Eine kleine Formelsammlung

M	ECHANIK	••••
	VOLUMEN UND DICHTE	
	KRAFTUMFORMENDE EINRICHTUNGEN	
	Hebel	
	geneigte Ebene	
	Rollen	
	Reibung	
	GLEICHFÖRMIGE BEWEGUNG	
	BESCHLEUNIGTE BEWEGUNG	
	gleichmäßig beschleunigt	
	freier Fall	
	ungleichmäßig beschl	
	WÜRFE	
	senkrechter Wurf	
	waagerechter Wurf	
	schräger Wurf	
	Drehbewegung	
	Kräfte	
	Federn	
	NEWTONSCHE AXIOME	
	Arbeit, Energie, Leistung	
	IMPULS UND STÖßE	1
	ROTATION	1
	Trägheitsmoment	1
	GRAVITATION, KEPLERSCHE GESETZE	1
	Schwingungen	1
	Wellen	1
	Druck	1
	RELATIVITÄTSTHEORIE	1
	A DAMES AND THE STATE OF THE ST	_
E.	LEKTRIZITÄTSLEHRE	1
	EINFACHER GLEICHSTROMKREIS	1
	VERZWEIGTER UND UNVERZWEIGTER GLEICHSTROMKREIS	
	Dreieck- und Sternschaltung	
	Arbeit, Energie und Leistung	
	ELEKTRISCHE LADUNGEN	
	KONDENSATOREN	
	MAGNETFELD	
	INDUKTION	
	TRANSFORMATOR	
	ELEKTROMAGNETISCHE SCHWINGUNGEN UND WELLEN	
	WECHSELSTROM.	
	WIDERSTÄNDE IM WECHSELSTROMKREIS	
	LEISTUNG IM WECHSELSTROMKREIS	
	LEISTUNG IM WECHSELSTRUMKREIS	1
o	PTIK	2
	LICHTAUSBREITUNG	,
	REFLEXION	
	Brechung	
	DÜNNE LINSEN	
	INTERFERENZ AM SPALT UND GITTER	
	INTERFERENZ AN DÜNNEN SCHICHTEN	
	POLARISATION	2
A'	TOMPHYSIK	7
£1		
	QUANTENPHYSIK	
	ATOMPHYSIK	2

Seite 1 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

THERMODYNAMIK	
Längen- und Volumenänderung	
THERMISCHES VERHALTEN DES IDEALEN GASES	24
Wärme und Energie	24
TRIGONOMETRIE	
Sinussatz	
Kosinussatz	
Phasenverschiebungen	
Additionstheoreme	
Gegenseitige Darstellung	
WERTETABELLEN	
DICHTE	29
feste Stoffe	
Flüssigkeiten	
Gase	
Reibungszahlen	
Haftreibungszahlen	
Gleitreibungszahlen	
SPEZIFISCHE ELEKTRISCHE WIDERSTÄNDE	
relative Permittivität $ \epsilon_{_{\! f}} $	
relative Permeabilität μ_{r}	
Hall-Konstante	
Brechzahl und Lichtgeschwindigkeit	
AUSTRITTSARBEIT	
Längenausdehnungskoeffizient	
SPEZIFISCHE GASWERTE	
SPEZIFISCHE WÄRMEKAPAZITÄT VON FESTSTOFFEN UND FLÜSSIGKEITEN	
GENAUIGKEIT UND FEHLER	
Genauigkeit	
Fehler	
Fehlerarten	
Fehlerfortpflanzung	
Berechnung des absoluten und relativen Fehlers	
Beispiele	

L = ((1-cos(a))

Way Grad rain in donn, Dog

Greschmindiglecit in Vinkel

L = arccos (- \frac{v_2}{2g(+1)})

1. h rass en

2. Energiachallang Fod = Ekin

V beridsen

3. Elostischen Conenha, Uz, ca

4. h: 4 tgl henchsen

Beschleaningte Recegoing Geschwindigkrit

Mechanik

Volumen und Dichte

Quader	a, b, cKantenlängen eines Quaders (Meter, m)
V=a·b·c	rRadius der Kugel (Meter, r)
Kugel	VVolumen (Kubikmeter, m³; Liter, ℓ)
$V = \frac{4}{3} \cdot \pi \cdot r^3$	ρ Dichte (Kilogramm je Kubikmeter, $\frac{kg}{m^3}$)
m	mMasse (Kilogramm, kg)
$\rho = \frac{1}{V}$	<u>Wertetabelle</u>

kraftumformende Einrichtungen

gleichförmige Bewegung

beschleuniate Beweauna

gleichmäßig beschleunigt	sWeg (Meter, m) tZeit (Sekunde, s)
(a=konst.)	vGeschwindigkeit (Meter je Sekunde, m/2)
$s = \frac{a}{2} \cdot t^2$	5
2 v=a·t	aBeschleunigung (Meter je Quadratsekunde, m 、
allgemein	$\left(\frac{m}{s^2}\right)$
$a = \frac{\Delta V}{\Delta t}$	
Ist bereits ein Anfangsweg s ₀ zurückgelegt worden und (o-	
der) eine Anfangsgeschwindig-	
keit v ₀ vorhanden, gilt:	
$s = \frac{a}{2} \cdot t^2 + v_0 \cdot t + s_0$	
$v = a \cdot t + v_0$	

Reibung

a= 1/2 g

 $F_R = \mu \cdot F_N$ Normalkraft: die Kraft, mit der der Körper senkrecht auf die Unterlage drückt $F_N = F_G \cdot \cos \alpha$

F_R.....Reibungskraft (Newton, N) μ.....Reibungszahl F_N......Normalkraft (Newton, N)

F_G......Gewichtskraft (Newton, N) αNeigungswinkel (Grad, °)

Wertetabelle

Haff: Berorkorper in Benegung I mass über nauden well des Gleif: Körper rulsher Roll: Konfoldponkt andert sich

freier Fall

Für den freien Fall

- ohne Luftreibung gilt:

$$a=g=9,81\frac{m}{s^2}$$

- mit Luftreibung

$$a=g\cdot(1-k\cdot v^2)$$

$$k \!=\! \frac{1}{2} c_w \cdot \! \rho \!\cdot\! \frac{A}{F_g}$$

gOrtsfaktor, Fallbeschleunigung

cw.....Widerstandsbeiwert

 ρ Dichte des Stoffes, in dem der Körper fällt

A.....Querschnittsfläche des fallenden Körpers

Fg.....Gewichtskraft des fallenden Körpers

ungleichmäßig beschl.

(a≠konst.)

wenn a ~ t

$$k = \frac{\Delta a}{\Delta t}$$

 $\Delta a = k \cdot \Delta t + a_0$

$$\Delta v = \frac{k}{2} \cdot t^2 + a_0 \cdot t + v_0$$

$$\Delta s = \frac{k}{6} \cdot t^3 + \frac{a_0}{2} \cdot t^2 + v_0 \cdot t + s_0$$

k......Beschleunigungsänderung (Meter je Kubiksekunde, $\frac{m}{e^3}$)

a.....Beschleunigung (Meter je Quadratsekunde,

 $\frac{111}{s^2}$)

t.....Zeit (Sekunde, s)

v......Geschwindigkeit (Meter je Sekunde, $\frac{m}{s}$)

s.....Weg (Meter, m)

Würfe

senkrechter Wurf

$$y = v_0 \cdot t - \frac{g}{2} \cdot t^2$$

Abwurf nach oben: v₀ positiv Abwurf nach unten: v₀ negativ Steigzeit bis zum Gipfelpunkt:

$$t_h = \frac{v_0}{g}$$

Höhe des Gipfelpunktes:

$$s_h = \frac{v_0^2}{2 \cdot g}$$

yWeg in y-Richtung (Meter, m) tZeit (Sekunde, s)

g.....Ortsfaktor (9,81 $\frac{m}{s^2}$)

