

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)**НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.03 Прикладная информатика**

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

По дисциплине «Микропроцессорные системы» НА ТЕМУ:

МК-система управления приборами жилого помещения

Студент	ИУ6-75		В.Д. Шульман
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель			В.Я. Хартов
		(Подпись, дата)	(И.О. Фамилия)

Оглавление

Реферат		3
Обозначе	ния и сокращения	4
Введение.		5
Основная	часть	6
	рукторская часть	
	бор и техническое описание микроконтроллера	
1.1.1	Описание структурно-функциональной схемы	
	контроллерной системы	7
1.1.2	Выбор микроконтроллера	
1.1.3	Описание архитектуры и технических характеристик	
микрон	контроллера	10
1.1.4	Распределение адресного пространства ATmega8515	
1.1.5	Система команд микроконтроллера ATmega8515	12
1.2 Раз	работка функциональной схемы	15
1.2.1	Используемые модули ATmega8515	15
1.2.2	ПУО	15
1.2.3	Блок передачи данных к ПЭВМ	18
1.2.4	Блок реле	19
1.3 Раз	работка принципиальной схемы	20
1.4 Pac	чёт потребляемой мощности	20
1.5 Оп	исание алгоритмов функционирования устройства	20
2 Технол	тогическая часть	22
2.1 Xa ₁	рактеристика использованных систем разработки	22
	муляция в Proteus 8	
2.2.1	Матричная клавиатура	23
2.2.2	Виртуальный терминал	
2.2.3	Индикация состояний приборов	24
Заключен	ие	26
Список ли	итературы	27
	I VI	

Реферат

Расчётно-пояснительная записка с. 31, рис. 11, табл. 3, источников 4, приложений 2.

МИКРОПРОЦЕССОР, МИКРОКОНТРОЛЛЕР, ATMEGA8515, CEPBEP РАСПИСАНИЙ, ПУЛЬТ УПРАВЛЕНИЯ ОПЕРАТОРА, UART, ТАЙМЕР

Объектом разработки курсовой работы является устройство управления приборами, получающее расписание их работы с удаленного сервера.

Цель работы — создание полного комплекса конструкторской документации для устройства управления приборами, создание программного обеспечения для микроконтроллера семейства AVR/

При проектировании решены следующие задачи:

- анализ объекта разработки на функциональном уровне;
- разработка функциональной схемы;
- выбор элементной базы для реализации объекта;
- разработка принципиальной схемы;
- расчет потребляемой мощности;
- разработка алгоритмов работы микроконтроллера;
- написания программного обеспечения для микроконтроллера.

Результатом проектирования является комплекс конструкторской документации для изготовления устройства, исходные коды программ для программирования памяти микроконтроллера.

Спроектированное устройство обладает следующими характеристиками:

- 1) управление до 8 приборами одновременно;
- 2) хранение до 127 записей для включения/выключения устройств;
- 3) получение актуального расписания и времени по UART;
- 4) управление устройствами вручную через пульт оператора;
- 5) установка текущего времени и расписания по умолчанию в случае отсутствия связи с сервером расписания.

Обозначения и сокращения

МК – микропроцессор

ПЭВМ – персональная электронно-вычислительная машина

ПУО – пульт управления оператора

СР – сервер расписания

РОН – регистры общего назначения

АЛУ – арифметико-логическое устройство

ПЗУ – постоянно запоминающее устройство

EEPROM – (Electrically Erasable Programmable Memory) электрически стираемое программируемое ПЗУ

PC – (Program Counter) программный счетчик

SREG – (Status Register) регистр статуса

MCUCR – (MCU Control Register) регистр управления

TIMSK – (Timer/Counter Interrupt Mask Register) регистр масок прерывания по таймерам/счетчикам

ISP – (In System Programming) внутрисхемное программирования

SPI – (Serial Peripheral Interface) последовательный периферийный интерфейс

UART – (Universal asynchronous receiver/transmitter) универсальный асинхронный приёмопередатчик

Введение

В данной работе на основании учебного плана кафедры ИУ6 производится разработка устройства управления для приборов жилого помещения, который осуществляет включение и выключение устройств по расписанию, получаемом от удаленного сервера по протоколу асинхронной передачи UART.

