63. Considere as seguintes relações em №:

$$R_{1} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x > y\}$$

$$R_{2} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid \exists_{n \in \mathbb{N}} : xy = n^{2}\}$$

$$R_{3} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x + y = 10\}$$

$$R_{4} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x + 4y = 10\}$$

Diga quais destas relações são:

- i) reflexivas;
- ii) simétricas;
- iii) transitivas;
- iv) anti-simétricas.
- 64. Sejam *R* e *S* relações binárias sobre um conjunto *A*. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - a) Se R é reflexiva (respetivamente simétrica, transitiva, anti-simétrica) então R^{-1} é reflexiva (respetivamente simétrica, transitiva, anti-simétrica).
 - b) Se R e S são transitivas (respetivamente anti-simétricas), então $R \cup S$ é transitiva (respetivamente anti-simétrica).
- 65. Diga, justificando, se a seguinte afirmação é verdadeira ou falsa: «toda a relação simétrica e transitiva é reflexiva».
- 66. Seja $A = \{1, 2, 3, 4, 5, 6\}$ e considere a seguinte relação de equivalência em A:

$$R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$$

Descreva cada classe de equivalência na relação R e indique o conjunto quociente A/R.

67. Considere as seguintes relações binárias:

em
$$\mathbb{N}$$
, $x \rho_1 y \Leftrightarrow \operatorname{mdc}(x, y) = 1$; $x \rho_2 y \Leftrightarrow x \leq y$;
em \mathbb{N}^2 , $(x, y) \sigma(x', y') \Leftrightarrow y = y'$.

- a) Diga, justificando, quais das relações indicadas são
 - i) reflexivas.
 - ii) simétricas.
 - iii) transitivas.
- b) Para as relações de equivalência, descreva cada classe de equivalência e indique o conjunto quociente.
- 68. Sejam $n \in \mathbb{N}$ e $a, b \in \mathbb{Z}$. Diz-se que a **é congruente com** b, **módulo** n, e escreve-se

$$a \equiv b \pmod{n}$$

se a - b = nk, para algum $k \in \mathbb{Z}$. Mostre que

- a) a relação binária **congruência módulo** n é uma relação de equivalência em \mathbb{Z} .
- b) dados $a, b \in \mathbb{Z}$, as afirmações seguintes são equivalentes:
 - i) $a \equiv b \pmod{n}$;
 - ii) b = a + nq, para algum $q \in \mathbb{Z}$;
 - iii) a e b têm o mesmo resto na divisão inteira por n.
- c) cada inteiro é congruente módulo n com um e um só inteiro não negativo menor do que n.

- 69. Dado $n \in \mathbb{N}$, considere a **congruência módulo** n. Para cada $a \in \mathbb{Z}$, a classe de equivalência de a representa-se por $[a]_n$. O conjunto quociente $\{[a]_n \mid a \in \mathbb{Z}\}$ representa-se por \mathbb{Z}_n .
 - a) Mostre que $\mathbb{Z}_n = \{ [0]_n, [1]_n, \dots, [n-1]_n \}.$
 - b) Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - i) $[38]_6 \notin \mathbb{Z}_6$ ii) $[27]_7 \neq [13]_7$ iii) $\mathbb{Z}_5 = \{ [10]_5, [8]_5, [6]_5, [4]_5, [2]_5 \}$ iv) $[21]_8 \cap [-5]_8 = \emptyset$ v) se $[3a]_5 = [-3]_5$ então $5 \mid (a+1)$ vi) $[-43]_5 \cap [2]_5 = [7]_5$ vii) $[8]_6 = [8]_2$
- 70. Seja $A = \{2, 3, 4, 6, 7\}$ e considere os seguintes conjuntos

$$\mathcal{D}_{1} = \{ \{2, 4\}, \{3\}, \{4, 6\}, \{3, 6, 7\} \} \quad \mathcal{D}_{2} = \{ \{2, 4, 6\}, \{3, 7\} \}$$

$$\mathcal{D}_{3} = \{ \{2\}, \emptyset, \{3, 4\}, \{6, 7\} \} \quad \mathcal{D}_{4} = \{ \{2, 6\}, \{3, 7\}, \{4\} \}$$

$$\mathcal{D}_{5} = \{ \{2, 3, 4, 6, 7\} \} \quad \mathcal{D}_{6} = \{ \{2\}, \{3, 4, 7\} \}$$

$$\mathcal{D}_{7} = \{ \{2\}, \{3\}, \{4\}, \{6\}, \{7\} \}$$

Diga, justificando, quais dos conjuntos \mathcal{D}_i ($1 \le i \le 7$) são partições de A e, em cada um desses casos, determine a relação de equivalência em A associada a \mathcal{D}_i .

- 71. Considere o conjunto $\mathcal{D} = \{ \{a\} \times \mathbb{R} \mid a \in \mathbb{R} \}.$
 - a) Mostre que \mathcal{D} é uma partição de \mathbb{R}^2 .
 - b) Determine a relação de equivalência $R_{\mathcal{D}}$ associada a $\mathcal{D}.$
- 72. Considere os seguintes conjuntos e as relações neles definidas.

$$A_1 = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 $R_1 = \{(x, y) \in A_1 \times A_1 \mid x \text{ \'e m\'ultiplo de } y\}$
 $A_2 = \mathbb{N}$ $R_2 = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid \operatorname{mdc}(x, y) = 1\}$
 $A_3 = \{1, 2, 3, 4, 5, 6\}$ $R_3 = \{(x, y) \in A_3 \times A_3 \mid x \text{ divide } y\}$
 $A_4 = \mathbb{Z}$ $R_4 = R_3$

Para cada i ($1 \le i \le 4$) diga se R_i é uma ordem parcial em A_i e, em caso afirmativo e se possível, construa o respetivo diagrama de Hasse.

73. Considere o conjunto $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$, parcialmente ordenado de acordo com o diagrama de Hasse seguinte, e os subconjuntos $A = \{4, 5, 6, 7\}$ e $B = \{1, 2, 4, 7\}$ de X.

Determine, caso existam,

- a) os elementos maximais, minimais, máximo e mínimo de X.
- b) os majorantes, minorantes, supremo e ínfimo de A e de B.