Worksheet 2

Foundations of Bayesian Methodology

Goliath: Wenje Tu, Lea Bührer, Jerome Sepin, ...

Spring Semester 2022

Exercise 3 (Conjugate Bayes: analytical derivation)

Assumptions:

$$y_1, \dots, y_n \mid m \stackrel{i.i.d}{\sim} \mathcal{N}(m, \kappa^{-1})$$

 $m \sim \mathcal{N}(\mu, \lambda^{-1})$

Likelihood function:

$$f(y_1, \dots, y_n \mid m) = \prod_{i=1}^n f(y_i \mid m)$$

$$= \prod_{i=1}^n \left(\sqrt{\frac{\kappa}{2\pi}} \exp\left(-\frac{\kappa}{2} (y_i - m)^2\right) \right)$$

$$= \left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}} \exp\left(-\frac{\kappa}{2} \sum_{i=1}^n (y_i - m)^2\right)$$

Prior density distribution of m:

$$f(m) = \sqrt{\frac{\lambda}{2\pi}} \exp\left(-\frac{\lambda}{2}(m-\mu)^2\right)$$

Multiply likelihood function by prior:

$$\begin{split} &f(y_1,\cdots,y_n\mid m)f(m)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\exp\left(-\frac{\kappa}{2}\sum_{i=1}^n(y_i-m)^2\right)\cdot\sqrt{\frac{\lambda}{2\pi}}\exp\left(-\frac{\lambda}{2}(m-\mu)^2\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{\kappa}{2}\sum_{i=1}^n(y_i-m)^2-\frac{\lambda}{2}(m-\mu)^2\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{\kappa}{2}\sum_{i=1}^n(y_i^2-2y_im+m^2)-\frac{\lambda}{2}(m^2-2m\mu+\mu^2)\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{\kappa}{2}\left(\sum_{i=1}^ny_i^2-2n\bar{y}m+nm^2\right)-\frac{\lambda}{2}(m^2-2m\mu+\mu^2)\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{1}{2}\left((n\kappa+\lambda)m^2-2m(\kappa n\bar{y}+\lambda\mu)+\kappa\sum_{i=1}^ny_i^2+\lambda\mu^2\right)\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{n\kappa+\lambda}{2}\left(m^2-2m\frac{\kappa n\bar{y}+\lambda\mu}{n\kappa+\lambda}+\frac{\kappa\sum_{i=1}^ny_i^2+\lambda\mu^2}{n\kappa+\lambda}\right)\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{n\kappa+\lambda}{2}\left(\left(m-\frac{\kappa n\bar{y}+\lambda\mu}{n\kappa+\lambda}\right)^2-\left(\frac{\kappa n\bar{y}+\lambda\mu}{n\kappa+\lambda}\right)^2+\frac{\kappa\sum_{i=1}^ny_i^2+\lambda\mu^2}{n\kappa+\lambda}\right)\right)\\ &=\left(\frac{\kappa}{2\pi}\right)^{\frac{n}{2}}\left(\frac{\lambda}{2\pi}\right)^{\frac{1}{2}}\exp\left(-\frac{\kappa\sum_{i=1}^ny_i^2+\lambda\mu^2}{n\kappa+\lambda}-\left(\frac{\kappa n\bar{y}+\lambda\mu}{n\kappa+\lambda}\right)^2\right)\exp\left(-\frac{n\kappa+\lambda}{2}\left(m-\frac{\kappa n\bar{y}+\lambda\mu}{n\kappa+\lambda}\right)^2\right) \end{split}$$

Using Bayes formula, we can write posterior as a function of prior and likelihood:

$$f(m \mid y_1, \dots, y_n) = \frac{f(y_1, \dots, y_n \mid m) f(m)}{f(y_1, \dots, y_n \mid m) f(m)}$$

$$= \frac{f(y_1, \dots, y_n \mid m) f(m)}{\int_{-\infty}^{\infty} f(y_1, \dots, y_n \mid m) f(m) dm}$$

$$= \frac{\exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right)}{\int_{-\infty}^{\infty} \exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right) dm}$$

$$= \frac{\exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right) dm}{\frac{1}{\sqrt{\frac{n\kappa + \lambda}{2\pi}}} \underbrace{\int_{-\infty}^{\infty} \sqrt{\frac{n\kappa + \lambda}{2\pi}} \exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right) dm}}_{\text{integrates to 1}}$$

$$= \sqrt{\frac{n\kappa + \lambda}{2\pi}} \exp\left(-\frac{n\kappa + \lambda}{2} \left(m - \frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}\right)^2\right)$$

$$= m \mid y_1, \dots, y_n \sim \mathcal{N}\left(\frac{\kappa n\bar{y} + \lambda \mu}{n\kappa + \lambda}, \frac{1}{n\kappa + \lambda}\right)$$

$$\int_{-\infty}^{\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{\alpha}}$$

