## Homework #6

pn Junction large-signal & MOS capacitors – 100 points

DUE @ Beginning of Class: Thursday, October 19

- 1) E-Book, problem 1.42 (pg. 443), *hint:* voltage drop will be the same for each of the two top diodes in the circuit (5 points)
- 2) E-Book, problem 1.49 (pg. 444), assume an ideal diode (3 points)
- 3) E-Book, problem 10.7, given  $\phi_{ms}$  = -0.9932 V (3 points)
- 4) E-Book, problem 10.9, see Example 10.2 for useful information (4 points)
- 5) E-Book, problem 10.12 (10 points)
- 6) E-Book, problem 10.14, requires some trial-and-error and Fig. 10.16 (8 points)
- 7) E-Book, problem 10.23, assume no charge in oxide and use Fig. 10.16 (16 points)
- 8) E-Book, problem 10.30 (16 points)
- 9) E-Book, problem 10.31, be sure to label your band diagrams ( $E_{Fm}$ ,  $E_{Fi}$ , etc.) (15 points)
- 10) The energy band diagram for an ideal MOS capacitor with  $t_{ox}$  = 0.2 µm operated at 300 K is given below. Note that the applied gate voltage causes band bending in the semiconductor such that  $E_F = E_{Fi}$  at the Si-SiO<sub>2</sub> interface. Answer the following questions: (20 points)
  - a) Sketch the electrostatic potential inside the semiconductor as a function of position.
  - b) Roughly sketch the electric field inside the oxide and semiconductor as a function of position.
  - c) Do equilibrium conditions prevail inside the semiconductor?
  - d) What is the electron concentration at the Si-SiO<sub>2</sub> interface?



f) 
$$\phi_s = ?$$

g) What is the approximate applied  $V_G$  (indicate how you arrived at answer)?



- 1) E-Book, problem 1.42 (pg. 443), *hint*: voltage drop will be the same for each of the two top diodes in the circuit (5 points)
- 1.42 (a) The reverse-saturation current of each diode in the circuit shown in Figure P1.42 is  $I_S = 6 \times 10^{-14}$  A. Determine the input voltage  $V_I$  required to produce an output voltage of  $V_O = 0.635$  V. (b) Repeat part (a) if the 1 k $\Omega$  resistor is changed to  $R = 500 \Omega$ .



Figure P1.42

- 2) E-Book, problem 1.49 (pg. 444) (3 points)
- 1.49 (a) In the circuit shown in Figure P1.49, find the diode voltage  $V_D$  and the supply voltage V such that the current is  $I_D = 0.4 \,\mathrm{mA}$ . Assume the diode cut-in voltage is  $V_{\gamma} = 0.7 \,\mathrm{V}$ . (b) Using the results of part (a), determine the power dissipated in the diode.



Figure P1.49

- 3) E-Book, problem 10.7 (3 points)
- 10.7 (a) Consider the MOS capacitor described in Problem 10.5. For an oxide thickness of  $t_{ox} = 20 \text{ nm} = 200 \text{ Å}$  and an oxide charge of  $Q'_{sx} = 5 \times 10^{10} \text{ cm}^{-2}$ , calculate the flat-band voltage. (b) Repeat part (a) for an oxide thickness of  $t_{ox} = 8 \text{ nm} = 80 \text{ Å}$ .

- 4) E-Book, problem 10.9 (4 points)
- 10.9 Consider an aluminum gate-silicon dioxide-p-type silicon MOS structure with  $t_{\rm ox} = 450$  Å. The silicon doping is  $N_a = 2 \times 10^{16}$  cm<sup>-3</sup> and the flat-band voltage is  $V_{FB} = -1.0$  V. Determine the fixed oxide charge  $Q'_{ss}$ .

- 5) E-Book, problem 10.12 (10 points)
- 10.12 A 400-Å oxide is grown on p-type silicon with  $N_a = 5 \times 10^{15}$  cm<sup>-3</sup>. The flat-band voltage is -0.9 V. Calculate the surface potential at the threshold inversion point as well as the threshold voltage assuming negligible oxide charge. Also find the maximum space charge width for this device.

- 6) E-Book, problem 10.14 (8 points)
- 10.14 Consider a MOS device with the following parameters: p<sup>+</sup> polysilicon gate, n-type silicon substrate,  $t_{ox} = 18$  nm = 180 Å, and  $Q'_{sx} = 4 \times 10^{10}$  cm<sup>-2</sup>. Determine the silicon doping concentration such that the threshold voltage is in the range  $-0.35 \le V_{TP} \le -0.25$  V.

- 7) E-Book, problem 10.23 (16 points)
- An ideal MOS capacitor with an n<sup>+</sup> polysilicon gate has a silicon dioxide thickness of  $t_{ox} = 12$  nm = 120 Å on a p-type silicon substrate doped at  $N_a = 10^{16}$  cm<sup>-3</sup>. Determine the capacitance  $C_{ox}$ ,  $C'_{FB}$ ,  $C'_{min}$ , and C'(inv) at (a) f = 1 Hz and (b) f = 1 MHz. (c) Determine  $V_{FB}$  and  $V_T$ . (d) Sketch  $C'/C_{ox}$  versus  $V_G$  for parts (a) and (b).

- 8) E-Book, problem 10.30 (16 points)
- 10.30 The high-frequency C-V characteristic curve of a MOS capacitor is shown in Figure P10.30. The area of the device is  $2 \times 10^{-3}$  cm<sup>2</sup>. The metal-semiconductor work function difference is  $\phi_{ms} = -0.50$  V, the oxide is SiO<sub>2</sub>, the semiconductor is silicon, and the semiconductor doping concentration is  $2 \times 10^{16}$  cm<sup>-3</sup>. (a) Is the semiconductor n or p type? (b) What is the oxide thickness? (c) What is the equivalent trapped oxide charge density? (d) Determine the flat-band capacitance.



Figure P10.30 | Figure for Problem 10.30.

- 9) E-Book, problem 10.31 (15 points)
- 10.31 Consider the high-frequency C-V plot shown in Figure P10.31. (a) Indicate which points correspond to flat-band, inversion, accumulation, threshold, and depletion modes. (b) Sketch the energy-band diagram in the semiconductor for each condition.



Figure P10.31 | Figure for Problem 10.31.

10) The energy band diagram for an ideal MOS capacitor with  $t_{ox}$  = 0.2  $\mu$ m operated at 300 K is given below. Note that the applied gate voltage causes band bending in the semiconductor such that  $E_F = E_{Fi}$  at the Si-SiO<sub>2</sub> interface. Answer the following questions: (20 points)

- a) Sketch the electrostatic potential inside the semiconductor as a function of position.
- b) Roughly sketch the electric field inside the oxide and semiconductor as a function of position.
- c) Do equilibrium conditions prevail inside the semiconductor?
- d) What is the electron concentration at the Si-SiO<sub>2</sub> interface?
- e)  $N_D = ?$
- f)  $\phi_s = ?$
- g) What is the approximate applied  $V_G$  (indicate how you arrived at answer)?

