Stochastic Modelling in Systems Biology

We consider the simple model:

```
molecule synthesis \varnothing \xrightarrow{k_0} \mathrm{mRNA} (transcription) molecule degradation \mathrm{mRNA} \xrightarrow{k_1} \varnothing
```

```
probability for a reaction to occur = propensity
```

translation propensity
$$a_0(m) = \Omega k_0$$

degradation propensity
$$a_1(m) = k_1 m$$

 $m\,$: molecule (mRNA) number

 Ω : cell volume

Dan Gillespie described the following race between the two reactions:

(0) Initialise time=0.

(1) evaluate
$$a_0(m)=\Omega k_0$$

$$a_1(m)=k_1m$$

Dan Gillespie described the following race between the two reactions:

- (0) Initialise time=0.
- (1) evaluate $a_0(m) = \Omega k_0$

$$a_1(m) = k_1 m$$

(2) For each reaction draw uniform random numbers (u_1 , u_2)

and call $au_0, au_1 = -1/a_{1,2} \ln(u_{1,2})$ the reaction times.

Dan Gillespie described the following race between the two reactions:

- (0) Initialise time=0.
- (1) evaluate $a_0(m)=\Omega k_0$

$$a_1(m) = k_1 m$$

(2) For each reaction draw uniform random numbers (u_1 , u_2)

and call $au_0, au_1 = -1/a_{1,2} \ln(u_{1,2})$ the reaction times.

- (3) Select reaction with smallest reaction times and update the number of molecules accordingly.
- (4) Increment time by

$$\Delta t = \min(\tau_1, \tau_2)$$

and repeat from (1).

First Reaction Method. Other more efficient formulations found in the literature.

Outcome of this race: number of molecules as a function of time

Outcome will differ every time you repeat the algorithm because different realisations of the random numbers are used.

However, **statistics** such as probability distributions **are reproducible**. Just like for cells.

We can use cell volume $oldsymbol{\Omega}$ to increase molecule numbers at constant average concentration.

Noise is most evident at low molecule numbers. Averaging effect.

The determinstic limit is given by the reaction rate equations (ODEs)

The rate of change in m is

$$\frac{dm}{dt} = a_0(m) - a_1(m)$$

$$\frac{dm}{dt} = \Omega k_0 - k_1 m$$

In steady state, m does not change:

$$0 = \Omega k_0 - k_1 m$$

Which can be solved for

$$m=\Omegarac{k_0}{k_1}$$
 (absolute number) or $rac{m}{\Omega}=rac{k_0}{k_1}$ (concentration)