PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-098888

(43)Date of publication of application: 05.04.2002

(51)Int.CI.

G02B 13/18 G02B 13/22

(71)Applicant: SONY CORP

(22)Date of filing:

(21)Application number: 2000-290944

25.09.2000

(72)Inventor: KIKUCHI MASAHITO

(54) IMAGING LENS

(57)Abstract:

PROBLEM TO BE SOLVED: To make telecentricity and distortion excellent while realizing miniaturization and to make image quality excellent while keeping low-pass characteristic.

SOLUTION: This lens is constituted of four lenses, that is, a 1st lens 2, a 2nd lens 3, a 3rd lens 4, and a 4th lens 5 bonded to the 3rd lens 4 in order from an object side, and a diaphragm 6 is arranged between the 1st lens 2 and the 2nd lens 3. In the figure of spherical aberration, spherical aberration shows a nearly S-shaped curve with respect to the best image surface, and the curve has relation to satisfy |d1|>|d2|,

&verbar,d2&verbar,>&verbar,d3&verbar, and d3<0 when it is assumed that the maximum displacement of the curve on a positive side with respect to the best image surface is d1, the maximum displacement of the curve on a negative side with respect to the best image surface is d2 and the displacement of the curve on a terminal part with respect to the best image surface is d3.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-98888 (P2002-98888A)

(43)公開日 平成14年4月5日(2002.4.5)

(51) Int.Cl.7		識別記号	FΙ		テーマコード(参考)
G 0 2 B	13/04		G 0 2 B	13/04	D 2H087
	13/18			13/18	
	13/22			13/22	

		審査請求 未請求 請求項の数1 〇L (全 6 頁
(21)出願番号	特願2000-290944(P2000-290944)	(71) 出願人 000002185
		ソニー株式会社
(22)出願日	平成12年9月25日(2000.9.25)	東京都品川区北品川6丁目7番35号
		(72)発明者 菊地 雅仁
		東京都品川区北島川6丁目7番35号 ソン
		一株式会社内
		(74)代理人 100067736
		弁理士 小池 晃 (外2名)
		Fターム(参考) 2H087 KA01 NA02 PA03 PA18 PB04
·		QA03 QA07 QA17 QA21 QA26
		QA34 QA42 QA45 RA05 RA12
		RA13 RA32 RA42 RA43 RA44
		UAD1

(54) 【発明の名称】 撮像レンズ

(57) 【要約】

【課題】 小型化を図りながら、テレセントリック性やディストーションを良好なものとし、且つローパス特性をもたせながら画質を良好なものとする。

【解決手段】 被写体側から順に、第1のレンズ2と、第2のレンズ3と、第3のレンズ4と、この第3のレンズ4に接合された第4のレンズ5との4枚のレンズにより構成されており、第1のレンズ2と第2のレンズ3との間には、絞り6が配置されている。また、球面収差図において、球面収差が最良像面に対して略S字状の曲線を示し、この曲線の最良像面に対するプラス側の最大変位をd1とし、この曲線の最良像面に対するマイナス側の最大変位をd2とし、この曲線の最良像面に対する終端部における変位をd3としたときに、 | d1 | > | d2 | 、 | d2 | > | d3 | 、d3 < 0 を満足する関係にある。

10

【特許請求の範囲】

【請求項1】 被写体側から順に、被写体側が凹面とさ れた負のメニスカス形状を有し、少なくとも一方の面が 非球面とされた第1のレンズと、正のパワーを有し、少 なくとも一方の面が非球面とされた第2のレンズと、被 写体側が凸面とされた負のメニスカス形状を有する第3 のレンズと、この第3のレンズと接合されるとともに、 像面側が非球面とされた正のパワーを有する第4のレン ズとを備え、

上記第1のレンズと上記第2のレンズとの間には、絞り が配置されており、

球面収差図において、球面収差が最良像面に対して、近 軸焦点から光軸方向と直交する方向に向かって、プラス 側からマイナス側に転じた後に再びプラス側に転ずるよ うな略S字状の曲線を示し、この曲線の最良像面に対す るプラス側の最大変位を d 1 (>0) とし、この曲線の 最良像面に対するマイナス側の最大変位を d 2 (< 0) とし、この曲線の最良像面に対する終端部における変位 を d 3 としたときに、

| d 1 | > | d 2 |

| d 2 | > | d 3 |

【発明の詳細な説明】

d 3 < 0

を満足する関係にあることを特徴とする撮像レンズ。

[0001]

