

习题 11.1 第 3 题

(2)
$$f_n(x) = \frac{x^n}{1+x^n}, n = 1, 2, \cdots$$

(a).
$$0 \le x \le a \ (0 < a < 1)$$

(b).
$$a \le x \le b \ (0 < a < 1 < b)$$

(c).
$$b \le x < +\infty \ (b > 1)$$

(4)
$$f_n(x) = e^{-(x-n)^2}, n = 1m2 \cdots$$

(a).
$$a \le x \le b \ (-\infty < a < b < +\infty)$$

(b).
$$-\infty < x < \infty$$

(6)
$$f_n = n(\sqrt{x + \frac{1}{n}} - \sqrt{x}), n = 1, 2, \cdots$$

(a).
$$a \le x < \infty \ (a > 0)$$

(b).
$$0 < x < +\infty$$

证明

(2)
$$f_n \to 0, x \in [0, a] (0 < a < 1)$$
 $\forall y, |f_n - 0| = \frac{x^n}{1 + x^n} \le \frac{a^n}{1 + a^n} \to 0 (as \ n \to \infty), \ \text{th} - \text{th} \ \text{th} \ \text{th}$

$$f_n \to f = \begin{cases} 0, & x \in [a, 1) \\ \frac{1}{2}, & x = 1 \\ 1, & x \in [a, 1) \text{ if, } |f_n - 0| = \frac{x^n}{1 + x^n} \to 0 \text{ (as } n \to \infty) \\ 1, & x \in (1, b] \end{cases}$$

$$x = 1 \text{ if, } |f_n - \frac{1}{2}| = 0 \text{ (as } n \to \infty), x \in (1, b] \text{ if, } |f_n - 1| = \frac{1}{1 + x^n} \to 0 \text{ (as } n \to \infty), \text{ is } - \text{is } \text{if }$$

$$x = 1$$
 H , $\left| f_n - \frac{1}{2} \right| = 0$ $(as \ n \to \infty)$, $x \in (1, b]$ H , $\left| f_n - 1 \right| = \frac{1}{1 + x^n} \to 0$ $(as \ n \to \infty)$, $\text{ then } -\infty$

$$f_n \to 1, x \in [b, +\infty)$$
 时, $|f_n - 1| = \frac{1}{1 + r^n} \le \frac{1}{1 + b^n} \to 0$ (as $n \to \infty$), 故一致收敛

$$f_{n} \to 1, x \in [b, +\infty) \text{ 时, } |f_{n} - 1| = \frac{1}{1 + x^{n}} \le \frac{1}{1 + b^{n}} \to 0 \text{ (as } n \to \infty), \text{ 故 - 致 收敛}$$

$$(4) \quad x \in [a, b], f_{n} \to 0, \left| e^{-(x - n)^{2}} \right| \le \left| e^{-(b - n)^{2}} \right| \to 0 \text{ (as } n \to \infty), \text{ 故 - 致 收敛}$$

$$x \in (-\infty, +\infty), \text{ 取} x_{n} = n, \text{ } \lim_{n \to \infty} \left| e^{-(x_{n} - n)^{2}} - 0 \right| = \left| e^{0} \right| = 1 \neq 0, \text{ 故 } \pi - \text{ 致 收敛}$$

(6)
$$a \le x < +\infty, f = \lim_{n \to \infty} f_n = \lim_{n \to \infty} n \left[\left(x + \frac{1}{n} \right)^{\frac{1}{2}} - x^{\frac{1}{2}} \right] = \lim_{n \to \infty} n x^{\frac{1}{2}} \left[\left(1 + \frac{1}{nx} \right)^{\frac{1}{2}} - 1 \right] = \lim_{n \to \infty} n x^{\frac{1}{2}} \left(\frac{1}{2nx} + O\left(\frac{1}{n^2}\right) \right) = \frac{1}{2x^{\frac{1}{2}}}$$

$$\lim_{n \to \infty} |f_n - f| = \lim_{n \to \infty} \left| n \left[\left(x + \frac{1}{n} \right)^{\frac{1}{2}} - x^{\frac{1}{2}} \right] - \frac{1}{2x^{\frac{1}{2}}} \right| = \lim_{n \to \infty} \left| nx^{\frac{1}{2}} \left(\frac{1}{2nx} + O\left(\frac{1}{n^2} \right) \right) - \frac{1}{2x^{\frac{1}{2}}} \right| = 0, \text{ if } -3$$

$$0 < x_n < +\infty$$
, 取 $x_n = \frac{1}{n}$, 则 $\lim_{n \to \infty} |f_n - f| = \lim_{n \to \infty} \left| n \left[\left(\frac{2}{n} \right)^{\frac{1}{2}} - \left(\frac{1}{n} \right)^{\frac{1}{2}} \right] - \frac{\sqrt{n}}{2} \right| = \lim_{n \to \infty} \left| \left(\sqrt{2} - \frac{3}{2} \right) \sqrt{n} \right| \to +\infty$, 故不一致收敛

习题 11.1 第 7 题

设 $\{f_n(x)\}$ 在有界闭区间 I 桑著带你收敛于函数 f(x),且存在 M>0 和 $0<\alpha\leq 1$ 使成立

$$|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}, \quad \forall x, y \in I, \quad n = 1, 2, \cdots$$

证明: $f_n(x)$ 在 I 上一致收敛于 f(x).

