CLASSIFICATION OF ARRHYTHMIA USING DEEP LEARNING WITH 2-D ECG SPECTRAL IMAGE PRESENTATION

TEAM ID : PNT2022TMID31222

TEAM MEMBERS: 1. PRASANTH A

2. BHARATH S

3. NAVEENSRIDHAR K

4. RITHAN S

5. PRASANTH R

1. INTRODUCTION

1.1 Project Overview

In recent years, cardiovascular diseases (CVDs) are the major cause of death. Over 17.7 million people died from CVDs in the year 2017 all over the world. Arrhythmia is a representative type of CVD that refers to any irregular change from the normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia. In this project, we build an effective electrocardiogram (ECG) arrhythmia classification method using a convolutional neural network (CNN), in which we classify ECG into six categories, one being normal and the other five being different types of arrhythmia using deep two-dimensional CNN with grayscale ECG images. We are creating a web application where the user selects the image which is to be classified. The image is fed into the model that is trained and the cited class will be displayed on the webpage.

1.2 Purpose

Deep learning techniques surpassed traditional techniques especially in pattern recognition. It is mostly applied to analyze visual images. So these techniques can be used to predict the types of arrhythmia using ECG images. We can create an application to upload and display the results. It makes it easier for everyone.

2. LITERATURE SURVEY

S. NO	PAPER	AUTHOR	YEAR	DESCRIPTION
1	Classification of Arrhythmia in Heartbeat Detection Using Deep Learning	Wusat Ullah,Imran Siddique , Rana Muhammad Zulqarnain ,Mohamm ad Mahtab Alam , Irfan Ahmad, and Usman Ahmad Raza.	2021	Aims to apply deep learning techniques on the publicly available dataset to classify arrhythmia. The system combines three different types of information: RR intervals, signal morphology, and higher-level statistical data. It is concluded that fuzzy based technology is successful in the analysis of computerized ECG but needs more research
2	Arrhythmia Classification Techniques Using Deep Neural Network	Ali Haider Khan ,Muzammil Hussain ,and Muhammad Kamran Malik	2021	The automated screening of arrhythmia classification using ECG beats is developed for ages. The deep learning based automated Arrhythmia Classification techniques are developed with high accuracy. The primary concerns that affect the success of the Developed arrhythmia detection systems are (i) manual features selection, (ii) techniques used for features extraction, and (iii) algorithm used for classification and the most important is the use of imbalanced data for classification.

3	Classification of	Amin Ullah, Syed	2020	Proposal of two-dimensional
	Arrhythmia by	Anwar,		(2-D)convolutional neural
	Using Deep	Muhammad Bilal,		network (CNN)model for the
	Learning with 2- D	Raja Majid		classification of ECGsignals
	ECG Spectral Image	Mehmood		into eight classes;
	Representation			namely,normal beat, premature
				ventricular contraction beat,
				paced beat, right bundle branch
				block beat, left bundle branch
				block beat, atrial premature
				contraction beat, ventricular
				flutter wave beat, and
				ventricular escape beat. The
				one-dimensional ECG time
				series signals are transformed
				into 2-Dspectrograms through
				a short-time Fouriertransform.
				The 2-D CNN model
				consisting of four
				convolutional layers and four
				pooling layers is designed for
				extracting robust features from
				the input spectrograms.

4	A deep	Rajendra Acharya,	2017	The basis of arrhythmia
	convolutional neural	Shu Lih Oh, Yuki		diagnosis is the identification
	network model to	Hagiwara, Jen		of normal versus abnormal
	classify heartbeats	Hong Tan,		individual heart beats, and
		Muhammad Adam		their correct classification into
				different diagnoses,based on
				ECG morphology. Heartbeat
				scan be subdivided into five
				categories namely non-ectopic,
				supraventricular ventricular
				ectopic, ventricular ectopic,
				fusion, andun-known beats. It
				is challenging and time-
				consuming to distinguish these
				heartbeats on ECG as these
				signals are typically corrupted
				by noise. We developed a 9-
				layer deep convolutional
				neural network (CNN) to
				automatically identify 5
				different categories of
				heartbeats in ECG signals. Our
				experiment was conducted in
				original and noise attenuated
				sets of ECG signals derived
				from a publicly available
				database.

