

ANALYSIS METHODS FOR EXPLOSIVE MATERIALS I. POLYNITRO COMPOUNDS

BY ELEONORE G. KAYSER
RESEARCH AND TECHNOLOGY DEPARTMENT

3 MARCH 1982

Approved for public release, distribution unlimited.

SEP 20 1982

DITE FILE COPY

NAVAL SURFACE WEAPONS CENTER

Dehigren, Virginia 22448 • Silver Spring, Maryland 20010

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Page Enlared)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
		3. RECIPIENT'S CATALOG NUMBER			
NSWC TR 81-123	AD-A 119 397	<u> </u>			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED			
ANALYSIS METHODS FOR EXPLOSIVE MA	TERIALS -	Final Report			
I. POLYNITRO COMPOUNDS		4. PERFORMING ORG, REPORT NUMBER			
7. AUTHOR(s)		S. CONTRACT OR GRANT NUMBER(s)			
N. NO INCIDEN		a. COM I AND CON BUILDE IN STREET IN STREET IN STREET			
Eleonore G. Kayser					
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Naval Surface Weapons Center	·	OR11;RJ;NO1			
White Oak, Silver Spring, Maryland	20910	OKITANGANOI			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
		3 March 1982			
		13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	18. SECURITY CLASS. (of this report)			
		UNCLASSIFIED			
		184. DECLASSIFICATION/DOWNGRADING			
		SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)					
Approved for public release; distr	ibution unlimit	od			
hpproved for public releases also.	IDUCTOR GILLING	64.			
17. DISTRIBUTION STATEMENT (of the abstract entered i	in Black 20. If different fre	um Mannet)			
We will make that a to be such that the end of the section .	III Aliven Evy to witterent to	in report			
18. SUPPLEMENTARY NOTES	·				
19. KEY WORDS (Continue on reverse side it necessary and Polynitro Aromatics	d identify by block number))			
Thermally Stable Explosives					
Explosives					
20. ABSTRACT (Continue on reverse side if necessary and	I Idantifu hu klack number)				
A high pressure liquid chromatogra	aphy method was	developed for rapid and			
quantitative chemical analysis of	the following t	hermally stable explosive			
materials: DATB, DINA, DIPAM, DNT ONT, PA, PETN, PYX, RDX, TATB, TET					
glossary). Additional chemical ch					
carried out by Nuclear Magnetic Re	esonance Spectro	scopy and by Thin Layer			
Chromatography, Dimethylsulfoxide compounds in this investigation.	was used as the	e common solvent for all the			

DD 1 FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FOREWORD

This report describes quantitative analytical techniques that can be used for several thermally stable explosives (e.g. TATB, HNS, ONT, NONA, DODECA, TNN, PYX, TPT, etc.) and related compounds. This work is currently being sponsored by the Lyndon B. Johnson Manned Spacecraft Center, Task NASAR12RB, and the Strategic Systems Projects Office, Task B00035B001, R12GC. The identification of vendors and/or products implies neither endorsement nor criticism by the Naval Surface Weapons Center.

J. F. PROCTOR By direction

Acces	ssion For	/				
NTIS	GEA&I					
DITE	TAB					
Union	nounced []					
Just!	Justification					
j	and the first of the second consequences					
By .						
Dist	clbution/					
Avai	Hubility Codes					
-	Avail and/or					
Dist	Special					
A						
H	1					
/ / •						

CONTENTS

INTRODUC	TION .	•			•	•	•	•		•	•	•	•	•	•	•		•	•	•			•	•	•	•	Page 1
EXPERIME	NTAL .	•			•	•	•			•		•	•	•	•						•		•	•	•	•	3
MATERI CALCUL HPLC C NMR CO TLC CO	ATIONS ONDITI NDITIO	ONS ONS	•	ION	is.	•	•	•	• •	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	3 3 3 4
RESULTS	AND D	SCU	SSIO	Ν.		•	•	•		•		•	•	•		•		•	•	•	,	•	•	•	•	•	4
Figure 1 2	HPLC HPLC								4 C	OM	POI OMI	NEI	NEN	MI	XT			Ė	•	•	•	•	•	•	•	•	<u>Page</u> 5 6
<u>Table</u>																											Page
1 2 3 4 5 6	HPLC HPLC HPLC H - NN TLC [MELT]	DAT. DAT. IR D. DATA	A OF A OF ATA OF	EXF	(PL) (PL) EXI PLO:	OSI OSI PLO SIV	VE VE SI E	CO VE CO	OMP OMP CO MPO	OU OU MP UN	ND: ND: OUI DS	S. S. NDS	S. OMP		: : : DND	: :	•		•		• • • • • • • • • • • • • • • • • • • •			• • • • • • •	•	•	7 8 9 10 11 12

INTRODUCTION

The importance of heat resistant and insensitive high explosive compounds is increasing, since new weapons warheads are being sought that can withstand a higher degree of aerodynamic heating and that have a lower vulnerability to accidental initiation. A series of high temperature resistant explosives, most of which were first prepared or evaluated at NSWC, are shown in the glossary. Typical examples are: TATB, PYX, ONT, DATB, HNS, NONA, DODECA, AND TPT. Relatively few of the presently used common explosive materials can withstand temperatures above 200°C without melting and/or decomposition, whereas the compounds of this investigation are stable and can be used in the temperature range of $230^{\circ}\text{-}350^{\circ}\text{C}$.

