

# CSE 428 Human Computer Interaction

**Yasin Sazid** 

Lecturer
Department of CSE
East West University

## Design Principles II

#### Hall of Fame or Shame?



#### The "Accidental Like"











How might you prevent this error?



# Safety

#### Kinds of Errors

#### Kinds of Errors

#### Slips and Lapses

- Failure in successfully executing a skill that a user has already learned
- **Slip**: Failure due to execution or control
  - Example: Missing the button on a click, Ctrl-V instead of Ctrl-C
- Lapse: Failure due to memory
  - Example: Forgetting to add attachment to email

#### Mistakes

Error made in planning or rule execution



## Kinds of Slips

#### Capture Slip

- A person starts executing one sequence of actions, but then veers off into another (usually more familiar) sequence that happened to start the same way
- Example: Leave your house and find yourself walking to school instead of where you meant to go
- Example: In the text editor vi, it's common to quit the program by issuing the command ":wq", which saves the file (w) and quits (q). If a user intends just to save the file (:w) but accidentally quits as well (:wq), then they've committed a capture error.

## Kinds of Slips

#### Description Slip

- Two actions are very similar. The user intends to do one action, but accidentally substitutes the other.
- Example: Reaching into the refrigerator for a carton of milk, but instead picking up a carton of orange juice and pouring it into your cereal.
- Example: Mic Drop button looks like Send





#### Kinds of Slips

#### Mode Error

- Modes are states in which the same action has different meanings. Slips happen when you forget which mode you are in.
- Example: if the user means to type lowercase letters but doesn't notice that Caps Lock is enabled, then a mode error occurs.

#### Causes of Slips

#### Inattention!

- Involves execution of already learned behavior
- Insufficient attention or distraction of attention at a key moment

#### "Strong but Wrong"

- Sometimes due to strong similarity to correct behavior (capture or description slips) or high frequency relative to correct behavior (capture slips)
- Speed/Accuracy tradeoff

#### What kind of Error?





Slip
Lapse
Mistake

**Description Slip** 

#### What kind of Error?

#### meant to type

```
% rm *.class
[select all files]
```

#### actually typed

```
% rm *>class
```

[pipe output into file class]

Slip
Lapse
Mistake

Mode Error

Why? Look at where . and > are on your keyboard!

## **Preventing Errors**

#### Remember Consistency

- Similar things should look and act similarly
  - -> Different things should look different
- Keep dangerous commands away from common ones!



## Modes: yes or no?

- Generally speaking, eliminate modes
- If you must use them:
  - Increase visibility of modes
  - Spring-loaded or temporary modes

## Should you use confirmation dialogs?

- Reduces efficiency, requiring 2 actions now when it was 1.
- If frequently seen, then expert users will learn to expect it and habitually press OK without reading or noticing it! Now we're back to square one.
- In general, reversibility (i.e., **undo**) is a better solution.



## Should you use confirmation dialogs?

- You should use it for rare, catastrophic events.
- Make it look very different from everything else
- Draw attention to it: no OK button, forces you to think













## Activity (6 min)

- Think about a time when you encountered problems due to a system's lack of safety
- What did you do?
- What was the outcome?
- How might you change the system to prevent the problem?

# Efficiency

#### Model Human Processor



#### **The Model Human Processor**

Developed by Card, Moran, & Newell (1983)

Based on empirical data, drawing an analogy between how humans remember things and how a computer accesses its memory

Same book that named "human computer interaction" for the first time



## Chunking

- A "chunk" is a unit of memory or perception
  - In one sense, chunks are defined symbols; in another sense, a chunk represents the activation of past experience.



## Memory

- Working memory:
  - Small! ~4 chunks.
  - Short-lived: ~10 seconds
- Our ability to form chunks in working memory depend on how the information is presented!
  - Grouping will improve efficiency of output to add to working memory
  - As will making the groups more familiar

Hard: MWBCRALOABIMBFI

Easier: MWB / CRA / LOA / BIM / BFI

Easiest: BMW / RCA / AOL / IBM / FBI

## Activity (10 min)

```
Math Straight Math Strai
```

- Let's redesign this filesystem quota display for the command line so that it's more efficient. Remember to consider user goals.
- Sketch it on paper (but remember this is for the command line)!
- Come up with an idea on your own first but then discuss with a neighbor and improve it based on feedback

## Fitt's Law

## Fitt's Law (1954)

- Models time to acquire targets in aimed movement
  - Reaching for a control in a cockpit
  - Moving across a dashboard
  - Pulling defective items from a conveyor belt
  - Clicking on icons using a mouse
- Very powerful, widely used
  - Holds for many circumstances (e.g., under water)
  - Allows for comparison among different experiments
  - Used both to measure and to predict

Time T to move your hand to a target of size S at distance D away is:

T = Reaction Time + Movement Time = a + b log (D/S + 1)



As D goes up, time goes up. As S goes up, time goes down.

# important part of the equation is the Index of Difficulty (ID): log (D/S + 1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (D) to target size (S)

As D goes up, difficulty goes up. As S goes up, difficulty goes down.

Because it's a ratio, units of D and S don't matter!

Allows comparison across experiments

#### Fitts's Law

interactive Fitts' law test

http://www.simonwallner.at/ext/fitts/



- Trial 1: Easy: make targets large, put them close
- Trial 2: Harder: make targets small, space them out
- Click around the circle a couple times
- Look at the figures to compare & understand

T = Reaction Time + Movement Time = a + b log (D/S + 1)

a = reaction time what is b?

b = throughput

- bandwidth of the communication channel from the human to the computer
- can be affected by anything from human (motor skills, fatigue),
   input device, display/feedback/perceptual skills

#### Implications of Fitt's Law

- Targets at the screen edge are easy to hit
  - Save them for frequent actions!
  - Unclickable margins are a bad idea
- Pie menus are actually easier than linear popup menus! (doesn't mean you should use them)





## Steering Tasks

- **Steering** is much harder than pointing because it constrains the size of the error you can make as you're moving towards a target.
- Thus, cascading submenus are hard to use





## Takeaways

- Make frequently-used targets big
- Put targets used together near each other
- Use screen corners and screen edges
- Avoid steering tasks

# THANK YOU