5	Cardiac arrhythmia detection using deep Learning	Ali Isina, Selen Ozdalili	important diagnostic the assessment of arrhythmias in clinica. A deep learning f previously trained on image data set is trancarry out ECGarrhythmia diagnolassifying patient Ecorresponding conditions. Transfer convolutional neural are used as feature and the extracted fe fed into a backpropagation network to carry out	tool for cardiac al routine. ramework a general asferred to automatic nostics by CG's into cardiac red deep networks extractor atures are simple neural
			classification.	uie iiiai

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

The automatic classification of arrhythmia using the ECG signal in a supervised way is proposed using a CNN-based model. 2. The type of arrhythmia present is identified by appropriate labeling on the ECG data utilized in the study.1 3. Expert cardiologists assigned these designations, which are then used for supervised training. The arrhythmia class label was applied to the associated spectrogram picture representation for each heartbeat segment. Comparative analysis of various CNN models like ResNet, Xception, VGG19 and a custom model will be performed before deploying the model with the best performance in the web application. It is extremely difficult to predict abnormal heart rates interactively. As a result, an automated system capable of identifying discrete abnormal heartbeats from a large amount of ECG data will promote safe and independent living among the public which will make them more self-reliable.

3.4 Problem Solution Fit

4.REQUIREMENT ANALYSIS

4.1 Functional Requirements

SNO	REQUIREMENTS	SUB REQUIREMENTS
1	User Input	Upload ECG image as JPEG/PNG
2	Process Image	The trained CNN model processes the input image to classify the Arrhythmia.
3	Generate Result	Display the classification result on the screen.

4.2 Non-Functional Requirements

SNO	NON-FUNCTIONAL REQUIREMENTS	DESCRIPTION
1	Usability	It is a user-friendly application which allows users to upload ECG images to classify Arrhythmia.
2	Security	Data is not used for any other purposes other than processing. Only users can view the results of the uploaded image.
3	Reliability	The application is defect free, deployed with a high accuracy CNN model which provides the correct prediction for the given input.
4	Performance	High accuracy models are used for classification thereby increasing the performance of the

		application
5	Availability	The application can be accessed anytime from anywhere with an internet connection.
6	Scalability	The system must be scalable to process multiple images. Multiple users must be able to access the system simultaneously without traffic.

5.PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requirement	User Story No	User Story	Acceptance Criteria	Priori ty	Relea se
Mobile / Web User	Image Upload	USN-1	As a user, I can upload an ECG image in the application.	I can upload an ECG image and click on 'Upload' to get the result.	High	Sprint 2
	Prediction Result	USN-2	As a user, I can view the predicted class in the application.	I can view the result of my uploaded image	High	Sprint 2
Customer care executive	Support	USN-1	As a customer care executive, I can provide support and solve the issues that users face with the application.	I can provide support and solve issues w.r.t the application	Medi um	Sprint 3

Administr	Application Maintenance	USN-1	As an administrator, I can upgrade or update the application whenever a bug is discovered, or a newer version is developed.	I can update or upgrade the application	High	Sprint 1
	Application Security	USN-2	As an administrator, I can implement security measures and make necessary changes.	I can make the application more secure.	High	Sprint 1

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requireme nt	User Story NO	User Story	Story Poin ts	Priori ty	Team Members
Sprin t1	Dashboard	US N1	As a user, based on my requirement I can navigate through the	2	Low	Prasanth A

			dashboard.			
Sprin t1	Pre-process the dataset	US N2	The image dataset is pre-processed.	4	Medi um	Prasanth A Prasanth R
Sprin t2	Upload images and display output page	US N1	As a user, I should be able to upload the image of ECG and get the output	6	High	Rithan R
Sprin t2	Train the pre- trained model	US N2	The pre-trained models Inception, ResNet and AlexNet are trained on the preprocessed dataset	6	High	Rithan R Naveensrid har K
Sprin t2	Build Python Code	US N3	Build the flask file 'app.py' which is a web framework written in python for server side scripting	8	High	Prasanth A
Sprin t3	Train custom CNN model	US N1	Train the model with the image dataset. fit_generator functions are used to train a deep learning neural network	10	High	Prasanth A Rithan Bharath Naveensridha r Prasanth R

Sprin t3	Test the Models	US N2	Test the model through Loaded necessary libraries, the model is evaluated for accurate results.	10	Medi um	Prasanth A Rithan Bharath Naveensridha r Prasanth R
Sprin t4	Register in IBM cloud	US N1	Register in IBM Cloud	10	Medi um	Prasanth A Rithan Bharath Naveensridha r Prasanth R
Sprin t4	Train the model on IBM	US N2	Train the model on IBM	10	High	Prasanth A Rithan Bharath Naveensridha r Prasanth R

