Sample Final Examination Answers

1.
$$x1 = x5 = x9 = A;$$

 $x2 = 7; x3 = x7 = x11 = 5; x4 = x8 = 0;$
 $x6 = 0; x10 = 1; x12 = 1; x13 = B; x14 = 1;$

$$y1 = 2$$
; $y2 = 0$; $y3 = 2$.

2. (a) R-root port; D-Designated port; B-Blocked port.

(b) MAC tables:

I	31	I	32		I	33
A	1	A	1	_	A	1
В	2	В	1		В	3

3. (a) Routing tables:

SW1 routing table			
Incom Node	ing VCI	Outgo Node	
A B C SW2 SW2 SW2	0 0 0 0 1 2	SW2 SW2 SW2 A B C	0 1 2 0 0

SW2 rou	ting table
Incoming Node VCI	Outgoing Node VC
SW1 0	D 0

SW1 0 D 0 SW1 1 SW3 0 SW1 2 SW3 1	Node	VCI	Node	
D 0 SW1 0 SW3 0 SW1 1 SW3 1 SW1 2	SW1 SW1 D SW3	1 2 0 0	SW3 SW3 SW1 SW1	0 1 0 1

SW3 routing table

Incoming	Outgoing
Node VCI	Node VCI
SW2 0	E 0
SW2 1	F 0
E 0	SW2 0
F 0	SW2 1

(b) Time to transmit a packet $(t_p) = 7.2 \times 10^{-4}$; Propagation time over 1 km link $(t_1) = 5 \times 10^{-6}$; Propagation time over 1000 km link $(t_{1000}) = 5 \times 10^{-3}$.

Therefore, delay = $3 \times t_p + 2 \times t_1 + t_{1000} = 7.17$ msec.

4. (a) One possible design:

Subnet 1: 210.128.128.0/26 Subnet 2: 210.128.128.64/26 Subnet 3: 210.128.128.128/27 Subnet 4: 210.128.128.160/27 Subnet 5: 210.128.128.192/27Subnet 6: 210.128.128.224/27

(b) Routing table content:

Network ID	Interface	Next Hop
Subnet 1	e0	$\overline{\mathrm{DC}}$
Subnet 2	e1	$\overline{\mathrm{DC}}$
Subnet 3	e2	DC
Subnet 4	e1	R2
Subnet 5	e1	R3
Subnet 6	e1	R3
	e2	R4

- R2's IP address = 210.128.128.65
- R3's IP address = 210.128.128.66
- R4's IP address = 210.128.128.129

(c) Physical topology:

VLAN assignment (assume VLAN n is configured for Subnet n, where n = 1,...,6):

Switch 1:

- Ports 1-6, $11 \rightarrow VLAN 1$;
- Ports 7-9, 10, $12 \rightarrow VLAN 3$.

Switch 2:

- Ports 1-4, 11, 13, 15 \rightarrow VLAN 2;
- Ports 5-7, $14 \rightarrow VLAN 4$;
- Ports 8-10, $16 \rightarrow VLAN 5$;
- Ports 18-20, 17, 12 \rightarrow VLAN 6.

5. **135.95.05.166**:

Based on the routing table of the host, the destination is directly connected. Therefore, the frames sent by the host are:

Dest./Source IP addresses: 135.95.5.166/135.95.5.132

150.10.10.180:

Host sent the following two frames:

Dest./Source IP addresses: 150.10.10.180/135.95.5.132

The default router sent the following frames:

Dest./source IP addresses: 150.10.10.180/135.95.5.132

- 6. (a) The worst case is each "read" system call can only read 1 byte. Therefore, the maximum number of "read" system calls needed to be invoked is 100.
 - (b) Server program:

```
char EOF= 'Oxff';
.
.
.
.
while((n=read(fd, buf, BUFLEN)) > 0){
    write(sd, buf,n);
}
write(sd, &EOF, 1);
```

Client program:

```
Char EOF='Oxff';
.
.
.
.
test = 0;
while(1){
    n = read(sd, buf, BUFLEN);
    for(i=0; i<n; i++){
        if(buf[i] == EOF){
            test=1;
            num = i;
            break;
        }
    }
    write(fd, buf, num);
    if(test==1) break;
}</pre>
```

(c) A non-ASCII file could contain byte(s) with the value of '0xff', and this data byte would be treated mistakenly as the end-of-file byte.