Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

GitHub проекта

Автор в ВК

Содержание

1	Φ ормула Валлиса. Связность в \mathbb{R}^m	2
	1.1 Вычисление $\int_0^{\pi/2} \sin^n x dx$. Формула Валлиса	4
2	Свойства интегралов на равенства. Теорема о повторном пределе	
4	2.1 Свойства интегралов, выражаемые равенствами	
	2.2 Теорема о повторном пределе	4
•		
3	Определение интеграла, умножение рядов	4
	3.1 Определение определенного интеграла, теорема о среднем	
	от выполните радов	
4	Теорема Кантора, площадь криволинейного треугольника через полярные координаты	ţ
	4.1 Равномерная непрерывность. Модуль непрерывности. Теорема Кантора	
	4.2 Площадь криволинейного треугольника через полярные координаты	(
5	Почленное интегрирование ряда и оценка длины кривой	6
	5.1 Лемма об оценке длины простой гладкой дуги	6
	5.2 Теорема о предельном переходе под знаком интеграла и почленном интегрировании функциональных рядов	(
6	Исследование сходимости обобщенного гармонического ряда, теорема о непрерывном образе ком-	
	пактного множества	•
	6.1 Исследование сходимости обобщенного гармонического ряда	7
	6.2 Теорема о непрерывном образе компактного множества. Следствия (две теоремы Вейерштрасса)	
7	Формула остаточного члена ряда Тейлора и переход к пределу под знаком производной	7
	7.1 Формула остаточного члена ряда Тейлора в интегральной форме	7
	7.2 Теорема о предельном переходе под знаком производной	8
8	Признак Коши и экспонента в ряд Тейлора	8
	8.1 Интегральный признак Коши сходимости ряда	8
	8.2 Экспонента с комплексным и чисто мнимым показателем	ć
9	Площадь криволинейного треугольника и теорема о компактной сходимости	ç
	9.1 Вычисление площади криволинейного сектора с помощью параметризации его основания	(
	9.2 Теорема о компактной сходимости и непрерывности суммы степенного ряда	1(
10	Формула Эйлера-Маклорена и arcsin по Тейлору	10
	10.1 Формула Эйлера-Маклорена	10
	10.2 Разложение $\arcsin x$ в ряд Тейлора	1
11	Интегрирование по частям и формула Адамара	11
	11.1 Интегрирование по частям и замена переменной	1.
	11.2 Формула Адамара	1.
12	Положительные ряды и разложение арктангенса и логарифма	11
	12.1 Положительные ряды	11
	12.2 Почленное интегрирование вещественного степенного ряда. Разложение в ряд Тейлора функций $\ln(1+x)$ и	
	$\arctan x$	11
13	Несобственные интегралы и дифференцирование степенного ряда	12
	13.1 Определение несобственного интеграла и т.д	12
	13.2 Дифференцирование степенного ряда (с леммой)	13

1 Формула Валлиса. Связность в \mathbb{R}^m

1.1 Вычисление $\int_0^{\pi/2} \sin^n x dx$. Формула Валлиса

Пример.
$$n\in\mathbb{N}.\ I_0=\frac{\pi}{2},\ \ I_1=1$$
 $n\geq 2$:

$$I_n = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x d(\cos x) = \sin^{n-1} x \cos x \Big|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x (n-1) \sin^{n-2} x \cos x dx =$$

$$(n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) dx = (n-1) (I_{n-2} - I_n)$$

откуда:

$$I_n = \frac{n-1}{n} I_{n-2}$$

Разберем по отдельности случай четности и нечетности. n=2k

$$I_{2k} = \frac{2k-1}{2k} I_{2(k-1)} = \frac{2k-1}{2k} \frac{2k-3}{2k-2} I_{2(k-2)} = \dots = \frac{(2k-1)(2k-3)\dots 3 \cdot 1}{(2k)(2k-2)\dots 4 \cdot 2} I_0 = \frac{(2k-1)!!}{(2k)!!} \cdot \frac{\pi}{2}$$

Для n = 2k + 1:

$$I_{2k+1} = \frac{2k}{2k+1}I_{2k-1} = \dots = \frac{2k(2k-2)\dots 2}{(2k+1)(2k-1)\dots 3}I_1 = \frac{2k!!}{(2k+1)!!}$$

Отсюда ответ:

$$I_n = \frac{(n-1)!!}{n!!} \varepsilon_n, \quad \varepsilon_n = \begin{cases} \frac{\pi}{2} & n - \text{четное} \\ 1 & n - \text{нечетное} \end{cases}$$

 $I_{2k-1} < I_{2k} < I_{2k+1}$, откуда

$$\frac{(2k)!!}{(2k+1)!!} \le \frac{(2k-1)!!}{(2k)!!} \cdot \frac{\pi}{2} \le \frac{(2k-2)!!}{(2k-1)!!} \Leftrightarrow \frac{1}{2k+1} \left[\frac{(2k)!!}{(2k-1)!!} \right]^2 \le \frac{\pi}{2} \le \frac{1}{2k} \underbrace{\left[\frac{(2k)!!}{(2k-1)!!} \right]^2}_{Ak}$$

$$\frac{1}{2k}A_k^2 - \frac{1}{2k+1}A_k^2 = \frac{1}{2k(2k+1)}A_k^2 \le \frac{1}{2k} \cdot \frac{\pi}{2} \to_{k \to \infty} 0$$

Следовательно, промежутки стягиваются, следовательно,

Отсюда $\pi/2 = \lim_{k \to \infty} \frac{1}{2k} \left\lceil \frac{(2k)!!}{(2k-1)!!} \right\rceil$ — формула Валлиса.

1.2 Связность в \mathbb{R}^m .

 $X \subset \mathbb{R}^m$.

Определение.

 $X \cap G$ — относительно открыт в X, если G — открыто в \mathbb{R}^m .

 $X \cap G$ — относительно замкнут в X, если G — замкнуто в \mathbb{R}^m .

Определение. X — несвязно, если $X = A \cup B$, таких, что:

- 1) $A, B \neq \emptyset$;
- 2) $A \cap B = \emptyset$:
- 3) A, B относительно открыты.

Определение. Связное множество — не несвязное множество

Определение. Если $A = X \cap G$ $F = \mathbb{R}^m \backslash G$, то $B = X \backslash A = X \cap F$. $\Rightarrow B$ — дополнение A.

Теорема. Пусть $X \subset \mathbb{R}^m$ — связно. Докажем, что это промежуток: пусть $a = \inf X, \ b = \sup X$. (прокатит и для бесконечных a,b). Если $a < c < b \Rightarrow c \in X$.

Доказательство. От противного, пусть $a < c_0 < b, c_0 \notin X$. $A = X \cap (-\infty, c_0), B = X \cap (c_0, +\infty)$. Так как $c_0 \notin X$, то $A \cup B = X$.

Таким образом, всякое связное множество — промежуток. Промежуток связен по теореме Больцано-Коши.

Теорема. Если $T: X \to Y$ непрерывно, X - cвязно, тогда Y тоже связно.

