The order topology

2016-02-01 9:00 -0500

Definition (Total order)

A relation < on a set X is called a total (or linear) order if the following is satisfied:

Definition (Total order)

A relation < on a set X is called a total (or linear) order if the following is satisfied:

(O1) For every $x, y \in X$ with $x \neq y$, we have that x < y or y < x (comparability).

Definition (Total order)

A relation < on a set X is called a total (or linear) order if the following is satisfied:

- **(O1)** For every $x, y \in X$ with $x \neq y$, we have that x < y or y < x (comparability).
- **(O2)** For every $x \in X$, we have that $x \not < x$ (nonreflexivity).

Definition (Total order)

A relation < on a set X is called a total (or linear) order if the following is satisfied:

- **(O1)** For every $x, y \in X$ with $x \neq y$, we have that x < y or y < x (comparability).
- **(O2)** For every $x \in X$, we have that $x \not < x$ (nonreflexivity).
- (O3) if x < y and y < z, then x < z (transitivity).

Definition (Total order)

A relation < on a set X is called a total (or linear) order if the following is satisfied:

- **(O1)** For every $x, y \in X$ with $x \neq y$, we have that x < y or y < x (comparability).
- (O2) For every $x \in X$, we have that $x \not < x$ (nonreflexivity).
- (O3) if x < y and y < z, then x < z (transitivity).

Definition (Totally ordered set)

In this case, the pair (X, <) is called a totally ordered set. If x < y or x = y, we write $x \le y$. An example of a total order is given by $X = \mathbb{R}$ with usual order.

Intervals

Definition (Intervals)

If X is a totally ordered set, and $a, b \in X$, we will use the following notation for intervals:

$$[a, b] = \{x \in X \mid a \le x \le b\}$$

$$(a, b) = \{x \in X \mid a < x < b\}$$

$$(a, b] = \{x \in X \mid a < x \le b\}$$

$$[a, b) = \{x \in X \mid a \le x < b\}$$

$$(a, \infty) = \{x \in X \mid x > a\}$$

$$(-\infty, b) = \{x \in X \mid x < b\}$$

The order topology

Definition (Order topology)

Let X be a totally ordered set with more than one element. Let S be the collection:

$$S = \{(-\infty, a) \mid a \in X\} \cup \{(b, \infty) \mid b \in X\}.$$

Then S is subbase for a topology on X, called order topology.

Base for the order topology

Lemma (Base for the order topology)

Let X be a totally ordered set with more than one element. Let $\mathcal B$ be the collection of all intervals of the form (a,b), together with those of the form [m,b), in case X has a minimum m, and those of the form (a,M], in case X has a maximum M. Then $\mathcal B$ is a base for the order topology on X.

Base for the order topology

Lemma (Base for the order topology)

Let X be a totally ordered set with more than one element. Let $\mathcal B$ be the collection of all intervals of the form (a,b), together with those of the form [m,b), in case X has a minimum m, and those of the form (a,M], in case X has a maximum M. Then $\mathcal B$ is a base for the order topology on X.

Proof

The set of finite intersections of the intervals in the subbasis can be obtained as union of elements of the intervals described. \Box

Definition (Dictionary order)

Let X and Y be totally ordered sets. We define an order relation on the cartesian product $X \times Y$ by:

$$(x,y)<(x',y'),$$

if either:

Definition (Dictionary order)

Let X and Y be totally ordered sets. We define an order relation on the cartesian product $X \times Y$ by:

$$(x,y)<(x',y'),$$

if either:

• x < x', or

Definition (Dictionary order)

Let X and Y be totally ordered sets. We define an order relation on the cartesian product $X \times Y$ by:

$$(x,y)<(x',y'),$$

if either:

- x < x', or
- x = x' and y < y'.

Definition (Dictionary order)

Let X and Y be totally ordered sets. We define an order relation on the cartesian product $X \times Y$ by:

$$(x,y)<(x',y'),$$

if either:

- x < x', or
- x = x' and y < y'.