【発明の属する技術分野】本発明は、例えば小型カメラ 等に用いて好適な撮像レンズに関する。

[0002]

【従来の技術】従来、小型カメラ等に用いられる撮像レ ンズとしては、2枚の凸レンズで構成されたものが多 く、例えば前絞り型や、中間絞り型に代表されるレンズ 型式が多く用いられてきた。

[0003]

【発明が解決しようとする課題】ところで、上述した前 絞り型では、2枚の凸レンズのうち被写体側のレンズの 前方に絞りが配置された構造とされるが、この場合、テ レセントリック性が良好となるものの、極めて負となる ディストーションが発生してしまうといった問題があっ た。

【0004】一方、中間絞り型では、2枚の凸レンズの 間に絞りが配置された構造とされるが、この場合、光学 性能が良好となるものの、テレセントリック性が良くな らないといった問題があった。

【0005】このため、撮像レンズとしては、従来から レトロフォーカスタイプのものが使用されてきたが、テ レセントリック性や光学性能が良好となるものの、全長 が長くなってしまうといった欠点があった。

【0006】また、上述した両レンズ型式とも、中央部 分の結像性能が良好であるために、光学ローパスフィル タを必要とすることは、コストの面からも大変不利であ った。

【0007】そこで、本発明はこのような従来の事情に 鑑みて提案されたものであり、テレセントリック性やデ ィストーションを良好なものとし、且つローパス特性を もたせながら画質を良好なものとした小型の撮像レンズ を提供することを目的とする。

2

[0008]

【課題を解決するための手段】この目的を達成する本発 明に係る撮像レンズは、被写体側から順に、被写体側が 凹面とされた負のメニスカス形状を有し少なくとも一方 の面が非球面とされた第1のレンズと、正のパワーを有 し少なくとも一方の面が非球面とされた第2のレンズ と、被写体側が凸面とされた負のメニスカス形状を有す る第3のレンズと、この第3のレンズと接合されるとと もに像面側が非球面とされた正のパワーを有する第4の レンズとを備え、第1のレンズと第2のレンズとの間に は、絞りが配置されている。そして、球面収差図におい て、球面収差が最良像面に対して、近軸焦点から光軸方 向と直交する方向に向かって、プラス側からマイナス側 20 に転じた後に再びプラス側に転ずるような略S字状の曲 線を示し、この曲線の最良像面に対するプラス側の最大 変位を d 1 (>0) とし、この曲線の最良像面に対する マイナス側の最大変位をd2(<0)とし、この曲線の 最良像面に対する終端部における変位を d 3 としたとき に、 | d 1 | > | d 2 | 、 | d 2 | > | d 3 | 、d 3 < 0を満足する関係にあることを特徴としている。

【0009】この撮像レンズでは、被写体側から順に、 被写体側が凹面とされた負のメニスカス形状を有する第 1のレンズと、正のパワーを有する第2のレンズと、負 のパワーを有する第3のレンズと、この第3のレンズと 接合されるとともに正のパワーを有する第4のレンズと の4枚のレンズにより構成されることで、必要なバック フォーカスを確保しながら、全長を短くすることがで き、且つ、テレセントリック性を良好に保つことができ る。また、球面収差を良好に高次補正することができ る。

【0010】また、この撮像レンズでは、第1のレンズ と第2のレンズとの間に絞りを配置するとともに、第1 のレンズの少なくとも一方の面を非球面とすることによ り、像面湾曲の発生を抑制することができる。

