Rewriting Queries for Web Searches that Use Local Expressions

Rolf Grütter¹, Iris Helming¹, Simon Speich¹, Abraham Bernstein²

¹Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

²University of Zurich, Department of Informatics Zurich, Switzerland

Overview

- Search Queries
- Administrative Regions & Partitions of Regions
- Region Connection Calculus
- Additional Rule "close to"
- Knowledge Base
- Evaluation Methods & Results
- Conclusion & Outlook

Search queries

"Communities close to Zürich"

- → meaning: all documents regarding the communities close to Zürich
- vague natural language expression for a spatial relation
- reference point; something is close to something else → providing a hint for scaling

"Close to" in google (p.ex.):

- some public buildings (hotels, offices)
- in cities
- different from meaning of query/ Input

Administrative regions and micro regions

- Administrative regions: administrative tasks, institutional structure of a country
- Reflecting a part of <u>humans perception</u> of <u>places</u> and <u>distances</u> between them

- Micro regions: analysis of spatial mobility, behavior of commuters
- Micro regions in Switzerland: 106 units; a community only part of a single micro region

In Switzerland:

/2

a1

Partitions of regions

- **1.** every region has <u>one</u> type of partition, e.g. "community" \rightarrow <u>mutually disjoint</u>
- **2.** Granularity of regions \rightarrow partitial ordor
 - 1. cantons
 - 2. districts
 - 3. Communities

$$C(x)$$
 more fine-grained than $D(y)$ $(C(x)$ $(C(x)$

- (x) (y) partitions of same region (of types C and D)
- each element of $D(y_k)$ partitioned by elements of $C(x_i)$ Example: Community (x_i) and District (y_k) both partitions of a canton

Minimal Partial Order

Regions always have to be typed

Minimal – excluding unwanted partitions

 \rightarrow Intransitive

$$C(x)_{i \in I} \leq_{\min} D(y)_{k \in K}$$
 if no type for any $(w)_{j \in J}$

such that
$$C(x)_{i \in I} \leq (w)_{j \in J} \leq D(y)_{k \in K}$$

Region Connection Calculus with 8 relations (RCC-8)

- Spatial concepts and relations in first order logic
- Spatial or temporal interpretation
- Also other Sets available (e.g. RCC-5)
- Jointly exhaustive and pairwise disjoint
- Formalisms work for few and many data (unlike fuzzy methods)
- Calculating RCC topologies from GIS layers/ spatial databases possible (information of administrative regions freely available in many countries)

Additional RCC Relation CLOSE TO

Rule Base: DL-safe SWRL-Rules

Newly added Composition rule:

$$\forall x_a \in (a)_{i \in I} \forall y_a \in (a)_{i \in I} \forall b \in (b)_{k \in K} \forall w$$

$$[P(x_a, b) \land y_a \{P, EC\}b \land LOC(x_a, w) \land LOC(y_a, w)$$

$$\rightarrow \mathsf{CL}_{\mathsf{ap}}(y_{a},x_{a})]$$

Description Logic Knowledge Base

- TBox: partitions as enumerations of individual names (= nominals)
- Linking to types via axioms $C \sqsubseteq \{a_1, \ldots, a_n\}$; where concepts are mutually disjoint $C \sqsubseteq \neg D$
- ABox closed for nominals denoting administrative regions (partOf relations only asserted for partitions)
- {P, EC} represented as auxiliary relation subsuming P and EC

Figures:

- 210 individuals, 21 roles, 12 concepts
- 603 concept assertions
- 29.003 role assertions, e.g.: partOf(Dietlikon, District_Bülach)
- KB grows by square of number of regions asserted; at the moment: canton of Zürich
- Pellet 2.0 as a reasoner

Evaluation – Searching with "GoForlt"

General Search and Directory Search

Query: "communities close to Dietlikon"; rewritten: "Nürensdorf OR Dübendorf OR Rümlang OR Wallisellen OR Kloten OR Wangen-Brüttisellen OR Bassersdorf"

