Licence L2 (2ème année)

$egin{aligned} & & & & & & \\ & & & & & & \\ Les \ nombres \ complexes \ de \ m{A} \ \grave{a} \ \dots m{Z} \end{aligned}$

par J.-B. HIRIART-URRUTY, Professeur de mathématiques

2009

Objectifs:

- Consolider et approfondir les notions sur les nombres complexes (largement) abordées en classe de Terminale
- Illustrer la variété des applications des nombres complexes (équations algébriques, trigonométrie, transformations du plan).

Ce document, de niveau L1, sera considéré comme contenant les prérequis à l'utilisation des nombres complexes en L2. Il sera utile à celles et ceux venant de L1 mais aussi aux « entrant(e)s latéralement » en L2 (venant d'I.U.T. ou de sections de B.T.S. par exemple).

« Quand on est dans \mathbb{C} , les calculs sont plus complexes...» (extrait d'une copie d'étudiant)

Table des matières

1	${ m Le}$	corps des nombres complexes	5
	1.1	Construction du corps $\mathbb C$ des nombres complexes	5
	1.2	Formes et représentations d'un nombre complexe	6
		1.2.1 Forme algébrique (ou cartésienne)	6
		1.2.2 Représentation par un vecteur et par un point (représentation	
		${ m g\'eom\'etrique})$	6
		1.2.3 Forme trigonométrique	7
		1.2.4 Forme exponentielle	7
	1.3	Conjugué d'un nombre complexe	
	1.4	Propriétés du module d'un nombre complexe	9
_	_	. iàmas II	
2		•	10
	2.1	Racines $n^{i \text{èmes}} de \mathbf{z} \in \mathbb{C}, \mathbf{z} \neq 0$	
	2.2	Racines n ^{ièmes} de l'unité	13
3	$\mathbf{A}\mathbf{p}$	olications à la trigonométrie	14
4	Ap	olications à la géométrie plane.	
			17
	4.1	Transformation $\mathbf{z} \mapsto \mathbf{az} + \mathbf{b}$	17
	4.2	Transformation de $\mathbf{z}\mapsto \mathbf{a}\bar{\mathbf{z}}+\mathbf{b}.$	
5	Le	héorème fondamental de l'algèbre	20

Le corps des nombres complexes 1

Construction du corps \mathbb{C} des nombres complexes 1.1

L'ensemble $\mathbb{R} \times \mathbb{R}$ muni des lois de composition internes :

- addition (a, b) + (a', b') := (a + a', b + b')
- multiplication (a, b).(a', b') := (aa' bb', ab' + ba')

a une structure de corps et est appelé corps des nombres complexes; il est toujours noté par le graphisme C. En effet, on vérifie facilement que :

- l'addition est associative et commutative;
- (0,0) est élément neutre pour l'addition; tout élément (a,b) a un symétrique pour l'addition, qui n'est autre que (-a,-b). \mathbb{C} muni de la loi « addition » est un **groupe** commutatif. dition, qui n'est autre que (-a, -b).

- la multiplication est associative et commutative;
 la multiplication est distributive par rapport à logues de la multiplication dans ℝ l'addition;
- (1,0) est élément neutre pour la multiplication : (a,b).(1,0) = (1,0).(a,b) = (a,b) pour tout $(a,b) \in \mathbb{R} \times \mathbb{R}$.
- tout élément $(a,b) \neq (0,0)$ a un symétrique pour la multiplication, qui est $\left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$:

$$(a,b).\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right) = \left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right).(a,b) = (1,0)$$

Traditionnellement, on utilise, plutôt que (a,b), la **notation** |a+ib|Comment cela? Soit $z = (a, b) \in \mathbb{C}$ (défini ci-dessus). On a :

$$(a,b) = (a,0) + (0,b)$$

= $(a,0) + (0,1).(b,0)$

On voit ainsi apparaître systématiquement :

- le nombre complexe très particulier i := (0,1), pour lequel on constate que $i^2 = (-1, 0)$;
- des nombres complexes de la forme (x,0), où $x \in \mathbb{R}$.

Il est possible d'identifier \mathbb{R} au sous-ensemble $\{(x,0) \mid x \in \mathbb{R}\}$ de \mathbb{C} par l'application d'identification $x \mapsto (x,0)$.

Désormais, on écrira a + ib pour l'élément (a, b) de \mathbb{C} auquel on se référait. On négligera également le symbole « . » de la multiplication.

À l'aide de ce codage et des propriétés de i ($i^2 = -1$), on manipule l'addition et la multiplication de nombres complexes comme dans le cas des nombres réels :

5

- -(a+ib) = -a + i(-b);
- si $a + ib \neq 0$, $\frac{1}{a+ib} = \frac{a}{a^2+b^2} + i\left(\frac{-b}{a^2+b^2}\right)$;
- (a+ib)(a'+ib') = (aa'-bb') + i(ab'+ba').

Remarques:

- Ce qui a été proposé ci-dessus n'est qu'une construction (de mathématicien)
 de C, il y en a bien d'autres. L'important est que l'objet mathématique obtenu puisse être identifié à celui décrit ici.
- La notation $i = \sqrt{-1}$ est à éviter! Elle ne prendrait de sens que si on avait donné un sens à « $\sqrt{z}, z \in \mathbb{C}$ », ce qui n'a pas été fait.
- En Électricité on utilise parfois (pour i) la notation j (car i est réservé à l'intensité du courant).

1.2 Formes et représentations d'un nombre complexe

1.2.1 Forme algébrique (ou cartésienne)

C'est celle que l'on vient de voir : z = a + ib, où a et b sont réels ;

- a est la partie réelle de z et on la note $\Re z$,
- b est la **partie imaginaire** de z et on la note $\mathcal{I}m$ z.
- $z \in \mathbb{C}$ est dit **imaginaire pur** lorsque $\Re e \ z = 0$. L'élément 0 est le seul qui puisse revendiquer le statut de réel et celui d'imaginaire pur.

1.2.2 Représentation par un vecteur et par un point (représentation géométrique)

On appelle plan complexe \mathcal{P} un plan muni d'un repère orthonormé direct $(O; \vec{e_1}, \vec{e_2})$. Soit V l'ensemble des vecteurs (correspondant aux points) du plan \mathcal{P} , rapporté à la base orthonormée directe $(\vec{e_1}, \vec{e_2})$.

Le nombre complexe z = a + ib est représenté par le **vecteur** \vec{v} (de V) de coordonnées (a,b); l'application de représentation est :

$$(a+ib) \in \mathbb{C} \mapsto \vec{v} = a\vec{e_1} + b\vec{e_2} \in V.$$

On dit que a + ib est l'affixe de \vec{v} .

