EL9343

Data Structure and Algorithm

Lecture 11: Greedy Algorithm, Minimum Spanning Tree

Instructor: Yong Liu

Last Lecture

- Dynamic Programming
 - Rod Cutting Problem
 - Longest Common Subsequence Problem

- Introduction to Greedy Algorithm
 - An Activity-Selection Problem
 - Knapsack Problem

Today

- Greedy Algorithm (cont.)
 - Huffman codes

- Algorithm & It's Application in Network
 - Minimum Spanning Trees
 - Prim's algorithm
 - Kruskal's algorithm

Huffman Coding

- Coding is used for data compression
- Binary character code: character is represented by a unique binary string
 - Fixed-length code (block code)
 - a: 000, b: 001, ..., f: 101
 - ace: <u>000 010 100</u>
 - Variable-length code
 - frequent characters: short codeword
 - infrequent characters: long codeword

	a	Ъ	c	d	e	f	cost / 100 characters
Frequency	45	13	12	16	9	5	
Fixed-length codeword	000	001	010	011	100	101	300
Variable-length codeword	0	101	100	111	1101	1100	224

Prefix codes

- Prefix codes
 - one code per input symbol
 - no code is a prefix of another
- Why prefix codes?
 - Easy decoding
 - Since no codeword is a prefix of any other, the codeword that begins an encoded file is unambiguous
 - Identify the initial codeword, translate it back to the original character, and repeat the decoding process on the remainder of the encoded file

Binary Tree vs. Prefix Code

prefix code {1, 01, 000, 001}-> binary tree

Any binary prefix coding can be described by a binary tree in which the codewords are the leaves of the tree, and where a left branch means "0" and a right branch means "1".

Optimal Prefix Code Design

- ▶ Coding Cost of T: $B(T)=\sum_{c \in C} c.freq \cdot d_T(c)$
 - c: character in the alphabet C
 - c.freq: frequency of c
 - $ightharpoonup d_T(c)$: depth of c's leaf (length of the codeword of c)
- ▶ Code design: Given c₁.freq, c₂.freq, ..., c_n.freq, construct a binary tree with n leaves such that B(T) is minimized.
 - Idea: more frequently used characters use shorter depth.

Fixed-length cost: 3 * 100 = 300

Variable—length cost = 224

Huffman Codes

Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman code. The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner.

- Create tree (leaf) node for each symbol that occurs with nonzero frequency
 - Node weights = frequencies
- Find two nodes with smallest frequency
- Create a new node with these two nodes as children, and with weight equal to the sum of the weights of the two children
- Continue until have a single tree

Huffman's Procedure

- ▶ 1. Place the elements into minimum heap (by frequency).
- 2. Remove the first two elements from the heap.
- ▶ 3. Combine these two elements into one.
- 4. Insert the new element back into the heap.

Huffman's Algorithm

```
Huffman(C)
1. n = |C|
2. Q = C
3. for i = 1 to n - 1
4. Allocate a new node z
5. z.left = x = Extract-Min(Q)
6. z.right = y = Extract-Min(Q)
7. z.freq = x.freq + y.freq
8.
     Insert(Q, z)
9. return Extract-Min(Q) //return the root of the tree
```

Time complexity: O(nlgn).

- Extract-Min(Q) needs O(lg n) by a heap operation.
- Requires initially O(n lg n) time to build a binary heap.

Huffman's Algorithm: Greedy Choice

Greedy choice: The binary tree for optimal prefix code must be full, and the two characters x and y with the lowest frequencies must have the same longest length and differ only in the last bit.

T is an optimal tree - T' is an optimal tree T' is an optimal tree

Huffman's Algorithm: Optimum Substructure

Greedy substructure: Let T be a full binary tree for an optimal prefix code over C. Let z be the parent of two leaf characters x and y. If z.freq = x.freq + y.freq, tree T' = T - $\{x, y\}$ represents an optimal prefix code for C'= C - $\{x, y\}$ U $\{z\}$.

$$B(T) = B(T')+x.freq+y.freq$$

$$(d_T(x)=d_T(y)=d_{T'}(z)+1)$$

Contradiction!!

Minimum Spanning Tree Problem

MST: The subset of edges that connected all vertices in the graph, and has minimum total weight

Greedy algorithm for solving MST

- Prim's algorithm
- Kruskal's algorithm

Minimum Spanning Trees

Input: A connected, undirected graph G = (V, E) with weight function $w : E \rightarrow R$.

For simplicity, assume that all edge weights are distinct.
 (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects all vertices — of minimum weight:

$$\mathbf{w(T)} = \sum_{\mathbf{u}, \mathbf{v}} \mathbf{w(u,v)}.$$

Example of MST

Example of MST

MST Algorithms

Greedy Algorithms: Prim, Kruskal

- 1. Start with initial tree/forest
- 2. Gradually grow it by adding the lowest weight edge
- 3. Finish until all nodes are connected in a tree

Prim's Algorithm

Slides from Demaine and Leiserson

MST *T*:

(Other edges of *G* are not shown.)

