近世代数课后习题作业1部分参考解答

3.

证明: 只须证: 对 $\forall x, y \in S$,若有 $(a \circ b) \circ x = (a \circ b) \circ y$,则必有x = y。

由 结 合 律 知 $(a\circ b)\circ x=a\circ (b\circ x)$, $(a\circ b)\circ y=a\circ (b\circ y)$, 从 而 $a\circ (b\circ x)=a\circ (b\circ y)$,又 a 为左消去元,故有 $b\circ x=b\circ y$,而 b 也为左消去元,所以有 x=y 。

4.

证明:由普通加法和乘法满足交换律知所定义的二元运算"。"满足交换律。

- 1) 证(M,o) 为幺半群
- ①由定义知二元运算"。" 显然为M上的一个二元代数运算,即(M, \circ)为一代数系;
- ②又对 $\forall (x_1, y_1), (x_2, y_2), (x_3, y_3) \in M$ 有:

$$((x_1,y_1)\circ(x_2,y_2))\circ(x_3,y_3)=(x_1,y_1)\circ((x_2,y_2)\circ(x_3,y_3))$$
, 即满足结合律。

- ③单位元: 对 $\forall (x, y) \in M$ 有 $(1,0) \circ (x, y) = (x, y) \circ (1,0) = (x, y)$
- 2) 左消去元

$$(x_1, x_2) \circ (z_1, z_2) = (x_1 z_1 + 2x_2 z_2, x_1 z_2 + x_2 z_1)$$

若
$$(x_1y_1+2x_2y_2,x_1y_2+x_2y_1)=(x_1z_1+2x_2z_2,x_1z_2+x_2z_1)$$
,则:

$$x_1(y_1 - z_1) + 2x_2(y_2 - z_2) = 0$$

$$x_1(y_2 - z_2) + x_2(y_1 - z_1) = 0$$

可得:
$$2x_2^2(y_2-z_2)=x_1^2(y_2-z_2)$$
, 即 $(x_1^2-2x_2^2)(y_2-z_2)=0$

因为
$$x_1^2 - 2x_2^2 \neq 0$$
所以 $y_2 - z_2 = 0$,从而 $y_1 - z_1 = 0$

5.

6.

证明: 设(S, \circ) 为有限半群,且|S|=n。设b\inS,则可得: b^1 , b^2 ,..., b^n , b^{n+1} $\in S$ 则由S 的有限性知, $\exists i, j \in [1, n+1]$ 使得 $b^j = b^i$,不妨设 j > i,即 j = i + k,k > 0。从而有: $b^i \circ b^k = b^i$,则两边同时连续左乘b 可得 $b^p \circ b^k = b^p$,且满足 $p = q \cdot k$,从而运用递归调用可得 $b^p = b^p \circ b^{2k} = \cdots = b^p \circ b^{qk}$,即 $b^p \circ b^p = b^p$,令 $a = b^p$ 即可。

7.

证明:

- I. 证(*M*,*)为半群:
- 1) 由"*"定义知满足封闭性;
- 2) 显然"*"满足结合律。
- II. 设 e' 为 (M,*) 的单位元,则对 $\forall a \in M$,有 a*e'=e'*a=a ,即 $a \circ m \circ e'=a$, $e' \circ m \circ a=a$,由结合律: $a \circ (m \circ e')=a$, $(e' \circ m) \circ a=a$,由 a 的任意性知 $m \circ e'$ 与 $e' \circ m$ 为 M 关于 " \circ " 运算的左右单位元,而 (M,\circ,e) 为 么 半群,故有 $m \circ e'=e$, $e' \circ m=e$,则由逆元素的定义知 e' 为 m 关于 " \circ " 运算的逆元素,即为 m 满足的条件。

8.

证明:

- 1) 结合律:由集合论知识知集合的对称差运算" Δ "满足结合律,故(2^s , Δ)为半群;//这里结合律可以直接调用,不用再验证。
- 2) 单位元: 对 $\forall A \in 2^{S}$ 有 $\phi \Delta A = A \Delta \phi = A$;
- 3) 逆元: 对 $\forall A \in 2^{s}$ 有 $A\Delta A = A\Delta A = \phi$,即为自身。故 $(2^{s}, \Delta)$ 为群。

9.

在所有 3 次置换构成的集合 S_3 对置换的乘法构成半群 (S_3,\circ) 中,令 $A=\{(12),(23)\}$,请给出由 S_3 的子集 A 所生成的子半群 (A) 。

解: 直接对A根据生成迭代算法可得 $(A)=S_3$,即包含A的子半群只能是 S_3 。

//这里关于置换的复合运算也就是有限集合上的双射复合运算,请大家查阅前面集合论的内容,这个复合运算后面我们经常用到。//

10.

证明: 主要验证一下结合律,显然。

近世代数课后习题作业2参考解答

1.