Le nombre complexe z = a + ib est aussi représenté par le **point** M (de \mathcal{P}) de coordonnées (a,b); l'application de représentation est :

$$(a+ib) \in \mathbb{C} \mapsto M \in \mathcal{P}$$
, de coordonnées (a,b) .

On dit encore que a + ib est l'affixe de M.

M est **l'image** (ponctuelle) de z.

Figure 1 -

1.2.3 Forme trigonométrique

Soit $z = a + ib \in \mathbb{C}$. Le nombre $a^2 + b^2$ est un réel positif; le **module** de z, noté |z|, est le réel positif $|z| := \sqrt{a^2 + b^2}$ (c'est la longueur du vecteur \overrightarrow{OM} si M est l'image de z).

Soit $z = a + ib \in \mathbb{C}$, $z \neq 0$. L'argument de z est la classe modulo 2π des réels Θ vérifiant $\cos \Theta = \frac{a}{|z|}$ et $\sin \Theta = \frac{b}{|z|}$. On note $\arg z$ l'un quelconque des éléments de cette classe. Par exemple,

$$arg(z_1z_2) = arg z_1 + arg z_2$$
, modulo 2π .

Dans la Figure 1 ci-dessus, un argument de z est une mesure de l'angle des vecteurs $\overrightarrow{e_1}$ et \overrightarrow{OM} .

$$z = |z|(\cos\Theta + i\sin\Theta)$$

est la forme trigonométrique de $z \in \mathbb{C}$, $z \neq 0$. Pour z = 0, on notera que |z| = 0 et que Θ est indifférent.

1.2.4 Forme exponentielle

On sait (car vu en Terminale) ce qu'est le réel e^x lorsque x est un **nombre réel**. Comment pourrait-on définir e^z (l'exponentielle du nombre complexe z) de manière

- à préserver la définition de e^x lorsque z se trouve être un réel x;
- à avoir les mêmes propriétés que l'exponentiation des réels?

Pour des raisons qui apparaîtront plus nettement (à l'étudiant-lecteur) plus tard dans son cheminement scientifique, la meilleure façon de répondre aux questions posées au-dessus est de **définir** e^{ib} , $b \in \mathbb{R}$, comme étant $\cos b + i \sin b$. Ensuite, puisqu'on veut préserver la règle $e^{z+z'} = e^z \cdot e^{z'}$, on est conduit à poser :

$$e^{a+ib} := e^a e^{ib} = e^a (\cos b + i \sin b)$$

On note e^z ou $\exp z$ l'exponentielle du nombre complexe z.

Désormais, toutes les fonctions trigonométriques cos, sin et exponentielles se mélangeront au travers de l'exponentiation complexe $(z \mapsto e^z)$.

Quelques conséquences immédiates :

- $e^{i\pi}=-1$, la très belle formule d'Euler rassemblant 1, i,e et π dans une seule formule.
- Si z = a + ib, e^z a pour module e^a , de sorte que e^z n'est jamais nul.
- On sait que l'exponentiation envoie \mathbb{R} sur $\mathbb{R}_+^* =]0, +\infty[$. Qu'en est-il (pour l'exponentiation complexe) de l'ensemble $i\mathbb{R} = \{ib \mid b \in \mathbb{R}\}$ des imaginaires purs? En fait:

$$|e^{ib}| = 1$$
 pour tout $b \in \mathbb{R}$;
si $|z| = 1$, il existe b réel (et même plusieurs) tels que $e^{ib} = z$.

Donc l'image par l'application « \exp » de $i\mathbb{R}$ est l'ensemble des nombres complexes de module 1. Cet ensemble est traditionnellement noté U,

$$\mathbb{U} := \{ z \in \mathbb{C} \mid |z| = 1 \}$$

et appelé le **cercle-unité** de C.

Figure 2 – Schématisation de $z \mapsto e^z$

- $\{e^z \mid z \in \mathbb{C}\} = \mathbb{C}\setminus\{0\}$. Mais attention, on n'a pas parlé de logarithme de $z \neq 0!$
- Si z et z' sont des nombres complexes, $e^{z+z'}=e^ze^{z'}$. Mais attention, on n'utilise pas ici d'expressions comme $z^{z'}$!
- $\bullet \ {\rm Si} \ z \neq 0,$ il existe a et Θ réels tels que :

$$z=e^{a+ib}\quad \left(e^a\text{ est le module de }z,\,b\text{ un argument de }z\right)$$

$$\boxed{z=|z|e^{i\arg z}\\z=re^{i\Theta}}$$

C'est ce qu'on appelle la forme exponentielle de z.

Exercices:

- Montrer que e^{iz} = 1 si et seulement si z/2π est un entier relatif.
 Montrer que e^{z₁} = e^{z₂} si et seulement si z₁-z₂/2π est un entier relatif.
 Soit z ≠ 0. Comment trouver les Z ∈ ℂ tels que e^Z = z?

– Prendre une courbe Γ de \mathbb{C} de la forme $\{t+if(t)\mid t\in[a,b]\}$ où $f:[a,b]\to\mathbb{R}$ est une fonction pas trop compliquée, et dessiner l'image de Γ par l'opération d'exponentiation, c'est-à-dire $\{e^t.e^{if(t)}\mid t\in[a,b]\}$. Ça peut être rapidement compliqué... La transformation $z\mapsto e^z$ est certainement une des plus importantes, sinon la plus importante, sur les nombres complexes.

1.3 Conjugué d'un nombre complexe

Si z est le nombre complexe a+ib, le conjugué de z est le nombre complexe a-ib; on le note \bar{z} .

Pour la forme algébrique de \bar{z} , on a : $\Re e \ \bar{z} = \Re e \ z$ et $\Im m \ \bar{z} = -\Im m \ z$.

Concernant la représentation géométrique de \bar{z} , il est clair que le point M du plan complexe représentant (ou image de) \bar{z} est le symétrique par rapport à l'axe des réels du point M représentant z.

Enfin, pour ce qui est de la forme exponentielle, notons que si $z=e^{a+ib}$, le conjugué de z n'est autre que e^{a-ib} .

Quelques propriétés immédiates :

- $\Re z = \frac{1}{2}(z+\bar{z})$; $\Im z = \frac{1}{2i}(z-\bar{z})$ [attention ici de ne pas oublier le i au dénominateur!].
- $\overline{(\bar{z})} = z$ [en faisant deux fois l'opération de conjugaison, on retombe sur nos pieds].
- $\overline{(z_1+z_2)} = \overline{z_1} + \overline{z_2}$; $\overline{z_1.z_2} = \overline{z_1}.\overline{z_2}$
- $\overline{(e^z)} = e^{\overline{z}}$ [déjà vu mais fort important].

