Geometrical properties of connected search spaces for binary classification problem

```
Alexander Frey (sashafrey@gmail.com)
Konstantin Vorontsov (voron@forecsys.ru)
```

Computing Center RAS • Moscow Institute of Physics and Technology

25th European Conference on Operational Research (EURO-XXV) Vilnius, Lithuania • July 8-11, 2012

Empirical Risk Minimization

(S, A, P) a probability space;

 \mathscr{F} a class of measurable functions $f:S\to [0,1]$ (losses)

Example: $S = X \times Y$, $f(x, y) = (g(x) - y)^2$.

Risk minimization

$$Pf \equiv \int_{\mathcal{S}} f dP = \mathbb{E}f(x) \to min, f \in \mathcal{F}$$

Empirical risk minimization

 (x_1,\ldots,x_n) a sample of i.i.d random variables, $x_i \in S$

$$P_n f \equiv \frac{1}{n} \sum_{i=1}^n f(x_i) \to \min, f \in \mathcal{F}$$
 (1)

Empirical risk minimizer \hat{f} — solution of (1) Excess risk: $\varepsilon(\hat{f}) \equiv P\hat{f} - \inf_{f \in T} Pf$.

Model Selection Problem:

Given a family $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}$ of nested function classes and sequence $\hat{f}_{n,k}$ of empirical risk minimizers on each class, select $\hat{f} = \hat{f}_{n,k} \in \mathcal{F}_k \subset \mathcal{F}$ with a "nearly optimal" excess risk Approaches:

- Penalization and oracle inequalities, based on distribution dependent and data dependent bounds on $\varepsilon(\hat{f}_n)$ that take into account the "geometry" of \mathcal{F} , or
- in practice cross-validation.

Empirical risk minimizer and mean overfitting

$$\mathbb{X}^L = \{x_1, \dots, x_L\}$$
 a finite set of objects,

$$\mathbb{X}^L = X^\ell \sqcup X^k$$
 decomposition of X_L into train and test sample, $\nu(r, X^\ell) = \frac{1}{\ell} \sum_{x_i \in Y^\ell} I(r(x_i), y_i)$ — error rate of r on train sample,

$$\hat{r} = \mu X^{\ell} = \operatorname*{argmin}_{r \in \mathcal{P}} \nu(r, X^{\ell})$$
 — empirical risk minimizer,

$$\delta(X^{\ell}) = \nu(\hat{r}, X^{k}) - \nu(\hat{r}, X^{\ell})$$
 — overfitting,

With respect to decomposition $\mathbb{X}^L = X^\ell \sqcup X^k$, overfitting δ is a random variable,

$$P_n \equiv \frac{1}{C_L^\ell} \sum_{\mathbf{X}^\ell}$$
 — empirical probability measure,

Cumulative distribution function:
$$Q(\varepsilon) = P_n\{\delta(X^{\ell}) \ge \varepsilon\}$$
, Mean overfitting: $\bar{\delta} = P_n\delta(X^{\ell}) = \frac{1}{C_L^{\ell}} \sum_{X \in \mathcal{X}} \delta(X^{\ell})$

Decision with incomplete information

- Rows $\{x_1 \ldots x_\ell, x_{\ell+1}, x_L\}$ objects,
- Columns $\{r_1 \dots r_D\}$ error vectors of classifiers.

	r_1	<i>r</i> ₂	 r _d	 r_D
<i>x</i> ₁	0	1	 0	 1
	1	1	 0	 0
x_ℓ	0	0	 0	 0
$x_{\ell+1}$	1	1	 1	 1
	1	0	 1	 0
ΧL	0	0	 1	 0

- $\{x_1, x_2, x_3\}$ train sample,
- $\{x_4, x_5, x_6\}$ test sample.

Example. Binary error matrix for a set of linear classifiers

	layer 0
x_1	0
<i>x</i> ₂	0
<i>X</i> 3	0
<i>X</i> 4	0
<i>X</i> 5	0
x_6	0
<i>X</i> 7	0
<i>X</i> 8	0
<i>X</i> 9	0
x_{10}	0

Example. Binary error matrix for a set of linear classifiers

	layer 0	layer 1						
<i>X</i> ₁	0	1	0	0	0	0		
X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈ X ₉ X ₁₀	0	0	1	0	0	0		
X3	0	0	0	1	0	0		
X4	0	0	0	0	1	0		
<i>X</i> ₅	0	0	0	0	0	1		
x_6	0	0	0	0	0	0		
X7	0	0	0	0	0	0		
<i>x</i> ₈	0	0	0	0	0	0		
X9	0	0	0	0	0	0		
<i>x</i> ₁₀	0	0	0	0	0	0		

Example. Binary error matrix for a set of linear classifiers

	layer 0	layer 1				layer 2									
x_1	0	1	0	0	0	0	1	0	0	0	0	1	1	0	
<i>x</i> ₂	0	0	1	0	0	0	1	1	0	0	0	0	0	0	
<i>X</i> 3	0	0	0	1	0	0	0	1	1	0	0	0	0	1	
X4	0	0	0	0	1	0	0	0	1	1	0	0	0	0	
<i>X</i> ₅	0	0	0	0	0	1	0	0	0	1	1	1	0	0	
x_6	0	0	0	0	0	0	0	0	0	0	1	0	1	0	
X7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
<i>x</i> ₈	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
<i>X</i> 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
<i>x</i> ₁₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Single classifier

Let *R* consists of single classifier.