Для выполнения поставленной используется задачи высокопроизводительный 8-разрядный контроллер AVR ATmega8515. Внутренняя оперативная память SRAM данного микроконтроллера позволяет хранить до 512 байт данных, чего вполне достаточно для хранения расписания для многократного включения и отключения 8 приборов жилого помещения в течение суток. Модуль USART, 1 8-разрядный и 1 16-разрядный таймеры обеспечить необходимый функционал устройству позволяют ДЛЯ оперативного получения расписания и включения приборов в необходимые временные отрезки.

Для нештатных ситуаций, которые могут возникать в процессе работы устройства и сервера расписаний, в устройстве присутствует пуль управления оператора [ПУО]. ПУО позволяет манипулировать устройством управления напрямую.

Основная часть

В данной курсовой работе было разработано устройство управления 8 приборами жилого помещения на основе 8-разрядного высокопроизводительного микроконтроллера AVR ATmega8515

В техническом задании не предъявлялись специальные требования к выбору микроконтроллера и периферийных микросхем для создаваемого устройства управления. Был выбран контроллер ATmega8515, ввиду его функциональности и высокой частоты работы процессора.

Для решения задачи получения расписания с удаленного сервера было принято решения использовать протокол передачи данных RS-232 и модуль микроконтроллера USART. При этом было принято решения использовать асинхронный способ передачи данных по UART ввиду простоты и большей эффективности такого метода по сравнению с синхронной передачей.

Для хранения расписания было принято решения использовать 4-х байтовые сообщение в оперативной памяти SRAM в качестве меток включения или выключения устройств. В эти 4 байта входят номер устройства, время (часы, минуты, секунды), когда необходимо выключить/включить устройство, и флаг, характеризующий выключение или включение устройства.

Для ручного управления устройством был принято решения предусмотреть пульт оператора, с помощью которого можно включать и выключать устройства без расписания. В качестве ПУО используется матричная клавиатура 4х4 с 16 клавишами, 8 из которых – различные команды, ещё 8 – клавиши выбора прибора.

1 Конструкторская часть

1.1 Выбор и техническое описание микроконтроллера

1.1.1 Описание структурно-функциональной схемы микроконтроллерной системы

Согласно заданию, нужно разработать устройство управления 8 приборами жилого помещения согласно расписанию, получаемому с удаленного сервера.

Из этого следует, что необходимо использовать модуль для приема и передачи данных USART микроконтроллера.

Для отсчета времени следует использовать имеющиеся таймеры Т0 8-разрядный и Т1 16-разрядный.

Для обеспечения повышенной точности при работе разрабатываемой системы, будет подключен внешний кварцевый генератор с частотой 8 МНz к разъемам XTAL1 и XTAL2.

Для дополнительного контроля над устройством будем возможность управлять им напрямую с помощью пульта оператора, состоящего из 16 кнопок.

Для подключения к ПЭВМ, которая и является сервером расписания, будем использоваться драйвер MAX232.

Для возможности оперативного получения расписания необходимо предусмотреть возможность отправки запроса на сервер расписания для получения последних данных о текущем расписании и времени.

Т. к. предполагается, что приборы будут питаться от стандартного напряжения в жилом помещении (220 В), то для включения и отключения питания устройств будет использоваться блок реле.

Итоговое устройство должно выводить на порт управления приборами текущее состояние каждого из приборов, где каждому прибору соответствует один бит, согласно принятому от ПВМ и записанному в оперативную память расписанию работы приборов.

Исходя из вышеперечисленного, итоговое устройство должно состоять из следующих блоков:

- 1) микроконтроллер;
- 2) блок обмена информацией с ПЭВМ;
- 3) пуль оператора;
- 4) блок реле для управления питанием приборов

Обобщенная структура проектируемого устройства представлена на рисунке 1.

Рисунок 1 — Структурная схема устройства управления приборами жилого помещения

1.1.2 Выбор микроконтроллера

При выборе микроконтроллера важными параметрами были выбраны следующие:

- наличие модуля для асинхронной передачи данных UART;
- частота работы;
- объем оперативной памяти;
- количество выводов

- объем памяти программ
- количество таймеров и их разрядность

В таблице представлено сравнение некоторых микроконтроллеров AVR по важными для данной разрабатываемой системы параметрам.