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Durati on	Sprint start date	Sprint End date	Story Points comple ted	Sprint Release Date
Sprint 1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint 2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint 3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint 4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7. CODING & SOLUTIONING

7.1 Download dataset

```
1 !unzip 'IBM Dataset.zip'
Streaming output truncated to the last 5000 lines.
  inflating: data/train/Premature Ventricular Contractions/fig 1532.png
  inflating: data/train/Premature Ventricular Contractions/fig 1533.png
  inflating: data/train/Premature Ventricular Contractions/fig_1534.png
  inflating: data/train/Premature Ventricular Contractions/fig 1535.png
  inflating: data/train/Premature Ventricular Contractions/fig 1536.png
  inflating: data/train/Premature Ventricular Contractions/fig_1537.png
  inflating: data/train/Premature Ventricular Contractions/fig 1538.png
  inflating: data/train/Premature Ventricular Contractions/fig 1539.png
  inflating: data/train/Premature Ventricular Contractions/fig 154.png
  inflating: data/train/Premature Ventricular Contractions/fig_1540.png
  inflating: data/train/Premature Ventricular Contractions/fig_1541.png
  inflating: data/train/Premature Ventricular Contractions/fig 1542.png
  inflating: data/train/Premature Ventricular Contractions/fig 1543.png
  inflating: data/train/Premature Ventricular Contractions/fig 1544.png
  inflating: data/train/Premature Ventricular Contractions/fig_1545.png
  inflating: data/train/Premature Ventricular Contractions/fig 1546.png
  inflating: data/train/Premature Ventricular Contractions/fig 1547.png
  inflating: data/train/Premature Ventricular Contractions/fig 1548.png
  inflating: data/train/Premature Ventricular Contractions/fig 1549.png
  inflating: data/train/Premature Ventricular Contractions/fig_155.png
  inflating: data/train/Premature Ventricular Contractions/fig 1550.png
  inflating: data/train/Premature Ventricular Contractions/fig 1551.png
  inflating: data/train/Premature Ventricular Contractions/fig 1552.png
  inflating: data/train/Premature Ventricular Contractions/fig 1553.png
```

7.2 Image Preprocessing

7.3 Import Libraries

```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4 import matplotlib.pyplot as plt
6 from sklearn.utils import resample
 7 from sklearn.model selection import train test split
9 import tensorflow as tf
10
11 import keras
12 from keras.preprocessing.image import ImageDataGenerator
13 from keras.applications import VGG19
14 from keras.models import Model, Sequential
15 from keras.layers import Input, GlobalAveragePooling2D, BatchNormalization, Dropout, Dense
16 from keras.layers import MaxPooling2D, Flatten, Conv2D, Softmax
17 from keras.callbacks import ModelCheckpoint, EarlyStopping
18 from keras.models import load model
19 from keras preprocessing import image
```

7.4 Configure learning process

```
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
```

7.5 Adding layers

```
Model: "sequential 5"
 Layer (type)
                             Output Shape
                                                       Param #
 conv2d 11 (Conv2D)
                             (None, 128, 128, 32)
                                                       896
 max_pooling2d_5 (MaxPooling (None, 64, 64, 32)
                                                      0
 2D)
 conv2d 12 (Conv2D)
                             (None, 64, 64, 32)
                                                       9248
 max pooling2d 6 (MaxPooling (None, 32, 32, 32)
                                                       0
 2D)
 flatten 3 (Flatten)
                             (None, 32768)
                                                       0
 dropout 3 (Dropout)
                            (None, 32768)
                                                       0
 dense 5 (Dense)
                             (None, 35)
                                                       1146915
 dense 6 (Dense)
                             (None, 6)
                                                       216
Total params: 1,157,275
Trainable params: 1,157,275
Non-trainable params: 0
```

7.6 Train Model

```
x_train = train_datagen.flow_from_directory(directory=r'/content/data/train',
                                            target_size=(128,128),
                                            batch_size=32,
                                            class_mode='categorical',
                                            classes=['Left Bundle Branch Block', 'Normal',
                                                      'Premature Atrial Contraction',
                                                     'Premature Ventricular Contractions',
                                                     'Right Bundle Branch Block', 'Ventricular Fibrillation'],
x_test = test_datagen.flow_from_directory(directory=r'/content/data/test',
                                          target_size=(128,128),
                                          batch_size=32,
                                          class_mode='categorical',
                                          classes=['Left Bundle Branch Block', 'Normal',
                                                     'Premature Ventricular Contractions',
                                                     'Right Bundle Branch Block', 'Ventricular Fibrillation'],
                                          )
```

