Contextual Algebraic Theories:

Generic Boilerplate Beyond Abstraction (Extended Abstract / Work in Progress)

Andreas Nuyts

KU Leuven, Belgium

TyDe '22 Ljubljana, Slovenia Sep 11, 2022

For YOUR language, you may want:

- Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings
- A pretty-printer.

For YOUR language, you may want:

- · Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings
- A pretty-printer.

For YOUR language, you may want:

- · Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings,
- A pretty-printer.

For YOUR language, you may want:

- · Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings,
- A pretty-printer.

For YOUR language, you may want:

- Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings,
- A pretty-printer.

For YOUR language, you may want:

- Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings,
- A pretty-printer.

For YOUR language, you may want:

- Admissibility of renaming & substitution,
- Soundness,
- Canonicity,
- Normalization,
- Decidability of equality,
- An interpreter,
- Compilers,
 - Desugarings,
- A pretty-printer.

	П	λ	арр	Σ	pair	fst	snd	
Renaming								
Substitution								
Scope-checker								
Pretty-printer								
Type-checker								
Def. Equality-checker								
Synt. Equality-checker								
Metavariable-solver								
WHNormalizer								

Still not feasible to maintain / develop further.

	П	λ	арр	Σ	pair	fst	snd	
Renaming	deriving Functor (BAD PERFORMANCE)							
Substitution	deriving Monad generically (BAD PERFORMANCE)							
Scope-checker								
Pretty-printer								
Type-checker								
Def. Equality-checker								
Synt. Equality-checker								
Metavariable-solver								
WHNormalizer								

Still not feasible to maintain / develop further.

		П	λ	арр	Σ	pair	fst	snd	
Renaming		der	riving	Funct	or (E	BAD PI	ERFC	RMAI	NCE)
Substitution		deriving Monad generically (BAD PERFORMANCE)					RFORMANCE)		
Scope-checker									
Pretty-printer									
Type-checker									
Def. Equality-checker									
Synt. Equality-checker	Analyzer								
Metavariable-solver									
WHNormalizer									

Still not feasible to maintain / develop further

		П	λ	арр	Σ	pair	fst	snd	
Renaming		der	iving	Funct	or (E	BAD PI	ERFC	RMAI	NCE)
Substitution		deriving Monad generically (BAD PERFORMANCE)					RFORMANCE)		
Scope-checker									
Pretty-printer									
Type-checker									
Def. Equality-checker									
Synt. Equality-checker	Analyzer								
Metavariable-solver									
WHNormalizer									

Still not feasible to maintain / develop further.

		\mid Π \mid λ \mid app \mid Σ \mid pair \mid fst \mid snd \mid								
		Algebraic operation								
Renaming										
Substitution	Model/ Algebra									
Scope-checker										
Pretty-printer										
Type-checker		Fold								
Def. Equality-checker										
Synt. Equality-checker										
Metavariable-solver										
WHNormalizer										

Still not feasible to maintain / develop further.

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathcal{V}(\Gamma \vdash \Delta)$$

$$\llbracket t \rrbracket_{env} \in \mathcal{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathcal{V}(\Gamma \vdash \Delta)$$

$$\llbracket t \rrbracket_{env} \in \mathcal{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathcal{V}(\Gamma \vdash \Delta)$$

$$\llbracket t \rrbracket_{env} \in \mathcal{E}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathcal{V}(\Gamma \vdash \Delta)$$

$$\|t\|_{env} \in \mathcal{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathscr{V}(\Gamma \vdash \Delta)$$

$$\|t\|_{env} \in \mathscr{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathscr{V}(\Gamma \vdash \Delta)$$

$$\llbracket t \rrbracket_{env} \in \mathscr{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathscr{V}(\Gamma \vdash \Delta)$$

$$\llbracket t \rrbracket_{env} \in \mathscr{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

AACMM21: Allais, Atkey, Chapman, McBride & McKinna, 2021: A Type- and Scope-Safe Universe of Syntaxes with Binding

- Universe of syntaxes
- Semantics of a syntax:

$$t \in \mathbf{Syntax}(\Delta \vdash T)$$

$$env \in \mathscr{V}(\Gamma \vdash \Delta)$$

$$\llbracket t \rrbracket_{env} \in \mathscr{C}(\Gamma \vdash T)$$

- Fully formalized in Agda
- Many applications, implemented in Agda

- Eq-free SOMATs (second order multisorted algebraic theories)
- Semantics: Models in algebraic sense
- Fully formalized in Agda
- Strictly more general
- Mathematically more elegant/profound

Universe of syntaxes contains:

- Lambda-calculi
 - untyped
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ..
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
- ...

Universe of syntaxes contains:

- Lambda-calculi
 - untyped
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ..
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
- ...

Universe of syntaxes contains:

- Lambda-calculi
 - untyped.
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ..
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
-

Universe of syntaxes contains:

- Lambda-calculi
 - untyped
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ..
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
-

Universe of syntaxes contains:

- Lambda-calculi
 - untyped
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ...
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
- ...

Universe of syntaxes contains:

- Lambda-calculi
 - untyped
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ...
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
- ...

Universe of syntaxes contains:

- Lambda-calculi
 - untyped
 - simply-typed
 - bidir'ed (check/infer)
 - → with common extensions
- ...
- All SOMATs.

- Renaming, once and for all,
- Substitution, once and for all,
- Pretty-printing, maximally generically,
- Unscoped syntax, once and for all,
- Scope-checking, once and for all,
- Bidir. type-checking & elaboration:
 Bidir. LC → STLC, with clear potential for generalization,
- Desugaring let, once and for all,
- Unsafe NbE, somewhat generically,
- ...

Eq-free Algebraic Theory

(Fin.) Container:

 $\mathit{Op}: \mathbf{Set}, \qquad \mathit{arity}: \mathit{Op} \rightarrow \mathbb{N}$

Syntax functor $F: \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). \mathbf{Vec}_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra

Algebraic Theory

Equation laws have type $\Sigma(X \cdot \mathbf{Set}) F^* X \times F^* X$

Term monad $MX = F^*X/\sim$.

