Verifying Parameterized Networks Specified by

Vertex-Replacement Graph Grammars

Neven Villani, Radu Iosif, Arnaud Sangnier

Univ. Grenoble Alpes, Verimag

2025-05-13

- Parameterized structured networks
- Binary rendezvous
- Safety properties

- Parameterized structured networks
- Binary rendezvous
- Safety properties

- Parameterized structured networks
- Binary rendezvous
- Safety properties

- Parameterized structured networks
- Binary rendezvous
- Safety properties

 $\#q_1^b > 1 \land \#q_1^c > 1$ reachable?

1. Context

Hyperedge Replacement (sparse only) e.g., us, CAV 2025

1. Context

Hyperedge Replacement (sparse only) *e.g.*, us, CAV 2025

Vertex Replacement (incl. some dense)

Contribution 1. Context

A **translation** from VR to HR architectures.

Contribution 1. Context

Adapting a translation from VR to HR architectures **to the case of systems**, and studying which safety properties are preserved.

B. Courcelle, Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement, *Information and Computation*, 1995

2. Encoding of Networks

2. Encoding of Networks

• process types $p_1, p_2, ... = Petri nets (PN)$ with observable transitions

- 2. Encoding of Networks
- process types $p_1, p_2, ... = Petri nets (PN)$ with observable transitions
- system: graph with
 - vertices labeled by a process type
 - edges labeled by pairs of observable transitions

- 2. Encoding of Networks
- process types $p_1, p_2, ... = Petri nets (PN)$ with observable transitions
- system: graph with
 - vertices labeled by a process type
 - edges labeled by pairs of observable transitions

- 2. Encoding of Networks
- process types $p_1, p_2, ... = Petri nets (PN)$ with observable transitions
- system: graph with
 - vertices labeled by a process type
 - edges labeled by pairs of observable transitions

- 2. Encoding of Networks
- process types $p_1, p_2, ... = Petri nets (PN)$ with observable transitions
- system: graph with
 - vertices labeled by a process type
 - edges labeled by pairs of observable transitions

3. HR & VR

Single vertex

$$\bullet\pi = \begin{pmatrix} \pi \\ \bullet \end{pmatrix}$$

Single vertex

$$\bullet\pi = \left(\frac{\pi}{\bullet}\right)$$

Single edge

$$ec{e}_{\pi,\pi'} = egin{pmatrix} \pi \ e \ \pi' \end{pmatrix}$$

Parallel composition

HR

Parallel composition

$$\begin{pmatrix} \pi & \pi' \\ \hline \pi' \end{pmatrix} = \begin{pmatrix} \pi & \pi'' \\ \hline \pi' \end{pmatrix}$$

Relabeling

$$\mathsf{relab}_{[\pi' \mapsto \pi]} \left(\begin{array}{c} \pi \\ \bullet \\ \pi' \end{array} \right) = \left(\begin{array}{c} \bullet \\ \bullet \\ \pi \end{array} \right)$$

Single vertex

$$\bullet\pi = \begin{pmatrix} \pi \\ \bullet \end{pmatrix}$$

Relabeling

$$\mathsf{relab}_{[\pi' \mapsto \pi]} \left(\bullet \right) = \left(\bullet \right)$$

All-pairs edges

$$\mathsf{add}_{\pi,\pi'}^e \begin{pmatrix} \pi & \pi & \pi \\ \bullet & \bullet & \bullet \\ \pi' & \pi' \end{pmatrix} = \begin{pmatrix} \pi & \pi & \pi \\ \bullet & \bullet & \bullet \\ \pi' & \pi' \end{pmatrix}$$

All-pairs edges

$$\mathsf{add}^{\boldsymbol{e}}_{\pi,\pi'} \begin{pmatrix} \boldsymbol{\pi} & \boldsymbol{\pi} & \boldsymbol{\pi} \\ \bullet & \bullet & \bullet \\ \pi' & \pi' \end{pmatrix} = \begin{pmatrix} \boldsymbol{\pi} & \boldsymbol{\pi} & \boldsymbol{\pi} \\ \bullet & \bullet & \bullet \\ \pi' & \pi' \end{pmatrix}$$

