Un exemple d'optimisation par chaîne de Markov : Le voyageur de commerce

Source: K. Helsgaun. Solving the Clustered Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun. Roskilde University, 2014.

Le contexte général est le suivant : soit E un (grand) ensemble fini, et une fonction $V: E \to \mathbb{R}$. On cherche à trouver $x \in E$ tel que V(x) est le plus petit possible, l'ensemble E est tellement grand qu'une recherche exhaustive est exclue.

Le principe de l'optimisation par chaîne de Markov, ou méthode MCMC (pour $Monte\ Carlo\ Markov\ Chain$) est de parcourir de façon aléatoire mais intelligente l'ensemble E pour chercher à minimiser V.

1 L'algorithme de Metropolis-Hastings

On suppose que E est muni d'une structure de graphe : certains points x, y sont reliés par des arêtes, on note alors $x \sim y$. On suppose que le graphe est connexe. Le principe de l'algorithme de Metropolis-Hastings est le suivant : on parcourt le graphe E en favorisant les arêtes qui font diminuer V, de temps en temps on s'autorise à augmenter V pour ne pas rester bloqué dans un minimum local.

Voici l'algorithme :

Paramètres:

 $X_0 \in E$: valeur initiale

 $\beta \in [0, +\infty)$

Renvoyer X_T

 $T \in \mathbb{N}$: nombre d'itérations

Pour t=0 à T-1 $y=\mathrm{v.a.}$ uniforme parmi les voisins de X_t Si $V(y) < V(X_t)$ alors $X_{t+1}=y$ Sinon si $V(y) \geq V(X_t)$ alors $X_{t+1}=y$ avec proba $e^{-\beta(V(y)-V(X_t))}$ $X_{t+1}=X_t$ avec proba $1-e^{-\beta(V(y)-V(X_t))}$

Question 1. Que fait l'algorithme pour $\beta = 0$? pour $\beta = +\infty$? Ce paramètre est parfois appelé "inverse de la température".

On peut démontrer la chose suivante (c'est par exemple la combinaison des Théorème 6.2 et 5.5 dans [1])

Théorème 1 Si le graphe associé à E est connexe, alors pour tout $\beta > 0$ on a

$$\mathbb{P}(X_t = x) \overset{t \to +\infty}{\to} \frac{1}{Z_\beta} e^{-\beta V(x)}, \qquad \text{avec } Z_\beta = \sum_{z \in E} e^{-\beta V(z)}.$$

Question 2. En quoi ce Théorème assure-t-il que l'algorithme de Metropolis-Hastings remplit l'objectif de minimisation de V? Quelles sont les limites de cet algorithme?

Question 3. Implémenter l'algorithme pour

- $-E = \{1, 2, \dots, k\}, \text{ avec } k = 40,$
- Graphe : chaque i est relié à i-1 et i+1,
- $-V(x) = \cos(4\pi x/k) \sqrt{4\pi x/k},$
- différentes valeurs de β (on pourra prendre pour commencer $T=2000,\,\beta=0.5$ puis $\beta=2$).

Tracer à chaque fois quelques trajectoires de $t \mapsto V(X_t)$ et comparer avec le graphe de la fonction V.

2 Application au problème du voyageur de commerce

On cherche maintenant à appliquer l'algorithme de Metropolis-Hastings au problème suivant. Soient $(X_1, Y_1), \ldots, (X_n, Y_n)$ les coordonnées de n villes dans le plan. On cherche le chemin le plus court passant par toutes ces villes, c'est-à-dire la permutation σ_{\star} dans l'ensemble \mathfrak{S}_n des permutations de n éléments telle que

$$\sigma_{\star} = \operatorname{argmax}_{\sigma} V(\sigma) := \operatorname{argmax}_{\sigma} \sum_{i=1}^{n-1} \| (X_{\sigma(i+1)}, Y_{\sigma(i+1)}) - (X_{\sigma(i)}, Y_{\sigma(i)}) \|$$

On met la structure suivante sur \mathfrak{S}_n : $\sigma \sim \sigma'$ si l'on peut passer de σ à σ' en permutant deux éléments. Ainsi pour n=4, on peut passer de 1234 à 2134,1324, 1243, 1432, 3214, 4231. De façon générale, σ a toujours $\binom{n}{2}$ permutations "voisines".

Question 4. On va représenter les coordonnées par une matrice Coordonnées de taille $n \times 2$. Écrire une fonction EchangerDeuxVilles(Coordonnées,i,j) qui permute deux indices i et j dans le tableau des villes, et une fonction Longueur(Coordonnées) qui calcule la longueur d'un chemin.

Question 5. Implémenter l'algorithme de Metropolis-Hastings pour le problème du voyageur de commerce, sur le fichier de villes PaysMystere.xls téléchargeable sur le moodle (rappel : la commande xlsread('PaysMystere.xls') permet de charger un fichier Excel).

Quelques conseils:

- Testez toutes vos fonctions et vos premiers codes sur des fichiers de villes simples avant de vous attaquer à PaysMystere!
- Un choix de paramètre possible au début est T = 50000 itération, $\beta = 2$.

Remarque. Évaluer l'efficacité d'un algorithme pour le voyageur de commerce est difficile dans la mesure où l'on ne connaît pas la longueur $V(\sigma_{\star})$ du chemin le plus court. Cependant, si les (X_i, Y_i) sont distribuées uniformément sur le carré $[0, 1]^2$, on peut montrer qu'il existe c telle que $V(\sigma_{\star}) \sim c\sqrt{n}$, des travaux récents [2] suggèrent que $c \approx 0.712$. Vous pouvez comparer cette borne au résultat donné par votre algorithme.

Références

- [1] T.Bodineau. Modélisation de phénomènes aléatoires. Cours de l'École Polytechnique (2015).
- [2] S.Steinerberger. New bounds for the traveling salesman constant. Advances in Applied Probability vol.47 (2015) n.1, p.27-36.