MATEMATIKA ANGOL NYELVEN MATHEMATICS

KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA STANDARD LEVEL FINAL EXAMINATION

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ MARKSCHEME

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM MINISTRY OF EDUCATION AND CULTURE

Important Information

Formal requirements:

- 1. The papers must be assessed in **pen and of different colour** than the one used by the candidates. Errors and flaws should be indicated according to ordinary teaching practice.
- 2. The first one among the shaded rectangles next to each question contains the maximal score for that question. The **score** given by the examiner should be entered into the other **rectangle**.
- 3. **In case of correct solutions**, it is enough to enter the maximal score into the corresponding rectangle.
- 4. In case of faulty or incomplete solutions, please indicate the corresponding partial scores within the body of the paper.
- 5. Nothing, apart from the diagrams, can be evaluated if written in pencil.

Substantial requirements:

- 1. In case of some problems there are more than one marking schemes given. However, if you happen to come across with some **solution different** from those outlined here, please identify the parts equivalent to those in the solution provided here and do your marking accordingly.
- 2. The scores in this assessment **can be split further**. Keep in mind, however, that the number of points awarded for any item can be an integer number only.
- 3. In case of a correct answer and a valid argument the maximal score can be awarded even if the actual solution is **less detailed** than that in this booklet.
- 4. If there is a **calculation error** or any other flaw in the solution, then the score should be deducted for the actual item only where the error has occured. If the candidate is going on working with the faulty intermediate result and the problem has not suffered substantial damage due to the error, then the subsequent partial scores should be awarded.
- 5. If there is a **fatal error** within an item (these are separated by double lines in this booklet), then even formally correct steps should not be given any points, whatsoever. However, if the wrong result obtained by the invalid argument is used correctly throughout the subsequent steps, the candidate should be given the maximal score for the remaing parts, unless the problem has been changed essentially due to the error.
- 6. If an **additional remark** or a **measuring unit** occurs in brackets in this booklet, the solution is complete even if the candidate does not mention it.
- 7. If there are more than one correct attempts to solve a problem, it is the **one indicated** by the candidate that can be marked.
- 8. You should **not give any bonus points** (points beyond the maximal score for a solution or for some part of the solution).
- 9. You should not reduce the score for erroneous calculations or steps unless its results are actually used by the candidate in the course of the solution.
- 10. There are only 2 questions to be marked out of the 3 in part II/B of this exam paper. Hopefully, the candidate has entered the number of the question not to be marked in the square provided for this. Accordingly, this question should not be assessed even if there is some kind of solution contained in the paper. Should there be any ambiguity about the student's request with respect to the question not to be considered, it is the last one in this problem set, by default, that should not be marked.

I.

1.		
$\frac{223650}{210000} = 1.065$	1 point	
The annual interest was 6.5 %.	1 point	
Total:	2 points	

3.		
Finding the roots with the quadratic formula: $x_1 = 7$ and $x_2 = -5$.	2 points	
Checking.	1 point	
Total:	3 points	

4.		
One hour \leftrightarrow 30°, thus the angle of the hands is 150°.	2 points	
Total:	2 points	

5.		
a) True.	1 point	
b) Cannot be known.	1 point	
Total:	2 points	

7.			
60°		1 point	Award a maximum of l point if other angles are
240°			listed, too.
	Total:	2 points	

10.	
The number of all cases: 6.	1 point
The number of favourable cases: 2 (3 and 6).	1 point
The probability is $2/6 = 1/3$.	1 point
Total:	3 points

11.		
Mode: 24°.	1 point	
Median: 23°.	1 point	
Total:	2 points	

12.		
$V = r^2 \cdot \pi \cdot m = 11^2 \cdot \pi \cdot 25 \text{ cm}^3 = 9.5 \text{ litres}$	3 points	Formula, substitution and conversion are worth 1 point each.
Total:	3 points	

II/A

13. a)		
Stating the domain $x \neq 2$, or checking by substitution.	1 point	
7 = -7 + 3.5x	1 point	
x = 4, which is an integer.	1 point	
Total:	3 points	

13. b)		
The fraction is positive if (and only if) $2 - x > 0$.	1 point	
Hence $x < 2$, and x is an integer.	2 points	
Total:	3 points	0 points for multiplying by $(2-x)$ without
	•	investigating the sign.

13. c)		
The denominator must be a factor of 7.	2 points	Also due if this idea only becomes clear from the way the solution is written down.
Thus $2 - x = 1$ or 7,	1 point	
or $2 - x = -1$ or -7 ,	1 point	
Hence x may be: -5 ; 9; 1; 3.	2 points	
Total:	6 points	Award a maximum of 4 points if only positive factors are considered.

