

# **USER GUIDE**

# 6618\_PDU\_S8\_URT\_V1\_00 Firmware Description Document

UG\_6618\_023

# **Table of Contents**

| 1   | Intro  | oduction                                                          | 5  |
|-----|--------|-------------------------------------------------------------------|----|
| 2   | Des    | cription of Basic Measurement Equations                           | 6  |
| 3   | Seri   | al Communication                                                  | 7  |
| 4   | Con    | nmand Line Interface                                              | 8  |
|     | 4.1    | Identification and Information Commands                           | 8  |
|     |        | Reset Commands                                                    | 8  |
|     | 4.3    | MPU Data Access Command                                           |    |
|     |        | 4.3.1 Individual Address Read                                     |    |
|     |        | 4.3.2 Consecutive Read                                            |    |
|     |        | 4.3.3 Block Reads                                                 |    |
|     |        | 4.3.4 Concatenated Reads                                          |    |
|     |        | 4.3.5 MPU Data Write                                              |    |
|     | 1 1    |                                                                   |    |
|     | 4.4    | Auxiliary Commands                                                | ∠ا |
|     | 45     | Calibration Commands                                              |    |
|     | 7.0    | 4.5.1 Complete Calibration Command ("Single Command Calibration") |    |
|     |        | 4.5.1.1 CAL Command                                               | 13 |
|     |        | 4.5.1.2 CALW Command                                              |    |
|     |        | 4.5.2 Setting Target and Tolerance Parameters                     |    |
|     |        | 4.5.3 Atomic Calibration Commands                                 |    |
|     |        | 4.5.3.1 CLV Command                                               |    |
|     |        | 4.5.3.2 CLI Command                                               |    |
|     |        | 4.5.3.3 CLP Command                                               |    |
|     | 4.0    | 4.5.3.4 CLT Command                                               |    |
|     | 4.6    | Relay Control Command                                             |    |
|     | 17     | 4.6.1 TC Command  CE Data Access Commands                         |    |
|     | 4.7    | 4.7.1 Single Register CE Access                                   |    |
|     |        | 4.7.2 Consecutive CE Reads                                        |    |
|     |        | 4.7.3 CE Data Write                                               |    |
|     |        | 4.7.4 CE Data Access Command Summary                              |    |
|     | 4.8    | CE Control and Update Commands                                    |    |
|     |        | 4.8.1 Turn Off CE Command                                         | 20 |
|     |        | 4.8.2 Update Command                                              | 20 |
|     |        | 4.8.3 Turn On CE Command                                          |    |
|     | 4.9    | I/O RAM (Configuration) Commands                                  |    |
|     |        | 4.9.1 Energy Accumulation Interval                                |    |
| 5   | MP     | J Measurement Outputs                                             | 22 |
| 6   | Con    | figuration Parameter Entry                                        | 62 |
|     | 6.1    | MPU Parameters                                                    | 62 |
|     | 6.2    | CE Parameters                                                     | 80 |
| 7   | Add    | lress Content Summary                                             | 87 |
| 8   | Con    | tact Information                                                  | 96 |
| Rev | /ision | History                                                           | 96 |

# **Tables**

| Table 1: Measurement Equations Definitions     | 6  |
|------------------------------------------------|----|
| Table 2: MPU Outputs for Wideband Calculations |    |
| Table 3: MPU Outputs for Narrowband Method     | 42 |
| Table 4: MPU Parameters                        | 62 |
| Table 5: CE Parameters                         | 80 |
| Table 6: MPU Input Summary                     | 87 |
| Table 7: MPU Output Summary                    |    |
| Table 8: CE Input Summary                      |    |

## 1 Introduction

This document describes the 6618\_PDU\_S8\_URT\_V1\_00 demo firmware and its use with the Teridian 78M6618 power and energy measurement IC. This firmware provides simple methods for calibration, relay control, and access to precision measurement data such as Watts, Voltage, Current, accumulated Energy and line frequency. It is optimized for measurement and control of eight single phase AC loads using current shunts as the current sensors, but Current Transformer (CT) sensors may also be used if desired.

All measurement calculations are computed by the 78M6618 and communicated to the host processor over a serial interface (UART0) on the TX and RX pins of the 78M6618 device at 38.400 bps baud, 8N1, Xon/Xoff.

RTC (real time clock), LCD Driver, and Battery Modes are not supported by this firmware.

DIO pins utilized by this firmware include:

- DIO7, 8, 9, 10, 11, 13, 14, and 15 for relay control of Outlets 8:1 respectively.
- DIO6 for Line/Neutral Reversal FAULT (default) or Watt Pulse output.
- DIO17 and DIO18 for Ready and Active status indicators.
- DIO4 for configurable alarm/interrupt pin.



The following sections detail the commands to be sent by the host to configure the 78M6618 and for accessing measurement information.

# 2 Description of Basic Measurement Equations

The Teridian 78M6618 with demo firmware 6618\_PDU\_S8\_URT\_V1\_00 provides the user with two types of continuously updating measurement data (on 1 second increments by default). One is defined as "Narrowband" (NB) and the other is defined as "Wideband" (WB).

Narrowband measurements are typically used by utilities where the measured waveforms are assumed to be sinusoidal.

Wideband measurements are generally of interest when measuring nonlinear systems such as switched mode power supplies that tend to have non-sinusoidal waveforms.

Table 1 lists the basic measurement equations for the Narrowband and the Wideband methods.

**Narrowband Equation Symbol Parameter** Wideband Equation  $V = \sqrt{\sum v(t)^2}$  $V = \sqrt{\sum v(t)^2}$ **RMS Voltage**  $I = \sqrt{\sum i(t)^2}$ Τ **RMS Current** I = S/VР  $P = \sum (i(t) * v(t))$  $P = \sum (i(t) * v(t))$ Active Power Reactive  $Q = \sqrt{(S^2 - P^2)}$ Q  $Q = \sum (i(t) * v(t) \text{shift } 90^{\circ})$ Power Apparent  $S = \sqrt{(P^2 + Q^2)}$ S = V \* I S Power PF Power Factor P/S P/S PΑ Phase Angle ACOS (P/S) ACOS (P/S)

**Table 1: Measurement Equations Definitions** 

Both types of measurement outputs are continuously available to the user. To obtain measurement outputs, the serial UART interface between the 78M6618 and the host processor must be set up. This is described in the next section.

# 3 Serial Communication

The serial communication with the 78M6618 takes place over a UART (UART0) interface. The default settings for the UART of the 78M6618, as implemented in this firmware, are given below:

Baud Rate: 38400bps

Data Bits: 8
Parity: None
Stop Bits: 1

Flow Control: Xon/Xoff

The host's serial interface port is required to implement these settings on its UART. To verify communication between the host and the 78M6618, the host must send a <CR> (carriage return) to the 78M6618. Communication is verified when the 78M6618 returns a > (greater than sign) known as the command prompt. An example is given below:

The host sends the following to the 78M6618:

<CR>

The 78M6618 sends the following back to the host:

>

Commands the host may send to the 78M6618 in order for the host to configure the 78M6618 or to receive the measurement data are given in the next section.

## 4 Command Line Interface

Firmware 6618\_PDU\_S8\_URT\_V1\_00 implements an instruction set called the Command Line Interface (CLI), which facilitates simple communication via UART between the 78M6618 and the host processor. The CLI provides a set of commands which are used by the host to configure and to obtain information from the 78M6618.

#### 4.1 Identification and Information Commands

The I command is used to identify the revisions of the 6618\_PDU\_S8\_URT\_V1\_00 firmware code and the embedded CE code. The host sends the I command to the 78M6618 as follows:

>I<CR>

The 78M6618 will send back to the host the following:

TSC 78M6618 PDU S8 URT v1.00 APRIL 16 2010(c)2009 Teridian Semiconductor Corp. All Rights Reserved CE6618 PDU S8 A01 V0 2

>

## 4.2 Reset Commands

A soft reset of the 78M6618 can be performed by using the Z command. The soft reset restarts code execution at addr 0000 but does not alter flash contents. To issue a soft reset to the 78M6618, the host sends the following:

>Z<CR>

The W command acts like a hardware reset. The energy accumulators in XRAM will retain their values.

| Z            | Reset                                 |                           |  |
|--------------|---------------------------------------|---------------------------|--|
| Description: | Allows the user to cause soft resets. |                           |  |
| Usage: Z     |                                       | Soft reset.               |  |
|              | W                                     | Simulates watchdog reset. |  |

#### 4.3 MPU Data Access Command

The most pertinent is the MPU data access command. All the measurement calculations are stored in the MPU data addresses of the 78M6618. The host requests measurement information using the MPU data access command which is a right parenthesis

)

To request information, the host sends the MPU data access command, the address (in hex) which is requested, the format in which the data is desired (Hex or Decimal) and a carriage return. The MPU data contents of the addresses that are available to the host are contained in Section 5.

#### 4.3.1 Individual Address Read

The host can request the information in hex or decimal format. \$ requests information in hex, and ? requests information in decimal.

When requesting information in decimal, the data is preceded by a + or a -. The exception is )20F? which returns a string (see the 20F description in Section 6.1).

When requesting information in hex, 32-bit data (eight hex characters) are returned in 2's compliment data format.

An example of a command requesting the measured power in Watts from Outlet 1 (located at address 0x08) in decimal is as follows:

```
>)08?<CR>
```

An example of a command requesting the measured power in Watts from Outlet 1 (located at address 0x08) in hex is as follows:

>)08\$<CR>

#### 4.3.2 Consecutive Read

The host can request information from consecutive addresses by adding additional? for decimal or additional \$ for hex.

An example of requests for the contents in decimal of five consecutive addresses starting with 0x10 is:

>)10?????<CR>

An example of requests for the contents in hex of five consecutive addresses starting with 0x10 would be:

>)10\$\$\$\$\$<CR>

Note: The number of characters per line (CLI command string from host) is limited to no more than 60.

#### 4.3.3 Block Reads

The block read command can also be used to read consecutive registers: )saddr:eaddr? For decimal format or )saddr:eaddr\$ for hex format where saddr is the start address and eaddr is the final address.

The following block read command requests the Outlet 1 wideband information contained in Table 2 in decimal format:

>)08:0F?<CR>

#### 4.3.4 Concatenated Reads

Multiple commands can also be added on a single line. Requesting information in decimal from two locations and the block command from above are given below:

>)01?)07?)0B:0F?<CR>

Note: The number of characters per line (CLI command string from host) is limited to no more than 60.

#### 4.3.5 MPU Data Write

Where applicable, the MPU data access command can be used to write values to configurable inputs. An example where the minimum temperature threshold is to be changed to 10°C is set as follows:

>)240=+10.0

# 4.3.6 MPU Data Access Commands

| )             | MPU Data Access                                          |                                                                                                                                                                |  |  |
|---------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description:  | Allows user to read from and write to MPU data space.    |                                                                                                                                                                |  |  |
| Usage:        | ) {Starting MPU Data Address} {option}{option} <cr></cr> |                                                                                                                                                                |  |  |
| Command       | )saddr? <cr></cr>                                        | Read the register in decimal.                                                                                                                                  |  |  |
| Combinations: | )saddr?? <cr></cr>                                       | Read two consecutive registers in decimal.                                                                                                                     |  |  |
|               | )saddr??? <cr></cr>                                      | Read three consecutive registers in decimal.                                                                                                                   |  |  |
|               | )saddr:eaddr?                                            | Block read command in decimal format. Read consecutive registers starting with starting address saddr and ending with address eaddr. Results given in decimal. |  |  |
|               | )saddr\$ <cr></cr>                                       | Read the register word in hex.                                                                                                                                 |  |  |
|               | )saddr\$\$ <cr></cr>                                     | Read two consecutive register words in hex.                                                                                                                    |  |  |
|               | )saddr\$\$\$ <cr></cr>                                   | Read three consecutive register words in hex.                                                                                                                  |  |  |
|               | )saddr:eaddr\$                                           | Block read command in hex format. Read consecutive registers starting with starting address saddr and ending with address eaddr. Results given in hex.         |  |  |
|               | )saddr=n <cr></cr>                                       | Write the value n to address saddr in hex format.                                                                                                              |  |  |
|               | )saddr=n=m <cr></cr>                                     | Write the values n and m to two consecutive addresses starting at saddr in hex format.                                                                         |  |  |
|               | )saddr=+n <cr></cr>                                      | Write the value n to address saddr in decimal format.                                                                                                          |  |  |
|               | )saddr=+n=+m <cr></cr>                                   | Write the values n and m to two consecutive addresses starting at saddr in decimal format.                                                                     |  |  |
| Examples:     | )08\$ <cr></cr>                                          | Reads data word 0x08 in hex format.                                                                                                                            |  |  |
|               | )08\$\$ <cr></cr>                                        | Reads data words 0x08, 0x09 in hex format.                                                                                                                     |  |  |
|               | )08\$\$\$ <cr></cr>                                      | Reads data words 0x08, 0x09, 0x0A in hex format.                                                                                                               |  |  |
|               | )108:10F\$                                               | Read Outlet 1 narrowband data words in hex.                                                                                                                    |  |  |
|               | )08? <cr></cr>                                           | Reads data word 0x08 in decimal format.                                                                                                                        |  |  |
|               | )08?? <cr></cr>                                          | Reads data words 0x08, 0x09 in decimal format.                                                                                                                 |  |  |
|               | )08??? <cr></cr>                                         | Reads data words 0x08, 0x09, 0x0A in decimal format.                                                                                                           |  |  |
|               | )108:10F?                                                | Read Outlet 1 narrowband data words in decimal.                                                                                                                |  |  |
|               | )04=12345678 <cr></cr>                                   | Writes word @ 0x04 in hex format.                                                                                                                              |  |  |
|               | )04=12345678=9876ABCD <cr></cr>                          | Writes two words starting @ 0x04 in hex format.                                                                                                                |  |  |
|               | )04=+123 <cr></cr>                                       | Writes word @ 0x04 in decimal format.                                                                                                                          |  |  |
|               | )04=+123=+334 <cr></cr>                                  | Writes two words starting @ 0x04 in decimal format.                                                                                                            |  |  |

# 4.4 Auxiliary Commands

## 4.4.1 Repeat Command

The repeat command is useful for repetitive monitoring measurements and reducing the requesting command to a single character.

If the host requests line frequency, alarm status, overcurrent event count, Vrms SAG event count, Vrms overvoltage event count, and voltage for the PDU with the following command string:

>)01???????<CR>

If the host then desires this same request without issuing another command, the repeat command can be used:

>, (no carriage return needed for the repeat command)

The host only needs to send one character rather than an entire string.

|              | Auxiliary |                                                                                                                                                                                                                |
|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: | Various   |                                                                                                                                                                                                                |
| Commands:    | ,         | Typing a comma (",") repeats the command issued from the previous command line. This is very helpful when examining the value at a certain address over time, such as the CE DRAM address for the temperature. |
|              | /         | The slash ("/") is useful to separate comments from commands when sending macro text files via the serial interface. All characters in a line after the slash are ignored.                                     |

#### 4.5 Calibration Commands

Using the precision source method, the user provides a precision voltage and precision current load to the device for calibration. The 6618\_PDU\_S8\_URT\_V1\_00 firmware provides commands to calibrate the measurement units.

There are two types of calibration commands:

- The first type provides complete calibration.
- The second group, called atomic calibration commands, provides calibration for individual elements in the measurement equations.

Additionally, a "target calibration value" and a "target calibration tolerance" are provided to optimize the single point calibration results with regards to the system requirements.

# 4.5.1 Complete Calibration Command ("Single Command Calibration")

There are two calibration commands in this first group: CAL and CALW. **Only one of these commands is needed to calibrate each outlet.** 

To use these commands, a precision voltage source and a precision current source are required.

#### 4.5.1.1 CAL Command

To use the CAL command, enter the following for outlet 1:

>CAL1<CR>

The response is:

TCal OK

VCal OK:

ICal 1 OK:

>

The device calibrates the temperature (turns temperature compensation on), then calibrates the voltage (adjusts CAL VA and CAL VB registers and saves them to flash), and finally calibrates the current for Outlet 1 (adjusts CAL IA register and saves all the values to flash).

#### 4.5.1.2 CALW Command

To use the CALW command for outlet 1, enter the following:

>CALW1<CR>

The response is:

TCal OK

VCal OK:

WCal 1 OK:

>

The device will calibrate the temperature, calibrate the voltage, and finally calibrate the power and save all values to flash.

The commands are summarized in the table below:

| CALx         | Complete Calibration Commands                                     |                                                                                                                                                                                                      |
|--------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: | Allows the user to Calibrate the IC.                              |                                                                                                                                                                                                      |
| Usage:       |                                                                   | Calibrates temperature, then voltage, and finally current (sequentially for any combination of outlets).                                                                                             |
|              | CAL1 CAL2 CAL4 CAL8 CAL10 CAL20 CAL40 CAL40 CAL80 CALFF           | Examples: CAL1 for Outlet 1 CAL2 for Outlet 2 CAL4 for Outlet 3 CAL8 for Outlet 4 CAL10 for Outlet 5 CAL20 for Outlet 6 CAL40 for Outlet 7 CAL 80 for Outlet 8 CALFF for Outlets 1 through 8         |
|              |                                                                   | Calibrates temperature, then voltage, and finally power (sequentially for any combination of outlets).                                                                                               |
|              | CALW1 CALW2 CALW4 CALW8 CALW10 CALW20 CALW40 CALW40 CALW80 CALWFF | Examples: CALW1 for Outlet 1 CALW2 for Outlet 2 CALW4 for Outlet 3 CALW8 for Outlet 4 CALW10 for Outlet 5 CALW20 for Outlet 6 CALW40 for Outlet 7 CALW80 for Outlet 8 CALWFF for Outlets 1 through 8 |

#### 4.5.2 Setting Target and Tolerance Parameters

Calibration of the 78M6613 board requires two external precision reference sources: a voltage source and a current source. The current source could be replaced with a precision load resistor. The 78M6613 calibration procedure performs a single point calibration for each of the following: ambient temperature, load voltage and load current. The 78M6613 calibrates against the following default conditions:

Target Calibration Temperature: +22.0° C
Target Calibration Voltage: 120.000 VAC
Target Calibration Current: +1.000 Arms
Target Calibration Phase Angle: +0°
Target Calibration Watts: +120.000

Additionally, each of the above target parameters has a respective calibration tolerance. The calibration tolerance sets the threshold at which the calibration procedure closes-in on and then stops. The calibration procedure stops when the measured results fall within: Target Calibration  $\pm$  Target Tolerance.

Target Temperature Tolerance: +22.0° C
Target Voltage Tolerance: 0.010 mVAC
Target Current Tolerance: 0.010 Arms
Target Phase Angle Tolerance: +0°
Target Watts Tolerance: +120.000

The target calibration and target tolerance parameters can be changed. The target tolerance must be much larger than the reference source noise. Otherwise, the reference source noise will cause the calibration process to take longer or fail to calibrate.

See Table 4 for the address locations of the various target and tolerance registers.

Refer to the 78M661x Calibration Procedure Application Note for additional calibration procedure information.

#### 4.5.3 Atomic Calibration Commands

The atomic calibration commands provide individual calibration of voltage, current, temperature, and watts. A complete sequence of these atomic commands is equivalent to full calibration for the unit.

#### 4.5.3.1 CLV Command

An example of an atomic calibration command would be to calibrate voltage with the CLV command. The CLV command calibrates voltage to the target value and tolerance and saves the coefficients to flash. The CLV command example is given below:

>CLV<CR>

The response is:

VCal OK:

>

#### 4.5.3.2 CLI Command

The user can then calibrate the current on Outlet 1 using the CLI1 command. The CLI1 command calibrates the current on Outlet 1 to the target value and tolerance and saves the coefficients to flash. The CLI1 command example is given below:

>CLI1<CR>

The response is:

ICal 1 OK:

>

#### 4.5.3.3 CLP Command

The user can calibrate for phase added by a current transformer by using the CLP command. The CLP command calibrates the phase on the selected outlet to the target value and tolerance and saves the coefficient to flash. An example of the procedure for Outlet 1 is given below.

Apply a controlled precision voltage and current signal at a set phase angle.

- 1. Enter target phase angle at )223.
- 2. Enter phase tolerance at )21F
- 3. Enter phase calibration command.

