MS&E 228: Causality in Observational Data

Vasilis Syrgkanis

MS&E, Stanford

Through the Lens of Potential Outcomes

Conditional Ignorability

 \bullet For sub-populations with the same X, treatment is assigned as if RCT

$$Y^d \perp \!\!\!\perp D \mid X$$

Conditional Ignorability

 \bullet For sub-populations with the same X, treatment is assigned as if RCT

$$Y^d \perp \!\!\!\perp D \mid X$$

• The probability of receiving treatment (propensity) is non-degenerate $0 < p(X) \coloneqq \Pr(D = 1|X) < 1$

Conditional Ignorability

 \bullet For sub-populations with the same X, treatment is assigned as if RCT

$$Y^{(d)} \perp \!\!\!\perp D \mid X$$

• The probability of receiving treatment (propensity) is non-degenerate $0 < p(X) \coloneqq \Pr(D=1|X) < 1$

• Conditional expectation of observed outcome given X recovers conditional expectation of potential outcome given X $E[Y^{(d)}|X] = E[Y^{(d)}|D = d,X] = E[Y^{(D)}|D = d,X] = E[Y|D = d,X]$

Identification of Conditional Average Treatment Effect

• Under conditional ignorability, Conditional Average Predictive Effect $\pi(X) \coloneqq E[Y|D=1,X] - E[Y|D=0,X],$ (CAPE)

• Is equal to the Conditional Average Treatment Effect $\delta(X) \coloneqq E[Y^{(1)}|X] - E[Y^{(0)}|X],$ (CATE)

Similarly for APE and ATE

$$\delta = E[\delta(X)] = E[\pi(X)] = \pi$$

Causal Diagrams

RCTs and Causal Diagrams

- Causal diagrams can help visualize how our assumptions imply the identification of a causal effect
- First instances in work of Sewall and Philip Wright'28
- Pioneered and fully developed by Pearl and Robins [80s-90s]

Conditional Ignorability and Causal Diagrams

- Causal diagrams can help visualize how our assumptions imply the identification of a causal effect
- First instances in work of Sewall and Philip Wright'28
- Pioneered and fully developed by Pearl and Robins [80s-90s]

Causal Diagram (Graph)

Single World Intervention Graph (SWIG)

Connection to Linear Regression

- If we further assume that CEF is linear in transformations W of raw X $E[Y|D,X] = \alpha D + \beta' W$
- In other words, we assume the decomposition $Y = \alpha D + \beta' W + \epsilon, \qquad E[\epsilon|D,X] = 0$
- Then note $\delta(X) = E[Y^{(1)} Y^{(0)}|X] = E[Y|D = 1, X] E[Y|D = 0, X] = \alpha$
- CATE is a constant and equal to the predictive effect of D
- Inference can be carried out via OLS or Double Lasso techniques

Connection to Linear Regression

- More reasonably we can relax and allow for effect heterogeneity
- Assume that CEF is linear in transformations W of raw X and interactions; with de-meaned W, i.e. E[W] = 0 $E[Y|D,X] = \alpha_1 D + \alpha_2' W D + \beta' W + \beta_0$
- Then note

$$\delta(X) = E[Y|D = 1, X] - E[Y|D = 0, X] = \alpha_1 + \alpha_2'W$$

- And ATE also is recovered by: $\delta=lpha_1$
- Inference on ATE and coefficients in CATE can be carried out via OLS or Double Lasso techniques

Identification via Propensity Scores

- The CAPE approach requires learning conditional expectation function E[Y|D,X]
- How outcome varies with treatment and observable characteristics
- In many settings we have more information about the selection process than the outcome process
- For instance, in stratified RCTs we know the propensity score p(X)
- In such cases, when we have a better grasp of the "selection process" can we avoid learning the "outcome process"; which could involve complex mechanisms in the real world

Identification via Propensity Scores

- Re-weight observations based on the inverse of the propensity of their observed treatments and then take the difference in means
- ullet Let W be inverse propensity weight we multiplied each observation by

$$\frac{E[1(D=d) \ W \ Y]}{E[1(D=d)W]} = \frac{E\left[\frac{1(D=d)}{\Pr(D=d|X)}Y\right]}{E\left[\frac{1(D=d)}{\Pr(D=d|X)}\right]} = E\left[\frac{1(D=d)}{\Pr(D=d|X)}Y\right]$$

Horvitz-Thompson Reweighting

 An inverse propensity re-weighted average observed outcome, identifies the average potential outcome

$$E\left[\frac{1(D=d)}{\Pr(D=d|X)}Y\right] = E[Y(d)]$$

Same holds even conditioning on X

$$E\left[\frac{1(D=d)}{\Pr(D=d|X)}Y\middle|X\right] = E[Y(d)|X]$$

Horvitz-Thompson Reweighting

Tower Law. For any random variables Z, V, U E[Z|V] = E[E[Z|U,V]|V]

Simple proof: law of iterated expectations (tower law)

$$E\left[\frac{1(D=d)}{\Pr(D=d|X)}Y\middle|X\right] = E\left[\frac{1(D=d)}{\Pr(D=d|X)}E[Y|D,X]\middle|X\right]$$

$$= E\left[\frac{1(D=d)}{\Pr(D=d|X)}E[Y|D=d,X]\middle|X\right]$$

$$= E\left[\frac{1(D=d)}{\Pr(D=d|X)}\middle|X\right]E[Y|D=d,X]$$

$$= E[Y|D=d,X] = E[Y^{(d)}|D=d,X] = E[Y^{(d)}|X]$$

Horvitz-Thompson Reweighting

 Inverse propensity re-weighted average observed outcome, identifies the average treatment effect

$$\delta = E[H Y], \qquad H = \frac{1(D=1)}{\Pr(D=1|X)} - \frac{1(D=0)}{\Pr(D=0|X)}$$

