Съждително смятане

1 Език

Символите които ще ползваме ще бъдат:

- най-много изброимо множество от променливи Vars
- логическите съюзи ¬ и ∨, които не са част от Vars

3абележска. Ще бележим променливите с малките букви p,q,r и т.н. с потенциални горни/долни индекси.

Формула ще наричаме всяка крайна редица от символи, която може да се получи от краен брой прилагания на следните правила:

- \bullet ако $p \in \text{Vars}$, то е формула
- \bullet ако φ е формула, то $\neg \varphi$ също е формула
- ullet ако $arphi_1$ и $arphi_2$ са формули, то $ee arphi_1 arphi_2$ също е формула

 $\it Забележска.$ Ще бележим формули с гръцките букви $\it arphi, \it \psi, \it \chi$ и т.н. с потенциални горни/долни индекси.

Когато две формули φ и ψ са **графически равни** (т.е. са еднаква последователност от символи), ще бележим този факт с $\varphi \equiv \psi$. Дължината на φ ще бележим с $|\varphi|$. Подформула на φ е всеки подниз на φ , който е формула.

Лема 1.1. Ако ψ е префикс на φ , то тогава $\varphi \equiv \psi$

Доказателство. Доказваме с индукция по $|\varphi|$:

- $\varphi \equiv p$: тогава твърдението очевидно е изпълнено.
- $\varphi \equiv \neg \psi$: тогава ако χ е префикс на φ , то тогава $\chi \equiv \neg \chi'$. Тогава χ' е префикс на ψ и по (ИП) $\chi' \equiv \psi$, откъдето $\chi \equiv \neg \chi' \equiv \neg \psi \equiv \varphi$.
- $\varphi \equiv \vee \varphi_1 \varphi_2$: тогава ако ψ е префикс на φ , то тогава $\psi \equiv \vee \psi_1 \psi_2$. Така или ψ_1 е префикс на φ_1 или φ_1 е префикс на ψ_1 . И в двата случая по (ИП) $\psi_1 \equiv \phi_1$, откъдето ψ_2 е префикс на φ_2 и по (ИП) $\psi_2 \equiv \varphi_2$. Така $\psi \equiv \vee \psi_1 \psi_2 \equiv \vee \varphi_1 \varphi_2 \equiv \varphi$.

Теорема 1.2. (Еднозначен синтактичен анализ) За всяка формула φ попадаме в точно една от следните ситуации:

- ullet Съществува единствено p, за което $\varphi \equiv p$
- Съществува единствена ψ , за което $\varphi \equiv \neg \psi$
- Съществува единствени φ_1 и φ_2 , за които $\varphi \equiv \vee \varphi_1 \varphi_2$

Доказателство. Съществуването е ясно, а единствеността е директно следствие от Лема 1.1.

Пема 1.3. Всеки символ във φ е начало на единствена подформула на φ .

Доказателство. Доказваме с индукция по $|\varphi|$. Базата е очевидна. Ще разгледаме само (ИС):

- 1 сл. $\varphi \equiv \neg \psi$: тогава един символ във φ или е първото \neg , или се намира някъде във ψ . В първия случай \neg е начало на φ и на никоя друга подформула на φ (по Лема 1.1). Във втория случай по (ИП) този символ е начало на единствена подформула на ψ , а от там и на φ .
- 2 сл. $\varphi \equiv \lor \varphi_1 \varphi_2$: тогава един символ във φ или е първото \lor , или участва във φ_1 или участва във φ_2 . Тук могат да се направят напълно аналогични разсъждения като в предния случай.

Теорема 1.4. Ако φ_1 и φ_2 са подформули на φ , то едната формула е подформула на другата, или нямат обща част.

Доказателство. Да допуснем, че φ_1 и φ_2 имат обща част, като б.о.о. тя е суфикс на φ_1 и префикс на φ_2 . Съгласно Лема 1.3 първият символ на общата част е начало на единствена подформула ψ на φ_1 . Но тогава ψ ще бъде префикс на φ_2 , откъдето по Лема 1.1 $\psi \equiv \varphi_2$ и така φ_2 е подформула на φ_1 .

