Vybrané slajdy k přednášce z předmětu

NUMERICKÉ METODY (12NME1, 12ANM)

na KLFF FJFI ČVUT v Praze

5. Řešení nelineárních rovnic

Pracovní verze, 20. února 2025. Bude průběžně aktualizováno.

!!! TOTO NEJSOU SKRIPTA!!!

Tento dokument není náhradou přednášek, pouze doplňkem. Neobsahuje všechna vysvětlení a odvození. Nepokrývá veškerou náplň předmětu, jejíž zvládnutí je nutné ke složení zkoušky.

Primárním zdrojem informací jsou přednášky, účast na nich důrazně doporučuji.

Opravy a připomínky prosím na pavel.vachal@fjfi.cvut.cz

Kořeny kvadratické rovnice

 $\bullet\,$ V reálném oboru nekorektní úloha (problém pro $b^2\approx 4\,a\,c) \Rightarrow$ řešíme přes hledání extrémů

Ohraničení kořene (Bracketing)

 \blacktriangleright Hledáme takový interval $[x_1,x_2],\ {\rm aby\ platilo}\ f(x_1)\,f(x_2)<0$

Bisekce

 $\blacktriangleright\,$ Při zkracování intervalu udržujeme $f(a)\,f(b)<0$

Fialově: aktuální pracovní interval Zeleně: posun levého okraje Červeně: posun pravého okraje

Metoda sečen (sekantová)

▶ Pro další iteraci vždy použijeme dva nejnovější body

Metoda sečen (sekantová)

▶ Pro další iteraci vždy použijeme dva nejnovější body

Regula falsi (metoda tětiv, False position method)

 \blacktriangleright V každé iteraci udržujeme $f(a)\,f(b)<0$

Nežádoucí chování superlineárních metod daleko od kořene

Metoda sečen (sekantová)

Regula falsi (metoda tětiv, False position method)

Odvození Brentovy metody

- Provádíme inverzní kvadratickou interpolaci x = f(y):
- ullet Mějme tři body $(a, f_a), (b, f_b), (c, f_c),$ které interpolujeme Lagrangeovým polynomem

$$x = \frac{(y - f_b)(y - f_c)a}{(f_a - f_b)(f_a - f_c)} + \frac{(y - f_c)(y - f_a)b}{(f_b - f_c)(f_b - f_a)} + \frac{(y - f_a)(y - f_b)c}{(f_c - f_a)(f_c - f_b)}$$

 $\bullet~$ V bodu y=0máme

$$x(y=0) = \frac{f_b f_c a}{(f_a - f_b) (f_a - f_c)} + \frac{f_c f_a b}{(f_b - f_c) (f_b - f_a)} + \frac{f_a f_b c}{(f_c - f_a) (f_c - f_b)}$$
$$= \frac{(R-1)(S-1)(T-1) b + S \left(T(R-T)(c-b) - (1-R)(b-a)\right)}{(R-1)(S-1)(T-1)}$$

kde jsme označili $R \equiv f_b/f_c$, $S \equiv f_b/f_a$, $T \equiv f_a/f_c$. Označíme-li dále

$$P = S\left((R-1)(b-a) + T(R-T)(c-b)\right),$$

$$Q = (R-1)(S-1)(T-1),$$

má Lagrangeův polynom tvar

$$x(y=0) = b + \frac{P}{Q}.$$

ullet Při iteraci je b momentální odhad a P/Q kvadratická korekce.

Porovnání Brentovy metody a bisekce

Funkce: $f(x) = \arctan(x-1) + 1$

Analytický kořen: $x = 1 + \tan(-1) \approx -0.55740772465490$

Numericky:

	tol	= 1e - 3		tol = 1e - 10			
	x_0	$f\left(x_{0}\right)$	kroků	x_0	$f\left(x_0\right)$	kroků	
BRENT	-0.557 5	$\approx 10^{-5}$	9	-0.557407724 6	$\approx 10^{-13}$	11	
BISEKC	E -0.557 8	$\approx 10^{-4}$	14	-0.557407724 7	$\approx 10^{-11}$	37	

Newton-Raphsonova (tečnová) metoda hledání kořene skalární funkce

- Využívá derivaci funkce f(x), je tedy vhodná především pokud ji umíme rychle spočítat
- Nacházíme se v bodu x_i . Chceme spočítat δ tak, aby $f(x_i + \delta) = 0$.
- Taylorův rozvoj:

$$f(x_i + \delta) = f(x_i) + \delta f'(x_i) + \frac{\delta^2}{2} f''(x_i) + \dots$$

