Computational Intelligence Laboratory

Lecture 7

Convolutional Neural Networks

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

April 28, 2017

Section 1

Multilayer Perceptrons

Neural Networks

- ► Neural network: consist of simple, parametrized computational elements = neurons or units
- Basic operation:
 - lacktriangle each unit implements a generalized linear function: $\mathbb{R}^n o \mathbb{R}$
 - ▶ linear + non-linear activation function $\sigma: \mathbb{R} \to \mathbb{R}$
 - lacktriangle parametrized with weights $\mathbf{w} \in \mathbb{R}^{n+1}$

$$f^{\sigma}(\mathbf{x}; \mathbf{w}) := \sigma \left(w_0 + \sum_{i=1}^n w_i x_i \right) \stackrel{(*)}{=} \sigma(\mathbf{w}^{\top} \mathbf{x})$$

▶ (*) will ignore/absorb bias parameter for clarity

Neuron: Schematic View

Activation Functions

Old school: logistic (or tanh) function

- New school: ReLU (rectified linear unit)
 - ► linear function over half-space $\mathcal{H} = \{\mathbf{x} : \mathbf{w}^{\top} \mathbf{x} > 0\}$
 - ightharpoonup zero on complement $\mathcal{H}^c = \mathbb{R}^n \mathcal{H}$
 - ▶ non-smooth, but simple derivative over $\mathbb{R} \{0\}$

Multilayer Perceptron

- ► Arrange such neurons in a layer (here: hidden layer)
- ▶ Input layer = raw input x, no computation
- Output layer = final output, class label, response variables

Units and Layers

- Units are arranged in layers
 - ▶ units indexed by j
 - mapping between layers: vector-valued
 - ightharpoonup common choice of σ

$$F^{\sigma}: \mathbb{R}^n \to \mathbb{R}^m, \quad F_j^{\sigma}(\mathbf{x}) = \underbrace{\sigma(\mathbf{w}_j^{\top} \mathbf{x})}_{\text{transfer fct.}}, \quad j = 1, \dots, m$$

▶ Matrix-vector notation (σ applied elementwise)

$$F^{\sigma}(\mathbf{x}; \mathbf{W}) = \sigma(\mathbf{W} \mathbf{x}), \quad \mathbf{W} = \begin{pmatrix} \mathbf{w}_1^{\top} \\ \dots \\ \mathbf{w}_m^{\top} \end{pmatrix}$$

Units and Layers

- Sometimes we want to index layers by l
- Activation vector of l-th layer: $\mathbf{x}^{(l)}$
 - $ightharpoonup \mathbf{x}^{(1)}$ is input; $\mathbf{x}^{(L)}$ is output; $\mathbf{x}^{(l)}$ (1 < l < L) hidden layers
 - indexed notation for layer-to-layer forward propagation

$$\mathbf{x}^{(l)} = \sigma^{(l)} \left(\mathbf{W}^{(l)} \mathbf{x}^{(l-1)} \right)$$

Units and Layers

▶ *L*-layer network: nested function

$$\mathbf{y} = \sigma^{(L)} \left(\mathbf{W}^{(L)} \sigma^{(L-1)} \left(\cdots \left(\sigma^{(1)} \left(\mathbf{W}^{(1)} \mathbf{x} \right) \cdots \right) \right) \right)$$

- ► Layer width = "more of the same" features
- Network depth = "more compositionality", feature hierarchy (= deep learning)

Output Layer

- Shortcuts $\mathbf{W} = \mathbf{W}^{(L)}$, $\mathbf{x} = \mathbf{x}^{(L-1)}$
- ► Linear regression: linear activation

$$y = Wx$$

▶ Binary classification (one output): logistic

$$y_1 = P(Y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp\left[-\mathbf{w}^\top \mathbf{x}\right]}$$

▶ Multiclass with K classes: soft-max

$$y_k = P(Y = k \mid \mathbf{x}) = \frac{\exp\left[\mathbf{w}_k^{\top} \mathbf{x}\right]}{\sum_{j=1}^{K} \exp\left[\mathbf{w}_j^{\top} \mathbf{x}\right]}$$

MLP Classification vs. Logistic Regression

▶ Logistic regression: computes linear function of inputs

$$P(Y = 1|\mathbf{x}) = \frac{1}{1 + \exp\left[-\langle \mathbf{w}, \mathbf{x} \rangle\right]}$$

- Multilayer Perceptron
 - ► learn intermediate feature representation
 - ightharpoonup perform logistic regression on learned representation $\mathbf{x}^{(L-1)}$

Learning in Massively Parametrized Models:)

