

TEMA 2: APLICACIONES AFINES

Problema 1. Dada $f: A \longrightarrow A'$ aplicación afín, $P \in A$, y $\overrightarrow{f}: V \longrightarrow V'$, $\overrightarrow{PQ} \longmapsto \overrightarrow{f(P)f(Q)}$ su aplicación lineal asociada, demuestra que para todo $Q, R \in A$ se verifica que $f(\overrightarrow{QR}) = \overrightarrow{f(Q)f(R)}$.

Problema 2. Probar que una aplicación afín transforma subespacios afines paralelos en subespacios afines paralelos.

Problema 3. Probar que una aplicación afín transforma (tres) puntos alineados en (tres) puntos alineados.

Problema 4. Demuestra que la inversa de la aplicación lineal asociada a una afinidad $f: A \longrightarrow A$ es la aplicación lineal asociada a la afinidad inversa $f^{-1}: A \longrightarrow A$, es decir

$$\overrightarrow{f}^{-1} = \overrightarrow{f^{-1}}.$$

Problema 5. Estudia si las siguientes aplicaciones son afines o no. En caso afirmativo, encuentra su aplicación lineal asociada y estudia si son inyectivas, sobreyectivas o biyectivas.

•
$$f: \mathbb{A}^3_{\mathbb{R}} \longrightarrow \mathbb{A}^3_{\mathbb{R}}, \ f(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3 - 1, x_2 + x_3 - 2, x_1 - x_3 + 1).$$

•
$$f: \mathbb{A}^4_{\mathbb{R}} \longrightarrow \mathbb{A}^2_{\mathbb{R}}, \ f(x_1, x_2, x_3, x_4) = (x_1 x_2, x_1 x_3 + 1).$$

•
$$f: \mathbb{A}^2_{\mathbb{C}} \longrightarrow \mathbb{A}^2_{\mathbb{C}}, \ f(z_1, z_2) = (z_1 - iz_2 + 1, (1+i)z_1 + z_2 + i).$$

$$f: \mathbb{A}^2_{\mathbb{C}} \longrightarrow \mathbb{A}^2_{\mathbb{C}}, \ f(z_1, z_2) = (z_1 + 2i, z_2^2).$$

•
$$f: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{A}^1_{\mathbb{R}}, \ f(M) = \operatorname{tr}(M).$$

•
$$f: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{A}^1_{\mathbb{R}}, \ f(M) = \det(M).$$

•
$$f: \mathcal{P}_n(\mathbb{R}) \longrightarrow \mathbb{A}^1_{\mathbb{R}}, \ f(p(X)) = p(1).$$

•
$$f: \mathcal{P}_n(\mathbb{R}) \longrightarrow \mathcal{P}_n(\mathbb{R}), \ f(p(X)) = p'(X).$$

Problema 6. Sean $P_0 = (0,1)$, $P_1 = (0,3)$, $P_2 = (4,2)$ los vértices de un triángulo en $\mathbb{A}^2_{\mathbb{R}}$. Define la aplicación afín que lleva ese triángulo en el triángulo de vértices $Q_0 = (-1,-2)$, $Q_1 = (-3,4)$, $Q_2 = (1,5)$. Calcula su representación matricial en la referencia cartesiana canónica y en la referencia afín estándar de $\mathbb{A}^2_{\mathbb{R}}$.

Problema 7. Sea la afinidad en $\mathbb{A}^2_{\mathbb{R}}$ que transforma el origen de coordenadas en el punto (2,4) y cuya aplicación lineal asociada transforma los vectores de la base canónica en (-1,1) y (1,1) respectivamente.

- Calcula su matriz respecto de la referencia cartesiana canónica.
- Calcula la imagen del cuadrado de vértices (0,0), (1,0), (1,1) y (0,1).
- Calcula la matriz de su aplicación afín inversa respecto de la referencia cartesiana canónica.

Problema 8. En el plano afín, dado el cuadrado de vértices $P_0 = (0,0)$, $P_1 = (1,0)$, $P_2 = (1,1)$ y $P_3 = (0,1)$, demuestra que no existe ninguna afinidad f que lo transforme en el romboide de vértices $Q_0 = (2,0)$, $Q_1 = (6,0)$, $Q_2 = (3,2)$, $Q_3 = (7,2)$, preservando el orden de los vértices, es decir, $f(P_i) = Q_i$, i = 0, 1, 2, 3.

Problema 9. Dados dos triángulos, ¿cuántas afinidades de $\mathbb{A}^2_{\mathbb{R}}$ transforman uno en otro? ¿y en $\mathbb{A}^3_{\mathbb{R}}$?

