2023/01 Lista de Exercícios #2

Economia Matemática II

1 Diferenciação

1.1 Inclinação, Tangente e Derivada

1. Seja $f(x) = 4x^2$. Mostre que $f(5+h) - f(5) = 40h + 4h^2$, implicando que

$$\frac{f(5+h) - f(5)}{h} = 40 + 4h$$

para $h \neq 0$. Use este resultado para encontrar f'(5).

- 2. A função de demanda por um produto com preço p é dada pela fórmula D(p)=a-bp. Determine dD(p)/dp.
- 3. O custo de produção de x unidades de um produto é dado pela fórmula $c(x) = p + qx^2$. Determine c'(x).
- 4. Para cada caso abaixo, encontre a inclinação da tangente no gráfico de f no ponto especificado.
 - (a) f(x) = 3x + 2, em (0, 2)
 - (b) $f(x) = x^2 1$, em (1, 0).
 - (c) f(x) = 2 + 3/x, em (3,3).
 - (d) $f(x) = x^3 2x$, em (0,0).
 - (e) f(x) = x + 1/x, em (-1, -2).
 - (f) $f(x) = x^4$, em (1,1)
- 5. Dada a função $y = 4x^2 + 9$:
 - (a) Calcule o quociente de diferenças como uma função de $x \in \Delta x$.
 - (b) Calcule a derivada dy/dx.
 - (c) Calcule f'(3) e f'(4).
- 6. Dada a função $y = 5x^2 + 4x$:
 - (a) Calcule o quociente de diferenças como uma função de $x \in \Delta x$.
 - (b) Calcule a derivada dy/dx.
 - (c) Calcule f'(2) e f'(3).
- 7. Dada a função y = 5x 2. Calcule o quociente de diferenças $\Delta y/\Delta x$. Que tipo de função ele é?

1.2 Funções Crescentes e Decrescentes

- 1. Determine onde $f(x) = -x^3 + 4x^2 x 6$ é crescente e onde é decrescente.
- 2. Mostre algebricamente que $f(x) = x^3$ é estritamente crescente, estudando o sinal de

$$x_2^3 - x_1^3 = (x_2 - x_1)(x_1^2 + x_1x_2 + x_2^2) = (x_2 - x_1) \left[\left(x_1 + \frac{1}{2}x_2 \right)^2 + \frac{3}{4}x_2^2 \right].$$

Obs.: 1

1.3 Taxa de Variação

1. Seja $c(x) = x^2 + 3x + 100$ a função de custo de uma firma. Mostre que quando x varia de 100 para 100 + h, em que $h \neq 0$, a taxa média de variação por unidades do produto é

$$\frac{c(100+h) - c(100)}{h} = 203 + h.$$

- 2. Se a função de custo de uma firma é $c(x) = \bar{c} + cx$, forneça a interpretação econômica dos parâmetros \bar{c} e c.
- 3. Se a poupança total é uma função S(Y) do produto nacional Y, então S'(Y) é chamada propensão marginal a poupar. Encontre a propensão marginal a poupar para as seguintes funções:
 - (a) $S(Y) = \bar{S} + sY$.
 - (b) $S(Y) = 100 + 0.1Y + 0.0002Y^2$.
- 4. Resolva:
 - (a) A função de lucro de uma firma é $\pi(q) = 24q q^2 5$. Encontre o lucro marginal, e o valor q^* de q que maximiza os lucros.
 - (b) A função de receita de uma firma é $R(q) = 500q \frac{1}{3}q^3$. Encontre a receita marginal.
 - (c) Para uma função de custo particular $c(q)=-q^3+214.2q^2-7900q+320700$, encontre o custo marginal.

1.4 Regras Simples de Diferenciação

- 1. Calcule as derivadas das seguintes funções:
 - (a) y = 5.
 - (b) $y = x^4$.
 - (c) $y = 9x^{10}$.
 - (d) $y = \pi^7$.
- 2. Suponha que g'(x) seja conhecida. Encontre expressões para as derivadas das seguintes funções:
 - (a) 2g(x) + 3
 - (b) -(1/6)g(x) + 8
 - (c) (g(x) 5)/3
- 3. Explique por que

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Então, use esta fórmula para encontrar f'(a) quando $f(x) = x^2$.

- 4. Para cada uma das seguintes funções, encontre a função F(x) tendo f(x) como sua derivada:
 - (a) $f(x) = x^2$
 - (b) f(x) = 2x + 3
 - (c) $f(x) = x^a$, para $a \neq -1$

1.5 Soma, Produto e Quociente

- 1. Diferencie com respeito à x as seguintes funções:
 - (a) x + 1
 - (b) $x + x^2$
 - (c) $3x^5 + 2x^4 + 5$
 - (d) $8x^4 + 2\sqrt{x}$
 - (e) $(2x^2-1)(x^4-1)$
 - (f) $\frac{1}{x^6}$
 - (g) $\frac{x+1}{x-1}$
- 2. Para cada uma das seguintes funções, determine os intervalos onde ela é crescente:
 - (a) $y = 3x^2 12x + 13$
 - (b) $y = \frac{1}{4}(x^4 6x^2)$
 - (c) $y = \frac{x^2 x^3}{2(x+1)}$
- 3. Se $f(x) = \sqrt{x}$, então $f(x) \cdot f(x) = x$. Diferencie esta equação usando a regra do produto para encontrar uma formula para f'(x).

