Particle spectrograph

Wave operator and propagator

			1 1				$\omega_{2}^{\#1} \alpha \beta_{2}^{\#1}$ $\frac{t_{1}}{\sqrt{2}}$ 0
0	0	0	īkt ₁	0	0	0	$\alpha \beta \chi$
0	0	0	0	0	0	0	$\omega_{2}^{#1} + \alpha \beta$ $f_{2}^{#1} + \alpha \beta$ $\omega_{2}^{#1} + \alpha \beta \chi$
0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$\omega_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#2}$ $\omega_{0^{-}}^{\#1}$
			- <u>t1</u>			1	$\omega_{0+}^{\#1} + -t_1 \qquad i \sqrt{2} kt_1 \qquad 0 \qquad 0$
0	0	0	-k² r1 -	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{l}kt_1$	$f_{0+}^{\#1} + -i \sqrt{2} kt_1 - 2k^2t_1 = 0$
\sim I	(2)	(2)	•				$f_{0+}^{#2} \dagger $
$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0	$\omega_0^{\#1} + \boxed{0} \boxed{0} \boxed{0} \boxed{t_2}$
$-\frac{ik(t)}{3}$							Source constraints/gauge generators
	$\frac{t_1+t_2}{3}$	$i k (t_1 + t_2)$	0	0	0	0	SO(3) irreps Multiplicities
$\frac{t_1-2t_2}{3\sqrt{2}}$							$\tau_{0+}^{\#2} == 0$ 1
- t1 3							$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0 \qquad \qquad 1$
5)		- <u>1</u> 3					$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0 3$
+ 4 t;	$\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	$\tau_{1}^{\#1\alpha} == 0 \qquad \qquad 3$
$\frac{1}{6}(t_1+4t_2)$						_	$\tau_{1+}^{\#1\alpha\beta} + ik \sigma_{1+}^{\#2\alpha\beta} == 0 3$
$+^{\alpha\beta}$	$+\alpha\beta$	$+^{\alpha\beta}$	$+^{\alpha}$	$+_{\alpha}$	$\epsilon_{1}^{\#1} + \alpha$	$f_{1}^{#2} + \alpha$	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$
$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1}$	$f_{1}^{\#2}$	Total constraints: 16

$\tau_{2}^{*+}c$	$-\frac{2^{n}}{(1+2k^{2})^{n}}$ $\frac{4k^{2}}{(1+2k^{2})^{n}}$	0									
$\sigma_{2}^{*1}\alpha\beta$	$\frac{(1+2)}{2i}$	0									
$\sigma_{2}^{\#1} + \alpha \beta$ $\tau_{2}^{\#1} + \alpha \beta$ $\sigma_{2}^{\#1} + \alpha \beta \chi$											
	$\sigma_{0}^{\#1}$		$\tau_{0}^{\#1}$ $\tau_{0}^{\#2}$	$\sigma_0^{\#1}$							
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t}$	$\begin{bmatrix} - & \frac{i}{1} & 1 \\ 1 & (1+2) \end{bmatrix}$	$\frac{\sqrt{2} k}{(k^2)^2 t_1} \qquad 0$	0							
$ au_{0^{+}}^{\#1}$ † $ au_{0^{+}}^{\#2}$ † $ au_{0^{+}}^{\#2}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t}$	$-\frac{2}{(1+2)}$	$\frac{2k^2}{(k^2)^2t_1}$ 0	0							
$\tau_{0}^{\#2}$ †	0		0 0	0							
$\sigma_{0}^{\!\#1} \dagger$	0		0 0	$\frac{1}{t_2}$							

0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$