VISIÓN ARTIFICIAL

Práctica 2: Procesamiento de imágenes

Construir una aplicación de procesamiento de imágenes que incluya opciones para aplicar las diferentes técnicas de procesamiento revisadas en el tema 2 de la asignatura.

Especificación de objetivos

Las operaciones de procesamiento que deberá proporcionar la aplicación son: transformación de píxel (nivel de gris), umbralización, ecualización del histograma, suavizado gaussiano, filtro mediana, filtro lineal, dilatación y erosión. Todas las operaciones se llevarán a cabo sobre la imagen en escala de grises. Además de las operaciones comentadas, se incluirá una opción adicional que permitirá realizar hasta 4 operaciones de procesamiento en secuencia sobre la misma imagen.

A continuación se detallan las especificaciones concretas de cada operación:

- <u>Transformación de píxel</u>: aplicación de una función de transformación de niveles de gris definida por tramos. El usuario especificará la transformación de 4 niveles de gris, 2 de ellos fijos (0 y 255) y dos variables. El programa deberá construir la función de transformación definiendo un segmento recto entre cada par de puntos.
- <u>Umbralización</u>: binarización de la imagen a partir de un valor umbral fijado por el usuario.
- <u>Ecualización del histograma</u>: ampliación de contraste de la imagen mediante una ecualización de su histograma.
- <u>Suavizado gaussiano</u>: aplicación de un filtro cuadrado de suavizado gaussiano del tamaño indicado por el usuario. La anchura del filtro (w) determinará el valor de la desviación típica de la función gaussiana (σ) a partir de la relación $\sigma = w/5$.
- <u>Filtro mediana</u>: suavizado de la imagen mediante un filtro mediana considerando entornos de píxel de tamaño 3x3.
- <u>Filtro lineal</u>: aplicación de un filtro lineal genérico utilizando un *kernel* de tamaño 3x3 especificado por el usuario. Tras la aplicación del filtro cada píxel podrá ser modificado sumándole un valor adicional indicado también por el usuario.
- <u>Dilatación</u>: aplicación de una operación morfológica de dilatación tras binarizar la imagen considerando el mismo valor umbral que en la opción "*Umbralización*". El elemento estructural utilizado para la operación será un cuadrado de tamaño 3x3.
- <u>Erosión</u>: aplicación de una operación morfológica de erosión tras binarizar la imagen considerando el mismo valor umbral que en la opción "*Umbralización*". El elemento estructural utilizado para la operación será un cuadrado de tamaño 3x3.

Interfaces de usuario

La figura 1 muestra el aspecto de una posible interfaz de usuario para la aplicación. En la parte inferior se proporcionan diferente elementos para la ejecución de cada operación de procesamiento.

Figura 1: Interfaz de la aplicación

El *cuadro combinado* de la izquierda permite seleccionar una operación concreta de procesamiento. Al pulsar sobre este elemento se despliega una lista con las posibles operaciones proporcionadas por la aplicación (ver figura 2).

Figura 2: Listado de opciones

El selector *Gaussian width* permite al usuario indicar la anchura del kernel en la opción *Gaussian Blur* (suavizado gaussiano). El siguiente selector (*Threshold*) contiene el valor umbral utilizado en la binarización de la imagen (opción *Thresholding*). Por último, los botones "*Set Pixel Transformation*", "*Set Kernel*" y "*Set Operation Order*" despliegan diferentes diálogos para fijar, respectivamente, la transformación de píxel asociada con la opción *Transform Pixel*, el contenido del kernel de la opción *Linear Filter* y el grupo de operaciones a secuenciar en la opción *Apply several*. Las figuras de la 3 a la 5 muestran el aspecto de estos 3 diálogos.

Figura 3: Diálogo asociado con el botón Set Pixel Transformation

Figura 4: Diálogo asociado con el botón Set Kernel

Figura 5: Diálogo asociado con el botón Set Operation Order

Utilidades

Formularios de Qt

Se proporcionan, como parte del material de la práctica, los formularios de Qt asociados con las interfaces de usuario descritas en el apartado anterior. El fichero *mainwindow.ui* contiene el formulario principal de la aplicación y sustituye al fichero del mismo nombre del proyecto básico. Los ficheros *pixelTForm.ui*, *IFilterForm.ui* y *operOrder.ui* contienen la descripción de los diálogos de las figuras 3, 4 y 5. Para utilizar estos tres diálogos, además de añadir los ficheros .ui al proyecto, es necesario crear una clase que herede de la clase base del formulario y de la clase QDialog. En el constructor de la nueva clase, se debe invocar al método *setupUi(this)* para construir el diálogo. Una vez creada la clase, la definición del diálogo en la clase principal sólo supone definir un objeto de esta nueva clase, tal y como se muestra en el siguiente código de ejemplo:

```
#include <ui_pixelTForm.h>

class PixelTDialog : public QDialog, public Ui::PixelTForm
{
    Q_OBJECT

public:
    PixelTDialog(QDialog *parent=0) : QDialog(parent){
        setupUi(this);
    }
};

class MainWindow : public QMainWindow
{
    Q_OBJECT

public:
    explicit MainWindow(QWidget *parent = 0);
    ~MainWindow();

private:
    Ui::MainWindow *ui;
    PixelTDialog pixelTDialog;
    ...
    ...
}
```

OpenCV

La gran mayoría de las funciones necesarias para la realización de la práctica se encuentran disponible en el módulo *imgproc* de OpenCV. Pueden encontrarse otras funciones de utilidad en otros módulos. Éste es el caso de la función *LUT* del módulo *core*.

Ampliaciones

Se proponen las siguientes ampliaciones de la práctica:

- Incluir transformaciones de píxel predefinidas (p.e. función negativo).
- Incluir un diálogo para visualizar los histogramas de la imagen inicial y la resultante del procesamiento.
- Permitir al usuario seleccionar distintos tamaños del kernel (p.e. 3, 5 ó 7) en el filtrado lineal de imágenes.
- Permitir al usuario seleccionar diferentes elementos estructurales en la aplicación de las operaciones morfológicas de dilatación y erosión.