

Dário Félix, Nº 2018275530, dario@student.dei.uc.pt João Calhau, Nº 2016255704, uc2016255704@student.uc.pt Tatiana Simões, Nº 2018285812, 2018285812@student.uc.pt

TP2 - D31, THE RISE OF THE BALLZ

META 1 (MODELAÇÃO E DESENVOLVIMENTO)
META 2 (EXPERIMENTAÇÃO E ANÁLISE)

Relatório no âmbito da cadeira de Fundamentos de Inteligência Artificial da Licenciatura em Engenharia Informática, orientado pelos Professores Doutores João Correia (PL3) e Fernando Jorge Machado (T/TP), do Departamento de Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Maio de 2021

Índice

Introdução	2
Sumário	2
Palavras-chave	2
Implementação (código)	3
Funções de Recombinação, Mutação e Seleção	3
Alterações ao código dado	3
Função de Aptidão	3
Parametrização	4
Metodologia Experimental	5
Preâmbulo	5
Exp. 1: probabilidade de mutação e crossover	5
Exp. 2: número de gerações	6
Exp. 3: marcar golo e a influência do tempo de simulação	6
Exp. 4: controlar a bola	6
Exp. 5: defesa	7
Exp. 6: 1 versus 1	7
Resultados Experimentais	8
Exp. 1: probabilidade de mutação e crossover	8
Exp. 2: número de gerações	8
Exp. 3: marcar golo e a influência do tempo de simulação	9
Exp. 4: controlar a bola	9
Exp. 5: defesa	10
Exp. 6: 1 versus 1	10
Discussão	11
Exp. 1: probabilidade de mutação e crossover	11
Exp. 2: número de gerações	11
Exp. 3: marcar golo e a influência do tempo de simulação	11
Exp. 4: controlar a bola	11
Exp. 5: defesa	12
Exp. 6: 1 versus 1	12
Conclusão	13
Agradecimentos	14
Referências	14

Introdução

Sumário

Relatório no âmbito do Trabalho Prático 2, "D31, THE RISE OF THE BALLZ", da cadeira de Fundamentos de Inteligência Artificial do ano letivo 2020/21 da Licenciatura em Engenharia Informática da Faculdade de Ciências e Tecnologias da Universidade de Coimbra.

O objetivo deste trabalho é capacitar o controlador do agente em fazer determinadas tarefas como controlar a bola, marcar golos e defender, seja em ambientes estáticos, seja também em ambientes dinâmicos.

Para isso, serão feitas várias experiências, começando por explorar e compreender o impacto da probabilidade da mutação e do crossover, do tempo de simulação, do tamanho da população, do número de gerações, e do tamanho do torneio.

Depois, serão feitos testes à função de aptidão, modificando-a caso se justifique e alterando os pesos que cada informação (input) tem conforme as características do ambiente a ser considerado.

Este documento abrange as metas 1 e 2, modelação e desenvolviemnto, e experimentação e análise, respetivamente. No início será abordado a implementação do código, e só depois é listado as experiências feitas com a seguinte ordem: parâmetros utilizados, resultados experimentais obtidos e, por fim, a discussão sobre esses resultados.

Palavras-chave

Inteligência artificial; agentes adaptativos; algoritmos genéticos; selecção; operador de recombinação (crossover); operador de mutação; função de avaliação; aptidão (fitness); descendentes; tamanho da populção; modelo elitista; número de gerações; tamanho do torneio; função gaussiana; ambiente dinâmico; tempo de simulação; rede neural artificial; parametrização; recombinação de 1-ponto; problema de maximização;

Implementação (código)

Nesta fase desenvolveu-se as componentes essenciais que faltavam, sejam para cumprir os requisitos mínimos do algoritmo genético, ora sejam para o melhorar.

Funções de Recombinação, Mutação e Seleção

Implementou-se o algoritmo de mutação gaussiana, gaussianMutation() em GeneticIndividuals.cs, e o algoritmo de seleção por torneio, tournamentSelection() em TournamentSelection.cs, como constam no pseudocódigo do enunciado. Note-se que o algoritmo de seleção por torneio segue a norma de um problema de maximização.

Desenvolveu-se o algoritmo de recombinação, *crossover()* em *GeneticIndividuals.cs*, sendo que é um operador de recombinação de 1-ponto e altera ambos os indivíduos.

Não se desenvolveu, por opção, outros operadores alternativos de mutação e recombinação para experimentação, tal como sugerido no enunciado. Aplica-se também ao número de neurónios na camada escondida (ficando os 3).

