141 Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

Sauf mention contraire, les corps sont supposés commutatifs.

I - Irréductibilité de polynômes

1. Racines et polynômes irréductibles

Définition 1. Soit A un anneau. Un polynôme P de A[X] est dit **irréductible** si $deg(A) \ge 1$ et ses seuls diviseurs dans A[X] sont les polynômes uP où $u \in A^{\times}$.

[**GOZ**] p. 8

Remarque 2. Soit \mathbb{K} un corps. Alors, $\mathbb{K}[X]$ est euclidien, donc principal, donc factoriel.

Définition 3. Soient \mathbb{L} un corps et \mathbb{K} un sous-corps de \mathbb{L} . Soit $P \in \mathbb{K}[X]$.

- Une **racine** est un élément $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.
- La **multiplicité** de α comme racine de P est le plus grand $n \in \mathbb{N}$ tel que $(X a)^n$ divise P dans $\mathbb{K}[X]$.
- La somme des multiplicités des racines de P dans \mathbb{K} est inférieure ou égale à $\deg(P)$. En cas d'égalité, on dit que P est **scindé** $sur \mathbb{K}$ (ou $dans \mathbb{K}[X]$).

Proposition 4. (i) Tout polynôme de degré 1 est irréductible.

(ii) Tout polynôme irréductible de degré strictement supérieur à 1 n'a pas de racine dans \mathbb{K} .

Contre-exemple 5. $(X^2 + 1)^2$ n'a pas de racine dans \mathbb{Q} , mais est réductible dans $\mathbb{Q}[X]$.

Proposition 6. La réciproque de la Proposition 4 Point (ii) est vraie pour les polynômes de degré 2 ou 3.

Proposition 7. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{Z}[X]$ un polynôme de degré n tel que $a_0 \neq 0$. Si $\alpha = \frac{p}{a} \in \mathbb{Q}$ est une racine de P, en supposant $\frac{p}{a}$ irréductible, alors $p \mid a_0$ et $q \mid a_n$.

Exemple 8. $X^3 + X + 1$ n'a pas de racine dans \mathbb{Q} .

p. 19

2. Quelques critères d'irréductibilité

Soit A un anneau factoriel.

Définition 9. Pour tout polynôme non nul $P \in A[X]$, on appelle **contenu** de P, noté $\gamma(P)$, le PGCD des coefficients de P. P est dit **primitif** si $\gamma(P) = 1$.

p. 10

Lemme 10 (Gauss). (i) Le produit de deux polynômes primitifs est primitif.

(ii) $\forall P, Q \in A[X] \setminus \{0\}, \gamma(PQ) = \gamma(P)\gamma(Q).$

Théorème 11. Soient \mathbb{K} le corps des fractions de A et $P \in A[X]$ de degré supérieur ou égal à 1. Alors, P est irréductible dans A[X] si et seulement si P est irréductible dans K[X] et $\gamma(P) = 1$.

[DEV]

Théorème 12 (Critère d'Eisenstein). Soient \mathbb{K} le corps des fractions de A et $P = \sum_{i=0}^{n} a_i X^i \in A[X]$ de degré $n \ge 1$. On suppose qu'il existe $p \in A$ irréductible tel que :

- (i) $p \mid a_i, \forall i \in [0, n-1]$.
- (ii) $p \nmid a_n$.
- (iii) $p^2 \nmid a_0$.

Alors P est irréductible dans $\mathbb{K}[X]$.

Exemple 13. Soit p un nombre premier. Le polynôme $\Phi_p = \sum_{k=0}^{p-1} X^k$ est irréductible dans $\mathbb{Z}[X]$.

Application 14. Soit $n \in \mathbb{N}^*$. Il existe des polynômes irréductibles de degré n sur \mathbb{Z} .