Source: Gaussian Integral

Note:

Exercise 4 (Conjugate Bayesian analysis in practice)

Assumptions:

$$y_1, \dots, y_n \mid m \stackrel{i.i.d}{\sim} \mathcal{N}(m, \kappa^{-1})$$

 $m \sim \mathcal{N}(\mu, \lambda^{-1})$

$$\kappa = \frac{1}{900}, \quad \mu = 161, \quad \lambda = \frac{1}{70}$$

4(a) Summary statistics:

```
height \leftarrow c(166, 168, 168, 177, 160, 170, 172, 159, 175, 164, 175, 167, 164) summary(height)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 159.0 164.0 168.0 168.1 172.0 177.0
hist(height, breaks=length(height), freq=FALSE)
lines(density(height), col="red")
```


Figure 1: Histogram of the height measurements

```
library(car)
qqPlot(height, main="Normal Q-Q Plot", ylab="Sample", xlab="Norm Quantiles")
## [1] 8 4
```

```
# or alternatively without library(car)
qqnorm(height)
```

qqline(height)

In the Figure 2 (i.e. Q-Q Plot), it can be seen that all sample values lie within the area where normal distribution of the data can be assumed. Due to the fact that we only have 13 observations the 95%-CI has been calculated assuming a t-distribution.

```
## Sample size
sample.n <- length(height); sample.n

## [1] 13

## Sample median
sample.med <- median(height); sample.med

## [1] 168

## Sample meam
sample.mean <- mean(height); sample.mean</pre>
```


Figure 2: Q-Q Plot of the Measurements

```
## [1] 168.0769
## Sample standard deviation
sample.sd <- sd(height); sample.sd</pre>
## [1] 5.634145
## Sample standard error
sample.se <- sample.sd / sqrt(sample.n); sample.se</pre>
## [1] 1.562631
## Significance level
alpha <- 0.05
## Degrees of freedom
df <- sample.n - 1
## t-score
t.score <- qt(p=alpha/2, df=df, lower.tail=FALSE); t.score
## [1] 2.178813
## Contract the 95% confidence interval
lower.bound <- sample.mean - t.score * sample.se</pre>
upper.bound <- sample.mean + t.score * sample.se</pre>
print(c(lower.bound, upper.bound))
## [1] 164.6722 171.4816
```

Table 1: Summary statistics of the sample distribution

Mean Standard deviation Median 95% CI y_1, \dots, y_n 168.0769 5.6341 168.0000 (164.6722, 171.4816)

Interpretation: For repeated random samples from a normal distribution with unknown but fixed mean, the 95% confidence interval (164.6722, 171.4816) will cover the true unknown mean in 95% of all cases.

4(b) We first plot the prior distribution of m:

Prior distribution

Figure 3: Prior Distribution

The expectation and the standard deviation can be explicitly obtained from the given information. Hence, we only need to compute the median and equi-tailed 95% interval. We use qnorm() function in R to serve this purpose. Regarding the estimation of P[m > 200], we simply use pnorm() in R to obtain the corresponding probability.

