FAE – AE with First-Class Functions

1 INTRODUCTION

FAE is a toy language for the COSE212 course at Korea University. FAE stands for an extension of the AE language with **first-class functions**, and it supports the following features:

- integers
- basic arithmetic operators: addition (+) and multiplication (*)
- first-class functions

This document is the specification of FAE. First, Section 2 describes the concrete syntax, and Section 3 describes the abstract syntax. Then, Section 4 describes the big-step operational (natural) semantics of FAE.

2 CONCRETE SYNTAX

The concrete syntax of FAE is written in a variant of the extended Backus–Naur form (EBNF). The notation <nt> denotes a nonterminal, and "t" denotes a terminal. We use? to denote an optional element and + (or *) to denote one or more (or zero or more) repetitions of the preceding element. We use butnot to denote a set difference to exclude some strings from a producible set of strings. We omit some obvious terminals using the ellipsis (...) notation.

The precedence and associativity of operators are defined as follows:

l	Operator	Associativity	Precedence
	*	left	1
ĺ	+	left	2

3 ABSTRACT SYNTAX

The abstract syntax of FAE is defined as follows:

Expressions
$$\mathbb{E} \ni e ::= n$$
 (Num) $\mid e + e \mid$ (Add) $\mid e \times e \mid$ (Mul) $\mid x \mid$ (Id) $\mid \lambda x.e \mid$ (Fun) $\mid e(e) \mid$ (App) Values $\mathbb{V} \ni v ::= n \mid$ (NumV) $\mid \langle \lambda x.e, \sigma \rangle \mid$ (CloV)

where

Environments
$$\sigma \in \mathbb{X} \xrightarrow{\text{fin}} \mathbb{V}$$
 (Env)
Integers $n \in \mathbb{Z}$ (BigInt)
Identifiers $x \in \mathbb{X}$ (String)

4 SEMANTICS

The big-step operational (natural) semantics of FAE is defined as follows:

$$\begin{array}{c} \sigma \vdash e \Rightarrow v \\ \\ \operatorname{Num} \ \overline{\sigma \vdash n \Rightarrow n} \\ \\ \operatorname{Add} \ \overline{\sigma \vdash e_1 \Rightarrow n_1 \quad \sigma \vdash e_2 \Rightarrow n_2} \\ \overline{\sigma \vdash e_1 + e_2 \Rightarrow n_1 + n_2} \\ \\ \operatorname{Id} \ \frac{x \in \operatorname{Domain}(\sigma)}{\sigma \vdash x \Rightarrow \sigma(x)} \\ \\ \operatorname{Fun} \ \overline{\sigma \vdash \lambda x.e \Rightarrow \langle \lambda x.e, \sigma \rangle} \\ \\ \operatorname{App} \ \frac{\sigma \vdash e_0 \Rightarrow \langle \lambda x.e_2, \sigma' \rangle \quad \sigma \vdash e_1 \Rightarrow v_1 \quad \sigma'[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_0(e_1) \Rightarrow v_2} \\ \end{array}$$

4.1 Dynamic Scoping

The above semantics is defined with **static scoping** (or **lexical scoping**). We can augment it with **dynamic scoping** by changing the rule for function application as follows:

$$\operatorname{App} \frac{\sigma \vdash e_0 \Rightarrow \langle \lambda x. e_2, \sigma' \rangle \qquad \sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash e_0(e_1) \Rightarrow v_2}$$