Отчёт о выполненной лабораторной работе №3.2.6 Изучение гальванометра

Выполнил:

Хмельницкий А.А., Б01-306

Цель работы: Изучение работы высокочувствительного зеркального гальванометра магнитоэлектпич системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: Зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

1 Определение динамической постоянной гальванометра

1.1 Установка

Рисунок 1: Схема установки для работы гальванометра в стационарном режиме

Вольтметр V измеряет постоянное напряжение U. Ключ K_3 меняет направление тока через гальванометр Γ . Делитель напряжения позволяет менять величину тока. Ключ K_2 служит для включения гальванометра. Кнопка K_1 успокаивает гальванометр. Магазин сопротивлений R позволяет менять режим работы гальванометра.

Ключ K_1 служит для успокоения гальваномета посредством его отключения от источника тока, что помогает избежать влияния внешних электрических шумов и колебаний на его показания. Это важно при измерении малых токов, где каждое колебание может привести к значительным ошибкам.

1.2 Гальванометр

Рисунок 2: Рамка с током в магнитном поле

Главной частью высокочувствительного гальванометра магнитоэлектрической системы является подвешенная на вертикальной нити рамка, помещённая в поле постоянного магнита (рис. 2). Вырез цилиндрической формы в полюсах магнита и ферромагнитный цилиндр на оси системы делают поле в зазоре радиальным. Скреплённое с рамкой зеркальце служит для измерения угла поворота рамки. Магнит и подвижная система заключены в защитный кожух. Запишем основное уравнение колебаний рамки:

$$\ddot{\phi} + 2\gamma\dot{\phi} + \omega_0^2\phi = KI \tag{1}$$

где введены обозначения: $2\gamma=\frac{(BSN)^2}{JR_\Sigma},~\omega_0^2=\frac{D}{J}, K=\frac{BSN}{J}.$ Эти величины выражены через параметры установки: B — магнитное поле, в которое помещена рамка, $I=\frac{\mathcal{E}}{R_\Sigma}$ — ток, текущий через рамку, R_Σ — сопротивление рамки и цепи, N — число витков рамки, S — площадь витка рамки, J — момент инерции системы, D — модуль кручения нити.

1.3 Теоретическая выкладка

При $R_1 \ll R$, R_0 , R_2 сила тока, протекающего через гальванометр, может быть вычислена как

$$I = \frac{R_1}{R_2} \frac{U_0}{R + R_0} \tag{2}$$

где U_0 - показания вольтметра, R_1/R_2 - положение делителя, R - сопротивление магазина, R_0 - внутреннее сопротивление гальванометра. Угол отклонения рамки от положения равновесия измеряется с помощью осветителя, зеркальца, укреплённого на рамке, и шкалы, на которую отбрасывается луч света от зеркальца. Координата х святового пятна на шкале связана с углом φ отклонения рамки формулой:

$$x = a \arctan 2\varphi \tag{3}$$

где а - расстояние от шкалы до зеркальца. При малых углах можно считать, что $\varphi=x/2a$. Динамическая постоянная:

$$C_I = \frac{I}{\varphi} = \frac{2aI}{x} \left[\frac{A}{\text{MM/M}} \right] \tag{4}$$

1.4 А. Обработка результатов

 $R1/R2=1/1000;\ R_0=610\pm 5\ {\rm Om};\ R_2=10\pm 0,1\ {\rm кOM};\ R=50\pm 0,5\ {\rm кOm};\ U_0=1,18\ {\rm B};\ a=1,35\ {\rm M}$ Измерив токи I, построим график зависимости I(x) для различных значений сопротивлений магазина R:

Рисунок 3: График зависимости I(x)

Тангенс угла наклона $tg\alpha = (0,095 \pm 0,007) \cdot 10^{-8} \frac{\text{A}}{\text{\tiny MM}}.$

$$\frac{\sigma_{C_I}}{C_I} = \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_{tg\alpha}}{tg\alpha}\right)^2} \approx 0,07$$

