Multiparametrische exponentieel gefitte Runge-Kutta-methodes

Robin Keppens

Promotor: Prof. dr. Marnix Van Daele

2020-2021

Overzicht

Situering

Tweetrapsmethode

Drietrapsmethode

Viertrapsmethode

Numerieke resultaten

Besluit

Situering

- Problemen vertonen vaak een oscillatorisch of exponentieel karakter.
- Doel EF methodes: gebruik maken van goed gekende frequenties voor optimale oplossing.
- ▶ Opbouwen via fitting space S: verzameling functies die exact geïntegreerd worden.
- ➤ Tot hiertoe vooral functies met één frequentie, wat bij meerdere?

Situering

Van den Berghe et al.:

$$S_{k,l} = \{1, x, \dots, x^k\} \cup \{\exp(\pm \mu x), x \exp(\pm \mu x), \dots, x^l \exp(\pm \mu x)\}$$

Calvo et al.:

$$S_{k,l} = \{1, x, \dots, x^k\} \cup \{\exp(\pm \mu x), \exp(\pm 2\mu x), \dots, \exp(\pm l\mu x)\}$$

Veralgemening met meerdere frequenties:

$$S_{k,l} = \{1, x, \dots, x^k\} \cup \{\exp(\pm \mu_1 x), \exp(\pm \mu_2 x), \dots, \exp(\pm \mu_l x)\}$$

Situering

Opzet:

- Vertrek van gemodificeerde RK-methode.
- Leg ze vast met een zo ruim mogelijke fitting space.
- Probeer aan symmetrie en symplecticiteit te voldoen.

Vragen:

- Leidt dit tot een goed werkbare methode?
- Welke frequenties dienen gekozen te worden?
 - ▶ Valt er iets af te leiden uit de foutterm?
 - Wat is het resultaat bij numerieke methodes?
- Wat met de stabiliteit?
 - Veralgemeningen van Gaussische methodes.
 - Wordt de exacte A-stabiliteit bewaard?

Tweetrapsmethode: bepaling

Symmetrie en symplecticiteit opleggen:

$$\begin{array}{c|cccc} \frac{1}{2} - \theta & \gamma & \frac{\gamma b}{2} & \frac{\gamma b}{2} + \lambda \\ \frac{1}{2} + \theta & \gamma & \frac{\gamma b}{2} - \lambda & \frac{\gamma b}{2} \\ & & b & b \end{array}$$

Verdere bepaling via fitting space:

$$\begin{split} S_{\mathrm{int}} &= \{ \exp(\pm \mu_1 x) \} \qquad S_{\mathrm{ext}} = \{ 1, \exp(\pm \mu_1 x) \} \\ b &= \frac{\sinh(\frac{z_1}{2})}{\cosh(z_1 \theta) z_1} \quad \gamma = \frac{\cosh(2z_1 \theta)}{\cosh(\frac{z_1}{2}) \cosh(z_1 \theta)} \quad \lambda = -\frac{\sinh(z_1 \theta)}{\cosh(z_1 \theta) z_1} \end{split}$$

Tweetrapsmethode: bepaling

$$S_{\text{int}} = \{\exp(\pm \mu_1 x)\} \qquad S_{\text{ext}} = \{1, \exp(\pm \mu_1 x), \exp(\pm \mu_2 x)\}$$
$$\frac{\sinh(\frac{z_1}{2})}{\cosh(z_1 \theta) z_1} = \frac{\sinh(\frac{z_2}{2})}{\cosh(z_2 \theta) z_2}$$

Tweetrapsmethode: coëfficiënten

Tweetrapsmethode: coëfficiënten

Coëfficiënten lijken redelijk constant, maar imaginaire frequenties μ_i geven problemen.

Ook aandacht nodig bij polen andere coëfficiënten en kleine waarden van Z_i .

Tweetrapsmethode: foutterm

Bepaling is moeilijker dan klassiek:

- ► EF zorgt voor stapafhankelijke coëfficiënten.
- ▶ Modificatie brengt spooktermen met zich mee.
- Herschrijven in functie van totale afgeleiden is lastig.

Uiteindelijk resultaat:

Ite =
$$\frac{h^5}{4320} \Big((12\mu_1^4 - 2\mu_1^2\mu_2^2) y^{(1)} + (9\mu_1^2 - \mu_2^2) (y^{(3)} - 3Jy^{(2)}) + 10J^2 y^{(3)} - 5Jy^{(4)} + y^{(5)} - 10f(y^{(1)}, y^{(3)}) \Big)$$

Tweetrapsmethode

Klassieke exacte A-stabiliteit: stabiliteitsgebied is \mathbb{C}^- .