>CLP1<CR>

The response is

>PCal 1 OK:

#### 4.5.3.4 CLT Command

The CLT command is used for the temperature calibration. With this command, temperature compensation is turned on. The target temperature is 22°C. If the ambient temperature is something other than 22°C, then the ambient temperature target at )22E should be set to the ambient temperature prior to issuing the CLT command. The CLT command example is given below:

>CLT<CR>

The response is:

TCal OK

>

A summary of the atomic calibration commands are given in the table below:

| CLxx         | Atomic Calibration Commands |                                                                        |
|--------------|-----------------------------|------------------------------------------------------------------------|
| Description: | Allows the user to Calibra  | te individual sections of the IC.                                      |
| Usage:       | CLV                         | Calibrates voltage only.                                               |
|              | CLI1                        | Calibrate current only for select outlets. Examples: CLI1 for Outlet 1 |
|              | CLI1                        | CLI2 for Outlet 2                                                      |
|              | CLI4                        | CLI4 for Outlet 3                                                      |
|              | CLI8                        | CLI8 for Outlet 4                                                      |
|              | CLI10                       | CLI10 for Outlet 5                                                     |
|              | CLI20                       | CLI20 for Outlet 6                                                     |
|              | CLI40                       | CLI40 for Outlet 7                                                     |
|              | CLI80                       | CLI80 for Outlet 8                                                     |
|              | CLIFF                       | CLIFF for all outlets (in sequence)                                    |
|              |                             | Calibrate power only for select outlets. Examples:                     |
|              | CLW1                        | CLW1 for Outlet 1                                                      |
|              | CLW2                        | CLW2 for Outlet 2                                                      |
|              | CLW4                        | CLW4 for Outlet 3                                                      |
|              | CLW8                        | CLW8 for Outlet 4                                                      |
|              | CLW10<br>CLW20              | CLW10 for Outlet 5<br>CLW20 for Outlet 6                               |
|              | CLW40                       | CLW40 for Outlet 7                                                     |
|              | CLW80                       | CLW80 for Outlet 8                                                     |
|              | CLWFF                       | CLWFF for all outlets (in sequence)                                    |
|              |                             | Calibrate phase only for select outlets. Examples:                     |
|              | CLP1                        | CLP1 for Outlet 1                                                      |
|              | CLP2                        | CLP1 for Outlet 2                                                      |
|              | CLP4                        | CLP1 for Outlet 3                                                      |
|              | CLP8                        | CLP1 for Outlet 4                                                      |
|              | CLP10<br>CLP20              | CLP1 for Outlet 5                                                      |
|              | CLP20<br>CLP40              | CLP1 for Outlet 6                                                      |
|              | CLP80                       | CLP1 for Outlet 7<br>CLP1 for Outlet 8                                 |
|              | CLPFF                       | CLPFF for all outlets (in sequence)                                    |
|              | CLT                         | Calibrate temperature only.                                            |

## 4.6 Relay Control Command

Relay control is implemented in the sample CLI application using the TC command. See Section 1, Introduction, for relay assignments to the DIOs for each specific channel. The TC command can be used to open (0) or close (1) circuit of all 8 channels. All necessary Sequence (time between each channel), Energized (for closing circuit), and De-Energized (for opening circuit) delay times are set up and used by the library using the following default values:

Energized delay time = 0ms
De-Energized delay time = 0ms
Sequence delay time = 100ms

#### 4.6.1 TC Command

The format of the TC command is as follows (where it is not a case sensitive):

>tc is the same as >TC or >Tc or >tC.

>TCxx where xx is a hex value with each bit represents the setting of each channel. The value of each bit is determined as 1 = closing and 0 = opening 0. All 8 channels will be processed sequentially starting from the highest channel number first with a sequence delay time in between. It is important to note that if the polarity for each Channel is inverted, bit 1 of the Relay Config register (0x0210) will be set accordingly in order for the Relay Control to work properly.

The TC commands are summarized in the following table:

| TCx         | Relay Control Commands                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Description | Allows the user to control the relay of                                  | all 8 channels in one command.                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Usage       |                                                                          | The CT command can be used to turn on/off relay of all 8 channels. Each bit represents the control (1=on, 0=off) for each channel where the LSB represents the lowest channel number.                                                                                                                                                                                                                                           |  |
|             | TC1 or TC01 TC2 or TC02 TC4 or TC04 TC8 or TC08 TC10 TC20 TC40 TC80 TCFF | Examples: Relay ON for Outlet 1, OFF all others. Relay ON for Outlet 2, OFF all others. Relay ON for Outlet 3, OFF all others. Relay ON for Outlet 4, OFF all others. Relay ON for Outlet 5, OFF all others. Relay ON for Outlet 6, OFF all others. Relay ON for Outlet 7, OFF all others. Relay ON for Outlet 8, OFF all others. Relay ON for Outlet 8, OFF all others. Relay ON for all channels. Relay OFF for all channels. |  |

#### 4.7 CE Data Access Commands

#### The commands that follow are included for reference only.

The CE is the main signal processing unit in the 78M6618. User writes to the CE data space are mainly for calibration purposes. For the advanced user, details of CE data access commands are described. The commands are similar to the MPU data access commands except that a ] is used for the CE data access command.

The host requests access to information from the CE data space using the CE data access command which is a right square bracket:

]

To request information, the host sends the CE data access command, the address (in hex) which is requested, the format in which the data is desired (hex or decimal) and a carriage return. The contents of the addresses that are available to the host are contained in Section 6.2.

The host can request the information in hex or decimal format. \$ requests information in hex and ? requests information in decimal.

### 4.7.1 Single Register CE Access

An example of a command requesting the calibration constant for current on Outlet 1 (located at address 0x10) in decimal is as follows:

```
>]10?<CR>
```

An example of a command requesting the calibration constant for current on Outlet 1 (located at address 0x10) in hex is as follows:

>]10\$<CR>

#### 4.7.2 Consecutive CE Reads

The host can request information from consecutive addresses by adding additional? for decimal or additional \$ for hex.

An example of requests for the contents in decimal of ten consecutive addresses starting with 0x10 would be:

```
>]10?????????<CR>
```

An example of requests for the contents in hex of ten consecutive addresses starting with 0x10 would be:

```
>110$$$$$$$$$<CR>
```

Note: The number of characters per line (CLI command string from host) is limited to 60.

#### 4.7.3 CE Data Write

If the cal coefficient for the IA current input is changed:

```
>]10=FFFFC9B0<CR>
```

# 4.7.4 CE Data Access Command Summary

CE Data Access examples are provided in the table that follows:

| 1             | CE Data Access                                         |                                                                                                 |  |
|---------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Description:  | Allows user to read from and write to CE data space.   |                                                                                                 |  |
| Usage:        | ] {Starting CE Data Address}{option}{option} <cr></cr> |                                                                                                 |  |
| Command       | ]saddr? <cr></cr>                                      | Read 32-bit word in decimal.                                                                    |  |
| Combinations: | ]saddr?? <cr></cr>                                     | Read two consecutive 32-bit words in decimal.                                                   |  |
|               | ]saddr??? <cr></cr>                                    | Read three consecutive 32-bit words in decimal.                                                 |  |
|               | ]saddr\$ <cr></cr>                                     | Read 32-bit words in hex.                                                                       |  |
|               | ]saddr\$\$ <cr></cr>                                   | Read two consecutive 32-bit words in hex.                                                       |  |
|               | ]saddr\$\$\$ <cr></cr>                                 | Read three consecutive 32-bit words in hex.                                                     |  |
| Examples:     | ]40\$ <cr></cr>                                        | Reads CE data word 0x40 in hex.                                                                 |  |
|               | ]40\$\$ <cr></cr>                                      | Reads CE data words 0x40 and 0x41 in hex.                                                       |  |
|               | ]40\$\$\$ <cr></cr>                                    | Reads CE data words 0x40, 0x41 and 0x42 in hex.                                                 |  |
|               | ]40? <cr></cr>                                         | Reads CE data words 0x40 in decimal.                                                            |  |
|               | ]40?? <cr></cr>                                        | Reads CE data words 0x40 and 0x41 in decimal.                                                   |  |
|               | ]40??? <cr></cr>                                       | Reads CE data words 0x40, 0x41 and 0x42 in decimal.                                             |  |
|               | ]7E=12345678 <cr></cr>                                 | Writes word at 0x7E (hex format).                                                               |  |
|               | ]7E=12345678=9876ABCD <cr></cr>                        | Writes two words starting at 0x7E (hex format).                                                 |  |
|               | ]7E=+2255 <cr></cr>                                    | Write the value 2255 in decimal to location 0x7E.                                               |  |
|               | ]7E=+2255=+456 <cr></cr>                               | Write the value 2255 in decimal to location 0x7E and the value 456 in decimal to location 0x7F. |  |

# 4.8 CE Control and Update Commands

The most pertinent CE control command is the enable command, CEn. It is mainly used to turn the CE on or off. The CE is normally enabled but in order to update any data entry to flash, the CE must first be turned off using the CE0 command.

#### 4.8.1 Turn Off CE Command

For this value to be the default value, the U command is used. The CE must first be turned off by:

>CE0<CR>

# 4.8.2 Update Command

The U command is now issued to save modified follows:

For saving CE input parameters:

>]U<CR>



For saving MPU input parameters:

>)U<CR>

issuing a U command! Also, remember to restart by executing the CE1 command prior to attempting measurements.

Important: The CE must be stopped (CE0) before

#### 4.8.3 Turn On CE Command

The CE must then be turned on by:

>CE1<CR>

The CE Control and Update Commands are highlighted in the table below:

| С                     | Compute Engine Control          |                                                              |  |
|-----------------------|---------------------------------|--------------------------------------------------------------|--|
| Description:          | Allows the user to enable an    | d configure the compute engine.                              |  |
| Usage:                | C {option} {argument} <cr></cr> |                                                              |  |
| Command Combinations: | CEn <cr></cr>                   | Compute Engine Enable (1 → Enable, 0 → Disable)              |  |
|                       | CTn <cr></cr>                   | Select input n for TMUX output pin. Enter n in hex notation. |  |
|                       | CREn <cr></cr>                  | RTM output control (1 → Enable, 0 → Disable)                 |  |
|                       | CRSa.b.c.d <cr></cr>            | Selects CE addresses for RTM output. (maximum of four).      |  |
|                       | ]U <cr></cr>                    | Update defaults of CE Input Data in FLASH.                   |  |
|                       | )U <cr></cr>                    | Update defaults of MPU Input Data in FLASH.                  |  |
| Examples:             | CE0 <cr></cr>                   | Disables the CE.                                             |  |
|                       | ]U <cr></cr>                    | Updates CE parameters in Flash                               |  |
|                       | CE1 <cr></cr>                   | Enables the CE.                                              |  |

# 4.9 I/O RAM (Configuration) Commands

The RI command is used for altering the I/O RAM contents. This is usually not necessary as the FW defaults these settings appropriately.

| R                     | I/O RAM Control                                    |                                                                   |  |
|-----------------------|----------------------------------------------------|-------------------------------------------------------------------|--|
| Description:          | Allows the user to read from and write to I/O RAM. |                                                                   |  |
| Usage:                | RI {option} {register} {option} <cr></cr>          |                                                                   |  |
| Command Rlx <cr></cr> |                                                    | Select I/O RAM location x (0x2000 offset is automatically added). |  |
| Example:              | RI60\$\$\$\$ <cr></cr>                             | Read all four RTM probe registers.                                |  |



Configuration RAM space is in the address range from 0x2000 to 0x20FF. This RAM contains registers used for configuring basic hardware and functional properties of the 78M6618 and is organized in bytes (8 bits). The 0x2000 offset is automatically added when the command RI is invoked.

## 4.9.1 Energy Accumulation Interval

The RI command is needed when the change of accumulation interval for energy measurements is desired. The default accumulation interval is 1 second (999.75 ms). The accumulation interval is set by the following:

0.01666 \* SUM\_CYCLES[5:0] (in seconds) where SUM\_CYCLE[5:0] are register bits in the I/O RAM that can be between 15d and 63d (default is 60d). SUM\_CYCLES must never be set below 15 (0.250 seconds).

To reduce the accumulation interval to 0.5 seconds, enter the following via the UART:

>RI1=+30<CR>

Entering an update command will preserve the new accumulation value permanently in flash.

>CE0<CR>

>

>)U<CR>

>

>CE0<CR>

# 5 MPU Measurement Outputs

This section describes the measurement outputs that can be obtained in Manual CLI Mode. Energy outputs are accumulated numbers. If the host accesses the measurement information from the 78M6613 more frequently than the accumulation interval, results of the same value will be read back until the next accumulation interval.

Table 2 lists Wideband AC Measurement Outputs; Table 3 lists the equivalent Narrowband Outputs

**Table 2: MPU Outputs for Wideband Calculations** 

| Output                   | Location (hex) | LSB     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Example                                                                                                                                                                                                                                                                                                                       |
|--------------------------|----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delta<br>Temperature     | 00             | 0.1 °C  | Temperature difference from 22 °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | If external temperature is 32 °C<br>)00? <cr><br/>Returns:<br/>+10.0</cr>                                                                                                                                                                                                                                                     |
| Line<br>Frequency        | 01             | 0.01 Hz | Line Frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If the line frequency is 60 Hz: )01? <cr> Returns: +60.00</cr>                                                                                                                                                                                                                                                                |
| Alarm Status<br>(Common) | 02             |         | Definition for Status Register Bit 0 – Minimum Temperature Alarm. Bit 1 – Maximum Temperature Alarm. Bit 2 – Minimum Frequency Alarm. Bit 3 – Maximum Frequency Alarm. Bit 4 – SAG(A) Voltage Alarm for VA. Bit 5 – MINVA – under minimum voltage on VA input. Bit 6 – MAXVA – over maximum voltage on VA input. Bit 7 –SAG(B) Voltage Alarm for VB. Bit 8 – MINVB – under minimum voltage on VB input. Bit 9 – MAXVB – over maximum voltage on VB input. Bit 10 – Line/Neutral Reversal Bits 11:15 – Unused. Bit 16 – Creep Alert for Outlet 1 (IA). Bit 17 – Creep Alert for Outlet 2 (IB). Bit 18 – Creep Alert for Outlet 3 (IC). Bit 19 – Creep Alert for Outlet 5 (IE). Bit 21 – Creep Alert for Outlet 5 (IF). Bit 22 – Creep Alert for Outlet 8 (IH). Bits 24:31 – Unused. | Alarms become "1" when thresholds exceeded.  Note: When AC voltage input is less than or equal to 10 V <sub>RMS</sub> ,  Only MINVA alarm is active.  All measurements are forced to 0 except power factor, which is forced to 1.  Note: The frequency measurement is forced to 0 as long as the SAG voltage alarm is active. |

| Output                               | Location (hex) | LSB   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Example                                                                                                                                                                                               |
|--------------------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm Status<br>(Outlet<br>Specific) | 03             |       | Definition for Status Register  Bit 0 – Maximum Outlet 1 Current  Bit 1 – MIN Outlet 1 Power Factor  Bit 2 – MAX Outlet 1 Power Factor  Bit 3 – Maximum Outlet 2 Current  Bit 4 – MIN Outlet 2 Power Factor  Bit 5 – MAX Outlet 2 Power Factor  Bit 6 – Maximum Outlet 3 Current  Bit 7 – MIN Outlet 3 Power Factor  Bit 8 – MAX Outlet 3 Power Factor  Bit 9 – Maximum Outlet 4 Current  Bit 10 – MIN Outlet 4 Power Factor  Bit 11 – MAX Outlet 4 Power Factor  Bit 12 – Maximum Outlet 5 Current  Bit 13 – MIN Outlet 5 Power Factor  Bit 14 – MAX Outlet 5 Power Factor  Bit 15 – Maximum Outlet 6 Current  Bit 16 – MIN Outlet 6 Power Factor  Bit 17 – MAX Outlet 6 Power Factor  Bit 18 – Maximum Outlet 7 Current  Bit 19 – MIN Outlet 7 Power Factor  Bit 20 – MAX Outlet 7 Power Factor  Bit 21 – Maximum Outlet 8 Current  Bit 22 – MIN Outlet 8 Power Factor  Bit 23 – MAX Outlet 8 Power Factor  Bit 24 – Maximum Total Current  Bits 25:31 – Unused. | Alarms become "1" when thresholds exceeded.  Note: When AC current input is less than or equal to Creep threshold, respective measurements are forced to 0 except power factor, which is forced to 1. |
| Irms Over<br>Current<br>Event Count  | 04             | 1     | Counter increments on each edge event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If four over current events have occurred: )04? <cr> Returns: +4</cr>                                                                                                                                 |
| Vrms Under<br>Voltage<br>Event Count | 05             | 1     | Counter increments on each edge event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If four under voltage events have occurred: )05? <cr> Returns: +4</cr>                                                                                                                                |
| Vrms Over<br>Voltage<br>Event Count  | 06             | 1     | Counter increments on each edge event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If four over voltage events have occurred: )06? <cr> Returns: +4</cr>                                                                                                                                 |
| Vrms                                 | 07             | mVrms | Vrms voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | If the line voltage is 120 V<br>)07? <cr><br/>Returns: +120.000</cr>                                                                                                                                  |

|                      | OUTLET 1 (IA)  |        |                                                                                                                                                                                                                                 |                                                                                                   |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                           |  |
| Watts A              | 08             | mW     | Outlet 1 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 1 )08? <cr> Returns: +120.000</cr>                            |  |
| Wh A                 | 09             | mWh    | Outlet 1 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on Outlet 1 )09? <cr> Returns: +120.000</cr>                               |  |
| Total Cost A         | 0A             | mUnits | Outlet 1 cost of Wh A.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 1<br>)0A? <cr><br/>+102.536</cr>                        |  |
| Irms_wb A            | 0В             | mArms  | Outlet 1 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on<br>Outlet 1 is 12 Amps<br>)0B? <cr><br/>Returns:<br/>+12.000</cr> |  |
| VARs_wb A            | 0C             | mW     | Outlet 1 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are measured on Outlet 1 )0C? <cr> Returns: +120.000</cr>                    |  |
| VAs_wb A             | 0D             | mW     | Outlet 1 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 1 )0D? <cr> Returns: +120.000</cr>                     |  |
| Power<br>Factor_wb A | 0E             | -      | Outlet 1 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 1 is 0.95 )0E? <cr> Returns: +0.950</cr>                   |  |
| Phase<br>Angle_wb A  | 0F             | -      | Outlet 1 wideband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the wideband phase angle measured on Outlet 1 is 60 degrees )0F? <cr> Returns: +60.000</cr>    |  |

|                      | OUTLET 2 (IB)  |        |                                                                                                                                                                                                                                 |                                                                                                   |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                           |  |
| Watts B              | 10             | mW     | Outlet 2 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 2 )10? <cr> Returns: +120.000</cr>                            |  |
| Wh B                 | 11             | mWh    | Outlet 2 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on Outlet 1 )11? <cr> Returns: +120.000</cr>                               |  |
| Total Cost B         | 12             | mUnits | Outlet 2 cost of Wh B.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 2<br>)12? <cr><br/>+102.536</cr>                        |  |
| Irms_wb B            | 13             | mArms  | Outlet 2 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on<br>Outlet 2 is 12 Amps<br>)13? <cr><br/>Returns:<br/>+12.000</cr> |  |
| VARs_wb B            | 14             | mW     | Outlet 2 wideband reactive power measurement (per second).                                                                                                                                                                      | If widewband 120 VARs are measured on Outlet 2 )14? <cr> Returns: +120.000</cr>                   |  |
| VAs_wb B             | 15             | mW     | Outlet 2 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 2 )15? <cr> Returns: +120.000</cr>                     |  |
| Power<br>Factor_wb B | 16             | -      | Outlet 2 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 2 is 0.95 )16? <cr> Returns: +0.950</cr>                   |  |
| Phase<br>Angle_wb B  | 17             | -      | Outlet 2 wideband phase angle.<br>The output will be between<br>180.000 and -180.000.                                                                                                                                           | If the wideband phase angle measured on Outlet 2 is 60 degrees )17? <cr> Returns: +60.000</cr>    |  |

|                      | OUTLET 3 (IC)  |        |                                                                                                                                                                                                                                 |                                                                                                |  |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                        |  |  |
| Watts C              | 18             | mW     | Outlet 3 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 3 )18? <cr> Returns: +120.000</cr>                         |  |  |
| Wh C                 | 19             | mWh    | Outlet 3 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on<br>Outlet 3<br>)19? <cr><br/>Returns:<br/>+120.000</cr>              |  |  |
| Total Cost C         | 1A             | mUnits | Outlet 3 cost of Wh C.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 3<br>)1A? <cr><br/>+102.536</cr>                     |  |  |
| Irms_wb C            | 1B             | mArms  | Outlet 3 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on Outlet 3 is 12 Amps )1B? <cr> Returns: +12.000</cr>            |  |  |
| VARs_wb C            | 1C             | mW     | Outlet 3 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are measured on Outlet 3 )1C? <cr> Returns: +120.000</cr>                 |  |  |
| VAs_wb C             | 1D             | mW     | Outlet 3 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 3 )1D? <cr> Returns: +120.000</cr>                  |  |  |
| Power<br>Factor_wb C | 1E             | -      | Outlet 3 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 3 is 0.95 )1E? <cr> Returns: +0.950</cr>                |  |  |
| Phase<br>Angle_wb C  | 1F             | -      | Outlet 3 wideband phase angle.<br>The output will be between<br>180.000 and -180.000.                                                                                                                                           | If the wideband phase angle measured on Outlet 3 is 60 degrees )1F? <cr> Returns: +60.000</cr> |  |  |

