Homework 7 - Energy

Corey Mostero - 2566652

 $9~\mathrm{May}~2023$

Contents

1	\mathbf{Boo}	Book																												
	1.1	6.19																												
	1.2	6.29																												
	1.3	6.31																												
	1.4	6.33																												
	1.5	6.45																												
	1.6	6.48																												
	1.7	6.51																												
	1.8	7.5 .																												
	1.9	7.9 .																												
	1.10	7.35																												
	1.11	7.40																												
	1.12	7.58								•				•			•	•	•		•	•				•		•		
2	Lab	Man	u	a	l																									
	2.1	871 .																												
	2.2	876 .																												
	2.3	884 .																												
	2.4	885 .																												

1 Book

1.1 6.19

$$\begin{split} m_{\rm asteroid} &= 2.4 \times 10^{15} \, {\rm kg} \\ v_{\rm asteroid} &= 20 \, {\rm km \, s^{-1}} = 2 \times 10^4 \, {\rm m \, s^{-1}} \end{split}$$

(a) How much kinetic energy did this meteor deliver to the ground?

$$E = \frac{1}{2}mv^{2}$$

$$E = \frac{1}{2}(2.4 \times 10^{15} \text{ kg})(2 \times 10^{4} \text{ m s}^{-1})^{2}$$

$$E = 4.8 \times 10^{23} \text{ kg m s}^{-1}$$

$$E = 4.8 \times 10^{23} \text{ J}$$

(b) How does this energy compare to the energy released by a $1.0\,\mathrm{Mt}$ nuclear bomb?

$$E_{\text{asteroid}} = 4.8 \times 10^{23} \,\text{J}$$

 $E_{\text{bomb}} = 4.184 \times 10^{15} \,\text{J}$

$$\begin{split} \frac{E_{\rm asteroid}}{E_{\rm bomb}} \\ \frac{4.8 \times 10^{23} \, \rm J}{4.184 \times 10^{15} \, \rm J} &= 1.147 \times 10^8 \, \rm J \end{split}$$

The kinetic energy of the asteroid is $1.147 \times 10^8 \,\mathrm{J}$ as much kinetic energy from a 1.0 Mt nuclear bomb.

1.2 6.29

$$E_A = 27 \,\mathrm{J}$$

$$m_B = \frac{1}{4} E_A$$

(a) If object B also has 27 J of kinetic energy, is it moving faster or slower than object A? By what factor?

$$E_A = 27 \,\mathrm{J}$$

$$E_A = E_B$$

$$\frac{1}{2}m_A v_A^2 = \frac{1}{2}m_B v_B^2$$

$$m_A v_A^2 = \left(\frac{1}{4}m_A\right)v_B^2$$

$$4v_A^2 = v_B^2$$

$$v_B = \sqrt{4v_A^2}$$

$$v_B = 2v_A$$

The velocity of v_B is two times v_A , implying that object B is moving twice as fast as object A. (The factor would be 2)

(b) By what factor does the speed of each object change if total work $-18\,\mathrm{J}$ is done on each?

$$W_{\text{total}} = -18 \,\text{J}$$

$$W_{\text{total}} = E_A - E_B$$
$$-18 J = E_A - 27 J$$
$$E_A = 9 J$$

$$\frac{\frac{1}{2}m_{A_f}v_{A_f}^2}{\frac{1}{2}m_{A_i}v_{A_i}^2} = \frac{E_{A_f}}{E_{B_i}}$$

$$\frac{v_{A_f}^2}{v_{A_i}^2} = \frac{9 \text{ J}}{27 \text{ J}}$$

$$v_{A_f}^2 = \frac{1}{3}v_{A_i}^2$$

$$v_{A_f} = \frac{1}{\sqrt{3}}v_{A_i}$$

As negative work is done upon the object A calculated above, it makes sense that the resulting (final) velocity would be less than the initial velocity (in this case specifically by the factor of $\frac{1}{\sqrt{3}}$).

It can also be concluded that due to object A and B having both the same kinetic energy $(E_A = E_B)$ and work done upon them, the factor calculated will be the same.

1.3 6.31

(a) Use the work-energy theorem to calculate the minimum stopping distance of the car in terms of v_0 , g, and the coefficient of kinetic friction μ_k between the tires and the road.

$$d = \frac{v_i^2}{2\mu g}$$

- (b) By what factor would the minimum stopping distance change if
 - (i) the coefficient of kinetic friction were doubled?

$$\mu = 2\mu$$

$$W = E_f - E_i$$

$$-2\mu m_{\text{car}} g d_1 = -\frac{1}{2} m_{\text{car}} v_i^2$$

$$d_1 = \frac{v_i^2}{4\mu g}$$

$$\frac{d:d_1}{\frac{v_i^2}{2\mu g}:\frac{v_i^2}{4\mu g}}$$

$$1:\frac{1}{2}$$

$$\frac{1}{2}$$

(ii) the initial speed were doubled?

$$v_i = 2v_i$$

$$W = E_f - E_i$$
$$-\mu m_{\text{car}} g d_1 = -\frac{1}{2} m_{\text{car}} (2v_i)^2$$
$$d_1 = \frac{2v_i^2}{\mu g}$$

$$\frac{d:d_1}{\frac{v_i^2}{2\mu g}:\frac{2v_i^2}{\mu g}}$$
$$1:4$$

4

(iii) both the coefficient of kinetic friction and the initial speed were doubled?

We can use parts (i) and (ii) to find the ratio as the W and E_f would simply expand to include the calculated values above and simplify to the expression below:

$$4 \cdot \frac{1}{2} = 2$$

2

1.4 6.33

$$m_1 = m_2 = m_3 = 8.50 \,\mathrm{kg}$$
 $k = 7.80 \,\mathrm{kN} \,\mathrm{m}^{-1}$ $x = 12.0 \,\mathrm{cm}$

- (a) Draw a free-body diagram of each mass.
- (b) How long is each spring when hanging as shown?
- 1.5 6.45
- 1.6 6.48
- 1.7 6.51
- 1.8 7.5
- 1.9 7.9
- $1.10 \quad 7.35$
- 1.11 7.40
- 1.12 7.58

2 Lab Manual

- 2.1 871
- 2.2 876
- 2.3 884
- 2.4 885