NASA

Aeronautical Engineering A Continuing Bibliography with Indexes

National Aeronautics and Space Administration

Aeronautical Engineering Aeror neering Aeronau nautical Engineering A

AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES

(Supplement 244)

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in September 1989 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA).

INTRODUCTION

This issue of *Aeronautical Engineering -- A Continuing Bibliography* (NASA SP-7037) lists 465 reports, journal articles and other documents originally announced in September 1989 in *Scientific and Technical Aerospace Reports (STAR)* or in *International Aerospace Abstracts (IAA)*.

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine *STAR* specific categories and the remaining *STAR* major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals. The *IAA* items will precede the *STAR* items within each category.

Seven indexes -- subject, personal author, corporate source, foreign technology, contract number, report number, and accession number -- are included.

An annual cumulative index will be published.

Information on the availability of cited publications including addresses of organizations and NTIS price schedules is located at the back of this bibliography.

TABLE OF CONTENTS

Category 01 Aeronautics (General)	Page 567
Category 02 Aerodynamics Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.	569
Category 03 Air Transportation and Safety Includes passenger and cargo air transport operations; and aircraft accidents.	597
Category 04 Aircraft Communications and Navigation Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.	598
Category 05 Aircraft Design, Testing and Performance Includes aircraft simulation technology.	602
Category 06 Aircraft Instrumentation Includes cockpit and cabin display devices; and flight instruments.	609
Category 07 Aircraft Propulsion and Power Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft.	611
Category 08 Aircraft Stability and Control Includes aircraft handling qualities; piloting; flight controls; and autopilots.	614
Category 09 Research and Support Facilities (Air) Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.	618
Category 10 Astronautics Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; space communications, spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.	620
Category 11 Chemistry and Materials Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.	620

Category 12 Engineering Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.	622
Category 13 Geosciences Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.	629
Category 14 Life Sciences Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.	N.A.
Category 15 Mathematical and Computer Sciences Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.	629
Category 16 Physics Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.	631
Category 17 Social Sciences Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.	634
Category 18 Space Sciences Includes space sciences (general); astronomy; astrophysics; lunar and planet- ary exploration; solar physics; and space radiation.	N.A.
Category 19 General	634
Subject Index	B-1 C-1 D-1

TYPICAL REPORT CITATION AND ABSTRACT

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 244)

OCTOBER 1989

01

AERONAUTICS (GENERAL)

A89-40251

AIRBORNE RECONNAISSANCE XII; PROCEEDINGS OF THE MEETING, SAN DIEGO, CA, AUG. 16, 17, 1988

PAUL A. HENKEL, ED. (General Dynamics Corp., Fort Worth, TX), WAYNE W. SCHURTER, ED. (McDonnell Aircraft Co., Saint Louis, MO), and FRANCIS R. LAGESSE, ED. Meeting sponsored by SPIE. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 979), 1989, 209 p. For individual items see A89-40252 to A89-40273. (SPIE-979)

The present conference on airborne reconnaissance discusses sensor hardware, imagery evaluation/exploitation, and state-of-the-art electrooptical systems. Attention is given to a low intensity reconnaissance aircraft and product-management system, tactical communications for the support of intelligence, the RS-170 reconnaissance camera for military applications, the use of magnetic suspension for sensor-vibration isolation, the application of parallel processing to image exploitation, and a high data rate airborne rotary digital recorder with long record time. Also treated are conformed-panoramic electrooptic sensors, the optical butting of matrix arrays, the model 324 advanced-technology RPV, and the role of mission planning in mission data management for tactical reconnaissance.

A89-40856

THE US AIRBORNE RADAR SCENE

BILL SWEETMAN Interavia (ISSN 0020-5168), vol. 44, May 1989, p. 449-453

A technology development status and production program economics evaluation is presented for the most prominent contractors in the U.S. military aircraft radar industry, which are currently engaged in the production of radars for the B-1B, B-2, F-14, F-15, and F-18, as well as in the USAF ATF competition. It is generally accepted that mm-wave ICs (MMICs) will be a critical technology in the ATF's active-array radar. One of the manufacturers discussed has supplemented its developmental work in MMICs with inverse-SAR technology, which relies on the movement of the target to achieve a clear image; a radar of this type is used by the P-3C ASW aircraft. Attention is given to the prospects for the Joint Surveillance Target Attack Radar System.

O.C

A89-41057

SOVIET AEROSPACE INDUSTRY - PERESTROIKA'S CHANGES GRIP SOVIET AEROSPACE INDUSTRY

DONALD E. FINK Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 34, 35, 37.

A political background evaluation is made of the recent opening of Soviet aerospace facilities, including the design bureaus of Antonov, Ilyushin, Mikoyan, Mil, and Sukhoi, to Western journalists. Visits to these design and research institutes, as well as to various manufacturing plants, indicate that the Soviets are producing

state-of-the-art aerospace equipment whose sophistication is comparable to that of its Western counterparts. Industrial managers are uniformly found to be preoccupied with the implementation of 'perestroika' political-economic reforms, turning their enterprises into profit-making centers.

O.C.

A89-41059

SOVIET AEROSPACE INDUSTRY - MOTORWORKS TAPS SKILL OF SEVERAL FACTORIES TO PRODUCE POWERPLANTS

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 49, 50.

The Zaporozhye Motorworks of the USSR, which produces more than 5000 engines/year for civil aircraft to designs produced by specialized bureaus, has a special relationship with the Progress Design Bureau located nearby. The powerplants currently in production at Zaporozhye are the D-18T turbofan for the An-124 and An-225 heavy-lift transports, the D-36 turbofan powering the An-72 STOL transport, and the D-136 turboshaft, which powers the Mi-26 helicopter. A total of five factories located throughout the Ukraine are associated in these production efforts; communications among them are maintained by a fleet of transport aircraft and helicopters.

A89-41061

SOVIET AEROSPACE INDUSTRY - CERTIFICATION OF SUPER HEAVY-LIFT ANTONOV AN-225 PLANNED FOR 1990

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 72, 73, 77.

Two An-225 superheavy-lift six-engined aircraft will participate in a flight test/development program leading to certification in 1990. Heavy, outsized payloads can be accommodated either in the main-deck cargo compartment or externally, on upper-fuselage attach points; the USSR is believed to have a requirement for dozens of such superheavy-lift transports. An-225 development costs were minimized, and the design process accelerated, by basing the aircraft to the greatest possible extent on the An-124 four-engine transport. An account is also given of other, smaller Antonov aircraft currently in production or under development.

O.C.

A89-41062

SOVIET AEROSPACE INDUSTRY - MIL MI-28 ATTACK HELICOPTER IN FINAL TESTS PRIOR TO FULL-SCALE PRODUCTION

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 78, 79.

The two-seat Mi-28 attack helicopter has entered its final prototype test phase and will be put into full-scale production by 1991. The Mi-28 carries a range of air-to-ground armament, including rockets, missiles, and a 30-mm cannon mounted beneath the fuselage, on the centerline. The Mi-28 power train is an all-new design with novel dynamic components. The crew stations are reinforced with heavy armor that combines steel and titanium. The bulk of the remaining structure is of conventional Al alloy monocoque construction. Mi-28 prototypes have been flown to speeds of 300 km/hr in level flight. Two 2200-shp turboshaft engines are used.

A89-41064

SOVIET AEROSPACE INDUSTRY - SUKHOI DESIGN BUREAU EXPANDS CIVIL AIRCRAFT DEVELOPMENT EFFORTS

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 90-92.

A tour of the USSR's Sukhoi Design Bureau reveals wide-ranging design development projects involving state-of-the-art materials and structures. Attention is given to the unique case of the projected Su-51, for which a joint venture with a foreign business jet manufacturer (such as Gulfstream) is sought; the aircraft would be a two- or three-engine supersonic cruise business jet that could be produced (depending on the number of engines of the configuration ultimately chosen) in 40-seat 'tourist', 21-seat 'business class', or 12-seat 'deluxe corporate' versions. The engine used by the Su-51 would be the Al-36, which is a nonafterburning version of the Al-21 series fighter aircraft turbojet engine.

A89-41651

RECENT PROGRESS IN THE NATIONAL AEROSPACE PLANE PROGRAM

ROBERT BARTHELEMY (USAF, Washington, DC) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 4, May 1989, p. 3-12.

The goal of the NASP (National Aerospace Plane) program is to develop and demonstrate the feasibility of a horizontal take-off and landing aircraft that utilizes conventional airfields, accelerates to hypersonic speeds, achieves orbit in a single stage, delivers useful payloads to space, returns to earth with propulsive capability, and has the operability, flexibility, supportability, and economic potential of airplanes. The technological requirements of such a craft are examined, and current research efforts are described.

1 F

A89-42488

FLYING WINGS (2ND REVISED AND ENLARGED EDITION) [LETAIUSHCHIE KRYL'IA /2ND REVISED AND ENLARGED EDITION/]

IGOR' K. KOSTENKO Moscow, Izdatel'stvo Mashinostroenie, 1988, 105 p. In Russian.

The history of the development of tailless aircraft of the flying wing type is reviewed with emphasis on the work of Soviet scientists and designers in this field. The aerodynamics and flight dynamics of aircraft and gliders based on the flying wing design are discussed in a popular manner. Data on the current Soviet-made and foreign models of flying wings are presented.

V.L.

A89-42928

THOROUGHGOING DV-SUPPORT FROM PROJECT PLANNING TO FACTORY CONTROL - PRACTICAL EXAMPLE FROM NEAR-DEVELOPMENT AIRCRAFT DESIGN [DURCHGAENGIGE DV-UNTERSTUETZUNG VON DER PROJEKTIERUNG BIS ZUR WERKSTATTSTEUERUNG - PRAXISBEISPIEL AUS DEN ENTWICKLUNGSNAHEN FLUGZEUGBAU]

DIERK MINKE (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn, Federal Republic of Germany) (Mega: das Technik-Magazin fuer Fuehrungskraefte, no. 1, 1988) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 35-40. In German.

(MBB-UD-526-88-PUB)

The planned development of air and space travel programs is conducted according to an internationally sanctioned phase concept. The various phases of this concept are described and graphically shown. An actual program development is described as an example.

C.D.

A89-42947

SOVIET SST: THE TECHNOPOLITICS OF THE TUPOLEV-144

HOWARD MOON New York, Orion Books, 1989, 288 p. refs

The history of the unsuccessful Soviet effort to develop an SST aircraft, the TU-144, is recalled, considering both political and technological aspects. Consideration is given to the relationship between the designer Tupolev and the Soviet state, the TU-104

and TU-114, the international competition in SST development beginning in the late 1950s, reports of SST espionage, the 1969 TU-144 prototype and comparisons with the Concorde, engines and internal and external aerodynamics, and radical changes in the 1972 production model. Also discussed are the catastrophic crash of the production model, much slower progress during 1973-1977, the apparent second crash of 1978, and the final role of the TU-144 as a bomber testbed and record-setter.

A89-43077#

SOARING ON INTELLIGENT WINGS - AERODYNAMICISTS AT MBB ARE ALREADY AT WORK ON TOMORROW'S PROJECTS

New-Tech News, no. 1, 1989, p. 29-33.

The process of designing a wing for a commercial aircraft, which entails finding a wide variety of optimal compromises between conflicting criteria and constraints for the other aircraft-engineering disciplines, is discussed. Particular attention is given to the design of the 'intelligent wing', which is a comprehensive complex concept presenting an interdisciplinary challenge to all the fields of aircraft engineering. One of the basic technologies involved in the intelligent wing design is the laminar-flow technology, the intent of which is to keep the air state, so as to decrease friction and thus achieve considerable reduction in drag. Another concept being investigated is a variable camber; this involves using the high-lift flaps already on the wing to optimize the performance and wing-loading factors during cruising.

A89-43112#

IA63 PAMPA - THE COMPLETION OF AN AIRCRAFT DEVELOPMENT PROGRAM [IA63 PAMPA - ABSCHLUSS EINER FLUGZEUGENTWICKLUNG]

BERND STRAETER, KARL-HEINZ MOHR, and ALFONS TRZECIOK Dornier Post (ISSN 0012-5563), no. 3, 1988, p. 17-20. In German.

The development and testing of the IA63, a fighter-type jet trainer for the Argentine Air Force, is reviewed and illustrated with graphs and photographs. Consideration is given to the project organization, division of responsibilities, and financial arrangements; the aircraft design requirements; the extensive structural testing program to demonstrate component strength, stiffness, and fabricability (especially for the integrally machined supercritical wing panels); ground tests of the ejection seat; plans for fatigue-life testing; the successful integration, ground, and flight testing of two prototype aircraft; and favorable pilot opinions. The importance of thorough preliminary studies and early testing for the success of the development program is stressed, and marketing plans are discussed.

N89-23406*# National Aeronautics and Space Administration, Washington, DC.

NASA ÅERONAUTICS RESEARCH AND TECHNOLOGY Annual Report

1986 60 p Original doc. contains color illustrations (NASA-EP-259; NAS 1.19:259) Avail: NTIS HC A04/MF A01 CSCL 01B

The technical accomplishments and research highlights of 1986 are featured, along with information on possible areas of future research. These include hypersonic, supersonic, high performance, subsonic, and rotorcraft vehicle technology. Fundamental disciplinary research areas discussed include aerodynamics, propulsion, materials and structures, information sciences and human factors, and flight systems/safety. A description of the NASA organization and facilities is given.

A.D.

N89-23407# Horizons Technology, Inc., Oakton, VA. AN ANALYSIS OF ELECTRONIC AIDS TO MAINTENANCE (EAM) FOR THE LIGHT HELICOPTER FAMILY (LHX) Final Report, Sep. 1985 - May 1987

EDWARD W. FREDERICKSON, JOHN W. LINDQUIST, and JULIE B. LEMEN Jan. 1989 85 p

(Contract DAAG09-85-G-0035) (AD-A205440; ARI-RN-89-09) Avail: NTIS HC A05/MF A01 CSCL 01/3

Substantial savings in maintenance manpower and training time, special tools, test equipment, and the storage and handling of repair parts have been predicted for weapons systems that incorporate electronic aids to maintenance (EAM) in their design. Performance deficiencies of weapon system's EAM could have serious consequences to both system availability and MPT (Manpower, Personnel, and Training) requirements. This report provides an overview of contemporary EAM technology. It identifies failures or inadequacies for EAM used in recent weapons systems and projects the results of EAM performance for the Light Helicopter Family (LHX). It also identifies MPT-related solutions relevant to the use of EAM in the LHX program.

N89-24261# Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

TECHNOLOGY OF AIRCRAFT CONSTRUCTION (SELECTED CHAPTERS)

A. L. ABIBOV, N. M. BIRYUKOV, V. V. BOYTSOV, V. P. GRIGORYEV, and S. V. YELISEYEV 13 Oct. 1988 74 p Transl. into ENGLISH from Tekhnologiya Samoletostroyeniya (USSR), Mashinostroyeniye, 1970 p 482-510

(AD-A199946; FTD-ID(RS)T-0616-88) Avail: NTIS HC A04/MF A01 CSCL 01/3

The characteristics and applications of reinforced plastics especially in regard to aircraft construction are discussed. The assembling of aircraft parts is considered. Attention is given to manufacturing practices and quality control. Examples are given.

A.D

N89-24262* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

NUMERICAL AERODYNAMIC SIMULATION

1989 33 p Original document contains color illustrations (NASA-EP-262; NAS 1.19:262) Avail: Issuing Activity CSCL 01/2

An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

A.D.

N89-24263# General Accounting Office, Washington, DC. National Security and International Affairs Div.
US MILITARY AIRCRAFT COPRODUCTION WITH JAPAN
JOSEPH E. KELLEY 1989 12 p
(AD-A206430; GAO/T-NSIAD-89-6) Avail: NTIS HC A03/MF
A01 CSCL 01/3

The United States enters into coproduction arrangements primarily for defense and foreign policy reasons. Basically, the Departments of Defense (DOD) and State have the authority and responsibility for negotiating and concluding coproduction agreements, usually Memorandums of Understanding (MOU). These government to government MOUs with Japan are commonly implemented by commercial licensed production and technical assistance agreements with the U.S. manufacturers. The F-15 program was begun at a time when Japan was targeting its aircraft industry, as well as other high technology industries, for development. Japan was steadily reducing the importance of its lower technology industries, such as shipbuilding, and favoring the development of high-technology export industries. Japan's major aircraft manufacturers expanded and upgraded their production facilities in order to handle their F-15, P-3C, and Boeing 767 work shares. Through these military and civil programs. combined, the Japanese companies expanded their production capacity, technology base, and aircraft production labor force.

GRA

02

AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

A89-39867* California Univ., Los Angeles. ON SOME NUMERICAL SCHEMES FOR TRANSONIC FLOW PROBLEMS

MARCO MOSCHE MOSTREL (Bell Communications Research, Inc., Piscataway, NJ; California, University, Los Angeles) Mathematics of Computation (ISSN 0025-5718), vol. 52, April 1989, p. 587-613. refs

(Contract N00014-86-K-0691; NAG2-70)

New second-order-accurate finite-difference approximations for a class of nonlinear PDEs of mixed type, which includes the two-dimensional low-frequency transonic small-disturbance equation (TSD) and full-potential equation (FP), are presented. For the TSD equation, the scheme is implemented via a time-splitting algorithm; the inclusion of flux limiters keeps the total variation nonincreasing and eliminates spurious oscillations near shocks. Global-linear-stability, TVD, and entropy-stability results are proved. Numerical results for the flow over a thin airfoil are presented. Current techniques used to solve the TSD equation may easily be extended to second-order accuracy by this method. For the FP equation, the new scheme requires no subsonic/supersonic switching and no numerical flux biasing. Global linear stability for all values of the Mach number is proved. Author

A89-40893#

MEASUREMENTS OF LAMINAR SEPARATION BUBBLE ON B3 AIRFOIL

KENICHI RINOIE, AKITO IWASAKI, KAORU TATSUMI, YASUTO SUNADA, and JUNZO SATO (Tokyo, University, Japan) Tokyo, University, Faculty of Engineering, Journal, Series A (ISSN 0563-7945), no. 26, 1988, p. 30, 31. In Japanese, with abstract in English.

Measurements have been done to investigate the structure of the laminar separation bubble on the airfoil. Measurements of mean velocities, turbulent stresses, and turbulent triple products have been made for the laminar separation bubble formed on B3 airfoil which has a steplike design pressure distribution. Results show that the turbulent stresses start to increase just after the laminar separation point and attain maxima before the flow reattaches to the airfoil surface. Turbulent energy balances were estimated from results.

A89-40901#

LARGE-SCALE VISCOUS SIMULATION OF LAMINAR VORTEX FLOW OVER A DELTA WING

ARTHUR RIZZI (Flygtekniska Forsoksanstalten, Bromma; Kungliga Tekniska Hogskolan, Stockholm, Sweden) and BERNHARD MUELLER (Flygtekniska Forsoksanstalten, Bromma, Sweden) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 833-840. Research supported by the Styrelsen for Teknisk Utveckling and U.S. Navv. refs

The Navier-Stokes equations for laminar compressible flow around a 65-deg sweep delta wing with round leading edge are presently solved by a numerical method on a large scale, using a 129 x 49 x 65-point mesh for transonic (freestream Mach=0.85, freestream Re=2.38 million) flow at alpha=10 deg. The results thus obtained exhibit primary, secondary, and even tertiary vortices; comparisons conducted with experimental results indicate that the interaction of primary and secondary vortices is obtained correctly, and indeed more realistically than would be the case with the Euler equations. O.C.

A89-40902#

NUMERICAL STUDY OF TWO-DIMENSIONAL IMPINGING JET FLOWFIELDS

C. J. HWANG and J. L. LIU (National Cheng Kung University, Tainan, Republic of China) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 841, 842. Previously cited in issue 07, p. 941, Accession no. A88-22528. refs

A89-40903#

NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS FOR TWO-DIMENSIONAL VISCOUS COMPRESSIBLE FLOWS SUNIL KUMAR CHAKRABARTTY (National Aeronautical Laboratory, Bangalore, India) AIAA Journal (ISSN 0001-1452),

vol. 27, July 1989, p. 843, 844.

A nodal-point, finite-volume space discretization of viscous fluxes in compressible Navier-Stokes equations is presented. To advance the solution in time, an explicit five-stage Runge-Kutta scheme has been used. To accelerate the rate of convergence to steady state, local time stepping, residual averaging, and enthalpy damping have been employed. The scheme has been evaluated by solving laminar flow over a semi-infinite flat plate and an NACA 0012 air foil using thin-layer approximation. It has been observed here that fourth-order artificial dissipation is sufficient for numerical stability. The results have been compared with available theoretical and numerical solutions.

A89-40905*# California State Univ., Long Beach. CALCULATION OF FLOW OVER ICED AIRFOILS

TUNCER CEBECI (California State University, Long Beach) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 853-861. Previously cited in issue 07, p. 927, Accession no. A88-22078. refs (Contract NAG3-601)

A89-40908*# Iowa State Univ. of Science and Technology, Ames

THREE-DIMENSIONAL DUAL-POTENTIAL PROCEDURE FOR INLETS AND INDRAFT WIND TUNNELS

K. V. RAO, R. H. PLETCHER (lowa State University of Science and Technology, Ames), and JOSEPH L. STEGER (NASA, Ames Research Center, Moffett Field, CA) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 876-884. Previously cited in issue 08, p. 1044, Accession no. A87-22729. refs (Contract NCA2-17)

A89-40909*# Analytical Services and Materials, Inc., Hampton,

NEWTON SOLUTION OF INVISCID AND VISCOUS PROBLEMS
V. VENKATAKRISHNAN (Analytical Services and Materials, Inc.,
Hampton, VA) AlAA Journal (ISSN 0001-1452), vol. 27, July
1989, p. 885-891. Research supported by NASA. Previously cited
in issue 07, p. 935, Accession no. A88-22305. refs

A89-40913#

SHOCK STANDOFF FROM BLUNT CONES IN HIGH-ENTHALPY NONEQUILIBRIUM NITROGEN FLOW

S. L. GAI (University College, Canberra, Australia) and P. R. A. LYONS (Australian National University, Canberra, Australia) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 918-920. Research supported by the Australian Research Grants Scheme. refs

Measurements of standoff distance from blunted cones of various bluntness ratio in high-enthalpy nonequilibrium nitrogen flow have been made. The results show that the nondimensional shock detachment distance is a function both of bluntness ratio and the relaxation distance. The results show that shock detachment is more influenced by flow nonequilibrium in the shock layer than the conical afterbody.

Author

A89-40959

A NUMERICAL METHOD FOR CALCULATING SUBSONIC FULLY UNSTEADY AERODYNAMIC CHARACTERISTICS OF WINGS IN TIME DOMAIN

ZHENGYIN YE, LINGCHENG ZHAO, and YONGNIAN YANG (Northwestern Polytechnical University, Xian, People's Republic of China) Chinese Journal of Aeronautics (ISSN 1000-9361), vol. 2, Feb. 1989, p. 6-11. refs

In the case of arbitrary wing movement which begins impulsively from rest at some angle-of-attack, the present numerical method

for calculating fully unsteady wing aerodynamic loads in subsonic flow will yield the time-varying aerodynamic characteristics as well as the velocity field, directly in the time domain. The method is noted to be applicable to complex wing planforms, and is able to take wing thicknesses into account.

O.C.

A89-41045

A DIRECT VISCID-INVISCID INTERACTION SCHEME FOR THE PREDICTION OF TWO-DIMENSIONAL AEROFOIL LIFT AND PITCHING MOMENT IN INCOMPRESSIBLE FLOW

F. N. COTON and R. A. MCD. GALBRAITH (Glasgow, University, Scotland) Aeronautical Journal (ISSN 0001-9240), vol. 93, April 1989, p. 132-140. refs

This paper presents a method for assessing two-dimensional aerofoil lift and pitching moment characteristics including trailing edge and gross laminar separation. The model used is a direct viscid-inviscid interaction scheme based on a vortex panel method with boundary-layer corrections and an inviscidly modelled wake. The integral boundary-layer methods adopted behave well in the region of separation and thus, good comparisons with measured separation characteristics are obtained. Generally the predictions of lift and pitching moment may be considered to be within the experimental error, but where this is not the case, the applicability of the modelling technique is discussed.

A89-41082

ANALYSIS OF THE INFLUENCE OF THE END-WALL BOUNDARY LAYER GROWTH ON THE PERFORMANCE OF MULTISTAGE COMPRESSORS

RAFFAELE TUCCILLO (Napoli, Universita, Naples, Italy) International Journal of Turbo and Jet-Engines (ISSN 0334-0082), vol. 5, no. 1-4, 1988, p. 119-133. refs

A method is proposed for a through-flow analysis of multistage axial flow compressors, based upon the matching between inviscid calculation and prediction of the end-wall boundary-layer development. The results presented show the variation of flow distribution and blade loading at several flow conditions, owing to the different boundary-layer thicknesses that occur when mass flow rate changes. Furthermore, the method is suitable for use with optimizing techniques, since it takes into account the influence of the main geometrical features of the compressor.

Author

A89-41091

THE EFFECTS OF WAKE MIGRATION DURING ROLL-UP ON BLADE AIR LOADS

R. H. MILLER, S. C. ELLIS (MIT, Cambridge, MA), and L. DADONE (Boeing Helicopters, Philadelphia, PA) Vertica (ISSN 0360-5450), vol. 13, no. 1, 1989, p. 1-15. refs

The rolling-up of the near wake, during the time between its birth and its encounter with the immediately-following blade, is examined both in hover and in forward flight. It is shown that, in hovering flight, the tip vortex migrates down during roll-up but in forward flight the outer wake migrates up, coming closer to the following blade, and producing higher wake interaction loadings. A simple and computationally efficient method is proposed for incorporating these effects into existing airload codings and their effect on the airloads determined. These airloads are sensitive to the assumptions used in developing the computational algorithms, requiring further refinements as discussed. Results of preliminary calculations, coupling the proposed wake model with a current forward flight rotor analysis, are also shown.

A89-41117#

THE INVESTIGATION OF DYNAMIC DISTORTIONS IN FLOWFIELD DOWNSTREAM OF STRONG SHOCK BOUNDARY INTERACTION

ZHONGWEI HE (Nanjing Aeronautical Institute, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1989, p. 15-20, 71. In Chinese, with abstract in English.

For a given boundary layer, the dynamic flow disortion in a two-dimensional convergent-divergent duct at the interaction point of typical strong shocks to turbulent boundary layer is investigated. It is experimentally found that four turbulence peaks exist along

the height of the duct downstream of the interaction region, and that each peak corresponds to an inflection point of the pitot pressure profile. The effects of shock strength and the duct geometry on the dynamic flow distortions are discussed. The power spectral density and probability density function (PDF) of pitot pressure signals on the typical conditions of the turbulence profile are analyzed in detail. It is noted that the pattern of the PDF of the pitot pressure signals in the vortex sheet at the intersection of the gamma-shocks is similar to that of a sine wave in Gaussian noise.

A89-41119#

THE CHARACTERISTICS OF THE TURBULENCE GENERATOR AND THE SIMULATION OF THE FLOW REGULATION

WANGXING SHI (Nanjing Aeronautical Institute, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1989, p. 26-30, 72. In Chinese, with abstract in English. refs

The unsteadiness of pitot pressure distortion flow formed by an axial symmetric turbulence generator is investigated. The flow can be classified as steady or unsteady depending on whether the location and the dimension of the low-pressure zone in the flow change with time. The measurement repeatability of the distortion factor in steady flow is better than that in unsteady flow. A simple and available method to simulate flow profiles is also described. C.D.

A89-41121# MODIFICATION IN ENGINEERING CALCULATION METHOD FOR INLET DESIGN

XUELAING ZHANG (Chengdu Aircraft Corp., People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1989, p. 34-37, 73. In Chinese, with abstract in English.

Some modifications are conducted in engineering calculations to make inlet design available for computation. Two-dimensional oblique shock angle, total pressure recovery coefficient at rounded lip, subsonic critical flow coefficient, and minimum throat area are addressed. It is shown that the calculation with the modified method is precise enough to satisfy the needs to select and analyze parameters in inlet design. The modified method can be used in CAD of an inlet.

A89-41201

NASA ADDS TO UNDERSTANDING OF HIGH ANGLE OF ATTACK REGIME

WILLIAM B. SCOTT Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, May 22, 1989, p. 36-38, 42.

A highly instrumented F/A-18 aircraft has been used by NASA over the course of 83 flights to date to reach stabilized angles-of-attack (AOAs) as great as 55 deg. The flight test results thus obtained will be integrated with CFD predictions to arrive at a deeper understanding of fighter behavior in extreme-AOA maneuvers. The aircraft experiences a pronounced wing rock at 47 deg AOA which then decreases at 50 deg. The forebody vortices detected in flight are relatively weak at less than 25 deg AOA. At 35 deg, in stabilized flight, most of the lift appears to be generated by the aircraft's fuselage and leading-edge extensions.

A89-41570#

SIMULATION OF THE INTERACTION BETWEEN AERODYNAMICS AND VEHICLE DYNAMICS IN GENERAL UNSTEADY GROUND EFFECT

D. T. MOOK and A. O. NUHAIT (Virginia Polytechnic Institute and State University, Blacksburg) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 430-438. refs (AIAA PAPER 89-1498)

A method for modeling general unsteady lifting flows and a method for simulating dynamic-aerodynamic interaction are described. The aerodynamic model is general enough to treat multiple closely coupled lifting components; ground effect is taken into account by placing images of the components and their wakes

below the ground. Loads predicted by the aerodynamic model are in good agreement with wind-tunnel data for several cases of steady flow and one case of unsteady flow. The numerical simulation of aerodynamic-dynamic interaction is achieved by integrating the equations of motion of both the flowing air and the vehicle. The result is that the entire flowfield, the aerodynamic loads, and the motion of the vehicle are predicted simultaneously and interactively as functions of time. The technique is used to predict the response of a general-aviation vehicle in pitch to a sudden change in the tail deflection. Simulations are computed both in and out of ground effect.

A89-41759#

A COMPARATIVE STUDY OF THE COAKLEY AND TVD SCHEMES FOR STEADY-STATE CALCULATIONS OF ONE-DIMENSIONAL EULER EQUATIONS

SHEN-MIN LIANG, CHIEN-LAI HU, and JYH-JANG CHAN (National Cheng Kung University, Tainan, Republic of China) Chinese Society of Mechanical Engineers, Journal (ISSN 0257-9731), vol. 10, Feb. 1989, p. 23-29. refs

Numerical solutions of quasi-one-dimensional nozzle flows have been obtained by the Coakley (1953) second-order upwind scheme and the second-order TVD scheme of Yee et al. (1985). The Coakley scheme generates an overshoot at the vicinity of the shock which can be removed by modifying the algorithm. Under conditions of a preassigned tolerance and a given Courant number, it is shown that the Coakley scheme converges faster than the TVD scheme both in CPU time and in iteration number. R.R.

A89-41760#

SHOCK FITTING ALGORITHM APPLIED TO A TRANSONIC, FULL POTENTIAL FLOW

LIH-WU HOURNG and KUAN-YUAN HWANG (National Central University, Chungli, Republic of China) Chinese Society of Mechanical Engineers, Journal (ISSN 0257-9731), vol. 10, Feb. 1989, p. 31-39. Sponsorship: National Science Council of the Republic of China. refs

(Contract NSC-76-0401-E008-06)

A full potential equation is used to analyze transonic flows past a cylinder or sphere. Governing equation is discretized by Jameson's rotated difference scheme. To locate the position and shape of the shock, a shock fitting equation is derived to match the jump condition across the shock. The initially guessed shock will move according to the shock fitting equation during the numerical calculations till it reaches the correct position. For flowfield past a sphere, results show a great agreement with previous works for freestream Mach number ranging from 1.03 to 1.3. The jump of the flowfield properties across the shock is clearly seen.

A89-41771

THE EFFECT OF AN ADVERSE PRESSURE GRADIENT ON THE DRAG REDUCTION PERFORMANCE OF MANIPULATORS

A. M. SAVILL (Cambridge, University, England) International Journal of Heat and Fluid Flow (ISSN 0142-727X), vol. 10, June 1989, p. 118-124. Research supported by Rolls-Royce, PLC. refs

Skin friction data obtained with a sublayer-scale fence, razor blade, and log-layer-sized Preston tube are presented for both natural and manipulated boundary layers subjected to a strong adverse pressure gradient. The objective was to investigate how the imposition of this additional straining downstream of the device would influence the subsequent development of the manipulated boundary layer. An attempt was also made to predict the response of the boundary layer to such disturbances by applying an algebraic stress model approximation to the turbulent transport equation.

K.K.

A89-41775

ADIABATIC COMPRESSIBLE FLOW IN PARALLEL DUCTS -AN APPROXIMATE BUT RAPID METHOD OF SOLUTION

G. J. PARKER (Canterbury, University, Christchurch, New

Zealand) International Journal of Heat and Fluid Flow (ISSN 0142-727X), vol. 10, June 1989, p. 179-181.

An approximate method of solution which is direct, fast, and accurate is developed by examining the nature of exact solutions for the adiabatic one-dimensional flow of perfect gases in ducts. Observations for exact solutions are presented as well as the procedure for an approximate solution, and comparisons with exact solutions.

K.K.

A89-41776

AIAA COMPUTATIONAL FLUID DYNAMICS CONFERENCE, 9TH, BUFFALO, NY, JUNE 13-15, 1989, TECHNICAL PAPERS Conference sponsored by AIAA. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, 684 p. For individual

items see A89-41777 to A89-41841.

The conference presents papers on an adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries, an implementation of a grid-independent upwind scheme for the Euler equations, design of optimally smoothing multi-stage schemes for the Euler equations, and a computational fluid dynamics algorithm on a massively parallel computer. Consideration is also given to nonreflecting boundary conditions for Euler equation calculations, sonic-point capturing, improvements and applications of a streamwise upwind algorithm, upwind algorithms based on a diagonalization of the multidimensional Euler equations, and applications of Lagrangian time to steady supersonic airfoil. Other topics include a second-order projection method for the incompressible Navier-Stokes equations on quadrilateral grids, flow discretization by complementary volume techniques, and unstructured grid generation for nonconvex domains.

A89-41777#

AN ADAPTIVE CARTESIAN MESH ALGORITHM FOR THE EULER EQUATIONS IN ARBITRARY GEOMETRIES

MARSHA J. BERGER (New York University, NY) and RANDALL J. LEVEQUE (Washington, University, Seattle) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 1-7. refs (Contract DE-AC02-76ER-03077; AF-AFOSR-86-0148; NSF ASC-88-58101; NSF DMS-86-57319) (AIAA PAPER 89-1930)

The paper presents a Cartesian mesh algorithm with adaptive refinement to compute flows around arbitrary geometries. Cartesian meshes have been less popular than unstructured or body-fitted meshes because of several technical difficulties. An approach that resolves many of these problems is presented. Cartesian meshes have the advantage of allowing the use of high resolution methods that are difficult to develop on unstructured grids. They also allow for efficient implementation on vector computers without using gather-scatter operations except at boundary cells. Some preliminary computational results using lower order boundary conditions are presented.

A89-41779#

SOLUTION OF THE 2D NAVIER-STOKES EQUATIONS ON UNSTRUCTURED ADAPTIVE GRIDS

D. G. HOLMES (GE Research and Development Center, Schenectady, NY) and S. D. CONNELL (General Electric Co., Aircraft Engines Business Group, Cincinnati, OH) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 25-39. refs (AIAA PAPER 89-1932)

This paper presents a solution adaptive scheme for solving the Navier-Stokes equations on an unstructured mixed grid of triangles and quadrilaterals. The solution procedure uses an explicit Runge-Kutta finite volume time marching scheme. The solution is begun on a coarse grid and points are added adaptively during the solution procedure using criteria such as pressure and velocity gradients. In viscous regions the gradients are essentially one dimensional, and use is made of quadrilateral elements in these regions to facilitate the one dimensional refinement required for

the efficient resolution of boundary layers and wakes. The effect of turbulence is modeled by the inclusion of a K-epsilon turbulence model. When used for analyzing flows in turbomachinery blade rows, terms representing the effects of changes in streamsheet thickness and radius, and the effects of rotation are included. Axisymmetric flows with swirl can also be analyzed. Solutions are presented for several examples that illustrate the capability of the algorithm.

A89-41780*# Michigan Univ., Ann Arbor. DESIGN OF OPTIMALLY SMOOTHING MULTI-STAGE SCHEMES FOR THE EULER EQUATIONS

BRAM VAN LEER, CHANG-HSIEN TAI, and KENNETH G. POWELL (Michigan, University, Ann Arbor) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 40-59. Research supported by Boeing Commercial Airplane Co. refs (Contract NAG1-869)

(AIAA PAPER 89-1933)

In this paper, a method is developed for designing multi-stage schemes that give optimal damping of high-frequencies for a given spatial-differencing operator. The objective of the method is to design schemes that combine well with multi-grid acceleration. The schemes are tested on a nonlinear scalar equation, and compared to Runge-Kutta schemes with the maximum stable time-step. The optimally smoothing schemes perform better than the Runge-Kutta schemes, even on a single grid. The analysis is extended to the Euler equations in one space-dimension by use of 'characteristic time-stepping', which preconditions the equations, removing stiffness due to variations among characteristic speeds. Convergence rates independent of the number of cells in the finest grid are achieved for transonic flow with and without a shock. Characteristic time-stepping is shown to be preferable to local time-stepping, although use of the optimally damping schemes appears to enhance the performance of local time-stepping. The extension of the analysis to the two-dimensional Euler equations is hampered by the lack of a model for characteristic time-stepping in two dimensions. Some results for local time-stepping are presented.

A89-41784#

A MASSIVELY PARALLEL THREE-DIMENSIONAL EULER/NAVIER-STOKES METHOD

LYLE N. LONG, M. M. S. KHAN, and H. THOMAS SHARP (Lockheed Aeronautical Systems Co., Burbank, CA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 89-102. refs (AIAA PAPER 89-1937)

This paper describes a method for solving the three-dimensional Euler and Navier-Stokes equations using the massively parallel Connection Machine computer. The program uses a finite-volume, Runge-Kutta time-marching scheme and can accept structured or unstructured grids. The computer program is written entirely in (asterisk)LISP. Significant computational speed-ups were obtained over similar codes developed for vector supercomputers. Author

A89-41785# DEVELOPMENT OF A NAVIER-STOKES CODE ON A CONNECTION MACHINE

RAMESH K. AGARWAL (McDonnell Douglas Research Laboratories, Saint Louis, MO) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 103-108. refs (AIAA PAPER 89-1938)

The results of adaptation of a 2-D Navier-Stokes code on a 16000-processor Connection Machine CM2 are presented. The Navier-Stokes code solves the two-dimensional, unsteady, compressible, viscous-flow equations of fluid dynamics for flow past arbitrary bodies by use of an explicit, finite-volume multistage, Runge-Kutta time-stepping scheme. The code conversion issues

such as domain decomposition and boundary-condition implementation, are highlighted. The performance of the code is evaluated by calculating the flowfield of the impingement of an oblique shock on a flat plate. Runtime comparisons are made on VAX-8800, Convex CX-2, Cray X-MP, and CM2.

A89-41786# **IMPLEMENTATION OF A ROTARY-WING** THREE-DIMENSIONAL NAVIER-STOKES SOLVER ON A **MASSIVELY PARALLEL COMPUTER**

BRIAN E. WAKE and T. ALAN EGOLF (United Technologies Research Center, East Hartford, CT) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 109-124. refs (AIAA PAPER 89-1939)

An unsteady, compressible, three-dimensional Navier-Stokes solver (NSR3D), has been implemented using FORTRAN with 8X array extensions on the massively parallel Connection Machine (CM-2). The ADI flow solver was originally developed for helicopter applications, and has also been applied to Propfan configurations. In this paper, the changes to the original algorithm necessary to overcome communication bottlenecks on the CM-2 are described. The modified implicit solver has achieved CRAY speeds on a 16384 processor CM-2. In addition, the CM-2 and FORTRAN 8X array extensions, including coding examples, are briefly described. Some programming issues for difficult problems such as solving the linear systems, the boundary conditions, and the dissipation switching are discussed. Author

A89-41789# NON-REFLECTING BOUNDARY CONDITIONS FOR EULER **EQUATION CALCULATIONS**

MICHAEL B. GILES (MIT, Cambridge, MA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 143-153. refs (AIAA PAPER 89-1942)

This paper presents a unified theory for the construction of steady-state and unsteady non-reflecting boundary conditions for the Euler equations. These allow calculations to be performed on truncated domains without the generation of spurious non-physical reflections at the far-field boundaries. The general theory, developed previously by mathematicians, is presented in a more easily understood form based upon fundamental ideas of Fourier analysis and eigenvectors. The application to the Euler equations is given, and the relation to standard 'quasi-one-dimensional' boundary conditions is explained. Results for turbomachinery problems show the effectiveness of the new boundary conditions, particularly the steady-state non-reflecting boundary conditions.

A89-41790# FAR FIELD NUMERICAL BOUNDARY CONDITIONS FOR INTERNAL AND CASCADE FLOW COMPUTATIONS

CH. HIRSCH (Brussel, Vrije Universiteit, Brussels, Belgium) and A. VERHOFF (McDonnell Aircraft Co., Saint Louis, MO) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 154-168. refs (Contract N62271-86-M-0202; N62271-87-M-0215) (AIAA PAPER 89-1943)

Linearized solutions of the Euler equations are developed for the far field perturbations from the uniform free stream, for ducts and cascades. The solutions are based on the conditions that the waves associated with incoming characteristics should decay to zero in the far field, while the variables associated to the outgoing characteristics are derived from the numerical internal solution. The exact linearized solutions are based on a Fourier expansion in the direction along the inlet or exit boundaries. Results, obtained from Euler codes are shown for ducts and cascades, comparing the results for exit boundaries at increasingly closer distance to the central flow region. The results show that the corrections to

the uniform boundary conditions derived from the analysis allow a considerable reduction of the computational domain, with the corresponding savings in computational times.

A89-41792*# Michigan Univ., Ann Arbor. **SONIC-POINT CAPTURING**

BRAM VAN LEER, WEN-TZONG LEE, and KENNETH G. POWELL (Michigan, University, Ann Arbor) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 176-187. refs (Contract NSF EET-88-57500: NAG1-869) (AIAA PAPER 89-1945)

A prototype scheme that produces perfectly smooth transonic solutions to nozzle-flow problems is derived and tested. The basic upwind scheme is described as well as satisfying the entropy condition, treatment of the source term, and numerical verification. The analysis yielded a numerical flux function for use near a sonic point, which is based on a full model of a transonic expansion wave, and a matched treatment for the source term.

A89-41794*# Duke Univ., Durham, NC. ON THE ROLE OF ARTIFICIAL VISCOSITY IN **NAVIER-STOKES SOLVERS**

APARAJIT J. MAHAJAN, EARL H. DOWELL, and DONALD B. BLISS (Duke University, Durham, NC) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 197-202. refs (Contract NAG3-724)

(AIAA PAPER 89-1947)

A method is proposed to determine directly the amount of artificial viscosity needed for stability using an eigenvalue analysis for a finite difference representation of the Navier-Stokes equations. The stability and growth of small perturbations about a steady flow over the airfoils are analyzed for various amounts of artificial viscosity. The eigenvalues were determined for a small perturbation about a steady inviscid flow over a NACA 0012 airfoil at a Mach number of 0.8 and angle of attack of 0 degrees. The movement of the eigenvalue constellation with respect to the amount of artificial viscosity is studied. The stability boundries as a function of the amount of artificial viscosity from both the eigenvalue analysis and the time marching scheme are also presented. This procedure not only allows for determining the effect of varying amounts of artificial viscosity, but also for the effects of different forms of terms for artificial viscosity. Author

A VECTORIZED GAUSS-SEIDEL LINE RELAXATION SCHEME FOR SOLVING 3D NAVIER-STOKES EQUATIONS

D. L. MCMASTER, J. S. SHANG, and D. GAITONDE (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 203-211. refs

(AIAA PAPER 89-1948)

A vectorized version of MacCormack's 1984 explicit/implicit line Gauss-Seidel method for three-dimensional flow computation is described. Second-order spatial differencing has been implemented for this algorithm without sacrificing the data processing rate. Test cases are examined for numerical accuracy and convergence rate. For the vectorized procedure, the data processing rate is three times faster than for a non-vectorized code based on the same algorithm. Convergence is six times faster than a fully-vectorized explicit code based on MacCormack's 1969 predictor-corrector procedure. Author

A89-41797#

RNG-BASED TURBULENCE TRANSPORT APPROXIMATIONS WITH APPLICATIONS TO TRANSONIC FLOWS

LUIGI MARTINELLI and VICTOR YAKHOT (Princeton University. IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 221-231. refs

(AIAA PAPER 89-1950)

An algebraic eddy viscosity model, as well as a differential two equation k-epsilon model based on the Renormalization Group Theory of turbulence are proposed for closure of the compressible Reynolds averaged equations. The first model, although free from uncertainties related to the determination of modeling constants, still requires the specification of a length-scale which leads to a reduction of the generality of the model. The second model proposed is far more general. Not only does it remove the need for the determination of a length scale, but it also incorporates the low Reynolds number modeling in a form that does not depend directly on information about the wall location. This feature makes the RNG-based k-epsilon model suitable for calculation on unstructured meshes. The applicability of the RNG-based turbulence transport approximations for mildly compressible flows is demonstrated by the successful simulation of several transonic flows Author

A89-41798*# Rome Univ. (Italy).

SUPERSONIC FLOW COMPUTATIONS BY TWO-EQUATION TURBULENCE MODELING

FRANCESCO GRASSO (Roma I, Universita, Rome, Italy) and CHARLES G. SPEZIALE (NASA, Langley Research Center; Insitute for Computer Applications in Science and Engineering, Hampton, VA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 232-239. refs

(AIAA PAPER 89-1951)

In the present work a solver for the Reynolds averaged compressible Navier-Stokes equations, to compute high speed turbulent flows characterized by interacting shock waves and viscous layers, is presented. A k-epsilon turbulence model that accounts for compressibility effects is developed. The numerical algorithm is based on a finite volume multistage Runge Kutta technique that is explicit for the solution of the mean flow variables, and implicit for the solution of the k-epsilon equations. The model is validated by extensive comparison with experimental results of flows over compression ramps characterized by interacting shock waves/boundary layers.

A89-41799#

TURBULENCE MODELS FOR 3D TRANSONIC VISCOUS FLOWS

YOKO TAKAKURA (Fujitsu, Ltd., Scientific Systems Dept., Tokyo, Japan), SATORU OGAWA, and TOMIKO ISHIGURO (National Aerospace Laboratory, Tokyo, Japan) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 240-248. refs (AIAA PAPER 89-1952)

Computation of three-dimensional transonic viscous flows around the ONERA-M6 wing is performed by using the Harten-Yee TVD scheme with modification of geometrical treatment in order to seek better turbulence models. The models used here are the Jones-Launder (k-epsilon) model and the subgrid-scale model in the large eddy simulation (LES), and for comparison with the Baldwin-Lomax model. The diagonalization of flow equation system including a two-equation model necessary to perform the TVD scheme and the improvement accompanied by extending the LES to compressible flow problems are presented, and then the utilities of both models in compressible flow problems with shock waves have been investigated. The k-epsilon model and the LES work well in the large reverse flow problem by adjusting the coefficients compared with the Baldwin-Lomax model.

A89-41800*# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.).

AN EFFICIENT CELL-VERTEX MULTIGRID SCHEME FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS

R. RADESPIEL, C. ROSSOW (DFVLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany), and R. C. SWANSON (NASA, Langley Research Center, Hampton, VA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 249-260. refs

(AIAA PAPER 89-1953)

A cell-vertex scheme for the three-dimensional Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing with locally varying coefficients, a multigrid method and carefully controlled dissipative terms, very good convergence rates are obtained for two- and three-dimensional flows. Details of the acceleration techniques, which are important for convergence on meshes with high aspect-ratio cells, are discussed. Emphasis is put on the analysis of the stability properties of the implicit smoothing of the explicit residuals with coefficients, which depend on cell aspect ratios.

Author

A89-41802*# Tokyo Univ. (Japan). USE OF HIGH-RESOLUTION UPWIND SCHEME FOR VORTICAL FLOW SIMULATIONS

KOZO FUJII (Tokyo, University, Sagamihara, Japan) and SHIGERU OBAYASHI (NASA, Ames Research Center, Moffett Field, CA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 270-279. refs

(AIAA PAPER 89-1955)

For vortical flow simulations at high Reynolds number, it is important to keep the artificial dissipation as small as possible since it induces unphysical decay of the vortex strength. One way to accomplish this is to decrease the grid spacing. Another way is to use computational schemes having little dissipation. In the present paper, one of the high-resolution upwind schemes called 'MUSCL with Roe's average'is applied to vortical flow simulations. Two examples are considered. One is the leading-edge separation-vortex flow over a strake-delta wing. The other is a high-angle of attack supersonic flow over a spaceplane-like configuration. The comparison with the central difference solutions indicates that the present upwind scheme is less dissipative and thus has better resolution for the vortical flows.

A89-41804*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

IMPROVEMENTS AND APPLICATIONS OF A STREAMWISE UPWIND ALGORITHM

SHIGERU OBAYASHI and PETER M. GOORJIAN (NASA, Ames Research Center, Moffett Field, CA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 292-302. refs (AIAA PAPER 89-1957)

An improved streamwise upwind algorithm has been used to study conical flow fields. In the present method, additional terms have been introduced in the cross-flow direction to prevent solution decoupling in supersonic flows, and the local Mach number is taken into account in order to evaluate the rotated differencing. It is found that the formula captures oblique shock waves in the same manner as Roe's (1986) formula, has good convergence properties, and accurately computes shear flows.

R.R.

A89-41805#

AN ADAPTIVE GRID POLYGONAL FINITE VOLUME METHOD FOR THE COMPRESSIBLE FLOW EQUATIONS

R. STRUIJS, P. VANKEIRSBILCK, and H. DECONINCK (Institut von Karman de Dynamique des Fluides, Rhode-Saint-Genese, Belgium) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p.

303-311. Research supported by HERMES Research and Development Program. refs (AIAA PAPER 89-1959)

An implicit upwind relaxation solver for the Euler equations is presented, based on polygonal finite volumes with an arbitrary number of edges and with a centered definition of the unknowns. Grids of this type allow the combination of structured quadrilaterals well suited for discretizing boundary layers, together with classical unstructured grids based on triangles. A simple refining strategy has been implemented which proved to be very effective in controlling the size of the region to be refined. This strategy uses the fact that polygonal finite volumes with an arbitrary number of edges are allowed. Fast relaxation to a steady state is achieved by point Gauss Seidel solution of the Newton linearized conservation equations, together with an implicit characteristic boundary condition treatment. The superior flexibility of the polygonal method is demonstrated on transonic and supersonic testcase computations.

A89-41806#

MULTIGRID EULER SOLVER ABOUT ARBITRARY AIRCRAFT CONFIGURATIONS WITH CARTESIAN GRIDS AND LOCAL REFINEMENT

B. EPSTEIN, A. L. LUNTZ, and A. NACHSHON (Israel Aircraft Industries, Ltd., Lod) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 312-321. refs (AIAA PAPER 89-1960)

A three-dimensional Euler code is described, for flow calculations about arbitrary aircraft configurations. The method uses Multigrid Calculations with equally meshed Cartesian (not necessarily rectangular) grids and local refinement. The use of local computational grids which are not aligned to the body surface, or even, possibly, not aligned to one another, removes the need for complicated grid generation. Satisfactory boundary condition implementation is an important part of the algorithm. Application examples show the ability of the code to produce results in good agreement with experiment, for a wide range of flight conditions. The code provides also various data for analysis of the flow field surrounding the configuration.

A89-41807#

AN INVISCID/VISCOUS COUPLING APPROACH FOR VORTEX FLOWFIELD CALCULATIONS

K. D. LEE (Illinois, University, Urbana) and S. A. BRANDT IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 322-332. refs (AIAA PAPER 89-1961)

A new computational approach is developed for the analysis of vortex dominated flowfields around highly swept wings at high angles of attack. In this approach, an inviscid Euler technology is coupled with viscous models, similar to inviscid/boundary-layer coupling. The viscous nature of the vortex core is represented by an algebraic model derived from the Navier-Stokes equations. The approach also accounts for the effects of the viscous shear layer near a wing surface through a modified surface boundary condition. The inviscid/viscous coupling consistently provides improved predictions of leading edge separation, vortex bursting, and secondary vortex formation at relatively low computational cost. Results for several cases are compared with wind tunnel tests and other Euler and Navier-Stokes solutions.

A89-41808# APPLICATIONS OF LAGRANGIAN TIME TO STEADY SUPERSONIC AIRFOIL COMPUTATION

C. Y. LOH and W. H. HUI (Waterloo, University, Canada) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 333-342. Research supported by NSERC. refs (AIAA PAPER 89-1963)

A Lagrangian method based on the formulation of Hui and Van Roessel (1985) is used to compute steady inviscid supersonic flows past an airfoil. In the method, the stream function and the Lagrangian time are employed as the independent variables, and the flow tangency condition at the body surface and the Rankine-Hugoniot conditions at the bow shock are satisfied on the exact fixed coordinate lines. The scheme is shown to be fast to execute and to provide accurate predictions of pure expansion flows, pure compression flows, and flows with only a boundary shock.

A89-41814*# Toledo Univ., OH. FLOW OF RAREFIED GASES OVER TWO-DIMENSIONAL BODIES

DUEN-REN JENG, KENNETH J. DE WITT, THEO G. KEITH, JR. (Toledo, University, OH), and CHAN-HONG CHUNG IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 389-399. refs (Contract NAG3-577) (AIAA PAPER 89-1970)

A kinetic-theory analysis is made of the flow of rarefied gases over two-dimensional bodies of arbitrary curvature. The Boltzmann equation simplified by a model collision integral is written in an arbitrary orthogonal curvilinear coordinate system, and solved by means of finite-difference approximation with the discrete ordinate method. A numerical code is developed which can be applied to any two-dimensional submerged body of arbitrary curvature for the flow regimes from free-molecular to slip at transonic Mach numbers. Predictions are made for the case of a right circular cylinder.

A89-41815*# Eloret Corp., Sunnyvale, CA. A MULTI-TEMPERATURE TVD ALGORITHM FOR RELAXING HYPERSONIC FLOWS

JEAN-LUC CAMBIER (Eloret Institute, Sunnyvale, CA) and GENE P. MENEES (NASA, Ames Research Center, Moffett Field, CA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 400-414. refs

(AIAA PAPER 89-1971)

In this paper, the extension of a multispecies TVD algorithm, second-order accurate for real-gas flows to a multitemperature formulation is described. The convection algorithm is coupled to internal relaxation processes, and the features of the coupling are examined. The first version consists of a three-temperature model, where translational-rotational, vibrational, and electronic energy modes are separately convected. Although several species are present, there is only one vibrational temperature in this model. The second version generalizes to a vibrational temperature for each molecular specie, with additional couplings between species. The algorithms are applied to a generic two-dimensional flow field, and results are compared with experimental observations.

Author

A89-41816*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

UPWIND-BIASED, POINT-IMPLICIT RELAXATION STRATEGIES FOR VISCOUS, HYPERSONIC FLOWS

PETER A. GNOFFO (NASA, Langley Research Center, Hampton, VA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 415-425. refs

(AIAA PAPER 89-1972)

An upwind-biased point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for three-dimensional viscous hypersonic flows in chemical and thermal nonequilibrium is described. Details of the algorithm development, in the context of an 11-species two-temperature reacting gas model, are emphasized. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without

the necessity of solving large block-tridiagonal systems. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium (velocity = 8917 m/s, altitude = 78 km) over the Aeroassist Flight Experiment configuration, obtained on a multidomain grid, are discussed.

A89-41818*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

A FULLY-COUPLED IMPLICIT METHOD FOR THERMO-CHEMICAL NONEQUILIBRIUM AIR AT SUB-ORBITAL FLIGHT SPEEDS

CHUL PARK (NASA, Ames Research Center, Moffett Field, CA) and SEOKKWAN YOON (MCAT Institute, Moffett Field, CA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 440-449. refs (AIAA PAPER 89-1974)

A CFD technique is described in which the finite-rate chemistry in thermal and chemical nonequilibrium air is fully and implicitly coupled with the fluid motion. Developed for use in the suborbital hypersonic flight speed range, the method accounts for nonequilibrium vibrational and electronic excitation and dissociation, but not ionization. The steady-state solution to the resulting system of equations is obtained by using a lower-upper factorization and symmetric Gauss-Seidel sweeping technique through Newton iteration. Inversion of the left-hand-side matrices is replaced by scalar multiplications through the use of the diagonal dominance algorithm. The code, named CENS2H (Compressible-Euler-Navier-Stokes Two-Dimensional Hypersonic), is fully vectorized and requires about 8.8 x 10 to the -5th sec per node point per iteration using a Cray X-MP computer. Converged solutions are obtained after about 2400 iterations. Sample calculations are made for a circular cylinder and a 10 percent airfoil at 5 deg angle of attack. The calculated cylinder flow field agrees with that obtained experimentally. The code predicts a 10 percent change in lift, drag, and pitching moment for the airfoil due to the thermochemical phenomena.

A89-41819*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

FINITE ELEMENT COMPUTATION OF HYPERSONIC FLOW PAST A COMPLETE BODY

MARK HOMMEL (NASA, Johnson Space Center, Houston, TX) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 450-454. refs

(AIAA PAPER 89-1976)

The finite element method was applied to compressible flows past complete blunt bodies in a first attempt to use the method to model hypersonic flow past re-entry vehicles. A Runge-Kutta time marching scheme was utilized and was found to adequately handle the bow shock and downstream wake. Adaptive refinement was successively applied to the flow field grid, and improvement in solution accuracy was observed. The results reported in this paper include the flow past a circular cylinder at Mach 3, and the flow in the plane of symmetry for the flow past a sphere at Mach 10.

A89-41820#

SIMPLE IMPROVEMENTS OF AN UPWIND TVD SCHEME FOR HYPERSONIC FLOW

B. MUELLER (DFVLR, Institut fuer theoretische Stroemungsmechanik, Goettingen, Federal Republic of Germany) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 455-463. Research supported by CNES. refs (AIAA PAPER 89-1977)

A spatially second-order-accurate upwind TVD scheme is investigated using the Euler implicit method with approximate factorization. For inviscid flow, Roe's average leads to a simpler and more accurate solid-wall boundary treatment than the use of

the wall-normal momentum equation. The entropy function applied to the nonlinear fields to enforce the entropy condition is anisotropicly scaled to handle highly stretched grid cells for viscous hypersonic flow. The modified scheme is applied to calculate inviscid and viscous supersonic and hypersonic flow over ramps and laminar hypersonic flow over a flared cone.

Author

A89-41823*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

CONSERVATIVE TREATMENT OF BOUNDARY INTERFACES FOR OVERLAID GRIDS AND MULTI-LEVEL GRID ADAPTATIONS

YOUNG J. MOON (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH) and MENG-SING LIOU (NASA, Lewis Research Center, Cleveland, OH) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 480-494. refs (Contract NAS3-25266)

(AIAA PAPER 89-1980)

Conservative algorithms for boundaray interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.

A89-41825*# Old Dominion Univ., Norfolk, VA. DYNAMIC GRID DEFORMATION USING NAVIER-DISPLACEMENT EQUATION FOR DEFORMING WINGS

OSAMA A. KANDIL and H. ANDREW CHUANG (Old Dominion University, Norfolk, VA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 502-511. refs

(Contract NAG1-648)

(AIAA PAPER 89-1982)

For dynamic and aeroelastic applications of maneuvering wings, the solid boundaries, undergo rigid-body motion and aeroelastic deformation. For rigid-body motion, the conservative fluid dynamics equation, in terms of the Eulerian description, is written in terms of a moving frame of reference, and the problem is solved on a time-independent body-conformed grid. For both rigid-body motion and aeroelastic deformation, the Navier-displacement equation, in terms of the Lagrangian coordinates, is modified for fluid-flow problems. It is used along with the Eulerian description of the conservative fluid dynamics equations to account for the grid deformation.

A89-41826#

UNSTRUCTURED GRID GENERATION FOR NON-CONVEX DOMAINS

JIUNN FANG and STEPHEN R. KENNON (Texas, University, Arlington) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 512-524. refs

(Contract F08635-89-C-0211)

(AIAA PAPER 89-1983)

Two methods for generating unstructured grids about arbitrary, nonconvex domains are presented. The first method is based on the sweepline concept and the second is based on a novel generalization of the Voronoi diagram and rational treatment of the domain boundaries. A modification is made to the standard sweepline algorithm to handle nonconvex domains correctly. The second method is shown to enforce the boundary of the domain as part of the triangulation. Thus, both methods guarantee valid, boundary-conforming grids for arbitrary, nonconvex domains.

Example grids generated using each scheme are presented for generic test cases and a multiple-element airfoil configuration.

Author

A89-41832#

VORTICITY EQUATION SOLUTIONS FOR SLENDER WINGS AT HIGH INCIDENCE

A. DAGAN (Ministry of Defence, Scientific Dept., Haifa, Israel) and D. ALMOSNINO (Technion - Israel Institute of Technology, Haifa) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 579-587. refs

(AIAA PAPER 89-1989)

An approximate model for the viscous flow around slender wing or body shapes at high angles of attack is proposed. The Sychev (1960) geometric similarity parameter is shown to apply to the present viscous flow model. The feasibility of the method is tested using the examples of various delta wings with flat elliptical cross sections. Results for aerodynamic coefficients, surface pressure distributions, stream functions, and vorticity contours in cross-flow planes agree well with experimental data.

R.R.

A89-41835#

A TIME-ACCURATE ITERATIVE SCHEME FOR SOLVING THE UNSTEADY COMPRESSIBLE FLOW EQUATIONS

KENICHI MATSUNO (National Aerospace Laboratory, Chofu, Japan) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 602-611. refs

(AIAA PAPER 89-1992)

A second-order time-accurate scheme has been extended to an arbitrary kth-order time-accurate scheme with high-order accuracy in both time and space. The second-order scheme is shown to be suitable for unsteady flow computations. Although the kth-order form of the algorithm is essentially iterative at each time step, the scheme is theoretically kth-order accurate in time without any iteration. It is noted that the iterations at each time step improve the numerical accuracy and robustness of the algorithm.

A89-41836#

A NEW FORMULATION FOR UNSTEADY COMPRESSIBLE EULER EQUATIONS

H. U. AKAY, A. ECER, and E. SPYROPOULOS (Purdue University, Indianapolis, IN) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 612-621. refs (AIAA PAPER 89-1993)

A Clebsch formulation of the unsteady Euler equations is discussed. It is demonstrated that the modeling of the shock for transonic flows and the implementation of the Kutta condition for sharp trailing edges of airfoils can be accomplished with the desired level of accuracy. The circulation around an airfoil can be expressed in terms of the jump in entropy, the density, and two Clebsch variables at the trailing edge.

A89-41837*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A TIME ACCURATE FÍNITE VOLUME HIGH RESOLUTION SCHEME FOR THREE DIMENSIONAL NAVIER-STOKES EQUATIONS

MENG-SING LIOU (NASA, Lewis Research Center, Cleveland, OH) and ANDREW T. HSU (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 622-633. refs (AIAA PAPER 89-1994)

A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes

equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions. Author

A89-41838#

A FLUX-DIFFERENCE SPLIT ALGORITHM FOR UNSTEADY THIN-LAYER NAVIER-STOKES SOLUTIONS

L. BRUCE SIMPSON (USAF, Armament Laboratory, Eglin AFB, FL) and DAVID L. WHITFIELD (Mississippi State University, Mississippi State) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 634-642. refs (AIAA PAPER 89-1995)

An efficient flux-difference split scheme for obtaining steady and unsteady thin-layer Navier-Stokes solutions for airfoils and wings has been developed. Steady solutions for a flat plate laminar boundary layer profile can be accurately modeled using only three grid cells internal to the boundary layer. An efficient Newtonian subiteration technique was employed to allow for larger time step sizes and second order temporal accuracy. The present results agree well with experimental data for NACA 0012 airfoils and for the Langley rectangular-planform supercritical wing.

A89-41839*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

UNSTEADY AERODYNAMIC SIMULATION OF MULTIPLE BODIES IN RELATIVE MOTION

ROBERT L. MEAKIN (NASA, Ames Research Center, Moffett Field, CA) and NORMAN E. SUHS (Calspan Corp., Arnold AFB, TN) IN: AlAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 643-657. Research supported by USAF, U.S. Navy, and NASA. refs

(AIAA PAPER 89-1996)

A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two-and three-dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.

A89-41841#

ANALYSIS OF POTENTIAL AND VISCOUS FLOWS PAST GENERAL TWO-DIMENSIONAL BODIES WITH ARBITRARY TRAILING EDGE GEOMETRIES

G. A. OSSWALD, K. N. GHIA, and U. GHIA (Cincinnati, University, OH) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 668-677. Research supported by Science Applications International Corp. refs

(Contract AF-AFOSR-87-0074) (AIAA PAPER 89-1969) A two-dimensional unsteady Navier-Stokes (NS) analysis is extended to compute the separated viscous flow past arbitrary bodies. The conservation-law form of the governing NS equations is used in terms of the stream function and vorticity in generalized orthogonal coordinates. The conformal Schwarz-Christofem mapping technique of Davis (1979) forms the basis of the present separable orthogonal grid-generation analysis. The analysis uses curved body elements to generate arbitrary two-dimensional profiles with sharp as well as rounded trailing edges. The dominant scales of the separated flow are resolved using one-dimensional clustering transformations based on cubic-spline functions. Eight flow configurations were planned; the results for five are included herein. The Reynolds number is fixed at 1,000 in all of these configurations, and the effect of cusped, wedge-shaped and rounded trailing-edge geometries is examined.

A89-41842#

UPWIND ALGORITHMS BASED ON A DIAGONALIZATION OF THE MULTIDIMENSIONAL EULER EQUATIONS

CH. HIRSCH and C. LACOR (Brussel, Vrije Universiteit, Brussels, Belgium) AIAA, Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989. 18 p. refs (AIAA PAPER 89-1958)

A new method for the solution of the multidimensional Euler equations is presented. As opposed to the classical schemes it is genuinely multidimensional in that the local characteristic directions into which information is propagated, are detected. Based on this approach a conservative cell-centered scheme has been formulated. The numerical fluxes are evaluated using MUSCL extrapolations along the characteristic directions. This leads to a family of first- and second-order accurate schemes with an improved resolution as compared to the classical schemes.

Author

A89-41844#

A CENTRAL FINITE VOLUME TVD SCHEME FOR THE CALCULATION OF SUPERSONIC AND HYPERSONIC FLOW FIELDS AROUND COMPLEX CONFIGURATIONS

J. SCHOENE, N. KROLL, C. ROSSOW, H. LI, and TH. SONAR (DFVLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany) AIAA, Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989. 18 p. refs (AIAA PAPER 89-1975)

A finite volume scheme based on the Euler equations is used to analyze three-dimensional supersonic and hypersonic flows. Numerical results for a blunted biconic configuration and for the Hermes reentry vehicle demonstrate the limitations of the dissipation model of Jameson et al. (1981). In comparison with results obtained with the Jameson et al. scheme, solutions obtained using a modified discretization having TVD properties in one dimension are shown to exhibit fewer oscillations in the flow variables in the vicinity of strong shocks.

A89-41903

LINEAR INSTABILITIES IN TWO-DIMENSIONAL COMPRESSIBLE MIXING LAYERS

SAAD A. RAGAB and J. L. WU (Virginia Polytechnic Institute and State University, Blacksburg, PA) Physics of Fluids A (ISSN 0899-8213), vol. 1, June 1989, p. 957-966. refs (Contract N00014-87-K-0168)

Linear instability waves in supersonic shear layers are analyzed. Both viscous and inviscid disturbances are considered. The basic state is obtained by solving the compressible laminar boundary-layer equations or is specified by the hyperbolic tangent profile. The effects of the velocity ratio and temperature ratio are determined. The numerical results show that the maximum growth rate depends nonlinearly on the velocity ratio. The results also substantiate the convective Mach number as a compressibility parameter for mixing layers.

A89-42009*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

OBSERVATION OF AIRPLANE FLOWFIELDS BY NATURAL CONDENSATION EFFECTS

JAMES F. CAMPBELL, JOSEPH R. CHAMBERS, and CHRISTOPHER L. RUMSEY (NASA, Langley Research Center, Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 593-604. Previously cited in issue 07, p. 929, Accession no. A88-22139. refs

A89-42010*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

TRANSONIC UNSTEADY PRESSURE MEASUREMENTS ON A SUPERCRITICAL AIRFOIL AT HIGH REYNOLDS NUMBERS ROBERT W. HESS, DAVID A. SEIDEL, WILLIAM B. IGOE, and PIERCE L. LAWING (NASA, Langley Research Center, Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 605-614. Previously cited in issue 08, p. 1032, Accession no. A87-22370. refs

A89-42011*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

CAVITY DOOR EFFECTS ON AERODYNAMIC LOADS OF STORES SEPARATING FROM CAVITIES

A. B. BLAIR, JR. and R. L. STALLINGS, JR. (NASA, Langley Research Center, Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 615-620. Previously cited in issue 07, p. 933, Accession no. A88-22244. refs

A89-42012*# Royal Aerospace Establishment, Farnborough (England).

VALIDATION OF AERODYNAMIC PARAMETERS FOR HIGH-INCIDENCE RESEARCH MODELS

A. JEAN ROSS, GERALDINE F. EDWARDS (Royal Aerospace Establishment, Farnborough, England), VLADISLAV KLEIN (George Washington University, Hampton, VA), and JAMES G. BATTERSON (NASA, Langley Research Center, Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 621-628. Research supported by the Ministry of Defence Procurement Executive. Previously cited in issue 22, p. 3530, Accession no. A87-49608. refs

A89-42013*# Cambridge Acoustical Associates, Inc., MA. LIFTING-SURFACE THEORY FOR PROPFAN VORTICES IMPINGING ON A DOWNSTREAM WING

R. MARTINEZ (Cambridge Acoustical Associates, Inc., MA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 629-633. refs

(Contract NAS1-18020)

Retrofitment of commercial aircraft with propfans could introduce undesirable aerodynamic sources of structure-borne noise that are absent for current turbojet powerplants. This paper theoretically examines the whipping action of the vortex wake from a generic propeller on the downstream rigid wing that supports it. The model addresses the high-frequency/compressible regime of most anticipated propfan implementations and produces an analytic solution for the distributed wing airload due to the periodic vortex impingement. The analysis also yields an expression for the local unsteady lift obtained from integration over an arbitrary internal patch of wing surface, for the purpose of applying a practical number of such forces at the nodes of a finite-element model for the corresponding structure (wing response results are not included in the present paper). Reported estimates of induced wing loads for a conventional-propeller example of demonstration appear to be in the reasonable range of expectation. Author

A89-42014#

NUMERICAL SIMULATION OF THE NAVIER-STOKES EQUATIONS FOR AN F-16A CONFIGURATION

G. W. HUBAND, D. P. RIZZETTA, and J. J. S. SHANG (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p.

634-640. Previously cited in issue 16, p. 2592, Accession no. A88-40702. refs

A89-42015#

FLOW PAST TWO-DIMENSIONAL RIBBON PARACHUTE MODELS

HIROSHI HIGUCHI and FUMIYUKI TAKAHASHI (Minnesota, University, Minneapolis) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 641-649. Research supported by Sandia National Laboratory. Previously cited in issue 16, p. 2592, Accession no. A88-40714. refs

A89-42016*# Vigyan Research Associates, Inc., Hampton, VA. HYPERSONIC PARABOLIZED NAVIER-STOKES CODE VALIDATION ON A SHARP NOSE CONE

LAWRENCE D. HUEBNER (Vigyan Research Associates, Inc., Hampton, VA), JAMES L. PITTMAN (NASA, Langley Research Center, Hampton, VA), and ARTHUR D. DILLEY (Analytical Services and Materials, Inc., Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 650-656. Previously cited in issue 16, p. 2594, Accession no. A88-40739. refs

A89-42017#

INVESTIGATIONS ON THE VORTICITY SHEETS OF A CLOSE-COUPLED DELTA-CANARD CONFIGURATION

HANS-CHRISTOPH OELKER and DIETRICH HUMMEL (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) (ICAS, Congress, 16th, Jerusalem, Israel, Aug. 28-Sept. 2, 1988, Proceedings. Volume 1, p. 649-662) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 657-666. Previously cited in issue 03, p. 257, Accession no. A89-13566. refs

(Contract DFG-HU-254/8)

A89-42020*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

TRANSONIC AEROELASTICITY OF FIGHTER WINGS WITH ACTIVE CONTROL SURFACES

GURU P. GURUSWAMY and EUGENE L. TU (NASA, Ames Research Center, Moffett Field, CA) (Structures, Structural Dynamics and Materials Conference, 28th, Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers. Part 2A, p. 16-30) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 682-684. Previously cited in issue 14, p. 2102, Accession no. A87-33657. refs

A89-42021*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

EFFECTS OF CONTAMINATION ON RIBLET PERFORMANCE BARRY S. LAZOS (NASA, Langley Research Center, Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 684-686. refs

Thin-element polymeric film riblet surfacing materials previously shown to behave similarly to v-groove riblets in the reduction of aerodynamic drag have been tested to ascertain the effects of groove contamination. Three different levels of contamination were simulated for each of two kinds of contamination. Surphy contaminants as oil drops and condensates have no significant effect on drag reduction. Atmospheric particulates may, however, degrade riblet performance.

A89-42023#

NUMERICAL PREDICTION OF AERODYNAMIC PERFORMANCE FOR LOW REYNOLDS NUMBER AIRFOILS

FIE-BIN HSIAO (National Cheng Kung University, Tainan, Republic of China) and CHENG-CHAING HSU Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 689-692. Previously cited in issue 16, p. 2595, Accession no. A88-40744. refs

A89-42024*# San Diego State Univ., CA. NUMERICAL SIMULATION OF AIRCRAFT ROTARY AERODYNAMICS

JOSEPH KATZ (San Diego State University, CA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 692, 693.

Previously cited in issue 07, p. 934, Accession no. A88-22295. refs (Contract NCC2-458)

A89-42026#

CALCULATION OF WIND-TUNNEL SIDE-WALL INTERFERENCE USING A THREE-DIMENSIONAL MULTIGRID NAVIER-STOKES CODE

R. RADESPIEL (DFVLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 9 p. refs (AIAA PAPER 89-1790)

A recently developed finite-volume code that applies a multistage time stepping scheme in conjunction with steady state acceleration techniques is used to solve the three-dimensional Navier-Stokes equations for flow over the CAST 10-2/Do A 2 airfoil mounted in a wind tunnel. Attention is given to various aspects of computing viscous side-wall effects on the flow around an airfoil. These include the extension of the Baldwin-Lomax turbulence model to compute flows in junctures and the treatment of the boundaries of the computational domain. Results for different angles of attack are compared to two-dimensional Navier-Stokes solutions and to measurements. It is shown that the effects of the viscous side wall can vary significantly depending on the size of the supersonic region on the upper side of the airfoil.

A89-42028#

GLOBAL MARCHING TECHNIQUE FOR PREDICTING FLOWS OVER AIRFOILS WITH LEADING AND TRAILING EDGE ELADS

AHMAD A. M. HALIM (USAF, Institute of Technology, Wright-Patterson AFB, OH) and F. HAFEEZ AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 16 p. refs (AIAA PAPER 89-1793)

The purpose of this paper is to develop a code based on the approximate Navier Stokes (ANS) equations in the Vorticity Stream Function delta form. The current version of the code can be used to predict unsteady turbulent flow around nonsymmetric bodies. The code has been used to analyze low Reynolds number (100,000) flow around the Wortman FX 63-137 airfoil fitted with leading and trailing edge devices at various angles of attack and various deflection angles. Results are compared to the experimental data of Muller and Williams. The agreement is very good at small angles of attack. Overall, the present scheme produces reasonable results and has the potential of being developed into an effective design tool.

A89-42036*# Ohio State Univ., Columbus. AN EXPERIMENTAL STUDY OF A REATTACHING SUPERSONIC SHEAR LAYER

M. SAMIMY (Ohio State University, Columbus) and B. A./K. ABU-HIJLEH AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 6 p. refs (Contract NAG3-764; N00014-87-K-0168) (AIAA PAPER 89-1801)

A Mach 1.83 fully developed turbulent boundary layer was separated at a 25.4 mm backward step and formed a free shear layer. The incoming boundary layer thickness, momentum thickness, and Reynolds number were approximately 8 mm, 0.5 mm, and 52x10 to the 6th/m, respectively. A two-component coincident LDV system was used to take velocity measurements of the incoming boundary layer, the free shear layer, and the reattached shear layer. The results confirmed the existence of organized structures in both the free and the reattached shear layer which was reported earlier based on the authors dynamic pressure measurements and Schlieren photographs.

A89-42037#

A STRUCTURE OF LEADING-EDGE AND TIP VORTICES AT A DELTA WING

SUSUMU SHIRAYAMA (Institute of Computational Fluid Dynamics,

Tokyo, Japan) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. refs

(AIAA PAPER 89-1803)

An analysis of the rolling-up mechanism and core features of leading edge and tip vortices which is based on the mechanics of vortex loops is presented. The method involves solving the pressure equation and the Navier-Stokes equation. Flowfields have been computed for a thin full-span wing with a 20-deg semivertex angle and a thin semispan wing with a 14-deg semivertex angle. Although the present flowfields are unsteady, it is found that primary separation is stable and that vortex lift is obtained.

A89-42038#

NUMERICAL ANALYSIS ON AERODYNAMIC CHARACTERISTICS OF AN INCLINED SQUARE CYLINDER

TETSURO TAMURA (Shimizu Corp., Ohsaki Research Institute, Tokyo, Japan) and KUNIO KUWAHARA (Institute of Space and Astronautical Science, Sagamihara, Japan) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 15 p. refs (AIAA PAPER 89-1805)

Two- and three-dimensional unsteady flows with separation around a square cylinder with angle of attack are simulated by a direct finite difference computation of the incompressible Navier-Stokes equations. Any explicit turbulence models are not incorporated and the third order upwind sheme is used for the nonlinear convection terms. Computational vortex motions in the separation region and aerodynamic forces on the cylinder are investigated and their relations are clarified. The 3-D computational tis found that the 3-D flow structures in the separation-reattachment zone close to the upwind side surface have an important role in order to decide the aerodynamic behavior of an inclined square cylinder.

A89-42041# NUMERICAL ANALYSIS OF SUPERSONIC TURBULENT MIXING LAYER

STEPHEN C. CHAN and RODNEY L. CLARK (Teledyne Brown Engineering, Huntsville, AL) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 6 p. refs

(AIAA PAPER 89-1811)

Numerical analysis of the supersonic turbulent mixing layer is presented by using the multi-dimensional Upwind Flux Difference Splitting (UFDS) implicit algorithm to solve the full compressible Navier-Stokes equations. An algebraic Baldwin and Lomax turbulent model is adapted for the presented turbulence analysis. The backward-facing step with a small amount of fluid blowing from the lower wall is considered. The objectives are to validate this algorithm with accurate experimental data and then to extend the computations to include an aero-optical interactions analysis. Both two-dimensional and three-dimensional solutions with the UFDS algorithm and with a central difference algorithm that employed artificial viscosity (AV) are presented. As expected, the UFDS algorithm yields better agreement with experimental data. Author

A89-42043*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

EXPERIMENTAL STUDY OF FREE-SHEAR LAYER TRANSITION ABOVE A CAVITY AT MACH 3.5

RUDOLPH A. KING, THEODORE R. CREEL, JR., and DENNIS M. BUSHNELL (NASA, Langley Research Center, Hampton, VA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 14 p. refs (AIAA PAPER 89-1813)

The transition behavior of a free-shear layer above a cavity with high and low levels of freestream acoustic disturbances has been studied at Mach 3.5. Optical techniques, mean pitot pressure measurements, and hot-wire measurements were employed to detect transition locations. Transition Reynolds numbers of between 363,000 and 530,000 were found, in agreement with previous

results. It is suggested that upstream convected disturbances may be at least partially responsible for the insensitivity of transition Reynolds numbers to the freestream acoustic disturbance field.

A89-42044#

USE OF NAVIER-STOKES CODE TO PREDICT FLOW PHENOMENA NEAR STALL AS MEASURED ON A 0.658-SCALE V-22 TILTROTOR BLADE

J. C. NARRAMORE (Bell Helicopter Textron, Inc., Fort Worth, TX) and R. VERMELAND (Cray Research, Inc., Mendota Heights, MO) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 8 p. refs (AIAA PAPER 89-1814)

A three-dimensional unsteady Navier-Stokes method is used to model the flowfield about an axial flow rotor at high thrust levels in order to study the marked increase in lift coefficients noted near the stall of rotating blades. Axial flow hovering flight is a critical operating condition for VTOL aircraft. The results show that the flow on the inboard end of the blade remains attached up to high angles of attack, and that flow separation in the inboard region is curtailed for a rotating blade.

R.R.

A89-42045#

THREE DIMENSIONAL ANALYSIS OF A ROTOR IN FORWARD

R. GANESH RAJAGOPALAN (lowa State University of Science and Technology, Ames) and SANJAY R. MATHUR AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. Research supported by Iowa State University of Science and Technology. refs (AIAA PAPER 89-1815)

The steady, incompressible laminar Navier-Stokes equations in Cartesian coordinates are solved for the flow field and performance characteristics of a helicopter rotor in forward flight. The rotor is modelled as a distribution of momentum sources the strength of which is determined from implicit functional relations involving the flow field properties, the rotor geometry and the aerodynamic characteristics of the blade cross-section. These strengths are calculated along with the rest of the flow field in an iterative manner using a finite-volume based primitive variable algorithm. No assumptions about the wake structure are made. Blade-loads are obtained for a test case and compared with experimental results. Solutions for the surrounding flow field are also presented.

A89-42046*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

VORTEX-DOMINATED CONICAL-FLOW COMPUTATIONS USING UNSTRUCTURED ADAPTIVELY-REFINED MESHES

JOHN T. BATINA (NASA, Langley Research Center, Hampton, VA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 14 p. refs (AIAA PAPER 89-1816)

A conical Euler/Navier-Stokes algorithm is presented for the computation of vortex-dominated flows. The flow solver involves a multistage Runge-Kutta time stepping scheme which uses a finite-volume spatial discretization on an unstructured grid made up of triangles. The algorithm also employs an adaptive mesh refinement procedure which enriches the mesh locally to more accurately resolve the vortical flow features. Results are presented for several highly-swept delta wing and circular cone cases at high angles of attack and at supersonic freestream flow conditions. Accurate solutions were obtained more efficiently when adaptive mesh refinement was used in contrast with refining the grid globally. The paper presents descriptions of the conical Euler/Navier-Stokes flow solver and adaptive mesh refinement procedures along with results which demonstrate the capability.

A89-42047#

THE COMPUTATION OF NAVIER-STOKES SOLUTIONS EXHIBITING ASYMMETRIC VORTICES

M. J. SICLARI and F. MARCONI (Grumman Corporate Research

Center, Bethpage, NY) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 14 p. refs

(AIAA PAPER 89-1817)

An efficient Navier-Stokes solver is used to demonstrate the existence of asymmetric vortex flows on slender cones flying at supersonic speeds and at very high angles of attack. The iteration scheme is continued until the residual or error attains machine zero. The computations were carried out on very fine grids so that issues of unsteadiness in the solution or large truncation error are minimized. These types of asymmetries have been noted experimentally for years; in addition, analytical/computational models have indicated the existence of these types of solutions. This paper is the first to present Navier-Stokes solutions which firmly demonstrate that these flows exist and that they are not experimental or computational anomalies.

A89-42048#

MULTIGRID SOLUTION OF THE EULER EQUATIONS FOR THREE-DIMENSIONAL CASCADE FLOWS

J. S. LIU and S. V. SUBRAMANIAN (Textron Lycoming, Stratford, CT) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 7 p. Research supported by Textron Lycoming Independent Research and Development Program. refs

(AIAA PAPER 89-1818)

The performance of a computer code, developed for simulating three-dimensional flowfields in stationary and rotating turbo-machinery blade rows is described in this study. The code solves the time dependent, three-dimensional Euler equations in cylindrical coordinates including the effect of blade rotation using the multi-stage Runge-Kutta numerical integration scheme. The major feature of this study is the incorporation of the multigrid acceleration technique for improving solution convergence. In order to demonstrate the accuracy and effectiveness of this code as an efficient design tool, solutions were obtained for many test case geometries. Results are presented for a subsonic turbine stator and a transonic compressor rotor for the sake of brevity. Numerical predictions are compared with experimental data to illustrate that the multigrid code efficiently predicts many important flow features with very good accuracy.

A89-42049*# Vigyan Research Associates, Inc., Hampton, VA. INNOVATIVE PYLON CONCEPTS FOR ENGINE-AIRFRAME INTEGRATION FOR TRANSONIC TRANSPORTS

DINESH A. NAIK (Vigyan Research Associates, Inc., Hampton, VA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. refs (Contract NAS1-17919) (AIAA PAPER 89-1819)

Pylon cross-sectional geometries that are believed to reduce pylon/wing installation drag are analyzed. The basic design philosophy is to alleviate flow acceleration near the pylon/wing junction by aerodynamic means. This involves reshaping the pylon, particularly on the inboard side. In some instances this is achieved by moving the pylon trailing edge closure aft of the wing trailing edge. A three-dimensional Euler code was used for the analysis. Promising pylon shapes are identified for further investigation.

Author

A89-42051*# Virginia Polytechnic Inst. and State Univ., Blacksburg.

NEW MIXING-LENGTH MODEL FOR TURBULENT HIGH-SPEED FLOWS

M. SITU and J. A. SCHETZ (Virginia Polytechnic Institute and State University, Blacksburg, PA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 15 p. Research supported by Johns Hopkins University and NASA. refs

(AIAA PAPER 89-1821)

A modification of Prandtl's mixing-length model is presented which takes into account the effects of compressibility on turbulence for high speed flows. A parameter is introduced into

the turbulent transport formula which acts like an effective turbulent Schmidt number for mixtures of gases or a turbulent Prandtl number for a homogeneous gas. Results presented for such cases as high Mach number turbulent boundary layer flows over a flat surface, tangential slot injection problems, and shock/turbulent shear-layer and boundary-layer interactions agree well with experimental data.

R.R.

A89-42052#

A COMPUTATIONAL ANALYSIS OF THE TRANSONIC FLOW FIELD OF TWO-DIMENSIONAL MINIMUM LENGTH NOZZLES BRIAN M. ARGROW and GEORGE EMANUEL (Oklahoma, University, Norman) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 22

(AIAA PAPER 89-1822)

The method of characteristics is used to generate supersonic wall contours for two-dimensional, straight sonic line (SSL) and curved sonic line (CSL) minimum length nozzles for exit Mach numbers of two, four and six. These contours are combined with subsonic inlets to determine the influence of the inlet geometry on the sonic-line shape and location and on the supersonic flow field. A modified version of the code VNAP2 is used to compute the inviscid and laminar flow fields for Reynolds numbers of 1,170, 11,700, and 23,400. Results indicate that the inlet geometry directly determines the sonic-line shape and location. Supersonic flow field waves, are observed to be a direct result of the inlet geometry. The sonic-line assumptions made for the SSL prove to be superior to those of the CSL.

A89-42056*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

CALCULATION OF WINGED-BODY-LIKE FLOW FIELDS USING AN IMPLICIT UPWIND SPACE-MARCHING CODE

SCOTT L. LAWRENCE (NASA, Ames Research Center, Moffett Field, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 12 p. refs (AIAA PAPER 89-1826)

The Mach-8 flow past a 60-deg swept fin mounted on a 12-degree ramp has been simulated using a parabolized Navier-Stokes solver employing an upwind algorithm in order to investigate the interference patterns that develop when a bow shock impinges on a wing shock. Good agreement with experimental data is found downstream of the interaction for each of three meshes of varying grid point density and computed surface pressure and heat transfer. In the wedge flow region, some disagreement with experimental data is noted for both pressure and heat transfer.

A89-42057#

PROGRESS IN THE DEVELOPMENT OF PARABOLIZED NAVIER-STOKES TECHNOLOGY FOR EXTERNAL AND INTERNAL SUPERSONIC FLOWS

W. J. KRAWCZYK, T. B. HARRIS, N. RAJENDRAN (Science Applications International Corp., Wayne, PA), and D. R. CARLSON (Science Applications International Corp., Dayton, OH) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 17 p. refs (AIAA PAPER 89-1828)

Renewed interest in supersonic/hypersonic flight conditions has rapidly advanced technology in Computational Fluid Dynamics. Recent innovations in algorithm development has greatly improved the reliability and robustness of Navier-Stokes and Parabolized Navier-Stokes solvers. This paper surveys the state of PNS technology, including innovations such as the use of upwind algorithms and local time-iterative PNS algorithms, which have greatly improved the robustness and reliability of PNS codes over the original central difference based formulations. Several applications are presented for a spectrum of flight and wind tunnel simulations, for both external and internal flows. The implications of PNS upgrades for the numerical algorithm and for physical modeling is discussed for these applications.

A89-42058*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

NUMERICAL SIMULATION OF FLOW OVER A HYPERSONIC AIRCRAFT USING AN EXPLICIT UPWIND PNS SOLVER

JOHN J. KORTE (NASA, Langley Research Center, Hampton, VA) and D. SCOTT MCRAE (North Carolina State University, Raleigh) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. Research supported by USAF and U.S. Navy. refs (Contract NAGW-1072)

(AIAA PAPER 89-1829)

A hypersonic flow field over a generic airplane configuration is simulated by solving the Parabolized Navier-Stokes (PNS) equations. The finite difference solution of the PNS equations is calculated using a noniterative space marching, explicit, upwind scheme recently developed by the authors. Special gridding techniques are used which allowed the sharp changes in surface geometry of the airplane configuration to be modelled without smoothing of corners. Comparisons of the PNS results to a solution of the Navier-Stokes equations demonstrates a good agreement of the numerical results in approximately 1/6 of the cpu time. This paper demonstrates that the explicit upwind algorithm for solving the PNS equations is an efficient method for simulating hypersonic flow fields about complete airplane configurations and should be considered as an alternative to solving the Navier-Stokes equations for flow fields where the PNS equations are valid.

Author

A89-42060#

EXPERIMENTAL/COMPUTATIONAL STUDY OF A TRANSONIC AIRCRAFT WITH STORES

J. H. FOX and E. G. ALLEE (Calspen Arnold Engineering Development Center, Arnold AFB, TN) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 14 p. refs (AIAA PAPER 89-1832)

An experimental and computational investigation of the flow field around an F-15E aircraft with stores at a Mach number of 0.98 is presented. Flowfield measurements, surface static pressure measurements, and Euler flowfield solutions were obtained for three aircraft configurations. The results for the configuration which included the addition of a finned store to the forward outboard conformal fuel tank pylon showed the dominant flow experienced by the store to be a crossflow resulting from the displacement of the oncoming airstream by the vehicle.

A89-42061#

AN EXPERIMENTAL INVESTIGATION OF THE PARALLEL VORTEX-AIRFOIL INTERACTION AT TRANSONIC SPEEDS

IRAJ M. KALKHORAN, DONALD R. WILSON, and DONALD D. SEATH (Texas, University, Arlington) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 11 p. refs (AIAA PAPER 89-1833)

Unsteady vortex-airfoil interaction experiments were conducted in a transonic wind tunnel in order to simulate the two-dimensional blade-vortex interaction problem frequently encountered in rotorcraft applications. The results show a substantial change in the pressure distribution over the leading 30 percent of the interacting airfoil. At supercritical Mach numbers, a strong interaction of the vortex and the shock wave is found, while with stronger vortices at supercritical Mach numbers, forward propagation of the shock wave was noted.

A89-42062#

TRANSONIC FLOW AROUND AIRFOILS WITH RELAXATION AND ENERGY SUPPLY BY HOMOGENEOUS CONDENSATION GUENTER H. SCHNERR and URLICH DOHRMANN (Karlsruhe, Universitaet, Federal Republic of Germany) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. Research supported by the Klein, Schanzlin und Becker Stiftung. refs

(Contract DFG-ZI-18-31) (AIAA PAPER 89-1834)

A theoretical and experimental study of the steady two-dimensional flow of vapor/carrier gas mixtures with nonequilibrium condensation is presented. Numerical calculations using a diabatic time-dependent explicit finite volume code show that the variation of the pressure drag coefficient due to heating is the sum of three connected processes: (1) the reduction of the wave drag in the local supersonic area; (2) the shock shifting; and (3) the pressure decrease in the rear section due to evaporation. Both the circular arc and NACA-0012 airfoils considered reveal the same tendency with respect to shock shifting.

A89-42063#

3D-EULER FLOW ANALYSIS OF FANJET ENGINE AND TURBINE POWERED SIMULATOR WITH EXPERIMENTAL COMPARISON IN TRANSONIC SPEED

NAOKI HIROSE, KEISUKE ASAI (National Aerospace Laboratory, Chofu, Japan), RYUMA KAWAMURA (Nihon University, Funabashi, Japan), and KATUYA IKAWA AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. refs (AIAA PAPER 89-1835)

A transonic three-dimensional flow analysis code for the wind tunnel testing of a fan-jet engine and a turbine powered simulator has been developed which uses MacCormack's (1969) scheme in the finite volume form. The pressure distributions on the inlet cowl and core-jet cowl surface obtained by the code agree well with experimental observations. The results reveal the angle-of-attack effects on the inlet flow field and exhaust-jet plume, and have identified a pair of longitudinal vortices in the shear layer between the jet and the external flows.

A89-42064*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

COMPUTATION OF TURBULENT FLOWS ON A CAST 10 WING USING AN UPWIND SCHEME

YVES P. MARX (NASA, Langley Research Center, Hampton, VA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 12 p. refs (AIAA PAPER 89-1836)

Two and three dimensional turbulent calculations around RAE2822, CAST 10 airfoils and a wing side-wall configuration are presented. A finite volume, cell-center method based on flux difference splitting schemes is used to solve the steady state thin-layer Navier-Stokes equations. Comparisons between the performances of different Riemann solvers and reconstruction schemes are also presented. The influence of a side-wall on the symmetry plane of a cylindrical CAST 10 wing is found to be highly sensitive to the turbulence modeling in the vicinity of the wing side-wall juncture.

A89-42065*# Air Force Flight Dynamics Lab., Wright-Patterson AFB. OH.

3-D COMPOSITE VELOCITY SOLUTIONS FOR SUBSONIC/TRANSONIC FLOW OVER AFTERBODIES

RAYMOND E. GORNIER (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, OH) and STANLEY G. RUBIN (Cincinnati, University, OH) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 11 p. refs.

(Contract F49620-85-C-0027; NAG1-8) (AIAA PAPER 89-1837)

A composite velocity procedure for the three-dimensional reduced Navier-Stokes equations is developed. The velocity components are written as a combined multiplicative and additive composite of viscous like velocities and pseudo-potential or inviscid velocities. The solution procedure is then consistent with both asymptotic inviscid flow and boundary layer theory. For transonic flow cases, the Enquist-Osher flux biasing scheme developed for the full potential equation is used. A quasi-conservation form of the governing equations is used in the shock region to capture

the correct rotational behavior. The composite velocity procedure is applied for the solution of three-dimensional afterbody problems.

A89-42066*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A VALIDATION STUDY OF FOUR NAVIER-STOKES CODES FOR HIGH-SPEED FLOWS

DAVID H. RUDY, JAMES L. THOMAS, AJAY KUMAR, PETER A. GNOFF (NASA, Langley Research Center, Hampton, VA), and SUKUMAR R. CHAKRAVARTHY (Rockwell International Science Center, Thousand Oaks, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. refs

(AIAA PAPER 89-1838)

A code validation study has been conducted for four different codes for solving the compressible Navier-Stokes equations. Computations for a series of nominally two-dimensional high-speed laminar separated flows were compared with detailed experimental shock-tunnel results. The shock wave-boundary layer interactions considered were induced by a compression ramp in one case and by an externally-generated incident shock in the second case. In general, good agreement was reached between the grid-refined calculations and experiment for the incipient- and small-separation conditions. For the most highly separated flow, three-dimensional calculations which included the finite-span effects of the experiment were required in order to obtain agreement with the data. The finite-span effects were important in determining the extent of separation as well as the time required to establish the steady-flow interaction. The results presented provide a resolution of discrepancies with the experimental data encountered in several recent computational studies. Author

A89-42067*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

DEVELOPMENT AND VALIDATION OF CNS (COMPRESSIBLE **NAVIER-STOKES) FOR HYPERSONIC EXTERNAL FLOWS**

JOLEN FLORES, CHUEN-YEN CHOW (NASA, Ames Research Center, Moffett Field, CA), and JAMES S. RYAN AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 9 p. refs (Contract NCC2-440)

(AIAA PAPER 89-1839)

CNS, a new computational fluid dynamics procedure, has been developed to aid in hypersonic vehicle design. The code can be used to model the entire external flow around hypersonic vehicle shapes, from the captured shock at the nose to the beginning of the wake. Unlike space-marching codes, the technique allows axially separated flow regions to be modeled. Validation trials using sphere-cone data reveal good solution accuracy for the surface pressure and flowfield temperature.

A89-42068#

NUMERICAL SIMULATION OF LAMINAR HYPERSONIC FLOW PAST A DOUBLE-ELLIPSOID

RIEDELBAUCH, G. BRENNER, B. MUELLER, and W. KORDULLA (DFVLR, Goettinger, Federal Republic of Germany) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 12 p. refs (Contract DFG-RU-334/1-6)

(AIAA PAPER 89-1840)

Three-dimensional laminar hypersonic flow of perfect gas past a double-ellipsoid at angles of attack varying between 0 and 40 deg and axisymmetric flow of air in chemical equilibrium past a hemisphere and a hyperboloid are simulated. The thin-layer Navier-Stokes equations are solved by a semiimplicit finitedifference method. The robustness of the shock-fitting procedure has been enhanced. Shock-shock and shock-boundary layer interactions as well as flow separation are observed for the double ellipsoid. The results are compared with experimental flow visualizations. The implementation of an equilibrium air model has been validated for the flow past a hemisphere.

A89-42070#

EXPERIMENT AND COMPUTATION IN HYPERSONIC CAVITY

M. P. NETTERFIELD and R. HILIER (Imperial College of Science, Technology and Medicine, London, England) Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. Research supported by the Ministry of Defence, Royal Commission for the Exibition of 1851, and Overseas Research Scheme. refs (AIAA PAPER 89-1842)

Axisymmetric hypersonic cavity flow experiments have been conducted at high Reynolds numbers with a nominal boundary layer edge Mach number at separation of 8.0. Pressure and heat transfer distributions were recorded for cavities with length to depth ratios of 0.8-2.4 and with relatively-thick, turbulent boundary layers at separation (delta/D=0.25). Distinct Reynolds number effects were noticed in the region of shear layer reattachment on the rear face where the highest pressures and heat transfer rates were recorded. Evidence of flow unsteadiness was also found. Simple semiempirical relations were found to give realistic estimates of peak pressure. Initial work is also reported on the development of a Navier-Stokes code from a second order Godunov-type Author

A89-42071#

INTERACTION OF A COMPRESSION RAMP WITH A HYPERSONIC LAMINAR BOUNDARY LAYER

A. RANGWALLA and G. R. INGER (lowa State University of Science and Technology, Ames) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 17 p. refs

(AIAA PAPER 89-1843)

This paper analyzes the weakly-hypersonic interaction of a 2-D compression-ramp shock with an adiabatic laminar boundary layer using a non-asymptotic triple deck approach that extends Lighthill's work for supersonic flow to include second order effects. The disturbance flow field is obtained analytically for a range of free stream Mach numbers and Reynolds numbers. In particular, the first and second order wall pressure and skin friction perturbations are obtained and their far upstream and downstream asymptotic behavior are deduced as a function of Mach number and Reynolds number. The relative importance of the hypersonic effects to supersonic flow are then obtained as a function of both Mach number and Reynolds number. Also, the onset of separation is Author predicted.

A89-42072#

MEASUREMENT AND COMPUTATION OF THE VELOCITY FIELD OF A CYLINDER IN THE WAKE OF A ROTOR IN FORWARD FLIGHT

D. N. MAVRIS, S. G. LIOU, N. M. KOMERATH, and H. M. MCMAHON (Georgia Institute of Technology, Atlanta) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. refs (Contract DAAG29-82-K-0084) (AIAA PAPER 89-1844)

The problem of predicting the flowfield around a rotorcraft in low-speed forward flight is studied using a potential-flow code, whose results are compared with surface pressure measurements and flow velocity measurements. The test case used is a 2-bladed teetering rotor above a hemisphere-cylinder airframe in a wind tunnel. The dominant features of this problem are modeled by a lifting line/lifting surface rotor model with a free wake distorting in the presence of the airframe. The airframe flowfield is modeled using a source/doublet panel method. The instantaneous flowfield is computed at specified intervals of rotor azimuth, with the effects of blade motion added to the formulation. Modeling the energy addition at the rotor using actuator segments leads to successful prediction of the time-averaged pressure field. The periodic velocity variations along the spine of the airframe are predicted successfully. When a fully unsteady potential formulation is used, however, large differences appear between measured and computed periodic velocity at the sides of the airframe. These are attributed to the inadequate understanding of interaction of the rotor tip vortices with the airframe surface, as well as to inadequate modeling of the flowfield around the rotor hub.

Author

A89-42073*# Textron Bell Helicopter, Fort Worth, TX. COMPUTATIONAL AND EXPERIMENTAL EVALUATION OF HELICOPTER ROTOR TIPS FOR HIGH SPEED FORWARD FLIGHT

DAVE SIGL (Bell Helicopter Textron, Fort Worth, TX) and ROGER C. STRAWN (NASA, Ames Research Center; U.S. Army, Aeroflightdynamics Directorate, Moffet Field, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 11 p. refs (AIAA PAPER 89-1845)

A computational and experimental method for the evaluation of helicopter rotor tips in high-speed forward flight is presented which uses an unsteady full-potential solver on the advancing side of the rotor disk. Forces and moments measured during angle-of-attack sweeps reveal the soft-stall phenomenon of the double-swept planforms as well as the delayed stall of the single-swept hyperbolic tip. Double-swept planforms are shown to single-swept have favorable performance, creating counter-rotating vortices that augment the lifting capabilities of the blade at high angles of attack and delay the onset of stall.

A89-42074*# Rockwell International Science Center, Thousand Oaks, CA.

NUMERICAL SOLUTIONS OF FORWARD-FLIGHT ROTOR FLOW USING AN UPWIND METHOD

C. L. CHEN (Rockwell International Science Center, Thousand Oaks, CA), W. J. MCCROSKEY, and S. OBAYASHI (NASA, Ames Research Center, Moffett Field, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 9 p. refs (AIAA PAPER 89-1846)

A finite-volume upwind algorithm for solving the 3-D Euler equations with a moving grid has been developed for computing helicopter forward-flight rotor flows. The computed pressure distributions and shock positions of high-speed rotor flow are compared with various experimental data as well as with other numerical results, and the agreement is encouraging. A comparison of quasi-steady solutions with unsteady solutions reveals that when a shock occurs in the flowfield, the assumption of quasi-steady flow may fail due to the time-lag of the shock motion. Similarly, three-dimensional effects cannot be neglected. Sufficient subiterations for each time step are required to avoid numerical lag effects in using the present method. The redistribution of the residual due to the coordinate transformation is discussed. For high-order MUSCL-type schemes, a coordinate-independent solution can be obtained by interpolating primitive variables.

Author

A89-42075*# McDonnell-Douglas Helicopter Co., Mesa, AZ. SIMULATION OF REALISTIC ROTOR BLADE-VORTEX INTERACTIONS USING A FINITE-DIFFERENCE TECHNIQUE AHMED A. HASSAN and BRUCE D. CHARLES (McDonnell Douglas Helicopter Co., Mesa, AZ) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 15 p. refs (Contract NAS1-17145) (AIAA PAPER 89-1847)

A numerical finite-difference code has been used to predict helicopter blade loads during realistic self-generated three-dimensional blade-vortex interactions. The velocity field is determined via a nonlinear superposition of the rotor flowfield. Data obtained from a lifting-line helicopter/rotor trim code are used to determine the instantaneous position of the interaction vortex elements with respect to the blade. Data obtained for three rotor advance ratios show a reasonable correlation with wind tunnel

A89-42076*# JAI Associates, Mountain View, CA.
UNSTEADY INTERACTION OF A ROTOR WITH A VORTEX

G. R. SRINIVASAN (JAI Associates, Inc., Sunnyvale, CA) and W. J. MCCROSKEY (NASA, Ames Research Center; U.S. Army, Aeroflightdynamics Directorate, Moffett Field, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 20 p. refs (Contract DAAL03-88-C-0006) (AIAA PAPER 89-1848)

The unsteady, three-dimensional flow field of a helicopter rotor blade encountering a passing vortex is calculated by solving the Euler/thin layer Navier-Stokes equations by a finite-difference numerical procedure. A prescribed vortex method is adopted to preserve the structure of the interacting vortex. The cases considered for computation correspond to the experimental model rotor test conditions of Caradonna, et al. and consist of parallel and oblique interactions. Comparison of the numerical results with test data show good agreement for both parallel and oblique interactions at subsonic and transonic tip speeds.

A89-42077#

MEASUREMENTS OF SWEPT SHOCK WAVE/TURBULENT BOUNDARY-LAYER INTERACTIONS BY HOLOGRAPHIC INTERFEROMETRY

J. C. HSU and G. S. SETTLES (Pennsylvania State University, University Park) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 11 p. refs

(Contract AF-AFOSR-86-0082) (AIAA PAPER 89-1849)

The flowfield structure of swept shock wave/turbulent boundary layer interactions generated by a fin mounted on a flat plate at Mach 2.43 and 2.97 has been visualized and measured by pulsed-laser holographic interferometry. The interactions studied range from moderate strength (Mach 2.43, alpha = 10 deg) to a strong case (Mach 2.97, alpha = 20 deg) with obvious flow separation. A conical holographic object beam, focused at the virtual origin of the interaction and aimed along the swept wave, was required to view these quasiconical interactions properly. Shadowgram images were also produced. The results have revealed the characteristic lambda-shock structure, boundary-layer separation vortex, and the transonic jet which emerges from the lambda-shock and impinges just ahead of the fin/plate intersection. An improved physical model of the interaction structure has been proposed based on these results. Detailed comparisons of the results have been made with both flowfield surveys and computational simulations by other investigators.

Author

A89-42078*# Texas Univ., Arlington. INCEPTION LENGTH TO A FULLY-DEVELOPED FIN-GENERATED SHOCK WAVE BOUNDARY-LAYER INTERACTION

FRANK K. LU (Texas, University, Arlington) and GARY S. SETTLES (Pennsylvania State University, University Park) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 12 p. refs (Contract AF-AFOSR-86-0082; NCA2-192) (AIAA PAPER 89-1850)

An experimental study of fin-generated shock wave turbulent boundary-layer interactions confirmed previous observations that, sufficiently far from the fin apex, such interactions become conical. The inception length to conical symmetry was found to increase weakly with Mach number for Mach numbers from 2.5 to 4 and fin angles from 4 to 22 deg. For the range of interactions examined, the inception length was found to depend primarily upon the inviscid shock angle, this angle ranging from 21 to 40 deg. The behavior of the inception length with shock angle can be broadly divided into two categories. For 'weak' interactions with shock angles less than about 35 deg, the inception length decreased as the shock angle increased. For 'strong' interactions with shock angles greater than about 35 deg, the inception region was small and was approximately constant at three boundary-layer thicknesses in length. In the latter, strong interaction case, the inception length

was an order of magnitude smaller than that found in the weakest interactions examined, to the extent that strong interactions were practically fully-developed from the apex.

A89-42079#

NAVIER-STOKES SIMULATION OF A SHOCK WAVE-TURBULENT BOUNDARY LAYER INTERACTION IN A THREE-DIMENSIONAL CHANNEL

L. CAMBIER and B. ESCANDE (ONERA, Chatillon-sous-Bagneux, France) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. Research supported by DRET. refs (AIAA PAPER 89-1851)

The paper deals with the numerical simulation of a shock wave-turbulent boundary layer interaction in a three-dimensional channel, by solution of the Reynolds averaged Navier-Stokes equations with a mixing-length turbulence model. The numerical method is characterized by an explicit centered finite difference scheme associated with a multigrid convergence acceleration. The computed configuration is well suited to the validation of a 3-D Navier-Stokes solver since the flow has a very complex 3-D structure although the channel geometry is simple. Comparison with experiment shows that the numerical results obtained in a mesh containing about 600,000 points are satisfactory. Author

A89-42080#

COMPUTATION OF SHARP FIN AND SWEPT COMPRESSION CORNER SHOCK/TURBULENT BOUNDARY LAYER INTERACTIONS

DOYLE D. KNIGHT (Rutgers University, New Brunswick, NJ) and YAN ZANG AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. refs (AIAA PAPER 89-1852)

A numerical computation has been carried out to investigate three-dimensional shock wave/turbulent boundary layer interactions generated by the sharp fin and the swept compression corner. The upstream flow is at Mach number 3 and Reynolds number 1.06 x 10 to the 6th based on the upstream boundary-layer Reynolds averaged compressible Navier-Stokes equations were solved with turbulence represented by an algebraic eddy viscosity model. The two geometries investigated were three-dimensional sharp fin with fin angle alpha = 17.5 deg (17.5 deg fin) and the swept compression corner at an angle of attack lambda = 30 deg and with a sweep angle of 60 deg (30, 60) corner. Overall, good agreement has been achieved between computation and experiment. Both interaction flowfields were dominated by a large vortical structure aligned with the corner. Computation tends to support the guasi-conical free similarity principle proposed previosuly from experiments.

A89-42081#

SEPARATION SHOCK MOTION AND ENSEMBLE-AVERAGED WALL PRESSURES IN A MACH 5 COMPRESSION RAMP INTERACTION

D. S. DOLLING (Texas, University, Austin) and M. E. ERENGIL AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 16 p. refs (Contract AF-AFOSR-86-0112)

(AIAA PAPER 89-1853)

Simultaneous fluctuating wall pressure measurements have been made under the unsteady separation shock and the separated shear layer in a Mach 5 compression ramp induced turbulent boundary layer interaction. The freestream unit Reynolds number was 48.7 x 10 to the 7th/m, and the turbulent boundary layer developed on the tunnel floor under approximately adiabatic wall temperature conditions. Conditional sampling algorithms and a 'variable-window' ensemble averaging technique have been used pressure determine ensemble-averaged distributions corresponding to different separation shock wave positions. The results show that: (1) significant unsteadiness is largely confined to the intermittent region, (2) the intermittent region is characterized by a shock wave and compression system whose strength is a function of shock position, (3) pressure distributions for 'shock-upstream' and 'shock-downstream' conditions have the features of large- and small-scale separated flows respectively, indicative of an expanding and contracting bubble, and (4) ensemble- averaged pressure histories under the separated shear layer rise and fall as the separation shock translates downstream and upstream respectively.

Author

A89-42082#

THE STRUCTURE OF AERODYNAMIC HEATING IN THREE-DIMENSIONAL SHOCK WAVE/TURBULENT BOUNDARY LAYER INTERACTIONS INDUCED BY SHARP AND BLUNT FINS

SHIGERU ASO (Kyushu University, Fukuoka, Japan), MASANORI HAYASHI (Nishinippon Institute of Technology, Japan), and ANZHONG TAN AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. refs

(AIAA PAPER 89-1854)

A method employing a thin-film heat transfer gage with high spatial resolution is used to study the detailed structure of aerodynamic heating in a three-dimensional shock wave/turbulent boundary layer induced by sharp and blunt fins. Experiments have been performed using a Mach number of 4 and a total pressure of 1.2 MPa. The results reveal a drastic change in the heat transfer rate in the interaction region, along with the strong relationship between peak heating and flow reattachment.

R.R.

A89-42083#

DETERMINATION OF COMPUTATIONAL TIME STEP FOR CHEMICALLY REACTING FLOWS

TING-LUNG CHIANG and KLAUS A. HOFFMANN (Texas, University, Austin) AlAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 15 p. refs

(AIAA PAPER 89-1855)

A numerical algorithm for determining the marching time step of chemically reacting flows is presented. A Von Neumann stability analysis has been included in the chemistry equations in order to obtain a criteria for the selection of a time step that provides a stable solution. The Euler equations and the chemistry species equations have been discretized using an implicit flux-splitting finite difference formulation. The scheme has been validated by the numerical simulation of a quasi-one-dimensional nozzle problem.

R.B

A89-42084#

PARAMETRIC STUDY OF THERMAL AND CHEMICAL NONEQUILIBRIUM NOZZLE FLOW

PH. SAGNIER and L. MARRAFFA (ONERA, Chatillon-sous-Bagneux, France) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. refs (AIAA PAPER 89-1856)

A numerical analysis of a thermochemical nonequilibrium inviscid nozzle flow was made for two types of wind tunnel facility. The first was a French project of continuously arc heated wind tunnel. The second was a generic wind tunnel, similar to a future European facility. Its stagnation pressure and enthalpy are higher than in the first wind tunnel. These nozzles are supplied with equilibrium air. Equilibrium is assumed up to the throat. Downstream, calculation is carried out with a pseudo-one-dimensional method, taking into account nonequilibrium thermochemistry, with possible vibration-dissociation coupling. There, the air is quickly expanded and departure from equilibrium and then freezing are observed. Different models of chemical, electronic and vibrational kinetics and different coupling models are studied. Their global influences are analyzed for one test condition for each wind tunnel. Furthermore, for the first nozzle, the computed frozen Mach number compares pretty well with experimental results. Author

A89-42092#

TURBULENT FLOW PREDICTIONS FOR AFTERBODY/NOZZLE GEOMETRIES INCLUDING BASE EFFECTS

A. J. PEACE (Aircraft Research Association, Ltd., Bedford, England) AlAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. Research supported by the Ministry of Defence Procurement Executive. refs

(AIAA PAPER 89-1865)

A numerical method for solving the Reynolds-averaged Navier-Stokes equations around axisymmetric afterbody/nozzle configurations, with sharp trailing edges or finite bases, is presented. Turbulence closure is achieved through either a simple algebraic turbulence model or a low Reynolds number form of the k-epsilon two-equation differential model. The solution procedure uses an explicit time-marching finite-volume method. The performance of each of the turbulence models is assessed through comparisons with experimental data on three series of geometries, including both attached and separated flow cases.

A89-42093#

AN EXPERIMENTAL STUDY OF HYPERSONIC TURBULENCE ON A SHARP CONE

J. HARVEY (Imperial College of Science and Technology, London, England), R. C. BERGMAN, and M. S. HOLDEN (Calspan Corp., Buffalo, NY) AlAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 11 p. refs (AIAA PAPER 89-1866)

A preliminary experimental study has been conducted in which an electron beam, and pitot and total temperature probes were used to measure the mean and fluctuating density, and mean static temperature across a Mach 7.5 turbulent boundary layer over a 4-ft long 6 deg sharp cone. The experimental studies were conducted in a 96-in Tunnel at a free stream Mach number of 8.5 and unit Reynolds number of 5 x 10 to the 6th. The initial use of this technique has demonstrated a potential to obtain fluctuation measurements up to frequencies approaching 1 MHz. Additional improvement is expected when more advanced optics are used. The mean rotational temperature through the boundary layer can be determined from spectra obtained using an Optical Multichannel Analyzer. The electron gun has proven highly reliable and has the potential to work at equivalent densities up to over 100 torr. Further developments are anticipated employing an electron beam to stimulate a gas which is examined using a resonant laser technique.

A89-42094#

PREDICTION OF TURBULENT MIXING AND FILM-COOLING EFFECTIVENESS FOR HYPERSONIC FLOWS

JONG H. WANG (Rockwell International Corp., Los Angeles, CA) AlAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 12 p. Research supported by the U.S. Army. refs (AlAA PAPER 89-1867)

An efficient boundary layer code that solves both streamwise and lateral momentum equations has been applied to the prediction of wall heat flux and flowfields for film-cooling problems with front slot injection. The code is shown to be capable of handling subsonic, supersonic, and hypersonic flow regimes. Predicted

surface pressures and heat transfer rates are found to agree well with experimental data.

A89-42095#

TURBULENCE MEASUREMENTS FOR HEATED GAS SLOT INJECTION IN SUPERSONIC FLOW

C. R. HYDE, B. R. SMITH, J. A. SCHETZ, and D. A. WALKER (Virginia Polytechnic Institute and State University, Blacksburg) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 15 p. Research supported by Johns Hopkins University. refs (AIAA PAPER 89-1868)

Detailed profile measurements of the flow created by heated, supersonic, tangential air injection into a supersonic air flow are presented. In comparison with the unheated slot flow, the heated slot flow did not significantly change the location of the merging of the freestream boundary layer with the slot flow. The results

show some increase in absolute turbulence levels in the heated flow, along with shifts in the location of the maximum turbulence. Shock interaction with the shear layer was found to generally result in elevated turbulence.

R.R.

A89-42099#

AN ANALYTICAL APPROACH TO THE PREDICTION OF SHOCK PATTERNS IN BOUNDED HIGH-SPEED FLOWS

C. S. LIU (New York, State University, Amherst) and D. J. AZEVEDO AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 13 p. refs (AIAA PAPER 89-1874)

A control-volume analysis of a two-dimensional symmetric wedge configuration representative of a simple high-speed intake in steady flow is presented. Special attention is given to the complex reflection patterns that develop when the leading-edge shocks intersect at angles above a certain critical value that is less than the wedge attachment angle. It is found that the predicted stem heights are consistently lower than the mean experimental values, and that the viscosity-related phenomena have only a minor influence on stem height for the freestream Mach number range considered.

A89-42100*# California Univ., Davis.

CONVERGENCE ACCELERATION OF VISCOUS AND INVISCID HYPERSONIC FLOW CALCULATIONS

A. CHEER, M. HAFEZ (California, University, Davis), S. CHEUNG, and J. FLORES (NASA, Ames Research Center, Moffett Field, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 11 p. refs (AIAA PAPER 89-1875)

The convergence of inviscid and viscous hypersonic flow calculations using a two-dimensional flux-splitting code is accelerated by applying a Richardson-type overrelaxation method. Successful results are presented for various cases; and a 50 percent savings in computer time is usually achieved. An analytical formula for the overrelaxation factor is derived, and the performance of this scheme is confirmed numerically. Moreover, application of this overrelaxation scheme produces a favorable preconditioning for Wynn's epsilon-algorithm. Both techniques have been extended to viscous three-dimensional flows and applied to accelerate the convergence of the compressible Navier-Stokes code. A savings of 40 percent in computer time is achieved in this case.

A89-42101#

HYPERSONIC FLOW IN A COMPRESSION CORNER IN 2D AND 3D CONFIGURATIONS

AMER CHPOUN AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 10 p. refs

(AIAA PAPER 89-1876)

This paper presents results relative to wall pressure and heat transfer distributions in high Reynolds number ramp flows with emphasis on transitional interaction. A fine Reynolds number variation shows clearly the modification of wall pressure distribution according to the location of transition in the separation region. Three dimensional effects on wall pressure and heat flux distributions are also investigated by means of sweep angle variation. In addition, a previously validated 2D laminar numerical code, based on Mac Cormack's two step scheme for solving full Navier-Stokes equations is used to check the quality of experimental procedure.

