Задание.

1. Необходимо выбрать метрику и привести аргументацию.

По условию задачи целевая метрика равна какой-то из колонок, и тест заключается в том, чтобы проверить увеличение дохода. За доход как раз отвечает колонка NPV, поэтому метрика — среднее NPV.

Out[]:		Флаг дозвона	Флаг продажи	Расходы	PV	NPV
	ID					
	0	1	0	90	0	-90
	1	0	0	5	0	-5
	2	0	0	68	0	-68
	3	1	0	22	0	-22
	4	1	0	22	0	-22
	•••				•••	•••
	72156	1	1	577	1346	769
	72157	0	0	8	0	-8
	72158	0	0	23	0	-23
	72159	0	0	4	0	-4
	72160	1	1	132	1385	1253

72161 rows × 5 columns

2. Альтернатива в критерии.

Альтернатива H_1 — уменьшение цены продукта позволит суммарно увеличить доходность продукта. То есть $H_1: NPV_{{ t Tect}} > NPV_{{ t KOHTPOJIL}}$

3.1. Каков размер выборки? Привести аргументацию и написать как получилось то или иное число.

```
In []: from statistics import pvariance
import scipy.stats

a = 0.05
b = 0.2
sigma2 = pvariance(df.NPV.tolist())
```

```
z_1_a = scipy.stats.norm.ppf(1 - a)
z_b = scipy.stats.norm.ppf(b)
k = 0.5
MDE = 0.05 * df.NPV.mean()
N = sigma2 * (z_1_a - z_b)**2 / (k * MDE**2)
N
```

Out[]: 28671.429203969576

следовательно, минимальное N равно 28671

4. Принятие решения. Расписать подробно с аргументами.

Так как нужно сравнить средние, стоит выбор между применением критерия Стьюдента и критерием Манна-Уитни. Из документации к scipy.stats.mannwhitneyu: The Mann-Whitney U test is a non-parametric version of the t-test for independent samples. When the means of samples from the populations are normally distributed, consider scipy.stats.ttest_ind.

Поэтому проверим, являются ли обе выборки нормально распределёнными. Посмотрим на график:

Действительно, тестовая выборка не имеет нормальное распределение, поэтому используем критерий Манна Уитни

pvalue > 0.05, значит, мы не можем отвергнуть нулевую гипотезу теста. Следовательно, мы не можем утверждать, что уменьшение цены продукта позволит суммарно увеличить доходность продукта.