Schlumberger

Instruments Division

Schlumberger Technologies GmbH 8000 München 46, Ingolstädter Straße 67 a, Postfach 46 07 29 Telefon 0 89/3 18 89-0, Telefax 0 89/31 88 91 60, Telex 5 215 015 smg d

Communication Test Set

STABILOCK 4031

Valid for series L188-L488

LIST OF CONTENTS

Register	Name	Drawi	ing	no.	
A	Code list of manufacturers				
В	OVERALL UNIT				
	Block diagram RF cabling RF motherboard AF Mcharbeand Panelling Location of stages Location of cables Assembly design Electrical parts lists	108 8 201 2 361 1 361 1 108 8 201 2 202 2 361 1 361 1 361 1	231 135 136 301 231 231 135 136 231 231	S S S S a S a S a	
CD	POWER SUPPLY Circuit diagram Assembly design Electrical parts lists	204 (204 (204 (204 (031	LP LP	2
E	MODULATION GENERATOR A				
	Functional description Alignment instructions Circuit diagram Assembly design Electrical parts list	208 (208 (208 (208 (208 ()29)29)29	A S	
	MODULATION GENERATOR B				
	Functional description Alignment instructions Circuit diagram Assembly design Electrical parts list	208 (208 (208 (208 (208 (032 032 032	A S	

Register	Name	Drawing no.
F	AF DETECTOR	
	Functional description Alignment instructions Circuit diagram Assembly design	209 031 F 209 031 A 209 031 S 361 407 361 408 361 483
	Electrical parts lists	209 031 Sa 361 407 Sa 361 408 Sa 361 483 Sa
	10-MHz REFERENCE CRYSTAL	
	Functional description Alignment instructions Circuit diagram Assembly diagram Electrical parts lists	214 031 F 214 031 A 214 031 S 361 419 214 031 Sa 361 419 Sa
G	DECADE SYNTHESIZER	
	Functional description Alignment instructions Circuit diagram Assembly diagram	210 041 F 210 041 A 210 041 S 361 403 361 445 361 446 361 447 361 448 361 449
	Electrical parts lists	210 041 Sa 361 403 Sa 361 445 Sa 361 446 Sa 361 447 Sa 361 448 Sa 361 449 Sa

Register	Name	Drawing no.
Н	UHF SYNTHESIZER	
	Functional description Alignment instructions Block diagram Circuit diagram Assembly diagram	213 041 F 213 041 A 213 041 B 213 041 S 361 401 361 435 361 436 361 437 361 438 361 439
	Electrical parts lists	213 041 Sa 361 435 Sa 361 436 Sa 361 437 Sa 361 438 Sa 361 439 Sa
IJ	FM MODULATOR	
	Functional description Alignment instructions Circuit diagram Assembly diagram	217 031 F 217 031 A 217 031 S 361 402 361 455 361 456 361 457
	Electrical parts lists	217 031 Sa 361 402 Sa 361 455 Sa 361 456 Sa 361 457 Sa
K	ATTENUATOR	
	Functional description Circuit diagram Assembly diagram Electrical parts lists	226 031 F 226 031 S 361 171 361 420 226 031 Sa
	Fieceircai bares itses	361 171 Sa 361 420 Sa

Register	Name	Drawing	no.
L	CONTROL PANEL		
	Functional description Alignment instructions Circuit diagram Location of circuit boards and adjusters Assembly diagram	227 031 227 031 227 031 227 031 361 421	A
	Electrical parts lists	361 422 227 031 361 421 361 422	Sa
M	DUPLEX FM DEMODULATOR	*******	*****
	Functional description Alignment instructions Circuit diagram Assembly diagram	229 033 229 033 229 033 361 440 361 464 361 482 361 383	A S
	Electrical parts lists	229 033 361 440 361 464 361 482 361 383	Sa Sa Sa
NO	RF POWER METER		
	Functional description Alignment instructions Circuit diagram Location plan Assembly diagram Electrical parts lists	229 031 229 031 229 031 229 031 300 675 361 424 229 031	A S Sa
PQ		361 424	
R	IF UNIT		
	Functional description Alignment instructions Circuit diagram Assembly diagram Electrical parts list	229 032 229 032 229 032 229 032 229 032	A S

Register	Name	Drawing no.
S	OUTPUT UNIT	
	Functional description Alignment instructions Block diagram Circuit diagram Assembly diagram	230 031 F 230 031 A 230 031 B 230 031 S 361 400 361 425 361 426 361 427
	Electrical parts lists	361 427 230 031 Sa 361 400 Sa 361 425 Sa 361 426 Sa 361 427 Sa
SCH	EXTERNAL MEMORY	
	Functional description Circuit diagram Assembly diagram Electrical parts list	235 032 F 235 032 S 361 433 361 433 Sa
St	MONITOR CONTROL	
	Functional description Alignment instructions Circuit diagram Assembly diagram Electrical parts lists	236 032 F 236 032 A 236 032 S 236 032 361 412 236 032 Sa 361 412 Sa
	MONITOR	
	Functional description Alignment instructions Circuit diagram Assembly diagram Electrical parts lists	239 003 F 239 003 A 239 003 S 361 461 239 003 Sa 361 461 Sa

Register	Name	Drawing no.
TV	DATA MODULE	
	Circuit diagram Assembly diagram	236 034 F 236 034 A 236 034 S 236 034 Sa
	CONTROL INTERFACE A/B/C	
	Functional description Alignment instructions Circuit diagram Assembly diagram	236 035/36/37 F 236 035/36/37 A 236 035 S 236 036 S 236 037 S 236 035 236 036 236 037
	Electrical parts lists	236 035 Sa 236 036 Sa 236 037 Sa
	RF COUNTER	
	Functional description Alignment instructions Circuit diagram Assembly diagram Electrical parts lists	237 032 F 237 032 A 237 032 S 237 032 361 470 237 032 Sa 361 470 Sa

W			
	<u>OPTIONS</u>		
	OPTION CARD		
	Functional description	236 033	
	Alignment instructions	236 033 236 033	
	Circuit diagram Assembly diagram	236 033	
	Assembly diagram	361 411	
	Electrical parts lists	236 033	Sa
	Bloodifour parts libts	361 411	
	C-NET EXPANDER		
	Functional description	248 116	F
	Alignment instructions	248 116	
	Circuit diagram	248 116	
	Assembly diagram	248 116	
	Electrical parts list	248 116	Sa
	DTMF MODULE		
	Functional description	248 171	F
	Alignment instructions	248 171	
	Circuit diagram	248 171	
	Assembly diagram	248 171	
	Electrical parts list	248 171	Sa
	DC/VA METER		
	Functional description	248 172	F
	Alignment instructions	248 172	A
	Circuit diagram	248 172	S
	Assembly diagram	248 172	
		361 476	_
	Electrical parts lists	248 172 361 476	
	300-Hz LOWPASS FILTER		
	Functional description	248 174	F
	Alignment instructions	248 174	
	Circuit diagram	248 174	
	Assembly diagram	248 174	
	Electrical parts list	248 174	Sa

Circuit diagram

Assembly diagram Electrical parts list

248 199 S

248 199 Sa

248 199

Register	Name	Drawing no.
XZ	STABITEXTER	
	Functional description	248 181 F
	Alignment instructions	248 181 A
	Circuit diagram	248 181 S
	Assembly diagram	361 525
	Electrical parts list	361 525 Sa
	HOST COMPUTER	
	Functional description	250 031 F
	Circuit diagram	250 031 S
	Assembly diagram	250 031
	Electrical parts list	250 031 Sa
	SLAVE COMPUTER	
	Functional description	250 032 F
	Alignment instructions	250 032 A
	Circuit diagram	250 032 S
	Assembly diagram	250 032
	Electrical parts list	250 032 Sa

ENERTEC Schlumberger

CODE LIST OF MANUFACTURERS - HERSTELLERVERZEICHNIS

Actual Code Aktuelle Bezeichg.	Alte Bez.	Manufacturers Hersteller -	Our Suppliers Unsere Lieferanten
AEG		AEG	AEG Telefunken, Arnulfstr. 205, D-8000 München 19
ALB		Albrecht	G. Albrecht, Gartenstr. 8, CH-6331 Hüpenberg
ALAN		Alan Industries	microscan GmbH, Schloßgartenweg 1, D-8045 Ismaning
ALLEN	-	Allen-Bradley	Allen-Bradley GmbH, Kochstr. 49, D-4150 Krefeld
AMD		Advanced Micro Devices	Advanced Micro Devices, Herzog-Heinrich-Str. 3, D-8000 München 2
AMP		AMP Deutschland	AMP Deutschland GmbH, Amperestr. 7-11, D-6070 Lange
AMPH		Amphenol	Amphenol Europa GmbH, Grünwalder Weg 30, D-8024 Deisenhofen
ANAL		Analog Dev.Inc.	Analog Devices GmbH, Mozartstr. 17, D-8000 München
ANZ		anzac	Interelectronic KG, Hochbrückenstr. 10, D-8000 München 2
ASSM		Assmann	Assmann + Söhne, Am Ramsberg 27, D-5880 Lüdenscheid
AUG		Augat	Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen
AVAN		Avantek	Telemeter Electronic GmbH, Posthof 4, D-8850 Donauwörth
BECK		Beckman	Beckman Instruments GmbH, Frankfurter Ring 115, D-8000 München 45
BERT		Bertram	Bertram, Planegger Str. 125, D-8000 München 60
BONN		Bonn	DiplIng. H. Bonn, Mariahilfplatz 2, D-8000 München 90
B0SCH	В0	Bosch	Robert Bosch GmbH, Bregenzer Str. 12, D-7000 Stuttgart-Feuerbach
B 0 UR		Bourrghs	A. Neye-Enatechnik GmbH, Maria-Theresia-Str. 6 D-8000 München 80
BUR		Burster	B.Präzisionstechnik Hubert Burster, Talstrasse 7, D-7562 Gernsbach
CAN	W	Cannon	Cannon Electric GmbH, Poststr.17, D-7056 Weinstadt
C-ASS		Circuit-Assembly Corp. (CA)	Seltronics GmbH, Hermannstr. 4, D-8014 Neubiberg
CELD		Celduc	Componenta, Rudolf-Diesel-Str.18, D-8012 Ottobrunn
CHERRY		Cherry	Cherry-Mikroschalter GmbH, Postfach 2340, D-8580 Bayreuth 2
CIRC		Circuit Assembly	Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen
CLAB		Centralab	Bodamer GmbH, Südl. Münchner Str. 24 a, D-8022 Grünwald
CLAIR		Clairex Electron.	Ginsbury Electronic GmbH, Ahornstr. 10, D-8012 Ottobrunn
COM		Comatel	Comatel GmbH, Würbenthalerstr.2, D-7032 Sindelfingen
CONT		Contraves	Contraves, Schaffhausener Str. 580, CH-8034 Zürich
CORC		Corcom	Tekelec-Airtronic GmbH, Nussbaumstr. 4, D-8000 München 2
COY	1	Mc Coy	Ginsbury Electronic GmbH, Ahornstr. 10, D-8012 Ottobrunn
CSF	1	Thomson CSF	Thomson CSF GmbH, Fallstr. 42, D-8000 München 70
CTS	KNI	CTS Knights Inc.	CTS Knights Inc., Sandwich, Illinois 60548, U.S.A.
DALE		Dale	Dale Electronics GmbH, Falkweg 51, D-8000 München 60
DEC	1	Digital Equipment	Digital Equipment, Arabellastr. 30.D-8000 München 81
DELE	1	De l evan	Amphenol Europa GmbH, Grünwalder Weg 30, D-8024 Deisenhofen
DIEL	1	Dielektra	Dielektra AG, Kaiserstr. 127, D-5050 Porz

Old Code Manufacturers Actual Our Suppliers Alte Hersteller Code Unsere Lieferanten Aktuelle Bez. Bezeichg. DITRA Di tratherm Ernst Roederstein, Ludmillastr. 23/25, D-8300 Landshut DRAL DRALOR Draloric Draloric Electronic GmbH, Postfach 1180, D-8672 Selb (resistors, capacitors) Draloric, Kaiserstr.21, D-5050 Porz (potentiom.) (former Dralowid) DUNK Dunker Christian Dunker, Postfach 13, D-7823 Bonndorf EBB, Körnerstr. 19-21, D-1000 Berlin 30 EBB EBB EBE Elektro-Bauelemente GmbH, D-7021 Stetten/Filder EBE Elektro-Bauelem. ECI MECA Electronic Components + Instruments, Oskar-Maria Graf-Ring 17, D-8000 München 83 **EDAK EDAK** EDAK Metall,-Geräte u. Apparatebau, Postfach, CH-8201 Schaffhausen EDI Electronic Indeg GmbH, Kemnatenstr. 66, D-8000 München 19 Devices Inc. EHW E.H.W. Elektro- Heiz- u. Widerstands-GmbH, D-5750 Minden/Sauerland ELC0 Elco Deutsche Elco GmbH, Alter Weg 1,D-5241 Niederdreisbach Electronic GmbH, Münchner Str.51, ELEC Electronic GmbH D-8025 Unterhaching E.Sommer Elektronik GmbH, Jahnstr. 43, ELF elfein D-6000 Frankfurt/Main EL MA ELMA Electronic ELMA Electronic AG, Am Schönaich, CH-8620 Wetzikon EMC Technology EMC E. Parzich, Karwendelstr. 8, D-8911 Pürgen ERIE ERIE ERIE Elektronik GmbH, Postfach 20, D-8500 Nürnberg 52 ERNI ERNI ERNI-Elektroapparate, Seestr.9, D-7321 Adelberg **ETTING** Ettinger E.Ettinger, Florian-Geyer Str.1, D-8000 München 70 FAIR Fairchild Electronic 2000 Verbriebs-GmbH, Neumarkter Str. 75, D-8000 München 80 FAUL Faulhaber Dr. F. Faulhaber, Postfach 46, D-7036 Schönaich FERN Fernsteuergeräte Kurt Oelsch KG, Jahnstr. 68-72, dto. --> D-1000 Berlin 11 FISCH Fischer Elektron. Fischer Elektronik oHG, Postfach 2304, D-5880 Lüdenscheid FRÖ Frötherm Frötherm, Glonnerstr. 12, D-8011 Oberpframmern GARD Gardners Transf. Gardners Transformers Ltd. Christchurch/Hampshire BH 23/3 PN, England GENRAD **GERA** General Radio General Radio Comp., Helenastr.3, CH-8034 Zürich G + HGrote + Hartmann Grote + Hartmann, Otto-Hahn-Str. 7, D-5600 Wuppertal 21 GHIEL Ghielmetti Ghielmetti GmbH, Siemensstr.5, D-6392 Neu-Anspach 1 GEIN GI General Instrum. General Instrument Deutschland GmbH, Neumarkter Str. 61, D-8000 München 80 G0SS Gossen Gossen GmbH, Nägelsbachstr. 25, D-8520 Erlangen A. Roßmann electronic-Vertrieb, Keltenstr. 13, **GOW** Gowanda D-8911 Windach GRU Grundmann H. Grundmann, Strassbergerstr. 28, D-8000 München 40 **GRUN** Gruner W.Gruner KG, Postfach 16, D-7209 Wehingen GÜN Günther W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 HAM Hamlin Amphenol Europa GmbH, Grünwalder Weg 30. D-8024 Deisenhofen HAR Harris Kontron Elektronik GmbH, Breslauer Str. 2. D-8057 Eching HARM Hartmann Eduard Hartmann, D-7061 Schornbach

Actual Code Aktuelle Bezeichg	Alte Bez.	e Manufacturers Hersteller	Our Suppliers Unsere Lieferanten
HART H + B	HABR	Harting Hartmann + Braun	
HEIL HELL HERM HIR HOLZ		Otto Heil oHG Hellermann (Hermeyer) Hirschmann Holzinger	D-8000 München 81 Otto Heil oHG, Postfach 446, D-6370 Oberursel P.Hellermann GmbH, Siemensstr.5, D-2080 Pinneberg no more existing/nicht mehr existent(see Günther) R.Hirschmann, Ottilienstr.19, D-7300 Esslingen Max Holzinger + Co. GmbH, Woelkestr. 4,
HP HUG HYBRID	НЕРА	Hewlett Packard Hughes Hybrid Systems C	D-8069 Schweitenkirchen Hewlett Packard, Berliner Str. 117, D-6000 Frankfurt-Niedereschbach 56 Hughes, Riverton, New Jersey, U.S.A. Hybrid GmbH, Luisenplatz 4, D-6100 Darmstadt
INDEG INTER INTERS ISO ITT		Indeg Intertec Intersil Isophon Intermetall(diod	Indeg GmbH, Kemnatenstr. 66, D-8000 München 19 Kontron Elektr.GmbH, Breslauerstr.2,D-8057 Eching Spezial-Electronic, Ortlerstr.8, D-8000 München 70 Radio Rim, Bayerstr. 25, D-8000 München 2 e)Intermetall GmbH, Postfach 840, D-7800 Freiburg s)Intermetall GmbH, Postfach 2907,D-8500 Nürnberg 1
JAHRE JAU JEAN JERM	JAHR	Jahre Jautz Jeanrenaud Jermyn	Richard Jahre, Lützowstr. 90, D-1000 Berlin 30 Karl Jautz, Urbanstr. 34, D-7310 Plochingen Usine Jeanrenaud, 42 Ave. de Gray, F-39 Dôle Jermyn-Industries, Schulstr.36, D-6277 Camberg
KIE KLAR		Kienzle Klar+Beilschmidt	Kienzle GmbH, Führichstr. 70, D-8000 München 80 Klar u. Beilschmidt, Landshuter Str. 52, D-8300 Landshut
KNI		Klasing	Hermann Klasing u. Co., Ettinger Str. 36, D-8070 Ingolstadt see CTS
KNITT KNÜRR KOCH KORD KROM		Knitter Knürr Koch Kordes Kromberg u. Schubert Kristall-Verarb.	knitter-switch, Postfach 8, D-8011 Baldham Knürr KG, Ampfingstr. 27, D-8000 München 80 Koch Elektronik KG, Postfach 1350, D-3257 Springe 1 Norbert Kordes, Elektr.Fabrik, D-3419 Sohlingen Kromberg u. Schubert, Postfach 220 206, 5600 Wuppertal-Langerfeld Kristallyengheiten C. LV.
LAM		Lambda	Kristallverarbeitung GmbH, Postfach 7, D-6924 Neckarbischofsheim Astronic, Winzererstr. 47 d, D-8000 München 40
LI TRON		Litronix	Leonische Drahtwerte AG, Marienstr. 7, D-8500 Nürnberg Omni-Ray GmbH, Ritzbruch 41, D-4054 Nettetal 1
LUMB		Lorch Lumberg	Auriema Distribution GmbH, Uhdestr. 33, D-7100 Heilbronn Karl Lumberg KG, Postfach 1170, D-5885 Schalkmühle 1
MACH MARQ MA SCHUH	1	Machate Marquardt Magnet-Schultz	Ing.J. Machate, Asslkofenerstr.32, D-8017 Ebersberg Marquardt KG, Schalterfabrik, D-7201 Rietheim Magnet-Schultz GmbH, Postfach 1940, D-8940 Memmingen
MATSU0	I	Matsushita Elec. Works Ltd. Matsuo	SDS Elektro GmbH, Fichtenstr.5, D-8024 Deisenhofen Spezial-Electronic, Hermann-Lingg Str. 16, D-8000 München 2

Actual

Old Code Manufacturers

Hersteller

Our Suppliers Unsere Lieferanten

Code

Alte

Aktuelle Bez.

Bezeichg	· -		
MCL		Mini Circuits Lab.	Industrial Electronics GmbH, Klüberstr. 14, D-6000 Frankfurt/Main
MCMU		McMurdo Instr.Ltd.	The McMurdo Instruments Ltd., Ashtead, Surrey, England
MECA		MECA	ECI GmbH, Hochbrückenstr. 10, D-8000 München 2
MEGA		Megatron	Megatron EK, Hermann-Oberth-Str.7, D-8011 Putzbrum
MEM		MEM microelectron.	Unilab Electronics, Hermann-Oberth-Str.7, "
MEN		Mentor	Mentor, Ing.Dr. Paul Mozar, Postfach 15, D-4006 Erkrath-Unterbach
MENZ		Menzel	Dr. Oscar Menzel Nachf., Kronwinklerstr. 36, D-8000 München 60
METRO		Metrofunk	Metrofunk, Schmidt-Ott-Str.5a,D-1000 Berlin 41
MIAL		MIAL	MIAL Elektro.Bauelemente GmbH, Landbergerstr.20, D-8000 München 2
MIC		Micro Associates	Micro Associates Ltd., Cradeck Road, Luton/ Bedfordshire, England
MICRO		Micropac	Nucletron GmbH, Gärtnerstr.60, D-8000 München 50
MILT		Milton	Milton Ross Co. Ltd., 14 New Road Warford, Herfordshire, England
MINL		Minleit	Minleit GmbH, Haagenerstr. 20, D-7850 Lörrach
MON		Monsanto	Alfred Neye-Enatechnik, Schillerstr. 14, D-2085 Quickborn
MONOL		Monolthic Memories	Neumüller GmbH, Eschenstr.2, D-8021 Taufkirchen
MOT		Motorola	Motorola Semiconductor Prod. Inc., Phoenix
			Arizona 85008, U.S.A. or: Motorola Halbleiter GmbH, Fiedlerstr. 5, D-8000 München 71
NARDA		Narda Microwave	Rohde + Schwarz GmbH, Mühldorfstr. 15, D-8000 München 80
NARD		Nardeux	Nardeux, Bôite Postale No. 109, F-37600 Loches
NEC		NEC	Microscan GmbH, Schlossgartenweg 1, D-8045 Ismaning
NE0		Neosid	Neosid-Pemetzrieder GmbH, Langenscheider Weg 26, D-5894 Halver
NEUB		Neuberger	Josef Neuberger Messinstrumente KG, Steinerstr.16, D-8000 München 70
NIEB		Niebling	Niebling, Seeshaupterstr. 56, D-8122 Penzberg
NS	NASEM	National Semicond.	Sasco GmbH, Hermann-Oberth-Str. 16,
			D-8011 Putzbrunn or: Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen
OHMIC		Ohmic Bourns	Bourns AG, Eberhardstr. 63, D-7000 Stuttgart 5
OPCOA		Opcoa	Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen
PAND DA DOT		Panduit	Panduit GmbH, Postfach 1923, D-6380 Bad Homburg 6
PAPST		Papst	Papst Motoren KG, Postfach 35, D-7742 St. Georgen
PHIL		Philips	Philips, Röntgenstr. 22, D-2000 Hamburg 63
PIEZO		Piezo Technology	Ginsburg Electronic GmbH, Ahornstr. 10, D-8012 Ottobrunn
PLES		Plessey	Plessey GmbH, Altheimer Eck 10, D-8000 München 2
PREH		Preh	Preh Vertriebs-GmbH, Postfach 1540, D-8740 Bad Neustadt
QUAK		Quarzkeramik	Quarzkeramik GmbH, Gautinger Str. 23, D-8031 Stockdorf
QUAT		Quarztechnik	Quarztechnik Willi Müller, Metzener Str. 24-26, D-5568 Daun

Actual Old Code Manufacturers Our Suppliers
Code Alte Hersteller Unsere Lieferanten
Aktuelle Bez.
Bezeichg.

SOCA SOLIT S	Dezercing	<u> </u>		
Postfach 2000, D-7980 Ravensburg RATT RATH RATHOR RCA REPE RATION POSTFACE 2000, D-7980 Ravensburg RATE REPE RATION REPE RELIC Reliability RELIC Reliability RELIC Reliability RELIC Reliability RELIC Reliability RES Resista Resista Resista GmbH, Ladmillastr. 15-15, D-8000 München 81 REG RUS	DART		D - f :	P. 41 G. VIII.
RATT RAYTHORACA RAdio Corp. of America, Harrison, N.J. 0729, USA REFE Reliadraht Bheinische Feindraht Industrie Dr. Ing. Schildbach, D-5281 Eckenhager REI Reliability Tisco GmbH, Arabellastr. 13-15, D-8000 München 81 REIC Relcom Vatkins Johnson International, Münchnerstr. 17, D-8031 Planegg RES RES RES Resista Resista GmbH, Ludmillastr. 25-25, D-8500 Landshut RIG RUF RUW Ruf oHG Ruf oHG Russenthal-Isolatoren)no longer existing, existiert nicht mehr Now: Draloric Electronic GmbH, Postfach 1180, D-8672 Selb Sasco GmbH, Hermann-Oberth-Str. 16, D-8011 Putzr- brunn or: Ruf oHG, D-8011 Böhenkirchen RYA Ryam ELMA Electronic AG, Am Schönnich, CH-8620 Wetzikon SASS SASS Schaltbau Schaltbau GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Meßgeriste GmbH, Ingolstädter Str. 67a D-8000 München 46 Schöller Schültsu GmbH, Hohenwaldeckstr. 1, D-8000 München 46 Schöller Schültsu GmbH, Hohenwaldeckstr. 1, D-8000 München 46 Schültsu GmbH, Hohenwaldeckstr. 1, D-8000 München 46 Schültsu GmbH, Hohenwaldeckstr. 1, D-8000 München 46 Schöller Schültsu GmbH, Hohenwaldeckstr. 1, D-8000 München 46 Schültsu GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Meßgeriste GmbH, Ingolstädter Str. 67a D-8000 München 46 Schülter Schülter GmbH, Fichtenstr. 5, D-6024 Deisenhofen Schültsu Siliconis SILI Siliconis Si	MAF I		кагт	Rafi GmbH + Co. Raimund Finsterhölzl,
Radio Corp. of Amer. Radio Gorp. of America, Harrison. N.J. 0759, USA Rhein. Peindraht theinische Feindraht Industrie Dr. Ing. Schildbach, D-5281 Eckenhagen Reliability Fisco GmbH, Arabellastr. 13-15, D-8000 München 18 Relicom Watkins Johnson International, Münchnerstr. 17, D-8051 Planegg Resista Resista GmbH, Ludmillastr. 25-25, D-8500 Landshut Rus Gms. Nov. Draloric Electronic GmbH, Postfach 1180, D-8672 Selb Sasco GmbH, Hermann-Oberth-Str. 16, D-8011 Putz-brunn or: Ruf GmbH, D-8014 Hehenkirchen Rus Ruh Straht Ruhstraht Ruhstrat KG, D-3401 Lenglern RYA Ryam ELMA Electronic AG, Am Schönaich, CH-8620 Wetzikon Sasco GmbH, Hermann-Oberth-Str. 16, D-8011 Putz-brunn or: Ruf GmbH, D-8000 München 90 Schlumberger Melgerite GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Melgerite GmbH, Ingolstädter Str. 67a D-8000 München 40 Schöller Sch	RA YT		Daythean	Postfach 2000, D-7980 Ravensburg
ReFE Rhein.Peindraht Rheinische Peindraht Industrie Dr. Ing. Schildbach, D-5281 Eckenhagen Dr. Ing. Schildbach				PAN Electronic, Schlesierstr.4, D-8021 Taufkirchen
REIL REIC Relcom			Rhein Feindraht	Rhainische Feindreht Industrie P. J. 1992, USA
REI. Reliability Tisco GmbH, Arabellastr. 15-15, D-8000 München 81 REI. Relcom Watkins Johnson International, Münchnerstr. 17, D-8051 Planegg RES Resista (Rosenthal-Isolaturen)no longer existing, existiert nicht mehr Nov: Draloric Electronic GmbH, Postfach 1180, D-8672 Selb Saco GmbH, Hermann-Oberth-Str. 16, D-8011 Putz-brunn or: Ruf oHG, D-8011 Höhenkirchen RUS Rubstraht Ryam ELMA Electronic AG, Am Schönaich, CH-8620 Wetzikon SACO Sasco GmbH, Hermann-Oberth-Str. 16, D-8000 München 79 SASS Sasse D-8011 Putzbruun Dr. E. Sasse KG, Mühlenstr. 4, D-8540 Schwabach Schiltbau GmbH, Hohenwaldecksir. 1, D-8000 München 90 Schümberger Meigeräte GmbH, Ingolstädter Str. 67a D-8000 München 70 Schümberger Meigeräte GmbH, Ingolstädter Str. 67a D-8000 München 70 Schümberger Meigeräte GmbH, Ingolstädter Str. 67a D-8000 München 70 Schümberger Meigeräte GmbH, Ingolstädter Str. 67a D-8000 München 70 Schümberger Meigeräte GmbH, Ingolstädter Str. 67a D-8000 München 70 Schurter AG, Merkhofstr. 8, CH-6002 Luzern Astronic, Winzererstr. 47 d, D-8000 München 40 sec 5M SDS-Elektro-GmbH, Fichtenstr. 5, D-8024 Deisenhofen SEE Spezial-Electronic KG, Oberauer Str. 15, D-8000 München 70 SEMI Semicron International, Siegaundstr. 200, D-8570 Nirmberg 115 SCS Deutschland, Postfach 1269, D-8090 Wasserburg SUL Siliconix Siliconix Siliconix Siliconix, Postfach 1360, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-801 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 65 Thomas CSF GmbH, Fallstr. 42, D-8000 München 70 Neumüller GmbH, Eschenstr. 2, D-801 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 65 Tonnenschein GmbH, Postfach 1180, D-6470 Rüdingen-Tiergarten Now: STET Stettner CSC, CH-1000 Herisau Suhner GmbH, Postfach 740, D-8500 Nürnberg 1 Stock Suhner GmbH, Postfach 790, Post600 Lauf Sther GmbH, Postfach 740, D-8500 Nürnberg 1 Stock Suhner GmbH, Postfach 790, Post600 Nürnberg 1 Stock Suhner GmbH, Postfach 740, D-8500 Nürnberg 1 Stock Suhne			imeritar eritar an c	Diving. Confidence.
Relcom	REI.		Reliabili tv	
Resista Resi	RELC			Watkins Johnson International Münchnerstr 17
Resista Resi				D-8031 Planegg
RUF RUW Ruf ohf oher existing, existict nicht mehr Now: Draloric Electronic GmbH, Postfach 150, D-8672 Selb Sasco GmbH, Hermann-Uberth-Str. 16, D-8011 Putz-brunn or: Ruf ohf, D-8011 Höhenkirchen Ruhstrat KG, D-3401 Lenglern ElMA Electronic AG, Am Schönnich, CH-8620 Wetzikon ElMA Electronic AG, Am Schönnich, CH-8620 Wetzikon D-8011 Putzbrunn Dr. E. Sasco GmbH, Hermann-Uberth-Str. 16, D-8011 Putzbrunn ElMA Electronic AG, Am Schönnich, CH-8620 Wetzikon D-8011 Putzbrunn Dr. E. Sasco GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 70 SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 115 SEL SaF SEL SE SEL SAF SEL SE SEL SAF SEL SEL SEL SAF SEL SEL SEL SAF SEL				Resista GmbH, Ludmillastr. 23-25, D-8300 Landshut
RUF RUW Rnf oHG Rub Rnf oHG Rus Rubstraht RyA Rnf oHG Rus Rubstraht RyA	RIG		(Rosenthal-Isolate	oren)no longer existing, existiert nicht mehr
RUS RUS Ruhstraht RYA Ruhstraht RYA Ruhstraht Ryam EIMA Electronic AG, Am Schönaich, CH-8620 Wetzikon SACO Sasco Sasco GmbH, Hermann-Uberth-Str. 16, D-8011 Putzbrunn Dr. E. Sase KG, Mühlenstr. 4, D-8740 Schwabach Schaltbau Schaltbau GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Beggeräte GmbH, Ingolstädter Str. 67a D-8000 München 46 SCHU Schumter SCH Schumter SCH Schumter SCH Schiler Co., Dreicichstr. 6, D-6082 Mörfelden H. Schurter AG, Werkhofstr. 8, CH-6002 Luzern Astronic, Winzererstr. 47 d, D-8000 München 40 see 3M SDS-Elektro-GmbH, Fichtenstr. 5, D-8024 Deisenhofen SE Spezial-Electronic SE Spezial-Electronic SE SE Spezial-Electronic SE SE Spezial-Electronic SE SE Spezial-Electronic SE SE SSE SSS SG	DITE	DINA	Now:	Draloric Electronic GmbH, Postfach 1180, D-8672 Selb
RINA Ryam EIMA Electronic AG, Am Schönaich, CH-8620 Wetzikon SACO Sasco GmbH, Hermann-Uberth-Str. 16, D-8011 Putzbrunn D-8011 Putzbrunn D-8011 Putzbrunn D-8000 München 90 Schaltbau GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Bengeråte GmbH, Ingolstädter Str. 67a D-8000 München 46 SCHL Schülter Schöller Schöller + Co., Dreieichstr. 6, D-6082 Mörfelden SCOTCH Semicond.Circuits SCOTCH Semicond.Circuits SDS SDS SDS SDS-Elektro-GmbH, Fichtenstr. 5, D-8024 Deisenhofen SE Spezial-Electronic SE Spezial-Electronic KG, Oberauer Str. 15, D-8000 München 70 SEL SAF SEL SEL SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 2 SEMI Semicron International, Siegaundstr. 200, D-8500 Nürnberg 2115 SGS SGS SGS Silicon General SILIC Siliconix Siliconix, Postfach 1340, D 7024 Bernhausen SILIC Silicon Kommiller GmbH, Eschenstr. 2, D-8021 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 65 Thomson CSF GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten SOUR Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens u. Halske STEA (Steatit-Magnesia) Now: STEA (Steatit-Magnesia) Now: STEA Stettner Stocko Hallwarenfabrik, Postfach 81, D-5000 Wünchen 80 No more existing/existiert nicht mehr SUHN Suhner Suhner Suhner GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5000 Wünpertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisan Suhner GmbH, Postfach 900 660, D-8000 München 90 nore existing/existiert nicht mehr	HUF	RUW	Ruf oHG	Sasco GmbH, Hermann-Oberth-Str. 16, D-8011 Putz-
RYA Ryam ELMA Electronic AG, Am Schönaich, CH-8620 Wetzikon SACO Sasco Sasco GmbH, Hermann-uberth-Str. 16, D-8011 Putzbrum Dr. E. Sasse KG, Mühleustr. 4, D-8540 Schwabach Schaltbau GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schülber Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schüller Schul Schüller Schul Schüller Schüller Schüller H. Schurter AG, Werkhofstr. 8, CH-6002 Luzern Astronic, Winzererstr. 47 d, D-8000 München 40 SESCOTCH SDS SDS SDS SDS SDS SDS SEL SAF SEL SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 21 Semicron International, Siegnundstr. 200, D-8500 Nürnberg 115 SCS SGS SGS SGS SGS SGS SGS SGS SGS SGS	RIIS		Dubatnaht	brunn or: Ruf oHG, D-8011 Höhenkirchen
SACO Sasco Sasco GmbH, Hermann-Oberth-Str. 16, D-8011 Putzbrunn Dr. E. Sasse KG, Mühlenstr. 4, D-8540 Schwabach Schaltbau Schaltbau GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 90 Schlumberger Meßgeräte GmbH, Ingolstädter Str. 67a D-8000 München 46 Schüller + Co., Dreieichstr. 6, D-6082 Mörfelden Schüller + Co., Dreieichstr. 8, CH-6002 Lüzern Astronic, Winzererstr. 47 d. D-8000 München 40 see 3M Spezial-Electronic KG, Oberauer Str. 15, D-8000 München 70 SEL SAF SEL Schontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 12 SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 2 Semicron International, Siegmundstr. 200, D-8500 Nürnberg 113 SGS Deutschland, Postfach 1269, D-8090 Wasserburg Valvo GmbH, Postfach 1540, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Siliconix Solitron Solitron Solitron Sonnenschein Sonnenschein Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 no more existing/existiert nicht mehr Stocko Metallwarenfabrik, Postfach 81, D-5000 Wuppertal-Elberfeld Suhner u. Co., AG, CH-9100 Herisan Suhner GmbH, Postfach 900 660, D-8000 München 90 nore existing/existiert nicht mehr				Runstrat KG, D-3401 Lenglern
SASS SCHB Schaltbau Schaltbar Schalt				ELMA Electronic AG, Am Schönaich, CH-8620 Wetzikon
SASS SASS SCHB Schaltbau Schalter Ko., Dreicichstr. 6, D-6082 Mörfelden H. Schurter AG, Werkhofstr. 8, CH-6002 Luzern Astronic, Winzererstr. 47 d, D-8000 München 40 See 3M SDS-Elektro-GmbH, Fichtenstr. 5, D-8024 Deisenhofen SE Spezial-Electronic KG, Oberauer Str. 15, D-800 München 70 SEL SAF SEL SAF SEL SAF SEL SCH Semicron SELSCHON Schalt-Bauelemente, Postfach 2907, D-8500 Nürnberg 2 Semicron International, Siegnundstr. 200, D-8500 Nürnberg 215 SCS Deutschland, Postfach 1269, D-8090 Wasserburg SILIC Siliconix Silicon General Siliconix Silicon General Sivers Lab. Silicon General Sivers Lab. Solitron Sonnenschein Sourian So	SAC0		Sasco	Sasco GmbH. Hermann-Uberth-Str. 16
SASS SCHB Schaltbau Scholler Sch				D-8011 Putzbrunn
Schilbau GmbH, Hohenwaldeckstr. 1, D-8000 München 90 Schlumberger Schlumberger Meßgerate GmbH, Ingolstädter Str. 67a D-8000 München 46 Schüler Schurter H. Schurter AG, Werkhofstr. 8, CH-6002 Luzern Scott Semicond.Circuits Astronic, Winzercrstr. 47 d, D-8000 München 40 Scottch SDS SDS SDS SDS SDS SDS SDS SDS			Sasse	
SCHL Schlumberger Schlumberger Meßgerate GmbH, Ingolstädter Str. 67a D-8000 München 46 Schümberger Meßgerate GmbH, Ingolstädter Str. 67a D-8000 München 46 Schüller Schüller + Co., Dreieichstr.6, D-6082 Mörfelden H. Schurter AG, Werkhofstr. 8, CH-6002 Luzern SCOTCH SCOTCH SDS SDS SDS SDS SDS SDS SDS SDS SDS SD	SCHB		Schaltbau	Schaltbau GmbH, Hohenwaldeckstr. 1.
SCHÖ SCHÜ SCHU SCHU SCHU SCHU SCHU SCHU SCHU SCHU	COLLY			D-8000 München 90
SCHO Schüler Schüler Schüler Schüler Schüler Schurter Schürter Actronic, Winzererstr. 47 d, D-8000 München 40 see 3M SDS-Elektro-GmbH, Fichtenstr.5, D-8024 Deisenhofen SE Spezial-Electronic KG, Oberauer Str. 15, D-8000 München 70 SEL SAF SEL SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 2 Semicron International, Siegnundstr. 200, D-8500 Nürnberg 113 SGS Deutschland, Postfach 1269, D-8090 Wasserburg SIG Signetics Valvo GmbH, Postfach 106 323, D-2000 Hamburg 1 SILIC Siliconix Siliconix, Postfach 1340, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen SILIC Silicon Socapex Socapex Solitron Sonnenschein GmbH, Eschenstr. 2, D-8001 München 70 Neumüller GmbH, Eschenstr. 2, D-8001 Taufkirchen Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 no more existing/existiert nicht mehr Draloric, Kaiserstr. 21, D-5050 Porz Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SCHL		Schlumberger	Schlumberger Meßgerate GmbH, Ingolstädter Str. 67a
SCHU SCHU SCH	SCHÜ		C-h211	D-8000 München 46
SCI Semicond.Circuits Scott Sc				Scholler + Co., Dreieichstr.6, D-6082 Mörfelden
SCOTCH SDS SDS SDS SDS SDS SDS SDS SDS SDS SD				Agturnic Winzers 45, Werkhofstr. 8, CH-6002 Luzern
SDS			Semicond. Official ts	see 3M
SEL SAF SEL			SDS	· · · · · · · · · · · · · · · · · · ·
SEL SAF SEL SEL SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 2 SEMI Semicron Semicron International, Siegnundstr. 200, D-8500 Nürnberg 113 SGS SGS SGS SGS SGS SGS SGS SGS Signetics Valvo GmbH, Postfach 106 323, D-2000 Hamburg 1 SILI Siliconix Siliconix, Postfach 1340, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 67 SOCA Socapex Thomson CSF GmbH, Fallstr.42, D-8000 München 70 Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) no more existing/existiert nicht mehr Draloric, Kaiserstr. 21, D-5050 Porz Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SE		Spezial-Electronic	SE Spezial-Electronic KG. Oberaver Str. 15
SEL SAF SEL SEL-Kontakt-Bauelemente, Postfach 2907, D-8500 Nürnberg 2 Semicron International, Siegnundstr. 200, D-8500 Nürnberg 117 SGS SGS SGS SGS SGS Deutschland, Postfach 1269, D-8090 Wasserburg Valvo GmbH, Postfach 106 323, D-2000 Hamburg 1 SILI Siliconix Siliconix, Postfach 1340, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Silicon General Neumüller GmbH, Eschenstr. 22, D-8021 Taufkirchen Sollit Solitron Sonnenschein Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten SOUR Sourian Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner U. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner U. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr				D-8000 München 70
SEMI Semicron Semicron Semicron International, Siegnundstr. 200, D-8500 Nürnberg 113 SGS SGS SGS SGS SGS SGS Signetics Valvo GmbH, Postfach 1269, D-8090 Wasserburg Valvo GmbH, Postfach 106 323, D-2000 Hamburg 1 SILI Siliconix Siliconix, Postfach 1340, D 7024 Bernhausen SILIC Silicon General Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 63 SOCA Socapex Thomson CSF GmbH, Fallstr. 42, D-8000 München 70 Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach SUR Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach SIEMA (Steatit-Magnesia) Now: Stemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) Now: Stettner Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 STET Stettner Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 740, D-8500 Nürnberg 1 STEN Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SEL	SAF	SEL	
SGS SGS SGS SGS Deutschland, Postfach 1269,D-8090 Wasserburg Valvo GmbH, Postfach 106 323, D-2000 Hamburg 1 SILIC Siliconix Siliconix, Postfach 1540, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 63 Thomson CSF GmbH, Fallstr.42, D-8000 München 70 Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen SONN Sonnenschein Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 no more existing/existiert nicht mehr STEA (Steatit-Magnesia) Now: Stettner Stocko Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	CENT		- ·	D-8500 Niirnberg 2
SGS SIG Signetics Signetics Siliconix Sponetial Solitr Siliconix Sponetial Fachenstr Sp. D-8001 Hamburg 1 Solutinity Fachenstr Sp. D-8001 Hamburg 1 Solutinity Fachenstr Sp. D-8021 Taufkirchen Neumüller GmbH, Postfach 1340, D-8000 München 70 Neumüller GmbH, Postfach 1340, D-8021 Taufkirchen Neumüller GmbH, Postfach 1340, D-8021 Taufkirchen Sounathirchen Solutine GmbH, Postfach 1269, D-8021 Taufkirchen Sounathirchen Solutine GmbH, Postfach 1269, D-8021 Taufkirchen Neumüller GmbH, Postfach 1340, D-8021	SEMI		Semicron	Semicron International, Siegnundstr. 200,
SIG Signetics Valvo GmbH, Postfach 106 323, D-2000 Hamburg 1 SILI Siliconix Siliconix, Postfach 1340, D 7024 Bernhausen SILIC Silicon General Sivers Lab. Sivers Lab. Socapex Thomson CSF GmbH, Fallstr. 42, D-8000 München 70 SOLT Solitron Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen SONN Sonnenschein Sonnenschein GmbH, Fallstr. 42, D-8000 München 70 SOUR Sourian Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) Now: Stettner Stettner Stettner Stettner Stettner Stettner Stettner Stettner Stettner Stocko Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 SUHN Suhner Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	909		80.8	
SILI Siliconix Siliconix Siliconix Postfach 1340, D 7024 Bernhausen Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Philips, Röntgenstr. 22, D-2000 Hamburg 63 SOCA Socapex Thomson CSF GmbH, Fallstr.42, D-8000 München 70 SOLIT Solitron Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr				Sus Deutschland, Postfach 1269, D-8090 Wasserburg
SILIC Silicon General SiV Sivers Lab. Socapex Solitron Solitron Sonnenschein Sourian Sourian Sourian Siemens u. Halske Steatit-Magnesia) Stettner Sow: Stettner Stettner Stettner Stocko Stocko Stocko Stocko Stocko Socapex Solitron Sonnenschein Sonnenschein Sonnenschein Sourian Sourian Sourian Sourian Silicon General Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 Now: Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr				Siliconia Postfack 1710 P. 7001 P. 7001 P. 7001
SIV Sivers Lab. Philips, Röntgenstr. 22, D-2000 Hamburg 63 SOLIT Solitron Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen SONN Sonnenschein Sonnenschein GmbH, Postfach 1180, D-6470 Büdingen-Tiergarten Sourian Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens u. Halske Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) no more existing/existiert nicht mehr Now: Stettner Stocko Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr				Neumiller Gubb Franching O. D. 2004 W. al.
SOCA SOLIT SOLIT SOLIT SOLIT SONN Sonnenschein SOUR SOUR SOUR SOUR SOUR SOUR SOUR SOUR	SIV			Philips. Röntgenstr 99 D-2000 Homburg 67
SONN Sonnenschein Sonnenschein Sonnenschein Sonnenschein Sourian Sourian Sourian Sourian Siemens u. Halske Stemens aG, Richard-Strauss-Str. 76, D-8000 München 80 Now: Stemens AG, Richard-Strauss-Str. 76, D-8000 München 80 Now: Stettner Stettner Stettner Stettner Stettner Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SOCA			Thomsen CSF GmbH. Fallstr 42 D-8000 Minches 70
Sourian Sourian Sourian Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens u. Halske Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) no more existing/existiert nicht mehr Now: Draloric, Kaiserstr. 21, D-5050 Porz STET Stettner Stettner Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld SUHN Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SOLIT		Solitron	Neumüller GmbH, Eschenstr. 2. D-8021 Taufkirchen
SOUR Sourian Sourian Sourian Sourian Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1, D-4006 Erkrath-Unterbach Siemens u. Halske Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) no more existing/existiert nicht mehr Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner Stettner U. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld SUHN Suhner U. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SONN		Sonnenschein	Sonnenschein GmbH, Postfach 1180.
Su. H Siemens u. Halske Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 (Steatit-Magnesia) Now: STET Stettner Stettner Stettner Stocko Stocko Stocko Suhner Suhner Syll (Synvania GmbH) Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 no more existing/existiert nicht mehr Draloric, Kaiserstr. 21, D-5050 Porz Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	COLID		~ .	D-6470 Büdingen-Tiergarten
Su. H Siemens u. Halske Siemens AG, Richard-Strauss-Str. 76, D-8000 München 80 STEA (Steatit-Magnesia) Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner Stettner Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld SUHN Suhner Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SOUR		Sourian	Sourian Elektronik GmbH, Heinrich-Hertz-Str. 1,
STEA (Steatit-Magnesia) STET Stettner Stettner U. Co., Hersbrucker Str. 22, D-8560 Lauf STGR Standard grigsby Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld SUHN Suhner U. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	S n H		Cioment II.l	D-4000 Erkrath-Unterbach
STEA (Steatit-Magnesia) no more existing/existiert nicht mehr Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner Stettner Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld SUHN Suhner Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	5 u. n		Stemens u. Halske	Siemens AG, Richard-Strauss-Str. 76,
Now: Now: Now: Now: Draloric, Kaiserstr. 21, D-5050 Porz Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	STEA		(Steatit-Magnagia)	
STET Stettner Stettner u. Co., Hersbrucker Str. 22, D-8560 Lauf STGR Standard grigsby STO Stocko W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr			•	Draloric Waiseneth 21 D 5050 P
STGR Standard grigsby W. Günther GmbH, Postfach 740, D-8500 Nürnberg 1 Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	STET			Stettner u. Co., Hershrucker Str. 22 h 2560 talk
Stocko Stocko Metallwarenfabrik, Postfach 81, D-5600 Wuppertal-Elberfeld Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	STGR			W. Günther GmbH, Postfach 740 D-8500 Nijembarg 1
SUHN Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	STO			Stocko Metallwarenfabrik, Postfach 81
Suhner u. Co. AG, CH-9100 Herisau Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	arun:			D-5500 Wuppertal-Elberfeld
Syl Synvania GmbH) Suhner GmbH, Postfach 900 660, D-8000 München 90 no more existing/existiert nicht mehr	SUHN		Suhner	Suhner u. Co. AG, CH-9100 Herisau
(Synvania GmbH) no more existing/existiert nicht mehr	cvi		(a	Suhner GmbH, Postfach 900 660, D-8000 München 90
Astronic, Winzererstr. 47 d, D-8000 München 40				no more existing/existiert nicht mehr
	~		Syner tek	Astronic, Winzererstr. 47 d, D-8000 München 40

Actual Code Aktuelle Bezeichg.	Old Code Alte Bez.	Manufacturers Hersteller	Our Suppliers Unsere Lieferanten
TECK		Teckentrup	Teckentrup KG, Wilhelmstr.28,D-5970 Plettenberg 1
TEK		Tektronix	Rohde + Schwarz, Mühldorfstr.15, D-8000 München 80
TEKE		Tekelec	Tekelec Airtronic GmbH, Nussbaumstr. 4, D-8000 München 2
TELC		telcom	telcom-funksysteme GmbH, Marktstr. 15, D-7540 Neuenburg 1
TELED		Teledvne Philbrick	Teledyne Philbrick, Burgstr.6-8,D-6200 Wiesbaden
TELEM		Telemeter	Telemeter Electronic GmbH, Posthof 4, D-8850 Donauwörth
TELEQ		Telequarz	Telequarz GmbH, Landstr.13, D-6924 Neckarbischofsheim 2
TELON		Telonic Industries	Telonic Industries GmbH, Alte Heerstr. 91, D-5400 Koblenz
TEXSC		Texscan	Texscan GmbH, Peschelanger 11, D-8000 München 83
TF	TELE	Te lefunken	Telefunken AG, Widenmayerstr. 19, " " 22
THERM		Thermalloy	Neumüller GmbH, Eschenstr. 2, D-8021 Taufkirchen
TI	TEX	Texas Instruments	Texas Instruments Inc., P.O. Box 5012, Dallas, Texas 75222, U.S.A.
TOYCO		Toyco	Grenz + Co.KG, Bülowstr. 27, D-8000 München 80
TRA		Traub	J. Traub oHG, St.Pauls-Platz 7,D-8000 München 2
TRANSIT	mp arro	Transitron	PAN-Electronic, Schlesierstr.4,D-8021 Taufkirchen
TRON TUCH	TRONS	Tronser	A.Tronser Apparatebau GmbH, D-7543 Engelsbrand 1 see Amphenol
VAC	VACU	Vacuumschmelze	Vacuumschmelze GmbH, Postfach 109, D-6450 Hanau
VAL		Valvo	Valvo GmbH, Burchardstr. 19, D-2000 Hamburg 1
VAR		Varta	Varta GmbH, Nymphenburger Str. 128, D-8000 München 19
VAR0		Varo	Indeg GmbH, Kemnatenstr. 66, D-8000 München 19
VATE	-	Vakuumtechnik	Vakuumtechnik GmbH, Fliessbachstr. 16, D-8520 Erlangen
VID		Videon	S.A. Videon, 95 rue d'Agnesseau, F-92 Boulogne sur Seine
VIT		Vitrohm	Deutsche Vitrohm GmbH + Co.KG, Siemensstr. 7-9 D-2080 Pinneberg
VOGT	· · · · · · · · · · · · · · · · · · ·	Vogt	Vogt GmbH + Co.KG, D-8391 Erlau
WAKE		Wakefield	Wakefield Eng. Inc., Delta Division, Wakefield, Mass. 01880, U.S.A.
WEIG		Weigand	Weigand GmbH, Mittlere Schulstr. 4, D-8520 Erlangen
WEIN		Weinschel	Kontron Elektronik GmbH, Breslauerstr. 2, D-8057 Eching
WEST		Weston Instr.	Weston Instruments Inc., 614 Frelinghuysen Ave.
WJ		Watkins-Jonson	Newark, N.J. 07114, U.S.A. Watkins-Jonson, Manzinger Weg 7,D-8000 München 60
WICK		Wickmann	Componenta GmbH, Rudolf Diesel Str. 18,
			D-8012 Ottobrunn
ZELT			Knott Electronic GmbH, Benediktstr.1, D-8021 Hohenschäftlarn
ZENTRO		Zentro	Zentro Elektronik GmbH KG, Sandweg 20, D-7530 Pforzheim
3 M		Minnesota Mining Manufacturing	Minnesota Mining Manuf. GmbH, Denningerstr. 25, D-8000 München 81

4

١.

С

norm		4
1101111		18:1
gepr		10
bear	9.9.86	Kr.
T.,,,	Detum	Name
198	DATE	NAME

Schlumberger o/s Medgerätebau u. Vertrieb GmbH 8 München 46

RF MOTHERBOARD

361 135 S

Typ: 4031

Rückansicht

Option u. Zubehör

Montage siehe	
Tragebügel Kit	378 256
19" Kit	378 257
Tragetasche Kit	378 258
Tragebügel Kit 19" Kit	236 033

Frontansicht

u. Zubehör siehe el Kit 378 256 378 257 che Kit 378 258 :ARD 236 033

Gerät:

)	Kontrollmai			
09 08 07 06 05 04				Stores	Framed Framed August	1:2,5	Schlumberger Mef Ingolatadier Str 8000 Murch COMMUN Typ: 4031 TEST
02	8906.72	28.4.80	+	Oberfile ne	7900 Datum 301 224,00 boost 344,00		108 80
-	3	Depuis			-	1 26	Erestr V

npositionierung △

verwendet in:

To Controllima B Software and Controllima B Soft

positionierung - 361 136 S/Sa

verwendet in:

1		2			3		4	5		6	7	8
Pos. REF. NO.		Wert VALUE			Bezeichnu Schlumber PART. No	ger	Herstell MANUFA			Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
									1			
K 40	HF-Kal	BLE			382 422		SCHL					
K 41	HF-Kal RF-CAI	BLE			382 421		SCHL					
K 42	HF-Kal RF-CAI				382 423		SCHL					
	ļ							_				
												·· = · · · · ·
	HF-Kat	nel										
K 49	RF-CAE				382 419		SCHL					
	-											
								_				
	-											
				_								
										<u> </u>		
	 											
	<u> </u>				· · · · · · · · · · · · · · · · · · ·							
								-				
												
07 06				Schlun	nberger M	eßgeräte	GmbH	<u> </u>		chaltteillis		Liste besteht LIST CONSISTS
05 04				Ing	olstädter 8000 Mün	Straße 6	7 a	Benennung DESCRIPTION		<u>EL. PARTS LIST</u> Ommunication		of 1
03					Tag	Nen		Bezeichnung				SHEETS Blatt Nr.
		11.3.88	Staff	1988 geschr.	11.3.	NAM Staffl	AE	Schlumberger PART, NO.		01 231 Sa		SHEET NO.
Aus- gabe ISSUE I	AndMittig. Nr. MODIFIC. NO.	Tag DATE	Name NAME	bearb. gepr.		6	91	Herzu Schaltp SEE CIRCUIT (Gerät:	MARRAM Z	01 231 S 031		1

1		2			3		4	5	6	7	8
Pos. REF. NO		Wert VALUE			Bezeichnun Schlumberg PART. NO.	er	Hersteller MANUFACT	Pos. REF, NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
1	RF-MOTH	IERBOARD)		361 135		SCHL		,		
	hierzu see				361 135	Sa					
1	AF-MOTH	IERBOARD)		361 136		SCHL				
	hierzu see				361 136	Sa					
						·					
	HF-Kabe	.1									
K 40	RF-CABL			-	382 414		SCHL				
				-							
w 11	HF-Kab	el			382 415		SCHL				
K 44	RF-CAB	LE			702 417	· 	JUIL				
K 46	HF-Kab				382 416		SCHL				<u> </u>
	RF-CAB	LE							-		
K 48	HF-Kab				382 418	3	SCHL				
	RF-CAB	Lt									
						,					
									Schaltteill		I .
07		Schlumberger Meßgel				Liste besteht LIST CONSIST					
06 04 03					olstädter 3000 Mün			Benennung DESCRIPTION	EL. PARTS L Rahmen, kom		OF Blatt 1
03 02 01				1988	Tag DATE		ime ME	Bezeichnung Schlumberger	202 231 Sa	•	SHEETS Blatt Nr. SHEET NO.
	8088.40	11.3.88	Staf	geachr.	11.3.	Staff	ler	PART. NO. Hierzu Schaltp	ten 004 074 0		- 1
Aus- gabe 188UE	AndMittig. Nr.	Tag	Name NAME	bearb. gepr.		4	9	BEE CIRCUIT Gerät:	DIAGRAM 201 231 S 4031		-
-00VC	MODIFIC. NO.	DATE	INAME	L	L				TV/I		_1

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
Bu 50	Federleiste 32-polig	884 527	SIE	C 20	120 pF <u>+</u> 5 % 50 V-	813 055	SIE
Bu 51	Federleiste 32-polig	884 527	SIE	C 21	120 pF <u>+</u> 5 % 50 V-	8 1 3 05 5	SIE
Bu 52	Federleiste 32-polig	884 527	SIE	C 22	120 pF <u>+</u> 5 % 50 V-	813 055	SIE
Bu 53	Federleiste 32-polig	884 527	SIE	C 23	120 pF <u>+</u> 5 % 50 V-	8 13 055	SIE
Bu 54	Federleiste 32-polig	884 527	SIE	C 24	120 pF <u>+</u> 5 % 50 V-	813 055	SIE
Bu 56	Buchsenleiste zweireihig	884 755	AMP	C 25	120 pF <u>+</u> 5 % 50 V-	813 0 55	SIE
Bu 57	Buchsenleiste zweireihig	884 755	AMP	C 26	120 pF ± 5 % 50 V-	813 055	SIE
C 1	10 nF ± 10 % 50¥-	813 115	STET				
C 2	10 nF ± 10 % 50 V-	813 115	STET	-		240 447	OTET
C 3	10 nF <u>+</u> 10 % 50 V-	813 115	STET	C 30	10 nF + 10 % 50 V-	813 115	STET
C 4	120 pF± 5 % 50 V-	813 055	SIE	C 31	120 pF ± 5 % 50 V-	813 055	SIE
C 5	1 nF + 0,25pF 50 V-	813 247	VITR	C 32	120 pF + 5 % 50 V-	813 055	SIE
C 6	1 nF + 0,25pF 50 V-	813 247	VITR	C 33	1 μF ± 20 % 63 V-	814 070	SEAT
				C 34	10 nF + 10 % 50 V-	813 115	SIE
				C 35	4,7 μF ± 20 % 35 V -	814 074	SEAT
				0.00	4 B C 20 4 25 V	814 074	SEAT
C 10	120 pF ± 5 % 50 V-	813 055	SIE	C 37	4,7 μF ±20 % 35 V-	810 510	ROS
C 11	120 pF ± 5 % 50 V-	813 055	SIE	C 38	27 pF ± 2 %	810 710	
C 12	120 pF ± 5 % 50 V-	813 055	SIE	-			
C 13	120 pF <u>+</u> 5 % 50 V-	813 05 5	SIE	-			
C 14	120 pF <u>+</u> 5 % 50 V-	813 0 55	SIE	-			
C 15	120 pF ± 5 \$ 50 V-	813 055	SIE				
C 16	120 pF ± 5 % 50 V-	813 055	SIE	-			
C 17	120 pF <u>+</u> 5 % 50 V-	813 055	SIE	-			
07		Schlumberger Meß	geräte GmbH		Schaltteilli EL PARTS LIS		Liste besteht LIST CONSIS
05 04		Ingolstädter St 8000 Münck	гаве 67 а	Benennung DESCRIPTK			OF 2 Blatt
03	7088_158_23_10_87_Kr_ 7088_447_47.8.87_W11	Tag DATE	Name NAME	Bezeichnun Schlumberg	•		SHEETS Blatt Nr. SHEET NO.
01 -	6088.12 20.70.86 66	seechr. 14,5,86	Morasch 1	Herzu Sch			1
Aus- gabe ISSUE	And -Mittig. Nr. Tag Name MODIFIC. NO. DATE NAME.	gepr.	Lei	Gerit:	4031		

1		2			3		4	5	6		7		8		
Pos. REF. NO		Wert VALUE			Bezeichnung Schlumberge PART. NO,	er	Hersteller MANUFACT	Pos. REF. NO.	Wer VALU		Bezeichnu Schlumber PART. NO	ger	Hersteller MANUFACT		
D 1	DG 211	CJ			834 474		SILI			at-					
D 2	M 5 L 8	255 AP-	5		835 027		MITSU								
D 3	M 5 L 8	255 AP-!	5		835 027		MITSU						_		
D 4	M 5 L 8	255 AP-	5		835 027		MITSU								
		**													
										2-3-					
L 1	10 µН	<u>. </u>			8 21 01 8	}	GOW								
L 2	10 μΗ				8 21 01 8	3	GOW								
L 3	10 µН				8 21 01 8	}	GOW		`						

		•													
			,												
R 1	15 kΩ ±	<u>+</u> 1 %	,		802 05	1	RÖD								
R 2	10 kΩ	<u>+</u> 1 %			802 04	19	RÖD								
St 82	Stecker	leiste	6 pol		884 74	6	COM								
												2-11-			
		,													
07				Schlun	nberger M	eßgerät	e GmbH			altteillis			iste besteht IST CONSIST:		
05 04				Ing	hlumberger Meßgeräte Gr Ingolstädter Straße 67 a		67 a	Benerinung DESCRIPTION		PARTS LIST		1	of 2		
03	1088 107	17087	104		8000 München 46				basis	.eiterplatte	8		Blatt SHEETS Staft Nr.		
01	7088.117 7088.107 6088.12	7.8.87	Ben.	-geschr.	Tag DATE 14.5.8	N/	me ME SCh	Bezeichnung Bchlumberger PART, NO.	361	135 Sa			HEET NO.		
Aus- gabe	And-Mittig. Nr.	Tag	Name	bearb.	17.7.0	4		Hierzu Schalt SEE CIRCUIT Gerät:	DIAGRAM 361	135 \$. 2		
ISSUE I	MODIFIC. NO.	PIC. NO. DATE NAME GODY. A.G. Gerät: 4831													

Pos.		2 Wert		+-	3 Bezeichnu		4 Hersteller	5 Pos.		6 Wert	7 Bezeichnung	8 Hersteller
REF. NO.		VALUE			Schlumber PART. NO	ger	MANUFAC	1		VALUE	Schlumberger PART, NO.	MANUFAC
Bu 60			-		884 52	20	SIE					
Bu 64	•				884 52	.0	SIE					
Bu 6'	7				884 52	20	SIE					
Bu 69	9				884 52	10	SIE					
Bu 70	6				884 52	29	SIE		,			
	<u> </u>				www							
	<u> </u>	·						_				
C 1	10 nF	± 10 % 5	50 V-		813 11	15	VIT	<u> </u>	,			
C 2	10 nF	± 10 %	50 V-		813 11	15	VIT	C 29	· 10 nF	± 10 ₺ 50 V-	813 115	VIT
C 3	18 nF	± 10 \$!	50 Y -		813 11	15	VIT	ļ				
				-				-				
	-			-				C 32		EB 20 HD 310 G	814 095	RÕD
•	1			+	·			61 1	1 # 41	48	830 240	IΠ
	<u> </u>			+				K 1 ·	HF-Kabe	.1	382 164	SCHL
									IN -Nabe		JOE 104:	JOILE
······································								K 74	Kabe 1 ba	LUM .	384 743	SCHL
V.	1							†				
									· · · · · · · · · · · · · · · · · · ·	•		
	1											
									•			
											·	
			·					<u> </u>			-	Liste besteht
07					nberger M		· · · · · · · · · · · · · · · · · · ·			Chaltteillist EL PARTS LIST	е	LIST CONSIS
06					oletildter 8000 Mün			Beneritung DESCRIPTION Typ	Bes	tückte Leiterplai	ite	or 2
02	2088.6	13.1.88	She	1986	Tag Cydfe	Man		Typ Baseichnung Schlumberger		361 136 Sa		SHEETS Blust Nr. SHEET NO.
	6088.54	16.3.87 7.11.86		gasake.	1	Dietri	gh	PART. NO. Hierze Schelet		<u> </u>	 	1 1
Aug-	And-Mills Nr.	Tag DATE	Name NAME	beer's.		1 4	a-	BEE CHICKET E	031	%1 136 S		-

9000	Nr. MODIFIC.NO.	Tag DATE	Name NAME	gapr.		1 %	4	Gorfat: 14			1
O1 sea	8088,161 6088,50	19.9.88 7,11.86	Kr. Di	geache.	DATE	Persa	E	Schlumberger PART. NO. Hierze Schellple SEE CIRCUIT D			SHEET NO.
04 03 08					8000 MGr	nchen 46	••	Typ:	Bestickte Leiterplatte N-HOTHERBOARE		Blatt SHEETS Blatt Nr.
07 06 06				7	mberger N joistädter	-		Benennung	Schaltteillist		Liste besteht LIST CONSIST
		· · · · · ·			·	· · · · · · · · · · · · · · · · · · ·					
St 75					884 44	9					
											
St 72					884 48	19					
St 71					884 78	13					
St 78					884 53	38					
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
ot 7/					884 78						
St 56 St 57			-		884 78						
Ris 1	(yp R	S-12 V			843 0)U	MATSU				
		0 40 "			010.0		Mt-v-				
R 7	10 kΩ	<u>.</u> 1 %		_	802 04	19	RÖO				
R 6		Q <u>+</u> 1 ≸			802 0	16	RÖD	Tr 1	RÜP 845 M	825 015	PIK
R 5		2 3 1 %			802 0	16	RÖÐ				
R 4	10 kg				802 0		RÖD				
R 3		Ω <u>+</u> 1%	·		802 02 8 02 0		RÖÐ				
R 1	221 9			+	802 04	· · · · · · · · · · · · · · · · · · ·	R ŭio R ŭio	11	BC 550 B	832 127	TEX
REF. NO.	2,74 k	VALUE	 		Schlumbe PART. N	0.	MANUFA	CT REF. NO.	VALUE	Schlumberger PART. NO.	MANUFAC
Pos.		Wert			Bezeichn		Herstell	Pos.	Wert	Bezeichnung	Hersteller

MONTAGE ZENTRIERUNG MONTAGE L4, L7, L13 MONTAGE L9 (von aussen) (von Bauteilseite) (von Bautellsette) 1* ZENTR. Z.Nr.551008 3* ZYL.SCHR D84M* M3*10 1* ZYL.SCHR D84M* M3*18 1* CHASSIS Z.Nr.551002 3* UNT.SCH. D9021 A3.2 1* UNT.SCH. D9021 A3.2 1* FED.RING D127 A6.5 3* HALTERUNG 74D254 1* HALTERUNG 74D258 1* MUTTER D934 M6Me L4, L7, L13 L9 3* ISO.SCH. Z.Nr.524.005 ISO.SCH. Z.Nr.524.005 1 * C83: LP LP Anschlusses mit Schrumpfschlauch MONTAGE L5 MONTAGE LUEFTER isolieren und mit (von Bautetleette) (von vorne/aussen) Silikonkleber 4* LIS.SCHR D966 M4*12 1* ZYL.SCHR D84M* M3*35 auf LP etchern. 1* FED.SCH. D137 A3.2 1* FRONTPL. Z.Nr.551.000 1* ISOLIER-NIPPEL 61B550 1* LUEFTER 8312 L.5 (nach aussen blasend) LP 4* UNT.SCH. D125 A4.3 4* FED.RING D127 A4.3 STECKER: 1* MUTTER D934 M4 Von LOETSEITE MONTAGE DIODEN-KW montleren 1 MONTAGE D13, D14, D19, D20, D27, (von Lostselte) (von vorne) T10,T14,T17,T21 2* ZYL.SCHR D84 M2.5*5 LP 2* LIN.SCHR D7985 M2.5*20 -pol 612D 0320 +15VL 2* FED.SCH. D137 A2.5 2* ABST.BOLZEN AM2.5*5 32. 411 KW 1* HALTER Z.Nr.551006 OVL 0 % 0 DIODEN, TRANSISTOREN 9 1* ISOLIER. Z.Nr.551013 DVL MONTAGE DIODEN-KK 0 28 0 1* KUEHLW. Z.Nr.551003 (von vorne) 1* ISOLIER. Z.Nr.551004 IVO 0 24 0 2* ZYL.SCHR D84 M3*8 DIODEN, TRANSISTOREN 2* FED.RING D127 A3.2 2* HALTER Z.Nr.420003 240 DIODEN-KW Z.Nr. 551003 PWR LED 1* KUEHLK. Z.Nr.551004 22_O PWR on MONTAGE Ty 2 PWR off MONTAGE D16, Ty1 (von vorne) 200 0 +5VL (von vorne) C83-6SXE O ₹ 128uF25V Φ 60 ₹0 1* LIN.SCHR D7985 M3*8 1* ZYL.SCHR D84 M2.5*1Ø Bautel +5VL 1* UNT.SCH. D125 A3.2 1* FED.RING D127 A2.5 1* ISOLIERUNG KU6-650 1* HALTERUNG 420002 +15VL TY2 (auf D16, Ty1 1* ISOLIERUNG 74291054 **ISOLIERUNG** 140 +15VL DIODEN-KW Z.Nr. 551.003 DIODEN-KW Z.Nr. 551003 +15VF 12 0 0 +15VL STECKER 2.5MBCØ3 1 * 0-10 B -15VL KONTAKT FCØ1L 2* -15F 080 -15VL Luefter Kabel gemeinsam in DAZU 060 +5VI Schrumpf. echlauch 130mm +5VF 040 +5VL 1* U-WAND Z.Nr.551001 GRIFF Z.Nr.551011 0-3 O GR. ZUB. Z.Nr.551.012 1* 1* ISOLIERUNG 551009 fuer HV-LP ØVF -

PRUEFHINWEIS

UEmin= 176V → 94V →

ABSCHALTTEMPERATUR (NTC)=90-100°C

PRIMAERSTROMBEGRENZUNG RUF 6A EINSTELLEN

TASTVERHAELTNISBEGRENZUNG AUF 33-35V EINSTELL STROMBEGRENZUNG +15V (gerade Kennlinie) LUEFTERSPANNUNG BEIM KALTEN NG = 6-8V BEI 50°C KK-TEMPERATUR ERREICHT LUEFTER VOLLE

Proprietary data, company confidential All rights reserved Confié à title de secret d'infreprise Tous droits réservés. Confinitiade tous segrede empresarial Reservadus (fotos us direitos. Aperpietus an apposabactivement capet Be rousa corporator sa raun Confiado como secreto industrial. Nos reservanos todos los durechos.