Доказательство. Пусть Y = T(X) несвязно. Тогда $\exists f: X \to \{-1,1\}$. Рассмотрим $g = f \circ T$. Она непрерывна и принимает два значения. Значит, X несвязно. Противоречие.

2 Свойства интегралов на равенства. Теорема о повторном пределе

2.1 Свойства интегралов, выражаемые равенствами

Лемма. 1) f,g — непрерывна на [a,b]. Тогда $\int_a^b (f(x)+g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$.

Доказательство. F, G — первообразные для f, g. Тогда h = f + g, H = F + G, значит, H'(x) = h(x). Значит, $\int_a^b (f(x) + g(x))dx = H(b) - H(a) = (F(b) + G(b)) - (F(a) + G(a)) = F(b) - F(a) + G(b) - G(a) = \int_a^b f(x)dx + \int_a^b g(x)dx$.

Лемма. 2) $(f, [a, b]) \in D$, $\alpha \in \mathbb{R}$. $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$.

Доказательство. F — первообразная для f. Тогда по Ньютону-Лейбницу, $\int_a^b \alpha f(x) dx = \alpha F(b) - \alpha F(a) = \alpha \int_a^b f(x) dx$. \square

Лемма. 3) $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$.

Доказательство. Очевидно следует из предыдущих пунктов.

Лемма. 4) $\int_a^b \left(\sum_{k=1}^n \alpha_k f_k(x)\right) dx = \sum_{k=1}^n \alpha_k \int_a^b f_k(x) dx$

Доказательство. Очевидно по индукции.

Лемма. 5) $\int_a^b f(x)dx = -\int_b^a f(x)dx$ из формулы Ньютона-Лейбница. Пусть $a,b,c \in \mathbb{R}$, f непрерывна на любом промежутке c концами a,b,c, тогда $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

Доказательство. При a < c < b верно по определению. Рассмотрим при b < a < c: $\int_b^c f(x)dx = \int_a^a f(x)dx + \int_a^c f(x)dx \Leftrightarrow \int_a^b = \int_a^c + \int_c^b$.

2.2 Теорема о повторном пределе

Теорема. $X \subset \mathbb{R}, \ a \in \mathbb{R}, \ a - m$ очка сгущения, f_n определены на X, \exists конечные пределы $\lim_{x \to a} f_n(x) = L_n \ \forall n = 1, 2, ...$ Если $f_n \Rightarrow f$ на X, то:

1) \exists конечный $\lim_{n\to\infty} L_n = L$

2) $f(x) \rightarrow_{x \rightarrow a} L$

Что можно переписать как $\lim_{x\to a} f(x) = \lim_{n\to\infty} L_n$:

$$\lim_{x \to a} (\lim_{n \to \infty} f_n(x)) = \lim_{n \to \infty} (\lim_{x \to a} f_n(x)) = L$$

Доказательство.

 $\{x_n\}_{n=1}^{\infty}$ — фундаментальна, тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists N: \ \forall n > N, m > N: \ |x_n - x_m| < \varepsilon$. Зафиксируем $\varepsilon > 0$ Найдем N, начиная с которого $|L_n - L_m| < \varepsilon$.

 $f_n \Rightarrow f$ на X, откуда $\exists N: \ \forall n > N \ |f_n(x) - f(x)| < \frac{\varepsilon}{2} \ \forall x \in X$ и $\forall m > M \ |f_m(x) - f(x)| < \frac{\varepsilon}{2} \ \forall x \in X$. Отсюда, $|f_n(x) - f_m(x)| = |(f_n(x) - f(x)) + (f(x) - f_m(x))| < |...| + |...| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Таким образом, $|L_n - L_m| \le \varepsilon$.

2) Заменим f на f_n с малой погрешностью и перейдем от L к L_n . Тогда $f(x) - L = f_n(x) - L_n +$ малое. Теперь зафиксируем произвольное (но очень большое) N, так, чтобы погрешность не превышала $\frac{\varepsilon}{3}$. Фиксируем $\varepsilon > 0$.

 $\exists N_1: \ \forall n>N_1$ верно $|f_n(x)-f(x)|<rac{arepsilon}{3} \ \forall x\in X; \ \exists N_2: \ \forall n>N_2$ верно $|L_n-L|<rac{arepsilon}{3} \ \forall x\in X.$ Примем $N>N_1+N_2,$ тогда справедливы оба неравенства.

$$|f(x) - L| = |(f(x) - f_n(x)) + (f_n(x) - L_n) + (L_n - L)| < |f(x) - f_n(x)| + |f_n(x) - L_n| + |L_n - L| < \frac{2\varepsilon}{3} + |f_n(x) - L_n|.$$
 $\exists V(a) \ \forall x \in X \cap \dot{V}(a) : \ |f_n(x) - L_n| < \frac{\varepsilon}{3}.$ Отсюда $|f(x) - L| < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3}$ при $x \in X \cap \dot{V}(a)$.

3 Определение интеграла, умножение рядов

3.1 Определение определенного интеграла, теорема о среднем

Определение. Пусть f определена на X. F — первообразная для f на X, если $\forall x \in X \ \exists F'(x)$ и F'(x) = f(x).

Определение. Неопределенный интеграл — любая первообразная для функции на данном промежутке.

Определение. Пусть [a,b] — невырожденный промежуток, f определена и непрерывна на [a,b], то есть (f,[a,b]) является допустимой парой. Пусть D — множество таких пар. Определенный интеграл — функция, заданная на $D: J: D \to \mathbb{R}$, удовлетворяющая свойствам:

1) (f, [a, b]) — допустимая пара, если a < c < b, то J(f, [a, b]) = J(f, [a, c]) + J(f, [c, b]).

2) Если для (f, [a, b]) верно, что $A \le f(x) \le B$, $\forall x \in [a, b]$, то $A(b - a) \le J(f, [a, b]) \le B(b - a)$.

Теорема. (о среднем). Если пара $(f, [a, b]) - \partial$ опустимая, то $\exists c \in [a, b]$, такое, что J(f, [a, b]) = f(c)(b - a).

Доказательство. Пусть $M = \max f(x), \ m = \min f(x)$ на [a,b]. Тогда $m \le f(x) \le M \ \forall x \in [a,b]$. Тогда $m(b-a) \le J(f,[a,b]) \le M(b-a),$ разделим на b-a, получим $m \le \frac{1}{b-a}J(f,[a,b]) = C \le M.$ Тогда по теореме Больцано-Коши $\exists c \in [a,b]: \ f(c) = C = \frac{1}{b-a}J(f,[a,b]),$ остается лишь домножить на (b-a).

3.2 Умножение рядов

Определение. $(A) \sum_{k=0}^{\infty} a_k$ и $(B) \sum_{k=1}^{\infty} b_k$. Произведение рядов (A) и $(B) - (C) \sum_{k=0}^{\infty} c_k$, где $c_k = (a_0b_k + a_1b_{k-1} + ...a_{k-1}b_1 + a_kb_0)$.