 $v_0......Abwurfgeschwindigkeit \, (Meter je \, Sekunde,$

 $\frac{\mathsf{m}}{\mathsf{s}}$)

waagerechter Wurf

Wurfparabel:

$$y = -\frac{g}{2 \cdot v_0^2} \cdot x^2$$

Geschwindigkeit nach einer Zeit t:

$$v = \sqrt{v_0^2 + g^2 \cdot t^2}$$

yWeg in y-Richtung (Meter, m) xWeg in x-Richtung (Meter, m)

tZeit (Sekunde, s)

gOrtsfaktor (9,81 $\frac{m}{s^2}$)

 v_0Abwurfgeschwindigkeit (Meter je Sekunde,

 $\frac{\mathsf{m}}{\mathsf{s}}$)

schräger Wurf

Wurfparabel:

$$y = tan \alpha \cdot x - \frac{g}{2 \cdot v_0^2 \cdot cos^2 \alpha} \cdot x^2$$

Geschwindigkeit nach einer Zeit t:

$$v = \sqrt{v_0^2 + g^2 \cdot t^2 - 2 \cdot v_0 \cdot g \cdot t \cdot \sin \alpha}$$

spezielle Formeln

Wurfweite: $s_w = \frac{v_0^2 \cdot \sin 2\alpha}{g}$

Wurfhöhe: $s_h = \frac{v_0^2 \cdot \sin^2 \alpha}{2 \cdot g}$

Steigzeit: $t_h = \frac{v_0 \cdot \sin \alpha}{g}$

yWeg in y-Richtung (Meter, m)

xWeg in x-Richtung (Meter, m) αAbwurfwinkel (Grad, °)

tZeit (Sekunde, s)

gOrtsfaktor (9,81 $\frac{m}{s^2}$)

v₀......Abwurfgeschwindigkeit (Meter je Sekunde,

 $\frac{\mathsf{m}}{\mathsf{s}}$)

Drehbewegung

$$v = \frac{2 \cdot \pi \cdot r}{T}$$

$$v = 2 \cdot \pi \cdot r \cdot n$$

$$v = \omega \cdot r$$

r.....Radius (Meter, m)

T.....Zeit für eine Umdrehung (Sekunde, s)

vGeschwindigkeit (Meter je Sekunde, $\frac{m}{s}$)

nAnzahl der Umdrehungen je Sekunde $(\frac{1}{s})$

 ω Winkelgeschwindigkeit $(\frac{1}{s})$

Kräfte

$F = \sqrt{F_1^2 + F_2^2 + 2 \cdot F_1 \cdot F_2 \cdot \cos \alpha}$ Sonderfälle: $\alpha = 0^{\circ}$ $F = F_1 + F_2$ $\alpha = 45^{\circ}$ $F = \sqrt{F_1^2 + F_2^2}$ $\alpha = 180^{\circ}$	Fresultierende Kraft (Newton, N) F ₁ , F ₂ Teilkräfte (Newton, N) αWinkel zwischen den beiden Teilkräften (Grad, °) Λ = kg 5
$F=F_1-F_2$	

Federn

$ \frac{D = \frac{F}{s}}{2 \text{ Federn hintereinander}} $ $ \frac{1}{D} = \frac{1}{D_1} + \frac{1}{D_2} $	FKraft, die die Feder spannt (Newton, N) sAusdehnung der Feder (Meter, m) DFederkonstante (Newton je Meter, M/m)
2 Federn nebeneinander D=D ₁ +D ₂	
Hooksches Gesetz: F = D Δs	

Newtonsche Axiome

Grundgesetz	F Kraft (Newton, N)
F=m·a	m Masse (Kilogramm, kg)
Trägheitsgesetz	aBeschleunigung (Meter je Quadratsekunde,
Wenn die Summe aller äuße-	m ,
ren Kräfte auf einen Körper 0	$(\frac{1}{s^2})$
ist, gilt:	
a=0 oder	
v=konstant	
Wechselwirkungsgesetz	
$F_1 = -F_2$	
(actio = reactio)	

Arbeit, Energie, Leistung

, 2014,		
$W = \Delta E$	WArbeit (Joule, J)	
Wenn F= konstant:	ΔEEnergieänderung (Joule, J)	
$W = F \cdot s \cdot \cos \alpha$	sWeg	
$P = \frac{W}{W}$	α Winkel zw. Kraft und Richtung der Bewe-	
P=\frac{\frac{1}{4}}{4}	gung (Grad, °)	
l l	PLeistung (Watt, W)	
	tZeit (Sekunde, s)	

Epot: m.g.h

Hubarbeit

 $W_H = F_G \cdot h$

W _H =m⋅g⋅h → potenzielle Energie E _{pot} =m⋅g⋅h	hHöhe, um die der Körper gehoben wird (Meter, m) mMasse des Körpers (Kilogramm, kg) E _{pot} potenzielle Energie (Joule, J)
	gOrtsfaktor, Fallbeschleunigung (9,81 $\frac{m}{s^2}$)
Beschleunigungsar- beit $W_B = F_B \cdot s$ $W_B = m \cdot a \cdot s$ \Rightarrow kinetische Energie $E_{kin} = \frac{m}{2} \cdot v^2$ Federspannarbeit $W_S = \frac{1}{2} \cdot F_E \cdot s$ $W_S = \frac{1}{2} \cdot D \cdot s^2$	W _B Beschleunigungsarbeit (Joule, J) F _B beschleunigende Kraft (Newton, N) sWeg der Beschleunigung (Meter, m) mMasse (Kilogramm, kg) aBeschleunigung (Meter je Quadratsekunde, m/s²) E _{kin} kinetische Energie (Joule, J) vGeschwindigkeit (Meter je Sekunde, m/s) W _S Federspannarbeit (Joule, J) F _E Endkraft zum Spannen der Feder (Newton, N) sAusdehnung der Feder (Meter, m) DFederkonstante (Newton je Meter, N/m)
⇒ Energie einer ge- spannten Feder $E_s = \frac{1}{2} \cdot D \cdot s^2$	EsFederspannenergie (Joule, J)
Reibungsarbeit $W_R = F_R \cdot s$ $W_R = \mu \cdot F_N \cdot s$ $W_R = \mu \cdot m \cdot g \cdot \cos \alpha \cdot s$ $\rightarrow \text{Wärmeenergie}$	WRReibungsarbeit (Joule, J) FRReibungskraft (Newton, N) sWeg (Meter, m) μGleitreibungszahl FNNormalkraft (Newton, N) mMasse Kilogramm, kg) gOrtsfaktor (9,81 m/s²)

W_H......Hubarbeit (Joule, J)

F_G.....Gewichtskraft (Newton, N)

Impuls und Stöße

<u> </u>	
p=m·v I=F·Δt	pImpuls (Kilogramm Meter durch Sekunde, $\frac{kg \cdot m}{s}$)
$I = \Delta p$	vGeschwindigkeit (Meter je Sekunde, $\frac{m}{s}$)
	IKraftstoß (Newton Sekunde, Ns) FKraft (Newton, N)
	ΔtZeit, in der die Kraft wirkt (Sekunde, s)

 α Neigungswinkel (Grad, °)

Veclst

unelastischer gerader zentraler Stoß

 $m_1 \cdot v_1 + m_2 \cdot v_2 = (m_1 + m_2) \cdot u$

Verringerung der kinetischen Energie

 $\frac{1}{2} \Big(m_1 \cdot v_1^2 + m_2 \cdot v_2^2 \Big) - \frac{1}{2} \Big(m_1 + m_2 \Big) \cdot u^2$ Geschwindigkeit nach dem Stoß:

 $u = \frac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_1 \cdot v_2}$ $m_1 + m_2$

elastischer gerader zentraler Stoß Impuls:

 $m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot u_1 + m_2 \cdot u_2$

Energie:

$$\frac{1}{2} \left(m_1 \cdot v_1^2 + m_2 \cdot v_2^2 \right) = \frac{1}{2} \left(m_1 \cdot u_1^2 + m_2 \cdot u_2^2 \right)$$

Geschwindigkeiten nach dem

$$u_{1} = \frac{(m_{1} - m_{2}) \cdot v_{1} + 2 \cdot m_{2} \cdot v_{2}}{m_{1} + m_{2}}$$

$$u_{2} = \frac{(m_{2} - m_{1}) \cdot v_{2} + 2 \cdot m_{1} \cdot v_{1}}{m_{1} + m_{2}}$$

m₁, m₂ ... Massen der Körper (kg) v₁, v₂.....Geschwindigkeiten der Körper vor dem Stoß $(\frac{m}{s})$

 $u_1, u_2 \dots$ Geschwindigkeit nach dem Stoß ($\frac{m}{2}$)

keine Vonhandlung (lain-) kin)

Rotation

$F_R = \frac{m \cdot v^2}{r}$	F _R Radialkraft (Newton, N) mMasse (Kilogramm, kg)
	vGeschwindigkeit (Meter je Sekunde, $\frac{m}{s}$)

Trägheitsmoment

MDrehmoment (Newtonmeter, Nm)
JTrägheitsmoment (Kilogramm Quadratmeter, kg m²)
αWinkelbeschleunigung (je Quadratsekunde, s ⁻²)
rRadius (Meter, m)
mMasse (Kilogramm, kg)
ℓLänge (Meter, m)
r _a , r _i Außen- und Innenradius (Meter, m)

Seite 11 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

* langer, dünner Stab der Länge
$$\ell$$
:
$$J = \frac{1}{12} m \cdot \ell^2$$
* Vollzylinder:
$$J = \frac{1}{2} \cdot m \cdot r^2$$
Hohlzylinder:
$$J = \frac{1}{2} m(r_a^2 + r_i^2)$$

Gravitation, Keplersche Gesetze

	a	
$F_G = \gamma \cdot \frac{\mathbf{m}_1 \cdot \mathbf{m}_2}{\mathbf{r}^2}$	F _G Gravitationskraft (Newton, N)	
$r_{G} = \gamma \cdot \frac{r^{2}}{r^{2}}$	m ₁ , m ₂ Massen (Kilogramm, kg)	
	rAbstand der Massenmittelpunkte(Meter, m)	
	γ Gravitationskonstante (6,673·10 ⁻¹¹ m ³ ·kg ⁻¹ ·s ⁻²)	
1. keplersches Ge-	2. keplersches Gesetz: Der Leitstrahl Stern-Planet über-	
setz: Ein Planet be-	streicht in gleichen Zeiten gleiche Flächen.	
wegt sich auf einer		
elliptischen Bahn	3. keplersches Gesetz: Die Quadrate der Umlaufzeiten T	
um seinen Stern. Der	zweier Planeten verhalten sich wie die dritten Potenzen der	
Stern steht in einem	großen Halbachsen a ihrer Bahnen.	
Brennpunkt der El-	T_{i}^{2} a_{i}^{3}	
lipse.	$\frac{T_{1}^{2}}{T_{2}^{2}} = \frac{a_{1}^{3}}{a_{2}^{3}}$	
	1 ₂	

Seite 12 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

 $F(\text{orgation-}; c, t - \text{biesels} : \text{craped denpth:} S(t) = $ sin(wot + P_0)$ $Schnocke Dümplag: S(t) = $ e^{5t} sin(wot + P_0)$ Schwingungen Dümplag Phose

Scriwingungen	Dämpterg Phase
Für eine harmonische	y Auslenkung, Elongation (Meter, m)
Schwingung gilt:	y _{max} max. Auslenkung, Amplitude (Meter, m)
$y = y_{\text{max}} \cdot \sin(\omega \cdot t + \varphi_0)$	$ω$ Kreisfrequenz (je Sekunde, $\frac{1}{s}$)
$v = y_{max} \cdot \omega \cdot cos(\omega \cdot t + \varphi_0)$	tZeit (Sekunde, s)
$a = -y_{max} \cdot \omega^2 \cdot sin(\omega \cdot t + \varphi_0)$	φ ₀ Phasenwinkel
	v Geschwindigkeit (Meter je Sekunde, $\frac{m}{s}$)
	a Beschleunigung (Meter je Quadratsekunde, $\frac{m}{s^2}$)
Schwingungsdauer	T Schwingungsdauer (Sekunde, s)
* Fadenpendel	ℓLänge (Meter, m)
$T=2\pi\cdot\sqrt{\frac{\ell}{g}}$ may	g Ortsfaktor (9,81 $\frac{m}{s^2}$)
* Federschwinger	D Federkonstante (Newton je Meter, $\frac{N}{m}$)
$T = 2\pi \cdot \sqrt{\frac{m}{D}}$	J <u>Trägheitsmoment</u> (Kilogramm Quadratmeter, kg
* Torsionspendels	m²) a Abstand der Drehachse vom Schwerpunkt (Me-
$T = 2\pi \cdot \sqrt{\frac{J}{D}}$	ter, m)
$1 = 2\pi \sqrt{D}$	
* physisches Pendel	
$T = 2\pi \cdot \sqrt{\frac{J}{m \cdot g \cdot a}}$	
* Flüssigkeitssäule	
$T = 2\pi \sqrt{\frac{\ell}{2 \cdot g}}$	

Wellen

$$y = y_{\text{max}} \cdot \sin 2\pi \cdot \left(\frac{t}{T} - \frac{x}{\lambda}\right) \\ y_{\text{max}} \cdot \dots \quad \text{Auslenkung, Elongation (Meter, m)} \\ y_{\text{max}} \cdot \dots \quad \text{max. Auslenkung, Amplitude (Meter, m)} \\ t_{\text{max}} \cdot \dots \quad \text{Zeit (Sekunde, s)} \\ x_{\text{max}} \cdot \dots \quad \text{Schwingungsdauer (Sekunde, s)} \\ x_{\text{max}} \cdot \dots \quad \text{Ort (Meter, m)} \\ \lambda_{\text{max}} \cdot \dots \quad \text{Wellenlänge (Meter, m)} \\ c_{\text{max}} \cdot \dots \quad \text{Ausbreitungsgeschwindigkeit (Meter je Sekunde, } \\ f_{\text{max}} \cdot \dots \quad \text{Frequenz (Hertz, Hz)} \\ \end{cases}$$

Vorgon; 1. begins be of the time (rec. $s(t) = \frac{1}{5}e^{-6t} = \frac{1}{5}\left(\frac{w_0 + t}{w_0^2}\right)$ 3. Institute and 5 tradition
3. Formal orbitals $s(t) = \frac{1}{5}\left(\frac{w_0 + t}{w_0^2}\right) + \frac{1}{5}e^{-6t} = \frac{1}{5}\left(\frac{w_0 + t}{w_0^2}\right)$

_ F	pDruck (Pascal, Pa)
$p = {A}$	FKraft (Newton, N)
$F_{\Lambda} = \rho \cdot V \cdot g$	AFläche (Quadtratmeter, m²)
I A - P V 9	F _A Auftriebskraft (Newton, N)
	ρDichte (Kilogramm je Kubikmeter, $\frac{kg}{m^3}$)
	VVolumen (Kubikmeter, m³)
	gOrtsfaktor (9,81 $\frac{m}{s^2}$)

