600.465 – Natural Language Processing Assignment 3: Probability and Vector Exercises

Li-Yi Lin, Jinyi Guo

February 2016

1. Sample 1:

 log_2 probability: -12111.3, word count: 1686, perplexity per word: $2^{12111.3/1686} \approx 145.37$

Sample 2:

 log_2 probability: -7388.84, word count: 978, perplexity per word: $2^{7388.84/978} \approx 188.06$

Sample 3:

 log_2 probability: -7468.29, word count: 985, perplexity per word: $2^{7468.29/985} \approx 191.61$

When switch to the larger switchboard corpus the log_2 probabilities go slightly lower while the perplexities go up a lot for they are calculated by taking exponential. This is because typically larger corpus have more words than smaller ones, making the probabilities of words in the sample have lower probabilities to appear.

- 3. (a) We chose the language ID problem. The lowest error rate we can achieve is 0.933.
 - (b) The value of λ we use is 2.7.
 - (c) Test result for english:

342 looked more like en.1K (92.43%) 28 looked more like sp.1K (7.57%)

Test result for spanish:

39 looked more like en.1K (10.57%)

330 looked more like sp.1K (89.43%)

Thus the error rate is 67/739 = 0.091.

4. (a) For the UNIFORM estimate, the probability of each word including OOV will sum up to more than one i.e. 20000/19999 if there is an OOV in the training data, which is very likely, making it inconsistent with the rule of probability. Also the estimation for every xyz will be greater than it should be.

For the ADDL estimate, same problems in UNIFORM estimate still exist. Since V is in the denominator of the estimate equation and everything else remains the same, the estimation for each xyz is greater than it should be and the sum of all possible $\hat{p}(z \mid xy)$ is greater than 1.

- (b) This would make the estimate very sensitive to the training data, therefore cause overfitting. For example, if c(xy) = 1, then if the numerator c(xyz) is 1, the estimate for xyz will be 1, which is too high.
- (c) If c(xyz) = c(xyz') = 0, then by the definition of BACKOFF_ADDL, we have:

$$\hat{p}(z \mid xy) = \frac{\lambda V(c(yz) + \lambda V \frac{c(z) + \lambda}{c(z) + \lambda V})}{(c(xy) + \lambda V)(c(y) + \lambda V)}$$
$$\hat{p}(z' \mid xy) = \frac{\lambda V(c(yz') + \lambda V \frac{c(z') + \lambda}{c(z) + \lambda V})}{(c(xy) + \lambda V)(c(y) + \lambda V)}$$

Where c() is the number of tokens in the training set.

Regarding the fact that c(z) = c(z') and c(yz) = c(yz') are not necessarily true, we have $\hat{p}(z \mid xy) = \hat{p}(z' \mid xy)$ iff c(z) = c(z') and c(yz) = c(yz'). Otherwise, $\hat{p}(z \mid xy) \neq \hat{p}(z' \mid xy)$.

If c(xyz) = c(xyz') = 1, we have:

$$\hat{p}(z \mid xy) = \frac{1 + \lambda V(\frac{c(yz) + \lambda V \frac{c(z) + \lambda}{c(y) + \lambda V}}{c(y) + \lambda V})}{(c(xy) + \lambda V)}$$

$$\hat{p}(z' \mid xy) = \frac{1 + \lambda V(\frac{c(yz') + \lambda V \frac{c(z') + \lambda}{c(y) + \lambda V}}{c(y) + \lambda V})}{(c(xy) + \lambda V)}$$

Similarly, we have $\hat{p}(z \mid xy) = \hat{p}(z' \mid xy)$ iff c(z) = c(z') and c(yz) = c(yz'). Otherwise, $\hat{p}(z \mid xy) \neq \hat{p}(z' \mid xy)$.

(d) By the result above, when we increase λ the denominator grows faster than numerator, making the probability estimates lower than before. Taking the innest fraction as an example:

$$\frac{c(z') + \lambda}{c(1) + \lambda V}$$

if we increase λ , the denominator is growing faster than numerator by a factor of V, thus the fraction converges to zero when λ is increasing. Same rule applies to the whole fraction, so the probability estimates just become lower.