Теорема. Если $(A) \sum_{k=0}^{\infty} a_k \ u \ (B) \sum_{k=1}^{\infty} b_k$ абсолютно сходятся, то ряд $(C) \sum_{k=0}^{\infty} c_k$ абсолютно сходится u его сумма $C = A \cdot B$

Доказательство.

$$C_n = \sum_{k=0}^{n} c_k = \sum_{k=0}^{n} \sum_{i+j=k} a_i b_j = \sum_{i+j \le n} a_i b_j$$

— частичная сумма ряда (C).

Разобьем дальнейшее доказательство на 2 части:

1) Ряды (A) и (B) положительные.

$$C_n = \sum_{i+j \le n} a_i b_j \le \sum_{i \le n, \ j \le n} a_i b_j = A_n B_n$$

где $A_n = a_0 + ... + a_n$, $B_n = b_0 + ... + b_n$. Таким образом, $C_n \le A_n B_n \to AB$. (A) > 0, $(B) > 0 \Rightarrow (C) > 0$. Значит, последовательность C_n ограничена (так как ограничены (A) и (B)). Ограничим произведение: $C_n \le A_n B_n \le C_{2n}$:

$$C_{2n} = \sum_{i+j \le 2n} a_i b_j \ge \sum_{i \le n, j \le n} a_i b_j = A_n B_n$$

Ряд $C_n \to C$ и $C_{2n} \to C$, следовательно, по теореме о двух милиционерах, $A_n B_n \to C$ и, одновременно, $A_n B_n \to AB$, следовательно, C = AB.

2) Общий случай.

Будем рассматривать $(A*)\sum_n |a_n|, (B*)\sum_n |b_n|, (C*)\sum_n |c_n|, (D)\sum_{n=0}^{\infty} d_n$.

$$|c_n| = |\sum_{i+j=n} a_i b_j| \le \sum_{i+j=n} |a_i| |b_i| = d_n$$

То есть (D) = (A*)(B*). По доказанному, ряд (D) сходится. По неравенству (C*) сходится, следовательно, (C) сходится абсолютно.

Докажем, что $C_{2n} - A_n B_n \to 0$. Если мы это докажем, то перейдем к пределу и там получим, что C - AB = 0. Оценим:

$$|C_{2n} - A_n B_n| = |\sum_{i+j \le 2n \mod(i,j) > n} a_i b_j| \le \sum_{i+j \le 2n \mod(i,j) > n} |a_i| |b_j| = \underbrace{\sum_{i+j \le 2n} |a_i| |b_j|}_{D_{2n}} - \sum_{i,j \le n} |a_i| |b_j|$$

Отсюда,
$$|C_{2n} - A_n B_n| \leq \underbrace{D_{2n}}_{D} - \underbrace{A_n^* B_n^*}_{A^* B^*} \to_{n \to \infty} 0.$$

4 Теорема Кантора, площадь криволинейного треугольника через полярные координаты

4.1 Равномерная непрерывность. Модуль непрерывности. Теорема Кантора

Определение. T равномерно непрерывно на X, если $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in X$, такое, что $||x-x'|| < \delta \Rightarrow ||T(x)-T(x')|| < \varepsilon$.

Замечание. Достаточным для равномерной непрерывности условием является условие Липшица: $\exists C: ||T(x) - T(x')|| \le C||x - x'|| \ \forall x, x' \in X.$

Определение. Модуль непрерывности $T:\omega_T^{(\delta)}=\sup_{\delta>0,\ x,x'\in X,\ ||x-x'||<\delta}||T(x)-T(x')||.$

- 1) Если $\delta < \delta$, то $\omega_T(\delta) \leq \omega_T(\delta')$;
- 2) $u, v \in X \Rightarrow ||T(u) T(v)|| \leq \omega_T(||u v||).$

Теорема. (Кантора)

X-компактное подмножество в \mathbb{R}^m , а $T:X\to\mathbb{R}^l$. Если T непрерывно на X, то T равномерно непрерывно на X.

Доказательство. Согласно замечанию, $\forall x, x' \in X : ||T(x) - T(x')|| \le \omega_T(||x - x'||)$.

Если $\omega_T(\delta) \to_{\delta \to +0} 0$, то T — равномерно непрерывно (2). Проверим это: зададим произвольное $\varepsilon > 0$ $\omega_T(\delta) \to_{\delta \to 0+}$ $0 \exists \delta_0 > 0$, такая, что $\omega_T(\delta) < \varepsilon$ при $\delta < \delta_0$. Тогда $\forall x, x' \in X, \ ||x - x'|| < \delta_0$ и $||T(x) - T(x')|| \le \omega_T(||x - x'||) < \varepsilon$.

От противного, пусть (2) неверно: пусть $\omega_T(\delta) \not\to_{\delta \to 0+} 0$. Напомним, что ω_T возрастает. Тогда $\exists \lim_{\delta \to 0+} \omega_T(\delta) > 0$ и $\exists \lim_{\delta \to 0+} \omega_T(\delta) = \inf \omega_T(\delta) = C > 0.$

 $\forall \delta > 0 \ \omega_T(\delta) \geq C > 0, \ \forall n \ \omega_T(\frac{1}{n}) \geq C > 0, \ \text{то есть sup} \ ||T(x) - T(x')|| \geq C > 0. \ \text{Тогда} \ \exists x_n, x_n' \in X \ \text{такое, что одновре-}$

менно $||x_n-x_n'|| \leq \frac{1}{n}$ и $||T(x_n)-T(x_n')|| \geq \frac{C}{2}$. Теперь, когда у нас есть последовательность, используем компактность: $\exists x_{n_k} \to x_0 \in X$. Тогда $||x_{n_k}'-x_0|| \leq ||x_{n_k}'-x_{n_k}|| + ||x_{n_k}-x_0|| \leq \frac{1}{n_k} + ||x_{n_k}-x_0|| \to n_k \to \infty$ 0. Таким образом, $x_{n_k}' \to x_0$. Отсюда $||T(x_{n_k})-T(x_{n_k}')|| \geq \frac{C}{2}$. Перейдем к пределу: $||T(x_0)-T(x_0)|| \geq \frac{C}{2} > 0$, противоречие. Следовательно, (2) верно, из него вытекает равномерная непрерывность, теорема доказана.

4.2Площадь криволинейного треугольника через полярные координаты

Определение. ρ — непрерывна, определена на $[-\pi,\pi]$, $\Delta \in [-\pi,\pi]$. Криволинейный треугольник — $T_{\rho(\Delta)} = \{x,y|\varphi\in$ Δ , $0 < r < \rho(\varphi)$, где $\varphi = \sqrt{x^2 + y^2}$.

Теорема. $S(T_{\rho(\Delta)}) = \frac{1}{2} \int_{0}^{q} \rho^{2}(\varphi) d\varphi$, $\epsilon \partial e[p,q] = \Delta$.