- If we know the propensity p(X) (stratified RCT), then we have an easy way to estimate the ATE (a simple average)
- However, not statistically efficient
- Ignores all extra information in X that can help explain Y
- IPW is similar qualitatively to two-means estimate; can have large variance because it does not remove the "explainable" variation in Y

Sensitive to Violations of Randomization

- Even if we know propensity, should perform co-variate balance checks E[H|X]=0
- Equivalently for any function f of X E[H f(X)] = E[E[H|X]f(X)] = 0
- For any vector of transformations W = f(X), if we run a linear regression of $H \sim W$, then by BLP orthogonality $E[(H \beta W)W] = 0 \Rightarrow \beta = E[WW']^{-1}E[HW] = 0$
- ullet Run linear regression predicting H from many transformations W of X and check if any coefficient is significant

Alternative: Conditioning on Propensity

• Rosenbaum and Rubin: instead of stratifying by X it suffices to stratify by p(X)

$$E[Y \mid D = d, p(X)] = E[Y^{(d)} | p(X)]$$

• And therefore, average effect is identified as

$$\delta = E[E[Y|D = 1, p(X)] - E[Y|D = 0, p(X)]]$$

- If p(X) is known and X is complex and high-dimensional, allows us to avoid the high-dimensional regression problem
- Suffices to run a (non-linear) regression on a single scalar co-variate to estimate E[Y|D=d,p(X)] (e.g. run OLS on many engineered features of p(X), or generic ML)

Alternative: Conditioning on Propensity

 Rosenbaum and Rubin: instead of stratifying by X it suffices to stratify by p(X)

$$E[Y \mid D = d, p(X)] = E[Y^{(d)} | p(X)]$$

- Intuition: we can think of $D = 1\{U < p(X)\}$ with $U \perp \!\!\!\perp \!\!\!\perp Y^{(d)}$, X; So D only correlates with $Y^{(d)}$ through p(X)

• Formally: by Horvitz-Thompson Theorem
$$E\big[Y^{(1)}\big|p(X)\big] = E\left[Y\frac{1(D=1)}{p(X)}\bigg|p(X)\right]$$

$$= E\left[E[Y|D=1,p(X)]\frac{1(D=1)}{p(X)}\bigg|p(X)\right] = E[Y|D=1,p(X)]$$

Improving precision

- ullet Extra co-variates W can easily be incorporated in the Rosenbaum-Rubin approach to increase precision
- ullet Especially if we identify a W for which the co-variate balance check is violated, it is advisable to include it in the regression
- Run OLS for each treatment group, or equivalently interactive model $Y=\gamma_1'\phi(p(X))D+\gamma_0'\phi(p(X))(1-D)+\beta'W+\epsilon$
- Then take difference of average predictions of the model in treatment and control group

Clever Co-Variate Approach

- [Scharfstein-Rotnitzky-Robins] In fact it suffices to run a regression with the clever covariate *H*!
- Equivalently run an OLS

$$Y = \gamma \left(\frac{D}{p(X)} - \frac{(1-D)}{1-p(X)} \right) + \beta' W + \epsilon$$

• Even if the model is wrong, the BLP solution in the above decomposition will recover the correct ATE!

Clever Co-Variate Approach

- Let $H = \phi(D, X)$ and note that H guarantees for any f (homework) E[f(D, X)H] = E[f(1, X) f(0, X)]
- Then by the BLP orthogonality $E[\epsilon H] = 0 \Rightarrow E[YH] = E[\gamma \phi(D,X) H] = E[\gamma(\phi(1,X) \phi(0,X))]$
- Thus, we have by the Horvitz-Thompson theorem: $\delta = E[YH] = E[\gamma(\phi(1,X) \phi(0,X))]$
- Hence, if we use a BLP model as the CEF, we correctly recover the ATE

$$Y = \gamma \left(\frac{D}{p(X)} - \frac{(1-D)}{1-p(X)} \right) + \epsilon$$

Clever Target Outcome Approach

- We can also change our target outcome to be the re-weighted outcome
- Note that we showed that the CATE satisfies

$$\delta(X) = E[HY \mid X]$$

- So CATE can be thought as the solution to the prediction problem of predicting HY from X
- If we assume an interactive CEF model

$$E[Y|D,X] = \alpha_1 D + \alpha_2' W D + \beta' W + \beta_0$$

Then note

$$E[HY|X] = \alpha_1 + \alpha_2'W$$

ullet OLS and Double Lasso can be used to perform inference on $lpha_1$ and $lpha_2$

Average Treatment Effect on the Treated ATT

 Many times we care about the effect for the people that actually received the treatment

$$ATT = E[Y^{(1)} - Y^{(0)}|D = 1]$$

 Since we have observed data for one potential outcome, we can relax conditions

$$ATT = E[Y|D = 1] - E[Y^{(0)}|D = 1]$$

- Conditional ignorability only for one potential outcome $Y^{(0)} \perp \!\!\!\perp D|X$
- Weak overlap: p(X) < 1

Identification of ATT

• Under one-sided conditional ignorability and overlap ATT = E[Y|D=1] - E[E[Y|D=0,X]]

$$E[Y(0)|D = 1] = E[E[Y(0)|D = 1,X]|D = 1]$$
$$= E[E[Y(0)|D = 0,X]]$$
$$= E[E[Y|D = 0,X]]$$

Identification of ATT

• Under one-sided conditional ignorability and overlap ATT = E[Y|D=1] - E[E[Y|D=0,X]]

$$ATT = E[Y \overline{H}], \qquad \overline{H} = H \frac{p(X)}{E[D]}$$