

Echelon Forms and Row Reduction

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Table of contents

01

02

03

Row-Reduced Matrix

Echelon Form

Row-Reduced Echelon Form

04

Solutions of a Linear System

05

Geometric

Interpretation

01

Row-Reduced Matrix

Row-Reduced Matrix

Definition

- \square A $m \times n$ matrix R is called row-reduced if:
 - 1. Leading entries=1: The first non-zero entry in each non-zero row of R is equal to 1.
 - 2. All other entries in the columns corresponding to leading entries must be zero: Any column of R that contains a leading entry (the first non-zero entry) of a row must have all its other entries equal to zero.

 \mathcal{C}

Row-Reduced Matrix

Example

- ☐ Are following matrices Row-Reduced Matrix?
 - a. $n \times n$ identity matrix

$$b. \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$a. \quad \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$b. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -6 \end{bmatrix}$$

Matrix A: Identity Matrix I_n

$$A = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

- Leading entries are 1
- ☑ Each leading 1 is the only nonzero entry in its column
- A is a row-reduced matrix.

Matrix B

- \checkmark The first leading entry (row 1) is 1 (\checkmark).
- X The second leading entry is 2 instead of 1 (X).
- \checkmark The zero row is at the bottom (\checkmark).
- X B is NOT row-reduced because the second pivot must be 1.
- Correction: Divide row 2 by 2 to make the leading entry 1.

Matrix C

$$C = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- ✓ The leading entries are 1 (✓).
- X The first row has -3 in the third column, but the third column has a leading 1 in row 3 (X).
- X C is NOT row-reduced because the third column (with a leading 1 in row 3) has another nonzero entry (-3 in row 1).
- ✓ Correction: Perform row operations to make the third column have only one nonzero entry.

Matrix D

- ✓ The first leading entry is 1 in row 1 (✓).
- \times The third row has a leading -6 instead of 1 (\times).
- X D is NOT row-reduced because the third leading entry must be 1.
- ✓ Correction: Divide row 3 by -6 to make the leading entry 1.

0

Row-Reduced matrix for Every Matrix

Theorem (1)

Every $m \times n$ matrix is row-equivalent to a row-reduced matrix.

Theorem 4. Every $m \times n$ matrix over the field F is row-equivalent to a row-reduced matrix.

Proof. Let A be an $m \times n$ matrix over F. If every entry in the first row of A is 0, then condition (a) is satisfied in so far as row 1 is concerned. If row 1 has a non-zero entry, let k be the smallest positive integer j for which $A_{1j} \neq 0$. Multiply row 1 by A_{1k}^{-1} , and then condition (a) is satisfied with regard to row 1. Now for each $i \geq 2$, add $(-A_{ik})$ times row 1 to row i. Now the leading non-zero entry of row 1 occurs in column k, that entry is 1, and every other entry in column k is 0.

Now consider the matrix which has resulted from above. If every entry in row 2 is 0, we do nothing to row 2. If some entry in row 2 is different from 0, we multiply row 2 by a scalar so that the leading non-zero entry is 1. In the event that row 1 had a leading non-zero entry in column k, this leading non-zero entry of row 2 cannot occur in column k; say it occurs in column $k_r \neq k$. By adding suitable multiples of row 2 to the various rows, we can arrange that all entries in column k' are 0, except the 1 in row 2. The important thing to notice is this: In carrying out these last operations, we will not change the entries of row 1 in columns 1, . . . , k; nor will we change any entry of column k. Of course, if row 1 was identically 0, the operations with row 2 will not affect row 1.

Working with one row at a time in the above manner, it is clear that in a finite number of steps we will arrive at a row-reduced matrix.

02

Echelon Form

Echelon form

Definition

- A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:
 - 1. All nonzero rows are above any rows of all zeros.
 - 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
 - 3. All entries in a column below a leading entry are zeros.

$$\begin{bmatrix} 2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & \frac{5}{2} \end{bmatrix}$$

Echelon form

03

Row-Reduced Echelon Form

Row-Reduced Echelon form

Definition

If a matrix in echelon form satisfies the following additional conditions, then it is in **reduced echelon form** (or **reduced row echelon form**):

- 1. The leading entry in each non-zero row is 1.
- 2. Each leading 1 is the only non-zero entry in its columns.
- The leading 1 in the second row or beyond is to the right of the leading 1 in the row just above.
- 4. Any row containing only 0's is at the bottom.

Reduced Echelon form

Row-Reduced echelon matrix for Every Matrix

Theorem (2)

Every $m \times n$ matrix is row-equivalent to a row-reduced echelon matrix.