Westergabo sowie Verviolfalingung dieser Unterlage, Vurwertung und Mittelung frorse Ihahlis nicht gestaltet, soweit nicht ausdrücklich zugestanden. Zuwierhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehaltun, insbesondere für den Fall der Patenterreifung oder GM-Eintragung.

Nr.	Stück	Benennung	Wert	Pos.	Sachnummer
1	2	Widenland 5%	270K R1,2	PHIO	55.2700.522.0
2	3		1K P182728,	1	55.1000.322.0
3	1		680E R20,		55. 68ØØ.222.ØZ
4	2		390K R155,154		55.3900.522.0
5	1		27K R19		55, 2700.422.02
6	2		100E R23.11,	l	55.1000.222.0
7	1		8KZ R22		55.82¢¢.322.¢
8	1		7K5 RZ4		55.75ØØ.322.67
9	1		1M R29		55. 1000. 622.0
10	1		145 P25	i	55. 15 \$ \$. 622. \$
U	1		10K R3		55. 1000. 422.0
12	3		ZER R9, 17,10	i	55. 22¢¢. ¢22.¢
13	1		56K R26	- 1	55. 5609.422.00
14	1		2K7 RG,	PHAO	55. 27 <i>00</i> . 322.0
15	1		1K8 R5	RHMO	55.1800.322.0
16	1		75 K R7	PHIL	55.75¢¢.422.¢
17	1		2M2 R156,	i	55. 2200. 622.0
18	2		470E R14,15	2410	55.4700.222.0
19	1		47E RA	PHIC	55. 4760. <u>122.</u> 6
<u>v</u> _	1		4K7 R21	PMIC	155. 47ØØ. 322.Ø
?1	.1		4E7 R ,4	RH10	055. 47ØØ, Ø22.ØZ
25	J		OE	RHIO	55. 6669. 122.02
23	1		6E8 R4	10,16	55.68ØØ.022.02
)4	1		47K R8	10,16	55. 47ØØ.422,Ø2
25	1	Kaustantanbruire	9 luu p13	PHIO	59.0000 010.00
	Ersatzt	ypen am:	bestätigt durch: .		
		lo lo			
_		В	earl Wave (<i>i</i> > /	4V-LP 2
			Saucles L	11. 1	4V-LP 2
-+-			NO ZNr. 5	. ,, e	Blatt

TR Ausq Anderung/Mitteilung

Datum

Name

2 4064 81

4031 POWER SUPPLY 204 031 SaBl. 1/18

Nr. Stück Benennung Wert Sachnummer Diode 26 1114148 12,10, 2410 44.0041.480.010 Proprietary data, company contrauntial All rights reserved Confile à titre de secret d'antraprise l'ous druis réservés. Commicado como segredo empresarial Reservados totos os dininos Apaepeace ara ripoatabotreamai capet lè ci nous a compandata sa raux. Confilado como seuratelo industrial. Nos reservanos todos los deruchos. 27 BA 159 D 9 PMO 44. 0001. 590.510 28 1N4934 EISO & SRP100K PHIO 44.0001.000.790 08,2,5 30 Á SRP 100K 33 10,16 31 Kandensa far 2 202 C16,15 PHS 52.1220.909.700 33 Z 407 C 14,10. RHS 52. 1470.909.200 34 RHS 35 RH5 36 3 OHA C8,17,75 RH5 52.1100.708.200 Wuntergabe sowie Vervieltalingung dieser Unterlage, Ver-wertung und Mittelung ihres Inhalis nicht gestatiet, soweit nicht ausdrücklich zugestanden Zuwidenhanflungen ver-pllichten zu Schädenersatz. Alle Ruchte vorlebaltien, nabe-sondere für den Fäll der Palenterteilung oder GM-Eintragung. INF C18 Λ RH5 57. MOD. 909. 200 38 470pF C19,20 2 24552.1471.009.200 39 1 RH5 52. 1470,708,211 40 41 Blank druht buids 42 1 \$1mm 15,24 38.6100.100.035 43 Widestand 5% 44 stehend Λ ЛK 55 1000.322.021 R18 45 750K R58 55.7500.522.021 Ersatztypen am:..... bestätigt durch: 18.12.87 SMG - 4031 Bearb. Klowe LP, HV-LP Sanderliste Gepr 2 MA Blatt

MGV

Name

ZNY. 551.401 F

4031 POWER SUPPLY 204 031 SaBl. 2/18

TR Ausg Anderung/Mitteilung

Datum

03 6064 81

Stück Wert Nr. Benennung $\mathsf{Pas}.$ Sachnummer le terlate 551.301 C 71.5513.010.471 Common a men una aucette in uniciparia i tota dente reservata dell'instituto dell Diocle 2 ZPD 82 D11 2410 44.0000.870.810 3 ZPD 27 ロマチ PH10 44.0002.700.810 4 3 DA 10,38 PHAO 44. 0010.000.820 EISAR 335 32W46/45 ZHAO 44.0000.460.570 ZY 1.00 2410 44.0000. 460.570 BE102/1,4 6 Λ A9903 RH10 44.0099.030.480 D4 7 2 UF 4007 RH10 44,0040.070.740 D67 8 27D 27 0 44.0000.270.810 9 Λ 10 TL495 IC1 41.0047.180.070 10 6N 136 41.0001.360.040 8101 CNY -21 41.00000.210.130 B 100 moreny una minanany masa masas more passattat, sawait molit kasafickida, tayasisadan Zawishandlangan var-giplichan za Schadimustati. Alis fucile vorbanation, maha sondore tot don Fall der Palentarisahung udat GM Einitsquang. 12 Killhonos 65 B 330 13 48.3000 dood, 190 14 Hausistor 3 BSS 100 T8.7.6 42.9001.000.251 15 BC307 Ersate 2055774 42.0005470.190 16 42-0001.610.180 Λ 3c161-16 71 17 BD 785 75 42.0007.850.220 18 Widestand 5% 27K 2W 55. 2760.425.76¢ R16 19 784 20 500K 3386X R600 56.5000,533,54A 21 Λ 50K rend R609 56.5000.432,511 22 Sozalter 23 38. 7001.002.000 Cuk 1101 51 24 WR 57.1142,750.610 S14 K275 ×900 25 NTC 56 27 2.800 57:1000.270.610 bestätigt durch: Datum 4, 1, 88 SMG - 4031 Beart. HU-LP Gepr. Bestudung Norm. Blatt MA ZNr. 551.401 F MGV 4031 POWER SUPPLY 204 031 SaBl. 3/18

7000 3 31 1431

Ausg. Anderung/Mittellung

Datum

Name

Truptieisi) Laist "Utilipainy Countaeinia!" Sind signii "Fisserichia Coulte à litte de social d'initiapriso Tous droits réservés. Countiede d'ontrapriso Tous droits réservés. Commiscède compresarial Reservésos podés es dientes. Apreparete sus pobasagerasemie cerpett. Be enpass copositions as non Confisdo como sucreto industrial. Nos reservames toules los deuechos

Prentet gause "suwte" veit intensingung "Ulesel" consultage, "veit wertung und Mittellung fhres Inhalfe nicht gestallet, soweit nicht susdictichte zugestsnden. Zuwidenndlungen verplichten zu Schadonessalz. Alle Ruchte vorbuhalten, misbusondere für den Fall der Patenterteilung oder GM-Eintragung, sondere für den Fall der Patenterteilung oder GM-Eintragung.

Nr. Stück Benennung Wert Pos Sachnummer 26 B500 C1400 D500 44. Ø 100 . OO1. 181 u. Koyje 27 FAB00313551 F100 38.7004.003.000 28 AT 1.6 bei 220V FI 38. 7040. 160.040 29 30 2 Dy 33 250V FA772 2 Kaudensator 31 52. 1330.712.200 32 Kondensatos C3.4 1250.912.401 33 1 CAZ 1100.912 400 34 Elro 470UFUSU SXE C9 53. 1470. 404.6M 35 Λ MOD: 505. 600 2 36 53.1220.412.612 37 53. 1100.413. 600 38 39 Sule 40 532.104 Ø LA 66,2532,104.010 41 6.84H 0.8A 66.1680.508.000 42 120MH 342060 1120.710.000 derun of Manch P12,1mm35 mm 43 38. 63 12. 158. 03<u>5</u> abel bud a 44 53115 38.6*000.0*02.000 45 ness un Hes 43 38. 213Ø. ødø, ø6ø 46 47 Kaltarialedose 4300.0071 X1 38. 8ØØ3. ØØ5. ØØØ 48 M3X10 DIN 7985 38. 2*1 30. 610. 10*4 49 Λ M3 x 8 DIN 7985 38. 2*130.008.100* 50 + coletoche he FERNIG A3 38:2230.000.276 38.2/30.000.010 1 51 elle Har NIG 434 M3 Ersatztypen am: . . bestätigt durch: . . Datum 4, 1.88 SMA - 4031 HU-CP Bearb Geor. Bestuckung Norm. M ZNr. 551. 401 F MGV Ausg. Anderung/Mitteilung Datum Name 4031 POWER SUPPLY 204 031 Sa Bl.4/18 S =100 7000 3.81 1431

Commission como segurado mora partiral de como norma segurado como secreto industrial. Nos reservamos todos los derechos.

wortung und haltenlung innes inhate noch gestaltet, soweil nicht ausderforklich zugeständen. Zuwiderhaldungen verpflichten zu Schadeuersalz. Alle Ruchte vorbeitalten, insbesondere für den Fall der Patenterteilung oder GM-Eintragung.

Nr. Stück Benennung Wert Sachnummer Rm. 532.016 B HV-KK 1 34.4*53.2.016.0*32 2 Inansistor 28F CE 72 42.0007.850.220 3 DIN 137 38.2230.000.270 Feclesale: Ge A3 Plas i kschaube 4 38.213**0.006.175** M3X6 Z8 WIC ς sicpud Λ 7429-10-50 6 48.3320.100.000 7 Transistor 8 1 C3262 73 42,0032,620.400 9 M3x10 JIN7485 38.2136 . 010,160 10 Silpad 7429-11-59 00 11 48.3300.100.000 Ersatztypen am:..... bestätigt durch: Datum 7. 4. 88 1/ SHG - 4031 Gepr Λ Norm HV-L7 HV-KK Blatt ME 2NR 551.401 F 1 4031 POWER SUPPLY 204 031 SaBl. 5/18 Datum Name Ausg. Anderung/Mitteilung

conting a mark of grains we emperated. Note that the continued of common Supplied to empressarily Algebra and colous of direitos. Humement are provided reasonal except. But notes a continued common secreto industrial. Nos reservamos todos los derechos.

wertung und enttenting aints inhalis inna gestautet, sowen nicht ausgleichlich zugeständen. Zuwidenhandlungen ver-pflichten zu Schadenersatz. Alle fürchle vorbehalten, insbe sondere für den Fall der Patenterteilung oder GM-Entragung.

Nr. Stück Benennung Wert Rm. Sachnummer über Haget 551.103 C Л 61.2551.103.040 Λ 2 3 Pewindebolson Avd. 1117-6580 38. 3040. 100.861 Un berlesseheibe 4 DINAZ A2.7 38.2227.*6*00.250 Abstands bolzen 5 AH 3 x 7 0 38.39 20.207.00a Abstands bolgen 6 3H3X7 38.3010.200.701 7 Kallel 60mm 46 2 00,75 mm gn lal 38. 6254.075.060 9 2 10 Sollowbe M2518 DIN 84 38.2125. 008.130 20chnseleile ЛЛ A2S DIN 6797 38.2225.000.280 12 Schumpfsolland 04,8 13 15mm 38.63 11.048.015 Kabel 14 ANG26 55mm SW 38.6200.015.055 bestätigt durch: . . . Datum 7,4,88 K SHG 4031 Gepr 1 Blatt **N**K 2 NR 551. 401 F 1 4031 POWER SUPPLY 204 031 Sa \$1.6/18 Ausg. Anderung/Mitteilung Datum Name

6100 7000 3.81 1431

03 6064 81

Proprietary data, company contidential All rights reserved. Countie à titre de secret d'entreprise. Issus droits réservés. Communicade come segrede empresarial Reservados todos so direntos. Apreparers an monstalement en en crepar le prèse vi openiment a si ratue. Confiado como secreto industrial. Nos reservamos todos los derechos.

Weitergabe sowie Vervielfälligung dieser Unterlage, Verwertung und Mittellung ihres Inhalls nicht gestattet, soweit nicht ausdrücklubt zugetstanden. Zuwidenhadinigen verpflichten zu Schadenersatz. Alle Rechte vorbehälten, insbesondere für den Fall der Patenterfollung oder GM-Eintragung.

TR

Nr.	Stück	Benennung	Wert		Pos.	Sachnumme	۲.
1	13	Widerstand 5%	1K K	67 43 35 86 108,	RHIO	55. 1660	b. 322.0°
2				49,80,83,117,120	ł.		
3			58.			_	
4	6		'	R150,78,55,56,57,91	2 PM10	55.4700.	322.02
5	उ		ł	R66,104,42			
6	4			R64,65,103,41			
7	2			R62,38,	1		
8	6		4	R88,61,70,114,60	1	1	
9	7			P63 102, 39, 46, 47, 94,			
10	1			E105,			
U	2			P106,87,	İ	i	
12	3		1	R146, 12+,115	1	i	•
13	3		1	R 144, 93,129	1	į.	
14			1	P147,142,138,81,148	1	1	
15	1		1	R149,	1	55.24 OC	
16							
17	2		10K	P37,139,	RH10	55. 100a	. 422. 6 2
18	2		1	R 143, 133,		55.33¢¢	•
19	5		247	R 52,77,111,116,			
20				<i>S</i> 9			•
21	1		68E	P30,	RH10	55. 68¢0	6. 22. 0 7
ZZ	1		330 E	E R33	1	S5. 33 0 0	
23	1			R141,	PH10	55. 75 <i>0</i> 0	. 422.02
24	2			R 1557, 134,		55. 150 0 .	
25	3			P92,137,136	l i	55.2700.	
				,		-	
	FLSGIZ	typen am:		estätigt durch:			
			Datum 18_1 Bearb. (0	2.87 SMG-40			1.
			Gepr. Horm.	Stecker L Soudolis	نز آ		4
_			nnΦ				Blatt
			MGV	ZN1,55.	1.40	00 E	

4031 POWER SUPPLY 204 031 SaBl. 7/18

Name

Datum

Ausg. Anderung/Mitteilung

Stück Benennung Wert Pas. Sachnummer Widentand 26 5% 470K R140,100 RH10 55. 4700. 522. OZ1 Proprietary data, company contidential All rights reserved Confie & title de secret d'entreprise. Tous droits réservés Commicade como segredo empresarial. Neuevandus fotods us dinotes Quespeacer ava nobasogicuemeix expet Ber pusas coparators as anau Confiedo como secreto industrial. Nos reservamos todos los detuchos. 27 180K PIR. PH10 55.1800.522.021 28 1 910K R110 RH10 55. 9100.522. 021 29 2 RM3, 101,54 150K PH1055. 1500.522. OZA 30 4M7 R 76. PHAO 55. 4700.622.021 31 1H5 R7344 <u>PH1055. 1500.</u>622.021 32 160 K P122 <u>PH10 55. 1600.</u> 522.021 33 56 K Λ R121. PH1055.5600.422.021 34 91K R79 RH1055 9100.422.021 2 35 6K8 R131,130 P41055.6800.322.021 36 1 680 K R 50 1241055.6800.522.021 Weitergabe sowe Vervielfaltigung dieser Univitage, Verweitergen und Mittellung ihrest ihraits nicht gesistlet soweit micht ausdrücklich zugestanden. Zuwidenhandlungen vor pflichenen zu Schadenerstat. Alle Rechts vorfobalien, insbesonders dir den Falseherteilung oder GAM-Eintragung 37 82K 2 RH1055.8200.422.021 R152.53 38 1 680 E R135. RM10 55. 6800.222.021 39 1 330K R132 RH1055.3300.522.021 40 Λ 36 K R 123, RH1055. 3600.422.021 41 47K R 125,124,126 PH1055. 4700.422.021 42 282, 5K1 1 RH-1055. 5100.322.021 2 43 220K R51,34 RH1055. 2200.522.021 44 1 510E R36 PH1055.5100.222.021 45 46 47 48 49 50 Ersatztypen am:..... bestätigt durch: 18.12.87 SMB -4031 Bearb Stecker CP. Gepr. MA Blatt ZNr. 551.400

MGV

Name

Ausg. Anderung/Mitteilung

Datum

2

4031 POWER SUPPLY 204 031 SaBl.8/18

Stück Benennung Wert Nr. Pos. Sachnummer Widestand 1% 4K75 P 71 P410 55 4750.313.021 Proprietary data, company confidential All rights reserved Confie à title de secret d'antreprise. Tous droits (éservés. Commicado como sagredo empresarial Reservados todos os direitos. Aperpareir nan nonsugortelemen caupo SZ 61(81 R 32 PHIO 55. 6810.313. OZA 53 1 4K64 R72, PH1055.4640.313.021 54 3K92 2 R74.75 RH10 55. 3920.313.021 1 PH10 55. 4640. 413. OZA 46K4 285 56 1 RH1055. 2210.413.021 82 K 1 R84. 2 RH1055. 1000. 413.071 10 K O R95.96 58 2 8425 297.98 RH1055.8250.3/3.021 Λ 19K6 R119, RH-0 55. 1960. 413. 021 Λ 60 R118,31 2744 RH10 55.2740,413.021 61 Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mittellung ihres Inhalts nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwieldenhadlungen verplichten zu Schadenerstat. Alle Rechte vorbehalten, misbes sondere für den Fall der Patenterteilung oder GM-Eintragung. 62 1 0F RH1055.0009.127.071 63 64 65 7 Diodo 1N4148 D32,3322,30 PH10 44.0041.480.016 66 252821 67 1N4934 Eisote SRP100K D36 PH10 44.0001.000.790 68 69 70 Kandensator 9 0447 C77, 45,46,32,33 RHS 52.1470.708.211 38506261 72 6 10nF C30,52,53,65,724,RH5 52.1100.809.200 73 3 4n7 C5879 43 RH5 57, 1470.909.700 74 6 75 470pF C78,51,54,69 53,41 RHS 52.1471.009.200 Ersatztypen am: bestätigt durch: . . Datum 18. 12.84 SMQ - 4031 Bearb Gepr. Stecker LP Sourbeliste

MA

Name

2Nr. 551.400

4031 POWER SUPPLY 204 031 SaBl. 9/18

Ausg. Anderung/Mitteilung

Datum

Nr. Stück Benennung Wert Pos. Sachnummer 76 Kandlesortor 2 2n2 C21,31 RHS 52,1220,969,200 Proprietary usid. Company confinences on rights reserved. Could & titre de secret d'unitéprise. Tous droits réservés. Countinado como segrado empresarial. Reservades lodos es direitos. Auventación empresarial reservados confesios antiques capar. Bue righat copara copara copara. Confiado como secreto industrial. Nos reservamos todos los durechos. 77 1 22nF C64, RH5 52. 1220.808.700 78 1nF RHS 52 1100.909, 200 C56, 79 220pF C 66 RHS 52. 1221.009.200 80 2 C70,71 RHS 52.1100.708.200 vveitergabe sowie verviertalingung dieser Uniertage, ver-wertung und Mittellung hires Inhalfs nicht gestatter, soweit nicht ausdrücklich zugestanden Zwiedenhandlungen ver-pflichten zu Schadenersatz. Alle Rechte vorbehalten, nichbe-sondere für den Fall der Patenterreifung oder GM-Eintragung. Ersatztypen am:.... bestätigt durch: Datum 18,12.87 SHQ - 4031 Bearb Gepr Steches LP Saudsliste Norm Blatt ZN1. 551.400

3 6100 7000 3 81 1431

Ausg. Anderung/Mitteilung

Datum

Name

23 6084 91

4031 POWER SUPPLY 204 031 SaBl. 10/18

Stück Nr. Benennung Wert Pas. Sachnummer Ceiter late 551.300 C 71.5513.000.421 Propriessiy Lata, Collipaily Countabilital, Fin Trigins Teasifyod
Coulie & title de secret d'unitabilita.
Coulie & title de secret d'unitabilita
Countiede conse segrede empresail il Resurvato a loude se diestes.
Apreparte san possibocratienné capet de ropas coparabilits as musiconfiede como secreto industrial. Nos resurvantes todos los duruchos Diocle 2 1 ZAD 27 234 BZ102/14 EISONE 2410 44.0000.270.810 3 BZW 46/15 D18.15 2010 44.6000.460.570 4 1N823 2410 44.0008.230.040 108 S PHAO 44.0000.510.810 ZPD 5,1 D17 6 1 ZPD 15 2410 44.0001.500.810 D 24 7 ZPD 6.8 PH10 44. 0000. 680.810 031 8 ZPD 13 D23 2410 44.0001.300.810 9 ZPD 9,1 P410 44.0000.910.810 D29 10 58 140 PH-10 44. 0001. 400. 730 D26 vessurgates sower vestressinguing usses untertagle ves-warlung und Mitlestung thres Inhalfs nicht gestattet soweit nicht ausgefücklich zugestanden Zuwidenkandlungen vor-pflichen zu Schadunerfatt. Alle Ruchts vorlichtällen, miche sondere für den Fall der Patenfesteslung oder GM Eintragung. 12 2 İĈ LM324 1C4,3 41.0003,240.075 3 13 LH 339 166,5,2 41.0007, 390,060 2, 14 TL 431 1097 41.0004.3M.150 Wickersland 5% 15 10E IN NKY R151 55.1000.134 400 16 1K 1N WK4 B128 1000.324.400 \overline{g} 17 3 18 Sule 6,8 nH 0,7 A L86,12 66.1680.508.000 19 3 66. 1030.660.000 L11.10,14 20 Incinsister 21 42.9001.100.250 BSS 110 TR Hausistar 22 355100 TAS. 42.9001.000.251 BC237 Fisate BC547 42.0005.470.190 24 T16,2312,25 ZTX552 Ersatz 3 ZTX 551 TAS, 11, 22 42.0005.520.470 Ersatztypen am: Datum 4,1.88 SMG - 4031 Bearo. Stecres - LP Gepr. . 3 Bestir Clung M Blatt ZNr. 551.400 MGV

Datum

TR Ausg. Anderur S 5100 7000 3.81 1431 Name

4031 POWER SUPPLY 204 031 SaBl. 11/18

2

Stück Nr. Benennung Wert Pos. Sachnummer Traus, stor 26 BD 788 T13.9 42,00007,880,220 Contité à titre de societ d'ontraprise fous droits réservés.

Commicado como segredo umpresarial Ruservados lodos os direitos.

Alempares a pour sociation de partir de la para coupamous as nueva.

Confiado como secrato industrial Nos reservames todos los dueschos. 35×46 720,24 Z 42.0000.460.261 AWS Z 40 455 48.4001.000 020 29 Kulstern FE381 48.3001.000.010 30 31 32 Pot 6 1K 3386X R604.603 56.1000.333541 33 605,601,606,602 34 56.1000.232.510 Hund 100E 2608 35 1 5K R607 *56. 500*0.332*.510* <u>3</u>6 worting and Mittailing their librit includ gentatio, sower nock asserting their asserting their asserting their supplications are pilichin as Schalonossatz. Alle Rechte vorballan, insbesonder litraton fell der Patenteristung oder GM Eintragung. 37 38 Kondensatos 5 68nF MKT1822 52. 1680.812.211 C39 39 40,81,28,29 40 41 Oro skelend 42 1 470 MF25V C74, 53. 1470.404.600 3 43 104F16V C55,4468 53. MOO 502.600 44 100 MF40V CZZ KHC 53. 1160 406.611 45 1 11.00.508.6<u>11</u> 46 2 C80,34 FIOU 1100.401.611 47 100 uF25 V C76 53 MOO. 404.6M 1000µF40V EUR ΛΛ 53 1100.306.600 49 CZ3, 26, 57, 22, 24, 25, 47, 59 48,60,49 Ersatztypen am:..... bestätigt durch: Datum 4. 1.88 Bearb. (Q

2

SHG-4031 steches - LP Gepr. Bestidung Blatt M ZN1. 551.400 E MGV Ausg. Anderung/Mitteilung Datum Name 4031 POWER SUPPLY 204 031 SaBl. 12/18

3 5100 7000 3 81 1431

Stück Benennung Nr. Wert Pas. Sachnummer Elro stellend 3 2200MF16U EXX 53.1220.302.600 ritopinisis) "cata," tolinpany "tummunista" ai "Atjums" is seives.
Confie & litte de secrel d'unitoprise Tous droits réservès.
Commiscède conne segréde amprosanté Reservède docté se d'insien.
Junepantes san pobasable appet Ber nosas corpaneure за naus.
Confiede come sucreto industrial. Nos reservanos todos los duuchos <u>52</u> C35,36,37 53 54 Si-Halfa F101 19782 38. 7004. 012.000 Sicherung 56 HT20 F2 38.7042.000.040 19785 38.7004. OLB. OOD F102 58 MSF 03 X 2 38.800<u>3.625.000</u> 59 Zunge X3, 4 38.8¢¢3.¢23.¢¢¢ 60 eventhijduö"tubwia"veitviiitiigung "tuesel" untertagu, "ver-weitung und Mittelung ihres Inhalts nicht gestattei, soweit nicht susdrücklich zugestanden. Zuwdenhardlungen ver-plichten zu Schadensstatt. Alle Ruchte vorbehalten, nabe-sondere für den Fall der Petenterteilung oder GM-Eintragung. Ersatztypen am: SHQ - 4031 Skeder CP Datum 4.1. 88 Beard. a Gepr Blatt 2Nr. 551.400 E MGV Ausg. Anderung/Mitteilung

TR

S 6100 7000 3.81 1431

Datum

Name

4031 POWER SUPPLY 204 031 SaBl. 13/18

Pas. Stück Benennung Wert Nr. Sachnummer Kullaruhel 551,003 34.4551.003.031 contra à title de secret d'attriparie. En rigine receive Contra à title de secret d'attriparso Tous droits sècerés Commissado como segredo emprosarial Reservadous editorios es l'appendent ara managorisament respet B. e notas coparazons se notas Confrado como secreto industrial Nos reservamos todos los desechos Abstance bobsen Z 12.5x5 AH 2505 38.3010.100.500 ડ Itaus 15 You BUZ MA 717 42. 0000. MO. 300 4 D44 VH10 42.0000.440.490 TZA 5 2 BUW 50 T14,10 42.0000.500.200 Diode 6 4 SB1045 D20,19,27 44. *0010.450.750* 7 44.0002410.780 SD 241 P D14 8 FEP303P D13 44.0000.300.670 Thymotor ZN 6502 43. 0065.020.020 Thy 12 Halferung 10 551.006 35. 8551.006.031 М 420.003 Ø 35.8420,003,011 waring und Mitigliung their Inhalts nicht gestatut soweit nicht eusdrücklich zugestanden. Zuwidenbandungen wer-plitchluten zu Schaubenstatt. Mit Ruchte volchbalten, mube sonders für den Fall der Pannfarteilung oder GW Eintreugung. Λ C'12 420.00Z <u>35.8420.002.041</u> 13 NTC 150 K K45 RS01 57. M50.BSD.6DN Lockland Schmung 14 91,6 me 100 iun 38.6*311.016.100* Scheraube M25x20 38.2125.*025.130* DIN 84 16 17 Solseung 551.013 B 36.7551 013.01A 18 A 551.014 8 36. 7551.O14.D11 19 Schraube 42.5×10 20 D/N84 38.2125.*610.130* 38.2225. bood. 260 Federing 21 42,5 DINIZZZ <u>22</u> M3x8 DIN 7985 38.2*13*0.008.*100* Berlacodo be 23 DIN 125 P 432 38.22*30.0*00.2*5*0 24 resurfiel KU6-650 48. 23Ø3.423.*1*Ø2 25 Pad 7429 -10 -54 48.3220.100.000 bestätigt durch: . . . Datum 4,1.88 SHE 4031 Beart. Gepr. 1 Kuldwerkel

MA

MGV:

Blatt

ZNY 551.400 E

4031 POWER SUPPLY 204 031 Sa Bl. 14/18

3 5100 7000 3.81 1431

TR

Ausg. Anderung/Mitteilung

Datum

1 2

Stück Nr. Benennung Wert Pas. Sachnummer Drossel 1 551.100 O 62.2551.100.010 45 riuginari y data; "Utilipariy" Cunitoelina! "Fran "rugina "Tasériyud" Coulfe & title de secrel d'unitepriso Tous drois (éservés. Commisado como segrado emprosarial Resurvados todos os direitos. Aparentes ser a Resurvados todos os direitos. Aparentes ser a para corporance sa resurvados cono sucreto industral Nos reservanos todos los duruchos. Ringboln 2 29 551.101 B 2551. 191.010 3 551.102 A 62. 2551.102.020 4 551,104 9 62. 2551. 104. 610 524.025 BCL 7 62.2524.025.030 Schraube 6 3 H 3×10 DIN 84 HS 38.213*6.010.131* 7 M3x35 DIN84 HS 38.2130.035.131 8 43x18 DIN84HS 2130.018.131 9 Beilagodeibe 942 DIN 125 38. 2243.000<u>,250</u> Haltening 10 65 1000.004.000 740254 740258 И *5. 1000* .002.000 received unitariate unitariate unitariate ver-warlung und Mittaliang thes Inhalt nicht gestatte, sowal nicht susdrucklich zugestanden Zuwidenhandlungen ver-pilichten zu Schaubenstatz. Alle Ruchte vorlichtillen, imbe-sonders lurden Fall der Patenferselung oder GM-Entragung. 12 Isoliencher be 524.005 Ø 2524.005.0M Ederscheiße 13 M3.2 DIN 137 38.2232.000.270 14 61.8550 <u>48. 23,13. 947.153</u> 15 Sileface W 42.5x5 DIN84 38.2125.005.130 16 Stecher 32pol 38.8**00**3.021.000 416120 XG Avedel 17 1131 -0310 38.4009.002.000 18 Generale Balen Audel 25×8 1117-6580 38. 3040. 100. 801 Beilagscholbe 19 A2,7_ DIN 125 38.2227.000.250 20 Soliaule M3x8 DIN 7985 38.2*130.*008*.100* 11 remtrerle 38.4400.001.000 Kaus Yantauburde 90,5 mm R 107,69 22 241059.0000.005.001 91.m 23 RH10 59 0000.010.002 244,45.68 Rachbaud rabel 4 pol. 90 mm 38.6404.050.090 25

Datum 4. 1. 88

SMB - 4031

Bearb Q

Fish gung Skecker - CP

Norm.

Norm.

SIATE

Ausg Anderung/Mitteilung Datum

Name

Datum 4. 1. 88

SMB - 4031

Fish gung Skecker - CP

Ausg Anderung/Mitteilung Datum

Name

4031 POWER SUPPLY 204 031 Sa B1. 15/18

bestätigt durch:

5 £100 7000 3.81 1431

Nr. Stück Benennung Wert Pas. Sachnummer 26 2 Schraube 425x6 DINSK 38.2125.006.130 Propiessing of the Control of the Co M3X8 DINS4 38.7130.008.136 28 A32 DIN127 38,2232.000.260 29 551.004 AB 34.45*51.0*04.021 30 Elko 31 120mf2SV SXE 53.1120.404.600 Solumpfsollan th 01,6mm 25mm 38.63/1.016.025 Kalsel 33 85mm 001 38.6206.100.085 34 3S <u>36</u> *weitellyzig*Tewig*Peltilaitanigung*Tieebi*Unientage, vertwer wertung und Mittellung ihres Inhalis nicht gestattel, soweit nicht seedlecklich zugestanden. Zuwidenhaftungen ver-pllichten zu Schadenneratz. Alle Rechte vorbohalien, niches sondere itst den Fall der Patenterteilung oder GM-Eintragung. 57 38 39 40 Ersatztypen am: bestätigt durch: SMQ - 4031 Fertigung Stector - LP 5.1.38 Bearb Gepr. Norm. Blatt M 2 E Ausg. Anderung/Mittellung Datum 4031 POWER SUPPLY 204 031 Sa 16/18 Name

S =100 7000 3.81 1431

Trupinatary Leas Control Contr

evertenyare suverer verventanigung Linebel Tunteriäufg, Veirevertrag und Aufliedung hiese Inhalie nicht gestallet, soweit
nicht Bestätischlich zugestanden, Zuwiderhandlungen verplichten zu Schadunersatz Alle Ruchle vorbohallen, insbesondere lüt den Fall der Palenterteilung oder GM Eintregung.

Stück Nr. Benennung Wert Pas. Sachnummer Haut latte 551.000 BAC 33 2*551.66*6.042 2 Papet 8312 38.7003.60*5.000* S 4 44x 12 DIN 966 38.7140.612,124 4 erlegsderbe 94.3 DIN 125B 38. 22**4**3. 000.250 5 A4,3 DIN127B 38.224*0.000*.26*0* 6 4 3/1/934 38.2140.000.010 7 2,5 HBC -03 38.8001.001.000 Ē leder FC 0.1 L 38.8<u>000.00</u>2.000 9 Fland 100 uu 38.63 M. 040 100 10 90 um SW B8.6200.150.090 90 um 38.62<u>02 .150.090</u> 12 12 H8142tx 7 38.8006.002.000 13 Rudise 1 09-0457-25-03 *38.8001.024.000* 2 Schum pf Schlaud \$4mm 14 15 mm 38.6312 OLB: 015 15 551.011 0 3551.011.011 16 551.0120 33. 3551.012.011 17 M25×10 JUSE 38.2125.010.130 È 18 43x8 DIN7985 38.7130.008.100 Halssah aulie 19 6 21100-379 38. 2925 616, 984 2 Kontakt 12 H 686 38.4001. BAS. DOD 2,1 Ersatztypen am:.... bestätigt durch: Datum 5.1.88 SHG -4031 Bearb Gepr Tran platen vormanto je M Blatt ZNr. 551.400 MGV Ausg. Anderung/Mitteilung Datum 4031 POWER SUPPLY 204 031 Sa Bl. 17/18 Name

Stück Benennung Nr. Wert Pas. Sachnummer U- Wand 551.001 A 33.5551.661.671 Coulide à title de secret d'antrapare considera desir réservés.

Coulide à title de secret d'antrapareo Tous d'onts réservés.

Committedo como segredo empresarial Rassuradors todos os direntes.

Aus apparent ana monsportamental empet d'a ripara corporable sa reservente des des consideras. 551.002 & D 33.5551.002.051 551.008 Q 35.8551.008.011 551.009 36. 7551. 009.021 DIN 965 38.2130.006.110 6 38.4070.032.174 7 DIN 934 38.213¢. ¢¢¢ ¢1¢ 4 Schraube 8 M3x6 DIN966 38.2130.006.124 Abdeding 1C 551.0100 33.3551.010011 U MS. D1N934 38, 2160. odd.d/o wettung und Mitteitung hres inhalt nicht gestattet, sowert nicht ausdücklich zugestanden. Zweidenhadlungen ver-pflichten zu Schadungsatz Alle fluchte vorbubatten, mübe sondere für den Fall der Patanteriellung odes GM Eintragung. 18 12 M25x5 DIN965 38.2125.005.110 13 14 Fecleraina 15 Л A6 38, 2260.000, 260 D1N127 Ersatztypen am:.... bestätigt durch: Datum 5.1.88 SHG - 4031 Bearb. Gepr. 1 Enduantage Blatt M 7Nr. 551, 400 MGV

Ausg. Anderung/Mitteilung

3 100 7000 3.81 1431

Datum

Name

4031 POWER SUPPLY 204 031 Sa Bl. 18/18

On the circuit board of modulation generator A there is AF generator A, the summing and output amplifier for the TX mode, the summing amplifier for the RX mode, the AM RF level control, the preemphasis network and the deviation compensation stage. The signals of generator A, generator B and an external signal can be superimposed on the summing amplifiers.

1. Modulation generator A (sinewave generator)

Modulation generator A consists of a digital synthesizer (gate array) in which the signal is first conditioned digitally and with crystal-based accuracy. An arithmetic unit determines the binary sample values for the sinewave time function that is to be generated.

A sinusoidal oscillation is then produced from the binary sample values by a digital/analog converter. A subsequent, switchable lowpass filter smooths the signal so that a frequency-stable oscillation of high signal quality is produced which can be set in discrete increments.

Gate array GA1 on the circuit board includes a phase accumulator, latches (μP -compatible 8-bit bus) and a switchable frequency divider for the system clock.

1.1 Phase accumulator

The numeric value of the frequency setting is fed to the phase accumulator as the increment δ . The output is incremented by the value δ with each clock pulse from the divided oscillator frequency. When the range of values of the accumulator is exhausted, the output jumps back to 0... δ and the process commences again. In this way a numeric sequence is produced with a sawtooth-shaped characteristic. The slope of the sawtooth and thus its frequency is given by the increment δ from the μP and by the switchable frequency divider, which divides the frequency of the step sequence by 4 or 40.

Ref. No. 208 029 F	Sub Modulation Generator A	Date	
Type 4031	Unit	Sheet	1/6
Schlumberger	Fun	ctional Des	scription

1.2 D/A conversion (sine table, D/A converter)

The digital sawtooth generated in the phase accumulator is converted into a digital sinewave equivalent by EPROM P1. This includes a sine table for the range 0 to 360° with 8-bit amplitude resolution. The data are applied to a digital/analog converter on whose output a finely graded, staircase-shaped sinewave voltage of the required voltage and of constant amplitude appears (approx. 10 $\rm V_{\rm pp})$.

1.3 Electronic attenuator (level control)

The voltage on the interface between the generator and attenuator is approx. 10 $\rm V_{pp}$. This attenuator consists of a fine divider 0-1000 and a rough divider x1/x0.2/x0.02/x0.002. The fine divider is configured as a multiplying binary 10-bit DAC in which only 1000 increments are weighted in order to produce an integral division of 0-1000. The following rough divider works in decades and in this way high resolution is achieved at small voltages.

1.4 Lowpass filter

A lowpass filter follows that can be switch-selected in its cutoff frequency to reject interference through amplitude and phase instability.

1.5 Frequency ranges

The generator has two frequency ranges:

30.0 Hz to 2.999 kHz 3.00 kHz to 29.99 kHz

These are produced by the switch-selected division of the crystal clock frequency. Fine division of the frequency in the ranges is by different increments:

f = 4 x Increment
Division factor

Range	Division factor	Increment
30.0 Hz to 2.999 kHz	40	Set frequency x 10
3 kHz to 29.99 kHz	4	Set frequency x 1

Ref. No.	208 029 F	Sub	Modulation Generator A	Date	
Туре	4031	Unit		Sheet	2/6

Schlumberger

Functional Description

The clock oscillator can be switched off by a control line to keep interference in the unit as low as possible.

Examples:

- a) f = 512 Hz
 - 1. The frequency is in the range 30.0 Hz through 2.999 $\ensuremath{\text{kHz}}\xspace$. The oscillator frequency of 2.097152 MHz is divided by 40 --> $52.429 \text{ kHz} = 2^{19} \text{ Hz/10}$. 2. The increment is $5120 = 2^9 \times 10$.

 - 3. Because the phase accumulator has a length of 2^{19} bits, it is full

$$\frac{2^{19}}{2^9 \times 10} = \frac{2^{10}}{10} = 102.4 \text{ increments.}$$

The sawtooth frequency and thus the output frequency are

$$\frac{52.429 \text{ kHz}}{102.4} = 512 \text{ Hz}.$$

- b) f = 4096 Hz
 - 1. The frequency is in the range 3 kHz to 29.99 kHz. Division factor: 4 --> f_{clock} = 524.288 kHz 2. The increment is 4096.

3.
$$f_{out} = 4 \times \frac{Increment}{Division factor} = 4 \times \frac{4096}{4} = 4096 Hz$$

Ref. No. 208 029 F	Sub Modulation Generator A	Date
Type 4031	Unit	Sheet 3/6

Schlumberger

Functional Description

2. Output amplifiers

There are separate output amplifiers for the RX and TX modes.

2.1 TX mode: TX amplifier

The voltages of the two modulation generators A and B and an external modulation voltage can be added by op-amp A12. In this way dual modulation is possible. Transistors T11 and T12 serve as a booster for high output currents, T10 and T13 limit the output current to admissible values in the event of a shortcircuit. An output transformer on the motherboard (361 136) between the amplifier and output socket balances the output voltage. The transformer can be switched between 1:1 and 1:10. The output voltage is max. 5 $\rm V_{rms}$ into max. 200 $\rm \Omega$.

2.2 TX DC amplifier

The TX DC amplifier (All) supplies the same output signal DC-coupled to the DC OUT socket (Bu29) as the TX amplifier to the MOD GEN socket on the front panel. If the output transformer is switched to 1:10, the TX DC amplifier is also switched to 1:10.

2.3 RX mode: RX amplifier

The voltages of the two modulation generators A and B and an external modulation voltage can be added by op-amp AlO. In this way dual modulation is possible. The summed signal appears on the RX MOD socket (Bu27) on the circuit-board backplane. Modulation is defined as a peak value, so the amplifier produces max. 2 $\rm V_p$ for 100% AM and 2 $\rm V_p$ for 40-kHz FM deviation into 600 $\rm \Omega$.

Ref. No. 208 029 F	Sub Modulation Generator A	Date
Type 4031	Unit	Sheet 4/6

2.4 AM modulation

The RX voltage, added to a DC voltage (5-V reference), produces the signal for amplitude modulation. The electronic AM attenuator also sets the RF level when there is no modulation.

2.5 FM modulation

The compensation of FM deviation is necessary at different carrier frequencies. Finely graded division of the RX FM signal is produced with a multiplying D/A converter.

2.6 M modulation

The preemphasis network makes it possible to generate phase modulation by means of the FM modulator.

		Sub	Modulation	Generator	A	Date	<u> </u>
Туре	4031	Unit				Sheet	5/6
							<u> </u>

Actual Value		Sheet	1/8
Set Value	2.097152 MHz ± 84 Hz 524.288 kHz ± 21 Hz 52.429 kHz 0 mV ±1 mV		Unit Modulation Generator A
Adjust- ment	33	gng	Unit Modu
Frequency	30	208 029 A	Type STABILOCK 4031
Measuring Point	10 11 12 12	Name Ref.	Type
Measuring Procedure	Check oscillator and frequency divider 4031 setting: Mod. frequ. 16.384 kHz/5 V _{TMS} Jumper set 1-2 Mod. frequ. 1 kHz 4031 setting: Mod. frequ. 16.384 kHz/5 V _{TMS} Check quantized sinewave for voltage spikes and dips Offset adjustment 4031 setting: Mod. frequ. 16.384 kHz/5 V Jumper set 2-3	Date Name Issue Alteration No. Date	
Necessary Equipment	Oscilloscope, Grandio analyzer, DVM 7150 or better Frequency counter DVM COUNTER COUNTER DVM COUNTER D	Issue Alteration No.	
Schlu	Adjustment and Test Prod	cedu	ıre

Actual Value		Sheet	2/8
Set Value	5 V ±5 mV 0.1 V ±1 mV 1 V ±10 mV 0.5 V ±5 mV 10 mV ±1 mV 0 mV ±1 mV 5.657 V ±12 mV		Unit Modulation Generator A
Adjust- ment	R31 R128	Sub	Unit Mod
Frequency	1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ	208 029 A	Type STABILOCK 4031
Measuring Point	Bu29 Bu29 Bu29 Bu29 Bu29 Bu29	Name Ref. No. 2	Type S
		Alteration No. Date N	
Measuring Procedure	ev.	Issue Altera	
Measu	Amplitude adjustment Generator A 4031 setting: Jumper set 1-2 Mod. frequ. 1 kHz/5 V Mod. frequ. 1 kHz/0.1 V Check of amplitude setting 4031 setting: Mod. frequ. 1 kHz/1.0 MV Mod. frequ. 1 kHz/1.0 mV Mod. frequ. 1 kHz/1.0 mV Mod. frequ. 1 kHz/1.0 mV Mod. frequ. 1 kHz/1.0 mV Mod. generator A off RX mod. adjustment 4031 setting: RX Mod. frequ. 1 kHz/4.0 kHz dev. Mod. frequ. 1 kHz/4.0 kHz dev.	Name	
	Amplitude adjustment 6 4031 setting: Jumper set 1-2 Mod. frequ. 1 kHz/5 V Mod. frequ. 1 kHz/0.1 Check of amplitude set 4031 setting: Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/10 Mod. frequ. 1 kHz/40 kH	n No. Date	
Necessary Equipment	MA M	Issue Alteration No.	
Schlu	mberger Adjustment and Test Prod	edu	re

						Sheet		3/8
2.828 V ±14 mV	5 V ±15 mV		5 V ±170 mV 5 V ±170 mV	0.5 V ±17 mV 0.5 V ±17 mV			ulation Generator A	
	R152						Sub Unit Mod	<u>:</u>
1 kHz	1 kHz		1 kHz 1 kHz	1 kHz 1 kHz		208 029 A		TAME STABILOCK 4031
Bu27	St64/17a		Bu29 St64/17a	Bu29 St64/17a		Name Ref.	Ö.	1
						Date		
		, (1.41 V _{rms})	on off	of off		Alteration No.		
ev.		KHZ/2 V	o erator A erator A	lerator A lerator A		Issue		
z/40 kHz c	ustment z/5 V	ustment , EXT on. socket:]	mp, TX amp ger ger	ger ger		Name		
ck of RX mod. frequ. 1 kH	umplitude adj setting: TX frequ. 1 kH	. mod. TX adj setting: TX y to EXT MOD	k of TX DC a l setting: 12/1 V	1z/0.1 V		Date		
Chec Mod.	1X 403.	403 App	Che 403.	2 Z		ration No.		
		Audio analyzer				Issue Alte		
	1 kHz	Bu27 1 kHz St64/17a 1 kHz R152	Check of RX mod. Bu27 1 kHz Mod. frequ. 1 kHz/40 kHz dev. Bu27 1 kHz IX amplitude adjustment 4031 setting: TX TX Mod. frequ. 1 kHz/5 V And. frequ. 1 kHz/5 V St64/17a 1 kHz Ext. mod. TX adjustment 4031 setting: TX, EXT on. Apply to EXT MOD socket: 1 kHz/2 Vp (1.41 V _{rms})	Check of RX mod. Bu27 1 kHz Mod. frequ. 1 kHz/40 kHz dev. IX amplitude adjustment 1 kHz 4031 setting: TX St64/17a 1 kHz R152 R152 Ext. mod. TX adjustment 4031 setting: TX, EXT on. Apply to EXT MOD socket: 1 kHz/2 Vp (1.41 Vrms) Apply to EXT MOD socket: 1 kHz/2 Vp (1.41 Vrms) Check of TX DC amp. TX amp q031 setting: 2 kHz/1 V generator A on generator A off St64/17a 1 kHz 1 kHz	Check of RX mod. Mod. frequ. 1 kHz/40 kHz dev. Bu27 1 kHz IX amplitude adjustment 4031 setting: TX Mod. frequ. 1 kHz/5 V St64/17a 1 kHz Ext. mod. TX adjustment 4031 setting: TX EX on. Apply to EXT MOD socket: 1 kHz/2 Vp (1.41 V _{rms}) Check of TX DC amp. TX amp 4031 setting: 2 kHz/1 V generator A on generator A of generator A of St64/17a 1 kHz 2 kHz/0.1 V generator A of generator A of St64/17a 1 kHz St64/17a 1 kHz 2 kHz/0.1 V generator A of generator A of St64/17a 1 kHz St64/17a 1 kHz 2 kHz/0.1 V Generator A of St64/17a 1 kHz St64/17a 1 kHz 3 kHz/0.1 V Generator A of St64/17a 1 kHz St64/17a 1 kHz 3 kHz/0.1 V Generator A of St64/17a 1 kHz St64/17a 1 kH	Check of RX mod. 1 kHz 1	Tx amp tude adjustment Amp A	Circk of RX mod. 1 kHz 2 kHz dev. 1 kHz 2 kHz 2 kHz 3 kHz 2 kHz 3 kH

Actual Value			Sheet	4/8
Set Value	5.657 V ±16 mV	·		Unit Modulation Generator A
Adjust- ment	R259		gns	Unit Modu
Frequency	1 kHz		208 029 A	Type STABILOCK 4031
Measuring Point	St64/24a		Name Ref.	Туре
Measuring Procedure	Ext. mod. RX adjustment 4031 setting: RX, EXT on. Feed in on EXT socket: 2 Vp (1.414 V _{rms})/1 kHz		Date Name Issue Alteration No. Date	
Necessary Equipment	Audio ana lyzer		Issue Alteration No.	
Schlu	mberger	Adjustment and Test Proc	edu	re

)	Actual Value									Sheet	8/9
	Set Value			5 V _p (3.536 V _{rms})	5 V _{rms} ±170 mV	5 V _{rms} ±170 mV	5.657 V ±16 mV	0 mV ±1 mV			Unit Modulation Generator A
	Adjust- ment						R258	R198		4	Unit Mod
~	Frequency			1 kHz	1 kHz	1 kHz	1 KHZ	8		208 029 A	Type STABILOCK 4031
	Measuring Point			St64/23a	St64/17a	Bu29	St64/24a	St64/24a		Name Ref.	Туре
	Measuring Procedure	Signal path generator B (if generator B present)	4031 setting: TX Generator B: 1 kHz/5 V	Check of input voltage on modulation generator A	Check of IX amplitude	Check of IX DC amplitude	Generator B RX adjustment 4031 setting: RX Generator B: 1 kHz/40 kHz dev.	<pre>RX DC offset adjustment 4031 setting: RX, EXT. mod. DC-coupled 0 V on EXT socket (short)</pre>		Date Name Issue Alteration No. Date	
a.e.	Necessary Equipment	WMO						MVQ		Issue Alteration No.	
	Schlu	mberger						Adjus	stment and Test Pro	cedi	ure

Actual Value		1		8/9			
Set Value	-7.852 V ±20 mV Vest 0.3536 Vtest ±5 mV 5.656 V ±15 mV			Unit Modulation Generator A			
Adjust- ment	R203		Sub	Unit Mode			
Frequency	1 kHz R		208 029 A	Type STABILOCK 4031			
Measuring Point	St64/16b St64/16b St64/16a	Name Ref.	No.	Type			
Measuring Procedure	AM RF attenuator adjustment 4031 setting: RX Mod. frequ. 1 kHz/1 kHz FM, RF level +5 dBm (RF DIRECT) 4031 setting: RF level -1 dBm (RF DIRECT) Mod. frequ. 1 kHz/0% AM Measure V _{test} (-3.9 V) Mod. frequ. 1 kHz/0% AM St64/16b must be connected to RF output stage or loaded with 10 kg. FM compensation adjustment 4031 setting: Mod. frequ. 1 kHz/40 kHz dev., RF frequency 500 MHz	Alteration No. Date Name Issue Atteration No. Date N					
Necessary Equipment	W _A	Issue Altera					
Schlu	Adjustment and Test Procedure						

Actual Value								Sheet	8/2	
Set Value	^V RX-ЕМ	VRX-FM ±3 mV	0.848 V ±4 mV			5.0 V ±20 mV	5.00 V ±20 mV 4.96 V ±20 mV 4.85 V ±20 mV 4.65 V ±20 mV		Sub Modulation Generator A Unit	
Adjust- ment		R222	R223						Sub Modu Unit	
Frequency	1 kHz	1 KHZ	1 kHz					• 000 000	STABILOCK 4031	
Measuring Point	St64/16a	St64/16a	St64/16a			Bu29		Name Ref.	Type	
	4 to day.				Γ	1	7	Date		
dure								Alteration No.		
Measuring Procedure	kHz dev.)		men <u>t</u> ad	asurements				Name Issue		
	Balance adjustment 4031 setting: Frequency 309.5 MHz Mod. frequ. 1 kHz/40 kHz dev. Measure V _{RX-FM} (2.3 V)	Adjustment: 4031 setting: Frequency 124.32 MHz	<u>4M preemphasis adjustment</u> 4031 setting: RX frequency 500 MHz Mod. frequ. 1 kHz/6 rad	Frequency-response measurements	TX DC amplifier 30 Hz 50 Hz 100 Hz	H2 H2 KH2	5 kHz 10 kHz 20 kHz 30 kHz	Date Na		
Necessary Equipment	Bala 4031 Free Mod	Adju 4031 Frec	4031 RX f Mod.	Free	1X DC s 30 Hz 50 Hz 100 Hz	200 Hz 300 Hz 1 KHz	. 10 20 30 30	Alteration No.		
Nec Her	MA I						and Test P	Issue		

Actual Value		Sheet	8/8
Set Value	5.0 V ±20 mV 4.96 V ±20 mV 4.65 V ±20 mV 4.65 V ±20 mV 2.828 V ±22 mV 2.808 V ±22 mV 2.75 V ±22 mV 2.55 V ±22 mV		Unit modulation Generator A
Adjust- ment		gns	Grit
Frequency		208 029 A	STABILOCK 4031
Measuring Point	St64/17a Bu27	Name Ref.	Туре
		Date	
dure		Alteration No.	
Measuring Procedure		Name Issue	
	IX amplifier 30 Hz 50 Hz 100 Hz 200 Hz 300 Hz 300 Hz 5 KHz 5 KHz 30 Hz 30 Hz 30 Hz 50 Hz 10 KHz 50 Hz 10 Hz 50 Hz 30 Hz 30 Hz 30 Hz 30 Hz 50 Hz 30 Hz 30 Hz 50 Hz 30 Hz 50 Hz 30 Hz 30 Hz 50 Hz 30 Hz 50 Hz	Date	
ary ent	1X amp 1: 30 Hz 50	Alteration No.	
Necessary Equipment	MVQ	Issue	

13 12 11 10 9

_

•

884 180 884 182 405 04 786 009 (5x) A 2,5 x 0,3 x 9 DIN 7340 708 329 (2x) 884 500 mit Schutzkappe 884 590 abgedeckt

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
A 1	TL 072 CO	834 222	TEX				
A 2	LF 412 ACN	834 212	NSC				
A 3							
A 4	- TL 072 CD	834 222	TEX				
A 5				BR 1	385 0358 1 03 400	884 180	ETT
A 6	LF 412 ACN	834 212	NSC				
				_			
				:			
A 10	TL 072 CD	834 222	TEX				
A 11	LF 412 ACN	834 212	NSC				
A 12	NE 5534 AD	834 209	VALVO				
A 13	LF 412 ACN	834 212	NSC				
A 14	LM 385 M	834 244	NAT				
A 15	TL 072 CD	834 222	TEX				
A 16	LF 412 ACN	834 212	NSC	_			
A 17	TL 072 CO	834 222	TEX				
A 13	TL 072 CD	834 222	TEX				
				Bu 27	BNC 35/548	886 263	TELE
				Bu 29	BNC 35 / 548	886 263	TELE
67							Liste besteht
07 06 05 04 7	068.169 19.11.87 Kr.	chlumberger Meßgeräte Ingolstädter Straße 6	67 a	Benennung DESCRIPTION	Schaltteillist EL. PARTS LIST	e 	LIST CONSISTS
оз 7	7088.98 24.7.87 Di	8000 München 46	-		MOD GENERATOR A		Blatt SHEETS Blatt Nr.
01	6088.31 16.3.87 Di	Tag Nar DATE NAM	ИE	Bezeichnung Schlumberger PART, NO.	208 029 Sa		SHEET NO.
Aus- gabe	V	arb.		Hierzu Schaltpl SEE CIRCUIT D Gerät: 4			1
IUUUE N	ODIFIO. NO. DATE NAME	unhefugte Verwertung Mitteilun			d echadenerestanflichtin		

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFA(Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
				C 19	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
				C 20	100 nF ± 10 % 50 V	813 375	VITR
				C 21	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
				C 22	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				C 23	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				C 24	470 nF <u>+</u> 10 % 50 V-	813 383	VITR
				C 25	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				C 26	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 1	10 nF ± 10 % 50 V-	813 332	VITR				
C 2	10 nF ± 10 % 50 V-	813 332	VITR				
C 3	10 nF <u>+</u> 10,% 50 V-	813 332	VITR	C 30	560 pF <u>+</u> 5 % 50 V-	813 244	VITR
C 4	10 nF ± 10 % 50 V-	8 1 3 332	VITR	C 31	560 pF <u>+</u> 5 % 50 V-	813 244	VITR
C 5	10 nF <u>+</u> 10 % 50 V-	813 332	VITR	C 32	560 pF <u>+</u> 5 % 50 V-	813 244	VITR
C 6	10 nF ± 10 % 50 V-	813 332	VITR	C 33	1,8 nF <u>+</u> 5 % 50 V-	813 250	VITR
				C 34	1,8 nF ± 5 % 50 V-	813 250	VITR
				C 35	1,8 nF <u>+</u> 5 % 50 V-	813 250	VITR
				C 36	5.6 nF ± 5 % 50 V-	813 256	VITR
C 10	10 nF ± 10 % 50 V-	813 332	VITR				
C 11	10 nF ± 10 % 50 V-	813 332	VITR				
C 12	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 13	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 40	5,6 nF <u>+</u> 5 % 50 V-	813 256	VITR
C 14	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 41	5,6 nF ± 5 % 50 V=	813 256	VITR
C 15	33 pF <u>+</u> 5 % 50 V-	813 229	VITR	C 42	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 16	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 43	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				C 44	27 pF <u>+</u> 5 % 50 V-	813 228	VITR
				C 45	100 nF ± 10 % 50 V-	813 375	VITR
07	S	Schlumberger Meßgeräte	GmbH		Schaltteillist	Э	Liste besteht LIST CONSISTS
05 04 03		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	EL. PARTS LIST MOD GENERATOR A		aus OF 11 Biatt SHEETS
02	7088_98 24_7_87 Di 6088_31 16_3_87 Di	Tag Nan DATE NAM		Bezeichnung Schlumberger	208 029 Sa		Blatt Nr. SHEET NO.
- 6	088.53 10.11.86 Kr	eschr. 30_10_86 Moras		PART. NO. Hierzu Schaltpla SEE CIRCUIT DI	2 000 000		2
gabe	Nr. Tag Name	epr. K	h	Gerät: 403	- Controll		1

1	2	3	4	5	6	7	8
Pos. REF. NO	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC	er Pos.	Wert VALUE	Bezeichnung Schlumberger PART, NO	Hersteller MANUFACT
C 46	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 73	470 pF <u>+</u> 5 % 50 V-	813 243	VITR
C 47	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 74	100 nF ± 10 % 50 V-	813 375	VITR
C 48	33 pF <u>+</u> 5 % 50 V-	813 229	VITR	C 75	100 nF ± 10 % 50 V-	813 375	VITR
C 49	1,2 nF ± 5 % 50 V-	813 248	VITR	C 76	470 pF ± 5 % 50 V=	813 243	VITR
C 50	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 77	22 pF <u>+</u> 5 % 50 V-	813 227	VITR
C 51	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 78	22 pF ± 5 % 50 V-	813 227	VITR
C 52	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 79	470 nF ± 10 % 50 V-	81 3 383	VITR
C 53	10 μF <u>+</u> 20 % 16 V-	814 382	VITR	C 80	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
C 54	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 55	22 pF <u>*</u> 5 % 50 V-	813 227	VITR	C 82	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD
C 56	270 pF <u>+</u> 5 % 50 V-	813 240	VITR	C 83	10 μF <u>+</u> 20 % 1 6 V-	814 382	RÖD
C 57	10 nF <u>+</u> 10 % 50 V-	813 332	VITR	C 84	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
C 58	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 85	47 μF <u>+</u> 20 % 16 V-	814 386	RÖD
C 59	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 86	680 pF <u>+</u> 5 % 50 V-	813 245	VITR
C 60	180 pF <u>+</u> 5 % 50 V-	813 238	VITR	C 87	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 61	100 nF ± 10 % 50 V-	813 375	VITR	C 88	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 62	100 nF ← 10 % 50 V-	813 375	VITR	C 89	270 pF ± 5 % 50 V-	813 240	VITR
C 63	22 pF ± 5 % 50 V-	813 227	VITR	C 90	. 27 pF <u>+</u> 5 % 50 V-	813 228	VITR
C 64	10 μF <u>+</u> 20 % 6,3 V	814 382	NÖD	C 91	47 pF <u>+</u> 5 % 50 V-	813 231	VITR
C 65	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD	C 92	27 pF ± 5 % 50 V-	8 13 22 8	VITR
C 66	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 93	22 pF <u>+</u> 5 % 50 V=	813 227	VITR
C 67	470 nF <u>+</u> 10 % 50 V-	813 383	VITR	C 94	22 pF <u>+</u> 5 % 50 V-	813 227	VITR
				C 95	680 pF <u>+</u> 5 % 50 V-	813 245	VITR
C 69	22 pF <u>+</u> 5 % 50 V-	813 227	VITR	C 96	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
C 70	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 71	10 µF <u>+</u> 20 % 16 V	814 382	RÖD	C 98	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 72	1,2 nF + 5 % 50 V-	813 248	VITR	C 99	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
07 06		chlumberger Meßgeräte	GmbH		Schaltteilliste	9	Liste besteht LIST CONSISTS
04	7088,169 19,11,87 Kr. 7088,129 1,9,87 Di 7088,104 28,7,87 Mo.	Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	MOD GENERATOR A		OF 11 Blatt SHEETS
02	7088_98 24_7_87 Di 6088_31 16_3_87 Di	Tag Nan DATE NAN		Bezeichnung Schlumberger PART. NO.	208 029 Sa		Blatt Nr. SHEET NO.
- (6088.53 10.11.86 Kr. ges And -Mittlg. bea		1/	Hierzu Schaltpl SEE CIRCUIT D			3
	Nr. Tag Name MODIFIC. NO DATE NAME Ger	or. 2		Gerät:	4031]

2	3	4	5	6	7	8
Wert VALUE	Bezeichnung Schlumberger PART. NO,		1	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
47 μF <u>+</u> 20 % 16 V-	814 386	RÖD				
100 nF ± 10 % 50 V-	813 375	VITR				
100 nF ± 10 % 50 V-	813 375	VITR				
			C 130	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
27 pF ± 5 % 50 V-	813 228	VITR	C 131	10 nF <u>+</u> 10 % 50 V=	813 332	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 132	33 pF <u>+</u> 5 % 50 V-	813 229	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 133	1,2 nF <u>+</u> 5 % 50 V-	813 248	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 134	100 nF ± 10 % 50 -V-	813 375	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 135	100 nF ± 10 % 50 V-	813 375	VITR
			C 136	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 137	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR				
470 nF <u>+</u> 10 % 50 V-	813 383	VITR				
10 nF <u>+</u> 10 % 50 V-	813 332	VITR	C 140	100 nF ± 10 % 50 V-	813 375	VITR
10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 141	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
470 nF ± 10 % 50 V-	813 383	VITR	C 142	100 pF <u>+</u> 5 %-50 ¥-	813 235	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 143	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				_		
			C 145	100 nF ± 10 % 50 V-	813 375	VITR
			C 146	100 nF ± 10 % 50 V-	8 1 3 375	VITR
100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 147	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
100 pF <u>+</u> 5 % 50 V-	813 235	VITR	C 148	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
27 pF <u>+</u> 5 % 50 V-	813 228	VITR				
100 nF ± 10 % 50 V-	813 375	VITR				
100 nF ± 10 % 50 V-	813 375	VITR				
100 nF ± 10 % 50 V-	813 375	VITR				
100 nF ± 10 % 50 V-	813 375	VITR				
	Schlumberger Meßgeräte	e GmbH			e	Liste besteht LIST CONSISTS
	_		Benennung DESCRIPTION		1	OF 11
88,162 5,11,87 Di 188,98 24,7,87 Di			Bezeichnung			SHEETS Blatt Nr.
088.53 10.11.86 Kr.			PART. NO	208 029 Sa		SHEET NO.
Nr. Tag Name -	pearb.	6	SEE CIRCUIT D	O31 208 029 \$		4
8	Wert VALUE 47 μF ± 20 % 16 V- 100 nF ± 10 % 50 V- 100 nF ± 10 % 50 V- 27 pF ± 5 % 50 V- 100 nF ± 10 % 50 V-	Wert VALUE Sezeichnung Schlumberger PART NO.	West VALUE Schlumberger PART NO.	West Scientific Page Manufact Pos. Ma	### PROVIDED TO SECURIOR PROVIDED TO MANUFACTOR PROVIDED TO MANUFACTOR PROVIDED TO PROVIDE TO	### RECOMMENDATION MANUFACE PROPERTY NO. MANUFACE RECOMMENSATION RECOMMENSATION MANUFACE RECOMMENSAT

