Nomenclature: Naming Ionic and Covalent Compounds

A. Naming Binary Ionic Compounds Containing a Metal Ion with a Fixed Charge (Type I)

A binary ionic compound is composed of ions of two different elements - one of which is a metal, and the other a nonmetal. For example, potassium bromide, KBr, is composed of potassium ions, K^+ (elemental potassium is a metal), and bromide ions, Br^- (elemental bromine is a nonmetal).

- 1. The cation is written first in the name; the anion is written second in the name.
- 2. The name of the cation is the same as the (neutral) element from which it is derived (e.g., K^+ = "potassium").
- **3.** The anion is named by adding the suffix -ide to the root of the element name (e.g., $Br^- = "bromide"$).

Note: Greek prefixes are **not** used to indicate the number of atoms of each element in the formula unit for the compound (e.g., Al_2S_3 is named "aluminum sulfide" not "dialuminum trisulfide").

Metals That Form Type I Ionic Compounds

Cation	Name	Cation	Name	
Li+	lithium	Ca ²⁺	calcium	
Na ⁺	sodium	Sr ²⁺	strontium	
K ⁺	potassium	Ba ²⁺	barium	
Rb ⁺	rubidium	Al ³⁺	aluminum	
Cs ⁺	cesium	Zn ²⁺	zinc	
Be ²⁺	beryllium	Ag ⁺	silver	
Mg ²⁺	magnesium	Cd ²⁺	cadmium	

Some Common Anions

Anion	Name
H-	hydride
F-	fluoride
Cl-	chloride
Br-	bromide
I-	iodide
O ²⁻	oxide
S ²⁻	sulfide
N3-	nitride

B. Naming Binary Ionic Compounds Containing a Metal Ion with a Variable Charge (Type II)

A binary ionic compound is composed of ions of two different elements – one of which is a metal, and the other a nonmetal. For example, chromium (III) chloride, $CrCl_3$, is composed of chromium ions, Cr^{3+} (elemental chromium is a metal), and chloride ions, Cl^- (elemental chlorine is a nonmetal).

- 1. The cation is written first in the name; the anion is written second in the name.
- 2. The name of the cation is the same as the (neutral) element from which it is derived. The charge on the cation is indicated using a Roman numeral, in parentheses, immediately following the name of the cation (e.g., Cr^{3+} = "chromium(III)").
- **3.** The anion is named by adding the suffix -ide to the root of the element name (e.g., $Cl^- = "chloride"$).

Note: Greek prefixes are **not** used to indicate the number of atoms of each element in the formula unit for the compound (e.g., FeI_3 is named "iron(III) iodide" not "iron(III) triiodide").

Some	Metals	That	Form	Type	ΙI	Ionic	Compounds	and	Their	Common	Charges

Cation	Name	Cation	Name
Cr ²⁺	Cr^{2+} chromium (II) Cu^{2+}		copper (II)
Cr ³⁺	chromium (III)	Sn ²⁺	tin (II)
Co ²⁺	cobalt (II)	Sn ⁴⁺	tin (IV)
Co ³⁺	cobalt (III)	Mn ²⁺	manganese (II)
Fe ²⁺	iron (II)	Ni ²⁺	nickel (II)
Fe ³⁺	iron (III)	Pb ²⁺	lead (II)
Cu+	copper (I)	Pb ⁴⁺	lead (IV)

C. Naming Ionic Compounds Containing Polyatomic Ions

Polyatomic ions are ions which consist of more than one atom. For example, nitrate ion, NO_3 , contains one nitrogen atom and three oxygen atoms. The atoms in a polyatomic ion are usually covalently bonded to one another, and therefore stay together as a single, charged unit.

- 1. The cation is written first in the name; the anion is written second in the name.
- 2. When the formula unit contains two or more of the same polyatomic ion, that ion is written in parentheses with the subscript written outside the parentheses.

Note: Parentheses and a subscript are <u>not</u> used unless more than one of a polyatomic ion is present in the formula unit (e.g., the formula unit for ammonium chloride is " NH_4Cl " not " (NH_4)Cl ").

- **3.** If the cation is a metal ion with a fixed charge, the name of the cation is the same as the (neutral) element from which it is derived (e.g., Mg^{2+} = "magnesium"). If the cation is a metal ion with a variable charge, the charge on the cation is indicated using a Roman numeral, in parentheses, immediately following the name of the cation (e.g., Cu^+ = "copper (I)").
- **4.** If the anion is a monatomic ion, the anion is named by adding the suffix -ide to the root of the element name (e.g., $I^- =$ "iodide").