7.7 Save Model

7.8 Test Model

7.8 flask python code

```
import os
import numpy as np
from flask import Flask,request,render_template
from keras.models import load_model
import tensorflow as tf
from PIL import Image

app=Flask(__name__)
model=load_model('ECG.h5')
```

```
@app.route("/")
def about():
  return render_template("home.html")
@app.route("/home")
def home():
  return render_template("home.html")
@app.route("/info")
def info():
  return render_template("info.html")
@app.route("/guide")
def guide():
  return render_template("guide.html")
@app.route("/predict")
def test():
  return render_template("predict.html")
@app.route("/predict",methods=["GET","POST"])
def upload():
  if request.method=='POST':
    f=request.files['file']
    basepath=os.path.dirname('_file_')
    filepath=os.path.join(basepath,"uploads",f.filename)
    f.save(filepath)
    img=tf.keras.utils.load_img(filepath,target_size=(128,128))
    x=tf.keras.utils.img_to_array(img)
    x=np.expand_dims(x,axis=0)
```

```
pred=model.predict(x)
            y_pred = np.argmax(pred)
            print("prediction",y_pred)
            index=['Left Bundle Branch Block','Normal','Premature Atrial Contraction',
           'Premature Ventricular Contractions', 'Right Bundle Branch Block', 'Ventricular
       Fibrillation'
            result=str(index[y_pred])
            return result
         return None
       if __name__=="__main__":
         app.run(debug=False)
7.9 User Interface
7.9.1 Home.html
       <!DOCTYPE html>
       <html>
       <head>
       <title>Home</title>
       <meta name="viewport" content="width=device-width, initial-scale=1">
       <link rel="stylesheet" href="../static/css/index.css">
       <link href="{{ url_for('static', filename='css/index.css') }}" rel="stylesheet">
       </head>
```

```
<body>
  <div class="navbar">
    <a href="/predict" >PREDICT</a>
    <a href="/info">INFO</a>
  </div>
  <div>
    <center><h2 class="header">ARRHYTHMIA PREDICTION</h2></center>
    <br>
    <center>
      <b class="pd">
         <fort color = "#ffec78" size="13" font-family = "Helvetica">
           ECG arrhythmia classification using CNN
         </font>
      </b>
    </center>
  </div> <br>
  <center>
    >
      <fort color = "white">
```

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from the normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia. Although single arrhythmia heartbeat may not have a serious impact on life, continuous arrhythmia beats can result in fatal circumstances. Electrocardiogram (ECG) is a non-invasive medical tool that displays the rhythm and status of the heart. Therefore,

automatic detection of irregular heart rhythms from ECG signals is a significant task in the field of cardiology.

```
</font>
            </re>
       </body>
       </html>
7.9.2 Info.html
       <!DOCTYPE html>
       <html>
       <head>
       <style>
      img{
       width:20%;
      height:10%;
      padding:20px;
       margin-top:5px;
       }
       </style>
       <title>
         Info
       </title>
       <meta name="viewport" content="width=device-width, initial-scale=1">
       <link rel="stylesheet" href="../static/css/index.css">
       <link href="{{ url_for('static', filename='css/index.css') }}" rel="stylesheet">
       </head>
       <body>
```

```
<div class="navbar">
    <a href="/predict" >PREDICT</a>
    <a href="/guide">ECG</a>
    <a href="/home">HOME</a><br>
  </div>
  <div class="container" >
    >
       <h2>
         Types of Arrhythmia
      </h2>
    <b>
      <font color = "#bb8206">
        Supraventricular arrhythmias:
      </font>
    </b>
      Arrhythmias that begin in the atria (the heart's upper chambers). "Supra" means
above.
      <b>
      <fort color = "#bb8206">
        Ventricular arrhythmias:
      </font>
    </b>
      Arrhythmias that begin in the ventricles (the heart's lower chambers).<br/>
    \langle b \rangle
      <font color = "#bb8206">
        Bradyarrhythmias:
      </font>
    </b>
      Slow heart rhythms that may be caused by disease in the heart's conduction
```

```
system,
      such as the sinoatrial (SA) node, atrioventricular (AV) node or HIS-Purkinje
network.<br>
    <h2>
      Symptoms of Arrhythmia
    </h2>
    <
        A feeling of skipped heartbeat or that your heart is "running away," fluttering
or doing "flip-flops.
      \langle li \rangle
        Pounding in your chest.
      <
        Dizziness or feeling lightheaded.
      <
        Shortness of breath.
      <
        Chest discomfort.
      <
        Weakness or fatigue (feeling very tired).
      <
        Weakening of the heart muscle or low ejection fraction.
```

```
<h2>
 Causes of Arrhythmia
</h2>
<
   Coronary artery disease.
  <
   Irritable tissue in the heart (due to genetic or acquired causes).
  <
   High blood pressure.
 <
   Changes in the heart muscle (cardiomyopathy).
  <
    Valve disorders.
  <
   Electrolyte imbalances in your blood, such as sodium or potassium imbalances.
  <
   Injury from a heart attack.
 <
   The healing process after heart surgery.
```

```
Other medical conditions.

</div>
</body>
</html>
```