- 5. (a) $\hat{p}(z)$ backs off to $\hat{p}()$, which equals to 1/V. Note this can be deduced by the fact that all probabilities sum up to 1.
 - (b) In question 3c we have $\lambda^* = 2.7$. Here is the cross-entropies for the switchboard cropora:

9766.48 speech/sample1

6029.55 speech/sample2

5987.3 speech/sample3

For the test categorization, we have the following result:

English:

337 looked more like en.1K (91.08%)

33 looked more like sp.1K (8.92%)

Spanish:

83 looked more like en.1K (22.49%)

286 looked more like sp.1K (77.51%)

The overall error rate is 15.7%. So switching from ADDL to BACKOFF_ADDL acutally makes the performance worse, with a smaller cross-entropy.

(c) By taking a very small λ (e.g. $\lambda = 0.0001$) we can have a better performance than ADDL on classfying English files. The error rate is 5.95% while we have an error rate of 7.57% in the ADDL model. However, no matter what value for λ we take, we can't get an error rate of less than 10% for identifying spanish.

Here the λ_1 we take is much less than λ because for this particular problem and given data, we have to rely mainly on the ADDL model. This means the trigram count based on the training data works well, most trigrams on the test data also appear in the training data.

6. (c) We trained the log-linear model on lexicon chars-10.txt and training corpora en.1k and sp.1k with $\gamma_0 = 0.01$. The objective function values are shown below:

Training from corpus en.1k

epoch 1: F=-2998.765906

epoch 2: F=-2923.936118

```
epoch 4: F=-2861.087717
epoch 5: F=-2845.191350
epoch 6: F=-2833.850381
epoch 7: F=-2825.369426
epoch 8: F=-2818.801938
epoch 9: F=-2813.577367
epoch 10: F=-2809.330760
Training from corpus sp.1k
epoch 1: F=-2843.774148
epoch 2: F=-2793.530913
epoch 3: F=-2765.064986
epoch 4: F=-2746.394647
epoch 5: F=-2732.984146
epoch 6: F=-2722.782219
epoch 7: F=-2714.721207
epoch 8: F=-2708.179284
epoch 9: F=-2702.764254
```

epoch 10: F=-2698.213419

epoch 3: F=-2884.881779

(d) For cross-entropy, we tested several english dev files with different length (from 10 to 500), here is the result:

С	Training file	length-10	length-20	length-50	length-100	length-200	length-500
0.05	en.1K	5.2135	5.0921	4.1851	5.8113	4.5030	4.3008
0.1	en.1K	5.2114	5.0891	4.1851	5.8059	4.5014	4.2996
0.5	en.1K	5.1959	5.0666	4.1866	5.7649	4.4899	4.2910
1	en.1K	5.1790	5.041	4.1890	5.7188	4.4775	4.2820
2	en.1K	5.1515	4.9972	4.1956	5.64	4.4583	4.2683

By testing different value of C on language identification task with training set en.1K and sp.1K we have the following result:

С	Error Rate
0.05	24.70%
0.1	24.70%
0.5	24.28%
1	23.02%
2	23.02%
5	22.60%
7	20.92%
8	20.08%
9	20.08%
10	20.50%
11	20.50%
12	20.91%
19	20.49%
20	20.49%
21	20.49%
22	20.08%
23	20.50%
24	20.50%
25	20.50%
50	23.01%

From the result we found that $C^* = 8$, using this value, we experimented lexicons with different dimensions and different training files.

dimension/training file	1K	2K	5K	10K
10	20.97%	27.61%	16.65%	17.03%
20	17.59%	35.99%	9.20%	10.41%
40	19.75%	39.64%	9.20%	5.844%

(e)

(f) Taking C=8 as before, we have $\beta=1.074$ learned from en.1K.

This new feature helps the model produce a slightly lower cross-entropy, here is some result when setting C=1 and C=2 for comparison with the original model:

С	Training file	length-10	length-20	length-50	length-100	length-200	length-500
1	en.1K	5.0659	4.9469	4.1089	5.2517	4.2979	4.1329
2	en.1K	5.0654	4.9208	4.1153	5.1946	4.2701	4.1169

For the perofomance of language identification, we also have a slight improvement on most cases. Here is a list of error rate with C=8:

dimension/training file	1K	2K	5K	10K
10	20.56%	29.36%	14.34%	10%
20	16.91%	37.48%	9.60%	10.69%

(g) We chose to implement the first improvement here.

