

✓ dhamoddharan.in@gmail.com Academic portfolio in LinkedIn

Personal Statement

I am a STEM enthusiast passionate about bridging science and engineering through the foundations of chemistry and physics. I expertise in structure-property correlations of electrochemical, electrical (including dielectric/ferroelectric), and thermal behaviors across ceramics, semiconductors, alloys, and polymers. Experienced in designing, synthesizing, and characterizing functional materials for next-generation electronics and sustainable energy. I am now seeking a PhD opportunity where I can tackle new research challenges, explore diverse domains, and contribute to impactful innovations.

Education

2020-2025 B.Tech in Metallurgical and Materials Engineering, Indian Institute of Technology Madras

Inter-Disciplinary Dual Degree (M.Tech) in Advanced Materials & Nanotechnology,

Indian Institute of Technology Madras, CGPA: 8.61/10.0

2019–2020 Class XII, CEOA Matriculation Higher Secondary School, Madurai, 94.3%

2017–2018 Class X, Kaviyan Matriculation School, Ammayanaickanur, 98.2%

Areas of Interest

Core Interest: Solid-State Physics & Chemistry, Quantum Materials, Electrochemistry

Application Domain: Semiconductor Devices, Spintronics, Nanoscale Electronics, Sustainable Energy Materials

Fundamental Focus: Defect & Interface Engineering, Bandgap Engineering, Quantum Topological States,

Superconductivity, Spin-dependent Engineering

Research Approaches Material-Device Codesign, Novel Nanofabrication & Synthesis, Advanced Characterization

Publications and Patents

Patent 202441060984: A flexible ceramic nanogenerator and method of manufacture thereof. Published on March 2025. Co-inventors: Ravikumar, Abishek Muthukumar, Ganesh Babu.

Manuscript LiVO₃/LiZnVO₄ Nanocomposite: High-performance electrocatalyst for ambient nitrogen reduction

to ammonia. Authors: Naina Goyal, Dhamotharan D., Fabio Pires, Ravikumar, Sanjay Mathur.

Published in Advanced Engineering Materials (DOI:).

Manuscript Flexible All-Ceramic Tribopositive Electrode with High-Entropy Oxide Integration for Enhanced

Energy Harvesting. Authors: Dhamotharan D., Muthukumar Abishek, Ravikumar. Manuscript

in progress

Conferences

July 2025 Oral Presentation: "Flexible ceramic-based tribo-positive electrodes for wearable energy harvesting" at International Symposium on Emerging Research in Advanced Materials (ISERAM-1), IIT Madras

& Nagoya University.

November 2024 Third Prize (Student Oral): "High selectivity electrocatalytic green ammonia synthesis via

LiZnVO₄/LiVO₃" at International Conference on Advanced Ceramics for Sustainability.

Awards

July 2025 Prof. K. Gopinath & Mrs. Padmini Gopinath Prize – Best academic performance in IDDD Advanced Materials and Nanotechnology programme, IIT Madras.

April 2025 Institute Merit Prize - Highest cumulative GPA in semesters 7 & 8 of IDDD Advanced Materials

and Nanotechnology programme, IIT Madras.

Research Experience

Project associate

Aug 2025 - Present Rapid Room-Temperature Synthesis of Metal Nitrides

Guide: Prof. Ravikumar N V, IIT Madras, India

- Process setup building with modified solid state metathesis reaction for phase pure nitrides.
- Demonstrated a primitive modified SSM for tunable ZrN synthesis at room temperature
- Targeting scalable, rapid energy-efficient synthesis of transition- and post-transition nitrides (e.g., GaN).

Graduate Research

Jan 2024 - Present Flexible Ceramic-Based Triboelectric Nanogenerators (TENGs)

Guide: Prof. Ravikumar, IIT Madras, India

- Synthesized different high entropy oxides with tunable triboelectric and strucutral properties.
- Developed scalable thick-film methodology for high-throughput fabrication of flexible ceramic electrodes.
- Investigated the flexibility and durability of the ceramic electrode with a hypothesis for the mechanism.
- Established and pioneered triboelectricity based research facility, setup and methodology in the lab.
- Manuscript in preparation for journal submission.

International Research Internship

Jun 2024 - Aug 2024 Electrocatalytic Green Ammonia Synthesis using LiZnVO₄/LiVO₃ Nanocomposite

Guide: Prof. Sanjay Mathur, University of Cologne, Germany

- O Synthesized phase-pure LiZnVO₄, LiVO₃, and their nanocomposite via silazane-based sol-gel route.
- \circ Achieved 45% Faradaic efficiency with $53 \,\mu\mathrm{g}$ h⁻¹ mg $_{cat}^{-1}$ NH₃ yield in proton-rich electrolytes.
- Demonstrated superior catalytic activity of biphasic composites compared to single-phase counterparts.

