

IIT-JAM and OTHER MSc ENTRANCE EXAMS IN MATHEMATICAL SCIENCE SUBJECT: Real Analysis

Real Sequences: A real sequence is a function $f: \mathbb{N} \to \mathbb{R}$. i.e., any function $f: \mathbb{N} \to \mathbb{R}$ is a sequence. Any sequence is a continuous function.

Range of a Sequence: The range or range set of a sequence is the set of all distinct terms of a sequence. **Bounds of a Sequence:** Let (a_n) be a sequence (a_n) is said to be bounded above if there exists a real number, k, such that $a_n \leq k$, $\forall n$. Similarly, (a_n) is said to be bounded below, if there exists k, such that $a_n \geq k$, $\forall n$. (a_n) is said to be a bounded sequence if it is both bounded above and below.

Subsequence: Let (a_n) be a sequence. Any sequence obtained from (a_n) by removing some terms of (a_n) , is a subsequence of (a_n) , usually denoted as (a_{n_k}) .

Limit Point of a Sequence: Let (a_n) be a sequence, let $l \in \mathbb{R}$, l is said to be a limit point of (a_n) , if every neighbourhood of l contains infinite number of terms of (a_n) .

i.e., l is a limit point of (a_n) if $a_n \in (l - \epsilon, l + \epsilon)$ for infinitely many m, for any $\epsilon > 0$.

Bolzano Weierstrass Theorem for Sequence: Every bounded sequence has at least one limit point.

Result: The set of all limit points of a bounded sequence is bounded.

Limit inf and Limit sup: Let (a_n) be a sequence and let

 $S_{1} = \{a_{1}, a_{2}, ...\}$ $S_{2} = \{a_{2}, a_{3}, ...\}$ $S_{3} = \{a_{3}, a_{4}, ...\}$ $S_{k} = \{a_{k}, a_{k+1}, ...\}$
.....

Limit inferior of (a_n) is defined as

 $\underline{\underline{\lim}} a_n = \sup \{ \inf S_1, \inf S_2, \dots \}$

 $\overline{\lim} a_n = \inf \{ \sup S_1, \sup S_2, \ldots \}$

Results:

- 1. If (a_n) is a bounded sequence, then, $\inf a_n \leq \underline{\lim} a_n \leq \overline{\lim} a_n \leq \sup a_n$
- 2. If (a_n) is a bounded sequence, then, $\underline{\lim} a_n$ and $\overline{\lim} a_n$ are finite.
- 3. If (a_n) is any sequence, then $\underline{\lim}(-a_n) = -\overline{\lim}a_n$.
- 4. $\underline{\lim} a_n = -\overline{\lim} (-a_n)$
- 5. $\underline{\lim} a_n \leq \overline{\lim} a_n$ for any sequence.
- 6. Let $(a_n), (b_n)$ be two bounded sequences, then $\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n \leq \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n + \lim_{n \to$
- 7. Let $(a_n), (b_n)$ are positive bounded sequences, then $\lim_{n \to \infty} a_n \cdot \underline{\lim} a_n \cdot$
- 8. (a_n) be an arbitrary sequence, let S be the set of all limit points of (a_n) , then

$$\underline{\lim} a_n = \begin{cases} \inf S &, S \neq \phi, (a_n), \text{ is bounded below} \\ \infty &, S = \phi, (a_n), \text{ is bounded below} \\ -\infty &, S \neq \phi, (a_n), \text{ is bounded below} \end{cases}$$

$$\overline{\lim} a_n = \begin{cases} \sup S &, S \neq \phi, (a_n), \text{ is bounded above} \\ -\infty &, S = \phi, (a_n), \text{ is bounded above} \\ \infty &, S \neq \phi, (a_n), \text{ not bounded above} \end{cases}$$

Convergence of Sequences:

(I) Convergent Sequences: Let (a_n) be a sequence and let $l \in R$, (a_n) is said to converge to l, if for any $\epsilon > 0$, there exists a natural number N_{ϵ} such that $|a_n - l| < \epsilon, \forall n \geq N_{\epsilon}$. If (a_n) converges to l, then we write $\lim_{n \to \infty} a_n = l$ or $(a_n) \to l$

Theorem:

- Every bounded sequence with a unique limit point is convergent.
- A bounded sequence (a_n) converges to a real number, l iff $\underline{lim}a_n = \overline{lim}a_n = l$.
- A necessary and sufficient condition for a sequence to converge is that it is bounded and has a unique limit point.

Corollary: Every convergent sequence is bounded. The converse need not be true. Eg: $((-1)^n)$

- (II) **Divergent Sequences:** Let (a_n) be a sequence (a_n) is said to diverge to $+\infty$, if $\underline{lim}a_n = \overline{lim}a_n = \infty$. Similarly, (a_n) is said to diverge to $-\infty$, if $\underline{lim}a_n = \overline{lim}a_n = -\infty$.
- (III) Oscillating Sequences:
 - (i) **Finitely Oscillating Sequences:** Let (a_n) be a sequence, (a_n) is said to oscillate finitely, if it is bounded but not convergent. In this case, $\underline{lim}a_n \neq \overline{lim}a_n$. Eg: $((-1)^n)$, $\sin\left(\frac{n\pi}{3}\right)$
 - (ii) Infinitely Oscillating Sequence: Let $(\underline{a_n})$ be a sequence, (a_n) is said to oscillate infinitely if (a_n) is not divergent and either $\underline{lim}a_n$ or $\overline{lim}a_n$ is infinity. Eg: $((-2)^n), (n(-1)^n)$

Cauchy Sequences: Let (a_n) be a sequence, (a_n) is said to be a Cauchy sequence if for any $\epsilon > 0$ there exists a natural number N_{ϵ} such that $|a_n - a_m| < \epsilon, \forall n, m > N_{\epsilon}$.

