LABORATOR #7

- **EX#1** Fie $\lambda \in (0, \infty)$. Creați un fișier în Python[®] prin care să se genereze un număr aleator X distribuit Poisson $Pois(\lambda)$
 - (a) X = Y, unde Y este un număr generat aleator uniform cu o distribuție binomială $Bin(n, \lambda/n)$, pentru un $n \in \mathbb{N}$ suficient de mare;
 - (b) folosind algoritmul de generare din Python®.

Creați un fișier în Python® prin care

- (c) să se realizeze N simulări pentru fiecare dintre cazurile (a), respectiv (b);
- (d) să se afișeze histrogramele corespunzătoare simulărilor realizate la (c) (pentru fiecare dintre cazurile (a), respectiv (b));
- (e) să se afișeze graficul ponderilor $p_k := e^{-\lambda} \frac{\lambda^k}{k!}$, $k = \overline{0, n}$ pentru un $n \in \mathbb{N}$ suficient de mare;
- (f) să se estimeze numeric media şi varianța variabilei aleatoare distribuită Poisson $Pois(\lambda)$ folosind simulările de la (c) (pentru fiecare dintre cazurile (a), respectiv (b));
- **EX#2** La un spital ajung în medie 150 pacienți într-un interval de o oră. Creați un fișier în Python[®] prin care să se determine probabilitatea să ajungă mai mult de 150 pacienți într-o oră.
- **EX#3** Propuneți un fenomen (exemplu real-life) modelat de o distribuție Poisson $Pois(\lambda)$. Creați un fișier în Python[®] prin care să se determine probabilitatea unui eveniment de interes (în funcție de fenomenul propus).
- **EX#4** Fie $\lambda \in (0, \infty)$. Creați un fișier în Python® prin care să se genereze un număr aleator X distribuit exponențial $Exp(\lambda)$
 - (a) $X = -\frac{1}{\lambda} \ln(U)$, unde U este un număr generat aleator uniform în [0,1];
 - (b) folosind algoritmul de generare din $\mathsf{Python}^{\mathbb{R}}.$

Creați un fișier în Python® prin care

- (c) să se realizeze N simulări pentru fiecare dintre cazurile (a), respectiv (b);
- (d) să se afișeze în aceeași figură histrogramele corespunzătoare simulărilor realizate la (c) (pentru fiecare dintre cazurile (a), respectiv (b));
- (e) să se afișeze în aceeași figură de la (d) graficul funcției de densitate $\lambda e^{-\lambda x}$;
- (f) să se estimeze numeric media şi varianţa variabilei aleatoare distribuită exponenţial $Exp(\lambda)$ folosind simulările de la (c) (pentru fiecare dintre cazurile (a), respectiv (b));

- (g) să se afișeze în aceeași figură graficul aproximării funcției $\mathbb{P}(X \leq x)$ (ca funcție de x) folosind simulările de la (c) (pentru fiecare dintre cazurile (a), respectiv (b)) și graficul funcției $1 e^{-\lambda x}$;
- EX#5 Durata medie de funcționare a unui telefon (la capacitatea maximă) este de 2.5 ani, iar a unui alt telefon, de 5 ani. Creați un fișier în Python® prin care să se determine și să se estimeze numeric probabilitatea ca telefoanele să funcționeze mai mult de 2.5 ani, respectiv 5 ani.
- **EX#6** Propuneți un fenomen (exemplu real-life) modelat de o distribuție exponențială $Exp(\lambda)$. Creați un fișier în Python[®] prin care să se determine probabilitatea unui eveniment de interes (în funcție de fenomenul propus).
- **EX#7** Fie $\lambda_1, \lambda_2 \in (0, \infty), \ X \sim Exp(\lambda_1), Y \sim Exp(\lambda_2), \ X, Y$ independente, $Z = \min(X, Y)$. Creați un fișier în Python® prin care să
 - (a) să se realizeze N simulări pentru X şi N simulări pentru Y;
 - (b) să se determine Z folosind simulările de la (a) și să se afișeze histrograma corespunzătoare;
 - (c) să se afișeze în aceeași figură de la (b) graficul funcției de densitate $(\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)x}$.
- $\mathbf{EX\#8}$ Într-o stație de transport în comun între orele 16:00-17:00, un tramvai ajunge în medie la fiecare 4 minute, iar un autobuz ajunge în medie la fiecare 8 minute. Creați un fișier în $\mathsf{Python}^{\$}$ prin care să se determine și să se estimeze numeric
 - (a) probabilitatea ca un călător să aștepte mai mult de 5 minute tramvaiul;
 - (b) probabilitatea ca un călător să aștepte mai mult de 5 minute tramvaiul sau autobuzul.

Indicaţii Python®: numpy, numpy.random, scipy.stats, matplotlib.pyplot,
matplotlib.pyplot.hist