证明: 先证 $x \circ x = x$

由己知得: 对 $\forall x \in S$ 有 $x \circ e_1 = e_1 \circ x = x$, $x * e_2 = e_2 * x = x$

则有 $x \circ x = (x * e_2) \circ (x * e_2) = x * (e_2 \circ e_2)$,下证 $e_2 \circ e_2 = e_2$

因为
$$e_2 = e_1 \circ e_2 = (e_1 * e_2) \circ e_2 = (e_1 \circ e_2) * (e_2 \circ e_2) = e_2 * (e_2 \circ e_2) = e_2 \circ e_2$$

所以 $x \circ x = x * e_2 = x$

再证x*x=x

$$x * x = (x \circ e_1) * (x \circ e_1) = x \circ (e_1 * e_1), \quad \text{Till } e_1 * e_1 = e_1$$

因为
$$e_1 = e_2 * e_1 = (e_1 \circ e_2) * e_1 = (e_1 * e_1) \circ (e_2 * e_1) = (e_1 * e_1) \circ e_1 = e_1 * e_1$$

所以 $x*x = x \circ e_1 = x$ 。

2.

证明: 记 $H = \{x \mid \exists a_1, a_2, \dots, a_n \in A \notin x = a_1 a_2 \dots a_n, n \ge 1\}$,下证(A) = H

1) 先证 H 为包含 A 的子半群。

显然 $A \subseteq H$ (令 n=1即可), 且"。" 在 H 上的运算封闭, 故 H 为包含 A 的子半群。

2) 下证H的"最小性"。

设P为任意包含A的子半群,下证H ⊂P。

对 $\forall x \in H$, $\exists a_1, a_2, \dots, a_i \in A$ 使 得 $x = a_1 a_2 \dots a_i$, 又 $A \subseteq P$, 所 以

 $a_1, a_2, \dots, a_i \in P$, 故有 $a_1 a_2 \dots a_i \in P$, 即 $x \in P$, 所以 $H \subseteq P$ 。

3.

证明: $\diamondsuit P = \{a | a \circ a = a, a \in M\}$

- ① 显然有 $e \in P$,故 $P \neq \phi$,且 $P \subseteq M$;
- ② 下证封闭性: 对 $\forall a,b \in P$, 下证 $a \circ b \in P$

因为 $(a \circ b) \circ (a \circ b) = a \circ (b \circ a) \circ b = a \circ (a \circ b) \circ b = (a \circ a) \circ (b \circ b) = a \circ b$, 故

 $a \circ b \in P$ \circ

4

解: 不一定。设 $G = (a) = \{e, a^1, a^2, a^3, \dots\}$, $\{e, a^2, a^3, \dots\}$ 为G的子幺半群,但不是循环幺半群。//成立的正例请大家自己给出。

5.

证明: 记 $S = \varphi^{-1}(e_2)$, 则 $S = \{x | \varphi(x) = e_2, x \in M_1\}$, 显然有 $S \subseteq M_1$

- ① S 非空: 由 $\varphi(e_1) = e_2$ 知 $e_1 \in S$ 。
- ②封闭性: 对 $\forall x, y \in S$ 有: $\varphi(x) = e_2$, $\varphi(y) = e_2$,

则 $\varphi(x \circ y) = \varphi(x) * \varphi(y) = e_2 * e_2 = e_2$, 所以 $x \circ y \in S$

故S是 M_1 的一个子幺半群。

若 $S \in M_1$ 的理想,则有 $SM_1 \subseteq S$, $M_1S \subseteq S$

 $\forall x \in S$, $\forall y \in M_1$, $\varphi(x \circ y) = \varphi(x) * \varphi(y) = e_2 * \varphi(y) = \varphi(y)$

同理 $\varphi(y \circ x) = \varphi(y) * \varphi(x) = \varphi(y) * e_2 = \varphi(y)$

所以如果 $\varphi(y) = e_2$,则 $x \circ y(y \circ x) \in S$,此时 $S \in M_1$ 的理想,否则不是。

6.

证明: 设 $\varphi:(S_1,*) \to (S_2,\bullet)$ 同态, $\psi:(S_2,\bullet) \to (S_3,\Delta)$ 同态,记 $f = \psi \circ \varphi$,由映射的符合知f为 $S_1 \to S_3$ 的映射。又对 $\forall x, y \in S_1$:

$$f(x * y) = \psi \circ \varphi(x * y) = \psi(\varphi(x * y)) = \psi(\varphi(x) \bullet \varphi(y)) = \psi(\varphi(x)) \Delta \psi(\varphi(y))$$

所以 $f = \psi \circ \varphi$ 为 $S_1 \to S_3$ 的同态,即两个同态的合成还是同态。

 $= \psi \circ \varphi(x) \Delta \psi \circ \varphi(y) = f(x) \Delta f(y)$

7.

证明:由二元运算"。"的定义知其为 (S,\circ) 上的二元代数运算。

1) 结合律: 显然:

2) 单位元: e=(1,0);

3) 逆元: 对
$$\forall (a,b) \in S$$
, $(a,b) \circ (\frac{1}{a}, -\frac{b}{a}) = (\frac{1}{a}, -\frac{b}{a}) \circ (a,b) = (1,0)$

综上(S, \circ)是群。

8.

证明:

1) 封闭性: $(x_i x_i)^n = 1$

2) 结合律:显然; //复数的乘法。

3) 单位元: e=1;

4) 逆元:
$$x_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$$
 $x_k^{-1} = \cos \frac{2k\pi}{n} - i \sin \frac{2k\pi}{n}$

9.

