1 Introduction

Notation:

- F a totally real number field.
- p > 3 a prime, L/\mathbb{Q}_p finite field extension, \mathcal{O} the ring of integers of L with maximal ideal λ and residue field \mathbb{F} . L will be assumed to be "large enough". This means that we demand that L contains a primitive p-th root of unity, the images of all embeddings $F \hookrightarrow \overline{L}$ and \mathbb{F} contains certain eigenvalues (of a mod λ Galois representation).
- G_K the absolute Galois group of a field K.

In talk 3 we have seen that we can always go from regular algebraic cuspidal automorphic representations of $GL_2(\mathbb{A}_F)$ to compatible systems of Galois representations. We would like to do the converse: Starting with a continuous Galois representation $\rho: G_F \to GL_2(L)$ we would like to find a regular algebraic cuspidal automorphic representations π of $GL_2(\mathbb{A}_F)$ s.t. ρ occurs in the compatible system associated with π . It is no loss of generality to assume $\operatorname{im}(\rho) \subset GL_2(\mathcal{O})$ (one can always conjugate to achieve that).

The idea of modularity lifting is the following: Suppose we are given two continuous representations, $\rho_0, \rho: G_F \to \mathrm{GL}_2(\mathcal{O})$ s.t. we already know that ρ_0 is modular and s.t. the reductions of ρ and ρ_0 mod λ agree. Then, under certain additional conditions, we want to conclude that also ρ is modular. The precise statement is:

Theorem 1

Let $\rho_0, \rho: G_F \to \operatorname{GL}_2(\mathcal{O})$ be continuous representations s.t. $(\rho \mod \lambda) = (\rho_0 \mod \lambda) =: \overline{\rho}$. Assume that ρ_0 is modular, that ρ is geometric and that L is sufficiently large.¹ Assume further:

- 1) p is unramified in F.
- 2) $\operatorname{im}(\overline{\rho}) \supset \operatorname{SL}_2(\mathbb{F}_p)$.
- 3) For all embeddings $\sigma: F \hookrightarrow L$ and all places $\nu \mid p$ of F the following hold:
 - a) $HT_{\sigma}(\rho) = HT_{\sigma}(\rho_0)$ and this set contains two distinct elements.
 - b) The elements of $\mathrm{HT}_{\sigma}(\rho)$ differ by at most p-2.
 - c) $\rho|_{G_{\nu}}$ and $\rho_0|_{G_{\nu}}$ are crystalline.

Then ρ is modular.

Recall that the condition that ρ is geometric means that ρ is unramified almost everywhere and that $\rho|G_{F_{\nu}}$ is de Rham for all places $\nu\mid p$ of F. Condition 1) is a condition on F and condition 2) is a condition on $\overline{\rho}$. Note that 2) implies that $\overline{\rho}$ is absolutely irreducible (i.e. irreducible after $\otimes \overline{\mathbb{F}}$). The conditions in 3) are Hodge-theoretic conditions. We won't focus on them in this talk.

2 Approach

The first part of the approach of proving the Theorem can be describes as follows. We want to define the following objects

• a "relevant" universal deformation ring $R_{\emptyset}^{\text{univ}}$,

¹Precisely, L should contain a primitive p-th root of unity and the images of all embeddings $L \hookrightarrow \overline{\mathbb{Q}_p}$ and additionally \mathbb{F} should contain all eigenvalues of all $\overline{\rho}(g)$, $g \in G_F$.

- a "relevant" space of modular forms S_{\emptyset} ,
- \bullet a "relevant" Hecke algebra \mathbb{T}_\varnothing
- a universal modular representation $\rho_{\varnothing}^{\text{mod}}: G_F \to \mathrm{GL}_2(\mathbb{T}_{\varnothing})$

s.t. the following conditions² hold:

- D1) $\rho \in R_{\varnothing}^{\text{univ}}(\mathcal{O})$
- D2) \mathbb{T}_{\emptyset} is reduced and acts faithfully on S_{\emptyset} .
- D3) $\rho_{\varnothing}^{\text{mod}}$ induces a surjection $\theta: R_{\varnothing} \twoheadrightarrow \mathbb{T}_{\varnothing}$.
- D4) For $r \in R_{\varnothing}^{\text{univ}}(\mathcal{O})$, the existence of a factorization

implies that r is modular.

