Section C

Digital Electronics — 209

(3) Computer Arch. — 159

Digital Electronics

Soprates

Trainer: Sohail Inamdar

Electronics

1's and 2's Complement

1's Complement

• The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is called as1's complement.

$$1 \to 0$$
 101011100 0 $\to 1$ 010100011

• 2's Complement

• The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit (LSB) of 1's complement of the number.

• 2's complement = 1's complement + 1

WEIGHTED AND NON-WEIGHTED CODES

Weighted codes

- Weighted binary codes are those binary codes which obey the positional weight principle. Each
 position of the number represents a specific weight.
- Examples of weighted code is BCD. In these codes each decimal digit is represented by a group of four bits.

Non-Weighted codes

• In this type of binary codes, the positional weights are not assigned. The examples of non-weighted codes are Excess-3 code and Gray code.

BCD Number

- BCD Binary Coded Decimal.
- In this code each decimal digit is represented by a 4-bit binary number.
- BCD is a weighted code its weight are 8421.BCD code are used only till 9(0000 to 1001).
- BCD to Decimal.

Decimal to BCD

Decimal to BCD

$$(\S) = (?)BCD \rightarrow (010) \&CD (254) = (?)BCD \rightarrow (010) \&CD (85) = (?)BCD$$
 $(85) = (?)BCD (85) = (?)BCD$

- Binary to BCD and BCD to Binary Conversion.
 - Step 1- Convert the binary/BCD number to decimal.
 - Step 2- Convert decimal number to binary/BCD.

Excess-3 code

- The Excess-3 code is also called as XS-3 code.
- It is non-weighted code used to express decimal numbers.
- The Excess-3 code words are derived from the 8421 BCD code words by adding (0011) (3) to each code word in 8421.
- **†** Decimal to Excess-3
 - Step 1- Convert decimal to BCD.
 - ✓ Step 2- Add 3 (0011) to this BCD number.
- $\begin{array}{ccc} (5)_{10} \Rightarrow & 0101 \Rightarrow & 0101 + 0011. \\ \hline Decimal & BCD & Fx(es(-?)) \end{array}$

Excess-3 to Decimal

- Step 1- Subtract (0011)₂ from each 4 bit of excess-3 digit to obtain the corresponding BCD code.
- Step 2- Convert BCD to Decimal.

- Step 1- Convert Binary to decimal.
- Step 2- Convert decimal to BCD.
- Step 3 Add 3 (0011) to this BCD number.

Gray Code

- 10001
- It is the non-weighted code and it is not arithmetic codes.
- There are no specific weights assigned to the bit position.
- It has a very special feature that, only one bit will change each time the decimal number is incremented(only one bit changes at a time).
- Gray code is popularly used in the shaft position encoders.

Decimal Number			Gray Code
0	_	>	0000
1	-	->	0001
2	_	->>	0011
3	_	>	0010
4	_	→	0110
5	_	フ	0111
6	_	+	0101

(1)	It changes by I bit at a time
3	on each iteration puttern will not be repeated.
	nut be repealed.

Boolean algebra

- Algebra that deals with binary number system
- George Boole developed it for simplification and manipulation of logic
- Boolean algebra uses
 - → Binary digits 0 and 1
 - + Logical addition '+' also known as 'OR' which follows law of binary addition
 - + Logical Multiplication '.' also known as 'AND' which follows law of binary multiplication
 - + Complementation '-' also known as 'NOT' which follows law of binary complement
- Boolean algebra is used to simplify Boolean expressions which represent combinational logic circuits.
- Operator precedence (scanned from left to right)

```
() مم
```

NOT سور

AND

∨ OR

Boolean Function

- Boolean function is expression formed with
 - → Binary variables
 - → Operators (AND, OR, NOT)
 - + Parentheses and equal to sign
- Value of Boolean function can be either 0 or 1
- Boolean function can be represented as an algebraic expression or a truth table

e.g.
$$W = f(x,y,z)$$

Where, W is a function

x,y,z are variables or literals

Minimization of Boolean functions

Minimization deals with

- + Reduction in number of variables
 - + Reduction in number of terms
- There are 2 methods to minimize any Boolean function
 - ✓ Using Boolean laws (
 - + Using K-map

Laws of Boolean Algebra

Idempotent Law

•
$$\overline{A * A = A}$$
 $\boxed{1 * / = 7}$

•
$$A + A = A$$
 $1 + 1 = 1$

Associative Law

•
$$(A + B) + C = A + (B + C)$$
 $(1+0)+1$ $1+(0+1)$ • $A + \sim A = 1$ $1+(N1)=1+0=1$

