SUPPORT VECTOR MACHINES

Brij Malhotra

About Me

- Former Machine Learning Consultant at Tweeny Technologies
- Current Machine Learning Engineer at DigitalMain

Outline

- Linear Classifiers and Motivation
- Large Margin Intuition
- Objective Function
- Applications

Linear Classifiers

- Simple Example
 - AND gate

x1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

Optimization

$$- Y = F(X) = W^{T} * X + b$$

 Initialize W and b to a random number and try to fit a line that separates positive and negative samples.

Large Margin Intuition

The best possible decision boundary is the one which classifies the positive and negative samples with the largest "margin" between them.

Objective Function Logistic Regression

$$J = \frac{-1}{m} \sum_{i=1}^{m} \left[y * log(h(x)) + (1 - y) * log(1 - h(x)) \right]$$

Where,
$$h(x) = \frac{1}{(1+e^{-\theta^t * x})}$$

Objective Function Logistic Regression

$$J = \frac{-1}{m} \sum_{i=1}^{m} \left[y * log(h(x)) + (1 - y) * log(1 - h(x)) \right]$$

Where,
$$h(x) = \frac{1}{(1+e^{-\theta^t * x})}$$

Modified Objective Function

$$J = \frac{-1}{m} \sum_{i=1}^m [y*Cost_1(\theta^t*x) + (1-y)*Cost_0(\theta^t*x)]$$
 We want when y = 1, $\theta^t*x > = 1$

and when y = 0,
$$\theta^t * x <= -1$$

Find the theta for which this cost function is the minimum which can be found by solving this constrained optimization using the "method of Lagrange's multipliers".

References

- Dataset:
 - http://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
- Library used for training : https://sklearn.org/
- Explanation of Constrained Optimisation:
 https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-calculus/applications-of-multivariable-calculus/applications-of-multivariable-derivatives/lagrange-multipliers-and-constrained-optimization-introduction