ML and Numerical Software Development Machine Learning-II

Organon Analytics

December 10, 2019

Agenda

- A generic ML pipeline
- Choosing the algorithm
- Feature Extraction
- Pre-processing
- Managing model complexity
- Hyper-parameter optimization
- Classification&Regression Trees: The Algorithm

- 1 Collect Data
- 2 Create unique identifier(s)
- 3 Extract features from raw data
- 4 Check&correct data quality issues
- 5 Integrate data from multiple files(tables)
- 6 Pre-processing
- 7 Sample data to generate development dataset(s)
- 8 Train, validate, and test model
- 9 Prepare model documentation and save the model
- 10 Score the model on new dataset
- 11 Monitor model performance and re-build it if necessary

Collect Data

- Not necessary if it is already collected
- Collect everything that could be collected
- Collect the data in its rawest form. No summarization!

Create unique identifiers

- · Not necessary if unique identifiers exist
- Use Statistical Record Linkage methodology for creating ids

Extract features from raw data

- Derive aggregated features from raw data
- Build models to select important features

Check and correct data quality issues

- Analyse distribution stabilities over time
- Delete unstable variables

Integrate data from multiple files(tables)

Create ETL flows to integrate data under relevant entities

Pre-processing

- Handling missing values
- Handling outliers in scale variables
- Handling categorical variables
- Handling non-linearities between inputs and output
- Standardizing scale data

Sample data to generate development dataset(s)

- Do temporal sampling to best reflect future distribution
- Do stratified sampling to reduce the data in case of big data

Train, validate, and test model

- Choose the algorithms you will use depending on prior constraints
- Build models with optimal complexity for each algorithm
- If the interpretability is a MUST choose the model with the best performance among interpretable models
- If the interpretability is not needed, build an ensemble model out of models built with different algorithms, and different hyper-parameters
- Use a separate test sample to estimate generalization error

Prepare model documentation and save the model

- Document information about development samples
- Document information abut the model
- Save the model for future use

Score the model on new dataset

- Create ETL flows to create scoring database
- Implement batch scoring and on-demand scoring functionalities

Monitor&Re-build

- Data distributions and dependencies will change over time
- Monitor variable distributions, change in model parameters, change in overall model performance
- Re-build the model if changes are significant

Model Building: Choosing the algorithm

(Assuming pre-processing and feature extraction steps done) If the model **MUST** be interpretable:

- Generalized Additive Modelling(GAM) trained with a variable selection strategy
- GAM trained with L1-regularization (Lasso)

If the model **DOES NOT NEED** to be interpretable:

- Gradient Boosting Machines(GBM) with hyper-parameter optimization
- Artificial Neural Networks(ANN) with hyper-parameter optimization
- Ensemble models where each individual model is either a GBM or an ANN

Model Building: Choosing the algorithm

Feature	GLM	GAM	CRT	GBM	ANN
Ability to handle mixed data types	•	•	•	•	•
Ability to handle missing values	•	•	•	•	•
Robustness to outliers in inputs	•	•	•	•	•
Ability to handle non-linear relationships	•	•	•	•	•
Ability to select relevant input(s)	•	•	•	•	•
Computational complexity with N	•	•	•	•	•
Interpretability	•	•	•	•	•
Predictive power	•	•	•	•	•

●: Poor, ●: Fair, ●: Good

Feature Extraction

Type-1: Variables are already in aggregated form. The goal is to create multivariate transformations of these aggregated variables to improve model performance. Examples:

- Create interaction variables of the polynomial forms $X_i^{\rho_i} X_i^{\rho_j}$
- Use ratios of the variables, e.g. X_i/X_j as a new variable
- Use a different basis: Spline basis, radial basis, Fourier basis, etc.