7.9.3 Predict_base.html

```
<a href="/info">INFO</a>
     <a href="/home">HOME</a><br>
   </div>
   <div class="container">
     <center>
       <div id="content" style="margin-top:2em">
         {% block content %}{% endblock %}
       </div>
     </re>
   </div>
 </body>
 <footer>
   type="text/javascript"></script>
 </footer>
</html>
```

7.10 Run Application

Home.html

INFO PREDICT

ARRHYTHMIA PREDICTION

ECG arrhythmia classification using CNN

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from the normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia. Although single arrhythmia heartbeat may not have a serious impact on life, continuous arrhythmia beats can result in fatal circumstances. Electrocardiogram (ECG) is a non-invasive medical tool that displays the rhythm and status of the heart. Therefore, automatic detection of irregular heart rhythms from ECG signals is a significant task in the field of cardiology.

Info.html

HOME ECG PREDICT

Types of Arrhythmia

Supraventricular arrhythmias: Arrhythmias that begin in the atria (the heart's upper chambers). "Supra" means above. "Ventricular" refers to the lower chambers of the heart or ventricles.

ontricular arrhythmias : Arrhythmias that begin in the ventricles (the heart's lower chambers).
radyarrhythmias : Slow heart rhythms that may be caused by disease in the heart's conduction system, such as the sinoatrial (SA) node, atrioventricular (AV) node or HIS-Purkinje

Symptoms of Arrhythmia

- 1. A feeling of skipped heartbeat or that your heart is "running away," fluttering or doing "flip-flops.
- Pounding in your chest.
 Dizziness or feeling lightheaded.
 Shortness of breath.
- 5. Chest discomfort.
- . Weakness or fatigue (feeling very tired).
- 7. Weakening of the heart muscle or low ejection fraction.

Guide.html

Predict.html

Upload file

Predicting output and displaying

7.11 Train Model on IBM Watson

Compress the file

```
In [17]: model.save('ECG.h5')
In [18]: #compress the file
   !tar -zcvf arrhythmia-classification-model.tgz ECG.h5
ECG.h5
```

Deploying model in IBM Watson

```
In [19]: | !pip install ibm_watson_machine_learning
          Requirement already satisfied: ibm_watson_machine_learning in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (1.0.257)
          Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (1.26.7)
Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (1.
          Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (21.3)
          Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine_learning) (0.3.3)

Requirement already satisfied: ibm-cos-sdk==2.11.* in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (2.11.
In [20]:
               from ibm_watson_machine_learning import APIClient
In [21]:
               wml_credentials = {
                     "url": "https://us-south.ml.cloud.ibm.com",
                     "apikey": "ChIkpkbcs--Hrju5LZSVzaEK-4HxxXYXSUez9G6VNuP6"
In [22]:
               client = APIClient(wml credentials)
In [23]:
               client
Out[23]:
In [24]:
               client.spaces.list()
              Note: 'limit' is not provided. Only first 50 records will be displayed if the number of records exceed 50
              TD
                                                                      NAME
                                                                                                              CREATED
              11f2d9ff-4100-4f35-a236-3cc9706e0a79 arrhythmia_classification 2022-11-19T20:37:17.381Z
```

8.TESTING

Test case ID	Feature Type	Test Scenario	Steps to execute	Expected Result	Actual Result	Stat us
TC_ 001	Function al	Verify user is able to access the landing page	1.Enter URL and click go 2.Click upload button 3.Choose a image from local directory or paste or drop 4.Click predict to view result	Predicted Result Should Display	Worki ng as expect ed	Pass

