STAT 110: Week 9

University of Otago

STAT 110: Week 9

Outline

- Fitting ANOVA model
- Understanding ANOVA table
 - ▶ Comparing the variance within a group, to the variance between groups
- Look at multiple comparisons
 - Pairwise differences

Recall: chemical composition of Italian wines

- We are looking at alkalinity of the wine (measured in mg/L)
 - ► Three cultivars: barbera, barolo, grignolino
- Import the data

```
wine = read.csv('wine.csv')
```

Look at the data

Recall: ANOVA

- One-way ANOVA model with K groups
 - ▶ Outcome variable in group j is normally distributed with mean μ_i and variance σ^2
- We want to know how the mean outcome differs among groups
 - Potential problems with multiple comparisons
- Are there any differences in mean outcome among the groups?
- This takes the form of a hypothesis test
 - $ightharpoonup H_0: \mu_1 = \mu_2 = \ldots = \mu_K$
 - ▶ H_A : at least one mean is different

In R

- As with categorical variables with 2 levels
 - Special case of linear regression
 - Categorical variables can be included in R as factors

```
wine$cultivar = as.factor(wine$cultivar)
```

• We can then fit a linear regression model

```
m_wine = lm(alkalinity ~ cultivar, data = wine)
```

- This fits the ANOVA model
- Problem: output from m_wine is not in a convenient form
 - ▶ Output is in terms of particular pairwise comparisons

In R

We use the aov function to get the results in more convenient form

```
a_wine_lm = aov(m_wine)
```

We can also use aov directly

```
a_wine = aov(alkalinity ~ cultivar, data = wine)
```

The output we will consider is an ANOVA table

• Take a graphical look at the ANOVA model to help explain what this tells us

Understanding ANOVA (analysis of variance)

- Left plot (blue): plot of all outcome variables (irrespective of group)
- Right three plots (black): plot of outcome variables by group
- Solid horizontal lines: means
 - Dashed blue line is the overall mean

Comparing variance

- The sample variance for each group is given on the plot above
 - ► Combined data (blue): outcomes are highly variable
 - ▶ Data from each group (black; A, B, C): outcomes have much lower variability

• The group variable has explained a lot of the variability in the data

Comparing variance

- Overall variability partitioned into:
 - ► Variability in group means (indicated by gold lines)
 - ► Variability within the groups (points around their mean)
- ullet This is the information summarized in the ANOVA table STAT 110: Week 9

ANOVA table

The ANOVA table for the wine data is

```
## Df Sum Sq Mean Sq F value Pr(>F)
## cultivar 2 573 286 35.8 9.4e-14 ***
## Residuals 175 1401 8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

• To explain what this represents we will use the table:

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
Residuals	n-K	RSS	$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

ANOVA table: rows

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
Residuals	n-K	RSS	$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

- Group row: describes the variation between group means
 - ▶ Variation represented by gold bar in plot above
- Residuals row: describes the variation within each group
- Total row: describes the variation when we combine across groups
 - ▶ Data represented in blue in plot above
 - ▶ This row is not in R output

ANOVA table: columns

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
			$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

- Mean Sq[uare]
 - ► Group (GMS): related to the between-group variance
 - ► Residual (RMS): estimate of within-group variance
- F value: ratio of group mean square and residual mean square
- Df: degrees of freedom
- Sum Sq: sum of squares
 - ► Convenient when calculating by hand

ANOVA table

Source	Df	Sum Sq	Mean Sq	F value
Group	K-1	GSS	$GMS = \frac{GSS}{DF}$	$F = \frac{GMS}{RMS}$
Residuals	n-K	RSS	$RMS = \frac{RSS}{DF}$	
Total	n-1	TSS		

- If the groups explain a lot of variability (like our plots above)
 - ▶ The group mean square will be large relative to residual mean square
 - ► F-value will be relatively large
 - ANOVA table below is for data from plots above

```
## Df Sum Sq Mean Sq F value Pr(>F)

