Miscellaneous Exercise on Chapter 1

- 1. Decide, among the following sets, which sets are subsets of one and another:
 - $A = \{ x : x \in \mathbf{R} \text{ and } x \text{ satisfy } x^2 8x + 12 = 0 \},$
 - $B = \{2, 4, 6\}, C = \{2, 4, 6, 8, ...\}, D = \{6\}.$
- 2. In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
 - (i) If $x \in A$ and $A \in B$, then $x \in B$
 - (ii) If $A \subset B$ and $B \in C$, then $A \in C$
 - (iii) If $A \subset B$ and $B \subset C$, then $A \subset C$
 - (iv) If $A \not\subset B$ and $B \not\subset C$, then $A \not\subset C$
 - (v) If $x \in A$ and $A \not\subset B$, then $x \in B$ (vi) If $A \subset B$ and $x \notin B$, then $x \notin A$
- 3. Let A, B, and C be the sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that B = C.
- 4. Show that the following four conditions are equivalent:
 - (i) $A \subset B(ii) A B = \emptyset$ (iii) $A \cup B = B$ (iv) $A \cap B = A$
- 5. Show that if $A \subset B$, then $C B \subset C A$.
- 6. Show that for any sets A and B, $A = (A \cap B) \cup (A - B)$ and $A \cup (B - A) = (A \cup B)$
- 7. Using properties of sets, show that (i) $A \cup (A \cap B) = A$ (ii) $A \cap (A \cup B) = A$.
- 8. Show that $A \cap B = A \cap C$ need not imply B = C.

- 9. Let A and B be sets. If $A \cap X = B \cap X = \phi$ and $A \cup X = B \cup X$ for some set X, show that A = B.
 - (Hints $A = A \cap (A \cup X)$, $B = B \cap (B \cup X)$ and use Distributive law)
- 10. Find sets A, B and C such that $A \cap B$, $B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C = \phi$.