1.4 Propriétés du module d'un nombre complexe

Rappelons que si z=a+ib, le module de z est $|z|=\sqrt{a^2+b^2}$. Autrement dit : $|z|^2=z\bar{z}$; ceci facilite grandement la démonstration des propriétés de $z\mapsto |z|$. En voici quelques-unes :

- |z| = 0 équivaut à z = 0.
- $|z| = |\bar{z}|$; $|\mathcal{I}m \ z| \le |z|$; $|\mathcal{R}e \ z| \le |z|$. En effet, de $a^2 \le a^2 + b^2$ (par exemple) on tire $|a| \le \sqrt{a^2 + b^2}$.
- $|z_1 z_2| = |z_1||z_2|$. Observons pour cela que

$$|z_1 z_2|^2 = (z_1 z_2)(\overline{z_1 z_2}) = z_1 z_2 \overline{z_1} \overline{z_2} = (z_1 \overline{z_1})(z_2 \overline{z_2})$$

= $|z_1|^2 |z_2|^2$.

• $|z_1 + z_2| \le |z_1| + |z_2|$ (inégalité dite **triangulaire**). Pour voir cela, développons $|z_1 + z_2|^2$ (et non $(z_1 + z_2)^2$!). On a :

$$|z_1+z_2|^2=(z_1+z_2)(\overline{z_1}+\overline{z_2})=z_1\overline{z_1}+z_1\overline{z_2}+z_2\overline{z_1}+z_2\overline{z_2}.$$

Puisque $z_1\overline{z_2}$ est le conjugué de $z_2\overline{z_1}$, on a $z_1\overline{z_2} + \overline{z_2}z_1 = 2\mathcal{R}e\ (z_1\overline{z_2})$ (ou encore $2\mathcal{R}e(\overline{z_1}z_2)$).

Par suite,

$$2\mathcal{R}e\ (z_1\overline{z_2}) \le 2|\mathcal{R}e\ (z_1\overline{z_2})| \le 2|z_1\overline{z_2}| = 2|z_1z_2| = 2|z_1||z_2|,$$

d'où:

$$|z_1 + z_2|^2 = |z_1|^2 + 2\mathcal{R}e \ (z_1\overline{z_2}) + |z_2|^2$$

$$\leq |z_1|^2 + 2|z_1||z_2| + |z_2|^2 = (|z_1| + |z_2|)^2$$

• Si $z \neq 0$, $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$. En particulier, si $z \in \mathbb{U}$, il en est de même de $\frac{1}{z}$.

À retenir:

- le développement $|z_1+z_2|^2=|z_1|^2+2\mathcal{R}e\ (z_1\overline{z_2})+|z_2|^2\ (=|z_1|^2+2\mathcal{R}e\ (\overline{z_1}z_2)+|z_2|^2)$, qu'il ne faut pas confondre avec

$$(z_1 + z_2)^2 = z_1^2 + 2z_1z_2 + z_2^2.$$

- les propriétés : $\begin{cases} \bullet |z| = 0 \text{ équivaut à } z = 0; \\ \bullet |z_1 z_2| = |z_1||z_2|; \\ \bullet |z_1 + z_2| \le |z_1| + |z_2| \end{cases}$

qui généralisent les propriétés de la valeur absolue |. | sur R et qui font dire que |. | est une **norme** sur \mathbb{C} . On définit à partir de |.| la distance entre deux nombres complexes comme suit:

distance de
$$z_1$$
 à $z_2 := |z_1 - z_2|$ (module de $z_1 - z_2$).

Cela correspond bien à la distance euclidienne (usuelle) entre les deux points images de z_1 et z_2 dans le plan complexe.

Racines nièmes d'un nombre complexe 2

Racines n^{ièmes} de $z \in \mathbb{C}$, $z \neq 0$ 2.1

Soit z un nombre complexe non nul et n un entier naturel ≥ 2 . On appelle racine n^{ième} de z tout nombre complexe Z tel que $Z^n = z$. Mais y en a-t-il? Si oui, combien?

Théorème 2.1.1. Tout nombre complexe $z \neq 0$ admet n racines $n^{ièmes}$ (distinctes).

Démonstration: Tenter de trouver Z sous forme algébrique, c'est-à-dire Z =X+iY, tel que $(X+iY)^n=a+ib \ (=z)$ donne lieu à des équations et calculs absolument inextricables (à l'exception de n=2 où on peut mener les calculs jusqu'au bout). Il faut donc procéder autrement.

Considérons z mis sous forme exponentielle : $z=re^{i\alpha}$; on cherche les Z également mis sous forme exponentielle : $Z=\rho e^{i\Theta}$. L'équation (à résoudre) $Z^n=z$ se traduit ainsi par $\left(\rho e^{i\Theta}\right)^n=re^{i\alpha}$, soit $\rho^n e^{in\Theta}=re^{i\alpha}$. En clair :

- L'égalité des modules donne $\rho^n = r$, d'où $\rho = \sqrt[n]{r}$ (ou $r^{1/n}$), c'est la racine n^{ième} de r:
- L'égalité $e^{in\Theta} = e^{i\alpha}$ donne $n\Theta = \alpha + 2k\pi$ (où $k \in \mathbb{Z}$); il en sort $\Theta = \frac{\alpha}{n} + \frac{2k\pi}{n}$ ($k \in \mathbb{Z}$). On a ainsi n valeurs distinctes :

$$\Theta_0 = \frac{\alpha}{n}, \, \Theta_1 = \frac{\alpha}{n} + \frac{2\pi}{n}, \, \dots, \, \Theta_{n-1} = \frac{\alpha}{n} + \frac{2(n-1)\pi}{n};$$

ensuite on aura $\Theta_0 + 2\pi$, $\Theta_1 + 2\pi$, ..., $\Theta_{n-1} + 2\pi$, qui donneront les mêmes $e^{\Theta i}$ que précédemment.

En somme, on a mis en évidence n racines n^{ièmes} distinctes de z qui sont :

$$Z_k = \sqrt[n]{r}e^{i\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)}, k = 0, 1, \dots, n-1$$

Il faut bien observer l'expression des Z_k : ils sont tous de même module, et en passant de Z_k à Z_{k+1} on décale l'argument de $\frac{2\pi}{n}$. Si on avait poursuivi l'écriture de Z_n , Z_{n+1} , etc. on aurait constaté que l'on retombait sur Z_0 , Z_1 , etc.

Exemple: Soit z=1. Les n racines $n^{\text{ièmes}}$ de 1 sont $e^{i2k\pi/n}$, $k=0,1,\ldots,n-1$. Si on pose $\omega:=e^{i2\pi/n}$ (= $\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$), ces n racines $n^{\text{ièmes}}$ s'écrivent $1,\,\omega,\,\omega^2,\,\ldots,\,\omega^{n-1}$. Bien sûr, 1 fait toujours partie des racines $n^{\text{ièmes}}$ de 1.

