New GENIE Comprehensive Model Characterization

Anselmo Meregaglia³, Marco Roda¹, Rhiannon Jones¹, and Costas Andreopoulos^{1,2}

¹University of Liverpool, Physics Department, Liverpool, L69 7ZE, UK
²STFC Rutherford Appleton Laboratory, Harwell Oxford Campus, OX11 0QX, UK
³IPHC - Strasbourg, F-67037 Strasbourg Cedex 2, FRANCE

January 10, 2017

Contents

1	Introduction	3
2	Comprehensive model configurations	3
3	Qualitative characterization	6
4	Quantitative characterization	16
5	Summary	17
Ap	pendix A Naming conventions	18
Ap	pendix B Supporting data/MC comparisons	20

Abstract

Characterization of new GENIE comprehensive model configurations in preparation for GENIE v3.0.0 release.

Acronyms, Abbreviations and Terms

AGKY

AOT Aivazis-Olness-Tung DIS charm production model

BR Bodek-Ritchie nuclear model

BS Berger-Sehgal model CC Charged Current

CMC Comprehensive model configuration

CMT Comprehensive model tune

COH Comprehensive production of mesons
DFR Diffractive production of mesons

DPE Datasets (including their relative weighting) used explicitly for parameter

estimation

EL Elastic

ESpF Effective spectral function model **EPS** Estimated (tuned) parameter set

FF Form factor

FSI Final State Interactions

HDRZ Hadronization INEL Inelastic

INS Initial Nuclear State

INTRANUKE

LFG Local Fermi Gas nuclear model

LS Llewellyn Smith model

NC Neutral Current

NeuGen

VQE Valencia QE model - J. Nieves, J. E. Amaro and M. Valverde

VnN Valencia multi-nucleon (2p2h) model - J. Nieves, I. Ruiz Simo, M.J. Vi-

cente Vacas

NRB Non-Resonance Background
PCAC Partially Conserved Axial Current

QE Quasielastic

RDEC Resonance Decay

RES Resonance Neutrino-Production

StFStructure FunctionSpFSpectral Function

TRM Resonance/DIS Transition Region modeling

ZExp Z Expansion model

1 Introduction

2 Comprehensive model configurations

The naming conventions used are explained in Appendix A. The list of CMCs characterised in this report through detailed comparisons to data is shown in Tab. 2 and the full specification is given in the tables listed there-in.

Table 2: CMC Summary Table

Name	Summary Description	Spec.
G00_00a	GENIE v2 default model	Tab. 3
G00_00b	GENIE v2 default + Empirical MEC model	Tab. 4
G16_01a	Updated empirical model: An adiabatic change of the GENIE v2 default	Tab. 5
G16_02a	A model anchored on best theory currently implemented in GENIE v3	Tab. 6
G16_02b	As G16_02a, but replacing the hA with the hN FSI model	Tab. 7

Table 3: G00_00a

INS	RFG; BR high-momentum tail - FGMBodekRitche/Default					
NC EL	Ahrens model; dipole axial FF with $M_A = 0.99 \text{ GeV}^2$; strange axial FF contribution $\eta = 0.12$					
	- AhrensNCELPXSec/Default					
CC QE	LS; BBA05 elastic nucleon FF; dipole axial FF with $M_A = 0.99 \text{ GeV}^2$ -					
	LwlynSmithQELCCPXSec/Default					
CC/NC 2p2h	none					
CC/NC RES	RS; dipole axial FF with with $M_A = 0.84 \text{ GeV}^2$; 16 resonances; no inteference; -					
	ReinSehgalRESPXSec/Default					
CC/NC DIS	BY, scaling factor = 1.032 - QPMDISPXSec/Default					
CC/NC COH π	RS; updated PCAC formula - ReinSehgalCOHPiPXSec/Default					
CC/NC DFR π	none					
Δ S=1 CC QE	none					
Δ S=1 CC INEL	none					
$\Delta C=1$ CC QE	Kovalenko model - KovalenkoQELCharmPXSec/Default					
Δ C=1 CC INEL	AOT - AivazisCharmPXSecLO/CC-Default					
TRM	Resonances for W < 1.7 GeV, NRB from BY extrapolation with NeuGen tuning					
RDEC	Phase space					
HDRZ	AGKY					
FSI	INTRANUKE/hA - HAIntranuke/Default					

Table 4: **G00_00b**

INS	RFG; BR high-momentum tail - FGMBodekRitche/Default
NC EL	Ahrens model; dipole axial FF with $M_A = 0.99$ GeV ² ; strange axial FF contribution $\eta = 0.12$
	- AhrensNCELPXSec/Default
CC QE	LS; BBA05 elastic nucleon FF; dipole axial FF with $M_A = 0.99 \text{ GeV}^2$ -
	LwlynSmithQELCCPXSec/Default
CC/NC 2p2h	Empirical MEC model EmpiricalMECPXSec2015/Default
CC/NC RES	RS; dipole axial FF with with $M_A = 0.84 \text{ GeV}^2$; 16 resonances; no inteference; -
	ReinSehgalRESPXSec/Default
CC/NC DIS	BY, scaling factor = 1.032 - QPMDISPXSec/Default
CC/NC COH π	RS; updated PCAC formula - ReinSehgalCOHPiPXSec/Default
CC/NC DFR π	none
Δ S=1 CC QE	none

Δ S=1 CC INEL	none
Δ C=1 CC QE	Kovalenko model - KovalenkoQELCharmPXSec/Default
Δ C=1 CC INEL	AOT - AivazisCharmPXSecLO/CC-Default
TRM	Resonances for W < 1.7 GeV, NRB from BY extrapolation with NeuGen tuning
RDEC	Phase space
HDRZ	AGKY
FSI	INTRANUKE/hA - HAIntranuke/Default

Table 5: **G16_01a**

INS	RFG; BR high-momentum tail - FGMBodekRitche/Default				
NC EL	Ahrens model; dipole axial FF with $M_A = 0.99 \text{GeV}^2$; strange axial FF contribution $\eta = 0.12$				
	- AhrensNCELPXSec/Default				
CC QE	LS; BBA05 elastic nucleon FF; dipole axial FF with $M_A = 0.99 \text{ GeV}^2$ -				
	NievesQELCCPXSec/Default with rpa=false and coulomb=false				
CC/NC 2p2h	Empirical MEC model - EmpiricalMECPXSec2015/Default				
CC/NC RES	RS; dipole axial FF with with $M_A = 0.84 \text{ GeV}^2$; 16 resonances; no inteference; -				
	ReinSehgalRESPXSec/Default				
CC/NC DIS	BY, scaling factor = 1.032 - QPMDISPXSec/Default				
CC/NC COH π	RS; updated PCAC formula - ReinSehgalCOHPiPXSec/Default				
CC/NC DFR π	ReinDFRPXSec/Default				
Δ S=1 CC QE	PaisQELLambdaPXSec/Default				
Δ S=1 CC INEL	none				
$\Delta C=1$ CC QE	Kovalenko model - KovalenkoQELCharmPXSec/Default				
$\Delta C=1$ CC INEL	AOT - AivazisCharmPXSecLO/CC-Default				
TRM	Resonances for W < 1.7 GeV, NRB from BY extrapolation with NeuGen tuning				
RDEC	Phase space				
HDRZ	AGKY				
FSI	INTRANUKE2015/hA - HAIntranuke2015/Default				

Table 6: **G16_02a**

INS	LFG; - LocalFGM/Default				
NC EL	Ahrens model; dipole axial FF with $M_A = 0.99 \text{GeV}^2$; strange axial FF contribution $\eta = 0.12$				
	- AhrensNCELPXSec/Default				
CC QE	VQE; BBA05 elastic nucleon FF; dipole axial FF with $M_A = 0.99 \text{ GeV}^2$ -				
	NievesQELCCPXSec/Default				
CC/NC 2p2h	VnN model - NievesSimoVacasMECPXSec2016/Default				
CC/NC RES	BS; dipole axial FF with with $M_A = 0.84 \text{ GeV}^2$; 16 resonances; no inteference; -				
	BergerSehgalRESPXSec2014/Default				
CC/NC DIS	BY, scaling factor = 1.032 - QPMDISPXSec/Default				
CC/NC COH π	BS; Finite mass; - BergerSehgalFMCOHPiPXSec2015/Default				
CC/NC DFR π	ReinDFRPXSec/Default				
Δ S=1 CC QE	none				
Δ S=1 CC INEL	none				
ΔC =1 CC QE	Kovalenko model - KovalenkoQELCharmPXSec/Default				
Δ C=1 CC INEL	AOT - AivazisCharmPXSecLO/CC-Default				
TRM	Resonances for W < 1.7 GeV, NRB from BY extrapolation with NeuGen tuning				
RDEC	Phase space				
HDRZ	AGKY				
FSI	INTRANUKE2015/hA - HAIntranuke2015/Default				

Table 7: **G16_02b**

INS	LFG; - LocalFGM/Default					
NC EL	Ahrens model; dipole axial FF with with $M_A = 0.99 \text{ GeV}^2$; strange axial FF contribution					
	η =0.12 - AhrensNCELPXSec/Default					
CC QE	VQE; BBA05 elastic FF; dipole axial FF with $M_A = 0.99$ GeV ² -					
	NievesQELCCPXSec/Default					
CC/NC 2p2h	VnN model - NievesSimoVacasMECPXSec2016/Default					
CC/NC RES	BS; dipole axial FF with with $M_A = 0.84 \text{ GeV}^2$; 16 resonances; no inteference; -					
	BergerSehgalRESPXSec2014/Default					
CC/NC DIS	BY, scaling factor = 1.032 - QPMDISPXSec/Default					
CC/NC COH π	BS; Finite mass; - BergerSehgalFMCOHPiPXSec2015/Default					
CC/NC DFR π	ReinDFRPXSec/Default					
Δ S=1 CC QE	none					
Δ S=1 CC INEL	none					
Δ C=1 CC QE	Kovalenko model - KovalenkoQELCharmPXSec/Default					
Δ C=1 CC INEL	AOT - AivazisCharmPXSecLO/CC-Default					
TRM	Resonances for W < 1.7 GeV, NRB from BY extrapolation with NeuGen tuning					
RDEC	Phase space					
HDRZ	AGKY					
FSI	INTRANUKE2015/hN - HNIntranuke2015/Default					

Qualitative characterization

Level of agreement	(Color) Code
Excellent	5
Good	4
Modest	3
Poor	2
Huh ??	1
Not assessed	
Production Errors	0

Table 8: Qualitative Characterization of GENIE CMCs - Summary Table

		Configuration			
Dataset	G00_00a	G00_00b	G16_01a	G16_02a	G16_02b
Integrated neutrino cross-section data					
$\sigma(\nu_{\mu}$ CC inclusive); bubble chamber data; E_{ν} < 2 GeV	4		4	4	
$\sigma(\nu_{\mu}$ CC inclusive); bubble chamber data; 2 < E_{\nu} < 10~GeV	4		4	4	
$\sigma(\nu_{\mu}$ CC inclusive); bubble chamber data; E_{ν} > 10 GeV	4				
$\sigma(\bar{\nu}_{\mu}$ CC inclusive); bubble chamber data; E_{ν} < 2 GeV	4		4	3	
$\sigma(\bar{\nu}_{\mu} \text{ CC inclusive})$; bubble chamber data; $2 < E_{\nu} < 10 \text{ GeV}$	3		3	2	
$\sigma(\bar{\nu}_{\mu} \ {\rm CC} \ {\rm inclusive});$ bubble chamber data; E $_{\nu} > 10 \ {\rm GeV}$	4		4	3	
$\sigma(\nu_{\mu} \text{ CC inclusive}); \text{MINOS}; E_{\nu} < 10 \text{GeV}$	5		5	4	
$\sigma(\nu_{\mu} \text{ CC inclusive}); \text{MINOS}; 10 < E_{\nu} < 20 \text{ GeV}$	5		5	4	
$\sigma(\nu_{\mu} \text{ CC inclusive}); \text{MINOS}; E_{\nu} > 20 \text{ GeV}$	5		5	4	
$\sigma(\bar{\nu}_{\mu} \text{ CC inclusive}); \text{MINOS}; E_{\nu} < 10 \text{GeV}$	4		4	1	
$\sigma(\bar{\nu}_{\mu} \text{ CC inclusive}); \text{MINOS}; 10 < E_{\nu} < 20 \text{ GeV}$	5		4	1	
$\sigma(\bar{\nu}_{\mu} \text{ CC inclusive}); \text{MINOS}; E_{\nu} > 20 \text{ GeV}$	4		4	2	
$\sigma(\bar{\nu}_{\mu}$ CC inclusive)/ $\sigma(\nu_{\mu}$ CC inclusive); MINOS; E _ν < 10 GeV	3				
$\sigma(\bar{\nu}_{\mu}$ CC inclusive)/ $\sigma(\nu_{\mu}$ CC inclusive); MINOS; 10 < E $_{\nu}$ < 20 GeV	4				
$\sigma(\bar{\nu}_{\mu} \text{ CC inclusive})/\sigma(\nu_{\mu} \text{ CC inclusive}); \text{MINOS}; E_{\nu} > 20 \text{ GeV}$	4				
$\sigma(\nu_{\mu}$ CC inclusive); SciBooNE; E_{ν} < 1 GeV	4		4	4	
$\sigma(\nu_{\mu}$ CC inclusive); SciBooNE; $E_{\nu} > 1$ GeV	4		4	4	
$\sigma(\nu_{\mu} \ \text{CCQE})$; bubble chamber data; $E_{\nu} < 2 \ \text{GeV}$	4				
$\sigma(\nu_{\mu} \ {\rm CCQE})$; bubble chamber data; ${\rm E}_{\nu}$ > 2 GeV	4				
$\sigma(ar{ u}_{\mu}$ CCQE); bubble chamber data	4				

