

Word-in-Context Disambiguation

NLP Homework 1

July 2021

Olga Sorokoletova, 1937430

Overview

- Given: Word-in-Context Disambiguation task
 - Word-level approach
 - Sequence encoding approach
- Goal: Obtain the best-performing model (in terms of accuracy)
 - A priori
 - Exploit potential power of the sequence encoding approach

• Models:

Baseline

Baseline 2

2a

• 2b

Baseline

Pre-processing

Given: 'Over 5,000 now hold legal immigrant documents, which, after five years of annual renewal, entitles the **holder** to apply for permanent residence.'

1. Numbers Removal

Over, now hold legal immigrant documents, which, after five years of annual renewal, entitles the holder to apply for permanent residence.

2. Punctuation Removal

Over now hold legal immigrant documents which after five years of annual renewal entitles the holder to apply for permanent residence

3. Lower Casing

over now hold legal immigrant documents which after five years of annual renewal entitles the holder to apply for permanent residence

4. Tokenization

['over', 'now', 'hold', 'legal', 'immigrant', 'documents', 'which', 'after', 'five', 'years', 'of', 'annual', 'renewal', 'entitles', 'the', 'holder', 'to', 'apply', 'for', 'permanent', 'residence']

5. Stop words removal

['hold', 'legal', 'immigrant', 'documents', 'five', 'years', 'annual', 'renewal', 'entitles', 'holder', 'apply', 'permanent', 'residence']

Stop words removal problem

Before:

'At the police station he did not make any such claims, but had alleged torture only at the district court trials.'

After:

```
['police', 'station', 'make', 'claims', 'alleged', 'torture', 'district', 'court', 'trials']
```


Needs to be manually corrected!

Embeddings

GloVe 50d

['hold', 'legal', 'immigrant', 'documents', 'five', 'years', 'annual', 'renewal', 'entitles', 'holder', 'apply', 'permanent', 'residence']

[embedding('hold)', embedding('legal'), embedding('immigrant'),...]

Compute mean

```
[ 0.3866, -0.2908, -0.1011, 0.1910, 0.1187, 0.1503, 0.1034, 0.3662, 0.2403, -0.2460, -0.2139, -0.4824, -0.3774, -0.4342, 0.5688, -0.1132,...]
```

50d tensor of numbers

Pre-processing: Join

'sentence1': 'This growth is the direct result of the increased number of baccalaureate holders, who form the potential market for higher education.'

[0.1160, 0.3436, 0.2790,...]

50d tensor of numbers

[1.5164e-01, 3.0177e-01, [-0.0470, 0.5142,-1.6763e-01,...]

50d tensor of numbers

1 1

'sentence2': 'Over 5,000 now hold legal immigrant documents, which, after five years of annual renewal, entitles the holder to apply for permanent residence.'

-0.0584,...]

50d tensor of numbers

[0.1160, 0.3436, 0.2790, ..., 1.5164e-01, 3.0177e-01, -1.6763e-01, ..., -0.0470, $0.5142, -0.0584, \ldots$

150d tensor of numbers

Baseline

Model

Model

Architecture

Hyper-parameters

Epochs	50		
ES patience	7		
ES threshold	0.009		
Batch size	64		
Embedding dim	50		
N features	150		
N hidden units	128		
N hidden layers	2		
Activation	ReLU		
Optimizer	Adam		
Learning Rate	0.0001		

Baseline

Performance

Performance: Training vs Validation Accuracy and Loss

- Best accuracy: **0.7236**
- Problem: Overfitting about 30-40 epoch (regularization does not help!)

Baseline 2

Pre-processing

Given: 'It will place as many demands on our material resources as on our intellectual capabilities.'

- 1. Numbers Removal
- 2. Punctuation Removal
- 3. Lower Casing
- 4. Tokenization
- 5. Stop words removal
- 6. Lemmatization

```
['place', 'many', 'demands', 'material',
'resources', 'intellectual', 'capabilities']
```

```
['place', 'many', 'demand', 'material',
'resource', 'intellectual', 'capability']
```

Pre-processing: Join

'sentence1': 'This growth is the direct result of the increased number of baccalaureate holders, who form the potential market for higher education.'


```
['growth', 'direct', 'result',
'increased', 'number',
'baccalaureate', 'holder',
'form', 'potential',
'market', 'higher',
'education']
```