At first we tried adding a binary feature f_w for each word in the vocabulary, by testing the model on language identification task again we can see a further improvement on the accuracy:

dimension/training file	1K	2K	5K	10K
10	20.43%	25.43%	14.88%	10.82%

Then we tried to add a binary feature for each bigram and trigram that appears at least 3 times in the training data. Here is some of the test result when taking C = 8:

dimension/training file	1K	2K	5K	10K
10	21.24%	17.05%	%	%

We can tell from the result above that generally this new model works better than all other models above. This is based on the fact that we didn't change C for the model. When we go back to dev file to tune the C for this particular model again, we found that this model can even have a better performance by taking a smaller C like 0.001. But due to time limit, we didn't test all data here.

7. Originally we assume the priori of a word being English or Spanish ar e same so we classify the words directly by calculating their likelihood. Now we have p(lang = English) = 2/3 and p(lang = Spanish) = 1/3 as our priori.

$$p(lang = English \mid word = W) = \frac{p(word = W \mid lang = English)}{p(word = W)} \cdot p(lang = English)$$

$$p(lang = Spanish \mid word = W) = \frac{p(word = W \mid lang = Spanish)}{p(word = W)} \cdot p(lang = Spanish)$$

By the above equations, we can compare the posteriori of English and Spanish by multiply the likelihood of English by 2 while keep the likelihood of Spanish the same, then compare the two values to determine the language of this word. Simply we have:

$$\frac{p(lang = English \mid word = W)}{p(lang = Spanish \mid word = W)} = \frac{2p(word = W \mid lang = English)}{p(word = W \mid lang = Spanish)}$$

We don't need to know the priori of the document being in English or Spanish, because when we train the model, we are actually trying to maximize the likelihood of the training data. E.g. when training on English data, we want to maximize $p(word = W \mid lang = English)$, which has nothing to do with the priori.

By implementing this change we found a slight improvement on the performance on the language identification task. Here are the result on various smoothing methods:

ADDL:

English:

113 looked more like en.1K (94.17%)

7 looked more like sp.1K (5.83%)

Spanish:

11 looked more like en.1K (9.24%)

108 looked more like sp.1K (90.76%) The overall error rate is 7.54%, while the one for unmodified version is 9.1%.

BACKOFF_ADDL:

English:

112 looked more like en.1K (93.33%)

8 looked more like sp.1K (6.67%)

Spanish:

31 looked more like en.1K (26.05%) 88 looked more like sp.1K (73.95%) The overall error rate is 16.36%, while the original one is 15.7%. This only outperformed the former one on classifying English.

LOGLIN (with C = 8):

English:

98 looked more like en.1K (81.67%)

22 looked more like sp.1K (18.33%)

Spanish:

- 30 looked more like en.1K (25.21%)
- 89 looked more like sp.1K (74.79%) The overall error rate is 21.77% which is close to the original one.
- 8. (a) We want to pick one sentence that has highest probability given the utterance, $p(\vec{w} \mid U)$, from the 9 candidates. By Bayes's Theorem, we can compute $p(\vec{w} \mid U) \propto p(U \mid \vec{w}) \times p(\vec{w})$. Since we already have $\log_2 p(U \mid \vec{w})$, we can compute $\log_2 p(\vec{w} \mid U) = \log_2 \{p(U \mid \vec{w}) \times p(\vec{w})\} = \log_2 p(U \mid \vec{w}) + \log_2 p(\vec{w})$.

