Inhaltsverzeichnis

L	Ana	llysis		4
	1.1	Grund	lagen	4
		1.1.1	Transformation von Funktionen	4
		1.1.2	Nullstellen	4
		1.1.3	pq-Formel	4
		1.1.4	Ausklammern	4
		1.1.5	Substitution	4
		1.1.6	Symmetrie	Ę
	1.2	Änder	ungsraten	Ę
		1.2.1	Tangente	Ę
		1.2.2	Änderungsrate	Ę
	1.3	Ableit	ungen	6
		1.3.1	Ableitungsregeln	6
		1.3.2	Ableitungsfunktion skizzieren	6
	1.4	Extre	nwerte und Wendepunkte	7
		1.4.1	Extremstellen	7
		1.4.2	Wendestellen	7
	1.5	Ganzr	ationale Funktionen	7
		1.5.1	Form	7
		1.5.2	Globalverhalten	7
	1.6	Funkti	onsscharen	8
		1.6.1	Form	8
		1.6.2	Ableiten	8
		1.6.3	Lösen	8
		1.6.4	Ortskurve	8
	1.7	Expon	entialfunktion	8
		1.7.1	Form	8
		1.7.2	Globalverhalten	Ć
		1.7.3	Asymptoten	Ć
		1.7.4	e-Funktion	Ć
		1.7.5	Logarithmus	10
		1.7.6	Natürlicher Logarithmus	10
		1.7.7	Anwendung von Exponentialfunktionen	10
	1.8	_	ale	11
		1.8.1	Stammfunktion	11
		1.8.2		11
		1.8.3		11
		1.8.4	Rechenregeln	12
		1.8.5	Uneigentliche Integrale	12
		1.8.6	Produktintegration	12
	4.0	1.8.7	Rotationskörper	13
	1.9		sis Aufgaben	13
		1.9.1	Steckbriefaufgaben	13
	1 10	1.9.2	Extremwertproblem mit Nebenbedingung	13
	1.10		e Gleichungssysteme	14
			Form	14
		1 102	transs-vertanren	14

2	\mathbf{Alg}	ebra	1	4
	2.1	Vektore	m	4
		2.1.1	Form	4
		2.1.2	Vektoren Addieren & Subtrahieren	4
			Betrag eines Vektors	5
			Skalarprodukt	
			Kollinearität	
			Kreuzprodukt	
			Lagebeziehungen	
			Schnittwinkel	
	2.2			
	2.2		n	
			Geradengleichung	
			Lagebeziehung	
			Abstand Gerade:Gerade	
			Abstand (Lotfußpunkt) Gerade:Punkt	
	2.3	Ebenen		
			Parameterform	
		2.3.2	Begrenzung von Ebenen	7
		2.3.3	Koordinatenform	8
		2.3.4	Hesse'sche Normalform	8
		2.3.5	Abstand Ebene:Punkt	8
		2.3.6	Abstand Ebene:Gerade	
			Abstand Ebene:Ebene	
				_
3	Sto	chastik	1	9
	3.1	Baumd	iagramm	9
		3.1.1	Diagramm	9
			Pfadregel	9
			Produktregel	
			Summenregel	
	3.2		lertafel	
	0.2		Diagramm	
	3.3		heinlichkeitsverteilung	
	0.0		Variablen	
	3.4		lli Versuch	
	0.4		Bernoulli-Formel	
			Bernoullikoeffizient	
	0.5		Beispiel	
	3.5		ößen	
			n	
			p	
			k	
	3.6		l Sigma	
		3.6.1	Erwartungswert einer binomialverteilten Zufallsgröße	
	3.7		dabweichung	
		3.7.1	Standardabweichung einer binomialverteilten Zufallsgröße	2
	3.8	Normal	verteilung	2
		3.8.1	Beispiel	2
	3.9	Sigmar	egeln	3
		0	1σ , 2σ , 3σ -Regel	
			"glatte" Wahrscheinlichkeiten	
	3.10		esentests	

3.10.1	inksseitiger Hypothesentest $\ldots \ldots \ldots$
3.10.2	Nullhypothese
3.10.3	Alternative
3.10.4	Alpha Fehler
3.10.5	Beta Fehler