Въвеждаме следните съкращения:

- Ще пишем $(\varphi \lor \psi)$ вместо $\lor \varphi \psi$
- Ще пишем $(\varphi \& \psi)$ вместо $\neg(\neg \varphi \lor \neg \psi)$
- Ще пишем $(\varphi \Rightarrow \psi)$ вместо $(\neg \varphi \lor \psi)$
- Ще пишем $(\varphi \Leftrightarrow \psi)$ вместо $((\varphi \Rightarrow \psi) \& (\psi \Rightarrow \varphi))$
- Няма да пишем най-външните скоби т.е. ще пишем $\varphi \circ \psi$ вместо $(\varphi \circ \psi)$, където $\sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\}$
- Ще пишем $\varphi_1 \sigma_1 \varphi_2 \sigma_2 \dots \varphi_n \sigma_n \varphi_{n+1}$ вместо $\varphi_1 \sigma_1 (\varphi_2 \sigma_2 (\dots (\varphi_n \sigma_n \varphi_{n+1}) \dots))$, където $\sigma_1, \dots, \sigma_n \in \{ \lor, \&, \Rightarrow, \Leftrightarrow \}$

2 Аксиоми и правила на извод

За всяка формула φ ще имаме аксиомата $\neg \varphi \lor \varphi$. Също така ще имаме следните четири правила на извод:

$$\frac{\varphi}{\psi \vee \varphi} \text{ (ER)} \quad \frac{\varphi \vee \varphi}{\varphi} \text{ (CR)} \quad \frac{\varphi \vee \psi \vee \chi}{(\varphi \vee \psi) \vee \chi} \text{ (AR)} \quad \frac{\varphi \vee \psi \quad \neg \varphi \vee \chi}{\psi \vee \chi} \text{ (Cut)}$$

Ще покажем следните няколко правила:

$$\frac{\varphi \quad \varphi \Rightarrow \psi}{\psi} \text{ (MP)} \quad \frac{\varphi \vee \psi}{\psi \vee \varphi} \text{ (Com)}$$

$$\frac{\varphi_i}{\varphi_1 \vee \dots \vee \varphi_n} \text{ (ER'), sa } 1 \leq i \leq n \quad \frac{\varphi_i \vee \varphi_j}{\varphi_1 \vee \dots \vee \varphi_n} \text{ (ER''), sa } 1 \leq i, j \leq n$$

$$\frac{\varphi_{i_1} \vee \dots \vee \varphi_{i_k}}{\varphi_1 \vee \dots \vee \varphi_n} \text{ (Gen), sa } 1 \leq i_1, \dots i_k, \leq n \quad \frac{\varphi \vee \psi}{\neg \neg \varphi \vee \psi} \text{ (}\neg\neg\text{R)} \quad \frac{\neg \varphi \vee \chi}{\neg (\varphi \vee \psi) \vee \chi} \text{ (}\neg\vee\text{R)}$$

Извод за (Com):

$$\frac{\varphi \vee \psi \quad \overline{\neg \varphi \vee \varphi} \quad (Ax)}{\psi \vee \varphi} \quad (Cut)$$

Извод за (МР):

$$\frac{\frac{\varphi}{\psi \vee \varphi} \text{ (ER)}}{\frac{\varphi \vee \psi}{\psi} \text{ (Com)}} \frac{\neg \varphi \vee \psi}{\psi} \text{ (Cut)}$$

Извод за (ER'):

$$\frac{\frac{\varphi_{i}}{(\varphi_{i+1} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}} \text{ (ER)}}{\frac{\varphi_{i} \vee \cdots \vee \varphi_{n}}{\varphi_{i-1} \vee \cdots \vee \varphi_{n}} \text{ (ER)}}$$

$$\frac{\vdots}{\varphi_{1} \vee \cdots \vee \varphi_{n}} \text{ (ER)}$$

$$\frac{\vdots}{\varphi_{1} \vee \cdots \vee \varphi_{n}} \text{ (ER)}$$

Извода за (ER'') се разделя на няколко случая в зависимост от i и j. Ако i=j, тогава имаме следния извод:

$$\frac{\frac{\varphi_i \vee \varphi_i}{\varphi_i} (CR)}{\varphi_1 \vee \dots \varphi_n} (ER')$$