Таблица 1 – Сводная таблица параметров различных MK AVR

MK	Пины	ПЗУ КБ	SRAM B	Таймеры	Максим альная частота	Наличие модуля USART
ATmega8A	28	8	1024	2x8 бит 1x16 бит	16	Да
AT90LS2323	8	2	128	1х8 бит	4	Нет
AT90S4433	28	4	128	6х10 бит	8	Да
AT90S2343	8	2	128	1х8 бит	10	Нет
ATmega8515	40	8	512	1х8 бит 1х16 бит	16	Да
ATtiny2313	20	2	128	1х8 бит 1х16 бит	20	Да

Исходя из сводной таблицы видно сразу, что для поставленных целей подходят не все из представленных контроллеров.

Однозначно не подходят микроконтроллеры, у которых отсутствует USART, без которого осуществление асинхронного обмена данным с удаленным сервером не представляется возможным.

Микроконтроллер ATtiny2313 подходит по большинству параметров, однако он обладает достаточно небольшим объемом SRAM и малым количеством пинов, что приведет к наложению значительных ограничений при реализации МК-системы с использованием этого микроконтроллера.

Наиболее подходящие кандидаты — это ATmega8A и ATmega8515. В данном случае предпочтение отдается ATmega8515, т.к. он обладает большим количеством выводом. ATmega8A обладает большим объемом SRAM и

таймеров, но в контексте поставленной задачи такое количество памяти и счётчиком является избыточным и не будет использоваться в полном объеме.

1.1.3 Описание архитектуры и технических характеристик микроконтроллера

В проектируемом устройстве используется 8-битный микроконтроллер AVR ATmega8515. Его функциональная схема представлена на рисунке 2.

Рисунок 2 — Функциональная схема микроконтроллера ATmega8515

Из функциональной схемы видно, что микроконтроллер обладает четырьмя 8-разрядными портами ввода-вывода, один из которых имеет АЦП с мультиплексором; дополнительный 3-разрядный порт РЕ; аппаратными интерфейсами USART, SPI; встроенным компаратором, встроенным генератором (осциллятором); счетчиками (один 8-разрядный и один 16-разрядный); сторожевым таймером; блоком прерываний; энергонезависимой и энергозависимой памятью.

Семейство микроконтроллеров Mega – это 8-битные микроконтроллеры, представляющие собой одну из лучших основ для создания экономных и высокопроизводительных устройств различного назначения.

Микроконтроллеры этого семейства изготавливаются по RISCархитектуре, согласно которой, инструкции, выполняемые процессором микроконтроллера должны быть как можно более простыми. Такой подход позволяет получить оптимальное соотношение между стоимостью, быстродействием и энергопотреблением.

1.1.4 Распределение адресного пространства АТтеда8515

В микроконтроллерах AVR используется Гарвардская архитектура. Согласно этой архитектуре память программ и память данных находится в разных адресных пространствах. Способу адресации и доступа к этим областям также различны. Такая архитектура обеспечивает центральному процессору работать одновременно с памятью программ и с памятью данных. Это существенно повышает производительность МК.

Память данных МК разделена на три части:

- регистровая память;
- оперативная память;
- энергонезависимая память.

Регистровая и оперативная память находится в одном адресном пространстве, в отличии от энергонезависимой, которая обладает собственным адресным пространством.

Изображение адресных пространств МК ATmega8515 представлено на рисунке .

Рисунок 3 – Адресные пространства МК АТтеда8515

Регистровая память включает 32 регистра общего назначения и 64 регистра ввода-вывода.

Для хранения данных имеется память RAM объемом 512 байт. Есть возможность подключение внешней памяти SRAM, позволяющее расширить оперативную память микроконтроллера до 64 Кбайт.

Для долгосрочного хранения данных в МК присутствует 512 байт памяти EEPROM.

1.1.5 Система команд микроконтроллера АТтеда8515

Система команд микроконтроллера ATmega8515 выполнена по RISC архитектуре и состоит из 130 инструкций, большинство из которых выполняется за один такт.

Система команд микроконтроллера представлена в таблицах 2 и 3.

