

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

AQA GCSE Maths: Higher

Estimating Gradients & Areas under Graphs

Contents

- * Finding Gradients of Tangents
- * Finding Areas under Graphs

Head to www.savemyexams.com for more awesome resources

Finding Gradients of Tangents

Your notes

Finding Gradients of Tangents

How are the gradients of graphs and tangents related?

- The gradient of a graph at a point is equal to the gradient of the tangent to the curve at that point
 - A tangent is a line that touches a curve, but does not cross it

Head to www.savemyexams.com for more awesome resources

Your notes

THE GRADIENT OF THE CURVE AT THE POINT x=1 WILL BE EQUAL TO THE GRADIENT OF THE PURPLE TANGENT. THE GRADIENT OF THE CURVE AT THE POINT x=6 WILL BE EQUAL TO THE GRADIENT OF THE GREEN TANGENT.

Copyright © Save My Exams. All Rights Reserved

How do I estimate the gradient of a curve using a tangent?

- To find an **estimate** for the **gradient** of a curve **at a point**:
 - Draw a tangent to the curve at the point

- Find the **gradient of the tangent** using
 - Gradient = rise ÷ run
 - or difference in $y \div$ difference in x
 - In the example below, the gradient of the tangent at x = 4 would be $\frac{-2.5}{4} = -0.625$
 - Remember that the rise is **negative** if it is going down
 - This means the gradient of the curve at x = 4 is also -0.625

- It is an **estimate** because the **tangent** has been drawn by eye and is not exact
 - To find the exact gradient we would need to use differentiation

What does the gradient represent?

- The gradient represents the rate of change of y with x
 - I.e. For every increase in x by 1, how much does y increase?
- Consider the quantities used for the axes to determine the meaning of the gradient

Head to <u>www.savemyexams.com</u> for more awesome resources

- In a distance-time graph, the gradient is the rate of change of distance with time
 - This is the **speed**
- In a **speed-time graph**, the gradient is the rate of change of speed with time
 - This is the acceleration
- In a **graph of volume against radius**, e.g. as a balloon is inflated, the gradient is the rate of change of volume as the radius increases

Examiner Tips and Tricks

- When drawing a tangent by hand:
 - Use a ruler
 - Draw the line as long as you can
- When finding the gradient of the tangent:
 - Pick two points that are far away from one another
 - This will reduce the effect of any inaccuracy

Worked Example

The graph below shows $y = \sqrt[3]{x}$ for $0 \le x \le 1$.

Find an estimate of the gradient of the curve at the point where x = 0.5.

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

Your notes

Draw a tangent to the curve at the point where x = 0.5

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Your notes

Find suitable, easy to read coordinates as far apart as possible and draw a right-angled triangle between them

Find the difference in the y coordinates (rise) and the difference in the x coordinates (run).

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Your notes

Find the gradient by dividing the difference in y (rise) by the difference in x

Gradient =
$$\frac{0.3}{0.5} = \frac{3}{5} = 0.6$$

The gradient of the tangent at x = 0.5 is equal to the gradient of the curve at x = 0.5

Estimate of gradient = 0.6

Finding Areas under Graphs

Your notes

Finding Areas under Graphs

How do I estimate the area under a graph?

- To find an estimate for the area:
 - Split area into vertical strips
 - Draw **straight lines** between the tops of the strips
 - Find area of strips (trapeziums) using Area = ½(a + b)h
 - Add the areas

How do I know if my answer is an underestimate or an overestimate?

- A common exam question is to ask if your estimate of the area is an underestimate or an overestimate
- To answer this, simply look at the straight lines joining the tops of your strips
 - If the straight lines are **below** the curve, it is an **underestimate**
 - If the straight lines are **above** the curve, it is an **overestimate**
- In your exam, the lines will **all** be **below** or **all** be **above** the curve- though it may be difficult to tell which for some strips

Examiner Tips and Tricks

• This is particularly useful when working with speed-time and distance-time graphs if they are curves and not straight lines.

Worked Example

The graph below shows $y = \sqrt[3]{x}$ for $0 \le x \le 1$

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Find an estimate for the area between the curve, the ${\it X}$ axis and the line ${\it X}=1$. Use four strips of equal width.

Split the area into four strips using the width of 0.25 for each one

Find the y coordinate at the end of each strip by reading the value from the graph or substituting the x coordinate into $y = \sqrt[3]{x}$

Head to www.savemyexams.com for more awesome resources

Save my exams

Find the area of each strip by using the formula for the area of a trapezium

$$\frac{1}{2}(0+0.63)(0.25) + \frac{1}{2}(0.63+0.79)(0.25) + \frac{1}{2}(0.79+0.91)(0.25) + \frac{1}{2}(0.91+1)(0.25) = 0.7075$$
Area ≈ 0.708