

Contents mm				Ol Epidemical Controlled Simu	ojetive Model Model ations					
1 Motivation 2 Objetive 3 Epidemical Mode 4 Controlled Model Plant mode 5 Simulations	Со									
2 Objetive 3 Epidemical Model 4 Controlled Model Plant model 5 Simulations		mm	40 -		- 60 	8	80	100	120-	
3 Epidemical Model 4 Controlled Model Plant model 5 Simulations		Motivation	1							
4 Controlled Model Plant model S Simulations	•	40 Objetive								
4 Controlled Model Plant model S Simulations	4	E pidemica	I Model							
Plant model Simulations										
										-
80			ıs							_
		80								
Gábriel Adrián Salcedo Varela			Gabriel Adri	án Salcedo	Varela					

- infection by infeted plants and vectors,
- output and input for
- plants and vectors.

Motivation

Epidemical Model Controlled Mode

Others Controls

Cultural Control

- physical barriers.
- planting dates.
- removal of
- host plant

Biological control

- Parasitoids.
- predators • fungi.
 - X. I. Yuan.

Insecticide

60 90 100 120

- Pymetrozine,
- flupyradifurone,
- cyazypyr.
- R. E. Shun-xiang, W. A. Zhen-zhong, Q. I. Bao-li, The pest status of bemisla tabaci in china and
- non-chemical control strategies* Insect Science, 8(3):279-288, 2001.
- H. A. Smith and M. C. Giurcanu. New Insecticides for Management of Tomato Yellow Leaf Curl, a Virus

Vectored by the Silverleaf Whitefly, Bemisla tabaci. Journal of Insect \$cience, 14(1):4-7, jan 2014.

physical

barriers.

 removal of infested plants, host plant

Cultural Control

- physical barriers,
- planting dates,
- removal of infested plants,
- host plant resistance.

Biological control

- Parasitoids,
- predators
- fungi.

Insecticide

- Pymetrozine,
- flupyradifurone,
 - cyazypyr.

Cultural Control

- physical barriers,
- planting dates,
- removal of infested plants,
- host plant resistance.

Biological control

- Parasitoids,
- predators
- fungi.

Insecticide

- Pymetrozine,
- flupyradifurone,
 - cyazypyr.

Cultural Control

- physical barriers,
- planting dates,
- removal of infested plants,
- host plant resistance.

Biological control

- Parasitoids,
- predators
- fungi.

Insecticide

- Pymetrozine,
- flupyradifurone,
 - cyazypyr.

40

Others Controls

Cultural Control

- physical barriers,
- planting dates,
- removal of infested plants,
- host plant resistance.

Biological control

- Parasitoids,
 - predators
 - fungi.

Insecticide

60 00 100 120

- Pymetrozine,
- flupyradifurone,
 - cyazypyr.

Cultural Control

- physical barriers,
- planting dates,
- removal of infested plants,
- host plant resistance.

Biological control

- Parasitoids,
 - predators
 - fungi.

Insecticide

60 20 100 120

- Pymetrozine,
- flupyradifurone,
 - cyazypyr.

40

Others Controls

Cultural Control

- physical barriers,
- planting dates,
- removal of infested plants,
- host plant resistance.

Biological control

- Parasitoids,
 - predators
 - fungi.

Insecticide

60 20 100 100

- Pymetrozine,
- flupyradifurone,
- cyazypyr.

40

Others Controls

Cultural Control

- physical barriers.
- planting dates,
- removal of infested plants,
- host plant

Biological control

- Parasitoids.
 - predators
 - fungi.

