TRIGONOMETRY

REVIEW

Si un ángulo agudo, cuya medida es β , cumple que cos β = 0, 75 Calcule $\sqrt{7}$ sen $\beta + \frac{1}{Z}$

Resolución:

Piden:
$$\sqrt{7}$$
sen $\beta + \frac{1}{4}$

Reemplazando:
$$\sqrt{7} \left(\frac{\sqrt{7}}{4} \right) + \frac{1}{2}$$

Así tenemos:
$$\frac{7}{4} + \frac{1}{4} = \frac{8}{4}$$

$$\therefore \sqrt{7} \operatorname{sen} \beta + \frac{1}{4} = 2$$

En un triángulo rectángulo ABC, recto en B, se cumple que 17senA + 12cosC = 20. Calcule 20tanC

Resolución:

Graficando el triángulo rectángulo:

Reemplazando en la condición:

$$17\left(\frac{a}{b}\right) + 12\left(\frac{a}{b}\right) = 20$$

Félix tiene un terreno el cual es de la forma de un triángulo rectángulo en el que los lados mayores están en la relación como 113 es a 112. Calcule la suma de la cosecante y la cotangente del menor ángulo

agudo de dicho triángulo

Resolución:

Forma del terreno que tiene Félix:

Piden:
$$\csc\alpha + \cot\alpha = \frac{113k}{15k} + \frac{112k}{15k}$$

 $\csc\alpha + \cot\alpha = \frac{225k}{15k}$

$$\therefore \csc\alpha + \cot\alpha = 15$$

Por condición:

El profesor Gian Carlo plantea un reto a sus estudiantes el cual consiste en encontrar el valor de K = cot²30°csc²45° + sec60°- 4 tan37°. La estudiante Rosita le da la respuesta correcta, ¿cuál es el resultado que obtuvo Rosita?

Resolución:

RT	sen	cos	tan	cot	sec	CSC
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{3}{4}$	$\frac{4}{3}$	$\frac{5}{4}$	$\frac{5}{3}$
53°	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

Piden:

K=cot²30°csc²45° +sec60°- 4 tan37°

$$K = (\sqrt{3})^2 \times (\sqrt{2})^2 + 2 - 4 \left(\frac{3}{4}\right)$$

$$K = 3 \times 2 + 2 - 3 = 5$$

∴ Rosita obtuvo 5

Del gráfico calcular la longitud del lado CD

la : Resolución:

En un triángulo ABC, se cumple que AB = 18u, BC = 12u y m $\not\equiv$ ABC = 120°. Calcule $3\sqrt{3}$ cotC.

Resolución:

Graficando de acuerdo a las condiciones del problema:

Las edades de Álvaro y Ricky son a y b años respectivamente, si dichos valores se pueden calcular al resolver las siguientes expresiones:

$$tan(3a-10)^{\circ}.cot44^{\circ} = 1 \wedge sec(5b)^{\circ} = csc5^{\circ}$$

a) ¿Cuál es la edad de Álvaro y Ricky? b) ¿Cuál es la diferencia de ambas edades?

Resolución:

Usando las RT recíprocas:

$$(3a - 10)^6 = 44^6$$

$$3a - 10 = 44$$

Usando las RT de ángulos complementarios:

$$(5b)^{\circ} + 5^{\circ} = 90^{\circ}$$

$$(5b)^{\emptyset} = 85^{\emptyset}$$

Piden:

Siendo α y β las medidas de dos ángulos agudos, calcule β , si:

✓
$$sen(7\alpha - 15^{\circ}) = cos(5\alpha + 21^{\circ})$$
....(I)

$$\checkmark$$
 tan(2 β - α) × cot(3 α + 2°)=1.....(II)

Resolución:

De (I):

 $sen(7\alpha - 15^{\circ}) = cos(5\alpha + 21^{\circ})$ De (II):

Por RT de ángulos complementarios:

$$7\alpha - 15^{\circ} + 5\alpha + 21^{\circ} = 90^{\circ}$$

$$12\alpha + 6^{\circ} = 90^{\circ}$$

$$12 \alpha = 84^{\circ} \implies \alpha = 7^{\circ} \dots (*)$$

$$\alpha = 7^{\circ}$$
(*)

 $sen(7\alpha - 15^{\circ}) = cos(5\alpha + 21^{\circ})$

Por RT recíprocas:

$$2\beta - \alpha = 3\alpha + 2^{\circ}$$

$$2\beta = 4\alpha + 2^{\circ}$$

$$\beta = 2 \alpha + 1^{\circ}$$
 (**)

Reemplazando (*) en (**):

$$\beta = 2(7^{\circ}) + 1^{\circ}$$

$$\beta = 14^{\circ} + 1^{\circ}$$

Si ABCD es un cuadrado, calcule $tan\alpha$

4senα

 \triangle FGE: FG = 2sen α

 \triangle AHF: HF= 3cos α

 \triangle ADI: AD = 4sen α

Vemos que AD = HG

 $4sen\alpha = 2sen\alpha + 3cos\alpha$

$$\frac{3698}{\cos \alpha} = \frac{3}{2}$$

∴ $tan\alpha = 1,5$

En las orillas de un río crecen dos palmeras, una frente a otra. La altura de una es de 30m, la de la otra 20m y la distancia entre sus bases es 50m. En la copa de cada palmera hay un águila y repentinamente las dos aves descubren un pez que aparece en la superficie del agua, justamente sobre la línea imaginaria que une las bases de las palmeras, la aves se lanzan a la vez y llegan al pez al mismo tiempo. Considerando que las aves volaron en línea recta y a la misma velocidad constante, ¿a qué distancia de la base de la palmera de mayor altura apareció el pez?

Resolución:

Graficando de acuerdo a las condiciones del problema:

Teorema de Pitágoras en cada triángulo rectángulo

$$d^2 = 30^2 + x^2$$
 y $d^2 = 20^2 + (50-x)^2$

Igualando d²:

$$30^2 + x^2 = 20^2 + (50-x)^2$$

$$900 + x^2 = 400 + 2500 - 100x + x^2$$

$$100x = 2000$$
 \Rightarrow $x = 20$

∴ EL pez apareció a 20m