

1) DEFINICIÓN DEL SISTEMA ACTUAL: ARQUITECTURA Y PRINCIPALES PARÁMETROS

-En este estado simularemos la entrada a un estadio de fútbol.

Para ello, hemos creado un escenario inicial:

Tendremos dos servidores y dos colas las cuales:

- Servidor 1: Puesto en el que se revisan los tickets de entrada
- Servidor 2 : Punto de seguridad
- Cada uno de estos puntos tendrá sus colas que se corresponderán a la cola revisión de tickets) y la cola punto de seguridad)
- Una vez pasadas estas filas y servidores podrán entrar al estadio

1) DEFINICIÓN DEL SISTEMA ACTUAL: ARQUITECTURA Y PRINCIPALES PARÁMETROS

La tasa de llegada λ : 10 clientes/minutos

60/10: 6 segundos (equivale a una persona cada 6 segundos)

La tasa de servicio μ : 4 clientes/minutos

60/4: 15 segundos (tiempo promedio de la revisión)

2- OBJETIVO / PROPÓSITO DE LA SIMULACIÓN

El propósito de la simulación es evaluar el desempeño del sistema de ingreso al estadio y optimizar la cantidad de personal para evitar largas esperas.

CASO 1:FLEXIM

3) ESCENARIO CASO 1

Primero de todo creamos una simulación con dos colas y dos fases, la primera cola simula la espera para la revisión de tickets, la segunda es para el chequeo de seguridad

Las colas se colapsan y aumentan rápidamente, debido a que la velocidad de atención es mucho menor a la de llegada

teoria-de-colas-calculadora.vercel.app dice

no cumple con la condición de estabilidad

Si usamos la calculadora de cola, podemos observar que Ni nos deja calcular debido a que no cumple con la condición de estabilidad.

Entonces, para el modelo dos hemos decidido cumplir con la condición de estabilidad, agregando dos servidores más.

CASO 2:FLEXIM

3) ESCENARIO CASO 2

En el caso 2 hemos añadido dos colas más, una de tickets y otra de seguridad para agilizar las colas.

Aun así estas se siguen colapsando y aumentando, debido a que la velocidad de atención es menor a la de llegada

← M/M/k		RESPUESTA	совтов
λ tasa de llegada*	µ tasa de servicio*	P0: 0.07369	Lq: 0.53309
10	4	Probabilidad de hallar el sistema vacío	El número esperado de clientes en la cola
k número de servidores*		Pk: 0.31986 La probabilidad de que un usuario que llega tenga que esperar	Ln: 1.66667 El número esperado de clientes en la cola no vacía
4		(k o más) Pne: 0.68014 Probabilidad de que un usuario que llega no tenga que esperar	W: 0.30331 El tiempo promedio esperado en el sistema por los clientes
N clientes			
Opciones para calculo de Pn		Pn: NaN Probabilidad de hallar exactamente NaN clientes en el sistema	Wq: 0.05331 El tiempo esperado en la cola por los clientes
Exactamente Sistema Al menos Cola Máximo		L: 3.03309 El número esperado de clientes en el sistema	Wn: 0.16667 El tiempo esperado en la cola para colas no vacías por los clientes
	CALCULAR		

No está mal, pero no es ideal para picos grandes. Por ejemplo, el PK nos muestra que 1 de cada 3 personas deberán esperar. También, PO nos muestra que el servidor está ocupado un 92.6% del tiempo.

CASO 3:FLEXIM

3) ESCENARIO CASO 3

Finalmente, en el caso 3 hemos vuelto a añadir dos colas más, para así seguir agilizando el proceso.

Esta vez con 3 colas de tickets y seguridad hemos conseguido que el sistema no se colapse y que el tamaño de las colas y los tiempos de espera sean razonables

Con 6 servidores, podemos ver que el sistema mejora a comparación con el caso 2. La espera baja de 32% a un 4.7%, el tiempo de cola se reduce de 3.2 segundos a 0.2 segundos, por esta razón, ya no hay más acumulación.

4) CONCLUSIÓN

Con estas simulaciones hemos visto que para que el sistema sea eficaz y no se generen colas excesivas, necesitaremos tres puestos de revisión de tickets y otros tres de chequeos de seguridad.

Gracias a este planeamiento tendremos unos tiempos de espera aceptables y un flujo continuo de personas, mejorando la experiencia de ingreso al estadio.