## group 2 1024 512 635 <2e-16 ***

## Residuals 87 70 1

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

STAT 110: Week 9

Example II: group does not explain much variation

- The group mean square will not be large relative to residual mean square
- The F-value is not large

```
## Df Sum Sq Mean Sq F value Pr(>F)

## group 2 2.3 1.135 1.41 0.25

## Residuals 87 70.1 0.805
```

ANOVA table: F column

- The F-value is comparing the variance among groups (the variability in the group means) to the variance within the groups
 - ▶ It is a measure of how much variation in the data is explained by the groups compared to unexplained variation
- If the null hypothesis is true
 - lacktriangle Data come from the ANOVA model with all means equal $(\mu_1=\mu_2=\ldots=\mu_k)$
 - The data are normally distributed with the same mean and variance
 - ► F-statistic will have an F-distribution with Df (group), Df (residual) degrees of freedom
- We can use this to find a p-value
 - Quantify the incompatibility between the data and null hypothesis
 - ▶ Are the data unusual given that the null hypothesis is true (group means are the same)

If null hypothesis is true, we expect an F-value of around 1

Detour: F-distribution

• The F-distribution is a distribution for positive random variables

- ► It is asymmetric (positively skewed)
- ▶ It has two parameters:
 - Degrees of freedom for the numerator (df1)
 - Degrees of freedom for the denominator (df2)

Finding a p-value

- An extreme F-value is as large, or larger, than that observed
 - ▶ Indicative of groups explaining as much, or more, variation in the data

- The blue area is given by 1-pf(F, df1, df2)
 - \blacktriangleright pf(F, df1, df2) gives probability of a value less than F

Example II

The ANOVA table for example II is

```
## Besiduals 87 70.1 0.805 F value Pr(>F)

## group 2 2.3 1.135 1.41 0.25

## Residuals 87 70.1 0.805
```

- The observed F-statistic is 1.41
 - ▶ df1 is degrees of freedom for group: 2
 - ▶ df2 is degrees of freedom for residuals: 87
- The p-value is

```
1-pf(1.41, 2, 87)
## [1] 0.25
```

• In practice: refer to the Pr(>F) column in the output

In R: wine data

The ANOVA table for the wine data is

```
## Df Sum Sq Mean Sq F value Pr(>F)

## cultivar 2 573 286 35.8 9.4e-14 ***

## Residuals 175 1401 8

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- The F-value is large, p-value is small
 - p-value $< \alpha$: evidence of incompatibility between data and null hypothesis
 - ▶ Data are (highly) unusual if all the means were truly the same
 - Providing evidence that at least one of the means differ
- · Which groups have means that appear to differ?

Pairwise comparisons of group means

- To compare each group, there are (potentially) many comparisons
 - If we have K=3 groups: 3 comparisons
 - If we have K=5 groups: 10 comparisons
 - ▶ If we have K = 10 groups: 45 comparisons
- E.g. for K=3: conduct hypothesis tests or find confidence intervals:
 - ▶ CI for $\mu_1 \mu_2$; hypothesis test with $H_0: \mu_1 \mu_2 = 0$
 - ▶ CI for $\mu_1 \mu_3$; hypothesis test with $H_0: \mu_1 \mu_3 = 0$
 - ▶ CI for $\mu_2 \mu_3$; hypothesis test with $H_0: \mu_2 \mu_3 = 0$

Multiple comparisons

- The problem with multiple tests (or multiple confidence intervals) is that properties no longer hold. For hypothesis testing:
 - lacktriangleright α gives the type I error rate for a single test
 - Probability of α of a 'false positive' given that the null hypothesis is true
 - ▶ In each test, there is a chance of a false positive (type I error)
 - ▶ With multiple tests, the overall chance of a type I error increases
 - Overall type I error rate: referred to as the family-wise error rate
 - Probability of making at least one type I error when performing multiple tests
 - ▶ Multiple comparisons increase the family wise error rate
 - e.g. if we perform 10 independent tests with $\alpha = 0.05$, then the probability of at least one type I error is $1 0.95^{10} = 0.4$, if the null hypothesis is true in each instance

- Probability found using complements

Tukey HSD

- Tukey's honest significant difference (HSD) is a multiple comparison approach designed for ANOVA models
- If the sample sizes are the same in each group
 - ightharpoonup Family-wise error rate is exactly lpha
- If the sample sizes are different among groups
 - It is conservative (family-wise error rate is less than α)
- The Tukey approach finds corrected confidence intervals and p-values
- It is easily implemented in R: TukeyHSD

In R: wine data

