Prediction Of Covid Cases Using FbProphet

```
!pip install pystan
!pip install fbprophet
Requirement already satisfied: pystan in /usr/local/lib/python3.7/dist-packages (2.19.1.1)
     Requirement already satisfied: Cython!=0.25.1,>=0.22 in /usr/local/lib/python3.7/dist-packages (from pystan) (0.29.23)
     Requirement already satisfied: numpy>=1.7 in /usr/local/lib/python3.7/dist-packages (from pystan) (1.19.5)
     Requirement already satisfied: fbprophet in /usr/local/lib/python3.7/dist-packages (0.7.1)
     Requirement \ already \ satisfied: \ Cython>=0.22 \ in \ /usr/local/lib/python3.7/dist-packages \ (from \ fbprophet) \ (0.29.23)
     Requirement already satisfied: cmdstanpy==0.9.5 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (0.9.5) Requirement already satisfied: pystan>=2.14 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (2.19.1.1)
     Requirement already satisfied: numpy>=1.15.4 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (1.19.5)
     Requirement already satisfied: pandas>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (1.1.5)
     Requirement already satisfied: matplotlib>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (3.2.2)
     Requirement already satisfied: LunarCalendar>=0.0.9 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (0.0.9)
     Requirement already satisfied: convertdate>=2.1.2 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (2.3.2)
     Requirement already satisfied: holidays>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (0.10.5.2)
     Requirement already satisfied: setuptools-git>=1.2 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (1.2)
     Requirement already satisfied: python-dateutil>=2.8.0 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (2.8.1) Requirement already satisfied: tqdm>=4.36.1 in /usr/local/lib/python3.7/dist-packages (from fbprophet) (4.41.1)
     Requirement already satisfied: pymeeus<=1,>=0.3.13 in /usr/local/lib/python3.7/dist-packages (from convertdate>=2.1.2->fbprophet) (0.5.11)
     Requirement already satisfied: pytz>=2014.10 in /usr/local/lib/python3.7/dist-packages (from convertdate>=2.1.2->fbprophet) (2018.9)
     Requirement already satisfied: hijri-converter in /usr/local/lib/python3.7/dist-packages (from holidays>=0.10.2->fbprophet) (2.1.3)
     Requirement already satisfied: korean-lunar-calendar in /usr/local/lib/python3.7/dist-packages (from holidays>=0.10.2->fbprophet) (0.2.1)
     Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from holidays>=0.10.2->fbprophet) (1.15.0)
     Requirement already satisfied: ephem>=3.7.5.3 in /usr/local/lib/python3.7/dist-packages (from LunarCalendar>=0.0.9->fbprophet) (4.0.0.2)
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.0.0->fbprophet) (0.10.0)
     Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.0.0->fbprophet) (2.4.7
     Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.0.0->fbprophet) (1.3.1)
```

import fbprophet

from fbprophet import Prophet

import pandas as pd

df=pd.read_csv('/content/covid_19_clean_complete.csv')

df.head()

₹		Province/State	Country/Region	Lat	Long	Date	Confirmed	Deaths	Recovered	Active	WHO Region
	0	NaN	Afghanistan	33.93911	67.709953	2020-01-22	0	0	0	0	Eastern Mediterranean
	1	NaN	Albania	41.15330	20.168300	2020-01-22	0	0	0	0	Europe
	2	NaN	Algeria	28.03390	1.659600	2020-01-22	0	0	0	0	Africa
	3	NaN	Andorra	42.50630	1.521800	2020-01-22	0	0	0	0	Europe
	4	NaN	Angola	-11.20270	17.873900	2020-01-22	0	0	0	0	Africa

