1. Toda formula es equivalente a una en CNF (y a una en DNF!)

Formula:

$$(p \to (q \land \neg r)) \land s$$

Tabla de verdad:

p	q	r	S	ϕ
0	0	0	0	0
0	0	0	1	
0	0	1	0	0
0	0	1	1	1 0 1
0	1	0	0	0
0	1	0	1	1
0 0 0	1	1	0	
0	1	1	1	0 1 0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	
1	1	0	1	0 1 0
1	1	1	0	0
1	1	1	1	0

Fórmula en DNF:

$$(\neg p \wedge \neg q \wedge \neg r \wedge s) \vee (\neg p \wedge \neg q \wedge r \wedge s) \vee (\neg p \wedge q \wedge \neg r \wedge s) \vee (\neg p \wedge q \wedge r \wedge s) \vee (p \wedge q \wedge \neg r \wedge s)$$

Fórmula en CNF:

$$s \wedge (\neg p \vee q) \wedge (\neg p \vee \neg r)$$

2. Mostrar lo siguiente con resolucion

$$\{(p \lor q \lor r), (\neg q \lor t \lor s), (r \lor \neg t), (r \lor \neg s)\} \models (p \lor r)$$

¿es esto inconsistente?

$$\{(p \lor q \lor r), (\neg q \lor t \lor s), (r \lor \neg t), (r \lor \neg s), \neg (p \lor r)\}$$

¿es esto inconsistente?

$$\Sigma = \{ (p \lor q \lor r), (\neg q \lor t \lor s), (r \lor \neg t), (r \lor \neg s), \neg p, \neg r) \}$$

Resolución

Definimos secuencia de cláusulas

- 1. $(p \lor q \lor r)$
- 2. $(\neg q \lor t \lor s)$
- 3. $(r \vee \neg t)$
- 4. $(r \vee \neg s)$
- 5. $\neg p$
- 6. $\neg r$ (todas estas sacadas de Σ)
- 7. $\neg t$, usando

$$\begin{array}{c} r \vee \neg t \\ \neg r \\ \hline \neg t \end{array}$$

8. $(\neg q \lor s)$, usando

$$\frac{\neg t}{(\neg q \lor s \lor t)}$$
$$\frac{(\neg q \lor s)}{(\neg q \lor s)}$$

9. $(p \lor q)$, usando

$$\frac{\neg r}{(p \lor q \lor r)}$$
$$\frac{(p \lor q)}{(p \lor q)}$$

10. $(p \vee s)$, usando

$$\frac{(\neg q \lor s)}{(p \lor q)}$$
$$\frac{(p \lor s)}{}$$

11. s, usando

$$\frac{(p \vee s)}{\neg p}$$

12. r, usando

$$\frac{s}{(r \vee \neg s)}$$

13. \perp , usando

$$\frac{r}{\neg r}$$