VATek MDK 說明文件

1.	數位電視概述	3
2.	TRANSPORT STREAM(TS)組成	3
3.	VATEK B SERIES 晶片介紹	4
	3.1 B Series 系統架構	
	I2C 協定	
	USB 協定	
	VI/AI 輸入單元	
	VIDEO/AUDIO CODEC 單元	
	PSI CREATOR 單元	10
	MUXER 單元	10
	MODULATOR 單元	11
	RF MIXER 單元	11
	開機流程	
	3.2 系統功能	
	播放操作	
	系統功能操作	15
4.	MDK	16
2	4.1 前言	16
4	4.2 MDK 軟體架構	16
2	4.3 B 系列 MDK 說明	16
	4.3.1 B 系列軟體系統架構	
	4.3.2 編譯定義	19
	4.3.3 API 使用範例	
	電視廣播初始化	
	廣播 Colorbar 或 Bootlogo	
	廣播 Phy 的輸入內容	
	傳送 AV 端子的 CC 資料	
	PSI table 建立(靜態寫入 mode)	
	PSI table 建立(動態寫入 PSI)	
	PSI table 建立(Default mode)	
	停止廣播	
	4.3.4 MDK Porting 功能 4.3.5 建置 MDK 環境	
	4.J.J 炷自 IIIUN	

4.3.6 MDK sample code 流程	28
4.4 API 功能說明	29
4.4.1 系統通用 API	29
4.4.2 B 系列晶片 API(Broadcast)	29
4.4.3 外部裝置相關 API	31
PHY	31
RF	32

1. 數位電視概述

數位電視是將原本為類比訊號的影像、聲音等資訊轉換成數位訊號,也就是只有 0 和 1 所組成的二進位形式訊號,並進行壓縮後輸出在電視上,相較傳統類比電視可以播放更大量的節目資訊。

2.Transport Stream(TS)組成

TS 為數位電視播放的來源格式,完整的 TS 須包含下列三個元素:

- PES:封裝影音訊號及其他如 CC 字幕等訊號的封包
- PCR:後端輸出至電視時 DEMOD 需要參考的時間,主要決定封包播 放順序,其好壞會影響播放品質
- PSI:於各國電視播放時需遵從的規範,不同國家具備不同 PSI TABLE,如美國為 PSIP、日本為 ARIB...等

3. VATEK B Series 晶片介紹

3.1 B Series 系統架構

B 系列晶片是內建影音編碼器系列產品,藉由將內部編碼器將外部影音訊號壓縮,並轉換為數位電視訊號,外部硬體介面主要如架構圖所示,主要區分三個部分:

1. 系統 IO:

- RESET 訊號 系統 RESET 控制訊號,可由外部進行硬體復位。
- RESCURE 訊號 救援功能·當韌體損壞時進入救援模式訊號(參閱開機流程)。
- 2. 控制介面: 支援外部 MCU 透過 I2C 或 USB 進行晶片功能設定與控制。
- 3. 輸入介面:
 - BT656|BT1120:影像訊號輸入介面
 - I2S: 聲音訊號輸入介面

外部硬體主要構成另外包含兩個部分,第一為韌體載入功能,B 系列需依賴韌體(服務),才可以完整提供相關功能,上電時需由 SPI 介面載入韌體(服務),細節可參閱開機流程章節。第二部分為選用功能,如果搭配完整開發方案設計,使用搭配的 RF MIXER 則需透過同一介面連結對應 RF MIXER 以方便韌體(服務)提供 RF 相關能力。 除外部介面外,晶片内由許多功能單元結合而成,主要可以區分為:

1. HAL:外部控制單元支援 I2C 與 USB 的外部協定實作,用來控制與協調內部功能。

2. **VI**:影像輸入單元 **3. AI**:音源輸入單元

AUDIO CODEC: 聲音編碼單元
 VIDEO CODEC: 影像編碼單元

6. PSI CREATOR:數位電視需要之 PSI TABLES 產生單元。

7. MUXER: 複用器單元結合編碼器與 PSI CREATOR 單元的資訊,重新產生數位電視流。

8. MODULATOR:數位電視調製器,多格式數位電視調製單元。

9. RF MIXER:控制預設支援的 RF MIXER。

I2C 協定

B 系列 CHIP 支援 I2C Slave 介面,支援最高 400kb 傳輸速度,透過 I2C 介面可以對 HAL REGISTER 進行寫入與讀取操作。B 系列 CHIP 位址為 7-bits 的 0x10 (可透過 IO 設置為 0x18)。