A89-42103*# Oklahoma Univ., Norman. PERFORMANCE OF AN AERO-SPACE PLANE PROPULSION NOZZLE

GEORGE EMANUEL (Oklahoma, University, Norman) and YOON-YEONG BAE AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 19 p. refs

(Contract NAG1-886)

(AIAA PAPER 89-1878)

An inviscid and viscous analysis is provided for an exposed

half nozzle that is used with a scramjet for thrust generation. The analysis is based on the inviscid theory of a two-dimensional, minimum length nozzle with a curved inlet surface, where the flow may be sonic or supersonic. Inlet conditions are prescribed and the gas is assumed to be perfect. Viscous, and when appropriate inviscid, nondimensional parametric results are provided for the thrust, lift, heat transfer, pitching moment, and a variety of boundary-layer thicknesses. In addition to global results, wall distributions of pressure, heat transfer, etc., are provided. The analysis demonstrates that the nozzle produces a considerable lift force whose magnitude may exceed the thrust and a significant pitching moment. The thrust is quite sensitive to the inlet Mach number; it rapidly decreases as the inlet Mach number increases There is little loss in the thrust as the nozzle's downstream wall is truncated. The corresponding decrease in lift and the pitching moment is moderate. Author

A89-42114*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

CROSSFLOW-VORTEX INSTABILITY AND TRANSITION ON A 45 DEG SWEPT WING

J. RAY DAGENHART, J. PETER STACK (NASA, Langley Research Center, Hampton, VA), WILLIAM S. SARIC, and MARC C. MOUSSEUX (Arizona State University, Tempe) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 16 p. refs (Contract NAG1-805; NAG1-937) (AIAA PAPER 89-1892)

A crossflow vortex experiment on a 45 deg swept wing is currently being conducted in the Arizona State University Unsteady Wind Tunnel. The experimental apparatus is designed to produce crossflow-dominated transition by simulating infinite swept wing flow using contoured end liners in a closed throat wind tunnel. Stationary fixed-wavelength crossflow vortices are observed at several chord Reynolds numbers. The vortex wavelength which is fixed for a given Reynolds number varies with Reynolds number approximately as predicted by linear stability theory, but with the predicted wavelengths about 30 percent larger than the observed wavelengths. Travelling waves are observed both in the frequenciey range predicted by linear stability theory and at higher frequencies. These higher frequency waves may be harmonics of the primary crossflow waves generated by a nonlinear parametric resonance phenomena.

A89-42115*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

TRANSITION FLIGHT EXPERIMENTS ON A SWEPT WING WITH SUCTION

D. V. MADDALON, C. K. LAND (NASA, Langley Research Center, Hampton, VA), F. S. COLLIER (High Technology Corp., Hampton, VA), and L. C. MONTOYA (NASA, Flight Research Center, Edwards, CA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 25 p. refs (AIAA PAPER 89-1893)

Flight experiments were conducted on a 30 degree swept wing with a perforated leading edge by systematically varying the location and amount of suction over a range of Mach number and Reynolds number. Suction was varied chordwise ahead of the front spar from either the front or rear direction by sealing spanwise perforated strips. Transition from laminar to turbulent flow was due to leading edge turbulence contamination or crossflow disturbance growth and/or Tollmien-Schlichting disturbance growth, depending on the test configuration, flight condition, and suction location. A state-of-the-art linear stability theory which accounts for body and streamline curvature and compressibility was used to study the boundary layer stability as suction location and magnitude varied. N-factor correlations with transition location were made for various suction configurations.

A89-42116#

EFFECT OF WALL TEMPERATURE DISTRIBUTION ON THE STABILITY OF THE COMPRESSIBLE BOUNDARY LAYER

G. GASPERAS (Calspan Corp., Arnold AFB, TN) AIAA, Fluid

Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 9 p. refs (AIAA PAPER 89-1894)

The response of a hypersonic boundary layer to various wall temperature distributions is studied. The stability of the Mach 6.84 flat plate boundary layer over an adiabatic wall, a constant temperature cooled wall, and a wall which experiences a steep linear temperature decrease is evaluated by the use of spatial viscous compressible linear stability theory and the e(N) method. The stability of a sharp cone boundary layer in a Mach 8.00 free stream is obtained from the flat plate results by a transformation. It is found that the constant temperature cooled wall shows the largest amplification rates, as well as the largest N-factors. In the vicinity of the linear surface temperature decrease, the amplification rates and N-factors are less than those for the adiabatic wall. Farther downstream, however, amplification rates and N-factors approach those found for the constant temperature cooled wall.

Author

A89-42117#

LAMINAR BOUNDARY LAYER STABILITY EXPERIMENTS ON A CONE AT MACH 8. V - TESTS WITH A COOLED MODEL

KENNETH F. STETSON (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH), ELTON R. THOMPSON, JOSEPH C. DONALDSON, and LEO G. SILER (Calspan Corp., Arnold Engineering Development Center, Arnold AFB, TN) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 31 p. refs (AIAA PAPER 89-1895)

Hot-wire anemometry techniques were used to study the stability of the laminar boundary layer on a water-cooled, sharp, 7-deg half-angle cone at a Mach number of 8. Cooling the surface was found to stabilize the first mode disturbances (Tollmien-Schlichting or vorticity disturbances) and to destabilize the second mode disturbances (the high frequency acoustic disturbances that are unique to high Mach number boundary layers). The corresponding transition Reynolds numbers were shown to change from about 4.8 x 10 to the 6th (uncooled) to 3.2 x 10 to the 6th (cooled).

R.R.

A89-42139#

PERIODIC VORTEX SHEDDING OVER DELTA WINGS

D. P. TELIONIS (Virginia Polytechnic Institute and State University, Blacksburg), H. STAPOUNTZIS (Salonika, University, Greece), and O. K. REDINIOTIS AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 9 p. refs

(Contract AF-AFOSR-89-0283; NATO-0441/87) (AIAA PAPER 89-1923)

Experiments with delta wings at high angles of attack are carried out. It is found that periodic vortices are shed for angles of attack larger than 35 deg. At or below this angle, the two leading edge vortices remain attached on the wing all the way from the apex to the trailing edge. An alternate and simultaneous shedding mode are discovered.

K.K.

A89-42460

SUPERSONIC FLOW STAGNATION IN A DUCT DURING COMBUSTION [O TORMOZHENII SVERKHZVUKOVOGO POTOKA V KANALE PRI GORENII]

S. I. ROZHITSKII and V. N. STROKIN IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 57-61. In Russian. refs

During combustion in supersonic air flow in a duct, the separation of the boundary layer at the walls may lead to the formation of an extended stagnation zone propagating from the heat release region in the direction opposite to that of the flow. The objective of the experimental study reported here, in which various amounts of a gaseous fuel (hydrogen) were burned in supersonic air flow (M 2.6) in a water-cooled duct simulating a simple combustion chamber, was to investigate the relationship between the dimensions of the stagnation zone and heat release

within the duct. The possibility of calculating the maximum possible heat removal based on the the duct length is demonstrated.

V.L.

A89-42464

THREE-DIMENSIONAL EFFECTS IN HIGH-INTENSITY VORTICES (TREKHMERNYE EFFEKTY V INTENSIVNYKH VIKHRIAKH)

G. F. GLOTOV IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 77-90. In Russian. refs

The paper reports the results of an experimental study of flow parameters on the wall under an air intake (Mtau less than 1) and under a vortex on the leeside of a delta wing (free-stream M 0.1-1.0, angle of attack 15 deg). Flow in the wall layer of both vortices is three-dimensional and characterized by the formation of a stationary vortex sheet with pairs of longitudinal counterrotating vortices due to stability loss at concave flow lines. The presence of these vortices in the wall layer leads to a nonuniform flow parameter distribution on the wall.

A89-42465

STABILITY OF COMPRESSION SHOCKS IN DUCTS IN THE PRESENCE OF EXTERNAL EFFECTS (USTOICHIVOST' SKACHKOV UPLOTNENIIA V KANALAKH PRI NALICHII VNESHNIKH VOZDEISTVII)

F. A. SLOBODKINA IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 90-97. In Russian. refs

The stability of transonic quasi-one-dimensional flows of an ideal inviscid gas in ducts in the presence of external effects, such as mass, momentum, and energy transfer, is investigated analytically. Supersonic flow is assumed at the duct inlet and subsonic flow at the exit, with the supersonic transition occurring in the compression shock. It is demonstrated that the stability of flow with a compression shock is largely determined by the duct shape at the site of the shock in stationary flow, on the nature of external effects, gas properties, and the type of boundary conditions at the duct exit.

V.L.

A89-42496

THE SHAPE OF THIN BODIES WITH MINIMAL DRAG [PROFORMU TONKIKH TIL MINIMAL'NOGO OPORU]

I. G. NESTERUK (Chernivets'kii Derzhavnii Universitet, Chernovtsy, Ukrainian SSR)
 Akademiia Nauk Ukrains'koi RSR, Dopovidi, Seriia
 A - Fiziko-Matematichni ta Tekhnichni Nauki (ISSN 0002-3531),
 April 1989, p. 56-58. In Ukrainian. refs
 A necessary condition for the minimum of the total resistance

A necessary condition for the minimum of the total resistance of a thin body moving with a constant velocity in a liquid or gas at large Reynolds numbers is presented. The condition is the ensurance of a negative value for the value of the pressure gradient on the suppressing part of the surface. Examples of planar and axisymmetric optimal shapes are presented.

K.K.

A89-42519

CALCULATION OF STATIONARY SUBSONIC AND TRANSONIC NONPOTENTIAL FLOWS OF AN IDEAL GAS IN AXISYMMETRIC CHANNELS [RASCHET STATSIONARNYKH DO- I TRANSZVUKOVYKH NEPOTENTSIAL'NYKH TECHENII IDEAL'NOGO GAZA V OSESIMMETRICHNYKH KANALAKH]

IU. S. KOSOLAPOV Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki (ISSN 0044-4669), vol. 29, May 1989, p. 765-774. In Russian. refs

A generalization of a method for calculating stationary subsonic and transonic nonpotential flows of an ideal gas is proposed. The method is based on the numerical solution of a current function equation written in arbitrary coordinates. To determine density in transonic flow calculations, a marching procedure is proposed for solving one of the Euler equation projections. Results of calculations are presented.

A89-42521

SUPERSONIC FLOW PAST A SPHERE IN A GAS WITH A PERIODIC DENSITY FIELD STRUCTURE [SVERKHZVUKOVOE OBTEKANIE SFERY V GAZE S PERIODICHESKOI STRUKTUROI POLIA PLOTNOSTI)

IU. P. GOLOVACHEV and N. V. LEONT'EVA Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki (ISSN 0044-4669), vol. 29, May 1989, p. 791-793. In Russian. refs

Axisymmetric supersonic flow past the front surface of a sphere moving in a a gas with a constant-pressure and a periodically varying density is investigated numerically. The problem is solved in the context of a viscous shock layer model. Results of the calculations demonstrate the significant role of nonstationary effects.

A89-42567

EFFECT OF THE ADIABATIC EXPONENT ON THE STABILITY AND TURBULENT TRANSITION OF A SUPERSONIC LAMINAR BOUNDARY LAYER [VLIIANIE POKAZATELIA ADIABATY NA USTOICHIVOST' I PEREKHOD SVERKHZVUKOVOGO LAMINARNOGO POGRANICHNOGO SLOIA V TURBULENTNYI]

V. I. LYSENKO Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Mar.-Apr. 1989, p. 179-183. In Russian. refs

The effect of the adiabatic exponent on the laminar-turbulent transition of a boundary layer is investigated analytically and experimentally for a supersonic flow of a compressible heat-conducting gas in a two-dimensional boundary layer. It is shown that a decrease in the adiabatic exponent leads to a substantial decrease in the Reynolds number of the laminar-turbulent transition. V.L.

A89-42569

NONSTATIONARY SUPERSONIC FLOW PAST A SPHERE MOVING THROUGH A THERMAL INHOMOGENEITY [NESTATSIONARNOE SVERKHZVUKOVOE OBTEKANIE SFERY PRI DVIZHENII CHEREZ TEPLOVUIU NEODNORODNOST']

IU. P. GOLOVACHEV and N. V. LEONT'EVA Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Mar.-Apr. 1989, p. 186-189. In Russian. refs

Supersonic flow past a sphere moving in a layer of a variable-temperature gas is analyzed in the context of a viscous shock layer model. The sphere velocity is assumed to be constant and the gas velocity sufficient for the formation of a head shock wave. The flow between the head shock and the sphere surface is described by simplified Navier-Stokes equations. The problem is solved using a two-layer implicit finite difference scheme. Calculations are carried out for flow of a diatomic gas past a sphere with an adiabatic exponent of 1.4, and the results are compared with experimental data.

A89-42572

EFFECT OF GAS DISSOCIATION AND IONIZATION ON THE TRANSITION OF A SUPERSONIC BOUNDARY LAYER [VLIIANIE DISSOTSIATSII I IONIZATSII GAZOV NA PEREKHOD SVERKHZVUKOVOGO POGRANICHNOGO SLOIA]

V. I. LYSENKO (AN SSSR, Institut Teoreticheskoi i Prikladnoi Mekhaniki, Novosibirsk, USSR) Akademiia Nauk SSSR, Sibirskoe Otdelenie, Izvestiia, Seriia Tekhnicheskie Nauki (ISSN 0002-3434), April 1989, p. 45-49. In Russian. refs

The effect of gas dissociation and ionization on the laminar-turbulent transition of the boundary layer was investigated experimentally in an impulse wind tunnel and a shock tube using air and nitrogen as the working gases. The free-stream Mach number varied from 5 to 7; the flow stagnation temperature ranged from 1100 to 3600 K. It is found that, at moderate Mach numbers (about M 5), external flow dissociation lowers the Reynolds number of the turbulent transition. External flow ionization at Mach numbers equal to or greater than 8 does not reduce the Reynolds number of the boundary layer transition.

A89-42837

NUMERICAL SOLUTION OF TRANSONIC POTENTIAL FLOW IN 2D COMPRESSOR CASCADES USING MULTI-GRID TECHNIQUES

M. HUNEK, K. KOZEL, and M. VAVRINCOVA (Ceskomoravska Kolben Danek; Ceske Vysoke Uceni Technicke, Prague, Czechoslovakia) IN: Robust multi-grid methods; Proceedings of the Fourth GAMM-Seminar, Kiel, Federal Republic of Germany, Jan. 22-24, 1988. Wiesbaden, Federal Republic of Germany, Friedr. Vieweg & Sohn, 1989, p. 145-154. refs A multigrid method is presented to numerically solve transonic

A multigrid method is presented to numerically solve transonic potential flow in two-dimensional compressor cascades using the full potential equation in nonconservative form. A modified Jameson (1976) rotated difference scheme is used for the solution. The periodical conditions are simplified with the local disturbance form of the governing equation. The resulting algebraic system is solved using the SLOR method, line relaxation in three grid levels, and the full approximation scheme and correction scheme algorithm. The methods are applied to transonic cascade flows and the results are compared to experimental data.

A89-4293

APPLICATION OF HISSS PANEL CODE TO A FIGHTER-TYPE AIRCRAFT CONFIGURATION AT SUBSONIC AND SUPERSONIC SPEEDS

SUPERSONIC SPEEDS
LUCIANO FORNASIER and STEFAN HEISS (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn, Federal Republic of Germany) IN: Research and development: Technical and scientific publications 1988 (A89-42926 18-99). Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 81-94. refs

(AIAA PAPER 87-2619; MBB-FE-122/S/PUB/304)

The paper reports the application of a higher-order panel code, HISSS, to an advanced fighter-type airplane configuration. The goals of the study were manifold. The range of problems for which the code yields adequate solution has been investigated by comparing lift and pitching moment predictions with experimental data. At the same time, the method has been faced up with a realistic benchmark, giving the opportunity to exercise and check out a large variety of modeling options. Finally, interface procedures for interactive preprocessing of the geometrical data and graphic postprocessing of the results have been set up and tested. An account of the most significant outcomes of the investigation together with a description of the numerical procedures are the subject of the paper.

A89-42950#

FLOW VISUALIZATION STUDIES OF THE TIP VORTEX SYSTEM OF A SEMI-INFINITE WING

ALLEN E. WINKELMANN (Maryland, University, College Park) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 23 p. refs (AIAA PAPER 89-1807)

Results are presented on flow visualization studies of the vortex system development on the tip of a semiinfinite square wing, which was tested in the Glenn L. Martin Wind Tunnel. The model employed in these studies had a removable tip section, making it possible to test various tip shapes. TiCl4-smoke was used to visualize the flow.

A89-43094

AERODYNAMIC DESIGN VIA CONTROL THEORY

ANTONY JAMESON (Princeton University, NJ) Journal of Scientific Computing (ISSN 0885-7474), vol. 3, Sept. 1988, p. 233-260. refs

The application of control theory to design problems is addressed. The design of two-dimensional profiles for compressible potential flow when the profile is generated by conformal mapping is discussed. The same problem when the flow is governed by the inviscid Euler equations is examined. Finally, the three-dimensional design problem for a wing is considered, assuming the flow to be governed by the inviscid Euler equations.

A89-43108

COMPUTATION OF FLOW AND LOSSES IN TRANSONIC TURBINE CASCADES

W. RODI and K. SRINIVAS (Karlsruhe, Universitaet, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 13, Mar.-Apr. 1989, p. 101-119. Research sponsored by the Bundesministerium fuer Wirtschaft. refs

A computer code for calculating both inviscid and viscous flow in transonic turbomachinery cascades is described. The calculation procedure is basically two-dimensional but can take account of three-dimensional effects due to a variation of the stream-tube height. Viscous flow can be calculated for either fully laminar or partly turbulent conditions, in which case a modified version of the Baldwin-Lomax turbulence model is selected when the boundary layer separates and in the wake. Results of the application of the computer program to four typical transonic cascades are presented for a wide Mach-number range. There is generally good agreement with pressure distribution measurements along the blade surfaces and between calculated and observed shock patterns. The pressure distribution deviates significantly from experiment only in cases with fairly large separation regions.

Author

A89-43113#

SIMULATION OF THE FLOW AROUND A COUNTERROTATING SHROUDED PROPFAN [STROEMUNGSSIMULATION UM EINEN GEGENLAEUFIG ROTIERENDEN UMMANTELTEN PROPFAN]

PAUL LUECKING, PETRA WEHLITZ (MTU Motoren- und Turbinen-Union, Muenchen, GmbH, Munich, Federal Republic of Germany), and STEFAN LEICHER Dornier Post (ISSN 0012-5563), no. 3, 1988, p. 21-23. In German.

Three-dimensional numerical simulations of the flow around counterrotating integrated shrouded propfan (CRISP) configurations are described. The CRISP studies are being undertaken as part of a development program for future civilian transport aircraft to operate at speeds up to about Mach 0.8; primary design goals are reduced cruising drag and the elimination of separation in critical flight regimes. In the simulations, a Runge-Kutta solution scheme is applied to finite-volume formulations of the Euler or Navier-Stokes equations. The principles and implementation of the computations are discussed, and typical results are presented graphically. It is shown that the nose profile of the proposed shroud design can induce separation in the extreme case of takeoff with full thrust and strong rotation.

A89-43114#

NUMERICAL SIMULATION AND EXPERIMENTS ON LEADING-EDGE VORTICES ON MODERN WINGS, WITH EUROPEAN COOPERATION [NUMERISCHE SIMULATION UND EXPERIMENTE FUER VORDERKANTENWIRBEL AN MODERNEN FLUEGELN IN EUROPAEISCHER ZUSAMMENARBEIT]

STEPHAN M. HITZEL Dornier Post (ISSN 0012-5563), no. 3, 1988, p. 24-27. In German.

The aerodynamic design of advanced fighter-aircraft wings is discussed, with a focus on leading-edge vortices (LEVs). The basic physical principles involved in the formation and evolution of LEVs are reviewed and illustrated with diagrams; the important role of numerical simulations as a complement to wind-tunnel testing is explained; and particular attention is given to a joint research effort being undertaken in the FRG, the Netherlands, the UK, and Italy under the control of the Independent European Programme Group. These studies involve both the generation of detailed experimental flowfield data and simulations of the effects of LEV breakup and LEV interference in complex wing, wing-fuselage, and wing-fuselage-canard configurations.

A89-43147

REAL-TIME SOLUTION OF THE AIRFLOW CONTINUITY EQUATIONS FOR A HOVERCRAFT SIMULATION

LAWRENCE A. KAHN and JOSEPH E. WHALEN (ORI, Inc.,

02 AERODYNAMICS

Rockville, MD) IN: 1988 Annual Summer Computer Simulation Conference, 20th, Seattle, WA, July 25-28, 1988, Proceedings. San Diego, CA, Society for Computer Simulation International, 1988, p. 786-791. refs

The development of a real-time computer program that simulates the motions of a hovercraft during overland operations is discussed. Particular attention is given to algorithms for predicting the pressures in the cushion chambers supporting the craft. The present method uses several approximation algorithms that significantly improve run times, yet guarantee a sufficiently accurate solution of the various chamber pressures to correctly model the craft motions over a wide range of operating scenarios. K.K.

A89-43178# ADAPTIVE GRID EMBEDDING IN NONEQUILIBRIUM HYPERSONIC FLOW

MICHAEL J. AFTOSMIS and JUDSON R. BARON (MIT, Cambridge, MA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 18 p. refs (Contract F33615-87-C-3004)

(AIAA PAPER 89-1652)

An adaptive grid algorithm using local grid embedding was applied to two dimensional and axisymmetric blunt bodies subject to real gas conditions in hypersonic flow. The modeling considers inviscid and viscous air mixtures with up to five species undergoing uncoupled and coupled nonequilibrium chemical reactions. Attention was given to the influence of numerical smoothing terms on the stagnation region and to applying unstructured mesh adaptation in a moving (adjusting) domain. Perfect gas, dissociating gas and multiple reaction comparisons demonstrated good agreement with both experiment and computation. The adaptive technique provided considerable savings in computation time relative to solutions on globally refined grids.

A89-43187*# University of Southern California, Los Angeles. 'HYPERSONIC SLIP FLOWS' AND ISSUES ON EXTENDING CONTINUUM MODEL BEYOND THE NAVIER-STOKES LEVEL H. K. CHENG, C. J. LEE, E. WONG, and H. T. YANG (Southern California, University, Los Angeles, CA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 18 p. refs (Contract AF-AFOSR-88-0146; NAGW-1061) (AIAA PAPER 89-1663)

Results of a direct simulation Monte Carlo method for a hypersonic flow about a flat plate at a 40 deg angle of attack have been compared with corresponding results from a theory for fully viscous shock layers (FVSLs). Using the 13-moment equations for a Maxwell gas, it is demonstrated that nonequilibrium and equilibrium FVSL flows can be correlated. With the exception of the pressure density, most of the flow properties along a streamline (including heat flux and shear and normal stresses) are correctly predicted to leading order by the Navier-Stokes model.

A89-43188*# Stanford Univ., CA. APPLICATION OF A VECTORIZED PARTICLE SIMULATION IN HIGH-SPEED NEAR-CONTINUUM FLOW

MICHAEL S. WORONOWICZ and JEFFREY D. MCDONALD (Stanford University, CA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 12 p. refs (Contract AF-AFOSR-88-0139; NCA2-313; NAGW-965) (AIAA PAPER 89-1665)

An efficient particle simulation technique, developed for use on vector architecture based supercomputers for studying hypersonic rarefied gas flows is employed to simulate the complex wake generated by Mach six flow over a 10 deg half-angle wedge for freestream Reynolds numbers of 1780 and 3560. Data obtained are compared against higher Reynolds number experimental results. Simulations utilized as many as 10 to the 5th computational cells and 10 to the 7th simulated particles having power-law interaction potentials. A code performance of 1.8-2.4 microsec of Cray-2 CPU time to process a single particle per timestep is achieved. Diffuse adiabatic and isothermal wedge surface models are used in this investigation. Although the wedge geometry is

two-dimensional, the simulation incorporates a width-wise direction, resulting in a three-dimensional computation.

A89-43194# ACCURATE NAVIER-STOKES RESULTS FOR THE HYPERSONIC FLOW OVER A SPHERICAL NOSETIP

FREDERICK G. BLOTTNER (Sandia National Laboratories, Albuquerque, NM) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 13 p. refs (Contract DE-AC04-76DP-00789) (AIAA PAPER 89-1671)

The unsteady thin-layer Navier-Stokes equations for a perfect gas are solved with a linearized block Alternating Direction Implicit finite-difference solution procedure. Solution errors due to numerical dissipation added to the governing equations are evaluated. Errors in the numerical predictions on three different grids are determined where Richardson extrapolation is used to estimate the exact solution. Accurate computational results are tabulated for the hypersonic laminar flow over a spherical body which can be used as a benchmark test case. Predictions obtained from the code are in good agreement with inviscid numerical results and experimental data.

A89-43195*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

TOWARD A CFD NOSE-TO-TAIL CAPABILITY - HYPERSONIC UNSTEADY NAVIER-STOKES CODE VALIDATION

THOMAS A. EDWARDS and JOLEN FLORES (NASA, Ames Research Center, Moffett Field, CA) AlAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 16 p. refs (AIAA PAPER 89-1672)

Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising. Author

A89-43212*# North Carolina State Univ., Raleigh. AN APPROXIMATE VISCOUS SHOCK LAYER METHOD FOR CALCULATING THE HYPERSONIC FLOW OVER BLUNT-NOSED BODIES

A. C. GRANTZ, F. R. DEJARNETTE (North Carolina State University, Raleigh), and R. A. THOMPSON (NASA, Langley Research Center, Hampton, VA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 17 p. refs (Contract NCC1-100) (AIAA PAPER 89-1695)

The approximate axisymmetric method presented for accurately calculating the surface and flowfield properties of fully viscous hypersonic flow over blunt-nosed bodies incorporates the turbulence model of Cebeci-Smith (1970) and the equilibrium air tables of Hansen (1959). The method is faster than the parabolized Navier-Stokes or viscous shock layer solvers that it could replace for preliminary design determinations. Surface heat transfer and pressure predictions for the present method are comparable with the more accurate viscous shock layer method as well as flight test and wind tunnel data. A starting solution is not required.

O.C.

A89-43215#

NUMERICAL SIMULATION OF HYPERSONIC VISCOUS PERFECT GAS FLOW FOR THE AEROTHERMODYNAMIC DESIGN OF SPACE PLANES AT LOW ANGLES OF ATTACK

YUKIMITSU YAMAMOTO (National Aerospace Laboratory, Chofu, Japan), HARUHIKO ARAKAWA, and RYUJI YOSHIDA (Mitsubishi Heavy Industry Corp., Nagoya, Japan) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 22 p. refs (AIAA PAPER 89-1699)

In the present numerical simulation of hypersonic aero-thermodynamic heating along the wing leading edge of a reentry-glide spacecraft, with a view to preliminary aerothermal structural design that must be conditioned by localized heating due to recompression or shock impingement at low angles-of-attack, attention is given to this phenomenon in three different vehicle configurations proposed by Japan's NAL. These three designs differ with respect to wing leading-edge sweep angles. The numerical computations were conducted at Mach 7 and Reynolds number of 4.4 million, at zero, 10, and 20 deg angles-of-attack; the results obtained are compared with experimental heat-transfer measurements.

A89-43228*# North Carolina State Univ., Raleigh. STUDY OF HYPERSONIC FLOW PAST SHARP CONES

JEFF C. TAYLOR, H. A. HASSAN (North Carolina State University, Raleigh), and JAMES N. MOSS (NASA, Langley Research Center, Hampton, VA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 10 p. Research supported by USAF and U.S. Navy. refs

(Contract NCC1-112; NAGW-1022; NAGW-1331) (AIAA PAPER 89-1713)

Calculations using the direct simulation Monte Carlo (DSMC) method of Bird for flow past sharp cones in the near continuum to free molecule flow regime are presented and compared with experiment. It is found that results are sensitive to the grid and the interaction potential. Moreover, the time counter method was found to be as accurate as other methods when the solution is grid independent. Finally, the results show that the effects of the wake on the forebody surface properties are minimal.

A89-43230# NUMERICAL SIMULATION OF 3D RAREFIED HYPERSONIC FLOWS

T. C. LIN, R. D. MCGREGOR, J. L. WONG, and W. R. GRABOWSKY (TRW, Inc., Ballistic Missiles Div., San Bernardino, CA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 12 p. refs (Contract F04704-88-C-0017) (AIAA PAPER 89-1715)

Rigorous models are formulated to estimate the flow properties around hypersonic vehicles. The flow conditions range from the continuum to free molecule flow. The Navier-Stokes/Merged Layer Equation/Parabolized Navier-Stokes (NS/MLE/PNS) codes are used to predict flowfields in the continuum regime while the free molecule models are employed in the rarefied flow limit. In the transitional flow regime, TRW's Direct Simulation Monte Carlo (DSMC) code is applied. This paper is intended to illustrate the validity of various state-of-the-art codes as they are used in the various flow domains. The effects of angle-of-attack and flow rarefaction on the aerodynamic coefficient and heat transfer rate are demonstrated through comparison with ground test measurements. Engineering methods deduced from DSMC/NS/MLE/PNS models are developed to estimate the flow properties in the transitional flow regime.

A89-43537

THE UNSTEADY FLOW IN THE FAR FIELD OF AN ISOLATED BLADE ROW

J. M. VERDON (United Technologies Research Center, East Hartford, CT) Journal of Fluids and Structures (ISSN 0889-9746), vol. 3, March 1989, p. 123-149. refs (Contract N00014-85-C-0702)

Analytic solutions are derived to represent the unsteady flow

in the far field of an isolated two-dimensional cascade operating at subsonic, transonic or supersonic inlet and exit Mach numbers. These solutions describe the velocity potential and rotational velocity fluctuations associated with irrotational pressure disturbances, rotational velocity disturbances and the vorticity shed from blade trailing edges and convected along blade wakes. They thus provide the inlet and exit information needed for a proper understanding and numerical resolution of the unsteady flow through a blade row. As part of this investigation a method for classifying unsteady excitations, based on the acoustic response that they produce in the far field, is developed, and analytical results are presented to illustrate subsonic and supersonic far-field acoustic response behavior. Numerical calculations of unsteady flows through subsonic compressor-type cascades are also carried out to demonstrate the link between unsteady flow behavior in the far-field and the aerodynamic loads acting at a vibrating blade

N89-23408# National Aerospace Lab., Tokyo (Japan). TRANSONIC OPERATIONAL CHARACTERISTICS AND PERFORMANCE

AKIRA KOIKE, KEISUKE ASAI, NOBUYUKI HOSOE, TOSHIO KARASAWA, HISASHI SUENAGA, SUSUMU MITSUBORI, and KOICHI SUZUKI Mar. 1988 33 p In JAPANESE; ENGLISH summary

(NAL-TR-968; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Two turbine-powered simulators (TPSs) manufactured by Tech Development Inc. (Model 1079A), clad with nacelles of a generic configuration, are subjected to test in the NAL 2 x 2 m Transonic Wind Tunnel up to a Mach number of 0.8 in order to obtain data needed for use of the TPSs in a high-speed wind tunnel test of the NAT STOL research airplane ASKA. The TPSs are placed on top of a strut erected on the balance turn-table of the test-section floor so that the aerodynamic forces acting on the nacelle-strut system can be measured. Operational characteristics are obtained by measuring the TPS fan rotational speed as a function of the turbine-drive air pressure, and by observing the variation of the temperatures at the bearings supporting the TPS rotational part. Acceleration levels due to vibration are also measured. Instrumentation includes the total pressure-and temperature distributions within the fan and turbine nozzle flows to derive the TPS/nacelle performance represented by the fan pressure ratio. the mass flow through the fan and the magnitude of the thrust generated by the TPS/nacelle system. Author

N89-23409# National Aerospace Lab., Tokyo (Japan). NUMERICAL SIMULATION OF HYPERSONIC FLOW AROUND A SPACE PLANE. 1: BASIC DEVELOPMENT

YUKIMITSU YAMAMOTO and SHIN KUBO May 1988 23 p in JAPANESE; ENGLISH summary

(NAL-TR-976T, ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Thomas and Van Leer's flux-split upwind TVD scheme was applied to the hypersonic flow around a space plane proposed by National Aerospace Laboratory (NAL). Thin-layer Navier-Stokes equations in a finite volume formulation are solved by using an implicit approximately factored ADI algorithm. computations are performed for a Mach number of 7.0 and Reynolds number of 1.3 x 10(7) at angles of attack up to 30 degrees. Numerical results are compared with experimental data obtained from the hypersonic wind tunnel tests at NAL. Through these comparisons, it is demonstrated that the present TVD Navier-Stokes code has excellent capabilities for evaluating total aerodynamic performance and investigating severe aerodynamic heating, which are of great significance in the design of a space plane configuration. In the analysis, a modified Yee-Harten's TVD scheme is also developed and applied. Numerical calculations were carried out by using two schemes for free stream = 10.0 at alpha = 0 deg and almost the same pressure contours were obtained. Author

N89-23410*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

COMPUTING INDUCED VELOCITY PERTURBATIONS DUE TO A HELICOPTER FUSELAGE IN A FREE STREAM

JOHN D. BERRY and SUSAN L. ALTHOFF Jun. 1989 65 p (Contract DA PROJ. 1L1-62211-A-47-A) (NASA-TM-4113; L-16533; NAS 1.15:4113;

AVSCOM-TR-89-B-001) Avail: NTIS HC A04/MF A01 CSCL 01/1

The velocity field of a representative helicopter fuselage in a free stream is computed. Perturbation velocities due to the fuselage are computed in a plan above the location of the helicopter rotor (rotor removed). The velocity perturbations computed by a source-panel model of the fuselage are compared with experimental measurements taken with a laser velocimeter. Three paneled fuselage models are studied: fuselage shape, fuselage shape with hub shape, and a body of revolution. The velocity perturbations computed for both fuselage shape models agree well with the measured velocity field except in the close vicinity of the rotor hub. In the hub region, without knowing the extent of separation, modeling of the effective source shape is difficult. The effects of the fuselage perturbations are not well-predicted with a simplified ellipsoid fuselage. The velocity perturbations due to the fuselage at the plane of the measurements have magnitudes of less than 8 percent of free-stream velocity. The velocity perturbations computed by the panel method are tabulated for the same locations at which previously reported rotor-inflow velocity measurements were made.

N89-23411*# Old Dominion Univ., Norfolk, VA.
EXPERIMENTAL STUDY OF PRESSURE AND HEATING RATE
ON A SWEPT CYLINDRICAL LEADING EDGE RESULTING
FROM SWEPT SHOCK WAVE INTERFERENCE M.S. Thesis
CHRISTOPHER E. GLASS Apr. 1989 164 p Sponsored by
NASA

(NASA-CR-185326; NAS 1.26:185326) Avail: NTIS HC A08/MF A01 CSCL 01/1

The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

N89-23413*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

NUMERICAL SOLUTION OF PERIODIC VORTICAL FLOWS ABOUT A THIN AIRFOIL

JAMES R. SCOTT and HAFIZ M. ATASSI (Notre Dame Univ., IN.) 1989 12 p Presented at the 24th Thermophysics Conference, Buffalo, NY, 12-14 Jun. 1989; sponsored by the AIAA (NASA-TM-101998; E-4703; NAS 1.15:101998) Avail: NTIS HC A03/MF A01 CSCL 01/1

A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose

potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.

N89-23414*# Continuum Dynamics, Inc., Princeton, NJ.
ENHANCEMENTS TO A NEW FREE WAKE HOVER ANALYSIS
TODD R. QUACKENBUSH and DANIEL A. WACHSPRESS Apr.
1989 41 p

(Contract NAS2-12810)

(NASA-CR-177523; NAS 1.26:177523) Avail: NTIS HC A03/MF A01 CSCL 01/1

The results of three distinct efforts whose common goal was to enhance the applicability and utility of the EHPIC (Evaluation of Hover Performance using Influence Coefficients) free wake hover performance prediction program are summarized. The primary task in this three-part effort revolved around the addition of an image wake to the original version of the EHPIC analysis to permit exploration of the effect of ground proximity on rotor performance. Representative calculations were carried out to test the adequacy of the current ground effect model and the comparisons obtained with existing full-scale helicopter performance data was encouraging. The second task undertaken involved exploiting a capability that has been latent in the influence coefficient solution method since the original work on this topic. The modified EHPIC code can now undertake wake stability analyses for converged solutions using an existing eigensystem analysis package. Sample calculations are shown that illustrate some of the many possible applications of this capability. Finally, the EHPIC code was extensively rewritten to take advantage of the vector processing capabilities of CRAY-type supercomputers. Test runs on the NASA CRAY X-MP have shown that the modified version of the EHPIC code runs four to five times faster than the original version designed for serial processing machines.

N89-23415*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

STATUS OF SONIC BOOM METHODOLOGY AND UNDERSTANDING

CHRISTINE M. DARDEN, CLEMANS A. POWELL, WALLACE D. HAYES, ALBERT R. GEORGE, and ALLAN D. PIERCE (Pennsylvania State Univ., University Park.) Washington Jun. 1989 32 p Presented at the Sonic Boom Workshop, Hampton, VA, Jan. 1988

(NASA-CP-3027; L-16567; NAS 1.55:3027) Avail: NTIS HC A03/MF A01 CSCL 01/1

In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given.

N89-23417*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

THE LOW FREQUENCY OSCILLATION IN THE FLOW OVER A NACA0012 AIRFOIL WITH AN ICED LEADING EDGE

K. B. M. Q. ZAMAN and M. G. POTAPCZUK 198

Presented at the Conference on Low Reynolds Number Aerodynamics, Notre Dame, IN, 5-7 Jun. 1989; sponsored by Notre Dame Univ.

(NASA-TM-102018; E-4727; NAS 1.15:102018) Avail: NTIS HC A03/MF A01 CSCL 01/1

The unusually low frequency oscillation in the wake of an airfoil is explored experimentally as well as computationally for a NACA0012 airfoil with a glaze ice accretion at the leading edge. Experimentally, flow oscillations were observed at low frequencies that correspond to a Strouhal number of about 0.02. This occurred in the angle of attack range of 8 to 9 deg, near the onset of static stall for this airfoil. With a Navier-Stokes computation, limit-cycle oscillations in the flow and in the aerodynamic forces were also observed at low Strouhal numbers. However, the occurrence of the oscillation is found to depend on the turbulence model in use as well as the Reynolds number.

N89-23418*# California Univ., Davis. Div. of Aeronautical Science and Engineering.

HIGH ANGLE-OF-ATTACK AERODYNAMIC CHARACTERISTICS OF CRESCENT AND ELLIPTIC WINGS **Final Report**

C. P. VANDAM May 1989 38 p (Contract NAG1-732)

(NASA-CR-184992; NAS 1.26:184992) Avail: NTIS HC A03/MF A01 CSCL 01/1

Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes. Author

N89-23420# Stanford Univ., CA. Thermosciences Div. AN EXPERIMENTAL STUDY OF THE EFFECT OF STREAMWISE VORTICES ON UNSTEADY TURBULENT **BOUNDARY-LAYER SEPARATION**

W. W. HUMPHREYS and W. C. REYNOLDS 9 Dec. 1988

(Contract F49620-86-K-0020)

(AD-A205462; TF-42; AFOSR-89-0275TR) Avail: NTIS HC

A12/MF A01 CSCL 01/3 This experiment studied the effect of streamwise vortices on unsteady turbulent boundary-layer separation. The objectives were to document the flow field, to characterize the time response of the boundary layer, and to understand the actual mechanisms by which the streamwise vortices modify boundary-layer behavior. A new configuration for non-obtrusive three-component Laser Doppler Anemometry (LDA) determined the phase averaged velocity and Reynolds stress components, in an unsteady water tunnel, at a momentum thickness Reynolds number of 1840. The streamwise vortices were created by three pairs of half-delta wing vortex generators, while the boundary-layer separation was controlled through impulsively initiated opposite-wall suction, which created a strong adverse pressure gradient. The time response of the freestream velocity demonstrates that convection is the primary mechanism by which vortex generators modify the response of the boundary layer. There is an initial fast response throughout the boundary layer which is unaffected by the presence of vortex generators, followed by a slow or convective response, the magnitude of which is substantially modified by the presence of the vortex generators.

Arizona State Univ., Tempe. Dept. of Mechanical N89-23423# and Aerospace Engineering.

DEVELOPMENT OF HARMONIC PANEL METHODS FOR AEROELASTIC APPLICATIONS TO ELASTIC BODIES AND **BODY-FIN COMBINATIONS IN SUPERSONIC FLOW Final** Report, Jan. 1984 - Dec. 1988

D. D. LIU and PABLO GARCIA-FOGEDA Jan. 1989 201 p (Contract DAAG29-84-K-0004)

(AD-A205739; ASU-CR-R-89021; ARO-20928.6-EG) Avail: NTIS HC A10/MF A01 CSCL 20/4

Recent development of several unsteady supersonic methods for computations of airloads for elastic bodies of revolution, asymmetric bodies and body wing configurations are reported. These methods include the Harmonic Potential Panel (HPP) method, the Bundle Triplet Method (BTM) and the combined method of BTM and the Harmonic Gradient Method (HGM) for body wing combinations. All methods are based on the generic Harmonic Gradient (H-G) model, which is essential in providing accurate solutions in the full frequency domain and the low Mach number range. Extensive comparisons of computed results obtained from these methods show good correlations with existing data. Comparison examples range from simple cones and ogive bodies to Saturn SA-1 configuration, to the cylindrical panel membrance and to the NACA wing-body combinations. Cases computed yield steady and unsteady pressures, generalized forces, stability derivatives, aerodynamic dampings and divergence and flutter boundaries for these configurations. The developed methods have been validated with existing theories or measured data. For supersonic aeroelastic analysis, these methods yield results that are accurate and cost-effective, thus rendering them very favorable for technology transfer and industry applications.

N89-23424# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

NAVIER-STOKES SOLUTION FOR A NACA 0012 AIRFOIL WITH MASS FLUX (FAN) M.S. Thesis

PAUL D. BOYLES Dec. 1988 140 p

(AD-A205771; AFIT/GAE/AA/88D-02) Avail: NTIS HC A07/MF

A01 CSCL 01/1

STOL aircraft use a variety of mechanisms to augment lift. Small fans with vectored exhaust imbedded in an aircraft wing could increase lift and reduce drag. The aim of this thesis is to investigate the two-dimensional effect of a small fan in wing on the flow field and on the lift and drag behavior of a NACA 0012 airfoil. Numerical solutions are obtained for a Mach number of 0.3 and a Reynolds number of one million. The parameters examined are angle of attack, fan ejection angle and suction velocity. The numerical code used is based on the Beam-Warming implicit factorization algorithm for solving the two-dimensional mass-averaged compressible Navier-Stokes equations for viscous, unsteady flows. GRA

Air Force Inst. of Tech., Wright-Patterson AFB, N89-23425# OH. School of Engineering.

INVESTIGATION OF THE FLOWFIELD CREATED BY THE INTERACTION OF A SONIC JET AND A CO-FLOWING SUPERSONIC STREAM M.S. Thesis

BENOIT J. DURAND Dec. 1988 142 p

(AD-A205823; AFIT/GAE/AA/88D-11) Avail: NTIS HC A07/MF A01 CSCL 20/4

Flowfield characteristics created by a sonic flow expanding freely between two supersonic streams were investigated experimentally using optical and pressure instrumentation. The base flow produced by the expansion of the streams around the base regions is compared to experimental data and theory by Chow. The shear layer created between the sonic and supersonic stream was also studied using Schlieren photographs is examined in an effort to explain the observed flow phenomenon. It was observed that a shear layer crossing a shock wave spreads and increases its turbulence level. However, an undesirable loss in total pressure results which could be undesirable. It appears that Chow's theory on base pressure approximates the characteristics of the flow near the end of the nozzle assembly where the two flows initially

interact. The same trends were observed in the behavior of base pressure with increasing secondary total pressure as Chow observed during his experiment. The convective Mach number concept was successfully applied to the sonic injection geometry and it was demonstrated that the convective Mach number decreases drastically as the secondary pressure is increased. This is an indication that the growth rate of the shear layer increases, giving a faster mixing rate.

N89-23426# Stanford Univ., CA.

FLOW CONTROL FOR UNSTEADY AND SEPARATED FLOWS AND TURBULENT MIXING Annual Report, 1 Oct. 1987 - 30 Sep. 1988

J. K. EATON, LAMBERTUS HESSELINK, J. P. JOHNSTON, I. M. KROO, J. D. POWELL, L. ROBERTS, and W. C. REYNOLDS 31 Oct. 1988 51 p

(Contract F49620-86-K-0020)

(AD-A205989; AFOSR-89-0232TR) Avail: NTIS HC A04/MF A01 CSCL 01/1

A coordinated set of experimental research projects on flow control is being conducted by a team with experience in fluid mechanics and automatic control. The primary objective of this work is to develop new ways to control flows of technical interest and a generic approach to the design of flow control systems. Included are studies of mixing enhancement by excitation of jets, active control of unsteady turbulent boundary layers and separated flows, and active control of the vortical flow over delta wings using leading-edge blowing.

N89-23427# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

EJECTOR EFFECTS ON A SUPERSONIC NOZZLE AT LOW ALTITUDE AND MACH NUMBER M.S. Thesis

CHRISTOPHER A. SEAVER Dec. 1988 105 p (AD-A206049; AFIT/GAE/AA/88D-33) Avail: NTIS HC A06/MF A01 CSCL 01/1

This research involves the study of ejector effects on a supersonic nozzle. A blowdown wind tunnel was used to simulate the launch of an ejector rocket to determine possible thrust augmentation capabilities of such a design. Pressure measurements were made along the mixing chamber during the 42 separate runs which were used to select a specified profile to study the effects the flow has on wall pressures and rocket thrust. Primary airflow was directed to the primary rocket nozzle designed for Mach 3.09. Secondary airflow was directed to a sonic ejector which was adjusted to simulate vehicle Mach number. A vacuum tank was used to provide the environment simulating a reverse trajectory of a launch.

N89-23428# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

NUMERICAL STUDY OF THE INFLUENCE OF LEADING AND TRAILING EDGE FLAPS ON THE PERFORMANCE OF AIRFOILS M.S. Thesis

FARAN HAFEEZ Mar. 1989 164 p

(AD-A206138; AFIT/GAE/AA/89M-2) Avail: NTIS HC A08/MF A01 CSCL 01/1

The purpose of this study is to develop a code based on the Approximate Navier Stokes (ANS) equations (in the Vorticity Stream Function delta form). The Wortman FX 63-137 airfoil fitted with leading and trailing edge devices has been analyzed at low Reynolds Number (100,000) at various angles of attack and various deflection angles. Results are compared to the experimental data. The agreement is very good at small angles of attack. However, at large angles of attack the disparity is larger, and improvements have been recommended which will resolve this disparity. Overall the present scheme produces very reasonable results, with good repeatability and fast convergence, and has the potential of being developed into an effective design tool.

N89-23429# Bolt, Beranek, and Newman, Inc., Canoga Park, CA

NOISE AND SONIC BOOM IMPACT TECHNOLOGY. PCBOOM COMPUTER PROGRAM FOR SONIC BOOM RESEARCH, VOLUME 1 Final Report, May 1987 - Oct. 1988

DWIGHT E. BISHOP Oct. 1988 56 p

(Contract F33615-86-C-0530)

The PCBOOM computer program, described in this technical report, calculates the location and magnitude of sonic boom overpressures on the ground due to supersonic flight under standard atmosphere and no wind propagation conditions. The program is intended for environmental planners and engineers who may need to estimate the noise impact from individual flights of supersonic military aircraft. The program runs on a Zenith Z-248 personal computer and also should run on most similarly configured IBM-compatible computers. The program contains information for all current military aircraft and allows updating for additional aircraft. The user can select either Quick look computations which assume steady-state flight or detailed ray-tracing calculations which can handle non-steady flight and sonic boom focus conditions. Several types of simple maneuvers can be selected for computations; the program will also handle up to ten connected straight line segments. Flight segments from the MOAOPS library of supersonic combat training flights may also be selected. User-specified output for printer, plotter or screen includes tables of overpressures and graphic display of the sonic boom overpressure footprints on the ground.

N89-23430# Bolt, Beranek, and Newman, Inc., Canoga Park, CA

NOISE AND SONIC BOOM IMPACT TECHNOLOGY. PCBOOM COMPUTER PROGRAM FOR SONIC BOOM RESEARCH. VOLUME 2: PROGRAM USERS/COMPUTER OPERATIONS MANUAL Final Report, May 1987 - Oct. 1988

AUGUSTINE SALVETTI and HARRY SEIDMAN Oct. 1988

(Contract F33615-86-C-0530)

(AD-A206291; BBN-6742-VOL-2; HSD-TR-88-014-VOL-2) Avail: NTIS HC A04/MF A01 CSCL 20/1

This report contains the information for both the user and for computer operations. The report provides the user with the information necessary to effectively use PCBOOM. In addition, it provides the computer operations personnel with a description of the computer system and its associated environment. Two other reports provide a technical discussion of the algorithms used and a program maintenance manual.

N89-23433*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

TRANSONIC NAVIER-STOKES SOLUTIONS OF THREE-DIMENSIONAL AFTERBODY FLOWS

WILLIAM B. COMPTON, III, JAMES L. THOMAS, WILLIAM K. ABEYOUNIS, and MARY L. MASON Jul. 1989 62 p (NASA-TM-4111; L-16516; NAS 1.15:4111) Avail: NTIS HC A04/MF A01 CSCL 01/1

The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.

N89-24264*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

EFFECT OF ADVANCED ROTORCRAFT AIRFOIL SECTIONS ON THE HOVER PERFORMANCE OF A SMALL-SCALE **ROTOR MODEL**

SUSAN L. ALTHOFF (Army Aviation Systems Command, Hampton, VA.) Sep. 1988 35 p

(Contract DA PROJ. 1L1-61102-AH-45-A)

(NASA-TP-2832; L-16407; NAS 1.60:2832;

AVSCOM-TP-88-B-001) Avail: NTIS HC A03/MF A01 CSCL

01/1

A hover test was conducted on a small scale rotor model for two sets of tapered rotor blades. The baseline rotor blade set used a NACA 0012 airfoil section, whereas the second rotor blade set had advanced rotorcraft airfoils distributed along the radius. The experiment was conducted for a range of thrust coefficients and tip speeds, and the data were compared to the predictions of three analytical methods. The data show the advantage of the advanced airfoils at the higher rotor thrust levels; two of the analyses predicted the correct data trends. Author

N89-24265*# California Polytechnic State Univ., San Luis Obispo. Dept. of Aeronautical Engineering.

THERMAL ANALYSIS OF A HYPERSONIC WING TEST STRUCTURE Final Report, Oct. 1986 - Apr. 1989

DORAL R. SANDLIN and NEIL J. SWANSON, JR. Apr. 1989 54 p

(Contract NCC2-433)

(NASA-CR-185319; NAS 1,26:185319) Avail: NTIS HC A04/MF A01 CSCL 01/1

The three-dimensional finite element modeling techniques developed for the thermal analysis of a hypersonic wing test structure (HWTS) are described. The computed results are compared to measured test data. In addition, the results of a NASA two-dimensional parameter finite difference local thermal model and the results of a contractor two-dimensional lumped parameter finite difference local thermal model will be presented.

N89-24266*# West Virginia Univ., Morgantown. Mechanical and Aerospace Engineering.

COMPUTATIONAL DESIGN OF LOW ASPECT RATIO WING-WINGLET CONFIGURATIONS FOR TRANSONIC WIND-TUNNEL TESTS Final Report

JOHN M. KUHLMAN and CHRISTOPHER K. BROWN May 1989 115 p

(Contract NAG1-625)

(NASA-CR-185016; NAS 1.26:185016) Avail: NTIS HC A06/MF CSCL 01/1

Computational designs were performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three configurations was selected to be constructed as a wind tunnel model for testing in the NASA-Langley 7 x 10 high speed wind tunnel. A design point of M = 0.8, CL approximately equal to 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. The design process and the predicted transonic performance for each configuration is summarized. In addition, a companion low-speed design study was conducted, using one of the transonic design wing-winglet planforms but with different camber and thickness distributions. A low-speed wind tunnel model was constructed to match this low-speed design geometry, and force coefficient data were obtained for the model at speeds of 100 to 150 ft/sec. Measured drag coefficient reductions were of the same order of magnitude those predicted by numerical subsonic performance predictions. Author

N89-24267 Rensselaer Polytechnic Inst., Troy, NY. AERODYNAMICS OF A LIFTING ROTOR DUE TO NEAR FIELD

UNSTEADY EFFECTS Ph.D. Thesis

ROBERT LOWELL MILLIKEN 1988 210 p

Avail: Univ. Microfilms Order No. DA8905209

Lift deficiency functions to aid in the prediction of oscillatory loadings due to near field wake effects on a three-dimensional rotor blade in forward flight were obtained. The Pulse Transfer Function (PTF) technique was used in obtaining the lift deficiency functions. A discrete vortex model of the circulatory flow field was employed to obtain the time domain lift response to a pulse shaped transient input. The frequency domain response was then obtained by inverting the time domain response using fast Fourier transforms (FFT), from which the lift deficiency functions could be determined. To demonstrate the validity of the PTF technique, the analytical lift deficiency functions of Theodorsen and Loewy were compared with numerical representations of these functions. These lift deficiency functions and their PTF numerical counterparts agreed well in magnitude, but the error in the phase shift was large and increased with increasing reduced frequency. Lift deficiency functions for rotor blades of aspect ratios 6, 12, and 18 were plotted for advance ratios 0, 0.2, and 0.4 for each 45 degree increment about the azimuth. The results show that the effect of three dimensions is to produce a lower lift loss than calculated on the basis of two-dimensional results. The difference between the magnitude of the unsteady lift predicted by the lift deficiency functions and Theodorsen's function can be as much as 25 percent.

N89-24270# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

USE OF NAVIER-STOKES METHODS TO PREDICT CIRCULATION CONTROL AIRFOIL PERFORMANCE M.S.

STEVEN L. WILLIAMS Mar. 1989 84 p. (AD-A206242; AFIT/GAE/AA/89M-4) Avail: NTIS HC A05/MF A01 CSCL 01/1

The predictive capability of the two-dimensional compressible mass-averaged Navier-Stokes equations was investigated for a typical circulation control air-foil. The governing equations were solved using the implicit approximate factorization algorithm of Beam-Warming with the turbulence model of Baldwin-Lomax. To account for the unique characteristics of circulation control airfoils, an empirical turbulence model correction due to Bradshaw was used. This thesis is unique in that the predictive capability of the computational method is explored by examining the importance of the empirical Bradshaw curvature correction constant on the computed results. Using a generic value of the curvature constant at various blowing coefficient levels, the computational method was able to accurately predict airfoil pitching moment and lift curve slope due to blowing. Predicted levels of airfoil lift coefficient. although reasonable, were found to be consistently low compared with experiment due to the generic curvature constant providing premature jet detachment from the Coanda surface. Computed and measured airfoil drag results followed the same trends, but lack of overall drag coefficient agreement was disappointing. Lift coefficient was found to be quite sensitive, pitching moment not sensitive, and drag coefficient moderately sensitive to the value of the curvature constant used.

Air Force Inst. of Tech., Wright-Patterson AFB, N89-24271# OH. School of Engineering.

WATER TUNNEL INVESTIGATION OF THE VORTEX DYNAMICS OF PERIODICALLY PITCHED WINGS M.S. Thesis

MICHAEL DAVID Dec. 1988 125 p

(AD-A206359; AFIT/GAE/AA/88D-06) Avail: NTIS HC A06/MF A01 CSCL 01/1

The vortex structure above semi-span wings was investigated in the AFFDL's 24-inch water tunnel to determine the effects of periodic pitching using a saw-tooth motion. Each of the six wings was pitched about the mid-chord at nondimensional upstroke rates

ranging from 0.05 to 0.30 and down-stroke rates from 0.025 to 0.600 at tunnel flow rates of 0.6 to 3.6 in/sec. Visualization of the vortices obtained through dye injection from the models was recorded using both high speed and 3/4-in. standard speed video

systems. Digitized data from the high speed system provided trend data which showed the saw-tooth motion caused a hysteresis effect on the vortex breakdown location for the swept wings where during the upstroke the vortex would burst further aft than during the down-stroke. In addition, comparison of two 65-deg sweep wings with different cross sections (flat plate and NACA 0012-34) showed a smaller hysteresis effect for the thicker wing. For the rectangular wing, increasing down-stroke rates resulted in higher dynamic stall vortex convection rates. Information was also gathered on the oscillation of static breakdown location and the effects of vortex breakdown of tunnel flow velocity.

N89-24272# Flow Research, Inc., Kent, WA. AN INVESTIGATION OF V/STOL JET INTERACTIONS IN A CROSSFLOW Final Report, 26 Sep. 1988 - 30 Mar. 1989 SURESH MENON Feb. 1989 72 p Revised Sponsored by DARPA

(Contract DAAH01-88-C-0865) (AD-A206360; FLOW-RR-470) Avail: NTIS HC A04/MF A01 CSCL 01/1

Recently, a numerical simulation code was developed to study the interaction of the effects of a row of normal impinging jets. This model essentially simulates the hovering configuration of a V/STOL aircraft. The code solves unsteady, 3-D incompressible Navier-Stokes equations using the technique of large-eddy simulations which resolves all the length scales above the grid resolution and models the contribution of the small scales by a subgrid eddy viscosity model. The present study extends this code to include other realistic V/STOL configurations such as an obliquely impinging jet and an impinging jet in crossflow with and without a moving ground plane. These configurations model the V/STOL aircraft in pitch and in forward motion. These modifications were successfully achieved and preliminary simulations using axisymmetric forcing of the impinging jet were carried out to demonstrate the capability of the numerical code. Even with coarse mesh simulations, the results show good qualitative agreement with experimental observations. Simulation of the impinging jet in crossflow showed the formation of counterrotating streamwise vortices which has been observed in many experiments. However, it was shown that the presence of the adjacent impinging jet (which is absent in all experiments) can significantly modify the dynamics of the vortical motion in the flow field. Significant 3-dimensional vortex stretching occurs in this flow and redistribution of the total vorticity in the flow field.

N89-24273# Naval Postgraduate School, Monterey, CA. Dept. of Aeronautics and Astronautics.

BOUNDARY LAYER RESPONSE TO AN UNSTEADY TURBULENT ENVIRONMENT M.S. Thesis ROBERT W. RENOUD Dec. 1988 123 p

(AD-A206578) Avail: NTIS HC A06/MF A01 CSCL 01/1

An experimental investigation of a wing boundary layer subjected to periodic turbulent flow at a Reynolds number of 500,000 was conducted. Non-thrusting turbulence pulses were generated at a rate of 50 pulses/s with a turbulence intensity near 10 percent. Time-varying velocity measurements were made at representative chord locations (laminar, transitional/turbulent, fully turbulent) at one angle of attack using single-element hot-wire anemometry. Characteristics of the boundary layer velocity profiles, turbulence intensity profiles, and velocity spectra and total spectral power were documented. The time-varying boundary layer response could be characterized by undisturbed flow, turbulence pulse, and recovery period. The boundary layer exhibited a cyclic transition response varying from the undisturbed flow regime to the turbulence pulse regime back to the undisturbed flow regime. The turbulence pulse penetrated into the entire boundary layer. The turbulence pulse prompted flow laminarization during the recovery period. Laminarization apparently resulted from rapid acceleration of near-surface flow within the boundary layer due to turbulence induced momentum transfer down through the boundary layer and local flow acceleration following velocity deficit of the turbulence pulse. Effects of the periodic turbulence pulse were most noticeable

in the recovery period at the transitional/turbulent and fully turbulent regions of the wing. Recovery was generally characterized by lowered turbulence.

N89-24274# Centre d'Etudes et de Recherches. Toulouse (France). Dept. d'Etudes et de Recherches Aerothermodynamique.

ANALYSIS OF THE BOUNDARY LAYER OF A DELTA WING IN INCIDENCE [ANALYSE DE LA COUCHE LIMITE A L'INTRADOS D'UNE AILE EN FLECHE ET EN INCIDENCE]

G. PAILHAS Apr. 1988 61 p

(Contract STPA-8595-004)

(CERT-RT-OA-26/5025-AYD; DERAT-26/5025-14; ETN-89-94522) Avail: NTIS HC A04/MF A01

A 60 deg delta wing at 15 deg incidence is tested in a wind tunnel. The wing is an ONERA D 200 mm chord. The flow velocity is 30 m/s. The model is equipped with five arrays of pressure measuring points. A representation of the isobars shows lines parallel to the leading edge. Graphics showing the velocity profiles, transversal velocities, and turbulences are presented.

N89-24278# Technische Hochschule, Aachen (Germany, F.R.). Lehrstuhl fuer Stahlbau.

UNSTEADY AERODYNAMIC EFFECTS ON BLUFF BODIES

H. P. RUSCHEWEYH In VKI, Unsteady Aerodynamics, Volume 1 72 p 1988

Avail: NTIS HC A20/MF A01

The physical background of aerodynamic vibration excitation phenomena is explained, including gust response, vortex resonance, galloping, interference galloping, and flutter. The mathematical models describing vibration induction are presented. Possible measures against dangerous flow induced vibrations are discussed.

N89-24282# Ecole Nationale Superieure de Mecanique, Nantes (France)

NUMERICAL METHODS FOR UNSTEADY FLOWS

Y. LECOINTE and J. PIQUET In VKI, Unsteady Aerodynamics, Volume 2 217 p 1988

Avail: NTIS HC A16/MF A01

Physical flow models are described in order of decreasing complexity, and typical results illustrating progress for the various flow modelling levels are discussed. Significant efforts are devoted to understanding the effects of equational level, computational grid, boundary conditions, and interactive viscous modeling. Progress in solution algorithms is detailed. Computational aeroelastic analysis shows its capability to predict complete transonic flutter boundaries for wings, including significant transonic dip features.

N89-24285*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

EXPERIMENTAL AERODYNAMIC CHARACTERISTICS OF A JOINED-WING RESEARCH AIRCRAFT CONFIGURATION

STEPHEN C. SMITH and RONALD K. STONUM

(NASA-TM-101083; A-89074; NAS 1.15:101083) Avail: NTIS HC A05/MF A01 CSCL 01/1

A wind-tunnel test was conducted at Ames Research Center to measure the aerodynamic characteristics of a joined-wing research aircraft (JWRA). This aircraft was designed to utilize the fuselage and engines of the existing NASA AD-1 aircraft. The JWRA was designed to have removable outer wing panels to represent three different configurations with the interwing joint at different fractions of the wing span. A one-sixth-scale wind-tunnel model of all three configurations of the JWRA was tested in the Ames 12-Foot Pressure Wind Tunnel to measure aerodynamic performance, stability, and control characteristics. The results of these tests are presented. Longitudinal and lateral-directional characteristics were measured over an angle of attack range of -7 to 14 deg and over an angle of sideslip range of -5 to +2.5 deg at a Mach number of 0.35 and a Reynolds number of 2.2x10(6)/ft. Various combinations of deflected control surfaces were tested to measure the effectiveness and impact on stability of several control surface arrangements. In addition, the effects on stall and post-stall aerodynamic characteristics from small leading-edge devices called vortilons were measured. The results of these tests indicate that the JWRA had very good aerodynamic performance and acceptable stability and control throughout its flight envelope. The vortilons produced a profound improvement in the stall and post-stall characteristics with no measurable effects on cruise performance.

N89-24286 Virginia Polytechnic Inst. and State Univ., Blacksburg.

ANALYSIS OF THE WAKE BEHIND A PROPELLER USING THE FINITE ELEMENT METHOD WITH A TWO-EQUATION TURBULENCE MODEL Ph.D. Thesis

SEUNG JOO KIM 1988 219 p

Avail: Univ. Microfilms Order No. DA8904992

The finite element in the form of the weak Galerkin formulation with the penalty function method was applied to several problems of axisymmetric turbulent flows including flow through a sudden pipe expansion, the stern region flow of a slender body, and flows past ducted and nonducted propellers in action. The coupled set of the Reynolds time-averaged Navier-Stokes equations and two turbulence transport equations for the turbulent kinetic energy and its rate of dissipation was solved by L/U decomposition and successive substitution with relaxation. An existing finite element code was modified with a low Reynolds number form for an appropriate treatment of wall influences on turbulence transport, which produces a better solution and provides an easier imposition of boundary conditions by solving up to wall with no slip boundary conditions. The two-equation turbulence model with the wall modification was first successfully tested by solving the turbulent flow through a sudden pipe expansion. The numerical simulation of the stern region flow of a streamlined body resulted in an excellent agreement with the measured data in terms of the mean-flow and turbulence quantities. Turbulent shear flow past a propeller at the rear end of the same slender body, modeled by an actuator disk, were successfully solved at two rotational speeds, self-propelled and 100 percent over-thrusted, using the same two-equation model. And finally, comparisons of the wake behind a propeller were made for the self-propelled conditions of a ducted and nonducted propeller on the same streamlined body.

03

AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

A89-39859

SAFETY PHILOSOPHIES IN AIR TRANSPORT [SICHERHEITSPHILOSOPHIEN IM LUFTVERKEHR]

GUNTHER SCHAENZER (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) Braunschweig, Technische Universitaet, Mitteilungen, vol. 24, no. 1, 1989, p. 9-19. In German. refs

Theoretical, technological, and design aspects of aircraft safety and reliability are examined in a general overview. Topics addressed include statistical measures comparing the safety of air travel to that of automobiles and trains, the downward trend in aviation accidents (per distance or time flown), the basic principles of design for safety, the definition of acceptable risk, and the redundant design of essential components. Particular attention is given to the frequency of occurrence of air turbulence, pilot workloads and the role of human error in accidents, the failure probability of autopilot systems, the increasing number of cockpit displays and controls, the problem of parallel redundancy, and software errors. Extensive diagrams and graphs are provided.

A89-42151

HAZARDS OF MOUNTAIN FLYING - CRASHES IN THE COLORADO ROCKIES

SUSAN P. BAKER and MARGARET W. LAMB (Johns Hopkins University, Baltimore, MD) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 60, June 1989, p. 531-536. refs

(Contract PHS-R49-CCR-302486-01)

Between 1964 and 1987, 232 airplanes crashed within 50 nautical miles of Aspen, Colorado; a total of 202 people died and 69 were seriously injured. Most pilots were experienced and many were flight instructors, but 44 percent had flown less than 100 hours in the type of plane in which they crashed. Airplanes with three or four occupants and low-powered four-seater aircraft were over-represented among crashes involving failure to outclimb rising terrain. In a subset of crashes examined for restraint use, 50 percent of the front-seat occupants using only lap belts were killed, compared to 13 percent of those who also wore shoulder restraints. Preventive recommendations include shoulder restraint use and better training in mountain flying with incentives provided by the FAA and insurance companies.

A89-42536

AIRCRAFT FLIGHT SAFETY: METHODOLOGICAL PRINCIPLES [BEZOPASNOST' POLETOV LETATEL'NYKH APPARATOV: METODICHESKIE OSNOVY]

ANATOLII I. STARIKOV, VIKTOR IA. ZACHESA, and NIKOLAI N. ZINKOVSKII Moscow, Izdatel'stvo Transport, 1988, 160 p. In Russian. refs

The fundamental principles of aircraft flight safety and methods of flight safety evaluation are reviewed. In particular, attention is given to the modeling of the states of aircraft and their systems; models of the interval and instantaneous states and models of state changes in flight are described. The discussion also covers method of analysis of special flight situations and quantitative estimation of flight safety characteristics on the basis of mathematical models.

A89-42811

PROBING BOEING'S CROSSED CONNECTIONS

KAREN FITZGERALD IEEE Spectrum (ISSN 0018-9235), vol. 26, May 1989, p. 30-35.

The causes and consequences of the misconnected circuits and hoses found in the fire protection systems of 94 in-service Boeing aircraft are examined. The problems were discovered during the massive worldwide inspections of fire protection systems in Boeing aircraft following the crash in England of a British Midland Airways Boeing 737 en route to Belfast in January 1989. These problems, of which there were a number of reports during 1988, did not cause the crash, which was attributed to human error.

I.E.

N89-23434# National Transportation Safety Board, Washington, DC. Bureau of Safety Programs.

ANNUAL REVIEW OF AIRCRAFT ACCIDENT DATA, US AIR CARRIER OPERATIONS: CALENDAR YEAR 1986

3 Feb. 1989 101 p

(PB89-151021; NTSB/ARC-89/01) Avail: NTIS HC A06/MF A01 CSCL 01/3

The record of aviation accidents involving revenue operations of U.S. Air Carriers including Computer Air Carriers and On Demand Air Taxis for calendar year 1986 is presented. The report is divided into three major sections according to the Federal regulations under which the flight was conducted - 14 CFR 121, 125, 127, Scheduled 14 CFR 135, or Nonscheduled 14 CFR 135. In each section tables describe the losses and characteristics of 1986 accidents to enable comparison with prior years.

N89-23435# Computer Resource Management, Inc., Vienna, VA.

NATIONAL AIRSPACE SYSTEM SEARCH AND RESCUE OPERATIONAL CONCEPT (NAS-SR-1329)

OPERATIONAL CONCEPT (NAS-SR-1329)WILLIAM TRENT, RODNEY KUHN, and THOMAS PICKERELL

Feb. 1989 50 p (Contract DTFA01-88-Y-01073) (DOT/FAA/DS-89/07) Avail: NTI

(DOT/FAA/DS-89/07) Avail: NTIS HC A03/MF A01

A requirement for the National Airspace System (NAS) is to provide for detecting the need for initiating and assisting in search and rescue activities, as identified in the NAS System Requirement Specification. A concept of operations for search and rescue is presented. It describes search and rescue assistance capabilities and shows the relationships between subsystems, facilities, information, and operators/users. It is intended to provide a common perspective for personnel involved in search rescue activities, assist in determining whether the search and rescue procedures meet formal requirements, and support coordination among the organizations involved with search and rescue assistance.

N89-23436# National Transportation Safety Board, Washington, DC. Bureau of Accident Investigation.

AIRCRAFT ACCIDENT REPORT: AVAIR INC., FLIGHT 3378, FAIRCHILD METRO 3, SA227 AC, N622AV, CARY, NORTH CAROLINA, FEBRUARY 19, 1988

13 Dec. 1988 73 p (PB88-910412: NTSB/AAR-88/10

(PB88-910412; NTSB/AAR-88/10) Avail: NTIS HC A04/MF A01; HC also available on subscription, North American Continent price \$70.00/year, all others write for quote CSCL 01/3

On February 19, 1988, an AVAir Inc. Fairchild Metro 3, N622AV, operating as Air Virginia (AVAir) flight 3378, crashed in Cary, North Carolina shortly after it departed runway 23R at Raleigh Durham International Airport (RDU), Morrisville, North Carolina, with 2 flightcrew members and 10 passengers on board. The airplane struck water within 100 feet of the shoreline of a reservoir, about 5,100 feet west of the midpoint of runway 23R. The airplane was destroyed and all 12 persons on board were killed. The National Transportation Safety Board determines that the probable cause of this accident was the failure of the flightcrew to maintain a proper flightpath because of the first officer's inappropriate instrument scan, the captain's inadequate monitoring of the flight, and the flightcrew's response to a perceived fault in the airplane's stall avoidance system. Contributing to the accident was the lack of company response to documented indications of difficulties in the first officer's piloting, and inadequate Federal Aviation Administration surveillance of AVAir.

N89-24288# Federal Aviation Administration, Atlantic City, NJ. Technical Center.

A COMPUTER SIMULATION STUDY OF LIQUID WATER CONTENT ADJUSTMENT BASED ON ICING CLOUD HORIZONTAL EXTENT

JAMES T. RILEY, JAMES BOOTH, and DOUGLAS FERGUSON Dec. 1988 117 p

(DOT/FAA/CT-TN89/3) Avail: NTIS HC A06/MF A01

The analytical airfoil ice accretion prediction code LEWICE was used to determine resultant ice shapes on an airfoil when the cloud horizontal extent (CHE) - liquid water content (LWC) factor curve, as given in the Federal Aviation Regulations (FAR's), is applied for related icing conditions of LWC and CHE extent. LEWICE predicts the shape of an ice accretion that would form on an unprotected airfoil (or other 2-dimensional geometry) when exposed to icing conditions. Although LEWICE is not validated for all purposes, it can be usefully employed in a comparative study of this type to study trends in ice accretion shape as ambient conditions are systematically varied. Results must be interpreted carefully in the context of the limitations of the ice accretion model assumed by LEWICE. For the conditions included in this study, LEWICE predicts that as LWC is decreased and CHE is increased by application of the CHE-LWC factor curve of the FAR's, a larger and more severe ice shape will accrete on an unprotected airfoil.

Autno

N89-24289# Army Aviation Engineering Flight Activity, Edwards AFB, CA.

PRELIMINARY AIRWORTHINESS EVALUATION OF MODIFIED SECOND-GENERATION PNEUMATIC BOOT DEICING SYSTEM ON A JUH-1H Final Report, 26 Oct. 1987 - 7 Apr. 1988

JAMES D. BROWN, CHARLES E. CASSIL, and MICHAEL K. HERBST Oct. 1988 62 p

(AD-A206255; USAAEFA-87-08) Avail: NTIS HC A04/MF A01 CSCL 08/12

The U.S. Army Aviation Engineering Flight Activity conducted a Preliminary Airworthiness Evaluation of a modified second-generation Pneumatic Boot Deicing System (PBDS) on a JUH-1H helicopter. This consisted of a structural loads survey, level flight performance evaluation, and a qualitative handling qualities evaluation. Twelve flights were conducted for a total of 7.8 productive flight hours. Rotor system structural loads were generally lower than those reported for the unmodified second-generation PBDS. With the PBDS inflated, main rotor pitch link load reached the endurance limit at 100 knots indicated airspeed in level flight. Power required in level flight was less than or equal to power required by the unmodified second-generation PBDS. Inflating the PBDS generated moderate right yaw rates and engine torque rises as great as eight pounds per square inch. One previously identified shortcoming, the aircraft response to PBDS activation during level flight, still exists.

N89-24290*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

DESIGN OF AUTOMATED SYSTEM FOR MANAGEMENT OF ARRIVAL TRAFFIC

HEINZ ERZBERGER and WILLIAM NEDELL (San Jose State Univ., CA.) Jun. 1989 50 p Original contains color illustrations (NASA-TM-102201; A-89116; NAS 1.15:102201) Avail: NTIS HC A03/MF A01 CSCL 17/7

The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. The design of two of these tools, the Descent Advisor, which provides automation tools for managing descent traffic, and the Traffic Management Advisor, which generates optimum landing schedules is focused on. The automation modes, and algorithms. graphical interfaces incorporated in the design are described. Author

04

AIRCRAFT COMMUNICATIONS AND NAVIGATION

Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

A89-40446

AIRCRAFT NAVIGATION USING I.R. IMAGE ANALYSIS

R. A. SAMY and A. LUCAS (Societe Anonyme des Telecommunications, Paris, France) IN: Applications of digital image processing XI; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 310-314.

Recent IR image-analysis techniques can be used top enhance the accuracy of aircraft navigation systems. Scene matching is one of the most promising techniques that can be combined with an inertial navigation system to give very-high-accuracy autonomous navigation. APARS segment detection using an optimal edge operator is used to select points in an IR image.

Matching of reference map with APARS is achieved by prediction and evaluation algorithms which include a Kalman estimation for image-to-map transformation refinements.

A89-40802

PRACTICAL EXPERIMENTAL EXAMPLES OF LAND, SEA, AND AIR NAVIGATION USING THE NAVSTAR/GPS SYSTEM [EXEMPLES D'EXPERIMENTATIONS PRATIQUES DE NAVIGATION TERRESTRE, MARITIME ET AERIENNE AVEC L'AIDE DU SYSTEME NAVSTAR/GPS1

JEAN FOURNIER, PIERRE MANNÉVY, and JEAN-PIERRE CAILLETAUD (Istituto Italiano di Navigazione, Convegno Nazionale sul le Utilizzazioni Civili del Sistema di Posizionamento Globale Navstar/GPS, Rome, Italy, Mar. 7, 8, 1989) Navigation (Paris) (ISSN 0028-1530), vol. 37, April 1989, p. 177-192. In French

The GPS/Navstar system is described, and experimental results for land and sea navigation (using a Trimble-type TANS GPS receiver) and for air navigation (using a Trimble-type 400 GPS receiver) are presented. The land experiments were performed near Caen-Ouistreham (Normandy), the sea experiments on the Caen canal, and the air experiments on a B-17 over agricultural sites in the Netherlands. The test data show a scatter of + or - 10 meters and a repeatability of 17 meters.

A89-40803

POSSIBILITY OF USING GPS FOR PRECISION APPROACHES [POSSIBILITE D'UTILISATION DU GPS POUR LES APPROCHES DE PRECISION]

LAWRENCE HOGLE (Mitre Corp., McLean, VA) Navigation (Paris) (ISSN 0028-1530), vol. 37, April 1989, p. 204-224. refs

The potential application of GPS for precision approach landing operations is explored. Although the horizontal accuracy of GPS is shown to be within the requirement specified for a precision approach to 200 ft altitude above the runway, the GPS does not achieve the required vertical accuracy, even when operating in a differential mode. It is noted that the coverage reliability and integrity of the system will also require further improvement in order for GPS to be used as a precision approach system.

A89-40895#

A STUDY ON THE AIR TRAFFIC MANAGEMENT - THE EFFECT OF DEPARTURE REGULATION

MORIYUKI MIZUMACHI (Tokyo, University, Japan) Tokyo, University, Faculty of Engineering, Journal, Series A (ISSN 0563-7945), no. 26, 1988, p. 36, 37. In Japanese, with abstract in English.

Simulation is used to investigate the effect of departure regulation on one-way air traffic flow. The regulation is performed by on-off gating, depending upon different thresholds of a clearance parameter. Two kinds of clearance parameters are adopted: (1) the number of aircraft en-route; and (2) the number of aircraft departed within an hour. On evaluation of results, such parameters as the waiting time on the ground, the flight time, the total trip time, etc., are obtained.

A89-41030

STATE AND PERSPECTIVES OF SATELLITE USE IN CIVIL AVIATION. I [STAND UND PERSPEKTIVEN DER SATELLITENNUTZUNG IN DER ZIVILEN LUFTFAHRT. I]

GUSTAV WESTPHAL (Interflug Gesellschaft fuer Internationalen Flugverkehr mbH, Berlin, German Democratic Republic) Technisch-oekonomische Information der zivilen Luftfahrt (ISSN 0232-5012), vol 25, no. 1, 1989, p. 37-41. In German.

The development and state of the art in the use of satellites for civil aviation are addressed. The bases of satellite technology are reviewed, and the aspects involving radio technology are discussed. Satellite radio technology is examined, including systems for communication, passive systems for navigation, and active systems for navigation.

C.D.

A89-41043

INTRODUCTION OF MLS - EFFECTS ON AIRSPACE AND AIRPORT CAPACITY

RICHARD P. ARNOLD (FAA, MLS Programme Office, Washington, DC) ICAO Bulletin (ISSN 0018-8778), vol. 44, Jan. 1989, p. 30-32.

The advantages of the microwave landing system (MLS) in dealing with today's air-traffic capacity problem are reviewed. As an example, it is pointed out what improvements in capacity could be achieved at La Guardia airport by utilizing an MLS. It is argued that a demonstration program covering all elements of the development of MLS should be carried out now.

C.D.

A89-42652

ADVANCED TECHNOLOGY ULTRA RELIABLE RADAR (URR)

D. E. LINGLE, D. P. MIKSZAN (Westinghouse Electric Corp., Electronics Systems Group, Baltimore, MD), and DENNIS MUKAI (USAF, Avionics Laboratory, Wright-Patterson AFB, OH) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 1-6.

The authors describe the URR (ultrareliable radar) system, subsystems, software architecture, and reliability and maintainability design. Objectives of the current URR program, which is scheduled to be completed in early FY 1990, are also discussed. As originally conceived, the URR program was to develop next-generation radar technology that would exhibit an order of magnitude improvement in reliability over existing radar systems. Since existing systems were exhibiting a mean time between failures (MTBF) of approximately 40 hours, the URR reliability goals was established at 400 hours for a system serial MTBF. The URR program has developed technology applicable to the advanced tactical fighter and F-15/F-16/B-1B updates by integrating advanced receiver/STALO (stable local oscillator) technology with solid-state phased-array active aperture technology and very-high-speed integrated circuit common signal processor technology.

A89-42655

FUTURE TERRAIN FOLLOWING RADARS

CHARLES W. CHAPOTON, JR. (Texas Instruments, Inc., McKinney) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 20-23.

After examining current terrain-following radars (TFRs) as well as factors forcing change in TFR systems, the author describes the projected characteristics of future TFRs. He predicts that future TFRs will be multipurpose and short-range systems, transmit low-power pulses and a complex waveform, have an electronically scanned antenna and an irregular scan pattern, operate intermittently, and process large amounts of data. Each of these features is examined.

A89-42661

ANALOG-TO-DIGITAL CONVERTER EFFECTS ON AIRBORNE RADAR PERFORMANCE

B. N. SURESH BABU and C. M. SORRENTINO (Mitre Corp., Bedford, MA) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 56-61. Research supported by USAF.

In order to evaluate A/D (analog/digital) converter effects on airborne radar performance, a polynomial A/D converter model based on measured harmonic levels of a 14-bit A/D converter has been developed. The model has been validated by comparing the measured spurious-free dynamic range of the A/D converter at different amplitude levels and frequencies with the simulated data from the model. The comparison shows that the model captures the roll-off in spurious-free dynamic range due to increasing input frequency and causes small ripples across frequency and input power levels. The model has been included in an airborne radar simulation to evaluate the effect of internal noise and nonlinearities of the A/D converter on the radar performance. It is concluded from 50 Monte Carlo simulation runs

for two cases-ideal A/D converter and A/D converter with nonlinearities-that the number of false alarms and subclutter visibility are not significantly degraded by nonlinearities for this 14-bit A/D converter for the case of mainbeam land clutter at broadside.

A89-42666

TECHNIQUES FOR ROBUST TRACKING IN AIRBORNE RADARS

LAWRENCE W. NELSON and TAGE A. CARLSON (General Electric Co., Utica, NY) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 80-84.

The authors describe the techniques used in an advanced multimode radar to achieve robust tracking in a package that weighs only 189 lb, occupies only 2.0 cu ft and consumes only 2000 W of power. A combination of advanced hardware and postdetection processing on a judicious choice of selected data is used to provide robust tracking. Recent advances in technology have allowed a very high degree of digital signal processing to be performed on the received signal. Two MIL-STD-1750 computers are used for the postdetection processing, the heart of which is an adaptive, nine-state Kalman filter used to estimate target position, velocity, and acceleration. Additional postdetection processing is used to support the Kalman filter in extracting target information from the data and providing immunity to various sources of interference.

I.E.

A89-42676

IMPROVED BANDWIDTH MICROSTRIP ANTENNA DESIGN FOR AIRBORNE PHASED ARRAYS

SHASHI SANZGIRI, BILL POWERS, and JIM HART (Texas Instruments Antenna Laboratory, McKinney) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 135-140.

A microstrip radiating element design for a 10 percent bandwidth, wide-scan-angle, phased-array antenna is described. The radiating element consists of a single probe-fed circular patch on a thick substrate. The element match is optimized using a waveguide array simulator. A finite array of 108 elements was fabricated to evaluate the array's scan-angle performance. Mutual coupling data were used to compute the element reflection coefficient as a function of frequency and scan angle. The scan angle performance was compared with that obtained using the theoretically computed mutual coupling coefficients of a similar array. Both analytical and measured results showed high voltage standing-wave ratio (VSWR) at wide scan angles. The array is performance with a dielectric cover on the top has been evaluated both analytically and experimentally. The results show improvement in the scan angle performance over 10 percent bandwidth.

A89-42680

SYNTACTIC CLASSIFICATION OF RADAR MEASUREMENTS OF COMMERCIAL AIRCRAFT

O. S. SANDS and F. D. GARBER (Ohio State University, Columbus) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 158-163. refs (Contract N00014-86-K-0202)

A syntactic pattern recognition system for applications to radar signal identification is designed, and the performance of the resulting classification system is evaluated. Two different techniques for generating symbolic patterns from radar backscatter signals are considered. The classification utility of the symbolic patterns is assessed in terms of the performance of maximum-likelihood classification of the observed symbol strings. A syntax analysis algorithm that makes use of symbolic patterns derived from radar backscatter measurements is developed from the likelihood function classifier. Performance results obtained from simulated classification experiments for both maximum-likelihood and language-theoretic classifiers are presented.

A89-42938

CIDS- CABIN INTERCOMMUNICATION DATA SYSTEM

FRED HILDEBRANDT and JOERG REITMANN (Messerschmitt-Boelkow-Blohm GmbH, Hamburg, Federal Republic of Germany) (Walter-Blohm-Stiftung, Festakt, Hamburg, Federal Republic of Germany, July 28, 1987) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 151-158. In German. (MBB-UT-020-87-PUB)

The development of The Cabin Intercommunication Data System (CIDS) is reviewed. Cockpit design and the problems that the design poses for communication are discussed. The CIDS concept as a solution for these problems is explained, and the design of CIDS and its mode of functioning are described. The advantages of CIDS are outlined.

A89-43148

AN OVERVIEW OF THE DIRECT SIMULATION OF AN INTEGRATED AIRCRAFT NAVIGATION SYSTEM ON A PC

STEVEN KARELS (Analytic Sciences Corp., Reading, MA) and WILLARD HOLMES (U.S. Army, Missile Command, Huntsville, AL) IN: 1988 Annual Summer Computer Simulation Conference, 20th, Seattle, WA, July 25-28, 1988, Proceedings. San Diego, CA, Society for Computer Simulation International, 1988, p. 792-797.

A large-scale, direct (Monte Carlo) simulation of an integrated aircraft navigation system, implemented on a Personal Computer (PC), is described in terms of its features, architecture, and performance. The simulation was written to permit investigations of the integration of GPS technology into cruise missile avionics. The navigation system includes a gimballed Inertial Navigation System (INS); a five-channel, adaptive-bandwidth Global Positioning System (GPS) receiver, and a baro-altimeter. This development focused on providing an analysis tool based on an existing main-frame computer simulation and on re-hosting it to a Government-furnished PC. A realistic dynamic environment is provided by a five-DOF trajectory generator, driven by DTED maps for terrain-following flight. A complex jamming environment, coordinated with the terrain features, is also simulated. An 11-state Kalman filter integrates the INS and radio navigation system measurements. A variety of navigation performance results are described, and PC throughput timing, partitioning, and data flow issues are addressed.

A89-43573#

FUTURE AIR NAVIGATION SYSTEMS (FANS)

JENS-UWE KOCH (Deutsche Lufthansa AG, Frankfurt am Main, Federal Republic of Germany) Ortung und Navigation (ISSN 0474-7550), vol. 30, no. 1, 1989, p. 73-82.

Current development trends in aircraft communication, navigation, and surveillance (CNS) are reviewed, summarizing the recommendations of the ICAO Special Committee on Future Air Navigation Systems (FANS). The history of FANS and organizational aspects of its operations are discussed; the limitations of current CNS systems are outlined; and global all-attitude coverage, digital data-exchange capability, and service for non-MLS airfields are identified as key objectives for the future. Particular attention is given to digital modulation techniques, system architectures, flexible performance-based standards for onboard CNS equipment, utilization of satellite navigation systems, secondary and primary surveillance radars, navigation systems for ground traffic, collision-avoidance systems, system validation procedures, and the role of the ICAO in establishing standards and coordinating implementation.

N89-23438# Federal Aviation Administration, Atlantic City, NJ. INSTRUMENT LANDING SYSTEM MATHEMATICAL MODELING STUDY FOR ORLANDO INTERNATIONAL AIRPORT RUNWAY 35L LOCALIZER, ORLANDO, FLORIDA. FINAL AIRSIDE DOCKING PLAN (SCHEME 3A)
JAMES D. RAMBONE and JOHN E. WALLS Dec. 1988 30 p (AD-A205351; DOT/FAA/CT-TN89/4) Avail: NTIS HC A03/MF A01 CSCL 17/7

This Technical Note describes the instrument landing system (ILS) math modeling performed by the Federal Aviation Administration (FAA) Technical Center at the request of the Southern Region, Computed data are presented showing the effects of airside terminals with simulated docked and taxiing aircraft on the performance of an ILS localizer proposed for runway 35L at the Orlando International Airport. The Southern Region is concerned that reflections from two proposed airside terminals with docked and taxiing aircraft may degrade the localizer course beyond category II/III tolerances. Modeled course structure results indicate that category II/III localizer performance should be obtained with the Wilcox Mark II, 14-element, dual-frequency log periodic antenna and both airside terminals with docked and taxiing aircraft at the currently proposed locations. Computed clearance orbit results indicate satisfactory linearity, course crossover, and signal clearance levels. GRA

N89-23440# Massachusetts Inst. of Tech., Cambridge. Lab. for Information and Decision Systems.

GENERATION OF ARCHITECTURES FOR DISTRIBUTED INTELLIGENCE SYSTEMS

ALEXANDER H. LEVIS Feb. 1989 22 p (Contract N00014-85-K-0519) (AD-A205783; LIDS-P-1849) Avail: NTIS HC A03/MF A01 CSCL 12/9

An approach to the modeling of discrete event distributed intelligence system is presented that uses ordinary Petri Nets for fixed structure architectures. The model leads to the precise formulation of the problem of generating the complete set of architectures that satisfy a number of resource and design constraints. Two algorithms are presented: The first one (the DFS algorithm) starts with the specification of the desired functionality and generates data flow structures with prescribed redundancy and complexity; then the various functions are allocated to resources; the second one (the Lattice algorithm) starts with a given set of decision making units and obtains the partially ordered sets that contain all the feasible architectures. The resulting architectures can be analyzed to evaluate their performance characteristics.

N89-23443# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

DEVELOPMENT OF THE EXTENDED KALMAN FILTER FOR THE ADVANCED COMPLETELY INTEGRATED REFERENCE INSTRUMENTATION SYSTEM (CIRIS) M.S. Thesis

JOSEPH K. SOLOMON Mar. 1989 160 p (AD-A206083; AFIT/GE/ENG/89M-8) Avail: NTIS HC A08/MF

The Completely Integrated Reference Instrumentation System (CIRIS) was developed by the Central Inertial Guidance Test Facility (CIGTF) at Holloman AFB, NM. The CIRIS system is an inertial navigation system (INS) aided with line-of-sight range and range-rate measurements from surveyed ground transponders. The information from the measurement and INS data is combined using an extended Kalman filter to produce an accurate estimate of the INS position and velocity errors. The accurate CIRIS aircraft position and velocity data is used as a baseline reference to determine the performance capabilities of proposed aircraft navigation systems. The new aircraft navigation systems projected in the next five years will attain accuracies approaching the level of the current CIRIS system. In order to test these systems, the accuracy of CIRIS will be increased through the addition of aiding measurements from the Global Positioning System (GPS). GRA

N89-23444# Royal Signals and Radar Establishment, Malvern (England).

COMPARISON OF INTERPOLATION ALGORITHMS FOR SPEED CONTROL IN AIR TRAFFIC MANAGEMENT

A. J. BUDD 17 Aug. 1988 21 p

(AD-A206314; RSRE-MEMO-4131; DRIC-BR-109213) Avail: NTIS HC A03/MF A01 CSCL 17/7

With air traffic movements at a high level, techniques to assist air traffic management using computers are being investigated. One technique in particular being studied is the early adjustment of the speed of arriving aircraft so that the rate of flow near to the airports is closely matched to landing capacity. A Speed Control Adviser has been developed which allocates a landing time to each inbound aircraft. Once the estimated landing time is known, the speed the aircraft must fly needs to be calculated. This cannot be done directly and interpolation using a suitable polynomial approximation is used. This memorandum investigates four polynomials and examines their effectiveness at providing a good estimate with minimum computations.

N89-24291# Federal Aviation Administration, Washington, DC. Technical Center.

AN OPERATIONAL DEMONSTRATION AND ENGINEERING FLIGHT TEST OF THE MICROWAVE LANDING SYSTEM ON RUNWAY 22L AT CHICAGO'S MIDWAY AIRPORT Technical Note, Sep. 1988

CLIFFORD W. MACKIN, EDMUND ZYZYS, and ROBERT H. PURSEL Oct. 1988 41 p

(Contract FAA-T0604-F)

(DOT/FAA/CT-TN88/42) Avail: NTIS HC A03/MF A01

At the request of the Great Lakes Region, the Federal Aviation Administration (FAA) Technical Center conducted an operational demonstration of Microwave Landing System (MLS) on runway 22L at Chicago's Midway Airport. The MLS test bed installed at the FAA Technical Center was transported to, and temporarily installed at Chicago's Midway Airport. Three engineering flighttests were conducted on August 27, 28, and 29, 1988, to verify and characterize system operation. On August 30, three demonstration flights were conducted for the aviation industry, the media, and FAA personnel. Three profiles were designed for these flights to demonstrate the operational capabilities of MLS. The operational capability of MLS was successfully demonstrated and the MLS signal in space met Category 2 instrument landing system (ILS) tolerances.

N89-24292# Federal Aviation Administration, Atlantic City, NJ. CONTROLLER EVALUATION OF INITIAL DATA LINK AIR TRAFFIC CONTROL SERVICES. VOLUME 1: MINI STUDY 2 Final Report

NICHOLAS J. TALOTTA, CLARK SHINGLEDECKER, THOMAS ZURINSKAS, KAROL KERNS, and HENRY R. MAREK Mar. 1989 37 p

(DOT/FAA/CT-89/14-VOL-1) Avail: NTIS HC A03/MF A01

The results of Mini Study 2 are detailed. This Mini Study was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the Data Link test bed. Initial Data Link air traffic control services were evaluated under part task simulation conditions in order to identify service delivery methods which optimize controller acceptance, performance, and workload.

Author

N89-24293*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

B-737 FLIGHT TEST OF CURVED-PATH AND STEEP-ANGLE APPROACHES USING MLS GUIDANCE Technical Report, Apr. 1982 - Feb. 1986

J. R. BRANSTETTER (Federal Aviation Administration, Hampton, VA.) and W. F. WHITE Apr. 1989 188 p (NASA-TM-101521; NAS 1.15:101521; FAA-PM-86/20) Avail: NTIS HC A09/MF A01 CSCL 17/7

A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The

use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics. Author

N89-24294# Federal Aviation Administration, Washington, DC. Office of Aviation Medicine.

A COMPARISON OF DETECTION EFFICIENCY ON AN AIR TRAFFIC CONTROL MONITORING TASK WITH AND WITHOUT COMPUTER AIDING

RICHARD I. THACKRAY and R. M. TOUCHSTONE Jan. 1989

(AD-A206422; DOT/FAA/AM-89/1) Avail: NTIS HC A03/MF A01 CSCL 17/7

Future levels of air traffic control automation plan to incorporate computer aiding features designed to alert the controller to upcoming problem situations by displaying information that will identify the situation and suggest possible solutions. Concerns have been expressed that reliance on such aids may lead to a reduced capacity to detect and respond to infrequent failures of the automation. The present study employed a simulated ATC monitoring task with a computer-aiding feature designed to detect possible aircraft conflict situations. The ability of subjects to detect occasional failures of the computer-aiding feature in detecting problem situations was compared with detection efficiency for these same situations when no computer aiding was provided. The hypothesis that alertness would be lower and detection less efficient with computer aiding than when no aiding was employed was not supported. Applications and limitations of the findings to the problem of complacency in automated systems are discussed.

GRA

N89-24295# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugfuehrung.

IMAGE SIGNAL PROCESSING FOR FLIGHT GUIDANCE

Sep. 1988 315 p Partly in ENGLISH and GERMAN Colloquium held in Brunswick, Fed. Republic of Germany, 30-31 May 1988; sponsored by DFVLR

(DFVLR-MITT-88-32; ISSN-0176-7739; ETN-89-94645) Avail: NTIS HC A14/MF A01; DFVLR, VB-PL-DO, Postfach 40 60 58, 5000 Cologne, Fed. Republic of Germany, DM 108

Scene reconstruction for image sequences, and aspects of image communication in air-to-ground systems are discussed. A displacement-estimation technique for aerial video scenes, and a parametric displacement estimation scheme for aerial images were studied. Terrain-aided flight navigation in near-Earth sections, and landscape-related position finding for flying systems are outlined. The determination of reference trajectories for testing navigation aids using an onboard CCD camera was investigated. The transformation of real and virtual objects into a virtual, visual environment, and the display of flight guidance information in the aircraft cockpit are discussed. Status and trends of technological image processing possibilities are outlined. A versatile flight experiment system for image processing is presented.

ESA

N89-24296# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugfuehrung.

IMAGE SIGNAL PROCESSING FOR FLIGHT GUIDANCE: OVERVIEW AND INTRODUCTION TO THE MAIN TOPICS [BILDSIGNALVERARBEITUNG FUER AUFGABEN DER FLUGFUEHRUNG. UEBERBLICK UND EINFUEHRUNG IN DIE THEMENSCHWERPUNKTE]

A. BECKER *In its* Image Signal Processing for Flight Guidance p 9-24 Sep. 1988 In GERMAN; ENGLISH summary Avail: NTIS HC A14/MF A01; DFVLR, VB-PL-DO, Postfach 40 60 58, 5000 Cologne, Fed. Republic of Germany, DM 108

The main applications of image signal processing in flight guidance are introduced, the main topics are defined, and connections between these topics are pointed out. Image signal coding for perturbation-resistant air-to-ground communication; image aided navigation; image synthesis; and stationary and flight-fit experimental arrangements are discussed.

N89-24303# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugfuehrung.

DETERMINATION OF REFERENCE TRAJECTORIES FOR TESTING NAVIGATION AIDS USING AN ONBOARD CCD CAMERA

ULRICH BROKOF and H.-D. SCHWIND (Bundesanstalt fuer Flugsicherung, Klosterlechfeld, Germany, F.R.) In its Image Signal Processing for Flight Guidance p 181-215 Sep. 1988 In GERMAN; ENGLISH summary

Avail: NTIS HC A14/MF A01; DFVLR, VB-PL-DO, Postfach 40 60 58, 5000 Cologne, Fed. Republic of Germany, DM 108

A flight inspection system was developed. A solid state camera onboard the test aircraft was used to make the flight inspection system independent of ground stations. In testing an instrument landing system the camera detects the field of white stripes on both ends of the runway. The flight trajectory generated by velocity data of an inertial navigation system is aided by distance data and additionally updated with the precise position information of the video system. Since this information is only available at the end of a measuring flight, the final computation is performed offline (but during the flight) by backward smoothing. The obtainable results are demonstrated by simulation calculations.

05

AIRCRAFT DESIGN, TESTING AND PERFORMANCE

Includes aircraft simulation technology.

A89-39836#

BO108 - AN ULTRAMODERN GERMAN HELICOPTER [BO108 -EIN DEUTSCHER HUBSCHRAUBER MODERNSTER TECHNOLOGIE]

VOLKER VON TE1N and CLAUS SCHICK (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn, Federal Republic of Germany) DGLR, Jahrestagung, Darmstadt, Federal Republic of Germany, Sept. 20-23, 1988, Paper. 12 p. In German. refs (MBB-UD-530-88-PUB)

The development of the ultramodern German helicopter BO108 is discussed. The concept and goals of the BO108 are outlined, and examples of the way that selected components of the aircraft are being developed are described. These include the rotor system, main engines, main hydraulic system, tail rotor and engine, and rolly integrated vibration isolation system. The design of the tail structure is addressed, as are the electrical system and radio navigation system. The status of the program is briefly addressed.

A89-39840#

THE DEVELOPMENT OF A COMPOSITE HELICOPTER FUSELAGE AS EXEMPLIFIED ON THE BK 117

ALEXANDER ENGLEDER and WOLFRAM KOLETZKO (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 20 p. (MBB-UD-534-88-PUB)

A West German technology program to develop a composite fuselage for the BK 117 helicopter is described. The design philosophy is discussed, including models, tools, and parts. Consideration is given to structural joints, electrical effects, and stress analysis. The process of manufacturing and integrating the

lower fuselage and cockpit assemblies is examined. Results are presented from testing and analysis of the fuselage. R.B.

A89-39844#

BO 108 - TECHNOLOGY FOR NEW LIGHT TWIN HELICOPTERS

VOLKER VON TEIN and CLAUS SCHICK (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 18 p. refs (MBB-UD-529-88-PUB)

The technology used in the development of the BO 108 helicopter is discussed. The BO 105 helicopter is described and the characteristics of the BO 105 which have been improved for the BO 108 are outlined. The BO 108 rotor system, main transmission, hydraulic system, tail rotor and tail rotor drive system, fully integrated vibration isolation system, and airframe are described in detail. In addition, the electrical system, the engines, and the radio and navigation systems are examined. The status of the BO 108 development program is evaluated and the basic performance data for the helicopter are given.

A89-39845#

DESIGN AND DEVELOPMENT TESTS OF A FIVE-BLADED HINGELESS HELICOPTER MAIN ROTOR

DIETER BRAUN and HELMUT HUBER (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 17 p. refs (MBB-UD-531-88-PUB)

To evaluate the effects of a higher number of blades on main rotors, an experimental program was conducted with a five-bladed rotor system. For that, the four-bladed hingeless rotor system of the BO 105 helicopter was fitted with an additional fifth blade resulting in 25 percent more blade area. The five-bladed hub design is very similar to that of the four-bladed production version. An essential difference, however, is represented by changing the inclination of the blade pitch axis to 0 deg which was expected to affect positively the lead-lag/torsion coupling and in-plane damping. In the present paper, a survey of the rotor design rationale, the main characteristics, and the most important results from whirl tower and flight testing in the fields, performance, handling qualities, rotor loads, aeroelastic stability, and vibrations is given.

A89-40083

FATIGUE DAMAGE TO AN AIRCRAFT FROM GUSTS [UNAVOVE POSKOZENI LETOUNU OD PORYVU]

JOSEF VLACHYNSKY Zpravodaj VZLU (ISSN 0044-5355), no. 1, 1989, p. 17-24. ln Czech. refs

Three methods for calculating the fatigue damage to an aircraft from gusts are presented. Two involve the hypothesis of the linear accumulation of fatigue damage; one of the methods considers the dynamic behavior of the aircraft, whereas the other does not. The third method involves the hypothesis of the spectral accumulation of loading energy, taking the dynamic behavior of the aircraft into account. The results obtained by these methods are compared.

B.J.

A89-40261

AIRBORNE POD STRUCTURES

HAROLD MALM (Sargent-Fletcher Co., El Monte, CA) IN: Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, p. 80-83.

Military aircraft external fuel tanks, which have been designed for large-volume production, may follow the USAF preference for three-sectioned structures with low assembly time characteristics or that of the USN for a monocoque structure with access doors for the servicing of internal components; either type can readily be converted to house 'special purpose' photographic reconnaissance equipment, countermeasures, etc. Attention is

presently given to a reconnaissance-instrument pod designed to MIL-A-8591 ('External Stores Suspension Criteria') in all matters affecting pod/tank interface load reactions.

O.C.

A89-40814#

ROUGH DESIGN CRITERION FOR GROUND AND AIR RESONANCE OF HELICOPTER ROTOR WITH THREE OR MORE BLADES

SHIGENORI ANDO Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 37, no. 422, 1989, p. 155-158. In Japanese, with abstract in English.

The rough criterion for the ground or air resonance of helicopter rotor with three or more blades, which was presented by Donham et al. (1966) is simple and useful. The theoretical basis, is however, not so clear. It is the purpose of this paper to assign some theoretical reasons for the criterion. Coleman's (1956) theory is reviewed, and then a concept of 'Quasi-Resonance-Center' is defined. Then it is found that the 'Resonance Region' designated by Donham et al. is the above 'Quasi-Resonance-Center' and nothing but.

A89-40857

MD-11 ENTERS THE FRAY

JOHN BAILEY Flight International (ISSN 0015-3710), vol. 135, May 6, 1989, p. 34-39.

The design features and operational capabilities of the MD-11 follow-on aircraft to the DC-10 airliner are presented. The derivative approach employed by the manufacturer has saved millions of dollars in development costs; the same assembly line and workforce as the DC-10 will be used. A prominent feature of the cabin is the flexibility with which it can be reconfigured. The galleys and lavatories are secured to the main deck by the seat tracks, and can be adjusted in 1-inch increments along the length of the constant-section fuselage. Attention is given to the payload/range capability of the MD-11, the MD-11 'superstretch' version, and the currently operational DC-10-30.

A89-41029#

THE JOINED WING - THE BENEFITS AND DRAWBACKS. II [ZAMKNIETE SKRZYDLO - ZALETY I WADY. II]

STANISLAW DANILECKI (Warszawa, Politechnika, Warsaw, Poland) Technika Lotnicza i Astronautyczna (ISSN 0040-1145), vol. 43, Oct. 1988, p. 8-10. In Polish.

Problems encountered in the design of aircraft featuring the joined wing are described. New design issues arising in the design processes are discussed.

B.J.

A89-41063

SOVIET AEROSPACE INDUSTRY - MIKOYAN DESIGN GROUP UPGRADING MIG-29 WITH FLY-BY-WIRE CONTROLS, NEW COCKPIT

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 81.

The use of fly-by-wire controls by upgraded MiG-29 fighters will mark a turning point in the Mikoyan design bureau's design work, in the direction of aerodynamically unstable combat aircraft. The MiG-29 is also the first Mikoyan aircraft to make substantial use of composite materials, primarily in the form of carbon fiber-reinforced epoxy resins. R&D work has been undertaken by Mikoyan on combat aircraft thrust-vectoring concepts. The two-seat MiG-31 variant of the MiG-25 interceptor remains in production, with an improved avionics/fire-control system and different engines, as well as modified landing gear facilitating operation from soft airfields.

A89-41075

MODIFIED F-15B TO DEMONSTRATE STOL, MANEUVER CAPABILITY

STANLEY W. KANDEBO Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, May 29, 1989, p. 44, 45, 47.

The USAF STOL/Maneuver Technology Demonstrator F-15B testbed aircraft will incorporate canards, a four-channel FBW flight/propulsion-control system, rough-field landing gear, and

advanced cockpit controls and displays, as well as two-dimensional engine thrust-vectoring/thrust-reversing nozzles acting on the output of F100-PW-220 engines. Wing and empennage control surfaces will be coordinated with the canards and two-dimensional thrust vectoring nozzles in such a way as to greatly increase maneuvering and TO&L performance. A key goal of this flight test program is the achievement of landings on a 50 x 1500-ft airstrip, using the new nozzles' thrust-reversal capability.

A89-41092* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

IDENTIFICATION OF XV-15 AEROELASTIC MODES USING FREQUENCY-DOMAIN METHODS

C. W. ACREE, JR. (NASA, Ames Research Center, Moffett Field, CA) and MARK B. TISCHLER (U.S. Army, Aeroflightdynamics Directorate, Moffett Field, CA) Vertica (ISSN 0360-5450), vol. 13, no. 1, 1989, p. 51-62. Previously announced in STAR as N88-17646. refs

The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.

A89-41093* Texas A&M Univ., College Station. GENERIC ICING EFFECTS ON FORWARD FLIGHT PERFORMANCE OF A MODEL HELICOPTER ROTOR

ANA F. TINETTI and KENNETH D. KORKAN (Texas A & M University, College Station) Vertica (ISSN 0360-5450), vol. 13, no. 1, 1989, p. 63-85. refs (Contract NAG3-626)

An experimental program using a commercially available model helicopter has been conducted in the TAMU 7 ft x 10 ft Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic ice adhesion. Base and iced performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. The experimental values have shown that, in general, the presence of generic ice introduces decrements in performance caused by leading edge separation regions and increased surface roughness. In addition to the expected changes in aerodynamic forces caused by variations in test Reynolds number, forward flight data seemed to be influenced by changes in freestream and rotational velocity. The dependence of the data upon such velocity variations was apparently enhanced by increases in blade chord.

A89-41109#

HALE - A HIGH-ALTITUDE, LONG-ENDURANCE MANNED AIRCRAFT

CHRIS BURMEISTER, SCOTT DANENHAUER, DAVID FANNING, DAVID HENN, and NIKOS MILLS (Kansas, University, Lawrence) AIAA Student Journal (ISSN 0001-1460), vol. 26, Winter 1988-1989, p. 14-22.

The design of a high-altitude, long-endurance aircraft called the Summit is presented. The mission specifications for the Summit include an endurance of 72 hrs of flight at or above 45,000 ft and a cruise speed of at least 150 kts. The configurations considered for the Summit craft are outlined and the final joined-wing centered engine configuration is described in detail. The aerodynamic calculations to determine the Summit specifications are given, including airfoil selection, lift and drag determination, time-to-climb and endurance requirements, take-off and landing lengths, engine performance characterization, and powerplant, propulsion system, and propeller selection.

A89-41562#

HYDRODYNAMIC CHARACTERISTICS OF SEAPLANES AS AFFECTED BY HULL SHAPE PARAMETERS

INGO DATHE (Dornier Luftfahrt GmbH, Federal Republic of Germany) and MANRICO DE LEO (Aeritalia S.p.A, Gruppo Velivoli Trasporto, Pomigliano d'Arco, Italy) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 275-284. refs (AIAA PAPER 89-1540)

The contour of a seaplane hull are more fundamentally determined by hydrodynamic requirements than aerodynamic ones; in order to fulfil these requirements for safe, stable take-off with low resistance and spray irrespective of sea-state, extensive reference will have to be made to published data regarding scale-model tests. The most significant trends associated with hull shape will be discussed with a view to their relevance to the minimization of resistance and spray, as well as the maximization of hull stability and the reduction of impact loads.

O.C.

A89-41563#

THE CANADAIR CL-215 AMPHIBIOUS AIRCRAFT - DEVELOPMENT AND APPLICATIONS

W. B. REMINGTON (Bombardier, Inc.; Canadair, Inc., Aerospace Group, Montreal, Canada) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 285-293. (AIAA PAPER 89-1541)

An account is given of the development history of the CL-215 amphibious seaplane from 1963 to the present, with attention to the refinement of the aircraft's aerodynamics and hydrodynamics and the impending conversion of its powerplant from reciprocating to turboprop engines. For a given set of nondimensionalized hull hydrodynamic characteristics, the marked effect of significant aerodynamic low-speed lift on dimensionalized hydrodynamic characteristics is noted. The primary mission that has evolved for the CL-215 is that of 'water bombing', which involves the scooping up of water in over-water flight and its subsequent dumping over forest fires.

A89-41571#

SEARCH AND RESCUE AMPHIBIOUS AIRCRAFT IN JAPAN

YUSHI TANAKA (Shin Meiwa Industry Co., Ltd., Aircraft Div., Kobe, Japan) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 439-443. refs (AIAA PAPER 89-1500)

The Japan Maritime Self-Defense Force has operated the US-1A amphibious variant of the PS-1 flying boat for search-and-rescue missions since 1976. An account is presently given of representative rescue operations concerning disabled ships at sea or natural disaster victims on inaccessible islands, as well as the modifications to which the baseline seaplane was subjected in order to arrive at an effective amphibian. Also noted are the training measures taken to maximize rescue crew effectiveness.

A89-41589

EVOLUTION OF ROTOR BLADE ABRASION STRIPS AT BELL HELICOPTER TEXTRON

JOE B. DUNHAM (Bell Helicopter Textron, Inc., Fort Worth, TX) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 203-208.

Abrasion strips, which are incorporated by the structures of helicopter rotor blades for the sake of protection against erosion and impact damage must meet close tolerance requirements to satisfy aerodynamic configuration constraints, as well as to maintain the requisite degree of structural bonding. They must also be finished to weigh within very tight tolerance requirements, in order

to achieve rthe necessary balancing in a given rotor. A development history is presently given for a major helicopter manufacturer's variously plated stainless steel, titanium, and electroformed nickel abrasion strips.

O.C.

A89-41652 ON THE OPTIMUM CRUISE SPEED OF A HYPERSONIC AIRCRAFT

DIETRICH E. KOELLE (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 4, May 1989, p. 13-16.

Some preliminary results that have been obtained in the frame of the Saenger system studies are presented. Saenger is a West German study project and technology reference system for a future advanced space transportation system. The first stage of this vehicle is a hypersonic aircraft from which a passenber version could be derived. The analyses indicate that a speed of Mach 4.4 will lead to maximum seat mileage per day as well as to minimum propellant consumption. The speed-related cruise altitude of 24,500 m or 80,000 ft is above the most sensitive ozone layer and high enough to produce only one-third of the noise ground pressure which is considered as the acceptable limit (1 lb/sq ft) over populated areas. The aircraft surface temperatures at these conditions can still be managed by a conventional titanium alloy structure with special provisions only at the leading edge and the engine inlets. The potential route structure and economics of such an aircraft are discussed.

A89-41913#

THE USE OF OPERATIONAL LOADS DATA TO ASSESS FATIGUE DAMAGE RATES IN A JET TRAINER AIRCRAFT

P. C. CONOR (National Aeronautical Establishment, Structures and Materials Laboratory, Ottawa, Canada) Canadian Aeronautics and Space Journal (ISSN 0008-2821), vol. 35, March 1989, p. 26-35. refs

Concern over the fatigue damage accumulation rate of a fleet of jet trainers led to an operational load survey of the aircraft using a single-channel microprocessor recorder measuring the strain levels in wing lower-spar booms of instrumented aircraft. The discovery of unanticipated fatigue cracks in the wings of several aircraft led to an assessment of in-flight strain levels, as well as to an evaluation of the fatigue damage derived from individual missions and mission types. The elevated rate of fatigue damage appears to be associated with maneuvers flown near the end of missions, when bending-relief effects due to wing tank fuel loads were negligible.

A89-41950 WESTERN EXPERTS IMPRESSED BY DESIGN OF MI-28

DONALD E. FINK Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 26, 1989, p. 44-46, 51.

The Mi-28 helicopter gunship prototype was on display at the 1989 Paris Air Show, where Western helicopter specialists witnessing its demonstration flights conceded its incorporation of design features and possession of performance capabilities that would give its production versions impressive value on the battlefield. The Mi-28's payload includes a chin-mounted 30-mm cannon, a day/night sighting system, and a variety of radar-guided missiles and unguided rockets; the choice of this weapons suite is driven by the Soviet Army's antitank requirements. The downward orientation of the engines' IR suppressors indicates that the Mi-28 has been designed for nap-of-the-earth operations.

A89-42018*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

IDENTIFICATION OF XV-15 AEROELASTIC MODES USING FREQUENCY SWEEPS

C. W. ACREE, JR. (NASA, Ames Research Center, Moffett Field, CA) and MARK B. TISCHLER (U.S. Army, Aviation Research and Technology Activity, Moffett Field, CA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 667-674. refs

The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier-transformed). Modal frequencies and damping were determined by performing curve fits to frequency-response magnitude and phase data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with predictions by two different programs, CAMRAD and ASAP.

A89-42019*# Technische Univ., Brunswick (Germany, F.R.). EXPERIMENTAL INVESTIGATION OF THE CRASHWORTHINESS OF SCALED COMPOSITE SAILPLANE FUSELAGES

KARL-PETER KAMPF (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany), EDWARD F. CRAWLEY, and R. JOHN HANSMAN, JR. (MIT, Cambridge, MA) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 675-681. refs (Contract NAG1-690)

The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.

A89-42025#

COMMENT ON 'GENERAL FORMULATION OF THE AEROELASTIC DIVERGENCE OF COMPOSITE SWEPT-FORWARD WING STRUCTURES'

WILLIAM P. RODDEN Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 694, 695; Author's Reply, p. 695, 696. refs

A89-42525

FITTER'S HANDBOOK FOR THE ASSEMBLY OF THE HYDRAULIC, GAS, AND FUEL SYSTEM LINES OF FLIGHT VEHICLES [SPRAVOCHNIK SLESARIA-MONTAZHNIKA TRUBOPROVODNYKH KOMMUNIKATSII GIDROGAZOVYKH I TOPLIVNYKH SISTEM LETATEL'NYKH APPARATOV]

VALENTIN M. SAPOZHNIKOV Moscow, Izdatel'stvo Mashinostroenie, 1988, 192 p. In Russian. refs Basic data are presented on the design

Basic data are presented on the design and technical features of the hydraulic, gas, and fuel system lines of flight vehicles. Particular attention is given to methods of ensuring the purity of hydraulic and fuel systems and testing for leaks and proper functioning. The book contains schematic diagrams, descriptions, and technical specifications of testing and monitoring equipment used in the assembly and maintenance of the hydraulic, gas, and fuel systems of flight vehicles.

A89-42535

METHODS OF FLYING MODEL STUDIES [METODY ISSLEDOVANII NA LETAIUSHCHIKH MODELIAKH]

ARSENII D. MIRONOV, GENNADII P. VLADYCHIN, ANATOLII A. KONDRATOV, I. K. KHANOV, V. N. BYZOV et al. Moscow, Izdatel'stvo Mashinostroenie, 1988, 144 p. In Russian. refs

Methods of studying aerodynamic phenomena, high-velocity heat transfer, flight dynamics at large angles of attack, and aeroelastic stability using specially designed free-flying models are discussed. The role of flying model studies in the overall process of aircraft design is defined, and requirements for models, stabilization and control systems, and measurement equipment are formulated. The discussion also covers methods for the identification of the aerodynamic, dynamic, and aeroelastic

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

characteristics of individual components and complete models.

V.L.

C.D.

A89-42600

THE MI-8 HELICOPTER: DESIGN AND MAINTENANCE [VERTOLET MI-8: USTROISTVO I TEKHNICHESKOE OBSLUZHIVANIE]

VIACHESLAV A. DANILOV Moscow, Izdatel'stvo Transport, 1988, 280 p. In Russian.

The book contains basic technical data on the Mi-8 helicopter. In particular, attention is given to the general design of the helicopter and its main components, including the fuselage, takeoff and landing gear, powerplant, transmission, main and auxiliary rotors, and the pneumatic and deicing systems. The discussion also covers helicopter control, the hydraulic system, heating and ventilation, maintenance procedures, and support services. V.L.

A89-42934

DEVELOPMENT OF A MONOLITHIC FUSELAGE SHELL USING CFRP [ENTWICKLUNG EINER MONOLITHISCHEN RUMPFSCHALE AUS CFK]

MARTIN VOGLSINGER and HELMUT JAKOB (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn, Federal Republic of Germany) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 121-126. In German. (MBB-FE-234/S/PUB/338)

The design and construction of a monolithic fuselage shell using CFRP are described. The loads on the fuselage and the design of the integral tank and outer skin are addressed, and the protection against lightning is briefly considered. The overall design is reviewed, and the materials used, the mode of production, and the tests performed on the final product are outlined. The automation of the entire process is discussed.

A89-42936

FLIGHT TESTS WITH THE VFW 614 - ATTAS LAMINAR GLOVE [FLUGVERSUCHE MIT DEM LAMINARHANDSCHUH AM VFW 614 - ATTAS]

UDO DRESSLER and JOACHIM SZODRUCH (Messerschmitt-Boelkow-Blohm GmbH, Bremen, Federal Republic of Germany) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 133-140. In German.

(MBB-UT-0132-88-PUB)

The development of a low-resistance, transonic airfoil using natural laminarity is discussed. The laminar-turbulent transition is reviewed, and flight tests using the VFW 614 ATTAS laminar glove are described, including the test technology and the first results. The results have made it possible to design a laminar wing and to undertake optimization of its performance and characteristics.

