Autores/Estudiantes:

Lucas Godoy Lic. Ciencias de la Computación

Rodrigo Mancera Lic. Ciencias de la Computación

Miguel Maldonado Lic. Ciencias de la Computación

Introducción

Este articulo refleja la idea de lo que un grupo de estudiantes de Ciencias de la Computación y entusiastas por la programación realiza para solidificar los conceptos en la escritura correcta de programas y con el fin de poner en práctica lo aprendido en el transcurso de la carrera. Formularemos problemas, los resolveremos y expondremos su solución, intoduciendonos en el lenguaje de programación Python conforme avance.

1. Derivación de Programas Funcionales

El objetivo es poner en práctica y ejemplificar el tema, utilizando las herramientas de cáculo proposicional, cáculo de predicados, expreciones cuantificadas, su formalización y técnicas elementales de la programación para construcción de programas.

1.1. Ejercicio Propuesto

Dada una lista de números, se debe determinar si algun elemento de la lista es divisible por 2.

1. **Formalización.** Utilizando las herramientas que nos brinda el cálculo de predicados podemos escribimos lo siguiente:

$$\langle \exists \ i : 0 \leq i < \#xs : xs.i \ mod \ 2 \rangle$$

2. **Analisis de Tipado.** Utilizaremos por convención Haskell para la tipificación.

$$div2.xs :: [int] \rightarrow Bool$$

3. Definición de la Función. Definición recursiva de la función.

$$div2.[] \doteq False$$

 $div2.(x \triangleright xs) \doteq x \mod 2 = 0 \lor div2.xs$

4. Hipótesis..

$$\langle \exists \ i : 0 \leq i < \#xs : xs.i \ mod \ 2 = 0 \rangle \equiv div2.xs$$

- 5. Demostración de Caso Base.
 - a) $\langle \exists i : 0 \leq i < \#[] : [].i \mod 2 = 0 \rangle \equiv div2.[]$
 - b) $\langle \exists i : 0 \leq i < 0 : [] .i \mod 2 = 0 \rangle \equiv div2.[]$
 - c) $\langle \exists i : False : [].i \mod 2 = 0 \rangle \equiv div2.[]$
 - $d) False \equiv div2.[]$
- 6. Demostración para x ⊳xs
 - a) $\langle \exists \ i : 0 \le i < \#(x \triangleright xs) : (x \triangleright xs).i \ mod \ 2 = 0 \rangle \equiv div2.(x \triangleright xs)$
 - b) $\langle \exists i : 0 = i \lor 1 \le i < \#(x \triangleright xs) : (x \triangleright xs) . i \mod 2 = 0 \rangle \equiv div2.(x \triangleright xs)$
 - c) $\langle \exists \ i: 0=i: (x \triangleright xs).i \ mod \ 2=0 \rangle \lor \langle \exists \ i: 1 \leq i < \#(x \triangleright xs): (x \triangleright xs).i \ mod \ 2=0 \rangle \equiv div2.(x \triangleright xs)$
 - d) $\langle \exists \ i : 0 = i : (x \triangleright xs).i \ mod \ 2 = 0 \ \rangle \lor \langle \exists \ i : 1 \le i < \#(x \triangleright xs) 1 : (x \triangleright xs).i + 1 \ mod \ 2 = 0 \ \rangle \equiv div 2.(x \triangleright xs)$
 - e) $\langle \exists \ i: 0=i: (x \triangleright xs).i \ mod \ 2=0 \rangle \lor \langle \exists \ i: 1 \leq i < \#xs: xs.i \ mod \ 2=0 \rangle \equiv div2.(x \triangleright xs)$
 - f) $(x \triangleright xs).0 \mod 2 = 0 \lor div2.xs \equiv div2.(x \triangleright xs)$
 - $g) \ x \ mod \ 2 = 0 \ \lor \ div2.xs \equiv div2.(x \triangleright xs)$
- 7. Codificación. Como habiamos mencionado anteriormente adoptaremos como lenguaje de programación Python. Código fuente.

Bibliografía Consultada.

1. Cálculo de Programas.

Autores: Javier Blanco, Silvina Smith y Damián Barsotti

2. How to Think Like a Computer Scientist

Autores: Allen Downey, Jeffrey Elkner y Chris Meyers