Tema 3

Nivel de Red (TCP/IP)

1

Protocolos TCP/IP

- **#**Conjunto de protocolos de transmisión y enrutamiento de red
 - ○Objetivo: Ocultar detalles de hardware de las redes subyacentes proporcionando un servicio de comunicación <u>Universal</u>
- #Conecta redes individuales dando apariencia de una única red (Internet)

Interconexión a Nivel de Red

#Premisas

- Una única red no es suficiente para todos los usuarios (LAN o WAN)
- △Los usuarios desean una interconexión universal

Meta

○ Desarrollar una interconexión de redes unificada cooperativa que permita un servicio de comunicación universal

3

Propiedades de la Internet

- **#**Ocultar la arquitectura de interconexión a los usuarios (P.A.)
- ₩No impone una topología determinada
- #Independencia de la interred con la interfaz de usuario

Direccionamiento Interred IPv4

- ₩Cada S.I. tiene una dirección de 32 bits
- #Identifica la conexión del sistema dinternet

Tipo Id. Red Id. dispositivo

- ·Identifica la conexión del sistema a internet
- ·Es distinta a la dirección hardware de la placa de red de cada sistema

Direccionamiento Interred

- # Direcciones especiales
 - □ Estación = Todo a Os.
 - □ Estación = Todo a 1s.
 - ĭ Todas las estaciones de la red indicada en el campo red
 - □Red = 127 y estación lo que sea (normalmente 1)
 □Dirección loopback
- ★ Direcciones privadas
 - △10.0.0.0 a 10.255.255.255 (10.0.0.0 /8)
 - □ 172.16.0.0 a 172.31.255.255 (172.16.0.0/12)
 - △ 192.168.0.0 a 192.168.255.255 (192.168.0.0/16)
- #Direcciones de enlace local. (169.254.0.0/16)

1

Protocolo IP. Características

- **X**Lleva las unidades de información entre computadores fuente y destino
- #Fuente y destino pueden estar en una misma red o en distintas unidas por enrutadores
- #Hace a internet transparente a los computadores que intercambian información
- #Proporciona un servicio no orientado a conexión

Características

- **#**No realiza
- #Toma decisiones de enrutamiento independiente para cada datagrama
- #Hay tres eventos que pueden ocurrir
 - □ Pérdida de datagramas
 - △Datagramas fuera de secuencia
 - □ Datagramas duplicados

13

Formato del Datagrama Interred. IPv4 Bit: 16 Versión IHL Tipo de servicio Longitud total Identificación Desplazamiento del fragmento 20 octetos Tiempo de vida Protocolo Suma de comprobación de la cabecera Dirección origen Dirección destino Opciones + Relleno

- ₩Versión (4 Bits)
 - Número de la versión del Protocolo
- #Longitud de la Cabecera Internet (4 bits)

 - ∨Valor mínimo = 5 (20 Bytes)

15

Formato del Datagrama Interred

Precedencia D T R NO USADO (6-7)

- \triangle Precedencia: 0 \rightarrow Normal ... 7 \rightarrow Control de Red
- □ D: Bajo retardo de procesamiento
- □ T: Alta eficiencia□ R: Alta fiabilidad

- **ૠLongitud Total (16 bits)**
 - △Longitud total del datagrama, en bytes
- ★ Identificador (16 Bits)
 - Número de secuencia que identifica de forma única a un datagrama

17

Formato del Datagrama Interred #Fragmentación Red 1 MTU=1500 G1 Red 2 MTU=620 MTU=620 MTU=1500 Red 3 MTU=1500 Red 3 MTU=1500 Red 3 MTU=1500 Red 3 MTU=1500

₩Ejemplo: Datagrama de longitud 1400 bytes

Encabezamiento Datagrama	Datos 1 600 bytes	Datos 2 600 bytes	Datos 3 200 bytes
Encabezamiento Fragmento 1	Datos 1 600 bytes	Offset 0	200 0) 100
Encabezamiento Fragmento 2	Datos 1 600 bytes	Offset 600	
Encabezamiento Fragmento 3	Datos 3 200 bytes	Offset 1200	

Formato del Datagrama Interred

₩Control de la Fragmentación

 \square Identificación (n°)

□ Fragment Offset (13 bits)

□Flags (3 bits)

