

Tópicos Emergentes

Daniel Augusto Nunes da Silva

Apresentação

Ementa

Processo de descoberta de conhecimento em base de dados (KDD),
 mineração de dados e aprendizado de máquina. Construção e implantação de modelos de aprendizado de máquina. Integração de dados e o processo de ETL. Visualização de dados. Processamento Analítico (OLAP).

3

Objetivos

Geral: Apresentar conceitos e práticas relacionados à utilização de técnicas de mineração de dados em sistemas de software, fornecendo um visão geral do processo, desde a compreensão do problema até a implantação de modelos de aprendizagem de máquina em produção.

Específicos:

- Relacionar os principais conceitos de mineração de dados;
- Demonstrar o uso de ETL para auxiliar soluções voltadas ao processamento analítico e mineração de dados;
- Apresentar técnicas para criação e avaliação de modelos de aprendizagem de máquina;
- Implantar um modelo de aprendizagem de máquina em um projeto de software.

Conteúdo programático

Introdução

- Dado, informação e conhecimento.
- Introdução a mineração de dados.
- O processo de KDD.
- Tarefas de Mineração de dados.
- Tipos de aprendizado de máquina.
- Foco na solução do problema.

Tratamento e visualização dados

- Integração de dados e processo de ETL.
- OLTP x OLAP.
- Talend Open Studio.
- Visualização de dados.
- Métricas e indicadores de desempenho.
- Google Data Studio.

Construção de modelos preditivos

- O processo de mineração de um modelo de classificação.
- Representação do modelo de classificação.
- Avaliação de classificadores.
- Seleção de atributos.
- · Classes desbalanceadas.
- WEKA.

Modelos preditivos em produção

- Definição de uma
 estratégia para
 implantação de modelos
 preditivos.
- Utilização da WEKA API.
- · Configuração do projeto.
- Classificação de novas instâncias.

Bibliografia

Data Science Para Negócios

Foster Provost e Tom Fawcett 1ª Edição – 2016 Editora Alta Books ISBN 978-8576089728

Storytelling com Dados

Cole Nussbaumer Knaflic 2ª Edição – 2019 Editora Alta Books ISBN 978-8550804682

Business Intelligence e Análise de Dados para Gestão do Negócio

Ramesh Sharda, Dursun Delen e Efraim Turban 4ª Edição – 2019 Editora Bookman ISBN 978-8582605196

Sites de referência

- Machine Learning Mastery.
 - https://machinelearningmastery.com/
- Weka Wiki.
 - https://waikato.github.io/weka-wiki/

Ferramentas

MySQL

- https://dev.mysql.com/downloads/windows/installer/8.0.html
- Configurar a variável de ambiente PATH. Exemplo: "C:\Program Files\MySQL\MySQL Server 8.0\bin".
- Importar dados: mysql -u root -p sgcm < sgcm.sql
- Criar conta no https://www.freemysqlhosting.net/

Talend Open Studio for Data Integration

https://www.talend.com/lp/open-studio-for-data-integration/

Google Data Studio

https://datastudio.google.com/

Weka

https://prdownloads.sourceforge.net/weka/weka-3-8-6-azul-zulu-windows.exe

Ferramentas

- Git
 - https://git-scm.com/downloads
- Visual Studio Code
 - https://code.visualstudio.com/Download
- Extension Pack for Java
 - https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
- Spring Boot Extension Pack
 - https://marketplace.visualstudio.com/items?itemName=pivotal.vscode-boot-dev-pack
- Angular Language Service
 - https://marketplace.visualstudio.com/items?itemName=Angular.ng-template

Ferramentas

JDK 11

- https://www.oracle.com/br/java/technologies/javase/jdk11-archive-downloads.html
- Criar a variável de ambiente JAVA_HOME configurada para o diretório de instalação do JDK. Exemplo: "C:\Program Files\Java\jdk-11.0.13".
- Adicionar "%JAVA_HOME%\bin" na variável de ambiente PATH.
- Tutorial de configuração: https://mkyong.com/java/how-to-set-java_home-on-windows-10/

