The Amortized Bootstrap

Eric Nalisnick

University of California, Irvine

In collaboration with

Padhraic Smyth

The Bootstrap

$$\mathbf{x} \sim G(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_{0,i}}$$

$$\mathbf{x} \sim G(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_{0,i}}$$

Bootstrap Distribution

Bootstrap Distribution

Bootstrap Distribution

$$\boldsymbol{\theta} \sim F(\boldsymbol{\theta}) = \frac{1}{K} \sum_{k=1}^{K} \delta_{\hat{\boldsymbol{\theta}}_k}$$

The Amortized Bootstrap

QUESTION: Can we approximate the bootstrap distribution $F(\theta)$ with a model (like in variational inference for Bayesian posteriors)?

QUESTION: Can we approximate the bootstrap distribution $F(\theta)$ with a model (like in variational inference for Bayesian posteriors)?

IDEA: Use an *implicit model* to approximate $F(\theta)$.

$$\hat{\boldsymbol{\theta}} = f_{\boldsymbol{\phi}}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \sim p_0$$

IDEA: Use an *implicit model* to approximate $F(\theta)$.

$$\hat{\boldsymbol{\theta}} = f_{\boldsymbol{\phi}}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \sim p_0$$

IDEA: Use an *implicit model* to approximate $F(\theta)$.

$$\hat{\boldsymbol{\theta}} = f_{\boldsymbol{\phi}}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \sim p_0$$

PROS

- **Amortized Inference:** share statistical strength across dataset replications / generate unlimited samples.
- Results in bootstrap smoothing (Efron & Tibshirani, 1997).

IDEA: Use an *implicit model* to approximate $F(\theta)$.

$$\hat{\boldsymbol{\theta}} = f_{\boldsymbol{\phi}}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \sim p_0$$

- Amortized Inference: share statistical strength across dataset replications / generate unlimited samples.
- Results in bootstrap smoothing (Efron & Tibshirani, 1997).
- Breaks bootstrap theory. Can recover only an approximation.
- Can't distribute computation.

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})}[\log p(\mathbf{X}|\boldsymbol{\theta})]$$

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})} [\log p(\mathbf{X}|\boldsymbol{\theta})]$$
$$\approx \frac{1}{K} \sum_{k=1}^{K} \log p(\mathbf{X}_k|\hat{\boldsymbol{\theta}}_{\boldsymbol{\phi},k})$$

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})}[\log p(\mathbf{X}|\boldsymbol{\theta})]$$

$$\approx \frac{1}{K} \sum_{k=1}^{K} \log p(\mathbf{X}_k | \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k})$$

$$\frac{\partial \mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{1}{K} \sum_{k=1}^K \frac{\partial \log p(\mathbf{X}_k | \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k})}{\partial \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k}} \frac{\partial \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k}}{\partial \boldsymbol{\phi}}$$

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})}[\log p(\mathbf{X}|\boldsymbol{\theta})]$$

$$\approx \frac{1}{K} \sum_{k=1}^{K} \log p(\mathbf{X}_k | \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k})$$

$$\frac{\partial \mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{1}{K} \sum_{k=1}^K \frac{\partial \log p(\mathbf{X}_k | \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k})}{\partial \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k}} \frac{\partial \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k}}{\partial \boldsymbol{\phi}}$$

Regular bootstrap update

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})}[\log p(\mathbf{X}|\boldsymbol{\theta})]$$

$$\approx \frac{1}{K} \sum_{k=1}^{K} \log p(\mathbf{X}_k | \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k})$$

$$\frac{\partial \mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi})}{\partial \boldsymbol{\phi}} = \frac{1}{K} \sum_{k=1}^K \frac{\partial \log p(\mathbf{X}_k | \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k})}{\partial \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k}} \frac{\partial \hat{\boldsymbol{\theta}}_{\boldsymbol{\phi}, k}}{\partial \boldsymbol{\phi}}$$

Regular bootstrap Shared update params.

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})}[\log p(\mathbf{X}|\boldsymbol{\theta})]$$

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q(\boldsymbol{\theta})}[\log p(\mathbf{X}|\boldsymbol{\theta})] - \text{KLD}[q(\boldsymbol{\theta})||p(\boldsymbol{\theta})]$$

$$\mathcal{J}(\mathbf{X}_0, \boldsymbol{\phi}) = \mathbb{E}_{F_{\boldsymbol{\phi}}(\boldsymbol{\theta})} \mathbb{E}_{G(\mathbf{x})}[\log p(\mathbf{X}|\boldsymbol{\theta})]$$

$$\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q(\boldsymbol{\theta})}[\log p(\mathbf{X}|\boldsymbol{\theta})] - \text{KLD}[q(\boldsymbol{\theta})||p(\boldsymbol{\theta})]$$

Data-driven uncertainty as opposed to arbitrary priors that can hinder performance (Hoffman & Johnson, 2016).

Experiment #1: Sanity Check

2D Diabetes Dataset

2D Diabetes Dataset

2D Diabetes Dataset

2D Diabetes Dataset

Experiment #2: Varying Dataset Size

Logistic Regression

Logistic Regression

Traditional Bagging, N=500
Amortized Bagging, N=500

Traditional Bagging, N=1500

Amortized Bagging, N=1500

Logistic Regression

Traditional Bagging, N=500
Amortized Bagging, N=500
Traditional Bagging, N=1500
Amortized Bagging, N=1500
Traditional Bagging, N=2500
Amortized Bagging, N=2500
Amortized Bagging, N=2500

Experiment #3: Classification with NN

Neural Networks

	Test Error for Ensemble of Size K		
	K = 1	K = 5	K = 25
Bagged NNs, Traditional	22.57	19.68	18.57
Bagged NNs, Amortized	17.03	16.82	16.18

Rotated MNIST Dataset

Conclusions

Model-based bootstrap results in superior bagging performance due (ostensibly) to smoothing and amortization.

Future work: larger-scale experiments, theoretical analysis, uncertainty quantification.

Thank you. Questions?

Acknowledgements

http://www.ics.uci.edu/~enalisni/