# الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطنى للامتحانات والمسابقات

الدورة الاستثنائية: 2017



وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 سا و30 د

# على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $(O; \vec{i}, \vec{j}, \vec{k})$  الفضاء منسوب إلى المعلم المتعامد المتجانس

.D(-3;5;-1) و C(3;-1;-1) ، B(3;2;5) ، A(0;-1;2) نعتبر النّقط

x-z+2=0 و x+y+z-1=0 و ليكن (Q) و المستويين اللّذان معادلتا هما على الترتيب

. (ABC) بيّن أنّ المثلث ABC قائم، ثمّ عيّن معادلة ديكارتية للمستوي (1

(Q) و (Q) و (P) متعامدان ثمّ جد تمثيلا وسيطيا للمستقيم  $(\Delta)$ ، تقاطع المستويين (P) و (Q) و (P) عيّن تقاطع المستويات (P)، (Q) و (Q).

. DABC على المستوى (ABC) ثمّ احسب حجم رباعي الوجوه D الفصودي للنّقطة D على المستوى (ABC) ثمّ احسب حجم رباعي الوجوه

. (BDC) قيس بالراديان للزاوية  $\hat{BDC}$ ، ثمّ استنتج المسافة بين النّقطة  $\hat{BDC}$  قيس بالراديان للزاوية (4

#### التمرين الثاني: (04 نقاط)

1) عيّن، حسب قيم العدد الطبيعي n، باقي القسمة الإقليدية للعدد  $3^n$  على 5.

2 استنتج باقي القسمة الإقليدية للعدد  $1437^{2017}$  على 3.

.5 مضاعف للعدد ( $48^{4n+3} - 2 \times 9^{2n+1} + 1$ ) مضاعف للعدد العدد ( $48^{4n+3} - 2 \times 9^{2n+1} + 1$ ) مضاعف للعدد

.5 عيّن الأعداد الطبيعية n حتّى يكون العدد ( $3^{4n}+27^n-4$ ) قابلا للقسمة على (4

#### التمرين الثالث: (05 نقاط)

.  $(z-4)(z^2-2z+4)=0$  كل في مجموعة الأعداد المركبة  $\mathbb C$  المعادلة ذات المجهول المركب z الآتية: (z-4).

.  $(O; \vec{u}, \vec{v})$  المستوي المركب منسوب إلى المعلم المتعامد المتجانس (II)

.  $z_{C}=1-i\sqrt{3}$  و  $Z_{B}=1+i\sqrt{3}$  ،  $z_{A}=4$  التي لاحقاتها C و B ، A و B ، B نعتبر النّقط

.ABC على الشّكل الأسّي ثمّ استنتج طبيعة المثلث (1  $z_B - z_A$ 

### اختبار في مادة: رياضيات / الشعبة: تقني رياضي / بكالوريا استثنائية 2017

$$rac{2\pi}{3}$$
 عيّن لاحقة النّقطة  $D$  صورة  $B$  بالدوران  $r$  الذي مركزه المبدأ  $O$  وزاويته (2

ب) عيّن طبيعة الرباعي ABDC.

$$z_n = (z_B)^n + (z_C)^n$$
 نضع:  $n$  نضع عدد طبیعي (3

$$z_n = 2^{n+1} \times \cos\left(\frac{n\pi}{3}\right)$$
،  $n$  عدد طبیعي (أ

$$t_n = z_{6n}$$
 :  $n$  نضع من أجل كل عدد طبيعي (ب

$$P_n = t_0 \times t_1 \times t_2 \times \cdots \times t_n$$
 عبّر عن  $P_n$  بدلالة  $P_n$  بدلالة  $P_n$  بدلالة عن جبّر عن عن جبر عن عن  $P_n$ 

#### التمرين الرابع: (07 نقاط)

. 
$$g(x) = -\frac{1}{2} + \frac{2 - \ln x}{x^2}$$
: يلي يا  $g(x) = -\frac{1}{2} + \frac{2 - \ln x}{x^2}$  التكن الدّالة  $g(x) = -\frac{1}{2} + \frac{2 - \ln x}{x^2}$  التكن الدّالة والمعرّفة على المجال  $g(x) = -\frac{1}{2} + \frac{2 - \ln x}{x^2}$ 