Ако i < j, тогава имаме следния извод:

$$\frac{\varphi_{i} \vee \varphi_{j}}{(\varphi_{j+1} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i} \vee \varphi_{j}} (ER)$$

$$\frac{((\varphi_{j+1} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}) \vee \varphi_{j}}{(Com)} (AR)$$

$$\frac{\varphi_{j} \vee (\varphi_{j+1} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}}{(\varphi_{j} \vee \varphi_{j+1} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}} (ER)$$

$$\frac{\varphi_{j-1} \vee (\varphi_{j} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}}{(\varphi_{j-1} \vee \varphi_{j} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}} (ER)$$

$$\vdots$$

$$\frac{(\varphi_{j-1} \vee \varphi_{j} \vee \cdots \vee \varphi_{n}) \vee \varphi_{i}}{(ER)} (Com)$$

$$\frac{\varphi_{i} \vee \cdots \vee \varphi_{n}}{\varphi_{1} \vee \cdots \vee \varphi_{n}} (ER')$$

Ако i > j, тогава имаме следният извод:

$$\frac{\frac{\varphi_i \vee \varphi_j}{\varphi_j \vee \varphi_i} \text{ (Com)}}{\varphi_1 \vee \dots \vee \varphi_n} \text{ (ER") за } j < i$$

Правилото (Gen) ще покажем с индукция по $k \ge 1$. При k = 1 или k = 2, използваме съответно (ER') и (ER"). Нека $k \ge 3$. Нека за по-кратко $\varphi \equiv \varphi_1 \lor \cdots \lor \varphi_n$. Тогава можем да построим следният извод:

$$\frac{\varphi_{i_1} \vee \varphi_{i_2} \vee \varphi_{i_3} \vee \cdots \vee \varphi_{i_k}}{(\varphi_{i_1} \vee \varphi_{i_2}) \vee \varphi_{i_3} \vee \cdots \vee \varphi_{i_k}} \text{ (AR)} }{\frac{(\varphi_{i_1} \vee \varphi_{i_2}) \vee \varphi_{i_3} \vee \cdots \vee \varphi_{i_k}}{(\Psi \text{III})}}{(\Psi \vee \varphi_{i_1} \vee \varphi_{i_2})} \text{ (Com)} }{\frac{(\varphi \vee \varphi_{i_1}) \vee \varphi_{i_2}}{(\varphi \vee \varphi_{i_1}) \vee \varphi}}{(\Psi \vee \varphi_{i_1}) \vee \varphi} \text{ (Com)} }{\frac{(\varphi \vee \varphi_{i_1}) \vee \varphi}{(\varphi \vee \varphi \vee \varphi_{i_1})}} \text{ (AR)} }{\frac{(\varphi \vee \varphi) \vee \varphi \vee \varphi}{(\varphi \vee \varphi) \vee \varphi \vee \varphi}} \text{ (CR)} }{\frac{(\varphi \vee \varphi) \vee \varphi \vee \varphi}{(\varphi \vee \varphi) \vee \varphi \vee \varphi}} \text{ (CR)}$$

Извод за (¬¬R):

$$\frac{\varphi \lor \psi \qquad \frac{\neg \neg \varphi \lor \neg \varphi}{\neg \varphi \lor \neg \neg \varphi} \text{ (Ax)}}{\frac{\psi \lor \neg \neg \varphi}{\neg \neg \varphi \lor \psi} \text{ (Com)}}$$

Извод за (¬∨R):

$$\frac{\frac{\psi \vee \neg \neg \varphi}{\neg \neg \varphi \vee \psi} \text{ (Com)}}{\frac{\neg (\varphi \vee \psi) \vee \varphi \vee \psi}{\varphi \vee \neg (\varphi \vee \psi) \vee \psi} \text{ (Gen)}} \frac{(Ax)}{\neg \varphi \vee \chi} \frac{(Cut)}{\frac{(\neg (\varphi \vee \psi) \vee \psi) \vee \psi}{\psi \vee \chi \vee \neg (\varphi \vee \psi) \vee \psi} \text{ (Com)}} \frac{(\nabla (\varphi \vee \psi) \vee \psi) \vee \psi}{\frac{(\varphi \vee \psi) \vee \psi}{\psi \vee \chi \vee \neg (\varphi \vee \psi) \vee \chi} \text{ (Cut)}} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{\frac{\chi \vee \chi \vee \neg (\varphi \vee \psi) \vee \chi}{\neg (\varphi \vee \psi) \vee \chi} \text{ (Cut)}} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee \psi) \vee \chi) \vee \chi}{((\varphi \vee \psi) \vee \chi) \vee \chi} \frac{((\varphi \vee$$