Relativitätstheorie

Zeitdilatation	tZeit der "ruhenden" Uhr (Sekunde, s)
↓ t'	t'Zeit der "bewegten Uhr" (Sekunde, s)
$t = \frac{t'}{\sqrt{1 - \frac{v^2}{a^2}}}$	vRelativgeschwindigkeit der Systeme zueinander
$\sqrt{1-\frac{c^2}{c^2}}$	(Meter je Sekunde, m/s)
Längenkontraktion	5
$\ell = \ell' \cdot \sqrt{1 - \frac{v^2}{c^2}}$	cLichtgeschwindigkeit (2,998·10 ⁸ m/s)
$\ell = \ell \cdot \sqrt{1 - \frac{c^2}{c^2}}$	ℓLänge des "bewegten" Körpers
relativistische Masse	ℓ'Länge des "ruhenden" Körpers
$m - \frac{m_0}{m_0}$	m₀Ruhemasse (Kilogramm, kg)
$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{a^2}}}$	mMasse (Kilogramm, kg)
$\sqrt{1-\frac{c^2}{c^2}}$	EEnergie (Joule, J)
Energie-Masse-Bezie-	
hung:	
$E=m\cdot c^2$	

Elektrizitätslehre

einfacher Gleichstromkreis

ohmsches Gesetz	USpannung (Volt, V)
U~I (wenn ⊕=konst.)	IStromstärke (Ampere, A)
Definition des Widerstan-	9Temperatur (Grad Celsius, °C)
des:	RWiderstand (Ohm, Ω)
D U (ρspezifischer elektrischer Widerstand
$R = \frac{U}{I}$ (wenn ϑ =konst.)	(Ohm mal Quadratmillimeter je Meter,
Widerstandsgesetz:	$\Omega \cdot mm^2$
$R = \frac{\rho \cdot \ell}{2}$	m
A A	ℓLänge (Meter, m)
Stromstärke:	AQuerschnitt (Quadratmillimeter, mm²)
$I = \frac{Q}{L}(I = konst.)$	QLadung (Coulomb, C) tZeit (Sekunde, s)
t` '	tZeit (Sekuliue, S)

Seite 14 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

verzweigter und unverzweigter Gleichstromkreis

Reihenschaltung von n Widerständen:

$$I_g = I_1 = I_2 = ... = I_n$$

 $U_g = U_1 + U_2 + ... + U_n$

$$R_{a} = R_{1} + R_{2} + ... + R_{n}$$

Parallelschaltung von n Widerständen:

Widerstanden:

$$I_g = I_1 + I_2 + ... + I_n$$

 $U_g = U_1 = U_2 = ... = U_n$
 $\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + ... + \frac{1}{1}$

U_g......Gesamtspannung (Volt, V)

U₁...U_n...Teilspannungen (Volt, V)

I_a......Gesamtstromstärke (Ampere, A) I₁...I_n......Teilstromstärken (Ampere, A)

 R_{q}Gesamt- oder Ersatzwiderstand (Ohm, Ω)

 $R_1...R_n...$ Teilwiderstände (Ohm, Ω)

Arbeit, Energie und Leistung

PLeistung(Watt, W)
USpannung (Volt, V)
IStromstärke (Ampere, A)
WArbeit (Wattsekunde, Ws)
tZeit (Sekunde, s)
, , ,

elektrische Ladungen Bosch (pun igung: elb = 7 me vz.

$$e = \frac{U}{S} = F$$

$F = \frac{1}{4\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{Q_1 \cdot Q_2}{r^2}$	$\begin{array}{l} Q_1,Q_2Ladungen\;(Coulomb,C)\\ rAbstand\;(Meter,m)\\ \epsilon_0elektr.\;Feldkonstante\;(8,854\cdot10^{-12}A\cdot s\cdot V^{-1}\cdot m^{-1}) \end{array}$
$E = \frac{F_{P}}{Q_{P}}$ für homogene elektrische Felder gilt: $E = \frac{U}{Q_{P}}$	ϵ_r relative Permittivität E elektr. Feldstärke (Volt je Meter, $\frac{V}{m}$) F_P Kraft auf eine Probeladung (Newton, N) Q_P Probeladung (Coulomb, C)
E=- S	U Spannung (Volt, V) s Abstand (Meter, m)

Was go rechter warf ahnenden

Kondensatoren Me 'A	y=e.ty=e d Vertilale Ablenting
$C = \frac{Q}{U}$ $C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$ $E = \frac{1}{2} \cdot C \cdot U^2$ $\tau = R \cdot C$	$\begin{tabular}{lll} $C $ & & & & & & & & \\ $C $ & & & & & & \\ $C $ & & & & & \\ $C $ & & & & \\ $C $ & & & & \\ $C $ & & \\ $C $ & & & \\ $C $ & & \\$
$\label{eq:Reihenschaltung von n} \begin{aligned} & \textit{Kondensatoren:} \\ & \frac{1}{C_g} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n} \\ & \textit{Parallelschaltung von n} \\ & \textit{Kondensatoren:} \\ & C_g = C_1 + C_2 + \ldots + C_n \end{aligned}$	$C_gGesamt- oder Ersatzkondensator (Farad, F) \\ C_1C_n Einzelkondensatoren (Farad, F)$

Dreieck- und Sternschaltung

Eine Dreieckschaltung lässt sich in eine Sternschaltung umwandeln und umgekehrt.

Sternersatzwiderstände einer Dreieckschaltung

$$r_1 = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3}$$

$$r_2 = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3}$$

$$r_3 = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3}$$

Dreieckersatzwiderstände einer Stern-

$$R_1 = r_2 + r_3 + \frac{r_2 \cdot r_3}{r_1}$$

$$R_2 = r_1 + r_3 + \frac{r_1 \cdot r_3}{r_2}$$

$$R_3 = r_1 + r_2 + \frac{r_1 \cdot r_2}{r_3}$$

Magnetfeld

magnotiona	
mag. Flussdichte im in-	Bmag. Flussdichte (Tesla, T)
nern einer langen strom-	μ_0 mag. Feldkonstante $(4\pi\cdot 10^{-7} \text{ V}\cdot\text{s}\cdot\text{A}^{-1}\cdot\text{m}^{-1})$
durchflossenen Spule:	μ _r <u>Permeabilitätszahl</u>
$B = \mu_0 \cdot \mu_r \cdot \frac{N \cdot I}{\ell}$	NWindungszahl
	IStromstärke (Ampere, A)
$\Phi = B \cdot A$	ℓLänge (Meter, m)
F 0 B(Φmag. Fluss (Weber, Wb)
$F_L = Q \cdot v \cdot B(wenn v \perp B)$	A Fläche (Quadratmeter, m²)
	F _L Lorentzkraft (Newton, N)
Kraft auf einen strom-	QLadung (Coulomb, C)
durchflossenen Leiter: F=ℓ·I·B(wennl⊥B)	v
	FKraft (Newton, N)
V I·B	U _H HALL-Spannung (Volt, V)
$U_{H} = \frac{V}{N \cdot e} \cdot \frac{I \cdot B}{s}$	V Volumen (Kubikmeter, m³)
V	N Anzahl der Ladungsträger
$R_{H} = \frac{V}{N \cdot e}$	e Elementarladung (1,602·10 ⁻¹⁹ C)
IN-E	I Stromstärke (Ampere, A)
	Bmag. Flussdichte (Tesla, T)
	s Dicke des Leiters (Meter, m)
	R _H <u>Hall-Konstante</u>