Model = M-monad-algebra

Example (Pointed magma)

$$Op = \{e, *\}$$

 $arity e = 0, \quad arity * = 2$

$$p \in FX = e \mid x_1 * x_2$$

Example (Monoid)

lunit =
$$(\{x\}, e*x, x)$$

runit = $(\{x\}, x*e, x)$
 $assoc = (\{x, y, z\}, (x*y)*z, x*(y*z))$

Eq-free Algebraic Theory

(Fin.) Container:

Op: **Set**, arity: $Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$: $FX = \Sigma(op : Op).\mathbf{Vec}_{arityop}X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra.

Algebraic Theory

Equation laws have type $\Sigma(X : \mathbf{Set}).F^*X \times F^*X$

Term monad $MX = F^*X/\sim$.

Model = M-monad-algebra

Example (Pointed magma)

$$Op = \{e, *\}$$
 $arity e = 0, arity * = 2$

$$\rho \in FX = \theta \mid x_1 * x_2$$
$$t \in F^*X = x \mid \theta \mid t_1 * t_2$$

Model = pointed magma.

Example (Monoid)

lunit =
$$(\{x\}, \theta * x, x)$$

runit = $(\{x\}, x * \theta, x)$
assoc = $(\{x, y, z\}, (x * y) * z, x * (y * z))$

Eq-free Algebraic Theory

(Fin.) Container:

Op: **Set**, arity: $Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra

Algebraic Theory

Equation laws have type $\Sigma(X:\mathbf{Set}) \stackrel{F^*}{=} X \times \stackrel{F^*}{=} X$

Term monad $MX = F^*X/\sim$.

Model = M-monad-algebra

Example (Pointed magma)

$$\mathit{Op} = \{\mathit{e}, *\}$$

arity
$$e = 0$$
, arity $* = 2$

$$p \in FX = e \mid x_1 * x_2$$

$$t \in F^*X = x \mid e \mid t_1 * t_2$$

Model = pointed magma.

Example (Monoid)

$$lunit = (\{x\}, e*x, x)$$

$$runit = (\{x\}, x * e, x)$$

$$assoc = (\{x, y, z\}, (x * y) * z, x * (y * z))$$

 $M\cong \mathsf{List}$

Eq-free Algebraic Theory

(Fin.) Container:

Op: **Set**, arity: $Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^* X \cong X \uplus F F^* X$.

Model = F-algebra = F*-monad-algebra

Algebraic Theory

Equation laws have type $\Sigma(X:Set) F^* X \times F^* X$

Term monad $MX = F^*X/\sim$.

Model = M-monad-algebra

Example (Pointed magma)

$$Op = \{e, *\}$$

arity $e = 0$, arity $* = 2$

$$p \in FX = e \mid x_1 * x_2$$
$$t \in F^*X = x \mid e \mid t_1 * t_2$$

Model = pointed magma.

Example (Monoid)

lunit =
$$(\{x\}, e*x, x)$$

runit = $(\{x\}, x*e, x)$
assoc = $(\{x, y, z\}, (x*y)*z, x*(y*z))$

 $M\cong \mathsf{List}$

Eq-free Algebraic Theory

(Fin.) Container:

Op: **Set**, arity: $Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^* X \cong X \uplus F F^* X$.

Model = F-algebra = F*-monad-algebra.

Algebraic Theory

Equation laws have type $\Sigma(X \cdot \mathbf{Set}) F^* X \times F^* X$

Term monad $MX = F^*X/\sim$.

Model = M-monad-algebra

Example (Pointed magma)

 $Op = \{e, *\}$ $arity e = 0, \quad arity * = 2$

 $p \in FX = e \mid x_1 * x_2$

 $t \in F^*X = x \mid e \mid t_1 * t_2$

Model = pointed magma.

Example (Monoid)

lunit = $(\{x\}, e*x, x)$ runit = $(\{x\}, x*e, x)$ assoc = $(\{x, y, z\}, (x*y)*z, x*(y*z))$

 $M\cong \mathsf{List}$

Eq-free Algebraic Theory

(Fin.) Container:

Op: **Set**, arity: $Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^* X \cong X \uplus F F^* X$.

Model = F-algebra = F*-monad-algebra.

Algebraic Theory

Equation laws have type

 $\Sigma(X : \mathbf{Set}).F^*X \times F^*X$

Term monad $MX = F^*X/\sim$

Model = M-monad-algebra

Example (Pointed magma)

 $Op = \{e, *\}$ arity e = 0, arity * = 2

 $p \in FX = e \mid x_1 * x_2$ $t \in F^*X = x \mid e \mid t_1 * t_2$

Model = pointed magma.

Example (Monoid)

lunit = $(\{x\}, e*x, x)$ runit = $(\{x\}, x*e, x)$ assoc = $(\{x, y, z\}, (x*y)*z, x*(y*z))$

 $M\cong \mathsf{List}$

Eq-free Algebraic Theory

(Fin.) Container:

Op: **Set**, arity: $Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra.

Algebraic Theory

Equation laws have type

 $\Sigma(X : \mathbf{Set}).F^* X \times F^* X$

Term monad $MX = F^*X/\sim$.

Model = M-monad-algebra.

Example (Pointed magma)

 $\mathit{Op} = \{\mathit{e}, *\}$

arity e = 0, arity * = 2

 $p \in FX = e \mid x_1 * x_2$

 $t \in F^* X = x \mid e \mid t_1 * t_2$

Model = pointed magma.

Example (Monoid)

 $lunit = (\{x\}, e * x, x)$

runit = $(\{x\}, x * e, x)$ assoc = $(\{x, y, z\}, (x * y) * z, x * (y * z))$

 $M \cong \mathsf{List}$

Eq-free Algebraic Theory

(Fin.) Container:

arity : $\mathsf{Op} \to \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op).$ Vec_{arity op} X.

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra.

Eq-free Multisorted Algebraic Theory

```
(Fin.) Container:
```

arity :
$$\mathsf{Op} \to \mathbb{N}$$

Syntax functor
$$F: \mathbf{Set} o \mathbf{Set}$$

$$FX = \Sigma(op: Op).$$
Vec_{arity op} X .

Term monad
$$F^*X \cong X \uplus FF^*X$$
.

Model = F-algebra = F*-monad-algebra.

Eq-free Multisorted Algebraic Theory

Fix Sort: Set

(Fin.) Container:

Set, arity: $\mathsf{Op} \to \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra.