Доказательство. Пусть $\Phi(\Delta) = S(T_{\rho(\Delta)})$. $\Delta', \Delta'' \in \Delta, \ \Delta' + \Delta'' = \Delta, \ \Delta' \cap \Delta'' = \text{прямая, то } \Phi(\Delta) = \Phi(\Delta') + \Phi(\Delta''), \text{ то есть } \Phi - \text{аддитивна.}$

Пусть $m_{\Delta} = \min \rho(\varphi), M_{\Delta} = \max \rho(\varphi)$. Ясно, что $m_{\Delta} \leq \rho(\varphi) \leq M_{\Delta}$.

 $\tfrac{1}{2}m_\Delta^2\mathrm{д}\mathrm{д}(\Delta) \leq S(T_{\rho(\Delta)}) \leq \tfrac{1}{2}M_\Delta^2\mathrm{д}\mathrm{J}(\Delta),\ M_\Delta - m_\Delta \to_{\mathrm{д}\mathrm{J}(\Delta) \to 0} 0.$

Пусть $f(x) = \frac{1}{2}\rho^2(\varphi)$, тогда $S(T_{\rho(\Delta)}) = \int_p^q \frac{1}{2}\rho^2(\varphi)d\varphi$.

5 Почленное интегрирование ряда и оценка длины кривой

Лемма об оценке длины простой гладкой дуги

Лемма. L- гладкая кривая в $\mathbb{R}^2,\,\gamma:[a,b] o L-$ регулярная параметризация L.

 $m_x(\Delta) = \min_{\Delta} |x'|, \ m_y(\Delta) = \min_{\Delta} |y'|, M_x(\Delta) = \max_{\Delta} |x'|, M_y(\Delta) = \max_{\Delta} |y'|,$ где $\Delta = [a, b].$ Тогда

$$\sqrt{m_x^2+m_y^2}(b-a) \leq S(L) \leq \sqrt{M_x^2+M_y^2}(b-a)$$

Доказательство. $\rho(\gamma(a), \gamma(b)) = \sqrt{(x(a) - x(b))^2 + (y(a)) - y(b))^2} = *$

 $x(b)-x(a)=\int_a^b x'(t)dt=x'(\tilde{t})(b-a)$ по теореме о среднем. Аналогично $\exists \hat{t} \in [a,b]: \ y(b)-y(a)=y'(\hat{t})(b-a).$

Тогда $* = \sqrt{(x'(\tilde{t}))^2 + (y'(\hat{t}))^2}(b-a) = \lambda$

Пусть CD — отрезок длины $\sqrt{M_x^2+M_y^2}(b-a)$, на концах которого x=a,b. AB — отрезок, соединяющий $\gamma(a)$ и $\gamma(b)$.

Пусть $\Phi:L\to CD$. Тогда $\rho(A,B)\leq \rho(C,D)=\sqrt{M_x^2+M_y^2}(b-a)$ по доказанному ранее. Аналогично справедливо для Φ на любом [p,q] следовательно, Φ — растяжение, тогда $S(L) \leq S(CD) \leq \sqrt{M_x^2 + M_y^2(b-a)}$

5.2Теорема о предельном переходе под знаком интеграла и почленном интегрировании функциональных рядов

Теорема. f_n непрерывны на [a,b]. Если $f_n \Rightarrow f$ на [a,b], то $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

$$\left| \int_{a}^{b} f_{n}(x)dx - \int_{a}^{b} f(x)dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx < \int_{a}^{b} \sup_{x \in [a,b]} \left| f_{n}(x) - f(x) \right| dx = \alpha_{n}(b-a) \to_{n \to \infty} 0 \Rightarrow$$

$$\int_{a}^{b} f_{n}(x)dx \to \int_{a}^{b} f(x)dx$$

Теорема. u_n непрерывно и равномерно сходится на [a,b]. Тогда $\int_a^b f(x)dx = \sum_{n=1}^\infty u_n(x)dx$.

Доказательство. Пусть $I_n=\int_a^b S_n(x)dx=\sum_{k=1}^n\int_a^b u_n(x)dx.$ $S_n\rightrightarrows S,$ по 1 теореме

$$\sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) dx \leftarrow \int_{a}^{b} S_{n}(x) dx \rightarrow_{n \rightarrow \infty} \int_{a}^{b} S(x) dx \Rightarrow \sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) dx = \int_{a}^{b} S(x) dx$$

6 Исследование сходимости обобщенного гармонического ряда, теорема о непрерывном образе компактного множества

6.1 Исследование сходимости обобщенного гармонического ряда

Теорема. Обобщенный гармонический ряд сходится $\Leftrightarrow p > 1$.

Доказательство. Пусть p > 1. Введем частичную сумму

$$S_n = 1 + \frac{1}{2^p} + \dots + \frac{1}{n^p} < 1 + \frac{1}{2^p} + \dots + \frac{1}{(2n-1)^p} + \frac{1}{(2n)^p} + \frac{1}{(2n+1)^p} \le$$

$$\le 1 + \frac{2}{2^p} + \frac{2}{4^p} + \dots + \frac{2}{(2n)^p} = 1 + \frac{1}{2^p} (1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p})$$

В скобках получилась S_n . Перепишем полученное $S_n \leq 1 + \frac{2}{2^p} S_n$. $\Theta = \frac{2}{2^p} < 1$, то есть $S_n \leq \frac{1}{1-\Theta}$. Частичные суммы ограничены, а значит, ряд сходится.

Пусть
$$0 . Тогда $S_n = \sum_{k=1}^n \frac{1}{k^p} \ge \frac{1}{n^p} \cdot n$. $S_n \ge n^{1-p} \to +\infty$. При этом $\frac{1}{n^p} > \frac{1}{n}$, расходимость очевидна.$$

6.2 Теорема о непрерывном образе компактного множества. Следствия (две теоремы Вейерштрасса)

Теорема. $X \subset \mathbb{R}^m, X - \kappa$ омпактно, $T: X \to \mathbb{R}^l, T - непрерывно, тогда <math>Y = T(X) \Rightarrow Y$ компактно.

Доказательство. Характеристика компактного множества: $\forall \{y_n\} \subset Y \ \exists y_{n_k} \to y_0 \in Y.$

Возьмем последовательность точек $y_n \in Y$. Т.к. Y — образ, то это значения: $\exists x_n \in X: y_n = T(x_n)$. Множество X компатно, поэтому из последовательности x_n можно выделить подпоследовательность: $\exists x_{n_k} \to x_0 \in X$. В силу непрерывности, $T(x_{n_k}) \to T(x_0) = y_0 \in Y$. $T(x_{n_k}) = y_{n_k}, y_{n_k} \to y_0 \in Y$. Характеристика проверена, Y — компактно.

Следствие:

Теорема. $T: X \to \mathbb{R}^l$. T непрерывно, X компактно, следовательно, T(X) ограничено и достигает наибольшего и наименьшего значений на X. (обе теоремы Вейерштрасса (что ограничено -1) и (что достигает -2)).

