

End-to-End Streaming ASR for Edge devices

Lei Xie

Audio, Speech and Language Processing Group (ASLP@NPU), School of Computer Science, Northwestern Polytechnical University, Xi'an, China

Outline

- End-to-end ASR
- RNN-T
- Cascade RNN-T
- U2
- WeNet

Outline

- End-to-end ASR
- RNN-T
- Cascade RNN-T
- U2
- WeNet

Traditional ASR

- Acoustic Model + Lexicon + Language Model → Decoding Graph
- Many building blocks with complicated training pipeline
 - Each optimized with own target
 → not directly leading to final lower error rate
- Pronunciation lexicon with phonetic/linguistic knowledge
- Forced alignment
- Painful engineering

E2E ASR

- One neural network for direct acoustic feature to grapheme mapping
- Simplified framework and training pipeline
- Training target directly associated with error rate
- Pronunciation lexicon can be discarded
- Forced alignment no longer required
- Two typical E2E framework
 - Attention-based Encoder Decoder (AED)
 - Transducer (T)

E2E ASR: Trends

- Effective language modeling
- Training tricks
- Streaming
- Multi-lingual
- Low resource deployment, e.g., on edge/IoT devices
- Pre-training, unsupervised and weak-supervised learning
- End-to-end ideas
 - Front-end + back-end
 - Speech translation
 - ASR+NLU
 - ASR+ other tasks
 - •

Outline

- End-to-end ASR
- RNN-T
- Cascade RNN-T
- U2
- WeNet

RNN Transducer

- Superior performance in streaming on-device speech recognition with highaccuracy and low-latency
- Variants: Transformer Transducer (T-T), conformer transducer (C-T), ...
 - **Encoder network** converts the speech features into a high-dimensional representation h^{enc}
 - Prediction network generates a higherdimensional representation h_u^{pred} of last label y_{u-1}
 - **Joint network** uses the h^{enc} and h_u^{pred} to predict the probability P(k|t,u) of the next label
- Character and Wordpiece are common modeling units

Edge Deployment

 Quantization and deploy on phone using TF Lite

Outline

- End-to-end ASR
- RNN-T
- Cascade RNN-T
- U2
- WeNet

Introduction

- Typical RNN-T
 - A prediction network to enhance language information
 - But language modeling ability is limited because it still needs paired speechtext data to train
- Plenty of effort on improving the performance by introducing additional language information
 - · Language model fusion strategy, e.g., shallow, deep and component fusion
 - Data augmentation with text-to-speech utterances
 - 2-pass decoding, e.g., RNN-T+LAS
- Our approach: a novel cascade RNN-T approach for streaming on-device Mandarin speech recognition
 - Chinese is a character language and each character comes as a tonal syllable

Framework

- We cascade two RNN transducers to strengthen the language modeling ability
 - 1st RNN-T: transforms acoustic input into a syllable sequence
 - 2nd RNN-T: converts the syllable sequence into the final character sequence
- Advantages:
 - A rich text repository can be easily used to strengthen the language modeling ability
 - The OOV issue does not exist by the introduction of RNN-T based syllable-to-character (S2C) converter
 - Streaming ability has been maintained as the use of the transducer framework

Syllable RNN-T

- Follow the general RNN-T structure
- We add M_1 layers of 1-D convolution with a stride size greater than 1 for down-sampling
 - Effectively reduce the resource consumption during the training process and decoding stage
- The M₂ layers of dilated 1-D convolution followed can capture local context information more effectively at a small cost of a short latency

S2C Converter

 Modeling Context: Add convolution layer before the encoder to get information of current token

$$\mathbf{h}^{conv} = \text{Convolution}(\mathbf{y}^s)$$

 $\mathbf{h}^{enc} = \text{Encoder}(\mathbf{h}^{conv}).$

 Self Shallow Fusion: Add a fully-connected layer after the prediction network to enhance the language modeling capacity

$$\hat{P}(\mathbf{y}|\mathbf{y}^s) = \log P(\mathbf{y}|\mathbf{y}^s) + \lambda \log FC(\mathbf{h}^{pred}).$$

$$\hat{L} = L_{\text{RNN-T}} + L_{ce}$$

- **Text Augmentation**: Randomly replace input syllable sequence like SpecAugment
- Syllable Correction: First decode the training set using the syllable-level RNN-T to syllable sequences; then we use these syllable sequences with their corresponding correct character sequences to build additional correction text and mix these data with normal text data

