10 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРА-БОТКИ И ПРОИЗВОДСТВА ДИСТАНЦИОННО УПРАВЛЯ-ЕМОГО ИСТОЧНИКА ПИТАНИЯ СВЧ МАГНЕ-ТРОНА СРЕДНЕЙ МОЩНОСТИ

10.1 Характеристика устройства

Проектируемый в дипломном проекте дистанционно управляемый ис-точник питания СВЧ магнетрона используется в целях обеспечения и регули-ровки режима питания СВЧ установок.

Данное устройство может найти свое применение как в промышленных, так и в бытовых целях.

Источник питания обеспечивает высокоточную регулировку напряже-ния питания, что является необходимым условием при обеспечении нормаль-ного режима работы СВЧ магнетрона.; простоту и удобство его использования настройки. Также устройство имеет относительно компактную конструкцию приемлемую цену за предлагаемое качество, что обуславливает его коммерческий успех.

10.2 Формирование отпускной цены нового изделия

Формирование отпускной цены нового изделия, производство которого ав-то-матизировано, осуществляется на основе расчета его полной себестоимости.

Расчёт затрат по статье «Основные и вспомогательные материалы», в которую включается стоимость необходимых для изготовления изделия основных и вспомогательных материалов в соответствии с представленной в конструкторской документации дипломного проекта номенклатурой, норм расхода на изделие и рыночных цен, осуществляется по формуле:

$$P_{M} = K_{Tp} \cdot \sum_{i=1}^{n} H_{OT\Pi i} \cdot \coprod_{OT\Pi i} [p].$$
 (10.1)

где K_{TP} – коэффициент транспортных расходов (K_{TP} = 1,15);

n — номенклатура применяемых материалов;

 ${
m H_P}$ — норма расхода материала i-го вида на единицу изделия, нат. ед./шт.;

 $\coprod_{\mathrm{OT\Pi}}$ – цена за единицу материала i-го вида, р.

Результат расчета затрат на материалы по формуле (10.1) приведен в таблице 10.1.

Таблица 10.1 – Расчёт затрат на основные и вспомогательные материалы

Наименование	Ед. изм.	Норма	Пана в	Сумма, р.
материала	Ед. изм.	расхода	Цена, р.	
Сталь нержавеющая	TH	0,001833	13 794,50	25,28
08X22H6T	IH	0,001633	13 /94,30	25,26
Прочие материалы	TH			
Итого	25,28			
Всего с учётом транспортных расходов (Ктр = 1,15)				29,1

Расчёт затрат на покупные комплектующие изделия осуществляется по следующей формуле:

$$P_{K} = K_{Tp} \cdot \sum_{i=1}^{m} N_{i} \cdot \coprod_{OT\Pi i} [p].$$
 (10.2)

где K_{TP} – коэффициент транспортных расходов (K_{TP} = 1,15);

т – номенклатура применяемых комплектующих;

 N_i -количество комплектующих і-го вида на единицу изделия, нат. ед./шт. Ц $_{\text{отп}}$ — цена за единицу комплектующего і-го вида, р.

Результат расчета затрат на комплектующие изделия по формуле (10.2) приведен в таблице 10.2.

Таблица 10.2 – Расчёт затрат на комплектующие изделия и полуфабрикаты

Наименование комплектующего	Количество на изделие, шт.	Цена за еди- ницу комплек- тующего, р.	Сумма, р.
1	2	3	4
1. Двусторонняя печатная плата	1	3,5	3,5
2. Диодный мост <i>КВРС5010</i>	2	5,2	10,4
3. Реле SRD-05VDC-SL-C "SON- GLE"	2	2,25	2,50
4. Оптрон <i>4N25</i>	2	1,9	3,8
5. Конденсатор <i>X7R</i> 2220 0,1мкФ	1	2,3	2,3

Продолжение таблицы 10.2.

продолжение гаолицы 10.2.			
1	2	3	4
6. Конденсатор	1	0,18	0,18
электролитический <i>X5R</i> 10мкФ	1	0,16	0,10
7. Конденсатор	1	3,8	3,8
электролитический ЕСАР 100мкФ	1	3,0	3,0
8. Конденсатор керамический	1	0.27	0.27
<i>NPO 0805</i> 10пФ	1	0,27	0,27
9. Конденсатор	1	4,70	4,70
электролитический ЕСАР 470мкФ	1	4,70	4,70
10. Конденсатор керамический	1	0.10	0,19
<i>X7R</i> 2,2мкФ	1	0,19	0,19
11. Конденсатор керамический	1	0.50	0.50
<i>X7R</i> 0,1мкФ	1	0,59	0,59
12. Конденсатор керамический	1	0.00	0.00
<i>X7R</i> 5600πΦ	1	0,09	0,09
13. Конденсатор керамический	1	0.10	0.10
<i>X7R</i> 45мкФ	1	0,18	0,18
14. Конденсатор керамический	1	0.50	0.50
<i>X7R</i> 0,1мкФ	1	0,59	0,59
15. Конденсатор керамический	1	0.40	0.40
<i>X7R</i> 0,33мкФ	1	0,49	0,49
16. Конденсатор керамический	1	0.00	0,09
<i>X7R</i> 8200пФ	1	0,09	0,09
17. Конденсатор керамический	1	0.17	0.17
<i>NPO</i> 150пФ	1	0,17	0,17
18. Микросхема LD111	1	1.00	1.00
"STMICROELECTRONICS"	1	1,90	1,90
19. Микросхема TNY265 "All	1	24.50	24.50
POWERINT"	1	24,50	24,50
20. Микроконтроллер EPS8266	1	50.70	50.70
"Espressif Systems"	1	50,70	50,70
21. ШИМ генератор XY-LPWM			
"Shenzhen Alisi Electronic Technol-	1	35,00	35,00
ogy"			
22. Микросхема ТСА785НКLА1	1	25	25
"SIEMESNS"	1	25	25

Продолжение таблицы 10.2.

2	3	4
1	0,56	0,56
1	3,40	3,40
1	35	35
2	1,85	1,85
2	0,42	0,84
8	0,42	3,36
3	2,60	7,8
2	31,60	63,20
1	5,70	5,70
1	173,80	173,80
1	5,00	5,00
1	31,00	31,00
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,02	0,02
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
2	0,04	0,08
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
1	0,03	0,03
6	0,03	0,18
	1 1 1 2 2 8 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0,56 1 3,40 1 35 2 1,85 2 0,42 8 0,42 3 2,60 2 31,60 1 5,70 1 173,80 1 5,00 1 31,00 1 0,03 <

Продолжение таблицы 10.2.

1	2	3	4
53. Резистор подстроечный 3006P-1-501LF, 500 Ом	1	2,85	2,85
54. Винт М4×6	12	1,14	4,56
55. ВинтМ4×30	4	0,13	0,52
56. Провод <i>LiY</i> 1*0.14	1	0,35	0,35
Итого			481,57
Всего с учетом транспортных расходов ($K_{Tp} = 1,15$)			553,8

Расчёт себестоимости проводится укрупнённо в связи с автоматизацией производства разрабатываемого изделия.

Расчет накладных расходов проводится по формуле:

$$P_{\text{накл}} = \frac{(P_{\text{M}} + P_{\text{K}}) \cdot H_{\text{накл}}}{100} [p]. \tag{10.3}$$

где $P_{\text{м}}$, $P_{\text{к}}$ – расходы на материалы и комплектующие изделия, р.;

 $H_{\text{накл}}$ — норматив накладных расходов, % ($H_{\text{накл}} = 54$ % для радиоэлектронной техники).

Полная себестоимость рассчитывается по формуле:

$$C_{\pi} = P_{c\pi} + P_{\kappa} + P_{Ha\kappa\pi} [p].$$
 (10.4)

Расчет плановой прибыли проводится по формуле:

$$\Pi_{\rm eg} = \frac{C_{\rm n} \cdot P_{\rm np}}{100} [p]. \tag{10.5}$$

где P_{np} – рентабельность продукции, (P_{np} = 25 %).

Отпускная цена нового изделия рассчитывается по формуле:

$$\coprod_{\text{отп}} = C_{\Pi} + \prod_{\text{ел}} [p]. \tag{10.6}$$

Формирование отпускной цены нового изделия представлено в таблице 10.3.

Таблица 10.3. – Формирование отпускной цены нового изделия на основе полной себестоимости

Показатель	Формула/таблица для рас- чета	Сумма, р.
1. Материалы	Таблица 10.1	29,1
2.Покупные комплектующие изделия	Таблица 10.2	553,8
3. Накладные расходы	$P_{\text{накл}} = \frac{(29,1+553,8)\cdot 54}{100}$	314,8
4. Полная себестоимость	$C_{\pi} = 29,1+553,8+314,8$	897,7
5.Плановая прибыль	$\Pi_{\rm eg} = \frac{897,7 \cdot 25}{100}$	224,4
6.Отпускная цена изделия	Цотп = 897,7 + 224,4	1122,1

Как видно из расчетов в таблице 10.3 отпускная цена разрабатываемого изделия составит1122,1 руб. при затратах на производство 897,7 р.

10.3 Расчет экономического эффекта от производства и реализации новых изделий

Экономическим эффектом от производства и реализации новых изделий является прирост чистой прибыли, полученной от их реализации.

Расчет прироста чистой прибыли у предприятия—производителя от реа-лизации новых изделий (при формировании цены на основе полных затрат) осуществляется по формуле:

$$\Delta\Pi_{\rm q} = N_{\rm n} \cdot \Pi_{\rm eg} \left(1 - \frac{H_{\rm n}}{100} \right) [p].$$
 (10.7)

где $N_{\rm n}$ – прогнозируемый годовой объём производства и реализации, шт.

 Π_{EJ} – плановая прибыль, приходящаяся на единицу изделия, р.;

 H_Π – ставка налога на прибыль согласно действующему законодательству, % (H_Π = 18 %).

В первый год реализации проекта запланирована разработка и производство первой партии в объеме 500 шт. дистанционно управляемого источника питания СВЧ магнетрона и их реализация.

Используя данные из (табл. 10.3) получим следующее значение для прироста чистой прибыли за первый год реализации проекта:

$$\Delta\Pi_{\text{ч1}} = 500 \cdot 224,4 \cdot \left(1 - \frac{18}{100}\right) = 92004\text{p.},$$

В последующие годы реализации проекта запланирована производство реализация партий в объеме 1000 шт, ввиду отсутствия затрат на разработку тестирование.

Тогда прирост чистой прибыли в следующие годы по формуле (10.7) составит:

$$\Delta\Pi_{\text{42-3}} = 1000 \cdot 224,4 \cdot \left(1 - \frac{18}{100}\right) = 184008 \text{p.,}$$

10.4 Расчет инвестиций в производство нового изделия

Инвестиции в разработку нового изделия будем оценивать исходя из затрат на разработку нового изделия инженерами следующим образом:

1. Расчет основной заработной платы по следующей формуле:

$$3_{o} = K_{np} \sum_{i=1}^{n} 3_{AHi} \cdot 3_{i} [p].,$$
 (10.8)

где $K_{\Pi P}$ – коэффициент премий ($K_{\Pi P}$ =1,3);

n — категории исполнителей, занятых разработкой усовершенствованного изделия;

 $3_{\text{дні}}$ – дневная заработная плата исполнителя і-й категории, р.;

 T_{i} – продолжительность участия в разработке исполнителя i-й категории, д.

Расчет основной заработной платы по формуле (10.8) приведен в табличной форме (табл. 10.4)

Таблица 10.4 – Расчет заработной платы разработчиков нового изделия

Категория исполни-теля	Числен- ность исполни- телей, чел.	Месяч- ный оклад, р.	Дневной оклад, р.	Продолжи- тель-ность участия в раз- работке, дней.	Сумма, р.
1 Руководитель проекта	1	1900	90,47	21	2000,00
2 Инженер- конструктор	1	1570	74,76	15	1121,40
3 Инженер- технолог	1	1500	71,43	10	571,40
4 Нормо- контролёр	1	1200	57,14	7	571,40
5 Сборщик	1	900	42,85	3	219,05
Итого	5		_	56	4264,25
Премия и иные стимулирующие выплаты (30%)				1279,28	
Всего основная заработная плата				5543,53	

2. Расчет дополнительной заработной платы разработчиков по формуле:

$$3_{\rm g} = \frac{3_{\rm o} \cdot H_{\rm g}}{100}, [p]. \tag{10.9}$$

Где $H_{\text{д}}$ – норматив дополнительной заработной платы, ($H_{\text{д}}$ = 10%).

3. Отчисления на социальные нужды рассчитываются по формуле:

$$P_{\text{cou}} = \frac{(3_o + 3_{\text{д}}) \cdot H_{\text{cou}}}{100}, [p]. \tag{10.10}$$

где $H_{\text{соц}}$ – ставка отчислений в Φ C3H и Белгосстрах, % ($H_{\text{СОЦ}}$ = 34,6 %)

Расчет инвестиций на разработку нового изделия проводится по формуле:

$$M_p = 3_o + 3_{\pi} + P_{con}[p].$$
 (10.11)

Результат расчета затрат на разработку нового изделия приведен в таблице 10.5.

Таблица 10.5 Расчёт инвестиций на разработку нового изделия

Наименование статьи затрат	Формула/таблица для расчета	Сумма, р.
1.Основная заработная плата разработчиков	Таблица 10.4	5543,53
2.Дополнительная заработная плата разработчиков	$3_{\rm g} = \frac{5543,53 \cdot 10}{100}$	554,35
3.Отчисления на социальные нужды	$P_{\text{cou}} = \frac{(5543,53 + 554,35) \cdot 34,6}{100}$	2109,87
4.Инвестиции на разработку нового изделия	$H_{\rm p} = 5543,53 + 554,35 + 2109,87$	8207,75

Инвестиции в прирост основного капитала не требуются, т. к. производство нового изделия планируется осуществлять на действующем оборудова-нии в связи с наличием на предприятии—производителе свободных производ-ственных мощностей.

Расчёт инвестиций в прирост собственного оборотного капитала приве-ден ниже.

Годовая потребность в материалах определяется по формуле:

$$\Pi_{\rm M} = P_{\rm M} \cdot N_{\rm H} = 29.1 \cdot 1000 = 29100 \text{ p.}$$
 (10.12)

Годовая потребность в комплектующих изделиях рассчитывается по формуле:

$$\Pi_{\kappa} = P_{\kappa} \cdot N_{\Pi} = 553.8 \cdot 1000 = 553800 \text{ p.}$$
 (10.13)

Инвестиции в прирост собственного оборотного капитала в процентах от годовой потребности в материалах и комплектующих изделиях (исходя из среднего уровня по экономике: 20–30 %) рассчитываются по формуле:

$$M_{\text{cok}} = (0.25) \cdot (\Pi_{\text{M}} + \Pi_{\text{k}}) = 0.25 \cdot (29100 + 553800) = 145725 \text{ p.}$$
 (10.14)

Общая сумма инвестиций рассчитывается по следующей формуле:

$$M_{\text{общ}} = M_p + M_{\text{сок}} = 8207,75 + 145725 = 153932,75 \text{ p.}$$
 (10.15)

10.5 Расчет показателей экономической эффективности инвестиций в производство нового изделия

Оценка экономической эффективности разработки и производства нового изделия для предприятия-производителя зависит от результата сравнения инвестиций в производство нового изделия (инвестиции в разработку и прирост собственных оборотных средств) и полученного годового прироста чистой прибыли.

Так как общая сумма инвестиций в разработку и производство устройства больше суммы годового экономического эффекта в первый год производства и продажи, то оценка их экономической эффективности осуществляется на основе расчета показателей эффективности инвестиций.

При оценке эффективности инвестиционных проектов необходимо осуществить приведение затрат и результатов, полученных в разные периоды времени, к расчетному году, путем умножения затрат и результатов на коэффициент дисконтирования α_t , который определяется по следующей формуле:

$$\alpha_t = \frac{1}{(1+d)^{t-t_p}} \tag{10.16}$$

где d – требуемая норма дисконта, % (d = 15%);

 $t_{\rm p}$ — расчетный год, к которому приводятся доходы и инвестиционные затраты ($t_{\rm p}=1$);

t — порядковый номер года, доходы и затраты которого приводятся к расчетному году.

Коэффициенты дисконтирования для первого и последующих лет по формуле (10.16) составят:

$$\alpha_1 = \frac{1}{(1+0.15)^{1-1}} = 1$$

$$\alpha_2 = \frac{1}{(1+0.15)^{2-1}} = 0.87$$

$$\alpha_3 = \frac{1}{(1+0.15)^{3-1}} = 0.76$$

Найдем среднюю норму рентабельности инвестиций по следующей формуле:

$$P_{H}(ARR) = \frac{\frac{1}{n} \sum_{t=1}^{n} \Delta \Pi_{q_{t}}}{\sum_{t=1}^{n} 3_{t}} \cdot 100\%$$
 (10.17)

Определим среднюю норму рентабельности по формуле (10.17):

$$P_{_{\rm H}}(ARR) = \frac{\frac{1}{3}(92004 + 184008 + 184008)}{3 \cdot 153932} \cdot 100\% = \frac{153340}{461796} \cdot 100\% = 34\%$$

Средняя норма рентабельности инвестиций превысила ставку рефинансирования, равную 15%, откуда можно сделать вывод об экономической эффективности инвестиций в производство портативного подавителя сигналов спутниковой навигации.

Определим простой срок окупаемости без учета факторов времени по следующей формуле:

$$T_{\text{OK}}(PP) = \frac{\sum_{t=1}^{n} 3_t}{\frac{1}{n} \sum_{t=1}^{n} \Delta \Pi_{q_t}}$$
 [лет]. (10.18)

Определим простой срок окупаемости по формуле (10.18):

$$T_{ok}(PP) = \frac{3 \cdot 153932}{\frac{1}{3}(92004 + 184008 + 184008)} = 2,94$$
 лет

Расчет эффективности инвестиций в реализацию проекта представлен в таблице 10.6.

Таблица 10.6 – Расчет инвестиций в реализацию проекта

Показатель	Значение по годам расчетного периода				
Horasarenb	1-й год	2-й год	3-й год		
Результат					
1. Прирост чистой прибыли $(\Delta\Pi_{\rm q})$	92004	184008	184008		
2. Дисконтированный результат, р.	92004	171086,96	150846,08		
Затраты					
3. Инвестиции в реализацию проектного решения, р.	153932,74	153932,74	153932,74		

Продолжение таблицы 10.6.

4. Дисконтированные инвестиции, р.	153932,74	133921,48	116988,88
5. Чистый дисконтированный доход по годам, р.	-61928,74	37165,48	33857
6. Чистый дисконтированный доход с нарастающим итогом, р.	-61928,74	-24763,26	9093,74
7. Коэффициент дисконтирования (α_t)	1	0,87	0,76

Средняя норма рентабельности инвестиций превысила ставку рефи-нансирования, равную 15%, откуда можно сделать вывод об экономиче-ской эффективности инвестиций в производство дистанционно управляе-мого источника питания СВЧ магнетрона.

По итогу проведения технико-экономического обоснования инвестиций в разработку дистанционно управляемого источника питания СВЧ магнетрона были получены следующие результаты:

- 1. Проектируемое устройство конкурентоспособно на рынке среди аналогов;
 - 2. Общие инвестиции в разработку составили 153932,75 руб.;
- 3. Себестоимость единицы изделия 897,7 руб., а отпускная цена составила 1122,1 руб.;
- 4. При производстве партии устройств в 1000 шт. предприятие-производитель получит экономический эффект в виде чистой прибыли 184008 руб.;

Средняя норма рентабельности инвестиций $P_u = 34 \%$ превысила ставку рефинансирования, равную 15%, следовательно, разработка в производство дистанционно управляемого источника питания СВЧ магнетрона экономически целесообразны.