0

Reduced Echelon Form (RREF)

Example

Are following matrices RREF?

a.
$$0_{m\times n}$$
 [1 0

a.
$$0_{m \times n}$$

b. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

$$c$$
. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$d. \begin{bmatrix} 0 & 1 & -3 & 0 & 0.5 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix A: Zero Matrix $0_{m \times n}$

$$A = egin{bmatrix} 0 & 0 & \dots & 0 \ 0 & 0 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 0 \end{bmatrix}$$

- ✓ All entries are zero, so it trivially satisfies RREF conditions.
- A is in RREF.

0

Matrix B

$$B = egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & -1 \ 0 & 0 & 0 \end{bmatrix}$$

- The leading 1 in the first row is correct.
- X The second row has a leading 2 instead of 1.
- X B is NOT in RREF because the second pivot must be 1.
- Correction: Divide row 2 by 2 to make the pivot 1.

Matrix C

- X The first nonzero entry in the first row is **not in the first column**.
- X The first nonzero entry in the second row is **before the one in the first row**, which **violates echelon** form.
- X C is NOT in RREF.
- ✓ Correction: Swap rows to make leading 1s in proper positions.

Matrix D

$$D = egin{bmatrix} 0 & 1 & -3 & 0 & 0.5 \ 0 & 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Leading 1 in row 1 is in the correct position.
- ✓ Leading 1 in row 2 is to the right of the leading 1 in row 1.
- The zero row is at the bottom.
- ✓ No other nonzero entries in pivot columns.

D is in RREF!

Two fundamental questions about a linear system:

- 1. Is the system consistent? That is, does at least one solution exist?
- 2. If a solution exists, is it the only one? That is, is the solution unique?

04

Solutions of a Linear System

Elementary Row Operations

Example

☐ Augmented matrix for a linear system:

$$\begin{bmatrix} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x - 5z = 1$$
$$y + z = 4$$
$$0 = 0$$

$$\begin{bmatrix} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x - 5z = 1 \\ y + z = 4 \\ 0 = 0 \end{array} \qquad \begin{cases} x = 1 + 5z \\ y = 4 - z \\ z \text{ is free variable} \end{cases}$$

- \square x, y: basic variable z: free variable
- ☐ This system is consistent, because the solution set can be described explicitly by solving the reduced system of equations for the basic variables in terms of the free variables.

Theorem (3)

- ullet b is any nonzero value such as $[0 \cdots 0 -2]$, $[0 \cdots 0 20]$,
- Let's think about this proof in next slide!

Forward Direction: If the system is consistent, the rightmost column is not a pivot column.

- ☐ A system is consistent if at least one solution exists.
- ☐ To solve the system, we reduce the augmented matrix to row echelon form.
 - If a row of the form $[0 \quad 0 \quad \dots \quad 0 \quad b]$ (with $b \neq 0$) appears, it represents the equation:
- This means the system is inconsistential is a contradiction!
- ☐ Therefore, if the system is **consistent**, such a row **must not exist**.
- ☐ This implies that the **rightmost column** cannot be a **pivot column**, since having a pivot in the last column would force the existence of such a contradictory row.

Reverse Direction: If the rightmost column is not a pivot column, the system is consistent.

If the rightmost column is not a pivot column, then no row of the form $[0 \ 0 \ \dots \ 0 \ b]$ (where $b \neq 0$) appears in echelon form.

This means that no contradiction arises when solving the system.

Therefore, at least one solution exists, and the system is consistent.

A linear system is consistent ⇔ The rightmost column of the augmented matrix is not a pivot column.

- ☐ If a linear system is consistent, then the solution set contains either:
 - A unique solution, when there are no free variables
 - Infinitely many solutions, when there is at least one free variable

 \circ

Find all solutions of a linear system

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtained in step 3.
- 5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.

Existence of Solutions

Example

Let
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$
 and $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $Ax = b$ consistent for all possible b_1, b_2, b_3 ?

Solution

Row reduce the augmented matrix for Ax = b:

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_2 + 4b_1 \\ 0 & 7 & 5 & b_3 + 3b_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_2 + 4b_1 \\ 0 & 0 & 0 & b_3 + 3b_1 - \frac{1}{2}(b_2 + 4b_1) \end{bmatrix}$$

The third entry in column 4 equals $b_3 + 3b_1 - \frac{1}{2}(b_2 + 4b_1)$. The equation Ax = b is not consistent for every b because some choices of b can make $b_1 - \frac{1}{2}b_2 + b_3$ nonzero.