	<u>-</u>			T -	I	_	
Pos. REF. NO.	2 Wert VALUE	3 Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC	1	6 Wert VALUE	7 Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
0 1	PC 74 HCT 74 T	834 433	VAL				
D 2	PC 74 HCT 4514 T	834 443	VAL				
D 3	PC 74 HCT 139 T	834 435	VAL	D 30	PC 74 HCT 374 T	834 437	VAL
				0 31	PC 74HCT 374 T	834 437	VAL
D 5	PC 74 HCT 74 T	834 433	VAL	D 32	DAC 08 ED	834 136	NS .
D 6	PC 74 HCT 02 T	834 431	VAL	D 33	AD 7523 LN	834 123	ANA
				D 34	HEF 4053 BT	834 442	VAL
D 9	PC 74 HCT 374 T	834 437	VAL				
D 10	MCO 4515 B	853 301	ELEC	<u> </u>			
D 11	AD 7524 JN	834 131	DEV	GA 1	L 5 A 0190 S	835 100	LSI
0 12	PC 74 HCT 244 T	834 436	VAL	1 /	E 7 N 0170 0	0,, 100	
D 13	DG 211 CY	834 471	SILI				
D 14	AD 7533 LN	834 124	ANA		,		
0 15	DG 211 CY	834 471	SILI				
D 16	HEF 4052 BT	834 441	VAL	G1 1	BAS 16	830 552	VAL
				G1 2	BAS 16	830 552	VAL
D 1 8	PC 74 HCT 374 T	834 437	VAL	G1 3	BAS 16	830 552	VAL
D 19	HEF 4053 BT	834 442	VAL	G1 4	BZX 84 C 5 V 1	830 492	VAL
D 20	PC 74 HCT 374 T	834 437	VAL	G1 5	LL 103 B	830 517	ITT
D 21	HEF 4053 BT	834 442	VAL	G1 6	LL 103 B	830 517	ITT
D 22	DG 211. CY	834 471	SILI				
D 23	PC 74 HCT 374 T	834 437	VAL				
D 24	DAC 08 ED	834 136	NS				
D 25	PC 74 HCT 02 T	834 431	VAL	G1 10	LL 103 B	830 517	ITT
D 26	DG 211 CY	834 471	SILI	G7 11	HS MS 2910	830 551	HP
D 27	HEF 4053 BT	834 442	VAL	G1 12	HS MS 2910	830 551	Hb
07 06 05	7088.169 19.11.87 Kr.	chlumberger Meßgeräte Ingolstädter Straße 6	_	Benennung	Schaltteilliste	e 	Liste besteht LIST CONSISTS aus OF 11
04 7(088.133 8.9.87 Di 088.104 27.7.87 Mo.	8000 München 46		DESCRIPTION	MOD GENERATOR	Α	Blatt SHEETS
02 7	7088_98 24_7_87 Di 088_31 16_3_87 Di	Tag Nar DATE NAR	ΛE.	Bezeichnung Schlumberger PART, NO	208 02 9 Sa		Blatt Nr SHEET NO.
- 6	6088.53 10.11.86 Kr. 9e	schr. 31.10.86 Moras	rh H	Hierzu Schaltpla SEE CIRCUIT D	an HAGRAM 208 029 S		5
	ODIFIC NO DATE NAME 96	ppr. S C		Gerät: 4031	Lechadanareatzoflichtin		

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO,	Herstell	er Pos.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
G1 13	BZX 84 C 6 V 8	830 494	VAL	N 3	8x100 kΩ <u>+</u> 5 %	804 511	DALE
G1 14	BZX 84 C 6 V 8	830 494	VAL				
					·		
G1 18	BAS 16	830 552	VAL	P 1	N 27 C 64-25	893 330	SCHL
G1 19	BAS 16	830 552	VAL				
G1 20	BAS 16	830 552	VAL				***
G1 21	BAS 16	830 552	VAL				
G1 22	LL 103 B	830 517	ITT				
G1 23	BAS 16	830 552	VAL				
G1 24	BAS 16	830 552	VAL	R 2	10 Ω + 1 %	802 713	BEY
				R 3	1 kΩ <u>+</u> 1 Z	802 737	BEY
				R 4	1 kΩ ± 1 %	802 737	BEY
				R 5	1 kΩ <u>+</u> 1 Z	802 737	BEY
L1	100 µH <u>+</u> 15 %	821 322	SIE	R 6	1 kΩ <u>+</u> 1 Z	802 737	BEY
				R 7	10 Ω <u>+</u> 1 %	802 713	BEY
				R 10	10 Ω <u>+</u> 1 %	802 713	BEY
				R 11	47 kΩ <u>+</u> 1 %	802 757	BEY
				R 12	10 Ω <u>+</u> 1 Z	802 713	BEY
				R 13	10 Ω <u>+</u> 1 %	802 713	BEY
				R 14	10 Ω ± 1 %	802 713	BEY
				R 15	10 Ω <u>+</u> 1 %	802 713	BEY
N 1	8x100 kΩ <u>+</u> 5 %	804 511	DALE	R 16	1 kΩ <u>+</u> 1 %	802 737	BEY
N 2	8x100 kΩ <u>+</u> 5 %	804 511	DALE	R 17	10 Ω ± 1 %	802 713	BEY
07 06	s	chlumberger Meßgerä	te GmbH		Schaltteilliste	е	Liste besteht LIST CONSISTS
05 04 7	088.169 19.11.87 Kr.	Ingolstädter Straße 8000 München 4		Benennung DESCRIPTION	EL PARTS LIST		of 11
оз 70	088,162 5,11,87 Di 088,93 24,7,87 Di	Tag N	ame .	Bezeichnung	MOD GENERATOR /	3	Blatt SHEETS Blatt Nr.
01 61	088_31 16_3_87 Di	DATE N	AME	Schlumberger PART NO	208 029 Sa		SHEET NO.
Aus-	ÄndMittlg. be	arb. 31.10.86 Mora	sch	Hierzu Schaltpla SEE CIRCUIT D Gerät: 4			6
	35 TO 10 TO	unbefugte Verwertung, Mitteilu	~~ <i>[</i>]				

1	2	3	4	5	6	7	8
Pos. REF. NO	Wert	Bezeichnung Schlumberger PART, NO,	Herstelle MANUFAC	Pos.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
				R 45	10 Ω <u>+</u> 1 %	802 713	BEY
				R 46	100 kΩ <u>+</u> 1 %	802 761	BEY
R 20	10 Ω ± 1 %	802 713	BEY	R 47	10 kΩ <u>+</u> 1 %	802 749	BEY
R 21	1 kΩ <u>+</u> 1 %	802 737	BEY	R 48	10 Ω <u>+</u> 1 ૠ	802 713	BEY
R 22	4,7 kΩ <u>+</u> 1 %	802 745	BEY				
R 23	1,8 kΩ <u>+</u> 1 %	802 740	BEY	R 50	10 Ω ± 1 %	802 713	BEY
R 24	10 Ω <u>+</u> 1 %	802 713	BEY	R 51	56 kΩ <u>+</u> 1 %	802 758	BEY
R 25	1,8 kΩ <u>+</u> 1 %	802 740	BEY	R 52	100 kΩ <u>+</u> 1 %	802 761	BEY
R 26	6,8 kΩ <u>+</u> 1 %	802 747	BEY	R 53	15 kΩ <u>+</u> 1 %	802 751	BEY
				R 54	15 kΩ <u>+</u> 1 %	802 751	BEY
				R 55	68 kΩ ± 1 €	802 759	BEY
				R 56	56 kΩ <u>*</u> 1 %	802 758	BEY
R 30	6,8 kΩ <u>+</u> 1 %	802 747	BEY		.,,		
R 31	2 kg ± 25 %	807 738	BOUR				
R 32	10 Ω <u>+</u> 1 %	802 713	BEY				
R 33	1 κΩ ±1%	802 737	ЗЕҮ	R 60	15 kΩ <u>+</u> 1 %	802 751	BEY
R 34	4,7 kΩ ± 1 %	802 745	BEY	R 61	15 kΩ <u>+</u> 1 %	802 751	BEY
R 35	100 Ω • 25 %	807 734	BOU	R 62	56 kΩ <u>+</u> 1 Z	802 758	BEY
R 36	4,7 kΩ <u>+</u> 1 %	802 745	BEY	R 63	68 kΩ <u>+</u> 1 %	802 759	BEY
				R 64	15 kΩ <u>+</u> 1 %	802 751	BEY
				R 65	15 kΩ <u>+</u> 1 %	802 751	BEY
R 39	1 kΩ <u>+</u> 1 %	802 737	BEY	R 66	10 Ω ± 1 %	8 02 7 1 3	BEY
R 40	10 Ω ± 1 %	802 713	BEY				
R 41	10 Ω ± 1 %	802 713	BEY				
R 42	10 Ω <u>*</u> 1 %	802 713	BEY	R 69	680 kΩ <u>+</u> 1 %	802 771	BEY
R 43	10 Ω ± 1 %	802 713	BEY	R 70	10 Ω <u>+</u> 1 %	802 713	BEY
R 44	10 Ω ± 1 %	802 713	BEY	R 71	10 Ω <u>+</u> 1 %	802 713	BEY
07	S	chlumberger Meßgeräte	GmbH		Schaltteilliste)	Liste besteht LIST CONSISTS
05 04	7088 . 129	Ingolstädter Straße 6 8000 München 46		enennung ESCRIPTION			oF 11
03 02	7088_104 28_7_87h Mo_ 7088_98 24_7_87 Di	Tag Nam		ezeichnung	MOD GENERATOR A	4	Blatt SHEETS Blatt Nr.
-	2000 277 108 1 18 00 117	DATE NAM schr. 31.10.86 Morasc	h P.	chlumberger ART. NO. ierzu Schaltplar	208 029 Sa		SHEET NO.
Aus- gabe ISSUE	And -Mittle Nr. Tag Name German Name German Name German Name German Name German Name German Name Name Name Name Name Name Name Name	arb. L	/ s	EE CIRCUIT DI Ierät: 4031	AGRAM 208 029 S		7
ese Zeich							

			,				
Pos.	2 Wert VALUE	3 Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC	1	6 Wert VALUE	7 Bezeichnung Schlumberger PART. NO.	8 Hersteller MANUFACT
R 72	10 Ω <u>+</u> 1 %	802 713	BEY	R 99	10 Ω <u>+</u> 1 %	802 713	BEY
R 73	10 Ω <u>+</u> 1 %	802 713	BEY	R 100	10 kΩ <u>+</u> 1 %	802 749	BEY
R 74	15 kΩ ± 0,25 %	802 851	BEY	R 101	10 Ω ± 1 %	802 713	BEY
R 75	1,2 kΩ± 1 %	802 738	BEY	R 102	10 Ω <u>+</u> 1 %	802 713	BEY
R 76	10 kΩ ± 0,25 %	802 849	BEY	R 103	10 Ω <u>+</u> 1 %	802 713	BEY
R 77	1 k.! <u>+</u> 1 %	802 737	BEY	R 104	1,5 kΩ <u>+</u> 1 %	802 739	BEY
R 78	1,5 kΩ <u>+</u> 1 %	802 739	BEY	R 105	1,5 kΩ <u>+</u> 1 %	802 739	BEY
R 79	1 kΩ ±1%	802 737	BEY	R 106	1,5 kΩ <u>+</u> 1 %	802 739	BEY
R 80	10 Ω ± 1 %	802 713	BEY	R 107	1 kΩ ± 1 %	802 737	BEY
R 81	10 Ω <u>+</u> 1 %	802 713	BEY	R 108	82 kΩ <u>+</u> 1 %	8 02 760	BEY
R 82	100 kΩ ± 0,25 %	802 861	BEY	R 109	100 kΩ <u>+</u> 1 %	802 761	BEY
R 83	200 Ω <u>+</u> 0,25 %	802 886	BEY	R 110	10 Ω ± 1 %	802 713	BEY
R 84	100 kΩ <u>+</u> 0,25 %	802 861	BEY				
R 85	2 kΩ ± 0,25 %	802 887	BEY				
R 86	10 kΩ <u>+</u> 0,25 %	802 849	BEY				
R 87	680 Ω <u>+</u> 1 %	802 735	BEY	R 114	10 Ω ± 1 %	8 02 7 13	BEY
				R 115	10 Ω ± 1 %	802 713	BEY
				R 116	10 Ω ± 1 %	802 713	BEY
R 90	2 kΩ <u>+</u> 0,25 %	802 887	BEY	R 117	10 Ω <u>+</u> 1 %	802 713	BEY
R 91	10 kΩ <u>+</u> 0,25 %	802 849	BEY	R 118	10 Ω + 1 %	802 713	BEY
R 92	10 kΩ <u>+</u> 0,25 %	802 849	BEY	R 119	1 kΩ <u>+</u> 1 %	802 7 37	BEY
R 93	10 9 ± 1 %	802 713	BEY	R 120	10 Ω <u>+</u> 1 %	802 713	BEY
R 94	10 Ω ± 1 %	802 713	BEY	R 121	1 kΩ <u>+</u> 1 %	802 737	BEY
R 95	10 kΩ <u>+</u> 1 %	802 749	BEY				
R.96	10 kΩ <u>+</u> 1 %	802 749	BEY				
R 97	3,3 kΩ <u>+</u> 1 %	802 743	BEY	R 124	10 Ω ± 1 %	802 713	BEY
				R 125	10 Ω <u>+</u> 1 %	802 713	BEY
07 06		chlumberger Meßgeräte	GmbH		Schaltteilliste	е	Liste besteht LIST CONSISTS
04 7	088.169 19.11.87 Kr. 088.162 5.11.87 Di 7088.104 28.7.87 Mo.	Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	MOD GENERATOR A		aus OF 11 Blatt SHEETS
01 6	7088_98 24_7_87 Di 5088_31 16_3_87 Di	Tag Nam DATE NAM	IE .	Bezeichnung Schlumberger PART, NO.	208 029 Sa	1	Blatt Nr. SHEET NO.
	AndMittlg. Nr. Tag Name	4	10-	Hierzu Schaltpla SEE CIRCUIT D			8
	ODIFIC. NO. DATE NAME ger	or. 20		Gerät: 4031			<u>l</u> .

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R 126	100 kΩ <u>+</u> 1 β	802 761	RFY	R 153	100 Ω ± 1 %	802 725	BEY
R 127	15 kΩ ± 1 %	802 751	BEY	R 154	15 Ω <u>+</u> 1 %	802 715	BEY
R 128	190 Ω ± 25 %	807 734	BOUR	R 155	12 kΩ <u>+</u> 1 %	802 750	BEY
R 129	15 kΩ <u>+</u> 1 ½	807 751	BEY	R 156	2 kΩ <u>+</u> 25 %	807 738	BOUR
				R 157	560 Ω ± 1 %	802 734	BEY
R 131	10 Ω ±1%	802 713	BEY	R 158	15 kΩ ± 1 %	802 751	BEY
R 132	10 Ω + 1 %	802 713	BEY	R 159	2,7 kΩ ±1%	802 742	BEY
R 133	100 Ω + 1%	802 725	BEY	R 160	15 kΩ ± 0,25 %	802 851	BEY
R 134	15 Ω <u>+</u> 1 %	802 715	BEY	R 161	560 Ω <u>+</u> 1%	802 734	BEY
R 135	100 kΩ ±1 %	802 761	BEY	R 162	15 kΩ 👱 0,25 %	802 851	BEY
R 136	1,8 kΩ <u>+</u> 1 %	802 740	BEY	R 163	20 kΩ ± 0,25 %	802 888	BEY
R 137	2,2 kΩ <u>+</u> 1 %	802 741	BEY	R 164	22 kΩ ± 0,25 %	802 853	BEY
R 138	10 kΩ <u>+</u> 1 %	802 749	BEY	R 165	10 Ω <u>+</u> 1 %	802 713	BEY
R 139	1,8 kΩ ± 1 %	802 740	BEY	R 166	100 Ω <u>+</u> 1 %	802 725	BEY
R 140	10 Ω <u>+</u> 1 %	802 713	BEY				
R 141	10 kΩ <u>+</u> 1 %	802 749	BEY	R 168	2,2 kΩ ±1%	802 741	BEY
R 142	2,2 kΩ ± 1 %	802 741	ВЕУ				
R 143	560 Ω <u>+</u> 1 %	802 734	BEY	R 170	10 Ω <u>+</u> 1 %	802 713	ВЕҮ
R 144	15 kΩ ± 0,25 %	802 851	BEY	Ŕ 171	6,8 kΩ <u>+</u> 1 %	802 747	BEY
R 145	560 Ω ±1 %	802 734	BEY	R 172	10 Ω <u>+</u> 1 %	802 713	ВЕҮ
R 146	20 kΩ ± 0,25 %	802 888	BEY	R 173	100 Ω <u>+</u> 1%	802 725	ВЕУ
R 147	3,9 kΩ <u>+</u> 1 %	802 744	BEY	R 174	10 Ω <u>+</u> 1 %	802 713	SEY
R 148	10 kΩ ±1 %	802 749	BEY	R 175	22 kΩ <u>+</u> 1 %	802 753	BEY
R 149	15 kΩ <u>•</u> 0,25 %	802 851	BEY	R 176	1,8 kΩ <u>+</u> 1 %	802 740	BEY
R 150	1,8 kΩ ±1 %	802 740	BEY	R 177	10 Ω <u>+</u> 1%	802 713	BEY
R 151	20 kg ± 0,25 %	802 888	BEY	R 178	10 Ω <u>+</u> 1 %	802 713	BEY
R 152	5 kΩ <u>*</u> 25 %	807 739	BOUR	R 179	3,9 kΩ ±1%	802 744	BEY
06 7 05 7 04 7	7088.129 1.9.87 Di 7088.112 7.8.87 Mo. 7088.104 28.7.87 Mo.	chlumberger Meßgeräte Ingolstädter Straße 6 8000 München 46	7a	Benennung DESCRIPTION	Schaltteilliste EL PARTS LIST MOD. GENERATOR A	e	Liste besteht LIST CONSISTS aus OF 11 Blatt SHEETS
	7000-71 10-7-01 01	737 DATE NAM	4E	Bezeichnung Schlumberger PART, NO	208 029 Sa		Blatt Nr SHEET NO.
gabe	ÄndMittig. Nr. Tag Name	schr. 16.3.87 Dietr arb.	/	Hierzu Schaltpla SEE CIRCUIT D			9
ISSUE M	ODIFIC. NO. DATE NAME Ge	pr. A	~(Gerät: 4031			I

1	2		3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE		Bezeichnung Schlumberger PART. NO,	Herstell MANUFA	1	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Herstel MANUFA
R 180	100 kΩ ± 1 %		802 761	BEY	R 207	10 kΩ ± 1 %	802 749	BEY
R 181	1,8 kΩ ± 1 %	-	802 740	BEY	R 208	1,8 kΩ <u>+</u> 1 %	802 740	BEY
R 182	120 kΩ <u>+</u> 1 /2		802 762	BEY	R 209	12 kΩ <u>+</u> 1 %	8 02 7 50	BEY
R 183	2,2 kΩ ± 1 %		802 741	BEY	R 210	10 Ω <u>+</u> 1 %	802 713	BEY
R 1 94	20 kΩ ± 0,25	<i>d</i>	802 888	BEY	R 211	10 Ω ± 1 %	802 713	BEY
R 135	6,8 kΩ ± 1 %		802 747	BEY	R 212	220 Ω <u>+</u> 1 %	802 729	BEY
					R 213	6,8 kΩ <u>+</u> 1 %	802 747	BEY
R 187	15 kΩ ± 0,25	d p	802 851	BEY	R 214	10 Ω <u>+</u> 1 %	802 713	BEY
R 188	15 kΩ ± 0,25	d %	802 851	BEY	R 215	10 Ω ± 1 %	802 713	BEY
R 189	560 Ω <u>±</u> 1 %		802 734	BEY	R 216	10 Ω <u>+</u> 1 %	802 713	BEY
R 190	10 Ω <u>+</u> 1 %		802 713	BEY	R 217	2,2 kΩ <u>+</u> 1/%	802 741	BEY
R 191	10 Ω + 1 %		802 713	BEY	R 218	10 kΩ ± 1 %	802 749	BEY
R 192	100 kΩ ± 1 %		802 761	BEY	R 219	1,8 kΩ <u>+</u> 1 %	802 740	ВЕУ
R 193	10 Ω ± 1 %		802 713	BEY	R 220	10 Ω <u>+</u> 1 %	802 713	BEY
R 194	1 kΩ <u>+</u> 1 %		802 737	BEY	R 221	47 kΩ <u>+</u> 1 %	802 757	BEY
7 195	8,2 kg <u>+</u> 1 %		802 748	BEY	R 222	1 kΩ <u>+</u> 25 %	807 737	BOU
₹ 196	6,8 kΩ <u>+</u> 1 %		802 747	BEY	R 223	50 kΩ <u>+</u> 25 %	807 742	BOU
197	15 kΩ ± 1 %	-	802 751	BEY	R 224 1	20 kΩ <u>+</u> 1 %	802 762	BEY
198	100 Ω ± 25 %		807, 734	BOUR	R 225	3,3 kΩ <u>+</u> 1 %	802 743	BEY
199	115 kΩ ± 1 %		802 751	BEY	R 226	10 Ω <u>+</u> 1 %	802 713	BEY
200 (5,0 kΩ ± 1 %		802 747	BEY	R 227	12 kΩ <u>+</u> 1 %	802 750	BEY
	j,6 kΩ <u>∗</u> 1 %		802 746	BEY	R 228 2	,2 kΩ <u>+</u> 1 %	802 741	BEY
	18 kΩ±1 %		802 752	BEY	R 229	27 kg ± 1 %	802 754	BEY
203 5	kΩ ± 25 %		807 739	BOU	R 230	10 Ω <u>+</u> 1 %	802 713	BEY
204 1	0 9 <u>±</u> 1 %		302 713	BEY	R 231	47 kΩ <u>+</u> 1 %	802 757	BEY
205 1	0Ω±1%		802 713	ВЕҮ	R 232 1	.00 kΩ <u>+</u> 1 %	802 761	BEY
	,2 ±Ω <u>+</u> 1 %		802 748	BEY	R 233	3,3 kΩ <u>+</u> 1 %	802 743	BEY
oe 7088 os 7088	1.131 4.9.87	Di Sc Di	hlumberger Meßgeräte Ingolstädter Straße 6	- L	enennung	Schaltteilliste	9	Liste besteht LIST CONSISTS aus
оз 7,038	.112 7.8.87	Di Mo.	8000 München 46		ESCRIPTION	MOD GENERATOR A		OF 11 Blatt SHEETS
608 -	88,31 16,3,87 1 8,53 10,11,86	Di Di Kr. gesa	Tag Nam DATE NAM shr. 31.10.86 Morasc	E Sc PA	ezeichnung chlumberger .RT. NO.	208 029 Sa		Blatt Nr. SHEET NO
us- Änd	-Mittig.	Name gep	b. U	Hic	erzu Schaltplan EE CIRCUIT DIAG	RAM 208 029 S	-	

1	2	3	4	. 5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC	l l	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R 234	100 Ω <u>+</u> 25 %	807 734	BOU				
R 235	820 Ω <u>+</u> 1 %	802 736	BEY	R 262	10 Ω <u>+</u> 1 %	802 713	BEY
R 236	10 Ω <u>+</u> 1 %	802 713	BEY	R 263	10 kΩ <u>+</u> 1 %	802 749	BEY
R 237	4,7 kΩ <u>+</u> 1 %	802 745	BEY	R 264	10 kΩ <u>+</u> 1 %	802 749	BEY
R 238	4,7 kΩ <u>+</u> 1 %	802 745	BEY	R 265	10 kΩ <u>+</u> 1 %	802 749	BEY
R 239	4,7 kΩ ±1 %	802 745	BEY	R 266	10 Ω ± 1 %	802 713	BEY
R 240	1 kΩ <u>+</u> 1 %	802 737	BEY	R 267	560 Ω ± 1 %	802 734	BEY
R 241	10 Ω <u>+</u> 1 %	802 713	BEY	R 268	3,9 kΩ ± 1 %	80 2 744	BEY
R 242	1 kΩ ± 1 %	802 737	BEY		1		
R 243	10 Ω ± 1 %	802 713	BEY	R 270	100 Ω <u>+</u> 1 %	802 725	BEY
R 244	10 Ω ± 1 %	802 713	BEY	R 271	10 Ω <u>+</u> 1 %	802 713	BEY
R 245	10 Ω <u>+</u> 1 %	802 713	BEY	St 64	C42 334-A191-A521	884 500	SIE
R 246	15 kΩ <u>+</u> 1 %	802 751	BEY	T 1	BC 860 B	832 2 8 5	SIE
R 247	100 Ω ± 1 %	802 725	BEY	T 2	BC 850 B	832 284	SIE
R 248	27 kΩ <u>+</u> 1 \$	802 754	BEY				
R 249	100 Ω <u>+</u> 1 %	802 725	BEY				
R 250	100 Ω ± 1 %	802. 725	BEY				
R 251	10 Ω ± 1 %	802 713	BEY				
R 252	100 Ω <u>+</u> 1 %	802 725	BEY		•		
R 253	10 2 <u>+</u> 1 %	802 713	BEY				
R 254	10 kΩ <u>+</u> 1 %	802 749	BEY				
R 255	no Ω <u>+</u> 1 %	802 713	BEY	T 10	BC 860 B	832 285	SIE
R 256	10 Ω <u>+</u> 1 %	802 713	BEY	T 11	BCX 51 -16	832 283	VAL
R 257	1 kΩ <u>+</u> 25 %	807 737	BOU	T 12	BCX 54-16	832 289	VAL
R 25 8	1 kΩ <u>+</u> 25 %	807 737	вои	T 13	BC 850 B	832 284	SIE
R 259	1 kΩ <u>•</u> 25 %	807~ 737	B 0 U				
06 70		chlumberger Meßgeräte	GmbH		Schaltteilliste	9	Liste besteht LIST CONSISTS
04 7	088_162	Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	MOD GENERATOR	Α	aus OF 11 Blatt
02 7(088.104 28.7.87 Mo. 088.98 24.7.87 Di	Tag Nam		Bezeichnung Schlumberger	208 029 Sa		SHEETS Blatt Nr. SHEET NO.
- 6	000077 10011100 111	schr. 31.10.86 Moras	sch -	PART. NO. Hierzu Schaltpla	an 200 020 C		11
gabe	Nr. Tag Name Ge		1	SEE CIRCUIT D Gerät: 4()31		,

1. Modulation generator B (option)

Modulation generator B is of the same design as modulation generator A. The same circuit board is used for both versions. Only the components determine whether modulation generator A or modulation generator B is concerned:

- R8 and R9 set the board decoder for generator B (R7, R17 for generator A).
- R111 conducts the <u>output signal</u> from generator B to connector St64/23a (on generator A R99 configures connector St64/23a as the generator B <u>input</u>).
- Those components not necessary for the functioning of generator B are omitted.

1.1 Sinewave generator

See block diagram of generator B and description under section 1 for generator ${\tt A.}$

1.2 Electronic attenuator (level control)

See block diagram of generator B and description under section 1.3 for generator ${\bf A}.$

1.3 Lowpass filter

See block diagram of generator B and description under section 1.4 for generator ${\tt A}.$

1.4 Frequency ranges

See description under section 1.5 for generator A.

Ref. No. 208 032 F	Sub Modulation Generator B	Date
Type 4031	Unit	Sheet 1/3

Schlumberger

Functional Description

1.5 TX DC amplifier

The TX DC amplifier (All) supplies the signal from generator B to the DC OUT socket (Bu39) on the rear panel. If the output transformer (motherboard) is switched to 1:10, the TX DC amplifier is also switched to 1:10.

1.6 Signal path to connector St64/23a

The output signal is applied from generator B to connector St64/23a via A17, A10, A13 and output switch D22.

Ref. No.	208 032 F	Sub	Modulation Generator	В	Date	
Туре	4031	Unit		:	Sheet	2/3

Actual Value		Sheet		1/3
Set Value	2.097152 MHz ±84 Hz 524.288 kHz ±21 Hz 52.429 kHz ±2.1 Hz 0 mV ±1 mV		Sub Modulation Generator R	
Adjust- ment	R35	Sub Modu		Conit
Frequency	20	208 022 4	500 U32 A	STABILOCK 4031
Measuring Point	10 30 12 12	1	No.	Type
Measuring Procedure	Check oscillator and frequency divider 4031 setting: Mod. frequ. 16.384 kHz/5 V _{rms} Jumper set 1-2 Mod. frequ. 1 kHz D/A converter 4031 setting: Mod. frequ. 16.384 kHz/5 V _{rms} Check quantized sinewave for voltage spikes and dips Offset adjustment 4031 setting: Mod. frequ. 16.384 kHz/5 V Jumper set 2-3	Date Name Issue Alteration No. Date N		
Necessary Equipment	Oscilloscope HP audio HP audio A031 setting: analyzer Mod. frequ. 1 Counter Oscilloscope Oscilloscope D/A converter 4031 setting: Mod. frequ. 1 Check quantiz DVM Offset adjust Mod. frequ. 1 Jumper set 2-3 Jumper set 2-3	Issue Alteration No.		
Schlu	Adjustment and Test Prod	cec	dur	e

Actual Value		Sheet	2/3			
Set Value	5 V ±5 mV 0.1 V ±1 mV 1 V ±10 mV 0.5 V ±5 mV 100 mV ±1 mV 0 mV ±1 mV 5 V ±15 mV		Unit Modulation Generator B			
Adjust- ment	R31 R128 R257	<u>.</u>	g is S is			
Frequency	1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ 1 KHZ	208 032 A	Type STABILOCK 4031			
Measuring Point	Bu29 Bu29 Bu29 Bu29 Bu29 Bu29	Name Ref.	Type			
Measuring Procedure	Amplitude adjustment Generator B 4031 setting: Jumper set 1-2 Mod. frequ. 1 kHz/0.1 v Mod. frequ. 1 kHz/0.1 v Mod. frequ. 1 kHz/0.5 v Mod. frequ. 1 kHz/10 mV Mod. frequ. 1 kHz/100 mV Mod. frequ. 1 kHz/100 mV Mod. frequ. 1 kHz/100 mV Mod. frequ. 1 kHz/10 mV Mod. off Adjustment generator B 4031 setting: Generator B 1 kHz/5 v Modulation generator A must be connected or St64/23a loaded with 6.8 kQ.	Date Name Issue Alteration No. Date				
Necessary Equipment	MAQ.	Issue Alteration No.				
Schlu	Adjustment and Test Procedure					

,

Actual Value		Sheet		3/3
Set Value	5.0 V ±20 mV 4.96 V ±20 mV 4.65 V ±20 mV	Sub Modulation Generator B Unit		
Adjust- ment		Sub Unit Mo		# 5
Frequency		208 032 A	A 250 002	Type STABILOCK 4031
Measuring Point	Bu29 & St64/17a	Name Ref.	So.	Type
Measuring Procedure	. Frequency-response measurements DC OUT + TX mod. 30 Hz 50 Hz 100 Hz 200 Hz 300 Hz 1 kHz 5 kHz 10 kHz 20 kHz 30 kHz	Date Name Issue Alteration No. Date		
Necessary Equipment		Issue Alteration No.		
Schlu	Adjustment and Test Procedure			

13 12 11 10 9

9 8 6 5

1 2 3 4 5 6 Pos. Wert Bezeichnung Schlumberger PART. NO, Hersteller MANUFACT Pos. Wert REF. NO. VALUE	Bezeichnung Herstelle Schlumberger MANUFAC
REF. NO. VALUE Schlumberger PART. NO, MANUFACT REF. NO. VALUE	Schlumberger
FARLING,	DART NO MARKITEAN
	PART: NO. MANUFAC
A 1 TL 072 CD 834 222 TEX	
N 1 1E 0/2 50 074 222 1CA	
A 2 LF 412 ACN 834 212 NSC	
N 2 L1 412 NOR 094 212 NOC	
A 3 TL 072 CD 834 222 TEX	
K) 1L 0/2 60 0)4 222 1EA	
A 4 TL 072 CD 834 222 TEX	
N 4 TE 0/2 60 0)4 222 TEN	
A 5 TL 072 CD 834 222 TEX Br 1 385 0358 1 03 400	884 180 ETT
12 012 00 074 222 1EA BI 1 707 0770 1 07 400	004 100
A 10 TL 072 CD 834 222 TEX	
The state of the s	
A 11 EF 412 ACN 834 212 NSC	
A 13 LF 412 ACN 834 212 NSC	
A 17 TL 072 CD 834 222 TEX Bu 39 BNC 35/548	886 263 TELE
07	
Schlumberger Melfacräte CmbH Schaltteilliste	Liste besteht LIST CONSIS
Schlumberger Meßgeräte GmbH EL. PARTS LIST	aus 10
Ingolstädter Straße 67 a Benennung	aus 10 OF
8000 München 46 DESCRIPTION Mod. Generator B	Blatt
02	SHEETS
lag Name Bezeichnung	Blatt Nr. SHEET NO.
Hierzu Schaltplan	1
gabe Nr. Tag Name	
ISSUE MODIFIC. NO. DATE NAME GEPT. Gerät: 4031	l l

1 Pos	2 Wert	3 Bezeichnung Schlumberger	4 Herstelle	5 Pos.	6 Wert	7 Bezeichnung Schlumberger	8 Hersteller
REF NO	VALUE	PART NO.	MANUFAC		VALUE	PART NO	MANUFACT
				C 19	10 nF ± 10 % 50 V-	813 332	VITR
				C 20	100 nF ± 10 % 50 V	813 375	VITR
				C 21	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
				C 22	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				C 23	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
<u> </u>							
ļ				C 25	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
				C 26	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 1	10 nF ± 10 % 50 V-	813 332	VITR				
C 2	10 nF <u>+</u> 10 % 50 V-	813 332	VITR			:	
C 3	10 nF <u>+</u> 10,% 50 V-	813 332	VITR	C 30	560 pF ± 5 % 50 V-	813 244	VITR
C 4	10 nF ± 10 % 50 V-	813 332	VITR	C 31	560 pF <u>+</u> 5 % 50 V-	813 244	VITR
C 5	10 nF <u>*</u> 10 % 50 V-	813 332	VITR	C 32	560 pF ± 5 % 50 V-	813 244	VITR
C 6	10 nF ± 10 % 50 V-	813 332	VITR	C 33	1,8 nF <u>+</u> 5 % 50 V-	813 250	VITR
			ļ	C 34	1,8 nF ± 5 % 50 V-	8 1 3 250	VITR
				C 35	1,8 nF <u>+</u> 5 % 50 V-	813 250	VITR
			i 	C 36	5.6 nF <u>+</u> 5 % 50 V-	813 256	VITR
C 10	10 nF <u>+</u> 10 % 50 V-	813 332	VITR		1		
C 11	10 nF <u>+</u> 10 % 50 V-	813 332	VITR				
C 12	10 μF <u>+</u> 20 % 16 V-	814 382	RÖO				
C 13	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 40	5,6 nF <u>+</u> 5 % 50 V-	813 256	VITR
C 14	10 µF ± 20 % 16 V=	814 382	RÖD	C 41	5,6 nF ± 5 % 50 V-	813 256	VITR
C 15	33 pF <u>+</u> 5 % 50 V−	813 229	VITR	C 42	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 16	100 nF ± 10 % 50 V-	813 375	NITR	C 43	100 nF <u>+</u> 10 ₺ 50 V-	813 375	VITR
				C 44	27 pF <u>+</u> 5 % 50 V-	813 228	VITR
				C 45	100 nF ± 10 % 50 V-	813 375	VITR
07 06	Se	chlumberger Meßgeräte	GmbH		Schaltteillist	е	Liste besteht LIST CONSISTS
05 04 03		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	Mod. Generator B		OF 10 Blatt SHEETS
02	-	Tag Nar DATE NAM		Bezeichnung Schlumberger	208 032 Sa		Blatt Nr SHEET NO
	7088.175 26.11.87 (E. ge:	arb /	111	PART NO Hierzu Schaltpla SEE CIRCUIT D	HAGR# 208 032 S		2
	HODIFIC NO DATE NAME Ge	pr X	a	Gerät: 40)	31		1

1	2	3	4	5	6	7	8
Pos. REF. NO	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
C 46	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 73	470 pF <u>+</u> 5 % 50 V-	813 243	VITR
C 50	10 pf <u>+</u> 20 % 16 V-	814 382	RÖD				
C 51	100 nF + 10 % 50 V-	813 375	VITR				
C 52	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 79	470 nF <u>+</u> 10 % 50 V-	813 383	VITR
C 53	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD	C 80	10 nF <u>+</u> 10 % 50 V-	813 332	VITR
C 54	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 55	22 pF + 5 % 50 V-	813 227	VITR	C 82	10 μF ± 20 % 16 V-	814 382	RÖD
C 56	270 pF ± 5 % 50 V-	813 240	VITR	C 83	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD
C 57	10 nF ± 10 % 50 V-	813 332	VITR				
Ç 58	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 59	10 μF ± 20 % 16 V-	814 382	RÖD				
C 60	180 pF <u>+</u> 5 % 50 V-	813 238	VITR	C 87	100 nF ± 10 % 50 V-	813 375	VITR
C 61	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 88	100 nF <u>+</u> 10 % 50 V-	813 375	VITR
C 62	100 nF <u>+</u> 10 % 50 V-	813 375	VITR	C 89	270 pF <u>+</u> 5 % 50 V-	813 240	VITR
C 63	22 pF + 5 % 50 V-	813 227	VITR	C 90	27 pF ± 5 % 50 V=	813 228	VITR
C 64	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				,
C 65	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 66	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 67	470 nF <u>+</u> 10 % 50 V-	813 383	VITR				
-1							
C 70	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD				
C 71	10 µF ± 20 % 16 V-	814 382	RÖD	C 98	100 nF ± 10 % 50 V-	813 375	VITR
C 72	1,2 nF ± 5 % 50 V-	813 248	VITR	C 99	100 nF ± 10 % 50 V=	813 375	VITR
07 06		Schlumberger Meßgeräte	GmbH		Schaltteillist	e	Liste besteht LIST CONSISTS
05 04		Ingolstädter Straße 6 8000 München 46	7a	Benennung DESCRIPTION	EL. PARTS LIST		of 10
03		T		Pozoi-t-	Mod. Generator 8		Blatt SHEETS Blatt Nr.
01		1987 Tag Nam DATE NAM	4E	Bezeichnung Schlumberger PART. NO	208 032 Sa		SHEET NO.
	ÄndMittlg. Land Name	pearb.		Hierzu Schaltpla SEE CIRCUIT D	DIAGRAM		
ISSUE M	ODIFIC. NO DATE NAME	gepr. 2 C	7	Gerät: 4	031		

							,		,	,	
1	_	. 2			3		4	5	6	7	8
Pos. REF. NO.		Wert			Bezeichnu Schlumber	ger	Herstelle:		Wert	Bezeichnung Schlumberger	Hersteller MANUFACT
HEF. NO.		VALUE			PART. NO),	MANUFAC	REF. NO.	VALUE	PART, NO.	MANUFACT
1											
C 101	100 %	± 10 %	50 V		813 375		VITR				
6 101	+			+	(1) (1)		*****	.			
C 102	100 nf	<u>+</u> 10 %	50 V-		813 375		VITR				
								1			
						 					
C 104	27 pf	<u>+</u> 5%	50 V -		813 228		VITR				
C 105	100 nf	<u>+</u> 10 %	50 V-		813 375		VITR				
0.406	+				040.005		WITO				
C 106	100 ni	<u>+</u> 10 %	50 V ~		813 375		VITR				
				ĺ				C 134	100 nF + 10 % 50 V-	813 375	VITR
	1							C 135	100 nF ± 10 % 50 V=	813 375	VITR
								(1)	100 111 1 10 %)0 1	015 515	VIIN
C 110	100 nF	<u>+</u> 10 %	50 V_		813 375		VITR				
-	+										
C 111	100 nf	<u>+</u> 10 %	50 V-		813 375		VITR				
.C 112	470 nF	<u>+</u> 10 %	50 V-		813 383		VITR				
	1,0 ,	- 10 /									
										,	
											,
\vdash											
		÷:									
	ļ										
ļ											
									<u> </u>		
<u> </u>								-			
07									Schaltteillis	te	Liste besteht LIST CONSISTS
06 05			 	1	mberger M				EL. PARTS LIST		aus OF 10
04					jolstädter 8000 Mün			Benennung DESCRIPTION	Mod. Generator B		OF U
03						1					SHEETS
02			-	1987	Tag DATE	Nar NAN	ΜE	Bezeichnung Schlumberger	208 032 Sa		Blatt Nr. SHEET NO
	7088,175	26.11.87		geschr.	16.11.87	Dietr	ich	PART, NO. Hierzu Schaltpi	an 000 000 0		4
Aus- gabe	AndMittig, Nr.	Tag	Name	bearb.		4	2	SEE CIRCUIT (Gerät: 403	DIAGRAM 200 032 3		4
ISSUE	MODIFIC NO.	DATE	NAME	gepr.	1		ι	Gerat: 40)	l		Ι

REF NO	Wert VALUE	Bezeichnung Schlumberger PART NO.	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART NO	Hersteller MANUFACT
D 1	PC 74 HCT 74 T	834 433	VAL				
D 2	PC 74 HCT 4514 T	834 443	VAL				
0.3	PC 74 HCT 139 T	834 435	VAL				
D 5	PC 74 HCT 74 T	834 433	VAL				
D 6	PC 74 HCT 02 T	834 431	VAL				
0 9	PC 74 HCT 374 T	834 437	VAL				
0 10	MCO 4515 B	853 301	ELEC				
D 11	AD 7524 JN	834 131	DEV	GA 1	L 5 A 0190 S	835 100	LSI
D 12	PC 74 HC1 244 T	834 436	VAL		:		
D 13	DG 211 CY	834 471	SILI				
0 14	AD 7533 LN	834 124	ANA				
0 15	DG 211 CY	834 471	SILI				
D 16	HEF 4052 BT	834 441	VAL	G1 1	BAS 16	830 552	VAL
	,			G1 2	BAS 16	830 552	VAL
D 18	PC 74 HCT 374 T	834 437	VAL	G1 3	BAS 16	830 552	VAi
D 19	HEF 4053 BT	834 442	VAL	G1 4	BZX 84 C 5 V 1	830 492	VAL
D 20	PC 74 HCT 374 T	334 437	VAL	G1 5	LL 103 B	830 517	111
D 21	HEF 4053 BT	834 442	VAL	G1 6	LL 103 B	830 517	111
D 22	DG 211 CY	834 471	SILI				
				G1 10	LL 103 B	830 517	111
D 27	HEF 4053 BT	834 442	.VAL				
07 06	Sc	chlumberger Meßgeräte			Schaltteillist EL PARTS LIST	e	Liste besieht LIST CONSISTS
05		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	Mod. Generator B		aus OF 10 Blatt SHEETS
02		Tag Nai DATE NAI		Bezeichnung Schlumberger PART NO	208 032 Sa		Blatt Nr SHEET NO
Aus- A	088, 175 26,17, 87 &C get And Mittlg Nr Tag Name ODIFIC NO DATE NAME get	- + <i>U</i>	1, ,	Hierzu Schaltpl SEE CIRCUIT D Gerät: 4031	DIAGRAM 200 0)2 J		5

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC	3	Wert VALUE	Bezeichnung Schlumberger PART. NO	Hersteller MANUFACT
G7 13	BZX 84 C 6 V 8	830 494	VAL	N 3	8x100 kΩ ± 5 %	804 511	DALE
G1 14	BZX 84 C 6 V 8	830 494	VAL				
				P 1	N 27 C 64-25	893 330	SCHL
				R 2	10 Ω ± 1 %	802 713	BEY
				R 3	1 kΩ ± 1 %	802 737	BEY
				R 4	1 kΩ ± 1 %	802 737	BEY
				R 5	1 kΩ <u>*</u> 1 %	802 737	BEY
L1	100 µH <u>+</u> 15 %	821 322	SIE	R 6	1 kΩ ± 1 %	802 737	BEY
				R 8	10 Ω ± 1 %	802 713	BEY
· ·				R 9	10 Ω <u>+</u> 1 %	802 713	BEY
<u>.</u>				R 10	10 Ω <u>+</u> 1 %	802 713	BEY
				R ,11	47.kΩ ± 1 %	8 0 2 7 57	BEY
				R 12	10 Ω ± 1 %	802 713	BEY
				R 13	10 Ω ± 1 %	802 713	BEY
				R 14	10 Ω ± 1 %	802 713	BEY
				R 15	10 Ω ± 1 %	802 713	BEY
N 1	8x100 kΩ ± 5 %	804 511	DALE	R 16	1 kΩ ± 1 %	802 737	BEY
N 2	8x100 kΩ <u>+</u> 5 %	894 511	DALE		Coholiti-:III:-A		Liste besteht
06	Se	hlumberger Meßgeräte GmbH			Schaltteilliste	e 	LIST CONSISTS
04		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	Mod. Generator B		OF 10 Blatt SHEETS
02		Tag Nam	Æ	Bezeichnung Schlumberger	208 032 Sa		SHEETS Blatt Nr SHEET NO
Aus-	And -Mittig ber	ichr.		PART. NO Hierzu Scheftpla SEE CIRCUIT D			6
gabe	Nr. Tag Name Gol		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		031		1

1	2	3	4	5	6	7	В
Pos. REF. NO	Wert VALUE	Bezeichnung Schlumberger PART. NO	Hersteller MANUFAC	1	Wert VALUE	Bezeichnung Schlumberger PART NO	Hersteller MANUFACT
				R 45	10 Ω ± 1 %	802 713	BEY
				R 46	100 kΩ ± 1 %	802 761	BEY
R 20	10 Ω ± 1 %	802 713	BEY	R 47	10 kΩ <u>+</u> 1 %	802 749	BEY
R 21	1 kΩ <u>+</u> 1 %	802 737	BEY	R 48	10 Ω ± 1 %	802 713	BEY
R 22	4,7 kΩ <u>+</u> 1 %	802 745	BEY				
R 23	1,8 kΩ <u>+</u> 1 %	802 740	BEY	R 50	10 Ω • 1 %	802 713	BEY
R 24	10 Ω ± 1 %	802 713	BEY	R 51	56 kΩ <u>+</u> 1 %	8 02 7 58	BEY
R 25	1,8 kΩ <u>+</u> 1 %	802 740	BEY	R 52	100 kΩ ± 1 %	802 761	BEY
R 26	6,8 kΩ <u>+</u> 1 %	802 747	BEY	R 53	15. kΩ <u>*</u> 1 %	802 751	BEY
				R 54	15 kΩ ± 1 %	802 751	BEY
				R 55	68 kΩ <u>+</u> 1 μ	802 759	BEY
				R 56	56 kΩ <u>+</u> 1 %	802 758	BEY
R 30	6,8 kΩ <u>+</u> 1 %	802 747	BEY				
R 31	2 kΩ ± 25 %	807 738	BOUR				
R 32	10 Ω ± 1 %	802 713	BEY				
R 33	1 kΩ <u>+</u> 1 %	802 737	BEY	R 60	15 kΩ <u>+</u> 1 %	802 751	BEY
R 34	4,7 kΩ ± 1 %	802 745	BEY	R 61	15 kΩ <u>+</u> 1 %	802 751	BEY
R 35	100 Ω ± 25 %	807 734	BOU	R 62	56 kΩ <u>*</u> 1 %	802 758	BEY
R 36	4,7 kΩ ± 1 %	802 745	BEÝ	R 63	68 kΩ <u>+</u> 1 %	802 759	BEY
				R 64	15 kΩ <u>+</u> 1 %	802 751	BEY
				R _. 65	15 kΩ <u>+</u> 1 %	802 751	BEY
R 39	1 kΩ <u>+</u> 1 %	802 737	BEY	R 66	10 Ω <u>+</u> 1 %	802 713	BEY
R 40	10 Ω ± 1 %	802 713	BEY				
R 41	10 Ω ± 1 %	802 713	BEY				
R 42	10 Ω <u>•</u> 1 %	802 713	BEY				
R 43	10 Ω <u>•</u> 1 %	802 713	BEY	R 70	10 Ω ± 1 %	802 713	BEY
R 44	10 Ω ± 1 %	802 713	BEY	R 71	10 Ω <u>*</u> 1 %	802 713	BEY
07		Schlumberger Meßgerät	1		Schaltteillis		Liste besteht LIST CONSISTS
05		Ingolstädter Straße 8000 München 4	1	Benennung DESCRIPTION	Mod. Generator B		Blatt
02	<u> </u>		ame AME	Bezeichnung Schlumberger	208 032 Sa		BIATE NO
01 - 7	2011/2011	31.10.86 Moras		PART NO Hierzu Schaftp			7
gabe	Nr Tag Name	gepr £	h	SEE CIRCUIT Gerat: 40	DIAGRAM		1

1	2	3	4	5	6	7	8
Pos REF NO	Wert VALUE	Bezeichnung Schlumberger PART: NO,	Herateller MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART NO	Hersteller MANUFACT
R 72	10 Ω ± 1 %	802 713	BEY				
R 73	10 Ω ± 1 %	802 713	BEY	R 100	10 kΩ <u>+</u> 1 %	802 749	BEY
				R 101	10 Ω ± 1 %	802 713	BEY
				R 102	10 Ω ± 1 %	802 713	BEY
				R 103	10 Ω ± 1 %	802 713	BEY
R 77	1 kΩ ± 1 %	802 737	BEY	R 104	1,5 kΩ <u>+</u> 1 %	802 739	BEY
				R 105	1,5 kΩ <u>+</u> 1 %	802 739	BEY
				R 106	1,5 kΩ <u>+</u> 1 %	802 739	BEY
R 80	10 Ω + 1 %	802 713	BEY	R 107	1 kΩ <u>+</u> 1 દ	802 737	BEY
R 81	10 Ω <u>+</u> 1 %	802 713	BEY	R 108	82 kQ ± 1 %	802 760	BEY
R 82	100 kΩ + 0,25 %	802 861	BEY	. R 10 9	100 kg <u>+</u> 1 Z	802 761	BEY
R 83	200 Ω <u>+</u> 0,25 %	802 886	BEY				
R 84	100 kΩ ± 0,25 %	802 861	BEY	R:111	10 Ω±1 %	802 713	BEY
R 85	2 kΩ ± 0,25 %	802 887	BEY				
R 86	10 kΩ ± 0,25 %	802 849	BE Y				
				R 114	10 Ω + 1 %	802 713	BEY
				R 115	10 Ω ± 1 %	802 713	BEY
R 90	2 kΩ ± 0,25 %	802 887	BÉY				· · · · · · · · · · · · · · · · · · ·
R 91	10 kΩ ± 0,25 %		+	D 440	10.0 4 %	002 712	DEA
R 92	10 kΩ ± 0,25 %	802 849	BEY	R 118	10 0 ± 1 %	802 713	BEY
R 93				R 119	1 kΩ ± 1 %	802 737	BEY BEY
	10 0 1 %	802 713	BEY	R 120	10 Ω ± 1 %	802 713	
R 94	10 \(\text{\text{\frac{1}{2}}} \)		BEY	R 121	1 kΩ ± 1 %	802 737	BEY
R 95 R 96	10 kΩ ± 1 % 10 kΩ ± 1 %	802 749	BEY	-			
		802 749	BEY	D 401	40.0 1.9	000 740	חרע
R 97	3,3 kΩ <u>+</u> 1 %	802 743	BEY	R 124	10 Ω ± 1 %	802 713	BEY
07		<u> </u>		R 125	10 º ± 1 % Schaltteillist	802 713	BEY
06 05	S	Schlumberger Meßgerät Ingolstädter Straße		Benennung	EL. PARTS LIST		aus 10
04		8000 München 4		DESCRIPTION	'Mod. Generator B		Blatt SHEETS
02 01			ame AME	Bezeichnung Schlumberger	208 032 Sa		Blatt Nr SHEET NO
	And -Mittle b	931.10.86 Moras	sch	PART NO Hierzu Schaltp SEE CIRCUIT			8
gabe ISSUE I	Nr Tag Name —	ерг	4	Gerät: 403			1

				,	T		
Pos. REF. NO.	2 Wert VALUE	3 Bezeichnung Schlumberger PART. NO,	Hersteller	Pos. REF. NO.	Wert VALUE	7 Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R 126	100 kΩ <u>+</u> 1 %	802 761	BEY	R 158	15 kΩ : ± 1 %	802 751	BEY
R 127	15 kΩ <u>+</u> 1 %	802 751	BEY	R 159	2,7. kΩ: ± 1 %	802 742	BEY
R 128	100 Ω <u>+</u> 25 %	807 734	BOUR	R 160	15 kΩ ± 0,25 %	802 851	BEY
R 129	:15 kΩ <u>+</u> 1 β	802 751	BEY	R 161	560 Ω <u>+</u> 1%	802 734	BEY
	,						
R 131	10 Ω <u>+</u> 1 %	802 713	BEY				
R 132	10 Ω <u>+</u> 1 %	802 713	BEY	R 164	22 kΩ <u>+</u> 0,25 %	802 853	BEY
				R 165	10 Ω <u>+</u> 1 %	802 713	BEY
				R 166	100 Ω <u>+</u> 1 %	802 725	BEÝ
R 135	100 kΩ <u>+</u> 1 🔏	802 761	BEY				
R 136	1,8 kΩ <u>*</u> 1 %	802 740	BEY	R 168	2,2 kΩ <u>+</u> 1 %	802 741	BEY
R 137	2,2,kΩ ± 1 %	802 741	BEY				
				R 170	10 Ω <u>+</u> 1%	802 713	BEY.
				R 171	6,8 kΩ <u>+</u> 1 %	802 747	BEY
				R 172	10 Ω ± 1%	802 713	BEY
R 141	10 kΩ <u>+</u> 1 %	802 749	BEY	R 173	100 Ω <u>+</u> 1 %	802 725	BEY
R 142	2,2 kΩ ± 1 %	802 741	BEY	R 174	10 Ω ± 1 %	802 713	BEY
				R 175	. 22 kΩ <u>+</u> 1 %	802 753	BEY
				R 176	1,8 kΩ ± 1 %	802 740	BEY
				R 177	10 Ω + 1 %	802 713	BEY
				R 178	10 Ω ± 1 %	802 713	BEY
				R 180	100 kΩ <u>+</u> 1 %	802 761	BEY
				R 181	1,8 kΩ ± 1 %	802 740	BEY
	4.			R 182	120 kQ • 1 %	802 762	BEY
				R 183	2,2 kΩ ± 1 %	802 741	BEY
07 06 05	s	chlumberger Meßgeräte Ingolstädter Straße 6	L	Benennung	Schaltteillist	te	Liste besteht LIST CONSISTS aus 10 OF
04		8000 München 46		DESCRIPTION	Mod. Generator B		Blatt SHEETS
02 01	1	987 Tag Na DATE NA	мє	Bezeichnung Schlumberger	208 032 Sa		Blatt Nr. SHEET NO.
	- 11/0 67.71.07 69	schr. 16.11.87 Dietri	ch -	PART. NO. Hierzu Schaltpi SEE CIRCUIT (DIAGRAM 200 0)2 3		9
	ODIFIC. NO. DATE. NAME 98	pr. Z	<u> </u>		31		<u></u>

Pos No. Per No. Pos Per No. Pos Per No. Pos Per No. Pe	Hersteller MANUFACT BEY BEY BEY
R 138 15 kΩ ± 9,25 \$ 802 851 BEY R 139 560 Ω ± 1 \$ 802 734 BEY R 226 10 Ω ± 1 \$ 802 713 R 190 10 Ω ± 1 \$ 802 713 BEY R 227 12 kΩ ± 1 \$ 802 750 R 191 10 Ω ± 1 \$ 802 713 BEY R 228 2,2 kΩ ± 1 \$ 802 750 R 192 100 kΩ ± 1 \$ 802 761 BEY R 229 27 kΩ ± 1 \$ 802 754 R 230 10 Ω ± 1 \$ 802 713 R 230 10 Ω ± 1 \$ 802 713 R 196 6,8 kΩ ± 1 \$ 802 747 BEY R 237 6,8 kΩ ± 1 \$ 802 747 R 197 15 kΩ ± 1 \$ 802 751 BEY R 198 100 Ω ± 25\$ 807 734 BOUR R 247 100 Ω ± 1 \$ 802 725	BEY
R 188 15 kΩ ± 9,25 \$ 802 851 BEY R 189 560 Ω ± 1 \$ 802 734 BEY R 226 10 Ω ± 1 \$ 802 713 R 190 10 Ω ± 1 \$ 802 713 BEY R 227 12 kΩ ± 1 \$ 802 750 R 191 10 Ω ± 1 \$ 802 713 BEY R 228 2,2 kΩ ± 1 \$ 802 741 R 192 100 kΩ ± 1 \$ 802 761 BEY R 229 27 kΩ ± 1 \$ 802 754 R 230 10 Ω ± 1 \$ 802 713 R 196 6,8 kΩ ± 1 \$ 802 747 BEY R 237 6,8-kΩ ± 1 \$ 802 747 R 197 15 kΩ ± 1 \$ 802 751 BEY R 198 100 Ω ± 25\$ 807 734 BOUR R 247 100 Ω ± 1 \$ 802 725	BEY
R 189 560 Ω ± 1 \$\mu\$ 802 734	BEY
R 189 560 Ω ± 1 \$\mu\$ 802 734	BEY
R 190 10 Ω ± 1 ½ 802 713 BEY R 227 12 kΩ ± 1 ½ 802 750 R 191 10 Ω ± 1 ½ 802 713 BEY R 228 2,2 kΩ ± 1 ½ 802 741 R 192 100 kΩ ± 1 ½ 802 761 BEY R 229 27 kΩ ± 1 ½ 802 754 R 230 10 Ω ± 1 ½ 802 713 R 196 6,8 kΩ ± 1 ½ 802 747 BEY R 237 6,8 kΩ ± 1 ½ 802 747 R 197 15 kΩ ± 1 ½ 802 751 BEY R 198 100 Ω ± 25½ 807 734 BOUR R 247 100 Ω ± 1 ½ 802 725	BEY
R 191 10 Ω ± 1 ½ 802 713 BEY R 228 2,2 kΩ ± 1 ½ 802 741 R 192 100 kΩ ± 1 ½ 802 761 BEY R 229 27 kΩ ± 1 ½ 802 754 R 230 10 Ω ± 1 ½ 802 713 R 196 6,8 kΩ ± 1 ½ 802 747 BEY R 237 6,8 kΩ ± 1 ½ 802 747 R 197 15 kΩ ± 1 ½ 802 751 BEY R 198 100 Ω ± 25% 807 734 BOUR R 247 100 Ω ± 1 ½ 802 725	
R 192 100 kΩ ± 1 ⅓ 802 761 BEY R 229 27 kΩ ± 1 ⅙ 802 754 R 230 10 Ω ± 1 ⅙ 802 713 R 196 6,8 kΩ ± 1 ⅙ 802 747 BEY R 237 6,8 kΩ ± 1 ⅙ 802 747 R 197 15 kΩ ± 1 ⅙ 802 751 BEY R 198 100 Ω ± 25⅙ 807 734 BOUR R 247 100 Ω ± 1 ⅙ 802 725	
R 230 10 Ω ± 1 ½ 802 713 R 196 6,8 kΩ ± 1 ½ 802 747 BEY R 237 6,8 kΩ ± 1 ½ 802 747 R 197 15 kΩ ± 1 ½ 802 751 BEY R 198 100 Ω ± 25½ 807 734 BOUR R 247 100 Ω ± 1 ½ 802 725	BEY
R 196 6,8 kΩ ±1 ½ 802 747 BEY R 237 6,8-kΩ ±1 ½ 802 747 R 197 15 kΩ ±1 ½ 802 751 BEY R 198 100 Ω ±25½ 807 734 BOUR R 247 100 Ω ±1 ½ 802 725	BEY
R 197 15 kΩ ± 1 % 802 751 BEY R 198 100 Ω ± 25% 807 734 BOUR R 247 100 Ω ± 1 % 802 725	BÉY
R 197 15 kΩ ± 1 % 802 751 BEY R 198 100 Ω ± 25% 807 734 BOUR R 247 100 Ω ± 1 % 802 725	
R 198 100 Ω ± 25% 807 734 BOUR R 247 100 Ω ± 1 % 802 725	BEY
R 199 15 kΩ ± 1 % 802 751 BEY R 248 27 kΩ ± 1 % 802 754	8EY
	BEY
R 257 2 kΩ ± 25% 807 738	BOU
R 208 1,8 kΩ ± 1 % 802 740 BEY	
R 209 12 kΩ ± 1 % 802 750 BEY	
St 64 C42 334-A191-A521 884 500	SIE
T 1 BC 860 B 832 285	SIE
T 2 BC 850 B 832 284	SIE
R 217 2,2 kQ ± 1 % 802 741 BEY	
Schlumberger Meßgeräte GmbH SCHARTS LIST	Liste besteht LIST CONSISTS aus 10
8000 München 46 DESCRIPTION Mod. Generator B	Blatt
02 Tag Name Bezeichnung Schlumberger 208 032 Sa	
- 7088.175 27.11.87 & geschr. 16.11.87 Dietrich Aus- gabe Nr. Tag Name ISSUE MODIFIC NO DATE NAME ISSUE MODIFIC NO DATE SSUE MODIFIC NO DATE Gerät: 4031 Gerät: 4031	Blatt Nr. SHEET NO.

AF detector (VOLTM)

Circuitry on front panel: Input Bu21 of the AF detector is balanced, but one pole can be led to chassis ground. The input impedance is 100 k Ω and can be reduced to 600 Ω . The following balanced impedance transformer A2 is directly on the input socket behind the front panel to keep interference minimal. This is

socket behind the front panel to keep interference minimal. This is followed by switch D1, which connects either the voltmeter input or the output signal of the modulation generator to the digitally set preamplifier A4. This relates the signal to chassis ground and can be varied in gain between x1, x10 and x100.

Circuitry on AF detector:

Via switch D20 and the main amplifier A200, which can be switched in gain between x1, x2, x5, x10, x20 and x50, the signal is applied by way of optionally interconnected filters (external filter, CCITT) to the AF frequency counter A290, the monitoring amplifier A70, to the oscilloscope and to RMS converter A332. From here the signal is taken via multiplexer D140 to the microprocessorized data-acquisition system on the slave computer for processing. For distortion and SINAD measurement the signal is additionally applied via the 1-kHz notch filter or the external notch filter to a second RMS converter A331.

Autoranging is performed by means of the auxiliary peak detector A240/A270.

 Ref. No. 209 031 F
 Sub AF Detector
 Date

 Type 4031
 Unit
 Sheet 1/11

Schlumberger

Functional Description

MOD generator (GEN)

Circuitry on front panel:

The voltage for modulating a transmitter is measured directly on the MOD GEN socket, ie balanced as the sum of the voltage from modulation generator A, an optional generator and possibly an external modulation voltage. The signal is processed, as in the AF detector, by a balanced impedance transformer A1.

Onwards from the following switch D1, the signal flow via the filters and RMS detector is identical to that in the AF detector.

Ref. No.	209 031 F	Sub AF Detector	Date	
Type	4031	Unit	Sheet	3/11

TX signal path

From the IF demodulators the AF signal is applied via signal multiplexer D20 to the switchable main AF amplifier A200. From there the signal flow via the filters and RMS detector is identical to that in the AF detector.

Parallel to this there is an impedance transformer that amplifies by a factor of 5 if required. Depending on the mode of measurement, the signal is applied AC-coupled or DC-coupled to the clocked, peak-responding rectifier. This supplies the negative and positive peak values separately via multiplexer D140 to the data-acquisition system on the slave computer.

Ref. No.	209 031 F	Sub AF Detector	Date	
Type	4031	Unit	Sheet	5/11

AF filters

a) CCITT filter

The psophometric filter weights an AF signal according to CCITT standard P 53 and roughly corresponds to the curve of human hearing.

CCITT frequency response:

Ref. No.	. 209 031 F	Sub AF Detector	Date	
Туре	4031	Unit	Sheet	8/11

Schlumberger

Functional Description

b) 1-kHz notch filter

For distortion and SINAD measurement the 1-kHz fundamental $\,$ is rejected by a notch filter. The residual voltage and the total voltage are each measured by an RMS detector to form a ratio. The filter has a width of ±5 Hz with attenuation of > 60 dB.

Frequency response:

Ref. No. 209 031 F Type 4031	Sub AF Detector Unit	Date Sheet 9/11
Schlumberger Functional Description		- unctional Description

Oscilloscope

The signal on the SCOPE input is applied either AC-coupled or DC-coupled to impedance transformer A3.

On the AF detector it is divided according to the different vertical deflection coefficients (2/4/10/20/40/100/200/400) by the switchable voltage divider D100 and R100 through R113 and amplified again by A100. The following multiplexer D101 switches the external signal or the internal voltage before the RMS converter or the residual distortion signal via an anti-aliasing filter A101 to the data-acquisition system on the monitor-control circuit board.

The anti-aliasing filter has a cutoff frequency (-3 dB) of 35 kHz. A DC voltage is also added that has been set with the POSition potentiometer on the front panel.

8-MHz converter

The highly stable 10-MHz sinewave signal is first reshaped into a TTL squarewave by D1 and divided by five in divider D2. The 2 MHz is then mixed with 10 MHz in an exclusive-OR gate D1. The 8-MHz mixture product is filtered out by the following bandpass filter and used as the system timing for all microprocessors. The 8-MHz converter is located on a separate PCB (361 483) in order to suppress spurious signals.

