Projects **Machine Learning Course**Fall 2017

EPFL

School of Computer and Communication Sciences

Martin Jaggi & Rüdiger Urbanke

mlo.epfl.ch/page-146520.html

epfmlcourse@gmail.com

Mock Midterm Exam - Nov 14, 2017

1 Subgradient Descent [20pts]

Derive the (sub)gradient descent update rule for a one-parameter linear model using the Mean Absolute Error,

$$\mathcal{L}_{\mathsf{MAE}}(\mathbf{X}, \mathbf{y}, w) = \frac{1}{N} \sum_{n=1}^{N} |wx_n - y_n|.$$

Hint: The function f(x) = |ax| is a composition of two simpler function. Use the chain rule!

2 Multiple-Output Regression [20pts]

Let $S = \{(\mathbf{y}_n, \mathbf{x}_n)\}_{n=1}^N$ be our training set for a regression problem with $\mathbf{x}_n \in \mathbb{R}^D$ as usual. But now $\mathbf{y}_n \in \mathbb{R}^K$, i.e., we have K outputs for each input. We want to fit a linear model for each of the K outputs, i.e., we now have K regressors $f_k(\cdot)$ of the form

$$f_k(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}_k,$$

where each $\mathbf{w}_k^{\top} = (w_{k1}, \cdots, w_{kD})$ is the weight vector corresponding to the k-th regressor. Let \mathbf{W} be the $D \times K$ matrix whose columns are the vectors \mathbf{w}_k .

Our goal is to minimize the following cost function \mathcal{L} :

$$\mathcal{L}(\mathbf{W}) = \sum_{k=1}^{K} \sum_{n=1}^{N} \frac{1}{2\sigma_{k}^{2}} (y_{nk} - \mathbf{x}_{n}^{\top} \mathbf{w}_{k})^{2} + \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{w}_{k}\|_{2}^{2},$$

where the σ_k are known real-valued scalars. Let $\boldsymbol{\sigma}=(\sigma_1,\cdots,\sigma_K)$.

For the solution, let X be the $N \times D$ matrix whose rows are the feature vectors \mathbf{x}_n .

- 1. (4pts) Write down the normal equations for \mathbf{W}^{\star} , the minimizer of the cost function. I.e., what is the first-order condition that \mathbf{W}^{\star} has to fulfill in order to minimize $\mathcal{L}(\mathbf{W})$.
- 2. (8pts) Is the minimum \mathbf{W}^{\star} unique? Assuming it is, write down an expression for this unique solution.
- 3. (8pts) Write down a probabilistic model, so that the MAP solution for this model coincides with minimizing the above cost function. Note that this will involve specifying the the likelihoods as well as a suitable prior (which will give you the regression term).

3 Proportional Hazard Model [20pts]

Let $S = \{(y_n, \mathbf{x}_n)\}_{n=1}^N$ be our training set for a regression problem with $\mathbf{x}_n \in \mathbb{R}^D$ as usual. We assume that the output y_n is *ordered*, i.e., takes values in the set $\{1, 2, \dots, K\}$ where we think of these numbers as *ordered* by the natural ordering. We wish to fit a linear model.

In the proportional hazard model we use the following probability distribution,

$$p(y_n = k \mid \mathbf{x}_n, \mathbf{w}, \boldsymbol{\Theta}) = \frac{e^{\eta_{nk}}}{\sum_{j=1}^K e^{\eta_{nj}}},$$

where $\eta_{nk} = \Theta_k + \mathbf{x}_n^{\top} \mathbf{w}$. The scalars Θ_k are assumed to be ordered, i.e., $\Theta_1 > \Theta_2 \cdots > \Theta_K$. Let $\mathbf{\Theta} = (\Theta_1, \cdots, \Theta_K)$.

