M3 T02

January 17, 2023

1 Sprint 3

1.1 Tasca M3 T02

1.1.1 Exercici 1

Descarrega el data set Airlines Delay: Airline on-time statistics and delay causes i carrega'l a un Pandas Dataframe. Explora les dades que conté, explica breument quines variables hi ha i queda't únicament amb les columnes que consideris rellevants. Justifica la teva elecció.

->Airlines Delay: Airline on-time statistics and delay causes

```
[1]: import numpy as np
  import statistics as st
  import pandas as pd
  !pip install tabulate
  from tabulate import tabulate
  from IPython.display import display

df1=pd.read_csv('DelayedFlights.csv')
  df1.head()
```

Requirement already satisfied: tabulate in /Users/franciscodelcampo/opt/anaconda3/lib/python3.8/site-packages (0.9.0)

[1]:	Unnamed:	0	Year M	lonth	DayofMont	h	DayOfWee	k DepTi	me CRSDepT	'ime	\
0		0	2008	1		3	_	4 2003	.0 1	955	
1		1	2008	1		3		4 754	.0	735	
2		2	2008	1		3		4 628	.0	620	
3		4	2008	1		3		4 1829	.0 1	755	
4		5	2008	1		3		4 1940	.0 1	915	
	ArrTime	CR	SArrTime	Uniq	ueCarrier		TaxiIn	TaxiOut	Cancelled	\	
0	2211.0		2225	•	WN		4.0	8.0	0		
1	1002.0		1000)	WN		5.0	10.0	0		
2	804.0		750)	WN		3.0	17.0	0		
3	1959.0		1925	<u>, </u>	WN		3.0	10.0	0		
4	2121.0		2110)	WN		4.0	10.0	0		

	${\tt CancellationCode}$	Diverted	CarrierDelay	WeatherDelay	NASDelay	\
0	N	0	NaN	NaN	NaN	
1	N	0	NaN	NaN	NaN	
2	N	0	NaN	NaN	NaN	
3	N	0	2.0	0.0	0.0	
4	N	0	NaN	NaN	NaN	

SecurityDelay LateAircraftDelay
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 0.0 32.0
4 NaN NaN

[5 rows x 30 columns]

[2]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1936758 entries, 0 to 1936757

Data columns (total 30 columns):

#	Column	Dtype
0	Unnamed: 0	int64
1	Year	int64
2	Month	int64
3	DayofMonth	int64
4	DayOfWeek	int64
5	DepTime	float64
6	CRSDepTime	int64
7	ArrTime	float64
8	CRSArrTime	int64
9	UniqueCarrier	object
10	FlightNum	int64
11	TailNum	object
12	${\tt ActualElapsedTime}$	float64
13	${\tt CRSElapsedTime}$	float64
14	AirTime	float64
15	ArrDelay	float64
16	DepDelay	float64
17	Origin	object
18	Dest	object
19	Distance	int64
20	TaxiIn	float64
21	TaxiOut	float64
22	Cancelled	int64
23	${\tt CancellationCode}$	object

```
24 Diverted int64
25 CarrierDelay float64
26 WeatherDelay float64
27 NASDelay float64
28 SecurityDelay float64
29 LateAircraftDelay float64
dtypes: float64(14), int64(11), object(5)
memory usage: 443.3+ MB
```

En el dataset hi ha les columnes de l'any, mes, dia del mes i dia de la setmana que es podria agrupar en una unica columna que representi la data (YYYY-MM-DD).

Tenim el CRSDepTime i el DepTime que ens diuen el temps previst de sortida i el temps real així que podem quedar-nos amb els temps reals i afegir les columnes de ArrDelay i DepDelay que representen la diferencia entre el temps previst i el real.

Els temps en els quals es dona el trasllat de pista a la *gate* tampoc el mantindrem ja que tenim els temps totals amb *ActualElapsedTime* i no crec que calgui aquest nivell de detall en el nostre cas.

Com ja tenim el *CancellationCode*, no cal saber exactament quants minuts han endarrerit per aquell motiu si tenim els temps totals en altres columnes (No ens caldràn les darreres 5 columnes *Delay*).

També, els vols cancel·lats caldrà eliminar-los del dataset ja que no s'han donat, així com tractar els missing values que hi trobem.

Opcional: Es podria convertir en km la distància que en principi està en milles.

```
[3]: # Date column merge and getting the new Date column in a basic-filtered dataset
     date=df1[['Year','Month','DayofMonth']]
     date_column=pd.to_datetime(date.Year*10000+date.Month*100+date.
      →DayofMonth,format='%Y%m%d')
     date_column = pd.DataFrame(date_column, columns = ['Date'])
     data=date_column.

→join(df1[['UniqueCarrier','FlightNum','TailNum','Origin','Dest','Distance',
            'DepTime', 'ArrTime', 'DepDelay', 'ArrDelay', 'ActualElapsedTime', 'AirTime',
           'Cancelled', 'CancellationCode']])
     # Desired columns dataset with sub-datasets
     No ArrTime=data[data['ArrTime'].isnull() & data['ArrTime'].isna() & ...
     →data['ArrDelay'].isnull() & data['ArrDelay'].isna()]
     No ArrDept=data[data['ArrDelay'].isnull() | data['ArrDelay'].isna()]
     No_TailNum=data[data['TailNum'].isna()]
     flights cancelled=data[data['Cancelled']==1]
     data=data[data['Cancelled']==0]
     TD = data[data.TailNum.notnull()]
```

```
ATD = TD[TD.ArrTime.notnull()]
     dataC = ATD[ATD.ArrDelay.notnull() | ATD.ArrDelay.notna() | ATD.AirTime.
      →notnull()]
     dataC=dataC.drop_duplicates()
[4]: dataCR = dataC.sample(n=200000) # Select 200.000 random rows of your dataset
     dataCR[['DepTime','ArrTime','DepDelay','ArrDelay','ActualElapsedTime','AirTime']] = (dataCR[['DepTime', 'ArrTime', 'DepDelay', 'ArrDelay', 'ArtualElapsedTime', 'AirTime']]

→convert_integer=True,convert_string=False, convert_boolean=False,

□
      dataCR.head()
[4]:
                    Date UniqueCarrier FlightNum TailNum Origin Dest
                                                                          Distance
     1013914 2008-06-23
                                               3980
                                                     N800AE
                                                                SDF
                                                                     ORD
                                                                                286
                                     MQ
     1347410 2008-08-19
                                     DI.
                                                205 N641DL
                                                                LAS
                                                                     ATL
                                                                               1747
     848465 2008-05-22
                                     AA
                                                553 N428AA
                                                                RSW DFW
                                                                               1017
     1535041 2008-10-18
                                     WN
                                               2032 N309SW
                                                                BHM MSY
                                                                                321
     56620
             2008-01-09
                                     00
                                               6434 N763SK
                                                                LAX SAT
                                                                               1210
              DepTime
                        {\tt ArrTime}
                                 DepDelay
                                            ArrDelay ActualElapsedTime
                                                                           AirTime
     1013914
                  1452
                           1516
                                        17
                                                   21
                                                                                 53
                                                                       84
     1347410
                  1200
                           1916
                                         7
                                                   11
                                                                      256
                                                                                212
                                        50
     848465
                  1755
                           2001
                                                   61
                                                                      186
                                                                                169
     1535041
                  1742
                           1842
                                        32
                                                   22
                                                                       60
                                                                                 49
                   655
     56620
                           1131
                                        40
                                                   27
                                                                      156
                                                                                137
              Cancelled CancellationCode
     1013914
                       0
     1347410
                       0
                                         N
     848465
                       0
                                         N
     1535041
                       0
                                         N
     56620
                       0
                                         N
```

1.1.2 Exercici 2

Fes un informe complet del dataset:

- 1. Resumeix estadísticament el dataset i les columnes d'interès. Fes una anàlisi estadístic del que consideris rellevant.
- 2. Troba quantes dades faltants hi ha per columna.
- 3. Crea columnes noves (velocitat mitjana del vol, si ha arribat tard o no...).
- 4. Fes una taula de les aerolínies amb més endarreriments acumulats.
- 5. Quins són els vols més llargs? I els més endarrerits? Busca les rutes més llargues i les que acumulen més retards.
- 6. Aporta allò que consideris rellevant.

Apartat 1 Resumeix estadísticament el dataset i les columnes d'interès. Fes una anàlisi estadístic del que consideris rellevant.

Al llarg dels diferents apartats, no només es perfecciona i s'afegeixen columnes d'interés al dataset, així com la velocitat mitjana o si hi ha un vol atrassat i una classificació pertinent, sinó que també s'analitzen i s'extreu informació interessant respecte al *delay* dels vols i les aerolinies.

```
[5]: def resest(df):
         print('\033[1m'+"Resum estadístic"+'\033[0m')
         ii=0
         for (columnName, columnData) in df.iteritems():
             array=columnData.to_numpy(dtype=float)
             suma=[]
             res=[]
             avg=[]
             suma=np.sum(array)
             avg=suma/len(array)
             ngran=max(array)
             npetit=min(array)
             res=ngran-npetit
             if columnName == 'Distance':
                 print('\n\033[1m'+columnName+'\033[0m')
                 print("\nTotal:",suma,'[m]')
                 print("Diferència del més gran amb el més petit:",res,'[m]')
                 print("Mitjana:",avg.round(2),'[m]')
             else:
                 print('\n\033[1m'+columnName+'\033[0m')
                 print("\nTotal:",suma,'[min]')
                 print("Diferència del més gran amb el més petit:",res,'[min]')
                 print("Mitjana:",avg.round(2),'[min]')
             if ii>0:
                 rnp=np.corrcoef(parray,array)
                 print('Coeficient de correlació entre '+columnName+' i⊔
      → '+pcolumnName,rnp[1,0].round(2))
             parray=array
             pcolumnName=columnName
             ii +=1
         return suma, res, avg, rnp
     #Resum estadístic del dataset
     column_names=['DepDelay','ActualElapsedTime','Distance','AirTime','ArrDelay']
     resest(dataCR[column_names])
     print('\n\033[1m'+'Correlació entre columnes del dataset','\033[0m')
     display(dataCR[column_names].corr(method='pearson'))
     print('\n\033[1m'+'Resum general dataset'+'\033[0m')
```

dataCR.describe().round(2)

Resum estadístic

DepDelay

Total: 8621356.0 [min]

Diferència del més gran amb el més petit: 1704.0 [min]

Mitjana: 43.11 [min]

ActualElapsedTime

Total: 26693564.0 [min]

Diferència del més gran amb el més petit: 708.0 [min]

Mitjana: 133.47 [min]

Coeficient de correlació entre ActualElapsedTime i DepDelay 0.02

Distance

Total: 153349750.0 [m]

Diferència del més gran amb el més petit: 4938.0 [m]

Mitjana: 766.75 [m]

Coeficient de correlació entre Distance i ActualElapsedTime 0.95

AirTime

Total: 21692961.0 [min]

Diferència del més gran amb el més petit: 652.0 [min]

Mitjana: 108.46 [min]

Coeficient de correlació entre AirTime i Distance 0.98

ArrDelay

Total: 8438096.0 [min]

Diferència del més gran amb el més petit: 1774.0 [min]

Mitjana: 42.19 [min]

Coeficient de correlació entre ArrDelay i AirTime -0.0

Correlació entre columnes del dataset

	DepDelay	ActualElapsedTime	Distance	AirTime	ArrDelay
DepDelay	1.000000	0.017133	-0.009642	-0.004386	0.954403
ActualElapsedTime	0.017133	1.000000	0.953504	0.977288	0.065753
Distance	-0.009642	0.953504	1.000000	0.980118	-0.030794
AirTime	-0.004386	0.977288	0.980118	1.000000	-0.001087
ArrDelay	0.954403	0.065753	-0.030794	-0.001087	1.000000

Resum general dataset

[5]:		FlightNum	Distan	ce DepT:	ime Ar	rTime	DepDelay	ArrDelay	\
	count	200000.00	200000.	00 200000	.00 2000	00.00	200000.00	200000.00	
	mean	2177.80	766.	75 1518	.08 16	10.13	43.11	42.19	
	std	1940.24	574.	94 451	.70 5	48.78	53.71	57.16	
	min	1.00	24.	00 1	.00	1.00	6.00	-67.00	
	25%	608.00	338.	00 1203	.00 13	16.00	12.00	9.00	
	50%	1541.00	607.	00 1545	.00 17	15.00	24.00	24.00	
	75%	3411.00	999.	00 1901	.00 20	31.00	53.00	56.00	
	max	9740.00	4962.	00 2400	.00 24	.00.00	1710.00	1707.00	
		ActualElap	sedTime	AirTime	Cancell	.ed			
	count	20	0000.00	200000.00	200000	.0			
	mean		133.47	108.46	0	.0			
	std		72.12	68.69	0	.0			
	min		16.00	0.00	0	.0			
	25%		80.00	58.00	0	.0			
	50%		116.00	90.00	0	.0			
	75%		165.00	137.00	0	0.0			
	max		724.00	652.00	0	.0			

Aquí tenim un resum de les estadístiques més rellevants del dataset així com les correlacions entre les columnes del dataset on si el valor es proper a 1 o -1, excloent l'1 de la diagonal, veiem una relació directa entre els valors d'ambdós columnes.

Apartat 2 Troba quantes dades faltants hi ha per columna.

```
[6]: def missingdata(data,nameStr):
         columns = data.columns
         total_missing = data.isna().sum()
         percentage_missing = data.isna().sum() * 100 / len(data)
         total_null = data.isnull().sum()
         percentage null = data.isnull().sum() * 100 / len(data)
         table_percentage_missing = pd.DataFrame({'%missing': percentage_missing})
         table_total_missing = pd.DataFrame({'total_missing': total_missing})
         table_percentage_null = pd.DataFrame({'%null': percentage_null})
         table_total_null = pd.DataFrame({'total_null': total_null})
         M=table_total_missing.join(table_percentage_missing)
         N=table_total_null.join(table_percentage_null)
         col_names=['total_missing','%missing','total_null','%null']
         print('\n\033[1m'+nameStr+'\033[0m')
         print('\n')
         print(tabulate(M.join(N), headers=col_names,tablefmt="github"))
     #Dades faltants per columna i percentatge abans de treure els valors faltantsu
      \hookrightarrow de TailNum i ArrTime
```

```
missingdata(df1, 'InitialData')

#missingdata(data, 'PreviousData')

#Dades faltants per columna i percentatge després de treure els valors faltants⊔

→de TailNum i ArrTime

missingdata(dataC, 'FilteredData')
```

InitialData

-		total_m	issing	1	%missing	to	tal_null	
%	null							
		-				-	-	
-	 Unnamed: 0	1	0	I	0	1	0	0
	Year	1	0	I	0	1	0	0
	Month	1	0	I	0	1	0	0
 	DayofMonth	1	0	I	0	1	0	0
 	DayOfWeek	I	0	I	0	1	0	0
 	DepTime	1	0	I	0	1	0	0
1	CRSDepTime	1	0	I	0	1	0	0
1	ArrTime	1	7110	I	0.367108	1	7110	0.367108
1	CRSArrTime	1	0	I	0	1	0	0
1	UniqueCarrier	I	0	1	0		0	0
	FlightNum	I	0	I	0	1	0	0
0	TailNum .000258163	1	5	1	0.000258163	1	5	
1	ActualElapsedTime	I	8387	1	0.433043		8387	0.433043
-	${\tt CRSElapsedTime}$	1	198		0.0102233	I	198	0.0102233

1								
	AirTime	1	8387	I	0.433043	1	8387	0.433043
	ArrDelay	1	8387	I	0.433043	1	8387	0.433043
	DepDelay	1	0	I	0	1	0	0
	Origin	1	0	I	0	I	0	0
	Dest	1	0	I	0	I	0	0
	Distance	1	0	I	0	1	0	0
	TaxiIn	1	7110	I	0.367108	I	7110	0.367108
	TaxiOut	1	455	I	0.0234929	I	455	0.0234929
	Cancelled	1	0	I	0	I	0	0
	CancellationCode	1	0	I	0	1	0	0
	Diverted	1	0	I	0	I	0	0
	CarrierDelay	1	689270	I	35.5889	I	689270	35.5889
	WeatherDelay	1	689270	I	35.5889	1	689270	35.5889
	NASDelay	1	689270	I	35.5889	1	689270	35.5889
	SecurityDelay	I	689270	I	35.5889	I	689270	35.5889
	LateAircraftDelay	1	689270	I	35.5889	1	689270	35.5889

FilteredData

1	total_missing	%missing	total_null	%null
Date	0	0 1	0	0
UniqueCarrier	0	0 1	0	0
FlightNum	0	0 1	0	0
TailNum	0	0 1	0	0
Origin	0	0 1	0	0
Dest	0	0 1	0	0
Distance	0	0 1	0	0
DepTime	0	0 1	0	0
ArrTime	0	0 1	0	0

-	DepDelay	1 0		0	0	0	
	ArrDelay	0	1	0	0	0	
	${\tt ActualElapsedTime}$	0	1	0	0	0	
	AirTime	0	1	0	0	0	
	Cancelled	0	1	0	0	0	
	CancellationCode	1 0	1	0	0	0	

Apartat 3 Crea columnes noves (velocitat mitjana del vol, si ha arribat tard o no...).

```
[7]: #Creation of new columns
    #Velocity applying the transformations to get kilometers and hours
    AvgVelocity=((dataCR['Distance']*1.609344)/(dataCR['AirTime']/60))
    dataCR['AvgVelocity'] = AvgVelocity
    #Check if infinite values arise and turn them to 0 (it appeared 1 value while
     \hookrightarrow testing)
    r = dataCR['AvgVelocity'].index[np.isinf(dataCR['AvgVelocity'])]
    dataCR['AvgVelocity'][r]=0
    #Time spent moving inside the airport in the plane
    TaxiTime=(dataCR['ActualElapsedTime']-dataCR['AirTime']).
     dataCR['TaxiTime'] = TaxiTime
    #Classification of flights based on delayed
    def tdelay(x):
        if x<=0:
            lt='0'
        elif x \le 60:
            lt='L'
        else:
            lt='RL'
        return 1t
    TypeDelay=dataCR['ArrDelay'].apply(tdelay)
    dataCR['TypeDelay']=TypeDelay
    #Late value for each flight
    def blate(x):
        if x>0:
            1=1
        else:
            1=0
```

```
return 1

Late=dataCR['ArrDelay'].apply(blate)
dataCR['Late']=Late
dataCR.head()
```

[7]:	1347410 848465	2008-06-23		arrier MQ DL AA WN OO	FlightNum 3980 205 553 2032 6434	TailNum N800AE N641DL N428AA N309SW N763SK	SDF LAS RSW BHM	Dest ORD ATL DFW MSY SAT	1 ²	nce 286 747 017 321 210	\
	1013914 1347410 848465 1535041 56620	DepTime 1452 1200 1755 1742 655	ArrTime 1516 1916 2001 1842 1131	1 5	7 0 2	ay Actua 21 11 51 22	alElapse	edTime 84 256 186 60 156	:	ime 53 212 169 49 137	\
	1013914 1347410 848465 1535041 56620	Cancelled 0 0 0 0			N 521.00 N 795.7 N 581.0 N 632.5	63076 14331 77934	axiTime 31 44 17 11	TypeDe	elay l L L RL L L	Late 1 1 1 1 1	

Apartat 4 Fes una taula de les aerolínies amb més endarreriments acumulats.

```
[8]: #Most delays able

dCR=dataCR
col_names=['ArrCum']
UCg=dCR.groupby(by='UniqueCarrier').sum()
Tflights=dCR.groupby(by='UniqueCarrier').count()

TT=Tflights['Late'].sort_values(ascending=False)
TotF = pd.DataFrame({'Number of flights': TT})
TotF.reset_index(inplace=True)

CDelay=UCg['ArrDelay'].sort_values(ascending=False)
DelayC = pd.DataFrame({'CarrierDelays [min]': CDelay})
DelayC.reset_index(inplace=True)
print(tabulate(DelayC,headers='keys',tablefmt='github',showindex='False'))
```

UniqueCarrier	 -1-	CarrierDelays [min]
WN	- 	1175878 917037 682895 667890 612183 542806 472870 420380
EV YV US NW FL B6 OH 9E AS F9 HA		399405 388702 371160 370135 322272 302345 274179 258686 145705 85258 26365 1945

UniqueCarrier	- 1	Number of flights	delayed	Number of flights	1
%Delayed					
WN	- 1		33583	38848	1
86.45					
AA	-		17915	19819	1
90.39					
MQ	-		13667	14794	1
92.38					
UA	- 1		12674	14435	1
87.8					
00	-		12478	13446	1

92.8			
DL	1	10583	11894
88.98			
XE		9858	10811
91.18			
CO		8798	10525
83.59			
US	l	8575	10109
84.83			
EV		7746	8437
91.81			
l NW		7548	8196
92.09			
FL		6781	7375
91.95			
YV	I	6595	6963
94.71	ı	5400	5440
OH	I	5109	5448
93.78	ı	10.15	5000
B6	I	4945	5636
87.74	1	4705	
9E	I	4795	5254
91.26	ı	2516	1100
AS 86.3	I	3546	4109
F9	I	2748	3010
91.3	I	2140	3010
91.5 HA	1	778	806
96.53	I	110	000
90.55 AQ	1	74	85
87.06	ı	14	00
07.00			

Apartat 5 Quins són els vols més llargs? I els més endarrerits? Busca les rutes més llargues i les que acumulen més retards.

```
Rg=dCR[['Origin','Dest','Distance']].groupby(by=['Origin','Dest']).mean()
LongR=Rg.sort_values(by='Distance',ascending=False)
LongR.reset_index(inplace=True)
LongR.index +=1
print('\n')
print(tabulate(LongR.head(10),headers='keys',tablefmt='github'))

#Most Delayed routes
Dg=dCR[['Origin','Dest','ArrDelay']].groupby(by=['Origin','Dest']).sum()
MD=Dg.sort_values(by='ArrDelay',ascending=False)
```

-		1	Origin	- 1	Dest	1	Distance
-		- -		-			
	1		HNL	- 1	EWR	1	4962
	2		EWR	- 1	HNL	1	4962
	3		HNL	- 1	ATL	1	4502
	4		ATL	- 1	HNL	1	4502
	5		ORD	- 1	HNL	1	4243
-	6		HNL	-	ORD	I	4243
-	7		KOA	-	ORD	I	4213
-	8		ORD	-	OGG	I	4184
	9		HNL	- 1	MSP	1	3972
-	10	1	MSP	- 1	HNL	1	3972

		-	Origin	- 1	Dest	- 1	AccDelay
-		- -		· ·			
-	1		ORD	- 1	LGA	- 1	25206
-	2		LAX	- 1	SF0	- 1	22913
	3		ORD	- 1	EWR	- 1	21494
	4		ATL	- 1	EWR	- 1	21437
	5		LGA	- 1	ORD	- 1	20999
	6		ATL	- 1	LGA	1	18928
	7		DFW	- 1	ORD	- 1	18446
	8		SF0	- 1	LAX	- 1	18115
	9		LGA	- 1	ATL	- 1	17844
-	10		EWR	- 1	ATL	1	17750

Apartat 6 Aporta allò que consideris rellevant.

En els previs apartats ja s'ha anat analitzant prou la informació que considerava rellevant i per no agrupar-la aquí es deixa en els altres apartats i aquí s'afeigeix una comparació per veure els aeroports més transitats, més vols departed i arrived.

```
[10]: Of=dCR.groupby(by='Origin').count()
    Ofli=Of['Late'].sort_values(ascending=False)
    D0 = pd.DataFrame({'Most flights departed': Ofli})
    D0.reset_index(inplace=True)
    D0.index +=1
    print('\n')
```

```
print(tabulate(DO.head(10),headers='keys',tablefmt='github'))
Af=dCR.groupby(by='Dest').count()
Afli=Af['Late'].sort_values(ascending=False)
DA = pd.DataFrame({'Most flights arrived': Afli})
DA.reset_index(inplace=True)
DA.index +=1
print('\n')
print(tabulate(DA.head(10),headers='keys',tablefmt='github'))
TOA=(Af['Late']+Of['Late']).convert_dtypes(infer_objects=False,__
TotOA= pd.DataFrame({'Total Flights': TOA.sort_values(ascending=False)})
TotOA.reset_index(inplace=True)
TotOA=TotOA.rename(columns={"index": "Airport"})
TotOA.index +=1
display(TotOA.head(10))
print('\n\033[1m'+'Resum general dataset'+'\033[0m')
dCR.describe().round(2)
```

			Origin	l I	Most flights departed
1-		- 1 -			
	1		ATL		13544
	2	1	ORD	-	13083
-	3		DFW		10017
-	4	1	DEN		7679
-	5	1	LAX	-	6162
-	6	1	IAH	-	5998
-	7	1	PHX	-	5747
-	8		LAS		5512
-	9	1	EWR	-	5454
-	10		SF0	-	4527

-	- 1	Dest		Most	flights	arrived	-
-							-
-	1	ORD	-			11011	
-	2	ATL	-			11005	
	3	DFW	-			7289	
	4	DEN	-			6613	
-	5	LAX				6195	

1	6	1	EWR	1	5826	١
	7	1	LAS	1	4989	١
	8	1	PHX		4906	١
	9	1	SFO	1	4895	١
-	10	-	IAH	1	4547	١
	Airport		port	Total Flights		

	Airport	Total	Flights
1	ATL		24549
2	ORD		24094
3	DFW		17306
4	DEN		14292
5	LAX		12357
6	EWR		11280
7	PHX		10653
8	IAH		10545
9	LAS		10501
10	SFO		9422

Resum general dataset

[10]:		FlightNum	Distance	${ t DepTime}$	${ t ArrTime}$	DepDelay	ArrDelay	\
	count	200000.00	200000.00	200000.00	200000.00	200000.00	200000.00	
	mean	2177.80	766.75	1518.08	1610.13	43.11	42.19	
	std	1940.24	574.94	451.70	548.78	53.71	57.16	
	min	1.00	24.00	1.00	1.00	6.00	-67.00	
	25%	608.00	338.00	1203.00	1316.00	12.00	9.00	
	50%	1541.00	607.00	1545.00	1715.00	24.00	24.00	
	75%	3411.00	999.00	1901.00	2031.00	53.00	56.00	
	max	9740.00	4962.00	2400.00	2400.00	1710.00	1707.00	

	${\tt ActualElapsedTime}$	AirTime	Cancelled	AvgVelocity	TaxiTime	\
count	200000.00	200000.00	200000.0	200000.00	200000.00	
mean	133.47	108.46	0.0	638.98	25.00	
std	72.12	68.69	0.0	125.92	15.39	
min	16.00	0.00	0.0	0.00	2.00	
25%	80.00	58.00	0.0	566.57	16.00	
50%	116.00	90.00	0.0	650.17	21.00	
75%	165.00	137.00	0.0	721.84	29.00	
max	724.00	652.00	0.0	10718.23	386.00	

Late count 200000.00 mean 0.89 std 0.31 min 0.00 25% 1.00 50%

```
75% 1.00 max 1.00
```

1.1.3 Exercici 3

Exporta el dataset net i amb les noves columnes a Excel.

```
[11]: # saving the excel
  data_Final=dataCR
  data_Final.to_excel('Airlines_delay_Transformed.xlsx')
  print('DataFrame is written to Excel File successfully.')
```

DataFrame is written to Excel File successfully.