B}(\mathbb{R})$

$$\mathbb{P}(X_1 \in A_1, X_2 \in A_2, \dots, X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$$

which is equivalent to

$$F_{(X_1,X_2,...,X_n)}(x_1,x_2,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i).$$

We say that an infinite collection of random variables is independent if every finite sub-collection is independent.

Definition 4.7. We say that two random variables X and Y are independent and identically distributed, in short **i.i.d**, random variables if

- a) X and Y are independent
- b) X and Y have same distribution i.e., $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$ for any $A \in \mathcal{B}(\mathbb{R})$.

If X_1, X_2, \ldots, X_n are n independent random variables, then $X_1, X_2, \ldots, X_k, k \leq n$ are also independent. Indeed,

$$\mathbb{P}(X_{1} \in A_{1}, X_{2} \in A_{2}, \dots, X_{k} \in A_{k}) = \mathbb{P}(X_{1} \in A_{1}, X_{2} \in A_{2}, \dots, X_{k} \in A_{k}, X_{k+1} \in \mathbb{R}, \dots, X_{n} \in R)$$

$$= \prod_{i=1}^{n} \mathbb{P}(X_{i} \in A_{i}) \text{ where } A_{i} = \mathbb{R} \text{ for } i = k+1, k+2, \dots, n$$

$$= \prod_{i=1}^{k} \mathbb{P}(X_{i} \in A_{i}).$$

Moreover, we have the following theorem.

Theorem 4.4. Let X_1, X_2, \ldots, X_n are n independent random variables. Let Y be a random variable defined in terms of X_1, X_2, \ldots, X_k and Z be another random variable defined in terms of $X_{k+1}, X_{k+2}, \ldots, X_n$ where $1 \le k \le n$. Then Y and Z are independent.

Example 4.5. Let X_1, X_2, X_3 and X_4 are independent random variables. Then $Y = X_1X_2 + X_3$ and $Z = e^{X_4}$ are independent, and hence

$$\mathbb{E}[e^{X_4}(X_1X_2 + X_3)] = \mathbb{E}[e^{X_4}]\mathbb{E}[X_3] + \mathbb{E}[e^{X_4}]\mathbb{E}[X_1]\mathbb{E}[X_2].$$

Example 4.6. Let X and Y be independent random variables with pdf given by

$$f_X(x) = \frac{x^2}{9} \mathbf{1}_{(0,3)}(x), \quad f_Y(y) = \frac{1}{y^2} \mathbf{1}_{(1,\infty)}(y).$$

Find $\mathbb{P}(XY > 1)$.

Solution: Since X and Y are independent, their joint pdf is given by

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{x^2}{9y^2}, & 0 < x < 3, \ y > 1\\ 0, & otherwise. \end{cases}$$

Hence, we obtain

$$\mathbb{P}(XY > 1) = \int_{1}^{\infty} \int_{\frac{1}{y}}^{3} \frac{x^{2}}{9y^{2}} dx dy = \int_{1}^{\infty} \frac{1}{27y^{2}} [27 - \frac{1}{y^{3}}] dy$$
$$= \int_{1}^{\infty} \frac{1}{y^{2}} dy - \frac{1}{27} \int_{1}^{\infty} \frac{1}{y^{5}} dy = 1 - \frac{1}{108} \approx 0.99074.$$

Sum of independent random variables: Let X and Y be two independent random variables. Let Z = X + Y. Then

$$F_Z(a) = \mathbb{P}(X + Y \le a) = \iint_{x+y \le a} f_{(X,Y)}(x,y) \, dx \, dy = \iint_{x+y \le a} f_X(x) f_Y(y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{a-y} f_X(x) \, dx \right) f_Y(y) \, dy = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) \, dy$$
$$\implies f_Z(a) = \frac{d}{da} F_Z(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) \, dy = f_X * f_Y(a)$$

where * is the convolution operation.

Example 4.7. Let X and Y be two independent random variables with pdf f_X and f_Y given by

$$f_X(a) = f_Y(a) = \begin{cases} 1, & 0 < a < 1 \\ 0, & otherwise. \end{cases}$$

Then find the pdf of X + Y.

Solution: We have $f_{X+Y}(x) = \int_0^1 f_X(x-y) \, dy$. We evaluate this integral for different values of x. Observe that, if x < 0 or $x \ge 2$, $f_X(x-y) = 0$ for all $y \in (0,1)$ and hence $f_{X+Y}(x) = 0$. Case 1: $0 \le x \le 1$: Then $f_{X+Y}(x) = \int_0^x dy = x$.

Case 2: $1 \le x \le 2$: Then $f_{X+Y}(x) = \int_{x-1}^{1} dy = 2 - x$.

Thus, we obtain

$$f_{X+Y}(x) = \begin{cases} 0, & 0 < x; & x \ge 2\\ x, & 0 \le x \le 1\\ 2 - x, & 1 < x < 2. \end{cases}$$

Example 4.8. Let X and Y be two independent Poisson random variables with parameter λ_1 and λ_2 . Then find the distribution of X + Y.

Solution: Note that the event $\{X + Y = n\}$ may be written as union of disjoint events: $\{X = n\}$ k, Y = n - k, $0 \le k \le n$. Thus, we have

$$\mathbb{P}(X+Y=n) = \sum_{k=0}^{n} \mathbb{P}(X=k,Y=n-k) = \sum_{k=0}^{n} \mathbb{P}(X=k)\mathbb{P}(Y=n-k) = \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1}+\lambda_{2})^{n} = e^{-(\lambda_{1}+\lambda_{2})} \frac{(\lambda_{1}+\lambda_{2})^{n}}{n!}.$$

Thus, X + Y has a Poisson distribution with parameter $(\lambda_1 + \lambda_2)$. We can generalise it to any finite sum of independent Poisson random variables.

