Lógica proposicional (básica)

Ejercicio 1. Dada la siguiente fórmula:

$$\alpha = (a \lor b \to \neg c \land d) \to (\neg a \land c \to \neg d \lor \neg (\neg c \to b))$$

indica cuál o cuáles de las siguientes fórmulas son subfórmulas de α :

a) $(\neg a \land \neg b) \lor (\neg c \land d)$.

- b) $\neg c \rightarrow b$.
- c) $\neg a \land c \rightarrow \neg d$.
- d) b $\rightarrow \neg c$.
- e) $\neg c \wedge d$.

Ejercicio 2. Para las fórmulas siguientes y cada una de las interpretaciones de las proposiciones atómicas, extiende la interpretación a la fórmula bien formada.

Fórmulas:

1.
$$((a \rightarrow b) \rightarrow a) \rightarrow a$$

2.
$$\neg(a \rightarrow b) \rightarrow (\neg a \rightarrow \neg b)$$

3.
$$(\neg a \rightarrow \neg b) \rightarrow \neg (a \rightarrow b)$$

Interpretaciones:

a)
$$I(a) = 1$$
, $I(b) = 0$

b)
$$I(a) = 0$$
, $I(b) = 1$

c)
$$I(a) = 1$$
, $I(b) = 1$

Ejercicio 3 (Abril 2016). Señala para cuál o cuáles de las siguientes fórmulas se obtiene que el valor de una interpretación es $1 + I(\alpha)I(b) + I(\alpha)I(b)I(c)$

1.
$$a \wedge b \rightarrow c$$

2.
$$a \wedge c \rightarrow b$$

3.
$$a \wedge b \wedge c$$

4.
$$a \rightarrow \neg b \lor c$$

Ejercicio 4. Estudia si las siguientes equivalencias son ciertas o no. Justifica la respuesta.

1.
$$a \rightarrow b \equiv \neg a \rightarrow \neg b$$

2.
$$a \leftrightarrow b \equiv \neg a \leftrightarrow \neg b$$
.

3.
$$(a \lor b) \rightarrow c \equiv (a \rightarrow c) \lor (b \rightarrow c)$$
.

4.
$$(a \lor b) \to c \equiv (a \to c) \land (b \to c)$$
.

5.
$$a \rightarrow (b \lor c) \equiv (a \rightarrow b) \lor (a \rightarrow c)$$
.

6.
$$a \rightarrow (b \rightarrow c) \equiv (a \land b) \rightarrow c$$

Ejercicio 5. Demuestra que:

1.
$$\models (\alpha \land (\alpha \rightarrow \beta)) \rightarrow \beta$$
 Modus ponens

2.
$$\models ((\alpha \rightarrow \beta) \land \neg \beta) \rightarrow \neg \alpha$$
 Modus tollens

$$3. \models (\neg \alpha \rightarrow \neg \beta) \rightarrow ((\neg \alpha \rightarrow \beta) \rightarrow \alpha)$$

4.
$$\models ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$$
 Ley de Peirce

5.
$$\vDash (\neg \alpha \rightarrow \alpha) \rightarrow \alpha$$
 Ley de Clavius

$$6. \begin{array}{l} \vDash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma)) \\ \vDash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) \end{array} \qquad \text{Leyes de silogismo}$$

7.
$$\models (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow (\beta \rightarrow (\alpha \rightarrow \gamma))$$
 Ley de conmutación de premisas

8.
$$\alpha \rightarrow (\beta \rightarrow \alpha)$$
.

9.
$$\models \neg \alpha \to (\alpha \to \beta) \\ \models \alpha \to (\neg \alpha \to \neg \beta)$$
 Leyes de Duns Suite

Ejercicio 6. Para las fórmulas:

1.
$$p \rightarrow (q \rightarrow r)$$

2.
$$(\neg p \land \neg q) \rightarrow (\neg r \land s)$$

3.
$$\mathfrak{p} \leftrightarrow \mathfrak{q}$$

4.
$$(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

5.
$$(p \leftrightarrow \neg q) \leftrightarrow r$$

6.
$$p \wedge q \wedge r$$

Encuentra, si es posible, fórmulas equivalentes a ellas en las que se usen solamente las conectivas

a)
$$\{\neg, \land\}$$

b)
$$\{\neg, \vee\}$$

c)
$$\{\neg, \rightarrow\}$$

d)
$$\{\vee, \wedge\}$$

Ejercicio 7. Estudia si el siguiente conjunto de proposiciones es satisfacible o insatisfacible:

$$\Gamma = \{ \gamma \to (\alpha \lor \beta), \beta \to (\gamma \to \alpha), \delta \land \neg(\gamma \to \alpha) \}$$

Ejercicio 8. Sean α , β , γ y δ cuatro fórmulas de un lenguaje proposicional, y supongamos que $\{\alpha, \beta, \gamma\} \models \delta$. Razona si las siguientes afirmaciones son ciertas o falsas.