【0011】また、この撮像レンズでは、球面収差図に おいて、球面収差が最良像面に対して、近軸焦点から光 軸方向と直交する方向に向かってプラス側からマイナス 側に転じた後に再びプラス側に転ずるような略S字状の 曲線を示している。そして、この曲線の最良像面に対す るプラス側の最大変位を d 1 (>0) とし、この曲線の 最良像面に対するマイナス側の最大変位を d 2 (< 0) とし、この曲線の最良像面に対する終端部における変位 をd3としたときに、|d1|>|d2|、|d2|> │ d 3 │ 、 d 3 < 0 を満足する関係にあることから、ロ</p>

ーパス特性をもたせながら、画質を良好に保つことができる。

【0012】以上のように本発明に係る撮像レンズでは、小型化を図りながら、テレセントリック性やディストーションを良好なものとし、且つローパス特性をもたせながら画質を良好なものとすることができる。

[0013]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して詳細に説明する。

【0014】なお、以下の説明では、本発明を適用した 10 撮像レンズについて、具体的な材質や数値等を挙げる *

*が、本発明は以下の例示に必ずしも限定されるものではない。

【0015】本発明を適用した撮像レンズの一構成例を図1に示す。また、図1に示す撮像レンズ1の設計データについては、以下に示す表1の通りである。なお、表1において、Rは、曲率半径であり、Dは、軸上間隔であり、Ndは、屈折率であり、Vdは、アッベ数である

[0016]

【表1】

面番号	R[mm]	D[mm]	材質	Nd	Vd
0	.00000			1.00000	.00
1	.00000	2.5000		1.00000	.00
2	-2.12766	1.4050	BACD5	1.58913	61.25
3	-2.12766	.2000		1,00000	.00
4	.00000	.2000		1,00000	.00
5	.00000	.2000		1.00000	.00
6	4,57799	1.1000	PMMA	1.49150	61.25
7	-14.22616	.3000		1.00000	.00
8	9.61841	.8000	FDS9	1.84666	23.83
9	3.00000	2.0000	BACD5	1,58913	61.25
10	-2.50852	.7000		1.00000	.00
11	.00000	1.1500	BACD5	1.58913	61.25
12	.00000	.9650	BSC7	1.51680	64.20

【0017】この撮像レンズ1は、被写体側から順に、第1のレンズ2と、第2のレンズ3と、第3のレンズ4と、第4のレンズ5とを備え、これら4枚のレンズにより構成された光学系からなる。

【0018】このうち、第1のレンズ2は、例えばBACD5と呼ばれる光学ガラスからなり、被写体側が凹面とされた負のメニスカスレンズである。すなわち、この第1のレンズ2は、被写体側から順に、第1面S1及び第2面S2が、それぞれ凹面及び凸面とされた負のパワーを有するメニスカス形状のレンズである。

【0019】なお、この第1面S1及び第2面S2は、 それぞれ表1に示す面番号2,3に対応しており、この 場合、第1面S1の曲率半径は、-2.12766mm※

※であり、第2面S2の曲率半径は、-2.12766mmであり、第1面S1と第2面S2との光軸上での距離(厚み)は、1.4050mmである。また、第1のレンズ2の屈折率は、1.58913であり、アッベ数30は、61.25である。

【0020】また、この第1のレンズ2において、第1面S1は、非球面とされている。なお、第1のレンズ2では、第1面S1及び第2面S2のうち、少なくとも一方の面が非球面であればよく、本例に必ずしも限定されるものではない。

【0021】ここで、非球面は、以下に示す公知の非球面の式(1)により表すことができる。

[0022]

【数1】

$$Z = C \cdot x^2 / \left(1 + \sqrt{\left(\alpha_1 + 1\right)C^2 x^2} \right) + \alpha_4 x^4 + \alpha_6 x^6 + \alpha_8 x^8 + \alpha_{10} x^{10}$$

· · · (1)

【0023】なお、この非球面の式(1)において、2は、非球面と光軸との交点を原点とした光軸方向の座標であり、Xは、原点を通り光軸に直交する方向の座標である。また、Cは、近軸曲率1/Rである。したがって、非球面は、光軸近傍の曲率半径Rと、円錐定数 α 1

と、4次、6次、8次、10次の非球面項の非球面係数 α 4、 α 6、 α 8、 α 10とにより求めることができる。

【0024】この場合、第1面S1の円錐定数 α 1、並びに、4次,6次,8次,10次の非球面項の非球面係 50数 α 4, α 5, α 8, α 10は、以下に示す表2の通りであ る。

