Convex digital curve segmentation

Valentin E. Brimkov*

We consider the following problem. Consider the family Γ_n of all 8-connected digital curves γ_n of n pixels, where γ_n is a digitization of a closed convex curve.

Question 1 How many distinct digital curves (up to a symmetry) does Γ_n contain?

Now let κ_{γ_n} be the minimal number of linear digital segments into which a digital curve γ_n can be partitioned.

Question 2 Determine/estimate κ_{γ_n} (as a function of n and, possibly, other appropriate parameters). In particular, find/estimate κ_{γ_n} in the case when γ_n is a digitization of an ellipsis with axes $a, b, a \leq b$.

In the trivial case when γ_n is digitization of a triangle, we have $\kappa_{\gamma_n} = 3$. In another extreme case when γ_n is a digital circle, an upper bound $\kappa_{\gamma_n} = O(n^{2/3})$ follows from [1, 2]. Is that bound tight?

In the case of ellipsis with axes a and b, we conjecture that $\kappa_{\gamma_n} = \Theta(f(a,b))$, where f is some unknown function. The question is to determine/estimate the function f(a,b).

References

- [1] Balog, A., I. Bárány, On the convex hull of integer points in a disk, *In*: Proceedings of Seventh Anual ACM Symposium on Computational Geometry (1991) 162–165
- [2] Acketa, D., J. Zunić, On the maximal number of edges of convex digital polygons included into an $m \times m$ -grid, J. Combinatorial Theory, Ser. A **69** (1995) 358–368

^{*}Fairmont State University, Fairmont, WV 26554, USA. E-mail: vbrimkov@fairmontstate.edu.