Lemma 4.5. If X and Y are independent then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$$

Proof. Suppose X and Y are jointly continuous with joint pdf $f_{(X,Y)}$. Then

$$\mathbb{E}[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{(X,Y)}(x,y) \, dx \, dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x) f_Y(y) \, dx \, dy$$
$$= \left(\int_{-\infty}^{\infty} x f_X(x) \, dx \right) \left(\int_{-\infty}^{\infty} y f_Y(y) \, dy \right) = \mathbb{E}[X] \mathbb{E}[Y].$$

Converse of this lemma does not hold in general. To see this, let X be continuous random variable with pdf

$$f_X(x) = \begin{cases} \frac{1}{2}, & -1 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

Take $Y = X^2$. Then clearly X and Y are NOT independent, but observe that

$$\mathbb{E}[XY] = \mathbb{E}[X^3] = 0, \quad \mathbb{E}[X] = 0, \quad \mathbb{E}[Y] = \mathbb{E}[X^2] = \frac{1}{3} \implies \mathbb{E}[XY] = 0 = \mathbb{E}[X]\mathbb{E}[Y].$$

4.2. Moment generating function of sum of independent random variables: Let X and Y be two independent random variables with moment generating function $m_X(t)$ and $m_Y(t)$. Then the moment generating function of X + Y can be calculated as follows:

$$m_{X+Y}(t) = \mathbb{E}[e^{t(X+Y)}] = \mathbb{E}[e^{tX}e^{tY}].$$

Since X and Y are independent, the random variables e^{tX} and e^{tY} and independent and hence

$$m_{X+Y}(t) = \mathbb{E}[e^{tX}e^{tY}] = \mathbb{E}[e^{tX}]\mathbb{E}[e^{tY}] = m_X(t)m_Y(t).$$

Example 4.9. Let X and Y be two independent binomial random variables with parameters (n,p) and (m,p) respectively. Find the distribution of X+Y.

Solution: We have seen that moment generating function of a binomial (n, p) random variable is $m_X(t) = (pe^t + 1 - p)^n$. The mgf of X + Y is

$$m_{X+Y}(t) = m_X(t)m_Y(t) = (pe^t + 1 - p)^n(pe^t + 1 - p)^m = (pe^t + 1 - p)^{n+m}.$$

This shows that X + Y is again a binomial random variable with parameters (m + n) and p. Similarly, if X_i are independent binomial random variables with parameters (n_i, p) for i = 1, 2, ..., N, then $\sum_{i=1}^{N} X_i$ is binomial random variable with parameters $(\sum_{i=1}^{N} n_i, p)$.

4.3. Characteristic function of sum of independent random variables: Let X and Y be two independent random variables with characteristic $\phi_X(t)$ amd $\phi_Y(t)$ respectively. Then the characteristic function of X+Y is

$$\begin{split} \phi_{X+Y} &= \mathbb{E}[e^{it(X+Y)}] = \mathbb{E}[e^{itX}e^{itY}] = \mathbb{E}\big[\{\cos(tX) + i\sin(tX)\} \cdot \{\cos(tY) + i\sin(tY)\}\big] \\ &= \mathbb{E}[\cos(tX)]\mathbb{E}[\cos(tY)] - \mathbb{E}[\sin(tX)]\mathbb{E}[\sin(tY)] \\ &+ i\left\{\mathbb{E}[\sin(tX)]\mathbb{E}[\cos(tY)] + \mathbb{E}[\cos(tX)]\mathbb{E}[\sin(tY)]\right\} \\ &= \left\{\mathbb{E}[\cos(tX)] + i\,\mathbb{E}[\sin(tX)]\right\} \cdot \left\{\mathbb{E}[\cos(tY)] + i\,\mathbb{E}[\sin(tY)]\right\} = \phi_X(t)\phi_Y(t). \end{split}$$

Example 4.10. Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\nu, \tau^2)$ such that X and Y are independent. Then $X + Y \sim \mathcal{N}(\mu + \nu, \sigma^2 + \tau^2)$. Indeed,

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t) = e^{i\mu t - \frac{t^2\sigma^2}{2}}e^{i\nu t - \frac{t^2\tau^2}{2}} = e^{it(\mu+\nu) - \frac{t^2(\sigma^2+\tau^2)}{2}}$$

which is the characteristic function of a normal $\mathcal{N}(\mu + \nu, \sigma^2 + \tau^2)$. Similarly, if $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ for i = 1, 2, ... N and they are independent, then $\sum_{i=1}^{N} X_i \sim \mathcal{N}(\sum_{i=1}^{N} \mu_i, \sum_{i=1}^{N} \sigma_i^2)$.

4.4. Joint probability distribution of functions of random variables: Let X_1, X_2, \ldots, X_n be random variables and $g : \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that $Y = g(X_1, X_2, \ldots, X_n)$ is a real-valued random variable. Then

$$\mathbb{P}(Y \leq y) = \mathbb{P}(g(X_1, X_2, \dots, X_n) \leq y)$$

$$= \begin{cases} \sum_{\{(x_1, x_2, \dots, x_n) : g(x_1, x_2, \dots, x_n) \leq y\}} \mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) & \text{discrete case} \\ \iint_{\{(x_1, x_2, \dots, x_n) : g(x_1, x_2, \dots, x_n) \leq y\}} f_{(X_1, X_2, \dots, X_n)}(x_1, x_2, \dots, x_n) \, dx_1 \, dx_2 \dots dx_n & \text{continuous case} \end{cases}$$

where in the continuous case, $f_{(X_1,X_2,...,X_n)}(\cdot)$ is the joint density function of the n random variables $X_1,X_2,...,X_n$.

Example 4.11. Let (X_1, X_2) be a two dimensional random vector with joint pdf given by

$$f_{(X_1,X_2)}(x_1,x_2) = \begin{cases} 2, & 0 \le x_1 \le x_2 \le 1\\ 0, & otherwise \end{cases}$$

What is the pdf of $X_1 + X_2$?

