Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (withdrawn). A compound of formula Ia or Ib,

wherein A is an (n + 1)- valent aliphatic, cycloaliphatic, araliphatic or aromatic radical and n is an integer from 0 to 5,

E is an (m + 1)- valent aliphatic, cycloaliphatic, araliphatic or aromatic radical and m is an integer from 0 to 3,

X is -O-, -C(=O)O or -CHR₄-, with R_4 and R_3 together forming an ethylene group, R_1 and R_2 are, each independently of the other hydrogen or methyl, R_3 is hydrogen,

And R₅ is a monovalent aliphatic, cycloaliphatic, araliphatic or aromatic radical.

Claim 2 (withdrawn). A compound of formula Ia according to claim 1, wherein X is -O-and A is a bivalent radical of a bisphenol or of a cycloaliphatic diol, the radical of a phenol novolak or cresol novolak, the bi- to tetra-valent radical of an isocyanate/polyol adduct or the tri- to hexa-valent radical of a tri- to hexa-functional aliphatic polyol.

Claim 3 (withdrawn). A compound of formula Ia according to claim 1, wherein X is -O-and A is a bivalent radical of formula

$$\begin{array}{c|c} CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \end{array}$$

$$-$$
CH₂ $-$ Or

the radical of a phenol novolak or cresol novolak, a trivalent radical of formula

or the tetravalent radical of formula

Claim 4 (withdrawn). A compound of formula Ia or Ib according to claim 1, wherein R₅ is C₁-C₂₀alkyl, C₅-C₁₂- cycloalkyl, C₆-C₁₀aryl or C₇-C₁₂aralkyl, each of which is

unsubstituted or substituted by one or more amino groups, hydroxyl groups, C₁-C₈alkoxy groups or halogen atoms.

Claim 5 (withdrawn). A compound of formula Ia or Ib according to claim 1, wherein R_5 is C_2 - C_{10} alkyl, C_2 - C_{10} aminoalkyl, phenyl, benzyl, cyclohexyl or a radical of formula H_2N -Z- CH_2 -NH-, wherein Z is a bivalent cycloaliphatic, araliphatic or aromatic radical or a radical of formula $-(CH_2CH_2NH)_k$ - CH_2 -, wherein k is 2 or 3.

Claim 6 (withdrawn). A compound of formula Ia or Ib according to claim 1, wherein R₅ is n-butyl, n-octyl, cyclohexyl, benzyl, 2-aminoethyl, 4-(aminomethyl)pentyl, 5-amino-2-methylpentyl, 3-dimethylaminopropyl, 3-methylaminopropyl, 4-aminocyclohexyl or a radical of formula –CH₂CH₂NHCH₂CH₂NHC₂,

$$H_3C$$
 CH_3 H_3C CH_3 H_2N CH_3 , CH_3 , CH_3 , CH_3

$$H-N$$
 or H_2N

Claim 7 (withdrawn). A compound of formula Ia or Ib according to claim 1, wherein X is O- and R_1 and R_3 are hydrogen.

Claim 8 (withdrawn). A process for the preparation of a compound of formula Ia according to claim 1 by reacting a compound of formula IIa

$$\begin{array}{c|c}
O \\
R_3 & R_1
\end{array}$$
 $X - A - X$

$$\begin{array}{c|c}
R_1 & R_3
\end{array}$$
 $X - A - X$

$$\begin{array}{c|c}
R_1 & R_3
\end{array}$$
 $X - A - X$

$$\begin{array}{c|c}
R_1 & R_3
\end{array}$$

wherein A, X, R₁, R₃ and n are defined in claim 1,

with thiourea or a thiocyanate and subsequently reacting the resulting episulfide with an amine of formula R_5 -NH- R_2 wherein R_5 and R_2 are as defined in claim 1.

Claim 9 (withdrawn). A process for the preparation of a compound of formula Ib according to claim 1 by reacting a compound of formula IIb

$$R_5$$
— X — CH_2 — C
 CH
 R
 R_3
(IIb),

wherein X, R₁, R₃ and R₅ are as defined in claim 1,

with thiourea or a thiocyanate and subsequently reacting the resulting episulfide with a polyamine of formula $E-(NHR_2)_{m+1}$ wherein E, R_2 and m are defined in claim 1.

Claim 10 (currently amended). A composition comprising:

- (A) an epoxy resin and
- (B) a compound of formula Ia or Ib

wherein A is an (n + 1)-valent aliphatic, cycloaliphatic, araliphatic or aromatic radical and n is an integer from 0 to 5,

E is an (m + 1)-valent aliphatic, cycloaliphatic, araliphatic or aromatic radical and m is an integer from 0 to 3,

X in formula Ia is -O-, C(=O)O or when R_3 is not hydrogen $-CHR_4$ -, with R_4 and R_3 together forming an ethylene group,

X in formula Ib is -0-, C(=0)0,

R₁ and R₂ are, each independently of the other, hydrogen or methyl,

R₃ is hydrogen or in formula Ia, R₃ and R₄ together form an ethylene group,

And and R₅ is a monovalent aliphatic, cycloaliphatic, araliphatic or aromatic radical.

Claim 11 (withdrawn). The composition according to claim 10 further comprising (C) a polyamine.

Claim 12 (currently amended). The composition according to either claim 10 or claim 11 comprising component B and, where applicable, component C in such amounts that the sum of the amine and mercaptan equivalents is from 0.5 to 2.0 equivalents, based on one epoxy equivalent.

Claim 13 (original). A cross-linked product obtainable by curing a composition according to claim 10.

Claim 14 (cancelled).

Claim 15 (previously presented). The composition according to claim 10, wherein in the compound of formula Ia, X is -O- and A is a bivalent radical of a bisphenol or of a cycloaliphatic diol, a radical of a phenol novolak or cresol novolak, a bi- to tetra-valent radical of an isocyanate/polyol adduct or a tri- to hexa-valent radical of a tri- to hexa-functional aliphatic polyol.

Claim 16 (previously presented). The composition according to claim 10, wherein in the compound of formula Ia, X is -O- and A is a bivalent radical of formula

$$\begin{array}{c|c} CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \end{array}$$

$$- \overline{\hspace{1cm}} - CH_2 - \overline{\hspace{1cm}} - \overline{\hspace{1cm$$

a radical of a phenol novolak or cresol novolak, a

trivalent radical of formula

or a tetravalent radical of formula

$$-CH_{2} \xrightarrow{C_{2}H_{5}} O \xrightarrow{C_{1}H_{5}} CH_{3} \xrightarrow{C_{2}H_{5}} CH_{2} \xrightarrow{CH_{2}} CH_{2}$$

Claim 17 (previously presented). The composition according to claim 10, wherein R_5 is C_1 - C_{20} alkyl, C_5 - C_{12} - cycloalkyl, C_6 - C_{10} aryl or C_7 - C_{12} aralkyl, each of which is unsubstituted or substituted by one or more amino groups, hydroxyl groups, C_1 - C_8 alkoxy groups or halogen atoms.

Claim 18 (previously presented). The composition according to claim 10, wherein R_5 is C_2 - C_{10} alkyl C_2 - C_{10} aminoalkyl, phenyl, benzyl, cyclohexyl or a radical of formula H_2 N-Z- CH_2 -NH-, wherein Z is a bivalent cycloaliphatic, araliphatic or aromatic radical of formula $-(CH_2CH_2NH)_k$ - CH_2 -, wherein k is 2 or 3.

Claim 19 (previously presented). The composition according to claim 10, wherein R₅ is n-butyl, n-octyl, cyclohexyl, benzyl, 2-aminoethyl, 4-(aminomethyl)pentyl, 5-amino-2-methylpentyl, 3-dimethylaminopropyl, 3-methylaminopropyl, 4-aminocyclohexyl or a radical of formula –CH₂CH₂NHCH₂CH₂NH₂,

$$H_3C$$
 CH_3 H_3C CH_3 H_2N H_2N CH_3 , CH_3 , CH_3

$$H-N$$
 or H_2N

Claim 20 (previously presented). The composition according to claim 10, wherein X is O- and R_1 and R_3 are hydrogen.

Claim 21 (withdrawn). The composition according to claim 11, wherein the polyamine is a cycloaliphatic or aliphatic amine.

Claim 22 (withdrawn). The composition according to claim 21, wherein the polyamine has the formula R_5 -NH- R_2 or E-(NHR₂)_{m+1}, wherein R_5 , R_2 , E and m are defined as in claim 10.

Claim 23 (currently amended). The composition according to claim 12 either claim 10 or elaim 11 comprising component B and, where applicable, component C in such amounts that the sum of amine and mercaptan equivalents is from 0.8 to 1.5 equivalents, based on one epoxy equivalent.

Claim 24 (currently amended). The composition according to <u>claim 23</u> either claim 10 or elaim 11 comprising component B and, where applicable, component C in such amounts that the sum of amine and mercaptan equivalents is from 0.9 to 1.2 equivalents, based on one epoxy equivalent.

Claim 25 (previously presented). The composition according to claim 10, wherein X is -O- or -C(=O)O.