Induktion

$U_i = -\frac{d\Phi}{dt}$	U _i Induktionsspannung (Volt, V)
$O_i = \frac{1}{dt}$	Bmag. Flussdichte (Tesla, T)
für eine Spule (Magnet-	μ_0 mag. Feldkonstante ($4\pi\cdot10^{-7}\ V\cdot s\cdot A^{-1}\cdot m^{-1}$)
feld ändert sich gleich-	μ _r <u>Permeabilitätszahl</u>
<i>mäßig,</i> (B⊥A):	N Windungszahl
$U_{i} = -N \cdot \frac{\Delta(B \cdot A)}{\Delta t}$	I Stromstärke (Ampere, A)
Δt	ℓLänge (Meter, m)
für einen bewegten Leiter	Φ mag. Fluss (Weber, Wb)
(v⊥B):	AFläche (Quadratmeter, m²)
$U_i = -B \cdot \ell \cdot v$	v
Selbstinduktionsspan-	LInduktivität (Henry, H)
nung in einer Spule:	L madkivitat (110111 y, 11)
$U_i = -L \frac{\Delta I}{\Delta t}$	
Induktivität einer langen	
Spule:	
$L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A}{1 + \mu_0 \cdot \mu_r}$	

Transformator

Spannungsübersetzung (Leerlauf, $l_2 \rightarrow 0$):	U ₁ Primärspannung (Volt, V) U ₂ Sekundärspannung (Volt, V)
$\begin{aligned} &\frac{U_1}{U_2} = \frac{N_1}{N_2} \\ &\text{Stromstärkeübersetzung} \\ &\text{(Kurzschluss, } I_2 \rightarrow \infty \text{):} \\ &\frac{I_1}{I_2} = \frac{N_2}{N_1} \end{aligned}$	N ₁ Windungszahl Primärspule N ₂ Windungszahl Sekundärspule I ₁ Primärstromstärke (Ampere, A) I ₂ Sekundärstromstärke (Ampere, A) ηWirkungsgrad P _{ab} abgegebene Leistung (Watt, W) P _{zu} zugeführte Leistung (Watt, W)
$\eta = \frac{P_{ab}}{P_{zu}}$	

elektromagnetische Schwingungen und Wellen

Thomsonsche Schwin-	TSchwingungsdauer (Sekunde, T)
gungsgleichung:	LInduktivität (Henry, H)
$T = 2 \cdot \pi \cdot \sqrt{L \cdot C}$	CKapazität (Farad, F)
4	fFrequenz (Hertz, Hz)
$f = \frac{1}{T}$	cLichtgeschwindigkeit (2,998·10 ⁸ m/s)
$c = \lambda \cdot f$	λ Wellenlänge (Meter, m)

Wechselstrom

$ u = u_{\text{max}} \cdot \sin(\omega \cdot t + \varphi_0) $ $ 1 \dots 1 \dots $	uMomentanwert der Spannung (Volt, V) u _{max} Maximalwert der Spannung (Volt, V)
$U = \frac{1}{\sqrt{2}} u_{\text{max}}$	$ω$ Kreisfrequenz (je Sekunde, $\frac{1}{s}$)
$i=i_{max}\cdot sin(\omega \cdot t + \varphi_0)$	tZeit (Sekunde, s)
. 1.	φ ₀ Phasenwinkel (Grad, °)
$I = \frac{1}{\sqrt{2}}i_{max}$	U Effektivwert der Spannung (Volt, V) i Momentanwert der Stromstärke (Ampere, A) i _{max} Maximalwert der Stromstärke (Ampere, A) U Effektivwert der Stromstärke (Ampere, A)

Widerstände im Wechselstromkreis

$R = \frac{U}{I}$	Rohmscher Widerstand (Ohm, Ω) USpannung (Volt, V)
	IStromstärke (Ampere, I)
$R = \rho \cdot \frac{\ell}{\Delta}$	ρspezifischer elektrischer Widerstand
,	(Ohm mal Quadratmillimeter je Meter, $\frac{\Omega \cdot mm^2}{m}$
$X_{L} = \frac{U}{I}$ $X_{L} = \omega \cdot L$	ℓLänge (Meter, m)
V ol	A Querschnitt (Quadratmillimeter, mm²)
$\mathbf{v}^{L} = \boldsymbol{\omega} \cdot \mathbf{r}$	X_{\perp} induktiver Widerstand (Ohm, Ω)
$X_{C} = \frac{U}{I}$ $X_{C} = \frac{1}{\omega \cdot C}$	$ω$ Kreisfrequenz (je Sekunde, $\frac{1}{s}$)
° I	LInduktivität (Henry, H)
x - <u>1</u>	$X_{\mathbb{C}}$ kapazitiver Widerstand (Ohm, Ω)
C C	C Kapazität (Farad, F)

Reihenschaltung:
$X = \omega \cdot L - \frac{1}{\omega \cdot C}$
$Z = \sqrt{R^2 + \left(\omega \cdot L - \frac{1}{\omega \cdot C}\right)^2}$
$tan\varphi = \frac{X_L - X_C}{R}$
Parallelschaltung:
$X = \omega \cdot C - \frac{1}{\omega \cdot L}$

 $\begin{array}{lll} \text{X}......& \text{Blindwiderstand (Ohm, }\Omega\text{)}\\ \text{Z}....& \text{Scheinwiderstand (Ohm, }\Omega\text{)}\\ \phi && \text{Phasenwinkel (Grad, °)} \end{array}$

Leistung im Wechselstromkreis

zorotang mi trooneoroti omit oro		
S=U·I	S Scheinleistung (Voltampere, VA)	
P=U·I·cos φ	PWirkleistung (Watt, W)	
$Q=U \cdot I \cdot \sin \phi$	QBlindleistung (Var [Volt-Ampère-réactif], var)	
$S = \sqrt{P^2 + Q^2}$		

Seite 19 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

Optik

Lichtausbreitung

I~r² ILichtintensität rAbstand zur Lichtquelle	
--	--

Reflexion

$\alpha = \alpha'$	$\begin{array}{c} \alpha \ \dots \dots \ \text{Einfallswinkel (Grad, °)} \\ \alpha' \ \dots \dots \ \text{Reflexionsgesetz (Grad, °)} \end{array}$
Hohlspiegel: für randnahe Strahlen gilt: $r=2 \cdot f$ $\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$ $A = \frac{B}{G} = \frac{b}{g}$	r

Brechung

$\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2} = \frac{n_2}{n_1}$	α Einfallswinkel (Grad, °) β Brechungswinkel (Grad, °)
$n = \frac{c_{Vakuum}}{c_{Stoff}}$	c ₁ , c ₂ <u>Lichtgeschwindigkeit</u> (Meter je Sekunde, $\frac{m}{s}$) n <u>Brechzahl</u>

dünne Linsen

D=- f DBrechkraft (Dioptrie, dpt)

Interferenz am Spalt und Gitter

es gilt:
$$s_k << e_k$$

 $(k=1,2,3,...)$

Spalt, Maxima

$$\frac{(2k+1)\cdot\lambda}{2\cdot d} = \sin\alpha_k = \frac{s_k}{e_k}$$

Spalt, Minima

$$\frac{k \cdot \lambda}{d} = \sin \alpha_k = \frac{s_k}{e_k}$$

es gilt: $s_k << e_k$ (k=0,1,2,3,...)