$\sigma(\nu_{\mu} \text{CCQE})$; MinilBooNE (0.4 < E _{\nu} < 2 GeV) 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\sigma(\nu_{\mu}$ CCQE); LSND	2	0	0	
$σ(ν_μ CCQE)$; NOMAD ($E_ν > 3$ GeV) $σ(ν_μ CCQE)$; NOMAD ($E_ν > 3$ GeV) $σ(ν_μ CCIπ^+; ν_μ p \rightarrow μ^- pπ^+)$; bubble chamber data $σ(ν_μ CCIπ^+; ν_μ p \rightarrow μ^- pπ^+)$; bubble chamber data $σ(ν_μ CCIπ^+; ν_μ p \rightarrow μ^- pπ^+)$; bubble chamber data $σ(ν_μ CCIπ^+; ν_μ p \rightarrow μ^- pπ^+)$; bubble chamber data $σ(ν_μ CCIπ^+; ν_μ p \rightarrow μ^- pπ^+)$; bubble chamber data $σ(ν_μ CCIπ^+; ν_μ p \rightarrow μ^- pπ^+ π^+)$; bubble chamber data $σ(ν_μ CCπ^+ π^0; ν_μ p \rightarrow μ^- pπ^+ π^0)$; bubble chamber data $σ(ν_μ CCπ^+ π^0; ν_μ p \rightarrow μ^- pπ^+ π^-)$; bubble chamber data $σ(ν_μ CCπ^+ π^-; ν_μ p \rightarrow μ^- pπ^+ π^-)$; bubble chamber data $σ(ν_μ CCIπ^+; MiniBooNE $	$\sigma(\nu_{\mu}$ CCQE); MiniBooNE (0.4 < E _ν < 2 GeV)				
$\sigma(\nu_{\mu} \text{ CCQE}); \text{NOMAD } (E_{\nu} > 3 \text{ GeV})$ $\sigma(\nu_{\mu} \text{ CCI} \pi^{+}; \nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCI} \pi^{+}; \nu_{\mu} n \rightarrow \mu^{-} p \pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCI} \pi^{+}; \nu_{\mu} n \rightarrow \mu^{-} n \pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCI} \pi^{0}; \nu_{\mu} n \rightarrow \mu^{-} p \pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCI} \pi^{0}; \nu_{\mu} n \rightarrow \mu^{-} p \pi^{0}; \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCC} \pi^{+} \pi^{0}; \nu_{\mu} p \rightarrow \mu^{-} n \pi^{+} \pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCC} \pi^{+} \pi^{0}; \nu_{\mu} p \rightarrow \mu^{-} p \pi^{+} \pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCC} \pi^{+} \pi^{0}; \nu_{\mu} p \rightarrow \mu^{-} p \pi^{+} \pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CCC} \pi^{0}) \sigma(\nu_{\mu} \text{ CCQE}); \text{ K2K}$ 3 3 4 4 4 4 4 4 4 4 4 4 4 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7	$\sigma(\nu_{\mu} \text{ CCQE}); \text{ NOMAD } (E_{\nu} > 3 \text{ GeV})$				
$\sigma(\nu_{\mu} \text{CC1}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}); \text{ bubble chamber data} \qquad 3 \qquad 3 \qquad 3$ $\sigma(\nu_{\mu} \text{CC1}\pi^{+}; \nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}); \text{ bubble chamber data} \qquad 2 \qquad 1 \qquad 1$ $\sigma(\nu_{\mu} \text{CC1}\pi^{0}; \nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}); \text{ bubble chamber data} \qquad 2 \qquad 1 \qquad 1$ $\sigma(\nu_{\mu} \text{CC2}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}); \text{ bubble chamber data} \qquad 3 \qquad 1 \qquad 1$ $\sigma(\nu_{\mu} \text{CCC}\pi^{+}\pi^{0}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}); \text{ bubble chamber data} \qquad 3 \qquad 1 \qquad 1$ $\sigma(\nu_{\mu} \text{CCC}\pi^{+}\pi^{0}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{0}); \text{ bubble chamber data} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data} \qquad 3 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data} \qquad 3 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{CC}\pi^{0})\sigma(\nu_{\mu} \text{CCQE}); \text{K2K} \qquad 3 \qquad 3$ $\sigma(\nu_{\mu} \text{CC1}\pi^{+}); \text{ MiniBooNE} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{CC1}\pi^{+}); \text{ MiniBooNE} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{0}); \text{ Ne}^{20} \qquad 5 \qquad 5 \qquad 4$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{0}); \text{ Al}^{27} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{0}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{+}); \text{ Ne}^{20} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{+}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 3$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30} \qquad 4 \qquad 4 \qquad 4$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text$	$\sigma(\bar{\nu}_{\mu} \text{ CCQE}); \text{NOMAD } (E_{\nu} > 3 \text{ GeV})$				
$\sigma(\nu_{\mu} \text{CC1}\pi^{+}; \nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC1}\pi^{0}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC2}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC2}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{0}; \nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}\pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{0}; \nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{CC}\pi^{+}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{CC}\Pi^{+}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{CC}\Pi^{+}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{CC}\Pi^{+}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{0}); \text{ Ne}^{20}$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{0}); \text{ Ni}^{20}$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{+}); \text{ Ni}^{20}$ $\sigma(\nu_{\mu} \text{NC coherent }\pi^{+}); \text{ Ni}^{20}$ $\sigma(\nu_{\mu} \text{CC coherent }\pi^{+}); \text{ Ni}^{20}$ $\sigma(\nu_{\mu} \text{CC coherent }\pi^{-}); \text{ Ni}^{2$	$\sigma(\nu_{\mu} \ {\rm CC1} \pi^{+}; \nu_{\mu} p \to \mu^{-} p \pi^{+});$ bubble chamber data				
$\sigma(\nu_{\mu} \text{ CC1}\pi^{0}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CC2}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CC3}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CC}\pi^{+}\pi^{0}; \nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}\pi^{0}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ $\sigma(\nu_{\mu} \text{ CC}\pi^{0})/\sigma(\nu_{\mu} \text{ CCQE}); \text{ K2K}$ $\sigma(\nu_{\mu} \text{ CC1}\pi^{+}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{ CC1}\pi^{0}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Ne}^{20}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Ni}^{27}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Ni}^{20}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Si}^{30}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Si}^{30}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{+}); \text{ Ne}^{20}$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{+}); \text{ Ne}^{20}$ $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent }\pi^{-}); \text{ Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent }\pi^{-}); \text{ Ni}^{20}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent }\pi^{-}); $	$\sigma(\nu_{\mu} \ {\rm CC1} \pi^{+}; \nu_{\mu} n \to \mu^{-} n \pi^{+});$ bubble chamber data	2	1	1	
$\sigma(\nu_{\mu} \text{ CC}\pi^{+}\pi^{0}; \nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}\pi^{0}); \text{ bubble chamber data}$ 4 4 4 4 $\sigma(\nu_{\mu} \text{ CC}\pi^{+}\pi^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ 3 4 4 $\sigma(\nu_{\mu} \text{ CC}\pi^{+}\sigma^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ 3 4 4 $\sigma(\nu_{\mu} \text{ CC}\pi^{+}\sigma^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ 3 4 4 $\sigma(\nu_{\mu} \text{ CC}\pi^{+}\sigma^{-}; \nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ 3 4 4 $\sigma(\nu_{\mu} \text{ CC}\Pi^{+}\sigma^{-}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{ CC}\Pi^{+}\sigma^{-}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{ CC}\Pi^{+}\sigma^{-}); \text{ MiniBooNE}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Ne}^{20}$ $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Al}^{27}$ 4 4 3 $\sigma(\nu_{\mu} \text{ NC coherent }\pi^{0}); \text{ Si}^{30}$ 5 5 4 $\sigma(\nu_{\mu} \text{ CC coherent }\pi^{+}); \text{ Ne}^{20}$ 4 4 4 3 $\sigma(\bar{\nu}_{\mu} \text{ CC coherent }\pi^{-}); \text{ Ne}^{20}$ 4 4 4 4 Differential neutrino cross-section data $d^{2}\sigma(\nu_{\mu} \text{ CC coherent }\pi^{-}); \text{ Si}^{30}$ 4 4 4 4 Differential neutrino cross-section data $d^{2}\sigma(\nu_{\mu} \text{ CC co}\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.2 < \text{ T}_{\mu} < 0.3 \text{ GeV}$ 3 2 4 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.3 < \text{ T}_{\mu} < 0.4 \text{ GeV}$ 3 2 4 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.5 < \text{ T}_{\mu} < 0.6 \text{ GeV}$ 3 2 4 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.6 < \text{ T}_{\mu} < 0.7 \text{ GeV}$ 3 3 4 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.6 < \text{ T}_{\mu} < 0.9 \text{ GeV}$ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.8 < \text{ T}_{\mu} < 0.9 \text{ GeV}$ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.8 < \text{ T}_{\mu} < 0.9 \text{ GeV}$ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.8 < \text{ T}_{\mu} < 0.9 \text{ GeV}$ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.9 < \text{ T}_{\mu} < 1.0 \text{ GeV}$ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC }0\pi) / \text{ dcos}\theta_{\mu}d\text{ T}_{\mu}; \text{ MiniBooNE}; 0.1 < \text{ T}_{\mu} < 1.1 \text{ GeV}$ 4 4 4 $d^{$	$\sigma(\nu_{\mu}~{\rm CC}1\pi^{0}; \nu_{\mu}n ightarrow \mu^{-}p\pi^{0});$ bubble chamber data	2			
$\sigma(\nu_{\mu} \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \to \mu^{-}p\pi^{+}\pi^{-}); \text{ bubble chamber data}$ 3 4 4 4 $\sigma(\nu_{\mu} \text{CC}\pi^{0})/\sigma(\nu_{\mu} \text{CCQE}; \text{K2K})$ 3 3 4 4 4 $\sigma(\nu_{\mu} \text{CC}\Pi^{+}); \text{ MiniBooNE}$ 4 5 4 6 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\sigma(\nu_{\mu} \text{ CC2}\pi^{+}; \nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+});$ bubble chamber data	3	1	1	
$\sigma(\nu_{\mu} \operatorname{CC}\pi^{0})/\sigma(\nu_{\mu} \operatorname{CCQE}); \operatorname{K2K}$ $\sigma(\nu_{\mu} \operatorname{CC1}\pi^{+}); \operatorname{MiniBooNE}$ $\sigma(\nu_{\mu} \operatorname{CC1}\pi^{0}); \operatorname{MiniBooNE}$ $\sigma(\nu_{\mu} \operatorname{NC} \operatorname{coherent} \pi^{0}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{NC} \operatorname{coherent} \pi^{0}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{NC} \operatorname{coherent} \pi^{0}); \operatorname{Si}^{30}$ $\sigma(\nu_{\mu} \operatorname{NC} \operatorname{coherent} \pi^{0}); \operatorname{Si}^{30}$ $\sigma(\nu_{\mu} \operatorname{NC} \operatorname{coherent} \pi^{+}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{CC} \operatorname{coherent} \pi^{+}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{CC} \operatorname{coherent} \pi^{+}); \operatorname{Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \operatorname{CC} \operatorname{coherent} \pi^{-}); \operatorname{Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \operatorname{CC} \operatorname{coherent} \pi^{-}); \operatorname{Si}^{30}$ $\sigma(\bar{\nu}_{\mu} \operatorname{CC} \operatorname{coherent} \pi^{-}); \operatorname{Si}^{$	$\sigma(\nu_{\mu} \ {\rm CC} \pi^{+} \pi^{0}; \nu_{\mu} p \to \mu^{-} p \pi^{+} \pi^{0})$; bubble chamber data	4	4	4	
$σ(ν_{μ} CC1π^{+}); MiniBooNE$ $σ(ν_{μ} CC1π^{0}); MiniBooNE$ $σ(ν_{μ} NC coherent π^{0}); Ne20$ $σ(ν_{μ} NC coherent π^{0}); Al27$ $σ(ν_{μ} NC coherent π^{0}); Si30$ $σ(ν_{μ} NC coherent π^{0}); Si30$ $σ(ν_{μ} CC coherent π^{+}); Ne20$ $σ(ν_{μ} CC coherent π^{+}); Ne20$ $σ(ν_{μ} CC coherent π^{+}); Si30$ $σ(ν_{μ} CC coherent π^{-}); Ne20$ $φ(ν_{μ} CC coherent π^{-}); Si30$ $φ(ν_{μ} CC coherent π^{-}); Si30$ $φ(ν_{μ} CC coherent π^{-}); Ne20$ $φ(ν_{μ} CC coherent π^{-}); Si30$ $φ(ν_{μ} CC coherent π^{-}); Ne20$ $φ(ν_{μ} CC oherent π^{-}); Ne20$ $φ(ν_{μ}$	$\sigma(\nu_{\mu} \ \text{CC}\pi^{+}\pi^{-}; \nu_{\mu}n \to \mu^{-}p\pi^{+}\pi^{-});$ bubble chamber data	3	4	4	
$\sigma(\nu_{\mu} \operatorname{CC1}\pi^{+}); \operatorname{MiniBooNE}$ $\sigma(\nu_{\mu} \operatorname{CC1}\pi^{0}); \operatorname{MiniBooNE}$ $\sigma(\nu_{\mu} \operatorname{NC coherent} \pi^{0}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{NC coherent} \pi^{0}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{NC coherent} \pi^{0}); \operatorname{Si}^{30}$ $\sigma(\nu_{\mu} \operatorname{NC coherent} \pi^{0}); \operatorname{Si}^{30}$ $\sigma(\nu_{\mu} \operatorname{NC coherent} \pi^{+}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{CC coherent} \pi^{+}); \operatorname{Ne}^{20}$ $\sigma(\nu_{\mu} \operatorname{CC coherent} \pi^{+}); \operatorname{Si}^{30}$ $\sigma(\nu_{\mu} \operatorname{CC coherent} \pi^{-}); \operatorname{Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \operatorname{CC coherent} \pi^{-}); \operatorname{Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \operatorname{CC coherent} \pi^{-}); \operatorname{Si}^{30}$ $\sigma(\bar{\nu}_{\mu} \operatorname{CC coherent} \pi^{-}); \operatorname{Si}^{30}$ $Differential neutrino cross-section data$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC coherent} \pi^{-}); \operatorname{Si}^{30}$ $Differential neutrino cross-section data$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.2 < \operatorname{T}_{\mu} < 0.3 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.3 < \operatorname{T}_{\mu} < 0.4 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.4 < \operatorname{T}_{\mu} < 0.5 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.5 < \operatorname{T}_{\mu} < 0.6 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.6 < \operatorname{T}_{\mu} < 0.7 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.7 < \operatorname{T}_{\mu} < 0.8 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.7 < \operatorname{T}_{\mu} < 0.8 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 0.8 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 0.9 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 1.0 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 1.0 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 1.0 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 1.0 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; 0.9 < \operatorname{T}_{\mu} < 1.1 \operatorname{GeV}$ $d^{2}\sigma(\nu_{\mu} \operatorname{CC } 0\pi) / \operatorname{dcos}\theta_{\mu}\operatorname$	$\sigma(\nu_{\mu} \ \text{CC}\pi^{0})/\sigma(\nu_{\mu} \ \text{CCQE}); \text{K2K}$	3			
$σ(ν_μ \text{ NC coherent } π^0); \text{ Ne}^{20}$ $σ(ν_μ \text{ NC coherent } π^0); \text{ Al}^{27}$ $σ(ν_μ \text{ NC coherent } π^0); \text{ Si}^{30}$ $σ(ν_μ \text{ NC coherent } π^0); \text{ Si}^{30}$ $σ(ν_μ \text{ NC coherent } π^+); \text{ Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^+); \text{ Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^+); \text{ Si}^{30}$ $σ(ν_μ \text{ CC coherent } π^+); \text{ Si}^{30}$ $σ(ν_μ \text{ CC coherent } π^-); \text{ Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^-); \text{ Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^-); \text{ Si}^{30}$ $σ(ν_μ \text{ CC coherent }$	$\sigma(\nu_{\mu} \text{ CC1}\pi^{+})$; MiniBooNE	4			
$σ(ν_μ \text{ NC coherent }π^0); \text{Al}^{27}$ $σ(ν_μ \text{ NC coherent }π^0); \text{Si}^{30}$ $σ(ν_μ \text{ NC coherent }π^+); \text{Ne}^{20}$ $σ(ν_μ \text{ CC coherent }π^+); \text{Ne}^{20}$ $σ(ν_μ \text{ CC coherent }π^+); \text{Si}^{30}$ $σ(ν_μ \text{ CC coherent }π^+); \text{Si}^{30}$ $σ(ν_μ \text{ CC coherent }π^-); \text{Ne}^{20}$ $φ(ν_μ \text{ CC coherent }π^-); \text{Ne}^{20}$ $φ(ν_μ \text{ CC coherent }π^-); \text{Ne}^{20}$ $φ(ν_μ \text{ CC coherent }π^-); \text{Si}^{30}$ $φ(ν_μ \text{ CC coherent }π^-); \text{Si}^$	$\sigma(\nu_{\mu} \ {\rm CC1} \pi^0)$; MiniBooNE				
$σ(ν_μ \text{ NC coherent } π^0); \text{Si}^{30}$ $σ(ν_μ \text{ CC coherent } π^+); \text{Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^+); \text{Si}^{30}$ $σ(ν_μ \text{ CC coherent } π^+); \text{Si}^{30}$ $σ(ν_μ \text{ CC coherent } π^-); \text{Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^-); \text{Ne}^{20}$ $σ(ν_μ \text{ CC coherent } π^-); \text{Si}^{30}$ $σ(ν_μ \text{ CC coherent }$	$\sigma(\nu_{\mu} \text{ NC coherent } \pi^{0}); \text{Ne}^{20}$	5			
$σ(ν_μ \ CC \ coherent \ π^+); \ Ne^{20}$ $σ(ν_μ \ CC \ coherent \ π^+); \ Si^{30}$ $σ(ν_μ \ CC \ coherent \ π^-); \ Ne^{20}$ $σ(\bar{ν}_μ \ CC \ coherent \ π^-); \ Ne^{20}$ $σ(\bar{ν}_μ \ CC \ coherent \ π^-); \ Si^{30}$ $σ(\bar{ν}_μ \ CC \ coherent \ σ(\bar{ν}_μ) \ dcos θ_μ dT_μ; \ MiniBooNE; \ 0.5 < T_μ < 0.5 \ GeV$ $σ(\bar{ν}_μ \ CC \ coherent \ σ(\bar{ν}_μ) \ dcos θ_μ dT_μ; \ MiniBooNE; \ 0.5 < T_μ < 1.0 \ GeV$ $σ(\bar{ν}_μ \ CC \ coherent \ σ(\bar{ν}_μ) \ dcos θ_μ dT_μ; \ MiniBooNE; \ 1.5 < T_μ < 1.2 \ GeV$	$\sigma(\nu_{\mu} \text{ NC coherent } \pi^0); \text{Al}^{27}$	4	4	3	
$\sigma(\nu_{\mu} \text{ CC coherent } \pi^{+}); \text{Si}^{30}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{Si}^{30}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{Si}^{30}$ $\frac{d}{d} = \frac{d}{d} = \frac$	$\sigma(\nu_{\mu} \text{ NC coherent } \pi^0); \text{Si}^{30}$	5	5	4	
$\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{ Ne}^{20}$ $\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{ Si}^{30}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.2 < T_{\mu} < 0.3 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.3 < T_{\mu} < 0.4 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.4 < T_{\mu} < 0.5 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.5 < T_{\mu} < 0.6 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.6 < T_{\mu} < 0.7 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE}; 1.1 < T_{\mu} < 1.2 \text{ GeV}$	$\sigma(\nu_{\mu} \text{ CC coherent } \pi^{+}); \text{Ne}^{20}$	4	4	3	
$\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{Si}^{30}$ $\frac{d}{d} \qquad \frac{d}{d} \qquad \frac{d}{d} \qquad \frac{d}{d}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.2 < \text{T}_{\mu} < 0.3 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.3 < \text{T}_{\mu} < 0.4 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.4 < \text{T}_{\mu} < 0.5 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.5 < \text{T}_{\mu} < 0.6 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.5 < \text{T}_{\mu} < 0.6 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.6 < \text{T}_{\mu} < 0.7 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.7 < \text{T}_{\mu} < 0.8 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.8 < \text{T}_{\mu} < 0.9 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.9 < \text{T}_{\mu} < 1.0 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 0.9 < \text{T}_{\mu} < 1.0 \text{ GeV}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 1.0 < \text{T}_{\mu} < 1.1 \text{ GeV}}$ $\frac{d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} \text{dT}_{\mu}; \text{ MiniBooNE; } 1.1 < \text{T}_{\nu} < 1.2 \text{ GeV}}$	$\sigma(\nu_{\mu} \text{ CC coherent } \pi^{+}); \text{Si}^{30}$	4	4	3	
Differential neutrino cross-section data $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.2 < \text{T}_\mu < 0.3 \text{ GeV} $ 2 1 5 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.3 < \text{T}_\mu < 0.4 \text{ GeV} $ 3 2 4 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.4 < \text{T}_\mu < 0.5 \text{ GeV} $ 3 2 4 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.4 < \text{T}_\mu < 0.5 \text{ GeV} $ 3 2 5 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.5 < \text{T}_\mu < 0.6 \text{ GeV} $ 3 3 4 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.6 < \text{T}_\mu < 0.7 \text{ GeV} $ 3 3 4 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.7 < \text{T}_\mu < 0.8 \text{ GeV} $ 3 2 4 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.8 < \text{T}_\mu < 0.9 \text{ GeV} $ 4 5 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 0.9 < \text{T}_\mu < 1.0 \text{ GeV} $ 4 5 $d^2\sigma(\nu_\mu \text{ CC }0\pi) / \text{ dcos}\theta_\mu \text{dT}_\mu; \text{ MiniBooNE; } 1.0 < \text{T}_\mu < 1.1 \text{ GeV} $ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{ Ne}^{20}$	4	4	4	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.2 < T_{\mu} < 0.3 \text{ GeV} $ 2 1 5 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.3 < T_{\mu} < 0.4 \text{ GeV} $ 3 2 4 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.4 < T_{\mu} < 0.5 \text{ GeV} $ 3 2 4 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.4 < T_{\mu} < 0.5 \text{ GeV} $ 3 2 5 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.5 < T_{\mu} < 0.6 \text{ GeV} $ 3 3 4 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.6 < T_{\mu} < 0.7 \text{ GeV} $ 3 3 4 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV} $ 3 2 4 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV} $ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV} $ 4 5 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV} $ 4 4 4 4 4 4 $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV} $ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\sigma(\bar{\nu}_{\mu} \text{ CC coherent } \pi^{-}); \text{Si}^{30}$	4	4	4	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.3 < T_{\mu} < 0.4 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.4 < T_{\mu} < 0.5 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.5 < T_{\mu} < 0.6 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.5 < T_{\mu} < 0.6 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.6 < T_{\mu} < 0.7 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$	Differential neutrino cross-section data				
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.4 < T_{\mu} < 0.5 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.5 < T_{\mu} < 0.6 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.6 < T_{\mu} < 0.7 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$	$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)$ / dcos $\theta_\mu{\rm dT}_\mu$; MiniBooNE; 0.2 < T_ μ < 0.3 GeV	2	1	5	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.5 < T_{\mu} < 0.6 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.6 < T_{\mu} < 0.7 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.1 < T_{\mu} < 1.2 \text{ GeV}$	$d^2\sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 0.3 < T $_\mu$ < 0.4 GeV	3	2	4	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.6 < T_{\mu} < 0.7 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.1 < T_{\mu} < 1.2 \text{ GeV}$	$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)$ / dcos $\theta_\mu{\rm dT}_\mu$; MiniBooNE; 0.4 < T $_\mu$ < 0.5 GeV	3	2	4	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.7 < T_{\mu} < 0.8 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.1 < T_{\mu} < 1.2 \text{ GeV}$	$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.5 < {\rm T}_\mu < 0.6~{\rm GeV}$	3	2	5	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.8 < T_{\mu} < 0.9 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.1 < T_{\mu} < 1.2 \text{ GeV}$	$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.6 < {\rm T}_\mu < 0.7~{\rm GeV}$	3	3	4	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 0.9 < T_{\mu} < 1.0 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\nu}; \text{ MiniBooNE; } 1.1 < T_{\nu} < 1.2 \text{ GeV}$	$d^2 \sigma(\nu_\mu \text{ CC } 0\pi)$ / dcos θ_μ dT _μ ; MiniBooNE; 0.7 < T _μ < 0.8 GeV	3	2	4	
$d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\mu}; \text{ MiniBooNE; } 1.0 < T_{\mu} < 1.1 \text{ GeV}$ $d^{2}\sigma(\nu_{\mu} \text{ CC } 0\pi) / \text{ dcos}\theta_{\mu} dT_{\nu}; \text{ MiniBooNE; } 1.1 < T_{\nu} < 1.2 \text{ GeV}$	$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.8 < {\rm T}_\mu < 0.9~{\rm GeV}$	4	4	5	
$d^2\sigma(\nu_e, CC.0\pi)/d\cos\theta_e dT_e$. MiniBooNE: 1.1 < T < 1.2 GeV	$d^2 \sigma(\nu_\mu \text{ CC } 0\pi) / \text{dcos}\theta_\mu \text{dT}_\mu$; MiniBooNE; 0.9 < T _μ < 1.0 GeV	4	4	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu {\rm dT}_\mu; \\ {\rm MiniBooNE}; ~1.1 < {\rm T}_\mu < 1.2~{\rm GeV} $	$d^2\sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 1.0 < T $_\mu$ < 1.1 GeV	4	4	4	
	$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 1.1 < T $_\mu$ < 1.2 GeV	4	4	4	