EFRK: grens van stabiliteitsgebied is nog steeds imaginaire as:

$$|R(z)| = 1 \Leftrightarrow \gamma bx(1 + \lambda^2(x^2 + y^2)) = 0$$

MAAR: ligging van gebied afhankelijk van teken γb :

$$\mathcal{R}_{A} = \mathbb{C}^{-} \Leftrightarrow \gamma b > 0$$

Tweetrapsmethode: stabiliteit

Tweetrapsmethode: stabiliteit

Drietrapsmethode: bepaling

Symmetrie en symplecticiteit opleggen:

Verdere bepaling via fitting space:

$$S_{\mathrm{int}} = \{1, \exp(\pm \mu_1 x)\}$$
 $S_{\mathrm{ext}} = \{1, \exp(\pm \mu_1 x)\}$

Drietrapsmethode: bepaling

$$S_{ ext{int}} = \{1, \exp(\pm \mu_1 x)\}$$
 $S_{ ext{ext}} = \{1, \exp(\pm \mu_1 x), \exp(\pm \mu_2 x)\}$ $G(z_1, z_2) = G(z_1, 2z_1)$

Drietrapsmethode: coëfficiënten

Drietrapsmethode: coëfficiënten

Opnieuw problemen bij bepaling indien frequenties μ_i imaginair zijn.

Bovendien zijn coëfficiënten lijviger, dus ook daar meer polen en sneller afrondingsfouten.

Drietrapsmethode: stabiliteit

Grens van stabiliteitsgebied is niet langer alleen imaginaire as:

$$|R(z)| = 1$$

$$\Leftrightarrow x(((x^2 + y^2)^2b + d(x^2 - 3y^2))a + c((x^2 + y^2)b + d)) = 0$$

Ligging van het gebied verandert ook bij imaginaire frequenties.

Drietrapsmethode: stabiliteit

Viertrapsmethode: bepaling

Symmetrische en symplectische aanzet geeft geen oplossing:

Bepaling coëfficiënten via

$$egin{aligned} \mathcal{S}_{\mathrm{int}} &= \{1, \mathsf{exp}(\pm \mu_1 x), \mathsf{exp}(\pm \mu_2 x)\} \ \\ \mathcal{S}_{\mathrm{ext}} &= \{1, \mathsf{exp}(\pm \mu_1 x), \mathsf{exp}(\pm \mu_2 x)\} \end{aligned}$$

Viertrapsmethode: bepaling

$$S_{\text{ext}} = \{1, x, x^2, x^3, x^4, \exp(\pm \mu_1 x), \exp(\pm \mu_2 x)\}$$

$$2b_1 + 2b_2 - 1 = 0$$

$$24b_1\theta_1^2 + 24b_2\theta_2^2 - 1 = 0$$

Viertrapsmethode: coëfficiënten

De a_{ij} 's zijn zeer uitgebreid, enkel onderzoek van b_i 's.

Numerieke resultaten

- ▶ Vier standaardproblemen met goed gekende oplossingen.
- Numeriek en exact oplossen over [0, 100].
- ▶ Verschillende stapgroottes: $h = \frac{1}{2}, \frac{1}{4}$ en $\frac{1}{8}$.

Dit telkens voor verschillende verhoudingen α van de fitting frequenties:

$$\alpha = \frac{\mu_2^2}{\mu_1^2}.$$

Probleem uit volgende hamiltoniaan:

$$H(p,q) = rac{p_1^2 + p_2^2}{2} - rac{1}{\sqrt{q_1^2 + q_2^2}} - rac{\epsilon}{2\sqrt{(q_1^2 + q_2^2)^3}}.$$

Vertaling naar stelsel:

$$\begin{cases} Y_1^{(2)} &= -\frac{Y_1}{\sqrt{(Y_1^2 + Y_2^2)^3}} - \frac{Y_1(2\epsilon + \epsilon^2)}{\sqrt{(Y_1^2 + Y_2^2)^5}} \\ Y_2^{(2)} &= -\frac{Y_2}{\sqrt{(Y_1^2 + Y_2^2)^3}} - \frac{Y_2(2\epsilon + \epsilon^2)}{\sqrt{(Y_1^2 + Y_2^2)^5}} \end{cases}$$

Exacte oplossing: $Y(x) = (-\delta \sin(\delta x), \delta \cos(\delta x))$, met $\delta = 1 + \epsilon$.

$$\Rightarrow z_1 = i\delta$$

Gegeven het volgende stelsel:

$$\begin{cases} Y_1^{(2)} &= -k_1^2 Y_1 \\ Y_2^{(2)} &= -k_2^2 Y_2 \end{cases}$$

Exacte oplossing: $Y(x) = (\sin(k_1x), \sin(k_2x))$.

$$\Rightarrow z_1 = ik_1$$

$$\Rightarrow z_2 = ik_2$$
?

