2024 年全国大学测绘学科创新创业智能大赛 测绘程序设计比赛模拟

一、比赛环境要求

参赛小组由1人组成,每人配置1台电脑、1个外置摄像头。竞赛过程中选择安静、封闭、整洁的环境,避免无关人员干扰。

图 1 考试环境示例

二、比赛软件要求

- 1. 编程环境与编程语言:考试软件为 Visual studio 2017。编程语言限制为 Basic、C/C++、C#,不允许使用二次开发平台(如 Matlab、AutoCAD、ArcGIS等)。
 - 2. 报告编写软件: WPS Office 或 Microsoft Office。
- 3. 比赛软件: 2024 年全国大学生测绘学科创新创业智能大赛考生监考系统(考生端)。

三、成果及要求

比赛时长 240 分钟, 所有成果必须在考试开始后现场制作。在成果的任何地方都不得出现参赛编号、学校信息或参赛队员信息。

1、成果一:程序正确性

在考生端"程序正确性"界面,根据试题要求填写计算结果。该成果用于程序正确性评分,提交方式如图 2 所示。

图 2 程序正确性提交方式

2、成果二:报告文档.pdf

3、成果三:源码文件.rar

将源码文件、可执行文件、计算结果等内容,压缩为一个文件,

文件名称:源码文件.rar。

图 3 成果二和成果三提交

说明:程序正确性可以多次保存,以最后一次为准;文件上传只能提交一次;考试结束后,需要关闭考生端软件(该时刻作为考试结束时间)。

附件1:报告文档模板

- 一、程序优化性说明
- 1. 用户交互界面说明(建议200字以内,给出主要用户交互界面图)
- 2. 程序运行过程说明(建议200字以内,给出程序运行过程截图)
- 3. 程序运行结果(给出程序运行结果)
- 二、程序规范性说明
- 1. 程序功能与结构设计说明(建议500字以内)
- 2. 核心算法源码(给出主要算法的源码)

附件 2: 评分说明

测绘程序设计比赛满分 100 分,其中比赛用时成绩 20 分,程序正确性成绩 60 分,程序规范性和优化性成绩 20 分。比赛用时成绩和程序正确性成绩由计算机自动评分,程序规范性和优化性由专家团队评分。

1. 程序正确性评分(60分)

根据《试题册》要求,编程完成相关算法,根据"程序正确性"给分点要求,将相关计算结果填写考生端"程序正确性"界面,并提交。

本项内容用于检验算法的正确性, 该项成绩由计算机自动评阅。

2. 比赛用时评分(20分)

比赛用时成绩总分为 20 分,记为 S_0 。第 i 组参赛选手提交的时间设为 T_i ,其本项成绩得分 S_i 的计算公式为:

$$S_i = \left(1 - \frac{T_i - T_1}{T_n - T_1} \times 40\%\right) \times S_0$$

式中: T_1 是第一组"程序正确性成绩 \geq 30分"参赛队伍的比赛时间。 T_n 是在规定时间内最后一组参赛队伍的比赛时间。由该公式可知:第一组的时间得分为 20分, T_n 组的时间分为 12分。

特殊情况说明: (1) 第一组之前提交的参赛选手,本项成绩为 15 分; (2) 比赛用时超过比赛规定时间 15 分钟以内,本项成绩为 7 分; (3) 比赛用时超过比赛规定时间 15 分钟以上,取消比赛资格。

3. 专家评分(20分)

评测内容	评分细则说明
程序优化性 (10分)	人机交互界面设计良好(4分)
	容错性、鲁棒性好(3分)
	计算成果规范 (3分)
程序规范性 (10分)	程序设计合理(3分)
	类结构、函数设计清晰(3分)
	注释规范(2分)
	类、函数和变量命名规范(2分)

试题: 大地主题正算

一、数据文件读取

编程读取"正式数据. txt",数据内容和相应的说明如表 1 所示。数据由两部分组成,分别为椭球参数和正算数据。其中涉及的角度格式为 dd. mmsss,dd 表示度,mm 表示分,sss 表示秒(ss. s")。

表 1 样例数据的内容和格式说明

数据内容	数据说明
6378245, 298. 3	椭球长半轴 a, 扁率倒数 1/f
P1, 29. 16593, 73. 04254, P2, 240. 46099, 69636. 245 P3, 31. 26478, 74. 14237, P4, 45. 37571, 134509. 993 P5, 36. 19463, 74. 40565, P6, 237. 51122, 347354. 006 P7, 32. 41227, 73. 32466, P8, 205. 59344, 150229. 306	起点名称,纬度 B ₁ ,经度 L ₁ ,终点名称,大地方位角 A ₁ ,大地线长度 S

