2020 春夏 · 实变函数 · 期中测试

共6个问题,满分60分,时间100分钟.

问题 1. (10 分). 假设 $\{E_k\}_{k=1}^{\infty}$ 是 \mathbb{R}^n 中的一列可测集,并且

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

令 $E = \{x \in \mathbb{R}^n :$ 存在无穷多个 k, 使得 $x \in E_k\}$. 证明: E 是可测集, 并且 m(E) = 0.

问题 2. (10 分). 假设 $E \subset \mathbb{R}^n$, $m_*(E) < \infty$. 证明: E 可测当且仅当存在 E 的可测子集列 $\{E_k\}_{k>1}$ 满足 $m(E_k) \to m_*(E)$.

问题 3. (10 分). 完成下面两个小题.

- (i) 假设 $\chi_{[0,1]}$ 是区间 [0,1] 的特征函数. 证明: 若 $f: \mathbb{R} \to \mathbb{R}$ 满足 $f(x) = \chi_{[0,1]}(x)$ a.e. $x \in \mathbb{R}$,则 f 在 \mathbb{R} 上不连续.
- (ii) 考虑函数列 $f_k(x) = k^{n/2}e^{-k|x|^2}$, $x \in \mathbb{R}^n$. 请回答问题并说明理由: $\{f_k\}_{k=1}^{\infty}$ 是否是 \mathbb{R}^n 上的测度基本列 (测度 Cauchy 列)?

问题 4. (10 分). 假设 $E \in \mathbb{R}^n$ 中的可测集, $f: E \to \mathbb{R}$ 是可测函数. 求证: 存在一列连续函数 $f_k: \mathbb{R}^n \to \mathbb{R}$,使得 $f(x) = \lim_{k \to \infty} f_k(x)$ a.e. $x \in E$.

问题 5. (10 分). 假设 $E \in \mathbb{R}^n$ 中的可测集, $f_1, \dots, f_d \in E$ 上的实值可测函数. 考虑 \mathbb{R}^{n+d} 中的集合 $G = \{(x, f_1(x), \dots, f_d(x)) \in \mathbb{R}^{n+d} : x \in E\}$. 请回答问题并说明理由: G 是否是 \mathbb{R}^{n+d} 中的可测集?

问题 6. (10 分). 假设 E 是 $(0,\infty)$ 中的可测集,f 是 E 上的实值可测函数. 考虑如下映照 $T: \mathbb{R}^2 \to [0,\infty), \ (x,y) \mapsto x^2 + y^2.$

记 $E^T = \{(x,y) \in \mathbb{R}^2 : T(x,y) \in E\}.$

- (i) 求证: E^T 是 \mathbb{R}^2 上的可测集, $f \circ T$ 是 E^T 上的可测函数.
- (ii) 假设 $E \subset (1,10)$, f_k 是 E 上的可测函数列,并且 f_k 在 E 上依测度收敛到 f. 求证: $f_k \circ T$ 在 E^T 上依测度收敛到 $f \circ T$.