A89-42949#

ENHANCED PERFORMANCE LOW FLYING AIRCRAFT (EPLFA) - A FUTURE?

J. M. L. REEVES (U.S. Navy, Naval Air Development Center, Warminster, PA) AlAA, ASME, Canadian Air Cushion Technology Society, et al., Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989. 7 p. (AIAA PAPER 89-1499)

During the 1960s the author conducted free-flight and wind tunnel tests on a ram wing. Some of the wind tunnel results are presented and the L/Ds compared with theory. To account for the discrepancy between theory and the wind tunnel tests, it is postulated that while flying close to the ground, the aircraft boundary layer gradually transitions from turbulent to laminar, hence substantially increasing cruise L/Ds. The cruise L/Ds of an aircraft having both low and high altitude capability experiencing partial and full laminar flow conditions are presented and conclusions drawn.

A89-43058#

EFFECT OF HEAD-UP DISPLAY DYNAMICS ON FIGHTER FLYING QUALITIES

RANDALL E. BAILEY (Calspan Corp., Buffalo, NY) (Guidance, Navigation and Control Conference, Williamsburg, VA, Aug. 18-20, 1986, Technical Papers, p. 743-754) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 12, July-Aug. 1989, p. 514-520. Previously cited in issue 23, p. 3399, Accession no. A86-47485. refs

(Contract F33615-83-C-3603)

A89-43115# COCKPIT-CANOPY FRAGMENTATION SYSTEM FOR

IMMEDIATE PILOT RESCUE [COCKPITHAUBEN-ANBRUCHSYSTEM ZUR VERZOEGERUNGSFREIEN RETTUNG DES PILOTEN]

HARTMUT GEHSE and RALPH KOCH Dornier Post (ISSN 0012-5563), no. 3, 1988, p. 28, 29. In German.

The design and test performance of prototype cockpit-canopy fragmentation systems for advanced fighter aircraft are described and illustrated with diagrams and photographs. The design requirements include rapid clearance of the pilot ejection path and avoidance of glass splinters; the design analysis accounts for the forces due to the ejecting seat, the aircraft aerodynamics, the cabin pressure, and the integrated string-type explosive charge of the fragmentation system itself. Initial tests with a cast acrylic-glass canopy were evaluated photographically to determine the stress distribution, and a new design using a stronger drawn acrylic glass was developed and validated in tests involving ejection of a dummy at zero velocity and altitude.

A89-43450* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

INTERDISCIPLINARY AND MULTILEVEL OPTIMUM DESIGN

JAROSLAW SOBIESZCZANSKI-SOBIESKI (NASA, Langley Research Center, Hampton, VA) and RAPHAEL T. HAFTKA (Virginia Polytechnic Institute and State University, Blacksburg) IN: Computer aided optimal design: Structural and mechanical systems. Berlin, Springer-Verlag (NATO ASI Series. Volume F27), 1987, p. 655-701. Previously announced in STAR as N87-15205. refs

Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

N89-23447*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

FLUTTER OF A LOW-ASPECT-RATIO RECTANGULAR WING STANLEY R. COLE Jun. 1989 19 p (NASA-TM-4116; L-16544; NAS 1.15:4116) Avail: NTIS HC

A03/MF A01 CSCL 01/3

A flutter test of a low-aspect-ratio rectangular wing was

conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response

technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution.

N89-23449# Aeronautical Research Labs., Melbourne (Australia).

MODELLING AIRCRAFT DYNAMICS Aerodynamics Technical Memo.

C. A. MARTIN Sep. 1988 21 p

(AD-A204086; ARL-AERO-TM-400; DODA-AR-005-534) Avail: NTIS HC A03/MF A01 CSCL 01/3

A review has been made of the approaches currently under development for the modelling of aircraft flight dynamics at high angles-of-attack. The review is based on current research literature and on discussions held during an overseas visit carried out for the purpose of technical updating in the areas of flight dynamic modelling and parameter estimation.

N89-23450 Kansas Univ., Lawrence.

A CORRELATION STUDY OF X-29A AIRCRAFT AND ASSOCIATED ANALYTICAL DEVELOPMENTS D.E. Thesis

ALI REZA AHMADI 1988 280 p

Avail: Univ. Microfilms Order No. DA8903074

Contractor results of the structural and zerodynamic analysis of the X-29A aircraft were verified. A brief history and potential advantages of the X-29A aircraft are discussed. The NASA developed computer package, STARS (STructures, Aerodynamics, and Related Systems), which is used in verifying contractor results is discussed. Enhancements of the STARS package are described. particularly the incorporation of the FASTEX computer program into STARS, and the development of a complete computer graphics system. A comparative study of free vibration and aerodynamic analysis of the X-29A aircraft is given. It was shown that the natural frequencies and modeshapes determined analytically by STARS and the contractor compare relatively well with experimentally determined data. Also included is the formulation and development of the higher-order plane-stress finite dynamic triangular element. Dissert, Abstr.

N89-23451# Aircraft Research and Development Unit, Edinburg (Australia).

FLIGHT TESTING OF THE SOUTHERN CROSS REPLICA **AIRCRAFT**

N. G. COULSON Sep. 1988 98 p (AD-A205303; ARDU-TI-953; DODA-AR-003-256) Avail: NTIS HC A05/MF A01 CSCL 01/3

Aircraft Research and Development Unit was tasked to carry out the test flying of a replica of the 1926 Fokker Tri-Motor as flown by Australian aviation pioneer, Sir Charles Kingsford-Smith. The purpose of the test program was, firstly, to ensure safe operation of the aircraft throughout its proposed flight envelope and, secondly, to provide data to allow the issue of a Certificate of Airworthiness or Permit to Fly. The trial included a cockpit and systems assessment as well as an evaluation of the aircraft's flight and ground handling characteristics. Airborne assessments covered stability and control characteristics, stall characteristics, general aircraft performance, asymmetric power characteristics and an evaluation of the aircraft's take-off and landing performance and handling. The flight characteristics of the test aircraft were found to be similar to those expected from an original Fokker VIIb-3M. Consequently, the aircraft could not meet some modern certification requirements. Notwithstanding this the aircraft was found to be generally safe and airworthy provided it was operated by experienced pilots in daylight Visual Meteorological Conditions and that the main recommendations of this report are adopted.

GRA

Polytechnic Univ., Farmingdale, NY. Dept. of N89-23452# Aerospace Engineering.

OPTIMUM AEROELASTIC CHARACTERISTICS FOR COMPOSITE SUPERMANEUVERABLE AIRCRAFT Final Technical Report, 1 Jun. 1987 - 31 Sep. 1988

GABRIEL A. OYIBO, JAMES BENTSON, and T. A. WEISSHAAR 27 Nov. 1988 136 p

(Contract F49620-87-C-0046)

(AD-A205503; POLY-AE-88-8; AFOSR-89-0127TR) Avail: NTIS HC A07/MF A01 CSCL 01/3

The investigation of an aeroelastically induced constrained warping phenomenon for a composite, supermaneuverable type aircraft wing has continued in this second year of the study. The first year investigation was concentrated mainly on the static phenomena and the search for closed form solutions for free vibration of aircraft wings having constrained warping in the presence of elastic coupling. The wing is analytically modelled as a straight flat laminated plate. Various forms of highly simplified aerodynamic loads are employed in the analysis. The free vibrations and stability aspects of this phenomenon are examined to obtain some physical insights and to determine its importance and/or design implications. Analytical tools employed include an affine transformation concept which was formulated previously (by the present principal investigator) as well a non-dimensionalization scheme.

N89-23454# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

PRELIMINARY DESIGN OF A MODULAR UNMANNED RESEARCH VEHICLE. VOLUME 2: SUBSYSTEM TECHNICAL **DEVELOPMENT DESIGN STUDY M.S. Thesis**

CHRISTOPHER D. HALL, RICHARD L. JOHNSON, PETER J. LAMATSCH, DOUGLAS A. MCCABE, and PAUL J. MUELLER, III Dec. 1988 277 p (AD-A205678; AFIT/GSE/AA/88D-2) Avail: NTIS HC A13/MF Dec. 1988

A01 CSCL 01/3

This thesis presents the analysis and development of a modular unmanned research vehicle (MURV) to support AFIT's aeronautical research. The MURV is proposed as a test vehicle to permit experimental efforts beyond the restrictions of pure analytical and wind tunnel research, yet less costly and more accessible than full-scale flight tests. A classical systems approach was applied, in concert with a conventional aircraft design process, which emphasized system level needs and objectives in the design of MURV subsystems. Primary design drivers were the need for adequate data acquisition for anticipated experiments, structural and functional modularity to permit simple reconfiguration, and focus on a set of unique experiments relating to fighter-like supermaneuverability. The supermaneuverability experiments dictated that the general arrangement of the MURV baseline design would resemble a typical modern fighter aircraft configuration, the recommended baseline being a turbojet-powered delta wing design with canards, single vertical tail, and control-configured ventral fins. Modularity implications resulted in the design of a flexible, digital flight control system with primary functions distributed between the vehicle and a remote pilot/control ground station and a fuselage design which allows for relocation and replacement of wings and tails or canards. The data acquisition system is fully integrated with the flight control system and the remote ground station. GRA

N89-23455# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

A METHODOLOGY FOR DETERMINING THE SURVIVABILITY OF FIXED-WING AIRCRAFT AGAINST SMALL ARMS M.S. Thesis

JOHN M. GROVER Mar. 1989 119 p (AD-A205730; AFIT/GST/ENS/89M-05) Avail: NTIS HC A06/MF A01 CSCL 15/3

The purpose of this study was to develop an efficient and effective method of evaluating the survivability of a fixed-wing aircraft against small arms. A computer model was created to predict the probability an aircraft survives given an encounter with a small arms weapon, P(s/e), and the expected number of hits it receives, E(hits). The model was a one-on-one deterministic duel of a small arms weapon and an aircraft. The aircraft was represented on a straight and level flight approaching the weapon at a given velocity, angle, distance, and altitude. The small arms weapon was located at a fixed position, firing at fixed point in front of the aircraft. The weapon orientation varied by normal distributions around the fixed aim point. The bullet trajectories were represented using an interactive technique. Bullet and aircraft intersections were calculated using a sphere to represent the aircraft. All probability distributions were broken into discrete intervals providing the means to maintaining a deterministic model. The results of the model supplied a probability of survival and expected hits for a specific weapon and aircraft with a set velocity, distance away, altitude, and angle of approach.

N89-23457# General Dynamics Corp., Fort Worth, TX. USAF (US AIR FORCE) DURABILITY DESIGN HANDBOOK: GUIDELINES FOR THE ANALYSIS AND DESIGN OF DURABLE AIRCRAFT STRUCTURES Final Report, Oct. 1984 - Sep. 1987 S. D. MANNING and J. N. YANG 20 Feb. 1989 150 p Prepared in cooperation with United Analysis, Inc., Vienna, VA (Contract F33615-84-C-3208)

(AD-A206286; AFWAL-TR-88-3119) Avail: NTIS HC A07/MF A01 CSCL 11/6

Objectives of this handbook are to: (1) summarize and interpret the essential USAF durability design requirements for metallic airframes; (2) provide durability analysis criteria for economic life and durability-critical parts; (3) provide state-of-the-art durability analysis concepts and methods for determining the initial fatigue quality of fastener holes, the probability of distribution of service time to reach any specified crack size; (4) provide guidelines and design process and for making design tradeoffs. The method accounts for the initial fatigue quality variation, crack growth damage accumulation in a population of structural details (e.g., fastener holes, lugs, fillets, cutouts, etc.), load spectra and structural properties. During manufacturing and assembly, flaws of various types, are produced in structural details. The initial fatigue quality of such details is represented by an Equivalent Initial Flaw Size Distribution (EIFSD). An Equivalent Initial Flaw Size (EIFS) is an artificial crack size which results in an actual crack size at an actual point in time when the initial flaw is grown forward. EIFSs are determined by back-extrapolating fractographic results.

N89-23460# Aerospatiale, Toulouse (France). Aircraft Div. CENTER OF GRAVITY CONTROL ON AIRBUS AIRCRAFT: FUEL. RANGE AND LOADING

BERNARD HUBER 13 Jun. 1988 38 p Presented at the 47th Annual Conference of the Society of Allied Weight Engineers, Inc., Plymouth, MI, 23-25 May 1988 (REPT-882-111-101; ETN-89-94477) Avail: NTIS HC A03/MF

(REPT-882-111-101; ETN-89-94477) Avail: NTIS HC A03/MF A01____

The advantage of an active center of gravity control are described, with reference to the control system by fuel transfer adopted in the A330 and A340 aircraft design. These aircraft can carry fuel in the tailplane in addition to the wing and fuselage tanks. The tail tank has a capacity of 5 tons. The installation results in fuel, range and loading benefits which are detailed in the examples.

N89-23461# Aerospatiale, Toulouse (France). A330/340 HYDRAULIC SYSTEM

L. SIGNORELLI 1988 37 p Presented at the Vickers 32nd International Aerospace Fluid Power Conference on the Hydraulic Architecture of the A330/A340 Aircraft, Jackson, MS, 11-13 Apr. 1988

(REPT-882-111-102; ETN-89-94478) Avail: NTIS HC A03/MF A01

The Airbus hydraulics design specifications are reviewed. The hydraulic system is basically the same as A300/A310 aircraft, with three fully independent circuits at 3000 psi and mostly the same components used on A310/A30. The description includes

details of system layout, flight controls, hydraulic aspects and segregation aspects. Hydraulic fittings, safety aspects and cockpit monitoring are discussed.

N89-24308*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

AEROSERVOELASTIC MODELING AND APPLICATIONS USING MINIMUM-STATE APPROXIMATIONS OF THE UNSTEADY AERODYNAMICS

SHERWOOD H. TIFFANY and MORDECHAY KARPEL (Technion - Israel Inst. of Tech., Haifa.) Apr. 1989 13 p Presented at the AIAA 30th Structures, Structural Dynamics and Materials Conference, Mobile, AL, 3-5 Apr. 1989 Previously announced in IAA as A89-30678

(NASA-TM-101574; NAS 1.15:101574) Avail: NTIS HC A03/MF A01 CSCL 01/3

Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena.

N89-24309# Army Aviation Engineering Flight Activity, Edwards AFB, CA.

LOSS OF TAIL ROTOR EFFECTIVENESS EVALUATION OF THE OH-58C HELICOPTER WITH DIRECTIONAL SAS (STABILITY AUGMENTATION SYSTEM) Final Report, 23 Jun. - 25 Sep. 1987

FREDERICK W. STELLAR, JAMES D. BROWN, MICHAEL K. HERBST, CHRISTOPHER P. BUTLER, and TIMOTHY HATHORN Aug. 1988 297 p

(AĎ-A206181; UŚAAEFA-86-22) Avail: NTIS HC A13/MF A01 CSCL 01/3

The U.S. Army Aviation Engineering Flight Activity conducted a loss of tail rotor effectiveness (LTE) evaluation of the JOH-58C. The JOH-58C configuration includes a directional stability augmentation system (SAS) manufactured by the SFENA Corporation, the larger-diameter tail rotor, and the improved engine fuel control. Handling qualities were evaluated at Edwards AFB. California (elevation 2302 feet). Twenty-eight flights were conducted for a total of 26.7 productive flight test hours. Primary emphasis of the evaluation was to evaluate the handling qualities of the JOH-58C in comparison to the standard OH-58C. The limited authority SAS (7 percent of full control travel) will not significantly reduce the conditions conducive to LTE. The overall handling qualities of the JOH-58C were moderately improved compared to the standard OH-58C. The concept of a SAS which damps uncommanded yaw rates demonstrated potential for reducing conditions conducive to LTE. However, the limited authority SAS saturated at small yaw rates (deg/sec) and did not significantly reduce the characteristic high yaw rates and moderate yaw attitude excursions observed in the JOH-58C. The JOH-58C exhibited moderate pitch, roll, and yaw excursions at 15 to 25 KTAS in azimuths from 240 degrees clockwise to 280 degrees. This characteristic was a shortcoming, upgraded from a deficiency for the standard OH-58C. Five additional shortcomings, of which four were previously identified in the standard OH-58C, were noted.

`N89-24311# Office National d'Etudes et de Recherches Aerospatiales, Paris (France). Direction Scientifique de la Resistance des Structures.

GROUND VIBRATION TEST OF THE FOUDRE A04 TRANSALL AIRCRAFT [ESSAI DE VIBRATIONS AU SOL - PARTIEL - DE L'AVION TRANSALL FOUDRE A04. PROCES-VERBAL 20/7234-PY-382-R]

P. LUBRINA Sep. 1988 68 p In FRENCH (Contract DRET-88-34-001)

(REPT-20/7234-PY-382-R; ETN-89-94528) Avail: NTIS HC A04/MF A01

Ground test are performed to verify the aircraft dynamic behavior after structural modifications done in a study concerning inflight measurements of lightning discharges. The results show that the main vibration modes are not affected by the additions. On the other hand, the proximity of resonant frequency between the new element and some of the structure modes can reduce the fatigue life on the aircraft.

N89-24313*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

AEROSERVOELASTIC WIND-TUNNEL INVESTIGATIONS USING THE ACTIVE FLEXIBLE WING MODEL: STATUS AND RECENT ACCOMPLISHMENTS

THOMAS E. NOLL, BOYD PERRY, III, SHERWOOD H. TIFFANY, STANLEY R. COLE, CAREY S. BUTTRILL, WILLIAM M. ADAMS, JR., JACOB A. HOUCK, S. SRINATHKUMAR, VIVEK MUKHOPADHYAY, ANTHONY S. POTOTZKY (Planning Research Corp., Hampton, VA.) et al. Apr. 1989 14 p Presented at the AIAA 30th Structures, Structural Dynamics and Materials Conference, Mobile, AL, 3-5 Apr. 1989 (NASA-TM-101570; NAS 1.15:101570) Avail: NTIS HC A03/MF A01 CSCL 01/3

The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

N89-24314*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

RECENT ACTIVITIES WITHIN THE AEROSERVOELASTICITY BRANCH AT THE NASA LANGLEY RESEARCH CENTER

THOMAS E. NOLL, BOYD PERRY, III, and MICHAEL G. GILBERT May 1989 11 p Presented at the European Forum on Aeroelasticity and Structural Dynamics, Aachen, Fed. Republic of Germany, 17-19 Apr. 1989

(NASA-TM-101582; NAS 1.15:101582) Avail: NTIS HC A03/MF A01 CSCL 01/3

The objective of research in aeroservoelasticity at the NASA Langley Research Center is to enhance the modeling, analysis, and multidisciplinary design methodologies for obtaining multifunction digital control systems for application to flexible flight vehicles. Recent accomplishments are discussed, and a status report on current activities within the Aeroservoelasticity Branch is presented. In the area of modeling, improvements to the Minimum-State Method of approximating unsteady aerodynamics are shown to provide precise, low-order aeroservoelastic models for design and simulation activities. Analytical methods based on Matched Filter Theory and Random Process Theory to provide efficient and direct predictions of the critical gust profile and the time-correlated gust loads for linear structural design considerations are also discussed. Two research projects leading towards improved design methodology are summarized. The first program is developing an integrated structure/control design capability

based on hierarchical problem decomposition, multilevel optimization and analytical sensitivities. The second program provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. In terms of methodology validation and application the current activities associated with the Active Flexible Wing project are reviewed.

N89-24315*# Oklahoma Univ., Norman. School of Aerospace and Mechanical Engineering.

AN INTEGRATED ĂERODŸNAMIC/PROPULSION STUDY FOR GENERIC AERO-SPACE PLANES BASED ON WAVERIDER CONCEPTS Summary Report, May - Sep. 1988

M. L. RASMUSSEN and GEORGE EMANUEL 1989 24 p (Contract NAG1-886)

(NASA-CR-183389; NAS 1.26:183389) Avail: NTIS HC A03/MF A01 CSCL 01/3

The design of a unified aero-space plane based on waverider technology is analyzed. The overall aerodynamic design and performance of an aero-space plane are discussed in terms of the forebody, scramjet, and afterbody. Other subjects considered in the study are combustion/nozzle optimization, the idealized tip-to-tail waverider model, and the two-dimensional minimum length nozzle. Charts and graphs are provided to show the results of the preliminary investigations.

06

AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

A89-40254 RECONNAISSANCE SENSOR MANAGEMENT SYSTEM VICON 2000

R. G. HARRIS (W. Vinten, Ltd., Military Marketing Dept., Bury Saint Edmunds, England)
IN: Airborne reconnaissance XII;
Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988.
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, p. 16-19.

Vicon 2000 is a modular, digital, reconnaissance-management system capable of accomodating all types of airborne sensors as well as of interfacing with most extant aircraft data-bus and analog sensors. Vicon 2000 is composed of a systems-management unit, a camera-control unit, a navigational-interface unit, and a sensor-interface unit. The Vicon 2000 has been used in conjunction with the Vicon 18 series 401 reconnaissance pod fitted to Sea Harrier VTOL fighters.

A89-40272

USER FRIENDLY REAL TIME DISPLAY

DENISE M. MCCARTHY and BILL MCCRACKEN (Honeywell, Inc., Electro-Optics Div., Lexington, MA) IN: Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, p. 183-194.

An account is given of the 'human-engineered' features of a real-time display system incorporated by an IR reconnaissance apparatus for use in oil tanker pollution monitoring. Using a convenient joystick controller, on-screen mode menus, and a movable cursor, the operator can examine scenes of interest at four different display magnifications using a four-step bidirectional zoom. In military reconnaissance missions, application of this system will allow the normal review of recorded videotape imagery at a ground station immediately after the aircraft's return to base. The real-time display is packaged as two LRUs, a scan converter, and a control unit.

A89-40719

DETERMINATION OF THE DEVIATION COEFFICIENTS OF A MAGNETIC COMPASS DURING A TURN [K OPREDELENIIU KOEFFITSIENTOV DEVIATSII MAGNITNOGO KOMPASA NA VIRAZHE]

V. V. MELÉSHKO (Kievskii Politekhnicheskii Institut, Kiev, Ukrainian SSR) Priborostroenie (ISSN 0021-3454), vol. 32, April 1989, p. 38-41. In Russian.

The effect of the deflection of the measuring elements of an induction (magnetic) compass during a regular turn on the magnetic deviation coefficients of horizontal flight is investigated analytically. It is shown that the measurement of the deviation corresponding to horizontal flight can be carried out during a regular turn if the angle of bank is less than 10 deg. The measurement accuracy in this case will depend on the accuracy of turn error compensation.

V.L

A89-42656

ADAPTIVE OPTIMUM ATTITUDE EXTRAPOLATION FOR PRECISE ANTENNA POINTING CONTROL

HENRY E. LEE (Westinghouse Electric Corp., Electronics Systems Group, Baltimore, MD) IN: 1989 IEEE National Radar Conference, 4th, Dallas, TX, Mar. 29, 30, 1989, Proceedings. New York, Institute of Electrical and Electronics Engineers, Inc., 1989, p. 24-28.

An adaptive attitude extrapolator is described for the precise control of an airborne radar antenna. The extrapolator is an optimum design that provides extrapolation output with minimal mean-square angular prediction error. The effects of INS (inertial navigation system) attitude measurement noise, aircraft maneuver, and environmental gust condition are automatically taken into account. Because the extrapolation filter coefficients are computed on the basis of a real-time estimate of the aircraft attitude motion autocorrelation lags, it is capable of adapting to the varying operating conditions. Analysis and simulation results show a significantly lower antenna pointing error with the use of the adaptive extrapolator than with the conventional deterministic attitude extrapolator. The adaptive extrapolator is applicable to airborne phased-array radar systems making monopulse angular measurements for which the precise pointing of the radar antenna is crucial.

A89-42932

MODULAR AVIONICS ARCHITECTURE FOR MODERN FIGHTER AIRCRAFT [MODULARE AVIONIKARCHITEKTUREN FUER MODERNE KAMPFFLUGZEUGE]

PETER BECHER and ANTONIO ESTRELLA (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn, Federal Republic of Germany) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 107-144. In German. refs (MBB-FE-301/S/PUB/339)

The increasing role of modularization of avionics in fighter aircraft is discussed. A generic functional diagram of such avionics is presented and discussed, showing how functions can be modularized. Modular avionics architecture is addressed, taking into consideration system control, data distribution networks, arrangement of data processors and signal processors, sensors and effectors, and integration. The results of experimental studies of modular avionics are summarized.

A89-43059*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

FLIGHT EVALUATION OF PURSUIT DISPLAYS FOR PRECISION APPROACH OF POWERED-LIFT AIRCRAFT

CHARLES S. HYNES, JAMES A. FRANKLIN, GORDON H. HARDY, JAMES L. MARTIN, and ROBERT C. INNIS (NASA, Ames Research Center, Moffett Field, CA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 12, July-Aug. 1989, p. 521-529.

Flight experiments with NASA Ames Research Center's quiet short-haul research aircraft evaluated the influence of pursuit displays on the ability of pilots to execute precision-instrument

flight operations in the terminal area, particularly approaches to and landings on a short runway. The aircraft is a powered-lift, short-takeoff and landing configuration equipped with a modern digital fly-by-wire flight control system, a head-up display, and a color head-down display that make it possible to investigate control and display concepts for full-envelope, powered-lift operations. Flight-path-oriented displays that provide status and command information in a format with minimal clutter were investigated. The pilots could fly the aircraft with the precision associated with flight-director guidance and with a high degree of situation awareness. The primary benefits of this display concept were realized when the pilot was required to execute a complex transition and approach under instrument conditions and in the presence of a wide range of wind and turbulence conditions.

N89-23463# National Aerospace Lab., Tokyo (Japan). CHARACTERISTICS OF A FIVE-HOLE SPHERICAL PITOT TUBE

TOSHIHO SAKAI and TOSHIHARU INAGAKI Apr. 1988 25 p In JAPANESE; ENGLISH summary

(NAL-TR-971; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

A five-hole spherical pitot tube produced for experimental purposes was tested for measuring such air data as velocity, angle of attack, sideslip angle and static pressure of aircraft. There are few cases in measuring the static pressure by five-hole spherical pitot tube, although the measurements of airspeed, angle of attack and sideslip-angle are well known. Since the five-hole spherical pitot tube is normally installed at a position far from the lifting surface, one can expect to measure the static pressure without position error. First, wind tunnel tests of the five-hole spherical pitot tube were conducted. The pressure on the surface of the sphere was different from that estimated by theory. Such a difference between theory and practice induced considerable adverse effects on the accuracy of the measured air data. So, by using new revised equations based on the results of the wind tunnel tests, the air data was estimated with much more accuracy. Next, some flight tests were made in order to ascertain position error in free static pressure measurements. The tests were performed under such conditions as level-flight, steady turn, landing and takeoff during the experiments. The static pressure measured by the five-hole spherical pitot tube agreed well with measurements taken with a swivel pitot and the resulting airspeed was shown to be almost the same as that obtained from the position error correction chart, which was made by the speed course method.

Author

N89-24305# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugfuehrung.

DISPLAY OF FLIGHT GUIDANCE INFORMATION IN THE AIRCRAFT COCKPIT

H.-D. SCHENK *In its* Image Signal Processing for Flight Guidance p 249-266 Sep. 1988 In GERMAN; ENGLISH summary Avail: NTIS HC A14/MF A01; DFVLR, VB-PL-DO, Postfach 40 60 58, 5000 Cologne, Fed. Republic of Germany, DM 108

The application of computer generated electronic flight displays is discussed. It became the standard in cockpits since the introduction of the Airbus 310. The technical problems of the use of cathode ray tubes in an aircraft environment are described, and solutions for the display of cockpit information to the pilot are described. Further developments of the display technology leads to cockpit concepts using panoramic displays and the virtual presentation of cockpit control elements and the outside world.

ESA

07

AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and on-board auxiliary power plants for aircraft.

A89-39842#

ENGINE ASPECTS IN THE DESIGN OF ADVANCED ROTORCRAFT

WOLFGANG MUGGLI (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) and H. RICK (Muenchen, Technische Universitaet, Munich, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 21 p. refs (MBB-UD-528-88-PUB)

The mutual influence of aircraft and engine design in the development of advanced transportation rotorcraft is examined. A baseline aircraft and engine are described and the total operating costs are estimated. The influence of engine mass, price, and performance on the overall aircraft design is summarized in a sensitivity matrix. Engine technology projections and design optimizations are also considered. Feasible limits on fuel consumption and operating costs are determined for a tiltrotor.

R.B.

A89-40596

HYDRAULIC RESISTANCE OF THE INLET CHANNELS OF A ROTOR COOLING SYSTEM [GIDRAVLICHESKOE SOPROTIVLENIE VKHODNYKH KANALOV SISTEMY OKHLAZHDENIIA ROTORA]

E. P. DYBAN, B. D. BILEKA, and V. A. MEL'NIKOVA (AN USSR, Institut Tekhnicheskoi Teplofiziki, Kiev, Ukrainian SSR) Promyshlennaia Teplotekhnika (ISSN 0204-3602), vol. 11, no. 2, 1989, p. 3-7. In Russian. refs

The paper is concerned with the problem of calculating the hydraulic resistance coefficient for short (L/d=3-5) cylindrical and plane channels under static conditions and in the case of rotation about an axis normal to the channel axis. Calculated values of the hydraulic resistance coefficients are presented for the inlet channels of the cooling system of a static and operating gas turbine. It is shown that the hydraulic resistance of the rotating cylindrical and plane channels is higher than that of the static channels by a factor of 1.5-2.3 and 5.6-7.5, respectively.

A89-40624

A METHOD FOR ESTIMATING THE STOCHASTIC VIBRATIONAL STRESS LEVEL OF IMPELLER BLADINGS OF AIRCRAFT GAS TURBINE ENGINES IN OPERATING CONDITIONS ON THE BASIS OF DEVELOPMENTAL BENCH TEST DATA [METOD OTSENKI UROVNIA STOKHASTICHESKOI VIBRONAPRIAZHENNOSTI VENTILIATORNYKH LOPATOCHNYKH VENTSOV AVIATSIONNYKH GTD V USLOVIIAKH EKSPLUATATSII PODANNYM STENDOVOI DOVODKII

V. V. MALYGIN Problemy Prochnosti (ISSN 0556-171X), April 1989, p. 91-95. In Russian. refs

A computational/experimental method has been developed to estimate the level of maximum dynamic stresses in impellers of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data. The algorithm and the probabilistic prediction procedure are described. The proposed method was applied to the investigation of the vibrational stress level of the impeller of a turbojet engine. Satisfactory convergence of the predicted and real values of the dynamic stresses is shown.

A89-40964

MECHANICAL MODEL STUDY FOR SHRINK FIT ROTOR SONGBO XIA, XINHUA WU, GUANGMIN WANG (Harbin Institute of Technology, People's Republic of China), WEN ZHANG, and FADA CHEN (Fudan University, Shanghai, People's Republic of China) Chinese Journal of Aeronautics (ISSN 1000-9361), vol. 2, Feb. 1989, p. 49-55.

The shrink-fitted rotor shaft section of a single-spool gas turbine engine has been mechanically modeled in order to characterize the behavior of the shrink fit under deflection loads. The transfer matrix across the shrink-fit section is established, and experimental and computational efforts are undertaken to validate the model. The natural frequencies predicted by the model are noted to be in agreement with observed values.

A89-41050

NEXT-GENERATION POWER FOR NEXT-GENERATION CIVIL ROTORCRAFT

RON L. ALTO and L. SCIPIONI (Light Helicopter Turbine Engine Co., Saint Louis, MO) Vertiflite (ISSN 0042-4455), vol. 35, May-June 1989, p. 54-59.

A parallel military qualification/civil certification process has been undertaken for the T800 1200-shp class helicopter turboshaft, with the intention of obtaining a quantum improvement in reliability, durability, and reduced life-cycle costs for next-generation civil helicopter operators. The full-authority digital electronic controls employed by the T800's CTS800 civil version will achieve an optimum integration of engine and airframe capabilities, thereby yielding maximum engine responsiveness, minimum rotor droop, and superior handling qualities. Lower life-cycle costs are also achieved over current powerplants of comparable output.

A89-41058

SOVIET AEROSPACE INDUSTRY - PROPULSION RESEARCH CENTER FOCUSES ON DEVELOPING FUEL-EFFICIENT AIRCRAFT

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 40-43.

The USSR's research and design resources for aircraft propulsion development are concentrated in Moscow's Central Institute for Aviation Motors; design bureaus concerned with specific design tasks have limited research staffs, and are accordingly dependent on this institute for fundamental studies and test support. Full-scale test rigs are located at a facility outside Moscow; aircraft engines of all sizes can be run there at simulated flight speeds. The state-of-the-art turbofan engine that has been developed by this system is the Soloviev D-90, a 35,000-lb thrust class engine powering the Tu-204 and II-96-300 transport aircraft currently undergoing testing; a specific fuel consumption level of 0.58 at Mach 0.8/36,000 ft altitude has been achieved.

A89-41115#

THE MODEL OF COMBUSTION EFFICIENCY AND CALCULATION OF FLOW PROPERTIES FOR SCRAMJET COMBUSTOR

LING LIU, ZHEN ZHANG, HAIFA NIU, and JINGHUA LIU (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1989, p. 1-7, 70. In Chinese, with abstract in English. refs

A combustion efficiency model for scramjet combustors is presented and analyzed. The model takes into account factors affecting fuel injection, entrance conditions, and combustor configuration. One-dimensional flow properties are computed step by step through the combustor. A comparison of theoretical predictions with experimental results indicates that the theory is satisfactory.

C.D.

A89-41126#

INVESTIGATION ON THRUST MEASUREMENT OF TURBOJET ENGINE IN ALTITUDE SIMULATION FACILITY

QING ZHU and SHIFU TANG (31st Research Institute, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1989, p. 57-61, 76. In Chinese, with abstract in English.

At present, the thrust of turbojet engines is flight is measured using simulation tests in an altitude chamber. The technology

07 AIRCRAFT PROPULSION AND POWER

involved in the simulation and measurement, the facility, and the measurement results are discussed here in the context of an actual example. Corrections of thrust measurements and measurement accuracy are addressed.

A89-41223 DESIGN POINT OPTIMIZATION OF AN AXIAL-FLOW COMPRESSOR STAGE

JIN SHIK LIM and MYUNG KYOON CHUNG (Korea Advanced Institute of Science and Technology, Seoul, Republic of Korea) International Journal of Heat and Fluid Flow (ISSN 0142-727X), vol. 10, March 1989, p. 48-58. Research supported by the Korea Science and Engineering Foundation. refs

The application of the gradient-projection method to a simulation program has yielded a design-optimization program for axial-flow compressor stages in which the total pressure losses required to calculate the total-to-total efficiency are estimated through the integration of the empirical loss coefficients of six loss mechanisms along the radial direction of a three-dimensional blade. Illustrative optimization problems for maximum efficiency, minimum weight, and balanced optimum between efficiency and weight are presented. In the maximum-efficiency design with a given stage pressure ratio, the meridional flow path tends to be deflected radially outward, while the axial velocity is decreased in both rotor and stator.

A89-41224

CHARACTERISTICS OF DUMP COMBUSTOR FLOWS

RONALD M. C. SO and SAAD A. AHMED (Arizona State University, Tempe) International Journal of Heat and Fluid Flow (ISSN 0142-727X), vol. 10, March 1989, p. 66-74. Research sponsored by DARPA. refs (Contract N60530-85-C-0191)

Turbulent flows through dump combustors with different inlet geometries and flow conditions were investigated. The combustor was simulated by an axisymmetric tube with a sudden expansion geometry. Specifically two different inlet geometries were studied; one resembled an actual inlet, another a well-designed convergent nozzle. Furthermore, two different step heights were examined. Finally, the effects of rotation on the flow behavior were also studied. The results show that of all the geometric and flow parameters investigated, inlet turbulence and rotation have the greatest effect on the flow inside the combustor, in particular, the characteristics of the toroidal recirculating flow. Both parameters act to decrease the toroidal recirculation region and hence the reattachment length. The limited data available tend to show that the effects due to these two parameters are additive. On the other hand, inlet geometry only has an indirect effect on the combustor flow. It influences the flow characteristics because it creates different inlet turbulence at the sudden expansion.

Author

A89-41910# SERVICE-INDUCED DAMAGE IN TURBINE DISCS AND ITS INFLUENCE ON DAMAGE TOLERANCE-BASED LIFE

M. R. PISHVA, N. C. BELLINGER (Carleton University, Ottawa, Canada), A. K. KOUL, and T. TERADA (National Aeronautical Establishment, Structures and Materials Laboratory, Ottawa, Canada) Canadian Aeronautics and Space Journal (ISSN 0008-2821), vol. 35, March 1989, p. 4-11. Research supported by

The damage tolerance-based life prediction concepts proposed for gas turbine components are explained. The results of a demonstration program carried out to calculate the Safe Inspection Intervals (SIIs) for new and service-exposed turbine disks are presented. Effects of service exposure on the microstructure and fatigue crack growth rate of Inconel 718 disks are studied in detail. It is suggested that there may be considerable risk involved in assuming that crack-free components can be used repeatedly beyond 'safe life limit' for several SIIs, unless the SII value is continually updated, taking into account the deterioration of microstructure with increasing service.

A89-42422

DETERMINATION OF THE NATURAL FREQUENCY SPECTRA AND MODES OF THE FAN BLADE RINGS OF AVIATION GAS TURBINE ENGINES [K OPREDELENIIU SPEKTROV SOBSTVENNYKH CHASTOT I FORM KOLEBANII VENTILIATORNYKH LOPATOCHNYKH VENTSOV AVIATSIONNYKH GTD]

V. V. MALYGIN Problemy Prochnosti (ISSN 0556-171X), May 1989, p. 92-95. In Russian. refs

An approach to the study of the natural frequency spectra of the fan rotors of bypass engines is proposed which is based on the use of both analytical and experimental data. The advantages of the approach, which allows the identification of all frequencies and modes of blade rings, are demonstrated. A method for the identification of the natural modes of rotors, which has been tested on various designs of bypass engines, is presented.

V.L.

A89-42462

EXPERIMENTAL INVESTIGATION OF THE CHARACTERISTICS OF COMBINATION ENGINES [K VOPROSU EKSPERIMENTAL'NOGO ISSLEDOVANIIA KHARAKTERISTIK KOMBINIROVANNYKH DVIGATELEI]

V. I. BAKULEV, I. V. KRAVCHENKO, and V. A. UFIMKINA IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 67-71. In Russian.

A small-scale model engine has been developed for the experimental investigation of the performance characteristics of the steam-hydrogen combination rocket-turbine engine scheme. The general design, operation, and principal components of the small-scale model engine are described. The model combination engine makes it possible to study the throttle characteristics of the rocket-turbine engine under bench testing conditions for different control programs and also to study the operation of the engine in transient regimes.

A89-42463

TWO-TIME PROBABILISTIC MODEL OF THE EVOLUTION OF AIRCRAFT ENGINE RELIABILITY [DVUKHVREMENNAIA VEROIATNOSTNAIA MODEL' RAZVITIIA NADEZHNOSTI AVIADVIGATELEI]

L. F. KOSHKINA, E. A. LOKSHTANOV, S. A. MIRZOIAN, and E. V. NABOKIN IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 71-77. In Russian. refs

A two-factor exponential-logistic model for predicting the reliability of aircraft engines is developed which accounts for the increased engine reliability resulting from operation experience and general technological progress in aircraft engine building. The model is verified using the Fisher test. It is noted that models of this kind could also be applied to other quality characteristics of complex improvable systems.

A89-42466

A STUDY OF THE CHARACTERISTICS OF AIRCRAFT POWERPLANTS UNDER CONDITIONS OF OPTIMAL CONTROL OF THEIR PRINCIPAL COMPONENTS [ISSLEDOVANIE KHARAKTERISTIK AVIATSIONNYKH SILOVYKH USTANOVOK PRI OPTIMAL'NOM UPRAVLENII IKH OSNOVNYMI ELEMENTAMI]

IU. N. NECHAEV, V. N. KOBEL'KOV, and E. V. TOFANOVSKII IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 98-103. In Russian. refs

The problem of the optimization of the throttle characteristics of augmented bypass engines with flow mixing behind the turbine is analyzed to investigate the possibility of improving powerplant performance characteristics through optimal control of their principal components. It is shown that optimization of the control of engine components makes it possible to significantly improve engine efficiency under various flight conditions and engine operation regimes. In the case of the engine studied, a 20-25-percent increase in efficiency is achieved through optimal control of the air intake.

A89-42467

OPTIMIZATION OF THE PARAMETERS AND CHARACTERISTICS OF BYPASS ENGINES [OPTIMIZATSIIA PARAMETROV I KHARAKTERISTIKI TRDD]

A. L. PARKHOMOV IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 103-109. In Russian.

The paper is concerned with the optimization of the process parameters and characteristics of bypass engine with respect to fuel efficiency. In particular, it is shown that all the dimensionless process parameters of bypass engines, from the fan inlet to the nozzle exit section, are a function of the gas generator regime only and do not depend on flight conditions. In the case of subcritical flow from the nozzle, all the engine process parameters depend not only on the gas generator regime but also on the flight Mach number.

A89-42468

AN ANALYTICAL STUDY OF THE CHARACTERISTICS OF BYPASS ENGINE MIXING CHAMBERS IN THE CASE OF INCOMPLETE MIXING OF GAS FLOWS [RASCHETNOE ISSLEDOVANIE KHARAKTERISTIK KAMER SMESHENIIA TRDD PRI NEPOLNOM PEREMESHIVANII GAZOVYKH POTOKOV]

IU. N. NECHAEV, V. A. NEMYKIN, and V. M. TREMBACH IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka. 1988, p. 109-120. In Russian. refs

An approximate engineering method for calculating the characteristics of the mixing chambers of bypass engines is proposed which allows for incomplete mixing of the gas flows. It is assumed that (1) the mechanism of mixing layer evolution is the same as in the case of a free turbulent jet; (2) the transverse gradient of static pressure equals zero; and (3) velocity and temperature profiles in the mixing layer are finite. It is shown that flow parameters at the exit of the mixing chamber and mixing efficiency depend to a large degree on the inlet conditions and geometrical shape of the mixing chamber, which provides a way to optimize the mixing chamber parameters and calculate engine characteristics.

A89-42509

AUTOMATIC CONTROL OF JET ENGINES (3RD REVISED AND ENLARGED EDITION) [AVTOMATIKA I REGULIROVANIE VOZDUSHNO-REAKTIVNYKH DVIGATELEI /3RD REVISED AND ENLARGED EDITION/]

BORIS A. CHERKASOV Moscow, Izdatel'stvo Mashinostroenie, 1988, 360 p. In Russian. refs

The fundamentals of the automatic control theory for ramjet and gas turbine engines are presented. Topics discussed include the main characteristics of the cycle of jet engines and possible control programs; the main components of jet engine control systems, their general design, and operation; and control of the rotor speed, gas temperature, engine thrust, and intake parameters. Attention is also given to methods for the analysis of the dynamic characteristics of linear and nonlinear automatic control systems; hydrodynamic control systems; digital control systems; and mathematical modeling of gas turbine engines.

A89-43213#

PNS CODE ASSESSMENT STUDIES FOR SCRAMJET COMBUSTOR AND NOZZLE FLOWFIELDS

R. A. LEE, N. SINHA, and S. M. DASH (Science Applications International Corp., Propulsion Gas Dynamics Div., Princeton, NJ) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 14 p. refs

(AIAA PAPER 89-1697)

Two-dimensional computer codes (SCORCH, SCHNOZ, SCRINT) developed for the analysis of scramjet propulsive flowfields are reviewed and recent upgrades to these codes are reported.C omparative studes of these two-dimensional codes are described for representative unit processes. The two-dimensional studies indicate that the use of implicit upwind (Roe/TVD) numerics, as incorporated in the SCRINT code, provides the most reliable, robust, and accurate methodology for scramjet combustor/nozzle

flow problems. Progress towards the development of threedimensional PNS models is described which incorporates time-iterative extensions to the Roe/TVD numerics for added robustness and accuracy. All codes described contain generalized finite-rate chemistry capabilities and two-equation turbulence models.

N89-23464# National Aerospace Lab., Tokyo (Japan). EXPERIMENT ON A CYLINDRICAL SCRAMJET COMBUSTOR. 2: SIMULATED FLIGHT MACH NUMBER 6.7

TOMOYUKI KOMURO, ATSUO MURAKAMI, KENJI KUDOU, GORO MASUYA, and NOBUO CHINZEI Mar. 1988 20 p in JAPANESE; ENGLISH summary

(NAL-TR-969; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

An experimental study was made on a cylindrical scramjet combustor with a rear-facing step in a vitiated air flow. The stagnation temperature and pressure of the vitiated air were 2000 K and 1.0 MPa, respectively. The simulated flight speed was Mach 6.7 at a particular altitude of 40 km. Three different types of fuel injector were used, consisting of two perpendicular schemes and a parallel scheme of fuel injection into the mainstream. Auto-ignition of hydrogen fuel occurred when the air stagnation temperature reached about 1500 K. In all test cases, the flame was anchored on the step. For high air stagnation temperature and low fuel flow rate, however, the flame holding position shifted downstream from the step. At a fuel equivalence ratio of 0.55, mixing efficiency of the parallel injector was higher than that of the perpendicular injectors, but the axial variations in combustion efficiency were almost in the same form for all injectors, except immediately downstream of the injector. In a supersonic combustion mode, significant influence of flight Mach number on mixing was not observed. For a constant inlet Mach number, fuel flow rates at which transition from supersonic to subsonic combustion took place increased nearly in proportion to the stagnation temperature of air. A one-dimensional analysis using the measured pressure distribution served to determine other chemical and fluid mechanical properties. The calculated combustion efficiencies were slightly higher as compared to the experimental data, while the Mach number distributions were in reasonable agreement.

N89-23465*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ADVANCES IN COMPUTATIONAL DESIGN AND ANALYSIS OF AIRBREATHING PROPULSION SYSTEMS

JOHN M. KLINEBERG 1989 19 p Proposed for presentation at the 9th International Symposium on Airbreathing Engines, Athens, Greece, 4-9 Sep. 1989; sponsored by International Society for Air Breathing Engines

(NASA-TM-101987; E-4689; NAS 1.15:101987) Avail: NTIS HC A03/MF A01 CSCL 21/5

The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions. Author N89-23466*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

METHOD AND SYSTEM FOR MONITORING AND DISPLAYING ENGINE PERFORMANCE PARAMETERS Patent Application

TERENCE S. ABBOTT, inventor (to NASA) and LEE H. PERSON, JR., inventor (to NASA) 14 Nov. 1988 34 p Sponsored by NASA. Langley Research Center

(NASA-CASE-LAR-14049-1; NAS 1.71:LAR-14049-1; US-PATENT-APPL-SN-270189) Avail: NTIS HC A03/MF A01 CSCL 21/5

The invention is believed a major improvement that will have a broad application in governmental and commercial aviation. It provides a dynamic method and system for monitoring and simultaneously displaying in easily scanned form the available, predicted, and actual thrust of a jet aircraft engine under actual operating conditions. The available and predicted thrusts are based on the performance of a functional model of the aircraft engine under the same operating conditions. Other critical performance parameters of the aircraft engine and functional model are generated and compared, the differences in value being simultaneously displayed in conjunction with the displayed thrust values. Thus, the displayed information permits the pilot to make power adjustments directly while keeping him aware of total performance at a glance of a single display panel.

N89-24319*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A MODEL FOR PREDICTION OF STOVL EJECTOR DYNAMICS COLIN K. DRUMMOND 1989 15 p Presented at the 20th Annual Conference on Modeling and Simulation, Pittsburgh, PA, 4-5 May 1989; cosponsored by the Univ. of Pittsburgh, IEEE and ISA

(NASA-TM-102098; E-4861; NAS 1.15:102098) Avail: NTIS HC A03/MF A01 CSCL 21/5

A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.

08

AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

A89-39847# OPST 1 - A DIGITAL OPTICAL TAIL ROTOR CONTROL

K. BENDER, G. MANSFELD (DFVLR, Brunswick, Federal Republic of Germany), BERNARD FORMICA, and HERBERT KOENIG (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 17 p. rets (MBB-UD-533-88-PUB)

OPST 1 (which is a German acronym for Optical Control System, Phase 1) is a technology program for future helicopter controls. OPST 1 has the control loop consisting of pilot's input transducers, control and display unit, flight control computer (FCC), actuator, and yaw rate gyros. The hardware is of triplex design for the FCC, the position pick-offs and rate gyros, and duplex design for hydraulics, with duo-duplex electronics for loop closure and

monitoring; the data transfer is made by means of fiber optics. Within the program, and experimental fault-tolerant four-axis fly-by-wire/fly-by-light control system DISCUS is being developed, the key element of which is a fault-tolerant flight control computer system. Diagrams and flow diagrams describing the OPST 1 and DISCUS designs and architecture are included.

A89-40961

THE RESEARCH OF THE AIRCRAFT NEUTRAL STABILITY

YIDONG YUANG, SHUMEI ZHANG, and SUOFENG GUO (Nanjing Aeronautical Institute, People's Republic of China) Chinese Journal of Aeronautics (ISSN 1000-9361), vol. 2, Feb. 1989, p. 23-31.

A novel fuselage-aiming mode may be achieved in neutrally stable aircraft through the symmetric deflection of flaps and dynamic decoupling for minor angle-of-attack disturbances. This control mode transforms an aircraft's dynamics model from one of short-period oscillation into a nonoscillatory one, which then effectively accelerates the dynamic process of attitude-tracking, decreases dynamic error, increases gust-rejection capabilities, and yields a flight path that remains unchanged during the process of attitude control. Aircraft designs of neutrally stable and quasi-neutrally stable type are presently treated.

A89-40963

ACTIVE FLUTTER SUPPRESSION ON A DELTA WING

KUNYI CHENG (Chengdu Aircraft Corp., Development Dept., People's Republic of China) Chinese Journal of Aeronautics (ISSN 1000-9361), vol. 2, Feb. 1989, p. 39-48.

Control laws for the active flutter suppression system were designed for a delta wing by means of the fictitious structural modification method and the Nyquist criterion concept. Based on an accurate determination of the model structure parameters, the transfer behavior of the electrohydraulic actuator system, and suitable positions of the sensors, the lowest critical flutter speed was increased by 25 percent with different and simple control laws. Good agreement was achieved between calculated and measured results.

A89-42939

SYSTEM TESTING EXEMPLIFIED BY THE A320-LANDING FLAPS FLIGHT MANEUVERING SYSTEM [SYSTEMERPROBUNG AM BEISPIEL DES A320-LANDEKLAPPEN-FLUGSTEUERUNGSSYSTEMS]

GUENTHER MASCHKE (Messerschmitt-Boelkow-Blohm GmbH, Lemwerder, Federal Republic of Germany) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 163-172. In German. (MBB-UT-0131-88-PUB)

The testing of the A320 flight maneuvering system using landing flaps is described. The realization of the testbed for the system is reviewed, and the general criteria for the test are described along with the simulation method utilized. An overview of the test program is presented.

C.D.

A89-43051*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

FLYING QUALITIES FROM EARLY AIRPLANES TO THE SPACE SHUTTLE

WILLIAM H. PHILIIPS (NASA, Langley Research Center, Hampton, VA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 12, July-Aug. 1989, p. 449-459. Previously cited in issue 07, p. 953, Accession no. A88-22568. refs

A89-43057*# Kansas Univ., Lawrence.

ANALYSIS OF A CANDIDATE CONTROL ALGORITHM FOR A RIDE-QUALITY AUGMENTATION SYSTEM

REINER SUIKAT, KENT DONALDSON, and DAVID R. DOWNING (Kansas, University, Lawrence) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 12, July-Aug. 1989, p. 505-513. Previously cited in issue 03, p. 288, Accession no. A88-14277. refs (Contract NAG1-345)

A89-43071#

THREE-DIMENSIONAL ENERGY-STATE EXTREMALS IN **FEEDBACK FORM**

M. D. ARDEMA (Santa Clara University, CA), N. RAJAN, and L. YANG (Sterling Software, Palo Alto, CA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 12, July-Aug. 1989, p. 601-605. refs

The present analysis of energy-state extremals generates trajectories displaying features which agree with aircraft pursuit-evasion and target-interception experience; the trajectories primarily involve segments of hard turning on the corner-velocity locus and high-speed dash on the maximum-speed boundary, with occasional, short intervals of optimal energy accumulation. The fact that these trajectories exhibit frequent and large jumps between these various branches of the three-dimensional energy-state solution means that the transitions between these branches, the boundary-layer motions, will be important.

A89-43104

THE VAAC/VSTOL FLIGHT CONTROL RESEARCH PROJECT

O. P. NICHOLAS and C. M. STEPHENS (Royal Aerospace Establishment, Bedford, England) Aerospace (UK) (ISSN 0305-0831), vol. 16, July 1989, p. 8-11.

VAAC (vectored thrust aircraft advanced flight control), a research program investigating advanced VSTOL flight control, strives to develop concepts and design and assessment techniques. In the discussion of the flight control of advanced VSTOL aircraft, consideration is given to the background, broad control strategy, inceptor sense, displays, the VAAC program, the VAAC aircraft and system, and simulation results. The experimental flight control system fitted to the rear cockpit of the research aircraft was designed to permit a wide range of experimental laws to be flown safely.

N89-23467# National Aerospace Lab., Tokyo (Japan). THE FUNCTIONAL MOCK-UP TEST OF THE FLIGHT CONTROL SYSTEM OF THE NAL QSTOL RESEARCH **AIRCRAFT ASKA**

TADAO UCHIDA, AKIRA TADA, NORIAKI OKADA, HIROYUKI YAMATO, and TOSHIO OGAWA Apr. 1988 64 p In JAPANESE; **ENGLISH** summary

(NAL-TR-972; ISSN-0389-4010) Avail: NTIS HC A04/MF A01

The functional mockup test of the flight control system of ASKA with the stability and control augmentation systems is described. The tests made included software verification, simulated failure effects testing, closed loop test, and piloted simulation test. The results show that the functions and performance of the control system are satisfactory for flight safety of ASKA.

National Aeronautics and Space Administration. N89-23468*# Langley Research Center, Hampton, VA

A CLOSED-FORM TRIM SOLUTION YIELDING MINIMUM TRIM DRAG FOR AIRPLANES WITH MULTIPLE LONGITUDINAL-CONTROL EFFECTORS

KENNETH H. GOODRICH, STEVEN M. SLIWA, and FREDERICK J. LALLMAN Washington May 1989 30 p (NASA-TP-2907; L-16484; NAS 1.60:2907) Avail: NTIS HC A03/MF A01 CSCL 01/3

Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming each airplane. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady-state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. Comparisons of the trim drags obtained using LOTS, a direct constrained optimization method, and several ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and two-surface airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained from the nonlinear optimization and that the optimum methods result in trim drag reductions of up to 80 percent compared to the ad hoc methods. Author

National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
SIMULATOR EVALUATION OF A DISPLAY FOR A TAKEOFF

PERFORMANCE MONITORING SYSTEM

DAVID B. MIDDLETON, RAGHAVACHARI SRIVATSAN, and LEE H. PERSON, JR. Washington May 1989 29 p (NASA-TP-2908; L-16510; NAS 1.60:2908) Avail: NTIS HC A03/MF A01 CSCL 01/3

A Takeoff Performance Monitoring System (TOPMS) has been developed to provide the pilot with graphic and numeric information pertinent to his decision to continue or abort a takeoff. The TOPMS information display consists primarily of a runway graphic overlaid with symbolic status, situation, and advisory information including: (1) current position and airspeed; (2) predicted locations for reaching decision speed (V sub 1) and rotation speed (V sub R); (3) groundroll limit for reaching (V sub R); (4) predicted stop point for an aborted takeoff from current conditions; (5) engine-status flags; and (6) an overall situation advisory flag that recommends continuation or rejection of the takeoff. In this study, 32 experienced multi-engine pilots evaluated the TOPMS on the Langley B-737 real-time research simulator. They rated the system satisfactory good and judged it to be suitable for implementation on an aircraft. The TOPMS, the TOPMS simulation, and the results of the simulator evaluation are described here. Appendices contain the pilot's prebriefing package (written explanation of the TOPMS--sent to the pilots prior to their visit), evaluation instructions, debriefing questions, and rating criteria (organized into a flow diagram similar to the Cooper-Harper diagram for evaluation of aircraft handling qualities).

N89-23470*# Kansas Univ. Center for Research, Inc., Lawrence. Flight Research Lab.

DETAILED DESIGN OF A RIDE QUALITY AUGMENTATION SYSTEM FOR COMMUTER AIRCRAFT Final Report

REINER SUIKAT, KENT E. DONALDSON, and DAVID R. DOWNING Washington NASA May 1989 127 p (Contract NAG1-345)

(NASA-CR-4230; NAS 1.26:4230; KU-FRL-6132-7) Avail: NTIS HC A07/MF A01 CSCL 01/3

The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible. Author

N89-23471*# Boeing Commercial Airplane Co., Seattle, WA. THE 4D-TECS INTEGRATION FOR NASA TSRV AIRPLANE **Final Report**

I. KAMINER and P. R. OSHAUGHNESSY Washington NASA Jun. 1989 168 p

(Contract NAS1-18027)

(NASA-CR-4231; NAS 1.26:4231) Avail: NTIS HC A08/MF A01 CSCL 01/3

The integration of the Total Energy Control System (TECS) concept with 4D navigation is described. This integration was made to increase the operational capacity of modern aircraft and encourage incorporation of this increased capability with the evolving National Airspace System (NAS). Described herein is: 4D smoothing, the basic concepts of TECS, the spoiler integration concept, an algorithm for nulling out time error, speed and altitude profile modes, manual spoiler implementation, 4D logic, and the results of linear and nonlinear analysis.

N89-23473# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.
FLIGHT CONTROL SYSTEM FOR THE CRCA (CONTROL RECONFIGURABLE COMBAT AIRCRAFT) USING A COMMAND GENERATOR TRACKER WITH PI (PROPORTIONAL-PLUS-INTEGRAL) FEEDBACK AND KALMAN FILTER, VOLUME 1 M.S. Thesis STEVEN S. PAYSON Mar. 1989 154 p (AD-A205723; AD-E501079; AFIT/GE/ENG/89M-6-VOL-1) Avail: NTIS HC A08/MF A01 CSCL 01/4

This research develops an integrated software design package useful in the synthesis of CGT/PI/KF control systems, and uses this software package to design and evaluate a longitudinal flight control system for the Control Reconfigurable Combat Aircraft (CRCA). The software package, called CGTPIKE and built with MATRIXx commands, allows for the synthesis and evaluation of a Command Generator Tracker (CGT) which provides inputs to the system and acts as a pre-compensator, and a regulator with proportional plus integral (PI) feedback which forces the system outputs to mimic the model output. The software also allows the incorporation of a Kalman filter for estimation of the system states. Certainty equivalence can be invoked by adopting the LQG assumptions, thereby allowing the Kalman filter to be designed independently of the CGT/PI controller. The total CGT/PI/KF controller can then be evaluated and the design refined. CGTPIKF is an interactive, menu-driven CAD package which can be used in the development of any CGT/PI/KF control system, regardless of application. A flight control system was designed for the CRCA air combat mode (ACM) entry using CGTPIKF. This control system was designed to force the aircraft to emulate a first order response in pitch rate.

N89-23474# Department of the Navy, Washington, DC. ACTUATOR RATE SATURATION COMPENSATOR Patent Application

SHAWN T. DONLEY, inventor (to Navy), GARRY L. GROSS, inventor (to Navy), and JUDITH L. KOPER, inventor (to Navy) 5 May 1988 13 p Filed 5 May 1988 (AD-D013962; US-PATENT-APPL-SN-204152) Avail: NTIS HC A03/MF A01 CSCL 20/3

A device for compensating for actuator rate saturation is disclosed by this patent application. The device is an improvement to a servomechanism of the type wherein a command signal and a position feedback signal from a member being positioned are summed to produce an error signal for driving an actuator to position the member in accordance therewith. The improvement is a means for inverting the error signal when the ratio of the slope of the position feedback signal to the slope of the command signal is less than one and the polarity of the error signal is opposite to the polarity of the slope of the command signal, and the absolute value of the error signal is not increasing. Application of the invention to the flight controls of an aircraft is disclosed.

GRA

N89-23475# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

CONTROL DESIGN OF AN UNSTABLE NON-MINIMUM PHASE AIRCRAFT SUBJECT TO CONTROL SURFACE SATURATION M.S. Thesis

OLIVER J. MERWIN Mar. 1989 164 p (AD-A206024; AFIT/GE/ENG/89M-5) Avail: NTIS HC A08/MF A01 CSCL 01/4

This thesis seeks to validate a design technique for the control of unstable aircraft which are subject to limited control authority. It applies the technique to a realistic aircraft model, instead of the

simplified models used in the theoretical development, to produce a pitch rate controller for widely spaced regions of the flight envelope. First the aircraft is stabilized by feeding back pitch rate. Then an adjustable command limiter is placed in the input path for the stable effective plant. The saturation level of the limiter, adjusted by a second feedback loop, provides the proper command tracking response when the command limiter is not saturated. The final element is a minor feedback loop around the command limiter to provide a second degree of freedom to ensure the limiter comes out of saturation as quickly as possible. Simulations for step commands ranging from 1 to 5 deg/sec pitch rate show the design is quite successful. The stabilator does not saturate in a manner which causes instability even when responding to extreme commands. Simulations of a pulse command show that the command limiter unsaturates rapidly and the aircraft responds appropriately to a reduced pitch command even when the stabilator is near the limit. The technique applies relatively simple linear design tools to the nonlinear problem of control surface saturation.

N89-23476# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

MULTIVARIABLE FLIGHT CONTROL DESIGN WITH PARAMETER UNCERTAINTY FOR THE AFTI/F-16 M.S. Thesis BRIAN J. PAWLOWSKI Mar. 1989 141 p

(AD-A206068; AFIT/GE/ENG/89M-1) Avail: NTIS HC A07/MF A01 CSCL 01/4

Quantitative Feedback Theory (QFT) techniques are used in the design of a multivariable flight control law for the AFTI/F-16. The techniques were developed by Professor Isaac Horowitz, University of California, Davis, California. The flight control problem involves a multiple input-multiple output (MIMO) plant requiring regulation and control in the presence of parameter uncertainty and disturbances. Based on frequency response fundamentals, the technique uses feedback to achieve closed-loop system response within performance tolerances despite plant uncertainty. The range of uncertainty and the output performance specifications are quantitative parameters in the design process. The MIMO control problem is restructured into a set of two input - single output (multiple input - single output (MISO)) problems where one input is a command input to the system and the other is a disturbance input to be attenuated. The control laws for the MISO problems taken together form the solution of the MIMO problem. To obtain a point of comparison between various design techniques, the identical aircraft model previously developed by Mr. A. Finley Barfield is used in this study. The state space form of the model is converted to the transfer function relationships between the plant input and output variables.

N89-24321# National Aerospace Lab., Tokyo (Japan). WIND TUNNEL TESTS ON FLUTTER CONTROL OF A HIGH-ASPECT-RATIO CANTILEVERED WING Report No. 1 Jun. 1988 101 p In JAPANESE; ENGLISH summary (NAL-TR-978; ISSN-0389-4010) Avail: NTIS HC A06/MF A01

(NAL-TR-978; ISSN-0389-4010) Avail: NTIS HC A06/MF A01
Wind tunnel test results obtained on flutter control are presented. The test was conducted in the NAL 5.5 x 6.5 m low-speed wind tunnel. The wing model used in the tests assumes a future type of energy efficient transport. It has two control surfaces, one at the leading edge and the other at the trailing edge. Various control laws based on the Linear Quadratic Gaussian theory were implemented and tested with either control surface after reducing the order of the laws. The results showed a prominent effect of the leading edge control surface on flutter suppression. The maximum increase in flutter speed was 9.7 percent of the violent bending-torsion flutter. For the test, a special device was installed in the wind tunnel to prevent this highly mechanical model from being destroyed, which enabled us to execute very efficient tests.

N89-24322# National Aerospace Lab., Tokyo (Japan). Aircraft Aerodynamics Division.

COMPUTATIONAL AND EXPERIMENTAL RESEARCH ON BUFFET PHENOMENA OF TRANSONIC AIRFOILS

NAOKI HIROSE and HITOSHI MIWA Sep. 1988 22 p Presented at the IUTAM Symposium TRANSSONICUM 3, Goettingen, Fed. Republic of Germany, 24-27 May 1988

(NAL-TR-996T; ISSN-0389-4010) Avail: NTIS HC A03/MF A01

Buffet phenomena on supercritical airfoils were investigated both experimentally and numerically. The experiment was done for NACA0012 and KORN 75-06-12 airfoils using a high-speed Schlieren video tape recorder and pressure transducers. The analysis shows significant effects of the geometries and the Reynolds number. A 2-D N-S code was used to predict these phenomena. The result shows the macro-scale effects of airfoil geometry, Reynolds number and transition. A fine structure of the motion such as the periodic trailing edge pressure history was captured. The basic frequency of the buffet motion agrees well with the experiment.

N89-24323*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

RESULTS OF AN A109 SIMULATION VALIDATION AND HANDLING QUALITIES STUDY

MICHELLE M. ESHOW, DIEGO ORLANDI, GIOVANNI BONAITA, and SERGIO BARBIERI (Italian Air Force Pratica di Mare, Rome.) May 1989 31 p Presented at the 14th European Rotocraft Forum, Milan, Italy, 20-23 Sep. 1988 (NASA-TM-101062; A-88271; NAS 1.15:101062;

USAAVSCOM-TR-88-A-002) Avail: NTIS HC A03/MF A01

CSCL 01/3

The results for the validation of a mathematical model of the Agusta A109 helicopter, and subsequent use of the model as the baseline for a handling qualities study of cockpit centerstick requirements, are described. The technical approach included flight test, non-realtime analysis, and realtime piloted simulation. Results of the validation illustrate a time- and frequency-domain approach to the model and simulator issues. The final A109 model correlates well with the actual aircraft with the Stability Augmentation System (SAS) engaged, but is unacceptable without the SAS because of instability and response coupling at low speeds. Results of the centerstick study support the current U.S. Army handling qualities requirements for centerstick characteristics.

N89-24324*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.

RESULTS OF A PARAMETRIC AEROELASTIC STABILITY ANALYSIS OF A GENERIC X-WING AIRCRAFT

JESSICA A. WOODS, MICHAEL G. GILBERT, and TERRENCE A. WEISSHAAR Apr. 1989 10 p Presented at the AIAA 30th Structures, Structural Dynamics and Materials Conference, Mobile, AL, 3-5 Apr. 1989 Previously announced in IAA as A89-30858 (NASA-TM-101572; NAS 1.15:101572) Avail: NTIS HC A02/MF A01 CSCL 01/3

This paper discusses the trends in longitudinal dynamic aeroelastic stability of a generic x-wing aircraft model with design parameter variations. X-wing rotor blade sweep angle, ratio of blade mass to total vehicle mass, blade structural stiffness cross-coupling and vehicle center-of-gravity location were parameters considered. The typical instability encountered is body-freedom flutter involving a low frequency interaction of the first elastic mode and the aircraft short period mode. Parametric cases with the lowest static margin consistently demonstrated the highest flutter dynamic pressures. As mass ratio was increased, the flutter boundary decreased. The decrease was emphasized as center-of-gravity location was moved forward. As sweep angle varied, it was observed that the resulting increase in forward-swept blade bending amplitude relative to aft blade bending amplitude in the first elastic mode had a stabilizing effect on the flutter boundary. Finally, small amounts of stiffness cross-coupling in the aft blades increased flutter dynamic pressure.

N89-24325# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.
FLIGHT CONTROL SYSTEM FOR THE CRCA (CONTROL

RECONFIGURABLE COMBAT AIRCRAFT) USING A COMMAND GENERATOR TRACKER WITH PI (PLUS INTEGRAL) FEEDBACK AND KALMAN FILTER, VOLUME 2 M.S. Thesis

STEVEN S. PAYSON Mar. 1989 315 p (AD-A206202; AFIT/GE/ENG/89M-6-VOL-2) Avail: NTIS HC A14/MF A01 CSCL 01/4

This research develops an integrated software design package useful in the synthesis of CGT/PI/KF control systems, and uses this software package to design and evaluate a longitudinal flight control system for the Control Reconfigurable Combat Aircraft (CRCA). The software package, called CGTPIKF and built with MATRIXX commands, allows for the synthesis and evaluation of a Command Generator Tracker (CGT) which provides inputs to the system and acts as a pre-compensator, and a regulator with proportional plus integral (PI) feedback which forces the system outputs to mimic the model output. The software also allows the incorporation of a Kalman filter for estimation of the system states. Certainty equivalence can be invoked by adopting the LQC assumptions, thereby allowing the Kalman filter to be designed independently of the CGT/PI controller. The total CGT/PI/KF controller can then be evaluated and the design refined. CGTIKF is an interactive, menu driven CAD package which can be used in the development of any CGT/PI/KF control system, regardless of application.

N89-24326 Virginia Polytechnic Inst. and State Univ., Blacksburg.

NUMERICAL SIMULATION OF FEEDBACK CONTROL OF AERODYNAMIC CONFIGURATIONS IN STEADY AND UNSTEADY GROUND EFFECTS Ph.D. Thesis

ABDULLAH OTHMAN NUHAIT 1988 188 p Avail: Univ. Microfilms Order No. DA8904960

A general numerical simulation of closely coupled lifting surfaces in steady and unsteady ground effects was developed. This model was coupled with the equations of motion to simulate aerodynamic-dynamic interaction. The resulting model was then coupled with a feedback-control law to form a general nonlinear unsteady numerical simulation of control of an aircraft in and out of ground effect. The aerodynamic model is based on the general unsteady vortex-lattice method and the method of images. It is not restricted by plan-form, angle of attack, sink rate, dihedral angle, twist, camber, etc., as long as stall or vortex bursting does not occur. In addition, it has the versatility to model steady and unsteady aerodynamic interference. The present model can be used to simulate any prescribed flare and to model the effects of cross and/or head winds near the ground. The present results show the influences of various parameters on the aerodynamic coefficients for both steady and unsteady flows. Generally, the ground increases the aerodynamic coefficients; the greater the sink rates, the stronger the effects. Increasing the aspect ratio increases both the steady and unsteady ground effects. An exception is a large aspect-ratio wing with large camber. The present results are generally in close agreement with limited exact solutions and experimental data. In the aerodynamic-dynamic simulation, the equations of motion were solved by Hamming's predictor-corrector method. The aircraft, air stream, and control surfaces were treated as a single dynamic system. The present results demonstrate the feasibility of using the current simulation to model more complicated motions and the importance of including the unsteady ground effects when analyzing the performance of an airplane during a landing maneuver. Dissert. Abstr.

N89-24327*# National Aeronautics and Space Administration. Flight Research Center, Edwards, CA.

DEVELOPMENT AND FLIGHT TEST EXPERIENCES WITH A FLIGHT-CRUCIAL DIGITAL CONTROL SYSTEM

DALE A. MACKALL Washington Nov. 1988 116 p

(NASA-TP-2857; H-1344; NAS 1.60:2857) Avail: NTIS HC

A06/MF A01 CSCL 01/3

Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

N89-24328*# TAU Corp., Los Gatos, CA. OPTIMAL GUIDANCE WITH OBSTACLE AVOIDANCE FOR NAP-OF-THE-EARTH FLIGHT

NICHOLAS J. PEKELSMA Dec. 1988 72 p (Contract NAS2-12402) (NASA-CR-177515: NAS 1.26:177515) Avail: NTIS HC A04.

(NASA-CR-177515; NAS 1.26:177515) Avail: NTIS HC A04/MF A01 CSCL 01/3

The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.

N89-24329*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SURVEY OF ARMY/NASA ROTORCRAFT AEROELASTIC STABILITY RESEARCH

ROBERT A. ORMISTON, WILLIAM G. WARMBRODT, DEWEY H. HODGES, and DAVID A. PETERS (Georgia Inst. of Tech., Atlanta.) Oct. 1988 183 p Prepared in cooperation with Army Aviation Systems Command, Moffett Field, CA (NASA-TM-101026; A-88266; NAS 1.15:101026; USAAVSCOM-TR-88-A-005) Avail: NTIS HC A09/MF A01 CSCL 01/3

Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

09

RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

A89-39843#

DEVELOPMENT OF AN ADVANCED EXPERIMENTAL ROTARY TEST RIG AND FIRST TEST RESULTS WITH A 60 KN-MAIN ROTOR

RAINER VORWERG (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 23 p. (MBB-UD-525-88-PUB)

A rotary test rig with an advanced prime mover, swashplate contol, and a thrust measuring device was developed to test rotors up to 70 kN thrust. A vertically installed direct current drive unit is used to determine the power required over a widely variable rotor rpm range. The swashplate control is used for stationary or periodical monocyclic, multicyclic, and collective inputs. A strain-gaged sensor ring is integrated into the shaft bearing system for performing thrust measurements. The test rig is described in detail and preliminary results are presented from tests of a 60-kn bearingless rotor.

A89-39846#

A NEW WIND TUNNEL TEST RIG FOR HELICOPTER TESTING

MICHAEL STEPHAN, VALENTIN KLOEPPEL (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany), and H.-J. LANGER (DFVLR, Brunswick, Federal Republic of Germany) Associazione Industrie Aerospaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 22 p. refs

(MBB-UD-532-88-PUB)

The construction of a modular wind tunnel model for rotorcraft testing is discussed. The model is scaled for rotors with a diameter of 4 meters and may be used to test interference effects and performance, flight mechanical problems, rotor control and rotor noise. The model design requirements are outlined and the process of choosing subsystems to meet these requirements is examined. The fixed system, model core, measurement signal transmissions, rotor control, and sensors are described. The procedures for calibrating rotor balance, actuators, and pitch angles are presented. Also, results are given from tests to determine the accuracy of measurements made with the modular wind tunnel model. R.B.

A89-41060

SOVIET AEROSPACE INDUSTRY - AERODYNAMIC INSTITUTE AIDS EFFORT TO DEVELOP FUEL-EFFICIENT TRANSPORTS

Aviation Week and Space Technology (ISSN 0005-2175), vol. 130, June 5, 1989, p. 52, 56.

Two new turbofan-powered transports currently undergoing flight testing, the II-96-300 and the Tu-204, are believed to substantially owe their excellent fuel efficiencies to the research work conducted by the Central Aero-Hydrodynamic Institute in Moscow. This institute is responsible for the bulk of the USSR's aerodynamic, stability and control, aeroelasticity, and airframe structural characteristics research. As a measure of the quality of aerodynamic design achievable on the basis of these research efforts, it has been claimed that the II-96-300 has a L/D value of 19 at Mach 0.92. The primary shortcoming of the institute is its poor hardware resources for CFD; these are compensated by the intensive development of sophisticated computer programs. O.C.

A89-42499

HIGH-EFFICIENCY THERMAL INSULATION IN THE BASE OF AIRFIELDS AND HIGHWAYS [VYSOKOEFFEKTIVNAIA TEPLOIZOLIATSIA V OSNOVANIIAKH AERODROMOV I DOROG]

VADIM N. IVANOV Moscow, Izdatel'stvo Transport, 1988, 136 p. In Russian. refs

The use of high-efficiency thermal insulation materials in the construction of airfields and highways is discussed. The discussion covers thermophysical characteristics of soils, strength and thermophysical characteristics of high-efficiency thermal insulation, the deformation properties of the multilayer bases of airfield and highway pavements, and methods used in the design and construction of airfield and highway structures with a thermal insulation layer. The cost effectiveness of high-efficiency thermal insulation is estimated.

A89-42937

ACCURACY PROBLEMS IN WIND TUNNELS DURING TRANSPORT AIRCRAFT DEVELOPMENT

GUENTER KRENZ (Messerschmitt-Boelkow-Blohm GmbH, Bremen, Federal Republic of Germany) (NATO, AGARD Panel Meeting, 61st, Naples, Italy, Sept. 28-Oct. 2, 1987) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 141-150. (MBB-UT-134-88-PUB)

Wind tunnel test data accuracy requirements for transport aircraft are derived. Airline performance quarantees, model and tunnel test techniques available and the quality of prediction methods used form the concept for wind tunnel test programs and set accuracy requirements for test data. The paper describes procedures followed in high-speed cruise and low-speed takeoff and landing. The accuracy of wind tunnel tests is limited by several parameters, the most important being flow quality, model and model suspension quality, and balance accuracy. Problems which occurred during the tests with small models in the transonic regime led to new test concepts, the use of large models on a specific suspension with a range-limited balance and the improvement of small-model test techniques in connection with the requirements for measurements in cryogenic facilities. Low-speed tests are ambitious and extensive due to the many configurations at takeoff and landing. Furthermore, the work is complicated by many details like closing plates and shutters, which can have a strong effects on the performance data. Author

N89-23477# National Aeronautical Lab., Bangalore (India). Propulsion Div.

A RESEARCH FACILITY FOR FILM COOLING INVESTIGATIONS WITH EMPHASIS ON THE INSTRUMENTATION SYSTEM

M. D. MANICKAM May 1987 46 p (NAL-TM-PR-8704) Avail: NTIS HC A03/MF A01

The layout and the instrumentation of a facility for film cooling investigation is described. The injectant air is heated and the mainflow air remains at ambient temperature while the temperature ratio between the injectant and the main flow is simulated. The lift-off/attachment characteristics, the nature of streamwise penetration, and the lateral spreading of the injectant film for a discrete hole injection configuration in an accelerating turbine blade passage was studied. Though detailed studies of injectant films in the case of flat plates have been carried out by many researchers, little work has been done on the above topic for the case of actual blades. Many regions remain unexplored in this discrete hole cooling process which is considered promising for turbine blades. The instrumentation system has been geared to obtain details of flow and mixing in the vicinity of the injection holes, including the upstream and the downstream regions.

N89-23479# Swedish Inst. for Materials Testing, Boras.
INVESTIGATIONS ON THE CRACKING BEHAVIOR OF JOINTS
IN AIRFIELDS AND ROADS: FIELD INVESTIGATIONS AND
LABORATORY SIMULATIONS

S. LINDE 1988 27 p (PB89-141279; SP-RAPP-1988:23; ISBN-91-7848-108-2) Avail: NTIS HC A03/MF A01 CSCL 13/2

Cracks in airfield runways and loose debris resulting from the cracks cause severe damage to airplanes and airplane engines. The problem of cracks in airfield runways is examined in a series of field investigations and laboratory simulations. Fundamental parameters studied include: influence of water on adhesion of joint sealants/concrete/bituminous concrete; dessication velocity in concrete; the magnitude and speed of the thermal movement on a number of airfields in different climate zones (for a period of three years); the rheological behavior of the bituminous concrete at different temperatures and mechanical loads, especially with regard to tensile speed; and the behavior of the crack repair compound at different tensile speeds and temperatures. These fundamental parameters were computerized into a dynamic program, a so-called function test.

N89-23480# Federal Aviation Administration, Atlantic City, NJ. HELIPORT NIGHT PARKING AREA CRITERIA TEST PLAN Technical Note, Jan. - Apr. 1989

MARVIN S. PLOTKA and ROSANNE M. WEISS Mar. 1989

(Contract FAA-TO701-R)

(DOT/FAA/CT-TN88/45) Avail: NTIS HC A03/MF A01

This flight test plan describes the methodology to examine the issue of heliport night parking surface separation criteria. Operational measures will be collected at the Federal Aviation Administration (FAA) Technical Center, Atlantic City International Airport, New Jersey, using an instrumented UH-1H helicopter. Flight maneuvers will be conducted at the Technical Center to identify night parking area separation criteria under various wind conditions. Wind velocity and direction data will be collected during night parking operations to determine effects at different locations around the parking area. This data will be used to create a baseline for characterizing heliport night parking area separation criteria. The test development, test equipment, data collection, data reduction, and analysis of flight data are discussed. A schedule for the completion of the associated tasks is presented.

N89-23482# Naval Postgraduate School, Monterey, CA. AEROTHERMODYNAMIC ANALYSIS OF A COANDA/REFRACTION JET ENGINE TEST FACILITY M.S. Thesis

ANDRE MARAOUI Dec. 1988 140 p (AD-A205937) Avail: NTIS HC A07/MF A01 CSCL 14/2

A computer model of the Coanda/Refraction Jet Engine Test Cell facility was developed using the PHOENICS computer code. The PHOENICS code was utilized to determine the steady aerothermal characteristics of the test cell during the testing of an F404 gas turbine engine with afterburner in operation. Computer generated aerothermodynamic field variables of pressure, velocity and temperature parameters were compared to operational field test data. Observations regarding compared results as well as system behavior are presented. Additionally, recommendations of the applications of PHOENICS to future modeling projects are made.

N89-24330# Federal Aviation Administration, Atlantic City, NJ. IMPROVED MARKING OF TAXIWAY INTERSECTIONS FOR INSTRUMENT FLIGHT RULES (IFR) OPERATIONS Interim Report

ERIC S. KATZ Feb. 1989 14 p (DOT/FAA/CT-TN89/23) Avail: NTIS HC A03/MF A01 CSCL 01/5

A visual aid to advice pilots that a taxiway intersection is being approached was developed at the Federal Aviation Administration (FAA) Technical Center. Subject pilots were asked to comment on the effectiveness of the taxiway intersection markings. Results of the evaluation indicate that the markings provide adequate advance warning of the approaching taxiway intersection and an indication of where to stop to ensure clearance from aircraft using the intersecting taxiway.

10

ASTRONAUTICS

Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.

A89-42022#

ACCELERATION FORCES ABOARD NASA KC-135 AIRCRAFT DURING MICROGRAVITY MANEUVERS

DENNIS E. BAHR and ROBERT D. SCHULZ (Bahr Technologies, Inc., Madison, WI) Journal of Aircraft (ISSN 0021-8669), vol. 26, July 1989, p. 687, 688.

A89-42456

PROBLEMS OF THE UNIFICATION OF THE ON-BOARD SYSTEMS OF FLIGHT VEHICLES [VOPROSY UNIFIKATSII BORTOVYKH SISTEM LETATEL'NOGO APPARATA]

G. V. MALYSHEV, V. I. ZERNOV, and V. A. LAMZIN IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 31-38. In Russian.

The unification of on-board systems and modular design are examined as way of increasing the efficiency of the systems and reliability of the flight vehicle as a whole. Unified design of modular on-board systems involves the development of mathematical models describing the performance, weight, reliability, and cost effectiveness characteristics of the systems, as well as the development of algorithms and programs for determining the optimal number of unification areas and design parameters of the unified systems. A model unification problem is considered as an example.

A89-42459

A MODEL OF THE REACHABILITY ZONE AND ITS USE IN THE BALLISTIC DESIGN OF FLIGHT VEHICLES [MODEL' ZONY DOSTIZHIMOSTI I EE ISPOL'ZOVANIE V BALLISTICHESKOM PROEKTIROVANII LETATEL'NYKH APPARATOV]

G. A. VINOGRADOVA, S. A. VOEVODIN, and E. F. KAMENKOV IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 49-56. In Russian.

The concept of the reachability zone can be used for evaluating the maneuvering capacity of a flight vehicle in certain problems of the ballistic design of flight vehicles. Here, a simple, computationally efficient model of the reachability zone is proposed which requires only two trajectory calculations and provides a good approximation of the real reachability zone with minimum computer requirements. The model is particularly suitable at the early stage of ballistic design for estimating the maneuvering capabilities of flight vehicles, determining the guidance region, and developing sufficiently accurate multistep flight range control algorithms.

V.L

A89-43193*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

COMPUTATIONAL REQUIREMENTS FOR HYPERSONIC FLIGHT PERFORMANCE ESTIMATES

UNMEEL B. MEHTA (NASA, Ames Research Center, Moffett Field, CA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 15 p. refs (AIAA PAPER 89-1670)

The computational requirements for hypersonic flight performance estimates are discussed and a procedure for fulfilling these requirements is presented. In order to effectively use computational fluid dynamics in design, especially for estimating performance quantities, consideration should be given to the credibility of CFD, design sensitivities, test uncertainties, risk assessment, and consistency in determination. It is found that a

design-specific computational technology developed with programmatic research can be used in the design of hypervelocity vehicles. K.K.

A89-43620

NASP KEEPS MOVING

DONALD F. ROBERTSON Interavia Space Markets (ISSN 0258-4212), vol. 4, May-June 1989, p. 82-89.

A development status evaluation is undertaken for the envisioned component technologies, technology-integration schemes, and mission scenarios envisioned for the National Aerospace Plane (NASP) and its proof-of-concept experimental prototype, the X-30. NASP-derived operational vehicles are expected to demonstrate an order-of-magnitude reduction of current cost-to-orbit levels. Intensive efforts in CFD are envisioned to refine the hypersonic-to-hypervelocity aerothermodynamics of these vehicles. They will also be the first operational vehicles to which the use of hydrogen fuel will be essential, not merely for scramjet thrust generation but for active cooling, fuel-cell electricity generation, and orbital meneuvering reaction control.

11

CHEMISTRY AND MATERIALS

Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; and propellants and fuels.

A89-40085

A FOIL ADHESIVE FOR CONSTRUCTION - THE LETOXIT SYSTEM [KONSTRUKCNI FOLIOVE LEPIDLO - SYSTEM LETOXIT]

MARCELA VANKOVA and JURI SOUCEK Zpravodaj VZLU (ISSN 0044-5355), no. 1, 1989, p. 31-37. In Czech. refs

A survey of adhesive technologies in the Czechoslovak aircraft industry is presented. The development of the Letoxit system, intended to replace imported adhesives, is described. Test results on the basis of which the system has been approved for application in aeronautics are reviewed.

A89-40619

PROBABILISTIC-PARAMETRIC MODELS OF THE LONG-TERM STRENGTH OF METALLIC MATERIALS OF AIRCRAFT GAS TURBINE ENGINES [VEROIATNOSTNO-PARAMETRICHESKIE MODELI DLITEL'NOI PROCHNOSTI METALLICHESKIKH MATERIALOV AGTD]

A. N. VETROV, A. G. KUCHER, and N. A. KOVESHNIKOV (Kievskii Institut Inzhenerov Grazhdanskoi Aviatsii, Kiev, Ukrainian SSR) Problemy Prochnosti (ISSN 0556-171X), April 1989, p. 14-17. In Russian. refs

The long-term strength curves of materials are described by exponentially semirandom functions with three types of constant random components. The temperature-time parameters of these functions and the dispersion of random components are determined by the maximum likelihood method with allowance for changes in the temperature dependences of the parameters induced by the phase transformations in the materials. Numerical characteristics of the proposed model are obtained for the following heat-resistant materials: ZhS6U, ZhS6K, EP99VD, El437B, and Kh18N10T.

B.J.

A89-41585

ADVANCED CONCEPTS AND MATERIALS FOR HIGH-SPEED FLIGHT

J. E. FISCHLER (Douglas Aircraft Co., Long Beach, CA) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society

for the Advancement of Material and Process Engineering, 1987, p. 144-165. refs

Significant weight savings result from the joining of MMCs to SPF/DB Ti alloy sandwich panels, yielding a structural system whose service temperature is sufficiently high to offer designers structural mass ratios in supersonic Mach-number environments comparable to those which are typical of current subsonic aircraft structural masses. The initial costs of this structural concept are presently evaluated in terms of airframe weight-reduction value; significant direct operating cost reductions are obtained. Even greater advantages accrued to the use of rapid solidification rate Ti alloys in the SPF/DB sandwich.

A89-41591

WHITHER TITANIUM POWDER METALLURGY?

GERALD FRIEDMAN (PCC Airfoils, Inc., Cleveland, OH) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 222-227.

The Ti alloy-forming elemental or prealloyed powders and P/M consolidation methods thus far developed for such aerospace structural components as engine mounts and turbine disks are evaluated with a view to their curious lack of adoption, and an evaluation is made of the prospects for future applications of P/M Ti-alloy technologies. It is noted that the production cost reductions initially projected have been insufficient to overcome industry inertia. The most attractive novel applications involve such light weight/high strength materials as gamma aluminide-containing TiAl alloys, whose ductility is too low for effective forging, dispersion-strengthened Ti, extremely complex configurations, bimetallic components, and hollow turbine structure components.

O.C.

A89-41601

THE ENVIRONMENTAL CRACKING BEHAVIOUR OF ALUMINIUM-LITHIUM BASED ALLOYS

A. GRAY, N. J. H. HOLROYD, and W. S. MILLER (Alcan International, Ltd., Banbury, England) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 339-351. refs

The objective of this paper is to highlight the current understanding of the environmental cracking behavior of Al-Li base alloys. Particular emphasis is placed on the Al-Li-Cu-Mg-Zr alloy system (alloys 8090 and 8091). The effect of alloy chemistry, alloy temper and test environment on both crack initiation and propagation is discussed; these parameters significantly influence crack initiation behavior, but have a reduced effect on crack-growth rate. The initiation behavior of the alloys can be explained largely by invoking an anodic dissolution mechanism, whereas propagation behavior appears dependent upon a mechanical effect as well as on crack tip chemistry and anodic dissolution. The stress corrosion behavior of the alloys is compared with that of conventional alloys used in airframe construction.

A89-41888

RAPIDLY SOLIDIFIED AL-TI ALLOYS VIA ADVANCED MELT SPINNING

S. C. JHA, T. A. MOZHI, and R. RAY (Marko Materials, Inc., North Billerica, MA) JOM (ISSN 0148-6608), vol. 41, May 1989, p. 27-30. refs

Rapidly solidified Al-Ti based binary and ternary alloys containing 3 to 12 wt pct titanium and additions of cerium or vanadium have been produced by melt spinning continuous ribbons, pulverization into powders, and consolidation by hot-extrusion into round bars. The mechanical property data show that significantly improved elevated-temperature strengths can be obtained by suitable alloy design and processing. The rapidly solidified Al-Ti base alloys have improved general corrosion and pitting corrosion resistance in

comparison to ingot metallurgy Al 7075-T73 alloys, and higher resistance to pitting corrosion than rapidly solidified Al-8Fe-2Mo.

Author

A89-43211#

MEASUREMENTS OF PARTICLES REBOUND CHARACTERISTICS ON MATERIALS USED IN GAS TURBINES

W. TABAKOFF (Cincinnati, University, OH) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 11 p. Research sponsored by DOE. refs (AIAA PAPER 89-1693)

This paper describes an experimental method used to find the rebound characteristics of small solid particles impacting different materials. Such data are used for particle trajectories and erosion calculations in turbomachinery. The materials which are investigated are: 410 Stainless Steel, 2024 Aluminum, 6Al-4V Titanium, INCO 718, RENE 41, AM355, L605 Cobalt and Alumina (Al2O3). Particle materials are fly ash of 15 microns.

A89-43216*# Eloret Corp., Sunnyvale, CA. CALCULATION OF NONEQUILIBRIUM HYDROGEN-AIR REACTIONS WITH IMPLICIT FLUX VECTOR SPLITTING METHOD

SEUNG-HO LEE (Eloret Institute, Sunnyvale, CA) and GEORGE S. DEIWERT (NASA, Ames Research Center, Moffett Field, CA) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 13 p. refs (AIAA PAPER 89-1700)

Two methods, fully- and loosely-coupled, are developed to incorporate nonequilibrium hydrogen-air chemistry into the fluid dynamic implicit flux vector splitting code (F3D). The new code (F3D/Chem) is validated against other existing codes for two cases: nozzle expansion, and shock-induced combustion around a blunt body. The shock-induced combustion case is compared also with an experimental data. The reaction rate constants are varied in an effort to reproduce the experimental data. The fully- and loosely-coupled methods are found to yield comparable results, but the computation time is shorter using the loosely-coupled method. The present method is found to reproduce results obtained using different existing codes. The experimental data was not reproduced with any selected rate coefficients set.

N89-23656# National Aerospace Lab., Amsterdam (Netherlands). Dept. of Materials.

QUENCH SENSITIVITY OF AIRFRAME ALUMINIUM ALLOYS

H. J. KOLKMAN, W. G. J. THART, and L. SCHRA 29 Jan. 1988 11 p Presented at the 8th International Conference on the Strength of Metals and Alloys, Tampere, Finland, 22-26 Aug.

(PB89-146039; NLR-MP-88003-U) Avail: NTIS HC A03/MF A01 CSCL 11/6

The quench sensitivity of six precipitation hardened aluminum alloys for aerospace applications was investigated and explained by means of TEM (Transmission Electron Microscopy). The quench sensitivity was mainly caused by the solute depletion associated with heterogeneous precipitation at dispersoids for low quench rates.

N89-23712# North Dakota Univ., Grand Forks. Energy and Minerals Research Center.

PRODUCTION OF JET FUELS FROM COAL-DERIVED LIQUIDS. VOLUME 8: HETEROATOM REMOVAL BY CATALYTIC PROCESSING Interim Report, 1 Jan. - 30 Aug. 1988

J. R. RINDT, M. D. HETLAND, C. L. KNUDSON, and W. G. WILLSON Jan. 1989 99 p (Contract MIPR-FY1455-86-N-0657; AF PROJ. 2480) (AD-A205470; AFWAL-TR-87-2042-VOL-8) Avail: NTIS HC A05/MF A01 CSCL 21/4

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, commenced an investigation of the potential of the production of jet fuel from the liquid by-products streams produced by the gasification of lignite

11 CHEMISTRY AND MATERIALS

at the Great Plains Gasification Plant in Beulah, North Dakota. Funding was provided to the Department of Energy (DOE), Pittsburgh Energy Technology Center (PETC), to administer the experimental portion of this effort. This report details the program with the University of North Dakota Energy and Mineral Research Center (UNDEMRC) to study the removal of heteroatoms and the saturation of aromatics found in the Great Plains tar oil stream. UNDEMRC tested a processing approach consisting of multiple-stage hydrogenations.

N89-24459*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

COMPOSITE BLADE STRUCTURAL ANALYZER (COBSTRAN) DEMONSTRATION MANUAL

ROBERT A. AIELLO Apr. 1989 69 p

(NASA-TM-101957; E-4735; NAS 1.15:101957) Avail: NTIS HC A04/MF A01 CSCL 11/4

The input deck setup is described for a computer code, composite blade structural analyzer (COBSTRAN) which was developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades. This manual is intended for use in conjunction with the COBSTRAN user's manual. Seven demonstration problems are described with pre- and postprocessing input decks. Modeling of blades which are solid thru-the-thickness and also aircraft wing airfoils with internal spars is shown. Corresponding NASTRAN and databank input decks are also shown. Detail descriptions of each line of the pre- and post-processing decks is provided with reference to the Card Groups defined in the user's manual. A dictionary of all program variables and terms used in this manual may be found in Section 6 of the user's manual.

12

ENGINEERING

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A89-39841#

COMPARISON OF THE CRUSHING BEHAVIOUR OF METALLIC SUBFLOOR STRUCTURES

JOHANNES FRESE and DIETER NITSCHKE (Messerschmitt-Boelkow-Blohm GmbH, Munich, Federal Republic of Germany) Associazione Industrie Aerokspaziali and Associazione Italiana di Aeronautica ed Astronautica, European Rotorcraft Forum, 14th, Milan, Italy, Sept. 20-23, 1988, Paper. 24 p. refs (MBB-UD-535-88-PUB)

A program to analytically and experimentally study the crushing behavior of helicopter subfloor structures is discussed. Metal stiffened panels and honeycomb sandwich panels were examined under quasistatic and dynamic conditions. The behavior of sandwich panels is described in detail and compared to the behavior of stiffened panels. The results are used to design subfloor structures with high efficiency for crash impact.

A89-40084

DETERMINATION OF THE INTERACTION PARAMETER OF A TWIN-ROTOR GAS GENERATOR [STANOVENI PARAMETRU OTACKOVE INTERAKCE DVOUROTOROVEHO GENERATORU PLYNU]

BOHUSLAV RIHA Zpravodaj VZLU (ISSN 0044-5355), no. 1, 1989, p. 25-30. In Czech. refs

A sufficiently accurate approach for the rapid determination of the interaction parameter for a twin-rotor gas generator is described. Attention is given to an approximate method of interaction determination, which is especially suitable for application to the development of turbine engines and their automatic control systems.

A89-40255

GENERIC IMAGERY PROCESSING AND EXPLOITATION

KAREN PIGOTT (Loral Corp., Loral Defense Systems Div., Litchfield Park, AZ) IN: Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, p. 20-24.

The Modular Image Exploitation System (MIMS), a state-of-the-art generic imagery-processing/exploitation system, is under development to meet the requirements of all levels of imagery-based intelligence. The generic system has been conceived as highly modular with respect to both hardware and software, allowing rapid reconfiguration to match specific applications. A windows/icon/mouse/pointer-type interface is being used by the MIMS command control system; simple, icon-selectable commands will perform such tasks as image annotation, report formatting, image roaming and zooming, rotation, etc. An RPV mission-planning screen is also under development as part of the MIMS effort.

A89-40262

USE OF MAGNETIC SUSPENSION FOR SENSOR VIBRATION ISOLATION

KEITH O. STUART (Aura Systems, Inc., Innovative Information Systems Div., Los Angeles, CA) IN: Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, p. 84-92.

Magnetically suspended isolation systems which have been developed for airborne reconnaissance instruments are presently illustrated by the results of a proprietary magnetic gimbal fabrication-and-test project and those of the miniaturization of magnetic and electronic components used in magnetic-suspension isolation. In the former case, a line-of-sight accuracy of 3-8 microrad has been achieved in conjunction with an angular disturbance of 48 rad/sq sec; vibration rejection is therefore of the order of up to 79 dB. In the latter effort, a vast reduction in the size of magnetic bearings and their associated electronics has been achieved since the program's inception in 1986.

A89-40266

THE CONFORMED PANORAMIC - A NEW CONCEPT IN ELECTRO-OPTICAL SENSORS

RALPH WIGHT (Fairchild Weston Systems, Inc., Syosset, NY) IN: Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, p. 138-152.

The 'conformed' electrooptic panoramic camera concept for aereal reconnaissance and mapping that yields high scan efficiency, maintains a constant GSD in both directions throughout the field-of-regard, and is free of redundancies. The best characteristics of a panoramic camera (wide field-of-regard/narrow field-of-view), a strip camera (high duty cycle), and a vertical frame camera (uniformity of GSD), are all combined in the conformed concept.

O.C

A89-40907#

PREDICTION OF TRANSITION DUE TO ISOLATED ROUGHNESS

TUNCER CEBECI (California State University, Long Beach) and DAVID A. EGAN AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 870-875. Previously cited in issue 07, p. 1002, Accession no. A88-22100. refs (Contract NSF MEA-80-56237)

A89-40914#

TRANSVERSE VIBRATIONS OF A TRAPEZOIDAL CANTILEVER PLATE OF VARIABLE THICKNESS

P. A. A. LAURA, R. H. GUTIERREZ (Instituto de Mecanica Aplicada.

Puerto Belgrano Naval Base, Argentina), and R. B. BHAT (Concordia University, Montreal, Canada) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 921, 922.

Natural frequencies of a trapezoidal cantilever plate of variable thickness, which model an aircraft wing structure approximately, are determined using energy techniques. Characteristic orthogonal polynomials in two variables are constructed to describe the structural deflections, which are used in the Rayleigh-Ritz method to obtain the natural frequencies. The fundamental natural frequencies for different parameter values are also obtained using a deflection function containing an optimized exponent. The first technique can be used to obtain the natural frequencies and corresponding mode shapes for the preliminary design of aircraft wing structures.

A89-40921#

TRAJECTORY INTEGRATION IN VORTICAL FLOWS

EARLL M. MURMAN and KENNETH G. POWELL (MIT, Cambridge, MA) AIAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 982-984. refs

(Contract N00014-86-K-0288)

Trajectory integrations employed in the use of streamlines or particle traces in studies of the complex patterns encountered in vortical flows can be subject to numerical errors. Results are presented showing the step size and order-of-accuracy effects of the integration method on the computation of vortical streamlines; conical vortex figures demonstrate the correct behavior expected when the more accurate method is used, in contrast to erroneous results reported by Murman et al. (1987).

A89-41044

A SOLUTION METHOD FOR THE THREE-DIMENSIONAL COMPRESSIBLE TURBULENT BOUNDARY-LAYER EQUATIONS

L. J. JOHNSTON (Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium) Aeronautical Journal (ISSN 0001-9240), vol. 93, April 1989, p. 115-131. Research supported by the Ministry of Defence of England. refs

The development of a new calculation method for compressible 3D boundary layers is described. The method involves a finite-difference discretisation of the governing mean-flow equations. In particular, the differencing scheme used to discretise spanwise derivatives adapts automatically to the sign of the local crossflow within the boundary layer. A plane-by-plane solution procedure in the spanwise direction enables second-order accuracy to be maintained throughout the whole flowfield. A normal coordinate scaling with the local total momentum thickness removes most of the boundary layer growth in computational space. The Cebeci-Smith algebraic turbulence model is used for the initial validation of the calculation method. A simple modification to this model is tested, involving an explicit dependence of the outer eddy viscosity on the crossflow within the boundary layer. There results a significantly improved prediction of the NLR infinite swept wing flow experiment.

A89-41083

A REVIEW OF METHODS OF ESTIMATING PERFORMANCE CHARACTERISTICS OF CENTRIFUGAL COMPRESSORS

SHIMPEI MIZUKI International Journal of Turbo and Jet-Engines (ISSN 0334-0082), vol. 5, no. 1-4, 1988, p. 171-188. refs

The current status of techniques for evaluating the performance of centrifugal compressors is surveyed, and typical data are presented in extensive tables and graphs. The parameters to be measured are listed and defined, and particular attention is given to the determination of specific speed, efficiency, and total pressure ratio; Reynolds number and Mach number; slip factor; choking, surging, and rotating stall; and the ratio of relative velocity at the inducer inlet to that at the impeller exit.

T.K.

A89-41547 AN INTEGRATED APPROACH TO REMANUFACTURING TURBINE BLADES

G. MALONE (Battelle Memorial Institute, Columbus, OH) Welding Journal (ISSN 0043-2296), vol. 68, June 1989, p. 20-26. (Contract F33615-80-C-5153)

The design and implementation of an automated welding machine developed using an integrated welding and grinding (IWAG) system for the repair of turbine blades are discussed. Particular attention is given to the IWAG system's workload requirements, the process requirements, and special technical requirements. The process of selecting the best available welding technology for the repair process to be performed, developing a system design that integrates the repair processes into a computer-based system, and designing the equipment for the repair process are described.

A89-41564#

SEAPLANES AND THE TOWING TANK

ROBERT L. VAN DYCK (Stevens Institute of Technology, Hoboken, NJ) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 294-304. refs (AIAA PAPER 89-1533)

A development history is presented for the use of the towing tank as a test apparatus for seaplane development from the 1930s to the present. Attention is given to the Stevens Institute of Technology 'collapsed data test', which is a generalized form for the presentation of existing model-derived data that is useful as a guide for the selection of new seaplanes' design parameters. Towing tank tests bear on seaplane buoyancy and static stability, planing resistance, and takeoff hydrodynamics, as well as on directional stability and control, water-spray pattern, and landing-impact loads.

A89-41568#

RFB RESEARCH AND DEVELOPMENT IN WIG VEHICLES

HANNO FISCHER (Rhein-Flugzeugbau GmbH, Moenchengladbach, Federal Republic of Germany) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 360-366. (AIAA PAPER 89-1495)

An account is given of the development history of wing-in-ground (WIG) effect aircraft at a major West German aircraft manufacturer since 1964; these efforts have encompassed the development of the X113 and X114 'airfoilboat' WIG seaplanes. Attention is given to the aerodynamic efficiency and operational economy trends that result from up-scaling of WIG craft configurations to takeoff gross weights of the order of 300 tons. Also noted is the illustration of comparative efficiency among types of transportation, including WIG vehicles, given by the von Karman-Gabrielli diagram. O.C.

A89-41569#

A REVIEW OF CURRENT TECHNICAL KNOWLEDGE NECESSARY TO DEVELOP LARGE SCALE WING-IN-SURFACE EFFECT CRAFT

STEPHAN F. HOOKER (Aerocon, Inc., Arlington, VA) IN: Intersociety Advanced Marine Vehicles Conference and Exhibit, Arlington, VA, June 5-7, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 367-429. refs

(AIAA PAPER 89-1497)

A comprehensive review is made of the conceptual development to date of large 'wing-in-ground' (WIG) aircraft suitable for large-payload/long range oceanic transport irrespective of the sea-states thus encountered. These WIG 'wingship' craft would be of a scale comparable to current cruise ships, while being capable of speeds fully one-half as great as those of existing airliners. Attention is given to the consequences of incorporating power-augmented ram propulsion schemes into these low aspect-ratio wingship configurations, as well as to extant methods for the prediction of the flight dynamics and efficiencies of such aircraft.

A89-41584

AGE CREEP FORMING ALUMINUM AIRCRAFT SKINS

DENISE M. HAMBRICK (Avco Aerostructures Textron, Nashville, TN) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 135-143. refs

Avco Aerostructures Textron has advanced the technology of age creep forming by developing the ability to form aircraft structures which, previously, were difficult or impossible to form. The Autoclave Forming Alumirum process, developed by Avco, has formed smooth airfoil contours in 15 m (50 ft.) long integrally stiffened wing skins of alloys 2124 and 2419. The process produces smooth contours even across abrupt changes in thickness. The age creep forming process has also proven its ability to form compound curvatures. A data base has been developed by forming single curvature parts of seven aluminum alloys. This paper reviews development of a data base, forming compound curvature parts of alloy 7075, and applications of age creep forming aluminum.

Author

A89-41586

ELECTRON BEAM WELDING AND REPAIR OF CRITICAL STRUCTURES

R. H. WITT and A. C. LOFSTEN (Grumman Corp., Aircraft Systems Div., Bethpage, NY) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 166-182.

Electron-beam welding (EBW') methods for the joining of heavy, large cross-section structural components in a single, full-penetration pass yield near-virgin mechanical properties for most alloys to which they have thus far been applied. Characteristic structures in which EBW has been employed have been F-14A wing box center sections, Peace Keeper missile shrouds, and the CF6 BOC2 large bypass turbofan engine's fan stage stator frame. In addition to its primary use in aerospace structure fabrication, EBW can be employed in conjurction with other welding processes to repair discrepant detail parts, especially in the case of Ti alloy machinings.

A89-41590

SUPERPLASTIC FORMING - A NEW PRODUCTION TECHNOLOGY

P. N. COMLEY (Murdock, Inc., Compton, CA) IN: Competitive advances in metals and processes; Proceedings of the First International SAMPE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 209-221.

A development history and current status evaluation is presented for superplastic forming (SPF) techniques used to manufacture high strength/weight ratio aerospace structures. The most successful applications to date for SPF fall into two broad categories: (1) deep shapes with compound curvatures, which can be produced in this way without wrinkling, and (2) either flat or curved pan shapes with complex details, which are producible by SPF in a way obviating asserr blies of many separate structural elements; longerons, hat-sections, gussets and plates are integrally generated. Illustrative examples of each application are presented.

A89-41598

QUALIFICATION OF HIGH TEMPERATURE VACUUM CARBURIZING FOR AN AIRCRAFT GEAR STEEL

ROY J. CUNNINGHAM (Boeing Vertol Co., Philadelphia, PA) IN: Competitive advances in meta's and processes; Proceedings of the First International SAMFE Metals and Metals Processing Conference, Cherry Hill, NJ, Aug. 18-20, 1987. Covina, CA, Society for the Advancement of Material and Process Engineering, 1987, p. 301-307.

The case-hardening of helicopter transmission gearing by carburizing in vacuum reduces heat-treatment time by half, requires less energy than alternative methods, results in lower parts distortion, and obviates preheating. An account is presently given of the development and qualification of the high-temperature vacuum carburizing process for 9310 gear steel, as well as of the implementation of this method for quantity production. The microstructures typically obtained by means of vacuum carburization are noted to contain no metallurgical anomalies.

O.C.

A89-41691*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

LASER ALTIMETRY MEASUREMENTS FROM AIRCRAFT AND SPACECRAFT

JACK L. BUFTON (NASA, Goddard Space Flight Center, Greenbelt, MD) IEEE, Proceedings (ISSN 0018-9219), vol. 77, March 1989, p. 463-477. refs

The techniques involved in the design and application of laser altimeter instruments are reviewed, including a description of the instrument subsystems required for the range and waveform measurements. Laser pulse transmitters based on the relatively novel technology of diode-pumped solid-state lasers are considered. Various factors affecting laser altimeter instrument performance are discussed. These include the receiver signal-to-noise ratio, atmospheric propagation, and altimeter platform effects. Some examples of laser altimeter data are presented to illustrate the variety of possible instrument applications.

A89-41843#

VORTEX FILAMENT CALCULATIONS BY ANALYTICAL/NUMERICAL MATCHING WITH COMPARISON TO OTHER METHODS

DONALD B. BLISS and WAYNE O. MILLER (Duke University, Durham, NC) AIAA, Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989. 11 p. refs (Contract DAAL03-88-K-0062) (AIAA PAPER 89-1962)

The calculation of fluid velocity from the Biot-Savart law integrated over vortex filaments has traditionally been computationally expensive. Discretizing the filaments into N vortex elements results in order N-squared elemental velocity evaluations per time step. Further, the elemental resolution has been governed by the need to resolve the large velocity gradients in the near field of the filaments, resulting in unnecessarily high element densities in the far field, where the velocities are slowly varying. The method of Analytical/Numerical Matching (ANM) improves the efficiency of the filament velocity calculation without loss of near-field accuracy. This is done by using a far field comprised of computationally inexpensive vortex particles with a large core size for smoothing. The near field is done by an analytical correction which uses a thin physically correct core size to predict the large rapidly varying near-field velocities, and a second correction with the large core size to cancel the local vortex particle error and match to the far-field solution.

A89-41889* National Center for Atmospheric Research, Boulder, CO.

EVALUATION OF LIQUID WATER MEASURING INSTRUMENTS IN COLD CLOUDS SAMPLED DURING FIRE

ANDREW J. HEYMSFIELD and LARRY M. MILOSHEVICH (National Center for Atmospheric Research, Boulder, CO) Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572), vol. 6, June 1989, p. 378-388. refs

(Contract NASA ORDER L-98100-B; NSF ATM-85-13975)

Airborne liquid water content (LWC) measurements were conducted with an icing detector and a forward-scattering spectrometer probe during 10 flights into cold clouds, as part of the First ISCCP Research Experiment (FIRE). The LWC measurements thus obtained compare favorably with those from the hot-wire probes in the range where LWC is above the detection limits of the latter; the hot-wire probes have detection thresholds

about one order of magnitude higher than is possible with the icing detector and spectrometer probe. FIRE experiment data indicate that LWC should be taken into consideration in cloud studies at temperatures down to at least 35 C.

O.C.

A89-42027*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

DEVELOPMENT OF AN EFFICIENT MULTIGRID CODE FOR 3-D NAVIER-STOKES EQUATIONS

VEER N. VATSA (NASA, Langley Research Center, Hampton, VA) and BRUCE W. WEDAN (Vigyan Research Associates, Inc., Hampton, VA) AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, 20th, Buffalo, NY, June 12-14, 1989. 14 p. refs

(AIAA PAPER 89-1791)

A multigrid acceleration technique has been developed to solve the three-dimensional Navier-Stokes equations efficiently. An explicit multistage Runge-Kutta type of time-stepping scheme is used as the basic algorithm in conjunction with the multigrid scheme. Solutions for flow over a finite wing have been obtained on extremely fine meshes in order to achieve grid convergence of the solutions. Present solutions indicate that the number of multigrid cycles required to achieve a given level of convergence does not increase with the number of mesh points employed, making it a very attractive scheme for fine meshes.

A89-42161 EFFECT OF ELECTROMAGNETIC INTERFERENCE BY NEONATAL TRANSPORT EQUIPMENT ON AIRCRAFT OPERATION

WILLIAM A. NISH, WILLIAM F. WALSH, PATRICIA LAND, and MARK SWEDENBURG (USAF, Medical Center, Keesler AFB, MS; USAF, School of Aerospace Medicine, Brooks AFB, TX) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 60, June 1989, p. 599, 600.

With the increase of the number of civilian air ambulance services operating in the United States, the potential to interference with any of the aircraft's electrical systems by the electromagnetic interference (EMI) produced by medical equipment is steadily increasing. About 70 percent of neonatal incubators, monitors, and ventilators tested over the past 15 years produced excessive EMI, by military standards. It is recommended that standards for acceptable EMI levels shold be developed by the FAA and that hospitals should not purchase transport equipment from manufacturers who refuse to meet EMI standards. It is also suggested that aircraft operators must be aware of possible interference with their aircraft, and insist on equipment which meets EMI standards.

A89-42421

OPTIMIZATION OF THE COLD ROLL-FORGING OF AXIAL-FLOW COMPRESSOR BLADES WITH ALLOWANCE FOR FATIGUE CHARACTERISTICS [OPTIMIZATSIIA TEKHNOLOGII KHOLODNOI VAL'TSOVKI S UCHETOM KHARAKTERISTIK USTALOSTI LOPATOK OSEVYKH KOMPRESSOROV]

V. P. EGOROV, I. F. KORNET, V. M. KAPRALOV, and V. A. MATVIICHUK Problemy Prochnosti (ISSN 0556-171X), May 1989, p. 89-92. In Russian. refs

The paper is concerned with the problem of increasing the efficiency of the cold-forging of axial-flow compressor blades while maintaining good fatigue strength characteristics. The problem is solved by applying current concepts of the stress-strain state and through the optimal use of the ductility resource during the roll-forging process. The parameters of the key stages of the process are optimized, and the fatigue properties of blades of EP718 nickel alloy and EP866 stainless steel are determined from mass test results.

A89-42500 INVERSE PROBLEM IN NOZZLE THEORY [OBRATNAIA ZADACHA TEORII SOPLA]

UL'IAN G. PIRUMOV Moscow, Izdatel'stvo Mashinostroenie, 1988, 240 p. In Russian. refs

The inverse problem in nozzle theory is analyzed for the general case of three-dimensional flow, and numerical methods for solving the problem are presented. Particular attention is given to the practical applications of the inverse problem. Results of studies of nozzle flows, flows in ducts of complex shapes, and flows in ducts with mass and energy input are reported. Solutions results are also presented for the inverse problem of duct profiling. V.L.

A89-42524

PRECISION AND EFFICIENCY OF THE RADIO ELECTRONIC SYSTEMS OF AIRCRAFT [TOCHNOST' I RABOTOSPOSOBNOST' RADIOELEKTRONNYKH SISTEM LETATEL'NYKH APPARATOV]

SERGEI K. SAVIN Moscow, Izdatel'stvo Mashinostroenie, 1988, 192 p. In Russian.

The theoretical and practical aspects of the estimation of the precision of the radio electronic systems of aircraft are discussed. In particular, mathematical models for monitoring the performance of radio electronic systems are described, as are methods for evaluating the accuracy of such systems. A method is proposed for evaluating the overall efficiency of radio electronic systems from their performance and precision characteristics.

A89-42557

FORMATION OF SINGULARITIES IN A THREE-DIMENSIONAL BOUNDARY LAYER [FORMIROVANIE OSOBENNOSTEI V PROSTRANSTVENNOM POGRANICHNOM SLOE]

V. B. ZAMETAEV Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Mar.-Apr. 1989, p. 58-64. In Russian. refs

The formation of singularities in a three-dimensional laminar boundary layer near the spread line of an ellipsoid is investigated analytically with allowance for the three-dimensional nature of the flow in the vicinity of the zero friction point. It is demonstrated, on the basis of full equations of the boundary layer, that an isolated point of zero longitudinal friction is in fact formed for a certain critical angle of attack of the ellipsoid. For angles of attack larger than the critical angle, a line on the body surface is defined beyond which the solution cannot be continued.

A89-42853

ACOUSTIC EMISSION DETECTION OF CRACK PRESENCE AND CRACK ADVANCE DURING FLIGHT

S. L. MCBRIDE, M. D. POLLARD, J. D. MACPHAIL, P. S. BOWMAN, and D. T. PETERS (Royal Military College of Canada, Kingston) Journal of Acoustic Emission (ISSN 0730-0050), vol. 8, Jan.-June 1989, p. S4-S7.

A dual-channel digital data aquisition system designed to record and interpret acoustic emission data during flight is described. The importance of the difference in arrival time of an event at different locations, signal risetime, and the magnitude and variation of the applied stress at the time of occurrence of the event is emphasized. A schematic diagram is presented of the inertially-loaded 7075-T651 aluminum fatigue specimen clamped in the inertial loading frame support.

A89-43076#

INNOVATIVE PRODUCTION TECHNOLOGY IN AIRCRAFT CONSTRUCTION: CIAM FORMING 'MADE BY MBB' - A HIGHLY PRODUCTIVE EXAMPLE

New-Tech News, no. 1, 1989, p. 21-23.

A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of

sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.

A89-43177*# Engineering Analysis, Inc., Ames, IA. A THREE-DIMENSIONAL UPWIND PARABOLIZED NAVIER-STOKES CODE FOR REAL GAS FLOWS

JOHN C. TANNEHILL, PHILIP E. BUELOW, JOHN O. IEVALTS (Engineering Analysis, Inc., Ames. IA), and SCOTT L. LAWRENCE (NASA, Ames Research Center, Moffett Field, CA) AIAA, Thermophysics Conference, 24th Buffalo, NY, June 12-14, 1989. 15 p. refs

(Contract NAS2-12861)

(AIAA PAPER 89-1651)

A real gas, upwind, parabolized Navier-Stokes (PNS) code has been developed to compute the three-dimensional hypersonic flow of equilibrium air around various body shapes. The new code is an extension of the upwind (perfect gas) PNS code of Lawrence et al. (1986). The upwind algorithm is based on Roe's (1981) flux-difference splitting scheme which has been modified to account for real gas effects using the nearly exact approach of Vinokur and Liu (1988). Simplified curve fits are employed to obtain the thermodynamic and transport properties of equilibrium air. The new code has been validated by computing the M-infinity = 25 laminar flow of air over cones at various angles of attack. The results of these computations are compared with the results from a conventional centrally-differenced, real gas PNS code and the previous axisymmetric, upwind, real gas code. The agreement is excellent in all cases.

A89-43268*# Tennessee Univ., Tullahoma. MEASUREMENTS OF DIFFUSION LIMITED SOLIDIFICATION AT VARYING GRAVITY

T. D. MCCAY, M. H. MCCAY, S. A. LOWRY, L. M. SMITH, and A. H. HENDERSON (Tennessee, University, Tullahoma) AIAA, Thermophysics Conference, 24th, Buffalo, NY, June 12-14, 1989. 28 p. Research sponsored by NASA. refs (AIAA PAPER 89-1755)

The environment of the NASA KC-135 low gravity aircraft was employed to examine the effects of g-jitter on the growth of a solidification diffusion layer for 28 wt pct NH4Cl-H2O, a metal alloy model material. The hypothesis that jitter (vibrational) effects account for previously observed low gravity growth anomalies was investigated by comparing optical data (central dark ground method) for 10-squared g(e) (earth's gravity) KC-135 growth conditions and 1 g(e) laboratory conditions. Accelerometer data obtained during the flight program showed the KC-135 low gravity environment to have extreme levels of jitters.

A89-43535

BRAZE REPAIR OF AERO ENGINE COMPONENTS

K. B. GOVE Metals and Materials (ISSN 0266-7185), vol. 5, June 1989, p. 341-345.

The role of brazing in the repair of aircraft-engine components is discussed with special attention given to brazing techniques used in cost-effective repair of the hottest running components of so-called 'second generation' of fuel-efficient engines. The repair schemes used in cold-braze repairs of the fan and the compressor sections of gas turbine engines and in the hot-braze repair of gas-path-section components are examined. Consideration is also given to the procedures used in hot section braze repairs, the procedure of fluoride cleaning (to remove oxidized materials), and to wide-gap braze repairs. The questions of quality control and aircraft safety are given special consideration. Compositions of typical brazes used in the cold-section and hot section repairs are given.