证明: 此题中由
$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
 \bullet $\begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix}$ = $\begin{bmatrix} ac & 0 \\ 0 & bd \end{bmatrix}$, 其中 $ac = \pm 1, bd = \pm 1$, 故 G 对矩阵

乘法封闭性显然满足, 故构成一个代数系。

1) 结合律:矩阵乘法满足结合律:

2) 单位元:
$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
;

逆元:
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

近世代数课后习题作业3参考解答

2. 证明: 由 $\forall a \in G$, $a^2 = e \Rightarrow$ 对 $\forall a \in G$ 有 $a = a^{-1}$ 。从而对 $\forall a, b \in G$, $ab = (ab)^{-1}$ $= b^{-1}a^{-1} = ba$ 。

3. 证明: 设 $G = \{e, a, b, c\}$, (G, \circ) 为群。其乘法表为:

•	e	a	b	c
e	e	а	b	c
a	a	aa	ab	ac
b	b	ba	bb	bc
c	c	ca	cb	cc

验证交换性只须验证乘法表中的矩阵的对称性即可,即只须验证:

1) ab 与 ba: 显然 $ab \neq a,b$, 故 ab = e,c

 $\ddot{a}ab=e$,即 a与 b 互逆,则必有 ba=e,从而 ab=ba; 若 ab=c,则 ba=c,否则若 ba=e,则必有 ab=e,从而 c=e矛盾。 综上 ab=ba。

同理可得: ac=ca, bc=cb。

4. **证明**:设 (G,\circ) 为非交换群,且|G|>2(注:不一定为有限群),只须找到元素 $a\in G$,且 $a^{-1}\neq a$ 即可。

即只须在G中找到一个元素,其阶大于 2 即可。若G中不存在这样的元素,即对 $\forall a \in G$ 均有 $a^2 = e$,则由前面 2 题的结论知G为交换群,矛盾。故 $\exists a \in G$,其

阶大于 2, 即 $a^{-1} \neq a$, 从而令 $b = a^{-1}$, 显然有 $b \neq a$, 但 ab = ba。

5. 证明: 设 (G,\circ) 为有限群, |G|=n, 对 $\forall a\in G$, 若a的阶为r且r>2, 即 $a^r=e$,

则 a^{-1} 的阶也为 r (参见课堂上的思考题结论),即 $(a^{-1})^r=e$,且 $a^{-1}\neq a$,从而 阶大于 2 的元素成对出现,故阶大于 2 的元素个数必为偶数。

6. **证明**:设(G, \circ)为有限群,|G|=2n,设元素阶为 2 的个数为m,元素阶大于 2 的个数为2k,元素阶为 1 仅有单位元,则有:1+m+2k=2n,所以m必为奇数。

- 7. 证明: 由上题结论即可知。
- 8. 设 a_1, a_2, \dots, a_n 为n阶群G中的n个元素(它们不一定各不相同)。证明:存在整数p和q($1 \le p \le q \le n$),使得 $a_n a_{n+1} \dots a_q = e$

证明:考查元素序列: e, a_1 , a_1a_2 , $a_1a_2a_3$, ..., $a_1a_2 \cdots a_n \in G$, 而|G|=n, 故上述n+1个元素中至少有两个元素相同,若其中一个为e, 则有: $a_1a_2 \cdots a_i = e$ 此时令p=1,q=i即可;若两个元素均不为e,则存在 $i,j \in [1,n]$,不妨设i < j,使得 $a_1a_2 \cdots a_i = a_1a_2 \cdots a_j = a_1a_2 \cdots a_i a_{i+1} \cdots a_j$,由消去律得: $a_{i+1} \cdots a_j = e$,此时令p=i+1,q=j即可。

9. 证明:

充分性 \leftarrow : 由 $G_1 \subseteq G_2$ 或 $G_2 \subseteq G_1 \Rightarrow G_1 \cup G_2 = G_1$ 或 $G_1 \cup G_2 = G_2$ 是G的子群。 必要性 \Rightarrow : 假设不成立,则由 $e \in G_1 \cap G_2$ 知:

至少 $\exists a \in G_1 \land a \notin G_2$, $\exists b \in G_2 \land b \notin G_1$ 。

由 $a \in G_1 \cup G_2$, $b \in G_1 \cup G_2$ 及 $G_1 \cup G_2$ 为子群得: $ab \in G_1 \cup G_2$,从而 $ab \in G_1$ 或 $ab \in G_2$ 。若 $ab \in G_1$,则由 $a^{-1} \in G_1$ 知 $a^{-1}(ab) \in G_1 \Rightarrow b \in G_1$ 矛盾;若 $ab \in G_2$,则 由 $b^{-1} \in G_2$ 知 $(ab)b^{-1} \in G_2 \Rightarrow a \in G_2$ 矛盾,故假设不成立。

- 10. 证明: 记 $S = \varphi^{-1}(e_2)$, 则 $S = \{x | \varphi(x) = e_2, x \in G_1\}$, 显然 $S \subseteq G_1$
- 1) S 非空: 对 $\forall y \in G_2$, 由 φ 为满射,则 $\exists x \in G_1$,使得 $y = \varphi(x)$,从而 $\varphi(e_1) * y = \varphi(e_1) * \varphi(x) = \varphi(e_1 \circ x) = \varphi(x) = y$,同理有 $y * \varphi(e_1) = \varphi(x) = y$,即有: $\varphi(e_1) * y = y * \varphi(e_1) = y$,从而 $\varphi(e_1) = e_2$,故有 $e_1 \in S$ 。
- 2) 封闭性: 对 $\forall x, t \in S$, 有 $\varphi(x) = e_2$, $\varphi(t) = e_2$, 则 $\varphi(x \circ t) = \varphi(x) * \varphi(t) = e_2$,

