

Winning Space Race with Data Science

Kien Ng 11-October-2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- List of project methodologies:
 - Data Collection
 - Data Wrangling
 - Exploratory Data Analysis with Data Visualization
 - Exploratory Data Analysis with SQL
 - Building an Interactive Map with Folium
 - Building a Dashboard with Plotly Dash
 - Predictive Analysis (Classification)
- Results
 - Logistic Regression, SVM, and KNN classification models output similar accuracy score of 83%
 - Decision Tree algorithm accuracy score is 78%

Introduction

- SpaceX advertises Falcon 9 rocket launches on its website with a \$62 million price tag per launch compare to typical cost of \$165 million and above per launch for other spaceflight companies. Much of the savings is because SpaceX re-uses parts of its rocket.
- If we can accurately predict the likelihood of SpaceX first stage rocket landing successfully, we can determine the cost of a launch.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX API
 - Web scraping from Wikipedia
- Perform data wrangling
 - · Replace missing and null values with mean value
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Algorithms: Logistic Regression, Support Vector Machines, Decision Tree, K-Nearest Neighbors
 - Tune: use GridSearchCV to tune and select the best hyperparameters of each model
 - Evaluate the model: use score method to evaluate accuracy of each model

Data Collection

- SpaceX API
 - Request SpaceX launch data using GET request
 - Convert the requested JSON results into a Pandas dataframe using json.normalize()
- Web Scraping Wikipedia
 - Perform HTTP GET method to request Falcon9 Launch html page
 - Pull the data out of html and create a Pandas dataframe by parsing the html tables

Data Collection – SpaceX API

Data Collection – Scraping

Data Wrangling

Objective:

- perform Exploratory Data Analysis and determine training labels
- convert successful landing to 1 and unsuccessful landing to 0

Data Analysis:

- Calculate the number of launches on each launching site
- Calculate the number and occurrence of each orbit
- Calculate the number and occurrence of landing outcome per orbit type
- Create a landing outcome label from Outcome column
- Create a new Class column from landing outcome label on the dataframe, with:
 - 1 means successful landing
 - O means unsuccessful landing

EDA with Data Visualization

Plotted charts:

- Scatter plot to observe and show relationships between two numeric variables
 - a. Relationship between Flight Number and Launch Site
 - b. Relationship between Payload Mass and Launch Site
 - c. Relationship between Flight Number and Orbit type
 - d. Relationship between Payload Mass and Orbit type
- Bar Chart to compare things between different groups or categories
 - a. Relationship between Flight Number and Launch Site
- Line Plot shows frequency of data along a number line
 - a. Visualize the launch success yearly trend

EDA with SQL

SQL queries performed:

- Display the names of unique launch sites
- Display five records where launch site names begin with "CCA"
- Display total payload mass carried by boosters launched by NASA (CRS)
- Display payload average mass carried by booster version F9 v1.1
- Get the date of first successful landing outcome in ground pad
- List boosters with success in drone ship and payload mass between 4000 and 6000
- List total number of successful and failed landing outcomes
- List booster versions which have carried maximum payload mass
- List failed landing outcomes in drone ship, their booster versions and launch sites for year 2015
- Rank count of landing outcomes between 2010-06-04 and 2017-03-20 in descending order

Build an Interactive Map with Folium

Map objects added to folium map:

- Circle using folium.Circle()
 - to circle the coordinates and to draw attention to larger areas
- Marker using folium.Marker() and MarkerCluster()
 - folium.Marker() to plot markers on the map
 - MarkerCluster() combine markers with similar coordinates into one cluster on the map
- Distance using MousePosition() and folium.Polyline()
 - MousePosition() to get coordinates for a mouse over a point on the map
 - folium.PolyLine() to draw a line between coordinates

Build a Dashboard with Plotly Dash

- Plots and Graphs added to dashboard:
 - Pie chart:
 - a. For all launch sites to show total successful launches count
 - b. For a specific launch site to show Success vs Failed launch count for that site
 - Scatter plot to show Payload and Launch Success correlation by booster version
- Interactions added to dashboard:
 - Dropdown menu to enable launch site selection
 - Slider to enable payload range selection

Predictive Analysis (Classification)

<u>link to github</u>

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Payload vs. Orbit Type

• Heavier payloads have negative influence on GTO orbits and positive influence on Polar LEO orbits.

Launch Success Yearly Trend

Launch success rate has been increasing since 2013. It dropped in 2018 and increase again in 2019. It dipped slightly in 2020.

