Feedback — Assignment 7

You submitted this quiz on Fri 19 Apr 2013 7:02 AM PDT -0700. You got a score of 28.00 out of 28.00.

Question 1

Consider the following linear program (LP1)

where $A \in \mathbb{R}^{m imes n}$ and its corresponding dual (LP2)

If LP1 and LP2 are both feasible, and x^* is an optimal solution to LP1 and y^* is an optimal solution to LP2 then which of the following conditions hold? In order to lighten the notation in the answers, we use the convention that all sums involving index i run from 1 to n and all sums involving index j run from 1 to m.

Your Answer		Score	Explanation
${\color{red} {\mathbb{Z}}} \; x_i^* > 0 \implies \sum_j y_j^* A_{ji} = c_i$	✓	0.75	
$\ \ \ \square x_i^* = 0 \implies \sum_j y_j^* A_{ji} > c_i$	✓	0.75	
$lacksquare y_j^* = 0 \implies \sum_i A_{ji} x_i^* < b_j$	✓	0.75	
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	✓	0.75	
Total		3.00 / 3.00	

Question Explanation

By weak duality we have the following: $c^Tx \leq (A^Ty)^Tx = y^TAx \leq y^Tb$ for any primal feasible x and dual feasible y. In particular they hold for x^* and y^* . Since x^* and y^* are also the optimal primal and dual solutions respectively, we know by strong duality that $c^Tx^* = b^Ty^*$. Hence, $(c^T - y^{*T}A)x^* = 0$ and $y^{*T}(Ax^* - b) = 0$ This implies that whenever $x_i^* > 0$ it must be the case that $c_i = \sum_j y_j^*A_{ji}$. Similarly, we can derive $y_j^* > 0 \implies \sum_i A_{ji}x_i^* = b_j$

Question 2

For the following linear program

$$egin{array}{ll} ext{maximize} & -2x_1 + 3x_2 - 3x_3 \ ext{subject to} & -x_1 + x_2 - x_3 \leq -1 \ & -x_1 + 2x_2 + x_3 \leq 0 \ & -2x_2 - x_3 \leq 2 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

 $x=\left[2,1,0\right]^T$ is an optimal solution. Using complementary slackness derive an optimal solution for the dual of the above linear program. Enter your answer (the dual optimal solution is a vector with three components) separated by spaces.

You entered:

110

Your Answer		Score	Explanation
1 1 0	✓	4.00	
Total		4.00 / 4.00	

Question Explanation

Substituting $x=\left[2,1,0\right]^T$ in the constraints of the primal we find that the first two inequalities are tight while the third inequality slacks. The dual of the given linear program is

$$\begin{array}{ll} \text{minimize} & -y_1 + 2y_3 \\ \text{subject to} & -y_1 - y_2 \geq -2 \\ & y_1 + 2y_2 - 2y_3 \geq 3 \\ & -y_1 + y_2 - y_3 \geq -3 \\ & y_1, y_2, y_3 \geq 0. \end{array}$$

Let y^* be the dual optimal solution. By complementary slackness our previous observation implies that $y_3^*=0$. Also, since x_1 and x_2 are strictly positive, by complementary slackness, it must be the case that the first two dual constraints must be tight. Hence, we can solve the resulting 2 variable system of linear equations to obtain the optimal dual solution $y^*=\begin{bmatrix}1,1,0\end{bmatrix}^T$.

Question 3

Over the next three questions, we will solve the shortest s-t path problem using a primal-dual algorithm. First let's start with some definitions. In the shortest s-t path problem, we are given an undirected graph G=(V,E) and non-negative costs $c_e \geq 0$ on all edges $e \in E$ and a pair of distinguished vertices s and t. The objective is to find the minimum-cost path from s to t in G. An s-t cut is a set of vertices that includes s and does not include t. The collection of all s-t cuts is defined as $\mathcal{K}:=\{S\subset V\mid s\in S, t\not\in S\}$ We can write down the LP relaxation of the shortest s-t path problem as follows

$$egin{aligned} ext{minimize} & \sum_{e \in E} c_e x_e \ ext{subject to} & \sum_{e \in \delta(S)} x_e \geq 1, \quad orall S \in \mathcal{K} \ & x_e \geq 0 \quad orall e \in E \end{aligned}$$

where $\delta(S)$ is the set of all edges that have exactly one endpoint in the vertex set S. The corresponding dual is

$$egin{aligned} ext{maximize} & \sum_{S \in \mathcal{K}} y_S \ ext{subject to} & \sum_{S \in \mathcal{K}: e \in \delta(S)} y_S \leq c_e, \quad orall e \in E \ & y_S \geq 0, \quad orall S \in \mathcal{K}. \end{aligned}$$

The primal-dual algorithm for this problem is as follows: We start with a primal infeasible solution x=0 (corresponding to the set of edges $F=\emptyset$) and dual feasible solution y=0. While there exists no s-t path in (V,F) pick an s-t cut C that is the connected component of (V,F) containing s. Increase y_C until there is an edge $e'\in \delta(C)$ such that $\sum_{S\in\mathcal{K}\ :\ e'\in\delta(S)}y_S=c_{e'}$. Add e' to F (setting $x_{e'}$ to 1) and repeat till an s-t path in (V,F) is found. Finally, output an s-t path P in G'=(V,F)

The first question is: Can G^{\prime} contain a cycle?

Your Answer		Score	Explanation
Yes			
No	✓	3.00	
Total		3.00 / 3.00	

Question Explanation

When we add an edge to F it is always an edge e' that belongs to the cut $\delta(C)$ where C is the connected component of (V,F) containing s. By induction (V,F) is a tree before the addition of the edge and since the added edge has exactly one endpoint in C it cannot create a cycle, and hence $(V,F\cup\{e'\})$ is also a tree. Hence, G' does not contain a cycle. Moreover, with the addition of each new edge to F the connected component of (V,F) containing s spans one more new vertex. Hence, G' contains exactly one s-t path P.

Question 4

Suppose that for some s-t cut S, $y_S>0$. The second question is: What is the value of $|P\cap\delta(S)|$?

Your Answer		Score	Evolunation
Tour Allswei		Score	Explanation
1	✓	5.00	
0			
Arbitrary			

 \bigcirc 2

Total

5.00 / 5.00

Question Explanation

We now show that the value of $|P\cap\delta(S)|$ is at exactly one for such an s-t cut. Suppose there exists an s-t cut S such that $|P\cap\delta(S)|>1$, then there must be a subpath P' of P such that P' has only its starting and ending vertices in S and the remaining vertices outside of S. Since $y_S>0$, we must have increased y_S during some iteration of the primal dual algorithm and at the time C would have been a tree spanning the vertices in S. Thus, $C\cup P'$ contains a cycle. Since the final set of edges contains $C\cup P'$ as a subset, this implies that G' contains a cycle which contradicts the fact that G' is acyclic. Thus, $|P\cup\delta(S)|\leq 1$ when $y_S>0$ for some s-t cut S. However, $|P\cap\delta(S)|$ cannot be zero because that would contradict the fact that S is an s-t path, hence it must be exactly 1.

Question 5

Using the previous observations we can carry out the rest of the analysis as follows:

$$c(P) = \sum_{e \in P} c_e = \sum_{e \in P} \sum_{S \in \mathcal{K} \ : \ e \in \delta(S)} y_S = \sum_{S \in \mathcal{K}} |P \cap \delta(S)| y_S.$$

The third question is: Which of the following principles leads to the conclusion that P is optimal?

Your Answer		Score	Explanation
Strong duality			
Weak duality	✓	5.00	
 Complementary slackness 			
Total		5.00 / 5.00	

Question Explanation

From the previous question, we have $\sum_{S\in\mathcal{K}}|P\cap\delta(S)|y_S=\sum_{S\in\mathcal{K}}y_S$. Together with the analysis presented in the statement of the question, we have

 $c(P) = \sum_{S \in \mathcal{K}} y_S$. Since y is a dual feasible solution, weak duality immediately implies that P is optimal (since no primal solution can have an objective function value smaller than the objective function value of any dual feasible solution).

Question 6

For the next two questions, recall some of the definitions from the lecture on the primal-dual algorithm for a minimum weight bipartite perfect matching. We have a complete bipartite graph $G=(A\cup B,E)$ with |A|=|B|=|V|/2 where $V=A\cup B$ and real valued weights on the edges $\{w_e\}_{e\in E}$. At an intermediate stage of the execution we have a dual feasible solution y and the corresponding graph $G_y=(V,E_y)$ where E_y is the set of tight edges with respect to the dual solution y. M is a maximum cardinality matching in G_y , and L is the set of nodes reachable in G_y from any exposed node (with the matched edges directed from A to B and unmatched edges directed from B to A).

A vertex cover of a graph G=(V,E) is a subset of vertices $S\subseteq V$ such that for every edge $e\in E$, e has at least one endpoint in S. Is the set $C=(A\cap L)\cup (B\setminus L)$ a minimum cardinality vertex cover for G_{y} ?

Your Answer		Score	Explanation
○ No			
Yes	✓	5.00	
Total		5.00 / 5.00	

Question Explanation

Yes. We saw in the lecture that no edge can be present between $A\setminus L$ and $B\cap L$. Hence, C is a vertex cover. It follows that $|C|\geq |M|$ since any vertex cover has to include at least one endpoint of each matched edge. Now we will show that $|C|\leq |M|$ First, every vertex of $A\cap L$ is matched (since otherwise if there existed an exposed vertex v in $A\cap L$, we would be able to find an M-augmenting path starting from some exposed node in $B\cap L$ and ending in v contradicting the maximality of M). Second, every vertex of $A\cap L$ is matched by the definition of L. Third, no matching edge can be between $A\cap L$ and $B\setminus L$ (by the definition of L).

Thus, we have proved that $|C| \leq |M|$ Together, in G_y we now have a matching M and a vertex cover C such that |M| = |C| This immediately implies that C is a minimum cardinality vertex cover for G_y since every vertex cover has to have size at least the size of a matching in G_y .

Question 7

Consider the dual feasible solution y that we maintain throughout the algorithm. Does the objective function value of this dual feasible solution decrease in some iteration?

Your Answer		Score	Explanation
Yes			
No	✓	3.00	
Total		3.00 / 3.00	

Question Explanation

When we update the dual feasible solution y we add $\delta>0$ to dual variables corresponding to vertices in $A\setminus L$ and subtract δ from all the dual variables corresponding to vertices in $B\setminus L$. The difference in the objective function value caused by this update is exactly

 $\delta(|A\setminus L|-|B\setminus L|)=\delta(|A|-|A\cap L|-|B\setminus L|)=\delta(|V|/2-|W|)$ ere C is $(A\cap L)\cup (B\setminus L)$ Since we saw in the previous question that |C|=|M| we know that $|C|\leq |V|/2$ since no matching can be of size larger than |V|/2. In particular, this shows that whenever we don't have a perfect matching in G_y the dual feasible solution strictly improves in objective value.