SCN – ESIR2 DOMOTIQUE – DUREE 1 HEURE – 2015/2016

1. CODAGE

On considère un signal S suivant : « 010A0A010A010A01 » On rappelle la définition de l'entropie : $H = -\sum_{k=0}^{N-1} p_k \log_2(p_k) \text{ en bit/symbole}.$

- Q1.1. Expliquer ce qu'est l'entropie d'un signal et calculer sa valeur H₁ en bits pour le signal S.
- Q1.2. On utilise un codage C_1 pour ce signal S en binaire naturel. Donner le nombre de bits nécessaires pour coder en C_1 . Donner un exemple de codage C_1 .
 - Q1.3. Calculer l'efficacité du code C₁.
- Q1.4. On considère maintenant que les chiffres du signal S sont regroupés 2 par 2 pour constituer des nouveaux symboles. Donner ces nouveaux symboles et leur probabilité d'apparition.
 - Q1.5. En déduire la nouvelle entropie H₂ et comparer avec la question Q1.1.
- Q1.6. On code ces nouveaux symboles en binaire naturel (codage C_2). Donner le nombre de bits nécessaires par symbole pour C_2 .
 - Q1.7. Calculer l'efficacité du code C₂ et comparer avec l'efficacité du code C₁. Conclure.

2. Modulations I/Q

Donner les constellations pour les modulations suivantes :

- Q2.1. Pour un OOK Q2.2. Pour une QPSK Q2.3. Pour une PSK8 Q2.4. Pour une QAM16
- Q2.5. Pour les 4 modulations précédentes, dire si le diagramme de l'œil de la figure 1 à gauche peut correspondre et pourquoi.

On rappelle que la probabilité d'erreur entre deux symboles voisins est donnée par $P_{es} = \frac{1}{2} \operatorname{erfc} \left(\frac{d}{2\sqrt{2} \, \sigma} \right)$ avec d la distance entre les symboles et σ l'écart type du bruit.

Q2.6. Pour la constellation de la figure 1 au milieu, expliquer les différentes étapes pour le calcul de la probabilité d'erreur totale en fonction de d et σ et donner cette probabilité d'erreur.

Figure 1

3. AUTRES MODULATIONS

- Q3.1. Donner les formes temporelles des deux symboles pour un codage binaire de Manchester.
- Q3.2. Donner les formes temporelles optimales des 4 symboles d'un codage NRZ 4 états.
- Q3.3. Donner en expliquant le type de modulation donnant le spectre de la figure 1 à droite.