Коллоквиум по дискретной математике 2

Ми (@technothecow)

Содержание

JIOT	ика и машины Тьюринга
1.1	Структуры и сигнатуры. Нормальные структуры. Изоморфизм структур
1.2	Формулы первого порядка данной сигнатуры. Параметры (свободные переменные) форму-
	лы. Предложения
1.3	Оценка переменных. Значение терма и формулы в данной структуре при данной оценке.
	Независимость значения формулы от значений переменных, не являющихся ее параметрами
1.4	Значение терма и формулы на наборе элементов структуры. Выразимые в структуре мно-
	жества (отношения, функции, элементы). Примеры выразимых множеств.
1.5	Значение формулы при изоморфизме структур. Элементарная эквивалентность структур.
1.0	Изоморфные структуры элементарно эквивалентны
1.0	
1.6	Значение формулы при изоморфизме структур. Сохранение выразимых множеств автомор-
	физмами структуры. Примеры невыразимых множеств.
1.7	Эквивалентность формул первого порядка. Лемма о фиктивном кванторе. Общезначимые
	и выполнимые формулы. Квантор всеобщности и общезначимость
1.8	Основные эквивалентности логики первого порядка. Замена подформулы на эквивалентную
1.9	Пропозциональные формулы и задаваемые ими булевы функции. Тавтологии первого порядка
	Лемма о корректной подстановке
1.11	Понятие корректной подстановки («терм свободен для переменной в формуле»). Пример
	некорректной подстановки. Лемма о корректной подстановке (без доказательства). Переиме-
	нование связанной переменной. Общезначимость формул вида $\forall x \varphi \to \varphi(t/x)$ и $\varphi(t/x) \to \exists x \varphi$
	в случае корректной подстановки.
1 12	Переименование связанной переменной (без доказательства). Теорема о предваренной нор-
1.12	мальной форме.
1 12	Понятие теории первого порядка. Примеры содержательных теорий. Модель теории. Логи-
1.13	ческое (семантическое) следование (для теорий и предложений)
1 1 4	
1.14	Исчисление предикатов с равенством (в гильбертовской форме). Теорема о полноте и кор-
	ректности исчисления предикатов (без доказательства). Теорема о компактности в двух
	формах: про выполнимость теории и про логическое следование из теории
	Теорема компактности (без доказательства). Любой пример применения
1.16	Одноленточная машина Тьюринга (допустимо неформальное определение с лентой и голов-
	кой). Сложение натуральных чисел (при унарном и бинарном кодировании)
1.17	Многоленточная машина Тьюринга (допустимо неформальное определение с лентами и го-
	ловками). Удвоение входного слова за линейное время.
1.18	Конфигурации одноленточной и многоленточной машин Тьюринга. Меры сложности «вре-
1110	мя» и «зона» и их соотношение в обоих случаях
1 10	Сокращение ленточного алфавита и его цена
	Сокращение числа лент и его цена
1.20	Сокращение числа лент и сто цена
Выч	ислимость
2.1	Вычислимые функции (при интуитивном понимании алгоритма). Разрешимые и перечис-
1	лимые множества. Связь конечности, разрешимости и перечислимости. Разрешимые мно-
	жества под действием операций алгебры множеств и декартова произведения
9.9	
2.2	Перечислимые множества под действием операций алгебры множеств, декартова произве-
	дения и проекции. Теорема Поста.
2.3	Теорема о графике вычислимой функции. Перечислимость образа и прообраза множества
	под действием вычислимой функции.
2.4	Непустые перечислимые множества суть, в точности, области значений вычислимых тоталь-
	ных функций.
2.5	Полуразрешимость. Перечислимые множества суть, в точности, области определения вы-
	VI I
,	числимых функций

2.6	Перечислимые множества суть, в точности, проекции разрешимых. Теорема о свойствах, равносильных перечислимости (доказательство на основе утверждений предшествующих	
	вопросов)	10
2.7	Универсальная вычислимая функция (в классе вычислимых функций $\mathbb{N} \stackrel{p}{\to} \mathbb{N}$). Т-Предикаты.	
	Неразрешимость проблем самоприменимости и остановки.	10
2.8	Неразрешимость проблем самоприменимости и остановки. Примеры перечислимого нераз-	
	решимого и неперечислимого множеств.	11
2.9	Пример вычислимой функции, не имеющей вычислимого тотального продолжения. Область определения вычислимой функции, не имеющей вычислимого тотального продолжения, пе-	
	речислима, но не разрешима.	11
2.10	Невозможность универсальной вычислимой тотальной функции	11
2.11	Пример непересекающихся перечислимых множеств, не отделимых никаким разрешимым	
	множеством	12
2.12	Главная универсальная вычислимая функция. Вычислимое биективное кодирование пар	
	натуральных чисел. Построение главной у.в.ф. с помощью произвольной у.в.ф	12
	Теорема Клини о неподвижной точке	12
2.14	Бесконечность множества неподвижных точек в смысле теоремы Клини. Теорема о рекурсии	
	как следствие теоремы Клини. Пример применения теоремы о рекурсии.	13
2.15	Вычислимость индекса композиции вычислимых функций. Совместная рекурсия: решение	
	«систем уравнений» (с тотальными правыми частями)	13
2.16	Индексные множества. Теорема Райса-Успенского: вывод из теоремы Клини. Пример при-	
	менения.	14
	Существование неглавной у. в. ф	14
	m-сводимость и её простейшие свойства	14
2.19	Индексные множества. Теорема Райса-Успенского: доказательство с помощью сведения.	
	Пример применения	15
	Пример неперечислимого множества с неперечислимым дополнением	16
	Теорема Райса-Шапиро. Неперечислимость индексов одной функции относительно г. у. в. ф.	
2.22	Классы Σ_n и \prod_n арифметической иерархии и их простейшие свойства	17
2.23	Классы \sum_n и \prod_n арифметической иерархии. Включение \sum_n и \prod_n ($\sum_{n+1} \cap \prod_{n+1}$ при $n>0$	
	(без доказательства строгости)	18

1 Логика и машины Тьюринга

1.1 Структуры и сигнатуры. Нормальные структуры. Изоморфизм структур.

Структура – кортеж множеств $(M, \mathcal{F}, \mathcal{R}, \mathcal{C})$, где

- 1. M непустое множество, носитель структуры
- 2. \mathcal{F} множество функций вида $f: M^n \to M$
- $3. \,\, \mathcal{R}$ множество кортежей из M
- 4. C подмножество M

Сигнатура — кортеж попарно непересекающихся множеств (Fnc, Prd, Cnst), где Fnc — множество функциональных символов с заданной валентностью, Prd — непустое множество предикатных символов с заданной валентностью и Cnst — множество константных символов. (просто набор символов)

* σ -структура (или интерпретация сигнатуры σ) – это формально кортеж $\mathcal{M} = (M, \mathcal{F}, \mathcal{R}, \mathcal{C}, \mathcal{I})$, где $\mathcal{I}(Fnc) = \mathcal{F}, \ \mathcal{I}(Prd) = \mathcal{R}$ и $\mathcal{I}(Cnst) = \mathcal{C}$. Вводим обозначения: $\mathcal{I}(Fnc) = f^{\mathcal{M}}, \ \mathcal{I}(Prd) = R^{\mathcal{M}}$ и $\mathcal{I}(Cnst) = c^{\mathcal{M}}$. Для задания σ -структуры достаточно только M и \mathcal{I} . Фактически, мы придаем значение имеющимся значкам из сигнатуры σ : берем носитель и говорим, что делают с ним функции и что делают с ним предикаты.

Нормальная структура – содержащая двувалентный предикатный символ "=" := $\{(a,a) \in M^2 \mid a \in M\}$, где M – носитель структуры.

Изоморфизм структур: интепретации \mathcal{M} и \mathcal{N} сигнатуры σ с носителями M и N соответственно изоморфны если существует биекция $\eta\colon M\to N$ для которой выполняются следующие свойства:

- 1. $\eta(f^{\mathcal{M}}(a_1,\ldots,a_n)) = f^{\mathcal{N}}(\eta(a_1),\ldots,\eta(a_n))$
- 2. $(a_1, \ldots, a_n) \in R^{\mathcal{M}} \iff (\eta(a_1), \ldots, \eta(a_n)) \in R^{\mathcal{N}}$
- 3. $\eta(c^{\mathcal{M}}) = c^{\mathcal{N}}$, где c один символ

1.2 Формулы первого порядка данной сигнатуры. Параметры (свободные переменные) формулы. Предложения.

Формулы первого порядка – это выражения в логике первого порядка (предикатной логике), построенные по правилам синтаксиса, установленным для данной сигнатуры.

Формулы первого порядка строятся из термов и предикатов, используя логические связки и кванторы. Основные элементы синтаксиса формул первого порядка:

- 1. Термы: 1) переменные; 2) константы; 3) если t_1, \dots, t_n термы, а f функция с валентностью n, то $f(t_1, \dots, t_n)$ тоже терм
- 2. Атомарные формулы: предикаты, примененные к термам.
- 3. Сложные формулы: атомарные формулы, соединенные логическими операциями $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ и кванторами (\forall, \exists) .

Свободные переменные формулы – это переменные, которые не находятся под действием кванторов (\forall или \exists) внутри этой формулы. То есть, они не "связаны" кванторами и могут принимать любые значения из области определения. Множество свободных переменных в формуле φ обозначается как $FV(\varphi)$. Множество всех переменных в формуле обозначается как $V(\varphi)$.

Предложения в логике первого порядка – это формулы, которые не содержат свободных переменных, то есть все переменные в них связаны кванторами. Такие формулы имеют логическое значение (истинность или ложность) в интерпретации.

1.3 Оценка переменных. Значение терма и формулы в данной структуре при данной оценке. Независимость значения формулы от значений переменных, не являющихся ее параметрами.