Solution: Let $Y = X_1 + X_2$. Observe that for y < 0, $\mathbb{P}(Y \le y) = 0$ and for y > 2, $\mathbb{P}(Y \le y) = 1$. Let $0 \le y \le 1$. Then

$$\mathbb{P}(Y \le y) = \int_{x_1=0}^{\frac{y}{2}} \int_{x_2=x_1}^{y-x_1} 2dx_2 \, dx_1 = 2 \int_0^{\frac{y}{2}} (y - 2x_1) \, dx_1 = \frac{y^2}{2} \, .$$

Let $1 < y \le 2$. Then

$$\mathbb{P}(Y \le y) = \int_{x_1=0}^{y-1} \int_{x_2=x_1}^{2} 2dx_2 \, dx_1 + \int_{x_1=y-1}^{\frac{y}{2}} \int_{x_2=x_1}^{y-x_1} 2dx_2 \, dx_1 = -\frac{y^2}{2} + 2y - 1$$

Hence, we have

$$F_Y(y) = \begin{cases} 0 & y < 0 \\ \frac{y^2}{2} & 0 \le y \le 1 \\ -\frac{y^2}{2} + 2y - 1 & 1 < y \le 2 \\ 0 & y > 2 \end{cases}$$

Hence the density function of Y is given by

$$f_Y(y) = \begin{cases} y & 0 \le y \le 1\\ 2 - y & 1 < y \le 2\\ 0 & otherwise. \end{cases}$$

Let $f_{(X_1,X_2,\ldots,X_n)}(\cdot)$ be a given joint density function of the n random variables X_1,X_2,\ldots,X_n . We want to find joint density function of $Y_1,Y_2,\ldots Y_n$, where $Y_i=g_i(X_1,X_2,\ldots,X_n),\ i\leq i\leq n$. Assume that the functions g_i have continuous partial derivatives and that the Jacobian determinant

$$J(x_1, x_2, \dots, x_n) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \dots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \dots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \dots & \frac{\partial g_n}{\partial x_n} \end{vmatrix} \neq 0$$

at all points $(x_1, x_2, ..., x_n)$. Further we assume that the equations $y_i = g_i(x_1, x_2, ..., x_n)$ have a unique solution, say $x_i = h_i(y_1, y_2, ..., y_n)$ for $1 \le i \le n$. Then the joint density function of $Y_1, Y_2, ..., Y_n$, is given by

$$f_{(Y_1,Y_2,\ldots,Y_n)}(y_1,y_2,\ldots,y_n) = f_{(X_1,X_2,\ldots,X_n)}(x_1,x_2,\ldots,x_n)|J(x_1,x_2,\ldots,x_n)|^{-1}$$

where $x_i = h_i(y_1,y_2,\ldots,y_n)$ for $i = 1,2,\ldots,n$.

Example 4.12. Let X_1 and X_2 be two independent standard normal random variables. Find the joint density function of Y_1 and Y_2 where

$$Y_1 = X_1 + X_2, \quad Y_2 = X_1 - X_2.$$

Solution: Let $g_1(x_1, x_2) = x_1 + x_2$ and $g_2(x_1, x_2) = x_1 - x_2$. Then

$$J(x_1, x_2) = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0.$$

Moreover, the equations $y_1 = x_1 + x_2$ and $y_2 = x_1 - x_2$ have unique solution given by

$$x_1 = \frac{y_1 + y_2}{2}, \quad x_2 = \frac{y_1 - y_2}{2}.$$

Observe that, due to independence, the joint density function of X_1 and X_2 is given by

$$f_{(X_1,X_2)}(x_1,x_2) = \frac{1}{2\pi}e^{-\frac{x_1^2 + x_2^2}{2}}.$$

Thus, the joint density function of Y_1 and Y_2 is

$$f_{(Y_1,Y_2)}(y_1,y_2) = \frac{f_{(X_1,X_2)}(\frac{y_1+y_2}{2},\frac{y_1-y_2}{2})}{2} = \frac{1}{\sqrt{4\pi}}e^{-\frac{y_1^2}{4}}\frac{1}{\sqrt{4\pi}}e^{-\frac{y_2^2}{4}}.$$

Let $g: \mathbb{R}^n \to \mathbb{R}$ be a Borel measurable function and X_1, X_2, \dots, X_n are given random variables. If (X_1, X_2, \dots, X_n) is discrete type and

$$\sum_{x_1, x_2, \dots, x_n} |g(x_1, x_2, \dots, x_n)| \mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) < +\infty$$

then the expected value of $Y = g(X_1, X_2, \dots, X_n)$ is given by

$$\mathbb{E}[g(X_1, X_2, \dots, X_n)] = \sum_{x_1, x_2, \dots, x_n} g(x_1, x_2, \dots, x_n) \mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n).$$

If (X_1, X_2, \dots, X_n) is of continuous type with joint density function $f_{(X_1, X_2, \dots, X_n)}(\cdot, \cdot, \dots, \cdot)$ and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} |g(x_1, x_2, \dots, x_n)| f_{(X_1, X_2, \dots, X_n)}(x_1, x_2, \dots, x_n) \prod_{i=1}^{n} dx_i < +\infty$$

then the expected value of $Y = g(X_1, X_2, \dots, X_n)$ is given by

$$\mathbb{E}[g(X_1, X_2, \dots, X_n)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1, x_2, \dots, x_n) f_{(X_1, X_2, \dots, X_n)}(x_1, x_2, \dots, x_n) \prod_{i=1}^n dx_i.$$

Example 4.13. An accident occurs at a point X that is uniformly distributed on a road of length L. At the time of the accident, an ambulance is at a location Y that is also uniformly distributed on the road. Assuming that X and Y are independent, find the expected distance between the ambulance and the point of the accident.

