Rating discovery and genre classification from book reviews

Text Analytics *Group 7*

Our Team

Lia TrapaneseData Science and
Business Informatics

Davide Innocenti
Data Science and
Business Informatics

Ludovico LemmaData Science and

Business Informatics

Maria Grazia Antico

Data Science and
Business Informatics

Chiara GermelliDigital Humanities

The dataset

It has been taken from Kaggle and contains more than **1.3M book reviews** (rows) about **25,475 books** and **18,892 users** from the *Goodreads* website

From...

- User id
- Book id
- Review id
- Rating
- Review text
- Date added
- Date updated
- Read at
- Started at
- N votes
- N comments

To...

- User id (int)
- Book id (int)
- Review id (int)
- Rating (from 0 to 5) → Target
- Review text (string)
- **Genre (string)** → Target

Source:

How we reach the "Genre" variable?

... Web Scraping!

https://www.goodreads.com/book/show/ + { book_id }

XPath on the page

Data understanding and preparation

Web scraping using XPath to extract the new variable "Genre"

Classification task using "Genre" as target variable

Classification task using "Ratings" as target variable

Explainability with *SHAP* to explain the prediction of a black box classifier (as Neural network)

EDA – Preprocessing I

Power law of a **few users with lots of reviews** and **too many** reviews for some books....

... So we balanced reviews per book!

- Cleaning, Tokenizing, PoS Tagging of review texts
- Removing stop words, filtering out short words, Lemmatizing

New dataset obtained:

review_text	genre	rating	book_id	tokenized_ text	postagged_ text	lemmatized_ text
i like that i hear all the character voices as	Art	3	133765	[like, hear, character, voices, read, honestly	[(like, IN), (hear, VBP), (character, NN), (vo	[like, hear, character, voice, read, honestly,

EDA – Preprocessing I

The initial 76 genres has been grouped obtaining, in total, **10** genres.

Furthermore, the distribution has been **balanced using** with an Undersampling

EDA – Visualizazing genres with UMAP

... It can be seen a **similarity** with some genres

EDA – Preprocessing II

After testing some classifiers we further merged from 10 to **6 genres** according to the visual closeness we saw in the UMAP plot

Then, the distribution has been balanced using a stratified **Undersampling** technique **(2.000 records per genre)**

EDA – Visualizazing genres with UMAP

Fiction

Mystery NonFiction

Romance Science Fiction

UMAP Projection of 12000 Documents

... After merging the genres based on the previous Umap, we got a *new clearer* visualization

Topic Modeling

	genre	freq	cluster	Topic words
0	Art	36	4	ghost
1	Fiction	64	5	narrator
2	Non Fiction	85	5	narrator
3	Romance	211	2	sexy
4	Science Fiction	254	1	alien
5	Mystery	98	4	ghost

Steps:

- Extracting the top n°
 Topic words (equal to n° of genres) treating them as clusters
- Extracting the maximum frequency for each genre of the Topic words and looking at their semantics

Sentiment Analysis – Rating/Sentiment metric and correlation

	Precision	Recall	F-1 measure
1	0.12	0.59	0.20
2	0.20	0.21	0.21
3	0.35	0.23	0.28
4	0.46	0.29	0.35
5	0.47	0.44	0.45

Accuracy: 0.32

Correlation between rating and sentiment: 0.29

...Conclusions:

Sentiment Analysis is **not** a good predictor of the ratings

Some WordClouds on genres

From Classification with 6 genres...

Validation Accuracy

62%

Naïve *17*%

LSTM ... Work in progress!

