Machine Learning

- -> Supervised Learning
- > Unsupervised Leaving
 - -> Reintoncement Learning

Example: GIPT-5 (Generative Pre-trained Tremsformer-5)

the first of

- > Adjusts the next word for user input reaccuracy (Adb- supervised learning via neural networks)
- -> Creates a 'reveard model' to align with human values (reintoncement learning)

Supervised Learning

- > Takes X and predicts J.

 (6100d pressure, glucose > has diabeter)
- + First developed by statisticiam.

 (Linear Rogramion, Decision Tree, Nouve Bayer

 Logistic Rogramion)
- > Pioneered by a psychologist (Frank Rosenblatt).

 (perceptron)

0	The second second second second
Perc	ptron
	1

$$Z = \omega_1 \lambda_1 + \omega_2 \lambda_2 + b \qquad (\omega_1 = 0.5, \ \omega = 0.2, \ b = 0.1)$$

$$\hat{J} = \begin{bmatrix} 1 & \text{ib} & 2 & 2 & 0 \\ 0 & \text{ib} & 2 & 2 & 0 \end{bmatrix}$$

$$\hat{J} = \begin{bmatrix} 1 & \text{ib} & 2 & 2 & 0 \\ 0 & \text{ib} & 2 & 2 & 0 \end{bmatrix}$$

Sample 1:
$$Z = 0.5 \times 10 + 0.2 \times 25 + 0.1$$

= 10.1 (so, $J_1 = 1$)
 $e = J_1 - J_1 = 0 - 1 = -1$
 $e = J_1 - J_1 = 0 - 1 = -1$
 $updating \rightarrow u_1 = u_1 + \pi e^{\pi 1}$
 $updating \rightarrow u_1 = 0.5 + 0.01 \times (-1) \times 10 = 0.4$

$$\omega_2 = \omega_2 + \text{NCN}_2$$

= 0.2+0.01×(-1)×25 = \[-0.05 \]
b = b + Ne = 0.1 + 0.01×(-1) = \[0.09 \]

Sample 28 Z = 0.4×15+(-0.05)×30 +0.09 $= 4.59 (so, \hat{J}_2 = 1)$ the Boinson / 1 e = J2-J2 = 1-1 =0 apporting 01- . $w_1 = w_1 + n_2 \cdot n_1$ = 0.4+0 = 0.4= -0.05 + 0 = -0.05situa, similarly, b= [0.0) T. o + 26x 210 + 01x = 0 = 5 = 1 194 00 (r = 1 .05) r.or = 1- 1-0 = (É-EE = 0 enon temperature to the A = OEXG-XTSOTSO= Filed Krony Long Bong Add

Logintic Regression

> perceptaon with signoid activation bunction, and neeight updates are made via gradient jescent algorithm. Also uses binary crass-entropy loss.

same enample

Sample 10 Z = 0.5 × 10 + 0.2 × 25 + 0.1 = 10.1

g = vigmoid (10.7) = 0.99

La=-y Log (g) + (1-7) Log (1-g)

L1= -0 + (1-0) log(1-0.99) = -2

Sample 2: Z=0.5×15 +0.2×30+0.1

= 13.6

J2 = sigmoid (13.6) = 0.99

L2 = -1/08 (0.22) + (1-1)/08 (1-0.22)

= 0.004

So,
$$L = (1-2) + 10.0041 + 10.0041 + 1-21)/4$$

$$= 4.008/4 = 1.002$$
Undafing

$$b = b - x \times \frac{dL}{dw}$$

$$\frac{dL}{dw} = \frac{\sum_{i=1}^{n} (\hat{y}_i - J_i) \times i}{\sqrt{n}}$$

$$\mathcal{L} = \frac{\sum_{i=1}^{\infty} (\hat{y}_i - \hat{z}_i)}{N}$$

$$\frac{dL}{dw_{4}} = \left[(0.99 - 0) \times 10 + (0.99 - 1) \times 15 + (0.99 - 1) \times 14 \right] + (0.99 - 0) \times 21 \right] / 4 = 5.125$$