Ref. No	209 031 F	Sub AF Detector	Date	
Туре	4031	Unit	Sheet	10/11

Actual Value			Sheet 1/3	
Set Value	7.1 V ±0.3 V 6.1 V ±0.3 V 1.7 V ±50 mV 2.4 4 ktz ±50 Hz 2.83 V ±0.1 V ±20 ktz ±500 Hz	2.83 V ±50 mV 4 mV ±1 mV 2.83 V ±50 mV 2.83 V ±50 mV 400 mV ±10 mV 2.83 V ±50 mV 800 mV ±20 mV	Sub Unit Af Detector	
Adjust- ment			Sub Unit AF	
Frequency	DC DC 1 KHz 1 KHz	1 kHz 1 kHz 1 kHz 1 kHz	209 031 A STABILOCK 4031	
Measuring Point	Mp28 Mp29 Mp13 Mod. meter Mp13 Mod. meter	Mp20 RMS meter Mp20 RMS meter Mp20 RMS meter Mp20 RMS meter	Name Ref. No.	
Measuring Procedure	Testing ±6-V power unit Peak detector RX FM: press EXI key Mod. frequency = 1 kHz Mod. = 2.4 kHz \$0.34 V on Mp8 Mod. = 20 kHz \$2.83 V on Mp8 AC voltmeter TX: Mod Gen display	Level = 4 mV = 532 mV on Mp6 200 mV = 2.66 V on Mp6 400 mV = 5.32 V on Mp6 800 mV = 1.064 V on Mp6 Monitoring amplifier Turn up volume control on front panel	Date Name Issue Alteration No. Date	
Necessary Equipment	4031, DVM Oscilloscope		Issue Alteration No	
Schlu	Adjustment and Test Procedure			

Actual Value		Sheet	2/3
Set Value	2.83 V ±5 mV = 0 dB rel41 dB ±2 dB -21 dB ±2 dB -3.6 dB ±1 dB 0 dB ±1 dB -5.6 dB ±2 dB -15 dB ±3 dB -43 dB ±3 d		AF Detector
Adjust- ment	R245 R300, R303, R308 R312, R315,		Sub Unit AF
Frequency	800 Hz 100 Hz 200 Hz 500 Hz 1.2 kHz 2 kHz 4 kHz 5 kHz 6 kHz 6 kHz 1003 Hz 1997 Hz	209 031 A	Type STABILOCK 4031
Measuring Point	Mp20 RMS meter Mp47 Mp47 RMS meter	Name Ref.	Type
sary Measuring Procedure	CCIII filter Press CCIII key Mod. frequency = 800 Hz/800 mV Mod. frequency = 100 Hz Mod. frequency = 200 Hz Mod. frequency = 500 Hz Mod. frequency = 3 kHz Mod. frequency = 3 kHz Mod. frequency = 5 kHz Mod. frequency = 6 kHz Press CCIII key 1-kHz notch filter Press DIST key Mod. frequency = 1003 Hz Repeat adjustment until no more improvement is possible Mod. frequency = 997 Hz Repeat adjustment until no more improvement is possible Mod. frequency = 104 Hz	Alteration No. Date Name Issue Alteration No. Date	
Necessary Equipment		Issue Alter	

Actual Value		Sheet		3/3
Set Value	490 mV ±1 mV max. amplitude (approx. 1.3 V _{pp})		20420404	אבוברוסו
Adjust- ment	C173		Sub	
Frequency	1 kHz 8 MHz		209 031 A	STABILOCK 4031
Measuring Point	Mp24 Mp32	Name Ref.	o No	Туре
y Measuring Procedure	SCOPE external Connect MOD GEN socket to SCOPE INPUT Call up scope and press EXT softkey Mod. frequency 1 kHz, vertical deflection = 2 V/div Level = 3 V ½ 1.5 V on Mp21 Centre signal display with POS control 8-MHz generator	Alteration No. Date Name Issue Alteration No. Date N		
Necessary Equipment		Issue		
Schlu	Adjustment and Test Procedure			re

W BLAFK	ti Britis			L_		2017	1	U	
- RED	• VHDLE *					400			Schlumberger Meßgerate GmbH
BO2F	we would	08	8088, 184	6,10.88	Kr.	DP 311	11,12,86	Kr.	14 Istadtor Steathers
ge YFC 1946	'HANSPAREN'	Ausg	A Mirrig	Dar. ·	Name		Datum	10,	T ·
Jr - HFEN		155	M e(jiif	DATE	NAME	1966	1414	NAME	tris for Morein there is \$4

Menierung . 209 838 \$ / 364 407 Sq

Bestückte Leiterplatte Typ AF SELECTOR 1980 See No. 1980 No. 198		10 09 08 07		184.	6,10,88	Kr.	Rohtes	Francial trade progen	1	Schlumberger Meßgeräte GmbH rigostetter Straße 67 a 8000 Munchen 46
361 407		05							2:1	Bestückte Leiterplatte Typ AF SELECTOR
gate take Serial LOD / 100 CDI	•	0,	1	2	Own.		Obst Nacre	94 15.P		

786 009 (11x) ୍ ଭ R266 O R259 O R263 C261 R262 R264 O F) R305 e C263 C260 C 02 C259 C: 0 408 RZSS 0 0 C 003 280 C273 S R2S2 R253 φ \circ R251 27 884 688 0000 M25 x6 DIN 7985 701 654 3 **(** 00 C255 M2,5 DIN 934 704 108 Ø C254 © C271 R249 0000 A270 0 293 0000 0 C249 C O C246 C247 R243 R242 R244 С A241 C5 **⊕**|c290 S33 @ 13.70° C330 240 **●** C 27 0 O 8558 D330 O R221 GL 304 **5** 40 C203 C204 BU78

834 901(3x)

1		2		\bot	3		4	5		6		7	8
Pos. REF. NO		Wert VALUE			Bezeich Schlumb PART	erger	Herate MANUF			-Wert -VALUE		Bezeichnung Schlumberger PART. NO.	Herstelle MANUFAC
1	PRINTE	kte Leit D CIRCUI	terplat T BOAR	te D	361 4	07	SCH	L					
	hierzu see				361 40	07 Sa	SCH	L	_				
	2 1									···			
1	PRINTE	kte Leit D CIRCUI	erplat T BOAR	te D	361 40) 8	SCH	L					
	hierzu see				361 40	08 Sa	SCH	L .					
								-					-
												70	
Bu 12	-	Ω 35/548		-	886 26		TELE						
Bu 13	BNC 50	Ω 35/548	8		886 26	3	TELE						
									_				
 -					-				-			,	
					— p					 -			
												····	
										<u></u>			
												1.0	
·		100											
									\downarrow				
				-					_				
07	<u> </u> 									Schaltte	eilliste	<u> </u>	Liste besteht
06 05 04		,		ing	olstädter	leßgeräte Straße 6 nchen 46	7a	Benennung DESCRIPTION		EL. PART	S LIST		aus 1 OF
03				<u> </u>		- IOI 40				WE #UCIC	. C I UK		Blatt SHEETS
01	7088,154	26.10 R	7 Di	1987	Tag DATE 26,10,8	Dietr	Æ	Bezeichnun Schlumberg PART, NO.		209 031	Sa	·	Blatt Nr. SHEET NO.
Aus-	ÅndMittig.		וט	geschr. bearb.	ZU. 10.0	שופוט	ICU	Hierzu Schi SEE CIRCU			S		1
gabe SSUE A	Nr. MODIFIC. NO.	Tag DATE	Name NAME	gepr.	 	1 5	9	Gerät:	403		·		1

1	2	3	4	5	6	7	8
Pos REF NO	Wert WALUE	Bezeichnung Schlumberger PART NO.	Herstoffer MANUFACT	Pos. REF. NO	Wert VALUE	Bezeichnung Schlumberger PART NO	Hersteller MANUFACT
A 20	LF 356 N	834 059	NS				
A 21	LF 411 ACN	834 211	NS				
A 40	µА 772 ТС	834 081	FAIR				
A 41	µА 772 TC	834 081	FAIR				
A 42	μA 772 TC	834 081	FAIR				
A 70	LF 356 N	834 059	NS				
A 90	LF 411 ACN	834 211	NS				
A 100	OP 37 GP	834 223	PMI				
A 101	TLC 272 ACP	834 217	TEX				
A 140	LF 411 ACN	834 211	NS				
-							
,							
97 98		Schlumberger Meßgerät	e GmbH		Schaltteillist EL. PARTS LIST	te	Liste besteht LIST COMBISTS
04		Ingolstädter Straße 8000 München 4		Beneature DESCRIPTION	Bestäckte Leiterplat iyp: AF-SELECTOR / AF-DET		해 10 매매
62	8088.184 6.10.88 Kr. 1		uno		361 407 Sa	E bi UK	Over to:
-	18.18 J.12.46 C4-	11,7.86 Dietr		Schlumberger PART, NO. Hierau Schalle			1
	No. No. No.	earb .	6	see cincuit Gent: 40	DIABRAM ZWY UST 3		

Diese Zeichnung ist uns

The color of the	1	2	3		-		7	
C 2 10 of ± 10 x 50 v		1	Bassichnung Schlumberger PART. NO,	ı		Wert	Bassichnung Behärmberger	Manufact Manufact
C 3	C 1	· 10 mF ± 10 % 50 V-	813 115	RÕD	C 28	100 nF ± 10 % 50 V-	813 121	nto
C.4	C 2	10 nf ± 10 % 50 V-	813 115	RÕD	C 29	100 of ± 10 % 50 Y-	813 121	ndo
C 5 10 of 10 50 V- 813 115 RB0 C 7 10 of 10 50 V- 813 115 RB0 C 40 156 pt 12 50 V- 813 115 RB0 C 41 10 of 10 50 V- 813 115 RB0 C 40 156 pt 12 50 V- 813 115 RB0 C 41 10 of 10 50 V- 813 115 RB0 C 41 10 of 10 50 V- 813 115 RB0 C 42 10 of 10 ft 50 V- 813 115 RB0 C 43 10 of 10 ft 50 V- 813 115 RB0 C 44 10 of 10 ft 50 V- 813 115 RB0 C 44 10 of 10 ft 50 V- 813 115 RB0 C 45 10 of 10 ft 50 V- 813 115 RB0 C 45 10 of 10 ft 50 V- 813 115 RB0 C 45 10 of 10 ft 50 V- 813 115 RB0 C 45 10 of 10 ft 50 V- 813 115 RB0 C 45 10 of 10 ft 50 V- 813 115 RB0 C 45 10 of 10 ft 50 V- 813 115 RB0 C 46 10 of 10 ft 50 V- 813 115 RB0 C 47 10 of 10 ft 50 V- 813 115 RB0 C 47 10 of 10 ft 50 V- 813 115 RB0 C 48 10 of 10 ft 50 V- 813 115 RB0 C 49 12 of 10 ft 50 V- 813 115 RB0 C 40 V- 813 115 RB0 C 40 V- 813 115 RB0 C 40 V- 813 115 RB0 C 410 V- 813 115 RB	C 3	10 mf ± 10 % 50 V-	813 115	RÖÐ	C 30	100 nF ± 10 % 50 V-	813 121	RÖG
C 6	C 4	10 nf ± 10 % 50 V-	813 115	RÖD		-	4	
C 7	C 5	10 nf ± 10 % 50 V-	813 115	RÖD				
C 8	C 6	10 mF ± 10 % 50 V-	813:115	RÖD				
C 9 10 nF ± 10 1 50 V- 813 115 RÖD	C 7	10 nF ± 10 % 50 Y-	813 115	RÕD				
C 10 100 pf ± 20 1 6,3 v. 814 879	C 8	10 nF ± 10 % 50 Y-	813 115	RÃO				
C 11 10 of ± 10 £ 50 V- 813 115 RB0 C 49 136 of ± 2 £ 63 V- 813 115 RB0 C 49 13 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 15 £ 63 V- 812 1366 S 10 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 50 V- 813 115 RB0 C 49 12 of ± 10 £ 60 V- 813 115 RB0	С 9	10 nF ± 10 % 50 Y-	• 8 13 115	RÕO				
C 12	C-10	100 pF ± 20 % 6,3 V-	814 879	MATS	80	·		
C 13	C 71	10 of ± 10 % 50 %-	013 115	Rib	C 40	156 # ±2163 V-	300 333	STET
C 14 18 of 2 10 1 50 V- 813 115 RB0 C 43 10 of 10 15 50 V- 813 115 RB C 44 10 of 10 15 50 V- 813 115 RB C 45 10 of 10 15 50 V- 813 115 RB C 46 10 of 10 15 50 V- 813 115 RB C 47 10 of 10 15 50 V- 813 115 RB C 48 10 of 10 15 50 V- 813 115 RB0 C 49 22 of 15 15 163 V- 812 1366 S1 C 21 10 of 1 10 15 50 V- 813 115 RB0 C 50 22 of 15 15 163 V- 812 1366 S1 C 22 10 of 1 10 15 50 V- 813 115 RB0 C 23 10 of 1 10 15 50 V- 813 115 RB0 C 24 10 of 1 10 15 50 V- 813 115 RB0 C 25 10 of 1 10 15 50 V- 813 115 RB0 C 26 10 of 1 10 15 50 V- 813 115 RB0 C 27 10 of 2 10 15 50 V- 813 115 RB0 C 28 10 of 2 10 15 50 V- 813 115 RB0 C 29 10 of 2 10 15 50 V- 813 115 RB0 C 20 10 of 2 10 15 50 V- 813 115 RB0 C 21 10 of 2 10 15 50 V- 813 115 RB0 C 22 10 of 2 10 15 50 V- 813 115 RB0 C 23 10 of 2 10 15 50 V- 813 115 RB0 C 24 10 of 2 10 15 50 V- 813 115 RB0 C 25 10 of 2 10 15 50 V- 813 115 RB0 C 26 10 of 2 10 15 50 V- 813 115 RB0 C 27 10 of 2 10 15 50 V- 813 115 RB0 C 28 10 of 2 10 15 50 V- 813 115 RB0 C 29 10 of 2 10 15 50 V- 813 115 RB0 C 20 10 of 2 10 15 50 V- 813 115 RB0 C 28 10 of 3 10 15 50 V- 813 115 RB0 C 29 10 of 2 10 15 50 V- 813 115 RB0 C 20 10 of 3 10 1	C 12	22 pf ± 20 % 25 V-	814 677	MATS	8 C 41	10 nf ± 10 1 50 Y-	813 115	nio
C 44 10 of ± 10 x 50 v- 813 115 80 C 45 10 of ± 10 x 50 v- 813 115 80 C 46 10 of ± 10 x 50 v- 813 115 80 C 46 10 of ± 10 x 50 v- 813 115 80 C 46 10 of ± 10 x 50 v- 813 115 80 C 46 10 of ± 10 x 50 v- 813 115 80 C 49 22 of ± 15 x 63 v- 812 1366 S1 C 21 10 of ± 10 x 50 v- 813 115 80 C 50 22 of ± 15 x 63 v- 812 1366 S1 C 22 10 of ± 10 x 50 v- 813 115 80 C 50 22 of ± 15 x 63 v- 812 1366 S1 C 23 10 of ± 10 x 50 v- 813 115 80 C 50 22 of ± 15 x 63 v- 812 1366 S1 C 23 10 of ± 10 x 50 v- 813 115 80 C 50 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1	C 13	22 pf ± 20 % 25 V-	814 677	MATS	U C 42	10 nf ± 10 % 50 V-	813 115	nës
C 45 10 of ± 10 x 50 y- 813 115 RB C 46 10 of ± 10 x 50 y- 813 115 RB C 47 10 of ± 10 x 50 y- 813 115 RB C 48 10 of ± 10 x 50 y- 813 115 RB C 20 10 of ± 10 x 50 y- 813 115 RB C 21 10 of ± 10 x 50 y- 813 115 RB C 22 10 of ± 10 x 50 y- 813 115 RB C 23 10 of ± 10 x 50 y- 813 115 RB C 24 10 of ± 10 x 50 y- 813 115 RB C 25 10 of ± 10 x 50 y- 813 115 RB C 26 10 of ± 10 x 50 y- 813 115 RB C 27 10 of ± 10 x 50 y- 813 115 RB C 28 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 20 10 of ± 10 x 50 y- 813 115 RB C 20 10 of ± 10 x 50 y- 813 115 RB C 21 10 of ± 10 x 50 y- 813 115 RB C 22 10 of ± 10 x 50 y- 813 115 RB C 23 10 of ± 10 x 50 y- 813 115 RB C 24 10 of ± 10 x 50 y- 813 115 RB C 25 10 of ± 10 x 50 y- 813 115 RB C 26 10 of ± 10 x 50 y- 813 115 RB C 27 10 of ± 10 x 50 y- 813 115 RB C 28 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 20 10 of ± 10 x 50 y- 813 11	C 14	10 mF ± 10 % 50 V-	813 115	Rås	C.43	10 of ± 10 % 50 V-	81 3 115	RÖD
C 46 10 of ± 10 x 50 y- 813 115 RB C 47 10 of ± 10 x 50 y- 813 115 RB C 48 10 of ± 10 x 50 y- 813 115 RB C 20 10 of ± 10 x 50 y- 813 115 RB C 21 10 of ± 10 x 50 y- 813 115 RB C 22 10 of ± 10 x 50 y- 813 115 RB C 23 10 of ± 10 x 50 y- 813 115 RB C 24 10 of ± 10 x 50 y- 813 115 RB C 25 10 of ± 10 x 50 y- 813 115 RB C 26 10 of ± 10 x 50 y- 813 115 RB C 27 10 of ± 10 x 50 y- 813 115 RB C 28 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 20 10 of ± 10 x 50 y- 813 115 RB C 27 10 of ± 10 x 50 y- 813 115 RB C 28 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 29 10 of ± 10 x 50 y- 813 115 RB C 200 Milliochen 48 RB C 40 10 of ± 10 x 50 y- 813 115 RB C 200 Milliochen 48 RB C 40 10 of ± 10 x 50 y- 813 115 RB C 200 Milliochen 48 RB C 40 y- 10 x 50 y- 813 115 RB C					C 44	10 of ± 10 \$ 50 V-	813 115	RÖD
C 47 10 nf ± 10 x 50 v- 813 115 RBD C 49 22 nf ± 15 x 63 v- 812 1366 S1 C 21 10 nf ± 10 x 50 v- 813 115 RBD C 50 22 nf ± 15 x 63 v- 812 1366 S1 C 21 10 nf ± 10 x 50 v- 813 115 RBD C 50 22 nf ± 15 x 63 v- 812 1366 S1 C 22 10 nf ± 10 x 50 v- 813 115 RBD C 23 10 nf ± 10 x 50 v- 813 115 RBD C 24 10 nf ± 10 x 50 v- 813 115 RBD C 25 10 nf ± 10 x 50 v- 813 115 RBD C 26 10 nf ± 10 x 50 v- 813 115 RBD C 27 10 nf ± 10 x 50 v- 813 115 RBD C 28 10 nf ± 10 x 50 v- 813 115 RBD C 29 10 nf ± 10 x 50 v- 813 115 RBD C 29 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 21 10 nf ± 10 x 50 v- 813 115 RBD C 22 15 nf ± 10 x 50 v- 813 115 RBD C 23 16 nf ± 10 x 50 v- 813 115 RBD C 24 16 nf ± 10 x 50 v- 813 115 RBD C 25 16 nf ± 10 x 50 v- 813 115 RBD C 26 16 nf ± 10 x 50 v- 813 115 RBD C 27 16 nf ± 10 x 50 v- 813 115 RBD C 28 16 nf ± 10 x 50 v- 813 115 RBD C 29 16 nf ± 10 x 50 v- 813 115 RBD C 29 16 nf ± 10 x 50 v- 813 115 RBD C 20 16 nf ± 10 x 50 v- 813 115 RBD C 20 17 nf ± 10 x 50 v- 813 115 RBD C 20 17 nf ± 10 x 50 v- 813 115 RBD C 20 18 nf ± 10 x 50 v- 813 115 RBD C 20 18 nf ± 10 x 50 v- 813 115 RBD C 20 18 nf ± 10 x 50 v- 813 115 RBD C 20 18 nf ± 10 x 50 v- 813 115 RBD C 20 18 nf ± 10 x 50 v- 813 115 RBD C 21 18 nf ± 10 x 50 v- 813 115 RBD C 22 nf ± 15 x 63 v- 812 1366 XBD C 23 10 nf ± 10 x 50 v- 813 115 RBD C 24 10 nf ± 10 x 50 v- 813 115 RBD C 25 10 nf ± 10 x 50 v- 813 115 RBD C 26 10 nf ± 10 x 50 v- 813 115 RBD C 27 10 nf ± 10 x 50 v- 813 115 RBD C 28 10 nf ± 10 x 50 v- 813 115 RBD C 29 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10 x 50 v- 813 115 RBD C 20 10 nf ± 10					C 45	10 mF ± 10 \$ 50 Y-	813 115	RČO
C 48 10 of ± 10 £ 50 V- 813 115 RBD C 49 22 of ± 15 £ 63 V- 812 1366 S1 C 21 10 of ± 10 £ 50 V- 813 115 RBD C 50 22 of ± 15 £ 63 V- 812 1366 S1 C 22 10 of ± 10 £ 50 V- 813 115 RBD C 23 10 of ± 10 £ 50 V- 813 115 RBD C 24 10 of ± 10 £ 50 V- 813 115 RBD C 25 10 of ± 10 £ 50 V- 813 115 RBD C 26 10 of ± 10 £ 50 V- 813 115 RBD C 27 10 of ± 10 £ 50 V- 813 115 RBD C 27 10 of ± 10 £ 50 V- 813 115 RBD C 28 10 of ± 10 £ 50 V- 813 115 RBD C 29 10 of ± 10 £ 50 V- 813 115 RBD C 29 10 of ± 10 £ 50 V- 813 115 RBD C 29 10 of ± 10 £ 50 V- 813 115 RBD C 20 10 of ± 10 £ 50 V- 813 115 RBD C 20 10 of ± 10 £ 50 V- 813 115 RBD C 21 10 of ± 10 £ 50 V- 813 115 RBD C 22 of ± 15 £ 63 V- 813 115 RBD C 23 of ± 15 £ 63 V- 813 115 RBD C 24 of ± 10 £ 50 V- 813 115 RBD C 25 of ± 10 £ 50 V- 813 115 RBD C 26 of ± 10 £ 50 V- 813 115 RBD C 27 of ± 10 £ 50 V- 813 115 RBD C 28 of ± 10 £ 50 V- 813 115 RBD C 29 of ± 10 £ 50 V- 813 115 RBD C 29 of ± 10 £ 50 V- 813 115 RBD C 20 of ± 10					C 46	10 nF ± 10 % 50 Y-	813 115	RČD
C 20 10 of 1 10 x 50 v- 813 115 RB0 C 49 22 of 1 5 x 63 v- 812 1366 S1 C 21 10 of 1 10 x 50 v- 813 115 RB0 C 50 22 of 1 15 x 63 v- 812 1366 S1 C 22 10 of 1 10 x 50 v- 813 115 RB0 C 24 10 of 1 10 x 50 v- 813 115 RB0 C 25 10 of 1 10 x 50 v- 813 115 RB0 C 26 10 of 1 10 x 50 v- 813 115 RB0 C 27 10 of 1 10 x 50 v- 813 115 RB0 C 28 10 of 2 10 x 50 v- 813 115 RB0 C 29 10 of 2 10 x 50 v- 813 115 RB0 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 80 Schlumberger Modgariae County or 10 mm or 10					C 47	10 nF ± 10 % 50 V-	813 115	RÕD
C 21 10 of 10 150 V- 813 115 RB0 C 50 22 of 115 163 V- 852 1366 S1 C 22 10 of 10 150 V- 813 115 RB0 C 23 10 of 10 150 V- 813 115 RB0 C 24 10 of 10 150 V- 813 115 RB0 C 25 10 of 10 150 V- 813 115 RB0 C 27 10 of 10 150 V- 813 115 RB0 C 27 10 of 10 150 V- 813 115 RB0 Schlamberger Medigarite Books to consider Strade 67 a 8000 Millionoben 40 RB SCHARTS Light Sections and RB Section As Assets Best Schlamberger Medigarite Books Type M-SELECTOR As ASSETS THE STATE CONSTRUCTION ASSETS TH					C 48	10 nF ± 10 £50 V-	813 115	RÖD
C 22 10 of ± 10 1 50 V- 813 115 RB0 C 23 10 of ± 10 1 50 V- 813 115 RB0 C 24 10 of ± 10 1 50 V- 813 115 RB0 C 25 10 of ± 10 1 50 V- 813 115 RB0 C 27 10 of ± 10 1 50 V- 813 115 RB0 C 27 10 of ± 10 1 50 V- 813 115 RB0 Schlumberger Mollgarine Grahl Inspire Mollgarine	C 20	10 mF + 10 % 50 V-	813 115	RÖD	C 49	2 # ± 15 \$ 63 %	8812 136 6	SE
C 23 10 of 2 10 1 50 V- 813 115 RD C 24 10 of 2 10 1 50 V- 813 115 RD C 25 10 of 2 10 1 50 V- 813 115 RD C 26 10 of 2 10 1 50 V- 813 115 RD C 27 10 of 2 10 1 50 V- 813 115 RD Schlumberger Medigarite Guidal Impointed the Schlumberger Medigarite Guidal Impointed the Schlumberger Medigarite Guidal Impointed the Schlumberger Medigarite Guidal Impointed the Schlumberger Medigarite Guidal Impointed the Schlumberger Medigarite Guidal Impointed the Schlumberger Medigarite Guidal Impointed the Impointed t	C 21	10 mf 1 10 % 50 V-	813 115	RÖD	C 50	22 of ± 15 \$ 63 %	8112 1366	2)E
C 24 10 of 2 10 1 50 V- 813 115 RB0 C 25 10 of 2 10 1 50 V- 813 115 RB0 C 26 10 of 2 10 1 50 V- 813 115 RB0 C 27 10 of 2 10 1 50 V- 813 115 RB0 Schlamberger Meligerite Graff or Schlamberger Meligerite Graff togoleticiter Strate Graff Schlamberger Meligerite Graff Typ: M-SELECTER /M-SELECTER /M-SEL	C 22	10 mF ± 10 % 50 Y-	813 115	RÖD				
C 25 10 of 10 1 50 V- 813 115 RD C 27 10 of 10 1 50 V- 813 115 RD C 27 10 of 10 1 50 V- 813 115 RD Schlamberger Melgerite GodH tejcoleticiter Strate Gra In	C 23	10 of 1 10 % 50 Y-	8 13 115	RÖD				
## 25	C 24	10 of ± 10 % 50 %-	813 115					
C 27 10 nf 1 10 1 50 Y- 813 115 RD Schlamberger Melgerite Smith Ingoletikater Strate 67 a 8000 Millionten 46 Section Resident Leiterplatte Control Section Leiter	£ 25	10 of 1 10 % 50 %-	813 115	RÕD				
Schlumberger Meligerite GudM Schaltteilliste Ingoleticiter Strate 67 a 8000 Milnohen 46 Schlumberger Meligerite GudM EL. PARTS LIST Or 10 Typz M-SELECTER /M-MIRCHER RESULTS	£ %	10 mf ± 10 % 50 V-	813 115	£80				
Schlumberger Meligerite Smith! Ingolaticiter Straße 67 a 8000 Milanchen 46 Schlumberger Meligerite Smith! St., PARTS LIST Sessonarion Bestfiskte Leiterplette Typz M-SELECTER /M-SELECTER /M-SELECTER		10 mf ± 10 % 50 V-	813 115	RÖÐ				
8000 MBnchen 46 Sesconmon BestBakts Leiterplette Typs M-SELECTOR /M-MESSAGE RESERVE	•	Sci Sci						Liste bestehl LIST CONSISTS
THE STATE OF THE S	•				BESCRIPTION	Bestückte Leiterpleite)	
1906 and man 1914 47 to		1161245-18	16 to 100		•			See to.
The state of the s			the same of the sa		Marie Colonia			
20 031 5	2 _		16					

1	2	3		4 5			
Pes	Wert	Bezeichnung Schlanberger	Her	steller Pos		7 Bezeichnung	
REF NO	WLUE	Schlumberger PART NO.	- 1	UFACT REF	*****	Schlumberger PART NO	Her:
			_				
C 70	10 nF ± 10 % 50 V	- 813 115	Ri	50 C 400	40 5 40 4 20 4		+
C 71			+			813 115	R
	10 nF ± 10 % 50 V.		R	to C 101	10 nF ± 10 % 50 V-	813 115	R
C 72	1 nf ± 5 % 50 V-	813 066	SI	E C 102	10 nF ± 10 % 50 V-	813 115	Ri
¢ 73 ·	100 pf + 2 % 100 4	V- 818 534	V	L C 103			
C 74	100 pf & 2 % 100 1		+		10 70 10	813 115	Ri
76	 		Y/	L C 104	22 # £ 2 % 160 %	810 5 0 9	W
75	27 pf 1 20 % 25 V-	814 077	M	TSU C 105	10 nF ± 10 1 50 V-	81 3 115	R
				C 106	10 nF ± 10 % 50 V-	813 115	RÜ
77	100 nF ± 10 % 50 V-	813 121	RČE	C 107	10 nF ± 10 % 50 V-		
			+			813 115	, Ad
	-		-	C 108	10 nF ± 10 % 50 V-	813 115	RÕ
				C 109	180 of ± 10 % 50 %	813 121	R
				C 110	100 nF ± 10 % 50 V-	813 121	offi
							. RO
	:			C 111	100 pF ± 2 % 100 V-	810 534	YA
			-	C 112	120 pf ± 5 % 50 V-	813 855	SII
				C 113	10 pF _ 2 % 100 V-	810 505	VAL
				C 114	27 pF ± 2 % 100 V-	810 510	-
						 	YAL
+			-	C 115	820 pF ± 5 % 50 V-	813 865	SIE
-+				C 116	270 pf ± 5 % 50 %	813 059	SIE
90	100 of 1:5 \$ 63 L	862 370	YAL	C 117	33 pF ± 2 % 160 V-	810 511	VAL
91 1	100 of ± 5 % 63 %	AS2 320	YAL				+-
92	10 nF ± 10 % 50 Y-	813 115	RČD	 			
							
	10 nf ± 10 % 50 Y-		RÒD				
*	47 mf ± 5 % 63 Y-	812 368	YAL	C 140	10 nf ± 10 1 50 V-	813 115	ado
				C 141	10 nF ± 10 % 50 V-	†	
					Schaltteillist	813 115	ROD
	+	Schlemberger Meligeräte ingoistikter Straße 67			EL. PARTS LIST	.e	LIST CONSIS
		8000 München 46	'•	Bononoung DESCRIPTION	Bestückte Leiterplat	te	of 10
+-					yp: NF-SELECTOR / NF-DET	IECTOR	Staff SHIDETS
700	8,64 18,5,87 84	1986 orre Hann	:	Boastohnung Solhumburgur	364 LON 0.		
		11,7,86 Bistric	•	PROFT. (80).	361 407 Sa		13.7
		- 46		AND DESCRIPTION OF	209 031 5		1 J

Pos REF NO		Wert VALUE			3 Bezeichnung Schlumberge PART NO		4 Hersteller MANUFACT	5 Pos. T REF NO	6 Wert VALUE	7 Bezeichnung Schlumberger PART NO	8 Hersteller MANUFACT
C 143	10 nF	<u>10 % </u>	50 V-		813 115		RÖO				
C 144	10 nF	± 10 %	50 V-		813 115		RÖO	C 178	330 pF <u>+</u> 5 1 50 V-	813 060	SIE
								C 179	470 pF ± 5 % 50 V-	813 062	SIE
								C 180	560 pF ± 5 % 50 V-	813 063	3,8
								C 181	4,7 nF <u>+</u> 5 % 50 V-	813 074	SIE
C 150	47 µF	<u>+</u> 20 %	16 V-		814 078		MATSU	J			
C 151	 	± 20 %			814 076		MATSU	1			
C 152	 	± 20 %			814 076		MATSU	,			
		,							·		
											-
								0 1	SN 74 LS 139 N	834 688	ſEX
								D 2	NC 14 514 BCP	834 426	MOT
			-		-			D 3	PC 74 HCT 373 P	834 465	VAL
		_						D 4	PC 74 HCT 373 P	834 465	VAL
								D 5	PC 74 HCT 373 P	834 465	VAL
								D 6	PC 74 HCT 04 P	834 454	YAL
								D 7	PC 74 HCT 245 P	834 463	VAL
								D 8	PC 74 HCT 373 P	834 465	VAL
C 171	22	ıF <u>+</u> 20	% 25 V	•	814 077		MATS	SU			
C 173	2.7	.10 pF	100 V-	_	817 647		STET				
		,		-	-	;					
		-		-							
07					nberger Me	-			Schaltteillis EL. PARTS LIST		Liste besteht LIST CONSISTS
06 04 03	2022 104	6 10 00	V		olstädter S 3000 Münd			Benennung DESCRIPTION	Bestückte Leiterpla Typ: AF-SELECTOR/ AF-DET	itte	OF 10 Blatt SHEETS
02	3088,184 3088,151 8088,11	23.9.88	Kr.	1986	Tag DATE	Nom NAM		Bezeichnung Schlumberger	361 407 Sa		Blatt Nr. SHEET NO
Aus-	6088,70 And -MIRRIS	9.12.86	le-	geschr beerb	11.7.86		2/	PART. NO. Hierzu Schaltpi SEE CIRCUIT I			-
gabe ISSUE I	Nr. MODIFIC. NO.	Tag DATE	Name	gepr		46	-	Gerät: 40	31		

Pos REF NO	Wert VALUE	Bezeichnung Schlumberger PART NO.	Heres MANU	eller Pos	f Wert WALUE	7 Bezeichnung Schlumberger PART NO	Herstei MANUFA
				D 140	MC 14 051 BCP	834 481	MO
D 20		834 391	M.			-	
D 21	MC 140 53 BCP	834 391	MU	i			
				G1 1	BAT 85	830 499	VA
				G1 2	BAT 85	830 499	VAI
D 40	DG 201 CJ	834 413	SIL	0.40	700 (0		
	207.00	(17 170	311		ZPO 6,8	830 442	117
				67 11	ZPO 8,2	830 444	111
				61 12	ZPO 7,5	830 445	IT
70	MC 140 53 BCP	834 391	MOT	G1 20	BAT 85	830 499	VAL
		·		G1 21	BAT 85	830 499	VAL
				G1 22	BAT 85	830 499	YAL
				G1 23	BAT 85	830 499	VAL
				61 24	BAT 85	830 499	YAL
				G1 25	BAT 85	830 499	VAL
100	MC 140 51 BCP	834 481	MOT	G1 26	HP 28 0 0	830 500	нР
101	MC 140 53 BCP	834 391	MOT	61 27	HP 2800	830 500	МР
07					Schaltteillist	<u> </u>	Liste besteht
	0088_11	Schlumberger Meßgeräti Ingolstfidter Straße (8000 München 40	87 a	Benennung DESCRIPTION Typ	EL. PARTS LIST Bestückte Leiterplatt: AF-SELECTOR/ AF-DETEC		LIST CONSIS Bus OF 10 Blant SHEETS
~ ?! - ?!	88.64 18.5.87 D1 88.70 J.R.R. 14-	1986 DATE NA	ME	Sezeichnung Schlumberger PART NO	361 407 Sa		Blatt Nr SHEET NO
-	Nr. Tag Name -	bearb (f	2	Herzu Schaffplan SEE CIRCUIT DIAC	3RAM 209 031 S		5

1	2		3	4	5	6	7	8
Pos REF NO	Wort		Bezeichn: Schlumber	rger AAAN IC		Wert	Bezeichnung Schlumberger	Hersteller
	7		PART N	o. Manur	- THE NO	VALUE	PART NO	MANUFACT
G1 40								
G1 41				-				
G1 42								
G1 43								
G1 44								
G1 45								
G1 46	- 1 N 4148		830 24	0 177				
61 47								
61 4 8								
G1 49								
61 50								
G1 51								
61 52	HP 2800		830 50	00 HP				
61 53	HP 2800		830 50	DE HP	L 170	100 µH <u>+</u> 5 %	821 030	DALE
					L 171	100 μH ± 5 %	821 030	DALE
					L 172	68 µН <u>±</u> 5 Х	821 928	DALE

G1 90	8P 3800		830 50	00 HP	· L 174	1,5 μH <u>+</u> 10 %	821 124	DALE
61 91	HF 0300		830 50	00 HP				
					N 1	Netzwerk 7x100 kQ	864 512	DALE
ı					N 2	Netzwerk 7x100 kΩ	804 512	DALE
,								
07			Marshauer Ad	h-8		Schaltteillis	te	Liste besteht LIST CONSISTS
06			mumberger M Ingolstådler	lo lg orëte GmbH Strato 67 a	Senennung	EL. PARTS LIST		of 19
•	8088,18 6,10,88	Kr.	8000 M9s		DESCRIPTION	Bestückte Leiterpla Typ: AF-SELECTOR/ AF-DET	tte Ector	Statt .
	8088_151 23_9_88 2088_76 24_6_87	O.		T	 	- yy		Shad for
01	18.5.87	Di	906 Top BATE	Plans NAME	Schlumberger PMIT, NO	361 407 Sa		SHEET NO.
-	681 1.72.K	16- 000	- 177 7 86	Bietrich	1			
Aug-	1.14.4	boo		0.00	Herzy Schallps SEE CIRCUIT S			6

Pos.	Wert		Bezeic	tourn	4 5	6	7	
REF NO	VALUE		Schlum PART	berger	UFACT REF. NO	Wert VALUE	Schlumberger PART NO	Merate MARGE
						\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		45
					R 27	2,21 kQ ± 1 %	802 941	RÖ
R 1	4,75 kQ + 1 %		802 0	145 RČ	io R 28	2,21 kQ ± 1 %	892 941	RÖ
R 2	100 kΩ ± 1 %		802 0	161 RÖ	D R 29	10 kΩ ± 1 %	802 049	RÖL
R 3	100 kΩ ± 1 %		80 2 0	161 RÖ	0 R 30	1 kg ± 1 %	992 937	RÖL
R 4	100 kΩ ± 1 %		80 2 0	61 RÖ	D R 31	3,32 kQ ± 1 %	802 043	RÖL
5	190 kΩ ± 1 %		842 (161 RÖ	D R 32	39,2 kΩ <u>+</u> 1 %	802 056	RÖE
6	10 kΩ ± 1 %		802 0	49 RÖ	D R 33	825 Q ± 1 %	802 036	RÜ
7	10 kΩ ± 1 %		802 0	49 RÖ	D R 34	10 kg ± 1 %	802 049	RÜE
8	10 kΩ ± 1 %		802 0	49 RÖ	D R 35	190 kg ± 1 %	802 861	RÖD
9	10 kΩ ± 1 %		802 04	19 RČI	R 36	47.5 kg ± 1 %	902 957	RÖD
10	10 kg ± 1 %		802,04	9 RÕL	R 37	150 kΩ ± 1 %	802 963	RÜ
	¥ + ;		,					
								_
					R 40	22,1 kQ + 1 %	802 053	RÕD
					R 41	10 kΩ ± 1 %	802 049	RÖD
					R 42	10 kQ ± 1 %	802 049	RÖD
					R 44	100 Q ± 1 %	802 025	RÕO
					R 45	10 kQ ± 1 %	802 049	RÖB
					R 46	100 kΩ ± 1 %	802 061	RÖD
20	100 Q ± 1.%		802 0	25 RÕD	R 47	1 kQ + 1 %	 	
21	1,82kQ ± 1 %		962 DI		R 48	100 Q ± 1 %	802 037	RÕD
22	2.25 kQ ± 1 %	_	962 BI		R 49		802 025	AČO
	33.2 kQ ± 1 %	\dashv	362 0 5		R 50	10 kg <u>1</u> 1 %	802 049	RÃO
	~~ !		v	RÕD		10 kg ± 1 %	802 049	RÖB
-				RÕD	0.50	10 10 4 4		
,		\perp		KUU	R 52	10 kQ ± 1 %	802 049	ROD
,		1 .		le6geräte GmbH		Schaltteillist	e	LIST CONSIST
		⇉ "	8000 MGr	Straße 67 a nchen 46	Benerinung DESCRIPTION	Bestückte Leiterplati		- SF 10
-		-	T	T	1)	rp: AF-SELECTOR/ AF-DETEC	TOR	Blett SHEETS
70	88_123 28_8_87 No	1966	Tag BATE	Name NAME	Beseichnung Seldumberger	361 407 Sa		SHEET NO
- 60	83.70 9.11.84 3	great.	11.7.86	Dietrich	PART, NO Herzy Schallpla			1
	Nr. Tog No.	boarb.	1		BEE CIRCUIT DA			1 '

1	RÖD RÖB
R 53 10 kΩ ± 1 % 802 049 R80 R 54 100 Ω ± 1 % 802 049 R80 R 55 10 kΩ ± 1 % 802 049 R80 R 56 100 kΩ ± 1 % 802 061 R80 R 90 18,2 kΩ ± 1 % 802 052 R 57 1 kΩ ± 1 % 802 037 R80 R 91 56,1 kΩ ± 1 % 802 058 R 58 100 Ω ± 1 % 802 025 R80 R 59 10 kΩ ± 1 % 802 049 R80 R 60 R 60 R 90 R80 R 60 R 60 R 90 R80 R80 R80 R80 R80 R80 R80 R80 R80 R8	RČO
R 54 100 Ω ± 1 % 802 025 RÖD R 55 10 kΩ ± 1 % 802 049 RÖD R 56 100 kΩ ± 1 % 802 061 RÖD R 90 18,2 kΩ ± 1 % 802 652 R 57 1 kΩ ± 1 % 802 037 RÖD R 91 56,1 kΩ ± 1 % 802 658 R 58 100 Ω ± 1 % 802 025 RÖD R 59 10 kΩ ± 1 % 802 049 RÖD R 60 10 kΩ ± 1 % 802 049 RÖD	
R 55 10 kΩ ± 1 % 802 049 RÖD R 90 18,2 kΩ ± 1 % 802 952 R 56 100 kΩ ± 1 % 802 037 RÖD R 91 56,1 kΩ ± 1 % 802 958 R 58 100 Ω ± 1 % 802 025 RÖD R 59 10 kΩ ± 1 % 802 049 RÖD R 60 10 kΩ ± 1 % 802 049 RÖD	
R 56 100 kΩ ± 1 % 802 061 RÖ0 R 90 18,2 kΩ ± 1 % 802 852 R 57 1 kΩ ± 1 % 802 037 RÖ0 R 91 56,1 kΩ ± 1 % 802 858 R 58 100 Ω ± 1 % 802 025 RÖ0 R 59 10 kΩ ± 1 % 802 049 RÖ0 R 60 10 kΩ ± 1 % 802 049 RÖ0	
R 57 1 kΩ ± 1 % 802 037 RÖD R 91 56,1 kΩ ± 1 % 802 058 R 58 100 Ω ± 1 % 802 049 RÖD R 60 10 kΩ ± 1 % 802 049 RÖD	
R 58 100 Ω ± 1 % 802 025 RÕD R 59 10 kΩ ± 1 % 802 049 RÕD R 60 10 kΩ ± 1 % 802 049 RÕD	RÖM
R 59 10 kΩ ± 1 % 802 049 RÖ0 R 60 10 kΩ ± 1 % 802 049 RÖ0	
R 60 10 kΩ ± 1 % 802 049 RÖD	
· · · · · · · · · · · · · · · · · · ·	
1 1 1 1	
R 180 1% kΩ ± 1 % 802 1892	RÕD
R 101 1: kg ± 1 % 802 887	RÕD
R 102 1 kg ± 1 % 802 897	, RÖD
R 103 1 k2 ± 1 % 802 037	RÖO
R 70 15 kQ ± 1 % 802 051 RÖD R 104 1,5:\$Q± 1 % 802 039	RÕĐ
R 71 15 kQ ± 1 % 802 051 RÖD R 105 168 ± 1 % 802 825	RŎĐ
R 72 18,2 kQ ± 1 % 802 052 RÖO R 106 108 2 ± 1 % 802 025	RÖD
R 73 66,1 Q ± 1 5 862 923 RÕD R 107 100 at ± 1 % 802 925	RŎD
R 74 118 Q ± 1 % 802 013 RÖD R 108 198 ± 1 % 802 825	RÖD
R 75 7897 R ± 1 % 802 013 RÖD R 109 159 RE ± 1 % 802 627	RÖÐ
R 76 100 Q ± 1 % 802 025 RÖD R 110 130 R ± 1 % 802 803	RÖÐ
R 77 (46: Q 1 1 2 802 613 RID R 111 (180 Q 1 1 2 802 613	RŎĐ
R 78 (40) Ω ± 1 %. 802 603 R NO R 112 180 Ω ± 1 % 802 613	RÕĐ
R 79 40,1 2 41 2 602 603 R60 R 113 180 2 41 2 602 613	RÜD
R 80 221 142 4 1 5 802 865 ROD R 114 86/1 142 4 1 5 802 899	RÕD
R 115 4/5 2 4 1 2 002 493	RÕD
R 116 100 Ω ± 10 % 807 500	CHIM
Schlumberger Melgeräte GmbH Schaltteilliste	Liste besteht LIST CONSISTS
ingoletädter Straße 67a Benoming	→ ¹⁰
○ 8088,184 6,10,88 Kr. Typ: AF-SELECTOR/ AF-BETECTOR	Shelt SHEETS
01 7000_61 19.5.07 00 1906 com com com com com com com com com com	Blast Mr. SHEET MD.
- 699.70 (-12.56 &- orote 11.7.56 Bietrigh Horse Sentence 209 031 S	
Contract Con	-

	1		2		3	4				· · · · · · · · · · · · · · · · · · ·
	Poe.	•••			encisha _e ng	Heres		6 Wert	7 Bezeichnung	Harasan
-	F. NO	WL			PART NO.	34444	REF. N	O WALUE	Schlumberger PART NO	MANUFACT
	117	12,1 kΩ ±	1 %	80	02 050	RČE				
	118	56,2 kΩ ±	1 7	80	12 058	RÖC) R 150	1,21 kQ ± 1 %	802 038	RŎD
R	119	10 kΩ ±	1 %	80	2 049	RÖO	R 151	47,5 Q ± 1%	802 021	RÖD
R	120	15 kΩ ± 1	1 1	80	12 051	RÖD	R 152	47.5 Ω ±1%	802 021	RÕD
R	121	100 kg 👱 1	1 %	80	2 061	RŎD	R 153		802 037	RÖD
R	122	0 Ω		80	5 050	POL	Y R 154	1,82 kQ ± 1 %	802 040	RÖD
R	123	15 kΩ <u>±</u> 1	1 %	80	2 051	RÕD		47,5 Q ± 1 %	802 021	RŎO
R	124	15 kQ ± 1	7	800	2 051	RÕD	R 156	47,5 Ω ±1%		
R	125	68,1 kΩ <u>•</u> 1	1		2 059	RÕD	R 157	5,62 kQ ± 1 %	802 021	RÖB
R	-	22,1 kΩ ± 1			2 053	RÖD	R 158		802 046	RÕD
	_	182 kQ ± 1		 	964			825 1 2 1 %	802 036	RÕD
	-+	27,4 kΩ ± 1		 		RÖD	R 159	6,81 kg <u>1</u> 12	802 047	RÖD
	-+	180 2 ± 1		 	054	RÕO				
	-+			+	025	RÕD				
-	-+	27,4 kg ±1		802	054	RÕD	-			
		8,25 kΩ ±1		802	048	RÕD				
	_	3,25 kg ±1		802	048	RÕO				
		3,25 kQ ±1;		802	048	RÕO				
R 1	34 8	.25 kΩ ± 1 ;	1	802	04 8	RÕO				
R 1	35 8	,25 kΩ ±17	£	802	048	RÕD				
R 1	36 8	,25 kΩ ±17	1	802	048	RÖD				
							R 170	1,5 kg +1%	802 039	RÖD
							R 171	5,62 kΩ • 1 %	802 046	+
R 14	0 1	l k2 ±1 %	*****	892	337	eño	R 172	10 kg 1 %		RÕD
R 14	1 1	100 g _ 1 %		802 (125	Allo	R 173	1 kg ± 1 %	905 679	RÕO
R 14	-	10 kQ • 1 %		802 (RČD	R 174		802 037	RÕD
R 14		10 kg ± 1 %		802 0		RÖD	R 175		802 037	RÕO
07	1						[* 1/2	Schalttei	802 027	RÕD
05			1 1		Meligeräte (er Straße 67			B. MATS		LIST CONSISTS
-		184 6 10 88	Kr.		Minchen 46	_	escarnos Te	Postückte Leite p: M-SELECTON/ MF	rplatte	of 10
91	1	* 1 **	No. 19		Mamo			361 467		SHEETS Shall Mr. SHEET MR.
-	1		-	- 4.0	7 Dietrie		ant an	20) 031	S	19
			-		1 40	1	mar 10		_	1 1
		et uneer Eigentum. V	rerviellättigung.	mbalugia Yerwi	ortung, Militaliung o	andere le	d stratter and	schedenersatzpflichtig.		·

1		2			3		4	5	7.4	6	*	T	7	7
Pos	1				Bezeict		 		+			+		-
REF NO	5 .	Wert			Schlumi	berger	MANUF	1		Wert VALUE		8	lezeichnung chlumberger PART. NO	MANUFAC
St 1	1 1-9	7798 6 -4	(6x)		884	790	AMP							
								T 17	0 8	C 550 B			332 127	SIE
St 6	0 Ste	eker 6	4 pol.		884 5	500	SIE							
	-			_				_	-					
	 						ļ	-	ļ					
St 77	+	17966-4			884 7	790	AMP		ļ					
St 76	1-91	7906-4	(16 _k)		884 7	790	APP	-	<u> </u>	*				
								·	-					-
		 		-					-				· · · · · · · · · · · · · · · · · · ·	
				-				_	-		••			-
	ļ			\dashv					-					
T 70	BC 56	60 B		+	832 1	28	SIE							
T 71	BC 55				832 1		SIE	+			*			
									<u> </u>	••				
														-
1 150	BC 5	50 B			42 1	120	SIE							
151	BC 5				纹		SIE							
152	BC 5	60 B	-		832 12	28	SIE							ļ
	ļ						-							
07	<u> </u>		I		· · · · · · · · · · · · · · · · · · ·	<u> </u>				Cohole	oi l ic.			iste besteht
06 06				1		loGgeräte Straße 67				Schaltt EL. PART	rs lust		ľ	IST CONSISTS
04 03					8000 Mar	nohen 46	-	Bontonyng BBOCAUPINON	Typs	Boetliekte L AF-SELECTOR	ofterplai / AF-DETE	ite CTOR		OF PO Man MOSTS
02 01	, , <u></u>			1986	Tag DATE	Page 1		Bessiehnung Settumberger PART, NO.		361 40	7 Sa			Made Re
	199.74 hairma	9.12.8	-	poechr. bears.	11_7_86	Distric		Herse Schallph SSE CIRCLIT D	MARAM	209 03				10
ملحد	COTIC D.	PHIL	10000	900F		2.9		Conta: 403						

A 220 μA A 240 TL A 241 TL	Wert VALUE C 272 AC P 772 TC C 272 ACP C 272 ACP	3 Bezeich Schlumi PART. 834	perger MANUF. 217 TE:	ACT REF. NO.	6 Wert VALUE	7 Bezeichnung Schlumberger PART. NO.	8 Hersteller MANUFACT
A 220 μA A 240 TL A 241 TL	772 TC C 272 ACP	834	217 TE				
A 240 TL A 241 TL	C 272 ACP		081 FA	IR			
A 240 TL A 241 TL	C 272 ACP		D81 FA	IR			1
A 241 TL	******	021					
	C 272 ACP	, 4 50	217 TE	C 200	22 nF ± 10 % 50 V-	813 117	RÖD
A 242 TL		834	217 TEX	C 201	10 nF ± 10 % 50 V-	813 115	RÖD
	C 272 ACP	834 :	217 TE	C 202	10 nF ± 10 % 50 V-	813 115	RÖD
A 243 TL	C 272 ACP	834 :	217 TEX	C 203	10 nF ± 10 % 50 V-	813 115	RÖD
				C 204	10 nF + 10 % 50 V-	813 115	RÖD
A 270 T	LC 272 ACP	834	217 TEJ	C 205	2,2 pF ± 2 % 63 V-	810 555	STET
				C 206	22 pF ± 2 % 63 V-	810 509	STET
A 290 L	M 311 N - 8	834 (017 NS	C 207	22 pF <u>+</u> 2 % 63 V-	810 509	STET
A 300 T	LC 272 ACP	834 2	M7 TE)	C 220	10 nF ± 10 % 50 V-	813 115	RÖD
				C 221	10 nF ± 10 % 50 V-	813 115	RÖD
А 330 да	4 772 TC	834 ()81 FAI	R C 222	180 pF ± 5 \$ 50 V-	813 057	SIE
A 331 A) 536 AJH	834 1	135 ANA	C 223	180 pF ± 5 % 50 V−	81 3 0 57	SIE
A 332 A) 536 AJH	834 1	35 ANA	C 224	180 pF <u>+</u> 5 % 50 V-	8 13 05 7	SIE
				C 225	180 pF <u>+</u> 5 % 50 V-	813 057	SIE
	•				e Alexandre		
	444			C 240	10 nF ± 10 % 50 V-	813 115	RÖD
				C 241	10 nF ± 10 % 50 V-	8 13 115	RÕO
	···			C 242	10 nF ± 10 % 50 V-	813 115	RÕO
Bu 15 D-1	Buchse 25 pol.	884 6	S88 AMP	C 243	10 nF + 10 \$ 50 V-	8 13 115	RÖD
				C 244	6,8 nF ± 1 % 63 V-	812 177	SIE
Bu 77 Bue	thse 16 pol.	884 7	11 AMP	C 245	3,9 nF ± 1 % 63 V-	812 174	SIE
Bu 78 Bud	thse 16 pol.	884 7	11 AMP	C 246	100 pF ± 2 % 63 V-	810 534	STET
06		_	Aeßgerä te GmbH		Schaltteilliste	3	LIST CONSISTS
04		-	Straße 67 a nchen 46	Benennung DESCRIPTION	Bestückte Letterplat Typ: AF-METER	te	OF 0 Blatt
02	02 22 40 00 V	1986 тая	Name	Bezeichnung		<u>.</u>	SHEETS Blatt Nr.
- 6088.			Dietrich	Schlumberger PART, NO.	361 408 Sa		SHEET NO.
Aire- AndMitt		beerb.	La-	Hierzu Schallple SEE CIRCUIT D		4 S	

1	2	3	4	5	6	7	
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstell MANUFA	ler Pos.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
C 247	10 nF <u>+</u> 10 % 50 V-	813 115	RÖO				
C 248	10 nF <u>+</u> 10 % 50 V-	813 115	RÖD				
C 249	10 nF + 1 % 63 V-	812 179	SIE				
C 250	1 nF + 1 % 63 V-	812 167	SIE				
C 251	56 pF <u>+</u> 2 % 63 V-	810 513	STE	Г			
C 252	100 nF ± 5 % 100 V-	812 326	RÖD				
C 253	560 pF <u>+</u> 5 % 50 V-	813 063	SIE	C 290	22 nF <u>+</u> 10 % 63 V-	813 117	RÖD
C 254	10 nF ± 10 % 50 V-	813 115	RÖD	C 291	1 nF + 5 % 50 V-	813 066	SIE
C 255	10 nF ± 10 % 50 V-	813 115	RÖD	C 292	10 nF + 10 % 50 V-	813 115	RÖD
C 256	10 nF + 1 % 63 V-	812 179	SIE	C 293	10 nF + 10 % 50 V-	813 115	R Ö O
C 257	10 nF + 1 % 63 V-	812 179	SIE	C 294	10 nF ± 10 % 50 V-	813 115	RÖD
C 258	10 nF ± 1 % 63 V-	812 179	SIE				
C 259	6,8 nF <u>+</u> 1 % 63 V-	812 177	SIE				
C 260	6,8 nF <u>+</u> 1 % 63 V-	812 177	SIE				
C 261	2,7 nF + 1 % 63 V-	812 172	SIE				
C 262	180 pF <u>+</u> 5 % 100 V-	813 057	SIE				
C 263	10 nF <u>+</u> 10 % 50 V-	813 115	RÖD	C 300	1 nF + 1 % 63 V-	812 167	SIE
C 264	10 nF <u>+</u> 10 % 50 V-	813 115	RÖD	C 301	1 nF ± 1 % 63 V-	812 167	SIE
				C 302	1 nF + 1 % 63 V-	812 167	SIE
				C 303	1 nF <u>+</u> 1 % 63 V-	812 167	SIE
				C 304	10 nF + 10 % 50 V-	813 115	RÖD
				C 305	10 nF + 10 % 50 V-	813 115	RÖD
				C 306	1 nF ± 1 % 63 V-	812 167	SIE
C 270	1,5 μF ± 10 % 63 V-	812 349	RÖD	C 307	1 nF + 1 % 63 V-	812 167	SIE
C 271	10 nF ± 10 % 50 V-	813 115	RÖD	C 308	1 nF + 1 % 63 V-	812 167	SIE
C 272	10 nF ± 10 % 50 V-	813 115	RÖD	C 309	1 nF + 1 % 63 V-	812 167	SIE
C 273	22 nF <u>+</u> 10 % 63 V-	813 117	RÖO	C 310	4,7 nF ± 5 % 50 V-	813 074	SIE
07	S	Schlumberger Meßgeräte	GmbH		Schaltteilliste		Liste besteht LIST CONSISTS
05 04		Ingolstädter Straße 6 8000 München 46	7a	Benennung DESCRIPTION	Bestückte Leiterplatt	e	aus OF 6
03 80	088,202 27,10,88 Kr.				yp: AF-METER		SHEETS
01 70	188.64 18.5.87 Di	986 DATE NAM	€	Bezeichnung Schlumberger PART, NO.	361 408 Sa		Blatt Nr. SHEET NO.
Aue- Ái gabe	ndMittig. Nr. Tag Name	Marb. 9.7.86 Dietric		Hierzu Schaltpla SEE CIRCUIT DI Geriit: ARS	AGRAM 209 031 3 / 209 034	\$	2
	ng ist unser Eigentum. Vervielfältigung					·	<u> </u>

Pos		· · · · · ·	2 Vert			3 ezeichnung	-	4 ersteller	5		8	7	
REF. NO	+		LUE		So	hlumberger ART: NO,	- 1	ersteller NUFACT	Pos. REF. NO	4	ert .UE	Bezeichnun Schlumberge PART. NO.	
C 311	4,	7 nF <u>+</u> 5	% 50	V -	81	3 074		SIE	D 200	0 MC 140 53	ВСР	834 391	M
									D 240	MC 140 53 B	ICP	834 391	МС
C 330	10	nF <u>+</u> 10	1 50	V-	813	3 115	F	röo	D 330	MC 140 53 B	CP	834 391	MO
C 331	10	nF ± 10	% 50	٧-	813	115	R	ÖO					riu
C 332	├──	nF <u>+</u> 10			813	115	R	ŎO					
C 333	 	nF <u>+</u> 10			813	115	R	ÖO	G1 28	BAT 85		830 499	VAL
C 334		μF <u>+</u> 10			812	348	Ri	jo j	61 29	1 N 4148		830 240	ITT
335		μF ± 20			814		M/	ITSU	G1 30	BAT 85		830 499	VAL
		μF <u>+</u> 10			812		RČ	io	61 31	BAT 85		830 499	VAL
\downarrow		μF <u>+</u> 10 μF <u>+</u> 10			812		RÖ		G1 32	BAT 85		830 499	VAL
339		μF <u>+</u> 20 ;			812		RÖ	\dashv	G1 33	BAT 85		830 499	VAL
340		μF <u>+</u> 20 %			814		├	TSU	G1 34	1 N 4148		830 240	III
$-\!\!\downarrow$		uf <u>+</u> 10 %		i	814		├	rsu	61 35	BAT 85		830 499	VAL
342		ıF <u>+</u> 20 %			814 (RÖL	+	G1 36	1 N 4148		830 240	ITT
343		F <u>+</u> 10 %			812 3		MAT RÖD	+	61 37	BAT 85		830 499	VAL
344 0		F <u>+</u> 10 %		[812 3		RÖD	+	G1 38 G1 39	1 N 4148		830 240	111
		F <u>+</u> 10 %		- 1	812 3		RÖD	+	על וט	BAT 85		830 499	VAL
								1					
+								-					
-								+					
					umberger N golstädter 8000 Mür	Straße 67	a	Benerin DESCRI	PTION	Schaltt EL: PART Bestückte Le	S LIST		Liste besteht LIST CONSISTS aus OF 6
8088 7088 60 8 8	.64 ,70	27,10,88 18,5,87 6,12,84	Di	1986	Tag DATE 9.7.86	Name NAME Dietrich		Bezeich: Schlumb PART, NO	nung erger O.	: AF-METER 361 408		·	Blatt SHEETS Blatt Nr. SHEET NO.
No.	C. NO.	Tag DATE	Name NAME	beerb. gepr.	1	Va		MOFZU S BEE CIR	cheltplen CUIT DIAGR	AM 209 031 S .	209 034 S		3

1	2	3	4	5	6		
Pos REF. I		Bezeichnung Schlumberger PART. NO,	Herstelle MANUFA(er Pos.	Wert VALUE	7 Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
GT	70 1 N 4148	830 240	ITT	R 224	22,1 kΩ <u>•</u> 1 %	802 053	RÖD
61	71 1 N 4148	8 30 240	ITT	R 225	10 kΩ ± 1 %	802 049	RÖO
GT	72 1 N 4148	830 240	ITT	R 226	10 kΩ ± 1 %	802 049	RÖD
GI	73 1 N 4148	830 240	ITT	R 227	100 Ω ± 1 %	802 025	RÖO
67	74 1 N 4148	830 240	ITT	R 228	22,1 kΩ <u>+</u> 1 Z	802 053	RÖD
61	75 1 N 4148	830 240	III	R 229	22,1 kΩ <u>+</u> 1 %	802 053	RÖO
				R 230	1 kΩ <u>+</u> 1%	802 037	RÖO
61	80 1 N 4148	8 30 240	ITT	R 231	1 kΩ <u>+</u> 1 %	802 037	RÖO
61	81 HP 2800	830 500	НР	R 232	1 kΩ ± 1 %	802 037	RÖD
GI	82 HP 2800	830 500	HP	R 233		805, 028	SIE
				R 234	. : 1.	805 028	SIE
R 20	00 1 MΩ ± 1 %	802 073	RÖD	R 235	1 kΩ <u>+</u> 1 %	802 037	RÖO
R 20	11 20 kΩ ± 0,25 %	8 0 2 690	RÖD				
R 20	2 2,21 kΩ ± 0,25 %	802 641	RÖD				
R 20	22,1 kΩ ± 0,25 %	802 653	RÖD				
R 20	4 10 kΩ <u>+</u> 0,25 %	802 649	RÖD				
R 20	5 20 kΩ ± 0,25 %	802 690	RÖD	R 240	39,2 kΩ <u>+</u> 1 %	802 056	RÖO
R 200	6 22,1 kΩ ± 0,25 \$	802 653	RÖO	R 241	39,2 kQ <u>+</u> 1 %	802 056	RÖO
R 20	7 20 kΩ ± 0,25 %	802 690	RÕO	R 242	39,2 kΩ <u>+</u> 1 %	802 056	RÖO
R 201	8 100 kΩ ± 0,25 %	802 661	RÖD	R 243	39,2 kΩ <u>+</u> 1 %	802 056	RÖO
				R 244	1 kΩ <u>+</u> 1%	802 037	RÖD
				R 245	470 Ω <u>+</u> 10 %	807 502	ALLEN
ļ	·			R 246	1,82 kΩ <u>+</u> 1 %	802 040	RÖD
R 220	10 kg ± 1 %	8 02 049	RÕO	R 247	18,2 kΩ ± 1 %	802 052	RÕD
R 221	180 Ω ± 1 %	802 025	RÖD	R 248	392 kΩ ± 1 %	802 068	RÖD
R 222	10 kg ± 1 %	802 049	RÖD	R 249	18,2 kΩ ± 1 %	802 052	RÕO
R 223	22,1 kQ ± 1 %	802 053	RÖD	R 250	5,62 kΩ <u>+</u> 1 %	802 046	RÖD
06	Schl	umberger Meßgeräte G	Hdmi		Schaltteilliste	***	Liste besteht LIST CONSISTS
04	8088_24 15_2_88 Di	ngolstädter Straße 67a 8000 München 46		enennung ESCRIPTION	EL. PARTS LIST Bestückte Leiterplatte		aus 6 OF
02	7088.76 24.6.87 Di 1986	Tag Name		Typs	AF-METER		Blatt SHEETS Blatt Nr.
01	6088,64 18,5,87 01 1700 6087,70 9.12.86 \$4- seeds.	9.7.86 Dietrich	- So	hlumberger IRT. NO.	361 408 Sa		SHEET NO.
Aue- gabe ISSUE	And-hittig. Nr. Tag Name boarb. MODIFIG. ND. DATE NAME 9991.	Le	2 85	erzu Scheltplan EE GIRCUIT DIAG Britt: 4037	209 031 S / 209 034 S		4
Diese Zeich	nnung ist unser Eigentum. Vervielfältigung, unb	efugte Verwertung, Mittellung en					

1	1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	802 802 802 802 802 802 802 802 802		Herateilee Manufac RÖD RÖD RÖD RÖD RÖD RÖD RÖD RÖ		100 kΩ ± 1 22,1 kΩ ± 1	UE	7 Bezeichnung Schlumberger PART. NO 802 061 802 053 802 041	B Herste MANUF. RÖ RÖ
274 Ω ± 5,62 kΩ ± 274 Ω ± 15,62 kΩ ± 150 kΩ ± 6,81 kΩ ± 6,81 kΩ ± 1,21 kΩ ± 1,21 kΩ ± 1,21 kΩ ± 150 kΩ ± 150 kΩ ± 150 kΩ ± 150 kΩ ±	1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	802 802 802 802 802 802 802 802 802	2 030 2 046 2 046 2 046 2 030 2 047 058 049 038 056	RÖD RÖD RÖD RÖD RÖD RÖD RÖD RÖD RÖD RÖD	R 278	22,1 kΩ ± 1	J Z	802 061 802 053	RÖ RÖ
5,62 kΩ ± 5,62 kΩ ± 274 Ω ± 150 kΩ ± 6,81 kΩ ± 10 kΩ ± 1,21 kΩ ± 39,2 kΩ ± 150 kΩ ± 150 kΩ ± 150 kΩ ±	1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	802 802 802 802 802 802 802 802 802	2 046 2 046 2 030 2 063 2 047 058 049 038 056	RÖD RÖD RÖD RÖD RÖD RÖD RÖD	R 279	22,1 kQ ± 1	7.	802 053	RÖ
5,62 kΩ ± 274 Ω ± 150 kΩ ± 6,81 kΩ ± 56,2 kΩ ± 10 kΩ ± 1,21 kΩ ± 39,2 kΩ ± 150 kΩ ± 150 kΩ ± 100 kΩ ±	1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 %	802 802 802 802 802 802 802 802	2 046 2 030 2 063 2 047 058 049 038 056	RÖD RÖD RÖD RÖD RÖD RÖD RÖD					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 % 1 % 1 % 1 % 1 % 1 % 1 %	802 802 802 802 802 802 802 802	2 030 2 063 2 047 058 049 038 056	RÖD RÖD RÖD RÖD RÖD RÖD	R 280	2,21 kΩ ± 1	7	802 041	RÖ
150 kΩ ± 6,81 kΩ ± 16,81 kΩ ± 10 kΩ ± 1,21 kΩ ± 39,2 kΩ ± 150 kΩ ± 10 Ω ± 10 Ω ± 1	1	802 802 802 802 802 802 802	063 047 058 049 038 056	RÖD RÖD RÖD RÖD RÖD					
6,81 kΩ ± 56,2 kΩ ± 10 kΩ ± 1,21 kΩ ± 39,2 kΩ ± 150 kΩ ± 681 Ω ± 10 Ω ± 1	1	802 802 802 802 802 802	047 058 049 038 056	RÖD RÖD RÖD RÖD					
56,2 kΩ ± 10 kΩ ± 1,21 kΩ ± 39,2 kΩ ± 150 kΩ ± 681 Ω ± 10 Ω ± 1	1	802 802 802 802 802 802	058 049 038 056 063	RÖD RÖD RÖD RÖD					
10 kΩ ± 1,21 kΩ ± 39,2 kΩ ± 150 kΩ ± 681 Ω ± 10 Ω ± 1	1	802 802 802 802 802	049 038 056 063	RÖD RÖD					
1,21 k Ω ± 39,2 k Ω ± 150 k Ω ± 681 Ω ± 10 Ω ± 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	802 802 802 802	038 056 063	RÖD RÖD					
39,2 kΩ ± 150 kΩ ± 681 Ω ± 10 Ω ± 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	802 802 802	056 063	RÕO					
150 kΩ ± 1 681 Ω ± 1	1 %	802	063						
681 Ω ± 1	1	802		RÖD		1			
10 Ω ± 1	1	 	025						
			ひょう	RÖD					
221 kΩ <u>+</u> 1	d	802	013	RÖD	R 290	100 kΩ ± 1 %		802 061	RÖD
).	802	065	RÖD	R 291	33,2 kΩ + 1 %		802 055	RÖD
1 MQ + 1	Z.	802	073	RÖD	R 292	6,81 kΩ + 1 %		802 047	RÖD
100 Ω ± 1	1	802 (025	RÖD	R 293	274 kΩ <u>+</u> 1 %		802 066	RÕD
					R 294				RÖD
									RÕD
									RÖD
47,5 kΩ ± 1	18	802	057	RÕD					RÖD
47,5 kΩ <u>+</u> 1	1	802	057	RÖD					
47,5 kΩ <u>+</u> 1	7	802	057	RÕD					RÖD
47,5 kΩ ± 1	7	802	057	RÕD	R 300	10 kΩ + 10 %	9		ALLEN
47,5 kΩ ± 1	1	802	057	RÖÐ	R 301				RÖD
47,5 kΩ ± 1	1	802 (057	RÖD					RÖD
47,5 kΩ <u>+</u> 1	1	802 (357	RŎO					ALLEN
100 Ω <u>+</u> 1	1	802 (25	RÖÐ					RÖD
		lt							Liste besteht
							- -	L	LIST CONSISTS
	\Box '	8000 Mün	ouade 6/a I che n 46		MUNG RIPTION				aus OF 6
	+ +-	. 1			T				Blatt SHEETS
202 27.10.8	Kc.	Teg DATE	Mame MAME	Schlu	mberger	361 ADR	S.		Blatt Nr. SHEET NO.
8.70 1.12.86	Cq- seech	9.7.86	Dietrick	PART.	NO.		·		5
r. Tag	Name board.		le:			209 031 S	/ 209 034 S		
	47,5 kΩ ± 1 47,5	202 27,10,88 KC. 1984 1,70 1.12.36 Cd. seech	47,5 kΩ ± 1 ½ 802 47,5 kΩ ± 1 ½ 802 47,5 kΩ ± 1 ¼ 802 47,5 kΩ ± 1	47,5 kΩ ± 1 ½ 802 057 47,5 kΩ ± 1 ½ 802 057 47,5 kΩ ± 1 ½ 802 057 47,5 kΩ ± 1 ½ 802 057 47,5 kΩ ± 1 ½ 802 057 47,5 kΩ ± 1 ½ 802 057 803 057 803 057 804 057 805 057 80	47,5 kΩ ± 1 ½ 802 057 RÖD	47,5 kΩ ± 1 ½ 802 057 RÖ0 R 298 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 300 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 302 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 302 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 303 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 303 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 303 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 303 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 304 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 304 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 304 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 304 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 302 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 302 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 302 47,5 kΩ ± 1 ½ 802 057 RÖ0 R 301 47,5 kΩ ± 1 ½ 802 057 R	R 295 10 kΩ ± 1 % R 296 10 kΩ ± 1 % R 296 10 kΩ ± 1 % R 296 10 kΩ ± 1 % R 297 4,75 kΩ ± 1 % R 298 221 Ω ± 1 % R 298 22 Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω	R 295 10 kQ ± 1 Z R 296 10 kQ ± 1 Z R 296 10 kQ ± 1 Z R 296 10 kQ ± 1 Z R 297 4,75 kQ ± 1 Z R 298 221 Q ± 1 Z R 298 231 Q	R 295 10 kQ ± 1 Z 802 049 R 296 10 kQ ± 1 Z 802 049 47,5 kQ ± 1 Z 802 057 RÖD R 297 4,75 kQ ± 1 Z 802 045 47,5 kQ ± 1 Z 802 057 RÖD R 298 221 Q ± 1 Z 802 029 47,5 kQ ± 1 Z 802 057 RÖD R 300 10 kQ ± 10 Z 807 506 47,5 kQ ± 1 Z 802 057 RÖD R 301 4,75 kQ ± 1 Z 802 045 47,5 kQ ± 1 Z 802 057 RÖD R 301 4,75 kQ ± 1 Z 802 045 47,5 kQ ± 1 Z 802 057 RÖD R 302 150 kQ ± 1 Z 802 063 47,5 kQ ± 1 Z 802 057 RÖD R 303 4,7 kQ ± 10 Z 807 505 00 Q ± 1 Z 802 057 RÖD R 304 68,1 kQ ± 1 Z 802 059 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 800 0 München 48 Schlumberger Munchen München Mün