$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT _μ ; MiniBooNE; 1.2 < T _μ < 1.3 GeV	5		5	5	
$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 1.3 < T $_\mu$ < 1.4 GeV	5		4	5	
$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT _μ ; MiniBooNE; 1.4 < T _μ < 1.5 GeV	5		5	5	
$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 1.5 < T $_\mu$ < 1.6 GeV	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 0\pi)$ / dcos θ_μ dT _μ ; MiniBooNE; 1.6 < T _μ < 1.7 GeV	4		4	4	
$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 1.7 < T $_\mu$ <1.8 GeV	4		5	4	
$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 1.8 < T $_\mu$ < 1.9 GeV	5		5	5	
$d^2 \sigma(\nu_\mu \text{ CC } 0\pi) / \text{dcos}\theta_\mu \text{dT}_\mu$; MiniBooNE; 1.9 < T _μ < 2.0 GeV	5		5	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu {\rm dT}_\mu; {\rm MiniBooNE}; -1.0 < {\rm cos}\theta_\mu < -0.9$	3		3	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; -0.9 < {\rm cos}\theta_\mu < -0.8$	2		3	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)$ / $d{\cos}\theta_\mu d{\rm T}_\mu$; MiniBooNE; -0.8 < ${\cos}\theta_\mu$ < -0.7	2		2	4	
$d^2 \sigma(\nu_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; -0.7 < cos θ_μ < -0.6	2		2	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)$ / $d{\cos}\theta_\mu d{\rm T}_\mu$; MiniBooNE; -0.6 < ${\cos}\theta_\mu$ < -0.5	3		3	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; -0.5 < {\rm cos}\theta_\mu < -0.4$	2		1	4	
$d^2 \sigma(\nu_\mu$ CC 0π) / dcos θ_μ dT $_\mu$; MiniBooNE; -0.4 < cos θ_μ < -0.3	2		3	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)$ / $d{\cos}\theta_\mu d{\rm T}_\mu$; MiniBooNE; -0.3 < ${\cos}\theta_\mu$ < -0.2	3		3	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu {\rm dT}_\mu; {\rm MiniBooNE}; -0.2 < {\rm cos}\theta_\mu < -0.1$	3		2	4	
$d^2 \sigma(\nu_\mu \text{ CC } 0\pi)$ / dcosθ _μ dT _μ ; MiniBooNE; -0.1 < cosθ _μ < 0	3		2	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE};~0<{\rm cos}\theta_\mu<0.1$	3		2	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.1 < {\rm cos}\theta_\mu < 0.2$	3		2	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.2 < {\rm cos}\theta_\mu < 0.3$	3		2	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.3 < {\rm cos}\theta_\mu < 0.4$	3		2	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.4 < {\rm cos}\theta_\mu < 0.5$	3		2	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.5 < {\rm cos}\theta_\mu < 0.6$	3		2	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.6 < {\rm cos}\theta_\mu < 0.7$	3		2	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.7 < {\rm cos}\theta_\mu < 0.8$	4		3	5	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.8 < {\rm cos}\theta_\mu < 0.9$	4		4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~0\pi)~/~{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.9 < {\rm cos}\theta_\mu < 1.0$	4		4	4	
$d^2 \sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi)$ / dcos θ_{μ} dT _{μ} ; MiniBooNE; 0.2 < T _{μ} < 0.3 GeV	4		2	3	
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi)~/~{\rm dcos}\theta_{\mu}{\rm dT}_{\mu}; {\rm MiniBooNE}; 0.3 < {\rm T}_{\mu} < 0.4~{\rm GeV}$	2		4	4	
		•			

