Optymalizacja rafinerii

Projekt w ramach przedmiotu Metody i narzędzia informatyczne w optymalizacji problemów biznesowych na podstawie książki:

H. Paul Williams, Model Building in Mathematical Programming, 5th Edition Model zbudowany na podstawie rozdziału 12.6 i 13.6

Projekt dostępny jest na https://github.com/MatuszG/OilProject W pliku README.md opisane jest dokładnie, krok po kroku w jaki sposób można go uruchomić w środowiskach Visual Studio 2022 oraz CPLEX.

1. Opis zagadnienia

Rafineria ropy naftowej kupuje dwie ropy (ropa I i ropa II). Te ropy są poddawane czterem procesom: destylacji, reformingowi, krakingowi i mieszaniu, aby wyprodukować benzyny i paliwa, które są sprzedawane.

1.1 Proces Destylacji

Destylacja rozdziela każdą ropę na frakcje względem ich temperatury wrzenia, są to:

- Lekka nafta
- Średnia nafta
- Ciężka nafta
- Lekki olej
- Ciężki olej
- Pozostałość (residuum)

Nafty mają różne liczby oktanowe:

- Lekka nafta (liczba oktanowa 90)
- Średnia nafta (liczba oktanowa 80)
- Ciężka nafta (liczba oktanowa 70)

	Light naphtha	Medium naphtha	Heavy naphtha	Light oil	Heavy oil	Residuum
Crude 1	0.1	0.2	0.2	0.12	0.2	0.13
Crude 2	0.15	0.25	0.18	0.08	0.19	0.12

N.B. There is a small amount of wastage in distillation.

Warunek w Cplex:

```
-0.1*CRA - 0.15*CRB + LN == 0;

-0.2*CRA - 0.25*CRB + MN == 0;

-0.2*CRA - 0.18*CRB + HN == 0;

-0.12*CRA - 0.08*CRB + LO == 0;

-0.2*CRA - 0.19*CRB + HO == 0;

-0.13*CRA - 0.12*CRB + R == 0;
```

Gdzie:

- CRA = ilość ropy I rodzaju
- CRB = ilość ropy II rodzaju
- LN = ilość lekkiej nafty
- MN = ilość średniej nafty
- HN = ilość ciężkiej nafty
- LO = ilość lekkiego oleju
- HO = ilość ciężkiego oleju
- R = ilość pozostałości

1.2 Reforming

Nafty można od razu wymieszać, aby otrzymać różnej jakości paliwa albo można je najpierw poddać procesowi reformingu. W wyniku tego procesu otrzymuje się reformowaną benzynę o liczbie oktanowej 115. Z każdej nafty otrzymuje się inną ilość reformowanej benzyny na jednostkę użytej nafty. Zachodzi niniejsza prawidłowość:

- Z jednej baryłki lekkiej nafty otrzymuje się 0.6 baryłki reformowanej benzyny
- Z jednej baryłki średniej nafty otrzymuje się 0.52 baryłki reformowanej benzyny
- Z jednej baryłki ciężkiej nafty otrzymuje się 0.45 baryłki reformowanej benzyny

Warunek w Cplex:

LNRG, MNRG i HNRG to kolejno lekka, średnia i ciężka nafta poświęcona do produkcji reformowanej benzyny RG:

```
-0.6*LNRG - 0.52*MNRG - 0.45*HNRG + RG == 0;
```

1.3 Kraking

Oleje (lekki i ciężki) można bezpośrednio wymieszać w celu uzyskania paliwa lotniczego albo oleju opałowego lub można przeprowadzić proces nazywany krakingiem katalicznym. Kraker kataliczny produkuje krakowany olej i krakowaną benzynę. Krakowana benzyna ma liczbę oktanową 105. Skuteczność procesu krakingu jest następująco:

- Z 1 baryłki lekkiego oleju można uzyskać 0,68 baryłki krakowanego oleju i 0,28 baryłki krakowanej benzyny;
- Z 1 baryłki ciężkiego oleju można uzyskać 0,75 baryłki ropy krakowanej i 0,2 baryłki krakowanej benzyny.

