Introduction to Machine Learning

Jay Urbain, PhD Credits: NYU, nVidia DLI

Machine Learning

- Machine Learning is the ability to teach a computer without explicitly programming it
- Examples are used to train computers to perform tasks that would be difficult to program

Types of Machine Learning

Supervised Learning

- Training data is labeled
- Goal is correctly label new data

- Reinforcement Learning

- Training data is unlabeled
- System receives feedback for its actions
- Goal is to perform better actions

Unsupervised Learning

- Training data is unlabeled
- Goal is to categorize the observations

Applications of Machine Learning

- Handwriting Recognition
 - convert written letters into digital letters
- Language Translation
 - translate spoken and or written languages (e.g. Google Translate)
- Speech Recognition
 - convert voice snippets to text (e.g. Siri, Cortana, and Alexa)
- Image Classification
 - label images with appropriate categories (e.g. Google Photos)
- Autonomous Driving
 - enable cars to drive

Features in Machine Learning

- Features are the observations that are used to form predictions
 - For image classification, the pixels are the features
 - For voice recognition, the pitch and volume of the sound samples are the features
 - For autonomous cars, data from the cameras, range sensors, and GPS are features
- Extracting relevant features is important for building a model
 - Time of day is an irrelevant feature when classifying images
 - Time of day is relevant when classifying emails because SPAM often occurs at night
 - Common Types of Features in Robotics
 - Pixels (RGB data)
 - Depth data (sonar, laser rangefinders)
 - Movement (encoder values)
 - Orientation or Acceleration (Gyroscope, Accelerometer, Compass)

Measuring Success for Classification

- True Positive: Correctly identified as relevant
- True Negative: Correctly identified as not relevant
- False Positive: Incorrectly labeled as relevant
- False Negative: Incorrectly labeled as not relevant

Example: Identify Cats

Precision, Recall, and Accuracy

Precision

- Percentage of positive labels that are correct
- Precision = (# true positives) / (# true positives + # false positives)

Recall

- Percentage of positive examples that are correctly labeled
- Recall = (# true positives) / (# true positives + # false negatives)

Accuracy

- Percentage of correct labels
- Accuracy = (# true positives + # true negatives) / (# of samples)

Training and Test Data

- Training Data
 - data used to learn a model
 - Test Data
 - data used to assess the accuracy of model
 - Overfitting
 - Model performs well on training data but poorly on test data

Bias and Variance

- Bias: expected difference between model's prediction and truth
- Variance: how much the model differs among training sets
- Model Scenarios
 - High Bias: Model makes inaccurate predictions on training data
 - High Variance: Model does not generalize to new datasets
 - Low Bias: Model makes accurate predictions on training data
 - Low Variance: Model generalizes to new datasets

Supervised Learning Algorithms

- Linear Regression
- Decision Trees
- Support Vector Machines
- K-Nearest Neighbor
- Neural Networks

Supervised Learning Frameworks

Tool	Uses	Language
Scikit-Learn	Classification, Regression, Clustering	Python
Spark MLlib	Classification, Regression, Clustering	Scala, R, Java
Weka	Classification, Regression, Clustering	Java
Caffe	Neural Networks	C++, Python
TensorFlow	Neural Networks	Python