

#### Vandana M L

Department of Computer Science and Engineering



# **Singly Linked List**

#### Vandana M L

Department of Computer Science and Engineering

## **Singly Linked List: Node Structure**



## **Defining node structure**

```
struct node
int data;
struct node *link;
typedef struct node NODE;
  data
           link
```

```
struct polydata
 int coeff;
 int expo;
                                          link
                         coef
                                  expo
typedef struct node
polydata data;
struct node *link;
}polynode;
```

## **Singly Linked List Operations**

## **Creating a node**

- ➤ Allocate memory for the node dynamically
- ➤ If the memory is allocated successfully set the data part to user defined value set the link part to NULL





## **Singly Linked List operations**

## Inserting a node

There are 3 cases

- Insertion at the beginning
- Insertion at the end
- > Insertion at a given position



## **Singly Linked List operations**

### Insertion at the beginning

- Create a node
  If the list is empty
- make the head pointer point towards the new node;Else
- Make the next pointer of the node point towards the first node of the list
- Make the head pointer point towards this new node



## **Singly Linked List operations**

# PES UNIVERSITY ONLINE

## Insertion at the beginning





## **Singly Linked List operations**

## Insertion at the beginning







## **Singly Linked List operations**

# PES UNIVERSITY ONLINE

#### Insertion at the end of the

- Create a node
  If the list is empty
- make the head pointer point towards the new node;Else
- > Traverse the linked list to find out the last node
- Make the link pointer of the last node to point to the new node

## **Singly Linked List operations**

#### Insertion at the end of the







#### **Singly Linked List operations**

## Insertion at the given position

Create a node

If the list is empty or if insertion is to be done at first position

Same steps as insert front

#### Else

- Traverse the linked list to reach given position
- Keep track of the previous node
  If it is an intermediate position
  - Change previous node link to point to the newnode
  - Newnode to point to the next node

#### Else

If it is last position

Same steps as insert at end

Else

Print "Invalid position"



## **Singly Linked List operations**

## Insertion at the given position







#### **Lecture Summary**



## **Singly Linked List insert operation**

Apply the concepts to implement following operations on a circular singly linked list

- Count number of nodes
- Concatenate two lists
- Sum of all the node values in the list



## **THANK YOU**

Vandana M L

Department of Computer Science & Engineering

vandanamd@pes.edu

+91 7411716615