Prosimy wypełnić poniższe pola DRUKOWANYMI literami:

										I	mi	ę i	na	zw	risl	ΟΣ										
																										7
		·				•	·												•	•						_
												Е	-m	ail												
																										7
 •	•	•		•	·		•	•						·	•				•				•	•	•	_
									Ν	lr t	ele	efo	nu					Kl	asa	a						
					-	+ 4	$4 \mid 8$	3																		

Klucz do testu kwalifikacyjnego na Warsztaty Matematyczne 2022

Klasy pierwsze i drugie

Test składa się z uporządkowanych w kolejności <u>losowej</u> 30 zestawów po 3 pytania. Na pytania odpowiada się "tak" lub "nie" poprzez wpisanie odpowiednio "T" bądź "N" w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja odpowiedzi "tak" i "nie". W zestawach zaznaczonych gwiazdką (gwiazdka wygląda tak: *) prócz udzielenia odpowiedzi należy je uzasadnić. Test trwa 180 minut.

Zasady punktacji

- Za pojedynczą poprawną odpowiedź: 1 punkt.
- Za pojedynczą niepoprawną odpowiedź: -1 punkt.
- Za brak odpowiedzi: 0 punktów.
- Za zadanie zrobione w całości dobrze dodatkowe 2 punkty.
- Za poprawne uzasadnienie pojedynczej odpowiedzi: 1 punkt.
- Za niepoprawne uzasadnienie pojedynczej odpowiedzi bądź brak takowego: 0 pkt.

Powodzenia!

Uwaga! Przez zbiór liczb naturalnych w zadaniach rozumiemy zbiór liczb całkowitych większych lub równych 0.

- 1. Dana jest kwadratowa kartka ABCD, niech E, F, G, H będą środkami odcinków AB, BC, CD, DA odpowiednio. Zginamy kartkę wzdłuż prostej FH, tak aby punkt A przeszedł na punkt D, następnie wzdłuż prostej EG tak aby punkt D przeszedł na punkt C, następnie wzdłuż prostej FG, tak aby środek ABCD przeszedł na punkt C. Tak złożoną kartkę tniemy równolegle do CD przechodząc przez środek CF.
 - N Czy dostaniemy 4 kawałki papieru?
 - T Czy dokładnie 2 kawałki papieru będą prostokatami?
 - N Czy dokładnie 4 kawałki papieru będą trójkątami?

- **2*.** Dany jest trójkąt ABC o bokach: |AB|=13, |BC|=12, |AC|=5. D spodek wysokości z C, niech E będzie punktem przecięcia kwadratu ABFG (zawierającego w sobie punkt C) z półprostą DC. Jaki jest stosunek $\frac{|ACEG|}{|CBFE|}$?
 - $\frac{25}{144}$
 - $\frac{N}{15}$
 - $\frac{12}{5}$

3*. Martyna i Oliwia grają w grę. Zaczyna Martyna, na początku mając na tablicy liczbę 2. Dziewczyny wykonują ruchy na przemian, w każdym ruchu muszą dodać jakiś dzielnik właściwy aktualnej liczby do zapisanej liczby. Wygrywa ta z dziewczyn, która napisze liczbę większą lub równą x.

Dzielniki właściwe liczby 10 to: 1, 2, 5.

Czy Martyna ma strategię wygrywającą dla \boldsymbol{x} równego:

- N 4?
- T 97
- T 1237?

	Γ nwd(8917, 7471) > 100
5.	Ile cyfr ma najmniejsza liczba, która kończy się na 6 i jeśli się jej ostatnią cyfrę (6) przeniesie na początek, to otrzymana liczba jest 4 razy większa od liczby początkowej?
	T 6 N 8 N 10
6.	Liczba 139:
	T Jest pierwsza.
	Noże być przedstawiona jako suma dwóch kwadratów liczb całkowitych.
	Noże być przedstawiona jako suma dwóch sześcianów liczb całkowitych.
7.	Dany jest trójkąt równoboczny o boku 1 i prostokątny o przyprostokątnej 1.
	N trójkąt równoboczny ma większy promień okręgu wpisanego.
	N trójkąt równoboczny ma większy promień okręgu opisanego
	N istnieje dokładnie jeden wielościan, którego wszystkie ściany to trójkąty równoboczne.
8.	Na boku BC trójkąta ABC, spełniającego kąt $ACB=170^\circ$, obrano taki punkt D , że $BD=AC$. Niech P i M będą odpowiednio środkami odcinków CD i AB . Miara kąta BPM wynosi:
	$oxed{ ext{T}}$ 85°
	N 90°
	<u>N</u> 95°
9.	Mamy dany ciąg liczb naturalnych od 1 do 16.
	T Możemy podzielić te liczby w pary, tak aby suma każdej z nich była kwadratem liczby całkowitej.
	T Możemy ustawić je w szeregu, tak aby suma każdych dwóch kolejnych była kwadratem liczby całkowitej.
	Nożemy ustawić je w kole, tak aby suma każdych dwóch kolejnych była kwadratem liczby całkowitej.
	3