Experiment Setup

- Training dataset:
 - Public 1000-hour AISHELL-2 corpus
 - Internal 7500-hour corpus
 - 2GB Chinese text data crawled from Internet
- Testing dataset:
 - TA1: AISHELL-1 test set
 - TA2: AISHELL-2 test set
 - VI: Voice input test set with 3.4 hours speech (3,063 sentences)
 - VA: Voice assistant test set with 3.9 hours speech (5,000 speech commands)
- Model structure
 - 70-dimensional FBANK (25ms window and 10ms shift)
 - 5139 characters and 1733 tonal syllables
 - 1st RNN-T:
 - Encoder: 6 convolution and 5 LSTM layers
 - Prediction: embedding + 2 LSTM layers
 - 2nd S2C RNN-T:
 - Encoder: syllable embedding + 2 LSTM layers
 - Prediction: syllable embedding + 1 LSTM layers

Exp on AISHELL-2

- The performance of the cascade RNN-T (E0) is worse than character-level RNN-T
- Syllable error rate on TA2 for the syllable-level RNN-T in the cascade approach (E0) is 12.8% which is lower than the CER of character RNN-T (B0) on the same test set

Table 1. Comparison of character-level RNN-T and Cascade RNN-T on test sets in CER.

Exp ID Model	Model	CER (%)			
	1710de1	TA1	TA2	VI	
В0	RNN-T Character	6.71	16.27	21.02	
B1	+ Beam search	6.55	15.79	20.44	
B2	+ Shallow fusion	6.11	15.50	20.15	
E0	Cascade RNN-T	17.4	22.08	24.52	

Exp on Tricks

- We improve the S2C RNN-T: syllable correction (E4) can bring further performance gain and we manage to surpass the character-based RNN-T on all test sets
- All tricks can effectively reduce the substitution errors, confirming that our proposed cascade RNN-T can greatly improve the language modeling ability

Table 2. Comparison of the results of various tricks to improve the performance of cascade RNN-T on test sets in CER.

Exp ID	Model	CER (%)			
		TA1	TA2	VI	
B2	RNN-T Character + Beam search + Shallow fusion	6.11	15.50	20.15	
E0	Cascade RNN-T	17.4	22.08	24.52	
E1	+ Convolution layer	6.66	15.59	18.27	
E2	+ Text augmentation	6.4	15.24	17.96	
E3	+ Self shallow fusion	5.89	14.93	17.78	
E4	+ Syllable correction	5.72	14.85	17.60	

Table 3. Comparison of deletion, insertion and substitute errors of each model on the TA2 test set.

Exp ID	Model	CER (%) (D/I/S)
Exp ID	Wiodei	TA2
B2	RNN-T Character + Beam search + Shallow fusion	15.50 (0.71/0.26/14.53)
E0	Cascade RNN-T	22.08(0.84/0.21/21.03)
E1	+ Convolution layer	15.59(0.76/0.17/14.66)
E2	+ Text augmentation	15.24(0.75/0.17/14.32)
E3	+ Self shallow fusion	14.93(0.75/0.17/14.01)
E4	+ Syllable correction	14.85(0.75/0.16/13.94)

Exp on 7500H

- Comparing E9 with B5, our proposed cascade RNN-T can better enhance the language modeling ability of RNN-T than the character RNN-T with shallow fusion
- From A0 and A1, we can observe that RNN-T based S2C converter has obvious advantages over LSTM which is also a streaming structure
- Our model has significantly better performance on named entities

Table 4. Comparison of character-level RNN-T and Cascade RNN-T on test sets in CER, training with 7500-hour corpus.