CHIP 溝通格式如下表所示:

SRAM Address	Context		
0 : D0	Data [7 : 0]		
1 : D1	Data [15 : 8]		
2 : D2	Data [23 : 16]		
3 : D3	Data [31 : 24]		
4 : A0	ADDRESS[7:0]		
5 : A1	ADDRESS[15 : 8]		
6 : A2	ADDRESS[23 : 16]		
7 : Command	VBTI2C_MEM_READ_TAG	0x05	
	VBTI2C_MEM_WRITE_TAG	0x07	

B 系列的 I2C 協定與標準 I2C 協定相同,支援 200 KHz 的讀寫操作,下面將詳細說明雙邊溝通的讀/取操作。

● 讀取操作

1. 變更 SRAM 的 Address 與 Command

- 1. HOST MCU Send Start Signal.
- HOST MCU Send Slave Write Address (0x10 | 0x18) and SRAM Address (0x04).
- 3. HOST MCU Send Current Access Address. (3 Bytes Length)
- 4. HOST MCU Send Register or Memory Read Command. (0x05)
- 5. HOST MCU Send Stop Signal.

2. 將資料從 SRAM 中取回,詳細操作如下:

- 1. HOST MCU Send Start Signal.
- 2. HOST MCU Send Slave Write Address (0x10 | 0x18) and SRAM Address (0x00).
- 3. HOST MCU Send Stop Signal. (Switch SRAM Address To 0x00)
- 4. HOST MCU Send Start Signal.
- 5. HOST MCU Send Slave Read Address (0x10 | 0x18).
- 6. HOST MCU Read Data. (4 Bytes).
- 7. HOST MCU Send Stop Signal.

● 寫入操作

- 1. HOST MCU Send Start Signal.
- 2. HOST MCU Send Slave Write Address (0x10 | 0x18) and SRAM Address (0x00).
- 3. HOST MCU Write Data. (4 Bytes)
- 4. HOST MCU Write Current Access Address. (3 Byes)
- 5. HOST MCU Send Write Command. (0x07)
- 6. HOST MCU Send Stop Signal.

USB 協定

透過 CHIP 支援的 USB Device 介面,透過標準的 EP0 Setup Packet 對 HAL REGISTER 進行寫入與讀取操作。

VI/AI 輸入單元

B 系列 CHIP 支援的影像訊號輸入單元,提供最高 1080P 60 的影像來源。除實際影像輸入外,還可以由晶片內部來源作為輸入來源。輸入單元也提供輸入來源的設定:

內部來源

- 1. COLORBAR:可產生符合 SMPTE RP 219:2002(ARIB STD-B28) 測試影像。
- 2. BOOTLOGO:允許加入多個自定義圖形做為影像來源。

VI_FLAG (HALREG_VI_0_FLAGS) :

- VI_BUSWIDTH_16: 若使用 HDMI 輸入需開啟以符合 HDMI 輸入規格。
- VI_SEPARATED_SYNC:若使用 HDMI 輸入需開啟以符合 HDMI 輸入規格。
- **VI_EXT_HALF_FPS**: 可將輸入訊號的 Frame rate 減半(1080P60->1080P30, 720P60->720P30...)

VI 單元可支援輸入的解析度格式遵循 CEA-861 規範,詳細可自行參閱,下表提供 B 系列晶片支援解析度之格式

	60	59.94	50	30	29.97	25	23.97
1080P	V	V	V	V		V	V
10801	V	V	V				
720P	V	V	V				
576P			V			V	
576I			V				
480P	V	V		V	V		
4801	V	V					

B 系列 CHIP 支援的聲音訊號輸入單元,支援 32K、44.1K 與 48 K sample rate 最高可支援 2 channel 24 bits PCM。

VIDEO/AUDIO CODEC 單元

B 系列支援影像及聲音壓縮,依據不同晶片型號支援不同影像壓縮,支援格式如下表:

CHIP 型號					
編碼格式		B2	B2+	В3	B3+
	MPEG1-L2	V	V	V	V
AUDIO	AC-3	V	V	V	V
ENCODER	AAC-ADTS	V	V	V	V
	AAC-LATM	V	V	V	V
VIDEO	H.264			V	V
ENCODER	MPEG2	V	V		V

MPEG 2 編碼器規格

- 1. 最高解析度 1080p 30 FPS
- 2. HIGH PROFILE (I \ P Frame Only)

- 3. HIGH LEVEL 最高 Bitrate 30 Mbps (VBR)
- 4. YCrCb 4:2:0

H264 AVC 編碼器規格

- 1. 最高解析度 1080p 60 FPS
- 2. HIGH PROFILE(I · P Slice · No MBAFF)
- 3. Level 4.1 (30 Mbps)
- 4. YCrCb 4:2:0

Encoder Flag (HALREG_ENCODER_FLAGS)

- **ENC_EN_PROGRESSIVE_2_I**: 輸入 Progressive 影像格式,啟用 此功能輸出 1080i 60(1080P60->1080I60…)
- ENC_EN_DISABLE_DEINTERLACED:在B3+晶片中,若使用 Interlaced 影像格式輸入,啟用此功能將 interlaced 格式轉換為 progressive 格式(1080I60->1080P60...)
- ENC_EN_DISABLE_LATENCY_Q:在調教畫質時 Latency 與 Q 值會相互影響・啟用此功能關閉兩者之間相互影響的狀況

PSI CREATOR 單元

數位電視含聲音影像資料流外、依據不同國家與標準、需加入 PSI TABLE、用來識別與定義頻道與多媒體內容、此單元提供兩種不同方式協助開發者完成所需要的 PSI TABLE。

- **1. PURE TABLE**:由開發者依據應用情境參考所需規格書,自行加入自訂義的 PSI TABLE。
- **2. DEFAULT**:針對不同國家與規格所定義的基礎 PSI TABLE · 透過參數的設置即可使用。

MUXER 單元

基於不同調變模式與來源狀況,如 Bitrate、多媒體流時間…需經過 MUXER 加以重新排序,以符合數位電視廣播相關規範,MUXER 單元即是依據輸出需求與輸入條件進行 TS stream 的重新編排。

- 1. **PADDING 功能:**於資料無法滿足時會使用 NULL PACKET 進行填充,MUXER 提供自訂義與標準功能。
- **2. PCR INSERT**: PCR 的插入功能可加入獨立 PID 的 PCR,並且可控制 Interval 以符合應用需求。
- 3. PCR REPLACE:提供 PCR 複寫功能,於不同輸入源 Bitrate 轉換時

可能使原始 PCR 精度變更,透過複寫功能可不同程度的修正此問題。

MODULATOR 單元

廣泛支援全球數位電視調變規格,包括 DVB-T、DVB-C (J83a)、ATSC、i83b、DTMB、ISDB-T、J83c、DVB-T2,不同晶片支援的調變類型如下表:

CHIP 型號	支援格式
B2	DVB-T · J83a · ATSC · J83b · DTMB · ISDB-T · J83c
В3	DVB-T · J83a · ATSC · J83b · DTMB · ISDB-T · J83c
B3+	DVB-T · J83a · ATSC · J83b · DTMB · ISDB-T · J83c ·
	DVB-T2

RF MIXER 單元

RF 控制輸出

開機流程

系統執行主要由 Loader (開機程式)與 Service (服務)組成,當晶片完成上電程序,晶片會自動透過 SPI 介面載入並運行,運行後會檢測 RESECURE 訊號狀態,決定是否強制執行 RESECURE 服務,RESECURE 主要提供更新韌體功能。如果不須進入 RESECURE 服務則會檢查韌體,如果為有效韌體則載入並運行 Service (服務)。

透過外部 I2C 與 USB 透過 HAL 控制單元控制晶片功能,兩個路徑可控制階段將不同,由於 USB 介面由服務提供底層 USB 服務,故進入 RESCURE與 Service(服務)前無法與晶片溝通,而 I2C 則是在系統上電後即可進行讀取狀態與控制操作。