Existence of solutions

Example

True or False?

Equation Ax = b is consistent, if its augmented matrix $[A \ b]$ has one pivot column in each rows? (Having one leading entry in each rows)

If the augmented matrix has one pivot in each row, it does not guarantee consistency. Consider:

$$\begin{bmatrix} 1 & 2 & |3| \\ 0 & 1 & |5| \end{bmatrix}$$

Consistent (No pivot in last column)

But in this case:

$$\begin{bmatrix} 1 & 2 & |3| \\ 0 & 0 & |5| \end{bmatrix}$$

imes Inconsistent! (Pivot in last column $\rightarrow 0 = 5$ contradiction)

Homogeneous Linear Systems

Definition

A system of linear equations is said to be homogeneous if it can be written in the form Ax = 0, where A is a matrix and 0 is the zero vector.

- o Trivial solution: Ax = 0 always has at least one solution, namely, x = 0 (the zero vector)
- O Nontrivial solution: The non-zero solution for Ax = 0.

Fact

The homogenous equation Ax = 0 has a nontrivial solution if and only if the equation has at least one free variable.

$$\begin{pmatrix} 1 & 3 & 4 & 0 \\ 2 & -1 & 2 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

C

Existence Of Solutions

Fact

The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.

0

05

Geometric Interpretation

Line (R^2)

The line ℓ with equation 2x + y = 0

$$\mathbf{n} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, then the equation becomes $\mathbf{n} \cdot \mathbf{x} = 0$.

The normal form of the equation of a line ℓ in \mathbb{R}^2 is

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$
 or $\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{p}$

where **p** is a specific point on ℓ and $\mathbf{n} \neq \mathbf{0}$ is a normal vector for ℓ .

The general form of the equation of ℓ is ax + by = c, where $\mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix}$ is a normal vector for \(\ell \).

Lines in \mathbb{R}^2					
Normal Form	General Form	Vector Form	Parametric Form		
$n \cdot x = n \cdot p$	ax + by = c	x = p + td	$\begin{cases} x = p_1 + td_1 \\ y = p_2 + td_2 \end{cases}$		

Plane (R^3)

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix},$$

$$ax + by + cz = d \text{ (where } d = \mathbf{n} \cdot \mathbf{p}\text{)}$$

Lines and Planes in \mathbb{R}^3

	Normal Form	General Form	Vector Form	Parametric Form	
Lines	$ \begin{cases} n_1 \cdot x = n_1 \cdot p_1 \\ n_2 \cdot x = n_2 \cdot p_2 \end{cases} $	$\begin{cases} a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \end{cases}$	x = p + td	$\begin{cases} x = p_1 + td_1 \\ y = p_2 + td_2 \\ z = p_3 + td_3 \end{cases}$	

Planes

$$n \cdot x = n \cdot p$$

$$ax + by + cz = d$$

$$x = p + su + tv$$

$$\begin{cases} x = p_1 + su_1 + tv_1 \\ y = p_2 + su_2 + tv_2 \\ z = p_3 + su_3 + tv_3 \end{cases}$$

Nonhomogeneous Systems & General Solution

Question

Can we change the order of columns in an augmented matrix???

$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \\ a''x + b''y + c''z = d'' \end{cases}$$

Is equivalent to

$$\begin{cases} ax + cz + by = d \\ a'x + c'z + b'y = d' \\ a''x + c''z + b''y = d'' \end{cases}$$

C

Time to Practice on Your Own!

Nonhomogeneous Systems & General Solution

Example

Describe all solutions of
$$A\mathbf{x} = \mathbf{b}$$
, where: $A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$

$$\begin{bmatrix} 3 & 5 & -4 & 7 \ -3 & -2 & 4 & -1 \ 6 & 1 & -8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

Example

Describe all solutions of
$$Ax = \mathbf{0}$$
, where: $A = \begin{bmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Example

Describe all solutions of
$$Ax = b$$
, where: $\begin{bmatrix} A \ b \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 & 1 & 3 \\ 1 & 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 1 & 5 \end{bmatrix}$. $\begin{bmatrix} 1 & 2 & -1 & 1 & 3 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Resources

- □ Chapter 1: Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning, 2004.
- Chapter 1: David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and Its Applications. Pearson, 2016.
- Chapter 2: David Poole, Linear Algebra: A Modern Introduction. Cengage Learning, 2014.
- Chaper1: Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.

 \bigcirc