		Learning Objectives (Refer to respective chapter numbers)
		Learn to distinguish between computing machines and other kinds of
1	L1.1	machines
	L1.2	Learn what it means to compute
		Learn the relationships between computing machines, problems, languages
3	L1.3	and grammars
	L1.4	Learn to define computer science
•		Appreciate the relationships between the science of computing and a core se
5	L1.5	of subject areas in computer science
	L1.6	Appreciate the historical development of the science of computing
	L1.7	Get an introduction to computability, intractability and intelligence
	L1.8	Understand the reasons for studying the science of computing
	21.0	Recognize that everyday machines such as vending machines are computing
9	L2.1	devices
	L2.2	Learn to design a finite automaton for a given problem
	L2.3	Learn to handle end conditions in automata
	L2.4	Learn to handle reject states in automata
	L2.5	Learn to use states as memory
	L2.6	Use a step-by-step method for constructing complex automata
	L2.7	Appreciate some limitations of deterministic finite automata
	L3.1	Learn to use nondeterminism as a tool in designing automata
	L3.2	Learn how to design nondeterministic automata for a given problem
		Learn to convert a nondeterministic automaton to a deterministic one through
18	L3.3	subset construction
	L3.4	Learn the use of λ -transitions in designing nondeterministic automata
	L3.5	Learn to minimize the states in an automaton
21	L3.6	Understand how finite state transducers work
22	L4.1	Learn what is a formal language and how it is related to an automaton
	L4.1 L4.2	Learn to construct simple regular expressions
	L4.2	Learn to convert a regular expression to an equivalent automaton
	L4.3	Learn to convert a regular expression to an equivalent automaton Learn to convert an automaton to a regular expression
23	L4.4	Learn a method to compare two regular expressions or finite automata to
26	L4.5	determine their equivalence
	L4.5	Learn to construct regular expressions for user data validation
	L5.1	Learn how grammars can be more compact than regular expressions
	L5.1 L5.2	Learn how grammars are used to parse or derive strings in a language
	L5.2 L5.3	Learn how to construct grammars for regular languages
	L5.3 L5.4	
	L5.4 L5.5	Learn to convert automata to regular grammars Learn to convert regular grammars to automata
32	L3.3	
		Learn to combine regular languages using their closure properties to obtain

	I	
		Learn to answer questions such as emptiness and finiteness of regular
	L6.2	languages
	L6.3	Learn why some languages are not regular
36	L6.4	Learn why regular languages are called regular
		Learn to apply the Pumping Lemma in an adversarial game to show that some
37	L6.5	languages are not regular
38	L7.1	Learn what is context-free behavior
39	L7.2	Learn how context-free grammars can derive languages that are not regular
40	L7.3	Learn to construct linear context-free grammars
41	L7.4	Learn to construct non-linear context-free grammars
42	L7.5	Learn to construct leftmost and rightmost derivation trees for strings
43	L7.6	Learn the relationship between parsing and ambiguity in grammars
44	L7.7	Learn to eliminate ambiguity in grammars
45	L7.8	Learn to convert a context-free grammar to Chomsky Normal Form
46	L7.9	Learn to convert a context-free grammar to Greibach Normal Form
	L7.10	Learn to parse a string using the CYK algorithm
	L8.1	Learn how to add memory to a finite automaton
	L8.2	Learn the equivalence of stack memory and context-free behavior
	20.2	Econ the equivalence of static memory and some at the behavior
50	L8.3	Learn to construct a pushdown automaton for a context-free language
	L8.4	Learn to convert a context-free grammar to a pushdown automaton
	L8.5	Learn to convert a pushdown automaton to a context-free grammar
	L8.6	Understand why nondeterminism is required in pushdown automata
	20.0	Learn how to combine context-free languages to obtain more complex
5.4	L9.1	languages
34	L9.1	Learn why context-free languages are not closed under intersection or
	L9.2	complementation
33	L9.2	Learn to answer questions such as emptiness and finiteness of context-free
ГС	L9.3	·
50	L9.3	languages
		Learn that equivalence or ambiguity questions of context-free languages
	L9.4	cannot be answered!
58	L9.5	Learn why some languages are not context-free
		Learn to apply the Pumping Lemma to show that a language is not context-
59	L9.6	free
		Learn how a simple computing machine can computing anything that is
60	L10.1	computable
		Learn to construct simple Turing Machines for languages and computable
61	L10.2	functions
	L10.3	Learn techniques for constructing more complex Turing Machines
63	L10.4	Understand how variations of Turing Machines are all equivalent
64	L10.5	Learn how to compile a Turing Machine into a binary string
		Understand how a Universal Turing Machines works as a stored-program
65	L10.6	computer
66	L11.1	Learn the difference between countably infinite and uncountably infinite sets
	1	, , , , , , , , , , , , , , , , , , , ,

67	L11.2	Learn the diagonalization technique to show that a language is uncountable
68	L11.3	Learn how to properly enumerate a language
69	L11.4	Learn why some languages are not enumerable
70	L11.5	Understand the difference between acceptance and membership in a language
71	L11.6	Understand why some languages are enumerable but not recursive
72	L11.7	Learn to construct a context-sensitive grammar for a language
73	L11.8	Learn to construct a pushdown automaton with two stacks
74	L11.9	Learn how unrestricted grammars work
75	L11.10	Learn how linear-bounded automata work
76	L11.11	Learn how all formal languages can be arranged in the Chomsky Hierarchy
77	L12.1	Learn to solve simple cases of the Post Correspondence Problem
78	L12.2	Learn why PCP is unsolvable
79	L12.3	Learn the difference between decidability and computability
80	L12.4	Learn why some problems are not computable
81	L12.5	Understand why Turing Machines suffer from the Halting Problem
82	L12.6	Appreciate kinds of problems that are undecidable
83	L12.7	Get an overview of the field of computational complexity
		Understand the difference between recognition and recall in computing
84	L12.8	solutions
85	L12.9	Wonder about a number of open questions in the science of computing