Disjoint union

VR

HR

4. Routing

Construction of a Router

4. Routing

Construction of a Router

Construction of a Router

Stuttering

$$s_1s_2$$

$$s_1s_1s_1s_1s_1s_2s_2s_2s_2s_2$$

- Preserves all properties that are stuttering-invariant
 - (un)reachability, (un)coverability
 - mutual exclusion
 - reachability in a specific order
- Not preserved:
 - $\rightarrow \text{next-step} (s_1 s_2 \text{ vs } s_1 s_1 s_1 s_1 s_1 s_2)$
 - \rightarrow deadlock $(s_1 \perp vs s_1 s_1 s_1 s_1 \perp)$

- Linear transformation
 - $ightharpoonup |T| \cdot \operatorname{cw} \cdot \Theta(n)$ router nodes
 - sparse graph
- Downside: trace length
 - $\times \Theta(n)$ worst-case
 - $\times \Theta(\lg n)$ average-case

- Linear transformation
 - $ightharpoonup |T| \cdot \operatorname{cw} \cdot \Theta(n)$ router nodes
 - sparse graph
- Downside: trace length
 - $\times \Theta(n)$ worst-case
 - $\times \Theta(\lg n)$ average-case

Invariants

5. Translation

VR

$$\overset{(t,t')}{\longrightarrow}$$

HR

$$\stackrel{e^*}{\leadsto} \stackrel{(t,t')}{\longleftrightarrow} \stackrel{e^*}{\leadsto}$$

$$\xrightarrow{H}$$

$$p \bullet \pi$$

$$p \bullet \pi$$

$$p \bullet \pi$$

} concrete vertices
} path of routers
} representative

Edge creation

$$egin{array}{cccc} p & p & p \ ullet \pi & ullet \pi & ullet \end{array}$$

Edge creation

$$\mathsf{add}_{\pi,\pi'}^{oldsymbol{(t,t')}}(heta)$$

$$H(\theta)$$

Edge creation

$$\mathsf{add}_{\pi,\pi'}^{oldsymbol{(t,t')}}(heta)$$

$$H(heta) \parallel \overrightarrow{(t,t')}_{\overline{\pi},\overline{\pi}'}$$

$$p$$
• π

$$p$$
• π

$$p$$
• π

$$p$$
• π

$$\theta_1$$
 θ_2

$$H(\theta_1)$$

$$H(\theta_2)$$

$$p \bullet \pi$$

$$p$$
 \bullet π

$$p$$
• π

$$\theta_1 \oplus \theta_2$$

$$H(\theta_1)$$

$$H(\theta_2)$$

$$p \bullet \pi$$

$$p$$
• π

$$p$$
• π

$$\theta_1 \oplus \theta_2$$

$$H(\theta_1) \parallel \vec{e}_{\overline{\pi},\hat{\pi}}$$

$$H(\theta_2) \parallel \vec{e}_{\overline{\pi},\hat{\pi}}$$

$$p \bullet \pi$$

$$p$$
• π

$$p$$
• π

$$p$$
• π

$$\theta_1 \oplus \theta_2$$

$$\mathsf{relab}_{[\hat{\pi} \mapsto \overline{\pi}]}(H(\theta_1) \parallel \vec{e}_{\overline{\pi}, \hat{\pi}})$$

$$\mathsf{relab}_{[\hat{\pi} \mapsto \overline{\pi}]}(H(\theta_2) \parallel \overrightarrow{e}_{\overline{\pi},\hat{\pi}})$$

$$p \bullet \pi$$

$$p$$
• π

$$p$$
• π

$$\stackrel{p}{\bullet} \pi$$

$$\mathsf{relab}_{[\hat{\pi} \mapsto \overline{\pi}]}(H(\theta_1) \parallel \overrightarrow{e}_{\overline{\pi}, \hat{\pi}})$$

$$\| \ \operatorname{relab}_{[\hat{\pi} \mapsto \overline{\pi}]}(H(\theta_2) \ \| \ \overrightarrow{e}_{\overline{\pi},\hat{\pi}})$$

6. Conclusion

- Translation of systems from VR to HR
- Preserves stuttering-invariant properties
- Enables applying results proven on HR to dense families

Future work

- Implementation
- Could be made TPS