随机数的产生

算法 (均匀分布 U(a, b))

Step 1. u = rand().

Step 2. $u \leftarrow u/RAND_MAX$.

Step 3. 返回 a + u(b - a).

算法 (指数分布 **εχア(β)**)

Step 1. 从 U(0,1) 中产生 u.

Step 2. 返回 $-\beta \ln(u)$.

算法 (正态 $\mathcal{N}(\mu, \sigma^2)$)

Step 1. 从 *U*(0,1) 中产生 μ₁ 和 μ₂.

Step 2. $y = [-2\ln(\mu_1)]^{\frac{1}{2}}\sin(2\pi\mu_2)$.

Step 3. 返回 $\mu + \sigma y$.

Example

设 $\boldsymbol{\xi}$ 是一个定义在概率空间 $(\Omega, \mathcal{A}, \Pr)$ 上的 n-维随机向量 (等价地, 它可由概率分布 Φ 来描述), 而 $f: \Re^n \to \Re$ 是一个可测函数. 那么 $f(\boldsymbol{\xi})$ 是一个随机变量. 为了计算期望值 $E[f(\boldsymbol{\xi})]$, 我们根据概率测度 \Pr 从 Ω 中产生 ω_k , 从而产生出 $\boldsymbol{\xi}(\omega_k)$, $k=1,2,\cdots,N$. 等价地, 根据概率分布 Φ 产生随机向量 $\boldsymbol{\xi}(\omega_k)$, $k=1,2,\cdots,N$. 由强大数定理知

$$\frac{\sum\limits_{k=1}^{N}f(\boldsymbol{\xi}(\omega_{k}))}{N}\longrightarrow E[f(\boldsymbol{\xi})], \quad \text{a.s.}$$

 $(N \to \infty)$. 因此, 期望值 $E[f(\xi)]$ 可由 $\frac{1}{N} \sum_{k=1}^{N} f(\xi(\omega_k))$ 来计算 (N 充分大).

随机模拟

算法(对期望值的随机模拟)

- **Step 1.** 置 e = 0.
- **Step 2.** 根据概率测度 Pr 从 Ω 中产生 ω . 等价地, 根据概率分布 Φ 产生随机向量 $\xi(\omega)$.
- Step 3. $e \leftarrow e + f(\xi(\omega))$.
- Step 4. 重复第二至第三步 N 次.
- **Step 5.** $E[f(\xi)] = e/N$.

Example

为了计算概率 $L = \Pr \{ f(\xi) \le 0 \}$,根据概率测度 \Pr 从 Ω 中产生 ω_k ,从而产生出 $\xi(\omega_k)$, $k = 1, 2, \cdots, N$. 设 N' 为满足不等式组的 随机向量的个数. 定义

$$h(\boldsymbol{\xi}(\omega_k)) = \left\{ egin{array}{ll} 1, & ext{if } f(\boldsymbol{\xi}(\omega_k)) \leq 0 \\ 0, & ext{otherwise.} \end{array}
ight.$$

那么对所有 k 我们有 $E[h(\boldsymbol{\xi}(\omega_k))] = L$, 而 $N' = \sum_{k=1}^N h(\boldsymbol{\xi}(\omega_k))$. 因此

$$\frac{N'}{N} = \frac{\sum\limits_{k=1}^{N} h(\xi(\omega_k))}{N}$$

几乎处处收敛到 L. 故概率 L 可由 N'/N 来计算只要 N 充分大.

随机模拟

算法(对概率的随机模拟)

- **Step 1.** 置 N' = 0.
- **Step 2.** 根据概率测度 Pr 从 Ω 中产生 ω . 等价地, 根据概率分布 Φ 产生随机向量 $\boldsymbol{\xi}(\omega)$.
- Step 3. 如果 $f(\xi(\omega)) < 0$, 那么 $N' \leftarrow N' + 1$.
- Step 4. 重复第二至第三步 N 次.
- **Step 5.** L = N'/N.

Example

为了确定极大的 \overline{f} 使得 $\Pr \{ f(\xi) \geq \overline{f} \} \geq \alpha$,根据概率测度 \Pr 从 Ω 中产生 ω_k . 等价地,根据概率分布 Φ 产生随机向量 $\xi(\omega_k)$, $k = 1, 2, \dots, N$. 定义

$$h(\boldsymbol{\xi}(\omega_k)) = \left\{ egin{array}{ll} 1, & ext{if } f(\boldsymbol{\xi}(\omega_k)) \geq \overline{f} \ 0, & ext{otherwise} \end{array}
ight.$$

 $k=1,2,\cdots,N$, 这是随机变量序列, 而对所有 k, $E[h(\xi(\omega_k))]=\alpha$ for all k. 因此

$$\frac{\sum\limits_{k=1}^{N}h(\boldsymbol{\xi}(\omega_{k}))}{N}\longrightarrow\alpha,\quad \text{a.s.}$$

 $N \to \infty$. 故 \overline{f} 能作为序列 $\{f(\boldsymbol{\xi}(\omega_1)), f(\boldsymbol{\xi}(\omega_2)), \cdots, f(\boldsymbol{\xi}(\omega_N))\},$ $(N' = [\alpha N])$ 中第 N' 个最大的元素.

随机模拟

算法(对关键值的随机模拟)

- Step 1. 置 N' 为 αN 的整数部分.
- **Step 2.** 根据概率测度 Pr 从 Ω 中产生 $\omega_1, \omega_2, \cdots, \omega_N$. 等价地, 根据概率分布 Φ 产生随机向量 $\boldsymbol{\xi}(\omega_1), \boldsymbol{\xi}(\omega_2), \cdots, \boldsymbol{\xi}(\omega_N)$.
- Step 3. 返回 $\{f(\boldsymbol{\xi}(\omega_1)), f(\boldsymbol{\xi}(\omega_2)), \cdots, f(\boldsymbol{\xi}(\omega_N))\}$ 中第 N' 个最大的元素.