Теоретическая информатика III

Задачи, предлагаемые для практики 23/26 октября

1. Применить алгоритм Кокка-Касами-Янгера для следующих грамматик и строк:

(a)
$$S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \\ baaba;$$

$$S \rightarrow AT \mid AU \mid \varepsilon \\ T \rightarrow UB \mid b \\ U \rightarrow AT \mid UT \\ A \rightarrow a \\ B \rightarrow b$$

2. Пусть L_1 , L_2 — языки, задаваемыми грамматиками, а R — регулярный язык. Являются ли следующие задачи разрешимыми:

- (a) L_1 пуст;
- (b) L_1 конечен;
- (c) L_1 бесконечен;
- (d) L_1 содержит данное слово w;
- (e) $L_2 \subseteq L_1$;
- (f) $L_1 = R$;
- (g) $L_1 \subseteq R$;
- (h) $R \subseteq L_1$;

3. Являются ли алгоритмически разрешимыми следующие задачи:

- (а) равносильность двух данных грамматик (определяют ли они один и тот же язык);
- (b) однозначность данной грамматики (т.е., отсутствие строк с двумя и более различными деревьями разбора);
- (с)* регулярность языка, порождаемого данной грамматикой.
- 4. Пусть L_1 , L_2 языки, задаваемыми грамматиками. Являются ли следующие свойства или их дополнения распознаваемыми? Имеется в виду наличие алгоритма, который за конечное время всегда подтвердит, что предложение истинно, если это действительно так, но если нет может работать бесконечно.

В случае, если такой "полу-алгоритм" существует, неформально его опишите.

- (a) $L_1 = L_2$;
- (b) L_1 и L_2 содержат хотя бы одно общее слово;
- (c) однозначность грамматики L_1 .

 5^{**} Доказать, что для всякой грамматики G существует грамматика G', задающая циклический сдвиг языка L(G), т.е. $L(G')=\{\,vu\mid uv\in L(G)\,\}.$