Solution: We need to compute $\mathbb{E}[|X-Y|]$. Let g(x,y) = |x-y|. Then g is continuous on \mathbb{R}^2 and hence |X-Y| is a random variable. Due to independence, the joint density function of X and Y is given by

$$f_{(X,Y)}(x,y) = \frac{1}{L^2}, \quad 0 < x < L, \ 0 < y < L.$$

Therefore,

$$\mathbb{E}[|X - Y|] = \frac{1}{L^2} \int_0^L \int_0^L |x - y| \, dy \, dx \, .$$

Observe that

$$\int_0^L |x - y| \, dy = \int_0^x (x - y) \, dy + \int_x^L (y - x) \, dy = \frac{L^2}{2} + x^2 - xL.$$

Hence, we have

$$\mathbb{E}[|X - Y|] = \frac{1}{L^2} \int_0^L \left(\frac{L^2}{2} + x^2 - xL\right) dx = \frac{L}{3}.$$

4.5. Conditional expectation and its properties: Recall that for any events E and F, $\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$ provided $\mathbb{P}(F) > 0$. Let X and Y be jointly discrete random variables. Then we define the conditional probability mass function (conditional pmf) of X given that Y = y, denoted by $p_{X|Y}(x|y)$

$$p_{X\big|Y}(x\big|y) := \mathbb{P}(X=x\big|Y=y) = \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)} = \frac{p_{(X,Y)}(x,y)}{p_{Y}(y)}$$

for all y such that $p_Y(y) > 0$. The conditional distribution function of X given that Y = y is defined, for all y such that $p_Y(y) > 0$, by

$$F_{X\big|Y}(x\big|y) := \mathbb{P}(X \leq x|Y=y) = \sum_{a \leq x} p_{X\big|Y}(a\big|y).$$

Remark 4.1. If X is independent of Y, then $p_{X|Y}(x|y) = \mathbb{P}(X = x)$. Indeed

$$p_{X\big|Y}(x\big|y) = \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)} = \frac{\mathbb{P}(X=x)\mathbb{P}(Y=y)}{\mathbb{P}(Y=y)} = \mathbb{P}(X=x)\,.$$

Example 4.14. Let X and Y be two discrete random variables such that their joint pmf is given by

$$p_{(X,Y)}(0,0) = 0.4, \quad p_{(X,Y)}(0,1) = 0.2, \quad p_{(X,Y)}(1,0) = 0.1, \quad p_{(X,Y)}(1,1) = 0.3.$$

Find $\mathbb{P}(X = i | Y = 1)$ and $\mathbb{P}(X = i | Y = 0)$.

Solution: First note that

$$p_Y(0) = \sum_{i=0}^{1} p_{(X,Y)}(i,0) = 0.4 + 0.1 = 0.5, \quad p_Y(1) = \sum_{i=0}^{1} p_{(X,Y)}(i,1) = 0.2 + 0.3 = 0.5.$$

Hence, we have

$$\mathbb{P}(X=i|Y=1) = \frac{p_{(X,Y)}(i,1)}{p_Y(1)} = \begin{cases} \frac{2}{5}, & i=0\\ \frac{3}{5}, & i=1. \end{cases}$$
$$\mathbb{P}(X=i|Y=0) = \frac{p_{(X,Y)}(i,0)}{p_Y(0)} = \begin{cases} \frac{4}{5}, & i=0\\ \frac{1}{5}, & i=1. \end{cases}$$

Example 4.15. Let X and Y be two independent real-valued random variables such that $X \sim \operatorname{Poisson}(\lambda_1)$ and $Y \sim \operatorname{Poisson}(\lambda_2)$. Calculate the conditional distribution of X given that X+Y=n.

Solution: We first calculate the conditional pmf of X given that X + Y = n. We have

$$p_{X\big|X+Y}(k\big|n) = \frac{\mathbb{P}(X=k,X+Y=n)}{\mathbb{P}(X+Y=n)} = \frac{\mathbb{P}(X=k,Y=n-k)}{\mathbb{P}(X+Y=n)} = \frac{\mathbb{P}(X=k)\mathbb{P}(Y=n-k)}{\mathbb{P}(X+Y=n)}$$

Since X and Y are independent, $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$. Hence we obtain

$$\begin{split} p_{X \mid X+Y}(k \mid n) &= e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!} \Big(e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!} \Big)^{-1} \\ &= \binom{n}{k} \Big(\frac{\lambda_1}{\lambda_1 + \lambda_2} \Big)^k \Big(\frac{\lambda_2}{\lambda_1 + \lambda_2} \Big)^{n-k} \,. \end{split}$$

In other words, the conditional distribution of X given that X+Y=n is the binomial distribution with parameters n and $\frac{\lambda_1}{\lambda_1+\lambda_2}$.

4.5.1. Conditional distribution: continuous case: If X and Y are jointly continuous, then $\mathbb{P}(X=x)=0=\mathbb{P}(Y=y)$, and hence $\mathbb{P}(X\in B|Y=y)$ is not defined similar to discrete case. Let $\varepsilon>0$, and suppose that $\mathbb{P}(Y\in (y-\varepsilon,y+\varepsilon])>0$. For every x and every interval $(y-\varepsilon,y+\varepsilon]$, consider the conditional probability of events $X\leq x$ given that $Y\in (y-\varepsilon,y+\varepsilon]$

$$\mathbb{P}(X \le x \big| y - \varepsilon < Y \le y + \varepsilon) = \frac{\mathbb{P}(X \le x, y - \varepsilon < Y \le y + \varepsilon)}{\mathbb{P}(y - \varepsilon < Y \le y + \varepsilon)}.$$