Eq-free Multisorted Algebraic Theory

Fix Sort: Set

(Fin.) Container:

Op: **Set**, $arity: Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra.

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$

tt, tt : Opbool $if : \forall \{S\}.OpS$

arity tt = [] arity ff = []

 $arity(if{S}) = [bool, S, S]$

Syntax functor *F*:

 $b \in X bool$ $x, y \in X S$

 $tt, ff \in F X bool$

 $if(b,x,y) \in FXS$

 $x \in XS$ $x \in F^*XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $Op : Sort \rightarrow Set$, $arity : Op \rightarrow \mathbb{N}$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \sum (op : Op). \mathbf{Vec}_{arity op} X.$

Term monad $F^*X \cong X \uplus F F^*X$.

Model = F-algebra = F*-monad-algebra.

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$

 $if: \forall \{S\}.OpS$

arity tt = [] aritv ff = []

 $arity(if{S}) = [bool, S, S]$

Syntax functor *F*:

 $b \in X bool$ $x, y \in X S$

 $tt, ff \in F X bool$

 $if(b,x,y) \in FXS$

 $x \in XS$ $x \in F^*XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $\textit{Op}: \textit{Sort} \,{\to}\, \textbf{Set}$

arity : $\forall \{S\}$. *Op* $S \rightarrow$ **List** *Sort*

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op : Op).Vec_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$

tt, tf : Op bool $if : \forall \{S\}.Op S$

arity tt = [] arity ff = []

 $arity(if{S}) = [bool, S, S]$

Syntax functor F:

 $b \in X bool$ $x, y \in X S$

 $tt, ff \in F X bool$

 $if(b,x,y) \in FXS$

 $x \in XS$ $x \in F^* XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $\mathit{Op}: \mathit{Sort} \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List } Sort$

Syntax functor $F : \mathbf{Set} \to \mathbf{Set}$:

 $FX = \Sigma(op: Op). Vec_{arity op} X.$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$

tt, ff : Op bool $if : \forall \{S\}.Op S$

arity tt = [] arity ff = []

 $arity(if{S}) = [bool, S, S]$

Syntax functor *F*:

 $b \in X bool$ $x, y \in X S$

 $tt, ff \in F X bool$

 $if(b,x,y) \in FXS$

 $x \in XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $\mathit{Op}: \mathit{Sort} \rightarrow \mathsf{Set}$

arity : $\forall \{S\}$. *Op* $S \rightarrow$ **List** *Sort*

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FX = \Sigma(op:Op).Vec_{arity op} X$

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra.

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$

tt, ff : Op bool $if : \forall \{S\}. Op S$

arity tt = [] arity tt = []

arity $(if{S}) = [bool, S, S]$

Syntax functor *F*:

 $b \in X \ bool$

 $tt, ff \in FX bool$

 $if(b,x,y) \in FXS$

 $x \in XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $\textit{Op}: \textit{Sort} \,{\to}\, \textbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List } Sort$

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X.

Term monad $F^*X \cong X \uplus F F^*X$.

Model = F-algebra = F*-monad-algebra

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$

tt, ff : Op bool

 $if: \forall \{S\}.OpS$

arity tt = []

arity ff = []

 $arity(if{S}) = [bool, S, S]$

Syntax functor F:

 $b \in X \ bool$

 $tt, ff \in FX bool$

 $if(b,x,y) \in FXS$

 $x \in XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $\mathit{Op}: \mathit{Sort} \rightarrow \mathsf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List } Sort$

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X.

Term monad $F^*X \cong X \uplus FF^*X$.

Model = F-algebra = F*-monad-algebra

Example (Typed boolean arithmetic)

```
Sort = \{bool, base\}
tt, ff : Op bool
if : \forall \{S\}. Op S
arity \ tt = []
arity \ ff = []
arity \ (if \{S\}) = [bool, S, S]
Syntax \ functor \ F: \qquad b \in X
```

 $b \in X bool$ $x, y \in X S$

 $tt, ff \in F X bool$

$$if(b, x, y) \in FXS$$

 $x \in XS$ $x \in F^*XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $\textit{Op}: \textit{Sort} \,{\to}\, \textbf{Set}$

arity : $\forall \{S\}$. *Op* $S \rightarrow$ **List** *Sort*

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X.

Term monad $F^* X S \cong X S \uplus F(F^* X) S$.

Model = F-algebra = F*-monad-algebra.

Example (Typed boolean arithmetic)

 $Sort = \{bool, base\}$ tt, ff : Op bool $if : \forall \{S\}.Op S$

arity tt = [] arity ff = []

 $arity(if{S}) = [bool, S, S]$

Syntax functor *F*:

 $b \in X bool$ $x, y \in X S$

 $tt, ff \in F \times bool$

$$if(b,x,y) \in FXS$$

 $x \in XS$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $Op: Sort \rightarrow \mathbf{Set}$

arity : $\forall \{S\}$. *Op* $S \rightarrow$ **List** *Sort*

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op : OpS).$ ListP_{arity op} X.

Term monad $F^* X S \cong X S \uplus F (F^* X) S$.

Model = F-algebra = F*-monad-algebra.

Example (Typed boolean arithmetic)

$$Sort = \{bool, base\}$$

$$tt, ff : Op bool$$

$$if : \forall \{S\}.OpS$$

$$arity \ tt = []$$

$$arity \ ff = []$$

$$arity \ (if \{S\}) = [bool, S, S]$$
Free monad F^* : $tb \in F^* \times bool$

$$tt, ff \in F^* X bool$$

$$tx, ty \in F^* X S$$

 $if(tb, tx, ty) \in F^* X S$

$$x \in XS$$

$$x \in F^*XS$$

Eq-free Multisorted Algebraic Theory

Fix Sort : Set

(Fin.) Indexed Container:

 $Op: Sort \rightarrow \mathbf{Set}$

arity : $\forall \{S\}$. *Op* $S \rightarrow$ **List** *Sort*

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op : OpS).$ ListP_{arity op} X.

Term monad $F^* X S \cong X S \uplus F (F^* X) S$.

Model = F-algebra = F*-monad-algebra.