Оценка переменных – способ присвоения конкретных значений переменным в формуле. По сути это функция μ , которая ставит в соответствие $\kappa a \varkappa c \partial o \tilde{u}$ (в том числе свободной!) переменной какое-то значение. Значение терма t и формулы φ в данной структуре \mathcal{M} при данной оценке μ :

1. если t – переменная, то t принимает значение $\mu(t)$

- 2. если t константный символ c, то t принимает значение интерпретации c в \mathcal{M} : $c^{\mathcal{M}}$
- 3. если t функция f, применяемая к термам t_1, \ldots, t_n , то значение t это $f^{\mathcal{M}}(v_1, \ldots, v_n)$, где v_1, \ldots, v_n это значения термов при данной оценке
- 4. если φ атомарная формула $P(t_1, \ldots, t_n)$, то она истинна, если $(v_1, \ldots, v_n) \in \mathbb{R}^{\mathcal{M}}$, где v_1, \ldots, v_n это значения термов при данной оценке
- 5. для сложных формул φ используются стандартные логические правила

Независимость значения формулы от значений переменных, не являющихся ее параметрами: для любых оценок π_1, π_2 , терма t и формулы φ выполняется:

- 1. если для всех $x \in V(t)$: $\pi_1(x) = \pi_2(x)$, тогда $[t](\pi_1) = [t](\pi_2)$
- 2. если для всех $x \in FV(\varphi)$: $\pi_1(x) = \pi_2(x)$, тогда $[\varphi](\pi_1) = [\varphi](\pi_2)$

Доказательство:

- 1. индукция по построению терма t:
 - (a) если t=z, тогда $[t](\pi_1)=\pi_1(z)=\pi_2(z)=[t](\pi_2)$
 - (b) если $t = f(a_1, \ldots, a_n)$, тогда $[t](\pi_1) = f([a_1](\pi_1), \ldots, [a_n](\pi_1)) = f([a_1](\pi_2), \ldots, [a_n](\pi_2)) = [t](\pi_2)$ в силу $V(a_i) \subseteq V(t)$ по предположению индукции.
- 2. индукция по построению формулы φ :
 - (a) если $\varphi = P(a_1, \dots, a_n)$, то для каждого терма a_i имеем $V(a_i) \subseteq FV(\varphi)$, поэтому $[\varphi](\pi_1) = P([a_1](\pi_1), \dots, [a_n](\pi_1)) = P([a_1](\pi_2), \dots, [a_n](\pi_2)) = [t](\pi_2)$
 - (b) если $\varphi = \neg \psi$, тогда $[\varphi](\pi_1) = 1 [\psi](\pi_1) = 1 [\psi](\pi_2) = [\varphi](\pi_2)$ по предположению индукции в силу $FV(\varphi) = FV(\psi)$.
 - (c) если $\varphi = \psi_1 \wedge \psi_2$, тогда по предположению индукции в силу $FV(\psi_i) \subseteq FV(\varphi)$ выполняется $[\varphi](\pi_1) = \min([\psi_1](\pi_1), [\psi_2](\pi_1)) = \min([\psi_1](\pi_2), [\psi_2](\pi_2)) = [\varphi](\pi_2)$. Случаи других связок аналогичны.
 - (d) если $\varphi = \forall z\psi$, тогда $[\varphi](\pi_1) = \min_{m \in M} [\psi](\pi_1 + (z \to m))$. Так как $FV(\psi) \subseteq FV(\varphi) \cup \{z\}$, рассмотрим как работает $\pi_1 + (z \to m)$ на $FV(\varphi) \cup \{z\}$.
 - і. если $y \in FV(\varphi)$, то поскольку $z \notin FV(\varphi), y \neq z$, следовательно $(\pi_1 + (z \to m)(y) = \pi_1(y) = \pi_2(y) = (\pi_2 + (z \to m))(y)$.
 - ії. если y=z, тогда $(\pi_1+(z\to m)(y)=m=(\pi_2+(z\to m))(y).$

Таким образом, для любого $y \in FV(\psi)$ имеем $(pi_1 + (z \to m))(y) = (pi_2 + (z \to m))(y)$. По предположению индукции заключаем $[\psi](\pi_1 + (z \to m)) = [\psi](\pi_2 + (z \to m))$, из чего следует $[\varphi](\pi_1) = [\varphi](\pi_2)$. Случай квантора существования аналогичен.

1.4 Значение терма и формулы на наборе элементов структуры. Выразимые в структуре множества (отношения, функции, элементы). Примеры выразимых множеств.

Значение терма или формулы $\alpha(x_1,\ldots,x_n)$ на наборе элементов $y=(y_1,\ldots,y_n)$ структуры $\mathcal M$ определяется значением функции $\alpha^{\mathcal M}(y)=[\alpha](\pi+(x_1\to y_1)+\ldots+(x_n\to y_n)),$ где π – любая оценка.

Выразимые в структуре \mathcal{M} множества – это множества $D\subseteq\mathcal{M}$, которые можно описать с помощью формул логики первого порядка

Примеры:

- 1. пустое множество: $\varphi(x) = (x \neq x)$
- 2. носитель структуры \mathcal{M} : $\varphi(y) = (y = y)$
- 3. четные числа: $\varphi(z) = \exists a(a \in \mathbb{N} \land a + a = z)$

Выразимые в структуре предикаты – это предикаты, для которых существуют эквивалентные формулы логики первого порядка

1.5 Значение формулы при изоморфизме структур. Элементарная эквивалентность структур. Изоморфные структуры элементарно эквивалентны.

*Если σ -предложение φ истинно в \mathcal{M} , то это обозначается так: $\mathcal{M} \models \varphi$

*Модель предложения φ в языке сигнатуры σ – это модель теории $\{\varphi\}$.

Элементарная эквивалентность структур: σ -структуры \mathcal{M} и \mathcal{N} эквивалентны если $Th(\mathcal{M}) = Th(\mathcal{N})$. Обозначение: $\mathcal{M} \equiv \mathcal{N}$

Значение формулы φ при изоморфизме η структур \mathcal{M} и \mathcal{N} : для любого $a \in M^n$ и любой формулы φ равносильны $\mathcal{M} \models \varphi(a)$ и $\mathcal{N} \models \varphi(\eta(a))$.

(?) Доказательство: по определению изоморфизма $\varphi^{\mathcal{N}}(\eta(a)) = \eta(f^{\mathcal{M}}(a))$ и $\eta(True^{\mathcal{M}}) = True^{\mathcal{N}}$

Элементарная эквивалентность изоморфных структур: изоморфные структуры элементарно эквивалентны.

(?) Доказательство: следует из равносильности $\mathcal{M} \models \varphi(a)$ и $\mathcal{N} \models \varphi(\eta(a))$.

1.6 Значение формулы при изоморфизме структур. Сохранение выразимых множеств автоморфизмами структуры. Примеры невыразимых множеств.

Значение формулы при изоморфизме структур: см. билет 1.5

Сохранение выразимых множеств автоморфизмами структуры: семейство выразимых множеств сохраняется между автоморфизмами

(?) Доказательство: пусть $A\subseteq M$ выразимо в \mathcal{M} . Это значит, что $a\in A\iff \mathcal{M}\models \varphi(a)$. Для автоморфизма $\eta\colon a\in A\iff \mathcal{M}\models \varphi(a)\iff \mathcal{N}\models \varphi(\eta(a))\iff \eta(a)\in \eta(A)$

Примеры невыразимых множеств: множество всех простых чисел (для этого необходимо проверять все возможные делители); множество натуральных чисел, являющихся степенью двойки (для этого требуется, например, рекурсия, которой нет).

1.7 Эквивалентность формул первого порядка. Лемма о фиктивном кванторе. Общезначимые и выполнимые формулы. Квантор всеобщности и общезначимость.

Эквивалентность формул первого порядка: формулы φ и ψ являются эквивалентными, если их значения совпадают в любой интерпретации при любой оценке. Обозначение $\varphi \equiv \psi$.

Лемма о фиктивном кванторе: пусть x не лежит в множестве свободных переменных формулы φ , тогда $\varphi = \forall x \varphi$

Доказательство: $[\forall x\varphi](\pi) = \min_{m \in M} [\varphi](\pi + (x \to m))$. Так как $x \notin FV(\varphi)$, для всех $y \in FV(\varphi)$ выполнено $(\pi + (x \to m))(y) = \pi(y)$. По лемме о независимости значения формулы от значений переменных, не являющихся ее параметрами (см. билет 1.3), заключаем $[\varphi](\pi + (x \to m)) = [\varphi](\pi)$ для всех $m \in M$. Отсюда $[\forall x\varphi](\pi) = \min_{m \in M} [\varphi](\pi + (x \to m)) = \min_{m \in M} [\varphi](\pi)$

Общезначимая формула – формула, истинная при любой интерпретации и оценке.

Выполнимая формула — формула, для которой существует интерпретация и оценка, в которой она истинна.

Квантор всеобщности и общезначимость: формула φ общезначима \iff формула $\forall y \varphi$ общезначима Доказательство:

- 1. слева направо: формула общезначима, значит для любых оценок равна единице, в частности для оценок вида $(\pi + (y \to m))$ для всех $m \in M$, поэтому $[\forall y \varphi](\pi) = 1$
- 2. справа налево: $\forall y \varphi$ общезначима, значит для любых оценок $[\varphi](\pi + (y \to m)) = 1$ для всех $m \in M$. Однако для любой оценки π имеем $\pi = (\pi + (y \to \pi(y)))$, поэтому $[\varphi](\pi) = 1$ для всех оценок π .

^{*}Теория в языке сигнатуры σ – это какое-то множество σ -предложений.

^{*}Модель теории T в языке сигнатуры σ – это такая σ -структура \mathcal{M} , что все предложения в ней истинны.

^{*}Теория σ -структуры \mathcal{M} – это все σ -предложения, истинные в \mathcal{M} . Обозначение: $Th(\mathcal{M})$.

1.8 Основные эквивалентности логики первого порядка. Замена подформулы на эквивалентную.

Основные эквивалентности логики первого порядка для произвольных φ и ψ :

- 1. Пусть x не является параметром ψ , тогда $\forall \{\exists\} x (\varphi \land \{\lor\} \psi) \equiv \forall \{\exists\} x \varphi \land \{\lor\} \psi$ (итого 4 равенства)
- 2. $\forall x(\varphi \wedge \psi) = \forall x\varphi \wedge \forall x\psi$
- 3. $\forall x(\varphi \lor \psi) = \forall x\varphi \lor \forall x\psi$
- 4. $\neg \forall x \varphi \equiv \exists x \neg \varphi$
- 5. $\neg \exists x \varphi \equiv \forall x \neg \varphi$

Доказательство: см. first-order стр. 7-8

Пусть φ – какая-то формула, $\varphi \equiv \varphi'$, тогда замена φ на φ' эквивалентна в случаях использования логического и, или, не, импликации, "тогда и только тогда", квантора всеобщности и существования.

