

Recurrent Neural Networks

RNNs

- Problem: inputs of variable size
 - Image data can be normalized. Text is more difficult...

- Solution: recurrent neural networks
 - Varying length sequences handled by stateful neurons

RNNs: Motivating Applications

- Time-series data
- Language processing
 - Speech recognition
 - Text generation
- Sensor data
- Genome sequences
- Stock prediction

Feed Forward Network Data

Recurrent Network Data

Beyond CNNs

Problem: Deeper models are hard to optimize.

Solution: Construct deep model from learned layers of shallow model.

 Stacking deeper layers on CNNs may result in worsening performance in both training and testing.

Is this due to overfitting?

No! See the pattern?

RNNs: Architecture

U encodes the input

[s x r]

W updates the info from the previous state

[s x s]

U+W is passed into the activation function

V is [t x s]

Let:
r = dim of input vector
s = dim of hidden state
t = dim output vector

"Unfolding" an RNN

In Keras, this part is accomplished by a subsequent Dense layer

This part is the core RNN

Keras calls this part the "kernel" (e.g. kernel_initializer,...)

Keras calls this part "recurrent" (recurrent_initializer,...)

RNNs with LSTM

- Problem: state transitions
 - It is hard to keep info from the distant past in current memory (without reinforcement)

Solution: long short-term memory

LSTM

LSTM Memory Cell

LSTM

LSTM Memory Cell

LSTM

long-short term memory modules used in an RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Eugenio Culurciello © 2016

Final stage computes the output

 C_1

$$o_t = \sigma \left(W_o[h_{t-1}, x_t] + b_o \right)$$

$$h_t = o_t * \tanh(C_t)$$

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU)

Variations of LSTM

Improving RNNs

Augmenting RNNs

Neural Turing Machines

have external memory that they can read and write to.

Attentional Interfaces

allow RNNs to focus on parts of their input.

Adaptive Computation Time

allows for varying amounts of computation per step.

Neural Programmers

can call functions, building programs as they run.

Neural Turing Machines

Memory is an array of vectors.

38

Neural Turing Machines

Instead of writing to one location, we write everywhere, just to different extents.

The RNN gives an attention distribution, describing how much we should change each memory position towards the write value.

$$M_i \leftarrow a_i w + (1-a_i) M_i$$

First, the controller gives a query vector and each memory entry is scored for similarity with the query.

The scores are then converted into a distribution using softmax.

Next, we interpolate the attention from the previous time step.

We convolve the attention with utsa cs 4 a shift filter—this allows the

Next, we interpolate the attention from the previous time step.

We convolve the attention with a shift filter—this allows the controller to move its focus.

Finally, we sharpen the attention distribution. This final attention distribution is fed to the read or write operation.

Graves et al, 2014

DialogueRNN: An Attentive RNN for Emotion Detection in Conversations

AAAI 2019

Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, Erik Cambria

Dilated Recurrent Neural Networks

NeurIPS 2017

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark Hasegawa-Johnson, Thomas S. Huang

http://papers.nips.cc/paper/6613-dilated-recurrent-neural-networks.pdf

Next week! UTSA CS 4973/6463 Deep Learning