N89-23740# Army Cold Regions Research and Engineering Lab., Hanover, NH.

RESPONSE OF PAVEMENT TO FREEZE-THAW CYCLES: LEBANON, NEW HAMPSHIRE, REGIONAL AIRPORT

WENDY L. ALLEN, WILLIAM F. QUINN, DONALD KELLER, and

ROBERT A. EATON Jan. 1989 35 p (Contract DOT-FA79WA1-059; DA PROJ. 4A7-62730-AT-42) (AD-A205559; CRREL-SR-89-2; DOT/FAA/PS-89/1) Avail: NTIS HC A03/MF A01 CSCL 13/2

In 1978 reconstruction was begun on the runway of the Lebanon Regional Airport, Lebanon, New Hampshire. The runway had experienced severe differential frost heaving and cracking during the previous three winters, which had resulted in closure of the facility during periods of extreme roughness. Temperature sensors were placed within the newly constructed pavement sections, and during the winters of 1979, 1980, and 1982 temperature data were recorded, and level surveys and repeated plate bearing tests were performed in order to provide data for the investigation. The three pavement sections were constructed to investigate the effect of section thickness on the level of frost protection provided. The sections consisted of 4 in. of asphalt concrete, 6 in. of crushed gravel and 22,30 dn 38 in. of well-graded sand subbase material. The 48-in section provided the highest level of frost protection to the subgrade. However, all three pavement sections maintained resilient stiffness values during the spring thaw period on the order of two to three times that of the pavement before reconstruction. Also, frost heave in all sections was reduced to levels that would not cause difficulty for aircraft using the facility.

N89-23758# Massachusetts Inst. of Tech., Lexington. Lincoln

ASR-9 WEATHER CHANNEL TEST REPORT. EXECUTIVE SUMMARY

SETH W. TROXEL 3 May 1989 29 p Original contains color illustrations

(Contract DTFA01-80-Y-10546; F19628-85-C-0002) (DOT/FAA/PS-89/6-EXEC-SUMM; ATC-168-EXEC-SUMM) Avail: NTIS HC A03/MF A01

The next generation airport surveillance radar, (ASR-9), will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide air traffic controller personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. Comparisons between data from an ASR-9 in Huntsville, Alabama, recorded during design qualification and testing, and data from two other reference radars, were used as the basis for assessment of ASR-9 weather channel performance. Results suggest that, with the exception of an apparent 3 dB discrepancy between the weather products of the ASR-9 and the reference radars, the ASR-9 weather channel seems to perform according to FAA specifications. Author

N89-23774# Aeronautical Systems Div., Wright-Patterson AFB, OH. Human Factors Branch.

AN EVALUATION OF THE F/FB/EF-111 CREW/VOICE MESSAGE SYSTEM Final Report, Dec. 1987 - Jun. 1988

JOHN A. HASSOUN, J. M. BARNABA, and E. M. MATHESON Jan. 1989 68 p

(AD-A205998; ASD-TR-88-5037) Avail: NTIS HC A04/MF A01 CSCL 25/4

In support of the F/FB/EF-111 Digital Flight Control System Program Office, subjective and performance data were collected in order to provide the government and contractor engineers with information needed in the design of a Voice Message Unit (VMU) interface for the F/FB/EF-111 aircraft. The VMU, one of the new safety of flight systems, is being included as part of the Digital Flight Control Computer. The VMU will be used as a means for alerting crew members to flight critical conditions. The evaluation was comprised of two phases. During the first phase, questionnaire data were collected from a sample of 119 operational F/FB/EF-111 crew members. The second phase of the evaluation involved the mechanization of the VMU interface in an FB-111 simulator, located at the Crew Station Design Facility, for pilots' on-hand experience with the content of the voice messages and the mechanization aspects of the interface.

N89-23809*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ADVANCED COMPUTATIONAL TECHNIQUES FOR HYPERSONIC PROPULSION

LOUIS A. POVINELLI 1989 24 p Proposed for presentation at the 9th International Symposium on Air Breathing Engines, Athens, Greece, 4-9 Sep. 1989; sponsored by AIAA and International Society for Air Breathing Engines

(NASA-TM-102005; E-4711; NAS 1.15:102005) Avail: NTIS HC A03/MF A01 CSCL 20/4

Computational Fluid Dynamics (CFD) has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow performance of simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation

N89-23822 Colorado Univ., Boulder.
COMPUTATION OF DYNAMICS AND CONTROL OF
UNSTEADY VORTICAL FLOWS PH.D. Thesis
KALPANA CHAWLA 1988 147 p

Avail: Univ. Microfilms Order No. DA8902887

and modeling are identified and discussed.

In the first part of this work, unsteady, two-dimensional, vortical flows past stationary and oscillating normal plates and airfoil configurations with stationary and oscillating spoillers are studied using the Discrete-Vortex method. Vortical structures as well as unsteady life and drag were computed for various flow conditions and body configurations. The comparison of force results for the airfoil configurations involving oscillating spoilers with the corresponding stationary cases indicates that there is no appreciable difference between the average values of life and drag. In the second part, computational models are presented for multi-vortex systems in the presence of acoustic waves. Computational models are developed to study the stability of single infinite row of vortices and Karman's infinite, unsymmetric, double row of vortices. Results suggest that acoustic waves of specific wavelengths can be used to destabilize the Karman street manifested in nature, so as to scatter its vortices in an effort to weaken its impact. It is also shown that for vortex systems made up of small number of vortices, redistribution or recombination of vortices by conserving strength of the system and maintaining constant center of vorticity can result in vortex systems with different properties compared to the original systems.

Dissert. Abstr.

N89-23831# Nielsen Engineering and Research, Inc., Mountain View, CA.

EXPLOITATION OF MULTIPLE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS TO ACHIEVE RADICALLY IMPROVED FLIGHT Final Report, 1 Aug. 1988 - 31 Jan. 1989
DAVID NIXON, S. C. CARUSO, and M. FARSHCHI 27 Feb.

1989 50 p (Contract F49620-88-C-0097; AF PROJ. 3005)

(AD-A205939; NEAR-TR-398; AFOSR-89-0364TR) Avail: NTIS HC A03/MF A01 CSCL 20/4

It is known that the nonlinear Navier Stokes equations will model most fluid flow of aeronautical interest. The existence and uniqueness of the solutions to the Navier-Stokes equations have not been proven although it is known that in certain cases only the most stable solution is obtained. This present work is concerned with identifying multiple solutions of the Navier-Stokes equations for transonic flow. The objective is to exploit the existence of these solutions rather than avoid them as has been the custom in the past. The present work has shown that the cause of multiple solutions in potential flow is a bifurcation of solutions at a specific Mach number distribution; airfoils can be designed to give such a distribution. It is also found that the presence of entropy and

vorticity do not affect the occurrence of phantom solutions. A physical example of a phantom solution is explained by a study of the potential phantom solutions.

N89-23920*# Boeing Helicopter Co., Philadelphia, PA.
GROUND SHAKE TEST OF THE BOEING MODEL 360
HELICOPTER AIRFRAME Final Report

D. A. REED and R. GABEL Mar. 1989 298 p (Contract NAS1-17497)

(NASA-CR-181766; NAS 1.26:181766; D210-12328-3) Avail: NTIS HC A13/MF A01 CSCL 20/11

Boeing Helicopters, together with other U.S. Helicopter manufacturers, is engaged in a finite element applications program designed to emplace in the U.S. a superior capability to utilize finite element analysis models in support of helicopter airframe structurel design. This program was given the acronym DAMVIBS (Design Analysis Methods for VIBrationS). The test plan is reviewed and results are presented for a shake test of the Boeing Model 360 helicopter. Results of the test will serve as the basis for validation of a finite element vibration model of the helicopter.

Author

N89-24304# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugfuehrung.

TRĂNSFORMATION OF REAL AND VIRTUAL OBJECTS INTO A VIRTUAL, VISUAL ENVIRONMENT

R. BEYER In its Image Signal Processing for Flight Guidance p 217-247 Sep. 1988 In GERMAN; ENGLISH summary Avail: NTIS HC A14/MF A01; DFVLR, VB-PL-DO, Postfach 40 60 58, 5000 Cologne, Fed. Republicof Germany, DM 108

The synthesis of dynamic images for control and surveillance purposes is discussed, with emphasis on the transformation of real and virtual objects into a user-adapted representation space. The acceptance and utilization problems of complex dynamic systems can be alleviated if a pictorial presentation of the system state and the user-accessible system parameters is employed. Methods to mathematically model the objects to be displayed, to transform their pictorial representation from object space to display space, and to visualize the objects therein real time are discussed. Applications are in the field of guidance and control of aerospace vehicles, air traffic systems, teleoperations, and other dynamic processes which require an interaction with man.

N89-24563*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

AERODYNAMIC INTERACTION BETWEEN VORTICAL WAKES AND LIFTING TWO-DIMENSIONAL BODIES

PAUL M. STREMEL Mar. 1989 34 p Previously announced in IAA as A88-22785

(NASA-TM-101074; A-89047; NAS 1.15:101074) Avail: NTIS HC A03/MF A01 CSCL 20/4

Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake. Author

National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

COMPARISON OF PREDICTED AND MEASURED TEMPERATURES OF UH-60A HELICOPTER TRANSMISSION

HAROLD H. COE Washington Apr. 1989 15 p

(NASA-TP-2911; NAS 1.60:2911; E-4588; AVSCOM-TR-89-C-010) Avail: NTIS HC A03/MF A01 CSCL 13/9

The 2109-kW (2828-hp) UH-60A Black Hawk helicopter transmission was one of the transmissions used to obtain an experimental data base. Component improvements or new transmission concepts can thus be evaluated by comparison with the established data. Results of efficiency and vibration tests of the UH-60A have been reported previously. In this investigation the transmission was instrumented internally and tested over a range of operating conditions. The speed was varied from 50 to 100 percent of the full rated value, and the torque was varied from 10 to 100 percent of the full rated value. Temperatures of internal bearings and gears were measured. The computer program Planetsys was used to simulate the thermal performance of this transmission. The calculated temperatures were then compared with the corresponding measured values. The highest measured temperature was 405 K (270 F) on the outer race of the high-speed input shaft roller bearing, at the 100-percent power condition. In general, the predicted temperatures compared very well with the measured values, most of them being within 5 kelvin (9 F). Specifically, the temperatures predicted for the single-row spherical roller planetary bearing averaged only about 4 kelvin (8 F) lower than the highest measured value.

N89-24624*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

CSM TESTBED DEVELOPMENT AND LARGE-SCALE STRUCTURAL APPLICATIONS

NORMAN F. KNIGHT, JR., R. E. GILLIAN, SUSAN L. MCCLEARY, C. G. LOTTS, E. L. POOLE, A. L. OVERMAN, and S. C. MACY (Planning Research Corp., Washington, DC.) Washington 1989 25 p Original contains color illustrations (NASA-TM-4072; L-16499; NAS 1.15:4072) Avail: NTIS HC A03/MF A01 CSCL 20/11

A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized. Author

N89-24639*# Hibbitt, Karlsson and Sorensen, Providence, Rl. SOME ISSUES IN NUMERICAL SIMULATION OF NONLINEAR STRUCTURAL RESPONSE

H. D. HIBBITT In NASA, Langley Research Center, Computational Methods for Structural Mechanics and Dynamics, Part 1 p 7-23 May 1989

Avail: NTIS HC A15/MF A01 CSCL 20/11

The development of commercial finite element software is addressed. This software provides practical tools that are used in an astonishingly wide range of engineering applications that include critical aspects of the safety evaluation of nuclear power plants or of heavily loaded offshore structures in the hostile environments of the North Sea or the Arctic, major design activities associated with the development of airframes for high strength and minimum weight, thermal analysis of electronic components, and the design of sports equipment. In the more advanced application areas, the effectiveness of the product depends critically on the quality of the mechanics and mechanics related algorithms that are implemented. Algorithmic robustness is of primary concern. Those

methods that should be chosen will maximize reliability with minimal understanding on the part of the user. Computational efficiency is also important because there are always limited resources, and hence problems that are too time consuming or costly. Finally, some areas where research work will provide new methods and improvements is discussed.

N89-24640*# Boeing Military Airplane Development, Seattle, WA.

COMPUTERIZED STRUCTURAL MECHANICS FOR 1990'S: ADVANCED AIRCRAFT NEEDS

A. V. VISWANATHAN and B. F. BACKMAN In NASA, Langley Research Center, Computational Methods for Structural Mechanics and Dynamics, Part 1 p 25-49 May 1989 Avail: NTIS HC A15/MF A01 CSCL 20/11

The needs for computerized structural mechanics (CSM) as seen from the standpoint of the aircraft industry are discussed. These needs are projected into the 1990's with special focus on the new advanced materials. Preliminary design/analysis, research, and detail design/analysis are identified as major areas. The role of local/global analyses in these different areas is discussed. The lessons learned in the past are used as a basis for the design of a CSM framework that could modify and consolidate existing technology and include future developments in a rational and useful way. A philosophy is stated, and a set of analyses needs driven by the emerging advanced composites is enumerated. The roles of NASA, the universities, and the industry are identified. Finally, a set of rational research targets is recommended based on both the new types of computers and the increased complexity the industry faces. Computerized structural mechanics should be more than new methods in structural mechanics and numerical analyses. It should be a set of engineering applications software products that combines innovations in structural mechanics, numerical analysis, data processing, search and display features, and recent hardware advances and is organized in a framework that directly supports the design process.

N89-24642*# Lockheed Missiles and Space Co., Palo Alto, CA. COMPUTATIONAL PROCEDURES FOR POSTBUCKLING OF COMPOSITE SHELLS

G. M. STANLEY and CARLOS A. FELIPPA In NASA, Langley Research Center, Computational Methods for Structural Mechanics and Dynamics, Part 1 p 67-87 May 1989 Avail: NTIS HC A15/MF A01 CSCL 20/11

A recently developed finite-element capability for general nonlinear shell analysis, featuring the use of three-dimensional constitutive equations within an efficient resultant-oriented framework, is employed to simulate the postbuckling response of an axially compressed composite cylindrical panel with a circular cutout. The problem is a generic example of modern composite aircraft components for which postbuckling strength (i.e., fail-safety) is desired in the presence of local discontinuities such as holes and cracked stiffeners. While the computational software does a reasonable job of predicting both the buckling load and the qualitative aspects of postbuckling (compared both with experiment and another code) there are some discrepancies due to: (1) uncertainties in the nominal layer material properties, (2) structural sensitivity to initial imperfections, and (3) the neglect of dynamic and local material delamination effects in the numerical model. Corresponding refinements are suggested for the realistic continuation of this type of analysis.

National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

COMPUTATIONAL METHODS FOR STRUCTURAL **MECHANICS AND DYNAMICS**

W. JEFFERSON STROUD, ed., JERROLD M. HOUSNER, ed., JOHN A. TANNER, ed., and ROBERT J. HAYDUK, ed. Washington May 1989 256 p Workshop held in Hampton, VA. 19-21 Jun. 1985

(NASA-CP-3034-PT-2; L-16560-PT-2; NAS 1.55:3034-PT-2)

Avail: NTIS HC A12/MF A01 CSCL 20/11

Topics addressed include: transient dynamics; transient finite

element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

N89-24655*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

IMPROVING TRANSIENT ANALYSIS TECHNOLOGY FOR AIRCRAFT STRUCTURES

R. J. MELOSH (Duke Univ., Durham, NC.) and MLADEN CHARGIN *In* NASA, Langley Research Center, Computational Methods for Structural Mechanics and Dynamics p 343-353 May 1989

Avail: NTIS HC A12/MF A01 CSCL 20/11

Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.

N89-24658*# Grumman Aerospace Corp., Bethpage, NY. TRANSIENT ANALYSIS TECHNIQUES IN PERFORMING IMPACT AND CRASH DYNAMIC STUDIES

A. B. PIFKO and R. WINTER In NASA, Langley Research Center, Computational Methods for Structural Mechanics and Dynamics p 383-406 May 1989

Avail: NTIS HC A12/MF A01 CSCL 20/11

Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.

13

GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

N89-24777# Office National d'Etudes et de Recherches Aerospatiales, Paris (France). Direction de la Physique Generale. LIGHTNING INFLIGHT STUDY ONBOARD A TRANSALL AIRCRAFT. DEFINITION OF THE ONBOARD INSTRUMENTS Final Report [ETUDE DE FOUDROIEMENT EN VOL SUR AVION TRANSALL PREPARATION DE LA CAMPAGNE D'ESSAIS EN VOL. DEFINITION DE L'INSTRUMENTATION EMBARQUEE]

P. Y. GONZALES, F. ISSAC, J. Y. JOUAN, J. P. MOREAU, J. P. APARICIO, P. GONDOT, and A. DELANNOY Jul. 1988 103 p In FRENCH

(Contract DRET-87-001) (ONERA-RF-19/7234-PY; ONERA-RF-19/7154-PY; ETN-89-94527) Avail: NTIS HC A06/MF A01

The description includes the developed sensors, the computer programs for data acquisition and data processing, the experimental design of the ground tests, and the optimization studies of an ionic conductivity metering cell. The 32 k on 10 bits input of the data acquisition is processed in a 386 Compaq microcomputer with a 6 MHz memory extension. Processed data are then transfered to a Cray computer via specific programs.

15

MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A89-40425

MILCOMP '88 - MILITARY COMPUTERS, GRAPHICS AND SOFTWARE; PROCEEDINGS OF THE CONFERENCE AND EXHIBITION, LONDON, ENGLAND, SEPT. 27-29, 1988

Conference and Exhibition organized by the Microwave Exhibitions and Publishers, Ltd. Tunbridge Wells, England, Microwave Exhibitions and Publishers, Ltd., 1988, 464 p. No individual items are abstracted in this volume.

Recent advances in computer software and hardware for military applications are discussed in reviews and reports, with an emphasis on developments in the UK. Topics addressed include system requirements, computer architectures, standards and interoperability, communications, systems architecture, security and integrity, civilian applications, software engineering and IPSEs, human-factors analysis, international policy, and education and training for information technology. Consideration is given to Al tools and applications, life-cycle costing, embedded computer applications, project management, and data-base technology.

T.K.

A89-40447 AIRCRAFT RECOGNITION USING A PARTS ANALYSIS TECHNIQUE

G. A. ROBERTS (Ford Aerospace Corp., Newport Beach, CA) IN: Applications of digital image processing XI; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1988, p. 338-345.

A knowledge-based system for aircraft recognition is described. This system uses a parts-matching technique to identify aircraft. The target aspect is used and is determined using motion and skeletal feature analysis. Silhouette models for the particular aspect of the aircraft are generated using the aspect information. A parts analysis that compares the models' parts to the segmented aircraft is used to identify the aircraft. The techniques used for parts analysis, model generation, and aspect determination are described. Also a study is presented which compares the performance of two statistical classifiers to the knowledge based classifier.

Author

A89-41081

THE APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES FOR TURBOMACHINERY DIAGNOSTICS

CYRUS B. MEHER-HOMJI (Boyce Engineering International, Inc., Houston, TX) International Journal of Turbo and Jet-Engines (ISSN 0334-0082), vol. 5, no. 1-4, 1988, p. 95-105. refs

This paper presents a study into the application of artificial intelligence techniques (specifically expert systems) to the problem of turbomachine diagnostics. The diagnostic process is described, and a model for computer implementation provided. Some

diagnostic examples are provided to explain the methodology. Expert-system development is underway for incorporation to on-line monitoring and diagnostic systems.

A89-41698* National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA.

A RAPID PROTOTYPING FACILITY FOR FLIGHT RESEARCH IN ADVANCED SYSTEMS CONCEPTS

EUGENE L. DUKE (NASA, Flight Research Center, Edwards, CA), RANDAL W. BRUMBAUGH, and JAMES D. DISBROW (PRC Systems Services, McLean, VA) Computer (ISSN 0018-9162), vol. 22, May 1989, p. 61-66. Previously announced in STAR as N87-12273. refs

The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based Al computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of Al-based avionics systems and the NASA response to those needs.

A89-41796#

A HIGH-RESOLUTION EULER SOLVER

WIM A. MULDER (California, University, Los Angeles) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 212-220. (AIAA PAPER 89-1949)

In an earlier paper, an O(N) method for the computation of stationary solutions to the Euler equations of inviscid compressible gas dynamics has been described. The method is a variant of the multigrid technique and is able to provide good convergence rates for first-order upwind discretizations even in the case of alignment, the flow being aligned with the grid. The application of this scheme to higher-order discretizations is discussed. Two-level analysis for the linear constant-coefficient case has shown that it is difficult or impossible to obtain uniformly good convergence rates for a higher-order scheme, due to waves perpendicular to stream lines. The defect correction technique suffers from the same problem. However, convergence to a point where the residual of the total error (the sum of the iteration error and the discretization error) is of the order of the truncation error can be obtained in about 7 defect correction cycles, according to estimates for the linear constant-coefficient equations. Here this result is explored for the nonlinear case by some illustrative numerical experiments.

Author

A89-43068# IMPROVED TIME-DOMAIN STABILITY ROBUSTNESS **MEASURES FOR LINEAR REGULATORS**

DJORDJIJA B. PETKOVSKI (Novi Sad, Univerzitet, Yugoslavia) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 12, July-Aug. 1989, p. 595-598. Research supported by the U.S.-Yugoslav Joint Fund for Scientific and Technological Cooperation and DOE.

A novel time-domain stability criterion for linear state-space models is presented in conjunction with a computationally effective algorithm whose perturbation bounds are superior to those based on the frequency-domain approach and the time-domain approach. Unlike many other criteria, this algorithm allows a designer to easily incorporate the directional information on structural perturbations in stability robustness analysis. An aircraft-control illustrative example is given.

A89-43127

SOFTWARE DEVELOPMENT REUSABILITY FOR AIRCRAFT SIMULATION SYSTEMS

B. A. SATHRE (Martin Marietta Corp., Orlando, FL) IN: 1988 Annual Summer Computer Simulation Conference, 20th, Seattle, WA, July 25-28, 1988, Proceedings. San Diego, CA, Society for Computer Simulation International, 1988, p. 57-63. refs

The rationale for having one set of reusable simulation components serve as the foundation for differing simulations where each simulation leads to a unique product is presented. A classification of simulation software modules is proposed. Their reusability is discussed for the following phases of software development: requirements analysis, design, code, implementation, testing, and documentation.

N89-24051# Federal Aviation Administration, Atlantic City, NJ. HOST COMPUTER SYSTEM CAPACITY MANAGEMENT **PROCEDURES Technical Note, 1987**

NORMAN W. WATTS, PAUL CONNOLLY, ROBERT GOETTGE, GARY MORFITT, ROBERT WISEMAN, GARY WRIGHT, and FRANK YAZEK Feb. 1988 48 p (Contract FAA-T0503-M)

(AD-A193416; DOT/FAA/CT-TN87/43) Avail: NTIS HC A03/MF A01 CSCL 09/2

The Federal Aviation Administration's Advanced Automation Program Office recognized the need for monitoring and assessing the National Airspace System's operational performance and for long term planning during the life-cycle of the Host Computer System. The assessment of the operational performance involved the acquisition and analysis of field measurement data, while the long-term capacity planning entails execution of a Host Computer System analytical model using current and project traffic and other system loads. The procedures document defines the activities to be executed in: measuring and monitoring operational performance; measuring projecting system workloads; predicting system performance using an analytical performance model; and analyzing and reporting current and predicted future performance of the Host Computer System. Author

N89-24079*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

APPLICATION OF A PC BASED, REAL-TIME, **DATA-AQUISITION SYSTEM IN ROTORCRAFT WIND-TUNNEL**

MATTHEW L. WILBUR Washington Jul. 1989 26 p Prepared in cooperation with Army Aviation Systems Command, Hampton,

(NASA-TM-4119; L-16565; NAS 1.15:4119;

AVSCOM-TM-89-B-003) Avail: NTIS HC A03/MF A01 CSCL

Data has been acquired for a rotocraft test in the NASA Langley Transonic Dynamics Tunnel using a desktop data acquisition system. The system, which consists of an IBM Personal Computer AT (PC-AT) and an Omega Engineering OM-900 Stand-Alone Interface System, is well suited for acquiring high speed data on a limited number of channels. The data acquisition system and the interrupt driven software which provides the capability for near real-time cyclic data acquisition as well as data storage and display are described. Author

N89-24127# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

A DEMONSTRATION OF THE METHOD OF STOCHASTIC FINITE ELEMENT ANALYSIS M.S. Thesis PAUL R. BRYANT Mar. 1989 98 p

(AD-A206135; AFIT/GA/AA/89M-01) Avail: NTIS HC A05/MF A01 CSCL 12/4

Finite element analysis has been used as a design tool for many years, with structural reliability being ensured through use of a liberal factor of safety. Unfortunately, the safety factor is a blanket insurance against all hazards, and a designer has no way to optimize a structure against any particular hazard. This is particularly troublesome in the fields of aero/astro design, where every bit of mass must serve to maximum utility. The method of Stochastic Finite Element Analysis allows a designer to model any loading or hazard condition as closely to reality as desired by using an appropriate probability distribution function. Through a

Monte Carlo simulation, the finite element model is subject to the probability functions. The cumulative output is analyzed for trends in failure probability and the design is altered to enhance its reliability, repeating the process until the desired level of reliability is achieved. The resulting design is optimal for the imposed conditions, and compared to a structure designed with a traditional factor of safety approach, is either lighter or more reliable. This demonstration revealed that for similar reliabilities, a stochastically designed wing was 20 percent lighter than a wing strengthened by the factor of safety. The major drawback in applying the method of stochastic finite element analysis is that very large, complex models can require extraordinary amounts of computer resources.

N89-24876# Xerox Palo Alto Research Center, CA.
VISIBILITY WITH A MOVING POINT OF VIEW
M. W. BERN, D. P. DOBKIN, and R. GROSSMAN (Illinois Univ.,
Chicago.) 7 Dec. 1988 11 p
Avail: NTIS HC A03/MF A01

The 3-D visibility problems in which the viewing position moves along a straight flightpath was investigated. Two problems were focused on: determining the points along the flightpath at which the topology of the viewed scene changes, and answering ray-shooting queries for rays with origin on the flightpath. Three progressively more specialized problems are considered: general scenes, terrains, and terrains with vertical flightpaths. Author

16

PHYSICS

Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

A89-40175*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.
UNSTEADY BLADE PRESSURE MEASUREMENTS ON A
MODEL COUNTERROTATION PROPELLER
LAURENCE J. HEIDELBERG and RICHARD P. WOODWARD
(NASA, Lewis Research Center, Cleveland, OH) AIAA,
Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12,

1989. 21 p. Previously announced in STAR as N89-20779.

(AIAA PAPER 89-1144)

In an exploratory effort an advanced counterrotation propeller instrumented with blade-mounted pressure transducers was tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel at a simulated takeoff and landing speed of Mach 0.20. The propeller's aft diameter was reduced to investigate possible noise reductions resulting from reduced blade row interaction with the tip vortex. The propeller was tested at three blade row spacings at fixed blade setting angles, at the maximum blade row spacing at higher blade setting angles and at propeller axis angles attack to the flow up to + or - 16 deg. A limited number of unsteady blade surface pressure measurements were made on both rotors of the model counterrotation propeller. Emphasis was placed on determining the effects of rotor-rotor interactions on the blade surface pressures. A unique method of processing the pressure signals was developed that enables even weak interaction waveforms and spectra to be separated from the total signal. The interaction on the aft rotor was many times stronger than that on the forward rotor. The fundamental rotor interaction tone exhibited complicated behavior but generally increased with rotational speed and blade setting angle and decreased with rotor spacing. With the propeller axis at an angle to the flow, the phase response of the aft rotor appeared to be significantly affected by the presence of the forward rotor. Author

A89-40470*# Duke Univ., Durham, NC.
REDUCTION OF SOUND TRANSMISSION THROUGH
FUSELAGE WALLS BY ALTERNATE RESONANCE TUNING
(A.R.T.)

DONALD B. BLISS and JAMES A. GOTTWALD (Duke University, Durham, NC) AIAA, Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 11 p. refs (Contract NAG1-722) (AIAA PAPER 89-1046)

The ability of alternate resonance tuning (ART) to block sound transmission through light-weight flexible paneled walls by controlling the dynamics of the wall panels is considered. Analytical results for sound transmission through an idealized panel wall illustrate the effect of varying system parameters and show that one or more harmonics of the incident sound field can be cancelled by the present method. Experimental results demonstrate that very large transmission losses with reasonable bandwidths can be achieved by a simple ART panel barrier in a duct.

A89-40472*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

COMPARISON OF PROPELLER CRUISE NOISE DATA TAKEN IN THE NASA LEWIS 8- BY 6-FOOT WIND TUNNEL WITH OTHER TUNNEL AND FLIGHT DATA

JAMES DITTMAR (NASA, Lewis Research Center, Cleveland, OH) AIAA, Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 22 p. Previously announced in STAR as N89-21628. refs (AIAA PAPER 89-1059)

The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. Author

A89-40473*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

PREDICTION OF UNSTEADY BLADE SURFACE PRESSURES ON AN ADVANCED PROPELLER AT AN ANGLE OF ATTACK

M. NALLASAMY (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH) and J. F. GROENEWEG (NASA, Lewis Research Center, Cleveland, OH) AIAA, Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 20 p. refs (Contract NAS3-25266)

(AIAA PAPER 89-1060)

The paper considers the numerical solution of the unsteady, three-dimensional, Euler equations to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the +2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

A89-40474#

PREDICTION OF LOADING NOISE OF A PROPELLER WITH **BLADES UNDER TRANSONIC OPERATING CONDITIONS**

M. A. TAKALLU and P. L. SPENCE (PRC Systems Services, AIAA, Aeroacoustics Conference, 12th, San Hampton, VA) Antonio, TX, Apr. 10-12, 1989. 9 p. refs (AIAA PAPER 89-1080)

A hybrids method of solution has been applied to predict the aerodynamic loads of a generic propeller. This method combines the efficiency of linear strip theory, with the shock capturing capability of the conservation form of Euler equations, formulated in a finite difference algorithm. Free field noise predictions are made using time domain formulation. It is shown that for higher propeller advance ratios, the loading noise obtained from linear aerodynamics underestimates the predictions when compared with the present method. Author

A89-40475#

WHITHAM'S F-FUNCTION FOR A SUPERSONICALLY **ROTATING PROPELLER**

C. J. CHAPMAN (Cambridge, University, England) AIAA. Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 21 p. Research supported by the Royal Aircraft Establishment. refs (AIAA PAPER 89-1107)

On linear acoustic theory, propellers emit rays from supersonic leading and trailing edges, so that in certian regions of space the pressure field has a part equal to Whitham's F-function multiplied by ray tube area. A general method, which applies to propeller edges of arbitrary shape and motion, is presented for determining this product. In the particular case of a blade with straight edges pointing along radii, full details of the calculation are given, leading to explicit formulas for the F-function and ray tube area. The method brings out a well-known limitation of linear acoustics, namely its prediction of singularities in pressure as a result of focusing of weak shocks, and highlights the fact that a more complete theory would be necessry if peak pressures had to be calculated.

A89-40476#

SUPERSONIC RECTANGULAR JET IMPINGEMENT NOISE **EXPERIMENTS**

THOMAS D. NORUM (NASA, Langley Research Center, Hampton, AIAA. Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 13 p. refs (AIAA PAPER 89-1138)

The discrete frequency sound produced by jets issuing from a convergent, rectangular nozzle of aspect ratio 4.24 was investigated. Experiments were performed both with the free jet and with the jet impinging on a hard ground surface. The impingement tones that dominate the impinging jet spectra show a definite staging behavior which appears to be biased toward the free jet screech frequency once the separation distance exceeds the region of substantial shock cell development. The frequency variation of the impingement tone stages fit the details of a feedback cycle if the disturbance convection velocity is chosen to be 20 percent higher than that necessary to satisfy the screech feedback loop. Phase locked optical records show a flapping mode of jet oscillation with tones at or near the screech frequency, with superimposed symmetric oscillations when a second dominant tone of unrelated frequency appears in the spectrum.

A89-40477*# University of Southern California, Los Angeles. DYNAMIC LOADING ON IMPACT SURFACES OF A HIGH SUBSONIC ELLIPTIC JET

J. K. WAT and C. M. HO (Southern California, University, Los Angeles) AIAA, Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 9 p. (Contract NAG1-819)

(AIAA PAPER 89-1139)

The feedback resonance in a high subsonic velocity range was investigated for the case where a small aspect ratio (2:1) elliptic jet impinged perpendicularly on a flat plate. This resonance was observed for Mach numbers greater than 0.7 for plate locations between 4 and 9 major radii downstream of the exhaust plane. At the predominant resonant conditions, the loading region and sound source terms were found to be concentrated along the major axis direction on the impact surface.

A89-40478*# Texas A&M Univ., College Station. AN ACOUSTIC EXPERIMENTAL AND THEORETICAL **INVESTIGATION OF SINGLE DISC PROPELLERS**

ELIZABETH A. BUMANN and KENNETH D. KORKAN (Texas A & M University, College Station) AIAA, Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 17 p. refs (Contract NAG3-354) (AIAA PAPER 89-1146)

An experimental study of the acoustic field associated with two, three, and four blade propeller configurations with a blade root angle of 50 deg was performed in the Texas A&M University 5 ft. x 6 ft. acoustically-insulated subsonic wind tunnel. A waveform analysis package was utilized to obtain experimental acoustic time histories, frequency spectra, and overall sound pressure level (OASPL) and served as a basis for comparison to the theoretical acoustic compact source theory of Succi (1979). Valid for subsonic tip speeds, the acoustic analysis replaced each blade by an array of spiraling point sources which exhibited a unique force vector and volume. The computer analysis of Succi was modified to include a propeller performance strip analysis which used a NACA 4-digit series airfoil data bank to calculate lift and drag for each blade segment given the geometry and motion of the propeller. Theoretical OASPL predictions were found to moderately overpredict experimental values for all operating conditions and propeller configurations studied.

A89-40904*# Virginia Polytechnic Inst. and State Univ.. Blacksburg.

ACTIVE CONTROL OF SOUND FIELDS IN ELASTIC CYLINDERS BY MULTICONTROL FORCES

J. D. JONES and C. R. FULLER (Virginia Polytechnic Institute and State University, Blacksburg) AlAA Journal (ISSN 0001-1452), vol. 27, July 1989, p. 845-852. Previously cited in issue 04, p. 570, Accession no. A88-16559. refs (Contract NAG1-390)

A89-41042#

EFFECT OF SLOTTING ON THE MIXING AND NOISE OF AN **AXISYMMETRIC SUPERSONIC JET**

ANJANEYULU KROTHAPALLI (Florida State University, Tallahassee), **JAMES** MCDANIEL (Virginia, University, Charlottesville), and DONALD BAGANOFF (Stanford University, AIAA, Aeroacoustics Conference, 12th, San Antonio, TX, Apr. 10-12, 1989. 15 p. refs (AIAA PAPER 89-1052)

An experimental investigation has been carried out on an underexpanded jet of air issuing from a converging axisymmetric plain and slotted nozzles. Shadowgraph pictures as well as pitot tube and hot-wire measurements of the jet flow field were obtained at different pressure ratios. It is shown that the slotting of the nozzle exit helps to reduce the overall sound pressure level by as much as 10dB at a pressure ratio of about 4.4. The shock cell structure near the nozzle exit is weakened significantly by the presence of the slots. For downstream distances greater than about 20 diameters, the effect of the slots on the overall mixing appears to be minimal. Author

National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

NAŠA/AHS ROTORCRAFT NOISE REDUCTION PROGRAM -NASA LANGLEY ACOUSTICS DIVISION CONTRIBUTIONS

RUTH M. MARTIN (NASA, Langley Research Center, Hampton, Vertiflite (ISSN 0042-4455), vol. 35, May-June 1989, p. VA) 48-52.

An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

O.C.

A89-41830#
A CFD-BASED FINITE-VOLUME PROCEDURE FOR COMPUTATIONAL ELECTROMAGNETICS -

INTERDISCIPLINARY APPLICATIONS OF CFD METHODS

VIJAYA SHANKAR, WILLIAM HALL, and ALIREZA H. MOHAMMADIAN (Rockwell International Science Center, Thousand Oaks, CA) IN: AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers. Washington, DC, American Institute of Aeronautics and Astronautics, 1989, p. 551-564. refs (AIAA PAPER 89-1987)

The electromagnetic scattering from layered objects has been computed by casting the differential form of the time-domain Maxellian equations in a conservation form and then solving the resultant equations using a finite-volume discretization procedure derived from CFD methods. In order to treat complex internal/external structures with many material layers, a multizone framework capable of handling any type of zonal boundary conditions has been implemented. Two-dimensional results obtained for both the transverse magnetic and tranverse electric wave forms of Maxwell's equations demonstrate the feasibility of the method.

N89-24138*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

NOISE OF A MODEL COUNTERROTATION PROPELLER WITH SIMULATED FUSELAGE AND SUPPORT PYLON AT TAKEOFF/APPROACH CONDITIONS

RICHARD P. WOODWARD and CHRISTOPHER E. HUGHES Apr. 1989 26 p Presented at the 12th Aeroacoustics Conference, San Antonio, TX, 10-12 Apr. 1989; sponsored by AIAA (NASA-TM-101996; E-4700; NAS 1.15:101996; AIAA-89-1143) Avail: NTIS HC A03/MF A01 CSCL 20/1

Two modern high-speed advanced counterrotation propellers. F7/A7 and F7/A3 were tested in the NASA Lewis Research Centers's 9- by 15-foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach number. Both rotors were of similar diameter on the F7/A7 propeller, while the aft rotor diameter of the F7/A3 propeller was 85 percent of the forward propeller to reduce tip vortex-aft rotor interaction. The two propellers were designed for similar performance. The propellers were tested in both the clean configuration, and installed configuration consisting of a simulated upstream nacelle support pylon and fuselage section. Acoustic measurements were made with an axially translating microphone probe, and with a polar microphone probe which was fixed to the propeller nacelle and could make both sideline and circumferential acoustic surveys. Aerodynamic measurements were also made to establish propeller operating conditions. The propellers were run at blade setting angles (fron angle/rear angle) of 41.1/39.4 deg for the F7/A7 propeller, and 41.1/46.4 deg for the F7/A3 propeller. The forward rotors were tested over a range of tip speeds from 165 to 259 m/sec (540 to 850 ft/sec), and both propellers were tested at the maximum rotor-rotor spacing, based on pitch change axis separation, of 14.99 cm (5.90 in.). The data presented in this paper are for 0 deg propeller axis angle of attack. Results are presented for the baseline, pylon-alone, and strut + fuselage configurations. The presence of the simulated fuselage resulted in higher rotor-alone tone levels in a direction normal to the advancing propeller blade near the fuselage. A corresponding rotor-alone tone reduction was often observed 180 deg circumferentially from this region of increased noise. A significant rotor-alone increase for both rotors was observed diametrically opposite the fuselage. In some cases, interaction tone levels were likewise affected by the simulated installation.

N89-24139*# General Electric Co., Cincinnati, OH. Advanced Engineering Technologies Dept.

HIGH SPEED TURBOPROP AEROACOUSTIC STUDY (SINGLE ROTATION). VOLUME 1: MODEL DEVELOPMENT Final Report C. E. WHITFIELD, P. R. GLIEBE, R. MANI, and P. MUNGUR May 1989 185 p (Contract NAS3-23721)

(NASA-CR-182257-VOL-1; NAS 1.26:182257-VOL-1) Avail: NTIS HC A09/MF A01 CSCL 20/1

A frequency-domain noncompact-source theory for the steady loading and volume-displacement (thickness) noise of high speed propellers has been developed and programmed. Both near field and far field effects have been considered. The code utilizes blade surface pressure distributions obtained from three-dimensional nonlinear aerodynamic flow field analysis programs as input for evaluating the steady loading noise. Simplified mathematical models of the velocity fields induced at the propeller disk by nearby wing and fuselage surfaces and by angle-of-attack operation have been developed to provide estimates of the unsteady loading imposed on the propeller by these potential field type interactions. These unsteady blade loadings have been coupled to a chordwise compact propeller unsteady loading noise model to provide predictions of unsteady loading noise caused by these installation effects. Finally, an analysis to estimate the corrections to be applied to the free-field noise predictions in order to arrive at the measurable fuselage sound pressure levels has been formulated and programmed. This analysis considers the effects of fuselage surface reflection and diffraction together with surface boundary layer refraction. The steady loading and thickness model and the unsteady loading model have been verified using NASA-supplied data for the SR-2 and SR-3 model propfans. In addition, the steady loading and thickness model has been compared with data from the SR-6 model propfan. These theoretical models have been employed in the evaluation of the SR-7 powered Gulfstream aircraft in terms of noise characteristics at representative takeoff, cruise, and approach operating conditions. In all cases, agreement between theory and experiment is encouraging.

N89-24141*# Douglas Aircraft Co., Inc., Long Beach, CA. INTERIOR NOISE CONTROL GROUND TEST STUDIES FOR ADVANCED TURBOPROP AIRCRAFT APPLICATIONS Final Report

MYLES A. SIMPSON, MARK R. CANNON, PAUL L. BURGE, and ROBERT P. BOYD Apr. 1989 149 p (Contract NAS1-18037)

(NASA-CR-181819; NÁS 1.26:181819) Avail: NTIS HC A07/MF A01 CSCL 20/1

The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

N89-24886*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH. CRUISE NOISE OF THE SR-2 PROPELLER MODEL IN A WIND

TUNNEL

JAMES H. DITTMAR Apr. 1989 29 p

(NASA-TM-101480; E-4606; NAS 1.15:101480) Avail: NTIS HC A03/MF A01 CSCL 20/1

Noise data on the SR-2 model propeller were taken in the NASA Lewis Research Center 8- by 6-Foot Wind Tunnel. The maximum blade passing tone rises with increasing helical tip Mach number to a peak level at a helical tip Mach number of about 1.05; then it remains the same or decreases at higher helical tip Mach numbers. This behavior, which has been observed with other

propeller models, points to the possibility of using higher propeller tip speeds to limit airplane cabin noise while maintaining high flight speed and efficiency. Noise comparisons of the straight-blade SR-2 propeller and the swept-blade SR-7A propeller showed that the tailored sweep of the SR-7A appears to be the cause of both lower peak noise levels and a slower noise increase with increasing helical tip Mach number.

N89-24887# Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.).

CALCULATION OF AIRCRAFT NOISE IN THE VICINITY OF CIVIL AIRPORTS BY A SIMULTION PROCEDURE Thesis
ULLRICH ISERMANN Feb. 1988 100 p In GERMAN; ENGLISH summary

(MPIS-7/1988; ISSN-0436-1199; ETN-89-94384) Avail: NTIS HC A05/MF A01; Max-Planck Institut fuer Stroemungsforschung, Boettinger Strasse 6-8, 3400 Goettingen, Federal Republic of Germany, 22 deutsche marks

Boeing 737 and Airbus A310 noise durations for takeoff, level flight, and curved flight paths are analyzed. Theoretical models are used for the analysis of the effects of flights on curved flight paths in order to calculate maximum sound levels and single event noise levels. The calculated results are confirmed by the simulation. Maximum sound levels within a turn are decreased as compared to those from flights on straight flight path and are increased outside of a turn. The single event noise levels depend on the directional characteristics of the noise source. For curved flights, the direction of maximum sound radiation forms a circular caustic with a center coinciding with the center of the curve. The area within this caustic represents an acoustic shadow zone where maximum sound levels, and single event noise levels, are decreased.

N89-24888*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

ADVANCED TURBOPROP AIRCRAFT FLYOVER NOISE: ANNOYANCE TO COUNTER-ROTATING-PROPELLER CONFIGURATIONS WITH A DIFFERENT NUMBER OF BLADES ON EACH ROTOR: PRELIMINARY RESULTS

DAVID A. MCCURDY Jul. 1988 33 p (NASA-TM-100638; NAS 1.15:100638) Avail: NTIS HC A03/MF A01 CSCL 20/1

A laboratory experiment was conducted to quantify the annovance of people to the flyover noise of advanced turboprop aircraft with counter-rotating propellers (CRP) having a different number of blades on each rotor (nxm, e.g., 10 x 8, 12 x 11). The objectives were: (1) compare annoyance to nxm CRP advanced turboprop aircraft with annoyance to conventional turboprop and jet aircraft; (2) determine the effects of tonal content on annoyance; and (3) determine the ability of aircraft noise measurement procedures and corrections to predict annoyance for this new class of aircraft. A computer synthesis system was used to generate 35 realistic, time-varying simulations of advanced turboprop takeoff noise in which the tonal content was systematically varied to represent combinations of 15 fundamental frequency (blade passage frequency) combinations and three tone-to-broadband noise ratios. The fundamental frequencies, which represented blade number combinations from 6 x 5 to 13 x 12 and 7 x 5 to 13 x 11. ranged from 112.5 to 292.5 Hz. The three tone-to-broadband noise ratios were 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 64 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in tonal content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined. Author

N89-24901# National Aeronautical Lab., Bangalore (India). Systems Engineering Div.

AN INTELLIGENT FIBEROPTIC DATA BUS FOR

FLY-BY-LIGHT APPLICATIONS

L. C. MANOHARAN and S. MUTHUVEL Nov. 1987 11 p (NAL-TM-SE-8707) Avail: NTIS HC A03/MF A01

An active Fiberoptic Data Bus compatible with MIL-STD-1553B which could be used for Fly-by-light, stores management, AEW etc., on an aircraft is described. The data bus is considered intelligent because it can automatically sense which station is in the transmit mode and control the active interface accordingly, so that smooth flow of data takes place on the bus. The tests that were done on the bus to check its validity are also described. As no software is involved in the operation this could be used on any aircraft with its own software.

17

SOCIAL SCIENCES

Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law and political science; and urban technology and transportation.

A89-41654

U.S. GOVERNMENT POLICIES AND HYPERSONIC FLIGHT IN THE 21ST CENTURY

THOMAS R. GOLDBERG (Radian Corp., Herndon, VA) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 4, May 1989, p. 26-31. refs

The author examines the potentially negative impact of the U.S. regulations on the development of advanced materials, components, and systems. High priority is given to modification of US antitrust laws if the U.S. is to have the best possible opportunity to compete with more aggressive economies abroad. Export controls are identified as limiting the availability of data to U.S. firms engaged in developing commercial applications. It is asserted that policies must also be enacted to better protect intellectual property rights.

A89-41655

HYPERSONIC FLIGHT - THE NEED FOR A NEW LEGAL

F. KENNETH SCHWETJE and DONALD E. WALSH (USAF, International Law Div., Washington, DC) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 4, May 1989, p. 32-36. refs

The author briefly examines the question, 'where does space begin?' He discusses how certain priciples, such as overflight, meet the respective needs of the air law and space law regimes. He then focuses on the existing laws that might regulate the proposed Transatmospheric Vehicle (TAV).

19

GENERAL

A89-42452 ACADEMICIAN B. S. STECHKIN'S WORK IN THE DEVELOPMENT OF JET ENGINES [O RABOTAKH AKADEMIKA B. S. STECHKINA PO SOZDANIIU VOZDUSHNO-REAKTIVNYKH DVIGATELEI]

V. A. ZHURAVLEV IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 5-9. In Russian.

A89-42453

SCIENTIFIC AND PEDAGOGICAL WORK OF ACADEMICIAN B.
S. STECHKIN AT THE ZHUKOVSKII AIR FORCE
ENGINEERING ACADEMY [O NAUCHNOI I
PEDAGOGICHESKOI DEIATEL'NOSTI AKADEMIKA B. S.
STECHKINA V VOENNO-VOZDUSHNOI INZHENERNOI
AKADEMII IM. PROFESSORA N. E. ZHUKOVGO]

IU. N. NECHAEV IN: Pioneers of space and the present age. Moscow, Izdatel'stvo Nauka, 1988, p. 10-16. In Russian. refs

A89-42537

S. P. KOROLEV IN AVIATION. IDEAS. PROJECTS. DESIGNS [S. P. KOROLEV V AVIATSII. IDEI. PROEKTY. KONSTRUKTSII]

GEORGII S. VETROV Moscow, Izdatel'stvo Nauka, 1988, 160 p. In Russian. refs

The early work of Korolev, the chief designer of Soviet space systems, is reviewed. The book, which makes extensive use of new documents from the personal archive of the designer, is mainly concerned with the development of glider and aircraft designs. The ideas and technical principles, concepts, and solutions underlying these designs are examined.

A89-42926

RESEARCH AND DEVELOPMENT: TECHNICAL AND SCIENTIFIC PUBLICATIONS 1988 [FORSCHUNG UND ENTWICKLUNG: TECHNISCH-WISSENSCHAFTLICHE VEROEFFENTLICHUNGEN 1988]

Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, 372 p. In German and English. For individual items see A89-42927 to A89-42945.

Various papers on fighter aircraft, transport aircraft, helicopter, defense technology, and space travel are presented. Individual topics addressed include: new developments in air and space research of the German aircraft and space industry, modular avionic architecture for modern fighter aircraft, threat management for modern fighter aircraft, development of a monolithic fuselage shell using CFRP, and Cabin Intercommunication Data System. Also discussed are: system testing in the A320-landing flap flight control system, project for an advanced regional civil aircraft, airborne imaging radar systems for monitoring sea pollution, recent theoretical studies of missiles, validation of missile simulation, modern terrain following and flight control system, characterization of radar backscattering measurements using scaled time models, the German Saenger space transportation system concept. C.D.

A89-42927

NEW DEVELOPMENTS IN AIR AND SPACE RESEARCH - CONTRIBUTIONS OF THE GERMAN AIRCRAFT AND SPACE INDUSTRY TO ADVANCED PROGRAMS AND INTERNATIONAL COOPERATION

OTHMAR HEISE (Messerschmitt-Boelkow-Blohm GmbH, Ottobrunn, Federal Republic of Germany) (Technogerma '88 - Scientific-Technological Conference, New Delhi, India, Mar. 15, 1988) IN: Research and development: Technical and scientific publications 1988. Munich, Federal Republic of Germany, Messerschmitt-Boelkow-Blohm GmbH, 1988, p. 11-20. (MBB-Z-177-88-PUB)

Some of the new developments in the German air and space industry are examined, highlighting those programs which are in cooperation with European countries and with India. Transportation projects involving winged aircraft, helicopters, advanced surface transportation, and space transportation are addressed, including the Airbus, MPC-75 aircraft, Advanced Light Helicopter, European Future Advanced Rotorcraft, Maglev transportation systems, Ariane, and others. Projects involving communication, remote sensing, and regenerative energy are examined.

N89-25112*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

LANGLEY AEROSPACE TEST HIGHLIGHTS, 1988
May 1989 166 p

(NASA-TM-101579; NAS 1.15:101579) Avail: NTIS HC A08/MF A01 CSCL 05/4

The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

Autho

Typical Subject Index Listing

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of document content, a title extension is added, separated from the title by three hyphens. The (NASA or AIAA) accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.

A-320 AIRCRAFT

System testing exemplified by the A320-landing flaps flight maneuvering system [MBB-UT-0131-88-PUB] p 614 A89-42939

ABORTED MISSIONS

Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469

ARRASION

Evolution of rotor blade abrasion strips at Bell Helicopter p 604 A89-41589

ACCELERATION (PHYSICS)

Acceleration forces aboard NASA KC-135 aircraft during p 620 A89-42022 microgravity maneuvers

ACOUSTIC ATTENUATION

Reduction of sound transmission through fuselage walls by alternate resonance tuning (A.R.T.)

[AIAA PAPER 89-1046] p 631 A89-40470

ACOUSTIC EMISSION

Acoustic emission detection of crack presence and crack p 625 A89-42853 advance during flight

ACOUSTICS

Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

[AIAA PAPER 89-1059] p 631 A89-40472

ACTIVE CONTROL

Active control of sound fields in elastic cylinders by p 632 A89-40904 multicontrol forces Active flutter suppression on a delta wing

p 614 A89-40963

Transonic aeroelasticity of fighter wings with active control surfaces p 579 A89-42020 Detailed design of a Ride Quality Augmentation System

for commuter aircraft p 615 N89-23470 [NASA-CR-4230]

Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

p 609 N89-24313 [NASA-TM-101570]

ACTUATORS

Actuator rate saturation compensator

[AD-D013962] p 616 N89-23474

ADAPTIVE CONTROL

Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656

ADHESIVE BONDING

A foil adhesive for construction - The Letoxit system p 620 A89-40085

ADIABATIC FLOW

Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution

p 571 A89-41775 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary p 588 A89-42567

AEROACOUSTICS

Prediction of loading noise of a propeller with blades under transonic operating conditions

p 632 A89-40474 TAIAA PAPER 89-10803 Whitham's F-function for a supersonically rotating

p 632 A89-40475 [AIAA PAPER 89-1107] An acoustic experimental and theoretical investigation

of single disc propellers
[AIAA PAPER 89-1146] p 632 A89-40478

AÈRODYNAMIC BALANCE

A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors [NASA-TP-2907] p 615 N89-23468

AERODYNAMIC CHARACTERISTICS

Calculation of flow over iced airfoils

p 570 A89-40905 A numerical method for calculating subsonic fully unsteady aerodynamic characteristics of wings in time p 570 A89-40959

The joined wing - The benefits and drawbacks. II p 603 A89-41029

A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p 570 A89-41045 Modification in engineering calculation method for inlet

design p 571 A89-41121 Observation of airplane flowfields by natural p 578 A89-42009 condensation effects Validation of aerodynamic parameters for high-incidence

research models p 578 A89-42012 Flow past two-dimensional ribbon parachute models p 579 A89-42015

Hypersonic parabolized Navier-Stokes code validation p 579 A89-42016 on a sharp nose cone

Investigations on the vorticity sheets of a close-coupled p 579 A89-42017 delta-canard configuration

Numerical prediction of aerodynamic performance for p 579 A89-42023 low Reynolds number airfoils Numerical analysis on aerodynamic characteristics of

an inclined square cylinder

p 580 A89-42038 [AIAA PAPER 89-1805] Software development reusability for aircraft simulation p 630 A89-43127 systems

High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

p 593 N89-23418 [NASA-CR-184992]

Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow

[AD-A205739] p 593 N89-23423

Preliminary design of a modular unmanned research vehicle. Volume 2: Subsystem technical development design study

p 607 N89-23454 [AD-A205678] Aerodynamics of a lifting rotor due to near field unsteady p 595 N89-24267

AERODYNAMIC CONFIGURATIONS

Soviet aerospace industry - Aerodynamic Institute aids effort to develop fuel-efficient transports

p 618 A89-41060

A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler p 571 A89-41759 equations

Experimental/computational study of a transonic aircraft with stores

p 582 A89-42060 [AIAA PAPER 89-1832] The shape of thin bodies with minimal drag

p 588 A89-42496 Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

p 595 N89-24266 [NASA-CR-185016] An investigation of V/STOL jet interactions in a crossflow

[AD-A206360] p 596 N89-24272

AERODYNAMIC DRAG

The effect of an adverse pressure gradient on the drag reduction performance of manipulators

p 571 A89-41771

Effects of contamination on riblet performance p 579 A89-42021

Navier-Stokes solution for a NACA 0012 airfoil with mass flux (fan)

[AD-A205771] p 593 N89-23424

Use of Navier-Stokes methods to predict circulation control airfoil performance

n 595 N89-24270 [AD-A206242]

AFRODYNAMIC FORCES

Modelling aircraft dynamics

[AD-A204086] p 607 N89-23449

Unsteady aerodynamic effects on bluff bodies

p 596 N89-24278 Aeroservoelastic modeling and applications using

unsteady minimum-state approximations the

[NASA-TM-101574] p 608 N89-24308

AFRODYNAMIC HEAT TRANSFER

A vectorized Gauss-Seidel line relaxation scheme for solving 3D Navier-Stokes equations

p 573 A89-41795 [AIAA PAPER 89-1948] Methods of flying model studies --- Russian book

p 605 A89-42535 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent p 598 N89-24288 (DOT/FAA/CT-TN89/3)

AERODYNAMIC HEATING

aerodynamic heating The structure of three-dimensional shock wave/turbulent boundary layer interactions induced by sharp and blunt fins

p 585 A89-42082 [AIAA PAPER 89-1854] Numerical simulation of hypersonic flow around a space

plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409

Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference

[NASA-CR-185326] p 592 N89-23411 Thermal analysis of a hypersonic wing test structure p 595 N89-24265 [NASA-CR-185319]

AERODYNAMIC INTERFERENCE

Calculation of wind-tunnel side-wall interference using three-dimensional multigrid Navier-Stokes code

p 579 A89-42026 [AIAA PAPER 89-1790] Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference [NASA-CR-185326]

p 592 N89-23411

AERODYNAMIC LOADS

Prediction of loading noise of a propeller with blades under transonic operating conditions p 632 A89-40474

[AIAA PAPER 89-1080] The effects of wake migration during roll-up on blade p 570 A89-41091 air loads

Cavity door effects on aerodynamic loads of stores p 578 A89-42011 separating from cavities Transonic operational characteristics and performance

p 591 N89-23408 (NAL-TR-968) Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock

[NASA-CR-185326]

p 592 N89-23411

Optimum aeroelastic characteristics for composite	Comment on 'General formulation of the aeroelastic	Numerical simulation of hypersonic viscous perfect gas
supermaneuverable aircraft	divergence of composite swept-forward wing structures' p 605 A89-42025	flow for the aerothermodynamic design of space planes at low angles of attack
[AD-A205503] p 607 N89-23452 High speed turboprop aeroacoustic study (single	Methods of flying model studies Russian book	[AIAA PAPER 89-1699] p 591 A89-43215
rotation). Volume 1: Model development	p 605 A89-42535	Aerothermodynamic analysis of a Coanda/Refraction
[NASA-CR-182257-VOL-1] p 633 N89-24139	Optimum aeroelastic characteristics for composite	Jet Engine Test Facility
AERODYNAMIC NOISE	supermaneuverable aircraft	[AD-A205937] p 619 N89-23482
Effect of slotting on the mixing and noise of an axisymmetric supersonic jet	[AD-A205503] p 607 N89-23452	AFTERBODIES 3-D composite velocity solutions for subsonic/transonic
[AIAA PAPER 89-1052] p 632 A89-41042	Aeroservoelastic modeling and applications using	flow over afterbodies
On the optimum cruise speed of a hypersonic aircraft	minimum-state approximations of the unsteady aerodynamics	[AIAA PAPER 89-1837] p 582 A89-42065
p 605 A89-41652	[NASA-TM-101574] p 608 N89-24308	Turbulent flow predictions for afterbody/nozzle
High speed turboprop aeroacoustic study (single	Aeroservoelastic wind-tunnel investigations using the	geometries including base effects [AIAA PAPER 89-1865] p 585 A89-42092
rotation). Volume 1: Model development [NASA-CR-182257-VOL-1] p 633 N89-24139	Active Flexible Wing Model: Status and recent	Transonic Navier-Stokes solutions of three-dimensional
Cruise noise of the SR-2 propeller model in a wind	accomplishments	afterbody flows
tunnel	[NASA-TM-101570] p 609 N89-24313	[NASA-TM-4111] p 594 N89-23433
[NASA-TM-101480] p 633 N89-24886	Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center	AGING (METALLURGY)
AERODYNAMIC STABILITY Optimum aeroelastic characteristics for composite	[NASA-TM-101582] p 609 N89-24314	Age creep forming aluminum aircraft skins p 624 A89-41584
Supermaneuverable aircraft	Results of a parametric aeroelastic stability analysis of	AILERONS
[AD-A205503] p 607 N89-23452	a generic X-wing aircraft	Experimental aerodynamic characteristics of a
Exploitation of multiple solutions of the Navier-Stokes	[NASA-TM-101572] p 617 N89-24324	joined-wing research aircraft configuration
equations to achieve radically improved flight [AD-A205939] p 627 N89-23831	Survey of Army/NASA rotorcraft aeroelastic stability research	[NASA-TM-101083] p 596 N89-24285 AIR DEFENSE
[AD-A205939] p 627 N89-23831 Loss of tail rotor effectiveness evaluation of the OH-58C	[NASA-TM-101026] p 618 N89-24329	Future terrain following radars p 599 A89-42655
helicopter with directional SAS (Stability Augmentation	AERONAUTICAL ENGINEERING	AIR FLOW
System)	NASA aeronautics research and technology	Turbulence measurements for heated gas slot injection
[AD-A206181] p 608 N89-24309	[NASA-EP-259] p 568 N89-23406	in supersonic flow
AERODYNAMIC STALLING	AERONAUTICS	[AIAA PAPER 89-1868] p 586 A89-42095 Real-time solution of the airflow continuity equations for
Use of Navier-Stokes code to predict flow phenomena near stall as measured on a 0.658-scale V-22 tiltrotor	Flying wings (2nd revised and enlarged edition)	a hovercraft simulation p 589 A89-43147
blade	Russian book p 568 A89-42488 S. P. Korolev in aviation. Ideas. Projects. Designs	AIR INTAKES
[AIAA PAPER 89-1814] p 580 A89-42044	Russian book p 635 A89-42537	Three-dimensional effects in high-intensity vortices
High angle-of-attack aerodynamic characteristics of	AEROSPACE ENGINEERING	p 588 A89-42464
crescent and elliptic wings	Problems of the unification of the on-board systems of	AIR LAW
[NASA-CR-184992] p 593 N89-23418 Aircraft Accident Report: AVAir Inc., Flight 3378,	flight vehicles p 620 A89-42456	Hypersonic flight - The need for a new legal regime p 634 A89-41655
Fairchild Metro 3, SA227 AC, N622AV, Cary, North	A model of the reachability zone and its use in the ballistic	AIR NAVIGATION
Carolina, February 19, 1988	design of flight vehicles p 620 A89-42459	Aircraft navigation using I.R. image analysis
[PB88-910412] p 598 N89-23436	Automatic control of jet engines (3rd revised and	p 598 A89-40446
AERODYNAMICS	enlarged edition) Russian book p 613 A89-42509	Practical experimental examples of land, sea, and air
AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers	Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262	navigation using the Navstar/GPS system p 599 A89-40802
p 572 A89-41776	Langley aerospace test highlights, 1988	State and perspectives of satellite use in civil aviation.
An adaptive Cartesian mesh algorithm for the Euler	[NASA-TM-101579] p 635 N89-25112	p 599 A89-41030
equations in arbitrary geometries	AEROSPACE INDUSTRY	An overview of the direct simulation of an integrated
[AIAA PAPER 89-1930] p 572 A89-41777	Soviet aerospace industry - Perestroika's changes grip	aircraft navigation system on a PC p 600 A89-43148
Solution of the 2D Navier-Stokes equations on	Soviet aerospace industry p 567 A89-41057	Future air navigation systems (FANS) p 600 A89-43573
unstructured adaptive grids	Soviet aerospace industry - Motorworks taps skill of	The 4D-TECS integration for NASA TSRV airplane
	coveral factories to produce powerplants	
[AIAA PAPER 89-1932] p 572 A89-41779 Design of optimally smoothing multi-stage schemes for	several factories to produce powerplants	[NASA-CR-4231] p 615 N89-23471
Design of optimally smoothing multi-stage schemes for the Euler equations	several factories to produce powerplants p 567 A89-41059 Research and development: Technical and scientific	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the	p 567 A89-41059 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41030 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07) p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43097 Aerodynamic design via control theory p 589 A89-43094	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A206378] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1942] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TIC-101579] p 635 N89-25112	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [P889-151021] p 597 N89-23434	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects Aerodynamic design via control theory p 589 A89-43097 AAROHAMA ABROHAMA ABR	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1942] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1952] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibirium air at sub-orbital flight speeds	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 609 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [P889-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07) p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1942] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1952] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent	P 567 A89-41059 Research and development: Technical and scientific publications 1988 Book	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC COmparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-410043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A205314] p 601 N89-23444 Host computer system capacity management [AD-A206314] p 601 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979]
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 597 N89-23434 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector spitting method	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40935 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A2063783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] P 676 A89-40251
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1943] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101570] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313 AEROELASTICITY Identification of XV-15 aeroelastic modes using	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43200 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-157021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1700] p 561 A89-43216	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRAMSPORTATION New developments in air and space research Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] p 567 A89-40251 Analog-to-digital converter effects on airborne radar programs and position of airborne radar performance p 599 A89-42661
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-4251 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects Aerodynamic design via control theory p 589 A89-43097 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313 AEROELASTICITY Identification of XV-15 aeroelastic modes using frequency-domain methods Dynamic grid deformation using Navier-displacement equation for deforming wings	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 597 N89-23434 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector spitting method	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] Analog-to-digital converter effects on airborne radar performance p 599 A89-42661 Improved bandwidth microstrip antenna design for airborne phased arrays p 600 A89-42676
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1942] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1952] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects P 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313 AEROELASTICITY Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 AEROTHERMODYNAMICS Parametric study of thermal and chemical nonequilibrium in nozzle flow	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DDT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] p 567 A89-40251 Analog-to-digital converter effects on airborne radar p 599 A89-42661 Improved bandwidth microstrip antenna design for pictory alreader and space and arrays AIRBORNE RADAR APPROACH
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1942] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313 AEROELASTICITY Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 Identification of XV-15 aeroelastic modes using	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AlAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AlAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 591 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AlAA PAPER 89-180] p 621 A89-43216 AEROTHERMOCHEMISTRY Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AlAA PAPER 89-1700] AEROTHERMODYNAMICS Parametric study of thermal and chemical nonequilibrium nozzle flow [AlAA PAPER 89-1856] p 585 A89-42084	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] P 599 A89-42661 Improved bandwidth microstrip airborne phased arrays p 567 A89-40856
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects P 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 669 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313 AEROELASTICITY Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 Identification of XV-15 aeroelastic modes using frequency sweeps p 605 A89-42018	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 620 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 597 N89-23434 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1970] p 621 A89-43216 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1866] p 585 A89-42084 Hypersonic flow in a compression corner in 2D and 3D	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] P 602 N89-24294 AIR TRANSPORTATION New developments in air and space research - Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] p 567 A89-42661 Improved bandwidth microstrip antenna design for airborne phased arrays p 567 A89-42676 AIRBORNE RADAR APPROACH The US airborne radar scene p 567 A89-40856
Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 A massively parallel three-dimensional Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine [AIAA PAPER 89-1938] p 572 A89-41785 Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1942] p 574 A89-41799 An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects p 568 A89-43077 Aerodynamic design via control theory p 589 A89-43094 NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988 [NASA-TM-101579] p 635 N89-25112 AEROELASTIC RESEARCH WINGS Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313 AEROELASTICITY Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 Identification of XV-15 aeroelastic modes using	Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624 AEROSPACE PLANES Recent progress in the National Aerospace Plane program p 568 A89-41651 Performance of an aero-space plane propulsion nozzle [AlAA PAPER 89-1878] p 586 A89-42103 Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AlAA PAPER 89-1699] p 591 A89-43215 NASP keeps moving p 591 A89-43620 Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409 An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315 AEROSPACE SAFETY Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 AEROTHERMOCHEMISTRY A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AlAA PAPER 89-180] p 621 A89-43216 AEROTHERMOCHEMISTRY Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AlAA PAPER 89-1700] AEROTHERMODYNAMICS Parametric study of thermal and chemical nonequilibrium nozzle flow [AlAA PAPER 89-1856] p 585 A89-42084	[NASA-CR-4231] p 615 N89-23471 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 AIR TRAFFIC Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 AIR TRAFFIC CONTROL A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Introduction of MLS - Effects on airspace and airport capacity p 599 A89-41043 National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 AIR TRANSPORTATION New developments in air and space research Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927 AIRBORNE EQUIPMENT Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 [SPIE-979] Analog-to-digital converter effects on airborne radar p 599 A89-42661 Improved bandwidth microstrip airborne phased arrays p 567 A89-40856

Future terrain following radars

Adaptive optimum attitude extrapolation for precise	and applications [AIAA PAPER 89-1541] p 604 A89-41563
antenna pointing control p 610 A89-42656	Seaplanes and the towing tank
Techniques for robust tracking in airborne radars p 600 A89-42666	[AIAA PAPER 89-1533] p 623 A89-41564
AIRBORNE/SPACEBORNE COMPUTERS	RFB research and development in WIG vehicles
Lightning inflight study onboard a Transall aircraft.	Wing-In-Ground
Definition of the onboard instruments	[AIAA PAPER 89-1495] p 623 A89-41568
[ONERA-RF-19/7234-PY] p 629 N89-24777	A review of current technical knowledge necessary to develop large scale wing-in-surface effect craft
AIRCRAFT ACCIDENT INVESTIGATION	[Alaa Paper 89-1497] p 623 A89-41569
Aircraft Accident Report: AVAir Inc., Flight 3378,	Flying wings (2nd revised and enlarged edition)
Fairchild Metro 3, SA227 AC, N622AV, Cary, North	Russian book p 568 A89-42488
Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436	S. P. Korolev in aviation. Ideas. Projects. Designs
AIRCRAFT ACCIDENTS	Russian book p 635 A89-42537
Probing Boeing's crossed connections	Probing Boeing's crossed connections p 597 A89-42811
p 597 A89-42811	Research and development: Technical and scientific
Annual review of aircraft accident data, US Air Carrier	publications 1988 Book p 635 A89-42926
operations: Calendar year 1986	Accuracy problems in wind tunnels during transport
[PB89-151021] p 597 N89-23434	aircraft development
AIRCRAFT COMMUNICATION CIDS- Cabin Intercommunication Data System	[MBB-UT-134-88-PUB] p 619 A89-42937 Enhanced performance low flying aircraft (EPLFA) - A
[MBB-UT-020-87-PUB] p 600 A89-42938	future?
AIRCRAFT COMPARTMENTS	[AIAA PAPER 89-1499] p 606 A89-42949
Active control of sound fields in elastic cylinders by	Soaring on intelligent wings - Aerodynamicists at MBB
multicontrol forces p 632 A89-40904	are already at work on tomorrow's projects
CIDS- Cabin Intercommunication Data System	p 568 A89-43077 IA63 Pampa - The completion of an aircraft development
[MBB-UT-020-87-PUB] p 600 A89-42938	program p 568 A89-43112
Interior noise control ground test studies for advanced turboprop aircraft applications	Numerical simulation and experiments on leading-edge
[NASA-CR-181819] p 633 N89-24141	vortices on modern wings, with European cooperation
AIRCRAFT CONFIGURATIONS	p 589 A89-43114
HALE - A high-altitude, long-endurance manned	Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115
aircraft p 604 A89-41109	NASA aeronautics research and technology
Multigrid Euler solver about arbitrary aircraft	[NASA-EP-259] p 568 N89-23406
configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806	Preliminary design of a modular unmanned research
Numerical simulation of the Navier-Stokes equations for	vehicle. Volume 2: Subsystem technical development design study
an F-16A configuration p 578 A89-42014	[AD-A205678] p 607 N89-23454
Application of HISSS panel code to a fighter-type aircraft	USAF (US Air Force) durability design handbook:
configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931	Guidelines for the analysis and design of durable aircraft structures
[AIAA PAPER 87-2619] p 589 A89-42931 Numerical simulation of hypersonic flow around a space	[AD-A206286] p 608 N89-23457
plane. 1: Basic development	Center of gravity control on Airbus aircraft: Fuel, range
[NAL-TR-976T] p 591 N89-23409	and loading
A methodology for determining the survivability of	[REPT-882-111-101] p 608 N89-23460 A330/340 hydraulic system
fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455	[REPT-882-111-102] p 608 N89-23461
An integrated aerodynamic/propulsion study for generic	A closed-form trim solution yielding minimum trim drag
aero-space planes based on waverider concepts	for airplanes with multiple longitudinal-control effectors
[NASA-CR-183389] p 609 N89-24315	[NASA-TP-2907] p 615 N89-23468 Control design of an unstable non-minimum phase
AIRCRAFT CONSTRUCTION MATERIALS Advanced concepts and materials for high-speed flight	aircraft subject to control surface saturation
p 620 A89-41585	[AD-A206024] p 616 N89-23475
Experimental investigation of the crashworthiness of	Multivariable flight control design with parameter
scaled composite sailplane fuselages p 605 A89-42019	uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476
Computerized structural mechanics for 1990's:	Results of a parametric aeroelastic stability analysis of
Advanced aircraft needs p 628 N89-24640	a generic X-wing aircraft
Computational procedures for postbuckling of composite	[NASA-TM-101572] p 617 N89-24324
shells p 628 N89-24642	Computerized structural mechanics for 1990's:
AIRCRAFT CONTROL Soviet aerospace industry - Mikoyan design group	Advanced aircraft needs p 628 N89-24640 Computational Methods for Structural Mechanics and
upgrading MiG-29 with fly-by-wire controls, new cockpit	Dynamics
p 603 A89-41063	[NASA-CP-3034-PT-2] p 628 N89-24654
Control design of an unstable non-minimum phase	Improving transient analysis technology for aircraft structures p 629 N89-24655
aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475	AIRCRAFT DETECTION
Experimental aerodynamic characteristics of a	Aircraft recognition using a parts analysis technique
joined-wing research aircraft configuration	p 629 A89-40447
[NASA-TM-101083] p 596 N89-24285	AIRCRAFT ENGINES
Numerical simulation of feedback control of aerodynamic configurations in steady and unsteady ground effects	Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596
p 617 N89-24326	Probabilistic-parametric models of the long-term
An intelligent fiberoptic data bus for fly-by-light	strength of metallic materials of aircraft gas turbine
applications	engines p 620 A89-40619
[NAL-TM-SE-8707] p 634 N89-24901 AIRCRAFT DESIGN	A method for estimating the stochastic vibrational stress
Engine aspects in the design of advanced rotorcraft	level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental
[MBB-UD-528-88-PUB] p 611 A89-39842	bench test data p 611 A89-40624
Transverse vibrations of a trapezoidal cantilever plate of variable thickness p 622 A89-40914	Soviet aerospace industry - Propulsion research center
of variable thickness p 622 A89-40914 Mechanical model study for shrink fit rotor	focuses on developing fuel-efficient aircraft
p 611 A89-40964	p 611 A89-41058
The joined wing - The benefits and drawbacks. II	Soviet aerospace industry - Motorworks taps skill of several factories to produce powerplants
p 603 A89-41029	p 567 A89-41059
Soviet aerospace industry - Aerodynamic Institute aids effort to develop fuel-efficient transports	The model of combustion efficiency and calculation of
p 618 A89-41060	flow properties for scramjet combustor
Soviet aerospace industry - Sukhoi design bureau	p 611 A89-41115
expands civil aircraft development efforts p 568 A89-41064	Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126
HALE - A high-altitude, long-endurance manned	Whither titanium powder metallurgy?
aircraft p. 604 A89-41109	n 621 A89-41591

p 599 A89-42655

The Canadair CL-215 amphibious aircraft - Development

p 621 A89-41591

[AD-A205440]

Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine p 612 A89-42422 Scientific and pedagogical work of academician B. S. Stechkin at the Zhukovskii Air Force Engineering p 635 A89-42453 Academy Experimental investigation of the characteristics of combination engines p 612 A89-42462 Two-time probabilistic model of the evolution of aircraft p 612 A89-42463 engine reliability A study of the characteristics of aircraft powerplants under conditions of optimal control of their principal components p 612 A89-42466 Optimization of the parameters and characteristics of bypass engines p 613 A89-42467 An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 NASA aeronautics research and technology p 568 N89-23406 [NASA-FP-259] Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations IPB89-1412791 p 619 N89-23479 AIRCRAFT EQUIPMENT Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 Display of flight guidance information in the aircraft p 610 N89-24305 AIRCRAFT FUEL SYSTEMS Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles --- Russian book p 605 A89-42525 AIRCRAFT GUIDANCE Three-dimensional energy-state extremals in feedback p 615 A89-43071 form Image Signal Processing for Flight Guidance p 602 N89-24295 [DFVLR-MITT-88-32] Image signal processing for flight guidance: Overview and introduction to the main topics p 602 N89-24296 Display of flight guidance information in the aircraft p 610 N89-24305 AIRCRAFT HAZARDS A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent p 598 N89-24288 IDOT/FAA/CT-TN89/31 AIRCRAFT HYDRAULIC SYSTEMS Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 AIRCRAFT INDUSTRY US military aircraft coproduction with Japan p 569 N89-24263 IAD-A2064301 Computerized structural mechanics for Advanced aircraft needs p 628 N89-24640 AIRCRAFT INSTRUMENTS Determination of the deviation coefficients of a magnetic compass during a turn p 610 A89-40719 p 567 A89-40856 The US airborne radar scene from aircraft and p 624 A89-41691 Laser altimetry measurements spacecraft Development of the extended kalman filter for the advanced Completely I Instrumentation System (CIRIS) Integrated Reference AD-A2060831 p 601 N89-23443 AIRCRAFT LANDING Possibility of using GPS for precision approaches p 599 A89-40803 System testing exemplified by the A320-landing flaps flight maneuvering system (MBB-UT-0131-88-PUB) p 614 A89-42939 Comparison of interpolation algorithms for speed control air traffic management IAD-A2063141 p 601 N89-23444 Heliport night parking area criteria test plan p 619 N89-23480 [DOT/FAA/CT-TN88/45] B-737 flight test of curved-path and steep-angle approaches using MLS guidance [NASA-TM-101521] p 601 N89-24293 AIRCRAFT MAINTENANCE An integrated approach to remanufacturing turbine p 623 A89-41547 hlades Electron beam welding and repair of critical structures p 624 A89-41586 The Mi-8 helicopter: Design and maintenance --- Russian p 606 A89-42600 book Braze repair of aero engine components p 626 A89-43535 An analysis of Electronic Aids to Maintenance (EAM) for the Light Helicopter Family (LHX)

p 568 N89-23407

AIRCRAFT MANEUVERS SUBJECT INDEX

AIRCRAFT MANEUVERS Service-induced damage in turbine discs and its A direct viscid-inviscid interaction scheme for the Modified F-15B to demonstrate STOL, maneuver influence on damage tolerance-based life prediction prediction of two-dimensional aerofoil lift and pitching p 603 A89-41075 p 612 A89-41910 capability moment in incompressible flow p 570 A89-41045 Acceleration forces aboard NASA KC-135 aircraft during Flight testing of the Southern Cross replica aircraft Applications of Lagrangian time to steady supersonic p 607 N89-23451 microgravity maneuvers p 620 A89-42022 (AD-A205303) airfoil computation Heliport night parking area criteria test plan [AIAA PAPER 89-1963] p 575 A89-41808 AIRCRAFT SAFETY p 619 N89-23480 DOT/FAA/CT-TN88/45] A fully-coupled implicit method for thermo-chemical Safety philosophies in air transport nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 AIRCRAFT MODELS p 597 A89-39859 Validation of aerodynamic parameters for high-incidence p 576 A89-41818 Aircraft flight safety: Methodological principles research models p 578 A89-42012 Numerical prediction of aerodynamic performance for p 597 A89-42536 Russian book low Reynolds number airfoils p 579 A89-42023
Calculation of wind-tunnel side-wall interference using Methods of flying model studies --- Russian book Probing Boeing's crossed connections p 605 A89-42535 p 597 A89-42811 Aircraft flight safety: Methodological principles Annual review of aircraft accident data, US Air Carrier three-dimensional multigrid Navier-Stokes code p 579 A89-42026 Russian book p 597 A89-42536 operations: Calendar year 1986 [AIAA PAPER 89-1790] Software development reusability for aircraft simulation An experimental investigation of the parallel vortex-airfoil [PB89-151021] p 597 N89-23434 p 630 A89-43127 AIRCRAFT SPIN interaction at transonic speeds Modelling aircraft dynamics [AIAA PAPER 89-1833] p 582 A89-42061 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration p 607 N89-23449 Transonic flow around airfoils with relaxation and energy LAD-A2040861 p 596 N89-24285 NASA-TM-101083] AIRCRAFT STABILITY supply by homogeneous condensation p 582 A89-42062 AIRCRAFT NOISE The research of the aircraft neutral stability [AIAA PAPER 89-1834] Active control of sound fields in elastic cylinders by p 614 A89-40961 Navier-Stokes solution for a NACA 0012 airfoil with mass p 632 A89-40904 multicontrol forces Analysis of a candidate control algorithm for a ride-quality NASA/AHS rotorcraft noise reduction program - NASA (AD-A2057711 p 593 N89-23424 augmentation system p 614 A89-43057 Langley Acoustics Division contributions Numerical study of the influence of leading and trailing Detailed design of a Ride Quality Augmentation System p 632 A89-41049 edge flaps on the performance of airfoils for commuter aircraft p 594 N89-23428 Noise and sonic boom impact technology. PCBOOM [NASA-CR-4230] p 615 N89-23470 [AD-A206138] computer program for sonic boom research, volume 1 A computer simulation study of liquid water content Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [AD-A206290] p 594 N89-23429 adjustment based on icing cloud horizontal extent High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development NASA-TM-101083] p 598 N89-24288 p 596 N89-24285 [DOT/FAA/CT-TN89/3] AIRFRAME MATERIALS AIRCRAFT STRUCTURES [NASA-CR-182257-VOL-1] p 633 N89-24139 Quench sensitivity of airframe aluminium alloys Fatigue damage to an aircraft from gusts Cruise noise of the SR-2 propeller model in a wind p 603 A89-40083 [PB89-146039] p 621 N89-23656 AIRFRAMES tunnel A foil adhesive for construction - The Letoxit system [NASA-TM-101480] p 633 N89-24886 p 620 A89-40085 The development of a composite helicopter fuselage Advanced turboprop aircraft flyover noise: Annovance Hydrodynamic characteristics of seaplanes as affected as exemplified on the BK 117 [MBB-UD-534-88-PUB] to counter-rotating-propeller configurations with a different by hull shape parameters [AIAA PAPER 89-1540] p 602 A89-39840 number of blades on each rotor. Preliminary results USAF (US Air Force) durability design handbook: p 604 A89-41562 INASA-TM-1006381 p 634 N89-24888 Guidelines for the analysis and design of durable aircraft Age creep forming aluminum aircraft skins AIRCRAFT PARTS p 624 A89-41584 structures Aircraft recognition using a parts analysis technique AD-A206286 p 608 N89-23457 Electron beam welding and repair of critical structures p 629 A89-40447 p 624 A89-41586 AIRPORT LIGHTS Qualification of high temperature vacuum carburizing for Heliport night parking area criteria test plan Acoustic emission detection of crack presence and crack p 624 A89-41598 an aircraft gear steel p 619 N89-23480 [DOT/FAA/CT-TN88/45] advance during flight environmental cracking behaviour The A correlation study of X-29A aircraft and associated AIRPORTS luminium-lithium based alloys Introduction of MLS - Effects on airspace and airport analytical developments p 607 N89-23450 AIRCRAFT PERFORMANCE Investigations on the cracking behavior of joints in A89-41043 p 599 The Canadair CL-215 amphibious aircraft - Development High-efficiency thermal insulation in the base of airfields airfields and roads: Field investigations and laboratory and applications p 619 A89-42499 and highways --- Russian book simulations [AIAA PAPER 89-1541] p 604 A89-41563 [PB89-141279] Comparison of interpolation algorithms for speed control p 619 N89-23479 Fitter's handbook for the assembly of the hydraulic, gas, in air traffic management Technology of aircraft construction (selected chapters) and fuel system lines of flight vehicles --- Russian book [AD-A206314] p 601 N89-23444 p 569 N89-24261 [AD-A199946] Response of pavement to freeze-thaw cycles: Lebanon, p 605 A89-42525 Ground vibration test of the Foudre A04 Transall S. P. Korolev in aviation. Ideas. Projects. Designs ---New Hampshire, regional airport aircraft A89-42537 p 635 [REPT-20/7234-PY-382-R] p 609 N89-24311 [AD-A205559] p 626 N89-23740 CSM testbed development and large-scale structural Enhanced performance low flying aircraft (EPLFA) - A Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure applications p 606 A89-42949 [AIAA PAPER 89-1499] [MPIS-7/1988] INASA-TM-40721 p 634 N89-24887 p 628 N89-24624 Flying qualities from early airplanes to the Space Improving transient analysis technology for aircraft AIRSPACE Shuttle p 614 A89-43051 Introduction of MLS - Effects on airspace and airport structures p 629 N89-24655 Numerical simulation of hypersonic flow around a space AIRCRAFT SURVIVABILITY p 599 A89 41043 plane. 1: Basic development AIRSPEED A methodology for determining the survivability of [NAL-TR-976T] n 591 N89-23409 fixed-wing aircraft against small arms [AD-A205730] On the optimum cruise speed of a hypersonic aircraft Method and system for monitoring and displaying engine p 605 A89-41652 p 607 N89-23455 performance parameters AIRCRAFT WAKES ALGORITHMS [NASA-CASE-LAR-14049-1] p 614 N89-23466 The low frequency oscillation in the flow over a NACA0012 airfoil with an iced leading edge Improvements and applications of a streamwise upwind Experimental aerodynamic characteristics of a joined-wing research aircraft configuration p 574 A89-41804 NASA-TM-1020181 p 592 N89-23417 [AIAA PAPER 89-1957] [NASA-TM-101083] p 596 N89-24285 AIRFOIL OSCILLATIONS Upwind algorithms based on a diagonalization of the Ground vibration test of the Foudre A04 Transall multidimensional Euler equations The low frequency oscillation in the flow over a NACA0012 airfoil with an iced leading edge p 578 A89-41842 aircraft [AIAA PAPER 89-1958] [REPT-20/7234-PY-382-R] p 592 N89-23417 p 609 N89-24311 Comparison of interpolation algorithms for speed control [NASA-TM-102018] Flight control system for the CRCA (Control AIRFOIL PROFILES in air traffic management Reconfigurable Combat Aircraft) using a command Unstructured grid generation for non-convex domains (AD-A206314) p 601 N89-23444 generator tracker with PI (Plus Integral) feedback and p 576 A89-41826 Numerical methods for unsteady flows [AIAA PAPER 89-1983] Kalman filter, volume 2 p 596 N89-24282 Global marching technique for predicting flows over [AD-A206202] p 617 N89-24325 Development and flight test experiences with a airfoils with leading and trailing edge flaps Some issues in numerical simulation of nonlinear p 579 A89-42028 p 628 N89-24639 [AIAA PAPER 89-1793] structural response flight-crucial digital control system Numerical solution of periodic vortical flows about a thin p 617 N89-24327 INASA-TP-28571 Measurements of diffusion limited solidification at AIRCRAFT PRODUCTION p 592 N89-23413 [NASA-TM-101998] varying gravity
[AIAA PAPER 89-1755] p 603 A89-40857 MD-11 enters the fray The low frequency oscillation in the flow over a p 626 A89-43268 Thoroughgoing DV-support from project planning to NACA0012 airfoil with an iced leading edge ALUMINUM ALLOYS p 592 N89-23417 factory control - Practical example from near-development [NASA-TM-102018] Age creep forming aluminum aircraft skins aircraft design Computation of dynamics and control of unsteady p 624 A89-41584 [MBB-UD-526-88-PUB] p 568 A89-42928 p 627 Superplastic forming - A new production technology Development of a monolithic fuselage shell using p 624 A89-41590 Effect of advanced rotorcraft airfoil sections on the hover cracking environmental performance of a small-scale rotor model behaviour aluminium-lithium based alloys (MBB-FE-234/S/PUB/338) p 606 A89-42934 NASA-TP-28321 p 595 N89-24264 p 621 A89-41601 Innovative production technology in aircraft construction: Computational and experimental research on buffet Rapidly solidified Al-Ti alloys via advanced melt CIAM Forming 'made by MBB' - A highly productive phenomena of transonic airfoils spinning p 621 A89-41888 p 625 A89-43076 [NAL-TR-996T] p 616 N89-24322 Quench sensitivity of airframe aluminium alloys US military aircraft coproduction with Japan AIRFOILS [PB89-146039] p 621 N89-23656 [AD-A206430] p 569 N89-24263 Measurements of laminar separation bubble on B3 AMBUL ANCES AIRCRAFT RELIABILITY p 569 A89-40893 Effect of electromagnetic interference by neonatal

Calculation of flow over iced airfoils

p 570 A89-40905

transport equipment on aircraft operation

p 625 A89-42161

Safety philosophies in air transport

p 597 A89-39859

В

SUBJECT INDEX		
AMMUNITION		
A methodology for determining fixed-wing aircraft against small arms		irvivability o
[AD-A205730]	p 607	N89-23455
AMPHIBIOUS AIRCRAFT The Canadair CL-215 amphibious air	rcraft - [Developmen
and applications	p 604	
[AIAA PAPER 89-1541] Seaplanes and the towing tank		
[AIAA PAPER 89-1533] RFB research and development in	p 623	
Wing-In-Ground		
[AIAA PAPER 89-1495] A review of current technical know	p 623 /ledge r	
develop large scale wing-in-surface e	ffect cr	
[AIAA PAPER 89-1497] Search and rescue amphibious airc	p 623 raft in .	Japan
[AIAA PAPER 89-1500] ANALOG TO DIGITAL CONVERTERS	p 604	A89-41571
Analog-to-digital converter effects		
performance ANGLE OF ATTACK	p 599	A89-42661
Prediction of unsteady blade surfa		sures on ar
advanced propeller at an angle of att	аск р 631	A89-40473
The research of the aircraft neutral	stabilit	
NASA adds to understanding of h	p 614 igh and	
regime Vorticity equation solutions for sle		A89-41201
incidence		
[AIAA PAPER 89-1989] Validation of aerodynamic paramete	p 577	A89-41832 ab-incidence
research models	p 578	A89-42012
Numerical simulation of laminar hyp double-ellipsoid	personic	c flow past a
[AIAA PAPER 89-1840]	p 583	A89-42068
High angle-of-attack aerodynamic crescent and elliptic wings	cnarac	
[NASA-CR-184992] Modelling aircraft dynamics	p 593	N89-23418
[AD-A204086]	p 607	N89-23449
Characteristics of a five-hole spheri [NAL-TR-971]	ical pito p 610	
ANTENNA ARRAYS		
Adaptive optimum attitude extrap antenna pointing control		A89-42656
Improved bandwidth microstrip a airborne phased arrays	ntenna	design for A89-42676
ANTENNA DESIGN		
Improved bandwidth microstrip airborne phased arrays	antenn p 600	a design fo A89-42676
APPLICATIONS PROGRAMS (COMPU	TERS)	
Enhancements to a new free wake [NASA-CR-177523]		analysis N89-23414
APPROACH		
Noise of a model counterrotat simulated fuselage and support pylon		
conditions [NASA-TM-101996]	p 633	N89-24138
APPROACH CONTROL	•	
B-737 flight test of curved-path approaches using MLS guidance	and	steep-angle
[NASA-TM-101521]	p 601	N89-24293
APPROXIMATION Numerical study of the influence of	leading	g and trailing
edge flaps on the performance of air	oils p 594	N89-23428
[AD-A206138] Aeroservoelastic modeling and		
minimum-state approximations o aerodynamics	of the	unsteady
[NASA-TM-101574]	p 608	N89-24308
ARCHITECTURE (COMPUTERS) Modular avionics architecture for	or mo	dern fighte
aircraft		•
[MBB-FE-301/S/PUB/339] Generation of architectures for dis	p 610 stributed	A89-42932 Intelligence
systems		-
[AD-A205783]	p 601	N89-23440

A methodology for determining	
fixed-wing aircraft against small arms [AD-A205730]	p 607 N89-23455
AMPHIBIOUS AIRCRAFT The Canadair CL-215 amphibious ai	rcraft - Development
and applications	p 604 A89-41563
[AIAA PAPER 89-1541] Seaplanes and the towing tank	•
[AIAA PAPER 89-1533] RFB research and development in	p 623 A89-41564 n WIG vehicles
Wing-In-Ground [AIAA PAPER 89-1495]	p 623 A89-41568
A review of current technical know	ledge necessary to
develop large scale wing-in-surface e [AIAA PAPER 89-1497]	p 623 A89-41569
Search and rescue amphibious airc	raft in Japan
[AIAA PAPER 89-1500] ANALOG TO DIGITAL CONVERTERS Analog-to-digital converter effects	p 604 A89-41571 s on airborne radar
performance	p 599 A89-42661
ANGLE OF ATTACK Prediction of unsteady blade surfa	ce pressures on an
advanced propeller at an angle of att	
[AIAA PAPER 89-1060] The research of the aircraft neutral	
NASA adds to understanding of h	p 614 A89-40961 igh angle of attack
regime	p 571 A89-41201
Vorticity equation solutions for sle incidence	ender wings at high
[AIAA PAPER 89-1989]	p 577 A89-41832
Validation of aerodynamic paramete	
research models Numerical simulation of laminar hyp	,
double-ellipsoid	
[AIAA PAPER 89-1840] High angle-of-attack aerodynamic	p 583 A89-42068 characteristics of
crescent and elliptic wings	
[NASA-CR-184992] Modelling aircraft dynamics	p 593 N89-23418
[AD-A204086]	p 607 N89-23449
Characteristics of a five-hole spher	
(NAL-TR-971) ANTENNA ARRAYS	p 610 N89-23463
Adaptive optimum attitude extra	
antenna pointing control Improved bandwidth microstrip a	p 610 A89-42656
airborne phased arrays	p 600 A89-42676
ANTENNA DESIGN Improved bandwidth microstrip	antonna docian for
airborne phased arrays	p 600 A89-42676
APPLICATIONS PROGRAMS (COMPU	
Enhancements to a new free wake [NASA-CR-177523]	p 592 N89-23414
APPROACH	
Noise of a model counterrotat simulated fuselage and support pylon	
conditions [NASA-TM-101996]	p 633 N89-24138
APPROACH CONTROL B-737 flight test of curved-path	and steep-angle
approaches using MLS guidance	n 601 ND0 04000
[NASA-TM-101521] APPROXIMATION	p 601 N89-24293
Numerical study of the influence of	
edge flaps on the performance of airl [AD-A206138]	p 594 N89-23428
Aeroservoelastic modeling and	
minimum-state approximations of aerodynamics	of the unsteady
[NASA-TM-101574]	p 608 N89-24308
ARCHITECTURE (COMPUTERS) Modular avionics architecture f	or modern fighter
aircraft	or modern ngmer
[MBB-FE-301/S/PUB/339] Generation of architectures for dis	p 610 A89-42932 stributed intelligence
systems [AD-A205783]	p 601 N89-23440
ARTIFICIAL INTELLIGENCE The application of artificial intelligence	ence techniques for
turbomachinery diagnostics	p 629 A89-41081
A rapid prototyping facility for flight re	
systems concepts Generation of architectures for dis	p 630 A89-41698 stributed intelligence
systems	
[AD-A205783] Computerized structural mecha	p 601 N89-23440 anics for 1990's:
Advanced aircraft needs	p 628 N89-24640
ASPECT RATIO Flutter of a low-aspect-ratio rectangular	gular wing
[NASA-TM-4116]	p 606 N89-23447
ATMOSPHERIC ELECTRICITY	

Lightning inflight study onboard a Transall aircraft.

p 629 N89-24777

Definition of the onboard instruments

IONERA-RE-19/7234-PY1

ATMOSPHERIC MOISTURE A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 ATMOSPHERIC TURBULENCE
Safety philosophies in air transport
p 597 A89-39859 ATTACK AIRCRAFT
Soviet aerospace industry - Mil Mi-28 attack helicopter in final tests prior to full-scale production
p 567 A89-41062 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Plus Integral) feedback and
Kalman filter, volume 2 [AD-A206202] p 617 N89-24325 ATTITUDE CONTROL
Control design of an unstable non-minimum phase aircraft subject to control surface saturation
[AD-A206024] p 616 N89-23475
AUTOMATED EN ROUTE ATC Design of automated system for management of arrival
traffic [NASA-TM-102201] p 598 N89-24290
Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2
[DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 AUTOMATIC CONTROL
Determination of the interaction parameter of a twin-rotor gas generator p 622 A89-40084
Automatic control of jet engines (3rd revised and enlarged edition) Russian book p 613 A89-42509
Center of gravity control on Airbus aircraft: Fuel, range
and loading [REPT-882-111-101] p 608 N89-23460
A research facility for film cooling investigations with emphasis on the instrumentation system
[NAL-TM-PR-8704] p 619 N89-23477 A comparison of detection efficiency on an air traffic
control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294
AUTOMATIC FLIGHT CONTROL
Detailed design of a Ride Quality Augmentation System for commuter aircraft
[NASA-CR-4230] p 615 N89-23470 Optimal guidance with obstacle avoidance for
nap-of-the-earth flight [NASA-CR-177515] p 618 N89-24328
AUTOMATIC LANDING CONTROL An operational demonstration and engineering flight test
of the Microwave Landing System on runway 22L at Chicago's Midway Airport
[DOT/FAA/CT-TN88/42] p 601 N89-24291
B-737 flight test of curved-path and steep-angle approaches using MLS guidance
[NASA-TM-101521] p 601 N89-24293 AUTOMATIC PILOTS
The 4D-TECS integration for NASA TSRV airplane [NASA-CR-4231] p 615 N89-23471
AUTOMATION Innovative production technology in aircraft construction:
CIAM Forming 'made by MBB' - A highly productive example p 625 A89-43076
AVIONICS Precision and efficiency of the radio electronic systems
of aircraft Russian book p 625 A89-42524
aircraft
[MBB-FE-301/S/PUB/339] p 610 A89-42932 AXIAL FLOW
Use of Navier-Stokes code to predict flow phenomena near stall as measured on a 0.658-scale V-22 tiltrotor
blade [AIAA PAPER 89-1814] p 580 A89-42044
AXIAL FLOW TURBINES Design point optimization of an axial-flow compressor
stage p 612 A89-41223 AXISYMMETRIC BODIES
Transonic Navier-Stokes solutions of three-dimensional afterbody flows
[NASA-TM-4111] p 594 N89-23433
Effect of slotting on the mixing and noise of an
axisymmetric supersonic jet [AIAA PAPER 89-1052] p 632 A89-41042
Experiment and computation in hypersonic cavity flows
[AIAA PAPER 89-1842] p 583 A89-42070 Supersonic flow past a sphere in a gas with a periodic
density field structure p 588 A89-42521 Analysis of the wake behind a propeller using the finite
, maryons or the trans permits a properties using the mille

element method with a two-equation turbulence model

BALLISTICS A model of the reachability zone and its use in the ballistic design of flight vehicles p 620 A89-42459 BENDING VIBRATION Flutter of a low-aspect-ratio rectangular wing NASA-TM-4116] p 606 N89-23447 INASA-TM-41161 BIOGRAPHY Scientific and pedagogical work of academician B. S. Stechkin at the Zhukovskii Air Force Engineering Academy p 635 A89-42453 BLADE TIPS Computational and experimental evaluation of helicopter rotor tips for high speed forward flight [AIAA PAPER 89-1845] p 584 A89-42073 **BLADE-VORTEX INTERACTION** An experimental investigation of the parallel vortex-airfoil interaction at transonic speeds [AIAA PAPER 89-1833] p 582 A89-42061 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique
[AIAA PAPER 89-1847] p 584 A89-42075 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] n 627 N89-24563 **BLOWDOWN WIND TUNNELS** Fiector effects on a supersonic nozzle at low altitude and Mach number AD-A2060491 p 594 N89-23427 BLUFF BODIES Flow past two-dimensional ribbon parachute models p 579 A89-42015 Unsteady aerodynamic effects on bluff bodies p 596 N89-24278 BI UNT BODIES Shock standoff from blunt cones in high-enthalpy nonequilibrium nitrogen flow p 570 A89-40913 Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Adaptive grid embedding in nonequilibrium hypersonic [AIAA PAPER 89-1652] n 590 A89-43178 An approximate viscous shock layer method for calculating the hypersonic flow over blunt-nosed bodies [AIAA PAPER 89-1695] p 590 A89-43212 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method
[AIAA PAPER 89-1700] p 621 A89-43216 BO-105 HELICOPTER BO108 - An ultramodern German helicopter [MBB-UD-530-88-PUB] p 602 p 602 A89-39836 BO 108 - Technology for new light twin helicopters p 603 A89-39844 [MBB-UD-529-88-PUB] Design and development tests of a five-bladed hingeless helicopter main rotor IMBR-UD-531-88-PUB I n 603 A89-39845 BODY-WING CONFIGURATIONS Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow AD-A2057391 p 593 N89-23423 BOEING AIRCRAFT Probing Boeing's crossed connections p 597 A89-42811 **BOEING 737 AIRCRAFT** Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure p 634 N89-24887 [MPIS-7/1988] BOUNDARY LAYER CONTROL Navier-Stokes solution for a NACA 0012 airfoil with mass flux (fan) [AD-A205771] p 593 N89-23424 Flow control for unsteady and separated flows and turbulent mixing Use of Navier-Stokes methods to predict circulation control airfoil performance [AD-A206242] p 595 N89-24270 **BOUNDARY LAYER EQUATIONS** the three-dimensional A solution method for compressible turbulent boundary-layer equations p 623 A89-41044 Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Formation of singularities in a three-dimensional p 625 A89-42557 boundary laver **BOUNDARY LAYER FLOW** Analysis of the influence of the end-wall boundary layer

growth on the performance of multistage compressors p 570 A89-41082
The investigation of dynamic distortions in flowfield

downstream of strong shock boundary interaction

p 602 A89-39840

p 607 N89-23452

p 628 N89-24642

Optimum aeroelastic characteristics for composite

Computational procedures for postbuckling of composite

supermaneuverable aircraft

[AD-A205503]

Application of a vectorized particle simulation in **CARTESIAN COORDINATES** Techniques for robust tracking in airborne radars high-speed near-continuum flow An adaptive Cartesian mesh algorithm for the Euler p 600 A89-42666 [AIAA PAPER 89-1665] p 590 A89-43188 equations in arbitrary geometries COAL DERIVED LIQUIDS Boundary layer response to an unsteady turbulent [AIAA PAPER 89-1930] p 572 A89-41777 Production of jet fuels from coal-derived liquids. Volume environment 8: Heteroatom removal by catalytic processing CASCADE FLOW [AD-A206578] p 596 N89-24273 Far field numerical boundary conditions for internal and (AD-A2054701 p 621 N89-23712 **BOUNDARY LAYER SEPARATION** COANDA FFFFCT cascade flow computations Separation shock motion and ensemble-averaged wall [AIAA PAPER 89-1943] p 573 A89-41790 Aerothermodynamic analysis of a Coanda/Refraction pressures in a Mach 5 compression ramp interaction Jet Engine Test Facility Three dimensional analysis of a rotor in forward flight [AIAA PAPER 89-1853] p 585 p 580 A89-42045 p 619 N89-23482 [AIAA PAPER 89-1815] p 580 A89-42045 Multigrid solution of the Euler equations for [AD-A2059371 Supersonic flow stagnation in a duct during p. 587 A89-42460 Use of Navier-Stokes methods to predict circulation combustion control airfoil performance three-dimensional cascade flows An experimental study of the effect of streamwise [AIAA PAPER 89-1818] p 581 A89-42048 [AD-A206242] p 595 N89-24270 vortices on unsteady turbulent boundary-layer separation Numerical solution of transonic potential flow in 2D (AD-A205462) p 593 N89-23420 Soviet aerospace industry - Mikoyan design group compressor cascades using multi-grid techniques **BOUNDARY LAYER STABILITY** p 589 A89-42837 upgrading MiG-29 with fly-by-wire controls, new cockpit Crossflow-vortex instability and transition on a 45 deg Computation of flow and losses in transonic turbine p 603 A89-41063 p 589 A89-43108 Cockpit-canopy fragmentation system for immediate p 587 A89-42114 [AIAA PAPER 89-1892] The unsteady flow in the far field of an isolated blade pilot rescue p 606 A89-43115 Effect of wall temperature distribution on the stability Display of flight guidance information in the aircraft p 591 A89-43537 of the compressible boundary layer CASCADE WIND TUNNELS cocknit p 610 N89-24305 p 587 A89-42116 [AIAA PAPER 89-1894] A research facility for film cooling investigations with COLD ROLLING Laminar boundary layer stability experiments on a cone emphasis on the instrumentation system Optimization of the cold roll-forging of axial-flow at Mach 8. V - Tests with a cooled model [NAL-TM-PR-8704] p 619 N89-23477 compressor blades with allowance p 587 A89-42117 [AIAA PAPER 89-1895] p 625 A89-42421 **CAVITATION FLOW** characteristics Effect of the adiabatic exponent on the stability and Experimental study of free-shear layer transition above COMBUSTIBLE FLOW turbulent transition of a supersonic laminar boundary a cavity at Mach 3.5 Characteristics of dump combustor flows p 588 A89-42567 (AIAA PAPER 89-1813) p 612 A89-41224 p 580 A89-42043 **BOUNDARY LAYER TRANSITION** Experiment and computation in hypersonic cavity Determination of computational time step for chemically Prediction of transition due to isolated roughness --- for flows [AIAA PAPER 89-1842] reacting flows [AIAA PAPER 89-1855] flow over flat plate with bumps or hollows p 583 A89-42070 p 585 A89-42083 p 622 A89-40907 CENTER OF GRAVITY Supersonic flow stagnation a duct during Experimental study of free-shear layer transition above Center of gravity control on Airbus aircraft: Fuel, range combustion p 587 A89-42460 a cavity at Mach 3.5 COMBUSTION CHAMBERS and loading I AIAA PAPER 89-18131 p 580 A89-42043 [REPT-882-111-101] p 608 N89-23460 Characteristics of dump combustor flows Crossflow-vortex instability and transition on a 45 deg p 612 A89-41224 CENTRIFUGAL COMPRESSORS swept wing [AIAA PAPER 89-1892] A review of methods of estimating performance PNS code assessment studies for scramjet combustor p 587 A89-42114 characteristics of centrifugal compressors and nozzle flowfields Effect of gas dissociation and ionization on the transition p 623 A89-41083 IAIAA PAPER 89-16971 n 613 A89-43213 p 588 A89-42572 of a supersonic boundary layer Experiment on a cylindrical scramjet combustor. 2: CERTIFICATION Boundary layer response to an unsteady turbulent Soviet aerospace industry - Certification of super Simulated flight Mach number 6.7 environment heavy-lift Antonov An-225 planned for 1990 (NAL-TR-9691 n 613 N89-23464 IAD-A2065781 p 596 N89-24273 p 567 A89-41061 COMBUSTION EFFICIENCY **BOUNDARY LAYERS** CHANNEL FLOW The model of combustion efficiency and calculation of flow properties for scramiet combustor Analysis of the boundary layer of a delta wing in Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 [CERT-RT-OA-26/5025-AYD] Navier-Stokes simulation of a shock wave-turbulent Experiment on a cylindrical scramjet combustor. 2: p 596 N89-24274 Simulated flight Mach number 6.7 boundary layer interaction in a three-dimensional **BOUNDARY VALUE PROBLEMS** INAL-TR-9691 p 613 N89-23464 Non-reflecting boundary conditions for Euler equation p 585 A89-42079 [AIAA PAPER 89-1851] COMBUSTION PHYSICS calculations Calculation of stationary subsonic and transonic Supersonic flow stagnation [AIAA PAPER 89-1942] in a duct during p 573 A89-41789 combustion nonpotential flows of an ideal gas in axisymmetric p 587 A89-42460 Far field numerical boundary conditions for internal and p 588 A89-42519 channels **COMMERCIAL AIRCRAFT** cascade flow computations CHANNELS (DATA TRANSMISSION) MD-11 enters the fray p 603 A89-40857 [AIAA PAPER 89-1943] p 573 A89-41790 An intelligent fiberoptic data bus for fly-by-light Lifting-surface theory for propfan vortices impinging on Conservative treatment of boundary interfaces for applications overlaid grids and multi-level grid adaptations a downstream wing p 578 A89-42013 INAL-TM-SE-87071 p 634 N89-24901 p 576 A89-41823 Syntactic classification of radar measurements of IAIAA PAPER 89-19801 CHARGE COUPLED DEVICES commercial aircraft p 600 A89-42680 Numerical solution of periodic vortical flows about a thin Determination of reference trajectories for testing Flight tests with the VFW 614 -ATTAS laminar glove airfoil navigation aids using an onboard CCD camera [MBB-UT-0132-88-PUB] [NASA-TM-101998] p 592 N89-23413 p 606 A89-42936 p 602 N89-24303 BRAZING CIDS- Cabin Intercommunication Data System CHEMICAL EQUILIBRIUM [MBB-UT-020-87-PUB] Braze repair of aero engine components p 600 A89-42938 Calculation of nonequilibrium hydrogen-air reactions with Enhanced performance low flying aircraft (EPLFA) - A p 626 A89-43535 implicit flux vector splitting method [AIAA PAPER 89-1700] BUFFETING p 621 A89-43216 [AIAA PAPER 89-1499] Computational and experimental research on buffet CHEMICAL REACTIONS p 606 A89-42949 Analysis of a candidate control algorithm for a ride-quality phenomena of transonic airfoils Determination of computational time step for chemically NAL-TR-996T] p 616 N89-24322 p 614 A89-43057 reacting flows augmentation system [AIAA PAPER 89-1855] **BYPASSES** p 585 A89-42083 COMMUTER AIRCRAFT CIRCULATION CONTROL AIRFOILS Detailed design of a Ride Quality Augmentation System Optimization of the parameters and characteristics of p 613 A89-42467 Use of Navier-Stokes methods to predict circulation for commuter aircraft bypass engines control airfoil performance INASA-CR-42301 p 615 N89-23470 [AD-A206242] p 595 N89-24270 COMPARISON С CIRRUS CLOUDS Comparison of propeller cruise noise data taken in the Evaluation of liquid water measuring instruments in cold NASA Lewis 8- by 6-foot wind tunnel with other tunnel clouds sampled during FIRE --- First ISCCP Research C-135 AIRCRAFT and flight data p 624 A89-41889 Experiment Acceleration forces aboard NASA KC-135 aircraft during [AIAA PAPER 89-1059] p 631 A89-40472 CIVIL AVIATION microgravity maneuvers p 620 A89-42022 COMPENSATORS State and perspectives of satellite use in civil aviation CANARD CONFIGURATIONS Actuator rate saturation compensator p 599 A89-41030 Investigations on the vorticity sheets of a close-coupled [AD-D013962] p 616 N89-23474 Soviet aerospace industry - Sukhoi design bureau delta-canard configuration p 579 A89-42017 COMPONENT RELIABILITY expands civil aircraft development efforts **CANTILEVER PLATES** Advanced technology ultra reliable radar (URR) p 568 A89-41064 Transverse vibrations of a trapezoidal cantilever plate p 599 A89-42652 Aircraft flight safety: Methodological principles --p 622 A89-40914 of variable thickness COMPOSITE MATERIALS Russian book p 597 A89-42536 Technology of aircraft construction (selected chapters) CARBON FIBER REINFORCED PLASTICS CLASSICAL MECHANICS IAD-A1999461 Development of a monolithic fuselage shell using CSM testbed development and large-scale structural p 569 N89-24261 COMPOSITE STRUCTURES applications IMBB-FE-234/S/PUB/3381 p 606 A89-42934 The development of a composite helicopter fuselage [NASA-TM-4072] p 628 N89-24624 CARBURIZING as exemplified on the BK 117 **CLOUD GLACIATION** Qualification of high temperature vacuum carburizing for [MBB-UD-534-88-PUB]

Evaluation of liquid water measuring instruments in cold

Analog-to-digital converter effects on airborne radar

p 624 A89-41889

p 599 A89-42661

clouds sampled during FIRE --- First ISCCP Research

Experiment

performance

p 624 A89-41598

p 567 A89-41061

Soviet aerospace industry - Certification of super

heavy-lift Antonov An-225 planned for 1990

an aircraft gear steel

CARGO AIRCRAFT

COMPRESSIBLE BOUNDARY LAYER

solution method for the three-dimensional compressible turbulent boundary-layer equations p 623 A89-41044

Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Effect of wall temperature distribution on the stability of the compressible boundary layer

[AIAA PAPER 89-1894] p 587 A89-42116 COMPRESSIBLE FLOW

Numerical solution of Navier-Stokes equations for two-dimensional viscous compressible flows

p 570 A89-40903 Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution

p 571 A89-41775

A high-resolution Euler solver

[AIAA PAPER 89-1949] p 630 A89-41796 Supersonic flow computations by two-equation turbulence modeling

JAJAA PAPER 89-1951 J p 574 A89-41798 An adaptive grid polygonal finite volume method for the compressible flow equations

[AIAA PAPER 89-1959] p 574 A89-41805 A time-accurate iterative scheme for solving the unsteady compressible flov equations

p 577 A89-41835 [AIAA PAPER 89-1992] A new formulation for unsteady compressible Euler equations

[AIAA PAPER 89-1993] p 577 A89-41836 A time accurate finite volume high resolution scheme

for three dimensional Navier-Stokes equations [AIAA PAPER 89-1994] p 577 A89-41837 New mixing-length model for turbulent high-speed

[AIAA PAPER 89-1821] p 581 A89-42051

Development and validation of CNS (compressible Navier-Stokes) for hypersonic external flows

[AIAA PAPER 89-1839] n 583 A89-42067 Hypersonic flow in a compression corner in 2D and 3D configurations

[AIAA PAPER 89-1876] p 586 A89-42101 Use of Navier-Stokes methods to predict circulation control airfoil performance

TAD-A2062421 p 595 N89-24270

COMPRESSION LOADS

Stability of compression shocks in ducts in the presence f external effects p 588 A89-42465 COMPRESSOR BLADES

Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors

p 570 A89-41082 Design point optimization of an axial-flow compressor p 612 A89-41223 Optimization of the cold roll-forging of axial-flow compressor blades with allowance for fatique

characteristics p 625 A89-42421 COMPUTATION

A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors NASA-TP-29071 p 615 N89-23468 CSM testbed development and large-scale structural

applications [NASA-TM-4072] p 628 N89-24624

COMPUTATIONAL CHEMISTRY Numerical aerodynamic simulation

INASA-EP-2621 p 569 N89-24262

COMPUTATIONAL FLUID DYNAMICS

On some numerical schemes for transonic flow p 569 A89-39867 problems Numerical study of two-dimensional impinging jet

p 569 A89-40902 Calculation of flow over iced airfoils

p 570 A89-40905 A numerical method for calculating subsonic fully unsteady aerodynamic characteristics of wings in time p 570 A89-40959 domain

A solution method for the three-dimensional compressible turbulent boundary-layer equations

p 623 A89-41044 A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p 570 A89-41045

Design point optimization of an axial-flow compressor p 612 A89-41223 stage A comparative study of the Coakley and TVD schemes

for steady-state calculations of one-dimensional Euler p 571 A89-41759 equations Shock fitting algorithm applied to a transonic, full

potential flow p 571 A89-41760 Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution

p 571 A89-41775 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers

p 572 A89-41776

Design of optimally smoothing multi-stage schemes for the Euler equations

[AIAA PAPÉR 89-1933] p 572 A89-41780 massively parallel three-dimensional Euler/Navier-Stokes method

[AIAA PAPER 89-1937] p 572 A89-41784 Development of a Navier-Stokes code on a Connection Machine

[AIAA PAPER 89-1938] p 572 A89-41785 Non-reflecting boundary conditions for Euler equation calculations

[AIAA PAPER 89-1942] p 573 A89-41789 Far field numerical boundary conditions for internal and cascade flow computations

[AIAA PAPER 89-1943] p 573 A89-41790 Sonic-point capturing --- shock wave structures in transonic nozzle flow

[AIAA PAPER 89-1945] p 573 A89-41792 On the role of artificial viscosity in Navier-Stokes

solvers [AIAA PAPER 89-1947] p 573 A89-41794

A vectorized Gauss-Seidel line relaxation scheme for solving 3D Navier-Stokes equations

p 573 A89-41795 [AIAA PAPER 89-1948] A high-resolution Euler solver

[AIAA PAPER 89-1949] p 630 A89-41796 RNG-based turbulence transport approximations with applications to transonic flows --- Renormalization Group

[AIAA PAPER 89-1950] p 573 A89-41797 Supersonic flow computations by two-equation turbulence modeling

[AIAA PAPER 89-1951] p 574 A89-41798 Turbulence models for 3D transonic viscous flows p 574 A89-41799 [AIAA PAPER 89-1952] An efficient cell-vertex multigrid scheme for the

three-dimensional Navier-Stokes equations p 574 A89-41800 JAJAA PAPER 89-19531 Use of high-resolution upwind scheme for vortical flow

[AIAA PAPER 89-1955] p 574 A89-41802 Improvements and applications of a streamwise upwind algorithm

[AIAA PAPER 89-1957] p 574 A89-41804 Applications of Lagrangian time to steady supersonic airfoil computation

[AIAA PAPER 89-1963] p 575 A89-41808 multi-temperature TVD algorithm for relaxing hypersonic flows --- Total Variation Diminishing

[AIAA PAPER 89-1971] p 575 A89-41815 Upwind-biased, point-implicit relaxation strategies for viscous, hypersonic flows

(AIAA PAPER 89-1972) p 575 A89-41816 A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818

Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819

Simple improvements of an upwind TVD scheme for hypersonic flow [AIAA PAPER 89-1977] p 576 A89-41820 Conservative treatment of boundary interfaces for

overlaid grids and multi-level grid adaptations p 576 A89-41823 [AIAA PAPER 89-1980] p 576 A89-41823 A time-accurate iterative scheme for solving the unsteady compressible flow equations

[AIAA PAPER 89-1992] p 577 A89-41835 A new formulation for unsteady compressible Euler equations

[AIAA PAPER 89-1993] p 577 A89-41836 Vortex filament calculations by Analytical/Numerical Matching with comparison to other methods

[AIAA PAPER 89-1962] p 624 A89-41843 Hypersonic parabolized Navier-Stokes code validation p 579 A89-42016 on a sharp nose cone Numerical prediction of aerodynamic performance for

low Reynolds number airfoils p 579 A89-42023 Numerical simulation of aircraft rotary aerodynamics

Calculation of wind-tunnel side-wall interference using a three-dimensional multigrid Navier-Stokes code p 579 A89-42026 [AIAA PAPER 89-1790]

A structure of leading-edge and tip vortices at a delta

[AIAA PAPER 89-1803] p 579 A89-42037 Numerical analysis on aerodynamic characteristics of an inclined square cylinder

[AIAA PAPER 89-1805] p 580 A89-42038 Numerical analysis of supersonic turbulent mixing

[AIAA PAPER 89-1811] p 580 A89-42041 Experimental study of free-shear layer transition above cavity at Mach 3.5 [AIAA PAPER 89-1813] p 580 A89-42043

Use of Navier-Stokes code to predict flow phenomena near stall as measured on a 0.658-scale V-22 tiltrotor blade

[AIAA PAPER 89-1814] p 580 A89-42044 Three dimensional analysis of a rotor in forward flight p 580 A89-42045 [AIAA PAPER 89-1815] The computation of Navier-Stokes solutions exhibiting

asymmetric vortices [AIAA PAPER 89-1817] p 580 A89-42047 Multigrid solution of the Euler equations for three-dimensional cascade flows

[AIAA PAPER 89-1818] p 581 A89-42048 New mixing-length model for turbulent high-speed

[AIAA PAPER 89-1821] p 581 A89-42051 A computational analysis of the transonic flow field of two-dimensional minimum length nozzles

p 581 A89-42052 [AIAA PAPER 89-1822] Calculation of winged-body-like flow fields using an implicit upwind space-marching code