Доказательство: 1-6) тривиально; 7) для любой оценки
$$\pi$$
 и $m \in M$ имеем $[\varphi](\pi+(x \to m)) = [\varphi'](\pi+(x \to m))$, отсюда $[\forall x \varphi](\pi) = \min_{m \in M} [\varphi](\pi+(x \to m)) = \min_{m \in M} [\varphi'](\pi+(x \to m)) = [\forall x \varphi'](\pi)$; 8) аналогично 7

Замена подформулы на эквивалентную: пусть $\varphi \equiv \varphi'$ и ψ' была получена путем замены вхождений φ в ψ на φ' , тогда $\psi \equiv \psi'$.

Доказательство: достаточно рассмотреть случай одного вхождения. Индукция по построению ψ . Рассмотрим один из случаев: пусть $\psi = \theta_1 \to \theta_2$, тогда подформула либо совпадает с формулой, либо вхождение будет в θ_1 или θ_2 . Применим к θ_i предположение индукции и получим, например, $\psi' = \theta_1' \to \theta_2$ и $\theta_1 \equiv \theta_1'$, далее используем подходящее утверждение из предыдущей леммы (та, что над этой) и заключаем $\psi = \psi'$.

1.9 Пропозциональные формулы и задаваемые ими булевы функции. Тавтологии первого порядка.

Пропозициональная формула – формула, построенная из пропозициональных переменных (простых букв) с помощью булевых связок.

Каждая пропозициональная формула задаёт булеву функцию, так как для каждого набора значений переменных (истина или ложь) формула принимает одно определённое значение (истина или ложь). То есть, если у вас есть пропозициональная формула A с переменными p и q, можно построить таблицу истинности, которая покажет значение формулы для всех возможных значений p и q.

Тавтология – это формула, истинная при любых значениях ее переменных. Любая тавтология общезначима.

1.10 Лемма о корректной подстановке.

*Терм t свободен для переменной x в формуле φ , если при подстановке терма t вместо переменной x в формуле φ не происходит никаких изменений значений других свободных переменных. Иными словами, терм t можно подставить на место x в φ без появления новой привязки переменных, которая может изменить интерпретацию формулы. Обозначение: $t-x-\varphi$.

Это определение скорее для понимания, формальное смотреть в конспекте first-order на страницах 17-18

*Замена y на x в формуле φ обозначается как $\varphi(y/x)$

Лемма о корректной подстановке: в любой интерпретации при любой оценке π для всех φ - формул, t,s - термов, и x - переменной, если $t-x-\varphi$, то выполняется:

$$[s(t/x)](\pi) = [s](\pi + (x \to [t](\pi)))$$
 и $[\varphi(t/x)](\pi) = [\varphi](\pi + (x \to [t](\pi)))$

Доказательство: см. лемма 73 в first-order

1.11 Понятие корректной подстановки («терм свободен для переменной в формуле»). Пример некорректной подстановки. Лемма о корректной подстановке (без доказательства). Переименование связанной переменной. Общезначимость формул вида $\forall x \varphi \to \varphi(t/x)$ и $\varphi(t/x) \to \exists x \varphi$ в случае корректной подстановки.

см. билет 1.10

Пример некорректной подстановки: возьмем формулу $\varphi(x,y) = \forall y (P(x,y))$ и терм t=y. Подставляем: $\varphi(x/t,y) = \forall y (P(y,y))$. Смысл формулы изменен т.к. терм не свободен для переменной в формуле.

Переименование связанной переменной:

```
Лемма 1. Пусть y \notin V(\varphi) (т.е. y нет в \varphi), тогда \forall x \varphi \equiv \forall y \varphi(y/x).
```

Лемма 2. Для любого терма t и любой формулы φ , если $y \notin V(\varphi)$, то для любой оценки π верно: $[t(y/x)](\pi) = [t](\pi + (x \to \pi(y)))$ и $[\varphi(y/x)](\pi) = [\varphi](\pi + (x \to \pi(y)))$

- 1. $\forall x \varphi \rightarrow \varphi(t/x)$, если t свободен для x в φ
- 2. $\varphi(t/x) \to \exists x \varphi(x)$, если t свободен для x в φ

ТООО: дописать доказательства

1.12 Переименование связанной переменной (без доказательства). Теорема о предваренной нормальной форме.

Переименование связанной переменной:

```
Лемма 1. Пусть y \notin V(\varphi) (т.е. y нет в \varphi), тогда \forall x \varphi \equiv \forall y \varphi(y/x).
```

Лемма 2. Для любого терма t и любой формулы φ , если $y \notin V(\varphi)$, то для любой оценки π верно: $[t(y/x)](\pi) = [t](\pi + (x \to \pi(y)))$ и $[\varphi(y/x)](\pi) = [\varphi](\pi + (x \to \pi(y)))$

*Предваренная формула – такая, что имеет кванторы только в кванторном префиксе в начале формулы.

Теорема о предваренной нормальной форме: для любой формулы найдется эквивалентная ей предваренная.

Доказательство: индукция по построению. Разберем все случаи:

- 1. Если формула атомарная, то она уже предваренная.
- 2. Если формула начинается с квантора, то по предположению индукции заменяем формулу под этим квантором на эквивалентную предваренную.
- 3. Если формула начинается с отрицания, то по предположению индукции заменяем формулу под отрицанием на эквивалентную предваренную и проносим отрицание вовнутрь, переменяя кванторы.
- 4. Если в формуле главная связка бинарная, то по предположению индукции заменяем формулы под связкой на эквивалентные предваренные и переименовываем связанные переменные так, чтобы все кванторы можно было вынести наружу и выносим их.

1.13 Понятие теории первого порядка. Примеры содержательных теорий. Модель теории. Логическое (семантическое) следование (для теорий и предложений).

Теория первого порядка – логическая система, включающая в себя сигнатуру (набор символов, включающий константы, функции и предикаты), аксиомы (набор утверждений или формул, принимаемых без доказательств) и правила вывода (правила, по которым из аксиом и других утверждений можно выводить новые утверждения)

Примеры содержательных теорий:

- 1. Теория групп:
 - (a) Сигнатура: бинарная операция * и константа e

(b) Аксиомы: ассоциативность, существование нейтрального элемента, существование обратного элемента.

2. Теория колец:

- (а) Сигнатура: две бинарные операции: + и * и константы 0 и 1.
- (b) Аксиомы: дистрибутивность, ассоциативность, коммутативность, существование обратного элемента по сложению

Модель теории – это интерпретация сигнатуры, в которой все аксиомы теории истинны. Например, для теории групп это множество целых чисел с операцией сложения и нулем.

Логическое следование – отношение между формулами и теориями, которое говорит, что если истинны определенные формулы, то и другие формулы истинны.

Для теорий: Теория T логически следует из множества аксиом A, если любая модель A также является моделью T.

Для предложений: Предложение φ логически следует из теории T ($T \models \varphi$), если φ истинно в каждой модели T.

1.14 Исчисление предикатов с равенством (в гильбертовской форме). Теорема о полноте и корректности исчисления предикатов (без доказательства). Теорема о компактности в двух формах: про выполнимость теории и про логическое следование из теории.

Исчисление предикатов с равенством – это система логики первого порядка, включающая равенство как основной предикат. В гильбертовской форме исчисления предикатов используются аксиомы и правила вывода.

Аксиомы для равенства:

- 1. Рефлексивность: $\forall x(x=x)$
- 2. Симметричность: $\forall x \forall y (x = y \rightarrow y = x)$
- 3. Транзитивность: $\forall x \forall y \forall z (x = y \land y = z \rightarrow x = z)$
- 4. Замена в формулах: если t терм, а P предикат, то $\forall x \forall y (x = y \to (P(x) \leftrightarrow P(y)))$

Общие аксиомы и правила вывода:

- 1. Аксиомы логики первого порядка
- 2. Правило Modus Ponens: из φ и $\varphi \to \psi$ следует ψ
- 3. Правило обобщения: из φ следует $\forall x \varphi$, если x не свободная в φ

Теорема о полноте и корректности исчисления предикатов: если φ логически следует из A, тогда и только тогда φ выводима из A в исчислении предикатов.

Теорема о компактности: если любая конечная подсистема множества предложений имеет модель, то и все множество имеет модель.

Теорема о компактности в форме про выполнимость теории: если каждое конечное подмножество множества формул T выполнимо, то и все множество T выполнимо.

Теорема о компактности в форме про логическое следование из теории: формула φ логически следует из теории T тогда и только тогда, когда φ логически следует из некоторого конечного подмножества теории T.

TODO: дополнить доказательствами

1.15 Теорема компактности (без доказательства). Любой пример применения.

см. билет 1.14

Пример: хотим показать, что существует бесконечное множество.

Пусть T — это теория, содержащая набор формул $F = \{\varphi_n \colon n \in \mathbb{N}\}$, где φ_n утверждает, что в нашем множестве существует как минимум n различных элементов. Любое конечное подмножество F выполнимо в модели потому что можно найти конечное число элементов, принадлежащих множеству. Применяем теорему компактности: раз каждое подмножество F имеет модель, то и все множество F имеет модель, значит существует модель, содержащая бесконечно много элементов.

1.16 Одноленточная машина Тьюринга (допустимо неформальное определение с лентой и головкой). Сложение натуральных чисел (при унарном и бинарном кодировании).

Одноленточная машина Тьюринга — это теоретическая модель вычислений, состоящая из следующих частей: лента (бесконечная в обе стороны, разделенная на ячейки, каждая из которых может хранить один символ из конечного алфавита, который обычно содержит спец.символ "пусто": #), головка для чтения/записи (устройство, которое может перемещаться влево или вправо по ленте, считывать символы с ленты и записывать символы на ленту), множество состояний (конечное множество состояний, одно из которых является начальным, а одно или несколько могут быть конечными) и таблица переходов (определяет правила, по которым машина переходит из одного состояния в другое, в зависимости от символа под головкой)

Сложение натуральных чисел в унарном виде: очевидно

Сложение натуральных чисел в бинарном виде: вводим понятие дополнительных переменных в состоянии, типа чтобы хранить n бит, нам понадобится в n раз больше состояний. Тогда просто складываем в столбик, поддерживая в данный момент "в уме" (а точнее в дополнении к состоянию) переполнения

1.17 Многоленточная машина Тьюринга (допустимо неформальное определение с лентами и головками). Удвоение входного слова за линейное время.

