

MATEMATIKA

MAMZD15C0T04

DIDAKTICKÝ TEST

Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %

1 Základní informace k zadání zkoušky

- Didaktický test obsahuje 26 úloh.
- **Časový limit** pro řešení didaktického testu je **uveden na záznamovém archu**.
- Povolené pomůcky: psací a rýsovací potřeby, Matematické, fyzikální a chemické tabulky a kalkulátor bez grafického režimu, bez řešení rovnic a úprav algebraických výrazů.
- U každé úlohy je uveden maximální počet bodů.
- Odpovědi pište do záznamového archu.
- Poznámky si můžete dělat do testového sešitu, nebudou však předmětem hodnocení.
- Nejednoznačný nebo nečitelný zápis odpovědi bude považován za chybné řešení.
- První část didaktického testu (úlohy 1–15) tvoří úlohy otevřené.
- Ve druhé části didaktického testu (úlohy 16–26) jsou uzavřené úlohy, které obsahují nabídku odpovědí. U každé úlohy nebo podúlohy je právě jedna odpověď správná.
- Za nesprávnou nebo neuvedenou odpověď se neudělují záporné body.

Pravidla správného zápisu odpovědí

- Odpovědi zaznamenávejte modře nebo černě píšící propisovací tužkou, která píše dostatečně silně a nepřerušovaně.
- Budete-li rýsovat obyčejnou tužkou, následně obtáhněte čáry propisovací tužkou.
- Hodnoceny budou pouze odpovědi uvedené v záznamovém archu.

2.1 Pokyny k otevřeným úlohám

 Výsledky pište čitelně do vyznačených bílých polí.

- Je-li požadován celý postup řešení, uveďte jej do záznamového archu. Pokud uvedete pouze výsledek, nebudou vám přiděleny žádné body.
- Zápisy uvedené mimo vyznačená bílá pole nebudou hodnoceny.
- Chybný zápis přeškrtněte a nově zapište správné řešení.

2.2 Pokyny k uzavřeným úlohám

 Odpověď, kterou považujete za správnou, zřetelně zakřížkujte v příslušném bílém poli záznamového archu, a to přesně z rohu do rohu dle obrázku.

 Pokud budete chtít následně zvolit jinou odpověď, zabarvěte pečlivě původně zakřížkované pole a zvolenou odpověď vyznačte křížkem do nového pole.

- Jakýkoliv jiný způsob záznamu odpovědí a jejich oprav bude považován za nesprávnou odpověď.
- Pokud zakřížkujete více než jedno pole, bude vaše odpověď považována za nesprávnou.

TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

© Centrum pro zjišťování výsledků vzdělávání, 2015

Obsah testového sešitu je chráněn autorskými právy. Jakékoli jeho užití, jakož i užití jakékoli jeho části pro komerční účely či pro jejich přímou i nepřímou podporu bez předchozího explicitního písemného souhlasu CZVV bude ve smyslu obecně závazných právních norem považováno za porušení autorských práv.

VÝCHOZÍ TEXT K ÚLOZE 1

Na koncert přišlo 800 osob, tedy o čtvrtinu osob více, než organizátoři očekávali.

(CZVV)

1 bod

1 Vypočtěte, kolik osob organizátoři očekávali.

1 bod

2 Pro $y \in \mathbb{R}$ zjednodušte:

$$\frac{(2\cdot y^2)^{100}\cdot y^{100}}{(2^4)^{50}} =$$

1 bod

3 Pro $x \in \mathbb{R} \setminus \{0\}$ provedte umocnění a upravte:

$$\left(\frac{3}{x} - \frac{x}{6}\right)^2 =$$

4 Pro $a \in \mathbb{R}$ výraz zjednodušte a uveďte podmínky, pro něž má výraz smysl.

$$\left(\frac{1}{a} + \frac{1}{3}\right) : \left(\frac{1}{a} - \frac{a}{9}\right) =$$

V záznamovém archu uveďte celý postup řešení.

max. 2 body

5 V oboru R řešte:

$$\frac{1}{3x} - \frac{2}{x+2} = \frac{x}{x+2}$$

V záznamovém archu uveďte celý postup řešení včetně stanovení podmínek.

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOHÁM 6-7

Kocourkovští postavili plot ze stejně velkých tmavých a světlých krychlí.

Ve spodní řadě plotu umístili tmavé krychle těsně vedle sebe.

Na každé druhé tmavé krychli pak postavili sloupek ze světlých krychlí. Nejnižší je první sloupek s jednou světlou krychlí. Každý následující sloupek je vždy o jednu krychli vyšší. Nejvyšší sloupek tvoří n světlých krychlí.

Plot je zakončen tmavou krychlí za nejvyšším sloupkem.

(CZVV)

1 bod

6 Vyjádřete počet <u>tmavých</u> krychlí v závislosti na veličině n, kde $n \in \mathbb{N}$.

1 bod

7 Určete počet všech krychlí (tmavých i světlých) použitých na stavbu plotu pro n=99.

VÝCHOZÍ OBRÁZEK K ÚLOZE 8

(CZVV)

max. 2 body

- **8** Funkce f s definičním oborem **R** má předpis y = 4 2x.
- 8.1 Sestrojte graf funkce f.

