Digital Logic

'22H2

송 인 식

Outline

- Boolean Algebra
- Digital Logic

Boolean Algebra

- Boolean algebra is the basic math used in digital circuits and computers.
- A Boolean variable takes on only 2 values: {0,1}, {T,F}, {Yes, No}, etc.
- There are 3 fundamental Boolean operations:
 - AND, OR, NOT

Fundamental Boolean Operations

Boolean Algebra

- A truth table specifies output signal logic values for every possible combination of input signal logic values
- In evaluating Boolean expressions, the Operation Hierarchy is: 1)NOT 2)AND 3) OR. Order can be superseded using (...)
- Example: A = T, B = F, C = T, D = T
 - What is the value of $Z = (\bar{A} + B) \cdot (C + \bar{B} \cdot D)$?

$$Z = (\overline{T} + F) \cdot (C + \overline{B} \cdot D) = (F + F) \cdot (C + \overline{B} \cdot D)$$

= $F \cdot (C + \overline{B} \cdot D) = F$

Deriving Logic Expressions from Truth Tables

Light must be ON when both switches A and B are OFF, or when both of them are ON.

Truth Table:

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

What is the Boolean expression for Z?

$$Z = \bar{A} \cdot \bar{B} + A \cdot B$$

Minterms and Maxterms

Minterms

- AND term of all input variables
- For variables with value 0, apply complements

Maxterms

- OR factor with all input variables
- For variables with value 1, apply complements

A	В	Z	Minterms	Maxterms
0	0	1	$ar{A}.ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$ar{A} + ar{B}$

Minterms and Maxterms

- A function with n variables has 2ⁿ minterms (and maxterms) – exactly equal to the number of rows in truth table
- Each minterm is true for exactly one combination of inputs
- Each Maxterm is false for exactly one combination of inputs

Α	В	Z	Minterms	Maxterms
0	0	1	$ar{A}$. $ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

Equivalent Logic Expressions

- Two equivalent logic expressions can be derived from Truth Tables:
- 1. Sum-of-Products (SOP) expressions:
 - Several AND terms OR'd together, e.g.

$$AB\bar{C} + \bar{A}BC + ABC$$

- 2. Product-of-Sum (POS) expressions:
 - Several OR terms AND'd together, e.g.

$$(\bar{A} + \bar{B} + C)(A + \bar{B} + C)$$

Rules for Deriving SOP Expressions

- 1. Find each row in TT for which output is 1(rows 1 & 4)
- 2. For those rows write a minterm of all input variables.
- 3. OR together all minterms found in (2): Such an expression is called a **Canonical SOP**

Α	В	Z	Minterms	Maxterms
0	0	1	$ar{A}$. $ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

$$Z = \overline{A} B + AB$$

Rules for Deriving POS Expressions

- 1. Find each row in TT for which output is 0(rows 2 & 3)
- 2. For those rows write a maxterm.
- 3. AND together all maxterms found in (2): Such an expression is called a **Canonical POS**

A	В	Z	Minterms	Maxterms
0	0	1	$ar{A}$. $ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

$$Z = (A + \overline{B})(\overline{A} + B)$$

CSOP and **CPOS**

- Canonical SOP: $Z = \bar{A}\bar{B} + AB$
- Canonical POS: $Z = (A + \overline{B})(\overline{A} + B)$
- Since they represent the same truth table, they should be identical
 - Verify that $Z = \overline{A}\overline{B} + AB \equiv (A + \overline{B})(\overline{A} + B)$
- CPOS and CSOP expressions for the same TT are logically equivalent. Both represent the same information.

Boolean Identities

• Useful for simplifying logic equations.

	(a)	(b)
1	= A = A	= A = A
2	A + false = A (A + 0 = A)	$A \cdot true = A (A \cdot 1 = A)$
3	A + true = true (A + 1 = 1)	$A \cdot false = false (A \cdot 0 = 0)$
4	A + A = A	$A \cdot A = A$
5	A + A = true (A + A = 1)	$A \cdot A = false (A \cdot A = 0)$
6	A + B = B + A	$A \cdot B = B \cdot A$
7	A + B + C = (A + B) + C = A + (B + C)	$A \cdot B \cdot C = (A \cdot B) \cdot C = A \cdot (B \cdot C)$
8	$A \cdot (B + C) = A \cdot B + A \cdot C$	$A + B \cdot C = (A + B)(A + C)$
9	$\overline{A + B} = \overline{A} \cdot \overline{B}$	$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$
10	$\mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \overline{\mathbf{B}} = \mathbf{A}$	$(A + B)(A + \overline{B}) = A$
11	$A + A \cdot B = A$	A(A + B) = A
12	$A(\overline{A} + B) = A \cdot B$	$A + \overline{A} \cdot B = A + B$
13 A · I	$B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$	$(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$
-		<u> </u>