Not fragment flags

 $oxedsymbol{\boxtimes}$ More fragment bit

⊠No used

20

Reensamblado

- ☑En una red TCP/IP el reensamblado de datagramas se lleva a cabo en el S.I. destino
- □ Desventajas

 - ☑Pérdida de un Fragmento (Timer de reensamblado) → Imposibilidad de Reensamblado

- ☑Permite en encaminamiento individual de los fragmentos a través de diferentes redes
- ⊠No sobrecarga a las pasarelas

21

Formato del Datagrama Interred

Tiempo de Vida (8 bits) # Tiempo de Vida (8 bits)

☐ Garantizar que los datagramas no circulan indefinidamente por la red virtual

Ipv6. Motivación para desarrollar una nueva versión de IP

- **X**Limitación impuesta por el campo de dirección
 - △La estructura en dos niveles de la dirección IP (número de red y número de computador) ocupa demasiado espacio
 - □Requiere que se asigne un número de red único a cada red IP independientemente si la red está realmente conectada a Internet
 - △Las redes e Internet están proliferando rápidamente
 - OUSO creciente de TCP/IP
 - △Se asigna una dirección única a cada computador
- #Necesidad de nuevos tipos de servicio

Mejoras de IPv6

- **#**Espacio de direcciones ampliado
 - △128 bits
- #Mecanismo de opciones mejorado

 - △La mayoría no se examinan ni procesan por ningún dispositivo de encaminamiento en la trayectoria de paquetes
 - Simplifica y acelera el procesamiento
 - 区Es más fácil incorporar opciones adicionales
- #Direcciones de autoconfiguración
 - △Asignación dinámica de direcciones

Mejoras de IPv6

- **X** Aumento de la flexibilidad en el direccionamiento
 - □Dirección monodistribución (anycast). Un paquete se entrega sólo a un nodo seleccionado de entre un conjunto de nodos
- #Facilidad para la asignación de recursos
 - □Reemplaza el tipo de servicio
 - ☑ Habilita el etiquetado de los paquetes como pertenecientes a un flujo de tráfico particular
 - □Permite un tratamiento especializado
 - □Ejemplo: vídeo en tiempo real

Cabeceras de extensión

- ₩ Cabecera de opciones salto-a-salto
 - □ Requiere procesamiento en cada salto
- #Cabecera de encaminamiento
 - △Similar al encaminamiento por la fuente de IPv4
- Cabecera de fragmentación
- Cabecera de autentificación
- #Cabecera de encapsulamiento de la carga de seguridad
- ₩Cabecera de opciones para el destino
 - △Para el nodo destino

Encaminamiento

- **#**Tipos
 - □ Directo
 - ☑Indirecto (Tablas)
 - **⊠**Estáticas
 - ☑Dinámicas (algoritmos de enrutamiento)
- ★Enrutamiento basado en red
- **#**Formato
 - □ Formada por dos columnas
 - - · permite default
 - ☑Dirección del siguiente enrutador
 - · Si ya estamos en la red, dirección IP de la interfaz

29

Encaminamiento 30.0.0.6 20.0.0.5 40.0,0.7 Red 10.0.00 Red Red 30.0.0,0 40.0.0.0 20.0.0,0 10.0.0.5 20.0.0.6 30.0.0.7 20.0.0.0 Directo 30.0.0.0 Directo 10.0.0.0 40.0.0.0 30.0.0.7 30

Encaminamiento

Algoritmo

Extraer dirección IP de destino ID

Computar la dirección IP de la red destino (IN)

IN = alguna de las redes conectadas

Enviar (averiguar dirección física)

si no para cada elemento de la tabla

N = ID and (máscara de red)

Si N = parte de red del registro

Enviar al siguiente salto

fin para

Si no hay coincidencia error

31

Direccionamiento de Subredes

#Subredes

- △Usar un identificador de red único en múltiples redes
- △Algunos bits más significativos de la parte de estación identifican la subred

Protocolo ARP

- **Proporciona direcciones físicas a partir de direcciones IP
- **#** Casos
 - △Longitud D. Física < Longitud Dirección Interred
 - □ Longitud D. Física > Longitud Dirección Interred
- **#** Soluciones

