Задача 5. Метрострой

Буровая установка «Нора ++» для прокладки туннелей метро Санкт-Компьютерска имеет n двигателей. Питание установки устроено таким образом, что на все двигатели подается одно и то же целочисленное напряжение x.

У каждого двигателя есть два режима, если на него подается напряжение x, то i-й двигатель работает в первом режиме, если $x \leq z_i$ и во втором режиме, если $x > z_i$.

При этом i-й двигатель характеризуется удельной мощностью a_i в первом режиме и b_i во втором режиме. Это означает, что увеличение напряжения на 1 когда двигатель находится в первом режиме, приводит к увеличению его мощности на a_i , а во втором режиме приводит к увеличению его мощности на b_i . Иначе говоря, при подаче напряжения x, если i-й двигатель находится в первом режиме он работает с мощностью $a_i x$, а если во втором режиме, то с мощностью $a_i z_i + b_i (x - z_i)$.

Для прокладки туннеля суммарная мощность двигателей должна быть не меньше p. Какое минимальное целочисленное напряжение необходимо подать на установку, чтобы суммарная мощность двигателей была больше или равна p?

Формат входных данных

Первая строка ввода содержит целые числа n и p ($1 \leqslant n \leqslant 100, 1 \leqslant p \leqslant 10^{12}$).

Следующие n строк описывают двигатели и содержат по три целых числа $z_i, a_i, b_i \ (1 \le z_i \le 10^9, 1 \le a_i, b_i \le 10^4)$.

Формат выходных данных

Требуется вывести одно целое число — минимальное напряжение, которые необходимо подать на установку.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	20	n = 1		первая ошибка
2	20	$a_i, b_i \leqslant 100, p \leqslant 10^5$		первая ошибка
3	20	У всех двигателей z_i одинаковые	1	первая ошибка
4	20	$n \leqslant 2$	1	первая ошибка
5	20	нет	1–4	первая ошибка

Примеры

стандартный ввод	стандартный вывод
1 6	5
4 1 2	
3 15	3
2 3 3	
4 2 1	
5 2 2	

Задача 6. Красивые последовательности

Дано множество A, элементами которого являются различные целые числа от 1 до 8.

Рассмотрим последовательность $[a_1, a_2, \ldots, a_n]$ из n целых чисел, каждое из которых выбрано из множества A. Будем называть эту последовательность $\kappa pacuso \check{u}$, если для любого числа x все элементы последовательности, равные x, находятся на расстоянии не меньше x друг от друга. Иначе говоря, для любого числа x и для любых двух индексов $1 \le i < j \le n$, таких, что $a_i = a_j = x$, должно выполняться неравенство $j-i \ge x$.

Требуется посчитать количество *красивых* последовательностей для заданного числа n и множества A, и вывести остаток от деления этого количества на число $10^9 + 7$.

Формат входных данных

В первой строке ввода даны два целых числа n и m — длина последовательности и количество элементов множества A ($1 \le n \le 100, 1 \le m \le 8$).

Во второй строке ввода даны m различных целых чисел a_i в порядке возрастания — элементы множества A ($1 \le a_i \le 8, a_i < a_{i+1}$).

Формат выходных данных

Выведите одно целое число — остаток от деления количества красивых последовательностей на число $10^9 + 7$.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	5	$A = \{1, 2\}, n \leqslant 10$		первая ошибка
2	10	$A = \{1, 2\}, n \leqslant 30$	1	первая ошибка
3	15	$A = \{1, 2\}$	1, 2	первая ошибка
4	20	$A=\{1,k\}$ для $2\leqslant k\leqslant 8$	1, 2, 3	первая ошибка
5	30	$a_i \leqslant 5$	1, 2, 3	первая ошибка
6	20	нет	1, 2, 3, 4, 5	первая ошибка

Пример

стандартный ввод	стандартный вывод
3 2	5
1 2	

Пояснение к примеру

В примере красивыми являются последовательности [1,1,1], [1,1,2], [1,2,1], [2,1,1], [2,1,2]. Последовательности [2,2,2], [1,2,2], [2,2,1] красивыми не являются, так как в каждой из них существуют два элемента со значением 2, находящиеся на расстоянии 1 друг от друга.