[AIAA PAPER 89-1826] p 581 A89-42056 Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation

p 582 A89-42062 [AIAA PAPER 89-1834] Computation of turbulent flows on a CAST 10 wing using

[AIAA PAPER 89-1836] p 582 A89-42064 Development and validation of CNS (compressible

Navier-Stokes) for hypersonic external flows [AIAA PAPER 89-1839] p 583 A89-42067 Experiment and computation in hypersonic cavity

flows [AIAA PAPER 89-1842] p 583 A89-42070 Measurements of swept shock wave/turbulent boundary-layer interactions by holographic interferometry

p 584 A89-42077 [Alaa PAPER 89-1849] Computation of sharp fin and swept compression corner

shock/turbulent boundary layer interactions p 585 A89-42080 [AIAA PAPER 89-1852]

Determination of computational time step for chemically reacting flows [AIAA PAPER 89-1855] p 585 A89-42083

Turbulent flow predictions for afterbody/nozzle geometries including base effects

[AIAA PAPER 89-1865] p 585 A89-42092 Prediction of turbulent mixing and film-cooling

effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 An analytical approach to the prediction of shock

patterns in bounded high-speed flows [AIAA PAPER 89-1874] p 586 A89-42099 Convergence acceleration of viscous and inviscid

hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100

Stability of compression shocks in ducts in the presence p 588 A89-42465 of external effects Inverse problem in nozzle theory --- Russian book p 625 A89-42500

Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric p 588 A89-42519 Numerical solution of transonic potential flow in 2D

compressor cascades using multi-grid techniques p 589 A89-42837 Aerodynamic design via control theory

p 589 A89-43094 Computation of flow and losses in transonic turbine

p 589 A89-43108 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows

p 626 A89-43177 I AIAA PAPER 89-1651 I Adaptive grid embedding in nonequilibrium hypersonic

p 590 A89-43178 (AIAA PAPER 89-1652) 'Hypersonic slip flows' and issues on extending continuum model beyond the Navier-Stokes level

[AIAA PAPER 89-1663] p 590 A89-43187 Application of a vectorized particle simulation in high-speed near-continuum flow

[AIAA PAPER 89-1665] p 590 A89-43188 Computational requirements for hypersonic flight

performance estimates --- of space vehicles [AIAA PAPER 89-1670] p 620 p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation

[AIAA PAPER 89-1672] p 590 A89-43195 An approximate viscous shock layer method for calculating the hypersonic flow over blunt-nosed bodies

[AIAA PAPER 89-1695] p 590 A89-43212 The unsteady flow in the far field of an isolated blade p 591 A89-43537 Numerical solution of periodic vortical flows about a thin

INASA-TM-1019981 p 592 N89-23413

Navier-Stokes solution for a NACA 0012 airfoil with mass	Computerized structural mechanics for 1990's:	ASR-9 weather channel test report, executive s
flux (fan)	Advanced aircraft needs p 628 N89-24640	ummary
[AD-A205771] p 593 N89-23424	COMPUTER GRAPHICS	[DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758
Advances in computational design and analysis of airbreathing propulsion systems	MILCOMP '88 - Military computers, graphics and	Advanced computational techniques for hypersonic
[NASA-TM-101987] p 613 N89-23465	software; Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988	propulsion [NASA-TM-102005] p 627 N89-23809
Advanced computational techniques for hypersonic	p 629 A89-40425	A demonstration of the method of stochastic finite
propulsion	Advances in computational design and analysis of	element analysis
[NASA-TM-102005] p 627 N89-23809	airbreathing propulsion systems	[AD-A206135] p 630 N89-24127
Computation of dynamics and control of unsteady vortical flows p 627 N89-23822	[NASA-TM-101987] p 613 N89-23465	Numerical aerodynamic simulation
Exploitation of multiple solutions of the Navier-Stokes	COMPUTER PROGRAMMING	[NASA-EP-262] p 569 N89-24262 An investigation of V/STOL jet interactions in a
equations to achieve radically improved flight	Flight control system for the CRCA (Control	crossflow
[AD-A205939] p 627 N89-23831	Reconfigurable Combat Aircraft) using a command generator tracker with PI (Plus Integral) feedback and	[AD-A206360] p 596 N89-24272
Numerical aerodynamic simulation	Kalman filter, volume 2	A computer simulation study of liquid water content
[NASA-EP-262] p 569 N89-24262 Numerical methods for unsteady flows	[AD-A206202] p 617 N89-24325	adjustment based on icing cloud horizontal extent
p 596 N89-24282	COMPUTER PROGRAMS	[DOT/FAA/CT-TN89/3] p 598 N89-24288 A model for prediction of STOVL ejector dynamics
Computational and experimental research on buffet	Generic imagery processing and exploitation	[NASA-TM-102098] p 614 N89-24319
phenomena of transonic airfoils	p 622 A89-40255	Comparison of predicted and measured temperatures
[NAL-TR-996T] p 616 N89-24322	Development of a Navier-Stokes code on a Connection Machine	of UH-60A helicopter transmission
Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies	[AIAA PAPER 89-1938] p 572 A89-41785	(NASA-TP-2911) p 628 N89-24607 Some issues in numerical simulation of nonlinear
[NASA-TM-101074] p 627 N89-24563	A validation study of four Navier-Stokes codes for	structural response p 628 N89-24639
COMPUTATIONAL GRIDS	high-speed flows	Computational procedures for postbuckling of composite
Newton solution of inviscid and viscous problems	[AIAA PAPER 89-1838] p 583 A89-42066	shells p 628 N89-24642
p 570 A89-40909	Numerical study of the influence of leading and trailing	Computational Methods for Structural Mechanics and
An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries	edge flaps on the performance of airfoils [AD-A206138] p 594 N89-23428	Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654
[AIAA PAPER 89-1930] p 572 A89-41777	Noise and sonic boom impact technology, PCBOOM	Improving transient analysis technology for aircraft
Solution of the 2D Navier-Stokes equations on	computer program for sonic boom research, volume 1	structures p 629 N89-24655
unstructured adaptive grids	[AD-A206290] p 594 N89-23429	Transient analysis techniques in performing impact and
[AIAA PAPER 89-1932] p 572 A89-41779	Noise and sonic boom impact technology. PCBOOM	crash dynamic studies p 629 N89-24658
An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations	computer program for sonic boom research. Volume 2:	CONCRETES
[AIAA PAPER 89-1953] p 574 A89-41800	Program Users/Computer operations manual [AD-A206291] p 594 N89-23430	Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory
An adaptive grid polygonal finite volume method for the	Aerothermodynamic analysis of a Coanda/Refraction	simulations
compressible flow equations	Jet Engine Test Facility	[PB89-141279] p 619 N89-23479
[AIAA PAPER 89-1959] p 574 A89-41805	[AD-A205937] p 619 N89-23482	CONDENSING
Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement	Flight control system for the CRCA (Control	Observation of airplane flowfields by natural condensation effects p 578 A89-42009
[AIAA PAPER 89-1960] p 575 A89-41806	Reconfigurable Combat Aircraft) using a command	condensation effects p 578 A89-42009 Transonic flow around airfoils with relaxation and energy
Development of an efficient multigrid code for 3-D	generator tracker with PI (Plus Integral) feedback and Kalman filter, volume 2	supply by homogeneous condensation
Navier-Stokes equations	[AD-A206202] p 617 N89-24325	[AIAA PAPER 89-1834] p 582 A89-42062
[AIAA PAPER 89-1791] p 625 A89-42027 Vortex-dominated conical-flow computations using	Some issues in numerical simulation of nonlinear	CONFERENCES Airhorna reconnaissance XIII: Brancadines of the
unstructured adaptively-refined meshes	structural response p 628 N89-24639	Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988
[AIAA PAPER 89-1816] p 580 A89-42046	Transient analysis techniques in performing impact and	[SPIE-979] p 567 A89-40251
Multigrid solution of the Euler equations for	crash dynamic studies p 629 N89-24658	MILCOMP '88 - Military computers, graphics and
the second secon		
three-dimensional cascade flows	COMPUTER SYSTEMS PERFORMANCE	software; Proceedings of the Conference and Exhibition,
[AIAA PAPER 89-1818] p 581 A89-42048	Host computer system capacity management	London, England, Sept. 27-29, 1988
		London, England, Sept. 27-29, 1988 p 629 A89-40425
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074	Host computer system capacity management procedures	London, England, Sept. 27-29, 1988
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051	London, England, Sept. 27-29, 1988 p. 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p. 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p. 635 A89-42926
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] Computational Methods for Structural Mechanics and
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral)	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral)	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with Pi (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous tlows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based linite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with Pi (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based linite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with P1 (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLF-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-186] p 580 A89-42046
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with P! (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with Pt (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 A methodology for determining the survivability of	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundayn-Jayer interaction [AIAA PAPER 89-1850] p 584 A89-42078
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercaft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft analygation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1850] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1850] p 584 A89-42078 An experimental study of hypersonic turbulence on a
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-186] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1850] p 584 A89-42078 An experimental study of hypersonic turbulence on a sharp cone
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercaft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft analygation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1850] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1850] p 584 A89-42078 An experimental study of hypersonic turbulence on a sharp cone
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with Pt (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A206024] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 Innovative production technology in aircraft construction:	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A20632] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous tlows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1850] p 584 A89-42078 An experimental study of hypersonic turbulence on a sharp cone [AIAA PAPER 89-1866] p 586 A89-42093
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with P! (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highty productive example p 625 A89-43076 USAF (US Air Force) durability design handbook:	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A20632] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Investigations on the cracking behavior of joints in	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1816] p 577 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1850] p 584 A89-42078 An experimental study of hypersonic turbulence on a sharp cone [AIAA PAPER 89-1866] p 586 A89-42093 CONTAMINATION Effects of contamination on riblet performance
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with Pt (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highty productive example USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 510 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous tlows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1866] p 586 A89-42078 An experimental study of hypersonic turbulence on a sharp cone [AIAA PAPER 89-1866] p 586 A89-42093 CONTAMINATION Effects of contamination on riblet performance p 579 A89-42021
[AIAA PAPER 89-1818] p 581 A89-42048 Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 Adaptive grid embedding in nonequilibrium hypersonic flow [AIAA PAPER 89-1652] p 590 A89-43178 COMPUTER AIDED DESIGN Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 Design point optimization of an axial-flow compressor stage p 612 A89-41223 Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds [AIAA PAPER 87-2619] p 589 A89-42931 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with P! (Proportional-Plus-Integral) feedback and Kalman filter, volume 1 [AD-A205723] p 616 N89-23473 Control design of an unstable non-minimum phase aircraft subject to control surface saturation [AD-A206024] p 616 N89-23475 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 COMPUTER AIDED MANUFACTURING Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design [MBB-UD-526-88-PUB] p 568 A89-42928 Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highty productive example p 625 A89-43076 USAF (US Air Force) durability design handbook:	Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS PROGRAMS Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 COMPUTER SYSTEMS SIMULATION A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 COMPUTER TECHNIQUES Comparison of interpolation algorithms for speed control in air traffic management [AD-A206314] p 601 N89-23444 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A20632] p 602 N89-24294 COMPUTERIZED SIMULATION Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Adaptive optimum attitude extrapolation for precise antenna pointing control p 610 A89-42656 Software development reusability for aircraft simulation systems p 630 A89-43127 Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147 An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 Advances in computational design and analysis of airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465 Investigations on the cracking behavior of joints in	London, England, Sept. 27-29, 1988 p 629 A89-40425 AIAA Computational Fluid Dynamics Conference, 9th, Buffalo, NY, June 13-15, 1989, Technical Papers p 572 A89-41776 Research and development: Technical and scientific publications 1988 Book p 635 A89-42926 Image Signal Processing for Flight Guidance [DFVLR-MITT-88-32] p 602 N89-24295 Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 CONFORMAL MAPPING Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823 Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge geometries [AIAA PAPER 89-1969] p 577 A89-41841 CONICAL FLOW Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1816] p 577 A89-41804 Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction [AIAA PAPER 89-1850] p 584 A89-42078 An experimental study of hypersonic turbulence on a sharp cone [AIAA PAPER 89-1866] p 586 A89-42093 CONTAMINATION Effects of contamination on riblet performance

CONTINUUM MODELING

'Hypersonic slip flows' and issues on extending continuum model beyond the Navier-Stokes level [AIAA PAPER 89-1663] p 590 A89-43187

CONTRAROTATING PROPELLERS

Unsteady blade pressure measurements on a model counterrotation propeller p 631 A89-40175

[AIAA PAPER 89-1144]

Noise of a model counterrotation propeller with simulated fuselage and support pylon at takeoff/approach conditions

p 633 N89-24138 [NASA-TM-101996]

Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results p 634 N89-24888 INASA-TM-1006381

CONTROL CONFIGURED VEHICLES

Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1

[AD-A205723] p 616 N89-23473 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Plus Integral) feedback and Kalman filter, volume 2

p 617 N89-24325 AD-A2062021

CONTROL STABILITY

Results of an A109 simulation validation and handling qualities study

NASA-TM-1010621 p 617 N89-24323

CONTROL SURFACES

Active flutter suppression on a delta wing

p 614 A89-40963

Transonic aeroelasticity of fighter wings with active control surfaces p 579 A89-42020 Control design of an unstable non-minimum phase

aircraft subject to control surface saturation p 616 N89-23475 [AD-A206024]

Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing

[NAL-TR-978] p 616 N89-24321

CONTROL SYSTEMS DESIGN

OPST 1 - A digital optical tail rotor control system

[MBB-UD-533-88-PUB] p 614 A89-39847 Improved time-domain stability robustness measures for linear regulators p 630 A89-43068

Advances in computational design and analysis of airbreathing propulsion systems

p 613 N89-23465 [NASA-TM-101987]

The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA INAL-TR-9721

p 615 N89-23467 The 4D-TECS integration for NASA TSRV airplane [NASA-CR-4231] p 615 N89-23471

Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1

p 616 N89-23473 [AD-A205723] Design of automated system for management of arrival

traffic [NASA-TM-102201] p 598 N89-24290

Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics

[NASA-TM-101574] p 608 N89-24308

Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

[NASA-TM-101570] p 609 N89-24313

Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center

p 609 N89-24314 [NASA-TM-101582]

Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327

CONTROL THEORY

Automatic control of jet engines (3rd revised and enlarged edition) --- Russian book p 613 A89-42509

Aerodynamic design via control theory p 589 A89-43094

Multivariable flight control design with parameter uncertainty for the AFTI/F-16 p 616 N89-23476 LAD-A2060681

CONTROLLABILITY

Results of an A109 simulation validation and handling

qualities study

[NASA-TM-101062] p 617 N89-24323

CONVECTIVE FLOW

An experimental study of the effect of streamwise vortices on unsteady turbulent boundary-layer separation p 593 N89-23420 IAD-A2054621

CONVERGENCE

Numerical study of the influence of leading and trailing edge flaps on the performance of airfoils

p 594 N89-23428 (AD-A206138)

COOLING SYSTEMS

Hydraulic resistance of the inlet channels of a rotor p 611 A89-40596 CORNER FLOW

Computation of sharp fin and swept compression corner shock/turbulent boundary layer interactions

p 585 A89-42080 LAIAA PAPER 89-18521

Study of hypersonic flow past sharp cones p 591 A89-43228 [AIAA PAPER 89-1713]

COST ANALYSIS

On the optimum cruise speed of a hypersonic aircraft p 605 A89-41652

COST EFFECTIVENESS

Improving transient analysis technology for aircraft p 629 N89-24655 structures

COUNTER ROTATION

Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

AIAA PAPER 89-1059] p 631 A89-40472

COUNTERFLOW

Simulation of the flow around a counterrotating shrouded p 589 A89-43113

CRACK CLOSURE

Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport

IAD-A2055591 p 626 N89-23740

CRACK PROPAGATION

Advanced concepts and materials for high-speed flight p 620 A89-41585

Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 USAF (US Air Force) durability design handbook:

Guidelines for the analysis and design of durable aircraft structures

IAD-A2062861 p 608 N89-23457

CRACKING (CHEMICAL ENGINEERING)

Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing

p 621 N89-23712 [AD-A205470]

CRACKS

Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations

[PB89-141279] p 619 N89-23479

CRASH LANDING

Comparison of the crushing behaviour of metallic ubfloor structures

| MBB-UD-535-88-PUB1 p 622 A89-39841 Transient analysis techniques in performing impact and crash dynamic studies p 629 N89-24658

CRASHES

Hazards of mountain flying - Crashes in the Colorado p 597 A89-42151 Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986

p 597 N89-23434 PB89-151021]

CRASHWORTHINESS

Comparison of the crushing behaviour of metallic ubfloor structures

[MBB-UD-535-88-PUB] p 622 A89-39841 Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

p 605 A89-42019 Transient analysis techniques in performing impact and crash dynamic studies p 629 N89-24658

CREEP PROPERTIES

Age creep forming aluminum aircraft skins p 624 A89-41584

CREW PROCEDURES (INFLIGHT)

Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 p 598 N89-23436

(PR88-9104121

CREW WORKSTATIONS

An evaluation of the F/FB/EF-111 crew/voice message system [AD-A205998] p 626 N89-23774

CROSS FLOW

Crossflow-vortex instability and transition on a 45 deg swept wing

p 587 A89-42114 [AIAA PAPER 89-1892] An investigation of V/STOL jet interactions in a crossflow

p 596 N89-24272 AD-A2063601 CRUISING FLIGHT

On the optimum cruise speed of a hypersonic aircraft

p 605 A89-41652 CRYSTAL GROWTH Measurements of diffusion limited solidification at

varying gravity
[AIAA PAPER 89-1755] p 626 A89-43268 CUMULATIVE DAMAGE

Fatigue damage to an aircraft from gusts

p 603 A89-40083

The use of operational loads data to assess fatigue damage rates in a jet trainer aircraft p 605 A89-41913

CURVE FITTING

Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 CYLINDERS

Numerical analysis on aerodynamic characteristics of an inclined square cylinder

[AIAA PAPER 89-1805] p 580 A89-42038 Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference

p 592 N89-23411 INASA-CR-1853261

DAMAGE ASSESSMENT

Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction

p 612 A89-41910

The use of operational loads data to assess fatigue damage rates in a jet trainer aircraft p 605 A89-41913 DATA ACQUISITION

A research facility for film cooling investigations with emphasis on the instrumentation system

[NAL-TM-PR-8704] p 619 N89-23477 Application of a PC based, real-time, data-aquisition system in rotorcraft wind-tunnel testing

[NASA-TM-4119] p 630 N89-24079

DATA LINKS

Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2

p 601 N89-24292 [DOT/FAA/CT-89/14-VOL-1]

DATA SIMULATION

Analog-to-digital converter effects on airborne radar p 599 A89-42661 nerformance Syntactic classification of radar measurements of p 600 A89-42680 commercial aircraft

DATA SYSTEMS

CIDS- Cabin Intercommunication Data System

p 600 A89-42938 [MBB-UT-020-87-PUB] DC 9 AIRCRAFT

Interior noise control ground test studies for advanced

turboprop aircraft applications [NASA-CR-181819] p 633 N89-24141

DECISION MAKING

Generation of architectures for distributed intelligence systems p 601 N89-23440

(AD-A205783)

DÉICERS Preliminary airworthiness evaluation of modified second-generation Pneumatic Boot Deicing System on a JUH-1H

[AD-A206255] p 598 N89-24289

DELTA WINGS Large-scale viscous simulation of laminar vortex flow

p 569 A89-40901 over a delta wing Active flutter suppression on a delta wing

p 614 A89-40963 Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982]

p 576 A89-41825 Vorticity equation solutions for slender wings at high incidence

[AIAA PAPER 89-1989] p 577 A89-41832 Investigations on the vorticity sheets of a close-coupled p 579 A89-42017 delta-canard configuration A structure of leading-edge and tip vortices at a delta

[AIAA PAPER 89-1803] p 579 A89-42037 Vortex-dominated conical-flow computations using

unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046 Periodic vortex shedding over delta wings
AIAA PAPER 89-1923] p 587 A89-42139

[AIAA PAPER 89-1923] Three-dimensional effects in high-intensity vortices p 588 A89-42464

Analysis of the boundary layer of a delta wing in incidence p 596 N89-24274

[CERT-RT-OA-26/5025-AYD] DESIGN ANALYSIS

Aerodynamic design via control theory p 589 A89-43094 Interdisciplinary and multilevel optimum design --- in

aerospace structural engineering p 606 A89-43450 Preliminary design of a modular unmanned research vehicle. Volume 2: Subsystem technical development design study

p 607 N89-23454 [AD-A205678] Advances in computational design and analysis of

airbreathing propulsion systems p 613 N89-23465 [NASA-TM-101987]

Multivariable flight control design with parameter	DUMP COMBUSTORS	ELECTRONIC EQUIPMENT
uncertainty for the AFTI/F-16	Characteristics of dump combustor flows	An analysis of Electronic Aids to Maintenance (EAM)
[AD-A206068] p 616 N89-23476	p 612 A89-41224	for the Light Helicopter Family (LHX)
Composite Blade Structural Analyzer (COBSTRAN) demonstration manual	DURABILITY USAF (US Air Force) durability design handbook	[AD-A205440] p 568 N89-23407 ELLIPSOIDS
[NASA-TM-101957] p 622 N89-24459	USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft	Numerical simulation of laminar hypersonic flow past a
DIGITAL COMMAND SYSTEMS	structures	double-ellipsoid
Recent activities within the Aeroservoelasticity Branch	[AD-A206286] p 608 N89-23457	[AIAA PAPER 89-1840] p 583 A89-42068
at the NASA Langley Research Center	DYNAMIC LOADS	EMBEDDING
[NASA-TM-101582] p 609 N89-24314	Dynamic loading on impact surfaces of a high subsonic	Adaptive grid embedding in nonequilibrium hypersonic
DIGITAL COMPUTERS	elliptic jet	flow [AIAA PAPER 89-1652] p 590 A89-43178
An evaluation of the F/FB/EF-111 crew/voice message	[AIAA PAPER 89-1139] p 632 A89-40477	[AIAA PAPER 89-1652] p 590 A89-43178 EMERGENCY LIFE SUSTAINING SYSTEMS
system (AD-A205998) p 626 N89-23774	DYNAMIC MODELS	Effect of electromagnetic interference by neonatal
DIGITAL SIMULATION	Modelling aircraft dynamics	transport equipment on aircraft operation
Numerical simulation of flow over a hypersonic aircraft	[AD-A204086] p 607 N89-23449	p 625 A89-42161
using an explicit upwind PNS solver	DYNAMIC PRESSURE Flutter of a low-aspect-ratio rectangular wing	ENGINE AIRFRAME INTEGRATION
[AIAA PAPER 89-1829] p 582 A89-42058	[NASA-TM-4116] p 606 N89-23447	Innovative pylon concepts for engine-airframe
Numerical simulation of laminar hypersonic flow past a	DYNAMIC STABILITY	integration for transporic transports
double-ellipsoid	Results of a parametric aeroelastic stability analysis of	[AIAA PAPER 89-1819] p 581 A89-42049
[AIAA PAPER 89-1840] p 583 A89-42068 Simulation of the flow around a counterrotating shrouded	a generic X-wing aircraft	ENGINE CONTROL A study of the characteristics of aircraft powerplants
propfan p 589 A89-43113	[NASA-TM-101572] p 617 N89-24324	under conditions of optimal control of their principal
Numerical simulation and experiments on leading-edge	DYNAMIC STRUCTURAL ANALYSIS	components p 612 A89-42466
vortices on modern wings, with European cooperation	A correlation study of X-29A aircraft and associated	Automatic control of jet engines (3rd revised and
p 589 A89-43114	analytical developments p 607 N89-23450	enlarged edition) Russian book p 613 A89-42509
DIGITAL SYSTEMS	Survey of Army/NASA rotorcraft aeroelastic stability	ENGINE DESIGN
OPST 1 - A digital optical tail rotor control system	research	Engine aspects in the design of advanced rotorcraft
[MBB-UD-533-88-PUB] p 614 A89-39847	[NASA-TM-101026] p 618 N89-24329	[MBB-UD-528-88-PUB] p 611 A89-39842
Development and flight test experiences with a	Some issues in numerical simulation of nonlinear	Next-generation power for next-generation civil
flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327	structural response p 628 N89-24639	rotorcraft p 611 A89-41050 Soviet aerospace industry - Propulsion research center
DIRECT LIFT CONTROLS	Computational Methods for Structural Mechanics and	focuses on developing fuel-efficient aircraft
Use of Navier-Stokes methods to predict circulation	Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654	p 611 A89-41058
control airfoil performance	Improving transient analysis technology for aircraft	Soviet aerospace industry - Motorworks taps skill of
[AD-A206242] p 595 N89-24270	structures p 629 N89-24655	several factories to produce powerplants
DIRECTIONAL STABILITY	54 dotaros p 020 1100 2 1000	p 567 A89-41059
Loss of tail rotor effectiveness evaluation of the OH-58C	_	Academician B. S. Stechkin's work in the development
helicopter with directional SAS (Stability Augmentation	E	of jet engines p 634 A89-42452
System) [AD-A206181]: p 608 N89-24309		Scientific and pedagogical work of academician B. S. Stechkin at the Zhukovskii Air Force Engineering
[AD-A206181]: p 608 N89-24309 DISCRETE FUNCTIONS	EARTH SURFACE	Academy p 635 A89-42453
Sonic-point capturing shock wave structures in	Laser altimetry measurements from aircraft and	Experimental investigation of the characteristics of
transonic nozzle flow	spacecraft p 624 A89-41691	combination engines p 612 A89-42462
[AIAA PAPER 89-1945] p 573 A89-41792	EDDY VISCOSITY RNG-based turbulence transport approximations with	Two-time probabilistic model of the evolution of aircraft
DISKS (SHAPES)	applications to transport flows Renormalization Group	engine reliability p 612 A89-42463
An acoustic experimental and theoretical investigation	Theory	ENGINE INLETS
of single disc propellers		Modification in engineering calculation method for inlet
	[AIAA PAPER 89-1950] p 573 A89-41797	
[AIAA PAPER 89-1146] p 632 A89-40478	[AIAA PAPER 89-1950] p 573 A89-41797 EJECTION TRAINING	design p 571 A89-41121
[AIAA PAPEH 89-1146] p 632 A89-40478 DISPLAY DEVICES		design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272	EJECTION TRAINING	design p 571 A89-41121
[AIAA PAPEH 89-1146] p 632 A89-40478 DISPLAY DEVICES	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbornachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbornachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbornachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low attitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data Whither titanium powder metallurgy?
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low attitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures'	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit DIVERGENCE Comment on 'General formulation of the aeroelastic	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 ENGINE TESTS Investigation on thrust measurement of turbojet engine
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data whither titanium powder metallurgy? P 621 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components P 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data Whither titanium powder metallurgy? P 621 A89-40624 Whither titanium powder metallurgy? P 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] P 619 N89-23482
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data Whither titanium powder metallurgy? P 621 A89-40624 Whither titanium powder metallurgy? P 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] P 619 N89-23482
DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771 Effects of contamination on riblet performance	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771 Effects of contamination on riblet performance	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771 Effects of contamination on riblet performance p 579 A89-42021 Navier-Stokes solution for a NACA 0012 airfoil with mass	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A205422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771 Effects of contamination on riblet performance p 579 A89-42021 Navier-Stokes solution for a NACA 0012 airfoil with mass flux (fan) [AD-A205771] p 593 N89-23424 Computational design of low aspect ratio wing-winglet	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENGINEMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines
[AIAA PAPER 89-1146] p 632 A89-40478 DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components p 626 A99-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-4126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER B9-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENGINE TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler p 571 A89-41759 An adaptive Cartesian mesh algorithm for the Euler
DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771 Effects of contamination on riblet performance p 579 A89-42021 Navier-Stokes solution for a NACA 0012 airfoil with mass flux (fan) [AD-A205771] p 593 N89-23424 Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests [NASA-CR-185016] p 595 N89-24266 DUCTED FLOW The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation ρ 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations in arbitrary geometries
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 ELECTRON BEAM WELDING	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations in arbitrary geometries [AIAA PAPER 89-1930] p 572 A89-41775
DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305 DIVERGENCE Comment on 'General formulation of the aeroelastic divergence of composite swept-forward wing structures' p 605 A89-42025 DRAG COEFFICIENTS Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 A89-43228 DRAG REDUCTION The effect of an adverse pressure gradient on the drag reduction performance of manipulators p 571 A89-41771 Effects of contamination on riblet performance p 579 A89-42021 Navier-Stokes solution for a NACA 0012 airfoil with mass flux (fan) [AD-A205771] p 593 N89-23424 Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests [NASA-CR-185016] p 595 N89-24266 DUCTED FLOW The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 ELECTRON BEAM WELDING Electron beam welding and repair of critical structures	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations in arbitrary geometries
DISPLAY DEVICES User friendly real time display p 609 A89-40272 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Display of flight guidance information in the aircraft cockpit p 610 N89-24305	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 ELECTRON BEAM WELDING	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations in arbitrary geometries [AIAA PAPER 89-1930] p 572 A89-41777 Design of optimally smoothing multi-stage schemes for
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue p 606 A89-43115 EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] p 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825 ELASTOSTATICS Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] p 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation ρ 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] p 633 A89-41830 ELECTRON BEAM WELDING Electron beam welding and repair of critical structures p 624 A89-41586	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? p 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations in arbitrary geometries [AIAA PAPER 89-1930] p 572 A89-41777 Design of optimally smoothing multi-stage schemes for the Euler equations
AIAA PAPER 89-1146 p 632 A89-40478	EJECTION TRAINING Cockpit-canopy fragmentation system for immediate pilot rescue pilot rescue EJECTORS Ejector effects on a supersonic nozzle at low altitude and Mach number [AD-A206049] A model for prediction of STOVL ejector dynamics [NASA-TM-102098] P 614 N89-23427 A model for prediction of STOVL ejector dynamics [NASA-TM-102098] P 614 N89-24319 ELASTIC BODIES Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow [AD-A205739] P 593 N89-23423 ELASTIC CYLINDERS Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 ELASTIC DEFORMATION Dynamic grid deformation using Navier-displacement equation for deforming wings [AIAA PAPER 89-1982] P 576 A89-41825 ELASTOSTATICS Opimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] P 607 N89-23452 ELECTRO-OPTICS OPST 1 - A digital optical tail rotor control system [MBB-UD-533-88-PUB] P 614 A89-39847 The conformed panoramic - A new concept in electro-optical sensors P 622 A89-40266 ELECTROMAGNETIC INTERFERENCE Effect of electromagnetic interference by neonatal transport equipment on aircraft operation P 625 A89-42161 ELECTROMAGNETIC SCATTERING A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD methods [AIAA PAPER 89-1987] P 633 A89-41830 ELECTRON BEAM WELDING Electron beam welding and repair of critical structures P 624 A89-41586	design p 571 A89-41121 ENGINE MONITORING INSTRUMENTS The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081 Method and system for monitoring and displaying engine performance parameters [NASA-CASE-LAR-14049-1] p 614 N89-23466 ENGINE PARTS Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Whither titanium powder metallurgy? P 621 A89-41591 Braze repair of aero engine components p 626 A89-43535 ENGINE TESTS Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility [AD-A205937] p 619 N89-23482 ENVIRONMENTAL TESTS The environmental cracking behaviour of aluminium-lithium based alloys p 621 A89-41601 EPOXY RESINS A foil adhesive for construction - The Letoxit system p 620 A89-40085 EROSION Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 EULER EQUATIONS OF MOTION A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations in arbitrary geometries [AIAA PAPER 89-1930] p 572 A89-41777 Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780

Non-reflecting boundary conditions for Euler equation	FEEDBACK CONTROL	Computational procedures for postbuckling of composite
calculations [AIAA PAPER 89-1942] p 573 A89-41789	Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command	shells p 628 N89-24642
A high-resolution Euler solver	generator tracker with PI (Proportional-Plus-Integral)	Transient analysis techniques in performing impact and crash dynamic studies p 629 N89-24658
[AIAA PAPER 89-1949] p 630 A89-41796	feedback and Kalman filter, volume 1	FINITE VOLUME METHOD
Multigrid Euler solver about arbitrary aircraft	[AD-A205723] p 616 N89-23473 Multivariable flight control design with parameter	Numerical solution of Navier-Stokes equations for
configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806	uncertainty for the AFTI/F-16	two-dimensional viscous compressible flows p 570 A89-40903
A new formulation for unsteady compressible Euler	[AD-A206068] p 616 N89-23476	An efficient cell-vertex multigrid scheme for the
equations	Numerical simulation of feedback control of aerodynamic	three-dimensional Navier-Stokes equations
[AIAA PAPER 89-1993] p 577 A89-41836	configurations in steady and unsteady ground effects p 617 N89-24326	[AIAA PAPER 89-1953] p 574 A89-41800 An adaptive grid polygonal finite volume method for the
Upwind algorithms based on a diagonalization of the multidimensional Euler equations	FIBER COMPOSITES	compressible flow equations
[AIAA PAPER 89-1958] p 578 A89-41842	Advanced concepts and materials for high-speed flight	[AIAA PAPER 89-1959] p 574 A89-41805
Multigrid solution of the Euler equations for	p 620 A89-41585 Technology of aircraft construction (selected chapters)	A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD
three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048	[AD-A199946] p 569 N89-24261	methods
Unsteady interaction of a rotor with a vortex	FIBER OPTICS	[AIAA PAPER 89-1987] p 633 A89-41830
[AIAA PAPER 89-1848] p 584 A89-42076	An intelligent fiberoptic data bus for fly-by-light applications	A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations
EULER-LAGRANGE EQUATION Applications of Lagrangian time to steady supersonic	[NAL-TM-SE-8707] p 634 N89-24901	[AIAA PAPER 89-1994] p 577 A89-41837
airfoil computation	FIBERS Tophnology of circreft construction (colouted chanters)	A central finite volume TVD scheme for the calculation
[AIAA PAPER 89-1963] p 575 A89-41808	Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261	of supersonic and hypersonic flow fields around complex configurations
EUROPEAN AIRBUS New developments in air and space research -	FIELD OF VIEW	[AIAA PAPER 89-1975] p 578 A89-41844
Contributions of the German aircraft and space industry	Visibility with a moving point of view	Computation of turbulent flows on a CAST 10 wing using
to advanced programs and international cooperation	p 631 N89-24876 FIGHTER AIRCRAFT	an upwind scheme [AIAA PAPER 89-1836] p 582 A89-42064
[MBB-Z-177-88-PUB] p 635 A89-42927 Center of gravity control on Airbus aircraft: Fuel, range	The US airborne radar scene p 567 A89-40856	Numerical solutions of forward-flight rotor flow using an
and loading	Soviet aerospace industry - Mikoyan design group	upwind method
[REPT-882-111-101] p 608 N89-23460	upgrading MiG-29 with fly-by-wire controls, new cockpit p 603 A89-41063	[AIAA PAPER 89-1846] p 584 A89-42074
A330/340 hydraulic system [REPT-882-111-102] p 608 N89-23461	Validation of aerodynamic parameters for high-incidence	FINNED BODIES Inception length to a fully-developed fin-generated shock
[REPT-882-111-102] p 608 N89-23461 Calculation of aircraft noise in the vicinity of civil airports	research models p 578 A89-42012	wave boundary-layer interaction
by a simultion procedure	Numerical simulation of aircraft rotary aerodynamics p 579 A89-42024	[AIAA PAPER 89-1850] p 584 A89-42078
[MPIS-7/1988] p 634 N89-24887 EXPERIMENT DESIGN	Advanced technology ultra reliable radar (URR)	Computation of sharp fin and swept compression corner shock/turbulent boundary layer interactions
Heliport night parking area criteria test plan	p 599 A89-42652	[AIAA PAPER 89-1852] p 585 A89-42080
[DOT/FAA/CT-TN88/45] p 619 N89-23480	Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds	FINS
EXPERT SYSTEMS	[AIAA PAPER 87-2619] p 589 A89-42931	The structure of aerodynamic heating in three-dimensional shock wave/turbulent boundary layer
The application of artificial intelligence techniques for turbomachinery diagnostics p 629 A89-41081	Modular avionics architecture for modern fighter	interactions induced by sharp and blunt fins
EXTERNAL STORE SEPARATION	aircraft [MBB-FE-301/S/PUB/339] p 610 A89-42932	[AIAA PAPER 89-1854] p 585 A89-42082
Cavity door effects on aerodynamic loads of stores	Development of a monolithic fuselage shell using	FIRE PREVENTION Probing Boeing's crossed connections
separating from cavities p 578 A89-42011 EXTERNAL STORES	CFRP	p 597 A89-42811
Experimental/computational study of a transonic aircraft	[MBB-FE-234/S/PUB/338] p 606 A89-42934 Effect of head-up display dynamics on fighter flying	FITTING
with stores	qualities p 606 A89-43058	Mechanical model study for shrink fit rotor p 611 A89-40964
[AIAA PAPER 89-1832] p 582 A89-42060 EXTERNAL TANKS	Three-dimensional energy-state extremals in feedback	FIXED WINGS
[AIAA PAPER 89-1832] p 582 A89-42060 EXTERNAL TANKS Airborne pod structures p 603 A89-40261	Three-dimensional energy-state extremals in feedback form p 615 A89-43071	FIXED WINGS A methodology for determining the survivability of
EXTERNAL TANKS Airborne pod structures p 603 A89-40261	Three-dimensional energy-state extremals in feedback	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms
EXTERNAL TANKS	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES)
EXTERNAL TANKS Airborne pod structures p 603 A89-40261	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability
EXTERNAL TANKS Airborne pod structures p 603 A89-40261 F F-15 AIRCRAFT	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075 Experimental/computational study of a transonic aircraft	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075 Experimental/computational study of a transonic aircraft with stores	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A266088] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINTE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40008 A flux-difference split algorithm for unsteady thin-layer	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40008 A flux-difference split algorithm for unsteady thin-layer	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINTE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1996] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-15A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] FAIRCRAFT	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-B704] p 619 N89-23477 FINTE DIFFERENCE THEORY On some numerical schemes for transonic flow problems and indraft wind tunnels p 570 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2657] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42855 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities micraft dynamics
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-B704] p 619 N89-23477 FINTE DIFFERENCE THEORY On some numerical schemes for transonic flow problems and indraft wind tunnels p 570 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730]
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Finite element computation of hypersonic flow past a complete body	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities p 606 A89-43058 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 A correlation study of X-29A aircraft and associated
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAB BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Finite element computation of hypersonic flow past a complete body	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities p 606 A89-43058 Modelling aircraft dynamics [AD-A204086] p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23451
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines p 612 A89-44222	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1847] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23451
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FARRILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAR BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422 FAR FIELDS Far field numerical boundary conditions for internal and	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1996] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 A demonstration of the method of stochastic finite	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities p 606 A89-43058 Modelling aircraft dynamics [AD-A204086] p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23451 FLIGHT CONDITIONS Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422 FAR FIELDS Far field numerical boundary conditions for internal and cascade flow computations	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINTE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 A demonstration of the method of stochastic finite element analysis	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities p 606 A89-43058 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23450 FLIGHT CONDITIONS Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23450
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1996] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 A demonstration of the method of stochastic finite	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-4083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities from early airplanes to a R89-43051 Effect of head-up display dynamics on fighter flying qualities from early airplanes to the Space Shuttle p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23451 FLIGHT CONDITIONS Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-234480 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422 FAR FIELDS Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 The unsteady flow in the far field of an isolated blade row p 591 A89-43537	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42855 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities p 606 A89-43058 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23450 FLIGHT CONDITIONS Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23450 FLIGHT CONTROL
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-15A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 The unsteady flow in the far field of an isolated blade row p 591 A89-43537	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINTE DIFFERENCE THEORY On some numerical schemes for transonic flow problems Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model p 597 N89-24286	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities modelling aircraft dynamics [AD-A204086] p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23451 FLIGHT CONDITIONS Heliport night parking area criteria test plan [DOT/FAA/CT-TN89/45] p 619 N89-23480 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 FLIGHT CONTROL System testing exemplified by the A320-landing flaps
F-15 AIRCRAFT Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-40261 Experimental/computational study of a transonic aircraft with stores [AIAA PAPER 89-1832] p 582 A89-42060 US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 F-16 AIRCRAFT Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 F-18 AIRCRAFT NASA adds to understanding of high angle of attack regime p 571 A89-41201 FABRICATION Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FAIRCHILD-HILLER AIRCRAFT Aircraft Accident Report: AVAir Inc., Flight 3378, Fairchild Metro 3, SA227 AC, N622AV, Cary, North Carolina, February 19, 1988 [PB88-910412] p 598 N89-23436 FAN BLADES Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422 FAR FIELDS Far field numerical boundary conditions for internal and cascade flow computations [AIAA PAPER 89-1943] p 573 A89-41790 The unsteady flow in the far field of an isolated blade row p 591 A89-43537	Three-dimensional energy-state extremals in feedback form p 615 A89-43071 Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] p 616 N89-23476 FILAMENT WINDING Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 FILM COOLING Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 FINITE DIFFERENCE THEORY On some numerical schemes for transonic flow problems p 569 A89-39867 Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908 A flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 FINITE ELEMENT METHOD Finite element computation of hypersonic flow past a complete body [AIAA PAPER 89-1976] p 576 A89-41819 Ground shake test of the Boeing Model 360 helicopter airframe [NASA-CR-181766] p 627 N89-23920 A demonstration of the method of stochastic finite element analysis [AD-A206135] p 630 N89-24127 Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model	FIXED WINGS A methodology for determining the survivability of fixed-wing aircraft against small arms [AD-A205730] p 607 N89-23455 FLAPS (CONTROL SURFACES) The research of the aircraft neutral stability p 614 A89-40961 FLAT PLATES Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139] p 632 A89-40477 Effect of wall temperature distribution on the stability of the compressible boundary layer [AIAA PAPER 89-1894] p 587 A89-42116 FLEXIBLE WINGS Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101562] p 609 N89-24314 FLIGHT CHARACTERISTICS Fatigue damage to an aircraft from gusts p 603 A89-40083 Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42855 Flying qualities from early airplanes to the Space Shuttle p 614 A89-43051 Effect of head-up display dynamics on fighter flying qualities p 606 A89-43058 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450 Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23450 FLIGHT CONDITIONS Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23450 FLIGHT CONTROL

Analysis of a candidate control algorithm for a ride-quality	Results of an A109 simulation validation and handling	Prediction of transition due to isolated roughness for
augmentation system p 614 A89-43057	qualities study	flow over flat plate with bumps or hollows
The VAAC/VSTOL Flight Control Research Project	(NASA-TM-101062) p 617 N89-24323	p 622 A89-40907
p 615 A89-43104	Visibility with a moving point of view	Analysis of the influence of the end-wall boundary layer
Aircraft Accident Report: AVAir Inc., Flight 3378,	p 631 N89-24876	growth on the performance of multistage compressors
Fairchild Metro 3, SA227 AC, N622AV, Cary, North	FLIGHT SIMULATORS	p 570 A89-41082
Carolina, February 19, 1988	Methods of flying model studies Russian book	A central finite volume TVD scheme for the calculation
(PB88-910412) p 598 N89-23436	p 605 A89-42535	of supersonic and hypersonic flow fields around complex
A330/340 hydraulic system	FLIGHT TEST INSTRUMENTS	configurations
[REPT-882-111-102] p 608 N89-23461	Determination of reference trajectories for testing	[AIAA PAPER 89-1975] p 578 A89-41844
The functional mock-up test of the flight control system	navigation aids using an onboard CCD camera	A computational analysis of the transonic flow field of two-dimensional minimum length nozzles
of the NAL QSTOL research aircraft ASKA [NAL-TR-972] p 615 N89-23467	p 602 N89-24303	[AIAA PAPER 89-1822] p 581 A89-42052
The 4D-TECS integration for NASA TSRV airplane	FLIGHT TEST VEHICLES	Numerical simulation of flow over a hypersonic aircraft
[NASA-CR-4231] p 615 N89-23471	Flight testing of the Southern Cross replica aircraft	using an explicit upwind PNS solver
Flight control system for the CRCA (Control	[AD-A205303] p 607 N89-23451	[AIAA PAPER 89-1829] p 582 A89-42058
Reconfigurable Combat Aircraft) using a command	FLIGHT TESTS	Experimental/computational study of a transonic aircraft
generator tracker with PI (Proportional-Plus-Integral)	Design and development tests of a five-bladed hingeless	with stores
feedback and Kalman filter, volume 1	helicopter main rotor	[AIAA PAPER 89-1832] p 582 A89-42060
[AD-A205723] p 616 N89-23473	(MBB-UD-531-88-PUB) p 603 A89-39845	Measurement and computation of the velocity field of
Actuator rate saturation compensator	Comparison of propeller cruise noise data taken in the	a cylinder in the wake of a rotor in forward flight
[AD-D013962] p 616 N89-23474	NASA Lewis 8- by 6-foot wind tunnel with other tunnel	[AIAA PAPER 89-1844] p 583 A89-42072
Control design of an unstable non-minimum phase	and flight data	Effect of wall temperature distribution on the stability
aircraft subject to control surface saturation	[AIAA PAPER 89-1059] p 631 A89-40472	of the compressible boundary layer
[AD-A206024] p 616 N89-23475	Soviet aerospace industry - Mil Mi-28 attack helicopter	[AIAA PAPER 89-1894] p 587 A89-42116
Multivariable flight control design with parameter	in final tests prior to full-scale production	Periodic vortex shedding over delta wings
uncertainty for the AFTI/F-16	p 567 A89-41062	[AIAA PAPER 89-1923] p 587 A89-42139
[AD-A206068] p 616 N89-23476	Modified F-15B to demonstrate STOL, maneuver	PNS code assessment studies for scramjet combustor
An evaluation of the F/FB/EF-111 crew/voice message	capability p 603 A89-41075	and nozzle flowfields
system	NASA adds to understanding of high angle of attack	[AIAA PAPER 89-1697] p 613 A89-43213
[ÁD-A205998] p 626 N89-23774	regime p 571 A89-41201	Numerical simulation of hypersonic flow around a space
Flight control system for the CRCA (Control	Flight tests with the VFW 614 - ATTAS laminar glove	plane. 1: Basic development
Reconfigurable Combat Aircraft) using a command	[MBB-UT-0132-88-PUB] p 606 A89-42936	[NAL-TR-976T] p 591 N89-23409
generator tracker with PI (Plus Integral) feedback and	IA63 Pampa - The completion of an aircraft development	Numerical solution of periodic vortical flows about a thin
Kalman filter, volume 2	program p 568 A89-43112	airfoil
[AD-A206202] p 617 N89-24325	Flight testing of the Southern Cross replica aircraft	[NASA-TM-101998] p 592 N89-23413
Development and flight test experiences with a	[AD-A205303] p 607 N89-23451	The low frequency oscillation in the flow over a
flight-crucial digital control system	Effect of advanced rotorcraft airfoil sections on the hover	NACA0012 airfoil with an iced leading edge
[NASA-TP-2857] p 617 N89-24327	performance of a small-scale rotor model	[NASA-TM-102018] p 592 N89-23417
FLIGHT HAZARDS	[NASA-TP-2832] p 595 N89-24264	An experimental study of the effect of streamwise
Hazards of mountain flying - Crashes in the Colorado	Preliminary airworthiness evaluation of modified	vortices on unsteady turbulent boundary-layer separation
Rockies p 597 A89-42151	second-generation Pneumatic Boot Delicing System on a	[AD-A205462] p 593 N89-23420
FLIGHT MANAGEMENT SYSTEMS	JUH-1H	Investigation of the flowfield created by the interaction
A rapid prototyping facility for flight research in advanced	[AD-A206255] p 598 N89-24289	of a sonic jet and a co-flowing supersonic stream
systems concepts p 630 A89-41698	An operational demonstration and engineering flight test	[AD-A205823] p 593 N89-23425
Controller evaluation of initial data link air traffic control	of the Microwave Landing System on runway 22L at	Characteristics of a five-hole spherical pitot tube
services. Volume 1: Mini study 2	Chicago's Midway Airport	[NAL-TR-971] p 610 N89-23463
[DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292	[DOT/FAA/CT-TN88/42] p 601 N89-24291	High speed turboprop aeroacoustic study (single
FLIGHT OPTIMIZATION	B-737 flight test of curved-path and steep-angle	rotation). Volume 1: Model development
Optimal guidance with obstacle avoidance for	approaches using MLS guidance	[NASA-CR-182257-VOL-1] p 633 N89-24139
nap-of-the-earth flight [NASA-CR-177515] p 618 N89-24328	[NASA-TM-101521] p 601 N89-24293	Water tunnel investigation of the vortex dynamics of
	Loss of tail rotor effectiveness evaluation of the OH-58C	periodically pitched wings
FLIGHT PATHS The research of the aircraft neutral stability	helicopter with directional SAS (Stability Augmentation	[AD-A206359] p 595 N89-24271
p 614 A89-40961	System) [AD-A206181] p 608 N89-24309	FLOW EQUATIONS
An overview of the direct simulation of an integrated	[AD-A206181] p 608 N89-24309 Results of an A109 simulation validation and handling	Turbulence models for 3D transonic viscous flows
aircraft navigation system on a PC p 600 A89-43148	qualities study	[AIAA PAPER 89-1952] p 574 A89-41799
Controller evaluation of initial data link air traffic control	[NASA-TM-101062] p 617 N89-24323	An adaptive grid polygonal finite volume method for the
services. Volume 1: Mini study 2	FLIGHT TIME	compressible flow equations
[DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292	A study on the air traffic management - The effect of	[AIAA PAPER 89-1959] p 574 A89-41805
B-737 flight test of curved-path and steep-angle	departure regulation p 599 A89-40895	A time-accurate iterative scheme for solving the
approaches using MLS guidance	FLIGHT VEHICLES	unsteady compressible flow equations
[NASA-TM-101521] p 601 N89-24293	Problems of the unification of the on-board systems of	[AIAA PAPER 89-1992] p 577 A89-41835
Visibility with a moving point of view	flight vehicles p 620 A89-42456	FLOW GEOMETRY
p 631 N89-24876	A model of the reachability zone and its use in the ballistic	An adaptive Cartesian mesh algorithm for the Euler
Calculation of aircraft noise in the vicinity of civil airports	design of flight vehicles p 620 A89-42459	equations in arbitrary geometries
by a simultion procedure	FLOORS	[AIAA PAPER 89-1930] p 572 A89-41777
[MPIS-7/1988] p 634 N89-24887	Comparison of the crushing behaviour of metallic	A central finite volume TVD scheme for the calculation
FLIGHT SAFETY	subfloor structures	of supersonic and hypersonic flow fields around complex
Aircraft flight safety: Methodological principles		configurations
	(MBB-UD-535-88-PUB) p 622 A89-39841	
Russian book p 597 A89-42536	(MBB-UD-535-88-PUB) p 622 A89-39841 FLOW CHAMBERS	[AIAA PAPER 89-1975] p 578 A89-41844
Annual review of aircraft accident data, US Air Carrier	FLOW CHAMBERS An analytical study of the characteristics of bypass	
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986	FLOW CHAMBERS	[AIAA PAPER 89-1975] p 578 A89-41844
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heilport night parking area criteria test plan	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [P889-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heiiport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 A comparison of detection efficiency on an air traffic	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heilport night parking area criteria test plan [DDT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DDT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 FLIGHT SIMULATION	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DDT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DDT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heilport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p. 607 N89-23449	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DDT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DDT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p. 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2:	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heilport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p. 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p. 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 [NAL-TR-969] p. 613 N89-23464	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117 The characteristics of the turbulence generator and the	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution p 571 A89-41775
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DDT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DDT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p. 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 [NAL-TR-969] p. 613 N89-23464 The functional mock-up test of the flight control system	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117 The characteristics of the turbulence generator and the simulation of the flow regulation p 571 A89-41119	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution p 571 A89-41775 Vortex filament calculations by Analytical/Numerical
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 Heiiport night parking area criteria test plan [DDT/FAA/CT-TN88/45] p 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DDT/FAA/CT-89/14-VOL-1] p 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 [NAL-TR-969] p 613 N89-23464 The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117 The characteristics of the turbulence generator and the simulation of the flow regulation p 571 A89-41119	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution p 571 A89-41775 Vortex filament calculations by Analytical/Numerical Matching with comparison to other methods
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p. 597 N89-23434 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p. 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p. 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p. 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p. 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p. 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 [NAL-TR-969] p. 613 N89-23464 The functional mock-up test of the flight control system of the NAL OSTOL research aircraft ASKA [NAL-TR-972] p. 615 N89-23467	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117 The characteristics of the turbulence generator and the simulation of the flow regulation p 571 A89-41119 FLOW DISTRIBUTION Numerical study of two-dimensional impinging jet	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution p 571 A89-41775 Vortex filament calculations by Analytical/Numerical Matching with comparison to other methods [AIAA PAPER 89-1962] p 624 A89-41843
Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [PB89-151021] p 597 N89-23434 Heiiport night parking area criteria test plan [DDT/FAA/CT-TN88/45] p 619 N89-23480 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DDT/FAA/CT-89/14-VOL-1] p 601 N89-24292 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 FLIGHT SIMULATION The VAAC/VSTOL Flight Control Research Project p 615 A89-43104 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 [NAL-TR-969] p 613 N89-23464 The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA	FLOW CHAMBERS An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 FLOW CHARACTERISTICS A review of methods of estimating performance characteristics of centrifugal compressors p 623 A89-41083 The model of combustion efficiency and calculation of flow properties for scramjet combustor p 611 A89-41115 Three-dimensional effects in high-intensity vortices p 588 A89-42464 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 FLOW DISTORTION The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117 The characteristics of the turbulence generator and the simulation of the flow regulation p 571 A89-41119	[AIAĀ PAPER 89-1975] p 578 A89-41844 FLOW MEASUREMENT Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 FLOW RESISTANCE Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 FLOW STABILITY Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 Stability of compression shocks in ducts in the presence of external effects p 588 A89-42465 FLOW THEORY Inverse problem in nozzle theory Russian book p 625 A89-42500 FLOW VELOCITY Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution p 571 A89-41775 Vortex filament calculations by Analytical/Numerical Matching with comparison to other methods

experiments

[AIAA PAPER 89-1138]

p 632 A89-40476

A validation study of four Navier-Stokes codes for FREE MOLECULAR FLOW Determination of the natural frequency spectra and high-speed flows Study of hypersonic flow past sharp cones [AIAA PAPER 89-1713] p 591 modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422 [AIAA PAPER 89-1838] p 583 A89-42066 p 591 A89-43228 FREEZING A study of the characteristics of aircraft powerplants Numerical solution of periodic vortical flows about a thin Response of pavement to freeze-thaw cycles: Lebanon. under conditions of optimal control of their principal [NASA-TM-101998] New Hampshire, regional airport p 592 N89-23413 p 612 A89-42466 components p 626 N89-23740 LAD-A2055591 Measurements of particles rebound characteristics on Characteristics of a five-hole spherical pitot tube FREQUENCY RESPONSE p 610 N89-23463 materials used in gas turbines Identification of XV-15 aeroelastic modes using FLOW VISUALIZATION [AIAA PAPER 89-1693] n 621 A89-43211 p 605 A89-42018 frequency sweeps Supersonic rectangular jet impingement noise Braze repair of aero engine components FUEL CONSUMPTION p 626 A89-43535 experiments Soviet aerospace industry - Propulsion research center [AIAA PAPER 89-1138] p 632 A89-40476 GAS TURBINES focuses on developing fuel-efficient aircraft Mechanical model study for shrink fit rotor Observation of airplane flowfields by natural p 611 A89-41058 p 578 A89-42009 p 611 A89-40964 condensation effects Soviet aerospace industry - Aerodynamic Institute aids Flow visualization studies of the tip vortex system of a GAS-SOLID INTERFACES effort to develop fuel-efficient transports The shape of thin bodies with minimal drag p 588 A89-42496 semi-infinite wing p 618 A89-41060 [AIAA PAPER 89-1807] p 589 A89-42950 FUEL INJECTION FLUID FLOW Supersonic flow past a sphere in a gas with a periodic The model of combustion efficiency and calculation of density field structure p 588 A89-42521 Exploitation of multiple solutions of the Navier-Stokes flow properties for scramjet combustor p 611 A89-41115 equations to achieve radically improved flight Nonstationary supersonic flow past a sphere moving [AD-A205939] p 627 N89-23831 FUEL TANKS through a thermal inhomogeneity p 588 A89-42569 Airborne pod structures FLUID MECHANICS p 603 A89-40261 GEAR TEETH Flow control for unsteady and separated flows and Center of gravity control on Airbus aircraft: Fuel, range Qualification of high temperature vacuum carburizing for turbulent mixing and loading p 624 A89-41598 an aircraft gear steel [AD-A205989] p 594 N89-23426 [REPT-882-111-101] p 608 N89-23460 GEOMETRICAL ACOUSTICS **FUNCTIONAL DESIGN SPECIFICATIONS** FLUTTER Whitham's F-function for a supersonically rotating A330/340 hydraulic system Results of a parametric aeroelastic stability analysis of propeller p 608 N89-23461 [REPT-882-111-102] [AIAA PAPER 89-1107] a generic X-wing aircraft p 632 A89-40475 FÜSELAGES INASA-TM-1015721 p 617 N89-24324 GLASS FIBER REINFORCED PLASTICS FLUTTER ANALYSIS The development of a composite helicopter fuselage The development of a composite helicopter fuselage as exemplified on the BK 117 [MBB-UD-534-88-PUB] as exemplified on the BK 117 Active flutter suppression on a delta wing p 614 A89-40963 p 602 A89-39840 [MBB-UD-534-88-PUB] p 602 A89-39840 Reduction of sound transmission through fuselage walls GLIDE PATHS Flutter of a low-aspect-ratio rectangular wing p 606 N89-23447 by alternate resonance tuning (A.R.T.) B-737 flight test of curved-path and steep-angle [NASA-TM-4116] [AIAA PAPER 89-1046] p 631 A89-40470 Aeroservoelastic wind-tunnel investigations using the approaches using MLS guidance The research of the aircraft neutral stability [NASA-TM-101521] p 601 N89-24293 Active Flexible Wing Model: Status and recent p 614 A89-40961 GLIDERS [NASA-TM-1015701 Experimental investigation of the crashworthiness of n 609 N89-24313 Experimental investigation of the crashworthiness of scaled composite sailplane fuselages Wind tunnel tests on flutter control of a high-aspect-ratio scaled composite sailplane fuselages p 605 A89-42019 p 605 A89-42019 cantilevered wing Development of a monolithic fuselage shell using p 616 N89-24321 [NAL-TR-978] S. P. Korolev in aviation. Ideas. Projects. Designs --FLUX VECTOR SPLITTING Russian book p 635 A89-42537 1MBB-FE-234/S/PUB/3381 GLOBAL POSITIONING SYSTEM p 606 A89-42934 Newton solution of inviscid and viscous problems Computing induced velocity perturbations due to a p 570 A89-40909 Practical experimental examples of land, sea, and air helicopter fuselage in a free stream Improvements and applications of a streamwise upwind navigation using the Navstar/GPS system p 599 A89-40802 INASA-TM-41131 p 592 N89-23410 [AIAA PAPER 89-1957] Computational procedures for postbuckling of composite Possibility of using GPS for precision approaches n 574 A89-41804 p 628 N89-24642 A flux-difference split algorithm for unsteady thin-layer p 599 An overview of the direct simulation of an integrated Navier-Stokes solutions p 577 A89-41838 aircraft navigation system on a PC p 600 A89-43148 [AIAA PAPER 89-1995] G Upwind algorithms based on a diagonalization of the Development of the extended kalman filter for the multidimensional Euler equations [AIAA PAPER 89-1958] advanced Completely Integrated Reference **GALERKIN METHOD** p 578 A89-41842 Instrumentation System (CIRIS) Analysis of the wake behind a propeller using the finite Convergence acceleration of viscous and inviscid AD-A2060831 p 601 N89-23443 element method with a two-equation turbulence model GOVERNMENT/INDUSTRY RELATIONS hypersonic flow calculations p 567 [AIAA PAPER 89-1875] p 586 A89-42100 The US airborne radar scene GAS DISSOCIATION A three-dimensional upwind parabolized Navier-Stokes Soviet aerospace industry - Perestroika's changes grip Effect of gas dissociation and ionization on the transition code for real gas flows Soviet aerospace industry p 567 A89-41057 of a supersonic boundary layer [AIAA PAPER 89-1651] p 626 A89-43177 U.S. government policies and hypersonic flight in the 21st century p 634 A89-41654 Calculation of nonequilibrium hydrogen-air reactions with Flow of rarefied gases over two-dimensional bodies [AIAA PAPER 89-1970] p 575 A89-41814 GRAVITATIONAL EFFECTS implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Measurements of diffusion limited solidification at An analytical study of the characteristics of bypass FLY BY WIRE CONTROL varying gravity [AIAA PAPER 89-1755] engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468 Soviet aerospace industry - Mikoyan design group p 626 · A89-43268 of gas flows upgrading MiG-29 with fly-by-wire controls, new cockpit p 603 A89-41063 GRID GENERATION (MATHEMATICS) Numerical simulation of hypersonic viscous perfect gas Conservative treatment of boundary interfaces for flow for the aerothermodynamic design of space planes overlaid grids and multi-level grid adaptations An intelligent fiberoptic data bus for fly-by-light applications at low angles of attack [AIAA PAPER 89-1699] [AIAA PAPER 89-1980] p 576 A89-41823 Dynamic grid deformation using Navier-displacement [NAL-TM-SE-8707] p 634 N89-24901 n 591 A89-43215 equation for deforming wings FORGING **GAS GENERATORS** p 576 A89-41825 Optimization of the cold roll-forging of axial-flow compressor blades with allowance for fatigue [AIAA PAPER 89-1982] Determination of the interaction parameter of a twin-rotor Unstructured grid generation for non-convex domains p 622 A89-400A4 nas generator [AIAA PAPER 89-1983] p 576 A89-41826 Numerical solution of transonic potential flow in 2D p 576 A89-41826 characteristics p 625 A89-42421 GAS HEATING **FORMING TECHNIQUES** Turbulence measurements for heated gas slot injection Age creep forming aluminum aircraft skins compressor cascades using multi-grid techniques in supersonic flow
[AIAA PAPER 89-1868] p 624 A89-41584 p 589 A89-42837 p 586 A89-42095 Superplastic forming - A new production technology **GROUND EFFECT (AERODYNAMICS)** GAS INJECTION p 624 A89-41590 Simulation of the interaction between aerodynamics and A research facility for film cooling investigations with **FRACTOGRAPHY** vehicle dynamics in general unsteady ground effect emphasis on the instrumentation system p 571 A89-41570 USAF (US Air Force) durability design handbook: [AIAA PAPER 89-1498] [NAL-TM-PR-8704] p 619 N89-23477 Guidelines for the analysis and design of durable aircraft Enhancements to a new free wake hover analysis GAS IONIZATION p 592 N89-23414 structures INASA-CR-1775231 Effect of gas dissociation and ionization on the transition An investigation of V/STOL jet interactions in a [AD-A206286] p 608 N89-23457 of a supersonic boundary layer p 588 A89-42572 crossflow FRACTURE STRENGTH GAS TURBINE ENGINES [AD-A206360] p 596 N89-24272 Probabilistic-parametric models of the long-term Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine Numerical simulation of feedback control of aerodynamic strength of metallic materials of aircraft gas turbine p 620 A89-40619 configurations in steady and unsteady ground effects p 620 A89-40619 p 617 N89-24326 FREE FLOW A method for estimating the stochastic vibrational stress **GROUND EFFECT MACHINES** Computing induced velocity perturbations due to a level of impeller bladings of aircraft gas turbine engines RFB research and development in WIG vehicles --helicopter fuselage in a free stream in operating conditions on the basis of developmental [NASA-TM-4113] p 592 N89-23410 Wing-In-Ground p 611 A89-40624 [AIAA PAPER 89-1495] FREE JETS bench test data p 623 A89-41568 A review of current technical knowledge necessary to develop large scale wing-in-surface effect craft Supersonic rectangular jet impingement noise Service-induced damage in turbine discs and its

influence on damage tolerance-based life prediction

p 612 A89-41910

p 623 A89-41569

[AIAA PAPER 89-1497]

HUMAN FACTORS ENGINEERING Real-time solution of the airflow continuity equations for Preliminary airworthiness evaluation of modified second-generation Pneumatic Boot Deicing System on a p 589 A89-43147 a hovercraft simulation Safety philosophies in air transport p 597 A89-39859 GROUND RESONANCE JUH-1H [AD-A206255] HYDRAULIC EQUIPMENT p 598 N89-24289 Rough design criterion for ground and air resonance of helicopter rotor with three or more blades Fitter's handbook for the assembly of the hydraulic, gas, Results of an A109 simulation validation and handling p 603 A89-40814 qualities study and fuel system lines of flight vehicles --- Russian book GROUND STATIONS INASA-TM-1010621 p 617 N89-24323 p 605 A89-42525 An operational demonstration and engineering flight test A330/340 hydraulic system HELICOPTER PROPELLER DRIVE p 608 N89-23461 of the Microwave Landing System on runway 22L at [REPT-882-111-102] Comparison of predicted and measured temperatures HYDRAULIC TEST TUNNELS Chicago's Midway Airport of UH-60A helicopter transmission [DOT/FAA/CT-TN88/42] p 601 N89-24291 Seaplanes and the towing tank INASA-TP-29111 p 628 N89-24607 [AIAA PAPER 89-1533] p 623 A89-41564 GROUND TESTS HELICOPTER TAIL ROTORS Ground shake test of the Boeing Model 360 helicopter HYDRODYNAMICS OPST 1 - A digital optical tail rotor control system Hydrodynamic characteristics of seaplanes as affected [MBB-UD-533-88-PUB] p 614 A89-39847 [NASA-CR-181766] p 627 N89-23920 hy hull shape parameters The Mi-8 helicopter: Design and maintenance --- Russian [AIAA PAPER 89-1540] GROUP THEORY p 604 A89-41562 p 606 A89-42600 book RNG-based turbulence transport approximations with HÝDROGEN HELICOPTER WAKES applications to transonic flows --- Renormalization Group Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method The effects of wake migration during roll-up on blade Theory p 570 A89-41091 air loads AIAA PAPER 89-1950] p 573 A89-41797 AIAA PAPER 89-1700] p 621 A89-43216 Enhancements to a new free wake hover analysis GUST LOADS HYDROGENATION [NASA-CR-177523] p 592 N89-23414 Fatique damage to an aircraft from gusts Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing p 603 A89-40083 Aerodynamic interaction between vortical wakes and p 621 N89-23712 lifting two-dimensional bodies IAD-A2054701 [NASA-TM-101074] p 627 N89-24563 HYPERSONIC AIRCRAFT Н HELICOPTERS Recent progress in the National Aerospace Plane Comparison of the crushing behaviour of metallic program n 568 A89-41651 HARMONICS On the optimum cruise speed of a hypersonic aircraft subfloor structures Development of harmonic panel methods for aeroelastic [MRR-UD-535-88-PUR] n 622 A89-39841 p 605 A89-41652 applications to elastic bodies and body-fin combinations Numerical simulation of flow over a hypersonic aircraft An experimental investigation of the parallel vortex-airfoil in supersonic flow using an explicit upwind PNS solver interaction at transonic speeds [AIAA PAPER 89-1829] [AIAA PAPER 89-1833] p 582 A89-42058 HAZARDS NASP keeps moving An analysis of Electronic Aids to Maintenance (EAM) p 620 A89-43620 A demonstration of the method of stochastic finite HYPERSONIC BOUNDARY LAYER for the Light Helicopter Family (LHX) element analysis Interaction of a compression ramp with a hypersonic p 568 N89-23407 p 630 N89-24127 IAD-A2061351 Ground shake test of the Boeing Model 360 helicopter laminar boundary laver **HEAD-UP DISPLAYS** p 583 A89-42071 [AIAA PAPER 89-1843] airframe Effect of head-up display dynamics on fighter flying [NASA-CR-181766] Effect of wall temperature distribution on the stability p 606 A89-43058 Application of a PC based, real-time, data-aquisition of the compressible boundary layer HEAT RESISTANT ALLOYS [AIAA PAPER 89-1894] p 587 A89-42116 system in rotorcraft wind-tunnel testing Probabilistic-parametric models of the long-term Laminar boundary layer stability experiments on a cone at Mach 8. V - Tests with a cooled model NASA-TM-4119) p 630 N89-24079 strength of metallic materials of aircraft gas turbine engines p 620 A89-40619 HELIPORTS p 587 A89-42117 Heliport night parking area criteria test plan [AIAA PAPER 89-1895] HEAT TRANSFER Experimental study of pressure and heating rate on a p 619 N89-23480 [DOT/FAA/CT-TN88/45] The structure of aerodynamic heating swept cylindrical leading edge resulting from swept shock HIGH ALTITUDE three-dimensional shock wave/turbulent boundary layer wave interference HALE - A high-altitude, long-endurance interactions induced by sharp and blunt fins [NASA-CR-185326] p 592 N89-23411 p 604 A89-41109 aircraft p 585 A89-42082 [AIAA PAPER 89-1854] HYPERSONIC COMBUSTION HIGH REYNOLDS NUMBER Hypersonic flow in a compression corner in 2D and 3D Advanced computational techniques for hypersonic Transonic unsteady pressure measurements on a configurations supercritical airfoil at high Reynolds numbers propulsion [AIAA PAPER 89-1876] p 586 A89-42101 NASA-TM-102005) p 578 A89-42010 HEAT TREATMENT HYPERSONIC FLIGHT HIGH SPEED Qualification of high temperature vacuum carburizing for U.S. government policies and hypersonic flight in the Computational and experimental evaluation of helicopter p 624 A89-41598 an aircraft gear steel rotor tips for high speed forward flight p 634 A89-41654 HIGHLY MANEUVERABLE AIRCRAFT
Observation HELICOPTER CONTROL Hypersonic flight - The need for a new legal regime OPST 1 - A digital optical tail rotor control system p 634 A89-41655 p 614 A89-39847 (MBB-UD-533-88-PUB) A fully-coupled implicit method for thermo-chemical Observation of airplane flowfields Loss of tail rotor effectiveness evaluation of the OH-58C p 578 A89-42009 condensation effects nonequilibrium air at sub-orbital flight speeds AIAA PAPER 89-1974] p 576 A89-41818

Computational requirements for hypersonic flight helicopter with directional SAS (Stability Augmentation [AIAA PAPER 89-1974] HIGHWAYS System) High-efficiency thermal insulation in the base of airfields [ÁD-A206181] p 608 N89-24309 performance estimates --- of space vehicles and highways --- Russian book p 619 A89-42499 Optimal guidance with obstacle avoidance for [AIAA PAPER 89-1670] p 620 A89-43193 HISTORIES nap-of-the-earth flight Soviet SST: The technopolitics of the Tupolev-144 Calculation of nonequilibrium hydrogen-air reactions with p 618 N89-24328 NASA-CR-1775151 A89-42947 implicit flux vector splitting method p 568 HELICOPTER DESIGN [AIAA PAPER 89-1700] p 621 A89-43216 HOLOGRAPHIC INTERFEROMETRY BO108 - An ultramodern German helicopter Advanced computational techniques for hypersonic Measurements of swept shock wave/turbulent p 602 A89-39836 [MBB-UD-530-88-PUB] boundary-layer interactions by holographic interferometry propulsion The development of a composite helicopter fuselage NASA-TM-1020051 p 584 A89-42077 p 627 N89-23809 [AIAA PAPER 89-1849] as exemplified on the BK 117 HYPERSONIC FLOW HORIZONTAL FLIGHT p 602 A89-39840 [MBB-UD-534-88-PUB] Generic icing effects on forward flight performance of Shock standoff from blunt cones in high-enthalpy Development of an advanced experimental rotary test nonequilibrium nitrogen flow p 604 A89-41093 p 570 A89-40913 a model helicopter rotor A multi-temperature TVD algorithm for relaxing rig and first test results with a 60 kN-main rotor Three dimensional analysis of a rotor in forward flight p 618 A89-39843 [MBB-UD-525-88-PUB] p 580 A89-42045 [AIAA PAPER 89-1815] hypersonic flows --- Total Variation Diminishing p 575 A89-41815 BO 108 - Technology for new light twin helicopters Measurement and computation of the velocity field of [AIAA PAPER 89-1971] IMBB-UD-529-88-PUB1 p 603 A89-39844 a cylinder in the wake of a rotor in forward flight Upwind-biased, point-implicit relaxation strategies for p 583 A89-42072 IAA PAPER 89-18441 Design and development tests of a five-bladed hingeless viscous, hypersonic flows Numerical solutions of forward-flight rotor flow using an [AIAA PAPER 89-1972] helicopter main rotor p 575 A89-41816 [MBB-UD-531-88-PUB] p 603 A89-39845 upwind method Finite element computation of hypersonic flow past a p 584 A89-42074 AIAA PAPER 89-1846] Rough design criterion for ground and air resonance complete body HOVERING of helicopter rotor with three or more blades [AIAA PAPER 89-1976] p 576 A89-41819 p 603 A89-40814 Enhancements to a new free wake hover analysis Simple improvements of an upwind TVD scheme for p 592 N89-23414 [NASA-CR-177523] Evolution of rotor blade abrasion strips at Bell Helicopter Effect of advanced rotorcraft airfoil sections on the hover p 604 A89-41589 [AIAA PAPER 89-1977] Textron p 576 A89-41820 performance of a small-scale rotor model Western experts impressed by design of Mi-28 A central finite volume TVD scheme for the calculation [NASA-TP-2832] p 595 N89-24264 p 605 A89-41950 prototype An investigation of V/STOL jet interactions in a of supersonic and hypersonic flow fields around complex The Mi-8 helicopter: Design and maintenance --- Russian crossflow p 606 A89-42600 [AIAA PAPER 89-1975] p 578 A89-41844 book AD-A2063601 p 596 N89-24272 Hypersonic parabolized Navier-Stokes code validation **HELICOPTER ENGINES** HOVERING STABILITY Next-generation power for next-generation civil p 579 A89-42016 Survey of Army/NASA rotorcraft aeroelastic stability on a sharp nose cone p 611 A89-41050 Calculation of winged-body-like flow fields using an implicit upwind space-marching code rotorcraft HELICOPTER PERFORMANCE [NASA-TM-101026] p 618 N89-24329 [AIAA PAPER 89-1826] A new wind tunnel test rig for helicopter testing HULLS (STRUCTURES) p 581 A89-42056 p 618 A89-39846 [MBB-UD-532-88-PUB] Numerical simulation of flow over a hypersonic aircraft Hydrodynamic characteristics of seaplanes as affected Generic icing effects on forward flight performance of by hull shape parameters using an explicit upwind PNS solver [AIAA PAPER 89-1540] p 604 A89-41562 [AIAA PAPER 89-1829] p 604 A89-41093 p 582 A89-42058

a model helicopter rotor

Development and validation of CNS (compressible	Generic icing effects on forward flight performance of	INSTRUMENT LANDING SYSTEMS
Navier-Stokes) for hypersonic external flows	a model helicopter rotor p 604 A89-41093	Possibility of using GPS for precision approaches
[AIAA PAPER 89-1839] p 583 A89-42067	The low frequency oscillation in the flow over a	p 599 A89-40803
Numerical simulation of laminar hypersonic flow past a	NACA0012 airfoil with an iced leading edge	Instrument landing system mathematical modeling study
double-ellipsoid	[NASA-TM-102018] p 592 N89-23417	for Orlando International Airport Runway 35L localizer,
[AIAA PAPER 89-1840] p 583 A89-42068	A computer simulation study of liquid water content	Orlando, Florida. Final airside docking plan (Scheme 3A)
Experiment and computation in hypersonic cavity	adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288	[AD-A205351] p 600 N89-23438
flows	[DOT/FAA/CT-TN89/3] p 598 N89-24288 IDEAL GAS	INTERACTIONAL AERODYNAMICS
[AIAA PAPER 89-1842] p 583 A89-42070	Calculation of stationary subsonic and transonic	Simulation of the interaction between aerodynamics and vehicle dynamics in general unsteady ground effect
Determination of computational time step for chemically	nonpotential flows of an ideal gas in axisymmetric	[AIAA PAPER 89-1498] p 571 A89-41570
reacting flows [AIAA PAPER 89-1855] p 585 A89-42083	channels p 588 A89-42519	An inviscid/viscous coupling approach for vortex
An experimental study of hypersonic turbulence on a	IMAGE ANALYSIS	flowfield calculations
sharp cone	Aircraft navigation using I.R. image analysis	[AIAA PAPER 89-1961] p 575 A89-41807
[AIAA PAPER 89-1866] p 586 A89-42093	p 598 A89-40446	Unsteady aerodynamic simulation of multiple bodies in
Prediction of turbulent mixing and film-cooling	Aircraft recognition using a parts analysis technique	relative motion
effectiveness for hypersonic flows	p 629 A89-40447 IMAGE PROCESSING	[AIAA PAPER 89-1996] p 577 A89-41839
[AIAA PAPER 89-1867] p 586 A89-42094	Generic imagery processing and exploitation	A validation study of four Navier-Stokes codes for
An analytical approach to the prediction of shock	p 622 A89-40255	high-speed flows
patterns in bounded high-speed flows	The conformed panoramic - A new concept in	[AIAA PAPER 89-1838] p 583 A89-42066
[AIAA PAPER 89-1874] p 586 A89-42099	electro-optical sensors p 622 A89-40266	Interaction of a compression ramp with a hypersonic
Convergence acceleration of viscous and inviscid	Image Signal Processing for Flight Guidance	laminar boundary layer
hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100	[DFVLR-MITT-88-32] p 602 N89-24295	[AIAA PAPER 89-1843] p 583 A89-42071
Hypersonic flow in a compression corner in 2D and 3D	Image signal processing for flight guidance: Overview	Unsteady interaction of a rotor with a vortex
configurations	and introduction to the main topics p 602 N89-24296	[AIAA PAPER 89-1848] p 584 A89-42076
[AIAA PAPER 89-1876] p 586 A89-42101	Optimal guidance with obstacle avoidance for	Measurements of swept shock wave/turbulent
A three-dimensional upwind parabolized Navier-Stokes	nap-of-the-earth flight	boundary-layer interactions by holographic interferometry
code for real gas flows	[NASA-CR-177515] p 618 N89-24328	[AIAA PAPER 89-1849] p 584 A89-42077
(AIAA PAPER 89-1651) p 626 A89-43177	IMAGE RESOLUTION User friendly real time display p 609 A89-40272	Navier-Stokes simulation of a shock wave-turbulent
Adaptive grid embedding in nonequilibrium hypersonic	User friendly real time display p 609 A89-40272 IMPACT DAMAGE	boundary layer interaction in a three-dimensional
flow	Evolution of rotor blade abrasion strips at Bell Helicopter	channel [AIAA PAPER 89-1851] p 585 A89-42079
[AIAA PAPER 89-1652] p 590 A89-43178	Textron p 604 A89-41589	[AIAA PAPER 89-1851] p 585 A89-42079 Numerical simulation of 3D rarefied hypersonic flows
'Hypersonic slip flows' and issues on extending	Experimental investigation of the crashworthiness of	
continuum model beyond the Navier-Stokes level [AIAA PAPER 89-1663] p 590 A89-43187	scaled composite sailplane fuselages	,
[AIAA PAPER 89-1663] p 590 A89-43187 Application of a vectorized particle simulation in	p 605 A89-42019	Investigation of the flowfield created by the interaction of a sonic jet and a co-flowing supersonic stream
high-speed near-continuum flow	IMPACT LOADS	[AD-A205823] p 593 N89-23425
[AIAA PAPER 89-1665] p 590 A89-43188	Comparison of the crushing behaviour of metallic	High speed turboprop aeroacoustic study (single
Accurate Navier-Stokes results for the hypersonic flow	subfloor structures	rotation). Volume 1: Model development
over a spherical nosetip	[MBB-UD-535-88-PUB] p 622 A89-39841	[NASA-CR-182257-VOL-1] p 633 N89-24139
[AIAA PAPER 89-1671] p 590 A89-43194	Transient analysis techniques in performing impact and crash dynamic studies p 629 N89-24658	Aerodynamic interaction between vortical wakes and
Toward a CFD nose-to-tail capability - Hypersonic	IN-FLIGHT MONITORING	lifting two-dimensional bodies
unsteady Navier-Stokes code validation	Lightning inflight study onboard a Transall aircraft.	[NASA-TM-101074] p 627 N89-24563
[AIAA PAPER 89-1672] p 590 A89-43195	Definition of the onboard instruments	INTERFACES
An approximate viscous shock layer method for	[ONERA-RF-19/7234-PY] p 629 N89-24777	Application of a PC based, real-time, data-aquisition
calculating the hypersonic flow over blunt-nosed bodies [AIAA PAPER 89-1695] p 590 A89-43212	INCIDENCE	system in rotorcraft wind-tunnel testing
[AIAA PAPER 89-1695] p 590 A89-43212 Numerical simulation of hypersonic viscous perfect gas	Analysis of the boundary layer of a delta wing in	[NASA-TM-4119] p 630 N89-24079
flow for the aerothermodynamic design of space planes	incidence	An intelligent fiberoptic data bus for fly-by-light
at low angles of attack	[CERT-RT-OA-26/5025-AYD] p 596 N89-24274	applications
[AIAA PAPER 89-1699] p 591 A89-43215	INCOMPRESSIBLE BOUNDARY LAYER	[NAL-TM-SE-8707] p 634 N89-24901
Study of hypersonic flow past sharp cones	An experimental study of a reattaching supersonic shear	INTERNATIONAL COOPERATION
[AIAA PAPER 89-1713] p 591 A89-43228	[AIAA PAPER 89-1801] p 579 A89-42036	New developments in air and space research -
Numerical simulation of 3D rarefied hypersonic flows	INCOMPRESSIBLE FLOW	Contributions of the German aircraft and space industry to advanced programs and international cooperation
[AIAA PAPER 89-1715] p 591 A89-43230	A direct viscid-inviscid interaction scheme for the	[MBB-Z-177-88-PUB] p 635 A89-42927
Numerical simulation of hypersonic flow around a space	prediction of two-dimensional aerofoil lift and pitching	US military aircraft coproduction with Japan
plane. 1: Basic development INAL-TR-976T! p 591 N89-23409	moment in incompressible flow p 570 A89-41045	[AD-A206430] p 569 N89-24263
[NAL-TR-976T] p 591 N89-23409 HYPERSONIC HEAT TRANSFER	Vorticity equation solutions for slender wings at high	INTERNATIONAL TRADE
Experimental study of pressure and heating rate on a	incidence	U.S. government policies and hypersonic flight in the
swept cylindrical leading edge resulting from swept shock	[AIAA PAPER 89-1989] p 577 A89-41832	21st century p 634 A89-41654
wave interference	INDIAN SPACECRAFT	INTERPOLATION
[NASA-CR-185326] p 592 N89-23411	New developments in air and space research -	Comparison of interpolation algorithms for speed control
HYPERSONIC SHOCK	Contributions of the German aircraft and space industry to advanced programs and international cooperation	in air traffic management , [AD-A206314] p 601 N89-23444
Experimental study of pressure and heating rate on a	[MBB-Z-177-88-PUB] p 635 A89-42927	INTERSECTIONS
swept cylindrical leading edge resulting from swept shock	INERTIAL NAVIGATION	Improved marking of taxiway intersections for Instrument
wave interference [NASA-CR-185326] p 592 N89-23411	An overview of the direct simulation of an integrated	Flight Rules (IFR) operations
HYPERSONIC VEHICLES	aircraft navigation system on a PC p 600 A89-43148	[DOT/FAA/CT-TN89/23] p 619 N89-24330
A vectorized Gauss-Seidel line relaxation scheme for	Development of the extended kalman filter for the	INVISCID FLOW
solving 3D Navier-Stokes equations	advanced Completely Integrated Reference	Newton solution of inviscid and viscous problems
[AIAA PAPER 89-1948] p 573 A89-41795	Instrumentation System (CIRIS)	p 570 A89-40909
Development and validation of CNS (compressible	[AD-A206083] p 601 N89-23443	A high-resolution Euler solver
Navier-Stokes) for hypersonic external flows	INFLUENCE COEFFICIENT Enhancements to a new free wake hover analysis	[AIAA PAPER 89-1949] p 630 A89-41796 An inviscid/viscous coupling approach for vortex
[AIAA PAPER 89-1839] p 583 A89-42067	[NASA-CR-177523] p 592 N89-23414	flowfield calculations
Thermal analysis of a hypersonic wing test structure	INFORMATION TRANSFER	[AIAA PAPER 89-1961] p 575 A89-41807
[NASA-CR-185319] p 595 N89-24265	Display of flight guidance information in the aircraft	Parametric study of thermal and chemical nonequilibrium
An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts	cockpit p 610 N89-24305	nozzle flow
(NASA-CR-183389) p 609 N89-24315	INFRARED IMAGERY	[AIAA PAPER 89-1856] p 585 A89-42084
HYPERSONIC WIND TUNNELS	User friendly real time display p 609 A89-40272	Convergence acceleration of viscous and inviscid
Parametric study of thermal and chemical nonequilibrium	Aircraft navigation using I.R. image analysis	hypersonic flow calculations
nozzle flow	p 598 A89-40446 INLET FLOW	[AIAA PAPER 89-1875] p 586 A89-42100
[AIAA PAPER 89-1856] p 585 A89-42084	Three-dimensional dual-potential procedure for inlets	IONIZATION GAGES Lightning inflight study onboard a Transall aircraft.
HYSTERESIS	and indraft wind tunnels p 570 A89-40908	Definition of the onboard instruments
Water tunnel investigation of the vortex dynamics of	Advanced computational techniques for hypersonic	[ONERA-RF-19/7234-PY] p 629 N89-24777
periodically pitched wings	propulsion	ITERATIVE SOLUTION
[AD-A206359] p 595 N89-24271	[NASA-TM-102005] p 627 N89-23809	A time-accurate iterative scheme for solving the
•	INSTRUMENT APPROACH	unsteady compressible flow equations
l '	Flight evaluation of pursuit displays for precision	[AIAA PAPER 89-1992] p 577 A89-41835
	approach of powered-lift aircraft p 610 A89-43059	Progress in the development of parabolized
ICE FORMATION	INSTRUMENT ERRORS	Navier-Stokes technology for external and internal
Calculation of flow over iced airfoils	Determination of the deviation coefficients of a magnetic	supersonic flows [AIAA PAPER 89-1828] p 581 A89-42057
p 570 A89-40905	compass during a turn p 610 A89-40719	[AIAA PAPER 89-1828] p 581 A89-42057

JET AIRCRAFT

The use of operational loads data to assess fatigue damage rates in a jet trainer aircraft p 605 A89-41913 IA63 Pampa - The completion of an aircraft development p 568 A89-43112 program

JET AIRCRAFT NOISE

Supersonic rectangular jet impingement noise experiments

p 632 A89-40476 [AIAA PAPER 89-1138] Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure

p 634 N89-24887 IMPIS-7/1988

JET ENGINE FUELS

Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing [AD-A205470] p 621 N89-23712

[AD-A205470]

JET ENGINES

The characteristics of the turbulence generator and the simulation of the flow regulation p 571 A89-41119 Modification in engineering calculation method for inlet design p 571 A89-41121 An integrated approach to remanufacturing turbine p 623 A89-41547

3D-Fuler flow analysis of faniet engine and turbine powered simulator with experimental comparison in

transonic speed [AIAA PAPER 89-1835] p 582 A89-42063 Academician B. S. Stechkin's work in the development of jet engines

f jet engines p 634 A89-42452 Aerothermodynamic analysis of a Coanda/Refraction Jet Engine Test Facility p 619 N89-23482

[AD-A205937] JET FLOW

Dynamic loading on impact surfaces of a high subsonic elliptic jet [AIAA PAPER 89-1139]

p 632 A89-40477 Numerical study of two-dimensional impinging jet p 569 A89-40902 flowfields JET IMPINGEMENT

Supersonic rectangular jet impingement noise experiments

[AIAA PAPER 89-1138] p 632 A89-40476 Dynamic loading on impact surfaces of a high subsonic elliptic iet

[AIAA PAPER 89-1139] p 632 A89-40477 Numerical study of two-dimensional impinging jet owfields p 569 A89-40902 flowfields An investigation of V/STOL jet interactions in a

crossflow [AD-A206360]

p 596 N89-24272

JET MIXING FLOW

Effect of slotting on the mixing and noise of an axisymmetric supersonic jet

p 632 A89-41042 [AIAA PAPER 89-1052] Investigation of the flowfield created by the interaction of a sonic jet and a co-flowing supersonic stream

p 593 N89-23425 [AD-A205823]

JET THRUST

Method and system for monitoring and displaying engine performance parameters

p 614 N89-23466 INASA-CASE-LAR-14049-11

JOINED WINGS

HALE - A high-altitude, long-endurance manned p 604 A89-41109 aircraft

Experimental aerodynamic characteristics of a joined-wing research aircraft configuration

p 596 N89-24285 (NASA-TM-101083) JOINTS (JUNCTIONS)

Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations p 619 N89-23479

[PB89-141279]

K-EPSILON TURBULENCE MODEL

RNG-based turbulence transport approximations with applications to transonic flows --- Renormalization Group

[AIAA PAPER 89-1950] KALMAN FILTERS

p 573 A89-41797

Techniques for robust tracking in airborne radars

p 600 A89-42666 Development of the extended kalman filter for the Completely Integrated Reference advanced Instrumentation System (CIRIS)

IAD-A2060831 p 601 N89-23443 Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1

[AD-A205723] p 616 N89-23473

Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Plus Integral) feedback and Kalman filter, volume 2

[AD-A206202] p 617 N89-24325

KINETIC THEORY

Flow of rarefied gases over two-dimensional bodies [AIAA PAPER 89-1970] p 575 A89-41814

KNOWLEDGE BASES (ARTIFICIAL INTELLIGENCE) Aircraft recognition using a parts analysis technique p 629 A89-40447

LAMINAR BOUNDARY LAYER

Interaction of a compression ramp with a hypersonic laminar boundary layer [AIAA PAPER 89-1843]

p 583 A89-42071 Laminar boundary layer stability experiments on a cone at Mach 8. V - Tests with a cooled model

[AIAA PAPER 89-1895] p 587 A89-42117 Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and

turbulent transition of a supersonic laminar boundary o 588 A89-42567 Boundary layer response to an unsteady turbulent

environment [AD-A206578]

p.596 N89-24273

LAMINAR FLOW Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 A validation study of four Navier-Stokes codes for

high-speed flows p 583 A89-42066 [AIAA PAPER 89-1838] Numerical simulation of laminar hypersonic flow past a

double-ellipsoid (AIAA PAPER 89-1840) p 583 A89-42068 LAMINAR FLOW AIRFOILS

Numerical solution of Navier-Stokes equations for two-dimensional viscous compressible flows

p 570 A89-40903 Newton solution of inviscid and viscous problems

p 570 A89-40909 Flight tests with the VFW 614 - ATTAS laminar glove p 606 A89-42936 [MBB-UT-0132-88-PUB]

LANDING AIDS Design of automated system for management of arrival traffic

[NASA-TM-102201] p 598 N89-24290 LANDING SIMULATION

Numerical simulation of feedback control of aerodynamic configurations in steady and unsteady ground effects p 617 N89-24326

LASER ALTIMETERS

Laser altimetry measurements from aircraft and snacecraft p 624 A89-41691

LEADING EDGE FLAPS

Global marching technique for predicting flows over airfoils with leading and trailing edge flaps
[AIAA PAPER 89-1793] p 57 AIAA PAPER 89-1793] p 579 A89-42028 Numerical study of the influence of leading and trailing

edge flaps on the performance of airfoils LAD-A2061381 n 594 N89-23428

LEADING EDGE SWEEP

Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference

(NASA-CR-185326) p 592 N89-23411 LEADING EDGES

A structure of leading-edge and tip vortices at a delta

JAIAA PAPER 89-18031 p 579 A89-42037 Transition flight experiments on a swept wing with suction

[AIAA PAPER 89-1893] p 587 A89-42115 Numerical simulation and experiments on leading-edge vortices on modern wings, with European cooperation

p 589 A89-43114 The low frequency oscillation in the flow over a NACA0012 airfoil with an iced leading edge

р 592 N89-23417 [NASA-TM-102018] Experimental aerodynamic characteristics of a joined-wing research aircraft configuration p 596 N89-24285

[NASA-TM-101083] LEAST SQUARES METHOD

Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics

[NASA-TM-101574] p 608 N89-24308 LEGAL LIABILITY

Hypersonic flight - The need for a new legal regime p 634 A89-41655

A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p 570 A89-41045 High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

n 593 N89-23418 INASA-CR-1849921 Aerodynamics of a lifting rotor due to near field unsteady p 595 N89-24267 effects Use of Navier-Stokes methods to predict circulation control airfoil performance

AD-A206242 p 595 N89-24270

LIFT DEVICES

A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors [NASA-TP-2907] p 615 N89-23468 LIFTING BODIES

Lifting-surface theory for propfan vortices impinging on a downstream wing p 578 A89-42013 Numerical methods for unsteady flows

p 596 N89-24282 Numerical simulation of feedback control of aerodynamic

configurations in steady and unsteady ground effects p 617 N89-24326

LIFTING ROTORS

Aerodynamics of a lifting rotor due to near field unsteady effects p 595 N89-24267

LIGHT HELICOPTERS

BO 108 - Technology for new light twin helicopters [MBB-UD-529-88-PUB] p 603 A89-39844 p 603 A89-39844

LIGHTNING

Ground vibration test of the Foudre A04 Transall aircraft

[REPT-20/7234-PY-382-R] p 609 N89-24311 Lightning inflight study onboard a Transall aircraft. Definition of the onboard instruments IONERA-RF-19/7234-PY] p 629 N89-24777

LINEAR QUADRATIC GAUSSIAN CONTROL

Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing

p 616 N89-24321 LINEAR QUADRATIC REGULATOR

Improved time-domain stability robustness measures for linear regulators p 630 A89-43068

LITHIUM ALLOYS The environmental cracking behaviour aluminium-lithium based alloys p 621 A89-41601

LOADS (FORCES) Aerodynamics of a lifting rotor due to near field unsteady p 595 N89-24267

LOG PERIODIC ANTENNAS

Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 LOW ALTITUDE

Ejector effects on a supersonic nozzle at low altitude and Mach number

AD-A206049] p 594 N89-23427 I OW ASPECT RATIO WINGS

Computational design of low aspect ratio wing-winglet

configurations for transonic wind-tunnel tests p 595 N89-24266 [NASA-CR-185016] LOW FREQUENCIES

The low frequency oscillation in the flow over a NACA0012 airfoil with an iced leading edge p 592 N89-23417 INASA-TM-1020181

LOW REYNOLDS NUMBER

Numerical prediction of aerodynamic performance for p 579 A89-42023 low Reynolds number airfoils Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model p 597 N89-24286

LOW SPEED WIND TUNNELS

Accuracy problems in wind tunnels during transport aircraft development [MBB-UT-134-88-PUB] p 619 A89-42937

LOW VISIBILITY Heliport night parking area criteria test plan

[DOT/FAA/CT-TN88/45] p 619 N89-23480 LUNAR SURFACE

Laser altimetry measurements from aircraft and pacecraft p 624 A89-41691

M

MACH CONES

Laminar boundary layer stability experiments on a cone at Mach 8. V - Tests with a cooled model [AIAA PAPER 89-1895] p 58 p 587 A89-42117

MACH NUMBER

Inception length to a fully-developed fin-generated shock wave boundary-layer interaction

[AIAA PAPER 89-1850] p 584 A89-42078

Ejector effects on a supersonic nozzle at low altitude **MILITARY TECHNOLOGY** and Mach number Response of pavement to freeze-thaw cycles: Lebanon, MILCOMP '88 - Military computers, graphics and IAD-A2060491 p 594 N89-23427 New Hampshire, regional airport software: Proceedings of the Conference and Exhibition. Experiment on a cylindrical scramjet combustor. 2: n 626 N89-23740 London, England, Sept. 27-29, 1988 p 629 A89-40425 Simulated flight Mach number 6.7 MESSAGE PROCESSING An evaluation of the F/FB/EF-111 crew/voice message p 613 N89-23464 (NAL-TR-9691 MINIMUM DRAG system MAGNETIC COMPASSES The shape of thin bodies with minimal drag LAD-4202081 p 626 N89-23774 p 588 A89-42496 Determination of the deviation coefficients of a magnetic METAL FATIGUE compass during a turn p 610 A89-40719 MIXING LAYERS (FLUIDS) Service-induced damage in turbine discs and its MAGNETIC SUSPENSION Linear instabilities in two-dimensional compressible influence on damage tolerance-based life prediction p 578 A89-41903 Use of magnetic suspension for sensor vibration mixing lavers p 612 A89-41910 isolation p 622 A89-40262 Numerical analysis of supersonic turbulent mixing The use of operational loads data to assess fatigue MAN MACHINE SYSTEMS damage rates in a jet trainer aircraft p 605 A89-41913 Optimization of the cold roll-forging of axial-flow [AIAA PAPER 89-1811] Generation of architectures for distributed intelligence p 580 A89-42041 An analytical study of the characteristics of bypass systems compressor blades with allowance for [AD-A205783] p 601 N89-23440 p 625 A89-42421 engine mixing chambers in the case of incomplete mixing characteristics MANAGEMENT PLANNING p 613 A89-42468 USAF (US Air Force) durability design handbook: of gas flows Generation of architectures for distributed intelligence MIXING LENGTH FLOW THEORY Guidelines for the analysis and design of durable aircraft systems New mixing-length model for turbulent high-speed structures [AD-A205783] p 601 N89-23440 flows n 608 N89-23457 [AIAA PAPER 89-1821] MANIPUL ATORS p 581 A89-42051 **METAL MATRIX COMPOSITES** The effect of an adverse pressure gradient on the drag MOISTURE CONTENT Advanced concepts and materials for high-speed flight reduction performance of manipulators Evaluation of liquid water measuring instruments in cold p 620 A89-41585 p 571 A89-41771 **METAL SHEETS** clouds sampled during FIRE --- First ISCCP Research MANY BODY PROBLEM Experiment p 624 A89-41889 Superplastic forming - A new production technology Computational Methods for Structural Mechanics and p 624 A89-41590 **MOLECULAR RELAXATION** A multi-temperature TVD algorithm for relaxing hypersonic flows --- Total Variation Diminishing Dynamics Innovative production technology in aircraft construction: CIAM Forming 'made by MBB' - A highly productive example p 625 A89-43076 [NASA-CP-3034-PT-2] p 628 N89-24654 MARAGING STEELS (AIAA PAPER 89-1971) p 575 A89-41815 Electron beam welding and repair of critical structures METAL STRIPS p 624 A89-41586 Evolution of rotor blade abrasion strips at Bell Helicopter Simulator evaluation of a display for a Takeoff p 604 A89-41589 MARKING Performance Monitoring System METEOROLOGICAL INSTRUMENTS Improved marking of taxiway intersections for Instrument [NASA-TP-2908] p 615 N89-23469 Evaluation of liquid water measuring instruments in cold Flight Rules (IFR) operations MONTE CARLO METHOD clouds sampled during FIRE --- First ISCCP Research p 619 N89-24330 'Hypersonic slip flows' and issues on extending IDOT/FAA/CT-TN89/231 p 624 A89-41889 Experiment MASS FLOW continuum model beyond the Navier-Stokes level Transonic operational characteristics and performance NAL-TR-968 | p 591 N89-23408 METEOROLOGICAL RADAR [AIAA PAPER 89-1663] p 590 A89-43187 ASR-9 weather channel test report, executive s [NAL-TR-968] Study of hypersonic flow past sharp cones ummary Navier-Stokes solution for a NACA 0012 airfoil with mass [AIAA PAPER 89-1713] p 591 A89-43228 [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 flux (fan) A demonstration of the method of stochastic finite MICROCOMPUTERS [AD-A205771] p 593 N89-23424 element analysis Noise and sonic boom impact technology. PCBOOM [AD-A206135] MATHEMATICAL MODELS p 630 N89-24127 computer program for sonic boom research, volume 1 Computing induced velocity perturbations due to a MOTION SIMULATION IAD-A206290 p 594 N89-23429 helicopter fuselage in a free stream Real-time solution of the airflow continuity equations for Noise and sonic boom impact technology. PCBOOM [NASA-TM-4113] p 592 N89-23410 p 589 A89-43147 a hovercraft simulation computer program for sonic boom research. Volume 2: Development of harmonic panel methods for aeroelastic Program Users/Computer operations manual applications to elastic bodies and body-fin combinations [AD-A206291] p 594 N89-23430 in supersonic flow MICROGRAVITY APPLICATIONS LAD-A2057391 p 593 N89-23423 Acceleration forces aboard NASA KC-135 aircraft during Numerical study of the influence of leading and trailing **NACELLES** microgravity maneuvers p 620 A89-42022 edge flaps on the performance of airfoils Transonic operational characteristics and performance MICROSTRIP ANTENNAS p 594 N89-23428 [NAL-TR-968] p 591 N89-23408 [AD-A206138] Improved bandwidth microstrip antenna design fo NAP-OF-THE-EARTH NAVIGATION Instrument landing system mathematical modeling study p 600 A89-42676 airborne phased arrays Optimal guidance with obstacle avoidance for nap-of-the-earth flight for Orlando International Airport Runway 35L localizer, MICROWAVE LANDING SYSTEMS Orlando, Florida. Final airside docking plan (Scheme 3A) Introduction of MLS - Effects on airspace and airport p 600 N89-23438 IAD-A2053511 INASA-CR-177515] p 618 N89-24328 p 599 A89-41043 NASA PROGRAMS A demonstration of the method of stochastic finite Instrument landing system mathematical modeling study NASA/AHS rotorcraft noise reduction program - NASA element analysis for Orlando International Airport Runway 35L localizer. [AD-A206135] p 630 N89-24127 Langley Acoustics Division contributions Orlando, Florida, Final airside docking plan (Scheme 3A) p 632 A89-41049 High speed turboprop aeroacoustic study (single [AD-A205351] p 600 N89-23438 NASA adds to understanding of high angle of attack gime p 571 A89-41201 rotation). Volume 1: Model development An operational demonstration and engineering flight test INASA-CR-182257-VOL-11 p 633 N89-24139 of the Microwave Landing System on runway 22L at NASA aeronautics research and technology Thermal analysis of a hypersonic wing test structure p 568 , N89-23406 [NASA-EP-259] p 595 N89-24265 [NASA-CR-185319] IDOT/FAA/CT-TN88/421 p 601 N89-24291 Langley aerospace test highlights, 1988 Recent activities within the Aeroservoelasticity Branch B-737 flight test of curved-path and steep-angle [NASA-TM-101579] p 635 N89-25112 at the NASA Langley Research Center approaches using MLS guidance NATIONAL AIRSPACE SYSTEM [NASA-TM-101582] p 609 N89-24314 [NASA-TM-101521] p 601 N89-24293 National Airspace System Search and Rescue Results of an A109 simulation validation and handling MIDAIR COLLISIONS operational concept (NAS-SR-1329) qualities study Annual review of aircraft accident data, US Air Carrier operations: Calendar year 1986 [DOT/FAA/DS-89/07] p 597 N89-23435 [NASA-TM-101062] p 617 N89-24323 Host computer system capacity management Numerical simulation of feedback control of aerodynamic [PB89-151021] p 597 N89-23434 procedures configurations in steady and unsteady ground effects MIG AIRCRAFT AD-A1934161 p 630 N89-24051 p 617 N89-24326 **NAVIER-STOKES EQUATION** Soviet aerospace industry - Mikoyan design group **MAXIMUM LIKELIHOOD ESTIMATES** upgrading MiG-29 with fly-by-wire controls, new cockpit Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Syntactic classification of radar measurements of p 603 A89-41063 commercial aircraft p 600 A89-42680 Numerical solution of Navier-Stokes equations for Western experts impressed by design of Mi-28 MAXWELL FOLIATION two-dimensional viscous compressible flows p 605 A89-41950 prototype A CFD-based finite-volume procedure for computational p 570 A89-40903 MILITARY AIRCRAFT electromagnetics - Interdisciplinary applications of CFD Solution of the 2D Navier-Stokes equations on p 603 A89-40261 Airborne pod structures methods unstructured adaptive grids The use of operational loads data to assess fatique [AIAA PAPER 89-1987] p 633 A89-41830 [AIAA PAPER 89-1932] p 572 A89-41779 damage rates in a jet trainer aircraft p 605 A89-41913 MCDONNELL DOUGLAS AIRCRAFT massively parallel three-dimensional Flight control system for the CRCA (Control p 603 A89-40857 MD-11 enters the frav Euler/Navier-Stokes method **MECHANICAL PROPERTIES** Reconfigurable Combat Aircraft) using a command [AIAA PAPER 89-1937] n 572 A89-41784 generator tracker with PI (Plus Integral) feedback and Whither titanium powder metallurgy? Development of a Navier-Stokes code on a Connection Kalman filter, volume 2 p 621 A89-41591 p 617 N89-24325 MEDICAL EQUIPMENT [AD-A2062021 IAIAA PAPER 89-19381 n 572 A89-41785 MILITARY HELICOPTERS Effect of electromagnetic interference by neonatal Implementation of a rotary-wing three-dimensional Soviet aerospace industry - Mil Mi-28 attack helicopter transport equipment on aircraft operation Navier-Stokes solver on a massively parallel computer p 625 A89-42161 in final tests prior to full-scale production p 573 A89-41786 [AIAA PAPER 89-1939] p 567 A89-41062 MELT SPINNING On the role of artificial viscosity in Navier-Stokes Rapidly solidified Al-Ti alloys via advanced melt Western experts impressed by design of Mi-28 spinning p 621 A89-41888 p 605 A89-41950 [AIAA PAPER 89-1947] prototype p 573 A89-41794

A vectorized Gauss-Seidel line relaxation scheme for Determination of reference trajectories for testing **NONEQUILIBRIUM FLOW** solving 3D Navier-Stokes equations navigation aids using an onboard CCD camera Shock standoff from blunt cones in high-enthalpy p 573 A89-41795 p 602 N89-24303 p 570 A89-40913 [AIAA PAPER 89-1948] nonequilibrium nitrogen flow An efficient cell-vertex multigrid scheme for the Parametric study of thermal and chemical nonequilibrium **NAVIGATION SATELLITES** three-dimensional Navier-Stokes equations State and perspectives of satellite use in civil aviation. nozzle flow p 574 A89-41800 [AIAA PAPER 89-1856] [AIAA PAPER 89-1953] p 599 A89-41030 p 585 A89-42084 Dynamic grid deformation using Navier-displacement Adaptive grid embedding in nonequilibrium hypersonic **NAVSTAR SATELLITES** equation for deforming wings Practical experimental examples of land, sea, and air IAIAA PAPER 89-1652] [AIAA PAPER 89-1982] p 576 A89-41825 p 590 A89-43178 navigation using the Navstar/GPS system Vorticity equation solutions for slender wings at high NONEQUILIBRIUM THERMODYNAMICS p 599 A89-40802 incidence A fully-coupled implicit method for thermo-chemical **NEAR WAKES** [AIAA PAPER 89-1989] p 577 A89-41832 nonequilibrium air at sub-orbital flight speeds The effects of wake migration during roll-up on blade [AIAA PAPER 89-1974] A time accurate finite volume high resolution scheme p 576 A89-41818 p 570 A89-41091 for three dimensional Navier-Stokes equations NONLINEAR SYSTEMS **NEWTON METHODS** p 577 A89-41837 [AIAA PAPER 89-1994] Some issues in numerical simulation of nonlinear Newton solution of inviscid and viscous problems A flux-difference split algorithm for unsteady thin-layer structural response p 628 N89-24639 p 570 A89-40909 Navier-Stokes solutions NOSE CONES NIGHT FLIGHTS (AIRCRAFT) Shock standoff from blunt cones in high-enthalpy onequilibrium nitrogen flow p 570 A89-40913 [AIAA PAPER 89-1995] p 577 A89-41838 Heliport night parking area criteria test plan Numerical simulation of the Navier-Stokes equations for nonequilibrium nitrogen flow p 619 N89-23480 [DOT/FAA/CT-TN88/45] an F-16A configuration p 578 A89-42014 Hypersonic parabolized Navier-Stokes code validation NITROGEN Hypersonic parabolized Navier-Stokes code validation on a sharp nose cone p 579 A89-42016 n a sharp nose cone p 579 A89-42016 Calculation of wind-tunnel side-wall interference using Shock standoff from blunt cones in high-enthalpy on a sharp nose cone NOSE TIPS nonequilibrium nitrogen flow p 570 A89-40913 Accurate Navier-Stokes results for the hypersonic flow a three-dimensional multigrid Navier-Stokes code NOISE (SOUND) over a spherical nosetip p 579 A89-42026 [AIAA PAPER 89-1671] [AIAA PAPER 89-1790] Comparison of propeller cruise noise data taken in the p 590 A89-43194 Development of an efficient multigrid code for 3-D NASA Lewis 8- by 6-foot wind tunnel with other tunnel NOSES (FOREBODIES) Navier-Stokes equations Accurate Navier-Stokes results for the hypersonic flow p 631 A89-40472 [AIAA PAPER 89-1791] over a spherical nosetip p 625 A89-42027 [AIAA PAPER 89-1059] Global marching technique for predicting flows over [AIAA PAPER 89-1671] **NOISE GENERATORS** n 590 A89-43194 airfoils with leading and trailing edge flaps Toward a CFD nose-to-tail capability - Hypersonic Noise of a model counterrotation propeller with [AIAA PAPER 89-1793] AIAA PAPER 89-1793] p 579 A89-42028 Use of Navier-Stokes code to predict flow phenomena imulated fuselage and support pylon at takeoff/approach unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p p 590 A89-43195 conditions near stall as measured on a 0.658-scale V-22 tiltrotor NÖZZLE DESIGN [NASA-TM-101996] p 633 N89-24138 A computational analysis of the transonic flow field of hlade NOISE INTENSITY [AIAA PAPER 89-1814] p 580 A89-42044 two-dimensional minimum length nozzles Noise of a model counterrotation propeller with Vortex-dominated conical-flow computations using [AIAA PAPER 89-1822] p 581 A89-42052 simulated fuselage and support pylon at takeoff/approach unstructured adaptively-refined meshes Advanced computational techniques for hypersonic conditions p 580 A89-42046 [AIAA PAPER 89-1816] propulsion INASA-TM-1019961 The computation of Navier-Stokes solutions exhibiting [NASA-TM-102005] p 627 N89-23809 NOISE MEASUREMENT asymmetric vortices
[AIAA PAPER 89-1817] **NOZZLE FLOW** Syntactic classification of radar measurements of p 580 A89-42047 Effect of slotting on the mixing and noise of an commercial aircraft p 600 A89-42680 axisymmetric supersonic jet [AIAA PAPER 89-1052] Calculation of winged-body-like flow fields using an NOISE PREDICTION implicit upwind space-marching code p 632 A89-41042 p 581 A89-42056 Calculation of aircraft noise in the vicinity of civil airports [AIAA PAPER 89-1826] A comparative study of the Coakley and TVD schemes by a simultion procedure Progress in the development of parabolized for steady-state calculations of one-dimensional Euler Navier-Stokes technology for external and internal [MPIS-7/1988] p 634 N89-24887 equations p 571 A89-41759 NOISE PREDICTION (AIRCRAFT) Sonic-point capturing --- shock wave structures in supersonic flows Prediction of loading noise of a propeller with blades p 581 A89-42057 [AIAA PAPER 89-1828] transonic nozzle flow under transonic operating conditions [AIAA PAPER 89-1945] Numerical simulation of flow over a hypersonic aircraft p 573 A89-41792 p 632 A89-40474 [AIAA PAPER 89-1080] using an explicit upwind PNS solver Parametric study of thermal and chemical nonequilibrium An acoustic experimental and theoretical investigation p 582 A89-42058 [AIAA PAPER 89-1829] nozzle flov of single disc propellers [AIAA PAPER 89-1856] A validation study of four Navier-Stokes codes for p 585 A89-42084 IAIAA PAPER 89-11461 p 632 A89-40478 high-speed flows Inverse problem in nozzle theory --- Russian book Status of sonic boom methodology and understanding [AIAA PAPER 89-1838] p 583 A89-42066 p 625 A89-42500 [NASA-CP-3027] p 592 N89-23415 Development and validation of CNS (compressible PNS code assessment studies for scramjet combustor High speed turboprop aeroacoustic study (single Navier-Stokes) for hypersonic external flows and nozzle flowfields rotation). Volume 1: Model development p 583 A89-42067 [AIAA PAPER 89-1839] [AIAA PAPER 89-1697] p 613 A89-43213 p 633 N89-24139 [NASA-CR-182257-VOL-1] A three-dimensional upwind parabolized Navier-Stokes Transonic Navier-Stokes solutions of three-dimensional Interior noise control ground test studies for advanced afterbody flows turboprop aircraft applications p 626 A89-43177 [AIAA PAPER 89-1651] [NASA-TM-4111] o 594 N89-23433 [NASA-CR-181819] p 633 N89-24141 'Hypersonic slip flows' and issues on extending Advanced computational techniques for hypersonic NOISE PROPAGATION continuum model beyond the Navier-Stokes level propulsion High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development [AIAA PAPER 89-1663] p 590 A89-43187 [NASA-TM-102005] p 627 N89-23809 Accurate Navier-Stokes results for the hypersonic flow **NOZZLE GEOMETRY** p 633 N89-24139 [NASA-CR-182257-VOL-1] over a spherical nosetip Supersonic rectangular jet impingement noise NOISE REDUCTION p 590 A89-43194 [AIAA PAPER 89-1671] experiments Reduction of sound transmission through fuselage walls Toward a CFD nose-to-tail capability - Hypersonic [AIAA PAPER 89-1138] by alternate resonance tuning (A.R.T.) p 632 A89-40476 unsteady Navier-Stokes code validation Turbulent flow predictions for afterbody/nozzle [AIAA PAPER 89-1046] p 631 A89-40470 p 590 A89-43195 eometries including base effects [AIAA PAPER 89-1672] Active control of sound fields in elastic cylinders by [AIAA PAPER 89-1865] p 632 A89-40904 p 585 A89-42092 PNS code assessment studies for scramjet combustor multicontrol forces and nozzle flowfields Effect of slotting on the mixing and noise of an Performance of an aero-space plane propulsion [AIAA PAPER 89-1697] p 613 A89-43213 axisymmetric supersonic jet nozzle [AIAA PAPER 89-1052] [AIAA PAPER 89-1878] Numerical simulation of hypersonic flow around a space p 632 A89-41042 p 586 A89-42103 plane. 1: Basic development NASA/AHS rotorcraft noise reduction program - NASA NUMERICAL CONTROL [NAL-TR-976T1 p 591 N89-23409 Langley Acoustics Division contributions A comparison of detection efficiency on an air traffic p 632 A89-41049 Navier-Stokes solution for a NACA 0012 airfoil with mass control monitoring task with and without computer aiding Interior noise control ground test studies for advanced flux (fan) [AD-A206422] p 602 N89-24294 [AD-A205771] p 593 N89-23424 turboprop aircraft applications NUMERICAL FLOW VISUALIZATION [NASA-CR-181819] p 633 N89-24141 Transonic Navier-Stokes solutions of three-dimensional Large-scale viscous simulation of laminar vortex flow NOISE SPECTRA p 569 A89-40901 afterbody flows over a delta wing Calculation of aircraft noise in the vicinity of civil airports [NASA-TM-4111] p 594 N89-23433 Use of high-resolution upwind scheme for vortical flow y a simultion procedure Exploitation of multiple solutions of the Navier-Stokes simulations p 634 N89-24887 [MPIS-7/1988] equations to achieve radically improved flight [AD-A205939] p 627 N89-23831 [AIAA PAPER 89-1955] p 574 A89-41802 Advanced turboprop aircraft flyover noise: Annovance [AD-A205939] Numerical simulation of the Navier-Stokes equations for to counter-rotating-propeller configurations with a different Use of Navier-Stokes methods to predict circulation an F-16A configuration p 578 A89-42014 number of blades on each rotor: Preliminary results control airfoil performance The computation of Navier-Stokes solutions exhibiting [NASA-TM-100638] p 634 N89-24888 p 595 N89-24270 [AD-A206242] asymmetric vortices NOISE TOLERANCE [AIAA PAPER 89-1817] p 580 A89-42047 Numerical methods for unsteady flows Interior noise control ground test studies for advanced p 596 N89-24282 Numerical simulation of hypersonic viscous perfect gas turboprop aircraft applications NAVIGATION AIDS (NASA-CR-181819) flow for the aerothermodynamic design of space planes p 633 N89-24141 at low angles of attack Effect of head-up display dynamics on fighter flying Advanced turboprop aircraft flyover noise: Annoyance p 606 A89-43058 [AIAA PAPER 89-1699] qualities to counter-rotating-propeller configurations with a different p 591 A89-43215 Image Signal Processing for Flight Guidance number of blades on each rotor: Preliminary results Numerical aerodynamic simulation p 602 N89-24295 p 634 N89-24888 p 569 N89-24262 [DFVLR-MITT-88-32] [NASA-TM-100638] [NASA-EP-262]

NUMERICAL STABILITY

Improved time-domain stability robustness measures for p 630 A89-43068 linear regulators

0

OBSTACLE AVOIDANCE

Optimal guidance with obstacle avoidance for

nap-of-the-earth flight INASA-CR-1775151

p 618 N89-24328

ONBOARD EQUIPMENT

Problems of the unification of the on-board systems of flight vehicles p 620 A89-42456

Determination of reference trajectories for testing navigation aids using an onboard CCD camera

p 602 N89-24303 ONE DIMENSIONAL FLOW

A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759

OPERATING TEMPERATURE

Comparison of predicted and measured temperatures of UH-60A helicopter transmission.