Lemma 2 (Reduction to Commutative Algebra Statement)

In this situation ρ_0 is modular if

$$\operatorname{Supp}_{R_{\varnothing}^{\operatorname{univ}}}(S_{\varnothing}) = \operatorname{Spec}(R_{\varnothing}^{\operatorname{univ}}).$$

Here, S_{\varnothing} is a \mathbb{T}_{\varnothing} -module and becomes an R_{\varnothing} univ-modules via θ .

Proof.

Let $(R_{\varnothing}^{\text{univ}})_{\text{red}}$ denote the quotient of $R_{\varnothing}^{\text{univ}}$ by its nilradical and consider the following enlarged version of the diagram in D4):

By D2), \mathbb{T}_{\varnothing} is reduced so θ factors through $R_{\varnothing}^{\text{univ}} \twoheadrightarrow (R_{\varnothing}^{\text{univ}})_{\text{red}}$ inducing $\overline{\theta}: (R_{\varnothing}^{\text{univ}})_{\text{red}} \twoheadrightarrow \mathbb{T}\varnothing$. Now D1) and D4) clearly imply that it suffices to show that $\overline{\theta}$ is an isomorphism. Take $x \in \text{ker}(\theta)$, so x acts as 0 on S_{\varnothing} . Then x must be contained in any $\mathfrak{p} \in \text{Spec}(R_{\varnothing}^{\text{univ}})$, since otherwise $S_{\varnothing,\mathfrak{p}} = 0$, contradicting $\text{Supp}_{R_{\varnothing}^{\text{univ}}}(S_{\varnothing}) = \text{Spec}(R_{\varnothing}^{\text{univ}})$. Thus, x is nilpotent. This shows that $\text{ker}(\theta)$ is contained in the nilradical of $R_{\varnothing}^{\text{univ}}$, which means $\text{ker}(\overline{\theta}) = 0$.

Aim from heron: Define the objects listed above (and some more that will be used later) and check properties D1)-D4).

²Our notation is $C(B) := \text{Hom}_A(C, B)$ for two A-algebras B, C.

3 Base Change Reduction Step

One can use base change to replace F by a solvable totally real extension. Doing this, one may assume that the following assumptions are satisfied (plus the assumptions of the Theorem of course):

- 1) $[F:\mathbb{Q}]$ is even.
- 2) For all places $\nu \nmid p$: $\overline{\rho}|_{G_{F_{\nu}}}$ is unramified.
- 3) For all places $\nu \nmid p$: $\rho(G_{F_{\nu}})$ and $\rho_0(G_{F_{\nu}})$ are unipotent.
- 4) For all places $\nu \nmid p$ s.t. ρ or ρ_0 is ramified: $\overline{\rho}|_{G_{F_{\nu}}} = 1$.
- 5) $\det(\rho) = \det(\rho_0)$.

4 Deformation Ring Machine

Recall the general machine: Given $T \subset S$ finite sets of finite places of $F, \overline{\rho}: G_F \to \mathrm{GL}_2(\mathbb{F})$ absolutely irreducible.

Input: $(\mathcal{D}_{\nu})_{\nu \in S}$, $\chi : G_F \to \mathcal{O}^{\times}$, where

- \mathcal{D}_{ν} is a deformation problem, i.e. a certain subfunctor of $R_{\overline{\rho}|_{G_{E}}}^{\Box_{T}}$.
- χ is a continuous group homomorphism.

Output:

- $R_{S,\overline{\rho},\chi}^{\Box_T}$ represents T-framed deformations of $\overline{\rho}$ unramified outside S having determinant χ .
- $R_{S,\overline{\rho},\chi}^{\text{univ}}$ represents deformations of $\overline{\rho}$ unramified outside S having determinant χ .
- $\bullet \ R_{S,\overline{\rho},\chi}^{\mathrm{loc}} \coloneqq \hat{\otimes}_{\nu \in T} R_{\overline{\rho}|_{G_{F_{\nu}}},\chi|_{G_{F_{\nu}}}}^{\square}$