(c) Using test/easy with smoother backoff_add0.01 and 3-gram model

0.100 easy 061	0.143 easy 083	0.250 easy 105	0.083 easy 127	0.231 easy 149
0.364 easy 062	0.111 easy 084	0.143 easy 106	0.167 easy 128	0.125 easy 150
0.143 easy 063	0.167 easy 085	0.167 easy 107	0.111 easy 129	0.100 easy 151
0.062 easy 064	0.200 easy 086	0.125 easy 108	0.179 easy 130	0.091 easy 152
0.100 easy 065	0.111 easy 087	0.267 easy 109	0.059 easy 131	0.231 easy 153
0.000 easy 066	0.000 easy 088	0.111 easy 110	0.167 easy 132	0.167 easy 154
0.105 easy 067	0.125 easy 089	0.333 easy 111	0.091 easy 133	0.167 easy 155
0.125 easy 068	0.118 easy 090	0.167 easy 112	0.154 easy 134	0.167 easy 156
0.125 easy 069	0.350 easy 091	0.294 easy 113	0.167 easy 135	0.182 easy 157
0.100 easy 070	0.000 easy 092	0.091 easy 114	0.095 easy 136	0.000 easy 158
0.143 easy 071	0.167 easy 093	0.000 easy 115	0.053 easy 137	0.167 easy 159
0.200 easy 072	0.100 easy 094	0.167 easy 116	0.091 easy 138	0.136 easy 160
0.083 easy 073	0.182 easy 095	0.077 easy 117	0.158 easy 139	0.167 easy 161
0.250 easy 074	0.059 easy 096	0.143 easy 118	0.071 easy 140	0.167 easy 162
0.167 easy 075	0.095 easy 097	0.143 easy 119	0.111 easy 141	0.125 easy 163
0.077 easy 076	0.000 easy 098	0.182 easy 120	0.048 easy 142	0.111 easy 164
0.143 easy 077	0.182 easy 099	0.286 easy 121	0.250 easy 143	0.091 easy 165
0.062 easy 078	0.136 easy 100	0.143 easy 122	0.429 easy 144	0.167 easy 166
0.133 easy 079	0.211 easy 101	0.182 easy 123	0.143 easy 145	
0.167 easy 080	0.125 easy 102	0.194 easy 124	0.143 easy 146	
0.182 easy 081	0.154 easy 103	0.083 easy 125	0.182 easy 147	
0.059 easy 082	0.100 easy 104	0.182 easy 126	0.333 easy 148	

0.141 OVERALL

Using test/easy with smoother backoff_add0.01 and 2-gram model

0.100 easy 061	0.308 easy 076	0.350 easy 091	0.143 easy 106	0.286 easy 121
0.364 easy 062	0.143 easy 077	0.000 easy 092	0.167 easy 107	0.429 easy 122
0.143 easy 063	0.062 easy 078	0.167 easy 093	0.125 easy 108	0.182 easy 123
0.125 easy 064	0.133 easy 079	0.200 easy 094	0.267 easy 109	0.194 easy 124
0.100 easy 065	0.333 easy 080	0.200 easy 095	0.111 easy 110	0.167 easy 125
0.000 easy 066	0.182 easy 081	0.059 easy 096	0.333 easy 111	0.182 easy 126
0.105 easy 067	0.059 easy 082	0.095 easy 097	0.167 easy 112	0.083 easy 127
0.125 easy 068	0.143 easy 083	0.000 easy 098	0.294 easy 113	0.167 easy 128
0.125 easy 069	0.111 easy 084	0.182 easy 099	0.091 easy 114	0.000 easy 129
0.167 easy 070	0.167 easy 085	0.136 easy 100	0.091 easy 115	0.179 easy 130
0.429 easy 071	0.200 easy 086	0.211 easy 101	0.167 easy 116	0.059 easy 131
0.267 easy 072	0.111 easy 087	0.125 easy 102	0.077 easy 117	0.250 easy 132
0.125 easy 073	0.133 easy 088	0.077 easy 103	0.286 easy 118	0.091 easy 133
0.250 easy 074	0.187 easy 089	0.100 easy 104	0.143 easy 119	0.154 easy 134
0.167 easy 075	0.118 easy 090	0.250 easy 105	0.182 easy 120	0.333 easy 135

0.238 easy 136	0.250 easy 143	0.125 easy 150	0.273 easy 157	0.111 easy 164
0.158 easy 137	0.143 easy 144	0.100 easy 151	0.000 easy 158	0.091 easy 165
0.091 easy 138	0.143 easy 145	0.182 easy 152	0.167 easy 159	0.167 easy 166
0.158 easy 139	0.143 easy 146	0.154 easy 153	0.182 easy 160	
0.071 easy 140	0.182 easy 147	0.333 easy 154	0.167 easy 161	
0.111 easy 141	0.111 easy 148	0.333 easy 155	0.167 easy 162	
0.048 easy 142	0.154 easy 149	0.167 easy 156	0.125 easy 163	