所以 $x \circ t \in S$ 。

- 3) 结合律: 显然。
- 4) 单位元: $e_1 \in S$ 。
- 5) 逆元: 对 $\forall x \in S$, 有 $\varphi(x) = e_2$, 则: $e_2 = \varphi(e_1) = \varphi(x \circ x^{-1}) = \varphi(x) * \varphi(x^{-1})$

$$=e_2*\varphi(x^{-1})=\varphi(x^{-1})$$
,即 $\varphi(x^{-1})=e_2$,所以 $x^{-1}\in S$ 。

11. **解**:
$$(S_1) = Z$$
, $(S_2) = \{3k | k \in Z\}$

//请大家自己对照生成算法给出生成过程。第一个由 5,7 很快能生成 Z 出的生成元 "1"来。第二个由生成算法能很快看出其规律,新加入的元素为它们公因子 3 的倍数。//

近世代数课后习题作业4参考解答

- 1. 证明: 显然对 $\forall f \in G$, f为双射。
- 1) 封闭性: 对 $\forall f,g \in G$, 设f(x) = ax + b, g(x) = cx + d, $a \neq 0, c \neq 0$,

則 $f \circ g(x) = f(g(x)) = f(cx+d) = a(cx+d) + b = (ac)x + ad + b$,所以 $f \circ g \in G$

- 2) 结合律: 映射的复合满足结合律。
- 3) 单位元: $I_{\alpha}(x) = x$
- 4) 逆元: 显然对 $\forall f \in G$,由 f 为双射,故 f 可逆,且 $f^{-1}(x) = \frac{1}{a}x \frac{b}{a}$,则 $f^{-1} \in G$ 。
- 2. 证明:
- 1) 由 φ 的构造知 φ 为双射。
- 2) 同构方程: 对 $\forall x, y \in R^+$, $\varphi(x \times y) = \log_p (x \times y) = \log_p x + \log_p y = \varphi(x) + \varphi(y)$ 。
- 3. 证明: 记 $U_n = \{x \mid x^n = 1\}$,对 $\forall x_k \in U_n$, $x_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$, $k = 0,1,\cdots,n-1$ 。由前面的习题作业知其为群,且有 $U_n = (x_1)$,其中 $x_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$, $x_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = (\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n})^k = (x_1)^k \circ \frac{2\pi}{n}$
- 4. 解: (Z_{12}, \oplus) 为模 12 的同余类加群, $Z_{12} = (a) = ([1])$,其非平凡真子群如下:
- 1) $S_1 = (2a) = \{[0], [2], [4], [6], [8], [10]\}$
- 2) $S_2 = (3a) = \{[0], [3], [6], [9]\}$
- 3) $S_3 = (4a) = \{[0], [4], [8]\}$
- 4) $S_4 = (6a) = \{[0], [6]\}$

 $a^1=a^{k_1\cdot n+k_2\cdot r}=a^{k_1\cdot n}a^{k_2\cdot r}=ea^{k_2\cdot r}=(a^r)^{k_2}$,即 $a=(a^r)^{k_2}$,则 G 的生成元 a 可由 a^r 生

成,故有: $(a^r) = G$ 。

6. 证明:设 a^r 的阶为k,则 $(a^r)^k = e$,即 $a^{rk} = e$ 。又 $a^n = e$,所以n|rk,又(r,n) = d,

则有:
$$\frac{n}{d} | \frac{r}{d} k$$
, 而 $(\frac{n}{d}, \frac{r}{d}) = 1$, 所以 $\frac{n}{d} | k$ 。

又由
$$(a^r)^{\frac{n}{d}} = a^{\frac{nr}{d}} = (a^n)^{\frac{r}{d}} = e^{\frac{r}{d}} = e$$
 得: $k \mid \frac{n}{d}$, 从而 $k = \frac{n}{d}$

- 7. 证明: 设(G, \circ)为六阶群。则对 $\forall x \in G(x \neq e)$,其阶只能为 2, 3, 6。
- 1) 若 $\exists a \in G$,且 a 的阶为 6 ,即 $a^6 = e$,则 G = (a),则由循环群的子群知存在 三阶子群为: $S = \{e, a^2, a^4\}$
- 2) 若 $\exists a \in G$,且 a 的阶为 3 ,即 $a^3 = e$,此时显然有三阶子群为: $S = \{e, a^1, a^2\}$
- 3)若不存在 $a \in G$,使得 a 的阶为 3 或 6,则对 $\forall a \in G$ 有 $a^2 = e$,从而此时群 (G, \circ) 为交换群。令 $A = \{a,b\}$,其中 $a,b \in G$ 且均不为单位元。则 $(A) = \{e,a,b,ab\}$, |(A)| = 4/6 矛盾。

