ASSIGNMENT # 10

MATH 660, DIFFERENTIAL GEOMETRY

(1) Let $N^k \subset M^n$ be a compact submanifold and

$$\nu_{\epsilon} = \{ v \in T_p M \mid p \in N, \text{ and } v \perp T_p N \text{ with } |v| \leq \epsilon \}$$

- (a) Show that there exists an $\epsilon > 0$ such that $\exp^{\perp} : \nu_{\epsilon} \to M$ (where $\exp^{\perp}(v) = \exp_{p}(v)$ for $v \in T_{p}M$) is a diffeomorphism onto its image. In this case $T_{\epsilon}(N) = \exp^{\perp}(\nu_{\epsilon})$ is called an ϵ tubular neighborhood of N.
- (b) Prove an analogue of the Gauss Lemma: The geodesic $\exp^{\perp}(tv)$ meets $\partial T_{\delta}(N)$ orthogonally for all $\delta \leq \epsilon$.
- (c) If $\gamma(t) = \exp^{\perp}(tv)$, $t \leq a$ is a geodesic in a tubular neighborhood, show that γ is the shortest connection from N to $\gamma(a)$.
- (2) Let $\pi \colon M \to B$ be a submersion with M compact such that the fibers are constant distance apart: If $F_p = \pi^{-1}(p)$ are the fibers of π , then $d(x, F_q) = d(y, F_q)$ for all $x, y \in F_p$ for all $q \neq p$. Show that π is a Riemannian submersion.

Hint: Choose p, q near each other such that F_q lies in an ϵ tubular neighborhood of F_p . Using problem (1) show that there is a unique minimal geodesic γ_x from x to F_q , which meets F_p as well as F_q orthogonally. Next show that $\gamma_x(t)$ and $\gamma_y(t)$ are contained in the same fiber for all $x, y \in F_p$ and all t.

- (3) Show that for every metric on \mathbb{S}^2 the cut locus and the first conjugate locus must intersect.
- (4) Compute the cut locus of a point, and its homeomorphism type, on a square and on a non square flat torus, and for a flat metric on the Klein bottle.
- (5) On what compact surface can there be a metric where the cut locus of a point is a circle. For each surface exhibit a metric where you can compute the cut locus of a point.
- (6) Let *M* be a torus of revolution (with specified radii) and *p* a point on the outer geodesic. Find out as much as you can say about the cut locus of *p*. How does the cut point of the outer geodesic relate to its first conjugate point?