1

8.

WHAT IS CLAIMED IS:

1	1. A CMOS pixel for use in a CMOS imager, comprising:.		
2	a. a photodiode having a substantially square-shaped image		
3	sensing area, an anode coupled to ground and a cathode;		
4	b. a transfer transistor having a drain coupled to the cathode of the		
5	photodiode, a gate controlled by a control signal, Tx, and a source coupled to a floating		
6	sensing node;		
7	c. a reset transistor having a drain coupled to a reset potential, a		
8	gate controlled by a control signal, Rx, and a source coupled to the floating sensing node; and		
9	d. a source follower coupled between the floating node and an		
10	output of the unit pixel, the source follower controlled by a select signal.		
1	The CMOS nivel of aloim 1 wherein the source transister reget		
1	2. The CMOS pixel of claim 1, wherein the source transistor, reset		
2	transistor and source follower are positioned along at least two sides of the image sensing		
3	area.		
1	3. The CMOS pixel of claim 1, further comprising a substantially		
2	hemispherically-shaped microlense positioned substantially over the image sensing area.		
1	4. An array of CMOS pixels, each pixel comprising a substantially square		
2			
3	image sensing region, wherein a distance between the image sensing regions of neighboring		
3	pixels is optimized to reduce crosstalk between the neighboring pixels.		
1	5. The array of pixels of claim 4, wherein the distance is further		
2	optimized to improve MTF.		
1	6 An improved CMOS imposing amove for year in a CMOS imposing		
1 2	6. An improved CMOS imaging array for use in a CMOS imaging		
3	system, the improvement comprising:		
	using a substantially square image sensing region within each pixel to		
4	reduce the distance between the image sensing regions of neighboring pixels.		
1	7. The CMOS imaging array of claim 6, further comprising: a microlense,		
2	positioned over the image sensing area of each pixel to increase the effective fill factor.		

The CMOS imaging array of claim 7, wherein each pixel comprises:

2	a.	a transfer transistor having a drain coupled to the cathode of the	
3	photodiode, a gate controlled	d by a control signal, Tx, and a source coupled to a floating	
4	sensing node;		
5	b.	a reset transistor having a drain coupled to a reset potential, a	
6	gate controlled by a control signal, Rx, and a source coupled to the floating sensing node; an		
7	c.	a source follower coupled between the floating node and an	
8	output of the unit pixel, the source follower controlled by a select signal.		