Example (Typed boolean arithmetic)

$$Sort = \{bool, base\}$$

$$tt, ff : Op bool$$

$$if : \forall \{S\}.Op S$$

$$arity \ tt = []$$

$$arity \ ff = []$$

$$arity \ (if \{S\}) = [bool, S, S]$$

$$tb \in F^* X bool$$

 $tx, ty \in F^* X S$
 $if(tb, tx, ty) \in F^* X S$

$$tt, ff \in F^* \times bool$$

$$x \in XS$$

$$x \in F^* XS$$

Eq-free Multisorted Algebraic Theory

```
Fix Sort: Set
```

(Fin.) Indexed Container:

 $Op: Sort \rightarrow \mathbf{Set}$

arity : $\forall \{S\}.OpS \rightarrow \textbf{List} Sort$

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X.

Term monad $F^*XS \cong XS \uplus F(F^*X)S$.

Model = F-algebra = F*-monad-algebra

Eq-free SOMAT

```
Fix Sort: Set
```

(Fin.) Indexed Container:

 $Op: Sort \rightarrow Set$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List} Sort$

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X.

Term monad $F^*XS \cong XS \uplus F(F^*X)S$.

Model = F-algebra = F*-monad-algebra.

Eq-free SOMAT

```
Fix Sort: Set
Ctx := Tele := List Sort.
Jud := Ctx \times Sort.
```

Eq-free SOMAT

```
Fix Sort: Set
Ctx := Tele := List Sort.
Jud := Ctx \times Sort.
Op : Sort \rightarrow \mathbf{Set}
arity: \forall \{S\}.OpS \rightarrow List(Tele \times Sort)
```

Eq-free SOMAT

```
Fix Sort : Set
```

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow List(Tele \times Sort)$

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X

Term monad $F^*XS \cong XS \uplus F(F^*X)S$.

Model = F-algebra = F*-monad-algebra

Example (STLC)

$$S \in Sort = base \mid S_1 \Rightarrow S_2$$

$$\lambda : \forall \{S,T\}.Op(S \Rightarrow T)$$

\$: $\forall \{S,T\}.OpT$

arity
$$\lambda$$
 {S,T} = [([S],T)]
arity $\{$ S,T} = [([],S \Rightarrow T),([],S)

Syntax functor *F*:

$$body \in X(\Gamma \dotplus [S] \vdash T)$$

$$\lambda \ body \in FX(\Gamma \vdash \mathbf{S} \Rightarrow \mathbf{T})$$

$$t \in X (1 + || \vdash S \Rightarrow T)$$

 $x \in X (\Gamma + || \vdash S)$

$$f \$ x \in F X (\Gamma \vdash T)$$

Eq-free SOMAT

```
Fix Sort : Set
```

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List}(\textit{Tele} \times \textit{Sort})$

Syntax functor $F : \mathbf{Set}^{Sort} \to \mathbf{Set}^{Sort}$:

 $FXS = \Sigma(op: OpS).$ ListP_{arity op} X.

Term monad $F^*XS \cong XS \uplus F(F^*X)S$.

Model = F-algebra = F*-monad-algebra

Example (STLC)

$$S \in Sort = base \mid S_1 \Rightarrow S_2$$

$$\lambda: \forall \{S,T\}. Op(S \Rightarrow T)$$

$$S: \forall \{S,T\}. \textit{OpT}$$

arity
$$\lambda \{S,T\} = [([S],T)]$$

arity $\{S,T\} = [([S,S],([S,S])]$

Syntax functor *F*:

$$body \in X(\Gamma \dotplus [S] \vdash T)$$

$$\lambda \ \textit{body} \in FX(\Gamma \vdash \mathbf{S} \Rightarrow \mathbf{T})$$

$$f \in X(\Gamma \dotplus [] \vdash S \Rightarrow T)$$

$$\times \in X$$
 juck

$$f \$ x \in F X (\Gamma \vdash \mathbf{T})$$

Eq-free SOMAT

```
Fix Sort : Set
```

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List}(\textit{Tele} \times \textit{Sort})$

Syntax functor $F : \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}$:

 $FXS = \Sigma(op: OpS).$ List $P_{arity op}X.$

Term monad $F^*XS \cong XS \uplus F(F^*X)S$.

Model = F-algebra = F*-monad-algebra

Example (STLC)

$$S \in Sort = base \mid S_1 \Rightarrow S_2$$

$$\lambda: \forall \{S,T\}. \mathit{Op}(S \Rightarrow T)$$

$$\$: \forall \{S,T\}. \textit{Op}\, T$$

arity
$$\lambda \{S,T\} = [([S],T)]$$

arity $\{S,T\} = [([S,S],([S,S])]$

Syntax functor *F*:

$$body \in X(\Gamma \dotplus [S] \vdash T)$$

$$\lambda \ \textit{body} \in FX(\Gamma \vdash \mathbf{S} \Rightarrow \mathbf{T})$$

$$f \in X(\Gamma \dotplus [] \vdash S \Rightarrow T)$$

$$\in X(\Gamma \dotplus [] \vdash S) \qquad \qquad x \in \mathcal{I}$$

 $x \in FX(\Gamma \vdash T)$ $x \in F^*X$ Jud

Eq-free SOMAT

```
Fix Sort : Set
```

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List}(\textit{Tele} \times \textit{Sort})$

Syntax functor $F : \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}$:

 $FX(\Gamma \vdash S) = \Sigma(op : Op S).$

 $\mathsf{ListP}_{\mathit{arity}\,\mathit{op}}(\lambda(\Theta,T).X(\Gamma\dotplus\Theta\vdash T)).$

Term monad $F^* X S \cong X S \uplus F (F^* X) S$.

Model = F-algebra = F*-monad-algebra.

