

Datová matice a transformace dat

2. seminář k předmětu *Statistické metody v analýze dat* 5.10.2022

Martina Šimková

Úvodní informace

- Ing. Martina Šimková, Ph.D.
 - simkova.martinka@gmail.com
 - martina.simkova.1@unicorncollege.cz

- Bodové hodnocení:
 - 20 bodů aktivita na cvičení
 - 30 bodů 2 testy (á 15 bodů)
 - 50 bodů závěrečná zkouška

Shrnutí poznatků z přednášky

- Datová matice
 - dvourozměrná tabulka popisující jednotlivá pozorování (objekty) v řádcích a ve sloupcích jsou naměřené hodnoty proměnných (ukazatelů)
- Výběrová rozdělení
 - je třeba rozlišit, kdy pracujeme s celou populací (základní soubor) a kdy pracujeme s výběrem
 - pouze <u>náhodný výběr</u> je základem pro realizaci statistických úsudků
 - základní výběrové charakteristiky:
 - Hustota pravděpodobnosti
 - Výběrové průměry
 - Kovarianční matice
 - Korelační matice
 - Obvykle předpokládáme <u>normální rozdělení</u> proměnných
- Lineární transformace dat
- Vzdálenosti objektů
- Testování normality jednorozměrné, vícerozměrné

Instalace balíčků do R

```
install.packages("pastecs")
install.packages("ggpubr")
install.packages("ggplot2")
install.packages("robustHD")
install.packages("MVN")
install.packages("mvnormtest"
```

Datová matice

Datová matice – teoretický příklad

ATISTICKÉ OBJEKTY

STATISTICKÉ PROMĚNNÉ (ZNAKY)

	x1	x2	х3	x4	x5	х6	
1							
2							
3							
4			VÝBĚ	ROVÝ			
5			SOU	BOR			
6							
7							
8							
9							

Datová matice – praktický příklad

Náhodný výběr 15 pozorování ze 100 šetřených osob

ID osoby	Pohlaví	Věk	Vzdělání	Rodinný stav	Ekonomická aktivita	Roční hrubý příjem	Subj. hodn. zdrav.stavu
021	1	32	3	1	1	294 882	1
003	2	29	4	1	1	460 705	1
019	1	61	1	4	3	164 532	4
078	1	52	2	2	1	399 375	2
100	2	48	2	3	1	1 040 412	1
091	1	36	3	2	1	384 000	1
040	2	31	3	2	1	300 000	1
056	2	54	4	4	1	264 000	2
061	2	40	1	3	2	86 515	2
032	1	34	4	2	1	377 597	1
011	2	37	4	1	1	372 965	3
084	2	58	3	2	1	189 913	4
075	2	29	4	2	1	159 018	1
085	1	35	4	2	1	225 693	1
093	2	46	2	3	2	57 547	2

Je nutné si vždy ujasnit, o jaký typ proměnné se jedná.

V datovém souboru **MMDA_02_data.xlsx** jsou některé zajímavé ukazatele za několik amerických měst.

Vypočítejte pro uvedené ukazatele základní výběrové charakteristiky:

- Výběrový průměr
- Výběrovou směrodatnou odchylku
- Výběrový rozptyl
- Výběrovou kovarianční matici
- Výběrovou korelační matici

Výpočty proveďte v MS Excel a následně ověřte v R (soubor MMDA_02_data.csv).

- Výběrové průměry $\bar{x_j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$
- Výběrové směrodatné odchylky s_j $s_j = \sqrt{\frac{\sum_{i=1}^n (x_{ij} \overline{x_j})^2}{n-1}}$
- Výběrové rozptyly s_j^2 $s_j^2 = \frac{\sum_{i=1}^n (x_{ij} \overline{x_j})^2}{n-1}$
- Wishartova matice Q $Q = \sum_{i=1}^{n} (x_i \overline{x}) (x_i \overline{x})^T$
- Výběrová kovarianční matice S $S = \frac{1}{n-1}Q$
 - na diagonále výběrové rozptyly, mimo diagonálu výběrové kovariance
- Výběrová korelační matice R
 - na diagonále jedničky, mimo diagonálu korelační koeficienty:

$$r(x_j, x_{j'}) = \frac{Q(x_j, x_{j'})}{\sqrt{Q(x_j)Q(x_{j'})}}$$

V datovém souboru MMDA_02_data.xlsx jsou některé zajímavé ukazatele za několik amerických měst.

```
Import dat do R: File → Import Datasets → From text (base) → MMDA_02_data.csv
(!!! nutno mít krátkou cestu k datům)
  # Výběrové charakteristiky
  install.packages("pastecs")
  library(pastecs)
  stat.desc(MMDA_02_data)
  x <- as.matrix(MMDA_02_data[,2:8])
  one \leftarrow as.matrix(rep(1, dim(x)[1]))
  n <- dim(x)[1]
  xbar <- 1/n*t(x)%*%one
  mean(MMDA_02_data$Rainfall)
  COV_X < -COV(X)
  cor_x <- cor(x)
```