证明 不妨设I = [0, 1], 故 $|f_n(x) - f_n(y)| \le M|x - y|^{\alpha} \le M|x - y|$, $\forall n, \forall x, y \in I$

于是,对于任意给定的 $x,y \in I$,有

 $|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \le |f(x) - f_n(x)| + |f_n(y) - f(y)| + M|x - y|$

由于 f_n 在I上逐点收敛于f,两边同时令 $n \to \infty$,则有 $|f(x) - f(y)| \le M|x - y|$, $\forall x, y \in I$ $\forall \varepsilon > 0$,取 $m = \lceil \frac{2M}{\varepsilon} \rceil \ge \frac{2M}{\varepsilon}$, $y_k = \frac{k}{m}, k = 0, 1, \cdots, m$

$$\forall \varepsilon > 0, \ \mathbb{R}m = \lceil \frac{2M}{c} \rceil \ge \frac{2M}{c}, y_k = \frac{k}{m}, k = 0, 1, \cdots, m$$

则存在N > 0, 使得 $|f(y_k) - f_n(y_k)| < \frac{\varepsilon}{2}$, $\forall n > N, k = 0, 1, \dots m$

于是对于任意 $x \in I$,必然有某个 y_k ,使得 $|x-y_k| < \frac{1}{2m} \le \frac{\varepsilon}{4M}$

 $\mathbb{H} \angle |f(x) - f_n(x)| \le |f(x) - f(y_k)| + |f(y_k) - f_n(y_k)| + |f(y_k) - f_n(y_k)| \le 2M |x - y_k| + |f(y_k) - f_n(y_k)| \le 2M \cdot \frac{\varepsilon}{4M} + \frac{\varepsilon}{2} = \varepsilon$ 于是 f_n 在I上一致收敛于f.

习题 11.1 第 9 题

设对每个正整数 n,函数 $f_n(x)$ 在区间 I 上有界. 又设当 $x \to \infty$ 时, $f_n(x)$ 在 I 上一致收敛于 f(x). 证明:

- (1) 极限函数 f(x) 在 I 上有界
- (2) 函数序列 $f_n(x)(n = 1, 2, \dots)$ 在 I 上一致有界. 即存在 M > 0 使对所有 n 都有

 $|f_n(x)| \le M, \quad \forall x \in I.$

证明 由于 f_n 在I上一致收敛于f,故存在N > 0,使得 $|f_n(x) - f(x)| \le 1, \forall n \ge N, \forall x \in I$

故 $|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| \le |f_N(x)| + 1 \le \sup f_N(x) + 1 < \infty$

 $\forall n \ge N, \forall x \in I, |f_n(x)| \le |f_n(x) - f(x)| + |f(x)| \le 1 + \sup_{x \in I} f_N(x) + 1 < \infty$

故取 $M = \sup f_n(x) + 2$ 就有, $|f_n(x)| \le M, \forall x \in I, \forall n$

补充习题 9′

设 $\{f_n\}$ 是区间 I 上的一列函数, x_0 是 I 的一个聚点 (即存在互不相同的一列数 $x_n \in I, n=1,2,\cdots$ $\lim x_n = x_0$). 假设成立

- (1) $\{f_n\}$ 在 I 上一致收敛于函数 f
- (2) 对每个正整数 n 都成立 $\lim_{x \to x_0, x \in I} f_n(x) = A_n$

(3) $\lim_{n \to \infty} A_n = A$ 证明: $\lim_{x \to x_0, x \in I} f(x) = A$

证明 对于I中任意趋于 x_0 的序列 $\{x_k\}_{k=1}^{\infty}$,有 $\lim_{k\to\infty}f_n(x_k)=A_n$

 $\forall \varepsilon > 0, \exists N > 0, s.t. |f_n(x) - f(x)| \le \frac{\varepsilon}{2}, |A_n - A| \le \frac{\varepsilon}{2}, \forall n \ge N, \forall x \in I$

 $|f(x_k) - A| \le |f(x_k) - f_N(x_k)| + |f_N(x_k) - A_N| + |A_N - A| \le \frac{\varepsilon}{2} + |f_N(x_k) - A_N| + \frac{\varepsilon}{2} = \varepsilon + |f_N(x_k) - A_N|$

由 ε 任意性: $\overline{\lim} |f(x_k) - A| = 0$, 故 $\lim |f(x_k) - A| = 0$, 对于I中趋于 x_0 的任意序列 $\{x_k\}$

故 $\overline{\lim}_{x \to x_0} f(x) = \underline{\lim}_{x \to x_0} f(x) = 0$, 故 $\lim_{x \to x_0} f(x) = 0$.