Fully Transitive Homogeneously Separable Abelian Groups

S. Ya. Grinshpon

KEY WORDS: Abelian group, torsion-free group, fully transitive group, characteristic, homogeneously separable group, transitive group, χ -group, reduced group.

A torsion-free Abelian group G is said to be homogeneously separable if there exists a family C of homogeneous direct summands of this group such that each of the finite sets of elements of the group G can be embedded in a direct summand of G which is the direct sum of some groups of the family C. In this case we say that the family C defines the homogeneous separability of the group G.

Note that, in particular, fully decomposable torsion-free Abelian groups, separable torsion-free Abelian groups, and homogeneously decomposable Abelian groups are homogeneously separable.

In the study of fully characteristic subgroups of torsion-free Abelian groups G, an interesting subclass consists of the groups each of whose fully characteristic subgroups has the form $G[v] = \{g \in G \mid \chi(g) \geq v\}$, where v is a characteristic (i.e., a sequence of nonnegative integers and symbols ∞). In [1] such reduced torsion-free groups are called χ -groups. (Note that in the study of fully characteristic subgroups of torsion-free Abelian groups we can restrict ourselves to reduced groups, because a nonzero subgroup S of a torsion-free Abelian group $A = R \oplus V$, where R and V are the reduced part and the divisible part of the group A, respectively, is fully characteristic in A if and only if $S = R_1 \oplus V$, where R_1 is a fully characteristic subgroup of the group R [1, Lemma 3.3].) Each χ -group is fully transitive, i.e., for any two elements x and y of the group such that $\chi(x) \leq \chi(y)$ ($\chi(x)$, $\chi(y)$ are the characteristics of the elements x and y, respectively), there exists an endomorphism φ such that $\varphi(x) = y$ [1, p. 63] (in [1], these groups are said to be transitive). In general, the converse assertion fails.

In the present note a characterization of fully transitive homogeneously separable groups is obtained; in particular, it is established that any fully transitive homogeneously separable group is a χ -group.

Let a be an element of a torsion-free Abelian group G and let p be a prime. Denote by $h_p(a)$ the p-height of an element a and by $\chi(a)$ and t(a) the characteristic and the type of this element, respectively. Further, let Π be the set of primes, and let $\pi(G) = \{p \in \Pi \mid pG \neq G\}$. For a homogeneous group G, denote by t(G) the type of the group G, i.e., the type of all its nonzero elements. Let G be a homogeneously decomposable torsion-free Abelian group, i.e., let $G = \bigoplus_{i \in I} A_i$, where A_i are homogeneous groups. On collecting the components A_i of the same type and taking their direct sum, we obtain a canonical decomposition (the smallest homogeneous decomposition, see [2, p. 212 of the Russian translation]) $G = \bigoplus_{i \in I} G_i$, where G_i are homogeneous groups of different types t.

Theorem. Let G be a homogeneously separable reduced group, let $C = \{A_i\}_{i \in I}$ be a family of homogeneous torsion-free Abelian groups defining the homogeneous separability of the group G, and let T be the set of types of the groups A_i $(i \in I)$. The following conditions are equivalent:

- 1) G is a fully transitive group;
- 2) if G_1 is a homogeneously decomposable direct summand of the group G and if $G_1 = \bigoplus_{t \in T_1} G_t$ is its canonical decomposition, then all groups G_t are fully transitive and $\pi(G_{t_1}) \cap \pi(G_{t_2}) = \emptyset$ for $t_1 \neq t_2$ $(t_1, t_2 \in T_1)$;

- 3) each group A_i $(i \in I)$ is fully transitive, and $\pi(A_{i_1}) \cap \pi(A_{i_2}) = \emptyset$ for $t(A_{i_1}) \neq t(A_{i_2})$;
- 4) the group G is homogeneously decomposable, and $G_t = \{g \in G \mid t(g) = t\} \cup \{0\}$ is a subgroup of G for any $t \in T$; moreover, $G = \bigoplus_{t \in T} G_t$ is a canonical decomposition of G in which each of the groups G_t is fully transitive and $\pi(G_{t_1}) \cap \pi(G_{t_2}) = \emptyset$ for $t_1 \neq t_2$ $(t_1, t_2 \in T)$;
- 5) G is a χ -group.

