

WirelessBr é um site brasileiro, independente, sem vínculos com empresas ou organizações, sem finalidade comercial, feito por voluntários, para divulgação de tecnologia em telecomunicações

Sistema GSM (3) Global Services for Mobile Communications

Autor: Bruno Maia Antonio Luiz

Esta página contém figuras grandes. Aguarde a carga se a conexão estiver lenta.

Random Access Channel (RACH)

- Utilizado pelo móvel para requerer um canal dedicado de controle
- Tem um tamanho (número de bits) reduzido para minimizar chances de colisão com outros slots.
- Este canal lógico é mapeado no random access burst tendo a seguinte estrutura:
 - Tail (8 e 3 bits) ® funçao idêntica a de um slot normal
- Sync Sequence (41 bits) ® Tem um tamanho maior pois o equalizador necessita de mais tempo para sincronizar apropriadamente com um novo sinal dado que este slot é utilizado também nos períodos iniciais de registro do móvel
- Guard Time (68.25 bits) ® Este slot possui um tempo de guarda maior para que a célula possa possuir grandes tamanhos e mesmo assim garantir que os slots TDMA não irão se superpor (tamanho máximo da célula de 37,75 Km)

Paging Channel (PCH)

- É utilizado pela base para "chamar" um determinado terminal na na rede
- Algorítmos ótimos de paging são muito importantes para se evitar excesso de procura pelo móvel na rede acarretando um aumento desnecessário no tráfego de sinalização.

Access Grant Channel (AGCH)

 Informa ao móvel qual canal dedicado este deve pegar ===> É uma resposta da base ao acesso RACH feito pelo terminal

Dedicated Control Channels (DCCH)

- Usado para transferência de mensagens entre a rede e o móvel para:
 - Procedimentos de registro do móvel
 - Estabelecimento de Chamada "call setup"
- Usado também para troca de pequenas mensagens "short message" entre móveis quando estes não estão em chamada.
- Existe apenas 1 tipo de canal DCCH:
 - Stand Alone Dedicated Control Channel (SDCCH)

Stand Alone Dedicated Control Channel (SDCCH)

- É um link dedidado entre o móvel e a BTS para troca de sinalização e mensagem.
- Cada canal SDDCH ocupa 4 slots dos 51 x 8 slots que existem no multiquadro de controle
- Este é usado após o RACH pois em geral as mensagens de controle não precisam de taxas tão elevadas quanto as usadas no canais de tráfego (incluindo o RACH que tem características físicas de tráfego) Sendo assim este canal lógico utiliza os recursos rádio de forma mais otimizada.
- Neste contexto chama-se novamente a atenção para a utilização do canal RACH:
- Utilizado apenas como "primeiro contato" entre MS e BTS para fins de requerimento do canal SDCCH

Associated Control Channels (ACCH)

- Tem o objetivo de permitir troca de info de controle quando o móvel esta com uma chamada em prosseguimento ou ocupando um canal SDCCH.
- Existem 2 Tipos de ACCH:
 - Slow Associated Control Channel: SACCH
 - Fast Associated Control Channel: FACCH

Slow Associated Control Channel SACCH

- Utilizado sempre em associação com um canal de tráfego ou SDCCH
- Trafega info de controle e medidas de desempenho ou até mesmo dados necessários para a manutenção do link dedicado de voz ou controle.
- Quando o móvel está com uma chamada em andamento este canal é responsável pelo envio e recebimento de mensagens curtas
- Este tipo de sinalização é chamada de *out-band* pois não interrompe o fluxo de dados do usuário

Fast Associated Control Channel (FACCH)

- Tem os mesmos objetivos do SACCH contudo as mensagens enviadas por este canal são de altíssima prioridade (ex: *handover*)
- Devido a essa prioridade o tempo para a troca de mensagens deve ser curta ==> os dados são enviados então no campo de dados do canal de tráfego
- Para o móvel saber que as informações que estão chegando são de sinalização e não de controle o bit F ou *stealing flag* é acionado
- Este tipo de sinalização é chamada de *in-band* pois interrompe o fluxo de dados do usuário.

Canais Lógicos: Estruturas de Multiplexação

Organização dos Canais Lógicos

- Após os canais serem mapeados nos referidos *times slots ou bursts*, estes são ordenados em *frames*
- Frames são organizados cuidadosamente em estruturas que possuem certas combinações ==> Mutliframes (Multiquadros)

• A organização estrutura possibilita que o receptor reconheça com maior rapidez e menor erro a informação enviada.

Combinação dos Canais

- Possíveis combinações dos canais de tráfego
 - I TCH/FS + FACCH/FS + SACCH/FS
 - II TCH/HS (0,1) + FACCH/HS (0,1) + SACCH/HS (0,1)
- \bullet III TCH/HS (0) + FACCH/HS (0) + SACCH/HS (0) + TCH/HS (1) + FACCH/HS (1) + SACCH/HS (1)
 - OBS: Note que combinações II e III são análogas.
- Possíveis combinações dos canais de controle:
 - I FCCH + SCH + CCCH + BCCH
 - II FCCH + SCH + CCH + BCCH + SDCCH/4 + SACCH/4
 - III CCCH + BCCH
 - IV SDCCH/8 + SACCH/8
- Possíveis combinações são organizadas em estruturas denominadas de multiquadros.
- Existem 2 tipos de Multiquadro: Tráfego e Controle

Multiframe de Tráfego

- Formado por 26 frames organizados da seguinte forma:
 - Tem duração de 960 samples ISDN ® gera sincronismo com ISDN
 - 24 frames transportando dados
 - 2 frames reservados para transmistir SACCH:
 - Possui 3 combinações diferentes de organização.
- Escolha de canais *Full ou Half Rate* fica a critério da operadora em um compromisso: Qualidade x Capacidade de Tráfego

Combinações de Multiquadro de Tráfego

Combinação I

- São utilizados canais de tráfego full rate nesta combinação (13 Kbps)
- Primeiros 12 *frames* transportam dados de tráfego Denote que cada frame carrega sempre info dos mesmos 8 usuários.
- 13 slot transporta 8 slots de SACCH
- Último *frame* fica em *idle* ® dando a estação móvel tempo para outras atividades como o gerenciamento da medida dos níveis de potência das células vizinhas.

Combinações II e III

- Como as transmissões estão em meia taxa sendo possível ter um intervalo maior entre as transferências de info de um específico usuário com isso:
 - Aloca-se o dobro de usuários atendidos
- Tem-se mais um frame só para SACCH (frames 12 e 25) para atender os outros 8 novos usuários que foram inseridos com a redução da taxa de transmissão.
- O FACCH é colocado como se fosse um elemento na combinação dos canais de tráfego pois este quando atua substitui totalmente a info do usuário na técnica chamada de *blank-and-burst*

Multiframe de Controle

- Formado por 51 Frames de controle
- Estrutura de multiquadro um pouco mais complexa que multiquadro de tráfego (apresenta diferenças entre *up e down links*)
- Tipo de combinação utilizado ===> intimamente ligado com a capacidade de tráfego requerida na célula.

Anterior Home WirelessBR	Próxima	
--------------------------	---------	--