Lemma (The dictionary order is a total order)

The order on $X \times Y$ just described is a total order, called the dictionary order.

Proof that the dictionary order is a total order

• Let $(x, y) \neq (x', y')$ with $(x, y), (x', y') \in X \times Y$. If $x \neq x'$, then one of the pairs is less than the other. Otherwise x = x', and since the pairs are distinct, we must have $y \neq y'$, and so (O1) follows.

Proof that the dictionary order is a total order

- Let $(x, y) \neq (x', y')$ with $(x, y), (x', y') \in X \times Y$. If $x \neq x'$, then one of the pairs is less than the other. Otherwise x = x', and since the pairs are distinct, we must have $y \neq y'$, and so (O1) follows.
- If we had (x, y) < (x, y), then it would follow that either x < x or x = x, y < y. Since none of these is possible, we conclude that (O2) is true.

Proof that the dictionary order is a total order

- Let $(x, y) \neq (x', y')$ with $(x, y), (x', y') \in X \times Y$. If $x \neq x'$, then one of the pairs is less than the other. Otherwise x = x', and since the pairs are distinct, we must have $y \neq y'$, and so (O1) follows.
- If we had (x, y) < (x, y), then it would follow that either x < x or x = x, y < y. Since none of these is possible, we conclude that (O2) is true.
- The proof of (O3) is left as an exercise.

Examples

ullet The order topology on $\mathbb R$ is the same as the standard topology.

Examples

- ullet The order topology on $\mathbb R$ is the same as the standard topology.
- The order topology on $\mathbb{R} \times \mathbb{R}$ with the dictionary order is different from the usual metric topology on \mathbb{R}^2 .

Examples

- ullet The order topology on $\mathbb R$ is the same as the standard topology.
- The order topology on $\mathbb{R} \times \mathbb{R}$ with the dictionary order is different from the usual metric topology on \mathbb{R}^2 .
- The order topology on $\{0,1\} \times \mathbb{N}$ has almost all singletons as open sets.

1. Let (X, <) be a totally ordered set, and let $Y \subseteq X$. If, for $y, y' \in Y$ we define y <' y' whenever y < y' in X, show that (Y, <') is a totally ordered set.

- 1. Let (X, <) be a totally ordered set, and let $Y \subseteq X$. If, for $y, y' \in Y$ we define y <' y' whenever y < y' in X, show that (Y, <') is a totally ordered set.
- 2. If X is a totally ordered set, and $Y \subseteq X$, show that Y can have at most one smallest element.

- 1. Let (X, <) be a totally ordered set, and let $Y \subseteq X$. If, for $y, y' \in Y$ we define y <' y' whenever y < y' in X, show that (Y, <') is a totally ordered set.
- 2. If X is a totally ordered set, and $Y \subseteq X$, show that Y can have at most one smallest element.
- 3. If X is a totally ordered set, and we have that x < y and there are no $z \in X$ such that x < z < y, we say that y is an immediate successor of x. Show that any $x \in X$ has at most one immediate successor.

- 1. Let (X, <) be a totally ordered set, and let $Y \subseteq X$. If, for $y, y' \in Y$ we define y <' y' whenever y < y' in X, show that (Y, <') is a totally ordered set.
- 2. If X is a totally ordered set, and $Y \subseteq X$, show that Y can have at most one smallest element.
- 3. If X is a totally ordered set, and we have that x < y and there are no $z \in X$ such that x < z < y, we say that y is an immediate successor of x. Show that any $x \in X$ has at most one immediate successor.
- 4. Let (X, <) be a totally ordered set with no minimum element, and let $\mathcal{C} = \{(a, \infty) \mid a \in X\}$. Show that \mathcal{C} is a basis for a topology on X. Is $\tau_{\mathcal{C}}$ in general, the same as the order topology?

Links

• Total order - Wikipedia, the free encyclopedia

Links

- Total order Wikipedia, the free encyclopedia
- Order topology Wikipedia, the free encyclopedia