Подставляя значения в формулу (4), находим значения по формуле – $C_I=2a\ {
m tg}\alpha$ Динамическая постоянная:

$$C_I = 2,6 \pm 0,2 \quad \left[\frac{\text{HA}}{\text{MM/M}}\right]$$

Чувствительность к току:

$$S_I = C_I^{-1} = 0,38 \pm 0,03 \quad \left[\frac{\text{MM/M}}{\text{HA}} \right]$$

2 Определение критического сопротивления гальванометра

2.1 Теоретическое выкладка

Критическим сопротивлением баллистического гальванометра называется сопротивление его электрической цепи $R_{\rm kp}$, при котором после начального толчка подвижная система почти экспоненциально возвращается к нулю, подчиняясь уравнению:

$$R_{\rm \kappa p} = R_{\rm \Sigma \kappa p} - R_0 = \frac{(BSN)^2}{2\sqrt{DJ}} - R_0$$
 (5)

На практике критический режим, требующий строгого выполнения условия $\gamma = \omega_0$, не может быть точно реализован и имеет значение как пограничный между режимом затухающих колебаний $(\gamma < \omega_0)$ и режимом апериодического затухания $(\gamma > \omega_0)$

В качестве характеристики процесса затухания колебаний рамки гальванометра воспользуемся логарифмическим декрементом затухания:

$$\Theta = \gamma T_1 = \ln \frac{x_n}{x_{n+1}} \tag{6}$$

где x_n и x_{n+1} - два последовательных отклонения колеблющейся величины в одну сторону. Измеряя зависимость $\Theta(R)$ логарифмического декремента затухания от сопротивления внешней цепи R, можно найти критическое сопротивление $R_{\rm kp}$ Используя,

$$\Theta = \gamma T_1 = \frac{(BSN)^2}{2JR_{\Sigma}} \cdot 2\pi \left[\frac{D}{J} - \frac{(BSN)^4}{(2JR_{\Sigma})^2} \right]^{-1/2}$$

Приведём к виду:

$$\left(\frac{2\pi}{\Theta}\right)^2 + 1 = \frac{(2JR_{\Sigma})^2}{(BSN)^4} \cdot \frac{D}{J}$$

подставим в формулу (5) и получим:

$$R_{\rm \kappa p} = \frac{R + R_0}{\sqrt{\left(\frac{2\pi}{\Theta}\right)^2 + 1}} - R_0 \tag{7}$$

или

$$\sqrt{\frac{4\pi^2}{\Theta^2} + 1} = \frac{R + R_0}{R_{\text{KD}} + R_0} \tag{8}$$

2.2 Б. Обработка результатов

Установим сопротивление, при котором зайчик отклонится почти на всю шкалу:

$$R = 5,00 \pm 0,05 \text{ kOm}$$

Зайчик при этом отклонился на $x_1 = 18, 6 \pm 0, 2$ см и $x_2 = 15, 3 \pm 0, 2$ см

Рассчитаем логарифмический декремент затухания Θ_0 по формуле (6):

$$\Theta_0 = 0.196 \pm 0.017$$

Период T_0 свободных колебаний рамки:

$$T_0 = 3.71 \pm 0.07 \text{ c}$$

Рассчитаем декремент затухания Θ при:

$$R_1/R_2 = 1/300$$
 — положение делителя

$$R_{
m kp} = 7,800 \pm 0,078 \ {
m кOm} - {
m критическое}$$
 споротивление

$$R = 3 \cdot R_{\text{kp}} = 23,40 \pm 0,23 \text{ кОм}$$

из формулы (6) он получается равным:

$$\Theta = 1,65 \pm 0,01$$

Теперь рассчитаем Θ по формуле (6) для других значений R, увеличивая его с $3R_{\rm kp}$ до $10R_{\rm kp}$ и подставим в формулу (7) (см. Таблица 1 в приложении).

