combinational aixuit 1) Doesn't depend on part input 1) Depends on partinputs and output

- 3) No memory
- 4) speed is more
- 5) hasy to design.

eg: Addess, encoders

sequential

- 2) No feedback where
 - 3) Memory is present.

s) compurated design

eg: Latches

Latch: Boxie component of peoplep.

4 stores only one bit (0 0x 1).

alevel semitive

flepblop:

radge senective

-tolp changes only when clock signal in present.

SR MORLAMIN:

S=0 R=1 Q=0 $\bar{g}=1$ (Reset)

S=1 R=0 Q=1 \$=0 (Set).

Ž=0 S=0 R=0 8=1

4=0 g=1 (Nothange) 5=0 R=0

Q: Q=0 (9 nvaluel state) 5 2 R=1

SRNOR gate laten:

SR MAMO laten :

gated latch lunuice input bor NANID latch

Active migh : E=1

Active Low, E=0

Clk	S	R	Q	Q	Comments
0	X	X	Q	ð	Nochange
1	0	0	Q	Q	11
1	D	1	0	l	Reset
•	. 1	0	1 -	0.	le t
ı	(, 1	0	0	Invalled.

JK Hipslop:

llk	J	K:	o ta	Comments
0	X	X	9 9	NC
1	0	0	Q Q	11
1	0	1	0 1	Reset
1	1 (0	10	set was on
1	1 1		Q Q 1	Toggling Drowing
			.)	rul no

D buplup:

his man a Do delay or dala

6112122

Fup flop: SR: (1k R To around nauny condition: * T/2 < propagation delay of the burblup. * Marter slave burpliop 6 edge triggening bliptop. data supstop: Doubled CIK

T- toggliny

enaracteristic table Jenuitation table:

- -Defines the behavious of the furp blop. Characteristic table
- -) Enviration table. Shows what ilpi's necessary to generate a given ofp.

For SR Bupglop.

- Truth table:

Clk	5	R	g _{n+1}
0	χ	ix	Qn ·
1	0	0	an -
1	0	1	. 0
1	1	0	1
}	1	1 1	Invavel.

Charauterchtic table: - write brom truth table.

				200	.)
9n	ζ.	R	. gn+1	* 5.00	
0	0	0	.07	an=o mer	9 BM120
, 0	0_		0, 1		
, 0	l l	0	11: 45	ee 10 and	l II i'n TT
0	F	1	× J	•	
1	0	0	1: 3.8	n = Qn+)	
(1	0	1 -	0		
:1 _	1	U	, x		
.1	1	- 4: · ·	X	attended to	to copy
			and an order		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ephilica enviration tuble: (white from characteristic table thick for an and antivale

Sand R value)

9n 9n+1 5 R 0 0 0 X 0 1 1 0, 1 0 0 1

charaeteuistic eq n 11 0 1 9n+1= STORR 2) 60 JK bup blop: Thuth table: Clk K Q 9h+1 8 0 X Qn X 1 0 g Qn 0 Q MINITED WATER TO A Characteristic table K ign "Pn+ 0 previous state 0 compumented prev state 1 1 0

envitation table:

Qn	Qn+1	3/1
0	0	OX
0	1	1 X.
t	0	X I
ı	1	Y O
,		I happing

TWIN THAT

This observation?

3) for D bupplop:	į	Ž.	<i>y</i> .
T.Tu CIL	Q .	18	8n+1
0	×	0	9n
11	Q;		0.0

Characteristictable:

gn	b .	90+1
0	. 0	. 0
0	1	I C
.1	0	. 0
1	1	1

ir lanvest Jk Purpliop to Dlurpliop:

Solution: step1 -- available - TK

characteristic - 600 required 1/6

		Cri	LADIC
Step 2 -	91	0	gn+1
	0	0	0
	0	1 ~	1
	1	0	0
	1	1:	1

atep3 - Un Rn+1 T K

O O O Y

O I X

elepy - Toumtable (combine the characteristic funce and envitation table)

gn	D	G G	n+1	J	k.
Q	0	0		0	X
Q	1			1	X.
1	O	0		Х	1
1	1	1 1		×	0
8n P. (0 x x		on D	x x 1]
J.	D	¥,		. K=0	

Convert SR BIB to JK BUP blop:

le for how

u and

n tall!

step 1: avariable → SR 816 req → JK pup slop

stepa: Character KAGic taice boi TK/11.

