(1) Publication number:

0 021 225

12

EUROPEAN PATENT APPLICATION

(21) Application number: 80103210.3

(5) Int. Cl.3: G 01 N 27/18, G 01 N 25/64

② Date of filing: 10.06.80

30 Priority: 14.06.79 JP 74858/79 14.06.79 JP 81092/79 U 14.06.79 JP 81093/79 U (7) Applicant: KABUSHIKIKAISHA SHIBAURA DENSHI SEISAKUSHO, No. 520, Oaza Machiya, Urawa-shi Saitama-ken (JP)

43 Date of publication of application: 07.01.81 Bulletin 81/1

Inventor: Kitamura, Kenzo, No. 3-30-13, Asahi-cho Nerima-ku, Tokyo (JP) Inventor: Miura, Tetsuo, No. 3-684, Nisshin-cho, Omiya-shi Saitama-ken (JP) Inventor: Ookubo, Satoshi, No. 1-19-8, Midori-cho, Hasuda-shi Saitama-ken (JP) Inventor: Nagata, Hideyuki, No. 1-22-13, Moto-Machi, Urawa-shi Saitama-ken (JP)

Designated Contracting States: DE FR GB IT NL SE

(74) Representative: Reichel, Wolfgang, Dipl.-Ing. et al, Reichel und Reichel Parkstrasse 13, D-6000 Frankfurt a.M. 1 (DE)

(54) Humidity measuring method and hygrometer to carry out the method.

A current is applied to a thermistor (R_{S1}) or like heat sensitive element having a temperature-resistance characteristic to heat the heat sensitive element up to a temperature above the open air temperature and the heat sensitive element (R_{S1}) is held in the open air. Since the resistance value of the heat sensitive element (R_{S1}) varies with the amount of water vapor contained in the open air, the change in the resistance value is detected, from which the humidity of the open air is obtained. By temperature compensation with a temperature compensating element (R_{C1}) which is completely held in the dry state, direct reading of absolute or relative humidity is made possible.

021 225

Humidity measuring method and hygrometer to carry out the method.

This invention relates to a humidity measuring method 5 and a hygrometer for electrically measuring humidity with high accuracy.

Heretofore, there have been employed a psychrometer, a hair hygrometer, a dew-point hygrometer, an absorption 10 hygrometer and so forth for humidity measurement. The psychrometer is inexpensive and appreciably high in the accuracy of measurement, and hence is employed relatively widely; but this hygrometer requires constant wetting of a wet-bulb with water and therefore involves a water supply or replacement of a moisture absorbing gauze. The hair hygrometer is not satisfactory in the accuracy of measurement and the dew-point hygrometer involves cumbersome operations.

20 The absorption hygrometer is used for measurement of absolute humidity. In this case, a constant amount of air is passed through a U-shaped tube containing phosphorus pentoxide (P₂0₅) to entirely absorbe water vapor in the air by the phosphorus pentoxide and an increase in the 25 mass of the phosphorus pentoxide is measured; since the increase in the mass corresponds to the water content in the air, the absolute humidity is obtained. But the absorption hygrometer is defective in that its measuring operation is complex.

It is an object of the present invention to electrically measure humidity easily with high accuracy and to provide a hygrometer to carry out such measurement.

5 Another object of the present invention is to permit direct reading of absolute humidity.

Yet another object of the present invention is to permit direct reading of relative humidity.

10

The problem underlying the invention is solved by a humidity measuring method characterized in that a current is applied to a heat sensitive element having a temperature- resistance characteristic to heat it up to a temperature above the open air temperature; the heat sensitive element is held in the open air, a change in the resistance value of the heat sensitive element which varies with the amount of water vapor contained in the open air is detected and the humidity of the open air is obtained from the amount of change in the resistance value of the heat sensitive element.

A hygrometer to carry out the method is characterized by a heat sensitive element having a temperature-resistance 25 characteristic and held in a manner to be exposable to the open air;

a temperature compensating element having substantially the same temperature-resistance characteristic as the heat sensitive element and held in a completely dry state; 20 two resistors;

the heat sensitive element, the temperature compensating element and two resistors forming a bridge circuit; a power source for supplying a current to the heat sen-

sitive element and the temperature compensating element to heat them up to a temperature above the open air temperature; and

voltage measuring means for measuring as the absolute humidity of the open air, an unbalanced output voltage from the bridge circuit which is caused by a change in the resistance value of the heat sensitive element which varies with the amount of water vapor contained in the open air.