Maven

- https://maven.apache.org/download.cgi
- Adicionar o diretório de instalação do Maven na variável de ambiente PATH. Exemplo: "C:\apache-maven\bin".
- Tutorial de instalação: https://mkyong.com/maven/how-to-install-maven-in-windows/

Contato

https://linkme.bio/danielnsilva/

Introdução

Dado, informação e conhecimento

Introdução a mineração de dados

- Um processo manual de análise e interpretação de dados pode ser considerado uma forma de transformar estes dados em conhecimento;
- No entanto, para muitos domínios esta forma manual torna-se impraticável, na medida em que o volume de dados armazenados cresce exponencialmente;
- Os padrões descobertos por meio deste processo devem ser relevantes na medida em que possam representar alguma vantagem, geralmente de natureza econômica;
- Termos relacionados: mineração de dados, aprendizado de máquina, ciência de dados, etc.

O processo de KDD

- KDD Knowledge-Discovery in Databases (descoberta de conhecimento em bases de dados);
- Perspectiva do conhecimento extraído:
 - "Processo de identificação de padrões válidos, novos, potencialmente úteis e compreensíveis embutidos nos dados" (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996);
- Perspectiva da realização do processo:
 - "O processo de KDD consiste de uma **sequência de interações** complexas, que se estende sobre um determinado período de tempo, entre um **usuário** e uma **coleção de dados**, possivelmente auxiliado por um conjunto heterogêneo de ferramentas computacionais" (BRACHMAN e ANAND, 1996).

- Processo interativo e iterativo:
 - É interativo por envolver muitas decisões feitas pelo usuário em cada etapa;
 - É também **iterativo**, pois durante o processo podem ser realizadas várias iterações até que os objetivos sejam alcançados.

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Pré-processamento

Nesta etapa é quando ocorre a limpeza dos dados;

Executando técnicas como o tratamento de valores

ausentes.

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Avaliação

Avaliação **Transformação** Mineração de dados Consiste na manipulação dos dados, através de tarefas como: agrupamento de dados, transformação de tipos, etc. Transformação Conhecimento Pré-processamento Padrões Seleção Dados transformados Dados pré-processados Dados selecionados Dados

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

selecionados

Dados

Mineração de dados

Mineração de dados A partir do conjunto de dados selecionado é aplicado um algoritmo que tem por finalidade descobrir padrões. Transformação Conhecimento Pré-processamento Padrões Seleção Dados transformados Dados pré-processados Dados

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Avaliação

Avaliação Avaliação Mineração de dados Etapa final do processo, na qual o especialista de domínio verifica se os resultados realmente contribuem para Transformação Conhecimento a solução do problema estabelecido. Pré-processamento Padrões Seleção Dados transformados Dados pré-processados Dados selecionados Dados

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

WEB ACADEMY Tópicos Emergentes 24

Abordagem com foco no negócio/problema

Abordagem com foco no negócio/problema

Compreensão do problema

É vital compreender o problema a ser resolvido. Pode parecer óbvio, mas projetos de negócios raramente vêm modelados como problemas claros de mineração de dados.

Abordagem com foco no negócio/problema

Compreensão dos dados

É importante entender os pontos fortes e as limitações dos dados porque raramente há uma correspondência exata com o problema.

Abordagem com foco no negócio/problema

Preparação dos dados

As ferramentas normalmente exigem que os dados estejam em uma forma diferente de como são coletados, sendo necessário algum tipo de transformação.

Abordagem com foco no negócio/problema

Modelagem

Etapa do processo onde as técnicas de mineração de dados são aplicadas com o objetivo de construir um modelo que representa os padrões identificados nos dados.

Abordagem com foco no negócio/problema

Avaliação

Fase onde é verificado se a solução é válida e confiável, bem como se está de acordo com as necessidades do negócio (avaliação quantitativa e qualitativa).

Abordagem com foco no negócio/problema

Implantação

Os resultados do processo de mineração de dados são colocados em uso, normalmente por meio de um sistema de software.

