Transforming Waste Management with Transfer Learning

Introduction

The exponential increase in waste generation worldwide has made waste management one of the most critical environmental challenges. Traditional manual waste segregation methods are labor-intensive, errorprone, and inefficient. To address this, we propose a deep learning-based smart classification system using transfer learning, capable of recognizing and categorizing waste into different types.

Objective

To develop a machine learning model using transfer learning that can classify waste images into predefined categories, thus facilitating smart bins, robotics automation, or city-level smart waste tracking systems.

Tools & Technologies

- · Language: Python
- Frameworks: TensorFlow, Keras
- Libraries: OpenCV, NumPy, Matplotlib, Scikit-learn
- Model: MobileNetV2 (pretrained on ImageNet)
- Environment: Jupyter Notebook / VSCode / Google Colab

Dataset

We use a custom dataset based on categories:

dataset/ ├── organic/ ├── recyclable/ ├── hazardous/	
- hazardous/	
└─ general/	

Each folder should contain images labeled as per the type.

Methodology

- 1. Data Collection & Labeling
- 2. Data Preprocessing
- 3. Transfer Learning
- 4. Training & Validation
- 5. Evaluation

Data Preprocessing & Loading

Load and Modify Pre-trained Model

Train the Model

```
from tensorflow.keras.callbacks import EarlyStopping
early_stop = EarlyStopping(monitor='val_loss', patience=3)
history = model.fit(train_gen, validation_data=val_gen, epochs=10,
callbacks=[early_stop])
```

Visualize Accuracy and Loss

```
import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

Evaluate the Model

```
from sklearn.metrics import classification_report, confusion_matrix
import numpy as np

val_gen.reset()
preds = model.predict(val_gen)
y_pred = np.argmax(preds, axis=1)

print("Classification Report:")
print(classification_report(val_gen.classes, y_pred,
target_names=list(val_gen.class_indices.keys())))
```

Expected Output

	hazardous	0.92	0.91	0.91	35
	organic	0.88	0.89	0.88	45
	recyclable	0.93	0.95	0.94	50
	accuracy			0.90	170
l					

Model Saving

```
model.save('waste_classifier_model.h5')
```

Applications

- Smart Bins
- City Waste Monitoring
- Robotic Waste Segregators
- Educational Tools

Future Enhancements

- Use object detection
- Fine-tune more layers
- Create a mobile/web app
- Implement real-time video classification