In [4]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder,MinMaxScaler,StandardScaler
```

In [5]:

 $\label{lem:csv} $$ df=pd.read_csv(r"C:\Users\dtdee\OneDrive\Desktop\Letsupgrade_Python\Machine_Learning\SVM $$ $$ df=pd.read_csv(r"C:\Users\dtdee\OneDrive\Desktop\Letsupgrade_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\OneDrive\Desktop\Letsupgrade_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\OneDrive\Desktop\Letsupgrade_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\OneDrive\Desktop\Letsupgrade_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\OneDrive\Desktop\Achine_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Machine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Achine_Learning\SVM $$ df=pd.read_csv(r"C:\Users\dtdee\Achine_Python\Ac$

In [6]:

df.head(3)

Out[6]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
4									•

In [7]:

df.shape

Out[7]:

(32561, 15)

In [8]:

df.drop(columns=' fnlwgt',axis=1,inplace=True)

In [9]:

df.head()

Out[9]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male
1	50	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male
3	53	Private	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male
4	28	Private	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female
4									•

In [10]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	education	32561 non-null	object
3	education-num	32561 non-null	int64
4	marital-status	32561 non-null	object
5	occupation	32561 non-null	object
6	relationship	32561 non-null	object
7	race	32561 non-null	object
8	sex	32561 non-null	object
9	capital-gain	32561 non-null	int64
10	capital-loss	32561 non-null	int64
11	hours-per-week	32561 non-null	int64
12	native-country	32561 non-null	object
1 3	income	32561 non-null	object

dtypes: int64(5), object(9)
memory usage: 3.5+ MB

```
In [11]:
df.isnull().sum()
Out[11]:
                   0
age
workclass
                   0
 education
                   0
 education-num
                   0
 marital-status
                   0
 occupation
                   0
 relationship
                   0
 race
                   0
 sex
                   0
 capital-gain
                   0
 capital-loss
                   0
 hours-per-week
                   0
 native-country
                   0
 income
                   0
dtype: int64
In [12]:
# Checking for duplicate rows or entries
df.duplicated().sum()
Out[12]:
3465
In [13]:
#Dropping all the duplicate rows
df.drop_duplicates(inplace=True)
In [14]:
df.shape
Out[14]:
(29096, 14)
In [15]:
df.columns
Out[15]:
Index(['age', 'workclass', 'education', 'education-num', 'marital-stat
us',
       'occupation', 'relationship', 'race', 'sex', 'capital-gain',
       'capital-loss', 'hours-per-week', 'native-country', 'income'],
      dtype='object')
```

In [16]:

In [17]:

```
df.columns=columns
```

In [18]:

```
df.columns
```

Out[18]:

In [19]:

```
df.head(2)
```

Out[19]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	ca
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	
1	50	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	
4										•

```
In [20]:
```

```
for i in df.columns:
   if i in ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'ra
       print(f'\n\nUnique values in the column {i} is :\n',df[i].unique())
Unique values in the column workclass is :
[' State-gov' ' Self-emp-not-inc' ' Private' ' Federal-gov' ' Local-gov'
 '?' 'Self-emp-inc' 'Without-pay' 'Never-worked']
Unique values in the column education is :
 [' Bachelors' ' HS-grad' ' 11th' ' Masters' ' 9th' ' Some-college'
 ' Assoc-acdm' ' Assoc-voc' ' 7th-8th' ' Doctorate' ' Prof-school'
 '5th-6th' '10th' '1st-4th' 'Preschool' '12th']
Unique values in the column marital-status is :
 [' Never-married' ' Married-civ-spouse' ' Divorced'
  Married-spouse-absent' ' Separated' ' Married-AF-spouse' ' Widowed']
Unique values in the column occupation is :
[' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-specialt
у'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
 'Farming-fishing' 'Machine-op-inspct' 'Tech-support' '?'
 ' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
Unique values in the column relationship is:
 [' Not-in-family' ' Husband' ' Wife' ' Own-child' ' Unmarried'
 ' Other-relative']
Unique values in the column race is:
['White' 'Black' 'Asian-Pac-Islander' 'Amer-Indian-Eskimo' 'Other']
Unique values in the column sex is :
[' Male' ' Female']
Unique values in the column native-country is:
 [' United-States' ' Cuba' ' Jamaica' ' India' ' ?' ' Mexico' ' South'
 ' Puerto-Rico' ' Honduras' ' England' ' Canada' ' Germany' ' Iran'
 'Philippines' 'Italy' 'Poland' 'Columbia' 'Cambodia' 'Thailand'
 'Ecuador' 'Laos' 'Taiwan' 'Haiti' 'Portugal' 'Dominican-Republic'
 'El-Salvador' 'France' 'Guatemala' 'China' 'Japan' 'Yugoslavia'
 'Peru' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago'
 'Greece' 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary'
 ' Holand-Netherlands']
```