- $\lim_{x\to +\infty} g(x)$  احسب ا $\lim_{x\to 0} g(x)$  و (1
- درس اتجاه تغیّر الدالة g ثمّ شكّل جدول تغیراتها.
- x مسب قيم g(x)=0 عسب قيم g(x)=0 بيّن أنّ المعادلة g(x)=0 تقبل حلا وحيدا  $\alpha$  حيث  $\alpha$  حيث  $\alpha$

. 
$$f(x) = -\frac{1}{2}x + 2 + \frac{-1 + \ln x}{x}$$
: کما یلي  $g(x) = -\frac{1}{2}x + 2 + \frac{-1 + \ln x}{x}$  نعتبر الدّالة  $f(x) = -\frac{1}{2}x + 2 + \frac{-1 + \ln x}{x}$  نعتبر الدّالة  $f(x) = -\frac{1}{2}x + 2 + \frac{-1 + \ln x}{x}$ 

. 
$$|\vec{i}| = 1$$
دس ثيب الدالة  $\vec{f}$  في المستوي المنسوب إلى المعلم المتعامد المتجانس  $(O; \vec{i}, \vec{j})$  حيث  $(C_f)$ 

- $\lim_{x \to +\infty} f(x)$  و  $\lim_{x \to \infty} f(x)$  الحسب (1)
- ب) ادرس اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيراتها.
- .  $(C_f)$  مقارب مائل للمنحنى  $y=-\frac{1}{2}x+2$  ذا المعادلة ( $\Delta$ ) ذا المعادلة ( $\Delta$ ) مقارب مائل المنحنى ( $\Delta$ )
  - $\cdot$  ( $\Delta$ ) ادرس وضعية المنحنى ( $C_f$ ) بالنسبة إلى المستقيم

." 
$$4,19 < \gamma < 4,22$$
 و  $f(\alpha) = 0$  و  $f(\alpha) = 0$  و  $f(\alpha) = 0$  و  $f(\alpha) = 0$  ." (3) " نقبل أنّ  $f(\alpha) = 0$  و  $f(\alpha) = 0$  ." (4) الماء ال

.  $(C_f)$  والمنحنى ( $\Delta$ ) والمنحنى المعلم السّابق المستقيم المنحنى -

(
$$C_f$$
) ليكن  $\lambda$  عدد حقيقي حيث  $1<\lambda\leq e$  ، نرمز بـ  $A(\lambda)$  إلى مساحة الحيز المستوي المحدّد بالمنحنى (4) والمستقيمين اللّذين معادلتا هما  $x=1$  و  $x=1$ 

 $\lambda$  احسب  $\mathcal{A}(\lambda)$  بدلالة  $\lambda$ 

$$\mathcal{H}(\lambda) = \frac{1}{2}cm^2$$
 ب عیّن قیمة  $\lambda$  حیث  $\lambda$ 

انتهى الموضوع الأول

### اختبار في مادة: رياضيات / الشعبة: تقني رياضي / بكالوريا استثنائية 2017

### الموضوع الثاني

### التمرين الأول: (04 نقاط)

I(0;1;-2) و B(1;7;-3) ، A(1;1;-1) نعتبر النّقط  $O(\vec{i},\vec{j},\vec{k})$  و B(1;7;-3) ، المعلم المعرّف المعرّف  $\vec{v}$  و الشّعاع  $\vec{v}$  و الشّعاع ( $\Delta_1$ ) ،  $\vec{v}$  المستقيم الذي يشمل النّقطة  $\vec{v}$  و الشّعاع  $\vec{v}$  شعاع توجيه له و ( $\Delta_2$ ) المستقيم المعرّف

$$\begin{cases} x=-1+2t \\ y=2-t \end{cases}$$
 :  $(t\in\mathbb{R})$  : بالتّمثيل الوسيطي  $z=3-4t$ 