• Položíme tedy $f(x_i + \delta)$ rovno nule a dále zanedbáme členy od 2. řádu výše:

$$\underbrace{f(x_i + \delta)}_{\stackrel{!}{=} 0} = f(x_i) + \delta f'(x_i) \underbrace{+ \frac{\delta^2}{2} f''(x_i) + \dots}_{\text{zanedb.}}$$

• Vyjádříme posunutí δ jako

$$\delta = -\frac{f(x_i)}{f'(x_i)}$$

a máme tedy jednu iteraci Newton-Raphsonovy metody:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

 $\bullet\,$ Neboli: funkci jsme nahradili lineární funkcí (tečnou v $x_i)$ a tu jsme pak extrapolovali

Odvození metody:

$$\underbrace{f(x_i + \delta)}_{\stackrel{!}{=} 0} = f(x_i) + \delta f'(x_i) \underbrace{+ \frac{\delta^2}{2} f''(x_i) + \dots}_{\text{zanedb.}},$$

$$\underline{\delta_i} = -\frac{f(x_i)}{f'(x_i)}$$

• POZN.: N-R metodu pro soustavu $\vec{f}(\vec{x}) = \vec{0}~$ odvodíme později - opět pomocí Taylorova rozvoje!

Řád přesnosti Newton-Raphsonovy metody

Označme přesné řešení x, přibližnou hodnotu po i-tém kroku x_i a její chybu ε_i . Máme tedy

$$x_{i+1} = x_i + \delta,$$
 $x = x_i + \varepsilon_i = x_{i+1} + \varepsilon_{i+1}.$

Chyba po kroku i+1 je

$$\begin{split} \varepsilon_{i+1} &= x - x_{i+1} &= \overbrace{x - x_i}^{\varepsilon_i} + \overbrace{x_i - x_{i+1}}^{-\delta} = \varepsilon_i - \delta &= \varepsilon_i + \frac{f(x_i)}{f'(x_i)} \\ &= \frac{\varepsilon_i f'(x_i) + f(x_i)}{f'(x_i)} &= \frac{\varepsilon_i f'(x - \varepsilon_i) + f(x - \varepsilon_i)}{f'(x - \varepsilon_i)} \\ &= \frac{\varepsilon_i f'(x) - \varepsilon_i^2 f''(x) + \frac{1}{2} \varepsilon_i^3 f'''(x) - \frac{1}{3!} \varepsilon_i^4 f^{(4)}(x) + \dots + \overbrace{f(x)}^{-\epsilon_i} - \varepsilon_i f'(x) + \frac{1}{2} \varepsilon_i^2 f''(x) - \frac{1}{3!} \varepsilon_i^3 f'''(x) + \dots}{f'(x) - \varepsilon_i f''(x) + \frac{1}{2} \varepsilon_i^2 f'''(x) + \dots} \\ &= \frac{-\frac{\varepsilon_i^2}{2} f''(x) + \left[\frac{1}{2} - \frac{1}{3!}\right] \varepsilon_i^3 f'''(x) - \left[\frac{1}{3!} - \frac{1}{4!}\right] \varepsilon_i f^{(4)}(x) + \dots}{f'(x) - \varepsilon_i f''(x) + \frac{1}{2} \varepsilon_i^2 f'''(x) + \dots} \\ &= \frac{-\frac{\varepsilon_i^2}{2} f''(x) + \frac{3-1}{3!} \varepsilon_i^3 f'''(x) - \frac{4-1}{4!} \varepsilon_i f^{(4)}(x) + \dots}{f'(x) - \varepsilon_i f''(x) + \frac{1}{2} \varepsilon_i^2 f'''(x) + \dots} \\ &= \frac{-\varepsilon_i^2}{2} \frac{f''(x)}{f'(x)}. \end{split}$$

Metoda je tedy kvadratická ⇒ rychlá blízko kořene

Ohraničení kořenů polynomu

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \quad a_n \neq 0$$

• Všechny kořeny x_i jsou v mezikruží

$$\frac{|a_0|}{|a_0| + \max_{k=1,\dots,n} |a_k|} \le |x_i| \le 1 + \frac{\max_{k=0,\dots,n-1} |a_k|}{|a_n|}$$

(POZOR! Jedno max jde od 1 do n, druhé od 0 do n-1.)

