Formula and data book

Chemistry 2025

Physical constants and unit conversions

Absolute zero	0 K = −273 °C
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	$F = 96485 \text{ C mol}^{-1}$
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionic product constant for water (at 298 K)	$K_{\rm w} = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Standard temperature and pressure (STP)	273 K and 100 kPa
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$

Reaction pathways

Formulas

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{\left(x_{max} - x_{min}\right)}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100\%$

Percentage error (%) = $\frac{\text{measured value - true value}}{\text{true value}} \times 100\%$

Chemical reactions — reactants, products and energy change

 $Q = mc\Delta T$

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \Sigma (bonds broken) - \Sigma (bonds formed)$

Moles $(n) = \frac{\text{mass (m)}}{\text{molar mass (M)}}$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times 100\%$

Intermolecular forces and gases

PV = nRT

Aqueous solutions and acidity

Molarity/Concentration (c) = $\frac{\text{moles of solute }(n)}{\text{volume of solution }(V)}$

Rates of chemical reactions

Rate of reaction = $\frac{\text{increase in product concentration } (\Delta[P])}{\text{time taken}} \text{ or } \frac{\text{decrease in reactant concentration } (-\Delta[R])}{\text{time taken}}$

Chemical equilibrium systems

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$
 for the reaction $aA + bB \rightleftharpoons cC + dD$

$$K_{c} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$
 for the reaction: $aA + bB \rightleftharpoons cC + dD$

$$K_{\rm sp} = [C]^{\rm c}[D]^{\rm d}$$
 for the reaction $aA(s) \rightleftharpoons cC(aq) + dD(aq)$

$$K_{\mathbf{w}} = \left[\mathbf{H}^{+}\right] \left[\mathbf{OH}^{-}\right]$$

$$pH = -log_{10} \left[H^+ \right]$$

$$pOH = -log_{10} \Big\lceil OH^- \Big\rceil$$

$$K_{\rm w} = K_{\rm a} \times K_{\rm b}$$

$$K_{\rm a} = \frac{\left[H_3 O^+ \right] \left[A^- \right]}{\left[HA \right]}$$

$$K_{\rm b} = \frac{\left[\rm BH^+ \right] \left[\rm OH^- \right]}{\left[\rm B \right]}$$

Oxidation and reduction

$$E_{\text{cell}}^{\text{o}} = E_{\text{(reduction half-cell)}}^{\text{o}} - E_{\text{(oxidation half-cell)}}^{\text{o}}$$

Charge (q) = moles electrons $(n(e^-)) \times Faraday$'s constant (F)

Charge (q) = current $(I) \times time (t)$

Properties and structure of organic materials

 $R_{\rm F} = \frac{\text{distance moved by amino acid}}{\text{distance moved by solvent}}$

List of elements

Atc	omic	Atomic Symbol	Name	Atomic	ic Symbol	Name	Atomic	Atomic Symbol	Name	Atomic	Atomic Symbol
	no.			no.			no.			no.	
	_	I	Gallium	31	Ga	Promethium	61	Pm	Protactinium	91	Pa
	2	He	Germanium	32	Ge	Samarium	62	Sm	Uranium	92)
	က	:-	Arsenic	33	As	Europium	63	Eu	Neptunium	93	d
	4	Be	Selenium	34	Se	Gadolinium	64	РĠ	Plutonium	94	Pu
	2	В	Bromine	35	Br	Terbium	65	Tp	Americium	92	Am
	9	ပ	Krypton	36	۲	Dysprosium	99	Dy	Curium	96	Cm
	7	z	Rubidium	37	Rb	Holmium	29	유	Berkelium	97	器
	∞	0	Strontium	38	Š	Erbium	89	ш	Californium	98	ర్
	6	ட	Yttrium	39	>	Thulium	69	TI	Einsteinium	66	Es
`	10	Ne	Zirconium	40	Zr	Ytterbium	70	Υp	Fermium	100	Fm
	7	Na	Niobium	41	q	Lutetium	71	Lu	Mendelevium	101	Md
Magnesium	12	Mg	Molybdenum	42	Mo	Hafnium	72	士	Nobelium	102	No
	13	¥	Technetium	43	2	Tantalum	73	Та	Lawrencium	103	۲
	14	Si	Ruthenium	44	Ru	Tungsten	74	*	Rutherfordium	104	Rf
Phosphorus (15	Д	Rhodium	45	Rh	Rhenium	75	Re	Dubnium	105	Db
	16	S	Palladium	46	Pd	Osmium	92	Os	Seaborgium	106	Sg
	17	Ö	Silver	47	Ag	Iridium	77	<u>_</u>	Bohrium	107	Bh
	18	Ar	Cadmium	48	р	Platinum	78	£	Hassium	108	Hs
	19	メ	Indium	49	ln	Gold	62	Au	Meitnerium	109	Mt
	20	Ca	Tin	20	Sn	Mercury	80	Hg	Darmstadtium	110	Ds
	21	Sc	Antimony	51	Sb	Thallium	81	I	Roentgenium	111	Rg
	22	Ξ	Tellurium	52	Te	Lead	82	Pb	Copernicium	112	Cn
	23	>	lodine	53	_	Bismuth	83	Bi	Nihonium	113	Nh
	24	Cr	Xenon	54	Xe	Polonium	84	Ро	Flerovium	114	Ы
Manganese 2	25	Mn	Cesium	22	Cs	Astatine	85	At	Moscovium	115	Mc
, ,	26	Fe	Barium	99	Ba	Radon	98	Rn	Livermorium	116	Lv
, ,	27	Co	Lanthanum	22	La	Francium	87	F	Tennessine	117	Ts
, ,	28	N	Cerium	28	Ce	Radium	88	Ra	Oganesson	118	Og
	29	Cu	Praseodymium	29	Pr	Actinium	89	Ac			
	30	Zn	Neodymium	09	PN	Thorium	06	Th			

