1 Обозначения и определения

dD – четырёх и более мерное пространство.

hD – трёх- или более мерное пространство.

Евклидово пространство \mathbb{R}^d , d > 1. Его элементы обозначим $\vec{x} = (x_i)_{i=1}^d$.

Ноль-вектор будем обозначать $\vec{0}$.

Аффинное пространство \mathbb{A}^d , d > 1. Его элементы обозначим $x = [x_i]_{i=1}^d$.

Элементу $x \in \mathbb{A}^d$ сопоставляется элемент $\vec{x} \in \mathbb{R}^d$, который есть радиус-вектор точки x.

Определены операции умножения на скаляр, сложения и вычитания. Над элементами \mathbb{R}^d они определяются классическим образом как операции линейного пространства. Для аффинного пространства \mathbb{A}^d определения следующие:

- $\forall \alpha \in \mathbb{R} \ \forall x = [x_i] \in \mathbb{A}^d \ \alpha \cdot x = \alpha x = [\alpha \cdot x_i] \in \mathbb{A}^d$;
- $\forall a \in \mathbb{A}^d \ \forall \vec{x} \in \mathbb{R}^d \ a + \vec{x} = [a_i + x_i] \in \mathbb{A}^d;$
- $\forall a, b \in \mathbb{A}^d \ a b = (a_i b_i) \in \mathbb{R}^d$.

Линейная независимость векторов из \mathbb{R}^d понимается в классическом смысле линейной независимости в линейном пространстве.

Линейная независимость набора точек $\{a_k\}_{k=0}^m \subset \mathbb{A}^d$, $m \leqslant d$, понимается как линейная независимость набора векторов $\{a_k - a_0\}_{k=1}^m \subset \mathbb{R}^d$.

k-мерным симплексом (k-симплексом) в пространстве \mathbb{A}^d , $k \leqslant d$, назовём линейно независимый набор k+1 точек.

Базис линейного пространства \mathbb{R}^d понимается в классическом смысле. Аффинный базис аффинного пространства \mathbb{A}^d может представляться в двух эквивалентных формах: либо как d-симплекс этого пространства, либо как пару $(o, \{\vec{x}_i\}_{i=1}^d), o \in \mathbb{A}^d, \vec{x}_i \in \mathbb{R}^d$, такую что набор точек $\{o, o + \vec{x}_i\}_{i=1}^d$ линейно независим.

Назовём (d-1)-грань d-многогранника cumnnuquanьной, если она имеет ровно d вершин (является (d-1)-симплексом).

Под словом «плоскость в пространстве \mathbb{R}^d » будем понимать гиперплоскость размерности \mathbb{R}^{d-1} .

Вектор $\vec{e}_i = (\delta_{i,k})_{k=1}^d - i$ -й вектор ортонормированного базиса \mathbb{R}^d . Здесь $\delta_{i,k}$ – символ Кро́некера:

$$\delta_{i,k} = \begin{cases} 1, & i = k, \\ 0, & i \neq k. \end{cases}$$

Обозначим через $\mathcal{N}(\vec{x})$ операцию нормирования вектора: $\mathcal{N}(\vec{x}) = \vec{x} / \|\vec{x}\|$.

Обозначим через $\mathcal{ON}(\vec{v}, \mathcal{B})$ операцию ортонормирования вектора \vec{v} на фоне ортонормированного набора векторов \mathcal{B} . Выполняется с использованием алгоритма Грамма-Шмидта.

2 Построение начальной грани ${\mathcal P}$

Пусть $\mathcal{S} \subset \mathbb{R}^d$ — рой d-мерных точек в d-мерном пространстве. Пусть \mathcal{B} — базис текущей плоскости. Построение начальной грани состоит из двух шагов. Первый — поиск аффинной плоскости, содержащей какую-либо грань выпуклой оболочки \mathcal{P} . Второй — поиск вершин этой грани. Построение аффинной плоскости заключается в последовательном повороте некоторой начальной плоскости, проходящей через одну точку роя. Каждый поворот аффинной плоскости заключается в подмене одного вектора из её базиса так, чтобы

она проходила через ещё хотя бы одну точку роя. Когда очередная плоскость содержит d линейно независимых точек, искомая плоскость построена.

Временные векторы базиса Т – векторы из этого множества могут быть заменены.

Финальные векторы базиса ${\bf F}$ – векторы базиса, которые далее не будут заменяться и будут входить в базис искомой плоскости.

Если требуется построить выпуклую оболочку в двумерном пространстве, то запускается какой-либо плоский алгоритм построения выпуклой оболочки. Иначе запускается следующий многомерный алгоритм, вообще говоря, рекурсивный по размерности овыпукляемых роёв.