- 1. $\{\alpha, \beta, \gamma, \delta\}$ es satisfacible
- 2. $\alpha \vee \beta \vee \gamma \vee \neg \delta$ es una contradicción.
- 3. $\neg \alpha \lor \neg \beta \lor \neg \gamma \lor \delta$ es una tautología.
- 4. $((\alpha \lor \beta) \to \gamma) \to \delta$ es una tautología.
- 5. $\{\alpha, \gamma\} \models \neg \delta \rightarrow \neg \beta$.
- 6. $\{\alpha, \beta, \gamma, \neg \delta\}$ es insatisfacible.
- 7. $\{\alpha \land \gamma, \neg \delta \land \beta\}$ es insatisfacible.
- 8. $\{\alpha, \beta, \delta\} \vDash \gamma$.
- 9. $\{\alpha, \beta, \neg \delta\} \models \neg \gamma$.
- 10. $\alpha \wedge \beta \wedge \gamma \rightarrow \delta$ es una tautología.
- 11. $\{\neg \alpha, \neg \beta, \neg \gamma, \delta\}$ es satisfacible.
- 12. $\neg \delta \models \neg \alpha \lor \neg \beta \lor \neg \gamma$.
- 13. $\{\alpha, \beta, \gamma\} \models \delta \land \beta$.

Ejercicio 9. Usa los distintos tipos de técnicas estudiadas (cálculo de interpretaciones en \mathbb{Z}_2 , resolución, algoritmo de Davis-Putnam) para determinar si son o no tautologías las siguientes fórmulas:

- 1. $(q \rightarrow p \lor r) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow [(r \rightarrow q) \rightarrow r]))$
- 2. $(\beta \rightarrow \neg \alpha) \rightarrow ((\neg \alpha \rightarrow \neg (\alpha \rightarrow \beta)) \rightarrow \alpha)$
- 3. $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$
- 4. $((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
- 5. $(\beta \rightarrow \gamma) \rightarrow (\neg(\alpha \rightarrow \gamma) \rightarrow \neg(\alpha \rightarrow \beta))$
- 6. $((\alpha \rightarrow \beta) \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma)$
- 7. $((\neg \alpha \lor \beta) \land (\alpha \lor \neg \beta)) \leftrightarrow (\alpha \leftrightarrow \beta)$
- 8. $\neg(a \rightarrow b) \rightarrow (\neg a \rightarrow \neg b)$
- 9. $(\neg a \rightarrow \neg b) \rightarrow \neg (a \rightarrow b)$
- 10. $(p \rightarrow q) \rightarrow [(\neg p \rightarrow q) \rightarrow q]$

Ejercicio 10. Estudia si las siguientes afirmaciones son ciertas o no. Caso de no serlo, encuentra una asignación para las proposiciones atómicas que lo demuestre.

- 1. $\{a \rightarrow b, a \rightarrow \neg b\} \models \neg a$
- 2. $\{a \rightarrow b, a \lor b\} \models b$.
- 3. $\{a \rightarrow \neg b, a \land b\} \models c$.
- 4. $\{a \lor b, \neg a \lor \neg b\} \models a \leftrightarrow \neg b$.
- 5. $\{a \leftrightarrow \neg b, a \rightarrow c\} \models b \lor c$.

6.
$$\{(a \land b) \leftrightarrow c, \neg c\} \models \neg a \land \neg b$$
.

7.
$$\{\neg(a \land b \land c), (a \land c) \lor (b \land c)\} \models a \rightarrow \neg b.$$

8.
$$\{b \to (c \lor a), a \leftrightarrow \neg(b \land d)\} \vDash b \leftrightarrow (c \lor d).$$

9.
$$\{(a \land b) \rightarrow c, c \rightarrow (a \lor d)\} \models b \rightarrow (\neg a \rightarrow c).$$

10.
$$\{(a \lor c) \to \neg a, c \to \neg a, b \to \neg a\} \models \neg a$$
.

11.
$$\{(a \land b) \rightarrow c, c \rightarrow d, b \land \neg d\} \models \neg a$$
.

12.
$$\{(a \rightarrow b) \lor (c \rightarrow d), \neg a \rightarrow a, \neg c \rightarrow c\} \models b \lor d.$$

13.
$$\{a \rightarrow (b \lor c), c \rightarrow d, \neg b \lor d\} \models \neg (a \land \neg d).$$

14.
$$\{(b \rightarrow a) \land b, c \rightarrow d, b \rightarrow c\} \models a \lor d.$$

15.
$$\{(a \land b) \rightarrow c, (\neg a \land \neg b) \rightarrow d, a \leftrightarrow b\} \models c \lor d.$$

16.
$$\{a \rightarrow (b \lor c), d \lor \neg c, b \lor d\} \models a \rightarrow d.$$

17.
$$\{(\neg b \land \neg c) \rightarrow \neg a, a \rightarrow b, a \leftrightarrow c\} \models b \lor c.$$

18.
$$\{a \rightarrow (a \rightarrow b), (b \lor c) \rightarrow a, c \rightarrow (a \lor b)\} \models b.$$

19.
$$\{(a \land \neg b) \rightarrow \neg c, (\neg a \land b) \rightarrow d, \neg a \lor \neg b, e \rightarrow (a \land \neg d)\} \models \neg e.$$

20.
$$\{c \to d, a \lor b, \neg(\neg a \to d), \neg a \to b\} \vDash b \land \neg c.$$

Ejercicio 11 (Septiembre 2011). Nos encontramos en la isla donde sus habitantes se dividen en dos grupos. Los que dicen siempre la verdad (veraces) y los que siempre mienten (mentirosos). Estamos con dos habitantes de dicha isla, Andrés y Begoña.

Andrés dice: Yo soy mentiroso si Begoña no lo es.

Begoña replica: Andrés es mentiroso si yo lo soy.

¿Qué conclusión sobre Andrés y Begoña podemos extraer de aquí?