```
TukeyHSD(a_wine)
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = alkalinity ~ cultivar, data = wine)
##
## $cultivar
                      diff lwr upr p adj
##
## Barolo-Barbera -4.38 -5.68 -3.0792 0.000
## Grignolino-Barbera -1.18 -2.43 0.0712 0.069
## Grignolino-Barolo 3.20 2.02 4.3791 0.000
```

STAT 110: Week 9

Interpretation: wine data

- Intepret the adjusted confidence intervals, e.g.
 - ▶ We are 95% confident that the difference in mean alkalinity between the Grignolino and Barolo cultivars is between 2.02 and 4.38
- Interpret the adjusted *p*-values, e.g.
 - ▶ The *p*-value for the difference between Grignolino and Barbera cultivars is 0.069.
 - As p-value $> \alpha$ there is no evidence that the observed difference is unusual given the null hypothesis that the two means are the same

▶ Note: the uncorrected *p*-value is 0.027

ANOVA: big picture

- We have looked at fitting one-way a ANOVA model
 - ▶ One-way refers to one categorical predictors: cultivar (for wine example)
 - Two-way ANOVA: have two categorical predictors
- There might be many other potential predictors (categorical or continuous)
 - e.g. vineyard, climate (temperature, rainfall), fertilizer used, etc
- Recall: ANOVA is a special case of linear regression
 - ▶ We can use multiple linear regression to include these other variables
- There are lots of possible extensions
- There are also lots of ways to get ourselves into trouble
- These more complex models are explored in STAT 210

Summary

- Looked at the ANOVA summary table
 - ▶ Group: the variation between group means
 - Residuals: the variation within a group
 - ▶ F-value: comparing the variance within a group, to the variance between groups
- F-distribution to find *p*-value
- Look at multiple comparisons for pairwise differences
 - ► Tukey's honest significant difference
 - ▶ See multiple comparisons in general context later in the course

STAT 110: Week 9

Outline

- Previous
 - Exploring (normal) models for continuous data
 - Single mean
 - Two independent groups
 - Paired data
 - Multiple independent groups
 - Linear regression
- Today
 - Consider data that are not continuous
 - ► Explore models for binary data

How well can you putt?

- What is the probability a pro golfer will sink a 6 ft putt?
- Data on professional golfers from 6 feet:
 - ▶ 272 attempts, 149 successes

Problem

- · We have been working with models for continuous outcome variables
- This is not continuous data
- It is binary data
 - ► Each observation is yes/no, success/failure, 1/0
 - ► Each putt will either go in (success), or not (failure)
- Such data arises all the time
 - ▶ Will you support candidate X in the next election?
 - Did the chick successfully fledge?
 - ▶ Did the participant select option A (or B)?
 - ▶ Did the home team win the football match?
- We need a model for binary data
 - ► Probability distribution for binary data

Bernoulli distribution

- Recall: discrete probability distributions
- Random variable Y with two possible outcomes: success/failure
 - ▶ Represent success with 1
 - Represent failure with 0
- These two outcomes have associated probabilities
 - ▶ Earlier in semester: we assigned them actual numbers, e.g. 0.6 and 0.4
 - ▶ Now: represent the probability of success with an (unknown) parameter: p
- That gives the probability distribution

i	1	2	Total
y_i	0	1	
$\Pr(Y=y_i)$	1-p	p	1

Bernoulli distribution: properties

Recall: we found means and variances of discrete probability distributions

$$E[Y] = \sum_{i=1}^{k} y_i \Pr(Y = y_i)$$

$$Var(Y) = \sum_{i=1}^{k} (y_i - E[Y])^2 \Pr(Y = y_i)$$

Using these we can find the mean and variance of a Bernoulli distribution

$$E[Y] = p$$

$$\mathsf{Var}(Y) = p(1-p)$$

• Extension: Confirm these using the expectation and variance formulae above