2.1 Построение начальной плоскости $\mathcal L$

- 1. Выберем точку $o \in \mathcal{S}$, минимальную в лексикографическом порядке (она гарантировано будет вершиной \mathcal{P});
- 2. Проведём через $o = (o_i)_{i=1}^d$ плоскость \mathcal{L} перпендикулярно первому базисному вектору пространства. (Все точки роя \mathcal{S} гарантированно лежат не левее этой плоскости.) Составим базис этой плоскости $\mathcal{B} = \{\vec{e_i}\}_{i=2}^d$. Положим $\mathbf{F} = \emptyset$, $\mathbf{T} = \mathcal{B}$, $|\mathbf{T}| = d 1$.
- 3. Обозначим V множество просмотренных вершин плоскости \mathcal{L} . Положим $V = \{o\}$.
- 4. Пока $\mathbf{T} \neq \emptyset$, повторяем:
 - (a) Возьмём произвольный $\vec{t} \in \mathbf{T}$. Удалим вектор \vec{t} из \mathbf{T} : $\mathbf{T} \leftarrow \mathbf{T} \setminus \{\vec{t}\}$. Будем вращать вокруг ребра, аффинный базис которого есть (o, E), где $E = \mathbf{F} \cup \mathbf{T}$.
 - (b) Возьмём произвольную точку $s \in \mathcal{S}$, $s \notin \mathcal{V}$. Пусть $\vec{n} = \mathcal{ON}(s-o, E)$. Если $\vec{n} = \vec{0}$ то есть набор $E \cup \{s-o\}$ линейно зависим, то добавляем точку s в множество \mathcal{V} и переходим на шаг 4b.
 - (c) Иначе найдём точку $s_* \in \mathcal{S}$ такую, что $s_* \notin \mathcal{V}$, и угол между \vec{n}_* и \vec{t} наибольший среди всех точек роя (то есть скалярное произведение $\langle \vec{n}_*, \vec{t} \rangle$ наименьшее среди всех таких точек из \mathcal{S}), где $\vec{n}_* = \mathcal{ON}(s_* o, E)$.
 - (d) Если точка s_* не нашлась, это означает, что весь рой \mathcal{S} лежит в аффинном подпространстве размерности меньше d-1. В этом случае или алгоритм прекращает работу, если целью было найти выпуклую оболочку полной размерности, или переходит к построению выпуклой оболочки роя \mathcal{S} в найденном аффинном подпространстве с базисом (o, \mathbf{F}) .
 - (е) Если таких экстремальных точек несколько, то можно выбрать любую. Пусть $\vec{v} = \mathcal{ON}(s_* o, \mathbf{F})$. Добавим вектор \vec{v} в финальный базис: $\mathbf{F} \leftarrow \mathbf{F} \cup \{\vec{v}\}$. Добавим точку s_* в множество \mathcal{V} .
 - (f) Пересчитаем T в T' на фоне F.
 - i. $\mathbf{T}' \leftarrow \emptyset$.
 - іі. Для всех векторов $\vec{t} \in \mathbf{T}$:
 - iii. $\mathbf{T}' \leftarrow \mathcal{ON}(\vec{t}, \mathbf{F} \cup \mathbf{T}') = \mathcal{ON}(\mathcal{ON}(\vec{t}, \mathbf{F}), \mathbf{T}')$.
- 5. Конец процедуры.

2.2 Построение грани

Вход: Рой точек S и плоскость \mathcal{L} , то есть аффинный базис (o, \mathcal{B}) .

Выход: Грань \mathcal{P} , лежащая в плоскости \mathcal{L} . Полученная структура данных содержит информацию о рёбрах получившейся грани.

- 1. Пусть теперь V множество точек S, лежащих в плоскости \mathcal{L} .
- 2. Если $|\mathcal{V}| = d$, то полученная грань симплициальна, дальнейшая обработка не требуется.
- 3. Иначе строим выпуклую оболочку множества \mathcal{V} в аффинном подпространстве плоскости \mathcal{L} . Вытаскиваем (d-1)-мерный объект из (d-1)-мерного пространства грани в d-мерное исходное пространство так, что все дочерние объекты выражаются в терминах исходного d-мерного пространства.
- 4. У всех получившихся рёбер увеличиваем счётчик смежных граней на один.

3 Процесс заворачивания

Можно рассмотреть граф граней искомой выпуклой оболочки \mathcal{P} . Вершины графа сопоставляются с гранями \mathcal{P} . Две вершины являются соседними, если соответствующие им (d-1)-грани имеют общее (d-2)-ребро.

