МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе

Некоторые законы случайных событий»

Выполнили:

Ковригин Марк Митяшин Илья

Цель работы

На примере познакомиться с некоторыми законами случайных событий.

Оборудование

доска Гальтона, воронка, линейка $\Delta h = 0.1$ см, частицы (пшено), мостик Уитстона ± 1 Ом, резисторы в количестве 100 шт сопротивлением 470 Ом ± 47 Ом

Теоретическая часть

Пусть X — дискретная случайная величина, $\{x_1, x_2, ..., x_n\}$ — счётное множество значений случайной величины. Тогда все свойства этой величины определяются вероятностями возможных значений:

Запись распределения случайной величины в виде таблицы неудобна в аналитических расчётах. Удобнее использовать функции распределения. По определению интегральная функция распределения:

T.е. это вероятность того, что значение случайной величины X окажется меньшим, чем заданное x.

Из определения интегральной функции следуют следующие свойства:

1. F(x) – неубывающая функция, определённая для любых x и принимающая значения [0; 1]. 2. $F(-\infty) = 0$, $F(+\infty) = 1$.

Применительно к дискретной случайной величине интегральная функция будет иметь вид:

ли суммировать і-ое значение.

Также часто используется дифференциальная функция распределения (плотность вероятностей), по определению равная: $(x-x_i)$, тде $\chi(x)$ - функция, показывающая нужно

С помощью плотности вероятностей можно найти вероятность попадания случайной величины в заданный интервал [a; b):

$$\leq X \leq b = \int W(x) dx$$

В частности отсюда следует явное выражение для интегральной функции распределения через плотность вероятностей:

(5)
$$F(x) = P(X < x) = \int_{-\infty} W(\alpha) d\alpha$$

Общие свойства плотности вероятностей:

азмерность обратна размерности случайной величины

еотрицательна

Также можно вычислить среднее значение случайной величины, формула которой для дискретной величины имеет вид:

Для непрерывной же случайной величины, формула математического ожидания (среднего значения) будет иметь вид:

 ∞

Боде-Хінформаліного й незлиянию й Чвя колон дегене рына денай ределения сравнобщее

$$(8) D_x = (X - X^{-})^2$$
 число испытаний.

По смыслу математическое ожидание является постоянной состовляющей случайной величины, а дисперсия служит мерой разброса вокруг среднего. В инженерных приложениях имеет место среднеквадратичное отклонение:

(9)
$$\sigma_x = \sqrt{D_x}$$

Подругому эту величину называют стандартным отклонением или просто стандартом.

Случайные отклонения величины от среднего значения называются флунктуациями. Наиболее показательной является относительная флунктуация:

 σ^{x} $\eta_{=}$

В приложении к доске Гальтона

Обозначим k^- - номер средней ячейки, тогда вероятность $P(k^-)$ оказывается максимальной. При достаточно большом числе зёрен вероятность попадания в другие ячейки выражается по формуле:

(11)
$$P(k) = P(\overline{k}) \cdot \exp\left(-\frac{(k-\overline{k})^2}{2\sigma_{x}^2}\right)$$

Чтобы вычислить влияние номера ячейки, положим значения k равными $k_1 = k^- + \sigma_k$ и

(12)
$$P(k_1) = P(k_2) = \frac{P(\bar{k})}{\sqrt{e}}$$

Это значит, что $2\sigma_k = k_2 - k_1$ равняется ширине кривой вероятностей, измеренной на уровне $P(k^-)/\sqrt{e}$, т.е. стандарт характеризует величину стандартных отклонений от среднего.

Также имеем:

$$(13) \ P(\overline{k}) = \underline{\qquad 1}$$

Отсюда стандарт характеризует не только ширину, но и высоту распределения. Если в качестве случайной величины рассматривать не номер ячейки, а её координату x, то дифференциальная функция примет вид:

(!4)
$$W(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2})$$

Практическая часть

<u>Задание 1</u>. Мы проследили движение отдельной частицы по доске Гальтона. И приближённые траектории частиц были примерно таковы:

Задание 2 и 3. Выполнили три серии испытаний с различными числами N, равными: N=10, числу частиц в половине стакана $N_0/2$, числу частиц в стакане N_0 . Для каждой серии провели не менее трёх опытов.

Серия измерений, для которых N = 10 (количество частиц):

В первом опыте частицы попали в ячейки с номерами: 13, 20, 24, 27, 27, 27, 27, 28, 38, 34

Во втором опыте частицы попали в ячейки с номерами: 6, 20, 22, 23, 24, 28, 30, 30, 37, 46

Из этой серии экспериментов видно, что распределение частиц не будет поддаваться какому-либо чёткому распределению, в том числе Гауссовому. Что в свою очередь доказывает, что закон Гаусса выполняется только для больших чисел.