4. Czy

N nwd(8649, 8789) > 100

- 10*. Oceń prawdziwość podanych relacji:
 - $\boxed{\mathbf{N}} \quad \frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{63} + \frac{1}{99} + \frac{1}{143} = \frac{7}{13}.$
 - N Dla dowolnego $n: \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} < 1000.$
 - \square Dla dowolnego $n: \sum_{i=1}^{n} \frac{i}{1+i^2+i^4} < \frac{1}{2}$

11. Dane są takie liczby całkowite dodatnie $a, b, x, \dot{z}e$:

$$x \mid a + 5b$$

$$x \mid 3a + b$$

Czy z tych warunków wynika, że:

$$T$$
 $x \mid 29a^2 + 38ab + 53b^2$

$$\boxed{\mathbf{T}} \ x \mid 7a^2 + 21b^2$$

- 12*. Każdy punkt płaszczyzny pomalowano na pewien z k różnych kolorów (każdy kolor został użyty). Prawdą jest, że;
 - $\boxed{\mathbb{T}}$ jeśli k=3to zawsze istnieją dwa punkty tego samego koloru odległe o 1.
 - jeśli k=4 to zawsze istnieją dwa punkty tego samego koloru odległe o 1 lub $\sqrt{3}$.
 - $\overline{\mathbf{N}}$ jeśli k=4 to istnieje takie kolorowanie, że każda prosta jest jednokolorową lub dwukolorowa.

- 13. Dany jest turniej każdy zawodnik rozgrywa dokładnie jeden mecz z każdym innym i nie ma remisów. Mistrzem turnieju nazwiemy zawodnika, który dla każdego zawodnika A, wygrał z nim lub kimś kto wygrał z A. Czy:
 - N w turnieju może być dokładnie 2 mistrzów.
 - T w turnieju może być dokładnie 3 mistrzów.
 - N w czteroosobowym turnieju może zdarzyć się, że każdy jest mistrzem.
- 14. Niech d_1, d_2, \ldots, d_m oznaczają wszystkie dodatnie dzielniki n oraz niech $\sigma(n) = d_1 + d_2 + \ldots + d_m$. Czy:
 - $\boxed{\Upsilon} \quad \frac{\sigma(n)}{(\frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_m})} = n$

 - istnieją dokładnie 2 takie liczby parzyste n, że $\sigma(n)=2n$ oraz n<1000

- 15*. Na pewnej wyspie żyją dwa typy mieszkańców: prawdomówni którzy zawsze mówią prawdę i kłamcy, którzy zawsze kłamią. Po przybyciu na wyspę podróżnik spotkał dwóch mieszkańców: wysokiego i niskiego. Zapytał wysokiego, czy obaj są prawdomówni, ale z jego wypowiedzi nie można było wywnioskować, kim oni byli. Wówczas zapytał niskiego, czy wysoki jest prawdomówny, a gdy ten odpowiedział, podróżnik wiedział, do jakiego typu należał każdy z nich. Czy napotkani mieszkańcy mogli być:
 - N obaj prawdomówni
 - N obaj kłamcami
 - T niski prawdomówny, zaś wysoki kłamcą

- 16. W tym zadaniu d oznacza długość średnicy podstawy stożka, zaś l długość jego tworzącej. Czy można zbudować stożek, gdy:
 - $\boxed{\mathbf{T}} \ d = 6, \ l = 5$

 - T d = 22, l = 12
- **17*.** Niech A = (0,0), B = (1,0), C = (2,0), D = (3,0), E = (0,1). Czy
 - $\boxed{\mathbf{T}} \ \angle BED = \angle ECA?$