Tweetrapsmethode: schatting uit leidende foutterm, gegeven door

$$\frac{h^5}{2160} J \begin{bmatrix} (3k_1^2 - \mu_2^2 + 6\mu_1^2)(k_1^2 + \mu_1^2) \\ (3k_1^2 - \mu_2^2 + 6\mu_1^2)(k_1^2 + \mu_1^2) \\ (3k_2^2 - \mu_2^2 + 6\mu_1^2)(k_2^2 + \mu_1^2) \\ (3k_2^2 - \mu_2^2 + 6\mu_1^2)(k_2^2 + \mu_1^2) \end{bmatrix}.$$

Nulpunten:

$$\left\{ \mu_1 = \pm i k_1, \mu_2 = \pm \sqrt{3k_2^2 - 6k_1^2} \right\}$$
$$\left\{ \mu_1 = \pm i k_2, \mu_2 = \pm \sqrt{3k_1^2 - 6k_2^2} \right\}$$

Resultaat met $(k_1, k_2) = (1, 2)$:

Drietrapsmethode: schatting uit leidende foutterm, gegeven door

$$\frac{h^7}{10080} J \begin{bmatrix} 10(k_1^2 + \mu_1^2)(10k_1^4 - 3k_1^2\mu_2^2 + 10k_1^2\mu_1^2 - 2\mu_2^2\mu_1^2) \\ -(k_1^2 + \mu_1^2)(10k_1^4 - 3\mu_2^2k_1^2 + 10\mu_1^2k_1^2 - 2\mu_2^2\mu_1^2)k_1^2 \\ 10(k_2^2 + \mu_1^2)(10k_2^4 - 3k_2^2\mu_2^2 + 10k_2^2\mu_1^2 - 2\mu_2^2\mu_1^2) \\ -(k_2^2 + \mu_1^2)(10k_2^4 - 3\mu_2k_2^2 + 10\mu_1^2k_2^2 - 2\mu_2^2\mu_1^2)k_2^2 \end{bmatrix}.$$

Nulpunten:

$$\left\{ \mu_1 = \pm i k_1, \mu_2 = \pm \sqrt{\frac{10(k_1^2 k_2^2 - k_2^4)}{2k_1^2 - 3k_2^2}} \right\}$$
$$\left\{ \mu_1 = \pm i k_2, \mu_2 = \pm \sqrt{\frac{10(k_1^2 k_2^2 - k_1^4)}{2k_2^2 - 3k_1^2}} \right\}$$

Resultant met $(k_1, k_2) = (1, 1.5)$:

Viertrapsmethode: geen schatting, want beide frequenties exact. \Rightarrow Keuze (k_1, k_2) leidt tot optimum $(\mu_1, \mu_2) = (ik_1, ik_2)$.

Resultant met $(k_1, k_2) = (1, 3)$:

Numerieke resultaten: keplerprobleem

Probleem uit volgende hamiltoniaan:

$$H(p,q) = rac{p_1^2 + p_2^2}{2} - rac{1}{\sqrt{q_1^2 + q_2^2}}.$$

Vertaling naar stelsel:

$$\begin{cases} Y_1^{(2)} &= -\frac{Y_1}{\sqrt{(Y_1^2 + Y_2^2)^3}} \\ Y_2^{(2)} &= -\frac{Y_2}{\sqrt{(Y_1^2 + Y_2^2)^3}} \end{cases}$$

Enkel impliciete oplossing gekend met machinenauwkeurigheid, primaire frequenties zijn i en 0.

$$\Rightarrow z_1 = i$$

$$\Rightarrow z_2 = 0$$
?

Numerieke resultaten: keplerprobleem

Numerieke resultaten: keplerprobleem

36 / 40

Numerieke resultaten: eulerprobleem

Probleem beschreven door het volgende stelsel:

$$\begin{cases} y_1^{(1)} &= (\alpha - \beta)y_2y_3 \\ y_2^{(1)} &= (1 - \alpha)y_1y_3 \\ y_3^{(1)} &= (\beta - 1)y_1y_2 \end{cases}$$

Exacte oplossing indien
$$\alpha = 1 + \frac{1}{\sqrt{1.51}}$$
 en $\beta = 1 - \frac{0.51}{\sqrt{1.51}}$:

$$y(t) = (\sqrt{1.51} \operatorname{sn}(t, 0.51), \operatorname{cn}(t, 0.51), \operatorname{dn}(t, 0.51)).$$

Primaire frequenties zijn $\approx 0.84i$ en 0.

$$\Rightarrow z_1 = 0.84i$$

$$\Rightarrow z_2 = 0$$
?

Numerieke resultaten: eulerprobleem

Numerieke resultaten: eulerprobleem

Besluit

- Uitdrukkingen voor coëfficiënten zwaar en lastig te bepalen.
- Asymmetrie in fitting space maakt interpreteren moeilijk.
- Duidelijke verbetering in precisie.
- Goeie schattingen nodig van werkelijke frequenties.
- Stabiliteit is niet steeds gewaarborgd.