0.160 OVERALL

Using test/easy with smoother backoff_add 0.01 and 1-gram model

0.100 easy 061	0.357 easy 083	0.125 easy 105	0.250 easy 127	0.308 easy 149
0.182 easy 062	0.222 easy 084	0.429 easy 106	0.167 easy 128	0.250 easy 150
0.571 easy 063	0.500 easy 085	0.167 easy 107	0.222 easy 129	0.000 easy 151
0.312 easy 064	0.267 easy 086	0.125 easy 108	0.179 easy 130	0.091 easy 152
0.200 easy 065	0.556 easy 087	0.267 easy 109	0.176 easy 131	0.231 easy 153
0.167 easy 066	0.133 easy 088	0.111 easy 110	0.250 easy 132	0.167 easy 154
0.263 easy 067	0.250 easy 089	0.500 easy 111	0.182 easy 133	0.000 easy 155
0.500 easy 068	0.176 easy 090	0.167 easy 112	0.231 easy 134	0.333 easy 156
0.125 easy 069	0.450 easy 091	0.294 easy 113	0.333 easy 135	0.273 easy 157
0.167 easy 070	0.111 easy 092	0.091 easy 114	0.190 easy 136	0.167 easy 158
0.000 easy 071	0.167 easy 093	0.182 easy 115	0.211 easy 137	0.417 easy 159
0.267 easy 072	0.400 easy 094	0.167 easy 116	0.091 easy 138	0.182 easy 160
0.125 easy 073	0.182 easy 095	0.231 easy 117	0.158 easy 139	0.167 easy 161
0.250 easy 074	0.059 easy 096	0.286 easy 118	0.107 easy 140	0.500 easy 162
0.333 easy 075	0.143 easy 097	0.286 easy 119	0.000 easy 141	0.375 easy 163
0.308 easy 076	0.333 easy 098	0.182 easy 120	0.048 easy 142	0.667 easy 164
0.143 easy 077	0.182 easy 099	0.286 easy 121	0.125 easy 143	0.091 easy 165
0.187 easy 078	0.227 easy 100	0.429 easy 122	0.143 easy 144	0.167 easy 166
0.467 easy 079	0.211 easy 101	0.182 easy 123	0.429 easy 145	
0.333 easy 080	0.125 easy 102	0.161 easy 124	0.214 easy 146	
0.182 easy 081	0.231 easy 103	0.167 easy 125	0.273 easy 147	
0.294 easy 082	0.400 easy 104	0.182 easy 126	0.111 easy148	

0.222 OVERALL

using test/unrestricted with smoother add 0.01 and 3-gram model $\,$

0.370 speech 061	0.167 speech 075	0.833 speech 0.89	0.000 speech 103	0.250 speech 117
0.227 speech 062	0.818 speech 076	0.250 speech 090	0.222 speech 104	0.778 speech 118
1.000 speech 63	1.000 speech 077	0.000 speech 091	1.000 speech 105	0.875 speech 119
0.000 speech 64	0.000 speech 078	0.714 speech 092	0.000 speech 106	0.000 speech 120
0.250 speech 065	0.000 speech 079	0.000 speech 093	0.000 speech 107	1.000 speech 121
0.231 speech 066	0.000 speech 080	0.000 speech 094	0.500 speech 108	1.000 speech 122
1.000 speech 67	2.000 speech 081	0.417 speech 095	1.000 speech 109	1.000 speech 123
0.415 speech 068	0.000 speech 082	1.000 speech 096	1.000 speech 110	0.556 speech 124
1.000 speech 69	0.917 speech 083	0.294 speech 097	0.000 speech 111	0.500 speech 125
0.583 speech 070	0.596 speech 084	0.474 speech 098	0.000 speech 112	0.167 speech 126
0.200 speech 071	0.000 speech 085	0.273 speech 099	1.000 speech 113	1.000 speech 127
1.000 speech 072	0.800 speech 0.86	0.143 speech 100	0.154 speech 114	0.154 speech 128
0.125 speech 073	0.133 speech 087	0.000 speech 101	0.000 speech 115	0.333 speech 129
0.286 speech 074	0.000 speech 088	0.400 speech 102	0.250 speech 116	0.500 speech 130

0.000 speech 131	1.000 speech 139	0.000 speech 147	0.750 speech 155	0.375 speech 163
0.333 speech 132	1.000 speech 140	0.208 speech 148	1.500 speech 156	0.538 speech 164
0.000 speech 133	0.000 speech 141	0.286 speech 149	0.000 speech 157	0.364 speech 165
0.500 speech 134	1.000 speech 142	0.083 speech 150	0.500 speech 158	0.000 speech 166
0.324 speech 135	0.429 speech 143	0.500 speech 151	0.000 speech 159	
0.625 speech 136	0.333 speech 144	2.000 speech 152	1.000 speech 160	
0.467 speech 137	0.267 speech 145	0.500 speech 153	1.000 speech 161	
0.000 speech 138	0.375 speech 146	0.500 speech 154	0.786 speech 162	