Tarefas de mineração de dados

Preditiva:

- Tem por objetivo predizer o valor de um atributo baseado nos valores de outros atributos;
- É aplicada quando se deseja conhecer o comportamento futuro de novas instâncias de dados;
- Exemplo: Classificação, Regressão;

Descritiva:

- O objetivo é derivar padrões, encontrando relações nos dados analisados;
- São utilizadas quando se deseja apenas apresentar os dados de uma forma compreensível;
- Exemplo: Agrupamento, Regras de Associação.

Tipos de aprendizado de máquina

- Dados com rótulos (saída é conhecida).
- "Podemos identificar grupos de clientes que tenham probabilidades elevadas de não renovar seus contratos?"

- Dados sem rótulos (saída não é conhecida).
- "Nossos clientes naturalmente se encaixam em grupos diferentes?"

• Combina supervisionado e não-supervisionado.

Por reforço

- Aprende com os erros.
- Baseado em recompensa e punição: associa o que gera maior recompensa.

Estes são erros comuns de iniciantes (e até avançados) em Data Science.

Adianto que já cometi alguns, principalmente o terceiro.

- 1. Entender de forma superficial o requisito de negócio.
- Menosprezar a etapa de análise exploratória de dados e ir direto para experimentação com algoritmos.
- 3. Subestimar técnicas simples até quebrar a cara e voltar com o rabo entre as pernas. Esse é classico, que atire a primera pedra quem nunca.
- 4. Se apegar a ferramentas e tecnologias ao invés de focar na solução do problema.

Foco na solução do problema

https://www.linkedin.com/posts/fe lipesf_datascience-trabalhocarreira-activity-6949350306933579776-Xp-M/

- 5. Tomar decisão puramente técnica sem levar em consideração a experiência do usuário.
- 6. Não investigar de forma minuciosa os resultados do modelo e alinhar com as métricas de negócio.
- 7. Não saber se comunicar e apresentar de forma clara e sucinta o seu trabalho.

Foco na solução do problema

- E quanto ao nosso SGCM?
 - Qual é o percentual de pacientes ausentes (no-show)?
 - Como podemos obter essa informação?
 - Como monitorar o problema?
 - Podemos saber com antecedência se um paciente tem mais ou menos chances de não comparecer a consulta?
 - Como esse problema pode ser modelado?

Tratamento e visualização dados

Integração de dados e processo de ETL

- Integração de dados consiste em reunir dados de diferentes origens para dar suporte ao processo de tomada de decisão, seja por meio da análise e visualização de dados, ou mesmo para construção de modelos de aprendizado de máquina.
- Uma das tecnologias que permitem a integração de dados é o processo de ETL:
 - Extração: leitura dos dados a partir de diferentes fontes;
 - Transformação: conversão dos dados extraídos para um formato novo;
 - Carga: colocar os dados em um novo espaço de armazenamento, para ser utilizado em outras etapas do processo de tomada de decisão guiada por dados.

O processo de ETL

Processamento analítico online - OLAP

O termo faz referência a uma variedade de atividades voltadas à analise de

dados, normalmente executadas por usuário finais, o que pode incluir:

Geração de consultas;

Solicitação de relatórios e gráficos de rotina e ad hoc;

- Realização de análises estatísticas;
- Construção de apresentações visuais.

OLAP versus OLTP

- Durante muito tempo o foco era o processamento de transações (OLTP),
 normalmente baseados em sistemas que utilizam bases de dados relacionais.
- OLTP é voltado para o processamento de transações repetitivas em grandes quantidades (leitura, inserção, modificação e exclusão).
- OLAP foca em relacionamentos complexos e na busca de padrões e tendências (diretamente relacionado com o suporte à decisão);
- OLTP geralmente envolve normalização de dados, o que pode afetar o desempenho nas operações de leitura, que é o foco do OLAP.