Le cas particulier de n = 2

Comme cela a été anoncé plus haut, c'est le seul cas où les formes algébriques peuvent être utilisées en étant sûr de pouvoir mener les calculs jusqu'au bout.

Soit donc $z = a + ib \neq 0$ et voyons ce que donne l'équation (en X et Y)

$$(X+iY)^2 = a+ib. (1)$$

En développant $(X + iY)^2$, on voit aisément que (1) est équivalent à :

$$\begin{cases} X^2 - Y^2 = a \\ 2XY = b. \end{cases} \tag{1'}$$

Ceci doit permettre de déterminer X et Y... sauf qu'il s'agit d'un système de 2 équations à 2 inconnues qui n'est pas linéaire... too bad! Nous allons donc ajouter

un ingrédient qui va faciliter la résolution effective de (1'). Comme on doit avoir $|X + iY|^2 = |z|^2 = |Z|$ (car $z^2 = Z$, d'accord?), une relation supplémentaire entre X et Y apparaît, à savoir :

$$X^2 + Y^2 = \sqrt{a^2 + b^2}. (2)$$

En fait, la relation (2) est cachée dans (1')... En effet,

$$(X^{2} - Y^{2})^{2} + (2XY)^{2} = X^{4} + Y^{4} + 2X^{2}Y^{2}$$
$$= (X^{2} + Y^{2})^{2}$$

ce qui fait que (1') implique (2). Mais, dans la pratique, il ne faut pas craindre la surabondance d'information, il est donc recommandé de remplaer (1') par :

$$\begin{cases} X^2 - Y^2 = a \\ X^2 + Y^2 = \sqrt{a^2 + b^2} \\ 2XY = b. \end{cases}$$
 (1")

Les deux premières équations de (1") conduisent à $X^2 = \frac{1}{2} \left(a + \sqrt{a^2 + b^2} \right)$, quantité qui est ≥ 0 , et nulle exactement lorsque a < 0 et b = 0. On obtient ainsi X puis, grâce à la $3^{\text{ème}}$ équation de (1") (ou accessoirement la $1^{\text{ère}}$), on déduit sans ambiguïté Y. Dans tous les cas de figure, $\mathbf{z} = \mathbf{a} + \mathbf{ib} \neq \mathbf{0}$ admet $\mathbf{2}$ racines carrées (plutôt que « racines $2^{\text{èmes}} \gg$) opposées (distinctes).

Exemple. Déterminons les 2 racines carrées de 4-3i. Le système (1") devient dans ce cas :

$$\begin{cases} X^2 - Y^2 = 4 \\ X^2 + Y^2 = 5 \\ 2XY = -3. \end{cases}$$
 (3)

De la 1ère et 2ème équation de (3), on tire $2X^2=9$, d'où $X=\frac{3\sqrt{2}}{2}$ ou $-\frac{3\sqrt{2}}{2}$. Par suite, la 3ème équation de (3) conduit à $Y=-\frac{3}{2X}$, soit $Y=-\frac{\sqrt{2}}{2}$ (pour $X=\frac{3\sqrt{2}}{2}$) et $Y=\frac{\sqrt{2}}{2}$ (pour $X=-\frac{3\sqrt{2}}{2}$). Les deux racines carrées de 4-3i sont donc

$$\frac{\sqrt{2}}{2}(3-i)$$
 et $-\frac{\sqrt{2}}{2}(3-i)$.

Vérifiez si vous n'êtes pas convaincu!

Exemple. Déterminons les 2 racines carrées de -9. Certes, nous savons que nous allons trouver 3i et -3i... Le système (1) s'écrit pour cet exemple :

$$\begin{cases} X^2 - Y^2 = -9\\ X^2 + Y^2 = 9\\ 2XY = 0 \end{cases}$$
 (4)

Les 1^{ère} et 2^{ème} équations conduisent à $X^2 = 0$, soit X = 0. Ici, la 3^{ème} équation est inopérante... mais la 1^{ère} conduit à $Y^2 = 9$, soit Y = 3 et Y = -3. Les deux racines carrées de -9 sont bien 3i et -3i.

C'est précisément le calcul de racines carrées qui nous servira dans ce qui suit, à savoir la résolution d'une équation du second degré.

Exemple d'utilisation : la résolution d'une équation du second degré.

On cherche les solutions de l'équation $az^2 + bz + c = 0$, où les coefficients a, b et c sont des réels ou des **complexes** $(a \neq 0)$. Comme dans le cas réel (en classe de Seconde), on factorise sous la forme

$$\left(z + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} = 0$$
, soit $\left(z + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$.

Soit $\delta \in \mathbb{C}$ une racine carrée de $b^2 - 4ac$ (qui peut être complexe); ainsi δ et $-\delta$ sont les deux racines carrées (« racines $2^{i\text{èmes}} \gg$) de δ . Les solutions de l'équation du second degré introduite au-dessus sont :

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

Considérons le cas particulier où a, b et c sont des réels et où $\Delta := b^2 - 4ac < 0$. Les racines carrées de Δ sont $i\sqrt{-\Delta}$ et $-i\sqrt{-\Delta}$ (deux imaginaires purs donc). Les solutions (complexes) de $az^2 + bz + c = 0$ sont :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$.

Observons qu'ici z_2 n'est autre que $\overline{z_1}$.

2.2 Racines nièmes de l'unité

Ceci est un prolongement de l'exercice de la page 11.

Considérons z=1, c'est-à-dire $z=e^{i0}$. Les n racines $n^{i\text{èmes}}$ de 1 sont les n complexes distincts suivants :

$$1, e^{i\frac{2\pi}{n}}, e^{i\frac{4\pi}{n}}, \dots, e^{i\frac{2k\pi}{n}}, \dots, e^{i\frac{2(n-1)\pi}{n}}$$

Ils appartiennent tous au cercle-unité \mathbb{U} et \mathbb{C} . Leurs images $M_0, M_1, \ldots, M_{n-1}$ sont les sommets d'un polygone convexe régulier à n sommets.

Lorsque n est pair, 1 et -1 font toujours partie de la liste des n racines n^{ièmes} de 1. Quand n > 2, ce sont les deux seuls réels, les autres racines ayant une partie imaginaire non nulle.

Lorsque n est impair, 1 est la seule racine n^{ième} rélle de 1.

Dans le cas particulier de n=3, il arrive que l'on note $j:=e^{i\frac{2\pi}{3}}$. Les racines $3^{\text{lèmes}}$ de 1 sont 1, j et j^2 . D'ailleurs, $j^2=\bar{j}$ et $1+j+j^2=0$.

Dans le cas où n=4, les quatre racines $4^{\text{èmes}}$ de 1 sont 1, -1, i et -i; leur somme est nulle.

