

Three-Terminal Positive Voltage Regulator

Product Description

The GS78Lxx Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100mA. Like their higher-powered GS78xx Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the GS78Lxx devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.

Features

- Wide Range of Available, Fixed Output Voltages
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (GS79Lxx Series)
- Available in ±5% Accuracy

Applications

- Battery Powered Systems
- Portable Consumer Equipment
- Portable Computer
- Radio Control Systems
- Logic Systems
- Power Adapter

Representative Schematic Diagram

Packages & Pin Assignments

	GS78LxxYF (SOT-89)						GS78LxxNF (TO-92)	
	GS78L05YF GS78L05YUF GS78L12YUF LL LL 1 2 3			8 7 6 5 GS78L05SF GS78L12SF 1 2 3 4			GS78L05NF GS78L12NF	
G	GS78L05YF GS78L05YUF GS78L12YUF		GS78L05SF GS78L12SF			GS78L05NF GS78L12NF		
1	1 V _{IN} 1 V _{OUT}		1	V _{OUT}	1	V _{OUT}		
2	GND	2	GND	8	V_{IN}	2	G_{ND}	
3	Vout	3	V_{IN}	2,3,6,7	GND	3	V_{IN}	
	•			4,5	NC			

Ordering Information

^{*}Request for other voltages, please contact factory directly.

Marking Information

GS78Lxx

Absolute Maximum Ratings

(T_A=+125°C, unless otherwise noted.)

Parameter	Symbol	Maximum		Unit
Input voltage	V _{IN}	30		V
		SOT-89	0.5	
Power Dissipation (Note1)	P _D	SOP-8	0.625	W
		TO-92	0.5	
		SOT-89	200	
The junction-to-ambient thermal resistance	θ_{JA}	SOP-8	160	°C/w
		TO-92	200	
Operating junction temperature range	TJ	0 to +150		$^{\circ}\mathbb{C}$
Storage temperature range	T_{STG}	-65 to +150		$^{\circ}\mathbb{C}$

Electrical Characteristics

(V_{IN}=10V, I_{OUT}=40mA, C_{IN}=0.33 μ F, C_{OUT}=0.1 μ F, 0°C <T_J<+125°C, unless otherwise noted.)

Parameter	Symbol	Characteristics	Min.	Тур.	Max.	Unit
Output voltage	V_{OUT}	T _J =+25°C	4.8	5.0	5.2	V
Line regulation	Reg _{LINE}	T_{J} =+25 $^{\circ}$ C, I_{OUT} =40mA 7.0V \leq V _{IN} \leq 20V 8.0V \leq V _{IN} \leq 20V		55 45	150 100	mV mV
Load regulation	Reg _{LOAD}	$T_{J}=+25^{\circ}C$, 1.0mA $\leq I_{OUT} \leq$ 100mA $T_{J}=+25^{\circ}C$, 1.0mA $\leq I_{OUT} \leq$ 40mA		11 5.0	60 30	mV mV
Output voltage	V _{OUT}	$7.0V \le V_{IN} \le 20V, 1.0 \text{mA} \le I_{OUT} \le 40 \text{mA}$ $V_{IN} = 10V, 1.0 \text{mA} \le I_{OUT} \le 70 \text{mA}$	4.75 4.75		5.25 5.25	٧
Input bias current change	I _{IB}	T _J =+25°C T _J =+125°C		3.8 	6.0 5.5	mA
Input bias current change	$\triangle I_{IB}$	8.0V ≤V ₁ ≤20V 1.0mA ≤lo ≤40mA		1 1	1.5 0.1	mA
Output noise voltage	V _N	T _A =+25°C, 10Hz ≤f ≤100kHz		40		μV
Ripple rejection	RR	I_{OUT} =40mA, f=120Hz, 8.0V \leq V _{IN} \leq 18V, T_{J} =+25 $^{\circ}$ C	41	49		dB
Dropout voltage	V_{IN} - V_{OUT}	T _J =+25℃		1.7		V

Standard Application

A common ground is required between the input and the output voltages.