	gn	J	K	·Sn	+1
	0	0	0	0	(previous)
,	0	0	•	0	
,	0.	1	0	y 1	
	0	l	, ,		(previous)
	1.	O	0	¢	(previous)
	1	0	t	, 0	
-	ı	1	0	. 1	
	1	1	1	0	

step3: excitation table posse 111

9n	ant1	S. R.
- 0	0	OX
0	. 1	1.0
1	0.	0 1
1	1. 1	x o

stepy: Taumtable Combinestep aandy)

an) J	K	Qn+1	SR
0	0	0	0	0 X
0	0!	0	1	1 0
1	0	0	1	x o
1	0	\ i	0	0 1
1	1'1	Ì	0	0 9

Convert SR 1/6 to T flip slop:

step 1: available-sR

required: T'blip blop

Stepa: Characteristic for seq (T 6/6):

9n	·iT·	Sn.+1
0	0	0
0	. 1	1
1	0	, .
1	,	0

step3: existation table bosse:

Qn Qn+1 S R
0 0 X
0 1 1 0
1 0 1 1

step4:

an 1	9	,	· · ·	IT (9	1 .	
on /	0	0	۷. ۲	0	2	0	
1	X	0	1	', 	<u> </u>	0	1

QnT=S QnT=R

Convert T 6/6 to data B/B;

Stept: avareable: 7 6/6

required: 0116

Stepa: characteristic table 600 0 816:

	92) D	gntl
_	0	0	0
	0	1 1	
	1	0	0
,	1	1	1

Step 3:

gn	gn+1	T,
0	D	0
O	1	1
. 1	0	,
,	1	. 0

stepu.	9n	D		911
(1009	0.	0	r	0
muste leby	0			1
ongaga Lights	. 1 .	0	. .	,0,
	1	1001		1.
	21	110		

T: PnD+ anD

g) convert JK to D
g) convert D to SR B/G
g) 1K to T (J- at 1 K-T - Arus)

g) JK to D

got available - JK 1/6

for: required - 0 1/6

stepa: characteristic table for D 6/6:

gn	D	an+1
0	0	0
0	1	1
1	0	0
,	, ,	- 1
1		

step3: enviation table for JK.116:

90	ant 1	J	K
0	0	D	X
•		1	X
0]		
1	0	X	1
1	,	X	0

Step4:

d do

Masterslave JK Bupstop;

CLR	T	K	Q	Q
0	X	X	9	9
1	0.	. 0	. cb	Q
Ì	0	1	0	1
1	1	0	1	0
-	1	1	lop	Q

Edge triggerea Dollip blop;

CIK D K S SNHI COMMENTE

O O I I O O RESET

O X P I I SEE NIC

I I O O RESET

CIK RUSET

group of blip blops i to incoe are une storage

(apacity,

M bit register consists a flip blops =) capable q

Storing a bit words.

S110 + requires 7 clock pulse box 4 bix.

Acuignment: Dezign SISO left Swift.

sen'al in parallel out (SIPO)

4 Mock pulses 102 SIPD

load mode: 1010 Bo Bi Bi Bi

To perform PIPO makeswift=0, walthe data.

And
$$9 \rightarrow 0$$

$$9 \rightarrow 8_2 \qquad 0 \qquad R \rightarrow 8_2 = 1$$

And
$$\bigcirc \rightarrow \bigcirc$$

$$\bigcirc \rightarrow B_3 \bigcirc \bigcirc R \rightarrow B_3 = \bigcirc$$

, Makeshift 0, load dat a as 1010 shift bur oll 1

when thist =0, load operation.

Thist=0, sexial operation

Devign a universal shift register for the given table with 4:3 Mun with mode selection shift s. so.

Asynchronous inputs or direct inputs or overriding ilps:

preset and clear inputs overvides the input from s, Randllk. Barically sulput is irrespective obsanok inputs.

		Active low
Pr	Cly	9n =
	, A , A	e (d)
0	0	Not med
0.11		
O	1	0
	0	V
1	1:	6/8 work nor mally
	1	U

Active high:

18	Clr	gn
0	0	blo works normally
0	1	1 1
1	0	0
1	1	Not me d

+ve edge g -> up counces -> clk - g

-ve-4age y + up wunter + ceh + g

3) Design a 3 bit negative eage triggered asynchronous up counter.

Clk	Qc	y R	91
0	0	0	0
(0	0	1
હે	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7)	1	1

onlla

dellaki

ked

lit alt t

raw.