Многоленточная машина Тьюринга — это расширение классической машины Тьюринга, у которой есть несколько лент и несколько головок для чтения/записи. Каждая лента бесконечна в обе стороны и содержит свой собственный алфавит символов.

Удвоение входного слова за линейное время: копируем символы пока не дойдем до решетки. Как дошли до решетки, идем на верхней ленте влево в начало слова и повторяем процедуру.

1.18 Конфигурации одноленточной и многоленточной машин Тьюринга. Меры сложности «время» и «зона» и их соотношение в обоих случаях.

Конфигурация машины Тьюринга – это описание текущего состояния машины, которое включает состояние машины, содержимое ленты (лент), позиция головки (головок).

Время выполнения (или временная сложность) алгоритма на машине Тьюринга – это количество шагов, которые машина делает для выполнения задачи. Временная сложность оценивается в зависимости от размера входных данных n.

Зона выполнения (или пространственная сложность) алгоритма на машине Тьюринга – это количество ячеек ленты, которые машина использует для выполнения задачи.

Существуют работы, которые показывают, что алгоритм, выполненный на МТ из k лент эмулируется за $T\log T$ на двуленточной МТ.

Многоленточные машины Тьюринга более эффективны по времени (например, задача удвоения входного слова) по сравнению с одноленточными машинами, так как позволяют параллельно обрабатывать несколько лент и перемещаться быстрее по необходимым данным. Однако, пространственная сложность остаётся асимптотически такой же, как и для одноленточных машин.

1.19 Сокращение ленточного алфавита и его цена.

См. страницы 21-24 в "Введении в сложность вычислений" Крупского

1.20 Сокращение числа лент и его цена.

См. страницы 24-27 в "Введении в сложность вычислений" Крупского

2 Вычислимость

2.1 Вычислимые функции (при интуитивном понимании алгоритма). Разрешимые и перечислимые множества. Связь конечности, разрешимости и перечислимости. Разрешимые множества под действием операций алгебры множеств и декартова произведения.

Вычислимая функция – это такая частичная функция $f: \mathbb{N} \to \mathbb{N}$, что для нее существует программа (алгоритм), которая на любом входе $x \in \text{dom } f$ выписывает f(x), а иначе зацикливается.

Разрешимое множество – такое множество, чья характеристическая функция (функция, которая ест элемент и выплевывает единицу если элемент в множестве и ноль иначе) вычислима.

Перечислимое множество – такое множество, для которого есть программа, которая последовательно выписывает все элементы множества и только их. Для каждого элемента множества должно существовать $k \in \mathbb{N}$, что после k-ого шага элемент будет выписан.

Связь конечности, разрешимости и перечислимости: 1) конечно, значит разрешимо; 2) разрешимо, значит перечислимо.

Доказательство: 1) конечно, значит можно пронумеровать элементы $\{a_1,...,a_n\}$. Искомая характеристическая функция равна дизъюнкции (логическому или) булевских значений $x=a_1\vee x=a_2\vee\ldots\vee x=a_n$. Для пустой функции всегда возвращаем ноль, что также вычислимо.

2) перебираем все натуральные числа и выводим текущее если характеристическая функция вернула единицу

Разрешимые множества под действием операций алгебры множеств и декартова произведения: A, B – разрешимы: $A \cup B, A \cap B, A \times B, \overline{A}, \overline{B}$

Доказательство: выразим характеристические функции: $\chi_{A\cup B}(x) = \max(\chi_A(x), \chi_B(x))$, и т.д.

2.2 Перечислимые множества под действием операций алгебры множеств, декартова произведения и проекции. Теорема Поста.

Перечислимые множества под действием операций алгебры множеств, декартова произведения и проекции: A, B – перечислимы \implies перечислимы: $A \cup B, A \cap B, A \times B, \operatorname{pr}^i A, \operatorname{pr}^i B$.

Доказательство: перечислимость $A \cup B$: просто выводим числа по очереди; перечислимость $A \cap B$: по очереди выполняем по шагу алгоритмов A и B и когда получаем очередной элемент a_i выводим его только если нам уже попадался равный ему b_j . Аналогично поступаем с новыми элементами из B; перечислимость $A \times B$: по очереди выполняем по шагу алгоритмов для A и B и когда получаем очередной элемент a_i выписываем пары со всеми до этого полученными b_1, \ldots, b_k . Аналогично поступаем и для B; перечислимость проекции: просто для каждого нового $a = (a_1, \ldots, a_n)$ выводим a_i .

Теорема Поста: множество разрешимо \iff его дополнение и оно само перечислимо.

Доказательство: 1) слева направо следует из леммы о связи конечности, разрешимости и перечислимости (билет 2.1)

2) справа налево доказывается с помощью следующего вычислимого алгоритма: будем выполнять по очереди по одному шагу алгоритма для множества и его дополнения. Рано или поздно в первом или втором появится наш проверяемый элемент

2.3 Теорема о графике вычислимой функции. Перечислимость образа и прообраза множества под действием вычислимой функции.

Теорема о график
е вычислимой функции: функция вычислима \iff ее график перечислим (то есть множество пар (x,f(x)))

Доказательство: 1) справа налево: просто ждем пока выдаст нужную пару 2) слева направо: переберем все пары $(x,k) \in \mathbb{N}$. x – значение, k – количество шагов, которые проделываются для вычисления x. Таким образом, если за конечное число шагов значение вычисляется, мы выведем пару.

Перечислимость образа и прообраза множества под действием вычислимой функции: пусть множество A – перечислимо и f – вычислимая функция. Тогда f(A) и $f^{-1}(A)$ перечислимы.

Доказательство: пусть $G \subseteq \mathbb{N} \times \mathbb{N}$ – график f, тогда множества $M_1 = G \cap (A \times \mathbb{N})$ и $M_2 = G \cap (\mathbb{N} \times A)$ перечислимы так как являются пересечением двух перечислимых множеств. Заметим, что $f(A) = \operatorname{pr}^2 M_1$ и $f^{-1}(A) = \operatorname{pr}^1 M_2$.

2.4 Непустые перечислимые множества суть, в точности, области значений вычислимых тотальных функций.

Лемма: множество A перечислимо $\iff A = \emptyset$ или $\exists f \colon \mathbb{N} \to A$, что f – тотальная и rng f = A.

Доказательство: 1) справа налево: все элементы A выпишет программа, последовательно вычисляющая $f(0), f(1), \ldots$ (вычисление f(n) всегда заканчивается за конечное количество шагов ибо f тотальная и вычислимая).

2) Пусть элементы A выписывает программа p. Тогда пусть m – число шагов в программе p до вывода первого числа. Определим f следующим образом: f(x) =последнему числу после m+x шагов. Докажем, что любое $x \in A$ лежит в образе f. Для x должно существовать такое $k \in \mathbb{N}$, что после k шагов x выводится программой p. Тогда f(k-m)=x.

Следствие: если f вычислима, тогда $\operatorname{dom} f$ и $\operatorname{rng} f$ перечислимы.

Доказательство: следует из перечислимости образа и прообраза множества под действием вычислимой функции (см. билет 2.3): dom $f = f^{-1}(\mathbb{N})$, rng $f = f(\mathbb{N})$.

2.5 Полуразрешимость. Перечислимые множества суть, в точности, области определения вычислимых функций.

*Полухарактеристическая функция φ множества A задается $\varphi = \begin{cases} 1, & \text{если } x \in A \\ \text{неопр.}, & \text{иначе} \end{cases}$

Полуразрешимое множество – такое, что его полухарактеристическая функция вычислима.

Лемма: множество перечислимо \iff множество полуразрешимо

Доказательство: 1) слева направо: если перечислимо A, то перечислимо и $A \times \{1\} = \Gamma(\varphi)$. По теореме о графике вычислимой функции (см. билет 2.3), φ вычислима.

2) справа налево: если φ вычислима, то $A = \text{dom } \varphi$ перечислима по следствию (см. билет 2.4)

2.6 Перечислимые множества суть, в точности, проекции разрешимых. Теорема о свойствах, равносильных перечислимости (доказательство на основе утверждений предшествующих вопросов).

Перечислимые множества в точности проекции разрешимых: множество $A \subseteq \mathbb{N}^n$ перечислимо $\iff \exists B \subseteq \mathbb{N}^{n+1}$ разрешимое, что $A = \operatorname{pr}^1(B)$.

Доказательство: 1) справа налево: B разрешимо $\implies B$ перечислимо $\implies \operatorname{pr}^1(B) = A$ перечислимо

2) слева направо: возьмем перечисляющую элементы A программу p. Пусть $B = \{(x,k) \in \mathbb{N}^{n+1} \mid$ программа p выписывает x на шаге $k\}$. Заметим, что построенное множество отвечает требованиям: B действительно разрешимо (на входе (x,k) запустим k шагов p и если вывелось x, то элемент лежит, иначе нет) и $A = \operatorname{pr}^1(B)$ (т.к. для каждого $x \in A \exists k \in \mathbb{N}$ – такое, что за k шагов программы p выведется x).

Пусть $A \subseteq \mathbb{N}$, тогда следующее равносильно:

- 1. A перечислимо
- 2. $\exists f \colon \mathbb{N} \to \mathbb{N}$ вычислимая частичная, что $A = \mathrm{dom}\, f$
- 3. $\exists f \colon \mathbb{N} \to \mathbb{N}$ вычислимая частичная, что $A = \operatorname{rng} f$
- 4. $A=\varnothing$ или $\exists f\colon \mathbb{N}\to\mathbb{N}$ вычислимая тотальная, что $A=\mathrm{rng}\, f$
- 5. $\exists B \subseteq \mathbb{N}^2$ разрешимое, что $A = \operatorname{pr}^1(B)$

Доказательство: 1 < -> 5) см. лемму выше; 1 < -> 4) см. билет 2.4 (лемма); 1 -> 2) см. билет 2.5 (берем полухарактеристическую функцию); 2 -> 1) см. билет 2.4 (следствие); 4 -> 3) очев.; 3 -> 1) см. билет 2.4 (следствие);

2.7 Универсальная вычислимая функция (в классе вычислимых функций $\mathbb{N} \stackrel{p}{\to} \mathbb{N}$). Т-Предикаты. Неразрешимость проблем самоприменимости и остановки.