Доказательство. T(x) — компактно, следовательно, ограничено и замкнуто.

$$T(x)$$
 — замкнуто, следовательно, $\exists m = \inf T(x), \ M = \sup T(x)$. Рассмотрим последовательность $\{y^{(n)}\}$, такую, что $y^{(n)} = M - \frac{1}{n} = (M_1 - \frac{1}{n}, ..., M_l - \frac{1}{n}), \ y^{(n)} \to M \Rightarrow M \in T(x)$, так как $T(x)$ замкнуто. Аналогично с m .

7 Формула остаточного члена ряда Тейлора и переход к пределу под знаком производной

7.1 Формула остаточного члена ряда Тейлора в интегральной форме

 $f \in C^{(n+1)}(\langle a,b \rangle), \ x,x_0 \in \langle a,b \rangle$. Формула Тейлора с остаточным членом в форме Пеано: $f(x) = T_n(f,x,x-x_0) + r_n(x)$.

Теорема. При выполнении равенства выше верно, что

$$r_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt$$

Доказательство. По индукции.

База: n=1. Проверим:

$$f(x) - f(x_0) = \int_{x_0}^x f'(t)dt = -\int_{x_0}^x f'(t)d(x - t)$$

$$f(x) = f(x_0) - \left[f'(x)(x - t)|_{x_0}^x - \int_{x_0}^x f''(t)(x - t)dt\right] = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{=T_1} + \int_{x_0}^x f''(t)(x - t)dt$$

Сделаем индукционный переход для n: $f(x) = T_{n-1}(x) + r_{n-1}(x)$. Согласно индукционному предположению, $r_{n-1}(x) = r_{n-1}(x)$ $\frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) (x-t)^{n-1} dt$

$$r_{n-1}(x) = \frac{1}{(n-1)!} \left[-\frac{(x-t)^n}{n} f^{(n)}(t)|_{x_0}^x + \frac{1}{n} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt \right] = \frac{1}{n!} f^n(x_0)(x-x_0)^n + \frac{1}{n!} \int_{x_0}^x (t)(x-t)^n dt$$

Подставив в формулу, получим

$$f(x) = T_{n-1}(x) + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + \frac{1}{n!}\int_{x_0}^x f^{(n+1)}(t)(x - t)^n dt = T_n(x) + \frac{1}{n!}\int_{x_0}^x f^{(n+1)}(t)(x - t)^n dt$$

Теорема о предельном переходе под знаком производной

Теорема. f_n непрерывно дифференцируемы на a > a, b > u выполняются следующие условия:

 $1)f_n \to_{n\to\infty} f(x) \ \forall x \in \langle a, b \rangle.$

2) $f'_n(x) \Longrightarrow \varphi(x)$ на < a, b >.

Тогда f непрерывно дифференцируема на a > u $f'(x) = \varphi(x)$.

Доказательство. Пусть $c \in (a,b)$ и $x \in (a,b)$. $\int_c^x \varphi(t)dt = \lim_{n \to \infty} \int_c^x f_n'(t)dt$. (по второй теореме из билета 39). Тогда $\int_c^x f_n'(t)dt = f_n(x) - f_n(c) \to_{n \to \infty} f(x) - f(c) \Rightarrow f(x) - f(c) = \int_c^x \varphi(t)dt$. Правая часть дифференцируема, слева функция минус константа, тоже дифференцируема, продифферецировав, получим $f'(x) = \varphi(x)$ и непрерывна по теореме Стокса-Зайделя.

Теорема. u_n непрерывно дифференцируемы на $\langle a, b \rangle$, если

- 1) $\sum_{n=1}^{\infty} u_n(x)$ сходится $\forall x \in \langle a,b \rangle u$ 2) $\sum_{n=1}^{\infty} u'_n(x)$ равномерно сходится на $\langle a,b \rangle$, $\varphi = \sum_{n=1}^{\infty} u'_n(x)$, то $S = \sum_{n=1}^{\infty} u_n(x)$ непрерывно дифференцируема $u(S'(x)) = \varphi(x)$.

Доказательство. $S_n(x) = \sum_{k=1}^n u_k(x) \to_{n\to\infty} S, \ S'_n = \sum_{k=1}^n u'_k(x) \Rightarrow \varphi \Rightarrow \text{по 1 теореме этого билета } S'(x) = \varphi(x).$

8 Признак Коши и экспонента в ряд Тейлора

Интегральный признак Коши сходимости ряда

Теорема. f > 0, непрерывна на $[1, +\infty)$, f монотонно убывает. Тогда $\sum_{n=1}^{\infty} f(n)$ сходится одновременно с $\int_{1}^{\infty} f(x) dx$.

Доказательство. Рассмотрим [k, k+1]. $\forall x \in [k, k+1]$ верно $a_{k+1} = f(k+1) \le f(x) \le f(k) = a_k$. По теореме о среднем $a_{k+1} \leq \int_k^{k+1} f(x) dx \leq a_k$ (т.к. длина [k,k+1] равна 1), $S_{n+1} - a_1 = a_2 + ... + a_{n+1} \leq \int_k^{k+1} f(x) dx \leq a_1 + ... + a_n = S_n$, откуда $S_n - a_1 \leq \int_1^n f(x) dx \leq S_n$, переходим к пределу, $S - a_1 \leq \int_1^\infty f(x) dx \leq S$. $S - a_1 \to L$, $S \to L$, теорема о двух

Замечание. $a_{m+1}+...+a_n \leq \int_m^n f(x) dx \leq a_m+...+a_n$. При $n \to \infty$ $a_{m+1}+...+a_n = R_m$, $a_m+...+a = R_{m-1}$ и $R_m \leq \int_m^\infty f(x)dx \leq R_{m-1}.$

Экспонента с комплексным и чисто мнимым показателем

Теорема. $\forall z, w \in \mathbb{C}$ верно, что $\exp(z+w) = \exp(z) \cdot \exp(w)$.

Доказательство.

$$\exp(z) \cdot \exp(w) = \sum_{j=0}^{\infty} \frac{z^j}{j!} \cdot \sum_{k=0}^{\infty} \frac{w^k}{k!} = \sum_{n=0}^{\infty} c_n$$

Так как ряды сходятся абсолютно, можно применить определение произведения рядов:

$$c_n = \sum_{j+k=n}^{\infty} \frac{z^j}{j!} \frac{w^k}{k!}$$

Преобразуем c_n :

$$c_n = \frac{1}{n!} \sum_{j+k=n} \frac{n!}{j!k!} z^j w^k = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{(n-k)!k!} z^{n-k} w^k = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} z^{n-k} w^k = \frac{1}{n!} (z+w)^n$$

Отсюда

$$\exp(z) \cdot \exp(w) = \sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \frac{1}{n!} (z+w)^n = \exp(z+w)$$

Свойства (как функции $\exp(z) \equiv f(z) \equiv e^z$):

- 1) f(0) = 1, $f(z) \neq 0 \ \forall z$.
- Пусть $f(z_0) = 0$. Тогда $f(z) = f(z_0 + (z z_0)) = f(z_0)f(z z_0) = 0$. $f(z z_0) = 0$, то есть $\forall z \ f(z) = 0$. Противоречие.
- 2) $\dot{\mathbb{C}} = \mathbb{C}\setminus\{0\}$, то $(\mathbb{C},+) \longrightarrow^{\exp} (\hat{\mathbb{C}}^*,\cdot)$, где экспонента гомоморфизм.
- 3) $\forall z \ \forall n \in \mathbb{N}$ верно, что $f(nz) = [f(z)]^n$. 4) $f(\overline{z})$. Мы знаем, что $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$ и $\overline{z + w} = \overline{z} + \overline{w}$. Тогда $\exp(\overline{z}) = \overline{\exp}(z)$.