Example (STLC)

$$S \in Sort = base \mid S_1 \Rightarrow S_2$$

$$\lambda: \forall \{S,T\}. Op(S \Rightarrow T)$$

$$\$: \forall \{S,T\}.\textit{Op}\, T$$

arity
$$\lambda \{S,T\} = [([S],T)]$$

arity
$$\{S,T\} = [([],S \Rightarrow T),([],S)]$$

Syntax functor *F*:

$$body \in X(\Gamma \dotplus [S] \vdash T)$$

$$\lambda \ \textit{body} \in FX(\Gamma \vdash \mathbf{S} \Rightarrow \mathbf{T})$$

$$f \in X(\Gamma \dotplus [] \vdash S \Rightarrow T)$$

$$\begin{array}{ccc}
\Gamma + [] \vdash S) & x \in X \text{ fuo}
\end{array}$$

$$f \$ x \in F X (\Gamma \vdash \mathbf{T})$$

Eq-free SOMAT

```
Fix Sort : Set
Ctx := Tele := List Sort,
Jud := Ctx \times Sort.
```

$$Op: Sort \rightarrow \mathbf{Set}$$

$$\textit{arity}: \forall \{S\}. \textit{Op}\, S \rightarrow \textbf{List} \left(\textit{Tele} \times \textit{Sort}\right)$$

Syntax functor
$$F : \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}$$
:

$$FX(\Gamma \vdash S) = \Sigma(op : Op S).$$

$$\mathsf{ListP}_{\mathit{arity}\,\mathit{op}}(\lambda(\Theta,T).X(\Gamma\dotplus\Theta\vdash T)).$$

Term monad $F^* X S \cong X S \uplus F(F^* X) S$.

Model = F-algebra = F*-monad-algebra.

Example (STLC)

$$\begin{split} S \in &\textit{Sort} = \textit{base} \mid S_1 \Rightarrow S_2 \\ \lambda : \forall \{S,T\}.\textit{Op}(S \Rightarrow T) \\ \$: \forall \{S,T\}.\textit{Op}T \\ &\textit{arity} \ \lambda \{S,T\} = [([S],T)] \\ &\textit{arity} \ \$ \{S,T\} = [([],S \Rightarrow T),([],S)] \\ &\textit{Syntax functor} \ F : \\ & \frac{\textit{body} \in \textit{X}(\Gamma \dotplus [S] \vdash T)}{\textit{\lambda} \ \textit{body} \in \textit{F} \ \textit{X}(\Gamma \vdash S \Rightarrow T)} \\ &\textit{f} \in \textit{X}(\Gamma \dotplus [] \vdash S \Rightarrow T) \\ &\textit{x} \in \textit{X}(\Gamma \dotplus [] \vdash S) \\ &\textit{x} \in \textit{X}(\textit{pdd}) \end{split}$$

 $f x \in FX(\Gamma \vdash T)$ $x \in F^*X$ jud

Eq-free SOMAT

```
Fix Sort: Set
Ctx := Tele := List Sort.
Jud := Ctx \times Sort.
Op : Sort \rightarrow \mathbf{Set}
aritv : \forall \{S\}.OpS \rightarrow List(Tele \times Sort)
Syntax functor F: \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}:
FX(\Gamma \vdash S) = \Sigma(op : OpS).
ListP<sub>arity op</sub> (\lambda(\Theta, T), X(\Gamma + \Theta \vdash T)).
Term monad F^* X \text{ jud} \cong X \text{ jud} \uplus F(F^* X) \text{ jud}.
```

$$\begin{split} \mathbf{S} &\in \textit{Sort} = \textit{base} \mid \mathbf{S}_1 \Rightarrow \mathbf{S}_2 \\ \lambda : \forall \{\mathbf{S}, \mathbf{T}\}.\textit{Op}(\mathbf{S} \Rightarrow \mathbf{T}) \\ \$: \forall \{\mathbf{S}, \mathbf{T}\}.\textit{Op}\mathbf{T} \\ \textit{arity} \ \lambda \{\mathbf{S}, \mathbf{T}\} &= [([\mathbf{S}], \mathbf{T})] \\ \textit{arity} \ \$ \{\mathbf{S}, \mathbf{T}\} &= [([], \mathbf{S} \Rightarrow \mathbf{T}), ([], \mathbf{S})] \\ \text{Syntax functor} \ \textit{F} : \\ &\frac{\textit{body} \in \textit{X}(\Gamma \dotplus [\mathbf{S}] \vdash \mathbf{T})}{\lambda \textit{body} \in \textit{F} \textit{X}(\Gamma \vdash \mathbf{S} \Rightarrow \mathbf{T})} \\ \textit{f} \in \textit{X} \ (\Gamma \dotplus [] \vdash \mathbf{S}) \\ &\frac{\textit{f} \$ \textit{x} \in \textit{F} \textit{X}(\Gamma \vdash \mathbf{T})}{\textit{f} \in \textit{X} \ (\Gamma \vdash \mathbf{T})} \\ &\frac{\textit{x} \in \textit{X} \textit{jud}}{\textit{x} \in \textit{F} \textit{X} \textit{jud}} \end{split}$$

Eq-free SOMAT

```
Fix Sort: Set
Ctx := Tele := List Sort.
Jud := Ctx \times Sort.
Op : Sort \rightarrow \mathbf{Set}
aritv : \forall \{S\}.OpS \rightarrow List(Tele \times Sort)
Syntax functor F: \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}:
FX(\Gamma \vdash S) = \Sigma(op : OpS).
ListP<sub>arity op</sub> (\lambda(\Theta, T), X(\Gamma + \Theta \vdash T)).
Term monad F^* X \text{ jud} \cong X \text{ jud} \uplus F(F^* X) \text{ jud}.
```

$$\begin{split} \mathbf{S} &\in \textit{Sort} = \textit{base} \mid \mathbf{S}_1 \Rightarrow \mathbf{S}_2 \\ \lambda : \forall \{\mathbf{S}, \mathbf{T}\}.\textit{Op}(\mathbf{S} \Rightarrow \mathbf{T}) \\ \$: \forall \{\mathbf{S}, \mathbf{T}\}.\textit{Op}\mathbf{T} \\ \textit{arity} \ \lambda \{\mathbf{S}, \mathbf{T}\} &= [([\mathbf{S}], \mathbf{T})] \\ \textit{arity} \ \$ \{\mathbf{S}, \mathbf{T}\} &= [([], \mathbf{S} \Rightarrow \mathbf{T}), ([], \mathbf{S})] \\ \text{Syntax functor} \ \textit{F} : \\ &\frac{\textit{body} \in \textit{X}(\Gamma \dotplus [\mathbf{S}] \vdash \mathbf{T})}{\lambda \textit{body} \in \textit{F} \textit{X}(\Gamma \vdash \mathbf{S} \Rightarrow \mathbf{T})} \\ \textit{f} \in \textit{X} \ (\Gamma \dotplus [] \vdash \mathbf{S}) \\ &\frac{\textit{f} \$ \textit{x} \in \textit{F} \textit{X}(\Gamma \vdash \mathbf{T})}{\textit{f} \in \textit{X} \ (\Gamma \vdash \mathbf{T})} \\ &\frac{\textit{x} \in \textit{X} \textit{jud}}{\textit{x} \in \textit{F} \textit{X} \textit{jud}} \end{split}$$