D

R 205 8,25 kg _ 1 f 202 kg 800 8 203 10 kg _ 1 f 802 kg 800 8 203	1	2	3	1	5	6	7	8
R 306 150 kg ± 1 \$ 802 053 RD0 R 333 18,2 kg ± 1 \$ 802 052 RD0 R 307 4,75 kg ± 1 \$ 802 055 RD0 R 335 18,2 kg ± 1 \$ 802 057 RD0 R 308 10 kg ± 10 \$ 807 506 ALLEN R 335 1 kg ± 1 \$ 802 057 RD0 R 309 121 0 ± 1 \$ 802 040 R00 R 337 22,1 kg ± 1 \$ 802 053 RD0 R 311 100 0 ± ± 1 \$ 802 040 R00 R 337 22,1 kg ± 1 \$ 802 013 RD0 R 312 10 kg ± 10 \$ 807 506 ALLEN R 339 10 0 ± 1 \$ 802 013 RD0 R 313 0 0 8 805 050 P02 R 340 10 kg ± 1 \$ 802 043 RD0 R 314 150 kg ± 1 \$ 802 055 RD0 R 341 22,1 kg ± 1 \$ 802 055 RD0 R 315 4,7 kg ± 10 \$ 807 505 ALLEN R 342 39,2 kg ± 1 \$ 802 053 RD0 R 316 66,1 kg ± 1 \$ 802 059 RD0 R 341 22,1 kg ± 1 \$ 802 055 RD0 R 317 8,25 kg ± 1 \$ 802 059 RD0 R 343 30 LD ± 1 \$ 802 055 RD0 R 318 150 kg ± 1 \$ 802 055 RD0 R 344 221 kg ± 1 \$ 802 055 RD0 R 319 4,75 kg ± 1 \$ 802 055 RD0 R 344 221 kg ± 1 \$ 802 055 RD0 R 321 127 0 ± 1 \$ 802 055 RD0 R 345 322,1 kg ± 1 \$ 802 055 RD0 R 321 127 0 ± 1 \$ 802 055 RD0 R 322 1,82 kg ± 1 \$ 802 055 RD0 R 345 322,1 kg ± 1 \$ 802 055 RD0 R 323 100 g ± 1 \$ 802 055 RD0 R 345 322,1 kg ± 1 \$ 802 055 RD0 R 323 100 g ± 1 \$ 802 055 RD0 R 346 22,1 kg ± 1 \$ 802 055 RD0 R 325 1,5 kg ± 1 \$ 802 055 RD0 R 326 100 kg ± 1 \$ 802 055 RD0 R 327 1,5 kg ± 1 \$ 802 055 RD0 R 327 1,5 kg ± 1 \$ 802 055 RD0 R 328 100 kg ± 1 \$ 802 055 RD0 R 329 808,202 17.10,88 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 321 127 1,5 kg ± 1 \$ 802 055 RD0 R 322 1,5 kg ± 1 \$ 802 055 RD0 R 323 100 g ± 1 \$ 802 055 RD0 R 324 100 kg ± 1 \$ 802 055 RD0 R 325 1,5 kg ± 1 \$ 802 055 RD0 R 326 100 kg ± 1 \$ 802 055 RD0 R 327 1,5 kg ± 1 \$ 802 055 RD0 R 328 100 kg ± 1 \$ 802 055 RD0 R 329 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg ± 1 \$ 802 055 RD0 R 320 100 kg			Schlumberger	4	1	Wert	Bezeichnung Schlumberger	Hersteller
R 307 4.75 kg _ 1	R 3	05 8,25 kΩ ± 1 %	802 048	RÖO	R 332	10 kΩ <u>+</u> 1 %	802 049	RÖO
R 308 10 kd ± 10 # 807 506	R 3	06 150 kΩ ± 1 %	802 063	RÖO	R 333	18,2 kΩ <u>+</u> 1 %	802 052	RÖ O
R 309 121 2 2 1 1	R 30	07 4,75 kΩ <u>•</u> 1 %	802 045	RÖD	R 334	47,5 kQ <u>+</u> 1 %	802 057	RÖD
R 310	R 30	08 10 kΩ ± 10 %	807 506	ALLEN	R 335	1 kΩ <u>+</u> 1%	802 037	RÜD
R 311 100 2 ± 1	R 30	9 121 Ω ± 1%	802 026	RÖD	R 336	4,75 kΩ <u>+</u> 1 %	802 045	R ÖO
R 312 10 kg ± 10 x	R 31	0 1,82 kΩ ± 1 %	802 040	RÖ O	R 337	22,1 kΩ ±1%	802 053	RÖD
R 313 0 Q B 805 050 POLY R 340 10 kQ ± 1 % 802 049 R00 R 314 150 kQ ± 1 % 802 063 R00 R 341 22,1 kQ ± 1 % 802 055 R00 R 315 4,7 kQ ± 10 % 802 059 R00 R 343 10 kQ ± 1 % 802 049 R00 R 317 8,25 kQ ± 1 % 802 048 R00 R 343 10 kQ ± 1 % 802 065 R00 R 318 150 kQ ± 1 % 802 063 R00 R 345 392 kQ ± 1 % 802 065 R00 R 319 4,75 kQ ± 1 % 802 045 R00 R 345 392 kQ ± 1 % 802 013 R00 R 320 10 kQ ± 1 % 802 045 R00 R 346 10 Q ± 1 % 802 013 R00 R 321 121 Q ± 1 % 802 026 R00 R 348 22,1 kQ ± 1 % 802 013 R00 R 322 1,82 kQ ± 1 % 802 040 R00 R 348 22,1 kQ ± 1 % 802 053 R00 R 323 100 Q ± 1 % 802 040 R00 R 348 22,1 kQ ± 1 % 802 045 R00 R 323 100 Q ± 1 % 802 040 R00 R 349 4,75 kQ ± 1 % 802 045 R00 R 324 100 kQ ± 1 % 802 051 R00 R 325 1,5 kQ ± 1 % 802 059 R00 R 326 100 kQ ± 1 % 802 061 R00 T 270 SC 550 B 832 127 SIE R 337 1,5 kQ ± 1 % 802 055 R00 R 320 100 kQ ± 1 % 802 055 R00 S 320 100	-		802 025	R Ö O	R 338	10 Ω ± 1 %	802 013	RÖO
R 314 150 kQ ± 1	}		807 506	ALLEN	R 339	10 Ω ± 1 %	802 013	RÖO
R 315 4,7 kQ ± 10 x 807 505 ALLEN R 342 39,2 kQ ± 1 x 802 056 R00 R 316 68,1 kQ ± 1 x 802 048 R00 R 343 10 kQ ± 1 x 802 049 R00 R 317 8,25 kQ ± 1 x 802 048 R00 R 344 221 kQ ± 1 x 802 065 R00 R 318 150 kQ ± 1 x 802 063 R00 R 345 392 kQ ± 1 x 802 068 R00 R 319 4,75 kQ ± 1 x 802 045 R00 R 346 10 Q ± 1 x 802 013 R00 R 320 10 kQ ± 10 x 807 506 ALLEN R 347 10 Q ± 1 x 802 013 R00 R 321 121 Q ± 1 x 802 026 R00 R 348 22,1 kQ ± 1 x 802 053 R00 R 322 1,82 kQ ± 1 x 802 040 R0 R 348 22,1 kQ ± 1 x 802 053 R00 R 323 100 Q ± 1 x 802 040 R0 R0 R 349 4,75 kQ ± 1 x 802 053 R00 R 324 100 kQ ± 1 x 802 056 R00 R 325 1,5 kQ ± 1 x 802 051 R00 R 326 100 kQ ± 1 x 802 051 R00 R 327 1,5 kQ ± 1 x 802 055 R00 R 330 4,75 kQ ± 1 x 802 055 R00 R 331 33,2 kQ ± 1 x 802 055 R00 S 808,202 27,10,88 kC, 1986 rome Monther of the following th	R 31	3 0 Ω	805 050	POLY	R 340	10 kΩ ± 1 %	802 049	RÖD
R 316 68,1 k2 ± 1 1 802 059 R00 R 343 10 k2 ± 1 1 802 049 R00 R 317 8,25 k2 ± 1 1 802 048 R00 R 344 221 k2 ± 1 1 802 065 R00 R 318 150 k2 ± 1 1 802 063 R00 R 345 392 k2 ± 1 1 802 068 R00 R 319 4,75 k2 ± 1 1 802 045 R00 R 346 10 2 ± 1 1 802 013 R00 R 320 10 k2 ± 10 1 807 506 ALLEH R 347 10 2 ± 1 1 802 013 R00 R 321 121 2 ± 1 1 802 026 R00 R 346 22,1 k2 ± 1 1 802 013 R00 R 322 1,82 k2 ± 1 1 802 026 R00 R 348 22,1 k2 ± 1 1 802 053 R00 R 323 100 2 ± 1 1 802 026 R00 R 349 4,75 k2 ± 1 1 802 045 R00 R 324 100 k2 ± 1 1 802 025 R00 R 325 1,5 k2 ± 1 1 802 039 R00 R 326 100 k2 ± 1 1 802 039 R00 R 327 1,5 k2 ± 1 1 802 039 R00 R 328 100 k2 ± 1 1 802 055 R00 R 329 1,5 k2 ± 1 1 802 055 R00 R 320 100 k2 ± 1 1 802 055 R00 R 321 100 k2 ± 1 1 802 055 R00 R 322 1,5 k2 ± 1 1 802 055 R00 R 323 100 8 ± 1 1 802 055 R00 R 324 100 k2 ± 1 1 802 055 R00 R 325 1,5 k2 ± 1 1 802 055 R00 R 326 100 k2 ± 1 1 802 055 R00 R 327 1,5 k2 ± 1 1 802 055 R00 R 328 100 k2 ± 1 1 802 055 R00 R 329 8088 202 27,10.88 k- 1 1 802 055 R00 R 320 8088 202 27,10.88 k- 1 1986 100 1000 1000 1000 1000 1000 1000 100	R 31	4 150 kΩ ± 1 %	802 063	rö o	R 341	22,1 kQ ± 1 %	802 053	RÖD
R 317 8,25 k2 ± 1 % 802 048 RÖO R 344 221 k2 ± 1 % 802 065 RÖO R 318 150 k2 ± 1 % 802 063 RÖO R 345 392 k2 ± 1 % 802 068 RÖO R 319 4,75 k2 ± 1 % 802 045 RÖO R 346 10 Q ± 1 % 802 013 RÖO R 320 10 k2 ± 1 % 802 026 RÖO R 348 22,1 k2 ± 1 % 802 013 RÖO R 321 121 Q ± 1 % 802 026 RÖO R 348 22,1 k2 ± 1 % 802 053 RÖO R 322 1,82 k2 ± 1 % 802 040 RÖU R 348 22,1 k2 ± 1 % 802 045 RÖO R 323 100 Q ± 1 % 802 025 RÖO R 324 100 k2 ± 1 % 802 025 RÖO R 325 1,5 k2 ± 1 % 802 039 RÖO R 326 100 k2 ± 1 % 802 039 RÖO R 327 1,5 k2 ± 1 % 802 039 RÖO R 328 1,5 k2 ± 1 % 802 039 RÖO R 330 4,75 k2 ± 1 % 802 039 RÖO R 331 33,2 k2 ± 1 % 802 045 RÖO R 331 33,2 k2 ± 1 % 802 055 RÖO Schlumberger Me&geriäte GmbH Inopolstädter Straßo 67 a 8000 Mönchen 46 DOO Minchen 40 DOO MINCHEN 40 DOO MINCHEN 40 DOO MINCHEN 40 DOO MINCHEN 40 DOO MINCHEN 40	R 31		807 505	ALLEN	R 342	39,2 kQ ± 1 %	802 056	RÖO
R 318 150 kg ± 1 % 802 063 RÖO R 345 392 kg ± 1 % 802 068 RÖO R 319 4.75 kg ± 1 % 802 045 RÖO R 346 10 Q ± 1 % 802 013 RÖO R 320 10 kg ± 10 % 802 056 RÖO R 346 10 Q ± 1 % 802 013 RÖO R 321 121 Q ± 1 % 802 026 RÖO R 348 22,1 kg ± 1 % 802 053 RÖO R 322 1,82 kg ± 1 % 802 040 RØA R 349 4,75 kg ± 1 % 802 045 RÖO R 323 100 Q ± 1 % 802 025 RÖO R 324 100 kg ± 1 % 802 025 RÖO R 325 1,5 kg ± 1 % 802 039 RÖO R 326 100 kg ± 1 % 802 051 RÖO R 327 1,5 kg ± 1 % 802 039 RÖO R 327 1,5 kg ± 1 % 802 039 RÖO R 330 4,75 kg ± 1 % 802 055 RÖO R 331 33,2 kg ± 1 % 802 055 RÖO R 331 33,2 kg ± 1 % 802 055 RÖO R 331 832 kg ± 1 % 802 055 RÖO R 332 NOR A,75 kg ± 1 % 802 055 RÖO R 331 832 kg ± 1 % 802 055 RÖO R 332 NOR A,75 kg ± 1 % 802 055 RÖO R 333 NOR A,75 kg ± 1 % 802 055 RÖO R 334 NOR A,75 kg ± 1 % 802 055 RÖO R 335 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 337 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 339 NOR A,75 kg ± 1 % 802 055 RÖO R 330 NOR A,75 kg ± 1 % 802 055 RÖO R 331 NOR A,75 kg ± 1 % 802 055 RÖO R 331 NOR A,75 kg ± 1 % 802 055 RÖO R 331 NOR A,75 kg ± 1 % 802 055 RÖO R 331 NOR A,75 kg ± 1 % 802 055 RÖO R 332 NOR A,75 kg ± 1 % 802 055 RÖO R 333 NOR A,75 kg ± 1 % 802 055 RÖO R 330 NOR A,75 kg ± 1 % 802 055 RÖO R 331 NOR A,75 kg ± 1 % 802 055 RÖO R 332 NOR A,75 kg ± 1 % 802 055 RÖO R 333 NOR A,75 kg ± 1 % 802 055 RÖO R 334 NOR A,75 kg ± 1 % 802 055 RÖO R 335 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 337 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 802 055 RÖO R 336 NOR A,75 kg ± 1 % 802 055 RÖO R 337 NOR A,75 kg ± 1 % 802 055 RÖO R 338 NOR A,75 kg ± 1 % 80	R 31	6 68,1 kΩ ± 1 %	802 059	R ÖD	R 343	10 kΩ ± 1 %	802 049	R Ö O
R 319 4,75 kQ ± 1 % 802 045 RÖD R 346 10 Q ± 1 % 802 013 RÖD R 320 10 kQ ± 10 % 807 506 ALLEN R 347 10 Q ± 1 % 802 013 RÖD R 321 121 Q ± 1 % 802 026 RÖD R 348 22,1 kQ ± 1 % 802 053 RÖD R 322 1,82 kQ ± 1 % 802 040 RÖL R 349 4,75 kQ ± 1 % 802 045 RÖD R 323 100 Q ± 1 % 802 025 RÖD R 324 100 kQ ± 1 % 802 061 RÖD R 325 1,5 kQ ± 1 % 802 061 RÖD R 326 100 kQ ± 1 % 802 061 RÖD R 327 1,5 kQ ± 1 % 802 039 RÖD R 328 100 kQ ± 1 % 802 039 RÖD R 329 100 kQ ± 1 % 802 055 RÖD R 320 100 kQ ± 1 % 802 055 RÖD R 321 100 kQ ± 1 % 802 055 RÖD R 322 1,62 £ 1 % 802 055 RÖD R 323 100 R 2 £ 1 % 802 055 RÖD R 324 100 kQ ± 1 % 802 055 RÖD R 325 1,5 kQ ± 1 % 802 055 RÖD R 326 100 kQ ± 1 % 802 055 RÖD R 327 1,5 kQ ± 1 % 802 055 RÖD R 330 4,75 kQ ± 1 % 802 055 RÖD R 331 33,2 kQ ± 1 % 802 055 RÖD R 331 1 33,2 kQ ± 1 % 802 055 RÖD R 332 100 R 326 LD 1 % 802 055 RÖD R 333 1 33,2 kQ ± 1 % 802 055 RÖD R 334 1 35,57 DB 1	<u> </u>		802 048	RÖD	R 344	221 kΩ ± 1 %	802 065	RÕD
R 320 10 k2 ± 10 \$\frac{1}{2}\$ 807 506 ALLEN R 347 10 Q ± 1 \$\frac{1}{2}\$ 802 013 R\dot{0} R 321 121 Q ± 1 \$\frac{1}{2}\$ 802 026 R\dot{0} R 348 22,1 kQ ± 1 \$\frac{1}{2}\$ 802 045 R\dot{0} R 322 1,82 kQ ± 1 \$\frac{1}{2}\$ 802 040 R\dot{0} R\dot{0} R 349 4,75 kQ ± 1 \$\frac{1}{2}\$ 802 045 R\dot{0} R 323 100 Q ± 1 \$\frac{1}{2}\$ 802 025 R\dot{0} R 324 100 kQ ± 1 \$\frac{1}{2}\$ 802 061 R\dot{0} R 325 1,5 kQ ± 1 \$\frac{1}{2}\$ 802 039 R\dot{0} R 326 100 kQ ± 1 \$\frac{1}{2}\$ 802 039 R\dot{0} R 327 1,5 kQ ± 1 \$\frac{1}{2}\$ 802 039 R\dot{0} R 330 4,75 kQ ± 1 \$\frac{1}{2}\$ 802 039 R\dot{0} R 331 33,2 kQ ± 1 \$\frac{1}{2}\$ 802 055 R\dot{0} Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolstådter Straße 67 a 8000 M\dothen 46 Schlumberger MesSgeräte SmbH Ingolst	<u> </u>		802 063	RÖD	R 345	392 kΩ ± 1 %	802 068	R Ö O
R 321 121	-		802 045	RÖD	R 346	10 Ω <u>+</u> 1 %	802 013	RÖO
R 322 1,82 k2 ± 1	ļ	-	807 506	ALLEN	R 347	10 Ω ± 1 %	802 013	RÖD
R 323 100 Q ± 1 \$\mu\$ 802 025 R\tilde{0}0 R 324 100 kQ ± 1 \$\mu\$ 802 061 R\tilde{0}0 R 325 1,5 kQ ± 1 \$\mu\$ 802 061 R\tilde{0}0 R 326 100 kQ ± 1 \$\mu\$ 802 061 R\tilde{0}0 R 327 1,5 kQ ± 1 \$\mu\$ 802 061 R\tilde{0}0 R 330 4,75 kQ ± 1 \$\mu\$ 802 039 R\tilde{0}0 R 331 33,2 kQ ± 1 \$\mu\$ 802 045 R\tilde{0}0 Schlumberger Me\tilde{0}\text{grainer} \tilde{0}\text{ F\tilde{0}0}0 Schlumberger Me\tilde{0}\text{grainer} \tilde{0}\text{ Banarourup} \til		-	802 026	RÖO	R 348	22,1 kΩ ± 1 %	802 053	RÖD
R 324 100 kQ ± 1 \$\mathbb{I}\$ 802 061 R\(\text{00}\) R 325 1,5 kQ ± 1 \$\mathbb{I}\$ 802 061 R\(\text{00}\) R 326 100 kQ ± 1 \$\mathbb{I}\$ 802 061 R\(\text{00}\) R 327 1,5 kQ ± 1 \$\mathbb{I}\$ 802 039 R\(\text{00}\) R 330 4,75 kQ ± 1 \$\mathbb{I}\$ 802 045 R\(\text{00}\) R 331 33,2 kQ ± 1 \$\mathbb{I}\$ 802 055 R\(\text{00}\) OF OR OR OR OR OR OR OR OR OR OR OR OR OR		 	802 040	R Ö L)	R 349	4,75 kQ ± 1 %	802 045	RÖ O
R 325 1,5 kQ ± 1 % 802 039 RÖ0 R 326 100 kQ ± 1 % 802 061 RÖ0 T 270 BC 550 B 832 127 SIE R 327 1,5 kQ ± 1 % 802 039 RÖ0 R 330 4,75 kQ ± 1 % 802 045 RÖ0 T 290 BC 550 B 832 127 SIE R 331 33,2 kQ ± 1 % 802 055 RÖ0 Schlumberger Me&geräte GmbH Ingolstächter Straße 67 a 8000 München 46 Schlumberger Me&geräte GmbH Ingolstächter Straße 67 a 8000 München 46 Schlumberger Me&geräte GmbH Ingolstächter Straße 67 a 8000 München 46 Beatenmung Description Bestückte Leiterplatte Typ: AF-METER O1 7088, 64 18,5,87 Di T088, 64 18,5			802 025	RÖD				
R 326 100 kg ± 1 % 802 061 RÖO T 270 BC 550 B 832 127 SIE R 327 1,5 kg ± 1 % 802 039 RÖO R 330 4,75 kg ± 1 % 802 045 RÖO T 290 BC 550 B 832 127 SIE R 331 33,2 kg ± 1 % 802 055 RÖO Schlumberger MeSgeräte SmbH Ingoletächter Straße 67 a 8000 München 46 Schlumberger MeSgeräte GmbH Ingoletächter Straße 67 a 8000 München 46 Schlumberger MeSgeräte GmbH Ingoletächter Straße 67 a 8000 München 46 Banennung DESCRIPTION Bestückte Leiterplatte Typ: AF-METER SHETT NO 1 7088,64 18,5,87 Di Treg Name DATE NAME Schlumberger MASGE 2000 Districh Name NAME Schlumberger MASGE 2000 DISTRICH SHEET NO REEC SCHUPTION 361 408 Sa Bezeichnung Schlumberger AFI NAME SCHUPTION 361 408 Sa BEEC CIPCLUT DIAGRAM 209 031 S / 209 034 S	<u> </u>		802 061	RÖD				
R 327 1,5 kQ ± 1 % 802 039 RÖD I 290 BC 550 B 832 127 SIE R 330 4,75 kQ ± 1 % 802 045 RÖD I 290 BC 550 B 832 127 SIE R 331 33,2 kQ ± 1 % 802 055 RÖD Schlumberger Me&geräte GmbH Ingolstädter Straße 67 a 8000 München 48 Schlumberger Me&geräte GmbH Ingolstädter Straße 67 a 8000 München 48 Schlumberger Me&geräte GmbH Ingolstädter Straße 67 a 8000 München 48 Banernung DESCRIPTION Bestückte Leiterplatte Typ: AF-METER SHEETS OZ 8088,202 27,10.88 Kr. 1986 Tag DATE NAME DATE NAME OJ 7088,64 18,5,87 Di 986 Dietrich NAME And-Austraß And-Austraß Name Bezeichnung Schlumberger Alexand Steel Schlumberger And And-Austraß Name Bezeichnung Schlumberger And-Austraß Name See Carcust Olagrand 209 031 S / 209 034 S 6		-	802 039	RÖ O				
R 330 4,75 kΩ ± 1 % 802 045 RÖ0 T 290 BC 550 B 832 127 SIE R 331 33,2 kΩ ± 1 % 802 055 RÖ0 Schlumberger Meßgeräte GmbH oe			802 061	RÖ O	Т 270	BC 550 B	8 32 127	SIE
R 331 33,2 kQ + 1 % 802 055 RÖD	R 327	1,5 kΩ ± 1 %	802 039	RÖD				
R 331 33,2 kQ + 1 % 802 055 RÖD								
R 331 33,2 kQ + 1 % 802 055 RÖD								
Schlumberger Meßgeräte GmbH OS Schlumberger Meßgeräte GmbH Ingolstäcter Straße 67 a 8000 München 48 Schlumberger Meßgeräte GmbH Ingolstäcter Straße 67 a 8000 München 48 Behennung DESCRIPTION Bestückte Leiterplatte Typ: AF-METER DI 7088,64 18,5,87 Di Tog PAT NO. Septemberger Meßgeräte GmbH Instruction Behennung DESCRIPTION Bestückte Leiterplatte Shatt Sheets Blatt Nr Sheet No. Herzu Schaltplan See CIRCUIT DIAGRAM 209 031 S / 209 034 S Bereichnung Bezeichnung Schlumberger Meßgeräte GmbH LIST CONSISTS Bahennung DESCRIPTION Bestückte Leiterplatte Bezeichnung Sheet No. Herzu Schaltplan See CIRCUIT DIAGRAM 209 031 S / 209 034 S	<u> </u>		802 045	RÖD	T 290	BC 550 B	832 127	SIE
Schlumberger Me8geräte GmbH OS ON ON ON ON ON ON ON ON ON ON ON ON ON	L	33,2 kΩ ± 1 %	802 055	RÖD				
100 100	06							LIST CONSISTS
02 8088_202 27_10_88 Kr. 1986 Tag Name OATE NAME PART NO. 01 7088_64 18_5_87 Di DATE NAME Schlumberger PART NO. - 6987_79 9.12.8	04				SCRIPTION	Bestückte Leiterplatte	· ·	OF 0
- 6089.70 9.12.8	02		86 Tag Name		zeichnung			SHEETS Blatt Nr.
gable Hr. Tag Name SEE CIRCUIT DIAGRAM 209 071 3 7 209 U)4 5	-	6089.70 9.12.16 12- good	≈ 9.7.86 Dietrich	PAI His	RT. NO. Fzu Schaltplan	200 031 5 / 200 034 5		
These Transferred and transferred — 14. 1 March	gabe	Nr. Tag Name	45			RAM 207 071 3 # 209 074 3		

L	1		2					3		4	5	T		6		7	
	Pos. EF. NO.		We VALI				Schlur	chnung mberger T. NO,	1	steller IUFACT	Pos. REF. NO.		w	/ert LUE		Bezeichnung Schlumberger PART. NO.	Hersteller MANUFAC
											<u> </u>						
-	C1		7 nf <u>+</u>				813	074	S	Œ.	<u></u>						
-	C2		' nF <u>+</u>			_	813	074	\$1	E		<u> </u>					
-	C3	100	pF <u>+</u>	2% 63 ———	V-	-	810	534	\$1	ET							
-						<u> </u>			+-								
F	_					-			-			-					
	D1	SN	74 ALS	86 N		\vdash	971	419	1,5	v		<u> </u>	-		-		
\vdash	D2		74 LS 21			_		678	TE						-		
						ļ			''	^		-					
									-						-		
							· · · · · · · · · · · · · · · · · · ·		-								
	.1	100	μΗ ' <u>+</u>	5%			821	030	DA	LE							
	.2	3,9	μH <u>+</u> 1	10%			821	013	DAI	LE						· · · · · · · · · · · · · · · · · · ·	-
															1		
R	1	150	Ω + 1%				802	027	RÖE								
<u> </u>																	
-	_									\perp							
_	_									_							
-				·	-					4							
-	\dashv				-					_							
-	+	. ,			_					\downarrow							
	+				+					-			······································				
07	上				\vdash					\perp			Schal	tteillis	<u> </u>		Liste besteht
06	+					Ingots	städter	leßgeräte Straße 6:		Bene	nnung		EL. PA	RTS LIST			LIST CONSISTS
04 03 02					<u> </u>			ichen 46		DESC	CRIPTION	MHz	Bestüc OSCILLA	kte Leit TOR	erplatte		OF 1 Slett SHEETS
01	000	00.55	0.0.55		198	-	Tag DATE	Nam NAM		Bezei Schly PART.	ichnung Imberger . NO.		3	61 483 S	3 a		Shaft Nr. SHRET NO.
A	And	88 11 	2_2_88 Tag DATE	Name NAME	bearb Bepr.		2.88	Kr.	,_	98E (s Scheliplen CIRCUIT DIA	GRAM	2	09 031 S			1
						belugt	• Verwerlu		an ander	Gert		chedene	ls (prestzpflichtig.	131			

10-MHz Reference Crystal

The 10-MHz reference crystal is decisive for the long-term accuracy of the internally produced RF signals. Therefore an oven keeps the crystal at a constant temperature. The thermistor R3 is part of a resistor bridge whose filament voltage controls with the control amplifier A1 the filament current through the power transistor T2. The temperature of the oven is set to 73 °C with resistor R7.

The transistor T3 and the 10-MHz crystal make up the oscillator. With varactor G12 and potentiometer R15 the frequency is set roughly. For fine frequency setting and correction of aging use potentiometer R20, which can be reached from outside the module.

Via the buffers T4 and D1 the 10-MHz signal is distributed internally to socket Bul3 (rear panel) and socket Bul1. External synchronizing of the oscillator can be made by rear-panel socket Bul2 and the following amplifier T5.

Ref. No. 214 031 F Type 4031	Sub 10-MHz Reference Crystal Unit	Date Sheet 1/1
Schlumberger	Funct	tional Description

									Sheet		1/6
										Sub 10-MHz Reference Crystal	Unit
										- 1	STABILOCK 4031
									Name Ref.	Š.	Туре
									Date		
				zable					Alteration No.		
		g > ±10 Hz	point	Frequency counter 10 MHz, synchronizable Error < 1×10^{-7} when unsynchronized Resolution < 1×10^{-9}	e 2-6 V value	≥ 60 MHz oF			lssue		
	<u> </u>	MHz, tunin	with sensor	inter 10 MH -7 when uns: 1x10-9	neter (DC) mV in rango measured	bandwidth	+15 V/0.5 A +5.2 V/0.1 A		Name		
	Necessary equipment	Generator 10 MHz, tuning > ±10 Hz $Z_{\rm i}$ < 100 Ω	Thermonmeter with sensor point Range 50-90°C Error < 1.5°C	equency couror < 1x10° solution <	Digital voltmeter (DC) Resolution 1 mV in range 2-6 V Error 0.5% of measured value $Z_1 \ge 10~{\rm M}\Omega$	Oscilloscope, bandwidth = 60 MHz DC coupling Input capacitance 9-15 pF	DC source +15 V/0.5 A +5.2 V/0.1 A		Date		
		Ge Z _i	- Ra		D1 _i Rei En	OS.	26		Alteration No.		
									enssi		
Schlu	ımberge	7				Adjust	ment a	nd Test P	roce	dui	re

Actual	Value			Sheet	5/6
Set Value	+3.30 V	+0.45-0.85 V	+73°C ±1°C		Unit 10-MHz Reference Crystal
Adjust-	R7		Sensor R7	<u> </u>	Cuit 10-
Frequency				214 031 A	Type STABILOCK 4031
Measuring Point	Mp4	R13		Name Ref.	Type
Measuring Procedure	1.1) <u>Coarse temperature setting</u> Remove styropore insulation	1.2) <u>Inrush-current limiting</u> Switch off Connect DVM on R13 (2.2 \(\alpha\)) Switch on	3) Fine temperature setting low stage to warm up approx. 10 m ermometer (ensure good thermal con ee drawing) tel Wait for final temperature to adjusting with R7.	Date Name Issue Alteration No. Date	
Necessary Equipment	MVQ	Р ИМ	_ <u>₽</u>	Issue Alteration No.	
Schl	umberge	r	Adjustment and Test Proc	edu	re

Actual Value		Sheet	3/6
Set Value	+7.00 V +6.20 V 10 MHz +> 10 Hz 10 MHz -> 40 Hz 10 MHz ±5 Hz		10-MHz Reference Crystal
Adjust- ment	R15 R15 R15	40	Unit 10-1
Frequency		214 031 A	STABILOCK 4031
Measuring Point	мрб мрб Вu13 Вu13	Name Ref.	1 .
Measuring Procedure	2) Frequency setting 2.1 Basic setting Coarse setting Fine setting Fine setting Fine setting Fine setting 2.2 Frequency range Roarse (R15) on righthand stop Roarse (R15) on lefthand stop If a limit is not reached, alter C17 I pF alteration in capacitance corresponds to approx. 10 Hz alteration in frequency If frequency is too low, reduce C17, and vice versa Only use capacitors with Schlumberger nos. 810 629 through 810 635 Set Roarse Replace styropore insulation	Date Name Issue Alteration No. Date	
Necessary Equipment	DVM Frequency counter	Issue Alteration No.	
Schlu	Adjustment and Test Prod	ced	ure

Actual	Value		Sheet	4/6
Set Value	+0.5 to -1.0 V +2.0 to +5.0 V	0.8-2 Vpp 10 MHz ±1 Hz 10 MHz -8 Hz 10 MHz +8 Hz		10-MHz Reference Crystal
Adjust-		R20	Sub Unit 10-	
Frequency			214 031 A	Type STABILOCK 4031
Measuring Point	Мр3 Мр3	Bu13 Bu13 Bu13 Bu13	No.	Туре
Measuring Procedure	3) Oscillator level Oscilloscope, DC-coupled Low level High level High Lou 1	scilloscope on Bul3 Ext. synchronization, capture range mchronize counter and 10-MHz generator with one another. onnect counter to Bul3, set Rfine st generator to 10 MHz -8 Hz, 0.15 V EMF nonect generator to Bul2 oceed in same manner with offset 10 MHz +8 Hz unter resolution < 1 Hz is negligible unter display must remain stable	Date Name Issue Alteration No. Date Name	
Necessary Equipment	Oscilloscope	Frequency Sy Generator Sc Co Co Co Co Co Co Co Co Co Co Co Co Co	+	
Schlumberger Adjustment and Test Procedure				

Г

Actual			Sheet	9/9
Set Value	Measure f _{0°C} Measure f _{60°C}			Juni 10-MHz Reference Crystal
Adjust- ment			1.0	Chit
Frequency			214 031 A	STABILOCK 4031
Measuring Point	Bu13 Bu13		Name Ref. 21	Type ST.
	equency eference frequency me if its stability in the works]		Date	
Procedure	llator frequencesting time if the termed in the serformed		Alteration No.	
Measuring Procedure	with stable with stable with stable at +10°C at +60°C at +60°C st is to be p st is to be p	-	Name Issue	
	5) <u>Temperature response of oscillator frequency</u> Synchronize counter with stable 10-MHz reference frequency (error < 0.01 Hz) over entire testing time if its stability is inadequate. Oscillator > 2 hrs at +10°C Oscillator > 2 hrs at +60°C Setpoint f ₁₀ °C - f _{60°C} ≤ 1.4 Hz [The temperature test is to be performed in the works]	į	O age	
Equipment	Counter S	ISSI De Alteration No.		
chlum	berger Adjustment ar			4

Actual Value		Sheet	9/9
Set Value	10 MHz ±0.02 Hz		Jub Unit 10-MHz Reference Crystal
Adjust- ment	Z20] 	
Frequency		214 031 A	Type STABILOCK 4031
Measuring Point	Bu13	Name Ref.	Type
Measuring Procedure	6) <u>Coarse frequency setting</u> This adjustment can be made on the oscillator inside the unit at T _{amb} 23 to 27°C, or when it is outside at T _{amb} 33 to 37°C Synchronize counter with standard frequency 10 MHz ±0.01 Hz Fine setting	Date Name Issue Alteration No. Date	
Necessary Equ†pment	<u> </u>	Issue Alteration No.	
Schlu	mberger Adjustment and Test Proc	edu	re

-15

1	-	2			<u> </u>	3	\bot	4	5		6			7	8
Pos. REF. NO.		Wei VALU			Schl	nichnung Imberger RT. NO,	- 1	steller	Pos. REF. NO.		Wert VALUE		Bezei Schlur	ichnung mberger	Herste
													PAR	T. NO.	- Inningr
	Reet	ickte Le												-	
1	PRIN	TED CIRC	UIT BOA	URD	36	1 419	SC	HL .							
							-				· · ·				
	-		••	_			-								
			-			· · · · · · · · · · · · · · · · · · ·	-					-			
								-			·				
u 12	35/	548			in 209 0	31	SCH	L							
u 13	35/3	48			in 209 0	n	SCH	L							
		<u>.</u>						4							
			-				-								
			· · · · · · · · · · · · · · · · · · ·		<u> </u>										
			-					\downarrow							
				-		-		-				-	· <u>.</u>		
								+				-			
-			 -	_											
_		·· - ··-		-				-				-			
				+				+							
3					umberger N						altteilli				besteht CONSISTS
				l In	golstädter 8000 Müi	Straße 67 nchen 46	a	Benenr DESCR	nung IPTION		PARTS LIS	<u> </u>		aus OF	1
60	288	19.9.	0	1986	Tag DATE	Name	:	Bezeici Schlum PART, J	berger		031 Sa			SHE	ETS
- And	IMittig. Nr.	Tag	Name	geachr. bearb.	19.9.86	Dietric		SEE CI	Schallplan RCUIT DIAGI	nu 214	691 \$				1
	IFIG. NO.	DATE	NAME	gepr.	ofugie Verwertu	Wi	$\overline{}$	Gerat:		. 1					

1	2	3	1 4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC	Pos.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
A 1	LF 356 N	834 059	NAT	C 21	470 pF <u>+</u> 5% 63 v -	810 530	STET
				C 22	10 nF <u>+</u> 10 ≴ 50 V−	813 115	RÖD
				C 23	22 pf ± 20 % 25 V-	814 677	MATSU
Bu 11	826 044 - 6	884 771	AMP	C 24	100 nF + 10 % 50 V-	813 121	RÖD
				C 25	10 nF + 10 % 50 V-	813 115	RÖD
				C 26	100 nF ± 10 % 50 V-	813 121	RŎO
				C 27	100µF + 20% 25V -	814 079	MATSU
C 1	10 nF ± 10 % 50 V-	813 115	RÕO				
C 2	10 nF ± 10 % 50 V-	813 115	RÕO				
С 3	10 nF ± 10 ₺ 50 V-	813 115	RÖD	C 30	10 nF ± 10 % 50 V-	813 115	RÕD
C 4	10 μF ± 20 % 25 V-	814 876	MATS	U C 31	100 pF + 20 % 25 V-	814 079	MATSU
				C 32	27 pF ± 2 % 63 V-	810 510	STET
				C 33	10 nF <u>+</u> 10 % 50 V-	813 115	RÖD
				C 34	10 nF + 10 % 50 V-	813 115	RÖD
				C 35	10 nF ± 10 % 50 V-	813 115	RÖD
				C 36	220 pF <u>+</u> 5 % 50 V-	813 058	VAL
C 10	47 µF ± 20 ₺ 25 V-	814 678	MATSU	C 37	470 pF <u>+</u> 5 % 50 V-	813 062	VAL
C 11	100 nF ± 10 % 50 V-	813 121	RÖO				
C 12	16 nF ± 10 % 50 V-	813 115	RÖO		·		
C 13	270: pF <u>+</u> 5 % 63 V -	810 532	STET				
C 14	160 pF ± 2 ≠ 63 V-	810 534	VAL				
C 15	18 pF ± 5 % 63 V-	810 615	STET	D 1	SN 74 LS 04 N	834 635	TEX
C 16	1 nF ± 1 % 500 V-	811 135	JAHRE				
C 17	5,6 pF ± 0,5pF 63 V -	810 631	STET				
				61 1	1 N 3157	830 412	мот
C 20	270 pF + 5 % 63 V-	810 532	STET	61 2	BB 909 B	in 300 663	SCHL
07			1		Schaltteillist	l	Liste besteht
os 8	088.143 5.9.88 Lehn	chlumberger Meßgerät Ingolstädter Straße		Benennung		aus 3	
	088.110 4.8.87 Lei 088.83 3.7.87 Mo.	8000 München 4	6	DESCRIPTION	Bestückte Leiterplati Typ: 10 MBz REFERENCE	(8	Blatt SHEETS
e1 6	068,39 24,10,86 RM	DATE N	ume UME	Bezeichnung Schlumberger PART. NO.	361 419 Sa		SHEET NO.
Aug- /	And-Mills.	ech. 9.7.86 Dietr	11-	Herau Schallp SEE CIRCUIT			1
gabe	Nr. Yag Name -	- 2	9		1031		

1		2				3	4		5	6	7	8
Pos. REF. N	1	Wer			Schlu	ichnung mberger T. NO,	Herst		Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Herstelle MANUFAC
61 3	3 BAT 8	5			830	499	V.	VL.	R 14	392 Q ± 1 %	802 032	RÖD
									R 15	2 kΩ ± 10 %	807 673	VIT
									R 16	2,21 k2 ± 1 %	802 368	RÖD
L1	10 μ	± 10	7		821	918	60	W				
L 2	1 μΗ	± 10	1		821	22	60	W				
L 3	لم 10	± 16	1		821	718	GOI	W				
			····						R 20	2 kQ <u>+</u> 10 %	807 693	BOUR
									R 21	5,62 kg ± 1 %	882 046	RÖO
					·				R 22	10 kQ ± 1%	802 376	RÖO
									R 23	10 kΩ ± 1 %	802 376	RÕD
Q 1	10 MH;	Z			(853) in 300 (SCH		R 24	2,74 kQ <u>+</u> 1 %	802 042	RÖD
			<u> </u>		<u>-</u>				R 25	2,74 kQ <u>+</u> 1 %	882 369	RÖD
									R 26	10 kΩ <u>+</u> 1 %	802 376	RÖD
									R 27	100 Q ± 1 %	892 352	RÖD
R 1	10 kΩ	<u>+</u> 1%			802 37	16	RÖO					
R 2	3,92 kg	± 1 %			802 37	1	RÖD					
R 3	10 kΩ			i	n 300 66	3	SCHL		R 30	4,75 kQ ± 1 %	802 045	RÖD
R 4	10 kΩ	± 1%			802 37	6	RÖO		R 31	5,62 kQ ± 1 %	802 046	RÖD
R 5	.100 Ω	±1%			802 02	5	RÖD	-	R 32	5,62 kQ ± 1 %	802 046	RÕD
R 6	5,62 kΩ	±1%			802 37	3	RÕO	F	₹ 33	1,82 kΩ <u>+</u> 1 %	802 040	RÖD
R 7	2 kΩ	± 10 %	.		807 67	3	VIT	F	₹ 34	68,1 2 ±1%	802 023	RÖD
			-					R	35	1,21 kΩ <u>+</u> 1 %	802 038	RÖO
								R	36	10 kΩ ± 1 %	802 049	RÕO
R 10	€ 274 kg	±17			802 066	,	RÖD	1	R 37	10 0 211	802 013	RÕĐ
R 11	4,75 kΩ	±1%			802 04	5	RÖD					
R 12	1,21 kΩ	±1%			802 038		RÕĐ					
R 13	2,2 ♀	± 2 %			802 005		RÖD	R	40	2,21 kQ ± 1 %	802 041	RÕD
07			<u> </u>			Meßgeräte				Schaltteillist	е	Liste besteht LIST CONSISTS
06 04	200 445					Straße 67 nchen 46		Bener DESC	PIPTION	Bestückte Leiterpla	tte	of 3
05	088_110 5_ 7088_74 6.	7.17	Lei 84-	1986	Tag	Manne		Dezeio	chnung	yp: 10 MHz REFERENCE		Blatt SHEETS Blatt Nr.
- 6	088.83 3. 088.21 1		Ho.	geachr.	9.7.86	Dietri	c h	Schlui PART.	MO.	361 419 Sa		SHEET NO.
abe	And -Mills. Nr. IODIFIC, NO.	Tag DATE	Name MARKE	bearb.		Ke			Schallplan MCUIT DIA : 4031	gram 214 031 S		•

1		2			3		4	5	6		7	8
Por REF.		Wer VALU			Bezeic Schlum PART	berger	Herst		We VALU		Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R	41 332	2 Ω <u>+</u> 1	12		802 (131	RÖD					
R 4	42 1,8	32 kΩ <u>+</u> 1	1		802 (¥ 0	RÖD					
R 4	43 82,	,5 Ω <u>+</u> 1	1		802 0	024	RÖD					
R 4	44 39,	,2 kΩ <u>+</u> 1	16		802 0	156	RÕD					
R 4	45 3,3	32 kΩ <u>+</u> 1	1		802 0	43	RÖD					
R 4	16 33,	2 Q <u>+</u> 1	7		802 0	19	RÖD					
		· · · · · ·										
						•						
					<u> </u>			-				
								1				
T 1	BC	560	·	-	832 12	28	SIE					
T 2		676	,		832 30		SIE					
Т3	 -	i 2894		+	832 14		VAL					
T 4		91 A		\dashv	832 19		VAL					
T 5		550 B		-	832 12			-				
	-			_		-	SIE		-			
	+											
	-			-								
			-	_								
	-				_							
										•		
07 08				Schlu	mberger M	e&geräte	GmbH	· · · · · · · · · · · · · · · · · · ·		teilliste)	Liste besteht LIST CONSISTS
06 04			-	ing	joistädter 8000 Mün	Straße 67	, .	Benennung DESCRIPTION		RTS LIST riterplatte		aus 3 OF
03			1	 	T			I)	Bestückte Le p: 10 MHz:REF	RENCE	·	Blatt SHEETS
0 1	(694 C :	1000	<u> </u>	1986	Tag DAFE	Name NAME	:	Bezeichnung Schlumberger PART. NO.	361 4	19 Sa		Blatt Nr. SHEET NO.
Aug-	6088.21 And-1888s		Staff.	peachr.	9.7.86	Dietr	ch	Herzu Schaltplan SEE CIRCUIT DIA	OP44 214 (131 S		3
gabe	FWr.	Top						OHIOOH DOD		7. .		

1. 500-MHz oscillator 361 448

This can be tuned by ± 20 MHz. T6 through T9 serve for filtering the operating voltage for T1, which generates the oscillations. The RF signal is fed via buffer amplifiers to Mil of the mixer chain and to the output of the decade synthesizer.

2. 200-kHz decade 361 445

Oscillator T3 generates frequencies between 77.4 and 97.2 MHz. The phase-locked loop consists of D1, D2 and A1. D1 is a 10/11 divider. D2 forms the programmable phase comparator, and A1 is the loop filter.

3. Mixer 361 447

The first mixer on the mixer circuit board receives a test frequency of 433.82 MHz from the output stage. The second frequency is supplied by the 500-MHz oscillator with possible detuning of ± 20 MHz. The intermediate frequency is applied on the one hand to a 100-MHz amplifier that is switched in analyzer mode and conducts the IF to the AF motherboard. On the other hand this frequency serves as the RF for Mi2. The 200-kHz decade $\,$ generates the LO signal. The 11.12 to 11.32 MHz formed in this way is applied to phase detector 361 449. In synthesizer mode the phase detector compares 11.12 to 11.32 MHz from the mixer circuit with the same frequency from the FM stage. Mil is configured as a zero-phase detector. Mi2 forms the image-frequency detector. If the oscillator is not synchronized, a delta signal is produced. If the frequency that is to be compared is approx. 11 MHz, the time constant of the delta generator is increased. The generator halts when there is phase coincidence. In analyzer mode the 500-MHz oscillator receives a sawtooth-shaped varactor voltage from integrator A2. The reference voltage required for the integrator is generated by A1-A. The integrator on is fed by two series-connected 8-bit D/A converters.

Ref. No. 210 041 F	Sub Decade Synthesizer	Date	
Type 4031	Unit	Sheet	1/2

The integrator has a 10-V reference, so the voltage issued by the second D/A converter is subtracted from 10 V = V_a . For the return trace of the analyzer, V_a is multiplied by 0.5 (A1 - B) and added to 10 V.

8 bits + Clock =
$$V_1$$
 Z_1

$$v_1 = \frac{z_1 \times 10 \ V}{256} \ V$$

$$V_2 = -\left[\frac{z_2 \times V_1}{256} V\right] + 10 V$$
 z_2 is entered without timing

$$v_3 = (v_2 \times 0.5) + 10 V$$

4. 10-MHz divider 361 446

The circuit board 361 446 has two functions. Firstly, 10 MHz is divided by two and fed to the 200-kHz decade. Secondly, the 433.82-MHz sawtooth signal produced by the output stage is fed via a buffer amplifier to the mixer chain.

Ref. No.	· 210 041 F	Sub Decade	Synthesizer	Date	
Type	4031	Unit		Sheet	2/2

Schlumberger

Functional Description

Actual Value		Sheet	1/4
Set Value	5 MHz TTL LOW Va => 0.7 Vp Vc = -11.5 V Va => 0.7 Vp Vc = 0.7 Vp Minimum typ. 100 mVpp High Va = 0 Vpp		Unit Decade Synthesizer
Adjust- ment	R16	<u> </u>	a ties
Frequency	5 MHz DC 77.4 MHz DC DC AC DC	210 041 A	STABILOCK 4031
Measuring Point	Bu4 Bu10 Bu11 A1/pin 6 A1/pin 6 A1/pin 6 Bu10 Bu10	Name Ref.	Type
Measuring Procedure	Coarse decade 200 kHz, 361 445 Chassis fitted with all PCBs Measure reference frequency Switch on oscillator = analyzer off Set frequency to 77.4 MHz (= 500 MHz on 4031) and measure control voltage Set frequency to 97.4 MHz (= 519.9 MHz on 4031) Measure 100 kHz spurious with oscilloscope Switch off oscillator = analyzer on	Date Name Issue Alteration No. Date	
Necessary Equipment	- Basic unit 4031, Oscilloscope DVM	Issue Alteration No.	
Schlu	Mberger Adjustment and Test Production	cedu	ıre

_	Actual Value		Sheet 2/4
	Set Value	475 ±1 MHz P = 7 dBm same level V = 11.2-11.7 V P \(\triangle \triangle = 3-7 \triangle \triangle V \) < = <5 V V = <5 V V = <1.5 V P P = 1.5 V P P = +3 to -7 dBm	Decade Synthesizer
	Adjust- ment	C1 Ana lyzer	Sub Dec
	Frequency	475 MHZ 475 MHZ 475 MHZ 540 MHZ 480-540 MHZ < 475 MHZ > 545 MHZ > 545 MHZ 48.18- 106.18 MHZ	210 041 A STABILOCK 4031
	Measuring Point	Bu40 Bu41 Lead-thru Bu40 Bu40 Bu40 Bu40	Name Ref. No.
)	Measuring Procedure	Separate detector on 361 403 Separate detector on 361 403 Apply +5 V to Bul from PSU With 1:10 probe on Bu41 Measure on lead-through with 1:10 probe Go to 540 MHz with control voltage Frequency response Oscillator reserve: V _c = 0-15 V Mixer chain 361 447 Analyzer off Set 500 MHz on basic unit Set oscillator 361 448 manually to approx. 500 MHz SAW 433.82 MHz -15 dBm (from output stage to Bu55) Analyzer on, 500 MHz Tune oscillator 361 448 manually from 480 through 540 MHz	Date Name Issue Alteration No. Date
<u>.</u>	Necessary Equipment	PSU 0-15 V, Analyzer, Counter, 4031 PSU 0-15 V RF generator Analyzer	Issue Alteration No.
	Schlumb	Perger Adjustment and Test Pr	ocedure

Actual Value										Sheet		3/4
Set Value			12 V	Maximum typ. > 2 Vdc	f = synchronized	> 70 dBc > 70 dBc	+10.0 V	(a. 4. sec. 11 sec. 13 V (a. 4. sec. 11 sec. 13 sec.			Sub Substitution Substitution	מתב סאורוובס וכבו.
Adjust- ment			R54	97		r3 13	R15				gns	Onit
Frequency				SQ	500-520 MHz	f _c ±11.2 MHz f _c ±22.4 MHz	8	ଧ ଧ			210 041 A	Type STABILOCK 4031
Measuring Point			Detector	A4/pin 9	Bu41	Bu41	A1/pin 1	Bul3 Bul3 (detector)		Name Ref.		Туре
Measuring Procedure	Analyzer off	Phase detector 361 449	Disconnect SAW 433.82 MHz, join detector Phase detector is unsynchronized Set sweep generator	SAW 433.82 MHz on Bu55, set frequency on basic unit	Vary frequency from 500-520 MHz Adjust sourthesizer mode	Carrier ±11.2 MHz Carrier ±22.4 MHz	Analyzer on Set 10 V on PSU Apply data to connector 54	5b 6a 6b 7b 8b 9b 10b 7a 8a 9a 10a 1	enA	Alteration No. Date Name Issue Alteration No. Date		
Necessary Equipment			Oscilloscope		Counter,			PR adapter	-	Issue Alter		
Schlu	umberger						Adju	stment and Test F	ro	ce	du	re

Actual Value		Sheet		4/4
Set Value	Smallest drift		Sub Herade Synthesizer	
Adjust- ment	R25		Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup	
Frequency	~500 MHz		210 041 A	STABILOCK 4031
Measuring Point	Bul3 (detector) Bu41	Name Ref.	S	Туре
Measuring Procedure	Setting drift Apply DC slowly to detector Data lines on 0, only 9a on 1 Data line 9a to 0 when approx. 8 V on jumper Up/down (6b) to 0 Set clock (5b) x1 Set smallest DC drift with R25 Check drift with frequency counter	Date Name Issue Alteration No. Date		
Necessary Equipment	PR adapter, DVM Frequency counter	Issue Alteration No.		
Schlu	Adjustment and Test Pro	ced	dui	re

.....

10 09 08				Rohiel	Frema toleren		Viafistab	Schlumberger Meßgeräte GmbH Ingolatadter Straße 67 a 8000 Munchen 46
07 06 05	8086,129	25,8,88	Κ¢	Werksloff			4:1	Bestückte Leiterplatte
04						1		Typ: 200 kHz DECADE
03				Oberfläche	1988	Detum	Name	004 445
01	-		-		gez	25,8,88	Kr.	1 361 445
	4	 		t	beerb	258	K	
Aus- gabe	Andg-	Datum	Name		gepr	4	7	Gerät: 4031 / 210 041

		_	>	= Kontrollmaß			
10 08 06		21		Political:	Fremat- toleranzen:	Maderica 4 . 4	Schlumberger Meßgeräte GmbH Ingolestelter Brade 67 a 8000 München 46
06	SOM:	H-1-1	LY.	Workstoff	±0,2	4.1	Bestückte Leiterplatte Typ: 10 MHz DMDER
02 01				OberMiche	1987 Dates 512 20.57 10005		361 446
1=	122	0	Neme			49	Gent : 4631 / 210 045

Rehaw gelotet herms factor kienen aska 461 447 3**5**

CTICLE TO ENTRY OF A 10 E 1741

Gerät:

BUS BU2 BU4

BU6 BU8 BU7

210 041 S / 361 448 Sa

verwendet in: 210 041

Gerät:

4031

884 179 884 182 R27 R19 C18 C 15 8 8 GI3 R36 2 C14 R10 C11 C20 C10 R 13 L1 C26 C21 R34 R30 C23 R41 R40 Bul9 Bul7 O O O Bul6 Bul8 L2 R72 R63 C24 15.2 L6 C61 R83 65 R93 461 449 05 L3 R75 C77 9 153 R92 R70 C34 Mi 2 (S) (D) (D2 C37 L4 R56 R66 R74 L5 C40 R74 R84 C64 93 R60 R61 T1 R64 L10 R73 R76 C45 R62 **E49 (9** C50 C53 C564 R80 BU12 Q1 000000 Ц Ц verwendet in:

let in:

786 049 (19x)

Schlumberger Meßgeräte GmbH

| Poss in volume | Company

1	2	3	1331	4	5	8	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnur Schlumberg PART, NO	ger .	Herstell MANUFA		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFAC
1	Bestückte Leiterplat PRINTED CIRCUIT BOAR	te 361 40	03	SCHL				
	hierzu see	361 40	03 Sa					
	·							
1	Bestückte Leiterplatt PRINTED CIRCUIT BOARD		+5	SCHI				
	hierzu see	361 44	+5 Sa					
1	Bestückte Leiterplatt		+6	SCHL			Sç.	
	PRINTED CIRCUIT BOARD hierzu see	361 44						
	Bestückte Leiterplatt	4						
1	PRINTED CIRCUIT BOARD	361 44 361 44		SCHL				
	see							
-	Bestückte Leiterplatt					,		
1	PRINTED CIRCUIT BOARD	361 44 361 44		SCHL				
	see							
	Bestückte Leiterplatt	•						
1	PRINTED CIRCUIT BOARD	361 44 361 44		SCHL				
	see							
07 06 05	S	chlumberger Me				Schaltteillis EL. PARTS LIS		Liste besteht LIST CONSIST aus OF
04		8000 Münd			Benennung DESCRIPTION	DECADE SYNTHES	IS	Blatt 1 SHEETS
02		1988 Tag DATE	Nam NAM	ıε	Bezeichnung Schlumberger PART. NO.	210 041 Sa		Blatt Nr. SHEET NO.
Aus-	And Many	arb.	Staff		Hierzu Schaftpla SEE CIRCUIT D Gerät:	10 141 S 4031		1

1	2		3	4	5	T T	6	7	8
Pos. REF. NO.	Wert VALUE		Bezeichnu Schlumber PART. N	ger	1		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
					C 22	47 pF	+ 2 % 63 V-	8 10 512	STET
					C 23	47 pF	<u>+</u> 2 % 63 V-	810 512	STET
Bu 40			886 19	2 ROS	C 24	47 pF	± 2 ₺ 63 V-	810 512	STET
Bu 41			886 193	2 ROS	C 25		± 2 % 63 V-	810 512	STET
					C 26		± 2 % 63 V-	810 512	STET
·				4	→ C 27	47 pF	<u>+</u> 2 % 63 V-	810 512	STET
C 1	100 nF + 10 %	50 V-	813 12	I VIT	C 28	47 pF	± 2 \$ 63 V-	810 512	STET
C 2	10 μF + 20 % 2	25 V-	814 076	S MATS	t C 29	47 pF	+ 2 % 63 V-	810 512	STET
С 3	100 nF ± 10 %	50 V-	813 121	I VIT				35	
C 4	10 μF <u>+</u> 20 % 2	25 V -	814 076	5 MATS	U	-			
C 5	100 nF + 10 % 5	50 V-	813 121	VIT					
C 6	10 µF <u>+</u> 20 % 2	25 V-	814 076	MATS	U			.,,,	
				4		-			
					C 35	1 nF	± 5 % 50 V-	813 066	SIE
		-			C 36	1 nF	± 5 % 50 V-	813 066	SIE
C 10	47 pF + 2 % 6	53 V-	810 512	STET	C 37	10 nF	<u>+</u> 10 % 50 V-	813 115	VIT
C 11	47 pF <u>+</u> 2 % 6	53 V -	810 512	STET	C 38	1 nF	± 5 % 50 V-	813 066	SIE
C 12	47 pF <u>+</u> 2 % 6	3 V-	810 512	STET					
C 13	47 pF + 2 % 6	i3 V-	810 512	STET	C 40	10 nF	<u>+</u> 10 % 50 V-	813 115	AII
C 14	47 pF + 2 % 6	3 V-	810 512	STET	C 41	10 nF	± 10 ₺ 50 V-	813 115	VIT
					C 42	10 nF	<u>+</u> 10 % 50 V-	813 115	VIT
					C 46	10 af	<u>+</u> 10 % 50 V-	813 115	VIT
C 20	47 pF <u>+</u> 2 % 6	3 V-	810 512	STET	C 47				
C 21	47 pF + 2 % 6		810 512		0 4/	IU Nr	<u>+</u> 10 % 50 V-	813 115	VIT
07						S	chaltteillist	e	Liste besteht LIST CONSISTS
06 05			Schlumberger M Ingolstädter	-	Benennung		EL. PARTS LIST		aus OF 2
04			8000 Mün		DESCRIPTION		ückte Leiterplati	te	Blatt
02	7000 417 00 1 07	01.66	1986 Tag	Name NAME	Bezeichnung	yp: UECA	DE SYNTHESE 361 403 Sa		Blatt Nr. SHEET NO
01	7088,147 28,9,87 3 6088,27 9,10,86	Staff Di	geschr. 25.7.86	NAME Dietrich	Schlumberger PART. NO				1
Aus- gabe	ÄndMittlg. Nr. Tag	Name	bearb.		Hierzu Schaltpla SEE CIRCUIT D		210 041 S		'
		NAME	gepr.	na	Gerät: 40	131			<u></u>

1	2	j j	1 4	5	6		
Pos.	Wert	Bezeichnung Schlumberger	Herste		Wert	7 Bezeichnung	8 Hersteller
REF. NO	D. VALUE	PART. NO,	MANUF	ACT REF. NO.	VALUE	Schlumberger PART. NO.	MANUFACT
C 50	10 nF ± 10 % 50 V-	813 115	VIT				
C 51	10 nF ± 10 % 50 V-	813 115	VII	L 10	1,5 µH <u>+</u> 10 %	821 124	GOW
C 52	10 nF + 10 % 50 V-	813 115	VIT	L 11	1,5 µH ± 10 %	821 1 24	GOW
C 53	10 nF ± 10 % 50 V-	813 115	VIT		·		
			ε,	L 13	1,5 μH ± 10 %	821 124	GOW
				L 14	1,5 μH <u>+</u> 10 %	821 124	GOW
				L 15	1,5 μH <u>+</u> 10 %	821 124	GOW
			1	R 1	0 Ω	5 805 050	POL
				R 2	0 Ω	805 050	POL
				R 3	0 Ω	805 050	
C 60	10 nF <u>+</u> 10 % 50 V-	813 115	VIT		U X	007 070	POL
C 61	10 nF ± 10 % 50 V-	813 115	VIT				
C 62			-				
	10 nF ± 10 % 50 V-	813 115	VIT				
C 63	10 nF <u>+</u> 10 % 50 V-	813 115	VIT				
C 64	10 nF ± 10 % 50 V-	813 115	VIT	St 54		884 508	PAN
C 65	10 nF ± 10 % 50 V-	813 115	VIT				
L 1	1,5 µH ± 10 %	821 124	GOW				
L 2	1,5 μH <u>+</u> 10 %	821 124	GOW				
L 3	1,5 μH <u>+</u> 10 %	821 124	GOW				
L 4	1.5 µH ± 10 %	821 124	GOW				
L 5	1,5 µH + 10 %	821 124	GOW				
	1,5 µH + 10 %	821 124	GOW				3000
L 7	1,5 μΗ ± 10 %		-				
07	1,7 μπ ± 10 /6	821 124	GOW		Och-III III		Liste besteht
06 05		Schlumberger Meßgerät			Schaltteillis EL. PARTS LIS		LIST CONSISTS
04		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	Bestückte Leiterpl yp: DECADE SYNTHESE	atte	OF Z
03		Tag Na	me	Bezeichnung			SHEETS Blatt Nr
01		1986 DATE NA	ME	Schlumberger PART, NO.	361 403 Sa		SHEET NO.
Aus-	ÄndMittlg.	geschr. 25.7.86 Dietr	ich	Hierzu Schaltplan SEE CIRCUIT DIA			2
gabe ISSUE	Nr. Tag Name	gepr 2	4	Gerāt:	4031		1

Pos.	2 Wert	Bezeichnung	4 Heretelle	5 Pos	6 Wast	7 Bezeichnung	8
REF. NO.	VALUE	Schlumberger PART. NO,	MANUFAC	1	Wert VALUE	Schlumberger PART, NO.	Herst MANU
A 1	NE 5534 AD	834 209	VAL	C 21	47 nF ± 10 % 50 V-	813 371	V
A 2	MSA - 0385	834 216	MAYA	C 22	47 nF ± 10 \$ 50 V-	813 371	٧
A 3	MSA - 0385	834 216	THAVA	C 23	47 µF ± 20 % 16 V-	814 386	R
				C 24	1 nF ± 10 % 50 V-	813 247	V
				C 25	100 nF ± 10 % 50 V-	813 375	٧
			1024	C 26	10 pF ± 5 % 50 V-	813 223	٧
C 1	10 µF ± 20 % 16 V-	814 382	RÕD				
C 2	100 aF ± 10 % 50 V-		VAL	C 29	10 nF <u>+</u> 10 % 50 V-	813 332	V
C 3	2,2 µF ± 20 % 50 V-		RÖÐ	C 30	39 pF ± 5 \$ 50 V-	813 230	
C 4	10 µF ± 20 % 16 V-		RÖD	C 31	47 pF ± 5 \$ 50 V-	813 231	Y
C 5	100 nF ± 10 % 50 V-		VAL	- /	T/F/G	VI) L)1	*
C 6	100 nF ± 10 % 50 V-	813 375	VAL	C 33	10 nF ± 10 % 50 V-	813 332	V
				C 34	10 μF ± 20 % 16 V-	814 382	R
	•			C 35	1 nF ± 5 % 50 V-	813 247	V.
			+	C 36	1 nF ± 5 % 50 V-	813 247	- V
C 10	10 µF ± 20 % 16 V-	814 382	RÖD	C 37	1 nF ± 5 % 50 V-	813 247	V.
211	100 nF + 10 % 50 V-	813 375	VAL	C 38	33 pF <u>+</u> 5 % 50 V-	813 229	, VA
: 12	1 nF ± 5 % 50 V-	813 247	VAL	C 39	10 µF ± 20 % 16 V-	814 382	RČ
: 13	1 nf ± 5 % 50 V-	813 247	VAL	C 40	10 nF ± 10 % 50 V-	813 332	V
: 14	4,7 nF ± 5 % 50 V-	813 255	VAL	C 41	1 nF ± 5 % 50 V-	813 247	V
: 15	4,7 nF ± 5 % 50 V-	813 255	VAL	C 42	10 nF ± 10 % 50 V-	813 332	Vi
16	10 nF ± 10 % 50 V-	813 332	YAL	C 43	1 nF ± 5 \$ 50 V-	813 247	Y
17	47 pF ± 5 \$ 50 V-	813 231	VAL	C 44	18 pF ± 5 \$ 50 V-	81 3 226	V
: 18	10 nF ± 10 % 50 V-	813 332	VAL				
19	100 nF ± 10 % 50 V-	8 13 37 5	VAL				
20	470 nF ± 10 % 50 V-	8 13 383	VAL				
16		Schlumberger Meßgeräte	GmbH		Schaltteilliste)	Liste beste
94		Ingolstädter Straße 6 8000 München 46	67a B	enennung ESCRIPTION	EL. PARTS LIST Bestückte Leiterplat	te	aus OF 3
	088.147 28.9.87 Staff 088.127 31.8.87 Di			Тур	200 kHz-DECADE		Blatt SHEETS
7	088.77 30.6.87 /2 088.27 14.10.86 Ce	1986 Tag Nam Nam Nam Nam Nam Nam Nam Nam Nam Nam	ME S	lezeichnung ichlumberger ART. NO	361 445 Sa		Blatt Nr. SHEET NO
	ndMittlg. Nr. Tag Name DIFIC. NO. DATE NAME	bearb.	H	lierzu Schaltplan EE CIRCUIT DIA			