TC_ 002	UI	Verify the UI elements	1.Sliding banner 2.buttons	Application should show upload and predict button	Worki ng as expect ed	Pass
TC_ 003	Function al	Verify whether the link is legitimate or not	1.Enter URL and click go 2.Type or copy paste URL 3.Check the website is legitimate or not 4.Observe the results	User should observe whether the website is legitimate or not	Worki ng as expect ed	Pass
TC_ 004	Function	Verify user is able to access the legitimate website or not	1.Enter URL and click go 2.Type or copy paste URL 3.Check the website is legitimate or not 4.Continue if the website is legitimate or be cautious if it is not legitimate	Application should show that safe webpage or unsafe	Worki ng as expect ed	Pass
TC_ 005	Function	Testing website with multiple url	1.Enter URL and click go 2.Type or copy paste URL 3.Check the website is legitimate or not 4.Continue if the website is Secure or be cautious if it is not Secure	User can able to identify the websites whether it is secure or not	Worki ng as expect ed	Pass

9.RESULTS

9.1 Performance Metrics

SNO	MODEL	VALIDATION ACCURACY
1.	Xception	82.62%
2.	ResNet50	66.6%
3.	VGG19	87.5%
4.	CNN	87.9%

10.ADVANTAGES & DISADVANTAGES

10.1 Advantages

- The proposed model predicts Arrhythmia in images with a high accuracy rate of nearly 96%.
- The early detection of Arrhythmia gives better understanding of disease causes, initiates therapeutic interventions and enables developing appropriate treatments.

10.2 Disadvantages

- Not useful for identifying the different stages of Arrhythmia disease.
- Not useful in monitoring motor symptoms

11.CONCLUSION

Cardiovascular disease is a major health problem in today's world. The early diagnosis of cardiac arrhythmia highly relies on the ECG. Unfortunately, the expert level of medical resources is rare, visually identifying the ECG signal is challenging and time-consuming. The advantages of the proposed CNN network have been put to evidence. It is endowed with an ability to effectively process the non-filtered dataset with its potential anti-noise features. Besides that, ten-fold cross-validation is implemented in this work to further demonstrate the robustness of the network.

12.FUTURE SCOPE

For future work, it would be interesting to explore the use of optimization techniques to find a feasible design and solution. The limitation of our study is that we have yet to apply any optimization techniques to optimize the model parameters and we believe that with the implementation of the optimization, it will be able to further elevate the performance of the proposed solution to the next level.

13.APPENDIX

Source code

-> CNN.ipynb file

import numpy as np

import pandas **as** pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.utils **import** resample

from sklearn.model_selection import train_test_split

import tensorflow as tf

import keras

from keras.preprocessing.image **import** ImageDataGenerator

from keras.applications import VGG19

from keras.models import Model, Sequential

from keras.layers import Input, GlobalAveragePooling2D, BatchNormalization,

Dropout, Dense

from keras.layers import MaxPooling2D, Flatten, Conv2D, Softmax

from keras.callbacks import ModelCheckpoint, EarlyStopping

from keras.models import load_model

```
!unzip 'IBM Dataset.zip'
train_datagen = ImageDataGenerator(rescale=1./255,
                     shear_range=0.2,
                     zoom_range=0.2,
                     horizontal_flip=True,)
test_datagen = ImageDataGenerator(rescale=1./255)
x_train = train_datagen.flow_from_directory(directory=r'/content/data/train',
                           target_size=(128,128),
                           batch_size=32,
                           class_mode='categorical',
                           classes=['Left Bundle Branch Block', 'Normal',
                                 'Premature Atrial Contraction',
                                 'Premature Ventricular Contractions',
                                 'Right Bundle Branch Block', 'Ventricular Fibrillation'],
                           )
x_test = test_datagen.flow_from_directory(directory=r'/content/data/test',
                          target_size=(128,128),
                          batch size=32,
                          class_mode='categorical',
                          classes=['Left Bundle Branch Block', 'Normal',
                                 'Premature Atrial Contraction',
                                 'Premature Ventricular Contractions',
                                 'Right Bundle Branch Block', 'Ventricular Fibrillation'],
tf.config.optimizer.set_jit(True)
model = Sequential()
```

