Cogs 17: Section Tricia Ngoon 7.18.17 Vision Pt. 2

Visual Fields

- Visual fields demonstrate a ____lateral pattern
- The point at which the optic nerves cross is called the

Visual Fields

- Visual fields demonstrate a contralateral pattern
- The point at which the optic nerves cross is called the optic chiasm

Columnar Organization

- All cells within a column show a
 _____ stimulus
- Hypercolumns have the same

Columnar Organization

- All cells within a column show a preferred stimulus
- Hypercolumns have the same receptive field

- Layer ____
- LGN stands for...

Which layer receives input from the LGN?

- Layer 4
- LGN stands for Lateral Geniculate Nucleus

Explain the Ventral Visual Pathway

- The ventral pathway is the ______ pathway, also known as the magnocellular/parvocellular pathway.
- It begins in the rods/cones in the _____ and has small/large receptive fields
- Ends at the inferior _____ cortex

Explain the Ventral Visual Pathway

- The ventral pathway is the "who"/"what" pathway, also known as the magnocellular/parvocellular pathway.
- It begins in the rods/cones in the fovea and has small/large receptive fields
- Ends at the inferior **temporal** cortex

What are the 3 cells of the visual cortex?

- Simple cell sensitive to particular line orientations, V1
- Complex cell sensitive to moving lines of a particular orientation, V2
- Combinations sensitive to sine wave gradients, V3

How do we know these 2 are Obama?

faces?
fac

Explain the Dorsal Visual Pathway

- The ventral pathway is the ______ pathway, also known as the magnocellular/parvocellular pathway.
- It begins in the in the _____ of the retina and has small/large receptive fields
- Most cells lead to _____ and medial _____
 temporal cortex

Explain the Dorsal Visual Pathway

- The ventral pathway is the "where"/"how" pathway, also known as the magnocellular/parvocellular pathway.
- It begins in the in the **periphery** of the retina and has small/**large** receptive fields
- Most cells lead to **medial temporal** and medial **superior** temporal cortex

Color perception

Audition

Label these definitions

- The speed at which molecules of air oscillate.
- The distance a molecule travels in oscillation.
- The place in the cycle of condensation and rarefaction.

Label these definitions

- The speed at which molecules of air oscillate. frequency
- The distance a molecule travels in oscillation. amplitude
- The place in the cycle of condensation and rarefaction. **phase**

Soundwaves

Explain transduction in hair cells

- The hair cells of the ear are called...
- Cilia are asymmetrical in height. When bent toward the short/long cilia K+/Na+ gates open and leads to more positive/negative ions entering the cell
- When polarity changes enough _____ gates open, leading to the release of neurotransmitter, a.k.a. _____.
- The more the cilia are bent, the more neurotransmitter is released. This is called a ______.

Explain transduction in hair cells

- The hair cells of the ear are called cilia
- Cilia are asymmetrical in height. When bent toward the short/long cilia
 K+/Na+ gates open and leads to more positive/negative ions entering the cell
- When polarity changes enough Ca++ gates open, leading to the release of neurotransmitter, a.k.a. exocytosis.
- The more the cilia are bent, the more neurotransmitter is released. This is called a **graded potential**.

Cilia

What is this structure?

What is this structure?

Basilar membrane

What is this structure?

Basilar membrane

- The ____ is narrow and stiff and resonates at a high/low frequency
- The ____ is wide and floppy and resonates at a high/low frequency

What is this structure?

Basilar membrane

- The base is narrow and stiff and resonates at a high/low frequency
- The apex is wide and floppy and resonates at a high/low frequency

Why do we hear a difference in the notes of a song?

 The frequency theory of hearing states
--

- This works because the entire _____ membrane vibrates at different rates, which causes _____ impulses to transmit at different rates.
- Lower notes vibrate slower/faster speeds while higher notes vibrate at slower/faster speeds.
- As pitch increases, nerve impulses of the same frequency are sent to the auditory nerve. (i.e. a 700Hz tone produces _____ neural impulses per second).
- This is known as _____ coding.

Why do we hear a difference in the notes of a song?

- The frequency theory of hearing states the frequency of the auditory nerve's impulses corresponds to frequency of tone.
- This works because the entire **basilar** membrane vibrates at different rates, which causes **neural** impulses to transmit at different rates.
- Lower notes vibrate **slower**/faster speeds while higher notes vibrate at slower/**faster** speeds.
- As pitch increases, nerve impulses of the same frequency are sent to the auditory nerve. (i.e. a 700Hz tone produces 700 neural impulses per second).
- This is known as temporal coding.