Warunek zapisany w Cplex:

```
-0.68 * LOCGO - 0.75 * HOCGO + CO == 0;
-0.28 * LOCGO - 0.2 * HOCGO + CG == 0;
```

Gdzie

- CO = otrzymana ilość krakowanego oleju
- CG = otrzymana ilość krakowanej benzyny
- LOCGO = ilość lekkiego oleju użyta do krakowania
- HOCGO = ilość ciężkiego oleju użyta do krakowania

1.4 Mieszanie

Benzyny (paliwo silnikowe)

Istnieją dwa rodzaje benzyny, regularna i premium, otrzymywane poprzez mieszanie nafty, benzyny reformowanej i benzyny krakowanej. Benzyna regularna musi mieć liczbę oktanową co najmniej 84, a benzyna premium musi mieć liczbę oktanową co najmniej 94. Zakładamy, że liczba oktanowa benzyny otrzymanej w wyniku mieszania jest liniowa do liczby oktanowej mieszanych produktów względem ich objętości.

Warunek na ilość produkowanej benzyny premium i regularnej:

```
-LNPMF - MNPMF - HNPMF - RGPMF - CGPMF + PMF == 0;
-LNRMF - MNRMF - HNRMF - RGRMF - CGRMF + RMF == 0;
```

Warunek na liczbę oktanową benzyny

```
-90 * LNPMF - 80 * MNPMF - 70 * HNPMF - 115 * RGPMF - 105 * CGPMF + 94 * PMF <= 0; -90 * LNRMF - 80 * MNRMF - 70 * HNRMF - 115 * RGRMF - 105 * CGRMF + 84 * RMF <= 0;
```

Warunek na proporcję użytej reformowanej benzyny i krakowanej benzyny:

```
-RGRMF - RGPMF + RG == 0;
-CGRMF - CGPMF + CG == 0;
```

Gdzie PMF oznacza wyprodukowaną ilość benzyny premium, a RMF wyprodukowaną ilość benzyny regularnej. Pierwsze dwie litery zmiennej oznaczają rodzaj surowca:

- LN = ilość lekkiej nafty
- MN = ilość średniej nafty
- HN = ilość ciężkiej nafty
- RG = ilość reformowanej benzyny
- CG = ilość krakowanej benzyny

Z kolei PMF i RMF w suffixie zmiennej oznaczają, że taka ilość surowca została przeznaczona do produkcji odpowiedniej benzyny: premium i regularnej.

Paliwo lotnicze

Ciśnienie pary paliwa lotniczego nie może przekraczać 1 kg/cm². Ciśnienia par lekkiego oleju, ciężkiego oleju, krakowanego oleju oraz resztek wynoszą odpowiednio: 1.0, 0.6, 1.5 i 0.05 kg/cm². Zakłada się również, że ciśnienia par mieszają się liniowo według objętości.

Warunek zapisany w Cplex

Warunek na ilość produkowanego paliwa lotniczego:

```
-LOJF - HOJF - RJF - COJF + JF == 0;
```

Warunek na ciśnienie par:

```
-LOJF - 0.6 * HOJF - 1.5 * COJF - 0.05 * RJF + JF >= 0;
```

Gdzie

- JF = ilość otrzymanego paliwa lotniczego
- LOJF = ilość lekkiego oleju użyta do produkcji paliwa lotniczego
- HOJF = ilość ciężkiego oleju użyta do produkcji paliwa lotniczego
- RJF = ilość pozostałości u użyta do produkcji paliwa lotniczego
- COJF = ilość krakowanego oleju u użyta do produkcji paliwa lotniczego

Olej opałowy

Aby wyprodukować olej opałowy, miesza się lekki olej, krakowany olej, ciężki olej i residuum w proporcji 10:4:3:1.

Warunek w Cplex

```
-LO + LOCGO + LOJF + 0.55 * FO == 0;

-HO + HOCGO + HOJF + 0.16 * FO == 0;

-CO + COJF + 0.22 * FO == 0;

-R + RLBO + RJF + 0.05 * FO == 0;
```

- LO = ilość lekkiego oleju
- LOCGO = ilość lekkiego oleju użyta do krakowania
- LOJF = ilość lekkiego oleju wmieszana do paliwa lotniczego
- HO = ilość ciężkiego oleju
- HOCGO = ilość ciężkiego oleju użyta do krakowania
- HOJF = ilość ciężkiego oleju wmieszana do paliwa lotniczego
- R = ilość pozostałości
- RLBO = ilość pozostałości użyta do produkcji oleju smarowego
- RJF = ilość pozostałości wmieszana do paliwa lotniczego
- FO = ilość oleju opałowego

2. Inne ograniczenia

Istnieją ograniczenia dostępności i zdolności dotyczące ilości i procesów wykorzystywanych w następujący sposób:

 Dzienna dostępność ropy 1 wynosi 20 000 baryłek, dzienna dostępność ropy 2 2 wynosi 30 000 baryłek.

```
CRA <= 20000;
CRB <= 30000;
```

• Maksymalnie można destylować 45 000 baryłek ropy dziennie.

```
CRA + CRB <= 45000;
```

• Maksymalnie można reformować 10 000 baryłek nafty dziennie.

```
LNRG + MNRG + HNRG <= 10000;
```

• Maksymalnie można krakować 8 000 baryłek oleju dziennie.

```
LOCGO + HOCGO <= 8000;
```

• Z residuum można produkować olej smarowy w proporcji 2:1. Dziennej produkcja oleju smarowego musi wynosić od 500 do 1000 baryłek.

```
LBO >= 500;
LBO <= 1000;
-0.5*RLBO + LBO == 0;
```

• Produkcja benzyny premium musi wynosić co najmniej 40% produkcji benzyny regularnej.

```
PMF - 0.4 * RMF >= 0;
```

Przyczyny zysku ze sprzedaży produktów końcowych wynoszą (w pensach za baryłkę) odpowiednio:

- Benzyna premium 700£
- Benzyna regularna 600£
- Paliwo lotnicze 400£
- Olej opałowy 350£
- Olej smarowy 150£

Warunek maksymalizacyjny w Cplex

```
maximize 7*PMF + 6*RMF + 4*JF + 3.5*FO + 1.5*LBO;
```

3. Cały Kod w CPLEX:

```
43 maximize 7*PMF + 6*RMF + 4*JF + 3.5*F0 + 1.5*LBO;
44
45⊖ subject to {
46
    CRA <= 20000;
      CRB <= 30000;
47
48
      CRA + CRB <= 45000;
      LNRG + MNRG + HNRG <= 10000;
50
     LOCGO + HOCGO <= 8000;
51
      LBO >= 500;
     LBO <= 1000;
52
53
54
      -0.1*CRA - 0.15*CRB + LN == 0;
55
      -0.2*CRA - 0.25*CRB + MN == 0;
     -0.2*CRA - 0.18*CRB + HN == 0;
56
57
      -0.12*CRA - 0.08*CRB + LO == 0;
58
      -0.2*CRA - 0.19*CRB + HO == 0;
59
      -0.13*CRA - 0.12*CRB + R == 0;
60
     -0.6*LNRG - 0.52*MNRG - 0.45*HNRG + RG == 0;
61
62
      -0.68 * LOCGO - 0.75 * HOCGO + CO == 0;
63
      -0.28 * LOCGO - 0.2 * HOCGO + CG == 0;
64
65
66
      -0.5*RLBO + LBO == 0;
67
      -LN + LNRG + LNPMF + LNRMF == 0;
69
      -MN + MNRG + MNPMF + MNRMF == 0;
70
      -HN + HNRG + HNPMF + HNRMF == 0;
71
72
      -LO + LOCGO + LOJF + 0.55 * FO == 0;
73
      -HO + HOCGO + HOJF + 0.16 * FO == 0;
      -CO + COJF + 0.22 * FO == 0;
74
75
      -R + RLBO + RJF + 0.05 * FO == 0;
76
     -LNPMF - MNPMF - HNPMF - RGPMF - CGPMF + PMF == 0;
-LNRMF - MNRMF - HNRMF - RGRMF - CGRMF + RMF == 0;
77
78
79
     -LOJF - HOJF - RJF - COJF + JF == 0;
80
81
      -RGRMF - RGPMF + RG == 0;
     -CGRMF - CGPMF + CG == 0;
82
83
      PMF - 0.4 * RMF >= 0;
84
      -90 * LNPMF - 80 * MNPMF - 70 * HNPMF - 115 * RGPMF - 105 * CGPMF + 94 * PMF <= 0;
85
      -90 * LNRMF - 80 * MNRMF - 70 * HNRMF - 115 * RGRMF - 105 * CGRMF + 84 * RMF <= 0;
      -LOJF - 0.6 * HOJF - 1.5 * COJF - 0.05 * RJF + JF >= 0;
87
88 }
```