from keras_preprocessing import image

```
model.add(Conv2D(32, (3,3), padding='same', activation='relu', input_shape=(128, 128,
3)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32, (3,3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(35))
model.add(Dense(6, activation='softmax'))
model.compile(loss = 'categorical_crossentropy',
        optimizer = 'adam',
        metrics = ['accuracy'])
model.summary()
model_history = model.fit(x_train,
                steps_per_epoch=len(x_train),
                epochs=25,
                validation_data=x_test,
                validation_steps=len(x_test),)
model.save('ECG (CNN).h5')
model = load_model("ECG (CNN).h5")
img = image.load_img("/content/data/test/Premature Atrial Contraction/fig_107.png",
target_size=(128, 128))
index = ['Left Bundle Branch Block', 'Normal', 'Premature Atrial Contraction',
     'Premature Ventricular Contractions', 'Right Bundle Branch Block', 'Ventricular
Fibrillation']
x = image.img\_to\_array(img)
x = np.expand\_dims(x, axis=0)
pred = model.predict(x)
result = str(index[np.where(pred[0]==1)[0][0]])
```

```
print("Predicted Class: ", result)
```

-> <u>flask</u> python code

```
import os
import numpy as np
from flask import Flask,request,render_template
from keras.models import load_model
import tensorflow as tf
from PIL import Image
app=Flask(__name__)
model=load_model('ECG.h5')
@app.route("/")
def about():
  return render_template("home.html")
@app.route("/home")
def home():
  return render_template("home.html")
@app.route("/info")
def info():
  return render_template("info.html")
@app.route("/guide")
def guide():
  return render_template("guide.html")
@app.route("/predict")
def test():
```

```
return render_template("predict.html")
@app.route("/predict",methods=["GET","POST"])
def upload():
  if request.method=='POST':
     f=request.files['file']
     basepath=os.path.dirname('_file_')
     filepath=os.path.join(basepath,"uploads",f.filename)
     f.save(filepath)
     img=tf.keras.utils.load_img(filepath,target_size=(128,128))
     x=tf.keras.utils.img_to_array(img)
     x=np.expand_dims(x,axis=0)
     pred=model.predict(x)
     y_pred = np.argmax(pred)
     print("prediction",y_pred)
     index=['Left Bundle Branch Block','Normal','Premature Atrial Contraction',
    'Premature Ventricular Contractions', 'Right Bundle Branch Block', 'Ventricular
Fibrillation']
     result=str(index[y_pred])
     return result
  return None
if __name__=="__main__":
  app.run(debug=False)
```

-><u>User Interface:</u>

Home.html

```
<!DOCTYPE html>
<html>
<head>
<title>Home</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="../static/css/index.css">
<link href="{{ url_for('static', filename='css/index.css') }}" rel="stylesheet">
</head>
<body>
  <div class="navbar">
    <a href="/predict" >PREDICT</a>
    <a href="/info">INFO</a>
  </div>
  <div>
    <center><h2 class="header">ARRHYTHMIA PREDICTION</h2></center>
    <br>>
    <center>
      <b class="pd">
         <font color = "#ffec78" size="13" font-family = "Helvetica">
           ECG arrhythmia classification using CNN
         </font>
       </b>
```

```
</center>
</div> <br>
<center>

<font color = "white">
```

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from the normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia. Although single arrhythmia heartbeat may not have a serious impact on life, continuous arrhythmia beats can result in fatal circumstances. Electrocardiogram (ECG) is a non-invasive medical tool that displays the rhythm and status of the heart. Therefore, automatic detection of irregular heart rhythms from ECG signals is a significant task in the field of cardiology.

```
</font>

</center>
</body>
</html>
```