- Odhad maximálního kladného kořene:
 - Nechť $a_n > 0$,
 - $\text{ nechť } k = \min \{j: a_{n-j} < 0\}. \qquad \textit{(Tzn. } a_{n-k} \textit{ je první záporný koef. počítáno shora.)}$

Potom pro všechny kořeny $x_i > 0$ platí

$$x_i < 1 + \sqrt[k]{\frac{\max\limits_{j: a_j < 0} |a_j|}{a_n}}$$

Sturmova věta

• Sturmova posloupnost:

$$f_0(x) = f(x)$$

 $f_1(x) = f'(x)$
...
 $f_i(x) = -1 \cdot \left(\text{ zbytek po dělení polynomů } \frac{f_{i-2}(x)}{f_{i-1}(x)} \right)$
...
 $f_k(x) = \text{const.}$ ukončí posloupnost $(k \le n)$

• Sturmova věta:

Má-li algebraická rovnice pouze jednoduché kořeny, potom počet reálných kořenů na intervalu [a,b] je roven rozdílu znaménkových změn ve Sturmově posloupnosti f_0, f_1, \ldots, f_k v krajních bodech a, b.

• Má-li algebraická rovnice násobné kořeny, bude $f_k = 0$. Vydělíme ji polynomem f_{k-1} a použijeme Sturmovu větu. Odtud dostaneme počet reálných kořenů na daném intervalu (bez násobnosti).

Sturmova věta - příklad 1

$$f(x) \equiv 4x^3 - 2x^2 - 4x - 3 = 0$$

Anal. řešení: $x_1 = \frac{3}{2}, \quad x_{2,3} = \frac{1}{2}(-1 \pm i)$

$$f_0 = 4x^3 - 2x^2 - 4x - 3$$

$$f_1 = 3x^2 - x - 1$$

$$f_2 = 26x + 29$$

$$f_3 = -1$$

x	$-\infty$	0	1	2	$+\infty$
$\operatorname{sgn} f_0(x)$	-	-	-	+	+
$\operatorname{sgn} f_1(x)$	+	-	+	+	+
$\operatorname{sgn} f_2(x)$	-	+	+	+	+
$\operatorname{sgn} f_3(x)$	_	-	-	-	-
zn. změn	2	2	2	1	1

Sturmova věta - příklad 2

$$f(x) \equiv x^5 - 3x - 1 = 0$$

Anal. řešení: $x_1 = -1.21465, x_2 = -0.334734, x_3 = 1.38879, x_{4,5} = 0.0802951 \pm 1.32836i$

f_0	=	$x^5 - 3x -$
f_1	=	$5x^4 - 3$
f_2	=	$\frac{1}{5}(12x+5$
f_3	=	$\frac{59083}{20736}$

x	$-\infty$	-2	0	2	$+\infty$
$\operatorname{sgn} f_0(x)$	-	-	-	+	+
$\operatorname{sgn} f_1(x)$	+	+	-	+	+
$\operatorname{sgn} f_2(x)$	_	-	+	+	+
$\operatorname{sgn} f_3(x)$	+	+	+	+	+
zn. změn	3	3	1	0	0

Po zjemnění intervalů:

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
$\operatorname{sgn} f_0(x)$	-	-	+	+	-	-	-	+	+
$\operatorname{sgn} f_1(x)$	+	+	+	-	-	-	+	+	+
$\operatorname{sgn} f_2(x)$	-	-	_	-	+	+	+	+	+
$\operatorname{sgn} f_3(x)$	+	+	+	+	+	+	+	+	+
zn. změn	3	3	2	2	1	1	1	0	0

Mullerova metoda

- V aktuální (k-té) iteraci vezmeme tři poslední body (odhady) $x^{(k-2)}$, $x^{(k-1)}$, $x^{(k)}$ a jejich funkční hodnoty $y^{(k-2)} = P(x^{(k-2)})$, $y^{(k-1)} = P(x^{(k-1)})$, $y^{(k)} = P(x^{(k)})$ a proložíme je Lagrangeovým polynomem 2. řádu:
- Lokálně (pro tuto iteraci) přeznačíme indexy

$$(x,y)_1 := (x,y)^{(k-2)}, \qquad (x,y)_2 := (x,y)^{(k-1)}, \qquad (x,y)_3 := (x,y)^{(k)},$$

a Lagrangeův polynom je

$$L(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)} y_3$$

což lze zapsat jako

$$L(x) = Ax^2 + Bx + C,$$

kde

$$A = \frac{1}{(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{1}{(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{1}{(x_3 - x_1)(x_3 - x_2)} y_3,$$

$$B = \frac{x_2 x_3}{(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{x_1 x_3}{(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{x_1 x_2}{(x_3 - x_1)(x_3 - x_2)} y_3,$$

$$C = \frac{-(x_2 + x_3)}{(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{-(x_1 + x_3)}{(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{-(x_1 + x_2)}{(x_3 - x_1)(x_3 - x_2)} y_3.$$

(Všimněme si, že v každém sloupci se zlomky liší jen v čitateli.)