Таблица 2 – Система команд ATmega8515. Часть 1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTION:	S		•	
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	RdI,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI OR	Rd, K Rd, Rr	Logical AND Register and Constant	$Rd \leftarrow Rd \cdot K$ $Rd \leftarrow Rd \vee Rr$	Z,N,V Z,N,V	1
ORI	Rd, K	Logical OR Registers Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd ⊕ Rr	Z,N,V	1
COM	Rd Rd	One's Complement	Rd ← SFF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,C,N,V,H	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (\$FF - K)	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z.N.V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
MUL	Rd. Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
BRANCH INSTRUC	TIONS				
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None None	1/2/3
BRBS	s, k	Skip if Bit in I/O Register is Set Branch if Status Flag Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2/3
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2
DDIE	k	Branch if Interrupt Enabled	If (I = 1) then PC ← PC + k + 1	None	1/2
BRIE			if (I = 0) then PC ← PC + k + 1		

Таблица 3 — Система команд ATmega8515. Часть 2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
DATA TRANSFER II	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	Rd ← (X)	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	Rd ← (Y)	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	Rd ← (Z)	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	(X) ← Rr, X ← X + 1	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	(Z) ← Rr, Z ← Z + 1	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	Z ← Z - 1, (Z) ← Rr	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program memory	Rd ← (Z)	None	3
LPM	Rd, Z+	Load Program memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P. Rr	Out Port	P ← Rr	None	1
PUSH	Br	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
BIT AND BIT-TEST	NSTRUCTIONS			•	
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C, Rd(n+1)\leftarrow Rd(n), C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	8	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	8	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	Т	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z←1	Z	1
CLZ	İ	Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I←1	1	1
CLI		Global Interrupt Disable	1←0	1	1
		Set Signed Test Flag	S←1	s	1
SES	-	Clear Signed Test Flag	S ← 0	S	1
SES					1
CLS			V ← 1	V	
CLS SEV		Set Twos Complement Overflow.	V ← 1 V ← 0	V	
CLS SEV CLV		Set Twos Complement Overflow. Clear Twos Complement Overflow	V ← 0	V	1
CLS SEV CLV SET		Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG	V ← 0 T ← 1	V T	1
CLS SEV CLV SET CLT		Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG Clear T in SREG	V ← 0 T ← 1 T ← 0	V T T	1 1 1
CLS SEV CLV SET		Set Twos Complement Overflow. Clear Twos Complement Overflow Set T in SREG	V ← 0 T ← 1	V T	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1

Система команд обладает полностью статические функционированием. Производительность составляет до 16 млн. операций в секунду при тактовой частоте 16 МГц.

1.2 Разработка функциональной схемы

1.2.1 Используемые модули АТтеда8515

Микроконтроллер ATmega8515 является основным узлом в данной разрабатываемой системе.

В результате разработки МК-системы используются следующие компоненты и модули микроконтроллера;

- модуль USART в асинхронном режиме;
- модуль SPI для программирования микроконтроллера;
- таймер ТО для отсчета времени
- система прерываний
- 8 выводов порта A для управления приборами
- 8 выводов порта С для функционирования ПУО
- 3 вывода порта В для программирования
- 2 вывода порта D для передачи данных по USART

Для эффективной и быстрой передачи данных, а также для оперативного включения и отключения приборов используется тактовая частота в 8 МГц.

1.2.2 ПУО

ПУО представляет из себя матричную клавиатуру, которая состоит из 16 кнопок.

Он позволяет оказывать воздействие на работу устройства в случае непредвиденных ситуаций (отказ работы сервера расписания, необходимость срочного включения или отключения одного из приборов и т. п.).

Все 16 клавиш ПУО задействованы и несут в себе определенную функцию. Функционирование части клавиш зависит от клавиш, которые были нажаты на ПУО в предыдущий момент времени. Функциональное назначение кнопок ПУО представлено на рисунке 4.

7	8	ALL	FON
4	5	6	FOFF
1	2	3	GSS
RES	SDS	SDT	GST

Рисунок 4 – Пульт управления оператора

Клавиши на ПУО можно условно разделить на 2 категории: функциональные клавиши, выполняющие какую-то операцию (FON, GSS, RES и т.д.), и контекстные клавиши, предназначенные для выбора прибора, над которым необходимо совершить, выбранное с помощью функциональных клавиш, действие (1, 2, ..., 7, ALL).

Подробное описание функции, которую несет каждая из клавиш, представлено в таблице .