Eq-free SOMAT

```
Fix Sort: Set
Ctx := Tele := List Sort.
Jud := Ctx \times Sort.
Op : Sort \rightarrow \mathbf{Set}
aritv: \forall \{S\}.OpS \rightarrow List(Tele \times Sort)
Syntax functor F: \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}:
FX(\Gamma \vdash S) = \Sigma(op : OpS).
ListP<sub>arity op</sub> (\lambda(\Theta, T).X(\Gamma + \Theta \vdash T)).
Term monad F^* X \text{ jud} \cong X \text{ jud} \uplus F(F^* X) \text{ jud}.
```

Model = F-algebra = F*-monad-algebra

$$\begin{split} S \in &\textit{Sort} = \textit{base} \mid S_1 \Rightarrow S_2 \\ \lambda : \forall \{S,T\}.\textit{Op}(S \Rightarrow T) \\ \$: \forall \{S,T\}.\textit{Op}T \\ &\textit{arity} \ \lambda \{S,T\} = [([S],T)] \\ &\textit{arity} \ \$ \{S,T\} = [([],S \Rightarrow T),([],S)] \\ &\textit{Free monad} \ F^* : \\ &\underbrace{ \textit{tbody} \in F^* X(\Gamma \dot{\vdash} [S] \vdash T) }_{\lambda \, \textit{tbody} \in F^* X(\Gamma \dot{\vdash} [S] \Rightarrow T) } \\ &\textit{tf} \in F^* X(\Gamma \dot{\vdash} [] \vdash S) \\ &\textit{tf} \$ \, tx \in F^* X(\Gamma \dot{\vdash} T) \\ &\underbrace{ x \in X \, \textit{jud} \\ x \in F^* X \, \textit{jud} } \\ &\textit{tf} \$ \, tx \in F^* X \, \textit{Jud} \\ &\textit{tf} \$ \, tx \in F^* X \, \textit{Theorem 1} \\ &\textit{tf} \$ \, tx \in F^* X \, \textit{Theorem 2} \\ &\textit{tf} \$ \, tx \in F^* X \, \textit{Theorem 3} \\ &\textit{tf} \$ \, tx \in F^* X \, \textit{Theorem 3} \\ &\textit{tf} \$ \, tx \in F^* X \, \textit{Theorem 3} \\ &\textit{theorem 4} \\ &\textit{theorem 3} \\ &\textit{theorem 4} \\ &\textit{theorem 3} \\ &\textit{theorem 4} \\ &\textit{theor$$

Eq-free SOMAT

```
Fix Sort: Set
Ctx := Tele := List Sort.
Jud := Ctx \times Sort.
Op : Sort \rightarrow \mathbf{Set}
aritv: \forall \{S\}.OpS \rightarrow List(Tele \times Sort)
Syntax functor F: \mathbf{Set}^{Jud} \to \mathbf{Set}^{Jud}:
FX(\Gamma \vdash S) = \Sigma(op : OpS).
ListP<sub>arity op</sub> (\lambda(\Theta, T).X(\Gamma + \Theta \vdash T)).
Term monad F^* X \text{ jud} \cong X \text{ jud} \uplus F(F^* X) \text{ jud}.
Model = F-algebra with variables
          = F*-monad-algebra with variables.
```

```
S \in Sort = base \mid S_1 \Rightarrow S_2
\lambda: \forall \{S,T\}.Op(S \Rightarrow T)
S: \forall \{S,T\}.OpT
arity \lambda \{S,T\} = [([S],T)]
arity \{ S, T \} = [([], S \Rightarrow T), ([], S)]
Free monad F*:
       tbody \in F^* X(\Gamma \dotplus [S] \vdash T)
       \lambda \text{ tbody} \in F^* X(\Gamma \vdash S \Rightarrow T)
       tf \in F^* \times (\Gamma + \Pi \vdash S \Rightarrow T)
       tx \in F^* X (\Gamma \dotplus [] \vdash S)  x \in X \text{ jud}
       tf $tx \in F^* X (\Gamma \vdash T) x \in F^* X jud
```

SOMATs:

- Simply typed, but see
 - Fiore (2008)
 - Bocquet, Kaposi & Sattler (2021)
- Non-modal:
 - Contexts are lists of sorts.
 - Substitutions are lists of terms.
- Admissible substitution because $\Gamma \mapsto \Gamma \dotplus \Theta$ is **functorial!** $(\lambda \, tbody)[\sigma] = \lambda \, (tbody[\sigma \dotplus [S]]$

Menkar / MTT (Multimodal Type Theory):

- Dependently typed
- Modalities μ where $\llbracket \mathbf{A}_{\mu} \rrbracket \dashv \llbracket \mu \rrbracket$

SOMATs:

- Simply typed, but see
 - Fiore (2008)
 - Bocquet, Kaposi & Sattler (2021)
- Non-modal:
 - Contexts are lists of sorts.
 - Substitutions are lists of terms.
- Admissible substitution because $\Gamma \mapsto \Gamma \dotplus \Theta$ is **functorial!** $(\lambda \textit{tbody})[\sigma] = \lambda (\textit{tbody}[\sigma \dotplus [S]])$

Menkar / MTT (Multimodal Type Theory):

- Dependently typed
- Modalities μ where $\llbracket \mathbf{\Delta}_{\mu} \rrbracket \dashv \llbracket \mu \rrbracket$

$$\begin{array}{c|c} \Gamma \operatorname{ctx} & \Gamma, \blacksquare_{\mu} \vdash t : T \\ \hline \Gamma, \blacksquare_{\mu} \operatorname{ctx} & \Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle \\ \hline \sigma : \Gamma \to \Delta & \alpha : \nu \Rightarrow \mu \\ \hline (\sigma, \blacksquare_{\alpha}) : (\Gamma, \blacksquare_{\mu}) \to (\Delta, \blacksquare_{\nu}) \end{array}$$