• Hledáme kořen původního polynomu P(x). Předpokládáme, že je blízko kořene aproximujícího polynomu L(x), tedy položíme L(x) = 0 a řešíme kvadratickou rovnici pro x:

$$x_{a,b} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

• Z kořenů vybereme ten, který je blíže k $x^{(k)}$ (= k našemu x_3):

$$x^{(k+1)} = \begin{cases} x_a & \text{pokud } |x_a - x_3| < |x_b - x_3| \\ x_b & \text{jinak} \end{cases},$$

vypočítáme funkční hodnotu $y^{(k+1)} = P(x^{(k+1)})$ a jdeme na další iteraci s body

$$(x,y)_1 := (x,y)^{(k-1)}, \qquad (x,y)_2 := (x,y)^{(k)}, \qquad (x,y)_3 := (x,y)^{(k+1)}$$

 \bullet Inicializace $x^{(-1)},\,x^{(0)}$ a $x^{(1)}$: vezmeme libovolné tři body, třeba ekvidistantní reálná čísla

Mullerova metoda - příklad

Hledáme kořen polynomu $P(x) = 4x^3 - 2x^2 - 4x - 3$

Analytické řešení: jeden reálný kořen $x=\frac{3}{2},\,$ dva komplexní $x=-\frac{1}{2}\pm\frac{1}{2}\,i$

Laguerrova metoda - algoritmus

Hledáme kořen polynomu $P_n(x)$ stupně n.

- \diamond Zvolíme počáteční odhad $x^{(0)}$
- ♦ V k-té iteraci postupně spočítáme

$$G = \frac{P'_n(x^{(k)})}{P_n(x^{(k)})},$$

$$H = G^2 - \frac{P_n''(x^{(k)})}{P_n(x^{(k)})},$$

$$a = \frac{n}{G \pm \sqrt{(n-1)(nH - G^2)}},$$

kde znaménko volíme tak, abychom maximalizovali abs. hodnotu jmenovatele

$$\diamond x^{(k+1)} = x^{(k)} - a$$

 \diamond Opakujeme, dokud a není dostatečně malé nebo iterací není příliš mnoho

• První iterace:

$$x^{(0)} = -1.0$$

$$G = \frac{P_3'(x^{(0)})}{P_3(x^{(0)})} = \frac{12x^2 + 6x + 2}{4x^3 + 3x^2 + 2x + 1} \Big|_{x^{(0)}} = -4$$

$$H = G^2 - \frac{P_3''(x^{(0)})}{P_3(x^{(0)})} = (-4)^2 - \frac{24x + 6}{4x^3 + 3x^2 + 2x + 1} \Big|_{x^{(0)}} = 16 - 9 = 7,$$

$$a = \frac{3}{G \pm \sqrt{(3 - 1)(3H - G^2)}} = \begin{cases} \frac{3}{-0.837722339831620} \\ \frac{3}{-7.162277660168380} \end{cases} = -0.418861169915810$$

$$x - a = -1 - (-0.418861169915810) = -0.581138830084190$$

$$\Rightarrow x^{(1)} = -0.581138830084190$$

• Rychle konverguje k reálnému kořenu:

k	$x^{(k)}$	G	H	a
0	-1.0	-4	7	$\approx -4.1886 \times 10^{-1}$
1	-0.581138830084190	$\approx 3.8974 \times 10^1$	$\approx 1.6397 \times 10^3$	$\approx 2.4704 \times 10^{-2}$
2	-0 .605843146337280	$\approx -7.3747 \times 10^4$		$\approx -1.3560 \times 10^{-5}$
3	-0.605829586188266	$\approx 4.6193 \times 10^{14}$	$\approx 2.1338 \times 10^{29}$	$\approx 2.1648 \times 10^{-15}$
4	-0.605829586188268			

