15-859 Assignment #3

Albert Gao / sixiangg / section 1A 11/03/2022

Task 1

Proof. Note that to prove claim for all \mathbb{R}^d we just need to show for all $x \in \mathbb{R}^d$ with $||x||_1 = 1$ by a scaling argument. We first fix x with $||x||_1 = 1$ and try to show SAx good. We focus on just the ith row of SAx and observe that

$$(SAx)_i = \langle (Z_1/m, \cdots, Z_n/m)^T, Ax \rangle \qquad Z_j \text{i.i.d. standard Cauchy}$$

$$= \sum_{j=1}^n \frac{(Ax)_j}{m} Z_j$$

$$= \left\| \frac{Ax}{m} \right\|_1 Z \qquad 1 \text{ norm invariance}$$

$$\Rightarrow |(SAx)_i| = \frac{1}{m} ||Ax||_1 |Z|.$$

Using the cdf of Cauchy we have that

$$\Pr[|Z| < 1 - \epsilon] = \frac{2}{\pi} \arctan(1 - \epsilon)$$

$$\leq \frac{2}{\pi} \left(\frac{\pi}{4} - \frac{\epsilon}{2}\right)$$

$$\leq \frac{1}{2} - \frac{\epsilon}{6}.$$

The inequality uses observation that arctan is concave on $x \ge 0$ and is thus upper bounded by the tangent line at x = 1. Further, for $\epsilon < \sqrt{3} - 1$, $\arctan(1 + \epsilon)$ is lower bounded by line segment from $(1, \pi/4), (\sqrt{3}, \pi/3)$. Hence

$$\begin{split} \Pr[|Z| < 1 + \epsilon] &= \frac{2}{\pi} \arctan\left(1 + \epsilon\right) \\ &\geq \frac{2}{\pi} \left(\frac{\pi}{4} + \frac{\epsilon}{\sqrt{3} - 1} \left(\frac{\pi}{3} - \frac{\pi}{4}\right)\right) \\ &= \frac{1}{2} + \frac{2\epsilon}{\sqrt{3} - 1} \frac{1}{12} \\ &\geq \frac{1}{2} + \frac{\epsilon}{6} \\ \Rightarrow \Pr[|Z| > 1 + \epsilon] \leq \frac{1}{2} - \frac{\epsilon}{6}. \end{split}$$

Then let X_1 denote the sum of m i.i.d. Bernoulli r.v. each of which is 1 iff $|Z| < 1 - \epsilon$. Let X_2

denote sum of m Bernoullis each of which is 1 iff $|Z| > 1 + \epsilon$. Then

$$\Pr[X_1 \geq m/2] = \Pr[X_1 \geq (1+\delta)m(1/2-\epsilon/6)] \qquad \qquad \delta = \frac{\epsilon/6}{1/2-\epsilon/6}$$

$$\leq \Pr[X_1 \geq (1+\delta)\mathbb{E}X_1] \qquad \text{by analysis above}$$

$$\leq \exp\left(-\delta^2\mathbb{E}X_1/(2+\delta)\right) \qquad \qquad \text{Chernoff}$$

$$\leq \exp\left(-\delta^2m/4(2+\delta)\right) \qquad \qquad \text{for small enough constant } \epsilon$$

$$\leq \exp\left(-(\epsilon^2/9)m(1/12)\right) \qquad \qquad \delta \in [\epsilon/3,1] \text{ for small enough } \epsilon$$

$$= \exp(-\epsilon^2m/108).$$

Similarly we have $\Pr[X_2 \ge m/2] \le \exp(-\epsilon^2 m/108)$. Then

$$\Pr[\|SAx\|_{\text{med}} < (1 - \epsilon)\|Ax\|_1/m] \le \Pr[X_1 \ge m/2] \le \exp(-\epsilon^2 m/108).$$

Union bound gives

$$\Pr[\|SAx\|_{\text{med}} \notin (1 \pm \epsilon) \|Ax\|_1/m] \le 2 \exp(-\epsilon^2 m/108).$$

Also, by hint we may assume there is a γ -net for $\{Ax : ||x||_1 = 1\}$ of size $\gamma^{O(d)}$.

BLUH BLUH BLUH

Now, take an arbitrary vector x such that $||x||_1 = 1$. Take a vector y in the γ -net such that $||Ax - y||_1 \le \gamma$. Then we have that

 $\mathbf{Task}\ \mathbf{2}$