MST *T*:

(Other edges of *G* are not shown.)

Remove any edge $(u, v) \in T$.

MST *T*:

(Other edges of *G* are not shown.)

Remove any edge $(u, v) \in T$.

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2 .

MST T:

(Other edges of *G* are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_1 and T_2 .

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of G induced by the vertices of T_1 :

$$V_1 = \text{vertices of } T_1,$$

 $E_1 = \{ (x, y) \in E : x, y \in V_1 \}.$

Similarly for T_2 .

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1' were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1' \cup T_2$ would be a lower-weight spanning tree than T for G.

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1' were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1' \cup T_2$ would be a lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

• Yes.

Proof of optimal substructure

Proof. Cut and paste:

$$w(T) = w(u, v) + w(T_1) + w(T_2).$$

If T_1' were a lower-weight spanning tree than T_1 for G_1 , then $T' = \{(u, v)\} \cup T_1' \cup T_2$ would be a lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

• Yes.

Great, then dynamic programming may work!

• Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

Greedy-choice property
A locally optimal choice
is globally optimal.

Hallmark for "greedy" algorithms

Greedy-choice property
A locally optimal choice
is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to V - A. Then, $(u, v) \in T$.

Proof. Suppose $(u, v) \notin T$. Cut and paste.

T: (u, v) = least-weight edge connecting A to V - A

Consider the unique simple path from u to v in T.

Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V - A.

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V - A.

A lighter-weight spanning tree than *T* results.

Prim's algorithm

IDEA: Maintain V - A as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

```
Q \leftarrow V
key[v] \leftarrow \infty for all v \in V
key[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
for each v \in Adj[u]
do if v \in Q and w(u, v) < key[v]
then key[v] \leftarrow w(u, v)
\triangleright \text{DECREASE-KEY}
\pi[v] \leftarrow u
```

At the end, $\{(v, \pi[v])\}$ forms the MST.

Example of Prim's algorithm

Example of Prim's algorithm


```
Q \leftarrow V
key[v] \leftarrow \infty for all v \in V
key[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
for each v \in Adj[u]
do if v \in Q \text{ and } w(u, v) < key[v]
then key[v] \leftarrow w(u, v)
\pi[v] \leftarrow u
```



```
\Theta(V) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
\mathbf{while} \ Q \neq \emptyset
\mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)
\mathbf{for each} \ v \in Adj[u]
\mathbf{do if} \ v \in Q \text{ and } w(u, v) < key[v]
\mathbf{then} \ key[v] \leftarrow w(u, v)
\pi[v] \leftarrow u
```



```
\Theta(V) \ \text{total} \ \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
\text{while } Q \neq \emptyset
\text{do } u \leftarrow \text{EXTRACT-MIN}(Q)
\text{for each } v \in Adj[u]
\text{do if } v \in Q \text{ and } w(u, v) < key[v]
\text{then } key[v] \leftarrow w(u, v)
\pi[v] \leftarrow u
```



```
\Theta(V) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                          while Q \neq \emptyset
```



```
\Theta(V) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                                while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)

for each v \in Adj[u]

do if v \in Q and w(u, v) < key[v]

then key[v] \leftarrow w(u, v)

\pi[v] \leftarrow u
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.


```
\Theta(V) \text{ total } \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
\text{while } Q \neq \emptyset
\text{do } u \leftarrow \text{EXTRACT-MIN}(Q)
\text{for each } v \in Adj[u]
\text{do if } v \in Q \text{ and } w(u, v) < key[v]
\text{then } key[v] \leftarrow w(u, v)
\pi[v] \leftarrow u
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ Total

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q $T_{\rm EXTRACT-MIN}$ $T_{\rm DECREASE-KEY}$ Total array O(V) O(1) $O(V^2)$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	i $O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case

MST Algorithms

- Kruskal's algorithm (see CLRS):
 - Uses the disjoint-set data structure
 - Running time = O(ElgV)

Disjoint Set

A group of sets where no item can be in more than one set

Disjoint Set

A group of sets where no item can be in more than one set

Supported Operations:

Find()

Union()

Find(d) => S3 Union(S2, S1)

Disjoint Set

A group of sets where no item can be in more than one set

Supported Operations:

Find()

Union()

Find(d) => S3 Union(S2, S1)

Tree Based Disjoint Set

- Each set is a tree
- A set is identified by the root of the tree

Supported Operations: Find()
Union()

Find(d) => S3 or b Union(S2, S1)

Tree Based Disjoint Set

- Each set is a tree
- A set is identified by the root of the tree

Supported Operations: Find()

Union()

Union(S1, S3)

Tree Based Disjoint Set

- Each set is a tree
- A set is identified by the root of the tree

Supported Operations:

Find()

Union()

Complexity:

Find() - O (depth)

Union() - O(1)

Kruskal's algorithm

Uses the disjoint-set data structure

Running time = O(ElgV)

Kruskal's algorithm

$$A = \{ (c, f), (a, f), (d, e), (c, d), (a, b) \}$$

Next Lecture

- Shortest path
 - Single-source shortest paths
 - All-pairs shortest paths