Dynamic Mode Decomposition Discussion

Zihao Wang, Sam Minkowicz, April Zhou, Zhongsheng Sang, Avinash Karamchandani February 2020

1. Explain equations (and the relationship between equations) 20.1.5, 20.1.6, and 20.1.10. What do these equations assume about the data and what do they capture?

$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i,\tag{20.1.5}$$

where **A** is linear, time-independent Koopman operator, x_j and x_{j+1} are vectors of data collected at times t_j and t_{j+1} . The matrix

$$\mathbf{X}_1^{M-1} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \cdots & \mathbf{x}_{M-1} \end{bmatrix}$$
 (20.1.6)

is constructed the vector data collected at different times (\mathbf{x}_j for j=1:M-1). With the assumption of equation (20.1.5), we can deduce the equation (20.1.6) to the equation (20.1.10). Actually equation (20.1.10) gives us a recursion formula for the next time step.

$$\mathbf{A}\mathbf{X}_1^{M-1} = \mathbf{X}_2^M \tag{20.1.10}$$

2. What is the relationship between 20.1.7, 20.1.8, and 20.1.11?

Making use of equation (20.1.5), we are able to rewrite \mathbf{X}_1^{M-1} as follows:

$$\mathbf{X}_{1}^{M-1} = [\mathbf{x}_{1} \ \mathbf{A}\mathbf{x}_{1} \ \mathbf{A}^{2}\mathbf{x}_{1} \ \dots \ \mathbf{A}^{M-2}\mathbf{x}_{1}]. \tag{20.1.7}$$

We try to represent the final data point \mathbf{x}_M as a linear combination of the previous M-1 data points, as best as possible (in an L2 sense):

$$\mathbf{x_M} = \sum_{m=1}^{M-1} b_m x_m + r, \tag{20.1.8}$$

where b_m are the coefficients of the Krylov space vectors and \mathbf{r} is the residual term (which is orthogonal to the Krylov space). Making use of equation (20.1.8), equation (20.1.10) can be rewritten as

$$\mathbf{X}_{2}^{M} = \mathbf{X}_{1}^{M-1}\mathbf{S} + \mathbf{r}e_{M-1}^{*} \tag{20.1.11}$$

where e_{M-1}^* is the (M-1)th unit vector and **S** is the coefficient matrix.

3. If x_k is a snapshot of state-space at time k and N spatial points, what are the sizes of \mathbf{X}_1^{M-1} , \mathbf{X}_2^M , r, and S?

 \mathbf{X}_1^{M-1} and \mathbf{X}_2^M are $N \times (M-1)$ matrices, \mathbf{r} is a $N \times 1$ vector and \mathbf{S} is a $(M-1) \times (M-1)$ matrix.

4. What is the relationship between S and A?

Based on the linearity assumption and Krylov space method, we rewrite the relation between \mathbf{X}_2^M and \mathbf{X}_1^{M-1} as equation (20.1.11). In this way, the eigenvalues of \mathbf{S} approximate some of the eigenvalues of the unknown Koopman operator \mathbf{A} .

Comparing 20.1.10 and 20.1.11 we see that **A** is being right multiplied while **S** is being left multiplied therefore **A** is $N \times N$ and **S** is a $(M-1) \times (M-1)$. In fluids applications the data is of much higher spatial resolution than temporal resolution, N >> M. Thus, **S** will be smaller than **A**.

5. What are the characteristics of the SVD decomposition in 20.1.9? (i.e. what are the structure, dimensions, and orthogonal properties of the matrices U, Σ , and V?

$$\mathbf{X}_{1}^{M-1} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{*} \tag{20.1.9}$$

U is an $N \times K$ matrix, and V is an $M-1 \times K$ matrix, Σ is an $K \times K$ rectangular diagonal matrix with non-negative real numbers on the diagonal. The diagonal entries of Σ are known as the singular values of X_1^{M-1} . The columns of U and V are called the left-singular vector and right-singular vector of X_1^{M-1} , respectively.

6. The textbook skips some steps in deriving 20.1.13. Show that you can get to this approximation of $\tilde{S} = U^*SU$ and the SVD to solve 20.1.10 for the least-squares solution.

From equations (20.1.10) and (20.1.9), we have that

$$\begin{aligned} \mathbf{A} &= & \mathbf{X}_2^M (\mathbf{X}_1^{M-1})^{-1} \\ &= & \mathbf{X}_2^M (\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^*)^{-1} \\ &= & \mathbf{X}_2^M \mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^*. \end{aligned}$$

Let $\tilde{\mathbf{S}} = \mathbf{U}^* \mathbf{A} \mathbf{U}$ be the similarity transformation of \mathbf{A} . Then, A can be approximated by

$$\tilde{\mathbf{S}} = \mathbf{U}^* \mathbf{A} \mathbf{U}$$

$$= \mathbf{U}^* (\mathbf{X}_2^M \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^*) \mathbf{U}$$

$$= \mathbf{U}^* \mathbf{X}_2^M \mathbf{V} \mathbf{\Sigma}^{-1}.$$
(20.1.13)

Eigenvlaues and eigenvectors are preserved under a similarity transform.

7. How are eigenvectors and eigenvalues used to estimate the DMD solution?

We solve the eigenvalue problem:

$$\tilde{\mathbf{S}}\mathbf{y}_k = \mu_k \mathbf{y}_k \quad \text{for} \quad k = 1, 2, ..., K$$
 (20.1.14)

Where K is the rank of the approximation we make $(K < rank(\mathbf{X}^M))$. We then use the eigenvalues μ_k to construct the DMD modes

$$\psi_k = \mathbf{U}\mathbf{y}_k. \tag{20.1.15}$$

Finally the approximate solution at all future times is given by

$$\mathbf{x}_{DMD}(t) = \sum_{k=1}^{K} b_k(0)\psi_k(\mathbf{x}) \exp(\omega t) = \mathbf{\Psi} \operatorname{diag}(\exp(\omega t))\mathbf{b}$$
 (20.1.16)

where $\omega_k = \ln(\mu_k)/\Delta t$, $b_k(0)$ is the initial amplitude of each mode, $\mathbf{\Phi}$ is the matrix whose columns are the eigenvectors ϕ , diag(ωt) is a diagonal matrix whose entries are the eigenvalues $\exp(\omega_k t)$

8. How do you calculate the initial condition for the solution?

Evaluating the approximate solution at the first time point gives $x_1 = \Psi b$. Since Ψ contains a truncated set of the eigenvectors of A, it will not be of full rank. To determine b, we use a psuedo-inverse: $b = \Psi^{\dagger} x_1$.

9. What makes the solution unstable and when does it become unstable?

Since approximate solution takes the form

$$\mathbf{x}_{DMD}(t) = \sum_{k=1}^{K} b_k(0) \psi_k(\mathbf{x}) \exp(\omega_k t),$$

for the solution to be stable, we need $\omega_k < 0$ for all k. And since $\omega_k = \ln |\mu_k|/\Delta t$, this means $|\mu_k| < 1$.