MIPS and related problems in ML

Manohar, Saketh

March 31, 2018

Extreme Classification application: Let $\mathcal{X} \subset \mathbb{R}^n$ (n is in millions) and \mathcal{Y} be an extremely large discrete set. ($c \equiv |\mathcal{Y}|$ is in millions). You are given a initial labeled set of examples $(x_i, y_i), i = 1, \ldots, m$, using which model parameters w_1, \ldots, w_c for each class are learned using some standard algorithm. Note that this is a multi-labeled classification. Hence y is a vector representing all relevant labels.

You are additionally given a set of unlabeled examples (again millions), z_1, \ldots, z_u . Let $t \in \mathbb{N}$ be a user defined (given) parameter. At beginning of iteration k, let the model parameters be $w_1^{(k)}, \ldots, w_c^{(k)}$. In iteration k do the following:

- 1. For each z_i :
 - (a) Among the values $\langle w_1^{(k)}, z_i \rangle, \dots, \langle w_c^{(k)}, z_i \rangle$, find the class/index with the t^{th} highest value of the inner-product. Let this class be p.
 - (b) Among the values $\langle w_1^{(k)}, z_i \rangle, \dots, \langle w_c^{(k)}, z_i \rangle$, find the class/index with the $(t+1)^{th}$ highest value of the inner-product. Let this class be a.
 - (c) Let $\Delta_i \equiv \langle w_p^{(k)}, z_i \rangle \langle w_q^{(k)}, z_i \rangle$. This intuitively represents the 'gap' at the t^{th} position.
- 2. Find the i with least Δ_i . Let this be z_* .
- 3. Ask the oracle the label for this z_* . Include this example and retrain, thus updating the model parameters.