Enoncés: M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis

Corrections: F. Sarkis

Théorème des accroissements finis

Exercice 1

- 1. Soit f une application réelle continue et dérivable sur]a,b[telle que f'(x) ait une limite quand $x \xrightarrow{\leq} b$; alors f se prolonge en une fonction continue et dérivable à gauche au point b.
- 2. Soit f une application continue et dérivable sur un intervalle $I \subset \mathbb{R}$, et de dérivée croissante; montrer que f est convexe sur I i.e. $f((1-t)x+ty) \leq (1-t)f(x)+tf(y)$ pour tous x < y de I et $t \in [0,1]$. (Poser z = (1-t)x+ty et appliquer les AF à [x,z] puis [z,y].)

Correction ▼ [002518]

Exercice 2

Montrer que l'identité des accroissements finis n'est pas vraie pour les fonctions vectorielles en considérant $f(x) = e^{ix}$.

Correction ▼ [002519]

Exercice 3 partiel du 5 décembre 1999

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (x^2 - y, x^2 + y^2)$ et $g = f \circ f$.

- 1. Montrer que f et g sont de classe C^1 .
- 2. Calculer en tout point $(x,y) \in \mathbb{R}^2$ la matrice jacobienne de f notée Df(x,y); calculer la matrice jacobienne de g au point (0,0) notée Dg(0,0).
- 3. Montrer qu'il existe $\rho > 0$ tel que pour tout $(x,y) \in \overline{B_{\rho}((0,0))}$ (la boule fermée de centre (0,0) et de rayon ρ) on a $||Dg(x,y)|| \leq \frac{1}{2}$.
- 4. Montrer que la fonction g admet un unique point fixe dans $\overline{B_{\rho}((0,0))}$.

Correction ▼ [002520]

Exercice 4

On considère l'application $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $F(x,y) = (\cos x - \sin y, \sin x - \cos y)$; on note $F^{(k)}$ l'application F composée k-fois

- 1. Montrer que $||DF(x,y)|| \le \sqrt{2}$ pour tout (x,y).
- 2. En déduire que la suite récurrente définie par x_0, y_0 et pour $n \ge 1$

$$x_{n+1} = \frac{1}{2}(\cos x_n - \sin y_n), \quad y_{n+1} = \frac{1}{2}(\sin x_n - \cos y_n)$$

converge pour tout (x_0, y_0) . Donnez l'équation que vérifie sa limite?

Correction ▼ [002521]

Exercice 5

Soit f une application différentiable de $a,b \subset \mathbb{R}$ dans \mathbb{R}^n ; on suppose qu'il existe k>0 tel que

$$||f'(x)|| \le k||f(x)||, \ \forall x \in]a,b[.$$

Montrer que si f s'annule en un point $x_0 \in]a,b[$, f est identiquement nulle dans]a,b[(montrer que $E=\{x\in]a,b[$; $f(x)=0\}$ est ouvert).

Exercice 6

Soit E un espace de Banach, U un ouvert de E et f une application différentiable de U dans \mathbb{R} telle que l'on ait $||f'(x)|| \le k|f(x)|$, $\forall x \in U$. Montrer que pour x assez voisin de $a \in U$,

$$|f(x)| \le e^{k||x-a||} |f(a)|.$$

Indication: considérer l'application $t \in [0,1] \rightarrow f(a+t(x-a))$.

[002523]

Exercice 7

On considère l'application $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $F(x,y) = (x^2 + y^2, y^2)$; on note $F^{(k)}$ l'application F composée k-fois avec elle-même. On considère $\Omega = \{(x,y) \in \mathbb{R}^2 \mid \lim_{k \to \infty} F^{(k)}(x,y) = (0,0)\}.$

- 1. Vérifier que $(x,y) \in \Omega \iff F(x,y) \in \Omega$.
- 2. Montrer qu'il existe $\varepsilon > 0$ tel que $||(x,y)|| < \varepsilon \Longrightarrow ||F'(x,y)|| \le \frac{1}{2}$; en déduire que 0 est intérieur à Ω puis que Ω est ouvert.
- 3. Montrer que Ω est connexe.

[002524]

Exercice 8

On considère l'application $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$F(x,y) = (x^2 + y^2, y^2)$$
.

Soit $\Omega = \{ p \in \mathbb{R}^2 ; \lim_{k \to \infty} F^k(p) = (0,0) \}.$

- 1. Vérifier que $p \in \Omega$ si et seulement si $F(p) \in \Omega$.
- 2. Montrer qu'il existe $\delta > 0$ tel que $||DF(p)|| < \frac{1}{2}$ si $||p|| < \delta$. En déduire que (0,0) est dans l'intérieur de Ω puis que Ω est un ouvert.
- 3. Utiliser l'homogénéité de F pour montrer que Ω est connexe.