V záznamovém archu obtáhněte graf propisovací tužkou.

8.2 Graf lineární funkce g s definičním oborem \mathbf{R} prochází počátkem O kartézské soustavy souřadnic Oxy a s grafem funkce f nemá žádný společný bod.

Zapište předpis funkce g.

- **9** Je dán vektor $\overrightarrow{AB} = (5; 3)$ a body $A[\alpha; -1]$, B[4; b].
- 9.1 Vypočtěte chybějící souřadnici a bodu A.

9.2 Vypočtěte chybějící souřadnici b bodu B.

max. 2 body

10 V rovnoramenném pravoúhlém trojúhelníku *ABC* s pravým úhlem při vrcholu *C* platí:

$$A[-1;2]$$
, $C[-5;-2]$.

Vypočtěte délku strany AB.

VÝCHOZÍ TEXT A GRAF K ÚLOZE 11

V kartézské soustavě souřadnic *Oxy* je sestrojen graf funkce $f: y = x^2 - 1$ pro $x \in \mathbf{R}$.

(CZVV)

1 bod

11 Určete všechny hodnoty proměnné x, pro něž je $f(x) \le 3$.

VÝCHOZÍ TEXT K ÚLOHÁM 12-13

Karel si rozdělil s dvěma asistentkami Janou a Martou práci tak, že každá z obou asistentek pracovala jednu hodinu a zbývající díl práce dokončil Karel sám.

Celá práce by přitom samotné Janě trvala 2 hodiny a samotné Martě o 30 minut déle než Janě.

(Každý z pracovníků udržuje rovnoměrné pracovní tempo.)

(CZVV)

1 bod

12 Vyjádřete zlomkem, jakou část práce ve skutečnosti vykonala Jana.

1 bod

13 Vypočtěte v procentech, jaká část práce zbyla na Karla.

VÝCHOZÍ TEXT K ÚLOZE 14

Škola zakoupila dva druhy kalkulaček. Levnější kalkulačka stála 585 Kč a dražší 630 Kč. Za nákup 60 kalkulaček škola zaplatila celkem 35 910 Kč.

(CZVV)

max. 3 body

14 Užitím <u>rovnice nebo soustavy rovnic</u> **vypočtěte, kolik korun škola zaplatila za nákup levnějších kalkulaček**.

V záznamovém archu uveďte celý postup řešení.

(CZVV)

max. 3 body

15

15.1 Vypočtěte velikost úhlu $\alpha = |\not\prec DAB|$. Výsledek zaokrouhlete na celé stupně. V záznamovém archu uveďte celý postup řešení.

15.2 Vypočtěte velikost úhlu $\gamma = | \not \prec BCD |$. Výsledek zaokrouhlete na celé stupně. V záznamovém archu uveďte celý postup řešení.

VÝCHOZÍ TEXT A GRAF K ÚLOZE 16

Graf udává rozložení známek z testu u 20 žáků.

Známku 5 nedostal nikdo.

(CZVV)

max. 2 body

Rozhodněte o každém z následujících tvrzení (16.1–16.4), zda je pravdivé (A), či nikoli (N).

16.1	Počet žáků, kteří získali známku 1 nebo 2, je stejný jako počet žáků,
	kteří získali známku 3 nebo 4.

A N

16.2 Aritmetický průměr známek je 2,4.

- 1 1	
- 1 1	

16.3 Medián je 3.

16.4 Modus je 3.

ı	

2 body

- 17 Pro každé $n \in \{2; 3; 4; \dots\}$ je rozdíl $\binom{n+1}{2} \binom{n}{2}$ roven:
 - A) $\binom{n}{2}$
 - B) $\frac{n}{2}$
 - C) 2
 - D) *n*
 - E) 2*n*

VÝCHOZÍ TEXT K ÚLOZE 18

Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byla první a Dan předposlední.

(CZVV)

2 body

18 Kolika způsoby se mohou spolužáci seřadit?

- A) 5 040
- B) 2880
- C) 1 440
- D) 720
- E) jiným počtem

2 body

19 V geometrické posloupnosti platí:

$$q = -2$$

 $a_1 + a_2 + a_3 + a_4 + a_5 = 15,4$

Do kterého z uvedených intervalů patří první člen a_1 posloupnosti?

- A) (-8; 0)
- B) (0; 2)
- C) (2; 4)
- D) (4; 8)
- E) do žádného z uvedených

Hranice *LP* mezi dvěma pozemky má délku 125 metrů. Od jejího levého okraje *L* vede rovná pěšina *LM*, která s touto hranicí svírá úhel o velikosti 60°.

Na pěšině je stanoviště A, z něhož je hranice LP vidět pod zorným úhlem 20°.

(CZVV)

2 body

Jaká je vzdálenost AL stanoviště A od levého okraje L hranice LP? Výsledek je zaokrouhlen na celé metry.