Definition 4.8. The conditional cumulative distribution function (conditional cdf) of X given Y = y, denoted by $F_{X|Y}(x|y)$, is defined as the limit

$$\lim_{\varepsilon \to 0} \mathbb{P}(X \le x \big| y - \varepsilon < Y \le y + \varepsilon)$$

provided the limit exists. The conditional density function of X, given Y = y, denoted as $f_{X|Y}(x|y)$, as a non-negative function satisfying

$$F_{X|Y)}(x|y) = \int_{\infty}^{x} f_{X|Y}(t|y) dt.$$

Let $f_{(X,Y)}(x,y)$ be the joint pdf of X and Y such that $f_{(X,Y)}(\cdot,\cdot)$ is continuous and the marginal pdf $f_Y(\cdot)$ is continuous. Let y be such that $f_Y(y) > 0$. Then we have

$$F_{X|Y)}(x|y) = \lim_{\varepsilon \to 0} \frac{\int_{-\infty}^{x} \int_{y-\varepsilon}^{y+\varepsilon} f_{(X,Y)}(t,u) \, du \, dt}{\int_{y-\varepsilon}^{y+\varepsilon} f_{Y}(u) \, du} = \frac{\int_{-\infty}^{x} f_{(X,Y)}(t,y) \, dt}{f_{Y}(y)} = \int_{-\infty}^{x} \frac{f_{(X,Y)}(t,y)}{f_{Y}(y)} \, dt$$

It follows that, there exists a conditional pdf of X, given Y = y, that is expressed by

$$f_{X|Y}(x|y) = \frac{f_{(X,Y)}(x,y)}{f_Y(y)}$$
 $f_Y(y) > 0$.

The use of conditional densities allows us to define conditional probabilities of events associated with one random variable when we are given the value of a second random variable. That is, if X and Y are jointly continuous, then, for any set A,

$$\mathbb{P}(X \in A|Y = y) = \int_A f_{X|Y}(x|y) \, dx \,.$$

Example 4.16. Suppose that the joint density function of X and Y is given by

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{e^{-\frac{x}{y}}e^{-y}}{y}, & 0 < x < \infty, \ 0 < y < \infty \\ 0, & otherwise \end{cases}$$

Find $\mathbb{P}(X > 1|Y = y)$.

Solution: We need to find out the conditional density $f_{X|Y}(x|y)$. Observe that

$$f_{X|Y}(x|y) = \frac{f_{(X,Y)}(x,y)}{\int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx} = \frac{f_{(X,Y)}(x,y)}{e^{-y}} = \frac{1}{y}e^{-\frac{x}{y}}$$

and therefore

$$\mathbb{P}(X > 1 | Y = y) = \int_{1}^{\infty} \frac{1}{y} e^{-\frac{x}{y}} dx = e^{-\frac{1}{y}}.$$

4.5.2. Conditional expectation: Let X and Y be two given random variables. The conditional expectation of X, given Y = y, denoted as $\mathbb{E}[X|Y = y]$, is defined by

$$\mathbb{E}[X|Y=y] = \begin{cases} \sum_{x} x \mathbb{P}(X=x|Y=y), & \text{if } X \text{ and } Y \text{ are discrete and } p_Y(y) > 0, \\ \int_{-\infty}^x x f_{X|Y}(x|y) \, dx, & \text{if } X \text{ and } Y \text{ are continuous and } f_Y(y) > 0. \end{cases}$$

Example 4.17. If X and Y are independent binomial random variables with identical parameters n and p, calculate $\mathbb{E}[X|X+Y=m]$.

Solution: First we note that since X and Y are independent and $X, Y \sim \mathcal{B}(n, p)$, the sum of the random variable X + Y is again binomial random variable with parameters 2n and p i.e., $X + Y \sim \mathcal{B}(2n, p)$. Now for $k \leq \min\{m, n\}$

$$\begin{split} \mathbb{P}(X = k | X + Y = m) &= \frac{\mathbb{P}(X = k, X + Y = m)}{\mathbb{P}(X + Y = m)} = \frac{\mathbb{P}(X = k, Y = m - k)}{\mathbb{P}(X + Y = m)} \\ &= \frac{\mathbb{P}(X = k)\mathbb{P}(Y = m - k)}{\mathbb{P}(X + Y = m)} = \frac{\binom{n}{k}p^{k}(1 - p)^{n - k}\binom{n}{m - k}p^{m - k}(1 - p)^{n - m + k}}{\binom{2n}{m}p^{m}(1 - p)^{2n - m}} \\ &= \frac{\binom{n}{k}\binom{n}{m - k}}{\binom{2n}{m}} \end{split}$$

Hence,

$$\mathbb{E}[X|X+Y=m] = \sum_{k:k \leq \min\{m,n\}} k \mathbb{P}(X=k|X+Y=m) = \sum_{k:k \leq \min\{m,n\}} k \frac{\binom{n}{k} \binom{n}{m-k}}{\binom{2n}{m}} = \frac{m}{2}.$$

Example 4.18. Suppose that the joint density function of X and Y is given by

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{e^{-\frac{x}{y}}e^{-y}}{y}, & 0 < x < \infty, \ 0 < y < \infty \\ 0, & otherwise \end{cases}$$

Find $\mathbb{E}(X|Y=y)$.

Solution: We have already calculated conditional density $f_{X|Y}(x|y) = \frac{1}{y}e^{-\frac{x}{y}}$; see Example 4.16. Hence the conditional distribution of X, given that Y = y, is just the exponential distribution with mean y. Thus, $\mathbb{E}(X|Y = y) = y$.

Remark 4.2. Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function and X, Y, X_i $1 \le i \le n$ are given random variables. Then the following formulas remain valid:

$$\mathbb{E}[g(X)|Y=y] = \begin{cases} \sum_{x} g(x) \mathbb{P}(X=x|Y=y), & \text{if } X \text{ and } Y \text{ are discrete,} \\ \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) \, dx, & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

$$\mathbb{E}\Big[\sum_{i=1}^{n} X_i | Y=y \Big] = \sum_{i=1}^{n} \mathbb{E}[X_i | Y=y] \, .$$

Definition 4.9. Let X and Y be real-valued random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and $h : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function. Then the random variable $\mathbb{E}[h(X)|Y]$ defined by

$$\mathbb{E}[h(X)|Y] : \Omega \to \mathbb{R}$$
$$\omega \mapsto \mathbb{E}[h(X)|Y = Y(\omega)]$$

is called the conditional expectation of h(X) given Y. That is $\mathbb{E}[h(X)|Y]$ is a random variable which takes value $\mathbb{E}[h(X)|Y=y]$.