In the past, there has not been any single chemical analysis method for all of these relatively insoluble heat-resistant explosives. However, this report describes a practical high performance liquid chromatographic (HPLC) analysis procedure that provides good accuracy and reproducibility. Additional information is provided on the chemical characterization of these explosive compounds by nuclear magnetic resonance spectroscopy (NMR) and by thin layer chromatography (TLC). The melting points of all of the materials are also reported.

The HPLC method described in this report uses the Waters Associates Radial Compression Separation System (RCSS). The RCSS consists of two components: a radial-Pak cartridge containing reverse phase C-18 column packing and a Model RCM-100 module that compresses the Radial-Pak cartridge. Using this system, a quantitative assay ($\pm 2\%$) is achieved for all of the twenty-four explosive compounds investigated.

Previously reported assay methods for the insensitive high explosive TATB include spectrophotometric determinations using ethylenediamine (EDA) 1 , tetraethylammoniumhydroxide (TEAH) 2 , 3 ,

¹ Glover. D. J. and Kayser. E. G., Anal. Chem., Vol. 40, 1968, p. 2050.

² Sawicki, E. and Stanley, T. W., Analyt, Chem. Acta, Vol. 23, 1960, p. 551.

³ Selig, W., "Spectrophotometric Determination of Some Nitro and Nitroso Derivatives of Diphenylamine in N.N-Dimethylformamide," Lawrence Livermore Laboratory (LLL) Report, UCRL-6903, May 1963.

dimethylsulfoxide $(DMSO)^4$, and sulfuric acid⁵, as well as a liquid chromatography-spectrophotometric method⁶. Spectrophotometric methods of analysis^{1,7} have also been reported for HNS, DODECA, NONA, ONT, HNBP, TNN, TNB, HNBiB, TPT, PYX, and DNT as well as HPLC procedures⁸⁻¹⁴ for HNS, HNBiB, TNT, TNB, RDX, HMX, PA, TNA, DNT and TATB.

⁴ Selig, W., "Photometric Determination of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) in Dimethylsulfoxide (DMSO)," Lawrence Livermore Laboratory Report, UCID-17542, July 1977.

⁵ Ungnade, H. E., "1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) - Preparation and Purification,".Los Alamos National Laboratory (LANL) Report, GMX-2-R-64-1, 1963, pp. 10-11.

⁶ MacDougall, C. S., "A Liquid Chromatographic-Spectrophotometric Assay for TATB in TATB," in Quarterly Progress Report, Mason & Hanger-Silas Mason Co., Inc., Partex Plant (MHSMP), MHSMP-77-18, Jan-Mar 1977.

⁷ Kilmer, E. E., "A Characterization Study of Several Heat Resistant Explosives," NOLTR 74-177 Oct 1974.

⁸ Kayser, E. G. and Buriinson, N. E., "Analysis of Water and Soil Scaples from 'Fate of ¹⁴C Labelled Explosive Compounds in Soil Study," Final Report from the Naval Surface Weapons Center, White Oak, submitted to the U.S. Army Medical Bioengineering R & D Lab. (USAMBRDL), Fort Detrick, Md., MIPR No. 9952, Jan-Dec 1979.

⁹ Kayser, E. G., "Analysis of 2,2',4,4',6,6'-Hexanitrostilbene (HNS) by High Performance Liquid Chromatography," NSWC/WOL TR 77-154, 14 March 1978.

¹⁰ Kayser, E. G., "An Investigation of the Shipp Hexanitrostilbene (HNS) Process," NSWC TR 80-111, 25 Aug 1980.

¹¹ schaffer, C. L., "HNS Analysis," Mason & Hanger-Silas Mason Co., Inc., Pantex Plant, MHSMP-75-50, Oct-Dec 1974.

Stanford, Jr., T. B., "Determination of Tetryl and 2,3-,2,4-,2,5-,2,6-,3,4-, and 3,5-Dinitrotoluene Using High Performance Liquid Chromatography," Final Report, from Battelle Columbus Laboratories, Columbus, Ohio, submitted to the U.S. Army Research and Development Command, Washington, D.C., Contract No. DAMD-17-74-C-4123, 31 Jan 1977.

Schaffer, C. L., "Analysis of TATB by HPLC," Mason & Hanger-Silas Mason Co., Inc., Pantex Plant, MHSMP-78-65, 1978.

¹⁴ Krull, I. S. and Camp, M. J., American Laboratory, May 1980, pp. 63-73.

EXPERIMENTAL

MATERIALS AND SOLUTIONS. Most of the explosive compounds used in this investigation are not commercially available and were therefore synthesized in the Synthesis and Formulations Branch. The exceptions were PYX and DIPAM which were obtained from Los Alamos National Laboratory (LANL) and from Northrop Carolina Co., Inc. respectively.

The solubility 15 of the less soluble compounds such as TATB, HNS, DODECA, NONA, PYX, TPT, and HMX was quantitatively determined in methanol, dimethylsulfoxide, dimethylformamide, and n-methylpyrrolidone. Although the dimethylformamide and n-methylpyrrolidone proved to have a greater solvent capacity for several of the explosive materials (TATB, HMX, and TPT), all of the compounds had sufficient solubility in DMSO at ambient temperature so that HPLC, NMR, and TLC data could be accurately obtained with this solvent. An HPLC trace of several neat DMSO samples indicated the presence of two small impurity peaks with a retention time of approximately 3.0-3.2 minutes (methanol: water, 70:30) which could have interfered with the peak height calculations of several of the explosives at the low concentration limits. Therefore all the DMSO used in this study was passed through a column of activated charcoal which removed over 95% of the impurities.

