

Model Evaluation

- Supervised Learning
 - interested in predicting the outcome variables for new records
 - predicted numeric value
 - predicted class membership
 - propensity

Judging Classifier Performance

- The need for performance measures
 - A natural criterion
 - a classifier is the probability of making a misclassification error

Judging Classifier Performance

- Is there a minimal probability of misclassification that we should require of a classifier?
 - benchmark
 - the naïve rule
 - classify as belonging to the most prevalent class
 - class separation

Model Evaluation Techniques for the Classification Task

- Classification matrix
 - confusion matrix

		Predict	ed Category	
		0	1	Total
	0	True Negatives: Predicted 0 Actually 0	False Positives: Predicted 1 Actually 0	Total Actually Negative
Actual Category	1	False Negatives: Predicted 0 Actually 1	True Positives: Predicted 1 Actually 1	Total Actually Positive
	Total	Total Predicted Negative	Total Predicted Positive	Grand Total

		Predicted	Category	
Actual		≤ 50K	> 50K	Total
	≤ 50K	18,197	819	19,016
Category	> 50K	2561	3423	5984
	Total	20,758	4242	25,000

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS			
Class=Yes Clas				
ACTUAL CLASS	Class=Yes	a	b	
	Class=No	G	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Error Rate =
$$\frac{b+c}{a+b+c+d}$$

Accuracy and Overall Error Rate

- Accuracy
 - represents an overall measure of the proportion of correct classifications being made by the model, while overall error rate measures the proportion of incorrect classifications, across all cells in the contingency table

$$Accuracy = \frac{a+d}{a+b+c+d} = 1 - Error$$

Computation

Model M ₁	PREDICTED CLASS				
		+	-		
ACTUAL CLASS	+	150	40		
OLAGO	-	60	250		

Accuracy = 80%

Model M ₂	PREDICTED CLASS					
		+	-			
ACTUAL CLASS	+	250	45			
CLAGO	-	5	200			

Accuracy = 90%

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Limitation of Accuracy

- Propensities and cutoff for classification
 - cutoff value set by the analyst
 - two-class classifier -> default cutoff $\rightarrow 0.5$
 - a cutoff can be either higher or lower

ID	Actual Class	Probability of Class "Owner"	ID	Actual Class	Probability of Class "Owner"
1	Owner	0.9959	13	Owner	0.5055
2	Owner	0.9857	14	Nonowner	0.4713
3	Owner	0.9844	15	Nonowner	0.3371
4	Owner	0.9804	16	Owner	0.2179
5	Owner	0.9481	17	Nonowner	0.1992
6	Owner	0.8892	18	Nonowner	0.01494
7	Owner	0.8476	19	Nonowner	0.0479
8	Nonowner	0.7628	20	Nonowner	0.0383
9	Owner	0.7069	21	Nonowner	0.0246
10	Owner	0.6807	22	Nonowner	0.0218
11	Owner	0.6563	23	Nonowner	0.0161
12	Nonowner	0.6224	24	Nonowner	0.0031

Limitation of Accuracy

• Why would we want to use cutoff value different from 0.5 if they increase the misclassification rate?

Sensitivity and Specificity

- Sensitivity measures the ability to detect the important class members correctly
 - the percentage of C1 members classified correctly

Sensitivity =
$$\frac{a}{a+b}$$

- Specificity measures the ability to rule out C2 members correctly
 - the percentage of C2 members classified correctly

Specificity =
$$\frac{d}{c+d}$$

False Positive Rate and False Negative Rate

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	a	b	
	Class=No	C	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

• False Positive Rate and False Negative Rate are additive inverses of sensitivity and specificity

False Positive Rate = 1 - Specificity =
$$\frac{c}{c+d} = \frac{FP}{FP+TN}$$

Flase Negative Rate = 1 - Sensitivity = $\frac{b}{a+b} = \frac{FN}{TP + FN}$

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots sensitivity (on the y-axis) against False Positive Rate (1-specificity) (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve A common metrics area under curve 0.9 (AUC) which ranges from 1 0.7 (perfect 0.6 0.5 discrimination between classes) _ 0.4| to 0.5 (no better that the naïve 0.3 rule) 0.1 0.4 0.5 0.6 False Positive 0.7 0.8 0.9