Серия измерений, для которых N=N0/2 (половина стакана):

			1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17	7 1	3 19	20
		1	0	0	0	0	0	0	0	0 0,3	0,3	0,7	0,8	1	1,4	1,4	1,9	1,9	2,	3 2,7	3,5
		2	0	0	0	0	0	0	0 0,	4 0,5	0,7	0,8	1	1,3	1,5	1,8	1,8	2,3	3 2,	7 3,4	3,8
		3	0	0	0	0	0	0 0	,3 0,	5 0,6	1	1,25	1,25	1,6	2	2,1	2,5	3,2	2 3,0	5 3,8	3,9
N= N0/2	ср		0	0	0	0	0	0 0	,1 0,	3 0,466667	0,666667	0,916667	1,016667	1,3	1,633333	1,766667	2,066667	2,466667	7 2,86666	7 3,3	3,733333
2:	1	22	23	24	25	26	5 27	28	29	30	31	. 3	2 3	3	34	35	36	37	38	39	40
3,9	9	4	4,6	5,2	5,1	5,5	5,6	5,6	5,6	5,4	5,2	4,	9 4,	7	4,2	4	3,4	2,7	2,5	2,2	1,7
3,8	8	4,6	5	5,6	5,5	5,6	5,7	5,7	5,7	5,1	5	4,	6	4	3,6	3,4	2,7	2,5	2,2	1,7	1,5
4,9	9	5	5,3	5,5	5,7	5,8	5,3	5,2	5	4,8	4,7	4,	5 3,	9	3,5	3,2	2,7	2,4	2,1	1,7	1,4
4,2	2 4,53	3333	4,966667	5,433333	5,433333	5,633333	5,533333	5,5	5,433333	5,1	4,966667	4,66666	7 4,	2 3,766	667 3,53	3333 2,9	33333 2,5	533333 2	2,266667	1,866667	1,533333
	41		42	4	13	44	45		46	47		48	49		50	5	51	52		53	54
	1,4		1,3		1	0,9	0,6		0,6	0,4		0,3	0		0		0	0		0	0
	1,5		1	0,	,8	0,6	0,5		0,3	0,3		0	0		0		0	0		0	0
	1,2		0,8	0,		0,3	0,3		0	0		0	0		0		0	0		0	0
1,366	_	1,03			,8		0,466667		0,3 0,	,233333		0,1	0		0		0	0		0	0

Затем построим график с усреднёнными значениями этих трёх опытов (экспериментальный) и теоретический. Для этого, продифференцировав график, найдём точки максимума и минимума получившейся функции. Расстояние между этими

точками по оси Ох будет равно ширине экспериментальной кривой на уровне $P_{\mathbf{k_1}} = P_{\mathbf{k_2}} = \frac{P_{\bar{k}}}{\sqrt{e}} \approx 0.605 \cdot P_{\bar{k}}$

Максимальное значение экспериментальная функция будет принимать при k=26. А вероятность попадания будет равна 5,05%.

Выражая из формулы
$$P_{\overline{k}} = \frac{1}{\sqrt{2\pi}\,\sigma}$$
 стандарт σ получаем $\sigma = 7.89$

По результатам проведённых измерений была построена кривая закона распределения случайной величины, теоретическое распределение которой задается согласно

формуле
$$P_k = P_{\bar{k}} e^{\frac{(k-\bar{k})^2}{2\sigma^2}}$$

Относительная флуктуация: $\eta = \frac{\sigma_x}{\overline{x}}$

$$\eta cp = 0.303$$

Серия измерений, для которых N=N0:

			1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	5 1	.7 18	19	20
		1	0	0	0	0	0 0	,3 0,	6 0	6 0,7	0,8	1	1,4	1,6	2	2,8	2,7	7 3,	7 4,3	5,4	6
		2	0	0	0	0	0 0	,3 0,	3 0	6 0,7	0,9	0,9	1,3	1,5	2	2,6	2,8	3 3,	4 4,5	5,2	6
N=N0		3	0	0	0	0	0 0	,4 0,		6 0,9	0,9	1	1,3	1,7	2	2,3	2,	7 3,	.5 4,1	5,1	
	ср		0	0	0	0	0 0,3333	33 0,	5 0	6 0,766667	0,866667	0,966667	1,333333	1,6	2	2,566667	2,733333	3,53333	3 4,3	5,233333	5,9
21	L	22	23	24	25	2	5 27	28	2	30	31	. 3	2 33	34		35	36	37	38	39	4
6,4	1	7,5	8,1	8,5	9	9,	8,7	8,5	8,	1 8,3	7,6	7,	2 6,7	5,7		5,2	4,2	3,7	3,1	2,7	2,
6,5	5	7	8,4	8,5	9	9,	7 9,3	9	8,	7 8,7	7,6	7,	3 6,6	6		5,2	4,4	3,7	3,4	2,5	2,
6,1	l	7,1	7,6	8	8,5	9,	2 9,1	9,1		8,8	8	3 7,	6 7	6		5,6	4,3	4,2	3,5	3	2,
6,333333	3	7,2	8,033333	8,333333	8,833333	9,	9,033333	8,866667	8,	7 8,6	7,733333	7,36666	7 6,766667	5,9	5,33	3333	4,3 3	,866667	3,333333	2,733333	2,23333
	41		42	4	3	44	45	5	46	47	•	48	49		50		51	52		53	5
	1,5		1,4	1,	_	1	0,8		0,6	0,5		0,4	0		0		0	()	0	_
	2		1,6		.2	1	0,7		0,4	0,4		0	0		0		0	()	0	
	2		1,7	1,	.5	1,3	0,8	3	0,6	0,5		0,3	0		0		0	()	0	
1,833	333	1,5	66667	1,	.3	1,1	0,76666	7 0,533	3333 (,466667	0,233	333	0		0		0	()	0	