[PER] p. 67

Théorème 15 (Critère d'irréductibilité modulo p). Soient \mathbb{K} le corps des fractions de A et $P = \sum_{i=0}^{n} a_i X^i \in A[X]$ de degré $n \ge 1$. Soit I un idéal premier de A. On pose B = A/I et \mathbb{L} le corps des fractions de B. On suppose $a_n \notin I$.

[**GOZ**] p. 12

Si \overline{P} est irréductible dans $\mathbb{L}[X]$, alors P est irréductible dans $\mathbb{K}[X]$.

Exemple 16. Le polynôme $X^3 - 127X^2 + 3608X + 19$ est irréductible dans $\mathbb{Z}[X]$.

II - Adjonction de racines

Soit K un corps commutatif.

1. Éléments algébriques, transcendants

Définition 17. Soient \mathbb{L} une extension de \mathbb{K} et $\alpha \in \mathbb{L}$. Soit $\operatorname{ev}_{\alpha} : \mathbb{K}[X] \to \mathbb{L}$ le morphisme d'évaluation en α .

- p. 66
- On note Ann(α) l'idéal des polynômes annulateurs de α . Notons qu'on a Ann(α) = Ker(ev $_{\alpha}$).
- Si ev_{α} est injectif, on dit que α est **transcendant** sur \mathbb{K} .
- Sinon, α est dit **algébrique** sur \mathbb{K} .

Exemple 18. — e et π sont transcendants sur \mathbb{Q} (théorèmes d'Hermite et de Lindemann).

 $-\sqrt{2}$, *i*, ... sont algébriques sur \mathbb{Q} .

Proposition 19. Soient \mathbb{L} une extension de \mathbb{K} et $\alpha \in \mathbb{L}$. Les assertions suivantes sont équivalentes.

- (i) α est algébrique sur \mathbb{K} .
- (ii) $\mathbb{K}[\alpha] = \mathbb{K}(\alpha)$.
- (iii) $[\mathbb{K}[\alpha] : \mathbb{K}] < +\infty$.

Proposition 20. En reprenant les notations précédentes, si α est transcendant, on a

$$\mathbb{K}[\alpha] \cong \mathbb{K}[X] \text{ et } \mathbb{K}(\alpha) \cong \mathbb{K}(X)$$

Définition 21. Soient \mathbb{L} une extension de \mathbb{K} et $\alpha \in \mathbb{L}$. Si α est algébrique sur \mathbb{K} , alors Ann (α) est un idéal principal non nul. Donc, il existe $P \in \mathbb{K}[X]$ unitaire tel que Ann $(\alpha) = (P)$. On note π_{α} ce polynôme P: c'est le **polynôme minimal** de α sur \mathbb{K} .

Exemple 22. Sur \mathbb{Q} , on a $\pi_{\sqrt{2}} = X^2 - 2$ et $\pi_i = X^2 + 1$.

Proposition 23. Soient \mathbb{L} une extension de \mathbb{K} et $\alpha \in \mathbb{L}$. Soient $P \in \mathbb{K}[X]$. Les assertions suivantes sont équivalentes :

- (i) $P = \mu_{\alpha}$.
- (ii) $P \in \text{Ann}(\alpha)$ et est unitaire et $\forall R \in \text{Ann}(\alpha) \setminus \{0\}, \deg(P) \leq \deg(R)$.
- (iii) $P \in \text{Ann}(\alpha)$ et est unitaire et irréductible dans $\mathbb{K}[X]$.

[**GOZ**] p. 31

2. Corps de rupture

Définition 24. Soient \mathbb{L} une extension de \mathbb{K} et $P \in \mathbb{K}[X]$ irréductible. On dit que \mathbb{L} est un **corps de rupture** de P si $\mathbb{L} = \mathbb{K}[\alpha]$ où $\alpha \in \mathbb{L}$ est une racine de P.

p. 57

Exemple 25. En reprenant les notations précédentes, si deg(P) = 1, alors \mathbb{K} est un corps de rupture de P.

Théorème 26. Soit $P \in \mathbb{K}[X]$ un polynôme irréductible sur \mathbb{K} .