- . بيّن أنّ A تنتمي إلى المستقيم  $(\Delta_2)$  و أنّ  $(\Delta_1)$  و أنّ  $(\Delta_2)$  غير متطابقين (1
  - $(\Delta_2)$  و  $(\Delta_1)$  ليكن (P) المستوي المعيّن بالمستقيمين (P) و ( $\Phi$

$$(P)$$
 يين أنّ الجملة:  $x=1+2lpha+2eta \ y=1-lpha \ z=-1-4lpha+2eta$  :  $(lpha\in\mathbb{R}$  ,  $eta\in\mathbb{R}$  ) تمثيل وسيطي للمستوي -

- .(P) هي المسقط العمودي للنّقطة B على المستوي (3).
- .  $x^2 + y^2 + z^2 2x 14y + 6z + 21 = 0$  مجموعة النّقط M(x;y;z) من الفضاء حيث (S) لتكن (A) مجموعة النّقط (S) سطح كرة يطلب تحديد مركزها ونصف قطرها.
  - (S) يمس يقطة يطلب تعيينها. المستوي (P) يمس أنّ المستوي المستوي بناها.

#### التمرين الثاني: (04 نقاط)

 $u_{n+1} = \frac{n+1}{an}u_n$  ، غير معدوم غير  $u_n = \frac{1}{a}$  ومن أجل كل عدد طبيعي  $u_n = \frac{1}{a}$  المعرّفة ب $u_n = \frac{1}{a}$  ومن أجل كل عدد عيقي أكبر من أو يساوى 2.

- $u_n > 0$  غير معدوم: n غير معدوم: (1
- بيّن أنّ المتتالية  $(u_n)$  متناقصة تماما ثمّ استنتج أنّها متقاربة.
- $v_n = \frac{1}{an}u_n$  ، معدوم غير معدوم عدد طبيعي n غير معدوم ( $v_n$ ) المعرّفة كما يلي عمل أجل كل عدد طبيعي (2
  - a عندسية أساسها  $\frac{1}{a}$  وعيّن حدّها الأوّل  $v_n$  بدلالة (أ) بيّن أنّ المتتالية  $v_n$  هندسية أساسها
  - $\lim_{n\to +\infty} u_n$  واحسب والحد العام  $v_n$  ثمّ استنتج عبارة  $u_n$  واحسب a و عبارة الحد العام والحد العام والعام والعام
  - $S_n = u_1 + \frac{1}{2}u_2 + \frac{1}{3}u_3 + \dots + \frac{1}{n}u_n$  حيث  $S_n$  حيث  $S_n = u_1 + \frac{1}{2}u_2 + \frac{1}{3}u_3 + \dots + \frac{1}{n}u_n$  حيث  $S_n = \frac{1}{2016}$  عين قيمة  $S_n = \frac{1}{2016}$

### اختبار في مادة: رياضيات / الشعبة: تقني رياضي / بكالوريا استثنائية 2017

#### التمرين الثالث: (05 نقاط)

 $(z+1-\sqrt{3})(z^2+2z+4)=0$  المعادلة ذات المجهول z الآتية:  $\mathbb{C}$  المعادلة  $\mathbb{C}$  المعادلة ذات المجهول المركبة z

 $(O; \overrightarrow{u}, \overrightarrow{v})$  المستوي المركب منسوب إلى المعلم المتعامد المتجانس المركب منسوب المعلم المتعامد المتحامد الم

$$z_C=\overline{z}_B$$
 و  $z_B=-1-i\sqrt{3}$  ،  $z_A=-1+\sqrt{3}$  و  $B$  ،  $A$  و  $B$  و  $B$  ،  $A$  و  $B$  ،  $A$  نعتبر النّقط

بيّن أنّ ABC واحسب مساحته.  $z_B-z_A=i(z_C-z_A)$  بيّن أنّ  $z_B-z_A=i(z_C-z_A)$ 

$$L = \frac{z_C - z_A}{z_C}$$
 على الشّكل الجبري العدد المركب لعدد المركب (أ (2

$$anrac{\pi}{12}$$
 بيّن أنّ :  $L=rac{\sqrt{6}}{2}\left(\cosrac{\pi}{12}+i\sinrac{\pi}{12}
ight)$  : ثمّ استنتج القيمة المضبوطة لـ  $L=rac{\sqrt{6}}{2}\left(\cosrac{\pi}{12}+i\sinrac{\pi}{12}
ight)$ 

نعتبر التّحويل النّقطي S الذي يحوِّل النّقطة M ذات اللاحقة z إلى النّقطة M' ذات اللاحقة z' والمعرّف .  $z'=(z-z_B)L+z_B$ 

- بيّن أنّ ك تشابه مباشر يطلب تحديد عناصره المميزة.