- Number of found resources in relevant categories (→ e.g. category: Nürensdorf)
 - Recall: related to sum of total resources in same categories
 - Precision: related to all resources in result sets
 - Number of communities resulting from rewriting: between 6 and 24
- 2-sided t-test:
 - Query rewriting significantly increases recall: p < 0.01</p>

now: calculating in ≈ 6.3 ms

Results

→ Improvement with query rewriting

Query without rewriting:

"communities close to Dietlikon":

	Total relevant	Total matches	Relevant matches	Recall	Precision
Mean	191.39	14.65	0.10	0.00	
Max	381	750	1	0.01	1.00
Min	20	0	0	0.00	0.00

Rewritten query: "Nürensdorf
OR Dübendorf OR Rümlang
OR Wallisellen OR Kloten
OR Wangen-Brüttisellen
OR Bassersdorf" for 170
communities:

	Total relevant	Total matches	Relevant matches	Recall	Precision
Mean	191.39	8,843.50	154.35	0.81	0.07
Max	381	30,880	305	0.91	0.31
Min	20	520	17	0.69	0.00

Conclusion and Outlook

- Semantics of the relation "close to" may differ in other countries, maybe other formalisms have to be introduced there
- Possible optimizations:
 - Distribution of knowledge bases
 - Outsourcing individuals in database/triple store instead of inmemory storage
 - Move knowledge processing from run-time to design-time
- Using other background knowledge, e.g. travelling time

Additional RCC Relation CLOSE TO

z close to x

Same partition: symmetrical

x more fine-grained partition/ z non-administrative region: asymmetrical

→ irreflexive, intransitive (not transitive), not antisymmetric

Composition rule 1: $\forall x \forall y \forall z \ [CL_{ap}(y, x) \land z \{P, PO\}y \rightarrow CL(z, x)]$

Composition rule 1': $\forall x_a \in (a)_{i \in I} \forall y_a \in (a)_{i \in I} \forall z \ [\mathsf{CL}_{\mathsf{ap}}(y_a, x_a) \land z \{\mathsf{P}, \mathsf{PO}\}y_a \to \mathsf{CL}(z, x_a)]$

Additional RCC Relation CLOSE TO

EC: externally connected to

region y_a a priori close to a region x_a , if (i) x_a and y_a same administrative partition $(a)_{i \in I}$ (e.g. both communities)

 y_a part of or borders same region b of next upper level of administrative partitions $(b_k)_{k \in K}$ (e.g. a district) of which x_a is part

 x_a and y_a located (LOC) in the same functional region w

CLOSE TO Algorithm

INPUT: Knowledge Base $\mathcal{KB} = \{\mathcal{T}, \mathcal{A}\}$, Rule Base \mathcal{RB} , Concept Q, Individual a

OUTPUT: Set<Individual>

$$\{b\} \leftarrow \{b \mid \mathcal{A} \models \mathsf{partOf}(a,b)\}$$

$$U \leftarrow \{u_{i \in I} \mid A \models$$

partOfOrExternallyConnectedTo $(u_i, b)\}$

$$\{c\} \leftarrow \{c \mid \mathcal{A} \models \mathsf{locatedIn}(a,c)\}$$

$$V \leftarrow \{v_{j \in I} \mid \mathcal{A} \models \mathsf{locatedIn}(v_j, c)\}$$

$$Y \leftarrow U \cap V$$

FOR
$$(y_k \in Y; Y \neq \emptyset; Y \setminus y_k)$$
 {

$$X \leftarrow X \cup \{x_{m \in M} \mid \mathcal{A} \models$$

partOfOrPartiallyOverl
aps $(x_m, y_k)\}\}$

$$W \leftarrow \{w_{n \in N} \mid \mathcal{A} \models \mathcal{Q}(w_n)\}$$

$$Z \leftarrow X \cap W$$

OUTPUT Z