|                      | OUTLET 4 (ID)  |        |                                                                                                                                                                                                                                 |                                                                                                                 |  |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                                         |  |  |
| Watts D              | 20             | mW     | Outlet 4 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on<br>Outlet 4<br>)20? <cr><br/>Returns:<br/>+120.000</cr>                            |  |  |
| Wh D                 | 21             | mWh    | Outlet 4 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on<br>Outlet 4<br>)21? <cr><br/>Returns:<br/>+120.000</cr>                               |  |  |
| Total Cost D         | 22             | mUnits | Outlet 4 cost of Wh D.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 4<br>)22? <cr><br/>+102.536</cr>                                      |  |  |
| Irms_wb D            | 23             | mArms  | Outlet 4 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on Outlet 4 is 12 Amps )23? <cr> Returns: +12.000</cr>                             |  |  |
| VARs_wb D            | 24             | mW     | Outlet 4 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are measured on Outlet 4 )24? <cr> Returns: +120.000</cr>                                  |  |  |
| VAs_wb D             | 25             | mW     | Outlet 4 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 4 )25? <cr> Returns: +120.000</cr>                                   |  |  |
| Power<br>Factor_wb D | 26             | -      | Outlet 4 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 4 is 0.95 )26? <cr> Returns: +0.950</cr>                                 |  |  |
| Phase<br>Angle_wb D  | 27             | -      | Outlet 4 wideband phase angle.<br>The output will be between<br>180.000 and -180.000.                                                                                                                                           | If the wideband phase angle<br>measured on Outlet 4 is<br>60 degrees<br>)27? <cr><br/>Returns:<br/>+60.000</cr> |  |  |

|                      | OUTLET 5 (IE)  |        |                                                                                                                                                                                                                                 |                                                                                                                 |  |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                                         |  |  |
| Watts E              | 28             | mW     | Outlet 5 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 5 )28? <cr> Returns: +120.000</cr>                                          |  |  |
| Wh E                 | 29             | mWh    | Outlet 5 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on Outlet 5 )29? <cr> Returns: +120.000</cr>                                             |  |  |
| Total Cost E         | 2A             | mUnits | Outlet 5 cost of Wh E.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 5<br>)2A? <cr><br/>+102.536</cr>                                      |  |  |
| Irms_wb E            | 2B             | mArms  | Outlet 5 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on Outlet 5 is 12 Amps )2B? <cr> Returns: +12.000</cr>                             |  |  |
| VARs_wb E            | 2C             | mW     | Outlet 5 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are measured on Outlet 5 )2C? <cr> Returns: +120.000</cr>                                  |  |  |
| VAs_wb E             | 2D             | mW     | Outlet 5 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 5 )2D? <cr> Returns: +120.000</cr>                                   |  |  |
| Power<br>Factor_wb E | 2E             | -      | Outlet 5 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 5 is 0.95 )2E? <cr> Returns: +0.950</cr>                                 |  |  |
| Phase<br>Angle_wb E  | 2F             | -      | Outlet 5 wideband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the wideband phase angle<br>measured on Outlet 5 is<br>60 degrees<br>)2F? <cr><br/>Returns:<br/>+60.000</cr> |  |  |

|                      | OUTLET 6 (IF)  |        |                                                                                                                                                                                                                                 |                                                                                                |  |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                        |  |  |
| Watts F              | 30             | mW     | Outlet 6 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 6 )30? <cr> Returns: +120.000</cr>                         |  |  |
| Wh F                 | 31             | mWh    | Outlet 6 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on Outlet 6 )31? <cr> Returns: +120.000</cr>                            |  |  |
| Total Cost F         | 32             | mUnits | Outlet 6 cost of Wh F.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 6<br>)32? <cr><br/>+102.536</cr>                     |  |  |
| Irms_wb F            | 33             | mArms  | Outlet 6 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on Outlet 6 is 12 Amps )33? <cr> Returns: +12.000</cr>            |  |  |
| VARs_wb F            | 34             | mW     | Outlet 6 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are<br>measured on Outlet 6<br>)34? <cr><br/>Returns:<br/>+120.000</cr>   |  |  |
| VAs_wb F             | 35             | mW     | Outlet 6 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 6 )35? <cr> Returns: +120.000</cr>                  |  |  |
| Power<br>Factor_wb F | 36             | -      | Outlet 6 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 6 is 0.95 )36? <cr> Returns: +0.950</cr>                |  |  |
| Phase<br>Angle_wb F  | 37             | -      | Outlet 6 wideband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the wideband phase angle measured on Outlet 6 is 60 degrees )37? <cr> Returns: +60.000</cr> |  |  |

|                      | OUTLET 7 (IG)  |        |                                                                                                                                                                                                                                 |                                                                                                                 |  |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                                         |  |  |
| Watts G              | 38             | mW     | Outlet 7 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 7 )38? <cr> Returns: +120.000</cr>                                          |  |  |
| Wh G                 | 39             | mWh    | Outlet 7 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on Outlet 7 )39? <cr> Returns: +120.000</cr>                                             |  |  |
| Total Cost G         | 3A             | mUnits | Outlet 7 cost of Wh G.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 7<br>)3A? <cr><br/>+102.536</cr>                                      |  |  |
| Irms_wb G            | 3B             | mArms  | Outlet 7 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on Outlet 7 is 12 Amps )3B? <cr> Returns: +12.000</cr>                             |  |  |
| VARs_wb G            | 3C             | mW     | Outlet 7 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are measured on Outlet 7 )3C? <cr> Returns: +120.000</cr>                                  |  |  |
| VAs_wb G             | 3D             | mW     | Outlet 7 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 7 )3D? <cr> Returns: +120.000</cr>                                   |  |  |
| Power<br>Factor_wb G | 3E             | -      | Outlet 7 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 7 is 0.95 )3E? <cr> Returns: +0.950</cr>                                 |  |  |
| Phase<br>Angle_wb G  | 3F             | -      | Outlet 7 wideband phase angle.<br>The output will be between<br>180.000 and -180.000.                                                                                                                                           | If the wideband phase angle<br>measured on Outlet 7 is<br>60 degrees<br>)3F? <cr><br/>Returns:<br/>+60.000</cr> |  |  |

|                      | OUTLET 8 (IH)  |        |                                                                                                                                                                                                                                 |                                                                                                                 |  |  |
|----------------------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                         | Example                                                                                                         |  |  |
| Watts H              | 40             | mW     | Outlet 8 active power measurement (per second).                                                                                                                                                                                 | If 120 Watts are measured on Outlet 8 )40? <cr> Returns: +120.000</cr>                                          |  |  |
| Wh H                 | 41             | mWh    | Outlet 8 active accumulated energy measurement (per hour).                                                                                                                                                                      | If 120 Wh are measured on Outlet 8 )41? <cr> Returns: +120.000</cr>                                             |  |  |
| Total Cost H         | 42             | mUnits | Outlet 8 cost of Wh H.                                                                                                                                                                                                          | If the cost is 102.536 units on<br>Outlet 8<br>)42? <cr><br/>+102.536</cr>                                      |  |  |
| Irms_wb H            | 43             | mArms  | Outlet 8 wideband rms current measurement.                                                                                                                                                                                      | If wideband current measured on Outlet 8 is 12 Amps )43? <cr> Returns: +12.000</cr>                             |  |  |
| VARs_wb H            | 44             | mW     | Outlet 8 wideband reactive power measurement (per second).                                                                                                                                                                      | If wideband 120 VARs are measured on Outlet 8 )44? <cr> Returns: +120.000</cr>                                  |  |  |
| VAs_wb H             | 45             | mW     | Outlet 8 wideband apparent power measurement (per second).                                                                                                                                                                      | If wideband 120 VAs are measured on Outlet 8 )45? <cr> Returns: +120.000</cr>                                   |  |  |
| Power<br>Factor_wb H | 46             | -      | Outlet 8 wideband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the wideband power factor on Outlet 8 is 0.95 )46? <cr> Returns: +0.950</cr>                                 |  |  |
| Phase<br>Angle_wb H  | 47             | -      | Outlet 8 wideband phase angle.<br>The output will be between<br>180.000 and -180.000.                                                                                                                                           | If the wideband phase angle<br>measured on Outlet 8 is<br>60 degrees<br>)47? <cr><br/>Returns:<br/>+60.000</cr> |  |  |

|              |                |        | TOTAL OUTLETS                                                     |                                                                                        |
|--------------|----------------|--------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Output       | Location (hex) | LSB    | Comment                                                           | Example                                                                                |
| Watts T      | 48             | mW     | Active power measurement (per second) on all outlets.             | If 120 Watts are measured on all outlets )48? <cr> Returns: +120.000</cr>              |
| Wh T         | 49             | mWh    | Active accumulated energy measurement (per hour) on all outlets.  | If 120 Wh are measured on all outlets )49? <cr> Returns: +120.000</cr>                 |
| Total Cost T | 4A             | mUnits | Total Cost of Wh for all outlets.                                 | If the total cost is 102.536 units on all outlets )50? <cr> +102.536</cr>              |
| Irms_wb T    | 4B             | mArms  | Combined outlet wideband rms current measurement.                 | If wideband current measured on all outlets is 12 Amps )51? <cr> Returns: +12.000</cr> |
| VARs_wb T    | 4C             | mW     | Combined outlet wideband reactive power measurement (per second). | If wideband 120 VARs are measured on all outlets )52? <cr> Returns: +120.000</cr>      |
| VAs_wb T     | 4D             | mW     | Combined outlet wideband apparent power measurement (per second). | If wideband 120 VAs are measured on all outlets )53? <cr> Returns: +120.000</cr>       |

|          | MIN/MAX DATA   |     |                        |                                                                                              |  |
|----------|----------------|-----|------------------------|----------------------------------------------------------------------------------------------|--|
| Output   | Location (hex) | LSB | Comment                | Example                                                                                      |  |
| Vrms Min | 50             | mV  | Minimum Vrms measured. | If the minimum line voltage<br>measured was 105 V<br>)50 <cr><br/>Returns:<br/>+15.000</cr>  |  |
| Vrms Max | 51             | mV  | Maximum Vrms measured. | If the maximum line voltage<br>measured was 130 V<br>)51 <cr><br/>Returns:<br/>+130.000</cr> |  |

| Location |                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (hex)    | LSB                                                      | Comment                                                                                                                                                                                                                  | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 52       | mW                                                       | Minimum Outlet 1 active power measured (per second).                                                                                                                                                                     | If the minimum power measured on Outlet 1 is 80 Watts )52? <cr> Returns: +80.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53       | mW                                                       | Maximum Outlet 1 active power measured (per second).                                                                                                                                                                     | If the maximum power measured on Outlet 1 is 200 Watts )53? <cr> Returns: +200.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 54       | mArms                                                    | Outlet 1 minimum wideband rms current measured.                                                                                                                                                                          | If the smallest wideband current measured on Outlet 1 is 1 Amp )54? <cr> Returns: +1.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 55       | mArms                                                    | Outlet 1 maximum wideband rms current measured.                                                                                                                                                                          | If the largest wideband current measured on Outlet 1 is 30 Amps )55? <cr> Returns: +30.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 56       | mW                                                       | Outlet 1 minimum wideband reactive power measured (per second).                                                                                                                                                          | If the largest wideband VARs measured on Outlet 1 is 80 VARs )56? <cr> Returns: +80.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 57       | mWs                                                      | Outlet 1 maximum wideband reactive power measured (per second).                                                                                                                                                          | If the largest wideband VARs measured on Outlet 1 is 300VARs )57? <cr> Returns: +300.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 58       | mW                                                       | Outlet 1 minimum wideband apparent power measured (per second).                                                                                                                                                          | If the smallest wideband VAs measured on Outlet 1 is 80 VARs )58? <cr> Returns: +80.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 59       | mWs                                                      | Outlet 1 maximum wideband apparent power measured (per second).                                                                                                                                                          | If the largest wideband VAs measured on Outlet 1 is 300VARs )59? <cr> Returns: +300.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5A       | -                                                        | Outlet 1 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number.                                                                                                       | If minimum wideband power factor measured on Outlet 1 is -0.6 )5A? <cr> Returns: -0.600</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5B       | -                                                        | Outlet 1 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number.                                                                                                       | If maximum wideband power factor<br>measured on Outlet 1 is 0.9<br>)5B? <cr><br/>Returns: +0.900</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5C       | -                                                        | Outlet 1 minimum wideband phase angle measured.                                                                                                                                                                          | If the minimum wideband phase angle measured on Outlet 1 is 10 degrees )5C? <cr> Returns: +10.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5D       | -                                                        | Outlet 1 maximum wideband phase angle measured.                                                                                                                                                                          | If the maximum wideband phase angle measured on Outlet 1 is 70 degrees )5D? <cr> Returns: +70.000</cr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>5A<br>5B | 52       mW         53       mW         54       mArms         55       mArms         56       mW         57       mWs         58       mW         59       mWs         5A       -         5B       -         5C       - | mW Minimum Outlet 1 active power measured (per second).  mw Maximum Outlet 1 active power measured (per second).  mw Maximum Outlet 1 active power measured (per second).  mw Outlet 1 minimum wideband rms current measured.  mw Outlet 1 minimum wideband reactive power measured (per second).  mw Outlet 1 maximum wideband reactive power measured (per second).  mw Outlet 1 minimum wideband reactive power measured (per second).  mw Outlet 1 minimum wideband apparent power measured (per second).  mw Outlet 1 minimum wideband apparent power measured (per second).  Outlet 1 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number.  mw Outlet 1 minimum wideband power factor measured. Maximum is defined as the most positive or least negative number.  Outlet 1 minimum wideband power factor measured. Maximum is defined as the most positive or least negative number.  Outlet 1 minimum wideband phase angle measured.  Outlet 1 minimum wideband phase |

| OUTLET 2 (IB) MIN/MAX DATA  |                |       |                                                                                                                    |                                                                                                        |  |  |  |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                            | Example                                                                                                |  |  |  |
| Watts B Min                 | 5E             | mW    | Minimum Outlet 2 active power measured (per second).                                                               | If the minimum power measured on<br>Outlet 2 is 80 Watts<br>)5E? <cr><br/>Returns: +80.000</cr>        |  |  |  |
| Watts B Max                 | 5F             | mW    | Maximum Outlet 2 active power measured (per second).                                                               | If the maximum power measured on Outlet 2 is 200 Watts )5F? <cr> Returns: +200.000</cr>                |  |  |  |
| Irms_wb B<br>Min            | 60             | mArms | Outlet 2 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 2 is 1 Amp )60? <cr> Returns: +1.000</cr>          |  |  |  |
| Irms_wb B<br>Max            | 61             | mArms | Outlet 2 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 2 is 30 Amps )61? <cr> Returns: +30.000</cr>        |  |  |  |
| VARs_wb B<br>Min            | 62             | mW    | Outlet 2 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 2 is 80 VARs )62? <cr> Returns: +80.000</cr>           |  |  |  |
| VARs_wb B<br>Max            | 63             | mWs   | Outlet 2 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 2 is 300VARs )63? <cr> Returns: +300.000</cr>          |  |  |  |
| VAs_wb B<br>Min             | 64             | mW    | Outlet 2 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 2 is 80 VARs )64? <cr> Returns: +80.000</cr>           |  |  |  |
| VAs_wb B<br>Max             | 65             | mWs   | Outlet 2 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 2 is 300VARs )65? <cr> Returns: +300.000</cr>           |  |  |  |
| Power<br>Factor_wb B<br>Min | 66             | -     | Outlet 2 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor measured on Outlet 2 is -0.6 )66? <cr> Returns: -0.600</cr>           |  |  |  |
| Power<br>Factor_wb B<br>Max | 67             | -     | Outlet 2 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor measured on Outlet 1 is 0.9 )67? <cr> Returns: +0.900</cr>            |  |  |  |
| Phase<br>Angle_wb B<br>Min  | 68             | -     | Outlet 2 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 2 is 10 degrees )68? <cr> Returns: +10.000</cr> |  |  |  |
| Phase<br>Angle_wb B<br>Max  | 69             | -     | Outlet 2 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 2 is 70 degrees )69? <cr> Returns: +70.000</cr> |  |  |  |

| OUTLET 3 (IC) MIN/MAX DATA  |                |       |                                                                                                                    |                                                                                                        |  |  |  |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                            | Example                                                                                                |  |  |  |
| Watts C Min                 | 6A             | mW    | Minimum Outlet 3 active power measured (per second).                                                               | If the minimum power measured on<br>Outlet 3 is 80 Watts<br>)6A? <cr><br/>Returns: +80.000</cr>        |  |  |  |
| Watts C Max                 | 6В             | mW    | Maximum Outlet 3 active power measured (per second).                                                               | If the maximum power measured on Outlet 3 is 200 Watts )6B? <cr> Returns: +200.000</cr>                |  |  |  |
| Irms_wb C<br>Min            | 6C             | mArms | Outlet 3 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 3 is 1 Amp )6C? <cr> Returns: +1.000</cr>          |  |  |  |
| Irms_wb C<br>Max            | 6D             | mArms | Outlet 3 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 3 is 30 Amps )6D? <cr> Returns: +30.000</cr>        |  |  |  |
| VARs_wb C<br>Min            | 6E             | mW    | Outlet 3 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 3 is 80 VARs )6E? <cr> Returns: +80.000</cr>           |  |  |  |
| VARs_wb C<br>Max            | 6F             | mWs   | Outlet 3 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 3 is 300VARs )6F? <cr> Returns: +300.000</cr>          |  |  |  |
| VAs_wb C<br>Min             | 70             | mW    | Outlet 3 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 3 is 80 VARs )70? <cr> Returns: +80.000</cr>           |  |  |  |
| VAs_wb C<br>Max             | 71             | mWs   | Outlet 3 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 3 is 300VARs )71? <cr> Returns: +300.000</cr>           |  |  |  |
| Power<br>Factor_wb C<br>Min | 72             | I     | Outlet 3 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor measured on Outlet 3 is -0.6 )72? <cr> Returns: -0.600</cr>           |  |  |  |
| Power<br>Factor_wb C<br>Max | 73             | 1     | Outlet 3 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor measured on Outlet 3 is 0.9 )73? <cr> Returns: +0.900</cr>            |  |  |  |
| Phase<br>Angle_wb C<br>Min  | 74             | -     | Outlet 3 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 3 is 10 degrees )74? <cr> Returns: +10.000</cr> |  |  |  |
| Phase<br>Angle_wb C<br>Max  | 75             | -     | Outlet 3 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 3 is 70 degrees )75? <cr> Returns: +70.000</cr> |  |  |  |

| OUTLET 4 (ID) MIN/MAX DATA  |                |       |                                                                                                                    |                                                                                                        |  |  |  |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                            | Example                                                                                                |  |  |  |
| Watts D Min                 | 76             | mW    | Minimum Outlet 4 active power measured (per second).                                                               | If the minimum power measured on Outlet 4 is 80 Watts )76? <cr> Returns: +80.000</cr>                  |  |  |  |
| Watts D Max                 | 77             | mW    | Maximum Outlet 4 active power measured (per second).                                                               | If the maximum power measured on Outlet 4 is 200 Watts )77? <cr> Returns: +200.000</cr>                |  |  |  |
| Irms_wb D<br>Min            | 78             | mArms | Outlet 4 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 4 is 1 Amp )78? <cr> Returns: +1.000</cr>          |  |  |  |
| Irms_wb D<br>Max            | 79             | mArms | Outlet 4 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 4 is 30 Amps )79? <cr> Returns: +30.000</cr>        |  |  |  |
| VARs_wb D<br>Min            | 7A             | mW    | Outlet 4 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 4 is 80 VARs )7A? <cr> Returns: +80.000</cr>           |  |  |  |
| VARs_wb D<br>Max            | 7B             | mWs   | Outlet 4 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 4 is 300VARs )7B? <cr> Returns: +300.000</cr>          |  |  |  |
| VAs_wb D<br>Min             | 7C             | mW    | Outlet 4 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 4 is 80 VARs )7C? <cr> Returns: +80.000</cr>           |  |  |  |
| VAs_wb F<br>Max             | 7D             | mWs   | Outlet 4 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 4 is 300VARs )7D? <cr> Returns: +300.000</cr>           |  |  |  |
| Power<br>Factor_wb D<br>Min | 7E             | -     | Outlet 4 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor<br>measured on Outlet 4 is -0.6<br>)7E? <cr><br/>Returns: -0.600</cr> |  |  |  |
| Power<br>Factor_wb D<br>Max | 7F             | -     | Outlet 4 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor measured on Outlet 4 is 0.9 )7F? <cr> Returns: +0.900</cr>            |  |  |  |
| Phase<br>Angle_wb D<br>Min  | 80             | -     | Outlet 4 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 4 is 10 degrees )80? <cr> Returns: +10.000</cr> |  |  |  |
| Phase<br>Angle_wb D<br>Max  | 81             | -     | Outlet 4 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 4 is 70 degrees )81? <cr> Returns: +70.000</cr> |  |  |  |

