IT Infrastrukturen – Rechnerstrukturen

Einführungsvorlesung

Prof. Dr.-Ing. Sebastian Schlesinger Professur für Wirtschaftsinformatik (Security and Embedded Systems Engineering)

Überblick

- Organisatorisches
- Lernziele und Themen-Überblick
- Einführung

Überblick

- Organisatorisches
- Lernziele und Themen-Überblick
- Einführung

Ansprechpartner

Vorlesung

Prof. Dr. Sebastian Schlesinger
 Raum 5.2001
 sebastian.schlesinger@hwr-berlin.de
 MS Teams

Ablauf der Veranstaltung

- Vorlesungen und Übungen finden grundsätzlich hybrid statt
- kurzfristige Änderungen werden über Moodle Announcements bekannt gegeben

Prüfung

- Zwei Moodle-Tests während der Vorlesung
- Ergibt 34 Punkte (ganzes Modul Infrastrukturen ergibt 100 Punkte)

Organisation

Fragen?

Überblick

- Organisatorisches
- Lernziele und Themen-Überblick
- Einführung

Lernziele

- Zahlendarstellungen im Rechner und Mikroalgorithmen zur Umsetzung von arithmetischen Operationen verstehen und anwenden können.
- Den Aufbau digitaler Systeme und den Entwurfsprozess von Hardware zu verstehen und anhand von Beispielen nachvollziehen zu können.
- Die Übersetzung eines Programmes von einer höheren Programmiersprache (z. B. C) in eine Maschinensprache und deren Ausführung von einem digitalen System verstehen.
- Assemblerprogramme nachvollziehen und selbst schreiben können.
- Die logischen Abläufe zur Bearbeitung von Maschinenbefehlen in einem Prozessor auf Register-Transfer-Ebene verstehen.

Themen

- 1. Rechnerarithmetik (Zahlendarstellungen, arithmetische Operationen)
- 2. Grundlagen der Digitaltechnik (Gatter, Flipflops, Register)
- 3. Maschinenbefehle (Assemblersprache, Kontrollfluss, Adressierungsarten)
- 4. Aufbau und Funktionsweise eines einfachen Prozessors
- 5. Fließbandverarbeitung (Pipelining, Pipelinekonflikte und ihre Lösungen) (optional)
- 6. Ggf. Ausblick Weiterentwicklung Rechnerarchitekturen und SoC Designs / Architekturen für spezielle Use Cases (z.B. FPGAs, GPUs)

Thema 1: Rechnerarithmetik

$$2435 = 2 \cdot 10^{3} + 4 \cdot 10^{2} + 3 \cdot 10^{1} + 5 \cdot 10^{0}$$
$$1011_{B} = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = (8 + 0 + 2 + 1)_{D} = 11_{D}$$

$$b_{31}b_{30}...b_1b_0 = -b_{31}2^{31} + b_{30}2^{30} + ... + b_12^1 + b_02^0$$

Thema 2: Digitaltechnik

Thema 3: Assembler

High-level language program (in C)

Assembly language program (for MIPS)

Thema 4: Prozessorentwurf

Thema 5: Pipelining - optional

Thema 6: Weiterentwicklung von Architekturen und spezielle SoC

Literatur

16

Rechnerorganisation und -entwurf Die Hardware/ Software-Schnittstelle

David A. Patterson and John L. Hennessy Übersetzt von Arndt Bode, Wolfgang Karl und Theo Ungerer

Wir verwenden die MIPS Edition (3. bis 5. Auflage) nicht die RISC V Edition

Literaturübersicht (Kapitel 1 – 3)

Themen der Vorlesung	Kapitel in Patterson & Hennessy: Rechnerorganisation und Rechnerentwurf. 5. Auflage, De Gruyter, 2016.
Thema 1: Zahlendarstellung und Rechnerarithmetik	Kapitel 2.4: Vorzeichenbehaftete und nicht vorzeichenbehaftete Zahlen Kapitel 3: Rechnerarithmetik
Thema 2: Digitaltechnik	Anhang B: The Basics of Logic Design in Patterson & Henessy nicht erschöpfend behandelt → ergänzend: Chapter 3 in Null, Linda und Julia Lobur: Essentials of Computer Organization and Architecture. Jones & Bartlett Learning, Burlington, MA, 4. Auflage, 2015. http://ccftp.scu.edu.cn:8090/Download/545716da-b3aa-4aae-840e-3a5b9646c6dc.pdf
Thema 3: Befehle, die Sprache des Rechners	Kapitel 2: Befehle, die Sprache des Rechners Anhang A: Assemblers, Linkers, and the SPIM Simulator

Literaturübersicht (Kapitel 4 – 6)

Themen der Vorlesung	Kapitel in Patterson & Hennessy: Rechnerorganisation und Rechnerentwurf. 5. Auflage, De Gruyter, 2016.
Thema 4: Eintaktprozessor	Kapitel 4: Der Prozessor (Kapitel 4.1 – 4.4)
Thema 5: Pipelining	Kapitel 4: Der Prozessor (Kapitel 4.5 – 4.11)