14. b)		
The radii of the circles in cm are r and $R = r + 8$	1 point	
The legs of the right-angled triangle OAE are r and r , and its hypotenuse is R .	1 point	The point is also due if this idea is only shown in the diagram.
The Pythagorean theorem applied to the right-angled triangle OAE : $(r + 8)^2 = 2r^2$.	2 points	
$r^2 - 16r - 64 = 0$	2 points	
By substitution into the quadratic formula:	1 point	
the negative root $8(1-\sqrt{2})$ is not a solution,	1 point	
thus the lengths of the radii of the circles are $r = 8(1 + \sqrt{2}) \approx 19.3$ cm, and	1 point	The results should also be accepted if the
$R = r + 8 = 8(2 + \sqrt{2}) \approx 27.3 \text{ cm}.$	1 point	approximate values and the unit are not stated.
Total:	10 points	

15. b)		
Let x be the number of runners in the intersection of		
the three sets, and let $x + y$ be the number of them	2 points	
training for any pair of races.		
From the number of 100-metre runners: $x + 2y = 8$	2 points	
For those outside the 100-m set: $4 + y + 7 = 14$.	2 points	
From the second equality: $y = 3$, and from the first	2 point	
one: $x = 2$.	3 point	
Thus there are 5 runners in the intersection of each	1 noints	
pair of sets.	1 points	
Total:	10 points	

II/B

16. b)		
The point <i>P</i> lies on the line: $5 = \frac{1}{2} \cdot 2 + 4$	1 point	
The slope of the perpendicular line is –2.	1 point	
y = -2x + 9	2 points	
Total	4 points	Award a maximum of 3 points for simply reading the answer from the diagram.

16. c)				
$\begin{vmatrix} \frac{1}{2}x + 4 = y \\ 4x - 3y = -17 \end{vmatrix}$	Solution:		2 points	
x = -2;	y = 3	A(-2;3)		

$ \begin{vmatrix} -2x + 9 &= y \\ 4x - 3y &= -17 \end{vmatrix} $	Solution:			2 points	
x=1;	y = 7	B (1; 7)			
			Total:	4 points	

16. d)		
$PA = \sqrt{20}$; $PB = \sqrt{5}$	2 points	It is also possible to
The area of the triangle is $\frac{\sqrt{20} \cdot \sqrt{5}}{2} = 5$ units.	2 points	calculate from the hypotenuse.
Total:	4 points	

16. e)		
The centre of the circle is the midpoint of the hypotenuse of the right-angled triangle.	1 point	
Its coordinates are $(-0.5; 5)$	2 points	
Total:	3 points	

17. b)		
Each face of the "tent" is an isosceles triangle with sides of a , b , b . The altitude drawn to the base of the triangle is $m_o = \sqrt{14.5^2 - 5^2} \approx 13.61 \text{ m}$	2 points	
The total area is $4 \cdot \frac{a \cdot m_o}{2}$. By substitution, this is $\approx 272 \text{ m}^2$.	2 points	Award 1 point if the answer is not rounded to the nearest m ² .
Total:	4 points	

17. c)		
The length of the diagonal of the square of side <i>a</i> is	2 noints	
$a\sqrt{2} = 10\sqrt{2} \approx 14.1 \text{ (m)}$	2 points	
In the right-angled triangle AOE, AO is half the	2 noints	
diagonal: $5\sqrt{2}$	2 points	
The Pythagorean theorem applied to that triangle:	2	
$OE^2 = 14.5^2 - (5\sqrt{2})^2 \approx 160.25 \text{ (m}^2)$	3 points	
<i>OE</i> ≈ 12.66 m	1 point	
The height of the aerial is $1.5 \cdot OE \approx 18.99$ m, which is about 190 dm.	2 points	Award a maximum of 1 point if the answer is not given in dm or the rounding is wrong.
Total:	10 points	

18. a)		
I learnt $8 + 11 + 14 + 17 + 20 = 70$ words during the first week.	1 point	
I remembered $70.0.8 = 56$ new words at the end of the week.	1 point	
Total:	2 points	

18. b)**				
An arithmetic progression is obtained, $a_1 = 56$, $d = 4$, $n = 13$.		3 poir	nts	These points can be divided. I point for naming the sequence, the parameters may become clear from the subsequent calculations
Tota	l:	3 poir	nts	

18. c)**		
I remembered $a_{13} = a_1 + (n-1) \cdot d = 56 + 12 \cdot 4 = 104$ new words on the 13th week.	3 points*	Formula, substitution and calculation are worth 1 point each.
Total:	3 points	

18. d)**		
I learnt and remembered		
$S_{13} = \frac{a_1 + a_{13}}{2} \cdot 13 = \frac{56 + 104}{2} \cdot 13 = 1040 \text{ words altogether}$ during that one quarter of a year.	3 points*	Formula, substitution and calculation are worth 1 point each.
Total:	3 points	

* Award full mark if the numbers of words learnt are listed or tabulated and correctly added, and the answers to the questions are correct.

18. e)		
I select two words out of 70, which can be done in		
$\binom{70}{2}$ different ways.	2 points	
The two words are to be selected from the 56 words remembered.	2 points	
The probability that I know both words is		
$\frac{\binom{56}{2}}{\binom{70}{2}} (\approx 0.638).$	2 points	The 2 points are also due for stating the ratio without calculating the decimal value.
Total:	6 points	

**Remark: If the candidate considered the problem such that starting from the second week he learnt new words six days of the week, then the marking should be done according to the above system. This way:

For part b) the terms of the sequence are not integers, but the rounded values of the terms form a strictly increasing sequence.

For part c) the solution: On the second week he learnt 99 words, on the 13^{th} week 99+11·6=165 words. Hence he remembered $165 \cdot 0.8 = 132$ new words.

The solution for part d): he learnt and remembered $\left(70 + \frac{99 + 165}{2} \cdot 12\right) \cdot 0.8 \approx 1323$ new words.