• Commutative Law

Involution Law

$$\checkmark$$
 A + B = B + A

Distributive Law

•
$$A * (B + C) = A * B + A * C$$

•
$$A + (B * C) = (A + B) * (A + C)$$

✓ Identity Law

•
$$A * 0 = 0$$
 $A * 1 = A$

Complement Law

•
$$A * \sim A = 0$$
 $\uparrow * (\sim 7) = 7 * \circ = 0$

DeMorgan's Law

$$\bullet \sim (A + B) = \sim A * \sim B$$

Standard Form

✓ Minterm

- + Minterm is a product or AND term
- + contains n variables with 2ⁿ possible combinations
- + variables either in normal or in complemented form

e.g. ABC, A'BC, AB'C'

A #34C

ABC

Maxterm

- + Maxterm is a sum or OR term
- + contains n variables with 2ⁿ possible combinations
- + variables either in normal or in complemented form

e.g. A+B+C, A+B'+C

Sum of product (SOP) expression

SOP expression is minterm or minterms logically added(ORed) together.

e.g. A'B + AB

Product of sum (POS) expression

POS expression is maxterm or maxterms logically multiplied(ANDed) together.

e.g, (A+B).(A'+B)

Standard Form

son of products.

Solve the X(A,B,C) = A+BC convert in Standard SOP form

$$\Rightarrow A = A(B+B)$$

$$= AB + AB$$

$$= AB(C+C) + AB(C+C)$$

$$\Rightarrow ABC+ABC+ABC+ABC$$

$$BC = BC(A+\overline{A})$$

$$= BCA+BC\overline{A}$$

$$= ABC+\overline{A}BC$$

$$A+BC = ABC + ABC$$

- Karnaugh introduced a simplification of Boolean functions in an easy way.
- This method is known as Karnaugh map method or K-map method.
- It is a pictorial representation of graphical method, which consists of 2# cells for 'n' variables. The adjacent cells are differed only in single bit position.
- K-map uses Gray code.

2- bits

$A \setminus$	B 0	1
0	0+4	Tzt
1	2 ~ d	354

• 3-bits

A	BC <u>00</u>	01	<u>11</u>	10
0	o**	72+	379	24
_1	4	549	7 th	6-101

- Karnaugh Map Simplification Rules-
- To minimize the given Boolean function, we draw a K-Map according to the number of variables it contains.
- We fill the K-Map with 0's and 1's according to its function. Then, we minimize the function in accordance with the following rules.
- Rule-1:
 - We can either group 0's with 0's or 1's with 1's but we can not group 0's and 1's together.
 - X representing don't care can be grouped with 0's as well as 1's.
- Rule-02:
 - · Groups may overlap each other.
- Rule-03:
 - We can only create a group whose number of cells can be represented in the power of 2.
 - In other words, a group can only contain 2n i.e. 1, 2, 4, 8, 16 and so on number of cells.

- Rule-4:
 - Groups can be only either horizontal or vertical.
 - We can not create groups of diagonal or any other shape.
- Rule-5:
 - Each group should be as large as possible.
- **Rule-6**:
 - Opposite grouping and corner grouping are allowed.
- Rule-7:
 - There should be as few groups as possible.

- Simplify the Boolean function $F(A,B,C) = \Sigma(1,5,6,7)$
- Simplify the Boolean function $F(A,B,C) = \Sigma(0,1,3,4,5)$
- Simplify the Boolean function $F(A,B,C,D) = \Sigma(0,2,4,6,8,9,10)$

$$F(A,B,C) = E(\pm 15,6,7)$$

$$2^{2} = 2^{3} = 8$$

$$3^{60} = 01 \quad 11 \quad 10$$

$$1 \quad 11 \quad 11 \quad 10$$

$$AB + BC$$

$$ACOL BC 11 10$$

$$AB + BC$$

What are logic gates :-

- It is physical device which performs logical operation on one or more logical i/p(s) and produces a single logical o/p.
- Logical operations: inversion, logical multiplication, logical sum etc.

Categories:-

J. Basic Gates : AND, OR, NOT.

H. Universal Gates: NAND, NOR

★II. Arithmetic Gates: X-OR, X-NOR

Truth Table

- A truth table show how a logic circuit responds to various combinations of i/p, using logic 1 for true and 0 for false.
- Formula for truth table :- $2^n = m$
- Where,
 - n \rightarrow number of inputs $\frac{2}{2} = \frac{2}{3}$
 - M → combination of inputs
- > NOT Gate :-

Α	Υ
0	1
1	0

	A	В	Υ
	0	0	0
_	0	1	1
	. 1	0	F
_	1	1	1

NAND Gate:

NOR Gate:

А	В	Υ
0	0	4
0	1	0
1	0	0
1	1	0

XOR Gate :-

XNOR Gate:-

	A	В	Y
_	0	0	\dashv
	0	1	0
	1	0	0
	1	1	1

• Ques.

XNOR Gate, with 5 i/p.

i.e.