Exploratorní analýza dat

■ IDENTIFIKACE ODLEHLÝCH A EXTRÉMNÍCH POZOROVÁNÍ

- Ověřování předpokladů, především tzv. testy normality
- Náhrada chybějících hodnot
- Třídění dat do intervalů

Identifikace odlehlých a extrémních pozorování

- Grafická analýza
- Míry polohy kvantily
- Lineární transformace proměnných ve výběru
- Vzdálenosti objektů

Lineární transformace proměnných ve výběru

■ CENTROVANÉ PROMĚNNÉ – od všech pozorování odečteme výběrový průměr

$$x_{ij,C} = x_{ij} - \bar{x}_j, \qquad i = 1,2,...,n, \qquad j = 1,2,...,p.$$

 NORMOVANÉ PROMĚNNÉ – centrované proměnné vydělíme směrodatnou odchylkou

$$x_{ij,N} = \frac{x_{ij} - \bar{x}_j}{s(x_i)} = z_j, \qquad i = 1, 2, ..., n, \qquad j = 1, 2, ..., p.$$

■ LIBOVOLNÁ LINEÁRNÍ KOMBINACE PROMĚNNÝCH – např. umělé proměnné

$$u_i = \mathbf{c}^T \mathbf{x}_i = \sum_{j=1}^p c_j x_{ij}, \qquad i = 1, 2, ..., n.$$

V datovém souboru **MMDA_02_data.xlsx** jsou některé zajímavé ukazatele za několik amerických měst.

Transformujte tyto ukazatele centrováním a normováním.

Vzdálenosti objektů

- Míra vzdálenosti mezi i-tým a i'-tým objektem v datové matici: $d_j(i;i') = x_{ij} x_{i'j}$
- **EUKLIDOVSKÁ VZDÁLENOST:**

$$D_E(i; i') = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{i'j})^2}$$

NORMOVANÁ VZDÁLENOST:

$$D_N(i;i') = \sqrt{\sum_{j=1}^p (z_{ij} - z_{i'j})^2}$$

MAHALANOBISOVA VZDÁLENOST:

$$D_M(i;i') = \mathbf{d}^T \mathbf{S}^{-1} \mathbf{d} = (\mathbf{x}_i - \mathbf{x}_{i'})^T \mathbf{S}^{-1} (\mathbf{x}_i - \mathbf{x}_{i'})$$

V datovém souboru MMDA_02_data.xlsx jsou některé zajímavé ukazatele za několik amerických měst.

Vypočítejte Mahalanobisovy vzdálenosti.

V datovém souboru MMDA_02_data.xlsx jsou některé zajímavé ukazatele za několik amerických měst.

Vypočítejte Mahalanobisovy vzdálenosti.

```
# Mahalanobisova vzdálenost require(graphics)
vzdalenost_mh <- mahalanobis(x, xbar, cov_x, inverted = FALSE)
plot(density(vzdalenost_mh, bw = 0.3), main="Squared Mahalanobis distances, n=428, p=9"); rug(vzdalenost_mh)
# ulozeni do csv
write.table(vzdalenost_mh, "c:/R/Data_UCL_MGR_MMDA/vzdalenost_mh.txt", sep="\t",dec = ",")
```

V datovém souboru MMDA_02_data.xlsx jsou některé zajímavé ukazatele za několik amerických měst. Najděte města, která můžeme z hlediska jedné či více proměnných považovat za odlehlá pozorování. Využijte k tomu všechna kritéria, která znáte, včetně grafické analýzy.

- Normované proměnné (větší než 2)
- Mahalanobisova vzdálenost (>12 nebo TK: F-rozdělení → p-value < α)</p>

$$F_2 = \frac{(n-p)n}{(n^2-1)p}D^2$$
 $F_2 \sim F(p, n-p)$

Exploratorní analýza dat

- Identifikace odlehlých a extrémních pozorování
- OVĚŘOVÁNÍ PŘEDPOKLADŮ, PŘEDEVŠÍM TZV. TESTY NORMALITY
- Náhrada chybějících hodnot
- Třídění dat do intervalů

Testy normality

- Některé statistické metody předpokládají výběr z normálního rozdělení
- Testování jednorozměrné normality:

 H_0 : normalita H_1 : non H_0

- Chí-kvadrát test dobré shody
- Kolmogorovův test
- Shapiro-Wilk test
- Testy založené na šikmosti a špičatosti
- Grafické posouzení jednorozměrné normality pomocí grafu výběrové distribuční funkce, porovnání výběrových a teoretických kvantilů (Q-Q diagram) apod.
- Testování vícerozměrné normality:
 - Vícerozměrný test Shapiro-Wilk
 - Chí-kvadrát diagram grafické ověření dvourozměrné normality pomocí srovnání
 Mahalanobisových vzdáleností s kvantily rozdělení Chí-kvadrát

V datovém souboru MMDA_02_data.xlsx jsou některé zajímavé ukazatele za několik amerických měst.