1	2	3	4	5			
	Wert	Bezeichnung			6	7 Bezeichnung	8
Pos. REF. NO		Schlumberger	Herstel MANUFA	1	Wert VALUE	Schlumberger	Hersteller MANUFAC
		PART. NO,		+		PART, NO.	MANOTAG
				L 3	10 рн ± 10 %	821 239	STE
				L4	1 µН 👱 5 %	821 227	STE
D 1	NC 120 13 P	834 385	мот	L 5	1 µH ± 5 %	821 227	STE
B 2	NC 145 158 P 1	834 468	HOT	L 6	120 nH + 5 %	821 216	STE
			****	•			
61 1	BAS 16	830 552	VAL	R 1	56 Q ± 2 %	804 722	VAL
GT 2	LSS 250	856 200	SIE	R 2	1 kQ + 2 %	804 737	VAL
61 3	B BAS 16	830 552	VAL	R 3	6,8 kg ± 2 \$	804 747	VAL
G1 4		830 552	VAL	R 4	680 Q ± 2 %	804 735	VAL
G1 5	BAS 16	830 552	VAL	R 5	1,5 kQ ± 2 %	804 739	VAL
				R 6	10 kQ ± 2 %	804 749	VAL
				R 7	1,5 kΩ ± 2 %	804 739	VAL
61 8		830 621	SIE	R 8	15 kΩ <u>+</u> 2 %	804 751	VAL
G1 9		830 621	SIE	R 9	100 Ω ± 2 %	804 725	VAL
61 1		830 621	SIE	R 10	8,2 kQ ± 2 %	804 748	VAL
61 1	-	830 621	SIE	R 11	8,2 kQ ± 2 1	804 748	VAL
67 12		830 621	SIE	R 12	27 kQ ± 2 %	804 754	VAL
GT 13		830 621	SIE	R 13	27 kQ ± 2 %	804 754	VAL
G) 14	+	830 621	SIE		330 kΩ <u>+</u> 2 %	804 767	VAL
G1 15	5 BB 609 A	830 621	SIE	-	330 kQ <u>+</u> 2 %	804 767	VAL
				R 16	50 kΩ ± 25 %	807 742	BOUR
l 1	1,2 µН	821 228	STET				
L 2	38 nH ; 3,5 Wdg.	821 921	NEO				
07 06		Schlumberger Meße	aräta Cmhu		Schaltteillist	e	Liste besteht LIST CONSIST
05		Ingolstädter Str		Benerous	EL. PARTS LIST		aus OF 3
04		8000 Münch		Benennung DESCRIPTION	Bestückte Leiterpl	atte	Blatt
03	0000 400 04 0 55 5			-	Typ: 200 kHz-DECADE	· · · · · · · · · · · · · · · · · · ·	SHEETS
	7088.77 31.8.87 D: 7088.77 30.6.87	1986 Tag	Name NAME	Bezeichnung Schlumberger	361 445 Sa		Blatt Nr SHEET NO.
- 6	6088.27 14.10.86 Ke-	geschr. 13.10.86	lietrich	PART. NO.			2
Aus- gabe	ÄndMittlg. Nr. Tag Name	bearb	Va-	Hierzu Schaltple SEE CIRCUIT D			
SSUE	MODIFIC. NO. DATE NAME	gepr.	て アノ	Gerät: 40			

Top	1		2		3		-	T		
No. No.		-					5	<u> </u>		8
220 180 kg 2 f 80 h 761 VL 8 h 7 2,2 kg 2 f 80 h 741 VI R 21 15 kg 2 f 80 h 751 VL 8 h 4 7,1 kg 2 f 80 h 745 VI R 22 1,2 kg 2 f 80 h 749 VL R 23 10 kg 2 f 80 h 749 VL R 24 10 kg 2 f 80 h 749 VL R 25 10 kg 2 f 80 h 749 VL R 25 10 kg 2 f 80 h 749 VL R 26 10 kg 2 f 80 h 749 VL R 27 10 kg 2 f 80 h 749 VL R 28 10 kg 2 f 80 h 749 VL R 29 10 kg 2 f 80 h 749 VL R 29 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 749 VL R 20 10 kg 2 f 80 h 720 VL R 20 10 kg 2 f 80 h 720 VL R 30 10 kg 2 f 80 h 720 VL R 30 10 kg 2 f 80 h 721 VL R 40 330 g 2 f 80 h 721 VL R 41 330 g 2 f 80 h 721 VL R 44 5 5,6 kg 2 f 80 h 726 VL R 45 5,6 kg 2 f 80 h 726 VL R 46 5,6 kg 2 f 80 h 726 VL R 46 5,6 kg 2 f 80 h 726 VL R 46 5,6 kg 2 f 80 h 726 VL R 46 5,6 kg 2 f 80 h 726 VL R 46 5,6 kg 2 f 80 h 746 VL R 46 5,6 kg 2 f 80 h 746 VL R 46 5,6 kg 2 f 80 h 746 VL R 47 g 2 f 80 h 746 VL R 48 6 5,6 kg 2 f 80 h 746 VL R 48 6 5,6 kg 2 f 80 h 746 VL R 49 5 kg 2 f 80 h 746 VL R 49 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 746 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 748 VL R 40 5 kg 2 f 80 h 74						roer I ners		Wert		Hersteller
R 20 100 kg 2 5	REF. NO.	.	VALUE				FACT REF. NO.	VALUE		MANUFACT
R 21 15 KB 2 2							·			
R 21 15 k0 ± 2 f 804 751	R 20	100 k	Q + 2 %		804 76	AV 1	R 47	2.2 kg + 2 %	864 741	YAL
R 22 1,2 K0 22	<u> </u>	+			1 22.1					
R 22 1,2 k0 ±2 1 804 735	R 21	15 kg	0 . 2 1		804.75	1 VA	949	47 kg 424	801 372	VAL
R 23 10 kR ± 2 f 864 749	" 21	, , , , , ,	Try		001 1)	170	- 1 40	Tot AM I Z P	904 (4)	VAL
R 23 10 kR ± 2 f 864 749	0 22	126	0.24		904 73	0 144	. [
R 24 10 kg ± 2 x 804 749 VAL R 25 10 kg ± 2 x 804 749 VAL T 1 8C 860 B 532 285 VI T 2 8C 850 B 832 284 VI R 30 18 kg ± 2 x 804 749 VAL T 3 8FR 93 A 532 287 VI R 31 56 9 ± 2 x 804 737 VAL R 33 120 9 ± 2 x 804 737 VAL R 33 120 9 ± 2 x 804 726 VAL T 6 8C 850 B 832 284 VI R 34 47 9 ± 2 x 804 726 VAL R 35 120 9 ± 2 x 804 726 VAL R 41 330 9 ± 2 x 804 726 VAL R 44 330 9 ± 2 x 804 726 VAL R 45 8,2 kg ± 2 x 804 731 VAL R 46 5,6 kg ± 2 x 804 731 VAL R 47 8 ± 2 x 804 731 VAL R 48 5 8,2 kg ± 2 x 804 731 VAL R 49 350 2 ± 2 x 804 731 VAL R 40 350 8 ± 2 x 804 731 VAL R 41 330 8 ± 2 x 804 731 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 46 5,6 kg ± 2 x 804 746 VAL R 47 8 ± 2 x 804 746 VAL R 48 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 40 350 8 ± 2 x 804 746 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 46 5,6 kg ± 2 x 804 746 VAL R 47 8 ± 2 x 804 746 VAL R 48 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 40 5 8,2 kg ± 2 x 804 746 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 46 5,6 kg ± 2 x 804 746 VAL R 47 8 ± 2 x 804 746 VAL R 48 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 40 5 8,2 kg ± 2 x 804 VAL R 40 5 8,2 kg ± 2 x 804 VAL	N 42	1,2 K	* 1 2 %		004 15	YA.	L			
R 24 10 kg ± 2 x 804 749 VAL R 25 10 kg ± 2 x 804 749 VAL T 1 8C 860 B 532 285 VI T 2 8C 850 B 832 284 VI R 30 18 kg ± 2 x 804 749 VAL T 3 8FR 93 A 532 287 VI R 31 56 9 ± 2 x 804 737 VAL R 33 120 9 ± 2 x 804 737 VAL R 33 120 9 ± 2 x 804 726 VAL T 6 8C 850 B 832 284 VI R 34 47 9 ± 2 x 804 726 VAL R 35 120 9 ± 2 x 804 726 VAL R 41 330 9 ± 2 x 804 726 VAL R 44 330 9 ± 2 x 804 726 VAL R 45 8,2 kg ± 2 x 804 731 VAL R 46 5,6 kg ± 2 x 804 731 VAL R 47 8 ± 2 x 804 731 VAL R 48 5 8,2 kg ± 2 x 804 731 VAL R 49 350 2 ± 2 x 804 731 VAL R 40 350 8 ± 2 x 804 731 VAL R 41 330 8 ± 2 x 804 731 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 46 5,6 kg ± 2 x 804 746 VAL R 47 8 ± 2 x 804 746 VAL R 48 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 40 350 8 ± 2 x 804 746 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 46 5,6 kg ± 2 x 804 746 VAL R 47 8 ± 2 x 804 746 VAL R 48 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 40 5 8,2 kg ± 2 x 804 746 VAL R 45 8,2 kg ± 2 x 804 746 VAL R 46 5,6 kg ± 2 x 804 746 VAL R 47 8 ± 2 x 804 746 VAL R 48 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 49 5 8,2 kg ± 2 x 804 746 VAL R 40 5 8,2 kg ± 2 x 804 VAL R 40 5 8,2 kg ± 2 x 804 VAL		1								
R 25 10 kg 2 1	R 23	10 k	2 + 27		884 74	9 VA	L			
R 25 10 kg 2 1		 								
R 25 10 kg 2 1	R 24	10 k	2 ± 2 %		804 74	9 VA	L			
T BC 860 B		 								
T 1	R 25	10 kg	2 + 2 %		804 74	Q VA	-			
R 30 19 kg ± 2 x 804 749 VAL 1 3 8FR 93 A 832 284 VAL R 31 56 Q ± 2 x 804 737 VAL R 32 1 kg ± 2 x 804 726 VAL 1 6 8C 850 B 832 284 VAL R 33 120 Q ± 2 x 804 726 VAL 1 7 8C 850 B 832 284 VAL R 34 47 Q ± 2 x 804 721 VAL 1 7 8C 850 B 832 284 VAL R 35 120 Q ± 2 x 804 726 VAL R 40 330 Q ± 2 x 804 726 VAL R 41 330 Q ± 2 x 804 731 VAL R 45 8,2 kQ ± 2 x 804 731 VAL R 45 8,2 kQ ± 2 x 804 731 VAL R 46 5,6 kQ ± 2 x 804 746 VAL Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter G	-	-								
R 30 19 kg ± 2 x 804 749 VAL 1 3 8FR 93 A 832 284 VAL R 31 56 Q ± 2 x 804 737 VAL R 32 1 kg ± 2 x 804 726 VAL 1 6 8C 850 B 832 284 VAL R 33 120 Q ± 2 x 804 726 VAL 1 7 8C 850 B 832 284 VAL R 34 47 Q ± 2 x 804 721 VAL 1 7 8C 850 B 832 284 VAL R 35 120 Q ± 2 x 804 726 VAL R 40 330 Q ± 2 x 804 726 VAL R 41 330 Q ± 2 x 804 731 VAL R 45 8,2 kQ ± 2 x 804 731 VAL R 45 8,2 kQ ± 2 x 804 731 VAL R 46 5,6 kQ ± 2 x 804 746 VAL Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter GmbH Ingoistäcter Straße 67 a 8000 München 46 Schlumberger Meßgeräter G							1			
R 20										
R 20										
R 30 19 kg ± 2 1 804 749 VAL T 3 8FR 93 A 832 284 VAL R 31 56 Q ± 2 1 804 737 VAL R 32 1 kQ ± 2 1 804 726 VAL T 6 8C 850 B 832 284 VAL R 33 120 Q ± 2 1 804 726 VAL T 7 8C 850 B 832 284 VAL R 34 47 Q ± 2 1 804 721 VAL R 35 120 Q ± 2 1 804 726 VAL R 40 330 Q ± 2 1 804 726 VAL R 41 330 Q ± 2 1 804 731 VAL R 45 8,2 kQ ± 2 1 804 731 VAL R 46 5,6 kQ ± 2 1 804 746 VAL R 45 8,2 kQ ± 2 1 804 746 VAL R 46 5,6 kQ ± 2 1 804 746 VAL R 50								1.		
R 30 19 kg ± 2 1 804 749 VAL T 3 8FR 93 A 832 284 VAL R 31 56 Q ± 2 1 804 737 VAL R 32 1 kQ ± 2 1 804 726 VAL T 6 8C 850 B 832 284 VAL R 33 120 Q ± 2 1 804 726 VAL T 7 8C 850 B 832 284 VAL R 34 47 Q ± 2 1 804 721 VAL R 35 120 Q ± 2 1 804 726 VAL R 40 330 Q ± 2 1 804 726 VAL R 41 330 Q ± 2 1 804 731 VAL R 45 8,2 kQ ± 2 1 804 731 VAL R 46 5,6 kQ ± 2 1 804 746 VAL R 45 8,2 kQ ± 2 1 804 746 VAL R 46 5,6 kQ ± 2 1 804 746 VAL R 50									· · · · · · · · · · · · · · · · · · ·	
R 30 19 kg ± 2 f 804 749 VAL T 3 8FR 93 A 832 287 VAL R 31 56 Q ± 2 f 804 722 VAL T 4 8C 850 B 832 284 VAL R 32 1 kg ± 2 f 804 737 VAL R 33 120 Q ± 2 f 804 726 VAL T 6 8C 850 B 832 284 VAL R 34 47 Q ± 2 f 804 721 VAL T 7 8C 850 B 832 284 VAL R 35 120 Q ± 2 f 804 721 VAL T 7 8C 850 B 832 284 VAL R 35 120 Q ± 2 f 804 721 VAL T 7 8C 850 B 832 284 VAL R 41 330 Q ± 2 f 804 721 VAL R 41 330 Q ± 2 f 804 731 VAL R 41 330 Q ± 2 f 804 731 VAL R 41 330 Q ± 2 f 804 731 VAL R 41 330 Q ± 2 f 804 731 VAL R 41 330 Q ± 2 f 804 748 VAL R 45 5,6 kg ± 2 f 804 746 VAL R 45 5,6 kg ± 2 f 804 746 VAL R 45 7,6 kg ± 2 f 804							11	BC 860 B	* 832 28 5	YAL
R 30 10 kR ± 2 x 804 749 VAL T 3 8FR 93 A 832 287 VA R 31 56 Q ± 2 x 804 737 VAL R 32 1 kQ ± 2 x 804 737 VAL R 33 120 Q ± 2 x 804 726 VAL T 6 8C 850 B 832 284 VA R 34 47 Q ± 2 x 804 721 VAL R 35 120 Q ± 2 x 804 726 VAL R 40 330 Q ± 2 x 804 726 VAL R 41 330 Q ± 2 x 804 731 VAL R 41 330 Q ± 2 x 804 731 VAL R 45 8,2 kQ ± 2 x 804 731 VAL R 46 5,6 kQ ± 2 x 804 731 VAL R 46 5,6 kQ ± 2 x 804 746 VAL Schlumberger MeSgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Schlumberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlumberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40		+								
R 30 10 kR ± 2 x 804 749 VAL T 3 8FR 93 A 832 287 VA R 31 56 Q ± 2 x 804 737 VAL R 32 1 kQ ± 2 x 804 737 VAL R 33 120 Q ± 2 x 804 726 VAL T 6 8C 850 B 832 284 VA R 34 47 Q ± 2 x 804 721 VAL R 35 120 Q ± 2 x 804 726 VAL R 40 330 Q ± 2 x 804 726 VAL R 41 330 Q ± 2 x 804 731 VAL R 41 330 Q ± 2 x 804 731 VAL R 45 8,2 kQ ± 2 x 804 731 VAL R 46 5,6 kQ ± 2 x 804 731 VAL R 46 5,6 kQ ± 2 x 804 746 VAL Schlumberger MeSgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Schlumberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlumberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger MeSgeräte Grb Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 31 10,865 Bietrich Ingolstädter Straße 67 a 8000 München 46 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40 Schlümberger Schlümberger München 40							T 2	BC 850 B	832 284	VAL
R 31 56 9 ± 2 1 804 737							 _		-,-	
R 31 56 8 ± 2 1 804 722 VAL T 4 8C 850 8 832 284 VA R 32 1 kR ± 2 1 804 737 VAL R 33 120 R ± 2 1 804 726 VAL T 6 8C 850 8 832 284 VA R 34 47 R ± 2 1 804 721 VAL R 35 120 R ± 2 1 804 726 VAL R 36 120 R ± 2 1 804 726 VAL R 41 330 R ± 2 1 804 731 VAL R 41 330 R ± 2 1 804 731 VAL R 45 5,6 kR ± 2 1 804 731 VAL R 46 5,6 kR ± 2 1 804 748 VAL R 46 5,6 kR ± 2 1 804 748 VAL R 46 5,6 kR ± 2 1 804 748 VAL R 47 8 1 804 731 VAL R 48 5 8,2 kR ± 2 1 804 748 VAL R 49 800 Minchen 46 VAL R 49 800 Minchen 46 VAL R 40 800 Minchen 46 VAL R 40 800 Minchen 46 VAL R 40 800 Minchen 46 VAL R 41 800 Minchen 46 VAL R 42 8 800 Minchen 46 VAL R 45 8,2 kR ± 2 1 804 748 VAL R 46 8 800 Minchen 46 VAL R 46 8 800 Minchen 46 VAL R 47 8 800 Minchen 46 VAL R 48 800 Minchen 46 VAL R 49 800 Minchen 46 VAL R 49 800 Minchen 46 VAL R 40 800 Minchen 46 VAL R 40 800 Minchen 46 VAL R 40 800 Minchen 46 VAL R 45 8,2 kR ± 2 1 804 748 VAL R 46 800 Minchen 46 VAL R 47 8 800 Minchen 46 VAL R 48 804 731 VAL R 49 804 731 VAL R 40 8	R 30	10 kt	121		804.74	Q VAI	Та	BED 43 F	#22 297	VAL
R 32 1 k2 ± 2 1 804 737					307 /4	, VA		wn 7/ A	■32 Z01	TAL
R 32	D 31	56 4	. 24		BUT 20	2 44	TI	DC 050 D	- 000 001	
R 33 120 Q ± 2 \$\frac{1}{2}\$ 804 726 VAL T 6 8C 850 B 832 284 VA R 34 47 Q ± 2 \$\frac{1}{2}\$ 804 721 VAL T 7 8C 850 B 832 284 VA R 35 120 Q ± 2 \$\frac{1}{2}\$ 804 726 VAL R 40 330 Q ± 2 \$\frac{1}{2}\$ 804 731 VAL R 41 330 Q ± 2 \$\frac{1}{2}\$ 804 731 VAL R 45 8,2 kQ ± 2 \$\frac{1}{2}\$ 804 731 VAL R 46 5,6 kQ ± 2 \$\frac{1}{2}\$ 804 748 VAL Schlumberger MeSgeräte GmbH Ingolstädter Straße 6 7 a 8000 München 46 8000 M	וליי	70 3	127		004 12	2 TA	- 1 4	BC 070 B	832 284	VAL
R 33 120 Q ± 2 % 804 726	0.22	4.14			004 500	0 44				
R 34 47 R ± 2 1 804 721 VAL T 7 8C 850 B 832 284 VA R 35 120 R ± 2 1 804 726 VAL R 40 330 R ± 2 1 804 731 VAL R 41 330 R ± 2 1 804 731 VAL R 45 8,2 kR ± 2 1 804 731 VAL R 46 5,6 kR ± 2 1 804 746 VAL Schlumberger Me8geräte GmbH Ingolstädter Straße 67 a 8000 München 48 8000 München	K 32	1 K	1 + 27		804 73	7 VAI	-			
R 34 47 R ± 2 1 804 721 VAL T 7 8C 850 B 832 284 VA R 35 120 R ± 2 1 804 726 VAL R 40 330 R ± 2 1 804 731 VAL R 41 330 R ± 2 1 804 731 VAL R 45 8,2 kR ± 2 1 804 731 VAL R 46 5,6 kR ± 2 1 804 746 VAL Schlumberger Me8geräte GmbH Ingolstädter Straße 67 a 8000 München 48 8000 München										
R 34 47 2 ± 2 \$ 804 721	R 33	120	£2%		804 72	6 VAI	T 6	BC 850 B	832 284	VAL
R 40 330 Q ± 2 % 804 731		+			+					
R 40 330 Q ± 2 % 804 731	R 34	47 \$	1 ± 2 %		804 72	1 VAI	. 177	BC 850 B	832 284	VAL
R 40 330 Q ± 2 7 804 731 VAL R 41 330 Q ± 2 7 804 731 VAL R 45 8,2 kQ ± 2 7 804 748 VAL R 46 5,6 kQ ± 2 7 804 746 VAL Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumb					-			100,000	0)2 201	TAC
R 40 330 Q ± 2 7 804 731 VAL R 41 330 Q ± 2 7 804 731 VAL R 45 8,2 kQ ± 2 7 804 748 VAL R 46 5,6 kQ ± 2 7 804 746 VAL Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumb	R 35	126 (121		804. 72	K VAI	ļ.			
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O	//	120	T		001 120	TA	-			
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O										
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O										1
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O					1					
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O										İ
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O		1								
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O										
R 41 330 Q ± 2 1 804 731 VAL R 45 8,2 kQ ± 2 1 804 748 VAL R 46 5,6 kQ ± 2 1 804 746 VAL Schlumberger Meßgeräte GmbH OG		-								
R 41 330 Q ± 2 1 804 731 VAL R 45 8,2 kQ ± 2 1 804 748 VAL R 46 5,6 kQ ± 2 1 804 746 VAL Schlumberger Meßgeräte GmbH OG					}					
R 41 330 Q ± 2 1 804 731 VAL R 45 8,2 kQ ± 2 1 804 748 VAL R 46 5,6 kQ ± 2 1 804 746 VAL Schlumberger Meßgeräte GmbH OG										
R 41 330 Q ± 2 1 804 731 YAL R 45 8,2 kQ ± 2 1 804 748 YAL R 46 5,6 kQ ± 2 1 804 746 YAL Schlumberger Me8geräte GmbH OF OF OF OF OF OF OF OF OF OF OF OF OF O	D 40	220 6	4		904 77	34 941				
R 45 8,2 kQ ± 2 \$\frac{1}{2}\$	K 40	צ טככ	± 4 %		0U4 /	OI YAL	•			
R 45 8,2 kQ ± 2 \$\frac{1}{2}\$										
R 46 5,6 kQ ± 2 7 804 746 VAL	R 41	330 \$	± 27		804 7	31 VAL	.		11	
R 46 5,6 kQ ± 2 1 804 746 VAL O7		-								
R 46 5,6 kQ ± 2 1 804 746 VAL O7										
R 46 5,6 kQ ± 2 7 804 746 VAL		+								
R 46 5,6 kQ ± 2 7 804 746 VAL										
R 46 5,6 kQ ± 2 7 804 746 VAL										
R 46 5,6 kQ ± 2 7 804 746 VAL										
R 46 5,6 kQ ± 2 7 804 746 VAL										1
R 46 5,6 kQ ± 2 7 804 746 VAL	D 15	0 4 1 4								
Schlumberger Meßgeräte GmbH OSCHAITTEILIST O	K 47	8,2 kg	± 2 %		804 74	AVÍ	.			
Schlumberger Meßgeräte GmbH OSCHAITTEILIST O					 					
Schlumberger Meßgeräte GmbH OSCHAITTEILIST O	R 46	5,6 kg	± 2 %		804 74	6 VAL	.			
Schlumberger Meßgeräte GmbH OS Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Schlumberger Meßgeräte GmbH Ingolstädter Straße 67 a 8000 München 46 Benennung DESCRIPTION Bestückte Leiterplatte Typ: 200 kHz-DECADE Blatt SHEETS OF Typ: 200 kHz-DECADE Blatt N. SHEET NO OS 88.7 12.1.87 Lei OS 88.27 14.0.86 Lc OS 88	07			7			,			
Schlumberger Messgerate GmbH Ingolstädter Straße 67 a 8000 München 46 Senennung DESCRIPTION Typ: 200 kHz-DECADE Blatt SHEETS Bezeichnung DESCRIPTION Typ: 200 kHz-DECADE Blatt SHEETS Blatt Nr. SHEET NO Aus- Aus- Aus- Aus- Aus- Aus- Aus- Aus				\vdash	0-11 1			Schaltte	illiste	Liste besteht LIST CONSISTS
Ingolstadter Straße 67 a Benennung DESCRIPTION Bestückte Leiterplatte Typz 200 kHz-DECADE Blatt SHEETS Of Typz 200 kHz-DECADE Blatt SHEETS Blatt SHEETS Bezeichnung Schümberger AAUS- ANS- ANG- ANG- ANG- ANG- ANG- ANG- ANG- Bezeichnung Schümberger NAME PART NO Hierzu Schaltplan SEE CIRCUIT DIAGRAM SEE CIRCUIT DIAGRAM SEE CIRCUIT DIAGRAM Gerät: 4031					ochiumberger M	eßgerate GmbH	4	_	-	
Solution Solution	05				Ingolstädter	Straße 67 a	Benennuna		· · · · · · · · · · · · · · · · · · ·	aus 3
02 7088.7 30,6.8 12 1986 DATE NAME Schlumberger PART. NO HIERT NO SEE CIRCUIT DIAGRAM 210 041 \$	04				8000 Mün	ichen 46				1
02 7088.7 30.6.8 4 1986 Tag DATE NAME Schlumberger PART NO Hierzu Scheliplan SEE CIRCUIT DIAGRAM 210 041 \$ 34 145 Sa SEE CIRCUIT DIAGRAM 210 041 \$ 35 10.8 SEE CIRCUIT DIAGRAM 210 041 \$ 35 10.8 SEE CIRCUIT DIAGRAM 210 041 \$ 10.8 SEE CIRCUIT DIAGRAM 210 041 SEE CIRCUIT DIAGRAM 210 041 SEE CIRCUIT DIAGRAM 210 041 SEE CIRCUIT DIAGRAM	03							iyp: 200 kHz-DEC/	i)t	
01 7088.7 12.1.87 Lei 1986 DATE NAME Schlumberger PART. NO	02	7088.72	30.6.82	16	Teo	Neme	Baraichaus			
- 6088.27 14.10.86 Kg geschr. 13.10.86 Bietrich Aus- gebe Nr. Tag Name ISSUE MODIFIC NO DATE NAME 9epr. PART. NO Hierzu Scheliplan SEE CIRCUIT DIAGRAM 210 041 \$ Gerät: 4031					986 DATE	1	Schlumberger	361 44 5	Sa	SHEET NO.
Aus- gabe Nr. Tag Name ISSUE MODIFIC NO. DATE NAME Bearb. bearb. bearb. SEE CIRCUIT DIAGRAM Gerät: 4031										
gabe Nr. Tag Name ISSUE MODIFIC NO. DATE NAME Geor. Gerät: 4031			1.70.00			P 1			2	7 / 1
TO TO	gabe	Nr.		Name		640:	<u> </u>	INGHAM	-	⊣
Diese Zeichnung ist unser Eigentum. Vervielfältigung, unbefugte Verwertung, Mittellung an andere int etreffen und anhalde.						W 621				
TO THE PROPERTY OF THE PROPERT	iese Zeichr	nung ist unse	r Eigentum. Ve	ervielfältiqui	na, unbefuate Verwertu	no Mitteiluno an ande	re ist strafhar und	schadenersatzoflichtin		

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO,	Herstell		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
						7.4.1.10.	
C 1	100 nF + 10 % 50 V-	813 375	VAL	R 1	27 kΩ ± 2 %	804 754	VAL
C 2	10 nF + 10 % 50 V-	813 332	VAL	R 2	2,7 kΩ <u>+</u> 2 %	804 742	VAL
C 3	1 nF ± 10 % 50 V-	813 320	VAL	• R 3	1,2 kQ + 2 %	804 738	VAL
C 4	10 nF + 10 % 50 V-	813 332	VAL	R 4	100 Ω <u>+</u> 2 %	804 725	VAL
C 5	100 nF <u>+</u> 10 % 50 V−	813 375	VAL	R 5	1 kQ + 2 %	804 737	VAL
C 6	1 nF ± 10 % 50 V-	813 320	VAL	R 6	100 Q <u>+</u> 2 %	§ 804 725	VAL
C 7	10 nF + 10 \$ 50 V-	813 332	VAL				
C 10	10 nF ± 10 % 50 V-	813 332	VAL	R 10	68 Ω <u>+</u> 2 %	804 723	VAL
C 11	39 pF <u>+</u> 5 % 50 V-	813 230	VAL	R 11	1,5 kΩ ± 2 %	804 739	VAL
C 12	1 nF + 10 % 50 V-	813 320	VAL	R 12	100 Ω ± 2 %	804 725	VAL
C 13	4,7 pF <u>+</u> 0,25 pF 50 V	813 219	VAL	R 13	1,8 kΩ <u>+</u> 2 %	804 740	VAL
C 14	4,7 pF ± 0,25 pF 50 V	- 813 219	VAL	R 14	22 Ω ± 2 %	804 717	VAL
				R 15	56 Ω <u>+</u> 2 %	804 722	VAL
D 1	PC 74 HCT 74 T	834 433	VAL	Т 1	BC 850 B	832 284	VAL
				1 2	BFR 93 A	832 287	VAL
L 1	10 nH ± 20 %	821 207	STET				
07 06		Schlumberger Meßgeräte	GmbH		Schaltteillis	_	Liste besteht LIST CONSISTS
05 04		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	EL. PARTS LIS Bestückte Leiterpla		aus OF 1
03 02 7	7088_144_24_9_87Di	Tag Nan		Bezeichnung	yp: 10 MHz DIVIDER		Blatt SHEETS Blatt Nr.
	7088.48 9.4.87 Di 1	987 DATE NAM	4E	Schlumberger PART NO	361 446 Sa	3	SHEET NO
Aus- gabe	ÄndMittig. Nr. Tag Name	pearb.		Hierzu Schaltpla SEE CIRCUIT D Gerät: 40	1AGRAM 210 041 S		1

•		2			3		4		5			3			7	
Pos REF NO		Wert VALUE			Bezeichi Schlumb PART I	erger	Herstel MANUF/	- 1	Pos EF NO		W.	erit		Sch	eichnung lumberger IRT NO	Hersi-
C 1	1 nF	±5%	50 Y-		813	247	VA									
C 2	10 nF	<u>+</u> 10 %	50 V-		813	332	VA	L								
C 3	10 nF	<u>*</u> 10 %	50 V-		813	332	VA	LL	. 1	68 0	nH 1	5 %		82	1 225	STE
C 4	1 nF	± 5 %	50 V-		813 2	247	VA	L	. 2	82	nH 1	5 %		82	1 214	STE
C 5	390 pF	±5%	50 V-		813 2	242	VA	L	. 3	82	nH 1	5 %		82	1 214	STE
C 6	2 20 pF	±5%	50 V-		813 2	239	VA	L	4	82	nH 1	5 %		82	214	STE
` 7	18 pF	±5%	50 V-		813 2	26	VA	L	. 5	82	nH 1	5 %		82	214	STE
C 8	47 pF	±5\$	50 V-		813 3	31	VA	. L	6	1,2	μH ±	5 %		821	228	STE
C 9	56 pF	±5%	50 Y-		813 2	32	VA	. L	7	10	μH ±	10 %		821	239	STE
C 10	82 pF	±5%	50 V-		813 2	34	VAI	. L	8	1,2	μH ±	5 %		821	228	STE
C 11	680 pF	±5\$	50 V-		813 2	45	VAI									
C 12	1 nF	±5 %	50 V-		813 2	47	VAL									
C 13	1 nF	±5%	50 V-		813 2	47	VAL		:							
C 14	10 nF	± 10 %	50 V-		813 3	32	VAL		·							
C 15	39 pF	±5 %	50 V-	_	813 2	30	VAL	Mi	1	SMD-(1			872	081	SYN
C 16		±5%			813 2	33	VAL	Mi	2	SMO-C	: 1			872	081	SYN
C 17	39 pF	<u>+</u> 5 \$	50 V-		813 2	30	VAL									
C 18	1 nF	± 10 %	50 V-		813 3	20	VAL									
C 19	1 nF	±5 \$	50 V-		813 2	47	VAL									
C 20		±10 %			813 3	20	VAL					-				
C 21	2,2 nF	±5%	50 V-		813 2	51	VAL	R	1	2,7 ເ	<u>+</u> 5	%		804	706	VAL
C 22		± 10 %			813 3	32	VAL	R	2	27 0	± 2	1		804	718	VAL
C 23	1 nF	± 10 %	50 V-		813 3	20	VAL	R	3 3	330 Ω	± 2	1		804	731	VAL
								R			± 2			804	750	VAL
		 						h	5 1	,2 kΩ	<u>+</u> 2	1		804	738	VAL
								R	6 2	70 ♀	± 2	1		804	730	VAL
07			1		- <u>-</u>			R	7 2		<u>* 2</u>			804	730	VAL
06 05 04				Ingols	städter S	e ßgeräte (Straße 67 chen 46	a	Benennun DESCRIP	TION	Besti	EL. PA	Itteilli: ARTS LIS Leiterpi	ST			Liste bestern LIST CONSIS aus OF 2
03 02 01 808	88.204	28.10.8	8Staff	1986	Tag DATE	Name NAME		Bezeichni Schlumbe PART NO	ung	niaci	361 4	47 Sa			•	Blatt SHEETS Blatt Nr SHEET NO
Aus- Án gabe	83. 83 ndMittig. Nr DIFIC NO	Tag DATE	Name NAME	geschr bearb	3,10,86	Dietric	_		chaltplan CUIT DIAGR	IAM .	210 0	41 S				1

Pos.	Wert	3 Bezeichnung	4	5	. 6	7	8
REF. NO.	VALUE	Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Herste MANUF
R 8	18 9 ± 2 %	804 716	YAL				
R 10	120 Q ± 2 %	804 726	VAL				
R 11	120 9 ± 2 %	804 726	VAL				
R 13	47 0 ± 2 %	804 721	VAL	T 1	BFS 19 GEG	832 286	VA
R 14	4,7 Q ±5%	884 709	VAL	T 2	BFR 93 A GEG	832 287	VAI
R 15	22 2 ± 2 %	804 717	YAL	13	BC 850 B GEG	832 284	YAI
R 16	1,8 kQ ± 2 %	804 740	YAL	T 4	BFR 93 A GEG	s 832 287	VAL
R 17	390 Q ± 2 %	894 732	VAL	T 5	BFR 93 A GEG	832 287	ANI
R 18	18 kg ± 2 %	864 752	YAL	T 6	BC 860 B	832 285	AVI
R 19	270 Ω ± 2 %	804-730	VAL				
R 20	18 Q ± 2 %	804 716	VAL				
R 21	270 Ω ± 2 %	804 730	VAL				
R 22	4,7 kΩ ± 2 %	804 745	YAL				
R 23	15 kΩ <u>+</u> 2 🔏	804 751	VAL.				
R 24	10 kg + 2 %	804 749	VAL				
R 25	1 kg ± 2 %	804 737	YAL				
R 26	27 kg ± 2 %	804 754	VAL				
R 27	1 kΩ <u>+</u> 2 %	804 737	VAL				
R 28	10 Q ± 2 %	804 713	VAL				
R 29	10 Ω ± 2 %	804 713	YAL				
R 31	330 Q ± 2 %	804 731	VAL				
₹ 32	15 kQ ± 2 %	804 751	VAL				
R 33	330 Ω ± 2 %	804 731	YAL				
07	Sc	hlumberger Meßgeräte (GmbH		Schaltteillist	e	Liste besteht LIST CONSIS
	38.20428.10.88Staff	Ingolstädter Straße 67 8000 München 46		nnung CRIPTION	Bestückte Leiterpi yp: MIXER-FILTER	atte	aus OF 2
· 60.	88.70 4.6.87 Staff. 198 88.35 20.10.86 G-198 181.27 Gesch	42 40 QC DV V V	Schlu PART	ichnung imberger . NO	361 447 Sa		SHEETS Blatt Nr. SHEET NO.
be	dMittig. Nr. Tag Name Dear		SEE	u Schattplan CIRCUIT DIAGE	210 041 S		

,	2	3	T .	· r · · · · · · · ·			
Pos. REF. NO	Wert	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	6 Wert VALUE	7 Bezeichnung Schlumberger PART. NO.	8 Hersteller MANUFACT
C 1	218 pF	817 059	YAL		·	PANTINO.	
C 2	4,7 pF ±0,25 pF 50V-	813 219	VAL	C 29	39 pF ± 5 % 50 V-	813 230	VAL
C 3	8,2 pF ±0,25 pF 50V-	813 222	VAL	C 30	10 nF ± 10 % 50 V-	813 332	VAL
C 4	2,2 pF ± 0,25 pF50V-	813 215	VAL	C 31	10 nF ± 10 % 50 V-	813 332	VAL
G 5	100 nF ± 10 % 50 V-	813 375	VAL	C 32	33 pF <u>+</u> 5 % 50 V-	813 229	VAL
C 6	100 nF ± 10 % 50 %	813 375	AYFa-				
C 7	100 mF ± 10 % 50 V-	813 375	VAL				
C 8	100 nF ± 10 % 50 V-	813 375	VAL				
	i i s				·	35	
C 10	10 nF ± 10 % 50 V-	813 332	VAL			-	
C 11	3,3 pF ± 0,25 pF 50 V-	813 217	VAL				
C 12	2,7 pF ± 0,25 pF 50 V-	813 216	VAL				
C 13	3,3 pF ± 0,25 pF 50 V-	813 217	VAL				
C 14	33 pF ± 5 % 50 V-	813 229	VAL				
C 15	5,6 pF ± 0,25 pF 50 ¥-	813 220	VAL	67 1	BBY 31	830 61 8	VAL
C 16	10 µF ± 20 % 16 V-	814 382	RÕO	61 2	BBY 31	830 61 8	YAL
C 17	10 μF ± 20 % 16 V-	814 382	RÖD	G1 3	BBY 31	830 61 8	VAL
C 18	5,6 pF ± 0,25 pF 50 V-	813 2 2 0	VAL	61 4	8BY 31	830 618	ANT
C 19	10 nF ± 10 % 50 V-	813 332	VAL	61 5	88Y 31	83 0 618	VAL
C 20	10 nF ± 10 % 50 V-	813 332	VAL	61 6	BBY 31	830 6 18	VAL
C 21	10 nF ± 10 % 50 V-	813 332	VAL				
C 22	10 nf ± 10 % 50 V-	813 332	VAL				
C 23	33 pF ± 5 \$ 50 V-	813 229	VAL				
C 24	33 pF ± 5 ₺ 50 ¥-	813 229	VAL				
C 25	100 nF ± 10 % 50 V-	813 375	VAL				
C 27	6,8 pF ± 0,25 Pf 50 V-	813 221	VAL				
07				<u> </u>	Schaltteilliste)	Liste besteht
06		nlumberger Meßgeräte Ingolstädter Straße 67	7a Be	nennung	EL. PARTS LIST		aus OF 2
	8088.78 18.5.88 Mo. 7088.128 1.9.87 Di	8000 München 46	DE	SCRIPTION	Bestückte Leiterplatt yp: Oscillator		Blatt SHEETS
01	MANUAL ALL LANGES IN THE	986 DATE NAME	E Sc	zeichnung hlumberger RT, NO.	361 448 Sa		Blatt Nr. SHEET NO.
	6088_27 13_10_86 Di gesc AndMittig. Nr. Tag Name	b	Hi SE	erzu Schaltplar E CIRCUIT DIA	240.04.0		1
ISSUE M	ODIFIC. NO. DATE NAME Geprung ist unser Eigentum. Vervielfältigung, u		- 0		1 031		

8 Herstelle	7 Bezeichnung Schlumberger	6 Wert	Pos.	4 Hersteller	3 Bezeichnung Schlumberger		,	2 Wert VALUE		Pos. REF. N
MANUFAC	PART. NO.	VALUE	REF. NO.	MANUFACT	PART. NO,	-		μH ± 5 %		L 1
VAL	804 731	330 0 ± 2 %	R 15	STET	821 228				+	L 2
VAL	804 710	5,6 Q ± 2 %	R 16	STET	821 228	-		µH ±5≴	_	
VAL	804 741	2,2 kΩ ± 2 %	R 17	STET	821 229			µН <u>+</u> 10		L 3
VAL	804 740	1,8 kΩ ± 2 %	R 18	STET	821 228	-		µH ±5≴	+	L 4
VAL	804 738	1,2 k ^Ω ± 2 %	R 19	STET	821 228			aH ± 5 %	+	L 5
VAL	804 734	560 Ω ± 2 %	R 20	STET	821 228			出 ±5%		L 6
VAL	804 741	2,2 kΩ <u>+</u> 2 %	R 21	STET	821 207	-		± 20 %	+ -	L 7
				STET	821 207	_		± 20 %	10 nl	L 8
	iş .									
				STET	821 228			H ±5%	1,2 µ	L 10
VAL	804 741	2,2 kΩ <u>+</u> 2 %	R 25	STET	8 21 228			H ± 5 %	1,2 µ	L 11
YAL	832 287	BFR 93 A	T 1	STET	821 207		<u>,</u>	H <u>+</u> 20 %	10 n	L 12
VAL	832 287	BFR 93 A	T 2							
VAL	832 287	BFR 93 A	Т 3	VAL	804 725			Ω + 2 %	100	R 1
VAL	832 287	BFR 93 A	T 4	VAL	804 728			Q ± 2 %	180	R 2
VAL	832 287	BFR 93 A	T 5	VAL	804 739			Q · <u>+</u> 2 %	1,5 k	R 3
VAL	832 284	BC 850 B	T 6	YAL	804 740			Q ±2%	1,8 k	R 4
VAL	832 284	BC 850 B	т 7	VAL	804 739			Q ± 2 %	1,5 k	R 5
YAL	832 285	BC 860 B	T 8	VAL	804 7 51			Q ± 2 %	15 k	R 6
VAL	832 285	BC 860 B	Т 9	VAL	804 739			Q ± 2 %	1,5 k	R 7
				AVF	804 751			Q ± 2 %	15 k	R 8
				VAL	804 727			± 2 \$	150 Ω	R 9
			-	VAL	804 745			Q ± 2 %	4,7 ks	R 10
				VAL	864 733			Q ± 2 %	470	R 11
				VAL	804 731			2 ± 2 %	330	R 12
				VAL	804 710		-	2 ± 2 %	5,6 9	R 13
				VAL	804 741			2 ± 2 %	2,2 ks	R 14
Liste besteht		Schaltteilliste				Cabl				07
aus OF 2		EL. PARTS LIST	ennung	7a Be	städter Straße 6	Ingo				05
Blatt SHEETS	8	Bestückte Leiterplati [yp: Oscillator		DE	00 München 46	8	Di	1.9.87	088.128	03
Blatt Nr. SHEET NO.		361 448 Sa	eichnung lumberger T NO	E Sci	Tag Nam DATE NAM	986	Di	16_10_86	5088.31	01
2		GRAM 210 041 S	zu Schaltplan	h Hie	6.9.86 Dietric	eschr.	Di	13.10.86	AndMittlg.	Aus-
		Bestückte Leiterplati iyp: Oscillater 361 448 Sa	eichnung lumberger T. NO. zu Schaltplan CIRCUIT DIA	VAL VAL VAL GmbH 7 a Be DE Be Scheller	804 731 804 710 804 741 erger Meßgeräte städter Straße 6 00 München 46	986	Di Di Di Di S	2 ± 2 x 2 ± 2 x 2 ± 2 x 2 ± 2 x 1.9.87 15.5.87	330 s 5,6 s 2,2 ks 7088.128 7088.63 6088.31	06 05 04 03 02 01

×

1	2		T		<u> </u>	, , , , , , , , , , , , , , , , , , , 	
		3 Bezeichnung	4	5	6	7	- 8
Pos. REF. NO	. Wert VALUE	Schlumberger	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger	Hersteller
\vdash		PART. NO,		7	VALUE	PART. NO.	MANUFACT
A 1	MC 3403 D	834 215	VAL	C 19	ـ¥ 16 \$ 20 % 14 كار 10 F	814 382	RÖD
A 2	TLC 271 A CD	004 004		-	· · · · · · · · · · · · · · · · · · ·		
	ILC 2/1 A W	834 221	TEX	C 20	100 pF ± 5 \$ 50 V-	813 235	YAL
A 3	RC 4560 H	834 210	RAYT	C 21	10 pF ± 5 % 50 V-	813 223	VAL
-						019 229	YNL
A 4	LM 319 D	834 214	VAL	C 22	330 pF ± 5 \$ 50 V-	813 241	VAL
A 5	LH 319 D	834 214	VAL	C 23	10 nF +10 % 50 V-	M2 22 C	
		971 211	Inc	625	10 Nr \$10 × 70 V=	813 332	VAL
			. %-	C 24	220 nF +10 \$ 50 V-	813 379	VAL
				0.05			
				C 25	220 nF ±10 % 50 V-	813 379	VAL
				C 26	220 nF ±10 \$ 50 V-	813 379	YAL
				-		4.7 7.7	INL
				C 27	560 pF ± 5 \$ 50 V-	· 813 244	VAL
C 1	10 nF ± 10 % 50 V-	813 332	VAL			7.181	
<u> </u>	 	0.5 552	VAL				
C 2	190 nF + 10 % 50 V-	813 375	VAL				
C 3	100 nF + 10 % 50 V-	042 205	1441	0.00	40		
	100 Nr ± 10 % 70 1-	813 375	VAL	C 30	10 μF ± 20 % 16 V-	814 382	RÖÐ
C 4	10 nF + 10 % 50 V-	813 332	VAL	C 31	220 nF + 10 % 50 V-	813 379	VAL
<u> </u>	100 0 10 10 11						
C 5	100 nF ± 10 % 50 V-	813 375	VAL	C 32	68 pF ± 5 % 50 V-	813 233	VAL
€ 6	100 nF ± 10 % 50 V-	813 375	VAL	C 33	330 pF + 5 % 50 V-	942 314	1441
ļ		0.556		"	770 pr <u>+</u> 7 x 70 +-	813 241	VAL
C 7	47 µF ± 20 % 16 V-m	814 386	RÖD	C 34	330 pF ± 5 % 50 V-	813 241	VAL
				C 35	12 5 5 d 50 y		
				L 37	47 pF ± 5 % 50 V-	813 231	VAL
				C 36	10 nF + 10 % 50 V-	813 332	YAL
C 10	400 -F 40 d F0 U	242 205		-			
C 10	100 nF ± 10 % 50 V-	81 3 375	VAL	C 37	39 pF ± 5 % 50 Y-	813 230	VAL
C 11	100 nF + 10 % 50 V-	813 375	VAL				
				-			
C 12	190 nf ± 10 % 50 V-	813 375	VAL				
C 13	100 nF + 10 % 50 V-	813 375	VAL	C 40	120 -F . 5 4 FO V	226	
		(1) (1)	TAL	L 40	120 pF ± 5 \$ 50 V-	813 236	VAL
C 14	100 nF ± 10 % 50 V-	813 375	VAL	C 41	100 pF + 5 % 50 V-	813 235	VAL
C 15	15 .6 . 0 4 .2 4	949 94 9	nän	10:0			
6 17	1,5 pf ± 0 % 63 V-	812 349	RÖD	C 42	47 pF ± 5 % 50 V-	813 231	VAL
C 16	100 nF ± 10 % 50 V-	8 13 375	VAL	C 43	180 pf + 5 % 50 V-	813 238	VAL
	_						TAL
C 17	330 pF ± 5 \$ 50 V-	813 241	VAL	C 44	10 nF + 10 % 50 V-	8 13 332	VAL
C 18	47 µF + 20 % 16 V-	814 386	RÖD	C 45	100 nF + 10 % 50 V-	940 205	7454
		J17 J00	NOU	6 47	100 HF ± 10 % 50 Y-	813 375	VAL
07 06		hlumharnar McG	CFII		Schaltteilliste)	Liste besteht LIST CONSISTS
05	30	hlumberger Meßgeräte Ingolstädter Straße 67	_ L		EL. PARTS LIST		aus
04		8000 München 46		Benennung DESCRIPTION	Bestückte Leiterplati	(e	OF 5
03	7088.87 1.7.87 Po				yp: Phase Detector		Blatt SHEETS
02		Tag Name		Bezeichnung Schlumberger	361 449 Sa		Blatt Nr. SHEET NO.
	6088_35 20_10_86 Di 996		h P	PART. NO.			ŀ
Aus- gabe	ÄndMittig. Nr. Tag Name		<i></i>	tierzu Schaltplar SEE CIRCUIT DIJ			7 1
ISSUE	ODIFIC. NO. DATE NAME Gen			Gerät: 403			
iese Zeich	nung ist unser Eigentum. Vervielfältigung.	unhetunte Verwertung Mittailung		-1 -1			

1	2	3	4	5	6	7	8
Pos. REF. N	1	Bezeichnung Schlumberger PART. NO,	Herstell MANUFA	1	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Horsteller MANUFACT
				C 73	10 nF ± 10 % 50 V-	813 332	YAL
			_	C 74	1 nF ± 10 % 50 V-	813 320	VAL
C 44	3 12 pF <u>+</u> 5 % 50 V-	813 224	VAL			`,	
C 50) 180 mF ± 10 % 50 V-	813 375	VAL	C 77	47 μF + 20 % 16 V-	814 386	RÖD
C 51	470 pF ± 5 % 50 V-	813 243	VAL		47 μF + 20 % 16 V-	814 386	RÖD
C 52	27 pF ± 5 % 50 V-	813 228	VAL		- 1 pr <u>-</u> 20 /2 10 •	:	KUU
C 53	1 mF ± 10 % 50 V-	813 320	YAL				
C 54	10 nF ± 10 % 58 Y-	813 332	YAL			*	
C 56	100 nF ± 10 % 50 V-	813 375	VAL	D 1	PC 74 HCT 374 T	894 437	VAL
				D 2	DAC 08 ED	834 136	VAL
				D 3	DAC 08 ED	834 136	VAL
				D 4	DG 211 CY	834 471	SILI
C 60	10 nF ± 10 % 50 V-	813 332	VAL	D 5	PC 74 HCT 125 T	834 472	VAL
C 61	470 nF ± 10 % 50 V-	813 383	VAL	D 6	PC 74 HC 03 T	834 480	YAL
C 62	10 aF ± 10 % 50 V-	813 332	VAL				
C 63	10 nF ± 10 % 50 V-	813 332	VAL			2"	
C 64	82 pF ± 5 % 50 V-	813 234	VAL	G1 1	HS MS 2910	830 551	HP
C 65	100 pF ± 5 % 50 V-	813 235	VAL	61 2	HS MS 2910	830 551	HP
C 66	10 nF ± 10 % 50 Y-	813 332	VAL	G1 3	BAS 19	8 30 553	VAL
				G1 4	BAS 19	830 553	VAL
C 69	100 nF ± 10 % 50 V-	813 375	VAL				
C 70	100 nF ± 10 % 50 V-	813 375	YAL				
C 72	100 nF ± 10 % 50 V-	813 375	VAL				
	8088.7 26.1.88 Staff	Schlumberger Meßgeräti Ingolstädter Straße (8000 München 40	67a	Benennung DESCRIPTION	Schaltteilliste EL. PARTS LIST Bestückte Leiterplat		Liste besteht LIST CONSISTS aus 5 OF Blatt
03 02 01		Tag Na DATE NA	ME	Bezeichnung Schlumberger PART, NO.	yp: Phase Detector 361 449 Sa		SHEETS Blatt Nr. SHEET NO.
Aus- gabe ISSUE	AndMittig. b	earb. 18.9.86 Distri	ich	Hierzu Schaltplan SEE CIRCUIT DIA Gerät: 40	GRAM ZIU GTI 3		2

. 1							
	2	3	1 4	5	6	, ,	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger	Herste	1	Wert	Bezeichnung Schlumberger	Hersteller
		PART: NO,	MANOF	NET. NO.	VALUE	PART. NO.	MANUFACT
	ma # 5.4			R 5	2,2 kg ± 2 %	804 741	YAL
L1	220 nH ± 5 %	821 219	STE	r R6	10 kg ± 2 %	804 749	VAL
L 2	HF - COIL	394 397	SCH	L			
L 3	IF - Spale IF - COIL	394 395	SCH				
L 4	1,5 ml ± 10 %	821 229	STET	r			
L 5	1,5 ий ± 10 %	821 229	STET	R 10	4,7 kg ± 2 %	804 745	VAL
L 6	HF - Spule HF - COIL	394 397	SCH	R 11	10 kg ± 2 %	884 749	YAL
L 7	470 nH ± 5 %	821 223	STET	R 12	2,2 kg ± 2 %	904 741	YAL
				R 13	12 kg ± 2 %	864 750	YAL
	• .			R 14	10 he 225	804 749	VAL
L 10	120 mH ± 5 %	821 216	STET	R 15	5 kB ± 25 %	807 739	96001
L 11	1 ml ±5%	821 227	STET	R 16	1 kQ ±2%	804 737	YAL
L 12	120 nH ± 5 %	821 216	STET				
				R 18	12 kΩ <u>+</u> 2 %	804 750	VAL
				R 19	12 kQ <u>+</u> 2 %	804 750	VAL
				R 20	10 kΩ ± 2 %	804 749	VAL
				R 21	3,3 kg ± 2 \$	804 743	YAL
Hi 1	SMD - C 1	872 061	SYNER	R 22	3,3 k2 ± 2 \$	804 743	YAL
Mi 2	SMD - C 1	872 081	SYNER	R 23	33 kg ± 2 \$	804 755	VAL
				R 24	370 kg + 2 %	804 767	VAL
				R 25	20 kg ± 25 %	807 741	BOURS
				R 26	4,7 kΩ ± 2 ≸	804 745	VAL
				R27	10 kΩ + 2%	804 749	VAL
R 1	19 kΩ ± 2 ≸	894 749	VAL	R 28	15 kQ ± 2 %	804 751	VAL
R 2	10 kg ± 2 %	804 749	VAL				
R 3	10 kg ± 2 %	804 749	VAL	R 36	22 2 1 2 1	804 717	VAL
07 08	Sc	hlumberger Meßgeräte (GmbH		Schaltteilliste	9	Liste besteht LIST CONSISTS
06 04 90	281.55 23.3.21 82-	Ingolstädter Straße 67	a	Benerinung DESCRIPTION	EL. PARTS LIST Bestäckte Leiterplatt		of 5
og 60	88.16 22.18 %	8000 München 48	ł		p: Phase Detector	-	Blatt SHEETS
02 70	088.87 1.7.87 Po 088.7 12.1.87 Lei 198	6 Tag Name DATE NAME		Bezeichnung Schlumberger	361 449 Sa		Blatt Nr. SHEET NO.
(6088_27 14_10_86 Di 000	- 18_9_86 Dietric		PART. NO. Hierzu Schaltplan			;
Aue- Ar	ndMittig. bear Nr. Tag Name		_	SEE CIRCUIT DIA] 3
1	DOIFIC NO. DATE NAME 940	. 19	-	Gerat: 4031			4

1	2	3	4	5	6	_	
Pos. REF. N	Wert	Bezeichn Schlumbe	ung Herste	eller Pos.	Wert	7 Bezeichnung Schlumberger	8 Hersteller
		PART. N		ACT REF. NO.	VALUE	PART. NO.	MANUFACT
R 3		804 72					
R 3		804 74	5 VAL				
R 3	3 33 kQ ± 2 %	804 75	5 VAL	R 60	100 Ω ± 2 %	804 725	VAL
R 34	4 220 Ω ± 2 %	804 72	9 VAL	R 61	330 Ω ± 2 %	804 731	VAL
R 3!	5 12 kΩ ± 2 %	804 75	O VAL	R 62	5,6 kΩ ± 2 %	804 746	VAL
R 30	6 1,8 kg ± 2 %	804 74	O VAL	R 63	1 kΩ ± 2 %	804 737	VAL
				R 64	22 Ω ± 2 %	804 717	VAL
				R 65	68 Q ± 2 %	804 723	VAL
				R 66	1 kQ +2%	804 737	YAL
R 40	82 9 ± 2 %	804 724	VAL.				
R 41	4,7 kg ± 2 %	804 745	5 VAL				
R 42	***	804 737					
R 43		804 749		R 70	100 Q ± 2 %	001 505	W41
R 44		804 743				804 725	YAL
R 45		804 757		R 71	56 Ω ± 2 % 47 Ω ± 2 %	804 722	VAL
R 46	-	 	4.4%			804 721	VAL
K 40	470 kg ± 2 %	804 769	VAL	R 73	100 Q ± 2 %	804 725	VAL
				R 74	47 Ω ± 2 %	804 721	VAL
				R 75	39 Q ± 2 %	804 720	VAL
				R 76	330 Ω ± 2 %	804 731	VAL
R 50	22 kg ± 2 %	804 753	3 VAL				
R 51	12 kQ ± 2 %	804 750) VAL				
R 52	22 kQ ± 2 %	804 753	3 VAL				
R 53	4,7 kQ ± 2 %	804 745	5 VAL	R 80	6,8 kg ± 2 %	804 747	VAL
R 54	20 kΩ ± 25 %	807 74	1 BOURN	R 81	10 kΩ ± 2 %	804 749	VAL
R 55	4,7 kΩ ± 2 %	804 745	5 VAL	R 82	39 Ω ± 2 %	804 720	VAL
R 56	39	804 720) VAL	R 83	47 Ω ± 2 %	804 721	VAL
R 57	1 kQ + 2 %	804 737	7 VAL	R 84	47 Q ± 2 %	804 721	VAL
07					Schalt		Liste besteht
06		Schlumberger Me Ingolstädter S	straße 67a	Benennung	EL. PAR	TS LIST	aus OF
	8088,141 2,9.888 Kr.	8000 Münd	chen 46	DESCRIPTION	Bestückte Le p: Phase Detect		OF 5 Blatt SHEETS
02 '	7088.147 28.9.87 Staff . 7088.87 1.7.87 Po	1986 Tag	Name NAME	Bezeichnung Schlumberger	361 449	Sa	Blatt Nr SHEET NO.
Aus-	6088,27 14,10,86 Di o		Dietrich	PART. NO. Hierzu Schaltplan	210.041		4
pabe	Nr. Tag Name	earb.	do	SEE CIRCUIT DIA	GRAM 210 041	<u>J</u>	1

1	ı	2			3				_			7		
							4	5	 	6	· · · · · · · · · · · · · · · · · · ·	<u> </u>	7	8
Po REF.		VALUE			Bezeic Schlum PART	berger	Herste			Wert VALUE		s	Bezeichnung chlumberger PART. NO.	Herstell MANUFA
R	85 . 3,	3 kΩ <u>+</u> 2	1		804	743	VAI					1		
R		Q ± 2			804	713	VAL					-		
					- 10 ,	., .	-		-			-		
R	88 10	kΩ <u>+</u> 2 ;			804 7	7 4 9	YAL		-					
R	<u> </u>	kΩ ± 2)			804 7		VAL							
R		Q ± 2 %		+	804 7		YAL							
R		<u>- ± - /</u> kΩ <u>+</u> 2 /			804 7	-	VAL							
R	-	Q ± 2 7												
RS					904 7		VAL	 						-
n)	0,8	kΩ <u>+</u> 2 7			894 7	147	VAL							
		4		_										
				_										
									-					
						etere i								
1	BFR	93 A			832 28	87	YAL							
2	BFR	93 A			832 28	37	VAL							
							_		-					
														_
_														-
07										Schaltte	illista			Liste besteht
06 05			-			leßgeräte i				EL. PARTS		;		LIST CONSISTS
)4	8088,175	29.9.88		Ing	jolstädter 8000 Mür	Straße 67 nchen 46		Benennung DESCRIPTION		stückte Lei	terplat	te		OF 5
	7088,147	2.9.88 28.9.87	Kr. Staff	1986	Tag DATE	Name		Bezeichnung	ypt Ph	ase Detecto				SHEETS Blatt Nr
)1 ==	7088 ₈ 87	1.7.87 14.10.86	Po Di	geschr.	18.9.86	Pietric Bietric	<u>h</u>	Schlumberger PART. NO.		361 449				SHEET NO
us-	ÄndMittig.			bearb.				Hierzu Schaltplan		210 041	_			5

1. Oscillator 361 436

The oscillator around T1 works as a negative-impedance oscillator and can be tuned in its frequency over more than one octave with varactors G14 and G15. The output power is regulated with a PIN-diode attenuator (G11, G12, G13) and amplified by T2. It is distributed via the Z/3 starpoint R36, R37, R40 to the programmable divider 361 439 and the UHF divider 361 435.

The actual value of the output power is obtained by the integral controller Al by peak rectification of the RF signal following the amplifier with Gl6, C33. From comparison with the set value, which is determined by the voltage divider R33, R35, the controller determines what is applied to the PIN diodes.

2. <u>UHF divider 361 435</u>

Schlumberger

On the UHF divider circuit board (361 435) the signal from the oscillator (between 500 and 1000 MHz in frequency), is filtered immediately or divided and filtered, so that frequencies between 125 and 1000 MHz appear on output Bu42 within an level range from -8 dBm to +2 dBm and with an harmonics ratio of \geq 35 dBc.

If output frequency is greater than 500 MHz, the signal from the oscillator is undivided filterd. The appropriate lowpass filters are located on separate PCBs (361 437 for f=740 to 1000 MHz, 361 438 for f=500 to 740 MHz) on the surface of PCB 361 435.

If output frequency is smaller than 500 MHz, the oscillator frequency is divided by two in each of the dividers D1 and D2. The divided frequencies are fed to the appropriate lowpass filters via switch D3. There are three lowpass filters for the bands 125-200 MHz (L15-L19), 200-320 MHz (L10-L14) and 320-500 MHz (L5-L9).

l	213 04	1 F	Sub	UHF	Synthesizer	 		Date	
Туре	4031		Unit				Γ	Sheet	1/2

Functional Description

3. Programmable divider 361 439

The oscillator frequency is exactly regulated in the range from 480 to 1020 MHz to the set value by a PLL. For this purpose the reference frequency of 500 MHz on Bu41 is divided to 250 MHz, 100 MHz and 50 MHz in D1, D2 and D3. Either 500 MHz or 250 MHz is down-converted with 100 MHz or 50 MHz by mixer Mil. The amplified mixture product results in either 50 MHz, 60 MHz, 70 MHz, 80 MHz or 90 MHz on the output of divider D10, depending on the setting of D4.

On mixer Mi2, which functions as a phase detector, a phase comparison of the divided reference frequency (50, 60, 70, 80, 90 MHz) with the correspondingly divided oscillator frequency produces the necessary oscillator control voltage at Bul9. So that the PLL can capture over the entire frequency range, a DC voltage is superimposed on the mixer. This fine-tuning voltage is derived in the capture circuit (voltage tracking) with ICs A1, A2, A3, A4 and D14. On D14 the reference frequency, divided to 5 MHz, is compared to the divided oscillator frequency. If there is a large difference in frequency, A4/A causes transistor T14 to conduct. Thus integrator A2 is connected to the output of IC A4/B. This draws integrator A2 in the appropriate direction. The voltage tracking on the mixer is by feedback R82. In the range 4.8 to 5.4 MHz A3 causes transistor T14 to conduct via T15. In the control range of the mixer T14 goes high-impedance and the voltage tracking is then via A1, A2 and draws the mixer to the centre of the control range. The lowpass filter (L12-L15, C43-C50) at the output of Mi2 suppresses interference that is higher in frequency (eg 5 MHz) on the control line.

The output frequency is set in increments of 100 MHz via the programmable TTL divider D13. Frequency increments of 20 MHz are produced by driving the ICs D15, D16, D21 and D22. Here the duty cycle of the 5 MHz is altered (output D13) and applied to the control input of the dual-modulus divider D11. Smaller frequency increments are set by way of the reference frequency.

The capture range of the circuit is adjusted with R121. Transistor T20 signals H level on BulO if the circuit is out of synchronism.