Затем построим график с усреднёнными значениями этих трёх опытов (экспериментальный) и теоретический. Для этого, продифференцировав график, найдём точки максимума и минимума получившейся функции. Расстояние между этими точками по оси Ох будет равно ширине экспериментальной кривой на уровне

$$P_{k_1} = P_{k_2} = \frac{P_{\bar{k}}}{\sqrt{e}} \approx 0.605 \cdot P_{\bar{k}}$$

Максимальное значение экспериментальная функция будет принимать при k=26. А вероятность попадания будет равна 5,4%.

Выражая из формулы
$$P_{\bar{k}} = \frac{1}{\sqrt{2\pi}\,\sigma}$$
 стандарт σ получаем $\sigma = 7.387$

По результатам проведённых измерений была построена кривая закона распределения случайной величины, теоретическое распределение которой задается согласно

формуле
$$P_k = P_{\bar{k}} e^{-\frac{(k-\bar{k})^2}{2\sigma^2}}$$

Относительная флуктуация: $\eta = \frac{\sigma_x}{\bar{x}}$

 $\eta cp = 0.284$

Чем больше количество частиц в опыте тем меньше флюктуации относительных частот в одной из средних ячеек при разных значениях N.

При фиксированном значении N флюктуации относительной частоты меньше в средней ячейке, чем в крайних, в которые попали частицы.

Из проведённых серий опытов можно сделать вывод, что нормальный закон распределения наиболее явно заметен для большого количества частиц. А так же увеличение количества частиц ведет к увеличению точности построения экспериментального закона распределения Гаусса.

Задание 4.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17 18	19	2
478	460	476	465	462	471	488	468	475	454	475	476	473	469	478	469 4	65 467	473	47
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37 38	39	4
466	460	473	473	461	478	476	472	490	485	464	482	472	488	484	482 4	53 479	490	46
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57 58	59	6
474	462	462	470	469	460	462	476	474	470	487	464	470	485	472	476 4	66 466	471	48
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77 78	79	8
468	479	472	458	482	482	475	463	473	491	471	470	457	483	472	456 4	37 464	463	49
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96 9	7 98	99	100
472	476	467	484	461	471	454	483	476	461	469	460	468	464	485	474 47	5 483	492	461
	454	456	457	4	158	460	461	462	463	464	465	466	467	468	469	470	471	47
	0,02	0,03	0,04	0,	,05	0,09	0,13	0,17	0,2	0,24	0,26	0,29	0,31	0,35	0,39	0,43	0,47	0,5
473	474	475	476		478	479	480	482	483		484	485	487	488	490	491	492	493

Аппроксимируем полученный график:

Анализируя полученный график, произведем построение дифференциальной функции.

Наибольшее вероятное значение величины R будет равно 477 Ом. Из графика w(x) экспериментальной функции найдём полуширину экспериментальной кривой на уровне

$$rac{W_{
m max}}{\sqrt{e}}_{.\sigma}=5,7$$
. Затем подставим необходимые значения в функцию $W(x)=rac{1}{\sqrt{2\pi}\sigma}\cdot e^{-rac{(x-a)^2}{2\sigma^2}}$

При таком распределении наиболее вероятное значение величины сопротивления, полученное из экспериментальных данных, равно 477 Ом. Полученное при эксперименте наиболее вероятное значение емкости оказалось больше значения,

указанного на конденсаторах. Неточность результата можно объяснить погрешностью измерения, следствием чего стали не совсем точные значения сопротивлений в каждом из измеряемых случаев.

Вывод

В ходе лабораторной работы, мы познакомились с некоторыми понятиями, которыми пользуются для описания случайных явлений, а так же с некоторыми статистическими законами. В частности, мы познакомились с распределением Гаусса, интегральным и дифференциальным законами распределения для непрерывной случайной величины. Были построены графические зависимости, так как анализ прямых результатов измерений в конце концов сводился к анализу функциональной зависимости, представленной в виде графика соответствующей функции. Проведение графического анализа данных эксперимента позволило сделать расчетную часть работы более наглядной и понятной.