- 1. (4pts) Show that $p(y_n | \mathbf{x}_n, \mathbf{w}, \boldsymbol{\Theta})$ (and therefore also $p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Theta})$) is a valid distribution. Hint: What are the *two* conditions that you need to verify?
- 2. (8pts) Derive the log-likelihood for this model.
- 3. (8pts) Show that the negative of the log-likelihood is convex with respect to Θ and \mathbf{w} . HINT: You can assume that the function $\ln(\sum_{k=1}^K e^{t_k})$ is convex.

4 Multiple Choice Questions and Simple Problems [40pts]

Mark the correct answer(s). More than one answer can be correct!

- In regression, "complex" models tend to
 - 1. (1 pt) overfit
 - 2. (1 pt) have large bias
 - 3. (1 pt) have large variance
- In regression, "simple" models tend to
 - 1. (1 pt) overfit
 - 2. (1 pt) have large bias
 - 3. (1 pt) have large variance
- We add a regularization term because
 - 1. (1 pt) this sometimes renders the minimization problem of the cost function into a strictly convex/concave problem
 - 2. (1 pt) this tends to avoid overfitting
 - 3. (1 pt) this converts a regression problem into a classification problem
- The k-nearest neighbor classifier
 - 1. (1 pt) typically works the better the larger the dimension of the feature space
 - 2. (1 pt) can classify up to k classes
 - 3. (1 pt) typically works the worse the larger the dimension of the feature space
 - 4. (1 pt) can only be applied if the data can be linearly separated
 - 5. (1 pt) has a misclassification rate of at most two times the one of the Bayes classifier if we have lots of data
 - 6. (1 pt) has a misclassification rate that is two times better than the one of the Bayes classifier
- A real-valued scalar Gaussian distribution
 - 1. (1 pt) is a member of the exponential family with one scalar parameter
 - 2. (1 pt) is a member of the exponential family with two scalar parameters
 - 3. (1 pt) is not a member of the exponential family
- Which of the following statements is correct, where we assume that all the stated minima and maxima are in fact taken on in the domain of relevance.
 - 1. (1 pt) $\max\{0, x\} = \max_{\alpha \in [0, 1]} \alpha x$
 - 2. (1 pt) $\min\{0, x\} = \min_{\alpha \in [0, 1]} \alpha x$
 - 3. (1 pt) Let $g(x) := \min_{y} f(x, y)$. Then $g(x) \le f(x, y)$
 - 4. (1 pt) $\max_{x} g(x) \leq \max_{x} f(x, y)$
 - 5. (1 pt) $\max_x \min_y f(x, y) \leq \min_y \max_x f(x, y)$
- Which of the following statements are correct?
 - 1. (1 pt) The training error is typically smaller than the test error.
 - 2. (1 pt) The SVM (support vector machine) formulation we discussed can be optimized using SGD.
 - 3. (1 pt) One iteration of SGD for ridge regression costs roughly $\Theta(ND)$, where N is the number of samples and D is the dimension.
 - 4. (1 pt) Logistic regression as formulated in class can be optimized using SGD.

- The following functions are convex:
 - 1. (1 pt) $f(x) := x^2, x \in \mathbb{R}$
 - 2. (1 pt) $f(x) := x^3$, $x \in [-1, 1]$
 - 3. (1 pt) $f(x) := -x^3$, $x \in [-1, 0]$
 - 4. (1 pt) $f(x) := e^{-x}$, $x \in \mathbb{R}$
 - 5. (1 pt) $f(x) := e^{-x^2/2}$, $x \in \mathbb{R}$
 - 6. (1 pt) $f(x) := \ln(1/x), x \in (0, \infty)$
 - 7. (1 pt) $f(x):=g(h(x)),\ x\in\mathbb{R}$, where g,h are convex and increasing over \mathbb{R}
- (5 pts) Let $f : \mathbb{R}^D \to \mathbb{R}$ be the function $f(\mathbf{w}) := \exp(\mathbf{x}^\top \mathbf{w})$, where $\mathbf{x} \in \mathbb{R}^D$. What is $\nabla_{\mathbf{w}} f$?