Photon-tagged jet fragmentation functions and jet shapes in pp and PbPb collisions with the CMS detector

Kaya Tatar
Massachusetts Institute of Technology
for the CMS Collaboration

Hard Probes 2018, Aix-Les-Bains, France October 2, 2018

Introduction

Study modification of parton shower

Gives info about the dynamics of hot QCD matter

Tools:

Jet fragmentation function (FF)

 Longitudinal distribution of momentum Jet shapes (JS)

• Distribution of jet energy in transverse direction FF and JS provide different, but complementary info

JHEP 05 (2018) 006

PbPb anti- k_T R=0.4 jets

CMS

0-10%

Inclusive jet vs photon+jet

Inclusive jet

Compares samples with different initial states Produced partons : mix of quarks and gluons

Photon+jet

Photon-tag controls initial state

Produced partons: quark fraction enhanced

- -- > Probe **quark jet** modification
- -- > Insight for gluon modification when combined with inclusive jet

Observables: ξ^{jet}

- Take tracks (charged particles) inside the jet cone.
- Project the track momentum to jet axis.
- Divide jet momentum by the projected track momentum.
- The natural log of this ratio is called ξ^{jet} .

Measured previously using inclusive jets

Observables : ξ_{τ}^{γ}

- Take tracks (charged particles) inside the jet cone.
- Construct transverse momentum vectors for track and photon
- Invert the track transverse momentum
- Follow the same logic as for ξ^{jet} .

$$eta_{\mathrm{T}}^{\gamma} = \ln rac{-|\mathbf{p}_{\mathrm{T}}^{\gamma}|^2}{\mathbf{p}_{\mathrm{T}}^{\mathrm{trk}} \cdot \mathbf{p}_{\mathrm{T}}^{\gamma}}$$

- Based on **photon energy**
- Measured for the **first time** for reconstructed jets

Object Selections

Photons

 $p_{T}^{\gamma} > 60 \text{ GeV/c}$ $|\eta^{\gamma}| < 1.44$

Jets

anti- k_T , R=0.3

 $p_{T}^{jet} > 30 \text{ GeV/c}$

 $|\eta^{\rm jet}| < 1.6$

 $\Delta \varphi$ (photon, jet) > 7π /8

inclusive jets, bkg jets subtracted via MB event mixing

Tracks JHEP 04 (2017) 039

 $p_T^{trk} > 1 \text{ GeV/c}$

 $\Delta R(jet, track) < 0.3$

Bkg tracks subtracted via MB event mixing

Background sources

Tracks from underlying event (UE) -> Subtracted via Min Bias event mixing -> Subtracted via Min Bias event mixing

photons from neutral meson decays

rejected using shower shape cut, remaining bkg fraction estimated via template fit

Background subtraction for tracks

arXiv:1801.04895

Results : ξ^{jet} vs ξ_{T}^{γ}

• Based on reconstructed jet energy (energy after quenching)

Hard Probes 2018

Results : ξ^{jet} vs ξ_{T}^{γ}

- Based on reconstructed jet energy (energy after quenching)
- Based on photon energy
- ξ^{jet} shifted to left compared to ξ_{T}^{γ}
 - Out-of-cone radiation, photon+multijet

Results: ξ^{jet} vs ξ_{τ}^{γ}

Transition at $\xi^{\text{jet}} \approx 2.5$ and $\xi_{\tau}^{\gamma} \approx 3 - p_{\tau}^{\text{trk}} \approx 3$ GeV

Central PbPb collisions – > enhancement of low- p_{τ} particles and a depletion of high- p_{τ} particles

 ξ_{τ}^{γ} modified stronger compared to ξ^{jet}

SCET_C (JHEP 11 (2016) 155)

• Framework decomposing Soft Collinear and Glabuer models **CoLBT-hydro** (Phys. Lett. B, 777 (2018) 86)

- Couples LBT for jet evolution with (3+1)D hydrodynamics
- Combines pQCD approach with hydro simulation of medium

Hybrid (JHEP 1410 (2014) 019, JHEP 1603 (2016) 053)

- Weak coupling: high-Q² processes using pQCD
- Strong coupling: low-Q² interactions between parton shower and medium
- Weak and strong coupling are combined

Turnover at $\xi^{\text{jet}} \approx 2.5$ and $\xi_T^{\gamma} \approx 3 -> p_T^{\text{trk}} \approx 3$ GeV

Large enhancement from particles after turnover

- --> Models tend to underpredict this
- -- > Medium response important for CoLBT and Hybrid

Other ingredients considered by theory

- Medium-induced radiation
- Effects of medium on hadronization

γ -tagged jet shape

$$\rho(r) = \frac{1}{\delta r} \frac{\sum_{\text{jets}} \sum_{\text{trk} \in [r_a, r_b)} (p_{\text{T}}^{\text{trk}} / p_{\text{T}}^{\text{jet}})}{\sum_{\text{jets}} \sum_{\text{trk} \in [0, r_f)} (p_{\text{T}}^{\text{trk}} / p_{\text{T}}^{\text{jet}})}$$