Proof. The equivalence of 1) and 2) is proved in [1, Corollary 2.15]. Let us show that 1) \Longrightarrow 3). Each of the groups A_i is fully transitive as a direct summand of a fully transitive group [1, Corollary 2.4]. Assume that $t(A_{i_1}) \neq t(A_{i_2})$ ($i_1, i_2 \in I$). To be definite, we assume that $t(A_{i_1}) \not\geq t(A_{i_2})$. We have $G = A_{i_1} \oplus B = A_{i_2} \oplus C$. Let $a \in A_{i_2}$, $a \neq 0$, and $a = a_1 + b$, where $a_1 \in A_{i_1}$ and $b \in B$. In this case, if $a_1 \neq 0$, then $\chi(a) \leq \chi(a_1)$, which is impossible because $t(A_{i_1}) \not\geq t(A_{i_2})$. Hence $a_1 = 0$ and $A_{i_2} \subset B$. We have $B = A_{i_2} \oplus (C \cap B)$, and therefore $G = A_{i_1} \oplus A_{i_2} \oplus (C \cap B)$; note that $A_{i_1} \oplus A_{i_2}$ is a homogeneously decomposable fully transitive group, and hence $\pi(A_{i_1}) \cap \pi(A_{i_2}) = \emptyset$ [1, Proposition 2.12].

Let us prove that $3) \Longrightarrow 4$). We first show that $G_t = \{g \in G \mid t(g) = t\} \cup \{0\}$ is a subgroup of the group G ($t \in T$). Let $a_1, a_2 \in G_t$, $a_1 \neq 0$, and $a_2 \neq 0$. Since G is a homogeneously separable group and the family of groups $\{A_i\}_{i \in I}$ defines the homogeneous separability of this group, it follows that a_1 and a_2 can be embedded in a direct summand $A_{k_1} \oplus A_{k_2} \oplus \cdots \oplus A_{k_s}$ of the group G ($k_j \in I$ and $j = 1, \ldots, s$), and we may assume that, for each of the groups A_{k_j} , at least one of the elements a_1 and a_2 has nonzero coordinate with respect to this group. At least one of the summands A_{k_j} ($j = 1, \ldots, s$) has the type t, because otherwise it follows from the condition

$$\pi(A_{i_1}) \cap \pi(A_{i_2}) = \emptyset$$
 for $t(A_{i_1}) \neq t(A_{i_2})$ $(i_1, i_2 \in I)$

that $t(a_1) \neq t$ and $t(a_2) \neq t$. To be definite, we assume that $t(A_{k_1}) = t$. If for any prime p we have $h_p(a_1) < \infty$, then, since the group G is reduced, it follows that $t(A_{k_1}) = t(A_{k_1})$, $j = 2, \ldots, s$.

Let $\mathcal{P}(A_{k_1}) = \{p \mid p \text{ is a prime and } pA_{k_1} = A_{k_1}\}$. Consider the case in which $\mathcal{P}(A_{k_1}) \neq 0$. Let us show that in this case we again have $t(A_{k_j}) = t(A_{k_1})$, $j = 2, \ldots, s$. Assume the contrary: let there exist an index k_l $(l = 2, \ldots, s)$ such that $t(A_{k_l}) \neq t(A_{k_1})$. Considering an element a_i (i = 1, 2) that has a nonzero coordinate with respect to the group A_{k_l} we see that there exists a prime $p \in \mathcal{P}(A_{k_1})$ for which $h_p(a_i) < \infty$, which contradicts the fact that $t(a_i) = t(A_{k_1}) = t$.

Thus $A_{k_1} \oplus A_{k_2} \oplus \cdots \oplus A_{k_s}$ is a homogeneous group of the type t. Hence, since we have

$$a_1 - a_2 \in A_{k_1} \oplus A_{k_2} \oplus \cdots \oplus A_{k_s}$$

it follows that $t(a_1 - a_2) = t$ and $a_1 - a_2 \in G_t$. Therefore, $G_t = \{g \in G \mid t(g) = t\} \cup \{0\}$ is a subgroup of the group G for each $t \in T$. It is clear that, for each type $t \in T$, we have $G_t \cap \sum_{t' \in T} G_{t'} = 0$. Hence

$$\sum_{t\in T}G_t=\bigoplus_{t\in T}G_t.$$

It remains to show that $G = \bigoplus_{t \in T} G_t$.

Let $g \in G$. The element g can be embedded in a direct summand (of G) that is decomposable into a direct sum of some groups from the family C ($C = \{A_i\}_{i \in I}$). Each group of the family C is contained in a group of the form G_t , and hence $g \in \bigoplus_{t \in T} G_t$.

