TD 2 - Séries temporelles

Exercice 1 (Elimination de la tendance)

Soit $(X_t)_t$ une série chronologique de la forme $X_t = m_t + \epsilon_t$, avec m_t deterministe et ϵ_t aléatoire.

- 1 Supposons que la série (X_t) admet une tendance polynomiale de dégré 2, de quelle forme est m_t ?
- 2 Si X_t est une série chronologique admettant une tendance polynomiale de degré $k \ge 1$, quel est le degré de la tendance de la série : $Y_t = X_t X_{t-1}$?
- 3 Fixons T dans \mathbb{N}^* et notons

$$\Delta_T: (X_t)_{t \in \mathbb{Z}} \mapsto (X_t - X_{t-T})_{t \in \mathbb{Z}}$$

Démontrer la proposition suivante : Si (X_t) est une série temporelle admettant une tendance polynômiale de degré $k \ge 1$ alors $(\Delta_T X_t)$ admet une tendance polynômiale de degré k-1.

- 4 Si (X_t) est une série temporelle admettant une tendance polynômiale de degré 0 (c'est à dire une constante) alors quelle est la tendance de $(\Delta_T X_t)$?
- 5 On considère maintenant le processus $Y_t = S_t + \epsilon_t$ ou S_t est T-périodique et ϵ_t est un BB(1). Comment rendre Y_t stationnaire?

Exercice 2 (Modèle AR(1))

On considère la série temporelle suivante

$$X_t = \phi X_{t-1} + Z_t$$

avec Z_t un bruit blanc de variance $\sigma^2 > 0$ et $|\phi| < 1$, , et on suppose que X_t est stationnaire d'ordre 2.

- 1 Exprimer X_t en fonction de X_{t-2} , Z_t et Z_{t-1} .
- 2 En déduire que l'on peut représenter X_t sous la forme $X_t = \sum_{j=0}^{\infty} \phi^j Z_{t-j}$.
- 3 Calculer l'espérance et la variance de X_t .
- 4 Montrer que X_t est un processus stationnaire de second ordre et que $\rho_X(h) = \phi^h, h \ge 0$.

Exercice 3 (Modèles MA(1) et MA(2)) On considère la série temporelle suivante

$$X_t = Z_t + b_1 Z_{t-1} + b_2 Z_{t-2}$$

où Z_t est un BB(σ^2).

- 1 Calculer $\gamma_X(h)$ dans le cas $b_1 \neq 0$, $b_2 = 0$.
- 2 Calculer $\gamma_X(h)$ dans le cas $b_1 \neq 0, b_2 \neq 0$.
- 3 Dans le cas où $|b_1|$ < 1 et b_2 = 0, transformer le processus Z_t en un processus AR(∞).