<u>CALCULATIONS</u>. The concentration of each explosive material was initially determined by peak area as well as peak height. Using the RCSS unit, the percentage accuracy of the area method was found to be equivalent to that of the peak height method, therefore for simplicity reasons, the latter method was used for all the analyses.

HPLC CONDITIONS. A high-performance liquid chromatograph (Waters Associates Model ALC 202) equipped with a 254 nm wavelength detector, a solvent delivery system (Model 6000), and a U6K high pressure loop injector was used with a Model RCM-100 module containing a reverse-phase C-18 Radial-Pak cartridge. Sample solutions were eluted isocratically at ambient temperature. Column flow was 2.0 ml/minute, with a mobile phase consisting of the following mixtures of HPLC grade methanol and distilled water: $40:60 \ (v/v)$, $50:50 \ (v/v)$, and $70:30 \ (v/v)$. The solvent mixtures were not degassed prior to use in the HPLC and sample injections of 2 to 10 microliters were used.

NMR CONDITIONS. Proton NMR spectra were obtained on a Varian XL-200 spectrometer. The chemical shift values (δ) were determined relative to the reference compound tetramethylsilane (TMS). The NMR solvent used was dimethylsulfoxide-d6 (99.5 atom % D), since it proved to be the best general solvent for all twenty-four compounds investigated.

¹⁵ Sitzmann, M. E., Foti, S. and Misener, C. C., "Solubilities of High Explosives-Removal of High Explosive Fillers from Munitions by Chemical Dissolution," NOLTR 73-186, 21 Nov 1973.

TLC CONDITIONS. Thin layer chromatographic analyses of all the compounds reported used benzene as the developing solvent. In several cases where the samples did not chromatograph (e.g. HMX, PETN, TATB, TNN) methanol was also tried as the developing solvent.

The adsorbent used was Merck Silica Gel HF-254 coated on glass plates. A short wave UV lamp (2537Å) was used for spot visualization.

RESULTS AND DISCUSSION

For the quantitative analysis of the explosive compounds by HPLC, DMSO solutions were used. Figure I shows the separation of a fourteen component synthetic mixture. Ten of the materials RDX, TATB, TNB, DATB, TETRYL, TNN, TNT, DNT, HNS, and DIPAM are completely resolved, two components HMX and PYX are partially resolved, and only TPT and HNBiB remain unresolved. Another HPLC chromatogram of a four component synthetic mixture containing three of the impurities9-11.16 (TNB, TNT, HNBiB) found in several production grade samples of HNS-I is shown in Figure 2. The average retention time (minutes), average response factor (mm/mg), solution concentration (Molar), and approximate limit of detection (micrograms/ml) for all the explosive compounds studied are given in Tables 1, 2 and 3. From the peak height responses reported in Tables 1, 2 and 3, the detection limit for all the materials was calculated to be 15 mm on scale 0.005 absorbance units full scale (3x10-4AUFS). This limit was set assuming a signal to noise ratio of 5.

The ^1H NMR spectra of all the compounds were determined using DMSO-d₆ as the solvent. Deuterated benzene (C₆D₆) was also used as a sample solvent since peak overlap in the case of DATB, and H+D exchange of the OH in PA was noted in the DMSO. The pulse sequence was repeated four times and the signals time-averaged for all the compounds with the exception of TATB. In the case of TATB, the pulse sequence was repeated 5000 times, because of the low solubility, and the resulting signals time-averaged. The NMR data are reported in Table 4.

For the thin layer chromatographic analyses the glass plates were prepared according to the method of Hoffsommer 17 using Merck Silica Gel HF 254 as the adsorbent. This material contains a flourescent indicator which allows location of the developed spots with 2540% light. The developing solvents used were benzene and methanol $\rm R_f$ values were obtained for all the explosive compounds with the exception of HMX, TATB, PETN and TNN. The data are recorded in Table 5.

The melting points of most of the explosive compounds of this investigation were determined with a Thomas Hoover Capillary Melting Point Apparatus, with a heating rate of approximately 20/minute. All temperatures measured are uncorrected. In addition, melting point data from the literature are cited. The melting points are listed in Table 6.

¹⁶ Stull, T. W., "Synthesis of High Purity Hexanitrostilbene," Mason & Hanger-Silas Mason Co., Inc., Pantex Plant, MHSMP-75-37, Sep 1975.

¹⁷ Hoffsommer, J. C. and McCullough, J. F., <u>J. Chromatog.</u>, Vol. 38, 1968, p.508.

