Tips and Tricks:

Tip-1

As much as possible, avoid direct calculation of determinats using lengthy expansions. Be calm and try to use determinats properties to first simplify and then expand. Some

Tip-2

Minors and cofactors are important concept to understand inverse of a matrix in further lectures.

Note: (a) A determinant of order 3 will have 9 minors and each minor will be a determinant of order 2 and a determinant of order 4 will have 16 minors and each minor will be determinant of order 3.

(b) $\underline{a_{11}C_{21}+a_{12}C_{22}+a_{13}C_{23}=0}$, i.e. cofactor multiplied to different row/column elements results in zero value.

Tip-3

Row and Column Operations of Determinants

- (a) $R_i \leftrightarrow R_j$ or $C_i \leftrightarrow C_j$, when $i \neq j$; This notation is used when we interchange ith row (or column) and jth row (or column).
- (b) $R_i \leftrightarrow C_i$; This converts the row into the corresponding column.
- (c) $R_i \to Rk_i$ or $C_i \to kC_i$; $k \in R$; This represents multiplication of ith row (or column) by k.
- (d) $R_i \to R_i k + R_j$ or $Ci \to C_i k + C_j$; $(i \neq j)$; This symbol is used to multiply ith row (or column) by k and adding the jth row (or column) to it.

These operations are VERY USEFUL in simplifying complex determinants.