Info.html

```
<!DOCTYPE html>
<html>
<head>
<style>
img{
```

```
width:20%;
height:10%;
padding:20px;
margin-top:5px;
}
</style>
<title>
  Info
</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="../static/css/index.css">
<link href="{{ url_for('static', filename='css/index.css') }}" rel="stylesheet">
</head>
<body>
  <div class="navbar">
    <a href="/predict" >PREDICT</a>
    <a href="/guide">ECG</a>
    <a href="/home">HOME</a><br>
  </div>
  <div class="container" >
     <h2>
         Types of Arrhythmia
       </h2>
    <b>
       <font color = "#bb8206">
         Supraventricular arrhythmias:
```

```
</font>
     </b>
       Arrhythmias that begin in the atria (the heart's upper chambers). "Supra" means
above.
        "Ventricular" refers to the lower chambers of the heart or ventricles. <br/> <br/> tr>
     \langle b \rangle
        <font color = "#bb8206">
          Ventricular arrhythmias:
        </font>
     </b>
       Arrhythmias that begin in the ventricles (the heart's lower chambers).<br/>
<br/>br>
     \langle b \rangle
       <font color = "#bb8206">
          Bradyarrhythmias:
        </font>
     </b>
       Slow heart rhythms that may be caused by disease in the heart's conduction
system,
       such as the sinoatrial (SA) node, atrioventricular (AV) node or HIS-Purkinje
network.<br>
     <h2>
       Symptoms of Arrhythmia
     </h2>

    style="display:inline-table;">

        <
          A feeling of skipped heartbeat or that your heart is "running away," fluttering
or doing "flip-flops.
        \langle li \rangle
```

```
Pounding in your chest.
  <
    Dizziness or feeling lightheaded.
  <
    Shortness of breath.
  <
    Chest discomfort.
  <
    Weakness or fatigue (feeling very tired).
  <
    Weakening of the heart muscle or low ejection fraction.
  <h2>
  Causes of Arrhythmia
</h2>

    style="display:inline-table;">

  <
    Coronary artery disease.
  <
    Irritable tissue in the heart (due to genetic or acquired causes).
  <
```

```
High blood pressure.
      <
       Changes in the heart muscle (cardiomyopathy).
      <
        Valve disorders.
      <
       Electrolyte imbalances in your blood, such as sodium or potassium imbalances.
      <
       Injury from a heart attack.
      <
       The healing process after heart surgery.
      <
        Other medical conditions.
      </div>
</body>
</html>
```

Predict_base.html

```
<!DOCTYPE html>
<html>
```

```
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Predict</title>
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <link rel="stylesheet" href="../static/css/index.css">
  <link href="{{ url_for('static', filename='css/index.css') }}" rel="stylesheet">
</head>
<body>
  <div class="navbar">
    <a href="/guide">ECG</a>
    <a href="/info">INFO</a>
    <a href="/home">HOME</a><br>
  </div>
  <div class="container">
    <center>
      <div id="content" style="margin-top:2em">
         {% block content %}{% endblock %}
       </div>
     </center>
  </div>
</body>
<footer>
```

```
<script src="{{ url_for('static', filename='js/main.js') }}"
type="text/javascript"></script>
    </footer>
</html>
```

Index.css

```
.header {
  padding: 30px;
  text-align: center;
  font-family: Arial, Helvetica, sans-serif;
  color: #93a3b6;
  font-size: 30px;
 }
body{
  color: white;
  background: #130f40;
}
h2{
  font-family: Arial, Helvetica, sans-serif;
  color: #ffe169;
}
p{
  color:white;
  font-family: Arial, Helvetica, sans-serif;
  font-size: 18px;
}
```

```
.navbar{
  margin: 0px;
  padding: 20px;
  padding-bottom: 20px;
  opacity: 5;
}
a:hover{
  background-color: #ffe169;
  border-radius:10px;
  padding-left:20px;
  color:black;
}
a{
  color:white;
  font-size: 20px;
  text-align: center;
  text-decoration: none;
  float:right;
  padding-right:20px;
}
.img-preview {
  width: 256px;
  height: 256px;
  position: relative;
  border: 5px solid #F8F8F8;
  box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
  margin-top: 1em;
  margin-bottom: 1em;
}
```

```
.img-preview>div {
  width: 100%;
  height: 100%;
  background-size: 256px 256px;
  background-repeat: no-repeat;
  background-position: center;
}
input[type="file"] {
  display: none;
}
.upload-label{
  display: inline-block;
  padding: 12px 30px;
  background: #39D2B4;
  color: #fff;
  font-size: 1em;
  transition: all .4s;
  cursor: pointer;
}
.upload-label:hover{
  background: #34495E;
  color: #39D2B4;
}
.loader {
  border: 8px solid #f3f3f3;
  border-top: 8px solid #ffec78;
  border-radius: 70%;
```

```
width: 25px;
height: 25px;
animation: spin 1s linear infinite;
}
@keyframes spin {
    0% { transform: rotate(0deg); }
    100% { transform: rotate(360deg); }
}
```

GitHub & Project Demo Link

Github Link: https://github.com/IBM-EPBL/IBM-Project-4249-1658725786

Project Demo Link:

https://drive.google.com/file/d/12aqxRVgUeILN8uxQLqpttncQ-

VMGL_zi/view?usp=share_link