1 Analysis

1.1 Grundlagen

1.1.1 Transformation von Funktionen

	$f(x) = a \cdot f(c(x - b)) + d$ $f(x) = a \cdot e^{c(x - b)} + d$			
	a	b	d	
> 0	y-Werte a-fache	Stauchung in	Verschiebung in	Verschiebung in
	Größe, Streckung	x-Richtung	x-Richtung nach	y-Richtung nach
a > 1, Stauc		(c > 1)	rechts	oben
	0 < a < 1			
< 0	y-Werte a-fache	Streckung in	Verschiebung in	Verschiebung in
	Größe und an	x-Richtung	x-Richtung nach	y-Richtung nach
	x-Achse	(0 < c < 1) und	links	unten
	gespiegelt	Spiegelung an		
		der y-Achse, falls		
		c < 0		
	1	ı	ı	1

1.1.2 Nullstellen

$$f(x) = 0$$

1.1.3 pq-Formel

$$ax^{2} + bx + c = 0$$

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

1.1.4 Ausklammern

$$x^{4} + 3x^{3} = 0$$

$$x^{3}(x+3) = 0$$

$$x_{1}^{3} = 0 \land x_{2} + 3 = 0$$

1.1.5 Substitution

$$x^4 - 5x^2 - 36 = 0$$
$$y^2 - 5y - 36 = 0$$

$$\begin{array}{ll} u_1=9\Rightarrow x^2=9 &\iff x_1=3 \,\wedge\, x_2=-3 \\ u_2=-4\Rightarrow x^2=-4 \iff x_3=\sqrt{-4}\Rightarrow \text{keine L\"osung} \end{array}$$

1.1.6 Symmetrie

1.2 Änderungsraten

1.2.1 Tangente

$$y = mx + b$$

$$f(x) = y$$

$$f'(x) = m_x$$

$$b = y - mx$$

1.2.2 Änderungsrate

Mittlere Änderungsrate
$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Momentane Änderungsrate

Steigung an einem bestimmten Punkt der Funktion

1.3 Ableitungen

1.3.1 Ableitungsregeln

$ \begin{array}{c c} f'(x) & \text{Steigung von } f(x) \\ \hline f''(x) & \text{Krümmung von } f(x) \\ \hline f'''(x) & \text{Steigung der Krümmung } f(x) \\ \end{array} $				
Potenzregel $f(x) = x^n$ $f'(x) = nx^{n-1}$ Summenregel $f(x) = g(x) + h(x)$ $f'(x) = g'(x) + h'(x)$ Faktorregel $f(x) = c \cdot g(x)$ $f'(x) = c \cdot g'(x)$	_			
$\frac{u(x) \cdot v(x) = u(v(x)) \Rightarrow \text{ Verkettung von } u(x) \text{ und } v(x)}{\text{Regel} \qquad \text{Funktion } f(x) \qquad \text{Ableitung } f'(x)}{\text{Produktregel}} \qquad \frac{f(x) = u(x) \cdot v(x)}{f(x) = u(v(x))} \qquad \frac{u'(x) \cdot v(x) + u(x) \cdot v'(x)}{u'(v(x)) \cdot v'(x)}$ Kettenregel $\frac{u(x) \cdot v(x)}{f(x)} = \frac{u(v(x))}{v(x)} \qquad \frac{u'(v(x)) \cdot v'(x)}{v'(x)} = \frac{u'(v(x)) \cdot v'(x)}{v'(x)}$	-			

1.3.2 Ableitungsfunktion skizzieren

negative Steigung von $f(x) \iff f'(x)$ verläuft unterhalb der x-Achse positive Steigung von $f(x) \iff f'(x)$ verläuft überhalb der x-Achse Extrempunkte von $f(x) \iff$ Nullstellen von $f'(x) \dots$

1.4 Extremwerte und Wendepunkte

1.4.1 Extremstellen

$f'(x) = 0 \Rightarrow \text{pot. Extremstellen}$					
f''(x) > 0	Minimum	Lcinksgekrümmt			
f''(x) < 0	Maximum	Rechtsgekrümmt			

1.4.2 Wendestellen

$f''(x) = 0 \Rightarrow \text{pot.}$ Wendestellen					
f'''(x) = 0 pot. Sattelpunkt					
$f'''(x) \neq 0$	Wendepunkt				
f'''(x) > 0	Rechts-Links Krümmung				
f'''(x) < 0	Links-Rechts-Krümmung				

1.5 Ganzrationale Funktionen

1.5.1 Form

1.5.2 Globalverhalten

$\operatorname{Grad} n$	Globalverhalten
n gerade	$x \to \infty = +\infty \land x \to -\infty = +\infty$
n ungerade	$x \to \infty = +\infty \land x \to -\infty = -\infty$
n gerade und Koeffizient negativ	$x \to \infty = -\infty \land x \to -\infty = -\infty$
n ungerade und Koeffizient negativ	$x \to \infty = -\infty \land x \to -\infty = +\infty$

