Lecture 12: Analytical examples of Bayesian inference

Professor Ilias Bilionis

Test statistics and Bayesian p-values

Test quantities

- Test quantities, characterize the discrepancy between the model and the data.
- They can help you zoom in into characteristics of the data that are of particular interest.
- Mathematically, they are just a scalar function of the data and the parameters:

$$T(x_{1:n},\theta)$$

What to do with test quantities

• We want to compare the observed test quantity:

 To the posterior probability density of test quantities of replicated data:
 \(\tau_{\text{i:n}}^{\text{r}}\)

• "If I repeated run the experiment how often would I see the observed value of the test quantity?"

Bayesian p-values

- You can summarize a test quantity using the Bayesian p
 -value defined as:
- "The probability that replicated data will give you a test quantity larger than the observed test quantity value under the assumption that the model is correct."
- Mathematically: $P_{3} = P[T(x_{1:n}^{er}) > T(x_{1:n}) | x_{1:n}]$

Interpretation of Bayesian p -values

$$p_B = \mathbb{P}(T(x_{1:n}^{\mathsf{rep}}, \theta) > T(x_{1:n}, \theta) | x_{1:n})$$

- "The probability that replicated data will give you a test quantity larger than the observed test quantity value under the assumption that the model is correct."
- They are not the probability that the model is correct!!!
- Values close to 0 or 1 indicate some issue with the model with regards to that particular test quantity.
- Values close to 0.5 indicate no issue, but they do not mean that the model is correct.

Example: Coin toss

- Let's try the test quantity "number of heads."
- Mathematically, it is:

$$T_h(x_{1:n}) = \sum_{i=1}^{n} x_i$$

Example: Coin toss

The Bayesian p_value is 0.4460

With data from fair coin.

The Bayesian p_value is 0.4890

With made-up data.

Observed test quantity is just a single value (the number of observed heads here)

Posterior Predictive Checking

With data from fair coin.

With made-up data.

Example: Coin Toss

 $T_s(x_{1:n}) =$ # number of switches from 0 and 1 in the sequence $x_{1:n}$

Example: Coin toss

The observed test quantity is 24 The Bayesian p_value is 0.4340

With data from fair coin.

The observed test quantity is 36 The Bayesian p_value is 0.0010

With made-up data.