$$\frac{dL}{dw_{2}} = \left[(0.99 - 0) \times 25 + (0.99 - 1) \times 30 + (0.99 - 1) \times 28 \right] + (0.99 - 0) \times 14 \right] / 4 = 9.507$$

$$\frac{dL}{db} = \frac{(0.99 - 0) \times 14}{4} / 4 = 9.507$$

$$\frac{dL}{db} = \frac{(0.99 - 0) + (0.99 - 1) + (0.99 - 0)}{4}$$

$$= 0.49$$

$$w_{1} = 0.5 - (0.01 \times 5.125) = 0.44$$

$$w_{2} = 0.2 - (0.01 \times 9.507) = 0.10$$

0= 0.1 - (0.01 × 0.49) = 0.09

B STORY - K ST Houses The

LA DE TO - NY

can be represented as J = mn + e, on, $y = bo + b_1 x$

this is simple linear regression. We learn't fuis in STA201.

Euomple; 2 4 4 6 (02 100) 6 6 8

Update neights and bien.

Solution: w = 0.1, b = 0.3 (w = m = b3)

($b = b_0 = 0$)

Let, our equation: y= mx+e

then, M=011, C=03

Sample 1

y= mx2+ e = 2m+e

L1 = [4-(2m+c)]2

$$\frac{SSR}{\sum_{i=1}^{N} (y_i - \hat{y})^2}$$

Sample 2

y= mx4+e = 4m4e

L2 = [6 - (4m+c)]2

Sample 3

y= mx6+e = 6m+e

L3 = [8 - (6m+c)]

L = [9 - (2m+e)] + [6 - (4m+e)] + [8 - (6m+e)]

Here. L in our loss turction. our goal:

> Find the optimal values for m and c so that this function gets its lowest value. That this function gets its lowest value. We call it, uninimizing the loss trunction." How to minimize a function

Remember, loss tunctions are usually conven bunction.

Fig: convex function

Fig: Non-conven function

or bradient descent work well bor convex tunctions, for non-conver, it mad not bind the optimal parameters. into the said said

and reules Consider the stand of the sound of the stand

mater this amin'm bull of six

Greametric definition of Differentiation

The derivative of a function at any given point in the slope of tangent line on the point, and the tangent line goes through the point it tangency.

Ansume, own for trunction; $y = b(n) = 3n^2 + 4x$ or precisely: $e = b(m) = 3n^2 + 4m$ for, m = 0.1, $e = 3(0.1)^2 + 4(0.1)$ = 6.04 + 0.43

point of tangency (0.1, or Jo

Famalian at tangent line: 3- 30 = m (n-40)
=) y- 0.43 = m (n-40)

4'(0.1) = 4.6 4'(0.1) = 4.6

y - ocot = 4.6 (n-0.1)

$$= x - (\alpha \times \lambda'(n))$$

$$= x - (\alpha \times \frac{dx}{dx})$$

$$m' = m - (\alpha \times \frac{dL}{dm})$$
 $0.1 - (-4.6)\alpha$

& = learning rate.

For
$$d = 0.01$$
; $m' = 0.1 - (0.01 \times 4.6)$

$$ton \ \alpha = 0.3 : m' = 0.1 - (0.3 \times 4.6)$$

the company of the state of the

$$L = [A - (2m+e)]^2 + [6 - (4m+e)]^2 + [8 - (6m+e)]^2$$

$$\frac{dL}{dm} = 2[A - (2m+e)] - 2$$

$$+ 2[B - (4m+e)] - 6$$

$$= -14 - 42 \cdot 4 - 85 \cdot 4 = -141 \cdot 8$$

$$m' = 0 \cdot 1 - (0 \cdot 01 \times -191 \cdot 8) = \boxed{4 \cdot 518}$$

$$m' = 2[A - (2m+e)] - 1$$

$$+ 2[B - (4m+e)] - 1$$

$$+ 2[B - (6m+e)] - 1$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$

$$= -7 - [0 \cdot 6 - 14 \cdot 2] = -31 \cdot 8$$