Controlli Automatici

Università degli Studi di Bergamo

Esercizio 1

Descrizione: Si consideri il sistema a compensazione diretta del disturbo $y_d(t)$ sul segnale di uscita y(t) descritto dallo schema Simulink qui riportato:

in cui

$$G(s) = \frac{8}{(s+1)(s+2)}$$
 $H(s) = \frac{1}{s+3}$ $C(s) = \frac{0.987}{(1+0.267)^2}$

Quesiti:

- 1. Si verifichi che il compensatore è in grado di annullare asintoticamente l'effetto di un disturbo sinusoidale di pulsazione $\omega=4$ [rad/s].
- 2. Si simuli su t = 10 [s] la risposta del sistema al disturbo d(t) = 7sin(4t).

Soluzione:

- 1. Vedere lo script live di MATLAB "exercise1.mlx"
- 2. Vedere lo script Simulink "exercise1 $_$ sl.slx"

Esercizio 2

Descrizione: Si consideri il sistema a compensazione del segnale di riferimento $y_0(t)$ descritto dallo schema Simulink qui riportato:

in cui

$$G(s) = \frac{10}{(1+s)(1+0.01s)}$$
 $R(s) = \frac{1+s}{s}$

mentre il compensatore $C\left(s\right)$ può assumere una delle seguenti espressioni

$$C_1(s) = 0$$
 $C_2(s) = 0.1 \frac{1+s}{1+0.01s}$ $C_3(s) = 0.1 \frac{1+s}{1+0.001s}$

Quesiti:

1. Si confrontino le risposte (su un tempo pari a t=1 [s]) ottenute con le diverse scelte del compensatore C(s) in presenza di un riferimento sinusoidale $y_0(t)$ di pulsazione $\omega=80$ [rad/s].

Soluzione:

- 1. Vedere lo script live di MATLAB "exercise2.mlx"
- 2. Vedere lo script Simulink "exercise2_sl.slx"