实验 4 1 报告

2016K8009909006 刘杰

一、实验任务(10%)

为 myCPU 增加例外与中断支持,完成功能测试,并支持运行一定的应用程序。需要完成如下任务

- (1)增加 MTC0、MFC0、ERET、SYSCALL 指令,实现系统调用例外支持。
- (2) 增加 CP0 寄存器 STATUS、CAUSE、EPC。
- (4)运行69个功能点测试通过。

二、实验设计(30%)

(一) CPO 寄存器模块设计

类似通用寄存器堆的设计,增加支持例外和中断的 CPO 控制寄存器模块,模块主要信号如下表:

信号名	信号方向	信号位宽	信号描述
clk	input	1	时钟信号
resetn	input	1	复位信号,低电平复位
cp0_raddr	input	5	CP0 寄存器读地址
cp0_waddr	input	5	CP0 寄存器写地址
cp0_wdata	input	32	写入 CP0 寄存器数据
cp0_rdata	output	32	读出 CP0 寄存器数据
mtc0_wen	input	1	写使能信号,高电平才能写 CP0 寄存器
exception_cmt	input	1	例外提交信号,高电平有效
eret_cmt	input	1	例外返回信号,高电平有效
inst_in_ds	input	1	高电平代表例外指令在延迟槽
inst_pc	input	32	例外指令 PC
eret_pc	output	32	例外返回 PC

表 1: CPO 寄存器模块信号表

CP0 寄存器寄存器除了在执行 mtc0 和 mfc0 指令进行读写,在例外处理时也需要相应的读写操作。对于 STATUS 寄存器,在例外提交时,需要将 exl 位域置 1,在执行 eret 指令时将 exl 位域值 0 来标记例外处理过程。 对于 CAUSE 寄存器,在例外提交时根据例外向量表改变 exccode 位域来表示例外类型,如 syscall 例外, exccode

位域置为 0x08,同时根据 inst_in_ds 信号判断例外指令是否在延迟槽改变 bd 位域。对于 EPC 寄存器,在例外提交 且未被屏蔽时,将例外指令 PC 存入 EPC 寄存器,并在执行 eret 指令时,将 EPC 寄存器的值读出通过 eret_pc 端口输出。

为优化例外处理的电路,故所有例外在统一的流水级处理(暂定为写回级),即在例外发生后,先传递到写回级,在写回级提交例外,进行处理。

三、实验过程(60%)

(一) 实验流水账

2018.11.17

9:00-11:00 阅读讲义和指令手册,设计电路并编写代码。

2018.11.17

11:20-12:00 仿真, 在 SYSCALL 指令处发现 bug, 修复 bug。

13:25-14:00 修复 bug 后仿真, 在 SYSCALL 指令处再次发现 bug, 修复 bug。

16:00-17:00 修复 bug 后仿真通过,上板通过.

2018.10.18

18:00-20:00 完成实验报告。

(二) 错误记录

1、错误1

(1) 错误现象

syscall 例外发生之后,在处理该例外的第一条指令 PC 值发生错误

(2) 分析定位过程

发现 PC 值与 trace 不匹配,错误 PC 值属于前一条指令 PC+4,但是正确的 PC 值是 0xbfc00380,查阅手册后发现例外处理入口为 0xbfc00380。

(3) 错误原因

没有增加一条例外提交时 PC 来源的选择通路,使得提交例外后 PC 没有自动跳转到例外处理入口 0xbfc00380,从而发生错误。

(4) 修正效果

添加例外提交时 PC 来源是 0xbfc00380 的选择通路,再次仿真通过。

(5) 归纳总结(可选)

例外发生时由硬件跳转到确定的例外处理入口,这一过程不是软件做的。

2、错误2

(1) 错误现象

控制台报错, mfhi 指令取出的值错误。

(2) 分析定位过程

mfhi 指令执行过程没有问题,HI 寄存器的值有误,往回查找最近一条写 HI 寄存器的指令,发现是 divu 指令后的一条 mthi 指令,在 mthi 没有将除法结果写入 HI 寄存器时,HI 寄存器的结果符合 trace 的比对结果。

(3) 错误原因

除法指令是紧跟着 syscall 指令, syscall 指令之后的指令都不应该执行。而我实现的时候忘记清空 syscall 指令之后的流水线。

(4) 修正效果

把 syscall 指令后的指令相关控制信号都设置为无效,确保 syscall 指令后的指令都未执行。

(5) 归纳总结(可选)

例外发生时要记得清空例外指令后流水线。

四、实验总结(可选)

例外处理是在做添砖加瓦的工作,改动幅度不大。