1.6 Funktionsscharen

1.6.1 Form

$$f_k(x) = k \cdot g(x)$$

1.6.2 Ableiten

Der Parameter wird wie eine beliebige Zahl (Konstante) behandelt und dementsprechd abgeleitet

$$f_k(x) = x^n + k^2$$

$$f_k'(x) = nx^{n-1}$$

1.6.3 Lösen

Lösungen einer Funktionsschar sind abhängig von dem Parameter, da eine Funktionsschar eine Menge von Funktionen ist. Lösungen mit Parameter geben also alle möglichen Kurven an

$$f_k'(x) = x^2 - k = 0$$

$$x = \pm \sqrt{k}$$

1.6.4 Ortskurve

Die Ortskurve ist die Menge aller Punkte, die durch die Lösungen der Funktionsschar entstehen

- Punkt herausfinden $EXT(-2t|16t^3)$
- Parameter elliminieren $x = -2t \Rightarrow t = \frac{x}{-2}$
- In Funktionswert einsetzen $y = 16t^3 \Rightarrow y = 16 \cdot \left(\frac{x}{-2}\right)^2 = -2x^3$

1.7 Exponentialfunktion

1.7.1 Form

$$f(x) = c \cdot a^x \quad \text{mit } a > 0, \ a \neq 1$$

$$a > 1$$
 exponentielle Zunahme $0 < a < 1$ exponentielle Abnahme

Keine Nullstellen oberhalb der x-Achse

1.7.2 Globalverhalten

	Basis a	Globalverhalten
		$x \to \infty = +\infty \land x \to -\infty = 0$
C	< a < 1	$x \to \infty = 0 \land x \to -\infty = +\infty$

1.7.3 Asymptoten

Funktion $f(x)$	Asymptote	Verhalten
$f(x) = a^x$	y = 0	Die Funktion nähert sich 0 für $x \to -\infty$
$f(x) = a^x + d$	y = d	Die Funktion nähert sich d für $x \to -\infty$
$f(x) = a^x, \ a < 1$	y = 0	Die Funktion nähert sich 0 für $x \to \infty$
$f(x) = -a^x, \ a < 1$	y = 0	Die Funktion nähert sich 0 für $x \to \infty$
$f(x) = [-]e^{-x}$	y = 0	Die Funktion nähert sich 0 für $x \to \infty$
$f(x) = e^x + d$	y = d	Die Funktion nähert sich d für $x \to -\infty$
	,	

1.7.4 e-Funktion

 $e\approx 2.718\ldots,$ Euler'sche Zahl

$$f(x) = e^x$$
 $f(x)$ Ergebnis
 $f'(x) = e^x$ e^0 1
 e^1 e
 $f(x)$ Ergebnis
 e^0 1
 e^1 e
 $e^{\ln(x)}$ e

 e^x wird niemals = 0. e^x steigt schneller als jede Potenzfunktion. e^x dominiert jede Potenzfunktion

$$e^{-x} = \frac{1}{e^x}$$

$$e^{-1000} = \frac{1}{e^{1000}}$$

$$\lim_{x \to -\infty} e^x = 0, e^x \neq 0$$

$$f(x) = e^x(x^2 + 1)$$

 $e^x \neq 0 \land x^2 + 1 = 0$

1.7.5 Logarithmus

Der Logarithmus ist die Umkehrfunktion der Exponentialfunktion. Wie oft musst du die Basis a mit sich selbst multiplizieren, um x zu erhalten?

$$2^x = 8$$

$$a^y = x \quad \text{entspricht} \quad \log_a(x) = y$$

$$\log_2(8) = x$$

1.7.6 Natürlicher Logarithmus

Der natürliche Logarithmus $\ln(x)$ ist die Umkehrfunktion der Exponentialfunktion e^x . Der natürliche Logarithmus ist der Logarithmus zur Basis e

$$\ln(e^x) = x$$

$$e^{\ln(x)} = x$$

$$\ln(x) = y \text{ genau dann, wenn } e^y = x$$

$$\ln(1) = 0$$

$$\ln(e) = 1$$

$$f(x) = \ln(x), \quad f'(x) = \frac{1}{x}$$

Rechenregel	
Produktregel	$\ln(x \cdot y) = \ln(x) + \ln(y)$
Quotientenregel	$ \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y) $
Potenzregel	$\ln(x^y) = y \cdot \ln(x)$

