Задача 2-1 (85 баллов).

Даны две строки — P и T, длины не более $100\,000$. Строка T состоит только из строчных латинских букв. Строка P тоже состоит из строчных латинских букв, но еще может содержать от 0 до 10 символов ?, каждый из которых может заменять собой одну любую букву. Вам нужно найти все позиции i в строке T, начиная с которых возможно вхождение P в T, если каким-то образом заменить символы ? на буквы.

В первой строке входа — строка P, во второй — строка T. Длины обеих строк не превосходят $100\,000$, при этом они обе непустые.

В первой строке выведите число k — количество таких позиций i, что строка P может входить в строку T, начиная с позиции i. Во второй строке перечислите все возможные позиции в возрастающем порядке. Позиции нумеруются с нуля. Разделяйте две последовательные позиции одним пробелом.

Пример входа	Пример выхода
ab?	3
ababcabc	0 2 5
???	6
ababcabc	0 1 2 3 4 5

Задача 2-2 (100 баллов).

Дан набор строк S_1, S_2, \ldots, S_k и число n. Нужно найти количество различных строк длины n, не содержащих в себе в качестве подстроки ни одной из строк S_1, S_2, \ldots, S_k .

В первой строке входа — числа n, k и l, разделенные пробелом. В следующих k строках перечислены S_1, S_2, \ldots, S_k , состоящие из первых l маленьких латинских букв. $1 \le n \le 1\,000$, суммарная длина строк S_i не превышает $1\,000, 1 \le l \le 26$, строки S_i — непустые.

Выведите количество различных строк длины n, состоящих только из первых l маленьких латинских букв, никакая из которых не содержит в себе ни одной из строк S_1, S_2, \ldots, S_k в качестве подстроки. Таких строк может быть очень много, поэтому выведите ответ по модулю $1\,000\,000\,007$.

Пример входа	Пример выхода
5 1 2	1
a	
5 2 1	0
a	
aa	
5 1 2	6
ab	
5 0 2	32

Задача 2-3 (125 баллов).

Дана строка S. Необходимо найти количество ее различных непустых подстрок. Подстроки считаются одинаковыми, если они совпадают, как отдельно взятые строки.

В единственной строке входна — строка S длины не более $100\,000$, состоящая из строчных латинских букв.

Выведите число различных подстрок S.

Пример входа	Пример выхода
abc	6
aba	5
aaa	3

Задача 2-4 (125 баллов).

Вам предлагается реализовать алгоритм, схожий с тем, что применяется в методах сжатия LZ (http://en.wikipedia.org/wiki/LZ77_(algorithm)).

Вам дана строка α , состоящая из строчных латинских букв. Необходимо для каждой позиции i в строке α найти наибольшую по длине подстроку β , начинающуюся в позиции i в α , которая также ранее встречается в строке α . Иными словами, нужно найти наибольшую длину $l_i \geq 0$, для которой найдется позиция i' < i, такая что $\alpha[i'..i'+l_i-1]=\alpha[i..i+l_i-1].$

На входе задана единственная строка α .

Выведите n чисел l_i (где n — длина α), по одному в строке. $1 \le n \le 100~000$.

Пример входа	Пример выхода
ababaab	0
	0
	3
	2
	1
	2
	1
aaaaa	0
	4
	3
	2
	1