Найдём $R_{\rm kp}$, посчитав истинное среднее с помощью распределения Стьюдента:

$$R_{\rm kp} = \langle R_{\rm kp} \rangle \pm A \frac{\sigma_R}{\sqrt{N}} \tag{9}$$

где A = 2,015 - коэффициент Стьюдента, $\langle R_{\rm kp} \rangle = 5,86$ кОм - среднее арифмитическое $R_{\rm kp}$; $\sigma_R = 0,13$ кОм - среднеквадратичное отклонение. N = 15. Получаем ответ:

$$R_{\rm kp} = 5,86 \pm 0,06 \ {
m kOm}$$

3 Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме

3.1 Схема

Рисунок 4: Схема установки для определения баллистического постоянной

Система ключей устрона так, что нормально ключ K_2 замкнут, а ключи K_3 и K_4 разомкнуты. При нажатии на кнопку K_0 сначала размыкается ключ K_2 , затем K_3 и через некоторые время - K_4 . При нормальном положении кнопки K_0 конденсатор C заряжается до напряжение U_C и получается заряд q:

$$U_C = \frac{R_1}{R_2} U_0 \quad q = C U_C = \frac{R_1}{R_2} U_0 C$$

При нажатии на ключ K_0 конденсатор отключается от источника постоянного напряжения (размыкается ключ K_2) и подключается к гальванометру (замыкается ключ K_3).

3.2 Теоретическая выкладка

Ёмкость конденсатора выбрана так, что к моменту замыкания ключа K_4 весь заряд успевает пройти через гальванометр, и рамка получает начальную скорость $\dot{\varphi}(\tau) = Kq$. При этом можно считать, что отклонение рамки, происходящее за время, протекающее между замыканием ключей K_3 и K_4 , равно нулю. При замыкании ключа K_4 гальванометр шунтируется внешним сопротивлением R, и в зависимости от величины этого споротивления движение рамки описывается одним из следующих уравнений:

При $\gamma < \omega_0$ (колебательный режим):

$$\varphi(t) = \frac{\dot{\varphi}_0}{\omega_1} e^{-\gamma t} \sin \omega_1 t, \qquad \omega_1 = \sqrt{\omega_0^2 - \gamma^2}$$
(10)

Когда $\gamma \ll \omega_0$ (малое затухание), $\omega_1 \approx \omega_0$, движение рамки близко к синусоидальному:

$$\varphi(t) = \frac{\dot{\varphi}_0}{\omega_0} \sin \omega_0 t \tag{11}$$

При $\gamma = \omega$ (критический режим):

$$\varphi(t) = \dot{\varphi}_0 t e^{-\gamma t} \tag{12}$$

При $\gamma > \omega_0$ (случай переуспокоенного гальванометра):

$$\varphi(t) = \frac{\dot{\varphi}_0}{\alpha} e^{-\gamma t} sh\alpha t \qquad \alpha = \sqrt{\gamma^2 - \omega_0^2}$$
(13)

Первый отброс зайчика φ_{max} после нажатия на кнопку K_0 зависит от сопротивления внешней цепи, подключённой к гальванометру. Для определения $R_{\rm kp}$ использует то обстоятельство, что в кртичическом режиме максимальное отклонение зайчика в e раз меньше, чем у гальванометра без затухания

$$\dot{\varphi}\big|_0^{\tau} + 2\gamma\varphi\big|_0^{\tau} + \omega_0^2 \int_0^{\tau} \varphi \, dt = Kq, \tag{14}$$

$$\dot{\varphi}(\tau) = Kq \tag{15}$$

Наблюдать колебания рамки при полном отуствии затухания невозможно. Величину максимального отклонения рамки гальванометра без затухания φ_{max}^{cB} можно, однако, рассчитывать, если при разомкнутой цепи измерить реальное максимальное отклонение рамки φ_0 и логарифмический декремент затухания Θ_0 (При $R=\infty$ величина Θ_0 определяется только внутренним трением в рамке). Из уравнений (5) и (9) при $\gamma \ll \omega_0$ вытекают равенства:

$$\varphi_0 = \varphi(T_1/4) = \varphi_{max}^{\text{CB}} e^{-\Theta_0/4},\tag{16}$$

так что максимальное отклонение рамки гальванометра без затухания

$$\varphi_{max}^{\text{\tiny CB}} = \varphi_0 e^{\Theta_0/4} \approx \varphi_0 \left(1 + \frac{\Theta}{4} \right) \tag{17}$$

