Introduction to Parallel Processing

Lecture 25: Algorithms for Heterogeneous Systems

11/30/2022 Professor Amanda Bienz Heterogeneity in Systems

How should we communicate on these systems?

Heterogeneous MPI_Allreduce

Recursive Doubling

- Standard algorithm for small MPI_Allreduce calls
- Now, need to communicate between GPUs

Cuda-Aware Allreduce

• cudaMalloc((void**)&data, size)
MPI_Allreduce(data, size, ...)

Recursive Doubling

Reminder: Multiple Messages Cheaper to Copy to CPU

Copy To CPU Allreduce

- cudaMalloc((void**)&d_data, size)
 cudaMallocHost((void**)&h data, size)
- cudaMemcpy(h_data, d_data, size, cudaMemcpyDeviceToHost)
 MPI_Allreduce(h_data, size, ...)
 cudaMemcpy(d data, h data, size, cudaMemcpyHostToDevice)

Recursive Doubling

Reminder: Dozens of available CPU cores per node

Optimizing Copy-to-CPU Algorithm

Node-Aware Parallel (NAP) Algorithm

Using Multiple CPU Cores Per GPU

Extra Message Approach

Duplicate Device Pointer Approach

Lassen MPI_Allreduce

Summit MPI_Allreduce

MPI_Allreduce Computation

- Local computation on GPU or CPU?
- What are the benefits of using the GPU?
- What are the benefits of using the CPU?

Lassen: MPI_Alltoall

Summit: MPI_Alltoall

Lassen: MPI_Alltoallv

Summit: MPI_Alltoallv

MPI_Neighbor_alltoallv

Standard Neighbor Communication

Multiple non-local messages

Multiple non-local messages and redundant data

Aggregated Neighbor Communication

Using Multiple CPU Cores Per GPU

Extra Message Approach

Duplicate Device Pointer Approach

Locality-Aware Aggregation: Current Issues

Need to re-pack data on receiving node to remove duplicate values!

Locality-Aware Sparse Matrix-Vector Multiply

Locality-Aware Neighborhood Collective : Open Questions $= \frac{NP2}{NP3}$

- How many CPU cores should be used?
- Should data be aggregated? If so, on-socket?
 On-node?
- What is the best way to remove duplicate values?

Pre-Frontier Collective Performance

Reminder: Pre-Frontier Performance

Recursive Doubling

pre-Frontier: MPI_Allreduce

pre-Frontier: MPI_Alltoall

pre-Frontier: MPI_Alltoallv