Periodic table of the elements

18 He 2	4.00	Ne 10	20.18	18	39.95	36	ż	83.80	54	×	131.29	86	R	(222.0)	118	Ö	(294)		7	ב	174.97	103	۲	(262.1)
	17	ெ ட	19.00	٦ -	35.45	35	Ā	79.90	53	_	126.90	85	Ą	(210.0)	117	S	(584)		20	۲ ک	173.05	102	<u>0</u>	(259.1)
	16	°	16.00	16	32.06	34	Se	78.97	52	<u>e</u>	127.60	84	Po	(210.0)	116	_	(293)		69	H	167.26 168.93	101	р Х	(258.1)
	15	Z	14.01	15	3	33	As			Sp			<u></u>	- 4		S M	(288)			щ			FB	(252.1)
	14	ဳပ	12.01	<u>4</u>		-	Ge	72.63		Sn	118.71		Pb	207.2		正	(289)	-		운	158.93 162.50 164.93		ВS	(252.1)
	13	n	10.81	13	26.98		Ga	69.72	49	_	114.82	8	F E E	204.38		Z	(284)			2	162.50	86	ပ	
					12		Zn		 	ဦ	_	80	5 H	200.59		S	(285)			Q L		26	ᄶ	
		mass*			7	1	ე C	63.55	47	Ag	$\overline{}$	62	Au	192.22 195.08 196.97		Ra	(272)	L		g	`		S	(241.1) (244.1)
number		Cyringol Relative atomic mass*			10	28	Z			Pd			Ŧ	195.08		Ds	(281)			Ш	151.96		Am	
Atomic number	Sympol	selative			0		ဝိ	58.93		格	102.91	77	<u>-</u>	192.22		Ĭ	$\overline{}$			Sm	(146.9) 150.36		Pu	(237.0) (239.1)
	0.				∞		Fe	55.85		Ru	(98.91) 101.07	9/	SO	`	108	S H	1) (265.1)	-		ሷ			Q Z	$\overline{}$
	_ 		-		7		Z			ည		75	Re	186.21		Bh	(264.			ž	_	92		238.0
		_	<u>:</u>		9		ပ်	52.00	_	o ⊠	95.95		>	178.49 180.95 183.84 186.21		Sa	<u>.,</u>			Ā	140.91		Ба	231.0
					2	23	>	50.94	l	Q Z	92.91	73	<mark>Б</mark>	180.95		Op O	(262.1)		28	Ce	<u></u>		Ę	232.0
					4	22	F	47.87		Ν	91.22	72	Ŧ	178.49		¥	(261.1)		22	La	138.91	88	Ac	(227.0)
					က	21	လ	44.96	39	>	88.91	57–71	Lantha-	noids	89–103	Acti-								
	7	Be 4	9.01	12	24.31		Sa	40.08		ဟ	87.62	56	Ва	137.33		Ra	(223.0) (226.1)							
- I	1.01	۳ ت	6.94	Z	22.99	19	¥	39.10	37	Rb	85.47	52	Cs	132.91	87	<u>ن</u>	(223.0)							

Groups are numbered according to IUPAC convention 1–18.