- Il existe un corps de rupture de *P*.
- Si $\mathbb{L} = \mathbb{K}[\alpha]$ et $\mathbb{L}' = \mathbb{K}[\beta]$ sont deux corps de rupture de P, alors il existe un unique \mathbb{K} -isomorphisme $\varphi : \mathbb{L} \to \mathbb{L}'$ tel que $\varphi(\alpha) = \beta$.

Application 27. $X^2 + 1$ est un polynôme irréductible sur \mathbb{R} dont $\mathbb{R}[X]/(X^2 + 1)$ est un corps de rupture. On pose alors $\mathbb{C} = \mathbb{R}[X]/(X^2 + 1)$, le corps des nombres complexes, et on note i la classe de X dans l'anneau quotient.

Remarque 28. Si \mathbb{L} est un corps de rupture d'un polynôme $P \in \mathbb{K}[X]$, on a $[\mathbb{L} : \mathbb{K}] = \deg(P)$. Plus précisément, une base de \mathbb{L} en tant que \mathbb{K} -espace vectoriel est $(1, \alpha, ..., \alpha^{\deg(P)-1})$.

3. Corps de décomposition

Définition 29. Soit $P \in \mathbb{K}[X]$ de degré $n \ge 1$. On dit que \mathbb{L} est un **corps de décomposition** de P si :

- Il existe $a \in \mathbb{L}$ et $\alpha_1, \dots, \alpha_n \in \mathbb{L}$ tels que $P = a(X \alpha_1) \dots (X \alpha_n)$.
- $-- \mathbb{L} = \mathbb{K}[\alpha_1, \dots, \alpha_n].$

Exemple 30. — \mathbb{K} est un corps de décomposition de tout polynôme de degré 1 sur \mathbb{K} .

— \mathbb{C} est un corps de décomposition de $X^2 + 1$ sur \mathbb{R} .

Théorème 31. Soit $P \in \mathbb{K}[X]$ un polynôme de degré supérieur ou égal à 1.

- Il existe un corps de décomposition de *P*.
- Deux corps de décomposition de P sont \mathbb{K} -isomorphes.

[**FGN2**] p. 160 **Application 32.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $\mathcal{C}(A)$ le commutant de A. Alors,

$$\mathbb{K}[A] = \mathscr{C}(A) \iff \pi_A = \chi_A = \det(XI_n - A)$$

4. Clôture algébrique

Proposition 33. Les assertions suivantes sont équivalentes :

- (i) Tout polynôme de $\mathbb{K}[X]$ de degré supérieur ou égal à 1 est scindé sur \mathbb{K} .
- (ii) Tout polynôme de $\mathbb{K}[X]$ de degré supérieur ou égal à 1 admet au moins une racine dans \mathbb{K} .
- (iii) Les seuls polynômes irréductibles de $\mathbb{K}[X]$ sont ceux de degré 1.
- (iv) Toute extension algébrique de K est égale à K.

Définition 34. Si K vérifie un des points de la Proposition 33, K est dit **algébriquement clos**.

Proposition 35. Tout corps algébriquement clos est infini.

Contre-exemple 36. $\mathbb Q$ et même $\mathbb R$ ne sont pas algébriquement clos.

Théorème 37 (D'Alembert-Gauss). ℂ est algébriquement clos.

Définition 38. On dit que \mathbb{L} est une **clôture algébrique** de \mathbb{K} si \mathbb{L} est une extension de \mathbb{K} algébriquement close et si

$$\forall x \in \mathbb{L}, \exists P \in \mathbb{K}[X] \text{ tel que } P(x) = 0$$

Exemple 39. — \mathbb{C} est une clôture algébrique de \mathbb{R} .

 $\overline{\mathbb{Q}} = \{\alpha \in \mathbb{C} \mid \alpha \text{ est algébrique sur } \mathbb{Q} \}$ est une clôture algébrique de \mathbb{Q} .