 - \Box $\angle AEB = \angle EBA?$

18.	Czy liczba $3^{105} + 4^{105}$ jest podzielna przez:
	N 5? N 11? T 13?
19.	Pewien pijak spacerując po nadmorskich klifach znalazł się trzy kroki od przepaści (trzeci już wpada w przepaść). Jest on pijany, dlatego wykonuje losowe ruchy przybliżając się o krok do przepaści z prawdopodobieństwem $\frac{2}{5}$ oraz oddalając się o krok od przepaści z prawdopodobieństwem $\frac{3}{5}$. Zakładamy, że pijak może odejść od przepaści dowolnie daleko oraz nie kończy spaceru za wyjątkiem upadku w przepaść.
	N Prawdopodobieństo pozostania żywym po pięciu krokach wynosi więcej niż 0.9.
	N Pijak może spaść w 24 kroku.
	$\overline{\mathbf{N}}$ Po nieskończenie długim czasie szansa na przeżycie pijaka wynosi $\frac{4}{5}$.
20.	Codziennie zaraz po wyjściu ze szkoły Jaś idzie na stację metra i wsiada w pierwszy pociąg, który nadjedzie, niezależnie od kierunki jazdy. Na Kabatach mieszka babcia Jasia, a niedaleko Młocin jego dziewczyna. Jaś zawsze korzysta z okazji i odwiedza osobę, w pobliżu której się znalazł. Zakładamy, że pociągi metra kursują w stałych odstępach czasu, z równą częstotliwością w każdym z dwóch kierunków.
	$\overline{\mathbf{N}}$ Jaś zawsze z prawdopodobieństwem $\frac{1}{2}$ pojedzie do babci.
	T Czy może się zdarzyć, że Jaś bez celowego działania będzie jeździł do dziewczyny 5 razy częściej, niż do babci?
	T Czy możliwe jest, że gdyby Jaś zmienił strategię i przepuszczał zawsze pierwszy napotkany pociąg metra i wsiadał do drugiego to zmieniłby częstotliwość widzenia babci?
21.	Dane są dwie liczby niewymierne. Czy możliwe jest, aby:
	T Ich suma była liczbą wymierną
	T Zarówno ich iloczyn, jak i iloraz były wymierne
	T Występowało między nimi nieskończenie wiele liczb wymiernych
22.	Które z poniższych planszy można pokryć klockami 6 × 1?
	$ \boxed{\mathbf{N}} $ 16×15
	${\color{red} { m N}}$ 19 × 19 bez środkowego pola
	T 13 × 13 bez środkowego pola

- **23.** Zdanie "Dla dowolnych n kolejnych liczb naturalnych, można wybrać dwie z nich (niekoniecznie różne), tak że ich iloczyn daje resztę 1 w dzieleniu przez m" jest prawdziwe dla:
 - $\boxed{\mathbf{T}} \ m = 8, \, n = 2$
 - N = 13, n = 5
 - T m = 17, n = 8
- **24.** Dane są: $f(x) = x^2 + ax + b$, $g(x) = x^2 + cx + d$, takie, że: $a \neq c$, $b \neq d$, Spełniony jest warunek: f(17) + f(105) = g(17) + g(105). Ile rozwiązań ma równanie f(x) = g(x)?
 - N_0
 - $\overline{\mathbf{T}}$ 1
 - \overline{N} 2
- **25.** W kwadracie ABCD wybrano 2 losowe punkty na boku CD: M, N. Trójkąty ABM, ABN na pewno:
 - N są podobne.
 - N mają równe obwody.
 - T mają równe pola.
- **26.** Mając pierścień z dwóch okręgów o wspólnym środku, cięciwa większego okręgu styczna do mniejszego ma długość k. Pole między okręgami wyraża się przez:
 - $N \pi k^2$
 - $\frac{\pi k^2}{4}$
 - $\frac{\pi k}{4}$

- **27*.** Liczba $\sqrt{12 + 2\sqrt{27}} \sqrt{19 4\sqrt{12}}$ jest:
 - N ujemna.
 - N całkowita.
 - T niewymierna.

- **28.** Liczba $a^3b^5c^2$ jest siódmą potęgą pewnej liczby całkowitej, gdzie a,b i c są liczbami całkowitymi. Czy z tego wynika, że siódmą potęgą jest również liczba:
 - \Box ab^4c^3 ?

 - Γ $a^{22}b^{333}c^{55555}$?
- **29.** Mamy daną liczbę naturalną k. Ile uporządkowanych rozwiązań (m, n) może mieć równanie $2^m + 2^n = k$, gdzie m i n są liczbami całkowitymi.
 - T
 - T 1
 - T_{2}
- **30.** Czy istnieje 100 kolejnych liczb naturalnych wśród których:
 - N Dokładnie 12 jest liczbami Fibbonacciego?
 - T Dokładnie 7 jest liczbami pierwszymi?
 - T Dokładnie 7 jest potęgami dwójki o całkowitym wykładniku?