Insecticide

60 00 100 120

- Pymetrozine,
- flupyradifurone,
- cyazypyr.

$$\begin{split} \frac{dS_{p}}{dt} &= -\beta_{p}S_{p}I_{v} + r(L_{p} + I_{p}), \\ \frac{dL_{p}}{dt} &= \beta_{p}S_{p}I_{v} - bL_{p} - rL_{p}, \\ \frac{dI_{p}}{dt} &= bL_{p} - rI_{p}, \\ \frac{dS_{v}}{dt} &= -\beta_{v}S_{v}I_{p} - \gamma S_{v} - (1 - \theta)\mu, \\ \frac{dI_{v}}{dt} &= \beta_{v}S_{v}I_{p} - \gamma I_{v} - \theta\mu, \\ S_{p}(0) &= S_{p_{0}}, L_{p}(0) = L_{p_{0}}, I_{p}(0) = I_{p_{0}}, \\ S_{v}(0) &= S_{v_{0}}, I_{v}(0) = I_{v_{0}}. \end{split}$$

Par. Value Descrip. 0.1 plant latent rate 0.01 plant remove rate 0.075 plant infectious rate 0.06vector die or depar rate 0.3 mmigration rate nfected vectors arrival 0.003 vector infected rate

		Mot	vatio	n
		0	bjetiv	e
E	pider	nical	Mode	ı
	Contr	olled	Mode	П
		Simu	lation	s

Plant model

Plant Model with control

Tomato mm url Virus Di 40 se Using an 60 emiological 80 de

				- 4	U =		_ 0	U ==		_ 0	U 🖷
			d	Sn				,			,

Gabriel Adrián Salcedo Varela

$$\frac{dt}{dt}$$

$$-bL_p - (r$$

M	inir	nize																						
			m	m	/3) =		cT 1	∩ —			6	<u> </u> 			Q	 ∩ —			_ 10))			_ 10)
		J(L	$_{1},$ $_{L}$	2, L	(3) =		7	A_1I_p	(t)	+ ,	A_2L	$_{p}(t)$	+	A_3I	$_{v}(t)$) +	$c_1 u$	$_{1}(t)$	$)^{2} +$	- <i>c</i> ₂	u ₂ ($t)^2$	12	.0
su	bje	ct t	0			− C3	u ₃ (t)~	dt,															
			_ 1	 																				
			-4		$\frac{dS_p}{dt}$	=	_	$\beta_p S$	$_{p}I_{v}$	+ (r +	u_1	L_p	+(r+	u ₂)	I_p ,							
					,,																			
					$\frac{dL_p}{dt}$	=	β_{p}	S_p	/ _v –	bL	p —	(r	+ <i>u</i>	₁)L	ο,									
			6		dI				,															
			 6	y-	$\frac{dI_p}{dt}$	=	bL	-p [—]	- (r	+ 1	12)1	p,												
					dS_v	_		BS	. ,	_ (~ _	- IIa) 5	_ (1 _	θ)	, ,							
					dt		ľ	0,0	ν·ρ	'	'	43)	(_	0)	ω,							
			- 8		$\frac{dI_v}{dt}$	=	β_{ν}	S_{v}	, –	$(\gamma$	+ ι	13)[, –	$\theta\mu$,										
			_ 0	П																				
				Ţ	$S_p($	0)	=	S_{p_0}	$, L_{p}$,(0)		L_{p_0}	$I_p($	0) =	$= I_p$	_o , S	$_{v}(0$) =	S_{v_0}	I_{v}	(0)	= /	v ₀ •	
						G	abriel	Adriá	n Sa	cedo	Vare	a												

 $T\in (0,\infty)$ be fixed. Consider the control system:

$$\begin{cases} \dot{x}(s) = f(s, u(s), x(s)) \ s \in [t_0, T], \\ x(t_0) = x_0, \end{cases}$$

with terminal state constraint $x(T; t_0, x_0, u(\cdot)) \in M,$

$$1 \dots M \subset \mathbb{D}^n : C \dots$$

where $M \subseteq \mathbb{R}^n$ is fixed.