SOMATs:

- Simply typed, but see
 - Fiore (2008)
 - Bocquet, Kaposi & Sattler (2021)
- Non-modal:
 - Contexts are lists of sorts,
 - Substitutions are lists of terms.
- Admissible substitution because $\Gamma \mapsto \Gamma \dotplus \Theta$ is **functorial!** $(\lambda tbody)[\sigma] = \lambda (tbody[\sigma \dotplus [S]]$

Menkar / MTT (Multimodal Type Theory):

- Dependently typed
- Modalities μ where $\llbracket \mathbf{A}_{\mu} \rrbracket \dashv \llbracket \mu \rrbracket$

SOMATs:

- Simply typed, but see
 - Fiore (2008)
 - Bocquet, Kaposi & Sattler (2021)
- Non-modal:
 - Contexts are lists of sorts,
 - Substitutions are lists of terms.
- Admissible substitution because $\Gamma \mapsto \Gamma \dotplus \Theta$ is **functorial!** $(\lambda tbody)[\sigma] = \lambda (tbody[\sigma \dotplus [S]])$

Menkar / MTT (Multimodal Type Theory):

- Dependently typed
- Modalities μ where $\llbracket \mathbf{A}_{\mu} \rrbracket \dashv \llbracket \mu \rrbracket$

$$\begin{array}{c|c} \Gamma \operatorname{ctx} & \Gamma, \underline{\triangle}_{\mu} \vdash t : T \\ \hline \Gamma, \underline{\triangle}_{\mu} \operatorname{ctx} & \Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle \\ \hline \sigma : \Gamma \to \triangle & \alpha : \nu \Rightarrow \mu \\ \hline (\sigma, \underline{\triangle}_{\alpha}) : (\Gamma, \underline{\triangle}_{\mu}) \to (\triangle, \underline{\triangle}_{\nu}) \end{array}$$

SOMATs:

- Simply typed, but see
 - Fiore (2008)
 - Bocquet, Kaposi & Sattler (2021)
- Non-modal:
 - Contexts are lists of sorts,
 - Substitutions are lists of terms.
- Admissible substitution because $\Gamma \mapsto \Gamma \dotplus \Theta$ is **functorial!** $(\lambda tbody)[\sigma] = \lambda (tbody[\sigma \dotplus [S]])$

Menkar / MTT (Multimodal Type Theory):

- Dependently typed
- Modalities μ where $\llbracket \mathbf{A}_{\mu} \rrbracket \dashv \llbracket \mu \rrbracket$

$$\frac{\Gamma \operatorname{ctx}}{\Gamma, \mathbf{\triangle}_{\mu} \operatorname{ctx}} \qquad \frac{\Gamma, \mathbf{\triangle}_{\mu} \vdash t : T}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle}$$

$$\underline{\sigma : \Gamma \to \Delta} \qquad \alpha : \mathbf{v} \Rightarrow \mu$$

$$\underline{(\sigma, \mathbf{\triangle}_{\alpha}) : (\Gamma, \mathbf{\triangle}_{\mu}) \to (\Delta, \mathbf{\triangle}_{\nu})}$$

SOMATs:

- Simply typed, but see
 - Fiore (2008)
 - Bocquet, Kaposi & Sattler (2021)
- Non-modal:
 - Contexts are lists of sorts,
 - Substitutions are lists of terms.
- Admissible substitution because $\Gamma \mapsto \Gamma \dotplus \Theta$ is **functorial!** $(\lambda tbody)[\sigma] = \lambda (tbody[\sigma \dotplus [S]])$

Menkar / MTT (Multimodal Type Theory):

- Dependently typed
- Modalities μ where $\llbracket \mathbf{A}_{\mu} \rrbracket \dashv \llbracket \mu \rrbracket$

Other systems

Dual contexts

Pfenning & Davies (2001)

$$\frac{\Delta; \cdot \vdash t : T}{\Delta; \Gamma \vdash \mathbf{box} \, t : \Box T}$$

$$(\Delta; \Gamma) \mapsto (\Delta; \cdot)$$
 is functorial! $(\mathbf{box} t)[\delta; \gamma] = \mathbf{box}(t[\delta; \cdot])$

$$(\mathbb{I} o -) \dashv \sqrt[\mathbb{I}]{-}$$
 (Amazing right adjoint

Licata, Orton, Pitts & Spitters (2018)

$$\mathbb{I} \to \Gamma \vdash t : T$$
$$\Gamma \vdash \mathsf{amaze} \, t : \sqrt[T]{T}$$

$$\Gamma \mapsto (\mathbb{I} \to \Gamma)$$
 is functorial! (amaze t)[σ] = amaze (t [($\sigma \circ -$)])

Other systems

Dual contexts

Pfenning & Davies (2001)

$$\Delta$$
; $\cdot \vdash t : T$

$$\Delta$$
; $\Gamma \vdash \mathbf{box} t : \Box T$

$$(\Delta; \Gamma) \mapsto (\Delta; \cdot)$$
 is functorial! $(\mathbf{box} t)[\delta; \gamma] = \mathbf{box}(t[\delta; \cdot])$

$(\mathbb{I} o -) \dashv \sqrt[\mathbb{I}]{}$ (Amazing right adjoint)

Licata, Orton, Pitts & Spitters (2018)

$$\frac{\mathbb{I} \to \Gamma \vdash t : T}{\Gamma \vdash \mathsf{amaze}\, t : \sqrt[T]{T}}$$

$$\Gamma \mapsto (\mathbb{I} \to \Gamma)$$
 is functorial! $(\operatorname{amaze} t)[\sigma] = \operatorname{amaze} (t[(\sigma \circ -)])$

Gist of the Talk

Trivially Admissible Substitution

Typing rules have the form

$$\frac{\Gamma.\Phi_i \vdash t_i : T_i}{\Gamma \vdash \mathbf{op}(t_i)_i : T}$$

where $-.\Phi_i$ acts functorially! $op(t_i)_i[\sigma] = op(t_i[\sigma.\Phi_i])_i$

Call Φ_i a **Junctor**:

- Generalizes binder (Lat.: iunctor),
- Sounds a lot like functor!

