Homework One

John E. Palenchar
Department of Mathamatics
Student—University of Florida

February 8, 2023

Problem 1

Find the sets $A, B, C: A - (B \cup C) \neq (A - B) \cup C$

ANSWER

Suppose that $A \subseteq C \subseteq B$ To start let us define our set operations as

$$x \in A - B \iff x \in A \land x \notin B$$
$$x \in A \cup B \iff x \in A \lor x \in B$$
$$x \in A \cap B \iff x \in A \land x \in B$$

One can say that the left side of the equation is

$$x \in A - (B \cup C) \Leftrightarrow$$

$$x \in A \land x \notin (B \cup C) \Leftrightarrow$$

$$x \in A \land (x \notin B \lor x \notin C) \Leftrightarrow$$

$$(x \in A \land x \notin B) \lor (x \in A \land x \notin C)$$

One can then take the left side of the equation and write it as

$$x \in (A - B) \cup C \Leftrightarrow$$

$$x \in (A - B) \lor x \in C \Leftrightarrow$$

$$(x \in A \land x \notin B) \lor x \in C \Leftrightarrow$$

$$(x \in C \lor x \in A) \lor (x \in C \land x \notin B)$$

At this point there is a contradiction because on the left hand one get that $x \in C \lor x \in A$. Where as on the right side one get that $x \in A \land x \notin C$.

From this we can find that there are some sets that exemplify that $A-(B\cup C)\neq (A-B)\cup C$

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{-1, 0, 1, 2\}$$

 $C = \{3, 4, 5, 6, 7\}$ When working these out we get that the left side is equal to the empty set. While the Right side equals the set $\{3, 4, 5, 6, 7\}$

Problem 2

Consider the set
$$D = 7x + 3y : x \in \mathbb{Z}, y \in \mathbb{Z}$$
.
(a) Show that $1 \in D$ holds.
(b) Use (a) to show that $D = \mathbb{Z}$

ANSWER (a)

Let one take the equation 7x + 3y and write it as 7x + 3Y = 1. One knows that x and y can be any number in \mathbb{Z} . One can now make x = 10 and y = -23 as both 10 and -23 are integers this shows that $1 \in D$

ANSWER (B)

One can define a function f(w) = 7x + 3(-2w) where $w \in \mathbb{Z}$. The range of this function is \mathbb{Z} . From this it can be said that $D = \mathbb{Z}$