Duals

Boolean Identities

- The right side is the dual of the left side
 - 1. Duals formed by replacing

AND
$$\rightarrow$$
 OR OR \rightarrow AND $0 \rightarrow 1$ 1 \rightarrow 0

2. The dual of any true statement in Boolean algebra is also a true statement.

Boolean Identities

De Morgan's laws very useful: 9a and 9b

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$A \longrightarrow \overline{A+B}$$

$$B \longrightarrow \overline{A}B$$
NOR gate
$$A \longrightarrow \overline{A}B$$
Alt gate rep.

$$\overline{AB} = \overline{A} + \overline{B}$$

$$A \longrightarrow \overline{AB}$$

$$B \longrightarrow \overline{AB}$$

$$B \longrightarrow \overline{A+B}$$

$$A \longrightarrow \overline{A+B$$

Simplifying Logic Equations – Why?

Digital Logic

16

Simplifying Logic Equations

- Simplifying logic expressions can lead to using smaller number of gates (parts) to implement the logic expression
- Can be done using
 - Boolean Identities (algebraic)
 - Karnaugh Maps (graphical)
- A minimum SOP (MSOP) expression is one that has no more AND terms or variables than any other equivalent SOP expression.
- A minimum POS (MPOS) expression is one that has no more OR factors or variables than any other equivalent POS expression.
- There may be several MSOPs of an expression

Example of Using Boolean Identities

Find an MSOP for

$$F = \overline{X}W + Y + \overline{Z}(Y + \overline{X}W)$$

$$= \overline{X}W + Y + \overline{Z}Y + \overline{Z}\overline{X}W$$

$$= \overline{X}W(1+\overline{Z}) + Y(1+\overline{Z})$$

$$= \overline{X}W + Y$$

Outline

- Boolean Algebra
- Digital Logic

Digital Circuit Classification

Combinational circuits

- Output depends only solely on the current combination of circuit inputs
- Same set of input will always produce the same outputs
- Consists of AND, OR, NOR, NAND, and NOT gates

Sequential circuits

- Output depends on the current inputs and state of the circuit (or past sequence of inputs)
- Memory elements such as flip-flops and registers are required to store the "state"
- Same set of input can produce completely different outputs

Multiplexer

- A multiplexer (MUX) selects data from one of N inputs and directs it to a single output, just like a railyard switch
 - 4-input Mux needs 2 select lines to indicate which input to route through
 - N-input Mux needs log₂(N) selection lines

Multiplexer (2)

An example of 4-input Mux

S ₁	S ₀	Z
0	0	I ₀
0	1	I ₁
1	0	l ₂
1	1	l ₃

Truth Table

Digital Logic 22

Decoder

- A decoder is a circuit element that will decode an Nbit code.
- It activates an appropriate output line as a function of the applied N-bit input code

A_2	A_1	A_0	Z_0	Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	Z_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Truth Table

Digital Logic

Why Bit Storage?

- Flight attendant call button
 - Press call: light turns on
 - Stays on after button released
 - Press cancel: light turns off
 - Logic gate circuit to implement this?

Doesn't work. Q=1 when Call=1, but doesn't stay 1 when Call returns to 0

Need some form of "memory" in the circuit

1. Call button pressed – light turns on

2. Call button released – light stays on

3. Cancel button pressed – light turns off

Bit Storage Using SR Latch

- Simplest memory elements are Latch and Flip-Flops
- SR (set-reset) latch is an *un-clocked* latch
 - Output Q=1 when S=1, R=0 (set condition)
 - Output Q=0 when S=0, R=1 (reset condition)
 - Problem: Q is undefined if S=1 and R=1

Clocks

- Clock period: time interval between pulses
 - example: period = 20 ns
- Clock frequency: 1/period
 - example: frequency = 1 / 20 ns = 50 MHz
- Edge-triggered clocking: all state changes occur on a clock edge.

Freq	Period
100 GHz	0.01 ns
10 GHz	0.1 ns
1 GHz	1 ns
100 MHz	10 ns
10 MHz	100 ns

Clock and Change of State

- Clock controls when the state of a memory element changes
- Edge-triggered clocking. all state changes occur on a clock edge.

Digital Logic

Clock Edge Triggered Bit Storage

- Flip-flop -Bit storage that stores on clock edge, not level
- D Flip-flop
 - Two latches, master and slave latches.
 - Output of the first goes to input of second, slave latch has inverted clock signal (falling-edge trigger)

Setup and Hold Time

Setup time

 The minimum amount of time the data signal should be held steady before the clock edge arrives.

Hold time

 The minimum amount of time the data signal should be held steady after the clock edge.