Plus généralement, désignons par ω la « brique de base » $e^{i\frac{2\pi}{n}}$; elle sert à construire toutes les racines n^{ièmes} de 1 :

$$1, \omega, \omega^2, \ldots, \omega^k, \ldots, \omega^{n-1}$$
.

FIGURE 3 -

Proposition 2.2.1. La somme des n racines $\mathbf{n}^{\text{ièmes}}$ de l'unité fait toujours 0 :

$$1 + \omega + \omega^2 + \dots + \omega^k + \dots + \omega^{n-1} = 0.$$

Démonstration. Le résultat se lit sur un dessin comme en Figure 3 :

$$\overrightarrow{OM_0} + \overrightarrow{OM_1} + \cdots + \overrightarrow{OM_{n-1}} = \overrightarrow{0}.$$

Pour le démontrer, posons $S := 1 + \omega + \cdots + \omega^{n-1}$. On va provoquer un décalage en multipliant S par ω (comme au rugby lorsque l'arrière s'intercale dans la ligne de trois-quarts) :

$$\omega S = \omega + \omega^2 + \dots + \omega^n,$$

d'où:

 $S - \omega S = 1 - \omega^n$ (« téléscopage » de presque tous les termes).

Comme $\omega \neq 1$ (car $n \geq 2$), on en déduit $S = \frac{1-\omega^n}{1-\omega}$. Or $\omega^n = 1$, d'où S = 0.

3 Applications à la trigonométrie

Les fonctions trigonométriques, les exponentielles, les nombres complexes... tout ça se mélange harmonieusement.

Les formules à connaître pour les applications à la trigonométrie sont les suivantes :

• Formules d'Euler. Sachant que $e^{i\Theta} = \cos \Theta + i \sin \Theta \ (\Theta \in \mathbb{R})$, on a :

$$\cos\Theta = \frac{1}{2} \left(e^{i\Theta} + e^{-i\Theta} \right) \quad \text{[partie r\'elle de $e^{i\Theta}$]}$$

$$\sin\Theta = \frac{1}{2i} \left(e^{i\Theta} - e^{-i\Theta} \right) \quad \text{[partie imaginaire de $e^{i\Theta}$]}$$
 attention de ne pas oublier le \$i\$ ici !

• Formule de MOIVRE. Si n est un entier naturel,

$$(e^{i\Theta})^n = \cos(n\Theta) + i\sin(n\Theta),$$

soit

$$(\cos\Theta + i\sin\Theta)^n = \cos(n\Theta) + i\sin(n\Theta)$$

Voici une histoire qui court chez les mathématiciens. Abraham de MOIVRE (1667-1754) se contentait de six heures de sommeil. Cependant, à quatre-vingt-sept ans passés, il décida de dormir un quart d'heure de plus chaque nuit. Quand les vingt-quatre heures furent atteintes, il ne se réveilla plus, il était mort!

• Formule du binôme de Newton. Si u et v sont des nombres complexes et n un entier naturel,

$$(u+v)^n = u^n + C_n^1 u v^{n-1} + \dots + C_n^k u^k v^{n-k} + \dots + C_n^{n-1} u^{n-1} v + v^n$$

où
$$C_n^k = \frac{n!}{k!(n-k)!}$$
 (noté aussi $\binom{n}{k}$).

Observer bien la symétrie dans le développement :

$$C_n^k u^k v^{n-k}$$
 et $C_n^{n-k} u^{n-k} v^k$ ces coefficients sont les mêmes

Exemple (connu depuis les classes de Collège):

$$(u+v)^3 = u^3 + 3u^2v + 3uv^2 + v^3.$$

On utilise les nombres complexes pour simplifier des expressions trigonométriques.

Première illustration. On voudrait « linéariser » des expressions contenant $\cos^n x$ et $\sin^m x$. On sait combien cela est utile pour calculer des primitives ou intégrer des fonctions contenant ces expressions.

Par exemple, linéarisons $P(x) = \cos^2 x \sin^3 x$, $x \in \mathbb{R}$.

En utilisant les formules d'Euler, on a :

$$\begin{split} P(x) &= \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 \\ &= \left[\left(\frac{e^{ix} + e^{-ix}}{2}\right) \left(\frac{e^{ix} - e^{-ix}}{2i}\right)\right]^2 \left(\frac{e^{ix} - e^{-ix}}{2i}\right) \quad [\text{de manière à économiser les calculs}] \\ &= -\frac{1}{2^5 i} \left(e^{2ix} - e^{-2ix}\right)^2 \left(e^{ix} - e^{-ix}\right) \\ &= -\frac{1}{2^5 i} \left(e^{5ix} - e^{3ix} - 2e^{ix} + 2e^{-ix} + e^{-3ix} - e^{-5ix}\right) \quad [\text{après développement du produit}] \\ &= -\frac{1}{2^4} \left(\frac{e^{5ix} - e^{-5ix}}{2i} - \frac{e^{3ix} - e^{-3ix}}{2i} - 2\frac{e^{ix} - e^{-ix}}{2i}\right) \quad [\text{on procède aux regroupements}] \\ &= -\frac{1}{16} \left(\sin 5x - \sin 3x - 2\sin x\right). \end{split}$$

C'est quand même plus sympathique que l'expression de départ de P(x)! Il n'y a plus dans cette nouvelle expression de P(x) de puissances de $\cos x$ ou $\sin x$, d'où le vocable de « linéarisation ».

Une deuxième illustration. On voudrait « réduire » (comme en cuisine) des expressions trigonométriques.

Par exemple, réduisons en des expressions plus simples

$$C_n(x) := \cos x + \cos(x + \alpha) + \dots + \cos(x + n\alpha),$$

$$S_n(x) := \sin x + \sin(x + \alpha) + \dots + \sin(x + n\alpha),$$

où $x \in \mathbb{R}$ et α n'est pas un multiple de 2π .

Considérons $Z_n(x) := C_n(x) + iS_n(x)$. De cette manière :

$$Z_n(x) = e^{ix} + e^{i(x+\alpha)} + \dots + e^{i(x+n\alpha)}$$
$$= e^{ix} \left(1 + e^{i\alpha} + \dots + e^{in\alpha} \right) = e^{ix} \frac{e^{i(n+1)\alpha} - 1}{e^{i\alpha} - 1}$$

 $(\alpha \text{ n'étant pas un multiple de } 2\pi, \text{ on est assuré que } e^{i\alpha} \neq 1).$

On en déduit, en prenant les parties réelles et parties imaginaires des deux nombres :

$$C_n(x) = \cos\left(x + \frac{n\alpha}{2}\right) \frac{\sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}} \quad ; \quad S_n(x) = \sin\left(x + \frac{n\alpha}{2}\right) \frac{\sin\frac{(n+1)\alpha}{2}}{\sin\frac{\alpha}{2}}.$$

Remarque. On retiendra de cette manière de faire la règle d'or suivante : sinus et cosinus vont toujours ensemble. Dès que sinus apparaît (en intégration, équations différentielles, etc.), se poser la question de ce que ferait cosinus et s'il peut aider (co-sinus signifie bien « qui va avec sinus »). La raison en est que cos x et sin x sont les deux enfants de e^{ix} ...