Undergradute research

Feb 2023 – Jul 2023 Electrocatalytic Behaviour of Cu-based Nanowires for Nitrate Reduction

Guide: Prof. Lakshman Neelakantan, IIT Madras, India

- \circ Fabricated Cu and a functionalised Cu nanowires (78 \pm 10 nm) via simple galvanic displacement (>90% pore filing) and Cu-Pd nanowires (CuxPd $_{100-x}$) via DC electrodeposition in AAO templates
- Nitrate sensing with electrochemical studies (CV, LSV, Chrono) showed enhanced sensitivity (50 $\mu A/\mu M$) and low detection limit (10 nM) for functionalized Cu nanowires.

Jul 2022 - Dec 2022 Fabrication of Self-Ordered Tunable Nanoporous AAO Templates

Guide: Prof. Lakshman Neelakantan, IIT Madras, India

- O Process modifications for tunable pore diameter (20-80 nm) with two step mild anodization and BLT.
- Optimized hard anodization parameters to enhance scalability, prevent dielectric breakdown/burning of AAO during growth, and improve reproducibility

Academic Research Projects (Coursework)

Jan 2024 – Apr 2024 Fabrication and Characterization of Permalloy Thin Films via DC Sputtering

Advanced Materials and Nanotechnology Lab, IIT Madras

- \circ Deposited Permalloy (Fe₂₀Ni₈₀) thin films (\sim 316 \pm 20 nm) on glass substrates using DC sputtering.
- Characterized structural properties by XRD; surface and cross-sectional morphology analyzed by SEM.
- Utilised Vibrating Sample Magnetometry (VSM) for M-H hysteresis loops, extracting key parameters (e.g., coercivity, saturation magnetization) to characterize the material's soft magnetic behaviour

Jan 2024 - Apr 2024 Synthesis and Characterization of InSb Thin Films via E-beam Evaporation

Advanced Materials and Nanotechnology Lab, IIT Madras

- \circ Synthesized InSb pellets and deposited thin films (\sim 980 \pm 17 nm) using e-beam evaporation.
- XRD revealed preferred crystallographic orientations along (111), (022), and (113) planes, with peak broadening in films compared to bulk. SEM-EDS confirmed stoichiometry (In₄₇Sb₅₃);
- Hall effect and four-probe measurements demonstrated p-type conductivity due to In vacancies.

May 2021 – Jul 2021 Conceptual Design of an Autonomous Fruit-Picking Robot

Robotics Summer Bootcamp Project, CFI Robotics Club, IIT Madras

- Collaborated on a team to develop a 3D CAD model for a conceptual autonomous fruit-picking robot.
- Led the design of the locomotion system, modeling a robust crawler track mechanism for navigation on off-road agricultural terrain.

Technical Skills

Characterization

- Material O Spectroscopy: X-ray Photoelectron Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS), Raman Spectroscopy, UV-Visible Spectroscopy, FTIR Spectroscopy, Nuclear Magnetic Resonance (NMR).
 - Diffraction and Microscopy: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM).
 - Thermal and Magnetic Analysis: TG-DSC/DTA, Vibrating Sample Magnetometry (VSM).
 - Electrochemical Methods: Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS).

- Material Synthesis O Thin-Film Deposition: E-beam evaporation, thermal evaporation, DC sputtering.
 - and Deposition O Wet-Chemical Routes: Sol-gel synthesis (including Schlenk line techniques), solution combustion, co-precipitation.
 - Electrochemical Methods: Electropolymerization, electrodeposition (nanowires, alloys).
 - Solid-State Routes: Solid-state metathesis (liquid and solid phase), Self Propagating Room Temperature syntheses (SPRT).

- Relevant Courses O Advanced CMOS Technology, Advanced Memory Technology, Compound Semiconductors & Devices, Fundamentals of Semiconductor Physics, Plastic Electronics, Nanomaterials & Nanoscience.
 - Smart Materials, Composite Materials, Non-metallic Materials, Science and Technology of Solid State, Physiscs of Materials, Materials sustainability
 - Materials Characterization (theory and lab), Environmental Degradation of Materials, Deformation and Failure of Materials, Principles of Physical Metallurgy.

- Computational, O Modeling & Simulation*: Density Functional Theory (DFT), TinkerCAD (Circuit Simulation).
- Modeling, and Design O CAD & 3D Design: AutoCAD, Inventor Pro. Fusion 360.

Industrial Experience

May 2022-July 2022 R&D Intern, The Titan Company Jewellery Division, Hosur, Developed cost-efficient continuous casting routes for gold bangle production, replacing conventional block machining. Optimized 18K white gold rod production using vacuum induction melting, improving yield and reducing costs.

Leadership and Outreach

Strategist, Saarang Nova (2022–2023), IIT Madras.

Coordinator, Saarang Publicity & Hospitality (2022–2023), IIT Madras.

Mentor, Saathi Mentorship Cell (2021-2022), IIT Madras.

Extracurricular Activities

Martial Arts Bronze medallist at International Karate Kumite Championship. Nidan (Black Belt II), Budokan Karate-Do India. Certified instructor & examiner.

Fine Arts Winner of Camel Art Contest (twice, Primary Level).

Dance Member of NCA Chorea Team, IIT Madras.

^{*}Knowledge at the primary level but with hands-on experience STEM - Science Technology Engineering Mathematics