10

A further embodiment is characterized by a heat sensitive element having a temperature-resistance characteristic and held in a manner to be exposable to the open air;

a temperature compensating element having substantially the same temperature-resistance characteristic as the heat sensitive element and held in a completely dry state;

two resistors;

- ting element and two resistors forming a bridge circuit; a power source for supplying a current to the heat sensitive element and the temperature compensating element to heat them up to a temperature above the open air
- 25 temperature; and a temperature compensating amplifier for amplifying an unbalanced output voltage from the bridge circuit, caused by a change in the resistance value of the heat sensitive element corresponding to the amount of water
- vapor contained in the open air, in such a manner that the amplification factor may vary with the open air temperature and the output corresponding to the relative humidity of the open air may have nothing to do with the open air temperature; and

voltage measuring means supplied with the output voltage from the temperature compensating amplifier to indicate the relative humidity.

5 Further, the absolute or relative humidity of the air is directly read.

Embodiments of the invention and diagrams to illustrate the operation of the embodiments are subsequent
10 ly described with reference to the drawings:

Figure 1 is a diagram illustrating an embodiment of this invention.

15 Figure 2 is explanatory of a heat sensitive element structure of this invention.

20

30

35

Figure 3 is a graph showing the relationship between temperature and a bridge unbalanced output voltage in the case of a thermistor being employed, with relative humidity used as a parameter.

Figure 4 is a graph showing an example of the current-voltage characteristic of the thermistor.

Figure 5 is a circuit diagram for measuring the characteristic of the heat sensitive element for use in this invention.

Figure 6 is a graph showing an example of the current-voltage characteristic of platinum.

Figure 7 is a graph showing the relationship between temperature and a bridge unbalanced output voltage in the case of a platinum element being employed, with relative humidity used as a parameter.

5

10

25

Figure 8 is a circuit diagram illustrating another embodiment of this invention.

Figure 9 is a circuit diagram illustrating another embodiment of this invention.

Figure 10 is a graph showing the relationship between relative humidity and a bridge unbalanced output voltage, with temperature used as a parameter.

Figure 11 is a graph showing another example of the current-voltage characteristic of the platinum element.

Figure 12 is a graph showing the relationship between relative humidity and a bridge unbalanced output voltage in the case of the platinum element being employed, with temperature used as a parameter, and

Figures 13 and 14 are circuit diagrams respectively illustrating different examples of temperature compensating amplifiers for use in this invention.

Figure 1 is a circuit diagram illustrating an embodiment of this invention, which comprises a thermistor, platinum or like heat sensitive element $R_{\rm S1}$ which is held to be exposable to the open air and has a temperature-resistance characteristic, a thermistor, platinum or like temperature compensating element $R_{\rm C1}$ which is held in a completely dry state (in which the temperature compensating ele-

ment is hermetically sealed in an envelope together with a dry gas), a bridge circuit composed of two resistors R₂ and R₃ and a variable resistor R₄ for zero adjustment use, a power source E₁ connected with the bridge circuit via a resistor R₁ for current limiting use, a load resistor R₅ connected between terminals T₁ and T₂ and a voltmeter V₁ for measuring a bridge unbalanced output voltage which occurs across the load resistor R₅.

10

The heat sensitive element R_{S1} for use in the present invention has a construction such, for example, as shown in Figure 2. In Figure 2, reference numeral 1 indicates a thermistor coated with glass; 2 designates a metal case; . 15 3 identifies a hermetic seal; 4 and 4' denote lead wires; and 5 represents holes. The metal case 2 is hermetically sealed by the hermetic seal 3 but has four to eight holes 5, for example, about 0,5 mm in diameter, permitting the thermistor 1 to be exposed to the open air. On the 20 other hand, since the temperature compensating element R_{C1} must be held in the absolutely dry state, it is sealed, together with a dry gas, in a metal case having no holes. In this case, however, the heat sensitive element $R_{\rm S1}$ and the temperature compensating element R_{C1} must be equipped 25 with substantially the same current-voltage characteristic; furthermore, it is preferred that the both elements are placed adjacent to each other to hold them at the same temperature in an atmosphere with zero relative humidity.

