```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
In [2]: | mydata=pd.read_excel("mobile_price.csv.xlsx")
In [3]: mydata.isnull().sum()
Out[3]: battery_power
                         0
        blue
                         0
        clock_speed
                         0
        dual_sim
        fc
                         0
        four g
        int_memory
        m_dep
        mobile wt
        n_cores
        рс
        px_height
        px_width
        ram
        sc_h
        SC_W
        talk_time
        three_g
        touch_screen
        wifi
        price_range
        dtype: int64
```

In [4]: mydata

Out[4]:

fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height	px_width	ram	sc_h	sc_w	talk_time	three_g	touch_screen	wifi	price_range
1	0	7	0.6	188	2	 20	756	2549	9	7	19	0	0	1	1
0	1	53	0.7	136	3	 905	1988	2631	17	3	7	1	1	0	2
2	1	41	0.9	145	5	 1263	1716	2603	11	2	9	1	1	0	2
0	0	10	8.0	131	6	 1216	1786	2769	16	8	11	1	0	0	2
13	1	44	0.6	141	2	 1208	1212	1411	8	2	15	1	1	0	1
0	1	2	8.0	106	6	 1222	1890	668	13	4	19	1	1	0	0
0	0	39	0.2	187	4	 915	1965	2032	11	10	16	1	1	1	2
1	1	36	0.7	108	8	 868	1632	3057	9	1	5	1	1	0	3
4	1	46	0.1	145	5	 336	670	869	18	10	19	1	1	1	0
5	1	45	0.9	168	6	 483	754	3919	19	4	2	1	1	1	3

In [5]: x_ind=mydata.drop(["price_range"],axis=1)
y_dep=mydata.price_range

- In [6]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,train_size=0.8,random_state=2)
- In [7]: from sklearn.naive_bayes import GaussianNB
 model=GaussianNB()
 y_pred=model.fit(x_train,y_train).predict(x_test)

naive bayes gives accuracy of 84%

```
In [ ]:
```