We want to apply this to the situation of the Theorem. We take $\overline{\rho}$ as in the theorem and $T:=T_p\sqcup T_r$, where $T_p:=\{v\mid p\}$ and $T_r:=\{v\mid \rho\text{ or }\rho_0\text{ ramified at }v\}$. We take $\chi:=\det\rho=\det\rho_0$. Let Q be a finite set of finite places of F s.t. $Q\cap T=\varnothing$. Set $S:=T\sqcup Q$. We also need to fix some choices:

- a primitive p-th root of unity $\zeta \in L$
- for each $v \in T_r$ some $\sigma_v \in I_v$ that maps to a topological generator in I_v/P_v

Then we define two families $(D_{\nu})_{\nu \in S}$ and $(D'_{\nu})_{\nu \in S}$ of local deformation problems (we refer to $(D_{\nu})_{\nu \in S}$ as the "standard situation" and to $(D'_{\nu})_{\nu \in S}$ as the "prime situation"; the standard situation is the situation we are interested in; the prime situation is nicely behaved; in the end of the proof we compare the standard situation with the prime situation to transfer information available in the prime situation to the standard situation; the relationship is that both situations agree mod λ):

	D_{ν}	D_{ν}'
$v \in T_p$	"crystalline lifts of correct HT weights"	"crystalline lifts of correct HT weights"
$v \in T_r$	lifts $\tilde{\rho}$ with charpo $\tilde{\rho}(\sigma_{\nu}) = (X-1)^2$	lifts $\tilde{\rho}$ with charpo $_{\tilde{\rho}(\sigma_{\nu})} = (X - \zeta)(X - \zeta^{-1})$
$v \in Q$	all lifts	all lifts

Output: R_Q^{univ} , R_Q^{\square} , R_Q^{loc}

Check: D1) holds for $Q = \emptyset$. The only thing to note is that by the reduction step $\rho(I_{\nu})$ is unipotent for $\nu \in T_r$, so the characteristic polynomial has the correct form.

5 Quaternionic Automorphic Representations

Idea: By the reduction step, $[F:\mathbb{Q}]$ is even. Since F is totally real, this means $\#\{\nu \mid \infty\}$ is even so we find a unique quaternion algebra D over F that is ramified precisely at $\{\nu \mid \infty\}$. By Jacquet-Langlands, every regular algebraic cuspidal automorphic representation of $\mathrm{Res}_{F/\mathbb{Q}}\mathrm{GL}_2$ comes from a unique infinite-dimensional regular algebraic automorphic representation of $\mathrm{Res}_{F/\mathbb{Q}}D$ (of the same weight; note that such a representation of $\mathrm{Res}_{F/\mathbb{Q}}D$ is automatic cuspidal, since D is anisotropic modulo center). This leads to the

Aim:

- ullet Construct an explicit space of modular forms (for D) that serves as a model for automorphic representations.
- Go further and define an integral version of this space (plus corresponding Hecke algebra) that is defined over \mathcal{O} . This then allows us to compare with $R_{\varnothing}^{\text{univ}}$, which is also defined over \mathcal{O} .

The general construction goes as follows: Fix $\iota : \overline{L} \cong \mathbb{C}$.

Input:

- weights $(K_{\tau}, \eta_{\tau})_{\tau \mid \infty}$ with $k_{\tau} \in \mathbb{Z}_{\geq 2}$ and $\eta_{\nu} \in \mathbb{Z}$ (think of k_{τ} as indexing discrete series representation and η_{ν} as indexing (twists with) algebraic characters of the center of the universal enveloping algebra of the complexification of the Lie algebra of GL_2),
- S a finite set of finite places disjoint from $\{v \mid p\}$,
- $U = (v \text{ finite} U_v = U_S \prod_{v \notin S} v \text{ finite} GL_2(\mathcal{O}_v)$ an open compact subgroup.
- $\psi: U_S \to \mathcal{O}^{\times}$ a continuous homomorphism,
- $\chi_0: \mathbb{A}_F^{\times}/\overline{(F_{\infty}^{\times})^{\circ}F^{\times}} \to \overline{L}$,

plus some compatibility conditions.

