SATs

solvers in Al

CNF: conjuntive normal form

symbol - a

literal - a / (not) a

clause - disjunction of literals

sentence - conjunction of clauses

DPLL: the core of modern SAT solvers

- early termination
- pure literals 一个变量的所有出现符号都相同
- unit clauses 一个clause只有一个变量

```
    Partmodel = partial assignment to the symbols
    function DPLL(clauses,symbols,partmodel={}}) - returns true or false
    if every clause in clauses is true in partmodel then
    return true
    if some clause in clauses is false in partmodel then
    return false
    P,value ←FIND-PURE-SYMBOL(symbols,clauses,partmodel)
    if P is not empty then
    return DPLL(clauses, symbols-P, partmodel U{P=value})
    P,value ←FIND-UNIT-CLAUSE(clauses,model)
    if P is not empty then
    return DPLL(clauses, symbols-P, partmodel U{P=value})
    P ← First(symbols); rest ← Rest(symbols)
    return or(DPLL(clauses,rest,partmodel U{P=true}),
    DPLL(clauses,rest,partmodel U{P=false}))
```

DFS search

propositional logic

- Given: a set of proposition symbols {X₁,X₂,..., X_n}
 - (we often add True and False for convenience)
- Symbol X_i is a sentence
- If α is a sentence then $-\alpha$ is a sentence
- If α and β are sentences then $\alpha \wedge \beta$ is a sentence
- If α and β are sentences then $\alpha \vee \beta$ is a sentence
- If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
- And p.s. there are no other sentences!

- Let m be a model assigning true or false to {X₁,X₂,..., X_n} (in CSP called: an assignment of values to the symbols/variables)
- If α is a proposition symbol, then its truth value is given in m
- $-\alpha$ is true in m iff α is false in m
- $\alpha \wedge \beta$ is true in m iff α is true in m and β is true in m
- $\alpha \vee \beta$ is true in m iff α is true in m or β is true in m
- $\alpha \Rightarrow \beta$ is true in m iff α is false in m or β is true in m
- $\alpha \Leftrightarrow \beta$ is true in m iff $\alpha \Rightarrow \beta$ is true in m and $\beta \Rightarrow \alpha$ is true in

every sentence in propositional logic can be translated into an equivalent CNF sencence!

Distributivity:

- (A v B) \wedge C equals (A \wedge C) v (B \wedge C)
 - (I'm in FAI or I'm in DPSPAI) and I'm awake
 - (I'm in FAI and I'm awake) or (I'm in DPSPAI and I'm awake)
- $(A \land B) \lor C$ equals $(A \lor C) \land (B \lor C)$

Also for negation, inverses both operator and arguments:

- ¬(A v B) equals (¬A ∧ ¬B)
 - Not (awake and hungry) equals not awake, or not hungry
- $\neg (A \land B)$ equals $(\neg A \lor \neg B)$

SAT problem

NP-Complete

SAT is an NP-complete problem (at least as hard as the hardest problems in NP)

P = polynomial time solvable (deterministic on Turing Machine)

NP = non-deterministic polynomial time solvable (can verify a solution in polynomial time)

P belongs to NP. but P=NP? remains unsolved

entailment

Entailment: KB \mid = α ("KB entails α " or " α follows from KB") iff in every world where KB is true, α is also true

I.e., the KB-worlds are a subset of the α -worlds [models(KB) \subset models(α)]

KB限制更严格,可满足的worlds更少

proofs

- a proof is a demonstration of entailment between α and β
- sound / complete algorithm
 sound 正确性 证明的内容必须正确
 complete 完备性 所有可能正确的内容都可以被证明

method 1: model checking

for every possible world, if KB is true make sure α is true

- KB |= α
- iff $KB \Rightarrow \alpha$ is true in <u>all</u> worlds (a SAT solver searches <u>one</u> world, insufficient)
- iff $\neg (KB \Rightarrow \alpha)$ is false in all worlds
- iff $KB \wedge \neg \alpha$ is false in all worlds, (i.e., a SAT solver finds no world)

