1. Introducción a los conjuntos numéricos

Sea \mathbb{N} un conjunto con un elemento que denominamos 1. Ahora, para todo elemento n de \mathbb{N} añadimos a \mathbb{N} el sucesor, S(n) o n+1. Esto da un conjunto infinito, los **números naturales**. En este conjunto tenemos el principio de inducción:

Axioma 1 (Principio de inducción en \mathbb{N}). Sea $S \subseteq \mathbb{N}$. Si S satisface las siguientes 2 condiciones, entonces $S = \mathbb{N}$:

- 1 ∈ S
- $\forall n \in S \ n+1 \in S$

Este principio es muy útil para probar cosas sobre \mathbb{N} , por ejemplo la forma cerrada de una sucesión. En \mathbb{N} también podemos definir algo denominado **orden total**, que es una relación binaria \leq que sigue los siguientes axiomas:

Axioma 2 (Axiomas de orden total). $\forall a, b, c \in \mathbb{N}$

- 1. $a \le a \ (Reflexividad)$
- 2. $a \le b$ y $b \le c$ implies $a \le c$ (Transitive dad)
- 3. $a \le b$ y $b \le a$ implica a = b (Antisimetría)
- 4. $a \le b$ o $b \le a$ (Totalidad)

Con este orden total definido, podemos reformular el principio de inducción como:

Axioma 3 (Principio de buena ordenación en \mathbb{N}). $\forall S \subseteq \mathbb{N} \ S \neq \emptyset, \exists n \in S \mid \forall x \in S, n \leq x. \ Es \ decir, \ todo \ subconjunto \ de \ los \ números \ naturales \ tiene \ mínimo.$

Estas dos formulaciones son equivalentes. Los números naturales además cumplen los siguientes axiomas algebraicos:

Axioma 4 (Axiomas de semianillo unitario ordenado). $\forall a, b, c \in \mathbb{N}$:

- 1. (a+b)+c=a+(b+c) (Asociatividad de la suma)
- 2. a + b = b + a (Conmutatividad de la suma)
- 3. (a*b)*c = a*(b*c) (Asociatividad de la multiplicación)
- 4. a * b = b * a (Conmutatividad de la multiplicación)
- 5. a*(b+c) = a*b + a*c (Distributividad de la multiplicación sobre la suma)
- 6. $\exists 1 \in \mathbb{N} \mid \forall n \in \mathbb{N}, 1 * n = n$ (Elemento neutro del producto)
- 7. $a < b \Rightarrow a + c < b + c$ (Compatibilidad del orden con la suma)
- 8. Si $c \ge 0$ (que es trivial en \mathbb{N}), entonces $a \le b \Rightarrow ac \le bc$ (Compatibilidad del orden con el producto)

Estos axiomas son particularmente débiles. Por ejemplo, para la ecuación x + 2 = 4 obviamente x = 2, pero no existe ninguna forma de probarlo fácilmente, cuando la existencia de inversos para cada número ayudaría inmensamente. Además, ecuaciones como x + 4 = 2 no tienen solución en \mathbb{N} . Por eso definimos un nuevo conjunto denominado \mathbb{Z} , los **números enteros**:

Definición 1 (Números enteros). $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \ \forall n \in \mathbb{N}\}\ donde\ 0\ denota\ la\ identidad\ para\ la\ suma\ y\ -n\ el\ inverso\ para\ la\ suma\ de\ n$

Estos números, ademas de los Axiomas 4, cumplen los siguientes axiomas:

Axioma 5 (Axiomas adicionales para \mathbb{Z}).

- 1. $\exists 0 \in \mathbb{Z} \mid \forall n \in \mathbb{N}, 0 + n = n \ (Elemento neutro de la suma)$
- 2. $\forall n \in \mathbb{Z}, \exists -n \in F \mid n+(-n)=0$ (Existencia del elemento inverso para la suma)

Con estos axiomas, se dice que $(\mathbb{Z}, +)$ es un grupo conmutativo y que $(\mathbb{Z}, +, *)$ es un anillo conmutativo. A cambio de estos axiomas algebraicos, perdemos el principio de inducción en los números enteros, pero mantenemos una versión del principio de buena ordenación:

Axioma 6 (Principio de buena ordenación de subconjuntos minorados de \mathbb{Z}). $\forall S \subseteq \mathbb{Z} \ S \neq \emptyset \ si \ \exists n \in \mathbb{Z} \ | \ \forall x \in S, n \leq x \ entonces$ $\exists m \in S \ | \ \forall x \in S, m \leq x.$ Es decir, todo subconjunto no vacío con cota inferior tiene un elemento mínimo.