Exp ID	Model	CER (%)				
LAPID	Model	TA1	TA2	VI	VA	
В3	RNN-T Character	5.15	10.57	10.21	33.63	
B4	+ Beam search	4.99	10.08	9.69	32.88	
B5	+ Shallow fusion	4.85	9.96	9.5	32.71	
E5	Cascade RNN-T	14.56	18.51	18.16	38.09	
E6	+ Convolution layer	6.32	11.33	10.62	31.76	
E7	+ Text augmentation	5.53	10.42	9.59	29.53	
E8	+ Self shallow fusion	4.62	9.33	8.82	28.21	
E9	+ Syllable correction	4.57	9.16	8.65	28.07	
A0	RNN-T Syllable + LSTM S2C	11.48	15.02	14.71	36.33	
A1	RNN-T Syllable + BLSTM S2C	4.98	9.59	9.05	32.1	

Para. vs Acc. vs Latency

Table 5. Comparison of parameters, latency and performance for different models.

Exp ID	Model	Param.(M)/Latency	CER (%)			
			TA1	TA2	VI	VA
В5	RNN-T Character + Beam search + Shallow fusion	93M/280ms	4.85	9.96	9.5	32.71
E5	Cascade RNN-T	88.5M/280ms	14.56	18.51	18.16	38.09
E6	+ Convolution layer	92.5M/300ms	6.32	11.33	10.62	31.76
E7	+ Text augmentation	92.5M/300ms	5.53	10.42	9.59	29.53
E8	+ Self shallow fusion	95.5M/300ms	4.62	9.33	8.82	28.21
E9	+ Syllable correction	95.5M/300ms	4.57	9.16	8.65	28.07

 Comparing E4 with B2, we can see that the proposed cascade RNN-T achieves superior performance over the characterbased RNN with similar levels of model parameters and recognition latency.

Xiong Wang, Zhuoyuan Yao, Xian Shi, Lei Xie, Cascade RNN-Transducer: Syllable Based Streaming On-device Mandarin Speech Recognition with a Syllable-to-Character Converter, IEEE SLT2021, https://arxiv.org/abs/2011.08469

Outline

- End-to-end ASR
- RNN-T
- Cascade RNN-T
- U2
- WeNet

Motivation

- U2: Unified streaming and non-streaming E2E model
 - Reduce develop/train/deploy efforts
 - Joint CTC/AED architecture
- Training
 - Joint training
 - Converge faster
- How to do streaming?
 - Shared encoder only sees limited right context
 - CTC decoder as first pass partial result
 - Attention decoder as the **second pass** final result

Figure 1: Two pass CTC and AED joint architecture

How to unify?

Dynamic chunk training

- Chunk attention gives better accuracy
- Dynamic chunk attention
 - Full chunk: non-streaming case
 - Limited chunk: streaming case

Figure 2: Full attention, Left attention, Chunk Attention

- Vary chunk from 1~full in training dynamically
- The model learns both streaming and non-streaming with arbitrary chunk size

Decoding

- Large chunk shows better accuracy with more latency
- Easy to balance accuracy and latency by tuning chunk size in decoding

Experiments

- Dataset: AISHELL-1
- Baseline: static chunk trained model, static chunk inference
- Decoding methods: CTC only, Attention only, first CTC and second Attention
- Conclusions:
 - Attention rescoring achieves the best accuracy
 - One unified model shows comparable performance to static chunk trained 5 (full/16/8/4/1) models

Table 2: Dynamic vs static chunk training

training method	decoding mode	decoding chunk size				
d anning method	decoding mode	full	16	8	4	1
	attention decoder	5.35	5.95	5.99	6.15	6.36
static chunk training, static chunk inference	ctc prefix beam search	5.18	6.30	6.50	6.69	6.73
	attention rescoring	4.86	5.55	5.78	6.06	6.02
	attention decoder	5.27	5.51	5.67	5.72	5.88
dynamic chunk training, static chunk inference	ctc prefix beam search	5.49	6.08	6.41	6.64	7.58
dynamic chunk daming, static chunk inference	attention rescoring	4.90	5.33	5.52	5.71	6.23

