The International Consequences of Bretton Woods' Capital Controls and the Value of Geopolitical Stability

Lee E. Ohanian¹ Paulina Restrepo-Echavarria² Diana Van Patten³ Mark L. J. Wright⁴

St Louis Fed - Olin Conference, September 2022

¹UCLA, NBER and Hoover Institution, Stanford University

²Federal Reserve Bank of St. Louis

³Yale University, NBER

⁴Federal Reserve Bank of St. Louis

A New Take on Bretton Woods

- ► Thousands of studies (24,792 per Jstor) focusing on the effects of BW international economic controls on global economic activity
- ▶ BW was a huge package of controls ranging from fixed exchange rates to restrictions on international capital mobility
- Virtually all BW analysis focus exclusively on nominal exchange rate policies
 - relatively little to no analysis of impact of BW restrictions on international capital mobility
 - ▶ important open question since BW has been by far the largest experiment in imposing impediments to capital mobility

What we do and what we find

- We develop a GE multi-region model in which we analyze the positive and normative effects of BW impediments to international capital mobility on the world economy
- ▶ We find impediments to international capital mobility:
 - reduced world output by 0.6%
 - significantly reduced US welfare
 - increased Europe & RoW welfare
- ➤ We interpret U.S. welfare loss as cost of attempting to preserve international economic & political stability based on US international political goals during the cold war

Bretton Woods: Searching for International Economic Stability

- ► What was BW? Impediments to international capital mobility and fixed exchange rates
- Bretton Woods Goal: Stable postwar international economic system
- ► Main Actors: Harry Dexter White (rep US) & John Maynard Keynes (rep Europe)
- ➤ Worry that in absence of BW impediments that capital flight & volatile nominal exchange rates of the 1930's would return
- Worry that these factors would damage ally recoveries, LDC growth, international political stability

Challenges in modeling BW

- ► Complex from an institutional standpoint (created IMF and WB)
- Both nominal exchange rate controls and impediments to international capital mobility
- Given complexity, we apply international business cycle accounting to capture BW policies within one or more distortions
- ▶ We follow Chari, Kehoe and McGrattan (2007, closed economy) and Ohanian, Restrepo-Echavarria, and Wright (OREW, AER 2018, open economy)
- We show how BW exchange rate controls and international capital mobility impediments show up as a single distortion in one of the model's foc
- We can separately identify the role of international capital mobility impediments from fixed exchange rate effects from this distorted foc

The Model Economy I

Households:

Consider a world populated by three regions, indexed by j. The problem of region j's representative household is to maximize:

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \left\{ \ln \left(\frac{C_{jt}}{N_{jt}} \right) - \frac{\phi}{1+\gamma} h_{jt}^{1+\gamma} \right\} N_{jt} \right],$$

subject to a flow budget constraint for each state and date

$$C_{jt} + P_{jt}^{K} K_{jt+1} + E_{t} [q_{t+1} B_{jt+1}]$$

$$\leq \left(1 - \tau_{jt}^{h}\right) W_{jt} h_{jt} N_{jt} + \left(1 - \tau_{jt}^{K}\right) \left(r_{jt}^{K} + P_{jt}^{*K}\right) K_{jt} + \left(1 - \tau_{jt}^{B} + \Psi_{jt}\right) B_{jt} + T_{jt} + \Pi_{jt}$$

The Model Economy II

Consumption Goods Sector:

Hire labor and capital and produce according to a Cobb-Douglas production function

Investment Goods Sector:

▶ Produce new capital K_{jt+1} using I_{jt} deferred consumption and K_{jt} old capital goods to maximize profits

$$P_{jt}^{K}\left[\left(1-\delta
ight)K_{jt}+I_{jt}-\phi\left(rac{I_{jt}}{K_{jt}}
ight)K_{jt}
ight]-I_{jt}-P_{jt}^{*K}K_{jt}$$

Resource constraint:

$$\sum_{j} \left\{ C_{jt} + I_{jt} + G_{jt} \right\} = \sum_{j} A_{jt} K_{jt}^{\alpha} \left(h_{jt} N_{jt} \right)^{1-\alpha}$$

Evolution of Uncertainty

▶ U.S. population and productivity evolve exogenously

$$\ln N_{Ut+1} = \ln \eta_{ss} + \ln N_{Ut} + \sigma_U^N \varepsilon_{Ut}^N$$

$$\ln A_{Ut+1} = \ln \pi_{ss} + \ln A_{Ut} + \sigma_U^N \varepsilon_{Ut}^N$$

with Europe and RoW relative to U.S.