Problema 10. Dadas aplicaciones afines $f: A \longrightarrow A'$ y $g: A' \longrightarrow A''$, y referencias cartesianas \mathcal{R}'_c , \mathcal{R}'_c y \mathcal{R}'_c , demuestra que

$$M_{\mathcal{R}_c, \mathcal{R}_c''}(g \circ f) = M_{\mathcal{R}_c', \mathcal{R}_c''}(g) \cdot M_{\mathcal{R}_c, \mathcal{R}_c'}(f).$$

Problema 11. Dada la aplicación afín

$$f: \mathbb{A}^3_{\mathbb{R}} \longrightarrow \mathbb{A}^3_{\mathbb{R}}, \ f(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3 + 1, x_2 - x_3 - 2, x_1 + x_3 - 1)$$

- Calcula su representación matricial respecto de la referencia cartesiana canónica de $\mathbb{A}^3_{\mathbb{R}}$.
- Calcula el núcleo e imagen de su aplicación lineal asociada.
- Calcula la imagen de la recta L que pasa por los puntos (0,1,0) y (1,2,-1).
- Calcula la imagen del plano $H: \{x_3 = 0\}.$

Problema 12. Encuentra los puntos fijos y los subespacios invariantes de la aplicación afín

$$f: \mathbb{A}^2_{\mathbb{R}} \longrightarrow \mathbb{A}^2_{\mathbb{R}}, \ f(x_1, x_2) = (x_1 - x_2 + 1, -x_1 + x_2 + 2).$$

Problema 13. Encuentra los puntos fijos y las rectas invariantes de la aplicación afín

$$f: \mathbb{A}^3_{\mathbb{R}} \longrightarrow \mathbb{A}^3_{\mathbb{R}}, \ f(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3 + 1, x_2 - x_3 - 2, x_1 + x_3 - 1).$$

Problema 14. Dada la aplicación afín

$$f: \mathbb{A}^3_{\mathbb{R}} \longrightarrow \mathbb{A}^2_{\mathbb{R}}, \ f(x_1, x_2, x_3) = (x_1 + x_2 + x_3 - 1, x_1 - x_3 + 1)$$

- Calcula su representación matricial respecto de las referencias cartesianas canónicas de $\mathbb{A}^3_{\mathbb{R}}$ y $\mathbb{A}^2_{\mathbb{R}}$.
- Calcula el núcleo e imagen de su aplicación lineal asociada.
- Encuentra una recta de $\mathbb{A}^3_{\mathbb{R}}$ cuya imagen sea un punto.
- Decide si existe algún plano de $\mathbb{A}^3_{\mathbb{R}}$ cuya imagen sea un punto y, en caso afirmativo, muestra uno.

Problema 15. Comprueba que la inversa de una homotecia de centro C y razón λ es la homotecia de centro C y razón λ^{-1} viendo que el producto de sus matrices, con respecto a una referencia cartesiana \mathcal{R}_c , es la identidad.

Problema 16. Prueba que si el centro C de una homotecia η pertenece a un subespacio afín $B \subset A$, entonces B es invariante por η .

Problema 17. Muestra que la composición $\eta_2 \circ \eta_1$ de una homotecia η_1 de centro C_1 y razón λ_1 con otra homotecia η_2 de centro C_2 y razón λ_2 es una homotecia de centro

$$C_1 + \frac{1 - \lambda_2}{1 - \lambda_1 \lambda_2} \overrightarrow{C_1 C_2}$$

y razón $\lambda_1 \cdot \lambda_2$ salvo cuando $\lambda_1 \cdot \lambda_2 = 1$, y que en tal caso se trata de una traslación de vector $(1 - \lambda_2)\overrightarrow{C_1C_2}$.

Problema 18. Muestra que el subgrupo de las traslaciones y las homotecias no es abeliano con un ejemplo de traslación y homotecia cuya composición no conmute.

Problema 19. Considera en $\mathbb{A}^2_{\mathbb{R}}$ el cuadrado C con vértices en los puntos $P_0 := (0,0), P_1 := (1,0), P_2 := (0,1)$ y $P_3 := (1,1)$ y el triángulo T de vértices P_0, P_1 y P_2 . Sea η la homotecia de centro el baricentro del triángulo y razón $\lambda = 3$.

- Calcula la matriz de η respecto de la referencia cartesiana canónica de $\mathbb{A}^2_{\mathbb{R}}$
- Expresa la matriz de η también respeco a la referencia afín estándar de $\mathbb{A}^2_{\mathbb{R}}$.
- Calcula las imágenes de los puntos P_0, P_1, P_2 y P_3 por η y dibuja el triángulo $\eta(T)$ y cuadrado $\eta(C)$ resultantes.
- Repite los anteriores apartados para la simetría central, es decir la homotecia de razón $\lambda = -1$ y el mismo centro.

Problema 20. Demuestra que las rectas invariantes de una simetría son exactamente las que unen un punto no fijo con su imagen.

Problema 21. Calcula la proyección y la simetría respecto de la recta B = P + W, P = (1, -1, 1) y $W = \mathcal{L}\{(3, -1, 0)\}$, con dirección el plano vectorial de ecuación $U := \{2x - y = 0\}$, dando sus matrices respecto de una referencia cartesiana apropiada. Calcule los subespacios de puntos fijos y todos los subespacios invariantes.

Problema 22. Demuestra que la razón simple de tres puntos es [P, Q, R] = -1 si y solo si P es el punto medio de extremos Q y R.

Problema 23. Si la razón simple de tres puntos es $[P, Q, R] = \lambda$, estudia los valores de la razón simple de todas las posibles reordenaciones de los puntos.