Überblick

- Organisatorisches
- Lernziele und Themen-Überblick
- Einführung
 - Die Computerrevolution
 - Klassen von Computersystemen
 - Hardware- und Software-Ebenen
 - Von einer Hochsprache zur Sprache der Hardware
 - Klassische Computerkomponenten
 - Abstraktion

Die Computerrevolution

- Computer haben die Welt verändert.
- Vor 50 60 Jahren waren folgende Anwendungen Science Fiction:
 - Laptops und Handys
 - World Wide Web (WWW, Web)
 - Digitales Fernsehen/Kamera
 - moderne Navigationstechnologie und autonome Fahrzeuge
 - Forschung am menschlichen Genom
 - Viren-Simulation
 - . . .
- Diese und andere Anwendungen sind nur möglich Dank der Entwicklung der Rechnertechnologie

Klassen von Computersystemen

- Arbeitsplatzrechner (desktop computers) (100 M/Jahr)
 - der auf/unter/neben dem Schreibtisch
 - gute Leistungen zu akzeptablen Preisen
 - führen Software von Drittanbietern aus
- Server (5 M/Jahr)
- bewältigen große Lasten (Anwendungen aus dem technisch/wissenschaftlichen Bereich, Verarbeitung vieler kleiner Jobs (Web Server))
- gleiche Technologie wie Arbeitsplatzrechner, jedoch höheres Maß an Erweiterbarkeit
- Eingebettete Rechner (embedded computers) (1000 M/Jahr)
 - größte Klasse und größte Bandbreite an Anwendungen und Leistungen
 - in Waschmaschinen und Autos, Flugzeugen, Satelliten, Fahrkartenautomaten, Fabriken, ...

Hinter einem Programm

Vereinfachte Darstellung der Hardware (HW) und Software (SW) als hierarchische Ebenen in Form

von konzentrischen Kreisen

 Komplexe Anwendungen bestehen häufig aus mehreren SW-Ebenen

 Systemsoftware: SW, die die Verbindung zur Hardware herstellt (z. B. Betriebssysteme, Compiler und Assembler)

Von Hochsprache zu Maschinensprache

Binärer Maschinencode für MIPS

Computerkomponenten

Die 5 klassischen Komponenten eines Computers

- Eingabegeräte (Maus, Tastatur, ...)
- Ausgabegeräte (Bildschirm, Drucker, ...)
- Speicher
 - Intern: DRAM, SRAM [flüchtig]
 - Extern: Festplatte, CD [nicht flüchtig]
- Datenpfad
 - führt Operationen aus
 - die Muskeln eines Prozessors
- Leitwerk / Steuerung
 - sendet Signale, welche die Operationen bestimmen
 - Gehirn eines Prozessors

Prozessor oder *Central Processing Unit* (CPU)

Inneres eines PC

Trust me, this is not Dubai, Singapore or Taiwan

This is a Motherboard

Inneres eines PCs

Hauptplatine (motherboard)

- DIMM = Dual In-line Memory Module
- PCI = Peripheral Component Interconnect
- IDE = Integrated Drive Electronics (bus for hard disk drives)
- SATA = Serial Advanced Technology Attachment
- CPU = Cenral Processing Unit

Inneres eines Prozessorchips (Pentium 4)

Fokus

- Unser Fokus: Der Prozessor (CPU = Central Processing Unit)
 - Datenpfad
 - > Steuerwerk
- Milliarden von Transistoren
- Unmöglich zu verstehen, wenn man die Transistoren einzeln betrachtet
- Wir benötigen Abstraktionen auf viele Ebenen.

Abstraktion

- Abstraktion: Details der unteren Ebenen eines (Computer-) Systems werden vorübergehend ausgeblendet, um die Entwicklung komplexer Systeme zu erleichtern.
- Beispiele:
 - Schaltkreise (Logische Gatter AND, OR, NOT statt einzelner Transistoren)
 - Befehlssatzarchitektur (digitaler Rechner = Satz von Befehlen, den er ausführen kann)
 - Programmabstraktion (Funktionen, Klassen, Objekte)
 - Datenabstraktion (Listen, Warteschlangen)

Befehlssatzarchitektur (*Instruction Set Architecture*)

- Eine sehr wichtige Abstraktion!
- Vorteile
 - ✓ einfach verständliche Schnittstelle zwischen HW und SW
 - ✓ Standardisierung von Befehlen, Bitfolgen, u.s.w.
 - ✓ Programmierer / Compiler muss nicht die darunter liegende Digitaltechnik kennen
 - ✓ verschiedene Implementierungen eines Befehlssatzes möglich
- Nachteil: verhindert manchmal Innovationen

Zusammenfassung

- Klassen von Computersystemen: Arbeitsplatzrechner, Server, eingebettete Rechner
- eingebettete Rechner höchste Anzahl, Arbeitsplatzrechner größter Umsatz
- klassische Komponenten eines Computers:
- Eingabegeräte (input devices), Ausgabegeräte (output devices), Speicher, Datenpfad,
 Leitwerk/Steuerung (control)
- Unser Fokus ist der Prozessor (CPU = Central Processing Unit, umfasst Datenpfad und Leitwerk/Steuerung)
- Wir brauchen Abstraktion um den Prozessor verstehen zu können!