Forecasting NBA Scores

Final project presentation

David Goldman

Background

The NBA betting markets are known to be *highly efficient* in producing accurate betting lines (forecasts), yet there is surprisingly very little public information as how these forecasts are actually created

This project aims to gain a better understanding of the mechanics involved in forecasting NBA scores

Current Research Question

► Can NBA betting lines be *reasonably accurately* recreated through the <u>simple</u> Data Science technique of Linear Regression?

Future Research Questions

► Can NBA betting lines then be matched further through more <u>advanced</u> Data Science techniques (i.e. machine learning, referee analytics, advanced statistical modeling techniques, etc.)

► Can NBA betting lines then actually be *beaten* (surpassed in accuracy) through betting into the cases where the advanced model *differs* from the betting line (and thus earn a positive ROI over the long-term)?

The Hypothesis

► NBA basketball scores can roughly forecasted using *simple* Data Science techniques

► Given that NBA betting lines are *highly efficient*, a <u>successful</u> first attempt should be just to <u>roughly replicate</u> the market betting lines (within a reasonable margin)

The Data

- ► Basketball-reference.com Best for the overall variety of data
- ► Bigdataball.com Best for exportable box scores
- ► NBA.com Best for team-level advanced analytics
- Pinnacle.com Industry-leading sportsbook for current betting lines
- ► Rotoword.com Best for current player news

Additional Reference

Within the widely respected book, "Basketball on Paper" the author identifies the "four factors of basketball success" and their associated weights of importance:

- ► Shooting (40%) eFG%
- ► Turnovers (25%) TOV%
- ► Rebounds (20%) ORB%
- ► Free Throws (15%) FT / FGA
- ... which served as the starting point for this analysis
- One more metric, "Pace" was also included in the model

Linear regression yielded consistent results in both train and test

Train results

 $R^2 = 0.8928$

Coefficients

- ► Intercept = -66.31
- eFG_pct = 144.07 (p-value = 0.000)
- ► TOV_pct = -130.92 (p-value = 0.000)
- ORB_pct = 48.65 (p-value = 0.000)
- FT_divby_FGA = 31.99 (p-value = 0.000)
- ► PACE = 0.99 (p-value = 0.000)

Now that we have our betas, let's forecast x-values for any given NBA game

► Each team will have offensive and defensive stats for each independent variable

We'll treat teams as essentially two different teams for each of their Home and Away stats

► An average between Team A offense vs Team B opponents stats should suffice for each independent variable

...Let's clarify with an example!

2/23 LA Clippers (away) vs Golden State Warriors (home)

- PTS = -66.31 + 144.07 * eFG_pct + -130.92 * TOV_pct + 48.65 * ORB_pct + 31.99 * FT_divby_FGA + 0.99 * PACE
- ► GSW (home) eFG_pct: 59.5%
- ► LAC (away) *opponent's* eFG_pct: 51.5%
- ► Taking the average yields an expected eFG_pct of 55.4% for GSW
- ► This same methodology can be applied to TOV_pct, ORB_pct, FT_divby_FGA and Pace
- Crunching the math for each team and each independent variable yields an expected score of LAC 108 GSW 116

Final considerations

► "Plain vanilla games" vs games where more attention is required - i.e. where an impact player is not playing... or a team is playing back-to-back games where fatigue is a factor... etc.

Measuring the ongoing accuracy of the model: Logging the model forecasts each day against the betting lines and the actual scores