Теорема. z = it, $\partial e \ t \in \mathbb{R}$, $e^{it} = \cos t + i \sin t$.

Доказательство.

$$e^{it} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} = (*) = \sum_{k=0}^{\infty} \frac{(it)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(it)^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!} + \sum_{k=0}^{\infty} i \frac{(-1)^k t^{2k+1}}{(2k+1)!} =$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k t^{2k+1}}{(2k+1)!} = \left(1 - \frac{t^2}{2} + \frac{t^4}{4!} - \dots\right) + i \left(t - \frac{t^3}{3!} + \frac{t^5}{5!} - \dots\right) = \cos t + i \sin t$$

(*)Если мнимую единицу возводить в четную степень, получим -1: $(i)^{2n} = (-1)^n$, а $(i)^{2k+1} = i(i)^{2k} = i(-1)^k$.

3амечание. $e^{it} = \cos t + i \sin t$. 3аменим t на nt. Тогда $\cos nt + i \sin nt = e^{int} = \exp(nit) = (e^{it})^n = (\cos t + i \sin t)^n$ (Формула Муавра).

9 Площадь криволинейного треугольника и теорема о компактной сходимо-

9.1Вычисление площади криволинейного сектора с помощью параметризации его основания

Короче, его нету нигде :(

$$S(T) = \left| \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi) d\varphi \right|$$

Теорема о компактной сходимости и непрерывности суммы степенного ряда

Определение. Ряд (A) компактно сходится в круге сходимости, если $\forall r:\ 0< r< R$ ряд (A) равномерно сходится в концентрическом круге $B(a,r) = \{z | |z-a| \le r\}.$

Теорема. $(A) \sum a_n (z-a)^n$, R > 0. Тогда:

- 1) (A) компактно сходится в B(a,R);
- 2) $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ непрерывна в B(a,R).

Доказательство.

- 1) $\exists z_0$, такая, что $|z_0 a| = r < R$. Тогда $\sum a_n (z_0 a)^n$ абсолютно сходится. $\forall z \in B(a,r) \sum |a_n| |z a|^n \le \sum |a_n| r^n < +\infty$ по признаку Вейерштрасса A равномерно сходится B(a,r).
- $(2) \ z_0 \in B(a,R). \ \delta > 0: \ \bar{B}(z_0,\delta) \subset B(a,R), \ \exists r: \ B(z_0,\delta) \subset B(a,r) \subset B(a,R).$ Непрерывность локальное свойство, отсюда $\forall n \ a_n | z - a |^n$ — непрерывна в B(a,r). (A) равномерно сходится в B(a,r), следовательно, по теореме Стокса-Зайделя $f(z) = \sum a_n |z - a|^n$ непрерывна в B(a, r).

10 Формула Эйлера-Маклорена и arcsin по Тейлору

10.1 Формула Эйлера-Маклорена

 $S_t = f(1) + f(2) + ... f(t)$, где f непрерывная на $[1, +\infty)$.

Если $f \in C^2$, то формула нам известна: это просто переосмысленная формула трапеции (на промежутке от [a,b]):

$$\int_{a}^{b} f(x)dx = \frac{f(x_0) + f(x_n)}{2}h + h \cdot \sum_{k=1}^{t-1} f(x_k) + \rho_t$$

где $\rho_n = -\frac{h^2}{2} \int_a^b f''(x) \left\{ \frac{x-a}{h} \right\} \left(1 - \left\{ \frac{x-a}{h} \right\} \right) dx$. Теперь мы её переосмыслим: $a = m, \ b = n, \ h = 1, \ x_k = k$. Таким образом, $\left\{ \frac{x-a}{h} \right\} = \left\{ x - m \right\} = \left\{ x \right\}$, т.к. m целое. Отсюда наша формула примет вид:

$$\int_{m}^{n} f(x)dx = \frac{f(m) + f(n)}{2} + \sum_{m < k < n} f(k) - \frac{1}{2} \int_{m}^{n} f''(x) \{x\} (1 - \{x\}) dx$$

$$S_n = \sum_{k=1}^n f(k) = \int_1^n f(x)dx + \frac{f(1) + f(n)}{2} + \frac{1}{2} \int_1^n f''(x)\{x\}(1 - \{x\})dx$$

Следствие:

Предположим, что $\int_1^\infty |f''(x)| dx < +\infty$. Тогда $\int_1^n = \int_1^\infty - \int_n^\infty$. Откуда

$$S_n = \int_1^n f(x)dx + \frac{f(n)}{2} + \frac{1}{2}(f(1) + \int_1^\infty f''(x)\{x\}(1 - \{x\})dx) - \frac{1}{2}\int_n^\infty f''(x)\{x\}(1 - \{x\})dx$$

Для этого случая формула Эйлера-Маклорена приобретает следующий вид:

$$S_n = \int_1^n f(x)dx + \frac{f(n)}{2} + C - \frac{1}{2} \int_n^\infty f''(x)\{x\}(1 - \{x\})dx$$

Если обозначить $\frac{1}{2} \int_n^\infty f''(x) \{x\} (1 - \{x\}) dx = \sigma_n$, то $|\sigma_n| \leq \frac{1}{8} \int_n^\infty |f''(x)| dx$.

Пример. Асимптотика частичных сумм гармонического ряда:

$$S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

Здесь $f(x) = \frac{1}{x}$, $f''(x) = \frac{2}{x^3}$

Воспользуемся формулой:

$$S_n = \int_1^n \frac{dx}{x} + \frac{1}{2n} + \gamma + \sigma_n$$

где $\sigma_n=-\frac{1}{2}\int_n^\infty \frac{2}{x^3}\{x\}(1-\{x\})dx\leq \frac{1}{8}\int_n^\infty f''(x)dx$, таким образом, $|\sigma_n|\leq \frac{1}{8n^2}$. Оценим:

$$\frac{1}{2} < \frac{1}{2} \int_{n}^{\infty} \frac{2}{x^3} \{x\} (1 - \{x\}) dx < \frac{1}{2} + \frac{1}{8}$$

$$0, 5 < \gamma < 0,625$$

И имеет примерное значение $\gamma = 0,5772...$ Таким образом, $S_n = \ln n + \gamma + \frac{1}{2n} + o(\frac{1}{n^2})$

10.2 \mathbf{P} азложение $\arcsin x$ в ряд \mathbf{T} ейлора

нет

11 Интегрирование по частям и формула Адамара

11.1 Интегрирование по частям и замена переменной

Теорема. (интегрирование по частям)

 $U,V\in C^1([a,b]).$ Тогда $\int_a^b U(x)V'(x)dx=UV|_a^b-\int_a^b U'(x)V(x)dx$, что можно переписать как $\int_a^b U(x)dV=UV|_a^b-\int_a^b U'(x)dx$ $\int_a^b V dU$.

