Introdução à Bioinformática TP3 - Mutações

Hugo Richard Amaral Luís Eduardo Oliveira Lizardo

Problema

Identificar quais as mutações em uma proteína causam alteração de sua função.

Objetivo

- Utilizar um algoritmo de alinhamento para identificar as mutações;
- Modelar todo o conjunto de proteínas como grafos de contatos intramoleculares;
- Analisar as mutações identificadas de acordo com o potencial impacto que podem causar na função da 2YPI, utilizando o alinhamento de sequências em conjunto com a análise dos grafos.
- Fornecer como resultado as 10 mutações consideradas mais severas, com todos os valores das métricas calculadas para tais mutações e todos os dados que justifiquem o resultado.

Triose-fosfato isomerase - 2YPIA

248 aminoácidos

Fonte: Wikimedia Commons

Alinhamento

- Algoritmo de Needleman-Wunsch:
 - Alinhamento global de duas sequências;
 - Mede a similaridade entre as sequências com base em uma tabela de pontuação;
- Quanto maior o score de alinhamento, mais similares são as sequências.

Fonte: Needleman, Saul B.; and Wunsch, Christian D. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins"

Contatos

 Determinar as interações que ocorrem entre os resíduos da proteína;

Envolve determinar um conjunto de vizinhos de cada

um dos resíduos

Contatos

- Utilizamos o limiar de distância;
- O limiar define quando um contato é realizado;
- Por simplicidade, adotamos o limiar de distância euclidiana com valores em 5Å, 7Å e 9Å.

Contatos como Grafos

- De posse do conjunto de resíduos e das interações entre os mesmos, é necessária uma modelagem que auxilie na caracterização do problema;
- Modelagem natural: Grafos

Métricas de Centralidade

- **Betweenness** Número de menores caminhos de todos os vértices para quaisquer outros vértices que passam por um nó.
- No contexto de interações, um betweenness alto é esperado nos casos de resíduos que atuam como pontes na estrutura da proteína.

Li, Yizhou, et al. "Predicting disease-associated substitution of a single amino acid by analyzing residue interactions." BMC bioinformatics 12.1 (2011): 14.

Métricas de Centralidade

- Closeness (Centralidade) Distância geodésica média entre um vértice e todos os outros vértices do grafo.
- Grau Número de outros vértices que fazem conexão com o vértice em referência.

 Mutações estão associadas frequentemente a doenças quando acontecem num ponto com baixo valor de closeness e/ou alto grau na rede

Li, Yizhou, et al. "Predicting disease-associated substitution of a single amino acid by analyzing residue interactions." BMC bioinformatics 12.1 (2011): 14.

Metodologia - Alinhamento 2YPI e dTIM

 Objetivo: Identificar todas as mutações que ocorreram na dTIM;

Ferramenta: Biopython (http://biopython.org/)

Matriz de pontuação: PAM60

• Gap: -10.0, Gap extension: -0.5

Metodologia - Alinhamento 2YPI e dTIM

- Objetivo: Identificar aminoácidos com características semelhantes e agrupá-los.
- A troca desses aminoácidos causam pouco impacto na função da proteína.

Fonte: Vermont ViewER MutatiON Tool

Metodologia - Alinhamento: Família

- Alinhamos a 2YPI com todas as 133 proteínas da família;
- Objetivo: Identificar se as mutações que ocorrem na dTIM também ocorrem nas famílias;
- Filtramos apenas as mutações que não ocorreram nas famílias;

Metodologia - Cálculo das distâncias

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Metodologia - Contatos

Modelagem dos contatos como grafos: geração dos arquivos .net

```
*Vertices 247
1 "GLY118"
2 "SER50"
3 "PHE74"
4 "SER52"
5 "LEU117"
6 "SER235"
7 "ALA136"
8 "VAL7"
9 "VAL241"
10 "LEU68"
11 "ARG189"
12 "ASN159"
13 "GLY214"
14 "PR0166"
15 "GLY62"
16 "VAL80"
17 "VAL86"
18 "ASN78"
19 "GLY94"
20 "GLU239"
22 "LEU93"
23 "GLU144"
24 "ILE32"
25 "TYR49"
26 "ARG26"
```

```
*Edges
211 183 3.722
183 125 3.835
125 163 3.800
163 162 3.819
162 8 3.834
162 152 4.653
8 218 3.835
8 217 4.485
8 232 4.648
218 219 3.835
218 28 4.337
219 241 3.775
219 180 4.815
219 6 4.575
241 85 3.810
241 52 4.743
241 39 4.503
85 207 3.827
207 118 3.903
118 238 3.772
238 143 3.718
143 200 3.735
200 209 3.811
200 170 4.737
200 198 4.663
209 170 3.750
```

