Hierarquia de Memórias

É função do SO abstrair a hierarquia de memórias em um modelo computacional mais simples e gerenciar esse modelo: gerenciador de memória...

Processos (programas em execução) <u>não precisam</u>, <u>necessariamente</u>, permanecer "por completo" o tempo todo na memória principal.

Swap...

Área de troca que recebe segmentos da memória principal (RAM) "temporariamente" fora de uso.

O gerenciador de memória do SO controla os segmentos de memória em uso e lida com a alocação e liberação de memória para os processos.

Gerenciamento de Memória

1 - Sem abstrações

- Processos "enxergam" a memória RAM física, ou seja, o endereçamento é feito de forma direta (endereço absoluto).
- Apenas um processo por vez, embora seja possível alocar processos consecutivamente na memória e "realocar estaticamente" os endereçamentos feitos no momento da carga do programa.

Problemas...

- Processos podem, ainda que involuntariamente, acessar regiões de memória não permitidas, a não ser que haja um mecanismo de proteção por hardware.
- Difícil manter mais de um programa em execução.

2 - Espaços de endereçamento

Permitem que diversos programas estejam em execução ao mesmo tempo sem que um interfira com o outro.

Espaço de endereçamento

Proteção

Isolamento dos processos

Realocação

Endereçamento não conflitante

O espaço de endereçamento é um conjunto de endereços utilizado por um processo para hospedar código, dados e pilha. Cada processo possui seu próprio espaço de endereçamento.

O endereço lógico #200 no processo A e o endereço lógico #200 no processo B são mapeados, respectivamente, para os endereços físicos #200 e #2248 (200 + 2048) somente durante a execução e antes de qualquer acesso a memória RAM...

Realocação dinâmica → Registradores Base e Limit

Problema: Cada programa em execução possui seu próprio espaço de endereçamento, mas este deve ser contíguo e pode não haver memória suficiente para todos os processos.

Solução...

- Swapping: Consiste em liberar o espaço de memória alocado para o processo "descarregando" o segmento em disco e carregando novamente quando for necessário.
- Memória virtual: Permite que programas ocupem áreas nãocontíguas da memória e possam ser executados mesmo quando estão apenas parcialmente na memória RAM.

3 - Memória virtual

Espaço de endereçamento lógico dividido em unidades de alocação de tamanho fixo (páginas) que são mapeadas sob demanda na memória física.

Endereço virtual...

$$0000.0000 - 0000.0000 - 0000.0000 - 0000.0000$$
 (32 bits)
 $10000.0000 - 0000.0000 - 0000.0000$ (32 bits)

Exemplos...

```
MOV REG, #0 → Página 0 presente → Frame 2
MMU insere no barramento o endereço #8192 (8192 + 0)
```

MOV REG, #100 → Página 0 presente → Frame 2 MMU insere no barramento o endereço #8292 (8192 + 100)

MOV REG, #12290 → Página 3 presente → Frame 0 MMU insere no barramento o endereço #2 (0 + 2)

MOV REG, #5000 → Página 1 ausente MMU lança uma interrupção **PAGE FAULT**

Problema: Tabela de paginação demasiadamente grande para ser mantida na MMU (Memory Management Unit).

Solução: Translation Lookaside Buffer – TLB.

Tabela de Paginação - RAM "Processo A"

Problema: Tabela de paginação ainda demasiadamente grande para ser mantida na memória RAM.

Solução: Paginação multinível.

Paginação multinível

Endereço virtual...

Algoritmos de substituição de páginas...

Not Recently Used - Não Usada Recentemente

Remove uma página qualquer (modificada ou não) que não tenha sido acessada desde o último ciclo de clock (tick) → tipicamente 20ms.

Least Recently Used – Usada Menos Recentemente

Remove a página mais antiga considerando o instante de seu último acesso.

First-In, First-Out (FIFO) – Primeira a Entrar, Primeira a Sair

Remove a página mais antiga a entrar na memória RAM, mesmo que altamente requisitada.

Second Chance – Segunda Chance

Combina a técnica FIFO com a técnica NRU de modo a não remover da memória uma página antiga mas ainda muito requisitada.

Outros...

Aging (Envelhecimento), Working-Set (Conjunto de Trabalho), Clock (Relógio), WSClock (Working-Set Clock).

4 - Segmentação com paginação

Oferece um espaço de endereçamento bidimensional com os benefícios da paginação.

Espaço unidimensional endereço = <offset>

Espaço bidimensional
endereço = <segmento, offset>

Nota → UNIX/Linux e Windows não utilizam

Intel x86

32 bits: 16384 segmentos de até 4 GB.

64 bits: Segmentação obsoleta → Suporte removido em razão dos

principais sistemas operacionais não utilizarem.