Gist of the Talk

Trivially Admissible Substitution

Typing rules have the form

$$\frac{\Gamma.\Phi_i \vdash t_i : T_i}{\Gamma \vdash \mathbf{op}(t_i)_i : T}$$

where $-.\Phi_i$ acts functorially!

$$op(t_i)_i[\sigma] = op(t_i[\sigma.\Phi_i])_i$$

Call Φ_i a **Junctor**:

- Generalizes binder (Lat.: iunctor),
- Sounds a lot like functor!

Contextual Multisorted Algebraic Theories (CMATs)

Eq-free SOMAT

Fix Sort : Set

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

(Fin.) Container:

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List}(\textit{Tele} \times \textit{Sort})$

Eq-free CMAT

Fix Sort : Set

Fix Ctx, Junctor: Set,

 $Jud := Ctx \times Sort$

(Fin.) Container:

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. OpS \rightarrow \textbf{List}(Junctor \times Sort)$

Example (Amazing right adjoint)

amaze :
$$\forall S. Op(\sqrt[1]{S})$$

arity amaze = $[(\mathbb{I} \Rightarrow -, S)]$

$$\frac{t \in F^* X (\mathbb{I} \Rightarrow \Gamma \vdash S)}{\mathsf{amaze} \, t \in F^* X (\Gamma \vdash \sqrt[\mathbb{I}]{S})}$$

Contextual Multisorted Algebraic Theories (CMATs)

Eq-free SOMAT

Fix Sort : Set

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

(Fin.) Container:

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List}(\textit{Tele} \times \textit{Sort})$

Eq-free CMAT

Fix Sort : Set

Fix Ctx, Junctor: Set,

 $Jud := Ctx \times Sort.$

(Fin.) Container:

 $Op: Sort \rightarrow \mathbf{Set}$

 $\textit{arity}: \forall \{S\}. \textit{Op}\, S \rightarrow \textbf{List} \big(\textit{Junctor} \times \textit{Sort}\big)$

Example (Amazing right adjoint)

amaze :
$$\forall S. Op(\sqrt[1]{S})$$

arity amaze = $[(\mathbb{I} \Rightarrow -, S)]$

$$t \in F^* X(\mathbb{I} \Rightarrow \Gamma \vdash S)$$

$$\mathsf{amaze} \ t \in F^* X(\Gamma \vdash \sqrt[\mathbb{I}]{S})$$

Contextual Multisorted Algebraic Theories (CMATs)

Eq-free SOMAT

```
Fix Sort : Set
```

Ctx := Tele := List Sort,

 $Jud := Ctx \times Sort.$

(Fin.) Container:

 $Op: Sort \rightarrow \mathbf{Set}$

 $arity: \forall \{S\}. Op S \rightarrow \textbf{List}(\textit{Tele} \times \textit{Sort})$

Eq-free CMAT

Fix Sort : Set

Fix Ctx, Junctor : Set,

 $Jud := Ctx \times Sort.$

(Fin.) Container:

 $Op: Sort \rightarrow \mathbf{Set}$

 $\textit{arity}: \forall \{S\}. \textit{Op}\, S \rightarrow \textbf{List} \big(\textit{Junctor} \times \textit{Sort}\big)$

Example (Amazing right adjoint)

amaze :
$$\forall S. Op(\sqrt[l]{S})$$

arity amaze = $[(\mathbb{I} \Rightarrow -, S)]$

$$\frac{t \in F^* X(\mathbb{I} \Rightarrow \Gamma \vdash S)}{\mathsf{amaze} \, t \in F^* X(\Gamma \vdash \sqrt[\mathbb{I}]{S})}$$

Status of cubical Agda formalization:

MATs & their models ✓ Eq-free CMATs & MAT translations

- ✓ MATs & their models
- ☑ CMATs
 - ✓ Eq-free CMATs & MAT translations
 - ☐ Eq theories & MAT translations
 - Adapt FS22's substitution theorem
 - Characterize models
- ☐ Generalize AACMM21's results
- SOMATs are CMATs
- ☐ M(S)TT is a CMAT
- NbE via categorical gluing
- Wrap this up as a programming assistant?
- Contributing to Agda cubical library

- ✓ MATs & their models
- ☑ CMATs
 - ✓ Eq-free CMATs & MAT translations
 - ☐ Eq theories & MAT translations
 - ★ Adapt FS22's substitution theorem
 - Characterize models
- ☐ Generalize AACMM21's results
- SOMATs are CMATs
- ☐ M(S)TT is a CMAT
- NbE via categorical gluing
- Wrap this up as a programming assistant?
- Contributing to Agda cubical library

- ✓ MATs & their models
- ☐ CMATs
 - ✓ Eq-free CMATs & MAT translations
 - ☐ Eq theories & MAT translations
 - Adapt FS22's substitution theorem
 - Characterize models
- ☐ Generalize AACMM21's results
- SOMATs are CMATs
- ☐ M(S)TT is a CMAT
- NbE via categorical gluing
- Wrap this up as a programming assistant?
- Contributing to Agda cubical library

- ✓ MATs & their models
- ☑ CMATs
 - ✓ Eq-free CMATs & MAT translations
 - ☐ Eq theories & MAT translations
 - Adapt FS22's substitution theorem
 - Characterize models
- ☐ Generalize AACMM21's results
- ☐ SOMATs are CMATs
- ☐ M(S)TT is a CMAT
- NbE via categorical gluing
- Wrap this up as a programming assistant?
- ☐ Contributing to Agda cubical library

- ✓ MATs & their models
- ∠ CMATs
 - ✓ Eq-free CMATs & MAT translations
 - ☐ Eq theories & MAT translations
 - Adapt FS22's substitution theorem
 - Characterize models
- ☐ Generalize AACMM21's results
- SOMATs are CMATs
- ☐ M(S)TT is a CMAT
- NbE via categorical gluing
- Wrap this up as a programming assistant?
- Contributing to Agda cubical library

- ✓ MATs & their models
- ∠ CMATs
 - ✓ Eq-free CMATs & MAT translations
 - ☐ Eq theories & MAT translations
 - Adapt FS22's substitution theorem
 - Characterize models
- ☐ Generalize AACMM21's results
- SOMATs are CMATs
- ☐ M(S)TT is a CMAT
- NbE via categorical gluing
- Wrap this up as a programming assistant?
- Contributing to Agda cubical library

Thanks!

Questions?