Exercice. Soit $\Theta \in \mathbb{R}$. Montrer que

$$1 + e^{i\Theta} = 2\cos\frac{\Theta}{2}e^{i\frac{\Theta}{2}}.$$

$$1 + e^{i\Theta} = e^{i\frac{\Theta}{2}} \left(e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} \right) = 2e^{i\frac{\Theta}{2}} \cos \frac{\Theta}{2}.$$

anns

Rép. L'astuce ici (et à retenir!) consiste à écrire $1 = e^{i\frac{\Theta}{2}}e^{-i\frac{\Theta}{2}}$ et $e^{i\Theta} = e^{i\frac{\Theta}{2}}e^{i\frac{\Theta}{2}}$. Par

Exercice:

- Exprimer $\tan \Theta$ et fonction de $e^{2i\Theta}$.
- Simplifier des expressions comme

$$e_{i(a+p)} + e_{i(a-p)}, \quad e_{i(a+p)} - e_{i(a-p)} \quad (a, b \text{ réels}) \quad ; \quad \left| \frac{1}{1 - \iota e_{i\Theta}} \frac{\partial \operatorname{mis}}{\partial soo} \right|_{\mathcal{L}} = \frac{\partial \operatorname{met}}{\partial soo} \bullet$$

$$\cdot \frac{1}{\frac{\partial \operatorname{mis}}{\partial soo}} \frac{\partial \operatorname{mis}}{\partial soo} \frac{\partial$$

4 Applications à la géométrie plane. Transformations $z \mapsto az + b$ et $z \mapsto a\overline{z} + b$

a et b sont deux nombres complexes, $a \neq 0$.

4.1 Transformation $z \mapsto az + b$

Désignons par $S_{a,b}$ l'application de $\mathbb C$ dans $\mathbb C$ qui à z fait correspondre $S_{a,b}(z):=az+b$.

Propriétés de S_{a,b}:

- $S_{a,b}$ est une bijection de \mathbb{C} sur \mathbb{C} , c'est-à-dire : tout $z' \in \mathbb{C}$ admet pour $S_{a,b}$ un antécédent et un seul z; cet antécédent est d'ailleurs facile à déterminer, $z = \frac{1}{a}(z'-b)$. On en déduit que $(S_{a,b})^{-1} = S_{\frac{1}{a},-\frac{b}{a}}$.
- Éléments invariants par $S_{a,b}$:
 - Si a=1 et $b\neq 0$, il n'y a aucun élément z de $\mathbb C$ tel que $S_{a,b}(z)=z$.
 - Si $a \neq 1$, il y a un et un seul élément z_0 tel que $S_{a,b}(z_0) = z_0$, c'est $z_0 = \frac{b}{1-a}$.

Interprétation géométrique dans le plan complexe.

Désignons par $f_{a,b}$ l'application du plan complexe \mathcal{P} dans lui-même qui au point M d'affixe z fait correspondre le point M' d'affixe $z' = S_{a,b}(z)$. Que peut-on dire de $f_{a,b}$?

- Si a=1 et $b\neq 0, \, f_{1,b}$ est la **translation** de vecteur \vec{v} d'affixe b.
- Si $a \neq 1$ mais de module 1, z' = az + b s'écrit encore

$$z'-z_0=a(z-z_0)$$
 [ici z_0 est le point invariant unique, $z_0=\frac{b}{1-a}$].

Si Ω est le point d'affixe z_0 , on a :

$$\Omega M = \Omega M', \ (\widehat{\Omega M}, \widehat{\Omega M'}) = \arg a \pmod{2\pi}.$$

 $f_{a,b}$ est ainsi la **rotation** de centre Ω et d'angle arg a.

- Si $a \neq 1$ mais pas de module 1, $z' - z_0 = a(z - z_0)$, de sorte que

$$\Omega M' = |a|\Omega M, \ (\widehat{\Omega M}, \widehat{\Omega M'}) = \arg a \pmod{2\pi}$$

 $f_{a,b}$ est la **similitude directe** de centre Ω , de rapport |a| et d'angle arg a. Contempler les trois figures ci-dessous :

$$\underbrace{a=1}_{MM'}, z'=z+b$$

 $\overrightarrow{MM'}=\overrightarrow{v}, b \text{ affixe de } \overrightarrow{v}$

$$|a| = 1$$
, soit $a = e^{i\Theta}$, $\Theta = \arg a \pmod{2\pi}$
 $z' - z_0 = e^{i\Theta}(z - z_0)$

 $|a|=r, \Theta=\arg a \pmod{2\pi}$ $z'-z_0=re^{i\Theta}(z-z_0)$, que l'on peut décomposer de deux façons :

$$\begin{cases} z_1 - z_0 = r(z - z_0) & [\text{homoth\'etie suivie} \\ \text{puis} \quad z' - z_0 = e^{i\Theta}(z_1 - z_0) & \text{d'une rotation} \end{cases}$$

ou bien:

$$\begin{cases} z_2 - z_0 = e^{i\Theta}(z - z_0) & \text{[rotation suivie} \\ \text{puis } z' - z_0 = r(z_2 - z_0) & \text{d'une homothétie]} \end{cases}$$

Figure 4 -

4.2Transformation de $z \mapsto a\overline{z} + b$.

Désignons par $A_{a,b}$ l'application de \mathbb{C} dans \mathbb{C} qui à z fait correspondre $A_{a,b}(z) :=$ $a\bar{z}+b$.