101010

 \rightarrow \bigcirc O/p?

Universal Gate

- A Universal gate is a logic gate which can implement any Boolean function without the need to use any other type of logic gate.
- NAND gate and NOR gate are universal gate.
- Any logic circuit can be built using NAND gate or NOR gate.

Combinational Circuits & Sequential Circuit

O/p is only depending on the present I/p.

- No feedback.
- No memory.

O/p is depending on the present I/p as well as past outputs.

Combinational Circuits & Sequential Circuit

Combinational Circuits

- Combinational Logic Circuits are made up from basic logic AND, OR, NAND, NOR, or NOT gates that are "combined" or connected together to produce more complicated switching circuits.
- Combinational circuits consist
 - Input variables
 - Logic Gates
 - Output variables

$$Y = F(X)$$

Where,

$$X = \{x_0, x_1, x_2, \dots, x_{n-1}\}\$$

 $Y = \{y_0, y_1, y_2, \dots, y_{n-1}\}\$

Design Procedure

- 1. Define the problem statement
- 2. Determine number of input and output variables
- 3. Assign letter symbols —
- 4. Construct a truth table
- 5. Obtain simplified Boolean Expression
- 6. Draw a logic diagram

Designing of Combinational Circuit

Step 1: Problem statement

Design a circuit with 3 inputs which produce a logic 1 output when more than one inputs are logic 1.

Step 2: Input – 3 Output – 1

Step 3: Input variables – A, B, C Output variable – Y

Step 4: Truth Table

2=8

А	В	С	Υ
0	0	0	6
0	0	1	0
0	1	0	0
0	1	1	1,
1	0	0	0
1	0	1 _	1
1	1	0_	1 -
1	1	1	

Step 5 : Simplified Boolean Expression

Step 6: Logic Diagram

Half Adder

Used to add two single bit numbers

	Inputs		Outputs		
	Α	В	Sum	Carry	
•	0	0	0	0	
_	0	1	1	Ø	
	1	0	1	0	
	1	1	O	1	

Boolean Expressions

$$C = A.B$$
 $S = A \oplus B$

Full Adder

Used to add 1 bit numbers with carry

Α	В	C _{an}	S	C _{oot}
0	0	0	6	0
0	0	1	(1)	0
0 -	- 1 -	0	(1)	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	(Î)	1

Boolean Expressions

For Sum

Cout = AB+A Cin+B Cin

Sum = A BCin+ABCin+AB Cin+ABCin

$$S = A + B + Ci$$

Half Subtractor

Used to subtract two single bit numbers

Truth Table

Α	В	Difference	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Boolean Expressions

For Difference

Difference =
$$\overrightarrow{AB} + \overrightarrow{AB}$$

= $A \oplus B$

For Borrow

Full Subtractor

Used to subtract 1 bit numbers with borrow

Truth Table

Α	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Boolean Expressions

For D

ABB	ⁿ 00	01	11	
0	0	1	1	
1	0	0	1	

For $\mathbf{B}_{\mathrm{out}}$

$$D = \overline{ABB}_{in} + \overline{ABB}_{in} + A\overline{BB}_{in} + ABB_{in}$$

$$B_{out} = \overline{A}B_{in} + \overline{A}B + BB_{in}$$

- Multiplexer is a Combinational circuit that selects binary information from one of many input lines and directs it to o/p line.
- Selection of input line is controlled by group of select lines.
- Select lines = n
- No. of inputs = 2^n
- Types of MUX:-
 - 2-to-1 (1 select <u>lin</u>e)
 - 4-to_1 (2 select lines)
 - 8-to-1 (3 select lines)
 - 16-to-1 (4 select lines)

• 2:1 MUX

<u>S</u>	<u>10</u>	<u>I1</u>	<u>Y</u>
0	0	0	0
0	0	1	0
0	1	0	Τ
0	1	1	7
1	0	0	0
1	0	1	<u></u>
1	1	0	0
1	1	1	⊗⊥
	0 0 0 0 1 1	0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

S	Y
0	_ 10
1	<u> 1</u>

• 4-to-1 (2 select lines)

	Select da	Output	
	S1 S0		Υ
V	0	0	D0
	0	1	D1
	1	0	D2
	1	1 _	_D3

Demultiplexers

- A DEMUX is a digital switch with a single input (source) and a multiple outputs (destinations).
- Selection of output line is controlled by select lines.
- Select lines = n,
- no. of outputs = 2^n
- Types of DEMUX:-

S1	S0	Y3	Y2	Y1	Y0
0	0	D	0	0	0
0	1	0		0	0
1	0	0	0	D	0
1	1	0	0	0	D

- 1-to-2 (1 select line)
- 1-to-4 (2 select lines)
- 1-to-8 (3 select lines)
- 1-to-16 (4 select lines)

Demultiplexers