1.7.7 Anwendung von Exponentialfunktionen

• Exponentielles Wachstum: $f(t) = f(0) \cdot e^{k \cdot t}$

• Verdopplungszeit:

$$f(T_v) = f(0) \cdot 2 = f(0) \cdot e^{kT_v}$$
$$e^{kT_v} = 2 \quad T_v = \frac{1}{k} \cdot \ln(2)$$

1.8 Integrale

1.8.1 Stammfunktion

$$\int f(x) dx = F(x) + C$$
$$F(x) = a \cdot \frac{1}{n+1} \cdot x^{n+1} + C$$
$$F(x) \leftarrow f(x) \to f'(x)$$

"Aufleiten" wird ungerne gehört. Stattdessen: "Stammfunktion bilden" oder "Integrieren"

1.8.2 Flächenberechnung

Die Fläche unter einer Funktion f(x) über einem Intervall [a,b] wird berechnet durch:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}$$
$$= F(b) - F(a)$$

Die Fläche zwischen zwei Funktionen f(x) und g(x) über einem Intervall [a,b] wird berechnet durch:

$$\int_{a}^{b} (f(x) - g(x)) dx = [F(x) - G(x)]_{a}^{b} = [F(b) - F(a)] - [G(b) - G(a)]$$
$$\int_{a}^{b} (f(x) - g(x)) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

1.8.3 Fallunterscheidung

	Fläche unter einer Funktion $f(x)$:						
	Situation	Formel					
-	$f(x) \ge 0$ auf $[a; b]$	$A = \int_{a}^{b} f(x) dx$	Keine Betragstriche nötig, da $f(x) \ge 0$				
	$f(x) \le 0$ auf $[a;b]$	$A = \int_a^b f(x) dx $	Betragstriche nötig, da $f(x) \leq 0$				
	f(x) we chselt Vorzeichen	$A = \int_a^b f(x) dx + \int_b^c f(x) $	Die Grenzen sind die Nullstellen von $f(x)$				

Fläche zwischen zwei Funktionen f(x) und g(x):

Situation	Formel	
$f(x) \ge g(x)$ auf $[a;b]$	$A = \left \int_a^b (f(x) - g(x)) dx \right $	f(x) und $g(x)$ schneiden sich
		nicht
f(x) und $g(x)$ schneiden sich	$A = \left \int_a^b (f(x) - g(x)) dx \right +$	Die Grenzen sind die
	$\int_{b}^{c} (f(x) - g(x)) dx$	Schnittpunkte von $f(x)$ und
		g(x).

Symmetrische Flächen:

Situation	Formel	
Achsensymmetrisch	$A = 2 \cdot \int_0^a f(x) dx$	f(x) ist Achsensymmetrisch
Punktsymmetrisch	$A = 2 \cdot \int_0^a f(x) dx$	f(x) ist Punktsymmetrisch

1.8.4 Rechenregeln

Faktorregel	Regel	Funktion $f(x)$
Differenze $\int (f(x) - q(x)) dx = \int f(x) dx - \int g(x) dx$		
	Differenzregel	$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$

1.8.5 Uneigentliche Integrale

Uneigentliche Integrale berechnen unendliche Flächen mit endlichem Flächeninhalt

Nach links unendlich:

$$\int_{-\infty}^{b} f(x) dx = \int_{z}^{b} f(x) dx = \lim_{z \to -\infty} \int_{z}^{b} f(x) dx$$

Nach rechts unendlich:

$$\int_{a}^{\infty} f(x) dx = \int_{a}^{z} f(x) dx = \lim_{z \to \infty} \int_{a}^{z} f(x) dx$$

In beide Richtungen unendlich:

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{a \to -\infty} \int_{a}^{0} f(x) dx + \lim_{z \to \infty} \int_{0}^{z} f(x) dx$$

1.8.6 Produktintegration

$$\int f(x) \cdot g(x) \, dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) \, dx$$

Vorgehen

Wähle f(x) und g(x) so, dass einer der Faktoren einfacher integrierbar (für F(x)) oder ableitbar (für g'(x)) ist.

Setze f(x), F(x), g(x), und g'(x) in die Formel ein.

