### **CS 228 : Logic in Computer Science**

Krishna. S

▶ For a wff  $\varphi = \forall x \psi$ ,  $\psi$  is said to be the scope of the quantifier x

- ▶ For a wff  $\varphi = \forall x \psi$ ,  $\psi$  is said to be the scope of the quantifier x
- ▶ Every occurrence of x in  $\forall x\psi$  is bound
- Any occurrence of x which is not bound is called free

- ▶ For a wff  $\varphi = \forall x \psi$ ,  $\psi$  is said to be the scope of the quantifier x
- ▶ Every occurrence of x in  $\forall x\psi$  is bound
- ► Any occurrence of x which is not bound is called free
- - y is free in Q(x, y) and bound in R(x, y),
  - $\triangleright$  x is free in P(x, y), and bound in Q(x, y), R(x, y)

- ▶ For a wff  $\varphi = \forall x \psi$ ,  $\psi$  is said to be the scope of the quantifier x
- ▶ Every occurrence of x in  $\forall x\psi$  is bound
- ► Any occurrence of x which is not bound is called free
- - y is free in Q(x, y) and bound in R(x, y),
  - $\triangleright$  x is free in P(x, y), and bound in Q(x, y), R(x, y)
- ▶ Given  $\varphi$ , denote by  $\varphi(x_1, \ldots, x_n)$ , that  $x_1, \ldots, x_n$  are the free variables of  $\varphi$ , also  $free(\varphi)$
- $\blacktriangleright$  A sentence is a formula  $\varphi$  none of whose variables are free











()

 $\widehat{y}$ 



 $(\rightarrow)$ 































































$$\varphi(t) = \forall x (R(x,t) \rightarrow \forall y P(y))$$

## Assignments on $\tau$ -structures

#### **Assignments**

For a  $\tau$ -structure  $\mathcal{A}$ , an assignment over  $\mathcal{A}$  is a function  $\alpha: \mathcal{V} \to u(\mathcal{A})$  that assigns every variable  $x \in \mathcal{V}$  a value  $\alpha(x) \in u(\mathcal{A})$ . If t is a constant symbol c, then  $\alpha(t)$  is  $c^{\mathcal{A}}$ 

## Assignments on $\tau$ -structures

#### **Assignments**

For a  $\tau$ -structure  $\mathcal{A}$ , an assignment over  $\mathcal{A}$  is a function  $\alpha: \mathcal{V} \to u(\mathcal{A})$  that assigns every variable  $x \in \mathcal{V}$  a value  $\alpha(x) \in u(\mathcal{A})$ . If t is a constant symbol c, then  $\alpha(t)$  is  $c^{\mathcal{A}}$ 

#### Binding on a Variable

For an assignment  $\alpha$  over  $\mathcal{A}$ ,  $\alpha[x \mapsto a]$  is the assignment

$$\alpha[\mathbf{x} \mapsto \mathbf{a}](\mathbf{y}) = \begin{cases} \alpha(\mathbf{y}), \mathbf{y} \neq \mathbf{x}, \\ \mathbf{a}, \mathbf{y} = \mathbf{x} \end{cases}$$

We define the relation  $\mathcal{A} \models_{\alpha} \varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

9/1;

We define the relation  $\mathcal{A}\models_{\alpha}\varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

 $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$ 

We define the relation  $\mathcal{A}\models_{\alpha}\varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$

We define the relation  $\mathcal{A} \models_{\alpha} \varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} R(t_1, \ldots, t_k)$  iff  $(\alpha(t_1), \ldots, \alpha(t_k)) \in R^{\mathcal{A}}$

We define the relation  $\mathcal{A}\models_{\alpha}\varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} R(t_1, \ldots, t_k)$  iff  $(\alpha(t_1), \ldots, \alpha(t_k)) \in R^{\mathcal{A}}$
- $\blacktriangleright A \models_{\alpha} (\varphi \to \psi) \text{ iff } A \nvDash_{\alpha} \varphi \text{ or } A \models_{\alpha} \psi$