30 For humidity measurement by the circuit depicted in Figure 1, the first step is to apply a voltage via the resistor R_1 to the bridge circuit from the power source E_1 so that a predetermined current flows in the heat sensitive element $R_{\rm S1}$ and the temperature compensating element $R_{\rm C1}$ to

put them in their self-heat state (about 200°C). Then, for initial adjustment, the heat sensitive element R_{S4} is held in an atmosphere with zero relative humidity and the variable resistance R_h is adjusted so that a bridge unbalanced output voltage occuring across the lard resistor R_5 , i.e. between the terminals T_4 and T_2 may be reduced to zero. After the initial adjustment, the heat sensitive element $R_{\rm S1}$ is contacted with the open air to start measurement. When the heat sensitive element $R_{S,1}$ is exposed to the open air, if the amount of vapor is large, that is, if the humidity of the open air is high, the amount of heat given off by the heat sensitive element R_{S1} increases to decrease its temperature, resulting in its resistance value varying. The temperature drop of the heat sensitive element R_{S4} is considered to be caused by a difference in thermal conductivity between the air and water vapor. The thermal conductivity K of gas is given by the following equation (1):

$$K = \frac{1}{4} (\frac{9Cp}{CV} - 5) \eta Cv$$
 (1)

15

20

35

where η is the coefficient of viscosity, Cv is the specific heat at constant colume and Cp is the specific heat at constant pressure.

In the present embodiment, the heat sensitive element R_{S1} is heated up to about 200°C above the open air temperature for humidity measurement. The thermal conductivities 30 . of the air and water vapor at 200°C, obtained by the equation (1), are 8.64×10^{-5} cal/cm.sec. °C and 10.1×10^{-5} cal/cm .sec. OC respectively. Thus, at 200 C, the thermal conductivity of the water vapor is higher than the thermal conductivity of the air. Accordingly, an increase in the amount of water vapor contained in the air, that is , the

humidity of air causes an increase in the thermal conductivity of that air around the heat sensitive element $R_{\rm S1}$ which is the atmosphere whose humidity is to be measured, resulting in increased amount of heat given off by the heat sensitive element $R_{\rm S1}$ to decrease its temperature.

A change in the resistance value of the heat sensitive element R_{S1} by this temperature drop is very small, but the bridge circuit becomes unbalanced to yield a bridge unbalanced output voltage across the terminals T₁ and T₂. The unbalanced bridge output voltage corresponds to the change in the resistance value of the heat sensitive element R_{S1} and increases with an increase in humidity. Also with an increase in the open air tempe rature, the bridge unbalanced output voltage increases.

Figure 3 is a graph showing, with relative humidity used as a parameter, the relationships between the bridge 20 unbalanced output voltage and the open air temperature in the case of using the thermistor of Figure 2 as each of the heat sensitive element R_{S1} and the temperature compensating element R_{C1} . As shown in Figure 3, the bridge unbalanced output voltage varies not only with the humidity change but also with the open air temperature change, but if the bridge unbalanced output voltage and the open air temperature at the time of humidity measurement are both known, accurate humidity can be obtained using such a characteristic graph as depicted in Figure 3. That is, by measuring the bridge unbalanced output voltage with the voltmeter V_1 and measuring the open air temperatur e at the time of humidity measurement, accurate humidity is available. Next, a description will be given of measured results of the relationship between the unbalanced bridge output voltage and the open air temperature in the present embodiment, using humidity as a parameter.

(1) In the case where there were employed in the circuit of Figure 1, as the heat sensitive element R_{S1} and the temperature compensating element R_{C1} , thermistors having such a current-voltage characteristic (at an ambient temperature of 25°C) shown in Table 1:

Table 1 .

15	Current (mA)	Voltage (V)	Tempe rature of the thermistor (°C)
	0.1	0.828	25.6
20	0.2	1.59	26.6
	0.5	2.96	34.8
;	1.0	3.62	49.5
25	2.0	3 . 58	72.5
	5.0	2.84	117.0
30	10.0	2.21	162.0
	15.0	1.87	182.5
į	20.0	1.65	217.5

Figure 4 shows a characteristic curve obtained by plotting the results given in Table 1. The resistance values of the resistors R_1 to R_3 and R_5 used were 0.389 k Ω , 10.04 k Ω , 10.04 k Ω and 49.47 k Ω respectively, and the voltage of the power source E_1 was 9.88 V. A current that flowed in the heat sensitive element R_{S1} and the temperature compensating element R_{C1} was 14.98 mA at an ambient temperature of 10°C, and the temperature of the heat sensitive element R_{S1} and the temperature compensating element R_{C1} was approximately 200°C.

It is Figure 3 that is a graphical representation of the relationships between the bridge unbalanced output voltage across the result R₅ and the open air temperature which were measured using relative humidity as a parameter, with constants of the respective parts of the measuring circuits set as described above and the heat sensitive element R_{S1} and the temperature compensating element R_{C1} put in their self-heat condition.

20

Table 2 shows some of the measured data.

