基于 TDD 的量子模型检测中的可达性分析 硕士中期报告

高丁超导师:应圣钢

Institute of Software Chinese Academy of Sciences

December 24, 2023

Table of Contents

Requirements for Graduation

- 1 Requirements for Graduation
- 2 Backgroud
- 3 Our Soulution

Credit Requirements

Credit Requirement Summary:

Public Compulsory Courses: 7 credits

Public Elective Courses: Minimum 2 credits
Major Degree Courses: Minimum 12 credits
Total Credit Requirement: Minimum 30 credits

Completed Credits:

Public Compulsory Courses: 7 credits Public Elective Courses: 8 credits Major Degree Courses: 18 credits Total Credits Farned: 35 credits

Research Requirements

Requirements for Graduation

Publication Requirements:

Required to be among the top 3 authors on a paper in CCF-A/B category.

Completed Submissions:

ICCAD 2023 (CCF-B):

Review Outcome: Rejected

Reviewer Scores: 2, 4, 4

DAC 2024 (CCF-A):

Current Status: Under Review

Expected Feedback Date: On or before February 26, 2024

Table of Contents

- 1 Requirements for Graduation
- 2 Backgroud
- 3 Our Soulution

Title: 基于 TDD 的量子模型检测中的可达性分析

Summary:

Problem: How to verify propositions in a quantum system.

Solution: Employ Quantum Model Checking.

Challenge: Exponential resource requirements with increasing qubits. *Method:* Utilization of specialized data structures and algorithms.

Quantum Computing Key Concepts

Qubits

Quantum Gates

Superposition

Entanglement

Quantum Computing example

Figure: Quantum circuit of Grover algorithm

transition system: (S, I, Σ, T)

where
$$\begin{cases} x = x_1, \cdots, x_n \\ y = y_1, \cdots, y_n \\ \sigma = \sigma_1, \cdots, \sigma_m \end{cases}$$

Quantum transition system: $(\mathcal{H}, \mathcal{H}_0, \mathit{Act}, \{\mathit{U}_\alpha, \alpha \in \mathit{Act}\})$

Our Soulution

Our Soulution

Reachability problem

Quantum Logic

Subset relation \subseteq **in** $S(\mathcal{H})$ **:** Partial order, implies quantum implication.

Orthogonal complement \mathcal{X}^{\perp} : Represents negation.

Closed under intersection: $\bigcap_i \mathcal{X}_i \in S(\mathcal{H})$, denotes conjunction.

Union of subspaces: $\bigvee_i \mathcal{X}_i = \text{span}(\bigcup_i \mathcal{X}_i)$, interprets disjunction.

Quantum Model Checking example

Figure: the purpose of early research

Quantum Model Checking example

Figure: Circuit Equivalence Checking

Tensor Decision Diagram

Table of Contents

- 1 Requirements for Graduation
- 2 Backgroud
- 3 Our Soulution

Related work

Requirements for Graduation

(b) QMDD

Related work

Requirements for Graduation

Figure: time consumption for constructing the functionality of qft circuits

Additional

Requirements for Graduation

Figure: addition partition

Contraction

Requirements for Graduation

Figure: contraction partition

Results

benchmark	basic	addition	contraction
Grover 20	\sim 5min	\sim 4min	\sim 4sec
Quantum Fourier Transform 20	$\sim\!\!20$ min	${\sim}11$ min	<1sec
Quantum Random walk 20	\sim 6min	\sim 4min	$\sim\!\!15{ m sec}$
Bernstein-Vazirani 50	\sim 4min	\sim 4min	$\sim\!\!16{\sf sec}$
GHZ 500	\sim 3sec	${\sim}1.5{\rm sec}$	${\sim}1.7{\sf sec}$

Table: Quantum Image computation

000000

Figure: future plan

Table of Contents

- 1 Requirements for Graduation
- 2 Backgroud
- 3 Our Soulution

The End