- 8. 证明: 设 (G,\circ) 为群, $|G|=p^m$ 。取 $a\in G(a\neq e)$,设其阶为r,则 $r|p^m$,由p为素数得: $r=p^k$, $k\geq 1$ 。
- 1) 若 k=1,则群G的一个p阶子群为H=(a);
- 2)若 k > 1,取 $b = a^{p^{k-1}} \in G$,设 b 的阶为 q,即 $b^q = e$ 。由 $b^p = (a^{p^{k-1}})^p = a^{p^k} = e$ $\Rightarrow q \mid p , \nabla b^q = (a^{p^{k-1}})^q = a^{qp^{k-1}} = e$,则有 $r \mid qp^{k-1}$,即: $p^k \mid qp^{k-1}$,从而 $p \mid q$,所以 q = p。此时群 G 的一个 p 阶子群为 H = (b)。

 满射:显然。

单射: 对 $\forall aH, bH \in S_l$, 若 $aH \neq bH$, 下证 $\varphi(aH) \neq \varphi(bH)$ 。

若 $\varphi(aH)=\varphi(bH)$,则有 $Ha^{-1}=Hb^{-1}$,从而 $Ha^{-1}b=H$,由定理

12. 6. 1 知 $a^{-1}b \in H$,从而aH = bH,矛盾。

近世代数课后习题作业5参考解答

1.

证明:设 $H = A \cap B$,则由定理知H仍为群G的子群,则由拉格朗日定理得:

$$|B| = H | \cdot \{B: H\}$$
 , 记 $j = [B: H] = \frac{|B|}{|H|}$, 则 $B = Hb_1 \cup Hb_2 \cup \cdots \cup Hb_j$, $b_i \in B(i = 1, \cdots, j)$ 其 中 $Hb_i(i = 1, \cdots, j)$ 为 互 不 相 同 的 右 陪 集 。 则 $AB = AHb_1 \cup AHb_2 \cup \cdots \cup AHb_j$, 又 $AH = A$, 所以 $AB = Ab_1 \cup Ab_2 \cup \cdots \cup Ab_j$, 又 $Ab_i \cap Ab_l = \phi$, 否则, 若 $Ab_i \cap Ab_l \neq \phi$,则由陪集的性质得: $Ab_i = Ab_l$, 从 而 $b_i b_l^{-1} \in A$,又 $b_i b_l^{-1} \in B$,所以 $b_i b_l^{-1} \in A \cap B$,即 $b_i b_l^{-1} \in H$,所以 $Hb_i = Hb_l$,

矛盾。因此根据容斥原理有: $|AB|=|Ab_1|+|Ab_2|+\cdots+|Ab_i|=j\cdot|A|$

$$\exists \mathbb{U} \mid AB \mid = \frac{\mid B \mid}{\mid H \mid} \cdot \mid A \mid = \frac{\mid A \parallel B \mid}{\mid A \cap B \mid}$$

2.

证明:假设不成立,则 $\exists a \in G$,使得 $a^{-1}Ha \cap H = \{e\}$,记 $P = a^{-1}Ha$,由 H 为 G 的子群易知 P 也为 G 的子群,且 $|P| \exists H \models n$ (由映射 $\varphi(h) = a^{-1}ha$ 为单射),则由 1 题的结论: $|PH| = \frac{|P||H|}{|P \cap H|} = \frac{n \cdot n}{1} = n^2$,又 $PH \subseteq G$, $|G = n^2$,所以 PH = G,

则由教材中的例题结论知 $P \cap H = H \neq \{e\}$,矛盾。

3.

证明: 由前面的习题结论知六阶群中一定有三阶子群,假设不唯一,设A,B为六 阶群G两个不同的三阶子群。不妨设 $A = \{e,a,b\}$, $B = \{e,c,d\}$,则 $A \cap B = \{e\}$ 。 从而 $AB = \frac{|A||B|}{|A \cap B|} = 9 > 6$ 矛盾。

4.

证明:设 H 为群 G 的子群,且有 [G:H]=2,则其左陪集构成的划分为: H,aH $(a \not\in H)$,其右陪集构成的划分为: $H,Ha(a \not\in H)$,从而 $aH=G \setminus H$

 $Ha = G \setminus H$, 所以 aH = Ha。

证明:设 H_1, H_2 为群 G 的两个正规子群,记 $H = H_1 \cap H_2$ 。则对 $\forall a \in G, h \in H$,由 H_1, H_2 为 群 G 的 两 个 正 规 子 群 得: $aha^{-1} \in H_1$, $aha^{-1} \in H_2$, 所 以 $aha^{-1} \in H_1 \cap H_2$,即 $aha^{-1} \in H$,故 $H \not\in G$ 的正规子群。

6.

证 明: 对 $\forall a,b \in NH$, 则 $\exists n_1,n_2,h_1,h_2 \in NH$,使 得 $a=n_1h_1,b=n_2h_2$, 则 $ab^{-1}=n_1h_1h_2^{-1}n_2^{-1}$ 。又由 N 是 G 的正规子群,则对 $\forall x \in G$, xN=Nx 。故 $\exists n_3 \in N$ 使得 $h_2^{-1}n_2^{-1}=n_3h_2^{-1}$,则 $ab^{-1}=n_1h_1n_3h_2^{-1}$,同理 $\exists n_4 \in N$,使得 $h_1n_3=n_4h_1$,从 而 $ab^{-1}=n_1n_4h_1h_2^{-1}=(n_1n_4)(h_1h_2^{-1})\in NH$,则由子群的判定定理知 NH 是 G 的子群。

7.