$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi)~/~{\rm dcos}\theta_{\mu}{\rm dT}_{\mu}; {\rm MiniBooNE}; 0.4 < {\rm T}_{\mu} < 0.5~{\rm GeV}$	4		2	4	
$d^2 \sigma(\bar{\nu}_{\mu}$ CC $0\pi)$ / dcos θ_{μ} dT _{μ} ; MiniBooNE; 0.5 < T _{μ} < 0.6 GeV	4		2	4	
$d^2\sigma(\bar{\nu}_{\mu}$ CC 0π) / dcos θ_{μ} dT _{μ} ; MiniBooNE; 0.6 < T _{μ} < 0.7 GeV	4		2	3	
$d^2\sigma(\bar{\nu}_\mu$ CC 0π) / dcos θ_μ dT _{μ} ; MiniBooNE; 0.7 < T _{μ} < 0.8 GeV	4		2	3	
$d^2 \sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi)$ / dcos θ_{μ} dT _{μ} ; MiniBooNE; 0.8 < T _{μ} < 0.9 GeV	4		2	4	
$d^2\sigma(\bar{\nu}_{\mu}$ CC 0π) / dcos θ_{μ} dT _{μ} ; MiniBooNE; 0.9 < T _{μ} < 1.0 GeV	4		2	3	
$d^2\sigma(\bar{\nu}_\mu$ CC 0π) / dcos θ_μ dT _{μ} ; MiniBooNE; 1.0 < T _{μ} < 1.1 GeV	4		2	3	
$d^2\sigma(\bar{\nu}_\mu$ CC 0π) / dcos θ_μ dT _{μ} ; MiniBooNE; 1.1 < T _{μ} < 1.2 GeV	4		2	3	
$d^2\sigma(\bar{\nu}_\mu$ CC 0π) / dcos θ_μ dT _{μ} ; MiniBooNE; 1.2 < T _{μ} < 1.3 GeV	4		2	3	
$d^2\sigma(\bar{\nu}_\mu$ CC 0π) / dcos θ_μ dT _{μ} ; MiniBooNE; 1.3 < T _{μ} < 1.4 GeV	4		2	3	
$d^2 \sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu} \text{dT}_{\mu}; \text{MiniBooNE}; 1.4 < \text{T}_{\mu} < 1.5 \text{ GeV}$	4		3	3	
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi) / {\rm dcos}\theta_{\mu} {\rm dT}_{\mu}; \\ {\rm MiniBooNE}; 1.5 < {\rm T}_{\mu} < 1.6~{\rm GeV}$	4		3	3	
$d^2 \sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi)$ / dcos θ_{μ} dT _{μ} ; MiniBooNE; 1.6 < T _{μ} < 1.7 GeV	4		4	4	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; 1.7 < T_{\mu} < 1.8 \text{ GeV}$	-		-	-	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; 1.8 < T_{\mu} < 1.9 \text{ GeV}$					
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu} \text{dT}_{\mu}; \text{MiniBooNE; } 1.9 < T_{\mu} < 2.0 \text{ GeV}$					
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \operatorname{dcos} \theta_{\mu} \operatorname{dT}_{\mu}; \operatorname{MiniBooNE}; -1.0 < \cos\theta_{\mu} < -0.9$					
$\frac{d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE; -0.9} < \cos\theta_{\mu} < -0.8}{d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE; -0.9} < \cos\theta_{\mu} < -0.8}$					
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE; } -0.8 < \cos\theta_{\mu} < -0.7$					
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; -0.7 < \cos\theta_{\mu} < -0.6$					
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi)$ / dcos θ_{μ} dT _{μ} ; MiniBooNE; -0.6 < cos θ_{μ} < -0.5	4		4	4	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; -0.5 < \text{cos}\theta_{\mu} < -0.4$	4		4	4	
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi)~/~{\rm dcos}\theta_{\mu}{\rm dT}_{\mu}; {\rm MiniBooNE}; -0.4 < {\rm cos}\theta_{\mu} < -0.3$	4		4	4	
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi) / {\rm dcos}\theta_{\mu} {\rm dT}_{\mu}; \\ {\rm MiniBooNE; -0.3 < cos}\theta_{\mu} < -0.2$	4		4	4	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; -0.2 < \text{cos}\theta_{\mu} < -0.1$	4		3	3	
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi)~/~{\rm dcos}\theta_{\mu}{\rm dT}_{\mu}; {\rm MiniBooNE}; -0.1 < {\rm cos}\theta_{\mu} < 0.0$	4		3	4	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \operatorname{dcos}\theta_{\mu} \mathrm{dT}_{\mu}; \text{MiniBooNE}; 0.0 < \cos\theta_{\mu} < 0.1$	4		4	4	
$d^2\sigma(\bar{\nu}_\mu~{\rm CC}~0\pi)/{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.1 < {\rm cos}\theta_\mu < 0.2$	4		3	5	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; 0.2 < \text{cos}\theta_{\mu} < 0.3$	4		3	4	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; 0.3 < \text{cos}\theta_{\mu} < 0.4$	4		3	4	
$d^2\sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos}\theta_{\mu}\text{dT}_{\mu}; \text{MiniBooNE}; 0.4 < \text{cos}\theta_{\mu} < 0.5$	4		3	4	
$d^2 \sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos} \theta_{\mu} \text{dT}_{\mu}; \text{MiniBooNE}; 0.5 < \text{cos} \theta_{\mu} < 0.6$	3		2	4	
$d^2\sigma(\bar{\nu}_{\mu}~{\rm CC}~0\pi) / {\rm dcos}\theta_{\mu} {\rm dT}_{\mu}; {\rm MiniBooNE}; 0.6 < {\rm cos}\theta_{\mu} < 0.7$	3		2	4	
		•			