Таблица 4 – Назначения и расшифровка клавиш ПУО

Название	Группа	Расшифровка и назначение
клавиши		
FON	Функциональная	Force On. Принудительно включает одно
		из выбранных устройств и переводит его
		в принудительный режим.
FOFF	Функциональная	Force Off. Принудительно выключает
		одно из выбранных устройств и
		переводит его в принудительный режим

GSS	Функциональная	Get Server Schedule. Запрашивает у
		сервера новое расписание.
GST	Функциональная	Get Server Time. Запрашивает у сервера
		текущее время.
SDS	Функциональная	Set Default Schedule. Устанавливает
		расписание по умолчанию.
SDT	Функциональная	Set Default Schedule. Устанавливает
		время по умолчанию.
RES	Функциональная	Restart. Выводит все устройства из
		принудительного режима.
		Может использоваться как клавиша
		отмены операции на этапе выбора
		прибора.
1	Контекстная	Выбирает первый прибор
2	Контекстная	Выбирает второй прибор
3	Контекстная	Выбирает третий прибор
4	Контекстная	Выбирает четвертый прибор
5	Контекстная	Выбирает пятый прибор
6	Контекстная	Выбирает шестой прибор
7	Контекстная	Выбирает седьмой прибор
8	Контекстная	Выбирает восьмой прибор
ALL	Контекстная	Выбирает все приборы

Один из возможных сценариев использования ПУО:

- 1) возникла необходимость получения более актуального расписания;
- 2) оператор нажимает кнопку «GSS»;
- 3) ответ от сервера расписания не приходит. Оператор решает самостоятельно выключить один из приборов;
 - 4) оператор нажимает клавишу «FON»;
 - 5) оператор выбирает первое устройство нажатием клавиши «1»;

- 6) устройство выключается;
- 7) оператор снова запрашивает расписание клавишей «GSS»;
- 8) от сервера приходит новое расписание;
- 9) оператор нажимает клавишу «RES» для вывода приборов из принудительного режима;
 - 10) приборы продолжают работать по новому расписанию.

На этапе 5 можно было осуществить нажатие на клавишу «RES», что отменило бы действие клавиши «FON»

1.2.3 Блок передачи данных к ПЭВМ

Блок передачи данных состоит из драйвера MAX232 и COM-порта, соединяющего само устройство и удаленный сервер.

Сигнал TxD с выхода микроконтроллера поступает на схему формирования уровней сигналов интерфейса RS-232 (MAX232), далее через разъем, в усиленном состоянии, по уходит на линию связи.

Сигнал RxD, поступающий от сервера расписания, проходят через преобразователь, ослабляется, и попадает на вход микроконтроллера RxD

Усиление и ослабление сигнала необходимо, т. к. передача данных по кабелю требует большого уровня сигнала из-за затухания. Без усиления посылаемого сигнала он может в процессе достижения своей цели настолько ослабнуть, что ПЭВМ его не сможет воспринять. В случае с сигналами, которые поступают на микроконтроллер, их необходимо ослаблять во избежание сгорания микроконтроллера.

Модуль передачи данных USART настроен в данной разрабатываемой МК-системе следующим образом;

- скорость передачи данных 9600 бит в секунду;
- 8 бит данных в кадре;
- 1 стоповый бит;
- бит четности отключен.

Кадр UART изображен на рисунке 5.

Рисунок 5 – Кадр UART

Отключение бита четности и отключение второго стопового бита обусловлено устремлением к большей скорости передачи данных.

Модуль USART ATmega8515 может принимать в одному кадре до 9 информационных бит, однако в данном случае, для упрощения алгоритмов обработки данных и более наглядного вида передаваемых данных было принято решение использовать 8 бит — размер байта памяти данных.

Получившаяся итоговая конфигурация является достаточно простой для понимания и отладки и одновременно высокопроизводительной.

1.2.4 Блок реле

Для управление блоком реле используется порт А. Каждый вывод порта А подключён к соответствующему реле для управления питанием прибора. При этом уровень логической единицы означает, что прибор в данный момент находится во включенном состоянии, а уровень логического нуля, соответственно, означает, что прибор в данный момент времени находится в выключенном состоянии.

Для вывода состояния приборов на порт A внутри программы микроконтроллера используется алгоритм, который по записанному в память SRAM расписанию определяет

1.3 Разработка принципиальной схемы

Здесь будут описана принципиальная схема разрабатываемого устройства.

