Assignment 1 - Report

Image Signal Processing (ISP) Tool

Introduction

The code implements an **Image Signal Processing (ISP) Tuning Tool** that allows users to process and optimize 12-bit RAW Bayer images interactively. Built using OpenCV and Streamlit, the tool offers a graphical interface for performing various ISP tasks like demosaicing, white balancing, denoising, gamma correction, and sharpening. This report discusses the design and approach of the system.

Core Design Principles

1. Modular Architecture:

• The ImageSignalProcessor class encapsulates key ISP functionalities, promoting reusability and clarity.

2. User Interactivity:

 The Streamlit-based GUI provides real-time control over ISP parameters and predefined combinations, enhancing user engagement.

3. Scalability:

 The modular pipeline design supports easy extension for future ISP features or custom processing needs.

Pipeline Design

The processing pipeline consists of the following sequential steps:

1. RAW Image Loading:

 The tool accepts 12-bit Bayer pattern images in .raw or .bin format. The load_raw_image function reshapes the input into a 2D array based on the image dimensions.

2. Demosaicing:

- Converts the Bayer pattern into an RGB image using OpenCV's cv2.COLOR_BayerGR2RGB. It assumes a GRBG pattern but can be adjusted for other configurations.
- Output: A float32 RGB image for consistency across processing steps.

3. White Balancing:

o Implements the Gray World algorithm, which adjusts channel gains to achieve a neutral white balance.

4. Denoising:

Applies Gaussian smoothing with tunable kernel size and standard deviation.
Conversion between 12-bit and 8-bit ensures compatibility with OpenCV functions.

5. Gamma Correction:

Normalizes the image to a [0, 1] range, applies gamma adjustment, and scales it to an
8-bit range for display.

6. Sharpening:

 Utilizes an unsharp mask to enhance image edges. The sharpening strength and blur radius are configurable.

7. Normalization for Display:

o Scales the pixel intensities between 0 and 1 for consistent visualization in Streamlit.

Interactive Tuning

The interactive mode allows users to:

- Configure parameters for white balancing, denoising, gamma correction, and sharpening using a Streamlit sidebar.
- View intermediate results after each processing step for better understanding and tuning.

Predefined Combinations

For convenience, the tool provides predefined processing pipelines, including:

- Demosaic + Gamma
- Demosaic + White Balance + Gamma
- Demosaic + White Balance + Denoise + Gamma
- Demosaic + White Balance + Denoise + Gamma + Sharpen

These options streamline processing for common use cases.

Code Organization

1. Class Design:

o ImageSignalProcessor encapsulates processing logic, ensuring separation of concerns.

2. Streamlit Integration:

- o GUI logic and parameter controls are defined in the main() function.
- File handling and temporary storage are managed efficiently using Python's tempfile module.

Error Handling and Cleanup

The tool ensures robust error handling:

- Safely deletes temporary files after processing to avoid resource leaks.
- Handles invalid inputs or processing errors gracefully.

Potential Enhancements

1. Support for Additional Formats:

o Extend compatibility to more RAW formats (e.g., .dng).

2. Real-Time Feedback:

• Use Streamlit's st.progress for visualizing processing status.

3. Advanced ISP Techniques:

o Include tone mapping, chromatic aberration correction, and HDR processing.

Conclusion

This ISP Tuning Tool demonstrates an efficient and user-friendly approach to RAW image processing. Its modular design and interactive interface make it an excellent foundation for exploring advanced ISP tasks.

Observations

• Original 12bit Bayer Raw image (Input):

1920x1280x12bitsxGRBG_6500K_2000Lux.raw in PixelViewer

1. Demosaic + Gamma

- **Process**: The raw Bayer image is demosaiced into an RGB image, then gamma correction is applied to adjust the brightness and contrast.
- **Outcome**: The image appears with better color representation due to demosaicing, and gamma correction will improve the tonal balance of the image.
- **Summary Observation**: This combination should give a clearer, more balanced image, especially in terms of contrast, but the image might still lack some refinement like denoising and sharpening.

Demosaic + Gamma

2. Demosaic + White Balance + Gamma

- **Process:** After demosaicing, the image undergoes white balance adjustment based on the Gray World algorithm, followed by gamma correction.
- **Outcome:** This combination corrects color casts, making the image more natural in terms of color temperature, while gamma correction adjusts brightness.
- **Summary Observation:** The image should look more balanced in terms of both color and tonal range. White balance can significantly improve the color accuracy, and gamma will ensure proper exposure.

Demosaic + White Balance + Gamma

3. Demosaic + White Balance + Denoise + Gamma

- **Process**: This sequence first demosaics the image, then adjusts white balance, applies denoising, and finally applies gamma correction.
- **Outcome**: The denoising step smooths out any remaining noise, making the image clearer, and the other steps will ensure proper color and tonal balance.
- **Summary Observation**: This should produce a smoother, more professional-looking image with better color accuracy and reduced noise, as well as appropriate contrast and brightness.

Demosaic + White Balance + Denoise + Gamma

4. Demosaic + White Balance + Denoise + Gamma + Sharpen

- **Process**: After demosaicing, the image will undergo white balance, denoising, gamma correction, and finally sharpening.
- **Outcome**: The image will have the most refined quality, with better color accuracy, reduced noise, proper contrast, and enhanced sharpness.
- **Summary Observation**: This combination will result in the sharpest and clearest image with the most balanced colors and reduced noise. However, sharpening may introduce artifacts if overdone.

Demosaic + White Balance + Denoise + Gamma + Sharpen