*Values in brackets are for the isotope with the longest half-life.

Atomic and ionic radii of selected elements

)	He 2	37	Ne 10	62	18	Ā		36	ネ	116		54	Xe	136				
		17	6 Ц	60 133 (1–)	17		100 181 (1–)	35	Ŗ	117	196 (1–)	53	_	136	220 (1–)			
		16	[∞] 0	64 140 (2–)	16	ഗ	104 100 184 (2–)	34	Se	118	198 (2–)	52	T e	137	221 (2–) 220 (1–			
		15	Z	71 146 (3–)		a	109	33	As	120	58 (3+) 46 (5+)	51	Sb	140	76 (3+)			
		4	ိပ	75 71 64 60 16 (4+) 146 (3-) 140 (2-) 133 (1-)	41.	S	124 114 109 53 (3+) 40 (4+) 38 (5+)	32	Ge	120	\sim	20	Sn	140	(4+)			
		13	2	84 27 (3+)	13	₹	124 53 (3+)	31	Ga	123	62 (3+)	49		142	80 (3+)			
							12	30	Zn	120	74 (2+)	48	S	140	95 (2+)			
) ⁻¹² m)	12 m)			7	29	Cn	122	77 (1+) 73 (2+)	47	Ag	136	86 (2+) 115 (1+)			
	umber		Atomic radius (10 ⁻¹² m)	- Chaige of Ion - Ionic radius (10 ^{–12} m)			10		Z	117) 69 (2+)) 60 (3+)	46	Pd	130	86 (2+)			
	-Atomic number	Symbol	tomic re	Oriarge or rorr Ionic radius (*			o	27	ဝိ	118	· · · · ·	45	Rh	134	(3+)			
	₹	S	4 (<u>≃</u> 			œ	26	Ьe	124	78 (2+) 64 (3+)	44	Ru	136	62 (4+)			
	3		130	(1+)			7	25	Z Z	129	83 (2+) 64 (3+)	43	ည	138	65 (4+)			
			, , ,	(4+)			9	24	ပ်	130	62 (3+) 44 (6+)	42	о М	148	65 (4+)			
							5	23	>	144	2+) 5+)	41	Q N	156	(2+)			
							4	22	F	148	+) 75 (3+) 86 (2+) 79 (61 (4+) 54 (40	Zr	164	72 (4+)			
							က	21	Sc	159	75 (3+)	39	>	176	(3+)			_
_		0	⁴ Be	130 99 76 (1+) 45 (2+)		Mg	140 72 (2+)	2	Ca	174	00 (2	က	Sr	190	152 (1+) 118 (2+) 90 (3+)	56 Ba	206	_
	T	32 208 (1–)	r 3	130 76 (1+)	=	Na	$\begin{vmatrix} 160 & 14\bar{0} \\ 102 & (1+) & 72 & (2+) \end{vmatrix}$	19	¥	200	138 (1+)	37	Rb	215	152 (1+)	55	238	

Groups are numbered according to IUPAC convention 1-18.

Electronegativities and first ionisation energies of selected elements

18	He 2	2379	Ne 10	2087	48	Ā	1527	36	Ž	2.9	135/	Xe	2.6	/ /			
		17	б Ц	4.0	17	<u>ວ</u>	3.2			3.0)	2.7	_			
		16	®	3.4 1320	16	ဟ	2.6 1006					–	2.1	0/0			
		15	Z	3.0	15	<u> </u>	2.2	33	As	2.2			2.1				
		4	ိပ	2.6 1093	41.	S	1.9	32	Ge	2.0			2.0				
		13	2	2.0	13	₹	1.6	31	Ga	8.5	585	ے	1.8	COC			
					J		7	30	Zn	1.7	913	පි	1.7	4/0			
				01-1)			7	29	Cn	1.9	757	Ag	1.9	101			
	mber		gativity	First lonisation enthalpies (kJ mol ⁻¹)			10	28	Z	1.9			2.2				
	—Atomic number	-Symbol	Electronegativity	First lonisation enthalpies (kJ			6	27	ဝိ	1.9	702	R	2.3	120			
	Ą	(S)——		_ •			œ				700						
		_ - 	$2.2 \leftarrow 1$, 8 1 8			7				124						
		_	. 2,	13			9				659						
							72				050						
											904						
											39						
,			Be 4		1												
_	T	2.2 1318	"	1.0 526	7	Z Z	0.9 502	19	¥	0.8	37	R	0.8	403	SS	0.8	382

Groups are numbered according to IUPAC convention 1–18.