● 開機流程圖

3.2 系統功能

在晶片完成上電後,首先必須確認系統狀態,檢查系統狀態主要讀取系統暫存器的 HALREG_SYS_STATUS_0,狀態主要分為三種:

- 1. 錯誤狀態: HALREG_SYS_STATUS_0 必須總是有 0xFF000000 為基底,如果沒有則表示無載入正確韌體, I2C 上電後即可讀取狀態,必須先確保韌體正確運行。如韌體已經正確運行出而狀態 bit 7 設置為 1 時表示系統錯誤。
- **2. 閒置狀態**: 當狀態為 SYS_STATUS_IDLE 表示韌體載入成功,可以執行功能操作。
- **3. 運行狀態**:當執行播放命令後狀態會變更為 SYS_STATUS_RUN·表示系統運作中,此時只可以執行運行階段相關功能。

依據系統開機流程與架構·使用 USB 為控制介面·當 USB 被初始化成功即表示系統已經正確被執行。如果使用 I2C 為控制介面時·需先確保系統狀態·建

議的相關流程如下:

● I2C 控制流程圖

播放操作

當系統處於閒置狀態可執行播放動作,播放依據輸出有 SINEWAVE 與調變輸出。SINEWAVE 輸出用來進行 RF 調校與偵測使用,調變輸出則是依據輸入設置輸出數位電視調變訊號,輸入路徑設定主要區分兩種模式 TESTMODE 與 ENCODER·TESTMODE 支援兩種模式可以用來針對輸出部分進行驗證,透過 HALREG_TESTMODE_MODE 選擇。

- **1. STREAM_HW_PATTERN:** 單純測試 MODULATOR 單元,由內部產生固定測試 TS PACKET 輸出。
- 2. STREAM_REMUX: 測試 MUXER 與 MODULATOR 單元,依據 MUXER 設置與功能產生測試流,搭配 MODULATOR 單元輸出測試流

另一個輸入模式為 ENCODER·搭配影音編碼器與 MUXER·對 MODULATOR 單元輸入完整多媒體流。使用編碼器須設置影音格式與編碼器參數·在 BOOTLOGO 與 COLORBAR 模式選擇輸出的格式·VI 模式則需完整設置來源訊號實際的參數·影像輸入最高輸入 1080P 60FPS (PIXEL CLOCK:

148.5MHz)聲音最高輸入 2 聲道 48MHz 24 bits 訊號,輸出的格式則依據實際編碼器效能與設置參數有差異。

依據輸出需求設置相關的輸入暫存器、輸出暫存器與複用器暫存器,依據 HAL 命令執行流程,設置 HALREG_BROADCAST_CNTL 為 BC_START,執行完成後透過 HALREG_BCINFO_STATUS 確定執行結果,如果正確運行系統狀態也會切換為運行狀態。

● B 系列晶片系統流程圖

系統功能操作

在 HALREG_BROADCAST_CNTL 中而外提供兩個系統功能分別為BC_REBOOT 與 BC_REBOOT_RESCURE,操作系統功能只能在系統狀態閒置時操作。兩個功能皆對系統進行軟體重置,BC_REBOOT 為一般重置,系統重置後會重新載入 BROADCAST 服務,而 BC_REBOOT_RESCURE 則會強制進入 RESCURE 服務。重置命令執行完成後檢查 HALREG_BCINFO_STATUS確認執行結果,於 200 ms 後實際進行系統重置,開發者需重新運行檢查狀態流程。

4. MDK

4.1 前言

VATEK MDK 提供開發者更容易且快速的使用 VATEK 數位廣播系統晶片,執行各種操作像是即時影音編碼、數位電視調變、數位電視串流複用、PSI 更新等各種數位廣播功能。

MCU 使用 I2C 介面對 VATek 晶片及其周邊裝置進行控制·因此若要對晶片讀寫 暫存器須先建立 I2C 的溝通介面。

MDK 以 STM 平台介面開發使用,針對 VATek 晶片及周邊裝置如 PHY 及 R2 進行控制。若使用者 MCU 平台不同,MDK 提供移植功能,可以將 GPIO、I2C、UART 等介面移植至其他平台使用。