Table 3: *Comparison to other streaming solutions*

model	params(M)	latency(ms)	CER
Sync-Transformer[24]	/	400	8.91
SCAMA[25]	43	600	7.39
MMA[14]	/	640	6.60
U2	47	$640+\Delta$	5.33

Outline

- End-to-end ASR
- RNN-T
- Cascade RNN-T
- U2
- WeNet

Motivation

- WeNet: Production First and Production Ready End-to-End Speech Recognition Toolkit
 - Close the gap between research and production E2E speech recognition models
 - Reduce the effort of productionizing E2E models
- Streaming → U2
 - Many applications require streaming and low latency speech recognition
- Unified → U2
 - Reduce the develop/train/deploy efforts
- Production → WeNet Product-oriented System Design
 - Converting research model to production model
 - E2E inference workflow (such as beam search) in runtime
 - Deploy the model to different platforms (cloud/on-device)
- U2 is adopted as the basic model architecture in WeNet.

System Design

First Stack: WeNet is fully based on PyTorch and it's ecosystem

- TorchScript → developing model
- Torchaudio → on-the-fly feature extraction
- DistributedDataParallel → distributed training
- Torch JIT (Just In Time) → model exportation
- PyTorch quantization → model quantization
- LibTorch → production runtime

System Design

Second Stack

- Python (TorchScript) Research: Ensure model could be correctly exported
- LibTorch Production: Support various hardwares and platforms like CPU, GPU (CUDA) Linux, Android and iOS.

System Design

- Third Stack: research → production pipeline
 - Research pipeline
 - Runtime: X86 and Android runtime are prebuilt in WeNet; many product metrics like accuracy/latency/RTF are benchmarked.

Benchmark

Model: 32M parameter U2 (Transformer) model on Aishell-1

Platforms

- X86: Intel (R) Xeon (R) CPU E5-2620 v4 @ 2.10GHz, 16G memory
- Android: Mi10, Qualcomm Snapdragon 865 4 cores, 8 GB memory
- All tested with single thread

Table 3: *RTF benchmark*

model/decoding_chunk	full	16	8	4
server (x86) float	0.079	0.095	0.128	0.186
server (x86) int8	0.072	0.081	0.098	0.134
on-device (Android) float	0.164	0.251	0.350	0.505
on-device (Android) int8	0.082	0.114	0.130	0.201

Runtime Demo

On-Device Streaming E2E
https://github.com/mobvoi/wenet/tree/main/runtime/device/android/wenet

Runtime Demo

```
rver/x86$ export GLOG logtostderr=1
                                                                  erver/x86$ export GLOG_logtostderr=1
binbinzhang@LM:/export/maryland/binbinzhang/code/wenet/runtime/se binbinzhang@LM:/export/maryland/binbinzhang/code/wenet/runtime/se
rver/x86$ export GLOG v=2
                                                                  erver/x86$ export GLOG v=2
binbinzhang@LM:/export/maryland/binbinzhang/code/wenet/runtime/se binbinzhang@LM:/export/maryland/binbinzhang/code/wenet/runtime/se
rver/x86$ ./build/websocket_server_main --port 10086 --chunk_size erver/x86$ ./build/websocket_client_main --host 127.0.0.1 --port
 16 --model_path 20210121_unified_transformer_server/final.zip --
                                                                   10086 --wav_path 20210121_unified_transformer_server/BAC009S076
dict_path 20210121_unified_transformer_server/words.txt
                                                                  4W0121.wav
I0121 15:24:59.533627 28921 torch_asr_model.cc:35] torch model in
fo subsampling rate 4 right context 6 sos 4232 eos 4232
I0121 15:24:59.533815 28921 websocket server main.cc:45] Listenin
g at port 10086
```

Cloud Streaming E2E (Websocket Server/Client Interaction)
<a href="https://github.com/mobvoi/wenet/tree/main/runtime/device/android/wenet/tree/wenet/tree/main/runtime/device/android/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wenet/tree/wandroid/wene

WeNet Open Source

https://github.com/mobvoi/wenet

THANK YOU

Q 西工大音频语音与语言处理研究组

Follow us thru Wechat