Teoria dei Modelli - Terzo foglio di esercizi

Esercizio 1

Espandiamo il linguaggio $L_{\rm os}$ con un predicato binario r. Chiamiamo L questo linguaggio. Sia T la teoria che dice che < ed r definiscono rispettivamente un ordine lineare e una relazione di equivalenza. Si assiomatizzi una teoria per cui vale un lemma di estensione analogo a quello che vale per i modelli di $T_{\rm oldse}$ con T al posto di $T_{\rm ol}$. (Non serve riportare la dimostrazione, è sufficiente l'assiomatizzazione.)

Soluzione 1 (per scherzare) Sia $T := \{\bot\}$.

Soluzione 2 Sia $T = T_{\text{oldse}} \cup \{\sigma\}$, dove

$$\sigma := \forall x, y, z(x < y \Rightarrow \exists u(x < u < y \land r(u, z)))$$

Esercizio 2

Sia N un grafo aleatorio e sia $M\subseteq N$ con $N\smallsetminus M$ finito. È vero che anche M è un grafo aleatorio?

Soluzione Sì. nb è banalmente soddisfatta grazie alla Proposizione 6.14. Supponiamo ora $\{x_i:i\leq n\}$ e $\{y_j:j\leq m\}$ sottoinsiemi disgiunti di M, per qualche $n,m\in\mathbb{N}$. Il testimone z richiesto da ga è ottenuto calcolandolo in N prendendo $X:=\{x_i:i\leq n\}\cup(N\setminus M)$ e $Y:=\{y_j:j\leq m\}$, che ha senso perché $N\setminus M$ è finito per ipotesi.

Esercizio 3

Sia N un grafo aleatorio si dimostri che esistono un grafo aleatorio $M\subseteq N$ ed un elemento $b\in N$ tale che r(b,M)=M.

Soluzione Sia $b \in N$. Sia $c \in N$ tale che r(c,b), che si trova applicando banalmente nb e ga. Costruiamo M per induzione su \mathbb{N} . Poniamo $M_0 := \{c\}$. Supponiamo di avere già costruito M_i , e costruiamo M_{i+1} espandendo M_i in questo modo: per ogni possibile n-upla $\{x_i\}_{i \leq n}$ e m-upla $\{y_j\}_{j \leq m}$ di elementi di M_i , aggiungiamo a M_{i+1} il testimone z dell'enunciato ga calcolato in N, prendendo $X := \{x_i\}_{i \leq n} \cup \{b\}$ e $Y := \{y_j\}_{j \leq m}$. Definiamo ora $M := \cup_{i \in \mathbb{N}} M_i$. È chiaro che per ogni $m \in M$ vale r(b,m). Resta da controllare che M è aleatorio. Ma questo è vero, perché per ogni n-upla $\{x_i\}_{i \leq n}$ e m-upla $\{y_j\}_{j \leq m}$ di elementi di M, esiste un $i \in \mathbb{N}$ tale che M_i le contiene, e quindi $M_{i+1} \subseteq M$ contiene il relativo testimone z.

Esercizio 4

Siano N_1 ed N_2 due grafi aleatori numerabili e sia $c \in N_1$ un elemento fissato. Sia N un grafo che ha per dominio l'unione disgiunta di N_1 ed N_2 e come archi quelli di N_1 più quelli di N_2 più quelli che congiungono c a tutti i vertici di N_1 . È N un grafo ultraomogeneo? Esiste una formula senza parametri che definisce N_1 ?

Soluzione

- N non è ultraomogeneo. Infatti, siano n₁ ∈ N₁ e n₂ ∈ N₂, e sia k : {n₂} → {n₁}, k(n₂) = n₁, che è un'immersione parziale. Supponiamo per assurdo che esista un isomorfismo g : N → N che estende k. N₁ e N₂ sono aleatori per ipotesi, quindi per ogni punto mᵢ ∈ Nᵢ, esiste un terzo punto cᵢ ∈ Nᵢ tale che r(cᵢ, nᵢ) e r(cᵢ, mᵢ). Ma N₁ e N₂ sono disgiunti e scollegati per ipotesi. Quindi, dato che f preserva la relazione r, necessariamente deve essere f[N₁] = N₂ e f[N₂] = N₁. Ma allora f(c) ∈ N₂ dovrebbe essere in relazione con tutti i vertici di N₂, e questo è impossibile perché contraddice banalmente l'aleatorietà di N₂.
- ullet Osserviamo che c è definibile mediante la formula

$$\varphi(x) = \forall n_1, n_2 \big(\neg \exists y (r(n_1, y) \land r(n_2, y)) \Rightarrow ((r(x, n_1) \land \neg r(x, n_2)) \lor (r(x, n_2) \land \neg r(x, n_1))$$
$$\lor x = n_1 \lor x = n_2 \big)$$

e quindi possiamo definire N_1 mediante

$$\psi(x) = r(x, c)$$