4.2 MDK 軟體架構

以下說明 MDK 架構,以幫助使用者更加了解 MDK 及 VATek 晶片提供的功能,以利加速後續開發及使用。

● MDK 資料夾架構

inc	資料夾名稱	描述
main	Inc	提供的 API、晶片的設定參數、外部設備的設定參數
peripheral main		晶片相關的功能實作
project	project peripheral 外部設備的功能實作	
sample project VATek 以 Keil MDK 提供的範例專案 system VATek 提供的範例程式		VATek 以 Keil MDK 提供的範例專案
		VATek 提供的範例程式
	system	系統相關的功能實作,如傳輸介面、平台移植等

4.3 B 系列 MDK 說明

4.3.1 B 系列軟體系統架構

下圖為 B 系列軟體架構圖,中間部分為 MDK 的軟體架構,以下介紹廣播時主要會使用到的 MDK 內容:

- vatek api:提供使用者直接呼叫使用的 API
- vatek_broadcast: B 系列晶片所提供的功能實作·如設定 VI、編碼格式 及加入 PSI table 方法等流程

- vatek_phy:為 VATek 提供的前端裝置驅動,例如 EP9555E, H1...等
- vatek_rf: VATek 提供晶片輸出端的 RF mixer 驅動
- vatek_hms:暫存器讀寫功能的實作
- vystem: MCU 平台的介面設計,使用者可以藉由 system 資料夾內的 porting 功能替換成其他非 STM 平台進行使用

B系列軟體系統架構圖

4.3.2 編譯定義

因為 MDK 支援數個周邊驅動,為了 MDK 的一致性與節省記憶體空間,而使用了不同的編譯標誌去隔開不同的驅動程式。使用者可依據環境去選擇不同的驅動程式進行編譯,以下為 MDK 內各驅動程式的定義:

類別	定義			
VATEK 晶片				
B2	VATEK_B2			
B3	VATEK_B3			
B3+	VATEK_B3_PLUS			
F	PHY			
EP9555E	PHY_EP9555E			
EP9351	PHY_EP9351			
ADV7182a	PHY_ADV7182A			
ADV7180	PHY_ADV7180			
ADV7611	PHY_ADV7611			
H1	PHY_H1			
RF				
R2	RF_R2			
R2 (control by	RF_R2_VIA_VATEK			
VATEK)				
MCU				
STM32F407xx	STM32F407xx			
STM32F401xC	STM32F401xC			

4.3.3 API 使用範例

以下提供使用者執行 B 系列晶片廣播功能所使用到的 API 流程說明

電視廣播初始化

電視廣播系統是由 VATEK 晶片與周邊(PHY、RF)組成。使用前需對這些裝置作初始設定,另 VATEK 提供不同影音介面,故需對要使用的輸入介面進行ENABLE 設定,流程如下:

廣播 Colorbar 或 Bootlogo

若無影音來源,可以 COLORBAR 或自定義的 LOG 進行播放,流程如下:

廣播 Phy 的輸入內容

若要使用實際輸入影音來源進行播放,流程如下:

傳送 AV 端子的 CC 資料

動態插入 AV 端子輸入介面的隱藏字幕資料,流程如下:

PSI table 建立(靜態寫入 mode)

若需要在播放時將 PSI table 靜態寫入晶片中·VATek MDK 提供註冊 PSI table 功能·使用者可自行將符合規格的 PSI table 使用以下功能註冊並以靜態的方式寫進 TS 封包·CHIP 需在 IDLE 狀態才能寫入 PSI table

vatek_broadcast_psitable_register

PSI table 建立(動態寫入 PSI)

若需要在播放時將 PSI table 動態更新進 TS 內 · VATek MDK 提供 Private PSI 功能讓使用者能夠動態插入 PSI table · CHIP 需處在播放狀態 · 才能對 CHIP 進行 PSI table 的寫入與動態更新

vatek_broadcast_psitable_insert

PSI table 建立(Default mode)

若使用者無法自行新增 PSI table · VATek 提供 default PSI table 功能 · 內建部分 PSI table · 可以在不同國家的數位電視進行基本的掃台播放 · 但如有特殊 PSI table 需求 · 使用者亦須自行新增 PSI table · 使用如下:

停止廣播

如需要重新廣播(如播放 colorbar 換成 HDMI 輸入影片)·需要先停止原本的動作。使用如下:

4.3.4 MDK Porting 功能

VATEK 提供 I2C, GPIO, UART 介面移植功能·請參考 system 資料夾內的 vatek_porting_xxxx.c, 若使用不同 MCU 僅需將其介面新增到指定的 porting 檔案中,就能在不影響整體 code 的情況下成功將 MDK 移植到其他 MCU,以 vatek_porting_gpio.c 的 code 為例,使用者僅需將 MCU 對應的 GPIO 讀寫方法新增到下列功能內即可,MDK 預設使用 STM32F407 及 401

```
vatek_result vatek_porting_gpio_write(gpio_pin pin, uint8_t val)
   vatek_result result = vatek_result_success;
#if defined(STM32F407xx) || defined(STM32F401xC)
   if (val)
       HAL_GPIO_WritePin((GPIO_TypeDef*)pin.port, pin.index,
GPIO_PIN_SET);
   else
       HAL_GPIO_WritePin((GPIO_TypeDef*)pin.port, pin.index,
GPIO_PIN_RESET);
#endif
   return result;
vatek_result vatek_porting_gpio_read(gpio_pin pin, uint8_t *val)
   vatek_result result = vatek_result_success;
#if defined(STM32F407xx) | defined(STM32F401xC)
    *val = HAL_GPIO_ReadPin((GPIO_TypeDef*)pin.port, pin.index);
#endif
   return result;
```

4.3.5 建置 MDK 環境

以 STM32F401 開發版為例,所需軟硬體如下

軟體

MDK: VATek 提供之 MDK 程式碼

IDE:任何可開啟 STM cubeMX 建置環境的編碼工具,例如 Keil C

硬體

Demo board: VATek 的 B 系列晶片及 STM32F401 之 PCB 開發版並進行連接

PC:用來開啟 MDK 程式碼及載入韌體檔案

ST-Link:使用電腦對 STM PCB 進行韌體載入時需要的溝通介面

HDMI 介面的影音訊號輸入來源

建置說明

VATek MDK 提供以 Keil C 環境建置的編碼環境,放置於 project/broadcast 資料夾內,使用者可以 Keil C 應用程式開啟,專案內已先行編寫好廣播範例的程式碼,使用者僅需將程式碼載入至 MCU,並重置 MCU 及 B 系列 Demo Board,即可開始數位電視訊號播放,Sample code 以 polling 方式偵測輸入來源,若未偵測到 PHY 輸入的影音訊號則會輸出晶片內部的 COLORBAR 訊號來源。

4.3.6 MDK sample code 流程

4.4 API 功能說明

API 用來對暫存器進行讀寫,可以藉由讀取暫存器得知晶片狀態,以及對暫存器寫入指令來控制晶片。為使開發者能夠對 API 更加認識,以下提供所有 API 索引及簡要說明,若需進一步了解 HALREG 暫存器請參閱 HALREG MAP 說明文件。