 - Asociación Dinámica

35

Protocolo ARP

***** Mapeo Directo

- □ Ejemplo: Red pronet10
 - ⊠Dirección física → 8 bits
 - ☑Dirección IP → 32 bits
 - ☑Dirección IP → 192.5.48.3
 - ⊠Dirección Física →

Protocolo ARP

#Operación

△A quiere averiguar la dirección física de B

- ☑El proceso ARP en A envía un broadcast con un ARP request con la dirección IP de B
- ☑Todos los procesos ARP de cada computadora de la red lo recibe
- ☑B reconoce su dirección IP y manda un ARP response a A con la dirección física de B
- ☑ A recibe la respuesta y almacena en la caché de ARP la pareja de direcciones
- ⊠El proceso IP en A puede usar esta información para entregar los datagramas

39

Protocolo ARP

Características

- □ Tabla cache de direcciones adquiridas

Protocolo RARP

- Realiza la operación inversa al ARP

 ARP
- #Permite a un computador que conoce su dirección física obtener una dirección IP
- #Es necesario un servidor RARP en la red física
- #El cliente solicita una dirección IP
- #El servidor mantiene una tabla que relaciona direcciones físicas e IP
- #Cuando hay una petición consulta la tabla

Protocolo ICMP (Internet Control Message Protocol)

- #Permite a las pasarelas enviar mensajes de error o de control a otras pasarelas o S.I.
- #Sólo reporta las condiciones de error a la fuente original de los datos
- **Los mensajes ICMP van encapsulados en el campo de datos de los datagramas IP

45

Protocolo ICMP Type Codigo Checksum Codigo Type 0: Respuesta Eco 0: Red Inalcanzable 1: Host Inalcanzable 3: Destino Inalcanzable 4: Source Quench 3: Puerto Inalcanzable 5: Redirección 4: Necesidad Fragmentación 6: Red destino desconocida 8: Petición Eco 11: Tiempo excedido Datagrama 7: Host destino desconocido 13: Petición TimeStamp 14 Respuesta TimeStamp 46

DHCP (Dinamic Host Configuration Protocol)

- #Protocolo de Configuración Dinámica de computadoras
- #Proporciona los parámetros de configuración a los S.I. en redes TCP/IP

49

DHCP

- **#** Consta de dos componentes
 - △Protocolo para la entrega de parámetros de configuración a un S.I. específico desde un servidor
 - Mecanismo para asignar direcciones de red a los S.I.

DHCP

X Mecanismos de asignación

△ Automática

⋈ Asignación permanente cuando la estación se conecta la primera vez

□ Dinámica

⊠Préstamo de una dirección un tiempo

51

DHCP

Mensajes DHCP ■

op(1)	htype(1)	hlen(1)	hops(1)		
xid(4)					
secs(2)		flags(2)			
ciaddr(4)					
yiaddr(4)					
siaddr(4)					
giaddr(4)					
chaddr(16)					
sname(64)					
file(128)					
options(312)					

DHCP

₩Mensajes DHCP

ор	Tipo de mensaje
htype	Tipo dirección hardware
hlen	Longitud de dirección hardware
hops	Para agentes intercambio. 0 clientes
xid	Identificador de transacción
secs	Seg. desde el comienzo adq. Cliente
flags	bit 0=Flag de broadcast. Resto a cero
ciaddr	IP del cliente si bound,renew o rebinding
yiaddr	Dirección IP del cliente
siaddr	Dirección IP del siguiente servidor
giaddr	Dirección IP del agente de intercambio
chaddr	Dirección hardware del cliente
sname	Nombre del servidor. Opcional
file	Nombre del fichero de arranque
options	Opciones

53

DHCP

₩Mensajes DHCP

DHCPDISCOVER	Búsqueda de un servidor
DHCPOFFER	Respuesta del servidor
DHCPREQUEST	Aceptación por parte del
	cliente
DHCPACK	Confirmación del servidor
DHCPNAK	Negativa del servidor
DHCPDECLINE	Cliente indicando dirección
	en uso
DHCPRELEASE	Cliente renunciando a
	dirección
DHCPINFORM	Cliente preguntando sólo por
	parámetros locales

DHCP

- #Clientes con múltiples interfaces
 - △Utiliza DHCP para cada una de las interfaces
- #El servidor escucha por el puerto 67 y el cliente por el 68 de UDP