'sentence2': 'Over 5,000 now hold legal immigrant documents, which, after five years of annual renewal, entitles the holder to apply for permanent residence.'


```
['hold', 'legal',
'immigrant', 'document',
'five', 'year', 'annual',
'renewal', 'entitles',
'holder', 'apply',
'permanent', 'residence']
```

['growth', 'direct', 'result', 'increased', 'number', 'baccalaureate', 'holder', 'form', 'potential', 'market', 'higher', 'education',

'hold', 'legal', 'immigrant', 'document', 'five', 'year', 'annual', 'renewal', 'entitles', 'holder', 'apply', 'permanent', 'residence'

Pre-processing: Prepare input for RNN

['growth', 'direct', 'result', 'increased', 'number', 'baccalaureate', 'holder', 'form', 'potential', 'market', 'higher', 'education', '.', 'hold', 'legal', 'immigrant', 'document', 'five', 'year', 'annual', 'renewal', 'entitles', 'holder', 'apply', 'permanent', 'residence']

Indexed vocabulary with 2 special indices:

- 0 for padding token
- 1 for Out-of-Vocabulary

[554, 1496, 714, 1043, 225, 31822, 6101, 685, 1158, 213, 611, 633, 4, 804, 832, 5660, 2883, 176, 64, 942, 9239, 53808, 6101, 3517, 2275, 3700, 0, 0, ..., 0]

[embedding(554),
embedding(1496),...,
embedding(0)]

50 x ML tensor of numbers

GloVe 50d (random for 0 and 1)

Padding of a sequence with ML - L zeros:

- ML max length of a sequence in the batch
- L length of the current sequence

Baseline 2

Model

Architecture

Model

Hyper-parameters

Epochs	70		
ES patience	7		
ES threshold	0.01		
Batch size	256		
Embedding dim	50		
N features	50		
N hidden units	128		
N LSTM cells	1		
Activation	ReLU		
Optimizer	Adam		
Learning Rate	0.0001		
Decay Rate	0.00001		
Dropout Rate	0.0		

Baseline 2

Performance

Performance: Training vs Validation Accuracy and Loss

- Best accuracy: 0.6681 (vs 0.7236 we had before)
- Problem: Overfitting about 50 epoch

Over 10 independent runs

Performance: Averaged graphs

SAPIENZA Università di Roma

- Accuracy: got stabilized about 0.60 (vs 0.66 the best accuracy)
- Problem: overfitting, the best performance achieved by lucky initialization

Averaged over 10 independent runs

Performance: Add dropout

- Accuracy: got stabilized about 0.62 (vs 0.60 without dropout)
- Problem: overfitting, but less obvious

Averaged over 10 independent runs, p = 0.2, 2 LSTM layers, dropout applied after embedding layer, between 2 LSTMs and after them

Performance: More epochs

- Accuracy: got stabilized about 0.62 (vs 0.62)
- Problem: overfitting, now it is obvious

Averaged over 10 independent runs, p = 0.2, 2 LSTM layers, dropout applied after embedding layer, between 2 LSTMs and after them, 140 epochs of training

Performance: Dropout variations

- Accuracy: got stabilized about **0.62 or less**
- Problem: overfitting, and dropout variation does not help

2a

Pre-processing and Model

Pre-processing and Model: differences with Baseline 2

Need to keep index of the target word in the sequence of indices (additionally to an index of the last not padding token) Extract two sequence encodings: corresponding to the representation of a whole sentence and corresponding to the target word

Double-labeling

2a

Performance

Performance: Training vs Validation Accuracy and Loss

- Best accuracy: 0.5776 (vs 0.6681 we had for Baseline 2)
- Problem: improvement is not achieved

Averaged over 10 independent runs

2b

Idea

2b

The underlying idea of this model was to perform binary classification over the following representation of the training data:

Feature 1	Feature 2	Feature 3	Feature 4	Label
whole sequence encoding for the sentence 1	sequence encoding corresponding to the target word in the sentence 1	whole sequence encoding for the sentence 2	sequence encoding corresponding to the target word in the sentence 2	gt label

• Best accuracy: 0.5773 - comparable with 2a, but not comparable with Baseline 2

Conclusion

- Even if sequence encoding approach is potentially more powerful, sometimes simpler approach can be better performing;
- Handling overfitting is a challenging task, and in our case standard regularization techniques did not help. Therefore, some more sophisticated approaches either to it or to the model architecture design/way of pre-processing are needed;
- However, the best performing model achieved quite decent performance by means of common NLP practices for the pre-processing.