Ref. No.	213 041 F	Sub UHF Synthesizer	Date	
Туре	4031	Unit	Sheet	2/2

Schlumberger

Sobl	Mece: Equit	Necessary Equipment		Measur	Measuring Procedure	dure		Measuring Point	lng	Frequency	Adjust- ment	Set Value	Actual Value
umberger	4031 DVM		1. UHF divider 361 435 i) <u>Test supply voltages</u>	. 361 435 . voltages				Bu8 Bu9 Bu10		30 30 30		+5 ±0.1 V -15 ±0.1 V +15 ±0.1 V	
	4031 Spectrum analyzer	rum zer	ii) <u>Iest freg, response and distortion</u> Spectrum analyzer on Bu42 Frequency input on 4031	response and rer on Bu42 or 4031	distorti	티							
			a) <u>Frequency range 740-999,999 MHz</u>	ange 740-999.	999 MH2					740 MHz	Level Dist.	+2 to -8 dBm < -40 dBc	
										870 MHz 999.9 MHz		+2 to -8 dBm < -40 dBc +2 to -8 dBm	
-			b) Frequency range 500-739.999 MHz	ange 500-739.	999 MHz			5		500 MHz		< -40 dBc +2 to -8 dBm < -40 dBc	
Adjustm										640 MHz 739.9 MHz		+2 to -8 dBm < -40 dBc +2 to -8 dBm < -40 dBc	
nent a			c) <u>Frequency range 320-499.999 MHz</u>	ange 320-499.	299 MHz					320 MHz		+2 to -8 dBm < -40 dBc	
nd Test Pr									1 p 1 milet	499.9 MHz		 -40 dBc +2 to -8 dBm -40 dBc 	
oced	Issue	Alteration No.	No. Date	Name	lssue /	Alteration No.	Date	Name	Ref.	213 041 A			Sheet
ure									Type	STABILOCK 4031	Coit Mark	UHF Synthesizer	1/11
I													

	Actual Value		Sheet	2/11
	Set Value	+2 to -8 dBm < -40 dBc +2 to		Unit UHF Synthesizer
	Adjust- ment	Dist.	gg	S in S
)	Frequency	250 MHz 285 MHz 200 MHz 225 MHz 125 MHz 162 MHz 169.9 MHz	213 041 A	STABILOCK 4031
	Measuring Point		Name Ref.	Type
)	Measuring Procedure	d) Frequency range 250-319,999 MHz e) Frequency range 200-249,999 MHz f) Frequency range 125-199,999 MHz	Date Name Issue Alteration No. Date	
	Necessary Equipment		Issue Alteration No.	
	Schlu	Adjustment and Test Pro	ced	ure

Latched states of UHF Divider 361 435

ന	 	Bu1 Bu2 Bu3 Bu5 Bu6	2.5		Bu 11	Bu 13	Bu 15		Bu 19	10	20	-	03			-	70	_				0.5		
	. 1	\vdash			Bu 12	Bu 14	8u 16	Bu 18	Bu 20	Pin 4	Pin4	Pin1	Pin6	Pint7 F	Pin 1 Pi	n 5	oto P	Pin 5 Pin 10 Pin 12 Pin 13 Pin 1	3 Pin	Pin2	Pio 7	e S S	Pin 4 Pin 5 Pin 12 Pin 13	Pin 13
3				_	-13 V	-13 V	+13 V	-13 V	-13V	7,0	70		_ ''	-				•					:	
c			,	٠,	±0,5	±0,5	±0,5	±0,5	±0,5	>	5	E .	r.	r.		.		<u> </u>					I	٠
-		-		-	-13٧	+13V	-13V	-13V	-13 V			:	,	:		 	<u> </u>			_				
_		٠	٦	ر	₹0,5	±0,5	₹0,5	€'0∓	±0,5	>	<u>^</u>	τ	I	Ι										_
-			=	_	-13V	-13V	-13V	+13V	-13V	۸8′۶	7.0	-	:	-					-	_	:	:		:
ٔ د			C	٠	₹0,5	₹0,5	±0,5	₹0,5	±0,5	1,01	<u>}</u>	_	Ε					 	I.	١.	r	τ	J	I
-					+13 V	-13V	-13V	-13V	-13 V	78'7	į		:			-	-	=		:			_	
ر		r	_	T.	₹0,5	₹0,5	₹0,5	±0,5	±0,5	£0,1	>	د	r	د	r	r		I.	r	I.				Ξ
-		:			+13 V	-13V	-13 V	-13 V	-13 V	۸8'۶	۸8'۶		-	-	-		-	\vdash	\vdash	-	-			:
٠ .		Г.	۰	r.	₹0,5	₹0,5	₹0,5	±0,5	±0,5	±0,1	±0,1	Е	J	٦		C	Ε.	C C	E	r	_	٠	_	E
-	<u> </u>	:	-	-	-13V	-13V	-13V	- 13V	+13V	۸8'۶	۸8'7	1	_	3		_			-	-	:		_	:
_		r			±0,5	₹0,5	₹0,5	₹0,5	₹0,5	±0,1	‡0‡	c	٠	 C				 E	E 		Ε	<u>.</u>		Ę

Ref. No. 213 041 A
Type STABILOCK 4031

Sub Unit UHF Synthesizer

Adjustment and Test Procedure

Actual Value		Sheet	4/11
Set Value	-11.7 ±1 V fmin ≤ 460 MHz fmax ≥ 1040 MHz ≤ +4 V -0.329 ±0.01 V 0 ±2 dBm		UHF Synthesizer
Adjust- ment		Sub	Unit
Frequency	DC -10 to +13 V DC DC fmin to fmax	213 041 A	STABILOCK 4031
Measuring Point	мр3 Мр7 Мр5 Мр7	Name Ref.	Type
Measuring Procedure	2. Oscillator 361 436 Measure voltage Tune oscillator with varactor voltage on Bu7 and check whether it oscillates in entire tuning range Terminate RF output on narrow side of PCB (Mp6) with 50 \(\text{D} \) Measure control voltage in tuning range Measure voltage Measure power on RF output on wide side of PCB (Mp7); RF output on narrow side (Mp6) must be terminated with 50 \(\text{D} \)	Date Name Issue Alteration No. Date	
Necessary Equipment	DVM, Spectrum analyzer, Voltage source DVM DVM Connecting cable < 20 cml)	Issue Alteration No.	
	Adjustment and Test Pro		ure

Actual Value		Sheet	5/11
Set Value	5.000 MHz > -7 dBm > -7 dBm > -7 dBm > -7 dBm > -7 dBm > -7 dBm > -7 dBm > -5 dBm > -5 dBm		UHF Synthesizer
Adjust- ment			Cuit
Frequency	5 MHZ f = 250 MHZ f = 300 MHZ f = 450 MHZ f = 450 MHZ f = 450 MHZ f = 450 MHZ	213 041 A	STABILOCK 4031
Measuring Point	Мр3 (014/14) Мр4 (010/16)	Name Ref.	Туре
Measuring Procedure	a) <u>Programmable divider 361 439</u> a) <u>Reference-frequency divider</u> Synchronize 4031 with 4002 Apply f _{ref} 500 MHz/+5 dBm on Bu41 Measure with RF probe (20:1) and spectrum analyzer Set level reference on analyzer with CAL output and measure relatively Setting on 4031 500 MHz 600 MHz 700 MHz 900 MHz 900 MHz	Alteration No. Date Name Issue Alteration No. Date	
Necessary Equipment	4002 or similar, Frequency counter, RF probe, Spectrum analyzer	Issue Alteratio	
Schl	Adjustment and Test Pro	ced	ure

~

Actual Value		Sheet		6/11	
Set Value	50 MHZ 60 MHZ 70 MHZ 80 MHZ 90 MHZ 5.000 MHZ 5.000 MHZ 5.000 MHZ 5.000 MHZ H level (ECL) V > 3.9 V		UHF Synthesizer		
Adjust- ment			Sub Sub		-
Frequency	50 Ab 2 60 Ab 2 80 Ab	212 041 A	N 140 C17	STABILOCK 4031	
Measuring Point	Мр5 (010/8) Мр6 (014/3) Мр9 (012/14)	Name Ref.	N	Type	
Necessary Neasuring Procedure	Measure with probe and frequency counter Setting on 4031: f = 500 MHz f = 600 MHz f = 600 MHz f = 800 MHz f = 900 MHz f = 900 MHz Spearate connection of oscillator o/p (361 436) on programmable divider i/p (361 439) and feed in programmable divider i/p (361 439) and feed in f = 500-980 MHz/0 dBm with 4002 Measure frequency with probe Frequency Setting on 4031 and 4002 f = 500 MHz f = 500 MHz f = 500 MHz f = 900 MHz	Alteration No. Date Name Issue Alteration No. Date			
	Adjustment and Test Pro	ce	du	re	

New Secrety	Actual Value							Sheet	7/11
Majorit Majo	Set Value		5 MHz	V _H > 3.9 V V _L < 3.4 V		V > +10 V V < -10 V V < -10 V			if Synthesizer
Measure frequency with probese Measure frequency with probese Measure frequency with probese	Adjust- ment					R121 R121 R121			
Heasure frequency with probeset in a set in a	Frequency		5 MHz			20 20 20		213 041 A	STABILOCK 4031
cessary ulpment lar, llar, e Alteration N	Measuring Point		Mp6 (014/3)	Мр9 (012/14)		Mp1 Mp1 Mpi			Type
	Measuring Procedure	Measure frequency with probe Setting on 4031 and 4002:	f = 920 MHz f = 940 MHz f = 960 MHz f = 980 MHz	H	c) <u>Capture circuit</u> Apply f _{ref} 500 MHz/+5 dBm on Bu41 Connection 361 436/361 439 still separated and oscillator frequency fed in with 4002 Setting on 4031 f = 500 MHz Alter oscillator frequency (4002) 0 dBm between 450 and 580 MHz		995 7HW055 7HW027 7-HV1	Date Name Issue Alteration No. Date	
Schlumberger Adjustment and Test Procedure	Necessary Equipment							lssue	

Actual Value		Sheet	8/11
Set Value	V > +10 V V > -10 V TTL LOW 0-0.8 V TTL		UHF Synthesizer
Adjust- ment		gng	Onit F
Frequency	30 30	213 041 A	STABILOCK 4031
Measuring Point	Mp2 (R105,C103) Mp7 (A3/9)	Name Ref.	Type
Measuring Procedure	Check integrator Setting on 4031 f = 500 MHz Oscillator frequency (4002) 0 dBm f > 500 MHz (ie f too high) f < 500 MHz (ie f too low) Mixture capture-range detection Setting on 4031 f = 500 MHz Oscillator frequency (4002) 0 dBm f = 500 MHz ± 600 kHz Mixer locking range (check) Bu41 f _{ref} = 500 MHz/+5 dBm Resolder connection 361 436/361 439 Setting on 4031 f = 500 MHz Open jumper Brl and apply DC (approx5 to -10 V) to R82 (Brl/l) Alter Vdc until f = 500.000 MHz (remains synchronized) Close jumper Brl	Date Name Issue Alteration No. Date	
Necessary Equipment	4002 or similar, Oscilloscope, DVM, Frequency counter, Analyzer	Issue Alteration No.	
Schl	Adjustment and Test F	roced	ure

Actual Value		Sheet	9/11
Set Value	V > -12.7 V V < +12 V TTL Low LED (G112) off TTL High LED (G112) on	-	UHF Syntnesizer
Adjust- ment			Conit
Frequency	සු සු සු	213 041 A	STABILOCK 4031
Measuring Point	Bu19 Bu19 Mp8 (Bu10)	Name Ref.	Type
Measuring Procedure	Control voltage (check) Setting on 4031 f = 500 MHz On Bu41 Fref = 480 MHz Setting on 4031 f = 980 MHz Setting on 4031 f = 520 MHz Setting on 4031 f = 500 MHz Br1 closed Br1 closed Br2 closed Br3 chropen Synchronization check Setting on 4031 F = 500, 600, 700, 800, 980 MHz Alter fref = 500 MHz and fout s f + 40 MHz UHF synthesizer is then synchronized over entire range	Date Name Issue Alteration No. Date	
Necessary Equipment	4002 or similar Frequency counter, Analyzer	Issue Alteration No.	
Schlı	Adjustment and Test Pro	ced	ure

Level table for UHF synthesizer 361 439

	Bu1	Bu6	Bu5	Bu4	Bu3	Bu 15	Bu 16	Bu 17	Bu 18
400				ļ	İ				
500						L	L	L	L
20						L	L	L	Н
40	L	Н	Н	L	L	L	L	Н	н
60						Н	L	Н	н
80						Н	Н	Н	Н
600						L	L	L	L
20						L	L	L	н
40	н	L	Н	L	н	L	L	Н	н
60						Н	L	Н	н
80						н	н	н	н
700						L	L	٦	L
20						L	L	L	н
40	н	L	н	н	L	L	L	н	Н
60		_			_	L	Н	∕н	н
80						н	н	н	н
800						L	L	L	L
20						L	L	L	н
40	L	L	н	н	н	L	н	L	н
60						н	Н	L	н
80						Н	Н	Н	Н
900						L	L	L	L
20						L	L	L	н
40	L	L	L	L	L	L	н	L	н
60						L	н	н	н
80						н	н.	н	н.
				1	1			.,	

Ref. No. 213 041 A	Sub UHF Synthesizer	Date Sheet 10/11	
Type STABILOCK 4031	Unit		
Schlumberger	Adjustme	ent and Test Procedure	

Driving of dual-modulus divider (5/6) D11/pin 2, measured on Mp9 (see 3.b)

Ref. No. 213 041 A	Sub UHF Synthesizer	Date
Type STABILOCK 4031	Unit Unit	Sheet 11/11
Schlumberger	Adjustme	nt and Test Procedure

Schlumberger

lerung 🔺 213 041 S / 361 439 Sa

<u>Leiterplatte</u>

Einzelheit "X"

9x Ecken gerichtet , formschlussig zusammengefügt und verstemmt (18 x

	= Kontrollmab									
0				Porter	-	÷	-	Schlumberger Meßgeräte Gmb		
)9)8	9004, 97 90 4 794	24.8	10.		±0,2			Ingoletidter Straße 67 a 8000 München 46		
07	SHI'N	6/48	<u> </u>	Wart stoff				+02	2:1	
	tota 53	13.34		Werksoff			-	Bestückte Leiterplatte		
25			L.,	1		(5:1)	Desidente Leiterplatte			
34							Typ: Basis UHF - Synthesis			
03							Typ: Dasis of it of the color			
32				ClearMache	1952	-	10000	204 / 04		
01					904	21.3.4	Rembord	361 401		
_	-	-			-		40			

 vendet in:
 Gerät: 4031
 Image: Control of the second of th

Ansicht △ Sollbe

Ansicht mit Leite

Ansicht mit Leiterbahnen vollbestückt nur zur Orientierung

Reflow gelötet Hierzu Bauteilklebemaske 461 435 06

Ansicht mit Le

361 437 auf Anschlag ge und komplett ver

C

049 (20x)

10				Romeil	Freimaß- foleranzen	Mañstab	Schlumberger Meßgeräte GmbH
09 08 07	8088,178	4,10,88	Kr.				ingolstädter Straße 67 a 8000 München 46
06 05 04				Werkstoff		2:1	Bestückte Leiterplatte Typ: UHF DIVIDER
03 02 01	+			Oberfläche	1988 Datum 9ez 4,10,88	Name Kr.	361 435
Aus-	Andg-	Datum	Name		900' 5.10. E	1	Gerät : 4031 / 213 041

Ι

Commo Zachnium intrinser Einentum Verviolifällichina unbefücte Verwertung Mittellung an andere ist strz der und schedenersetzpflichtig

.5 09 08				D vie	e elmal		/ · 1	Schlumberger Meßgeräte GmbH ngestadter Strafe 67 a 8000 Munchen 46
06 05 04	808845? 8088125	22.8.8	Rend	#erestoff			4:1	Bestückte Leiterplatte Typ: OSCILLATOR
35				Toerha ne	1987	Z4 9.87	Name Kr.	361 436
Aus Jaba		* ~	Name		jou		20	Serat 4031 / 213 041

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC	1	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
1	Bestückte Leiterplatte PRINTED CIRCUIT BOARD	361 401	SCHL				
	hierzu SEE	361 401 Sa					
	Bestückte Leiterplatte	-4: 4			,		
	PRINTED CIRCUIT BOARD hierzu	701 477	SCHL				
	SEE	361 435 Sa					-
1	Bestückte Leiterplatte	361 436	SCHL	-			
	PRINTED CIRCUIT BOARD hierzu	361 436 Sa					
	SEE						
	Bestückte Leiterplatte PRINTED CIRCUIT BOARD	361 439	SCHL				
	hierzu SEE	361 439 Sa					
				<u> </u>			
				-			
				<u> </u>			
				 			
		1,0,0					
07 06 05	So	chlumberger Meßgeräte			Schaltteillist EL. PARTS LIST		Liste besteht LIST CONSISTS
04		Ingolstädter Straße (8000 München 46		Benennung DESCRIPTION	UHF - SYNTHESIS		OF 1 Blatt SHEETS
02 01		88 DATE NA	1	Bezeichnung Schlumberger PART, NO.	213 041 Sa		Blatt Nr. SHEET NO.
Aus- gabe	8088.53 29.3.88 Rein. gea AndMittlg. Tag Name bea		ld,I.	Hierzu Schaltpl SEE CIRCUIT (DIAGRAM 213 041		1
ISSUE	MODIFIC NO DATE NAME 9er		1	Gerāt: 40			L

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
A 1	RC 4560	834 210	RAY	C 18	10 nF ± 10 % 50 V-	813 332	VAL
				C 19	10 nF <u>+</u> 10 % 50 V-	813 332	VAL
A 3	RC 4560	834 210	RAY	C 20			
A 4	RC 4560	834 210	RAY	C 21	10 nf ± 10 % 50 V-	813 332	VAL
A 5	RC 4560	834 210	RAY	C 22	10 nF ± 10 % 50 V-	8 13 332	VAL
				C 23	1 nF ± 10 % 50 V-	813 320	VAL
				C 24	10 nF ± 10 % 50 V-	813 332	VAL
				C 25	100 nF ± 10 \$ 50 V-	81 3 37 5	VAL
				C 26	100 µF ± 20 % 6,3 V-	814 394	RÖD
				C 27	10 nF ± 10 % 50 V-	8 13 332	VAL
C 1	100 nF + 10 % 50 V-	813 375	VAL	C 28	10 nF ± 10 % 50 V-	813 332	VAL
C 2	100 nF ± 10 % 50 V-	813 375	VAL	C 29	10 nF <u>+</u> 10 % 50 V-	813 332	VAL
С 3	100 nF + 10 % 50 V-	813 375	VAL	C 30	10 nF ± 10 % 50 V-	813 332	VAL
C 4	100 nF ± 10 % 50 V-	813 375	VAL	C 31	4,7 pF + 0,25 pF 50 V-	813 219	VAL
C 5	1 nF + 10 % 50 V-	813 320	VAL				
C 6	1 nF ± 10 % 50 V-	813 320	VAL	C 33	5,6 pF ± 0,25 pF 50 V-	813 220	VAL
C 7	1 nF + 10 % 50 V-	813 320	VAL	C 34	5,6 pF <u>+</u> 0,25 pF 50 V-	813 220	VAL
C 8	1 nF + 10 % 50 V-	813 320	VAL				
C 9	100 nF ± 10 % 50 V-	813 375	VAL	C 36	4,7 pF ± 0,25 pF 50 V-	813 219	VAL
C 10	100 nF ± 10 % 50 V-	813 375	VAL	C 37	10 pF <u>+</u> 5 % 50 V-	813 223	VAL
C 11	1 nF ± 10 % 50 V-	813 320	VAL	C 38	10 pF <u>+</u> 5 % 50 V-	813 223	VAL
C 12	1 nF + 10 % 50 V-	813 320	VAL	C 39	10 pF <u>+</u> 5 % 50 V-	813 223	VAL
C 13	100 nF + 10 % 50 V-	813 375	VAL	C 40	10 pF <u>+</u> 5 % 50 V-	813 223	VAL
C 14	27 pf <u>+</u> 5 % 50 V-	81 3 22 8	VAL	C 41	18 pF <u>+</u> 5 % 50 V-	813 226	VAL
C 15	10 nf + 10 % 50 V-	813 332	VAL	C 42	10 pF <u>+</u> 5 % 50 V-	813 223	VAL
C 16	10 nF + 10 % 50 V-	813 332	VAL	C 43	10 pF <u>+</u> 5 % 50 V-	813 223	VAL
C 17	100 nF + 10 % 50 V-	813 375	VAL	C 44	10 pF ± 5 % 50 V-	813 223	VAL
07 06		Schlumberger Meßgerät	e GmbH		Schaltteillist	e	Liste besteht LIST CONSISTS
05 04		Ingoistädter Straße 8000 München 4		Benennung DESCRIPTION	tte	OF 6	
	7088_142 18_9_87 Di 7088_74 11_6_87 Mo		Typ: UHF Divider Name Bezeichnung 361 435 Sa				Blatt SHEETS Blatt Nr. SHEET NO
01	6088.65 4.12.86 Di 1		ME	E Schlumberger 201 42) 3d			
Aus- gabe	ÄndMittlg. t	pearb.	e	Hierzu Schalte SEE CIRCUIT Gerät:			_ 1
			<u>`</u>		nd schadenersatznflichtin		

1	T	2	-	I	3		4	5	6	7	8		
Pos. REF. NO.		Wert VALUE			Bezeichnur Schlumberg PART. NO	per	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT		
C 45	10 pF	<u>*</u> 5 % 5	0 V -		813 223	3	VAL						
C 46	18 pF	± 5 % 5	0 V-		813 226	5	VAL	C 73	1 nF ± 10 % 50 V-	813 320	VAL		
C 47	100 nF	± 10 %	50 V-		813 375	j	VAL	C 74	1 nF ± 10 % 50 V-	813 320	VAL		
C 48	100 nF	± 10 %	50 V-		813 375	5	VAL	C 75	1 nF ± 10 \$ 50 V-	813 320	VAL		
C 49	100 nF	<u>+</u> 10 %	50 V-		813 375	5	VAL	C 76	1 nF ± 10 % 50 V-	813 320	VAL		
						· · · ·							
C 51	10 nF	± 10 %	50 V-		813 332	2	VAL	C 79	47 μF ± 20 % 16 V-	814 386	RÖO		
C 52	100 nF	± 10 %	50 V-		813 375	5	YAL	C 80	47 μF <u>+</u> 20 % 16 V-	814 386	RÖO		
C 53	100 nF	<u>+</u> 10 \$	50 V-		813 375	5	VAL						
C 54	100 nF	± 10 %	50 V-		813 379	5	VAL	D 1	U 822 BS	834 428	TELE		
								0 2	U 822 BS	834 428	TELE		
C 56	100 nF	± 10 %	50 V-		813 375	j 	VAL	D 3	F 100 101 FC	834 422	FAIR		
C 57	100 nF	<u>+</u> 10 %	50 V-		813 375	5	VAL	D 4	PC 74 HCT 86 T	834 434	VAL		
C 58	100 nF	<u>+</u> 10 %	50 V-		813 375	j	VAL	D 5	D 5 PC 74 HCT 86 T		VAL		
C 59	100 nF	± 10 %	50 V-		813 375	j 	VAL						
C 60	10 nF	± 10 %	50 V-		813 332	2	VAL						
C 61	100 nF	± 10 %	50 V-		813 379	5	VAL						
C 62	100 nF	± 10 %	50 V-		813 375	5	VAL						
C 63	10 nF	± 10 %	50 V-		813 332	2	VAL	61 1	BA 885	830 533	SIE		
C 65	1 nF	<u>+</u> 10 %	50 V-		813 320)	VAL	61 3	BA 885	830 533	SIE		
C 66	1 nF	<u>+</u> 10 %	50 V-		813 320)	VAL	61 4	BA 885	830 533	SIE		
C 67	1 nF	<u>+</u> 10 %	50 V-		813 320)	VAL	G1 5	BA 885	830 533	SIE		
C 68	1 nF	± 10 %	50 V-		813 320)	VAL	61 6	BA 885	830 533	SIE		
C 69	1 nF	± 10 %	50 V-		813 320)	VAL	61 7	BA 885	830 533	SIE		
C 70	1 nF	± 10 %	50 V~		813 320)	VAL						
C 71	1 nF	± 10 %	50 V-		813 320)	VAL	61 9	BA 885	830 533	SIE		
07				Schlur	nberger M	eßgeräte	GmbH		Schaltteillis EL. PARTS LIST		Liste besteht LIST CONSISTS		
05 04					olstädter 8000 Mün		- 1	Benennung DESCRIPTION	OF 6				
03		44 / **	ļ	1986				Bezeichnung	SHEETS Blatt Nr. SHEET NO.				
	6088_63	11.6.87 3.12.86		geschr.	3.12.86	Dietri		Bezeichnung Schlumberger PART NO Hierzu Schaltplan 213 061 S					
Aus- gabe ISSUE	ÄndMittlg. Nr. MODIFIC. NO.	Tag DATE	Name NAME	bearb. gepr.		2	6	Hierzu Schaltplan 213 041 S SEE CIRCUIT DIAGRAM Gerät: 4031					

11	2	3	4	5	6	7	8
Pos. REF. NO.	Wort VALUE	Bezeichnung Schlumberger PART. NO,	Herstell MANUFA	1	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
G1 10	BA 885	830 533	SIE	L 14	39 nH ± 10 %	821 210	STET
G7 11	BA 885	830 533	SIE	L 15	68 nH <u>+</u> 5 %	821 213	STET
G7 12	BA 885	830 533	SIE	L 16	100 nH <u>+</u> 5 %	821 215	STET
GT 13	BA 885	830 533	SIE	L 17	100 nH ± 5 %	821 215	STET
G1 14	BA 885	830 533	SIE	L 18	100 nH <u>+</u> 5 %	821 215	STET
GT 15	BA 885	830 533	SIE	L 19	68 nH <u>+</u> 5 %	821 213	STET
6 1 16	BA 885	830 533	SIE	L 20	1 μH <u>+</u> 5 %	821 227	STET
G1 17	BA 885	830 533	SIE	L 21	1 μH ± 5 %	821 227	STET
61 1 8	BA 885	830 533	SIE	L 22	1 μH ± 5 %	821 227	STET
				L 23	1 μH ± 20 %	821 310	SIE
				L 24	1 µH <u>+</u> 20 %	821 310	SIE
				L 25	1 μH <u>+</u> 5 %	821 227	STET
				L 26	1 μH ± 5%	821 227	STET
				L 27	1 µН 🛓 5 %	821 227	STET
L 1	1 μH ± 5 %	821 227	STET				
L 2	1 μH <u>+</u> 5 %	821 227	STET				
L 3	1 μH ± 5 %	821 227	STET				
L4	1 µН <u>+</u> 20 %	821 310	SIE				
L 5	22 nH <u>+</u> 20 %	821 208	STET				
L 6	39 nH ± 10 %	821 210	STET				
L 7	39 nH <u>+</u> 10 %	821 210	STET				
L 8	39 nH <u>+</u> 10 %	821 210	STET				
L 9	22 nH ± 20 %	821 208	STET				
L 10	39 nH <u>+</u> 10 %	821 210	STET	R 3	5,6 kΩ <u>+</u> 2 %	804 746	VAL
L 11	68 nH <u>+</u> 5 %	821 213	STET	R 4	5,6 kΩ <u>+</u> 2 L	80 4 7 4 6	VAL
L 12	68 nH <u>+</u> 5 %	821 213	STET	R 5	1,2 kΩ <u>+</u> 2 %	804 738	VAL
L 13	68 nH <u>+</u> 5 %	821 213	STET	R 6	1,2 kΩ <u>+</u> 2 %	804 738	VAL
07 06 05	s	Schlumberger Meßgeräte	_ L		Schaltteilliste	9	Liste besteht LIST CONSISTS
04		Ingolstädter Straße 6 8000 München 46	0 1 1 1 1 1 1 1 1				OF () Blatt
02	1	Tag Nam 986 DATE NAM	e	Bezeichnung Schlumberger	361 435 Sa		SHEETS Blatt Nr. SHEET NO.
6	088_63 3_12_86 Di 94	sachr. 3.12.86 Dietric	:h	PART. NO Hierzu Schaftpla SEE CIRCUIT DI	in 213 041 c		3
gabe ISSUE MO	Nr. Tag Name	epr. LC	/	Gerät: 40			

Diese Zeichnung ist unser Eigentum. Vervielfältigung, unbefugte Verwertung, Mitteilung an andere ist strafbar und schadenersatzpflichtig.

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R 7	220 Ω ± 2 %	804 729	VAL	R 34	12 kQ <u>+</u> 2 %	804 750	VAL
R 8	10 Ω + 2 %	804 713	VAL	R 35	3,9 kΩ <u>+</u> 2 兌	804 744	VAL
R 9	220 Ω ± 2 %	804 729	VAL	R 36	10 Ω <u>+</u> 2 %	804 7 13	VAL
R 10	10 Ω ± 2 %	804 71 3	VAL	R 37	1,2 kΩ <u>+</u> 2 %	804 738	VAL
R 11	6,8 kΩ ± 2 %	804 747	VAL	R 38	150 kΩ <u>+</u> 2 %	804 7 63	VAL
R 12	1 kΩ <u>+</u> 2 %	804 737	VAL	R 39	100 Ω ± 2 %	804 725	VAL
R 13	1 kQ <u>+</u> 2 %	804 737	VAL	R 40	3,9 kΩ ± 2 %	804 744	VAL
R 14	1 kΩ <u>+</u> 2 %	804 737	VAL	R 41	12 kQ ± 2 %	804 750	VAL
R 15	1,2 kQ <u>+</u> 2 %	804 738	VAL	R 42	270 Ω ± 2 %	804 730	VAL
R 16	4,7 kΩ ± 2 %	804 745	VAL	R 43	47 Q ± 2 %	804 721	VAL
R 17	390 Ω <u>+</u> 2 1 / ₂	804 732	VAL	R 44	150 kΩ ± 2 %	804 763	VAL
R 18	47 Ω <u>+</u> 2 %	804 721	VAL	R 45			
R 19	0 Ω	804 700	VAL	R 46	1,2 kΩ ± 2 %	804 738	VAL
R 20	1,2 kΩ <u>+</u> 2 %	804 738	VAL	R 47	330 Ω <u>+</u> 2 / 2	804 731	VAL
R 21	5,6 kΩ <u>+</u> 2 %	804 746	VAL	R 48			
R 22				R 49	470 Ω <u>+</u> 2 %	804 733	VAL
R 23	220 Ω <u>+</u> 2 β	804 729	VAL	R 50			
R 24	0 Ω	804 700	VAL	R 51	470 Q <u>+</u> 2 %	804 733	VAL
R 25	6,8 kΩ <u>+</u> 2 %	804 747	VAL	R 52	1,2 kQ <u>+</u> 2 %	80 4 738	VAL
R 26	390 Ω <u>+</u> 2 %	804 732	VAL	R 53			
R 27	470 Q <u>+</u> 2 %	804 733	VAL	R 54	330 Ω <u>+</u> 2 %	804 731	VAL
R 28	4,7 kΩ <u>+</u> 2 %	804 745	VAL	R 55			
R 29				R 56			
R 30				R 57	1,2 kQ ± 2 %	804 738	VAL
R 31				R 58	330 Ω ± 2 %	804 731	VAL
R 32	10 Ω <u>*</u> 2 %	804 713	VAL	R 59			
R 33				R 60	1 kΩ <u>+</u> 2 %	804 737	VAL
07	So	chlumberger Meßgeräte	i		Schaltteillist	е	Liste besteht LIST CONSISTS
05		Ingolstädter Straße 6 8000 München 46	1	Benennung DESCRIPTION	Bestückte Le¶terpla Typ: UHF-Divider	tte	OF 6 Blatt
02 7	7088.142 18.9.87 Di 1088.74 11.6.87 Mo. 19	86 Tag Nam		Bezeichnung Schlumberger	361 435 Sa		SHEETS Blatt Nr. SHEET NO.
O1	7.16.00	chr. 3_12_86 Dietri		PART. NO Hierzu Schaltpla	an 242 OL4 C		SHEET NO.
gabe	Nr. Tag Name Dea	or.		SEE CIRCUIT D	nn HAGRAM 213 041 S D31		-

Diese Zeichnung ist unser Eigentum. Vervielfältigung, unbefugte Verwertung, Mitteilung an andere ist strafbar und schadenersatzpflichtig.

1	2	3	4	5	6	7	8
Pos. REF. N	Wert	Bezeichnung Schlumberger PART. NO,	Herstell MANUFAC	er Pos.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFAC
R 6	1 1 kQ ± 2 %	804 737	VAL	R 88	5,6 kΩ ± 2 \$	804 746	VAL
R 62	2			R 89	1,2 kΩ <u>+</u> 2 %	804 738	VAL
R 6	3 5,6 kΩ ± 2 %	804 746	VAL	R 90	10 Ω ± 2 %	804 713	VAL
R 64		80 4 738	VAL	R 91	220 Ω ± 2 %	804 729	VAL
R 65		804 729	VAL	R 92			
R 60		804 737	VAL	R 93	10 Ω <u>+</u> 2 1	804 713	VAL
R 67		804 713	VAL	R 94	0 Ω	804 700	VAL
R 68				R 95	0 Ω	804 700	VAL
R 69	5,6 kΩ ± 2 %	804 746	VAL	R 96	0 Ω	804 700	VAL
R 70		804 738	VAL	R 97	0 Ω	804 700	VAL
R 71		804 713	VAL	R 98	0 Ω	804 700	VAL
R 72		804 729	VAL	R 99	0 Ω	804 700	VAL
R 73		804 737	VAL	R 100	0 Ω	804 700	VAL
R 74				R 101	0 Ω	804 700	VAL
R 75	5,6 kΩ ± 2 %	804 746	VAL	R 102	0 Ω	804 700	VAL
R 76	1,2 kQ <u>+</u> 2 %	804 738	VAL	R 103	0 Ω	804 700	VAL
R 77	10 Ω + 2 %	804 713	VAL	R 104			
R 78	10 Ω + 2 %	804 713	VAL	R 105	0 Ω	804 700	VAL
R 79	220 Ω <u>+</u> 2 %	804 729	VAL	R 106	0 Ω	804 700	VAL
R 80	1 kQ + 2 %	804 737	VAL				
R 81							
R 82	5,6 kΩ <u>+</u> 2 %	804 746	VAL				
R 83		804 738	VAL	R 110	1 kΩ <u>+</u> 2 %	804 737	VAL
R 84		804 737	VAL	R 111	1 kΩ <u>+</u> 2 %	804 737	VAL
R 85		804 729	VAL	R 112	1 kΩ <u>+</u> 2 %	804 737	VAL
R 86	10 Ω + 2 %	804 713	VAL				
R 87							
07 06	So	chlumberger Meßgeräte	GmhH		Schaltteillist	e	Liste besteht LIST CONSISTS
05		Ingolstädter Straße 67 8000 München 46	7a	Benennung DESCRIPTION	EL. PARTS LIST Bestückte Leiterpl Typ: UHF-Divider	latte	aus OF 6
03		O.C. Tag Name		Bassia'			SHEETS
01	6088,65 4,12,86 Di 198	DD DATE NAME	E	Bezeichnung Schlumberger PART, NO	361 435 Sa		Blatt Nr. SHEET NO.
Aus- gabe	AndMittlg. Nr. Tag Name			Hierzu Schaffplan SEE CIRCUIT DIA			5
ISSUE	MODIFIC. NO. DATE NAME GER	or. 407	Т	Gerät: 403			1

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Her Schlumberger PART. NO, MAN		1	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
				†			
				ļ		-	+
				<u> </u>			
					V 10		
				-			

Т1	BC 860 B	832 285	VAL				
T 2	BFR 93 A	832 287	VAL				
Т 3	BFR 93 A	832 287	VAL				
T 4	BC 860 B	832 285	VAL				
			+	-			
T 5	BFR 93 A	832 287	VAL				-
			-	-			
			-				
							<u> </u>
07		Schlumberger Meßgerä	te GmbH		Schaltteillis		Liste besteht LIST CONSIST
05		Ingolstädter Straße 8000 München 4	67 a	Benennung DESCRIPTION	Bestückte Leiterp		or 6
03		ooo munchell 2			Typ: UHF-Divider		Blatt SHEETS
02			lame IAME	Bezeichnung Schlumberger	361 435 Sa		Blatt Nr. SHEET NO
	6088,63 3,12,86 Di •	peschr. 3.12.86 Dietr	ich	Hierzu Schaltg			6
gabe	Nr. Tag Name	gepr.	a	SEE CIRCUIT Gerät: A	031		-

Diese Zeichnung ist unser Eigentum, Vervielfältigung, unbefugte Verwertung, Mitteilung an andere ist strafbar und schadenersatzpflichtig.

1	2	3	4	Т.	6 .	7	8		
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC	1	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT		
A 1	NE 5534 D	834 209	VAL	C 23	100 nF ± 10 % 50 V-	813 375	VAL		
				C 24	22 pF <u>·</u> 5 % 50 V-	813 227	VAL		
				C 25	1 nF <u>+</u> 10 % 50 V-	813 320	VAL		
				C 26	22 pF <u>+</u> 5 % 50 V-	813 227	VAL		
				C 27	1 nF ± 10 % 50 V-	8 1 3 320	VAL		
C 1	1 nF <u>+</u> 10 % 50 V-	813 320	VAL						
C 2	2,2 μF <u>+</u> 20 % 50 V-	814 362	RÖD						
C 3	2,2 μF <u>+</u> 20 % 50 V-	814 362	RÕD	C 30	47 μF <u>+</u> 20 % 16 V-	814 386	RÖD		
C 4	1 nF ± 10 % 50 V-	813 320	VAL	C 31	100 nF <u>+</u> 10 % 50 V-	813 375	VAL		
C 5	1 nF ± 10 % 50 V-	813 320	VAL	C 32	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD		
C 6	10 nF <u>+</u> 10 % 50 V-	813 332	VAL	C 33	10 pF <u>+</u> 5 % 50 V-	813 223	VAL		
C 7	100 nF <u>+</u> 10 % 50 V-	813 375	VAL	C 34	1 nF <u>+</u> 10 % 50 V-	813 320	VAL		
C 8	1 nF <u>+</u> 10 % 50 V-	813 320	VAL	C 35	1 nF <u>+</u> 10 % 50 V-	813 320	VAL		
				C 36	3,3 pF ± 0,25pF50 V-	8 1 3 217	VAL		
C 10	10 nF <u>+</u> 10 % 50 V-	813 332	VAL	C 37	1 nF <u>+</u> 10 % 50 V-	813 320	VAL		
C 11	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 38	1 nF <u>+</u> 5 % 50 V-	813 247	VAL		
C 12	1 nf ± 10 % 50 V-	813 320	VAL	C 39	2,2 nF <u>+</u> 5 % 50 V-	813 251	VAL		
C 13	1 nF + 10 % 50 V-	813 320	VAL	C 40	100 pF <u>+</u> 5 % 50 V-	813 235	VAL		
C 14	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD	C 41	1,2 nF ± 5 % 50 V-	813 248	VAL		
C 15	47 μF <u>+</u> 20 % 16 V-	814 386	RÖD	C 42	100 pF <u>+</u> 5 % 50 V-	813 235	VAL		
C 16	39 pF <u>+</u> 5 % 50 V-	813 230	VAL						
C 17	5,6 pF <u>+</u> 0,25 % 50 V-	813 220	VAL						
C 18	1 nf ± 10 % 50 V-	813 320	VAL	61 1	BA 885	830 533	SIE		
C 19	1 nF <u>+</u> 10 %	813 320	VAL	61.2	BA 885	830 533	SIE		
C 20	100 pF + 5 % 50 V-	813 235	VAL	61 3	BA 885	830 533	SIE		
C 21	100 nF + 10 % 50 V-	813 375	VAL	G1 4	BB 609 B	830 621	VAL		
C 22	100 nF <u>+</u> 10 % 50 V-	813 375	VAL	G1 5	BB 609 B	830 621	VAL		
07 06		Schlumberger Meßgerä	te GmbH		Schaltteillist	:e	Liste besteht LIST CONSISTS		
05 04		Ingolstädter Straße 8000 München 4		Benennung DESCRIPTION Bestückte Leiterplatte					
03 02	7088.65 3.6.87 Mo.		lame	Typ: Oszillator UHF-Synthese					
01	7088.39 30.3.87 Mcs	DATE N	ame trich	Schlumberger 361 436 Sa					
Aus- gabe	AndMittlg. Nr. Tag Name MODIFIC. NO. DATE NAME		Herzu Schaltplan 213 041 S SEC CIRCUIT DIAGRAM 213 041 S Gerät: 4031						

1	2		<u></u>	3	4	5	6	7	8	
Pos. REF. NO.	Wert VALUE		Schlu	chnung mberger T. NO,	Hersteller MANUFAC1	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT	
G1 6	BAT 17		8 30	516	VAL	R 13	56 Ω <u>+</u> 2 %	804 722	VAL	
						R 14	10 Ω <u>+</u> 2 %	804 713	VAL	
						R 15	10 Ω <u>+</u> 2 %	804 713	VAL	
				 						
L 1	100 μH <u>+</u> 15 %		821	322	SIE					
L 2	100 µН <u>+</u> 15 %		821	322	SIE					
L3	560 nH <u>+</u> 5 %		821	224	STET	R 20	560 Ω <u>+</u> 2 %	804 734	VAL	
L 4	100 nH ± 5 %		821	215	STET	R 21	220 Ω ± 2 %	804 729	VAL	
L 5	100 nH ± 5 %		82	215	STET	R 22	470 kΩ <u>+</u> 2 %	804 769	VAL	
L 6	1 μH ± 5 %		82	227	STET	R 23	390 Ω ± 2 %	804 732	VAL	
L 7	100 nH <u>+</u> 5 %		82	215	STE	R 24	100 Ω ± 2 %	804 725	VAL	
L 8	68 nH <u>+</u> 5 %		82	213	STE	R 25	1 kΩ ± 2 %	804 737	VAL	
L 9	820 nH ± 5 %		82	226	STE	R 26	18 Ω <u>+</u> 2 %	804 716	VAL	
R 1	330 Ω <u>+</u> 2 %		80	+ 731	VAL					
R 2	2,2 kΩ <u>+</u> 2 %		80	741	VAL		-			
R 3	5,6 kΩ <u>+</u> 2 %	, .	80	746	VAL	R 30	680 Ω <u>+</u> 2 7	804 735	VAL	
R 4	270 Ω ± 2 %		80	¥ 730	VAL	R 31	10 kΩ <u>+</u> 2 %	804 749	VAL	
R 5	56 kΩ ± 2 %		80	4 758	VAL	R 32	220 Ω + 2 %	804 729	VAL	
R 6	1 kΩ <u>+</u> 2 %		80	¥ 737	VAL	R 33	12 kΩ <u>+</u> 2 %	804 750	VAL	
R 7	1 5 kΩ <u>+</u> 2 %		80	4 751	VAL	R 34	1 kΩ <u>+</u> 2 %	804 737	VAL	
						R 35	270 Ω <u>+</u> 2 %	804 730	VAL	
						R 36	18 Ω <u>+</u> 2 %	804 716	VAL	
R 10	1 kΩ ± 2 %		80	4 737	VAL	R 37	18 Ω <u>+</u> 2 %	804 716	VAL	
R 11	1 kΩ <u>+</u> 2 %		80	4 737	VAL					
R 12	1 kΩ ± 2 %		80	4 737	VAL					
07 06			Schlumberg	er Meßge	räte GmbH		Schaltteillis		Liste besteht LIST CONSIST:	
05 04	Ingolstädter Straße 8000 München 4				67а Велеплипд DESCRIPTION Bestückte Leiterplatte					
03	1986 Tag No			Name	Typ: Oszillator UHF-Synthese					
01		Di Mo.	peschr. 19.6.86 Dietrich			Schlumberger 361 436 Sa PART. NO.				
Aus- gabe ISSUE	ÄndMittlg. Nr. Tag MODIFIC. NO. DATE	Name -	bearb. gepr.		24-	Herzu Schatplan S 213 041 S Gerät: 4031				

1		2		T	3	· I	4	5	6		7	8
Pos. REF. NO.		Wert			Bezeichnung Schlumberger PART. NO,	,	Hersteller MANUFACT	Pos. REF. NO.	Werl		Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R 40	18 Ω	± 2 %			804 71	6	VAL					
		VAL - 17										
				+								
		**								·		
T 1	BFR 93	. A		1	832 287		VAL					
Т 2	BFR 93			_	832 287		VAL					
							· · ·					
								-				
					<u>-</u>					<u> </u>		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-								
		-	···					1				
			-									
07 06					berger Mo					altteillis PARTS LIST		Liste besteht LIST CONSISTS
05 04 03					olstädter \$ 3000 Mün			Benennung DESCRIPTION Typ:	Bestückt Oszillator	e Leiterpla UHF-Synthes		OF 3 Blatt SHEETS
02				1986	Tag DATE	Na: NA:		Bezeichnung Schlumberger PART, NO.	361	436 Sa		Blatt Nr. SHEET NO.
Aus- gabe	7088_39 ĀndMittlg. Nr.	30.3.87	Mo _s	geschr. bearb.	19.6.86	Dietr	ich	Hierzu Schaft SEE CIRCUIT	DIAGRAM 213	041 S		3
	MODIFIC, NO.	DATE	NAME	gepr.		Z	4	Gerät:	4031			

1	2	3	4	5	•	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberge PART. NO,		1	Wert WALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
C 1	3,3 pF <u>+</u> 0,25 % 50 ¥-	813 217	VAL				
C 4	3,3 pF ± 0,25 % 50 V-	813 217	VAL				1,
							_
				<u> </u>			
				ļ			
			-				
····							
				-			
				-			
					1		
07 06		Schlumberger M	eßgeräte GmbH		Schaltteillis		Liste besteht LIST CONSIST:
05 04		Ingolstädter 3 8000 Mün		Benennung DESCRIPTION	Bestückte Leiter	platte	aus OF 1 Blatt
03		Tag DATE	Name NAME	Bezeichnung Schlumberger	Typ: Filter/UHF - Syntl	nese	SHEETS Blatt Nr. SHEET NO.
01 Aus-	6088. 64 Lei	geschr. 23.6.86 bearb.	Morasch	PART. NO. Hierzu Schalt	plan 040 044 C		1
gabe	Nr. Tag Name MODIFIC.NO. DATE NAME	gepr.	Leg-	Gerät:	4031		

1		2			3		4	5		6	7	8
Pos. REF. NO.		Wert VALUE			Sezeichr Schlumbe PART, N	rger	Herstell MANUFA			Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
C 1	5,6 pF	<u>+</u> 0,25	% 50 \	1-	813 22	20	VAL					
C 3	6,8 pF	<u>+</u> 0,25	% 50 \	<i>I</i> -	813 22	?1	VAL					
				_								
C 5	5,6 pF	<u>+</u> 0,25	% 50 V	!-	813 22	<u>. </u>	VAL	_				
										*** ***		
												-
	-											
	_		11-11-1									
				+								
				<u> </u>						•		
												
•												
					-							
····		·										
07										h = 111 - 1111 - 4		Liste besteht
06				1	nberger M olstädter			Benennung	EI	haltteillist L. PARTS LIST		LIST CONSISTS
04					8000 Mür			DESCRIPTION		ückte Leit e rpl r / UHF – Synthe		1 Blatt SHEETS
02		4 -4 -5	Ø.		Tag DATE	Nam NAM	E	Bezeichnung Schlumberger PART. NO.		361 4 38 Sa		Blatt Nr. SHEET NO.
Aus- gabe	0 83.64 AndMittlg. Nr.	Tag	Name	geschr. bearb.	26.6. 8 6	Moraso	ch	Hierzu Schehpi SEE CIRCUIT (DIAGRAM	213 041 S		1
								4031		L		

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Herstelle MANUFAC	1	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
				C 20	1 nF ± 10 \$ 50 V-	813 320	VAL
A 1	NE 5534 AD	834 209	VAL				
A 2	NE 5534 AD	834 209	VAL	C 22	1 nF ± 10 % 50 V-	813 320	VAL
A 3	NE 527 D	834 218	VAL				
A 4	TL 072 D	834 222	TEX	C 24	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
				C 25	1 nF ± 10 % 50 V-	813 320	VAL
Br 1		884 179	COM	C 26	27 pF ± 5 % 50 V-	813 228	VAL
				C 27	1 nF ± 10 % 50 V-	813 320	VAL
C 1	1 nF ± 10 % 50 V-	813 320	VAL				
C 2	1 nF ± 10 % 50 V-	813 320	VAL			<u> </u>	
C 3	1 nF + 10 % 50 V-	813 320	VAL	C 30	47.pF <u>+</u> 5 % 50 V-	813 231	VAL
C 4	1 nF + 10 % 50 V-	813 320	VAL	C 31	1 nF + 10 % 50 V-	813 320	VAL
C 5	1 nF + 10 % 50 V-	813 320	VAL	C 32	4,7 pF <u>+</u> 0,25 pF 50 V-	813 219	VAL
C 6	1 nF ± 10 % 50 V-	813 320	VAL	C 33	4,7 pF + 0,25 pF 50 V-	813 219	VAL
C 7	1 nF + 10 % 50 V-	813 320	VAL	C 34	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
				C 35	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
				C 36	68 pF <u>+</u> 5 % 50 V-	813 233	VAL
C 10	1 nF ± 10 % 50 V-	813 320	VAL	C 37	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD
C 11	68 pF <u>+</u> 5 % 50 V -	813 233	VAL	C 38	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD
C 12	1 nF + 10 % 50 V-	813 320	VAL	C 39	1 µF <u>+</u> 20 % 50 V-	813 390	VIT
C 13	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 40	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
C 14	1 nF + 10 % 50 V-	813 320	VAL	C 41	100 pF <u>+</u> 5 % 50 V-	813 235	VAL
C 15	1 nF + 10 % 50 V-	813 320	VAL	C 42	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
C 16	2,2 μF <u>+</u> 20 % 50 V-	814 362	RÖO	C 43	1 nF + 5 % 50 V-	813 247	VAL
C 17	1 nF + 10 % 50 V-	813 320	VAL	C 44	1,2 nF + 5 % 50 V-	813 24 8	VAL
C 18	10 pF ± 5 % 50 V-	813 223	VAL	C 45	180 pF <u>+</u> 5 % 50 V-	813 238	VAL
C 19	1 nF + 10 % 50 V-	813 320	VAL	C 46	1,2 nF <u>+</u> 5 % 50 V-	813 248	VAL
07 06 05	s	chlumberger Meßgeräte Ingolstädter Straße 6	7a	Benennung	Schaltteilliste		Liste besteht LIST CONSISTS aus OF
04		8000 München 46		DESCRIPTION	Bestückte Leiterplat Typ: PROG DIVIDER	tte	Blatt SHEETS
	2000 51 20 10 07 01	987 DATE NAM schr. 21.4.87 Dietri	E	Bezeichnung Schlumberger PART. NO.	361 439 Sa		Blatt Nr. SHEET NO.
	And Many	arb. 21.4.07 Dietri		Hierzu Schaltpla SEE CIRCUIT D			·
	IODIFIC. NO. DATE NAME 98	pr. Lonbefugte Verwertung, Mitteilung			031		

1		2			3		4	5	6	7	8
Pos. REF. NO.		Wert VALUE			Bezeichnur Schlumber PART. NO	ger	Hersteller MANUFACT	Pos. r REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
C 47	1,5 nF	<u>+</u> 5%	50 V-		813 249)	VAL	C 74	47 nF ± 10 % 50 V-	813 371	VAL
C 48	15 pF	<u>+</u> 5%	50 V-		813 225	5	VAL				
								C 76	100 pF <u>+</u> 5 % 50 V-	813 235	VAL
C 50	100 pF	<u>+</u> 5%	50 V-		813 23	5	VAL				
C 51	1 nF	<u>+</u> 10 %	50 V-		813 32	0	VAL				
C 52	1 nF.	<u>+</u> 10 %	50 V-		813 32	0	VAL				
C 53	1 nF	<u>+</u> 10 %	50 V-		813 32	0	VAL	C 80	100 nF <u>+</u> 10 % 50 V+	813 375	VAL
C 54	1 nF	± 10 %	50 V-		813 32	0	VAL	C 81	100 pF + 5 % 50 V-	813 235	VAL
C 55	1 nF	<u>+</u> 10 %	50 V-		813 32	20	VAL	C 82	100 nF ± 10 ₺ 50 V-	813 375	VAL
C 56	1 nF	<u>+</u> 10 %	50 V-		813 32	20	VAL	C 83	100 nF ± 10 % 50 V-	813 375	VAL
								C 84	100 nF + 10 % 50 V-	813 375	VAL
								C 85	100 nF + 10 % 50 V-	813 375	VAL
								C 86	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
C 60	1 nF	<u>+</u> 10 %	50 V-		813 32	20	VAL				
C 61	1 nF	<u>+</u> 10 %	50 V-		813 32	20	VAL				
C 62	1 nF	<u>+</u> 10 %	50 V-		813 32	20	VAL	C 89	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
C 63	1 nF	<u>+</u> 10 %	50 V-		813 32	20	VAL	C 90	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
C 64	22 pF	<u>+</u> 5%	50 V-		813 22	27	VAL	C 91	1 nF <u>+</u> 10 % 50 V-	8 13 320	VAL
C 65	1 nF	± 10 %	50 V-		813 3	20	VAL	C 92	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
C 66	33 pF	<u>+</u> 5%	50 V -		813 2	29	VAL	C 93	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD
								C 94	1 nF <u>+</u> 10 % 50 V-	813 320	VAL
								C 95	100 nF <u>+</u> 10 % 50 V-	813 375	VAL
								C 96	2,2 μF <u>+</u> 20 % 50 V-	814 362	RÖD
C 70	1 nF	<u>+</u> 10 % !	50 V-		813 3	20	VAL				
C 71	1 nF	<u>+</u> 10 % !	50 V-		813 3	20	VAL				
C 72	33 pF	<u>+</u> 5%!	50 V-		813 2	29	VAL				
C 73	47 nF	<u>+</u> 10 %	50 V-		813 3	71	VAL	C 100	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD
07				Cakl	mberger M	loRaa-ër-	C C C		Schaltteillis	te	Liste besteht LIST CONSIST:
06 05			+		mberger N polstädter	-		Benennung	EL. PARTS LIST		aus 9
04					8000 Müi			DESCRIPTION	Bestückte Leiter Typ: PROG DIVIDER	ріатте	Blatt
03				<u> </u>	1				7,500 5117001		SHEETS
02	7088,84	5707	h:	19 87	Tag DATE	Na:		Bezeichnung Schlumberger	361 439 Sa		Blatt Nr. SHEET NO
	7088,54	23.4.87	Di 7 Staff	geschr.	21.4.87	_i		PART. NO.			2
Aus-	ÄndMittlg.			bearb.		Ce		Hierzu Schaltp SEE CIRCUIT I	DIAGRAM 213 U41 5		
gabe	Nr.	Tag	Name					Gerät: 40			

1	2		3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE		Bezeichnung Schlumberge PART. NO,	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
C 101	10 nF <u>+</u> 10 % 50	٧-	813 332	VAL				
C 102	1,5 nF <u>+</u> 5 % 50 V		813 249	VAL				
C 103	1 nF ± 5 % 50 V	•	813 247	VAL	C 130	2,7 nF ± 5 % 50 V-	813 252	VAL
C 104	1,5 nF <u>+</u> 5 % 50 V	•	813 249	VAL	C 131	27 pF ± 5 % 50 V-	813 228	VAL
C 105	100 nF <u>+</u> 10 % 50 V	•	813 375	VAL	C 132	10 µF <u>+</u> 20 % 16 V-	814 382	RÖD
C 106	2,2 μF <u>+</u> 20 % 50 V	-	814 362	RÖD	C 133	100 nF ± 10 % 50 V-	813 375	VAL
·					C 134	2,2 nF ± 20 % 50 V-	814 362	RÖD
					C 135	2,2 nF ± 20 % 50 V-	814 362	RÖO
		***			C 136	100 nF <u>+</u> 10 % 50 V-	813 375	VAL
C 110	2,2 µF ± 20 % 50	٧-	814 362	RÖC				
C 111	100 nF ± 10 % 50	٧-	813 375	VAL				
C 112	100 nF ± 10 % 50	٧-	813 375	VAL				
C 113	680 pF <u>+</u> 5 % 50	٧-	813 245	VAL	. C 140	100 nF <u>+</u> 10 % 50 V-	813 375	VAL
C 114	100 pF <u>+</u> 5 % 50	٧-	813 235	VAI	. C 141	100 nF ± 10 % 50 V-	813 375	VAL
C 115	100 nF ± 10 % 50	٧-	813 375	VAI	-			
C 116	100 nF ± 10 % 50	٧-	813 375	VAI	·			
								
C 120	10 μF ± 20 % 16	٧-	814 382	RÖD	D 1	U 822 BS	834 428	TELE
C 121	100 nF <u>+</u> 10 % 50	٧-	813 375	VAL	0 2	F 11 C 91 DC	834 421	FAIR
C 122	100 nF ± 10 % 50	٧-	813 375	VAL	0 3	SN 74 AS 74 D	834 449	TEX
C 123	100 nF ± 10 % 50	٧-	813 375	VAL	0 4	HD 100 102 F	834 493	HIT
C 124	1 nF + 5 \$ 50	٧-	813 247	VAL	D 5	SN 74 AS 168 D	834 470	TEX
C 125	100 nF + 10 % 50	٧-	813 375	VAL	0 6	U 822 BS	834 428	TELE
C 126	47 nF ± 10 % 50	V-	813 371	VAL				
07		1				Schaltteillis	ot o	Liste besteht
06 05		= :	Schlumberger Me Ingolstädter S	-		EL. PARTS LIS	T .	aus 9
04			8000 Mün		Benennung DESCRIPTION	Restückte Leiterp Typ: PROG DIVIDER	latte	Blatt SHEETS
02	7088 84 5 7 97	n;	1987 Tag	Name NAME	Bezeichnung Schlumberger	361 439 Sa		Blatt Nr. SHEET NO
Aus-	7088.84 5.7.87 7088.54 23.4.87 St And-Mittle	taff '	geschr. 21.4.87		PART. NO. Hierzu Schalt	plan		3
gabe	Nr. Tag N	Vame -	gepr.	Lh	SEE CIRCUIT Gerät:	DIAGRAM 213 041 S 4031		

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT	Pos.	Wert VALUE	Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
				G1 5	BAS 16	830 552	VAL
D 10	F 11 C 91 DC	834 421	FAIR	G1 6	BAV 99	830 491	VAL
D 11	F 11 C 91 DC	834 421	FAIR				
D 12	MC 10 H 131 P	834 494	MOT				
D 13	74 AS 168 D	834 470	TEX				
D 14	PC 74 HCT 4046 AT	834 440	VAL				-
D 15	SN 74 AS 74 D	834 449	TEX	61 11	BAV 99	830 491	VAL
D 16	SN 74 AS 74 D	834 449	TEX	G1 12	LSS 250	856 200	SIE
				GT 13	HSMS-2910	830 551	HP
D 20	SN 74 AS 74 D	834 449	TEX				
D 21	SN 74 AS 74 D	834 449	TEX				
D 22	SN 74 AS 74 D	834 449	TEX				
				L1	10 nH <u>+</u> 20 %	821 207	STET
D 24	SN 74 AS 30 D	834 495	TEX				
D 25	PC 74 HCT 00 T	834 430	VAL	L 3	150 nH <u>+</u> 5 %	821 217	STET
D 26	PC 74 HCT 00 T	834 430	VAL	L4	150 nH <u>+</u> 5 %	821 217	STET
				L 5	330 nH <u>+</u> 5 %	821 221	STET
				L 6	330 nH <u>+</u> 5 %	821 221	STET
G1 1	BAS 16	830 552	НР	L 10	22 nH <u>+</u> 20 \$	821 208	STET
G1 2	BZX 84 C 5 V 1	830 492	VAL			32, 200	011.1
G1 3	BZX 84 C 5 V 1	830 492	VAL	L 12	820 nH <u>+</u> 5 %	821 22 6	STET
G1 4	HSMS-2910	830 551	HP	L 13	1,5 µH <u>+</u> 10 %	821 229	STET
07 06 05	Schlumberger Meßgeräte		GmbH		Schaltteillist		Liste besteht LIST CONSISTS
04		Ingolstädter Straße 6 8000 München 46		7 a Benennung DESCRIPTION Bestückte Leiterplatte Typ: PROG DIVIDER			OF Blatt SHEETS
02 01	/088_84 5_7_87 Di	1987 Tag Name Name Name Name Name Name Name Name	ME	Bezeichnung Schlumberger PART, NO.	361 439 Sa		Blatt Nr. SHEET NO
Aus- gabe	ÄndMittlg. Nr. Tag Name b	earb.	01	Hierzu Schaltpl SEE CIRCUIT (DIAGRAM 213 041 3		_
ISSUE A	MODIFIC. NO. DATE NAME Gerat: 4031						

1	2	3	4	5	6	7	8
Pos. REF NO.	Wert VALUE	Bezeichnung Schlumberger PART, NO,	Hersteller MANUFAC	1 1	Wert VALUE	Bezeichnung Schlumberger PART, NO	Hersteller MANUFACT
L 14	820 nH 👱 5 🛣	821 226	STET				
L 15	1 µН 👱 5 %	821 227	SIET				
L 16	1 μН 👲 5 %	821 227	STET				
				R 1	220 Ω <u>+</u> 2 %	804 729	VAL
				R 2	22 Ω <u>+</u> 2 %	804 717	VAL
				R 3	220 Ω ± 2 %	804 729	VAL
L 20	180 nH <u>+</u> 5 %	821 218	STET	R 4	560 Ω <u>+</u> 2 %	804 734	VAL
L 21	180 nH <u>+</u> 5 %	821 218	STET	R 5	1,5 kΩ <u>+</u> 2 %	804 739	VAL
L 22	180 nH <u>+</u> 5 %	821 218	STET	R 6	1,5 kΩ ± 2 %	804 739	VAL
L 23	180 nH <u>+</u> 5 %	821 218	STET	R 7	12 kΩ <u>+</u> 2 🕻	804 750	VAL
L 24	100 μH ± 15 %	821 322	SIE	R 8	1,8 kΩ <u>+</u> 2 %	804 740	VAL
L 25	220 nH 👱 5 🕻	821 219	SIE				
L 26	22 بالل <u>*</u> 15 %	821 318	SIE	R 10	10 kQ ± 2 %	804 749	VAL
				R 11	1,8 kΩ <u>+</u> 2 %	804 740	VAL
				R 12	330 Ω <u>+</u> 2 %	804 731	VAL
				R 13	100 Ω ± 2 %	804 725	VAL
L 30	1 µН <u>+</u> 15 %	821 310	SIE	R 14	560 Ω <u>+</u> 2 %	804 734	VAL
L 31	1 µH <u>+</u> 15 %	821 310	\$1E	R 15	1,5 kΩ <u>+</u> 2 %	804 739	VAL
				R 16	470 Ω ± 2 %	804 733	VAL
				R 17	330 Ω <u>+</u> 2 %	804 731	VAL
				R 18	100 Ω ± 2 %	804 725	VAL
				R 20	1 kQ ± 2 %	804 737	VAL
Mi 1	SMD=C 1	872 081	SYN	R 21	100 Ω ± 2 %	804 725	VAL
Mi 2	SMD-C 1	872 081	SYN	R 22	680 Ω <u>+</u> 2 %	804 735	VAL
				R 23	15 kg ± 2 %	804 751	VAL
				R 24	1 kΩ ± 2 %	804 737	VAL
07 06 05	s	chlumberger Meßgeräte Ingolstädter Straße 6		Benennung	Schaltteillist		Liste besteht LIST CONSIST aus 9 OF
04		8000 München 46		DESCRIPTION	Restückte Leiterpla Typ: PROG DIVIDER	1776	Blatt SHEETS
02	7088_84 5_7_87 Di	987 Tag Nam DATE NAM		Bezeichnung Schlumberger PART. NO.	361 439 Sa		Blatt Nr. SHEET NO.
Aug- gaba	7088_54 23_4_87 Staff or And-Mittig. Nr. Tag Name be	schr. 21,4,87 Dietr arb. 4	ich /	Hierzu Schaftpi SEE CIRCUIT I	DIAGRAM 213 U41 3		5
ISSUE	MODIFIC NO. DATE NAME 94	ov <u>~</u>	>	Gerät: 4	931		4

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
				R 52	68 Ω <u>+</u> 2 %	804 723	VAL
R 26	18 Ω <u>+</u> 2 %	804 716	VAL	R 53	220 Q ± 2 %	804 729	VAL
R 27	390 Ω <u>+</u> 2 %	804 732	VAL	R 54	1 kΩ <u>+</u> 2 %	804 737	VAL
R 28	1,8 kΩ ± 2 %	804 740	VAL	R 55	150 Ω <u>+</u> 2 %	804 727	VAL
				R 56	39 Ω <u>+</u> 2 %	804 720	VAL
R 30	100 Ω <u>+</u> 2 %	804 725	VAL				
R 31	680 Ω <u>+</u> 2 %	804 735	VAL				
R 32	180 Ω + 2 %	804 728	VAL				
R 33	1,2 kQ <u>+</u> 2 %	804 738	VAL	R 60	150 Ω ± 2 %	804 727	VAL
R 34	680 Ω <u>+</u> 2 %	804 735	VAL	R 61	220 Ω ± 2 %	804 729	VAL
R 35	22 kΩ <u>+</u> 2 %	804 753	VAL	R 62	1 kΩ <u>+</u> 2 %	804 737	VAL
R 36	22 kΩ <u>+</u> 2 %	804 753	VAL	R 63	4,7 kΩ <u>+</u> 2 %	804 745	VAL
R 37	10 kΩ <u>+</u> 2 %	804 749	VAL	R 64	6,8 kΩ <u>+</u> 2 %	804 747	VAL
R 38	2,2 kΩ <u>+</u> 2 %	804 741	VAL	R 65	2,2 kΩ ± 2 %	804 741	VAL
R 39	22 kΩ <u>+</u> 2 Z	804 753	VAL	R 66	56 Ω <u>+</u> 2 %	804 722	VAL
R 40	10 kΩ <u>+</u> 2 %	804 749	VAL				
R 41	1,8 kQ <u>+</u> 2 %	804 740	VAL				
R 42	1,8 kΩ <u>+</u> 2 %	804 740	VAL				
R 43	330 Ω ± 2 %	804 731	VAL	R 70	470 Ω <u>+</u> 2 %	804 733	VAL
R 44	100 Ω ± 2 %	804 725	VAL	R 71	470 Ω <u>+</u> 2 %	804 733	VAL
R 45	68 0 Ω <u>+</u> 2 %	804 735	VAL	R 72	470 Ω ± 2 %	804 733	VAL
R 46	100 Ω + 2 %	804 725	VAL	R 73	1 kΩ ± 2 %	804 737	VAL
				R 74	1 kΩ <u>+</u> 2 %	804 737	VAL
				R 75	470 Ω <u>+</u> 2 %	804 733	VAL
				R 76	150 kΩ <u>+</u> 2 %	804 763	VAL
R 50	68 Ω <u>+</u> 2 1	804 723	VAL				
R 51	150 Ω • 2 %	804 727	VAL				
07 06 05		Schlumberger Meßgerät			Schaltteillis EL. PARTS LIS		Liste besteht LIST CONSISTS
04		Ingolstädter Straße 8000 München 4		Benennung DESCRIPTION	Bestückte Leiterp Typ: PROG DIVIDER	latte	OF 9 Biatt SHEETS
02	7088.84 5.7.87 Di		ame AME	Bezeichnung Schlumberger	361 439 Sa		Blatt Nr. SHEET NO.
	7088.54 23.4.87 Staff	geschr 21.4.87 Dietr	ich	PART. NO. Hierzu Schalts	plan	,	6
gabe ISSUE A	Nr. Tag Name	gepr E	K.		DAGRAM 213 D41 5		

1		2			3		4	5		6		7 Bezeichnung	8
Pos. REF. NO.		Wert VALUE			Schlumberge PART. NO,		Hersteller MANUFACT	Pos. REF. NO.	Ma	Wert VALUE	s	chlumberger PART. NO.	Hersteller MANUFACT
	-						····	R 106	1 kΩ	± 2 %	80	14 737	VAL
R 80	1 kΩ	<u>+</u> 2 %			804 737	1	VAL						
R 81	150 kΩ	<u>+</u> 2 %			804 763	3	VAL						
R 82	1 kΩ	<u>+</u> 2 %			804 737	1	VAL						
R 83	1 kΩ	<u>+</u> 2 %			804 737	7	VAL	R 110	4,7 ks	2 <u>+</u> 2 %	80	04 745	VAL
R 84	1 kΩ	<u>+</u> 2 %			804 737	7	VAL	R 111	4,7 ks	± 2 %	80	04 745	VAL
R 85	150 Ω	<u>+</u> 2 %			804 727	7	VAL	R 112	390 Ω	<u>+</u> 2 %	80	04 732	VAL
R 86	2,2 kΩ	<u>+</u> 2 %			804 74	1	VAL	R 113	4, 7 k!	Ω + 2 %	8	04 745	VAL
								R 114	4,7 k	Q <u>+</u> 2 %	8	04 745	VAL
								R 115	1 M	Q <u>+</u> 2 %	8	04 773	VAL
								R 116	12 k	Ω ± 2 %	8	04 750	VAL
R 90	2,2 kΩ	<u>+</u> 2 %			804 74	1	VAL						
R 91	6 8 Ω	<u>+</u> 2 %			804 72	3	VAL						
R 92	6 8 Ω	<u>+</u> 2 %			804 72	3	VAL						
R 93	10 kΩ	<u>+</u> 2 %			804 74	.9	VAL	R 120	1 M	Ω ± 2 %	8	04 773	VAL
R 94	4,7 kΩ	<u>+</u> 2 %			804 74	5	VAL	R 121	2 k	Ω ± 25 %	8	07 738	BOUR
R 95	4,7 kΩ	<u>+</u> 2 %			804 74	5	VAL	R 122	1 k	Ω + 2%	8	104 737	VAL
R 96	1 kΩ	<u>+</u> 2 %			804 73	37	VAL	R 123	1 k	Ω + 2 %	8	104 737	VAL
								R 124	100	Ω + 2 %	8	304 725	VAL
								R 125	10 k	Ω + 2 %	8	304 749	VAL
								R 126	22 k	Ω + 2%	8	304 75 3	VAL
R 100	1 kΩ	<u>+</u> 2 %			804 73	37	VAL						
R 101	8,2 kΩ	<u>+</u> 2 %			804 74	48	VAL						
R 102	390 Ω	± 2 %			804 7.	32	VAL						
R 103	8,2 kΩ	± 2 %			804 74	48	VAL	R 130	2,2	«Ω <u>+</u> 2 %		804 741	VAL
R 104	12 kΩ	<u>+</u> 2 %			804 7	50	VAL	R 131	680	Ω + 2 %		804 735	VAL
R 105	12 kΩ	<u>+</u> 2 %			804 7	50	VAL	R 132	100	Ω + 2%		804 725	VAL
07 06				Schlur	nberger M	eßgeräte	e GmbH		(Schaltte EL. PARTS			Liste besteht LIST CONSIST
05 04				_	olstädter : 8000 Mün			Benennung DESCRIPTION		estückte Le	iterplatte		OF 9
03 02				400=	Тад	Na	me	Bezeichnung	iyp: Pl	ROG DIVIDER			SHEETS Blatt Nr
	7 088.8 4 7088 . 54	5.7.87 23.4.87	Di Staff	1987 geschr.	DATE 214.87	NA	ME	Schlumberger PART. NO.		361 439			SHEET NO
Aus- gabe	ÅndMittlg. Nr.	Tag DATE	Name NAME	bearb.	1.1001	4	/-	Hierzu Schalte SEE CIRCUIT Gerät:		21 3 041	\$		_

1	2	3	T .	T .	_	T	F *
Pos. REF. NO.	Wert VALUE	3 Bezeichnung Schlumberger PART. NO,	Hersteller MANUFAC		6 Wert VALUE	7 Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
R 133	390 Q <u>+</u> 2 %	804 732	VAL	R 160	22 kQ <u>+</u> 2 %	804 753	VAL
R 134	2,2 kΩ <u>+</u> 2 %	804 741	VAL	R 161	22 kΩ <u>+</u> 2 %	804 753	VAL
R 135	10 kΩ <u>+</u> 2 %	804 749	VAL				
R 136	2,2 kΩ ± 2 %	804 741	VAL				
R 140	22 kΩ ± 2 %	804 753	VAL	Т1	BFR 93 A	832 287	VAL
R 141	22 kΩ <u>+</u> 2 %	804 753	VAL	12	BFT 93	832 293	VAL
R 142	2,2 kΩ ± 2 %	804 741	VAL	Т 3	BFR 93 A	832 2 87	VAL
R 143	10 kΩ ± 2 %	804 749	VAL	1 4	BC 850 B	832 284	VAL
R 144	2,2 kΩ ± 2 %	804 741	VAL	T 5	BFR 93 A	832 287	VAL
R 145	22 kΩ ± 2 %	804 753	VAL	16	BFR 93 A	832 287	VAL
R 14 6	22 kΩ ± 2 %	804 753	VAL				
				T 10	BFR 93 A	832 287	VAL
R 150	10 kΩ <u>+</u> 2 %	804 749	VAL	T 11	BFR 93 A	832 287	VAL
R 151	2,2 kΩ <u>+</u> 2 %	804 741	VAL	T 12	BFI 93	832 293	VAL
R 152	22 kΩ <u>+</u> 2 %	804 753	VAL	T 13	BFR 93 A	832 287	VAL
R 153	22 kΩ <u>+</u> 2 %	804 753	VAL	T 14	SST 175	832 288	SILIC
R 154	680 Ω <u>+</u> 2 %	804 735	VAL	T 15	BC 850 B	832 284	VAL
R 155	680 Ω ± 2 %	804 735	VAL	T 1 6	BC 860 B	832 285	VAL
R 156	2,2 kΩ <u>+</u> 2 %	804 741	VAL	T 17	BFR 93 A	832 287	VAL
R 157	1 kΩ <u>+</u> 2 %	804 737	VAL	T 18	BC 850 B	832 284	VAL
				T 19	B C 85 0 B	832 284	VAL
				T 20	BC 860 E	832 285	VAL
07 06	s	Schlumberger Meßgeräte	GmbH		Schaltteillist	е	Liste besteht LIST CONSISTS
05 04		Ingolstädter Straße 6 8000 München 46		Benennung DESCRIPTION	Bestückte Leiterpl	atte	OF 9
03		Tag Nac		Bezeichnung	Typ: PROG DIVIDER		SHEETS Blatt Nr
	7088.54 23.4.87 Staff •	987 DATE NAM	ich	Schlumberger PART NO. Hierzu Schaltpla	361 439 Sa		SHEET NO
Aus- gabe ISSUE	Nr Tag Name	earb. L		SEE CIRCUIT DI			8

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC		Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
T 21	BC 850 B	832 284	VAL				
T 22	BC 850 B	832 284	VAL				
T 23	BC 850 B	832 284	VAL				
1 24	BC 850 B	832 284	VAL				
T 25	8C 850 B	832 284	VAL				
T 26	BC 850 B	832 284	VAL				
							-
							-
T 30	BC 850 B	832 284	VAL				
				-			-
							-
							-
							-
							-
				_			
07		T .			Oak - 111 - 111	1_	Liste besteht
06		Schlumberger Meßg Ingolstädter Stra			Schaltteillis EL. PARTS LIST		LIST CONSIST
04		8000 Münche		Benennung DESCRIPTION	Bestückte Leiterpla Typ: PROG DIVIDER	tte	OF y Blatt SHEETS
02		1987 Tag DATE	Name NAME	Bezeichnung Schlumberger	361 439 Sa		Blatt Nr SHEET NO.
7	7088,54 23,4,87 Staff	geschr. 21,4,87 D	ietrich	PART NO Hierzu Schaltp	ian		9
gabe	Nr. Tag Name MODIFIC NO DATE NAME	gepr.	69	SEE CIRCUIT Gerät: 4	DIAGRAM 213 041 S 031		

1. Frequency modulator 361 457

The frequency-modulated oscillator T5 works at a frequency of 105.6 MHz. It is held on its centre frequency by a narrowband PLL (D8, D9, A4, G14, G15).