Propriétés de A_{a,b}:

- $A_{a,b}$ est une bijection de $\mathbb C$ sur $\mathbb C$: l'antécédent de $z'\in\mathbb C$ pour $A_{a,b}$ est z= $\frac{1}{\bar{a}}(\bar{z'}-\bar{b})$. On en déduit que $(A_{a,b})^{-1}=A\left(\frac{1}{\bar{a}},-\frac{\bar{b}}{\bar{a}}\right)$.
- Éléments invariants par $A_{a,b}$ [résultats à démontrer sous forme d'exercices] Si $|a| \neq 1$, $z_0 = \frac{a\bar{b}+b}{1-|a|^2}$ est un élément de $\mathbb C$ invariant par $A_{a,b}$ et c'est le seul.
 - Si |a|=1 et $a\bar{b}+\dot{b}\neq 0$, il n'y a pas d'élément de $\mathbb C$ invariant par $A_{a,\underline{b}}$.
 - Si |a|=1 et $a\bar{b}+b=0$, on a nécessairement $a=-\frac{b}{\bar{b}}=\frac{1}{\bar{a}}$ et $-\frac{b}{\bar{a}}=b$, de sorte que $(A_{a,b})^{-1} = A_{a,b}$. Les invariants pour $A_{a,b}$ sont les $z \in \mathbb{C}$ de la

$$z = \frac{b}{2} + r, r \in \mathbb{R}, \text{ lorsque } a = 1 \text{ (auquel cas } b \text{ est un imaginaire pur)};$$

$$z = \frac{b}{2} + ir, r \in \mathbb{R}, \text{ lorsque } a = -1 \text{ (auquel cas } b \text{ est un r\'eel)};$$

$$z = \frac{b}{2} + t(\beta + i(1 - \alpha)), t \in \mathbb{R}, \text{ lorsque } a = \alpha + i\beta \neq 1.$$

Interprétation géométrique dans le plan complexe.

Désignons par $g_{a,b}$ l'application du plan complexe dans lui-même qui au point M d'affixe z fait correspondre le point M' d'affixe $z' = A_{a,b}(z)$. Quelle est cette transformation $g_{a,b}$ du plan?

Étant donné $M_1(z_1)$ et $M_2(z_2)$, soit $M_1'(z_1')$ et $M_2'(z_2')$ leurs images respectives par $g_{a,b}$. De la relation $z_2' - z_1' = a(\overline{z_2} - \overline{z_1}) = a(\overline{z_2} - \overline{z_1})$, on déduit $M_1'M_2' = |a|M_1M_2$. Alors:

- Si $|a| \neq 1$, $g_{a,b}$ est une **similitude indirecte**, composée (commutative) de l'homothétie de centre $I(z_0)$ $(z_0 = \frac{a\bar{b}+b}{1-|a|^2}$ unique élément invariant) et de rapport |a|, avec une symétrie orthogonale par rapport à une droite passant par
- Si |a| = 1 et $a\bar{b} + b \neq 0$, $g_{a,b}$ est une isométrie sans point invariant. C'est la composée (commutative) d'une symétrie orthogonale par rapport à une droite et d'une translation dont le vecteur dirige l'axe de symétrie.
- Si |a|=1 et $a\bar{b}+b=0$, $g_{a,b}$ est une isométrie avec une droite de points invariants. C'est la symétrie orthogonale par rapport à cette droite.

Les transformations géométriques du plan complexe, notamment les plus simples (celles du § 4.1), font les délices de ceux qui font des sujets de Baccalauréat.

5 Le théorème fondamental de l'algèbre

Soit $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_k z^k + \cdots + a_1 z + a_0$ une fonction polynomiale de $z \in \mathbb{C}$, où les coefficients a_n, \dots, a_0 (il y en a n+1) sont complexes. On suppose $a_n \neq 0$ (sinon on l'aurait fait disparaitre). L'entier n s'appelle le degré de P.

Racines de P

On dit que $r \in \mathbb{C}$ est racine (on dit aussi zéro) d'ordre $m \geq 1$ de P si P(z) peut être factorisé sous la forme :

$$P(z) = (z - r)^m Q(z),$$

où Q est également polynomial (de degré n-m) avec $Q(r) \neq 0$.

Si r est racine d'ordre m de P, alors r est racine d'ordre m-1 de P' (dérivée de P).

Factorisation

- P(z) peut être factorisé en (z-r)Q(z) avec Q polynomial si, et seulement si, P(r)=0.
- P(z) peut être factorisé en $(z-r)^mQ(z)$ avec Q polynomial si, et seulement si, $P(r)=0, P'(r)=0, \ldots, P^{(m-1)}(r)=0$ ($P^{(k)}$ désigne la dérivée k-ème de P).

Théorème fondamental (de \mathbb{C} plutôt que de l'algèbre), appelé aussi Théorème de D'Alembert-Gauss.

P polynomial (mais non constant) admet au moins une racine; c'est-à-dire : il existe $r \in \mathbb{C}$ tel que P(r) = 0.

Il existe une multitude de démonstrations de ce théorème, un site web leur est même consacré; ça dépend de ce qu'on suppose connu... comme souvent dans une démonstration mathématique. Nous proposons des produits locaux : une démonstration utilisant les connaissances d'Analyse (réelle) du L1 (et un peu de L2)

J.-B. HIRIART-URRUTY, Le théorème fondamental de l'algèbre. Une démonstration par le calcul différentiel et l'optimisation. Bulletin de l'APMEP, №466, p. 695-698 (publiée en 2006).

Avec les résultats de factorisation, le théorème est complété en :

$$P(z) = a_n(z - r_1)^{m_1}(z - r_2)^{m_2} \cdots (z - r_k)^{m_k},$$

l'entier m_i désignant l'ordre (ou la multiplicité) de la racine r_i . Bien sûr,

$$m_1 + m_2 + \cdots + m_k = n.$$

Cas particulier où les coefficients ai sont réels.

Dans ce cas, si $r \in \mathbb{C}$ est racine de P d'ordre m, il en est de même de \bar{r} (facile à voir puisque $\overline{P(z)} = P(\bar{z})$. Il y a donc deux types de racines de P:

- les racines réelles (if any!); il y en a certainement si n est impair;
- les racines complexes qui vont deux par deux : r_1 et $\overline{r_1}$, r_2 et $\overline{r_2}$, etc.

• Relations entre racines et coefficients.

Soit:

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

$$= a_n \underbrace{\left(z^n + \frac{a_{n-1}}{a_n} z^{n-1} + \dots + \frac{a_1}{a_n} z + \frac{a_0}{a_n}\right)}_{\text{partie factorisée en}}$$

$$(z - r_1)(z - r_2) \cdots (z - r_n)$$

[on fait apparaı̂tre toutes les racines : une racine double deux fois, une racine d'ordre m m fois.]

Il y a des relations entre les racines r_i et les coefficients a_i de P.

Commençons par rappeler ce que l'on sait faire (depuis la Seconde), c'est-à-dire le cas des trinomes du second degré.