Binary to binomial

- We may be interested in cases where there are many binary trials
 - ▶ Flip a coin 15 times
 - Record the success/failure of 272 putts
- The number of successes from multiple trials has a binomial distribution, if:
 - 1. The trials are binary
 - The outcome can be represented as success / failure
 - 2. The number of trials n, is fixed
 - e.g. the number of trials does not depend on the number of successes (or failures) you see
 - 3. The trials are independent
 - The outcome of one trial does not affect the outcome of another
 - 4. The probability of success, p, is the same for each trial
 - The probability of success does not change from one trial to another

Binary to binomial

- Let's think about the simplest case
 - $ightharpoonup Y_1$ and Y_2 are two (independent) random variables
 - ▶ Each of them has a Bernoulli distribution with probability of success p
- Our interest is in the random variable $X = Y_1 + Y_2$
 - Number of successes from two trials
- If we had two professionals putting from 6 foot
 - lacktriangleq X is a random variable that represents how many putts go in

Binomial distribution: n=2

• The probability distribution of $X=Y_1+Y_2$ is

$$egin{array}{c|ccccc} i & 1 & 2 & 3 & {\sf Total} \\ \hline x_i & 0 & 1 & 2 & \\ {\sf Pr}(X=x_i) & (1-p)^2 & 2p(1-p) & p^2 & 1 \\ \hline \end{array}$$

$$Pr(X=0)=\Pr(Y_1=0 \text{ and } Y_2=0)$$

$$=\Pr(Y_1=0)\Pr(Y_2=0) \qquad \text{multiplication rule: independence}$$

$$=(1-p)\times(1-p)$$

STAT 110: Week 9

Binomial distribution: n=2

• The probability distribution of $X=Y_1+Y_2$ is

$$egin{array}{c|ccccc} i & 1 & 2 & 3 & {\sf Total} \\ \hline x_i & 0 & 1 & 2 & \\ {\rm Pr}(X=x_i) & (1-p)^2 & 2p(1-p) & p^2 & 1 \\ \hline \end{array}$$

$$\begin{split} \Pr(X=1) &= \Pr(Y_1=1 \text{ and } Y_2=0) + \Pr(Y_1=0 \text{ and } Y_2=1) \\ &= \Pr(Y_1=1) \Pr(Y_2=0) + \Pr(Y_1=0) \Pr(Y_2=1) \end{split} \quad \text{independence} \\ &= p(1-p) + (1-p)p \end{split}$$

STAT 110: Week 9

Binomial distribution: general

- In general, the number of successes from n independent Bernoulli trials is:
 - $X = Y_1 + Y_2 + \ldots + Y_n$
- For moderate or large values of n
 - ▶ Possible, but extremely tedious, to write out full probability distribution
- ullet We have a shortcut: we can find the probability of x successes from n independent Bernoulli trials

$$\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

Binomial distribution: general

• The probability of x successes from n independent Bernoulli trials is

$$\Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ is the number of ways to obtain x successes from n trials¹
- For each of these, the probability of observing those x successes is $p^x(1-p)^{n-x}$
 - ▶ E.g. there are two ways to see x = 1 success from n = 2 trials (see above)
 - Each of those has probability p(1-p)
 - ▶ E.g. there are 3003 ways to see x=5 successes from n=15 trials
 - Each of these has probability $p^5(1-p)^{10}$

 $x! = x \times (x-1) \times \ldots \times 3 \times 2 \times 1$, e.g. $3! = 3 \times 2 \times 1 = 6$. x! is read as x factorial.

Binomial distribution: general

• The probability of x successes from n independent Bernoulli trials is

$$\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

- We can use this to find the expectation and variance
 - ▶ The mean of a binomial distribution is E[X] = np
 - ▶ The variance of a binomial distribution Var(X) = np(1-p)
- If there are n=100 putts with probability of success p=0.2, then
 - $E[X] = np = 100 \times 0.2 = 20$
 - $ightharpoonup Var(X) = np(1-p) = 100 \times 0.2 \times 0.8 = 16$

Binomial probabilities in R

- We don't have to calculate the long form of that equation
 - ▶ We can use the R function dbinom
- Example: what is Pr(X = 1) when p = 0.2 and n = 2