```
In [ ]:
```

In [21]:

In [22]:

```
df.workclass.unique()
```

Out[22]:

In [23]:

```
df['workclass'].replace({'?':'Without-pay'})
```

Out[23]:

```
State-gov
         Self-emp-not-inc
1
2
                   Private
                   Private
3
4
                   Private
32554
                   Private
32555
                   Private
32556
                   Private
32558
                   Private
             Self-emp-inc
32560
Name: workclass, Length: 29096, dtype: object
```

In [24]:

```
df['native-country'].value_counts()
Out[24]:
United-States
                                25721
Mexico
                                  633
?
                                  580
Philippines
                                  198
Germany
                                  137
Canada
                                  121
Puerto-Rico
                                  114
El-Salvador
                                  106
India
                                  100
                                   95
Cuba
                                   90
England
                                   81
Jamaica
South
                                   80
                                   75
China
Italy
                                   73
                                   70
Dominican-Republic
                                   67
Vietnam
Japan
                                   62
Guatemala
                                   62
Poland
                                   60
Columbia
                                   59
Taiwan
                                   51
Haiti
                                   44
Iran
                                   43
Portugal
                                   37
                                   34
Nicaragua
Peru
                                   31
                                   29
France
                                   29
Greece
Ecuador
                                   28
Ireland
                                   23
Hong
                                   20
Cambodia
                                   19
Trinadad&Tobago
                                   19
Laos
                                   18
Thailand
                                   18
Yugoslavia
                                   16
Outlying-US(Guam-USVI-etc)
                                   14
Honduras
                                   13
Hungary
                                   13
Scotland
                                   12
Holand-Netherlands
Name: native-country, dtype: int64
In [25]:
df['occupation'].replace({'?':'others'},inplace=True)
df['native-country'].replace({'?':'some-country'},inplace=True)
```

```
In [26]:
```

```
x=df['income'].value_counts()
```

In [27]:

```
df['income'].replace({'<=50K:0':0,'>50K':1},inplace=True)
```

In [28]:

```
x.plot(kind='bar')
```

Out[28]:

<AxesSubplot:>

In [29]:

```
df.head(2)
```

Out[29]:

	age	workclass	education	education- num	marital- status	occupation	relationship	race	sex	ca
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	
1	50	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	
4										•

In [30]:

```
bin=[16,25,50,100]
labels=['young','adult','old']

df['age_type']=pd.cut(df['age'],bins=bin,labels=labels)
```

In [31]:

```
df.columns
```

Out[31]:

In [32]:

In [33]:

```
df.head()
```

Out[33]:

	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capita ga
0	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	217
1	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	
2	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	
3	Private	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	
4	Private	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	
4									•

```
In [34]:
```

```
df.describe().T
```

Out[34]:

	count	mean	std	min	25%	50%	75%	max
education-num	29096.0	10.102695	2.645194	1.0	9.0	10.0	13.0	16.0
capital-gain	29096.0	1197.802206	7778.225220	0.0	0.0	0.0	0.0	99999.0
capital-loss	29096.0	97.175179	424.008232	0.0	0.0	0.0	0.0	4356.0
hours-per-week	29096.0	40.637820	12.735418	1.0	40.0	40.0	45.0	99.0

In [35]:

```
df.corr()
```

Out[35]:

	education-num	capital-gain	capital-loss	hours-per-week
education-num	1.000000	0.124182	0.080259	0.141446
capital-gain	0.124182	1.000000	-0.035294	0.077704
capital-loss	0.080259	-0.035294	1.000000	0.051636
hours-per-week	0.141446	0.077704	0.051636	1.000000

In [36]:

```
df.income.unique()
```

Out[36]:

```
array([' <=50K', ' >50K'], dtype=object)
```

In [37]:

```
df['income_new']=np.where(df['income']==' <=50K',0,1).astype('int16')</pre>
```

In [38]:

df.columns

Out[38]:

In [39]:

```
'capital-loss', 'hours-per-week', 'native-country',
    'age_type', 'income_new']]
df
```

Out[39]:

	workclass	education	education- num	marital- status	occupation	relationship	race	sex		
0	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male		
1	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male		
2	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male		
3	Private	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male		
4	Private	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female		
32554	Private	Masters	14	Married- civ- spouse	Exec- managerial	Husband	White	Male		
32555	Private	Some- college	10	Never- married	Protective- serv	Not-in-family	White	Male		
32556	Private	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife	White	Female		
32558	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female		
32560	Self-emp- inc	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife	White	Female		
29096	29096 rows × 14 columns									

```
In [40]:
```

```
for i in df.columns:
   if i in ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'ra
        print(f"\n\nUnique values of column {i} is:\n" , df[i].unique())
Unique values of column workclass is:
 ['State-gov' 'Self-emp-not-inc' 'Private' 'Federal-gov' 'Local-gov' '?'
 'Self-emp-inc' 'Without-pay' 'Never-worked']
Unique values of column education is:
 ['Bachelors' 'HS-grad' '11th' 'Masters' '9th' 'Some-college' 'Assoc-acdm'
 'Assoc-voc' '7th-8th' 'Doctorate' 'Prof-school' '5th-6th' '10th'
 '1st-4th' 'Preschool' '12th']
Unique values of column marital-status is:
 ['Never-married' 'Married-civ-spouse' 'Divorced' 'Married-spouse-absent'
 'Separated' 'Married-AF-spouse' 'Widowed']
Unique values of column occupation is:
 ['Adm-clerical' 'Exec-managerial' 'Handlers-cleaners' 'Prof-specialty'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
 'Farming-fishing' 'Machine-op-inspct' 'Tech-support' 'others'
 'Protective-serv' 'Armed-Forces' 'Priv-house-serv']
Unique values of column relationship is:
 ['Not-in-family' 'Husband' 'Wife' 'Own-child' 'Unmarried' 'Other-relativ
e']
Unique values of column race is:
 ['White' 'Black' 'Asian-Pac-Islander' 'Amer-Indian-Eskimo' 'Other']
Unique values of column sex is:
['Male' 'Female']
Unique values of column native-country is:
 ['United-States' 'Cuba' 'Jamaica' 'India' 'some-country' 'Mexico' 'South'
 'Puerto-Rico' 'Honduras' 'England' 'Canada' 'Germany' 'Iran'
 'Philippines' 'Italy' 'Poland' 'Columbia' 'Cambodia' 'Thailand' 'Ecuador'
 'Laos' 'Taiwan' 'Haiti' 'Portugal' 'Dominican-Republic' 'El-Salvador'
 'France' 'Guatemala' 'China' 'Japan' 'Yugoslavia' 'Peru'
 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago' 'Greece'
 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary' 'Holand-Netherlands']
Unique values of column age_type is:
 ['adult', 'old', 'young']
Categories (3, object): ['young' < 'adult' < 'old']</pre>
```

```
In [41]:
```

```
df['workclass'].replace({'?':'Without-pay'},inplace=True)
```

In [42]:

```
df.head(2)
```

Out[42]:

	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain
0	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174
1	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0
4									•

In [43]:

```
for i in df.columns:
    if i in ['education-num','hours-per-week','capital-gain','capital-loss']:
        plt.subplots(figsize=(8,5))
        sns.boxplot(x=df[i],data=df)
```


In [44]:

```
abc=df[df['capital-gain']>25000].index
```

In [45]:

```
df.drop(index=abc,axis=0,inplace=True)
```

```
In [46]:
```

```
xyz=df[df['capital-loss']>3000].index
```

In [47]:

df.drop(index=xyz,axis=0,inplace=True)

In [48]:

df.shape

Out[48]:

(28871, 14)

In []:

In []:

In [49]:

df.describe().T

Out[49]:

	count	mean	std	min	25%	50%	75%	max
education-num	28871.0	10.082470	2.634933	1.0	9.0	10.0	13.0	16.0
capital-gain	28871.0	605.246510	2400.681346	0.0	0.0	0.0	0.0	22040.0
capital-loss	28871.0	96.485297	419.304715	0.0	0.0	0.0	0.0	2824.0
hours-per-week	28871.0	40.579474	12.714416	1.0	39.5	40.0	45.0	99.0
income_new	28871.0	0.242458	0.428577	0.0	0.0	0.0	0.0	1.0

In [50]:

df.head(2)

Out[50]:

	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain
0	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174
1	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0
4									•

In [51]:

```
temp1=df[(df['workclass']=='State-gov') & (df['native-country']=='United-States')]
```

In [52]:

```
plt.figure(figsize=(15,7))
sns.countplot(x='hours-per-week',data=temp1,hue='sex',palette='Set1')
```

Out[52]:

<AxesSubplot:xlabel='hours-per-week', ylabel='count'>

In [53]:

```
sns.countplot(x='sex',data=df,hue='race',palette='Set1')
```

Out[53]:

<AxesSubplot:xlabel='sex', ylabel='count'>

In [54]:

```
sns.scatterplot(x='race',y='hours-per-week',data=df)
```

Out[54]:

<AxesSubplot:xlabel='race', ylabel='hours-per-week'>

In [55]:

```
# sns.pairplot(data=df,hue='income_new')
# plt.show()
```

In [56]:

df.head(2)

Out[56]:

	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain
0	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174
1	Self-emp- not-inc	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0
4									•

```
In [57]:
```

```
le=LabelEncoder()
```

```
In [58]:
```

```
for i in df.columns:
    if i not in ['education-num','capital-gain','capital-loss','hours-per-week']:
        df[i]=le.fit_transform(df[i])
```

In [59]:

```
df.head(5)
```

Out[59]:

	workclass	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	С
0	6	9	13	4	0	1	4	1	2174	
1	5	9	13	2	3	0	4	1	0	
2	3	11	9	0	5	1	4	1	0	
3	3	1	7	2	5	0	2	1	0	
4	3	9	13	2	9	5	2	0	0	
4										•

In [60]:

```
X=df.iloc[:,:-1].values
Y=df.iloc[:,13:].values
```

In [61]:

```
print(X.shape)
print(Y.shape)
```

(28871, 13) (28871, 1)

In [62]:

```
scaler=MinMaxScaler()
```

In [63]:

```
X=scaler.fit_transform(X)
```

In [64]:

```
from sklearn.model_selection import train_test_split
```

```
In [65]:
```

```
X_train,X_test,y_train,y_test= train_test_split(X,Y,test_size=0.25)
```

In [66]:

```
print(X_train.shape)
print(y_train.shape)
```

(21653, 13) (21653, 1)

In [67]:

```
print(X_test.shape)
print(y_test.shape)
```

(7218, 13) (7218, 1)

Now implementing the Supervised learning models on by one

Implementing Logistic Regression Model

In [68]:

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix,Confus

In [69]:

```
reg= LogisticRegression(fit_intercept=True,max_iter=100)
```

In [70]:

```
reg.fit(X_train,y_train)
```

C:\Users\dtdee\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

Out[70]:

LogisticRegression
LogisticRegression()

```
In [71]:
```

```
y_pred=reg.predict(X_test)
y_pred
```

Out[71]:

```
array([0, 1, 0, ..., 0, 0, 0], dtype=int64)
```

In [72]:

```
print(reg.score(X_train,y_train))
print(reg.score(X_test,y_test))
```

0.8187318154528241

0.8194790800775839

In [73]:

```
acc_log=accuracy_score(y_pred,y_test)
acc_log
```

Out[73]:

0.8194790800775839

In [74]:

```
print(reg.coef_)
print('\n\n')
print(reg.intercept_)
```

[-5.35564548]

In [75]:

print(classification_report(y_pred,y_test))

	precision	recall	f1-score	support
0	0.95	0.84	0.89	6221
1	0.41	0.71	0.52	997
accuracy			0.82	7218
macro avg	0.68	0.77	0.70	7218
weighted avg	0.87	0.82	0.84	7218

In [76]:

```
cf=confusion_matrix(y_pred,y_test)
cf
```

Out[76]:

In [77]:

```
cnf=ConfusionMatrixDisplay(confusion_matrix=cf,display_labels=[True,False])
cnf.plot()
plt.show()
```


Using Naive Bayes Method

In [78]:

```
from sklearn.naive_bayes import GaussianNB
```

In [79]:

```
gauss= GaussianNB()
```

```
5/30/23, 5:50 PM
                                       IncomeEvaluation_SupervisedLearnAll - Jupyter Notebook
  In [80]:
  gauss.fit(X_train,y_train)
  C:\Users\dtdee\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
  3: DataConversionWarning: A column-vector y was passed when a 1d array was
  expected. Please change the shape of y to (n_samples, ), for example using
  ravel().
    y = column_or_1d(y, warn=True)
  Out[80]:
  ▼ Gaus$ianNB
  GaussianNB()
  In [81]:
  y_pred=gauss.predict(X_test)
 y_pred
  Out[81]:
  array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
  In [82]:
  # if Income<=50K---->0 and >50 ---->1
  acc_gauss=accuracy_score(y_pred,y_test)
  acc_gauss
  Out[82]:
  0.8110279855915766
  In [83]:
  cf_gauss=confusion_matrix(y_pred,y_test)
  cf_gauss
  Out[83]:
  array([[5104,
                 968],
         [ 396, 750]], dtype=int64)
  Using Decision Tree Method
```

```
In [103]:
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree
```

```
In [104]:
# Using Gini and finding the best fit as root node and other nodes
df= DecisionTreeClassifier(criterion='gini', max_depth=3)
In [105]:
df.fit(X_train,y_train)
Out[105]:
        DecisionTreeClassifier
DecisionTreeClassifier(max_depth=3)
In [106]:
y_pred=df.predict(X_test)
In [107]:
# Using Entropy and finding the best fit as root node and other nodes
df2= DecisionTreeClassifier(criterion='entropy',max_depth=3)
In [108]:
df2.fit(X_train,y_train)
Out[108]:
                   DecisionTreeClassifier
DecisionTreeClassifier(criterion='entropy', max_depth=3)
In [109]:
y_pred2=df2.predict(X_test)
In [110]:
y_pred
Out[110]:
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [92]:
acc_df=accuracy_score(y_pred,y_test)
acc_df
Out[92]:
```

 $local host: 8889/notebooks/Income Evaluation_Supervised Learn All. ipynb$

0.8320864505403158

In [111]:

```
acc_df2=accuracy_score(y_pred2,y_test)
acc_df2
```

Out[111]:

0.8345802161263508

In [96]:

```
plt.figure(figsize=(15,7))
plot_tree(df)
plt.plot()
plt.show()
```


In [112]:

```
plt.figure(figsize=(15,7))

plot_tree(df2)

plt.plot()
plt.show()
```


Using Random Forest Method

```
In [113]:
from sklearn.ensemble import RandomForestClassifier
In [124]:
rf= RandomForestClassifier(n_estimators=300,criterion='gini',max_depth=3,random_state=20
In [125]:
rf.fit(X_train,y_train)
C:\Users\dtdee\AppData\Local\Temp\ipykernel 19156\1593328843.py:1: DataCon
versionWarning: A column-vector y was passed when a 1d array was expected.
Please change the shape of y to (n_samples,), for example using ravel().
  rf.fit(X_train,y_train)
Out[125]:
                         RandomForestClassifier
RandomForestClassifier(max_depth=3, n_estimators=300, oob_score=True,
                        random_state=20)
In [126]:
y_pred= rf.predict(X_test)
y_pred
Out[126]:
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [130]:
acc_rf= accuracy_score(y_pred,y_test)
acc_rf
Out[130]:
0.8240509836519812
In [131]:
rf.oob_score_
```

Out[131]:

0.8199325728536462

Using SVM Model

In [141]:

```
from sklearn.svm import SVC
```

In [156]:

```
svm=SVC( max_iter=100,kernel='rbf')
```

In [157]:

```
svm.fit(X_train,y_train)
```

C:\Users\dtdee\anaconda3\lib\site-packages\sklearn\utils\validation.py:114
3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

C:\Users\dtdee\anaconda3\lib\site-packages\sklearn\svm_base.py:299: ConvergenceWarning: Solver terminated early (max_iter=100). Consider pre-processing your data with StandardScaler or MinMaxScaler.

warnings.warn(

Out[157]:

```
sVC
SVC(max_iter=100)
```

In [158]:

```
y_pred=svm.predict(X_test)
y_pred
```

Out[158]:

```
array([1, 1, 0, ..., 1, 1, 1], dtype=int64)
```

In [159]:

```
acc_svm= accuracy_score(y_pred,y_test)
acc_svm
```

Out[159]:

0.6546134663341646

Checking the Model Performance of all Models

In [162]:

Out[162]:

	Model Name	Accuracy_score
0	LogisticRegression	0.819479
1	NaiveBayes	0.811028
2	Decision Tree	0.832086
3	Random Forest	0.824051
4	SVM	0.654613

CONCLUSION:

Best Model for Classification would be Decision Tree and Random Forest

