题目描述

小A和小B玩一个游戏。小A找了一些数,把它们装进一个袋子里,然后随机拿出一个,让小B猜是多少。小B很快发现猜期望(即这些数的平均数)是最接近的,于是每次都猜期望。小A觉得有些无聊了,于是把游戏增强了,但是小B又很快地发现猜期望最好。

增强了许多次以后,游戏变成了这样:从2个袋子里各随机取出一个数,分别记作m、n,然后小A拿出m个球和n个袋子,将球都随机放进袋子中,然后再随机找出一个袋子,让小B猜里面有多少个球(小B知道m和n分别是多少)。现在小A有些好奇,如果小B每次都猜期望,那么猜的"偏差度"是多少呢?小A问你袋子里的实际球数减去小B猜的数的差的k次方的期望。

其实,如果设袋子里的实际球数为x,那么小A问你的东西叫做变量x的k阶中心矩,它的定义是 $\mathrm{E}\left((x-\mathrm{E}(x))^k\right)$ 。特别地,2阶中心矩就是方差。

输入格式

输入第一行包含3个正整数 N_n , N_m 和 N_k , 分别表示取n、m的袋子的数的种类数和询问个数。

接下来 N_n 行,每行包含两个正整数 n_i 和 num_{n_i} ,表示取n的袋子中有 num_{n_i} 个 n_i 。

接下来 N_m 行,每行包含两个正整数 m_i 和 num_{m_i} ,表示取m的袋子中有 num_{m_i} 个 m_i 。

接下来 N_k 行,每行包含一个正整数k,表示一次询问。

输出格式

可以证明,答案一定是有理数。共输出 N_k 行,每行一个整数,表示一次询问的答案模1000000007(10^9+7)的结果,即,设答案为a/b(a和b为互质的正整数),你输出的整数为x,则你需要保证b*x与a模100000007同余 且 $0 \le x < 1000000007$ 。

样例输入

1 1 2

3 1

2 1

2

3

样例输出

44444448

481481485

样例说明

设(a,b,c)表示3个袋子中的球数分别是a、b、c,对于第一个询问,(2,0,0), (0,2,0), (0,0,2)的概率都是1/9,方差都是8/9,(1,1,0), (1,0,1), (0,1,1)的概率都是2/9,方差都是2/9,所以方差的期望是1/9*8/9*3+2/9*2/9*3=4/9。444444448*9与4模1000000007同余。

样例输入

2 2 2
3 2
2 1
3 2
2 1
2 2
3

样例输出

172839508 650205766

样例说明

对于第一个询问,有4/9的概率是3袋3球,方差的期望是2/3;有2/9的概率是2袋3球,方差的期望是3/4;有2/9的概率是3袋2球,方差的期望是4/9;有1/9的概率是2袋2球,方差的期望是1/2。所以所求等于 4/9*2/3+2/9*3/4+2/9*4/9+1/9*1/2=50/81。172839508*81与50模1000000007 同余。

数据规模和约定

对于全部测试数据, $n_i,m_i\leq 10^9$, $N_n\leq 5000$, $N_m,k,num_{n_i},num_{m_i}\leq 2000$, $N_k\leq 200$ 。

测试点编号	$k \leq$	$n_i, m_i \leq$	$N_n =$	$N_m =$	$N_k =$
1	1	7	1	1	1
2	2	7	1	1	1
3	2	30	1	1	1
4	2	30	2	2	1
5	2	10^4	1	1	1
6	2	10^{9}	200	200	1
7	3	30	2	2	2
8	3	10^4	2	2	2
9	3	10^4	200	200	2
10	4	30	2	2	2
11	50	$5*10^{6}$	1	1	1
12	50	10^{9}	2000	50	50
13	50	10^{9}	50	2000	50
14	50	10^{9}	2000	2000	50
15	300	30	2	2	2
16	300	10^{9}	2	2	2
17	300	10^{9}	200	200	200
18	300	10^{9}	200	200	200
19	2000	10^{9}	2	2	2
20	2000	10^{9}	5000	2	2