Gitter, Maxima

$$\frac{k \cdot \lambda}{b} = \sin \alpha_k = \frac{s_k}{e_k}$$

Gitter, Minima

$$\frac{\left(2k+1\right)\cdot\lambda}{2\cdot b}\!=\!sin\,\alpha_{k}^{}=\!\frac{s_{k}^{}}{e_{k}^{}}$$

Interferenz an dünnen Schichten

reflektiertes Licht Maxima durchgehendes Licht Minima (k=0,1,2,3,...)

$$\frac{(k-0, 1, 2, 3, ...}{2k+1} \lambda$$

reflektiertes Licht Minima durchgehendes Licht Maxima

$$(k=1,2,3,...)$$

$$d \!=\! \frac{2k}{n} \!\cdot\! \frac{\lambda}{4}$$

d Schichtdicke (Meter, m) λ Wellenlänge (Meter, m) n Brechzahl

Polarisation

Brewstersches Gesetz	α _p Einfallwinkel (Grad, °)	
$\tan \alpha_{\rm p} = \frac{\rm n_2}{\rm n_1}$	n <u>Brechzahl</u>	

Atomphysik

Quantenphysik

Atomphysik

Spektralserien des	fFrequenz (Hertz, Hz)
Wassertoffatoms:	RH Rydberg-Konstante (1,097373m ⁻¹)
$f = R_H \cdot c \cdot \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$	cLichtgeschwindigkeit (2,998·10 ⁸ m/s)
n=1,2,3,	n, m Nummer der Energieniveaus
m=2,3,4,	

$\Delta m = (Z \cdot m_P + N \cdot m_N) - m_K$ $E_B = \Delta m \cdot c^2$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$A = \frac{\Delta N}{\Delta t}$ $A = A_0 \cdot e^{-\lambda \cdot t}$ $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ $N = N_0 \cdot e^{-\lambda \cdot t}$ $N = N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T_1}}$	$\begin{array}{lll} A & \dots & \text{Aktivität (Becquerel, Bq)} \\ \Delta N & \dots & \text{Anzahl der zerfallenen Kerne} \\ \Delta t & \dots & \text{Zeitspanne (Sekunde, s)} \\ A_0 & \dots & \text{Aktivität (Becquerel, Bq)} \\ \lambda & \dots & \text{Zerfallskonstante (je Sekunde, } \frac{1}{s}) \\ t & \dots & \text{Zeit (Sekunde, s)} \\ T_{\frac{1}{2}} & \dots & \text{Halbwertszeit (Sekunde, s)} \\ N & \dots & \text{Anzahl der nicht zerfallenen Kerne} \\ N_0 & \dots & \text{Anzahl der Kerne zum Zeitpunkt 0} \end{array}$

Thermodynamik

Längen- und Volumenänderung

•	-
$\Delta \ell = \alpha \cdot \ell_0 \cdot \Delta \vartheta$	$\Delta\ell$ Längenänderung (Meter, m)
$\Delta \mathbf{V} = \gamma \cdot \mathbf{V}_0 \cdot \Delta 9$	α
	Δ9 Temperaturänderung (Kelvin, K) ΔV Volumenänderung (Kubikmeter, m³)
	V_0 Ausgangsvolumen (Kubikmeter, m³) γ Volumenausdehnungskoeffizient für feste Körper gilt: $\gamma=3\cdot\alpha$

thermisches Verhalten des idealen Gases

Wärme und Energie

Bedingung: es findet keine	QWärme (Joule, J)
Aggregatzustandsänderung	mMasse (Kilogramm, kg)
statt.	cspez. Wärmekapazität
Q=m·c·ΔT	ΔTTemperaturänderung (Kelvin, K)
Für Gase:	cpspez. Wärmekapazität bei konst. Druck
c _p für p=konst.	c _V spez. Wärmekapazität bei konst. Volumen
c∨ für V=konst.	
Mischungsregel:	Δ9Mischungstemperatur (Grad Celsius, °C)
$\vartheta_{M} = \frac{c_{1} \cdot m_{1} \cdot \vartheta_{1} + c_{1} \cdot m_{2} \cdot \vartheta_{2}}{c_{1} \cdot m_{1} + c_{2} \cdot m_{2}}$	θ_1, θ_2 Anfangstemperaturen (Grad Celsius, °C)
$c_1 \cdot m_1 + c_2 \cdot m_2$	m ₁ , m ₂ Massen der Körper (Kilogramm, kg)
	c ₁ , c ₂ spez. Wärmekapazitäten
1. Hauptsatz	ΔUÄnderung der inneren Energie (Joule, J)
$\Delta U = Q + W$	QWärme (Joule, J)
	WVolumenarbeit (Joule, J)
	pDruck (Pascal, Pa)
	ΔVVolumenänderung (Kubikmeter, m³)

Seite 24 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

$W = -\int\limits_{V_1}^{V_2} p(V)dV$ $\textit{Wenn p=konstant:}$ $W = -p \cdot \Delta V$ $\textit{Wenn T=konstant:}$ $W = -p \cdot V \cdot ln \frac{V_e}{V_a}$ $W = -p \cdot V \cdot ln \frac{p_a}{p_e}$	VVolumen (Kubikmeter, m³) V _e Abfangsvolumen (Kubikmeter, m³) V _a Ahfangsdruck (Pascal, Pa) p _e Enddruck (Pascal, Pa)
Wirkungsgrad: $\eta = W_{nutz}/W_{zu}$ Carnot-Kreisprozess: $\eta = 1-T_k/T_h$	

Trigonometrie

Sinussatz

Für allgemeine Dreiecke

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Für $\gamma = 90^{\circ}$

$$\sin \alpha = a/c$$

$$\sin \beta = b/c$$

Kosinussatz

Formel 1:

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = c^{2} + a^{2} - 2ca \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Formel 2: wenn
$$\gamma = 90^{\circ}$$

$$a^2+b^2=c^2$$
 (Satz des Pythagoras) $\cos \alpha = \frac{b}{c}$ $\cos \beta = \frac{a}{c}$

Phasenverschiebungen

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x \quad \text{bzw.} \quad \sin\left(x + 90^\circ\right) = \cos x$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x \quad \text{bzw.} \quad \cos\left(x + 90^\circ\right) = -\sin x$$

$$\tan\left(x + \frac{\pi}{2}\right) = -\cot x \quad \text{bzw.} \quad \tan\left(x + 90^\circ\right) = -\cot x$$

$$\cot\left(x + \frac{\pi}{2}\right) = -\tan x \quad \text{bzw.} \quad \cot\left(x + 90^\circ\right) = -\tan x$$

Additionstheoreme

Weiterhin sind die Additionstheoreme nützlich:

$$\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x
\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y
\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\sin(x + y)}{\cos(x + y)}
\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} = \frac{\sin(x - y)}{\cos(x - y)}
\cot(x + y) = \frac{\cot x \cot y - 1}{\cot x + \cot y} = \frac{\cos(x + y)}{\sin(x + y)}
\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x} = \frac{\cos(x - y)}{\sin(x - y)}
\sin(x + y) \cdot \sin(x - y) = \cos^2 y - \cos^2 x = \sin^2 x - \sin^2 y
\cos(x + y) \cdot \cos(x - y) = \cos^2 y - \sin^2 x = \cos^2 y + \cos^2 x - 1 = 1 - \sin^2 x - \sin^2 y
\sin(2x) = 2 \sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}
\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1 = \frac{1 - \tan^2 x}{1 + \tan^2 x}
\tan(2x) = \frac{2 \tan x}{1 - \tan^2 x} = \frac{2}{\cot x - \tan x}
\cot(2x) = \frac{\cot^2 x - 1}{2 \cot x} = \frac{\cot x - \tan x}{2}$$