Metodologia - Métricas de redes

- Utilização do pacote igraph Python;
- Geração dos seguintes dados:
 - Grau;
 - Betweenness;
 - Closeness

 Calculado para cada uma das mutações encontradas no alinhamento

Resultados - Alinhamento

Total: 50 mutações

2YPIA	MARTFFVGGN	FKLNGSKQSI	KEIVERLNTA	SIPENVEVVI	CPPATYLDYS
dTIM	MARTPFVGGN	WKMNGTKAEA	KELVEALK-A	KLPDDVEVVV	APPAVYLDTA
	•	VGAQNAYLKA		•	
	REALKGSKIK	VAAQNCYKEA	KGAFTGEISP	EMLKDLGADY	VILGHSERRH
		DKTKFALGQG			•
	YFGETDELVA	KKVAHALEHG	LKVIACIGET	LEEREAGKTE	EVVFRQTKAL
		VVVAYEPVWA		•	
	LAGLGDEWKN	VVIAYEPVWA	IGTGKTATPE	QAQEVHAFIR	KWLAENVSAE
	AASELRILYG	GSANGSNAVT	FKDKADV	DGFLVGGASL	KPEFVDIINS
	VAESVRILYG	GSVKPANA	-KELAAQPDI	DGFLVGGASL	KPEFLDIINS
	RN				
	RN				

	Resíduo	Soma
1°	C41A	2,496
2°	G214P	1,947
3°	N148K	1,849
4º	A66C	1,822
5°	L68K	1,713
6°	L147T	1,674
7°	E144F	1,663
8°	G118E	1,565
9°	S50A	1,559
10°	V51R	1,553

Resíduo	Soma Ponderada (3 2 1)
C41A	0,916
G214P	0,707
N148K	0,608
A66C	0,605
L68K	0,556
G118E	0,534
L147T	0,507
E144F	0,496
N78I	0,485
Q58K	0,474

Resíduo	Soma Ponderada (2 1 1)
C41A	0,874
G214P	0,737
N148K	0,662
A66C	0,605
G118E	0,591
L68K	0,578
L147T	0,569
E144F	0,566
S50A	0,540
V51R	0,538

	Resíduo	Soma
1°	T113V	2,542
2°	K89D	2,516
3°	V51R	2,481
4°	T60K	2,192
5°	G122K	2,191
6°	C41A	2,175
7°	K114A	1,988
8°	Q58K	1,970
9°	V80P	1,910
10°	A66C	1,901

Resíduo	Soma Ponderada (3 2 1)
T113V	0,893
K89D	0,887
V51R	0,848
C41A	0,790
G122K	0,781
T60K	0,761
K114A	0,693
Q58K	0,665
V80P	0,648
N213K	0,635

Resíduo	Soma Ponderada (2 1 1)
T113V	0,863
K89D	0,856
V51R	0,825
C41A	0,794
G122K	0,775
T60K	0,753
K114A	0,724
V80P	0,682
Q58K	0,674
N213K	0,654

	Resíduo	Soma
1°	T113V	2,550
2°	V80P	2,453
3°	T60K	2,359
4°	L147T	2,106
5°	N78I	2,093
6°	C41A	2,078
7°	A66C	2,012
8°	L140E	1,906
9°	G122K	1,812
10°	K114A	1,811

Resíduo	Soma Ponderada (3 2 1)
T113V	0,882
V80P	0,865
T60K	0,788
C41A	0,727
L147T	0,678
A66C	0,670
N78I	0,668
L140E	0,602
G122K	0,600
K114A	0,593

Soma Ponderada (2 1 1)
0,863
0,855
0,775
0,737
0,688
0,679
0,675
0,629
0,627
0,616

Conclusão

• 10 mutações mais severas

C41A
G214P
N148K
T113V
K89D
V51E
V80P
T60K
A66C
L147T

Perguntas