*【表2】

[0025]

*

	第1面(S1)	第3面(83)	第4面(S4)	第7面(87)
αı	0,1x10 ¹	0.1×10 ³	0.9999999761389×10 ⁰	-0.1×10 ¹
a4		-0.1538838688418×10 ⁰		0.2492556364670×10 ⁻¹
α ₆	-0.3053285272270×10-1	0.4002135180940×10 ⁰	0. 0	0.9744766656480×10-2
αg	0.2713957935182×10 ⁻¹	-0.1×10 ¹	0.0	-0.1335319550432×10 ⁻²
a 10	-0.8735266980249×10 ⁻²	0.8197344124677×100	ø. o	0.2673220882022×10-3

【0026】一方、第2のレンズ3は、光学プラスチックである、例えばポリメチルメタアクリレート(PMMA)からなり、正のパワーを有する両凸レンズである。すなわち、この第2のレンズ3は、被写体側から順に、第3面S3及び第4面S4を有しており、第3面S3及び第4面S4が、それぞれ凸面とされた正のパワーを有するレンズである。

【0027】なお、この第3面S3及び第4面S4は、それぞれ表1に示す面番号6,7に対応しており、この場合、第3面S3の曲率半径は、+4.57799mmであり、第4面S4の曲率半径は、-14.22616mmであり、第3面S3と第4面S4との光軸上での距離(厚み)は、1.1000mmである。また、第2のレンズ3の屈折率は、1.49150であり、アッベ数は、61.25である。

【0028】また、この第2のレンズ3において、第3面S3及び第4面S4は、共に非球面とされている。この場合、第3面S3及び第4面S4の円錐定数 α 1、並びに、4次、6次、8次、10次の非球面項の非球面係数 α 4、 α 5、 α 8、 α 10は、上記表2に示す通りである。

【0029】一方、第3のレンズ4は、例えばFDS9と呼ばれる光学ガラスからなり、被写体側が凸面とされた負のメニスカスレンズである。すなわち、この第3のレンズ4は、被写体側から順に、第5面S5及び第6面S6が、それぞれ凸面及び凹面とされた負のパワーを有するメニスカス形状のレンズである。

【0030】なお、この第5面S5及び第6面S6は、 それぞれ表1に示す面番号8,9に対応しており、この 場合、第5面S5の曲率半径は、+9.61841mm であり、第6面S6の曲率半径は、+3.00000mmであり、第5面S5と第6面S6との光軸上での距離(厚み)は、0.8000mmである。また、第3のレンズ4の屈折率は、1.84666であり、アッベ数は、23.83である。

【0031】一方、第4のレンズ5は、例えばBACD 5と呼ばれる光学ガラスからなり、上記第3のレンズ4 と接合された正のパワーを有する両凸レンズである。すなわち、この第4のレンズ5は、被写体側から順に、第6面S6及び第7面S7を有しており、第6面S6及び第7面S7が、それぞれ凸面とされた正のパワーを有するレンズである。

【0032】なお、この第6面S6及び第7面S7は、それぞれ表1に示す面番号9,10に対応しており、この場合、第6面S6の曲率半径は、+3.00000mmであり、第7面S7の曲率半径は、-2.50852mmであり、第3面S3と第4面S4との光軸上での距離(厚み)は、2.0000mmである。また、第4のレンズ5の屈折率は、1.58913であり、アッベ数は、61.25である。

【0033】また、この第4のレンズ5において、像面側、すなわち第7面S7は、非球面とされている。この場合、第7面S7の円錐定数α1、並びに、4次,6次,8次,10次の非球面項の非球面係数α4,α5,α
8,α10は、上記表2に示す通りである。

【0034】また、第1のレンズ2と第2のレンズ3との間には、絞り6が配置されている。なお、この絞り6は、表1に示す面番号4に対応した位置に配置されており、その厚みは、0.2000mmであり、第1のレンズ2との光軸上での距離は、0.2000mmであり、50第2のレンズ3との光軸上での距離は、0.2000m