Table 2

		Table 2		
	Temperature (C°)	Relative humidity (%)	Output voltage (mA)	
Ī		80	1.26	
5	20.0	60	0.94	
	10.0	40	0.63	
		20 .	0.31	
		80	2.32	
10	20.0	60	1.74	
		40	1.16	
		20	0.58	
15		80	3.90	
15	30.0	60	2.29	
		40	1.95	
		20	0.97	
20		80	6.50	
	40.0	60	4.88	
		40	3.25	
		20	1.63	

As shown in Figure 3, the bridge unbalanced output voltage varies with the humidity and temperature variations of the open air. Accordingly, by measuring the bridge unbalanced output voltage and the open air temperature at the time of humidity measurement, humidity can be obtained using such characteristic curves as shown in Figure 3.

(2) In the case where there were employed in a circuit of 10 Figure 5, as a heat sensitive element R_{S2} and a temperature compensating element R_{C2}, platinum having such a currentvoltage characteristic (at an ambient temperature of 250°C) shown in Table 3:

15

_20

Table 3

Current (mA)	Voltage (mV)	Temperature of platinum (°C)
1.0315	2.9888	25.0
10.065	29.6052	29.223
20.01	59.6052	32.595
50.0	158.52	51.344
100.83	410.4	139.73
130.00	640.0	225.98
150.48	872.6	316.64
201.6	1680.2	596.47
300.0	3748.0	1129.5

30

25

Figure 6 shows a characteristic curve obtained by plotting the results given in Table 3. The resistance values of resistors R_6 and R_7 used were 1025.62 and 922.2 α respectively, and a power source E_2 was adjusted so that the current flowing in the heat sensitive element R_{S2} and the temperature compensating element R_{C2} might be 130 mA.

5

Figure 7 is a graphical showing of the relationship
between the bridge unbalanced output voltage across
terminals T₃ and T₄ and the ambient temperature which
were measured using relative humidity as a parameter,
with the constants of the respective parts of the
measuring circuit set and the heat sensitive element

R_{S2} and the temperature compensating element R_{C2} put
in their self-heat condition. Table 4 shows some of
the measured data.

---- Table 4

Table 4

•	Temperature (°C)	Relative humidity (%)	Output voltage (mA)
		80	0. 752
	40 ·	60	0.564
5	10	40	0.376
		20	0.188
		80	1.256
40	⁻ 20	60	0.942
10		40	0.628
		20	0.314
		80	1.936
15	30	60	1.452
20		40	0.968
		20	0.484
		80	2.76
	40	60	2.07
		40	1.384
		20	0.69

²⁵ As depicted in Fig. 7, the unbalanced bridge output voltage varies in response to the humidity and temperature variations of the open air. Accordingly, by measuring the bridge unbalanced output voltage and the open air tempe rature at the time of humidity measurement, humidity can be obtained utilizing the characteristic curves shown in Figure 7 or the like.

Platinum reduces its resistance value with temperature drop, but the thermistor in the heated state increases its resistance value with temperature rise; accordingly, the bridge unbalanced output voltage in the case of employing platinum is reverse in polarity from the bridge unbalanced output voltage in the case of using the thermistor. As shown in Figures 3 and 7, however, the unbalanced output voltage exhibits the same tendency to variations with the humidity and ambient temperature changes irrespective of whether the platinum or the thermistor is used. Consequently, it is a matter of course that the heat sensitive temperature element and the temperature compensating element may be any of those which vary their resistance value with temperature.

5

10

15

Figure 8 is a circuit diagram illustrating another example of the circuit for the humidity measuring method of the present invention. Reference character R_{S3} indicates a thermistor, platinum or like heat 20 sensitive element which is held in a manner to be exposable to the open air; R_{C3} designates a thermistor, platinum or like temperature compensating element which is held in the completely dry state; Rg identifies a resistor for current limiting use; Amp de-25 notes a differential amplifier for amplifying a difference between a voltage occurring across the heat sensitive element $\mathbf{R}_{\mathbf{S}\mathfrak{F}}^{}$ and a voltage across the temperature compensating element; V2 represents a voltand E_3 shows a power source. In this case, 30 meter; it is necessary that the heat sensitive element R_{S3} and the tempe rature compensating element R_{C3} have substantially the same current-voltage characteristic and are placed adjacent to each other.