Alterações ao código dado

Alterou-se o ficheiro *MetaHeuristics.cs* de modo a guardar os resultados separados por ponto e vírgula, ao invés de vírgulas, no ficheiro CSV.

Função de Aptidão

Desenvolveu-se ao todo e ao longo do trabalho, várias versões de funções de aptidão, consequência das atualizações necessárias após a interpretação dos resultados experimentais.

Apesar disso, a ideia passava por ter uma só função de aptidão e colocar na equação todas as 15 informações dadas (os *inputs*), numa espécie de somatório, e colocadas numa forma a que, quanto maior for o seu valor, mais *fitness* terá, e, portanto, mais próximo estará daquilo que é pretendido.

Comecemos por abordar as funções de aptidão que vão ao encontro da ideia que foi descrita em cima (aplicam-se às funções *GetFitnessV3()* e *GetFitnessV4()* e parcialmente às funções *GetFitnessV1()* e *GetFitnessV2()* em

D31NeuralControler.cs). Para se poder colocar todas as 15 informações na equação foram normalizadas todos os 15 inputs (apesar das suas diferentes tipologias) para um valor que variasse entre 0 e 100. No caso de os inputs do tipo array, utilizou-se ou a média ou o valor máximo ou o valor mínimo para representar essa informação/input na "grande equação", conforme a necessidade e a pertinência.

O objetivo era tirar partido da parametrização. Para isso utilizou-se um conceito de "pesos", com uma escala entre "0" a "5", que seriam posteriormente multiplicados individualmente e discriminadamente aos 15 inputs. O "0" representa a anulação desse input, o "1" permite a influência desse input na equação, mas num estado bruto (com um fator de multiplicação igual a 1). Do "2" ao "5" é aplicado um fator de multiplicação superior a 1 (valorizar essa informação), e crescente ao longo dessa escala.

Como já referido, outras soluções foram desenvolvidas que não cumprem a premissa anteriormente abordada, mas foram descartadas, e por isso, não serão objeto de estudo neste documento.

Parametrização

Para além dos parametros já existentes, criou-se e desenvolveu-se o ficheiro auxiliar *Param.cs* de modo a permitir a expansão da parametrização em múltiplas secções de ficheiros diferentes.

Com isso, conseguiu-se parametrizar o seguinte:

- *isLogActivo*, indica se deve ou não imprimir no Log o valor das variáveis usadas na função de aptidão;
- tempo máximo de simulação;
- *mean* e *stdev*, significam respetivamente, a média e o desvio padrão, usados na função *MutateGuassian()*;
- qual versão da função de aptidão a utilizar (escolher entre 1 e 4);
- o valor que cada um dos pesos tem;
- associação dos pesos aos diferentes inputs (pelo número entre o e
 5);
- *isAdvAtivo*, indica se deve ou não considerar na equação os inputs relacionados ao adversário (para ignorar variáveis com lixo);
- *normalizarValores*, valor utilizado para limitar e normalizar os inputs (recomenda-se o valor 100).

Metodologia Experimental

Procedeu-se à definição dos parâmetros e quais os parâmetros que iriam variar ao longo das experiências (*setup*).

Começou-se por explorar a variação da probabilidade da mutação e do crossover, do tempo de simulação e do número de gerações.

E só depois serão feitos testes à função de aptidão, modificando-a caso se justifique e alterando os pesos que cada informação (*input*) tem conforme as características do ambiente a ser considerado.

Preâmbulo

A média e o desvio padrão, usados na função *MutateGuassian()*, permaneceram iguais ao longo de todas as experiências (*mean* = 0 e *stdev* = 0.5). É possível perceber o seu significado sem recorrer a testes: para o caso da média nula, quanto maior for o desvio padrão, também maior será a alteração (ver figura ao lado). [5]

O tamanho do torneio será sempre 2, uma vez que é o valor recomendado por vários artigos em consideração a experiências realizadas, apesar do autor consultado considerar que "por vezes pode não ser a melhor escolha e que pode depender do problema". [2] [3]

Também se optou por não variar o tamanho da população, nem realizar experiências para perceber o seu impacto. O tamanho escolhido foi 42 (o mesmo número de simulações em simultâneo). Apesar de tudo verificou-se a sua relação com os parâmetros da probabilidade de mutação e crossover. [1]

Usou-se a opção elitista em todas as experiências.

Por fim, referir que se fez várias repetições da mesma experiência usando os mesmos parâmetros, mas com *seeds* diferentes e aleatórias, devido à natureza estocástica da abordagem.