The validity of the implications 4) \Longrightarrow 5) and 5) \Longrightarrow 1) follows directly from [1, Corollary 3.16 and Proposition 2.1]. \square

Since each torsion-free Abelian group of rank one is a fully transitive group, we obtain the following result.

Corollary 1. Let G be a reduced separable torsion-free Abelian group and let T be the set of types of the direct summands of G of rank one. The following conditions are equivalent:

- 1) G is a fully transitive group;
- 2) if G_1 is a fully transitive direct summand of G of finite rank and if $G_1 = \bigoplus_{i=1}^n B_i$ is a decomposition of G_1 into a direct sum of groups of rank one, then we have $\pi(B_{i_1}) \cap \pi(B_{i_2}) = \emptyset$ for $B_{i_1} \not\cong B_{i_2}$ $(i_1, i_2 = 1, \ldots, n)$;
- 3) for any nonisomorphic direct summands A and B of G of rank one we have $\pi(A) \cap \pi(B) = \emptyset$;
- 4) the group G is homogeneously decomposable, the set $G_t = \{g \in G \mid t(g) = t\} \cup \{0\}$ is a subgroup of the group G for each $t \in T$, and $G = \bigoplus_{t \in T} G_t$ is a canonical decomposition of the group G in which each of the groups G_t is fully transitive and $\pi(G_{t_1}) \cap \pi(G_{t_2}) = \emptyset$ for $t_1 \neq t_2$ $(t_1, t_2 \in T)$;
- 5) G is a χ -group.

Not that the equivalence of conditions 1) and 2) is shown in [1, Corollary 2.16].

Following [3], we say that a torsion-free Abelian group G is a group of type \mathcal{P}^+ if, for some prime p, the group G is isomorphic to the additive group \mathbb{Z}_p of all p-adic integers. A torsion-free Abelian group G is said to be separable of type \mathcal{P}^+ if any finite subset of G is contained in a direct summand of the group G that is a direct sum of groups of the type \mathcal{P}^+ [3].

In particular, each reduced torsion-free Abelian group that can be endowed with the structure of a unitary \mathbb{Q}_p^* -module, where \mathbb{Q}_p^* is the ring of p-adic integers, is a separable group of type \mathcal{P}^+ . This follows from the fact that each cyclic submodule of a reduced torsion-free \mathbb{Q}_p^* -module G that is generated by an element of zero p-height, is a direct summand of G [4, p. 294; 5, p. 52].

Taking account of the fact that each group \mathbb{Z}_p is fully transitive [1, p. 64], we obtain the following result.

Corollary 2. Let G be a separable group of the type \mathcal{P}^+ . Then the following assertions hold:

- 1) G is a fully transitive group;
- 2) G is a homogeneously decomposable group that has a canonical decomposition $G = \bigoplus_{p \in \Pi_1} G_{(p)}$ in which $\Pi_1 \subset \Pi$, $pG_{(p)} \neq G_{(p)}$ for each prime $p \in \Pi_1$, and $qG_{(p)} = G_{(p)}$ for any $q \in \Pi$ such that $q \neq p$;
- 3) G is a χ -group.

An Abelian group A is said to be f.i.-correct if, for each Abelian group B, the relations $A \cong B'$ and $B \cong A'$, where B' and A' are fully characteristic subgroups of the groups B and A, respectively, imply the relation $A \cong B$ [6]. Since each homogeneously decomposable fully transitive torsion-free Abelian group is f.i.-correct [6, Corollary 10], we obtain the following result.

Corollary 3. Each reduced fully transitive homogeneously separable group (in particular, any separable group of type \mathcal{P}^+ and any fully transitive separable torsion-free group) is f.i.-correct.

References

- 1. S. Ya. Grinshpon, "On the structure of completely characteristic subgroups of torsion-free Abelian groups," in: Abelian Groups and Modules [in Russian], Vol. 1 (1982), pp. 56-92.
- 2. L. Fuchs, Infinite Abelian Groups, Vol. 2, Academic Press, New York-London (1973).
- 3. L. Prohazka, Comment. Math. Univ. Carolin., No. 1, 85-114 (1967).
- 4. L. Ya. Kulikov, Trudy Moskov. Mat. Obshch. [Trans. Moscow Math. Soc.], 1, 247-326 (1952).
- 5. I. Kaplansky, Infinite Abelian Groups, Ann Arbor, Michigan (1954).
- 6. S. Ya. Grinshpon, "f. i.-correctness of torsion-free Abelian groups," in: Abelian Groups and Modules [in Russian], Vol. 8 (1989), pp. 65-79.

TOMSK STATE UNIVERSITY