3 Оценки и тавтологии

Оценка ще наричаме всяка функция $v: \text{Vars} \to \{\mathbb{T}, \mathbb{F}\}$. От Теорема 1.2 знаем, че тя може да се продължи по единствен начин до $\tilde{v}: \{\varphi \mid \varphi \text{ е формула}\} \to \{\mathbb{T}, \mathbb{F}\}$ по следния начин:

- $\tilde{v}(p) = v(p)$
- $\tilde{v}(\neg \varphi) = \mathbb{T}$ т.с.т.к $\tilde{v}(\varphi) = \mathbb{F}$
- $\tilde{v}(\varphi \lor \psi) = \mathbb{T}$ т.с.т.к. $\tilde{v}(\varphi) = \mathbb{T}$ или $\tilde{v}(\psi) = \mathbb{T}$

Ще казваме, че една формула φ е **тавтология**, ако за всяка оценка v имаме $\tilde{v}(\varphi) = \mathbb{T}$. Ще бележим този факт с $\models \varphi$.

Лема 3.1. Нека $n \ge 2$ и $\varphi_1, \ldots, \varphi_n$ са такива, че $\models \varphi_1 \lor \cdots \lor \varphi_n$. Нека също така $\varphi_1, \ldots, \varphi_n$ са променливи или отрицанието на такива. Тогава има $i \ne j$, за които $\varphi_i \equiv \neg \varphi_j$.

Доказателство. Нека $\varphi_1, \dots, \varphi_n$ са такива формули. Нека допуснем, че няма такива i и j. Да вземем оценката v, дефинирана по следния начин:

$$v(p)=\mathbb{T}$$
 т.с.т.к. $arphi_i\equiv p$ за някое $1\leq i\leq n$

Тогава $\tilde{v}(\varphi_i) = \mathbb{F}$ за всяко $1 \leq i \leq n$, откъдето $\tilde{v}(\varphi_1 \vee \cdots \vee \varphi_n) = \mathbb{F}$. Но тогава $\not\models \varphi_1 \vee \cdots \vee \varphi_n$, което е абсурд.

Лема 3.2. Нека $n \geq 2$ и $\varphi_0, \ldots, \varphi_n$ са такива, че $\models (\varphi_0 \vee \varphi_1) \vee \varphi_2 \vee \cdots \vee \varphi_n$. Тогава $\models \varphi_0 \vee \varphi_1 \vee \varphi_2 \vee \cdots \vee \varphi_n$.

 \mathcal{A} оказателство. Нека $\varphi_0,\ldots,\varphi_n$ са такива формули. Нека v е произволна оценка. Понеже $\models (\varphi_0\vee\varphi_1)\vee\varphi_2\vee\cdots\vee\varphi_n$, то $\tilde{v}(\varphi_0\vee\varphi_1)=\mathbb{T}$ или $\tilde{v}(\varphi_2\vee\cdots\vee\varphi_n)=\mathbb{T}$. В първия случай $\tilde{v}(\varphi_0)=\mathbb{T}$ или $\tilde{v}(\varphi_1)=\mathbb{T}$, откъдето получаваме, че $\tilde{v}(\varphi_0\vee\varphi_1\vee\varphi_2\vee\cdots\vee\varphi_n)=\mathbb{T}$. В другия случай отново $\tilde{v}(\varphi_0\vee\varphi_1\vee\varphi_2\vee\cdots\vee\varphi_n)=\mathbb{T}$, поради $\tilde{v}(\varphi_2\vee\cdots\vee\varphi_n)=\mathbb{T}$. \square

Лема 3.3. Нека $n \geq 2$ и $\varphi_0, \dots, \varphi_n$ са такива, че $\models \neg(\varphi_0 \lor \varphi_1) \lor \varphi_2 \lor \dots \lor \varphi_n$. Тогава $\models \neg\varphi_0 \lor \lor \varphi_2 \lor \dots \lor \varphi_n$ и $\models \neg\varphi_1 \lor \lor \varphi_2 \lor \dots \lor \varphi_n$.

