REPONSES A L'EXERCICE I de Mathématiques Spécialité

I-1-a-
$$u_1 = \frac{4}{3}$$
 $u_2 = \frac{9}{8}$

I-1-a- $u_1 = \frac{4}{3}$ $u_2 = \frac{9}{8}$ **I-1-b-** La suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et converge vers 1.

I-2-a- $u_{n+1} - u_n = \frac{(1-u_n)(u_n+2)}{u_n+4}$. En effet: Soit n un entier naturel.

$$u_{n+1}-u_n=\frac{3u_n+2}{u_n+4}-u_n=\frac{3u_n+2-u_n(u_n+4)}{u_n+4}=\frac{-u_n^2-u_n+2}{u_n+4}.$$

Or
$$(1-u_n)(u_n+2) = u_n+2-u_n^2-2u_n = -u_n^2-u_n+2$$
.

Donc
$$u_{n+1} - u_n = \frac{(1-u_n)(u_n+2)}{u_n+4}$$
.

La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. En effet : Pour tout entier naturel $n,u_n\geq 1$. I-2-b-

Donc $1 - u_n \le 0$, $u_n + 2 > 0$ et $u_n + 4 > 0$.

Ainsi, on en déduit que $u_{n+1} - u_n \le 0$.

- I-3-La suite $(u_n)_{n\in\mathbb{N}}$ est convergente. En effet : La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 1.
- l=1 . En effet : Si $\lim_{n\to +\infty} u_n=l$ alors $\lim_{n\to +\infty} u_{n+1}=l$. -4-

Pour tout entier naturel n, $u_n \ge 1$ donc $l \ge 1$.

et
$$u_{n+1} = f(u_n) \Leftrightarrow l = \frac{3l+2}{l+4} \Leftrightarrow l^2 + 4l = 3l + 2 \Leftrightarrow l^2 + l - 2 = 0 \Leftrightarrow l = 1 \text{ ou } l = -2.$$

Or $l \geq 1$, donc l = -2 est impossible.

- $v_0 = \frac{1}{4}$ I-5-
- $v_{n+1} = k \times v_n$ avec $k = \frac{2}{5}$. En effet : Pour tout entier naturel n,

$$v_{n+1} = \frac{u_{n+1}-1}{u_{n+1}+2} = \frac{\frac{3u_n+2}{u_n+4}-1}{\frac{3u_n+2}{u_n+4}+2} = \frac{\frac{3u_n+2-(u_n+4)}{u_n+4}}{\frac{3u_n+2+2(u_n+4)}{u_n+4}} = \frac{2u_n-2}{5u_n+10} = \frac{2}{5} \times \frac{u_n-1}{u_n+2} = \frac{2}{5} v_n.$$

On peut en déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique (de raison $k=\frac{2}{5}$).

I-6-b-
$$v_n = \frac{1}{4} \times \left(\frac{2}{5}\right)^n$$

I-6-c- La suite $(v_n)_{n\in\mathbb{N}}$ converge vers 0.

En effet: $0 < \frac{2}{5} < 1$ (donc $\lim_{n \to +\infty} \left(\frac{2}{5}\right)^n = 0$).

I-7-a-
$$u_n = \frac{2v_n+1}{1-v_n}$$

I-7-b La suite $(u_n)_{n\in\mathbb{N}}$ converge vers 1.

En effet : $\lim_{n\to+\infty} 2\nu_n + 1 = 1$ et $\lim_{n\to+\infty} 1 - \nu_n = 1$.

REPONSES A L'EXERCICE II de Mathématiques Spécialité

II-1- Solution générale de
$$(E_1)$$
:

$$z(t) = \frac{1}{K} + Ce^{-t}$$
 où $C \in \mathbb{R}$.

t	0	+∞
Variations de f	$\frac{10}{1+a}$	10

II-3-
$$f(t) = 5 \text{ pour } t \in \{ln(a)\}.$$

En effet :
$$f(t) = 5 \Leftrightarrow \frac{10}{1 + ae^{-t}} = 5 \Leftrightarrow \frac{1}{1 + ae^{-t}} = \frac{1}{2} \Leftrightarrow 2 = 1 + ae^{-t} \Leftrightarrow 1 = ae^{-t} \Leftrightarrow e^{t} = ae^{-t} \Leftrightarrow t = \ln(a)$$
.

II-4-a- Si
$$z(t) = \frac{1}{y(t)}$$
 alors $z'(t) = -\frac{y'(t)}{(y(t))^2}$.

II-4-b-
$$z$$
 solution de $(E_1) \Leftrightarrow \mathbf{z}'(t) + \mathbf{z}(t) = \frac{1}{K}$ pour tout réel t positif (Ligne 1)

$$\Leftrightarrow$$
 $-\frac{y'(t)}{(y(t))^2} + \frac{1}{y(t)} = \frac{1}{K}$ pour tout réel t positif (**Ligne 2**)

$$\Leftrightarrow y'(t) = y(t) - \frac{(y(t))^2}{K}$$
 pour tout réel t positif (Ligne 3)

$$\Leftrightarrow$$
 $y'(t) = y(t) \left(1 - \frac{y(t)}{K}\right)$ pour tout réel t positif \Leftrightarrow y solution de (E_2) .

II-5-a-
$$y(t) = \frac{1}{\frac{1}{K} + Ce^{-t}} = \frac{K}{1 + CKe^{-t}}$$
 où $C \in \mathbb{R}$.

II-5-b-
$$a = \frac{K}{y_0} - 1$$

II-6-
$$a > 0$$
. En effet: $0 < y_0 < K \text{ donc } \frac{K}{y_0} > 1 \text{ et } \frac{K}{y_0} - 1 > 0$.

II-7-a-
$$y(5) = 5 \text{ pour } a = e^5$$
.

II-7-b- La valeur exacte de
$$y_0$$
 est $y_0 = \frac{10}{e^5 + 1}$

En effet :
$$a = \frac{10}{y_0} - 1$$
.

Donc
$$a = e^5 \Leftrightarrow \frac{10}{y_0} - 1 = e^5 \Leftrightarrow \frac{y_0}{10} = \frac{1}{e^5 + 1} \Leftrightarrow y_0 = \frac{10}{e^5 + 1}$$
.

II-7-c- Il faudra réintroduire 67 marmottes.