证明: 设G为群且 |G|=2n,则由前面习题作业结论知偶数阶群G中一定存在一个阶为 2 元素,即 $\exists a \in G$, $a^2=e$,从而 $H=(a)=\{e,a\}$ 。由G为交换群,则对 $\forall x \in G$, $xH=Hx=\{x,ax\}=\{x,xa\}$,故 H为群G的一个 2 阶正规子群,根据拉格朗日定理以及正规子群和商群的关系知G必有一个 n 阶商群。

证明:

必要性 \Rightarrow : 对 $\forall a,b \in G$,由 H 为 G 的正规子群可得: $aH \cdot bH = a(Hb)H = a(bH)H = abHH = abH$,仍为 H 的左陪集。

充分性 \Leftarrow : 由已知可得: 对 $\forall a \in G$, $aH \cdot a^{-1}H = cH$, 因为 $e \in aH \cdot a^{-1}H$, 从 而 $e \in cH$, ; 又 $e \in H$,即 $e \in cH \cap H$,则由左陪集的性质得: cH = H ,所以 $aH \cdot a^{-1}H = H$,则 对 $\forall h \in H$, $\exists h_1, h_2 \in H$, 使 得 $aha^{-1}h_1 = h_2$ ⇒ $aha^{-1} = h_2h_1^{-1} \in H$

9.

证明:由 H 是群G 的 2 阶正规子群可设 $H = \{e,a\}$,且对 $\forall x \in G$, xH = Hx,即 $\{x,xa\} = \{x,ax\}$,所以 xa = ax,故 $a \in C$,从而 $H \subseteq C$

近世代数课后习题作业6参考解答

1.

证明: 必要性 \Rightarrow : 设 φ : $G \to \overline{G}$ 的满同态,根据群同态基本定理有: $G/K_{er} \varphi \cong \overline{G}$,

则
$$|G/Ker \varphi|$$
 $|G| = n$,又根据拉格朗日定理得: $|G/Ker \varphi| = \frac{|G|}{|Ker \varphi|} = \frac{m}{|Ker \varphi|}$,

即 $m = n \cdot | Ker \varphi |$,所以 $n \mid m$ 。

充分性 \leftarrow : 设 $G = (a), a^m = e$, $\overline{G} = (b), b^n = \overline{e}$, $\varphi: G \to \overline{G}$, 且对 $\forall a^k \in G$, $\varphi(a^k) = b^k$

- 1) φ 为映射: 若 $a^k = a^l$,则 $a^{k-l} = e$,又 $a^m = e$,所以 $m \mid (k-l)$,又 $n \mid m$,所 以 $n \mid (k-l)$,而 $b^n = \overline{e}$,所以 $b^{k-l} = \overline{e}$,则 $b^k = b^l$,即 $\varphi(a^k) = \varphi(a^l)$ 。
- 2) 同态方程: 对 $\forall a^k, a^l \in G$, $\varphi(a^k \cdot a^l) = \varphi(a^{k+l}) = b^{k+l} = b^k b^l = \varphi(a^k) \varphi(a^l)$ 。 综上 $G \sim \overline{G}$ 。

证明:设G=(a),由H为循环群(为交换群)的子群,故H为正规子群,且H为 商群 G_H 的单位元, 对 $\forall bH \in G_H$ ($b \in G$), $bH = a^k H = (aH)^k$, 因此 $G_H = (aH)$ 3.

- 1) $(Z(\sqrt{2}),+)$ 为 Abel 群:
- ①封闭性: 对 $\forall m_1 + n_1 \sqrt{2}, m_2 + n_2 \sqrt{2} \in Z(\sqrt{2})$, 有: $(m_1 + n_1\sqrt{2}) + (m_2 + n_2\sqrt{2}) = (m_1 + m_2) + (n_1 + n_2)\sqrt{2} \in Z(\sqrt{2})$

$$(m_1 + n_1\sqrt{2}) + (m_2 + n_2\sqrt{2}) = (m_1 + m_2) + (n_1 + n_2)\sqrt{2} \in \mathbb{Z}(\sqrt{2})$$

- ②结合律:显然。
- ③单位元: e=0。
- ④逆元: 对 $\forall m + n\sqrt{2}, \in Z(\sqrt{2})$, $(m + n\sqrt{2}) + ((-m) + (-n\sqrt{2})) = 0 \in Z(\sqrt{2})$
- ⑤交换律:显然。
- 2) $(Z(\sqrt{2}),*)$ 为半群:
- ①封闭性: 对 $\forall m_1 + n_1 \sqrt{2}, m_2 + n_2 \sqrt{2} \in Z(\sqrt{2})$, 有:

$$(m_1 + n_1\sqrt{2})*(m_2 + n_2\sqrt{2}) = (m_1m_2 + 2n_1n_2) + (m_2n_1 + m_1n_2)\sqrt{2} \in Z(\sqrt{2})$$

- ②结合律:显然。
- 3) 分配律:显然。

4.

