Tipo de operação		e em rotação le giro silenc			elte		Rolamentos que não giram	
		Rolamentos de rolos		Rolamentos de rolos	Rolamentos de esferas	Rolamentos de esferas	Rolamentos de esferas	Rolamentos de rolos
Suave, sem vibração	0,5	1	1	1,5	2	3	0,4	0,8
Normal	0,5	1	1	1.5	2	3,5	0,5	1
Cargas de choque pronunciadas ¹⁾	≥ 1,5	≧ 2,5	≥ 1,5	≥ 3	≥ 2	≥ 4	≥ 1	2.2
provide codadas -	E 1,0	E 2,0	0.1,0					e 2

 $C_0 = s_0 \times P_0$

Para rolamentos axiais autocompensadores de rolos econselhe-se o uso de s_e ≥ 4

¹¹ Quando a magnitude da carga é desconhecida, devem ser usados pelo menos valores de s₀ tão grandes quanto os da tabela acima. Se a magnitude das cargas de choque são conhecidas exatamente, pode-se adotar valores menores de s₀

$$F_m = \left(\frac{F_1^3 \cdot n_1 + F_2^3 \cdot n_2 + \dots}{n}\right)^{1/3}$$

onde:

 $F_m \Rightarrow$ carga média

(entre as cargas de diversas intensidades)

$$F_{1,2,..}$$
 = cargas constantes durante $n_1, n_2, ...$ revoluções

$$n = n$$
úmero total de revoluções
 $(n = n_1 + n_2 + ...)$

$$F_m = \frac{F_{min} + 2 \cdot F_{max}}{3}$$

onde:

 $F_m \Rightarrow$ carga média

(entre as cargas de diversas intensidades)

$$F_{1,2,..}$$
 = cargas constantes durante $n_1, n_2, ...$ revoluções

 $U = n^{\underline{o}}$ total de revoluções

 $F_m = fm \cdot (F_1 + F_2)$

onde:

 $F_m \Rightarrow$ carga média

(entre as cargas de diversas intensidades)

 F_1 = carga radial constante

 $F_2 = carga \ rotativa$

fm = fator de carga rotativa (gráfico)

Variação da capacidade de carga (C) com a temperatura.

$T[^{\circ}C]$	150	200	250	300
C	1	0.9	0.75	0.5

Mancais de Rolamento

3.3. Confiabilidade - R:

- É a probabilidade de um rolamento (ou lote) atingir uma vida (L) especificada.

$$\boxed{R = \exp \left[-\left(\frac{L}{6.84 \cdot L_{10}}\right) \right]^{1.17}}$$

Obs.: quando
$$L = L_{10} \Rightarrow R = 0.90$$

Confiabilidade [%]	L_{na}	a_1
90	L_{10a}	1
95	L_{5a}	0.62
96	L_{4a}	0.53
97	L_{3a}	0.44
98	L_{2a}	0.33
99	L_{1a}	0.21

Vida nominal ajustada:

$$L_{na} = a_1 \cdot a_2 \cdot a_3 \cdot \left(\frac{C}{P}\right)^a = a_1 \cdot a_2 \cdot a_3 \cdot L_{10}$$

$$Fator de condição de funcionamento$$

$$Fator de material$$

$$Fator de confiabilidade$$

4. Fator combinado $(a_2 \cdot a_3)$ a_{23}

- fator material (a₂) + + fator de lubrificação (a₃)

$$L_{na} = a_1 \cdot a_{23} \cdot L_{10}$$

- Rolamentos de aço comum: $a_2 = 1$

Mancais de Rolamento

Rolamento radial de esferas:

Rolamento radial de rolos:

Rolamento axial de esferas:

Rolamento axial de rolos:

Mancais de Rolamento

Condição	$\eta_c^{(l)}$	
MUITO LIMPO Tamanho das partículas de contaminante da mesma ordem de grandeza da espessura do filme de lubrificante	1	
LIMPO Condições típicas de rolamentos vedados e lubrificados para a vida	0.8	
NORMAL Condições típicas de rolamentos com placas de proteção e lubrificados para a vida	0.5	
CONTAMINADO Condições tipicas de rolamentos sem placas de vedação; filtros lubrificantes grosseiros e/ou penetração de partículas do ambiente	0.50.1	
MUITO CONTAMINADO (2)	0	

5. Fator de condições de funcionamento -
$$a_{SKF}$$

$$L_{na} = a_1 \cdot a_{SKF} \cdot L_{10}$$

 $P_u = carga\ limite\ de\ fadiga$

 carga abaixo da qual não haverá fadiga no rolamento (tabela de rolamentos)

Tabela 8:

$$\eta_c$$
 = grau de contaminação Polité

$$T = \mu \cdot F \cdot \frac{D}{2}$$

onde:

 $T \rightarrow torque para vencer o atrito$

D → diâmetro do eixo

 $F \rightarrow carga$

Valores de coeficiente de atrito (μ) para diferentes tipos de rolamentos.
Tipo de rolamento (mancal)

μ	Tipo de rolamento (mancal)
0.0010	Auto-compensador
0.0011	Rolos cilíndricos guiados
0.0013	Mancal axial (escora)
0.0015	esferas
0.0018	Rolos cônicos

Tipo de rolamento	Coeficiente de atrito μ	
Rolamentos rigidos de esferas	0,00151)	
Rolamentos autocompensadores de esferas	0,00101)	
Rolamentos de esferas de contato angular de uma carreira de duas carreiras	0,0020 0,0024 ¹⁾	
Rolamentos de esferas de quatro pontos de contato	0,0024	
Rolamentos de rolos cilíndricos com gaiola com o máximo número de rolos	0,0011 ²⁾ 0,0020 ¹⁾²⁾	
Rolamentos de agulhas	0,00251)	
Rolamentos autocompensadores de rolos	0,0018	
Rolamentos de rolos cônicos	0,0018	
Rolamentos axiais de esferas	0,0013	
Rolamentos axiais de rolos cilindricos	0,0050	
Rolamentos axiais de agulhas	0,0050	
Rolamentos axiais autocompensadores de rolos	0,0018	