| OUTLET 5 (IE) MIN/MAX DATA  |                |       |                                                                                                                    |                                                                                                        |  |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                            | Example                                                                                                |  |
| Watts E Min                 | 82             | mW    | Minimum Outlet 5 active power measured (per second).                                                               | If the minimum power measured on<br>Outlet 5 is 80 Watts<br>)82? <cr><br/>Returns: +80.000</cr>        |  |
| Watts E Max                 | 83             | mW    | Maximum Outlet 5 active power measured (per second).                                                               | If the maximum power measured on Outlet 5 is 200 Watts )83? <cr> Returns: +200.000</cr>                |  |
| Irms_wb E<br>Min            | 84             | mArms | Outlet 5 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 5 is 1 Amp )84? <cr> Returns: +1.000</cr>          |  |
| Irms_wb E<br>Max            | 85             | mArms | Outlet 5 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 5 is 30 Amps )85? <cr> Returns: +30.000</cr>        |  |
| VARs_wb E<br>Min            | 86             | mW    | Outlet 5 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 5 is 80 VARs )86? <cr> Returns: +80.000</cr>           |  |
| VARs_wb E<br>Max            | 87             | mWs   | Outlet 5 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 5 is 300VARs )87? <cr> Returns: +300.000</cr>          |  |
| VAs_wb E<br>Min             | 88             | mW    | Outlet 5 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 5 is 80 VARs )88? <cr> Returns: +80.000</cr>           |  |
| VAs_wb E<br>Max             | 89             | mWs   | Outlet 5 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 5 is 300VARs )89? <cr> Returns: +300.000</cr>           |  |
| Power<br>Factor_wb E<br>Min | 8A             | 1     | Outlet 5 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor<br>measured on Outlet 5 is -0.6<br>)8A? <cr><br/>Returns: -0.600</cr> |  |
| Power<br>Factor_wb E<br>Max | 8B             | I     | Outlet 5 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor<br>measured on Outlet 5 is 0.9<br>)8B? <cr><br/>Returns: +0.900</cr>  |  |
| Phase<br>Angle_wb E<br>Min  | 8C             | _     | Outlet 5 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 5 is 10 degrees )8C? <cr> Returns: +10.000</cr> |  |
| Phase<br>Angle_wb E<br>Max  | 8D             | Ι     | Outlet 5 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 5 is 70 degrees )8D? <cr> Returns: +70.000</cr> |  |

| OUTLET 6 (IF) MIN/MAX DATA  |                |       |                                                                                                                    |                                                                                                        |  |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                            | Example                                                                                                |  |
| Watts F Min                 | 8E             | mW    | Minimum Outlet 6 active power measured (per second).                                                               | If the minimum power measured on<br>Outlet 6 is 80 Watts<br>)8E? <cr><br/>Returns: +80.000</cr>        |  |
| Watts F Max                 | 8F             | mW    | Maximum Outlet 6 active power measured (per second).                                                               | If the maximum power measured on Outlet 6 is 200 Watts )8F? <cr> Returns: +200.000</cr>                |  |
| Irms_wb F<br>Min            | 90             | mArms | Outlet 6 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 6 is 1 Amp )90? <cr> Returns: +1.000</cr>          |  |
| Irms_wb F<br>Max            | 91             | mArms | Outlet 6 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 6 is 30 Amps )91? <cr> Returns: +30.000</cr>        |  |
| VARs_wb F<br>Min            | 92             | mW    | Outlet 6 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 6 is 80 VARs )92? <cr> Returns: +80.000</cr>           |  |
| VARs_wb F<br>Max            | 93             | mWs   | Outlet 6 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 1 is 300VARs )93? <cr> Returns: +300.000</cr>          |  |
| VAs_wb F<br>Min             | 94             | mW    | Outlet 6 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 1 is 80 VARs )94? <cr> Returns: +80.000</cr>           |  |
| VAs_wb F<br>Max             | 95             | mWs   | Outlet 6 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 6 is 300VARs )95? <cr> Returns: +300.000</cr>           |  |
| Power<br>Factor_wb F<br>Min | 96             | -     | Outlet 6 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor<br>measured on Outlet 6 is -0.6<br>)5A? <cr><br/>Returns: -0.600</cr> |  |
| Power<br>Factor_wb F<br>Max | 97             | -     | Outlet 6 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor<br>measured on Outlet 6 is 0.9<br>)5B? <cr><br/>Returns: +0.900</cr>  |  |
| Phase<br>Angle_wb F<br>Min  | 98             | -     | Outlet 6 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 6 is 10 degrees )5C? <cr> Returns: +10.000</cr> |  |
| Phase<br>Angle_wb F<br>Max  | 99             | -     | Outlet 6 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 6 is 70 degrees )5D? <cr> Returns: +70.000</cr> |  |

|                             | OUTLET 7 (IG) MIN/MAX DATA |       |                                                                                                                    |                                                                                                        |  |
|-----------------------------|----------------------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex)             | LSB   | Comment                                                                                                            | Example                                                                                                |  |
| Watts G Min                 | 9A                         | mW    | Minimum Outlet 7 active power measured (per second).                                                               | If the minimum power measured on Outlet 7 is 80 Watts )9A? <cr> Returns: +80.000</cr>                  |  |
| Watts G<br>Max              | 9B                         | mW    | Maximum Outlet 7 active power measured (per second).                                                               | If the maximum power measured on Outlet 7 is 200 Watts )9B? <cr> Returns: +200.000</cr>                |  |
| Irms_wb G<br>Min            | 9C                         | mArms | Outlet 7 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 7 is 1 Amp )9C? <cr> Returns: +1.000</cr>          |  |
| Irms_wb G<br>Max            | 9D                         | mArms | Outlet 7 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 7 is 30 Amps )9D? <cr> Returns: +30.000</cr>        |  |
| VARs_wb G<br>Min            | 9E                         | mW    | Outlet 7 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 7 is 80 VARs )9E? <cr> Returns: +80.000</cr>           |  |
| VARs_wb G<br>Max            | 9F                         | mWs   | Outlet 7 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 7 is 300VARs )9F? <cr> Returns: +300.000</cr>          |  |
| VAs_wb G<br>Min             | AO                         | mW    | Outlet 7 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 7 is 80 VARs )A0? <cr> Returns: +80.000</cr>           |  |
| VAs_wb G<br>Max             | A1                         | mWs   | Outlet 7 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 7 is 300VARs )A1? <cr> Returns: +300.000</cr>           |  |
| Power<br>Factor_wb G<br>Min | A2                         | _     | Outlet 7 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor<br>measured on Outlet 7 is -0.6<br>)A2? <cr> Returns:<br/>-0.600</cr> |  |
| Power<br>Factor_wb G<br>Max | А3                         | I     | Outlet 7 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor<br>measured on Outlet 7 is 0.9<br>)A3? <cr><br/>Returns: +0.900</cr>  |  |
| Phase<br>Angle_wb G<br>Min  | A4                         | _     | Outlet 7 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 7 is 10 degrees )A4? <cr> Returns: +10.000</cr> |  |
| Phase<br>Angle_wb G<br>Max  | A5                         | -     | Outlet 7 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 7 is 70 degrees )A5? <cr> Returns: +70.000</cr> |  |

| OUTLET 8 (IH) MIN/MAX DATA  |                |       |                                                                                                                    |                                                                                                        |  |
|-----------------------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                            | Example                                                                                                |  |
| Watts H Min                 | A6             | mW    | Minimum Outlet 8 active power measured (per second).                                                               | If the minimum power measured on<br>Outlet 8 is 80 Watts<br>)A6? <cr><br/>Returns: +80.000</cr>        |  |
| Watts H Max                 | A7             | mW    | Maximum Outlet 8 active power measured (per second).                                                               | If the maximum power measured on Outlet 8 is 200 Watts )A7? <cr> Returns: +200.000</cr>                |  |
| Irms_wb H<br>Min            | A8             | mArms | Outlet 8 minimum wideband rms current measured.                                                                    | If the smallest wideband current measured on Outlet 8 is 1 Amp )A8? <cr> Returns: +1.000</cr>          |  |
| Irms_wb H<br>Max            | A9             | mArms | Outlet 8 maximum wideband rms current measured.                                                                    | If the largest wideband current measured on Outlet 8 is 30 Amps )A9? <cr> Returns: +30.000</cr>        |  |
| VARs_wb H<br>Min            | AA             | mW    | Outlet 8 minimum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 8 is 80 VARs )AA? <cr> Returns: +80.000</cr>           |  |
| VARs_wb H<br>Max            | AB             | mWs   | Outlet 8 maximum wideband reactive power measured (per second).                                                    | If the largest wideband VARs measured on Outlet 8 is 300VARs )AB? <cr> Returns: +300.000</cr>          |  |
| VAs_wb H<br>Min             | AC             | mW    | Outlet 8 minimum wideband apparent power measured (per second).                                                    | If the smallest wideband VAs measured on Outlet 8 is 80 VARs )AC? <cr> Returns: +80.000</cr>           |  |
| VAs_wb H<br>Max             | AD             | mWs   | Outlet 8 maximum wideband apparent power measured (per second).                                                    | If the largest wideband VAs measured on Outlet 8 is 300VARs )AD? <cr> Returns: +300.000</cr>           |  |
| Power<br>Factor_wb H<br>Min | AE             | _     | Outlet 8 minimum wideband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum wideband power factor<br>measured on Outlet 8 is -0.6<br>)AE? <cr><br/>Returns: -0.600</cr> |  |
| Power<br>Factor_wb H<br>Max | AF             | -     | Outlet 8 maximum wideband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum wideband power factor<br>measured on Outlet 8 is 0.9<br>)AF? <cr><br/>Returns: +0.900</cr>  |  |
| Phase<br>Angle_wb H<br>Min  | В0             | -     | Outlet 8 minimum wideband phase angle measured.                                                                    | If the minimum wideband phase angle measured on Outlet 8 is 10 degrees )B0? <cr> Returns: +10.000</cr> |  |
| Phase<br>Angle_wb H<br>Max  | B1             | -     | Outlet 8 maximum wideband phase angle measured.                                                                    | If the maximum wideband phase angle measured on Outlet 8 is 70 degrees )B1? <cr> Returns: +70.000</cr> |  |

| TOTAL MIN/MAX DATA |                |       |                                                                       |                                                                                                                |  |
|--------------------|----------------|-------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Output             | Location (hex) | LSB   | Comment                                                               | Example                                                                                                        |  |
| Watts T Min        | B2             | mW    | Minimum active power measured on all outlets (per second).            | If the minimum power measured on all outlets is 80 Watts )B2? <cr> Returns: +80.000</cr>                       |  |
| Watts T Max        | В3             | mW    | Maximum active power measured on all outlets (per second).            | If the maximum power measured on all outlets is 200 Watts )B3? <cr> Returns: +200.000</cr>                     |  |
| Irms_wb T<br>Min   | В4             | mArms | Minimum wideband rms current measured on all outlets.                 | If the smallest wideband current<br>measured on all outlets is 1 Amp<br>)B4? <cr><br/>Returns:<br/>+1.000</cr> |  |
| Irms_wb T<br>Max   | B5             | mArms | Maximum wideband rms current measured on all outlets.                 | If the largest wideband current measured on all outlets is 30 Amps )B5? <cr> Returns: +30.000</cr>             |  |
| VARs_wb T<br>Min   | В6             | mW    | Minimum wideband reactive power measured (per second) on all outlets. | If the largest wideband VARs measured on all outlets is 80 VARs )B6? <cr> Returns: +80.000</cr>                |  |
| VARs_wb T<br>Max   | В7             | mWs   | Maximum wideband reactive power measured (per second) on all outlets. | If the largest wideband VARs measured on all outlets is 300VARs )B7? <cr> Returns: +300.000</cr>               |  |
| VAs_wb T<br>Min    | В8             | mW    | Minimum wideband apparent power measured (per second) on all outlets. | If the smallest wideband VAs measured on all outlets is 80 VARs )B8? <cr> Returns: +80.000</cr>                |  |
| VAs_wb T<br>Max    | В9             | mWs   | Maximum wideband apparent power measured (per second) on all outlets. | If the largest wideband VAs measured on all outlets is 300VARs )B9? <cr> Returns: +300.000</cr>                |  |
| Unused             | BA-BF          |       | Unused                                                                |                                                                                                                |  |

Table 3 lists the narrowband measurement outputs.

Table 3: MPU Outputs for Narrowband Method

| Output                   | Location (hex) | LSB     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Example                                                                                                                                                                                                                                                                                                                       |
|--------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delta<br>Temperature     | 100            | 0.1 °C  | Temperature difference from 22 °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | If external temperature is 32 °C<br>)100? <cr><br/>Returns:<br/>+10.0</cr>                                                                                                                                                                                                                                                    |
| Line<br>Frequency        | 101            | 0.01 Hz | Line Frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If the line frequency is 60 Hz:<br>)101? <cr><br/>Returns:<br/>+60.00</cr>                                                                                                                                                                                                                                                    |
| Alarm Status<br>(Common) | 102            |         | Definition for Status Register  Bit 0 – Minimum Temperature Alarm.  Bit 1 – Maximum Temperature     Alarm.  Bit 2 – Minimum Frequency Alarm.  Bit 3 – Maximum Frequency Alarm.  Bit 4 – SAG(A) Voltage Alarm for VA.  Bit 5 – MINVA – under minimum     voltage on VA input.  Bit 6 – MAXVA – over maximum     voltage on VA input.  Bit 7 –SAG(B) Voltage Alarm for VB.  Bit 8 – MINVB – under minimum     voltage on VB input.  Bit 9 – MAXVB – over maximum     voltage on VB input.  Bit 10 – Line/Neutral Reversal  Bits 11:15 – Unused.  Bit 16 – Creep Alert for Outlet 1 (IA).  Bit 17 – Creep Alert for Outlet 2 (IB).  Bit 18 – Creep Alert for Outlet 3 (IC).  Bit 19 – Creep Alert for Outlet 5 (IE).  Bit 20 – Creep Alert for Outlet 6 (IF).  Bit 22 – Creep Alert for Outlet 7 (IG).  Bit 23 – Creep Alert for Outlet 8 (IH).  Bits 24:31 – Unused. | Alarms become "1" when thresholds exceeded.  Note: When AC voltage input is less than or equal to 10 V <sub>RMS</sub> ,  Only MINVA alarm is active.  All measurements are forced to 0 except power factor, which is forced to 1.  Note: The frequency measurement is forced to 0 as long as the SAG voltage alarm is active. |

| Output                               | Location (hex) | LSB   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Example                                                                                                                                                                                               |
|--------------------------------------|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm Status<br>(Outlet<br>Specific) | 103            |       | Definition for Status Register Bit 0 – Maximum Outlet 1 Current Bit 1 – MIN Outlet 1 Power Factor Bit 2 – MAX Outlet 1 Power Factor Bit 3 – Maximum Outlet 2 Current Bit 4 – MIN Outlet 2 Power Factor Bit 5 – MAX Outlet 2 Power Factor Bit 5 – MAX Outlet 3 Power Factor Bit 6 – Maximum Outlet 3 Current Bit 7 – MIN Outlet 3 Power Factor Bit 8 – MAX Outlet 3 Power Factor Bit 9 – Maximum Outlet 4 Current Bit 10 – MIN Outlet 4 Power Factor Bit 11 – MAX Outlet 4 Power Factor Bit 12 – Maximum Outlet 5 Current Bit 13 – MIN Outlet 5 Power Factor Bit 14 – MAX Outlet 5 Power Factor Bit 15 – Maximum Outlet 6 Current Bit 16 – MIN Outlet 6 Power Factor Bit 17 – MAX Outlet 6 Power Factor Bit 18 – Maximum Outlet 7 Current Bit 19 – MIN Outlet 7 Power Factor Bit 20 – MAX Outlet 7 Power Factor Bit 21 – Maximum Outlet 8 Current Bit 22 – MIN Outlet 8 Power Factor Bit 23 – MAX Outlet 8 Power Factor Bit 24 – Maximum Total Current Bit 25:31 – Unused. | Alarms become "1" when thresholds exceeded.  Note: When AC current input is less than or equal to Creep threshold, respective measurements are forced to 0 except power factor, which is forced to 1. |
| Irms Over<br>Current<br>Event Count  | 104            | 1     | Counter increments on each edge event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If four over current events have occurred: )104? <cr> Returns: +4</cr>                                                                                                                                |
| Vrms Under<br>Voltage<br>Event Count | 105            | 1     | Counter increments on each edge event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If four under voltage events have occurred: )105? <cr> Returns: +4</cr>                                                                                                                               |
| Vrms Over<br>Voltage<br>Event Count  | 106            | 1     | Counter increments on each edge event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If four over voltage events have occurred: )106? <cr> Returns: +4</cr>                                                                                                                                |
| Vrms                                 | 107            | mVrms | Vrms voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If the line voltage is 120 V )107? <cr> Returns: +120.000</cr>                                                                                                                                        |

|                      | OUTLET 1 (IA)  |        |                                                                                                                                                                                                                                   |                                                                                                   |  |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |  |
| Watts A              | 108            | mW     | Outlet 1 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 1 )108? <cr> Returns: +120.000</cr>                           |  |
| Wh A                 | 109            | mWh    | Outlet 1 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 1 )109? <cr> Returns: +120.000</cr>                              |  |
| Total Cost A         | 10A            | mUnits | Outlet 1 cost of Wh A.                                                                                                                                                                                                            | If the cost is 102.536 units on Outlet 1 )10A? <cr> +102.536</cr>                                 |  |
| Irms_nb A            | 10B            | mArms  | Outlet 1 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 1 is 12 Amps )10B? <cr> Returns: +12.000</cr>            |  |
| VARs_nb A            | 10C            | mW     | Outlet 1 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 1 )10C? <cr> Returns: +120.000</cr>                 |  |
| VAs_nb A             | 10D            | mW     | Outlet 1 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 1 )10D? <cr> Returns: +120.000</cr>                  |  |
| Power<br>Factor_nb A | 10E            | 1      | Outlet 1 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 1 is 0.95 )10E? <cr> Returns: +0.950</cr>                |  |
| Phase<br>Angle_nb A  | 10F            | -      | Outlet 1 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 1 is 60 degrees )10F? <cr> Returns: +60.000</cr> |  |

|                      | OUTLET 2 (IB)  |        |                                                                                                                                                                                                                                   |                                                                                                   |  |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |  |
| Watts B              | 110            | mW     | Outlet 2 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 2 )110? <cr> Returns: +120.000</cr>                           |  |
| Wh B                 | 111            | mWh    | Outlet 2 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 1 )111? <cr> Returns: +120.000</cr>                              |  |
| Total Cost B         | 112            | mUnits | Outlet 2 cost of Wh B.                                                                                                                                                                                                            | If the cost is 102.536 units on Outlet 2 )112? <cr> +102.536</cr>                                 |  |
| Irms_nb B            | `113           | mArms  | Outlet 2 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 2 is 12 Amps )113? <cr> Returns: +12.000</cr>            |  |
| VARs_nb B            | 114            | mW     | Outlet 2 narrowband reactive power measurement (per second).                                                                                                                                                                      | If widewband 120 VARs are measured on Outlet 2 )114? <cr> Returns: +120.000</cr>                  |  |
| VAs_nb B             | 115            | mW     | Outlet 2 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 2 )115? <cr> Returns: +120.000</cr>                  |  |
| Power<br>Factor_nb B | 116            | -      | Outlet 2 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 2 is 0.95 )116? <cr> Returns: +0.950</cr>                |  |
| Phase<br>Angle_nb B  | 117            | _      | Outlet 2 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 2 is 60 degrees )117? <cr> Returns: +60.000</cr> |  |