$$P[m > 200] = 1 - P[m \le 200]$$

```
## 2.5%, 50%(i.e. median), 97.5% quantiles of N(161,70)
qnorm(c(0.025, 0.5, 0.975), mean=161, sd=sqrt(70))
## [1] 144.6018 161.0000 177.3982
## P[m>200]
pnorm(200, mean=161, sd=sqrt(70), lower.tail=FALSE)
## [1] 1.570393e-06
Summary statistics: see Table 2
4(c)
                                   y_1, \cdots, y_n \mid m \stackrel{i.i.d}{\sim} \mathcal{N}(m, \kappa^{-1})
                                   m \sim \mathcal{N}(\mu, \lambda^{-1})
m \mid y_1, \dots, y_n \sim \mathcal{N}\left(\frac{\kappa n \bar{y} + \lambda \mu}{n\kappa + \lambda}, (n\kappa + \lambda)^{-1}\right)
## Posterior mean
((1/900)*2185+(1/70)*161) / (13*(1/900)+(1/70))
## [1] 164.558
## Posterior variance
(13*(1/900)+(1/70))^{(-1)}
## [1] 34.80663
                                             y_1, \cdots, y_n \sim \mathcal{N}(m, 900)
                                                     m \sim \mathcal{N}(161, 70)
                                        m \mid y_1, \cdots, y_n \sim \mathcal{N}(164.558, 34.80663)
```

plot(m, dnorm(m, mean=161, sd=sqrt(70)), type="l", ylab="density", col="red",

ylim=c(0,0.08), main="Prior vs Posterior", lwd=2)

Visualization of prior and posterior

 $m \leftarrow seq(101, 221)$

Prior vs Posterior

Figure 4: Prior vs. Posterior

```
qnorm(c(0.025, 0.5, 0.975), mean=164.558, sd=sqrt(34.80663))
```

[1] 152.9948 164.5580 176.1212

Table 2: Summary statistics of the sample, prior and posterior distributions

	Mean	Standard deviation	Median	Equi-tailed 95% CI/CrI
y_1, \cdots, y_n	168.0769	5.6341	168.0000	(164.6722, 171.4816)
m	161.0000	8.3666	161.0000	(144.6018, 177.3982)
$m \mid y_i, \cdots, y_n$	164.5580	5.8997	164.5580	(152.9948, 176.1212)

Interpretation: the posterior belief about the mean Height m lies between 152.9948 and 176.1212 with a probability of 95%, given a $\mathcal{N}(161,70)$ prior is assumed.

$$P[m > 200 \mid y_1, ..., y_n]$$

```
## P[m>200/y1,...,yn]
pnorm(200, mean=164.558, sd=sqrt(34.80663), lower.tail=FALSE)
```

```
## [1] 9.425552e-10
```

```
# or
1 - pnorm(200, mean=164.558, sd=sqrt(34.80663))
```

[1] 9.425551e-10

The posterior probability that an adult Swiss female has a height larger than 200 is 9.426×10^{-10} .

4(e)
$$\begin{array}{c} \text{Prior} \to \text{Posterior} \\ \mathcal{N}(161,70) \to \mathcal{N}(164.558,34.80663) \\ P[m>200] \to P[m>200 \mid y_1,\cdots,y_n] \\ 1.570393 \times 10^{-6} \to 9.425552 \times 10^{-10} \end{array}$$

From prior to posterior, we see an increase in the mean of m from 161 to 164.558 and a decrease in the variance of m from 70 to 34.80663. Figure 5 displays a huge overlap between the prior distribution and the likelihood density, it is not surprising that the posterior mean lies somewhere between the prior mean and the sample mean and that the posterior variance lies somewhere between the prior variance and

sample variance. Since both prior and likelihood mostly agree, we see a more concentrated posterior distribution with light tails. Thus, the probability of observing a Swiss female with a height greater than 200 also decreases.

Prior vs Likelihood vs Posterior

Figure 5: Prior vs. Likelihood vs. Posterior

Exercise 5 (Bayesian learning)

Prior distribution:

$$p \sim \text{Beta}(\alpha, \beta)$$

Posterior distribution:

$$p \mid y_1, \cdots, y_n \sim \text{Beta}(\alpha + n\bar{y}, \beta + n - n\bar{y})$$

Table 3: Evidence P(response rate > 0.4) for each stage under different priors

Prior	Stage	#	Responders	Posterior	Evidence
$B(\alpha, \beta)$		n	x (%)	$B(\alpha + x, \beta + n - x)$	P(response rate > 0.4)
	No data	0	0 (0%)	B(0.5, 0.5)	0.5640942
B(0.5, 0.5)	Interim	12	3(25%)	B(3.5, 9.5)	0.1437649
	Final	64	14 (21.875%)	B(14.5, 50.5)	0.001075757
	No data	0	0 (0%)	B(8, 24)	0.03298768
B(8, 24)	Interim	12	3(25%)	B(11, 33)	0.01621346
· · · /	Final	64	14 (21.875%)	B(22,74)	0.0001727695

