[0046] We claim:

1. A computer implemented method of encoding video images, where each image has a frame type, comprising:

receiving a plurality of macroblocks for an uncompressed image;

determining a macroblock type for each macroblock;

determining whether the image represents a scene change from a distribution of macroblock types of the macroblocks; and

encoding the image in response to the determination of a scene change and the type of the frame.

2. The method of claim 1, wherein determining whether the image represents a scene change, comprises:

identifying the scene change in response to a percentage of prediction macroblocks in the image.

3. The method of claim 1, wherein determining whether the image represents a scene change, comprises:

responsive to the image being a forward predicted frame type, determining a percentage of intra-encoded macroblocks; and

responsive to the percentage of intra-encoded macroblocks, identifying a scene change at the image.

- 4. The method of claim 3, further comprising: responsive to the percentage of intra-encoded macroblocks exceeding a threshold, identifying a scene change at the image.
- 5. The method of claim 4, wherein the threshold is about .65.

- 6. The method of claim 1, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of backward predicted macroblocks; and responsive to the percentage of backward predicted macroblocks, identifying a scene change at the image.
 - 7. The method of claim 6, further comprising: responsive to the percentage of backward predicted macroblocks exceeding a threshold, identifying a scene change at the image.
 - 8. The method of claim 7, wherein the threshold is about .70.
- 9. The method of claim 1, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of forward predicted macroblocks; and responsive to the percentage of forward predicted macroblocks, identifying a scene change at the image.
 - 10. The method of claim 6, further comprising: responsive to the percentage of forward predicted macroblocks exceeding a threshold, identifying a scene change at the image.
 - 11. The method of claim 7, wherein the threshold is about .70.
- 12. The method of claim 1, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a forward predicted frame type, determining a percentage of intra-encoded macroblocks;
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of backward predicted macroblocks;

- responsive to the image being a bidirectionally predicted frame type, determining a percentage of forward predicted macroblocks; and responsive to a determined percentage exceeding a threshold corresponding to the type of macroblock, identifying the image as a scene change.
- 13. The method of claim 1, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises increasing a number of bits used to encode the image, without changing the frame type of the image.
- 14. The method of claim 1, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises changing a quantization rate used to quantize the image, without changing the frame type of the image.
- 15. The method of claim 1, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises temporarily increasing a counter of a number of bits available for encoding a remaining set of images in a group of images containing the uncompressed image.
- 16. The method of claim 1, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises temporarily increasing a counter of a number of bits allocated to images having a same frame type as the frame type of the uncompressed image, in a group of images including the uncompressed image.
 - 17. The method of claim 1, further comprising:
 - responsive to determining a scene change, generating data identifying the uncompressed image as corresponding to a scene change, and storing the generated data in a side information file for transmission or storage.

- 18. A computer system for encoding video images, comprising:
 - a motion estimator adapted to receive a plurality of macroblocks for an uncompressed video image, the image having a frame type, and to determine macroblocks types for the macroblocks;
 - a scene change detector coupled to the motion estimator and adapted to determine whether the image represents a scene change from a distribution of the macroblock types of the image macroblocks; and
 - a quantizer coupled to the scene change detector for encoding the image in response to the determination of a scene change by the scene change detector and the type of the frame.
- 19. The system of claim 18, wherein the scene change detector determines whether the image represents a scene change as a function of a percentage of prediction macroblocks in the image.
- 20. The system of claim 18, wherein the scene change detector determines whether the image represents a scene change by determining a percentage of intraencoded macroblocks in response to the image being a forward predicted frame type.
- 21. The system of claim 20, wherein the scene change detector determines the scene change in response to the percentage of intra-encoded macroblocks exceeding a threshold.
 - 22. The system of claim 21, wherein the threshold is about .65.
- 23. The system of claim 18, wherein the scene change detector determines whether the image represents a scene change by determining a percentage of backward predicted macroblocks in response to the image being a bidirectionally predicted frame type.

- 24. The system of claim 23, wherein the scene change detector determines the scene change in response to the percentage of backward predicted macroblocks exceeding a threshold.
 - 25. The system of claim 24, wherein the threshold is about .70.
- 26. The system of claim 18, wherein the scene change detector determines whether the image represents a scene change by determining a percentage of forward predicted macroblocks in response to the image being a bidirectionally predicted frame type.
- 27. The system of claim 26, wherein the scene change detector determines the scene change in response to the percentage of forward predicted macroblocks exceeding a threshold.
 - 28. The system of claim 27, wherein the threshold is about .70.
- 29. The system of claim 18, wherein the scene change detector determines whether the image represents a scene change by:
 - determining a percentage of intra-encoded macroblocks in response to the image being a forward predicted frame type;
 - determining a percentage of backward predicted macroblocks in response to the image being a bidirectionally predicted frame type;
 - determining a percentage of forward predicted macroblocks in response to the image being a bidirectionally predicted frame type; and
 - responsive to a determined percentage exceeding a threshold corresponding to the type of macroblock, identifying the image as a scene change.
- 30. The system of claim 18, wherein the quantizer encodes the image in response to the determination of a scene change and the type of the frame by increasing a number of bits used to encode the image, without changing the frame type of the image.