$$N_{jt} = n_{jt} N_{Ut}$$
 and $A_{jt} = a_{jt} A_{Ut}$

All other taxes/controls m = G, K, L, B, univariate AR(1)'s

$$\ln\left(1-\tau_{jt+1}^{m}\right)=\left(1-\rho_{j}^{m}\right)\ln\left(1-\tau_{jSS}^{m}\right)+\rho_{j}^{m}\ln\left(1-\tau_{jt}^{m}\right)+\sigma_{j}^{m}\varepsilon_{jt}^{m}$$

Stationarity

► Scale all variables by stochastic trend in "effective population"

$$Z_t = A_{Ut}^{1/(1-\alpha)} N_{Ut}$$

► After detrending, stationary AR(1) on

$$\pi_t = a_{Ut} = \frac{A_{Ut}}{A_{Ut-1}}$$
 and $\eta_t = n_{Ut} = \frac{N_{Ut}}{N_{Ut-1}}$

- ► To achieve stationarity in long run relative consumptions
 - no capital controls in long-run: $\tau_{iSS}^B = 0$
 - mean reversion in relative consumption levels through

$$\Psi_{jt} = \left(1 - \tau_{jt}^{\mathcal{B}}\right) \left[\left(\frac{C_{jt}/N_{jt}}{C_{Rt}/N_{Rt}} \frac{1}{\psi_{j0}}\right)^{-\psi_{j1}} - 1 \right]$$

Optimality Conditions

► Labor/leisure condition

$$\left(1- au_{jt}^h
ight)W_{jt}rac{N_{jt}}{C_{jt}}=\varphi h_{jt}^{\gamma}$$

Euler equation for domestic capital

$$1 = E_t \left[\beta \frac{C_{jt}/N_{jt}}{C_{jt+1}/N_{jt+1}} \left(1 - \tau_{jt+1}^K \right) \frac{r_{jt+1}^K + P_{jt+1}^{*K}}{P_{jt}^K} \right]$$

► Euler equation for state-contingent international assets

$$\frac{C_{jt+1}/N_{jt+1}}{C_{jt}/N_{jt}} = \frac{\beta}{q_{t+1}} \left(1 - \tau_{jt+1}^B + \Psi_{jt} \right)$$

What about exchange rate effects on capital flows?

A model with non-tradable goods, everything else the same

Households:

Extending Backus and Smith (1993), the problem of region j's representative household is to maximize:

$$E_0 \left[\sum_{t=0}^{\infty} \beta^t \left\{ \ln \left(\frac{C_{jt}}{N_{jt}} \right) - \frac{\psi}{1+\gamma} h_{jt}^{1+\gamma} \right\} N_{jt} \right],$$

subject to a flow budget constraint for each state and date

$$X_{jt} + P_{jt}^{D} D_{jt} + P_{jt}^{K} K_{jt+1} + E_{t} [q_{t+1} B_{jt+1}]$$

$$\leq \left(1 - \tau_{jt}^{h}\right) W_{jt} h_{jt} N_{jt} + \left(1 - \tau_{jt}^{K}\right) \left(r_{jt}^{K} + P_{jt}^{*K}\right) K_{jt}$$

$$+ \left(1 - \tau_{jt}^{B} + \Psi_{jt}\right) B_{jt} + T_{jt} + \Pi_{jt} + P_{jt}^{D} Y_{jt}^{D}$$

where
$$C_{jt} = \left[\alpha X_{jt}^{\rho} + (1 - \alpha) D_{jt}^{\rho}\right]^{1/\rho}$$

Open economy distortions: model with and without exchange rates

▶ In the benchmark model the Euler equations for state-contingent assets imply:

$$\underbrace{\left(\frac{C_{jt+1}/N_{jt+1}}{C_{Rt+1}/N_{Rt+1}}\right)\left(\frac{C_{Rt}/N_{Rt}}{C_{jt}/N_{jt}}\right)}_{International capital controls} = \frac{1 - \tau_{jt}^B + \Psi_{jt}}{1 - \tau_{Rt}^B + \Psi_{Rt}} = \zeta_{jt+1}^B$$

In the model with non-traded goods the Euler equations for state-contingent assets imply:

$$\underbrace{\left(\frac{C_{jt+1}/N_{jt+1}}{C_{Rt+1}/N_{Rt+1}}\right)\left(\frac{C_{Rt}/N_{Rt}}{C_{jt}/N_{jt}}\right)}_{International capital controls}\underbrace{\left(\frac{P_{jt+1}/P_{Rt+1}}{P_{jt}/P_{Rt}}\right)}_{Exchange rate effects} = \zeta_{jt+1}^{NTB}$$

where the exchange rate can be defined as $Q_{jRt} = \frac{P_{jt}}{P_{Rt}}$

 International distortion is multiplicatively separable between the capital mobility component and the exchange rate component