$d^2\sigma(\bar{\nu}_\mu$ CC $0\pi)$ / dcos θ_μ dT $_\mu$; MiniBooNE; 0.7 < cos θ_μ < 0.8	4	2	4	
$d^2 \sigma(\bar{\nu}_\mu$ CC 0π) / dcos θ_μ dT $_\mu$; MiniBooNE; 0.8 < cos θ_μ < 0.9	4	2	4	
$d^2 \sigma(\bar{\nu}_{\mu} \text{ CC } 0\pi) / \text{dcos} \theta_{\mu} \text{dT}_{\mu}$; MiniBooNE; $0.9 < \text{cos} \theta_{\mu} < 1.0$	4	2	3	
$d^2\sigma(\nu_\mu$ CC 1π ⁺) / dcosθ _μ dT _μ ; MiniBooNE; 0.15 < T _μ < 0.20 GeV	4	4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+)$ / $d\cos\theta_\mu d\text{T}_\mu$; MiniBooNE; $0.20 < \text{T}_\mu < 0.25 \text{ GeV}$	4	4	4	
$d^2\sigma(\nu_\mu$ CC 1π ⁺) / dcosθ _μ dT _μ ; MiniBooNE; 0.25 < T _μ < 0.30 GeV	4	4	4	
$d^2\sigma(\nu_\mu$ CC 1π ⁺) / dcosθ _μ dT _μ ; MiniBooNE; 0.30 < T _μ < 0.35 GeV	4	4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+)$ / dcosθ _μ dT _μ ; MiniBooNE; 0.35 < T _μ < 0.40 GeV	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.40 < {\rm T}_\mu < 0.45~{\rm GeV}$	4	4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+)$ / dcosθ _μ dT _μ ; MiniBooNE; 0.45 < T _μ < 0.50 GeV	4	4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu$; MiniBooNE; $0.50 < \text{T}_\mu < 0.55 \text{ GeV}$	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+) / {\rm dcos}\theta_\mu {\rm dT}_\mu; {\rm MiniBooNE}; 0.55 < {\rm T}_\mu < 0.60~{\rm GeV}$	4	4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu$; MiniBooNE; $0.60 < \text{T}_\mu < 0.65 \text{ GeV}$	4	4	5	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)$ / ${\rm dcos}\theta_\mu{\rm dT}_\mu$; MiniBooNE; $0.65 < {\rm T}_\mu < 0.70~{\rm GeV}$	4	4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+)$ / dcosθ _μ dT _μ ; MiniBooNE; 0.70 < T _μ < 0.75 GeV	4	4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+)$ / $d\cos\theta_\mu dT_\mu$; MiniBooNE; 0.75 < T_μ < 0.80 GeV	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.80 < {\rm T}_\mu < 0.85~{\rm GeV}$	4	4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos} \theta_\mu \text{dT}_\mu$; MiniBooNE; $0.85 < \text{T}_\mu < 0.90 \text{ GeV}$	4	4	4	
$d^2\sigma(\nu_\mu$ CC $1\pi^+)$ / $d\cos\theta_\mu dT_\mu$; MiniBooNE; $0.90 < T_\mu < 0.95$ GeV	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.95 < {\rm T}_\mu < 1.00~{\rm GeV}$	4	4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+)$ / dcosθ _μ dT _μ ; MiniBooNE; 1.05 < T _μ < 1.10 GeV	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 1.10 < {\rm T}_\mu < 1.20~{\rm GeV}$	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm dcos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 1.20 < {\rm T}_\mu < 1.50~{\rm GeV}$	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm d}{\rm cos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; -1.00 < {\rm cos}\theta_\mu < -0.80$	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+) / {\rm d}{\cos}\theta_\mu {\rm dT}_\mu; {\rm MiniBooNE}; -0.80 < {\cos}\theta_\mu < -0.60$	5	5	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+)$ / $d\cos\theta_\mu dT_\mu$; MiniBooNE; -0.60 < $\cos\theta_\mu$ < -0.50	4	4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm d}{\rm cos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; -0.50 < {\rm cos}\theta_\mu < -0.40$	4	4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+)$ / $d\cos\theta_\mu dT_\mu$; MiniBooNE; -0.40 < $\cos\theta_\mu$ < -0.30	4	4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu$; MiniBooNE; -0.30 < $\text{cos}\theta_\mu$ < -0.20	4	4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu$; MiniBooNE; -0.20 < $\text{cos}\theta_\mu$ < -0.10	4	4	4	

$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; -0.10 < \text{cos}\theta_\mu < -0.05$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{d}\cos\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; -0.05 < \cos\theta_\mu < 0.00$	5		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.00 < \text{cos}\theta_\mu < 0.05$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.05 < \text{cos}\theta_\mu < 0.1$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.10 < \text{cos}\theta_\mu < 0.15$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.15 < \text{cos}\theta_\mu < 0.20$	5		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.20 < \text{cos}\theta_\mu < 0.25$	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.25 < \cos\theta_\mu < 0.30$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.30 < \text{cos}\theta_\mu < 0.35$	4		5	5	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.35 < \text{cos}\theta_\mu < 0.40$	5		4	5	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.40 < \cos\theta_\mu < 0.45$	4		4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm d}{\rm cos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.45 < {\rm cos}\theta_\mu < 0.50$	4		5	5	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.50 < \text{cos}\theta_\mu < 0.55$	4		4	4	
$d^2\sigma(\nu_\mu~{\rm CC}~1\pi^+)/{\rm d}{\rm cos}\theta_\mu{\rm dT}_\mu; {\rm MiniBooNE}; 0.55 < {\rm cos}\theta_\mu < 0.60$	5		4	5	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \operatorname{dcos}\theta_\mu \operatorname{dT}_\mu; \text{MiniBooNE}; 0.60 < \cos\theta_\mu < 0.65$	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.65 < \cos\theta_\mu < 0.70$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+)$ / $d\cos\theta_\mu dT_\mu$; MiniBooNE; $0.70 < \cos\theta_\mu < 0.75$	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos}\theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.75 < \text{cos}\theta_\mu < 0.80$	4		4	4	
$d^2\sigma(\nu_\mu \text{ CC } 1\pi^+) / \operatorname{dcos}\theta_\mu \operatorname{dT}_\mu; \text{MiniBooNE}; 0.80 < \cos\theta_\mu < 0.85$	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos} \theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.85 < \text{cos} \theta_\mu < 0.90$	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos} \theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.90 < \text{cos} \theta_\mu < 0.95$	4		4	4	
$d^2 \sigma(\nu_\mu \text{ CC } 1\pi^+) / \text{dcos} \theta_\mu \text{dT}_\mu; \text{MiniBooNE}; 0.95 < \text{cos} \theta_\mu < 1.00$	4		4	4	
$d\sigma(\nu_{\mu}~{\rm CC}~1\pi^{0})$ / dcos θ_{μ} ; MiniBooNE	2		2	3	
$d\sigma(\nu_{\mu}$ CC 1 π^{0}) / dcos $\theta_{\pi^{0}}$; MiniBooNE	4		4	3	
$d\sigma(\nu_{\mu}~{ m CC}~1\pi^{0})$ / ${ m dp}_{\pi^{0}}$; MiniBooNE	3		2	2	
$d\sigma(\nu_{\mu}~{ m CC}~1\pi^{0})$ / $d{ m Q}^{2}$; MiniBooNE	3		3	4	
$d\sigma(\nu_{\mu}~{\rm CC}~1\pi^{0})$ / ${\rm dT}_{\mu}$; MiniBooNE	4		5	4	
$d\sigma(\nu \text{ NC } 1\pi^0)$ / $d\cos\theta_{\pi^0}$; MiniBooNE	4	4		3	
$d\sigma(\nu \text{ NC } 1\pi^0)$ / dp_{π^0} ; MiniBooNE	4	4		3	
$d\sigma(\bar{\nu} \text{ NC } 1\pi^0)$ / $d\cos\theta_{\pi^0}$; MiniBooNE	3	3		1	
			1		

$\frac{d^3\sigma(\nu CC O\pi)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280$ $\frac{d^2\sigma(\nu CC O\pi)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; O GeV < P_{\mu} < 0.4 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; O GeV < P_{\mu} < 0.5 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.4 GeV < P_{\mu} < 0.5 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.5 GeV < P_{\mu} < 0.5 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.5 GeV < P_{\mu} < 0.9 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.7 GeV < P_{\mu} < 0.9 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < P_{\mu} < 30 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < P_{\mu} < 30 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < P_{\mu} < 30 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < P_{\mu} < 30 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < P_{\mu} < 30 GeV$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < Ge\theta_{\mu} < 0.94$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.9 GeV < Ge\theta_{\mu} < 0.94$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.94 GeV < Ge\theta_{\mu} < 0.94$ $\frac{d^2\sigma(\nu CC O)}{d\cos\theta_{\mu}}/dP_{\mu}; T2K ND280; 0.94 GeV < GeV <$	$d\sigma(ar{ u}\ { m NC}\ 1\pi^0)$ / ${ m dp}_{\pi^0}$; MiniBooNE		4			
$\frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0 \text{GeV} < P_\mu < 0.4 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.4 \text{GeV} < P_\mu < 0.5 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.5 \text{GeV} < P_\mu < 0.7 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.7 \text{GeV} < P_\mu < 0.9 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.7 \text{GeV} < P_\mu < 0.9 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.7 \text{GeV} < P_\mu < 0.9 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.9 \text{GeV} < P_\mu < 30 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.9 \text{GeV} < P_\mu < 30 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.9 \text{GeV} < P_\mu < 30 \text{GeV} \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < \cos\theta_\mu < 0.94 \\ \frac{d^2\sigma(\nu \text{CC})}{d\cos\theta_\mu}/dP_\mu; \text{T2K ND280}; 0.94 < 0.94 \\ d^2\sigma$		4	4		2	
$d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.5 \ GeV < P_{\mu} < 0.7 \ GeV$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.7 \ GeV < P_{\mu} < 0.9 \ GeV$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.9 \ GeV < P_{\mu} < 0.9 \ GeV$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.9 \ GeV < P_{\mu} < 0.9 \ GeV$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.9 \ GeV < P_{\mu} < 0.9 \ GeV$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.9 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < \cos\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND280; 0.94 < 0.94$ $d^{2}\sigma(\nu \ CC) \ / \ d\cos\theta_{\mu} \ / \ dP_{\mu}; T2K \ ND2$		4		3	4	
$d^{2}\sigma(\nu \text{CC}) / \text{deos} \theta_{\mu} / dP_{\mu}; \text{T2K ND280}; 0.7 \text{GeV} < P_{\mu} < 0.9 \text{GeV} \qquad $	$d^2 \sigma (\nu$ CC) / dcosθ _μ / dP _μ ; T2K ND280; 0.4 GeV $<$ P _μ $<$ 0.5 GeV	4		2	3	
$d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.9 \operatorname{GeV} < \operatorname{P}_\mu < 30 \operatorname{GeV}$ $d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.9 \operatorname{GeV} < \operatorname{P}_\mu < 30 \operatorname{GeV}$ $d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.9 \operatorname{Cos}\theta_\mu < 0.84$ $d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.94 \operatorname{Cos}\theta_\mu < 0.99$ $d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.94 \operatorname{Cos}\theta_\mu < 0.94$ $d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.94 \operatorname{Cos}\theta_\mu < 0.94$ $d^2\sigma(\nu CC) / \operatorname{deos}\theta_\mu / \operatorname{dP}_\mu; \operatorname{T2K} \operatorname{ND280}; 0.94 \operatorname{Cos}\theta_\mu < 1$ $Data on neutrino-induced hadron shower characteristics$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; \operatorname{all} x_F; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; \operatorname{all} x_F; W > 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; \operatorname{all} x_F; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; \operatorname{all} x_F; W > 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; \operatorname{all} x_F; W > 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F > 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F > 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 W^2; \nu_p \operatorname{CC}; x_F < 0; W < 3 \operatorname{GeV}$ $\operatorname{cn}_{c,h} > v_8 $	$d^2\sigma(\nu~{\rm CC}$) / d $\cos\theta_\mu$ / dP $_\mu$; T2K ND280; 0.5 GeV $<$ P $_\mu$ $<$ 0.7 GeV	4		2	3	
$d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0 < \operatorname{Cos}\theta_{\mu} < 0.84$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.84 < \operatorname{Cos}\theta_{\mu} < 0.9$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; T2$	$d^2 \sigma (\nu$ CC) / dcosθ _μ / dP _μ ; T2K ND280; 0.7 GeV $<$ P _μ $<$ 0.9 GeV	4		3	4	
$d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.84 < \operatorname{Cos}\theta_{\mu} < 0.9$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.9 < \operatorname{Cos}\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.9 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu CC) / \operatorname{dcos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}$	$d^2 \sigma(\nu$ CC) / dcosθ _μ / dP _μ ; T2K ND280; 0.9 GeV < P _μ < 30 GeV	3		2	4	
$d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.9 < \operatorname{Cos}\theta_{\mu} < 0.94$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.9 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{Cos}\theta_{\mu} < 1$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu}; \operatorname{T2K} \operatorname{ND280}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu} / \operatorname{dP}_{\mu}; 0.94 < \operatorname{GeV}$ $d^{2}\sigma(\nu \ CC) / \operatorname{deos}\theta_{\mu} / \operatorname{dP}_{\mu} / $	$d^2 \sigma(\nu$ CC) / dcosθ $_\mu$ / dP $_\mu$; T2K ND280; $0 < {\rm Cos}\theta_\mu < 0.84$	4		2	4	
$ \frac{d^2\sigma(\nuCC)}{d\cos\theta_\mu/dP_\mu;T2KND280;0.94 < \cos\theta_\mu < 1}{4} \frac{3}{3} \frac{2}{2} $ Data on neutrino-induced hadron shower characteristics $ \frac{d^2\sigma(\nuCC)}{d\cos^2\rho}/dP_\mu;T2KND280;0.94 < \cos\theta_\mu < 1}{5} \frac{5}{5} \frac$	$d^2\sigma$ (ν CC) / dcos θ_μ / dP $_\mu$; T2K ND280; 0.84 < Cos θ_μ < 0.9	4		2	3	
Data on neutrino-induced hadron shower characteristics $< n_{ch} > vs W^2; \nu p CC; all x_F; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu p CC; all x_F; W > 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; all x_F; W > 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; all x_F; W > 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; all x_F; W > 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; all x_F; W > 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 4 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$ 5 $< n_{ch} > vs W^2; \nu n CC; x_F $	$d^2\sigma(\nu~{\rm CC}$) / dcos θ_μ / dP $_\mu$; T2K ND280; 0.9 $<$ Cos $\theta_\mu<0.94$	4		3	3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$d^2\sigma(\nu~{\rm CC}$) / d $\cos\theta_\mu$ / dP $_\mu$; T2K ND280; 0.94 $<$ $\cos\theta_\mu<1$	4		3	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Data on neutrino-induced hadron shower characteristics					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\langle n_{ch} \rangle$ vs W ² ; ν p CC; all x _F ; W \langle 3 GeV	5			5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\langle n_{ch} \rangle$ vs W ² ; ν p CC; all x _F ; W > 3 GeV	4			5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$<$ n _{ch} $>$ vs W ² ; ν n CC; all x _F ; W $<$ 3 GeV	5			5	
$ < n_{ch} > vs W^2; \nu p CC; x_F > 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; \text{ all } x_F; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; \text{ all } x_F; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; \text{ all } x_F; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 \text{ GeV} $	$\langle n_{ch} \rangle$ vs W ² ; ν n CC; all x _F ; W > 3 GeV	4			4	
$ vs \ W^2; \ \nup \ CC; \ x_F < 0; \ W < 3 \ GeV $ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$< n_{ch} > vs W^2; \nu p CC; x_F > 0; W < 3 GeV$	5			5	
$ < n_{ch} > vs W^2; \nu p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $	$< n_{ch} > vs W^2; \nu p CC; x_F > 0; W > 3 GeV$	4			5	
$ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $	$< n_{ch} > vs W^2; \nu p CC; x_F < 0; W < 3 GeV$	5			5	
$ < n_{ch} > vs W^2; \nu n CC; x_F > 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $	$< n_{ch} > vs W^2; \nu p CC; x_F < 0; W > 3 GeV$	5			5	
$ vs \ W^2; \ \nun \ CC; \ x_F < 0; \ W < 3 \ GeV $ $ vs \ W^2; \ \nun \ CC; \ x_F < 0; \ W > 3 \ GeV $ $ 5 \qquad 5$	$< n_{ch} > vs W^2; \nu n CC; x_F > 0; W < 3 GeV$	4			4	
$ < n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; all x_F; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F > 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W < 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $ $ < n_{ch} > vs W^2; \bar{\nu} p CC; x_F < 0; W > 3 GeV $	$< n_{ch} > vs W^2; \nu n CC; x_F > 0; W > 3 GeV$	4			5	
$ < n_{ch} > vs W^{2}; \bar{\nu}p CC; all x_{F}; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; all x_{F}; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $	$< n_{ch} > vs W^2; \nu n CC; x_F < 0; W < 3 GeV$	4			4	
$ < n_{ch} > vs W^{2}; \bar{\nu}p CC; all x_{F}; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $	$< n_{ch} > vs W^2; \nu n CC; x_F < 0; W > 3 GeV$	5			5	
$ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $	$\langle n_{ch} \rangle$ vs W ² ; $\bar{\nu}$ p CC; all x _F ; W $\langle 3 \text{ GeV} \rangle$	5			5	
$ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} > 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W < 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \bar{\nu}p CC; x_{F} < 0; W > 3 GeV $ $ < n_{ch} > vs W^{2}; \nu H_{2} \text{ and } \nu \text{Freon } CC; \text{ all } x_{F}; W < 3 GeV $	$\langle n_{ch} \rangle$ vs W ² ; $\bar{\nu}$ p CC; all x _F ; W > 3 GeV	4			4	
$< n_{ch} > vs W^2; \bar{\nu}p CC; x_F < 0; W < 3 GeV$ $< n_{ch} > vs W^2; \bar{\nu}p CC; x_F < 0; W > 3 GeV$ $< n_{ch} > vs W^2; \bar{\nu}p CC; x_F < 0; W > 3 GeV$ $< n_{ch} > vs W^2; \nu H_2 and \nu Freon CC; all x_F; W < 3 GeV$	$< n_{ch} > vs W^2; \bar{\nu}p CC; x_F > 0; W < 3 GeV$	3			3	
$< n_{ch} > vs W^2; \bar{\nu}p CC; x_F < 0; W > 3 GeV$ $< n_{ch} > vs W^2; \nu H_2 \text{ and } \nu \text{Freon } CC; \text{ all } x_F; W < 3 GeV$	$< n_{ch} > vs W^2; \bar{\nu}p CC; x_F > 0; W > 3 GeV$	4			4	
$<$ n $_0>$ vs W^2 : ν H $_2$ and ν Freon CC: all x $_{\rm E}$: $W<3$ GeV	$< n_{ch} > vs W^2; \bar{\nu}p CC; x_F < 0; W < 3 GeV$	5			5	
$<$ n $_{\pi^0}>$ vs W 2 ; ν H $_2$ and ν Freon CC; all x $_F$; W $<$ 3 GeV	$< n_{ch} > vs W^2; \bar{\nu}p CC; x_F < 0; W > 3 GeV$	4			5	
	$<$ n $_{\pi^0}>$ vs W 2 ; ν H $_2$ and ν Freon CC; all x $_F$; W $<$ 3 GeV	4			5	