Laguerrova metoda - jak to funguje

$$\diamond$$
 Pro polynom ve tvaru $P_n(x) = C \prod_{i=1}^n (x - x_i)$ platí

$$P'_n(x) = C\left[1\left(x - x_2\right)\left(x - x_3\right) \dots \left(x - x_n\right) + \left(x - x_1\right)1\left(x - x_3\right) \dots \left(x - x_n\right) + \dots\right] = P_n(x)\sum_{i=1}^n \frac{1}{x - x_i}$$

$$P_n''(x) = P_n(x) \sum_{i=1}^n \frac{1}{x - x_i} \sum_{k=1}^n \frac{1}{x - x_k}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln|P_n(x)| = \frac{\mathrm{d}}{\mathrm{d}x}\left(\sum_{i=1}^n \ln|x - x_i| + \ln C\right) = \sum_{i=1}^n \frac{1}{x - x_i}, \qquad \frac{\mathrm{d}^2}{\mathrm{d}x^2}\ln|P_n(x)| = \sum_{i=1}^n \frac{1}{(x - x_i)^2}$$

⋄ Definujeme

$$G \equiv \frac{\mathrm{d}}{\mathrm{d}x} \ln |P_n(x)| = \frac{P'_n}{P_n}, \qquad H \equiv \frac{\mathrm{d}^2}{\mathrm{d}x^2} \ln |P_n(x)| = \left[\frac{P'_n}{P_n}\right]^2 - \frac{P''_n}{P_n}$$

- \diamond "Drastické předpoklady": $x x_1 = a, \quad x x_i = b, \quad 2 \le i \le n, \quad a < b$
- ♦ Potom máme

$$G = \frac{1}{a} + \frac{n-1}{b}, \qquad H = \frac{1}{a^2} + \frac{n-1}{b^2} \quad \Rightarrow \quad a = \frac{n}{G \pm \sqrt{(n-1)(nH - G^2)}}.$$

Znaménko volíme tak, abychom maximalizovali abs. hodnotu jmenovatele.

$$\diamond$$
 Tedy iterace $x_1^{(k+1)} = x_1^{(k)} - a$

Syntetické dělení polynomů

$$\frac{a_n\,x^n + a_{n-1}\,x^{n-1} + \dots + a_0}{b_m\,x^m + b_{m-1}\,x^{m-1} + \dots + b_0} \; = \; \underbrace{c_{n-m}\,x^{n-m} + \dots + c_0}^{\text{podfl}} \; + \; \underbrace{\frac{d_{m-1}\,x^{m-1} + \dots + d_0}{d_{m-1}\,x^{m-1} + \dots + d_0}}_{\text{zbytek po dělení}}$$

- Jednoduchý postup, tzv. long division analogický ručnímu dělení čísel
- Syntetické dělení postupuje efektivněji:
 - nepoužívá x, pouze koeficienty polynomů
 - potřebuje méně operací
- Postupně dostáváme koeficienty podílu (c_i) a zbytku po dělení (d_i) dvou polynomů
- Implementováno např. v proceduře POLDIV v Numerical Recipes (dle Knutha), kde koeficienty podílu dostáváme pomocí vztahů

$$c_{n-m} = \frac{a_n}{b_m},$$

$$c_{n-m-1} = \frac{a_{n-1} - c_{n-m} b_{m-1}}{b_m},$$

. .

a zároveň počítáme koeficienty zbytku d_{m-1}, \ldots

Řešení soustavy nelineárních rovnic

Speciální případ: převedení úlohy na hledání extrému

• Máme soustavu $\vec{f}(\vec{x}) = \vec{0}$, neboli

$$f_1(x_1, x_2, \dots, x_n) = 0$$

 $f_2(x_1, x_2, \dots, x_n) = 0$
 \dots
 $f_n(x_1, x_2, \dots, x_n) = 0.$

• Pokusíme se vyjádřit f pomocí potenciálu V:

$$f_i = -\frac{\partial V(\vec{x})}{\partial x_i}, \qquad i = 1 \dots n.$$

• Jestliže se nám to podaří, nahradíme řešení soustavy $\vec{f}(\vec{x}) = \vec{0}$ hledáním extrému $V(\vec{x})$.

Řešení nelineárních soustav prostou iterací

- Předpokládejme, že soustavu $\vec{f}(\vec{x}) = \vec{0}$ umíme vyjádřit ve tvaru $\vec{x} = \vec{\varphi}(\vec{x}),$ tedy

$$x_1 = \varphi_1(x_1, x_2, \dots, x_n)$$

$$x_2 = \varphi_2(x_1, x_2, \dots, x_n)$$

$$\dots$$

$$x_n = \varphi_n(x_1, x_2, \dots, x_n).$$

Tato soustava má stejná řešení jako soustava původní.

