MA211 **Lecture 19: Improper Integrals -Type 1**

Wed 12th Nov 2008

Topics of the day...

- 1 Proper Integrals
- 2 Improper Integrals
- 3 Improper Integrals of Type I

See also Section 7.7 of Stewart.

Proper Integrals

So far, the definite integrals we have considered:

$$\int_{a}^{b} f(x) dx,$$

have all been *Proper*: they are integrals of bounded functions on closed, finite intervals.

So we when we think of the integral as the area between the graph of the function and the x-axis, it is clear that that is well-defined.

Improper Integrals

A definite integral $\int_{a}^{b} f(x) dx$ is *Improper* if:

Improper Integrals

- Some improper integrals evaluate as a real, finite number. These are are said to converge, or to be convergent or to exist.
- Those that don't evaluate to a finite number are said to diverge, or to be divergent or not to exist.

Improper Integrals of Type I

Improper Integrals of Type I are of the form

$$\int_{a}^{\infty} f(x) dx \quad \text{or} \quad \int_{-\infty}^{b} f(x) dx.$$

To evaluate these, note that $\int_{a}^{\infty} f(x)dx = \lim_{t = \infty} \int_{a}^{t} f(x)dx$. So:

- Evaluate $\mathcal{I}(t) = \int_{0}^{t} f(x) dx$;
- \blacksquare and then compute $\lim_{t=\infty} \mathcal{I}(t)$.

$$\int_{a}^{\infty} f(x) dx$$

- 1 Evaluate $\mathcal{I}(t) = \int_{0}^{t} f(x) dx$;
- 2 and then compute $\mathcal{I} = \lim_{t = \infty} \mathcal{I}(t)$.
- If the limit exists, call it L and write $\int_a^\infty f(x) dx = L$. We say that $\int_a^\infty f(x) dx$ converges to L.
- 4 If no such limit exists, $\int_{a}^{\infty} f(x) dx$ is said to **diverge**.

Evaluate
$$\mathcal{I} = \int_{1}^{\infty} \frac{1}{x^2} dx$$

Evaluate the improper integral $\mathcal{I} = \int_{1}^{\infty} \frac{dx}{x}$

Evaluate
$$\mathcal{I} = \int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$

$$\int_{1}^{\infty} 1/x^{p} dx \begin{cases} \text{converges} & \text{for } p > 1, \\ \text{diverges} & \text{for } p \leq 1. \end{cases}$$

Proof: If p = 1 then

$$\int_{1}^{t} x^{-p} dx = \int_{1}^{t} \frac{1}{x} dx = \ln(x) \Big|_{1}^{t} = \ln(t) - \ln(1) = \ln(t).$$

But $\lim_{t\to\infty} \ln(t)$ does not exists, so $\int_{-1}^{t} \frac{1}{x} dx$ diverges.

If
$$p \neq 1$$
 then $\int_{1}^{t} x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{t} = \frac{t^{1-p}-1}{1-p}$.

If p<1 then 1-p>0 so the limit $\lim_{t\to\infty}t^{1-p}$ does not exist, so the integral diverges in that case.

If however p>1 then 1-p<0 and $\lim_{t\to\infty}t^{1-p}=0$, so the integral converges to $\frac{-1}{1-p}$.

Example:
$$\int_{a}^{\infty} x^{-2} dx$$

Example:
$$\int_{a}^{\infty} x^{-1} dx$$

Example:
$$\int_{a}^{\infty} x^{-1/2} dx$$

Evaluate the integral $\int_{1}^{\infty} \frac{1}{1+x^2} dx$

For problems of the form:

$$\int_{-\infty}^{b} f(x) dx$$

- **1** Evaluate $\mathcal{I}(t) = \int_{t}^{b} f(x) dx$;
- 2 and then compute $\mathcal{I} = \lim_{t \to -\infty} \mathcal{I}(t)$.
- If the limit exists, call it \mathcal{I} and write $\int_{-\infty}^{b} f(x) dx = L$. We say that the integral **converges to** L.
- 4 If no such limit exists, it is said to diverge.

Evaluate
$$\int_{-\infty}^{-1} \frac{dx}{x^2}$$

Show that $\int_{-\infty}^{0} e^{x} dx$ converges, but that $\int_{0}^{\infty} e^{x} dx$ diverges.

We also have to deal with the case where *both* limits of integration are at infinity:

$$\int_{-\infty}^{\infty} f(x) dx$$

To do this we recall that

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx.$$

So
$$\int_{-\infty}^{\infty} f(x)dx$$
 converge if and only if **both** $\int_{-\infty}^{0} f(x) dx$ and $\int_{0}^{\infty} f(x) dx$ converge.

Show that
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi$$