Fenwick Tree

Time Limit: 1.5 Second Memory Limit: 256 MB

You are given an array a with length n ($1 \le n \le 2 \times 10^5$) whose elements are all 0's. You are then asked to perform m ($1 \le m \le 2 \times 10^5$) updates, where the i-th update adds v_i to a_{x_i} . After each update, output x_i -th element of the array corresponding to the Sum Fenwick tree of array a (for example, the 8th element of the array should be $\sum a[1...8]$ while the 6th element is $\sum a[5,6]$).

Input

The first line of input contains two integers n and m $(1 \le n, m \le 2 \times 10^5)$ - the number of elements of array a and the number of updates.

For the next m lines, the i-th line contains two integers x_i and v_i $(1 \le x_i \le n, 1 \le v_i \le 10^9)$, denoting that the x_i -th element in the array is added with value v_i .

Output

For each update, output an integer denoting x_i -th entry of the array corresponding to the Sum Fenwick tree of array a.

Sample Outputs
5
9
1