

INTRODUCTION TO BIG DATA & LAMBDA ARCHITECTURE

Author:

CHAITANYA PRASHAR

https://github.com/chaitanya-prashar/Lambda-Spark

Table of content

- 1 Introduction to BIG DATA
- 2 Lambda Architecture
- 3 Demo

- ► What is BIG DATA?
- Need for Distributed Computing
- ► Architecture
- ► Example MapReduce
- ► Java or Scala
- Challenges with big data

What is BIG DATA

- - ► Storage 15 Exabytes
 - ► Process per day 100 Petabytes
 - ► Searched per second 2.3 million
- ▶ Facebook
 - Storage is 300 Petabytes and
 - ► 600 Terabytes processed per day.
- > NSA
 - Current Storage 5 Exabytes
 - Processed per day 30 Petabytes

Need for Distributed Computing

- We need a system which...
 - can handle massive amounts of data.
 - can process it in a timely manner.
 - ▷ can scale easily when it grows.
 - Traditional databases can not do it.
 - Distributed systems like Hadoop were developed for exactly this.
- ► Google Introduced 2003:
 - > Google File System: To solve distributed storage
- Apache Introduced open sources of these technologies and named:
 - ▶ HDFS: Hadoop distributed file system, A file system to manage the storage of data.
 - ▶ MapReduce: A framework to process data accross multiple servers.

servers i.e. x86

computation

store data blocks

System

tolerance

slave/data nodes

saveAsTextFile("hdfs:// ... ") MapReduce val wordsRDD = inputRDD .flatMap(.split(" ")) val wordCountsRDD = wordsRDD .map(word \Rightarrow (word, 1)) .reduceByKey(+) Splitting Mapping Shuffling Reducing Final result Input Bear, 1 Bear, 2 Deer, 1 Bear, 1 Deer Bear River Bear, 1 River, 1 Car, 1 Bear, 2 Car, 1 Car. 3 Deer Bear River Car, 1 Car, 1 Car, 3 Car Car River Car Car River Car, 1 Deer. 2 Deer Car Bear River, 1 River, 2 Deer. 1 Deer, 2 Deer, 1 Deer, 1 Deer Car Bear Car, 1 River, 1 River, 2 Bear, 1 val inputRDD = sc River, 1 .textFile("hdfs://...")

private final static IntWritable one = new IntWritable(1);

StringTokenizer tokenizer = new StringTokenizer(line);

Java Code

25. 26. 27

34. 36.

12.public class WordCount {

int sum = 0;

while (values.hasNext()) { sum += values.next().get();

private Text word = new Text();

String line = value.toString();

while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one);

output.collect(key, new IntWritable(sum));

Scala

val inputRDD = sc

```
val wordsRDD = inputRDD
                                                                                                  .flatMap( .split(" "))
                                                                                                  .map(word \Rightarrow (word, 1))
                                                                                                val wordCountsRDD = wordsRDD
                                                                                                                      .reduceByKey( + )
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException
```

.textFile("hdfs://...")

Introduction to Big Data

Challenges with big data....

- ▶ Big Data Batch Processing is not as quick as a realtime, which eventually leads to business users or customers asking to get immediate or near real-time insight, such as the most recent data updates to react faster to market changes.
- ▶ Big Data Streaming No track of records. No recovery from the old data.

Table of content

- 1 Introduction to BIG DATA
- 2 Lambda Architecture
- 3 Demo

- Why we need Lambda Architecture?
- ► Lambda Architecture
- Batch Layer
- Speed Layer
- Serving Layer
- Criticism

Latency

Why we need Lambda Architecture?

- We need a System which is robust to scalability as well as fault-tolerant, be it a human or machine fault-tolerant.
- ► The human fault-tolerance of the batch system is as good as you can get. There are only two mistakes a human can make in a system like this: deploy a buggy implementation of a query or write bad data.
- ▶ If you deploy a buggy implementation of a query, all you have to do to fix things is fix the bug, deploy the fixed version, and recompute everything from the master dataset. This works because queries are pure functions.
- YAHOO!

Likewise, writing bad data has a clear path to recovery: delete the bad data and precompute the queries again. Since data is immutable and the master dataset is append-only, writing bad data does not override or otherwise destroy good data.

NETFLIX

We need a System which can have Low latency as well as a High accuracy.

Batch Layer

- ► Takes input, stores it in distributed system, process the data and sends to the serving layer.
- ► The foremost characteristic of this layer is that it holds the master data.
- So whatever the source of your data, it lands here, untouched, unscathed, in an immutable append-only fashion.
- This is your record of truth for your entire dataset.

Hadoop vs Spark

Speed Layer

- Takes the input from a streaming source, does the transformations and sends it to the serving layer.
- The speed layer processes data streams in real time and without the requirements of fix-ups or completeness.
- ► This layer sacrifices throughput as it aims to minimize latency by providing real-time views into the most recent data.
- Essentially, the speed layer is responsible for filling the "gap" caused by the batch layer's lag in providing views based on the most recent data.

Apache Spark vs Apache Storm...

Spark Streaming

Moderate Latency

Relies on RDDs (Delivery Guarantees)

Higher Throughput

Same Core as Batch

Excellent for Lambda Architectures

Others (Apache Storm etc.)

Single Record at a Time; Very Low Latency

Different Systems

Continuous Operator Model

Different Systems for Batch and Streaming

Higher Total Cost of Ownership

*RDD:

Serving Layer

- Output from the batch and speed layers are stored in the serving layer, which responds to ad-hoc queries by returning precomputed views or building views from the processed data.
- ▶ Batch transformations and speed layer transformations are stored in the database and further can be joined to present to the end-user.