► Learning = automatically fiddling with network weights

Loss Function

- ▶ How do we adjust, i.e. learn the weights?
- ► First: define a loss function
 - ▶ target output y^* , prediction y
 - ▶ loss function $\ell(y^*; y)$
- ▶ Squared loss, $y^*, y \in \mathbb{R}$

$$\ell(y^*; y) = \frac{1}{2}(y^* - y)^2$$

▶ Cross-entropy loss, $0 \le y \le 1$ (Bernoulli prob.), $y^* \in \{0,1\}$

$$\ell(y^*; y) = -y^* \log y - (1 - y^*) \log(1 - y)$$

Regularized Risk Minimization

- ▶ Training set of examples $\mathcal{X} = \{(\mathbf{x}_t, y_t) : t = 1, \dots, T\}$
- ► Empirical risk

$$\mathcal{L}(\theta; \mathcal{X}) = \frac{1}{T} \sum_{t=1}^{T} \ell(y_t; \underbrace{y(\mathbf{x}_t; \theta)}_{\mathsf{NN \ output}}), \quad \theta = (\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)})$$

 $ightharpoonup L_2$ regularization or "weight decay" = favor smaller weights

$$\mathcal{L}_{\lambda}(\theta; \mathcal{X}) = \mathcal{L}(\theta; \mathcal{X}) + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$

► Modern variant: drop out (training with noise)

Section 2

Backpropagation

Stochastic Gradient Descent

- Optimize using gradient descent
 - loss function is typically non-convex: no/little theoretical guarantees
 - practice: just do it; saddle points more of an issue than poor local minima
- ► SGD (stochastic gradient descent)
 - steepest descent is too expensive for large data sets
 - ▶ SGD with step size η , pick data point t at random

$$\theta \leftarrow (1 - \eta \lambda)\theta - \eta \nabla_{\theta} \ell(y_t^*; y(\mathbf{x}_t; \theta))$$

Loss Gradients

- ► Large (many units) and deep (many layers) networks: many weights = partial derivative for each
 - sensitivity of output/loss with regard to each weight
- Use chain rule to compute derivatives
 - output layer = gradient of loss

$$abla_{\mathbf{y}} \, \ell = ... \quad \text{(depends on loss)}$$

- start computation from output!
- example: squared loss

$$\nabla_y \ell = \frac{\partial \ell}{\partial y} = (y - y^*)$$

Layer-to-Layer Jacobian

- ▶ How do units affect each other?
 - ▶ x = previous layer activation
 - \mathbf{x}^+ = next layer activation
- ▶ Jacobian matrix $\mathbf{J} = (J_{ij})$ of mapping $\mathbf{x} \to \mathbf{x}^+$, $\mathbf{x}_i^+ = \sigma(\mathbf{w}_i^\top \mathbf{x})$

$$\mathbf{J} = \frac{\partial \mathbf{x}^+}{\partial \mathbf{x}}, \quad J_{ij} = \frac{\partial x_i^+}{\partial x_j} = w_{ij} \cdot \sigma'(\mathbf{w}_i^\top \mathbf{x})$$

- ▶ (sometimes transposed definition of J in the literature)
- essentially a modified weight matrix!

Backpropagation

▶ Across multiple layers (by chain rule), $1 \le n < l$

$$\frac{\partial x_i^{(l)}}{\partial x_k^{(l-n)}} = \sum_j \underbrace{\frac{\partial x_i^{(l)}}{\partial x_j^{(l-1)}}}_{=J_{ij}^{(l)}} \underbrace{\frac{\partial x_j^{(l-1)}}{\partial x_k^{(l-n)}}}_{,$$

$$\frac{\partial \mathbf{x}^{(l)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdot \frac{\partial \mathbf{x}^{(l-1)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdot \mathbf{J}^{(l-1)} \cdots \mathbf{J}^{(l-n+1)}$$

- ▶ one simply needs to multiply (layer-to-layer) Jacobians
- ... and then

$$\nabla_{\mathbf{x}^{(l)}}^{\top} \ell = \underbrace{\nabla_{\mathbf{y}}^{\top} \ell \cdot \mathbf{J}^{(L)} \cdots \mathbf{J}^{(l+1)}}_{\text{back propagation}}$$

From Activities to Weights

- ► How do weights affect loss?
- Simple local computation

$$\begin{split} \frac{\partial \ell}{\partial w_{ij}^{(l)}} &= \frac{\partial \ell}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}}, \quad \text{where} \\ \frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}} &= \underbrace{\sigma'\left(\left[\mathbf{w}_i^{(l)}\right]^\top \mathbf{x}^{(l-1)}\right)}_{\text{sensitivity of up-stream unit}} \underbrace{x_j^{(l-1)}}_{\text{up-stream unit}} \end{split}$$