|                      | OUTLET 3 (IC)  |        |                                                                                                                                                                                                                                   |                                                                                                   |  |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |  |
| Watts C              | 118            | mW     | Outlet 3 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 3 )118? <cr> Returns: +120.000</cr>                           |  |
| Wh C                 | 119            | mWh    | Outlet 3 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 3 )119? <cr> Returns: +120.000</cr>                              |  |
| Total Cost C         | 11A            | mUnits | Outlet 3 cost of Wh C.                                                                                                                                                                                                            | If the cost is 102.536 units on<br>Outlet 3<br>)11A? <cr><br/>+102.536</cr>                       |  |
| Irms_nb C            | 11B            | mArms  | Outlet 3 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 3 is 12 Amps )11B? <cr> Returns: +12.000</cr>            |  |
| VARs_nb C            | 11C            | mW     | Outlet 3 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 3 )11C? <cr> Returns: +120.000</cr>                 |  |
| VAs_nb C             | 11D            | mW     | Outlet 3 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 3 )11D? <cr> Returns: +120.000</cr>                  |  |
| Power<br>Factor_nb C | 11E            | -      | Outlet 3 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 3 is 0.95 )11E? <cr> Returns: +0.950</cr>                |  |
| Phase<br>Angle_nb C  | 11F            | -      | Outlet 3 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 3 is 60 degrees )11F? <cr> Returns: +60.000</cr> |  |

| OUTLET 4 (ID)        |                |        |                                                                                                                                                                                                                                   |                                                                                                   |  |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |  |
| Watts D              | 120            | mW     | Outlet 4 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 4 )120? <cr> Returns: +120.000</cr>                           |  |
| Wh D                 | 121            | mWh    | Outlet 4 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 4 )121? <cr> Returns: +120.000</cr>                              |  |
| Total Cost D         | 122            | mUnits | Outlet 4 cost of Wh D.                                                                                                                                                                                                            | If the cost is 102.536 units on Outlet 4 )122? <cr> +102.536</cr>                                 |  |
| Irms_nb D            | 123            | mArms  | Outlet 4 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 4 is 12 Amps )123? <cr> Returns: +12.000</cr>            |  |
| VARs_nb D            | 124            | mW     | Outlet 4 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 4 )124? <cr> Returns: +120.000</cr>                 |  |
| VAs_nb D             | 125            | mW     | Outlet 4 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 4 )125? <cr> Returns: +120.000</cr>                  |  |
| Power<br>Factor_nb D | 126            | -      | Outlet 4 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 4 is 0.95 )126? <cr> Returns: +0.950</cr>                |  |
| Phase<br>Angle_nb D  | 127            | _      | Outlet 4 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 4 is 60 degrees )127? <cr> Returns: +60.000</cr> |  |

| OUTLET 5 (IE)        |                |        |                                                                                                                                                                                                                                   |                                                                                                   |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |
| Watts E              | 128            | mW     | Outlet 5 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 5 )128? <cr> Returns: +120.000</cr>                           |
| Wh E                 | 129            | mWh    | Outlet 5 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 5 )129? <cr> Returns: +120.000</cr>                              |
| Total Cost E         | 12A            | mUnits | Outlet 5 cost of Wh E.                                                                                                                                                                                                            | If the cost is 102.536 units on<br>Outlet 5<br>)12A? <cr><br/>+102.536</cr>                       |
| Irms_nb E            | 12B            | mArms  | Outlet 5 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 5 is 12 Amps )12B? <cr> Returns: +12.000</cr>            |
| VARs_nb E            | 12C            | mW     | Outlet 5 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 5 )12C? <cr> Returns: +120.000</cr>                 |
| VAs_nb E             | 12D            | mW     | Outlet 5 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 5 )12D? <cr> Returns: +120.000</cr>                  |
| Power<br>Factor_nb E | 12E            | -      | Outlet 5 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 5 is 0.95 )12E? <cr> Returns: +0.950</cr>                |
| Phase<br>Angle_nb E  | 12F            | -      | Outlet 5 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 5 is 60 degrees )12F? <cr> Returns: +60.000</cr> |

|                      | OUTLET 6 (IF)  |        |                                                                                                                                                                                                                                   |                                                                                                   |  |  |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |  |  |
| Watts F              | 130            | mW     | Outlet 6 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 6 )130? <cr> Returns: +120.000</cr>                           |  |  |
| Wh F                 | 131            | mWh    | Outlet 6 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 6 )131? <cr> Returns: +120.000</cr>                              |  |  |
| Total Cost F         | 132            | mUnits | Outlet 6 cost of Wh F.                                                                                                                                                                                                            | If the cost is 102.536 units on<br>Outlet 6<br>)132? <cr><br/>+102.536</cr>                       |  |  |
| Irms_nb F            | 133            | mArms  | Outlet 6 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 6 is 12 Amps )133? <cr> Returns: +12.000</cr>            |  |  |
| VARs_nb F            | 134            | mW     | Outlet 6 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 6 )134? <cr> Returns: +120.000</cr>                 |  |  |
| VAs_nb F             | 135            | mW     | Outlet 6 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 6 )135? <cr> Returns: +120.000</cr>                  |  |  |
| Power<br>Factor_nb F | 136            | 1      | Outlet 6 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 6 is 0.95 )136? <cr> Returns: +0.950</cr>                |  |  |
| Phase<br>Angle_nb F  | 137            | 1      | Outlet 6 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 6 is 60 degrees )137? <cr> Returns: +60.000</cr> |  |  |

| OUTLET 7 (IG)        |                |        |                                                                                                                                                                                                                                   |                                                                                                                    |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                                            |
| Watts G              | 138            | mW     | Outlet 7 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 7 )138? <cr> Returns: +120.000</cr>                                            |
| Wh G                 | 139            | mWh    | Outlet 7 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 7 )139? <cr> Returns: +120.000</cr>                                               |
| Total Cost G         | 13A            | mUnits | Outlet 7 cost of Wh G.                                                                                                                                                                                                            | If the cost is 102.536 units on<br>Outlet 7<br>)13A? <cr><br/>+102.536</cr>                                        |
| Irms_nb G            | 13B            | mArms  | Outlet 7 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 7 is 12 Amps )13B? <cr> Returns: +12.000</cr>                             |
| VARs_nb G            | 13C            | mW     | Outlet 7 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 7 )13C? <cr> Returns: +120.000</cr>                                  |
| VAs_nb G             | 13D            | mW     | Outlet 7 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 7 )13D? <cr> Returns: +120.000</cr>                                   |
| Power<br>Factor_nb G | 13E            | -      | Outlet 7 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 7 is 0.95 )13E? <cr> Returns: +0.950</cr>                                 |
| Phase<br>Angle_nb G  | 13F            | -      | Outlet 7 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle<br>measured on Outlet 7 is<br>60 degrees<br>)13F? <cr><br/>Returns:<br/>+60.000</cr> |

| OUTLET 8 (IH)        |                |        |                                                                                                                                                                                                                                   |                                                                                                   |
|----------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Output               | Location (hex) | LSB    | Comment                                                                                                                                                                                                                           | Example                                                                                           |
| Watts H              | 140            | mW     | Outlet 8 active power measurement (per second).                                                                                                                                                                                   | If 120 Watts are measured on Outlet 8 )140? <cr> Returns: +120.000</cr>                           |
| Wh H                 | 141            | mWh    | Outlet 8 active accumulated energy measurement (per hour).                                                                                                                                                                        | If 120 Wh are measured on Outlet 8 )141? <cr> Returns: +120.000</cr>                              |
| Total Cost H         | 142            | mUnits | Outlet 8 cost of Wh H.                                                                                                                                                                                                            | If the cost is 102.536 units on Outlet 8 )142? <cr> +102.536</cr>                                 |
| Irms_nb H            | 143            | mArms  | Outlet 8 narrowband rms current measurement.                                                                                                                                                                                      | If narrowband current measured on Outlet 8 is 12 Amps )143? <cr> Returns: +12.000</cr>            |
| VARs_nb H            | 144            | mW     | Outlet 8 narrowband reactive power measurement (per second).                                                                                                                                                                      | If narrowband 120 VARs are measured on Outlet 8 )144? <cr> Returns: +120.000</cr>                 |
| VAs_nb H             | 145            | mW     | Outlet 8 narrowband apparent power measurement (per second).                                                                                                                                                                      | If narrowband 120 VAs are measured on Outlet 8 )145? <cr> Returns: +120.000</cr>                  |
| Power<br>Factor_nb H | 146            | _      | Outlet 8 narrowband power factor. The output will be between -0.950 and 1.000. Positive power factor is defined as current lagging voltage (inductive). Negative power factor is defined as voltage lagging current (capacitive). | If the narrowband power factor on Outlet 8 is 0.95 )146? <cr> Returns: +0.950</cr>                |
| Phase<br>Angle_nb H  | 147            | _      | Outlet 8 narrowband phase angle. The output will be between 180.000 and -180.000.                                                                                                                                                 | If the narrowband phase angle measured on Outlet 8 is 60 degrees )147? <cr> Returns: +60.000</cr> |

|              | TOTAL OUTLETS  |        |                                                                     |                                                                                           |  |  |
|--------------|----------------|--------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Output       | Location (hex) | LSB    | Comment                                                             | Example                                                                                   |  |  |
| Watts T      | 148            | mW     | Active power measurement (per second) on all outlets.               | If 120 Watts are measured on all outlets )148? <cr> Returns: +120.000</cr>                |  |  |
| Wh T         | 149            | mWh    | Active accumulated energy measurement (per hour) on all outlets.    | If 120 Wh are measured on all outlets )149? <cr> Returns: +120.000</cr>                   |  |  |
| Total Cost T | 150            | mUnits | Total Cost of Wh for all outlets.                                   | If the total cost is 102.536 units on all outlets )150? <cr> +102.536</cr>                |  |  |
| Irms_nb T    | 151            | mArms  | Combined outlet narrowband rms current measurement.                 | If narrowband current measured on all outlets is 12 Amps )151? <cr> Returns: +12.000</cr> |  |  |
| VARs_nb T    | 152            | mW     | Combined outlet narrowband reactive power measurement (per second). | If narrowband 120 VARs are measured on all outlets )152? <cr> Returns: +120.000</cr>      |  |  |
| VAs_nb T     | 153            | mW     | Combined outlet narrowband apparent power measurement (per second). | If narrowband 120 VAs are measured on all outlets )153? <cr> Returns: +120.000</cr>       |  |  |

| MIN/MAX DATA |                |     |                        |                                                                                               |
|--------------|----------------|-----|------------------------|-----------------------------------------------------------------------------------------------|
| Output       | Location (hex) | LSB | Comment                | Example                                                                                       |
| Vrms Min     | 150            | mV  | Minimum Vrms measured. | If the minimum line voltage<br>measured was 105 V<br>)150 <cr><br/>Returns:<br/>+15.000</cr>  |
| Vrms Max     | 151            | mV  | Maximum Vrms measured. | If the maximum line voltage<br>measured was 130 V<br>)151 <cr><br/>Returns:<br/>+130.000</cr> |

| OUTLET 1 (IA) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                              |  |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                      |  |
| Watts A Min                 | 152            | mW    | Minimum Outlet 1 active power measured (per second).                                                                 | If the minimum power measured on Outlet 1 is 80 Watts )152? <cr> Returns: +80.000</cr>                       |  |
| Watts A Max                 | 153            | mW    | Maximum Outlet 1 active power measured (per second).                                                                 | If the maximum power measured on Outlet 1 is 200 Watts )153? <cr> Returns: +200.000</cr>                     |  |
| Irms_nb A<br>Min            | 154            | mArms | Outlet 1 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current<br>measured on Outlet 1 is 1 Amp<br>)154? <cr><br/>Returns: +1.000</cr>   |  |
| Irms_nb A<br>Max            | 155            | mArms | Outlet 1 maximum narrowband rms current measured.                                                                    | If the largest narrowband current<br>measured on Outlet 1 is 30 Amps<br>)155? <cr><br/>Returns: +30.000</cr> |  |
| VARs_nb A<br>Min            | 156            | mW    | Outlet 1 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 1 is 80 VARs )156? <cr> Returns: +80.000</cr>              |  |
| VARs_nb A<br>Max            | 157            | mWs   | Outlet 1 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 1 is 300VARs )157? <cr> Returns: +300.000</cr>             |  |
| VAs_nb A<br>Min             | 158            | mW    | Outlet 1 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 1 is 80 VARs )158? <cr> Returns: +80.000</cr>              |  |
| VAs_nb A<br>Max             | 159            | mWs   | Outlet 1 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 1 is 300VARs )159? <cr> Returns: +300.000</cr>              |  |
| Power<br>Factor_nb A<br>Min | 15A            | I     | Outlet 1 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 1 is -0.6 )15A? <cr> Returns: -0.600</cr>              |  |
| Power<br>Factor_nb A<br>Max | 15B            | I     | Outlet 1 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 1 is 0.9 )15B? <cr> Returns: +0.900</cr>               |  |
| Phase<br>Angle_nb A<br>Min  | 15C            | -     | Outlet 1 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 1 is 10 degrees )15C? <cr> Returns: +10.000</cr>    |  |
| Phase<br>Angle_nb A<br>Max  | 15D            | _     | Outlet 1 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 1 is 70 degrees )15D? <cr> Returns: +70.000</cr>    |  |

| OUTLET 2 (IB) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                           |  |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                   |  |
| Watts B Min                 | 15E            | mW    | Minimum Outlet 2 active power measured (per second).                                                                 | If the minimum power measured on<br>Outlet 2 is 80 Watts<br>)15E? <cr><br/>Returns: +80.000</cr>          |  |
| Watts B Max                 | 15F            | mW    | Maximum Outlet 2 active power measured (per second).                                                                 | If the maximum power measured on Outlet 2 is 200 Watts )15F? <cr> Returns: +200.000</cr>                  |  |
| Irms_nb B<br>Min            | 160            | mArms | Outlet 2 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current measured on Outlet 2 is 1 Amp )160? <cr> Returns: +1.000</cr>          |  |
| Irms_nb B<br>Max            | 161            | mArms | Outlet 2 maximum narrowband rms current measured.                                                                    | If the largest narrowband current measured on Outlet 2 is 30 Amps )161? <cr> Returns: +30.000</cr>        |  |
| VARs_nb B<br>Min            | 162            | mW    | Outlet 2 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 2 is 80 VARs )162? <cr> Returns: +80.000</cr>           |  |
| VARs_nb B<br>Max            | 163            | mWs   | Outlet 2 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 2 is 300VARs )163? <cr> Returns: +300.000</cr>          |  |
| VAs_nb B<br>Min             | 164            | mW    | Outlet 2 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 2 is 80 VARs )164? <cr> Returns: +80.000</cr>           |  |
| VAs_nb B<br>Max             | 165            | mWs   | Outlet 2 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 2 is 300VARs )165? <cr> Returns: +300.000</cr>           |  |
| Power<br>Factor_nb B<br>Min | 166            | П     | Outlet 2 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 2 is -0.6 )166? <cr> Returns: -0.600</cr>           |  |
| Power<br>Factor_nb B<br>Max | 167            | I     | Outlet 2 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 1 is 0.9 )167? <cr> Returns: +0.900</cr>            |  |
| Phase<br>Angle_nb B<br>Min  | 168            | _     | Outlet 2 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 2 is 10 degrees )68? <cr> Returns: +10.000</cr>  |  |
| Phase<br>Angle_nb B<br>Max  | 169            | -     | Outlet 2 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 2 is 70 degrees )169? <cr> Returns: +70.000</cr> |  |

| OUTLET 3 (IC) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                              |  |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                      |  |
| Watts C Min                 | 16A            | mW    | Minimum Outlet 3 active power measured (per second).                                                                 | If the minimum power measured on<br>Outlet 3 is 80 Watts<br>)16A? <cr><br/>Returns: +80.000</cr>             |  |
| Watts C Max                 | 16B            | mW    | Maximum Outlet 3 active power measured (per second).                                                                 | If the maximum power measured on Outlet 3 is 200 Watts )16B? <cr> Returns: +200.000</cr>                     |  |
| Irms_nb C<br>Min            | 16C            | mArms | Outlet 3 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current measured on Outlet 3 is 1 Amp )16C? <cr> Returns: +1.000</cr>             |  |
| Irms_nb C<br>Max            | 16D            | mArms | Outlet 3 maximum narrowband rms current measured.                                                                    | If the largest narrowband current<br>measured on Outlet 3 is 30 Amps<br>)16D? <cr><br/>Returns: +30.000</cr> |  |
| VARs_nb C<br>Min            | 16E            | mW    | Outlet 3 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 3 is 80 VARs )16E? <cr> Returns: +80.000</cr>              |  |
| VARs_nb C<br>Max            | 16F            | mWs   | Outlet 3 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 3 is 300VARs )16F? <cr> Returns: +300.000</cr>             |  |
| VAs_nb C<br>Min             | 170            | mW    | Outlet 3 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 3 is 80 VARs )170? <cr> Returns: +80.000</cr>              |  |
| VAs_nb C<br>Max             | 171            | mWs   | Outlet 3 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 3 is 300VARs )171? <cr> Returns: +300.000</cr>              |  |
| Power<br>Factor_nb C<br>Min | 172            | Ι     | Outlet 3 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 3 is -0.6 )172? <cr> Returns: -0.600</cr>              |  |
| Power<br>Factor_nb C<br>Max | 173            | I     | Outlet 3 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 3 is 0.9 )173? <cr> Returns: +0.900</cr>               |  |
| Phase<br>Angle_nb C<br>Min  | 174            | -     | Outlet 3 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 3 is 10 degrees )174? <cr> Returns: +10.000</cr>    |  |
| Phase<br>Angle_nb C<br>Max  | 175            | -     | Outlet 3 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 3 is 70 degrees )175? <cr> Returns: +70.000</cr>    |  |

| OUTLET 4 (ID) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                            |  |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                    |  |
| Watts D Min                 | 176            | mW    | Minimum Outlet 4 active power measured (per second).                                                                 | If the minimum power measured on<br>Outlet 4 is 80 Watts<br>)176? <cr><br/>Returns: +80.000</cr>           |  |
| Watts D Max                 | 177            | mW    | Maximum Outlet 4 active power measured (per second).                                                                 | If the maximum power measured on Outlet 4 is 200 Watts )177? <cr> Returns: +200.000</cr>                   |  |
| Irms_nb D<br>Min            | 178            | mArms | Outlet 4 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current<br>measured on Outlet 4 is 1 Amp<br>)178? <cr><br/>Returns: +1.000</cr> |  |
| Irms_nb D<br>Max            | 179            | mArms | Outlet 4 maximum narrowband rms current measured.                                                                    | If the largest narrowband current measured on Outlet 4 is 30 Amps )179? <cr> Returns: +30.000</cr>         |  |
| VARs_nb D<br>Min            | 17A            | mW    | Outlet 4 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 4 is 80 VARs )17A? <cr> Returns: +80.000</cr>            |  |
| VARs_nb D<br>Max            | 17B            | mWs   | Outlet 4 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 4 is 300VARs )17B? <cr> Returns: +300.000</cr>           |  |
| VAs_nb D<br>Min             | 17C            | mW    | Outlet 4 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 4 is 80 VARs )17C? <cr> Returns: +80.000</cr>            |  |
| VAs_nb F<br>Max             | 17D            | mWs   | Outlet 4 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 4 is 300VARs )17D? <cr> Returns: +300.000</cr>            |  |
| Power<br>Factor_nb D<br>Min | 17E            | П     | Outlet 4 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 4 is -0.6 )17E? <cr> Returns: -0.600</cr>            |  |
| Power<br>Factor_nb D<br>Max | 17F            | I     | Outlet 4 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 4 is 0.9 )7F? <cr> Returns: +0.900</cr>              |  |
| Phase<br>Angle_nb D<br>Min  | 180            | -     | Outlet 4 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 4 is 10 degrees )180? <cr> Returns: +10.000</cr>  |  |
| Phase<br>Angle_nb D<br>Max  | 181            | -     | Outlet 4 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 4 is 70 degrees )181? <cr> Returns: +70.000</cr>  |  |

