A collaborative LaTeX document

Class of ID2090, Third Trimester of 2021 batch $\label{eq:June 14} \text{June 14, 2022}$

Contents

1	Introduction	3
2	AE21B003	4
3	AE21B028	5
4	AE21B045	6
5	AE21B056	7
6	AE21B062	8
7	AE21B107	9
8	BE21B016	10
9	BE21B040	11
10	CE19B020	12
11	CE21B021	13
12	CE21B088	14
13	CE21B097	15
14	CE21B112	16
15	CE21B115	17
16	CH21B067	18
17	CH21B079	19
18	CH21B101	20
19	ME21B050	21
20	ME21B060	22
21	ME21B065	23

22	ME21B079 22.1 Maxwell Equation	24
23	ME21B088	26
24	ME21B091	27
25	ME21B186	28
26	ME21B190	29
27	ME21B196	30
28	ME21B204	31
29	ME21B217	32
30	MM21B012	33
31	MM21B024	34
32	MM21B032	35
33	MM21B044	36
34	MM21B046	37
35	MM21B059	38
36	MM21B063	39
37	NA21B002	40
38	NA21B005	41
39	NA21B006	42
40	NA21B007	43
41	NA21B020	44
42	NA21B048	45
43	NA21B052	46
44	Conclusions	47
45	References	47

List of Figures

List of Tables

1 Introduction

This file includes tex files from the folders of each student. The students are expected to update the file named after their roll number and place any images in the same folder. Students do not have to edit this master document. Once the student has sent a pull request which is accepted and processed successfully, his/her assignment submission is deemed to be complete.

You are also welcome to add references and cite them. Examples on how to do that are on the course repository [?].

8 BE21B016

9 BE21B040

10 CE19B020

16 CH21B067

17 CH21B079

18 CH21B101

22.1 Maxwell Equation

Faraday's law $\frac{\partial \mathcal{D}}{\partial t} = \nabla \times \mathcal{H}$ Ampère's Law $\frac{\partial \mathcal{B}}{\partial t} = -\nabla \times \mathcal{E}$ Gauss Law $\nabla \cdot \mathcal{B} = 0,$ Colomb's Law $\nabla \cdot \mathcal{D} = \rho_v$

22.2 Faraday's Law

When the magnetic flux linking a circuit changes, an electromotive force is induced in the circuit proportional to the rate of change of the flux linkage.

22.3 Ampère's Law

The magnetic field created by an electric current is proportional to the size of that electric current with a constant of proportionality equal to the permeability of free space

22.4 Gauss Law

Gauss's law for magnetism states that the magnetic flux B across any closed surface is zero

22.5 Colomb's Law

The closed line integral of magnetic field vector is always equal to the total amount of scalar electric field enclosed within the path of any shape

22.6 Expansion of variables

'Symbol'	'Expansion'
D	The volume of electric charge density
В	The magnetic field
${ m E}$	The electric field
H	Magnetic field strength
ho	Free Charge Density

44 Conclusions

If this master tex file could be compiled successfully, it means that the class has learnt the concepts of Git as well as LaTeX properly.

45 References

References

[1] Repository for id2090 course. https://github.com/gphanikumar/mm2090. Accessed: 2022-06-13.