Lecture 1: Measurable space, measure and probability

Random experiment: uncertainty in outcomes

 Ω : sample space or outcome space; a set containing all possible outcomes

Definition 1.1. Let \mathcal{F} be a collection of subsets of a sample space Ω . \mathcal{F} is called a σ -field (or σ -algebra) if and only if it has the following properties.

- (i) The empty set $\emptyset \in \mathcal{F}$.
- (ii) If $A \in \mathcal{F}$, then the complement $A^c \in \mathcal{F}$.
- (iii) If $A_i \in \mathcal{F}$, i = 1, 2, ..., then their union $\bigcup A_i \in \mathcal{F}$.

 \mathcal{F} is a set of sets

Two trivial examples: \mathcal{F} contains \emptyset and Ω only and \mathcal{F} contains all subsets of Ω

Why do we need to consider other σ -field?

$$\mathcal{F} = \{\emptyset, A, A^c, \Omega\}, \text{ where } A \subset \Omega$$

C = a collection (set) of subsets of Ω

 $\sigma(\mathcal{C})$: the smallest σ -field containing \mathcal{C} (called the σ -field generated by \mathcal{C})

 $\sigma(\mathcal{C}) = \mathcal{C}$ if \mathcal{C} itself is a σ -field

 $\Gamma = \{ \mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-field on } \Omega \text{ and } \mathcal{C} \subset \mathcal{F} \}$

$$\sigma(\mathcal{C}) = \cap_{\mathcal{F} \in \Gamma} \mathcal{F}$$

$$\sigma(\{A\}) = \sigma(\{A,A^c\}) = \sigma(\{A,\Omega\}) = \sigma(\{A,\emptyset\}) = \{\emptyset,A,A^c,\Omega\}$$

 \mathcal{R}^k : the k-dimensional Euclidean space ($\mathcal{R}^1 = \mathcal{R}$ is the real line)

 \mathcal{B}^k : the Borel σ -field on \mathcal{R}^k ; $\mathcal{B}^k = \sigma(\mathcal{O})$, \mathcal{O} is the collection of all open sets

$$C \in \mathcal{B}^k$$
, $\mathcal{B}_C = \{C \cap B : B \in \mathcal{B}^k\}$ is the Borel σ -field on C

Measure: length, area, volume...

Definition 1.2. Let (Ω, \mathcal{F}) be a measurable space. A set function ν defined on \mathcal{F} is called a *measure* if and only if it has the following properties.

- (i) $0 \le \nu(A) \le \infty$ for any $A \in \mathcal{F}$.
- (ii) $\nu(\emptyset) = 0$.
- (iii) If $A_i \in \mathcal{F}$, i = 1, 2, ..., and A_i 's are disjoint, i.e., $A_i \cap A_j = \emptyset$ for any $i \neq j$, then

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \nu(A_i).$$

 (Ω, \mathcal{F}) a measurable space; $(\Omega, \mathcal{F}, \nu)$ a measure space

If $\nu(\Omega) = 1$, then ν is a probability measure (we usually use notation P instead of ν)

A measure ν may take ∞ as its value

- (1) For any $x \in \mathcal{R}$, $\infty + x = \infty$, $x = \infty$ if x > 0, $x = -\infty$ if x < 0, and 0 = 0;
- $(2) \infty + \infty = \infty;$
- (3) $\infty^a = \infty$ for any a > 0;
- (4) $\infty \infty$ or ∞ / ∞ is not defined

Examples:

$$\nu(A) = \begin{cases} \infty & A \in \mathcal{F}, A \neq \emptyset \\ 0 & A = \emptyset. \end{cases}$$

Counting measure. Let Ω be a sample space, \mathcal{F} the collection of all subsets, and $\nu(A)$ the number of elements in $A \in \mathcal{F}$ ($\nu(A) = \infty$ if A contains infinitely many elements). Then ν is a measure on \mathcal{F} and is called the *counting measure*.

Lebesgue measure. There is a unique measure m on $(\mathcal{R}, \mathcal{B})$ that satisfies m([a, b]) = b - a for every finite interval [a, b], $-\infty < a \le b < \infty$. This is called the *Lebesgue measure*. If we restrict m to the measurable space $([0, 1], \mathcal{B}_{[0,1]})$, then m is a probability measure.

Proposition 1.1. Let $(\Omega, \mathcal{F}, \nu)$ be a measure space.

- (i) (Monotonicity). If $A \subset B$, then $\nu(A) \leq \nu(B)$.
- (ii) (Subadditivity). For any sequence $A_1, A_2, ...,$

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \nu(A_i).$$

(iii) (Continuity). If $A_1 \subset A_2 \subset A_3 \subset \cdots$ (or $A_1 \supset A_2 \supset A_3 \supset \cdots$ and $\nu(A_1) < \infty$), then

$$\nu\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}\nu\left(A_n\right),\,$$

where

$$\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i \quad \left(\text{ or } = \bigcap_{i=1}^{\infty} A_i \right).$$

Let P be a probability measure. The *cumulative distribution function* (c.d.f.) of P is defined to be

$$F(x) = P((-\infty, x]), \quad x \in \mathcal{R}$$

Proposition 1.2. (i) Let F be a c.d.f. on \mathcal{R} . Then

- (a) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$;
- (b) $F(\infty) = \lim_{x \to \infty} F(x) = 1$;
- (c) F is nondecreasing, i.e., $F(x) \leq F(y)$ if $x \leq y$;
- (d) F is right continuous, i.e., $\lim_{y\to x,y>x} F(y) = F(x)$.
- (ii) Suppose that a real-valued function F on \mathcal{R} satisfies (a)-(d) in part (i). Then F is the c.d.f. of a unique probability measure on $(\mathcal{R}, \mathcal{B})$.