Why Parallelism?

Thursday, March 26, 2020 5

We care about performance and efficiency

Speedup One major motivation of using parallel processing: achieve a speedup

For a given problem:

Speedup(using P processors) = <u>execution time(using 1 processor)</u> execution time(using P processors)

Instruction level parallelism (ILP)

- Idea: Instructions must <u>appear</u> to be executed in program order. BUT <u>independent</u> instructions can be executed simultaneously by a processor without impacting program correctness
- Superscalar execution: processor dynamically finds independent instructions in an instruction sequence and executes them in parallel

Screen clipping taken: 3/26/2020 7:27 PM

ILP example

$$a = x*x + y*y + z*z$$

Screen clipping taken: 3/26/2020 7:28 PM

Screen clipping taken: 3/26/2020 7:30 PM

The "power wall"

Power consumed by a transistor:

Dynamic power ∝ capacitive load × voltage² × frequency

Static power: transistors burn power even when inactive due to leakage

TDP

High power = high heat

Power is a critical design constraint in modern processors

	101
Intel Core i7 (in this laptop):	45W
Intel Core i7 2700K (fast desktop CP	U): 95W
NVIDIA Titan V GPU	250W
Mobile phone processor	1/2 - 2W
World's fastest supercomputer	megawatts

Standard microwave oven 700W

Screen clipping taken: 3/26/2020 7:34 PM

Intel Coffee Lake (2017) (aka "8th generation Core i7")

Six-core CPU + multi-core GPU integrated on one chip

Screen clipping taken: 3/26/2020 7:41 PM

Intel Xeon Phi 7290 (2016)

NVIDIA Tesla V100 GPU (2017)

5,376 fp32 units grouped into 84 major processing blocks

Supercomputing

- Today: combinations of multi-core CPUs + GPUs
- Oak Ridge National Laboratory: Summit (#1 supercomputer in world)
 - 9,216 x 22-core IBM Power9 CPUs + 27,648 NVIDIA Volta GPUs

Specialized processors for evaluating deep networks

Summary

- Today, single-thread-of-control performance is improving very slowly
 - To run programs significantly faster, programs must utilize multiple processing elements
 - Which means you need to know how to write parallel code

- Writing parallel programs can be challenging
 - Requires problem partitioning, communication, synchronization
 - Knowledge of machine characteristics is important