1.8.7 Rotationskörper

Ein Rotationskörper entsteht, wenn eine Funktion um die x-Achse rotiert wird. Der Rotationskörper hat ein Volumen V.

$$V = \pi \int_{b}^{a} (f(x))^{2} dx$$
$$= \pi [F(x)]_{a}^{b} = \pi [F(b) - F(a)]$$

1.9 Analysis Aufgaben

1.9.1 Steckbriefaufgaben

- ganzrationale Funktionen bestimmten
- \bullet Grad & Eigenschaften festlegen
- LGS bilden & lösen
- Werte in f(x) einsetzen

1.9.2 Extremwertproblem mit Nebenbedingung

- Extremabedingung (Hauptbedingung): $A = a \cdot b$
- Nebendingung: Variablen einsetzen: 2a + b = 50
- Zielfunktion:

$$b = 50 - 2a$$

$$A = a \cdot (50 - 2a)$$

• je nach Aufgabe Maximum/Minimum bestimmen

1.10 Lineare Gleichungssysteme

1.10.1 Form

$$\begin{array}{c|c} \mathbf{I} & a-b=4 \\ \mathbf{II} & 2a+b=5 \\ \mathbf{III} & 5a-2b=0 \end{array}$$

1.10.2 Gauss-Verfahren

$$2. \begin{pmatrix} 2 & 3 & 1 & | & 1 \\ 4 & -1 & 3 & | & 11 \\ 3 & 1 & -1 & | & 0 \end{pmatrix} \xrightarrow{\text{II}-2\cdot\text{I}} \begin{pmatrix} 2 & 3 & 1 & | & 1 \\ 0 & -7 & 1 & | & 9 \\ 3 & 1 & -1 & | & 0 \end{pmatrix}$$

$$3. \begin{pmatrix} 2 & 3 & 1 & & 1 \\ 0 & -7 & 1 & & 9 \\ 3 & 1 & -1 & & 0 \end{pmatrix} \xrightarrow{\text{III}-\frac{3}{2}\cdot\text{I}} \begin{pmatrix} 2 & 3 & 1 & & 1 \\ 0 & -7 & 1 & & 9 \\ 0 & -\frac{7}{2} & -\frac{5}{2} & & -\frac{3}{2} \end{pmatrix}$$

$$4. \begin{pmatrix} 2 & 3 & 1 & | & 1 \\ 0 & -7 & 1 & | & 9 \\ 0 & -\frac{7}{2} & -\frac{5}{2} & | & -\frac{3}{2} \end{pmatrix} \xrightarrow{\text{III}-\frac{1}{2}\cdot\text{II}} \begin{pmatrix} 2 & 3 & 1 & | & 1 \\ 0 & -7 & 1 & | & 9 \\ 0 & 0 & -3 & | & -6 \end{pmatrix}$$

2 Algebra

2.1 Vektoren

2.1.1 Form

$$\vec{AB} \begin{pmatrix} b_1 - a1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix}$$

2.1.2 Vektoren Addieren & Subtrahieren

Addition:

$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$$

Subtraktion:

$$\vec{a} - \vec{b} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix}$$

2.1.3 Betrag eines Vektors

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

2.1.5 Kollinearität

2.1.4 Skalarprodukt

$$\vec{a} \circ \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$

 $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

$$\vec{a} \cdot k = \begin{pmatrix} a_1 \cdot k \\ a_2 \cdot k \\ a_3 \cdot k \end{pmatrix}$$

Ist ein Vektor das Vielfache vom anderen, so haben beide die gleiche Richtung, aber unterschiedliche Längen

2.1.6 Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2 \cdot b_3 - b_2 \cdot a_3 \\ a_3 \cdot b_1 - b_3 \cdot a_1 \\ a_1 \cdot b_2 - b_1 \cdot a_2 \end{pmatrix} = \vec{n}$$

$$\vec{n} \perp \vec{a}, \vec{b} \qquad \vec{n} = \text{Normalenvektor}$$

2.1.7 Lagebeziehungen

$x = y = II \begin{vmatrix} x_1 = y_1 \\ x_2 = y_2 \\ III \end{vmatrix} x_3 = y_3$			
Lagebeziehung	keine Lösung	eine Lösung	unendlich viele Lösungen
Gerade:Gerade	echt Parallel	Schnittpunkt	identisch $(g_1 = g_2)$
Gerade:Ebene	echt Parallel	Schnittpunkt	identisch $(g \in E)$
Ebene:Ebene	echt Parallel	Schnittgerade	identisch $(E_1 = E_2)$

2.1.8 Schnittwinkel

Schnittwinkel	trig.	α
Gerade : Gerade	$\cos(\alpha) = \frac{\left \vec{a} \circ \vec{b} \right }{\left \vec{a} \right \cdot \left \vec{b} \right }$	$\alpha = \cos^{-1}\left(\frac{\left \vec{a} \circ \vec{b}\right }{\left \vec{a}\right \cdot \left \vec{b}\right }\right)$
Gerade : Ebene	$\cos(\alpha) = \frac{ \vec{a} \circ \vec{n} }{ \vec{a} \cdot \vec{n} }$	$\alpha = \cos^{-1}\left(\frac{ \vec{a} \circ \vec{n} }{ \vec{a} \cdot \vec{n} }\right)$
Ebene : Ebene	$\sin(\alpha) = \frac{ \vec{n_1} \circ \vec{n_2} }{ \vec{n_1} \cdot \vec{n_2} }$	$\alpha = \sin^{-1} \left(\frac{ \vec{n_1} \circ \vec{n_2} }{ \vec{n_1} \cdot \vec{n_2} } \right)$
= kleinerer Winkel und \vec{a}, \vec{b} = Richtungsvektoren und \vec{n} = Normalenvektor		