| OUTLET 5 (IE) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                            |  |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                    |  |
| Watts E Min                 | 182            | mW    | Minimum Outlet 5 active power measured (per second).                                                                 | If the minimum power measured on<br>Outlet 5 is 80 Watts<br>)182? <cr><br/>Returns: +80.000</cr>           |  |
| Watts E Max                 | 183            | mW    | Maximum Outlet 5 active power measured (per second).                                                                 | If the maximum power measured on Outlet 5 is 200 Watts )183? <cr> Returns: +200.000</cr>                   |  |
| Irms_nb E<br>Min            | 184            | mArms | Outlet 5 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current<br>measured on Outlet 5 is 1 Amp<br>)184? <cr><br/>Returns: +1.000</cr> |  |
| Irms_nb E<br>Max            | 185            | mArms | Outlet 5 maximum narrowband rms current measured.                                                                    | If the largest narrowband current measured on Outlet 5 is 30 Amps )185? <cr> Returns: +30.000</cr>         |  |
| VARs_nb E<br>Min            | 186            | mW    | Outlet 5 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 5 is 80 VARs )186? <cr> Returns: +80.000</cr>            |  |
| VARs_nb E<br>Max            | 187            | mWs   | Outlet 5 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 5 is 300VARs )187? <cr> Returns: +300.000</cr>           |  |
| VAs_nb E<br>Min             | 188            | mW    | Outlet 5 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 5 is 80 VARs )188? <cr> Returns: +80.000</cr>            |  |
| VAs_nb E<br>Max             | 189            | mWs   | Outlet 5 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 5 is 300VARs )189? <cr> Returns: +300.000</cr>            |  |
| Power<br>Factor_nb E<br>Min | 18A            | I     | Outlet 5 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 5 is -0.6 )18A? <cr> Returns: -0.600</cr>            |  |
| Power<br>Factor_nb E<br>Max | 18B            | I     | Outlet 5 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 5 is 0.9 )18B? <cr> Returns: +0.900</cr>             |  |
| Phase<br>Angle_nb E<br>Min  | 18C            | -     | Outlet 5 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 5 is 10 degrees )18C? <cr> Returns: +10.000</cr>  |  |
| Phase<br>Angle_nb E<br>Max  | 18D            | -     | Outlet 5 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 5 is 70 degrees )18D? <cr> Returns: +70.000</cr>  |  |

| OUTLET 6 (IF) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                            |  |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                    |  |
| Watts F Min                 | 18E            | mW    | Minimum Outlet 6 active power measured (per second).                                                                 | If the minimum power measured on<br>Outlet 6 is 80 Watts<br>)18E? <cr><br/>Returns: +80.000</cr>           |  |
| Watts F Max                 | 18F            | mW    | Maximum Outlet 6 active power measured (per second).                                                                 | If the maximum power measured on Outlet 6 is 200 Watts )18F? <cr> Returns: +200.000</cr>                   |  |
| Irms_nb F<br>Min            | 190            | mArms | Outlet 6 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current<br>measured on Outlet 6 is 1 Amp<br>)190? <cr><br/>Returns: +1.000</cr> |  |
| Irms_nb F<br>Max            | 191            | mArms | Outlet 6 maximum narrowband rms current measured.                                                                    | If the largest narrowband current measured on Outlet 6 is 30 Amps )191? <cr> Returns: +30.000</cr>         |  |
| VARs_nb F<br>Min            | 192            | mW    | Outlet 6 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 6 is 80 VARs )192? <cr> Returns: +80.000</cr>            |  |
| VARs_nb F<br>Max            | 193            | mWs   | Outlet 6 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 1 is 300VARs )193? <cr> Returns: +300.000</cr>           |  |
| VAs_nb F<br>Min             | 194            | mW    | Outlet 6 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 1 is 80 VARs )194? <cr> Returns: +80.000</cr>            |  |
| VAs_nb F<br>Max             | 195            | mWs   | Outlet 6 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 6 is 300VARs )195? <cr> Returns: +300.000</cr>            |  |
| Power<br>Factor_nb F<br>Min | 196            | -     | Outlet 6 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 6 is -0.6 )15A? <cr> Returns: -0.600</cr>            |  |
| Power<br>Factor_nb F<br>Max | 197            | _     | Outlet 6 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 6 is 0.9 )15B? <cr> Returns: +0.900</cr>             |  |
| Phase<br>Angle_nb F<br>Min  | 198            | _     | Outlet 6 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 6 is 10 degrees )15C? <cr> Returns: +10.000</cr>  |  |
| Phase<br>Angle_nb F<br>Max  | 199            | -     | Outlet 6 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 6 is 70 degrees )15D? <cr> Returns: +70.000</cr>  |  |

| OUTLET 7 (IG) MIN/MAX DATA  |                |       |                                                                                                                      |                                                                                                            |
|-----------------------------|----------------|-------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Output                      | Location (hex) | LSB   | Comment                                                                                                              | Example                                                                                                    |
| Watts G Min                 | 19A            | mW    | Minimum Outlet 7 active power measured (per second).                                                                 | If the minimum power measured on Outlet 7 is 80 Watts )19A? <cr> Returns: +80.000</cr>                     |
| Watts G<br>Max              | 19B            | mW    | Maximum Outlet 7 active power measured (per second).                                                                 | If the maximum power measured on Outlet 7 is 200 Watts )19B? <cr> Returns: +200.000</cr>                   |
| Irms_nb G<br>Min            | 19C            | mArms | Outlet 7 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current<br>measured on Outlet 7 is 1 Amp<br>)19C? <cr><br/>Returns: +1.000</cr> |
| Irms_nb G<br>Max            | 19D            | mArms | Outlet 7 maximum narrowband rms current measured.                                                                    | If the largest narrowband current measured on Outlet 7 is 30 Amps )19D? <cr> Returns: +30.000</cr>         |
| VARs_nb G<br>Min            | 19E            | mW    | Outlet 7 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 7 is 80 VARs )19E? <cr> Returns: +80.000</cr>            |
| VARs_nb G<br>Max            | 19F            | mWs   | Outlet 7 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 7 is 300VARs )19F? <cr> Returns: +300.000</cr>           |
| VAs_nb G<br>Min             | 1A0            | mW    | Outlet 7 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 7 is 80 VARs )1A0? <cr> Returns: +80.000</cr>            |
| VAs_nb G<br>Max             | 1A1            | mWs   | Outlet 7 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 7 is 300VARs )1A1? <cr> Returns: +300.000</cr>            |
| Power<br>Factor_nb G<br>Min | 1A2            | _     | Outlet 7 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 7 is -0.6 )1A2? <cr> Returns: -0.600</cr>            |
| Power<br>Factor_nb G<br>Max | 1A3            | I     | Outlet 7 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 7 is 0.9 )1A3? <cr> Returns: +0.900</cr>             |
| Phase<br>Angle_nb G<br>Min  | 1A4            | _     | Outlet 7 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 7 is 10 degrees )1A4? <cr> Returns: +10.000</cr>  |
| Phase<br>Angle_nb G<br>Max  | 1A5            | -     | Outlet 7 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 7 is 70 degrees )1A5? <cr> Returns: +70.000</cr>  |

|                             | OUTLET 8 (IH) MIN/MAX DATA |       |                                                                                                                      |                                                                                                            |  |  |  |  |  |
|-----------------------------|----------------------------|-------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Output                      | Location (hex)             | LSB   | Comment                                                                                                              | Example                                                                                                    |  |  |  |  |  |
| Watts H Min                 | 1A6                        | mW    | Minimum Outlet 8 active power measured (per second).                                                                 | If the minimum power measured on<br>Outlet 8 is 80 Watts<br>)1A6? <cr><br/>Returns: +80.000</cr>           |  |  |  |  |  |
| Watts H Max                 | 1A7                        | mW    | Maximum Outlet 8 active power measured (per second).                                                                 | If the maximum power measured on Outlet 8 is 200 Watts )1A7? <cr> Returns: +200.000</cr>                   |  |  |  |  |  |
| Irms_nb H<br>Min            | 1A8                        | mArms | Outlet 8 minimum narrowband rms current measured.                                                                    | If the smallest narrowband current<br>measured on Outlet 8 is 1 Amp<br>)1A8? <cr><br/>Returns: +1.000</cr> |  |  |  |  |  |
| Irms_nb H<br>Max            | 1A9                        | mArms | Outlet 8 maximum narrowband rms current measured.                                                                    | If the largest narrowband current measured on Outlet 8 is 30 Amps )1A9? <cr> Returns: +30.000</cr>         |  |  |  |  |  |
| VARs_nb H<br>Min            | 1AA                        | mW    | Outlet 8 minimum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 8 is 80 VARs )1AA? <cr> Returns: +80.000</cr>            |  |  |  |  |  |
| VARs_nb H<br>Max            | 1AB                        | mWs   | Outlet 8 maximum narrowband reactive power measured (per second).                                                    | If the largest narrowband VARs measured on Outlet 8 is 300VARs )1AB? <cr> Returns: +300.000</cr>           |  |  |  |  |  |
| VAs_nb H<br>Min             | 1AC                        | mW    | Outlet 8 minimum narrowband apparent power measured (per second).                                                    | If the smallest narrowband VAs measured on Outlet 8 is 80 VARs )1AC? <cr> Returns: +80.000</cr>            |  |  |  |  |  |
| VAs_nb H<br>Max             | 1AD                        | mWs   | Outlet 8 maximum narrowband apparent power measured (per second).                                                    | If the largest narrowband VAs measured on Outlet 8 is 300VARs )1AD? <cr> Returns: +300.000</cr>            |  |  |  |  |  |
| Power<br>Factor_nb H<br>Min | 1AE                        | _     | Outlet 8 minimum narrowband power factor measured. Minimum is defined as the most negative or least positive number. | If minimum narrowband power factor measured on Outlet 8 is -0.6 )1AE? <cr> Returns: -0.600</cr>            |  |  |  |  |  |
| Power<br>Factor_nb H<br>Max | 1AF                        | ı     | Outlet 8 maximum narrowband power factor measured. Maximum is defined as the most positive or least negative number. | If maximum narrowband power factor measured on Outlet 8 is 0.9 )1AF? <cr> Returns: +0.900</cr>             |  |  |  |  |  |
| Phase<br>Angle_nb H<br>Min  | 1B0                        | -     | Outlet 8 minimum narrowband phase angle measured.                                                                    | If the minimum narrowband phase angle measured on Outlet 8 is 10 degrees )1B0? <cr> Returns: +10.000</cr>  |  |  |  |  |  |
| Phase<br>Angle_nb H<br>Max  | 1B1                        | -     | Outlet 8 maximum narrowband phase angle measured.                                                                    | If the maximum narrowband phase angle measured on Outlet 8 is 70 degrees )1B1? <cr> Returns: +70.000</cr>  |  |  |  |  |  |

| TOTAL MIN/MAX DATA |                |       |                                                                         |                                                                                                       |  |  |  |  |
|--------------------|----------------|-------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| Output             | Location (hex) | LSB   | Comment                                                                 | Example                                                                                               |  |  |  |  |
| Watts T Min        | 1B2            | mW    | Minimum active power measured on all outlets (per second).              | If the minimum power measured on all outlets is 80 Watts )1B2? <cr> Returns: +80.000</cr>             |  |  |  |  |
| Watts T Max        | 1B3            | mW    | Maximum active power measured on all outlets (per second).              | If the maximum power measured on all outlets is 200 Watts )1B3? <cr> Returns: +200.000</cr>           |  |  |  |  |
| Irms_nb T<br>Min   | 1B4            | mArms | Minimum narrowband rms current measured on all outlets.                 | If the smallest narrowband current measured on all outlets is 1 Amp )1B4? <cr> Returns: +1.000</cr>   |  |  |  |  |
| Irms_nb T<br>Max   | 1B5            | mArms | Maximum narrowband rms current measured on all outlets.                 | If the largest narrowband current measured on all outlets is 30 Amps )1B5? <cr> Returns: +30.000</cr> |  |  |  |  |
| VARs_nb T<br>Min   | 1B6            | mW    | Minimum narrowband reactive power measured (per second) on all outlets. | If the largest narrowband VARs measured on all outlets is 80 VARs )1B6? <cr> Returns: +80.000</cr>    |  |  |  |  |
| VARs_nb T<br>Max   | 1B7            | mWs   | Maximum narrowband reactive power measured (per second) on all outlets. | If the largest narrowband VARs measured on all outlets is 300VARs )1B7? <cr> Returns: +300.000</cr>   |  |  |  |  |
| VAs_nb T<br>Min    | 1B8            | mW    | Minimum narrowband apparent power measured (per second) on all outlets. | If the smallest narrowband VAs measured on all outlets is 80 VARs )1B8? <cr> Returns: +80.000</cr>    |  |  |  |  |
| VAs_nb T<br>Max    | 1B9            | mWs   | Maximum narrowband apparent power measured (per second) on all outlets. | If the largest narrowband VAs measured on all outlets is 300VARs )1B9? <cr> Returns: +300.000</cr>    |  |  |  |  |
| Unused             | 1BA – 1BF      |       | Unused                                                                  |                                                                                                       |  |  |  |  |

## 6 Configuration Parameter Entry

## 6.1 MPU Parameters

Table 4 lists the MPU parameters configurable by Firmware 6618\_PDU\_S8\_URT\_V1\_00. Refer to Section 4.3.6 for saving MPU parameters to internal non-volatile flash memory.

**Table 4: MPU Parameters** 

| MPU<br>Parameter         | Location (hex)       | LSB   | Default  | Comment                                                                                                                                | Example                                                                                                                                                                                                    |  |  |  |  |
|--------------------------|----------------------|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                          | SENSOR CONFIGURATION |       |          |                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
| VMAX A                   | 200                  | mVrms | +471.500 | External rms voltage corresponding to 250 mVpk at the VA input of the 78M6618. It must be set high enough to account for overvoltages. | VMAX on channel A is<br>+471.5V for headroom. If<br>only using a 120V AC<br>system, additional headroom<br>can be added as follows:<br>)200=+240.00 <cr></cr>                                              |  |  |  |  |
| VMAX B                   | 201                  | mVrms | +471.500 | Same as VMAX A,<br>but at VB.                                                                                                          |                                                                                                                                                                                                            |  |  |  |  |
| IMAX<br>Outlet 1<br>(IA) | 202                  | mArms | +30.000  | External rms current corresponding to 250 mVpk at the IA input of the 78M6618.                                                         | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps To set IMAX Outlet 1:  )202=+44.190 <cr></cr>  |  |  |  |  |
| IMAX<br>Outlet 2<br>(IB) | 203                  | mArms | +30.000  | External rms current corresponding to 250 mVpk at the IB input of the 78M6618.                                                         | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps To set IMAX Outlet 2:  )203=+44.190 <cr></cr>  |  |  |  |  |
| IMAX<br>Outlet 3<br>(IC) | 204                  | mArms | +30.000  | External rms current corresponding to 250 mVpk at the IC input of the 78M6618.                                                         | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps  To set IMAX Outlet 3:  )204=+44.190 <cr></cr> |  |  |  |  |

| MPU<br>Parameter         | Location (hex) | LSB   | Default | Comment                                                                        | Example                                                                                                                                                                                                                                                    |
|--------------------------|----------------|-------|---------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMAX<br>Outlet 4<br>(ID) | 205            | mArms | +30.000 | External rms current corresponding to 250 mVpk at the ID input of the 78M6618. | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps  To set IMAX Outlet 4:  )205=+44.190 <cr></cr>                                                 |
| IMAX<br>Outlet 5<br>(IE) | 206            | mArms | +30.000 | External rms current corresponding to 250 mVpk at the IE input of the 78M6618. | The default is set to 52 Amps for overhead. For added margin, in a system using current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> For a 4 mΩ current shunt IMAX=44.19 Amps To set IMAX Outlet 5:  )206=+44.190 <cr></cr> |
| IMAX<br>Outlet 6<br>(IF) | 207            | mArms | +30.000 | External rms current corresponding to 250 mVpk at the IF input of the 78M6618. | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps To set IMAX Outlet 6:  )207=+44.190 <cr></cr>                                                  |
| IMAX<br>Outlet 7<br>(IG) | 208            | mArms | +30.000 | External rms current corresponding to 250 mVpk at the IG input of the 78M6618. | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps  To set IMAX Outlet 7:  )208=+44.190 <cr></cr>                                                 |
| IMAX<br>Outlet 8<br>(IH) | 209            | mArms | +30.000 | External rms current corresponding to 250 mVpk at the IH input of the 78M6618. | The default is set to 30 Amps. In a system using a 4 mΩ current shunts IMAX could be changed as follows:  IMAX= (Vpk/√2)/R <sub>shunt</sub> IMAX=44.19 Amps To set IMAX Outlet 8:  )209=+44.190 <cr></cr>                                                  |
| Reserved                 | 20A – 20D      | _     |         | Reserved                                                                       |                                                                                                                                                                                                                                                            |

| MPU<br>Parameter       | Location (hex)            | LSB    | Default | Comment                                                                                                                                                                                              | Example                                                                                                                      |  |  |  |  |
|------------------------|---------------------------|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | APPLICATION CONFIGURATION |        |         |                                                                                                                                                                                                      |                                                                                                                              |  |  |  |  |
| Cost/kWh               | 20E                       | mUnits | +0.150  | Cost per kWh (kilowatt hour) in milliunits.                                                                                                                                                          | If the cost per kWh is to be<br>10 units:<br>)20E=10.000 <cr></cr>                                                           |  |  |  |  |
| Units of Cost          | 20F                       | N/A    | USD     | 4-byte string describing the unit of cost (e.g. USD, EURO etc.).  There must be 4 characters. If entering US dollars, USD, there needs to be a space after the D to make it a four character string. | To enter US Dollars: )20F="USD " <cr> To enter Euros: )20F="EURO"<cr></cr></cr>                                              |  |  |  |  |
| Relay<br>Configuration | 210                       | -      | 0       | Bit 1 (Relay Polarity)  0 = Normal Polarity  1 = Inverted Polarity  Bit 0 (Relay Type)  0 = non-latched  1 = latched                                                                                 |                                                                                                                              |  |  |  |  |
| Sequence<br>Delay      | 211                       | 0.01s  | +0.10   | Time delay between closing of relays  Allows a single write command to the Control Relay register 288                                                                                                | If the user desires a 1 second delay between the <i>closing</i> of each relay, then enter the following:  >)211=+1 <cr></cr> |  |  |  |  |
| Energize<br>Delay      | 212                       | ms     | +0.000  | Parameter given in relay manufacturer's data sheet is entered here. The amount of delay will be 1 ms plus the value entered in )AE.                                                                  | If the user desires 8 ms of<br>delay then enter the<br>following:<br>>)212=+0.007 <cr></cr>                                  |  |  |  |  |
| De-Energize<br>Delay   | 213                       | ms     | +0.000  | Parameter given in relay manufacturer's data sheet is entered here. The amount of delay will be 1 ms plus the value entered in )AF.                                                                  | If the user desires 8 ms of delay then enter the following:  >)213=+0.007 <cr></cr>                                          |  |  |  |  |
| Reserved               | 214 – 21C                 | -      | 0       | Reserved                                                                                                                                                                                             | Reserved                                                                                                                     |  |  |  |  |

| MPU<br>Parameter       | Location (hex) | LSB      | Default  | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Example                                                                                                                                             |
|------------------------|----------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration<br>Status  | 21D            |          | 0        | Bit 0 – WPULSE enable Bit 1 – Voltage Cal failed (A) Bit 2 – Voltage Cal failed (A) Bit 3 – Phase Cal failed (A) Bit 4 – Current Cal failed (A) Bit 5 – Watt Cal failed (A) Bit 6 – Phase Cal failed (B) Bit 7 – Current Cal failed (B) Bit 8 – Watt Cal failed (B) Bit 9 – Phase Cal failed (C) Bit 10 – Current Cal failed (C) Bit 11 – Watt Cal failed (C) Bit 12 – Phase Cal failed (D) Bit 13 – Current Cal failed (D) Bit 14 – Watt Cal failed (D) Bit 15 – Phase Cal failed (E) Bit 16 – Current Cal failed (E) Bit 17 – Watt Cal failed (E) Bit 18 – Phase Cal failed (F) Bit 19 – Current Cal failed (F) Bit 20 – Watt Cal failed (F) Bit 21 – Phase Cal failed (G) Bit 22 – Current Cal failed (G) Bit 23 – Watt Cal failed (G) Bit 24 – Phase Cal failed (H) Bit 25 – Current Cal failed (H) Bit 26 – Watt Cal failed (H) Bit 27-31 – Unused | Bit 0 is only user input; Enables a Watt Pulse output at DIO6.  All other bits are R/O and are set when the respective calibration routine fails    |
| Reserved               | 21E            | -        | 0        | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reserved                                                                                                                                            |
| Tolerance<br>on Phase  | 21F            | mDegrees | 0.100    | Measured value to fall within this set tolerance of the target value (Calibration Phase entry) for the calibration to be complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | If the tolerance to the target phase is desired to be more coarse, to within 0.5 degrees, the user can enter the following:  >)21F=+0.500 <cr></cr> |
| Calibration<br>Type    | 220            | -        | 0        | Reserved. Only type 0 at this time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                     |
| Calibration<br>Voltage | 221            | mVrms    | +120.000 | Target line voltage (rms) used for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | If the target line voltage for calibration is 220V, enter the following:  >)221=+220 <cr></cr>                                                      |
| Calibration<br>Current | 222            | mArms    | +1.000   | Target load current (rms) used for calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | If the target load current for calibration is 2A, enter the following:  >)222=+2 <cr></cr>                                                          |

