cardinalidade

noções básicas sobre cardinalidade de conjuntos

Conjuntos equipotentes

Sejam A e B conjuntos. Diz-se que A é **equipotente** a B, e escreve-se $A \sim B$, se existe uma aplicação bijetiva $f: A \to B$.

Exemplos.

- 1. $\{a_1, a_2, a_3, ..., a_n\} \sim \{1, 2, 3, ..., n\};$
- 2. Se $a \neq b$ e $x \neq y$, então, $\{a, b\} \sim \{x, y\}$;
- 3. O único conjunto equipotente a \emptyset é o próprio \emptyset ;
- 4. $\mathbb{N} \sim 2\mathbb{N} = \{2n : n \in \mathbb{N}\}.$

5. $]-\frac{\pi}{2},\frac{\pi}{2}[\sim\mathbb{R} \text{ pois }]$

$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\rightarrow \mathbb{R}$$

$$x \mapsto \operatorname{tg} x$$

- é bijetiva.
- 6. Sejam $a, b, c, d \in \mathbb{R}$ com a < b e c < d. Então, $]a, b[\sim]c, d[$ porque

$$f:]a, b[\rightarrow]c, d[$$

 $x \mapsto \frac{d-c}{b-a}x + \frac{cb-da}{b-a}$

é bijetiva.

7. $]0,1] \sim]0,1[$

$$f:]0,1] \rightarrow]0,1[$$

$$x \mapsto \begin{cases} \frac{1}{n+1} & \text{se } x = \frac{1}{n} (n \in \mathbb{N}) \\ x & \text{caso contrário.} \end{cases}$$

Conjuntos finitos e conjuntos infinitos

Definição. Um conjunto diz-se *infinito* se é equipotente a pelo menos um dos seus subconjuntos próprios, i.e., se

$$\exists X \in \mathcal{P}(A): X \neq A \ e \ A \sim X.$$

Um conjunto diz-se finito se não for infinito.

Exemplos.

- 1. \mathbb{N} é infinito: $2\mathbb{N} \subsetneq \mathbb{N}$ e $\mathbb{N} \sim 2\mathbb{N}$;
- 2. Dado $n \in \mathbb{N}$, $\{1, 2, 3, ..., n\}$ é finito;
- ∅ é finito;
- 4. \mathbb{R} é infinito: $]-\frac{\pi}{2},\frac{\pi}{2}[\subsetneqq\mathbb{R} \text{ e }]-\frac{\pi}{2},\frac{\pi}{2}[\sim\mathbb{R}.$

Propriedades.

- 1. Se A é infinito e $A \sim B$, então, B é infinito;
- 2. Se A é finito e $A \sim B$, então, B é finito;
- 3. Se $A \sim B$ então ou A e B são ambos finitos ou A e B são ambos infinitos.
- 4. Se A é finito e $n \in \mathbb{N}$, então,

$$A \sim \{1,2,3,...,n\} \Longleftrightarrow A = \{a_1,a_2,...,a_n\}$$
, onde $a_i \neq a_j$ sempre que $i \neq j$.

Cardinal de um conjunto

Sejam A, B e C conjuntos. Então:

- 1. A é equipotente a si mesmmo;
- 2. Se A é equipotente a B então B é equipotente a A;
- 3. Se A é equipotente a B e B é equipotente a C, então, A é equipotentes a C.

Definição. Se $A \sim B$, diz-se que A e B têm o mesmo cardinal, e escreve-se #A = #B.

Se não existe uma aplicação bijetiva entre A e B, mas sim uma aplicação injetiva de A em B, escreve-se $A \prec B$ e diz-se que B tem uma cardinalidade superior à de A.

Mostra-se que, dados dois conjuntos quaisquer A e B, apenas uma das 3 situações seguintes se verifica:

$$A \prec B$$
 ou $B \prec A$ ou $A \sim B$.

Teorema de Cantor-Bernstein-Schröeder. Sejam A e B conjuntos. Se existe $f:A\to B$ injetiva e existe $g:B\to A$ injetiva, então existe $h:A\to B$ bijetiva (i.e., $A\sim B$).

Exemplo. $]0,1] \sim]0,1[$ porque $f:]0,1] \rightarrow]0,1[$, definida por $f(x) = \frac{x}{2}$, e $g:]0,1[\rightarrow]0,1]$, definida por g(x) = x, são aplicações injetivas.