2.2 Geraden

2.2.1 Geradengleichung

$$g: \vec{x} = \underbrace{\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}}_{\text{Stützvektor}} + t \cdot \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}}_{\text{Richtungsvektor}} \qquad t \in \mathbb{R}$$

2.2.2 Lagebeziehung

2.2.3 Abstand Gerade:Gerade

$$\begin{split} g: \vec{x} &= \vec{p} + t \cdot \vec{u} \\ \vec{u} \times \vec{v} &= \vec{n} \end{split} \qquad \qquad h: \vec{x} &= \vec{q} + s \cdot \vec{v} \\ E &\in g \end{split}$$

 $E \text{ mit } \vec{n} \text{ aufstellen} \\ p \text{ in } E \text{ einsetzen und d (Koordinatenform) bestimmen}$

neue Gerade: $\vec{x} = \vec{q} + r \cdot \vec{n}$

 $\left| \vec{FQ} \right|$ bestimmen

${\bf 2.2.4} \quad {\bf Abstand} \ ({\bf Lotfußpunkt}) \ {\bf Gerade:Punkt}$

Orthogonalität:
$$g: \vec{x} = \underbrace{\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}}_{\text{Bunkt } \Lambda} + t \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \qquad t \in \mathbb{R}$$

E = Hilfsebene, g = Gerade, A = Punkt

$$E: \vec{x} = n_1 x_1 + n_2 x_2 + n_3 x_3 = d, \quad \vec{n} = RV \text{ von } g$$

A in E einsetzen und d berechnen

g in E einsetzen und t berechnen

$$\vec{F} = \begin{pmatrix} c_1 + b_1 \cdot t \\ c_2 + b_2 \cdot t \\ c_3 + b_3 \cdot t \end{pmatrix}$$

$$\vec{AF} \circ \vec{RV} = 0$$

$$(c_1 + b_1 \cdot t) \cdot RV_1 + (c_2 + b_2 \cdot t) \cdot RV_2 + (c_3 + b_3 \cdot t) \cdot RV_3$$

t berechnen

t in g einsetzen und F bestimmen

$$\left| \vec{AF} \right| = \text{kleinster Abstand}$$

2.3 Ebenen

2.3.2 Begrenzung von Ebenen

2.3.1 Parameterform

$$E: \vec{x} = \underbrace{\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}}_{\text{Stützvektor}} + r \cdot \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}}_{\text{Spannvektor}} + s \cdot \underbrace{\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}}_{\text{Spannvektor}}$$

2.3.3 Koordinatenform

$$E: ax_1 + bx_2 + cx_3 = d,$$
 $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \vec{n}$ (Kreuzprodukt beider Spannvektoren)

Für d einen Punkt in die Ebene einsetzen

2.3.4 Hesse'sche Normalform

$$E: (\vec{x} - \vec{p}) \cdot \vec{n_0} = 0$$

Wobei $(\vec{x}-\vec{p})$ ein Verbindungsvektor zwischen zwei Punkten auf der Ebene, und $\vec{n_0}$ der normierte Normalenvektor ist

Einen Vektoren normiert man, indem man ihn durch seine Länge teilt. Dadurch wird nur noch seine Richtung angegeben:

$$\vec{n_0} = \frac{1}{|\vec{n}|} \cdot \vec{n}$$

Abstand Punkt:Ebene

$$Abstand = \frac{ax_1 + bx_2 + cx_3 - d}{\vec{n}}$$

2.3.5 Abstand Ebene:Punkt

 \vec{n} von Ebilden

neue Gerade gmit \vec{n} und Punkt Pals Stützvektor

$$E=g\to {\rm Schnittpunkt}\ F$$

$$\left| \vec{FP} \right| = \text{Abstand}$$

2.3.6 Abstand Ebene:Gerade

$$P \in g \to Abstand Ebene:Punkt$$

2.3.7 Abstand Ebene:Ebene

$$P \in E \to Abstand Ebene:Punkt$$

3 Stochastik

3.1 Baumdiagramm

3.1.1 Diagramm

Aufgabe: Unter den Abonnenten sind 70% höchstens 40 Jahre als. Von diesen haben 80% das Komplettpaket gewählt. Unter denjenigen Abonnenten, die älter sind als 40 Jahre, haben sich 50% für das Komplettpaket entschieden