(for a washy

for whichever bit clk

1x given it hoomes

LSB

.. here + BAI'S LIB

(9) Pengna bour bit any neuronous upwenter uning negative eage triggered T blip blop.

Design of ripple counter Asynchronous counter.

Step 1: determine the no. of burblups needed (n)

stepa: choose the type of flap gup to be used. (tor J/k)

step3. Write louth table. for counter.

stepu: derive reset wor'c by Kmap simplification.

Steps: do aw the logic diagram

3) Design decade repple counter eving TK blipblop or Blompple counter uning TK blipblop.

1) 2~>/ N	90	Q c	QB.	Q A	Y
N=10 (0-9) n=4 a) JKblipblop	00000001	0000011100	0011000	0 1 0 1 0 1 0 1 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				1	

0000 /0	488	01	11 -	10
anac oo	VI	1)		1
01	T.	1	1	1
11	0	0	0	0_
01	F	1	0	10

Y= Q0+ Qc QB

Cile

ı

3) Design mod 6 counter wing Toupsup. (0 605).

&) Determine the no. of bly slops and type.

X Synchronouswunter:

- a) Rolling ene no ob blightops and type of 116
- 6) write exulation table of 6,16.
 - () white state diagram and wount exuitation table
 - a) obtain ean may kmap
 - e) Draw logic avagram.

11:

Olderign 3 bit synchronous binary upwunter.

Step 1:	N = 3	type: Tb	16
Stepd:	91	gn+1	T
,	0	0	0
. 19	0.	1	1
	1	0	1
	1]] [. 0

aleps: (000) (000) (001)

of Design mod 5 icounter every JK 116:

n=3, JK016

Bn+1 an 0 0 0 X X

3

WY

ilp to 6/6 Nent state · Present 1+ate TAKA JAKA JCKC QA & c QB QA. x Ox 0 X X . 0 Ö X X ·X X X Ò X X X X X X X X X XX X X X. X JA - QBQC

KA = 1 JB= GA

KB = JA V. - 1

OlDerign the synchronous counter ming IK blb bor the bollowing dequence. 0, 1, 3, 7, 6, 4, 0

n=3 , JK 6/6

gn	80+1	.,	J	K
0 0 1	0 1 .	•)	0. 1	X X 1 0

1/9 07 4/	stati thata	¥-	" British Hat
Present , state , : 1	Ment State	1/1/2 60	JK 6/6
GA SE SC	gat git Ret	JAKA JI	BKB JCKC
0 0 0 0	00 01 1	OX	Ox olx
0 0 1	0 1 1	10 x 0	1X X O
0 1 0	x x x	XXX	XXX
0 7 7 7			OXO
2 7.0	0 0 0	- 3.3	XOX
	XXX	XXX	XXX
	100	XYO /	410x
, , ,	1 10	xo ,x	1 × 10)

JA = QB

upldown-T 116.

M ;	RA SB &C	QA+ UB GC	TA TO TC
0	00001010101010101010101		000-000

- 110 1 - 1 ex - 14

self starting counter:

8) 0, 2, 3, 6, 5, 1, 10

TOPSA" TO	The NAS	1°1 p 0 to 00 6/6
GA GB GC 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1	8A+ 8B+ 8C+ 000000000000000000000000000000000000	PA PB PC 000000000000000000000000000000000000

l'aurt:

B) Deugn a selb starting decade counter wing Tripplopsor.
0, 2, 6, 8,9,0

T blip blup envitation table:

9	gnti	IT
0	0	0
1	0	0.

(In self starting counters 1

if there's no nent traterit
goes tozero,
wheave asi'n normal counters it
goes to clon't (ave)

PS	MS	1/P to 8/6
RA GB GC GD	PAT 98t Oct 90	o [†]
	00000000000000000000000000000000000000	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kmapsicirum.

Exercise West

Hoose and Mealy model:

MOOLE model

AThe output is box present state only.

*The input changes does not affect the output.

* It requires more no.of states boring lementing the Naxa same func Mealy model

* The output is for present and as well as present input.

- * Input changes may append the
- * It requires less no. of states for Pomplementing one same Bunc.

Mealy model;

B) Design asynchronous circuit using the edge kniggered Ik sig with numinimal combinational gating to generate the sollowing sequence: 0-1-2-0 if ilp n=0
0-2-1-0 l'bilp n=1