An extremely important property of conditional expectations is given by the following proposition.

Proposition 4.6. Let X, Y and Z be real-valued random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and $h : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function. If $\mathbb{E}[h(X)]$ exists then

$$\mathbb{E}[h(X)] = \mathbb{E}\big[\mathbb{E}[h(X)|Y]\big].$$

Moreover, the followings hold:

- i) $\mathbb{E}[X|Y] \ge 0$ if $\mathbb{P}(X \ge 0) = 1$.
- ii) If X and Y are independent, then $\mathbb{E}[X|Y] = \mathbb{E}[X]$.
- $iii) \mathbb{E}[Xh(Y)|Y] = h(Y)\mathbb{E}[X|Y].$
- iv) $\mathbb{E}[\alpha X + \beta Y|Z] = \alpha \mathbb{E}[X|Z] + \beta \mathbb{E}[Y|Z].$

Proof. Let X and Y are discrete. Then

$$\begin{split} \mathbb{E}\big[\mathbb{E}[h(X)|Y]\big] &= \sum_y \mathbb{E}[h(X)|Y=y] \mathbb{P}(Y=y) = \sum_y \sum_x h(x) \mathbb{P}(X=x|Y=y) \mathbb{P}(Y=y) \\ &= \sum_x h(x) \Big(\sum_y \mathbb{P}(X=x,Y=y)\Big) = \sum_x h(x) \mathbb{P}(X=x) = \mathbb{E}[h(X)] \,. \end{split}$$

If X and Y are continuous random variables with joint probability density function $f_{(X,Y)}$, then

$$\mathbb{E}\big[\mathbb{E}[h(X)|Y]\big] = \int_{-\infty}^{\infty} \mathbb{E}[h(X)|Y = y] f_Y(y) \, dy = \int_{-\infty}^{\infty} \Big(\int_{\infty}^{\infty} h(x) f_{(X|Y)}(x|y) \, dx\Big) f_Y(y) \, dy$$
$$= \int_{-\infty}^{\infty} \int_{\infty}^{\infty} h(x) f_{(X,Y)}(x,y) \, dx \, dy = \int_{\infty}^{\infty} h(x) \Big(\int_{-\infty}^{\infty} f_{(X,Y)}(x,y) \, dy\Big) \, dx$$
$$= \int_{\infty}^{\infty} h(x) f_X(x) \, dx = \mathbb{E}[h(X)] \, .$$

Proof of i)-iv) is left as exercise.

Example 4.19. Suppose that the number of people entering a department store on a given day is a random variable with mean 20. Suppose further that the amounts of money spent by these customers are independent random variables having a common mean of \$4. Finally, suppose also that the amount of money spent by a customer is also independent of the total number of customers who enter the store. What is the expected amount of money spent in the store on a given day?

Solution: Let N be the number of customers enter the store on a given day and ith customer spent X_i amount of money. It is given that $\mathbb{E}[N] = 20$, $\mathbb{E}[X_i] = 4$ and N and X_i 's are independent. The total amount of money spent is $Y := \sum_{i=1}^{N} X_i$. We need to find $\mathbb{E}[Y]$. Conditioning on N, we have $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]]$. Now

$$\mathbb{E}[Y|N = n] = \mathbb{E}\left[\sum_{i=1}^{N} X_i | N = n\right] = \sum_{i=1}^{n} \mathbb{E}[X_i | N = n] = \sum_{i=1}^{n} \mathbb{E}[X_i] = n\mathbb{E}[X]$$

where $\mathbb{E}[X] = \mathbb{E}[X_i]$. This implies that $\mathbb{E}\left[\sum_{i=1}^N X_i | N\right] = N\mathbb{E}[X]$. Therefore, we have $\mathbb{E}[Y] = \mathbb{E}\left[\mathbb{E}[Y|N]\right] = \mathbb{E}\left[N\mathbb{E}[X]\right] = \mathbb{E}[N]\mathbb{E}[X] = \80 .

The expected amount of money spent in the store on a given day is \$80.

4.6. Covariance, variance of sums, correlations and conditional variance:

Definition 4.10. The covariance between two random variables X and Y, denoted by Cov(X, Y), is defined by

$$\operatorname{Cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Proposition 4.7 (Properties of covariance). The followings hold:

- i) Cov(X, Y) = Cov(Y, X) and Cov(X, X) = Var(X).
- ii) Cov(aX + b, Y) = aCov(X, Y) for any $a, b \in \mathbb{R}$.
- *iii*) $Cov\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j).$
- $iv) \operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j).$

Proof. i) follows from the definition. To prove ii), we use linearity of expectation and have

$$Cov(aX + b, Y) = \mathbb{E}\left[\left(aX + b - a\mathbb{E}[X] - b\right)(Y - \mathbb{E}[Y])\right]$$
$$= \mathbb{E}\left[a(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\right] = a Cov(X, Y).$$

Proof of iii): Let $\mu_i = \mathbb{E}[X_i]$ and $\gamma_j = \mathbb{E}[Y_j]$. Then $\mathbb{E}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \mu_i$ and $\mathbb{E}\left[\sum_{j=1}^m Y_j\right] = \sum_{i=1}^m \gamma_j$. Using these, we have

$$Cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \mathbb{E}\left[\sum_{i=1}^{n} (X_{i} - \mu_{i}) \sum_{j=1}^{m} (Y_{j} - \gamma_{j})\right] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{m} (X_{i} - \mu_{i})(Y_{j} - \gamma_{j})\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E}\left[(X_i - \mu_i)(Y_j - \gamma_j) \right] = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_i, Y_j),$$

where we have used the fact that the expected value of a sum of random variables is equal to sum of the expected values.