FIGURE 1 HPLC CHROMATOGRAM OF A 14 COMPONENT MIXTURE

FIGURE 2 HPLC CHROMATOGRAM OF A FOUR COMPONENT MIXTURE

TABLE 1 HPLC DATA OF EXPLOSIVE COMPOUNDS

COMPOUND	AVERAGE RETENTION TIME (minutes)	AVERAGE RESPONSE FACTOR (peak height mm/mg)	DMSO SOLN CONC (moles/liter)	APPROX LIMIT OF DETECTION ^a (micrograms/mi; ppm)
DMSO	1,8	-	_	
НМХ	2.8	_	_	
PETN	21.2	4.5 x 10 ³	10 ⁻² - 10 ⁻³	3332
PYX	9,6	1.1 x 10 ⁶	10 ⁻⁴ - 10 ⁻⁸	13.4
RDX	5,8	esia.	-	-
TATB	7.4			-
TPT	80.0	1.7 x 10 ⁵	10 ⁻⁴ · 10 ⁻⁵	87.5

CONDITIONS:

Isocratic elution

Detector wavelength, 254 nm

Column: Radiai-PAK A with the RCM-100 Radial Compression Module

Flow rate: 2.0 ml/minute

Mobile phase: 40% MeOH/60% H₂O by volume

Chart speed: 0.5 cm/minute

a From the peak height responses given, the detection limit for all the explosive compounds was calculated to be 15 mm on scale 0.005 absorbance units full scale (3 x 10⁻⁴ AUFS). This limit was set assuming a signal/noise ratio of 5.

TABLE 2 HPLC DATA OF EXPLOSIVE COMPOUNDS

COMPOUND	AVERAGE RETENTION TIME (minutes)	AVERAGE RESPONSE FACTOR (peak height mm/mg)	DMSO SOLN CONC (moles/liter)	APPROX LIMIT OF DETECTION ⁸ (micrograms/ml; ppm)
DATB	5,5	2.77 ± 0.01 x 10 ⁶	10 ^{.4} · 10 ^{.5}	5.4
DINA	4,1	1.82 <u>+</u> 0.04 x 10 ⁶	10 ⁻⁴ · 10 ⁻⁶	8,2
DMSO	1.6	-	~	-
DIPAM	16.1	1.55 x 10 ⁶	10 ⁻⁴ - 10 ⁻⁶	9.7
DNT	11.6	4.37 x 10 ⁶	10 ⁻⁴ · 10 ⁻⁶	3.4
HNAB	9.2	9.5 ± 0.06 x 10 ⁵	10 ⁻⁴ - 10 ⁻⁶	~ 15
HNBIB	22.8	2,41 x 10 ⁶	10 ⁻⁴ · 10 ⁻⁶	9,9
HNS	14.2	2.31 x 10 ⁶	10 ⁻⁴ · 10 ⁻⁶	6.5
нмх	2.0	4.77 × 10 ⁶	10 ^{.4} · 10 ^{.6}	3.1
PA	8.0	8.98 ± 0.05 x 10 ⁷	10 ⁻⁴ · 10 ⁻⁸	0.2
PETN	12.0	1.31 ± 0.03 × 10 ⁴	10 ⁻² - 10 ⁻³	1236
PYX	2.1	4.04 <u>+</u> 0.06 x 10 ⁶	10 ^{.4} · 10 ^{.5}	3.7
RDX	3.4	4.35 ± 0.04 × 10 ⁸	10 ⁻⁴ - 10 ⁻⁸	3,5
TATB	4.0	$3.62 \pm 0.04 \times 10^{8}$	10 ^{.5} · 10 ^{.7}	4.1
TETRYL	5.8	4.42 × 10 ⁶	10 ^{.4} - 10 ^{.6}	3,4
TNA	6.8	$2.6 \pm 0.04 \times 10^{6}$	10 ⁻⁴ - 10 ⁻⁶	5.8
TNB	5.3	4.97 × 10 ⁶	10 ^{.4} - 10 ^{.7}	3,0
TNN	7.0	2,12 <u>+</u> 0.08 x 10 ⁶	10 ⁻³ - 10 ⁻⁵	7.3
TNT	7.8	4.74 x 10 ⁶	10 ^{.4} - 10 ^{.6}	3.1
TPT	22.9	1.32 <u>+</u> 0.01 x 10 ⁶	10 ^{.4} · 10 ^{.5}	11.4

CONDITIONS:

Isocratic elution

Detector wavelength, 254 nm

Column: Radial-PAK A with the RCM-100 Radial Compression Module

Flow rate: 2.0 ml/minute

Mobile phase: 50% MeOH/50% H₂O by volume

Chart speed: 0.5 cm/minute

a From the peak height responses given, the detection limit for all the explosive compounds was calculated to be 15 mm on scale 0.005 absorbance units full scale (3 \times 10⁻⁴ AUFS). This limit was set assuming a signal/noise ratio of 5.

TABLE 3 HPLC DATA OF EXPLOSIVE COMPOUNDS

COMPOUND	AVERAGE RETENTION TIME (minutes)	AVERAGE RESPONSE FACTOR (peak height mm/mg)	DMSO SOLN CONC (moles/liter)	APPROX LIMIT OF DETECTION [®] (micrograms/ml; ppm)
DIPAM	3.3	$7.36 \pm 0.06 \times 10^6$	10 ⁻⁴ - 10 ⁻⁶	2.0
DMSO	1.5	_	_	_
DNT	3.7	1.19 × 10 ⁷	10 ⁻⁴ · 10 ⁻⁶	1.3
DODECA	6.7	4.81 ± 0.03 x 10 ⁶	10 ^{.5} - 10 ^{.7}	3.1
HNBIB	3.9	9.72 ± 0.03 × 10 ⁶	10 ⁻⁴ · 10 ⁻⁶	1.9
HNBP	3.6	1.14 ± 0.02 × 10 ⁷	10 ^{.4} · 19 ^{.7}	1.3
HNS	2.9	9.71 ± 0.03 × 10 ⁶	10 ^{.4} · 10 ^{.6}	2,1
NONA	4.7	8.03 ± 0.06 × 10 ⁶	10 ^{.4} - 10 ^{.6}	1.9
ONT	5.3	7.56 ± 0.04 × 10 ⁶	10 ^{.4} · 10 ^{.6}	2.0
PETN	3.3	5.37 x 10 ⁴	10 ^{.2} · 10 ^{.3}	1009
TNN	2.3	6.32 ± 0.01 × 10 ⁶	10 ⁻⁴ - 10 ⁻⁵	2,4
TNS	5.2	5.48 ± 0.04 × 10 ⁶	10 ^{.4} · 10 ^{.6}	2.7
TNT	2.9	1.07 x 10 ⁷	10 ⁻⁴ - y0 ⁻⁶	1.4
TPT	3.1	7.86 ± 0.07 × 10 ⁶	10 ⁻⁴ - 10 ⁻⁷	1.9