* C_{IN} is required if regulator is located an appreciable distance form power supply filter.

GS78Lxx

^{**}C_{OUT} is not needed for stability, however, it does improve transient response.

Typical Performance Characteristics

Dropout Voltage versus Junction Temperature

Input Bias Current versus Ambient Temperature

Input Bias Current versus Input Voltage

Maximum Average Power Dissipation versus Ambient Temperature TO-92 Type Package

4

Typical Applications

Design Considerations

The GS78LXX Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection Limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

Current Regulator

The GS78LXX regulators can also be used as a current source when connected as above. In order to minimize dissipation the GS78L05 is chosen in this application. Resistor R determines the current as follows:

$$lo = \frac{5.0V}{R} + l_B$$

I_{IB}=3.8mA over line and load changes

For example, a 100mA current source would require R to be a 50Ω , 1/2 W resistor and the output voltage compliance would be the input voltage less 7V.

Positive and Negative Regulator

Package Dimension

SOP-8 PLASTIC PACKAGE

Dimensions						
SYMBOL	Millin	neters	Inches			
STIVIBUL	MIN	MAX	MIN	MAX		
Α	1.35	1.75	.053	.069		
A1	0.10	0.25	.004	.010		
A2	1.25	1.65	.049	.065		
b	0.31	0.51	.012	.020		
С	0.17	0.25	.007	.010		
D	4.90	(TYP)	.193	.193 (TYP)		
E	6.00	(TYP)	.236 (TYP)			
E1	3.90	(TYP)	.154	.154 (TYP)		
е	1.27 (TYP)		.050 (TYP)			
L	0.40	1.27	.016	.050		
L1	1.04 (TYP)		.041 (TYP)			
L2	0.25 (TYP)		.010 (TYP)			
R	0.07	-	.003	-		
R1	0.07	-	.003	-		
h	0.25	0.50	.010	.020		
θ	0°	8°	0°	8°		
θ1	5°	15°	5°	15°		
θ2	0°	-	0°	-		

SOT-89 PLASTIC PACKAGE

	Dimensions						
SYMBOL	Millin	neters	Inches				
STWIBUL	MIN	MAX	MIN	MAX			
Α	1.40	1.60	.055	.063			
В	0.44	0.56	.017	.022			
B1	0.36	0.48	.014	.019			
С	0.35	0.44	.014	.017			
D	4.40	4.60	.173	.181			
D1	1.62	1.83	.064	.072			
E	2.29	2.60	.090	.102			
E1	2.13	2.29	.084	.090			
е	1.50 (TYP) .059 (TYP)			(TYP)			
e1	3.00	(TYP)	.118 (TYP)				
Н	3.94	4.25	.155	.167			
L	0.89	1.20	.035	.047			

TO-92 PLASTIC PACKAGE

Dimensions						
SYMBOL -	Millin	neters	Inches			
STIVIBUL	MIN	MAX	MIN	MAX		
A 1	4.4	4.6	.173	.181		
Α	4.4	4.6	.173	.181		
Т	3.4	3.6	.133	.142		
d	.36	.40	.014	.016		
Р	12.4	13.0	.487	.512		
P0	12.5	12.9	.491	.508		
P2	6.05	6.65	.238	.262		
F1,F2	2.2	2.8	.086	.110		
∆h	-1.0	1.0	039	.039		
W	17.5	19	.688	.748		
W0	5.5	6.5	.216	.256		
W1	8.5	9.5	.334	.374		
W2	-	1	-	.039		
Н	19.	21	.747	.827		
H0	15.5	16.5	.609	.650		
L1	2.5	-	.098	-		
D0	3.8	4.2	.149	.165		
t1	.35	.45	.014	.018		
t2	.15	.25	.006	.010		
P1	3.55	4.15	.140	.163		
△P	-1	1	039	.039		

GS78Lxx

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

(Revise Date:2007/11/13 Version_1.0)

9