

CONSTRUCTION ACCIDENT IREPORT CLASSIFICATION

Andrea Vagnoli Università di Pisa A. Y. 2024 - 2025

INTRODUCTION

According to the ILO, about 2.78 million workers die annually from occupational accidents, with one in six occurring in the construction industry.

Following an accident, detailed **reports** are usually compiled, which include also unstructured narrative data (e.g., descriptions and summaries of the event). Their unstructured nature poses considerable challenges for analysis and knowledge extraction.

The objective of this project is to develop a classification model capable of assigning construction accident reports to their correct category.

Accident: 114404.015 - Employee Falls From Roof And Dies From Multiple Injuries						
Open Date Establishment Name End-Use Project Type ···						
03/13/2019	Hough Roofing, Inc.	Commercial building	Maintenance or repair			

At 4:00 p.m. on March 12, 2019, Employee #1, employed by a roofing company, was engaged in roofing work at a two-story commercial building... It began to rain slightly. Employee #1 fell, a fall height of 23.5 feet... Employee #1 died later that night from his injuries.

	Keywords: r	oofer, fall,	fall protection	, construction,	••
--	-------------	--------------	-----------------	-----------------	----

Employee #	Age	Sex	•••	Construction	Inspection	
1	1 52 M ··· FatCause: Fall from roof		1384743.015			
Inspection: 1384743.015 - Hough Roofing, Inc.						

Violation Items

ID	Type	Standard	Curr\$	Init\$
01001	Serious	19260501 B11	\$11,934	\$13,260
01002	Serious	19260503 A01	\$2,652	\$5,304

• • •

DATASET

4,770 construction accident reports from the Occupational Safety and Health Administration (OSHA).

There are several fields, but we are interested in the following:

- title and SUMMARY: The title and the narrative text describing the details of the accident;
- TaggedL1: This is the primary label of the accident. There are seven distinct categories:
- 1 VIOLENCE AND OTHER INJURIES BY PERSONS OR ANIMALS
- 2 TRANSPORTATION INCIDENTS
- 3 FIRES AND EXPLOSIONS
- 4 FALLS, SLIPS, TRIPS
- 5 EXPOSURE TO HARMFUL SUBSTANCES OR ENVIRONMENTS
- 6 CONTACT WITH OBJECTS AND EQUIPMENT
- 7 OVEREXERTION AND BODILY REACTION

CLASS DISTRIBUTION

- Highly imbalanced problem;
- Class overlap, especially for minority classes (harder to recognize them) [1][2].

DATA PREPARATION

- Combined the title and SUMMARY fields to create the input texts (X);
- Used TaggedL1 as the target labels (y);
- Performed a 70/30 train test split.

PIPELINE BUILD

- Tokenization;
- Convert to lowercase;
- Removal of punctuation and stopwords;
- Stemming.

PIPELINE BUILD

- Word Embedding: Word2Vec
- Text Vectorizer: Weighted Class TF-IDF

TEXT REPRESENTATION

WCTF-IDF Algorithm:

- 1. Set `f` as the maximum total number of features.
- 2. Sort the classes in descending order of document frequency.
- 3. For each class `i`:
 - Compute the number of features to assign: $f_i = f \times (n_i / n)$

where n_i = number of documents in class i, and n = total number of documents.

- Fit a TF-IDF vectorizer on the documents of class i using $f_{\tt i}$ as the max_features parameter.
- Pass the selected terms as stopwords to the next class to reduce vocabulary overlap.
- 4. Merge all resulting vocabularies to form the final TF-IDF vectorizer.

MODEL EVALUATION

- Several different classifiers;
- Nested 5-fold crossvalidation: (Inner and outer loops);
- Stratified sampling to ensure balanced classes.

Model	WCTF-IDF		$\mathbf{Word2Vec}$	
	Accuracy	Weighted F1-score	Accuracy	Weighted F1-score
Random Forest	0.883 ± 0.007	0.879 ± 0.007	0.817 ± 0.010	0.815 ± 0.012
Logistic Regression	0.903 ± 0.007	$\boldsymbol{0.903 \pm 0.007}$	0.808 ± 0.005	0.818 ± 0.003
Linear SVM	0.901 ± 0.008	0.901 ± 0.008	0.820 ± 0.009	0.826 ± 0.007
XGBoost	0.891 ± 0.006	0.889 ± 0.006	0.826 ± 0.008	0.825 ± 0.007
Bagging	0.824 ± 0.015	0.829 ± 0.012	0.786 ± 0.019	0.787 ± 0.017
Decision Tree	0.794 ± 0.014	0.798 ± 0.013	0.680 ± 0.016	0.688 ± 0.015
KNN	0.680 ± 0.007	0.705 ± 0.008	0.727 ± 0.013	0.744 ± 0.012
MultinomialNB	0.856 ± 0.017	0.856 ± 0.016		

MODEL SELECTION

SVM WCTF-IDF vs SVM word2vec (Wilcoxon Test)

p-value = $0.0000000019 \rightarrow Statistical evidence of difference.$

SVM WCTF-IDF vs LR WCTF-IDF (Wilcoxon Test)

p-value = $0.36 \rightarrow$ No statistical evidence of difference.

PERFORMANCE EVALUATION (Test set)

SVM

Class	Precision	Recall	F1-Score	Support
Class 1	1.00	0.50	0.67	4
Class 2	0.70	0.76	0.73	72
Class 3	0.93	0.94	0.93	67
Class 4	0.95	0.92	0.93	469
Class 5	0.93	0.95	0.94	279
Class 6	0.88	0.88	0.88	436
Class 7	0.83	0.71	0.77	14
Accuracy		0.90		1341
Macro Average	0.89	0.81	0.83	1341
Weighted Average	0.90	0.90	0.90	1341

Logistic Regression

Class	Precision	Recall	F1-Score	Support
Class 1	1.00	0.75	0.86	4
Class 2	0.74	0.74	0.74	72
Class 3	0.91	0.94	0.93	67
Class 4	0.93	0.93	0.93	469
Class 5	0.93	0.95	0.94	279
Class 6	0.90	0.88	0.89	436
Class 7	0.71	0.71	0.71	14
Accuracy		0.91		1341
Macro avg	0.87	0.84	0.86	1341
Weighted avg	0.91	0.91	0.91	1341

COMPARISON WITH OTHER STUDIES

Reference paper results[2]:

- Best model: SVM with 8,423 features (vs. 1,000 features in our case);
- Overall Accuracy and Weighted F1-score around 0.91 (same as our best model);
- Class-wise F1-score for the most imbalanced classes (1 and 7):

Paper: 0.40 and 0.62

Our best results: 0.86 and 0.77

INTERFACE

REFERENCES

- [1] Cheng, M. Y., Kusoemo, D., & Gosno, R. A. (2020). Text mining-based construction site accident classification using hybrid supervised machine learning. Automation in Construction, 118, 103265.
- [2] Qiao, J., Wang, C., Guan, S., & Liu, S. (2022). Construction-accident narrative classification using shallow and deep learning. Journal of Construction Engineering and Management, 148(9).
- [3] Deepwiz AI. (2023). How to correctly use TF-IDF with imbalanced data. Retrieved from https://www.deepwizai.com/projects/ how-to-correctly-use-tf-idf-with-imbalanced-data

THANK YOU FOR YOUR ATTENTION

