DEVOIR SURVEILLÉ N°2: CORRIGÉ

SOLUTION 1.

On applique la méthode du pivot de Gauss.

$$(S) \iff \begin{cases} x + y + az = 1 \\ (a - 1)y + (1 - a)z = 0 & L_2 \leftarrow L_2 - L_1 \\ (1 - a)y + (1 - a^2)z = 1 - a & L_3 \leftarrow L_3 - aL_1 \end{cases}$$

$$\iff \begin{cases} x + y + az = 1 \\ (a - 1)y + (1 - a)z = 0 & L_2 \leftarrow L_2 - L_1 \\ (2 - a - a^2)z = 1 - a & L_3 \leftarrow L_3 + L_2 \end{cases}$$

$$\iff \begin{cases} x + y + az = 1 \\ (a - 1)y + (1 - a)z = 0 \\ (2 + a)(1 - a)z = 1 - a \end{cases}$$

► Si $\alpha = 1$, alors

$$(S) \iff x + y + z = 1$$

Dans ce cas, l'ensemble des solutions est $\{(1 - y - z, y, z), (y, z) \in \mathbb{R}^2\}$.

► Si $\alpha = -2$, alors

$$(S) \iff \begin{cases} x + y - 2z = 1 \\ -3y + 3z = 0 \\ 0 = 4 \end{cases}$$

L'ensemble des solutions est vide.

► Si $\alpha \neq -2$ et $\alpha \neq 1$, alors

$$(S) \iff \begin{cases} x + y + az = 1 \\ y - z = 0 \\ (2 + a)z = 1 \end{cases}$$
$$\iff \begin{cases} x = \frac{1}{2 + a} \\ y = \frac{1}{2 + a} \\ z = \frac{1}{2 + a} \end{cases}$$

Dans ce cas, l'ensemble des solutions est $\{(\frac{1}{2+\alpha}, \frac{1}{2+\alpha}, \frac{1}{2+\alpha})\}$.

SOLUTION 2.

Ces égalités ont un sens dès lors que tan $\frac{\theta}{2}$ est défini, c'est-à-dire pour les réels θ tels que $\frac{\theta}{2} \not\equiv \frac{\pi}{2}[\pi]$ ou encore $\theta \not\equiv \pi[2\pi]$.

$$\frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{1 - \frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}}{1 + \frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}}$$

$$= \frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}} = \cos\left(2 \times \frac{\theta}{2}\right) = \cos\theta$$

1

$$\frac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} = \frac{2\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}}{1+\frac{\sin^2\frac{\theta}{2}}{\cos^2\frac{\theta}{2}}}$$
$$= \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos^2\frac{\theta}{2}+\sin^2\frac{\theta}{2}} = \sin\left(2\times\frac{\theta}{2}\right) = \sin\theta$$

SOLUTION 3.

1. On trouve

$$a_0 = 1$$
 $a_1 = 1$ $a_2 = 2$ $a_3 = 5$ $a_4 = 14$ $S_0 = 1$ $S_1 = 2$ $S_2 = 5$ $S_3 = 14$ $S_4 = 42$

On remarque que $S_n = a_{n+1}$ pour $n \in \{0, 1, 2, 3\}$.

2. Soit $n \in \mathbb{N}$. On effectue le changement d'indice l = n - k de sorte que

$$T_n = \sum_{l=0}^{n} (n-l)a_{n-l}a_l = \sum_{k=0}^{n} (n-k)a_ka_{n-k}$$

Ainsi

$$2T_{n} = \sum_{k=0}^{n} k a_{k} a_{n-k} + \sum_{k=0}^{n} (n-k) a_{k} a_{n-k} = \sum_{k=0}^{n} (k+n-k) a_{k} a_{n} - k = nS_{n}$$

3. Soit $n \in \mathbb{N}$.

$$(n+2)a_{n+1} = \binom{2n+2}{n+1} = \frac{(2n+2)!}{(n+1)!^2} = \frac{(2n+2)(2n+1)(2n)!}{(n+1)^2n!^2} = \frac{2(2n+1)(2n)!}{(n+1)n!^2} = 2(2n+1)a_n$$

