GERBANG LOGIKA DAN ALJABAR BOOLEAN

Pertemuan 3

OUTLINE

- Binary Logic
- Logic Gates (AND, OR, NOT, NAND, NOR, XOR, XNOR)
- Dasar aljabar boolean

BINARY LOGIC

 Binary logic deals with binary variables and the mathematical operation applied to this variables

- Binary variables biasanya dinyatakan dalam alphabet :A,B,C, X,Y,Z
- Nilai binary logic 0 atau 1
 - Disebut juga nilai Boolean
- Nilai ini menyatakan keadaan atau state atau logic level dari variable tersebut

Logic 0	Logic 1
False	True
Off	On
Low	High
No	Yes
Open switch	Closed switch

TIGA LOGIKA BINER DASAR

- AND
- OR
- NOT

GERBANG LOGIKA

- Adalah rangkaian elektronik yang beroperasi dengan I atau lebih masukan untuk menghasilkan suatu keluaran
- Gate delay: tergantung pada teknologi yang digunakan dan jenis transisi yang sedang terjadi
- Implementasi gerbang logika kebanyakan dalam bentuk 3 logika dasar

TABEL KEBENARAN

• Tabel kebenaran adalah sarana untuk menggambarkan bagaimana output rangkaian logika tergantung pada level logika yang ada pada input.

Inputs		Output
А	В	X
0	0	1
0	1	0
1	0	1
1	1	0

OR

Boolean expression Untuk OR:

$$x = A + B$$

- Dibaca "x equals A OR B"
 - Tidak sama dengan operasi aritmatika
 - Untuk membedakan, sering digunakan notasi lain

$$x = A \lor B$$

OR		
А	В	X
0	0	0
0	1	1
1	0	1
1	1	1

OR

 OR adalah rangkaian yang mempunyai 2 atau lebih input, dengan output adalah kombinasi OR dari semua input tersebut

$$x = A + B + C$$

AND

• Ekspresi untuk AND:

$$x = A \cdot B$$

- "x equals A AND B"
- Notasi lain $x = A^B$

AND		
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

AND

• AND menerima masukan 2 atau lebih input dan output berupa kombinasi AND dari input tersebut

TIMING DIAGRAM

NOT OPERATION

- The NOT adalah unary operation
- Boolean expression for the NOT operation: $x = \overline{A}$
- "x equals the inverse of A"
- Disebut juga inversion atau complementation.
- Notasi lain yaitu A'

NOT CIRCUIT

- Disebut juga inverter.
- Input selalu berupa single input

NOT	
А	x=A'
0	1
1	0

NOR GATE

- Boolean expression for the NOR operation:
- $x = \overline{A + B}$

NOR		
Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

NAND GATE

- Boolean expression for the NAND operation
- $x = \overline{AB}$ NAND: Universal Gate, functionally complete

NAND				
Α	В	X		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

UNIVERSALITY OF NAND GATES

NOT implemented using NAND Gates

AND implemented using NAND Gates

OR implemented using NAND Gates

UNIVERSALITY OF NOR GATES

XOR DAN XNOR

Exclusive-OR (XOR)	$X \longrightarrow F$	$F = X\overline{Y} + \overline{X}Y$ $= X \oplus Y$	X Y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR (XNOR)	х _Y F	$F = X\underline{Y} + \overline{X}\overline{Y}$ $= X \oplus Y$	X Y F 0 0 1 0 1 0 1 0 0 1 1 1

 Semua rangkaian logika bisa dibentuk dengan menggunakan 3 logika dasar AND, OR, NOT

•
$$x = (A+B)C$$

EVALUASI KELUARAN RANGKAIN LOGIKA

- x = ABC(A+D)
- Determine the output x given A=0, B=1, C=1, D=1.

BOOLEAN ALGEBRA

KONSEP

- George Boole
- Ekspresi Boolean: adalah ekspresi yang terdiri dari variable biner, nilai 0 dan 1;
 symbol operasi logika, dan kurung
- fungsi Boolean: Persamaan Boolean yang terdiri dari binary variables diikuti tanda sama dengan dan ekspresi Boolean
- Dapat dinyatakan dalam tabel kebenaran
- Fungsi Boolean dalam bentuk persamaan aljabar Boolean, dapat direpresentasikan menjadi beberapa persamaan lain
 - Mungkin untuk menghasilkan representasi yang lebih sederhana

BOOLEAN THEOREMS (SINGLE-VARIABLE)

$$| x^* 0 = 0$$

2.
$$x^* | =x$$

3.
$$x^*x=x$$

5.
$$x+0=x$$

6.
$$x+|=|$$

7.
$$x+x=x$$

8.
$$x+x'=1$$

BOOLEAN THEOREMS (MULTIVARIABLE)

10.
$$X + Y = Y + X$$
 11. $XY = YX$ Commutative
12. $X + (Y + Z) = (X + Y) + Z$ 13. $X(YZ) = (XY)Z$ Associative
14. $X(Y + Z) = XY + XZ$ 15. $X + YZ = (X + Y)(X + Z)$ Distributive
16. $\overline{X + Y} = \overline{X} \cdot \overline{Y}$ 17. $\overline{X \cdot Y} = \overline{X} + \overline{Y}$ DeMorgan's

DEMORGAN'S THEOREMS

- (x+y)'=x'y'
- (xy)'=x'+y'

Truth Tables to Verify DeMorgan's Theorem								
(a) X	Υ	X + Y	X + Y	(b) X	Υ	X	Y	₹. ₹
0	0	0	1	0	0	1	1	1
0	1	1	0	0	1	1	0	0
1	0	1	0	1	0	0	1	0
1	1	1	0	1	1	0	0	0

2-1. *Demonstrate by means of truth tables the validity of the following identities:

(a) DeMorgan's theorem for three variables: $\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$

(b) The second distributive law: X + YZ = (X + Y)(X + Z)

(c)
$$\overline{X}Y + \overline{Y}Z + X\overline{Z} = X\overline{Y} + Y\overline{Z} + \overline{X}Z$$

2-2. *Prove the identity of each of the following Boolean equations, using algebraic manipulation:

(a)
$$\overline{X}\overline{Y} + \overline{X}Y + XY = \overline{X} + Y$$

(b)
$$\overline{A}B + \overline{B}\overline{C} + AB + \overline{B}C = 1$$

(c)
$$Y + \overline{X}Z + X\overline{Y} = X + Y + Z$$

(d)
$$\overline{X}\overline{Y} + \overline{Y}Z + XZ + XY + Y\overline{Z} = \overline{X}\overline{Y} + XZ + Y\overline{Z}$$

2-3. +Prove the identity of each of the following Boolean equations, using algebraic manipulation:

(a)
$$AB\overline{C} + B\overline{C}\overline{D} + BC + \overline{C}D = B + \overline{C}D$$

(b)
$$WY + \overline{W}Y\overline{Z} + WXZ + \overline{W}X\overline{Y} = WY + \overline{W}X\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z$$

$$(\mathbf{c})A\overline{D} + \overline{A}B + \overline{C}D + \overline{B}C = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + C + D)$$

2-4. +Given that $A \cdot B = 0$ and A + B = 1, use algebraic manipulation to prove that

$$(A + C) \cdot (\overline{A} + B) \cdot (B + C) = B \cdot C$$

2-2. *Prove the identity of each of the following Boolean equations, using algebraic manipulation:

(a)
$$\overline{X}\overline{Y} + \overline{X}Y + XY = \overline{X} + Y$$

(b)
$$\overline{A}B + \overline{B}\overline{C} + AB + \overline{B}C = 1$$