Доказательство. (UV)'=U'V+V'U. $\int_a^b (UV)'(x)dx=\int_a^b U(x)V'(x)dx+\int_a^b U'(x)V(x)dx$. На основании формулы Ньютона-Лейбница, $UV|_a^b=\int_a^b U(x)V'(x)dx+\int_a^b U'(x)V(x)dx$.

Теорема. (замена переменной)

f непрерывна на [a,b], а φ непрерывно дифференцируема на Δ c концами p,q. При этом выполняются условия:

- 1) $\varphi(p) = a, \ \varphi(q) = b;$
- 2) $\varphi'(t) \in [a,b] \ \forall t \in \Delta$.

Torda $\int_a^b f(x)dx = \int_a^q f(\varphi(t))\varphi'(t)dt$.

Доказательство. Пусть F(x) — первообразная для f(x). И пусть $H(t) = F(\varphi(t)), \ t \in \Delta$. Тогда $H'(t) = F'(\varphi(t))\varphi'(t) =$ $f(\varphi(t))\varphi'(t)$. Тогда, по формуле Ньютона-Лейбница, $\int_p^q f(\varphi(t))\varphi'(t)dt = H|_p^q = F(\varphi(q)) - F(\varphi(p)) = F(b) - F(a) = \int_a^b f(x)dx$.

Формула Адамара

Теорема. $(A) \sum_{n=0}^{\infty} a_n (z-a)^n$, $\exists R \in [0,+\infty]$, такое, что $\forall z: |z-a| < R$ (A) абсолютно сходится, $a \ \forall z: |z-a| > R$ (A)— расходится.

 \mathcal{L} оказательство. Введем $K_n = \sqrt[n]{|a_n(z-a)^n|} = |z-a|\sqrt[n]{a_n}$. Считаем, что $z \neq a$. $\overline{\lim} K_n = |z-a|\overline{\lim} \sqrt[n]{|a_n|} = |z-a|\alpha$, где $\alpha = \overline{\lim} \sqrt[n]{|a_n|}$. По признаку Коши, $\alpha |z-a| < 1 \Rightarrow (A)$ абсолютно сходится и $\alpha |z-a| > 1 \Rightarrow (A)$ расходится. Тогда

- 1) $\alpha = +\infty$, то $\not\exists z$, такого, что $\alpha |z a| < 1$.
- $2) \ \alpha = 0 \Rightarrow \alpha |z-a| = 0 |z-a| < 1 \text{ряд } (A) \text{ сходится всегда } \forall z.$ $3) \ 0 < \alpha < +\infty \Rightarrow \begin{cases} |z-a| < \frac{1}{\alpha} \Rightarrow & \text{абсолютно сходится} \\ |z-a| > \frac{1}{\alpha} \Rightarrow & \text{расходится} \end{cases}$

Отсюда:

$$R = \begin{cases} \alpha = 0 & R = +\infty \\ 0 < \alpha < +\infty & R = \frac{1}{\alpha} \\ \alpha = +\infty & R = 0 \end{cases}$$

Утверждение. Формула Адамара — $\frac{1}{B}\overline{\lim}\sqrt[n]{|a_n|}$.

12Положительные ряды и разложение арктангенса и логарифма

12.1 Положительные ряды

12.2 Почленное интегрирование вещественного степенного ряда. Разложение в ряд Тейлора функций $\ln(1+x)$ и $\arctan x$

$$(A) \sum_{n=0}^{\infty} a_n (x-a)^n; \ a_i, a, x \in \mathbb{R}.$$

Если R — радиус сходимости, то по теореме $\forall x \in (a-R, a+R)$ ряд A компактно сходится. Пусть $[p,q] \subset (a-R,a+R)$. A компактно сходится на $[p,q] \Rightarrow \sum a_n \int_p^q (x-a)^n dx = \int_p^q (\sum a_n (x-a)^n) dx$.

Теорема. (2)

1)
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 Psd cxodumcs $npu \ x \in (-1,1]$.
2) $\arctan X = X - \frac{X^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$ Psd cxodumcs $npu \ x \in [-1,1]$.

2)
$$\arctan X = X - \frac{X^3}{3} + ... + (-1)^n \frac{x^{2n+1}}{2n+1} + ...$$
 Pad $cxodumca\ npu\ x \in [-1,1]$

Доказательство.

1) Посчитаем R для $\sum (-1)^{n-1} \frac{x^n}{n}$: по формуле Адамара $R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$. $a_n = \frac{(-1)^{n-1}}{n} \Rightarrow R = 1$, то есть на (-1,1)ряд компактно сходится. При x=1 сходится по Лейбницу, при x=-1 расходится как отрицательный гармонический, следовательно, ряд компактно сходится (-1,1].

Продифференцируем ряд, а потом обратно проинтегрируем:
$$(\ln(1+x))' = \frac{1}{1+x} = 1 - x + x^2 - x^3 + \ldots + \sum_{n=0}^{\infty} (-1)^n x^n.$$
 Проинтегрируем по отрезку $[0,t]: \int_0^t \frac{dx}{1+x} = \sum_{n=0}^{\infty} (-1)^n \int_0^t x^n dx = t - \frac{t^2}{2} + \ldots + (-1)^n \frac{t^{n+1}}{n+1} + \ldots - ?$

Оценим остаток: $|r_n(x)| \leq \frac{x^{n+1}}{n+1}$. $r_k(x) \Rightarrow 0$ на [0,1]. Проинтегрируем по отрезку [0,1]:

$$\ln 2 = \int_0^1 \frac{dx}{1+x} = \sum_{k=1}^n (-1)^k \int_0^1 x^k dx + \int_0^1 r_n(x) dx$$

Оценим: $|\int_0^1 r_n(x)dx| \leq \int_0^1 |r_n(x)|dx \leq \int_0^1 x^{n+1}dx = \frac{1}{n+2}$. Таким образом, $\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ и в качестве суммы ряда мы получаем $1 - \frac{1}{2} + \dots + (-1)^{n-1} \frac{1}{n}$, то есть сумма отличается от логарифма двух на бесконечно малую.

2) R для $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$ равен 1, следовательно, $(\arctan x)' = \frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots = \sum_{n=1}^{\infty} (-1)^n x^{2n}$. Интегрируя почленно, получим $\arctan x = \sum (-1)^n \int_0^x t^{2n} dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$. Для краев сходится, остаток стремится к нулю

13 Несобственные интегралы и дифференцирование степенного ряда

Определение несобственного интеграла и т.д.

Определение. f непрерывна на промежутке одного из типов: $[a, +\infty)$, [a, b), $(-\infty, a]$, (a, b].