```
dbinom(x = 1, size = 2, prob = 0.2)
## [1] 0.32
```

- The arguments are:
 - \triangleright x = 1: the number of successes x
 - \triangleright size = 2: the number of trials n
 - ▶ prob = 0.2: the probability of success p
- Check that it gives the correct answer: we know it should be 2p(1-p)

```
2*0.2*(1-0.2)
## [1] 0.32
```

More examples

- If we take 15 putts where there is a probability of 0.7 of making the putt
- What is the probability that we make 10 putts?
- We have x = 10, n = 15, p = 0.7

```
dbinom(x = 10, size = 15, prob = 0.7)
## [1] 0.206
```

• What is the probability of making 70 putts out of 100 putts with probability 0.6

```
dbinom(x = 70, size = 100, prob = 0.6)
## [1] 0.01001
```

Back to the data

- We want to estimate the probability of a professional golfer making a 6 foot putt
- What is our statistical model?
 - ▶ Each putt is the outcome of an independent Bernoulli trial with probability p
 - ▶ Equivalently, the total number of successful putts is binomially distributed
- We want to estimate a parameter (population) with a statistic (sample)
 - (Reasonably) obvious statistic: sample proportion x/n
- For golf data:

$$\hat{p} = \frac{x}{n} = \frac{149}{272} = 0.548$$

• Recall: \hat{p} is the estimate of parameter p

Confidence interval

- How do we find a confidence interval?
- Recall: normal model
 - Found the sampling distribution
 - Obtained a confidence interval from the sampling distribution
- Can we do the same thing here?
 - ▶ The sampling distribution is the distribution of \hat{p} if we take repeated samples
- Look at it graphically

Sampling distribution for \hat{p} : Start small with n=2 and p=0.4

- There are three possibilities:
 - ▶ Observe x = 0 with probability 0.36: estimate $\hat{p} = 0$
 - ▶ Observe x = 1 with probability 0.48: estimate $\hat{p} = 0.5$
 - ▶ Observe x = 2 with probability 0.16: estimate $\hat{p} = 1$

STAT 110: Week 9

Same principle, but increase the number of trials

STAT 110: Week 9

Increase the number of trials some more

Sampling distribution

- As the sample size gets larger, the sampling distribution looks increasingly normal
 - ► Normal pdf given in gold

• Example: n = 50, p = 0.25

Sampling distribution

- We can approximate the sampling distribution by a normal distribution
 - Provided n is large enough
- There are various rules of thumb used to determine if the normal approximation is appropriate
- One of these is
 - ▶ np > 10 and n(1-p) > 10
- As we saw on the plots above, this reflects that
 - \blacktriangleright The sampling distribution is increasingly normal as n increases
 - \blacktriangleright When p is close to 0 or 1 it takes a larger n for it to approach normality
- In practice we use $n\hat{p}$ and $n(1-\hat{p})$ to check if a normal approximation is reasonable

Sampling distribution

- We can approximate the sampling distribution by a normal distribution
 - Provided n is large enough
- The mean and variance are

$$E[\hat{p}] = p$$

$$\operatorname{Var}(\hat{p}) = \frac{p(1-p)}{n}$$

- So the standard error: $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$
- Extension: Derive $E[\hat{p}]$ and $Var(\hat{p})$
 - ▶ We have $\hat{P} = \frac{X}{n}$ where E[X] = np and Var(X) = np(1-p)

Confidence interval in R

• We use the normal approximation to find a confidence interval: prop.test