Proof of iv): In view of i), ii) and iii), we have

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j}).$$

Remark 4.3. If X and Y are independent, then Cov(X,Y) = 0. However, the converse is NOT true in general. For example, consider a random variable X satisfying

$$\mathbb{P}(X = 0) = \mathbb{P}(X = 1) = \mathbb{P}(X = -1) = \frac{1}{3}$$

and Y given by

$$Y = \begin{cases} 0, & \text{if } X \neq 0 \\ 1, & \text{otherwise.} \end{cases}$$

Observe that XY = 0 and $\mathbb{E}[X] = 0$. Therefore, Cov(X, Y) = 0. However X and Y are clearly not independent.

In view of iv), we see that, if X_1, X_2, \ldots, X_n are pairwise independent, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

Example 4.20. Let $X_1, X_2, ..., X_n$ be **i.i.d** random variables with $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \text{Var}(X_i)$. Find $\text{Var}(\bar{X})$ and $\mathbb{E}[S^2]$ where

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

 \bar{X} is called sample mean and S^2 is called sample variance.

Solution: Since the expected value of a sum of random variables is equal to sum of the expected values, we see that $\mathbb{E}[\bar{X}] = \mu$. By using property of variance and independence of X_i 's, we get

$$\operatorname{Var}(\bar{X}) = \frac{1}{n^2} \operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{\sigma^2}{n}.$$

To find $\mathbb{E}[S^2]$, we start with the following identity:

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \sum_{i=1}^{n} \{ (X_{i} - \mu)^{2} + (\bar{X} - \mu)^{2} - 2(\bar{X} - \mu)(X_{i} - \mu) \}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\bar{X} - \mu)^{2} - 2n(\bar{X} - \mu) \sum_{i=1}^{n} \frac{X_{i} - \mu}{n}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\bar{X} - \mu)^{2}.$$

Taking expectation, we have

$$(n-1)\mathbb{E}[S^2] = \mathbb{E}\Big[\sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X} - \mu)^2\Big] = \sum_{i=1}^n \operatorname{Var}(X_i) - n\operatorname{Var}(\bar{X}) = n\sigma^2 - n\frac{\sigma^2}{n} = (n-1)\sigma^2$$
$$\implies \mathbb{E}[S^2] = \sigma^2.$$

We now prove one of the important inequality in probability theory, called Cauchy-Schwartz inequality.

Theorem 4.8 (Cauchy-Schwartz inequality). For random variables X and Y with $\mathbb{E}[X^2] < +\infty$, $\mathbb{E}[Y^2] < +\infty$, one has

$$\left| \mathbb{E}[XY] \right|^2 \le \mathbb{E}[X^2] \mathbb{E}[Y^2]$$
.

The equality holds if and only if there are real constants a and b, not both simultaneously zero, such that

$$\mathbb{P}(aX + bY = 0) = 1.$$

Proof. Let $\alpha = \mathbb{E}[Y^2]$ and $\beta = -\mathbb{E}[XY]$. Then $\alpha \geq 0$. For $\alpha = 0$, given the result holds. Let $\alpha > 0$. Thanks to linearity of expectation, we have

$$0 \leq \mathbb{E}\left[\left(\alpha X + \beta Y\right)^{2}\right] = \alpha^{2} \mathbb{E}[X^{2}] + \beta^{2} \mathbb{E}[Y^{2}] + 2\alpha\beta\mathbb{E}[XY]$$
$$= \alpha \mathbb{E}[Y^{2}] \mathbb{E}[X^{2}] + \alpha \left(-\mathbb{E}[XY]\right)^{2} + 2\alpha \left(-\mathbb{E}[XY]\right)\mathbb{E}[XY] = \alpha \left(\mathbb{E}[Y^{2}]\mathbb{E}[X^{2}] - \left(\mathbb{E}[XY]\right)^{2}\right).$$

Since $\alpha > 0$, the assertion follows from the above inequality.

Note that if $\mathbb{E}[Y^2]\mathbb{E}[X^2] = (\mathbb{E}[XY])^2$, then $\mathbb{E}[(\alpha X + \beta Y)^2] = 0$ and therefore we have $\mathbb{P}(\alpha X + \beta Y = 0) = 1$. If $\alpha > 0$, take $a = \alpha$ and $\beta = b$. If $\alpha = 0$, take a = 0 and b = 1. Conversely, let $\mathbb{P}(aX + bY = 0) = 1$ with $a \neq 0$. Then with probability 1, $X = -\frac{b}{a}Y$. In this case, one can easily show the equality in the assertion. This completes the proof.

Remark 4.4. Replacing X by |X| and Y by |Y| in the Cauchy-Schwartz inequality, we get

$$\mathbb{E}[|XY|] \le \sqrt{\mathbb{E}[X^2]} \sqrt{\mathbb{E}[Y^2]}. \tag{4.2}$$

Inequality (4.2) is also known as Cauchy-Schwartz inequality. Again, replacing X by $X - \mathbb{E}[X]$ and Y by $Y - \mathbb{E}[Y]$ in (4.2), we get the bound of the covariance of X and Y.

$$\left| \operatorname{Cov}(X,Y) \right| \le \mathbb{E} \left[\left| (X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right| \right] \le \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}$$

4.6.1. Correlation coefficient.

Definition 4.11 (Correlation). The correlation(coefficient) of two random variables X and Y, denoted by $\rho(X,Y)$, is defined by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

where σ_X and σ_Y are standard deviation of X and Y respectively.

If $\rho(X,Y)=0$, then X and Y are said to be **uncorrelated**.