归谬/ 反证法

method 2: theorem-proving

search for a sequence of proof steps

- We want a way to <u>derive</u> new formulae at the syntactic level
 - KB $|= \alpha$, if we can derive α from KB, we are done
 - Equivalently, if we can derive *failure* from KB $\wedge \neg \alpha$, we are done

$$\frac{C_1 \cup \{l\}, C_2 \cup \{\neg l\}}{C_1 \cup C_2}$$

inference rule, read as "if top-part applies, then bottom part can be derived from it"

the resulting clause (bottom part) - resolvent

resolution algorithm

```
function PL-RESOLUTION(KB, \alpha) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic \alpha, the query, a sentence in propositional logic clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha new \leftarrow \{\} while true do

for each pair of clauses C_i, C_j in clauses do

resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)

if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents

if new \subseteq clauses then return false clauses \leftarrow clauses \cup new
```

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs.

"new 包含于 clauses"判断解析过程是否无法继续生成新的子句

即,子句集合已经达到闭包closure状态,解析过程无法找到空子句,则KB \¬ 没有矛盾

sound and complete, but exponential time

relational databases

- syntax : fround relational sentences e.g. Sibling(Ali, Bo)
- semantics: sentences in the DB are true, everything else is false

first-order logic (FOL)

- First-order logic (FOL)
 - Syntax: $\forall x \exists y P(x,y) \land \neg Q(Joe,F(x)) \Rightarrow F(x)=F(y)$
 - Prop. Logic syntax and also \forall , \exists , P(x,y), F(x), =

a possible world for FOL consists of:

constant, function, predicate

a term: a constant / a function with terms as arguments / a variable

an atomic sentence: a predicate with terms as arguments / an equality between terms

complex sentences

Syntax and semantics: Complex sentences

1) Sentences with logical connectives

$$\neg \alpha$$
, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$

- 2) Sentences with universal or existential quantifiers, e.g.,
 - $\neg \forall x \text{ Knows}(x, BFF(x))$
 - True in world w iff true in all extensions of w where x is a variable that refers to an object in w
 - x -> 1: Knows(1, BFF(1)) -> Knows(1,2) -> T
 - x -> 2: Knows(2, BFF(2)) -> Knows(2,3) -> T
 - x -> 3: Knows(3, BFF(3)) -> Knows(3,1) -> F

inference in FOL

- In FOL, we can go beyond just answering "yes" or "no"; given an existentially quantified query, return a substitution (or binding) for the variable(s) such that the resulting sentence is entailed:
 - KB = $\forall x \text{ Knows}(x, \text{Obama})$
 - Query (does this follow from KB?) = $\exists y \forall x \text{ Knows}(x,y)$
 - Answer = Yes, $\sigma = \{y/Obama\}$

Notation: $\alpha \sigma$ means applying substitution σ to sentence α

• E.g., if $\alpha = \forall x \text{ Knows}(x,y)$ and $\sigma = \{y/\text{Obama}\}$, then $\alpha \sigma = \forall x \text{ Knows}(x,\text{Obama})$

proof method 1: model-checking

- (KB $\wedge \neg \alpha$) to propositional logic, then to CNF, then SAT solver (grounding)
- for cases like:
 - and ∀x Knows(Mother(x),x)
 - Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Mother(Obama))

could lead to infinite loop, use depth-bounded model checking

- for k = 1 to infinity: use all possible terms of function nesting depth k, then check
 - If entailed, will find a contradiction for some finite k; if not, may continue forever: semi-decidable

 Bounded model checking is NOT complete, only refutation-complete

- not complete 非完备,有可能找不到所有可能正确的内容
- 但refutation-complete,可以找到矛盾

proof method 2: theorem-proving

- The general rule is a version of Modus Ponens:
 - Given $\alpha \Rightarrow \beta$ and α' , where $\alpha'\sigma = \alpha\sigma$ for some substitution σ , conclude $\beta\sigma$ σ is {x/Socrates}
 - Given Knows(x,Obama) and Knows(y,z) \Rightarrow Likes(y,z)
 - σ is {y/x, z/Obama}, conclude Likes(x,Obama)