NASA-TP-29111 p 628 N89-24607

OPERATORS (MATHEMATICS)

Design of optimally smoothing multi-stage schemes for the Euler equations

[AIAA PAPER 89-1933] p 572 A89-41780 OPTICAL MEASURING INSTRUMENTS

Reconnaissance sensor management system - Vicon

2000

p 609 A89-40254 OPTIMAL CONTROL A study of the characteristics of aircraft powerplants

under conditions of optimal control of their principal p 612 A89-42466 components OPTIMIZATION

Design point optimization of an axial-flow compressor stage p 612 A89-41223 Optimization of the cold roll-forging of axial-flow

compressor blades with allowance for fatique characteristics p 625 A89-42421 Optimization of the parameters and characteristics of

bypass engines p 613 A89-42467 Interdisciplinary and multilevel optimum design --- in p 606 A89-43450 aerospace structural engineering A closed-form trim solution vielding minimum trim drag for airplanes with multiple longitudinal-control effectors

p 615 N89-23468 [NASA-TP-2907]
ORBIT TRANSFER VEHICLES

Computational requirements for hypersonic flight performance estimates --- of space vehicles
[AIAA PAPER 89-1670] p 620

p 620 A89-43193 **OVERPRESSURE**

Noise and sonic boom impact technology. PCBOOM computer program for sonic boom research, volume 1 p 594 N89-23429

Noise and sonic boom impact technology. PCBOOM computer program for sonic boom research. Volume 2: Program Users/Computer operations manual

p 594 N89-23430 [AD-A206291]

PADE APPROXIMATION

Aeroservoelastic modeling and applications using approximations of the unsteady aerodynamics [NASA-TM-101574]

PANEL FLUTTER

p 608 N89-24308

Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations in supersonic flow

p 593 N89-23423 LAD-A2057391

PANEL METHOD (FLUID DYNAMICS)

Numerical simulation of aircraft rotary aerodynamics p 579 A89-42024

Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speed

p 589 A89-42931

PANORAMIC CAMERAS

The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266

PARABOLIC DIFFERENTIAL EQUATIONS

Progress in the development of parabolized Navier-Stokes technology for external and internal supersonic flows

IAIAA PAPER 89-1828

p 581 A89-42057

p 573 A89-41786

PARALLEL COMPUTERS massively parallel three-dimensional

Euler/Navier-Stokes method

[AIAA PAPER 89-1937] p 572 A89-41784 Implementation of a rotary-wing three-dimensional Navier-Stokes solver on a massively parallel computer

PARALLEL PROCESSING (COMPUTERS)

Advances in computational design and analysis of airbreathing propulsion systems INASA-TM-1019871

p 613 N89-23465 PARTICLE IN CELL TECHNIQUE

Application of a vectorized particle simulation in high-speed near-continuum flow AIAA PAPER 89-1665) p 590 A89-43188

PARTICLE TRAJECTORIES

Trajectory integration in vortical flows

p 623 A89-40921 Measurements of particles rebound characteristics on materials used in gas turbines

I AIAA PAPER 89-1693] p 621 A89-43211 PASSENGER AIRCRAFT

MD-11 enters the fray p 603 A89-40857 CIDS- Cabin Intercommunication Data System

IMBB-UT-020-87-PUB] n 600 A89-42938 Enhanced performance low flying aircraft (EPLFA) - A

[AIAA PAPER 89-1499] p 606 A89-42949 Analysis of a candidate control algorithm for a ride-quality p 614 A89-43057

augmentation system
PATTERN RECOGNITION

Syntactic classification of radar measurements of p 600 A89-42680 commercial aircraft

PAVEMENTS

Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport

[AD-A205559] p 626 N89-23740

PERFORMANCE PREDICTION

A review of methods of estimating performance characteristics of centrifugal compressors

p 623 A89-41083 Numerical prediction of aerodynamic performance for p 579 A89-42023 low Reynolds number airfoils Computational requirements for hypersonic

performance estimates --- of space vehicles [AIAA PAPER 89-1670] p 620 A89-43193 Host computer system capacity management

procedures p 630 N89-24051

A model for prediction of STOVL ejector dynamics NASA-TM-102098] p 614 N89-24319 [NASA-TM-102098]

PERFORMANCE TESTS

Development of an advanced experimental rotary test rig and first test results with a 60 kN-main rotor

[MBB-UD-525-88-PUB] p 618 A89-39843 Comparison of predicted and measured temperatures of UH-60A helicopter transmission

[NASA-TP-2911] p 628 N89-24607

PERSONAL COMPUTERS

An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 Application of a PC based, real-time, data-aquisition system in rotorcraft wind-tunnel testing INASA-TM-4119] p 630 N89-24079

PERTURBATION

Computing induced velocity perturbations due to a helicopter fuselage in a free stream [NASA-TM-4113] p 592 N89-23410

PHASED ARRAYS

Improved bandwidth microstrip antenna design for airborne phased arrays p 600 A89-42676 PILOT PERFORMANCE

Safety philosophies in air transport

p 597 A89-39859 PILOT TRAINING

Cockpit-canopy fragmentation system for immediate p 606 A89-43115

PILOTLESS AIRCRAFT

Preliminary design of a modular unmanned research ehicle. Volume 2: Subsystem technical development design study

[AD-A205678] p 607 N89-23454

PITCH (INCLINATION)

Water tunnel investigation of the vortex dynamics of periodically pitched wings AD-A206359 p 595 N89-24271

PITCHING MOMENTS

A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p 570 A89-41045 High angle-of-attack aerodynamic characteristics of

crescent and elliptic wings p 593 N89-23418 INASA-CR-1849921

PITOT TUBES

Characteristics of a five-hole spherical pitot tube p 610 N89-23463 [NAL-TR-971]

PLANETARY SURFACES

from aircraft and Laser altimetry measurements p 624 A89-41691 spacecraft

PLASTIC AIRCRAFT STRUCTURES

The development of a composite helicopter fuselage s exemplified on the BK 117 IMRR-UD-534-88-PURT p 602 A89-39840 PODS (EXTERNAL STORES)

Airborne pod structures p 603 A89-40261

POINTING CONTROL SYSTEMS

Adaptive optimum attitude extrapolation for precise p 610 A89-42656 antenna pointing control

Actuator rate saturation compensator

[AD-D013962] p 616 N89-23474

PÒLICIES Soviet aerospace industry - Perestroika's changes grip

p 567 A89-41057 Soviet aerospace industry U.S. government policies and hypersonic flight in the 21st century p 634 A89-41654

Soviet aerospace industry - Perestroika's changes grip Soviet aerospace industry p 567 A89-41057 Soviet SST: The technopolitics of the Tupolev-144 --p 568 A89-42947 NASP keeps moving p 620 A89-43620 POTENTIAL FLOW

Shock fitting algorithm applied to a transonic, full otential flow p 571 A89-41760 Analysis of potential and viscous flows past general notential flow two-dimensional bodies with arbitrary trailing edge geometries

[AIAA PAPER 89-1969] p 577 A89-41841 Numerical simulation of aircraft rotary aerodynamics n 579 A89-42024

Numerical solution of transonic potential flow in 2D compressor cascades using multi-grid techniques

p 589 A89-42837

n 592 N89-23411

POWDER METALLURGY

Whither titanium powder metallurgy?

p 621 A89-41591

POWERED LIFT AIRCRAFT

Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059

PREDICTION ANALYSIS TECHNIQUES Turbulent flow predictions for afterbody/nozzle geometries including base effects

I AIAA PAPER 89-1865 I p 585 A89-42092

PRESSURE DISTRIBUTION

Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack

[AIAA PAPER 89-1060] p 631 A89-40473 Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference

PRESSURE EFFECTS

Observation of airplane flowfields by natural condensation effects p 578 A89-42009

PRESSURE GRADIENTS

PRESSURE SENSORS

The effect of an adverse pressure gradient on the drag reduction performance of manipulators

p 571 A89-41771

PRESSURE MEASUREMENT Unsteady blade pressure measurements on a model counterrotation propeller

[AIAA PAPER 89-1144] p 631 A89-40175 Transonic unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers

p 578 A89-42010 Measurement and computation of the velocity field of a cylinder in the wake of a rotor in forward flight

[AIAA PAPER 89-1844] p 583 A89-42072 Ejector effects on a supersonic nozzle at low altitude and Mach number p 594 N89-23427 [AD-A206049]

Unsteady blade pressure measurements on a model

counterrotation propeller IAIAA PAPER 89-11441 p 631 A89-40175 PROBABILITY DISTRIBUTION FUNCTIONS

A methodology for determining the survivability of fixed-wing aircraft against small arms

p 607 N89-23455 PROBLEM SOLVING

Composite Blade Structural Analyzer (COBSTRAN) demonstration manual p 622 N89-24459 [NASA-TM-101957]

PRODUCT DEVELOPMENT Superplastic forming - A new production technology

p 624 A89-41590 PROJECT PLANNING

Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design

MBB-UD-526-88-PUB) p 568 A89-42928 PROP-FAN TECHNOLOGY

Simulation of the flow around a counterrotating shrouded p 589 A89-43113

PROPELLANT TRANSFER Center of gravity control on Airbus aircraft: Fuel, range and loading

[REPT-882-111-101] p 608 N89-23460

PROPELLER BLADES	RADAR CROSS SECTIONS	REENTRY EFFECTS
Design and development tests of a five-bladed hingeless	A CFD-based finite-volume procedure for computational	Thermal analysis of a hypersonic wing test structure [NASA-CR-185319] p 595 N89-24265
helicopter main rotor [MBB-UD-531-88-PUB] p 603 A89-39845	electromagnetics - Interdisciplinary applications of CFD methods	REINFORCED PLASTICS
Unsteady blade pressure measurements on a model	[AIAA PAPER 89-1987] p 633 A89-41830	Technology of aircraft construction (selected chapters)
counterrotation propeller	Analog-to-digital converter effects on airborne radar	[AD-A199946] p 569 N89-24261 RELAXATION METHOD (MATHEMATICS)
[AIAA PAPER 89-1144] p 631 A89-40175 Prediction of unsteady blade surface pressures on an	performance p 599 A89-42661 RADAR DETECTION	A vectorized Gauss-Seidel line relaxation scheme for
advanced propeller at an angle of attack	Analog-to-digital converter effects on airborne radar	solving 3D Navier-Stokes equations
[AIAA PAPER 89-1060] p 631 A89-40473	performance p 599 A89-42661	[AIAA PAPER 89-1948] p 573 A89-41795 Upwind-biased, point-implicit relaxation strategies for
Prediction of loading noise of a propeller with blades	RADAR EQUIPMENT The US airborne radar scene p 567 A89-40856	viscous, hypersonic flows
under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474	RADAR MEASUREMENT	[AIAA PAPER 89-1972] p 575 A89-41816
An acoustic experimental and theoretical investigation	Syntactic classification of radar measurements of	RELIABILITY ANALYSIS Two-time probabilistic model of the evolution of aircraft
of single disc propellers	commercial aircraft p 600 A89-42680 RADAR TRACKING	engine reliability p 612 A89-42463
[AIAA PAPER 89-1146] p 632 A89-40478 High speed turboprop aeroacoustic study (single	Techniques for robust tracking in airborne radars	REPLICAS
rotation). Volume 1: Model development	p 600 A89-42666 RADAR TRANSMISSION	Flight testing of the Southern Cross replica aircraft [AD-A205303] p 607 N89-23451
[NASA-CR-182257-VOL-1] p 633 N89-24139	Future terrain following radars p 599 A89-42655	REPRESENTATIONS
PROPELLER FANS	RADIO ELECTRONICS	Transformation of real and virtual objects into a virtual,
Lifting-surface theory for propfan vortices impinging on a downstream wing p 578 A89-42013	Precision and efficiency of the radio electronic systems of aircraft Russian book p 625 A89-42524	visual environment p 627 N89-24304 RESCUE OPERATIONS
PROPELLER SLIPSTREAMS	RAMJET ENGINES	Search and rescue amphibious aircraft in Japan
Analysis of the wake behind a propeller using the finite	Automatic control of jet engines (3rd revised and	[AIAA PAPER 89-1500] p 604 A89-41571
element method with a two-equation turbulence model p 597 N89-24286	enlarged edition) Russian book p 613 A89-42509 RAMPS (STRUCTURES)	National Airspace System Search and Rescue operational concept (NAS-SR-1329)
PROPELLERS	Interaction of a compression ramp with a hypersonic	[DOT/FAA/DS-89/07] p 597 N89-23435
Comparison of propeller cruise noise data taken in the	laminar boundary layer	RESEARCH AIRCRAFT
NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data	[AIAA PAPER 89-1843] p 583 A89-42071 Separation shock motion and ensemble-averaged wall	Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059
[AIAA PAPER 89-1059] p 631 A89-40472	pressures in a Mach 5 compression ramp interaction	The functional mock-up test of the flight control system
High speed turboprop aeroacoustic study (single	[AIAA PAPER 89-1853] p 585 A89-42081	of the NAL QSTOL research aircraft ASKA
rotation). Volume 1: Model development	RAPID QUENCHING (METALLURGY) Rapidly solidified Al-Ti alloys via advanced melt	[NAL-TR-972] p 615 N89-23467 The 4D-TECS integration for NASA TSRV airplane
[NASA-CR-182257-VOL-1] p 633 N89-24139 Cruise noise of the SR-2 propeller model in a wind	spinning p 621 A89-41888	[NASA-CR-4231] p 615 N89-23471
tunnel	RAREFIED GAS DYNAMICS	RESEARCH AND DEVELOPMENT
[NASA-TM-101480] p 633 N89-24886	Flow of rarefied gases over two-dimensional bodies [AIAA PAPER 89-1970] p 575 A89-41814	Academician B. S. Stechkin's work in the development
PROPULSION Advanced computational techniques for hypersonic	Numerical simulation of 3D rarefied hypersonic flows	of jet engines p 634 A89-42452 Scientific and pedagogical work of academician B. S.
propulsion	[AIAA PAPER 89-1715] p 591 A89-43230	Stechkin at the Zhukovskii Air Force Engineering
[NASA-TM-102005] p 627 N89-23809	RATINGS Simulator evaluation of a display for a Takeoff	Academy p 635 A89-42453
PROPULSION SYSTEM CONFIGURATIONS Advances in computational design and analysis of	Performance Monitoring System	Soviet SST: The technopolitics of the Tupolev-144 Book p 568 A89-42947
airbreathing propulsion systems	[NASA-TP-2908] p 615 N89-23469 REACTION KINETICS	The VAAC/VSTOL Flight Control Research Project
[NASA-TM-101987] p 613 N89-23465	Parametric study of thermal and chemical nonequilibrium	p 615 A89-43104
PROPULSION SYSTEM PERFORMANCE Performance of an aero-space plane propulsion	nozzle flow	NASA aeronautics research and technology
nozzle	(AIAA PAPER 89-1856) p 585 A89-42084 REAL GASES	[NASA-EP-259] p 568 N89-23406 Langley aerospace test highlights, 1988
[AIAA PAPER 89-1878] p 586 A89-42103	A three-dimensional upwind parabolized Navier-Stokes	[NASA-TM-101579] p 635 N89-25112
PROTOTYPES	code for real gas flows	RESEARCH FACILITIES
A rapid prototyping facility for flight research in advanced systems concepts p 630 A89-41698	[AIAA PAPER 89-1651] p 626 A89-43177 REAL TIME OPERATION	A rapid prototyping facility for flight research in advanced systems concepts p 630 A89-41698
Western experts impressed by design of Mi-28	Generic imagery processing and exploitation	A research facility for film cooling investigations with
prototype p 605 A89-41950	p 622 A89-40255 The conformed panoramic - A new concept in	emphasis on the instrumentation system
PSYCHOACOUSTICS Advanced turboprop aircraft flyover noise: Annoyance	electro-optical sensors p 622 A89-40266	[NAL-TM-PR-8704] p 619 N89-23477
to counter-rotating-propeller configurations with a different	User friendly real time display p 609 A89-40272	Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262
number of blades on each rotor: Preliminary results	Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147	Langley aerospace test highlights, 1988
[NASA-TM-100638] p 634 N89-24888 PULSES	Application of a PC based, real-time, data-aquisition	[NASA-TM-101579] p 635 N89-25112
Boundary layer response to an unsteady turbulent	system in rotorcraft wind-tunnel testing	RESEARCH VEHICLES Preliminary design of a modular unmanned research
environment	[NASA-TM-4119] p 630 N89-24079 REATTACHED FLOW	vehicle. Volume 2: Subsystem technical development
[AD-A206578] p 596 N89-24273 PYLONS	An experimental study of a reattaching supersonic shear	design study
Innovative pylon concepts for engine-airframe	layer	[AD-A205678] p 607 N89-23454 RESONANT FREQUENCIES
integration for transonic transports	[AIAA PAPER 89-1801] p 579 A89-42036 RECONNAISSANCE AIRCRAFT	Mechanical model study for shrink fit rotor
[AIAA PAPER 89-1819] p 581 A89-42049	Airborne reconnaissance XII; Proceedings of the	p 611 A89-40964
Noise of a model counterrotation propeller with simulated fuselage and support pylon at takeoff/approach	Meeting, San Diego, CA, Aug. 16, 17, 1988	Identification of XV-15 aeroelastic modes using
conditions	[SPIE-979] p 567 A89-40251 Reconnaissance sensor management system - Vicon	frequency-domain methods p 604 A89-41092 Determination of the natural frequency spectra and
[NASA-TM-101996] p 633 N89-24138	2000 p 609 A89-40254	modes of the fan blade rings of aviation gas turbine
_	Generic imagery processing and exploitation	engines p 612 A89-42422
Q	p 622 A89-40255 Airborne pod structures p 603 A89-40261	REUSE Software development reusability for aircraft simulation
	Use of magnetic suspension for sensor vibration	systems p 630 A89-43127
QUENCHING (COOLING) Quench sensitivity of airframe aluminium alloys	isolation p 622 A89-40262 The conformed panoramic - A new concept in	REYNOLDS NUMBER
[PB89-146039] p 621 N89-23656	electro-optical sensors p 622 A89-40266	Crossflow-vortex instability and transition on a 45 deg
	User friendly real time display p 609 A89-40272	swept wing [AIAA PAPER 89-1892] p 587 A89-42114
R	HALE - A high-altitude, long-endurance manned aircraft p 604 A89-41109	Application of a vectorized particle simulation in
••	RECTANGULAR WINGS	high-speed near-continuum flow
RADAR ANTENNAS	Transonic aeroelasticity of fighter wings with active	[AIAA PAPER 89-1665] p 590 A89-43188 RIBBON PARACHUTES
Advanced technology ultra reliable radar (URR) p 599 A89-42652	control surfaces p 579 A89-42020 Flutter of a low-aspect-ratio rectangular wing	Flow past two-dimensional ribbon parachute models
Future terrain following radars p 599 A89-42655	(NASA-TM-4116) p 606 N89-23447	p 579 A89-42015
Adaptive optimum attitude extrapolation for precise	REDUCED GRAVITY	RIBLETS Effects of contamination on riblet performance
antenna pointing control p 610 A89-42656	Acceleration forces aboard NASA KC-135 aircraft during microgravity maneuvers p 620 A89-42022	p 579 A89-42021
RADAR APPROACH CONTROL	REDUNDANCY	RIDING QUALITY
Design of automated system for management of arrival	A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors	Detailed design of a Ride Quality Augmentation System for commuter aircraft
traffic [NASA-TM-102201] p 598 N89-24290	[NASA-TP-2907] p 615 N89-23468	[NASA-CR-4230] p 615 N89-23470

INASA-CR-1775231

[MBB-UD-525-88-PUB]

effects

air loads

ROTOR BLADES

RIGID ROTORS Design and development tests of a five-bladed hingeless	Generi a model
helicopter main rotor	Evoluti
[MBB-UD-531-88-PUB] p 603 A89-39845	Textron ROTOR BL
ROADS Investigations on the cracking behavior of joints in	Use of
airfields and roads: Field investigations and laboratory	near sta
simulations	blade
[PB89-141279] p 619 N89-23479	[AIAA PA Compo
ROBUSTNESS (MATHEMATICS) Tophological for robust tracking in airborne radge.	demonstr
Techniques for robust tracking in airborne radars p 600 A89-42666	{NASA-T
Improved time-domain stability robustness measures for	ROTOR BO
linear regulators p 630 A89-43068	Determ gas gene
ROCKET NOZZLES	Rough
Ejector effects on a supersonic nozzle at low altitude and Mach number	of helicor
[AD-A206049] p 594 N89-23427	
ROCKET THRUST	Deterr modes o
Ejector effects on a supersonic nozzle at low altitude	engines
and Mach number	Noise
[AD-A206049] p 594 N89-23427	simulated
ROCKY MOUNTAINS (NORTH AMERICA) Hazards of mountain flying - Crashes in the Colorado	condition [NASA-T
Rockies p 597 A89-42151	Surve
ROLLER BEARINGS	research
Comparison of predicted and measured temperatures	[NASA-T
of UH-60A helicopter transmission [NASA-TP-2911] p 628 N89-24607	ROTOR DY Compu
ROTARY WINGS	helicopte
Design and development tests of a five-bladed hingeless	[NASA-T
helicopter main rotor	Survey
[MBB-UD-531-88-PUB] p 603 A89-39845	research [NASA-T
Rough design criterion for ground and air resonance of helicopter rotor with three or more blades	ROTORCE
p 603 A89-40814	Engine
Implementation of a rotary-wing three-dimensional	[MBB-UC
Navier-Stokes solver on a massively parallel computer [AIAA PAPER 89-1939] p 573 A89-41786	Next-ge rotorcraft
Computational and experimental evaluation of helicopter	Measu
rotor tips for high speed forward flight	a cylinder
[AIAA PAPER 89-1845] p 584 A89-42073	[AIAA PA Effect o
Numerical solutions of forward-flight rotor flow using an upwind method	performa
[AIAA PAPER 89-1846] p 584 A89-42074	NASA-T
Simulation of realistic rotor blade-vortex interactions	ROTORS
using a finite-difference technique	Applica system in
[AIAA PAPER 89-1847] p 584 A89-42075 Unsteady interaction of a rotor with a vortex	[NASA-T
[AIAA PAPER 89-1848] p 584 A89-42076	Prelimi
Enhancements to a new free wake hover analysis	second-g
[NASA-CR-177523] p 592 N89-23414 Effect of advanced rotorcraft airfoil sections on the hover	JUH-1H [AD-A206
performance of a small-scale rotor model	RUNGE-KU
[NASA-TP-2832] p 595 N89-24264	Develo
Preliminary airworthiness evaluation of modified	Navier-St
second-generation Pneumatic Boot Deicing System on a JUH-1H	Vortex-
[AD-A206255] p 598 N89-24289	unstructu
ROTATING DISKS	[AIAA PA
Service-induced damage in turbine discs and its	Multigri
influence on damage tolerance-based life prediction p 612 A89-41910	three-dim [AIAA PA
ROTATING FLUIDS	RUNWAYS
Characteristics of dump combustor flows	Instrum
p 612 A89-41224 ROTOR AERODYNAMICS	for Orlan Orlando,
Unsteady blade pressure measurements on a model	[AD-A205
counterrotation propeller	Investig
[AIAA PAPER 89-1144] p 631 A89-40175 Prediction of unsteady blade surface pressures on an	airfields
advanced propeller at an angle of attack	simulation [PB89-14
[AIAA PAPER 89-1060] p 631 A89-40473	Improv
Whitham's F-function for a supersonically rotating	Flight Rul
propeller [AIAA PAPER 89-1107] p 632 A89-40475	[DOT/FA
Mechanical model study for shrink fit rotor	
p 611 A89-40964	
Implementation of a rotary-wing three-dimensional	
Navier-Stokes solver on a massively parallel computer [AIAA PAPER 89-1939] p 573 A89-41786	SAFETY
Numerical simulation of aircraft rotary aerodynamics	A dem
p 579 A89-42024	element a [AD-A206
Three dimensional analysis of a rotor in forward flight [AIAA PAPER 89-1815] p 580 A89-42045	SANDWICH
[AIAA PAPER 89-1815] p 580 A89-42045 Enhancements to a new free wake hover analysis	Compa

p 592 N89-23414

p 595 N89-24267

p 618 A89-39843

p 570 A89-41091

Aerodynamics of a lifting rotor due to near field unsteady

Development of an advanced experimental rotary test rig and first test results with a 60 kN-main rotor

The effects of wake migration during roll-up on blade

ic icing effects on forward flight performance of helicopter rotor p 604 A89-41093 ion of rotor blade abrasion strips at Bell Helicopter p 604 A89-41589 ADES (TURBOMACHINERY) Navier-Stokes code to predict flow phenomena ill as measured on a 0.658-scale V-22 tiltrotor p 580 A89-42044 APER 89-18141 site Blade Structural Analyzer (COBSTRAN) ation manual p 622 N89-24459 M-1019571 DY INTERACTIONS nination of the interaction parameter of a twin-rotor p 622 A89-40084 erator design criterion for ground and air resonance pter rotor with three or more blades p 603 A89-40814 nination of the natural frequency spectra and of the fan blade rings of aviation gas turbine p 612 A89-42422 of a model counterrotation propeller with fuselage and support pylon at takeoff/approach p 633 N89-24138 M-1019961 of Army/NASA rotorcraft aeroelastic stability M-1010261 p 618 N89-24329 NAMICS ting induced velocity perturbations due to a fuselage in a free stream p 592 N89-23410 M-41131 of Army/NASA rotorcraft aeroelastic stability p 618 N89-24329 M-1010261 AFT AIRCRAFT aspects in the design of advanced rotorcraft -528-88-PUB1 p 611 A89-39842 eneration power for next-generation civil p 611 A89-41050 rement and computation of the velocity field of in the wake of a rotor in forward flight p 583 A89-42072 PER 89-18441 of advanced rotorcraft airfoil sections on the hover nce of a small-scale rotor model p 595 N89-24264 P-28321 tion of a PC based, real-time, data-aquisition rotorcraft wind-tunnel testing p 630 N89-24079 nary airworthiness evaluation of modified eneration Pneumatic Boot Deicing System on a p 598 N89-24289 32551 TTA METHOD opment of an efficient multigrid code for 3-D okes equations p 625 A89-42027 PER 89-17911 dominated conical-flow computations using red adaptively-refined meshes p 580 A89-42046 NPER 89-1816] id solution of the Euler equations for ensional cascade flows p 581 A89-42048 PER 89-18181 ent landing system mathematical modeling study do International Airport Runway 35L localizer, Florida. Final airside docking plan (Scheme 3A) p 600 N89-23438 gations on the cracking behavior of joints in and roads: Field investigations and laboratory 12791 p 619 N89-23479 ed marking of taxiway intersections for Instrument les (IFR) operations A/CT-TN89/231 p 619 N89-24330 S

nonstration of the method of stochastic finite analysis p 630 N89-24127 61351 H STRUCTURES arison of the crushing behaviour of metallic subfloor structures

SEAPLANES Hydrodynamic characteristics of seaplanes as affected by hull shape parameters

p 622 A89-39841

[MBB-UD-535-88-PUB]

[AIAA PAPER 89-1540] p 604 A89-41562 The Canadair CL-215 amphibious aircraft - Development and applications

[AIAA PAPER 89-1541] p 604 A89-41563

Seaplanes and the towing tank [AIAA PAPER 89-1533] n 623 A89-41564 RFB research and development in WIG vehicles ---Wing-In-Ground

p 623 A89-41568 [AIAA PAPER 89-1495] A review of current technical knowledge necessary to develop large scale wing-in-surface effect craft p 623 A89-41569 [AIAA PAPER 89-1497]

Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89-41571

SEARCHING

National Airspace System Search and Rescue operational concept (NAS-SR-1329) p 597 ' N89-23435 DOT/FAA/DS-89/071

SENSITIVITY Quench sensitivity of airframe aluminium alloys

p 621 N89-23656 PB89-1460391 SENSORS

Reconnaissance sensor management system - Vicon p 609 A89-40254 ാറററ Use of magnetic suspension for sensor vibration isolation p 622 A89-40262 The conformed panoramic - A new concept in p 622 A89-40266 electro-optical sensors

SEPARATED FLOW Measurements of laminar separation bubble on B3

p 569 A89-40893 airfoil Prediction of transition due to isolated roughness --- for flow over flat plate with bumps or hollows

p 622 A89-40907 High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

[NASA-CR-184992] p 593 N89-23418 Flow control for unsteady and separated flows and turbulent mixing p 594 N89-23426

[AD-A205989] SERVICE LIFE

Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction

p 612 A89-41910 USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures

(AD-A206286) p 608 N89-23457 SERVOMECHANISMS

Actuator rate saturation compensator

p 616 N89-23474 (AD-D013962) Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

p 609 N89-24313 [NASA-TM-101570] Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center

p 609 N89-24314 NASA-TM-101582

SHARP LEADING EDGES

The structure of aerodynamic heating in three-dimensional shock wave/turbulent boundary layer interactions induced by sharp and blunt fins p 585 A89-42082 [AIAA PAPER 89-1854]

SHEAR FLOW Analysis of the wake behind a propeller using the finite

element method with a two-equation turbulence model p 597 N89-24286

SHEAR LAYERS

An experimental study of a reattaching supersonic shear [AIAA PAPER 89-1801] p 579 A89-42036

Experimental study of free-shear layer transition above a cavity at Mach 3.5 p 580 A89-42043 [AIAA PAPER 89-1813]

Separation shock motion and ensemble-averaged wall pressures in a Mach 5 compression ramp interaction p 585 A89-42081 [AIAA PAPER 89-1853] Investigation of the flowfield created by the interaction of a sonic jet and a co-flowing supersonic stream

p 593 N89-23425 [AD-A205823] SHELL THEORY

Computational procedures for postbuckling of composite p 628 N89-24642 SHELLS (STRUCTURAL FORMS)

Computational procedures for postbuckling of composite p 628 N89-24642

SHOCK DISCONTINUITY Sonic-point capturing --- shock wave structures in

transonic nozzle flow [AIAA PAPER 89-1945] p 573 A89-41792

SHOCK WAVE INTERACTION

The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117

Interaction of a compression ramp with a hypersonic laminar boundary layer

[AIAA PAPER 89-1843] p 583 A89-42071 Measurements of swept shock wave/turbulent boundary-layer interactions by holographic interferometry [AIAA PAPÉR 89-1849] p 584 A89-42077

Inception length to a fully-developed fin-generated shock Wind tunnel tests on flutter control of a high-aspect-ratio SPATIAL MARCHING cantilevered wing wave boundary-layer interaction Calculation of winged-body-like flow fields using an p 584 A89-42078 INAL-TR-9781 p 616 N89-24321 implicit upwind space-marching code [AIAA PAPER 89-1826] Navier-Stokes simulation of a shock wave-turbulent SLIP FLOW boundary layer interaction in a three-dimensional 'Hypersonic slip flows' and issues on extending SPEED CONTROL Comparison of interpolation algorithms for speed control continuum model beyond the Navier-Stokes level p 585 A89-42079 [AIAA PAPER 89-1851] [AIAA PAPER 89-1663] p 590 A89-43187 in air traffic management Computation of sharp fin and swept compression corner p 601 N89-23444 SLOTS [AD-A206314] shock/turbulent boundary layer interactions SPOILERS Effect of slotting on the mixing and noise of an p 585 A89-42080 [AIAA PAPER 89-1852] Computation of dynamics and control of unsteady axisymmetric supersonic jet Separation shock motion and ensemble-averaged wall p 627 N89-23822 [AIAA PAPER 89-1052] p 632 A89-41042 vortical flows pressures in a Mach 5 compression ramp interaction STABILITY AUGMENTATION Turbulence measurements for heated gas slot injection [AIAA PAPER 89-1853] p 585 A89-42 The structure of aerodynamic heating p 585 A89-42081 Analysis of a candidate control algorithm for a ride-quality in supersonic flow
[AIAA PAPER 89-1868] augmentation system p 614 A89-43057 p 586 A89-42095 three-dimensional shock wave/turbulent boundary layer Detailed design of a Ride Quality Augmentation System SMALL PERTURBATION FLOW interactions induced by sharp and blunt fins for commuter aircraft On some numerical schemes for transonic flow p 585 A89-42082 [AIAA PAPER 89-1854] [NASA-CR-4230] p 615 N89-23470 problems p 569 A89-39867 Experimental study of pressure and heating rate on a Loss of tail rotor effectiveness evaluation of the OH-58C SOFTWARE ENGINEERING swept cylindrical leading edge resulting from swept shock helicopter with directional SAS (Stability Augmentation Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640 wave interference System) [NASA-CR-185326] p 592 N89-23411 p 608 N89-24309 SOFTWARE TOOLS SHOCK WAVES Results of an A109 simulation validation and handling MILCOMP '88 - Military computers, graphics and Shock standoff from blunt cones in high-enthalpy qualities study software; Proceedings of the Conference and Exhibition, NASA-TM-1010621 nonequilibrium nitrogen flow p 570 A89-40913 p 617 N89-24323 onequilibrium nitrogen now
Shock fitting algorithm applied to a transonic, full
otential flow p 571 A89-41760 London, England, Sept. 27-29, 1988 STABILITY TESTS p 629 A89-40425 Laminar boundary layer stability experiments on a cone potential flow at Mach 8. V - Tests with a cooled model [AIAA PAPER 89-1895] p 58 Sonic-point capturing --- shock wave structures in Advanced technology ultra reliable radar (URR) p 599 A89-42652 p 587 A89-42117 transonic nozzle flow [AIAA PAPER 89-1945] p 573 A89-41792 STAGNATION FLOW Techniques for robust tracking in airborne radars Development of an efficient multigrid code for 3-D p 600 A89-42666 Supersonic flow stagnation in a duct during p 587 A89-42460 Navier-Stokes equations combustion Software development reusability for aircraft simulation [AIAA PAPER 89-1791] STAGNATION POINT p 630 A89-43127 An analytical approach to the prediction of shock Development of an efficient multigrid code for 3-D Some issues in numerical simulation of nonlinear patterns in bounded high-speed flows Navier-Stokes equations structural response p 628 N89-24639 [AIAA PAPER 89-1874] p 586 A89-42099 [AIAA PAPER 89-1791] p 625 A89-42027 SOLIDIFICATION An approximate viscous shock layer method for STAGNATION PRESSURE Rapidly solidified Al-Ti alloys via advanced melt calculating the hypersonic flow over blunt-nosed bodies [AIAA PAPER 89-1695] p 590 A89-43212 Experiment on a cylindrical scramjet combustor. 2: p 621 A89-41888 spinning Simulated flight Mach number 6.7 Measurements of diffusion limited solidification at Investigation of the flowfield created by the interaction p 613 N89-23464 varying gravity
[AIAA PAPER 89-1755] STAGNATION TEMPERATURE of a sonic jet and a co-flowing supersonic stream p 626 A89-43268 [AD-A205823] p 593 N89-23425 Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 SHORT TAKEOFF AIRCRAFT SONIC BOOMS Modified F-15B to demonstrate STOL, maneuver Status of sonic boom methodology and understanding INAL-TR-9691 p 613 N89-23464 p 592 N89-23415 p 603 A89-41075 [NASA-CP-3027] STAINLESS STEELS Navier-Stokes solution for a NACA 0012 airfoil with mass Noise and sonic boom impact technology. PCBOOM Qualification of high temperature vacuum carburizing for computer program for sonic boom research, volume 1 p 624 A89-41598 flux (fan) an aircraft gear steel p 593 N89-23424 [AD-A205771] [AD-A206290] p 594 N89-23429 STANDING WAVE RATIOS The functional mock-up test of the flight control system Improved bandwidth microstrip antenna design for Noise and sonic boom impact technology. PCBOOM of the NAL QSTOL research aircraft ASKA airborne phased arrays p 600 A89-42676 computer program for sonic boom research. Volume 2: p 615 N89-23467 [NAL-TR-972] Program Users/Computer operations manual STATIC AERODYNAMIC CHARACTERISTICS A model for prediction of STOVL ejector dynamics p 594 N89-23430 Optimum aeroelastic characteristics for composite [AD-A206291] p 614 N89-24319 INASA-TM-1020981 supermaneuverable aircraft SOUND FIELDS AD-A2055031 SHROUDED PROPELLERS p 607 N89-23452 Active control of sound fields in elastic cylinders by STATIC PRESSURE Simulation of the flow around a counterrotating shrouded multicontrol forces p 632 A89-40904 p 589 A89-43113 Characteristics of a five-hole spherical pitot tube propfan SOUND TRANSMISSION [NAL-TR-971] p 610 N89-23463 SIDESLIP Reduction of sound transmission through fuselage walls Characteristics of a five-hole spherical pitot tube STEADY FLOW by alternate resonance tuning (A.R.T.) p 610 N89-23463 A comparative study of the Coakley and TVD schemes p 631 A89-40470 [ÁIAA PAPER 89-1046] SIGNAL PROCESSING for steady-state calculations of one-dimensional Euler Noise and sonic boom impact technology. PCBOOM Advanced technology ultra reliable radar (URR) equations p 571 A89-41759 computer program for sonic boom research, volume 1 p 599 A89-42652 Design of optimally smoothing multi-stage schemes for p 594 N89-23429 [AD-A206290] SIGNAL TRANSMISSION the Euler equations Interior noise control ground test studies for advanced [AIAA PAPER 89-1933] p 572 A89-41780 Image Signal Processing for Flight Guidance turboprop aircraft applications p 602 N89-24295 IDFVLR-MITT-88-321 Applications of Lagrangian time to steady supersonic [NASA-CR-181819] p 633 N89-24141 Image signal processing for flight guidance: Overview and introduction to the main topics p 602 N89-24296 airfoil computation SOUND WAVES [AIAA PAPER 89-1963] p 575 A89-41808 An intelligent fiberoptic data bus for fly-by-light An acoustic experimental and theoretical investigation An analytical approach to the prediction of shock of single disc propellers applications patterns in bounded high-speed flows [AIAA PAPER 89-1146] p 632 A89-40478 INAL-TM-SE-87071 p 634 N89-24901 [AIAA PAPER 89-1874] p 586 A89-42099 SIMULATORS SPACE LAW A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 Transonic operational characteristics and performance Hypersonic flight - The need for a new legal regime Numerical simulation of feedback control of aerodynamic p 591 N89-23408 p 634 A89-41655 [NAL-TR-968] Simulator evaluation of a display for a Takeoff SPACE PROCESSING configurations in steady and unsteady ground effects Performance Monitoring System [NASA-TP-2908] Measurements of diffusion limited solidification at p 617 N89-24326 p 615 N89-23469 STEREOSCOPIC VISION varying gravity
[AIAA PAPER 89-1755] SINGLE STAGE TO ORBIT VEHICLES Visibility with a moving point of view p 626 A89-43268 Computational requirements for hypersonic flight performance estimates --- of space vehicles SPACE PROGRAMS p 631 N89-24876 STOCHASTIC PROCESSES Recent progress in the National Aerospace Plane AIAA PAPER 89-1670) p 620 A89-43193 A demonstration of the method of stochastic finite program p 568 A89-41651 SKIN (STRUCTURAL MEMBER) SPACE SHUTTLES element analysis [AD-A2061351 p 630 N89-24127 Age creep forming aluminum aircraft skins Flying qualities from early airplanes to the Space p 624 A89-41584 Shuttle p 614 A89-43051 STREAM FUNCTIONS (FLUIDS) SKIN FRICTION SPACECRAFT CONSTRUCTION MATERIALS Global marching technique for predicting flows over airfoils with leading and trailing edge flaps [AIAA PAPER 89-1793] p 57 The effect of an adverse pressure gradient on the drag U.S. government policies and hypersonic flight in the reduction performance of manipulators p 579 A89-42028 21st century p 634 A89-41654 p 571 A89-41771 SPACECRAFT DESIGN STREAMLINING SLENDER CONES New developments in air and space research Trajectory integration in vortical flows The computation of Navier-Stokes solutions exhibiting Contributions of the German aircraft and space industry p 623 A89-40921 symmetric vortices to advanced programs and international cooperation STRESS ANALYSIS [AIAA PAPER 89-1817] p 580 A89-42047 [MRR-7-177-88-PHRT p 635 A89-42927 A method for estimating the stochastic vibrational stress Study of hypersonic flow past sharp cones SPACECRAFT INSTRUMENTS level of impeller bladings of aircraft gas turbine engines p 591 A89-43228 [AIAA PAPER 89-1713] Laser altimetry measurements from aircraft and in operating conditions on the basis of developmental p 611 A89-40624 spacecraft p 624 A89-41691 bench test data SLENDER WINGS Vorticity equation solutions for slender wings at high SPACECRAFT PERFORMANCE Computational Methods for Structural Mechanics and Flying qualities from early airplanes to the Space

Dynamics

[NASA-CP-3034-PT-2]

p 628 N89-24654

p 614 A89-43051

incidence

[AIAA PAPER 89-1989]

p 577 A89-41832

STRESS CORROSION CRACKING			
The environmental cracking			of
aluminium-lithium based alloys	p 621	A89-4160)1
STRUCTURAL ANALYSIS			
USAF (US Air Force) durability			
Guidelines for the analysis and design structures	ii oi uui	able alicia	110
[AD-A206286]	p 608	N89-2345	57
Ground shake test of the Boeing M	•		
airframe	.000.00	o nonoupt	٠,
[NASA-CR-181766]	p 627	N89-2392	20
Composite Blade Structural Analy	zer (C0	OBSTRAI	V)
demonstration manual	,		•
[NASA-TM-101957]		N89-2445	
CSM testbed development and la	rge-scal	le structur	al
applications			
[NASA-TM-4072]	p 628	N89-2462	
Computerized structural mecha		or 1990'	
Advanced aircraft needs	p 628	N89-2464	
Computational procedures for postbu			
shells	p 628	N89-2464	
Transient analysis techniques in per crash dynamic studies		N89-2465	
STRUCTURAL DESIGN	p 025	1405-2400	ю
A correlation study of X-29A aircra	aft and	associate	'n
analytical developments	p 607	N89-2345	
Recent activities within the Aerosei			
at the NASA Langley Research Center		·-·· , -·· ·	
[NASA-TM-101582]	p 609	N89-2431	4
STRUCTURAL ENGINEERING			
A demonstration of the method	of stoc	hastic finit	e
element analysis			_
[AD-A206135]	p 630	N89-2412	7
STRUCTURAL VIBRATION		ibratia	_
Use of magnetic suspension for isolation		A89-4026	
Transverse vibrations of a trapezoi			
of variable thickness	p 622	A89-4091	
Unsteady aerodynamic effects on b	•		Ċ
		N89-2427	8
Ground vibration test of the For	udre A(04 Transa	ıli
aircraft			
[REPT-20/7234-PY-382-R]	p 609	N89-2431	1
STRUCTURAL WEIGHT			
An analysis of Electronic Aids to M	/laintena	ance (EAM	1)
for the Light Helicopter Family (LHX)		*****	_
	p 568	N89-2340	7
STRUTS			
Transonic operational characteristic [NAL-TR-968]		N89-2340	
SUBSONIC FLOW	p 551	1403-2040	O
A numerical method for calculati	na suh	sonic full	Ιv
unsteady aerodynamic characteristic	s of wi	nas in tim	e
domain	p 570	A89-4095	9
Upwind algorithms based on a dia	gonaliza	ation of th	е
multidimensional Euler equations	•		
[AIAA PAPER 89-1958]	p 578	A89-4184	2
3-D composite velocity solutions for	subsoni	c/transoni	С
flow over afterbodies			_
		A89-4206	
Calculation of stationary subson			
nonpotential flows of an ideal ga channels		xisymmetri A89-4251	
The unsteady flow in the far field o			
	p 591	A89-4353	
SUBSONIC SPEED			
Dynamic loading on impact surfaces	of a hig	jh subsoni	С
elliptic jet			

An analysis of Electronic Aids to Maintenance (EAM)
for the Light Helicopter Family (LHX)
[AD-A205440] p 568 N89-23407
STRUTS
Transonic operational characteristics and performance
[NAL-TR-968] p 591 N89-23408
SUBSONIC FLOW
A numerical method for calculating subsonic fully
unsteady aerodynamic characteristics of wings in time
domain p 570 A89-40959
Upwind algorithms based on a diagonalization of the
multidimensional Euler equations
[AIAA PAPER 89-1958] p 578 A89-41842
3-D composite velocity solutions for subsonic/transonic
flow over afterbodies
[AIAA PAPER 89-1837] p 582 A89-42065
Calculation of stationary subsonic and transonic
nonpotential flows of an ideal gas in axisymmetric
channels p 588 A89-42519
The unsteady flow in the far field of an isolated blade
row p 591 A89-43537
SUBSONIC SPEED
Dynamic loading on impact surfaces of a high subsonic
elliptic iet
[AIAA PAPER 89-1139] p 632 A89-40477
Application of HISSS panel code to a fighter-type aircraft
configuration at subsonic and supersonic speeds
I AIAA PAPER 87-2619 p 589 A89-42931
Accuracy problems in wind tunnels during transport
aircraft development
(MDD LIT 404 00 DUD)

Suction		
[AIAA PAPER 89-1893]	p 587	A89-42115
SUPERCOMPUTERS		
Numerical aerodynamic simulation		
[NASA-EP-262]	p 569	N89-24262
SUPERCRITICAL AIRFOILS		
Transonic unsteady pressure m	easurer	nents on a
supercritical airfoil at high Reynolds	numbers	
	p 578	A89-42010
Computational and experimenta	l researc	h on buffet

A research facility for film cooling investigations with

Transition flight experiments on a swept wing with

LMBB-UT-134-88-PUB1

[NAL-TM-PR-8704]

SUCTION

SUBSONIC WIND TUNNELS

phenomena of transonic airfoils

[NAL-TR-996T]

emphasis on the instrumentation system

p 619 A89-42937

p 619 N89-23477

p 616 N89-24322

```
SUPERCRITICAL WINGS
    A flux-difference split algorithm for unsteady thin-layer
  Navier-Stokes solutions
  [AIAA PAPER 89-1995]
                                      p 577 A89-41838
SUPERPLASTICITY
    Superplastic forming - A new production technology
                                     p 624 A89-41590
SUPERSONIC AIRCRAFT
    Advanced concepts and materials for high-speed flight
                                     p 620 A89-41585
    On the optimum cruise speed of a hypersonic aircraft
                                     p 605 A89-41652
    Innovative pylon concepts for
                                        engine-airframe
  integration for transonic transports
  [AIAA PAPER 89-1819]
                                     p 581 A89-42049
SUPERSONIC BOUNDARY LAYERS
    Linear instabilities in two-dimensional compressible
  mixing layers
                                     p 578 A89-41903
    An experimental study of a reattaching supersonic shear
  laver
                                     p 579 A89-42036
  [AIAA PAPER 89-1801]
   Effect of the adiabatic exponent on the stability and
  turbulent transition of a supersonic laminar boundary
                                     p 588 A89-42567
    Effect of gas dissociation and ignization on the transition
of a supersonic boundary layer p 588 A89
SUPERSONIC COMBUSTION RAMJET ENGINES
    The model of combustion efficiency and calculation of
  flow properties for scramjet combustor
                                     p 611 A89-41115
    Performance of an aero-space plane propulsion
  [AIAA PAPER 89-1878]
                                     p 586 A89-42103
   PNS code assessment studies for scramjet combustor
  and nozzle flowfields
  [AIAA PAPER 89-1697]
                                     n 613 A89-43213
    Experiment on a cylindrical scramjet combustor. 2:
  Simulated flight Mach number 6.7
                                     p 613 N89-23464
  [NAL-TR-969]
    An integrated aerodynamic/propulsion study for generic
 aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N8
                                     p 609 N89-24315
SUPERSONIC FLIGHT
    Application of HISSS panel code to a fighter-type aircraft
  configuration at subsonic and supersonic speeds
                                     p 589 A89-42931
  [AIAĂ PAPER 87-2619]
    Status of sonic boom methodology and understanding
 [NASA-CP-3027]
                                     p 592 N89-23415
    Noise and sonic boom impact technology. PCBOOM
  computer program for sonic boom research, volume 1
                                     p 594 N89-23429
SUPERSONIC FLOW
   Whitham's F-function for a supersonically rotating
```

propeller

[AIAA PAPER 89-1107] p 632 A89-40475 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798

Use of high-resolution upwind scheme for vortical flow [AIAA PAPER 89-1955] p 574 A89-41802 Improvements and applications of a streamwise upwind

[AIAA PAPER 89-1957] n 574 A89-41804 Applications of Lagrangian time to steady supersonic airfoil computation

[AIAA PAPER 89-1963] p 575 A89-41808 Flow of rarefied gases over two-dimensional bodies [AIAA PAPER 89-1970] p 575 A89-41814

Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations p 576 A89-41823 [AIAA PAPER 89-1980]

Upwind algorithms based on a diagonalization of the multidimensional Euler equations [AIAA PAPER 89-1958] p 578 A89-41842

A central finite volume TVD scheme for the calculation of supersonic and hypersonic flow fields around complex configurations [AIAĂ PAPER 89-1975] p 578 A89-41844

Numerical analysis of supersonic turbulent mixing

[AIAA PAPER 89-1811] p 580 A89-42041 Experimental study of free-shear layer transition above cavity at Mach 3.5 p 580 A89-42043 [AIAA PAPER 89-1813]

The computation of Navier-Stokes solutions exhibiting asymmetric vortices [AÍAA PAPER 89-1817] p 580 A89-42047 New mixing-length model for turbulent high-speed flows

[AIAA PAPER 89-1821] p 581 A89-42051 Progress in the development of parabolized Navier-Stokes technology for external and internal supersonic flows [AIAA PAPER 89-1828] p 581 A89-42057

Turbulence measurements for heated gas slot injection in supersonic flow [AIAA PAPER 89-1868] p 586 A89-42095 An analytical approach to the prediction of shock patterns in bounded high-speed flows p 586 A89-42099 [AIAA PAPER 89-1874]

Supersonic flow stagnation in a duct during p 587 A89-42460 combustion Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521

Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Development of harmonic panel methods for aeroelastic

applications to elastic bodies and body-fin combinations supersonic flow p 593 N89-23423 IAD-A2057391 Investigation of the flowfield created by the interaction

of a sonic jet and a co-flowing supersonic stream p 593 N89-23425 [AD-A205823] SUPERSONIC JET FLOW

Supersonic rectangular jet impingement noise experiments [AIAA PAPER 89-1138] p 632 A89-40476 Effect of slotting on the mixing and noise of an

axisymmetric supersonic let [AIAA PAPER 89-1052] p 632 A89-41042 SUPERSONIC NOZZLES

Ejector effects on a supersonic nozzle at low altitude and Mach number p 594 N89-23427 IAD-A2060491

SUPERSONIC SPEED Cavity door effects on aerodynamic loads of stores p 578 A89-42011 separating from cavities

SUPERSONIC TRANSPORTS Soviet SST: The technopolitics of the Tupolev-144 ---Book p 568 A89-42947

SUPPORT INTERFERENCE Use of magnetic suspension for sensor vibration p 622 A89-40262 isolation

SURFACE NAVIGATION

Practical experimental examples of land, sea, and air navigation using the Navstar/GPS system

p 599 A89-40802 SURFACE ROUGHNESS EFFECTS

Prediction of transition due to isolated roughness --- for flow over flat plate with bumps or hollows p 622 A89-40907

SURVEILLANCE RADAR ASR-9 weather channel test report, executive s ummary

[DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 SWEEP ANGLE

Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference

[NASA-CR-185326] p 592 N89-23411

SWEPT FORWARD WINGS Comment on 'General formulation of the aeroelastic

divergence of composite swept-forward wing structures p 605 A89-42025 **SWEPT WINGS**

solution method for the three-dimensional compressible turbulent boundary-layer equations p 623 · A89-41044

An inviscid/viscous coupling approach for vortex flowfield calculations [AIAA PAPER 89-1961] p 575 A89-41807

Crossflow-vortex instability and transition on a 45 deg swept wing [AIAA PAPER 89-1892]

p 587 A89-42114 Transition flight experiments on a swept wing with suction

p 587 A89-42115 [AIAA PAPER 89-1893] High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

[NASA-CR-184992] p 593 N89-23418 Water tunnel investigation of the vortex dynamics of periodically pitched wings

p 595 N89-24271 AD-A2063591

SYSTEMS ENGINEERING

Problems of the unification of the on-board systems of flight vehicles ight vehicles p 620 A89-42456 Precision and efficiency of the radio electronic systems of aircraft --- Russian book p 625 A89-42524 Interdisciplinary and multilevel optimum design --- in p 606 A89-43450 aerospace structural engineering SYSTEMS INTEGRATION

Interdisciplinary and multilevel optimum design --- in p 606 A89-43450 aerospace structural engineering Development of the extended kalman filter for the advanced Completely Integrated Reference Instrumentation System (CIRIS) p 601 N89-23443 [AD-A2060831

The 4D-TECS integration for NASA TSRV airplane p 615 N89-23471 INASA-CR-42311

Development and flight test experiences with a	THIN BODIES	THRUST VECTOR CONTROL
flight-crucial digital control system	The shape of thin bodies with minimal drag	The VAAC/VSTOL Flight Control Research Project
[NASA-TP-2857] p 617 N89-24327 SYSTEMS SIMULATION	p 588 A89-42496 THREE DIMENSIONAL BOUNDARY LAYER	p 615 A89-43104 A closed-form trim solution yielding minimum trim drag
Software development reusability for aircraft simulation systems p 630 A89-43127	A solution method for the three-dimensional compressible turbulent boundary-layer equations	for airplanes with multiple longitudinal-control effectors [NASA-TP-2907] p 615 N89-23468
Т	p 623 A89-41044 Formation of singularities in a three-dimensional	TILT ROTOR AIRCRAFT Engine aspects in the design of advanced rotorcraft [MBB-UD-528-88-PUB] p 611 A89-39842
TAIL ROTORS	boundary layer p 625 A89-42557 THREE DIMENSIONAL FLOW	TILTING ROTORS
Loss of tail rotor effectiveness evaluation of the OH-58C	Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908	Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092
helicopter with directional SAS (Stability Augmentation System)	Implementation of a rotary-wing three-dimensional	Use of Navier-Stokes code to predict flow phenomena near stall as measured on a 0.658-scale V-22 tiltrotor
[AD-A206181] p 608 N89-24309 TAILLESS AIRCRAFT	Navier-Stokes solver on a massively parallel computer [AIAA PAPER 89-1939] p 573 A89-41786	blade
Flying wings (2nd revised and enlarged edition)	An efficient cell-vertex multigrid scheme for the	[AIAA PAPER 89-1814] p 580 A89-42044 TIME MARCHING
Russian book p 568 A89-42488 TAKEOFF	three-dimensional Navier-Stokes equations [AIAA PAPER 89-1953] p 574 A89-41800	Design of optimally smoothing multi-stage schemes for the Euler equations
Simulator evaluation of a display for a Takeoff Performance Monitoring System	A time accurate finite volume high resolution scheme	[AIAA PAPER 89-1933] p 572 A89-41780
[NASA-TP-2908] p 615 N89-23469	for three dimensional Navier-Stokes equations [AIAA PAPER 89-1994] p 577 A89-41837	Determination of computational time step for chemically reacting flows
Noise of a model counterrotation propeller with simulated fuselage and support pylon at takeoff/approach	Investigations on the vorticity sheets of a close-coupled	[AIAA PAPER 89-1855] p 585 A89-42083
conditions	delta-canard configuration p 579 A89-42017 Calculation of wind-tunnel side-wall interference using	TIME TEMPERATURE PARAMETER Probabilistic-parametric models of the long-term
[NASA-TM-101996] p 633 N89-24138 TARGET RECOGNITION	a three-dimensional multigrid Navier-Stokes code	strength of metallic materials of aircraft gas turbine engines p 620 A89-40619
Aircraft recognition using a parts analysis technique p 629 A89-40447	[AIAA PAPER 89-1790] p 579 A89-42026 Numerical analysis on aerodynamic characteristics of	TITANIUM ALLOYS
TAXIING	an inclined square cylinder [AIAA PAPER 89-1805] p 580 A89-42038	Advanced concepts and materials for high-speed flight p 620 A89-41585
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer,	Three dimensional analysis of a rotor in forward flight	Electron beam welding and repair of critical structures
Orlando, Florida. Final airside docking plan (Scheme 3A)	[AIAA PAPER 89-1815] p 580 A89-42045	p 624 A89-41586 Superplastic forming - A new production technology
[AD-A205351] p 600 N89-23438 Improved marking of taxiway intersections for Instrument	Multigrid solution of the Euler equations for three-dimensional cascade flows	p 624 A89-41590
Flight Rules (IFR) operations	[AIAA PAPER 89-1818] p 581 A89-42048	Whither titanium powder metallurgy? p 621 A89-41591
[DOT/FAA/CT-TN89/23] p 619 N89-24330 TECHNOLOGICAL FORECASTING	3D-Euler flow analysis of fanjet engine and turbine powered simulator with experimental comparison in	Rapidly solidified Al-Ti alloys via advanced melt spinning p 621 A89-41888
Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects	transonic speed [AIAA PAPER 89-1835] p 582 A89-42063	TOLLMIEN-SCHLICHTING WAVES
p 568 A89-43077	3-D composite velocity solutions for subsonic/transonic	Transition flight experiments on a swept wing with suction
Future air navigation systems (FANS) p 600 A89-43573	flow over afterbodies [AIAA PAPER 89-1837] p 582 A89-42065	[AIAA PAPER 89-1893] p 587 A89-42115 TOWING
TECHNOLOGY ASSESSMENT Flying wings (2nd revised and enlarged edition)	Numerical solutions of forward-flight rotor flow using an	Seaplanes and the towing tank
Russian book p 568 A89-42488	upwind method [AIAA PAPER 89-1846] p 584 A89-42074	[AIAA PAPER 89-1533] p 623 A89-41564 TRACKING (POSITION)
Research and development: Technical and scientific publications 1988 Book p 635 A89-42926	Computation of sharp fin and swept compression corner	Controller evaluation of initial data link air traffic control
TECHNOLOGY TRANSFER	shock/turbulent boundary layer interactions [AIAA PAPER 89-1852] p 585 A89-42080	services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292
Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations	The structure of aerodynamic heating in	TRAILING EDGE FLAPS
in supersonic flow	three-dimensional shock wave/turbulent boundary layer interactions induced by sharp and blunt fins	Global marching technique for predicting flows over airfoils with leading and trailing edge flaps
[AD-A205739] p 593 N89-23423 TEMPERATURE EFFECTS	[AIAA PAPER 89-1854] p 585 A89-42082	[AIAA PAPER 89-1793] p 579 A89-42028 System testing exemplified by the A320-landing flaps
Observation of airplane flowfields by natural condensation effects p 578 A89-42009	Hypersonic flow in a compression corner in 2D and 3D configurations	flight maneuvering system
Response of pavement to freeze-thaw cycles: Lebanon,	[AIAA PAPER 89-1876] p 586 A89-42101 Three-dimensional effects in high-intensity vortices	[MBB-UT-0131-88-PUB] p 614 A89-42939 Numerical study of the influence of leading and trailing
New Hampshire, regional airport [AD-A205559] p 626 N89-23740	p 588 A89-42464	edge flaps on the performance of airfoils
TERMINAL GUIDANCE	Inverse problem in nozzle theory Russian book p 625 A89-42500	[AD-A206138] p 594 N89-23428 TRAILING EDGES
B-737 flight test of curved-path and steep-angle approaches using MLS guidance	Simulation of the flow around a counterrotating shrouded	Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge
[NASA-TM-101521] p 601 N89-24293	propfan p 589 A89-43113 A three-dimensional upwind parabolized Navier-Stokes	geometries
TERRAIN ANALYSIS Optimal guidance with obstacle avoidance for	code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177	[AIAA PAPER 89-1969] p 577 A89-41841 Turbulent flow predictions for afterbody/nozzle
nap-of-the-earth flight [NASA-CR-177515] p 618 N89-24328	Numerical simulation of 3D rarefied hypersonic flows	geometries including base effects
TERRAIN FOLLOWING AIRCRAFT	(AIAA PAPER 89-1715) p 591 A89-43230 Aerodynamics of a lifting rotor due to near field unsteady	[AIAA PAPER 89-1865] p 585 A89-42092 TRAINING AIRCRAFT
Future terrain following radars p 599 A89-42655 TEST FACILITIES	effects p 595 N89-24267 THREE DIMENSIONAL MODELS	The use of operational loads data to assess fatigue damage rates in a jet trainer aircraft p 605 A89-41913
Development of an advanced experimental rotary test	A vectorized Gauss-Seidel line relaxation scheme for	IA63 Pampa - The completion of an aircraft development
rig and first test results with a 60 kN-main rotor [MBB-UD-525-88-PUB] p 618 A89-39843	solving 3D Navier-Stokes equations [AIAA PAPER 89-1948] p 573 A89-41795	program p 568 A89-43112 TRAJECTORIES
Aerothermodynamic analysis of a Coanda/Refraction	Multigrid Euler solver about arbitrary aircraft	Determination of reference trajectories for testing
Jet Engine Test Facility [AD-A205937] p 619 N89-23482	configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806	navigation aids using an onboard CCD camera p 602 N89-24303
CSM testbed development and large-scale structural	Transonic Navier-Stokes solutions of three-dimensional	TRANSATMOSPHERIC VEHICLES Hypersonic flight - The need for a new legal regime
applications [NASA-TM-4072] p 628 N89-24624	afterbody flows [NASA-TM-4111] p 594 N89-23433	p 634 A89-41655
THERMAL ANALYSIS	THREE DIMENSIONAL MOTION Three-dimensional energy-state extremals in feedback	Computational requirements for hypersonic flight performance estimates of space vehicles
Thermal analysis of a hypersonic wing test structure [NASA-CR-185319] p 595 N89-24265	form p 615 A89-43071	[AIAA PAPER 89-1670] p 620 A89-43193
Comparison of predicted and measured temperatures	Visibility with a moving point of view p 631 N89-24876	TRANSFER FUNCTIONS Aerodynamics of a lifting rotor due to near field unsteady
of UH-60A helicopter transmission [NASA-TP-2911] p 628 N89-24607	THROTTLING	effects p 595 N89-24267
THERMAL INSULATION	The 4D-TECS integration for NASA TSRV airplane [NASA-CR-4231] p 615 N89-23471	TRANSFORMATIONS (MATHEMATICS) Transformation of real and virtual objects into a virtual,
High-efficiency thermal insulation in the base of airfields and highways Russian book p 619 A89-42499	THRUST AUGMENTATION	visual environment p 627 N89-24304 TRANSITION FLOW
THERMAL STABILITY	Ejector effects on a supersonic nozzle at low aftitude and Mach number	Transition flight experiments on a swept wing with
A foil adhesive for construction - The Letoxit system p 620 A89-40085	[AD-A206049] p 594 N89-23427 A model for prediction of STOVL ejector dynamics	suction [AIAA PAPER 89-1893] p 587 A89-42115
THIN AIRFOILS	[NASA-TM-102098] p 614 N89-24319	TRANSMISSION LOSS
Numerical solution of periodic vortical flows about a thin	THRUST MEASUREMENT	Reduction of sound transmission through fuselage walls

Investigation on thrust measurement of turbojet engine altitude simulation facility p 611 A89-41126

in altitude simulation facility

Reduction of sound transmission through fuselage walls by alternate resonance tuning (A.R.T.)
[AIAA PAPER 89-1046] p 631 A89-40470

[NASA-TM-101998]

p 592 N89-23413

TRANSMISSI
Comparis
of UH-60A t
TRANSONIC
Prediction
under transc
(AIAA PAPE
Experimer with stores
(AIAA PAPE
Computati
rotor tips for (AIAA PAPE
Accuracy
aircraft deve
IMBB-UT-13
Exploitation equations to
(AD-A20593
TRANSONIC I
On some
problems
Shock fitti potential flov
Sonic-poi
transonic no
RNG-base
applications
Theory
[AIAA PAPE
Turbulence [AIAA PAPE
A new fo
equations
[AIAA PAPE Transonic
supercritical
A computa
two-dimensio
Transonic
supply by ho [AIAA PAPE
3D-Euler
powered sim
transonic soc
[AIAA PAPEI
3-D compo flow over after
[AIAA PAPEI
Navier-Sto
boundary la
channel (AIAA PAPER
Stability of
of external et
Calculation
nonpotential channels
Numerical

control surfaces

[NASA-TM-4116]

TRANSONIC SPEED

[NAL-TR-968]

[NASA-CR-185016]

TRANSPORT AIRCRAFT

interaction at transonic speeds

[AIAA PAPER 89-1833]

TRANSONIC WIND TUNNELS

Transonic aeroelasticity of fighter wings with active

Flutter of a low-aspect-ratio rectangular wing NASA-TM-4116] p 606 N89-23447

An experimental investigation of the parallel vortex-airfoil

Transonic operational characteristics and performance

Computational design of low aspect ratio wing-winglet

The joined wing - The benefits and drawbacks. II

configurations for transonic wind-tunnel tests

p 579 A89-42020

p 582 A89-42061

p 591 N89-23408

p 595 N89-24266

p 603 A89-41029

TRANSMISSIONS (MACHINE ELEMENTS)	Soviet aerospace industry - Certification of super
Comparison of predicted and measured temperatures	heavy-lift Antonov An-225 planned for 1990
of UH-60A helicopter transmission	p 567 A89-41061
[NASA-TP-2911] p 628 N89-24607	Innovative pylon concepts for engine-airframe
TRANSONIC FLIGHT	integration for transonic transports
Prediction of loading noise of a propeller with blades	[AIAA PAPER 89-1819] p 581 A89-42049
under transonic operating conditions	Flight tests with the VFW 614 - ATTAS laminar glove
[AIAA PAPER 89-1080] p 632 A89-40474	[MBB-UT-0132-88-PUB] p 606 A89-42936
Experimental/computational study of a transonic aircraft	Accuracy problems in wind tunnels during transport
with stores	aircraft development
(AIAA PAPER 89-1832) p 582 A89-42060	[MBB-UT-134-88-PUB] p 619 A89-42937
Computational and experimental evaluation of helicopter	Flight testing of the Southern Cross replica aircraft
rotor tips for high speed forward flight	[AD-A205303] p 607 N89-23451
(AIAA PAPER 89-1845) p 584 A89-42073	B-737 flight test of curved-path and steep-angle
Accuracy problems in wind tunnels during transport	approaches using MLS guidance
aircraft development	[NASA-TM-101521] p 601 N89-24293
[MBB-UT-134-88-PUB] p 619 A89-42937	TU-144 AIRCRAFT
Exploitation of multiple solutions of the Navier-Stokes	Soviet SST: The technopolitics of the Tupolev-144
equations to achieve radically improved flight	Book p 568 A89-42947
[AD-A205939] p 627 N89-23831	TURBINE BLADES
TRANSONIC FLOW	An integrated approach to remanufacturing turbine
On some numerical schemes for transonic flow	blades p 623 A89-41547
problems p 569 A89-39867	Computation of flow and losses in transonic turbine
Shock fitting algorithm applied to a transonic, full	cascades p 589 A89-43108
potential flow p 571 A89-41760	A research facility for film cooling investigations with
Sonic-point capturing shock wave structures in	emphasis on the instrumentation system
transonic nozzle flow	[NAL-TM-PR-8704] p 619 N89-23477
[AIAA PAPER 89-1945] p 573 A89-41792	Composite Blade Structural Analyzer (COBSTRAN)
RNG-based turbulence transport approximations with	demonstration manual
applications to transonic flows Renormalization Group	[NASA-TM-101957] p 622 N89-24459
Theory	TURBINE ENGINES
[AIAA PAPER 89-1950] p 573 A89-41797	Determination of the interaction parameter of a twin-rotor
Turbulence models for 3D transonic viscous flows	gas génerator p 622 A89-40084
[AIAA PAPER 89-1952] p 574 A89-41799	TURBINES
A new formulation for unsteady compressible Euler	Transonic operational characteristics and performance
equations	[NAL-TR-968] p 591 N89-23408
[AIAA PAPER 89-1993] p 577 A89-41836	TURBOCOMPRESSORS
Transonic unsteady pressure measurements on a	Analysis of the influence of the end-wall boundary layer
supercritical airfoil at high Reynolds numbers	growth on the performance of multistage compressors
p 578 A89-42010	p 570 A89-41082
A computational analysis of the transonic flow field of	Design point optimization of an axial-flow compressor
two-dimensional minimum length nozzles	stage p 612 A89-41223
[AIAA PAPER 89-1822] p 581 A89-42052	Optimization of the cold roll-forging of axial-flow
Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation	compressor blades with allowance for fatigue
[AIAA PAPER 89-1834] p 582 A89-42062	characteristics p 625 A89-42421
3D-Euler flow analysis of fanjet engine and turbine	TURBOFAN AIRCRAFT
powered simulator with experimental comparison in	MD-11 enters the fray p 603 A89-40857
transonic speed	Soviet aerospace industry - Aerodynamic Institute aids
[AIAA PAPER 89-1835] p 582 A89-42063	effort to develop fuel-efficient transports
3-D composite velocity solutions for subsonic/transonic	p 618 A89-41060
flow over afterbodies	TURBOJET ENGINE CONTROL
[AIAA PAPER 89-1837] p 582 A89-42065	Automatic control of jet engines (3rd revised and
Navier-Stokes simulation of a shock wave-turbulent	enlarged edition) Russian book p 613 A89-42509
boundary layer interaction in a three-dimensional	TURBOJET ENGINES
channel	Investigation on thrust measurement of turbojet engine
[AIAA PAPER 89-1851] p 585 A89-42079	in altitude simulation facility p 611 A89-41126
Stability of compression shocks in ducts in the presence	Optimization of the parameters and characteristics of
of external effects p 588 A89-42465	bypass engines p 613 A89-42467
Calculation of stationary subsonic and transonic	,,
nonpotential flows of an ideal gas in axisymmetric	An analytical study of the characteristics of bypass
channels p 588 A89-42519	engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468
Numerical solution of transonic potential flow in 2D	of gas flows p 613 A89-42468 TURBOMACHINE BLADES
compressor cascades using multi-grid techniques	A method for estimating the stochastic vibrational stress
p 589 A89-42837 Flight tests with the VFW 614 - ATTAS laminar glove	level of impeller bladings of aircraft gas turbine engines
[MBB-UT-0132-88-PUB] p 606 A89-42936	in operating conditions on the basis of developmental
Computation of flow and losses in transonic turbine	bench test data p 611 A89-40624
cascades p 589 A89-43108	TURBOMACHINERY
Transonic Navier-Stokes solutions of three-dimensional	The application of artificial intelligence techniques for
afterbody flows	turbomachinery diagnostics p 629 A89-41081
[NASA-TM-4111] p 594 N89-23433	TURBOPROP AIRCRAFT
Exploitation of multiple solutions of the Navier-Stokes	Reduction of sound transmission through fuselage walls
equations to achieve radically improved flight	by alternate resonance tuning (A.R.T.)
[AD-A205939] p 627 N89-23831	[AIAA PAPER 89-1046] p 631 A89-40470
Computational and experimental research on buffet	High speed turboprop aeroacoustic study (single
phenomena of transonic airfoils	rotation). Volume 1: Model development
[NAL-TR-996T] p 616 N89-24322	[NASA-CR-182257-VOL-1] p 633 N89-24139
TRANSONIC FLUTTER	

170 qle Interior noise control ground test studies for advanced turboprop aircraft applications

[NASA-CR-181819] p 633 N89-24141 Cruise noise of the SR-2 propeller model in a wind [NASA-TM-101480] p 633 N89-24886

Advanced turboprop aircraft flyover noise: Annoyance to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results

[NASA-TM-100638] p 634 N89-24888

TURBOPROP ENGINES

High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development p 633 N89-24139 [NASA-CR-182257-VOL-1]

TURBOROCKET ENGINES

Experimental investigation of the characteristics of combination engines p 612 A89-42462

TURBULENCE EFFECTS

Turbulence measurements for heated gas slot injection in supersonic flow [AIAA PAPER 89-1868] p 586 A89-42095

TURBULENCE MODELS

Numerical analysis on aerodynamic characteristics of an inclined square cylinder [AIAA PAPER 89-1805] p 580 A89-42038 Computation of turbulent flows on a CAST 10 wing using an upwind scheme

[AIAA PAPER 89-1836] p 582 A89-42064 Navier-Stokes simulation of a shock wave-turbulent boundary layer interaction in a three-dimensional

[AIAA PAPER 89-1851] p 585 A89-42079 PNS code assessment studies for scramjet combustor and nozzle flowfields

[AIAA PAPER 89-1697] p 613 A89-43213 Transonic Navier-Stokes solutions of three-dimensional afterbody flows

[NASA-TM-4111] p 594 N89-23433 Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model p 597 N89-24286

A model for prediction of STOVL ejector dynamics p 614 N89-24319 [NASA-TM-102098]

TURBULENT BOUNDARY LAYER

A solution method for the three-dimensional compressible turbulent boundary-layer equations

p 623 A89-41044 The effect of an adverse pressure gradient on the drag reduction performance of manipulators

p 571 A89-41771 An experimental study of a reattaching supersonic shear

laver [AIAA PAPER 89-1801] p 579 A89-42036 Measurements of swept shock wave/turbulent boundary-layer interactions by holographic interferometry

[AIAA PAPER 89-1849] p 584 A89-42077 Inception length to a fully-developed fin-generated shock wave boundary-layer interaction

[AIAA PAPER 89-1850] p 584 A89-42078 Navier-Stokes simulation of a shock wave-turbulent boundary layer interaction in a three-dimensional

[AIAA PAPER 89-1851] p 585 A89-42079 Computation of sharp fin and swept compression corner shock/turbulent boundary layer interactions

AIAA PAPER 89-1852] p 585 A89-42080 Separation shock motion and ensemble-averaged wall [AIAA PAPER 89-1852] pressures in a Mach 5 compression ramp interaction [AIAA PAPER 89-1853] p 585 A89-42 The structure of aerodynamic heating p 585 A89-42081

three-dimensional shock wave/turbulent boundary layer interactions induced by sharp and blunt fins [AIAA PAPER 89-1854] p 585

p 585 A89-42082 An experimental study of hypersonic turbulence on a sharp cone

[AIAA PAPER 89-1866] p 586 A89-42093 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42567

An experimental study of the effect of streamwise vortices on unsteady turbulent boundary-layer separation p 593 , N89-23420 [AD-A205462]

Flow control for unsteady and separated flows and turbulent mixing p 594 N89-23426 [AD-A205989]

TURBULENT FLOW

Measurements of laminar separation bubble on B3 p 569 A89-40893 Characteristics of dump combustor flows

p 612 A89-41224 Supersonic flow computations by two-equation

turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798

Turbulence models for 3D transonic viscous flows

[AIAA PAPER 89-1952] p 574 A89-41799 Development of an efficient multigrid code for 3-D Navier-Stokes equations

[AIAA PAPER 89-1791] p 625 A89-42027 Global marching technique for predicting flows over

airfoils with leading and trailing edge flaps
[AIAA PAPER 89-1793] p 579 p 579 A89-42028 New mixing-length model for turbulent high-speed flows

[AIAA PAPER 89-1821] Computation of turbulent flows on a CAST 10 wing using

an upwind scheme p 582 A89-42064 [AIAA PAPER 89-1836]

Turbulent flow predictions for geometries including base effects afterbody/nozzle [AIAA PAPER 89-1865] p 585 A89-42092

Boundary layer response to an unsteady turbulent environment [AD-A206578] p 596 N89-24273

TURBULENT MIXING		SUBJECT INDEX
Analysis of the wake behind a propeller using the finite	A new formulation for unsteady compressible Euler	Computing induced velocity perturbations due to a
element method with a two-equation turbulence model	equations	helicopter fuselage in a free stream
p 597 N89-24286	[AIAA PAPER 89-1993] p 577 A89-41836	[NASA-TM-4113] p 592 N89-23410
TURBULENT MIXING Numerical analysis of supersonic turbulent mixing	A flux-difference split algorithm for unsteady thin-layer	VELOCITY MEASUREMENT Measurement and computation of the velocity field of
layer	Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838	a cylinder in the wake of a rotor in forward flight
[AIAA PAPER 89-1811] p 580 A89-42041	Unsteady aerodynamic simulation of multiple bodies in	[AIAA PAPER 89-1844] p 583 A89-42072
Prediction of turbulent mixing and film-cooling	relative motion	VERTICAL LANDING
effectiveness for hypersonic flows [AIAA PAPER 89-1867] p 586 A89-42094	[AIAA PAPER 89-1996] p 577 A89-41839	Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480
Flow control for unsteady and separated flows and	Analysis of potential and viscous flows past general two-dimensional bodies with arbitrary trailing edge	VERTICAL TAKEOFF AIRCRAFT
turbulent mixing	geometries	Numerical study of two-dimensional impinging jet
[AD-A205989] p 594 N89-23426 TURNING FLIGHT	[AIAA PAPER 89-1969] p 577 A89-41841	flowfields p 569 A89-40902 VIBRATION DAMPING
Determination of the deviation coefficients of a magnetic	Unsteady interaction of a rotor with a vortex	Active flutter suppression on a delta wing
compass during a turn p 610 A89-40719	[AIAA PAPER 89-1848] p 584 A89-42076 Nonstationary supersonic flow past a sphere moving	p 614 A89-40963
TWO DIMENSIONAL BODIES Flow of rarefied gases over two-dimensional bodies	through a thermal inhomogeneity p 588 A89-42569	Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092
[AIAA PAPER 89-1970] p 575 A89-41814	Accurate Navier-Stokes results for the hypersonic flow	VIBRATION ISOLATORS
Aerodynamic interaction between vortical wakes and	over a spherical nosetip	Use of magnetic suspension for sensor vibration
lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563	[AIAA PAPER 89-1671] p 590 A89-43194 Toward a CFD nose-to-tail capability - Hypersonic	isolation p 622 A89-40262 VIBRATION MODE
TWO DIMENSIONAL BOUNDARY LAYER	unsteady Navier-Stokes code validation	Identification of XV-15 aeroelastic modes using
Linear instabilities in two-dimensional compressible	[AIAA PAPER 89-1672] p 590 A89-43195	frequency sweeps p 605 A89-42018
mixing layers p 578 A89-41903	The unsteady flow in the far field of an isolated blade	Determination of the natural frequency spectra and
TWO DIMENSIONAL FLOW Numerical study of two-dimensional impinging jet	row p 591 A89-43537	modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422
flowfields p 569 A89-40902	Aerodynamics of a lifting rotor due to near field unsteady effects p 595 N89-24267	VIBRATION TESTS
Numerical solution of Navier-Stokes equations for	Unsteady aerodynamic effects on bluff bodies	Ground shake test of the Boeing Model 360 helicopter
two-dimensional viscous compressible flows p 570 A89-40903	p 596 N89-24278	airframe [NASA-CR-181766] p 627 N89-23920
Solution of the 2D Navier-Stokes equations on	Aeroservoelastic modeling and applications using	Ground vibration test of the Foudre A04 Transall
unstructured adaptive grids	minimum-state approximations of the unsteady aerodynamics	aircraft
[AIAA PAPER 89-1932] p 572 A89-41779 Analysis of potential and viscous flows past general	[NASA-TM-101574] p 608 N89-24308	[REPT-20/7234-PY-382-R] p 609 N89-24311 VIBRATIONAL STRESS
two-dimensional bodies with arbitrary trailing edge	Recent activities within the Aeroservoelasticity Branch	A method for estimating the stochastic vibrational stress
geometries	at the NASA Langley Research Center	level of impeller bladings of aircraft gas turbine engines
[AIAA PAPER 89-1969] p 577 A89-41841	[NASA-TM-101582] p 609 N89-24314 Computational and experimental research on buffet	in operating conditions on the basis of developmental
Numerical analysis on aerodynamic characteristics of an inclined square cylinder	phenomena of transonic airfoils	bench test data p 611 A89-40624 VIDEO TAPES
[AIAA PAPER 89-1805] p 580 A89-42038	[NAL-TR-996T] p 616 N89-24322	User friendly real time display p 609 A89-40272
A computational analysis of the transonic flow field of	Survey of Army/NASA rotorcraft aeroelastic stability	VISCOSITY
two-dimensional minimum length nozzles [AIAA PAPER 89-1822] p 581 A89-42052	research [NASA-TM-101026] p 618 N89-24329	On the role of artificial viscosity in Navier-Stokes solvers
Transonic flow around airfoils with relaxation and energy	UNSTEADY FLOW	[AIAA PAPER 89-1947] p 573 A89-41794
supply by homogeneous condensation	The characteristics of the turbulence generator and the	VISCOUS FLOW
[AIAA PAPER 89-1834] p 582 A89-42062	simulation of the flow regulation p 571 A89-41119	Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901
A validation study of four Navier-Stokes codes for high-speed flows	The unsteady flow in the far field of an isolated blade row p 591 A89-43537	Numerical solution of Navier-Stokes equations for
[AIAA PAPER 89-1838] p 583 A89-42066	An experimental study of the effect of streamwise	two-dimensional viscous compressible flows
Hypersonic flow in a compression corner in 2D and 3D	vortices on unsteady turbulent boundary-layer separation	p 570 A89-40903
configurations [AIAA PAPER 89-1876] p 586 A89-42101	[AD-A205462] p 593 N89-23420	Newton solution of inviscid and viscous problems p 570 A89-40909
[AIAA PAPER 89-1876] p 586 A89-42101 Numerical solution of transonic potential flow in 2D	Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations	Turbulence models for 3D transonic viscous flows
compressor cascades using multi-grid techniques	in supersonic flow	[AIAA PAPER 89-1952] p 574 A89-41799
p 589 A89-42837	[AD-A205739] p 593 N89-23423	An inviscid/viscous coupling approach for vortex
Computation of dynamics and control of unsteady vortical flows p 627 N89-23822	Flow control for unsteady and separated flows and turbulent mixing	flowfield calculations [AIAA PAPER 89-1961] p 575 A89-41807
vortical flows p 627 N89-23822 Use of Navier-Stokes methods to predict circulation	[AD-A205989] p 594 N89-23426	Upwind-biased, point-implicit relaxation strategies for
control airfoil performance	Computation of dynamics and control of unsteady	viscous, hypersonic flows
[AD-A206242] p 595 N89-24270	vortical flows p 627 N89-23822 Aerodynamics of a lifting rotor due to near field unsteady	[AIAA PAPER 89-1972] p 575 A89-41816
TWO DIMENSIONAL MODELS	effects p 595 N89-24267	Analysis of potential and viscous flows past general
Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826	Boundary layer response to an unsteady turbulent	two-dimensional bodies with arbitrary trailing edge geometries
Flow past two-dimensional ribbon parachute models	environment [AD-A206578] p.596 N89-24273	[AIAA PAPER 89-1969] p 577 A89-41841
p 579 A89-42015	[AD-A206578] p 596 N89-24273 Unsteady aerodynamic effects on bluff bodies	Numerical simulation of flow over a hypersonic aircraft
Two-time probabilistic model of the evolution of aircraft	p 596 N89-24278	using an explicit upwind PNS solver [AIAA PAPER 89-1829] p 582 A89-42058
engine reliability p 612 A89-42463	Numerical methods for unsteady flows	Convergence acceleration of viscous and inviscid
• •	p 596 N89-24282 Numerical simulation of feedback control of aerodynamic	hypersonic flow calculations
U	configurations in steady and unsteady ground effects	[AIAA PAPER 89-1875] p 586 A89-42100
W00B	p 617 N89-24326	An approximate viscous shock layer method for
U.S.S.R. Soviet aerospace industry - Perestroika's changes grip	USER MANUALS (COMPUTER PROGRAMS) Composite Blade Structural Analyzer (COBSTRAN)	calculating the hypersonic flow over blunt-nosed bodies [AIAA PAPER 89-1695] p 590 A89-43212
Soviet aerospace industry p 567 A89-41057	demonstration manual	Numerical simulation of hypersonic viscous perfect gas
UH-60A HELICOPTER	[NASA-TM-101957] p 622 N89-24459	flow for the aerothermodynamic design of space planes
Comparison of predicted and measured temperatures of UH-60A helicopter transmission	2.4	at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215
[NASA-TP-2911] p 628 N89-24607	V	Aerodynamic interaction between vortical wakes and
UNSTEADY AERODYNAMICS	V/STOL AIRCRAFT	lifting two-dimensional bodies
A numerical method for calculating subsonic fully	The VAAC/VSTOL Flight Control Research Project	[NASA-TM-101074] p 627 N89-24563
unsteady aerodynamic characteristics of wings in time domain p 570 A89-40959	p 615 A89-43104	VISIBILITY Visibility with a moving point of view
The characteristics of the turbulence generator and the	An investigation of V/STOL jet interactions in a	p 631 N89-24876
simulation of the flow regulation p 571 A89-41119	crossflow [AD-A206360] p 596 N89-24272	VISUAL AIDS
Non-reflecting boundary conditions for Euler equation	VACUUM CHAMBERS	Improved marking of taxiway intersections for Instrument
calculations [AIAA PAPER 89-1942] p 573 A89-41789	Qualification of high temperature vacuum carburizing for	Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330
On the role of artificial viscosity in Navier-Stokes	an aircraft gear steel p 624 A89-41598 VELOCITY DISTRIBUTION	VISUAL CONTROL
solvers	Three-dimensional dual-potential procedure for inlets	Transformation of real and virtual objects into a virtual,
[AIAA PAPER 89-1947] p 573 A89-41794	and indraft wind tunnels p 570 A89-40908	visual environment p 627 N89-24304
A time-accurate iterative scheme for solving the unsteady compressible flow equations	Measurement and computation of the velocity field of a cylinder in the wake of a rotor in forward flight	VISUAL PERCEPTION Transformation of real and virtual objects into a virtual,
[AIAA PAPER 89-1992] p 577 A89-41835	[AIAA PAPER 89-1844] p 583 A89-42072	visual environment p 627 N89-24304

VOICE COMMUNICATION	WEATHER FORECASTING	WIND TUNNEL WALLS
An evaluation of the F/FB/EF-111 crew/voice message system	ASR-9 weather channel test report, executive s ummary	Calculation of wind-tunnel side-wall interference using a three-dimensional multigrid Navier-Stokes code
[AD-A205998] p 626 N89-23774	[DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758	[AIAA PAPER 89-1790] p 579 A89-42026
VORTEX BREAKDOWN	WEDGE FLOW	Ejector effects on a supersonic nozzle at low altitude
Water tunnel investigation of the vortex dynamics of periodically pitched wings	Application of a vectorized particle simulation in high-speed near-continuum flow	and Mach number [AD-A206049] p 594 N89-23427
[AD-A206359] p 595 N89-24271	[AIAA PAPER 89-1665] p 590 A89-43188	WIND TUNNELS
VORTEX FILAMENTS	WELDED STRUCTURES	Langley aerospace test highlights, 1988
Vortex filament calculations by Analytical/Numerical	Electron beam welding and repair of critical structures p 624 A89-41586	[NASA-TM-101579] p 635 N89-25112 WING LOADING
Matching with comparison to other methods [AIAA PAPER 89-1962] p 624 A89-41843	WELDING	A numerical method for calculating subsonic fully
VORTEX SHEDDING	An integrated approach to remanufacturing turbine	unsteady aerodynamic characteristics of wings in time
Periodic vortex shedding over delta wings	blades p 623 A89-41547 WHITHAM RULE	domain p 570' A89-40959 The effects of wake migration during roll-up on blade
[AIAA PAPER 89-1923] p 587 A89-42139 VORTEX SHEETS	Whitham's F-function for a supersonically rotating	air loads p 570 A89-41091
Investigations on the vorticity sheets of a close-coupled	propeller	Simulation of the interaction between aerodynamics and
delta-canard configuration p 579 A89-42017	[AIAA PAPER 89-1107] p 632 A89-40475 WIND TUNNEL APPARATUS	vehicle dynamics in general unsteady ground effect [AIAA PAPER 89-1498] p 571 A89-41570
VORTICES	A research facility for film cooling investigations with	WING OSCILLATIONS
Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901	emphasis on the instrumentation system	Water tunnel investigation of the vortex dynamics of
Trajectory integration in vortical flows	[NAL-TM-PR-8704] p 619 N89-23477 WIND TUNNEL MODELS	periodically pitched wings [AD-A206359] p 595 N89-24271
p 623 A89-40921	A new wind tunnel test rig for helicopter testing	WING PLANFORMS
Use of high-resolution upwind scheme for vortical flow	[MBB-UD-532-88-PUB] p 618 A89-39846	High angle-of-attack aerodynamic characteristics of
simulations [AIAA PAPER 89-1955] p 574 A89-41802	WIND TUNNEL TESTS A new wind tunnel test rig for helicopter testing	crescent and elliptic wings [NASA-CR-184992] p 593 N89-23418
An inviscid/viscous coupling approach for vortex	[MBB-UD-532-88-PUB] p 618 A89-39846	Computational design of low aspect ratio wing-winglet
flowfield calculations	Unsteady blade pressure measurements on a model	configurations for transonic wind-tunnel tests
[AIAA PAPER 89-1961] p 575 A89-41807	counterrotation propeller [AIAA PAPER 89-1144] p 631 A89-40175	[NASA-CR-185016] p 595 N89-24266 WING PROFILES
Lifting-surface theory for propfan vortices impinging on a downstream wing p 578 A89-42013	Comparison of propeller cruise noise data taken in the	Transverse vibrations of a trapezoidal cantilever plate
A structure of leading-edge and tip vortices at a delta	NASA Lewis 8- by 6-foot wind tunnel with other tunnel	of variable thickness p 622 A89-40914
wing	and flight data	The joined wing - The benefits and drawbacks. II p 603 A89-41029
[AIAA PAPER 89-1803] p 579 A89-42037	[AIAA PAPER 89-1059] p 631 A89-40472 Three-dimensional dual-potential procedure for inlets	Comment on 'General formulation of the aeroelastic
Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes	and indraft wind tunnels p 570 A89-40908	divergence of composite swept-forward wing structures'
[AIAA PAPER 89-1816] p 580 A89-42046	NASA adds to understanding of high angle of attack	p 605 A89-42025 Computation of turbulent flows on a CAST 10 wing using
The computation of Navier-Stokes solutions exhibiting	regime p 571 A89-41201	an upwind scheme
asymmetric vortices [AIAA PAPER 89-1817] p 580 A89-42047	Cavity door effects on aerodynamic loads of stores separating from cavities p 578 A89-42011	[AIAA PAPER 89-1836] p 582 A89-42064
An experimental investigation of the parallel vortex-airfoil	3D-Euler flow analysis of fanjet engine and turbine	Soaring on intelligent wings - Aerodynamicists at MBB are already at work on tomorrow's projects
interaction at transonic speeds	powered simulator with experimental comparison in	p 568 A89-43077
(AIAA PAPER 89-1833) p 582 A89-42061	transonic speed	WING TIP VORTICES
Crossflow-vortex instability and transition on a 45 deg swept wing	[AIAA PAPER 89-1835] p 582 A89-42063 Measurements of swept shock wave/turbulent	The effects of wake migration during roll-up on blade air loads p 570 A89-41091
[AIAA PAPER 89-1892] p 587 A89-42114	boundary-layer interactions by holographic interferometry	air loads p 570 A89-41091 A structure of leading-edge and tip vortices at a delta
Three-dimensional effects in high-intensity vortices	[AIAA PAPER 89-1849] p 584 A89-42077	wing
p 588 A89-42464	An experimental study of hypersonic turbulence on a	[AIAA PAPER 89-1803] p 579 A89-42037
Numerical solution of periodic vortical flows about a thin airfoil	sharp cone [AIAA PAPER 89-1866] p 586 A89-42093	Flow visualization studies of the tip vortex system of a semi-infinite wing
[NASA-TM-101998] p 592 N89-23413	Accuracy problems in wind tunnels during transport	[AIAA PAPER 89-1807] p 589 A89-42950
High angle-of-attack aerodynamic characteristics of	aircraft development	Numerical simulation and experiments on leading-edge
crescent and elliptic wings	[MBB-UT-134-88-PUB] p 619 A89-42937	vortices on modern wings, with European cooperation p 589 A89-43114
[NASA-CR-184992] p 593 N89-23418 An experimental study of the effect of streamwise	Numerical simulation and experiments on leading-edge vortices on modern wings, with European cooperation	WINGLETS
vortices on unsteady turbulent boundary-layer separation	p 589 A89-43114	Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests
[AD-A205462] p 593 N89-23420	Transonic operational characteristics and performance	[NASA-CR-185016] p 595 N89-24266
Computation of dynamics and control of unsteady vortical flows p 627 N89-23822	[NAL-TR-968] p 591 N89-23408	WINGS
VORTICITY	Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock	Aerodynamic design via control theory
Vorticity equation solutions for slender wings at high incidence	wave interference	p 589 A89-43094 Optimum aeroelastic characteristics for composite
[AIAA PAPER 89-1989] p 577 A89-41832	[NASA-CR-185326] p 592 N89-23411	supermaneuverable aircraft
VORTICITY EQUATIONS	High angle-of-attack aerodynamic characteristics of crescent and elliptic wings	[AD-A205503] p 607 N89-23452 Thermal analysis of a hypersonic wing test structure
Numerical study of the influence of leading and trailing edge flaps on the performance of airfoils	[NASA-CR-184992] p 593 N89-23418	[NASA-CR-185319] p 595 N89-24265
[AD-A206138] p 594 N89-23428	A research facility for film cooling investigations with	WORKLOADS (PSYCHOPHYSIOLOGY)
·	emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477	Safety philosophies in air transport p 597 A89-39859
W	Application of a PC based, real-time, data-aquisition	p 337 - N03-33033
	system in rotorcraft wind-tunnel testing	X
Lifting surface theory for propton vertices implinging on	[NASA-TM-4119] p 630 N89-24079	^
Lifting-surface theory for propfan vortices impinging on a downstream wing p 578 A89-42013	Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests	X WING ROTORS
WALL FLOW	[NASA-CR-185016] p 595 N89-24266	Results of a parametric aeroelastic stability analysis of a generic X-wing aircraft
Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors	Analysis of the boundary layer of a delta wing in	[NASA-TM-101572] p 617 N89-24324
p 570 A89-41082	incidence {CERT-RT-OA-26/5025-AYD} p 596 N89-24274	X-29 AIRCRAFT
WALL PRESSURE	Experimental aerodynamic characteristics of a	A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450
Separation shock motion and ensemble-averaged wall pressures in a Mach 5 compression ramp interaction	joined-wing research aircraft configuration	X-30 VEHICLE
[AIAA PAPER 89-1853] p 585 A89-42081	[NASA-TM-101083] p 596 N89-24285	Recent progress in the National Aerospace Plane
WALL TEMPERATURE	Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent	program p 568 A89-41651 XV-15 AIRCRAFT
Effect of wall temperature distribution on the stability of the compressible boundary layer	accomplishments	Identification of XV-15 aeroelastic modes using
[AIAA PAPER 89-1894] p 587 A89-42116	[NASA-TM-101570] p 609 N89-24313	frequency-domain methods p 604 A89-41092
WAVERIDERS	Wind tunnel tests on flutter control of a high-aspect-ratio	Identification of XV-15 aeroelastic modes using frequency sweeps p 605 A89-42018
An integrated aerodynamic/propulsion study for generic	cantilevered wing [NAL-TR-978] p 616 N89-24321	подавној знесрз р 003 703-42010
aero-space planes based on waverider concepts [NASA-CR-183389] p 609 N89-24315	Cruise noise of the SR-2 propeller model in a wind	
WEAPON SYSTEMS	tunnel	
An analysis of Electronic Aids to Maintenance (EAM) for the Light Helicopter Family (LHX)	[NASA-TM-101480] p 633 N89-24886 Langley aerospace test highlights, 1988	
[AD-A205440] p 568 N89-23407	[NASA-TM-101579] p 635 N89-25112	
	· · · · · · · · · · · · · · · · · · ·	

p 632 A89-41042

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence with the AIAA accession numbers appearing first.

ABBOTT, TERENCE S.

Method and system for monitoring and displaying engine performance parameters p 614 N89-23466

[NASA-CASE-LAR-14049-1] ABEYOUNIS, WILLIAM K.

Transonic Navier-Stokes solutions of three-dimensional afterbody flows

p 594 N89-23433

ABIBOV, A. L.

Technology of aircraft construction (selected chapters) p 569 N89-24261

[AD-A199946]

ABU-HIJLEH, B. A./K.

layer

An experimental study of a reattaching supersonic shear [AIAA PAPER 89-1801] p 579 A89-42036

ACREE, C. W., JR.

Identification of XV-15 aeroelastic modes using equency-domain methods p 604 A89-41092 Identification of XV-15 aeroelastic modes using p 605 A89-42018

frequency sweeps

frequency-domain methods

ADAMS, WILLIAM M., JR. Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

INASA-TM-1015701

p 609 N89-24313

AFTOSMIS, MICHAEL J.

Adaptive grid embedding in nonequilibrium hypersonic [AIAA PAPER 89-1652] p 590 A89-43178

AGARWAL, RAMESH K.

Development of a Navier-Stokes code on a Connection Machine

[AIAA PAPER 89-1938] p 572 A89-41785

AHMADI, ALI REZA

N89-23450

A correlation study of X-29A aircraft and associated analytical developments p 607 AHMED, SAAD A.

Characteristics of dump combustor flows

p 612 A89-41224

AIELLO, ROBERT A. Composite Blade Structural Analyzer (COBSTRAN) demonstration manual

p 622 N89-24459 INASA-TM-1019571

AKAY, H. U.

A new formulation for unsteady compressible Euler [AIAA PAPER 89-1993] p 577 A89-41836

ALLEE, E. G.

Experimental/computational study of a transonic aircraft with stores

[AIAA PAPER 89-1832]

p 582 A89-42060

ALLEN, WENDY L.

Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport (AD-A2055591 p 626 N89-23740

ALMOSNINO, D.

Vorticity equation solutions for slender wings at high incidence

[AIAA PAPER 89-1989]

p 577 A89-41832

ALTHOFF, SUSAN L.

Computing induced velocity perturbations due to a helicopter fuselage in a free stream [NASA-TM-4113] p 592 N89-23410

Effect of advanced rotorcraft airfoil sections on the hover performance of a small-scale rotor model p 595 N89-24264 [NASA-TP-2832]

ALTO, RON L.

Next-generation power for next-generation civil p 611 A89-41050 rotorcraft

ANDO. SHIGENORI

Rough design criterion for ground and air resonance of helicopter rotor with three or more blades

p 603 A89-40814 APARICIO, J. P.

Lightning inflight study onboard a Transall aircraft. Definition of the onboard instruments [ONERA-RF-19/7234-PY] p 629 N89-24777

ARAKAWA, HARUHIKO

Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack
[AIAA PAPER 89-1699] p 591 A89-43215

ARDEMA, M. D.

Three-dimensional energy-state extremals in feedback form

p 615 A89-43071 ARGROW, BRIAN M.

A computational analysis of the transonic flow field of two-dimensional minimum length nozzles p 581 A89-42052 [AIAA PAPER 89-1822]

ARNOLD, RICHARD P.

Introduction of MLS - Effects on airspace and airport p 599 A89-41043

ASAI, KEISUKE

3D-Euler flow analysis of fanjet engine and turbine

powered simulator with experimental comparison in transonic speed p 582 A89-42063 [AIAA PAPER 89-1835]

Transonic operational characteristics and performance INAL-TR-9681 p 591 N89-23408

ASO SHIGERU

of The structure aerodynamic three-dimensional shock wave/turbulent boundary layer interactions induced by sharp and blunt fins [AIAA PAPER 89-1854] p 585 A89-42082

ATASSI, HAFIZ M.

Numerical solution of periodic vortical flows about a thin airfoil

[NASA-TM-101998]

p 592 N89-23413

AZEVEDO, D. J.

An analytical approach to the prediction of shock patterns in bounded high-speed flows

p 586 A89-42099 [AIAA PAPER 89-1874]

В

Analog-to-digital converter effects on airborne radar p 599 A89-42661 performance

BACKMAN, B. F.

BABU, B. N. SURESH

Computerized structural mechanics for 1990's: p 628 N89-24640 Advanced aircraft needs

BAE, YOON-YEONG

Performance of an aero-space plane propulsion nozzle [AIAA PAPER 89-1878] p 586 A89-42103

BAGANOFF, DONALD

Effect of slotting on the mixing and noise of an axisymmetric supersonic jet

[AIAA PAPER 89-1052] BAHR, DENNIS E. Acceleration forces aboard NASA KC-135 aircraft during p 620 A89-42022

microgravity maneuvers

BAILEY, JOHN MD-11 enters the fray p 603 A89-40857

BAILEY, RANDALL E.

Effect of head-up display dynamics on fighter flying p 606 A89-43058 qualities

BAKER SUSAN P.

Hazards of mountain flying - Crashes in the Colorado p 597 A89-42151

BAKULEV, V. I.

Experimental investigation of the characteristics of p 612 A89-42462 combination engines

BARBIERI, SERGIO

Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323

BARNABA, J. M.

An evaluation of the F/FB/EF-111 crew/voice message system

[AD-A205998]

n 626 N89-23774

BARON, JUDSON R. Adaptive grid embedding in nonequilibrium hypersonic

[AIAA PAPER 89-1652] p 590 A89-43178 BARTHELEMY, ROBERT

Recent progress in the National Aerospace Plane p 568 A89-41651 program

BATINA, JOHN T.

Vortex-dominated conical-flow computations using unstructured adaptively-refined meshes p 580 A89-42046

IAIAA PAPER 89-18161 BATTERSON, JAMES G.

Validation of aerodynamic parameters for high-incidence p 578 A89-42012 research models

BECHER, PETER Modular avionics architecture for modern fighter aircraft

[MBB-FE-301/S/PUB/339]

Image signal processing for flight guidance: Overview p 602 N89-24296 and introduction to the main topics BELLINGER, N. C.

Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction p 612 A89-41910

BENDER, K.

OPST 1 - A digital optical tail rotor control system MBB-UD-533-88-PUB] p 614 A89-39847

BENTSON, JAMES

Optimum aeroelastic characteristics for composite supermaneuverable aircraft

[AD-A205503] p 607 N89-23452

BERGER, MARSHA J. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries

AIAA PAPER 89-1930]

BERGMAN, R. C. An experimental study of hypersonic turbulence on a

sharp cone [AIAA PAPER 89-1866]

BERN, M. W. Visibility with a moving point of view

p 631 N89-24876

p 572 A89-41777

p 586 A89-42093

p 610 A89-42932

BERRY, JOHN D. Computing induced velocity perturbations due to a helicopter fuselage in a free stream p 592 N89-23410 [NASA-TM-4113]

BEYER, R.

Transformation of real and virtual objects into a virtual. p 627 N89-24304 visual environment

BUELOW, PHILIP E. CHAN STEPHEN C BHAT, R. B. Numerical analysis of supersonic turbulent mixing Transverse vibrations of a trapezoidal cantilever plate A three-dimensional upwind parabolized Navier-Stokes of variable thickness p 622 A89-40914 code for real gas flows [AIAA PAPER 89-1811] p 580 A89-42041 [AIAA PAPER 89-1651] p 626 A89-43177 CHAPMAN, C. J. Hydraulic resistance of the inlet channels of a rotor BUFTON, JACK L. Whitham's F-function for a supersonically rotating p 611 A89-40596 Laser altimetry measurements from aircraft and cooling system p 624 A89-41691 propeller spacecraft [AIAA PAPER 89-1107] p 632 A89-40475 Technology of aircraft construction (selected chapters) BUMANN, ELIZABETH A. p 569 N89-24261 CHAPOTON, CHARLES W., JR. [AD-A199946] An acoustic experimental and theoretical investigation BISHOP, DWIGHT E. Future terrain following radars p 599 A89-42655 of single disc propellers CHARGIN, MLADEN Noise and sonic boom impact technology. PCBOOM [AIAA PAPER 89-1146] p 632 A89-40478 computer program for sonic boom research, volume 1 Improving transient analysis technology for aircraft BURGE, PAUL L. p 594 N89-23429 p 629 N89-24655 I AD-A206290 structures Interior noise control ground test studies for advanced CHARLES, BRUCE D. BLAIR, A. B., JR. turboprop aircraft applications Cavity door effects on aerodynamic loads of stores Simulation of realistic rotor blade-vortex interactions [NASA-CR-181819] p 578 A89-42011 separating from cavities using a finite-difference technique BURMEISTER, CHRIS [AIAA PAPER 89-1847] BLISS, DONALD B. p 584 A89-42075 HALE - A high-altitude, long-endurance manned Reduction of sound transmission through fuselage walls CHAWLA, KALPANA aircraft p 604 A89-41109 by alternate resonance tuning (A.R.T.) Computation of dynamics and control of unsteady BUSHNELL, DENNIS M. p 631 A89-40470 [AIAA PAPER 89-1046] vortical flows p 627 N89-23822 Experimental study of free-shear layer transition above On the role of artificial viscosity in Navier-Stokes CHEER, A. a cavity at Mach 3.5 Convergence acceleration of viscous and inviscid p 580 A89-42043 [AIAA PAPER 89-1813] [AIAA PAPER 89-1947] p 573 A89-41794 hypersonic flow calculations BUTLER, CHRISTOPHER P. Vortex filament calculations by Analytical/Numerical p 586 A89-42100 [ÁIAA PAPER 89-1875] Loss of tail rotor effectiveness evaluation of the OH-58C Matching with comparison to other methods [AIAA PAPER 89-1962] p 624 CHEN, C. L. helicopter with directional SAS (Stability Augmentation p 624 A89-41843 Numerical solutions of forward-flight rotor flow using an BLOTTNER, FREDERICK G. System) upwind method [AD-A206181] p 608 N89-24309 Accurate Navier-Stokes results for the hypersonic flow [AIAA PAPER 89-1846] p 584 A89-42074 BUTTRILL, CAREY S. over a spherical nosetip CHEN, FADA Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent [AIAA PAPER 89-1671] p 590 A89-43194 Mechanical model study for shrink fit rotor BONAITA, GIOVANNI p 611 A89-40964 Results of an A109 simulation validation and handling accomplishments CHENG, H. K. p 609 N89-24313 qualities study [NASA-TM-101570] 'Hypersonic slip flows' and issues on extending INASA-TM-1010621 p 617 N89-24323 BYZOV, V. N. continuum model beyond the Navier-Stokes level [AIAA PAPER 89-1663] p 590 A89 BOOTH, JAMES Methods of flying model studies p 605 A89-42535 p 590 A89-43187 A computer simulation study of liquid water content CHENG, KUNYI adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] Active flutter suppression on a delta wing p 598 N89-24288 p 614 A89-40963 BÒWMAN, P. S. Acoustic emission detection of crack presence and crack CAILLETAUD, JEAN-PIERRE CHERKASOV, BORIS A. p 625 A89-42853 Practical experimental examples of land, sea, and air Automatic control of jet engines (3rd revised and advance during flight enlarged edition) p 613 A89-42509 BOYD BOBERT P navigation using the Navstar/GPS system p 599 A89-40802 Interior noise control ground test studies for advanced CHEUNG, S. turboprop aircraft applications CAMBIER, JEAN-LUC Convergence acceleration of viscous and inviscid p 633 N89-24141 A multi-temperature TVD algorithm for relaxing [NASA-CR-181819] hypersonic flow calculations BOYLES, PAUL D. hypersonic flows [AIAA PAPER 89-1875] p 586 A89-42100 Navier-Stokes solution for a NACA 0012 airfoil with mass [AIAA PAPER 89-1971] p 575 A89-41815 CHIANG, TING-LUNG flux (fan) CAMBIER, L. Determination of computational time step for chemically [AD-A205771] p 593 N89-23424 Navier-Stokes simulation of a shock wave-turbulent eacting flows BOYTSOV, V. V. boundary layer interaction in a three-dimensional [AIAA PAPER 89-1855] p 585 A89-42083 Technology of aircraft construction (selected chapters) channel CHINZEL NOBUO [AD-A199946] p 569 N89-24261 [AIAA PAPER 89-1851] p 585 A89-42079 Experiment on a cylindrical scramiet combustor, 2: BRANDT, S. A. CAMPBELL, JAMES F. Simulated flight Mach number 6.7 An inviscid/viscous coupling approach for vortex Observation of airplane flowfields by natural condensation effects p 578 A89-42009 p 613 N89-23464 [NAL-TR-9691 flowfield calculations CHOW, CHUEN-YEN p 575 A89-41807 [AIAA PAPER 89-1961] CANNON, MARK R. Development and validation of CNS (compressible BRANSTETTER, J. R. Interior noise control ground test studies for advanced Navier-Stokes) for hypersonic external flows B-737 flight test of curved-path and steep-angle turboprop aircraft applications [AIAA PAPER 89-1839] p 583 A89-42067 [NASA-CR-181819] approaches using MLS guidance p 633 N89-24141 CHPOUN, AMER NASA-TM-101521 p 601 N89-24293 CARLSON, D. R. Progress in the development of parabolized Hypersonic flow in a compression corner in 2D and 3D **BRAUN, DIETER** configurations Design and development tests of a five-bladed hingeless Navier-Stokes technology for external and internal [AIAA PAPER 89-1876] p 586 A89-42101 helicopter main rotor supersonic flows [MBB-UD-531-88-PUB] p 603 A89-39845 [AIAA PAPER 89-1828] p 581 A89-42057 CHUANG, H. ANDREW CARLSON, TAGE A. Dynamic grid deformation using Navier-displacement BRENNER, G. equation for deforming wings Numerical simulation of laminar hypersonic flow past a Techniques for robust tracking in airborne radars [AIAA PAPER 89-1982] p 600 A89-42666 p 576 A89-41825 double-ellipsoid [AIAA PAPER 89-1840] p 583 A89-42068 CARUSO, S. C. CHUNG, CHAN-HONG Exploitation of multiple solutions of the Navier-Stokes BROKOF, ULRICH Flow of rarefied gases over two-dimensional bodies [AIAA PAPER 89-1970] Determination of reference trajectories for testing equations to achieve radically improved flight p 575 A89-41814 p 627 N89-23831 [AD-A205939] navigation aids using an onboard CCD camera CHUNG, MYUNG KYOON p 602 N89-24303 CASSIL. CHARLES E. Design point optimization of an axial-flow compressor BROWN, CHRISTOPHER K. Preliminary airworthiness evaluation of modified p 612 A89-41223 stage Computational design of low aspect ratio wing-winglet econd-genération Pneumatic Boot Deicing System on a CLARK, RODNEY L. configurations for transonic wind-tunnel tests JUH-1H Numerical analysis of supersonic turbulent mixing p 595 N89-24266 [NASA-CR-185016] LAD-A2062551 p 598 N89-24289 BROWN, JAMES D. CEBECI, TUNCER [AIAA PAPER 89-1811] p 580 A89-42041 Preliminary airworthiness evaluation of modified Calculation of flow over iced airfoils COF. HAROLD H. second-generation Pneumatic Boot Deicing System on a p 570 A89-40905 Comparison of predicted and measured temperatures Prediction of transition due to isolated roughness of UH-60A helicopter transmission p 598 N89-24289 IAD-A2062551 p 622 A89-40907 [NASA-TP-2911] p 628 N89-24607 Loss of tail rotor effectiveness evaluation of the OH-58C CHAKRABARTTY, SUNIL KUMAR COLE, STANLEY R. helicopter with directional SAS (Stability Augmentation Numerical solution of Navier-Stokes equations for Flutter of a low-aspect-ratio rectangular wing NASA-TM-4116] p 606 N89-23447 two-dimensional viscous compressible flows System) [NASA-TM-4116] p 570 A89-40903 (AD-A2061811 p 608 N89-24309 Aeroservoelastic wind-tunnel investigations using the BRUMBAUGH, RANDAL W. CHAKRAVARTHY, SUKUMAR R. A rapid prototyping facility for flight research in advanced Active Flexible Wing Model: Status and recent A validation study of four Navier-Stokes codes for accomplishments p 630 A89-41698 high-speed flows systems concepts [NASA-TM-101570] p 609 N89-24313 BRYANT, PAUL R. [AIAA PAPER 89-1838] p 583 A89-42066 A demonstration of the method of stochastic finite COLLIER, F. S. CHAMBERS, JOSEPH R. element analysis Observation of airplane flowfields by natural Transition flight experiments on a swept wing with p 630 N89-24127 p 578 A89-42009 [AD-A206135] condensation effects suction [AIAA PAPER 89-1893] p 587 A89-42115 CHAN, JYH-JANG A comparative study of the Coakley and TVD schemes Comparison of interpolation algorithms for speed control for steady-state calculations of one-dimensional Euler Superplastic forming - A new production technology in air traffic management p 571 A89-41759 p 601 N89-23444 equations p 624 A89-41590 [AD-A206314]

Calculation of nonequilibrium hydrogen-air reactions with

An approximate viscous shock layer method for calculating the hypersonic flow over blunt-nosed bodies

Lightning inflight study onboard a Transall aircraft.

compressible flow equations [AIAA PAPER 89-1959]

implicit flux vector splitting method [AIAA PAPER 89-1700]

Definition of the onboard instruments

DEIWERT, GEORGE S.

DEJARNETTE, F. R.

DELANNOY, A.

[AIAA PAPER 89-1695]

[ONERA-RE-19/7234-PY]

p 574 A89-41805

p 621 A89-43216

p 590 A89-43212

n 629 N89-24777

Prediction of transition due to isolated roughness

p 573 A89-41786

p 570 A89-41091

p 581 A89-42052

p 586 A89-42103

p 609 N89-24315

p 602 A89-39840

p 575 A89-41806

p 585 A89-42081

p 598 N89-24290

p 585 A89-42079

p 617 N89-24323

p 610 A89-42932

p 590 A89-43195

Implementation of a rotary-wing three-dimensional

Optimization of the cold roll-forging of axial-flow ompressor blades with allowance for fatigue haracteristics p 625 A89-42421

The effects of wake migration during roll-up on blade

A computational analysis of the transonic flow field of

Performance of an aero-space plane propulsion

An integrated aerodynamic/propulsion study for generic

The development of a composite helicopter fuselage

configurations with Cartesian grids and local refinement

Separation shock motion and ensemble-averaged wall

ressures in a Mach 5 compression ramp interaction

Design of automated system for management of arrival

Navier-Stokes simulation of a shock wave-turbulent

boundary layer interaction in a three-dimensional

Results of an A109 simulation validation and handling

Modular avionics architecture for modern fighter

Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826

unsteady Navier-Stokes code validation

[AIAA PAPER 89-1672]

aero-space planes based on waverider concepts

Multigrid Euler solver about arbitrary

compressor blades with allowance

two-dimensional minimum length nozzles

Navier-Stokes solver on a massively parallel computer

EGOLF, T. ALAN

EGOROV, V. P.

characteristics

EMANUEL, GEORGE

[AIAA PAPER 89-1822]

[AIAA PAPER 89-1878]

NASA-CR-1833891

ENGLEDER, ALEXANDER

IMBB-UD-534-88-PUB1

[AIAA PAPER 89-1960]

[AIAA PAPER 89-1853]

ERZBERGER, HEINZ

[NASA-TM-102201]

[AIAA PAPER 89-1851]

IMBB-FE-301/S/PUB/3391

ESHOW, MICHELLE M.

[NASA-TM-101062]

ESTRELLA, ANTONIO

qualities study

as exemplified on the BK 117

ELLIS, S. C.

nozzle

EPSTEIN, B.

ERENGIL, M. E.

traffic

ESCANDE, B.

channel

aircraft

FANG. JIUNN

FANNING, DAVID

[AIAA PAPER 89-1939]

PERSONAL AUTHOR IN	IDEX
COMPTON, WILLIAM B., III	
Transonic Navier-Stokes solu afterbody flows	utions of three-dimensiona
[NASA-TM-4111]	p 594 N89-2343
CONNELL, S. D. Solution of the 2D Nav	rier-Stokes equations or
unstructured adaptive grids	
[AIAA PAPER 89-1932] CONNOLLY, PAUL	p 572 A89-4177
	capacity managemen
procedures [AD-A193416]	p 630 N89-2405
CONOR, P. C.	p 000 1400-2400
The use of operational load damage rates in a jet trainer ai	
COTON, F. N.	
A direct viscid-inviscid inte prediction of two-dimensiona	
moment in incompressible flow	
COULSON, N. G. Flight testing of the South	nern Cross renlica aircraf
[AD-A205303]	p 607 N89-2345
CRAWLEY, EDWARD F. Experimental investigation of	of the graphworthinges a
scaled composite sailplane fus	elages
CREEL, THEODORE R., JR.	p 605 A89-42019
Experimental study of free-sh	hear layer transition above
a cavity at Mach 3.5 [AIAA PAPER 89-1813]	p 580 A89-42043
CUNNINGHAM, ROY J.	p 000 700 42040
Qualification of high temperat an aircraft gear steel	ture vacuum carburizing fo p 624 A89-41598
an ancian gear steel	p 024 700-41000
D	
DADONE, L.	
The effects of wake migration	
air loads DAGAN, A.	p 570 A89-41091
Vorticity equation solutions incidence	for slender wings at high
[AIAA PAPER 89-1989]	p 577 A89-41832
DAGENHART, J. RAY Crossflow-vortex instability a	nd transition on a 45 dec
swept wing	
[AIAA PAPER 89-1892] DANENHAUER, SCOTT	p 587 A89-42114
HALE - A high-altitude,	long-endurance manned
aircraft DANILECKI, STANISLAW	p 604 A89-41109
The joined wing - The benefit	
DANILOV, VIACHESLAV A.	p 603 A89-41029
The Mi-8 helicopter: Design a	
DARDEN, CHRISTINE M.	p 606 A89-42600
Status of sonic boom methor [NASA-CP-3027]	dology and understanding p 592 N89-23415
DASH, S. M.	,
PNS code assessment studie and nozzle flowfields	es for scramjet combustor
[AIAA PAPER 89-1697]	p 613 A89-43213
DATHE, INGO Hydrodynamic characteristics	of seaplanes as affected
by hull shape parameters	p 604 A89-41562
[AIAA PAPER 89-1540] DAVID, MICHAEL	,
Water tunnel investigation o periodically pitched wings	f the vortex dynamics of
[AD-A206359]	p 595 N89-24271
DE LEO, MANRICO Hydrodynamic characteristics	of seaplanes as affected
by hull shape parameters	·
[AIAA PAPER 89-1540] DE WITT, KENNETH J.	p 604 A89-41562
Flow of rarefied gases ove	
[AIAA PAPER 89-1970]	p 575 A89-41814
DECONINCK, H.	