CONDITIONS:

情報が行うない。 アイ・サンドン マボルラのない かいかん ないかいない ないれいない ないれい 自動物 と

Isocratic elution

Detector wavelength, 254 nm

Column: Radial-PAK A with the RCM-100 Radial Compression Module

Flow rate: 2.0 ml/minute

Mobile phase: 70% MeOH/30% H₂O by volume

Chart speed: 0.5 cm/minute

a From the peak height responses given, the detection limit for all the explosive compounds was calculated to bu 15 mm on scale 0.005 absorbance units full scale (3 x 10⁻⁴ AUFS). This limit was set assuming a signal/noise ratio of 5.

TABLE 4 H1 - NMR DATA OF EXPLOSIVE COMPOUNDS

COMPOUND	SOI VENT	NMR SPECTRUM
DATE	DMSO-D ₆	8 9.10 (s, Ar-H)
	D	9.10 (s, 2NH ₂)
DATB	BENZEN' De	8.91 (s, Ar-H)
	-	8.61 (s, 2NH ₂)
DINA	DM8Q-D6	4.76 (t, 2CH ₂)
DIPAM	н	4.17 (t, 2CH ₂) 9.08 (s, 2Ar-H)
DIFAM		8.68 (s, 2NH ₂)
DNT	**	8.68 (d, Ar-H)
		8.42 (q, Ar·H)
		7.87 (d, Ar·H)
22224	"	2.62 (s, CH ₃)
DODECA	"	9.39 (s, 2Ar·H) 9.24 (s, 2Ar·H)
		9.20 (s, 2Ar-H)
HNAB	11	10.19 (s, 4Ar·H)
HNBIB		9.08 (s, 4Ar-H)
		3.39 (s, 2CH ₂)
HNBP	"	9.27 (s, 4Ar-H)
HN8	"	9.07 (s, 4Ar-H)
нмх	"	7.11 (s, 2CH) 5.98 (s, 8R·H)
NONA	ıı .	9.26 (s, 5Ay-H)
CNT	<i>u</i>	9.26 (s, 6Ar-H)
PA		8.56 (s, 2Ar-H)
PA	DENZENE D.	8.07 (s, 2Ar-H)
TA	BENZENE-D6	11.00 (s, OH)
PETN	DMSO-D ₆	4.65 (s, 4CH ₂)
PYX	" -	8.85 (s, 5Ar·H)
		9.10 (s, 2NH)
RDX	11	6.06 (s, 6R·H)
TATB	**	10.00 (s, 3NH ₂)0
TETRYL	н	9.28 (s, 2Ar-H)
	"	3.63 (s, CH ₃)
TNA		9.04 (s, 2Ar-H) 8.98 (s, NH ₂)
TNB	**	9.13 (s. 3Ar-H)
TNN	"	8.80 (s. 4R·H)
TNS	**	9.14 (s, 2Ar-H)
,,,,		8.08 (d, Ar·H)
		7.86 (d, 2Ar·H)
		7,68 (m, Ar-H) 7,64 (d, CH)
		7.09 (d, CH)
TNT		8,98 (s, 2Ar-H)
		2.52 (s, CH ₃)
TPT	"	9.23 (s, 6Ar-H)
DMBO-D ₅ (neat)		2.48 (m, 2CH ₃)
BENZENE-D ₆ (neat)		7.18 (s, 6Ar-H)

a The solvents used were: benzene $C_gD_g \cdot 99.5$ atom % D; dimethylsulfoxide DM8O-Dg $\cdot 99.5$ atom % D. A water peak \$3.30 (s, 2H) was noted in the DMSO samples.

c The TATB pulse sequence was repeated 5000 times, and the resulting signals time-averaged,

b s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, Ar = aromatic, R = ring protons. Chemical shifts are in 8 units downfield from internal TMS with line multiplicity and relative intensity in parentheses. Spectra were determined on a Varian XL-200 Spectrometer. The pulse sequence was repeated 4 times and the signois time-averaged.

