Earlier we tried to understand how to use Python for analysis for the dataset used in our code which is important to study the co-relation between the various values (pollutants & the calculated AQI) and also to understand the accuracy (MSE: mean squared error) of the technique / model being used in an "AirPollutionDataset". Then, we saw how to perform Web Scraping which is a real-time application & is used by businesses for market research and in product price comparisons. Let us try to understand more about Machine Learning using Python and explore further with "Sentiment Analysis" dataset & going further understand about forecasting such as Earthquake Prediction using Machine Learning.

Python Intermediate (Applications)

Let us try to understand how to use Python for "Sentiment Analysis" by exploring the Naive Bayes, Support Vector Classifier & Logistic Regression **machine learning techniques**.

```
32 print("TF-IDF shape (train):", X_train_tfidf.shape)
33 print("TF-IDF shape (test):", X_test_tfidf.shape)
35 bnb = BernoulliNB()
36 bnb.fit(X_train_tfidf, y_train)
37 bnb_pred = bnb.predict(X_test_tfidf)
38 print("Bernoulli Naive Bayes Accuracy:", accuracy_score(y_test, bnb_pred))
39 print("\nBernoulliNB Classification Report:\n", classification_report(y_test, bnb_pred))
PROBLEMS 5 OUTPUT DEBUG CONSOLE TERMINAL
                                                                                             Python: SentimentNaive + V III
0 @switchfoot http://twitpic.com/2y1zl - Awww, t... @switchfoot http://twitpic.com/2y1zl - awww, t...
1 is upset that he can't update his Facebook by ... is upset that he can't update his facebook by ...
2 @Kenichan I dived many times for the ball. Man... @kenichan i dived many times for the ball. man...
   my whole body feels itchy and like its on fire my whole body feels itchy and like its on fire
4 @nationwideclass no, it's not behaving at all.... @nationwideclass no, it's not behaving at all....
Train size: 1280000
Test size: 320000
TF-IDF shape (train): (1280000, 5000)
TF-IDF shape (test): (320000, 5000)
Bernoulli Naive Bayes Accuracy: 0.766478125
BernoulliNB Classification Report:
             precision recall f1-score support
                0.77 0.75 0.76 159494
                0.76 0.78 0.77 160506
   accuracy
                                  0.77 320000
  macro avg 0.77 0.77 320000
weighted avg 0.77 0.77 0.77 320000
```

Accuracy	Precision	Recall	f1-score	support
Accuracy is the proportion of all classifications that were correct, whether positive or negative		proportion of all	A single metric that provides a balance between precision and recall.	•

SentimentAnalysis > ₹ SentimentLogisticKegression.py > ...

- 1 import pandas as pd
- 2 from sklearn.feature_extraction.text import TfidfVectorizer
- 3 from sklearn.model selection import train test split
- 4 from sklearn.linear model import LogisticRegression
- 5 from sklearn.metrics import accuracy score, classification report

```
32 print("TF-IDF shape (train):", X_train_tfidf.shape)
     print("TF-IDF shape (test):", X_test_tfidf.shape)
35 logreg = LogisticRegression(max_iter=100)
36 logreg.fit(X_train_tfidf, y_train)
37 logreg_pred = logreg.predict(X_test_tfidf)
PROBLEMS 5 OUTPUT DEBUG CONSOLE TERMINAL PORTS
                                                                                         Python: SentimentLogisticRegression
2 @Kenichan I dived many times for the ball. Man... @kenichan i dived many times for the ball. man...
3 my whole body feels itchy and like its on fire my whole body feels itchy and like its on fire
4 @nationwideclass no, it's not behaving at all.... @nationwideclass no, it's not behaving at all....
Train size: 1280000
Test size: 320000
TF-IDF shape (train): (1280000, 5000)
TF-IDF shape (test): (320000, 5000)
Logistic Regression Accuracy: 0.796003125
Logistic Regression Classification Report:
              precision recall f1-score support
          0
                0.80 0.78 0.79 159494
                0.79 0.81 0.80 160506
          1
   accuracy
                                   0.80 320000
macro avg 0.80 0.80 0.80 320000 weighted avg 0.80 0.80 0.80 320000
```

Accuracy	Precision	Recall	f1-score	support
$\frac{TP + TN}{TP + TN + FP + FN}$	$rac{TP}{TP+FP}$	$\frac{TP}{TP+FN}$	$2 \times \frac{(\text{Precision} \times \text{Recall})}{(\text{Precision} + \text{Recall})}$	The number of true instances for each label in the dataset.

TP/N: True positives/negatives

FP: False positives are actual negatives that were misclassified

FN : False Negatives (False negatives are actual positives that were misclassified as negatives)

```
45 svm = LinearSVC(max_iter=1000)
 46 svm.fit(X_train_tfidf, y_train)
47   svm_pred = svm.predict(X_test_tfidf)
48
49 print("SVM Accuracy:", accuracy_score(y_test, svm_pred))
 50 print("\nSVM Classification Report:\n", classification_report(y_test, svm_pred))
PROBLEMS 5 OUTPUT DEBUG CONSOLE TERMINAL PORTS
4 @nationwideclass no, it's not behaving at all.... @nationwideclass no, it's not behaving at all....
Train size: 1280000
Test size: 320000
TF-IDF shape (train): (1280000, 5000)
TF-IDF shape (test): (320000, 5000)
Train size: 1280000
Test size: 320000
SVM Accuracy: 0.795284375
SVM Classification Report:
              precision recall f1-score support
          0 0.80 0.78 0.79 159494
1 0.79 0.81 0.80 160506
   accuracy
                                    0.80 320000
macro avg 0.80 0.80 0.80 320000 weighted avg 0.80 0.80 0.80 320000
```

A brief overview of some of the algorithms in machine learning

Algorithms /Models	Naive Bayes	Logistic Regression	SVM
Model works by,	A generative, probabilistic model to calculate the probability of a class given its features, assuming the features are conditionally independent of each other.		Finds the optimal separating hyperplane with the largest margin between classes, making it robust to outliers & good for high-dimensional data.
Observations (Accuracy of algo/model)	~77%	~80%	~80%

AIM of sentiment analysis is to classify the input tuples into two values (0 // no sentiment detected or 4 // sentiment detected). We use the dataset to train the classifier & check the accuracy of the models on the dataset.