0.382 OVERALL

using test/unrestricted with smoother add 0.01 and 2-gram model $\,$

0.4071-061	0.0171-002	1 0001-105	0.002 1.107	0.206 1-140
0.407 speech 061	0.917 speech 0.93	1.000 speech 105	0.923 speech 127	0.286 speech 149
0.273 speech 062	0.596 speech 084	0.000 speech 106	0.154 speech 128	0.083 speech 150
0.000 speech 63	0.000 speech 085	0.000 speech 107	0.417 speech 129	0.437 speech 151
0.000 speech 64	0.800 speech 086	0.875 speech 108	0.500 speech 130	2.000 speech 152
0.500 speech 065	0.233 speech 087	1.000 speech 109	0.083 speech 131	1.000 speech 153
0.308 speech 666	0.000 speech 088	0.000 speech 110	0.667 speech 132	0.500 speech 154
1.000 speech 67	0.833 speech 089	0.000 speech 111	0.222 speech 133	0.500 speech 155
0.439 speech 068	0.250 speech 090	0.000 speech 112	0.500 speech 134	1.000 speech 156
0.333 speech 69	0.000 speech 091	0.000 speech 113	0.405 speech 135	0.000 speech 157
0.500 speech 070	0.714 speech 092	0.077 speech 114	0.625 speech 136	0.500 speech 158
0.000 speech 071	0.000 speech 093	1.000 speech 115	$0.467 \operatorname{speech} 137$	1.000 speech 159
0.000 speech 072	0.250 speech 094	0.500 speech 116	0.500 speech 138	1.000 speech 160
0.125 speech 073	0.417 speech 095	0.250 speech 117	1.000 speech 139	0.000 speech 161
0.000 speech 074	1.000 speech 096	0.667 speech 118	1.000 speech 140	0.786 speech 162
0.167 speech 075	0.294 speech 097	0.937 speech 119	0.000 speech 141	0.375 speech 163
0.818 speech 076	0.421 speech 098	0.000 speech 120	1.000 speech 142	0.615 speech 164
0.000 speech 077	0.182 speech 099	0.000 speech 121	0.357 speech 143	0.636 speech 165
0.000 speech 078	0.286 speech 100	1.000 speech 122	0.667 speech 144	0.000 speech 166
0.000 speech 079	0.000 speech 101	1.000 speech 123	0.267 speech 145	
1.000 speech 080	0.400 speech 102	0.222 speech 124	0.500 speech 146	
0.000 speech 081	0.000 speech 103	0.500 speech 125	0.000 speech 147	
0.000 speech 082	0.444 speech 104	0.167 speech 126	0.292 speech 148	

0.419 OVERALL

using test/unrestricted with smoother add 0.01 and 1-gram model $\,$

0.333 speech 061	$0.571 \mathrm{\ speech} 074$	0.233 speech 087	0.286 speech 100	0.000 speech 113
0.273 speech 062	0.167 speech 075	0.000 speech 088	0.000 speech 101	0.231 speech 114
0.000 speech 63	0.818 speech 076	1.167 speech 089	0.600 speech 102	1.000 speech 115
1.000 speech 64	0.000 speech 077	0.250 speech 090	0.067 speech 103	0.500 speech 116
0.500 speech 65	0.000 speech 078	0.000 speech 091	0.222 speech 104	0.250 speech 117
0.308 speech 666	0.000 speech 079	0.714 speech 092	1.000 speech 105	0.778 speech 118
1.000 speech 67	1.000 speech 080	0.500 speech 093	1.000 speech 106	0.812 speech 119
0.439 speech 068	1.000 speech 081	0.250 speech 094	0.000 speech 107	0.000 speech 120
0.333 speech 69	0.400 speech 082	0.417 speech 095	0.500 speech 108	0.000 speech 121
0.417 speech 070	0.917 speech 083	1.000 speech 096	1.000 speech 109	1.000 speech 122
0.200 speech 071	0.615 speech 084	0.529 speech 097	0.000 speech 110	1.000 speech 123
0.000 speech 072	0.000 speech 085	0.421 speech 098	1.500 speech 111	0.222 speech 124
0.125 speech 073	0.800 speech 0.86	0.364 speech 099	0.000 speech 112	0.500 speech 125