TABLE 5 TLC DATA OF EXPLOSIVE COMPOUNDS

COMPOUND	R _f 8	SOLVENT
DATB	0,32	C ₆ H ₆
DINA	0.38	,,
DIPAM	0.20	•
DNT	0.78	•
DODECA	0.63 ^C	,,
HNAB	0.67	•
HNBIB	0.58	**
HNBP	0.76	•
HNS	0.38	n
НМХ	0.00	"
нмх	0.00	MeOH
NONA	0.69°	C ₆ H ₆
ONT	0,14 ⁰	**
PA	0.09c	"
PA	0.96	MeOH
PETN	0,00	C ₆ H ₆
PETN	0.00	MeOH
PYX	0.00	C ₆ H ₆
PYX	0.96 ^c	MeOH
RDX	0.17	C ₆ H ₆
TATB	0.00	"
TATB	0.00	MeOH
TETRYL	0.52	C ₆ H ₆
TNA	0.43	**
TNB	0.75	"
TNN	0.00	"
TNN	0.00	MeOH
TNS	0.62	C ₆ H ₆
TNT	0.86	•
TPT	0.40	••

- a R_f taken from leading edge of spot. A short wave U V lamp (2537 Å) was used for spot visualization. The adsorbent used was Merck Silica Gel HF-254 coated on glass plates.
- b The solvents used were: benzene (C_8H_8) and methanol (MeOH).
- c Streaking or tailing to origin.

TABLE 6 MELTING POINT DATA OF EXPLOSIVE COMPOUNDS

TABLE 5	WELLING FOLK I DATA OF EXCEDSIVE COMPONING
COMPOUN	D MELTING POINT (°C)
DATB	287°, 290 ¹⁸ , 286 ¹⁹
DINA	52 ⁸
DIPAM	306 dec ⁸ , 304 ¹⁹
DNT	71.5 ^a , 71 ¹⁸
DODECA	> 425ª
HNAB	220-221 ²⁰
HNBIB	218ª, 218-220 ²¹
HNBP	239.3-240.8ª
HNS-I	316 dec ^a
HNS-II	316 dec ^a
HMX	280 dec ^a , 273 ¹⁸
NONA	440 ¹⁹
ONT	> 400 ⁷
PA	121.8·122.4 ⁸
PETN	141.3 ²⁰
PYX	360 ⁷
RDX	204 dec ^a , 204 ²⁰
TATE	> 370 ^a , > 360 ¹⁸ , ~ 460 dec ¹⁹
TETRYL	
TNA	1888,20
TNB	121 ⁴ , 121.3 ²⁰
TNN	450 ¹⁹
TNS	180-181 ^a
TNT	80.7 ^a , 80.8 ²⁰
TPT	352 ⁷ , 352-353 ^{19,22} , 349-351 ²³

a Melting points determined on a Thomas Hoover Capillary Melting Point Appearatus, using a heating rate of approximately 20/minute. All measured temperatures are uncorrected.

¹⁸ Headquarters, U.S. Army Material Command, Engineering Design Handbook, AMCP 706-177.

Shipp, K. G., ed., "Properties of Selected Thermally Stable Explosives," NOLTR 70-95, May 1970.

Bennett, ed., Chemical & Technical Dictionary, 3rd ed., (New York, New York: Chemical Publishing Co., Inc., 1974.

²¹ Shipp, K. G. and Kaplan, L. A., J. Org. Chem., Vol. 31, 1966, p. 857.

Dacons, J. C. and Sitzmann, M. E., J. Heterocyclic Chem., Vol. 14, 1977, p. 1151.

Dacons, J. C., "2,4,6-Tripicryl-s-Triazine, TPT; Crystallization and Crystal Density Determination," NSWC/WOL/TR 76-16, Mar 1976.

REFERENCES

- 1. Glover, D. J. and Kayser, E. G., Anal. Chem., Vol. 40, 1968, p. 2050.
- 2. Sawicki, E. and Stanley, T. W., Analyt. Chem. Acta, Vol. 23, 1960, p. 551.
- 3. Selig, W., "Spectrophotometric Determination of Some Nitro and Nitroso Derivatives of Diphenylamine in N,N-Dimethylformamide," Lawrence Livermore Laboratory (LLL) Report, UCRL-6903, May 1963.
- 4. Selig, W., "Photometric Determination of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) in Dimethylsulfoxide (DMSO)," Lawrence Livermore Laboratory Report, UCID-17542, July 1977.
- 5. Ungnade, H. E., "1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB) Preparation and Purification,".Los Alamos National Laboratory (LANL) Report, GMX-2-R-64-1, 1963, pp. 10-11.
- 6. MacDougall, C. S., "A Liquid Chromatographic-Spectrophotometric Assay for TATB in TATB," in Quarterly Progress Report, Mason & Hanger-Silas Mason Co., Inc., Pantex Plant (MHSMP), MHSMP-77-18, Jan-Mar 1977.
- 7. Kilmer, E. E., "A Characterization Study of Several Heat Resistant Explosives," NOLTR 74-177 Oct 1974.
- 8. Kayser, E. G. and Burlinson, N. E., "Analysis of Water and Soil Samples from 'Fate of ¹⁴C Labelled Explosive Compounds in Soil Study," Final Report from the Naval Surface Weapons Center, White Oak, submitted to the U.S. Army Medical Bioengineering R & D Lab. (USAMBRDL), Fort Detrick, Md., MIPR No. 9952, Jan-Dec 1979.
- 9. Kayser, E. G., "Analysis of 2,2',4,4',6,6'-Hexanitrostilbene (HNS) by High Performance Liquid Chromatography," NSWC/WOL TR 77-154, 14 March 1978.
- 10. Kayser, E. G., "An Investigation of the Shipp Hexanitrostilbene (HNS) Process," NSWC TR 80-111, 25 Aug 1980.
- 11. Schaffer, C. L., "HNS Analysis," Mason & Hanger-Silas Mason Co., Inc., Pantex Plant, MHSMP-75-50, Oct-Dec 1974.