Aspect-Based Sentiment Analysis

NLP Homework 2
July 2021

Olga Sorokoletova, 1937430

Overview

Models (denoted with just letters are transformer-based):

- Given: Aspect-Based Sentiment Analysis task
 - Aspect Extraction
 - Aspect Sentiment
 - Aspect Extraction + Aspect Sentiment
 - Category Extraction
 - Category Evaluation
 - Category Extraction + Category Sentiment
- Goal: Obtain the best-performing model (in terms of macro-F1)

• d

Naive (just word embeddings)

Pre-processing

1. First input sentence is tokenized and each token maps to ground truth labels as follows:

1 if token ∈ gt term 0 otherwise Before:

'The **selection** changes frequently but the **basic dishes** are always available.'

Pre-processing

2. Then **indexed vocabulary** (with <UNK> and <PAD> tokens indexed as 1 and 0) and **indexed label vocabulary** (with 3 elements: 2 labels and <PAD> token indexed as 2) are created:

```
Vocab: ['A:2', 'hearty:1', 'two:3',...,
'subwoofer:3553', 'scary:3552']
Label vocab: ['<pad>:2', '0:0', '1:1']
```

After 1:

```
['The: 0', 'selection: 1', 'changes:
0', 'frequently: 0', 'but: 0', 'the:
0', 'basic: 1', 'dishes: 1', 'are:
0', 'always: 0', 'available: 0']
```

After 2:

```
[('The', 36), ('selection', 76), ('changes',
1), ('frequently', 77), ('but', 78), ('the',
9), ('basic', 79), ('dishes', 80), ('are',
81), ('always', 82), ('available', 83),
('None', 0), ('None', 0),..., ('None', 0)]
```

Pre-processing

Embedding s

Two ways of creating indexed vocabulary are applied:

- Based on the dataset;
- Downloading GloVe 100d embeddings, so they could be further applied as pre-trained in the network layer.

Naive

Model

Model

Architecture

Hyper-parameters

Epochs	100
Batch size	128
Embedding dim	100
Window Size	100
Window Shift	50
N hidden units	128
N LSTM cells	1
Optimizer	Adam
Learning Rate	0.0001
Dropout Rate	0.0

Naive

Post-processing and Performance

Post-processing: collect predicted tokens to the multi-token terms

```
{'targets': [[[11, 29], 'wines by the glass', 'negative']],
'text': 'Not enough wines by the glass either.'}
```


Ground truth tokens	Input tokens	Gold labels	Predicted labels	Predicted tokens
	Not	0	0	
	enough	0	0	
wines	wines	1	1	wines
by	by	1	1	by
the	the	1	0	
glass	glass	1	1	glass
	either	0	0	

• Best F1: **0.67**

BERT-models

Interpret as a sentence-pair classification task:

Apply BERT tokenizer form pre-trained for the corresponding BERT model:

```
[ind(<CLS>),
indices(tokenized(sentence 1)), ind(<SEP>),
indices(tokenized(sentence 2)), ind(<SEP>),
indices(padding)]
```

+ attention mask


```
{'categories': [['food', 'neutral']],
   'targets': [[[4, 13], 'selection', 'neutral'],
   [[41, 53], 'basic dishes', 'neutral']],
   'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Aspect Extraction

Pre-processing

Binary classification

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	The	unrelated
The selection changes frequently but the basic	selection	related
The selection changes frequently but the basic	changes	unrelated
The selection changes frequently but the basic	frequently	unrelated
The selection changes frequently but the basic	but	unrelated
The selection changes frequently but the basic	the	unrelated
The selection changes frequently but the basic	basic	related
The selection changes frequently but the basic	dishes	related
The selection changes frequently but the basic	are	unrelated
The selection changes frequently but the basic	always	unrelated
The selection changes frequently but the basic	available	unrelated
The selection changes frequently but the basic		unrelated 44


```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
  [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

4-class classification {positive, negative, neutral, conflict}

Aspect Sentiment

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	selection	neutral
The selection changes frequently but the basic	basic dishes	neutral


```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
    [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Category Extraction

Sentence (Sentence 1)	Category (Sentence 2)	Label
The selection changes frequently but the basic	food	related
The selection changes frequently but the basic	service	unrelated
The selection changes frequently but the basic	price	unrelated
The selection changes frequently but the basic	ambience	unrelated
The selection changes frequently but the basic	anecdotes/miscellaneous	unrelated


```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
    [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Category Sentiment