Solubility of selected compounds at 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S		S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S		S	S
barium	S	i	S	S	S	S	s	i	i
calcium	S	i	S	р	S	S	р	i	р
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S		S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S		S	i	S	S	i	i	S
lead(II)	р	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S		S
magnesium	S	i	S	i	S	S	i	р	S
manganese(II)	S	i	S	i	S	S	i	р	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	р
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	s	S	i	i	S

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L ⁻¹)
р	partially soluble in water (solubility between 1 and 10 g L ⁻¹)
i	insoluble in water (solubility less than 1 g L ⁻¹)
	no data

Average bond enthalpies at 298 K

Single bonds

				ΔF	/ (kJ mol	⁻¹)			
	Н	С	N	0	F	S	CI	Br	I
Н	436								
С	414	346							
N	391	286	158						
0	463	358	214	144					
F	567	492	278	191	159				
S	364	289			327	266			
CI	431	324	192	206	255	271	242		
Br	366	285		201	249	218	219	193	
I	298	228		201	280		211	178	151

Multiple bonds

Bond	∆ <i>H</i> (kJ mol ^{−1})
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N = N	470
N≡N	945
O=O	498

Reactivity series of metals

Element	Reactivity
K	most reactive
Na	†
Li	
Ва	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Со	
Ni	
Sn	
Pb	
H ₂ *	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*}Carbon (C) and hydrogen gas (H_2) added for comparison.

Standard electrode potentials at 298 K

Oxidised species ⇌ Reduced species	<i>E</i> ° (V)
$\operatorname{Li}^{+}(\operatorname{aq}) + \operatorname{e}^{-} \rightleftharpoons \operatorname{Li}(\operatorname{s})$	-3.04
$K^+(aq) + e^- \rightleftharpoons K(s)$	-2.94
$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$	-2.91
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^- \rightleftharpoons Mg(s)$	-2.36
$Al^{3+}(aq) + 3e^- \rightleftharpoons Al(s)$	-1.68
$Mn^{2+}(aq) + 2e^- \rightleftharpoons Mn(s)$	-1.18
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$	-0.24
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Sn}(\operatorname{s})$	-0.14
$Pb^{2+}(aq) + 2e^- \rightleftharpoons Pb(s)$	-0.13
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0.16
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightleftharpoons SO_2(aq) + 2H_2O(1)$	+0.16
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$O_2(g) + 2H_2O(1) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s)$	+0.52
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$Fe^{3+}(aq)+e^- \rightleftharpoons Fe^{2+}(aq)$	+0.77
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Br_2(1) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.08
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$\operatorname{Cl}_2(g) + 2e^- \rightleftharpoons 2\operatorname{Cl}^-(aq)$	+1.36
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightleftharpoons 2Cr^{3+}(aq) + 7H_2O(1)$	+1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(1)$	+1.51
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.89

Common amino acids

Common name (symbol)	Structural formula	pH of isoelectric point
Alanine (Ala)	H O I II H ₂ N-C-C-OH CH ₃	6.1
Arginine (Arg)	$\begin{array}{c} H & O \\ I & II \\ I & II \\ H_2N-C-C-OH \\ I & CH_2 \\ I & CH_2 \\ I & CH_2 \\ I & NH \\ I & NH \\ I & C=NH \\ I & NH_2 \\ \end{array}$	10.7
Asparagine (Asn)	H O I II H ₂ N-C-C-OH CH ₂ C=O NH ₂	5.4
Aspartic acid (Asp)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-C-OH \\ I \\ CH_2 \\ I \\ C=O \\ I \\ OH \end{array}$	3.0
Cysteine (Cys)	H O I II H ₂ N-C-C-OH I CH ₂ I SH	5.1