The control and modulation voltages are added on varactors G14/5. The modulation sensitivity can be adjusted with R65 and reduced by a factor of four for certain RF bands with T11, T10.

As a function of the FM mode the source for the reference frequency of the PLL is selected with gates D5:

In AC FM mode it is derived from the crystal-referenced 10-MHz signal on socket Bu2 by division (D7). At the same time D7 generates the reference frequency for the fine decade 361 455 (Bu3).

In DC FM mode it is derived from crystal oscillator T2/Qu1, the frequency of which is in turn referred by a PLL (D1, A1, G11, G12) to the 10-MHz crystal signal divided down to 400 kHz by D7.

In DC frequency modulation the modulation voltage on socket Bu8 produces on the one hand a change in the frequency of the FM oscillator (T5), and on the other hand it is converted via the active lowpass filter A2 by the A/D converter into a binary word that drives the phase accumulator in gate array D2. In this way it is possible to divide the frequency of crystal oscillator T2 to 400 kHz with a small decrement/increment as a function of the modulation voltage.

The change in frequency of the 400-kHz reference is matched to the deviation of the FM oscillator with potentiometers R20, R21. The monoflops D4-A/B form the clock generator for the gate array (D2) and the A/D converter (D3).

Ref. No.	217 031 F	Sub FM Modulator	Date	9.4.87
Туре	4031	Unit	Sheet	1/2

2. Fine decade 361 455

Oscillator D2 of the fine decade is integrated into a PLL (D3, D4, A1, G13-6) and can be tuned between 56 and 76 MHz in 1-kHz increments. The division ratio is transferred serially on the data line with the clock to synthesizer device D4 when the input is enabled.

Amplifier T1 boosts the signal level for driving frequency divider D1, at the output of which the divided oscillator signal appears in 100-Hz increments in the range 5.6 to 7.6 MHz.

If the PLL is unsynchronized, transistor T2 signals the error with H level on socket Bul0.

3. Adding loop 361 456

Schlumberger

Oscillator T6 is held to the sum frequency of the fine decade and FM modulator by a PLL (T6, T2, A1, D1, A3, G12, G13).

Transistor T2 works as a multiplying mixer with preceding impedance transformers (T1, T4), the filtered output signal of which (C15, C14, L1, Cl3, L6, C20) is increased to TTL level by level converter A1.

Comparator A2-A and transistor T10 prevent the PLL from locking onto the image frequency by charging integrator A3-A in the capture operation.

If there is a deviation from a given range of control voltage, comparator A2-B signals this via T1 and socket Bu8 as an impermissible operating state.

The oscillator signal, buffered by amplifier T5, is applied to divider D2, which divides the frequency by a factor of ten.

In analyzer mode the divider is disabled via socket Bu6.

Ref. No. 217 031 F	Sub FM Modulator	Date	9.4.87
Type 4031	Unit	Sheet	2/2
Schlumberger	Fı	unctional De	scription

Set Value 400 kHz 2.5 MHz 3.263745 MHz -1 to -8 V	FM Modulator	
400 400 2.5	Modu	
Adjust- ment	Sub Unit FR	
Frequency 400 kHz 2.5 MHz 3.263745 MHz DC	21/ U31 A	Type STABILOCK 4031
Measuring Point D7/6 Bu3 D1/4 A1/1 Ref.	ò	Type
Connect FM modulator 217 031 by extension to 4031 a) Frequency modulator 361 457 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. Divider 1. O'HIZ : 4 2. Clock oscillator Frequency Varactor voltage 3. DC FM Test setup: Frequency counter must be synchronized with 4031's internal 10-MHz xtal oscillator via Bul3 Bul3 10 MHz Frequency Bul3 Counter Probe (È IMR) PCB 361 457 Date Name Issue Alteration No. Date	6098.78 15.5.88	
Schlumberger Schlumberger Adjustment and Test Procedure Alternation Schlumberger Adjustment and Test Procedure Adjustment and Test Procedure Schlumberger Adjustment and Test Procedure Adjustment and Test Procedu	du	re

Actual Value						Sheet		5/2
Set Value		400 kHz ±0.5 Hz 400 kHz > 2 V ≟ H	400 kHz > 2 V ⊈ H	400758 ±0.5 Hz	399242 ±5 Hz 399811 ±2 Hz 400189 ±2 Hz		FM Modulator	
Adjust- ment		R22		R20 rough R19 fine		Sub Unit FM M		
Frequency		400 kHz 400 kHz DC	400 kHz DC	400758 Hz	399242 Hz 399811 Hz 400189 Hz	217 031 A	120 172 173	Type STABILOCK 4031
Measuring Point		D9/2 D5/6 D5/8	05/8 05/6	2/60	D9/2 D9/2 D9/2	Name Ref.	Ž I	- Type
				1 V ±0.5 mV on Bu8 djustment with	()	Alteration No. Date		
Measuring Procedure			_ 1	+ 10	31 f = 500 MH	Issue Alter		
Heasur	RX FM input Bu8 to GND DC on ½ Bul = H		DC off \$ Bu1 = L DC on, FM x 0.25 off \$ Bu9 = L (4031 f = 200 MHz)	Connect PSU to EXT MOD socket and set +1 V ±0.5 mV on It may be necessary to alternate this adjustment with 400-kHz adjustment (Bu8 on GND)	Set -1 V ±0.5 mV on Bu8 FM × 0.25 on ≙ Bu9 = H (4031 f = 500 MHz) Set -1 V ±0.5 mV on Bu8 Set +1 V ±0.5 mV on Bu8		13.5.8	
sary ment	lter))		Connect It may bi 400-kHz	Set -1 V FM x 0.2 Set -1 V Set +1 V	on No.	8088. 18 13	
Necessary Equipment	(PLL filter)	(0.01 Hz resolution)	5	PSU		lssue	1	

Actual Value		Sheet	3/5				
Set Value	> 2 V Å H +10 ±0.1 V < 0.8 V Å L 105.6 MHz approx. 0.7 Vpp 5.602 MHz > 2 V Å H > 0 V < 0.8 V Å L < -4 V		FM Modulator				
Adjust- ment	72	gns	<u></u>				
Frequency	DC DC 105.6 MHz 105.6 MHz 5.602 MHz CC ~ 50 MHz	217 031 A	STABILOCK 4031				
Measuring Point	Bu4 A4/1 Bu10 Bu10 Bu10 Mp2 Mp3	Name Ref.	Type				
Measuring Procedure	4. FM oscillator 105.6 MHz DC off/FM x 0.2s off (200 MHz) Separate 10-MHz i/p frequency Bu2 G110 lights \$\rightarrow{2}{2}\$ unsynchronized Connect 10 MHz again DVM on A4/1 Turn core (821 916) in 15 until:- G110 off \$\rightarrow{2}{2}\$ synchronized b) Fine decade 361 455 4031 f = 259.8499 MHz G12 lights \$\rightarrow{2}{2}\$ unsynchronized Oscillator signal G12 off = synchronized Vcontrol	Date Name Issue Alteration No. Date					
Necessary Equipment	Oscilloscope 100 MHz Frequency counter, DVM	Issue Alteration No.					
Schl	Adjustment and Test Procedure						

Actual Value		Sheet		4/5
Set Value	7.600 MHz > +2 V Min. pulse/± > 2 V 4 H -8.5 ±0.1 V < 0.8 V 2 L approx. 0.3 Vpp 11.22 MHz 11.12 MHz 11.12 MHz Signal on/off			rm Modulator
Adjust- ment	R33	Sub Unit FM		
Frequency	7.600 MHz DC DC DC DC 11.22 MHz 11.12 MHz 11.13 MHz	4	217 031 A	STABILOCK 4031
Measuring Point	Bu6 Mp3 Mp4 Bu8 Bu7 Bu7 Bu7 Bu7 Bu7	Name Ref.	No.	F
Measuring Procedure	4031 f = 259.8500 MHz (G12 off) Voontrol Set min. pulse width or ± transition c) Adding loop 361.456 G14 lights 4 unsynchronized (L3 without côre) 4031 f = 259.9 MHz 4 6.6 MHz on Bul + 105.6 MHz on Bu5 Turn core (821 916) in L3 until G14 off 2 synchronized Output voltage Output trequency 4031 f = 259.8499 MHz 2 5.602 MHz on Bul 4031 f = 259.8500 MHz 2 7.6 MHz on Bul 4031; analyzer function on 2 Bu6 = H then analyzer function off again 2 Bu6 = L	o. Date Name Issue Alteration No. Date	15.5.68	
Necessary Equipment	Oscilloscope C,	Issue Alteration No.	- 8088. H	

Actual Value				Sheet	5/5
Set Value	-1 mV s V s +1 mV Dev. 80.0 kHz (± averaged) Dev. 20.0 kHz	< 0.7%	0 dB -0.2 to +0.2 dB	lodi. lator	
Adjust- ment	R87 R65 (361 457) R88	(361 457)		Sub FM Modulator	Unit
Frequency	DC 1 KHz 1 KHz	1 kHz	1 kHz 30 Hz 10 kHz 20 kHz 30 kHz	217 031 A	Type STABILOCK 4031
Kea suring Point	A3/6 Bu7 (361 456) Bu7	(361 456) Bu7	Bu7	Name Ref.	Туре
Measuring Procedure	d) Modulation setting RX FM input (Bu8) on GND Set offset Take input off GND again Cut in 15-kHz filter on modulation analyzer 4031 f = 125 MHz Feed in AF 1 kHz on EXT MOD socket and set 2.828 V _{rms} on Bu8 (361 457) FM x 0.25 on (4031 f = 500 MHz) and set 2.828 V _{rms} on Bu8	AF distortion FM × 0.25 off (4031 f = 125 MHz) and set AF 1.414 V _{rms} on Bu8	AF frequency response Cut out 15-kHz filter Reference point fmod = 1 kHz, 2.828 Vrms Measuring:	Date Name Issue Alteration No. Date	
Necessary Equipment	DVM (AC), Type 7151 or Similar, Mod. analyzer HP 8902 or Similar, Function	generator HP 3325 or Similar Z _i s 50 Ω		Issue Alteration No.	
Schl	umberger	Ac	djustment and Test Prod	cedu	re

Bauteil 835 100 16 Std. bei 150°C teinpern , innerhalb 8 Std. nach Entnahme aus dem Ofen verarbeiten.

Langer Anschluß mit Isolierschlauch überzogen / 889 017 l=5 mm

11 8088,189 26,9,68 Kg

Typ: FREQUENCY DIVIDER

361 457

4031 / 217 0 3 1

28.8 ADH

Le Gerat

			10 09 08
			07 1000 107 20 217 Ho
t in:	Gerli 5	4	OZ 7088 SJ 14.4.87 Ma Cherhaine O1 Aus Andig Datum Name Dess Zeichnung ist unser Eigentum ver unflatigung inbehugt

ndet in: 217 031 Gerät:

2K

= Kontrollmaß

	9000	Militig.				gepr		12	Gerät: 4031/217 031
	Aug-	Andq-	Deturn	Name	ľ	beerb.	25.8		
·	01					gez.	25.8.	Staffler	361 456
	02				Oberfläche	1988	Detum	Neme	244.54
	03					Ĺ			Typ: Adding Loop
	04								i '
	05								Bestückte Leiterplatte
-	06	8088.133	25.8.88	Staff	Werkstoff			4.1	
	07							4:1	SCOO MUNCHEN 40
	08								ingolstädter Straße 67 a 8000 München 46
1	09								
	10				Rehteil:	freime		MeBstab	Schlumberger Meßgeräte GmbH

Diese Zeichnung ist unser Eigentum, Vervielfähligung, unbefuste Verwertung, Mitteilung an andere ist strafber und schadenersatzpflichtig

1	2			3		4	\neg	5	6		7	
						 					· · · · · · · · · · · · · · · · · · ·	8
Pos. REF. N				Bezeich Schlumb PART. I	erger	Herste MANUF	- 1	Pos. REF. NO.	Wert VALUE		Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
1	Bestückte Leit PRINTED CIRCU	terplatt IT BOARD	te)	361 4	-02	SCI	HL	· · · · · · · · · · · · · · · · · · ·				
	hierzu see	.,		361 4	02 Sa							
1	Bestückte Leit PRINTED CIRCUI	terplatt IT BOARD		361 4	55	SCI		***				
	hierzu see	• •		361 4	55 Sa							
1	PRINTED CIRCUI	T BOARD	8	361 4	56	SC	il.					
	386			361 4	56 Sa			7				
1	Bestückte Leit PRINTED CIRCUI	T BOARD		361 4		SCH	L.					
	see see			361 4	57 Sa							
							1					
							_					
							_					
-							_					
							_					
· · · · · ·							\perp					
			-				\downarrow					
		 .	-				\downarrow					
		•					-					
		_					-					
							\downarrow					
			-									
			-				+					
							+					
		V70					+					
07				· .			1		Sobolt	toillict-		Liste besteht
06 05					eßgeräte (Straße 67	1	Bener	201100		teilliste rrs List	;	LIST CONSISTS
04			8	000 Mün	chen 46			RIPTION	FM-Nodu]	ator		OF Blatt SHEETS
02		1	986	Tag DATE	Name NAME			chnung mberger	217 031	Sa		Blatt Nr SHEET NO.
Aus- gabe	6088.19 11.9.86 AndMittig. Nr. Tag		peschr.	11.9.86	Dietr		Hierze	Schaltplan	GRAM 217 031	S		1
ISSUE	MODIFIC NO DATE	NAME 9	gepr.		he		Gerā	t: 40	31			

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
C 1	47 pF ± 2 % 63 V -	810 512	Stett				
C 2	47 pF ± 2 % 63 V =	810 512	Stett				
C 3	47 pF ± 2 % 63 V =	810 512	Stett	C 30	47 pF <u>+</u> 2 % 63 V -	810 512	Stett
C 4	47 pF <u>+</u> 2 % 63 V -	810 512	Stett	C 31	10 nF ± 10 % 50 V -	813 115	Stett
C 5	10 nF ± 10 % 50 V -	813 115	Stett	C 32	10 nF <u>+</u> 10 % 50 V -	813 115	Stett
C 6	10 nF <u>+</u> 10 % 50 V -	813 115	Stett				
C 7	10 nF <u>+</u> 10 % 50 V -	813 115	Stett				
					0,1 μH <u>+</u> 10 %	821 111	GOW
			0	L1	-		GOW
C 10	47 pF <u>+</u> 2 % 63 V -	810 512	Stett	L 2	o,1 μH ± 10 %	821 111	
C 11	47 pF ± 2 % 63 V -	810 512	Stett	L 3	0,1 μH ± 10 %	821 111	GOW
C 12	47 pF ± 2 % 63 V -	810 512	Stett	L 4	0,1 µН ± 10 %	821 111	GOW
C 13	47 pF ± 2 % 63 V -	810 512	Stett	L 5	0,1 µН <u>+</u> 10 %	821 111	GOW
C 14	47 pF ± 2 % 63 V -	810 512	Stett	L 6	0,1 µН <u>+</u> 10 %	821 111	GOW
C 15	100 nF <u>+</u> 10 % 50 V -	813 121	Stett	L 7	0,1 μH <u>+</u> 10 %	821 111	GOW
C 16	100 nF ± 10 % 50 V -	813 121	Stett				
C 17	100 nF. ± 10 % 50 V =	813 121	Stett	-			
				L 10	0,1 µН ± 10 %	821 111	GOW
				L 11	0,1 μH <u>+</u> 10 %	821 111	GOW
C 20	10 nF ± 10 % 50 V =	813 115	Stett	-		-	
C 21	10 nF ± 10 % 50 V -	813 115	Stett				
C 22	10 nF <u>+</u> 10 % 50 V -	813 115	Stett	St 54		884 50 8	PAND
C 23	10 nF ± 10 % 50 V -	813 115	Stett				
C 24	10 nF ± 10 % 50 V =	813 115	Stett				
C 25	10 nF <u>+</u> 10 % 50 V-	813 115	Stett				
C 26	10 nF <u>+</u> 10 % 50 V-	813 11 5	Stett				
C 27	10 nF ± 10 % 50 V -	813 115	Stett				
07		Schlumberger Meßgerä	te GmbH		Schaltteillis		Liste besteht LIST CONSISTS
05		Ingolstädter Straße 8000 München	67 a	Benennung DESCRIPTION	EL. PARTS LIS Bestückte Leiterplatte		OF 1
03			Name	Paraicheus	Typ: Basis FM - Modul		Blatt SHEETS Blatt Nr.
01	6088.18 9.9.86 29		IAME	Bezeichnung Schlumberge PART, NO.	J01 402 38		SHEET NO
Aus- gabe	ÄndMittig. Nr. Tag Name	bearb.	0-	Hierzu Schal SEE CIRCUIT Gerät: 4			

1	2	3	4	5	6		7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Hersteller MANUFACT	Pos. REF. NO.	West VALUE		Bezeichnung Schlumberger PART, NO.	Hersteller MANUFAC
A 1	NE 5534 AD	834 209	VAL	C 22	1 nF ± 1	10 % 50 V-	813 247	VAL
				1	1.7			
				C 24	10 µF ± 2	20 % 16 V-	814 382	RÖD
				C 25	10 nF ± 1		813 332	VAL
				C 26	470 nF <u>+</u> 1		813 383	VAL
				C 27	100 nF ±		813 375	VIT
: 1	10 nF ± 10 % 50 V-	813 332	VAL	1 -		,		
2	10 nF ± 10 % 50 V-	813 332	VAL	1				
3	10 nF ± 10 \$ 50 V-	813 332	VAL	C 30	10 nF .	10 % 50 V-	813 332	YAL
,) 	10 nF ± 10 % 50 V-	813 332	VAL			10 % 50 V-	813 332	VAL
	_			C 31			813 332	YAL
5	10 nF ± 10 \$ 50 V-	813 332	VAL	C 32		10 \$ 50 V-		
6	470 nF ± 10 \$ 50 V-	813 3 83	VAL	C 33		10 % 50 V-	813 320	VAL
				C 34	· · · · · · · · · · · · · · · · · · ·	20 % 16 V-	814 382	RÕD
				C 35		10 % 50 V-	813 320	VAL
				C 36	10 nF ±	10 % 50 V-	813 332	VAL
C 10	10 nF <u>+</u> 10 % 50 V-	813 332	VAL					
C 11	10 nF ± 10 % 50 V-	813 332	VAL					
C 12	10 nF ± 10 \$ 50 V-	813 332	VAL		<u>.</u>			
C 13	10 nF ± 10 \$ 50 V-	813 332	VAL	C 40	47 pF ±	5 \$ 50 V-	813 231	VAL
C 14	100 nF ± 10 \$ 50 V-	813 375	VAL	C 41	10 μF ± 2	20 \$ 16 V-	814 382	RÖO
C 15	10 μF <u>+</u> 20 % 16 V-	814 382	RÖD	C 42	10 µF ± 2	20 % 16 V-	814 382	RÖO
C 16	10 nF ± 10 % 50 V-	813 332	VAL	C 43	100 nF 🗻	10 ≯ 50 V-	813 375	VAL
C 17	47 pF ± 5 \$ 50 V−	813 231	VAL	C 44	10 µF ± 2	20 1 16 V-	814 382	RÖC
C 18	47 pF ± 5 % 50 V-	813 231	VAL	C 45	100 mF ± 1	16 \$ 50 V-	813 375	AVI
C 19	47 pF ± 5 % 50 V-	813 231	VAL	C 46	10 μF ±	20 % 16 V -	814 382	RÖC
C 20	10 nF + 10 \$ 50 V-	813 332	VAL					
C 21	1 nF ± 10 % 50 V-	813 247	VAL					
07	,	Schlumberger Meßgerät	e GmhH			ltteillist	е	Liste bestet
05		Ingolstädter Straße	67a	Benennung DESCRIPTION		PARTS LIST e Leiterpla	tte	or 3
04		8000 München 4	0	Typ:	FINE DEC			Blatt SHEETS
02	7088.125 25.8.87 Le 1		ime iME	Bezeichnung Schlumberger	361	455 Sa		Blatt Nr. SHEET NO
01 -	6098 12	eschr. 1.9.86 Dietr	1	PART. NO				⊣ 1
Aus- gabe	ÄndMittlg. b	earb.	10.	Hierzu Schaltpla SEE CIRCUIT D		031 S		
e	Nr. Tag Name	epr. 4	11	Gerät: 👪	131			→

				1	-	7	
Pos.	2 Wert	3 Bezeichnung Schlumberger	Hersteller MANUFACT	Pos. REF. NO.	6 Wert VALUE	Bezeichnung Schlumberger	Hersteller MANUFACT
REF. NO.	VALUE	PART. NO.	MANUFACT	61 11	BAS 16 GEG	830 552	VAL
C 50	100 nF ± 10 % 50 V-	813 375	-VAL				
			WAI	1			
C 51	47 nF ± 5 % 50 V-	813 371	YAL				
				L1	100 nH ± 5 %	821 215	STET
				L 2	120 nH ± 5 %	821 216	STET
D 1	74 F 168 SC	834 470	FAI	L3	10 µН ± 10 %	821 239	STET
D 2	NC 1648 P	834 381	NGT				
D 3	SP 8716 MP	834 447	PLES				
D 4	NC 145 158 P 1	834 498	NOT				
				R 1	3,3 kΩ <u>+</u> 2 %	804 743	VAL
				R 2	470 Ω <u>+</u> 2 %	804 733	VAL
				R 3	100 Ω <u>+</u> 2 %	804 725	VAL
				R 4	15 kΩ ± 2 %	804 751	VAL
61 1	BAV 99	830 491	VAL	R 5	3,9 kΩ ± 2 %	804 744	VAL
61 2	L SS 250	856 200	SIE	R 6	1 kQ + 2 %	804 737	VAL
G1 3	BBY 40 SEG	830 619	VAL				
61 4	BBY 40 GEG	830 619	VAL				
G1 5	BBY 40 GEG	830 619	VAL	R 9	100 Ω <u>+</u> 2 %	804 725	VAL
GT 6	BBY 40 GEG	830 619	VAL	R 10	680 Q ± 2 %	804 735	VAL
G1 7	BAV 99	830 491	VAL	R 11	2,2 kQ ± 2 %	804 741	VAL
61 8	BZX 84/C 3 V 3	830 496	VAL	R 12	27 kQ ± 2 %	804 754	VAL
G1 9	BAV 99	830 491	VAL	R 13	10 kg ± 2 %	804 749	VAL
61 10	BAS 16 GEG	830 552	VAL	R 14	10 Ω ± 2 %	804 713	VAL
07 06		Schlumberger Meßg	eräte GmbH		Schaltteillis		Liste besteht LIST CONSISTS
05 04		Ingolstädter Stra 8000 Münche	ве 67 а	Benennung DESCRIPTION			OF 3
	8088.69 25.5.88 Rödig 7088.45 2.4.87 Di		Name	Typ			SHEETS Blatt Nr.
01	6088.516.11.86	900 DATE	NAME etrich	Schlumberger PART. NO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SHEET NO
Aus- gabe	And: Mittlg. Nr. Tag Name	pearb.	101	Hierzu Schalt SEE CIRCUIT Gerät: 40	DIAGRAM 217 U51 3		4

		_										
1 Per	<u> </u>		2 West		-	3 Bezeichnu		4	5	6	7 Bezeichnung	8
Pos. REF. NO.			Wert VALUE			Schlumber PART. NO	ger	Hersteller MANUFACT	Pos. REF. NO.	Wert VALUE	Schlumberger PART. NO.	Hersteller MANUFACT
R 15	100	kΩ ,	<u> 2</u> %			804 761		VAL	T 1	BFR 93 A GEG	832 287	VAL
									Т 2	BC 860 B GEG	832 285	YAL
R 18	10	 kΩ	<u>.</u> 2 %			804 749)	VAL				
R 19	1		<u>+</u> 2 %			804 749		VAL				
R 20	†		<u> </u>			804 742		VAL				
R 21	 		<u> </u>			804 744		VAL	1			
R 22	†		<u>.</u> 2 %			804 753	}	VAL				
R 23			<u>+</u> 2 %			804 753	}	VAL				
R 24	22	kΩ .	<u>.</u> 2 %			804 753	}	VAL				
R 25	22	kΩ	<u>.</u> 2 %			804 753	}	VAL				
R 26	180	kΩ ,	2 %			804 764		VAL				
R 30	180	kΩ ;	<u>+</u> 2 %			804 764	•	VAL		•		
R 31	10	Ω	2 %			804 713		VAL				
R 32	22	kΩ ;	2 %			804 753	1	VAL				
R 33	100	kΩ	<u>.</u> 25 %			807 743		BOUR				
R 34	10	Ω	<u> 2 %</u>			804 713		VAL				
		·										
07		T			I			1		Sobolitic:III	isto	Liste besteht
06 05					Ing	nberger M olstädter	Straße 6	7a	Benennung	Schaltteill EL. PARTS LI Bestückte Leiter	IST	LIST CONSIS aus OF 3
04						8000 Mür	ichen 46		DESCRIPTION	Typ: FINE DECADE		Blatt SHEETS
02 01	6000				1986	Tag DATE	Nan NAN	AE .	Bezeichnung Schlumberger PART, NO	361 455 Sa	a	Blatt Nr. SHEET NO
Aus- gabe	And -Mittig		9.86 Tag	Le i	geschr bearb. gepr.	1.9.86	Dietri	<u>c</u> h	Hierzu Schaltpl SEE CIRCUIT (Gerät: 40			3

1		2			3		4	5		6		7		8
Pos. REF. NO.		Wert	-		Bezeichnung Schlumberge PART. NO,		Hersteller MANUFACT	Pos. REF. NO.		Wert VALUE		Bezeichnu Schlumber PART, NO	ger	Hersteller MANUFACT
A 1	NE 527	D			834 218		VAL	C 21	100 nF	± 10	\$ 50 V-	813 37	5	VAL
A 2	TL 072	CO			834 222		TEX	C 22	100 nF	± 10	\$ 50 V-	813 37	5	VAL
A 3	TL 072	α			834 222		TEX	C 23	10 nF	± 10	\$ 50 V-	813 33	2	VAL
			***					C 24	10 mF	± 10	\$ 50 V-	813 33	2	VAL
								C 25	18 pF	<u>±</u> 5	≴ 50 V-	813 22	26	VAL
		-			,			C 26	6,8 pF	± 0,2	25 pF 50	V- 813 22	11	VAL
C 1	10 nF	± 10 %	50 V-		813 332		VAL							
C 2	10 nF	<u>+</u> 10 %	50 Y-		8 13 332		VAL							
C 3	10 nF	± 10 %	50 V-		813 332		VAL	C 30	10 nF	10 %	50 V-	813 .33	12	VAL
C 4	10 µF	± 20 \$	16 V-		814 382		RŎO							
C 5	10 µF	± 20 %	16 V-		814 382		RÕO	C 32	10 nF	<u>+</u> 16 %	50 V-	813 33	32	VAL
C 6	10 µF	<u>*</u> 20 %	16 V-		814 382		RÖD	C 33	1 nF	± 5%	50 V-	813 24	17	VAL
								C 34	18 pF	± 5%	50 V-	813 22	26	VAL
				-				C 35	10 μF	± 20 %	16 V-	814 38	32	RÖD
C 10	1 nF	<u>+</u> 5%	50 V-		813 247		VAL							
C 11	18 pF	± 5 %	50 V-		81 3 226		VAL			,				
C 12	10 nF	<u>+</u> 10 %	50 V-		813 332		VAL							
C 13	22 pF	± 5%	50 V-		813 227		AYF	C 40	10 pF	<u>*</u> 57	50 V-	813 2	223	VAL
C 14	10 nF	<u>+</u> 10 %	50 V-		813 332		VAL	C 41	27 pF	<u>*</u> 59	50 V-	813 2	228	VAL
C 15	18 pF	± 5%	50 V-		813 226		VAL	C 42	15 pF	± 57	50 V-	813 :	225	VAL
C 16	10 nF	± 10 %	50 V-		813 332		VAL	C 43	1 μF	± 20 %	50 V-	813	390	VIT
C 17	100 pF	± 5 %	50 V-		813 235		VAL	C 44	47 pF	<u>*</u> 57	\$ 50 V-	813	231	VAL
C 18	100 nF	± 10 %	50 V-		81 3 375		VAL	C 45	470 pF	± 57	\$ 50 V-	813	243	VAL
	ļ							C 46	470 pF			813	243	VAL
C 20	18 pF	±5%	50 V-		813 226		VAL	C 47	<u> </u>		% 50 V-	813	332	VAL
07				Schlu	mberger M	eßgeräte	GmbH		S		tteilli			LIST CONSIS
05				1	olstädter	-		Benennung	p.		RTS LIS			aus 4 OF
04			-		8000 Mün	chen 46	3	DESCRIPTION		ADDING		piatte		Blatt
03			+	4001	Tag	Nar		Bezeichnung	77"					SHEETS Blatt Nr
01	7 0 88.45	2.4.8?	31	1986	DATE	NA	ME	Schlumberger PART NO		361	456 Sa			SHEET NO.
	6088.18		Pe-	geschr	2.9.86	Dietri	ch	Hierzu Schaltp		217	031 S			1
Aus- gabe	ÅndMittlg. Nr.	Tag	Name	bearb.	 		1	SEE CIRCUIT		1	-,. •			
ISSUE	MODIFIC. NO.	DATE	NAME	gepr	fugte Verwertu	-		Gerät:	4031			·····		

1	2	3	4	5	6	7	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC	r Pos.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFAC
		7 221.100.		L 1	6,8 µH <u>+</u> 10 %	821 237	STET
				L 2	0,33 µH ± 5 %	821 221	STET
C 50	100 nF ± 10 % 50 V-	813 375	VAL	L3	5,5 Windungen	821 925	MEO
C 51	100 nF ± 10 % 50 V-	813 375	VAL	L4	10 µH <u>+</u> 10 %	821 239	STET
C 52	100 nF ± 10 % 50 V-	813 375	VAL	L 5	0,47 µH ± 5 %		STET
C 53	10 nF ± 10 \$ 50 V-	813 332	VAL	L 6	6,8 µН ± 10 %	821 223	
C 54				1.0	ο,ο μπ + 10 μ	821 237	STET
	10 nF ± 10 \$ 50 V-	813 332	VAL				
C 55	100 nF ± 10 % 50 V-	813 375	VAL				
C 56	47 pf ± 5 % 50 V-	813 231	VAL	R 1	33 Q ± 2 %	804 719	VAL
				R 2	390 Ω ± 2 %	804 732	VAL
				R 3	22 2 ± 2 %	804 717	YAL
				R 4	2,7 kQ ± 2 %	804 742	YAL
				R 5	18 kQ <u>+</u> 2 %	804 752	VAL
01	NC 4044	834 679	TEX	R 6	10 kΩ ± 2 %	804 749	VAL
D 2	SP 8647 B	834 401	PLES				
				R 10	27 kΩ ± 2 %	804 754	VAL
				R 11	1 kΩ ± 2 %	804 737	VAL
61 1	BAS 16 GEG	830 552	VAL	R 12	27 kQ ± 2 %	804 754	VAL
61 2	BB 804-2	830 620	SIE	R 13	1,8 kQ ± 2 %	804 740	VAL
61 3	88 804-2	830 620	SIE	R 14	1,8 kΩ ± 2 %	804 740	VAL
61 4	LSS 250	856 200	SIE	R 15	3,3 kΩ ± 2 %	804 743	VAL
61 5	BAN 56 GEG	830 550	VAL				
07 06 05	s	chlumberger Meßgeräte	67a	Benennung DESCRIPTION	Schaltteillis EL. PARTS LIST	-	Liste besteht LIST CONSIS aus OF
04	8000 München 40			DESCRIPTION	Bestückte Leiterpl Typ: ADDING LOOP	a 1 (8	Blatt SHEETS
	088.56 15.11.86 Lei	986 Tag Nar DATE NAR	ME	Bezeichnung Schlumberger PART. NO	361 456 Sa		Blatt Nr. SHEET NO
Aus-	ĀndMittlg. be	schr. 2.9.86 Dietric	ch /	Hierzu Schaltpl SEE CIRCUIT ('
gabe	And -Mittig. Nr. Tag Name ODIFIC. NO. DATE NAME 9e	- 	G		DIAGRAM 217 031 S 4031		

	T	T	T .				
1	2	3	1 1	5	6	7	8
Pos.	Wert	Bezeichnung Schlumberger	Herstelle	r Pos.	Wert	Bezeichnung	Hersteller
REF. NO.	. VALUE	PART. NO,	MANUFAC	T REF. NO.	VALUE	Schlumberger PART, NO.	MANUFACT
							
R 20	100 Q ± 2 %	804 725	VAL				
	-		-				
R 21	2,7 kg + 2 %	804 742	VAL				
R ZI	2,1 KH ± 2 A	907 172	TAL				:
0.00	40.40 0.4	004 350	1744				
R 22	18 kQ ± 2 %	804 752	VAL				
				1			
R 23	10 kg + 2 %	804 749	VAL	R 50	18 kΩ ± 2 %	804 752	VAL
	-	 	 				
R 24	1 kg + 2 %	804 737	VAL	R 51	100 Q ± 2 %	804 725	VAL
			-			-	
R 25	1 kQ ± 2 %	804 737	VAL	R 52	10 kg + 2 %	804 749	VAL
	227	40. 171	,, <u>,,</u>		10 III E 17	001 117	
R 26	4,7 kQ ± 2 %	804 745	VAL	R 53	3,9 kΩ ± 2 %	804 744	VAL
R 20	7,1 KK 1 2 P	907 (7)	TAL	1 //	3,7 KM IL A	004 /44	YAL
	4 2 10 0 4	001 815	-	0.51	45 10 01	****	
R 27	4,7 kQ ± 2 %	804 745	VAL	R 54	15 kg ±2%	804 751	VAL
			1	1	_		
R 28				R 55	2,7 kQ + 2 %	804 742	VAL
			 	+			
R 29			1	R 56	1 kΩ <u>+</u> 2 %	804 737	VAL
		ļ	1				
R 30	390 Q + 2 %	804 732	VAL	R 57	1 kg + 2 %	804 737	VAL
	//v # I . P	VVT 17L	TAL.	" "	1 N# 14 P	1(1 +00	TAL
0.24	22 0 24	001 747	1041				ĺ
R 31	22 Q <u>+</u> 2 %	804 717	VAL				
R 32	33 Ω ± 2 %	804 719	VAL				
			†	-			
R 33	82 Q <u>+</u> 2 %	804 724	VAL	R 60	2,7 kΩ ± 2 %	804 742	VAL
	 		 				
R 34	68 Ω ± 2 %	804 723	VAL	R 61	56 kΩ <u>+</u> 2 %	80 4 758	VAL
					, <u></u>	44. 170	
R 35	330 Q ± 2 %	804 731	VAL	R 62	27 kQ ± 2 %	804 754	VAL
" "))0 × ± 2 ×	171	TAL	R 02	21 KY + 2 A	0U4 /24	VAL
0.26	40.10.04	004 840		2 (2	40 10 01		
R 36	10 kΩ ± 2 %	804 749	VAL	R 63	10 kQ + 2 %	804 749	VAL
					_		
				R 64	22 kΩ <u>+</u> 2 %	804 753	VAL
			+	-			
				R 65	39 kΩ <u>+</u> 2 %	804 756	VAL
				R 66	10 kQ + 2 %	804 749	VAL
				" 00	10 K# <u>T</u> Z A	004 147	YAL
R 40	10 10 24	004 740					
R 40	10 kQ ± 2 %	804 749	VAL				
	400 4 5 3	001.00-					-
R 41	100 Ω ± 2 %	804 725	VAL				
			-			-	-
R 42	680 Ω ± 2 %	804 735	VAL				
			ļ			 	
R 43	1 kQ + 2 %	804 737	VAL	R 70	10 kΩ <u>+</u> 2 %	804 749	VAL
			*/nL	" 10	ne <u>T</u> & /	007 (7)	17L
R 44	1,8 kΩ + 2 %	804 740	VAL				
. 44	1,0 KX ± 4 A	004 /40	VAL				
0.15	(00 0 0 0	001 777	,				
R 45	680 Ω ± 2 %	804 735	VAL	R 72	100 Ω ± 2 %	804 725	VAL
			+	+ -		1	
R 46	1,5 kΩ ± 2 %	804 739	VAL	R 73	1 kΩ ± 2 🛣	804 737	VAL
		<u> </u>		ليستسلب			
07			اا		Schaltteillist	te	Liste besteht LIST CONSISTS
06	S	chlumberger Meßgeräte	e GmbH		EL. PARTS LIST		
05		Ingolstädter Straße	67a	Benennung			OF 4
04		8000 München 40		DESCRIPTION	Bestückte Leiterpl	atte	
03			l		Typ: ADDING LOOP		Blatt SHEETS
02		Ten M-	me	Danaist - :			Blatt Nr.
01	7088_45 2.4.87 Dj 1		ME	Bezeichnung Schlumberger	361 456 Sa		SHEET NO
	1000-47			PART. NO			
1 11	1 - 4 Acres	2.7,00	iuii	Hierzu Schaltpla			3
Aus-		arb.	11/2 }	SEE CIRCUIT D	AGRAM (11 U) I 3		1
Aus- gabe	Nr. Tag Name	- 	707				
gabe		or.	39	Gerät:	1031		

1		2			3		4	5		6		7	8
Pos. REF. NO.		Wert VALUE			Bezeichnu Schlumber PART. NO	ger	Hersteller MANUFAC	1		Wert VALUE		Bezeichnung Schlumbergei PART. NO.	
R 74	2,2 k	Q ± 2 %			804 74	11	VAL						
R 75	680	Q ± 2 %			804 73	35	VAL						
R 76	1,2 kΩ	<u>+</u> 2%			804 73	38	VAL						
R 77	390	Q ± 2 %			804 73	32	VAL						
													·
T 1	BFR 9	3 A			832 287	1	YAL						
T 2	BFR 9	3 A			832 287	7	VAL						
13	BC 86	0 В			832 285	j	VAL						
T 4	BFR 9	3 A			832 287	1	VAL						
T 5	BFR 9	3 A			832 287	1	VAL						
T 6	BFR 9	3 A			832 287		VAL						
						* •							
		<u>-</u>											
	ļ												
T 10	BC 860	В			832 285	j	VAL	-					
T 11	BC 860	8			832 285	; 	VAL						
	-												
	-												
								_					
	-												
07			1							Cob-W	_:0:- *		Liste besteht
06		-		1	mberger M		1			Schaltte EL. PART		e 	LIST CONSIS
05 04 03					olstädter 8000 Mür			Benennung DESCRIPTION	Typ:	Mestückte Le ADDING LOG		itte	OF 4
02				1096	Tag	Na		Bezeichnung Schlumberger	13pi	361 456			SHEETS Blatt Nr. SHEET NO
01	6088.18	9.9.86	81-	1986 geschr.	2.9.86	Dietr		Schlumberger PART, NO.					4
Aus- gabe	ÅndMittlg. Nr.	Tag	Name	bearb.	2.7.00	21611		Hierzu Schaltpl SEE CIRCUIT [217 031	S		
	MODIFIC. NO.	DATE	NAME	gepr.		2	.4	Gerāt: 40	শ]

1	2	3	4	5	6	7 .	8
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger PART: NO,	Herstelle MANUFAC	1	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
A 1	TL 072 CD	834 222	TEX	C 21	22 pf ± 5 % 50 V-	813 227	VAL
A 2	NE 5534 AD	834 209	VAL	C 22	4,7 nF ± 5 \$ 50 V-	813 255	VAL
A 3	TL 071 CO	834 227	TEX	C 23	4,7 nF ± 5 % 50 V-	813 255	VAL
A 4	TL 072 CD	834 222	TEX	C 24	10 µF ± 20 х 16 У-	814 382	RŎD
		:		C 25	100 nF ± 10 \$ 50 V-	813 375	VAL
				C 26	18 pF ± 20 % 16 V-	814 382	RÖO
				C 27	2,7 nF ± 5 % 50 V-	813 252	VAL
C 1	10 pF ± 20 % 16 V-	814 382	RÖD				-
C 2	100 aF ± 18 \$ 50 V-	813 375	VAL				
C 3	109 mF ± 10 \$ 50 V-	813 375	YAL	C 30	150 pf ± 5 % 50 V-	813 237	YAL
-Ç 4	100 mF ± 10 ₺ 50 V-	813 375	VAL	C 31	150 pF ± 5 % 50 V-	813 237	VAL
C 5	150 pF ± 5 \$ 50 V-	813 237	VAL	C 32	18 pF ± 20 % 16 V-	814 382	RÕO
C 6	220 pF 👱 5 🕻 50 V-	8 13 239	YAL	C 33	470 pF ± 5 % 50 V-	813 243	VAL
				C 34	100 nF ± 10 % 50 V-	813 375	VAL
				C 35	10 nF ± 10 % 50 V-	813 332	VAL
	, , , , , , , , , , , , , , , , , , , ,			C 36	100 nF ± 10 % 50 V-	813 375	VAL
C 10	1 nF + 10 % 50 V-	813 320	VAL	C 37	100 nF ± 10 % 50 V-	813 375	VAL
C 13	100 nF ± 10 % 50 V-	813 375	YAL	C 40	10 nF ± 10 % 50 V-	813 332	YAL
C 14	10 pf ± 20 % 16 V-	814 382	RÖD	C 41	6,8 pF ± 0,25 pF50 V-	813 2 21	YAL
C 15	10 μF ± 20 х 16 V-	814 382	RÕD	C 42	10 nF ± 10 % 50 V-	813 332	VAL
				C 43	6,8 pF ± 0,25 pF50 V-	813 221	VAL
				C 44	10 nF ± 10 % 50 V-	813 332	VAL
				C 45	10 nF ± 10 % 50 V-	813 332	VAL
				C 46	10 nF ± 10 % 50 V-	813 332	YAL
C 20	10 µF ± 20 % 16 V-	814 382	RŎĐ	C 47	1 nF ± 10 % 50 V-	813 320	YAL
07	s	chlumberger Meßgeräte	GmbH		Schaltteillist EL. PARTS LIST	е	Liste besteht LIST CONSISTS
05		Ingoistädter Straße 6 8000 München 46		Benennung DESCRIPTION	Bestückte Leiterplat Typ: Frequency Medulator	ite	OF 5 Blatt
	7088,66 27,5,87 Me.	7ag Nai 986 DATE NAI		Bezeichnung Schlumberger	361 457 Sa		SHEETS Blatt Nr. SHEET NO
6	088,18 10,9,86 Di	ache 10.9.86 Dietr	ica	PART. NO. Hierzu Schaltpi			1
gebe	Nr. Tag Name	pr.	h		4031		1

			T	7 - 1		7	8	
1	2	3		5	6	Bezeichnung		
Pos. REF. NO.	Wert VALUE	Bezeichnung Schlumberger	Hersteller MANUFAC		Wart VALUE	Schlumberger PART, NO.	Hersteller MANUFACT	
	****	PART. NO.		-		PART. NO.		
				G 75	100 µF ± 20 % 16 V-	814 394	RÕO	
C 49	10 pF <u>+</u> 5 % 50 V-	813 223	VAL	C 76	10 µF ± 20 % 16 V-	814 382	RÖÐ	
C 50	22 pF ± 5 % 50 V-	813 227	YAL	C 77	22 pF ± 20 % 16 V-	814 376	RÖD	
C 51	12 pF ± 5 \$ 50 V-	813 224	VAL	C 78	22 µF ± 20 % 16 V=	814 376	RÕD	
C 52	18 pF ± 5 \$ 50 V-	813 226	YAL	C 79	10 µF <u>+</u> 20 % 16 V-	814 382	RÖÐ	
C 53	100 of ± 10 \$ 50 Y-	813 375	YAL	C 80	47 pF ± 29 % 16 V-	814 386	RÕĐ	
C 54	100 nF ± 10 % 50 Y-	813 375	VAL	C 81	10 µF ± 29 % 16 V-	814 382	RÕĐ	
C 55	10 of ± 10 % 50 V-	813 332	VAL	C 82	10 pF ± 20 % 16 V-	814 382	RÕĐ	
C 56	47 µF + 20 % 16 V-	814 386	RÕO					
C 57	3,9 pF ± 0,025 pF 63 V-	810 701	STET	C 84	47 pF ± 5 % 50 V-	813 23 ₁	VAL	
C 58	4,7 pF ± 0,025 pF 63 V-	810 702	STET	C 85	47 pF ± 5 % 50 V-	813 231	VAL	
C 59	2,7 pF ± 0,025 pF 63 V-	810 700	STET					
C 60	47 pF ± 5 % 50 V-	813 231	VAL					
C 61	10 nF ± 10 % 50 V-	813 332	VAL					
C 62	10 nF ± 10 % 50 V-	813 332	VAL					
C 63	10 pF ± 20 % 16 V-	814 382	ROD	C 90	10 pF ± 20 ₺ 16 V-	814 382	RÖÐ	
C 64	68 pF ± 5 % 50 V-	813 233	VAL	C 91	10 nF ± 10 % 50 V-	813 332	VAL	
				C 92	10 pF ± 20 % 16 V-	814 382	RÖÐ	
C 66	10 µF ± 20 ₺ 16 V-	814 382	RÖD	C 93	10 nF ± 10 % 50 V-	813 332	VAL	
				C 94	10 pF ± 20 % 16 V-	814 382	RÖD	
				C 95	10 nF ± 10 % 50 V-	813 332	VAL	
				C 96	47 pF ± 5 % 50 V-	813 231	VAL	
C 72	4,7 nF ± 5 % 50 Y-	813 255	YAL					
C 73	10 pf ± 20 % 16 V-	814 382	RÕO	C 100	47 pF ± 5 % 50 V-	813 231	VAL	
C 74	100 µF ± 20 % 6,3 ₩-	814 394	RÕĐ					
07		chlumberger Meßgerä	in Carri		Schaltteillis	te	Liste besteht LIST CONSIST	
06	— 	en uges webgera Ingoistädter Straße		Benennung	EL PARTS LIST		of 5	
04		8000 München 4		DESCRIPTION	Bestlickte Leiterpla Typ: Frequency Modulate		Blatt	
	8088.41 11.3.88 Mo.				-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SHEETS	
04	7088_66 27.5_87 Me.		lomo AME	Bezeichnung Schlumberger	Blatt Nr. SHEET NO.			
+	(1000-11 107-01 111	och 18.9.86 Dietr	rich	PART. NO.		_ 2		
Aug-	And-Mittig. be	arb.	217 821 5					
SUE	Nr. Tag Name MODIFIC.NO. DATE NAME 94	pr.	me	Gerik:	4031			

		·	1			7	
Pos. REF. NO.	2 Wert VALUE	3 Bezeichnung Schlumberger	Hersteller MANUFAC	Pos.	6 Wert · VALUE	Bezeichnung Schlumberger	Hersteller MANUFACT
D 1	MC 145 106 P	834 448	MOT	L 1	22 µH ± 10 %	821 318	SIE
D 2	L 5 H 0190 S	835 100	LSI	L 2	0,33 pH ± 5 %	821 221	STET
03	AD 573 JN	834 132	ANAL	L 3	0,33 µН ± 5 %	821 221	STET
D 4	74 HC 123 T	834 483	VAL	L4	1 μH ± 15 %	821 310	SIE
		834 430	VAL	1.5	5,5 Wdg.	821 925	NEO
D 5	.74 HCT GOT		VAL	L 6		821 239	STET
D 6	NE 527 D	834 218		10	10 µН ± 10 %	921 237	JICI
" ס	PC 74 HCT 390 T	834 438	VAL				
D 8	NC 120 15 P	834 475	MOT	 			
D 9	NC 145 106 P	834 448	MOT				
D 10	TL 431 CD	834 247	MOT	L 10	10 µН ± 10 %	821 239	STET
				L 11	1 µН ± 15 %	821 316	SIE
61 1	BBY 40 GEG	830 619	VAL	Qu 1	3,263745 MHz	853 063	TELEQ
61 2	98Y 40 GEG	830 619	VAL				
·				R 1	8,2 kΩ ± 2 ≸	804 748	YAL
61 4	88 804-2	830 620	SIE	R 2	15 kΩ <u>+</u> 2 🕻	804 751	VAL
61 5	BB 8 04- 2	830 620	SIE	R 3	47 kΩ ± 2 %	804 757	VAL
				R 4	560 Q ± 2 ≸	804 734	VAL
G1 8	BAS 16 GEG	830 552	VAL				
				R 7	10 kΩ ± 2 %	804 749	VAL
61 10	LS\$ 250	856 200	SIE	R 8	10 kg ± 2 %	804 749	VAL
				R 10	220 kQ ± 2 %	804 765	VAL
				R 11	10 kg ± 2 %	804 749	YAL
				R 12	1 kg + 2 %	804 737	VAL
07	5	Schiumberger Meßgerä	te GmbH	_	Schaltteillis		Liste bestieht LIST CONSISTS
05 04		Ingoistädter Straße 8000 München 4		Benennung DESCRIPTION	Restückte Leiters	latte	OF 5
	7088_44 1_4_87 0i		lame AME	Bezeichnung Schlumberger			SHEETS Blatt Nr. SHEET NO
O1	0000 10 100/200 01			PART NO. Hierzu Schalts	plan out to		3
gabe	Nr. Tag Name	earb	19	SEE CIRCUIT Geritt:	4031		

1						T	
	2	3	1 4	5	6	7	- 8
Pos. REF.NO.	Wert VALUE	Bezeichnung Schlumberger	Herstelk MANUFAC		Wert VALUE	Bezeichnung Schlumberger	Hersteller MANUFACT
		PART. NO.			YALUE	PART. NO.	
R 13	10 kg ± 2 ≸	804 749	VAL	R 40	4,7 kg ± 2 %	804 745	VAL
0.44	56 10 24	001 350	W41	10.4		201 515	
R 14	56 kg ± 2 %	864 758	VAL	R 41	4,7 kg ± 2 %	804 745	VAL
R 15	18 kg + 2 %	804 752	VAL	R 42	100 2 ± 2 ≸	804 725	VAL
0.46	60.10	AN 35A		1			
R 16	68 kΩ ± 2 ≸	804 759	VAL	R 43	10 kg ± 2 \$	804 749	VAL
				R 44	22 2 ± 2 1	804 717	VAL
				0.45	2210 04	801 713	
			-	R 45	3,3 kΩ ± 2 %	804 743	VAL
R 19	2 kΩ ± 25 ≸	807 738	BOUR	R 46	278 2 ± 2 1	804 739	VAL
R 20		000 7/4	BOUR	0.42	2010 01	001 711	,,,,
A 20	20 kg ± 25 %	807 741	DUUK	R 47	3,9 kQ ± 2 %	804 744	VAL
R 21	22 kg ± 2 %	804 753	VAL	R 48	3,9 kQ + 2 %	804 7%	VAL
R 22	100 kg ± 25 %	907 743	BOUR	R 49	39 kΩ <u>+</u> 2 %	804 756	VAL
	100 M		000		77 12 7 7	004 770	1775
R 23	1 kg + 2 \$	804 737	YAL	R 58	100 Q ± 2 %	804 725	VAL
R 24	1 kg ± 2 %	804 737	YAL	R 51	18 kQ ± 2 %	804 752	YAL
		-	 	+			
R 25	1 kg ± 2 %	804 737	VAL	R 52	1,8 kg ± 2 %	804 740	VAL
R 26	10 kΩ ± 2 ≸	804 749	VAL	R 53	10 kg + 2 %	804 749	VAL
	 						
R 27	100 Q ± 2 %	804 725	VAL	R 54	1 kQ ± 2 %	804 737	VAL
				R 55	1 kQ ± 2 %	804 737	VAL
			†	1			
R 30	1 kg + 2 %	804 737	VAL		·		
~			1,,,,	1			
R 31	2,2 9 + 2 \$	804 705	VAL				
R 32	1 kQ ± 2 ≸	804 737	YAL	į		:	
R 33	1 kg + 2 %	804 737	VAL	R 60	220 0 2 4	901 724	WAS
K))	1 KB 7 V	171	VAL	K 00	330 ♀ ± 2 ≸	804 731	VAL
R 34	27 kg ± 2 %	804 754	VAL	R 61	15 kΩ ± 2 ≸	804 751	VAL
R 35	1 kg + 2 %	804 737	YAL	R 62	3,9 kΩ ± 2 ≸	804 744	VAL
	<u> </u>					VOT 177	
R 36	27 kg ± 2 %	804 754	VAL	R 63	270 Q ± 2 %	804 730	VAL
				R 64	1,5 kQ ± 2 %	804 739	YAL
			 	+			-
		1		R 65	1 kΩ ± 5 %	807 737	BOUR
				R 66	470 Q: ± 2 \$	804 733	VAL
07	<u> </u>		 		Schaltteillist	<u> </u>	Liste besteht
06		Schlumberger Meßgerät	e GmbH		EL. PARTS LIST	C	LIST CONSISTS
	8088.41 11.3.88 Mo.	ingoistädter Straße 8000 München 4		Benennung DESCRIPTION	Bestückte Leiterpla	itte	OF OF
	8088_21 10_2_88 No_ 7088_91 16_7_87 Lei	OUUU MUNCHINI 4			Typ: Frequency Modulator	•	Blatt SHEETS
02	7088,56 30,4,87 Di			Bezeichnung			Blatt Nr. SHEET NO.
	/U00_44 1.4.0/ U1	oschr. 10,9.86 Dietr	ME rich	Schlumberger PART. NO.	361 457 Sa		SHEET NO.
Aus-	And-Mittig. b	earb.	1.	Hierzu Schaltpl SEE CIRCUIT (4
ISSUE 1	Nr. Tag Name MODIFIC NO DATE NAME ⁹	юрг	9	Gerät:	4031		7

1	2	3	4	5	6	7	8
			•				
Pos. REF. NO.	Wert	Bezeichnung Schlumberger	Herstelle MANUFA(Wert VALUE	Bezeichnung Schlumberger	Hersteller MANUFACT
		PART. NO,		, ner 140:	VALUE	PART. NO.	III/AIIQI ACT
R 67	2,7 kQ + 2 %	804 742	VAL	R 94	10 kΩ ± 2 %	804 749	VAL
				R 96	470 kg ± 2 %	804 769	VAL
	 		-	1" /"	He was Trib	001 707	-
8 70	10 kg + 2 %	804 749	VAL				
R 71	10 kg + 2 %	904 740	VAL				
A [1	IOKE 125	804 749	VAL				
R 72	39 kΩ ± 2 %	804 756	VAL				
				1			
R 73	3,9 kΩ ± 2 %	804 744	VAL	R 100	22 kg ± 2 \$	804 753	VAL
R 74	10 kg ± 2 %	804 749	VAL	R 101	2,2 kQ + 2 \$	804 741	VAL
	†						-
R 75	10 kg ± 2 %	804 749	VAL	R 102	1 kΩ ± 2 %	804 737	AVF
							-
R 77	560 Q ± 2 %	804 734	AYF				
R 78	4,7 kg ± 2 %	804 745	VAL				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-
				T 2	BC 850 B	832 284	VAL
	•			Т 3	BC 869 B	832 285	VAL
				+		0)2 20)	TAL
R 81	1 kQ ± 2 \$	894 737	VAL	T 4	BFR 93 A	832 287	VAL
R 82	4,7 kΩ <u>+</u> 2%	804 745	VAL	T 5	BFR 93 A	832 287	WAI
N OL	T,1 N, X C/0	004 747	TAL	' '	DFR 7) A	8)£ 281	VAL
R 83	5,6 kQ + 2%	804 746	VAL	T 6	BC 850 B	832 284	YAL
R 84	22 40 2 4	001 755	WAL	1	22 25 2		<u> </u>
N OT	33 kΩ ± 2 %	894 755	VAL	17	BC 850 B	832 284	VAL
R 85	33 kQ ± 2 ≸	804 755	YAL				
206	20 10 2 4	004 750	Mai		,. <u>,.,</u>		
R 86	22 kg ± 2 %	804 753	Ast	1			
R 87	100 kQ + 25 %	807 743	BOUR	T 10	SST 175	832 288	SILI
	_			 		•	
R 88	1 kΩ <u>+</u> 25 %	807 737	BOUR	T 11	BC 850 B	832 284	VAL
R 90	10 kg + 2 %	804 749	VAL				
R 91	190 kg + 2 %	804 761	VAL				
	_						
R 92	10 kΩ ± 2 %	804 749	YAL				
R 93	10 kg + 2 %	804 749	VAL				
07					Schaltteillist		Liste besteht
06		Schlumberger Meßgeräte	GmbH			5	LIST CONSISTS
06		Ingolstädter Straße 6		Benennung	EL. PARTS LIST	••	OF 5
04	7088. A1.4 25. 8.87. ABH	8000 München 46		DESCRIPTION	Bestückte Leiterpla Typ: Frequency Medulator		Blatt
	1000 (6 27 E 07 Ha	gga Tag Nam		Bezeichnung	1357 LLedonich Mostifical		SHEETS Blatt Nr.
01	7006_44 1_4_87 Di	DATE NAM	E	Schlumberger PART. NO.	361 457 Sa		SHEET NO
	6088,18 10.9.86 Bi o	mchr. 10,9,86 Dietr	ick	Hierzu Scheltple		· · · · · · · · · · · · · · · · · · ·	5
gabe	Nr. Tag Name	Marb.	10	SEE CIRCUIT DI	AGRAM		4
ISSUE N	ODIFIC. NO. DATE NAME P	ът	17	Gerät:	1031		

The electronic attenuator consists of the individual attenuators B2/20 dB, B3/20 dB, B4/30 dB, B5/30 dB with the associated lifting magnets and the electronic drive plus a switch selector.

The coils are on +5 V on one terminal.

The switching transistors take the other terminal of the relay coil to ground (holding state).

For energizing the second terminal of the coil is not switched to ground but to the plate of the electrolytic capacitor charged to -15 V. The current pulse is the result of V_Q , R_{COII} , $R_{\text{CETswitch}}$ and R_{Vcharge} . Latch and PIA form the digital interface.

Driving:

The data lines 10, 11, 12, 13 switch the four attenuator magnets to hold ($^{\triangle}$ High) or release ($^{\triangle}$ Low).

Data line 14 actuates the switch selector.

If magnets attract from the idle state, data line 9 is also to be switched High for 20 ms (= starter, Clock $\stackrel{\triangle}{=}$ control line 8)

- 608224

 Ref. No. 226 031 F
 Sub Attenuator
 Date № 8.86

 Type 4031
 Unit
 Sheet 1/1

Schlumberger

Functional Description

b 5 4 3

- 1. Leiterplatte gereinigt
- 2. Dämpfungschips mit Leitkleber 761 016 auf Leiterplatte geklebt(hierzu 099 068V) und unter leichtem Druck 1 Stunde bei 120°C ausgehärtet
- 3. Ultraschall gereinigt
- 4. Staubfrei verpackt

51 016 auf 068V) und pei 120°C ausgehärtet

= Kontrollmaß

10				Rohteil	Freima		Maßstati	Cablumbaras Magazzäta Cmbll
09]	inerar	121611		Schlumberger Meßgeräte GmbH
98]	1			Ingolstädter Straße 67 a 8000 München 46
07						0,2	つ に・4	8000 Munchen 46
06				Werkstoff	in and the	J, Z	[Z,D]	
05				j	1		·	Bestückte Leiterplatte
04]				•
03				<u>L</u>	<u> </u>			Typ:ATTENUATOR
02	8088,30	24.2. 88	Reinh.	Oberflache	1986	Datum	Name	244 484
	6088.31]	gez	15.10.	Staffler	361 171
Aus-	Andg -	Datum	Name	t			10%	
gabe	Mittig	o a to			g e pr		200	Gerät:4031/226 031

Diese Zeichnung ist unser Eigentum Vervielfältigung unbefügte Verwertung Mitteilung an andere ist strafbar und schadenersatzpflichtig

6 5 4

				_) -	
		10				Re
		09				ł
		80				ł
		.07				
		06				w
		05				1
		04				ı
		03				L
	verw. in: 226 031	02				О
		01	6088.31	15.10.86	Stall	l
tionierung	Gerät : 4031	Aus- gabe	Ändg. Mittig.	Datum	Name	L
6 5	4			Diese	Zeichnu	ing

1	2	3	4	5	6	7	8
Pos. REF. NO	Wert VALUE	Bezeichnung Schlumberger PART. NO,	Herstelle MANUFAC	r Pos.	Wert VALUE	Bezeichnung Schlumberger PART. NO.	Hersteller MANUFACT
1	Bestückte Leiterplatte	361 171					
	hierzu	361 171 Sa					
1	Bestückte Leiterplatte	361 420					
	hierzu	361 420 Sa					
Bu 44	22 SMA - 50 - 0 - 3	886 295	SUHN				
Bu 46	22 SMA - 50 - 0 - 3	886 295	SUHN				
Bu 49	22 MCX - 50 - 0 - 2	886 185	SUHN				
Ris 1							
R1s 2							
R1s 3	- Hubmagnet	300 650	SCHL				
Rls 4							
R1s 5							
	,						
						T.	into h
07	s	chlumberger Meßgerät			Schaltteillist EL. PARTS LIST	i	iste besteht IST CONSISTS
05		Ingolstädter Straße 8000 München 4		Benennung DESCRIPTION	RF -ATTENUATOR		OF] Blatt
03	1	Tag N 986 DATE N	ame AME	Bezeichnung Schlumberger			SHEETS Blatt Nr. SHEET NO.
01 - 6	6088.31 16.10.86 Staff 1			PART, NO.	226 031 Sa		,
gabe	Nr. Tag Name	earb.	ti	SEE CIRCUIT Gerät:	DIAGRAM 226 031 S 4031		1

1	erger '
REF. NO. VALUE Schlumberger PART. NO. MANUFACT REF. NO. VALUE Schlumberger PART. B2 20 dB 804 555 TU TU	erger '
B2 20 dB 804 555 TU 8 B3 30 dB 804 561 TU 8 B4 30 dB 804 561	
B3 30 dB 804 561 TU B4 30 dB 804 561	
B3 30 dB 804 561 TU B4 30 dB 804 561	
B3 30 dB 804 561 TU B4 30 dB 804 561	
B3 30 dB 804 561 TU B4 30 dB 804 561	
B3 30 dB 804 561 TU TU	
B4 30 dB 804 561 TU	
64 30 db 804 301	
B5 20 d8 804 555 TU	
O7 Coholttoillioto	Liste besteht
Schlumherger MeRgeräte GmhH SCHaitteiliste	LIST CONSIST:
05 Ingolstädter Straße 67a	aus OF
04 8000 München 46 DESCRIPTION BESTÜCKTE Leiterplatte	Blatt
O3 Typ: Attenuator	SHEETS
1ag Name Bezeichnung	Blatt Nr. SHEET NO.
- 60 88.10 20. 7. 80 Eq. geschr. 18.10.85 DAC	
Aus- And-Mittlg. Schaltplan SEE CIRCUIT DIAGRAM 226 031 S	1
ISSUE MODIFIC.NO. DATE NAME 9epr. Gerät: 4031	

	T :	-			1.			-	
Pos. REF. NO.	Wert VALUE		Bezeichni Schlumbe PART. N	rger	teller Pos	1	6 Wert VALUE	7 Bezeichnung Schlumberger PART, NO.	Hersteller MANUFACT
					R 3	1,50 kg	1 ± 1 %	802 039	RÖD
					R 4	47 Ω ±	10 %	805 123	DRAL
					R 5	33,2 ks	1 2 1 %	802 055	RÖD
Bu 73	in K 73				R 6	681 Ω	1 1 %	802 035	RÖD
C 1	2200 μF +50% -10%	25٧-	814 16	6 S1	E				
C 2	10 nF · <u>+</u> 10%	50V -	813 11	5 ST	ET R 10	33,2 kΩ	± 1 %	802 055	RÖD
					R 11	681 Ω	± 1 %	802 035	RÖD
					R 12	33 , 2 kΩ	± 1 %	802 055	RÖD
					R 13	681 Ω	± 1 %	802 035	RÖD
D 1	MM 74 C 374		834 330	O NA	R 14	33 , 2 kΩ	± 1 %	802 055	RÖD
					R 15	681 Ω	±1%	802 035	RÖD
					R 16	33,2 kΩ	± 1%	802 055	RÖD
61 1	1 N 4148		830 240) 17	R 17	681 Ω	<u>+</u> 1%	802 035	RÖD
61 2	1 N 4148		830 240) IT	Г				
61 3	1 N 4148		830 240) IT	г Т1	BC 550	0 B	832 127	SIE
G1 4	1 N 4148	,	830 240) 111	T 2	BD 676	5	832 309	SIE
G1 5	BYS 26		830 027	' im	г Т3	BC 635	5	832 129	SIE
G1 6	1 N 4148		830 240	ІП	T 4	BC 635	5	832 129	SIE
					T 5	BC 635	5	832 129	SIE
K 73	Kabelbaum CABLE HARNESS		384 742	sch	IL T6	BC 635	; ;	832 129	SIE
					т 7	BC 635	1	832 129	SIE
R 1	2,21 kΩ ± 1 %		802 041	RÖD					
R2	4,75 kΩ ⁺ 1 %		802 045	RÖD					
07 06 05	Schlumberger Meßgeräte Ingolstädter Straße 6			-	Benennung	e	Liste besteht LIST CONSISTS aus OF		
04			8000 Mün		DESCRIPTION	, Bestüc : ATTENUAT	kte Leiterplatte OR CONTROL		Blatt , SHEETS
02	6088,31 15,10,86 Sta	198	DATE	Name NAME	Bezeichnung Schlumberg PART, NO.		36 1 420 Sa		Blatt Nr. SHEET NO.
Aus- gabe	60 88.10 20, 8.86 4 AndMittle. Nr. Tag Nam MODIFIC NO. DATE NAM	beart		Le	Hierzu Scha SEE CIRCU Gerät:		226 031 S 4031	,	1