Package 'ISR'

October 12, 2022

Title The Iterated Score Regression-Based Estimation Algorithm
Date 2022-04-22
Version 2022.4.22
Description Algorithm to handle with PCA-based missing data, where ISR is for PCA-based missing data with high correlation and DISR is for distributed PCA-based missing data. The philosophy of the package is described in Guo G. (2020) <doi:10.1080 02331888.2020.1823979="">.</doi:10.1080>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports MASS, stats
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 3.5.0)
NeedsCompilation no
Author Guangbao Guo [aut, cre] (https://orcid.org/0000-0002-4115-6218), Haoyue Song [aut], Lixing Zhu [aut]
Maintainer Guangbao Guo <ggb111111110163.com></ggb111111110163.com>
Repository CRAN
Date/Publication 2022-04-22 12:00:03 UTC
R topics documented:
CKD DISR HCV ISR Mean MMLPCA

2 CKD

	MNIPALS	7
	MRPCA	8
	orange	9
	ozone	9
	PM2.5	10
	review	11
	SR	12
Index		13

CKD CKD

Description

chronic kidney disease

Usage

```
data("CKD")
```

Format

```
The format is: num [1:400, 1:18] 48 7 62 48 51 60 68 24 52 53 ... - attr(*, "dimnames")=List of 2 ...$ : NULL ...$ : chr [1:18] "age" "bp" "sg" "al" ...
```

Details

There are 1010 missing values in the data set, accounting for 14.03 percent.

Source

Dr.P.Soundarapandian.M.D.,D.M (Senior Consultant Nephrologist), Apollo Hospitals, Managiri, Madurai Main Road, Karaikudi, Tamilnadu, Indi

References

Polat, H., Danaei-Mehr, H., and Cetin, A. (2017). Diagnosis of chronic kidney disease based on support vector machine by feature selection methods. Journal of Medical Systems, 41(4), 1-11.

```
data(CKD)
## maybe str(CKD) ; plot(CKD) ...
```

DISR 3

DISR Distributed iterated score regression
--

Description

Caculate the estimator on the DISR method

Usage

```
DISR(data = 0, data0, real = TRUE, example = FALSE, D)
```

Arguments

data	is the orignal data set
data0	is the missing data set
real	is to judge whether the data set is a real missing data set
example	is to judge whether the data set is a simulation example
D	is the number of nodes

Value

XDISR	is the estimator on the DISR method
MSEDISR	is the MSE value of the DISR method
MAEDISR	is the MAE value of the DISR method
REDISR	is the RE value of the DISR method
GCVDISR	is the GCV value of the DISR method
timeDISR	is the time cost of the DISR method

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
DISR(data=data,data0=data0,real=FALSE,example=FALSE,D=2)
```

4 ISR

 HCV

HCV

Description

Hepatitis C virus

Usage

```
data("HCV")
```

Format

```
The format is: num [1:615, 1:13] 1 1 1 1 1 1 1 1 1 1 1 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:615] "1" "2" "3" "4" ... ..$ : chr [1:13] "Category" "Age" "Sex" "ALB" ...
```

Details

There are 31 missing values in the data set, accounting for 0.39 percent.

Source

UCI repository

References

Lichtinghagen, R., Pietsch, D., Bantel, H., Manns, M., Brand, K. and Bahr, Matthias. (2013). The Enhanced Liver Fibrosis (ELF) Score: Normal Values, Influence Factors and Proposed Cut-Off Values.. Journal of hepatology. 59. 236-242.

Examples

```
data(HCV)
## maybe str(HCV) ; plot(HCV) ...
```

ISR

Iterated score regression

Description

Caculate the estimator on the ISR method

Usage

```
ISR(data = 0, data0, real = TRUE, example = FALSE)
```

Mean 5

Arguments

data is the original data set data0 is the missing data set

real is to judge whether the data set is a real missing data set example is to judge whether the data set is a simulation example

Value

XISR is the estimator on the ISR method
MSEISR is the MSE value of the ISR method
MAEISR is the MAE value of the ISR method
REISR is the RE value of the ISR method
GCVISR is the GCV value of the ISR method
timeISR is the time cost of the ISR method

Examples

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
ISR(data=data,data0=data0,real=FALSE,example=FALSE)
```

Mean *Mean method*

Description

Caculate the estimator on the Mean method

Usage

```
Mean(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

data is the original data setdata0 is the missing data set

real is to judge whether the data set is a real missing data set example is to judge whether the data set is a simulation example

6 MMLPCA

Value

XMean is the estimator on the Mean method
MSEMean is the MSE value of the Mean method
MAEMean is the MAE value of the Mean method
REMean is the RE value of the Mean method
GCVMean is the GCV value of the Mean method
timeMean is the time cost of the Mean method

Examples

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
Mean(data=data,data0=data0,real=FALSE,example=FALSE)
```

MMLPCA

Modified maximum likelihood principal component analysis

Description

Caculate the estimator on the ISR method

Usage

```
MMLPCA(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

data is the original data set data0 is the missing data set

real is to judge whether the data set is a real missing data set example is to judge whether the data set is a simulation example

Value

XMMLPCA is the estimator on the MMLPCA method
MSEMMLPCA is the MSE value of the MMLPCA method
MAEMMLPCA is the MAE value of the MMLPCA method
REMMLPCA is the RE value of the MMLPCA method
GCVMMLPCA is the GCV value of the MMLPCA method
timeMMLPCA is the time cost of the MMLPCA method

MNIPALS 7

Examples

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
MMLPCA(data=data,data0=data0,real=FALSE,example=FALSE)
```