1.4 Расчёт потребляемой мощности

Расчёт мощности.

1.5 Описание алгоритмов функционирования устройства

На рисунке представлена обобщенная схема-алгоритмы работы разработанной программы для микроконтроллера ATmega8515. Данная схема дает общее представления о принципах работы разработанного устройства управления приборами жилого помещения и как оператор может взаимодействовать с разработанной МК-системой с помощью ПУО.

Рисунок 6 – Обобщенная схема-алгоритма работы программы

2 Технологическая часть

2.1 Характеристика использованных систем разработки

Для проектирования и отладки разрабатываемой МК-системы в качестве средства разработки использованы следующие среды:

- 1) AVR Sturio 4 для отладки программного кода на ассемблере;
- 2) Proteus 8 Professional для симуляции работы устройства.

Среда AVR Studio позволяет определять процент используемой памяти микроконтроллера. Количественно задействованной памятью представлено на рисунке 7.

Рисунок 7 – Количество занимаемой памяти программой

2.2 Симуляция в Proteus 8

Для симуляции работы МК и датчиков построена упрощенная схема в Proteus 8, представленная на рисунке .

Assembly complete, 0 errors. 0 warnings

Рисунок 8 – Упрощенная схема разрабатываемой МК-системы

Рассмотрим подробнее отдельные компоненты.

2.2.1 Матричная клавиатура

Матричная клавиатура представляет из себя систему из 16 кнопок, соединенных с портами порта C определенным образом (см. рис.).

Рисунок 9 – Матричная клавиатура в Proteus

2.2.2 Виртуальный терминал

Виртуальный терминал позволяет симулировать общение между ПЭВМ и разработанной МК-системой с помощью модуля USART микроконтроллера ATmega8515.

Рисунок 10 – Виртуальный терминал в Proteus

2.2.3 Индикация состояний приборов

Схема из 8 светящихся диодов показывает какие устройства включены или выключены посредством вывода их текущего состояния на порт А микроконтроллера.

Рисунок 11 – Схема из 8 диодов в Proteus

Данная схема позволяет понять во время отладки работы МК-системы какое из устройств в каком состоянии находится в результате действий оператора или в результате установки расписания с удаленного сервера расписаний.

Заключение

В результате выполнения курсового проекта было получено функциональное, структурно и принципиальное описание разработанного устройства.

Разработаны алгоритмы функционирования микроконтроллера ATmega8515. Написан код программы на язык ассемблер без использования сторонних библиотек, функций и исходных кодов.

Разработанная МК-система представляет из себя устройство управления, осуществляющее управление 8 приборами жилого помещения согласно расписанию, получаемому с сервера, который представляет из себя ПЭВМ, передача которого осуществляется по USART по протоколу передачи RS-232.

Устройство обладает следующими важными при функционировании данной системы техническими характеристиками:

- 1) частота работы устройства составляет 8 МГц;
- 2) управляет до 8 приборами одновременно;
- 3) отправляет запросы по получению расписания на ПЭВМ;
- 4) отправляет запросы по получению текущего времени на ПЭВМ;
- 5) обладает пультом управления оператора на 16 кнопок;
- 6) устанавливает расписанию по умолчанию в случае отсутствия связи с сервером расписания;
- 7) способен хранить до 127 меток включения или выключения приборов при внутренней SRAM 512 Кбайт;
 - 8) работает от линии питания 12 В.

Список литературы

- 1. Хартов В.Я. Микроконтроллеры AVR. Практикум для начинающих. 2-е издание, Издательство МГТУ им. Баумана, 2012 г. 278 с.
- 2. Хартов В.Я. Микропроцессорные системы: учебное пособие для студентов учреждение высшего профессионального образования, Академия, М., 2014 г. 368 с.
- 3. Atmel ATmega8515 datasheet doc2512, [Электронный ресурс] // ATmega8515 datasheet doc2512: электронный документ ATmega8515(L) Complete Datasheet URL: http://ww1.microchip.com/downloads/en/DeviceDoc/doc2512.pdf (дата обращения: 09.12.2019)
- 4. Производитель МК ATMEGA компания Microchip [Электронный ресурс]. URL: https://www.microchip.com/ (дата обращения 09.12.2019)