We define the relation  $\mathcal{A} \models_{\alpha} \varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} R(t_1, \ldots, t_k)$  iff  $(\alpha(t_1), \ldots, \alpha(t_k)) \in R^{\mathcal{A}}$
- $\blacktriangleright \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright \mathcal{A} \models_{\alpha} (\forall x) \varphi$  iff for every  $a \in u(\mathcal{A})$ ,  $\mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$

We define the relation  $\mathcal{A} \models_{\alpha} \varphi$  (read as  $\varphi$  is true in  $\mathcal{A}$  under the assignment  $\alpha$ ) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright$   $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha(t_1),\ldots,\alpha(t_k)) \in R^A$
- $\blacktriangleright A \models_{\alpha} (\varphi \to \psi) \text{ iff } A \nvDash_{\alpha} \varphi \text{ or } A \models_{\alpha} \psi$
- $ightharpoonup \mathcal{A} \models_{\alpha} (\forall x) \varphi$  iff for every  $a \in u(\mathcal{A})$ ,  $\mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$
- ▶  $\mathcal{A} \models_{\alpha} (\exists x) \varphi$  iff there is some  $a \in u(\mathcal{A})$ ,  $\mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$

Last two cases,  $\alpha$  has no effect on the value of x. Thus, assignments matter to free variables.

- $\triangleright$   $\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$ 
  - ► For any assignment  $\alpha$ ,  $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$  iff for every  $a, b \in u(\mathcal{A})$ ,  $\mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$

- $ightharpoonup \mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$ 
  - ► For any assignment  $\alpha$ ,  $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$  iff for every  $a, b \in u(\mathcal{A}), \mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
  - ► There is an assignment  $\alpha$  which satisfies  $\mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)$

- $ightharpoonup \mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$ 
  - ► For any assignment  $\alpha$ ,  $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$  iff for every  $a, b \in u(\mathcal{A})$ ,  $\mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
  - ► There is an assignment  $\alpha$  which satisfies  $\mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)$
  - ▶ There is no assignment  $\alpha$  which satisfies  $\exists x \forall y (E(x,y))$
- $ightharpoonup \mathcal{W} = (abaaa, <^{\mathcal{W}}, S^{\mathcal{W}}, Q^{\mathcal{W}}_a, Q^{\mathcal{W}}_b).$ 
  - ► There is an assignment  $\alpha$  for which  $\mathcal{W} \models_{\alpha} (Q_a(x) \land Q_a(y) \land S(x, y))$

- $\triangleright$   $\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$ 
  - ► For any assignment  $\alpha$ ,  $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$  iff for every  $a, b \in u(\mathcal{A}), \mathcal{A} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x,y) \rightarrow E(y,x))$
  - ► There is an assignment  $\alpha$  which satisfies  $\mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)$
  - ▶ There is no assignment  $\alpha$  which satisfies  $\exists x \forall y (E(x,y))$
- $\triangleright \mathcal{W} = (abaaa, <^{\mathcal{W}}, S^{\mathcal{W}}, Q_a^{\mathcal{W}}, Q_b^{\mathcal{W}}).$ 
  - ► There is an assignment  $\alpha$  for which  $\mathcal{W} \models_{\alpha} (Q_a(x) \land Q_a(y) \land S(x,y))$
  - ► There is no assignment  $\alpha$  which satisfies  $\exists x \exists y (Q_b(x) \land Q_b(y) \land x \neq y)$

# Satisfiability, Validity and Equivalence

▶ A formula  $\varphi$  over a signature  $\tau$  is said to be satisfiable iff for some  $\tau$ -structure  $\mathcal{A}$  and assignment  $\alpha$ ,  $\mathcal{A} \models_{\alpha} \varphi$ 