Si $P(z) = az^2 + bz + c = a\left(z^2 + \frac{b}{a}z + \frac{c}{a}\right)$ a pour racines r_1 et r_2 , on a

$$r_1 + r_2 = -\frac{b}{a}, \ r_1 r_2 = \frac{c}{a}.$$

De manière générale, on a :

$$r_1 + r_2 + \dots + r_n = -\frac{a_{n-1}}{a_n}$$
 (somme des racines); $[k = 1]$
 $r_1r_2 + r_1r_3 + \dots + r_2r_3 + r_2r_4 + \dots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}$; $[k = 2]$
(produits de deux racines, en bref $\sum r_i r_i$) :

(produits de deux racines, en bref
$$\sum_{i < j} r_i r_j$$
) :

$$\sum_{1 \le i_1 < i_2 < \dots < i_k \le n} r_{i_1} r_{i_2} \cdots r_{i_k} = (-1)^k \frac{a_{n-k}}{a_n} \quad ; \qquad [k]$$

$$(\text{produits de } k \text{ racines})$$

$$r_1 r_2 \cdots r_n = (-1)^n \frac{a_0}{a_n}.$$
 [n]

Attention à l'alternance de signes! La première et la dernière formules sont les plus importantes.

Exemple (n = 3). Soit $P(z) = z^3 + \alpha z^2 + \beta z + \gamma$, de racines r_1 , r_2 et r_3 . Alors

$$z^{3} + \alpha z^{2} + \beta z + \gamma = (z - r_{1})(z - r_{2})(z - r_{3})$$

se traduit en:

$$r_1 + r_2 + r_3 = -\alpha$$

 $r_1r_1 + r_1r_3 + r_2r_3 = \beta$
 $r_1r_2r_3 = -\gamma$.

Quelques exercices

Résoudre
$$\left(\frac{1+ix}{1-ix}\right)^n=e^{i\Theta},\ x\in\mathbb{R}.$$

$$1-u,\dots,1,0=\lambda,\frac{n}{\sqrt{n^4\Omega+\Theta}}={}_{\delta}\Theta \text{ is } \left(\frac{\delta}{\Omega}\right) \text{ and } ={}_{\delta}x \text{ ..d}$$

Si $(a,b) \in \mathbb{C} \times \mathbb{C}$ est tel que $\bar{a}b \neq 1$, on pose $c = \frac{a-b}{1-\bar{a}b}$.

Montrer: $(|c| = 1) \Leftrightarrow (|a| = 1)$ ou (|b| = 1).

Résoudre l'équation $(z+1)^n = \cos(2na) + i\sin(2na)$, où $a \in \mathbb{R}$, $n \in \mathbb{N}$ et $z \in \mathbb{C}$. En déduire une expression simple de

$$P_n(a) := \prod_{k=1}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$$

lorsque $\sin a \neq 0$.

Rép.
$$z_k = \sum_i e^{i\left(a + \frac{k\pi}{n}\right)}$$
, $k = 0, 1, \dots, n-1$.
Le produit des racines vaut $(-1)^n (1 - e^{i2na})$, d'où $P_n(a) = \frac{1}{2^{n-1}} \frac{\sin(na)}{\sin a}$.

Calculer la somme $S := \sum_{k=0}^{n} \frac{\cos(k\alpha)}{(\cos \alpha)^k}$ lorsque $\cos \alpha \neq 0$.

$$\frac{\wp(1+n)\mathrm{nis}}{\wp\,\mathrm{nis}} \cdot \frac{1}{\wp\,^{1+n}\mathrm{soo}} = S$$

Rép. En utilisant une suite géométrique de raison $\frac{e^{i\alpha}}{\cos \alpha}$, on arrive à :

Soit n un entier ≥ 2 et $z_n = e^{\frac{2i\pi}{n}}$. Calculer $(1-z_n)(1-z_n^2)\cdots(1-z_n^{n-1})$.

u ·də \mathbf{y}

Soit $n \in \mathbb{N}^*$ et $\Theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Montrer que :

$$\sum_{k=1}^{n} \sin(k\Theta) = \frac{\sin\left(\frac{n\Theta}{2}\right) \sin\frac{(n+1)\Theta}{2}}{\sin\frac{\Theta}{2}} \quad ; \quad \sum_{k=1}^{n} \cos(k\Theta) = \frac{\sin\left(\frac{n\Theta}{2}\right) \cos\frac{(n+1)\Theta}{2}}{\sin\frac{\Theta}{2}}.$$

Indic. Utiliser
$$\sin(k\Theta) = \frac{e^{ik\Theta} - e^{-ik\Theta}}{2i} = \frac{(e^{i\Theta})^k - (e^{-i\Theta})^k}{2i}.$$

Soit n un entier impair et soit $\Theta \in \mathbb{R}$. Montrer

Soit n = 2p un entier pair. Montrer

$$\cos(2p \, x) = \sum_{k=0}^{p} {2p \choose 2k} \, (-1)^{n-k} \cos^{2k} x \sin^{2(p-k)} x.$$

Indic. Penser à utiliser la formule de MOIVRE.

Vérifier que le cercle-unité \mathbb{U} muni de la loi « multiplication » est un groupe. Même question pour l'ensemble $\mathbb{U}_n = \{1, \omega, \cdots, \omega^{n-1}\}$ des racines de l'unité.

Soit $P = \{z \in \mathbb{C} \mid \mathcal{I}m \ z > 0\}$ (appelé demi-plan de POINCARÉ) et $D = \{z \in \mathbb{C} \mid |z| < 1\}$ (appelé disque-unité de \mathbb{C}). Montrer que l'application $z \mapsto \frac{z-i}{z+i}$ est une bijection de P sur D.

Soit $a, c \in \mathbb{R}$ et $b \in \mathbb{C}$. Qu'est-ce que

$$\{z \in \mathbb{C} \mid az\bar{z} + b\bar{z} + \bar{b}z + c = 0\}?$$

Rép. L'ensemble vide ou un cercle.

On considère l'application $z \in \mathbb{C} \mapsto f(z) := z^2 \in \mathbb{C}$.

Que deviennent avec cette transformation les cercles de rayon r_0 ? les droites d'équation polaire $\Theta = \Theta_0$? les droites d'équation x = c? les droites d'équation y = k?

Ce type de tranformation est utilisé en informatique graphique.

Rép. Un cercle d'équation $r=r_0$ devient un cercle d'équation $r=r_0^2$; une droite

d'équation $\Theta = \Theta_0$ devient une droite d'équation $\Theta = 2\Theta_0$. La figure ci-contre montre que la région $\{1 \le |z| \le \frac{3}{2} \text{ et } \frac{\pi}{6} \le \Theta \le \frac{\pi}{3} \}$ est transformée en la région $\{1 \le |z| \le \frac{3}{2} \text{ et } \frac{\pi}{6} \le \Theta \le \frac{\pi}{3} \}$ est transformée en la région $\{1 \le |z| \le \frac{3}{2} \text{ et } \frac{\pi}{6} \le \Theta \le \frac{\pi}{3} \}$ est transformée

La droite d'équation x=c est transformée en parabole d'équation $v^2=4c^2(c^2-u)$; la droite d'équation $y^2=4k^2(k^2+u)$.

