

Projet Janvier-Mars 2015, Université de Bourgogne

Ce projet a été encadré par Hervé CARDOT.

Publié le 30 Mars 2015

Table des Matières

I	Python recipies	5
1	Linear Regression	. 7
2	Heat Maps	10
3	Barplots	11
II	R recipies	19

Introduction

This is one of my finer quotations.

-John Smith

This is a great place to write an introduction or prologue¹.

¹You can even use a footnote to seem smarter

Part I Python recipies

1. Linear Regression

Packages required to run this code

pandas for reading csv files¹ format
 scipy for doing linear regression analysis and obtaining the statistics
 matplotlib for making the plots

¹data not shown as tables

Figure 1.1: Linear regression analysis has been performed for two sets of data and the resulting model is shown in the legends of each figure

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from scipy import stats
4 cm5=pd.read_csv("CM5_ARRANGED_DATA_FROM_R.csv")
5 cm1=pd.read_csv("CM1A_ARRANGED_DATA_FROM_R.csv")
6 xcm5=cm5['Expt']
7 ycm5=cm5['G121']
8 xcm1=cm1['Expt']
9 ycm1=cm1['G105']
10 m1, c1, r1, p1, se1 = stats.linregress(xcm1, ycm1)
11 m5, c5, r5, p5, se5 = stats.linregress(xcm5, ycm5)
12 fig=plt. figure (figsize = (10, 5), dpi=300)
13 \text{ ax} 1 = \text{plt.subplot}(121)
14 cm1lab=""+("y=\%2.2 fx+\%2.2 f", r^2=\%1.2 f", (m1, c1, r1**2))+"
15 ax1.plot(xcm1, ycm1, '^', mfc='none', mec='b', mew=1.2)
16 ax1.plot(xcm1, m1*xcm1+c1, 'k-', linewidth=2, label=cm1lab)
17 plt.ylabel(r'$\Delta G^{GB/SA}_{hyd}~$ 1.05*CM1A (kcal/mol)', fontsize
18 plt.xlabel(r'\ \Delta G^{Expt}_{hyd}~$ (kcal/mol)', fontsize=16)
19 ax1.legend( loc='upper left')
20 \text{ ax2} = \text{plt.subplot}(122)
21 cm5lab="$"+('y=\%2.2 fx+\%2.2 f, r^2=\%1.2 f'\%(m5, c5, r5**2))+"$"
22 ax2.plot(xcm5,ycm5,'o',mfc='none',mec='r',mew=1.2)
23 ax2.plot(xcm5, m5*xcm5+c5, 'k-', linewidth=2, label=cm5lab)
24 ax2.legend( loc='upper left')
25 plt.ylabel(r'$\Delta G^{GB/SA}_{hyd}~$ 1.21*CM5 (kcal/mol)', fontsize=16)
26 plt.xlabel(r'$\Delta G^{Expt}_{hyd}~$ (kcal/mol)', fontsize=16)
27 fig.subplots_adjust(left = 0.15, hspace = .001)
28 fig.tight layout()
29 plt.savefig('GBSA_comp.pdf')
```


2. Heat Maps

3. Barplots

Packages required to run this code

pandas for reading "Hvap.csv¹" formatnumpy for creating and manipulating vectorsmatplotlib for making the plots

¹contains both the raw and devation data required for plot

Table 3.1: Data to be plotted using bar plots

	14010 01	1. Data to	o prott	
Molecules	OPLS	CM1A	CM5	Expt
Acetic acid	12.26	13.52	14.46	12.49
Acetone	7.23	7.74	8.92	7.48
Acetonitrile	7.57	7.63	9.76	8.01
Aniline	11.88	16.41	14.61	12.60
Benzonitrile	12.52	14.45	15.49	12.54
Cyclohexane	7.56	7.64	7.61	7.86
Diethylamine	7.68	7.54	7.46	7.48
Diethyl ether	6.90	7.01	7.22	6.56
N,N-dimethylacetamide	13.44	14.34	15.57	11.75
Ethanethiol	6.67	6.48	6.68	6.58
Ethanol	10.29	9.06	10.19	10.11
Furan	6.91	8.01	7.17	6.56
Hexane	7.54	7.48	7.34	7.54
Methanol	9.00	7.60	8.84	8.95
Methyl acetate	7.99	10.00	10.12	7.72
Nitroethane	9.78	14.16	11.72	9.94
N-methylacetamide	13.87	16.12	19.06	13.30
Phenol	14.58	14.63	14.30	13.82
Propylamine	7.90	8.93	7.23	7.47
Pyridine	9.76	11.16	11.16	9.61
Pyrrole	10.32	13.81	12.37	10.80
Tetrahydrofuran	7.52	7.66	8.08	7.61

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 hvap = pd.read_csv("Hvap.csv")
5 \text{ n\_groups} = \text{len} (\text{hvap.D\_OPLS})
7 \text{ opls} = \text{list} (\text{hvap.D_OPLS})
8 \times 1ab = list(hvap.Molecules)
9 \text{ cm5} = \text{list} (\text{hvap.D_CM5})
10 \text{ cm} 1a = \text{list} (\text{hvap.D CM} 1A)
11 fig, ax = plt.subplots()
12 index = np. arange (n_groups)
13 \text{ bar\_width} = 0.33
14 \text{ opacity} = 0.5
15 rects1 = plt.bar(index, opls, bar_width,
                       alpha=opacity , color='r', label='OPLS')
17 rects2 = plt.bar(index + bar_width, cm5, bar_width,
18
                       alpha=opacity, color='g', label='1.27*CM5')
19 rects3 = plt.bar(index + 2 * bar_width, cm1a, bar_width,
                       alpha=opacity, color='b', label='1.14*CM1A')
20
21 plt.ylabel(r'\ Delta H_{vap}^{expt}-Delta H_{vap}^{calc}~$ (kcal/mol)')
22 plt.xticks(index + bar_width, x_lab, rotation=90)
23 plt.grid()
24 plt.xlim(-0.5, n_groups + 0.5)
25 plt.legend(loc='lower left', ncol=3)
26 plt.tight_layout()
27 plt.savefig("Tesh_hvap.pdf")
```