Type-2: Create variables from so called *transactional data* that has a logical view in the tabular form as follows:

Entity-id	Date	Category	Quantity	
1	Nov-11-2019	Retail	129.3	
1	Nov-18-2019	Pharmacy	389.3	
1	Dec-01-2019	Tourism	1500	
:	:	÷	:	
138	Dec-03-2019	E-commerce	753.3	

Feature Extraction from Transactional Data

- 4 columns to process: Entity-id, Date, Category, Quantity
- Per entity, per-category a time-series exists
- Run mathematical aggregations on these time series: AVG, MAX, MIN, SUM, Time since, Time last, ratio variables
- The aggregations could be done on various time scales: Last month, last 3 months, last 12 months, etc.
- Parameter space to search for a single quantity:
 - 1 Operations: MAX, MIN, AVG, etc.
 - 2 Time-window: last week, last 3 weeks, last 12 weeks, etc
 - 3 Category set: Any combination of categories
- Resulting features:

 OP_i in $\mathsf{QUANTITY}_j$ on windows $\{W_1, \cdots W_k\}$ in categories $\{C_{j_1}, \cdots C_{j_m}\}$

Feature Extraction from Transactional Data

- Examples:
 - The average of quantity-1 over the last one month in Retail AND Tourism categories
 - The days since the last quantity-1 transaction in E-Commerce and Pharmacy categories
- Cardinality of possible features per quantity-column:
 N_{Op} · N_{Time} · 2^{N_{Category}}

 N_{Op} : # of mathematical operations

 N_{Time} : # of time windows

 $N_{Category}$: # of category values

- It is practically infinite for real-life datasets
- Use genetic algorithms to generate and select best features

Pre-processing

Pre-processing (for structured data) is needed for

- Handling missing values
- Handling outliers in scale variables
- Handling categorical variables
- Handling non-linearities between inputs and output
- Standardizing scale data

Pre-processing: Handling missing values (categorical)

- 1 If a single value represents all missing values do nothing.
- 2 If multiple missing value categories exist:
 - a) Collapse sparse categories under a single category. Leave the dense categories intact
 - b) Collapse all categories under a single missing-values category
- 3 (Advanced): Build another model to predict the missing value

Pre-processing: Handling missing values (scale)

- 1 Replace the missing value with the average of the (non-missing) values
- 2 Separate the variable into two variables: 1) An indicator variable for the missing values 2) Another variable for the non-missing values
- 3 (Advanced): Build another model to predict the missing value

Pre-processing: Handling outliers in scale variables

Outliers in the input:

- 1 Extract the distribution of missing values. Merge them under a single category if they do not corresponds to different reasons
- 2 If the density of missing values is very high(more than 95%), question the data source and validity of the variable: You might skip it for further analysis
- 3 Replace the missing value:
 - *i* With central value: Replace with the central value (sample mean of non-missing values)
 - ii By imputation(Advanced): Fit a model by using the variable as output
 - iii Weight-of-evidence variable: Use E[Y|X=x] instead of X. You can compute E[Y|X=x] by any univariate smoother
 - iv Create two variables: a) A scale variable of non-missing values
 b) A scale variable with two values (1 if missing; 0 if not-missing)

Pre-processing: Handling outliers in scale variables

Outliers in the output: After handling the outliers in the inputs, run a multivariate regression. Use Cook's distance to detect highly influential observations. Delete these observations or clip them to a constant value

Pre-processing: Handling categorical variables

- 1 Extract the histogram
- 2 Cardinality:
 - Low: If sparse categories exist, merge them. If not, do not do anything. If used for regression purposes convert it to other variables using One-hot-encoding
 - (ii) High(More than 10 categories): Most problematic from a modelling point-of-view. Merge sparse categories under a common category. After that, use one-hot-encoding or weight-of-evidence transformations
- 3 Watch for multiple missing values: Merge them if they do not represent different reasons
- 4 Note-1: Merging for ordinal data should only be done for consecutive categories
- 5 Note-2: If an output variable Y exists, a supervised-merging of the categories is possible (Optimal binning)

Pre-processing: Handling categorical variables

One-hot-encoding: Create N indicator variables from an N-category variable:

GENDER	GENDER_M	GENDER_F	GENDER_U
M	1	0	0
F	0	1	0
F	0	1	0
U	0	0	1
•	:	:	:
М	1	0	0

Pre-processing: Handling non-linearities

If the algorithm does not handle non-linearities in its specification, then use a basis expansion of the original variables to extract non-linear relationships between the inputs and the output

- Instead of using X as the input, use a basis expansion of it $\{\phi_j(X), j=1,2,\cdots,k\}$ as new inputs
- Various good bases exist: Polynomial bases(Hermite, Legendre, etc.), Fourier basis, wavelet basis, spline basis, etc.
- B-Spline basis works well due to its good local and smoothness properties. Learn them well. Use them exclusively

Pre-processing: B-splines expansion

Pre-processing: Standardizing scale data

- Needed when there are constraints on the norms of the parameters, e.g. L_1, L_2 regularization
- Needed before ANN training
- Map to unit interval:

$$X^{\text{norm}} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

• Map to zero-mean&unit variance:

$$X^{\text{norm}} = \frac{X - \bar{X}}{s_X}$$

Not needed if a basis expansion has already been done

Managing model complexity

Given a functional specification, a model get more complex IF

- 1 It uses more variables in the dataset
- 2 The magnitudes of the parameters get larger
- 3 The number of the parameters (degrees of freedom) gets larger
- 4 (In general) The magnitudes of the function and its derivatives gets larger

Generalized Additive Modelling:

- Number of variables
- Number of basis functions
- The magnitude of model parameters
- The smoothness and shape of the bivariate relationships

Classification&Regression Trees

- Number of terminal nodes
- Number of samples in each terminal node
 - Magnitude of prediction in each node

Managing model complexity

Gradient Boosting Machines

- Number of terminal nodes
- Number of samples in each terminal node
- Number of iterations

Artificial Neural Networks

- Number of variables
- Number of layers
- Number of nodes in each layer
- Magnitudes of parameters

Managing model complexity

Use cross-validation:

- 1 (Random) Sample the data into Training and Validation samples
- 2 Build models of increasing complexity, record the Training and Validation losses

$$M_1 \subset M_2 \subset \cdots \subset M_k$$
 Model complexity $T1 \leq T_2 \leq \cdots \leq T_k$ Training loss $V_1 , V_2, \cdots V_k$ Validation loss

Remember the data generating process

$$Y(x) = F(X) + \epsilon$$

We want to approximate F(X) as close as possible from a finite samples of data \mathcal{D}

The solution is a function of

- 1 The specific set of samples: \mathcal{D}
- 2 The complexity of the function: $\mathcal C$

Hence, denote the solution by $g_{\mathcal{D}}^{\mathcal{C}}$

Now, keep the complexity fixes, and change the samples:

$$\begin{split} \mathcal{D}_1, \mathcal{D}_1, \dots \mathcal{D}_M, \text{ Datasets} \\ g^{\mathcal{C}}_{\mathcal{D}_1}, g^{\mathcal{C}}_{\mathcal{D}_2}, \dots, g^{\mathcal{C}}_{\mathcal{D}_M}, \text{ Solutions} \\ \mathcal{L}^{\mathcal{C}}_{\mathcal{D}_1}, \mathcal{L}^{\mathcal{C}}_{\mathcal{D}_2}, \dots, \mathcal{L}^{\mathcal{C}}_{\mathcal{D}_M}, \text{ Losses} \end{split}$$

For least square loss, the expected loss over data (generalization error) could be decomposed as

$$egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} E_{\mathcal{D}}[\mathcal{L}^{\mathcal{C}}_{\mathcal{D}}] &=& (F-g^{\mathcal{C}})^2 + E_{\mathcal{D}}[(g^{\mathcal{C}}_{\mathcal{D}}-g^{\mathcal{C}})^2] \\ E_{\mathcal{D}}[\mathcal{L}^{\mathcal{C}}_{\mathcal{D}}] &=& (\mathsf{bias})^2 + \mathsf{variance} \end{array}$$

where

 $(bias)^2$ = distance between the truth and the average of the solution variance = volatility of the solution between the samples