Exp. 1: probabilidade de mutação e crossover

Para esta experiência considerou-se o mapa *Evolving-ControlTheBallToAdversaryGoal*, utilizando a função de aptidão *GetFitnessV1()*, e optou-se por 100 gerações com um tempo de simulação de 7 segundos, apenas variando a probabilidade de mutação.

Teste A:

• Probabilidade de mutação = 0.5 (muito alto)

• Probabilidade de recombinação = 0.65

Teste B:

- Probabilidade de mutação = 0,005 (muito baixo)
- Probabilidade de recombinação = 0.65

Exp. 2: número de gerações

Para esta experiência considerou-se o mapa *Evolving-ControlTheBallToAdversaryGoal*, utilizando a função de aptidão *GetFitnessV1()*, com 1000 gerações com um tempo de simulação de 20 segundos. Utilizou-se uma probabilidade de mutação de 0,03 e uma probabilidade de recombinação de 0,65.

Exp. 3: marcar golo e a influência do tempo de simulação

Para esta experiência considerou-se priveligiar, e por esta ordem, as seguintes informações: quantos golos faz, quantos golos sofre (peso negativo), distância à bola (mínima), velocidade do agente (mínima), velocidade da bola (mínima), quantas vezes toca na bola, distância da bola á baliza do adversário (mínima) e a distância percorrida.

Configuração base:

- Mapa: Evolving-ControlTheBallToAdversaryGoal
- Função de aptidão: GetFitnessV2()
- Probabilidade de mutação: 0,03
- Probabilidade de crossover: 0,65

Teste A:

- Número de gerações: 300
- Tempo de simulação: 20 segundos

Teste B:

- Número de gerações: 100
- Tempo de simulação: 7 segundos

Exp. 4: controlar a bola

Para esta experiência considerou-se priveligiar, e por esta ordem, as seguintes informações: quantos golos faz, quantos golos sofre (peso negativo), distância à bola (mínima), velocidade do agente (mínima), velocidade da bola (mínima), quantas vezes toca na bola, distância da bola á baliza do adversário (mínima) e a distância percorrida.

Configuração:

• Mapa: Evolving-ControlTheBallToAdversaryGoalRandom

• Função de aptidão: GetFitnessV3()

• Número de gerações: 200

• Probabilidade de mutação: 0,03

• Probabilidade de crossover: 0,60

• Tempo de simulação: 20 segundos

Exp. 5: defesa

Para esta experiência considerou-se priveligiar, e por esta ordem, as seguintes informações: quantos golos faz, quantos golos sofre (peso negativo), distância à bola (mínima), velocidade do agente (mínima), quantas vezes toca na bola, distância da bola á baliza do adversário (mínima) e a distância percorrida. Também, através de cálculos das informações disponibilizadas, penalizar quando o agente fica entre a baliza adversária e a bola.

Configuração:

• Mapa: Evolving-Defense

• Função de aptidão: GetFitnessV4()

• Número de gerações: 500

• Probabilidade de mutação: 0,03

• Probabilidade de crossover: 0,60

• Tempo de simulação: 20 segundos

Exp. 6: 1 versus 1

Para esta experiência considerou-se priveligiar, e por esta ordem, as seguintes informações: quantos golos faz, quantos golos sofre (peso negativo), distância à bola (mínima), velocidade do agente (mínima), velocidade da bola (mínima), quantas vezes toca na bola, distância da bola á baliza do adversário (mínima) e a distância percorrida. Também, através de cálculos das informações disponibilizadas, penalizar quando o agente fica entre a baliza adversária e a bola.

Configuração:

• Mapa: *Evolving-OnevsOne*

• Função de aptidão: GetFitnessV4()

• Número de gerações: 200

• Probabilidade de mutação: 0,03

• Probabilidade de crossover: 0,60

• Tempo de simulação: 20 segundos

Resultados Experimentais

Em seguida, são apresentados os principais resultados obtidos em cada experiência.

Exp. 1: probabilidade de mutação e crossover

A princiapl diferença entre os dois testes é a distância do fitness entre a média da população e o melhor indivíduo dessa população. No Teste A é possivel também verificar que em algumas gerações há perda dos indivíduos mais aptos.

Exp. 2: número de gerações

Exp. 3: marcar golo e a influência do tempo de simulação

Além disto, no Teste A obtivemos um agente muito mais lento que o agente do teste B.