Este axioma para \mathbb{Z} implica el $Axioma\ 3$ para los naturales. El conjunto de los números enteros aún tiene unos cuantos problemas. Por ejemplo, es imposible resolver la ecuación 2x=1 para $x\in\mathbb{Z}$. Por eso, podemos definir otro conjunto de números construidos sobre los números enteros, los **números racionales**, denotados por \mathbb{Q} :

Definición 2 (Números racionales). $\mathbb{Q} = \{p/q, p \in \mathbb{Z}, q \in \mathbb{N}\}$

Aparte de cumplir los Axiomas 4 y 5, \mathbb{Q} cumple:

Axioma 7 (Axioma algebraico adicional para \mathbb{Q}).

1. $\forall q \in \mathbb{Q} \ q \neq 0, \exists \ 1/q \in \mathbb{Q} \ | \ q * (1/q) = 1$ (Existencia del inverso de elementos no nulos para el producto)

Esto hace de \mathbb{Q} un cuerpo conmutativo. \mathbb{Q} no tiene ni principio de buena ordenación, ni de buena ordenación de subconjuntos minorados (por ejemplo, el conjunto $S = \{1/n \ \forall n \in \mathbb{N}\} \subseteq \mathbb{Q}$ esta acotado inferiormente pero no tiene mínimo). Esto nos quita una vía de demostrar, pero "quitamos" más agujeros que existían en los números enteros:

Teorema 1 (Densidad de \mathbb{Q}). $\forall a, b \in \mathbb{Q}$ $a \neq b$, $\exists r \in \mathbb{Q} \mid a < r < b$. Es decir, entre dos números racionales distintos siempre vamos a poder encontrar otro número racional. De hecho, vamos a poder encontrar infinitos aplicando el teorema cuantas veces como queramos.

Demostración. Dados $a < b \in \mathbb{Q}$: a = (a+a)/2 < (a+b)/2 < (b+b)/2 = b. (a+b)/2 es el número que buscamos.

De este teorema podemos deducir que no existe una función sucesora en \mathbb{Q} , y por tanto no tenemos alternativa a inducción. Pero este teorema no es suficiente para que \mathbb{Q} sea el conjunto numérico perfecto para hacer análisis. Aún existen agujeros, como demuestra el siguiente ejemplo:

Proposición 1. No existe ningún $a \in \mathbb{Q}$ tal que $a^2 = 2$.

Demostración. Supongamos que $\exists a \in \mathbb{Q}$ tal que $a^2 = 2$. Al ser un número racional, lo podemos escribir de la forma $\frac{p}{q}$ con $p \in \mathbb{Z}, q \in \mathbb{N}$ y gcd(p,q)=1 (donde gcd denota el máximo común divisor). Por tanto, tenemos la expresión $\frac{p^2}{q^2}=2$, de donde deducimos que $p^2=2q^2$ y debido a que 2 es un número primo, que 2|p o más concretamente p=2k para algún $k \in \mathbb{Z}$. Substituyendo otra vez obtenemos $4k^2=2q^2$ y deducimos $2k^2=q^2$, que de forma similar nos deja ver que q es también múltiplo de 2. Pero inicialmente hemos asumido que el máximo común divisor de p y q es 1 < 2 y no mayor o igual a 2, por lo cual hemos encontrado una contradicción y la proposición es cierta.

Esto es problemático, ya que intuitivamente deberíamos de poder encontrar un valor que cumpla $a^2 = 2$. Para poder arreglar este problema necesitamos una definición primero:

Definición 3 (Supremo e ínfimo). Sea A un subconjunto numérico acotado superiormente. Si existe la mínima cota superior (es decir, un número ω que sea cota superior del conjunto y tal que cualquier otra cota superior α sea $\omega \leq \alpha$) esta será única y la llamaremos supremo. Dualmente, a la máxima cota inferior en un subconjunto acotado inferiormente la llamaremos **ínfimo**. Se denotan sup A y ínf A.

La definición parece ajena al ejemplo de "agujero" que hemos dado en la $Proposición\ 1$, pero es la más general que engloba todos los casos que necesitamos. El subconjunto $A\subseteq\mathbb{Q}$ definido como $A=\{a\in\mathbb{Q}\mid a^2\leq 2\}$ esta acotado superiormente por 2 y es posible demostrar que si existiera un supremo, este número sería tal que su cuadrado fuera igual a 2, pero en \mathbb{Q} no existe. Por tanto, podemos pensar que "añadiendo todos los supremos" completaríamos \mathbb{Q} . Este es el procedimiento que seguimos:

Axioma 8 (Axioma del supremo). Todo subconjunto acotado superiormente tiene supremo.

Definición 4 (Números reales). Al conjunto \mathbb{R} con $\mathbb{Q} \subseteq \mathbb{R}$ y que cumpla el Axioma 8 lo llamamos los **números reales**.

Este conjunto no es único, pero si es único bajo isomorfismos, que viene a decir que cualesquiera dos conjuntos con estas propiedades tienen la misma estructura y por tanto no hace falta distinguirlos.

- 2. Sucesiones de números reales
- 3. Funciones, límites y continuidad
- 4. Derivabilidad de funciones reales