REFERENCES (Cont.)

- 12. Stanford, Jr., T. B., "Determination of Tetryl and 2,3-,2,4-,2,5-,2,6-,3,4-, and 3,5-Dinitrotoluene Using Kign Performance Liquid Chromatography," Final Report, from Battelle Columbus Laboratories, Columbus, Ohio, submitted to the U.S. Army Research and Development Command, Washington, D.C., Contract No. DAMD-17-74-C-4123, 31 Jan 1977.
- 13. Schaffer, C. L., "Analysis of TATB by HPLC," Mason & Hanger-Silas Mason Co., Inc., Pantex Plant, MHSMP-78-65, 1978.
- 14. Krull, I. S. and Camp, M. J., American Laboratory, May 1980, pp. 63-73.
- 15. Sitzmann, M. E., Foti, S. and Misener, C. C., "Solubilities of High Explosives-Removal of High Explosive Fillers from Munitions by Chemical Dissolution," NOLTR 73-186, 21 Nov 1973.
- 16. Stull, T. W., "Synthesis of High Purity Hexanitrostilbene," Mason & Hanger-Silas Mason Co., Inc., Pantex Plant, MHSMP-75-37, Sep 1975.
- 17. Hoffsommer, J. C. and McCullough, J. F., J. Chromatog., Vol. 38, 1968, p.508.
- 18. Headquarters, U.S. Army Materiel Command, <u>Engineering Design Handbook</u>, AMCP 706-177.
- 19. Shipp, K. G., ed., "Properties of Selected Thermally Stable Explosives," NOLTR 70-95. May 1970.
- Bennett, ed., Chemical & Technical Dictionary, 3rd ed., (New York, New York: Chemical Publishing Co., Inc., 1974).
- 21. Shipp, K. G. and Kaplan, L. A., <u>J. Org. Chem.</u>, Vol. 31, 1966, p. 857.
- 22. Dacons, J. C. and Sitzmann, M. E., <u>J. Heterocyclic Chem.</u>, Vol. 14, 1977, p. 1151.
- 23. Dacons, J. C., "2,4,6-Tripicryl-s-Triazine, TPT; Crystallization and Crystal Density Determination," NSWC/WOL7TR 76-16, Mar 1976.

GLOSSARY

NOTE: X = NO2

COMPOUND	STRUCTURE	CODE
1,3-DIAMINO-2,4,6-TRINITROBENZENE	X NH ₂	DATB
DIOXYETHYLNITRAMINE DINITRATE	N CH2-CH2-OX CH2-CH2-OX	DINA
DIPICRAMIDE	X X NH ₂ X X NH ₂	DIPAM
2,4-DINITROTOLUENE	х —— сн _з	DNT
	× X X X	
2,2',2",2",4,4',4",4",6,6',6",6"'-DODECANI	TROQUATERPHENYL X X	DODECA
2,2',4,4',6,6'·HEXANITROAZOBENZENE	$X \stackrel{\times}{\longrightarrow} N = N \stackrel{\times}{\longrightarrow} X$	HNAB
2,2',4,4',6,6'-HEXANITROBIBENZYL, DIPICRYLETHANE	× 🚵 -	HNBIB

GLOSSARY

神像のはないないとのははないというです。 しょうない 地名の人 ないがく こうじゅん しゅうじゅんしょ しんしょく

をおけれている。「「「「「「「「「」」」というという。「「「」」というという。「「「」」というない。「「「」」「「」」」というない。「「」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「」「「」」「」」「「」」「「」」「「」」「」」「「」」「「」」「「」」「」」「「」」「」」「「」」「」」「「」」「」」「「」」「」」「」」「「」」「」」「」」「」」「「」」「

COMPOUND	STRUCTURE	CODE
2,2',4,4',6,6'-HEXANITROBIPHENYL	× Č	HNBP
2,2',4,4',6,6'-HEXANITROSTILBENE	$x \bigotimes_{X} - c = c - \bigotimes_{X} x$	HNS
1,3,5,7-TETRANITRO-1,3,5,7-TETRA- AZACYCLOOCTANE	XN NX	нмх
2,2',2",4,4',4",5,6',G"·NONANITROTERPHENYL	× X X X X	NONA
2,2',4,4',4",6,6',6"-OCTANITRO-m-TERPHENYL	× X X X X X X X X X X X X X X X X X X X	ONT
2,4,6-TRINITROPHENOL, PICRIC ACID	X OH X	PA
PENTAERYTHRITOLTETRANITRATE	хон ₂ с— с _{н2} ох сн ₂ сн ₂	PETN

GLOSSARY

COMPOUND	STRUCTURE	CODE
Z,6-BIS(PICRYLAMINO)-3,5-DINITROPYRIDINE	× H × N × H × ×	ΡÝΧ
1,3,5-TRINITRO-1,3,5-TRIAZACYCLOHEXANE CYCLO-1,3,5-TRIMETHYLENE-2,4,8-TRINITRAMINE, CYCLONITE	XN NX	RDX
1,3,5-TRIAMINO-2,4,6-TRINITPODENZENE	H ₂ N × NH ₂ × NH ₂	TATB
2,4,8-TRINITROPHENYLMETHYLNITRAMINE	х X сн ₃	TETRYL
2,4,6-TRINITROANILINE, PICRAMIDE	X NH ₂	TNA
1,3,5-TRINITROBENZENE	×	TNB
1,4,5,8-TETRANITRONAPHTHALENE	Ž Ž	1 NN
2,4,6,2'-TETRANITROSTILBENE	××	TNS
	17	