Theorem:

- 1. Every Cauchy sequence is bounded.
- 2. (a_n) is convergent iff it is a Cauchy sequence. **Remark:** Let (a_n) be a sequence such that for any $\epsilon > 0$ there exists a natural number N_{ϵ} , such that $|a_{n+1} a_n| < \epsilon, \forall n \geq N_{\epsilon}$, then (a_n) need be a Cauchy sequence.

Cauchy sequence.

Eg:
$$(\sqrt{n}), a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n} - \sqrt{n+1}}$$

3. Let (a_n) be a sequence, let $\alpha \in (0,1)$ be given such that $|a_{n+1} - a_n| \leq \alpha^n, \forall n \in \mathbb{N}$ or $|a_{n+1} - a_n| \leq \alpha |a_n - a_{n-1}|, \forall n \in \mathbb{N}$, then (a_n) is a Cauchy sequence.

Monotone Sequences: Let (a_n) be a sequence, (a_n) is said to be a monotone sequence, if it is either monotone increasing $(a_n \le a_{n+1}, \forall n)$ or monotone decreasing $(a_n \ge a_{n+1}, \forall n)$.

Theorem (Monotone convergent theorem): A monotone sequence (a_n) is convergent iff it is bounded. Remark:

- 1. A monotone increasing sequence which is bounded above convergent to its supremum and a monotone decreasing sequence which is bounded below convergent to its infimum.
- 2. A monotone sequence which is not convergent is divergent.

Theorems on Convergence: Let (a_n) and (b_n) be two sequences such that $(a_n) \to a, (b_n) \to b$ then

1. $(a_n \pm b_n) \rightarrow a \pm b$

$$2. (a_n b_n) \to ab$$

3.
$$\left(\frac{a_n}{b_n}\right) \to \left(\frac{a}{b}\right), b \neq 0$$

If
$$b = 0, a_n \neq kb_n$$
 then $\overline{lim}\left(\frac{a_n}{b_n}\right) = a$

- 4. Let (a_n) be a sequence of positive terms and $(a_n) \to a$, then $a \ge 0$
- 5. Let a_n and b_n be two convergence sequences with $\lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n = b$ such that $a_n \leq b_n$, $\forall n$ then
- 6. Let (a_n) be a sequence such that $(a_n) \to 0$ and let (b_n) be a bounded sequence, then $(a_n b_n) \to 0$ Remark:

If $(a_n) \to a, a \neq 0, (b_n)$ is a bounded sequence, then $(a_n b_n)$ need not be convergent.

7. Sandwich Theorem or Squeeze Theorem:

Let $(a_n), (b_n)$ and (c_n) be three sequences such that $a_n \leq b_n \leq c_n, \forall n \in \mathbb{N}$. If $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l$, then, $\lim b_n = l$.

8. Cauchy's Theorems:

(i) Let (a_n) be a sequence, such that $\lim a_n = l, (l \in \mathbb{R} \cup \{\pm \infty\})$ then

$$\lim_{n \to \infty} \left(\frac{a_1 + a_2 + \dots + a_n}{n} \right) = l$$

(ii) Let (a_n) be a sequence of positive terms with $\lim a_n = l, (l \in \mathbb{R} \cup \{\pm \infty\})$ then

(a)
$$\lim_{n \to \infty} \left(\frac{a_1 + a_2 + \dots + a_n}{n} \right) = l$$

(b) $\lim_{n \to \infty} (a_1 a_2 \dots a_n)^{\frac{1}{n}} = l$

- (iii) Let (a_n) be a sequence of positive terms then $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ exists iff $a_n^{\frac{1}{n}}$ exists. If they exists, then both the limits are equal.
- 9. Cesero's Theorem: Let (a_n) and (b_n) be two sequences such that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then $\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = ab$. 10. Let (a_n) be a sequence, let $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$. If l > 1 then $\lim_{n\to\infty} a_n = \infty$
- 11. Let (a_n) be a sequence of positive terms, let $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$. If l < 1 then $\lim_{n\to\infty} a_n = 0$
- 12. Cantor's Nested Interval Theorem

Let $I_n = [a_n, b_n]$ be convergent sequence with respective limits a and b, $|a_n - b_n| \to 0$, let $I_{n+1} \subseteq I_n$, let $\lim_{n \to \infty} I_n = \bigcap_{n=1}^{\infty} I_n = a(=b).$

Results:

1. Let (a_n) be a sequence, satisfying the conditions $|a_n - a_{n-1}| \leq b_n, \forall n, \text{where } \sum b_n$ is convergent absolutely, then (a_n) is a Cauchy sequence.

2.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx$$

3.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{a_n} f\left(\frac{k}{n}\right) = \int_0^a f(x) dx$$

4.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n^2} f\left(\frac{k}{n}\right) = \int_{0}^{\infty} f(x) dx$$