The effects of capital controls vs exchange rates on capital flows

► We can quantify the contribution of capital mobility impediments and real exchange rate effects:

$$\underbrace{\left(\frac{C_{jt+1}/N_{jt+1}}{C_{Rt+1}/N_{Rt+1}}\right)\left(\frac{C_{Rt}/N_{Rt}}{C_{jt}/N_{jt}}\right)}_{International \ capital \ controls}\underbrace{\left(\frac{Q_{jRt+1}}{Q_{jRt}}\right)}_{Exchange \ rate \ effects} = \zeta_{jt+1}^{NTB}$$

- One issue are the two uncorrelated?
- ► It turns out they are!
 - regressing the log of international capital controls on the log of real exchange rate effects returns an R-squared of roughly zero
- ► This allows us to focus on the model without non-traded goods where the international distortion is fully identified by international capital controls

Data and Regions

- ► Countries that are market economies from 1950 onwards:
 - United States
 - Europe: Austria, Belgium, Denmark, Luxembourg, France, Germany, Greece, Italy, Netherlands, Norway, Portugal, Sweden, Switzerland, Turkey, UK
 - RoW: Japan, Korea, Taiwan, Hong Kong, Singapore, Canada, Australia, New Zealand, Iceland, Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela, Costa Rica
 - omitted countries include command economies (China, USSR), and those with data availability issues (India, Africa)
- Our data includes roughly 75% of world GDP as of 1950
- ▶ Data sources: OECD, WDI, WTESI, supplemented by Mitchell (2001) and other country specific sources
- ► Data: output, consumption, hours worked, investment, population, net-exports (capital flows)

Quantitative Methodology

- ► Log-linear approximation around steady state (2nd order for welfare)
- Set parameters governing preferences, production, adjustment costs Calibration
- Kalman-Filter to calculate the likelihood and recover distortions
- ► Maximum Likelihood Estimation for unknown parameters

 (Estimation)
- ► Benchmark results fully account for output, consumption, hours, investment, population, and net-exports

Direction and size of Capital Flows (NX % GDP)

Relative Consumptions and Capital Controls

- Large differences in consumption growth indicate countries facing very different intertemporal prices and large impediments to intertemporal trade
- A decreasing or low τ_B encourages capital inflows/deters capital outflows
- An increasing or high τ_B deters capital inflows/encourages capital outflows
- Counterfactual exercise: remove impediments to international capital mobility $\left(\tau_{it}^B=0\right)$ Capital Controls

Capital Flows in the Absence of Capital Controls

Relative consumption per-capita

Capital flows

Magnitude of historically observed capital flows:

- ► Average around 4% in late 19th century rising to 7% pre WW1.
- Argentina 18.7% in late 1870s
- Finland 14.2% 1914-1918
- ► Australia 12.8% 1927-31
- France 11.7% 1919-1926
- ► Italy 11.7% 1914-1918

Counterfactual: how capital controls affected the world economy

Output Effects of Capital Controls

The Welfare Effects of Capital Controls

Region	Consumption Equivalent
U.S.	-4.44%
Europe	1.33%
Rest fo the World	4.54%

U.S. International Economic & Political Goals

- Promote ally reconstruction, LDC growth, support friendly governments
- Prevent hostiles (Nazis first, Soviets later) from influencing other countries
- ▶ U.S. viewed international capital markets prone to crises
- Crises drain capital, depress growth, create political instability
- Controls to keep capital in these countries

Impediments to international capital mobility Imposed Huge Welfare Cost on U.S.

- ▶ Why did U.S. want these?
 - ▶ Our Thesis: U.S. willing to pay to prevent capital flight & crises
- Our findings interpreted as an estimate of the perceived value of controls
- Supported broader, expensive international policy agenda
- But this has been overlooked in almost all open economy post-WW II studies
- ► Integrating political economy and defense goals into international models may shed new light on policy choices and their effects.