4.4.1 系統通用 API

API name: vatek system gettick

描述:取得目前系統經過時間,以毫秒(ms)為單位,主要用來檢查晶片執行功

能是否在預期時間內

API name: vatek_system_delay

描述:系統延遲功能,以毫秒(ms)為單位,當部分模組功能需要時間準備時可

以使用該 API 進行延遲

API name: vatek_system_crc32

描述:取得 CRC 檢查參數

4.4.2 B 系列晶片 API(Broadcast)

此節 API 用來控制 B 系列晶片,用來寫入及讀取 B 系列晶片的暫存器

API name: vatek broadcast create

描述:初始化 B 系列晶片,進行廣播前的必要流程,主要用來啟動 I2C 介面溝

涌

API name: vatek broadcast destroy

描述:終止B系列晶片廣播服務

API name : vatek broadcast start

描述:開始 B 系列晶片廣播服務,設定好晶片必要的參數後即可進行廣播服

務,若設定不完全將導致開始廣播後產生錯誤

API name: vatek broadcast stop

描述:暫停 B 系列晶片廣播服務,主要只暫停廣播服務,RF 可以繼續輸出

API name : vatek broadcast reset

描述: 重置 B 系列晶片廣播設定, 藉由 I2C 介面進行硬體重置所有相關周邊及

參數

API name: vatek broadcast chipstatus

描述:取得 B 系列晶片當前狀態,主要分為 IDLE、RUNNING、FAIL 三種狀態

API name: vatek broadcast bcstatus

描述:取得 B 系列晶片廣播狀態

API name: vatek_broadcast_getinfo

描述:取得 B 系列晶片資訊,如韌體建立日期或外部周邊支援項目...等

API name: vatek_broadcast_encoder_setinputparm_phy

描述:使用 PHY 作為輸入訊號並設定輸入參數

API name: vatek broadcast encoder setinputparm logo

描述:使用晶片內部 source 作為輸入訊號,如自定義圖片或 COLORBAR

API name: vatek broadcast encoder setencodeparm

描述:設定影音編碼格式

API name: vatek_broadcast encoder setmuxparm

描述:設定影音訊號的 PID

API name: vatek_broadcast_encoder_setqualityparm

描述:VATek 提供影音編碼參數,設定值影響播放順暢度及畫質

API name: vatek broadcast tsmux setparm

描述:設定 PSI 模式, VATek 提供 PURE 及 Default 兩種模式, 並依照不同

PSI 模式須調整不同 HALREG 的設定值

API name: vatek broadcast modulator setparm

描述:設定調變制式參數,依照不同調變制式須調整不同暫存器的設定值

API name: vatek broadcast psitable register

描述:VATek 提供的 PSI PURE 模式中的靜態註冊方式,於晶片 IDLE 狀態時才能設定 PSI TABLE 並進行註冊寫入 PSI Table

API name : vatek broadcast psitable insert

描述: VATek 提供的 PSI PURE 模式中的動態註冊方式,於晶片廣播狀態時才

能設定 PSI TABLE 並寫入 PSI Table

API name: vatek_broadcast_psispec_default_init

描述:B系列晶片在 PSI Default 模式下取得記憶體位置並進行初始化

API name: vatek_broadcast_psispec_default_config

描述:B 系列晶片在 PSI Default 模式下設定 PSI table 參數,可以設定基本的

PSI table

API name : vatek broadcast psispec default start

描述:B系列晶片在 PSI Default 模式下將 PSI table 寫入 CHIP

API name : vatek broadcast userdata insert cc

描述: B 系列晶片提供寫入 CC 字幕功能

4.4.3 外部裝置相關 API

VATek MDK 提供 Demo board 使用的周邊裝置的 API·若開發者使用其他的外部裝置則須自行新增相關驅動及 API

PHY

由於 B 系列晶片需要影音訊號輸入來源·故 VATek MDK 提供部分影音輸入裝置的 API 如 EP9555E, EP9351, H1

API name: vatek phy_create

描述:初始化指定的前端影音訊號接收裝置

API name: vatek_phy_destroy

描述:終止指定的前端影音訊號接收裝置

API name: vatek phy enable

描述:在 B 系列 Demoboard 可選擇不同外部輸入裝置,因此需要指定前端輸

入裝置,才能接收到影音訊號

API name: vatek phy status

描述:取得前端輸入裝置的當前狀態

API name: vatek_phy_setvideoinfo

描述:設定前端輸入影像訊號格式如 h sync, v sync 等相關影像規格資訊

API name: vatek_phy_getvideoinfo 描述:取得前端輸入影像訊號資訊

API name: vatek_phy_getaudioinfo 描述:取得前端輸入聲音訊號資訊

API name: vatek_phy_getccdata

描述:取得前端輸入媒體的 CC 輔助字幕資訊

API name: vatek_phy_setoutputmode

描述:設定輸出模式,如 interlaced 或 progressive 格式

API name: vatek_phy_setbaseclk

描述:設定前端輸入的 clock, 依據 PAL 及 NTSC 區分

RF

API name: vatek rf create

描述:初始化 RF 裝置

API name: vatek rf destroy

描述:終止 RF 裝置

API name: vatek rf start

描述:開始 RF 輸出

API name: vatek rf stop

描述:暫停 RF 輸出

API name: vatek rf getstatus

描述:取得 RF 當前狀態