 $S \circ S$  لتكن النّقط A' التّرتيب بالتّحويل  $B' \circ A'$  صور النّقط  $B' \circ A'$  التكن النّقط  $B' \circ A'$ 

A'B'C' المثلث – احسب مساحة المثلث –

#### التمرين الرابع: (07 نقاط)

.  $g(x)=1-2xe^{-x}$ : لتكن الدّالة g المعرّفة على  $\mathbb{R}$  كما يلي (I

g(x) الدّالة g ثمّ استنتج إشارة -ادرس اتجاه تغيّر الدّالة

.  $f(x) = (x+1)(1+2e^{-x})$ : کما یلي کما یلی (II نعتبر الدّالة f المعرّفة علی (المعرّفة علی المعرّفة علی المعرفة عل

.  $|\vec{i}| = 1$ سياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس  $(O; \vec{i}, \vec{j})$  حيث  $(C_f)$ 

 $\lim_{x\to +\infty} f(x)$  و  $\lim_{x\to -\infty} f(x)$  احسب (1)

 $\mathbf{r}$  ادرس اتجاه تغیّر الدّالة f ثمّ شکّل جدول تغیراتها.

 $(C_f)$  ثمّ استنتج معادلة لـ المستقيم المقارب المائل المنحنى الم $\lim_{x \to +\infty} [f(x) - x] = 1$  ثمّ استنتج معادلة المنحنى ( $\Delta$ )

 $\cdot(\Delta)$  أدرس وضعية المنحنى  $\cdot(C_f)$  بالنسبة إلى المستقيم (ب

.ها اثبت أنّ المنحنى  $(C_f)$  يقبل مماسا وحيدا (T) يوازي  $(\Delta)$  يطلب تعيين معادلة له.

. باستعمال المنحنى f(x) = x + m عيّن قيم الوسيط الحقيقي m حتّى يكون للمعادلة f(x) = x + m عيّن مختلفين.

 $(C_f)$  ليكن lpha عددا حقيقيا موجبا، نرمز بـ  $\mathcal{A}(lpha)$  إلى مساحة الحيز المستوي المحدّد بالمنحنى (5

. x=lpha و x=-1 ، y=x+1 : وبالمستقيمات التي معادلاتها على الترتيب

 $\lim_{lpha o +\infty} \mathcal{A}(lpha)$  ثمّ lpha بدلالة lpha بدلالة - احسب

### انتهى الموضوع الثاني

## الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة :تقني رياضي / بكالوريا استثنائية : 2017

| العلامة |       | 7.1.371       |
|---------|-------|---------------|
| مجموع   | مجزأة | عناصر الإجابة |