Listing 3.1: Bar plot of the data shown in Table above

Figure 3.1: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

```
1 import matplotlib
2 matplotlib.use('Agg')
3 matplotlib.rc('font', family='serif')
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import matplotlib.cm as cm
8 dat = pd.read csv('all cm5 dat.csv')
9 method=list(dat['Molecules'])
11 legend= (dat.columns.values)[1:]
12 colors = cm. Greens (np. linspace (0, 1, len (legend)))
13 index = np.arange(len(method))
14 bar_width = 1.0/len(legend)
15 \text{ opacity} = 0.5
16 for i,c in zip(range(0,len(legend)),colors):
    plt.bar(index+bar_width*i,dat[legend[i]], bar_width,
17
18
                      alpha=opacity,
19
                      color=c,
20
                      label=legend[i])
21 plt.ylabel(r'\\Delta H_{vap}^{expt}-\Delta H_{vap}^{calc}~$ (kcal/mol)')
22 plt.xticks(index + bar_width*len(legend)/2, method, rotation=90, fontsize
      =10)
23 plt.grid()
24 plt.xlim(-0.1, len(method) + 0.0)
25 plt.legend(bbox_to_anchor=(1.0, 1.01), fontsize=8, loc=0, frameon=False)
26 plt. tight_layout (rect = [0.0, 0.01, 0.89, 1])
27 plt.savefig("Thh.pdf")
```

Listing 3.2: Barplot liquid properties using CM5 charges with different scale factors

Figure 3.2: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

```
1 import matplotlib
 2 matplotlib.use('Agg')
3 matplotlib.rc('font', family='serif')
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import matplotlib.cm as cm
8 from matplotlib.ticker import FuncFormatter
9 hvap = pd.read_csv('Hvap.csv')
10 den = pd.read csv('Den.csv')
11 hvap.drop(hvap.columns[[1,2,3,4,5,7]], axis=1, inplace=True)
12 den.drop(den.columns[[1,2,3,4,5,7]], axis=1, inplace=True)
13 ml=list (hvap['Molecules'])
14 m2=list (den['Molecules'])
15 ###################################
16 def millions (x, pos):
       'The two args are the value and tick position'
17
       return '%2.2f' % (x)
18
19 formatter = FuncFormatter (millions)
21 11 = (hvap.columns.values)[1:]
22 12= (den.columns.values)[1:]
23 colors = cm. Spectral(np.linspace(0, 1, len(11)))
24 fig, (ax1, ax2) = plt.subplots(2, sharex=True)
25 index = np.arange(len(m1))
26 \text{ bar\_width} = 1.0/1\text{en}(11)
27 \text{ opacity} = 0.5
28 patterns = [ "*", "o", "."]
29 for i, c in zip(range(0, len(11)), colors):
30
    ax1.bar(index+bar_width*i,hvap[11[i]], bar_width,
31
                      alpha=opacity,
32
                      color=c,
33
          hatch=patterns[i],
34
                      label=11 [i][2:])
35 ax1.legend(fontsize=10,loc=9, bbox_to_anchor=(0.5, 1.2),ncol=3,frameon=
      False)
36 ax1.set ylabel(r'$\Delta H {vap}^{expt}-\Delta H {vap}^{calc}~$ (kcal/
      mol)')
37 ax1.yaxis.set_major_formatter(formatter)
38 ax1. yaxis. set_ticks(np.arange(-6,3,2))
39 for i,c in zip(range(0, len(12)), colors):
40
    ax2.bar(index+bar width*i,den[11[i]], bar width,
41
                      alpha=opacity,
42
                      color=c,
43
          hatch=patterns[i],
44
                      label=12 [i][2:])
45 ax2.set_ylabel(r'\$\Delta \rho^{expt}-\Delta \rho^{calc}^{c})
46 ax2. yaxis. set_ticks (np. arange (-0.1, 0.08, 0.04))
47 plt.xticks(index + bar_width*len(12)/2, m2, rotation=90, fontsize=10)
48 ax1.xaxis.grid()
49 ax2.xaxis.grid()
50 ax1. yaxis. grid()
```


Figure 3.3: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

```
51 ax2.yaxis.grid()
52 ax1.set_xlim(-0.1, len(m1) + 0.0)
53 ax2.set_xlim(-0.1, len(m2) + 0.0)
54 plt.tight_layout(rect=[0.0,0.01,0.89,0.99])
55 plt.savefig("Multi_bar.pdf")
```

Listing 3.3: Multiple bar plots in matplotlib

Part II R recipies