| MPU<br>Parameter                | Location (hex) | LSB   | Default | Comment                                                                                                                                                                      | Example                                                                                                                                                                       |
|---------------------------------|----------------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration<br>Phase            | 223            | 0.1°  | 0       | Target Phase (voltage to current). Normally set to zero.                                                                                                                     |                                                                                                                                                                               |
| Tolerance on<br>Voltage         | 224            | mVrms | +0.010  | Measured value to fall within this set tolerance of the target value (Calibration Voltage entry) for the calibration to be complete.                                         | If the tolerance to the target voltage is desired to be more coarse, to within 0.1V, the user can enter the following:  >)224=+0.100 <cr></cr>                                |
| Tolerance on<br>Current         | 225            | mArms | +0.010  | Measured value to fall within this set tolerance of the target value (Calibration Current entry) for the calibration to be complete.                                         | If the tolerance to the target current is desired to be more coarse, to within 0.1A, the user can enter the following:  >)225=+0.100 <cr></cr>                                |
| Average<br>Count for<br>Voltage | 226            | 1     | +3      | Number of voltage measurements taken and averaged to be compared to the target value (Calibration Voltage entry).                                                            | If the amount of averaging for the voltage measurement is desired to increase to 10 enter the following:  >)226=+10 <cr></cr>                                                 |
| Average<br>Count for<br>Current | 227            | 1     | +3      | Number of current measurements taken and averaged to be compared to the target value (Calibration Current entry).                                                            | If the amount of averaging for the current measurement is desired to increase to 10 enter the following:  >)227=+10 <cr></cr>                                                 |
| Max Iteration<br>for Voltage    | 228            | 1     | +10     | Number of attempts to reach<br>the target value (Calibration<br>Voltage entry) within the<br>programmed tolerance.                                                           | If maximum number of iterations to be tried for obtaining the target value of voltage within the set tolerance (at C4) is to be reduced to 5, then enter:  >)228=+5 <cr></cr> |
| Max Iteration for Current       | 229            | 1     | +10     | Number of attempts to reach<br>the target value (Calibration<br>Voltage entry) within the<br>programmed tolerance.                                                           | If maximum number of iterations to be tried for obtaining the target value of power within the set tolerance (at C5) is to be reduced to 5, then enter:  >)229=+5 <cr></cr>   |
| Tolerance on<br>Watts           | 22A            | mW    | +0.010  | Measured value to fall within this set tolerance of the target value (Calibration Voltage multiplied by the calibration current entries) for the calibration to be complete. | If the tolerance to the target power is desired to be more coarse, to within 0.1W, the user can enter the following:  >)22A=+0.100 <cr></cr>                                  |

| MPU<br>Parameter                     | Location (hex) | LSB   | Default  | Comment                                                                                                                                                                      | Example                                                                                                                                                                      |
|--------------------------------------|----------------|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Average<br>Count for<br>Watts        | 22B            | 1     | +3       | Measured value to fall within this set tolerance of the target value (Calibration Voltage multiplied by the calibration current entries) for the calibration to be complete. | If the amount of averaging for the power measurement is desired to increase to 10 enter the following:  >)22B=+10 <cr></cr>                                                  |
| Max Iteration<br>for Watts           | 22C            | 1     | +10      | Number of attempts to reach<br>the target value (Calibration<br>Voltage multiplied by the<br>calibration current entries)<br>within the programmed<br>tolerance.             | If maximum number of iterations to be tried for obtaining the target value of power within the set tolerance (at 22A) is to be reduced to 5, then enter:  >)22C=+5 <cr></cr> |
| Calibration<br>WRATE                 | 22D            | 1     | +2840    | Entry for WRATE during the calibration step only. After calibration, WRATE returns to the value entered in ]23.                                                              |                                                                                                                                                                              |
| Calibration<br>Temperature           | 22E            | 0.1°C | +22.0    | Target nominal temperature for calibration.                                                                                                                                  | If the user desires the target<br>nominal temperature to be<br>25°C, then set as follows:<br>>)22E=+25.0 <cr></cr>                                                           |
| Calibration<br>Watts                 | 22F            | mW    | +120.000 | Target Watts used for calibration (CALW or CLW).                                                                                                                             | If the target Watts for calibration is 240W, enter the following: >)22F=+240 <cr></cr>                                                                                       |
| Voltage A                            | 230            | mVrms | +10.000  | Minimum voltage value to be measured on the VA input. Voltages below this value are ignored. Also known as CREEP VA.                                                         | If the desired minimum voltage value to be measured on the VA input is 50Vrms then set: >)230=+50                                                                            |
| Voltage B                            | 231            | mVrms | +10.000  | CREEP VB.                                                                                                                                                                    | If the desired minimum voltage value to be measured on the VB input is 50Vrms then set: >)231=+50                                                                            |
| Starting<br>Current<br>Outlet 1 (IA) | 232            | mArms | +0.015   | Minimum current value to be measured on the IA input. Currents below this value will be ignored. Also known as CREEP IA.                                                     | Default setting is 15 mA. If start current on Outlet 1 desired is 10 mA:  )232=+0.010 <cr></cr>                                                                              |
| Starting                             |                |       |          | AISO NIIOWII dS UNEEF IA.                                                                                                                                                    | Default setting is 15 mA. If start current on Outlet 2                                                                                                                       |
| Current<br>Outlet 2 (IB)             | 233            | mArms | +0.015   | CREEP IB                                                                                                                                                                     | desired is 10 mA: )233=+0.010 <cr></cr>                                                                                                                                      |
| Starting<br>Current<br>Outlet 3 (IC) | 234            | mArms | +0.015   | CREEP IC                                                                                                                                                                     | Default setting is 15 mA. If start current on Outlet 3 desired is 10 mA:                                                                                                     |
| ( )                                  |                |       |          |                                                                                                                                                                              | )234=+0.010 <cr></cr>                                                                                                                                                        |

| MPU<br>Parameter                     | Location (hex) | LSB   | Default | Comment                                                                | Example                                                                  |
|--------------------------------------|----------------|-------|---------|------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Starting<br>Current<br>Outlet 4 (ID) | 235            | mArms | +0.015  | CREEP ID                                                               | Default setting is 15 mA. If start current on Outlet 4 desired is 10 mA: |
| Outlet 4 (ID)                        |                |       |         |                                                                        | )235=+0.010 <cr></cr>                                                    |
| Starting<br>Current<br>Outlet 5 (IE) | 236            | mArms | +0.015  | CREEP IE                                                               | Default setting is 15 mA. If start current on Outlet 5 desired is 10 mA: |
| Outlet 5 (IL)                        |                |       |         |                                                                        | )236=+0.010 <cr></cr>                                                    |
| Starting<br>Current<br>Outlet 6 (IF) | 237            | mArms | +0.015  | CREEP IF                                                               | Default setting is 15 mA. If start current on Outlet 6 desired is 10 mA: |
| Outlet 0 (II )                       |                |       |         |                                                                        | )237=+0.010 <cr></cr>                                                    |
| Starting<br>Current<br>Outlet 7 (IG) | 238            | mArms | +0.015  | CREEP IG                                                               | Default setting is 15 mA. If start current on Outlet 7 desired is 10 mA: |
| Outlet 7 (10)                        |                |       |         |                                                                        | )238=+0.010 <cr></cr>                                                    |
| Starting<br>Current<br>Outlet 8 (IH) | 239            | mArms | +0.015  | CREEP IH                                                               | Default setting is 15 mA. If start current on Outlet 8 desired is 10 mA: |
|                                      |                |       |         | Voltage et input VA under                                              | )239=+0.010 <cr></cr>                                                    |
| Frequency                            | 23A            | mVrms | +49.824 | Voltage at input VA under which frequency is set to zero (0). CREEP VF |                                                                          |
| Unused                               | 23B-23F        |       |         | Unused                                                                 |                                                                          |

| MPU<br>Parameter                        | Location (hex)            | LSB    | Default  | Comment                                                                                                                                         | Example                                                                                                |  |  |  |  |
|-----------------------------------------|---------------------------|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                         | ALARM THRESHOLDS - COMMON |        |          |                                                                                                                                                 |                                                                                                        |  |  |  |  |
| Temp Alarm<br>Min Threshold             | 240                       | 0.1°C  | +0.0     | Minimum Temperature Alarm Threshold. A temperature below this threshold will set the alarm (bit 0 of the Alarm Status Register).                | If the minimum temperature threshold is to be change to 10°C then set as follows:                      |  |  |  |  |
|                                         |                           |        |          | register).                                                                                                                                      | >)240=+10.0                                                                                            |  |  |  |  |
| Temp Alarm<br>Max<br>Threshold          | 241                       | 0.1°C  | +70.0    | Maximum Temperature Alarm Threshold. A temperature above this threshold will set the alarm (bit 1 of the Alarm Status                           | If the maximum temperature threshold is to be change to 50°C then set as follows:                      |  |  |  |  |
|                                         |                           |        |          | Register).                                                                                                                                      | >)241=+50.0                                                                                            |  |  |  |  |
| Frequency<br>Minimum<br>Threshold       | 242                       | 0.01Hz | +59.00   | Minimum Frequency Alarm Threshold. A frequency below this threshold will set the alarm (bit 2 of the Alarm Status                               | If the minimum frequency<br>threshold is to be changed<br>to 59.5 Hz then enter the<br>following:      |  |  |  |  |
|                                         |                           |        |          | Register).                                                                                                                                      | >)242=+59.50                                                                                           |  |  |  |  |
| Frequency<br>Maximum<br>Threshold       | 243                       | 0.01Hz | +61.00   | Maximum Frequency Alarm Threshold. A frequency above this threshold will set the alarm (bit 3 of the Alarm Status Register).                    | If the maximum frequency threshold is to be changed to 60.5 Hz then enter the following:               |  |  |  |  |
|                                         |                           |        |          | ,                                                                                                                                               | >)243=+60.50                                                                                           |  |  |  |  |
| SAG<br>Voltage VA<br>Alarm<br>Threshold | 244                       | mVpk   | +80.000  | Sets an alarm (bit 4 of the Alarm Status) if voltage drops below the SAG threshold. See CESTATE register 22 in the CE Parameters for SAG timing |                                                                                                        |  |  |  |  |
| Min<br>Voltage VA<br>Alarm<br>Threshold | 245                       | mVrms  | +100.001 | Sets an alarm (bit 5 of the Alarm Status) if voltage drops below the Minimum threshold                                                          | To change the minimum voltage threshold from the 100 Volt default to 80 Volts:  )245=+80.000 <cr></cr> |  |  |  |  |
| Max<br>Voltage VA<br>Alarm<br>Threshold | 246                       | mVrms  | +140.001 | Sets an alarm (bit 6 of the Alarm Status) if voltage exceeds the Maximum threshold                                                              | To change the peak voltage threshold from the default 140 Volts to 280 Volts: )246=+280.000 <cr></cr>  |  |  |  |  |
| SAG<br>Voltage VB<br>Alarm<br>Threshold | 247                       | mVpk   | +80.000  | Sets an alarm (bit 7 of the Alarm Status) if voltage drops below the SAG threshold. See CESTATE register 22 in the CE Parameters for SAG timing |                                                                                                        |  |  |  |  |

| MPU<br>Parameter                        | Location (hex) | LSB   | Default    | Comment                                                                                                                                    | Example                                                                                                                                                          |
|-----------------------------------------|----------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Min<br>Voltage VB<br>Alarm<br>Threshold | 248            | mVrms | +100.001   | Sets an alarm (bit 8 of the Alarm Status) if voltage drops below the Minimum threshold                                                     | To change the minimum voltage threshold from the 100 Volt default to 80 Volts:  )248=+80.000 <cr></cr>                                                           |
| Max<br>Voltage<br>Alarm<br>Threshold    | 249            | mVrms | +140.001   | Sets an alarm<br>(bit 9 of the Alarm Status) if<br>voltage exceeds the<br>Maximum threshold                                                | To change the peak voltage threshold from the default 140 Volts to 280 Volts:  )249=+280.000 <cr></cr>                                                           |
| Unused                                  | 24A-24F        | _     |            | Unused                                                                                                                                     |                                                                                                                                                                  |
|                                         | L              | ALA   | RM THRESHO | DLDS – OUTLET 1 WIDEBAND                                                                                                                   |                                                                                                                                                                  |
| Max<br>IA_WB<br>Alarm<br>Threshold      | 250            | mArms | +15.000    | Sets an alarm (bit 0 of the Alarm Status B) if Wideband Outlet 1 current (IA input to 6618) exceeds the Maximum threshold                  | If the maximum wideband current threshold on Outlet 1 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )250=+30.000 <cr></cr> |
| Min<br>PFA_WB<br>Alarm<br>Threshold     | 251            | -     | -0.700     | Sets an alarm (bit 1 of the Alarm Status B) if Wideband Outlet 1 current (IA input to 6618) power factor drops below the Minimum threshold | If the min wideband power factor threshold on Outlet 1 is to be changed from the default to -0.6 then set as follows:  )251=-0.600 <cr></cr>                     |
| Max PFA_WB<br>Alarm<br>Threshold        | 252            | -     | +0.700     | Sets an alarm (bit 2 of the Alarm Status B) if Wideband Outlet 1 current (IA input to 6618) power factor exceeds the Maximum threshold     | If the max wideband power factor threshold on Outlet 1 is to be changed from the default to +0.600 then set as follows:  )252=+0.600 <cr></cr>                   |
|                                         | T              | ALA   | RM THRESHO | OLDS – OUTLET 2 WIDEBAND                                                                                                                   |                                                                                                                                                                  |
| Max<br>IB_WB<br>Threshold               | 253            | mArms | +15.000    | Alarm threshold<br>(bit 3 of the Alarm Status B) for<br>Wideband IB channel<br>Max current                                                 | If the maximum wideband current threshold on Outlet 2 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )253=+30.000 <cr></cr> |
| Min<br>PFB_WB<br>Threshold              | 254            | -     | -0.700     | Alarm threshold<br>(bit 4 of the Alarm Status B) for<br>Wideband IB channel<br>Min power factor                                            | If the min wideband power factor threshold on Outlet 2 is to be changed from the default to -0.6 then set as follows:  )254=-0.600 <cr></cr>                     |

| MPU<br>Parameter           | Location (hex) | LSB   | Default    | Comment                                                                                          | Example                                                                                                                                                          |
|----------------------------|----------------|-------|------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max PFB_WB<br>Threshold    | 255            | -     | +0.700     | Alarm threshold<br>(bit 5 of the Alarm Status B) for<br>Wideband IB channel<br>Max power factor  | If the max wideband power factor threshold on Outlet 2 is to be changed from the default to +0.600 then set as follows:                                          |
|                            |                |       |            |                                                                                                  | )255=+0.600 <cr></cr>                                                                                                                                            |
|                            | T              | ALA   | RM THRESHO | DLDS – OUTLET 3 WIDEBAND                                                                         |                                                                                                                                                                  |
| Max<br>IC_WB<br>Threshold  | 256            | mArms | +15.000    | Alarm threshold<br>(bit 6 of the Alarm Status B) for<br>Wideband IC channel<br>Max current       | If the maximum wideband current threshold on Outlet 3 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )256=+30.000 <cr></cr> |
| Min<br>PFC_WB<br>Threshold | 257            | -     | -0.700     | Alarm threshold<br>(bit 7 of the Alarm Status B) for<br>Wideband IC channel<br>Min power factor  | If the min wideband power factor threshold on Outlet 3 is to be changed from the default to -0.6 then set as follows:  )257=-0.600 <cr></cr>                     |
| Max PFC_WB<br>Threshold    | 258            | -     | +0.700     | Alarm threshold<br>(bit 8 of the Alarm Status B) for<br>Wideband IC channel<br>Max power factor  | If the max wideband power factor threshold on Outlet 3 is to be changed from the default to +0.600 then set as follows:  )258=+0.600 <cr></cr>                   |
|                            | l              | ALA   | RM THRESH  | OLDS – OUTLET 4 WIDEBAND                                                                         |                                                                                                                                                                  |
| Max<br>ID_WB<br>Threshold  | 259            | mArms | +15.000    | Alarm threshold<br>(bit 9 of the Alarm Status B) for<br>Wideband ID channel<br>Max current       | If the maximum wideband current threshold on Outlet 4 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )259=+30.000 <cr></cr> |
| Min<br>PFD_WB<br>Threshold | 25A            | -     | -0.700     | Alarm threshold<br>(bit 10 of the Alarm Status B) for<br>Wideband ID channel<br>Min power factor | If the min wideband power factor threshold on Outlet 4 is to be changed from the default to -0.6 then set as follows:  )25A=-0.600 <cr></cr>                     |

| MPU<br>Parameter                     | Location (hex) | LSB   | Default    | Comment                                                                                          | Example                                                                                                                                                          |
|--------------------------------------|----------------|-------|------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max PFD_WB<br>Threshold              | 25B            | -     | +0.700     | Alarm threshold<br>(bit 11 of the Alarm Status B) for<br>Wideband ID channel<br>Max power factor | If the max wideband power factor threshold on Outlet 4 is to be changed from the default to +0.600 then set as follows:                                          |
|                                      |                | ΔΙΔ   | RM THRESHO | DLDS – OUTLET 5 WIDEBAND                                                                         | )25B=+0.600 <cr></cr>                                                                                                                                            |
|                                      |                |       |            |                                                                                                  |                                                                                                                                                                  |
| Max<br>IE_WB<br>Threshold            | 25C            | mArms | +15.000    | Alarm threshold<br>(bit 12 of the Alarm Status B) for<br>Wideband IE channel<br>Max current      | If the maximum wideband current threshold on Outlet 5 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:                         |
|                                      |                |       |            |                                                                                                  | )25C=+30.000 <cr></cr>                                                                                                                                           |
| Min<br>PFE_WB<br>Threshold           | 25D            | -     | -0.700     | Alarm threshold<br>(bit 13 of the Alarm Status B) for<br>Wideband IE channel<br>Min power factor | If the min wideband power factor threshold on Outlet 5 is to be changed from the default to -0.6 then set as follows:                                            |
|                                      |                |       |            |                                                                                                  | )25D=-0.600 <cr></cr>                                                                                                                                            |
| Max PFE_WB<br>Threshold              | 25E            | -     | +0.700     | Alarm threshold<br>(bit 14 of the Alarm Status B) for<br>Wideband IE channel<br>Max power factor | If the max wideband power factor threshold on Outlet 5 is to be changed from the default to +0.600 then set as follows:                                          |
|                                      |                |       |            |                                                                                                  | )25E=+0.600 <cr></cr>                                                                                                                                            |
| ALARM THRESHOLDS – OUTLET 6 WIDEBAND |                |       |            |                                                                                                  |                                                                                                                                                                  |
| Max<br>IF_WB<br>Threshold            | 25F            | mArms | +15.000    | Alarm threshold<br>(bit 15 of the Alarm Status B) for<br>Wideband IF channel<br>Max current      | If the maximum wideband current threshold on Outlet 6 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )25F=+30.000 <cr></cr> |
| Min<br>PFF_WB<br>Threshold           | 260            | -     | -0.700     | Alarm threshold<br>(bit 16 of the Alarm Status B) for<br>Wideband IF channel<br>Min power factor | If the min wideband power factor threshold on Outlet 6 is to be changed from the default to -0.6 then set as follows:  )260=-0.600 <cr></cr>                     |

| MPU<br>Parameter           | Location (hex) | LSB   | Default    | Comment                                                                                          | Example                                                                                                                                                          |
|----------------------------|----------------|-------|------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max PFF_WB<br>Threshold    | 261            | -     | +0.700     | Alarm threshold<br>(bit 17 of the Alarm Status B) for<br>Wideband IF channel<br>Max power factor | If the max wideband power factor threshold on Outlet 6 is to be changed from the default to +0.600 then set as follows:                                          |
|                            |                |       |            |                                                                                                  | )261=+0.600 <cr></cr>                                                                                                                                            |
|                            |                | ALA   | RM THRESHO | DLDS – OUTLET 7 WIDEBAND                                                                         |                                                                                                                                                                  |
| Max<br>IG_WB<br>Threshold  | 262            | mArms | 15.000     | Alarm threshold<br>(bit 18 of the Alarm Status B) for<br>Wideband IG channel<br>Max current      | If the maximum wideband current threshold on Outlet 7 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )262=+30.000 <cr></cr> |
| Min<br>PFG_WB<br>Threshold | 263            | _     | -0.700     | Alarm threshold<br>(bit 19 of the Alarm Status B) for<br>Wideband IG channel<br>Min power factor | If the min wideband power factor threshold on Outlet 7 is to be changed from the default to -0.6 then set as follows:                                            |
|                            |                |       |            |                                                                                                  | )263=-0.600 <cr></cr>                                                                                                                                            |
| Max PFG_WB<br>Threshold    | 264            | -     | +0.700     | Alarm threshold<br>(bit 20 of the Alarm Status B) for<br>Wideband IG channel<br>Max power factor | If the max wideband power factor threshold on Outlet 7 is to be changed from the default to +0.600 then set as follows:                                          |
|                            |                |       |            | ·                                                                                                | )264=+0.600 <cr></cr>                                                                                                                                            |
|                            |                | ALA   | RM THRESHO | OLDS – OUTLET 8 WIDEBAND                                                                         |                                                                                                                                                                  |
| Max<br>IH_WB<br>Threshold  | 265            | mArms | +15.000    | Alarm threshold<br>(bit 21 of the Alarm Status B) for<br>Wideband IH channel<br>Max current      | If the maximum wideband current threshold on Outlet 8 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )253=+30.000 <cr></cr> |
| Min<br>PFH_WB<br>Threshold | 266            | -     | -0.700     | Alarm threshold<br>(bit 22 of the Alarm Status B) for<br>Wideband IH channel<br>Min power factor | If the min wideband power factor threshold on Outlet 8 is to be changed from the default to -0.6 then set as follows:  )254=-0.600 <cr></cr>                     |