3.1.2 Pfadregel

Pfadregeln:
$$P(U \cap s) = 0.3 \cdot 0.5 = P_U(k) = \frac{2}{3}$$
Komplettpaket für $U40$

3.1.3 Produktregel

Produktregel: Wahrscheinlichkeit einen bestimmten Versuchsausgang zu erhalten, also die Wahrscheinlichkeit, dass eine Person über 40 ist, und das Komplettpaket hat $0.3 \cdot 0.5 = 0.15$

3.1.4 Summenregel

Summenregel: Wahrscheinlichkeit mehrere Versuchsausgänge zu erhalten, also die Wahrscheinlichkeit, dass das Komplettpaket gebucht wurde $0.3\cdot0.5+0.7\cdot0.8=0.71$

3.2 Vierfeldertafel

3.2.1 Diagramm

Hilfe zur Berechnung von Ereignissen

geschnittene Wahrscheinlichkeit

$$P(\overline{U} \cap s) = 0.14$$

bedingte Wahrscheinlichkeit

$$P_U(s) = \frac{P(U \cap s)}{P(U)}$$
 $\frac{0.15}{0.3} = 50\%$

Leute die das Spiefilmpaket gekauft haben unter denen, die 40 Jahre alt sind

3.3 Wahrscheinlichkeitsverteilung

3.3.1 Variablen

n	Anzahl der ausgeführten Versuche oder
	Durchführungen
p	Trefferwahrscheinlichkeit im Versuch
\overline{X}	Zufallsvariable
μ	Erwartungswert von X ,
	$\mu = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \dots$
σ	Standardabweichung von X ,
	$\sigma = \sqrt{(x^1 - \mu)^2 \cdot P(X = x_1) + \dots}$

3.4 Bernoulli Versuch

3.4.1 Bernoulli-Formel

 $P(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$ die Wahrscheinlichkeit für genau k Erfolge in n Versuchen

3.4.2 Bernoullikoeffizient

 $\binom{n}{k}$ Anzahl, dass in *n* Versuchen *k* Erfolge eintreten

3.4.3 Beispiel

Es gibt drei Blutgruppen: O, A, B, AB. 41% haben O. Es kommen 80 Spender.

X =Anzahl der Blutspender mit O

$$n = 80$$

$$p = 0.41$$

• Genau 25 Spender haben O

$$P(X = 25) = 1.9\%$$

$$binomPdf(80; 0.41; 25) = 0.018917$$

• höchstens 20 Spender haben O

$$P(X \le 20) = 0.2\%$$

$$binomCdf(80; 0.41; 0; 20) = 0.002061$$

• mindestens 30 Spender haben O

$$P(X \ge 30) = 72.2\%$$

$$binomCdf(80; 0.41; 30; 80) = 0.772405$$

3.5 Kenngrößen

3.5.1 n

Eine Maschine arbeitet nicht präzise. 3% der Produkte sind mangelhaft. Wie viele Produkte müssen geprüft werden, dass mit 99% Wahrscheinlichkeit ein Produkt mangelhaft ist?

X = Anzahl der mangelhaften Produkte

$$n = ?$$

$$p = 0.03$$
 $P(X \ge 1) \ge 99$

$$\frac{\ln(0.01)}{\ln(0.03)} = 151.191\,\mathrm{Produkte}$$
müssen geprüft werden

3.5.2 p

Ein Weihnachtskalender mit 24 Türchen hat verschiedene Schokoladensorten. Was ist die Mindesterfolgswahrscheinlichkeit, mit der eine Sorte drin sein muss, sodass diese mit mindestens 95% Wahrscheinlichkeit mindestens ein mal im Kalender ist?

$$X=$$
 Anzahl der Tafeln einer Sorte
$$n=24 \hspace{1.5cm} 1-\sqrt[24]{0.05}=0.117346 \, \mathrm{mit} \,\, 11.8\% \,\, \mathrm{ist \,\, sie \,\, enthalten}$$

3.5.3 k

Für eine Studie wurden 500 Personen genötigt. Nur 75% der befragten wollen daran teilnehmen. Wie viele Personen müssen befragt werden, dass zu 95% 500 Leute zur Auskunft bereit werden?