Notes:

- 1 As the model gets more complex, bias decreases and variance increases
- 2 As the model gets less complex, bias increases and variance decreases
- 3 Optimal model complexity must be searched for

The truth is at the center; The dots are its estimates

Non-zero bias BUT low-variance → LOW error

Zero bias BUT high-variance → HIGH error

Hyper-parameter optimization

1 Model parameters: θ

- They appear in the model formula
- Their optimal values are learned from training data

2 Hyper parameters: γ

- They DO NOT appear in the model formula
- Their optimal values are learned from validation data
- They reflect information a) About a priori constraints on model complexity b) Arise as par of the learning algorithm (e.g. learning rate in Gradient Descent)

Hint: If the parameter to be learned does not exist in the model formula, it is a hyper-parameter.

Hyper-parameters: Examples

Generalized Additive Modelling

- Number of knots in each spline
- L₂ regularization coefficient if L₂ regularization is used

$$\mathcal{L}(\theta, \lambda) \equiv -\sum_{i} \log p(Y_{i}|X_{i}; \theta) + \lambda \sum_{j} \theta_{j}^{2}$$

L₁ regularization coefficient if L₁ regularization is used

$$\mathcal{L}(\theta, \lambda) \equiv -\sum_{i} \log p(Y_{i}|X_{i}; \theta) + \lambda \sum_{i} |\theta_{i}|$$

- Learning rate λ , if SGD is used to train the model
- Number of variables in the model if a variable selection strategy is used

Hyper-parameters: Examples

Artificial Neural Networks

- Number of layers in the network
- Number of nodes in each layer
- Activation function in each layer
- · Regularization parameters if used
- Learning rate (as a constant or as a function of learning epochs)

Gradient Boosting Machines

- The depth of the CRT tree
- The number of iterations
- Learning rate (as a constant or as a function of learning epochs)
- Sampling rate for columns
- Sampling rate for rows

Hyper-parameter optimization

Pseudo-code for hyper-parameter optimization:

- 1 Generate a set of hyper-parameters $\{\gamma_i, i=1,2,\cdots,m\}$ (Note: $\{\gamma_i\}$ is a vector)
- 2 For each hyper-parameter γ_i , train the model, find optimal θ_i , and record the loss on validation set
- 3 The optimal hyper-parameter is the one with the minimum loss on the validation set

Hyper-parameter optimization

Strategies for generating hyper-parameters

- 1 Grid search: Generate $\{\gamma_i, i=1,2,\cdots,m\}$ on a cartesian grid
- 2 Random search: Generate $\{\gamma_i, i=1,2,\cdots,m\}$ randomly
- 3 Sequential model-based search:
 - a Start with a random set $\{\gamma_i\}$
 - **b** Find loss functions \mathcal{L}_i for each γ_i
 - c Build a meta-model between the loss ${\cal L}$ and γ
 - d Narrow the search space to a grid where meta-model has low values
 - e Generate a new random set $\{\gamma_i\}$ in the narrowed grid, and go back to Step-b
 - f Iterate till convergence

Classification and Regression Trees

A recursive (and cartesian) partitioning of input space Define the loss function

$$\mathcal{L} \equiv \sum_{i} \beta_{i} I_{A_{i}}(x)$$

where $I_{A_i}(x) = 1$ if $x \in A_i$, 0 otherwise. An optimal solution is computationally intractable (NP-Hard actually) CRT is a greedy heuristics:

Classification and Regression Trees

Each A_i is a product of boolean propositions:

$$A_i = P_1 \wedge P_1 \wedge P_{m_i}$$

where P_i is a boolean proposition of the following 2 forms:

- 1 Categorical variables: $X_k \in \{C_{j_1}, C_{j_2}, \cdots, C_{j_k}\}$, e.g Gender $\in \{M, U\}$
- 2 Ordinal/Scale variables: $X_k \in (a, b)$, where interval boundaries can be open or closed

Classification and Regression Trees: The Algorithm

At a given node of samples:

- 1 Find the best split for each input
- 2 Find the node's best split: Among the best splits found in Step-1, choose the one that gives the minimum loss
- 3 Split the node using its best split found in Step-2 if the termination rules are not satisfied

Let's define splitting criteria and termination rules ⇒

CRT: Splitting for scale output

Let $\{p_L, p_R\}$ represent the ratios of sample going to the left and right. Note $(p_L + p_R) = 1$

$$\begin{array}{lll} \mathcal{L}_{\textit{Parent}} & = & \sum_{i} \left(Y_{i} - \bar{Y}_{\textit{Parent}} \right)^{2} \\ \\ \mathcal{L}_{\textit{Left}} & = & \sum_{i \in \textit{Left}} \left(Y_{i} - \bar{Y}_{\textit{Left}} \right)^{2} \\ \\ \mathcal{L}_{\textit{Right}} & = & \sum_{i \in \textit{Right}} \left(Y_{i} - \bar{Y}_{\textit{Right}} \right)^{2} \\ \\ \Delta \mathcal{L} & \equiv & \mathcal{L}_{\textit{Parent}} - \left(p_{L} \cdot \mathcal{L}_{\textit{Left}} + p_{R} \cdot \mathcal{L}_{\textit{Left}} \right) \end{array}$$

CRT: Splitting for categorical output

Use one of the following homogenity criterion at each node

- **1 Gini Loss**: $1 \sum_{i} p_{i}(1 p_{i})$
- 2 Entropy Loss: $-\sum_i p_i \log(p_i)$

where p_i is the percentage of samples in output category C_i

In both cases, delta-loss is defined as

$$\Delta \mathcal{L} \equiv \mathcal{L}_{Parent} - (p_L \mathcal{L}_{Left} + p_R \mathcal{L}_{Left})$$

CRT: Splitting for scale output

Find the best split for the input X_j

If X_i is ordinal or scale:

- 1 Sort the input variable X_j
- 2 Starting from the minimum value, calculate $\Delta \mathcal{L}$ for each sample $i=1,2,\cdots,N$. That give you N values.
- 3 Pick the point X_i^{Best} where $\Delta \mathcal{L}$ is maximum
- 4 Left-child rule: $X_i <= X_i^{Best}$. Right-child rule: $X_i > X_i^{Best}$

If X_j is categorical:

- 1 Sort the values of X_j in ascending order of $E[Y|X_j = C_{k_j}]$
- 2 Starting from the category that gives the minimum value, calculate $\Delta \mathcal{L}$ for each split-point $k_i = 1, 2, \dots, M_i$. That give you M values.
- 3 Pick the split point where $\Delta \mathcal{L}$ is maximum
- 4 Left rule: $X_j \in \{C_{j_1}, \dots, C_{j_{Left}}\}$. Right rule: $X_j \in \{C_{j_1}, \dots, C_{j_{Right}}\}$.

CRT: Termination rules

- 1 Minimum loss improvement: $\Delta \mathcal{L}_{Training} \geq \Delta \mathcal{L}_{min}$
- 2 Maximum tree-depth is reached
- 3 Maximum number of nodes reached
- 4 Sample size per node drops below minimum sample per node
- 4 $\Delta \mathcal{L}_{Validation} > \epsilon$ is not satisfied

CRT: A Summary

- A weak learner. Almost never used alone as a final model
- It does not need any pre-processing other than specifying missing values for each scale variable
- Good for an initial exploratory data analysis, and understanding important variables
- Could be used for supervised binning of an input variable in pre-processing stage
- It is used as the go-to base learner algorithm for the following meta-learning algorithms:
 - i Random Forest: Simple averaging of multiple trees
 - ii Gradient Boosting Machines: Uses boosting to average multiple trees