Универсальная вычислимая функция – такая $U \colon \mathbb{N}^2 \to \mathbb{N}$, если она вычислима и для любой вычислимой функции f существует индекс i такой, что $U_i = f$.

Т-Предикат: пусть U - у.в.ф. и \mathcal{U} - программа, вычисляющая U, тогда определим множество $T = \{(n,x,k) \mid \text{ алгоритм } \mathcal{U} \text{ останавливается на входе } (n,x) \text{ за } k \text{ шагов} \}$. Т-Предикатом называется функция $T(n,x,k) := (n,x,k) \in T$.

Неразрешимость проблемы самоприменимости: невозможно создать алгоритм, определяющий, завершится ли программа на собственном коде.

Доказательство: если существует такой алгоритм p(x), возвращающий ноль если программа x зацикливается на вводе x и единицу иначе, то существует программа $f(x) = \begin{cases}$ зацикливается, если p(x) = 1 завершается, если $p(x) = 0 \end{cases}$. Рассмотрим случаи: если p(x) = 0, то по определению f зацикливается, но f(f) завершается; если p(x) = 1, то по определению f завершается, но f(f) зацикливается. Противоречие.

Неразрешимость проблемы остановки: нет алгоритма g, который бы определял, завершится ли программа на данном входе.

Доказательство: если бы такой алгоритм существовал, то существовал бы и алгоритм p(x) = g(x, x), проверяющий самоприменимость, но такого алгоритма нет.

2.8 Неразрешимость проблем самоприменимости и остановки. Примеры перечислимого неразрешимого и неперечислимого множеств.

Неразрешимость проблем самоприменимости и остановки: см. билет 2.7

Пример перечислимого неразрешимого множества: пусть U - у.в.ф., d(x) = U(x,x) тогда $K = \{x \in \mathbb{N} \mid d(x) - \text{ определено}\}$

Доказательство: 1) перечислимость следует из того, что K = dom d – вычислимой функции 2) предположим, что K – разрешимо, тогда определим вычислимую функцию $f(x) = \begin{cases} 0, & x \notin K \\ \text{неопр.}, & x \in K \end{cases}$. Существует n, что $U_n = f$. Тогда рассмотрим, лежит ли n в K: если да, то d(n) не определено, значит $n \notin K$; если нет, то d(n) = 0 - определено, значит $n \in K$. В обоих случаях противоречия, значит предположение ложно.

Пример неперечислимого множества: множество \overline{K} – если бы оно было перечислимо, то по теореме Поста (см. билет 2.2) K было бы разрешимо, что неправда.

2.9 Пример вычислимой функции, не имеющей вычислимого тотального продолжения. Область определения вычислимой функции, не имеющей вычислимого тотального продолжения, перечислима, но не разрешима.

Пример вычислимой функции, не имеющей вычислимого тотального продолжения: пусть U - у.в.ф., тогда d(x) = U(x,x) - искомый пример.

Доказательство: 1) d - вычислима

2) Пусть g продолжает d, тогда существует вычислимая тотальная h(x) = g(x) + 1. Для h существует n, что $U_n = h$. Разберем случаи: если $n \notin \text{dom } d$, тогда не определено U(n,n), но $U(n,n) = U_n(n) = h(n)$ определено, значит $n \in \text{dom } d$, тогда $d(n) = U(n,n) = U_n(n) = h(n) = g(n) + 1 = d(n) + 1$ - противоречие.

Область определения вычислимой функции, не имеющей вычислимого тотального продолжения, перечислима, но не разрешима: Пусть вычислимая функция f не имеет вычислимого тотального продолжения, тогда $\operatorname{dom} f$ перечислимо, но не разрешимо.

Доказательство:

- 1) перечислимость из следствия (см. билет 2.4)
- 2) от противного: пусть dom f разрешимо, тогда существует характеристическая функция g. Определим $h(x) = \begin{cases} f(x), & \text{если } g(x) = 1 \\ 0, & \text{если } g(x) = 0 \end{cases}$. Таким образом мы получили вычислимое тотальное продолжение, противоречие.

2.10 Невозможность универсальной вычислимой тотальной функции.

Невозможность универсальной вычислимой тотальной функции: тотальной у.в.ф. не может быть.

Доказательство: от противного: пусть U - тотальная у.в.ф., тогда возьмем диагональ d(x) = U(x,x) и построим f(x) = d(x) + 1 - тотальная вычислимая функция. Значит существует n, что $U_n = f$. Рассмотрим значение f(n): $f(n) = U_n(n) = U(n,n) = d(n)$, но f(n) = d(n) + 1 по определению, противоречие.

2.11 Пример непересекающихся перечислимых множеств, не отделимых ни-каким разрешимым множеством.

*Сначала нужно решить упражнение: существует вычислимая функция f, не имеющая вычислимого тотального продолжения, т. ч. rng $f = \{0, 1\}$.

Доказательство: пусть
$$U$$
 - у.в.ф. и $d(x) = U(x,x)$. Определим $f(x) = \begin{cases} 0, & d(x) = 0 \\ 1, & d(x) \neq 0 \end{cases}$. Если бы неопр., $d(x)$ неопр.

было вычислимое тотальное продолжение f, тогда существовало бы и тотальное продолжение d(x).

*Отделимость: множество C отделяет A от B, если $A \subseteq C$ и $B \subseteq \overline{C}$

Пример непересекающихся перечислимых множеств, не отделимых никаким разрешимым множеством: рассмотрим f из упражнения выше и положим $A = f^{-1}(1)$ и $B = f^{-1}(0)$.

Доказательство: 1) непересекаемость очев.

- 2) перечислимость из теоремы о графике вычислимой функции (см. билет 2.3)
- 3) неотделимость разрешимой функцией: если разрешимое C отделяет A и B, тогда вычислимая тотальная характеристическая функция g множества C продолжает f, чего не может быть, противоречие.

2.12 Главная универсальная вычислимая функция. Вычислимое биективное кодирование пар натуральных чисел. Построение главной у.в.ф. с помощью произвольной у.в.ф.

Главная универсальная вычислимая функция – такая частичная вычислимая $U\colon \mathbb{N}^2\to\mathbb{N},$ что для любой частичной вычислимой функции $F\colon \mathbb{N}^2\to\mathbb{N}$ существует вычислимая тотальная функция $s\colon \mathbb{N}\to\mathbb{N},$ что $F_i=U_{s(i)}$

Вычислимое биективное кодирование пар натуральных чисел: пусть $\langle \cdot, \cdot \rangle$: $\mathbb{N}^2 \to \mathbb{N}$ – произвольная тотальная биекция. Определим тотальные функции π_1 и π_2 , что $\pi_1(\langle n_1, n_2 \rangle) = n_1$ и $\pi_2(\langle n_1, n_2 \rangle) = n_2$. Функции π_1 и π_2 вычислимы.

Доказательство: опишем алгоритм вычисления π_1 (для π_2 аналогично). Для заданного $n \in \mathbb{N}$ перебираем все пары $(a,b) \in \mathbb{N}^2$ пока не найдем такого, что $\langle a,b \rangle = n$ и вернем a. Мы найдем такую пару так как функция - тотальная биекция.

Построение главной у.в.ф. с помощью произвольной у.в.ф.: *редакторское примечание*: построение совсем нетривиальное, просто внимательно следим за руками

Построение: пусть U - у.в.ф.. Определим нашу г.у.в.ф. так: $W(n,x) = U(\pi^1(n), \langle \pi^2(n), x \rangle)$.

Проверим, что она г.у.в.ф.: 1) вычислимость: мы берем вычислимую функцию и подставляем вычислимые аргументы, все ок.

2) Пусть $V \colon \mathbb{N}^2 \to \mathbb{N}$ - какая-то вычислимая функция. Зададим еще одну функцию на основе $V \colon V'(x) = V(\pi^1(x), \pi^2(x))$, она тоже вычислимая, тогда для нее существует какое-то l, что $U_l = V'$. И последнее: для V искомая $s(n) = \langle l, n \rangle$, она вычислимая тотальная.

Теперь магия: $W(s(n),x) = W(\langle l,n\rangle,x) = U(\pi^1(\langle l,n\rangle),\langle \pi^2(\langle l,n\rangle),x\rangle = U(l,\langle n,x\rangle) = U_l(\langle n,x\rangle) = V'(\langle n,x\rangle) = V(\pi^1(\langle n,x\rangle),\pi^2(\langle n,x\rangle)) = V(n,x)$

2.13 Теорема Клини о неподвижной точке

Теорема: пусть U - г.у.в.ф., $f\colon \mathbb{N}\to\mathbb{N}$ - тотальная вычислимая функция, тогда существует такое n, что $U_n=U_{f(n)}$

Доказательство: пусть V(k,x) = U(U(k,k),x) - вычислимая тотальная. Из главности у.в.ф. найдется тотальная $s \colon \mathbb{N} \to \mathbb{N}$, что U(s(k),x) = V(k,x) = U(U(k,k),x). Композиция f и s тоже вычислима, поэтому существует $t \in \mathbb{N}$, что $U_t = f \circ s$. Имеем $U(s(t),x) = V(t,x) = U(U(t,t),x) = U(U_t(t),x) = U((f \circ s)(t),x) = U(f(s(t)),x)$. Искомое n = s(t).

2.14 Бесконечность множества неподвижных точек в смысле теоремы Клини. Теорема о рекурсии как следствие теоремы Клини. Пример применения теоремы о рекурсии.

Бесконечность множества неподвижных точек в смысле теоремы Клини: пусть U - г.у.в.ф. и $f \colon \mathbb{N} \to \mathbb{N}$ – тотальная, тогда бесконечно множество X, состоящее n таких, что $U_n = U_{f_n}$.

Доказательство: от противного, пусть X конечно, тогда оно разрешимо и существует вычислимая функция g, что ни один ее индекс в U не лежит в X. Пусть m – индекс g в U. Рассмотрим $h(x) = \begin{cases} m, & \text{если } x \in X \\ f(x), & \text{если } x \notin X \end{cases}$. В силу разрешимости X, h тотальная вычислимая. По теореме Клини, существует n, что $U_n = U_{h(n)}$. Разберем случаи: если $n \in X$, тогда $U_n = U_{h(n)} = U_m = g$, что противоречит определению g; если $n \notin X$, тогда $U_n = U_{h(n)} = U_{h(n)} = U_{h(n)}$ но это значит что $n \in X$, противоречие.