证明: (Z(i),+)为 Abel 群, (Z(i),*)为半群, 且分配律显然成立。

证明: $Q(\sqrt[3]{2})$ 对乘法不封闭。

假设 $Q(\sqrt[3]{2})$ 对乘法封闭,则由 $\sqrt[3]{2} \in Q(\sqrt[3]{2}) \Rightarrow (\sqrt[3]{2})^2 \in Q(\sqrt[3]{2})$,设 $(\sqrt[3]{2})^2 = a + b\sqrt[3]{2}$,

$$\Rightarrow 2 = a\sqrt[3]{2} + b(\sqrt[3]{2})^2 \Rightarrow 2 = a\sqrt[3]{2} + b(a + b\sqrt[3]{2}) \Rightarrow 2 = ab + (a + b^2)\sqrt[3]{2}$$

$$\Rightarrow \sqrt[3]{2} = \frac{2-ab}{a+b^2}$$
,而 $\frac{2-ab}{a+b^2}$ 为有理数, $\sqrt[3]{2}$ 为无理数,故矛盾。

注: 证√2 为无理数

假设 $\sqrt{2}$ 为有理数,则有: $\sqrt[3]{2} = \frac{q}{p}$, (p,q) = 1。

从而 $q^3 = 2p^3 \Rightarrow p^3 \mid q^3 \Rightarrow (p^3, q^3) = p^3$, 又由 (p,q) = 1 可得:

 $1 = (p, q(p,q)) = ((p, pq), q^2) = (p, q^2) = \dots = (p^3, q^3)$,从而 $p^3 = 1 \Rightarrow p = 1$,所以 $\sqrt[3]{2} = q$,即 $\sqrt[3]{2}$ 为整数,而 $1 < \sqrt[3]{2} < 2$,矛盾。

证明: $(Q(\sqrt[3]{2}, \sqrt[3]{4}),+)$ 为 Abel 群, $(Q(\sqrt[3]{2}, \sqrt[3]{4})\setminus\{0\},*)$ 为 Abel 群,且分配律显然成立。

7.

证明:设(S,+, \circ)为环,记其唯一的左单位元为 e_1 ,即对 $\forall a \in S$, $e_1a = a$,下证 $ae_1 = a$,只须证: $ae_1 - a = 0$ 。因为($e_1 + ae_1 - a$) $a = e_1a + (ae_1)a - aa = a$,所以 $e_1 + ae_1 - a$ 也为一左单位元,故 $e_1 + ae_1 - a = e_1$,所以 $ae_1 - a = 0$,即 $ae_1 = a$ 。

证明: 由
$$(a-b^{-1})b = ab-1 \Rightarrow a-b^{-1} = (ab-1)b^{-1}$$
,则 $(a-b^{-1})^{-1} = b(ab-1)^{-1}$ 。

又
$$(a-b^{-1})((a-b^{-1})^{-1}-a^{-1})=1-(1-b^{-1}a^{-1})=b^{-1}a^{-1}$$
,则:

$$((a-b^{-1})^{-1}-a^{-1})=(a-b^{-1})^{-1}b^{-1}a^{-1}=b(ab-1)^{-1}b^{-1}a^{-1}$$
,

从而
$$((a-b^{-1})^{-1}-a^{-1})^{-1}=ab(ab-1)b^{-1}=aba-a$$
。

9.

证明:设 $(S,+,\circ)$ 为环,单位元为1, $\forall a \in S$,且a为非零的零因子。下设a存

在逆元素,记为 a^{-1} ,则有: $a^{-1}a=1$

由 a 为非零的零因子,则 $\exists b \in S \land b \neq 0$,使得 ab = 0,又由 $a^{-1}a = 1 \Rightarrow a^{-1}(ab) = b$ $\Rightarrow b = 0$,矛盾。

10.

证明: 设(S,+, \circ) 为交换环,则 $\forall a,b \in S$, ab = ba

1) 当n = 0.1时显然成立。当n = 2时:

$$(a+b)^2 = (a+b)(a+b) = (a+b)a + (a+b)b = a^2 + ba + ab + b^2 = a^2 + 2ab + b^2$$

2) 假设当 n = k 时成立, 即:

$$(a+b)^k = a^k + C_k^1 a^{k-1} b + C_k^2 a^{k-2} b^2 + \dots + C_k^k b^k$$

则当 n = k + 1时:

$$(a+b)^{k+1} = (a+b)^k (a+b) = (a^k + C_k^1 a^{k-1} b + C_k^2 a^{k-2} b^2 + \dots + C_k^k b^k)(a+b)$$

$$= a^{k+1} + C_k^1 a^k b + C_k^2 a^{k-1} b^2 + \dots + C_k^k a b^k$$

$$+a^{k}b+C_{k}^{1}a^{k-1}b^{2}+C_{k}^{2}a^{k-2}b^{3}+\cdots+C_{k}^{k}b^{k+1}$$

$$= a^{k+1} + (C_k^1 + 1)a^kb + (C_k^2 + C_k^1)a^{k-1}b^2 + \dots + (C_k^k + C_k^{k-1})ab^k + b^{k+1}$$

$$= a^{k+1} + C_{k+1}^{1} a^{k+1-1} b + C_{k+1}^{2} a^{k+1-2} b^{2} + \dots + C_{k+1}^{k} a b^{k} + b^{k+1}$$

$$(C_k^{i+1} + C_k^i = C_{k+1}^{i+1})$$

11.

证明: 设 a_l 为 a 的左逆元,由 $a_la=1 \Rightarrow aa_laa_l=aa_l$,由于 R 为无零因子环满足消去律,则得: $aa_l=1$ 。

12.