Criticism of lambda architecture

- Complexity
 - ➤ The batch and streaming sides each require a different code base that must be maintained and kept in sync so that processed data produces the same result from both paths.

Table of content

- 1 Introduction to BIG DATA
- 2 Lambda Architecture
- 3 Demo

- ► Ideal Architecture
- ► Technologies
- ► Scenario Database
- Project

Ideal Architecture

Technologies

- ► Apache Spark is a fast and general engine for big data processing.
- Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming.
- ► It can access diverse data sources including HDFS, Cassandra, HBase, and S3.

Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark.

Technologies – How it works inside view

Cluster mode

Driver managed by cluster manager
Better availability guarantees
Non-interactive

Technologies – How it works inside view

Client mode

Driver managed by client host Availability dependent on client Interactive (Spark Shell/REPL)

Technologies

Spark Execution Components

Technologies

- Spark Streaming leverages Spark Core's fast scheduling capability to perform streaming analytics.
- DStream Discretized Streaming, is a continuous stream of RDD's
- ► This design enables the same set of application code written for batch analytics to be used in streaming analytics, thus facilitating easy implementation of lambda architecture

Extension of the core Spark API that enables building scalable, high-throughput and fault-tolerant streaming applications

Technologies – How it works inside view

Technologies – Apache Kafka

- Kafka supports low latency message delivery and gives guarantee for fault tolerance in the presence of machine failures.
- Ability to handle a large number of diverse consumers.
- Distributed is built on top of the ZooKeeper synchronization service

Distributed publish-subscribe messaging system

Project

- Batch Layer

 - Query data and visualization in Apache Zeppelin

Project

- Speed Layer

 - - Processing the input data and Printing aggregated results for visualization in IDE.
 - Processing and visualization in Apache Zeppelin.

ScreenShot of the Database

TimeStamp	Referrer Action	Visitor	Page	Product
1489415172086	Bing page_view	Visitor-343606	Page-8	e.l.f.,Smudge Pot- Back to Basics
1489415172086	Bing page_view	Visitor-433006	Page-1	Garnier Fructis Style, Pure Clean Finishing Paste
1489415172086	Google page_view	Visitor-277042	Page-14	Kraft, Cool Whip
1489415172086	Other page_view	Visitor-572069	Page-5	Neutrogena, Fresh Cleansing + Makeup Remover
1489415172086	Other page_view	Visitor-735777	Page-0	The Body Shop, Coconut Body Butter
1489415172086	Twitter page_view	Visitor–178104	Page-2	Kroger,Granulated Sugar
1489415172086	Bing page_view	Visitor-835007	Page-14	Expo,Dry Erase Markers
1489415172086	Other page_view	Visitor-97254	Page-13	Knorr,Salsa Lista Pizza
1489415172086	Google page_view	Visitor-986695	Page-0	Mars, Peanut Butter M&M Chocolate Candies
1489415172086	Other page_view	Visitor-643817	Page-4	Kleenex,White Tissues
1489415172086	Facebook page_view	Visitor	-185671	Page-11 Reynolds, Parchment Paper
1489415172086	Facebook page_view	Visitor	-915396	Page-0 Trader Joe's,Sesame Melba Round Crackers
1489415172086	Direct page_view	Visitor-439802	Page-7	Kraft,Cool Whip
1489415172566	Facebook page_view	Visitor	-150574	Page-14 Meijer,Vitamin C 500 mg
1489415172566	Google page_view	Visitor-670203	Page-4	California Pizza Kitchen, Sicilian Recipe Pizza
1489415172566	Google page_view	Visitor-450766	Page-14	Menscience, Advanced Deodorant
1489415172566	Twitter page_view	Visitor-660477	Page-4	Chobani,Greek Yogurt - Plain
1489415172566	Bing page_view	Visitor-519367	Page-0	Kind,Thai Sweet Chili Almond Protein Bar
1489415172566	Yahoo page_view	Visitor-720485	Page-6	CVS Pharmacy,91% Isopropyl Alcohol
1489415172566	Bing page_view	Visitor-574838	Page-13	L'oreal Paris, Voluminous Original 305 Black Mascara
1489415172566	Facebook page_view	Visitor	-623095	· - 9 · · · - · · · 9 - · · · · / · · · - · · · · · · · · · ·
1489415172566	Facebook page_view		-809773	Page-1 Dust Destroyer,Compressed-Gas Duster
1489415172566	Google page_view	Visitor-126695	Page-8	
1489415172566	Twitter page_view	Visitor-688071	Page-10	Clean & Clear,Acne Cleanser
1489415172566	Bing page_view	Visitor-878087	Page-9	Mars,Peanut M&M
1489415172566	Yahoo page_view	Visitor-236061		Comet,Comet With Bleach
1489415172566	Direct page_view	Visitor-714784		aussie,Instant Freeze Gel
1489415172566	Twitter page_view	Visitor-414339	Page-1	Knorr, Salsa Lista Pizza

Process

Let's go!

Demonstration

What Next?

- Integration of Apache Kafka as a streaming source.
- Sync data into Batch and Stream Layer
- Storing the both Batch view and Real-time view data in a Database, most probably Cassandra.
- Merging the data by querying and Visualization in the Apache Zeppelin.
- ▶ Cloud ???