Common name (symbol)	Structural formula	pH of isoelectric point
Glutamic acid (Glu)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ I \\ CH_2 \\ I \\ CH_2 \\ I \\ C=O \\ I \\ OH \end{array}$	3.2
Glutamine (Gln)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ I & CH_2 \\ I & CH_2 \\ I & C=O \\ I & NH_2 \end{array}$	5.7
Glycine (Gly)	$\begin{array}{ccc} H & O \\ I & II \\ H_2N-C-C-OH \\ I \\ H \end{array}$	6.1
Histidine (His)	H O I II H ₂ N-C-C-OH CH ₂ N	7.6
Isoleucine (Ile)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ I \\ CHCH_3 \\ I \\ CH_2 \\ I \\ CH_3 \end{array}$	6.0

Common name (symbol)	Structural formula	pH of isoelectric point
Leucine (Leu)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ I \\ CH_2 \\ I \\ CHCH_3 \\ I \\ CH_3 \end{array}$	6.0
Lysine (Lys)	H O I II H ₂ N-C-C-OH I CH ₂ I CH ₂ I CH ₂ I CH ₂ I CH ₂ I CH ₂ I NH ₂	9.7
Methionine (Met)	H O I II CH2 CH2 I S I CH3	5.7
Phenylalanine (Phe)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ CH_2 \\ \\ \hline \end{array}$	5.7
Proline (Pro)	O II C-OH HN	6.3

Common name (symbol)	Structural formula	pH of isoelectric point
Serine (Ser)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ I \\ CH_2 \\ I \\ OH \end{array}$	5.7
Threonine (Thr)	H O I II H ₂ N-C-C-OH I CHOH I CH ₃	5.6
Tryptophan (Trp)	H O I II H ₂ N-C-C-OH CH ₂	5.9
Tyrosine (Tyr)	$\begin{array}{c} H & O \\ I & II \\ H_2N-C-C-OH \\ I \\ CH_2 \\ \\ OH \end{array}$	5.7
Valine (Val)	H O I II H ₂ N-C-C-OH I CHCH ₃ I CH ₃	6.0

Glucose and fructose: straight chain and $\alpha\text{-ring}$ forms

$$\begin{array}{c} CHO \\ H-C-OH \\ HO-C-H \\ H-C-OH \\ CH_2OH \end{array} = \begin{array}{c} CH_2OH \\ H \\ OH \\ H \end{array} = \begin{array}{c} CH_2OH \\ OH \\ OH \\ H \end{array} = \begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \end{array}$$

Straight chain D-glucose

 α -D-glucose

Straight chain D-fructose

 $\alpha ext{-}\text{D-fructose}$

Acid-base indicators

Name	p <i>K</i> a	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1–4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8-5.4	yellow to blue
Methyl red	5.1	4.4–6.2	pink to yellow
Bromothymol blue	7.0	6.0–7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

Infrared data

Characteristic range of infrared absorption due to stretching in organic molecules.

Bond	Organic molecules	Wavenumber (cm ^{−1})
C-I	iodoalkanes	490–620
C-Br	bromoalkanes	500-600
C-CI	chloroalkanes	600–800
C-F	fluoroalkanes	1000–1400
C-O	alcohol, ester	1050–1410
C=C	alkenes	1620–1680
C=O	aldehydes, carboxylic acid, ester, ketones	1700–1750
C≡C	alkynes	2100–2260
О-Н	carboxylic acids (hydrogen-bonded)	2500–3000
C-H	alkanes, alkenes, alkynes, aldehydes, amides	2720–3100
О-Н	alcohol (hydrogen-bonded)	3200–3600
N-H	amines	3300–3500

Formulas and charges for common polyatomic ions

Anions	
acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻
carbonate	CO ₃ ²⁻
chlorate	ClO ₃
chlorite	ClO ₂ ⁻
chromate	CrO ₄ ²⁻
citrate	C ₆ H ₅ O ₇ ³⁻
cyanide	CN ⁻
dichromate	Cr ₂ O ₇ ²⁻
dihydrogen phosphate	H ₂ PO ₄ ⁻
hypochlorite	ClO-
hydrogen carbonate	HCO ₃
hydrogen sulfate	HSO ₄
hydrogen phosphate	HPO ₄ ²⁻
hydroxide	OH-
nitrate	NO ₃
nitrite	NO ₂
perchlorate	ClO ₄
permanganate	MnO ₄
peroxide	O ₂ ²⁻
phosphate	PO ₄ ³⁻
sulfate	SO ₄ ²⁻
sulfite	SO ₃ ²⁻
thiosulfate	S ₂ O ₃ ²⁻

Cations	
ammonium	NH ₄ ⁺
hydronium	H ₃ O ⁺

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK