Ejercicio 1

Filtro con GIC

1.1 Introducción: el GIC

explicar:cuando se quiere hacer un filtro de segundo orden sin usar bobinas, usamos GIC para simular sus efectos

Figura 1.1: GIC genérico con op amps ideales

Como consideramos ideales a ambos operacionales, la tensión de entrada se encuentra replicada donde se encuentran los terminales inversores del circuito, y a su vez en la entrada no inversora del segundo operacional. Asimismo, como no hay corriente entre V^+ y V^- para ninguno de los operacionales, hay sólo tres corrientes, puesto que la corriente de Z_2 es la misma que la de Z_3 , y la de Z_4 que la de Z_5 . Quedan definidas entonces las ecuaciones:

$$\begin{cases} \frac{V_{GIC} - V_1}{Z_1} - I = 0\\ \frac{V_{GIC} - V_1}{Z_2} + \frac{V_{GIC} - V_2}{Z_3} = 0\\ \frac{V_{GIC} - V_2}{Z_4} + \frac{V_{GIC}}{Z_5} = 0 \end{cases}$$

Sustituyendo hacia atrás, podemos obtener la transferencia hasta la salida de cada operacional:

$$\begin{cases} \frac{V_1}{V_{GIC}} = -\frac{Z_2 \cdot Z_4}{Z_3 \cdot Z_5} \\ \frac{V_2}{V_{GIC}} = 1 + \frac{Z_4}{Z_5} \end{cases}$$
 (1.1)

De aquí se puede despejar la impedancia de entrada del GIC, es decir $\frac{V_{GIC}}{I}$:

$$Z = \frac{Z_1 \cdot Z_3 \cdot Z_5}{Z_2 \cdot Z_4} \tag{1.2}$$

De esta forma, combinando las impedancias convenientemente, se pueden obtener impedancias de toda índole (es decir, donde el número Z puede estar teóricamente en cualquier punto del plano complejo).

1.2 Filtro a diseñar

Figura 1.2: Esquema del circuito

El GIC que utilizaremos en este trabajo se obtiene con las siguientes sustituciones:

$$\begin{cases} Z_1 = R_1 \\ Z_2 = \frac{1}{s \cdot C_2} \\ Z_3 = R_3 \\ Z_4 = R_4 \\ Z_5 = R_8 \end{cases}$$

Por lo tanto, reemplazando en la ecuación (1.2) obtenemos la impedancia de este GIC:

$$Z(s) = s \cdot \frac{R_1 \cdot R_3 \cdot R_8 \cdot C_2}{R_4} \tag{1.3}$$

Entonces, con esta sección del filtro estamos emulando una bobina ideal de inductancia:

$$L_{GIC} = \frac{R_1 \cdot R_3 \cdot R_8 \cdot C_2}{R_4} \tag{1.4}$$

La salida, sin embargo, se mide dentro del GIC. Trataremos a este sistema como la combinación en cascada de dos sistemas: de V_{in} a V_{GIC} , y de V_{GIC} a V_{out} .

1.2.1 Transferencia de V_{in} a V_{GIC}

Teniendo en cuenta el resultado obtenido en la ecuación (1.3), podemos simplificar el circuito de la siguiente manera:

Figura 1.3: Reemplazo del GIC por su inductancia equivalente

La tensión de salida de esta sección, entonces, puede hallarse aplicando un divisor de tensión entre la impedancia de entrada desde V_{in} y del paralelo de la bobina y el capacitor. Se obtiene entonces que:

$$\frac{V_{GIC}}{V_{in}}(s) = \frac{s \cdot \frac{L_{GIC}}{R_6}}{LC_6 \cdot s^2 + \frac{L_{GIC}}{R_6} \cdot s + 1}$$
(1.5)

1.2.2 Transferencia de V_{GIC} a V_{out}

Para obtener esta transferencia, basta observar que lo que ahora llamamos V_{out} es lo que en la introducción llamamos V_2 . Por lo tanto, reemplazando los valores genéricos de la ecuación (1.1) por los particulares de este circuito, obtenemos que:

$$\frac{V_{out}}{V_{CIC}}(s) = 1 + \frac{R_4}{R_8} \tag{1.6}$$

Por lo tanto, la función transferencia del circuito se obtiene haciendo el producto de las ecuaciones (1.5) y (1.6):

$$H(s) = \left(1 + \frac{R_4}{R_8}\right) \cdot \left(\frac{s \cdot \frac{L_{GIC}}{R_6}}{LC_6 \cdot s^2 + \frac{L_{GIC}}{R_6} \cdot s + 1}\right)$$
(1.7)

Esto corresponde a un **filtro pasabanda**, definido por los siguientes parametros:

$$\begin{cases}
\omega_0 = \sqrt{\frac{1}{L_{GIC}C_6}} \\
Q = R_6 \cdot \sqrt{\frac{C_6}{L_{GIC}}} \\
|H(i\omega_0)| = 1 + \frac{R_4}{R_8}
\end{cases}$$
(1.8)

1.3 Diseño del filtro pasabanda

Las especificaciones de diseño de este filtro son:

Figura 1.4: Ubicación de los polos para distintos valores de R_6

$$\begin{cases} \omega_0 = 13,000^{rad/s} & \Rightarrow f_0 = 2,079Hz \\ Q = 4 & \Rightarrow f_1 = 1,827Hz \land f_1 = 2,344Hz \end{cases}$$
(1.9)

El parámetro $|H(i\omega_0)|$ no está definido a priori. Sin embargo, se debe tener presente que el mismo corresponde a la salida de un *op amp* en la frecuencia en la cual más crítico es que el circuito funcione correctamente. Por lo tanto, sería poco práctico tener una gran ganancia en este punto, puesto que esto limitaría mucho el rango de tensiones de entrada admisibles, ya que si bien en esta frecuencia el *slew rate* no debería ser un problema, no ocurre lo mismo con la saturación.

Para simplificar la elección de componentes, se establecen las siguientes relaciones entre los mismos:

$$\begin{cases}
R_1 = R_3 = R_4 = R_8 = R \\
R_6 = Q \cdot R = 4 \cdot R \\
C_2 = C_6 = C
\end{cases} (1.10)$$

Reemplazando en (1.8), se obtiene que:

$$\begin{cases}
\omega_0 = \frac{1}{RC} \\
Q = 4 \\
|H(i\omega_0)| = 2
\end{cases}$$
(1.11)

Resulta entonces que, si se respeta el criterio establecido en (1.10), sólo queda elegir R de tal manera que los valores de $R_6 = 4 \cdot R$ y $C = \frac{1}{13.000 rad/s \cdot R}$ puedan obtenerse con el

menor error posible con valores comerciales y estén en un rango razonable de valores.

Para definir dicho rango de valores, se tomará el siguiente criterio:

- R_6 se encuentra en serie con la entrada del circuito, y por lo tanto se establecerá entre ella y la resistencia interna del generador un divisor de tensión, cuyos efectos serán despreciables sólo si $R_6 \gg R_G = 50\Omega$. Por lo tanto, R_6 debe ser al menos del orden de los $k\Omega$
- Puesto que el ruido térmico es proporcional a la resistencia, no se utilizarán resistencias del orden de los $M\Omega$.
- Las capacidades deben ser mucho mayores a las que introducen las puntas del osciloscopio al medir, que son de alrededor de 100pF si se utilizan en $\times 1$. Por ende, requeriremos que C sea mayor a 10nF, de forma que sea al menos 100 veces mayor que la del osciloscopio.

1.3.1 Función de R_6

Si consideramos la simplificación del circuito utilizada en la figura (1.3), R_6 es una resistencia serie en un circuito resonante. Como tal, su valor no influye en la frecuencia de resonancia, sino que determina el factor de calidad del circuito: a medida que R_6 se hace más grande, el comportamiento del circuito se acerca más a un pasabanda ideal, es decir uno con ancho de banda tendiendo a 0. Análogamente, a medida que R_6 se hace 0, el ancho de banda crece, convirtiendo al circuito en un pasa todo.

Esto se debe a que el factor de calidad del filtro Q =

 R_6/R , donde R lo consideramos constante, es inversamente proporcional a esta resistencia. Por lo tanto, para $R_6=0.5\cdot R$, el circuito tiene sus dos polos superpuestos en $s=-\omega_0$. A medida que aumenta, los polos se hacen complejos conjugados , acercándose cada vez más al eje imaginario, donde se encontrarían los polos del pasabanda ideal. Si R_6 disminuye, en cambio, los polos se separan en dos reales distintos entre sí, aumentando cada vez más el ancho de banda del circuito.

Esto puede observarse en la figura (1.4). De la misma podemos concluir que la resistencia R_6 es el componente que define la selectividad del filtro.

1.3.2 Función de R_8

La resistencia R_8 establece la conexión entre los operacionales que integran el GIC y tierra. De no incluirse en el circuito, el GIC entero se comportaría como un circuito abierto, y lo mismo si se reemplazara por un cable: la impedancia total del GIC se haría 0.

Sin embargo, en este análisis no se está teniendo en cuenta las limitaciones de los operacionales. Si reemplazamos los valores genéricos de las ecuaciones (1.1) con los particulares de este GIC, podemos observar qué ocurre con la transferencia a cada operacional:

$$\begin{cases} \frac{V_1}{V_{GIC}} = -\frac{R_4}{R_8} \cdot \frac{1}{s \cdot CR_3} \\ \frac{V_2}{V_{GIC}} = 1 + \frac{R_4}{R_8} \end{cases}$$
 (1.12)

Resulta entonces que la ganancia máxima de ambos operacionales está limitada por la relación entre R_4 y R_8 . Por ende, a medida que R_4/R_8 crece, el rango de tensiones en el cual los *op amps* no saturan ni se ven limitados por el *slew rate* se hace menor.

1.3.3 Análisis de sensibilidades

Dado que no es posible cumplir con los requisitos de diseño con un 0% de error utilizando valores comerciales de componentes through hole, y además cada componente tendrá asociada una tolerancia del 5% (para las resistencias) o el 10% (para los capacitores), analizaremos a continuación qué componentes son los más críticos del circuito. Utilizando la fórmula $S_x^y = \frac{x}{y} \cdot \frac{\partial y}{\partial x}$, donde S_x^y es la sensibilidad del parámetro y a cambios en x, partiendo de las relaciones obtenidas en (1.4) y (1.8), se confeccionó la siguiente tabla:

y x	R_1	C_2	R_3	R_4	R_8	C_6	R_6
ω_0	-1/2	_1/2	-1/2	1/2	-1/2	-1/2	0
Q	-1/2	-1/2	-1/2	1/2	-1/2	1/2	1

Tabla 1.1: Sensibilidad de ω_0 y Q a los componentes

Se puede observar que todos los componentes del GIC influyen de igual manera en los parámetros característicos del circuito, si bien los aumentos en R_4 se ven reflejados de manera inversamente proporcional cuando las demás lo hacen de manera proporcional y viceversa. Lo mismo que ocurre con estos valores ocurre con C_6 : cambios pequeños en este parámetro son un 50% menos visibles en ω_0 y Q, con lo cual por ejemplo su 10% de tolerancia puede llegar a cambiar hasta un 5% las características del filtro (en el peor caso).

El único componente que presenta otros efectos es R_6 : mientras que no incide en absoluto en la frecuencia de resonancia, es el principal factor a tener en cuenta en el factor de calidad. Por lo tanto, es crítico obtener un valor preciso para esta resistencia, dentro de lo que permite la tolerancia.

1.3.4 Elección de op amp

Para poder simular adecuadamente el comportamiento del circuito y así elegir los valores de componentes más apropiados, se debe definir primero qué modelo de operacional utilizaremos, de forma tal que las simulaciones sean lo más fidedignas posibles.

Debido a que este filtro debe amplificar frecuencias de alrededor de los 2kHz y atenuar las demás, el bandwidth product del operacional no es un requisito crítico: en frecuencias donde sus efectos puedan apreciarse, por ejemplo del orden de los 100kHz, la señal debería estar atenuada más de 40dB. Incluso si el polo del operacional afectase la respuesta en frecuencia en este punto, lo que haría sería introducir una atenuación aún mayor, y si el objetivo de un filtro pasabanda es anular estas frecuencias esto no sería un problema.

Lo mismo puede decirse del slew rate: en las frecuencias a partir de las cuales un slew rate modesto podría apreciarse, la salida está ya tan atenuada que no será observable, sobre todo considerando que con los generadores de funciones que utilizaremos no pueden entregar más de $20V_{pp}$ en la entrada. A frecuencias cercanas a la de resonancia, los operacionales saturarán antes de que el slew rate traiga problemas.

Por lo tanto, se eligió el operacional TL082. Si bien hay operacionales con mayor bandwidth product en el pañol de la universidad, como el LM833, el TL cuenta con una gran impedancia de entrada, de $10^{12}\Omega$, una corriente de bias de 90pA, y una gran amplificación de $100^{mV}/v$. Esto no va en desmedro de su slew rate, que es de $13^{V}/\mu_s$, y su ancho

de banda de 4MHz es más que suficiente para el rango de frecuencias donde se va a trabajar.

1.3.5 Elección de componentes

El valor elegido para R fue $2.2k\Omega$. Los parámetros del circuito quedan determinados entonces de la siguiente manera:

	Valor ideal	Valor elegido	Error (%)
R_1	$2.2k\Omega$	$2.2k\Omega$	0
C_2	34.965nF	34.878nF	-0.25
R_3	$2.2k\Omega$	$2.2k\Omega$	0
R_4	$2.2k\Omega$	$2.2k\Omega$	0
R_8	$2.2k\Omega$	$2.2k\Omega$	0
C_6	34.965nF	34.878nF	-0.25
R_6	$8.8k\Omega$	$8.8k\Omega$	0
ω_0	$13,000^{rad}/s$	$13,032^{rad}/s$	0.25
Q	4	4	0

Tabla 1.2: Valores de los componentes, y ω_0 y Q resultantes

De esta forma, todas las resistencias tienen su valor teórico exacto (dejando de lado la tolerancia del componente por el momento), y sólo se requiere hacer una combinación paralelo de $12k\Omega$ con $33k\Omega$ para obtener el valor de R_6 . En cuanto a los capacitores, el valor de 34.878nF se obtiene al conectar en serie un capacitor de 39nF con uno de 330nF. Tanto C_2 como C_6 afectan a ω_0 con una sensibilidad de -1/2, con lo cual sus efectos combinados sólo resultan en un 0.25% de desviación respecto de ω_0 . En cuanto al valor de Q, al ser iguales ambos capacitores sus efectos se compensan, y sólo depende de R_6 , con lo cual se obtiene de forma exacta.

Con esta selección de componentes y operacional, se efectuó un análisis de Montecarlo en LtSpice. De acuerdo al mismo, la tolerancia de los componentes lleva a que el rango donde se encontrará la frecuencia de corte es aproximadamente entre 1.85kHz y 2.3kHz, lo cual implica un margen de error de $\pm 10\%$.

Por lo tanto, se procedió a implementar este filtro en una PCB con los componentes indicados y el amplificador TL082. Se utilizaron resistencias de metal-film y capacitores film. A su vez, se incluyeron dos capacitores de 100nF multicapa de desacople: uno entre V_{CC}^+ y tierra y otro entre V_{CC}^- y tierra. Estos capacitores tienen como función compensar pequeños cambios de tensión en la alimentación del operacional, para que la misma sea más estable.

1.4 Análisis de resultados

1.4.1 Respuesta en frecuencia

Como se observa en los gráficos de la figura (1.6), la respuesta en frecuencia del circuito coincide con la que se obtiene en la simulación. Para frecuencias altas, a partir de 100kHz, comienzan a observarse en la fase los efectos del polo del operacional, que no se tuvieron en cuenta a la hora de calcular la función transferencia. Por otro lado, la medición de magnitud a 1MHz discrepa de tanto la simulación como el cálculo. Esto puede deberse a que debido a la gran atenuación, la señal de salida era tan pequeña que resulta comparable con el ruido del osciloscopio, eliminando su validez. También es posible que a estas frecuencias, el comportamiento de los componentes se vea afectado por sus partes inductivas, lo cual no está contemplado en el modelo teórico ni en Spice.

Se observa una pendiente de $+20{\rm dB}$ por década hasta la frecuencia de corte, alrededor de los $2k\Omega$, y $-20{\rm dB}$ por década a partir de la misma, con un salto de -180° en la fase: de 90° a -90° . Siendo que el factor de calidad calculado es Q=4, y se observa en la medición el mismo comportamiento que en la simulación y el cálculo, se puede concluir que el filtro cumple con las prestaciones requeridas.

1.4.2 Respuesta al escalón

calcular y simular rta esc

De lo desarrollado en la sección anterior, podríamos preguntarnos si el circuito exhibirá el comportamiento de derivador para frecuencias mucho menores que la de resonancia, y de integrador para frecuencias mucho mayores. En esos rangos, el filtro tiene la pendiente y la fase adecuada para que esto suceda. Se realizaron pues mediciones de respuesta al escalón. Para la derivada, deberíamos observar sólo el transitorio cuando la entrada tiene un salto, donde la derivada es el impulso $\delta(t)$, y en el integrador deberíamos observar una señal triangular.

Calcularemos primero analíticamente qué debería observarse a la salida. Siendo que ya contamos con la función transferencia del sistema (1.7) y que el mismo es BIBO-estable (pues la parte real de sus ceros es negativa, como se observa en el diagrama de polos (1.4)), para obtener la respuesta al escalón basta antitransformar la expresión:

$$Y(s) = H(s) \cdot \mathcal{L}[u(t)] = \frac{H(s)}{s} \Leftrightarrow$$

$$Y(s) = \frac{\left(1 + \frac{R_4}{R_8}\right) \cdot \frac{L_{GIC}}{R_6}}{LC_6 \cdot s^2 + \frac{L_{GIC}}{R_6} \cdot s + 1}$$

Figura 1.6: Diagrama de bode de la respuesta en frecuencia

Figura 1.7: Respuesta a escalón de 100Hz

En esta frecuencia, observamos que una vez superado el régimen permanente, la señal se establece en 0V, lo cual coincide con el comportamiento esperado. Sin embargo, la duración del transitorio es del orden de la frecuencia. Para que este tiempo sea menos significante, deberíamos trabajar

en frecuencias menores, pero esto a su vez conllevaría una atenuación cada vez mayor. Por lo tanto, no sería prudente usar este circuito como derivador.

Figura 1.8: Respuesta a escalón de 6kHz

Con una frecuencia de $6kHz \sim 3 \cdot f_0$, en la salida ya se ob-

serva la integral de la entrada, que es lo que esperábamos observar. Recordando que la fase comienza a verse afectada por los polos del operacional a partir de los 100kHz aproximadamente, este circuito podría usarse como integrador para señales de frecuencias entre los 6kHz y los 100kHz.

1.4.3 Impedancia de entrada

Si consideramos la simplificación del GIC a una bobina de la figura (1.3), la impedancia de entrada del circuito no es más que una resistencia en serie con una bobina y un capacitor en paralelo. Operando algebráicamente la expresión de la impedancia de entrada que se obtiene es:

$$Z_{in}(s) = R_6 \cdot \left(\frac{L_{GIC}C_6 \cdot s^2 + \frac{L_{GIC}}{R_6} \cdot s + 1}{L_{GIC}C_6 \cdot s^2 + 1} \right)$$
(1.13)

Por lo tanto, esperaríamos que la impedancia de entrada presente un pico en la frecuencia de resonancia, donde idealmente debería tenerse impedancia infinita, y que para frecuencias mucho mayores o mucho menores se observe $Z_{in}(f) \sim R_6 = 8.8 k\Omega$.

Sin embargo, como se observa en el diagrama de bode de la figura (1.9), esta expresión no es suficiente para explicar el comportamiento del circuito. Si bien mediciones y cálculo coinciden hasta los 10kHz la fase y 100kHz en la magnitud, es necesario tener en cuenta la presencia de las puntas del osciloscopio para poder tener un modelo representativo de lo que está sucediendo, como se observa en la simulación. En esta última están incluidos los efectos de las dos puntas conectadas para medir la impedancia de entrada: una antes de una resistencia de $8.9k\Omega$ (medida con multímetro), y otra entre esta resistencia y el circuito, considerando a la impedancia de entrada como el cociente de la tensión de entrada al circuito y la corriente por esta resistencia.

1.4.4 Impedancia de salida

La impedancia de salida de este circuito es la salida del uno de los $op\ amps$ del TL082, y como tal idealmente es nula. Sin embargo, simulando en LtSpice se puede observar que si bien la misma es de unos pocos miliohms para frecuencias bajas, a partir de los 10kHz comienza a crecer, llegando a aproximadamente 90Ω en 1MHz. En este caso las mediciones se realizaron con un analizador de impedancias para no tener problemas con las puntas del osciloscopio.

Incluso utilizando el analizador de impedancias, la magnitud de la impedancia de salida era tan pequeña que el instrumento no lograba medir su fase. Sólo a partir de aproximadamente 750Hz, cuando se superó el medio ohm, se comenzaron a obtener datos sobre la misma.

Como se puede observar en la figura (1.10), en el rango de valores donde la fase pudo medirse, la misma coincide con la de la simulación, y muestra un salto de aproximadamente 120° alrededor de la frecuencia de resonancia. Por otro lado, la magnitud coincide en forma, mas no así en valor: se midió consistentemente casi el doble de lo que predice la simulación. Esto puede deberse a discrepancias entre el modelo utilizado por Spice, y el operacional concreto utilizado. Si bien cada modelo tiene características genéricas similares, algunos parámetros pueden poseer una gran dispersión, como es por ejemplo el caso de A_0 .

Siendo que observamos un salto en la fase alrededor de la frecuencia de corte, sería razonable que esto se vea reflejado en la magnitud de la impedancia. Si bien no es apreciable en la escala de la figura (1.10), al hacer zoom alrededor de f_0 efectivamente se aprecia un pico en la impedancia, similar al que se veía a la entrada. Esto pone de manifiesto el comportamiento no ideal del operacional, puesto que al no ser su impedancia de salida verdaderamente 0, la del circuito ya no es sólo la del operacional sino ésta en paralelo con la salida del resto del circuito.

Figura 1.11: Detalle de la impedancia de salida alrededor de f_0

1.4.5 Limitaciones

1.5 Conclusiones

Figura 1.9: Diagrama de bode de la impedancia de entrada

Figura 1.10: Diagrama de bode de la impedancia de salida