All Launch Site Names

• Use DISTINCT clause to eliminate all duplicates and fetch only unique records

Launch Site Names Begin with 'CCA'

In [7]: %sql SELECT * FROM SPACEX WHERE launch_site LIKE 'CCA%' LIMIT 5;													
	* ibm_db_sa://jjq73128:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqblod8lcg.databases.appdomain.cloud:32536/bludb Done.												
Out[7]:	DATE	Time (UTC)	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	Landing _Outcome			
	04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)			
	08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)			
	22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt			
	08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt			
	01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt			

- Use LIKE command in a WHERE clause to search for launch sites begin with `CCA`
- Use % as a wildcard and limit the result to five records

Total Payload Mass

- Use SUM() to get total payload mass
- Use WHERE clause to select only booster launched by NASA

Average Payload Mass by F9 v1.1

- Use AVG() to get average payload mass
- Use WHERE clause to select only booster version F9 v1.1

First Successful Ground Landing Date

- Use WHERE clause to select all successful landing outcome on ground pad and their dates
- Use ORDER BY clause to sort the result in ascending order
- Select the first record using LIMIT clause

Successful Drone Ship Landing with Payload between 4000 and 6000

```
In [11]: %sql SELECT booster version FROM SPACEX
      WHERE "Landing Outcome"='Success (drone ship)'
      AND payload mass kg > 4000 AND payload mass kg < 6000;
          * ibm db sa://jjq73128:***@764264db-9824-4b7c-82df-40d1
         Done.
Out[11]:
          booster version
             F9 FT B1022
             F9 FT B1026
            F9 FT B1021.2
            F9 FT B1031.2
```

- Use WHERE clause to select boosters successfully landed on drone ship
- Use AND clause to select boosters with payload mass > 4000 and < 6000

Total Number of Successful and Failure Mission Outcomes

- Use COUNT() to calculate mission outcome records
- Use GROUP BY clause to group rows or records with same values
- Use ORDER BY clause to sort the result with mission outcome column in ascending order

Boosters Carried Maximum Payload

In	[13]:		%%sql SELECT booster_version, payload_masskg_ FROM SPACEX WHERE payload_masskg_=(SELECT MAX(payload_masskg_) FROM SPACEX);									
			* ibm_db_sa: Done.	a764264db-9824-4b7c-82df-40d1b13897c2.t								
	Out[13	3]:	booster_version	payload_masskg_								
			F9 B5 B1048.4	15600								
			F9 B5 B1049.4	15600								
			F9 B5 B1051.3	15600								
			F9 B5 B1056.4	15600								
			F9 B5 B1048.5	15600								
			F9 B5 B1051.4	15600								
			F9 B5 B1049.5	15600								
			F9 B5 B1060.2	15600								
			F9 B5 B1058.3	15600								
			F9 B5 B1051.6	15600								
			F9 B5 B1060.3	15600								
			F9 B5 B1049.7	15600								

• Use WHERE clause to select boosters which have carried the maximum payload mass

2015 Launch Records

- Use WHERE clause to select the failed landing outcomes in drone ship, their booster versions, and launch site names
- Use LIKE command to filter the result for year 2015 only

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Use COUNT() to calculate all landing outcome records
- Use WHERE clause to select dates between 2010-06-04 and 2017-03-20
- Use GROUP BY clause to group rows or records with same values
- Use ORDER BY clause to sort the result with new Count column in descending order

All Falcon 9 Launch Sites Location

 Most of the launch sites are located along the ocean so the rockets can be safely launched and travel over the open water.

Landing Outcome of Launch Sites

KSC LC-39A

CCAFS SLC-40

- Green label is for successful launching and red label is failed launching
- KSC LC-49A site have more successful launching rate compare to CCAFS LC-40

Distance of Launch Site to its Proximities

• CCAFS LC-40 launch site distance from the coastline is about 0.88km

Total Success Launches for All Sites

- KSC LC-39A is the site with the most successful launches
- CCAFS SLC-40 is the site with the lowest successful launches

Launch Site with Highest Success Rate

KSC LC-39A launches ratio with successful launches of 76.9%

Payload vs Launch Outcome for All Sites

- Majority of successful launches are within the 2000kg-5000kg payload mass range
- FT booster have the most successful launches within this payload range

Classification Accuracy

- Logistic Regression, SVM and KNN models have similar accuracy score of 83%
- Even though accuracy of Decision Tree algorithm on validation dataset is 90%, but its accuracy score on test dataset is lower at 78%

Confusion Matrix

- Logistic Regression, SVM, and KNN models have similar confusion matrix results
- All three models generate three incorrect predictions of false positives (Type I error)

Conclusions

- Logistic Regression is the recommended algorithm to predict the success of first stage rocket landing, due to:
 - good accuracy for this simple dataset
 - easier implementation, compare to other classification models, interpretation and very efficient to train
 - reasonable computational requirements

Appendix

- Data Collection SpaceX API
 - Rocket launch data https://api.spacexdata.com/v4/launches/past
- Data Collection Web Scraping from Wikipedia
 - Falcon 9 historical launch records

https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