4-class classification {positive, negative, neutral, conflict}

Sentence (Sentence 1)	Category (Sentence 2)	Label
The selection changes frequently but the basic	food	neutral


```
{'categories': [['food', 'neutral']],
   'targets': [[[4, 13], 'selection', 'neutral'],
   [[41, 53], 'basic dishes', 'neutral']],
   'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Aspect Extraction + Aspect Sentiment

Pre-processing

5-class classification {none, positive, negative, neutral, conflict}

		COMING
Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	The	none
The selection changes frequently but the basic	selection	neutral
The selection changes frequently but the basic	changes	none
The selection changes frequently but the basic	frequently	none
The selection changes frequently but the basic	but	none
The selection changes frequently but the basic	the	none
The selection changes frequently but the basic	basic	neutral
The selection changes frequently but the basic	dishes	neutral
The selection changes frequently but the basic	are	none

Aspect Extraction

Pre-processing

Aspect Sentiment

Binary classification

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	The	unrelated
The selection changes frequently but the basic	selection	related

4-class classification {positive, negative, neutral, conflict}

			COLLING
Sentence (Sentence 1)		Aspect (Sentence 2)	Label
The selection changes frequently but the basic		predicted terms	neutral
	V		


```
{'categories': [['food', 'neutral']],
  'targets': [[[4, 13], 'selection', 'neutral'],
  [[41, 53], 'basic dishes', 'neutral']],
  'text': 'The selection changes frequently but the basic dishes are always available.'}
```

Category Extraction + Category Sentiment

5-class classification {none, positive, negative, neutral, conflict}

Sentence (Sentence 1)	Category (Sentence 2)	Label
The selection changes frequently but the basic	food	neutral
The selection changes frequently but the basic	service	none
The selection changes frequently but the basic	price	none
The selection changes frequently but the basic	ambience	none
The selection changes frequently but the basic	anecdotes/miscellaneous	none

Category Extraction

Pre-processing

Category Sentiment

Binary classification

Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	food	unrelated
The selection changes frequently but the basic	service	related
•••		

predictions

4-class classification {positive, negative, neutral, conflict}

		<u>CONTILCT</u>
Sentence (Sentence 1)	Aspect (Sentence 2)	Label
The selection changes frequently but the basic	predicted categories	neutral

BERT-models

Models

Models

BERT-models

Performances

Performances: Naive vs BERT for Aspect Extraction and Choose the best BERT

- Task: Aspect Extraction
- Dataset: Restaurants

Model	Best F1
Naive	67
Distil BERT	83

Transformer based architecture is preferable

- Task: Aspect Extraction
- Dataset: Restaurants

Model	Best F1
Small BERT	79
BERT	81
Distil BERT	83
Large BERT	83

Dataset: Restaurants

Task	Distil BERT	Large BERT
b	55	60
a + b	44	48
c + d	48	56

Large BERT is preferable

Performances: Choose best model for joined and separate tasks, merge datasets

Dataset: Restaurants

Task	->	+
ab	48	40
cd	50	56

For Aspect Extraction + Aspect Sentiment a -> b performs better than a + b

For Category Extraction +
Category Sentiment c + d performs
better than c -> d

Dataset: Restaurants

As is	From Combined
83	82
60	50
82	82
64	55
	83 60 82

Separately implemented models perform better than their estimations from a + b and c + d

Task: Aspect
 Sentiment

Dataset	Best F1
Restaurant	60
Laptops	54
Mixed	59

Mixed dataset can be approximated by Restaurants
Laptops are a bit harder than
Restaurants

Performances: Confusion matrices for Extractions

For tokens!

Task: Aspect Extraction

Dataset: Mixed

 Task: Category Extraction

Dataset: Restaurants

Performances: Confusion matrices for Sentiments

Task: Aspect Sentiment

Dataset: Mixed

Task: Category
 Sentiment

• Dataset: Restaurants

Performances: Confusion matrices for Combinations

1.0

0.8

0.6

0.4

0.2

0.0

For tokens!

• Task: **a** + **b**

Dataset: Mixed

Task: c + d

Dataset: Restaurants

Conclusion

- Transformers are powerful instrument in approaching Aspect-Based Sentiment Analysis;
- Sentence-pair classification interpretation of a task is appropriate for use of pre-trained BERT models;
- Work on aspects could be improved through the modification of the decoding approach;
- Work on categories could be improved through the conceptual modifications;
- Precise fine-tuning should be under focus;
- For sentiment analysis part **conflict** class is the hardest for recognition.