Exp. 4: controlar a bola

Verifica-se que o melhor numa determinada geração não é necessariamente o melhor da próxima geração (tendo em conta que a bola muda de posição).

Exp. 5: defesa

Resultados semelhantes á experiência anterior.

Exp. 6: 1 versus 1

 $\acute{\text{E}}$ notável que o agente \emph{Blue} foi quase sempre melhor que o agente \emph{Red} (linha laranja versus linha azul).

Discussão

Segue-se a análise e a discussão dos resultados obtidos.

Exp. 1: probabilidade de mutação e crossover

Os resultados obtidos vão ao encontro daquilo que já sabíamos [1]: com uma probabilidade de mutação muito alta, e apesar de criar mais rápidamente variabilidade nos agentes, há uma destruição efetiva dos indivíduos que já são aptos. Com uma probabilidade de mutação muito baixa, não há muita variabilidade, e como consequência, a média da população fica próxido do best.

Daí se concluí que, para as próximas experiências, devemos usar valores na ordem dos 5%, 3% e 1%.

Exp. 2: número de gerações

Verificamos que, a partir de uma determinada geração, o fitness estagna.

Nas próximas experiências não precisaremos de um número de gerações muito significativo.

Exp. 3: marcar golo e a influência do tempo de simulação

O objetivo neste cenário foi facilmente cumprido. Reparamos que o tempo de simulação influência na velocidade do agente em cumprir os objetivos deste cenário, uma vez que com tempos muito restritos, o algoritmo através do fitness privilegiará aqueles que conseguirem fazer mais rápido.

Por outro lado, com tempos muito restritos, por vezes, há uma perda dos indivíduos mais aptos.

Exp. 4: controlar a bola

Os resultados obtidos não foram muito bons.

Apesar disso, o agente aprendeu a seguir e controlar a bola de modo a marcar golo. É possivel verificar que o fitness varia bastante de geração para

geração, uma vez que, a bola ao mudar de posição, o agente adaptativo terá de interpretar de uma nova forma que será sempre diferente a todas as outras já ocorridas (de notar que a bola mudava de posição em todas as gerações).

Exp. 5: defesa

Os resultados foram muito próximos ao da experiência anterior. A única diferença é que se obteve um valor muito mais negativo devido aos golos sofridos. Apesar de tudo, obteve-se indivíduos na população capazes de defender a baliza ao longo das gerações.

Exp. 6: 1 versus 1

Os resultados obtidos nesta experiência foram bastante curiosos. Apesar de terem como fonte o mesmo ficheiro, o agente Blue foi sempre o melhor ao longo das gerações.

Conclusão

Os objetivos foram globalmente cumpridos. Tivemos algumas dificuldades em conseguir agentes capazes de realizar as tarefas em ambientes mais dinâmicos (bola com posições aleatórias e em movimentação).

Para trabalho futuro, recomenda-se o aprofundamento das experiências nos ambientes mais dinâmicos, e o desenvolvimento de novas e melhores funções de aptidão.

Agradecimentos

Agradecer particularmente ao Professor Doutor Fernando Jorge Machado por nos ter ensinado a construir um relatório minimamente decente.

E agradecer ao Doutor Frederico Varandas, ao Técnico Rúben Amorim, aos seus jogadores, e a outras ilustres personalidades e entidades que, apesar de não o saberem, ao conseguirem com que o Sporting Clube de Portugal fosse campeão 2020/21 de Portugal, contribuiram tanto para o sucesso deste trabalho como para o sucesso na cadeira. Obrigado.

Referências

- [1] "The optimal crossover or mutation rates in genetic algorithm: a review", acedido em maio de 2021, disponível em https://www.cibtech.org/J-ENGINEERING-TECHNOLOGY/PUBLICATIONS/2015/VOL-5-NO-3/05-JET-006-PATIL-MUTATION.pdf;
- [2] "Experimental Analysis of the Tournament Size on Genetic Algorithms", acedido em maio de 2021, disponível em https://www.researchgate.net/publication/330478320 Experimental A nalysis of the Tournament Size on Genetic Algorithms;
- [3] "Tournament selection in genetic algorithm", acedido em maio de 2021, disponível em https://stackoverflow.com/questions/31933784/tournament-selection-in-genetic-algorithm;
- [4] "Agentes Adaptativos", slides da cadeira FIA, acedido em maio de 2021;
- [5] Costa, E. e Simões, A. (2011). "Inteligência Artificial. Fundamentos e Aplicações". 3ª edição, FCA Editora de Informática. Lisboa.