The humidity measurement using the circuit of Fig. 8 starts with applying a voltage from the power source E_3 to the heat sensitive element R_{S3} and the temperature compensating element R_{C3} to put them in their selfheat state at a temperature (about 200°C above the open air temperature. After this, the heat sensitive element R_{S3} is exposed to the open air to start the humidity measurement. Since the heat sensitive element R_{S3} is held so that it may be exposed to the open air, the temperature of the heat sensitive element R_{C3} lowers with an increase in the humidity if the open air and, at the same time, the resistance value of the heat sensitive element R_{S3} also varies. On the other hand, since the temperature compensating element R c3 is held in the completely dry state, its resistance value does not change with the variation in the humidity of the open air. Accordingly, a difference between the voltage across the heat sensitive element $R_{S\bar{3}}$ and the voltage across the temperature compensating element R_{C3} varies 20 with the change in the humidity of the open air. In the present embodiment, this difference is amplified by the differential amplifier Amp and then measured by the voltmeter V_2 .

The output voltage from the differential amplifier Amp increases with an increase in the humidity of the open air and, at the same time, varies with the temperature change of the open air; but, by measuring the output voltage from the differential amplifier Amp and the temperature of the open air at the time of humidity measurement, accurate humidity can be obtained using a conversion table or the like.

Figure 9 is a circuit diagram illustrating another em-55 bodiment of the present invention, in which a bridge cimuit is made up of a thermistor, platinum or like heat sensitive element R_{S4} held in a manner to be freely exposable to the open air, a thermistor, platinum or like temperature compensating element R_{C4} held in the completely dry state, resistors R_{12} and R_{13} and a variable resistor R_{14} for zero adjustment use. A power source E_4 is connected via a resistor R_{11} to the bridge circuit and a resistor R_{15} is connected across terminals T_{11} and T_{12} of the bridge circuit. A voltage occurring across the terminals T_{11} and T_{12} is amplified by an amplifier AMP and its amplified output is applied to a voltmeter V_3 . The bridge circuit is identical in construction with that employed in the foregoing embodiments.

In the case where thermistors are used as the heat sensitive element R_{S4} and the temperature compensating element R_{C4} and their voltage-current characteristics are such as shown in Table 1 and Figure 4, the measured results shown in Figure 3 and Table 2 are obtained as is the case with the foregoing embodiments. From the measured results, the bridge unbalanced output voltage and the relative humidity bear substantially linear relationships as shown in Figure 10 in which temperature is used as a parameter.

25

30

5

10

The relationships between the relative humidity and the absolute temperature are such as given in Table 5, and the rate of increase $(mV/g/m^3)$ in the bridge unbalanced output voltage to the change in the absolute humidity at each temperature is such as shown in Table 6.

- 18 -Table 5

	Temperature	(°C)	Relative humidity (%)	Absolute humidity (g/m³)	Output Voltage (mV)
			100	9.40	1.57
			80	7.52	1.26
5	10		60	5.64	0.94
			40	3.76	0.63
!			20	1.88	0.31
10			100	17.28	2.90
• -			80	13.824	2.32
	20		60	10.368	1.74
·			40	6.912	1.16
15			20	3.456	0.58
-			100	30.34	4.87
	30	80	24.272	3.90	
20 25			60	18.204	2.92
		40	12.136	1.95	
			20	6.068	0.97
			100	51.1	8.13
	40	80 🚉	40.88	6.50	
		40	60	30.66	4.88
			40	20.44	3.25
•			20	10.22	1.63

30

Table 6

Temperature (°C) Rate of increase (mV/g/m³)

10 0.167

20 0.1678

30 0.1605

40 0.1591

35

As seen from Table 6, the bridge unbalanced output voltage presents substantially the same rate of increase with respect to the increase in the absolute humidity at each temperature. Accordingly, by amplifying the bridge unbalanced output voltage across the terminals T₁₁ and T₁₂ of the bridge circuit by the amplifier AMP serving as a linear amplifier and applying the amplified output to the voltmeter V₃ graduated in terms of absolute humidity, the absolute humidity can be direct-read from the indication of the voltmeter V₃. In other words, an absolute hygrometer can be obtained which electrically measures absolute humidity.

In the case of using platinum elements as the heat

sensitive element R_{S4} and the temperature compensating element R_{C4}, when the current-voltage characteristics of the platinum are such as shown in Table 3 and Figure 6, the measured results shown in Figure 7 and Table 4 are obtained as is the case with the foregoing embodiment employing the platinum elements.

10

25

It is also possible to use platinum elements having such a current-voltage characteristic as shown in Table 7, and Figure 11 shows a curve by plotting the values given in Table 7.

