Lecture 13: Data wrangling

So far

- select: choose certain columns
- filter: choose certain rows
- summarize: calculate summary statistics
- group_by: group rows together
- mutate: create new columns
- count: count the number of rows
- arrange: re-order the rows

Do dogs help exam stress?

- Data collected on 284 students at a mid-size Canadian university
- Students randomly assigned to one of three treatment groups: handler-only contact, indirect contact, and direct contact
- Well-being and ill-being measures recorded before and after treatment for each student
- Approach: compare pre/post measures of well-being and ill-being

Recording well-being and ill-being measures

- Likert items for each well-being / ill-being measure
- Average the likert items to get a score for each measure
- E.g.:
 - Positive affect score is the average of 5 Likert items
 - Social connectedness is the average of 20 Likert items

Example Likert item for social connectedness

"I am able to relate to my peers."

- Strongly disagree (1)
- Disagree
- Somewhat disagree
- Somewhat agree
- Agree
- Strongly agree (6)

The raw data

- 284 rows (one per student)
- 200+ columns

```
raw data |>
      select(starts_with("SC"))
    SC1_1 SC1_2 SC1_3 SC1_4 SC1_5 SC1_6 SC1_7 SC1_8 SC1_9 SC1_10 SC1_11
SC1_12
         5
               4
                             5
                                           2
                                                  1
                                                               5
                                                                       6
                                                                               5
1
         5
               6
                      2
                             4
                                    6
                                           3
                                                  1
                                                        5
                                                               1
                                                                       4
                                                                               2
6
3
         3
                      2
                             3
                                    4
                                           4
                                                  3
                                                        3
                                                               2
                                                                       5
                                                                               3
         4
               6
                             5
                                    5
                                                  2
                                                        4
                                                               4
                                                                       5
                                                                               5
               5
                      2
                                    3
                                           2
                                                  5
                                                        2
5
                                                                5
                                                                       4
                                                                               4
         3
               6
                             5
                                           1
                                                  3
                                                        5
                                                               2
6
                                                                               2
```

Our goal for today

- Calculate the pre- and post-treatment social connectedness scores for each participant
- Question: What do we want the final data to look like?

Initial data processing

- Social connectedness is the average of 20 Likert items
- These items should take values between 1 and 6
- However:

```
1 raw_data |>
2 select(starts_with("SC")) |>
3 max(na.rm=T)
[1] 66
```

Handling errors

Are there any issues with this approach?

Question: What if I want to ignore NAs when computing the mean?

```
1 example_df
    x1 x2 x3 y1 y2
1 5 7 8 5 NA
2 2 4 4 2 4
3 4 8 7 5 5

1 example_df |>
2 summarize(across(c(x1, x2, x3, y1, y2),
3 function(x) {mean(x, na.rm=T)} ))
    x1    x2    x3 y1    y2
1 3.666667 6.3333333 6.333333 4 4.5
```

```
1 example_df
x1 x2 x3 y1 y2
1 5 7 8 5 NA
2 2 4 4 2 4
3 4 8 7 5 5

1 example_df |>
2 mutate(across(c(x1, x2, x3, y1, y2),
3 function(x) {x + 1} ))

x1 x2 x3 y1 y2
1 6 8 9 6 NA
2 3 5 5 3 5
3 5 9 8 6 6
```

Question: What if I want to replace values > 6 with NA?

```
1 example_df
    x1 x2 x3 y1 y2
1 5 7 8 5 NA
2 2 4 4 2 4
3 4 8 7 5 5

1 example_df |>
2 mutate(across(c(x1, x2, x3, y1, y2),
3 function(x) {ifelse(x > 6, NA, x)} ))
    x1 x2 x3 y1 y2
1 5 NA NA 5 NA
2 2 4 4 2 4
3 4 NA NA 5 5
```

Handling errors

```
cleaned_data <- raw_data |>
mutate(across(c(SC1_1, SC1_2, ...),
function(x) {ifelse(x > 6, NA, x)}))
```

Question: Are there any issues with this approach?

Handling errors

More data cleaning

- For some Social Connectedness items, "6" means "more connected"
 - e.g.: "I find myself actively involved in people's lives."
- For some Social Connectedness items, "6" means "less connected"
 - e.g.: "I feel like an outsider."
- We want higher scores to always mean "more connected"

We need to reverse the scores for some Social Connectedness items!