4. Soit $n \in \mathbb{N}$.

$$\begin{split} S_{n+1} + T_{n+1} &= \sum_{k=0}^{n+1} a_k a_{n+1-k} + \sum_{k=0}^{n+1} k a_k a_{n+1-k} \\ &= \sum_{k=0}^{n+1} (k+1) a_k a_{n+1-k} \\ &= a_0 a_{n+1} + \sum_{k=1}^{n+1} (k+1) a_k a_{n+1-k} \\ &= a_{n+1} + \sum_{k=0}^{n} (k+2) a_{k+1} a_{a_n-k} \end{split}$$

Or pour tout $k \in \mathbb{N}$, $(k+2)a_{k+1} = 2(2k+1)a_k$ d'après la question 3 donc

$$\begin{split} S_{n+1} + T_{n+1} &= a_{n+1} + 2 \sum_{k=0}^{n} (2k+1) a_k a_{n-k} \\ &= a_{n+1} + 4 \sum_{k=0}^{n} k a_k a_{n-k} + 2 \sum_{k=0}^{n} a_k a_{n-k} \\ &= a_{n+1} + 4 T_n + 2 S_n \end{split}$$

Or on a vu à la question 2 que $2T_n = nS_n$ donc

$$S_{n+1} + T_{n+1} = a_{n+1} + 2nS_n + 2S_n = a_{n+1} + 2(n+1)S_n$$

D'après la question 2, $2T_{n+1} = (n+1)S_{n+1}$ donc

$$S_{n+1}+T_{n+1}=S_{n+1}+\frac{n+1}{2}S_{n+1}=\frac{n+3}{2}S_{n+1}$$

On en déduit que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

5. D'après la question 1, $S_0 = a_1 = 1$. Supposons maintenant que $S_n = a_{n+1}$ pour un certain $n \in \mathbb{N}$. D'après la question précédente, $\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$. Or on a supposé que $S_n = a_{n+1}$ donc

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)a_{n+1} = (2n+3)a_{n+1}$$

Or d'après la question 3, $(n+3)a_{n+2} = 2(2n+3)a_{n+1}$ donc

$$\frac{n+3}{2}S_{n+1} = \frac{n+3}{2}\alpha_{n+2}$$

puis $S_{n+1}=a_{n+2}$ puisque $\frac{n+3}{2}\neq 0$. Par récurrence, $S_n=a_{n+1}$ pour tout $n\in \mathbb{N}$.

6. Tout d'abord $a_0 = 1$ est un entier naturel. Supposons qu'il existe $n \in \mathbb{N}$ tels que a_0, a_1, \ldots, a_n soient des entiers naturels. Alors S_n est également un entier naturel en tant que somme de produits de ces derniers entiers naturels. Puisque $a_{n+1} = S_n$, $a_n + 1$ est également un entier naturel. Par récurrence forte, a_n est donc un entier naturel pour tout $n \in \mathbb{N}$.

SOLUTION 4.

1.

$$\cos(3\theta) = \cos(2\theta + \theta)$$

$$= \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$$

$$= (2\cos^2 \theta - 1)\cos \theta - 2\sin^2 \theta \cos \theta$$

$$= 2\cos^3 \theta - \cos \theta - 2(1 - \cos^2 \theta)\cos \theta$$

$$= 4\cos^3 \theta - 3\cos \theta$$

2. D'après l'énoncé, on a $z = e^{i\theta}$. De plus,

$$|z^{3} - z + 2|^{2} = (z^{3} - z + 2) \overline{(z^{3} - z + 2)}$$

$$= |z|^{6} + |z|^{2} + 4 - 2(z + \overline{z}) - |z|^{2}(z^{2} + \overline{z}^{2}) + 2(z^{3} + \overline{z}^{3})$$

$$= 6 - 4\cos\theta - 2\cos(2\theta) + 4\cos(3\theta) \qquad \text{car } |z| = 1 \text{ et en vertu d'une relation d'Euler}$$

$$= 6 - 4\cos\theta - 2(2\cos^{2}\theta - 1) + 4(4\cos^{3}\theta - 3\cos\theta)$$

$$= 8 - 16\cos\theta - 4\cos^{2}\theta + 16\cos^{3}\theta$$

$$= 4f(\cos\theta)$$

3. f est dérivable sur \mathbb{R} en tant que fonction polynomiale. De plus, pour tout $x \in \mathbb{R}$,

$$f'(x) = 12x^2 - 2x - 4 = 2(2x+1)(3x-2)$$

On en déduit le tableau de variations suivant.