 $\rho(r)$ normalized to unity over r < 0.3

Results are corrected for detector resolution, particle reco.

pp results are **NOT** smeared

Central PbPb collisions - > a larger fraction of jet energy at large distances from the jet axis.

inclusive vs γ -tagged jet shape

JHEP 05 (2018) 006

arXiv:1809.08602

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $p_T^{\gamma} > 60 \text{ GeV/c}$ PbPb 404 μb^{-1} anti- k_T jet R = 0.3

 $\rho(r)$ normalized to unity over r < 1.0 (inclusive jets) r < 0.3 (γ +jet)

 γ +jet : Larger enhancement at large r. Smaller depletion at intermediate r.

- Increased quark fraction (70-80%)?

SCET_G [JHEP 05 (2016) 023]

LBT [Phys. Lett. B, 782 (2018) 707]

Models describe data well.

Summary

- FF and jet shapes (JS) measured for jets tagged with isolated-photons.
 - Constrains the initial parton kinematics and probes quark-jet modification.
- FF modification > excess of low- p_{τ} particles and depletion of high- p_{τ} particles inside the jet cone.
 - FF observable wrt photon energy > robust measurement, larger modification
- JS modification > a larger fraction of jet energy is carried at large distances from the jet axis.
 - No large depletion at intermediate distances.
- Models seem to describe both longitudinal and transverse jet structure.

Acknowledgements: The MIT group's work was supported by US DOE-NP.

BACKUP

Inclusive jet shape

JHEP 05 (2018) 006

Inclusive jet shape

$$r = \sqrt{(\eta_{\text{track}} - \eta_{\text{jet}})^2 + (\phi_{\text{track}} - \phi_{\text{jet}})^2}$$

Bkg subtraction for jets

Analysis – bkg photons

Observables are constructed using photons, jets and tracks.

Background source

photons from neutral meson decays

- rejected with shower shape cut
- 2 photons are reconstruced as single with a wider shower shape
 - dominates the sideband region : 0.011 < $\sigma_{_{nn}}$ < 0.017

Energy weighted width of shower : $\sigma_{_{\eta\eta}}$

$$\sigma_{\eta\eta}^2 = \frac{\sum_i^{5\times5} w_i (\eta_i - \eta_{5\times5})^2}{\sum_i^{5\times5} w_i}, \qquad w_i = \max(0, 4.7 + \ln\frac{E_i}{E_{5\times5}}).$$

$s_{NN} = 5.02 \text{ TeV}, \text{ PbPb } 404 \text{ }\mu\text{b}^{-1}$ --- PbPb Signal Background Cent. 0 - 10% Purity: 0.68 $h^0 \rightarrow \gamma \gamma$ $0.005 \ 0.01 \ 0.015 \ 0.02$ $\sigma_{\eta\eta}$ shower shape

Background from photons

- σ_{nn} < 0.01 selects narrow shower shape, supresses background from neutral meson decays, however there is still contamination.
- Purity = fraction of the prompt photons among candidates
 - Estimated using template fit method. Fit the distribution for σ_{nn} < 0.01 with

Signal (prompt photon) template from MC with isolated photon events arXiv:1801.04895

Bkg (neutral meson) template from non-isolated photons in data

Smearing jet spectra

- Jet energy resolution and jet angular resolution differ between pp and PbPb due to underlying event
 - Estimate relative resolution between pp and PbPb using simulations
 - Smear jet spectra in pp using this relative resolution
- Smearing jet energy
 - Parametrize jet energy resolution via

$$\sigma \left(\frac{p_T^{RECO}}{p_T^{GEN}} \right) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}$$

 Fit C, S and N parameters and apply relative resolution via

$$\sigma_{rel} = \sqrt{(C_{PbPb}^2 - C_{pp}^2) + \frac{(S_{PbPb}^2 - S_{pp}^2)}{p_T^{GEN}} + \frac{(N_{PbPb}^2 - N_{pp}^2)}{(p_T^{GEN})^2}}$$

- Smearing jet azimuthal angle
 - Use same parametrization as in jet energy resolution
 - Apply relative resolution in the same fashion

JINST 12 (2017) P10003

$$\sigma(|\phi^{RECO} - \phi^{GEN}|) = \sqrt{C^2 + \frac{S^2}{p_T^{GEN}} + \frac{N^2}{(p_T^{GEN})^2}}$$

Hard Probes 2018

γ-tagged jet FF - ξ^{jet}

Hard Probes 2018

γ -tagged jet FF - ξ_T^{γ}

Kaya Tatar

γ -tagged jet shape

arXiv:1809.08602

 $\rho(r)$ normalized to unity over r < 0.3.

Results are corrected for detector resolution, particle reco.

pp results are **NOT** smeared.

γ -tagged jet shape : pp vs MC

arXiv:1809.08602

