MAT1100 - Grublegruppe Oppgavesett 1

Jørgen O. Lye

Oppgave 1

a)

Kalkulus 3.2.16

b)

Kalkulus 3.2.17

c)

Kalkulus 3.2.18

Oppgave 2

Vi skal i denne oppgaven se på noe som kalles stereografisk projeksjon av det komplekse planet opp på Riemann-sfæren \mathbb{S}^2 . Oppsettet er som følger. Tenk på det komplekse planet som en delmengde av \mathbb{R}^3 ved at $\mathbb{C} = \{(x,y,z) \in \mathbb{R}^3 | z=0\}$. Plasser en enhetssfære med sentrum i origo slik at den blir skåret langs ekvator av planet. Punktet S=(0,0,-1) kommer jeg til å kalle sørpolen og punktet N=(0,0,1) kalles nordpolen. En tegning av oppsettet tatt fra Wikipedia er vedlagt som figur 1,

Figur 1: Riemann-sfæren med stereografisk projeksjon.

Vi skal nå avbilde alle punkter i planet opp på sfæren. Gitt et punkt i planet z=(x,y,0), la L være linjen mellom punktet z og N=(0,0,1). Vi sender punktet z til skjæringspunktet mellom linjen og kulen (dvs. skjæringspunktet som ikke er N).

$\mathbf{a})$

Overbevis deg om at punkter i planet med |z| < 1 sendes sør for ekvator, punkter med |z| = 1 ikke sendes noe sted og at punkter med |z| > 1 sendes nord for ekvator.

b)

Linjen mellom (x, y, 0) og N kan parametriseres med L(t) = (xt, yt, 1 - t) med $t \in [0, 1]$. Overbevis deg om at dette gir mening.

$\mathbf{c})$

Vis at formelen for skjæringspunktet er

$$P(z) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{1-x^2-y^2}{1+x^2+y^2}\right) = \left(\frac{2\operatorname{Re}(z)}{1+|z|^2}, \frac{2\operatorname{Im}(z)}{1+|z|^2}, \frac{1-|z|^2}{1+|z|^2}\right)$$

d)

Bruk formelen over til å sjekke at $0, \infty$ (som en grense), og tall med |z| = 1 alle sendes "dit de skal".

e)

Vis at (eller forklar at) dersom 2 punkter z og w sendes til det samme punktet på sfæren så er z=w. På denne måten kan man tenke på \mathbb{C} som en del av sfæren. Nærmere bestemt $\mathbb{S}^2 \setminus \{N\}$. Siden $\infty \mapsto N$ er det vanlig å skrive at $\mathbb{S}^2 = \mathbb{C} \cup \{\infty\}$.

Hvis man vi være teknisk sier man at Riemann-sfæren er ettpunktskompaktifikasjonen (one point compactification) til \mathbb{C} .

f)

Vis at formelen

$$z = Q(x_1, x_2, x_3) = \frac{x_1}{1 - x_3} + i \frac{x_2}{1 - x_3}$$

Sender punkter (x_1, x_2, x_3) fra sfæren til planet og er slik at $P(Q(x_1, x_2, x_3)) = (x_1, x_2, x_3)$ og Q(P(z)) = z. Senere i MAT1100 vil dere da si at P og Q er inversfunksjoner.

Andre eksempler på slike er sin og sin⁻¹.

 \mathbf{g}

Vis at punktene z og $-\frac{1}{z}$ sendes til motsatte sider av sfæren.

h)

Vis at linjer gjennom origo i planet sendes til sirkler på sfæren og at sirkler på sfæren enten kommer fra sirkler eller linjer i planet.

Det kan lønne seg å vise at bildet av linjen ligger i et plan, siden et plan snitter en sfære i en sirkel.

i)

Vis at alle linjer i det komplekse planet blir til sirkler på Riemann-sfæren.

Oppgave 3

Vi ser litt på komplekse logaritmer. Hvis man velger $\theta \in [0, 2\pi)$, så kan man entydig skrive et komplekst tall $z \neq 0$ som

$$z = re^{i\theta}$$

Basert på formelen $\ln(ab) = \ln(a) + \ln(b)$ (som gjelder for reelle, positive tall) er det fristende å definere

$$\ln(re^{i\theta}) = \ln(r) + \ln(e^{i\theta}) = \ln(r) + i\theta$$

a)

Bruk formelen over til å regne ut logaritmen av i, -1 og $-1 + i\sqrt{3}$.

b)

Basert på formelen $x^a = e^{a \ln(x)}$ som man har for positiv og reell x definerer vi

$$z^a = e^{a \ln(z)}$$

for komplekse tall z og a. Bruk denne til å regne ut i^i , i^{-1} , og $(1+i)^{(1+i)}$.

c)

Hva er feil med argumentet?

$$1 = \sqrt{1} = \sqrt{-1 \cdot -1} = \sqrt{-1} \cdot \sqrt{-1} = i \cdot i = -1$$

d)

Vi fortsetter som over. Forklar at $e^{i(\theta+2\pi n)}=e^{i\theta}$ for alle $n\in\mathbb{Z}$ men $i\theta\neq i(\theta+2n\pi)$. Bruk dette til å argumentere for at overgangen $\sqrt{ab}=\sqrt{a}\sqrt{b}$ ikke er sann for alle komplekse tall, dvs $\ln(ab)\neq \ln(a)+\ln(b)$.