4. Kod w cpp:

```
oil_project.cpp  ⊅  X
🖽 OilProject

→ (Global Scope)

             ∏#include <ilopl/iloopl.h>
               #include <sstream>
              int status = 127;
                    try {
    IloOplErrorHandler handler(env, cout);
    IloOplModelSource modelSource(env, "oil_project.mod");
    IloOplSettings settings(env, handler);
    IloOplModelDefinition def(modelSource, settings);
    IloCnlex cplex(env);
                          IloCplex cplex(env);
IloOplModel opl(def, cplex);
                           opl.generate();
                          if (cplex.solve()) {
                               opl.postProcess();
opl.printSolution(cout);
status = θ;
                           else {
   cout << "No solution!" << endl;
   status = 1;</pre>
                     catch (IloOplException& e) {
   cout << "### OPL exception: " << e.getMessage() << endl;</pre>
                     catch (IloException& e) {
   cout << "### CONCERT exception: ";
   e.print(cout);</pre>
                           status = 2;
                     catch (...) {
    cout << "### UNEXPECTED ERROR ..." << endl;
    status = 3;</pre>
                     env.end();
                     cout << endl << "--Press <Enter> to exit--" << endl;</pre>
                     getchar();
                     return status;
```

5. Wyniki

Wyniki z książki Model Building in Mathematical Programming, H. Paul Williams

14.6 Refinery optimization

The optimal solution results in a profit of £211 365.

The optimal values of the variables defined in Part III are given below:

CRA	15 000	MNPMF	3537
CRB	30 000	MNRMF	6962
LN	6000	HNPMF	0
MN	10 500	HNRMF	2993
HN	8400	RGPMF	1344
LO	4200	RGRMF	1089
HO	8700	CGPMF	1936
R	5550	CGRMF	0
LNRG	0	LOJF	0
MNRG	0	HOJF	4900
HNRG	5407	RJF	4550

SOLUTIONS	TO	PROBLEMS	

357

RG	2433	COJF	5706
LOCGO	4200	RLBO	1000
HOCGO	3800	PMF	6818
CG	1936	RMF	17 044
CO	5706	JF	15 156
LNPMF	0	FO	0
LNRMF	6000	LBO	500

Nasz wynik funkcji maksymalizowanej wyniósł 211365.13. Wynik pokrył się w pełni z dokładnością do zaokrągleń z wynikami z literatury.

CPLEX:

CPP I CPI FX:

```
Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d
Tried aggregator 1 time.
LP Presolve eliminated 4 rows and 0 columns.
Aggregator did 11 substitutions.
Reduced LP has 18 rows, 25 columns, and 79 nonzeros.
Presolve time = 0.00 sec. (0.04 ticks)
Initializing dual steep norms . . .
Iteration log . . .
Iteration: 1 Scaled dual infeas = 19.520583
Iteration: 12 Dual objective = 251186.000000
OBJECTIVE: 211365.13
// solution (optimal) with objective 211365.134768933
// solution (optimal) with objective 211365.134768933
// Quality There are no bound infeasibilities.
// Max. unscaled (scaled) reduced-cost infeas. = 1.77636e-15 (1.77636e-15)
// Max. unscaled (scaled) Ax-b resid. = 4.36557e-10 (3.41061e-12)
// Max. unscaled (scaled) c-B'pi resid. = 3.55271e-15 (3.55271e-15)
// Max. unscaled (scaled) |x| = 30000 (30000)
// Max. unscaled (scaled) |slack| = 5000 (5000)
// Max. unscaled (scaled) |pi| = 9.58142 (14.9896)
// Max. unscaled (scaled) |red-cost| = 0.904912 (1.27211)
// Condition number of scaled basis = 3.5e+01
PMF = 6817.8;
RMF = 17044;
JF = 15156;
FO = 0;
LBO = 500;
CRA = 15000;
CRB = 30000;
LNRG = 0;
 MNRG = 0;
HNRG = 5406.9;
LOCGO = 4200;
HOCGO = 3800;
LN = 6000;
MN = 10500;
HN = 8400;
LO = 4200;
HO = 8700;
R = 5550;
RG = 2433.1;
CO = 5706;
CG = 1936;
RLBO = 1000;
LNPMF = 5726.9;
LNRMF = 273.07;
MNPMF = 273.07;
MNPMF = 0;
MNRMF = 10500;
HNPMF = 0;
HNRMF = 2993.1;
LOJF = 0;
HOJF = 4900;
COJF = 5706;
RJF = 4550;
RGPMF = 1090.8;
CGPMF = 0;
RGRMF = 1342.2;
 CGRMF = 1936;
   -Press <Enter> to exit--
```