Mini-course Machine Learning in Empirical Economic Research

Andreas Dzemski¹

¹University of Gothenburg

May 17, 2019

Figure: True values of coefficients

Figure: Estimation results

Figure: Expected estimates (average over 200 simulations)

OLS is terrible for prediction

	method	mse
1	ols	27.91
2	ridge	2.73
3	lasso	2.76

Table: Mean-squared-error MSE(f)

$$MSE(f) = \mathbb{E} \int_{x} \left(\hat{f}(x) - f(x) \right)^{2} dF(x)$$

$$= \int_{x} \left(\mathbb{E} \hat{f}(x) - f(x) \right)^{2} dF(x) + \int_{x} \mathbb{E} \left(\hat{f}(x) - \mathbb{E} \hat{f}(x) \right)^{2} dF(x)$$

$$= \int_{x} bias^{2} (f(x)) dF(x) + \int_{x} var \left(\hat{f}(x) \right) dF(x).$$

Under Gauss-Markov assumptions OLS is unbiased

$$\int_{x} bias^{2} (f(x)) dF(x) = \int_{x} (\mathbb{E}(\hat{\beta}'x) - \beta'x) dF(x)$$
$$= \int_{x} (\underbrace{\mathbb{E}[\hat{\beta} - \beta]}_{=0})' x dF(x) = 0$$

- For prediction unbiasedness is not a desirable property.
- Not surprising that Ridge performs best (James-Stein estimator, Empirical Bayes theory)

Lasso selects variables

Figure: Probability of including variables (average over 200 simulations)

A sparse design

Figure: True values of coefficients

Lasso detects many of the zero coefficients

Figure: Estimation results

Lasso is good at selecting the true model

Figure: Probability of including variables (average over 200 simulations)

But still shrinkage

Figure: Expected estimates (average over 200 simulations)