Théorème 40 (Steinitz). (i) Il existe une clôture algébrique de K.

(ii) Deux clôtures algébriques de K sont K-isomorphes.

[**GOZ**] p. 62

III - Polynômes cyclotomiques

Définition 41. On appelle *m*-ième polynôme cyclotomique le polynôme

$$\Phi_m = \prod_{\xi \in \mu_m^*} (X - \xi)$$

Théorème 42. (i) $X^m - 1 = \prod_{d | m} \Phi_d$.

- (ii) $\Phi_m \in \mathbb{Z}[X]$.
- (iii) Φ_m est irréductible sur \mathbb{Q} .

Corollaire 43. Le polynôme minimal sur $\mathbb Q$ de tout élément ξ de μ_m^* est Φ_m . En particulier,

$$[\mathbb{Q}(\xi):\mathbb{Q}] = \varphi(m)$$

Application 44 (Théorème de Wedderburn). Tout corps fini est commutatif.

Lemme 45. Soient $a \in \mathbb{N}$ et p premier tels que $p \mid \Phi_n(a)$ mais $p \nmid \Phi_d(a)$ pour tout diviseur strict d de n. Alors $p \equiv 1 \mod n$.

[**GOU21**] p. 99

[DEV]

Application 46 (Dirichlet faible). Pour tout entier n, il existe une infinité de nombres premiers congrus à 1 modulo n.

IV - Polynômes irréductibles sur \mathbb{F}_q

Soient p un nombre premier et $n \in \mathbb{N}^*$. On pose $q = p^n$.

[**GOZ**] p. 87

Théorème 47.

$$\mathbb{F}_q = \mathbb{F}_p[X]/(P)$$

où $P \in \mathbb{F}_p[X]$ est un polynôme irréductible de degré n sur \mathbb{F}_p .

Corollaire 48. (i) Il existe des polynômes irréductibles de tout degré dans $\mathbb{F}_p[X]$.

(ii) Si $P \in \mathbb{F}_p[X]$ est un polynôme irréductible sur \mathbb{F}_p de degré n, alors P divise $X^q - X$. En particulier, il est scindé sur \mathbb{F}_q . Donc son corps de rupture $\mathbb{F}_q = \mathbb{F}_p[X]/(P)$ est aussi son corps de décomposition.

Théorème 49. Pour tout $j \in \mathbb{N}^*$, on note I(p,q) l'ensemble des polynômes irréductibles unitaires de degré j sur \mathbb{F}_p . Alors,

$$X^{q} - X = \prod_{d \mid n} \prod_{Q \in I(p,q)} Q$$

Corollaire 50.

$$q = \sum_{d|n} d|I(p,d)|$$

Définition 51. On définit la **fonction de Möbius**, notée μ , par

$$\mu: \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ \mu: & & \begin{cases} 1 & \text{si } n=1 \\ (-1)^k & \text{si } n=p_1\dots p_k \text{ avec } p_1,\dots,p_k \text{ premiers distincts} \\ 0 & \text{sinon} \end{cases}$$

Théorème 52 (Formule d'inversion de Möbius). Soient f et g des fonctions de \mathbb{N}^* dans \mathbb{C} telles que $\forall n \in \mathbb{N}^*$, $f(n) = \sum_{d|n} g(d)$. Alors,

$$\forall n \in \mathbb{N}^*, g(n) = \sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$$

Corollaire 53.

$$\forall n \in \mathbb{N}^*, |I(p,q)| = \frac{1}{n} \sum_{d|n} \mu(d) p^{\frac{n}{d}} = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d$$

Bibliographie

Oraux X-ENS Mathématiques

[FGN2]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 2.* 2e éd. Cassini, 16 mars 2021.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/111-oraux-x-ens-mathematiques-nouvelle-serie-vol-2.html.|$

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-13-m1-2e-edition-9782729842772.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

 $\verb|https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529. \\ \verb|html.||$