- 31. The system of claim 18, wherein the quantizer encodes the image in response to the determination of a scene change and the type of the frame by changing a quantization rate used to quantize the image, without changing the frame type of the image.
- 32. The system of claim 18, wherein the quantizer encodes the image in response to the determination of a scene change and the type of the frame by temporarily increasing a counter of a number of bits available for encoding a remaining set of images in a group of images containing the uncompressed image.
- 33. The system of claim 18, wherein the quantizer encodes the image in response to the determination of a scene change and the type of the frame by temporarily increasing a counter of a number of bits allocated to images having a same frame type as the frame type of the uncompressed image, in a group of images including the uncompressed image.
- 34. The system of claim 18, wherein the scene change detector is further adapted, responsive to determining a scene change, to generate data identifying the uncompressed image as corresponding to a scene change, and storing the generated data in a side information file for transmission or storage.
- 35. A computer program product, adapted to encode video images, comprising a computer readable medium containing computer executable instruction for performing the operations of:
 - determining a macroblock type for each of a plurality of macroblocks in an uncompressed image;
 - determining whether the image represents a scene change from a distribution of macroblock types of the macroblocks; and
 - encoding the image in response to the determination of a scene change and the type of the frame.

- 36. The computer program product of claim 35, wherein determining whether the image represents a scene change, comprises:
 - identifying the scene change in response to a percentage of prediction macroblocks in the image.
- 37. The computer program product of claim 35, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a forward predicted frame type, determining a percentage of intra-encoded macroblocks; and
 - responsive to the percentage of intra-encoded macroblocks, identifying a scene change at the image.
 - 38. The computer program product of claim 37, further comprising:
 responsive to the percentage of intra-encoded macroblocks exceeding a
 threshold, identifying a scene change at the image.
- 39. The computer program product of claim 38, wherein the threshold is about .65.
- 40. The computer program product of claim 35, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of backward predicted macroblocks; and responsive to the percentage of backward predicted macroblocks, identifying a scene change at the image.
 - 41. The computer program product of claim 40, further comprising: responsive to the percentage of backward predicted macroblocks exceeding a threshold, identifying a scene change at the image.
- 42. The computer program product of claim 41, wherein the threshold is about .70.

- 43. The computer program product of claim 35, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of forward predicted macroblocks; and responsive to the percentage of forward predicted macroblocks, identifying a scene change at the image.
 - 44. The computer program product of claim 43, further comprising: responsive to the percentage of forward predicted macroblocks exceeding a threshold, identifying a scene change at the image.
- 45. The computer program product of claim 44, wherein the threshold is about .70.
- 46. The computer program product of claim 35, wherein determining whether the image represents a scene change, comprises:
 - responsive to the image being a forward predicted frame type, determining a percentage of intra-encoded macroblocks;
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of backward predicted macroblocks;
 - responsive to the image being a bidirectionally predicted frame type, determining a percentage of forward predicted macroblocks; and
 - responsive to the determined percentage exceeding a threshold corresponding to the type of macroblock, identifying the image as a scene change.
- 47. The computer program product of claim 35, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises increasing a number of bits used to encode the image, without changing the frame type of the image.

- 48. The computer program product of claim 35, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises changing a quantization rate used to quantize the image, without changing the frame type of the image.
- 49. The computer program product of claim 35, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises temporarily increasing a counter of a number of bits available for encoding a remaining set of images in a group of images containing the uncompressed image.
- 50. The computer program product of claim 35, wherein encoding the image in response to the determination of a scene change and the type of the frame comprises temporarily increasing a counter of a number of bits allocated to images having a same frame type as the frame type of the uncompressed image, in a group of images including the uncompressed image.
 - 51. The computer program product of claim 35, further comprising:
 responsive to determining a scene change, generating data identifying the
 uncompressed image as corresponding to a scene change, and storing
 the generated data in a side information file for transmission or
 storage.
- 52. A computer system for encoding video images, each image having a frame type, comprising:
 - motion estimation means for receiving a plurality of macroblocks for an uncompressed video image and determining a macroblock type for each macroblock;
 - scene change detection means for determine whether the image represents a scene change from a distribution of macroblock types of the image macroblocks; and

- encoding means for encoding the image in response to the determination of a scene change by the scene change detection means and the type of the frame.
- 53. The system of claim 52, wherein the scene change detection means determines whether the image represents a scene change by:
 - determining a percentage of intra-encoded macroblocks in response to the image being a forward predicted frame type;
 - determining a percentage of backward predicted macroblocks in response to the image being a bidirectionally predicted frame type;
 - determining a percentage of forward predicted macroblocks in response to the image being a bidirectionally predicted frame type; and
 - responsive to a determined percentage exceeding a threshold corresponding to the type of macroblock, identifying the image as a scene change.
- 54. The system of claim 52, wherein the encoding means encodes the image in response to the determination of a scene change and the type of the frame by increasing a number of bits used to encode the image, without changing the frame type of the image.
- 55. The system of claim 52, wherein the encoding means encodes the image in response to the determination of a scene change and the type of the frame by changing a quantization rate used to quantize the image, without changing the frame type of the image.
- 56. The system of claim 52, wherein the encoding means encodes the image in response to the determination of a scene change and the type of the frame by temporarily increasing a counter of a number of bits available for encoding a remaining set of images in a group of images containing the uncompressed image.

- 57. The system of claim 52, wherein the encoding means encodes the image in response to the determination of a scene change and the type of the frame by temporarily increasing a counter of a number of bits allocated to images having a same frame type as the frame type of the uncompressed image, in a group of images including the uncompressed image.
- 58. The system of claim 52, wherein the scene change detection means is further adapted, responsive to determining a scene change, to generate data identifying the uncompressed image as corresponding to a scene change, and storing the generated data in a side information file for transmission or storage.