```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    plt.style.use('fivethirtyeight')
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5

EDA

In [5]: df.describe().T

Out[5]:

	count	mean	std	min	25%	50%	75%	max
fixed acidity	ed acidity 1599.0 8.319637 1.74		1.741096	4.60000	7.1000	7.90000	9.200000	15.90000
volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900	0.52000	0.640000	1.58000
citric acid	1599.0	0.270976	0.194801	0.00000	0.0900	0.26000	0.420000	1.00000
residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000	2.20000	2.600000	15.50000
chlorides	1599.0	0.087467	0.047065	0.01200	0.0700	0.07900	0.090000	0.61100
free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000	14.00000	21.000000	72.00000
total sulfur dioxide	1599.0	46.467792	32.895324	6.00000	22.0000	38.00000	62.000000	289.00000
density	1599.0	0.996747	0.001887	0.99007	0.9956	0.99675	0.997835	1.00369
рН	1599.0	3.311113	0.154386	2.74000	3.2100	3.31000	3.400000	4.01000
sulphates	1599.0	0.658149	0.169507	0.33000	0.5500	0.62000	0.730000	2.00000
alcohol	1599.0	10.422983	1.065668	8.40000	9.5000	10.20000	11.100000	14.90000
quality	1599.0	5.636023	0.807569	3.00000	5.0000	6.00000	6.000000	8.00000

```
In [6]: sns.countplot(x='quality', data=df)
    plt.show()
```



```
In [7]: cols = list(df.columns)
fig, ax = plt.subplots(3,4, figsize=(24,18))

for i in range(11):
    j = i // 4
    k = i % 4
    sns.boxplot(y=cols[i], x = 'quality', data=df, ax = ax[j][k])

plt.show()
```



```
In [8]: corr = df.corr()
    plt.figure(figsize=(12,12))
    sns.heatmap(corr, cmap='YlOrRd', annot=True)
    plt.show()
```

fixed acidity	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12		1.0
volatile acidity	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39		0.8
citric acid	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23		0.6
residual sugar	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014		
chlorides	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13		0.4
free sulfur dioxide	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051		0.2
total sulfur dioxide	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19		
density	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17		0.0
рН	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058		-0.2
sulphates	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25		0.4
alcohol	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48		-0.4

quality	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1		-0.6
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	Hd	sulphates	alcohol	quality		

```
In [9]: fig, ax = plt.subplots(3,4, figsize=(24,18))

for i in range(12):
    j = i//4
    k = i%4
    sns.histplot(x=cols[i], data=df, ax=ax[j][k], kde=True)
```



```
In [16]: skew_cols = ['residual sugar', 'chlorides','free sulfur dioxide','total sulfur dioxide','sulphates']
    for col in skew_cols:
        df[col] = df[col].apply(lambda x: np.log(x))
```

```
In [19]: fig, ax = plt.subplots(3,4, figsize=(24,18))

for i in range(12):
    j = i//4
    k = i%4
    sns.histplot(x=cols[i], data=df, ax=ax[j][k], kde=True, color='green')
```



```
In [20]: df 3 = df[df.quality==3]
         df 4 = df[df.quality==4]
         df 5 = df[df.quality==5]
         df 6 = df[df.quality==6]
         df 7 = df[df.quality==7]
         df 8 = df[df.quality==8]
In [21]: from sklearn.utils import resample
         df 3 upsampled = resample(df 3, replace=True, n samples=400, random state=42)
         df 4 upsampled = resample(df 4, replace=True, n samples=400, random state=42)
         df 7 upsampled = resample(df 7, replace=True, n samples=400, random state=42)
         df 8 upsampled = resample(df 8, replace=True, n samples=400, random state=42)
         df 5 downsampled = df 5.sample(n=400).reset index(drop=True)
         df 6 downsampled = df 6.sample(n=400).reset index(drop=True)
In [22]: df_resampled = pd.concat([df_3_upsampled, df_4_upsampled, df_7_upsampled, df_8_upsampled,
                                    df 5 downsampled, df 6 downsampled]).reset index(drop=True)
         df resampled.quality.value counts().sort index()
Out[22]: 3
              400
              400
         5
              400
              400
         7
              400
              400
         Name: quality, dtype: int64
```

In [23]: sns.countplot(x='quality', data=df_resampled)
 plt.show()

Now we have equal sample sizes for all classes

```
In [24]: corr_2 = df_resampled.corr()
    plt.figure(figsize=(12,12))
    sns.heatmap(corr_2, cmap='YlOrRd', annot=True)
    plt.show()
```



```
In [25]: corr 2.loc[(corr 2.quality >= 0.05) | (corr 2.quality <= -0.05), 'quality']</pre>
Out[25]: fixed acidity
                                  0.126471
         volatile acidity
                                 -0.611091
         citric acid
                                  0.387725
         chlorides
                                 -0.365112
                                  0.091006
         free sulfur dioxide
         total sulfur dioxide
                                  0.080836
         density
                                 -0.275677
                                 -0.271249
         рΗ
         sulphates
                                  0.497583
         alcohol
                                  0.580071
         quality
                                  1.000000
         Name: quality, dtype: float64
In [26]: X = df resampled.drop(['residual sugar', 'quality'], axis=1)
         y = df resampled['quality']
```

Modelling

decision trees

```
In [27]: from sklearn.preprocessing import StandardScaler
         from sklearn.model selection import cross_val_score
         from sklearn.tree import DecisionTreeClassifier
In [28]: model = DecisionTreeClassifier(random state = 42)
         score = cross val score(model, X, y, cv=5)
         print('Initial Score for DT classifier: ', score, '\nMean score: ', score.mean())
         Initial Score for DT classifier: [0.84791667 0.81666667 0.85208333 0.81666667 0.82083333]
         Mean score: 0.8308333333333333
In [29]: from sklearn.model selection import GridSearchCV
In [30]: model = DecisionTreeClassifier(random state=42)
         parameters = {'max depth':[5,10,15,20], 'max features' : ['auto','sqrt','log2']}
         cv = GridSearchCV(model, parameters, cv=5)
         cv.fit(X, y)
Out[30]: GridSearchCV(cv=5, estimator=DecisionTreeClassifier(random state=42),
                      param grid={'max depth': [5, 10, 15, 20],
                                   'max features': ['auto', 'sqrt', 'log2']})
In [31]: cv.best score
Out[31]: 0.8324999999999999
In [32]: cv.best_estimator_
Out[32]: DecisionTreeClassifier(max depth=15, max features='auto', random state=42)
```

Random forest

```
In [33]: from sklearn.ensemble import RandomForestClassifier
```

Conclusion

Since random forest has a comparatively better mean score it outperforms decision trees