 $\Phi(A)=\int_a^A f(x)dx$. Тогда $\exists \lim_{A\to +\infty} \Phi(A)=\int_a^{+\infty} f(x)dx$ называется несобственным интегралом.

1) f,g непрерывны на $[a,+\infty)$. Если $\int_a^{+\infty} f(x)dx$ и $\int_a^{+\infty} g(x)dx$ сходятся (имеют конечные пределы), то сходится и $\int_a^{+\infty} (f(x)+g(x))dx = \int_a^{+\infty} f(x)dx + \int_a^{+\infty} g(x)dx$.

Доказательство. $\int_a^A (f(x) + g(x)) dx = \int_a^A f(x) dx + \int_a^A g(x) dx$ и перейти к пределу.

2) α — постоянная, то $\int_{a}^{+\infty} \alpha f(x) dx = \alpha \int_{a}^{+\infty} f(x) dx$.

Доказательство. Очевидно.

3) f непрерывна на $[a,+\infty),\ a < c < +\infty,$ и $\int_a^{+\infty} f(x) dx$ и $\int_c^{+\infty} f(x) dx$ сходятся одновременно, тогда $\int_a^{+\infty} f(x) dx = \int_a^{+\infty} f(x) dx$ $\int_{a}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx.$

Доказательство. Возьмем $\Phi(A)=\int_a^A f(x)dx$. $\Phi(A)=\int_a^A f(x)dx=\int_a^C f(x)dx+\int_C^A f(x)dx=\int_a^C f(x)dx+\Phi_1(A)$.

4) Если $\int_a^{+\infty} f(x)dx$ — сходится, то $\int_A^{+\infty} f(x)dx \to_{A\to+\infty} 0$.

Доказательство. $\int_A^{+\infty} f(x)dx = \int_a^{\infty} f(x)dx - \Phi(A) \to_{A \to +\infty} 0.$

5) $\int_{a}^{\infty} f(x)dx = \lim_{x \to \infty} F(x) - F(a)$.

6) Интегрирование по частям: $\int_a^\infty u dv \leftarrow \int_a^A u dv = uv|_a^A - \int_a^A v du = \lim_{A \to \infty} u(A)v(A) - u(a)v(a) - \int_a^\infty v du.$

Дифференцирование степенного ряда (с леммой)

Определение. f определена на \mathbb{C} . $f'(z_0) = \lim \frac{f(z) - f(z_0)}{z - z_0}$ — производная данной функции.

Лемма. $u, v \in \mathbb{C}, |u|, |v| \le r, n \in \mathbb{N}.$ Тогда $|u^n - v^n| \le nr^{n-1}|u - v|.$

Доказательство.

$$\begin{split} (u-v)(u^{n-1}+u^{n-2}v+\ldots+ux^{n-2}+v^{n-1}) = \\ &= u^n+u^{n-1}v+\ldots+u^2v^{n-2}+uv^{n-1}-vu^{n-1}-\ldots-uv^{n-1}-v^n = u^n-v^n \end{split}$$

$$|u^n-v^n| = |u-v| \cdot |u^{n-1}+u^{n-2}v + \ldots + ux^{n-2} + v^{n-1}| \leq |u-v| \sum_{k=0}^{n-1} |u^{n-1-k}| v^k| \leq |u-v| \sum_{k=0}^{n-1} r^{n-1-k} r^k = |u-v| \cdot n \cdot r^{n-1}$$

Теорема. $(A) \sum_{n=0}^{\infty} a_n (z-a)^n, \ R>0, \ f(z)=\sum_{n=0}^{\infty} a_n (z-a)^n$ определена в B(a,R).

- 1) $(A')\sum_{n=1}^{\infty} na_n(z-a)^{n-1}$. (A') имеет c (A) одинаковые радиусы сходимости, 2) f дифференцируема u $f'(z) = \sum_{n=1}^{\infty} na_n(z-a)^{n-1}$.

Доказательство.

1) Рассмотрим $(A_*) \sum |a_n(z-a)^n|$ и $(A_*') \sum |na_n(z-a)^{n-1}|$, при $z \neq a$. $|a_n(z-a)^n| \leq |z-a| |na_n(z-a)^{n-1}|$ при $n \geq 1$. Пусть R' — радиус сходимости (A') и $|z-a| < R' \Rightarrow$ сходится (A'_*) . В силу неравенства выше, сходится ряд и $(A_*) \Rightarrow$ сходится (A), а необходимое для того условие: $|z - a| \le R$. Отсюда $R' \le R$.

Пусть $R' \neq R \Rightarrow R' < R$. Тогда R' < |z - a| < R и (A') — расходится. Возьмем z_0 , такое, что $|z - a| < |z_0 - a| < R$. (A) — сходится в точке z_0 . Тогда, по лемме Абеля, (A') — сходится в z. А этого не может быть, т.к. R' < |z-a|, то есть в точке z_0 ряд (A') должен расходиться. То есть R' = R.

2) $z, w \in B(a, R)$. $\exists r : |z - a| < r$, |w - a| < r. $f(w) = \sum a_n (w - a)^n$, $f(z) = \sum a_n (z - a)^n$. $f(w) - f(z) = \sum a_n (w - a)^n$. $\sum a_n [(w-a)^n - (z-a)^n]$, при $w \neq z$. По определению производной,

$$\left| \frac{f(w) - f(z)}{w - z} \right| = \left| \frac{\sum_{n=0}^{\infty} a_n ((w - a)^n - (z - a)^n)}{(w - a) - (z - a)} \right| \le \frac{\sum a_n n \left| (w - a) - (z - a) \right| r^{n-1}}{\left| (w - a) - (z - a) \right|} = \sum a_n n r^{n-1} \left| \frac{a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} \right| \le \frac{\sum a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} = \sum a_n n r^{n-1} \left| \frac{a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} \right| \le \frac{\sum a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} = \sum a_n n r^{n-1} \left| \frac{a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} \right| \le \frac{\sum a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} = \sum a_n n r^{n-1} \left| \frac{a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} \right| \le \frac{\sum a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} = \sum a_n n r^{n-1} \left| \frac{a_n n \left| (w - a) - (z - a) \right|}{(w - a) - (z - a)} \right|$$

Откуда $\frac{f(w)-f(z)}{w-z}$ сходится, перейдя к пределу почленно, перейдя к пределу:

$$f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = \sum_{w \to z} a_n \lim_{w \to z} \frac{(w - a)^n - (z - a)^n}{w - z} =$$

$$= \sum_{w \to z} a_n n \lim_{w \to z} \frac{|(w - a) - (z - a)| \left((w - a)^{n-1} + (w - a)^{n-2} (z - a) \dots + (w - a) (z - a)^{n-2} + (z - a)^{n-1} \right)}{|(w - a) - (z - a)|} =$$

$$= \sum_{n \to z} a_n n \lim_{w \to z} \left| (w - a)^{n-1} + (w - a)^{n-2} (z - a) \dots + (w - a) (z - a)^{n-2} + (z - a)^{n-1} \right| = \sum_{n = 1}^{\infty} a_n n(z - a)^{n-1}$$

— сумма A'.