import matplotlib.pyplot as plt
import seaborn as sns

Top 5 Countries ranked by Covid Deaths

```
total_deaths=df.groupby(['Country/Region'])['Deaths'].sum().reset_index()
total_deaths.sort_values('Deaths',ascending=False,inplace=True)
total_deaths = total_deaths.head()
sns.barplot(x=total_deaths['Country/Region'],y=total_deaths['Deaths'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f300b5f90d0>

Top 5 Countries ranked by Recovered Covid Cases

df.shape

→ (49068, 10)

df.dtypes

₹	Province/State Country/Region Lat Long Date Confirmed Deaths Recovered	object object float64 float64 object int64 int64
	Recovered Active WHO Region dtype: object	int64 int64 object

df['Date']=pd.to_datetime(df['Date'])

df.dtypes

₹	Province/State	object
	Country/Region	object
	Lat	float64
	Long	float64
	Date	datetime64[ns]
	Confirmed	int64
	Deaths	int64
	Recovered	int64
	Active	int64
	WHO Region	object
	dtype: object	•

df.isnull().sum()

$\overline{\rightarrow}$	Province/State	34404
_	Country/Region	0
	Lat	0
	Long	0
	Date	0
	Confirmed	0
	Deaths	0
	Recovered	0
	Active	0
	WHO Region	0
	dtype: int64	

df['Date'].nunique()

→ 188

total=df.groupby(['Date'])['Confirmed','Deaths','Recovered','Active'].sum().reset_index()

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \end{tabul$

Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.

total.head()

```
₹
             Date Confirmed Deaths Recovered Active
     0 2020-01-22
                         555
                                  17
                                             28
                                                   510
     1 2020-01-23
                         654
                                  18
                                            30
                                                   606
     2 2020-01-24
                        941
                                 26
                                            36
                                                   879
     3 2020-01-25
                        1434
                                 42
                                            39
                                                  1353
     4 2020-01-26
                        2118
                                  56
                                             52
                                                  2010
```

df_prophet=total.rename(columns={'Date':'ds','Confirmed':'y'})

df_prophet.head()

₹		ds	у	Deaths	Recovered	Active
	0	2020-01-22	555	17	28	510
	1	2020-01-23	654	18	30	606
	2	2020-01-24	941	26	36	879
	3	2020-01-25	1434	42	39	1353
	4	2020-01-26	2118	56	52	2010

m=Prophet(daily_seasonality=True,yearly_seasonality=True)

model=m.fit(df_prophet)

model.seasonalities

now I am going to do forecasting so to do forecasting I need some Future Days
future_global=model.make_future_dataframe(periods=30,freq='D')

future_global.head()

```
ds
0 2020-01-22
1 2020-01-23
```

2 2020-01-24

3 2020-01-25

4 2020-01-26

df_prophet.shape

→ (188, 5)

future_global.shape

→ (218, 1)

df_prophet['ds'].tail()