Table 7

Current (mA)	Voltage (mV)	Temperature of platinum (°C)
1.0092	2.8348	25.0
10.019	28.3157	26.706
20.00	57.08	. 29.466
49.97	150.989	46.153
101.3	380.7	120.50
130.0	600.0	209.41
150.7	779.9	268.55
200.5	1462.3	504.01
300.1	3469.97	1049.8

From the measured results shown in Table 4, the relationships between the absolute humidity and the relative humidity shown in Table 8 are obtained. 20 The relative humidity and the bridge unbalanced output voltage bear such relationships as shown in Figure 12 in which temperature is used as a parameter.

Table 8

	Temperature (°C)	Relative humidity (%)	Absolute humidity (g/m³)	Output voltage (mV)
		100	9.40	0.940
5		80	7.52	0.752
	10	60 .	5.64	0.564
		40	3.76 ′	0.376
		20	1.88	0.188
10		100	17.28	1.570
		80	13.324	1.256
	20	60	10.368	0.942
		40	6.912	0.628
15		20	3.456	0.314
		100	30.34	2.420
	30	80 -	24.272	1.936
20		60	18.204	1.452
2.0		40	12.136	0.968
		20	6.068	0.484
25	·	100	51.10	3.45
	40	80	40.88	2.76
		60	30.60,	2.07
		40	20.44	1.38
		20	10.22	0.69

Table 9 shows how much the bridge unbalanced output voltage increases each time the absolute humidity increases by \lg/m^3 at each temperature.

30

Table 9

Temperature (°C)	Rate of increase $(mV/g/m^3)$
10	0.1
20	0.0908
30 ·	0.0798
40	0.068

5

10

15

20

25

30

In the case of employing platinum elements as the heat sensitive element R_{SL} and the tempe rature compensating elements R_{C4}, the rate of increase in the bridge unbalanced output voltage differs for each tempe rature, as shown in Table 9. However, since the bridge unbalanced output voltage varies in proportion to the change in the absolutehumidity at one point of temperature, if the platinum elements are used in an atmosphere of constant ambient tempe rature, direct reading of the absolute humidity is possible by measuring the bridge unbalanced output voltage. For direct reading of the absolute humidity regardless of the ambient temperature, a temperature compensating amplifier whose amplifica tion factor varies with temperature is connected across the terminals T_{11} and T_{12} and the rate of increase in the output voltage from the temperature compensating amplifier is held constant regardless of the ambient temperature. That is, the temperature compensating amplifier is used as the amplifier AMP.

Figure 13 is a circuit diagram illustrating an example of the tempe rature compensating amplifier. In Figure 13, reference characters T_{11} and T_{12} indicate terminals for connection with the terminals T_{11} and T_{12} of the bridge circuit; OP designates an operational

amplifier; Th identifies a thermistor; R₂₁ to R₂₇ denote resistors; C represents a capacitor; and OUT shows an output terminal. In this case, since the thermistor. Th is connected to a feedback circuit of the operational amplifier OP, the amplification factor of the operational amplifier OP varies with the ambient temperature. As a consequence, the rate of increase in the output voltage available from the output terminal OUT can be made constant regardless of the ambient temperature. Accordingly, by connecting a voltmeter to the output terminal OUT, direct reading of absolute humidity is possible,

10

25

It is a matter of course that the temperature compensating amplifier may be any type of amplifier so long as
the abovesaid object can be achieved. Also in the case
of using thermistors as the heat sensitive element and
the temperature compensating element, the accuracy of
measurement can be enhanced by employing such a temperature compensating amplifier.

Since relative humidity varies with the open air temperature as described previously, a relative hygrometer can be constituted by such an arrangement that changes the amplification factor of the amplifier AMP in Figure 9 with temperature and permits direct reading of the relative humidity by the voltmeter V₃ graduated in terms of relative humidity.

of a temperature compensating amplifier whose amplification factor is changed with temperature for direct reading of the relative humidity. In Figure 14, reference characters T₁₁" and T₁₂" indicate terminals for connection with the terminals T₁₁ and T₁₂ of the bridge circuit in Figure 9; R₃₁ to R₄₃ designate resistors;

 C_1 identifies a capacitor; OP_1 and OP_2 denote operational amplifiers; Th_1 and Th_2 represent thermistors; and OUT' shows an output terminal for connection with the voltmeter V_3 .

5

The operational amplifier OP_1 amplifies the bridge unbalanced output voltage and provides the amplified output to the operational amplifier OP_2 of the next stage. Since the thermistor Th_1 is connected to a feedback circuit of the operational amplifier OP_1 , the resistance value of the the mistor varies with the open air temperature to cause a change in the amplification factor of the operational amplifier OP_1 . The operational amplifier OP_2 is identical in construction with the operational amplifier OP_1 , and accordingly the amplification factor of the operational amplifier OP_2 varies with the open air temperature.

When temperature falls, the resistance values of the thermistors Th_1 and Th_2 increase to cause a decrease 20 in the feedback from the output side to the input side of the operational amplifiers OP, and OP, resulting in their amplification factor becoming large. Accordingly, by determining the change in the amplification factor withtemperature in a manner to compensate for 25 the variations in temperature and relative humidity shown in Figure 3, relative humidity can be read di rectly from the voltmeter V3 connected to the output terminal OUT'. The bridge unbalanced output voltage, for example, at 30°C, is 2.5 mV to indicate a relative 30 humidity of 50%; in the case where the amplification factor at this time is regarded as 100 and a voltage of 250 mV is yielded, if the temperature drops to 20°C, the bridge unbalanced output voltage becomes 1.4 mV. Then, by changing the amplification factor to 178 35 corresponding to the temperature change as described

above, the voltage of 250 mV is provided again, and accordingly, the indication of the voltmeter V₃ shows the relative humidity 50% without unde rgoing any change. Therefore, even if the open air temperature changes without any change in the relative humidity, the output voltage at the output terminal OUT' does not vary; hence, the relative humidity can be indicated on the voltmeter V₃ so that it can be read directly therefrom. Since the temperature compensating amplifier of Figure 14 is easy of increasing its amplification factor with tempera ture change, as compared with the temperature compensating amplifier of Figure 13, the former is suitable for use in measuring the relative humidity regardless of temperature.

15

20

25

30

10

5

As has been described in the foregoing, according to the present invention, a current is applied to a thermistor, platinum or like heat sensitive element to heat it up to atemperature above the open air temperature; the heat sensitive element is held in the open air to cause its resistance value to vary with the quantity of water vapor contained in the open air; and the resi stance value is measured, thereby to obtain relative or absolute humidity. The absolute humidity indicates the quantity of water vapor (g/m^3) contained in the open air and when the open air temperature drops to the temperature at which this quantity of water vapor corresponds to the quantity of satured water vapor, the temperature at that time represents the dew-point temperature. Accordingly, the dew-point temperature can be obtained from the absolute humidity. In other words, by graduating the absolute hygrometer in terms of dewpoint temperature, the dew-point can be read directly from the absolute hygrometer.

The voltmeter may also be a digital voltmeter; in this case, by providing the amplifier for amplifying the bridge unbalanced output voltage with the temperature compensating characteristic corresponding to the purpose of measuring the absolute or relative humidity and the characteristic of the heat sensitive element used, the absolute or relative humidity can be read directly from the digital voltmeter without regard to variations in the open air temperature. This leads to the advantage of easy and highly accurate humidity measurement.

It will be apparent that many modifications and variations may be effected without departing from the scope of the novel concepts of this invention.

Claims:

- 1. A humidity measuring method which is characterized in
- that a current is applied to a heat sensitive element (R_{S1}; R_{S3}; R_{S4}) having a temperature-resistance characteristic to heat it up to a temperature above the open air temperature; the heat sensitive element (R_{S1}; R_{S3}; R_{S4}) is held in the open air; a change in the resistance value of the heat sensitive element which varies with the amount of water vapor contained in the open air is detected; and the humidity of the open air is obtained from the amount of change in the resistance value of the heat sensitive element.
- 2. A humidity measuring method according to claim 1 which is characterized in
- that a heat sensitive element (R_{S1}; R_{S3}; R_{S4}) and a

 temperature compensating element (R_{C1}; R_{C3}; R_{C4}) having substantially the same temperature-resistance characteristic are connected in series with each other and connected to a power source (E₁; E₃; E₄); a current is applied to the heat sensitive element and the temperature compensating element to heat them up to a temperature above the open air temperature.