Output: $S_U := S_{k,\eta,\psi,\chi_0}(U,\mathcal{O})$

The presise definition is:

$$S_U := \{ \Phi : D^{\times} \backslash \mathrm{GL}_2(\mathbb{A}_F) \to \Lambda \mid \Phi(zgu) = \chi_0(z) \tilde{\psi}^{-1}(u) \Phi(g) \},$$

where

- $\Lambda := \bigotimes_{\tau: F \to \mathbb{C}} \operatorname{Sym}^{k_{\tau}-1}(\mathcal{O}^2) \otimes (\bigwedge^2 \mathcal{O}^2)^{\eta_{\tau}}$
- $\tilde{\psi}: U \to \mathrm{GL}(\Lambda)$ the representation induced by $U \ni u_S u_p u_{\mathrm{rest}} \mapsto \psi(u_S) u_p \in \mathrm{GL}(\mathcal{O}^2)$

Fact: S_U is a finite free \mathcal{O} -module (since $D^{\times}\mathrm{GL}_2(\mathbb{A}_F^{\infty})/U(\mathbb{A}_F^{\infty})^{\times}$ is finite).

Now we want to choose the input data in a way that S_U is related to ρ and ρ_0 . We take

- the HT weights of ρ (which are also the HT weights for ρ_0) as weights
- $S := T_r \sqcup Q$ (note that we don't need T_p now, the information at p is contained in Λ)
- $U_S = \prod_{v \in S} U_v$ with

$$U_{\nu} := \begin{cases} \{A \mid A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \bmod \nu\}, & \nu \in T_{r} \\ \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid A \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \bmod \nu, \ k(\nu)^{\times} \ni (a/d \bmod \nu) \mapsto 1 \in \Delta_{\nu}\}, \quad \nu \in Q \end{cases}$$

where Δ_{ν} is the maximal p-power quotient of $k(\nu)^{\times}$.

- $\psi = 1$
- $\chi_0 \coloneqq \epsilon_p \det \rho$

In this way we obtain for each Q as above a space S^Q of modular forms. Again, there is a prime construction of spaces S'_Q . The only difference is that ψ gets replaced by ψ' which is trivial at $\nu \in Q$ and sends A to $(a/d \mod \nu)$ and then σ_{ν} to ζ .

Remark 3

The definition of U is not random, but corresponds to the conductor of ρ (which is also the conductor of ρ_0).

Next, we associate a Hecke algebra with the above data:

$$\mathbb{T}^{Q} := \operatorname{im}(\mathcal{O}[T_{\nu}, S_{\nu}, \tilde{U}_{\omega} \mid \nu, \omega] \to \operatorname{End}(S^{Q})),$$

where

- ν runs over all finite places of F not contained in $T \sqcup Q$
- ω runs over all places in Q
- the map is given by

$$\begin{split} S_{\nu} &\mapsto \left[U_{\nu} \mathrm{diag}(\phi_{\nu}, 1) U_{\nu} \right] \\ T_{\nu} &\mapsto \left[U_{\nu} \mathrm{diag}(\phi_{\nu}, \phi_{\nu}) U_{\nu} \right] \\ \tilde{U}_{\omega} &\mapsto \left[U_{\omega} \mathrm{diag}(\phi_{\nu}, 1) U_{\omega} \right]. \end{split}$$

Here the brackets on the right hand side denote the usual double coset operator.

Similar one obtains $\mathbb{T}^{Q,'}$. Clearly, \mathbb{T}^Q is a commutative \mathcal{O} -algebra under which S^Q is a module (same for prime situation).

Facts:

- S^Q is a finite free \mathbb{T}^Q -module (same for prime)
- \mathbb{T}^Q acts faithfully on S^Q (same for prime)
- $(Q = \emptyset)$ Let Π be the set of cuspidal automorphic representations of $D^{\times}(\mathbb{A}_F)$ unramified outside $S = T_r \sqcup T_p$ s.t. $\operatorname{Hom}_{U_S}(\mathbb{C}, \pi_S) \neq 0$ (trivial U_S -action on \mathbb{C} ; this means $\pi^U \neq 0$; think of this as a condition that comes from a condition on the conductor \mathcal{C} of ρ (of the form "something $\subset \mathcal{C}$ "); it is satisfied by the reduction step!).