7

mである。

【0035】また、この撮像レンズ1には、第4のレンズ5の後段側に、図1に示すようなダミーガラス7,8 が貼り合わされた状態で配置されている。なお、このダミーガラス7,8は、それぞれ表1に示す面番号11,12に対応しており、この場合、ダミーガラス7は、例えば厚さ1.1500mmのBACD5呼ばれる光学ガラスからなり、屈折率は、1.58913であり、アッベ数は、61.25である。一方、ダミーガラス8は、例えば厚さ0.9650mmのBSC7と呼ばれる光学ガラスからなり、屈折率は、1.58913であり、アッベ数は、64.20である。

【0036】そして、撮像レンズ1は、その被写体側から通過した光が、最終的に例えばCCD等の撮像素子の 撮像面に結像するようになされている。

【0037】以上のように構成される撮像レンズ1の球面収差図を図2に示し、コマ収差図を図3に示し、非点収差図を図4に示し、歪曲収差図(ディストーション)を図5に示す。

【0038】この撮像レンズ1では、被写体側から順に、被写体側が凹面とされた負のメニスカスレンズである第1のレンズ2と、正のパワーを有する第2のレンズ3と、負のパワーを有する第3のレンズ4と、この第3のレンズ4と接合されるとともに正のパワーを有する第4のレンズ5との4枚のレンズにより構成されることで、必要なバックフォーカスを確保しながら、全長を短くすることができる。また、球面収差を良好に高次補正することができる。

【0039】また、この撮像レンズ1では、第1のレンズ2と第2のレンズ3との間に絞り6を配置するとともに、第1のレンズ2の少なくとも一方の面を非球面とする(ここでは、第1面S1を非球面とした)ことにより、像面湾曲の発生を抑制することができる。

【0040】また、この撮像レンズ1では、図2に示す 球面収差図において、球面収差が図中1点鎖線で示す最 良像面Yに対して、近軸焦点から光軸方向と直交する方 向に向かってプラス側からマイナス側に転じた後に再び プラス側に転ずるような略S字状の曲線Lを示してい る。 【0041】そして、この曲線Lの最良像面Yに対するプラス側の最大変位をd1(>0)とし、この曲線Lの最良像面Yに対するマイナス側の最大変位をd2(<0)とし、この曲線Lの最良像面Yに対する終端部における変位をd3としたときに、|d1|>|d2|、|d2|>|d3|、d3<0を満足する関係にあることが望ましい。これにより、ローパス特性をもたせながち、画質を良好に保つことができる。

【0042】以上のように、この撮像レンズ1では、小 型化を図りながら、テレセントリック性やディストーションを良好なものとし、且つローパス特性をもたせなが ら画質を良好なものとすることができる。

【0043】すなわち、この撮像レンズ1では、従来のレンズ型式である前絞り型と比べて、ディストーションを少なくすることができ、中間絞り型と比べて、テレセントリック性を良くすることができる。また、この撮像レンズ1の全長は、従来からのレトロフォーカス型と比べて、大幅に短くなっている。また、この撮像レンズ1では、光学系に光学ローパスフィルタ特性をもたせることができる。

【0044】したがって、例えばCCD等の撮像素子用の小型且つ光学性能の良好な撮像レンズとして、幅広く用いることができる。

[0045]

【発明の効果】以上詳細に説明したように、本発明に係るに撮像レンズよれば、小型化を図りながら、テレセントリック性やディストーションを良好なものとし、且つローパス特性をもたせながら画質を良好なものとすることができる。したがって、例えばCCD等の撮像素子用の小型且つ光学性能の良好な撮像レンズとして、幅広く用いることが可能である。

【図面の簡単な説明】

【図1】本発明を適用した撮像レンズの構成図である。

【図2】 上記撮像レンズの球面収差図である。

【図3】上記撮像レンズのコマ収差図である。

【図4】 上記撮像レンズの非点収差図である。

【図5】上記撮像レンズの歪曲収差図である。

【符号の説明】

1 撮像レンズ、2 第1のレンズ、3 第2のレン 40 ズ、4 第3のレンズ、5 第4のレンズ、6 絞り

【図1】

