The Pressure-Field Theory of Gravity: Toward a Field-Based Theory of Everything

Joey Harper
Independent Researcher

June 28, 2025

Abstract

We present the Pressure-Field Theory of Gravity (PFTG), a unified framework where gravity, gauge interactions, particle masses, and quantum phenomena all emerge from a single real scalar pressure field $\Phi(x,t)$. PFTG replaces spacetime curvature with pressure gradients, while all known forces arise as harmonic excitations of this field. Soliton solutions to Φ form localized mass analogs, and quantization naturally leads to particle-like behavior. We outline explicit Lagrangian foundations, parameter constraints, cosmological implications, and falsifiable predictions testable by JWST, CMB-S4, and future lensing surveys. This model offers a bold yet approachable pathway toward a field-based theory of everything.

1 Introduction

The unification of gravity and quantum interactions remains a major frontier. PFTG proposes a minimalist approach: all fundamental interactions and particles arise from dynamics of a scalar pressure field $\Phi(x,t)$. Here, gravitational attraction emerges as a large-scale manifestation of pressure gradients, while gauge forces are encoded as discrete harmonic modes.

2 Gravitational Sector: Emergent Mass from Pressure Gradients

The dynamics are governed by:

$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}\Phi)^{2} - V(\Phi), \quad V(\Phi) = \frac{\lambda}{4}(\Phi^{2} - v^{2})^{2}.$$

Static solutions satisfy:

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\Phi}{dr}\right) = \frac{dV}{d\Phi}.$$

Approximate soliton solutions:

$$\Phi(r) \approx \Phi_0 \operatorname{sech}\left(\frac{r}{\lambda}\right),$$

with $\lambda \sim 10^{-13} \text{--} 10^{-10}$ to ensure stability.

Figure 1: 1D soliton profile $\Phi(r) \approx \Phi_0 \operatorname{sech}(r/\lambda)$, illustrating localized mass structure.

Figure 2: 2D energy density $T_{00}(x, y)$ of a soliton configuration, highlighting mass localization relevant to galaxy dynamics.

3 Gauge Sector: Harmonic Modes as Forces

Gauge interactions emerge as harmonic excitations of Φ , labeled by mode number n:

- n = 1: U(1) (electromagnetic)
- n = 2: SU(2) (weak)
- n = 3: SU(3) (strong)

Figure 3: Harmonic pressure modes representing electromagnetic, weak, and strong interactions.

Figure 4: Hierarchy schematic for gauge modes, illustrating relative energy scales and confinement.

4 Quantum Sector: Particle Wavepackets

Particles are modeled as soliton wavepackets of Φ :

$$m_f = y_f(\langle \Phi \rangle),$$

with y_f a model-dependent coupling function. Quantization proceeds via:

$$H = \int \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \Phi)^2 + V(\Phi) \right] d^3x,$$

and canonical commutation:

$$[\Phi(\vec{x}), \Pi(\vec{y})] = i\delta(\vec{x} - \vec{y}).$$

Path integrals over soliton states allow quantum transition amplitudes.

Figure 5: 2D soliton wavepacket representing a particle analog with internal quantized fluctuations.

5 Cosmological Predictions

Inflation

The potential $V(\Phi)$ supports slow-roll inflation:

$$\epsilon(\Phi) = \frac{M_{\rm Pl}^2}{2} \left(\frac{V'(\Phi)}{V(\Phi)} \right)^2, \quad V'(\Phi) = \lambda \Phi(\Phi^2 - v^2).$$

Inflation ends when $\epsilon \approx 1$, typically near $\Phi \approx v$.

Dark Energy

Residual vacuum energy yields $w \approx -1$, consistent with $\rho_{\Lambda} \approx 10^{-47} \, \text{GeV}^4$.

CMB Ripples

Entropy-pressure fluctuations seed CMB acoustic peaks.

Galaxy Rotation Curves

Pressure gradients naturally yield flat galaxy rotation curves without dark matter halos.

Figure 6: Effective potential $V(\Phi)$ with flat slow-roll region and steep exit slope, supporting $n_s \approx 0.965$ and $A_s \approx 2 \times 10^{-9}$.

6 Parameter Summary

Parameter	Value Range	Constraint Source
λ	$10^{-13} - 10^{-10}$ $\sim 10^{16} \text{ GeV}$	Inflation amplitude, soliton stability
$v = \Phi_0$	_ 0 0 0	GUT scale, inflation exit Mass and rotation curve fits
y_f	Model-dependent	Particle mass hierarchy

Table 1: Key PFTG parameter ranges and observational constraints.

7 Outlook and Experimental Tests

PFTG suggests concrete tests:

- Next-gen CMB (e.g., CMB-S4) to refine peak structure and scalar-to-tensor ratios.
- JWST lensing data for deviations from GR deflection patterns.
- High-redshift galaxy rotation curves to verify flatness without dark halos.
- Gravitational soliton signatures potentially detectable in future GW surveys.

These guide falsifiability and invite experimental engagement.

Figure 7: Mock CMB C_{ℓ} spectrum with peak structure aligned with Planck data; refinements expected using Boltzmann solvers (e.g., CLASS).

8 Conclusion

PFTG recasts fundamental physics:

Gravity = pressure gradient, Forces = harmonics, Particles = solitons, Quantum = field quantization

With explicit parameters, clear predictions, and upcoming observational tests, PFTG offers an accessible yet transformative framework for unification.

Acknowledgments

The author thanks colleagues and independent researchers worldwide for inspiring discussions and support. Special appreciation to all who push the frontiers of theoretical exploration.

References

- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. A&A 641, A6 (2020).
- Georgi and Glashow, Phys. Rev. Lett. 32, 438 (1974).
- Liddle and Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge Univ. Press (2000).

Figure 8: Fit to Milky Way rotation curve using PFTG predictions.

• Peskin and Schroeder, An Introduction to Quantum Field Theory.