 $\begin{array}{ll} X = \text{Anzahl der befragten Personen} & \text{binomCdf}(700; 0.75; 0; 499) \\ p = 0.75 & \text{binomCdf}(690; 0.75; 0; 499) \\ k \geq 500 & \text{binomCdf}(692; 0.75; 0; 499) \\ & \text{binomCdf}(692; 0.75; 500; 592) = 0.955 \end{array}$

3.6 Mu und Sigma

3.6.1 Erwartungswert einer binomialverteilten Zufallsgröße

$$\mu = n \cdot p$$

3.7 Standardabweichung

3.7.1 Standardabweichung einer binomialverteilten Zufallsgröße

$$\sigma = \sqrt{n \cdot p \cdot (1 - p)}$$

3.8 Normalverteilung

3.8.1 Beispiel

Körpergrößen können näherungsweise mithilfe einer normalverteilten Zufallsgröße modelliert werden. Es ergibt sich für die Körpergröße von 18 bis 20-jährigen Frauen ein Mittelwert von 1.68m bei einer Standardabweichung von 6.5cm

X =Körpergröße 18 bis 20-jähriger Frauen

$$\mu = 1.68 \text{cm} \qquad \sigma = 6.5 \text{cm}$$
 kleiner als $1.65 = P(X < 165) = \text{normCdf}(-\infty; 165; 168; 6.5) = 0.322206 = 32.22\%$ größer als $1.80 = P(X > 180) = \text{normCdf}(180; +\infty; 168; 6.5) = 0.032435 = 3.24\%$ zwischen 1.70 und $1.75 = P(170 \le X \le 175) = \text{normCdf}(170; 175; 168; 6.5) = 0.238401 = 23.84\%$ genau $1.70 = P(X = 170) = \text{normPdf}(170; 168; 6.5) = 0.058538 = 5.85\%$

3.9 Sigmaregeln

3.9.1 1σ , 2σ , 3σ -Regel

Für
$$\mu=n\cdot p$$
 und $\sigma=\sqrt{n\cdot p\cdot (1-p)}$ erhält man die Näherung
$$1.P(\mu-\sigma\leq X\leq \mu+\sigma)=68.3\%$$

$$2.P(\mu-2\sigma\leq X\leq \mu+2\sigma)=95.4\%$$

$$3.P(\mu-3\sigma\leq X\leq \mu+3\sigma)=99.7\%$$

3.9.2 "glatte" Wahrscheinlichkeiten

$$\begin{aligned} 4.P(\mu - 1.64\sigma &\leq X \leq \mu + 1.64\sigma) = 90\% \\ 5.P(\mu - 1.96\sigma &\leq X \leq \mu + 1.96\sigma) = 95\% \\ 6.P(\mu - 2.58\sigma &\leq X \leq \mu + 2.58\sigma) = 99\% \end{aligned}$$

3.10 Hypothesentests

3.10.1 linksseitiger Hypothesentest

Beispiel:

Max hat einen Würfel 600-mal geworfen und 87 mal eine drei erhalten. Du hälst den Würfel für gezinkt. Führe einen linksseitigen Hypothesentest mit einem Signifikanzniveau $\alpha = 5\%$ durch. Bestimme sein Ablehnungsbereich und gib eine Entschiedungsregel für dein Ergebnis an.

$$X =$$
 Anzahl der Dreien $n = 600$
$$p = \frac{1}{6}$$

3.10.2 Nullhypothese

 H_0 : Der Würfel ist fair, $p = \frac{1}{6}$. Grenze des Ablehnungsbereichs $P(X \le g) \le 0.05$

3.10.3 Alternative

 H_1 : Der Würfel ist gezinkt, $p < \frac{1}{6}$. Grenze des Ablehnungsbereichs $P(X \leq g) \leq 0.05$

$$\begin{array}{c|c} g & P(X \le g) \\ \hline 90 & 0.1487 \\ 85 & 0.0538 \\ 84 & 0.0424 \text{ (Alpha Fehler)} \\ \end{array}$$

Ablehnungsbereich A $[0; 84] \rightarrow \text{hätte}$ er weniger als 84 gewürfelt wäre die Nullhypothese abgelehnt.

23

3.10.4 Alpha Fehler

Wahrscheinlichkeit, dass die Aussage verworfen wird, obwohl man recht hat.

3.10.5 Beta Fehler

Nullhypothese wird angenommen, obwohl sie abgelehnt hätte werden müssen

$$n = 600$$

$$p = \frac{1}{6}$$

0.045mit einer Wahrscheinlichkeit von 4%ist der Würfel gezinkt, aber es wurde die falsche Probe genommen bei 84.