$<$ n $_{\pi^0}>$ vs W $^2;\nu\rm{H}_2$ and $\nu\rm{Freon}$ CC; all x $_F;$ W $>$ 3 GeV	5	5
$<$ n $_{\pi^0}>$ vs W $^2; \bar{\nu}p$ CC; all x $_F;$ W $<$ 3 GeV	4	4
$\langle n_{\pi^0} \rangle$ vs W ² ; $\bar{\nu}$ p CC; all x _F ; W > 3 GeV	4	5
$\langle n_{\eta} \rangle$ vs W; ν p CC; all x _F ; W $\langle 3 \text{ GeV} \rangle$	4	1
$\langle n_{\eta} \rangle$ vs W; ν p CC; all x _F ; W > 3 GeV	3	1
$\langle n_{\eta} \rangle$ vs W; ν p CC; $x_F > 0$; W < 3 GeV	4	1
$< n_{\eta} > vs W; \nu p CC; x_F > 0; W > 3 GeV$	2	1
D_{-} vs <n_>; νD_2 CC</n_>	4	3
$D_{ch} / < n_{ch} > vs W^2$, $\nu p CC$; W < 3 GeV	4	4
$D_{ch}/ vs W^2$, $\nu p CC$; $W > 3 GeV$	5	3
$D_{ch} / < n_{ch} > vs W^2$, $\nu n CC$; W < 3 GeV	4	3
$D_{ch}/ vs W^2$, $\nu n CC$; $W > 3 GeV$	3	2
D_{-} vs $\langle n_{-} \rangle$; $\bar{\nu}H_2$ CC	5	5
$< n_{\pi^0} > vs n; \nu H_2 CC; 3 < W < 4 GeV$	4	4
$< n_{\pi^0} > vs n; \nu H_2 CC; 4 < W < 5 GeV$	5	5
$< n_{\pi^0} > vs n; \nu H_2 CC; 5 < W < 7 GeV$	5	5
$< n_{\pi^0} > vs n; \nu H_2 CC; 7 < W < 10 GeV$	5	5
Norm. topological cross-sections; νp CC; $n_{ch} = 2$; W < 3 GeV	5	5
Norm. topological cross-sections; νp CC; $n_{ch} = 2$; $W > 3$ GeV	4	4
Norm. topological cross-sections; ν p CC; n_{ch} = 4; W < 3 GeV	4	5
Norm. topological cross-sections; ν p CC; n_{ch} = 4; W > 3 GeV	5	5
Norm. topological cross-sections; νp CC; $n_{ch} > 4$; W < 3 GeV		4
Norm. topological cross-sections; νp CC; $n_{ch} > 4$; W > 3 GeV	3	4
Norm. topological cross-sections; ν n CC; $n_{ch} = 1$; W < 3 GeV	4	4
Norm. topological cross-sections; ν n CC; $n_{ch} = 1$; $W > 3$ GeV	5	4
Norm. topological cross-sections; ν n CC; $n_{ch} = 3$; W < 3 GeV	4	4
Norm. topological cross-sections; ν n CC; $n_{ch} = 3$; W > 3 GeV	4	5
Norm. topological cross-sections; ν n CC; $n_{ch} > 3$; W < 3 GeV		4
Norm. topological cross-sections; ν n CC; $n_{ch} > 3$; $W > 3$ GeV	3	4
Norm. topological cross-sections; $\bar{\nu} H_2$ CC; $n_{ch} = 0$; W < 3 GeV	5	5

Norm. topological cross-sections; $\bar{\nu} H_2$ CC; $n_{ch} = 0$; W > 3 GeV	4	4
Norm. topological cross-sections; $\bar{\nu} H_2$ CC; n_{ch} = 2; W < 3 GeV	5	5
Norm. topological cross-sections; $\bar{\nu}$ H ₂ CC; n_{ch} = 2; W > 3 GeV	4	4
Norm. topological cross-sections; $\bar{\nu}$ H ₂ CC; n_{ch} = 4; W < 3 GeV		5
Norm. topological cross-sections; $\bar{\nu}$ H ₂ CC; n_{ch} = 4; W > 3 GeV	5	5
Norm. topological cross-sections; $\bar{\nu} H_2$ CC; $n_{ch} > 4$; W < 3 GeV		3
Norm. topological cross-sections; $\bar{\nu} H_2$ CC; $n_{ch} > 4$; W > 3 GeV	2	4
KNO scaling: $\langle n_{ch} \rangle P(n_{ch})$ vs $n_{ch}/\langle n_{ch} \rangle$; νp CC	5	2
KNO scaling: $\langle n_{ch} \rangle P(n_{ch})$ vs $n_{ch}/\langle n_{ch} \rangle$; ν n CC	5	5
z distribution; h^+ from νD_2 CC; z < 0.2	5	5
z distribution; h^+ from νD_2 CC; $0.2 < z < 0.7$	4	5
z distribution; h^+ from νD_2 CC; $z > 0.7$	4	4
z distribution; h^- from νD_2 CC; z < 0.2	4	5
z distribution; h^- from νD_2 CC; $0.2 < z < 0.7$	4	5
z distribution; h^- from νD_2 CC; $z > 0.7$	4	4
z distribution; h^{\pm} from $\bar{\nu}$ H ₂ CC; z < 0.2; E _{ν} < 15 GeV	4	5
z distribution; h^{\pm} from $\bar{\nu}\mathrm{H}_{2}$ CC; z > 0.2; E_{ν} < 15 GeV	4	4
z distribution; h^{\pm} from $\bar{\nu}$ H ₂ CC; z < 0.2; 15 < E $_{\nu}$ < 30 GeV	5	5
z distribution; h^{\pm} from $\bar{\nu}$ H ₂ CC; z > 0.2; 15 < E $_{\nu}$ < 30 GeV	5	4
z distribution; h^{\pm} from $\bar{\nu}$ H ₂ CC; z < 0.2; E _{ν} > 30 GeV	4	4
z distribution; h^{\pm} from $\bar{\nu}$ H ₂ CC; z > 0.2; E _{ν} > 30 GeV	5	4
x_F distribution; π^+ from νp CC; $x_F > 0$; W > 3 GeV	3	3
x_F distribution; π^+ from νp CC; $x_F < 0$; W > 3 GeV	3	4
x_F distribution; π^- from νp CC; $x_F > 0$; $W > 3$ GeV	5	5
x_F distribution; π^- from νp CC; $x_F < 0$; W > 3 GeV	4	4
\mathbf{x}_F distribution; π^+ from $\bar{\nu}\mathbf{H}_2$ and $\bar{\nu}\mathbf{D}_2$ CC; $\mathbf{x}_F > 0$	3	4
x_F distribution; π^+ from $\bar{\nu}H_2$ and $\bar{\nu}D_2$ CC; $x_F < 0$	4	4
${\bf x}_F$ distribution; ${\bf \pi}^-$ from $\bar{\nu}{\bf H}_2$ and $\bar{\nu}{\bf D}_2$ CC; ${\bf x}_F>0$	2	3
\mathbf{x}_F distribution; π^- from $\bar{\nu}\mathbf{H}_2$ and $\bar{\nu}\mathbf{D}_2$ CC; $\mathbf{x}_F < 0$	4	3
x_F distribution; h^+ from $\bar{\nu}$ H ₂ CC; $x_F > 0$; $2 < W < 4$ GeV; $Q^2 < 45$ GeV ²	2	2

${\bf x}_F$ distribution; h^+ from $\bar{\nu}{\bf H}_2$ CC; ${\bf x}_F<0;$ $2<{\bf W}<4$ GeV; ${\bf Q}^2<45$ GeV 2	3	4	
${\rm x}_F$ distribution; h^+ from $\bar{\nu}{\rm H}_2$ CC; ${\rm x}_F>0;$ 4 < W < 10 GeV; ${\rm Q}^2$ < 45 GeV 2	4	4	
x_F distribution; h^+ from $\bar{\nu}$ H ₂ CC; $x_F < 0$; $4 < W < 10$ GeV; $Q^2 < 45$ GeV ²	3	3	
${\bf x}_F$ distribution; h^- from $\bar \nu {\bf H}_2$ CC; ${\bf x}_F > 0$; $2 < {\bf W} < 4$ GeV; ${\bf Q}^2 < 45$ GeV 2	2	3	
x_F distribution; h^- from $\bar{\nu}$ H ₂ CC; $x_F < 0$; $2 < W < 4$ GeV; $Q^2 < 45$ GeV ²	3	3	
${\bf x}_F$ distribution; h^- from $\bar{\nu}{\bf H}_2$ CC; ${\bf x}_F>0$; $4<{\bf W}<10$ GeV; ${\bf Q}^2<45$ GeV 2	2	2	
${\bf x}_F$ distribution; h^- from $\bar{\nu}{\bf H}_2$ CC; ${\bf x}_F$ < 0; 4 < W < 10 GeV; ${\bf Q}^2$ < 45 GeV ²	4	2	
$\langle p_T^2 \rangle$ vs W ² ; νD_2 CC; $x_F < 0.3$; $W^2 < 9 GeV^2$	4	5	
$<$ p $_T^2>$ vs W 2 ; ν D $_2$ CC; x $_F<0.3$; $W^2>9GeV^2$	4	3	
$\langle p_T^2 \rangle$ vs W ² ; νD_2 CC; $x_F > 0.3$; $W^2 < 9 GeV^2$	4	4	
$\langle p_T^2 \rangle$ vs W ² ; ν D ₂ CC; $x_F > 0.3$; $W^2 > 9GeV^2$	1	4	
$\langle p_T^2 \rangle$ vs W; $\bar{\nu}$ p CC; all x _F ; W < 3 GeV	2	3	
$\langle p_T^2 \rangle$ vs W; $\bar{\nu}$ p CC; all x _F ; W > 3 GeV	5	4	
$< p_T^2 > vs W; \bar{\nu}p CC; x_F > 0; W < 3 GeV$	2	2	
$< p_T^2 > vs W; \bar{\nu}p CC; x_F > 0; W > 3 GeV$	4	3	
$< p_T^2 > vs W; \bar{\nu}p CC; x_F < 0; W < 3 GeV$	2	2	
$< p_T^2 > vs W; \bar{\nu}p CC; x_F < 0; W > 3 GeV$	4	4	
$\langle p_T^2 \rangle$ vs x_F ; νp CC; $x_F < 0$; $9 < W^2 < 25$ GeV ²	4	3	
$< p_T^2 > vs x_F; \nu p CC; x_F > 0; 9 < W^2 < 25 GeV^2$	3	4	
$<$ p _T $^2>$ vs x _F ; ν n CC; x _F $<$ 0; 9 $<$ W $^2<$ 25 GeV 2	3	4	
$< p_T^2 > vs x_F; \nu n CC; x_F > 0; 9 < W^2 < 25 GeV^2$	4	3	
			•

4 Quantitative characterization

TODO

		Configurations						
Datasets	DoF	G00_00a	G00_00b	G16_01a	G16_02b			
$\frac{\partial^2 \sigma(\nu_{\mu}CC0\pi)}{\partial Cos\theta_{\mu}}/\partial T_{\mu}$	137	599		1.02e+03	299			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial $	5	35.8		66.4	12			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial $	5	30.3		52.4	15.6			
$\frac{\partial^2 \sigma(\nu_{\mu}CC0\pi)}{\partial Cos\theta_{\mu}} \frac{\partial F_{\mu}Cos\theta_{\mu}}{\partial T_{\mu}Cos\theta_{\mu}} = -0.25$	4	24.3		55.5	11.9			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu$	3	40.8		54.2	16			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 $	3	22.1		60.2	14.1			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial \sigma(\nu_{\mu} C C 0 \pi)} \frac{\partial^2 \sigma(\nu_{\mu} C C 0 $	3	20.8		41.5	12.6			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C o s \theta_{\mu}}{\partial T_{\mu} C o s \theta_{\mu}} = -0.65$	3	22.5		46.7	8.06			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C o s \theta_{\mu}}{\partial T_{\mu} C o s \theta_{\mu}} = -0.75$	2	20.2		29	16.7			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} = -0.85$	2	22.5		39.3	12.5			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} = -0.95$	2	20.1		18	5.45			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C o s \theta_{\mu}}{\partial C o s \theta_{\mu}} = 0.05$	5	27.3		66.5	12.1			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C o s \theta_{\mu}}{\partial T_{\mu} C o s \theta_{\mu}} = 0.15$	6	23.1		45.6	19.3			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial^2 \sigma(\nu_{\mu} C c 0 \pi)}{\partial C o s \theta_{\mu}} = 0.25$	7	42		76.1	4.64			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} = 0.35$	7	36		65.3	14.1			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial C \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} = 0.45$	9	33.8		65.3	16.7			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial T_{\mu} C o s \theta_{\mu}}{\partial T_{\mu} C o s \theta_{\mu}} = 0.55$	11	37.7		69.9	18.2			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} \frac{\partial \sigma(\nu_{\mu} C c \sigma_{\mu})}{\partial C o s \theta_{\mu}} = 0.65$	12	40.2		69.4	20.1			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \frac{\partial T_{\mu} C o s \theta_{\mu}}{\partial T_{\mu}} = 0.75$	14	33.5		46.5	27.5			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \frac{\partial T_{\mu} C o s \theta_{\mu}}{\partial T_{\mu}} = 0.85$	16	23.1		23.5	17.6			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \frac{\partial T_{\mu} C o s \theta_{\mu}}{\partial T_{\mu}} = 0.95$	18	42.2		32.1	23.5			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 0.25 GeV$	20	192		435	45.5			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \frac{\partial T_{\mu} T_{\mu}}{\partial T_{\mu}} = 0.35 GeV$	20	104		200	68.5			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 0.45 GeV$	17	89.6		134	53.3			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi) / \partial C os \theta_{\mu} / \partial T_{\mu} T_{\mu} = 0.55 GeV}{\partial T_{\mu} T_{\mu}} = 0.55 GeV$	13	73.3		100	25.9			
$\partial^2 \sigma(\nu_{\mu} CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.65 GeV$	12	49.4		60	17.2			
$\partial^2 \sigma(\nu_{\mu} C C 0 \pi) / \partial C os \theta_{\mu} / \partial T_{\mu} T_{\mu} = 0.75 GeV$	9	26.8		33.8	23.5			
$\partial^2 \sigma(\nu_{\mu} CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.85 GeV$	8	26.5		26.2	15.1			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 0.95 GeV$	6	17.9		15.3	10.3			
$\partial^2 \sigma(\nu_{\mu} CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.05 GeV$	6	7.31		8.5	9.82			
$\partial^2 \sigma(\nu_{\mu} CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.15 GeV$	5	6.56		5.13	6.34			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 1.25 GeV$	5	2.92		3.7	8.47			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 1.35 GeV$	4	0.467		0.342	6.29			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 1.45 GeV$	3	0.277		0.106	5.16			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 1.55 GeV$	3	0.905		0.353	1.54			
$\frac{\partial^2 \sigma(\nu_{\mu} CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu}}{} = 1.65 GeV$	2	0.318		0.274	1.26			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi) / \partial C os \theta_{\mu} / \partial T_{\mu} T_{\mu} = 1.75 GeV}{\partial T_{\mu} T_{\mu}} = 1.75 GeV$	2	0.27		0.0862	0.54			
$\frac{\partial^2 \sigma(\nu_{\mu} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \partial T_{\mu} T_{\mu} = 1.85 GeV$	1	0.0477		0.00915	0.142			
$\partial^2 \sigma(\nu_{\mu} CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.95 GeV$	1	0.0124		0.0292	0.0726			

$\partial^2 \sigma(\bar{\nu_\mu}CC0\pi)/\partial Cos\theta_\mu/\partial T_\mu$	78	163	105	916	193
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.05$	2	1.63	2	5.06	2.82
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.15$	2	1.06	0.101	2.55	1.49
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.25$	1	0.181	0.264	0.366	0.124
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.35$	1	0.198	0.0541	0.0114	0.397
$\frac{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.45}{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu}} = -0.45$	1	0.915	0.104	0.819	0.626
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.55$	1	0.824	2.14e-05	0.6	0.63
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.65$	0	0	0	0	0
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.75$	0	0	0	0	0
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.85$	0	0	0	0	0
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = -0.95$	0	0	0	0	0
$\frac{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.05}{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu}} = 0.05$	3	1.67	0.159	4.14	2.74
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.15$	3	1.73	1.61	5.58	1.02
$\frac{\partial^2 \sigma(\bar{\nu_{\mu}} C C 0 \pi)}{\partial C o s \theta_{\mu}} / \frac{\partial T_{\mu} C o s \theta_{\mu}}{\partial T_{\mu}} = 0.25$	4	2.35	1.98	8.22	2.89
$\frac{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.35}{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu}} = 0.35$	5	4.2	1.13	23.5	5.43
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.45$	5	9.76	0.782	32.8	7.24
$\frac{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.55}{\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu}} = 0.55$	6	20.2	2.76	71	13
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.65$	8	17.3	8.1	108	11.1
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.75$	9	36.8	15.9	161	19.7
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.85$	12	42.8	22.2	238	42.6
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}Cos\theta_{\mu} = 0.95$	15	21.2	47.6	254	80.9
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.25GeV$	16	13.7	11.6	61.2	27.8
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.35GeV$	12	14.1	23.8	82.1	14.4
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.45GeV$	10	19.6	13.7	116	15.8
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.55GeV$	8	19.6	10.5	134	17.8
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.65GeV$	7	18.2	11.9	114	20.2
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.75GeV$	5	24.9	11.1	119	15.1
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.85GeV$	4	16.7	7.04	97.5	21.7
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 0.95GeV$	4	12	7.96	80.5	18.2
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.05GeV$	3	8.9	2.32	45.3	14
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.15GeV$	2	3.98	0.987	26.2	9.64
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.25GeV$	2	4.05	0.565	18.8	6.45
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.35GeV$	2	2.95	1.8	11.6	4.71
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.45GeV$	1	2.21	0.809	6.5	4.14
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.55GeV$	1	1.53	0.565	3.02	2.11
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.65GeV$	1	0.469	0.189	0.633	0.579
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.75GeV$	0	0	0	0	0
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.85GeV$	0	0	0	0	0
$\partial^2 \sigma(\bar{\nu_{\mu}}CC0\pi)/\partial Cos\theta_{\mu}/\partial T_{\mu}T_{\mu} = 1.95GeV$	0	0	0	0	0

5 Summary

References

A Naming conventions

A uniform naming convention is required for all

- 1. comprehensive model tunes (CMT),
- 2. comprehensive model configurations (CMC),
- 3. estimated (tuned) parameter sets (EPS), and
- 4. datasets (including their relative weighting) used explicitly for parameter estimation (DPE).

Names should be structured such that, for example,

- 1. small variations of a given CMC, or
- 2. different CMT obtained for the same CMC and EPS, but different DPEs

can be easily identified and grouped together.

In addition, names should be *unique*, so that specific CMTs or CMCs can always be referred to without ambiguity, even if they are no longer supported and deployed with the latest version of GENIE.

Although an impossibly large of information needs to be encoded in the names, they should remain reasonably short! Not only a CMT name will be a command-line argument for all GENIE applications¹, a CMC or a CMT name will be the main vehicle for communicating GENIE model configuration and tune information, often verbally².

It is rather clear that the names of the actual physics models, or the names of the datasets, can not be a part of a uniform and compact naming scheme. Such a naming scheme can only employ "keys" that can be used by users in order to look up the corresponding model configurations, parameter lists and datasets. It is expected that all this information will be maintained in the GENIE web page, and that the subset of that information pertaining to the currently supported CMTs will be included in the GENIE Physics and Users Manual.

In principle, a CMT is almost fully specified by a CMC and EPS and a DPE, so the CMT names can be structured accordingly.

$$\{CMT\} = \{CMC\}_{EPS}_{DPE}$$

The following naming scheme was chosen:

{CMC} has a name in the form of: Gdd MMv, where

- G: is a capital letter that identifies the maintainer of the model. The default value is G (for the GENIE collaboration). To avoid ambiguity, GENIE CMCs and CMTs developed by external groups should use a different naming scheme or, if the same scheme us used, names should start by a character other than G.
- dd: is a number describing the year during which a CMC was developed.
- MM: is a number identifying the distinct features of a CMC.
- v: is a character enumerating small variations to a CMC identified by any given number MM.

{EPS} has a name in the form of: PP, where

¹ Allowed for via the -tune option.

² It is desireable to use a name that is not too complex or too long to appear in a plot legend or to effectively address a conference talk question on "Which GENIE tune did you use?".

• PP: is a number identifying the set of parameters that were tuned by the GENIE collaboration. This parameter set is meaningful only in the context of a particular CMC. The number 00 indicates that a CMC has not been tuned by GENIE.

{DPE} has a name in the form of: xxx, where

• xxx: is a number that identifies the dataset used to tune the CMC and estimates the values of the given EPS. A given DPE includes a unique set weights associated with each component dataset. The number 000 indicates that a CMC has not been tuned by GENIE.

Therefore, the name of a CMT is a 14-character string of the form:

Examples of valid CMT names are G18_05p_00_000 or G17_02a_01_024.

B Supporting data/MC comparisons

GENIE comparisons with MiniBooNE CC 0π dataset

Dataset:

miniboone_nuccqe_2010

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:29:32

Data: miniboone_nuccqe_2010

Pred: trunk:G00_00a:miniboone_fhc

miniboone_nuccqe_2010
VS
trunk:G00_00a:miniboone_fhc $\partial^2\sigma/\partial \text{Cos}\theta_\mu/\partial T_\mu$ $[10^{-38}\text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 598.568/137\text{ DoF}$

Pred: trunk:G00_00b:miniboone_fhc

miniboone_nuccqe_2010
VS
trunk:G00_00b:miniboone_fhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial T_\mu$ $[10^{-38} \text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 794.689/137 \text{ DoF}$

Pred: trunk:G16_01a:miniboone_fhc

miniboone_nuccqe_2010
VS
trunk:G16_01a:miniboone_fhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial \text{T}_\mu$ $[10^{-38} \text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 1023.42/137 \text{ DoF}$

Pred: trunk:G16_02b:miniboone_fhc

miniboone_nuccqe_2010
VS
trunk:G16_02b:miniboone_fhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial T_\mu$ $[10^{-38} \text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 298.857/137 \text{ DoF}$

GENIE comparisons with MiniBooNE CC 0π dataset

Dataset:

 $miniboone_nubarccqe_2013$

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:29:32

Data: miniboone_nubarccqe_2013

Pred: trunk:G00_00a:miniboone_rhc

miniboone_nubarccqe_2013
VS
trunk:G00_00a:miniboone_rhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial \text{T}_\mu$
[$10^{-38} \text{ cm}^2/\text{GeV/n}$] $\chi^2 = 162.86/78 \text{ DoF}$

Pred: trunk:G00_00b:miniboone_rhc

miniboone_nubarccqe_2013
VS
trunk:G00_00b:miniboone_rhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial \text{T}_\mu$ $[10^{-38} \text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 104.75/78 \text{ DoF}$

Pred: trunk:G16_01a:miniboone_rhc

miniboone_nubarccqe_2013
VS
trunk:G16_01a:miniboone_rhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial \text{T}_\mu$ $[10^{-38} \text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 915.666/78 \text{ DoF}$

Pred: trunk:G16_02b:miniboone_rhc

miniboone_nubarccqe_2013
VS
trunk:G16_02b:miniboone_rhc $\partial^2 \sigma/\partial \text{Cos}\theta_\mu/\partial \text{T}_\mu$ $[10^{-38} \text{ cm}^2/\text{GeV/n}]$ $\chi^2 = 192.653/78 \text{ DoF}$

GENIE Comparisons with MiniBooNE CC $1\pi^+$ data

Dataset:

miniboone_nucc1pip_2011

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:29:35

 $\partial^2 \sigma / \partial \cos \theta_{\mu} / \partial T_{\mu}$ [10⁻³⁸ cm²/GeV]

Data: miniboone_nucc1pip_2011

Pred: trunk:G00_00a:miniboone_fhc

Pred: trunk:G00_00b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00b:miniboone_fhc $\partial^2\sigma/\partial cos\theta_{\mu}/\partial T_{\mu}$ $[10^{-38}~cm^2/GeV]$ $\chi^2=143.944/233~DoF$

Pred: trunk:G16_01a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_01a:miniboone_fhc $\partial^2\sigma/\partial cos\theta_{\mu}/\partial T_{\mu}$ $[10^{-38}~cm^2/GeV]$ $\chi^2=163.336/233~DoF$

Pred: trunk:G16_02b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_02b:miniboone_fhc $\partial^2 \sigma/\partial cos\theta_{\mu}/\partial T_{\mu}$ $[10^{-38} \ cm^2/GeV]$ $\chi^2 = 159.702/233 \ DoF$

 $\partial^2 \sigma / \partial \cos \theta_{\pi} / \partial T_{\pi} [10^{-38} \text{ cm}^2/\text{GeV}]$

Data: miniboone_nucc1pip_2011

 $\partial^2 \sigma / \partial \cos \theta_\pi / \partial T_\pi \ [10^{\text{-38}} \ \text{cm}^2 / \text{GeV}]$

Pred: trunk:G00_00a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00a:miniboone_fhc $\partial^2 \sigma/\partial \cos\theta_\pi/\partial T_\pi$
[$10^{-38} \ cm^2/GeV$] $\chi^2 = 92.3641/154 \ DoF$

 $\partial^2 \sigma / \partial \cos \theta_\pi / \partial T_\pi \ [10^{\text{-38}} \ \text{cm}^2 / \text{GeV}]$

Pred: trunk:G00_00b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00b:miniboone_fhc $\partial^2 \sigma/\partial \cos\theta_\pi/\partial T_\pi$ $[10^{-38} \text{ cm}^2/\text{GeV}]$ $\chi^2 = 85.8407/154 \text{ DoF}$

 $\partial^2 \sigma / \partial \cos \theta_{\pi} / \partial T_{\pi}$ [10⁻³⁸ cm²/GeV]

Pred: trunk:G16_01a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_01a:miniboone_fhc $\partial^2 \sigma/\partial \cos\theta_\pi/\partial T_\pi$ $[10^{-38} \text{ cm}^2/\text{GeV}]$ $\chi^2 = 91.6709/154 \text{ DoF}$

 $\partial^2 \sigma / \partial \cos \theta_\pi / \partial T_\pi \ [10^{-38} \ cm^2 / GeV]$

Pred: trunk:G16_02b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_02b:miniboone_fhc $\partial^2 \sigma/\partial \cos\theta_\pi/\partial T_\pi$ $[10^{-38} \text{ cm}^2/\text{GeV}]$ $\chi^2 = 89.861/154 \text{ DoF}$

 $d\sigma/dQ^{2} [10^{-38} cm^{2}/GeV^{2}]$

Data: miniboone_nucc1pip_2011

Pred: trunk:G00_00a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00a:miniboone_fhc $d\sigma/dQ^2$ [10^{-38} cm²/GeV²] $\chi^2 = 530.758/351$ DoF

Pred: trunk:G00_00b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00b:miniboone_fhc $d\sigma/dQ^2$ [10^{-38} cm²/GeV²] $\chi^2 = 596.956/351$ DoF

Pred: trunk:G16_01a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_01a:miniboone_fhc $d\sigma/dQ^2$ $[10^{-38} \text{ cm}^2/\text{GeV}^2]$ $\chi^2 = 484.41/351 \text{ DoF}$

Pred: trunk:G16_02b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_02b:miniboone_fhc $d\sigma/dQ^2$ [10^{-38} cm²/GeV²] $\chi^2 = 390.283/351$ DoF

d σ /d T_{μ} [10 $^{-38}$ cm 2 /GeV]

Data: miniboone_nucc1pip_2011

 $d\sigma/dT_{\mu}$ [10⁻³⁸ cm²/GeV]

Pred: trunk:G00_00a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00a:miniboone_fhc $d\sigma/dT_{\mu}$ $[10^{-38}~cm^2/GeV]$ $\chi^2 = 597.558/303~DoF$

dʊ/dΤ_μ [10⁻³⁸ cm²/GeV]

Pred: trunk:G00_00b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00b:miniboone_fhc $d\sigma/dT_{\mu}$ $[10^{-38}~cm^2/GeV]$ $\chi^2 = 595.795/303~DoF$

dਰ/dT $_{\mu}$ [10 $^{ ext{-}38}$ cm 2 /GeV]

Pred: trunk:G16_01a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_01a:miniboone_fhc $d\sigma/dT_{\mu}$ $[10^{-38}~cm^2/GeV]$ $\chi^2 = 433.991/303~DoF$

 $d\sigma/dT_{\mu}$ [10⁻³⁸ cm²/GeV]

Pred: trunk:G16_02b:miniboone_fhc

Data: miniboone_nucc1pip_2011

Pred: trunk:G00_00a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00a:miniboone_fhc $d\sigma/dT_{\pi}$ $[10^{-38}~cm^2/GeV]$ $\chi^2 = 384.662/311~DoF$

Pred: trunk:G00_00b:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G00_00b:miniboone_fhc $d\sigma/dT_{\pi}$ $[10^{-38}~cm^2/GeV]$ $\chi^2 = 410.856/311~DoF$

Pred: trunk:G16_01a:miniboone_fhc

miniboone_nucc1pip_2011
VS
trunk:G16_01a:miniboone_fhc $d\sigma/dT_{\pi}$ $[10^{-38}~cm^2/GeV]$ $\chi^2 = 440.986/311~DoF$

Pred: trunk:G16_02b:miniboone_fhc

GENIE Comparisons with MiniBooNE CC $1\pi^0$ data

Dataset:

 $miniboone_nucc1pi0_2010$

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:29:35

GENIE comparisons with MiniBooNE NC $1\pi^0$ dataset

Dataset:

miniboone_nubarnc1pi0_rhc_2010

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:29:30

GENIE Comparisons 2013 T2K/ND280 $\nu_{_{\mu}}$ CC data release

Dataset:

t2k_nd280_numucc_2013

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:36:53

 ∂^2 σ/ ∂ Cos $\theta_{\mu}\partial$ P $_{\mu}$ [10⁻³⁸ cm²/GeV]

Data: t2k_nd280_numucc_2013

 $\partial^2 \sigma / \partial \text{Cos} \theta_\mu \partial \textbf{P}_\mu \text{ [10}^{\text{-38}} \text{ cm}^2 / \text{GeV]}$

Pred: trunk:G00_00a:t2k_nd280_numu_fhc

 $\partial^2 \sigma / \partial \text{Cos} \theta_\mu \partial \textbf{P}_\mu \text{ [10}^{\text{-38}} \text{ cm}^2 / \text{GeV]}$

Pred: trunk:G00_00b:t2k_nd280_numu_fhc

 $\partial^2 \sigma / \partial \text{Cos} \theta_\mu \partial \textbf{P}_\mu \text{ [10}^{\text{-38}} \text{ cm}^2 / \text{GeV]}$

Pred: trunk:G16_01a:t2k_nd280_numu_fhc

Pred: trunk:G16_02b:t2k_nd280_numu_fhc

GENIE comparisons with T2K/ND280 CC 0π dataset

Dataset:

t2k_nd280_numucc0pi_2015

Models:

trunk/G00_00a

trunk/G00_00b

trunk/G16_01a

trunk/G16_02b

2016/11/22 12:39:47

Data: t2k_nd280_numucc0pi_2015

Pred: trunk:G00_00a:t2k_nd280_numu_fhc

Pred: trunk:G00_00b:t2k_nd280_numu_fhc

Pred: trunk:G16_01a:t2k_nd280_numu_fhc

Pred: trunk:G16_02b:t2k_nd280_numu_fhc

t2k_nd280_numucc0pi_2015 trunk:G00_00a:t2k_nd280_numu_fhc trunk:G00_00b:t2k_nd280_numu_fhc trunk:G16_01a:t2k_nd280_numu_fhc trunk:G16_02b:t2k_nd280_numu_fhc

t2k_nd280_numucc0pi_2015 trunk:G00_00a:t2k_nd280_numu_fhc trunk:G00_00b:t2k_nd280_numu_fhc trunk:G16_01a:t2k_nd280_numu_fhc trunk:G16_02b:t2k_nd280_numu_fhc

t2k_nd280_numucc0pi_2015 trunk:G00_00a:t2k_nd280_numu_fhc trunk:G00_00b:t2k_nd280_numu_fhc trunk:G16_01a:t2k_nd280_numu_fhc trunk:G16_02b:t2k_nd280_numu_fhc

trunk:G00_00b:t2k_nd280_numu_fhc trunk:G16_01a:t2k_nd280_numu_fhc trunk:G16_02b:t2k_nd280_numu_fhc

•

t2k_nd280_numucc0pi_2015 trunk:G00_00a:t2k_nd280_numu_fhc trunk:G00_00b:t2k_nd280_numu_fhc trunk:G16_01a:t2k_nd280_numu_fhc trunk:G16_02b:t2k_nd280_numu_fhc GENIE comparison with data on neutrino-induced hadronization

2016/11/21 16:16:54