 $M: \mathbb{R}_+ \to 2^{\mathbb{R}^n}$ is a moving target in \mathbb{R}^n if for any $t \in \mathbb{R}_+$, M(t) is a measurable.

del Plant model del ons

$$J(t_0,x_0;u(\cdot))=\int_{t_0}^{T}g(s,u(s),x(s))ds+h(T,x(T))\equiv J^T(t_0,x_0,u(\cdot)).$$

Problem
$$(OC)^T$$

Given $(t_0,x_0)\in\mathbb{R}_+ imes\mathbb{R}^n$ with $ilde{\mathcal{U}}^M_{\mathbf{x_0}}[t_0,T]
eq\emptyset$, find a $ar{u}(\cdot)\in ilde{\mathcal{U}}^M_{\mathbf{x_0}}[t_0,T]$

Given
$$(t_0,x_0)\in\mathbb{R}_+$$
 such that

$$J^{T}(t_0,x_0;\bar{u}(\cdot))=\inf_{u(\cdot)\in\tilde{\mathcal{U}}_{x_0}^{M}[t_0,T]}J^{T}(t_0,x_0;u(\cdot)).$$

Gabriel Adrián Salcedo Varela

 $\omega: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ increasing, and $\omega(r,0) = \emptyset$ for every $r \geq 0$.

(C1)

$$f: \mathbb{R}_+ \times U \times \mathbb{R}^n \to \mathbb{R}^n$$
 is measurable, satisfies a lipchitz condition in x , and $|f(t, u, 0)| \leq L$, for every $(t, u) \in \mathbb{R}_+ \times U$.

$$g:\mathbb{R}_+ imes U imes \mathbb{R}^n o \mathbb{R}$$
 and $h:\mathbb{R}^n o \mathbb{R}$ are measurable, and

$$|g(s, u, x_1) - g(s, u, x_2)| + |h(x_1) - h(x_2)| \le \omega(|x_1| \vee |x_2|, |x_1 - x_2|)$$

for every $(s,u) \in \mathbb{R}_+ \times U, x_1, x_2 \in \mathbb{R}^n$.

Existence Theorem

Let (C1)-(C3) hold. Let $M \subseteq \mathbb{R}^n$ be a non-empty closed set. Let $(t_0, x_0) \in [0, T] \times \mathbb{R}^n$ be given and $\tilde{\mathcal{U}}_x^M[t_0, T] \neq \emptyset$. Then problem $(OC)^T$ admits at least one optimal pair.

Pontryagin's Maximum Principle

If $u^*(t)$ and $x^*(t)$ are optimal for the problem $(OC)^T$, then there exists a piecewise differentiable adjoint variable $\lambda(t)$ such that

$$H(t,x^*(t),u(t),\lambda(t)) \leq H(t,x^*(t),u^*(t),\lambda(t))$$

for all controls u at each time t, where the Hamiltonian H is

$$H = g(t, x(t), u(t)) + \lambda(t)f(t, x(t), u(t)),$$

and

$$\lambda'(t) = -\frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x},$$
$$\lambda(T) = 0.$$

	mı	m				O			6	<u> </u>			0	0			_ 10)))			_ 10	00
	-	iter	1.	M	ake	an	init	ial	gue	ss f	or i	i ov	rer t	he	inte	erva	l. ¹⁰				12	10
		Ster	2.	Us	ing	the	in	tial	CO	ndit	ion	<i>X</i> ₁	= x	$r(t_0)$) =	a a	nd	the	val	ues		
		Ì		fo	r й,	sol	ve 2	r fo	rwa	rd i	n ti	me	aco	ord								
	4	1		eq	uat	ion	in 1	he	opt	ima	lity	sys	ten	۱.								
	41 	iel	3.								у сс											
											sol									rdii	ng	
											ion					-	-					
	'	_ 1	4.				_			_	he					valı	ies	into	th	е		
) —									op											
		Ster	5.								the											
											tera : th										ŗ.	
						-				1.	tur					C3 6	15 5	oilit	IOII	р.		
	- 80) —		vu		, ar	- 110		.030	, 10	car		, 50	، م								
				G	abriel	Adriá	n Sa	cedo	Varel	a												