Gegenseitige Darstellung

Die trigonometrischen Funktionen lassen sich in einander umwandeln oder gegenseitig darstellen. Es gelten folgende Zusammenhänge:

$$\tan x = \frac{\sin x}{\cos x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x} = \sec^2 x$$

$$1 + \cot^2 x = \frac{1}{\sin^2 x} = \csc^2 x$$

Mittels dieser Gleichungen lassen sich die drei vorkommenden Funktionen durch eine der beiden anderen darstellen:

Wertetabellen

Dichte

feste Stoffe

Stoff	Dichte in g/cm³	Stoff	Dichte in g/cm³
Aluminium	2,70	Kork	0,20,3
Beton	1,8 2,4	Kupfer	8,96
Blei	11,35	Messing	8,5
Diamant	3,51	Papier	0,71,2
Eis (0°C)	0,92	Sand	1,6
Eisen	7,86	Schnee (Pulver)	0,1
Glas	2,42,7	Schnee (Alt)	0,3
Gold	19,32	Silber	10,50
Holz (Eiche)	0,86	Stahl	7,85
Holz (Fichte)	0,47	Zink	7,13
		Zinn	7,29

Flüssigkeiten

Stoff	Dichte in	Stoff	Dichte
	g/cm³		in g/cm³
Benzin	0,700,78	Spiritus	0,83
Diesel	0,840,88	Wasser (rein)	1,00
Quecksilber	13,53	Meerwasser	1,02

Gase

Stoff	Dichte in kg/m³	Stoff	Dichte in kg/m³
Chlor	3,21	Methan	0,72
Helium	0,18	Ozon	2,14
Kohlenstoff- dioxid	1,98	Propan	2,02
Kohlenstoff- monoxid	1,25	Sauerstoff	1,43
Luft	1,29	Wasserstoff	0,09

Reibungszahlen

Die Reibungszahlen sind nur Richtwerte und hängen immer von der gegebenen Bedingungen ab. (Quelle: Wikipedia, Reibungskoeffizient)

Haftreibungszahlen

-	
Stoff	μн
Beton auf Sand	0,6
Mauerwerk auf Beton	0,8
Gummireifen auf trockenem Asphalt	< 0,9

Seite 29 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

Gummireifen auf nassem Asphalt	< 0,5
Gummireifen auf trockenem Beton	< 1,0
Gummireifen auf nassem Beton	< 0,6
Holz auf Holz	0,7
Ski auf Eis	0,10,3
Stahl auf Eis	0,02
Teflon auf Teflon	0,04

Gleitreibungszahlen

Stoff	μ _G
Gummireifen auf trockenem Asphalt	< 0,5
Gummireifen auf nassem Asphalt	< 0,3
Holz auf Holz	0,5
Stahl auf Eis	0,01

Spezifische elektrische Widerstände

Stoff	$\rho in \frac{\Omega \cdot mm^2}{m}$	Stoff	$\rho in \frac{\Omega \cdot mm^2}{m}$
Aluminium	0,028	Bernstein	>10 ²²
Eisen	0,10	Glas	10 ¹³ 10 ¹⁷
Gold	0,022	Holz (trocken)	10 ¹⁰ 10 ¹⁵
Konstantan	0,50	Papier	10 ¹⁵ 10 ¹⁶
Kupfer	0,017	Porzellan	10 ¹⁸
Silber	0,016	Wasser (destil- liert)	10 ¹⁰
Wolfram	0,053	Wasser (Meer- wasser)	5,0·10 ⁵

relative Permittivität ε,

Stoff	ε_{r}	Stoff	$\varepsilon_{\rm r}$
Glas	5 16	Polypropylenfolie	2,2
Glimmer	5 9	Porzellan	5 6,5
Holz	3 10	Öl	2,2 2,5
Keramik	10 50 000	Vakuum	1
Luft	1,000 6	Wasser	81
Papier	1,2 3,0	Wasserstoff	1,000 3
Parafin	2,0		

relative Permeabilität μ_r

Stoff	μ_{r}
Wasser	0,999 991
Aluminium	1,000 02
Cobalt	80 200
Dynamoblech	2003 000
Eisen	250 680

Seite 30 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

Nickel	280	2 500

Hall-Konstante

Stoff	R _H in m ³ ⋅ C ⁻¹
Aluminium	$+10\cdot10^{-11}$
Kupfer	$-5,3\cdot10^{-11}$
Silber	$-9 \cdot 10^{-11}$
Silizium	$-2,5\cdot10^{-4}$

Brechzahl und Lichtgeschwindigkeit

	•	•
Stoff	n	cin km
		S
Diamant	2,42	124 000
Eis	1,31	229 000
Flintglas (leicht)	1,61	186 000
Flintglas (schwer)	1,75	171 000
Kronglas (leicht)	1,51	199 000
Kronglas (schwer)	1,61	186 000
Luft	1,000 292	299 711
Wasser	1,33	225 000

Austrittsarbeit

Stoff	W _A ineV	W _A in10 ⁻¹⁹ J
Aluminium	4,20	6,73
Barium	2,52	4,04
Cadmium	4,04	6,47
Caesium	1,94	3,11
Platin	5,36	8,59
Wolfram	4,54	7,27
Zink	4,27	6,84

Längenausdehnungskoeffizient

•	•		
Stoff	α in 10 ⁻⁵ K ⁻¹	Stoff	α in 10 ⁻⁵ K ⁻¹
Aluminium	2,4	Kupfer	1,6
Beton	1,2	Messing	1,8
Eis (bei 0°C)	5,1	Porzellan	0,4
Eisen	1,2	Silber	2,0
Glas	1,0	Stahl	1,2
Gold	1,4	Ziegelstein	0,5
Konstantan	1,5		

spezifische Gaswerte

Stoff	c _p inkJ·kg ⁻¹ ·K ⁻¹	c _∨ inkJ·kg ⁻¹ ·K ⁻¹	$R_s \text{ in J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$
Ammoniak	2,05	1,56	488
Helium	5,24	3,22	2 077
Kohlenstoff- dioxid	0,85	0,65	189
Luft	1,01	0,72	287
Sauerstoff	0,92	0,65	260
Stickstoff	1,04	0,75	297
Wasserstoff	14,28	10,13	4 124

spezifische Wärmekapazität von Feststoffen und Flüssigkeiten

Feststoffe zw. 0°C und 100°C		Flüssigkeiten bei 20°C	
Stoff	cinkJ⋅kg ⁻¹ ⋅K ⁻¹	Stoff	cinkJ·kg ⁻¹ ·K ⁻¹
Aluminium	0,90	Petroleum	2,0
Beton	0,90	Wasser	4,19
Eis (bei 0°C)	2,09		
Glas	0,86		
Kupfer	0,39		
Porzellan	0,73		
Ziegelstein	0,86		

Genauigkeit und Fehler

Genauigkeit

Jeder Messwert hat einen absoluten Fehler (Wer misst, misst Mist.)
 Messwert = x

absoluter Fehler = Δx

 $Messergebnis = x \pm \Delta x$

Das Messergebnis ist der gemessene Wert mit Angabe der möglichen Abweichungen nach oben und unten. $m=1,0\,kg\pm0,1kg\;$ heißt, dass die Masse zwischen 0,9 kg und 1,1 kg liegen kann.