DILLEY, ARTHUR D. Hypersonic parabolized Navier-Stokes code validation Navier-Stokes solutions of three-dimensional on a sharp nose cone p 579 A89-42016 p 594 N89-23433 DISBROW, JAMES D. A rapid prototyping facility for flight research in advanced of the 2D Navier-Stokes equations on systems concepts p 630 A89-41698 DITTMAR, JAMES p 572 A89-41779 Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data emputer system capacity management [AIAA PAPER 89-1059] p 631 A89-40472 DITTMAR, JAMES H. p 630 N89-24051 Cruise noise of the SR-2 propeller model in a wind of operational loads data to assess fatique [NASA-TM-101480] p 633 N89-24886 es in a jet trainer aircraft p 605 A89-41913 DOBKIN, D. P. Visibility with a moving point of view viscid-inviscid interaction scheme for the p 631 N89-24876 of two-dimensional aerofoil lift and pitching DOHRMANN, URLICH p 570 A89-41045 Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation [AIAA PAPER 89-1834] ting of the Southern Cross replica aircraft p 582 A89-42062 p 607 N89-23451 DOLLING, D. S. Separation shock motion and ensemble-averaged wall ntal investigation of the crashworthiness of pressures in a Mach 5 compression ramp interaction AIAA PAPER 89-1853] p 585 A89-42081 p 605 A89-42019 DONALDSON, JOSEPH C. Laminar boundary layer stability experiments on a cone at Mach 8. V - Tests with a cooled model [AIAA PAPER 89-1895] p 56 ntal study of free-shear layer transition above p 587 A89-42117 DONALDSON, KENT p 580 A89-42043 Analysis of a candidate control algorithm for a ride-quality p 614 A89-43057 on of high temperature vacuum carburizing for augmentation system p 624 A89-41598 DONALDSON, KENT E. Detailed design of a Ride Quality Augmentation System for commuter aircraft p 615 N89-23470 DÔNLEY, SHAWN T. Actuator rate saturation compensator AD-D0139621 p 616 N89-23474 ts of wake migration during roll-up on blade p 570 A89-41091 DOWELL, EARL H. On the role of artificial viscosity in Navier-Stokes equation solutions for slender wings at high [AIAA PAPER 89-1947] p 573 A89-41794 DOWNING, DAVID R. p 577 A89-41832 Analysis of a candidate control algorithm for a ride-quality vortex instability and transition on a 45 deg augmentation system p 614 A89-43057 Detailed design of a Ride Quality Augmentation System for commuter aircraft p 587 A89-42114 INASA-CR-42301 p.615 N89-23470 DRESSLER, UDO A high-altitude, long-endurance manned p 604 A89-41109 Flight tests with the VFW 614 - ATTAS laminar glove [MBB-UT-0132-88-PUB] p 606 A89-42936 p 606 A89-42936 DRUMMOND, COLIN K. A model for prediction of STOVL ejector dynamics [NASA-TM-102098] p 614 N89-24319 p 603 A89-41029 DUKE, EUGENE L. p 606 A89-42600 A rapid prototyping facility for flight research in advanced sonic boom methodology and understanding p 592 N89-23415 assessment studies for scramiet combustor DUF p 613 A89-43213 o amic characteristics of seaplanes as affected DYE p 604 A89-41562 C nel investigation of the vortex dynamics of p 595 N89-24271 EAT mic characteristics of seaplanes as affected p 604 A89-41562 EAT arefied gases over two-dimensional bodies

systems concepts	p 630 A89-41698	HALE - A high-altitude, long-endurance manned
DUNHAM, JOE B.		aircraft p 604 A89-41109
Evolution of rotor blade abrasi	on strips at Bell Helicopter	FARSHCHI, M.
Textron	p 604 A89-41589	Exploitation of multiple solutions of the Navier-Stokes
DURAND, BENOIT J.		equations to achieve radically improved flight
Investigation of the flowfield of	created by the interaction	[AD-A205939] p 627 N89-23831
of a sonic jet and a co-flowing s	supersonic stream	FELIPPA, CARLOS A.
[AD-A205823]	p 593 N89-23425	Computational procedures for postbuckling of composite
DYBAN, E. P.		shells p 628 N89-24642
Hydraulic resistance of the	inlet channels of a rotor	FERGUSON, DOUGLAS
cooling system	p 611 A89-40596	A computer simulation study of liquid water content
	·	adjustment based on icing cloud horizontal extent
_		[DOT/FAA/CT-TN89/3] p 598 N89-24288
Ε		FINK, DONALD E.
		Soviet aerospace industry - Perestroika's changes grip
EATON, J. K.		Soviet aerospace industry p 567 A89-41057
Flow control for unsteady ar	nd separated flows and	Western experts impressed by design of Mi-28
turbulent mixing		prototype p 605 A89-41950
[AD-A205989]	p 594 N89-23426	FISCHER, HANNO
EATON, ROBERT A.	,	RFB research and development in WIG vehicles
Response of pavement to free	ze-thaw cycles: Lebanon	[AIAA PAPER 89-1495] p 623 A89-41568
New Hampshire, regional airport		FISCHLER, J. E.
[AD-A205559]	p 626 N89-23740	Advanced concepts and materials for high-speed flight
ECER. A.	p 020 1100 20140	p 620 A89-41585
A new formulation for unst	andy compressible Euler	FITZGERALD, KAREN
equations	eady compressible Lule	Probing Boeing's crossed connections
[AIAA PAPER 89-1993]	p 577 A89-41836	p 597 A89-42811
-	p 377 A03-41000	FLORES, J.
EDWARDS, GERALDINE F.		Convergence acceleration of viscous and inviscid
Validation of aerodynamic para research models		hypersonic flow calculations
	p 578 A89-42012	[AIAA PAPER 89-1875] p 586 A89-42100
EDWARDS, THOMAS A.		FLORES, JOLEN
Toward a CFD nose-to-tail		Development and validation of CNS (compressible
unsteady Navier-Stokes code va		Navier-Stokes) for hypersonic external flows
[AIAA PAPER 89-1672]	p 590 A89-43195	[AIAA PAPER 89-1839] p 583 A89-42067
EGAN, DAVID A.		Toward a CFD nose-to-tail capability - Hypersonic
Dradiation of transition due to	icolated revelopees	constants Navior Ctakes and synlidation

p 622 A89-40907

FORMICA, BERNARD		
OPST 1 - A digital optical tail rotor [MBB-UD-533-88-PUB]		system A89-39847
FORNASIER, LUCIANO Application of HISSS panel code to	a fighter	-type aircraft
configuration at subsonic and supers [AIAA PAPER 87-2619]	sonic spe	
Practical experimental examples		sea, and air
navigation using the Navstar/GPS sy	p 599	A89-40802
Experimental/computational study	of a trans	sonic aircraft
with stores [AIAA PAPER 89-1832] FRANKLIN, JAMES A.	p 582	A89-42060
Flight evaluation of pursuit dis approach of powered-lift aircraft		r precision A89-43059
FREDERICKSON, EDWARD W. An analysis of Electronic Aids to	•	
for the Light Helicopter Family (LHX) [AD-A205440]	p 568	N89-23407
FRESE, JOHANNES Comparison of the crushing be	ehaviou	r of metallic
subfloor structures [MBB-UD-535-88-PUB]	p 622	A89-39841
FRIEDMAN, GERALD Whither titanium powder metallurg		100 11501
FUJII, KOZO	p 621	A89-41591
Use of high-resolution upwind scho simulations [AIAA PAPER 89-1955]		
FULLER, C. R.	,	A89-41802
Active control of sound fields in multicontrol forces		A89-40904
G		
GABEL, R.		
Ground shake test of the Boeing Nairframe		
[NASA-CR-181766] GAI, S. L.	•	N89-23920
Shock standoff from blunt con- nonequilibrium nitrogen flow GAITONDE, D.	p 570	A89-40913
A vectorized Gauss-Seidel line rel solving 3D Navier-Stokes equations		
[AIAA PAPER 89-1948] GALBRAITH, R. A. MCD.		A89-41795
A direct viscid-inviscid interaction prediction of two-dimensional aero		
moment in incompressible flow GARBER, F. D.	p 570	A89-41045
Syntactic classification of radar commercial aircraft		rements of A89-42680
GARCIA-FOGEDA, PABLO Development of harmonic panel me		
applications to elastic bodies and bo in supersonic flow	ody-fin c	ombinations
[AD-A205739] GASPERAS, G.	p 593	N89-23423
Effect of wall temperature distribution of the compressible boundary layer	tion on	the stability
[AIAA PAPER 89-1894] GEHSE, HARTMUT	p 587	A89-42116
Cockpit-canopy fragmentation sy pilot rescue		immediate A89-43115
GEORGE, ALBERT R. Status of sonic boom methodology		
[NASA-CP-3027] GHIA, K. N.	•	N89-23415
Analysis of potential and viscous two-dimensional bodies with arbit		
geometries [AIAA PAPER 89-1969]	p 577	A89-41841
Analysis of potential and viscous two-dimensional bodies with arbit		
geometries [AIAA PAPER 89-1969]	p 577	A89-41841
GILBERT, MICHAEL G. Recent activities within the Aerose		icity Branch
at the NASA Langley Research Center [NASA-TM-101582]		N89-24314
Results of a parametric aeroelastic		
a generic X-wing aircraft [NASA-TM-101572]	p 617	N89-24324

	GILLIAN
847	CSM applica [NASA
raft	GLASS,
931	Expe swept
air	wave i [NASA
302	GLIEBE, High
raft	rotatio
060	GLOTO\ Thre
ion 059	GNOFF, A va
M)	high-sp [AlAA
107	GNOFF0 Upw
illic	viscous [AIAA
341	GOETTG Host
i91	proced [AD-A1
ow	U.S. 21st ce
802	GOLOVA Supe
by 104	density
104	None
	GONDOT Ligh
ter	Definition [ONER
20	Light Definition
ipy	[ONER
13	A clo
for	[NASA]
95	Impro
he ng	[AIAA I
45	3-D o
of 80	[AIAA I
tic	Redu
ins	by alter [AlAA I GOVE, K
23	Braze
lity	GRABOV Nume
16	(AIAA F GRANTZ An
ate 15	calculat
ng 15	GRASSO Supe turbuler
ral ge	[AIAA F GRAY, A The
41	alumini GRIGOR
ral	Tech [AD-A1

Actuator rate saturation compensator

Visibility with a moving point of view

fixed-wing aircraft against small arms

A methodology for determining the survivability of

p 616 N89-23474

p 631 N89-24876

p 607 N89-23455

[AD-D013962]

GROVER, JOHN M.

[AD-A205730]

GROSSMAN, R.

```
GUO, SUOFENG
         I testbed development and large-scale structural
                                                                 The research of the aircraft neutral stability
                                                                                                 p 614 A89-40961
         tions
         -TM-40721
                                     p 628 N89-24624
                                                             GURUSWAMY, GURU P.
         CHRISTOPHER E.
                                                                Transonic aeroelasticity of fighter wings with active
                                                               control surfaces
         erimental study of pressure and heating rate on a
                                                                                                 p 579 A89-42020
         cylindrical leading edge resulting from swept shock
                                                            GUTIERREZ, R. H.
         nterference
                                                                Transverse vibrations of a trapezoidal cantilever plate
                                                              of variable thickness
         -CR-1853261
                                     p 592 N89-23411
                                                                                                 p 622 A89-40914
         P. R.
          speed turboprop aeroacoustic study (single
                                                                                      Н
         n). Volume 1: Model development
                                     p 633 N89-24139
         -CR-182257-VOL-11
                                                            HAFEEZ, F.
         . G. F.
                                                                Global marching technique for predicting flows over
         e-dimensional effects in high-intensity vortices
                                                               airfoils with leading and trailing edge flaps
                                     p 588 A89-42464
                                                              [AIAA PAPER 89-1793]
                                                                                                 p 579 A89-42028
         PETER A
                                                            HÀFEEZ, FARAN
         lidation study of four Navier-Stokes codes for
                                                                Numerical study of the influence of leading and trailing
         eed flows
                                                               edge flaps on the performance of airfoils
         PAPER 89-18381
                                     p 583 A89-42066
                                                              (AD-A206138)
                                                                                                 p 594 N89-23428
         PETER A.
                                                            HAFEZ, M.
         ind-biased, point-implicit relaxation strategies for
                                                                Convergence acceleration of viscous and inviscid
          hypersonic flows
                                                              hypersonic flow calculations
                                                               AIAA PAPER 89-1875]
         PAPER 89-19721
                                     p 575 A89-41816
         E, ROBERT
                                                            HAFTKA, RAPHAEL T.
                                                                Interdisciplinary and multilevel optimum design
           computer system capacity management
                                                                                                 p 606 A89-43450
                                     p 630 N89-24051
         934161
                                                            HALIM, AHMAD A. M.
                                                                Global marching technique for predicting flows over
         RG, THOMAS R.
                                                              airfoils with leading and trailing edge flaps
[AIAA PAPER 89-1793] p. 57
         government policies and hypersonic flight in the
                                                                                                 p 579 A89-42028
                                     p 634 A89-41654
         ntury
                                                            HALL, CHRISTOPHER D.
         CHEV. IU. P.
                                                                Preliminary design of a modular unmanned research
         rsonic flow past a sphere in a gas with a periodic
                                                              vehicle. Volume 2: Subsystem technical development
         field structure
                                    p 588 A89-42521
                                                              design study
         tationary supersonic flow past a sphere moving
                                                              (AD-A2056781
                                                                                                 p 607 N89-23454
         a thermal inhomogeneity
                                    p 588 A89-42569
                                                            HALL, WILLIAM
                                                                A CFD-based finite-volume procedure for computational
         tning inflight study onboard a Transall aircraft.
                                                              electromagnetics - Interdisciplinary applications of CFD
         on of the onboard instruments
IA-RF-19/7234-PY]
                                                              methods
                                                               AIAA PAPER 89-1987]
                                                                                                 p 633 A89-41830
         ES, P. Y.
                                                            HAMBRICK, DENISE M.
         ning inflight study onboard a Transall aircraft.
on of the onboard instruments
                                                                Age creep forming aluminum aircraft skins
                                                                                                 p 624 A89-41584
         A-RF-19/7234-PY]
                                    p 629 N89-24777
                                                            HANSMAN, R. JOHN, JR.
         CH, KENNETH H.
                                                                Experimental investigation of the crashworthiness of
                                                              scaled composite sailplane fuselages
         sed-form trim solution yielding minimum trim drag
         planes with multiple longitudinal-control effectors
                                                                                                 p 605 A89-42019
         TP-2907]
                                    p 615 N89-23468
                                                            HARDY, GORDON H.
                                                                Flight evaluation of pursuit displays for precision
         N, PETER M.
                                                              approach of powered-lift aircraft
                                                                                                 p 610 A89-43059
         evements and applications of a streamwise upwind
                                                            HARRIS, R. G.
         PAPER 89-1957]
                                                               Reconnaissance sensor management system - Vicon
                                     p 574 A89-41804
                                                              2000
                                                                                                 p 609 A89-40254
         R, RAYMOND E.
                                                            HARRIS, T. B.
         omposite velocity solutions for subsonic/transonic
                                                                Progress in the development of parabolized
         er afterbodies
         PAPER 89-1837]
                                                              Navier-Stokes technology for external and internal
                                     p 582 A89-42065
         LD, JAMES A.
                                                              supersonic flows
                                                              [AIAA PAPER 89-1828]
                                                                                                 p 581 A89-42057
         ction of sound transmission through fuselage walls
                                                            HART, JIM
         nate resonance tuning (A.R.T.)
         APER 89-1046)
                                    p 631 A89-40470
                                                               Improved bandwidth microstrip antenna design for
         B.
                                                              airborne phased arrays
                                                                                                p 600 A89-42676
                                                            HARVEY, J.
         e repair of aero engine components
                                    p 626 A89-43535
                                                                An experimental study of hypersonic turbulence on a
         SKY. W. R.
                                                              sharp cone
                                                              [AIAA PAPER 89-1866]
         erical simulation of 3D rarefied hypersonic flows
                                                                                                 p 586 A89-42093
         APER 89-17151
                                    p 591 A89-43230
                                                            HASSAN, AHMED A.
         A C
                                                                Simulation of realistic rotor blade-vortex interactions
         approximate viscous shock layer method for
                                                              using a finite-difference technique
         ing the hypersonic flow over blunt-nosed bodies
                                                              [AIAA PAPER 89-1847]
                                                                                                 p 584 A89-42075
         PAPER 89-1695]
                                    p 590 A89-43212
                                                            HASSAN, H. A.
         FRANCESCO
                                                                Study of hypersonic flow past sharp cones
         rsonic flow computations by two-equation
                                                              [AIAA PAPER 89-1713]
                                                                                                 p 591 A89-43228
         nce modeling
                                                            HASSOUN, JOHN A.
         APER 89-1951 ]
                                    p 574 A89-41798
                                                                An evaluation of the F/FB/EF-111 crew/voice message
                                                              system
           environmental
                           cracking
                                       behaviour
                                                              (AD-A2059981
         um-lithium based alloys
                                    p 621 A89-41601
                                                            HATHORN, TIMOTHY
         (EV, V. P.
                                                                Loss of tail rotor effectiveness evaluation of the OH-58C
         nology of aircraft construction (selected chapters)
                                                              helicopter with directional SAS (Stability Augmentation
         99946]
                                    p 569 N89-24261
                                                              System)
GROENEWEG, J. F.
                                                              (AD-A206181)
                                                                                                 p 608 N89-24309
  Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack
                                                            HAYASHI, MASANORI
                                                                The structure of aerodynamic
                                                                                                     heating
  [AIAA PAPER 89-1060]
                                    p 631 A89-40473
                                                              three-dimensional shock wave/turbulent boundary layer
GROSS, GARRY L.
```

interactions induced by sharp and blunt fins

Computational Methods for Structural Mechanics and

Status of sonic boom methodology and understanding

p 585 A89-42082

p 628 N89-24654

p 592 N89-23415

[AIAA PAPER 89-1854]

[NASA-CP-3034-PT-2]

HAYDUK, ROBERT J.

HAYES, WALLACE D.

[NASA-CP-3027]

Dynamics

GILES, MICHAEL B.

[AIAA PAPER 89-1942]

calculations

Non-reflecting boundary conditions for Euler equation

p 573 A89-41789

p 586 A89-42095

HE	ZHO	NC	WEI
ne.	ZNU	пu	47 E.I

The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction

p 570 A89-41117

HEIDELBERG, LAURENCE J.

Unsteady blade pressure measurements on a model counterrotation propeller

(AIAA PAPER 89-1144)

p 631 A89-40175

HEISE, OTHMAR

New developments in air and space research Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927

HEISS, STEFAN

Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds p 589 A89-42931 [AIAA PAPER 87-2619]

HENDERSON, A. H.

Measurements of diffusion limited solidification at varying gravity

p 626 A89-43268

HENKEL, PAUL A.

Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988 (SPIF-979) p 567 A89-40251

HENN, DAVID

HALE - A high-altitude, long-endurance manned p 604 A89-41109 aircraft

HERBST, MICHAEL K.

Preliminary airworthiness evaluation of modified second-generation Pneumatic Boot Deicing System on a JUH-1H

[AD-A206255] p 598 N89-24289 Loss of tail rotor effectiveness evaluation of the OH-58C helicopter with directional SAS (Stability Augmentation

System) (AD-A206181)

p 608 N89-24309

HESS, ROBERT W.

Transonic unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers

p 578 A89-42010

HESSELINK, LAMBERTUS

Flow control for unsteady and separated flows and turbulent mixing

IAD-A2059891

p 594 N89-23426

HETLAND, M. D

Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing IAD-A2054701 p 621 N89-23712

HEYMSFIELD, ANDREW J.

Evaluation of liquid water measuring instruments in cold p 624 A89-41889 clouds sampled during FIRE HIBBITT, H. D.

Some issues in numerical simulation of nonlinear p 628 N89-24639 structural response

HIGUCHI, HIROSHI

Flow past two-dimensional ribbon parachute models p 579 A89-42015

HILDEBRANDT, FRED

CIDS- Cabin Intercommunication Data System p 600 A89-42938 [MBB-UT-020-87-PUB]

HILIER, R.

Experiment and computation in hypersonic cavity flows

[AIAA PAPER 89-1842] HIROSE, NAOKI

p 583 A89-42070

3D-Euler flow analysis of fanjet engine and turbine powered simulator with experimental comparison in

transonic speed [AIAA PAPER 89-1835] p 582 A89-42063 Computational and experimental research on buffet phenomena of transonic airfoils

[NAL-TR-996T] p 616 N89-24322

HIRSCH, CH.

Far field numerical boundary conditions for internal and cascade flow computations

[AIAA PAPER 89-1943] p 573 A89-41790 Upwind algorithms based on a diagonalization of the multidimensional Euler equations

[AIAA PAPER 89-1958] p 578 A89-41842

HITZEL, STEPHAN M.

Numerical simulation and experiments on leading-edge vortices on modern wings, with European cooperation p 589 A89-43114

Dynamic loading on impact surfaces of a high subsonic elliptic jet

[AIAA PAPER 89-1139] p 632 A89-40477

HODGES, DEWEY H.

Survey of Army/NASA rotorcraft aeroelastic stability

research [NASA-TM-101026]

p 618 N89-24329

HÖFFMANN, KLAUS A.

Determination of computational time step for chemically reacting flows

[AIAA PAPER 89-1855] p 585 A89-42083 **HOGLE, LAWRENCE**

Possibility of using GPS for precision approaches p 599 A89-40803

HOLDEN, M. S.

An experimental study of hypersonic turbulence on a sharp cone

AIAA PAPER 89-1866] p 586 A89-42093 HOLMES D. G.

Solution of the 2D Navier-Stokes equations on

unstructured adaptive grids p 572 A89-41779 IAIAA PAPER 89-19321 HOLMES, WILLARD

An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148

HOLROYD, N. J. H. The environmental cra aluminium-lithium based alloys cracking behaviour p 621 A89-41601

HOMMEL, MARK Finite element computation of hypersonic flow past a complete body

p 576 A89-41819

[AIAA PAPER 89-1976] HOOKER STEPHAN E

A review of current technical knowledge necessary to develop large scale wing-in-surface effect craft [AIAA PAPER 89-1497] p 623 A89-41569

HOSOE, NOBUYUKI

Transonic operational characteristics and performance INAL-TR-9681 p 591 N89-23408

HOUCK, JACOB A.

Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313

HOURNG, LIH-WU

Shock fitting algorithm applied to a transonic, full p 571 A89-41760 notential flow

HOUSNER, JERROLD M.

Computational Methods for Structural Mechanics and **Dynamics** [NASA-CP-3034-PT-2] p 628 N89-24654

HSIAO, FIE-BIN

Numerical prediction of aerodynamic performance for low Revnolds number airfoils p 579 A89-42023

HSU, ANDREW T. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

[AIAA PAPER 89-1994] p 577 A89-41837

HSU, CHENG-CHAING

Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023 HSU, J. C.

Measurements of swept shock wave/turbulent boundary-layer interactions by holographic interferometry [AIAA PAPER 89-1849] p 584 A89-42077

HÙ, CHIEN-LAI

A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759

HUBAND, G. W.

Numerical simulation of the Navier-Stokes equations for an F-16A configuration p 578 A89-42014

HUBER, BERNARD Center of gravity control on Airbus aircraft: Fuel, range

and loading [REPT-882-111-101] p 608 N89-23460 HUBER, HELMUT

Design and development tests of a five-bladed hingeless helicopter main rotor [MBB-UD-531-88-PUB] p 603 A89-39845

HUEBNER, LAWRENCE D.

Hypersonic parabolized Navier-Stokes code validation p 579 A89-42016 on a sharp nose cone

HUGHES, CHRISTOPHER E. Noise of a model counterrotation propeller with

simulated fuselage and support pylon at takeoff/approach conditions INASA-TM-1019961 p 633 N89-24138

HUI. W. H.

Applications of Lagrangian time to steady supersonic airfoil computation [AIAA PAPER 89-1963] p 575 A89-41808

HUMMEL, DIETRICH

Investigations on the vorticity sheets of a close-coupled delta-canard configuration p 579 A89-42017

HUMPHREYS, W. W.

An experimental study of the effect of streamwise vortices on unsteady turbulent boundary-layer separation IAD-A2054621 p 593 N89-23420

HUNEK, M.

Numerical solution of transonic potential flow in 2D compressor cascades using multi-grid techniques p 589 A89-42837

HWANG, C. J.

Numerical study of two-dimensional impinging jet p 569 A89-40902 HWANG, KUAN-YUAN

Shock fitting algorithm applied to a transonic, full p 571 A89-41760 potential flow

HYDE C R

Turbulence measurements for heated gas slot injection

[AIAA PAPER 89-1868] HYNES, CHARLES S.

Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059

ı

IEVALTS, JOHN O.

A three-dimensional upwind parabolized Navier-Stokes code for real gas flows I AIAA PAPER 89-1651 ì p 626 A89-43177

IGOE, WILLIAM B.

Transonic unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers

p 578 A89-42010

p 582 A89-42063

p 583 A89-42071

n 634 N89-24887

p 606 A89-42934

p 589 A89-43094

p 594 N89-23426

IKAWA, KATUYA

3D-Euler flow analysis of faniet engine and turbine powered simulator with experimental comparison in

[AIAA PAPER 89-1835] INAGAKI, TOSHIHARU

LAIAA PAPER 89-18431

Characteristics of a five-hole spherical pitot tube [NAL-TR-971] p 610 N89-23463

INGER. G. R.

Interaction of a compression ramp with a hypersonic laminar boundary layer

INNIS, ROBERT C.

Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059

ISERMANN, ULLRICH Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure

[MPIS-7/1988] ISHIGURO, TOMIKO

Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799

ISSAC. F.

Lightning inflight study onboard a Transall aircraft. Definition of the onboard instruments p 629 N89-24777

IONERA-RF-19/7234-PY

IVANOV, VADIM N. High-efficiency thermal insulation in the base of airfields and highways p 619 A89-42499

IWASAKI, AKITO

Measurements of laminar separation bubble on B3 p 569 A89-40893

JAKOB, HELMUT Development of a monolithic fuselage shell using CERP

[MBB-FE-234/S/PUB/338]

JAMESON, ANTONY Aerodynamic design via control theory

JENG. DUEN-REN

JHA. S. C.

Flow of rarefied gases over two-dimensional bodies p 575 A89-41814 I AIAA PAPER 89-19701

Rapidly solidified Al-Ti alloys via advanced melt spinnina

p 621 A89-41888 JOHNSON, RICHARD L. Preliminary design of a modular unmanned research vehicle. Volume 2: Subsystem technical development

design study IAD-A2056781

p 607 N89-23454 JOHNSTON, J. P. Flow control for unsteady and separated flows and turbulent mixing

IAD-A2059891 JOHNSTON, L. J.

A solution method for the three-dimensional compressible turbulent boundary-layer equations p 623 A89-41044

JONES, J. D.

Active control of sound fields in elastic cylinders by multicontrol forces p 632 A89-40904 JOUAN, J. Y.

Lightning inflight study onboard a Transall aircraft. Definition of the onboard instruments

[ONERA-RF-19/7234-PY] p 629 N89-24777

KAHN.	1	AWC	ENC	EA

Real-time solution of the airflow continuity equations for a hovercraft simulation p 589 A89-43147

KALKHORAN, IRAJ M.

An experimental investigation of the parallel vortex-airfoil interaction at transonic speeds

[AIAA PAPER 89-1833] KAMENKOV. E. F.

p 582 A89-42061

A model of the reachability zone and its use in the ballistic sign of flight vehicles p 620 A89-42459 KAMINER I.

The 4D-TECS integration for NASA TSRV airplane [NASA-CR-4231] p 615 N89-23471

KAMPE KARL-PETER

Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

p 605 A89-42019

KANDEBO, STANLEY W.

Modified F-15B to demonstrate STOL, maneuver capability p 603 A89-41075

KANDIL, ÓSAMA A.

Dynamic grid deformation using Navier-displacement equation for deforming wings AIAA PAPER 89-1982]

KAPRALOV, V. M.

p 576 A89-41825

p 608 N89-24308

Optimization of the cold roll-forging of axial-flow compressor blades with allowance for fatioue p 625 A89-42421 characteristics

KARASAWA, TOSHIO

Transonic operational characteristics and performance p 591 N89-23408 (NAL-TR-968)

KARELS, STEVEN

An overview of the direct simulation of an integrated aircraft navigation system on a PC p 600 A89-43148 KARPEL, MORDECHAY

Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics

INASA-TM-1015741

KATZ, ERIC S. Improved marking of taxiway intersections for Instrument

Flight Rules (IFR) operations

[DOT/FAA/CT-TN89/23] p 619 N89-24330

KATZ, JOSEPH

Numerical simulation of aircraft rotary aerodynamics p 579 A89-42024

KAWAMURA, RYUMA

3D-Euler flow analysis of faniet engine and turbine powered simulator with experimental comparison in transonic speed

[AIAA PAPER 89-1835]

p 582 A89-42063

KEITH, THEO G., JR.

Flow of rarefied gases over two-dimensional bodies p 575 A89-41814 [AIAA PAPER 89-1970]

KELLER, DONALD

Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport LAD-A2055591 p 626 N89-23740

KELLEY, JOSEPH E.

US military aircraft coproduction with Japan p 569 N89-24263 [AD-A206430]

KENNON, STEPHEN R.

Unstructured grid generation for non-convex domains [AIAA PAPER 89-1983] p 576 A89-41826

KERNS, KAROL

Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2

[DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292

KHAN, M. M. S.

massively three-dimensional parallel Euler/Navier-Stokes method [AIAA PAPER 89-1937] p 572 A89-41784

KHANOV, I. K.

Methods of flying model studies p 605 A89-42535

KIM, SEUNG JOO

Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model p 597 N89-24286

KING, RUDOLPH A.

Experimental study of free-shear layer transition above a cavity at Mach 3.5 p 580 A89-42043 [AIAA PAPER 89-1813]

KLEIN, VLADISLAV

Validation of aerodynamic parameters for high-incidence p 578 A89-42012 research models

KLINEBERG, JOHN M.

Advances in computational design and analysis of

airbreathing propulsion systems [NASA-TM-101987] p 613 N89-23465

KLOEPPEL, VALENTIN

A new wind tunnel test rig for helicopter testing p 618 A89-39846 [MBB-UD-532-88-PUB]

KNIGHT, DOYLE D.

Computation of sharp fin and swept compression corner shock/turbulent boundary layer interactions

p 585 A89-42080 [AIAA PAPER 89-1852]

KNIGHT, NORMAN F., JR.

CSM testbed development and large-scale structural applications INASA-TM-40721

KNUDSON, C. L.

p 628 N89-24624

Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing p 621 N89-23712 (AD-A205470)

KORFL'KOV V N

A study of the characteristics of aircraft powerplants under conditions of optimal control of their principal components p 612 A89-42466

KOCH, JENS-UWE

Future air navigation systems (FANS)

p 600 A89-43573

KOCH, RALPH Cockpit-canopy fragmentation system for immediate p 606 A89-43115 pilot rescue

KOELLE, DIETRICH E.

On the optimum cruise speed of a hypersonic aircraft p 605 A89-41652

KOENIG, HERBERT

OPST 1 - A digital optical tail rotor control system p 614 A89-39847 [MBB-UD-533-88-PUB]

KOIKE, AKIRA

Transonic operational characteristics and performance (NAL-TR-968) p 591 N89-23408

KOLETZKO, WOLFRAM

The development of a composite helicopter fuselage as exemplified on the BK 117 [MBB-UD-534-88-PUB] p 602 A89-39840

KOLKMAN, H. J.

Quench sensitivity of airframe aluminium alloys [PB89-146039] p 621 N89-23656

KOMERATH, N. M.

Measurement and computation of the velocity field of a cylinder in the wake of a rotor in forward flight p 583 A89-42072 [AIAA PAPER 89-1844]

KOMURO, TOMOYUKI

Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7

[NAL-TR-969] p 613 N89-23464

KONDRATOV, ANATOLII A.

Methods of flying model studies p 605 A89-42535 KOPER, JUDITH L.

Actuator rate saturation compensator

[AD-D013962] p 616 N89-23474

KORDULLA, W.

Numerical simulation of laminar hypersonic flow past a double-ellipsoid

[AIAA PAPER 89-1840] p 583 A89-42068 KORKAN KENNETH D.

An acoustic experimental and theoretical investigation of single disc propellers p 632 A89-40478 [AIAA PAPER 89-1146] Generic icing effects on forward flight performance of p 604 A89-41093

a model helicopter rotor KORNET, I. F.

Optimization of the cold roll-forging of axial-flow compressor blades with allowance for fatique characteristics p 625 A89-42421

KORTE, JOHN J. Numerical simulation of flow over a hypersonic aircraft using an explicit upwind PNS solver

AIAA PAPER 89-1829] p 582 A89-42058 KOSHKINA, L. F.

Two-time probabilistic model of the evolution of aircraft ngine reliability p 612 A89-42463

KOSOLAPOV. IU. S. Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric p 588 A89-42519 channels

KOSTENKO, IGOR' K.

Flying wings (2nd revised and enlarged edition) p 568 A89-42488

KOUL, A. K.

Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction

p 612 A89-41910

KOVESHNIKOV, N. A.

Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine p 620 A89-40619 KOZEL. K.

Numerical solution of transonic potential flow in 2D compressor cascades using multi-grid techniques p 589 A89-42837

KRAVCHENKO, I. V.

Experimental investigation of the characteristics of p 612 A89-42462 combination engines

KRAWCZYK, W. J.

Progress in the development of parabolized Navier-Stokes technology for external and internal supersonic flows

[AIAA PAPER 89-1828] **KRENZ, GUENTER**

p 581 A89-42057

p 620 A89-40619

p 583 A89-42066

p 578 A89-41842

Accuracy problems in wind tunnels during transport aircraft development [MBB-UT-134-88-PUB] p 619 A89-42937

KROLL, N.

A central finite volume TVD scheme for the calculation of supersonic and hypersonic flow fields around complex configurations

KROO, I. M.

KUBO, SHIN

engines

[AIAA PAPER 89-1975] p 578 A89-41844 Flow control for unsteady and separated flows and

turbulent mixing (AD-A205989)

p 594 N89-23426 KROTHAPALLI, ANJANEYULU

Effect of slotting on the mixing and noise of an axisymmetric supersonic jet [AIÁA PAPER 89-1052] p 632 A89-41042

Numerical simulation of hypersonic flow around a space plane. 1: Basic development

p 591 N89-23409 [NAL-TR-976T]

KUCHER, A. G. Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine

Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7 INAL-TR-9691 p 613 N89-23464

KUHI MAN JOHN M

Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

p 595 N89-24266 [NASA-CR-185016] KUHN, RODNEY

National Airspace System Search and Rescue operational concept (NAS-SR-1329) p 597 N89-23435

DOT/FAA/DS-89/07] KUMAR, AJAY

A validation study of four Navier-Stokes codes for high-speed flows [AIAA PAPER 89-1838]

KÙWAHARA, KUNIO Numerical analysis on aerodynamic characteristics of an inclined square cylinder

[AIAA PAPER 89-1805] p 580 A89-42038

LACOR, C.

Upwind algorithms based on a diagonalization of the multidimensional Euler equations

[AIAA PAPER 89-1958]

LAGESSE, FRANCIS R. Airborne reconnaissance XII; Proceedings of the Meeting, San Diego, CA, Aug. 16, 17, 1988

[SPIE-979]

p 567 A89-40251 LALLMAN, FREDERICK J. A closed-form trim solution yielding minimum trim drag for airplanes with multiple longitudinal-control effectors

[NASA-TP-2907]

p 615 N89-23468 LAMATSCH, PETER J. Preliminary design of a modular unmanned research vehicle. Volume 2: Subsystem technical development

IAD-A2056781

p 607 N89-23454 LAMB, MARGARET W. Hazards of mountain flying - Crashes in the Colorado **Bockies** p 597 A89-42151

LAMZIN, V. A.

design study

Problems of the unification of the on-board systems of fliaht vehicles p 620 A89-42456 LAND, C. K.

Transition flight experiments on a swept wing with

[AIAA PAPER 89-1893]

LAND, PATRICIA Effect of electromagnetic interference by neonatal transport equipment on aircraft operation

p 625 A89-42161

p 587 A89-42115

p 618 A89-39846

LANGER, H.-J. A new wind tunnel test rig for helicopter testing

[MBB-UD-532-88-PUB]

LAURA, P. A. A. Transverse vibrations of a trapezoidal cantilever plate of variable thickness p 622 A89-40914

LAWING, PIERCE L.

Transonic unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers

p 578 A89-42010

PERSONAL AUTHOR IND	EX		
LAWRENCE, SCOTT L.			LIU, C. S.
Calculation of winged-body-li		lds using an	An analytical a
implicit upwind space-marching c [AIAA PAPER 89-1826]	oae p 581	A89-42056	patterns in bounde
· ·			[AIAA PAPER 89-1 LIU, D. D.
A three-dimensional upwind pa code for real gas flows	rabolized iv	lavier-Stokes	Development of t
[AIAA PAPER 89-1651]	p 626	A89-43177	applications to ela
LAZOS, BARRY S.	p ore	7,00 40177	in supersonic flow
Effects of contamination on rib	let perform:	ance	[AD-A205739]
		A89-42021	LIU, J. L.
LECOINTE, Y.			Numerical study
Numerical methods for unstead	ly flows		flowfields
	p 596	N89-24282	LIU, J. S.
LEE, C. J.			Multigrid solution
'Hypersonic slip flows' and	issues or	n extending	three-dimensional of
continuum model beyond the Nav	ier-Stokes	level	[AIAA PAPER 89-1
[AIAA PAPER 89-1663]	p 590	A89-43187	LIU, JINGHUA
.EE, HENRY E.			The model of co
Adaptive optimum attitude exti	rapolation	for precise	flow properties for
antenna pointing control	p 610	A89-42656	
.EE, K. D.			LIU, LING
An inviscid/viscous coupling	g approac	h for vortex	The model of co
flowfield calculations			flow properties for s
[AIAA PAPER 89-1961]	p 575	A89-41807	LOFOTEN A O
.EE, R. A.			LOFSTEN, A. C.
PNS code assessment studies	for scramje	et combustor	Electron beam w
and nozzle flowfields	- 010	100 10010	LOH, C. Y.
[AIAA PAPER 89-1697]	p 613	A89-43213	Applications of L
EE, SEUNG-HO			airfoil computation
Calculation of nonequilibrium hyd		eactions with	[AIAA PAPER 89-1
implicit flux vector splitting method [AIAA PAPER 89-1700]	p 621	A89-43216	LOKSHTANOV, E. A.
	p 021	A03-43210	Two-time probabi
EE, WEN-TZONG Sonic-point capturing			engine reliability
[AIAA PAPER 89-1945]	n 573	A89-41792	LONG, LYLE N.
EICHER, STEFAN	p 3/0	7100-41702	A massively
Simulation of the flow around a co	ounterrotati	na shrouded	Euler/Navier-Stokes
propfan		A89-43113	[AIAA PAPER 89-19
EMEN, JULIE B.	p 000	7.00 701.0	LOTTS, C. G.
An analysis of Electronic Aids	to Mainten	ance (FAM)	CSM testbed de
for the Light Helicopter Family (LH		unoo (E/111)	applications
[AD-A205440]	p 568	N89-23407	[NASA-TM-4072]
EONT'EVA, N. V.	·		LOWRY, S. A.
Supersonic flow past a sphere	in a gas wit	th a periodic	Measurements o
density field structure		A89-42521	varying gravity
Nonstationary supersonic flow	past a sph	nere moving	(AIAA PAPER 89-17
through a thermal inhomogeneity		A89-42569	LU, FRANK K.
EVEQUE, RANDALL J.			Inception length to
An adaptive Cartesian mesh a	algorithm fo	or the Euler	wave boundary-laye
equations in arbitrary geometries	•		[AIAA PAPER 89-18
[AIAA PAPER 89-1930]	p 572	A89-41777	LUBRINA, P.
EVIS, ALEXANDER H.			Ground vibration
Generation of architectures for	distributed	intelligence	aircraft [REPT-20/7234-PY
systems			
[AD-A205783]	p 601	N89-23440	LUCAS, A.
I, H.			Aircraft navigation
A central finite volume TVD sch			LUECKING, PAUL
of supersonic and hypersonic flow	fields arou	nd complex	Simulation of the f
configurations			propfan
[AIAA PAPER 89-1975]	p 578	A89-41844	
IANG, SHEN-MIN		(D b -	LUNTZ, A. L. Multigrid Euler
A comparative study of the Coal			configurations with
for steady-state calculations of o equations		A89-41759	(AIAA PAPER 89-19
IM, JIN SHIK	рэл	703-417JJ	LYONS, P. R. A.
Design point optimization of an	axial-flow	compressor	Shock standoff f

prediction of shock
rs
p 586 A89-42099
ethods for aeroelastic
ody-fin combinations
p 593 N89-23423
ional impinging jet
p 569 A89-40902
P 000 7100 1000E
ler equations for
ilei equations ioi
p 581 A89-42048
p 561 A69-42046
cy and calculation of
or
p 611 A89-41115
y and calculation of
or
p 611 A89-41115
'
of critical structures
p 624 A89-41586
p 024 7,00 4,000
steady supersonic
steady supersonic
- E7E A80 41000
p 575 A89-41808
evolution of aircraft
p 612 A89-42463
three-dimensional
till 66-difficitional
tinee-dimensional
p 572 A89-41784
p 572 A89-41784
p 572 A89-41784 arge-scale structural
p 572 A89-41784
p 572 A89-41784 arge-scale structural p 628 N89-24624
p 572 A89-41784 arge-scale structural
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at
p 572 A89-41784 arge-scale structural p 628 N89-24624
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078 udre A04 Transall
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078 udre A04 Transall p 609 N89-24311
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078 udre A04 Transall p 609 N89-24311 analysis
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078 udre A04 Transall p 609 N89-24311
p 572 A89-41784 arge-scale structural p 628 N89-24624 ad solidification at p 626 A89-43268 fin-generated shock p 584 A89-42078 udre A04 Transall p 609 N89-24311 analysis

An analytical approach to the prediction of shock

MACKALL, DALE A.

p 612 A89-41223

p 591 A89-43230

p 619 N89-23479

p 568 N89-23407

p 599 A89-42652

p 577 A89-41837

p 583 A89-42072

Numerical simulation of 3D rarefied hypersonic flows

Investigations on the cracking behavior of joints in

An analysis of Electronic Aids to Maintenance (EAM)

Conservative treatment of boundary interfaces for

A time accurate finite volume high resolution scheme

Measurement and computation of the velocity field of

overlaid grids and multi-level grid adaptations [AIAA PAPER 89-1980] p 576 A89-41823

Advanced technology ultra reliable radar (URR)

for three dimensional Navier-Stokes equations

a cylinder in the wake of a rotor in forward flight

airfields and roads: Field investigations and laboratory

stage

LIN, T. C.

LINDE, S.

simulations [PB89-141279]

LINGLE, D. E.

LIÒU, S. G.

LIOU. MENG-SING

[AIAA PAPER 89-1994]

[AIAA PAPER 89-1844]

LINDQUIST, JOHN W.

for the Light Helicopter Family (LHX) [AD-A205440]

[AIAA PAPER 89-1715]

UECKING, PAUL Simulation of the flow around a propfan p 589 A89-43113 UNTZ, A. L.

Multigrid Euler solver about arbitrary aircr configurations with Cartesian grids and local refineme [AIAA PAPER 89-1960] p 575 A89-418 aircraft p 575 A89-41806 YONS, P. R. A.

Shock standoff from blunt cones in high-enthalpy nonequilibrium nitrogen flow p 570 A89-40913 LYSENKO, V. I.

Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary p 588 A89-42567

Effect of gas dissociation and ionization on the transition p 588 A89-42572 of a supersonic boundary layer

M

Development and flight test experiences with a flight-crucial digital control system (NASA-TP-2857) p 617 N89-24327 MACKIN, CLIFFORD W. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at

Chicago's Midway Airport p 601 N89-24291 IDOT/FAA/CT-TN88/421 MACPHAIL, J. D. Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853

CSM testbed development and large-scale structural applications NASA-TM-40721 p 628 N89-24624

MASON, MARY L. MADDALON, D. V. Transition flight experiments on a swept wing with suction [AIAA PAPER 89-1893] p 587 A89-42115 MAHAJAN, APARAJIT J. On the role of artificial viscosity in Navier-Stokes solvers [AIAA PAPER 89-1947] p 573 A89-41794 MALM, HAROLD p 603 A89-40261 Airborne pod structures MALONE, G. An integrated approach to remanufacturing turbine p 623 A89-41547 MALYGIN, V. V. A method for estimating the stochastic vibrational stress level of impeller bladings of aircraft gas turbine engines in operating conditions on the basis of developmental bench test data p 611 A89-40624 Determination of the natural frequency spectra and modes of the fan blade rings of aviation gas turbine engines p 612 A89-42422 MALYSHEV. G. V. Problems of the unification of the on-board systems of flight vehicles p 620 A89-42456 MANI. R High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development [NASA-CR-182257-VOL-1] p 633 N89-24139 MANICKAM, M. D. A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 MANNEVY, PIERRE Practical experimental examples of land, sea, and air navigation using the Navstar/GPS system p 599 A89-40802 MANNING, S. D. USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures AD-A2062861 p 608 N89-23457 MANOHARAN, L. C. An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 MANSFELD, G. OPST 1 - A digital optical tail rotor control system

[MBB-UD-533-88-PUB] p 614 A89-39847 MARAOUI, ANDRE Aerothermodynamic analysis of a Coanda/Refraction

Jet Engine Test Facility (AD-A2059371 p 619 N89-23482 MARCONI. F. The computation of Navier-Stokes solutions exhibiting

asymmetric vortices p 580 A89-42047 [AÍAA PAPER 89-1817] MAREK, HENRY R.

Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 MARRAFFA, L.

Parametric study of thermal and chemical nonequilibrium nozzle flow [AIAA PAPER 89-1856] p 585 A89-42084 MARTIN, C. A.

Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 MARTIN, JAMES L. Flight evaluation of pursuit displays for precision

approach of powered-lift aircraft p 610 A89-43059 MARTIN, RUTH M. NASA/AHS rotorcraft noise reduction program - NASA

Langley Acoustics Division contributions p 632 A89-41049 MARTINELLI, LUIGI

RNG-based turbulence transport approximations with applications to transonic flows [AIAA PAPER 89-1950] p 573 A89-41797 MARTINEZ, R.

Lifting-surface theory for propfan vortices impinging on a downstream wing p 578 A89-42013 MARX, YVES P.

Computation of turbulent flows on a CAST 10 wing using an upwind scheme p 582 A89-42064 [AIAA PAPER 89-1836] MASCHKE, GUENTHER

System testing exemplified by the A320-landing flaps flight maneuvering system [MBB-UT-0131-88-PUB] p 614 A89-42939 MASON, MARY L.

Transonic Navier-Stokes solutions of three-dimensional afterbody flows [NASA-TM-4111] p 594 N89-23433

MASUYA, GORO	MELESHKO, V. V.	MORFITT, GARY
Experiment on a cylindrical scramjet combustor. 2: Simulated flight Mach number 6.7	Determination of the deviation coefficients of a magnetic compass during a turn p 610 A89-40719	Host computer system capacity management procedures
[NAL-TR-969] p 613 N89-23464	MELOSH, R. J.	[AD-A193416] p 630 N89-24051
MATHESON, E. M. An evaluation of the F/FB/EF-111 crew/voice message	Improving transient analysis technology for aircraft	MOSS, JAMES N. Study of hypersonic flow past sharp cones
system	structures p 629 N89-24655 MENEES, GENE P.	[AIAA PAPER 89-1713] p 591 A89-43228
[AD-A205998] p 626 N89-23774	A multi-temperature TVD algorithm for relaxing	MOSTREL, MARCO MOSCHE
MATHUR, SANJAY R. Three dimensional analysis of a rotor in forward flight	hypersonic flows	On some numerical schemes for transonic flow problems p 569 A89-39867
[AIAA PAPER 89-1815] p 580 A89-42045	[AIAA PAPER 89-1971] p 575 A89-41815 MENON, SURESH	MOUSSEUX, MARC C.
MATSUNO, KENICHI	An investigation of V/STOL jet interactions in a	Crossflow-vortex instability and transition on a 45 deg
A time-accurate iterative scheme for solving the unsteady compressible flow equations	crossflow	swept wing [AlAA PAPER 89-1892] p 587 A89-42114
[AIAA PAPER 89-1992] p 577 A89-41835	[AD-A206360] p 596 N89-24272 MERWIN, OLIVER J.	MOZHI, T. A.
MATVIICHUK, V. A.	Control design of an unstable non-minimum phase	Rapidly solidified Al-Ti alloys via advanced melt spinning p 621 A89-41888
Optimization of the cold roll-forging of axial-flow compressor blades with allowance for fatigue	aircraft subject to control surface saturation	MUELLER, B.
characteristics p 625 A89-42421	[AD-A206024] p 616 N89-23475 MIDDLETON, DAVID B.	Simple improvements of an upwind TVD scheme for
MAVRIS, D. N. Measurement and computation of the velocity field of	Simulator evaluation of a display for a Takeoff	hypersonic flow [AIAA PAPER 89-1977] p 576 A89-41820
a cylinder in the wake of a rotor in forward flight	Performance Monitoring System	Numerical simulation of laminar hypersonic flow past a
[AIAA PAPER 89-1844] p 583 A89-42072	[NASA-TP-2908] p 615 N89-23469 MIKSZAN, D. P.	double-ellipsoid
MCBRIDE, S. L. Acoustic emission detection of crack presence and crack	Advanced technology ultra reliable radar (URR)	[AIAA PAPER 89-1840] p 583 A89-42068 MUELLER, BERNHARD
advance during flight p 625 A89-42853	p 599 A89-42652	Large-scale viscous simulation of laminar vortex flow
MCCABE, DOUGLAS A.	MILLER, R. H. The effects of wake migration during roll-up on blade	over a delta wing p 569 A89-40901 MUELLER, PAUL J., III
Preliminary design of a modular unmanned research vehicle. Volume 2: Subsystem technical development	air loads p 570 A89-41091	Preliminary design of a modular unmanned research
design study	MILLER, W. S.	vehicle. Volume 2: Subsystem technical development
[AD-A205678] p 607 N89-23454	The environmental cracking behaviour of	design study [AD-A205678] p 607 N89-23454
MCCARTHY, DENISE M. User friendly real time display p 609 A89-40272	aluminium-lithium based alloys p 621 A89-41601 MILLER, WAYNE O.	MUGGLI, WOLFGANG
MCCAY, M. H.	Vortex filament calculations by Analytical/Numerical	Engine aspects in the design of advanced rotorcraft
Measurements of diffusion limited solidification at varying gravity	Matching with comparison to other methods [AIAA PAPER 89-1962] p 624 A89-41843	[MBB-UD-528-88-PUB] p 611 A89-39842 MUKAI, DENNIS
[AIAA PAPER 89-1755] p 626 A89-43268	[AIAA PAPER 89-1962] p 624 A89-41843 MILLIKEN, ROBERT LOWELL	Advanced technology ultra reliable radar (URR)
MCCAY, T. D.	Aerodynamics of a lifting rotor due to near field unsteady	p 599 A89-42652
Measurements of diffusion limited solidification at varying gravity	effects p 595 N89-24267 MILLS, NIKOS	MUKHOPADHYAY, VIVEK Aeroservoelastic wind-tunnel investigations using the
[AIAA PAPER 89-1755] p 626 A89-43268	HALE - A high-altitude, long-endurance manned	Active Flexible Wing Model: Status and recent
MCCLEARY, SUSAN L. CSM testbed development and large-scale structural	aircraft p 604 A89-41109	accomplishments [NASA-TM-101570] p 609 N89-24313
applications	MILOSHEVICH, LARRY M. Evaluation of liquid water measuring instruments in cold	MULDER, WIM A.
[NASA-TM-4072] p 628 N89-24624	clouds sampled during FIRE p 624 A89-41889	A high-resolution Euler solver
MCCRACKEN, BILL User friendly real time display p 609 A89-40272	MINKE, DIERK Thoroughgoing DV-support from project planning to	[AIAA PAPER 89-1949] p 630 A89-41796 MUNGUR, P.
MCCROSKEY, W. J.	factory control - Practical example from near-development	High speed turboprop aeroacoustic study (single
Numerical solutions of forward-flight rotor flow using an	aircraft design	rotation). Volume 1: Model development
upwind method [AIAA PAPER 89-1846] p 584 A89-42074	[MBB-UD-526-88-PUB] p 568 A89-42928 MIRONOV, ARSENII D.	[NASA-CR-182257-VOL-1] p 633 N89-24139 MURAKAMI, ATSUO
Unsteady interaction of a rotor with a vortex	Methods of flying model studies p 605 A89-42535	Experiment on a cylindrical scramjet combustor. 2:
[AIAA PAPER 89-1848] p 584 A89-42076	MIRZOIAN, S. A.	Simulated flight Mach number 6.7 [NAL-TR-969] p 613 N89-23464
MCCURDY, DAVID A. Advanced turboprop aircraft flyover noise: Annoyance	Two-time probabilistic model of the evolution of aircraft engine reliability p 612 A89-42463	MURMAN, EARLL M.
to counter-rotating-propeller configurations with a different	MITSUBORI, SUSUMU	Trajectory integration in vortical flows
number of blades on each rotor: Preliminary results [NASA-TM-100638] p 634 N89-24888	Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408	p 623 A89-40921 MUTHUVEL, S.
MCDANIEL, JAMES	MIWA, HITOSHI	An intelligent fiberoptic data bus for fly-by-light
Effect of slotting on the mixing and noise of an	Computational and experimental research on buffet	applications [NAL-TM-SE-8707] p 634 N89-24901
axisymmetric supersonic jet [AIAA PAPER 89-1052] p 632 A89-41042	phenomena of transonic airfoils [NAL-TR-996T] p 616 N89-24322	[NAL-TM-SE-8707] p 634 N89-24901
MCDONALD, JEFFREY D.	MIZUKI, SHIMPEI	N
Application of a vectorized particle simulation in high-speed near-continuum flow	A review of methods of estimating performance	IN
[AIAA PAPER 89-1665] p 590 A89-43188	characteristics of centrifugal compressors p 623 A89-41083	NABOKIN, E. V.
MCGREGOR, R. D.	MIZUMACHI, MORIYUKI	Two-time probabilistic model of the evolution of aircraft
Numerical simulation of 3D rarefied hypersonic flows [AIAA PAPER 89-1715] p 591 A89-43230	A study on the air traffic management - The effect of departure regulation p 599 A89-40895	engine reliability p 612 A89-42463 NACHSHON, A.
MCMAHON, H. M.	MOHAMMADIAN, ALIREZA H.	Multigrid Euler solver about arbitrary aircraft
Measurement and computation of the velocity field of	A CFD-based finite-volume procedure for computational	configurations with Cartesian grids and local refinement
a cylinder in the wake of a rotor in forward flight [AIAA PAPER 89-1844] p 583 A89-42072	electromagnetics - Interdisciplinary applications of CFD methods	[AIAA PAPER 89-1960] p 575 A89-41806 NAIK, DINESH A.
MCMASTER, D. L.	[AIAA PAPER 89-1987] p 633 A89-41830	Innovative pylon concepts for engine-airframe
A vectorized Gauss-Seidel line relaxation scheme for	MOHR, KARL-HEINZ IA63 Pampa - The completion of an aircraft development	integration for transonic transports
solving 3D Navier-Stokes equations [AIAA PAPER 89-1948] p 573 A89-41795	program p 568 A89-43112	[AIAA PAPER 89-1819] p 581 A89-42049
(AIAA PAPER 89-1948) p 573 A89-41795 MCRAE, D. SCOTT	MONTOYA, L. C.	NALLASAMY, M. Prediction of unsteady blade surface pressures on an
Numerical simulation of flow over a hypersonic aircraft	Transition flight experiments on a swept wing with suction	advanced propeller at an angle of attack
using an explicit upwind PNS solver	[AIAA PAPER 89-1893] p 587 A89-42115	[AIAA PAPER 89-1060] p 631 A89-40473
[AIAA PAPER 89-1829] p 582 A89-42058 MEAKIN, ROBERT L.	MOOK, D. T.	NARRAMORE, J. C. Use of Navier-Stokes code to predict flow phenomena
Unsteady aerodynamic simulation of multiple bodies in	Simulation of the interaction between aerodynamics and vehicle dynamics in general unsteady ground effect	near stall as measured on a 0.658-scale V-22 tiltrotor
relative motion [AIAA PAPER 89-1996] p 577 A89-41839	[AIAA PAPER 89-1498] p 571 A89-41570	blade [AIAA PAPER 89-1814] p 580 A89-42044
[AIAA PAPER 89-1996] p 577 A89-41839 MEHER-HOMJI, CYRUS B.	MOON, HOWARD Soviet SST: The technopolitics of the Tupolev-144	NECHAEV, IU. N.
The application of artificial intelligence techniques for	p 568 A89-42947	Scientific and pedagogical work of academician B. S.
turbomachinery diagnostics p 629 A89-41081	MOON, YOUNG J.	Stechkin at the Zhukovskii Air Force Engineering Academy p 635 A89-42453
MEHTA, UNMEEL B. Computational requirements for hypersonic flight	Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations	A study of the characteristics of aircraft powerplants
performance estimates	[AIAA PAPER 89-1980] p 576 A89-41823	under conditions of optimal control of their principal
[AIAA PAPER 89-1670] p 620 A89-43193	MOREAU, J. P.	components p 612 A89-42466
MEL'NIKOVA, V. A. Hydraulic resistance of the inlet channels of a rotor	Lightning inflight study onboard a Transall aircraft. Definition of the onboard instruments	An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing
cooling system p 611 A89-40596	[ONERA-RF-19/7234-PY] p 629 N89-24777	of gas flows p 613 A89-42468

PERSONAL AUTHOR INDE	X	
NEDELL, WILLIAM Design of automated system for traffic	managem	ent of arrival
[NASA-TM-102201] NELSON, LAWRENCE W.	p 598	N89-24290
Techniques for robust tracking in		radars A89-42666
NEMYKIN, V. A. An analytical study of the chaengine mixing chambers in the case		
of gas flows NESTERUK, I. G.	•	A89-42468
The shape of thin bodies with mi		3 A89-42496
NETTERFIELD, M. P. Experiment and computation if flows	in hypers	onic cavity
[AIAA PAPER 89-1842]	p 583	A89-42070
NICHOLAS, O. P. The VAAC/VSTOL Flight Control		Project A89-43104
NISH, WILLIAM A. Effect of electromagnetic inte transport equipment on aircraft ope		by neonatal
. ,,		A89-42161
NITSCHKE, DIETER Comparison of the crushing be subfloor structures	ehaviour	of metallic
[MBB-UD-535-88-PUB]	p 622	A89-39841
The model of combustion efficier flow properties for scramjet combus		alculation of
	p 611	A89-41115
NIXON, DAVID Exploitation of multiple solutions equations to achieve radically impro		
[AD-A205939] NOLL, THOMAS E.		N89-23831
Aeroservoelastic wind-tunnel inv Active Flexible Wing Model: accomplishments		s using the and recent
[NASA-TM-101570]		N89-24313
Recent activities within the Aeros at the NASA Langley Research Cer		icity Branch
[NASA-TM-101582]	р 609	N89-24314
NORUM, THOMAS D. Supersonic rectangular jet experiments	impingem	ent noise
[AIAA PAPER 89-1138]	p 632	A89-40476

Simulation of the interaction between aerodynamics and vehicle dynamics in general unsteady ground effect [AIAA PAPER 89-1498] p 571 A89-41570 NUHAIT, ABDULLAH OTHMAN Numerical simulation of feedback control of aerodynamic configurations in steady and unsteady ground effects p 617 N89-24326 0

OBAYASHI, S. Numerical solutions of forward-flight rotor flow using an upwind method [AIAA PAPER 89-1846] p 584 A89-42074 OBAYASHI, SHIGERU Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 Improvements and applications of a streamwise upwind algorithm [AIAA PAPER 89-1957] p 574 A89-41804 OELKER, HANS-CHRISTOPH Investigations on the vorticity sheets of a close-coupled delta-canard configuration p 579 A89-42017 OGAWA, SATORU Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-4 p 574 A89-41799 OGAWA, TOSHIO The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA [NAL TR-072] p 615 N89-23467 OKADA, NORIAKI The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA p 615 N89-23467 INAL-TR-9721 ORLANDI, DIEGO Results of an A109 simulation validation and handling qualities study NASA-TM-101062] p 617 N89-24323

Survey of Army/NASA rotorcraft aeroelastic stability

p 618 N89-24329

ORMISTON, ROBERT A.

[NASA-TM-101026]

PAII HAS G Analysis of the boundary layer of a delta wing in incidence [CERT-RT-OA-26/5025-AYD] PARK, CHUL A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] PARKER, G. J. Adiabatic compressible flow in parallel ducts - An approximate but rapid method of solution PARKHOMOV, A. L. Optimization of the parameters and characteristics of bypass engines PAWLOWSKI, BRIAN J. Multivariable flight control design with parameter uncertainty for the AFTI/F-16 [AD-A206068] PAYSON, STEVEN S. Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral)

OSHAUGHNESSY, P. R.

[AIAA PAPER 89-1969]

supermaneuverable aircraft (AD-A205503)

[NASA-CR-4231]

OSSWALD, G. A.

geometries

OVERMAN, A. L.

applications

INASA-TM-40721

OYIBO, GABRIEL A.

The 4D-TECS integration for NASA TSRV airplane

Analysis of potential and viscous flows past general

CSM testbed development and large-scale structural

Optimum aeroelastic characteristics for composite

two-dimensional bodies with arbitrary trailing edge

p 615 N89-23471

p 577 A89-41841

p 628 N89-24624

p 607 N89-23452

p 596 N89-24274

p 576 A89-41818

p 571 A89-41775

p 613 A89-42467

p 616 N89-23476

feedback and Kalman filter, volume 1 p 616 N89-23473 [AD-A205723] Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Plus Integral) feedback and Kalman filter, volume 2 [AD-A206202] p 617 N89-24325 PEACE, A. J. Turbulent flow predictions for afterbody/nozzle geometries including base effects AIAA PAPER 89-1865] p 585 A89-42092 PEKELSMA, NICHOLAS J. Optimal guidance with obstacle avoidance for nap-of-the-earth flight [NASA-CR-177515] p 618 N89-24328 Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent [NASA-TM-101570] p 609 N89-24313 Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center [NASA-TM-101582] PERSON, LEE H., JR.

p 609 N89-24314 Method and system for monitoring and displaying engine erformance parameters p 614 N89-23466 [NASA-CASE-LAR-14049-1] Simulator evaluation of a display for a Takeoff Performance Monitoring System [NASA-TP-2908] p 615 N89-23469 PÈTERS, D. T. Acoustic emission detection of crack presence and crack p 625 A89-42853

advance during flight PETERS, DAVID A. Survey of Army/NASA rotorcraft aeroelastic stability research

[NASA-TM-101026] p 618 N89-24329 PETKOVSKI, DJORDJIJA B. Improved time-domain stability robustness measures for linear regulators p 630 A89-43068

PHILIPS, WILLIAM H. Flying qualities from early airplanes to the Space p 614 A89-43051 PICKERELL, THOMAS

National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435 PIERCE, ALLAN D. Status of sonic boom methodology and understanding [NASA-CP-3027] p 592 N89-23415 p 592 N89-23415

PIFKO. A. B. Transient analysis techniques in performing impact and crash dynamic studies p 629 N89-24658 PIGOTT, KAREN

Generic imagery processing and exploitation p 622 A89-40255

Numerical methods for unsteady flows p 596 N89-24282

PIRUMOV, UL'IAN G. Inverse problem in nozzle theory p 625 A89-42500

Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction p 612 A89-41910

PITTMAN, JAMES L.

Hypersonic parabolized Navier-Stokes code validation on a sharp nose cone p 579 A89-42016

PLETCHER, R. H.

Three-dimensional dual-potential procedure for inlets and indraft wind tunnels p 570 A89-40908

PLOTKA, MARVIN S.

Heliport night parking area criteria test plan IDOT/FAA/CT-TN88/45] p 619 N89-23480

POLLARD, M. D.

Acoustic emission detection of crack presence and crack advance during flight p 625 A89-42853

CSM testbed development and large-scale structural applications [NASA-TM-4072] p 628 N89-24624

POTAPCZUK, M. G.

The low frequency oscillation in the flow over a NACA0012 airfoil with an iced leading edge [NASA-TM-102018] p 592 N89-23417

POTOTZKY, ANTHONY S.

Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments INASA-TM-1015701 p 609 N89-24313

POVINELLI, LOUIS A.

Advanced computational techniques for hypersonic propulsion [NASA-TM-102005] p 627 N89-23809

POWELL, CLEMANS A.

Status of sonic boom methodology and understanding NASA-CP-30271 p 592 N89-23415 PÒWELL, J. D.

Flow control for unsteady and separated flows and turbulent mixing

(AD-A2059891 p 594 N89-23426

POWELL, KENNETH G.

Trajectory integration in vortical flows p 623 A89-40921

Design of optimally smoothing multi-stage schemes for the Fuler equations

[AIAA PAPER 89-1933] p 572 A89-41780 Sonic-point capturing [AIAA PAPER 89-1945] p 573 A89-41792

POWERS, BILL

Improved bandwidth microstrip antenna design for airborne phased arrays p 600 A89-42676 PURSEL, ROBERT H.

An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at

Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291

QUACKENBUSH, TODD R.

Enhancements to a new free wake hover analysis [NASA-CR-177523] p 592 N89-23414 QUINN, WILLIAM F.

Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport

p 626 N89-23740 [AD-A205559]

R

RADESPIEL, R.

An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations [AIAA PAPER 89-1953] p 574 A89-41800

Calculation of wind-tunnel side-wall interference using a three-dimensional multigrid Navier-Stokes code

AIAA PAPER 89-1790] p 579 A89-42026

RAGAB, SAAD A. Linear instabilities in two-dimensional compressible

p 578 A89-41903 RAJAGOPÁLAN, R. GANESH

Three dimensional analysis of a rotor in forward flight [AIAA PAPER 89-1815] p 580 A89-42045

RAJAN, N. Three-dimensional energy-state extremals in feedback p 615 A89-43071

RAJENDRAN, N.

RAJENDRAN, N. ROSS, A. JEAN Progress in the development of parabolized Navier-Stokes technology for external and internal research models supersonic flows ROSSOW, C. [AIAA PAPER 89-1828] p 581 A89-42057 RAMBONE, JAMES D. three-dimensional Navier-Stokes equations Instrument landing system mathematical modeling study [AIAA PAPER 89-1953] for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) p 600 N89-23438 (AD-A2053511 configurations RANGWALLA, A. (AIAĂ PAPER 89-1975) Interaction of a compression ramp with a hypersonic ROZHITSKII, S. I. laminar boundary laver [AIAA PAPER 89-1843] p 583 A89-42071 RAO. K. V RUBIN, STANLEY G. Three-dimensional dual-potential procedure for inlets p 570 A89-40908 and indraft wind tunnels flow over afterbodies RASMUSSEN, M. L. [AIAA PAPER 89-1837] An integrated aerodynamic/propulsion study for generic RUDY, DAVID H. aero-space planes based on waverider concepts p 609 N89-24315 INASA-CR-1833891 high-speed flows RAY. R. [AIAA PAPER 89-1838] Rapidly solidified Al-Ti alloys via advanced melt p 621 A89-41888 RUMSEY, CHRISTOPHER L. spinning Observation of airplane flowfields REDINIOTIS, O. K. condensation effects Periodic vortex shedding over delta wings [AIAA PAPER 89-1923] p 587 p 587 A89-42139 RUSCHEWEYH, H. P. REED. D. A. Ground shake test of the Boeing Model 360 helicopter airframe RYAN, JAMES S. NASA-CR-181766) p 627 N89-23920 REEVES, J. M. L. Navier-Stokes) for hypersonic external flows Enhanced performance low flying aircraft (EPLFA) - A [AIAA PAPER 89-1839] future? [AIAA PAPER 89-1499] p 606 A89-42949 S REITMANN, JOERG CIDS- Cabin Intercommunication Data System (MBB-UT-020-87-PUB) p 600 A89-42938 SAGNIFR PH REMINGTON, W. B. The Canadair CL-215 amphibious aircraft - Development nozzle flow [AIAA PAPER 89-1856] and applications AIAA PAPER 89-15411 p 604 A89-41563 SAKAI, TOSHIHO RENOUD, ROBERT W. Boundary layer response to an unsteady turbulent INAL-TR-9711 environment SALVETTI, AUGUSTINE p 596 N89-24273 REYNOLDS, W. C. An experimental study of the effect of streamwise [AD-A206291] vortices on unsteady turbulent boundary-layer separation [AD-A2054621 n 593 N89-23420 SÄMIMY, M. Flow control for unsteady and separated flows and (AD-A2059891 n 594 N89-23426 [ÁIAA PAPER 89-1801] RICK, H. SAMY, R. A. Engine aspects in the design of advanced rotorcraft [MBB-UD-528-88-PUB] p 611 A89-39842 RIEDELBAUCH, S. SANDLIN, DORAL R. Numerical simulation of laminar hypersonic flow past a double-ellipsoid [NASA-CR-185319] p 583 A89-42068 [AIAA PAPER 89-1840] SANDS, O. S. RIHA, BOHUSLAV Determination of the interaction parameter of a twin-rotor commercial aircraft gas generator p 622 A89-40084 SANZGIRI, SHASHI RILEY, JAMES T. A computer simulation study of liquid water content airborne phased arrays adjustment based on icing cloud horizontal extent SAPOZHNIKOV, VALENTIN M. p 598 N89-24288 IDOT/FAA/CT-TN89/3] RINDT, J. R. and fuel system lines of flight vehicles Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing SARIC. WILLIAM S. N89-23712 [AD-A205470] RINOIE, KENICHI Measurements of laminar separation bubble on B3 [AIAA PAPER 89-1892] p 569 A89-40893 airfoil SATHRE, B. A. RIZZETTA, D. P. Numerical simulation of the Navier-Stokes equations for systems p 578 A89-42014 an F-16A configuration SATO, JUNZO RIZZI, ARTHUR Large-scale viscous simulation of laminar vortex flow airfoil over a delta wing p 569 A89-40901 SAVILL, A. M. ROBERTS, G. A. Aircraft recognition using a parts analysis technique reduction performance of manipulators p 629 A89-40447 ROBERTS I SAVIN, SERGEI K. Flow control for unsteady and separated flows and turbulent mixing p 594 N89-23426 SCHAFNZER GUNTHER [AD-A205989] ROBERTSON, DONALD F. Safety philosophies in air transport p 620 A89-43620 NASP keeps moving RODDEN, WILLIAM P. SCHENK, H.-D. Comment on 'General formulation of the aeroelastic Display of flight guidance information in the aircraft divergence of composite swept-forward wing structures' p 605 A89-42025 p 610 N89-24305

SCHETZ, J. A.

[AIAA PAPER 89-1821]

New mixing-length model for turbulent high-speed

p 581 A89-42051

Turbulence measurements for heated gas slot injection Validation of aerodynamic parameters for high-incidence in supersonic flow AIAA PAPER 89-1868] p 578 A89-42012 p 586 A89-42095 SCHICK, CLAUS BO108 - An ultramodern German helicopter An efficient cell-vertex multigrid scheme for the [MBB-UD-530-88-PUB] p 602 A89-39836 BO 108 - Technology for new light twin helicopters p 602 A89-39836 p 574 A89-41800 [MBB-UD-529-88-PUB] p 603 A89-39844 A central finite volume TVD scheme for the calculation SCHNERR, GUENTER H. of supersonic and hypersonic flow fields around complex Transonic flow around airfoils with relaxation and energy upply by homogeneous condensation D 578 A89-41844 [AIAA PAPER 89-1834] p 582 A89-42062 SCHOENE, J. Supersonic flow stagnation in a duct during A central finite volume TVD scheme for the calculation p 587 A89-42460 of supersonic and hypersonic flow fields around complex configurations 3-D composite velocity solutions for subsonic/transonic p 578 A89-41844 [AIAA PAPER 89-1975] SCHRA, L. p 582 A89-42065 Quench sensitivity of airframe aluminium alloys p 621 N89-23656 (PR89-1460391 A validation study of four Navier-Stokes codes for SCHULZ, ROBERT D. Acceleration forces aboard NASA KC-135 aircraft during p 583 A89-42066 microgravity maneuvers p 620 A89-42022 SCHURTER, WAYNE W. hv natural Airborne reconnaissance XII; Proceedings of the p 578 A89-42009 Meeting, San Diego, CA, Aug. 16, 17, 1988 p 567 A89-40251 Unsteady aerodynamic effects on bluff bodies SCHWETJE, F. KENNETH p 596 N89-24278 Hypersonic flight - The need for a new legal regime p 634 A89-41655 Development and validation of CNS (compressible SCHWIND, H.-D. Determination of reference trajectories for testing navigation aids using an onboard CCD camera p 583 A89-42067 p 602 N89-24303 SCIPIONI, L. Next-generation power for next-generation rotorcraft p 611 A89-41050 SCOTT, JAMES R. Numerical solution of periodic vortical flows about a thin Parametric study of thermal and chemical nonequilibrium airfoil NASA-TM-101998] p 592 N89-23413 p 585 A89-42084 SCOTT, WILLIAM B. NASA adds to understanding of high angle of attack Characteristics of a five-hole spherical pitot tube p 610 N89-23463 reaime p 571 A89-41201 SEATH, DONALD D. An experimental investigation of the parallel vortex-airfoil Noise and sonic boom impact technology. PCBOOM interaction at transonic speeds computer program for sonic boom research. Volume 2: [AIAA PAPER 89-1833] p 582 A89-42061 Program Users/Computer operations manual p 594 N89-23430 SEAVER, CHRISTOPHER A. Ejector effects on a supersonic nozzle at low altitude and Mach number An experimental study of a reattaching supersonic shear p 594 N89-23427 (AD-A2060491 SEIDEL, DAVID A. p 579 A89-42036 Transonic unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers Aircraft navigation using I.R. image analysis p 598 A89-40446 p 578 A89-42010 SEIDMAN, HARRY Thermal analysis of a hypersonic wing test structure Noise and sonic boom impact technology. PCBOOM computer program for sonic boom research. Volume 2: p 595 N89-24265 Program Users/Computer operations manual p 594 N89-23430 Syntactic classification of radar measurements of [AD-A206291] SÈTTLES, G. S. p 600 A89-42680 Measurements of swept shock wave/turbulent boundary-layer interactions by holographic interferometry Improved bandwidth microstrip antenna design for [AIAA PAPER 89-1849] p 584 A89-42077 p 600 A89-42676 SETTLES GARYS Inception length to a fully-developed fin-generated shock Fitter's handbook for the assembly of the hydraulic, gas, vave boundary-layer interaction p 584 A89-42078 p 605 A89-42525 [AIAA PAPER 89-1850] SHANG, J. J. S. Numerical simulation of the Navier-Stokes equations for Crossflow-vortex instability and transition on a 45 deg p 578 A89-42014 an F-16A configuration SHANG. J. S. p 587 A89-42114 A vectorized Gauss-Seidel line relaxation scheme for Software development reusability for aircraft simulation solving 3D Navier-Stokes equations [AIAA PAPER 89-1948] p 573 A89-41795 p 630 A89-43127 SHANKAR, VIJAYA Measurements of laminar separation bubble on B3 A CFD-based finite-volume procedure for computational electromagnetics - Interdisciplinary applications of CFD p 569 A89-40893 methods [AIAA PAPER 89-1987] The effect of an adverse pressure gradient on the drag p 633 A89-41830 SHARP, H. THOMAS massively parallel three-dimensional p 571 A89-41771 Euler/Navier-Stokes method [AIAA PAPER 89-1937] Precision and efficiency of the radio electronic systems p 572 A89-41784 p 625 A89-42524 SHI, WANGXING The characteristics of the turbulence generator and the simulation of the flow regulation p 571 A89-41119 p 597 A89-39859 SHINGLEDECKER, CLARK Controller evaluation of initial data link air traffic control

services. Volume 1: Mini study 2

A structure of leading-edge and tip vortices at a delta

p 601 N89-24292

p 579 A89-42037

[DOT/FAA/CT-89/14-VOL-1]

SHIRAYAMA, SUSUMU

[AIAA PAPER 89-1803]

RODI, W.

Computation of flow and losses in transonic turbine

p 589 A89-43108

SRINATHKUMAR, S.

accomplishments

SRINIVASAN, G. R.

[AIAA PAPER 89-1848]

SRINIVAS, K.

cascades

INASA-TM-1015701

Aeroservoelastic wind-tunnel investigations using the

Computation of flow and losses in transonic turbine

Unsteady interaction of a rotor with a vortex

p 609 N89-24313

p 589 A89-43108

p 584 A89-42076

Active Flexible Wing Model: Status and recent

SICLARI, M. J.	SRIVATSAN, RAGHAVACHARI
The computation of Navier-Stokes solutions exhibiting	Simulator evaluation of a display for a Takeoff
asymmetric vortices	Performance Monitoring System [NASA-TP-2908] p 615 N89-23469
[AIAA PAPER 89-1817] p 580 A89-42047	[NASA-TP-2908] p 615 N89-23469 STACK, J. PETER
SIGL, DAVE Computational and experimental evaluation of helicopter	Crossflow-vortex instability and transition on a 45 deg
rotor tips for high speed forward flight	swept wing
(AIAA PAPER 89-1845) p 584 A89-42073	[AIAA PAPER 89-1892] p 587 A89-42114
SIGNORELLI, L.	STALLINGS, R. L., JR.
A330/340 hydraulic system	Cavity door effects on aerodynamic loads of stores
[REPT-882-111-102] p 608 N89-23461	separating from cavities p 578 A89-42011
SILER, LEO G.	STANLEY, G. M.
Laminar boundary layer stability experiments on a cone	Computational procedures for postbuckling of composite shells p 628 N89-24642
at Mach 8. V - Tests with a cooled model	STAPOUNTZIS, H.
[AIAA PAPER 89-1895] p 587 A89-42117	Periodic vortex shedding over delta wings
SIMPSON, L. BRUCE	[AIAA PAPER 89-1923] p 587 A89-42139
A flux-difference split algorithm for unsteady thin-layer	STARIKOV, ANATOLII I.
Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838	Aircraft flight safety: Methodological principles
	p 597 A89-42536
SIMPSON, MYLES A.	STEGER, JOSEPH L.
Interior noise control ground test studies for advanced turboprop aircraft applications	Three-dimensional dual-potential procedure for inlets
[NASA-CR-181819] p 633 N89-24141	and indraft wind tunnels p 570 A89-40908
SINHA, N.	STELLAR, FREDERICK W.
PNS code assessment studies for scramjet combustor	Loss of tail rotor effectiveness evaluation of the OH-58C
and nozzle flowfields	helicopter with directional SAS (Stability Augmentation
[AIAA PAPER 89-1697] p 613 A89-43213	System)
SITU, M.	[AD-A206181] p 608 N89-24309
New mixing-length model for turbulent high-speed	STEPHAN, MICHAEL
flows	A new wind tunnel test rig for helicopter testing [MBB-UD-532-88-PUB] p 618 A89-39846
[AIAA PAPER 89-1821] p 581 A89-42051	· · · · · · · · · · · · · · · · · · ·
SLIWA, STEVEN M.	STEPHENS, C. M. The VAAC/VSTOL Flight Control Research Project
A closed-form trim solution yielding minimum trim drag	p 615 A89-43104
for airplanes with multiple longitudinal-control effectors	STETSON, KENNETH F.
[NASA-TP-2907] p 615 N89-23468	Laminar boundary layer stability experiments on a cone
SLOBODKINA, F. A. Stability of compression shocks in ducts in the presence	at Mach 8. V - Tests with a cooled model
of external effects p 588 A89-42465	[AIAA PAPER 89-1895] p 587 A89-42117
SMITH, B. R.	STONUM, RONALD K.
Turbulence measurements for heated gas slot injection	Experimental aerodynamic characteristics of a
in supersonic flow	joined-wing research aircraft configuration
[AIAA PAPER 89-1868] p 586 A89-42095	[NASA-TM-101083] p 596 N89-24285
SMITH, L. M.	STRAETER, BERND
Measurements of diffusion limited solidification at	IA63 Pampa - The completion of an aircraft development
varying gravity	program p 568 A89-43112
[AIAA PAPER 89-1755] p 626 A89-43268	STRAWN, ROGER C.
SMITH, STEPHEN C. Experimental aerodynamic characteristics of a	Computational and experimental evaluation of helicopter
joined-wing research aircraft configuration	rotor tips for high speed forward flight [AIAA PAPER 89-1845] p 584 A89-42073
[NASA-TM-101083] p 596 N89-24285	STREMEL, PAUL M.
SO, RONALD M. C.	Aerodynamic interaction between vortical wakes and
Characteristics of dump combustor flows	lifting two-dimensional bodies
p 612 A89-41224	[NASA-TM-101074] p 627 N89-24563
SOBIESZCZANSKI-SOBIESKI, JAROSLAW	STROKIN, V. N.
Interdisciplinary and multilevel optimum design	Supersonic flow stagnation in a duct during
p 606 A89-43450	combustion p 587 A89-42460
SOLOMON, JOSEPH K.	STROUD, W. JEFFERSON
Development of the extended kalman filter for the advanced Completely Integrated Reference	Computational Methods for Structural Mechanics and
Instrumentation System (CIRIS)	Dynamics
[AD-A206083] p 601 N89-23443	[NASA-CP-3034-PT-2] p 628 N89-24654
SONAR, TH.	STRUIJS, R.
A central finite volume TVD scheme for the calculation	An adaptive grid polygonal finite volume method for the
of supersonic and hypersonic flow fields around complex	compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805
configurations	·
(AIAA PAPER 89-1975) p 578 A89-41844	STUART, KEITH O. Use of magnetic suspension for sensor vibration
SORRENTINO, C. M. Analog-to-digital converter effects on airborne radar	isolation p 622 A89-40262
performance p 599 A89-42661	,
SOUCEK, JURI	SURRAMANIAN S. V.
	SUBRAMANIAN, S. V. Multigrid solution of the Euler equations for
A foil adhesive for construction - The Letoxit system	
A foil adhesive for construction - The Letoxit system p 620 A89-40085	Multigrid solution of the Euler equations for
p 620 A89-40085 SPENCE, P. L.	Multigrid solution of the Euler equations for three-dimensional cascade flows
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048 SUENAGA, HISASHI
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E.
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474 SPEZIALE, CHARLES G.	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E. Unsteady aerodynamic simulation of multiple bodies in
P 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] SPEZIALE, CHARLES G. Supersonic flow computations by two-equation	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E. Unsteady aerodynamic simulation of multiple bodies in relative motion
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474 SPEZIALE, CHARLES G. Supersonic flow computations by two-equation turbulence modeling	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1818] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E. Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474 SPEZIALE, CHARLES G. Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1918] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E. Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 SUIKAT, REINER
p 620 A89-40085 SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474 SPEZIALE, CHARLES G. Supersonic flow computations by two-equation turbulence modeling	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1918] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E. Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 SUIKAT, REINER Analysis of a candidate control algorithm for a ride-quality
SPENCE, P. L. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474 SPEZIALE, CHARLES G. Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 SPYROPOULOS, E.	Multigrid solution of the Euler equations for three-dimensional cascade flows [AIAA PAPER 89-1918] p 581 A89-42048 SUENAGA, HISASHI Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408 SUHS, NORMAN E. Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839 SUIKAT, REINER

for commuter aircraft

SWANSON, NEIL J., JR.

[NASA-CR-185319]

[NASA-CR-4230]

SUNADA, YASUTO

SUZUKI, KOICHI

airfoil

SWANSON, R. C. An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations [AIAA PAPER 89-1953] p 574 A89-41800 SWEDENBURG, MARK Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161 SWEETMAN, BILL The US airborne radar scene p 567 A89-40856 SZODRUCH, JOACHIM Flight tests with the VFW 614 - ATTAS laminar glove [MBB-UT-0132-88-PUB] p 606, A89-42936 Т TABAKOFF, W. Measurements of particles rebound characteristics on materials used in gas turbines [AIAA PAPER 89-1693] p 621 A89-43211 TADA, AKIRA The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA p 615 N89-23467 (NAL-TR-972) TAI. CHANG-HSIEN Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 TAKAHASHI. FUMIYUKI Flow past two-dimensional ribbon parachute models p 579 A89-42015 TAKAKURA, YOKO Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 TAKALLU, M. A. Prediction of loading noise of a propeller with blades under transonic operating conditions [AIAA PAPER 89-1080] p 632 A89-40474 TALOTTA, NICHOLAS J. Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 p 601 N89-24292 [DOT/FAA/CT-89/14-VOL-1] TAMURA, TETSURO Numerical analysis on aerodynamic characteristics of an inclined square cylinder [AIAA PAPER 89-1805] p 580 A89-42038 TAN, ANZHONG The structure of aerodynamic heating three-dimensional shock wave/turbulent boundary layer interactions induced by sharp and blunt fins p 585 A89-42082 [AIAA PAPER 89-1854] TANAKA, YUSHI Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89p 604 A89-41571 TANG, SHIFU Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126 TANNEHILL JOHN C. A three-dimensional upwind parabolized Navier-Stokes code for real gas flows p 626 A89-43177 [AIAA PAPER 89-1651] TANNER, JOHN A. Computational Methods for Structural Mechanics and Dynamics [NASA-CP-3034-PT-2] p 628 N89-24654 TATSUMI, KAORU Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 TAYLOR, JEFF C. Study of hypersonic flow past sharp cones p 591 A89-43228 [AIAA PAPER 89-1713] TELIONIS, D. P. Periodic vortex shedding over delta wings [AIAA PAPER 89-1923] p 587 A89-42139 TERADA, T. Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction THACKRAY, RICHARD I. A comparison of detection efficiency on an air traffic

control monitoring task with and without computer aiding

A validation study of four Navier-Stokes codes for

Transonic Navier-Stokes solutions of three-dimensional

Quench sensitivity of airframe aluminium alloys

[AD-A206422]

[PB89-146039]

THOMAS, JAMES L.

high-speed flows

afterbody flows [NASA-TM-4111]

[AIAA PAPER 89-1838]

THART, W. G. J.

p 615 N89-23470

p 569 A89-40893

p 591 N89-23408

Measurements of laminar separation bubble on B3

Transonic operational characteristics and performance

Thermal analysis of a hypersonic wing test structure p 595 N89-24265

p 602 N89-24294

p 621 N89-23656

p 594 N89-23433

THOMPSON, ELTON R.

Laminar boundary layer stability experiments on a cone at Mach 8. V - Tests with a cooled model

AIAA PAPER 89-1895] p 587 A89-42117

THOMPSON R A

An approximate viscous shock layer method for calculating the hypersonic flow over blunt-nosed bodies p 590 A89-43212 [AIAA PAPER 89-1695] TIFFANY, SHERWOOD H.

Aeroservoelastic modeling and applications using

minimum-state approximations of the unsteady aerodynamics [NASA-TM-101574] p 608 N89-24308

Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments [NASA-TM-101570] p 609 N89-24313

TINETTI, ANA F. Generic icing effects on forward flight performance of p 604 A89-41093 a model helicopter rotor

TISCHLER, MARK B.

Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 Identification of XV-15 aeroelastic modes using p 605 A89-42018 TOFANOVSKII, E. V.

A study of the characteristics of aircraft powerplants under conditions of optimal control of their principal components p 612 A89-42466

A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 [AD-A206422]

TREMBACH, V. M.

An analytical study of the characteristics of bypass engine mixing chambers in the case of incomplete mixing of gas flows p 613 A89-42468

TRENT, WILLIAM

National Airspace System Search and Rescue operational concept (NAS-SR-1329)

[DOT/FAA/DS-89/07] p 597 N89-23435

TROXEL, SETH W.

ASR-9 weather channel test report, executive s ummary

[DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758

TRZECIOK, ALFONS

IA63 Pampa - The completion of an aircraft development p 568 A89-43112 program

TU, EUGENE L.

Transonic aeroelasticity of fighter wings with active p 579 A89-42020 control surfaces

TUCCILLO BAFFAFLE

Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compres p 570 A89-41082

UCHIDA, TADAO

The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA p 615 N89-23467 [NAL-TR-972]

UFIMKINA, V. A.

Experimental investigation of the characteristics of combination engines p 612 A89-42462

VAN DYCK, ROBERT L.

Seaplanes and the towing tank [AIAA PAPER 89-1533]

p 623 A89-41564

VAN LEER, BRAM

Design of optimally smoothing multi-stage schemes for the Euler equations p 572 A89-41780

[AIAA PAPER 89-1933] Sonic-point capturing

p 573 A89-41792 [AIAA PAPER 89-1945]

VANDAM, C. P.

High angle-of-attack aerodynamic characteristics of crescent and elliptic wings [NASA-CR-184992] p 593 N89-23418

VANKEIRSBILCK, P.

An adaptive grid polygonal finite volume method for the compressible flow equations [AIAA PAPER 89-1959] p 574 A89-41805

VANKOVA, MARCELA

A foil adhesive for construction - The Letoxit system p 620 A89-40085

VATSA, VEER N.

Development of an efficient multigrid code for 3-D Navier-Stokes equations

p 625 A89-42027 [AIAA PAPER 89-1791]

VAVRINCOVA, M.

Numerical solution of transonic potential flow in 2D compressor cascades using multi-grid techniques

p 589 A89-42837

VENKATAKRISHNAN, V.

Newton solution of inviscid and viscous problems p 570 A89-40909

VERDON, J. M.

The unsteady flow in the far field of an isolated blade p 591 A89-43537 row

VERHOFF, A.

Far field numerical boundary conditions for internal and cascade flow computations

p 573 A89-41790 [AIAA PAPER 89-1943]

VERMELAND, R.

Use of Navier-Stokes code to predict flow phenomena near stall as measured on a 0.658-scale V-22 tiltrotor hlade

[AIAA PAPER 89-1814]

p 580 A89-42044

VETROV, A. N. Probabilistic-parametric models of the long-term strength of metallic materials of aircraft gas turbine p 620 A89-40619 engines

VETROV, GEORGII S.

S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537

VINOGRADOVA, G. A.

A model of the reachability zone and its use in the ballistic p 620 A89-42459 design of flight vehicles

VISWANATHAN, A. V.

Computerized structural mechanics for 1990's: Advanced aircraft needs p 628 N89-24640

VLACHYNSKY, JOSEF

Fatigue damage to an aircraft from gusts p 603 A89-40083

VLADYCHIN, GENNADII P.

Methods of flying model studies p 605 A89-42535 VOEVODIN, S. A.

A model of the reachability zone and its use in the ballistic p 620 A89-42459 design of flight vehicles VOGLSINGER, MARTIN

Development of a monolithic fuselage shell using

[MBB-FE-234/S/PUB/338] p 606 A89-42934 VON TEIN, VOLKER

BO108 - An ultramodern German helicopter

p 602 A89-39836 [MBB-UD-530-88-PUB] BO 108 - Technology for new light twin helicopters [MBB-UD-529-88-PUB] p 603 A89-39844

VORWERG, RAINER

Development of an advanced experimental rotary test rig and first test results with a 60 kN-main rotor p 618 A89-39843 [MBB-UD-525-88-PUB]

WACHSPRESS, DANIEL A.

Enhancements to a new free wake hover analysis p 592 N89-23414 [NASA-CR-177523]

WAKE, BRIAN E.

Implementation of a rotary-wing three-dimensional Navier-Stokes solver on a massively parallel computer [AIAA PAPER 89-1939] D 573 A89-41786 WALKER, D. A.

Turbulence measurements for heated gas slot injection in supersonic flow

[AIAA PAPER 89-1868] p 586 A89-42095

WALLS, JOHN E.

Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) (AD-A205351) p 600 N89-23438

WALSH, DONALD E.

Hypersonic flight - The need for a new legal regime p 634 A89-41655

WALSH, WILLIAM F.

Effect of electromagnetic interference by neonatal transport equipment on aircraft operation p 625 A89-42161

WANG, GUANGMIN

Mechanical model study for shrink fit rotor

p 611 A89-40964 WANG, JONG H.

Prediction of turbulent mixing and film-cooling effectiveness for hypersonic flows p 586 A89-42094 [AIAA PAPER 89-1867]

WARMBRODT, WILLIAM G.

Survey of Army/NASA rotorcraft aeroelastic stability research p 618 N89-24329

[NASA-TM-101026]

Dynamic loading on impact surfaces of a high subsonic elliptic jet p 632 A89-40477

[AIAA PAPER 89-1139]

WATTS, NORMAN W.

Host computer system capacity management procedures AD-A1934161 p 630 N89-24051

WEDAN, BRUCE W.

Development of an efficient multigrid code for 3-D Navier-Stokes equations p 625 A89-42027

WEHLITZ, PETRA

Simulation of the flow around a counterrotating shrouded proptan p 589 A89-43113

WEISS, ROSANNE M.

[AIAA PAPER 89-1791]

Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480

WEISSHAAR, T. A.

Optimum aeroelastic characteristics for composite supermaneuverable aircraft [AD-A205503] p 607 N89-23452

WEISSHAAR, TERRENCE A.

Results of a parametric aeroelastic stability analysis of a generic X-wing aircraft

NASA-TM-101572 WESTPHAL GUSTAV

State and perspectives of satellite use in civil aviation.

p 617 N89-24324

p 599 A89-41030 WHALEN, JOSEPH F.

Real-time solution of the airflow continuity equations for

p 589 A89-43147 a hovercraft simulation WHITE, W. F.

B-737 flight test of curved-path and steep-angle

approaches using MLS guidance INASA-TM-101521] p 601 N89-24293

WHITFIELD, C. E.

High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development [NASA-CR-182257-VOL-1] p 633 N89-24139

WHITFIELD, DAVID L. A flux-difference split algorithm for unsteady thin-layer

Navier-Stokes solutions [AIAA PAPER 89-1995] p 577 A89-41838 WIGHT, RALPH

The conformed panoramic - A new concept in electro-optical sensors p 622 A89-40266

WILBUR, MATTHEW L. Application of a PC based, real-time, data-aquisition

system in rotorcraft wind-tunnel testing p 630 N89-24079

WILLIAMS, STEVEN L. Use of Navier-Stokes methods to predict circulation control airfoil performance

AD-A2062421 p 595 N89-24270

WÎLLSON, W. G.

Production of jet fuels from coal-derived liquids. Volume 8: Heteroatom removal by catalytic processing IAD-A2054701 p 621 N89-23712

WILSON, DONALD R. An experimental investigation of the parallel vortex-airfoil

interaction at transonic speeds [AIAA PAPER 89-1833] p 582 A89-42061 WINKELMANN, ALLEN É. Flow visualization studies of the tip vortex system of a

semi-infinite wing [AIAA PAPER 89-1807] p 589 A89-42950

WINTER, R.

Transient analysis techniques in performing impact and crash dynamic studies WISEMAN, ROBERT p 629 N89-24658

computer system capacity management procedures

(AD-A193416) p 630 N89-24051

Electron beam welding and repair of critical structures p 624 A89-41586

'Hypersonic slip flows' and issues on extending continuum model beyond the Navier-Stokes level [AIAA PAPER 89-1663] p 590 A89-43187

WONG, J. L. Numerical simulation of 3D rarefied hypersonic flows

[AIAA PAPER 89-1715] p 591 A89-43230 WOODS, JESSICA A.

Results of a parametric aeroelastic stability analysis of a generic X-wing aircraft (NASA-TM-101572)

p 617 N89-24324 WOODWARD, RICHARD P.

Unsteady blade pressure measurements on a model counterrotation propeller

[AIAA PAPER 89-1144] p 631 A89-40175 Noise of a model counterrotation propeller with simulated fuselage and support pylon at takeoff/approach conditions

(NASA-TM-101996) p 633 N89-24138

WORONOWICZ, MICHAEL S.

Application of a vectorized particle simulation in high-speed near-continuum flow [AIAA PAPER 89-1665] p 590 A89-43188 WRIGHT, GARY

Host computer system capacity management procedures [AD-A193416] p 630 N89-24051

WÙ. J. L.

Linear instabilities in two-dimensional compressible mixing layers p 578 A89-41903 WU. XINHÚA

Mechanical model study for shrink fit rotor

p 611 A89-40964

X

XIA SONGRO

Mechanical model study for shrink fit rotor

p 611 A89-40964

YAKHOT, VICTOR

RNG-based turbulence transport approximations with applications to transonic flows

[AIAA PAPER 89-1950] p 573 A89-41797

YAMAMOTO, YUKIMITSU

Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack [AIAA PAPER 89-1699] p 591 A89-43215

Numerical simulation of hypersonic flow around a space plane. 1: Basic development [NAL-TR-976T] p 591 N89-23409

YAMATO, HIROYUKI

The functional mock-up test of the flight control system of the NAL QSTOL research aircraft ASKA p 615 N89-23467

[NAL-TR-972] YANG, H. T.

'Hypersonic slip flows' and issues on extending continuum model beyond the Navier-Stokes level

[AIAA PAPER 89-1663] p 590 A89-43187

USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures

p 608 N89-23457 [AD-A206286] YANG, L.

Three-dimensional energy-state extremals in feedback form p 615 A89-43071

YANG, YONGNIAN

A numerical method for calculating subsonic fully unsteady aerodynamic characteristics of wings in time domain p 570 A89-40959

YAZEK, FRANK Host computer system capacity management procedures

AD-A1934161

YE. ZHENGYIN A numerical method for calculating subsonic fully unsteady aerodynamic characteristics of wings in time p 570 A89-40959 domain

YELISEYEV, S. V.

Technology of aircraft construction (selected chapters)
[AD-A199946] p 569 N89-24261 p 569 N89-24261

YOON, SEOKKWAN

A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds

p 576 A89-41818 [AIAA PAPER 89-1974]

YOSHIDA, RYUJI

Numerical simulation of hypersonic viscous perfect gas flow for the aerothermodynamic design of space planes at low angles of attack
[AIAA PAPER 89-1699]

p 591 A89-43215

p 630 N89-24051

YUANG, YIDONG

The research of the aircraft neutral stability

p 614 A89-40961

Z

ZACHESA, VIKTOR IA.

Aircraft flight safety: Methodological principles

p 597 A89-42536

ZAMAN, K. B. M. Q.

The low frequency oscillation in the flow over a NACA0012 airfoil with an iced leading edge [NASA-TM-102018] p 592 N89-23417

ZAMETAEV, V. B.

Formation of singularities in a three-dimensional boundary layer p 625 A89-42557

ZANG. YAN

Computation of sharp fin and swept compression corner shock/turbulent boundary layer interactions p 585 A89-42080 [AIAA PAPER 89-1852]

ZERNOV, V. I.

Problems of the unification of the on-board systems of p 620 A89-42456 flight vehicles

ZHANG, SHUMEI

The research of the aircraft neutral stability

p 614 A89-40961

ZHANG, WEN

Mechanical model study for shrink fit rotor p 611 A89-40964

ZHANG, XUELAING

Modification in engineering calculation method for inlet p 571 A89-41121 desian

ZHANG, ZHEN

The model of combustion efficiency and calculation of flow properties for scramjet combustor

р 611 A89-41115

ZHAO, LINGCHENG

A numerical method for calculating subsonic fully unsteady aerodynamic characteristics of wings in time p 570 A89-40959

ZHU, QING

Investigation on thrust measurement of turbojet engine in altitude simulation facility p 611 A89-41126

ZHURAVLEV, V. A.

Academician B. S. Stechkin's work in the development of iet engines p 634 A89-42452

ZINKOVSKII, NIKOLAI N.

Aircraft flight safety: Methodological principles

p 597 A89-42536

ZURINSKAS, THOMAS

Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2

p 601 N89-24292 [DOT/FAA/CT-89/14-VOL-1]

ZYZYS, EDMUND

An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport

[DOT/FAA/CT-TN88/42]

October 1989

Typical Corporate Source Index Listing

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

Aeronautical Research Labs., Melbourne (Australia). Modelling aircraft dynamics [AD-A204086] p 607 N89-23449 Aeronautical Systems Div., Wright-Patterson AFB, OH. An evaluation of the F/FB/EF-111 crew/voice message system [AD-A205998] p 626 N89-23774 Aerospatiale, Toulouse (France).
Center of gravity control on Airbus aircraft: Fuel, range and loading [REPT-882-111-101] p 608 N89-23460 A330/340 hydraulic system

[REPT-882-111-102] n 608 N89-23461 Air Force Flight Dynamics Lab., Wright-Patterson AFB,

3-D composite velocity solutions for subsonic/transonic flow over afterbodies [AIAA PAPER 89-1837] p 582 A89-42065

Air Force Inst. of Tech., Wright-Patterson AFB, OH, Navier-Stokes solution for a NACA 0012 airfoil with mass

p 593 N89-23424 [AD-A205771] Investigation of the flowfield created by the interaction of a sonic jet and a co-flowing supersonic stream

p 593 N89-23425 Ejector effects on a supersonic nozzle at low altitude and Mach number

[AD-A205823]

[AD-A206049] p 594 N89-23427 Numerical study of the influence of leading and trailing edge flaps on the performance of airfoils

p 594 N89-23428 [AD-A2061381 Development of the extended kalman filter for the Completely Reference advanced Integrated Instrumentation System (CIRIS)

p 601 N89-23443 [AD-A206083] Preliminary design of a modular unmanned research vehicle. Volume 2: Subsystem technical development

design study [AD-A205678] p 607 N89-23454

A methodology for determining the survivability of fixed-wing aircraft against small arms

p 607 N89-23455 [AD-A2057301

Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Proportional-Plus-Integral) feedback and Kalman filter, volume 1

[AD-A205723] p 616 N89-23473

Control design of an unstable non-minimum phase aircraft subject to control surface saturation p 616 N89-23475 [AD-A206024]

Multivariable flight control design with parameter uncertainty for the AFTI/F-16

[AD-A206068] p 616 N89-23476

A demonstration of the method of stochastic finite element analysis p 630 N89-24127 [AD-A206135]

Use of Navier-Stokes methods to predict circulation control airfoil performance

[AD-A206242] p 595 N89-24270 Water tunnel investigation of the vortex dynamics of

periodically pitched wings [AD-A206359] p 595 N89-24271

Flight control system for the CRCA (Control Reconfigurable Combat Aircraft) using a command generator tracker with PI (Plus Integral) feedback and Kalman filter, volume 2 [AD-A206202] p 617 N89-24325

Air Force Systems Command, Wright-Patterson AFB.

Technology of aircraft construction (selected chapters) p 569 N89-24261 [AD-A199946]

Aircraft Research and Development Unit, Edinburg (Australia).

Flight testing of the Southern Cross replica aircraft p 607 N89-23451 [AD-A205303]

Analytical Services and Materials, Inc., Hampton, VA. Newton solution of inviscid and viscous problems p 570 A89-40909

Hypersonic parabolized Navier-Stokes code validation p 579 A89-42016 on a sharp nose cone

Arizona State Univ., Tempe.

Crossflow-vortex instability and transition on a 45 deg swept wing [AIAA PAPER 89-1892] p 587 A89-42114

Development of harmonic panel methods for aeroelastic applications to elastic bodies and body-fin combinations ersonic flow 1AD-A2057391 p 593 N89-23423

Army Aviation Engineering Flight Activity, Edwards AFB, CA.

Preliminary airworthiness evaluation of modified second-generation Pneumatic Boot Deicing System on a

p 598 N89-24289 [AD-A206255] Loss of tail rotor effectiveness evaluation of the OH-58C helicopter with directional SAS (Stability Augmentation System)

[AD-A206181] p 608 N89-24309

Army Aviation Research and Development Command, Moffett Field, CA.

Identification of XV-15 aeroelastic modes using frequency-domain methods p 604 A89-41092 Identification of XV-15 aeroelastic modes using p 605 A89-42018 frequency sweeps Computational and experimental evaluation of helicopter

rotor tips for high speed forward flight p 584 A89-42073

[AIAA PAPER 89-1845]

Army Aviation Systems Command, Hampton, VA. Application of a PC based, real-time, data-aquisition system in rotorcraft wind-tunnel testing

p 630 N89-24079 [NASA-TM-4119] Army Aviation Systems Command, Moffett Field, CA.

Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Survey of Army/NASA rotorcraft aeroelastic stability

[NASA-TM-101026] p 618 N89-24329 Army Cold Regions Research and Engineering Lab., Hanover, NH

Response of pavement to freeze-thaw cycles: Lebanon, New Hampshire, regional airport [AD-A205559] p 626 N89-23740

В

Boeing Commercial Airplane Co., Seattle, WA.

The 4D-TECS integration for NASA TSRV airplane [NASA-CR-4231] p 615 N89-23471

Boeing Helicopter Co., Philadelphia, PA.

CORPORATE SOURCE INDEX

Ground shake test of the Boeing Model 360 helicopter airframe

p 627 N89-23920 [NASA-CR-181766] Boeing Military Airplane Development, Seattle, WA.

Computerized structural mechanics for 1990's: p 628 N89-24640 Advanced aircraft needs Bolt, Beranek, and Newman, Inc., Canoga Park, CA.

Noise and sonic boom impact technology. PCBOOM computer program for sonic boom research, volume 1 p 594 N89-23429 [AD-A206290]

Noise and sonic boom impact technology. PCBOOM computer program for sonic boom research. Volume 2: Program Users/Computer operations manual p 594 N89-23430 [AD-A206291]

California Polytechnic State Univ., San Luis Obispo. Thermal analysis of a hypersonic wing test structure p 595 N89-24265 [NASA-CR-185319]

California State Univ., Long Beach.

Calculation of flow over iced airfoils

p 570 A89-40905

California Univ., Davis.

Convergence acceleration of viscous and inviscid ypersonic flow calculations (AIAA PAPER 89-1875) p 586 A89-42100 High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

[NASA-CR-184992] p 593 N89-23418

California Univ., Los Angeles. On some numerical schemes for transonic flow p 569 A89-39867

problems Calspan Corp., Arnold AFS, TN.

Unsteady aerodynamic simulation of multiple bodies in relative motion [AIAA PAPER 89-1996] p 577 A89-41839

Cambridge Acoustical Associates, Inc., MA.

Lifting-surface theory for propfan vortices impinging on p 578 A89-42013 a downstream wing

Centre d'Etudes et de Recherches, Toulouse (France). Analysis of the boundary layer of a delta wing in incidence

p 596 N89-24274 [CERT-RT-OA-26/5025-AYD] Cincinnati Univ., OH.

3-D composite velocity solutions for subsonic/transonic flow over afterbodies

p 582 A89-42065 [AIAA PAPER 89-1837] Colorado Univ., Boulder.

Computation of dynamics and control of unsteady p 627 N89-23822 vortical flows

Computer Resource Management, Inc., Vienna, VA.

National Airspace System Search and Rescue operational concept (NAS-SR-1329) [DOT/FAA/DS-89/07] p 597 N89-23435

Continuum Dynamics, Inc., Princeton, NJ.

Enhancements to a new free wake hover analysis [NASA-CR-177523] p 592 N89-23 p 592 N89-23414

ח

Department of the Navy, Washington, DC.

Actuator rate saturation compensator

LAD-D0139621 p 616 N89-23474

Deutsche Forschungs- und Versuchsanstalt fuer Luft-	George Washington Univ., Hampton, VA.	An intelligent fiberoptic data bus for fly-by-light
und Raumfahrt, Brunswick (Germany, F.R.).	Validation of aerodynamic parameters for high-incidence	applications
An efficient cell-vertex multigrid scheme for the	research models p 578 A89-42012	(NAL-TM-SE-8707) p 634 N89-24901
three-dimensional Navier-Stokes equations [AIAA PAPER 89-1953] p 574 A89-41800	Grumman Aerospace Corp., Bethpage, NY.	National Aeronautics and Space Administration,
Image Signal Processing for Flight Guidance	Transient analysis techniques in performing impact and crash dynamic studies p 629 N89-24658	Washington, DC.
[DFVLR-MITT-88-32] p 602 N89-24295	Gradin dynamic statics p 000 1100 24000	NASA aeronautics research and technology [NASA-EP-259] p 568 N89-23406
Image signal processing for flight guidance: Overview	Н	National Aeronautics and Space Administration. Ames
and introduction to the main topics p 602 N89-24296	п	Research Center, Moffett Field, CA.
Determination of reference trajectories for testing	Hibbitt, Karlsson and Sorensen, Providence, RI.	Three-dimensional dual-potential procedure for inlets
navigation aids using an onboard CCD camera p 602 N89-24303	Some issues in numerical simulation of nonlinear	and indraft wind tunnels p 570 A89-40908
Transformation of real and virtual objects into a virtual,	structural response p 628 N89-24639	Identification of XV-15 aeroelastic modes using
visual environment p 627 N89-24304	High Technology Corp., Hampton, VA.	frequency-domain methods p 604 A89-41092 Use of high-resolution upwind scheme for vortical flow
Display of flight guidance information in the aircraft	Transition flight experiments on a swept wing with suction	simulations
cockpit p 610 N89-24305 Douglas Aircraft Co., Inc., Long Beach, CA.	[AIAA PAPER 89-1893] p 587 A89-42115	[AIAA PAPER 89-1955] p 574 A89-41802
Interior noise control ground test studies for advanced	Horizons Technology, Inc., Oakton, VA.	Improvements and applications of a streamwise upwind
turboprop aircraft applications	An analysis of Electronic Aids to Maintenance (EAM)	algorithm
[NASA-CR-181819] p 633 N89-24141	for the Light Helicopter Family (LHX) [AD-A205440] p 568 N89-23407	[AIAA PAPER 89-1957] p 574 A89-41804
Duke Univ., Durham, NC. Reduction of sound transmission through fuselage walls	[NO-N203440] p 300 (NO3-2040)	A multi-temperature TVD algorithm for relaxing hypersonic flows
by alternate resonance tuning (A.R.T.)	1	[AIAA PAPER 89-1971] p 575 A89-41815
[AIAA PAPER 89-1046] p 631 A89-40470	•	A fully-coupled implicit method for thermo-chemical
On the role of artificial viscosity in Navier-Stokes	Iowa State Univ. of Science and Technology, Ames.	nonequilibrium air at sub-orbital flight speeds
solvers	Three-dimensional dual-potential procedure for inlets	[AIAA PAPER 89-1974] p 576 A89-41818
[AIAA PAPER 89-1947] p 573 A89-41794	and indraft wind tunnels p 570 A89-40908	Unsteady aerodynamic simulation of multiple bodies in
_	_	relative motion [AIAA PAPER 89-1996] p 577 A89-41839
E	J	Identification of XV-15 aeroelastic modes using
Ecole Nationale Superieure de Mecanique, Nantes		frequency sweeps p 605 A89-42018
(France).	JAI Associates, Mountain View, CA.	Transonic aeroelasticity of fighter wings with active
Numerical methods for unsteady flows	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076	control surfaces p 579 A89-42020
p 596 N89-24282	[AIAA Ar El (88-1040] p 304 A08-42070	Development of an efficient multigrid code for 3-D
Eloret Corp., Sunnyvale, CA.	K	Navier-Stokes equations [AIAA PAPER 89-1791] p 625 A89-42027
A multi-temperature TVD algorithm for relaxing hypersonic flows	IX.	Calculation of winged-body-like flow fields using an
[AIAA PAPER 89-1971] p 575 A89-41815	Kansas Univ., Lawrence.	implicit upwind space-marching code
Calculation of nonequilibrium hydrogen-air reactions with	Analysis of a candidate control algorithm for a ride-quality	[AIAA PAPER 89-1826] p 581 A89-42056
implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216	augmentation system p 614 A89-43057	Development and validation of CNS (compressible
Engineering Analysis, Inc., Ames, IA.	A correlation study of X-29A aircraft and associated analytical developments p 607 N89-23450	Navier-Stokes) for hypersonic external flows [AIAA PAPER 89-1839] p 583 A89-42067
A three-dimensional upwind parabolized Navier-Stokes	Kansas Univ. Center for Research, Inc., Lawrence.	Computational and experimental evaluation of helicopter
code for real gas flows	Detailed design of a Ride Quality Augmentation System	rotor tips for high speed forward flight
[AIAA PAPER 89-1651] p 626 A89-43177	for commuter aircraft [NASA-CR-4230] p 615 N89-23470	[AIAA PAPER 89-1845] p 584 A89-42073
F	[14/0/-011-4230] p 013 1403-23470	Numerical solutions of forward-flight rotor flow using an upwind method
	_	apwind method
	•	[AIAA PAPER 89-1846] p 584 A89-42074
Federal Aviation Administration, Atlantic City, NJ.	L	[AIAA PAPER 89-1846] p 584 A89-42074 Unsteady interaction of a rotor with a vortex
Federal Aviation Administration, Atlantic City, NJ. Instrument landing system mathematical modeling study	Lockheed Missiles and Space Co., Palo Alto, CA.	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer,	Lockheed Missiles and Space Co., Palo Alto, CA. Computational procedures for postbuckling of composite	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A)		Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438	Computational procedures for postbuckling of composite shells p 628 N89-24642	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A)	Computational procedures for postbuckling of composite	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management	Computational procedures for postbuckling of composite shells p 628 N89-24642	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures	Computational procedures for postbuckling of composite shells p 628 N89-24642 M Massachusetts Inst. of Tech., Cambridge.	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management	Computational procedures for postbuckling of composite shells p 628 N89-24642 M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite saliplane fuselages	Unsteady interaction of a rotor with a vortex [AlAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AlAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AlAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent	Computational procedures for postbuckling of composite shells p 628 N89-24642 M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019	Unsteady interaction of a rotor with a vortex [AlAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AlAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AlAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288	Computational procedures for postbuckling of composite shells p 628 N89-24642 M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control	Computational procedures for postbuckling of composite shells p 628 N89-24642 M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2	Computational procedures for postbuckling of composite shells p 628 N89-24642 M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-T89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for instrument	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive s	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida, Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p. 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p. 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary	Unsteady interaction of a rotor with a vortex [AlAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AlAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AlAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AlAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AlAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-TN89/41-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC.	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive s ummary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung,	Unsteady interaction of a rotor with a vortex [AlAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AlAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AlAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AlAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AlAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a
Instrument landing system mathematical modeling study for Orlando international Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-TN89/4] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p. 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p. 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p. 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p. 634 N89-24887 MCAT Inst., Moffett Field, CA.	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA.	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-TM-101083] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-102201] p 598 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-102201] p 598 N89-24290 Results of an A109 simulation validation and handling
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-RN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-RN89/3] p 598 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-RN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive s ummary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.B.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ.	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA.	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] DOT/FAA/PS-89/6-EXEC-SUMM] Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 MCDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-TM-101083] p 596 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101083] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-R9/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive s ummary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.B.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ.	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 559 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-10201] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-R9/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] DOT/FAA/PS-89/6-EXEC-SUMM] Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor.	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-10201] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-101026] p 618 N89-24329
Instrument landing system mathematical modeling study for Orlando international Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-B9/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-R99/14-VOL-1] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A206360] p 596 N89-24272	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 559 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-10201] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 517 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-101026] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-R9/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422) p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A206360] p 596 N89-24272	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101062] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-101026] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN88/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN88/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422) p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossiflow [AD-A206360] p 596 N89-24272	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-FP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101062] p 596 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-101026] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563 Improving transient analysis technology for aircraft
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-R9/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422) p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A206360] p 596 N89-24272	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive s ummary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101062] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-101026] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN88/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-89/14-VOL-1] p 601 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN88/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossiflow [AD-A206360] p 596 N89-24272 General Accounting Office, Washington, DC. US military aircraft coproduction with Japan [AD-A20630] p 569 N89-24263 General Dynamics Corp., Fort Worth, TX. USAF (US Air Force) durability design handbook:	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite saliplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 Sonic-point capturing	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1670] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-TM-101083] p 596 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101062] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-101061] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563 Improving transient analysis technology for aircraft structures p 629 N89-24655 National Aeronautics and Space Administration. Flight
Instrument landing system mathematical modeling study for Orlando international Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-RN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-RN89/3] p 598 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-RN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A20630] p 596 N89-24272 General Accounting Office, Washington, DC. US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 General Dynamics Corp., Fort Worth, TX. USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] DOT/FAA/PS-89/6-EXEC-SUMM] Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] Sonic-point capturing [AIAA PAPER 89-1945] P 573 A89-41780	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 596 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101062] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 598 N89-24290 Aerodynamic interaction between vortical wakes and iffing two-dimensional bodies [NASA-TM-101074] p 627 N89-24323 Improving transient analysis technology for aircraft structures p 629 N89-24555 National Aeronautics and Space Administration. Flight Research Center, Edwards, CA.
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-TN89/3] p 601 N89-24292 Improved marking of taxiway intersections for instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A206360] p 596 N89-24272 General Accounting Office, Washington, DC. US military aircraft coproduction with Japan [AD-A206430] p 569 N89-24263 General Dynamics Corp., Fort Worth, TX. USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite saliplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] p 601 N89-23440 Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] p 634 N89-24887 MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] p 572 A89-41780 Sonic-point capturing	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrivat traffic [NASA-TM-101061] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-10106] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563 Improving transient analysis technology for aircraft structures p 629 N89-24565 National Aeronautics and Space Administration. Flight Research Center, Edwards, CA. Development and flight test experiences with a flight-crucial digital control system
Instrument landing system mathematical modeling study for Orlando international Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-TN89/3] p 598 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A20630] p 596 N89-24272 General Dynamics Corp., Fort Worth, TX. USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures [AD-A206286] p 608 N89-23457 General Electric Co., Cincinnati, OH.	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] DOT/FAA/PS-89/6-EXEC-SUMM] Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] Mchigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] Sonic-point capturing [AIAA PAPER 89-1931] P 573 A89-41780 Sonic-point capturing [AIAA PAPER 89-1945] N National Aeronautical Lab., Bangalore (India).	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101081] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-10106] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563 Improving transient analysis technology for aircraft structures p 629 N89-24655 National Aeronautics and Space Administration. Flight Research Center, Edwards, CA. Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 National Aeronautics and Space Administration.
Instrument landing system mathematical modeling study for Orlando International Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-TN89/3] p 601 N89-24292 Improved marking of taxiway intersections for instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding [AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A206360] p 596 N89-24272 General Accounting Office, Washington, DC. US military aircraft coproduction with Japan [AD-A20630] p 569 N89-24263 General Dynamics Corp., Fort Worth, TX. USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures [AD-A206286] p 608 N89-23457 General Electric Co., Cincinnati, OH. High speed turboprop aeroacoustic study (single	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] p 626 N89-23758 Max-Planck-Institut fuer Stroemungsforschung, Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] p 576 A89-41818 McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] p 584 A89-42075 Michigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] Sonic-point capturing [AIAA PAPER 89-19345] p 572 A89-41780 Sonic-point capturing [AIAA PAPER 89-1945] p 573 A89-41792	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-10201] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 517 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-10106] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563 Improving transient analysis technology for aircraft structures p 629 N89-24565 National Aeronautics and Space Administration. Flight Research Center, Edwards, CA. Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.
Instrument landing system mathematical modeling study for Orlando international Airport Runway 35L localizer, Orlando, Florida. Final airside docking plan (Scheme 3A) [AD-A205351] p 600 N89-23438 Heliport night parking area criteria test plan [DOT/FAA/CT-TN88/45] p 619 N89-23480 Host computer system capacity management procedures [AD-A193416] p 630 N89-24051 A computer simulation study of liquid water content adjustment based on icing cloud horizontal extent [DOT/FAA/CT-TN89/3] p 598 N89-24288 Controller evaluation of initial data link air traffic control services. Volume 1: Mini study 2 [DOT/FAA/CT-TN89/3] p 598 N89-24292 Improved marking of taxiway intersections for Instrument Flight Rules (IFR) operations [DOT/FAA/CT-TN89/23] p 619 N89-24330 Federal Aviation Administration, Washington, DC. An operational demonstration and engineering flight test of the Microwave Landing System on runway 22L at Chicago's Midway Airport [DOT/FAA/CT-TN88/42] p 601 N89-24291 A comparison of detection efficiency on an air traffic control monitoring task with and without computer aiding (AD-A206422] p 602 N89-24294 Flow Research, Inc., Kent, WA. An investigation of V/STOL jet interactions in a crossflow [AD-A20630] p 596 N89-24272 General Dynamics Corp., Fort Worth, TX. USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft structures [AD-A206286] p 608 N89-23457 General Electric Co., Cincinnati, OH.	Computational procedures for postbuckling of composite shells M Massachusetts Inst. of Tech., Cambridge. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages p 605 A89-42019 Generation of architectures for distributed intelligence systems [AD-A205783] Massachusetts Inst. of Tech., Lexington. ASR-9 weather channel test report, executive summary [DOT/FAA/PS-89/6-EXEC-SUMM] DOT/FAA/PS-89/6-EXEC-SUMM] Goettingen (Germany, F.R.). Calculation of aircraft noise in the vicinity of civil airports by a simultion procedure [MPIS-7/1988] MCAT Inst., Moffett Field, CA. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds [AIAA PAPER 89-1974] McDonnell-Douglas Helicopter Co., Mesa, AZ. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique [AIAA PAPER 89-1847] Mchigan Univ., Ann Arbor. Design of optimally smoothing multi-stage schemes for the Euler equations [AIAA PAPER 89-1933] Sonic-point capturing [AIAA PAPER 89-1931] P 573 A89-41780 Sonic-point capturing [AIAA PAPER 89-1945] N National Aeronautical Lab., Bangalore (India).	Unsteady interaction of a rotor with a vortex [AIAA PAPER 89-1848] p 584 A89-42076 Convergence acceleration of viscous and inviscid hypersonic flow calculations [AIAA PAPER 89-1875] p 586 A89-42100 Flight evaluation of pursuit displays for precision approach of powered-lift aircraft p 610 A89-43059 A three-dimensional upwind parabolized Navier-Stokes code for real gas flows [AIAA PAPER 89-1651] p 626 A89-43177 Computational requirements for hypersonic flight performance estimates [AIAA PAPER 89-1670] p 620 A89-43193 Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation [AIAA PAPER 89-1672] p 590 A89-43195 Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method [AIAA PAPER 89-1700] p 621 A89-43216 Numerical aerodynamic simulation [NASA-EP-262] p 569 N89-24262 Experimental aerodynamic characteristics of a joined-wing research aircraft configuration [NASA-TM-101083] p 596 N89-24285 Design of automated system for management of arrival traffic [NASA-TM-101081] p 598 N89-24290 Results of an A109 simulation validation and handling qualities study [NASA-TM-101062] p 617 N89-24323 Survey of Army/NASA rotorcraft aeroelastic stability research [NASA-TM-10106] p 618 N89-24329 Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies [NASA-TM-101074] p 627 N89-24563 Improving transient analysis technology for aircraft structures p 629 N89-24655 National Aeronautics and Space Administration. Flight Research Center, Edwards, CA. Development and flight test experiences with a flight-crucial digital control system [NASA-TP-2857] p 617 N89-24327 National Aeronautics and Space Administration.