### الموضوع الأول

|       |        | التمرين الأول: (04نقاط)                                                                                                                    |
|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 01    | 0.25   | $\overrightarrow{AB}\cdot\overrightarrow{AC}=0$ قائم: $\overrightarrow{ABC}$ قائم: (1                                                      |
|       | 0.50   | $\vec{n}(1,-2,1)$ تعيين شعاع ناظم                                                                                                          |
|       | 0.25   | $x-2y+z-4=0 \;\;(ABC)$ معادلة ديكارتية للمستوي                                                                                             |
|       | 0.25   | ببین أنّ المستویین $(P)$ و $(Q)$ متعامدان. $(2)$                                                                                           |
| 01.25 | 0.50   | التمثيل الوسيطي للمستقيم $(\Delta)$ تقاطع المستويين $(P)$ و $(Q)$                                                                          |
| 01.23 | 0.50   | (ABC) ب تعيين تقاطع المستويات $(Q)$ ، $(Q)$ و                                                                                              |
|       | 0.30   | $(ABC) \cap (P) \cap (Q) = (ABC) \cap (\Delta) = \{A(0; -1; 2)\}$                                                                          |
| 0.75  | 0.25   | (3) التحقّق أنّ $A$ هي المسقط العمودي للنّقطة $D$ على المستوي $(ABC)$ .                                                                    |
| 0.75  | 0.50   | V=27u.v : $DABC$ حساب حجم رباعي الوجوه                                                                                                     |
|       | 0.50   | نبيين أنّ $rac{\pi}{4}$ قيس بالراديان للزاوية $B\hat{D}C$ :                                                                               |
| 01    |        | $cos(\overrightarrow{DB},\overrightarrow{DC}) = \frac{\overrightarrow{DB} \bullet \overrightarrow{DC}}{DB \times DC} = \frac{\sqrt{2}}{2}$ |
|       |        | استنتاج $h$ المسافة بين النّقطة $A$ والمستوي (BDC):                                                                                        |
|       | 0.50   | $V = rac{1}{2} rac{BD 	imes DC 	imes sin(BDC)}{3} 	imes h$ لدينا                                                                         |
|       | •      | التمرين الثاني: (04نقاط)                                                                                                                   |
| 01    | 0.25x4 | $3^{4k} \equiv 1[5]; 3^{4k+1} \equiv 3[5]; 3^{4k+2} \equiv 4[5]; 3^{4k+3} \equiv 2[5]$ من أجل $k \in \mathbb{N}$ من أجل (1                 |
| 0.50  | 0.50   | $1437^{2017} \equiv 2[5]  \textbf{(2)}$                                                                                                    |
|       | 2x0.25 | $48^{4n+3} \equiv 2[5], \ 2 \times 9^{2n+1} \equiv 3[5]$ : لدينا (3                                                                        |
| 01    | 0.50   | $48^{4n+3} - 2 \times 9^{2n+1} + 1 \equiv 0[5]$ إذن                                                                                        |
|       | 4x0.25 | تعيين الأعداد الطبيعية $n$ حتّى يكون العدد $(3^{4n}+27^n-4)$ قابلا للقسمة على $5$ :                                                        |
| 1.50  |        | $3n\equiv 1ig[4ig]$ الاينا $3^{3n}\equiv 3ig[5ig]$ تعني $3^{4n}+27^n-4\equiv 0ig[5ig]$ اين                                                 |
|       | 0.50   | $n=4lpha+3,lpha\in\mathbb{N}$ : بالتالي                                                                                                    |
|       |        | التمرين الثالث:(05 نقاط)                                                                                                                   |
| 01    | 4x0.25 | . $z_2=1-i\sqrt{3}$ ، $z_1=1+i\sqrt{3}$ ، $z_0=4$ ، $\Delta=-12=12i^2$ على المعادلة: (I                                                    |
|       | 0.50   | $rac{Z_C-Z_A}{Z_B-Z_A}$ = $1	imes e^{irac{\pi}{3}}:$ الكتابة على الشكل الأسي $=1	imes e^{irac{\pi}{3}}:$ (1) (II                        |
| 01    | 0.50   | المثلث $ABC$ متقايس الأضلاع                                                                                                                |
|       |        |                                                                                                                                            |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة :تقني رياضي / بكالوريا استثنائية : 2017