4. Puisque $\mathbb{U} = \{e^{i\theta}, \theta \in \mathbb{R}\}$, on a en vertu de la première question

$$\max_{z \in \mathbb{U}} \varphi(z) = \max_{\theta \in \mathbb{R}} 2\sqrt{f(\cos \theta)}$$

Mais puisque Im $\cos = [-1, 1]$,

$$\max_{z \in \mathbb{U}} \phi(z) = \max_{x \in [-1,1]} 2\sqrt{f(x)}$$

La question précédente nous renseigne sur les variations de f sur [-1, 1].

On peut en déduire que

$$\max_{z \in \mathbb{U}} \varphi(z) = 2\sqrt{\frac{13}{4}} = \sqrt{13}$$

Ce maximum est atteint en un élément de \mathbb{U} dont l'argument θ est tel que $\cos \theta = -\frac{1}{2}$ i.e. tel que $\theta \equiv \pm \frac{2\pi}{3}[2\pi]$. On en déduit donc que le maximum de φ est atteint en j et j².

SOLUTION 5.

- 1. Si $z_0 \in \mathbb{R}_+$, alors on vérifie par récurrence que $z_n = z_0$ pour tout $n \in \mathbb{N}$. Ceci est évident lorsque n = 0. Supposons-le vrai pour un certain $n \in \mathbb{N}$. Alors $z_{n+1} = \frac{1}{2} (z_0 + |z_0|)$. Mais comme $z_0 \in \mathbb{R}_+$, $|z_0| = z_0$ et donc $z_{n+1} = z_0$. Par récurrence $z_n = z_0$ pour tout $n \in \mathbb{N}$. Si $z_0 \in \mathbb{R}_+$, alors $|z_0| = -z_0$ de sorte que $z_1 = 0$. Une récurrence évidente montre alors que $z_n = 0$ pour tout $n \in \mathbb{N}^*$.
- 2. Il s'agit encore d'une récurrence. Par hypothèse, $z_0 \notin \mathbb{R}_-$. Supposons que $z_n \notin \mathbb{R}_-$ pour un certain $n \in \mathbb{N}$. On raisonne par l'absurde en supposant que $z_{n+1} \in \mathbb{R}_-$. Alors $z_n = 2z_{n+1} |z_n| \in \mathbb{R}_-$ car $|s_n| \in \mathbb{R}_+$. Ceci contredit le fait que $z_n \notin \mathbb{R}_-$. Par conséquent $z_{n+1} \notin \mathbb{R}_-$. Finalement, $z_n \in \mathbb{R}_-$ pour tout $n \in \mathbb{N}$, $z_n \notin \mathbb{R}_-$ par récurrence.
- 3. Si un complexe n'appartient pas à \mathbb{R}_{-} , son argument principal ne peut être égal à π : il appartient donc à $]-\pi,\pi[$.
- 4. Soit $n \in \mathbb{N}$. Puisque $z_n \notin \mathbb{R}_-$, $z_n \neq 0$ donc cela a un sens de parler de son argument principal. La question précédente montre également que $\theta_n \in]-\pi,\pi[$. Par ailleurs, par la méthode de l'arc-moitié

$$z_{n+1} = \frac{1}{2} \left(r_n e^{i\theta_n} + r_n \right) = r_n \cos \left(\frac{\theta_n}{2} \right) e^{\frac{i\theta_n}{2}}$$