Teorema de Cantor. Seja A um conjunto. Então, $A \prec \mathcal{P}(A)$.

Demonstração. A aplicação $A \to \mathcal{P}(A)$ definida por $x \mapsto \{x\}$, com $x \in A$, é claramente injetiva e não bijetiva.

Suponhamos, por redução ao absurdo que existe uma função $f:A\to \mathcal{P}(A)$ bijetiva. Seja $C=\{a\in A:a\not\in f(a)\}\in \mathcal{P}(A)$. Então, porque f é sobrejetiva, existe $c\in A$ tal que f(c)=C. Então,

$$c \in C \Leftrightarrow c \notin f(c) \Leftrightarrow c \notin C$$

o que é um absurdo.

Conjuntos numeráveis e conjuntos não numeráveis

Definição. Um conjunto A diz-se **numerável** se A é equipotente a \mathbb{N} .

Propriedades

- Se A e B são numeráveis então $A \cup B$ é numerável.
- Se I é numerável e, para cada $i \in I$, A_i é numerável, então, $\bigcup_{i \in I} A_i$ é numerável.
- Se A e B são numeráveis então $A \times B$ é numerável.
- Se A_1 , A_2 , ..., A_n é numerável, então, $A_1 \times A_2 \times A_3 \times \cdots A_n$ é numerável.

Exemplos.

- 1. $\mathbb N$ é numerável basta considerar a função identidade;
- 2. $2\mathbb{N}$ é numerável basta considerar a função

$$f: \mathbb{N} \to 2\mathbb{N} \\ n \mapsto 2n ;$$

3. \mathbb{N}_0 é numerável - basta considerar a função

$$\begin{array}{ccc} f: & \mathbb{N} \to \mathbb{N}_0 \\ & n \mapsto n-1 \end{array};$$

4. $\mathbb Z$ é numerável - basta considerar a função

$$\begin{array}{ccc} f: & \mathbb{N} \to \mathbb{Z} \\ & 1 \mapsto 0 \\ & 2 \mapsto 1 \\ & 3 \mapsto -1 \\ & 4 \mapsto 2 \\ & 5 \mapsto -2 \\ & \vdots \end{array}$$

ou seja,

$$f(n) = \begin{cases} -\frac{n-1}{2} & \text{se } n \text{ \'e impar} \\ \frac{n}{2} & \text{se } n \text{ \'e par} \end{cases}$$

5. $\mathbb{N} \times \mathbb{N}$ é numerável

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

 $(n,m) \mapsto \frac{1}{2}(n+m-2)(n+m-1)$

6. Q é numerável.

Definição. Um número real α diz-se **algébrico** se existe um polinómio de coeficientes racionais do qual α é raíz. Caso contrário, α diz-se **transcendente**.

Exemplos:

- Todos os racionais são reais algébricos;
- $\sqrt{2}$ é algébrico; $x^2 2$
- $\sqrt{2} + \sqrt{3}$ é algébrico; $x^4 10x^2 + 1$
- O número de Champernowne, 0,1234567891011121314..., é transcendente
- Os números e e π são transcendentes;
- Não se sabe se $e+\pi$ é transcendente ou algébrico.

Exemplos.

- 7. O conjunto dos números algébricos é numerável.
 - Um número algébrico é raiz de um polinómio (de grau n) com n+1 coeficientes racionais. Como $\mathbb Q$ é numerável, o produto cartesiano de n+1 conjuntos $\mathbb Q$ é numerável.
- 8. O intervalo real]0,1[não é numerável Se o intervalo fosse numerável, podíamos listar todos os seus elementos na forma:

```
0, a_{11}a_{12}a_{13}\cdots 0, a_{21}a_{22}a_{23}\cdots
```

Mas, o número $0, b_1b_2b_3b_4\cdots$, onde $b_i \neq a_{ii}$, para todo $i \in \mathbb{N}$ não aparece na lista.

- 9. \mathbb{R} não é numerável.
- 10. O conjunto dos números transcendentes não é numerável.

Temos que

 $\mathbb{Q} \sim \{\text{n\'umeros alg\'ebricos}\} \prec \{\text{n\'umeros transcendentes}\} \sim \mathbb{R}.$

- 1. Se A é finito, identifica-se #A com o número de elementos de A.
- 2. $\#\mathbb{N} = \aleph_0$ (lê-se "alef zero");
- 3. $\#\mathbb{R} = c$ (lê-se "contínuo").