```
n = 272: x = 149
prop.test(x, n)
##
    1-sample proportions test with continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 2.3, df = 1, p-value = 0.13
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
   0.48656 0.60766
## sample estimates:
##
         р
## 0.54779
```

• We are 95% confident that the probability of a professional golfer making a putt from 6 feet is between 0.487 and 0.608

- We can also test the hypothesis
 - $ightharpoonup H_0: p = p_0$
 - \vdash $\mathsf{H}_A: p \neq p_0$
- prop.test defaults to $p_0 = 0.5$
 - ▶ It can be changed with option p, e.g. p = 0.4

```
prop.test(x, n, p = 0.4)
```

- For the putting data with $p_0 = 0.5$ we have a p-value of 0.13
 - ▶ This quantifies the incompatibility between the data and null hypothesis
 - Since p-value $> \alpha = 0.05$ there is no evidence that the data are unusual given the null hypothesis is true
 - The data we have observed would not be unusual if professionals truly sank 50% of their putts from 6 feet

Summary

- Introduced binary data
- Bernoulli distribution for binary observations
- The number of successes from multiple binary trials have binomial distribution
 - Several conditions need to be satisfied
- Use a binomial model to find:
 - ► Confidence interval for *p*
 - Hypothesis test
 - We will look more into these in the next lecture

STAT 110: Week 9

Outline

- A closer look at confidence intervals and hypothesis tests for p
- Extending the model
 - ► Compare probabilities between two (independent) groups
- Difference in proportions: $p_1 p_2$
 - Confidence interval
 - ► Hypothesis test

STAT 110: Week 9

Recall: Golf putting

- What is the probability a professional golfer makes a putt from 6 feet?
 - ightharpoonup n=272 putts with x=149 made

```
n = 272; x = 149
prop.test(x, n)
##
    1-sample proportions test with continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 2.3, df = 1, p-value = 0.13
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
   0.48656 0.60766
## sample estimates:
##
         р
## 0.54779
```

Finding confidence interval for p

- We found the confidence interval in R
 - ▶ We haven't yet described where it comes from (like we normally do)
- ullet It turns out there are many possible confidence intervals for p
 - ▶ The binomCI package in R gives the choice of 15 (!) different intervals
- Why are there so many many intervals?
 - ► There are many reasons
 - ▶ Most obvious: because the 'standard' confidence interval doesn't work well

Confidence intervals for p

• The 'standard' confidence interval can be written as

estimate \pm multiplier \times std. error

- Estimate: îp
- Multiplier: sampling distribution is approximate normal
 - Multiplier is $z_{1-\alpha/2}$
- lacktriangle Standard error: $\sigma_{\hat{p}} = \sqrt{rac{p(1-p)}{n}}$
 - Estimate this: $s_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Commonly called a Wald interval
- Similar to what we had for μ

Problems with the Wald interval

- The Wald interval is not very reliable, particularly when n not large, and p close to 0 or 1
 - Despite this it is still commonly used and seen in textbooks
- Recall: what is a confidence interval?
 - ▶ If we collect multiple datasets with *n* binary observations from the population of interest and calculate a confidence interval for each:
 - Then 95% of the intervals, on average, should contain the true p ($\alpha = 0.05$)
- The Wald interval does a poor job of this
 - ▶ The interval tends to contain the true value (p) less often than it is supposed to
 - e.g. when n=50 and p=0.06 fewer than 81% of intervals will contain the true p
 - Particularly poor when np or n(1-p) is small

What about the interval that R gives?

- prop.test finds the Wilson (score) interval
- Comparing the Wilson interval to the Wald interval:
 - ▶ Both are based on a normal approximation to the binomial
 - ► The Wilson interval is asymmetric
 - It is not found using: estimate \pm multiplier imes standard error
 - \blacktriangleright It has improved performance when p is close to 0 or 1
 - It is reasonable to use even if np < 10 or n(1-p) < 10
 - ▶ We will not delve into the detail
 - It is more complicated
 - Extension: more information is provided at this link for those who may be interested

• In practice: use Wilson interval found using prop.test

Continuity correction

- By default prop.test adopts a continuity correction
 - ► For confidence intervals and hypothesis tests
- A continuity correction is adjustment that reflects that we are approximating a discrete distribution (binomial) with a continuous distribution (normal)
 - We make an adjustment of ± 0.5
- If X is a random variable with a binomial distribution, and Z is a random variable with a normal distribution that approximates X, a continuity correction is
 - $\Pr(X \le 10) \approx \Pr(Z < 10.5)$
 - $\Pr(X \ge 5) \approx \Pr(Z > 4.5)$
- It is conservative: makes confidence intervals wider (increases p-value)
- It can be turned off using option correct = FALSE
 - ▶ We will use the default settings in prop.test

What about the hypothesis test?

- We may wish to test the hypotheses:
 - \vdash $H_0: p = p_0$
 - \vdash $\mathsf{H}_A: p \neq p_0$
- A test statistic can be found using:

$$z = \frac{\text{estimate} - \text{null}}{\text{standard error}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- Two things to note:
 - Find standard error assuming null hypothesis is true: $\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$
 - ► Find *p*-value from a (standard) normal distribution
 - That's why the test statistic is z, not t

Hypothesis test: golf

• To test if putting probability is different from 50/50: $p_0 = 0.5$