- A) 250 m
- B) 343 m
- C) 360 m
- D) 365 m
- E) jiná vzdálenost

Z pravoúhlého trojúhelníku ABC byl odstřižen bílý trojúhelník CED.

Platí: |AE| = 4 cm; |CE| = 2 cm; |BD| = 5 cm; |CD| = 3 cm.

(CZVV)

2 body

21 Jaký je obsah tmavého čtyřúhelníku ABDE?

- A) 21 cm²
- B) 22 cm²
- C) 23 cm²
- D) 24 cm²
- E) jiný obsah

VÝCHOZÍ TEXT K ÚLOZE 22

V nádobě tvaru rotačního válce je 1 litr vody. Vnitřní **průměr** nádoby je 10 cm.

(CZVV)

2 body

22 Jaká je výška sloupce vody v nádobě?

- A) $\frac{40}{\pi}$ cm
- B) $\frac{4}{\pi}$ cm
- C) $\frac{25}{\pi}$ cm
- D) $\frac{1}{25\pi}$ cm
- E) $\frac{10}{\pi}$ cm

(CZVV)

2 body

23 Jaký je povrch kvádru?

- A) 64 cm²
- B) 96 cm²
- C) 128 cm²
- D) 144 cm²
- E) jiný povrch

2 body

24 Je dána přímka p: -12x + 4y - 5 = 0.

Která z následujících přímek je rovnoběžná s přímkou p?

A)
$$a: x = 4 + 3t$$

$$y = 12 - t, t \in \mathbf{R}$$

B)
$$b: x = 5 + 3t$$

$$y = 5 + t, t \in \mathbf{R}$$

C)
$$c: x = 1 - t$$

$$y = 1 + 3t, t \in \mathbf{R}$$

D)
$$d: x = 7 + t$$

$$y = 7 + 3t, t \in \mathbf{R}$$

E)
$$e: x = -12 - 5t$$

$$y = 4 - 5t, t \in \mathbf{R}$$

25 Přiřaďte ke každé rovnici (25.1–25.4) řešené v oboru R odpovídající množinu všech řešení (A–F).

25.1
$$2^x = \frac{1}{2}$$

25.2
$$2^x = 0$$

25.3
$$\log_2 x = -1$$

25.4
$$\log_2 x^2 = 0$$

A)
$$\{-2\}$$

B)
$$\{-1\}$$

C)
$$\left\{\frac{1}{2}\right\}$$

Přiřaďte ke každé nerovnici (26.1–26.3) řešené v oboru R odpovídající množinu všech řešení (A–E).

$$26.1 \quad \frac{3-x}{-2} < -1$$

26.2
$$\frac{2}{3-x} < 0$$

$$26.3 \quad \frac{3-x}{x-3} > 0$$

- A) Ø
- B) $(-\infty; 1)$
- C) $(-\infty;3)$
- D) $(1; +\infty)$
- E) $(3; +\infty)$

KLÍČ SPRÁVNÝCH ŘEŠENÍ

Matematika

Kód testu: MAMZD15C0T04

	Celkem	Uzavřených	Otevřených
Počet úloh	26	11	15

Úloha	Správné řešení	Body
1	640	1
2	$\frac{y^{300}}{2^{100}}$	1
3	$\frac{9}{x^2} - 1 + \frac{x^2}{36}$; resp. $\frac{x^4 - 36x^2 + 324}{36x^2}$	1
4	$\frac{3}{3-a}$; $a \neq -3$; $a \neq 0$; $a \neq 3$ a postup řešení	max. 3 b.
5	$x \neq 0; x \neq -2; K = \left\{\frac{1}{3}\right\}$ a postup řešení	max. 2 b.
6	2n + 1	1
7	5 149	1
8.1		(max. 2 b.)
8.2	g: y = -2x	1
9		(max. 2 b.)
9.1	a = -1	1
9.2	b=2	1
10	8 j	max. 2 b.

Maturitní zkouška 2015 – podzimní termín

Úloha	Správné řešení	Body
11	$x \in \langle -2; 2 \rangle$	1
12	$\frac{1}{2}$	1
13	10 %	1
14	24 570 Kč a postup řešení	max. 3 b.
15		
15.1	α ≐ 50° a postup řešení	max. 3 b.
15.2	γ ≐ 65° a postup řešení	
16		
16.1	A	
16.2	A	max. 2 b.
16.3	N	max. 2 b.
16.4	A	
17	<u>D</u>	2
18	D P	2
19	<u>В</u> С	2
20 21 22	 A	2 2
22	^ A	2
22	C	2
23 24	D	2
25		
25.1	В	
25.2	Ē	
25.3	С	max. 4 b.
25.4	F	
26		
26.1	В	
26.2		max. 3 b.
26.3	Ā	
CELKEM		50 bodů

Všechna ekvivalentní vyjádření jsou možná.

Obsah klíče správných řešení je chráněn autorskými právy. Jakékoli jeho užití, jakož i užití jakékoli jeho části pro komerční účely či pro jejich přímou i nepřímou podporu bez předchozího explicitního písemného souhlasu CZVV bude ve smyslu obecně závazných právních norem považováno za porušení autorských práv.