

Introducción a los sistemas de aprendizaje

Inteligencia artificial

Patricio García Báez

Grado en Ingeniería Informática

Índice

Definición

Historia

Relaciones

Paradigmas de aprendizaje

Modelos

Fases de desarrollo

Limitaciones y problemas

Hardware y software

Definición

Aprendizaje automático, también llamado aprendizaje de máquina (del inglés *machine learning*)

- Subcampo de las ciencias de la computación y una rama de la inteligencia artificial
- Su objetivo es desarrollar técnicas que permitan que las computadoras aprendan
- Aprender entendido cuando su desempeño mejora con la experiencia y mediante el uso de datos

Figura 1: Aprendizaje automático como subcampo de la IA (Lollixzc, Wikimedia)

Definición

Esquema de aprendizaje automático

Figura 2: Esquema de aprendizaje automático (Debora.riu, Wikimedia)

Historia: Inicios

- 1943: Warren McCulloch y Walter Pitts. Definición de la neurona formal
- 1949: Donald Hebb. "The Organization of Behavior". Regla de Hebb
- 1951: Marvin Minsky. "The Snark", primer neurocomputador
- 1957-58: Frank Rosenblatt. "Perceptrons", primer algoritmo de aprendizaje neuronal
- 1959: Arthur Samuel. Acuñó término machine learning

Historia: Primeros éxitos

- 1959: Arthur Samuel. Juego de damas con *aprendizaje* paramétrico
- 1960s: Raytheon Company. "Cybertron" usa aprendizaje por reforzamiento para analizar señales
- 1970: Marvin Minsky y Seymour Papert. Libro "Perceptrons" detecta problemas de separablidad lineal y x-or
- 1982: John Hopfield. Desarrollo de las redes de Hopfield
- 1974-1986: Werbos; Parker; Lecun; Rumelhart, Hinton, Williams. Descripción del "Backpropagation", algoritmo de aprendizaje multicapa

Historia: Actualidad

- Implementaciones basadas en GPUs
- Aparición de Deep Learnig y Ensmebles neuronales
- Grandes empresas con sus paltaformas: Google (TensorFlow),
 Torch (Facebook), CNTK (Microsoft), Nvidia (EGX)
- Nuevos modelos de redes: Autoencoders, LSTM,
 Convolucionales, Deep Reinforcement, Generative Adversarial
 Nets, Transformers
- Aplicaciones en: coches autonomos, procesamiento del lenguaje natural, reconocimiento visual, traducción automática, descripción de fotos, generación de imágenes, juegos de estrategia, ...
- Entrada al mercado de la IA Generativa: textos, imágenes, vídeos, etc.

Relaciones

Otras áreas relacionadas con el aprendizaje automático:

- Estadística
- Reconocimiento de patrones
- Minería de datos
- Big data
- Recuperación de información
- Aprendizaje profundo (Deep learning)
- IA generativa
- Redes neuronales artificiales

Paradigmas de aprendizaje

Según la naturaleza y disponibilidad de *señales* de realimentación se distinguen tres principales paradigamas de aprendizaje:

- Aprendizaje supervisado
- Aprendizaje no supervisado
- Aprendizaje por refuerzo

Aprendizaje supervisado

- Se le prensenta entradas y sus salidas deseadas
- Salidas deseadas (etiquetas) proveidas por un tutor
- Pretende aprender regrlas genéricas que mapeen entradas a salidas
- Apto para problemas de clasificación y aproximación

Aprendizaje no supervisado

- Se le presenta solo entradas, sin etiquetar
- Pretende encontrar por si mismo estructuras en las entradas
- Puede usarse también como etapa previa a aprendizajes supervisados
- Apto para problemas de extracción de características y agrupamiento

Aprendizaje por refuerzo

- Se le prensenta entradas y una retroalimentación, recompensas (refuerzos) o castigos
- Pretende aprender la función para maximizar la señal de recompensa
- Apto para problemas de control

Modelos

Hay diferentes tipos de modelos de aprendizaje automático que pueden ser entrenados con conjuntos de datos, entre ellos:

- Redes neuronales artificiales
- Árboles de decisión
- Algoritmos genéticos
- Máquinas de vectores de soporte
- Algoritmos de agrupamiento
- Redes bayesianas
- Procesos de Gauss
- Funciones de creencias

Fases de desarrollo

Figura 3: Fases de desarrollo de un sistema de aprendizaje automático (adaptación de "Neural Network PC Tools. A Practical Guide". Eberhart and Dobbins. Academic Press. 1990)

Limitaciones y problemas

- Sobreajustes
- Sesgos
- Explicabilidad (black box problem)
- Costo de los entrenamientos
- Falta de datos
- Singularidad tecnológica

Hardware y software

Hardware

- Chips específicos
- Graphic Processing Units (GPUs)
- Infraestructuras de aprendizaje en la nube

Software

- Lenguajes de programación: Python, R, Matlab
- Paquetes y librerías
 - scikit-learn
 - Weka
 - TensorFlow / Keras
 - PyTorch

Créditos

Esta presentación está bajo una licencia Creative Commons Attribution-ShareAlike 4.0 International License.

Referencias i

S. Russell and P. Norvig.

Artificial Intelligence: A Modern Approach (4rd Edition). Prentice Hall, 2021.

Wikipedia.

Aprendizaje automático — wikipedia, la enciclopedia libre.

https://es.wikipedia.org/w/index.php?title= Aprendizaje_autom%C3%A1tico&oldid=163518503, 2024. [Internet; descargado 11-noviembre-2024].

Referencias ii

Wikipedia contributors.

Machine learning — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1256720273, 2024. [Online; accessed 12-November-2024].