In particular:

- \mathbb{T}^{\emptyset} is reduced
- $\operatorname{Hom}_{\mathcal{O}\text{-alg}}(\mathbb{T}^{\emptyset},\mathbb{C}) \leftrightarrow \Pi$, where \mathbb{C} becomes an \mathcal{O} -algebra via ι .
- $\mathbb{T}^{\emptyset} \otimes_{\mathcal{O}, \iota} \mathbb{C} \cong \prod_{\pi \in \Pi} \mathbb{C}$

Desideratum: Universal Galois deformation $\rho: G_F \to \mathrm{GL}_2(\mathbb{T}^{\varnothing})$ so that we get $R_{\varnothing}^{\mathrm{univ}} \to \mathbb{T}^{\varnothing}$ by universal property.

First guess: With every $\pi \in \Pi$ we can associate a Galois representation (talk 4) $\rho_{\pi} : G_F \to GL_2(\mathbb{C})$. Take the product

$$G_F \to \prod_{\pi \in \Pi} \mathrm{GL}_2(\mathbb{C}) \cong \mathrm{GL}_2(\mathbb{T}^{\emptyset} \otimes_{\mathcal{O}, \iota} \mathbb{C}).$$

Problems:

- 1) We want an integral version, i.e. we don't like $\otimes \mathbb{C}$.
- 2) \mathbb{T}^{\emptyset} is not local (so the universal property of $R_{\emptyset}^{\text{univ}}$, which is defined on the category of local complete Noetherian algebras, does not apply).

Solution: Make it local!

 \mathbb{T}^{\emptyset} is semilocal and and \mathcal{O} henselian, so we can write

$$\mathbb{T}^{\varnothing}\cong\prod_{\mathfrak{m}}\mathbb{T}_{\mathfrak{m}},$$

where \mathfrak{m} runs through the finitely many maximal ideals of \mathbb{T}^{\emptyset} .

Fact: One can associate with every maximal ideal a representation $\overline{\rho_{\mathfrak{m}}^{\text{mod}}}: G_F \to \mathrm{GL}_2(\mathbb{T}^{\varnothing}/\mathfrak{m})$. If this representation is absolutely irreducible, one can associate further a representation

$$\rho_{\mathfrak{m}}^{\mod}: G_F \to \mathrm{GL}_2(\mathbb{T}_{\mathfrak{m}}^{\varnothing})$$

in a way s.t.

$$\operatorname{Hom}_{\mathcal{O}\text{-alg}}(T^{\varnothing}_{\mathfrak{m}}, \overline{L}) \leftrightarrow \{\pi \in \Pi \mid \operatorname{GaloisRep}(\pi) \text{ reduces to } \overline{\rho_{\mathfrak{m}}^{\operatorname{mod}}}\}$$

Remark 4

 $SL_2(\mathbb{F}_p) \subset \operatorname{im}\overline{\rho}$ implies that ρ is absolutely irreducible.

Now we need to pick the correct maximal ideal \mathfrak{m} of \mathbb{T}^{\varnothing} s.t. $\overline{\rho_{\mathfrak{m}}^{\mathrm{mod}}} = \overline{\rho}$ (because precisely then the automorphic representation associated with ρ_0 occurs in $T_{\mathfrak{m}}^{\varnothing} \otimes \overline{L}$). **Idea:** Modularity of ρ_0 gives a homomorphism $\mathbb{T}^{\varnothing} \to \mathbb{C}$ that actually has values in \mathcal{O} . Take

$$\mathfrak{m} := \ker(\mathbb{T}^{\emptyset} \to \mathcal{O} \to \mathbb{F}).$$

Definition 5

$$\mathbb{T}_\varnothing\coloneqq(\mathbb{T}^\varnothing)_{\mathfrak{m}},\,S_\varnothing\coloneqq(S^\varnothing)_{\mathfrak{m}},\,\rho^{\mathrm{mod}}_\varnothing\coloneqq\rho^\varnothing_{\mathfrak{m}}.$$

It remains to check D2)-D4):

- D2) is clear.
- The existence of the map in D3) follows, since \mathbb{T}_{\emptyset} is local, Noetherian and complete. An explicit description of $\rho_{\mathfrak{m}}^{\text{mod}}$ shows that all Hecke operators are in the image of $R_{\emptyset}^{\text{univ}} \to \mathbb{T}_{\emptyset}$, so that this map is surjective.
- D4) follows from the definition of $\rho_{\varnothing}^{\text{mod}}$, the definition of modularity and (matching Hecke eigenvalues and Frobenius eigenvalues in the unramified situation) and Chebotarev density.