National Aeronautics and Space Administration. Hugh	B-737 flight test of curved-path and steep-angle	Computational and experimental research on buffet
L. Dryden Flight Research Facility, Edwards, CA.	approaches using MLS guidance	phenomena of transonic airfoils
A rapid prototyping facility for flight research in advanced systems concepts p 630 A89-41698	[NASA-TM-101521] p 601 N89-24293	[NAL-TR-996T] p 616 N89-24322 National Center for Atmospheric Research, Boulder,
Transition flight experiments on a swept wing with	Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady	CO.
suction	aerodynamics	Evaluation of liquid water measuring instruments in cold
[AIAA PAPER 89-1893] p 587 A89-42115	[NASA-TM-101574] p 608 N89-24308	clouds sampled during FIRE p 624 A89-41889
National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.	Aeroservoelastic wind-tunnel investigations using the	National Transportation Safety Board, Washington, DC.
Finite element computation of hypersonic flow past a	Active Flexible Wing Model: Status and recent accomplishments	Annual review of aircraft accident data, US Air Carrier
complete body	[NASA-TM-101570] p 609 N89-24313	operations: Calendar year 1986
[AIAA PAPER 89-1976] p 576 A89-41819	Recent activities within the Aeroservoelasticity Branch	[PB89-151021] p 597 N89-23434 Aircraft Accident Report: AVAir Inc., Flight 3378,
National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.	at the NASA Langley Research Center	Fairchild Metro 3, SA227 AC, N622AV, Cary, North
NASA/AHS rotorcraft noise reduction program - NASA	[NASA-TM-101582] p 609 N89-24314	Carolina, February 19, 1988
Langley Acoustics Division contributions	Results of a parametric aeroelastic stability analysis of a generic X-wing aircraft	[PB88-910412] p 598 N89-23436
p 632 A89-41049 Supersonic flow computations by two-equation	(NASA-TM-101572) p 617 N89-24324	Naval Postgraduate School, Monterey, CA. Aerothermodynamic analysis of a Coanda/Refraction
turbulence modeling	CSM testbed development and large-scale structural	Jet Engine Test Facility
[AIAA PAPER 89-1951] p 574 A89-41798	applications [NASA-TM-4072] p 628 N89-24624	[AD-A205937] p 619 N89-23482
An efficient cell-vertex multigrid scheme for the	[NASA-TM-4072] p 628 N89-24624 Computational Methods for Structural Mechanics and	Boundary layer response to an unsteady turbulent environment
three-dimensional Navier-Stokes equations [AIAA PAPER 89-1953] p 574 A89-41800	Dynamics	[AD-A206578] p 596 N89-24273
Upwind-biased, point-implicit relaxation strategies for	[NASA-CP-3034-PT-2] p 628 N89-24654	Nielsen Engineering and Research, Inc., Mountain
viscous, hypersonic flows	Advanced turboprop aircraft flyover noise: Annoyance	View, CA.
[AIAA PAPER 89-1972] p 575 A89-41816 Observation of airplane flowfields by natural	to counter-rotating-propeller configurations with a different number of blades on each rotor: Preliminary results	Exploitation of multiple solutions of the Navier-Stokes equations to achieve radically improved flight
condensation effects p 578 A89-42009	[NASA-TM-100638] p 634 N89-24888	[AD-A205939] p 627 N89-23831
Transonic unsteady pressure measurements on a	Langley aerospace test highlights, 1988	North Carolina State Univ., Raleigh.
supercritical airfoil at high Reynolds numbers	[NASA-TM-101579] p 635 N89-25112	Numerical simulation of flow over a hypersonic aircraft
p 578 A89-42010 Cavity door effects on aerodynamic loads of stores	National Aeronautics and Space Administration. Lewis	using an explicit upwind PNS solver [AIAA PAPER 89-1829] p 582 A89-42058
separating from cavities p 578 A89-42011	Research Center, Cleveland, OH. Unsteady blade pressure measurements on a model	An approximate viscous shock layer method for
Validation of aerodynamic parameters for high-incidence	counterrotation propeller	calculating the hypersonic flow over blunt-nosed bodies
research models p 578 A89-42012	[AIAA PAPER 89-1144] p 631 A89-40175	[AIAA PAPER 89-1695] p 590 A89-43212
Hypersonic parabolized Navier-Stokes code validation on a sharp nose cone p 579 A89-42016	Comparison of propeller cruise noise data taken in the	Study of hypersonic flow past sharp cones
Effects of contamination on riblet performance	NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data	[AIAA PAPER 89-1713] p 591 A89-43228 North Dakota Univ., Grand Forks.
p 579 A89-42021	[AIAA PAPER 89-1059] p 631 A89-40472	Production of jet fuels from coal-derived liquids. Volume
Experimental study of free-shear layer transition above a cavity at Mach 3.5	Prediction of unsteady blade surface pressures on an	8: Heteroatom removal by catalytic processing
[AIAA PAPER 89-1813] p 580 A89-42043	advanced propeller at an angle of attack	[AD-A205470] p 621 N89-23712
Vortex-dominated conical-flow computations using	[AIAA PAPER 89-1060] p 631 A89-40473 Conservative treatment of boundary interfaces for	_
unstructured adaptively-refined meshes [AIAA PAPER 89-1816] p 580 A89-42046	overlaid grids and multi-level grid adaptations	0
Numerical simulation of flow over a hypersonic aircraft	[AIAA PAPER 89-1980] p 576 A89-41823	
using an explicit upwind PNS solver	A time accurate finite volume high resolution scheme	Office National d'Etudes et de Recherches
[AIAA PAPER 89-1829] p 582 A89-42058	for three dimensional Navier-Stokes equations [AIAA PAPER 89-1994] p 577 A89-41837	Aerospatiales, Paris (France). Ground vibration test of the Foudre A04 Transall
Computation of turbulent flows on a CAST 10 wing using an upwind scheme	[AIAA PAPER 89-1994] p 577 A89-41837 Numerical solution of periodic vortical flows about a thin	aircraft
[AIAA PAPER 89-1836] p 582 A89-42064	airfoil	[REPT-20/7234-PY-382-R] p 609 N89-24311
A validation study of four Navier-Stokes codes for	[NASA-TM-101998] p 592 N89-23413	Lightning inflight study onboard a Transall aircraft.
high-speed flows [AIAA PAPER 89-1838] p 583 A89-42066	The low frequency oscillation in the flow over a	Definition of the onboard instruments [ONERA-RF-19/7234-PY] p 629 N89-24777
[AIAA PAPER 89-1838] p 583 A89-42066 Crossflow-vortex instability and transition on a 45 deg	NACA0012 airfoil with an iced leading edge [NASA-TM-102018] p 592 N89-23417	Ohio State Univ., Columbus.
swept wing	Advances in computational design and analysis of	An experimental study of a reattaching supersonic shear
[AIAA PAPER 89-1892] p 587 A89-42114	airbreathing propulsion systems	layer
Transition flight experiments on a swept wing with	[NASA-TM-101987] p 613 N89-23465	[AIAA PAPER 89-1801] p 579 A89-42036
suction [AIAA PAPER 89-1893] p 587 A89-42115	Advanced computational techniques for hypersonic propulsion	Oklahoma Univ., Norman. Performance of an aero-space plane propulsion
Flying qualities from early airplanes to the Space	[NASA-TM-102005] p 627 N89-23809	nozzle
Shuttle p 614 A89-43051	Noise of a model counterrotation propeller with	[AIAA PAPER 89-1878] p 586 A89-42103
An approximate viscous shock layer method for	simulated fuselage and support pylon at takeoff/approach	An integrated aerodynamic/propulsion study for generic
calculating the hypersonic flow over blunt-nosed bodies [AIAA PAPER 89-1695] p 590 A89-43212	conditions [NASA-TM-101996] p 633 N89-24138	aero-space planes based on waverider concepts [NASA-CR-183389] p 609 'N89-24315
[AIAA PAPER 89-1695] p 590 A89-43212 Study of hypersonic flow past sharp cones	A model for prediction of STOVL ejector dynamics	Old Dominion Univ., Norfolk, VA.
[AIAA PAPER 89-1713] p 591 A89-43228	[NASA-TM-102098] p 614 N89-24319 Composite Blade Structural Analyzer (COBSTRAN)	Dynamic grid deformation using Navier-displacement
Interdisciplinary and multilevel optimum design	demonstration manual	equation for deforming wings [AIAA PAPER 89-1982] p 576 A89-41825
p 606 A89-43450	[NASA-TM-101957] p 622 N89-24459	Experimental study of pressure and heating rate on a
Computing induced velocity perturbations due to a helicopter fuselage in a free stream	Comparison of predicted and measured temperatures	swept cylindrical leading edge resulting from swept shock
[NASA-TM-4113] p 592 N89-23410	of UH-60A helicopter transmission [NASA-TP-2911] p 628 N89-24607	wave interference
Status of sonic boom methodology and understanding	Cruise noise of the SR-2 propeller model in a wind	[NASA-CR-185326] p 592 N89-23411
[NASA-CP-3027] p 592 N89-23415	tunnel	_
Transonic Navier-Stokes solutions of three-dimensional	[NASA-TM-101480] p 633 N89-24886 National Aerospace Lab., Amsterdam (Netherlands).	Р
afterbody flows [NASA-TM-4111] p 594 N89-23433	Quench sensitivity of airframe aluminium alloys	
Flutter of a low-aspect-ratio rectangular wing	[PB89-146039] p 621 N89-23656	Pennsylvania State Univ., University Park. Inception length to a fully-developed fin-generated shock
[NASA-TM-4116] p 606 N89-23447	National Aerospace Lab., Tokyo (Japan).	wave boundary-layer interaction
Method and system for monitoring and displaying engine	Transonic operational characteristics and performance [NAL-TR-968] p 591 N89-23408	[AIAA PAPER 89-1850] p 584 A89-42078
performance parameters	Numerical simulation of hypersonic flow around a space	Polytechnic Univ., Farmingdale, NY.
[NASA-CASE-LAR-14049-1] p 614 N89-23466 A closed-form trim solution yielding minimum trim drag	plane. 1: Basic development	Optimum aeroelastic characteristics for composite supermaneuverable aircraft
for airplanes with multiple longitudinal-control effectors	[NAL-TR-976T] p 591 N89-23409 Characteristics of a five-hole spherical pitot tube	[AD-A205503] p 607 N89-23452
[NASA-TP-2907] p 615 N89-23468	[NAL-TR-971] p 610 N89-23463	PRC Systems Services Co., McLean, VA.
Simulator evaluation of a display for a Takeoff	Experiment on a cylindrical scramjet combustor. 2:	A rapid prototyping facility for flight research in advanced
Performance Monitoring System [NASA-TP-2908] p 615 N89-23469	Simulated flight Mach number 6.7	systems concepts p 630 A89-41698
Application of a PC based, real-time, data-aquisition	[NAL-TR-969] p 613 N89-23464 The functional mock-up test of the flight control system	5
system in rotorcraft wind-tunnel testing	of the NAL QSTOL research aircraft ASKA	R
[NASA-TM-4119] p 630 N89-24079	[NAL-TR-972] p 615 N89-23467	Barranda a Baluka ahada lack Tarra AW
Effect of advanced rotorcraft airfoil sections on the hover performance of a small-scale rotor model	Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing	Rensselaer Polytechnic Inst., Troy, NY. Aerodynamics of a lifting rotor due to near field unsteady
[NASA-TP-2832] p 595 N89-24264	[NAL-TR-978] p 616 N89-24321	effects p 595 N89-24267

Rockwell International Science Center

Rockwell International Science Center, Thousand Oaks, CA.

A validation study of four Navier-Stokes codes for high-speed flows [AIAA PAPER 89-1838] p 583 A89-42066 Numerical solutions of forward-flight rotor flow using an

upwind method p 584 A89-42074 I AIAA PAPER 89-18461

Rome Univ. (Italy). Supersonic flow computations by two-equation turbulence modeling

[AIAA PAPER 89-1951] p 574 A89-41798

Royal Aerospace Establishment, Farnborough (England).

Validation of aerodynamic parameters for high-incidence p 578 A89-42012 research models

Royal Signals and Radar Establishment, Malvern (England).

Comparison of interpolation algorithms for speed control in air traffic management p 601 N89-23444 (AD-A206314)

S

San Diego State Univ., CA.

Numerical simulation of aircraft rotary aerodynamics p 579 A89-42024

Stanford Univ., CA.

Application of a vectorized particle simulation in high-speed near-continuum flow p 590 A89-43188 [AIAA PAPER 89-1665]

An experimental study of the effect of streamwise rtices on unsteady turbulent boundary-layer separation p 593 N89-23420 [AD-A205462] Flow control for unsteady and separated flows and

turbulent mixing [AD-A205989] p 594 N89-23426

Sverdrup Technology, Inc., Cleveland, OH. Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack p 631 A89-40473 [AIAA PAPER 89-1060]

Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations p 576 A89-41823 [AIAA PAPER 89-1980]

A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations [AIAA PAPER 89-1994] p 577

Swedish Inst. for Materials Testing, Boras. Investigations on the cracking behavior of joints in

airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479

TAU Corp., Los Gatos, CA.

Optimal guidance with obstacle avoidance for nap-of-the-earth flight [NASA-CR-177515] p 618 N89-24328

Technische Hochschule, Aachen (Germany, F.R.).

Unsteady aerodynamic effects on bluff bodies p 596 N89-24278

Technische Univ., Brunswick (Germany, F.R.).

Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

p 605 A89-42019

Tennessee Univ., Tullahoma.

a model helicopter rotor

Measurements of diffusion limited solidification at varying gravity

p 626 A89-43268 [AIAA PAPER 89-1755]

Texas A&M Univ., College Station.

An acoustic experimental and theoretical investigation of single disc propellers p 632 A89-40478 [AIAA PAPER 89-1146] Generic icing effects on forward flight performance of p 604 A89-41093

Texas Univ., Arlington. Inception length to a fully-developed fin-generated shock

wave boundary-layer interaction

[AIAA PAPER 89-1850] n 584 A89-42078

Textron Bell Helicopter, Fort Worth, TX.

Computational and experimental evaluation of helicopter rotor tips for high speed forward flight

[AIAA PAPER 89-1845] p 584 A89-42073

Tokyo Univ. (Japan).

Use of high-resolution upwind scheme for vortical flow simulations

[AIAA PAPER 89-1955]

p 574 A89-41802

Toledo Univ., OH.

Flow of rarefied gases over two-dimensional bodies [AIAA PAPER 89-1970] p 575 A89-41814

U

United Analysis, Inc., Vienna, VA.

USAF (US Air Force) durability design handbook: Guidelines for the analysis and design of durable aircraft [AD-A206286]

p 608 N89-23457 University of Southern California, Los Angeles.

Dynamic loading on impact surfaces of a high subsonic [AIAA PAPER 89-1139] p 632 A89-40477 'Hypersonic slip flows' and issues on extending continuum model beyond the Navier-Stokes level (AIAA PAPER 89-1663) p 590 A89-43187

Vigyan Research Associates, Inc., Hampton, VA.

Hypersonic parabolized Navier-Stokes code validation p 579 A89-42016 on a sharp nose cone Development of an efficient multigrid code for 3-D

Navier-Stokes equations [AIAA PAPER 89-1791] p 625 A89-42027

Innovative pylon concepts for engine-airframe integration for transonic transports

[AIAA PAPER 89-1819] p 581 A89-42049 Virginia Polytechnic Inst. and State Univ., Blacksburg. Active control of sound fields in elastic cylinders by p 632 A89-40904 multicontrol forces

New mixing-length model for turbulent high-speed flows

[AIAA PAPER 89-1821] p 581 A89-42051 Interdisciplinary and multilevel optimum design

p 606 A89-43450 Analysis of the wake behind a propeller using the finite element method with a two-equation turbulence model p 597 N89-24286

Numerical simulation of feedback control of aerodynamic configurations in steady and unsteady ground effects p 617 N89-24326

West Virginia Univ., Morgantown.

Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests p 595 N89-24266 INASA-CR-1850161

X

Xerox Palo Alto Research Center, CA.

Visibility with a moving point of view

p 631 N89-24876

October 1989

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 244)

Typical Foreign Technology Index Listing

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

ARGENTINA

Transverse vibrations of a trapezoidal cantilever plate of variable thickness p 622 A89-40914 **AUSTRALIA**

Shock standoff from blunt cones in high-enthalpy nonequilibrium nitrogen flow p 570 A89-40913 Modelling aircraft dynamics [AD-A204086] p 607 N89-23449

Flight testing of the Southern Cross replica aircraft p 607 N89-23451 [AD-A2053031

В

BELGIUM

A solution method for the three-dimensional compressible turbulent boundary-layer equations p 623 A89-41044

Far field numerical boundary conditions for internal and cascade flow computations

[AIAA PAPER 89-1943] p 573 A89-41790 An adaptive grid polygonal finite volume method for the

compressible flow equations
[AIAA PAPER 89-1959]

p 574 A89-41805 Upwind algorithms based on a diagonalization of the multidimensional Euler equations

[AIAA PAPER 89-1958] p 578 A89-41842

CANADA

The Canadair CL-215 amphibious aircraft - Development and applications [AIAA PAPER 89-1541] p 604 A89-41563 Applications of Lagrangian time to steady supersonic irfoil computation [AIAA PAPER 89-1963] p 575 A89-41808

Service-induced damage in turbine discs and its influence on damage tolerance-based life prediction

p 612 A89-41910

The use of operational loads data to assess fatigue damage rates in a jet trainer aircraft p 605 A89-41913 Acoustic emission detection of crack presence and crack p 625 A89-42853 advance during flight

CHINA, PEOPLE'S REPUBLIC OF

A numerical method for calculating subsonic fully unsteady aerodynamic characteristics of wings in time p 570 domain A89-40959

The research of the aircraft neutral stability p 614 A89-40961

Active flutter suppression on a delta wing

A89-40963 D 614

Mechanical model study for shrink fit rotor A89-40964 p 611

The model of combustion efficiency and calculation of flow properties for scramjet combustor

p 611 A89-41115

The investigation of dynamic distortions in flowfield downstream of strong shock boundary interaction p 570 A89-41117

The characteristics of the turbulence generator and the p 571 A89-41119 simulation of the flow regulation

Modification in engineering calculation method for inlet design p 571 A89-41121

Investigation on thrust measurement of turbojet engine p 611 A89-41126 in altitude simulation facility

CZECHOSLOVAKIA

Fatigue damage to an aircraft from gusts

A89-40083 p 603 Determination of the interaction parameter of a twin-rotor gas generator p 622 A89-40084

A foil adhesive for construction -The Letoxit system p 620 A89-40085

Numerical solution of transonic potential flow in 2D compressor cascades using multi-grid techniques

p 589 A89-42837

FRANCE

Aircraft navigation using I.R. image analysis

p 598 A89-40446 Practical experimental examples of land, sea, and air navigation using the Navstar/GPS system

p 599 A89-40802 Western experts impressed by design of Mi-28

p 605 A89-41950 prototype Navier-Stokes simulation of a shock wave-turbulent boundary interaction in a layer three-dimensional

1AIAA PAPER 89-18511 p 585 A89-42079 Parametric study of thermal and chemical nonequilibrium

p 585 A89-42084 [AIAA PAPER 89-1856]

Hypersonic flow in a compression corner in 2D and 3D configurations

[AIAA PAPER 89-1876] p 586 A89-42101 Center of gravity control on Airbus aircraft: Fuel, range

and loading [REPT-882-111-101] p 608 N89-23460

A330/340 hydraulic system

[REPT-882-111-102] p 608 N89-23461 Analysis of the boundary layer of a delta wing in incidence

[CERT-RT-OA-26/5025-AYD] p 596 N89-24274 Numerical methods for unsteady flows p 596 N89-24282

Ground vibration test of the Foudre A04 Transall

[REPT-20/7234-PY-382-R] p 609 N89-24311 Lightning inflight study onboard a Transall aircraft. Definition of the onboard instruments p 629 N89-24777 [ONERA-RF-19/7234-PY]

G

GERMANY DEMOCRATIC REPUBLIC

State and perspectives of satellite use in civil aviation p 599 A89-41030 GERMANY.FEDERAL REPUBLIC OF

BO108 - An ultramodern German helicopter

[MBB-UD-530-88-PUB] p 602 A89-39836 The development of a composite helicopter fuselage as exemplified on the BK 117

[MBB-UD-534-88-PUB] p 602 A89-39840 Comparison of the crushing behaviour of metallic subfloor structures

[MBB-UD-535-88-PUB] p 622 A89-39841 Engine aspects in the design of advanced rotorcraft

[MBB-UD-528-88-PUB] p 611 A89-39842 Development of an advanced experimental rotary test rig and first test results with a 60 kN-main rotor

p 618 A89-39843 [MBB-UD-525-88-PUB] BO 108 - Technology for new light twin helicopters [MBB-UD-529-88-PUB] p 603 A89-39844 Design and development tests of a five-bladed hingeless

helicopter main rotor p 603 A89-39845 [MBB-UD-531-88-PUB] A new wind tunnel test rig for helicopter testing [MBB-UD-532-88-PUB] p 618 A89-39846

OPST 1 - A digital optical tail rotor control system p 614 A89-39847 [MBB-UD-533-88-PUB]

Safety philosophies in air transport p 597 A89-39859

Hydrodynamic characteristics of seaplanes as affected by hull shape parameters

[AIAA PAPER 89-1540] p 604 A89-41562 RFB research and development in WIG vehicles

[AIAA PAPER 89-1495] p 623 A89-41568 On the optimum cruise speed of a hypersonic aircraft

p 605 A89-41652 An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations

p 574 A89-41800 [AIAA PAPER 89-1953] Simple improvements of an upwind TVD scheme for

hypersonic flow [AIAA PAPER 89-1977] p 576 A89-41820 A central finite volume TVD scheme for the calculation

of supersonic and hypersonic flow fields around complex configurations [AIAA PAPER 89-1975] p 578 A89-41844

investigations on the vorticity sheets of a close-coupled delta-canard configuration p 579 A89-42017 Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

p 605' A89-42019 Calculation of wind-tunnel side-wall interference using a three-dimensional multigrid Navier-Stokes code p 579 A89-42026 [AIAA PAPER 89-1790]

Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation

p 582 A89-42062 [AIAA PAPER 89-1834] Research and development: Technical and scientific p 635 A89-42926 publications 1988

New developments in air and space research -Contributions of the German aircraft and space industry to advanced programs and international cooperation [MBB-Z-177-88-PUB] p 635 A89-42927

Thoroughgoing DV-support from project planning to factory control - Practical example from near-development aircraft design

[MBB-UD-526-88-PUB] Application of HISSS panel code to a fighter-type aircraft configuration at subsonic and supersonic speeds

[AIAĂ PAPER 87-2619] p 589 A89-42931 modern fighter Modular avionics architecture aircraft

[MBB-FE-301/S/PUB/339] p 610 A89-42932 Development of a monolithic fuselage shell using

IMBB-FE-234/S/PUB/3381 p 606 A89-42934 Flight tests with the VFW 614 ATTAS laminar glove

p 606 A89-42936 [MBB-UT-0132-88-PUB] Accuracy problems in wind tunnels during transport aircraft development

[MBB-UT-134-88-PUB] p 619 A89-42937

CIDS- Cabin Intercommunication Data System	3D-Euler flow analysis of fanjet engine and turbine	A method for estimating the stochastic vibrational stress
[MBB-UT-020-87-PUB] p 600 A89-42938	powered simulator with experimental comparison in	level of impeller bladings of aircraft gas turbine engines
System testing exemplified by the A320-landing flaps	transonic speed [AIAA PAPER 89-1835] p 582 A89-42063	in operating conditions on the basis of developmental
flight maneuvering system [MBB-UT-0131-88-PUB] p 614 A89-42939	The structure of aerodynamic heating in	bench test data p 611 A89-40624 Determination of the deviation coefficients of a magnetic
Innovative production technology in aircraft construction:	three-dimensional shock wave/turbulent boundary layer	compass during a turn p 610 A89-40719
CIAM Forming 'made by MBB' - A highly productive	interactions induced by sharp and blunt fins	Optimization of the cold roll-forging of axial-flow
example p 625 A89-43076	[AIAA PAPER 89-1854] p 585 A89-42082	compressor blades with allowance for fatigue
Soaring on intelligent wings - Aerodynamicists at MBB	Numerical simulation of hypersonic viscous perfect gas	characteristics p 625 A89-42421
are already at work on tomorrow's projects	flow for the aerothermodynamic design of space planes at low angles of attack	Determination of the natural frequency spectra and
p 568 A89-43077	[AIAA PAPER 89-1699] p 591 A89-43215	modes of the fan blade rings of aviation gas turbine
Computation of flow and losses in transonic turbine	Transonic operational characteristics and performance	engines p 612 A89-42422
cascades p 589 A89-43108	[NAL-TR-968] p 591 N89-23408	Academician B. S. Stechkin's work in the development of jet engines p 634 A89-42452
IA63 Pampa - The completion of an aircraft development program p 568 A89-43112	Numerical simulation of hypersonic flow around a space	of jet engines p 634 A89-42452 Scientific and pedagogical work of academician B. S.
Simulation of the flow around a counterrotating shrouded	plane. 1: Basic development	Stechkin at the Zhukovskii Air Force Engineering
proprian p 589 A89-43113	[NAL-TR-976T] p 591 N89-23409 Characteristics of a five-hole spherical pitot tube	Academy p 635 A89-42453
Numerical simulation and experiments on leading-edge	(NAL-TR-971) p 610 N89-23463	Problems of the unification of the on-board systems of
vortices on modern wings, with European cooperation	Experiment on a cylindrical scramjet combustor. 2:	flight vehicles p 620 A89-42456
p 589 A89-43114	Simulated flight Mach number 6.7	A model of the reachability zone and its use in the ballistic
Cockpit-canopy fragmentation system for immediate	(NAL-TR-969) p 613 N89-23464	design of flight vehicles p 620 A89-42459
pilot rescue p 606 A89-43115 Future air navigation systems (FANS)	The functional mock-up test of the flight control system	Supersonic flow stagnation in a duct during
p 600 A89-43573	of the NAL QSTOL research aircraft ASKA	combustion p 587 A89-42460
Unsteady aerodynamic effects on bluff bodies	[NAL-TR-972] p 615 N89-23467 Wind tunnel tests on flutter control of a high-aspect-ratio	Experimental investigation of the characteristics of
p 596 N89-24278	cantilevered wing	combination engines p 612 A89-42462 Two-time probabilistic model of the evolution of aircraft
Image Signal Processing for Flight Guidance	[NAL-TR-978] p 616 N89-24321	engine reliability p 612 A89-42463
[DFVLR-MITT-88-32] p 602 N89-24295	Computational and experimental research on buffet	Three-dimensional effects in high-intensity vortices
Image signal processing for flight guidance: Overview	phenomena of transonic airfoils	p 588 A89-42464
and introduction to the main topics p 602 N89-24296 Determination of reference trajectories for testing	[NAL-TR-996T] p 616 N89-24322	Stability of compression shocks in ducts in the presence
navigation aids using an onboard CCD camera		of external effects p 588 A89-42465
p 602 N89-24303	K	A study of the characteristics of aircraft powerplants under conditions of optimal control of their principal
Transformation of real and virtual objects into a virtual,	• • • • • • • • • • • • • • • • • • • •	components p 612 A89-42466
visual environment p 627 N89-24304	KOREA(SOUTH)	Optimization of the parameters and characteristics of
Display of flight guidance information in the aircraft	Design point optimization of an axial-flow compressor	bypass engines p 613 A89-42467
cockpit p 610 N89-24305 Calculation of aircraft noise in the vicinity of civil airports	stage p 612 A89-41223	An analytical study of the characteristics of bypass
by a simultion procedure		engine mixing chambers in the case of incomplete mixing
[MPIS-7/1988] p 634 N89-24887	N	of gas flows p 613 A89-42468
	14	Flying wings (2nd revised and enlarged edition) p 568 A89-42488
l	NETHERLANDS	The shape of thin bodies with minimal drag
•	Quench sensitivity of airframe aluminium alloys	p 588 A89-42496
INDIA	[PB89-146039] p 621 N89-23656	High-efficiency thermal insulation in the base of airfields
Numerical solution of Navier-Stokes equations for	NEW ZEALAND	and highways p 619 A89-42499
two-dimensional viscous compressible flows	Adiabatic compressible flow in parallel ducts - An	Inverse problem in nozzle theory p 625 A89-42500
		Automatic control of jet engines (3rd revised and
p 570 A89-40903	approximate but rapid method of solution	Automatic control of jet engines (3rd revised and enlarged edition) p 613 A89-42509
p 570 A89-40903 A research facility for film cooling investigations with		Automatic control of jet engines (3rd revised and enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic
p 570 A89-40903 A research facility for film cooling investigations with emphasis on the instrumentation system	approximate but rapid method of solution p 571 A89-41775	enlarged edition) p 613 A89-42509
p 570 A89-40903 A research facility for film cooling investigations with	approximate but rapid method of solution p 571 A89-41775	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519
p 570 A89-40903 A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477	approximate but rapid method of solution	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901	approximate but rapid method of solution p 571 A89-41775	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901	approximate but rapid method of solution p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft	approximate but rapid method of solution p 571 A89-41775 P POLAND	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic conpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement	p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft	p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence	approximate but rapid method of solution p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832	p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic conpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	approximate but rapid method of solution p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer	p 571 A89-41775 P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic conpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors	p FOLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic conpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic conpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42536 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer Effect of the adiabatic exponent on the stability and
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation	PPOLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling	POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42567
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] SWITZERLAND The US airborne radar scene p 567 A89-40856	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42521 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer Nonstationary supersonic flow past a sphere moving
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling	POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42567
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transomic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42521 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles P 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42562
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] SWITZERLAND The US airborne radar scene p 567 A89-40856	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42537 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades	PPOLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles P 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs P 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 625 A89-42567 Under transition of a supersonic laminar boundary layer Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42567 The Mi-8 helicopter: Design and maintenance
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141278] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42521 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer P 588 A89-42567 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters)
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing linear vortex ground investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters) p 569 N89-24261
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airtields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42521 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer P 588 A89-42567 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters)
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-B helicopter: Design and maintenance p 606 A89-42600
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airtields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles S. P. Korolev in aviation. Ideas. Projects. Designs P 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Technology of aircraft construction (selected chapters) p 606 A89-42600 Technology of aircraft construction (selected chapters) p 569 N89-24261 UNITED KINGDOM Reconnaissance sensor management system - Vicon 2000 MILCOMP '88 - Military computers, graphics and
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoi p 569 A89-40893 A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89-41571	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB99-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42521 Frecision and efficiency of the radio electronic systems of aircraft p 625 A89-42521 Frecision and efficiency of the radio electronic systems of aircraft gradients p 625 A89-42525 Frecision and efficiency of the radio electronic systems of aircraft flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42535 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer P 588 A89-42567 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] UNITED KINGDOM Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 MILCOMP '88 - Military computers, graphics and software, Proceedings of the Conference and Exhibition,
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles P 605 A89-42525 Methods of flying model studies p 605 A89-42525 Aircraft flight safety: Methodological principles P 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] UNITED KINGDOM Reconnaissance sensor management system - Vicon 2000 p 609 A89-40254 MILCOMP '88 - Military computers, graphics and software; Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89-41571 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1502] p 574 A89-41799	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations Shock fitting algorithm applied to a transonic, full potential flow p 571 A89-41750 Numerical prediction of aerodynamic performance for	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional p 625 A89-42537 Feffect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42567 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40254 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40254 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40254 MILCOMP '88 - Military computers, graphics and software; Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [P89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759 Shock fitting algorithm applied to a transporte, full potential flow p 571 A89-41760	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Frecision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles P 605 A89-42525 Methods of flying model studies p 605 A89-42525 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42575 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40254 MILCOMP '88 - Military computers, graphics and software; Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759 Shock fitting algorithm applied to a transonic, full potential flow Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles Methods of flying model studies p 605 A89-42525 Methods of flying model studies p 605 A89-42535 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42567 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The MI-8 helicopter: Design and maintenance p 606 A89-42500 Technology of aircraft construction (selected chapters) p 569 A89-42561 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-42654 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-42561 Witham's F-function for a supersonically rotating propeller [AIAA PAPER 89-1107] p 632 A89-40475
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoi p 569 A89-40893 A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 504 A89-41571 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 A time-accurate iterative scheme for solving the	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759 Shock fitting algorithm applied to a transonic, full potential flow Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023	enlarged edition) Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p. 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p. 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p. 625 A89-42521 Friter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p. 605 A89-42525 Methods of flying model studies p. 605 A89-42535 Aircraft flight safety: Methodological principles p. 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs Formation of singularities in a three-dimensional boundary layer p. 625 A89-42537 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p. 588 A89-42567 The Mi-8 helicopter: Design and maintenance p. 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] UNITED KINGDOM Reconnaissance sensor management system - Vicon 2000 p. 609 A89-40264 MILCOMP '88 - Military computers, graphics and software, Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988 p. 629 A89-40425 Whitham's F-function for a supersonically rotating propeller [AIAA PAPER 89-1107] p. 632 A89-40475 MO-11 enters the fray p. 633 A89-40475 MO-11 enters the fray p. 634 A89-40475
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on Bairfoil A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1952] p 604 A89-41571 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 A time-accurate iterative scheme for solving the unsteady compressible flow equations	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations Shock fitting algorithm applied to a transonic, full potential flow p 571 A89-41750 Numerical prediction of aerodynamic performance for	enlarged edition) p 613 A89-42509 Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Frecision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles P 605 A89-42525 Methods of flying model studies p 605 A89-42525 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-42575 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] p 569 N89-24261 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40254 MilLCOMP '88 - Military computers, graphics and software; Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988 P 629 A89-40254 Whitham's F-function for a supersonically rotating propeller [AIAA PAPER 89-1107] p 632 A89-40475 MO-11 enters the fray p 603 A89-40857 A direct viscid-inviscid interaction scheme for the
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89-41571 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 A time-accurate iterative scheme for solving the unsteady compressible flow equations [AIAA PAPER 89-1992] p 577 A89-41835	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [P889-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759 Shock fitting algorithm applied to a transonic, full potential flow p 571 A89-41760 Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023	enlarged edition) Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure P 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure P 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles P 605 A89-42525 Methods of flying model studies P 605 A89-42525 Methods of flying model studies P 605 A89-42535 S. P. Korolev in aviation. Ideas. Projects. Designs P 635 A89-42537 Formation of singularities in a three-dimensional boundary layer P 588 A89-42557 Fiffect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic flow gas a sphere moving proper layer. P 589 A89-42509 The Mi-8 helicopter: Design and maintenance P 606 A89-42600 Technology of aircraft construction (selected chapters) p 569 N89-24261 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40857 A direct viscid-invis
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 A study on the air traffic management - The effect of departure regulation [AIAA PAPER 89-1500] p 604 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89-41571 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 A time-accurate iterative scheme for solving the unsteady compressible flow equations [AIAA PAPER 89-1955] p 577 A89-41835 A structure of leading-edge and tip vortices at a delta	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759 Shock fitting algorithm applied to a transonic, full potential flow Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023	enlarged edition) Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p. 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p. 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p. 625 A89-42521 Frecision and efficiency of the radio electronic systems of aircraft p. 625 A89-42521 Frecision and efficiency of the radio electronic systems of aircraft p. 625 A89-42525 Frecision and efficiency of the radio electronic systems of aircraft p. 625 A89-42525 Methods of flying model studies p. 605 A89-42525 Methods of flying model studies p. 605 A89-42535 Aircraft flight safety: Methodological principles p. 597 A89-42537 Formation of singularities in a three-dimensional boundary layer p. 625 A89-42537 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p. 588 A89-42567 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p. 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p. 588 A89-42572 The Mi-8 helicopter: Design and maintenance p. 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] UNITED KINGDOM Reconnaissance sensor management system - Vicon 2000 p. 609 A89-40264 MILCOMP '88 - Military computers, graphics and software, Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988 p. 629 A89-40425 Whitham's F-function for a supersonically rotating propeller [AIAA PAPER 89-1107] p. 632 A89-40475 A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p. 570 A89-89-4046
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL Multigrid Euler solver about arbitrary aircraft configurations with Cartesian grids and local refinement [AIAA PAPER 89-1960] p 575 A89-41806 Vorticity equation solutions for slender wings at high incidence [AIAA PAPER 89-1989] p 577 A89-41832 ITALY Analysis of the influence of the end-wall boundary layer growth on the performance of multistage compressors p 570 A89-41082 Supersonic flow computations by two-equation turbulence modeling [AIAA PAPER 89-1951] p 574 A89-41798 JAPAN Rough design criterion for ground and air resonance of helicopter rotor with three or more blades p 603 A89-40814 Measurements of laminar separation bubble on B3 airfoil p 569 A89-40893 A study on the air traffic management - The effect of departure regulation p 599 A89-40895 Search and rescue amphibious aircraft in Japan [AIAA PAPER 89-1500] p 604 A89-41571 Turbulence models for 3D transonic viscous flows [AIAA PAPER 89-1952] p 574 A89-41799 Use of high-resolution upwind scheme for vortical flow simulations [AIAA PAPER 89-1955] p 574 A89-41802 A time-accurate iterative scheme for solving the unsteady compressible flow equations [AIAA PAPER 89-1992] p 577 A89-41835	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141278] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations Shock fitting algorithm applied to a transonic, full potential flow p 571 A89-41760 Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023	enlarged edition) Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure P 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure P 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles P 605 A89-42525 Methods of flying model studies P 605 A89-42525 Methods of flying model studies P 605 A89-42535 S. P. Korolev in aviation. Ideas. Projects. Designs P 635 A89-42537 Formation of singularities in a three-dimensional boundary layer P 588 A89-42557 Fiffect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer P 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic flow gas a sphere moving proper layer. P 589 A89-42509 The Mi-8 helicopter: Design and maintenance P 606 A89-42600 Technology of aircraft construction (selected chapters) p 569 N89-24261 UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40857 A direct viscid-invis
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-PR-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations Shock fitting algorithm applied to a transonic, full potential flow p 571 A89-41760 Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023 U U.S.S.R. Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596 Probabilistic-parametric models of the long-term	enlarged edition) Calculation of stationary subsonic and transonic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p. 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p. 588 A89-42519 Precision and efficiency of the radio electronic systems of aircraft p. 625 A89-42521 Frecision and efficiency of the radio electronic systems of aircraft p. 625 A89-42521 Frecision and efficiency of the radio electronic systems of aircraft p. 625 A89-42525 Frecision and efficiency of the radio electronic systems of aircraft p. 625 A89-42525 Methods of flying model studies p. 605 A89-42525 Methods of flying model studies p. 605 A89-42533 S. P. Korolev in aviation. Ideas. Projects. Designs p. 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p. 625 A89-42557 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p. 588 A89-42567 Nonstationary supersonic flow past a sphere moving through a thermal inhomogeneity p. 588 A89-42567 The Mi-8 helicopter: Design and maintenance p. 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] UNITED KINGDOM Reconnaissance sensor management system - Vicon 2000 p. 609 A89-40254 MILCOMP '88 - Military computers, graphics and software; Proceedings of the Conference and Exhibition, London, England, Sept. 27-29, 1988 p. 629 A89-40455 MD-11 enters the fray p. 632 A89-40455 A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p. 570 A89-401045 A review of methods of estimating performance characteristics of centrifugal compressors p. 623 A89-41083
A research facility for film cooling investigations with emphasis on the instrumentation system [NAL-TM-PR-8704] p 619 N89-23477 An intelligent fiberoptic data bus for fly-by-light applications [NAL-TM-SE-8707] p 634 N89-24901 ISRAEL	P POLAND The joined wing - The benefits and drawbacks. II p 603 A89-41029 S SWEDEN Large-scale viscous simulation of laminar vortex flow over a delta wing p 569 A89-40901 Investigations on the cracking behavior of joints in airfields and roads: Field investigations and laboratory simulations [PB89-141279] p 619 N89-23479 SWITZERLAND The US airborne radar scene p 567 A89-40856 NASP keeps moving p 620 A89-43620 T TAIWAN Numerical study of two-dimensional impinging jet flowfields p 569 A89-40902 A comparative study of the Coakley and TVD schemes for steady-state calculations of one-dimensional Euler equations p 571 A89-41759 Shock fitting algorithm applied to a transonic, full potential flow p 571 A89-41760 Numerical prediction of aerodynamic performance for low Reynolds number airfoils p 579 A89-42023 U.S.S.R. Hydraulic resistance of the inlet channels of a rotor cooling system p 611 A89-40596	enlarged edition) Calculation of stationary subsonic and transomic nonpotential flows of an ideal gas in axisymmetric channels Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42519 Supersonic flow past a sphere in a gas with a periodic density field structure p 588 A89-42521 Precision and efficiency of the radio electronic systems of aircraft p 625 A89-42524 Fitter's handbook for the assembly of the hydraulic, gas, and fuel system lines of flight vehicles p 605 A89-42525 Methods of flying model studies p 605 A89-42525 Aircraft flight safety: Methodological principles p 597 A89-42536 S. P. Korolev in aviation. Ideas. Projects. Designs p 635 A89-42537 Formation of singularities in a three-dimensional boundary layer p 588 A89-4257 Effect of the adiabatic exponent on the stability and turbulent transition of a supersonic laminar boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42569 Effect of gas dissociation and ionization on the transition of a supersonic boundary layer p 588 A89-42572 The Mi-8 helicopter: Design and maintenance p 606 A89-42600 Technology of aircraft construction (selected chapters) [AD-A199946] UNITED KINGDOM Reconnaissance sensor management system - Vicon p 609 A89-40254 Whitham's F-function for a supersonically rotating propeller [AIAA PAPER 89-1107] MD-11 enters the fray p 632 A89-40857 A direct viscid-inviscid interaction scheme for the prediction of two-dimensional aerofoil lift and pitching moment in incompressible flow p 570 A89-41045 A review of methods of estimating performance characteristics of centrifugal compressors

The effect of an adverse pressure gradient on the drag reduction performance of manipulators

reduction performance of manipulators p 571 A89-41771

Validation of aerodynamic parameters for high-incidence research models p 578 A89-42012

Experiment and computation in hypersonic cavity ...

Experiment and computation in hypersonic flows
[AIAA PAPER 89-1842] p 583 A89-42070
Turbulent flow predictions for afterbody/nozzle geometries including base effects
[AIAA PAPER 89-1865] p 585 A89-42092
An experimental study of hypersonic turbulence on a

An experimental step, sharp cone [AIAA PAPER 89-1866] p 586 A89-42093
The VAAC/VSTOL Flight Control Research Project p 615 A89-43104

Braze repair of aero engine components
p 626 A89-43535
Comparison of interpolation algorithms for speed control

in air traffic management [AD-A206314] p 601 N89-23444

YUGOSLAVIA

Improved time-domain stability robustness measures for linear regulators p 630 A89-43068

CONTRACT NUMBER INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 244)

October 1989

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under the contract are arranged in ascending order with the AIAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

AF PROJ. 2480	p 621	N89-23712
AF PROJ. 3005	p 627	N89-23831
AF-AFOSR-86-0082	p 584	A89-42077
	p 584	A89-42078
AF-AFOSR-86-0112	p 585	A89-42081
AF-AFOSR-86-0148	p 572	A89-41777
AF-AFOSR-87-0074	p 577	A89-41841
AF-AFOSR-88-0139	p 590	A89-43188
AF-AFOSR-88-0146	p 590	A89-43187
AF-AFOSR-89-0283	p 587	A89-42139
DA PROJ. 1L1-61102-AH-45-A	p 595	N89-24264
DA PROJ. 1L1-62211-A-47-A	p 592	N89-23410
DA PROJ. 4A7-62730-AT-42	p 626	N89-23740
DAAG09-85-G-0035	p 568	N89-23407
DAAG29-82-K-0084	p 583	A89-42072
DAAG29-84-K-0004	p 593	N89-23423
DAAH01-88-C-0865	p 596	N89-24272
DAAL03-88-C-0006	p 584	A89-42076
DAAL03-88-K-0062	p 624	A89-41843
DE-AC02-76ER-03077	p 572	A89-41777
DE-AC04-76DP-00789	p 590	A89-43194
DFG-HU-254/8	p 579	A89-42017
DFG-RU-334/1-6	p 583	A89-42068
DFG-ZI-18-31	p 582	A89-42062
DOT-FA79WA1-059	p 626	N89-23740
DRET-87-001	p 629	N89-24777
DRET-88-34-001	p 609	N89-24311
DTFA01-80-Y-10546	p 626	N89-23758
DTFA01-88-Y-01073	p 597	N89-23435
FAA-TO701-R	p 619	N89-23480
FAA-T0503-M	p 630	N89-24051
FAA-T0604-F	p 601	N89-24291
F04704-88-C-0017	p 591	A89-43230
F08635-89-C-0211	p 576	A89-41826
F19628-85-C-0002	p 626	N89-23758
F33615-80-C-5153	p 623	A89-41547
F33615-83-C-3603	p 606	A89-43058
F33615-84-C-3208	p 608	N89-23457
F33615-86-C-0530	p 594	N89-23429
	p 594	N89-23430
F33615-87-C-3004	p 590	A89-43178
F49620-85-C-0027	p 582	A89-42065
F49620-86-K-0020	p 593	N89-23420
* ***	p 594	N89-23426
F49620-87-C-0046	p 607	N89-23452
F49620-88-C-0097	p 627	N89-23831
MIPR-FY1455-86-N-0657	p 621	N89-23712
	,	
NAGW-1022	p 591	A89-43228
NAGW-1061	p 590	A89-43187
NAGW-1072	p 582	A89-42058
NAGW-1331	p 591	A89-43228

NAGW-965	5 500	ADD 42100
		A89-43188
NAG1-345		A89-43057
	p 615	N89-23470
NAG1-390	p 632	A89-40904
NAG1-625	p 595	N89-24266
*****		A89-41825
NAG1-690		A89-42019
NAG1-722	p 631	A89-40470
NAG1-732	p 593	N89-23418
NAG1-805	p 587	A89-42114
NAG1-819	p 632	A89-40477
NAG1-869	p 572	A89-41780
	p 573	A89-41792
NAG1-886	p 586	A89-42103
	p 609	N89-24315
NAG1-8	p 582	A89-42065
NAG1-937	p 587	A89-42114
NAG2-70	p 569	A89-39867
NAG3-354	p 632	A89-40478
NAG3-577	p 575	A89-41814
NAG3-601	p 570	A89-40905
NAG3-626	p 604	A89-41093
NAG3-724	p 573	A89-41794
NAG3-764	p 579	A89-42036
NASA ORDER L-98100-B	p 624	A89-41889
NAS1-17145	p 584	A89-42075
NAS1-17497	p 627	N89-23920
NAS1-17919	p 581	A89-42049
NAS1-18020	p 578	A89-42013
NAS1-18027	p 615	N89-23471
NIA C 4 40007	p 633	
		N89-24141
NAS2-12402	p 618	N89-24328
NAS2-12810	p 592	N89-23414
NAS2-12861	p 626	A89-43177
NAS3-23721	p 633	N89-24139
NAS3-25266	p 631	A89-40473
	p 576	A89-41823
NATO-0441/87	p 587	A89-42139
NCA2-17	p 570	A89-40908
NCA2-192	p 584	A89-42078
NCA2-313	p 590	A89-43188
NCC1-100	p 590	A89-43212
NCC1-112	p 591	A89-43228
NCC2-433	p 595	N89-24265
NCC2-440	p 583	A89-42067
	p 579	A89-42024
NSC-76-0401-E008-06	p 571	A89-41760
NSF ASC-88-58101	p 572	A89-41777
NSF ATM-85-13975	p 624	A89-41889
NSF DMS-86-57319	p 572	A89-41777
NSF EET-88-57500	p 573	A89-41792
NSF MEA-80-56237	p 622	A89-40907
N00014-85-C-0702	p 591	A89-43537
N00014-85-K-0519	p 601	N89-23440
NO004 4 00 14 0000		
	p 600	A89-42680
N00014-86-K-0288	p 623	A89-40921
N00014-86-K-0691	p 569	A89-39867
N00014-87-K-0168	p 578	A89-41903
	p 579	A89-42036
N60530-85-C-0191	p 612	A89-41224
N62271-86-M-0202	p 573	A89-41790
N62271-87-M-0215	p 573	A89-41790
DUO DUO COD COCURS DA		
	p 597	A89-42151
STPA-8595-004	p 596	N89-24274
505-55-41-04	p 615	N89-23471
505-61-21	p 596	N89-24285
505-61-41-02	p 615	N89-23470
505-61-51-10	p 592	N89-23410
	p 595	N89-24264
505-61-51	p 592	N89-23414
	p 627	N89-24563
505-62-21		
505-62-21	p 592	N89-23413
	p 592	N89-23417
	p 613	N89-23465
	p 627	N89-23809
505-62-71	p 614	N89-24319
505-63-01-10	p 628	N89-24624
	p 628	N89-24654
505-63-1B	,	
505-63-1B	p 622	N89-24459
505-63-21-02	p 606	N89-23447
505-63-21-04	p 608	N89-24308
	p 000	
	p 609	N89-24313

	p 617	N89-24324
505-63-51-01	p 627	' N89-23920
505-63-51-03	p 630	N89-24079
505-63-51	p 628	N89-24607
505-66-01-02	p 615	N89-23468
	p 615	N89-23469
505-66-11	p 618	N89-24328
505-66-41-51	p 601	N89-24293
505-67-21	p 598	N89-24290
505-69-61-03	p 592	N89-23415
535-03-01-01	p 594	N89-23433
535-03-01	p 633	N89-24138
	p 633	N89-24139
	p 633	N89-24886
535-03-11-03	p 634	N89-24888
535-03-11-04	p 633	N89-24141
992-21-01	p 617	N89-24323
999-12-08	p 617	N89-24327

Typical Report Number Index Listing

Listings in this index are arranged alphanumerically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A-88266	р 618	N89-24329	
A-88271	р 617	N89-24323	* #
A-89047	р 627	N89-24563	* #
A-89074	р 596	N89-24285	* #
A-89116	р 598	N89-24290	* #
	•		
AD-A193416	р 630	N89-24051	#
AD-A199946		N89-24261	#
AD-A204086		N89-23449	#
AD-A205303	p 607	N89-23451	#
AD-A205351		N89-23438	#
AD-A205440		N89-23407	#
AD-A205462	. =	N89-23420	#
AD-A205470	•	N89-23712	#
AD-A205503		N89-23452	#
AD-A205559	- 000	N89-23740	#
AD-A205678		N89-23454	#
AD-A205723		N89-23473	#
AD-A205730	- 007	N89-23455	#
AD-A205739	p 593	N89-23423	#
AD-A205771		N89-23424	#
AD-A205783	- 004	N89-23440	#
AD-A205823		N89-23425	#
AD-A205023		N89-23482	#
AD-A205939	- 007	N89-23831	#
AD-A205989		N89-23426	#
AD-A205998	- 000	N89-23774	#
AD-A206024		N89-23475	#
AD-A206049	p 594	N89-23427	#
AD-A206068	p 616	N89-23476	#
AD-A206083	`	N89-23443	#
AD-A206135		N89-24127	#
AD-A206138		N89-23428	#
AD-A206181		N89-24309	#
AD-A206202	p 617	N89-24325	#
AD-A206242	p 595	N89-24270	#
AD-A206255		N89-24289	#
AD-A206286	р 608	N89-23457	#
AD-A206290	р 594	N89-23429	#
AD-A206291	р 594	N89-23430	#
AD-A206314	p 601	N89-23444	#
AD-A206359	p 595	N89-24271	#
AD-A206360	p 596	N89-24272	#
AD-A206422		N89-24294	#
AD-A206430		N89-24263	#
AD-A206578	р 596	N89-24273	#
AD-D013962	р 616	N89-23474	#
AD-E501079	р 616	N89-23473	#
AFIT/GA/AA/89M-01	р 630	N89-24127	#
AFIT/GAE/AA/88D-02	p 593	N89-23424	#
AFIT/GAE/AA/88D-06	'	N89-24271	#
ALTI/GAL/AA/000-00	р эээ	1403-646/1	π

AFIT/GAE/AA/88D-11	n 502	N89-23425 #
AFIT/GAE/AA/88D-33		N89-23427 #
AFIT/GAE/AA/89M-2	p 594	N89-23428 #
AFIT/GAE/AA/89M-4	p 595	N89-24270 #
AFIT/GE/ENG/89M-1	n 616	N89-23476 #
AFIT/GE/ENG/89M-5	p 616	N89-23475 #
AFIT/GE/ENG/09M-5	P 616	
AFIT/GE/ENG/89M-6-VOL-1		
AFIT/GE/ENG/89M-6-VOL-2		N89-24325 #
AFIT/GE/ENG/89M-8	p 601	N89-23443 #
AFIT/GSE/AA/88D-2	p 607	N89-23454 #
		**** *** **
AFIT/GST/ENS/89M-05	p 607	N89-23455 #
AFOOD OO OLOTED	- 007	NIOO 00450 #
AFOSR-89-0127TR		N89-23452 #
AFOSR-89-0232TR		N89-23426 #
AFOSR-89-0275TR		N89-23420 #
AFOSR-89-0364TR	p 627	N89-23831 #
AFWAL-TR-87-2042-VOL-8		N89-23712 #
AFWAL-TR-88-3119	p 608	N89-23457 #
AIAA PAPER 87-2619		A89-42931
AIAA PAPER 89-1046		A89-40470 * #
AIAA PAPER 89-1052	p 632	A89-41042 #
AIAA PAPER 89-1059	p 631	A89-40472 * #
AIAA PAPER 89-1060		A89-40473 * #.
AIAA PAPER 89-1080		A89-40474 #
AIAA PAPER 89-1107		A89-40475 #
AIAA PAPER 89-1138		A89-40476 #
AIAA PAPER 89-1139		A89-40477 * #
AIAA PAPER 89-1144	0 631	A89-40175 * #
		A89-40478 * #
		A89-41568 #
		A89-41569 #
		A89-41570 #
	p 606	
AIAA PAPER 89-1499	p 604	
AIAA PAPER 89-1500		A89-41571 #
AIAA PAPER 89-1533		A89-41564 #
AIAA PAPER 89-1540		A89-41562 #
AIAA PAPER 89-1541		A89-41563 #
AIAA PAPER 89-1651	p 626	A89-43177 * #
AIAA PAPER 89-1652		A89-43178 #
AIAA PAPER 89-1663		A89-43187 * #
AIAA PAPER 89-1665		A89-43188 * #
AIAA PAPER 89-1670		A89-43193 * #
AIAA PAPER 89-1671		A89-43194 #
AIAA PAPER 89-1672		A89-43195 * #
AIAA PAPER 89-1693		A89-43211 #
AIAA PAPER 89-1695		A89-43212 * #
AIAA PAPER 89-1697	p 5013	A89-43213 # A89-43215 #
		A89-43216 * #
AIAA PAPER 89-1700		A89-43228 * #
		A89-43230 #
		A89-43268 * #
AIAA PAPER 89-1755	p 020	A89-42026 #
AIAA PAPER 89-1790	h 218	A89-42026 # A89-42027 * #
· · · · · · · · · · · · · · · · · · ·		A89-42027 # A89-42028 #
		A89-42026 # A89-42036 * #
AIAA PAPER 89-1801	p 579	
AIAA PAPER 89-1803	D 580	A89-42037 # A89-42038 #
AIAA PAPER 89-1807	b 203	A89-42950 #
AIAA PAPER 89-1811		A89-42041 #
AIAA PAPER 89-1813		A89-42043 * #
AIAA PAPER 89-1814		A89-42044 #
AIAA PAPER 89-1815		A89-42045 # A89-42046 * #
AIAA PAPER 89-1816		
AIAA PAPER 89-1817		
AIAA PAPER 89-1818		A89-42048 #
AIAA PAPER 89-1819		A89-42049 * #
AIAA PAPER 89-1821		A89-42051 * #
AIAA PAPER 89-1822		A89-42052 #
AIAA PAPER 89-1826	p 581	A89-42056 * #
AIAA PAPER 89-1828	p 581	A89-42057 #
AIAA PAPER 89-1829		A89-42058 * #
AIAA PAPER 89-1832		A89-42060 #
AIAA PAPER 89-1833		A89-42061 #
AIAA PAPER 89-1834		A89-42062 #
AIAA PAPER 89-1835		A89-42063 #
AIAA PAPER 89-1836		A89-42064 * #
AIAA PAPER 89-1837	p 582	A89-42065 * #

NIAA PAPER 89-1838		p 583	A89-42066 *	#
NAA PAPER 89-1839		p 583	A89-42067 *	#
NIAA PAPER 89-1840		p 583	A89-42068	#
MAA PAPER 89-1842		p 583	A89-42070	π #
NAA PAPER 89-1843		p 583	A89-42071	#
MAA PAPER 89-1844		p 583	A89-42072	#
MAA PAPER 89-1845		p 584	A89-42073 *	#
MAA PAPER 89-1846		p 584	A89-42074 *	#
MAA PAPER 89-1847		p 584	A89-42075 *	#
MAA PAPER 89-1848		p 584	A89-42076 *	#
MAA PAPER 89-1849		p 584	A89-42077	#
MAA PAPER 89-1850		p 584	A89-42078 *	#
AIAA PAPER 89-1851		p 585	A89-42079	#
NAA PAPER 89-1852		p 585	A89-42080	#
MAA PAPER 89-1853		p 585	A89-42081	#
MAA PAPER 89-1854		p 585	A89-42082	#
NAA PAPER 89-1855		p 585	A89-42083	#
MAA PAPER 89-1856		p 585	A89-42084	#
MAA PAPER 89-1865		p 585	A89-42092	#
NAA PAPER 89-1866		p 586	A89-42093	#
MAA PAPER 89-1867		р 586	A89-42094	#
NAA PAPER 89-1868	•••••	p 586	A89-42095	#
MAA PAPER 89-1874		p 586	A89-42099	#
MAA PAPER 89-1875		p 586	A89-42100 *	#
MAA PAPER 89-1876	•••••	p 586	A89-42101	#
MAA PAPER 89-1878		p 586	A89-42103 *	#
MAA PAPER 89-1892	***************************************	p 587	A89-42114 *	#
NAA PAPER 89-1893		р 587 р 587	A89-42115 * A89-42116	#
MAA PAPER 89-1894 MAA PAPER 89-1895		p 587	A89-42117	#
MAA PAPER 89-1923		p 587	A89-42139	π #
MAA PAPER 89-1930		p 572	A89-41777	#
MAA PAPER 89-1932		p 572	A89-41779	#
IAA PAPER 89-1933		p 572	A89-41780 *	#
IAA PAPER 89-1937		p 572	A89-41784	#
IAA PAPER 89-1938		p 572	A89-41785	#
IAA PAPER 89-1939		p 573	A89-41786	#
IAA PAPER 89-1942		p 573	A89-41789	#
IAA PAPER 89-1943		p 573	A89-41790	#
IAA PAPER 89-1945		p 573	A89-41792 *	#
IAA PAPER 89-1947		p 573	A89-41794 *	#
IAA PAPER 89-1948		p 573	A89-41795	#
IAA PAPER 89-1949		p 630	A89-41796	#
IAA PAPER 89-1950		p 573	A89-41797	#
IAA PAPER 89-1951		p 574	A89-41798 *	#
IAA PAPER 89-1952		p 574	A89-41799	#
MAA PAPER 89-1953	***************************************	p 574 p 574	A89-41800 * A89-41802 *	# #
MAA PAPER 89-1955 MAA PAPER 89-1957		p 574	A89-41804 *	#
MAA PAPER 89-1958		p 578	A89-41842	#
MAA PAPER 89-1959		p 574	A89-41805	#
MAA PAPER 89-1960		p 575	A89-41806	#
MAA PAPER 89-1961		p 575	A89-41807	#
IAA PAPER 89-1962		p 624	A89-41843	#
MAA PAPER 89-1963		p 575	A89-41808	#
MAA PAPER 89-1969		p 577	A89-41841	#
MAA PAPER 89-1970		p 575	A89-41814 *	#
NAA PAPER 89-1971		p 575	A89-41815 *	#
NAA PAPER 89-1972		p 575	A89-41816 *	#
NAA PAPER 89-1974		p 576	A89-41818 *	#
NIAA PAPER 89-1975		p 578	A89-41844 A89-41819 *	#
NAA PAPER 89-1976 NAA PAPER 89-1977		p 576 p 576	A89-41819 A89-41820	#
AIAA PAPER 89-1980			A89-41823 *	#
MIAA PAPER 89-1982			A89-41825 *	#
MAA PAPER 89-1983		p 576	A89-41826	#
MAA PAPER 89-1987		p 633	A89-41830	#
MAA PAPER 89-1989		p 577	A89-41832	#
MAA PAPER 89-1992			A89-41835	#
MAA PAPER 89-1993			A89-41836	#
MAA PAPER 89-1994		p 577	A89-41837 *	#
		p 577	A89-41838	#
MAA PAPER 89-1996			A89-41839 *	#
NAA-89-1143		p 633	N89-24138 *	#
\RDU-TI-953		p 607	N89-23451	#
ARI-RN-89-09		p 568	N89-23407	#
ARL-AERO-TM-400				#

ARO-20928.6-EG p 593 N89-23423 #

ASD-TR-88-5037 p 6	26 N89-23774 #	L-16516	p 594	N89-23433 * #	NASA-CP-3034-PT-2	р 628	N89-24654 * #
		L-16533	p 592	N89-23410 * #			
ASU-CR-R-89021 p 5	93 N89-23423 #	L-16544	p 606	N89-23447 * #	NASA-CR-177515	p 618	N89-24328 * #
		L-16560-PT-2	p 628	N89-24654 * #	NASA-CR-177523	. p 592	N89-23414 * #
ATC-168-EXEC-SUMM p 6	26 NRQ-22758 #	L-16565			NASA-CR-181766		
ATC-100-EXEC-30191191 p 0	10 1403-23730 #	L-16567			NASA-CR-181819		
AVECOM TM 80 B 000	20 NRO 24070 * #	£ 1000/	p 552	1400 20410 //	NASA-CR-182257-VOL-1		
AVSCOM-TM-89-B-003 p 6	30 N89-240/9 #	LIDS-P-1849	- 601	N89-23440 #			
		LID3-F-1049	p 001	1109-23440 #	NASA-CR-183389		
AVSCOM-TP-88-B-001 p 5	35 N89-24264 * #	MDD 55 400 (0 (DUD (00)	. 500	***	NASA-CR-184992		
		MBB-FE-122/S/PUB/304	р 589	A89-42931	NASA-CR-185016		
AVSCOM-TR-89-B-001 p 5		MBB-FE-234/S/PUB/338			NASA-CR-185319		
AVSCOM-TR-89-C-010 p 6	28 N89-24607 * #	MBB-FE-301/S/PUB/339	p 610	A89-42932	NASA-CR-185326		
					NASA-CR-4230	. p 615	N89-23470 * #
BBN-6741-VOL-1 p 5	94 N89-23429 #	MBB-UD-525-88-PUB			NASA-CR-4231	. p 615	N89-23471 * #
BBN-6742-VOL-2 p 5		MBB-UD-526-88-PUB	p 568	A89-42928			
25.70. 12.7022	"	MBB-UD-528-88-PUB			NASA-EP-259	. p 568	N89-23406 * #
CERT-RT-QA-26/5025-AYD p 5	96 N89-24274 #	MBB-UD-529-88-PUB			NASA-EP-262		
OL111-111-OA-20/3025-A1D p 3	30 1103-E4214 #	MBB-UD-530-88-PUB					
CRREL-SR-89-2 p 6	26 N89-23740 #	MBB-UD-531-88-PUB			NASA-TM-100638	0.634	NOO 24000 * #
CHREL-3H-09-2 p 0	10 1409-23740 #	MBB-UD-532-88-PUB			NASA-TM-101026		
DERAT-26/5025-14 p 5		MBB-UD-533-88-PUB			NASA-TM-101062		
DEHA1-26/5025-14 p 5	96 N89-24274 #	MBB-UD-534-88-PUB			NASA-TM-101074		
DE: # D 1 #FT 40 00							
DFVLR-MITT-88-32 p 6)2 N89-24295 #	MBB-UD-535-88-PUB	р 622	A89-39841 #	NASA-TM-101083		N89-24285 * #
					NASA-TM-101480		N89-24886 * #
DODA-AR-003-256 p 6		MBB-UT-0131-88-PUB			NASA-TM-101521		N89-24293 * #
DODA-AR-005-534 p 6	07 N89-23449 #	MBB-UT-0132-88-PUB			NASA-TM-101570		N89-24313 * #
		MBB-UT-020-87-PUB			NASA-TM-101572	. p 617	N89-24324 * #
DOT/FAA/AM-89/1 p 6)2 N89-24294 #	MBB-UT-134-88-PUB	p 619	A89-42937	NASA-TM-101574	. p 608	N89-24308 * #
					NASA-TM-101579		N89-25112 * #
DOT/FAA/CT-TN87/43 p 6	30 N89-24051 #	MBB-Z-177-88-PUB	р 635	A89-42927	NASA-TM-101582		N89-24314 * #
DOT/FAA/CT-TN88/42 p 6			,		NASA-TM-101957		N89-24459 * #
		MPIS-7/1988	p 634	N89-24887 #	NASA-TM-101987		N89-23465 * #
DOT/FAA/CT-TN88/45 p 6		10 77 1000	p 004	E-1001 #	NASA-TM-101996		N89-24138 * #
DOT/FAA/CT-TN89/23 p 6		NAL-TM-PR-8704	n 640	N89-23477 #	NASA-TM-101996		
DOT/FAA/CT-TN89/3 p 5		NAL-1M-PH-8704	ротэ	N89-234// #			
DOT/FAA/CT-TN89/4 p 6	00 N89-23438 #	NAL TALOF COOR	- 00.	NOO 0 1001 "	NASA-TM-102005		N89-23809 * #
		NAL-TM-SE-8707	р 634	N89-24901 #	NASA-TM-102018		N89-23417 * #
DOT/FAA/CT-89/14-VOL-1 p 60)1 N89-24292 #				NASA-TM-102098		N89-24319 * #
		NAL-TR-968	p 591	N89-23408 #	NASA-TM-102201	. p 598	N89-24290 * #
DOT/FAA/DS-89/07 p 59	97 N89-23435 #	NAL-TR-969	p 613	N89-23464 #	NASA-TM-4072	. p 628	N89-24624 * #
DO1111111 DO 00101	20 ,,	NAL-TR-971		N89-23463 #	NASA-TM-4111		N89-23433 * #
DOT/FAA/PS-89/1 p 6	26 N89-23740 #	NAL-TR-972		N89-23467 #	NASA-TM-4113		N89-23410 * #
DOT/FAA/PS-89/6-EXEC-SUMM p 6		NAL-TR-976T			NASA-TM-4116		N89-23447 * #
DOT/FAA/PS-89/6-EXEC-SUMM P 0	.0 1469-23730 #	NAL-TR-978			NASA-TM-4119		
DDIC DD 100010 - 60	1 N89-23444 #	NAL-TR-996T		N89-24322 #		. р ооо	1100 24075 //
DRIC-BR-109213 p 60	1 1989-23444 #	14AL-111-9901	рото	1103-24322 #	NASA-TP-2832	n E0E	N89-24264 * #
		NAS 1.15:100638	5 634	N89-24888 * #	NASA-TP-2857		
D210-12328-3 p 62	/ N89-23920 * #						N89-24327 * #
		NAS 1.15:101026		N89-24329 * #	NASA-TP-2907		N89-23468 * #
E-4588 p 62		NAS 1.15:101062		N89-24323 * #	NASA-TP-2908		N89-23469 * #
E-4606 p 63		NAS 1.15:101074		N89-24563 * #	NASA-TP-2911	. p 628	N89-24607 * #
E-4689 p 6	3 N89-23465 * #	NAS 1.15:101083		N89-24285 * #			
E-4700 p 63	3 N89-24138 * #	NAS 1.15:101480	. р 633	N89-24886 * #	NEAR-TR-398	p 627	N89-23831 #
E-4703 p 59		NAS 1.15:101521	. p 601	N89-24293 * #			
E-4711 p 62		NAS 1.15:101570	. p 609	N89-24313 * #	NLR-MP-88003-U	p 621	N89-23656 #
E-4727 p 59		NAS 1.15:101572	. p 617	N89-24324 * #		•	••
E-4735 p 62		NAS 1.15:101574		N89-24308 * #	NTSB/AAR-88/10	n 598	N89-23436 #
E-4861 p 6		NAS 1.15:101579		N89-25112 * #			
Е-4001 р о	4 1405-24315 #	NAS 1.15:101582		N89-24314 * #	NTSB/ARC-89/01	n 597	N89-23434 #
FT11 00 0 100 1	4 NOO 04007 #	NAS 1.15:101957		N89-24459 * #		. p 557	1403-23434 #
ETN-89-94384 p 63	14 N89-24887 #	NAS 1.15:101987		N89-23465 * #	ONERA-RF-19/7154-PY	- 000	NOO 04777 #
ETN-89-94477 p 60		NAS 1.15:101996			ONERA-RF-19/7/234-PY		
ETN-89-94478 p 60				.,	UNERA-RF-19//234-PY	. р 629	N89-24777 #
ETN-89-94522 p 59	6 N89-24274 #	NAS 1.15:101998		N89-23413 * #	PP-00 010110		
ETN-89-94527 p 62	9 N89-24777 #	NAS 1.15:102005			PB88-910412		
ETN-89-94528 p 60		NAS 1.15:102018			PB89-141279		
ETN-89-94645 p 60		NAS 1.15:102098			PB89-146039		
•		NAS 1.15:102201	. р 598	N89-24290 * #	PB89-151021	. p 597	N89-23434 #
FAA-PM-86/20 p 60	1 N89-24293 * #	NAS 1.15:4072	. p 628	N89-24624 * #			
,		NAS 1.15:4111					
FLOW-RR-470 p 59	. NOO 04070 "		. p J54	N89-23433 * #	POLY-AE-88-8		N89-23452 #
,, p p	6 N89-242/2 #	NAS 1.15:4113			POLY-AE-88-8		N89-23452 #
	6 N89-242/2 #	NAS 1.15:4113 NAS 1.15:4116	. p 592	N89-23433 * #		. р 607	"
ETD-ID(BS)T-0616-88		NAS 1.15:4116	. р 592 . р 606	N89-23433 * # N89-23410 * # N89-23447 * #	REPT-20/7234-PY-382-R	. р 607 . р 609	N89-24311 #
FTD-ID(RS)T-0616-88 p 56		NAS 1.15:4116 NAS 1.15:4119	p 592 p 606 p 630	N89-23433 * # N89-23410 * #	REPT-20/7234-PY-382-RREPT-882-111-101	. p 607 . p 609 . p 608	N89-24311 # N89-23460 #
	9 N89-24261 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259	p 592 p 606 p 630 p 568	N89-23433 * # N89-23410 * # N89-23447 * # N89-24079 * # N89-23406 * #	REPT-20/7234-PY-382-R	. p 607 . p 609 . p 608	N89-24311 # N89-23460 #
FTD-ID(RS)T-0616-88	9 N89-24261 #	NAS 1.15:4116	p 592 p 606 p 630 p 568 p 569	N89-23433 * # N89-23410 * # N89-23447 * # N89-24079 * # N89-23406 * # N89-24262 *	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102	p 607 p 609 p 608 p 608	N89-24311 # N89-23460 # N89-23461 #
GAO/T-NSIAD-89-6 p 56	9 N89-24261 # 9 N89-24263 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177515	p 592 p 606 p 630 p 568 p 569 p 618	N89-23433 * # N89-23410 * # N89-23447 * # N89-24079 * # N89-23406 * # N89-24262 * N89-24328 * #	REPT-20/7234-PY-382-RREPT-882-111-101	p 607 p 609 p 608 p 608	N89-24311 # N89-23460 # N89-23461 #
	9 N89-24261 # 9 N89-24263 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523	p 592 p 606 p 630 p 568 p 569 p 618 p 592	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-24079 ° # N89-23406 ° * N89-24328 ° # N89-23414 ° #	REPT-20/7234-PY-382-R	p 607 p 609 p 608 p 608	N89-24311 # N89-23460 # N89-23461 # N89-23444 #
GAO/T-NSIAD-89-6 p 56	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523 NAS 1.26:181766	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-24079 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23414 ° # N89-23920 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102	p 607 p 609 p 608 p 608	N89-24311 # N89-23460 # N89-23461 # N89-23444 #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627 p 633	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-24079 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23414 ° # N89-23920 ° # N89-234141 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23	p 607 p 609 p 608 p 608 p 601 p 619	N89-24311 # N89-23460 # N89-23461 # N89-23444 # N89-23479 #
GAO/T-NSIAD-89-6 p 56	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627 p 633 p 633	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° # N89-24262 ° # N89-23214 ° # N89-23414 ° # N89-24141 ° # N89-24141 ° #	REPT-20/7234-PY-382-R	p 607 p 609 p 608 p 608 p 601 p 619	N89-24311 # N89-23460 # N89-23461 # N89-23444 # N89-23479 #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:183389	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627 p 633 p 633 p 609	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24282 ° # N89-23414 ° # N89-23414 ° # N89-24141 ° # N89-24141 ° # N89-24139 ° # N89-24315 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979	p 607 p 609 p 608 p 608 p 601 p 619	N89-24311 # N89-23460 # N89-23461 # N89-23444 # N89-23479 # A89-40251
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:18257-VOL-1 NAS 1.26:183389 NAS 1.26:184992	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627 p 633 p 633 p 633	N89-23413 ° # N89-23410 ° # N89-23407 ° # N89-23406 ° # N89-23262 ° N89-24328 ° # N89-23414 ° # N89-23414 ° # N89-24131 ° # N89-24131 ° # N89-23318 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23	p 607 p 609 p 608 p 608 p 601 p 619	N89-24311 # N89-23460 # N89-23461 # N89-23444 # N89-23479 # A89-40251
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:183389	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627 p 633 p 633 p 633	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24282 ° # N89-23414 ° # N89-23414 ° # N89-24141 ° # N89-24141 ° # N89-24139 ° # N89-24315 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567	N89-24311 # N89-23461 # N89-23444 # N89-23479 # A89-40251 #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 *# 14 N89-23429 # 14 N89-23430 # 9 N89-23479 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:18257-VOL-1 NAS 1.26:183389 NAS 1.26:184992	p 592 p 606 p 630 p 568 p 569 p 618 p 592 p 627 p 633 p 633 p 633 p 639 p 595	N89-23413 ° # N89-23410 ° # N89-23407 ° # N89-23406 ° # N89-23262 ° N89-24328 ° # N89-23414 ° # N89-23414 ° # N89-24131 ° # N89-24131 ° # N89-23318 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567	N89-24311 # N89-23461 # N89-23444 # N89-23479 # A89-40251 #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 19 N89-23479 # 16 N89-24295 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177515 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:182257-VOL-1 NAS 1.26:184992 NAS 1.26:184992 NAS 1.26:185016	. p 592 . p 606 . p 630 . p 568 . p 569 . p 618 . p 592 . p 627 . p 633 . p 633 . p 609 . p 593 . p 595 . p 595	N89-23413 ° # N89-23410 ° # N89-23407 ° # N89-24079 ° # N89-24060 ° # N89-24328 ° # N89-24328 ° # N89-23414 ° # N89-23414 ° # N89-24141 ° # N89-24115 ° # N89-24315 ° # N89-24366 ° #	REPT-20/7234-PY-382-R	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593	N89-24311 # N89-23461 # N89-23444 # N89-23479 # A89-40251
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 9 N89-23479 # 16 N89-23408 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:18166 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185316 NAS 1.26:185316 NAS 1.26:185316	. p 592 . p 606 . p 630 . p 568 . p 569 . p 618 . p 592 . p 633 . p 633 . p 609 . p 595 . p 595 . p 595	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° # N89-24228 ° # N89-2320 ° # N89-23414 ° # N89-24141 ° # N89-24139 ° # N89-24315 ° # N89-2436 ° # N89-24266 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593	N89-24311 # N89-23461 # N89-23444 # N89-23479 # A89-40251
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 55 ISBN-91-7848-108-2 p 61 ISSN-0176-7739 p 66 ISSN-0389-4010 p 55 ISSN-0389-4010 p 55	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 9 N89-23479 # 16 N89-23408 # 17 N89-23408 # 18 N89-23409 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:184992 NAS 1.26:185016 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:4230	. p 592 . p 606 . p 630 . p 568 . p 569 . p 592 . p 633 . p 633 . p 609 . p 593 . p 595 . p 59	N89-23413 ° # N89-23410 ' # N89-23407 ' # N89-24060 ' # N89-24262 ' N89-24282 ' # N89-23414 ' # N89-23414 ' # N89-24141 ' # N89-24141 ' # N89-24315 ' # N89-24316 ' # N89-24317 ' #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189	p 607 p 609 p 608 p 608 p 601 p 619 p 567 p 593 p 616 p 614	N89-24311 # N89-23460 # N89-23461 # N89-23444 # N89-23479 # A89-40251 # N89-23470 # N89-23474 # N89-23466 #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 55 ISBN-91-7848-108-2 p 61 ISSN-0369-4010 p 55 ISSN-0389-4010 p 55 ISSN-0389-4010 p 55	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23479 # 17 N89-23408 # 189-23408 # 189-23408 # 10 N89-23409 #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:182389 NAS 1.26:184992 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185326 NAS 1.26:185326 NAS 1.26:18530	. p 592 . p 606 . p 630 . p 569 . p 569 . p 618 . p 592 . p 633 . p 633 . p 633 . p 609 . p 593 . p 595 . p 615	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° # N89-24328 ° # N89-23414 ° # N89-23411 ° # N89-24131 ° # N89-24315 ° # N89-24315 ° # N89-24316 ° # N89-23418 ° # N89-23418 ° # N89-23418 ° # N89-24266 ° # N89-23471 ° # N89-23471 ° #	REPT-20/7234-PY-382-R	. p 607 . p 609 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 614 . p 608	N89-24311 # N89-23461 # N89-23444 # N89-23479 # A89-40251 # N89-23474 # N89-23476 * N89-23476 * N89-24309 #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23409 # 17 N89-23408 # 18 N89-23409 # 18 N89-23463 # 18 N89-23464 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185316 NAS 1.26:185316 NAS 1.26:185316 NAS 1.26:185316 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:4231 NAS 1.26:4231 NAS 1.26:4231 NAS 1.26:4231 NAS 1.55:3027	. p 592 . p 606 . p 630 . p 569 . p 569 . p 569 . p 633 . p 609 . p 593 . p 595 . p 595 . p 595 . p 592 . p 615 . p 615	N89-23413 * # N89-23410 * # N89-23407 * # N89-23407 * # N89-23406 * # N89-24262 * * N89-23414 * # N89-23414 * # N89-24139 * # N89-24139 * # N89-24139 * # N89-2415 * # N89-23410 * # N89-23471 * # N89-23471 * # N89-23471 * # N89-23471 * #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189	. p 607 . p 609 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 614 . p 608	N89-24311 # N89-23461 # N89-23444 # N89-23479 # A89-40251 # N89-23474 # N89-23476 * N89-23476 * N89-24309 #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 55 ISBN-91-7848-108-2 p 61 ISSN-0389-4010 p 55 ISSN-0389-4010 p 66 ISSN-0389-4010 p 66 ISSN-0389-4010 p 67	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 9 N89-23479 # 16 N89-23408 # 17 N89-23408 # 18 N89-23408 # 18 N89-23464 # 18 N89-23464 # 18 N89-23464 #	NAS 1.15:4116 NAS 1.15:4116 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:18257-VOL-1 NAS 1.26:183389 NAS 1.26:185391 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:4230 NAS 1.26:4230 NAS 1.26:4231 NAS 1.55:3027 NAS 1.55:3034-PT-2	. p 592 . p 606 . p 630 . p 569 . p 569 . p 618 . p 592 . p 633 . p 603 . p 603 . p 595 . p 595 . p 595 . p 595 . p 592 . p 615 . p 628	N89-23413 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23414 ° # N89-23414 ° # N89-24141 ° # N89-24115 ° # N89-24266 ° # N89-24265 ° # N89-23471 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08	. p 607 . p 609 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 614 . p 608 . p 598	N89-24311 # N89-23460 # N89-23444 # N89-23479 # A89-40251 # N89-23470 # N89-23474 # N89-23466 * # N89-24309 # N89-24289 #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 56 ISBN-91-7848-108-2 p 61 ISSN-0369-4010 p 56 ISSN-0389-4010 p 61 ISSN-0389-4010 p 61 ISSN-0389-4010 p 66	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23430 # 15 N89-23479 # 16 N89-23469 # 17 N89-23463 # 18 N89-23463 # 18 N89-23464 # 18 N89-23467 # 18 N89-23467 #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:182257-VOL-1 NAS 1.26:182389 NAS 1.26:182389 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185327 NAS 1.26:185327 NAS 1.26:185327 NAS 1.26:185327 NAS 1.55:3024-PT-2 NAS 1.55:3034-PT-2 NAS 1.56:2832	. p 592 . p 606 . p 630 . p 569 . p 569 . p 618 . p 562 . p 633 . p 633 . p 633 . p 595 . p 595 . p 595 . p 595 . p 615 . p 615 . p 628 . p 628 . p 615 . p 628 . p 628 . p 628 . p 615 . p 628 . p 628 . p 628 . p 628 . p 615 . p 628 . p 628 . p 628 . p 615 . p 628 . p 628 . p 628 . p 628 . p 638 . p 63	N89-23413 ° # N89-23410 ° # N89-23406 ° # N89-23406 ° # N89-24262 ° # N89-24328 ° # N89-23411 ° # N89-23411 ° # N89-24141 ° # N89-24141 ° # N89-24141 ° # N89-24166 ° # N89-24265 ° # N89-23411 ° # N89-23411 ° # N89-23411 ° # N89-24266 ° # N89-23411 ° # N89-24266 ° # N89-23410 ° # N89-24664 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 55 ISBN-91-7848-108-2 p 61 ISSN-0389-4010 p 55 ISSN-0389-4010 p 55 ISSN-0389-4010 p 61 ISSN-0389-4010 p 65 ISSN-0389-4010 p 65 ISSN-0389-4010 p 66	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 9 N89-23479 # 16 N89-23408 # 17 N89-23408 # 18 N89-23464 # 18 N89-23464 # 18 N89-23464 # 18 N89-23467 # 18 N89-24321 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181919 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185319 NAS 1.26:4231 NAS 1.56:4231 NAS 1.56:4231 NAS 1.55:3034-PT-2 NAS 1.56:2832 NAS 1.60:2832 NAS 1.60:2857	. p 592 . p 606 . p 630 . p 569 . p 569 . p 633 . p 633 . p 633 . p 633 . p 693 . p 595 . p 595 . p 595 . p 595 . p 595 . p 615 . p 615 . p 628 . p 628 . p 592 . p 638	N89-23413 * # N89-23410 * # N89-23407 * # N89-23406 * # N89-24262 * * N89-23210 * # N89-23414 * # N89-23414 * # N89-24139 * # N89-24139 * # N89-24139 * # N89-24139 * # N89-23410 * # N89-23410 * # N89-23470 * # N89-23470 * # N89-23471 * # N89-24654 * # N89-24654 * # N89-24327 * #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 55 ISBN-91-7848-108-2 p 61 ISSN-0389-4010 p 55 ISSN-0389-4010 p 55 ISSN-0389-4010 p 61 ISSN-0389-4010 p 65 ISSN-0389-4010 p 65 ISSN-0389-4010 p 66	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 9 N89-23479 # 16 N89-23408 # 17 N89-23408 # 18 N89-23464 # 18 N89-23464 # 18 N89-23464 # 18 N89-23467 # 18 N89-24321 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:4230 NAS 1.26:4231 NAS 1.26:4231 NAS 1.55:3027 NAS 1.55:3034-PT-2 NAS 1.60:2857 NAS 1.60:2857 NAS 1.60:2857 NAS 1.60:2857	. p 592 . p 606 . p 568 . p 569 . p 518 . p 592 . p 627 . p 633 . p 633 . p 633 . p 639 . p 595 . p 595 . p 595 . p 592 . p 615 . p 628 . p 637 . p 637 . p 638	N89-23413 ° # N89-23410 ° # N89-23407 ° # N89-23406 ° # N89-24262 ° N89-23414 ° # N89-23414 ° # N89-23414 ° # N89-24131 ° # N89-24131 ° # N89-24315 ° # N89-24266 ° # N89-24265 ° # N89-23471 ° # N89-23475 ° # N89-24664 ° # N89-24664 ° # N89-24267 ° # N89-24266 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 56 ISBN-91-7848-108-2 p 61 ISSN-0369-4010 p 56 ISSN-0389-4010 p 61 ISSN-0389-4010 p 61 ISSN-0389-4010 p 66	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23430 # 9 N89-23479 # 16 N89-23408 # 17 N89-23408 # 18 N89-23464 # 18 N89-23464 # 18 N89-23464 # 18 N89-23467 # 18 N89-24321 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181919 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185319 NAS 1.26:4231 NAS 1.56:4231 NAS 1.56:4231 NAS 1.55:3034-PT-2 NAS 1.56:2832 NAS 1.60:2832 NAS 1.60:2857	. p 592 . p 606 . p 568 . p 569 . p 518 . p 592 . p 627 . p 633 . p 633 . p 633 . p 639 . p 595 . p 595 . p 595 . p 592 . p 615 . p 628 . p 637 . p 637 . p 638	N89-23413 * # N89-23410 * # N89-23407 * # N89-23406 * # N89-24262 * * N89-23210 * # N89-23414 * # N89-23414 * # N89-24139 * # N89-24139 * # N89-24139 * # N89-24139 * # N89-23410 * # N89-23410 * # N89-23470 * # N89-23470 * # N89-23471 * # N89-24654 * # N89-24654 * # N89-24327 * #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23408 # 17 N89-23408 # 189-23463 # 189-23463 # 189-23464 # 189-23467 # 189-24321 # 189-24322 # 189-24887 #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:269 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:4230 NAS 1.26:4231 NAS 1.26:4231 NAS 1.55:3027 NAS 1.55:3034-PT-2 NAS 1.60:2857 NAS 1.60:2857 NAS 1.60:2857 NAS 1.60:2857	. p 592 . p 603 . p 568 . p 569 . p 618 . p 592 . p 623 . p 633 . p 609 . p 595 . p 595 . p 595 . p 595 . p 615 . p 629 . p 629 . p 639 . p 595 . p 615 . p 629 . p 629 . p 639 . p 615 . p 629 . p 639 . p 6415 . p 615 . p 615	N89-23413 ° # N89-23410 ° # N89-23407 ° # N89-23406 ° # N89-24262 ° N89-23414 ° # N89-23414 ° # N89-23414 ° # N89-24131 ° # N89-24131 ° # N89-24315 ° # N89-24266 ° # N89-24265 ° # N89-23471 ° # N89-23475 ° # N89-24664 ° # N89-24664 ° # N89-24267 ° # N89-24266 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 55 ISBN-91-7848-108-2 p 61 ISSN-0389-4010 p 55 ISSN-0389-4010 p 55 ISSN-0389-4010 p 61 ISSN-0389-4010 p 65 ISSN-0389-4010 p 65 ISSN-0389-4010 p 66	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23408 # 17 N89-23408 # 189-23463 # 189-23463 # 189-23464 # 189-23467 # 189-24321 # 189-24322 # 189-24887 #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:18257-VOL-1 NAS 1.26:18257-VOL-1 NAS 1.26:182539 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185326 NAS 1.26:185327 NAS 1.26:185327 NAS 1.26:185328 NAS 1.26:185328 NAS 1.26:185328 NAS 1.26:185329 NAS 1.26:185329 NAS 1.26:185327 NAS 1.55:3034-PT-2 NAS 1.55:3034-PT-2 NAS 1.60:2832 NAS 1.60:2857 NAS 1.60:2907 NAS 1.60:2907	. p 592 . p 668 . p 569 . p 618 . p 592 . p 627 . p 633 . p 609 . p 593 . p 595 . p 595 . p 595 . p 595 . p 615 . p 628 . p 615 . p 615	N89-23413 * # N89-23410 * # N89-23407 * # N89-23406 * # N89-24262 * * N89-23414 * # N89-24315 * # N89-24139 * # N89-2415 * # N89-23416 * # N89-23416 * # N89-23416 * # N89-23416 * # N89-23470 * # N89-23471 * # N89-23468 * # N89-24664 * # N89-24664 * # N89-23469 * # N89-23469 * # N89-23469 * #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23409 # 17 N89-23409 # 18 N89-23463 # 18 N89-23467 #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181919 NAS 1.26:18257-VOL-1 NAS 1.26:183389 NAS 1.26:185016 NAS 1.26:185016 NAS 1.26:185017 NAS 1.26:185019 NAS 1.55:30027 NAS 1.55:30027 NAS 1.50:28907 NAS 1.60:29007 NAS 1.60:2908 NAS 1.60:29011	. p 592 . p 668 . p 569 . p 618 . p 592 . p 627 . p 633 . p 609 . p 593 . p 595 . p 595 . p 595 . p 595 . p 615 . p 628 . p 615 . p 615	N89-23413 * # N89-23410 * # N89-23407 * # N89-23406 * # N89-24262 * * N89-23414 * # N89-24315 * # N89-24139 * # N89-2415 * # N89-23416 * # N89-23416 * # N89-23416 * # N89-23416 * # N89-23470 * # N89-23471 * # N89-23468 * # N89-24664 * # N89-24664 * # N89-23469 * # N89-23469 * # N89-23469 * #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6 p 56 H-1344 p 6 HSD-TR-88-014-VOL-1 p 55 HSD-TR-88-014-VOL-2 p 59 ISBN-91-7848-108-2 p 61 ISSN-0389-4010 p 55 ISSN-0389-4010 p 65 ISSN-0389-4010 p 66 ISSN-0349-4010 p 66 ISSN-0436-1199 p 66 ISSN-0436-1199 p 66 KU-FRL-6132-7 p 66	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23430 # 15 N89-23479 # 16 N89-23463 # 17 N89-23463 # 18 N89-23464 # 18 N89-24864 # 18 N89-24867 # 18 N89-24867 # 18 N89-24867 #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:182389 NAS 1.26:182519 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185326 NAS 1.26:185327 NAS 1.26:185328 NAS 1.26:185328 NAS 1.26:185329 NAS 1.26:185320	p 592 p 606 p 568 p 569 p 618 p 592 p 623 p 623 p 633 p 609 p 593 p 595 p 595 p 595 p 595 p 615 p 615 p 617 p 615 p 618	N89-23413 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23411 ° # N89-23411 ° # N89-23413 ° # N89-24131 ° # N89-2411 ° # N89-2411 ° # N89-2411 ° # N89-23411 ° # N89-23418 ° # N89-23418 ° # N89-23466 ° # N89-2345 ° # N89-23416 ° # N89-23466 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23479 # 17 N89-23408 # 189-23463 # 189-23463 # 189-23464 # 189-23467 # 189-23467 # 189-23487 # 189-24321 # 189-24321 # 189-24321 # 189-24321 # 189-24321 # 189-24321 # 189-24321 # 189-24321 #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181919 NAS 1.26:18257-VOL-1 NAS 1.26:183389 NAS 1.26:185016 NAS 1.26:185016 NAS 1.26:185017 NAS 1.26:185019 NAS 1.55:30027 NAS 1.55:30027 NAS 1.50:28907 NAS 1.60:29007 NAS 1.60:2908 NAS 1.60:29011	p 592 p 606 p 568 p 569 p 618 p 592 p 623 p 623 p 633 p 609 p 593 p 595 p 595 p 595 p 595 p 615 p 615 p 617 p 615 p 618	N89-23413 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23411 ° # N89-23411 ° # N89-23413 ° # N89-24131 ° # N89-2411 ° # N89-2411 ° # N89-2411 ° # N89-23411 ° # N89-23418 ° # N89-23418 ° # N89-23466 ° # N89-2345 ° # N89-23416 ° # N89-23466 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23408 # 17 N89-23409 # 18 N89-23468 # 18 N89-23467 # 18 N89-23467 # 18 N89-24321 # 18 N89-24321 # 18 N89-24321 # 18 N89-24321 # 18 N89-24320 # 18 N89-243480 # 18 N89-23468 * # 18 N89-23468 * # 18 N89-23468 * # 18 N89-23468 * #	NAS 1.15:4116 NAS 1.15:4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:183389 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185327 NAS 1.26:185327 NAS 1.26:185327 NAS 1.26:185327 NAS 1.26:4231 NAS 1.26:4231 NAS 1.26:4231 NAS 1.55:3034-PT-2 NAS 1.60:2832 NAS 1.60:2837 NAS 1.60:2907 NAS 1.60:2907 NAS 1.60:2908 NAS 1.60:2908 NAS 1.71:LAR-14049-1	. p 592 . p 606 . p 630 . p 568 . p 569 . p 618 . p 592 . p 623 . p 633 . p 609 . p 593 . p 595 . p 595 . p 595 . p 615 . p 615	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23414 ° # N89-23414 ° # N89-23418 ° # N89-24318 ° # N89-24318 ° # N89-24266 ° # N89-23470 ° # N89-23471 ° # N89-23476 ° # N89-23466 ° # N89-23466 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #
GAO/T-NSIAD-89-6	9 N89-24261 # 9 N89-24263 # 7 N89-24327 * # 14 N89-23429 # 15 N89-23479 # 16 N89-23408 # 17 N89-23409 # 18 N89-23468 # 18 N89-23467 # 18 N89-23467 # 18 N89-24321 # 18 N89-24321 # 18 N89-24321 # 18 N89-24321 # 18 N89-24320 # 18 N89-243480 # 18 N89-23468 * # 18 N89-23468 * # 18 N89-23468 * # 18 N89-23468 * #	NAS 1.15-4116 NAS 1.15-4119 NAS 1.19:259 NAS 1.19:262 NAS 1.26:177523 NAS 1.26:177523 NAS 1.26:181766 NAS 1.26:181766 NAS 1.26:181819 NAS 1.26:182257-VOL-1 NAS 1.26:182389 NAS 1.26:182519 NAS 1.26:185319 NAS 1.26:185319 NAS 1.26:185326 NAS 1.26:185326 NAS 1.26:185327 NAS 1.26:185328 NAS 1.26:185328 NAS 1.26:185329 NAS 1.26:185320	. p 592 . p 606 . p 630 . p 568 . p 569 . p 618 . p 592 . p 623 . p 633 . p 609 . p 593 . p 595 . p 595 . p 595 . p 615 . p 615	N89-23433 ° # N89-23410 ° # N89-23447 ° # N89-23406 ° # N89-24262 ° N89-24328 ° # N89-23414 ° # N89-23414 ° # N89-23418 ° # N89-24318 ° # N89-24318 ° # N89-24266 ° # N89-23470 ° # N89-23471 ° # N89-23476 ° # N89-23466 ° # N89-23466 ° #	REPT-20/7234-PY-382-R REPT-882-111-101 REPT-882-111-102 RSRE-MEMO-4131 SP-RAPP-1988:23 SPIE-979 TF-42 US-PATENT-APPL-SN-204152 US-PATENT-APPL-SN-270189 USAAEFA-86-22 USAAEFA-87-08 USAAVSCOM-TR-88-A-002	. p 607 . p 609 . p 608 . p 608 . p 601 . p 619 . p 567 . p 593 . p 616 . p 608 . p 608 . p 608	N89-24311 # N89-23460 # N89-23461 # N89-23479 # A89-40251 N89-23420 # N89-23474 # N89-23466 # N89-24309 # N89-24289 # N89-24303 * #

Typical Accession Number Index Listing

Listings in this index are arranged alphanumerically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A89-39836 #	p 602	A89-40959	p 570
A89-39840 #	p 602	A89-40961	p 614
A89-39841 #	p 622	A89-40963	p 614
	•	A89-40964	p 611
	p 611	A89-41029 #	p 603
A89-39843 #	p 618	A89-41030	p 599
A89-39844 #	p 603	A89-41042 #	p 632
A89-39845 #	p 603	A89-41043	p 599
A89-39846 #	p 618	A89-41044	p 623
A89-39847 #	p 614	A89-41045	p 570
A89-39859	p 597	A89-41049 *	p 632
A89-39867 * A89-40083	p 569	A89-41050	p 611
A89-40083 A89-40084	p 603 p 622	A89-41057	p 567
A89-40085	p 620	A89-41058	p 611
A89-40175 * #	p 631	A89-41059	p 567
A89-40251	p 567	A89-41060	p 618
A89-40254	p 609	A89-41061	p 567
A89-40255	p 622	A89-41062	p 567
A89-40261	p 603	A89-41063 A89-41064	p 603 p 568
A89-40262	p 622	A89-41075	p 603
A89-40266	p 622	A89-41081	p 629
A89-40272	p 609	A89-41082	p 570
A89-40425	p 629	A89-41083	p 623
A89-40446	р 598	A89-41091	p 570
A89-40447	p 629	A89-41092 *	p 604
A89-40470 *#	p 631	A89-41093 *	p 604
A89-40472 *#	p 631	A89-41109 #	p 604
A89-40473 *#	p 631	A89-41115 #	p 611
A89-40474 #	p 632	A89-41117 #	p 570
A89-40475 #	p 632	A89-41119 #	p 571
A89-40476 #	p 632	A89-41121 #	p 571
A89-40477 * #	p 632	A89-41126 #	p 611
A89-40478 * #	p 632	A89-41201	p 571
A89-40596	p 611	A89-41223	p 612
A89-40619 A89-40624	p 620 p 611	A89-41224	p 612
A89-40624 A89-40719	p 610	A89-41547	p 623
A89-40802	p 599	A89-41562 #	p 604
A89-40803	p 599	A89-41563 #	p 604
A89-40814 #	p 603	A89-41564 #	p 623
A89-40856	p 567	A89-41568 #	p 623
A89-40857	p 603	A89-41569 # A89-41570 #	p 623 p 571
A89-40893 #	p 569	A89-41571 #	p 604
A89-40895 #	p 599	A89-41584	p 624
A89-40901 #	p 569	A89-41585	p 620
A89-40902 #	p 569	A89-41586	p 624
A89-40903 #	p 570	A89-41589	p 604
A89-40904 * #	p 632	A89-41590	p 624
A89-40905 * #	p 570	A89-41591	p 621
A89-40907 #	p 622	A89-41598	p 624
A89-40908 *#	p 570	A89-41601	p 621
A89-40909 * #	p 570		
A89-40913 #	p 570	A89-41651	p 568
A89-40914 #	р 622	A89-41652	p 605
A89-40921 #	p 623	A89-41654	p 634

A89-41655	p 634
A89-41691 *#	р 624
A89-41698 *	p 630
A89-41759 #	p 571
A89-41760 #	p 571
A89-41771	p 571
A89-41775	p 571
A89-41776	p 572
A89-41777 #	p 572
A89-41779 #	p 572
A89-41780 * #	p 572
A89-41784 #	p 572
A89-41785 # A89-41786 #	p 572 p 573
A89-41789 #	p 573 p 573
A89-41790 #	p 573
A89-41792 * #	p 573
A89-41794 * #	p 573
A89-41795 #	p 573
A89-41796 #	p 630
A89-41797 #	p 573
A89-41798 * # A89-41799 #	p 574 p 574
A89-41800 * #	·
A89-41802 *#	p 574 p 574
A89-41804 * #	p 574
A89-41805 #	p 574
A89-41806 #	p 575
A89-41807 #	p 575
A89-41808 #	p 575
A89-41814 * #	p 575
A89-41815 * #	p 575
A89-41816 * # A89-41818 * #	p 575 p 576
A89-41819 *#	p 576
A89-41820 #	p 576
A89-41823 *#	p 576
A89-41825 * #	p 576
A89-41826 #	p 576
A89-41830 #	p 633
A89-41832 #	p 577
A89-41835 # A89-41836 #	p 577 p 577
A89-41837 *#	р 577 р 577
A89-41838 #	p 577
A89-41839 *#	p 577
A89-41841 #	p 577
A89-41842 #	p 578
A89-41843 #	p 624
A89-41844 #	p 578
A89-41888 A89-41889 *	p 621 p 624
A89-41903	p 624 p 578
A89-41910 #	p 612
A89-41913 #	p 605
A89-41950	p 605
A89-42009 * #	p 578
A89-42010 * #	p 578
A89-42011 * # A89-42012 * #	p 578 p 578
A89-42013 * #	p 578
A89-42014 #	p 578
A89-42015 #	р 579
A89-42016 *#	p 579
A89-42017 #	p 579
A89-42018 * #	p 605
A89-42019 * # A89-42020 * #	р 605 р 579
A89-42020 * # A89-42021 * #	p 579 p 579
A89-42022 #	p 620
A89-42023 #	p 579
A89-42024 *#	p 579
A89-42025 #	p 605
A89-42026 #	p 579
A89-42027 * #	p 625
A89-42028 # A89-42036 * #	p 579 p 579
A89-42037 #	p 579 p 579
A89-42038 #	p 580
A89-42041 #	p 580
A89-42043 * #	p 580
A89-42044 #	p 580
A89-42045 #	p 580

A89-42046	• #	p 580	
A89-42047	#	p 580	
A89-42048 A89-42049	*#	р 581 р 581	
A89-42051	* #	p 581	
A89-42052 A89-42056	# *#	p 581 p 581	
A89-42057	#	p 581 p 581	
A89-42058	* #	p 582	
A89-42060 A89-42061	#	p 582 p 582	
A89-42062	#	p 582	
A89-42063 A89-42064	*#	p 582 p 582	
A89-42065	*#	p 582 p 582	
A89-42066	* #	p 583	
A89-42067 A89-42068	*# #	p 583 p 583	
A89-42070	#	p 583	
A89-42071 A89-42072	#	p 583 p 583	
A89-42073	* #	p 584	
A89-42074 A89-42075	* # * #	p 584	
A89-42076	*#	p 584 p 584	
A89-42077	#	p 584	
A89-42078 A89-42079	*# #	p 584 p 585	
A89-42080	#	p 585	
A89-42081 A89-42082	#	p 585 p 585	
A89-42083	#	p 585	
A89-42084	#	p 585	
A89-42092 A89-42093	#	p 585 p 586	
A89-42094	#	p 586	
A89-42095 A89-42099	#	p 586 p 586	
A89-42100	# *#	p 586 p 586	
A89-42101	#	p 586	
A89-42103 A89-42114	*# *#	p 586 p 587	
A89-42115	* #	p 587	
A89-42116 A89-42117	#	р 587 р 587	
A89-42139	#	p 587	
A89-42151 A89-42161		p 597 p 625	
A89-42421		p 625	
A89-42422		p 612	
A89-42452 A89-42453		p 634 p 635	
A89-42456		p 620	
A89-42459 A89-42460		p 620 p 587	
A89-42462		p 612	
A89-42463 A89-42464		p 612 p 588	
A89-42465		p 588	
A89-42466 A89-42467		p 612 p 613	
A89-42468		p 613	
A89-42488		p 568 p 588	
A89-42496 A89-42499		p 619	
A89-42500		p 625	
A89-42509 A89-42519		p 613 p 588	
A89-42521		p 588	
A89-42524 A89-42525		p 625 p 605	
A89-42535		p 605	
A89-42536 A89-42537		p 597 p 635	
A89-42537 A89-42557		p 635 p 625	
A89-42567		p 588	
A89-42569 A89-42572		p 588 p 588	
A89-42600		p 606	
A89-42652		p 599	
A89-42655 A89-42656		p 599 p 610	
A89-42656 A89-42661		р 599	
		•	

A89-42666		
N89-23407 # p 568 N89-23408 # p 591 N89-23408 # p 591 N89-23410 * # p 592 N89-23411 * # p 592 N89-23413 * # p 592 N89-23415 * # p 592 N89-23416 * # p 593 N89-23420 # p 593 N89-23420 # p 593 N89-23426 # p 593 N89-23426 # p 594 N89-23427 # p 592 N89-23428 # p 594 N89-23428 # p 594 N89-23429 # p 594 N89-23430 * p 593 N89-23430 # p 594 N89-23430 # p 594 N89-23430 # p 597 N89-23430 # p 597 N89-23430 # p 597 N89-23436 # p 597 N89-23436 # p 597	A89-42676 A89-42681 A89-42837 A89-42837 A89-42928 A89-42928 A89-42927 A89-42931 A89-42934 A89-42934 A89-42937 A89-42937 A89-42937 A89-42938 A89-42937 A89-42938 A89-42937 A89-42938 A89-42937 A89-43057 # A89-43057 # A89-43068 # A89-43115 # A89-43112 # A89-43113 # A89-43115 # A89-43115 # A89-43117 # A89-43118 # A89-43118 # A89-43118 # A89-43119 # A89-43194 # A89-43195 # A89-43195 # A89-43195 # A89-43213 # A89-43213 # A89-43216 # A89-43216 # A89-43228 # A89-43228 # A89-43268 # A89-43268 # A89-43537 A89-43537 A89-43537	p 6000 p 690
	N89-23407 # N89-23408 # N89-23409	p 568 p 591 p 591 p 592 p 592 p 592 p 593 p 593 p 593 p 594 p 594 p 594 p 594 p 594 p 595 p 595 p 596 p 596 p 597 p 596 p 596

N89-23440

109-23440	
N89-23440 #	p 601
N89-23443 # N89-23444 #	р 601 р 601
N89-23444 # N89-23447 *#	p 606
N89-23449 #	p 607
N89-23450	p 607
N89-23451 # N89-23452 #	р 607 р 607
N89-23454 #	p 607
N89-23455 #	p 607
N89-23457 #	р 608 р 608
N89-23460 # N89-23461 #	p 608
N89-23463 #	p 610
N89-23464 #	р 613 р 613
N89-23465 * # N89-23466 * #	p 614
N89-23467 #	p 615
N89-23468 * #	p 615
N89-23469 * # N89-23470 * #	p 615 p 615
N89-23471 * #	p 615
N89-23473 #	р 616 р 616
N89-23474 # N89-23475 #	p 616
N89-23476 #	p 616
N89-23477 #	p 619
N89-23479 # N89-23480 #	р 619 р 619
N89-23482 #	p 619
N89-23656 #	p 621
N89-23712 # N89-23740 #	р 621 р 626
N89-23740 # N89-23758 #	p 626
N89-23774 #	p 626
N89-23809 * #	p 627
N89-23822 N89-23831 #	p 627 p 627
N89-23920 * #	p 627
N89-24051 #	p 630
N89-24079 * # N89-24127 #	р 630 р 630
N89-24138 * #	p 633
N89-24139 * #	p 633 p 633
N89-24141 * # N89-24261 #	p 633 p 569
N89-24262 *	p 569
N89-24263 #	p 569
N89-24264 * # N89-24265 * #	p 595 p 595
N89-24266 * #	p 595
N89-24267	p 595
N89-24270 # N89-24271 #	p 595 p 595
N89-24272 #	p 596
N89-24273 #	p 596
N89-24274 # N89-24278 #	р 596 р 596
N89-24282 #	p 596
N89-24285 * #	p 596
N89-24286 N89-24288 #	р 597 р 598
N89-24289 #	p 598
N89-24290 *#	р 598 р 601
N89-24291 # N89-24292 #	р 601 р 601
N89-24293 * #	p 601
N89-24294 # N89-24295 #	p 602
N89-24296 #	a 602
	p 602 p 602
N89-24303 #	p 602 p 602
N89-24304 #	p 602 p 602 p 627
N89-24304 # N89-24305 #	p 602 p 602 p 627 p 610
N89-24304 #	p 602 p 602 p 627 p 610 p 608 p 608
N89-24304 # N89-24305 # N89-24308 * # N89-24309 # N89-24311 #	p 602 p 602 p 627 p 610 p 608 p 608 p 609
N89-24304 # N89-24305 # N89-24308 * # N89-24309 # N89-24311 # N89-24313 * #	p 602 p 602 p 627 p 610 p 608 p 608 p 609 p 609
N89-24304 # N89-24305 # N89-24308 * # N89-24309 # N89-24311 #	p 602 p 602 p 627 p 610 p 608 p 608 p 609
N89-24304 # N89-24305 # N89-24309 # N89-24311 # N89-24313 * # N89-24315 * # N89-24319 * #	p 602 p 602 p 627 p 610 p 608 p 608 p 609 p 609 p 609 p 609 p 614
N89-24304 # N89-24305 # N89-24305 # N89-24311 # N89-24311 * # N89-24315 * # N89-24319 * # N89-24319 # N89-24319 # N89-24311 #	p 602 p 602 p 627 p 610 p 608 p 609 p 609 p 609 p 609 p 614 p 616
N89-24304 # N89-24305 # N89-24305 # N89-24309 # N89-24311 # N89-24313 * # N89-24315 * # N89-24312 # N89-24321 # N89-24323 #	p 602 p 602 p 627 p 610 p 608 p 609 p 609 p 609 p 609 p 614 p 616 p 616 p 617
N89-24304 # N89-24305 # N89-24309 # N89-24311 # N89-24313 * N89-24315 * N89-24312 # N89-24322 # N89-24322 # N89-24324 * # N89-24324 * # N89-24324 * #	p 602 p 602 p 627 p 610 p 608 p 608 p 609 p 609 p 609 p 614 p 616 p 616 p 617 p 617
N89-24304 # N89-24308 # N89-24309 # N89-24311 # N89-24311 * N89-24315 * N89-24319 * N89-24321 # N89-24321 # N89-24321 # N89-24321 * N89-24323 * N89-24325 #	p 602 p 602 p 602 p 607 p 608 p 608 p 609 p 609 p 609 p 614 p 616 p 616 p 617 p 617
N89-24304 # N89-24305 # N89-24309 # N89-24311 # N89-24313 * N89-24315 * N89-24312 # N89-24322 # N89-24322 # N89-24324 * # N89-24324 * # N89-24324 * #	p 602 p 602 p 602 p 610 p 608 p 608 p 609 p 609 p 609 p 614 p 616 p 617 p 617 p 617
N89-24304 # N89-24308 * N89-24309 # N89-24311 # N89-24315 * # N89-24315 * # N89-24322 # N89-24322 # N89-24324 * N89-24326 N89-24326 N89-24326 * N89-24328 * # N89-24328 * # N89-24328 * * N89-24328 *	p 602 p 602 p 627 p 610 p 608 p 609 p 609 p 609 p 609 p 614 p 616 p 616 p 617 p 617 p 617 p 617
N89-24304 # N89-24308 # N89-24309 # N89-24311 # N89-24315 * N89-24315 * N89-24312 # N89-24322 # N89-24323 * N89-24326 * N89-24327 * N89-24327 * N89-24327 * N89-24328 * N89-24329 *	p 602 p 602 p 602 p 610 p 608 p 608 p 609 p 609 p 609 p 614 p 616 p 616 p 617 p 617 p 617 p 617 p 617
N89-24304 # N89-24308 * N89-24309 # N89-24311 # N89-24315 * # N89-24315 * # N89-24322 # N89-24322 # N89-24324 * N89-24326 N89-24326 N89-24326 * N89-24328 * # N89-24328 * # N89-24328 * * N89-24328 *	P 602 P 602 P 627 P 610 P 608 P 609 P 609 P 609 P 609 P 614 P 616 P 617 P 617 P 617 P 618 P 618 P 618
N89-24304 # N89-24308 # N89-24309 # N89-24311 # N89-24311 * N89-24315 * # N89-24319 * N89-24322 # N89-24322 # N89-24324 * # N89-24326 * N89-24328 * # N89-24329 * # N89-24329 * # N89-24329 * # N89-24326 * N89-24326 * * N89-24328 * #	P 602 P 602 P 627 P 610 P 608 P 608 P 609 P 609 P 609 P 614 P 616 P 617 P 617 P 617 P 617 P 618 P 618 P 618 P 618
N89-24304 # N89-24308 # N89-24309 # N89-24311 # N89-24311 * N89-24315 * N89-24312 # N89-24322 # N89-24323 * N89-24326 * N89-24327 * N89-24326 * N89-24327 * N89-24326 * N89-24326 * N89-24327 * N89-24328 * N89-24329 * N89-24320 # N89-24320 * N89-24320 * N89-24320 * N89-24320 * N89-24320 * N89-24320 * N89-24563 * N89-24563 * N89-245607 *	P 602 P 602 P 627 P 610 P 608 P 609 P 609 P 609 P 614 P 616 P 617 P 617 P 617 P 617 P 618 P 619 P 609
N89-24304 # N89-24305 # N89-24309 # N89-24311 # N89-24315 * N89-24315 # N89-24322 # N89-24322 # N89-24325 # N89-24326 # N89-24328 * N89-24328 * N89-24329 * N89-24329 * N89-24329 * N89-24329 * N89-24329 * N89-24329 * N89-24569 * N89-24569 * N89-24569 * N89-24607 * N89-24607 * N89-24624 * *	P 602 P 602 P 627 P 610 P 608 P 609 P 609 P 609 P 614 P 616 P 617 P 617 P 617 P 617 P 617 P 618 P 618 P 619 P 622 P 622 P 628
N89-24304 # N89-24308 # N89-24309 # N89-24311 # N89-24311 * N89-24315 * N89-24312 # N89-24322 # N89-24323 * N89-24326 * N89-24327 * N89-24326 * N89-24327 * N89-24326 * N89-24326 * N89-24327 * N89-24328 * N89-24329 * N89-24320 # N89-24320 * N89-24320 * N89-24320 * N89-24320 * N89-24320 * N89-24320 * N89-24563 * N89-24563 * N89-245607 *	P 602 P 602 P 627 P 610 P 608 P 609 P 609 P 609 P 614 P 616 P 617 P 617 P 617 P 617 P 618 P 618 P 622 P 622 P 622 P 628

N89-24642 * # p 628
N89-24654 * # p 628
N89-24655 * # p 629
N89-24777 # p 629
N89-24876 # p 631
N89-24886 * # p 633
N89-24887 # p 634
N89-24901 # p 634
N89-25112 * # p 635

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A89-10000 Series)

Publications announced in *IAA* are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at \$10.00 per document (up to 50 pages), additional pages \$0.25 each. Microfiche⁽¹⁾ of documents announced in *IAA* are available at the rate of \$4.00 per microfiche on demand. Standing order microfiche are available at the rate of \$1.45 per microfiche for *IAA* source documents and \$1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is \$2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N89-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the *STAR* citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, Va. 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report number* shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film, 105 by 148 mm in size containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26.1 reduction).

- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: ESDU. Pricing information on specific data, computer programs, and details on ESDU topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: US Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of \$1.50 each, postage free. (See discussion of NASA patents and patent applications below.)
- Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC: NASA and NASA-sponsored documents and a large number of aerospace publications are available to the public for reference purposes at the library maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 555 West 57th Street, 12th Floor, New York, New York 10019.

EUROPEAN: An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in *STAR*. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 50 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 50 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are *not* sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7037 and its supplements are available from the National Technical Information Service (NTIS) on standing order subscription as PB89-914100 at the price of \$10.50 domestic and \$21.00 foreign. The price of the annual index is \$16.50. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, D.C. 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

ESA-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

ESDU International, Ltd. 1495 Chain Bridge Road McLean, Virginia 22101

ESDU International, Ltd. 251-259 Regent Street London, W1R 7AD, England

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Scientific and Technical Information Facility P.O. Box 8757 B.W.I. Airport, Maryland 21240 National Aeronautics and Space Administration Scientific and Technical Information Branch (NTT) Washington, D.C. 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey Library National Center - MS 950 12201 Sunrise Valley Drive Reston, Virginia 22092

U.S. Geological Survey Library 2255 North Gemini Drive Flagstaff, Arizona 86001

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

U.S. Geological Survey Library Box 25046 Denver Federal Center, MS914 Denver, Colorado 80225

NTIS PRICE SCHEDULES

(Effective January 1, 1989)

Schedule A STANDARD PRICE DOCUMENTS AND MICROFICHE

NORTH AMERICAN PRICE	FOREIGN PRICE	
\$ 6.95	\$13.90	
10.95	21.90	
13.95	27.90	
15.95	31.90	
21.95	43.90	
28.95	57.90	
36.95	73.90	
42.95	85.90	
49.95	99.90	
*	•	
55.00	70.00	
55.00	80.00	
	AMERICAN PRICE \$ 6.95 10.95 13.95 15.95 21.95 28.95 36.95 42.95 49.95	

Schedule E EXCEPTION PRICE DOCUMENTS AND MICROFICHE

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE
E01	\$ 9.00	\$ 18.00
E02	11.50	23.00
E03	13.00	26.00
E04	15.50	31.00
E05	17.50	35.00
E06	20.50	41.00
E07	23.00	46.00
E08	25.50	51.00
E09	28.00	56.00
E10	31.00	62.00
E11	33.50	67.00
E12	36.50	73.00
E13	39.00	78.00
E14	42.50	85.00
E15	46.00	92.00
E16	50.50	101.00
E17	54.50	109.00
E18	59.00	118.00
E19	65.50	131.00
E20	76.00	152.00
E99	*	•

^{*}Contact NTIS for price quote.

IMPORTANT NOTICE

NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD \$3.00 per TOTAL ORDER
All Other Countries — ADD \$4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.

Report No. NASA SP-7037(244)	2. Government Access	sion No.	3. Recipient's Catalog I	No.
4. Title and Subtitle	<u> </u>		5. Report Date	
Aeronautical Engineering			October 1989	
A Continuing Bibliography (Supplemer	nt 244)		6. Performing Organiza	tion Code
7. Author(s)			8. Performing Organiza	tion Report No.
, , , (a)				
Performing Organization Name and Address			10. Work Unit No.	
National Aeronautics and Space Admir	nistration	<u> </u>	11. Contract or Grant N	o.
Washington, DC 20546				
12. Sponsoring Agency Name and Address			13. Type of Report and	Period Covered
		-	14. Sponsoring Agency	Code
			14. Oponsoring Agency	Code
15. Supplementary Notes				
16. Abstract				
This bibliography lists 465 reports, a	rticles and other do	cuments introduced into	the NASA scientif	ic
and technical information system in	September 1989.			
17. Key Words (Suggested by Authors(s))		18. Distribution Statement		
Aeronautical Engineering		Unclassified - Unlin	nited	
Aeronautics				
Bibliographies				
19. Security Classif. (of this report)	20. Security Classif. ((of this page)	21. No. of Pages	22. Price *
Unclassified	Unclassified	(3 -/	140	A07/HC
	-timed Tabaias Urfam	mation Service Springfield	Virginia 20161	<u> </u>