N-Bit Register

- Cascade N number of D flip-flops to form a N-bit register
- An example of 8-bit register formed by 8 edgetriggered D flip-flops

Half Adders

Need to add bits {0,1} of A_i and B_i

- **Associate**
 - binary bit 0 ↔ logic value F (0) $A: A_1 ... A_{r-1} A_1 ... A_r$
 - binary bit 1 ↔ logic value T (1) $B: B_1 ... B_{i+1} B_i ... B_0$

$$C_{i+1}$$

- This leads to the following truth table

A _i	Bi	Sum _i	Carry _{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$SUM_i = \overline{A_i}B_i + A_i\overline{B_i} = A_i \oplus B_i$$

$$CARRY_{i+1} = A_i B_i$$

Half Adder Circuit

$$SUM_{i} = \overline{A}_{i}B_{i} + \overline{A}_{i}B_{i} = A_{i} \oplus B_{i}$$

$$CARRY_{i+1} = A_{i}B_{i}$$

Half Adder Limitations

 Half adder circuits do not suffice for general addition because they do not include the carry bit from the previous stage of addition, e.g.

Full Adders (1-Bit ALU)

Full adders can use the carry bit from the previous stage of addition

A_i	B_i	C_i	Si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder Logic Expressions

Sum

$$SUM = \overrightarrow{A_i} \overrightarrow{B_i} \overrightarrow{C_i} + \overrightarrow{A_i} \overrightarrow{B_i} \overrightarrow{C_i} + \overrightarrow{A_i} \overrightarrow{B_i} \overrightarrow{C_i} + \overrightarrow{A_i} \overrightarrow{B_i} \overrightarrow{C_i}$$

$$= \underline{\overrightarrow{A_i}} (\overrightarrow{B_i} \overrightarrow{C_i} + \overrightarrow{B_i} \overrightarrow{C_i}) + \underline{A_i} (\overline{B_i} \overrightarrow{C_i} + \overrightarrow{B_i} \overrightarrow{C_i})$$

$$= A_i (B_i \oplus C_i) + A_i (\overline{B_i} \oplus C_i)$$

$$= A_i \oplus B_i \oplus C_i$$

Carry

$$C_{i+1} = A_i B_i + A_i \overline{B_i} C_i + \overline{A_i} B_i C_i$$

$$= A_i B_i + C_i (A_i \overline{B_i} + \overline{A_i} B_i)$$

$$= A_i B_i + C_i (A_i \oplus B_i)$$

Full Adder Circuit

$$SUM = (A_i \oplus B_i) \oplus C_i \qquad C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

Note: A full adder adds 3 bits. Can also consider as first adding first two and then the result with the carry

Enhancement to 1-bit Adder(1)

- 1-bit ALU with AND, OR, and addition
 - Supplemented with AND and OR gates
 - A multiplexer controls which gate is connected to the output

Operation	Result
00	AND
01	OR
10	Addition

Enhancement to 1-bit Adder(2)

- 1-bit ALU for subtraction
 - Subtraction is performed using 2's complement, i.e.

$$a - b = a + \overline{b} + 1$$

Binvert	CarryIn	Operation	Result
0	0	00	AND
0	0	01	OR
0	0	10	Addition
1	1	10	Subtraction

Enhancement to 1-bit Adder(3)

- 1-bit ALU for NOR operation
 - A MIPS ALU also needs a NOR function

$$\overline{a+b} = \bar{a} \cdot \bar{b}$$

Ainvert	Binvert	CarryIn	Operation	Result
0	0	0	00	AND
1	1	0	00	NOR
0	0	0	01	OR
0	0	0	10	Addition
0	1	1	10	Subtraction

Enhancement to 1-bit Adder(4)

- 1-bit ALU for SLT operations
- slt \$s1, \$s2, \$s3
 - If (\$s2<\$s3), \$s1=1,
 else \$s1=0</pre>
- adding one input *less*
 - if (a<b), set *less* to 1 or
 if (a-b)<0, set *less* to 1
 - If the result of subtraction is negative, set *less* to 1
- How to determine if the result is negative?

Enhancement to 1-bit Adder(5)

- How to determine if the result is negative?
 - Negative → Sign bit value=1
- Create a new output "Set" direct output from the adder and use only for slt
- An overflow detection is included for the most significant bit ALU

N-Bit Adders (Ripple Carry)

Ripple Carry Adders

- 4 FA's cascaded to form a 4-bit adder
- In general, N-FA's can be used to form a N-bit adder
- Carry bits have to propagate from one stage to the next. Inherent propagation delays associated with this
- Output of each FA is therefore not stable until the carry-in from the previous stage is calculated

32-Bit ALU

 OR and INV gates are added to support conditional branch instruction, i.e. test the result of a-b if the result is 0.

ALU control lines	Function	
0000	AND	
0001	OR	
0010	add	
0110	subtract	
0111	set on less than	
1100	NOR	

32-Bit ALU

- The symbol commonly used to represent an ALU
- This symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder

Questions?