Доказателство. Нека $\varphi_0, \dots, \varphi_n$ са такива формули. Нека v е произволна оценка. Понеже $\models \neg(\varphi_0 \lor \varphi_1) \lor \varphi_2 \lor \dots \lor \varphi_n$, то $\tilde{v}(\varphi_0 \lor \varphi_1) = \mathbb{F}$ или $\tilde{v}(\varphi_2 \lor \dots \lor \varphi_n) = \mathbb{T}$. В първия случай $\tilde{v}(\neg \varphi_0) = \mathbb{T}$ и $\tilde{v}(\neg \varphi_1) = \mathbb{T}$, откъдето получаваме, че $\tilde{v}(\neg \varphi_0 \lor \lor \varphi_2 \lor \dots \lor \varphi_n) = \tilde{v}(\neg \varphi_1 \lor \varphi_2 \lor \dots \lor \varphi_n) = \mathbb{T}$. В другия случай отново $\tilde{v}(\neg \varphi_0 \lor \lor \varphi_2 \lor \dots \lor \varphi_n) = \mathbb{T}$ и $\tilde{v}(\neg \varphi_1 \lor \varphi_2 \lor \dots \lor \varphi_n) = \mathbb{T}$, поради $\tilde{v}(\varphi_2 \lor \dots \lor \varphi_n) = \mathbb{T}$.

Лема 3.4. Нека $n \geq 2$ и $\varphi_1, \ldots, \varphi_n$ са такива, че $\models \neg \neg \varphi_1 \lor \cdots \lor \varphi_n$. Тогава $\models \varphi_1 \lor \cdots \lor \varphi_n$.

 \mathcal{A} оказателство. Нека $\varphi_1, \ldots, \varphi_n$ са такива формули. Нека v е произволна оценка. Понеже $\models \neg \neg \varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_n$, то $\tilde{v}(\neg \neg \varphi_1) = \mathbb{T}$ или $\tilde{v}(\varphi_2 \lor \cdots \lor \varphi_n) = \mathbb{T}$. Тогава $\tilde{v}(\varphi_1) = \mathbb{T}$ или $\tilde{v}(\varphi_2 \lor \cdots \lor \varphi_n) = \mathbb{T}$, откъдето получаваме, че $\tilde{v}(\varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_n) = \mathbb{T}$.

4 Теореми за коректност и пълнота. Теорема за тавтологиите

Теорема 4.1. (Коректност) $A \kappa o \vdash \varphi$, $mo \models \varphi$.

Доказателство. С индукция по извода на φ :

- φ е аксиома т.е. $\varphi \equiv \neg \psi \lor \psi$: тогава за всяка оценка v имаме, че $\tilde{v}(\psi) \neq \tilde{v}(\neg \psi)$. Тогава $\tilde{v}(\neg \psi \lor \psi) = \mathbb{T}$.
- φ се получава от (ER) т.е. $\varphi \equiv \psi \lor \chi$, където $\vdash \chi$: тогава по (ИП) имаме $\models \chi$. Тогава за всяка оценка v е изпълнено, че $\tilde{v}(\chi) = \mathbb{T}$, откъдето за всяка оценка v имаме $\tilde{v}(\psi \lor \chi) = \mathbb{T}$.
- φ се получава от (CR) т.е. $\vdash \varphi \lor \varphi$: тогава по (ИП) $\models \varphi \lor \varphi$, откъдето за всяка оценка v е изпълнено, че $\tilde{v}(\varphi \lor \varphi) = \mathbb{T}$. Така очевидно за всяка оценка v имаме, че $\tilde{v}(\varphi) = \mathbb{T}$.
- φ се получава от (AR) т.е. $\varphi \equiv (\varphi_1 \vee \varphi_2) \vee \varphi_3$, където $\vdash \varphi_1 \vee \varphi_2 \vee \varphi_3$: тогава по (ИП) $\models \varphi_1 \vee \varphi_2 \vee \varphi_3$, следователно за всяка оценка v имаме, че $\tilde{v}(\phi_i) = \mathbb{T}$ за някое $i \in \{1, 2, 3\}$. Така очевидно за всяка оценка v получаваме, че $\tilde{v}((\varphi_1 \vee \varphi_2) \vee \varphi_3) = \mathbb{T}$.
- φ се получава от (Cut) т.е. $\varphi \equiv \varphi_2 \vee \varphi_3$, където $\vdash \varphi_1 \vee \varphi_2$ и $\vdash \neg \varphi_1 \vee \varphi_3$: тогава по (ИП) $\models \varphi_1 \vee \varphi_2$ и $\models \neg \varphi_1 \vee \varphi_3$. Нека v е произволна оценка. Тогава ако $\tilde{v}(\varphi_1) = \mathbb{T}$, то тогава $\tilde{v}(\varphi_3) = \mathbb{T}$, откъдето $\tilde{v}(\varphi_2 \vee \varphi_3) = \mathbb{T}$. Ако пък $\tilde{v}(\varphi_1) = \mathbb{F}$, то тогава $\tilde{v}(\varphi_2) = \mathbb{T}$, откъдето $\tilde{v}(\varphi_2 \vee \varphi_3) = \mathbb{T}$.

