Real Analysis Qualifying Exam Spring 1989

In the following, (X, \mathcal{A}, μ) is a measure space and if X is a topological space, then $\mathcal{B}(X)$ is the σ -algebra of all Borel subsets of X.

- 1. (a) What does it mean to say that $f: X \to \mathbb{C}$ is A-measurable?
 - (b) Prove that if $f:g:X\to\mathbb{C}$ are both \mathcal{A} -measurable, then so is f+g.
- **2.** Suppose $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ and $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Define

$$B = \{x \in X : \{n \in N : x \in A_n\} \text{ is infinite}\}.$$

Prove that $B \in \mathcal{A}$ and $\mu(B) = 0$.

3. Suppose $\mu(X) < \infty$ and $\phi : X \to \mathbb{R}$ is \mathcal{A} -measurable. Define ν on $\mathcal{B}(\mathbb{R})$ by $\nu(B) = \mu(\phi^{-1}(B))$. Prove that ν is a finite measure and that if $f : \mathbb{R} \to \mathbb{C}$ is a bounded Borel measurable function, then $f \circ \phi$ is \mathcal{A} -measurable and

$$\int_X f \circ \phi d\mu = \int_{\mathbb{R}} f d\nu.$$

- **4.** (a) Let S be the smallest σ -algebra of subsets of \mathbb{R}^2 that contains the family $\mathcal{F} = \{A \times B : A \text{ and } B \text{ are bounded open intervals of } \mathbb{R} \}$. Prove that $S = \mathcal{B}(\mathbb{R}^2)$.
 - (b) For $E \subset \mathbb{R}^2$ and $y \in \mathbb{R}$ put

$$E^y = \{ x \in \mathbb{R} : (x, y) \in E \}.$$

Prove that if $E \in \mathcal{B}(\mathbb{R}^2)$, then $E^y \in \mathcal{B}(\mathbb{R})$ for all $y \in \mathbb{R}$.

- **5.** Show that if B is a Borel subset of \mathbb{R}^2 and almost every vertical cross-section of B has (one-dimensional) Lebesgue measure 0, then almost every horizontal cross-section of B has Lebesgue measure 0.
- **6.** Prove that if $p \in \mathbb{N}$ and $\mu : \mathcal{B}(\mathbb{R}^p) \to [0, \infty]$ is a measure such that $\mu(K) < \infty$ for every compact $K \subset \mathbb{R}^p$, then μ is regular. [HINT: Use a Riesz Representation Theorem to find a "regular relative" of μ .]
- 7. Let $p \in \mathbb{N}$ and let $(\mu_n)_{n=0}^{\infty}$ be a sequence Borel probability measures on \mathbb{R}^p . Suppose that

$$\lim_{n \to \infty} \int g d\mu_n = \int g d\mu_0$$

whenever $g: \mathbb{R}^p \to \mathbb{C}$ is continuous with compact support. Prove the following:

- (a) If $\varepsilon > 0$, then there exists a compact $K \subset \mathbb{R}^p$ such that $\mu_n(K') < \varepsilon$ for all $n \geq 0$. Here $K' = \mathbb{R}^p$ K.
- (b) If $f: \mathbb{R}^p \to \mathbb{C}$ is bounded and continuous, then

$$\lim_{n \to \infty} \int f d\mu_n = \int f d\mu_0.$$

(c) If $B \subset \mathbb{R}^p$ is a Borel set whose closure B^- and interior B^0 satisfy $\mu_0(B^-) = \mu_0(B^0)$, then

$$\lim_{n\to\infty}\mu_n(B)=\mu_0(B).$$

8. For $\mu \in M(\mathbb{R})$, define $\widehat{\mu}$ on \mathbb{R} by

$$\widehat{\mu}(t) = \int e^{-itx} d\mu(x).$$

Prove that if $\int |x|d|\mu|(x) < \infty$, then $\widehat{\mu}$ is differentiable on \mathbb{R} .

9. For $\mu \in M(\mathbb{T})$, define $\widehat{\mu}$ on \mathbb{Z} by

$$\widehat{\mu}(n) = \int e^{-inx} d\mu(x).$$

Prove that if $\lim_{n\to+\infty} \widehat{\mu}(n) = 0$, then $\lim_{n\to-\infty} \widehat{\mu}(n) = 0$. [HINT: Don't forget that μ is a *complex* measure. Remember complex conjugation. Approximate a Radon-Nikodym derivative by trigonometric polynomials.]

10. Let A_0 be an algebra of subsets of X (i.e., A_0 is closed under finite unions, relative complements and contains \emptyset and X), A the smallest σ -algebra which contains A_0 , and μ a finite positive measure on A. Show that A_0 is μ -dense in A in this sense: for $A \in A$ and $\varepsilon > 0 \ \exists A_0 \in A_0$ such that $\mu(A \triangle A_0) < \varepsilon$. Here $A \triangle A_0$ means $(A \setminus A_0) \cup (A_0 \setminus A)$. [HINTS: Look at the class of all A in A which are so approximable. Matters may be facilitated by translating everything into statements about characteristic functions and the L_1 -metric.]