Figure: Cumulative distribution function $Q(\varepsilon) = P\{\delta(X^{\ell}) \ge \varepsilon\}$ of overfitting. L = 1000, $\ell = 250$.

Pair of classifiers

Let *R* consists of the pair of classifier.

Figure: Mean overfitting $\bar{\delta}$ depending on the Hamming distance $d(r_1, r_2)$ in the pair of classifiers.

The maximal connected set of given diameter

Maximal set of classifiers with limited hamming diameter (2ρ) and fixed number of errors (m):

$$B_r^m(r_0) = \{r \in R \colon n(r, \mathbb{X}^L) = m, \text{ and } \rho(r, r_0) \leqslant \rho\}.$$

 R_n^m — set of *n* classifiers with *m* random errors.

r	$ B_r^m $	$ R_n^m $	δ
2	401	2	0.079
4	35.501	7	0.160
6	1.221.101	39	0.240
8	20.413.001	378	0.319

Table: Comparison of $|R_n^m|$ and $|B_r^m|$ that gives the sample $\bar{\delta}$. L=50, $\ell=25$, m=10

Splitting and connectivity

Classical approach:

• δ -minimal sets:

$$\mathcal{F}(\delta) \equiv \{ f \in \mathcal{F} : \varepsilon(f) \leqslant \delta \}$$

L₂-diameter

$$D(\delta) \equiv \sup_{f,g \in \mathcal{F}(\delta)} (P(f-g)^2)^{1/2}$$

Combinatorial approach:

• Algorithms with low error rate on X_L

$$R(m) \equiv \{r \in R : n(r, X_L) \leqslant m\}$$

Hamming diameter

$$D(m) \equiv \sup_{f,g \in R(m)} \rho(f,g)$$

$$(\rho(r_1, r_2) = \sum_{x_i} [I(r_1, x_i) \neq I(r_2, x_i)])$$

Error matrix and SC-graph for a set of linear classifiers

Splitting and connectivity profiles

Lets fix binary error matrix R.

- $\Delta_m = |\{r \in R : n(r, \mathbb{X}^L) = m\}|$ splitting profile of R,
- $q(r_0) = |\{r \in R : \rho(r, r_0) = 1\}|$ connectivity of classifier r_0 ,
- $\Delta_q = |\{r \in R \colon q(r) = q\}|$ connectivity profile of R,
- $\Delta_{m,q} = |\{r \in R : q(r) = q \text{ and } n(r, \mathbb{X}^L) = m\}|$ SC-profile.

SC-profile for linear classifiers

Figure: SC-profile for the set of linear classifiers in \mathbb{R}^p . p=5, L=300, $|R|=2\cdot 10^5$.

SC-profile for linear classifiers

- In R^3 consider the set \mathbb{S}^2 of linear classifiers $\{y = [\langle w, x \rangle \leq 0] \colon w \in \mathbb{S}^2, ||w|| = 1\}.$
- For a given object $x_0 \in R^3$ consider circle $\mathbb{S}^1 = \{ w \in \mathbb{S}^2 \colon \langle w, x_0 \rangle = 0 \}.$

SC-profile for linear classifiers

This split \mathbb{S}^2 into cells.

- Each cell is the set of classifiers with identical error vectors,
- Edges between cells classifiers that differs on one object.

Connectivity profile Δ_q doesn't depend on true classification!

- Binary classification problem: $Y = \{+1, -1\}$,
- $S_2 = \{e, h\}$ group that acts on Y,
- S_2^L group that acts on X_L (and hense on R)

Lemma

 S_2^L doesn't change Hamming distance between classifiers:

$$\forall g \in S_2^L, \forall r_1, r_2 \in R \text{ holds } \rho(gr_1, gr_2) = \rho(r_1, r_2).$$

Theorem

The decomposition of SC-profile holds on average:

$$\frac{1}{2^L} \sum_{g \in S_2^L} \Delta_{m,q} = \Delta_q \times \frac{1}{2^L} \sum_{g \in S_2^L} \Delta_m$$

Conclusions

- Combinatorial approach deals with the same problems, as Statistical learning theory (model selection or sharp overfitting bounds),
- Instead of dealing with unknown underlying destribution, we study Complete Cross-Validation,
- We observe the same phenomena as in SLT splitting and connectivity,
- We have proven that for binary classification problem connectivity is the geometrical property of points, which doesn't depend on their target classes.