Similarly we define \mathbb{T}'_{Q} etc.

6 The second part of the proof

Aim: Prove $\operatorname{Supp}_{R_{\varnothing}^{\operatorname{univ}}}(S_{\varnothing}) = \operatorname{Spec}(R_{\varnothing}^{\operatorname{univ}})$.

Idea: Use the "Q-machine" to construct nice "resolution" $R_{\infty} \curvearrowright S_{\infty}$ of $R_{\varnothing}^{\text{univ}} \curvearrowright S_{\varnothing}$ which give enough information to reach the Aim.

7 Back to Deformation Rings

For $v_0 \in T$ fixed set

$$\mathcal{J} := \mathcal{O}[X_{\nu,i,j} \mid \nu \in T, i, j \in \{1,2\}]/(X_{\nu_0,1,1}).$$

This is a complete local finite type \mathcal{O} -algebra with dim(\mathcal{J}) = 4#T.

Facts:

- $\bullet \ \rho_Q ^{\mathrm{univ}} \ \mathrm{induces} \ R_Q^\square \cong R_Q ^{\mathrm{univ}} \hat{\otimes} \mathcal{J}.$
- There is an ideal $\mathfrak{a}_Q \subset R_Q^{\square}$ s.t. $R_Q^{\square}/\mathfrak{a}_Q \cong R_Q^{\text{univ}}$.
- All situations agree modulo λ .

8 Precise Idea of Proof

We want to construct the following:

- \mathcal{O} -algebra morphisms $\mathcal{J}_{\infty} \to R_{\infty} \twoheadrightarrow R_{\varnothing}^{\text{univ}}$, where \mathcal{J}_{∞} and R_{∞} are local complete Noetherian, together with an R_{∞} -module S_{∞} and a surjection $S_{\infty} \twoheadrightarrow S_{\varnothing}$ of R_{∞} -modules,
- a local complete Noetherian \mathcal{O} -algebra R_{∞} together with a diagram $\mathcal{J}_{\infty} \to R'_{\infty} \twoheadrightarrow R_{\varnothing}^{\mathrm{univ},\prime}$ of \mathcal{O} -algebra morphisms³, a module S'_{∞} and a surjection $S'_{\infty} \twoheadrightarrow S'_{\varnothing}$ of R'_{∞} -modules,
- some $r \in \mathbb{Z}_{\geq 0}$

s.t.

- P1) $\dim(R_{\infty}) = \dim(R'_{\infty}) = \dim(J_{\infty}) = 4\#T + r$,
- P2) \mathcal{J}_{∞} is regular and S_{∞} and S'_{∞} are finite free over \mathcal{J}_{∞} ,
- P3) both situations (standard and prime) agree mod λ ,
- P4) reduction mod λ yields a bijection between the irreducible components of $\operatorname{Spec}(R_{\infty})$ and $\operatorname{Spec}(R_{\infty}/\lambda)$,
- P5) Spec (R'_{∞}) is irreducible,
- P6) there is an ideal $\mathfrak{a}_{\infty} \subset R_{\infty}$ s.t. $R_{\infty}/\mathfrak{a}_{\infty} \cong R_{\varnothing}^{\text{univ}}$ and $S_{\infty}/\mathfrak{a}_{\infty} \cong S_{\varnothing}$.

Remark 6

We will construct R_{∞} and R'_{∞} as certain inverse limits of quotients of certain deformation rings $R_{Q_N}^{\square}$ for some sequence of finite sets of finite places $(Q_N)_N$. Then from the properties of these rings discussed before, one can see that achieving P3)-P5) seems feasible. The hard part is to achieve P1) and P2) simultaneously.

Lemma 7

In the situation described above,

$$\operatorname{Supp}_{R_{\varnothing}^{\operatorname{univ}}}(S_{\varnothing}) = \operatorname{Spec}(R_{\varnothing}^{\operatorname{univ}})$$

holds true.