Lemma 4.9. The correlation coefficient of X and Y has the following bound:

$$-1 \le \rho(X, Y) \le 1.$$

Proof. Let σ_X and σ_Y are standard deviation of X and Y respectively. We have

$$0 \le \operatorname{Var}\left(\frac{X}{\sigma_X} \pm \frac{Y}{\sigma_Y}\right) = \operatorname{Var}\left(\frac{X}{\sigma_X}\right) + \operatorname{Var}\left(\frac{Y}{\sigma_Y}\right) \pm 2\operatorname{Cov}\left(\frac{X}{\sigma_X}, \frac{Y}{\sigma_Y}\right)$$

$$\begin{split} &= \frac{1}{\sigma_X^2} \mathrm{Var}(X) + \frac{1}{\sigma_Y^2} \mathrm{Var}(Y) \pm 2 \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y} = 2 \big(1 \pm \rho(X,Y) \big) \\ &\implies -1 \leq \rho(X,Y) \leq 1 \,. \end{split}$$

Remark 4.5. Let $\rho(X,Y) = -1$. Then following the proof of Lemma 4.9, we see that $1 - \rho(X,Y) = \frac{1}{2} \operatorname{Var} \left(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y} \right)$ and therefore, in this case, $\operatorname{Var} \left(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y} \right) = 0$. Hence, with probability $1, \frac{X}{\sigma_X} - \frac{Y}{\sigma_Y}$ is constant. Therefore, there exists $a \in \mathbb{R}$ such that Y = bX + a where $b = \frac{\sigma_Y}{\sigma_X} > 0$. Similarly, if $\rho(X,Y) = 1$, then with probability 1, Y = bX + a for some $a \in \mathbb{R}$ with $b = -\frac{\sigma_Y}{\sigma_X} < 0$.

Converse part is also true i.e., if Y = bX + a, then $\rho(X,Y)$ is either 1 or -1 depending on the sign of b.

The correlation coefficient is a measure of the degree of linearity between X and Y. A value of $\rho(X,Y)$ near 1 or -1 indicates a high degree of linearity between X and Y, whereas a value near 0 indicates that such linearity is absent. A positive value of $\rho(X,Y)$ indicates that Y tends to increase when X does, whereas a negative value indicates that Y tends to decrease when X increases.

Example 4.21. Let X and Y be random variables with mean 0, variance 1 and correlation coefficient ρ . Show that

$$\mathbb{E}\big[\max\{X^2, Y^2\}\big] \le 1 + \sqrt{1 - \rho^2}.$$

Solution: We know that for any $u, v \in \mathbb{R}$, $\max\{u, v\} = \frac{1}{2}(u + v + |u - v|)$. Thus, by using Cauchy-Schwartz inequality along with the given condition, we have

$$\begin{split} \mathbb{E} \big[\max\{X^2, Y^2\} \big] &= \frac{1}{2} \Big(\mathbb{E}[X^2] + \mathbb{E}[Y^2] + \mathbb{E} \big[|(X - Y)(X + Y)| \big] \Big) \\ &\leq 1 + \frac{1}{2} \sqrt{\mathbb{E}[(X - Y)^2] \mathbb{E}[(X - Y)^2]} = 1 + \frac{1}{2} \sqrt{(2 + 2\mathbb{E}[XY])(2 - 2\mathbb{E}[XY])} \\ &= 1 + \sqrt{1 - \big(\mathbb{E}[XY]\big)^2} \,. \end{split}$$

Note that, since mean is zero and variance is 1 for both X and Y, one has

$$\mathbb{E}[XY] = \operatorname{Cov}(X, Y) = \rho(X, Y) = \rho.$$

Thus the assertion follows.

4.6.2. Conditional variance.

Definition 4.12 (Conditional variance). Let X and Y be real-valued random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[X^2]$ is finite. The conditional variance of X given Y, denoted as Var(X|Y), is defined by

$$\operatorname{Var}(X|Y) := \mathbb{E}\Big[\big(X - \mathbb{E}[X|Y]\big)^2|Y\Big].$$

Note that Var(X|Y) is a random variable which takes the value Var(X|Y=y). In view of the properties of conditional expectation, we see that

$$\operatorname{Var}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$
.

There is a very useful relationship between Var(X), and Var(X|Y) which can often be applied to compute Var(X).

Lemma 4.10. Let X and Y be real-valued random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[X^2]$ is finite. Then

$$Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}[X|Y]).$$

Proof. Since $Var(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$, one has, by using properties of conditional expectation

$$\mathbb{E}[\operatorname{Var}(X|Y)] = \mathbb{E}[X^2] - \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^2\right]. \tag{4.3}$$

On the other hand,

$$\operatorname{Var}(\mathbb{E}[X|Y]) = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}[X|Y]\right]\right)^{2} = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}[X]\right)^{2}. \tag{4.4}$$

Hence the assertion follows from (4.3) and (4.4).

Example 4.22. Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables, and let N be a nonnegative integer-valued random variable that is independent of the sequence X_i , $i \ge 1$. Compute $\operatorname{Var}\left(\sum_{i=1}^{N} X_i\right)$.

Solution: We have already seen that $\mathbb{E}\Big[\sum_{i=1}^N X_i|N\Big] = N\mathbb{E}[X]$ where $\mathbb{E}[X_i] = \mathbb{E}[X]$. For

given N, $\sum_{i=1}^{N} X_i$ is just the sum of fixed number of independent random variables and hence

 $\operatorname{Var}\left(\sum_{i=1}^{N}X_{i}|N\right)=\operatorname{NVar}(X), \text{ where }\operatorname{Var}(X)=\operatorname{Var}(X_{i}). \text{ Hence, from the conditional variance formula, we have}$

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = \mathbb{E}\left[\operatorname{Var}\left(\sum_{i=1}^{N} X_{i} | N\right)\right] + \operatorname{Var}\left(\mathbb{E}\left[\sum_{i=1}^{N} X_{i} | N\right]\right)$$
$$= \mathbb{E}[N \operatorname{Var}(X)] + \operatorname{Var}\left(N \mathbb{E}[X]\right)$$
$$= \mathbb{E}[N]\operatorname{Var}(X) + \left(\mathbb{E}[X]\right)^{2} \operatorname{Var}(N).$$