Теорема о рекурсии: пусть $V\colon \mathbb{N}^2 \to \mathbb{N}$ - вычислимая частичная функция. Тогда существует n, что $U_n=V_n$

Доказательство: берем $s\colon \mathbb{N}\to \mathbb{N},$ что $V_n=U_{s(n)}.$ По теореме Клини существует x, что $U_{s(x)}=U_x.$ Подставляем этот $x\colon U_x=U_{s(x)}=V_x.$

Пример использования теоремы о рекурсии: существует вычислимая функция $f(x) = \begin{cases} 1, & x = 0 \\ x \cdot f(x-1), & x > 0 \end{cases}$

Доказательство: построим $V \colon \mathbb{N}^2 \to \mathbb{N}$ следующим образом: $V_k(x) = \begin{cases} 1, & x = 0 \\ x \cdot V_K(x_1), & x > 0 \end{cases}$. По теореме о рекурсии находим n, что для какой-то г.у.в.ф. U выполняется $U_n = V_n$. Индукция по x показывает что функция U_n удовлетворяет условиям. (TODO: каким условиям? почему вся задача вообще не очевидная?)

2.15 Вычислимость индекса композиции вычислимых функций. Совместная рекурсия: решение «систем уравнений» (с тотальными правыми частями).

Вычислимость индекса композиции вычислимых функций: для г.у.в.ф. U существует вычислимая тотальная функция $c\colon \mathbb{N}^2 \to \mathbb{N}$, что для любых $p,q \in \mathbb{N}$ выполняется $U_{c(p,q)} = U_p \circ U_q$

Доказательство: возьмем вычислимую $V(n,x)=(U_{\pi^1(n)}\circ U_{\pi^2(n)})(x)$. Существует тотальная вычислимая $s\colon \mathbb{N}\to\mathbb{N}$, что $V_n=U_{s(n)}$. Положим $c(x,y)=s(\langle x,y\rangle)$ и имеем: $U_{c(p,q)}=U_{s(\langle p,q\rangle)}=V_{\langle p,q\rangle}=U_{\pi^1(\langle p,q\rangle)}\circ U_{\pi^2(\langle p,q\rangle)}=U_p\circ U_q$

Совместная рекурсия:

Пусть функции $V_1, V_2: \mathbb{N}^3 \to \mathbb{N}$ вычислимы. Тогда существуют $a, b \in \mathbb{N}$, т.ч. для всех $x \in \mathbb{N}$ выполнены

$$U(a,x) = V_1(a,b,x)$$
 и $U(b,x) = V_2(a,b,x)$

Доказательство:

По главности U возьмем p_1, p_2 т.ч

$$U_{p_1} \simeq \pi^1$$
, $U_{p_2} \simeq \pi^2$.

Для вычислимой функции $V:\mathbb{N}^2\to\mathbb{N}$, т.ч. для всех $k,x\in\mathbb{N}$

$$V(k,x) = \langle V_1(c(p_1,k),c(p_2,k),x), V_2(c(p_1,k),c(p_2,k),x) \rangle$$

согласно лемме о рекурсии, найдется число $n\in\mathbb{N}$, т.ч. $U_n=V_n$. Положим $a=c(p_1,n)$ и $b=c(p_2,n)$. Тогда для любого $x\in\mathbb{N}$

$$U(a,x) \simeq U(c(p_1,n),x) \simeq U_{p_1}(U_p(x)) \simeq \pi^1(V_p(x)) \simeq \pi^1(V(n,x))$$

Здесь остановимся и вспомним, что V определена как $\langle V_1(...), V_2(...) \rangle$, а π^1 "расшифровывает" первую координату. Следовательно для любого $x \in \mathbb{N}$

$$\pi^1(V(n,x)) \simeq V_1(c(p_1,n),c(p_2,n),x) \simeq V_1(a,b,x)$$

Для b доказательство аналогичное

Индексные множества. Теорема Райса-Успенского: вывод из теоремы 2.16 Клини. Пример применения.

 * Множество всех частичных вычислимых функций обозначается $\mathcal R$

*Индексным множеством семейства (иначе говоря свойства) $\mathcal{F} \subseteq \mathcal{R}$ относительно у.в.ф. U называется числовое множество $F = \{n \in \mathbb{N} \mid U_n \in \mathcal{F}\}$

Tеорема Pайса-Успенского. Пусть U — г.у.в.ф. и $\varnothing \neq \mathcal{F} \subsetneq \mathcal{R}$. Тогда индексное множество $F = \{n \in \mathbb{N} \mid U_n \in \mathcal{F}\}$ неразрешимо.

Доказательство:

По условию найдутся функции $f \in \mathcal{F}$ и $g \in \mathcal{R} \setminus \mathcal{F}$. Предположим, что множество F разрешимо. Пусть $f = U_k, g = U_m$. Рассмотрим функцию h, такую что для всех $n \in \mathbb{N}$

$$h(n) = \begin{cases} m, & \text{если } n \in F \\ k, & \text{если } n \notin F \end{cases}.$$

Заметим, что $h(n) = m \cdot \chi_F(n) + k \cdot (1 - \chi_F(n))$, а значит эта тотальная функция вычислима. Согласно теореме Клини, найдется число $n \in \mathbb{N}$, т.ч. $U_{h(n)} = U_n$.

Если $n \in F$, тогда $U_n \in \mathcal{F}$ и $U_n = U_{h(n)} = U_m = g \notin \mathcal{F}$. Противоречие Значит $n \notin F$, тогда $U_n \notin \mathcal{F}$ и $U_n = U_{h(n)} = U_k = f \in \mathcal{F}$. Снова противоречие. Следовательно Fнеразрешимо

Пример применения. Пусть U – г.у.в.ф. Рассмотрим множество $A=\{n\in\mathbb{N}\mid \mathrm{dom}\,U_n\neq\varnothing\}$. Это индексное множество множества функций \mathcal{A} , определенных хотя бы в одной точке. Очевидно, что оно не пусто, и есть функция ζ которая зацикливается на любом входе. Значит ${\cal A}$ нетривиальна, следовательно по теореме Райса-Успенского A неразрешимо. Аналогичный факт можно сказать и про \overline{A} (индексное множество функций, зацикливающихся на любом входе).

Существование неглавной у. в. ф. 2.17

 \mathcal{I} емма. Пусть U – г.у.в.ф и $\mathcal{F} = \{f\}$ для некоторой $f \in \mathcal{R}$. Очевидно, \mathcal{F} нетривиально. Поэтому по теореме Райса-Успенского неразрешимо множество $F = \{n \in \mathbb{N} \mid U_n = f\}$, а значит и не может быть конечным. То есть любая функция имеет бесконечно много индексов и может быть вычислена бесконечным числом программ.

Cуществование неглавной y.в.ф. Пусть U – произвольная у.в.ф и ζ – нигде не определенная функция. Рассмотрим $A = \{n \in \mathbb{N} \mid \text{dom } U_n \neq \varnothing\}$ – индексное множество \mathcal{A} для функций, определенных хотя бы в одной точке. Докажем, что A – перечислимо. Действительно, для всех n

$$n \in A \Leftrightarrow \exists x \exists k \ T(n, x, k)$$

т.е. множество А является проекцией разрешимого множества Т, а значит, перечислимо. Вследствие нетривиальности \mathcal{A} , верно $A \neq \emptyset$. Тогда существует вычислимая тотальная функция $f:\mathbb{N}\to\mathbb{N}$, т. ч. $A=\operatorname{rng} f$. Теперь положим

$$W(m,x)\simeq egin{cases} \zeta(x), & ext{ecjiff} m=0 \ U(f(m-1),x), & ext{ecjiff} m>0 \end{cases}.$$

Понятно, что функция W вычислима. Также она универсальна для класса вычислимых функций ${f g}$ одного аргумента: если $\operatorname{dom} g = \emptyset$, то $g = \zeta = W_0$. Если $\operatorname{dom} g \neq \emptyset$, то $g = U_n \in \mathcal{A}$ влечет $n \in A$, откуда $g = U_{f(k)} = W_{k+1}$ для подходящего k. Единственным индексом ζ относительно W оказывается 0.

Мы получили, что индексное множество для множества $\{\zeta\}$ относительно W конечно, а значит разрешимо. Но для г.у.в.ф. такого быть не может по лемме. Следовательно, W является неглавной у.в.ф.

2.18 т-сводимость и её простейшие свойства

Пусть $A, B \subset \mathbb{N}$. Будем говорить, что множество A m-csodumcssd (обозначается как $A \leq_m B$), если существует вычислимая тотальная функция $f: \mathbb{N} \mapsto \mathbb{N}$:

$$\forall x \in \mathbb{N} \ (x \in A \leftrightarrow f(x) \in B)$$

Лемма (основные свойства): Для любых множеств $A, B, C \subset \mathbb{N}$ выполнено следующее:

- 1. $A \leq_m^{\mathrm{id}_{\mathbb{N}}} A$;
- 2. если $A \leq_m^f B$ и $B \leq_m^g C$, то $A \leq_m^{g \circ f} C$;
- 3. если $A \leq_m^f B$, то $\overline{A} \leq_m^f \overline{B}$;
- 4. если $A \leq_m B$ и B разрешимо, то A разрешимо;
- 5. если $A \leq_m B$ и B перечислимо, то A перечислимо;

Доказательство: первые 3 пункта непосредственно следуют из определения. Докажем утверждения 4 и 5: предположим, что $x \in A \leftrightarrow f(x) \in B$ выполнено для некоторой тотальной функции f и всех $x \in \mathbb{N}$. Но тогда $\chi_A(x) = \chi_B(f(x))$ и $\omega_A(x) \equiv \omega_B(f(x))$, а значит функция χ_A будет вычислима, если такова χ_B , то же самое верно и для ω_A и ω_B .

Упраженение (69) Пусть множество A разрешимо и множество B нетривиально, то есть $\emptyset \neq B \subsetneq \mathbb{N}$. Покажем, что $A \leq_m B$. Поскольку A разрешимо, то характеристическая функция множества A, χ_A , вычислима. Поскольку B нетривиально, то существуют некоторые $n, m \in \mathbb{N}$, что $n \in B, m \notin B$. В таком случае модифицируем χ_A до функции f(x): f(x) = n при $x \in A$ и f(x) = m при $x \notin A$. Очевидно, что f сводит A к B. Отметим, что нетривиальность B мы использовали при выборе чисел n, m, это необходимое и достаточное условие их существования.