• Iterujeme: $\vec{x}^{(k+1)} = \vec{\varphi}(\vec{x}^{(k)}).$

Postačující podmínka konvergence

• Nechť $\vec{\varphi}(\vec{x})$ je kontrahující zobrazení.

Tzn.: Nechť v nějakém okolí G řešení $\vec{\xi}$ platí:

- $(1) \ (\forall \vec{x} \in G) \ (\vec{\varphi} \ (\vec{x}) \in G)$
- $(2) (\exists q \in (0,1)) (\forall \vec{x_1}, \vec{x_2} \in G) (\|\vec{\varphi}(\vec{x_1}) \vec{\varphi}(\vec{x_2})\| \le q \|\vec{x_1} \vec{x_2}\|).$

Pak iterační posloupnost konverguje k řešení $\vec{\xi}$ a platí

$$\|\vec{x}^{(k)} - \vec{\xi}\| \le \frac{q}{1-q} \|\vec{x}^{(k)} - \vec{x}^{(k-1)}\|.$$

• POZN.: Pokud v okolí řešení existují všechny parciální derivace $\vec{\varphi}$, lze podmínku konvergence zapsat pomocí Jakobiánu **J** zobrazení $\vec{\varphi}(\vec{x})$ jako $|\mathbf{J}\vec{\varphi}(\vec{x})| \leq q < 1$.

Řešení nelineárních soustav - příklad I

demo_simpiter.m

$$x^2 + 4x - y^2 - 2y - 1 = 0 \\ x^2 + 5y - 4 = 0 \Rightarrow x = \frac{y^2 + 2y + 1 - x^2}{4} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y^2 + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y^2 + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y^2 + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{4 - x^2} \\ y = \frac{4 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y + 1 - x^2}{5}$$

$$x = \frac{y + 2y +$$

Newton-Raphsonova metoda pro soustavy nelineárních rovnic

• Stejně jako v případě 1 rovnice systém linearizujeme v bodu $\vec{x}^{(k)}$ (k-tém odhadu řešení):

$$\underbrace{f_{i}\left(\vec{x}^{(k)} + \vec{\delta x}^{(k)}\right)}_{\text{předpokl.} = 0,} = \underbrace{f_{i}\left(\vec{x}^{(k)}\right) + \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} \delta x_{j}^{(k)}}_{\text{položíme} = 0} + \underbrace{\mathcal{O}\left[\left(\vec{\delta x}^{(k)}\right)^{2}\right]}_{\text{zanedbáme}}$$

• Máme tedy soustavu n rovnic o n neznámých:

$$\underbrace{\begin{pmatrix}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{pmatrix}} \cdot \begin{pmatrix}
\vec{\delta x}_{1}^{(k)} \\
\vec{\delta x}_{2}^{(k)} \\
\vdots \\
\vec{\delta x}_{n}^{(k)}
\end{pmatrix} = - \begin{pmatrix}
f_{1}(\vec{x}^{(k)}) \\
f_{2}(\vec{x}^{(k)}) \\
\vdots \\
f_{n}(\vec{x}^{(k)})
\end{pmatrix}$$

Tím vypočteme $\vec{\delta x}^{(k)}$ a další odhad bude $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \vec{\delta x}^{(k)}$

Vektorově

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} - \left[\mathbf{J}f\left(\vec{x}^{(k)}\right)\right]^{-1} \cdot \vec{f}\left(\vec{x}^{(k)}\right)$$

• Newton-Raphsonovou metodou řešíme soustavu

$$x(2x+3y-10) + y(y-7) + 12 = 0$$

$$x(y-2) - y + 2 = 0$$

 $\bullet\,$ Soustava má jen jedno řešení $(x,y)=(1,2),\,$ metoda k němu vždy konverguje

• Newton-Raphsonovou metodou řešíme soustavu

$$x(2x+3y-11) + y(y-7) + 13 = 0$$
$$3x + y(x-2) - 1 = 0$$

• Soustava má 4 reálná řešení, metoda konverguje k některému z nich podle počát. odhadu

• Newton-Raphsonovou metodou řešíme (opět) soustavu

$$x^{2} + 4x - y^{2} - 2y - 1 = 0$$
$$x^{2} + 5y - 4 = 0$$

- Soustava má 2 reálná řešení, metoda konverguje k některému z nich podle počát. odhadu:
 - S počátečním odhadem (1,1) najde řešení $(x,y)\approx (0.6371,0.7188),$
 - S počátečním odhadem $(5,-5)\,$ najde řešení $(x,y)\approx (7.4169,-10.202).$