《A STATE A STATE A

GLOSSARY

COMPOUND	STRUCTURE	CODE
	х Х сн,	
2,4,6-TRINITROTOLUENE	X	TNT
	Ä	
	×	
	X	
2,4,6-TRIPICRYL-1-TRIAZINE	x x x x x	TPT

DISTRIBUTION

	Copies
Lyndon B. Johnson Space Center National Aeronautics & Space Administration Attn: Technical Library T. Graves (EP4) 2101 Webster-Seabrook Road Houston, TX 77058	1 1
George C. Marshall Space Flight Center National Aeronautics & Space Administration Attn: Technical Library Robert White (EP-14) Huntsville, AL 35812	1 1
University of California Lawrence Livermore National Laboratory Attn: Milton Finger Walter Selig P.O. Box 808 Livermore, CA 94550	1 1
Chemtronics Attn: Technical Library Heather Hudson Old Bee Tree Road Swannanoa, NC 28778	1 1
Ensign Bickford Company Attn: B. Boggs 660 Hopmeadow Street Simsbury, CT 06070	1
General Dynamics Attn: W. Early (MZ2843) K. Monroe P.O. Box 748 Fort Worth TX 76101	1 1

DISTRIBUTION (Cont.)

	Copies
Grumman Aerospace Corporation Attn: J. Hopkins South Oyster Bay Road Bethpage, NY 11714	1
U.S. Army Aviation Research and Development Command Attn: J. Boen M. L. Bauccio 4300 Goodfellow Boulevard St. Louis, MO 63120	1 1
Teledyne MeCormick Selph Attn: R. Richards P.O. Box 6 Hollister, CA 95023	1
Lockheed Missiles & Space Co., Inc. Attn: F. Chapman P.O. Box 504 Sunnyvale, CA 94086	1
Los Alamos National Laboratory Attn: Dr. L. Smith Harry Flaugh P.O. Box 1663 Los Alamos, NM 87544	1
McDonnell Douglas Corporation Attn: M. Schimmel P.O. Box 516 St. Louis, MO 62166	1
Commanding Officer U.S. Armament Research & Development Command Attn: T. Castorina W. Fisco Dover, NJ 07801	1 1
Sandia Corporation Attn: Dr. N. Brown P.O. Box 5400 Albuquerque, NM 87115	1
Space Ordnance Systems, Inc. Attn: Dr. N. Zable 375 Santa Trinita Sunnyvale, CA 94006	1

DISTRIBUTION (Cont.)

	Copies
Langley Research Center National Aeronautics & Space Administration Attn: L. Bement W. Kellier R. Brooks	1 1 1
Hampton, VA 23665	
Mason & Hanger-Silas Mason Company, Inc. Pantex Plant Attn: Dr. Clyde Alley Ted Stull	1
P.O. Box 30020 Amarillo, TX 79177	
McDonnell Douglas Astronautics Company Attn: H. W. Fairchild 5301 Bolsa Avenue Huntington Beach, California 92647	1
Commanding Officer Naval Weapons Support Center Crane, IN 47522	1
Director Strategic Systems Projects Office Attn: M. Baron (SSPO-2731) Department of the Navy Washington, D.C. 20376	1
Commander Naval Air Systems Command Attn: AIR-1116 Washington, D.C. 20361	1
Commanding Officer Ballistics Research Laboratory Attn: Technical Library Aberdeen Proving Ground Aberdeen, MD 21005	1
Commanding General Army Materiel Command Department of the Army Washington, D.C. 20316	i
Commander Army Rocket and Missile Agency Redstone Arsenal Huntsville, AL 35809	1

DISTRIBUTION (Cont.)

	Copies
Director Defense Technical Information Center Attn: TIPCR Cameron Station Alexandria, VA 22314	12
Commander Systems Engineering Group Attn: RTD Wright-Patterson Air Force Base, OH 45433	1
Chief of Staff U.S. Air Force Attn: AFORD-AR Washington, D.C. 20350	1
Explosive Technology Attn: F. Burkdoll P. Posson P.O. Box KK Fairfield, CA 94533	1
Commander Naval Sea Systems Command Attn: SEA-62R32 SEA-64E SEA-99612 (Technical Library) Washington, D.C. 20362	1 1 1
Office of Naval Research Attn: ONR-175 (Technical Library) ONR-473 (R. Miller) 801 N. Quincy Street Arlington, VA 22217	1
Chief of Naval Operations Wahington, D.C. 20350	1
Commander Naval Weapons Center Attn: Technical Library L. Smith T. Joyner C. Heller China Lake, CA 93555	1 1 1
Commanding Officer Naval Ordnance Station Attn: W. Carr Indian Head, MD 20640	1

DISTRIBUTION (Cont.)

	Copies
Commanding Officer Naval Academy Attn: Hd. Weps Dept Annapolis, MD 21402	1
Superintendent Naval Postgraduate School Monterey, CA 93940	1
Commanding Officer Naval Weapons Station Attn: Technical Library W. McBride S. C. Hogge E. Cousins L. Carlton Yorktown, VA 23491	1 1 1 1
Library of Congress Washington, D.C. 20540	4