OLAP versus **OLTP**

Talend Open Studio for Data Integration

- Ferramenta ETL para integração de dados, baseada na IDE Eclipse.
- A ferramenta gera um aplicação Java, mas a maior parte do recursos exige apenas operações de arrastar e soltar.
- Suporte a múltiplas fontes de dados: BDs relacionais, Serviços de nuvem, APIs, Big Data, etc.
- Permite que a aplicação seja compilada e executada de forma independente.
 - https://www.datalytyx.com/scheduling-talend-open-studio-jobs-in-windows-without-talend-administration-center-tac/
- Tutorial: https://www.javatpoint.com/talend

Visualização de dados

- Qualquer representação gráfica, animada ou estática, utilizada para apresentação de dados.
- Fornece capacidade para identificar rapidamente as tendências importantes nos dados.
- Método tradicional: visualização por planilhas.
- Métodos mais modernos: dashboards e indicadores.

Visualização de dados: dashboard

Métricas e indicadores de desempenho

- Dashboards são formados principalmente por métricas e indicadores de desempenho
 (KPI Key Performance Indicator).
- Uma métrica é qualquer dado que permita mensurar algum aspecto do negócio: quantidade de clientes, atendimentos, vendas, etc.
- KPIs fazem referência aos resultados de ações e acompanhamento de metas.
- Exemplo:
 - Métrica: quantidade de clientes.
 - KPI: percentual de clientes satisfeitos.

Google Data Studio

- Permite visualizar dados com gráficos e tabelas configuráveis.
- Suporte a conexão com várias fontes de dados: BigQuery, MySQL,
 PostgreSQL, Planilhas, CSV, dentre outros.
- Recursos de compartilhamento e colaboração.
- Tutorial para criar um relatório:
 - https://support.google.com/datastudio/topic/6289358?hl=pt-BR&ref_topic=9170843

Construção de modelos preditivos

Introdução aos modelos preditivos

- Classificação: identificação da classe a qual um elemento pertence a partir de suas características;
- O conjunto de possíveis classes é categórico (discreto e não ordenado);
- Em outras palavras, a classificação mapeia, dentro de um conjunto de classes pré-definido, um conjunto de dados de entrada em uma classe de saída, estabelecendo uma função que tem por objetivo determinar a qual classe pertence um dado elemento do conjunto de dados;

Introdução aos modelos preditivos

- A classificação busca por uma função que permita associar corretamente cada registro X_i de um conjunto de dados a um único rótulo categórico, Y_j, denominado classe;
- Uma vez identificada, esta função pode ser aplicada a novos registros de forma a prever as classes em que tais registros se enquadram.

Introdução aos modelos preditivos

- Os atributos do conjunto de dados são divididos em dois grupos:
 - Um dos grupos contém somente um atributo (categórico), que corresponde ao atributo dependente (atributo classe / atributoalvo), ou seja, o atributo para o qual se deve fazer a predição de um valor;
 - O outro grupo contém os atributos a serem utilizados na predição do valor, denominados atributos independentes (atributos de predição / atributos previsores).

Atrib	Atributo dependente		
Salário	Idade	Emprego	Classe
3.000,00	30	Autônomo	В
4.000,00	35	Indústria	В
7.000,00	50	Pesquisa	С
6.000,00	45	Autônomo	С
7.000,00	30	Pesquisa	В
6.000,00	35	Indústria	В
6.000,00	35	Autônomo	А
7.000,00	30	Autônomo	А
4.000,00	45	Indústria	В

O processo de mineração de um modelo de classificação

- O processo é dividido em duas etapas.
 - Treino: um modelo de classificação é construído utilizando um subconjunto de dados;
 - Teste: o modelo é utilizado para predizer as classes de um subconjunto de dados distinto daquele utilizado na etapa anterior;
- Desta forma, parte do conjunto de dados é utilizado para treino, e outra parte para teste.
 - O subconjunto de dados de teste também pode estar separado do subconjunto de dados utilizado para treino.

O processo de mineração de um modelo de classificação

Conjunto de dados de treino

ID	Atributo1 Atributo2 Atributo3		Classe			
1	Sim	Grande	125.000,00	Não		
2	Não	Médio	100.000,00	Não		
3	Não	Pequeno	70.000,00	Não		
4	Sim	Médio	120.000,00	Não		
5	Não	Grande	95.000,00	Sim		
6	Não	Médio	60.000,00	Não		
7	Sim	Grande	220.000,00	Não		
8	Não	Pequeno	85.000,00	Sim		
9	Não	Médio	75.000,00	Não		
10	Não	Pequeno	90.000,00	Sim		

ID	Atributo1	Atributo2	Atributo3	Classe	
11	Não	Pequeno	55.000,00	?	
12	Sim	Médio	80.000,00	?	
13	Sim	Grande	110.000,00	?	
14	Não	Pequeno	95.000,00	?	
15	Não	Grande	67.000,00	?	

