Give an example of family of intervals $A_n, n=1,2,\ldots$, such that $A_{n+1}\subset A_n$ for all n and $\bigcap_{n=1}^{\infty}A_n=1$.

Let A_n be the interval $\left[\frac{n}{n+1},1\right]$, then A_{n+1} is the interval $\left[\frac{n+1}{n+2},1\right]$

The greatest lower bound of A_n is $\frac{n}{n+1}$ and the greatest lower bound of A_{n+1} is $\frac{n+1}{n+2}$. They have the same least upper bound, 1.

$$\frac{n}{n+1} = \frac{n}{n+1} \frac{n+2}{n+2}$$
 Multiply and divide by n+2
$$= \frac{n^2 + n}{(n+1)(n+2)}$$
 Expand out numerator
$$< \frac{n^2 + n + 1}{(n+1)(n+2)}$$
 Add 1 to numerator
$$= \frac{(n+1)^2}{(n+1)(n+2)}$$
 Factor out $n+1$ from numerator
$$= \frac{n+1}{n+2}$$
 Cancel out $n+1$

Therefore $A_{n+1} \subset A_n$ since the greatest lower bound of A_n is strictly less than the greatest lower bound of A_{n+1} .

Now as $n \to \infty$, $\frac{n}{n+1} \to 1$, so $A_n \to [1,1] = \{1\}$ since the greatest lower bound and least upper bound of [1,1] are both 1. As 1 is contained in all A_n , $\bigcap_{n=1}^{\infty} A_n = 1$. The family of intervals that lead to this conclusion was the interval $[\frac{n}{n+1},1]$, $n=1,2,\ldots$