MNIPALS

Modified nonlinear iterative partial least squares method

Description

Caculate the estimator on the MNIPALS method

Usage

```
MNIPALS(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

data is the original data set data0 is the missing data set

real is to judge whether the data set is a real missing data set example is to judge whether the data set is a simulation example

Value

XMNIPALS is the estimator on the MNIPALS method is the MSE value of the MNIPALS method is the MAE value of the MNIPALS method is the RE value of the MNIPALS method is the GCV value of the MNIPALS method is the GCV value of the MNIPALS method is the time cost of the MNIPALS method

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
MNIPALS(data=data,data0=data0,real=FALSE,example=FALSE)
```

8 MRPCA

MRPCA	Modified regularized PCA
-------	--------------------------

Description

Caculate the estimator on the MRPCA method

Usage

```
MRPCA(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

data	is the original data set
data0	is the missing data set

real is to judge whether the data set is a real missing data set example is to judge whether the data set is a simulation example

Value

XMRPCA	is the estimator on the MRPCA method
MSEMRPCA	is the MSE value of the MRPCA method
MAEMRPCA	is the MAE value of the MRPCA method
REMRPCA	is the RE value of the MRPCA method
GCVMRPCA	is the GCV value of the MRPCA method
timeMRPCA	is the time cost of the MRPCA method

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
MRPCA(data=data,data0=data0,real=FALSE,example=FALSE)
```

orange 9

orange

orange

Description

orange

Usage

```
data("orange")
```

Format

```
The format is: num [1:12, 1:8] 4.79 4.58 4.71 6.58 NA ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:12] "1" "2" "3" "4" ... ..$ : chr [1:8] "Color.intensity" "Odor.intensity" "Attack.intensity" "Sweet" ...
```

Details

There are 19 missing values in the data set, accounting for 19.79 percent.

Source

http://factominer.free.fr/missMDA/index.html

References

Josse J, Husson F (2016). missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. Journal of Statistical Software, 70(1), 1–31.

Examples

```
data(orange)
## maybe str(orange) ; plot(orange) ...
```

ozone

ozone

Description

ozone

Usage

```
data("ozone")
```

10 PM2.5

Format

A data frame with 112 observations on the following 11 variables.

max03 a numeric vector

T9 a numeric vector

T12 a numeric vector

T15 a numeric vector

Ne9 a numeric vector

Ne12 a numeric vector

Ne15 a numeric vector

Vx9 a numeric vector

Vx12 a numeric vector

Vx15 a numeric vector

max03v a numeric vector

Details

There are 115 missing values in it, accounting for 9.96 percent.

Source

http://factominer.free.fr/missMDA/index.html

References

Audigier, V., Husson, F., and Josse, J. (2014). A principal components method to impute missing values for mixed data. Advances in Data Analysis and Classification, 10(1), 5-26.

Examples

```
data(ozone)
## maybe str(ozone) ; plot(ozone) ...
```

PM2.5

PM2.5

Description

Beijing PM2.5

Usage

```
data("PM2.5")
```

review 11

Format

Details

It records 43824 daily measurements on 12 variables and there are 2067 missing values on 2067 measurements, accounting for 0.00393.

Source

UCI repository

References

X. Liang, T. Zou, B. Guo, S. Li, H. Zhang, S. Zhang, H. Huang, and S. Chen. Assessing Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating. Proceedings of the Royal Society A, 471(2182):1–20, 2015.

Examples

```
data(PM2.5)
## maybe str(PM2.5); plot(PM2.5) ...
```

review

review

Description

Travel reviews

Usage

```
data("review")
```

Format

```
The format is: num [1:980, 1:10] 0.93 1.02 1.22 0.45 0.51 0.99 0.9 0.74 1.12 0.7 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:980] "User_1" "User_2" "User_3" "User_4" ... ..$ : chr [1:10] "Category_1" "Category_2" "Category_3" "Category_4" ...
```

Details

980 travelers' reviews of 10 different types of travel facilities in East Asia

Source

UCI repository

SR SR

References

Renjith, S., Sreekumar, A., and Jathavedan, M. (2018). Evaluation of partitioning clustering algorithms for processing social media data in tourism domain. 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 127-131.

Examples

```
data(review)
## maybe str(review) ; plot(review) ...

SR Score regression
```

Description

Caculate the estimator on the SR method

Usage

```
SR(data = 0, data0, real = TRUE, example = FALSE)
```

Arguments

data	is the orignal data set
data0	is the missing data set
real	is to judge whether the data set is a real missing data set
example	is to judge whether the data set is a simulation example

Value

XSR	is the estimator on the SR method
MSESR	is the MSE value of the SR method
MAESR	is the MAE value of the SR method
RESR	is the RE value of the SR method
GCVSR	is the GCV value of the SR method
timeSR	is the time cost of the SR method

```
library(MASS)
n=100;p=10;per=0.1
X0=data=matrix(mvrnorm(n*p,0,1),n,p)
m=round(per*n*p,digits=0)
mr=sample(1:(n*p),m,replace=FALSE)
X0[mr]=NA;data0=X0
SR(data=data,data0=data0,real=FALSE,example=FALSE)
```

Index

```
*\ datasets
    CKD, 2
    HCV, 4
    orange, 9
    ozone, 9
    PM2.5, 10
    review, 11
CKD, 2
DISR, 3
HCV, 4
ISR, 4
Mean, 5
MMLPCA, 6
MNIPALS, 7
MRPCA, 8
orange, 9
ozone, 9
PM2.5, 10
review, 11
SR, 12
```