

Université Djillali Liabès De Sidi Bel Abbès ${\cal A}$ nnée ${\cal U}$ niversitaire 2019/20 Faculté Des Sciences Exactes 1^{er} \mathcal{A} n iée \mathcal{M} aster \mathcal{M} athématiques et

 \mathcal{I} nformatiques

Examen de Probabilités 1 (01h 30mn)

Responsable du Module : S.BENAISSA

Exercice 1 :(06points) Soit α un nombre réel.

Soit X et Y deux v.o r. à valeurs dans IN telles que

$$\mathbb{P}(X=i,Y=j) = \frac{\alpha}{2^{i+j}j!} \quad por \ tout \ (i,j) \in \mathbb{N}^2.$$

i) Déterminer a. (01)

ii) X et Y sont-elles indépedantes

iii) Déterminer Cov(X, Y).

iv) Calculer $\mathbb{P}(X > Y)$. $\Im \mathcal{Z}$

Exercice 2 :(10points)

Soit (X, Y) un couple de v.a.r. de densité :

$$f_{X,Y}(x,y) = \begin{cases} 0 & sinon \\ \frac{1}{4}xe^{-y} & si \ 0 \le x \le 2y \end{cases}$$

On pose

$$Z = \frac{X}{Y}$$

- i) Déterminer une densité de X puis une densité de Y.
- ii) Est-ce que X et Y sont indépendantes?
- iii) Déterminer une densité de (Z, Y)
- iv) Déterminer une densité de Z(on pour utiliser l'égalité : $\int_0^{+\infty} x^2 e^{-x} = 2$)
- v) Est-ce que Z et Y sont indépendantes?

Exercice 3 :(04points)

Soit (X_n) une suite de v.a.r.d. suivant toutes la même loi définie par

$$\mathbb{P}(X_1 = -1) = \mathbb{P}(X_1 = 1) = \frac{1}{2}$$

Soit (Y_n) une suite de v.a.r.d. suivant toutes la même loi définie

$$\forall n \ge 0 \ \mathbb{H}(Y = n) = (1 - a)a^n \ (0 < a < 1).$$

On suppose $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ indépendantes.

On pose $S_n = \sum_{i=1}^n X_i Y_i$.

- i) Calculer l'espérance et la variance de S_n . (39)
 ii) Calculer $\lim_{n \to +\infty} \mathbb{P}(|S_n| \le c.n)$ et $\lim_{n \to +\infty} \mathbb{P}(|S_n| \le c.\sqrt{n})$.

Montrer que $(x,y) = \left(\frac{u}{u+v}, u+v\right)$ $\left(\frac{u}{u+v}, u+v\right)$ est $J(u,v) = \frac{1}{u+v}$. Of Déterminer une densité de (U,V) Déterminer une densité de U, puis une densité de V (on poura utiliser l'égalité $\int_0^{+\infty} xe^{-x} dx = 0$ Est-ce que U et V sont indépendentes? Calculer E(U), V ar(U), E(V) et V ar(V) (on poure utiliser l'égalité : $\int_0^{+\infty} x^n e^{-x} dx = n!$, $n \in \mathbb{N}$ Calculer E(U,V) et V ar(U-2V). Colculer E(U,V) et V ar(U,V) et V et V

 $\overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} X_i.$

ur tout $n \in \mathbb{N}^*$, on pose

udier la convergence en probabilité de $(\widetilde{X}_n)_{n\in\mathbb{N}}$.