Упраженение (70) Пусть $A \leq_m B$ и $B \leq_m A$. Верно ли, что в таком случае A = B. Покажем, что это неверно: пусть A есть множество четных чисел и B и множество нечетных чисел. Очевидно, как будет выглядеть сводимость A к B и B к A, но эти множества даже не пересекаются.

Формально в билет не вошли несколько примеров и упражнений (71-75), но рекомендуется с ними также ознакомиться.

2.19 Индексные множества. Теорема Райса-Успенского: доказательство с помощью сведения. Пример применения.

Индексные множества и пример применения см. билет 2.16

 $Teopema\ Paŭca-Успенского.\ Пусть\ U$ – г.у.в.ф. и $\varnothing \neq \mathcal{F} \subsetneq \mathcal{R}$. Тогда индексное множество $F = \{n \in \mathbb{N} \mid U_n \in \mathcal{F}\}$ неразрешимо.

Доказательство с помощью сведения: без ограничения общности скажем, что $\zeta \notin \mathcal{F}$ (в противном случае проделаем аналогичные рассуждения для $\overline{\mathcal{F}}$, потому что если множество неразрешимо, то неразрешимо и его дополнение)

$$\mathcal{F} \neq \varnothing \Rightarrow \exists f \in \mathcal{F}$$

Рассмотрим функцию $V: \mathbb{N}^2 \stackrel{p}{\to} \mathbb{N}$

$$V(n,x) \simeq \begin{cases} f(x), & n \in K \\ \text{Heonp}, & n \notin K \end{cases}$$

$$V(n,x) \simeq \omega_K(n) \cdot f(x)$$

U – главная $\Rightarrow \exists$ вычислимая тотальная $s: \mathbb{N} \to \mathbb{N}$, т.ч. $\forall n \quad U_{s(n)} = V_n$

$$n \in K \Rightarrow V_n = f \Rightarrow U_{s(n)} = f \in \mathcal{F} \Rightarrow s(n) \in F$$

 $n \notin K \Rightarrow V_n = \zeta \Rightarrow U_{s(n)} = \zeta \notin \mathcal{F} \Rightarrow s(n) \notin F$

$$\forall n \ (n \in K \Leftrightarrow s(n) \in F)$$

 $K \leqslant_m^s F$ и K неразрешимо $\Rightarrow F$ неразрешимо

2.20 Пример неперечислимого множества с неперечислимым дополнением.

Пусть $D = \{n \mid \text{dom} \{n\}$ конечно $\}$. Докажем, что ни D, ни \bar{D} не перечислимы. Для этого рассмотрим вычислимую функцию

$$V(n,x) \simeq \begin{cases} 1, & \text{если } n \in K; \\ \text{неопр.}, & \text{если } n \notin K. \end{cases}$$

Используем главность и для соответствующей s получаем

$$n \in K \iff \forall x \, V_n(x) = 1 \iff \forall x \, \{s(n)\}(x) = 1 \iff s(n) \notin D.$$

Значит, $K \leq_m \bar{D}$ и, следовательно, $\bar{K} \leq_m D$. Поскольку \bar{K} неперечислимо, множество D тоже неперечислимо.

Сложнее построить сведение $K \leq_m \bar{D}$. В самом деле, просто так «поменять местами» константные и нигде не определенные сечения V не получится, потому что тогда нарушается вычислимость этой функции: ни на каком шаге алгоритм не может «знать», что $n \notin K$, чтобы завершиться и выдать 1. Однако, рассмотрим функцию V', такую что

$$V'(n,x) \simeq \begin{cases} 1, & \text{если } \forall m < x \ \neg T(n,n,m); \\ \text{неопр.} & \text{иначе.} \end{cases}$$

Она вычислима: для каждого n нужно проверить x разрешимых условий вида T(n, n, i).

Ясно, как ведет себя эта функция. Если $n \in K$, то $\{n\}(n)$, а значит найдется k, т.ч. T(n,n,k) и $\neg T(n,n,m)$ при всех m < k. Тогда функция V'_n будет определена и примет значение 1 при $0 \le x \le k$, а при x > k определена не будет. В этом случае множество dom V'_n конечно. Если же $n \notin K$, то $\forall m \neg T(n,n,m)$, и V'_n будет всюду определена и равна 1. Тогда множество dom V'_n будет бесконечно.

Представляя это рассуждение более формально, мы по главности нумерации находим тотальную вычислимую s', т. ч. $V'_n = \{s'(n)\}$ для всех n, и замечаем, что $n \in K \iff s'(n) \in D$. Отсюда $\bar{K} \leq_m \bar{D}$. Поэтому \bar{D} неперечислимо.

2.21 Теорема Райса—Шапиро. Неперечислимость индексов одной функции относительно г. у. в. ф.

Пусть U—главная у. в. ф. и \mathcal{F} —произвольное множество вычислимых функций $\mathbb{N} \mapsto \mathbb{N}$. Тогда если множество $F = \{n \in \mathbb{N} \mid \{n\} \in \mathcal{F}\}$ перечислимо, то \mathcal{F} удовлетворяет следующим свойствам:

(компактность) для каждой функции $f \in \mathcal{F}$ найдется конечная (как множество пар) функция $g \colon \mathbb{N} \mapsto \mathbb{N}$, такая что $g \subseteq f$ и $g \in \mathcal{F}$;

(монотонность) для каждой функции $f \in \mathcal{F}$ и для любой вычислимой функции $h \colon \mathbb{N} \mapsto \mathbb{N}$, такой что $f \subseteq h$, верно $h \in \mathcal{F}$.

Доказательство:

Докажем свойство компактности множества \mathcal{F} , рассуждая от противного. Итак, пусть есть функция $f \in \mathcal{F}$, т. ч. никакая ее конечная «подфункция» $g \subseteq f$ не лежит в \mathcal{F} . Установим неперечислимость индексного множества F. Для этого рассмотрим функцию V, заданную равенством

$$V(n,x) \simeq \begin{cases} f(x), & \text{если } \forall m < x \ \neg T(n,n,m); \\ \text{неопр.} & \text{иначе.} \end{cases}$$

Как мы уже видели в примере ??, такая функция должна быть вычислима. В силу главности U тогда найдется вычислимая тотальная функция s с условием $\forall n \{s(n)\} = V_n$.

Если $n \in K$, то $\exists k \, T(n,n,k)$, а значит, множество dom V_n ограничено сверху числом k и является конечным. С другой стороны, значения V_n и f совпадают на входах из dom V_n . Таким образом, V_n является конечной «подфункцией» функции f, а потому $\{s(n)\} = V_n \notin \mathcal{F}$ в силу нашего предположения. Отсюда $s(n) \notin F$. Если $n \notin K$, то $\forall m \neg T(n,n,m)$, откуда $\{s(n)\} = V_n = f \in \mathcal{F}$, а значит, $s(n) \in F$.

Итак, $n \notin K$ равносильно $s(n) \in F$ для любого n. Получаем $\bar{K} \leq_m F$, что влечет неперечислимость множества F.

Докажем теперь монотонность. Вновь рассуждая от противного, предположим, что множество F перечислимо, однако есть функция $f \in \mathcal{F}$, т. ч. некоторое ее вычислимое продолжение $h \supseteq f$ не лежит в \mathcal{F} . Нашей целью будет получить противоречие.

Раз F перечислимо, то согласно уже доказанному свойству компактности, найдется конечная функция $g\colon \mathbb{N} \mapsto \mathbb{N}$, такая что $g\subseteq f$ и $g\in \mathcal{F}$. Очевидно, что $g\subseteq h$. Рассмотрим функцию $V\colon \mathbb{N}^2\mapsto \mathbb{N}$, заданную равенством

$$V(n,x) \simeq \begin{cases} h(x), & \text{если } n \in K \text{ или } x \in \text{dom } g; \\ \text{неопр.}, & \text{если } n \notin K \text{ и } x \notin \text{dom } g. \end{cases}$$

Так как конечна функция g, конечно, а значит, разрешимо множество $\operatorname{dom} g$. Поэтому функция V вычислима: если $x \in \operatorname{dom} g$, то передаем управление алгоритму вычисления h на входе x; иначе $x \notin \operatorname{dom} g$, и тогда получаем $V(n,x) \simeq h(x) \cdot \omega_K(n)$, где мы имеем композицию вычислимых функций в правой части. Используя главность у. в. ф. U, для некоторой вычислимой тотальной функции s имеем $V_n = \{s(n)\}$ при всех n.

Если $n \in K$, то $\{s(n)\} = V_n = h \notin \mathcal{F}$. Если же $n \notin K$, то $V_n(x) \simeq h(x) = g(x)$ при всех $x \in \text{dom } g$, а при $x \notin \text{dom } g$ значение $V_n(x)$ неопределено; т. е. $\{s(n)\} = V_n = g \in \mathcal{F}$. Таким образом, $n \notin K$ равносильно $s(n) \in F$ для любого n. Получаем $\bar{K} \leq_m F$, что влечет неперечислимость множества F и требуемое противоречие.

2.22 Классы Σ_n и \prod_n арифметической иерархии и их простейшие свойства.

Для начала, определим классы $\sum_0^{(s)}$ и $\prod_0^{(s)}$ как множества всевозможных разрешимых подмножеств множества $\mathbb{N}^s, s>0$, с этими объектами мы хорошо знакомы. Арифметическая иерархия будет строиться путем навешивания кванторов на данные множества: Множество $A\subseteq\mathbb{N}^S$ принадлежит классу $\sum_n^{(s)}(n,s\geq 0)$, тогда и только тогда, когда существует разрешимое свойство $R\subseteq\mathbb{N}^{n+s}$, такое что при всех $\vec{x}\in\mathbb{N}^s$ верно:

$$\vec{x} \in A \leftrightarrow \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n R(y_1, y_2, \dots y_n, \vec{x}),$$

где квантор Q есть \forall при четных n и \exists при нечетных. Иначе говоря, на свойство R навешены n чередующихся кванторов, причем самый внешний, квантор существования. Двойственным образом, определим $\prod_n^{(s)}$: Множество $A\subseteq \mathbb{N}^S$ принадлежит классу $\prod_n^{(s)}(n,s\geq 0)$, тогда и только тогда, когда существует разрешимое свойство $R\subseteq \mathbb{N}^{n+s}$, такое что при всех $\vec{x}\in \mathbb{N}^s$ верно:

$$\vec{x} \in A \leftrightarrow \forall y_1 \exists y_2 \forall y_3 \exists y_4 \dots Qy_n R(y_1, y_2, \dots y_n, \vec{x}),$$

где квантор Q есть \exists при четных n и \forall при нечетных. Иначе говоря, на свойство R навешены n чередующихся кванторов, причем самый внешний, квантор всеобщности.