Puisque $\theta_n \in]-\pi,\pi[,rac{\theta_n}{2}\in \left]-rac{\pi}{2},rac{\pi}{2}\right[$ donc $\cos\left(rac{\theta_n}{2}
ight)>0.$ Ainsi

$$r_{n+1} = \left| r_n \cos \left(\frac{\theta_n}{2} \right) e^{\frac{i\theta_n}{2}} \right| = r_n \left| \cos \left(\frac{\theta_n}{2} \right) \right| = r_n \cos \left(\frac{\theta_n}{2} \right)$$

car $r_n \geqslant 0$ et $\left| e^{\frac{i\theta_n}{2}} \right| = 1$. On en déduit également que $\frac{\theta_n}{2}$ est un argument de z_{n+1} et puisque $\frac{\theta_n}{2} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\subset] -\pi, \pi]$, c'est son argument principal i.e. $\theta_{n+1} = \frac{\theta_n}{2}$.

5. (θ_n) est une suite géométrique de raison $\frac{1}{2}$ donc $\theta_n = \frac{\theta_0}{2^n}$ pour tout $n \in \mathbb{N}$. La limite de la suite (θ_n) est nulle.

6. Il s'agit à nouveau d'une récurrence. L'égalité à montrer est vraie pour n=0 puisqu'un produit indexé sur l'ensemble vide vaut 1. Supposons-la vraie pour un certain $n\in\mathbb{N}$. Alors

$$r_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right) = r_0 \left[\prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)\right] \cos\left(\frac{\theta_0}{2^{n+1}}\right) = r_0 \prod_{k=1}^{n+1} \cos\left(\frac{\theta_0}{2^k}\right)$$

Par récurrence, l'égalité à démontrer est vraie pour tout $n \in \mathbb{N}$.

- 7. On sait que pour $x \in \mathbb{R}$, $\sin(2x) = 2\sin(x)\cos(x)$ et donc $\cos(x) = \frac{\sin(2x)}{2\sin(x)}$ pour $x \notin \pi\mathbb{Z}$.
- **8.** Remarquons que pour tout $n \in \mathbb{N}$, $\frac{\theta_0}{2^n} \in \left] \frac{\pi}{2^n}, \frac{\pi}{2^n} \right[\subset] \pi, \pi[$. De plus, $z_0 \notin \mathbb{R}_+$ donc $\theta_0 \neq 0$ et donc $\frac{\theta_0}{2^n} \neq 0$ pour tout $n \in \mathbb{N}$. En particulier, $\frac{\theta_0}{2^n} \notin \pi \mathbb{Z}$. D'après les deux questions précédentes, pour tout $n \in \mathbb{N}$,

$$r_n = r_0 \prod_{k=1}^n \frac{\sin\left(\frac{\theta_0}{2^{k-1}}\right)}{2\sin\left(\frac{\theta_0}{2^k}\right)} = \frac{r_0}{2^n} \prod_{k=1}^n \frac{\sin\left(\frac{\theta_0}{2^{k-1}}\right)}{\sin\left(\frac{\theta_0}{2^k}\right)} = \frac{r_0\sin(\theta_0)}{2^n\sin\left(\frac{\theta_0}{2^n}\right)}$$

car on remarque un produit télescopique.

9. Pour tout $n \in \mathbb{N}$,

$$2^n \sin \left(\frac{\theta_0}{2^n}\right) = \theta_0 \cdot \frac{\sin \left(\frac{\theta_0}{2^n}\right)}{\frac{\theta_0}{2^n}} \underset{_{n \to +\infty}}{\longrightarrow} \theta_0$$

 $\begin{array}{l} \text{car lim}_{n\to+\infty} \frac{\theta_0}{2^n} = 0 \text{ et lim}_{x\to0} \, \frac{\sin x}{x} = 1. \\ \text{Puisque } \theta_0 \neq 0, \end{array}$

$$\lim_{n\to +\infty} r_n = \frac{r_0 \sin(\theta_0)}{\theta_0}$$

Puisque pour tout $n \in \mathbb{N}$, $z_n = r_n e^{i\theta_n}$ et $\lim_{n \to +\infty} \theta_n = 0$,

$$\lim_{n\to +\infty} z_n = \frac{r_0 \sin(\theta_0)}{\theta_0}$$