# Satisfiability, Validity and Equivalence

- ▶ A formula  $\varphi$  over a signature  $\tau$  is said to be satisfiable iff for some  $\tau$ -structure  $\mathcal{A}$  and assignment  $\alpha$ ,  $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula  $\varphi$  over a signature  $\tau$  is said to be valid iff for every  $\tau$ -structure  $\mathcal{A}$  and assignment  $\alpha$ ,  $\mathcal{A} \models_{\alpha} \varphi$

# Satisfiability, Validity and Equivalence

- ▶ A formula  $\varphi$  over a signature  $\tau$  is said to be satisfiable iff for some  $\tau$ -structure  $\mathcal{A}$  and assignment  $\alpha$ ,  $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula  $\varphi$  over a signature  $\tau$  is said to be valid iff for every  $\tau$ -structure  $\mathcal{A}$  and assignment  $\alpha$ ,  $\mathcal{A} \models_{\alpha} \varphi$
- ► Formulae  $\varphi$  and  $\psi$  are equivalent denoted  $\varphi \equiv \psi$  iff for every  $\mathcal{A}$  and  $\alpha$ ,  $\mathcal{A} \models_{\alpha} \varphi$  iff  $\mathcal{A} \models_{\alpha} \psi$

For a formula  $\varphi$  and assignments  $\alpha_1$  and  $\alpha_2$  such that for every  $x \in \mathit{free}(\varphi), \, \alpha_1(x) = \alpha_2(x), \, \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$ 

For a formula  $\varphi$  and assignments  $\alpha_1$  and  $\alpha_2$  such that for every  $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$ 

► For example,  $\varphi = \forall x (R(x,y) \rightarrow \forall y P(y)) \equiv \forall x (R(x,y) \rightarrow \forall z P(z))$  free(\varphi) = {y}

For a formula  $\varphi$  and assignments  $\alpha_1$  and  $\alpha_2$  such that for every  $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$ 

- ► For example,  $\varphi = \forall x (R(x,y) \rightarrow \forall y P(y)) \equiv \forall x (R(x,y) \rightarrow \forall z P(z))$  free(\varphi) = {y}
- ► Consider two assignments  $\alpha_1$ ,  $\alpha_2$  such that  $\alpha_1(y) = \alpha_2(y) = \alpha(say)$

For a formula  $\varphi$  and assignments  $\alpha_1$  and  $\alpha_2$  such that for every  $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$ 

- ► For example,  $\varphi = \forall x (R(x,y) \rightarrow \forall y P(y)) \equiv \forall x (R(x,y) \rightarrow \forall z P(z))$  free(\varphi) = {y}
- ► Consider two assignments  $\alpha_1, \alpha_2$  such that  $\alpha_1(y) = \alpha_2(y) = \alpha(say)$
- ▶ Evaluate for all  $a, b \in u(A)$ ,  $R(a, \alpha) \rightarrow P(b)$

For a formula  $\varphi$  and assignments  $\alpha_1$  and  $\alpha_2$  such that for every  $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$ 

- ► For example,  $\varphi = \forall x (R(x,y) \to \forall y P(y)) \equiv \forall x (R(x,y) \to \forall z P(z))$  free(\varphi) = {y}
- ► Consider two assignments  $\alpha_1, \alpha_2$  such that  $\alpha_1(y) = \alpha_2(y) = \alpha(say)$
- ▶ Evaluate for all  $a, b \in u(A)$ ,  $R(a, \alpha) \rightarrow P(b)$
- $\blacktriangleright \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

For a sentence  $\varphi$ , and any two assignments  $\alpha_1$  and  $\alpha_2$ ,  $\mathcal{A} \models_{\alpha_1} \varphi$  iff  $\mathcal{A} \models_{\alpha_2} \varphi$ 

For a sentence  $\varphi$ , and any two assignments  $\alpha_1$  and  $\alpha_2$ ,  $\mathcal{A} \models_{\alpha_1} \varphi$  iff  $\mathcal{A} \models_{\alpha_2} \varphi$ 

No free variables!