University of Washington
Department of Computer Science and Engineering
CSE 417, Winter 2020
Yiliang Wang

Homework 4 Problem 1

Problem 1 (10 points):

Let S be a set of intervals, where $S = \{I_1, \ldots, I_n\}$ with $I_j = (s_j, f_j)$ and $s_j < f_j$. A set of points $P = \{p_1, \ldots, p_k\}$ is said to be a *cover* for S if every interval of S includes at least one point of P, or more formally: for every I_i in S, there is a p_j in P with $s_i \le p_j \le f_i$.

Describe an algorithm that finds a cover for S that is as small as possible. Argue that your algorithm finds a minimum size cover. You algorithm should be efficient. In this case $O(n \log n)$ is achievable but it is okay if your algorithm is $O(n^2)$. You may assume that the intervals are sorted in order of finishing time.

Answer:

```
Algorithm:
```

return P

Proof of correctness:

Let p_1 is the right bound of first finish interval I_1 (The first interval in sorted set S). Assume there is a $p'_1 < p_1$, if replace p_1 with p'_1 , then what p_1 cover should at least equal or greater than p'_1 (that p_1 satisfies at least more I_i that $s_i \leq p_j \leq f_i$ than p'_1), since p_1 is further right than p'_1 , it has at least equal possibity to cover overlap interval with first finish interval.

Assume $S = S - \{I_0 \text{ and all intervals overlap } I_0\}$, the subproblem become exactly same problem as I_0 . Let I_i is the first finish interval, and p_i is the right bound of I_i . And $p'_i < p_i$. And because of same exchange argument, what p_i cover should at least equal or greater than p'_i . This holds true for all I which finish first. Therefore, for each of k p_i , p_i should cover at least as much as interal as p'_i , and hence would use smallest k comparing to set k with each exchange k.

The time complexity is $O(n \log n)$, since the sorting set S cost is $O(n \log n)$, the algorithm only iterate through S once with O(n) time. Hence the overall time complexity is $O(n \log n) + O(n) = O(n \log n)$