Wie groß sind nun die absoluten Fehler einer Messung? Dafür gibt es klare Regelungen:

- Bei einer einfachen analogen Messung ist der absolute Fehler die Hälfte der kleinsten Skaleneinheit am Messgerät.
 - Lineal mit mm-Einteilung: s=24,3cm±0,5mm bedeutet, der wahre Wert der Messung liegt zwischen 24,25 cm und 24,35 cm.
- Bei digitaler Anzeige ist der absolute Fehler gleich 1 der letzten Ziffer.
 - o Ein Thermometer zeigt an 20,4°C. Das heißt: ϑ =20,4°C±0,1°C . Also liegt der wahre Wert zwischen 20,3°C und 20,5°C
- Bei elektrischen Messgeräten wird eine Genauigkeitsklasse angegeben, z.B. 2,5.
 Das bedeutet, der Fehler beträgt 2,5% vom Messbereichsendwert.
 - Messbereich: 10 V, der Fehler beträgt 2,5% von 10 V, also 0,25 V. Dieser Fehler gilt für den gesamten Messbereich. Also z.B. 9 V ± 0,25 V, aber auch 1 V ± 0,25 V. Im letzten Fall ist das natürlich viel schlimmer als im ersten Fall. Deshalb sollte ein Messgerät immer so eingestellt werden, dass der Zeiger im hinteren Bereich der Skale steht.
- Werden für eine physikalische Messgröße mehrere Messungen gemacht, kann der Fehler berechnet werden.
 - o Bei wenigen Messwerten (n<10) gilt: $\Delta \overline{x} \! = \! \pm \frac{x_{\text{max}} \! \! x_{\text{min}}}{n}$

Beispiel

o Bei 10 oder mehr Messwerten gilt: $\Delta \overline{x} = \pm \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2}$

<u>Beispiel</u>

Fehler

Fehlerarten

- absoluter Fehler ∆x
 ist ein Maß für die Genauigkeit des Messwertes
- relativer Fehler $\frac{\Delta X}{X}$

verdeutlicht die Abweichung in Bezug auf den Messwert Seite 33 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen prozentualer Fehler ^{Δx}/_x ·100%
 ist der in Prozent angegebene relative Fehler

Fehlerfortpflanzung

Ein physikalisches Ergebnis erhält man meistens durch eine Berechnung, in die mehrere Messgrößen eingehen. Jede Messgröße ist mit einem Fehler behaftet. Jeder dieser Fehler beeinflusst das Endergebnis.

Wie sich die Fehler auf das Ergebnis auswirken, zeigt die Übersicht

WIC SIGH GIC I CI	nor dar das Erg	Jobino adownikom, zoi	gt die obereient
Verknüpfung		Fehler	
Summe	z = x + y	$\Delta z = \Delta x + \Delta y$	Der absolute Fehler des Ergebnisses
Differenz	z=x-y		ist die Summe der einzelnen absoluten Fehler.
Produkt	$z = x \cdot y$	$\frac{\Delta z}{\Delta z} = \frac{\Delta x}{\Delta y} + \frac{\Delta y}{\Delta z}$	Der relative Fehler des Ergebnisses
Quotient	$z = \frac{x}{y}$	$\frac{\overline{z}}{z} = \frac{\overline{x}}{x} + \frac{\overline{y}}{y}$	ist die Summe der einzelnen relativen Fehler.
Potenz	$z = x^k$	$\frac{\Delta z}{z} = k \cdot \frac{\Delta x}{x}$	Der relative Fehler des Ergebnisses ist das Produkt aus dem relativen Fehler der Messung und dem Exponenten.

Berechnung des absoluten und relativen Fehlers

Beispiele

Aufgabe 1

Eine Kugel rollt eine geneigte Ebene hinunter und führt danach mit der dabei erreichten Geschwindigkeit einen waagerechten Wurf aus. Es soll die Abwurfgeschwindigkeit v_0 der Kugel und der absolute Fehler bestimmt werden.

- 1. In einer ersten Messung wird die Höhe h gemessen, aus der die Kugel herabrollt. Sie beträgt 23 cm und wurde mit einem Lineal mit mm-Einteilung bestimmt. (Die Rotationsenergie der Kugel am Ende der Anlaufebene soll vernachlässigt werden)
- 2. In einer zweiten Messung wird die Wurfweite x zu 0,95 m gemessen. Der Abwurftisch befand sich 1,0 m über dem Auftreffpunkt. Beide Werte wurden wieder mit einem Lineal mit mm-Einteilung bestimmt.

Berechnen Sie für die beiden Messverfahren die Abwurfgeschwindigkeit und bestimmen sie für jedes Ergebnis den absoluten Fehler. Beachten Sie:

$$g=9.81\frac{m}{s^2}\pm0.005\frac{m}{s^2}$$
 und

$$\sqrt{\mathbf{x}} = \mathbf{x}^{\frac{1}{2}}$$

Lösung 1

zu 1. Die Geschwindigkeit wird über den Energieerhaltungssatz berechnet. Die Kugel wandelt beim Herabrollen potenzielle Energie in kinetische Energie um.

Seite 34 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

$$\begin{split} E_{kin} = & E_{pot} \\ \frac{m}{2} \cdot v^2 = & m \cdot g \cdot h \\ v = & \sqrt{2 \cdot g \cdot h} \\ v = & \sqrt{2 \cdot 9.81 \frac{m}{s^2}} \cdot 0.23m \\ v = & 2.1 \frac{m}{s} \end{split}$$

Fehler: Der absolute Fehler der Höhenmessung ist 0,5 mm, also die Hälfte der kleinsten Skaleneinteilung.

 $h=230 \text{ mm} \pm 0.5 \text{ mm}$

Der Fehler der Fallbeschleunigung ist vorgegeben.

Da aus den einzelnen Größen die Wurzel gezogen wird,

$$v = \sqrt{2 \cdot g \cdot h}$$

$$v = \sqrt{2} \cdot \sqrt{g} \cdot \sqrt{h}$$

geht der Exponent 1/2 in die relativen Fehler mit ein. Sie werden mit 1/2 multipliziert.

Damit gilt

$$\begin{split} \frac{\Delta v}{v} &= \frac{1}{2} \cdot \frac{\Delta g}{g} + \frac{1}{2} \cdot \frac{\Delta h}{h} \\ \frac{\Delta v}{v} &= \frac{1}{2} \cdot \frac{0,005}{9,81} + \frac{1}{2} \cdot \frac{0,5}{230} \\ \frac{\Delta v}{v} &= 0,0013 \end{split}$$

Der absolute Fehler der Geschwindigkeit ist dann:

$$\Delta v = 0.0013 \cdot 2.1 \frac{m}{s}$$
 $\Delta v = 0.003$
 $v = 2.1 \frac{m}{s} \pm 0.003 \frac{m}{s}$

zu 2. Die Geschwindigkeit wird über die Wurfparabel berechnet:

$$y = -\frac{g}{2 \cdot v_0^2} \cdot x^2$$

$$v_0 = \sqrt{\frac{g}{2 \cdot y}} \cdot x$$

$$v_0 = \sqrt{\frac{9.81 \frac{m}{s^2}}{2 \cdot 1,00 \text{ m}}} \cdot 0.95 \text{ m}$$

$$v_0 = 2.1 \frac{m}{s}$$

Gleiche Geschwindigkeit wie bei 1., das sollte auch so sein.

Jetzt der Fehler:

Seite 35 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen

 $\begin{aligned} x = &950 \, mm \pm 0.5 \, mm \\ y = &1000 \, mm \pm 0.5 \, mm \\ Damit \ ergibt \ sich \ ein \ relativer \ Fehler \ von: \\ \frac{\Delta v}{v} = &\frac{1}{2} \cdot \frac{\Delta g}{g} + \frac{1}{2} \cdot \frac{\Delta y}{y} + \frac{\Delta x}{x} \\ \frac{\Delta v}{v} = &\frac{1}{2} \cdot \frac{0,005}{9,81} + \frac{1}{2} \cdot \frac{0,5}{950} + \frac{0,5}{1000} \\ \frac{\Delta v}{v} = &0,001 \end{aligned}$

Seite 36 von 36 Quelle: http://physikaufgaben.de/ mit Ergänzungen