Note: Greek prefixes are **not** used to indicate the number of atoms, or polyatomic ions, in the formula unit for the compound (e.g., $Ba(ClO_3)_2$ is named "barium chlorate" not "barium dichlorate").

Some Metals Common Polyatomic Ions

Polyatomic Ion Formula		Polyatomic Ion	Formula	
acetate	C ₂ H ₃ O ₂ -	hypochlorite	C10-	
carbonate	CO ₃ ²⁻	chlorite	ClO ₂ -	
bicarbonate				
(hydrogen	HCO ₃ -	chlorate	ClO ₃ -	
carbonate)				
hydroxide	OH-	perchlorate	ClO ₄ -	
nitrate	NO ₃ -	permanganate	MnO ₄ -	
nitrite	NO ₂ -	sulfate	SO ₄ ²⁻	
chromate	CrO ₄ 2-	sulfite	SO ₃ ²⁻	
dichromate	Cr ₂ O ₇ ²⁻	hydrogen sulfite (bisulfite)	HSO ₃ -	
phosphate	PO ₄ 3-	hydrogen sulfate (bisulfate)	HSO ₄ -	
hydrogen	HPO ₄ 2-	peroxide	022-	
phospahte	-	-		
ammonium	$\mathrm{NH_4}^+$	cyanide	CN-	

D. Rules for Naming Binary Molecular (Covalent) Compounds

A binary covalent compound is composed of two different nonmetal elements. For example, a molecule of nitrogen dioxide, NO_2 contains 1 nitrogen atom and 2 oxygen atoms.

1. The element with the lower group number is written first in the name; the element with the higher group number is written second in the name.

Exception: when the compound contains oxygen and a halogen (group 7A (17)), the name of the halogen is the first word in the name.

- 2. If both elements are in the same group, the element with the higher period number is written first in the name.
- 3. The second element in the name is named as if it were an anion, i.e., by adding the suffix -ide to the name of the element.
- **4.** Greek prefixes (see the Table provided at the bottom of this page) are used to indicate the number of atoms of each nonmetal element in the chemical formula for the compound.

Exception: if the compound contains one atom of the element that is written first in the name, the prefix "mono-" is not used.

Note: when the addition of the Greek prefix places two vowels adjacent to one another, the "a" (or the "o") at the end of the Greek prefix is usually dropped; e.g., "nonaoxide" would be written as "nonoxide", and "monooxide" would be written as "monoxide". The "i" at the end of the prefixes "di-" and "tri-" are never dropped.

prefix	number indicated
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

E. Naming Binary Acids

Acids are molecular compounds that dissolve in water to form H⁺ ions. Binary acids are composed of hydrogen and a nonmetal. For example, hydrochloric acid, HCl contains hydrogen and a chlorine atom.

- 1. Write the prefix hydro- followed by the base name of the nonmetal and add the suffix -ic (e.g. HCl hydrochloric).
- 2. Add the word acid after the name of the acid (e.g. HCl hydrochloric acid).

Note: Greek prefixes are **not** used to indicate the number of atoms of each element in the formula unit for the compound (e.g., Na_2O is named "sodium oxide" not "disodium oxide", or "disodium monoxide").

F. Naming Oxyacids

Oxyacids are derived from oxyanions. For example, nitric acid, HNO_3 is derived from the nitrate (NO_3^-) ion, and sulfuric acid, H_2SO_4 is derived from the sulfate (SO_4^{2-}) . Oxyacids are composed of hydrogen and an oxyanion.

- 1. If the oxyanion ends in -ate, write the base name of the oxyanion and add the suffix -ic (e.g. HNO_3 nitric).
- 2. If the oxyanion ends in -ite, write the base name of the oxyanion and add the suffix -ous (e.g. HNO_2 nitrous).
- 3. Add the word acid after the name of the acid (e.g. HNO_3 nitric acid).

Note: Greek prefixes are **not** used to indicate the number of atoms of each element in the formula unit for the compound (e.g., Na_2O is named "sodium oxide" not "disodium oxide", or "disodium monoxide").

*Information obtained (with some modifications) from: http://www.chem.purdue.edu/gchelp/