More data cleaning

Suppose we want to reverse the scores for x1 and x3

More data cleaning

Suppose we want to reverse the scores for x1 and x3

```
x1 x2 x3 y1 y2
1 2 NA NA 5 NA
2 5 4 3 2 4
3 3 NA NA 5 5
```

With the dog data

1 2 NA NA 5 NA 2 5 4 3 2 4 3 3 NA NA 5 5

Question: What if I want to calculate the average of the X columns for each row?

```
1 example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                  function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
1 5 NA NA 5 NA
2 2 4 4 2 4
3 4 NA NA 5 5
 1 example_df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 2
                  function(x) {ifelse(x > 6, NA, x)} ),
            x mean = (x1 + x2 + x3)/3)
 4
 x1 x2 x3 y1 y2 x mean
1 5 NA NA 5 NA
                     NA
2 2 4 4 2 4 3.333333
3 4 NA NA 5 5
                     NA
```

```
example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                   function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
1 5 NA NA 5 NA
2 2 4 4 2 4
3 4 NA NA 5 5
 1 example_df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 2
                  function(x) {ifelse(x > 6, NA, x)} ),
            x mean = mean(c(x1, x2, x3), na.rm=T))
 4
 x1 x2 x3 y1 y2 x mean
1 5 NA NA 5 NA 3.8
2 2 4 4 2 4 3.8
3 4 NA NA 5 5 3.8
```

```
example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                  function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
1 5 NA NA 5 NA
 2 4 4 2 4
3 4 NA NA 5 5
 1 example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 2
                  function(x) {ifelse(x > 6, NA, x)} )) |>
     rowwise() >
 4
     mutate(x mean = mean(c(x1, x2, x3), na.rm=T))
# A tibble: 3 \times 6
# Rowwise:
    x1
         x2 x3 y1 y2 x mean
 <int> <int> <int> <int> <dbl>
     5
         NA
               NA
                      5
                          NA
                              5
2
        4 4 2 4 3.33
         NA NA 5 5 4
     4
```

```
example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 3
                  function(x) {ifelse(x > 6, NA, x)} ))
 x1 x2 x3 y1 y2
1 5 NA NA 5 NA
 2 4 4 2 4
3 4 NA NA 5 5
 1 example df |>
     mutate(across(c(x1, x2, x3, y1, y2),
 2
                  function(x) {ifelse(x > 6, NA, x)} )) >
     rowwise() >
 4
     mutate(x mean = mean(c across(starts with("x")), na.rm=T))
# A tibble: 3 \times 6
# Rowwise:
    x1
         x2 x3 y1 y2 x mean
 <int> <int> <int> <int> <dbl>
     5
         NA
               NA
                      5
                          NA
                               5
2
        4 4 2 4 3.33
         NA NA 5 5 4
     4
```

With the dog data

```
cleaned data <- raw data |>
      mutate(across(starts with("SC"),
 2
 3
                    function(x) {ifelse(x > 6, NA, x)}),
             across(num range("SC1 ",
 4
                              c(3, 6, 7, 9, 11, 13, 15, 17, 18, 20)),
  5
                    function(x) \{7 - x\}),
 6
             across(num range("SC2 ",
                              C(3, 6, 7, 9, 11, 13, 15, 17, 18, 20)),
 8
                    function(x) \{7 - x\})) >
 9
      rowwise() |>
10
      mutate(sc pre = mean(c across(starts with("SC1 ")), na.rm=T),
11
             sc post = mean(c across(starts with("SC2 ")), na.rm=T))
12
 1 cleaned data >
      select(sc pre, sc post)
# A tibble: 284 × 2
# Rowwise:
   sc pre sc post
    <dbl>
           <dbl>
   3.9 3.8
    5.15 5.26
    4.1 4.15
    4.65 5.1
 4
    3.65 3.6
           4.65
     4.35
```

7	4.75	4.4	
8	4.6	4.65	
9	4.2	4.15	
10	5.8	5.75	

Class activity

https://sta279-

f23.github.io/class_activities/ca_lecture_13.html