O processo de mineração de um modelo de classificação

Algoritmo de classificação

Utilizado para construir o modelo de classificação.

Entrada:

- Conjunto de dados de treinamento;
- Atributos independentes;
- Definição do atributo dependente (classe);

Saída:

 Um modelo de classificação que permite classificar (definir o valor do atributo dependente) um novo registro a partir de seus atributos independentes.

- Dividir a base de dados em Treino e
 Teste.
- Acurácia (ou taxa de acerto) do classificador (classificações corretas):

$$Taxa\ de\ acerto = \frac{n^o\ acertos}{[base\ de\ teste]}$$

 Taxa de erro do classificador (classificações erradas):

$$Taxa\ de\ erro = \frac{n^o\ erros}{[base\ de\ teste]}$$

- Hold out:
 - Divisão aleatória da base em:
 - Base de treinamento (2/3);
 - Base de teste (1/3).

k-Fold Cross Validation:

- Base de dados particionada (aleatoriamente) em k partes (do mesmo tamanho aproximadamente);
- Treinamento e teste s\(\tilde{a}\) executados \(k\) vezes;
- Em cada execução:
 - 1 partição de teste;
 - k-1 partições de treinamento;
- Todas as partições são utilizadas, em algum momento, para teste.
- $Acur\'{a}cia = \frac{n^o \ acertos}{[base \ de \ dados]}$

Iteração 1	Teste	Treino	Treino	Treino	Treino
Iteração 2	Treino	Teste	Treino	Treino	Treino
Iteração 3	Treino	Treino	Teste	Treino	Treino
Iteração 4	Treino	Treino	Treino	Teste	Treino
Iteração 5	Treino	Treino	Treino	Treino	Teste

$$Precision = \frac{TP}{TP + FP}$$

- TP: true positive;
- FP: false positive.

- Fração dos elementos classificados como positivos que são realmente positivos;
- Ou o número de acertos entre os elementos classificados como positivos;
- Exemplo: de todos classificados como SPAM, quantos eram realmente SPAM.

$$Recall = \frac{TP}{TP + FN}$$

- TP: true positive;
- FN: false negative.

- Fração dos elementos positivos que foram classificados como positivos;
- Ou o número de acertos entre os elementos positivos;
- Exemplo: de todos os SPAMs, quantos foram classificados como SPAM.

$$F\ Measure = \frac{2 \times Pr \times Rc}{Pr + Rc}$$

- Pr: precision;
- Rc: recall.

- Fé a média harmônica entre Pre
 Rc;
- Tende a ser mais próximo ao menor elemento;
- Um valor alto garante a "qualidade" em termos de *Precision* e *Recall*.

Matriz de confusão:

 Permite visualizar em termos nominais o erros e acertos do modelo.

Seleção de atributos

- Processo de reduzir o número de variáveis de entrada (independentes) em modelos preditivos.
- Vantagens:
 - Reduz o custo computacional de construção do modelo;
 - Simplifica o modelo, facilitando a interpretação, bem com a implementação em produção.
- O objetivo é encontrar os atributos independentes que possuam relacionamento mais forte com o atributo dependente, por meio de técnicas como o coeficiente de correlação e ganho informação.

Classes desbalanceadas

- O problema de classes desbalanceadas ocorre quando há um desequilíbrio na distribuição de instâncias entre as classes.
 - Exemplo: um modelo para identificação de SPAMs que foi treinado com um conjunto de dados que tinha uma pequena quantidade relativa de SPAMs.
- O desbalanceamento pode resultar em modelos enviesados.
- Técnicas para lidar com o problema:
 - Coletar mais dados;
 - Gerar amostras sintéticas (SMOTE);
 - Manipular as amostras (oversampling e undersampling).

Continua...