- 1. Otestujte normalitu jednotlivých proměnných pomocí těchto testů:
 - Graf hustoty pravděpodobnosti
 - > Q-Q graf
 - Shapiro-Wilkův test
 - > Kolmogorovův test
- 2. Posuďte, jestli ukazatele mají vícerozměrné normální rozdělení, pomocí:
 - Vícerozměrného Shapiro-Wilkova testu
 - Chí-kvadrát diagramu

```
# Testy jednorozměrné normality
     # 1.grafické nástroje
           # Q-Q graf pro normalitu
           qqnorm(MMDA_02_data$Mortality, pch = 1, frame = TRUE)
           ggline(MMDA 02 data$Mortality, col = "steelblue", lwd = 2)
           # Hustota pravdepodobnosti
           hist(MMDA_02_data$Mortality,probability=TRUE)
           lines(density(MMDA_02_data$Mortality),col="red")
     # 2.statistické nástroje
           # Shapiro-Wilkův test
           shapiro.test(MMDA_02_data$Mortality)
           # Kolmogorov-Smirnov test
           ks.test(MMDA_02_data$Mortality, "pnorm", mean=mean(MMDA_02_data$Mortality), sd=sd(MMDA_02_data$Mortality))
# Testy vícerozměrné normality
     # Shapiro-Wilkův test
     mshapiro.test(t(x))
     # Q-Q graf chisq-mahalanobis
     qqplot(qchisq(ppoints(60), df = 6), vzdalenost_mh)
     abline(0, 1, col = 'gray')
```

PŘÍKLAD 6 – AKTIVITA ZA 2 BODY

V datovém souboru MMDA_02_data.xlsx jsou některé zajímavé ukazatele za několik amerických měst.

- 1. Identifikujte odlehlá pozorování u proměnných **x4** a **x5**. Jak se změní výběrový průměr a výběrová směrodatná odchylka, pokud u těchto proměnných odlehlé pozorování vyloučíte?
- 2. Otestujte normalitu proměnných **x2** a **x3** pomocí známých grafů a testů.

Exploratorní analýza dat

- Identifikace odlehlých a extrémních pozorování
- Ověřování předpokladů, především tzv. testy normality
- NÁHRADA CHYBĚJÍCÍCH HODNOT
- Třídění dat do intervalů

Náhrada chybějících hodnot

- Když datová matice není kompletní
- Pokud u objektu chybí větší počet údajů, lze tento objekt vypustit
- Hodnoty, které jsou náhodně nevyplněné lze doplnit uměle (zmírnění ztráty informace)
- Umělé náhrady (odhad):
 - Průměrem příslušné proměnné nebo příslušného objektu (nejjednodušší, nerespektuje však variabilitu ani korelační strukturu dat)
 - Náhodným číslem z rozdělení příslušné proměnné s parametry odhadnutými z výběru
 - Regresí odhad založený na regresní rovnici
- Software: umožňuje při hodnocení dvojice proměnných vyloučit jen ty řádky, které se přímo týkají aspoň jedné z proměnných (bez ohledu na to, že v jiných sloupcích použitých řádků některé údaje chybí)
- Obvyklé kódování: 9; 99; 999; -99 apod.

Exploratorní analýza dat

- Identifikace odlehlých a extrémních pozorování ✓
- Ověřování předpokladů, především tzv. testy normality
- Náhrada chybějících hodnot ✓
- TŘÍDĚNÍ DAT DO INTERVALŮ

Třídění dat do intervalů - opakování

- Přechod od původních hodnot <u>kvantitativní proměnné</u> k intervalovému rozdělení četností → přechod k <u>ordinální proměnné</u> = sloupcový vektor v datové matici obsahuje pořadová čísla intervalů
- Neexistuje obecný předpis pro stanovení počtu a délky intervalů
 - Ztráta informace (málo intervalů) x ztráta přehlednosti (mnoho intervalů)
- např. Sturgessovo pravidlo pro počet intervalů K:

$$K = log_2(2n) \cong 1 + 3.3 \log n$$

■ Délka intervalů (H) nejčastěji stejná, např. podle variačního rozpětí (R):

$$H \approx \frac{R}{K}$$

Dotazy?

UNICORN UNIVERSITY