Problem 1: Suppose that X and Y are jointly continuous random variables with density

$$f(x,y) = \begin{cases} 24xy & : 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \le 1, \\ 0 & : \text{otherwise.} \end{cases}$$

Compute the expectation E(XY).

Problem 2: Suppose X and Y are jointly continuous random variables with the same density from Problem 1. Compute a formula for the conditional expectation $E(Y \mid X = x)$. Take care to precisely state the domain of this function.

Problem 3: Let X and Y be two random variables on the probability space $S = \{a, b, c\}$. Suppose that the probability distribution P on S has mass function p(s) and that X and Y are defined according to the following table:

s	p(s)	X(s)	Y(s)
\overline{a}	0.2	1	2
b	0.5	2	1
c	0.3	1	1

Compute the random variable $E(Y \mid X)$.

Problem 4: Suppose that a point X = x is chosen uniformly in the interval (0,1). After x has been chosen, suppose that a second point Y = y is chosen uniformly in the interval [x,1]. Compute the expectation E(Y).

Problem 5: The waiting time X in minutes between calls to a 911 center is exponentially distributed with mean $\mu = 2$ minutes. Compute the distribution of the transformed random variable Y = 60X that measures the waiting time in seconds.

Problem 6: Suppose that X and Y are two random variables such that $Y = e^X$ and $X \sim \mathcal{N}(\mu, \sigma^2)$. Compute the density of Y.

Problem 7: Suppose that $\mathbf{X} = (X_1, X_2)$ is a two-dimensional continuous random vector with density

$$f(x_1, x_2) = \begin{cases} 4x_1x_2 &: 0 < x_1 < 1, \ 0 < x_2 < 1, \\ 0 &: \text{otherwise.} \end{cases}$$

Letting T be the support of the density, define $r: T \to \mathbb{R}^2$ by setting

$$r(x_1, x_2) = \left(\frac{x_1}{x_2}, x_1 x_2\right)$$

for $(x_1, x_2) \in \mathbb{R}^2$. Compute the density of the random vector $\mathbf{Y} = r(\mathbf{X})$.

Problem 8: Suppose that X is a continuous random variable with uniform distribution on [a, b]. Compute its moment generating function $\psi(t)$, and then find all moments $E(X^k)$, for $k \ge 1$.

Problem 9: Use moment generating functions to confirm that the mean and variance of a random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ are indeed μ and σ^2 .

Problem 10: Suppose that X and Y are random variables with the joint density function

$$f(x,y) = \begin{cases} 2xy + 0.5 & : 0 \le x \le 1, \ 0 \le y \le 1, \\ 0 & : \text{otherwise.} \end{cases}$$

Compute the covariance of X and Y.

Problem 11: Compute the correlation ρ_{XY} of the random variables in the previous problem.

Problem 12: Many students applying for college take the SAT, which consists of math and verbal components (the latter is currently called evidence-based reading and writing). Let X and Y denote the math and verbal scores, respectively, for a randomly selected student. According to the College Board, the population of students taking the exam in 2017 had the following results:

$$\mu_X = 527$$
, $\sigma_X = 107$, $\mu_Y = 533$, $\sigma_Y = 100$, $\rho_{XY} = 0.77$.

Supposing that $(X,Y) \sim \mathcal{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, determine the probability that a student's total score X+Y exceeds 1250, the minimum admission score for a particular university.