证明:

1)
$$a(-b) = -(ab) = -(ba) = (-b)a$$

2)
$$a(-ab) = (-a)(ab) = (-a)(ba) = -(aba) = (-ab)a$$

3)
$$a(b+c) = ab + ac = ba + ca = (b+c)a$$

4)
$$a(a+c) = aa + ac = aa + ca = (a+c)a$$

证明:设(F,+,o)为域。

- 1) 由|F|=4,故(F,+)的特征数只能是 1,2,4(关于加法群的阶,根据拉格朗日定理可得),又F为域,则其特征数为素数,所以F的特征数是 2。
- 2) 由已知可设 $F = \{0, e, a, a^{-1}\}$ (因为出了零元素外,剩余 3 元素也构成群),且 $a^2 = a^{-1}$ (因为 $F \setminus \{0\}$ 为三阶群,由于阶为素数故 $F \setminus \{0\}$ 为循环群,即 $a^3 = e$)。
 - ① 当 x = a 时,显然有 a + e = 0或 a^{-1} , 若 $a + e = 0 \Rightarrow e + a^{-1} = 0 \Rightarrow a = a^{-1}$,矛盾。

故只能有 $a+e=a^{-1}$, 即 $a+e=a^2$, 满足方程 $x^2=x+e$

② 当 $x = a^{-1}$ 时,显然有 $a^{-1} + e = 0$ 或a,

若
$$a^{-1}+e=0 \Rightarrow e+a=0 \Rightarrow a=a^{-1}$$
,矛盾。

故只能有 $a^{-1} + e = a \Rightarrow a^{-1} + e = a^{-2} = (a^{-1})^2$,满足方程 $x^2 = x + e$

14.

解: 不是。如 p=6,则 $[2]\neq[0]$, $[3]\neq[0]$,但 [2][3]=[6]=[0],与域为无零因子环矛盾。

15. 设域 F 的特征为有限数 p , a = b 及 a_i 均在 F 里。证明:

$$(a \pm b)^{p^n} = a^{p^n} \pm b^{p^n}$$
$$(a_1 + a_2 + \dots + a_n)^p = a_1^p + a_2^p + \dots + a_n^p$$

证明: 先证 $(a\pm b)^{p^n} = a^{p^n} \pm b^{p^n}$

- 1) 当n=1时,由定理知成立。
- 2) 假设当n = k时也成立,即 $(a \pm b)^{p^k} = a^{p^k} \pm b^{p^k}$

则当
$$n=k+1$$
时, $(a\pm b)^{p^{k+1}}=((a\pm b)^{p^k})^p=(a^{p^k}\pm b^{p^k})^p$,又根据已证定理可

得:
$$(a^{p^k} \pm b^{p^k})^p = (a^{p^k})^p \pm (b^{p^k})^p = a^{p^{k+1}} \pm b^{p^{k+1}}$$
,即 $(a \pm b)^{p^{k+1}} = a^{p^{k+1}} \pm b^{p^{k+1}}$ 。

再证
$$(a_1 + a_2 + \cdots + a_n)^p = a_1^p + a_2^p + \cdots + a_n^p$$

$$(a_1 + a_2 + \dots + a_n)^p = ((a_1 + a_2 + \dots + a_{n-1}) + a_n)^p = (a_1 + a_2 + \dots + a_{n-1})^p + a_n^p$$

$$= (a_1 + a_2 + \dots + a_{n-2})^p + a_{n-1}^p + a_n^p = \dots = a_1^p + a_2^p + \dots + a_{n-2}^p + a_{n-1}^p + a_n^p \circ$$

16.

证明:

1) $E = \{2k \mid k \in Z\}, \ \ \forall 2k_1, 2k_2 \in E, \ \ 2k_1 - 2k_2 = 2(k_1 - k_2) \in E;$

又 $2k_1 \cdot 2k_2 = 2(2k_1k_2) \in E$, 所以E是Z的一个子环。

- 2) 对 $\forall r_1, r_2 \in E$, $4r_1 4r_2 = 4(r_1 r_2) \in N$, $r_1 \cdot 4r = 4(r_1r) \in N$, 故 N 是的 E 理想。
- 3) $N \neq (4)$, 因为4 ∈ (4), 但显然4 \notin N 。

17

证明:由3与7互质,则 $k_1,k_2 \in Z$,使得 $k_1 \cdot 3 + k_2 \cdot 7 = 1$,即 $1 \in (3,7)$,而Z = (1),

所以
$$(3.7) = Z$$
,同理 $(13.10) = Z$

18.

证明:

1)
$$\forall n_1 + h_1, n_2 + h_2 \in N + H$$
, $(n_1 + h_1) - (n_2 + h_2) = (n_1 - n_2) + (h_1 - h_2)$,

又
$$(n_1-n_2) \in N$$
, $(h_1-h_2) \in H$,所以 $(n_1+h_1)-(n_2+h_2) \in N+H$ 。

2) 对 $\forall r \in R$, $n+h \in N+H$, r(n+h)=rn+rh , (n+h)r=nr+hr , 而 $rn \in N, nr \in N$, $rh \in H, hr \in H$, 所以 $r(n+h) \in N+H$, $(n+h)r \in N+H$ 。 综上 N+H 也是 R 的理想。