【程序正确性】 给出"椭球长半轴,扁率倒数、扁率"数值。

二、程序算法

椭球面点的大地经度 L、大地纬度 B,两点间的大地线长度 S 及其正、反大地方位角 A_i 、

 A_2 , 统称为大地元素, 如图 1 所示。如果知道某些大地元素推求另外一些大地元素,这样的计算就叫做大地主题解算。本试题利用白塞尔法进行大地主题正算。

图 1 大地元素

1. 椭球基本参数

a 为椭球长半轴, 椭球扁率 f, 椭球短半轴(b) 为:

$$b = a(1 - f) \tag{1}$$

第 5页, 共10页

椭球第一偏心率的平方为:

$$e^2 = \frac{a^2 - b^2}{a^2} \tag{2}$$

椭球第二偏心率的平方为:

$$e^{\prime^2} = \frac{a^2 - b^2}{b^2} = \frac{e^2}{1 - e^2}$$
 (3)

【程序正确性】编程计算椭球参数,结果保留 6 位小数。给出 b, e², e'² 计算结果。

2. 利用白塞尔法进行大地主题正算

已知: 大地线起点 P1 的纬度 B_1 ,经度 L_1 ,大地方位角 A_1 ,起点 P1 到终点 P2 的大地线长度 S_1

计算: 大地线终点 P2 的纬度 B_2 , 经度 L_2 及大地方位角 A_2 。

2.1 计算起点的归化纬度

$$\begin{cases} W_{1} = \sqrt{1 - e^{2} \sin^{2} B_{1}} \\ \sin u_{1} = \frac{\sin B_{1} \sqrt{1 - e^{2}}}{W_{1}} \\ \cos u_{1} = \frac{\cos B_{1}}{W_{1}} \end{cases}$$
(4)

【程序正确性】计算第 3 条 (P5-P6) 大地线的 $\mathbb{W}_{\!_1}$, $\sin u_{\!_1}$, $\cos u_{\!_1}$, 结果保留 3 位小数。

2.2 计算辅助函数值

$$\begin{cases} \sin A_0 = \cos u_1 \sin A_1 \\ \cot \sigma_1 = \frac{\cos u_1 \cos A_1}{\sin u_1} \\ \sigma_1 = \tan^{-1} \frac{1}{\cot \sigma_1} \end{cases}$$
 (5)

【程序正确性】上式中 tan^{-1} 使用 Atan 函数求解,角度以弧度为单位,计算结果保留 6 位小数。给出第 3 条大地线的 $\sin A_0$, $\cot \sigma_1$, σ_1 计算结果。

2.3 辅助计算: 计算系数 A, B, C 及 α, β, γ 的值

$$\begin{cases} \cos^2 A_0 = 1 - \sin^2 A_0 \\ k^2 = e^{-2} \cos^2 A_0 \end{cases}$$
 (6)

$$\begin{cases} A = \left(1 - \frac{k^2}{4} + \frac{7k^4}{64} - \frac{15k^6}{256}\right)/b \\ B = \left(\frac{k^2}{4} - \frac{k^4}{8} + \frac{37k^6}{512}\right) \\ C = \left(\frac{k^4}{128} - \frac{k^6}{128}\right) \end{cases}$$
 (7)

$$\begin{cases} \alpha = \left(\frac{e^{2}}{2} + \frac{e^{4}}{8} + \frac{e^{6}}{16}\right) - \left(\frac{e^{4}}{16} + \frac{e^{6}}{16}\right) \cos^{2} A_{0} + \left(\frac{3e^{6}}{128}\right) \cos^{4} A_{0} \\ \beta = \left(\frac{e^{4}}{16} + \frac{e^{6}}{16}\right) \cos^{2} A_{0} - \left(\frac{e^{6}}{32}\right) \cos^{4} A_{0} \end{cases}$$

$$\gamma = \left(\frac{e^{6}}{256}\right) \cos^{4} A_{0}$$
(8)

【程序正确性】结果保留 8 位小数, 计算第 3 条大地线系数 A,B,C,α,β,γ。

2.4 计算球面长度

取初始值 $\sigma = AS$, 然后带入下式进行迭代计算:

$$\sigma = AS + B\sin(\sigma)\cos(2\sigma_1 + \sigma) + C\sin(2\sigma)\cos(4\sigma_1 + 2\sigma)$$
 (9)

两次差值小于1.0×10⁻¹⁰时停止迭代计算。

【程序正确性】结果保留6位小数,给出将第3条大地线球面长度σ计算结果。

2.5 计算经度差改正数

$$\lambda - L = \delta$$

$$= \{ \alpha \sigma + \beta \sin(\sigma) \cos(2\sigma_1 + \sigma) + \gamma \sin(2\sigma) \cos(4\sigma_1 + 2\sigma) \} \sin A_0$$
(10)

