

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Analiza i modelowanie oprogramowania

Dokumentacja projektowa - automatyczny parking

Autorzy: Mateusz Grzeliński, Agata Sidło, Katarzyna Lambrecht, Katarzyna Wilczak

Kierunek studiów: Informatyka

Semestr: V

Spis treści

1.	Ogólny opis systemu			4	
	1.1.	. Cel (przeznaczenie) systemu			
	1.2.	Udziałowcy i użytkownicy			
	1.3.	Podsta	awowe cele udziałowców i użytkowników	5	
		1.3.1.	Porównanie proponowanego systemu do aktualnie funkcjonującego	5	
	1.4.	Grani	ce systemu	5	
1.5. Lista funkcji systemu				6	
	1.6.	Diagra	amy czynności	7	
2. Analiza Dziedziny				10	
	2.1.	Klasy	i opis atrybutów	10	
	2.2.	Diagra	amy klas - relacje	11	
	2.3.	Diagra	amy stanów dla wybranych klas	12	
	2.4.	Słown	nik pojęć	13	
3.	SRS	- specy	fikacja wymagań	14	
	3.1.	Ogóln	ny diagram przypadków użycia	14	
	3.2.	Defini	icje przypadków użycia	14	
		3.2.1.	Obsługa terminala (identyfikator: UC3)	14	
		3.2.2.	Wjazd na parking(identyfikator: UC1)	15	
		3.2.3.	Wyjazd z parkingu(identyfikator: UC6)	16	
		3.2.4.	Prezentacja staystyk (identyfikator: UC5)	17	
		3.2.5.	Poprawa godziny wjazdu/wyjazdu (identyfikator: UC7)	18	
4.	Arch	nitektur	a systemu	19	
	4.1.	Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi progra-			
			(nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpowiednim zesta-		
			metod.		
	4.2.	Specy	fikacja interfejsu pomiędzy komponentami	19	
5.	Proi	jekt oprogramowania			

	5.1.	Sekcja	20
6.	Proje	ekt interfejsu użytkownika IRS	21
	6.1.	Sekcja	21
7.	Projekt bazy danych DBDD		
	7.1.	Diagram ERD	22
	7.2.	Specyfikacja kwerend	22

1. Ogólny opis systemu

1.1. Cel (przeznaczenie) systemu

Celem systemu automatyczny parking jest umożliwienie komputerowej obsługi pobierania opłat za pozostawienie pojazdu na parkingu na określony czas. System rozpoznaje ze zdjęcia tablice rejestracyjne pojazdów i na tej podstawie umożliwia wjazd samochodów na parking, a także opuszczenie go.

1.2. Udziałowcy i użytkownicy

- Właściciel posiada parking, jest kierownikiem zarządzającym pracownikami, system prezentuje mu zebrane statystki
- Klient osoba, która korzysta z usług automatycznego parkingu i wjeżdza samochodem na jego teren
- Operator osoba kontrolująca parking w danej chwili, w przypadku błędów, przegląda zarejestrowane zdjęcia i poprawia czas wjazdu/wyjazdu, wprowadza rejestrację pojazdu do systemu oraz w wyjątkowych sytuacjach podnosi/opuszcza szlaban

1.3. Podstawowe cele udziałowców i użytkowników

Udziałowcy	Cel	Priorytet
Klient	Wjechanie na parking	Wysoki
Klient	Opuszczenie parkingu	Wysoki
Klient	Wpisanie numeru rejestracyjnego	Wysoki
Klient	Potwierdzenie zdjęcia	Wysoki
Klient	Anulowanie wpisanego numeru rejestracyjnego	Średni
Klient	Uiszczenie opłaty	Wysoki
Operator	Przeglądanie zdjęć	Średni
Operator	Wprowadzenie rejestracji	Średni
Operator	Poprawa czasu wjazdu i wyjazdu w bazie	Średni
Operator	Podnoszenie/opuszczanie szlabanu	Średni
Właściciel	Wyświetlenie statystyk	Niski

1.3.1. Porównanie proponowanego systemu do aktualnie funkcjonującego

Na parkingu znajdującym się koło Wawelu w Krakowie klient podjeżdża do terminala, naciska przycisk i odbiera bilet z godziną wjazdu. Przy opuszczaniu parkingu wkłada otrzymany przy wjeździe bilet i dokonuje opłaty. W naszym systemie klient, wjeżdżając na parking, nie musi podjeżdżać do terminala i czekać na wydrukowanie kartki z godziną wjazdu. System zrobi zdjęcie tablicy rejestracyjnej i sam otworzy szlaban. W ten sposób oszczędzany jest papier oraz tusz. Operator nie musi dbać o to żeby ich nie zabrakło. Musi jedynie interweniować w przypadku błędu.

1.4. Granice systemu

Rys. 1.1. Granice systemu automatyczny parking

1.5. Lista funkcji systemu

- 1. Wykrycie pojawienia się pojazdu
- 2. Zapis zdjęcia rejestracji
- 3. Zapis tablicy rejestracyjnej
- 4. Otwarcie szlabanu
- 5. Zamknięcie szlabanu
- 6. Wyświetlenie zdjęcia tablicy rejestracyjnej
- 7. Obliczenie kwoty do zapłaty
- 8. Wyświetlenie kwoty do zapłaty
- 9. Oczekiwanie na pojazd do 15 minut
- 10. Zgłoszenie niezgodności wpisanej i zarejestrowanej rejestracji
- 11. Wyświetlenie wpisanego przez klienta numeru rejestracyjnego
- 12. Zapis danych
- 13. Prezentacja statystyk

1.6. Diagramy czynności 7

1.6. Diagramy czynności

Rys. 1.2. Diagram czynności: Klient wjeżdża na parking

8 1.6. Diagramy czynności

Rys. 1.3. Diagram czynności: Klient opuszcza parking

1.6. Diagramy czynności

Rys. 1.4. Diagram czynności: Operator weryfikuje wykryte oszustwo

Rys. 1.5. Diagram czynności: Właściciel wyświetla statystyki

2. Analiza Dziedziny

2.1. Klasy i opis atrybutów

Klasa	Atrybut	Opis
Pojazd	NumerRejestracyjny	Numer rejestracyjny pojazdu
	Marka	Marka pojazdu
	Model	Model pojazdu
Samochód		
Motor		
Autobus		
Parking	WolneMiejscaZwykłe	Określa ilość wolnych miejsc dla samochodów na parkingu
	WolneMiejscaAutobusowe	Określa ilość wolnych miejsc dla autobusów na parkingu
MiejsceParkingowe	Numer	Numer miejsca parkingowego
	Тур	Typ miejsca parkingowego
	Status	Określa status miejsca - wolne/zajęte
PostójNaParkingu	DataWjazdu	Data wjazdu na parking
	CzasWjazdu	Czas wjazdu na parking
	DataWyjazdu	Data wyjazdu z parkingu
	CzasWyjazdu	Czas wyjazdu z parkingu
	Pojazd	Określa pojazd, którego dotyczy wjazd
Terminal	Status	Status określa możliwość wjazdu/wyjazdu na/z parkingu
Szlaban	Status	Określa, czy szlaban jest otwarty/zamknięty
Operator	Id	Id operatora
	Imię	Imię operatora
	Nazwisko	Nazwisko operatora
Zdjęcie		

2.2. Diagramy klas - relacje

Rys. 2.1. Diagram klas i relacje między nimi

2.3. Diagramy stanów dla wybranych klas

Rys. 2.2. Diagram stanów dla klasy PostójNaParkingu

2.4. Słownik pojęć

Rys. 2.3. Diagram stanów dla terminala

2.4. Słownik pojęć

- System służy do obsługi automatycznego parkingu, przetwarza zdjęcia, rejestracje pojazdów, oblicza płatności, wykrywa oszustwa, a także zbiera dane statystyczne
- Pojazd należy do klienta, na podstawie rejestracji pojazdu jest on wpuszczany i wypuszczany z parkingu
- PostójNaParkingu klasa reprezentująca postój pojazdu na parkingu wraz z wjazdem i wyjazdem
- Zdjęcie zdjęcie tablicy rejestracyjnej pojazdu znajdującego się na parkingu
- Operator pracownik parkingu, identyfikowany na podstawie Id, ma możliwość przeglądania Bazy Zdjęć i ustalania czasu wjazdu/wyjazdu w razie błędu w systemie
- Terminal kieruje szlabanem, zbiera informacje o ilości wolnych miejsc na parkingu, przetworzeniu płatności.
- Szlaban może być otwarty lub zamknięty, jego status zależy od terminala

3. SRS - specyfikacja wymagań

3.1. Ogólny diagram przypadków użycia

Rys. 3.1. Przypadki użycia

3.2. Definicje przypadków użycia

3.2.1. Obsługa terminala (identyfikator: UC3)

Aktorzy: Klient, System przetwarzający obraz **Zakres:** System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Klient chce dokonać zapłaty za postój, system musi pobrać wszystkie niezbędne dane oraz pobrać płatność

Zdarzenie wyzwalające (trigger): Klienta wybiera funkcję Zapłać za postój

Warunki wstępne: Tablica rejestracyjna pojazdu klienta musi znajdować się w systemie i być poprawnie odczytana

Warunki końcowe dla sukcesu: Tablica rejestracyjna zostaje potwierdzona przez klienta, płatność zostaje potwierdzona przez system

Warunki końcowe dla niepowodzenia: Tablica rejestracyjna nie zostaje potwierdzona, płatność nie zostaje przetworzona

Scenariusz główny:

- 1. System wyświetla formularz wprowadzania rejestracji
- 2. Klient wprowadza rejestrację do systemu
- 3. System przetwarzający obraz weryfikuje wprowadzoną rejestrację
- 4. System wyświetla odpowiednią rejestrację
- 5. Klient potwierdza zdjęcie rejestracji
- 6. System wyświetla kwotę do zapłaty
- 7. Klient dokonuje zapłaty za postój
- 8. System przetwarza płatność (include UC2)
- 9. System wyświetla potwierdzenie zapłaty

Scenariusz alternatywny:

- 3.a Wprowadzona rejestracja nie zostaje znaleziona
- 3.a.1 Następuje powrót do punktu 1 scenariusza głównego

Scenariusz alternatywny:

- 8.a Płatność nie została przetworzona poprawnie
- 8.a.1 Następuje powrót do punktu 6 scenariusza głównego

3.2.2. Wjazd na parking (identyfikator: UC1)

Aktorzy: System przetwarzający obraz, Szlaban

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Klient chce wjechać na parking, System przetwarzający obraz musi rozpoznać

tablicę rejestracyjną

Zdarzenie wyzwalające (trigger): Klient podjeżdza pojazdem pod szlaban

Warunki wstępne: Tablica rejestracyjna pojazdu jest widoczna i możliwa do odczytania przez system przetwarzający obraz

Warunki końcowe dla sukcesu: System przetwarzający obraz poprawnie odczytuje tablicę rejestracyjną, szlaban otwiera się

Warunki końcowe dla niepowodzenia: System przetwarzający obraz nie może odczytać tablicy rejestracyjnej, szlaban nie otwiera się

Scenariusz główny:

- 1. System przetwarzający obraz robi zdjęcie
- 2. System przetwarzający obraz odczytuje tablicę rejestracyjnę
- 3. System automatycznego parkingu zapisuje datę i czas wjazdu pojazdu
- 4. Szlaban otwiera się (include: UC4)
- 5. Klient wjeżdża na parking
- 6. Szlaban zamyka się (include: UC4)

Scenariusz alternatywny:

- 2.a System przetwarzający obraz nie może odczytać tablicy rejestracyjnej
- 2.a.1 Następuje powrót do punktu 1 scenariusza głównego

3.2.3. Wyjazd z parkingu (identyfikator: UC5)

Aktorzy: System przetwarzający obraz, Szlaban

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Klient chce wyjechać z parkingu

Zdarzenie wyzwalające (trigger): System odlicza 15 minut na wyjazd z parkingu **Warunki wstępne:** Rejestracja pojazdu została poprawnie odczytana przy wjeździe

Warunki końcowe dla sukcesu: Klient opuścił parking

Warunki końcowe dla niepowodzenia: Klient nie opuścił parkingu

Scenariusz główny:

- 1. Klient obsługuje terminal (inlcude: UC3)
- 2. System potwierdza możliwość wyjazdu w ciągu 15 minut

- 3. System przetwarzający obraz ponownie robi zdjęcie
- 4. System przetwarzający obraz rozpoznaje tablicę rejestracyjną
- 5. System automatycznego parkingu weryfikuje dane: numer rejestracyjny, potwierdzenie płatności, pozostały czas wyjazdu
- 6. Szlaban otwiera się (include: UC4)
- 7. Klient opuszcza parking
- 8. Szlaban zamyka się (include: UC4)

Scenariusz alternatywny:

- 4.a System przetwarzający obraz nie może rozpoznać tablicy rejestracyjnej
- 4.a.1 Następuje powrót do punktu 3 scenariusza głównego

Scenariusz alternatywny:

- 5.a Płatność nie została potwierdzona
- 5.a.1 Następuje powrót do punktu 1 scenariusza głównego

Scenariusz alternatywny:

- 5.a Czas na wyjazd z parkingu skończył się
- 5.a.1 Następuje powrót do punktu 1 scenariusza głównego

3.2.4. Prezentacja staystyk (identyfikator: UC8)

Aktorzy: Właściciel

Zakres: System automatycznego parkingu

Poziom: systemowy

Udziałowcy i ich cele: Właściciel chce wyświetlić statystyki

Zdarzenie wyzwalające (trigger): Właściciel wywołuje funkcję Pokaż statystyki

Warunki wstępne: Właściciel musi być zalogowany

Warunki końcowe dla sukcesu: System prezentuje wybrane statystyki

Warunki końcowe dla niepowodzenia: System nie może wyświetlić wybranych statystyk, błędne dane

Scenariusz główny:

- 1. System wyświetla rodzaje statystyk do wyboru: dzienne, miesięczne, roczne
- 2. Właściciel wybiera odpowiedni rodzaj statystk

- 3. System oblicza wybrane statystyki
- 4. System prezentuje wyniki

Scenariusz alternatywny:

- 3.a System nie może wyświetlić wybranych statystyk
- 3.a.1 Właściciel poprawia błędne dane w systemie
- 3.a.2 Następuje powrót do punktu 1 scenariusza głównego

3.2.5. Poprawa danych w systemie (identyfikator: UC7)

Aktorzy: Operator

Zakres: System automatycznego parkingu

Poziom: Systemowy

Udziałowcy i ich cele: Operator chce poprawić błędne dane w systemie

Zdarzenie wyzwalające (trigger): Operator wywołuje funkcję Popraw dane

Warunki wstępne: Operator musi byc zalogowany

Warunki końcowe dla sukcesu: Do systemu zostają wprowadzone poprawne dane

Warunki końcowe dla niepowodzenia: System nie może przetworzyć nowych danych

Scenariusz główny:

- 1. System wyświetla formularz poprawiania danych
- 2. Operator wprowadza poprawione dane: numer rejestracyjny, godzinę wjazdu/wyjazdu, datę wjazdu/wyjazdu
- 3. System przetwarza wprowadzone dane
- 4. System wyświetla potwierdzenie zmian

Scenariusz alternatywny:

- 3.a system nie może przetworzyć nowych danych
- 3.a.1 System wyświetla ponownie formularz, znaznaczając które pola zostały niepoprawnie wypełnione
- 3.a.2 Następuje powrót do punktu 3 scenariusza głównego

4. Architektura systemu

- 4.1. Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpowiednim zestawem metod.
- 4.2. Specyfikacja interfejsu pomiędzy komponentami

5. Projekt oprogramowania

5.1. Sekcja..

6. Projekt interfejsu użytkownika IRS

6.1. Sekcja...

7. Projekt bazy danych DBDD

- 7.1. Diagram ERD
- 7.2. Specyfikacja kwerend