³Note that J_{∞} does not have a prime: This is not a typo!

Proof.

First recall from commutative algebra: For a local Noetherian ring (A, \mathfrak{m}) and a finite A-module M one has:

- Depth_A $(M) \le \dim(A/\mathfrak{p})$ for all minimal prime ideals \mathfrak{p} of A that are minimal in Supp_A(M).
- If A is regular, then $Depth_A(A) = dim(A)$.

Now, since \mathcal{J}_{∞} is regular and S_{∞} is finite free over \mathcal{J}_{∞} , we have

$$\mathrm{Depth}_{\mathcal{J}_{\infty}}(S_{\infty}) = \mathrm{Depth}_{\mathcal{J}_{\infty}}(\mathcal{J}_{\infty}) = \dim(\mathcal{J}_{\infty}) = 4\#T + r.$$

Let $\mathfrak{p} \in \operatorname{Spec}(R_{\infty})$ be a prime ideal which contained and minimal in $\operatorname{Supp}_{R_{\infty}}(S_{\infty})$. Then we have:

$$4\#T + r = \dim(R_{\infty}) \ge \dim(R_{\infty}/\mathfrak{p}) \ge \operatorname{Depth}_{R_{\infty}}(S_{\infty}) \ge \operatorname{Depth}_{J_{\infty}}(S_{\infty}) = 4\#T + r$$

Hence, all these inequalities are equalities and as $\dim(R_{\infty}) = 4\#T + r$, we see that \mathfrak{p} is a minimal prime ideal of R_{∞} . Thus, $\operatorname{Supp}_{R_{\infty}}(S_{\infty})$ is a union of irreducible components of $\operatorname{Spec}(R_{\infty})$. The same statement is true in the prime world.

Now $\operatorname{Spec}(R'_{\infty})$ is irreducible, so $\operatorname{Supp}_{R'_{\infty}}(S'_{\infty}) = \operatorname{Spec}(R'_{\infty})$. By P3) we get $\operatorname{Supp}_{R_{\infty}/\lambda}(S_{\infty}/\lambda)$. Using P4), we see $\operatorname{Supp}_{R_{\infty}}(S_{\infty}) = \operatorname{Spec}(R_{\infty})$ and finally, by P6), $\operatorname{Supp}_{R_{\varnothing}^{\text{univ}}}(S_{\varnothing}) = \operatorname{Spec}(R_{\varnothing}^{\text{univ}})$.

Now how does one find r s.t. P1) and P2) both hold? We have the following facts:

- S_Q is finite free over $\mathcal{O}[\Delta_Q]$ (here using quaternion algebra makes life easier, since one only has to analyze functions on a finite set).
- One can find a sequence $(Q_N)_N$ of finite sets of finite places and a number r s.t.
 - $\#Q_N = r \text{ for all } N$,
 - $\forall v \in Q_N : \#k(v) \equiv 1 \mod p^N$,
 - $R_{O_N}^{\square}$ is topologically generated over R^{loc} by $\#T 1 [F : \mathbb{Q}] + r$ elements,
 - $-\overline{\rho}(\operatorname{Frob}_{\nu})$ has two distinct eigenvalues for all $\nu \in Q_N$.

Comments:

• For $N \to \infty$, S_{Q_N} is free over $\mathcal{O}[\Delta_{Q_N}]$ with Δ_{Q_N} a larger and larger p-power group. So, the first guess is to put

$$S_{\infty} = \varprojlim_{N} S_{Q_{N}}$$

(or maybe replace the S_{Q_N} by some quotients). This does not make sense! We don't even have the maps between the different S_{Q_N} to build a projective system.

- The number of elements needed to present R_Q^{\square} topologically over R^{loc} is measured by some cohomology group (depending on Q). There is a natural "global version" of this group, whose rank gives a candidate for the number r.
- Trick to build a projective system: Take quotients of S_{Q_N} that have finite cardinality and construct artificially a projective system which maps that exist for cardinality reasons.
- \mathcal{J}_{∞} is just a power series ring over \mathcal{J} in the correct number of variables (namely r, so that $\dim(\mathcal{J}_{\infty}) = \dim(R_{\infty})$ works out).