UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

$\underline{\textbf{Discussion 1}}$

Fall 2023

1. Independence

Events $A, B \in \mathcal{F}$ are said to be **independent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$.

a. Show that if events A, B are independent, then the probability exactly one of the events occurs is

$$\mathbb{P}(A) + \mathbb{P}(B) - 2 \,\mathbb{P}(A) \,\mathbb{P}(B).$$

b. Show that if the event A is independent of itself, then $\mathbb{P}(A) = 0$ or 1.

2. Balls and Bins

Suppose n bins are arranged from left to right. You sequentially throw n balls; each ball lands in a bin chosen uniformly at random, independent of all other balls.

- a. Formulate an appropriate probability space for modelling the outcome of this experiment.
- b. Let A_i denote the event that exactly i bins are empty, $i=0,\ldots,n$. Compute the probability of the event

{all empty bins sit to the left of all bins containing at least one ball}

in terms of the $\mathbb{P}(A_i)$'s.

c. Practice your CS70 skills by computing $\mathbb{P}(A_1)$.

3. Coin Flipping and Symmetry

Alice and Bob have 2n + 1 fair coins, $n \ge 1$. Bob tosses n + 1 coins, while Alice tosses the remaining n coins. A fair coin lands on heads with probability $\frac{1}{2}$; assume that coin tosses are independent.

- a. Formulate this scenario in terms of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Describe explicitly what the outcomes are and what the probability measure of any event is defined to be.
- b. Show that the probability that after all coins have been tossed, Bob will have gotten more heads than Alice is $\frac{1}{2}$.

Hint: Consider the event $A = \{\text{more heads in the first } n+1 \text{ tosses than the last } n \text{ tosses} \}.$