| العلامة |        | 7.1.50                                                                                                                                          |
|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع   | مجزأة  | عناصر الإجابة                                                                                                                                   |
| 0.1     | 0.50   | $z_D=r(z_B)=-2:$ $D$ لاحقة النقطة (أ (2                                                                                                         |
| 01      | 0.50   | . ب <i>ABDC</i> معيّن                                                                                                                           |
|         | 01     | $z_n = z_A^n + z_B^n = 2^{n+1} \cos\left(\frac{n\pi}{3}\right)$ التبيان (3)                                                                     |
| 02      | 0.50   | $t_n=2^{6n+1}:n$ ب) التعبير عن $t_n$ بدلالة                                                                                                     |
|         | 0.50   | $P_n = t_0 \times t_1 \times t_2 \times \dots \times t_n = 2^{1+7+13+\dots+(6n+1)} = 2^{(n+1)(3n+1)}$                                           |
|         | T      | التمرين الرابع :(07 نقاط)                                                                                                                       |
| 0.50    | 0.25x2 | $\lim_{x \to +\infty} g(x) = -\frac{1}{2} \underbrace{\lim_{x \to +\infty} g(x)}_{= +\infty} = +\infty  (1  (I)$                                |
| 01      | 2×0.25 | $g'(x) = \frac{-5 + 2 \ln x}{x^3}$ (2                                                                                                           |
|         | 2x0.25 | اتجاه التغير و جدول التغيرات                                                                                                                    |
|         | 0.75   | . $lpha$ بتطبيق مبرهنة القيم المتوسطة المعادلة $g(x)=0$ تقبل حلا وحيدا (3                                                                       |
| 1.25    |        | g(x) : $g(x)$                                                                                                                                   |
| 1.23    | 0.50   | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                            |
| 0.1     | 2×0.25 | $\lim_{x \to +\infty} f(x) = -\infty  \lim_{x \to 0} f(x) = -\infty  \text{(i (1(II))}$                                                         |
| 01      | 2×0.25 | ب) اتجاه التّغير و جدول التغيرات                                                                                                                |
|         | 0.25   | $\lim_{x \to +\infty} \left[ f(x) + \frac{1}{2}x - 2 \right] = \lim_{x \to +\infty} \left[ \frac{\ln x - 1}{x} \right] = 0  (1)$                |
|         |        | $\cdot (\Delta)$ بالنسبة إلى المستقيم ( $C_f$ ) بالنسبة إلى المستقيم (                                                                          |
|         |        | من الجدول :                                                                                                                                     |
|         | 0.25   | $x  0  e  +\infty$                                                                                                                              |
| 01      |        | f(x)-y   -                                                                                                                                      |
| 01      | 0.50   | $(\Delta)$ يقع فوق $(C_f)\colon x\in ]e;+\infty[$ نستنتج : لما $(C_f)\colon x\in [C_f)$ يقع تحت $(\Delta)$ يقع فوق نوق $(C_f)\colon x\in [C_f]$ |
|         |        | $(C_f) \cap (\Delta) = \{(e; f(e))\}$                                                                                                           |
|         |        |                                                                                                                                                 |
|         |        |                                                                                                                                                 |
|         |        |                                                                                                                                                 |
|         |        |                                                                                                                                                 |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة :تقني رياضي / بكالوريا استثنائية : 2017

| العلامة  |       | Z de Nilo - dia                                                                                                       |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------|
| مجموع    | مجزأة | عناصر الإجابة                                                                                                         |
| <u> </u> |       |                                                                                                                       |
|          | 0.25  | $(\Delta)$ رسم المستقيم $(3)$                                                                                         |
|          | 0.50  | $(\Delta)$ رسم المستقیم $(C_f)$ تمثیل المنحنی تمثیل المنحنی                                                           |
| 0.75     |       |                                                                                                                       |
|          |       |                                                                                                                       |
|          | 0.25  | $A(\lambda) = \int_{1}^{\lambda} (y - f(x)dx) = \int_{1}^{\lambda} (-\frac{\ln x}{x} + \frac{1}{x})dx$ الدينا : لدينا |
| 1.50     | 0.50  | $A(\lambda) = \left[ -\frac{1}{2} (\ln x)^2 + \ln x \right]_1^{\lambda} : \xi$                                        |
|          | 0.50  | $A(\lambda) = (-rac{1}{2}(\ln\lambda)^2 + \ln\lambda)cm^2$ : بالتالي                                                 |
|          | 0.25  | $\lambda = e$ : $\lambda$ قيمة (ب                                                                                     |

## الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة :تقني رياضي / بكالوريا استثنائية : 2017

| العلامة |       | 7.1.30        |
|---------|-------|---------------|
| مجموع   | مجزأة | عناصر الإجابة |

### الموضوع الثاني

|       |        | التمرين الأول: (04نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 01    | 0.50   | $\left(\Delta_{_{2}} ight)$ التّحقق أنّ النّقطة $A$ تنتمي إلى المستقيم المستقيم (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|       | 0.50   | و $(\Delta_2)$ غير متطابقين $(\Delta_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 01    | 01     | (P) تبيين أنّ الجملة: تمثيل وسيطي للمستوي ( $(P)$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.1   |        | (P) إثبات أنّ $I$ هي المسقط العمودي للنّقطة $B$ على المستوي $(P)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 01    | 2×0.50 | $I$ تنتمي إلى المستوي $(P)$ و $\overline{IB}$ ناظم للمستوي $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | 0.25   | $(x-1)^2 + (y-7)^2 + (z+3)^2 = (\sqrt{38})^2$ : سطح کرة (S) نبيين أنّ (S) سطح کرة (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.4   | 0.25   | مرکزها $B$ و نصف قطرها $\sqrt{38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 01    | 0.25   | $\cdot(S)$ يمس $(P)$ يمس بالتحقق أنّ المستوي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|       | 0.25   | I تعيين نقطة التماس : هي النقطة $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       |        | التمرين الثاني: (04نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       | 0.75   | $u_n>0:\mathbb{N}^*$ من أجل كل $n$ من أجل كل أ أ إثبات بالتراجع أن من أجل كل أ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       |        | : ب) متناقصة تماما $(u_n)$ (ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 01.50 | 0.50   | $u_{n+1} - u_n \leq 0 \; : \; u_{n+1} - u_n = \frac{(1-a)n+1}{an} u_n \; : \; u_n \leq 0$ لدينا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|       | 0.25   | المتتالية $(u_n)$ متناقصة تماما و محدودة من الأسفل فهي متقاربة.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|       | 0.50   | $.v_{n+1}=rac{1}{a}v_n$ : لان $.v_{n+1}=rac{1}{a}$ المنتالية $(v_n)$ هندسية أساسها (أ (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 01.50 | 0.25   | $\cdot v_1 = rac{1}{a^2}$ حدّها الأوّل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 3×0.25 | $\lim_{n \to +\infty} u_n = 0  u_n = a \times n \times v_n = \frac{n}{a^n}  v_n = \frac{1}{a^2} \left(\frac{1}{a}\right)^{n-1} = \frac{1}{a^{n+1}}  (-1)^{n-1} = \frac{1}{a^{n+1}$ |  |
|       | ļ      | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة :تقني رياضي / بكالوريا استثنائية : 2017

| العلامة |                             | 7 1 201 12-                                                                                                                                                                                                    |  |
|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| مجموع   | مجزأة                       | عناصر الإجابة                                                                                                                                                                                                  |  |
| 0.1     | 0.50                        | $S_n = S_n = a(v_1 + v_2 + \dots + v_n) = (\frac{1 - (\frac{1}{a})^n}{a - 1})$ : (3)                                                                                                                           |  |
| 01      | 0.50                        | $a = 2017$ لما $\lim_{n \to +\infty} S_n = \frac{1}{2016}$                                                                                                                                                     |  |
|         |                             | التمرين الثالث : ( 05 نقاط)                                                                                                                                                                                    |  |
| 01      | 4x0.25                      | $S = \left\{-1 + \sqrt{3}; -1 - i\sqrt{3}; -1 + i\sqrt{3}\right\}$ و $\Delta = -12$ (I                                                                                                                         |  |
|         | 0.25                        | $z_B - z_A = i(z_C - z_A)$ : تبیین أن (II) تبیین أن                                                                                                                                                            |  |
| 01      | 0.50                        | المثلث $ABC$ قائم في $A$ و متساوي الساقين.                                                                                                                                                                     |  |
|         | 0.25                        | $S_{ABC}=3u.a:$ و مساحته                                                                                                                                                                                       |  |
|         | 0.25                        | $L = \frac{z_C - z_A}{z_C} = \frac{\sqrt{3} + 3}{4} + i \frac{3 - \sqrt{3}}{4}$ : $L$ الشّكل الجبري العدد المركب (أ (2                                                                                         |  |
| 1.50    | 0.50                        | $L = \frac{\sqrt{6}}{2} \left( \cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$ : ب) تبیین أنّ                                                                                                             |  |
|         | 3x0.25                      | $ \tan \frac{\pi}{12} = 2 - \sqrt{3} $ و $ \cos \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} $ و $ \cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} $ : $ \tan \frac{\pi}{12} $ : $ \tan \frac{\pi}{12} $ |  |
|         | 0.50                        | $(\overrightarrow{BM};\overrightarrow{BM'})=rac{\pi}{12}$ تبیین أنّ $S$ تشابه مباشر $S$ تشابه مباشر (3                                                                                                        |  |
| 1.50    | 3x0.25                      | عناصره المميزة : المركز هو $B$ النسبة هي $\frac{\sqrt{6}}{2}$ ، زاوية له                                                                                                                                       |  |
|         | 0.25                        | $S_{A'B'C'} = (rac{\sqrt{6}}{2})^4 S_{ABC} = rac{27}{4} u.a : A'B'C'$ مساحة المثلث                                                                                                                           |  |
|         | التمرين الرابع : ( 07 نقاط) |                                                                                                                                                                                                                |  |
|         | 0.25                        | . $g'(x) = 2(x-1)e^{-x} : x$ اتجاه تغیر الدالة $g$ : من أجل كل عدد حقیقي ( $I$                                                                                                                                 |  |
| 0.75    | 0.25                        | $g$ متناقصة تماما على المجال $[1,\infty-[$ و متزايدة تماما على المجال $g$                                                                                                                                      |  |
|         | 0.25                        | g(x)>0، $x$ عدد حقیقی و شارة $g(x)$                                                                                                                                                                            |  |
| 1.25    | 0.50                        | $\lim_{x \to +\infty} f(x) = +\infty \int_{x \to -\infty} \lim_{x \to -\infty} f(x) = -\infty  \text{(i (1)}$                                                                                                  |  |

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة :تقني رياضي / بكالوريا استثنائية : 2017

| العلامة |              | 7.1-21-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع   | مجزأة        | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 0.25         | ، $f'(x) = g(x)$ : $f$ اتجاه تغیّر الدّالة $f'(x) = g(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 0.50         | f و جدول تغیرات $f$ و جدول تغیرات $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 0.25         | $\lim_{x \to +\infty} [f(x) - x] = 1$ ) تبيين أنّ (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 0.50         | $y = x + 1:(\Delta)$ استنتاج معادلة لـ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.50    | 0.50         | $]-1,+\infty[$ يقع تحت $(\Delta)$ على المجال $]-\infty,-1[$ و $(C_f)$ يقع فوق $(C_f)$ على المجال $(C_f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 0.25         | $(C_f)\cap(\Delta)=ig\{I(-1,0)ig\}$ و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.75    | 0.50         | $x=0$ يقبل مماسا وحيدا $(T)$ يوازي $(T)$ تكافئ $(C_f)$ تكافئ (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.75    | 0.25         | y=x+3 : $(T)$ معادلة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.75    | 0.75<br>0.25 | تعيين قيم $m$ حتّى يكون للمعادلة $f(x)=x+m$ حلّين مختلفين:  رسم المنحنى $(\Delta)$ و $(C_f)$ .  ( $(C_f)$ |
|         | 0.75         | 1 < m < 3: للمعادلة $f(x) = x + m$ حلّين مختلفين من أجل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | 0.25         | $\mathcal{A}(\alpha) = \int_{-1}^{\alpha} (f(x) - (x+1)) dx  (4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 01      | 0.50         | $\mathcal{A}(\alpha) = \left[-2(x+2)e^{-x}\right]_{-1}^{\alpha} = (-2(\alpha+2)e^{-\alpha} + 2e)cm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 0.25         | $\lim_{\alpha \to +\infty}  \mathcal{A}(\alpha) = 2e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |