Test di Calcolo Numerico

Ingegneria Informatica 14/01/2020

COGNOME		NOME		
MA	ATRICOLA			
Risposte				
1)				
2)				
3)				
4)				
5)				

 $\mathbf{N.B.}$ Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 14/01/2020

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x-y}{xy} \, .$$

2) È data la matrice

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right) .$$

Se A è la matrice dei coefficienti di un sistema lineare, il metodo iterativo di Jacobi risulta convergente?

3) Indicare il numero delle soluzioni reali della equazione

$$x e^{-x} + 1 = 0$$

determinando per ciascuna di esse un intervallo di separazione.

- 4) È data la funzione $f(x) = x^3 3x + 1$. Si determini il polinomio $P_1(x)$ che la interpola nei punti $x_0 = -1$ e $x_1 = 1$. Si calcoli il massimo di $|f(x) P_1(x)|$ sull'intervallo $[x_0, x_1]$.
- 5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_3(f) = \frac{1}{4} \left(f(-1) + 3f\left(-\frac{1}{3}\right) + 3f\left(\frac{1}{3}\right) + f(1) \right).$$

Supposto che risulti $E_3(f) = Kf^{(s)}(\theta)$, determinare K e s.

SOLUZIONE

1) Considerando l'algoritmo

$$r_1 = x - y$$
, $r_2 = xy$, $r_3 = r_1/r_2$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 + \frac{y}{x - y} \epsilon_x - \frac{x}{x - y} \epsilon_y$$
.

2) La matrice di iterazione di Jacobi è

$$H_J = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) \ .$$

Gli autovalori della matrice H_J sono

$$\lambda_1 = 0$$
, $\lambda_{2,3} = \pm i$

per cui $\rho(H_J) = 1$ e quindi il metodo non converge.

- 3) L'equazione proposta ha una sola soluzione reale $\alpha \in]-1,-1/2[$.
- 4) Risulta $P_1(x) = -2x + 1$ e quindi $E(x) = x(x^2 1)$. Il massimo cercato si ha per $x = -\frac{\sqrt{3}}{3}$ e vale $\frac{2\sqrt{3}}{9}$.
- 5) La formula risulta esatta per $f(x)=1,x,x^2,x^3$ ma non per $f(x)=x^4$ per cui il grado di precisione è m=3. Ne segue che s=4 ed essendo $E_1(x^4)=-\frac{16}{135}$ si ottiene $K=-\frac{2}{405}$.