```
# estimate of p
phat = x/n
p0 = 0.5
# Find standard error under HO
se = sqrt(p0*(1-p0)/n)
# Find test statistic
z = (phat - p0)/se
# Find pvalue
pval = 2*pnorm(-abs(z))
pval
## [1] 0.115
```


Hypothesis testing in R

- prop.test conducts the hypothesis test in a slightly different way
 - By default it uses a continuity correction
 - lacktriangle Uses χ^2 test statistic 2 rather than z
 - Performing the same test, but in a different way
 - Details are outside the scope of the course (see STAT 270)
 - If the correction was turned off (correct = FALSE)
 - Obtain an identical p-value to our procedure above
 - ▶ Alternatively, we could include a continuity correction in our *p*-value calculation
 - We would find an identical p-value to that from prop.test
 - Details outside the scope of the course

 $^{^2\}chi$ is the greek letter chi, pronounced kai (rhymes with sky).

Data: Smallpox in Boston

 \bullet Data are 6224 observations from individuals in Boston in 1721 who were exposed to ${\rm smallpox}^3$

► Inoculated: yes or no

► Result: lived or died

 We are interested in comparing the probability of death for those who were inoculated to those who were not

		inoculated		
		yes	no	Total
result	lived	238	5136	5374
	died	6	844	850
	Total	244	5980	6224

³This is the same data that we saw in week 2.

Models for binomial data

- We don't have the tools to answer the question
 - \blacktriangleright We only know how to estimate p, not compare p across two groups
- We can look at model extensions for binomial data that parallel those we explored for normal models, e.g.
 - Comparing two or more independent groups
 - ▶ Regression-type models: probability of success depends on predictor variables
 - Called logistic regression
 - ▶ Defer many of these extensions to later courses (i.e. STAT 210)
- For smallpox data: two independent binomials
 - lacktriangle Inoculated: modelled as binomial with probability p_1
 - $-x_1=238, n_1=244$
 - \blacktriangleright Not inoculated: modelled as binomial with probability p_2

$$-x_2 = 5136$$
. $n_2 = 5980$

STAT 110: Week 9

Big picture

- We want to compare the survival between inoculated and uninoculated
- There are multiple ways we could do this, e.g.
 - ▶ Difference in probabilities: $p_1 p_2$
 - ▶ Ratio of probabilities (also called relative risk): p_1/p_2
- We will focus on $p_1 p_2$
- It is straightfoward to estimate this difference
 - $\hat{p}_1 \hat{p}_2$
- We also know those estimates are uncertain
 - ► Found from data (a sample from the population)
 - Find a confidence interval

Confidence interval for $p_1 - p_2$

• Find a confidence interval using

estimate \pm multiplier \times standard error

- Estimate: $\hat{p}_1 \hat{p}_2$
- Multiplier: we again approximate the sampling distribution with normal
 - ▶ Multiplier is $z_{1-\alpha/2}$
- Standard error: $\sigma_{\hat{p}_1 \hat{p}_2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
 - ► Estimate this with: $s_{\hat{p}_1 \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 \hat{p}_2)}{n_2}}$

Wald confidence interval for $p_1 - p_2$

• Putting this together we have the $100(1-\alpha)\%$ Wald confidence interval:

$$\hat{p}_1 - \hat{p}_2 \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

- This is the interval returned by prop.test when we have two groups
- As with the Wald interval for p
 - The interval is not that reliable if either n_1 or n_2 is small and either p_1 or p_2 is close to 0 or 1
 - ► Improved confidence intervals do exist
 - e.g. the Newcombe interval is based on Wilson interval
 - Such intervals can be found in other R packages
- We will use the Wald interval in prop.test

In R