0.167 speech 126	0.405 speech 135	0.667 speech 144	1.000 speech 153	0.786 speech 162
0.923 speech 127	0.625 speech 136	0.267 speech 145	0.500 speech 154	0.375 speech 163
0.154 speech 128	0.667 speech 137	0.375 speech 146	1.000 speech 155	0.462 speech 164
0.250 speech 129	0.500 speech 138	0.000 speech 147	1.500 speech 156	0.364 speech 165
0.500 speech 130	1.000 speech 139	0.208 speech 148	0.500 speech 157	0.000 speech 166
0.083 speech 131	1.000 speech 140	0.571 speech 149	0.500 speech 158	
0.333 speech 132	0.000 speech 141	0.083 speech 150	0.250 speech 159	
0.222 speech 133	1.000 speech 142	0.562 speech 151	1.000 speech 160	
0.500 speech 134	0.214 speech 143	2.000 speech 152	1.000 speech 161	

0.438 OVERALL

We used add- λ for easy and backoff_add λ for unrestricted just because we simply picked the one that perform better under the same λ value. We didn't test loglinear smoother because it takes much longer time for training and we didn't have enough time for its result.

9.

- 10. (a) We have $p_{disc}(z \mid xy) = \frac{c(xyz)}{c(xy) + T(xy)}$. Thus, when T(xy) is close to 0, $p_{disc}(z \mid xy)$ will be very close to the naive historical estimate c(xyz)/c(xy). It means when there are few or zero word types z that have been observed to follow the context xy, $p_{disc}(z \mid xy)$ will have similar result as c(xyz)/c(xy). In other words, when xy appears in the context, it will be very likely followed by one of the few word types z.
 - (b) When all T() become zero, all $p_{disc}()$ will become naive historical estimates. When all T() become zero, α should become zero in order to make the distribution sum to 1.

(c)
$$\alpha$$
() = $\frac{1 - \sum_{z:c(z)>0} p_{disc}(z)}{V - T()}$

(d) To make $\sum_{z} \hat{p}(z \mid y) = 1$, we have following equation:

$$\begin{split} 1 &= \sum_{z} \hat{p}(z \mid y) = \sum_{z: c(yz) > 0} P_{disc}(z \mid y) + \sum_{z: c(yz) = 0} \alpha(y) \hat{p}(z) \\ &= \sum_{z: c(yz) > 0} P_{disc}(z \mid y) + \alpha(y) \Big(1 - \sum_{z: c(yz) > 0} \hat{p}(z)\Big) \end{split}$$

By solving the equation above, we will need:

$$\alpha(y) = \frac{1 - \sum_{z:c(yz) > 0} p_{disc}(z \mid y)}{1 - \sum_{z:c(yz) > 0} \hat{p}(z)}$$

(e)

(f) By the given formulation, we have:

$$1 = \sum_{z:c(yz)>0} p_{disc}(z \mid y) + \alpha(y) \left(1 - \sum_{z:c(yz)>0} p(z)\right)$$
$$1 - \sum_{z:c(yz)>0} p_{disc}(z \mid y)$$

$$\alpha(y) = \frac{1 - \sum_{z:c(yz) > 0} p_{disc}(z \mid y)}{1 - \sum_{z:c(yz) > 0} \hat{p}(z)}$$

We can use the same method to simplify the denominator in the above equation:

$$\sum_{z:c(yz)>0} \hat{p}(z) = \sum_{z:c(yz)>0} p_{disc}(z) = \frac{\sum_{z:c(yz)>0} c(z)}{c()+T()}$$

(g) We implemented Witten-bell backoff in the "speechrec.py" file and be called by "textcat2.py" file. The result of the same experiment as 3(c) are:

Witten-bell backoff on English classification

343 looked more like en.1K (92.70%) 27 looked more like sp.1K (7.30%)

Witten-bell backoff on Spanish classification

67looked more like en.1K (18.16%) 302 looked more like sp.1K (81.84%)

Thus the error rate of using Witten-Bell backoff is 94/739 = 0.127, which is not as good as the error rate, 0.091, of ADD- λ .