	Table 4:	Summary	statistics	of	posterior	distri	$_{ m butions}$
--	----------	---------	------------	----	-----------	--------	-----------------

		Posterior	Mean	Median	Equi-tailed 95% CrI
Prior	Stage	$B(\alpha, \beta)$	$\frac{\alpha}{\alpha+\beta}$	50% quantile	
	No data	B(0.5, 0.5)	0.5000	0.5000	(0.0015, 0.9985)
B(0.5, 0.5)	Interim	B(3.5, 9.5)	0.2692	0.2571	(0.0759, 0.5292)
	Final	B(14.5, 50.5)	0.2231	0.2202	(0.1313, 0.3310)
	No data	B(8, 24)	0.2500	0.2447	(0.1186, 0.4110)
B(8, 24)	Interim	B(11, 33)	0.2500	0.2461	(0.1352, 0.3863)
	Final	B(22, 74)	0.2292	0.2273	(0.1512, 0.3178)

```
col=c("red", "blue"), lty=1, cex=.8, lwd=2)

plot(p, dbeta(p, 0.5, 0.5), type="l", ylab="density", col="red",
        ylim=c(0, 10), main="Final study", lwd=2)
lines(p, dbeta(p, 14.5, 50.5), ylab="density", col="blue", lwd=2)

legend("topright", legend=c("prior: B(0.5,0.5)", "posterior: B(14.5,50.5)"),
        col=c("red", "blue"), lty=1, cex=.8, lwd=2)
```


Figure 6: Prior B(0.5,0.5)

 $P[\text{response rate} > 0.4] = P[p > 0.4] = 1 - P[p \le 0.4]$

```
# Before seeing any data (i.e. only prior belief)
pbeta(0.4, 0.5, 0.5, lower.tail=FALSE)

## [1] 0.5640942

# Intermediate study
pbeta(0.4, 3.5, 9.5, lower.tail=FALSE)

## [1] 0.1437649
```

```
# Final study
pbeta(0.4, 14.5, 50.5, lower.tail=FALSE)
```

[1] 0.001075757

```
# Before observing data
## 2.5%, 50%, 97.5% quantiles of Beta(0.5, 0.5)
qbeta(c(0.025, 0.5, 0.975), 0.5, 0.5)
```

[1] 0.001541333 0.500000000 0.998458667

```
# Intermediate study

## 2.5%, 50%, 97.5% quantiles of Beta(3.5, 9.5)

qbeta(c(0.025, 0.5, 0.975), 3.5, 9.5)
```

[1] 0.07594233 0.25711895 0.52919108

```
# Final study
## 2.5%, 50%, 97.5% quantiles of Beta(14.5, 50.5)
qbeta(c(0.025, 0.5, 0.975), 14.5, 50.5)
```

[1] 0.1312669 0.2202242 0.3310055

5(b) $\alpha = 8, \beta = 24, \text{ Beta}(8, 24)$

 $P[\text{response rate} > 0.4] = P[p > 0.4] = 1 - P[p \le 0.4]$

Figure 7: Prior B(8,24)

```
# Before seeing any data
pbeta(0.4, 8, 24, lower.tail=FALSE)

## [1] 0.03298768

# Intermediate study
pbeta(0.4, 11, 33, lower.tail=FALSE)

## [1] 0.01621346

# Final study
pbeta(0.4, 22, 74, lower.tail=FALSE)
```

```
## [1] 0.0001727695

# Before observing data
## 2.5%, 50%, 97.5% quantiles of Beta(8, 24)
qbeta(c(0.025, 0.5, 0.975), 8, 24)

## [1] 0.1185640 0.2447417 0.4109639

# Intermediate study
## 2.5%, 50%, 97.5% quantiles of Beta(11, 33)
qbeta(c(0.025, 0.5, 0.975), 11, 33)

## [1] 0.1351860 0.2461854 0.3863082

# Final study
## 2.5%, 50%, 97.5% quantiles of Beta(22, 74)
qbeta(c(0.025, 0.5, 0.975), 22, 74)

## [1] 0.1511774 0.2272801 0.3178360
```