[002525]

Exercice 9

Soit Ω un ouvert convexe de \mathbb{R}^n et $f: \Omega \to \mathbb{R}^n$ une application de classe C^1 qui est injective sur Ω et telle que Df(x) soit injective pour tout $x \in \Omega$. Montrer que, pour tous $a, b \in \Omega$,

$$\|f(b) - f(a) - Df(a)(b - a)\| \le \|b - a\| \sup_{c \in [a,b]} \|Df(c) - Df(a)\| .$$

Correction ▼ [002526]

Correction de l'exercice 1 A

Montrons que f se prolonge par continuité au point b, on montrera alors que f est dérivable à gauche au point b est que cette dérivée est $\lim_{x\to b^-} f'(x)$. Pour celà montrons qu'il existe un réel k tel que toute suite $\{x_n\}$ tendant vers b vérifie $\lim_{n\to\infty} f(x_n) = k$. Remarquons que la dérivée f'(x) admettant une limite au point b, elle est bornée sur un petit voisinage (à gauche) de b (notons d ce majorant). Soit d0 une suite convergent vers d0. Alors la suite d1 est de Cauchy. En effet, pour tout d2 o, posons d3 et antie d3 étant de cauchy,

$$\exists N \in \mathbb{N}, p, q \ge N \Rightarrow |y_p - y_q| \le \varepsilon' \le \frac{\varepsilon}{2M}.$$

Or d'après les accroissements finis :

$$f(y_p) - f(y_q) = (y_p - y_q)f'(c_{p,q})$$
 où $c_{p,q} \in]y_p, y_q[$.

Par conséquent,

$$|f(y_p) - f(y_q)| \le |y_p - y_q|.|f'(c_{p,q})| \le \frac{\varepsilon}{2M}M \le \frac{epsilon}{2} < \varepsilon$$

et donc la suite $\{f(y_n)\}$ est de cauchy et converge vers un réel que nous noterons l. Montrons que c'est le cas pour toute autre suite $\{x_n\}$ qui tend vers b. On a

$$f(x_n) = f(x_n) - f(y_n) + f(y_n).$$

D'après les accroissements finis, $|f(x_n) - f(y_n)| \le M.|x_n - y_n|$ et donc tend vers zero car les suites x_n et y_n tendent vers b. De plus, comme on l'a vu, $f(y_n)$ tend vers k et donc $f(x_n)$ aussi. Prolongeons f par continuité au point b en posant f(b) = k. On a alors le taux d'accroissement

$$T_x f = \frac{f(b) - f(x)}{b - x} = \frac{(b - x)f'(c_x)}{b - x} = f'(c_x) \text{ où } c_x \in]x, b[.$$

Quand x tend vers b, c_x aussi et donc $T_x f$ tend vers l.

Correction de l'exercice 2 ▲

On a $f'(x) = ie^{ix}$ (on peut le vérifier en coordonnées). Si l'égalité des accroissement finis était vérifiée il existerait

$$c \in]0,\pi[$$
 tel que $f(\pi) - f(0) = (\pi - 0)ie^{ic}$

ce qui est impossible car en prenant les modules on trouverait $2 = \pi$.

Correction de l'exercice 3 A

- 1. f est de classe C^{∞} car ses coordonnées le sont (polynômes). g l'est car c'est la composée de deux fonctions C^{∞} .
- 2. La matrice jacobienne de f est :

$$Df(x,y) = \left(\begin{array}{cc} 2x & -1\\ 2x & 2y \end{array}\right)$$

D'apès la formule de différentielle d'une composée, on a

$$Dg(x,y) = Df(f(x,y)) \circ Df(x,y).$$

Or
$$f(0,0) = 0$$
 et

$$Df(0,0) = \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array}\right)$$

et donc

$$Dg(0,0) = \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array}\right) = 0.$$

3. Par continuité de Dg(x,y) à l'origine et en prenant $\varepsilon = 1/2$ on a :

$$\exists \rho > 0, ||(x,y) - (0,0)|| \le \rho \Rightarrow ||Dg(x,y) - Dg(0,0)|| \le 1/2$$

d'où le résultat demandé.

4. D'après les accroissements finis, pour tous $X, Y \in \mathbb{R}^2$, on a

$$||g(X) - g(Y)|| \le \sup_{Z \in \overline{B}_p((0,0))} ||Dg(Z)||.||X - Y|| \le 1/2||X - Y||$$

et donc g est contractante. Le Boule $\overline{B}_{\rho}((0,0))$ la boule $\overline{B}_{\rho}((0,0))$ étant compacte et complète, le théorème du point fixe permet de conclure.

Correction de l'exercice 4 A

1. On a

$$Df(x,y) = \begin{pmatrix} -\sin x & -\cos y \\ \cos x & \sin y \end{pmatrix}$$

On a

$$|||Df(x,y)||| = \sup_{(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}} \frac{||Df(x,y).(a,b)||}{||(a,b)||} = \frac{\sqrt{a^2 \sin^2 x + b^2 \cos^2 y + 2ab \sin x \cos x + a^2 \cos^2 x + b^2 \sin^2 y + 2ab \cos x \sin y}}{\sqrt{a^2 + b^2}} = \frac{\sqrt{a^2 + b^2 + 2ab \sin(x+y)}}{\sqrt{a^2 + b^2}} \le \sqrt{1 + \frac{2|a||b|}{a^2 + b^2}} \le \sqrt{2}$$

car

$$(|a| - |b|)^2 \ge 0 \Rightarrow a^2 + b^2 \ge 2|a||b|.$$

2. Soient $U_n = (x_n, y_n)$ et G(x, y) = 1/2F(x, y), alors $|||G||| \le \frac{\sqrt{2}}{2}$ et $U_{n+1} = G(U_n)$. D'après les accroissements finis, G est contractante et donc le théorème du point fixe donne le résultat demandé.

Correction de l'exercice 9 A

Appliquer le théorème des accroissements finis à g(x) = f(x) - Df(a)x en remarquant que la matrice jacobienne de Df(a)x est la matrice Df(a).