В начале процесса заворачивания нам известна какая-то вершина этого графа, соответствующая грани, построенной алгоритмом из предыдущего раздела. Также нам известны рёбра графа, выходящие из этой вершины, так как нам известны рёбра этой начальной грани.

В таком рассмотрении построение выпуклой оболочки соответствует всех её граней, то есть обходу графа граней \mathcal{P} . Такой обход графа может быть осуществлён каким-либо поисковым алгоритмом. Наиболее компактную реализацию имеет алгоритм поиска в глубину. Эта реализация является рекурсивной.

Напомним, что один рекурсивный шаг поиска в глубину состоит в переборе всех не посещённых соседей текущей вершины и переходов в них с продолжением поиска оттуда. В геометрических терминах перебор соседей и переход в них соответствует перебору рёбер текущей грани и построению грани, соседней текущей через очередное рассматриваемое ребро. Такое построение осуществляется поворотом плоскости текущей грани вокруг рассматриваемого ребра до касания какой-либо точки роя \mathcal{S} , не лежащей на рассматриваемом ребре. Такой поворот осуществляется аналогично шагу 4b алгоритма построения плоскости начальной грани.

3.1 Запуск поиска в глубину

Дана начальная (d-1)-грань \mathcal{F} . Для всех (d-2)-рёбер грани \mathcal{F} счётчик смежных граней равняется одному. Запускаем поиск в глубину от грани \mathcal{F} .

3.2 Поиск в глубину

Имеется текущая грань \mathcal{F} .

1. Пока у грани ${\cal F}$ есть рёбра со счётчиком, равным единице, повторяем:

- (а) Перекатываемся через ребро со счётчиком равным единице.
- (b) Всем рёбрам получившейся грани увеличиваем счётчик на один.
- (с) Запускаем поиск в глубину от получившейся грани.
- 2. Завершаем процедуру.

3.3 Процедура перекатывания через ребро

Дано: текущая грань \mathcal{F} и ребро \mathcal{E} текущей грани, через которое происходит перекатывание, $(o, \mathcal{B}_{\mathcal{F}})$ – аффинный базис плоскости содержащей грань \mathcal{F} .

- 1. Пересчитаем аффинный базис $(o, \mathcal{B}_{\mathcal{F}})$ в другой $(p, \mathcal{B}'_{\mathcal{F}})$ такой, что $p \in \mathcal{E}$, первые d-2 вектора базиса $\mathcal{B}'_{\mathcal{F}}$ есть базис $\mathcal{B}_{\mathcal{E}}$ ребра \mathcal{E} , и (d-1)-й вектор \vec{v} из $\mathcal{B}'_{\mathcal{F}}$ ортогонален \mathcal{E} .
- 2. Находим точку $s \in \mathcal{S}$ такую, что $s \notin \mathcal{F}$, вектор \vec{r} есть результат ортонормирования вектора s p на фоне базиса $\mathcal{B}_{\mathcal{E}}$, и угол между векторами \vec{v} и \vec{r} наибольший среди всех точек роя. Если таких точек несколько можно выбрать любую.
- 3. Выполняем построение новой грани \mathcal{F}' на точках роя, попавших в плоскость \mathcal{L}' , проходящую через ребро \mathcal{E} и точку s (см. процедуру 2.2). В этой процедуре следует учесть, что ребро \mathcal{E} гарантированно является (d-2)-гранью конструируемой (d-1)-грани: нет нужды запускать процедуру построения начальной грани.

3.4 Процедура получения базиса плоскости, содержащего базис ребра

Вход: базис $\mathcal{B}_{\mathcal{F}}$ грани \mathcal{F} , ребро \mathcal{E} (важен набор E точек, лежащих в этом ребре). Выход: базис $\mathcal{B}_{\mathcal{E}}$.

- 1. Выбираем точки p, p' из $E, p \neq p'$. Точку p полагаем началом аффинного базиса, нормированный вектор p'-p полагаем первым вектором \vec{b}_1 конструируемого набора $\mathcal{B}'_{\mathcal{F}}$.
- 2. Берём точку $p'' \in \mathcal{F}$, $p'' \notin E$. Вектор p'' p, нормированный на фоне \vec{b}_1 , полагаем (d-1)-м вектором \vec{b}_{d-1} конструируемого набора $\mathcal{B}'_{\mathcal{F}}$.
- 3. Для всех векторов $b \in \mathcal{B}_{\mathcal{F}}$ проверяем, является ли b линейно-независимым на фоне уже накопленного набора $\mathcal{B}'_{\mathcal{F}}$, и, если является, добавляем в $\mathcal{B}'_{\mathcal{F}}$ результат ортонормирования b на фоне текущего набора $\mathcal{B}'_{\mathcal{F}}$.

4 TODO