0.1 Riktningsderivator och gradienter

Påminnelse 1. Låt $\vec{u} = \langle u_1, u_2 \rangle$ och $\vec{v} = \langle v_1, v_2 \rangle$ vara vektorer.

Skalärprodukten är då

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2.$$

Längden av \overrightarrow{u} är

$$|\vec{u}| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2}.$$

Det gäller också att

$$\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos(\theta)$$

där θ är vinkeln mellan \vec{u} och \vec{v} .

Det följer av förra påståeendet att för två vinkelräta vektorer är $\vec{u} \cdot \vec{v} = 0$.

Sats 1 (Största värde för riktningsderivata). $D_{\overrightarrow{u}}f(x,y)$ är som störst när \overrightarrow{u} pekar i samma riktning som $\nabla f(x,y)$ d.v.s. när $\overrightarrow{u} = \frac{\nabla f(x,y)}{|\nabla f(x,y)|}$.

Alltså f(x,y) växer som mest när (x,y) rör sig från (x_0,y_0) i riktningen $\frac{\nabla f(x_0,y_0)}{|\nabla f(x,y)|}.$

Bevis. $D_{\overrightarrow{u}}f(x,y) = \overrightarrow{u} \cdot \nabla f(x,y) = |\overrightarrow{u}| \cdot |\nabla f(x,y)| \operatorname{cos}(\theta)$ där θ är vinkeln mellan \overrightarrow{u} och $\nabla f(x,y)$. Eftersom \overrightarrow{u} är en enhetsvektor vet vi att $|\overrightarrow{u}| = 1$. $|\nabla f(x,y)| \cos(\theta)$ blir som störst när $\cos(\theta) = 1$, d.v.s. $\theta = 0$. Det betyder att \overrightarrow{u} och $\nabla f(x,y)$ pekar i samma riktning.

Anmärkning 1. I princip allt från denna veckan generaliserar enkelt från två till tre eller fler variabler.

0.2 Tangentplan till nivåytor (14.6)

En nivåyta bestäms av F(x,y,x)=k för något konstant $k\in\mathbb{R}$.

En graf z = f(x,y) är ett specialfall av en nivåyta, eftersom vi kan ta F(x,y,z) = z - f(x,y) och k = 0.

Ska definiera tangentplan till allmän nivåyta. Vill definiera tangentplanet till F(x,y,z) = k i (x_0,y_0,z_0) som det plan som genom (x_0,y_0,z_0) s.a. det för varje kurva $\vec{r}(t) = \langle x(t),y(t),z(t)\rangle$ som uppfyller $\vec{r}(t_0) = \langle x_0,y_0,z_0\rangle$ och ligger i nivåytan så innehåller tangentplanet $\vec{r}'(t_0)$.

Figur 1

Anta att \vec{r} är en sådan kurva. Då är $\forall t: F(x(t),y(t),z(t))=k$. Nu deriverar vi båda sidor med avseende på t m.h.a. kedjeregeln så att vi får

$$F_x \cdot x'(t) + F_y \cdot y'(t) + F_z \cdot z'(t) = 0$$
$$\nabla F(\vec{r}(t)) \cdot \vec{r}'(t) = 0.$$

Om vi tar $t=t_0$ får vi att $\nabla F(\vec{r}(t_0))=\nabla F(x_0,y_0,z_0)$ är vinkelrät mot $\vec{r}'(t_0)$.

Påminnelse 2. En normalvektor \vec{n} till ett plan är en nollskild vektor som är vinkelrät mot alla vektorer i planet. Om planet går genom (x_0, y_0, z_0) ges hela planet av

$$\vec{n} \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0.$$

Definition 1 (Tangentplan till nivåyta). Tangentplanet till en nivåyta F(x,y,z)=k genom en punkt (x_0,y_0,z_0) där $\nabla F(x_0,y_0,z_0)\neq \vec{0}$ är $\nabla F(x_0,y_0,z_0)\cdot \langle x-x_0,y-y_0,z-z_0\rangle=0$.

Det är definierat s.a. det uppfyller vad vi ville att det skulle uppfylla.

Obs. 1. Om F(x,y,z) = z - f(x,y) är nivåytan där F = 0 samma som grafen z = f(x,y). Eftersom $\nabla F = \langle -f_x, -f_y, 1 \rangle$ får i en punkt (a,b,f(a,b)) samma tangentplan $\langle -f_x(a,b), -f_y(a,b), 1 \rangle \cdot \langle x-a,y-b,z-f(a,b) \rangle$ oavsett om man ser ytan som en nivåyta eller grafen till en funktion.

Exempel 1. Bestäm tangentplanet till ytan $x^2 - y^2 + z^2 = 1$ i punkten (1, 1, 1).

Ytan är nivåytan F(x,y,z) = 1 där $F(x,y,z) = x^2 - y^2 + z^2$.

 $\nabla F = \langle 2x, -2y, 2z \rangle$ och $\nabla F(1,1,1) = \langle 2, -2, 2 \rangle$. Då är tangentplanet $\nabla F(1,1,1) \cdot \langle x-1, y-1, z-1 \rangle = 0$ vilket ger

$$2(x-1) - 2(y-1) + 2(z-1) = 0$$
$$x - 1 - y + 1 + z - 1 = 0$$
$$x - y + z = 1.$$

0.3 Lokala extremvärden

Definition 2 (Lokalt maximum). f(x,y) har ett lokalt maximum i (a,b) om $f(x,y) \leq f(a,b)$ gäller för (x,y) nära (a,b). (D.v.s. det gäller för (x,y) i någon cirkelskiva kring (a,b).)

Definition 3 (Absolut/Globalt maximum). f(x,y) har ett absolut/globalt maximum i (a,b) om $f(x,y) \leq f(a,b)$ gäller för alla (x,y) i definitionsmängden till f.

Definition 4 (Lokalt minimum). f(x,y) har ett lokalt minimum i (a,b) om $f(x,y) \ge f(a,b)$ gäller för (x,y) nära (a,b). (D.v.s. det gäller för (x,y) i någon cirkelskiva kring (a,b).)

Definition 5 (Absolut/Globalt minimum). f(x,y) har ett absolut/globalt minimum i (a,b) om $f(x,y) \ge f(a,b)$ gäller för alla (x,y) i definitionsmängden till f.

Definition 6 (Extremvärde). Ett $\mathit{extremv\"{a}rde}$ är ett minimum eller maximum.

Exempel 2. $f(x,y) = 3x^2 + y^2$ har ett lokalt och globalt minimum, var? Inses lätt att det sker i (0,0) då den annars är strikt positiv för $x,y,\in\mathbb{R}$.

Påminnelse 3. I en variabel, om f är deriverbar och har ett (lokalt) extremvärde i a är f'(a)=0.

Sats 2 (Extremvärde i en punkt). Om f(x,y) har ett (lokalt) extremvärde i punkten (a,b) och $f_x(a,b)$ och $f_y(a,b)$ existerar är $f_x(a,b) = 0$ och $f_y(a,b) = 0$.

Bevis. Om vi låter h(x) = f(x,b) ha ett extremvärde i x = a gäller h'(a) = 0 och $h'(a) = f_x(a,b)$, vilket ger att $f_x(a,b) = 0$.

$$f_y(a,b) = 0$$
 visas analogt.