- 3. A humidity measuring method according to claim 2, characterized in
- that the heat sensitive element (R_{S1;} R_{S3}; R_{S4}) and the temperature compensating element (R_{C1;} R_{C3}; R_{C4})
- are connected in series with each other to form one side of a bridge circuit; a power source (E₁, E₃, E₄) is connected to the bridge circuit having the other side formed by a series connection of two resistors (R₂,R₃; R₁₂, R₁₃) and a change in the resistance value
- of the heat sensitive element which varies with the amount of water vapor contained in the open air is detected in the form of an unbalanced output voltage from the bridge circuit.
- 15 4. A hygrometer comprising:
 a heat sensitive element (R_{S1}) having a temperatureresistance characteristic and held in a manne r to be
 exposable to the open air;
- a temperature compensating element (R_{C1}) having substantially the same temperature-resistance characteristic as the heat sensitive element and held in a completely dry state;
- 25 two resistors (R_2, R_3) ;
 - the heat sensitive element, the temperature compensating element and two resistors forming a bridge circuit;
- a power source (E_1) for supplying a current to the heat sensitive element (R_{S1}) and the temperature compensating element (R_{C1}) to heat them up to a temperature above the open air temperature; and
- yoltage measuring means (V_1) for measuring as the absolute humidity of the open air, an unbalanced output voltage from the bridge circuit which is caused by a

change in the resistance value of the heat sensitive element $(R_{\rm S1})$ which varies with the amount of water vapor contained in the open air.

- 5 5. A hygrometer according to claim 4, wherein the heat sensitive element (R_{S1}) and the temperature compensating element (R_{C1}) are formed by thermistors.
- 6. A hygrometer according to claim 4, wherein the heat sensitive element (R_{S3}) and the tempe rature compensating element (R_{C3}) are formed by platinum elements, and wherein the unbalanced output voltage from the bridge circuit is amplified by a tempe rature compensating amplifier (Amp) and then applied to the voltage measuring means (V₂).
 - 7. A hygrometer comprising:

20

- a heat sensitive element (R_{S4}) having a temperatureresistance characteristic and held in a manner to be exposable to the open air;
- a temperature compensating element (R_{C4}) having substantially the same temperature-resistance characteristic as the heat sensitive element (R_{S4}) and held in a completely dry state;
- 30 two resistors (R_{12}, R_{13}) ;
 - the heat sensitive element, the temperature compensating element and two resistors forming a bridge circuit;
- a power source (E_{i_1}) for supplying a current to the heat sensitive element and the temperature compensating

element to heat them up to a temperature above the open air temperature; and

a temperature compensating amplifier (AMP) for amplifying an unbalanced output voltage from the bridge
circuit, caused by a change in the resistance value
of the heat sensitive element (R_{S4}) corresponding to
the amount of water vapor contained in the open air,
in such a manner that the amplification factor may vary
with the open air temperature and the output corresponding to the relative humidity of the open air may have
nothing to do with the open air temperature; and

voltage measuring means (V₃) supplied with the output 15 voltage from the temperature compensating amplifier (AMP) to indicate the relative humidity.

- 8. A hygrometer according to claim 7, wherein
- the heat sensitive element (R_{S4}) and the temperature compensating elements (R_{C4}) are formed by thermistors (1).
- 9. A hygrometer according to claim 7, wherein the heat sensitive element (R_{S4}) and the temperature compensating element (R_{C4}) are formed by platinum elements.
 - lo. A hygrometer according to claim 7, wherein

the temperature compensating amplifier is formed by connecting to a feedback circuit (R₂₃) of an operational amplifier (OP) a thermistor (Th) whose resistance value varies with the open air temperature.

EUROPEAN SEARCH REPORT

002,12,2,5_{er}

EP 80 10 3210.3

	DOCUMENTS CONSI	CLASSIFICATION OF THE APPLICATION (Int. CL3		
Category	Citation of document with Indice	cation, where appropriate, of relevant	Relevant to claim	
х	US - A - 1 855 7	74 (E. SCHNEIDER)	1,2,	G 01 N 27/18
	* claims 1, 3, 4	, 6, 7; fig. 1 *	3,4	G 01 N 25/64
	US - A - 2 848 3	06 (D.R. BLUMER)	5,6	•
	* column 2, line	s 63 to 67 *		
A	DE - A1 - 2 756	859 (B.M. POTTER)	ļ.	
	* whole document	*		
				TECHNICAL FIELDS SEARCHED (Int.CL3)
A		968 (E.S. RITTNER	•	
	et al.) * whole document	- *		
	with the document			G 01 N 25/56
				G 01 N 27/04
			,	
	•			
		•		
				CATEGORY OF CITED DOCUMENTS
				X: particularly relevant
				A: technological background O: non-written disclosure
				P: Intermediate document
				T: theory or principle underlying
		•		the invention E: conflicting application
				D: document cited in the
			·	application L: citation for other reasons
	The present energh con	ort has been drawn up for all claims	1	&: member of the same patent family,
N .			ie	corresponding document
Place of se	Berlin	Date of completion of the search 26-08-1980	Examiner	SCHWARTZ
	Berlin	20-00-1900		

EPO Form 1503.1 06.78