Лема 4.2. *Heкa* $n \geq 2$ $u \varphi_1, \ldots, \varphi_n$ *ca maĸusa,* $u \models \varphi_1 \lor \cdots \lor \varphi_n$. *Torasa* $\vdash \varphi_1 \lor \cdots \lor \varphi_n$.

Доказателство. Ще докажем твърдението с индукция по общият брой на логически съюзи във $\varphi_1, \dots, \varphi_n$. Нека първо предположим, че $\varphi_1, \dots, \varphi_n$ са само променливи или отрицанието на такива. Тогава по Лема 3.1 има $i \neq j$, за които $\varphi_i \equiv \not p_j$. Тогава $\varphi_i \vee \varphi_j$ е аксиома, и по (Gen) имаме, че $\vdash \varphi_1 \vee \dots \vee \varphi_n$.

Нека сега в някоя формула от $\varphi_1, \dots, \varphi_n$ не е променлива или отрицанието на такава. Заради правилото (Gen), б.о.о. можем да считаме, че това е φ_1 . Имаме няколко възможности за φ_1 .

Едната от тях е $\varphi_1 \equiv \psi \lor \chi$. Тогава по Лема 3.2 получаваме, че $\models \psi \lor \chi \lor \varphi_2 \lor \cdots \lor \varphi_n$. В новата формула общият брой на логически съюзи е по-малък, откъдето по (ИП) $\vdash \psi \lor \chi \lor \varphi_2 \lor \cdots \lor \varphi_n$. Така по (AR) получаваме, че $\vdash (\psi \lor \chi) \lor \varphi_2 \lor \cdots \lor \varphi_n$.

Друга възможност е $\varphi_1 \equiv \neg(\psi \lor \chi)$. Тогава по Лема 3.3 получаваме, че $\models \neg\psi \lor \varphi_2 \lor \cdots \lor \varphi_n$ и $\models \neg\chi \lor \varphi_2 \lor \cdots \lor \varphi_n$. Във двете нови формули общият брой на логически съюзи е по-малък, откъдето по (ИП) $\vdash \neg\psi \lor \varphi_2 \lor \cdots \lor \varphi_n$ и $\vdash \neg\chi \lor \varphi_2 \lor \cdots \lor \varphi_n$ и $\vdash \neg\chi \lor \varphi_2 \lor \cdots \lor \varphi_n$ и $\vdash \neg\chi \lor \varphi_2 \lor \cdots \lor \varphi_n$. Така $\vdash \neg(\psi \lor \chi) \lor \varphi_2 \lor \cdots \lor \varphi_n$ съгласно ($\neg \lor R$). Последната възможност е $\varphi_1 \equiv \neg \neg \psi$. Тогава по Лема 3.4 получаваме, че $\models \psi \lor \varphi_2 \lor \cdots \lor \varphi_n$, откъдето по (ИП) $\vdash \psi \lor \varphi_2 \lor \cdots \lor \varphi_n$. Така $\vdash \neg \neg \psi \lor \varphi_2 \lor \cdots \lor \varphi_n$ съгласно ($\neg \neg R$). \Box Теорема 4.3 (Пълнота). $A\kappa o \models \varphi$, $mo \vdash \varphi$. \Box Ще казваме, че φ е тавтологично следствие от $\varphi_1, \ldots, \varphi_n$, ако $\models \varphi_1 \Rightarrow \varphi_2 \Rightarrow \cdots \Rightarrow \varphi_n \Rightarrow \varphi$.

Теорема 4.4 (За тавтологичте). $He\kappa a \varphi e$ masmonoruчno следствие на $\varphi_1, \ldots, \varphi_n, n \ge 0$ и $\vdash \varphi_i$ за ecsko $1 \le i \le n$. $Torasa \vdash \varphi$.

Доказателство. Нека φ е тавтологично следствие на $\varphi_1, \ldots, \varphi_n, n \ge 0$ и $\vdash \varphi_i$ за ecsko $1 \le i \le n$. $Torasa получаваме, че <math>\models \varphi_1 \Rightarrow \varphi_2 \Rightarrow \cdots \Rightarrow \varphi_n \Rightarrow \varphi$, откъдето по ecsho q ecsho q