```
183 2020-07-23

184 2020-07-24

185 2020-07-25

186 2020-07-26

187 2020-07-27

Name: ds, dtype: datetime64[ns]
```

future_global.tail()

213 2020-06-22

214 2020-08-23

215 2020-08-24

216 2020-08-25217 2020-08-26

now do Prediction on future_global
prediction=model.predict(future_global)
prediction

_		ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_terms_lower	additive_terms_upper	daily
	0	2020- 01-22	-6.632025e+05	-1.769075e+04	5.508184e+03	-6.632025e+05	-6.632025e+05	6.577998e+05	6.577998e+05	6.577998e+05	-2.658267e+06
	1	2020- 01-23	-5.790479e+05	-9.762946e+03	1.296022e+04	-5.790479e+05	-5.790479e+05	5.804456e+05	5.804456e+05	5.804456e+05	-2.658267e+06
	2	2020- 01-24	-4.948933e+05	-2.603031e+03	2.008124e+04	-4.948933e+05	-4.948933e+05	5.034426e+05	5.034426e+05	5.034426e+05	-2.658267e+06
	3	2020- 01-25	-4.107387e+05	1.478308e+02	2.324234e+04	-4.107387e+05	-4.107387e+05	4.218376e+05	4.218376e+05	4.218376e+05	-2.658267e+06
	4	2020- 01-26	-3.265841e+05	-7.382512e+03	1.490967e+04	-3.265841e+05	-3.265841e+05	3.303953e+05	3.303953e+05	3.303953e+05	-2.658267e+06
	213	2020- 08-22	1.767950e+07	1.316994e+07	1.329888e+07	1.761012e+07	1.774071e+07	-4.441315e+06	-4.441315e+06	-4.441315e+06	-2.658267e+06
	214	2020- 08-23	1.776681e+07	1.254658e+07	1.268838e+07	1.769254e+07	1.783295e+07	-5.146193e+06	-5.146193e+06	-5.146193e+06	-2.658267e+06
	215	2020- 08-24	1.785412e+07	1.191691e+07	1.207013e+07	1.777481e+07	1.792513e+07	-5.857683e+06	-5.857683e+06	-5.857683e+06	-2.658267e+06
	216	2020- 08-25	1.794143e+07	1.130430e+07	1.146296e+07	1.785929e+07	1.801610e+07	-6.553639e+06	-6.553639e+06	-6.553639e+06	-2.658267e+06
	217	2020- 08-26	1.802874e+07	1.071181e+07	1.087892e+07	1.794227e+07	1.810635e+07	-7.229602e+06	-7.229602e+06	-7.229602e+06	-2.658267e+06

code.ipynb - Colab

218 rows × 22 columns

prediction[['ds','yhat','yhat_lower','yhat_upper']].tail()

plot the predictions \boldsymbol{u} will see these are with respect to yhat model.plot(prediction)

7/29/25, 10:19 AM code.ipynb - Colab

Visualize Each Components[Trends,Weekly]
model.plot_components(prediction)

The prophet model identifies points at which the trend changes and those can be plotted. \P from fbprophet.plot import add_changepoints_to_plot

fig=model.plot(prediction)

a=add_changepoints_to_plot(fig.gca(),model,prediction)

 $df_cv=cross_validation(model,horizon='30\ days',period='15\ days',initial='90\ days') \\ \#\#\ horizon='365\ days'-->\ for\ how\ many\ days\ we\ have\ to\ cross\ validate=====$

Computes forecasts from historical cutoff points Beginning from..

(end - horizon) it means it is going to take that date that is (end - horizon) bcz on these date we have to just
cross-validate for the new dataset that we have to find out

period=180 as from documentation of func as period=0.5*365=180 or {period=1/2*horizon value}
initial -How many total no. of days we actually want-- 3*365 from documentation of function or {initial=3*horizon}

INFO:fbprophet:Making 5 forecasts with cutoffs between 2020-04-28 00:00:00 and 2020-06-27 00:00:00
WARNING:fbprophet:Seasonality has period of 365.25 days which is larger than initial window. Consider increasing initial.

100%
5/5 [05:42<00:00, 68.49s/it]

df_cv.head()

₹

	ds	yhat	yhat_lower	yhat_upper	у	cutoff
0	2020-04-29	3.180573e+06	3.176463e+06	3.184844e+06	3185195	2020-04-28
1	2020-04-30	3.253741e+06	3.249592e+06	3.257822e+06	3268876	2020-04-28
2	2020-05-01	3.322668e+06	3.318113e+06	3.327013e+06	3355922	2020-04-28
3	2020-05-02	3.384776e+06	3.379953e+06	3.389192e+06	3437608	2020-04-28
4	2020-05-03	3.442155e+06	3.436753e+06	3.447013e+06	3515244	2020-04-28

df_cv.shape

→ (150, 6)

→ Obtaining the Performance Metrics

We use the performance_metrics utility to compute the Mean Squared Error(MSE), Root Mean Squared Error(RMSE), Mean Absolute Error(

from fbprophet.diagnostics import performance_metrics

df_performance=performance_metrics(df_cv)
df_performance.head()

_		horizon	mse	rmse	mae	mape	mdape	coverage
	0	3 days	2.053921e+09	45320.207202	35985.526753	0.006067	0.004630	0.0
	1	4 days	3.718658e+09	60980.796159	51807.187823	0.008959	0.006297	0.0
	2	5 days	6.528630e+09	80799.939672	67866.334668	0.011986	0.010393	0.0
	3	6 days	1.136875e+10	106624.317175	87360.691703	0.015567	0.015369	0.0
	4	7 days	2.062456e+10	143612.527529	117876.111294	0.020688	0.020792	0.0

Start coding or $\underline{\text{generate}}$ with AI.

 $from \ fbprophet.plot \ import \ plot_cross_validation_metric$

df_performance=plot_cross_validation_metric(df_cv,metric='rmse')

code.ipynb - Colab

□