1.6 Regra da Cadeia

- 1. Use a regra da cadeia para encontrar dy/dx para os seguintes casos
 - (a) $y = 5u^2$, onde $u = 1 + x^2$
 - (b) $y = u u^6$, onde u = 1 + 1/x
- 2. Se Y é uma função de K, e K é uma função de t, encontre a fórmula para a derivada de Y com respeito a t em $t=t_0$.
- 3. Se Y = F(K) e K = h(t), encontre a fórmula para dY/dt.
- 4. Considere a função de demanda $x=b-\sqrt{ap-c}$, onde $a,\ b$ e c são constantes positivas, x é a quantidade demandada, e p o preço, para p>c/a. Calcule dx/dp.
- 5. Suponha um investimento de \$ 1000 à uma taxa de juros de p% ao ano. Seja g(p) o quanto de recurso disponível depois de dez anos.
 - (a) Forneça uma intrepretação econômica de:
 - i. $g(5) \approx 1629$
 - ii. $g'(5) \approx 155$
 - (b) Para checar os números na alternativa anterior, encontre uma fórmula para g(p), então compute g(5) e g'(5).
- 6. Se $f(x) = \sqrt{x}$, então $f(x) \cdot f(x) = x$. Diferencie esta equação usando a regra do produto para encontrar uma formula para f'(x).

Obs.:

1.7 Derivadas de Ordem Mais Alta

- 1. Calcule a segunda derivada de:
 - (a) $y = x^5 3x^4 + 2$
 - (b) $y = \sqrt{x}$
 - (c) $y = (1+x^2)^{10}$
- 2. Encontre d^2y/dx^2 quando $y = \sqrt{1+x^2} = (1+x^2)^{1/2}$.
- 3. Calcule
 - (a) y'' para $y = 3x^3 + 2x 1$
 - (b) y''' para $y = 1 2x^2 + 6x^3$
 - (c) d^3z/dt^3 para $z = 120t (1/3)t^3$
 - (d) $f^{(4)}(1)$ para $f(z) = 100z^{-4}$
- 4. Encontre g''(2) quando $g(t) = \frac{t^2}{t-1}$.
- 5. Encontre fórmulas para y'' e y''' quando y = f(x)g(x).
- 6. Se u(y) denota a utilidade de um indivíduo com renda (ou consumo) y, então R = -yu''(y)/u'(y) é o coeficiente relativo de aversão ao risco. Calcule R para as seguintes funções utilidades, onde A_1 , A_2 e ρ são constantes positivas com $\rho \neq 1$, e assuma y > 0:
 - (a) $u(y) = A_1 y$
 - (b) $u(y) = \sqrt{y}$
 - (c) $u(y) = A_1 A_2 y^{-2}$
 - (d) $u(y) = A_1 + A_2 \frac{y^{1-\rho}}{1-\rho}$
- 7. Examine a concavidade/convexidade da função de produção $Y=AK^a$, definida para todo $K\geq 0$, onde A>0 e a>0.
- 8. Suponha que duas funções u e g são ambas crescentes e côncavas, com $u' \ge 0$, $u'' \le 0$, $g' \ge 0$, $g'' \le 0$. Mostre que a função composta f(x) = g(u(x)) é também crescente e côncava.

1.8 Funções Exponenciais

- 1. Encontre a primeira derivada de:
 - (a) $y = e^x + x^2$
 - (b) $y = 5e^x 3x^3 + 8$
 - (c) $y = x^3 e^x$
 - (d) $y = \frac{x+x^2}{e^x+1}$
- 2. Encontre a primeira e a segunda derivada de:
 - (a) $y = e^{-3x}$

(b)
$$y = 2e^{x^3}$$

(c)
$$y = e^{1/x}$$

(d)
$$y = 5e^{2x^2 - 3x + 1}$$

- 3. Encontre g''(2) quando $g(t) = \frac{t^2}{t-1}$.
- 4. Encontre os intervalos onde as seguintes funções são crescentes:

(a)
$$y = x^2/e^{2x}$$

(b)
$$y = e^x - e^{3x}$$

1.9 Funções Logarítmicas

1. Encontre a primeira e a segunda derivada de:

(a)
$$y = \ln x + 3x - 2$$

(b)
$$y = x^2 - 2 \ln x$$

(c)
$$y = x^3 \ln x$$

(d)
$$y = \frac{\ln x}{x}$$

2. Encontre as derivada de:

(a)
$$y = x^3 (\ln x)^2$$

(b)
$$y = (\ln x)^{10}$$

(c)
$$y = (\ln x + 3x)^2$$

- 3. Determine o domínio da função definida por $y = \ln(x+1)$.
- 4. Use a diferenciação logarítmica para encontrar f'(x)/f(x) quando

(a)
$$f(x) = x^{2x}$$

(b)
$$f(x) = \sqrt{x-2}(x^2+1)(x^4+6)$$

(c)
$$f(x) = ((x+1)/(x-1))^{1/3}$$