Баллистическая постоянная гальванометра $C_q^{\text{кр}}\left[\frac{\mathrm{K}_{\pi}}{\mathrm{MM/M}}\right]$ определяется при критическом сопротивлении ($\mathrm{R}=R_{\mathrm{Kp}}$):

$$C_q^{\text{Kp}} = \frac{q}{\varphi_{max}^{\text{Kp}}} = 2a \frac{R_1}{R_2} \frac{CU_0}{x_{max}^{\text{Kp}}}$$

$$\tag{18}$$

где $x_{max}^{\text{кр}}$ - величина первого отброса в критическом режиме, выраженная в делениях шкалы (мм), а - расстояние от зеркальца до шкалы (м), CU_0 - заряд (Кл).

3.3 В. Обработка результатов

$$C=2$$
 мк Φ ; $R_1/R_2=1/20$; $x_{max}=197\pm 2$ мм (при $R=\infty$); $T=3,714\pm 0,148$ с

Построим график зависисмости отклонения гальванометра от суммарного сопротивления:

Найдём величину $x_1 = x_{max} \cdot e^{\Theta_0/4} = 20,68$ см. Величина в е раз меньшая, это $x_e \approx 7,60$ см. С помощью графика видим, что эта величина соответствует значению $\frac{1}{R+R_0} = (200.072 \pm 14,001) \cdot 10^{-6} \text{ Ом}^{-1}$, получаем:

$$R = 4,38 \pm 0,30$$
 кОм

Сравнивая $R_{\rm kp}=4,38$ кОм для баллистического режима с $R_{\rm kp}=5$ кОм, получившегося подбором и $R_{\rm kp}=5,86$ кОм, получившегося путём рассчёта логарифмических декрементов для различных R, приходим к выводу, что они пересекаются с погрешностью в 14%. Такая большая погрешность может быть связана с неточностью измерений углов поворота рамки. Теперь найдём баллистическую постоянную по формуле (18):

$$C_q^{\text{кр}} = 7,24 \text{ Kл}$$

Посчитаем погрешность по формуле:

$$\sigma_{C_q^{\mathrm{Kp}}} = C_q^{\mathrm{Kp}} \sqrt{\left(\frac{\sigma_U}{U_0}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_{x_e}}{x_e}\right)^2} = 0,03 \cdot 10^{-6} \, \, \mathrm{K}$$
л

Получаем:

$$C_q^{\text{KP}} = (7, 24 \pm 0, 03) \cdot 10^{-6} \text{ K}_{\text{J}} = (7, 24 \pm 0, 03) \cdot 10^{-3} \frac{\text{K}_{\text{J}}}{\text{MM/M}}$$

Посчитаем период релаксации и сравним с периодом свободных колебаний:

$$\tau = R_0 C \approx 4,42 \pm 0,04 \text{ MC}$$

$$\frac{T}{\tau} \approx (0.84 \pm 0.03) \cdot 10^3$$

4 Вывод

- 1. В этой работе мы исследовали работу гальванометра в трех режимах: стационарном, баллистическом и при свободных колебаниях. Мы измерили критическое сопротивление контура $R_{\rm kp}$ тремя способами и выявили высокую погрешность измерения в 14%, что может быть связано с фактором недостаточной точности измерения отклонений 'зеркальца', электрических шумов, невозможности моментально погасить инерцию отклоняющегося гальванометра.
- 2. В ходе работы также нашли динамическую постоянную гальванометра: $C_I = 2,6\pm0,2\left[\frac{\text{нA}}{\text{мм/м}}\right]$, которая определяет количество электричества, при протекании которого через рамку последняя повернётся на угол, равный 1 радиану.

Баллистическую постоянную: $C_q^{\text{кр}} = (7, 24 \pm 0, 03) \cdot 10^{-3} \left[\frac{\text{Кл}}{\text{мм/м}} \right]$, которая показывает, какой заряд (в кулонах) протекает через рамку при смещении светового "зайчика" на одно деление шкалы.