```
x = c(238, 5136); n = c(244, 5980) # smallpox data
prop.test(x, n)
##
    2-sample test for equality of proportions with continuity correction
##
## data: x out of n
## X-squared = 26, df = 1, p-value = 3e-07
## alternative hypothesis: two.sided
## 95 percent confidence interval:
   0.0931 0.1400
## sample estimates:
## prop 1 prop 2
## 0.975 0.859
```

• We are 95% confident that the probability of survival was between 0.093 and 0.14 higher for those who were inoculated compared to those who were not

- Both p_1 and p_2 are conditional probabilities
 - $ightharpoonup p_1$ is the survival probability given inoculated
 - $ightharpoonup p_2$ is the survival probability given not inoculated
- If $p_1 = p_2$ then survival does not depend on inoculation
 - Survival and inoculation are independent
- We can test the hypotheses:
 - $H_0: p_1 p_2 = 0$ (this is equivalent to $p_1 = p_2$)
 - ightharpoonup $H_A: p_1-p_2
 eq 0$ (this is equivalent to $p_1
 eq p_2$)

• A test statistic can be found using:

$$z = \frac{\text{estimate} - \text{null}}{\text{standard error}}$$

- Estimate is $\hat{p}_1 \hat{p}_2$
- Null value is 0
- We need the standard error assuming null hypothesis is true
 - ▶ The two groups have the same probability: $p_1 = p_2$
 - ▶ The null hypothesis doesn't specify what this value is
 - Let's call it p^*

- The standard error is: $\sigma_{\hat{p}_1-\hat{p}_2}=\sqrt{rac{p^*(1-p^*)}{n_1}+rac{p^*(1-p^*)}{n_2}}$
 - ▶ This is the standard error above evaluated at $p_1 = p_2 = p^*$
- We don't know p^*
 - $\qquad \textbf{Estimate it: } \hat{p}^* = \frac{\text{total success}}{\text{total trials}} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$
 - $ightharpoonup \hat{p}^*$ is sometimes call the pooled proportion
- Use this to estimate the standard error: $s_{\hat{p}_1-\hat{p}_2}=\sqrt{\frac{\hat{p}^*(1-\hat{p}^*)}{n_1}+\frac{\hat{p}^*(1-\hat{p}^*)}{n_2}}$
- This hypothesis test is found using prop.test. As with the test for p:
 - It uses a different test statistic (χ^2 vs z)
 - ▶ Includes a continuity correct by default

Hypothesis test: in R

• Using prop.test to find the *p*-value

```
prop.test(x,n)
##
   2-sample test for equality of proportions with continuity correction
##
## data: x out of n
## X-squared = 26, df = 1, p-value = 3e-07
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.0931 0.1400
## sample estimates:
## prop 1 prop 2
## 0.975 0.859
```

STAT 110: Week 9

Interpretation

- ullet The $p ext{-value}$ quantifies the incompatibility between the null hypothesis and the data
 - The p-value $< \alpha = 0.05$, which suggests the data are unusual if the two groups (inoculated and uninoculated) truly had the same probability of survival

Summary

- Look at estimating p
 - ► Confidence intervals:
 - Wald interval can be unreliable
 - prop.test using more reliable alternative
 - Hypothesis tests
- Explored comparison between two groups: $p_1 p_2$
 - Confidence intervals
 - Hypothesis test