Для удобства абстрагируемся от размерности и положим $\sum_n = \bigcup_{s>0} \sum_n^{(s)}$ и аналогично $\prod_n = \bigcup_{s>0} \prod_n^{(s)}$. Лемма (91). Для любых множеств $A, B \in \mathbb{N}^s$ верно:

- 1. $A \in \sum_{n+1}$ тогда и только тогда, когда существует множество $C \in \prod_n^{(1+s)}$, что $\vec{(x)} \in A \leftrightarrow \exists y C(y, \vec{x})$ при всех \vec{x} .
- 2. $A \in \prod_{n+1}$ тогда и только тогда, когда существует множество $C \in \sum_n^{(1+s)}$, что $\vec(x) \in A \leftrightarrow \forall y C(y, \vec{x})$ при всех \vec{x} .
- 3. если $\vec{x} \in A \leftrightarrow \exists y C(y, \vec{x})$, для некоторого $C \in \sum_n$ и всех \vec{x} , то $A \in \sum_n$;
- 4. если $\vec{x} \in A \leftrightarrow \forall y C(y, \vec{x})$, для некоторого $C \in \prod_n$ и всех \vec{x} , то $A \in \prod_n$;
- 5. если $A, B \in \sum_n$, то $A \cap B, A \cup B \in \sum_n$, но $\neg A \in \prod_n$;
- 6. если $A, B \in \prod_n$, то $A \cap B, A \cup B \in \prod_n$, но $\neg A \in \sum_n$.

Докажем по порядку эти утверждения:

- 1. Очевидно из определения;
- 2. Очевидно из определения;
- 3. Поскольку $C \in \sum_n$, то для некоторого $R \subseteq \mathbb{N}^{1+n+s}$ будем иметь:

$$\vec{x} \in A \leftrightarrow \exists y \exists y_1 \forall y_2 \exists y_3 \dots Qy_n \ R(y, y_1, y_2, \dots, y_n, \vec{x}) \ (\forall \vec{x} \in \mathbb{N}^s).$$

Объединим первые 2 квантора существования в 1 при помощи кодирования пар:

$$\vec{x} \in A \leftrightarrow \exists z \forall y_2 \exists y_3 \dots Q y_n \ R(\pi^1(z), \pi^2(z), y_2, \dots, y_n, \vec{x}) \ (\forall \vec{x} \in \mathbb{N}^s).$$

В силу разрешимости и тотальности функции π^i получаем, что (n+s)-мерное множество R', где $R'(z, y_2, \dots, y_n, \vec{x}) \leftrightarrow R(\pi^1(z), \pi^2(z), y_2, \dots, y_n, \vec{x})$, разрешимо. Окончательно получаем, что:

$$\vec{x} \in A \leftrightarrow \exists z \forall y_2 \exists y_3 \forall y_4 \dots Qy_n \ R'(z, y_2, \dots, y_n, \vec{x})$$

при всех $\vec{x} \in \mathbb{N}^s$, что по определению означает $A \in \sum_n$.;

- 4. Доказывается аналогично предыдущему пункту;
- 5. По предположению для каждого $\vec{x} \in \mathbb{N}^s$ выполнены эквивалентности:

$$x \in A \leftrightarrow \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n \ R_1(y_1, y_2, \dots y_n, \vec{x})$$
$$x \in B \leftrightarrow \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n \ R_2(y_1, y_2, \dots y_n, \vec{x})$$

Для некоторых разрешимых множеств $R_1, R_2 \subseteq \mathbb{N}^{n+s}$. Далее мы применим известные законы логики предикатов и получим:

$$\neg A(\vec{x}) \leftrightarrow \vec{x} \notin A \leftrightarrow \neg \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n \ R_1(y_1, y_2, \dots y_n, \vec{x}) \leftrightarrow \\ \leftrightarrow \forall y_1 \neg \forall y_2 \exists y_3 \forall y_4 \dots Qy_n \ R_1(y_1, y_2, \dots y_n, \vec{x}) \leftrightarrow \\ \leftrightarrow \forall y_1 \exists y_2 \forall y_3 \exists y_4 \dots \overline{Q}y_n \neg R_1(y_1, y_2, \dots y_n, \vec{x})$$

Здесь квантор \overline{Q} есть противоположный квантору Q. Поскольку свойство $\neg R_1$ остается разрешимым, то по определению имеем $\neg A \in \prod_n$. Как известно из курса логики, связанные кванторами переменные можно переименовывать в свежие, не встречавшиеся прежде в формуле, сохраняя логическую эквивалентность. Так же известны равносильности $\mu \cap \forall x \phi \leftrightarrow \forall x (\mu \cap \phi)$ и $\mu \cap \exists x \phi \leftrightarrow \exists x (\mu \cap \phi)$, справедливые при отсутствии свободных вхождений х в μ . Поэтому проведем последний шаг доказательства, переименовав y_i в w_i :

$$(A \wedge B)(\vec{x}) \leftrightarrow \vec{x} \notin (A \cap B) \leftrightarrow \\ \leftrightarrow \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n R_1(y_1, y_2, \dots, y_n, \vec{x}) \wedge \exists w_1 \forall w_2 \exists w_3 \forall w_4 \dots Qw_n R_1(w_1, w_2, \dots, w_n, \vec{x}) \leftrightarrow \\ \leftrightarrow \exists y_1 \exists w_1 (\forall y_2 \exists y_3 \forall y_4 \dots Qy_n R_1(y_1, y_2, \dots, y_n, \vec{x}) \wedge \forall w_2 \exists w_3 \forall w_4 \dots Qw_n R_1(w_1, w_2, \dots, w_n, \vec{x})) \leftrightarrow \\ \leftrightarrow \exists y_1 \exists w_1 \forall y_2 \forall w_2 \exists y_3 \exists w_3 \dots Qy_n Qw_n (R_1(y_1, y_2, \dots, y_n, \vec{x}) \wedge R_2(w_1, w_2, \dots, w_n, \vec{x}))$$

. Наконец, свойство $R'(\vec{y}, \vec{w}, \vec{x}) \leftrightarrow R_1(\vec{y}, \vec{x}) \wedge R_2(\vec{w}, \vec{x})$ разрешимо как логическая операция над разрешимыми. Далее мы будем применять уже установленные утверждения с первого по четвертое. Без ограничения общности, пусть $Q = \forall$. Тогда свойство $Qw_n R'(\vec{y}, \vec{w}, \vec{x})$ лежит в классе \prod_1 по определению, а $Qy_nQw_nR'(\vec{y},\vec{w},\vec{x})$ лежит там же в силу утверждения 4. Но тогда $\exists y_{n-1}\exists w_{n-1}Qy_nQw_nR'(\vec{y},\vec{w},\vec{x}) \in \mathbb{R}$ \sum_2 вследствие первого и третьего утверждений. Рассуждания аналогично, индукцией по n, получаем, что $A \wedge B \in \sum_n$. Случай дизъюнкции доказывается аналогично!

6. Доказывается аналогично предыдущему пункту.

Классы \sum_n и \prod_n арифметической иерархии. Включение \sum_n и \prod_n ($\sum_{n+1} \cap \prod_{n+1}$ при n>0 (без доказательства строгости). 2.23

Определения классов $\sum_n^{(s)}$ и $\prod_n^{(s)}$ есть в предыдущем билете. Докажем результат о включении: Лемма (93). При всех $n \in \mathbb{N}$ и $s \in \mathbb{N}_+$ верно $\sum_n^{(s)} \cup \prod_n^{(s)} \subseteq \sum_{n+1}^{(s)} \cap \prod_{n+1}^{(s)}$ Доказательство: Допустим, что $A \in \sum_n^{(s)}$. Тогда найдется разрешимое множество $R \subseteq \mathbb{N}^{n+s}$, что при

всех $\vec{x} \in \mathbb{N}^s$:

$$\vec{x} \in A \leftrightarrow \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n R(y_1, y_2 \dots y_n, \vec{x}).$$

Из логики известно, что навешивание квантора по переменной, не имеющий (свободных) вхождений в формулу—так называемого фиктивного квантора—не меняет эту формулу с точностью до эквивалентности. Поэтому выбрав переменную w отличной от всех x_i и y_i получим:

$$\vec{x} \in A \leftrightarrow \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n \overline{Q} w R(y_1, y_2 \dots y_n, \vec{x}).$$

откуда сразу же следует $A \in \sum_{n+1}^{(s)}$ и:

$$\vec{x} \in A \leftrightarrow \forall w \exists y_1 \forall y_2 \exists y_3 \forall y_4 \dots Qy_n R(y_1, y_2 \dots y_n, \vec{x}).$$

откуда $A \in \prod_{n=1}^{(s)}$. Подходя несколько более формально к нашему определению иерархии, мы все же обязаны сделать R зависящим от w, но тогда, конечно, мы можем оставить эту зависимость фиктивной: $\forall w, \vec{y}, \vec{x}$ положим R'(w,y,x)=R(y,z), откуда следует разрешимость R'. Мы получили, что $\sum_{n=0}^{(s)} \sum_{n=1}^{(s)} \bigcap_{n=1}^{(s)} \sum_{n=1}^{(s)} \bigcap_{n=1}^{(s)} \bigcap_{n$ Случай $A \in \prod_{n=1}^{(s)}$ рассматривается абсолютно аналогично или сослаться на лемму из предыдущего билета (91 в оригинальной нумерации). Тогда $\overline{A} \in \prod_{n=1}^{(s)} \subseteq \sum_{n=1}^{(s)} \cap \prod_{n=1}^{(s)} \implies A = \overline{\overline{A}} \in \sum_{n=1}^{(s)} \cap \prod_{n=1}^{(s)}$