Common Parameters

Parameter	Notation	Value
Preferences		
Discount Factor	β	0.96
Frisch Elasticity of Labor Supply	$1/\gamma$	2/3
Preference for Leisure	φ	1
Production		
Output Elasticity of Capital	α	0.36
Depreciation Rate	δ	0.07
Adjustment Cost Size	ν	5.5
Adjustment Cost Reference Level	κ	0.09

Estimated Parameters

Table 1: Country Specific Parameter Values

Process	Region	Steady State	Persistence	Standard Deviation
Population	United States	$\eta_{ss} = 0.84$	$\rho_{U}^{n} = 1^{**}$	$\sigma_{U}^{n} = 0.003$
	Europe	$n_{Ess} = 0.77$	$\rho_E^n = 0.99$	$\sigma_E^n = 0.002$
	Rest of World	$n_{Rss} = 0.82$	$\rho_R^{\bar{n}} = 0.98$	$\sigma_R^{\bar{N}} = 0.003$
Productivity	United States	$\pi_{ss} = 1.01^{**}$	$\rho_{\pi} = 1^{**}$	$\sigma_{\pi} = 0.08^*$
	Europe	$a_{Ess} = 0.74^*$	$\rho_E^a = 0.99^*$	$\sigma_E^a = 0.02^*$
	Rest of World	$a_{Rss} = 0.52^*$	$\rho_R^a = 0.99^*$	$\sigma_R^a = 0.03^*$
Government Wedge	United States	$g_{Uss} = 0.18$	$\rho_U^g = 0.94$	$\sigma_U^g = 0.03$
	Europe	$g_{Ess} = 0.20$	$\rho_{E}^{g} = 0.20$	$\sigma_E^g = 0.03$
	Rest of World	$g_{Rss} = 0.13$	$\rho_R^g = 0.13$	$\sigma_R^g = 0.10$
Labor Wedge	United States	$\tau_{Uss}^{h} = 1.93$	$\rho_U^h = 0.99^*$	$\sigma_U^h = 0.04^*$
	Europe	$\tau_{Ess}^{h} = 1.91$	$\rho_E^h = 0.99^*$	$\sigma_E^h = 0.03^*$
	Rest of World	$\tau_{Rss}^{h} = 1.79$	$\rho_R^h = 0.99^*$	$\sigma_R^h = 0.02^*$
Capital Wedge	United States	$\tau_{Uss}^{k} = 0.94$	$\rho_U^K = 0.99^*$	$\sigma_U^K = 0.03^*$
	Europe	$\tau_{Ess}^{k} = 0.94$	$\rho_U^h = 0.99^*$	$\sigma_U^K = 0.27^*$
	Rest of World	$\tau_{Rss}^{k} = 0.98$	$\rho_R^h = 0.99^*$	$\sigma_R^K = 0.01^*$
International Wedge	United States	$\tau_{Uss}^{B} = 2.95^{**}$	$\rho_U^B = 0.93$	$\sigma_U^B = 0.02$
	Europe	$\tau_{Ess}^{B} = 1.46^{**}$	$\rho_E^B = 0.93$	$\sigma_{E}^{B} = 0.01$
Portfolio Tax	United States	$\psi_{U0} = -0.08$	$1-\psi_{U1} = 0.94$	_
	Europe	$\psi_{E0} = -0.04$	$1-\psi_{E1} = 0.97$	_

Notes: * denotes parameter is estimated inside the model; ** denotes the parameter is set by assumption; all other parameters are estimated, or calibrated to match some feature of the data, outside the model; "—" denotes "Not Applicable". Appendix C contains more details on the estimation procedures.

Productivity

Distortions in Domestic Capital Markets

Pseudo-Planners Problem

The planner maximizes:

$$E_0 \left[\sum_{j} \sum_{t=0}^{\infty} \chi_{jt}^{\, C} \beta^{\, t} \left\{ \ln \left(\frac{C_{jt}}{N_{jt}} \right) - \chi_{jt}^{\, H} \frac{\psi}{1+\gamma} h_{jt}^{1+\gamma} \right\} N_{jt} \right],$$

subject to a resource constraint for each state and date

$$\sum_{j} \left\{ C_{jt} + \chi_{jt}^{\prime} X_{jt} + G_{jt} \right\} = \sum_{j} A_{jt} K_{jt}^{\alpha} \left(h_{jt} N_{jt} \right)^{1-\alpha}$$

and capital evolution equations of the form

$$K_{jt+1} = (1-\delta) K_{jt} + X_{jt} - \phi \left(\frac{X_{jt}}{K_{jt}}\right) K_{jt}.$$

Distortions in Labor Markets

Per-capita Hours Worked

Labor Market Distortions

U.S. Impediments to International Capital Mobility

France Impediments to International Capital Mobility

Germany Impediments to International Capital Mobility

U.K. Impediments to International Capital Mobility

