Minimizing Loss functions with Gradient description
$$L(w,L) = \frac{1}{2\pi} \frac{2}{2\pi} \left(y^{(i)} - \sigma(z^{(i)}) \right)^2$$

Thing Why? $\sigma(z)$ defines $\sigma: clossiffer \frac{1}{2}: description boundary = W^{T}x + b$

We are suming up all massification (MSA)

$$\therefore \nabla L(w,L) = \left[\frac{\partial L}{\partial w} , \frac{\partial L}{\partial h} \right]$$
1. (a) $\frac{\partial L}{\partial w} \left(\frac{\partial L}{\partial w} , \frac{\partial L}{\partial h} \right)$

$$\frac{\partial L}{\partial w} = \frac{2}{2} \frac{2}{2} \left(y^{(i)} - \sigma(z^{(i)}) \frac{\partial L}{\partial w} , \left(y^{(i)} - \frac{2}{2} (w_{j} x_{j}^{(i)} + \frac{1}{2}) \right)$$

$$\frac{\partial L}{\partial b} = \frac{2}{2} \frac{2}{2} \left(y^{(i)} - \sigma(z^{(i)}) \frac{\partial L}{\partial b} , \left(y^{(i)} - \frac{2}{2} (w_{j} x_{j}^{(i)} + \frac{1}{2}) \right)$$

$$\frac{\partial L}{\partial b} = \frac{2}{2} \frac{2}{2} \left(y^{(i)} - \sigma(z^{(i)}) \frac{\partial L}{\partial b} , \left(y^{(i)} - \frac{2}{2} (w_{j} x_{j}^{(i)} + \frac{1}{2}) \right)$$

$$\frac{\partial L}{\partial b} = \frac{2}{2} \frac{2}{2} \left(y^{(i)} - \sigma(z^{(i)}) \frac{\partial L}{\partial b} , \left(y^{(i)} - \frac{2}{2} (w_{j} x_{j}^{(i)} + \frac{1}{2}) \right)$$

$$\frac{\partial L}{\partial b} = \frac{2}{2} \frac{2}{2} \left(y^{(i)} - \sigma(z^{(i)}) \right) - 1$$

$$\frac{\partial L}{\partial b} = \frac{2}{2} \frac{2}{2} \left(y^{(i)} - \sigma(z^{(i)}) \right) - 1$$