Задача 7. Камни

Перед Бобом выложены в ряд n черных камней, пронумерованных от 1 до n. На i-м камне записано целое число a_i . Для каждого числа от 1 до n известно, что оно записано ровно на одном камне, иными словами числа a_i образуют перестановку. Будем называть соседними для i-го камня (i-1)-й и (i+1)-й камни (если они существуют).

Боб выполняет следующие n шагов:

- \bullet На первом шаге Боб выбирает произвольное i от 1 до n и красит i-й камень в белый цвет.
- На шагах с номерами от 2 до n Боб смотрит на такие черные камни, которые являются соседними для хотя бы одного белого камня, из них он выбирает камень j с минимальным a_j и красит его в белый цвет.

Несложно заметить, что к концу выполнения всех шагов перед Бобом будут лежать n белых камней.

Алиса выбрала q пар значений p_j и k_j . Для каждой пары она хочет выяснить, сколько существует различных способов выбрать камень на первом шаге, которые приведут к тому, что камень с номером p_j станет белым ровно на k_j -м шаге.

Помогите Бобу ответить на q запросов Алисы.

Формат входных данных

На первой строке заданы числа n — количество камней $(2 \leqslant n \leqslant 10^5)$ и q — количество запросов $(1 \leqslant q \leqslant 10^5)$.

На второй строке заданы записанные на камнях целые числа a_1, a_2, \ldots, a_n ($1 \le a_i \le n$, все a_i различны).

На следующих q строках заданы запросы, j-й запрос задается парой целых чисел p_j и k_j $(1\leqslant p_j\leqslant n,\ 1\leqslant k_j\leqslant n)$ — номером камня и номером шага, на котором этот камень должен быть покрашен в белый цвет.

Формат выходных данных

Для каждого запроса выведите количество значений i, таких что если i-й камень будет покрашен в белый цвет на первом шаге, то p_i -й камень покрасится в белый цвет на k_i -м шаге.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	20	$n \leqslant 300, q \leqslant 300$		первая ошибка
2	17	$n \leqslant 3000$	1	первая ошибка
3	12	$n \leqslant 50000, q \leqslant 10$		первая ошибка
4	6	значения a_i возрастают		первая ошибка
5	16	все значения k_i одинаковые		первая ошибка
6	15	все значения p_i одинаковые		первая ошибка
7	14	нет	1–6	первая ошибка

Примеры

стандартный ввод	стандартный вывод
6 4	1
1 4 6 5 2 3	2
3 1	1
2 2	2
6 3	
4 3	
5 3	0
5 2 3 4 1	1
2 3	1
4 4	
3 2	

Пояснение к примеру

В первом тестовом примере операции выполняются следующим образом:

- Если на первом шаге был выбран 1-й камень: 1-й шаг: [1, 4, 6, 5, 2, 3], 2-й шаг: [1, 4, 6, 5, 2, 3], 3-й шаг: [1, 4, 6, 5, 2, 3], 4-й шаг: [1, 4, 6, 5, 2, 3], 5-й шаг: [1, 4, 6, 5, 2, 3].
- Если на первом шаге был выбран 2-й камень: 1-й шаг: [1, 4, 6, 5, 2, 3], 2-й шаг: [1, 4, 6, 5, 2, 3], 3-й шаг: [1, 4, 6, 5, 2, 3], 4-й шаг: [1, 4, 6, 5, 2, 3], 5-й шаг: [1, 4, 6, 5, 2, 3], 6-й шаг: [1, 4, 6, 5, 2, 3].
- Если на первом шаге был выбран 3-й камень: 1-й шаг: [1, 4, 6, 5, 2, 3], 2-й шаг: [1, 4, 6, 5, 2, 3], 3-й шаг: [1, 4, 6, 5, 2, 3], 4-й шаг: [1, 4, 6, 5, 2, 3], 5-й шаг: [1, 4, 6, 5, 2, 3].
- Если на первом шаге был выбран 4-й камень: 1-й шаг: [1,4,6,5,2,3], 2-й шаг: [1,4,6,5,2,3], 3-й шаг: [1,4,6,5,2,3], 4-й шаг: [1,4,6,5,2,3], 5-й шаг: [1,4,6,5,2,3], 6-й шаг: [1,4,6,5,2,3].
- Если на первом шаге был выбран 5-й камень: 1-й шаг: $[1,4,6,5,\mathbf{2},3]$, 2-й шаг: $[1,4,6,5,\mathbf{2},\mathbf{3}]$, 3-й шаг: $[1,4,6,\mathbf{5},\mathbf{2},\mathbf{3}]$, 4-й шаг: $[1,4,6,\mathbf{5},\mathbf{2},\mathbf{3}]$, 5-й шаг: $[1,4,6,\mathbf{5},\mathbf{2},\mathbf{3}]$, 6-й шаг: $[1,4,6,\mathbf{5},\mathbf{2},\mathbf{3}]$.
- Если на первом шаге был выбран 6-й камень: 1-й шаг: [1,4,6,5,2,3], 2-й шаг: [1,4,6,5,2,3], 3-й шаг: [1,4,6,5,2,3], 4-й шаг: [1,4,6,5,2,3], 5-й шаг: [1,4,6,5,2,3], 6-й шаг: [1,4,6,5,2,3].

Задача 8. Обыкновенная задача про строки

Назовем две строки s и t эквивалентными, если для любой строки u длины 2, количество вхождений u в s совпадает с количеством вхождением u в t. Таким образом, строки «aaaba», «abaaa» и «baaab» попарно эквивалентны между собой (строка «aa» входит два раза, строка «ab» один раз, строка «bb» не входит как подстрока), а строки «abb» и «bba» — нет.

В этой задаче вам будут даны q строк, состоящих из символов «a», «b» и «c», для каждой из которых надо будет посчитать количество эквивалентных им непустых строк, также состоящих из символов «a», «b» и «c». Так как это количество может быть очень большим, то надо вывести его остаток от деления на 10^9+7 .

Формат входных данных

В первой строке входных данных дано число G — номер подзадачи, к которой относится текущий тест. Для теста из примера G=0.

На второй строке дано число q ($1 \leqslant q \leqslant 10^5$), затем следуют q непустых строк, состоящих из символов «a», «b» и «c». Суммарная длина строк не превышает 10^6 .

Формат выходных данных

Требуется вывести q целых чисел — для каждой строки необходимо вывести количество эквивалентных ей по модулю 10^9+7 .

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой и необходимых подзадач успешно пройдены. За n_i обозначена длина i-й строки во входных данных, за L обозначена сумма длин строк.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	11	строка s не содержит символов «с»		первая ошибка
2	13	символы « a » и « c » в строке s не встречаются рядом	1	первая ошибка
3	11	$n \leqslant 13$		первая ошибка
4	10	$L \leqslant 40$	3	первая ошибка
5	9	$L \leqslant 60$	3,4	первая ошибка
6	13	каждой строке эквивалентно не более 100 строк; $L\leqslant 10^5$		первая ошибка
7	33	нет	1-6	первая ошибка

Пример

стандартный ввод	стандартный вывод
0	3
4	3
abaa	2
abca	1
ccbca	
bacc	

Всероссийская олимпиада школьников по информатике 2022–2023 Второй тур, 23 января 2023 года

Пояснение к примеру

Строке «abaa» эквивалентны строки «abaa», «aaba», «baab»; Строке «abca» эквивалентны строки «abca», «bcab», «cabc»; Строке «ccbca» эквивалентны строки «ccbca» и «cbcca»; Строке «bacc» эквивалентна только строка «bacc».