VE320 Homework 9

Due: 19/07/2019 10:00 am

1.

The dc charge distributions of four ideal MOS capacitors are shown in Figure P10.1. For each case: (a) Is the semiconductor n or p type? (b) Is the device biased in the accumulation, depletion, or inversion mode? (c) Draw the energy-band diagram in the semiconductor region.

Figure P10.1 | Figure for Problem 10.1.

2.

(a) Consider an n⁺ polysilicon–silicon dioxide–n-type silicon MOS structure. Let $N_d = 4 \times 10^{15}$ cm⁻³. Calculate the ideal flat-band voltage for $t_{ox} = 20$ nm = 200 Å. (b) Considering the results of part (a), determine the shift in flat-band voltage for (i) $Q'_{ss} = 4 \times 10^{10}$ cm⁻² and (ii) $Q'_{ss} = 10^{11}$ cm⁻². (c) Repeat parts (a) and (b) for an oxide thickness of $t_{ox} = 12$ nm = 120 Å.

3.

A MOS device with an aluminum gate is fabricated on a p-type silicon substrate. The oxide thickness is $t_{ox} = 22 \text{ nm} = 220 \text{ Å}$ and the trapped oxide charge is $Q'_{ss} = 4 \times 10^{10} \text{ cm}^{-2}$. The measured threshold voltage is $V_T = +0.45 \text{ V}$. Determine the p-type doping concentration.

4.

An n⁺ polysilicon gate–silicon dioxide–silicon MOS capacitor has an oxide thickness of $t_{ox} = 18$ nm = 180 Å and a doping of $N_a = 10^{15}$ cm⁻³. The oxide charge density is $Q'_{ss} = 6 \times 10^{10}$ cm⁻². Calculate the (a) flat-band voltage and (b) threshold voltage.

5.

The high-frequency C-V characteristic curve of a MOS capacitor is shown in Figure P10.30. The area of the device is 2×10^{-3} cm². The metal–semiconductor work function difference is $\phi_{ms} = -0.50$ V, the oxide is SiO₂, the semiconductor is silicon, and the semiconductor doping concentration is 2×10^{16} cm⁻³. (a) Is the semiconductor n or p type? (b) What is the oxide thickness? (c) What is the equivalent trapped oxide charge density? (d) Determine the flat-band capacitance.

Figure P10.30 | Figure for Problem 10.30.