Pr. Z. FAIZ

Série 4

Exercice 1

On considère par rapport à un repère galiléen R(O,x,y,z), un point materiel M de masse m décrivant, sans frottement, dans le plan vertical yOz, un cercle de centre O et de rayon 2a. Le point materiel M est repéré, à l'instant t, par l'angle $\theta = (Oy, \overrightarrow{e_r})$. $\overrightarrow{e_r}$ est le vecteur unitaire porté par \overrightarrow{OM} . M est soumis en plus de son poids \overrightarrow{P} et de la réaction \overrightarrow{R} du cercle, à une force $\overrightarrow{F} = -K\overrightarrow{AM}$ avec K une constante positive et A un point de coordonnées (0,-a,0). On suppose que M est situé sur le périmètre du cercle (C). \overrightarrow{g} est l'accélération de la pesanteur.

- 1. Quelle est l'énergie potentielle du point M
- 2. Déterminer les positions d'équilibre et leurs natures dans le cas particulier où Ka=mg.
- 3. Donner l'énergie cinétique de M.
- 4. Déduire de l'énergie mécanique E_m
- 5. Etablir l'équation différentielle du mouvement de M à partir du :
 - a. Théorème de l'énergie cinétique.
 - b. Théorème du moment cinétique.
 - c. Principe fondamentale de la dynamique
- 6. Est-ce qu'il y a conservation de l'énergie mécanique. Justifier votre réponse.
- 7. Exprimer la réaction \vec{R} exercée par (C) sur M en fonction de m, g, et θ .

Exercice 2

Soit $\Re(O, xyz)$ un référentiel orthonormé direct et Galiléen, muni de la base $(\vec{t}, \vec{j}, \vec{k})$. Soit M un point matériel de masse m. Le point M glisse sans frottement le long de la tige (T) qui tourne dans le plan horizontal (xoy) autour de l'axe (Oz) avec une vitesse angulaire constante ω ($\varphi=\omega t$ et $\omega>0$). M est soumis, en plus de son poids \vec{P} et de la réaction de la tige \vec{R} , à une force loi

Pr. Z. FAIZ

 $\vec{F} = F \ \overrightarrow{e_{\rho}}$. Dans ces conditions, le mouvement de M le long de la tige suit la loi $\overrightarrow{OM} = at \ \overrightarrow{e_{\rho}}$ (t étant le temps et a une constante positive). $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{k})$ est la base cylindrique liée à la tige.

N.B: Toutes les expressions vectorielles doivent être exprimées dans la base $(\overrightarrow{e_{o}}, \overrightarrow{e_{o}}, \overrightarrow{k})$.

- 1) Calculer les vitesses $\overrightarrow{V_r}$ et $\overrightarrow{V_e}$ de M
- 2) Calculer les accélérations $\overrightarrow{\gamma_r}$, $\overrightarrow{\gamma_e}$ et $\overrightarrow{\gamma_c}$ de M
- 3) Calculer la vitesse \vec{V} (M/\Re) et l'accélération $\vec{\gamma}$ (M/\Re) de M dans \Re en fonction de a, t et ω .
- 4) Déterminer $\overrightarrow{\sigma_0}$ (M/\Re) le moment cinétique en O du point M ainsi que sa dérivée par rapport au temps dans \Re .
- 5) En appliquant le théorème du moment cinétique, trouver les expressions des composantes de \vec{R} .
- 6) Déterminer Ec (M/\Re) l'énergie cinétique du point M dans \Re ainsi que sa dérivée par rapport au temps dans \Re .
- 7) Déterminer les puissances de chacune des forces agissant sur le point M.
- 8) En appliquant le théorème de l'énergie cinétique, trouver l'expression de \vec{F} .