【程序正确性】结果保留 8 位小数。给出第 3 条大地线经差改正数δ计算结果。(已经填写的数据仅供参考)

2.6 计算终点大地坐标及坐标方位角

$$\begin{cases} \sin u_2 = \sin u_1 \cos \sigma + \cos u_1 \cos A_1 \sin \sigma \\ B_2 = \operatorname{atan} \left(\frac{\sin u_2}{\sqrt{1 - e^2} \sqrt{1 - \sin^2 u_2}} \right) \\ \lambda = \operatorname{atan} \left(\frac{\sin A_1 \sin \sigma}{\cos u_1 \cos \sigma - \sin u_1 \sin \sigma \cos A_1} \right) \end{cases}$$
(11)

$$\begin{cases} L_2 = L_1 + \lambda - \delta \\ A_2 = \operatorname{atan} \left(\frac{\cos u_1 \sin A_1}{\cos u_1 \cos \sigma \cos A_1 - \sin u_1 \sin \sigma} \right) \end{cases}$$
 (12)

$$\frac{\sin A_1$$
符号 - - + + +
 $\tan A_2$ 符号 + - + -
 A_2 = $|A_2|$ 180° $-|A_2|$ 180° $+|A_2|$ 360° $-|A_2|$

其 中, $|\lambda|$ 、 $|A_2|$ 是其第一象限角。若 $A_2 < 0$, $A_2 = A_2 + 360^\circ$;若 $A_2 > 360^\circ$, $A_2 = A_2 - 360^\circ$ 。

【程序正确性】 计算第 3 条大地线 B_2 , L_2 , A_2 结果, 计算结果保留 6 位小数。输出格式为 dd. mmssss , 其中 dd 表示度 (dd°) , mm 表示分 (mm'), ssss 表示秒 (ss. ss'')。

三、程序正确性和计算结果输出

1. 程序正确性

根据读取的数据文件,编程完成相关算法,按照格式要求输出结果,如下表所示。并 将计算结果填写到"考生客户端"对应的"程序正确性"表格中。(已经填写的数据仅供 参考)

其中:

序号1至3:对应于"一、读取数据文件";

序号 4 至 6:对应于"1.椭球基本参数";

序号7至9:对应于"2.1计算起点的归化纬度";

第 8页, 共10页

序号 10 至 12: 对应于 "2.2 计算辅助函数值";

序号 13 至 18: 对应于 "2.3 辅助计算";

序号 19: 对应于"2.4 计算球面长度";

序号 20: 对应于"2.5计算经度差改正数";

序号 21 至 23:对应于"2.6 计算终点大地坐标及坐标方位角"。

序号	说明	输出格式要求
1	椭球长半轴a	6378245. 000
2	扁率倒数 1/f	298. 300
3	扁率 f	*. *****(保留6位小数)
4	椭球短半轴 b	*. *****(保留6位小数)
5	第一偏心率平方 e²	*. *****(保留6位小数)
6	第二偏心率平方 e'2	*. *****(保留6位小数)
7	第3条大地线的 W1	*.***(保留3位小数)
8	第3条大地线的 sinu	*.***(保留3位小数)
9	第3条大地线的 cosu	*.***(保留3位小数)
10	第3条大地线 sinA	*. *****(保留6位小数)
11	第3条大地线 cot σ₁	*. *****(保留6位小数)
12	第3条大地线σ1	-0. 942832
13	第3条大地线系数 A	*. *****(保留6位小数)
14	第3条大地线系数 B	*. ******(保留6位小数)
15	第3条大地线系数 C	*. ******(保留6位小数)
16	第3条大地线系数α	*. ******(保留6位小数)
17	第3条大地线系数β	*. ******(保留6位小数)
18	第3条大地线系数γ	*. *****(保留6位小数)
19	第3条大地线的球面长度σ	*.****(保留6位小数)
20	第3条大地线经差改正数	-0. 00012488
21	第3条大地线终点纬度 B ₂	*. *****
22	第3条大地线终点经度 L ₂	*. *****
23	第3条大地线终点坐标方位角 A ₂	*. *****

2. 计算结果输出

将上表结果,编程保存在"result.txt"文件中。文件格式如下:

序号,说明,计算结果

1, 椭球长半轴 a, 6378245.000

2,

• • • • • •

四、用户界面设计

1. 交互界面设计与实现要求

- (1) 包括菜单、工具栏、表格等功能。
- (2) 要求功能正确、可正常运行,布局合理、直观美观、人性化。

2. 计算报告的显示与保存

- (1) 将相关统计信息、计算报告在用户界面中显示;
- (2) 保存为文本文件(*. txt)。