| MPU<br>Parameter                    | Location (hex) | LSB   | Default     | Comment                                                                                                             | Example                                                                                                                                                            |
|-------------------------------------|----------------|-------|-------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max PFH_WB<br>Threshold             | 267            | -     | +0.700      | Alarm threshold<br>(bit 23 of the Alarm Status B) for<br>Wideband IH channel<br>Max power factor                    | If the max wideband power factor threshold on Outlet 8 is to be changed from the default to +0.600 then set as follows:                                            |
|                                     |                |       |             |                                                                                                                     | )255=+0.600 <cr></cr>                                                                                                                                              |
|                                     | Г              | ALARN | I THRESHOLD | ) – TOTAL WIDEBAND CURRENT                                                                                          |                                                                                                                                                                    |
| Max<br>Total WB<br>Threshold        | 268            | mArms | +20.000     | Alarm threshold<br>(bit 24 of the Alarm Status B) for<br>Wideband Total<br>Max current                              |                                                                                                                                                                    |
|                                     |                | ALAR  | M THRESHOL  | DS – OUTLET 1 NARROWBAND                                                                                            |                                                                                                                                                                    |
| Max<br>IA_NB<br>Alarm<br>Threshold  | 269            | mArms | +15.000     | Sets an alarm (bit 0 of the Alarm Status B) if Narrowband IA channel current exceeds the Maximum threshold          | If the maximum narrowband current threshold on Outlet 1 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )269=+30.000 <cr></cr> |
| Min<br>PFA_NB<br>Alarm<br>Threshold | 26A            | -     | -0.700      | Sets an alarm (bit 1 of the Alarm Status B) if Narrowband IA channel power factor drops below the Minimum threshold | If the min narrowband power factor threshold on Outlet 1 is to be changed from the default to -0.6 then set as follows:  )26A=-0.600 <cr></cr>                     |
| Max PFA_NB<br>Alarm<br>Threshold    | 26B            | -     | +0.700      | Sets an alarm (bit 2 of the Alarm Status B) if Narrowband IA channel power factor exceeds the Maximum threshold     | If the max narrowband power factor threshold on Outlet 1 is to be changed from the default to +0.600 then set as follows:  )26B=+0.600<                            |
|                                     | <u> </u>       | ALAR  | M THRESHOL  | DS – OUTLET 2 NARROWBAND                                                                                            |                                                                                                                                                                    |
| Max<br>IB_NB<br>Threshold           | 26C            | mArms | +15.000     | Alarm threshold<br>(bit 3 of the Alarm Status B) for<br>Narrowband IB channel<br>Max current                        | If the maximum narrowband current threshold on Outlet 2 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:                         |
|                                     |                |       |             |                                                                                                                     | )26C=+30.000 <cr></cr>                                                                                                                                             |

| MPU<br>Parameter           | Location (hex) | LSB   | Default    | Comment                                                                                           | Example                                                                                                                                                            |
|----------------------------|----------------|-------|------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Min<br>PFB_NB<br>Threshold | 26D            | -     | -0.700     | Alarm threshold<br>(bit 4 of the Alarm Status B) for<br>Narrowband IB channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 2 is to be changed from the default to -0.6 then set as follows:  )26D=-0.600 <cr></cr>                     |
| Max PFB_NB<br>Threshold    | 26E            | _     | +0.700     | Alarm threshold<br>(bit 5 of the Alarm Status B) for<br>Narrowband IB channel<br>Max power factor | If the max narrowband power factor threshold on Outlet 2 is to be changed from the default to +0.600 then set as follows:  )26E=+0.600<                            |
|                            |                | ALAR  | M THRESHOL | DS – OUTLET 3 NARROWBAND                                                                          |                                                                                                                                                                    |
| Max<br>IC_NB<br>Threshold  | 26F            | mArms | +15.000    | Alarm threshold<br>(bit 6 of the Alarm Status B) for<br>Narrowband IC channel<br>Max current      | If the maximum narrowband current threshold on Outlet 3 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )26F=+30.000 <cr></cr> |
| Min<br>PFC_NB<br>Threshold | 270            | -     | -0.700     | Alarm threshold<br>(bit 7 of the Alarm Status B) for<br>Narrowband IC channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 3 is to be changed from the default to -0.6 then set as follows:  )270=-0.600 <cr></cr>                     |
| Max PFC_NB<br>Threshold    | 271            | -     | +0.700     | Alarm threshold<br>(bit 8 of the Alarm Status B) for<br>Narrowband IC channel<br>Max power factor | If the max narrowband power factor threshold on Outlet 3 is to be changed from the default to +0.600 then set as follows:  )271=+0.600<                            |
|                            |                | ALAR  | M THRESHOL | DS – OUTLET 4 NARROWBAND                                                                          |                                                                                                                                                                    |
| Max<br>ID_NB<br>Threshold  | 272            | mArms | +15.000    | Alarm threshold<br>(bit 9 of the Alarm Status B) for<br>Narrowband ID channel<br>Max current      | If the maximum narrowband current threshold on Outlet 4 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )272=+30.000 <cr></cr> |

| MPU<br>Parameter           | Location (hex) | LSB   | Default    | Comment                                                                                            | Example                                                                                                                                                            |
|----------------------------|----------------|-------|------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Min<br>PFD_NB<br>Threshold | 273            | -     | -0.700     | Alarm threshold<br>(bit 10 of the Alarm Status B) for<br>Narrowband ID channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 4 is to be changed from the default to -0.6 then set as follows:                                            |
|                            |                |       |            |                                                                                                    | )273=-0.600 <cr></cr>                                                                                                                                              |
| Max PFD_NB<br>Threshold    | 274            | -     | +0.700     | Alarm threshold<br>(bit 11 of the Alarm Status B) for<br>Narrowband ID channel<br>Max power factor | If the max narrowband power factor threshold on Outlet 4 is to be changed from the default to +0.600 then set as follows:                                          |
|                            |                |       |            |                                                                                                    | )274=+0.600 <cr></cr>                                                                                                                                              |
|                            |                | ALAR  | M THRESHOL | DS – OUTLET 5 NARROWBAND                                                                           |                                                                                                                                                                    |
| Max<br>IE_NB<br>Threshold  | 275            | mArms | +15.000    | Alarm threshold<br>(bit 12 of the Alarm Status B) for<br>Narrowband IE channel<br>Max current      | If the maximum narrowband current threshold on Outlet 5 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:                         |
|                            |                |       |            |                                                                                                    | )275=+30.000 <cr></cr>                                                                                                                                             |
| Min<br>PFE_NB<br>Threshold | 276            | 276 – | 0.700      | Alarm threshold<br>(bit 13 of the Alarm Status B) for<br>Narrowband IE channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 5 is to be changed from the default to -0.6 then set as follows:                                            |
|                            |                |       |            | F 2 2 22 22 22 22 22 22 22 22 22 22 22 2                                                           | )276=-0.600 <cr></cr>                                                                                                                                              |
| Max PFE_NB<br>Threshold    | 277            | -     | +0.700     | Alarm threshold<br>(bit 14 of the Alarm Status B) for<br>Narrowband IE channel<br>Max power factor | If the max narrowband power factor threshold on Outlet 5 is to be changed from the default to +0.600 then set as follows:                                          |
|                            |                |       |            |                                                                                                    | )277=+0.600 <cr></cr>                                                                                                                                              |
|                            | Г              | ALAR  | M THRESHOL | DS – OUTLET 6 NARROWBAND                                                                           |                                                                                                                                                                    |
| Max<br>IF_NB<br>Threshold  | 278            | mArms | +15.000    | Alarm threshold<br>(bit 15 of the Alarm Status B) for<br>Narrowband IF channel<br>Max current      | If the maximum narrowband current threshold on Outlet 6 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:  )278=+30.000 <cr></cr> |
|                            |                |       |            |                                                                                                    | 1210-T30.000CON>                                                                                                                                                   |

| MPU<br>Parameter           | Location (hex) | LSB             | Default    | Comment                                                                                            | Example                                                                                                                                        |
|----------------------------|----------------|-----------------|------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Min<br>PFF_NB<br>Threshold | 279            | -               | -0.700     | Alarm threshold<br>(bit 16 of the Alarm Status B) for<br>Narrowband IF channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 6 is to be changed from the default to -0.6 then set as follows:  )279=-0.600 <cr></cr> |
|                            |                |                 |            |                                                                                                    | )210- 0.000 (010)                                                                                                                              |
| Max PFF_NB<br>Threshold    | 27A            | _               | +0.700     | Alarm threshold<br>(bit 17 of the Alarm Status B) for<br>Narrowband IF channel<br>Max power factor | If the max narrowband power factor threshold on Outlet 6 is to be changed from the default to +0.600 then set as follows:                      |
|                            |                |                 |            |                                                                                                    | )27A=+0.600 <cr></cr>                                                                                                                          |
|                            | 1              | ALAR            | M THRESHOL | DS – OUTLET 7 NARROWBAND                                                                           |                                                                                                                                                |
| Max<br>IG_NB<br>Threshold  | 27B            | 27B mArms +15.0 | +15.000    | Alarm threshold<br>(bit 18 of the Alarm Status B) for<br>Narrowband IG channel<br>Max current      | If the maximum narrowband current threshold on Outlet 7 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:     |
|                            |                |                 |            |                                                                                                    | )27B=+30.000 <cr></cr>                                                                                                                         |
| Min<br>PFG_NB<br>Threshold | 27C            | 27C –           | 0.700      | Alarm threshold<br>(bit 19 of the Alarm Status B) for<br>Narrowband IG channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 7 is to be changed from the default to -0.6 then set as follows:                        |
|                            |                |                 |            |                                                                                                    | )27C=-0.600 <cr></cr>                                                                                                                          |
| Max PFG_NB<br>Threshold    | 27D            | -               | +0.700     | Alarm threshold<br>(bit 20 of the Alarm Status B) for<br>Narrowband IG channel<br>Max power factor | If the max narrowband power factor threshold on Outlet 7 is to be changed from the default to +0.600 then set as follows:                      |
|                            |                |                 |            |                                                                                                    | )27D=+0.600 <cr></cr>                                                                                                                          |
|                            |                | ALAR            | M THRESHOL | DS – OUTLET 8 NARROWBAND                                                                           |                                                                                                                                                |
| Max<br>IH_NB<br>Threshold  | 27E            | mArms           | +15.000    | Alarm threshold<br>(bit 21 of the Alarm Status B) for<br>Narrowband IH channel<br>Max current      | If the maximum narrowband current threshold on Outlet 8 is to be changed from the default value of 15 Amps to 30 Amps then set as follows:     |
|                            |                |                 |            |                                                                                                    | )27E=+30.000 <cr></cr>                                                                                                                         |

| MPU<br>Parameter             | Location (hex) | LSB     | Default     | Comment                                                                                            | Example                                                                                                                                        |
|------------------------------|----------------|---------|-------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Min<br>PFH_NB<br>Threshold   | 27F            | _       | -0.700      | Alarm threshold<br>(bit 22 of the Alarm Status B) for<br>Narrowband IH channel<br>Min power factor | If the min narrowband power factor threshold on Outlet 8 is to be changed from the default to -0.6 then set as follows:  )27F=-0.600 <cr></cr> |
|                              |                |         |             |                                                                                                    | If the max narrowband                                                                                                                          |
| Max PFH_NB<br>Threshold      | 280            | _       | +0.700      | Alarm threshold<br>(bit 23 of the Alarm Status B) for<br>Narrowband IH channel<br>Max power factor | power factor threshold on<br>Outlet 8 is to be changed<br>from the default to +0.600<br>then set as follows:                                   |
|                              |                |         |             |                                                                                                    | )280=+0.600 <cr></cr>                                                                                                                          |
|                              |                | ALARM 1 | THRESHOLD - | TOTAL NARROWBAND CURREN                                                                            | т                                                                                                                                              |
| Max<br>Total NB<br>Threshold | 281            | mArms   | +20.000     | Alarm threshold<br>(bit 24 of the Alarm Status B) for<br>Narrowband Total<br>Max current           |                                                                                                                                                |
|                              |                |         | ALARN       | I MASK SETTINGS                                                                                    |                                                                                                                                                |
| Common<br>Alarm<br>Mask_Reg  | 282            | _       | 0xFFFFFFF   | Alarm mask for bits in the Alarm<br>Status register. A "0" masks the<br>bit.                       | If bits 0 and 1 are to be masked then set as follows: >)282=FFFFFFC                                                                            |
| Common<br>Alarm<br>Mask_DIO  | 283            | -       | 0xFFFFFFF   | Alarm mask for an alarm pin. A "0" masks the bit from DIO4                                         | If bits 0 and 1 are to be masked then set as follows: >)284=FFFFFFC                                                                            |
| WB Alarm<br>Mask_Reg         | 284            | -       | 0xFFFFFFF   | Alarm mask for bits in the Alarm<br>Status register. A "0" masks the<br>bit.                       | If bits 0 and 1 are to be masked then set as follows: >)284=FFFFFFC                                                                            |
| WB Alarm<br>Mask_DIO         | 285            | -       | 0xFFFFFFF   | Alarm mask for an alarm pin. A "0" masks the bit from DIO4                                         | If bits 0 and 1 are to be masked then set as follows: >)284=FFFFFFC                                                                            |
| NB Alarm<br>Mask_Reg         | 286            | -       | 0xFFFFFFF   | Alarm mask for bits in the Alarm<br>Status register. A "0" masks the<br>bit.                       | If bits 0 and 1 are to be masked then set as follows: >)286=FFFFFFC                                                                            |
| NB Alarm<br>Mask_DIO         | 287            | -       | 0xFFFFFFF   | Alarm mask for an alarm pin. A "0" masks the bit from DIO4                                         | If bits 0 and 1 are to be masked then set as follows: >)284=FFFFFFC                                                                            |

| MPU<br>Parameter   | Location (hex) | LSB | Default | Comment                                                                                                                                                                                                                                                                                                                                                                                                                               | Example                                                                                            |  |  |  |  |  |
|--------------------|----------------|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                    | MISC CONTROLS  |     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |  |  |  |  |  |
| Control Relay      | 288            | _   | 0       | Bit 7 (Relay for Outlet 8 {IH }) DIO7 = Bit 7  Bit 6 (Relay for Outlet 7 {ID }) DIO8 = Bit 6  Bit 5 (Relay for Outlet 6 {IG }) DIO9 = Bit 5  Bit 4 (Relay for Outlet 5 {IC }) DIO10 = Bit 4  Bit 3 (Relay for Outlet 4 {IF }) DIO11 = Bit 3  Bit 2 (Relay for Outlet 3 {IB }) DIO13 = Bit 2  Bit 1 (Relay for Outlet 2 {IE }) DIO14 = Bit 1  Bit 0 (Relay for Outlet 1 {IH }) DIO15 = Bit 0  Note: 210[1] = 1 inverts the bits above. |                                                                                                    |  |  |  |  |  |
| Min/Max<br>Control | 289            | ı   | 0       | BIT1 – 1 Start/Stop MIN/MAX monitoring/recording.  1 = Start 0 = Stop BIT0 – 1 Reset MIN/MAX registers. Bit auto-clears.  Note: BIT0 must be set first before setting BIT1 to start the MIN/MAX monitoring.                                                                                                                                                                                                                           | )285\$ 0  Start MIN/MAX recording. )285=2 <cr>  Resets the MIN/MAX registers. )285=1<cr></cr></cr> |  |  |  |  |  |
| Clear Control      | 28A            | -   | 0       | Clear Control Register: Bit1 – Clears Counts Bit 0 – Clears Accumulators.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |  |  |  |  |  |

## 6.2 CE Parameters

Table 5 lists the CE parameters. With the exception of CESTATE at address 22 (hex), the user does not typically need to alter any of these registers as most values are set by the calibration routine(s) in firmware 6618\_PDU\_S8\_URT\_V1\_00,

**Table 5: CE Parameters** 

| CE Parameter | Addr<br>(hex) | LSB                                                                                      | Default | Comment                      | Example                                                                                                                                                                                                                                                                                                                     |
|--------------|---------------|------------------------------------------------------------------------------------------|---------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL IA       | 10            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2. | +16384  | Scaled Gain for IA<br>input. | If current on Outlet 1 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]10=+16549 <cr>  If current on channel A is high by  1% scale the nominal number,  16384 by 1/(1+0.01).  Number to be entered would be  16222:</cr>                                        |
| CAL IB       | 11            | 16384 is the default and is a gain of 1. 32767 is max giving a gain of 2                 | +16384  | Gain for IB input.           | ]10=+16222 <cr>  If current on Outlet 2 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]11=+16549<cr>  If current on Outlet 2 is high by 1% scale the nominal number, 16384 by 1/(1+0.01).  Number to be entered would be  16222:  ]11=+16222<cr></cr></cr></cr> |
| CAL IC       | 12            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2  | +16384  | Gain for IC input.           | If current on Outlet 3 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]12=+16549 <cr>  If current on Outlet 3 is high by 1% scale the nominal number, 16384 by 1/(1+0.01).  Number to be entered would be  16222: ]12=+16222<cr></cr></cr>                       |
| CAL ID       | 13            | 16384 is the default and is a gain of 1. 32767 is max giving a gain of 2                 | +16384  | Gain for ID input.           | If current on Outlet 4 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]13=+16549 <cr>  If current on Outlet 4 is high by 1% scale the nominal number, 16384 by 1/(1+0.01).  Number to be entered would be  16222:  ]10=+16222<cr></cr></cr>                      |

| CE Parameter | Addr<br>(hex) | LSB                                                                                     | Default | Comment            | Example                                                                                                                                                                                                                                                                                                  |
|--------------|---------------|-----------------------------------------------------------------------------------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL IE       | 14            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2 | +16384  | Gain for IE input. | If current on Outlet 5 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]14=+16549 <cr>  If current on Outlet 5 is high by 1% scale the nominal number, 16384 by 1/(1+0.01).  Number to be entered would be  16222:  ]14=+16222<cr></cr></cr>   |
| CAL IF       | 15            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2 | +16384  | Gain for IF input. | If current on Outlet 6 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]15=+16549 <cr>  If current on Outlet 6 is high by 1% scale the nominal number, 16384 by 1/(1+0.01).  Number to be entered would be  16222:  ]15=+16222<cr></cr></cr>   |
| CAL IG       | 16            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2 | +16384  | Gain for IG input. | If current on Outlet 7 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]16=+16549 <cr>  If current on Outlet 7 is high by 1%  scale the nominal number, 16384  by 1/(1+0.01).  Number to be entered would be  16222:  ]16=+16222<cr></cr></cr> |
| CAL IH       | 17            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2 | +16384  | Gain for IH input. | If current on Outlet 8 is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]17=+16549 <cr>  If current on Outlet 7 is high by 1%  scale the nominal number, 16384  by 1/(1+0.01).  Number to be entered would be  16222:  ]17=+16222<cr></cr></cr> |

| CE Parameter     | Addr<br>(hex) | LSB                                                                                     | Default | Comment                                                                            | Example                                                                                                                                                                                                                                                                                                                                        |
|------------------|---------------|-----------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL VA           | 18            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2 | +16384  | Gain for VA input.                                                                 | If voltage on the VA input (usually line voltage measurement) is low by  1% scale the nominal number, 16384 by 1 / (1 - 0.01).  Number to be entered would be 16549:  [18=+16549 <cr>  If voltage on the VA input is high by 1% scale the nominal number, 16384 by 1/(1+0.01).  Number to be entered would be 16222:  [18=+16222<cr></cr></cr> |
| CAL VB           | 19            | 16384 is the<br>default and is a<br>gain of 1.<br>32767 is max<br>giving a gain of<br>2 | +16384  | Gain for VB input.                                                                 | If voltage on the VB input is low by  1% scale the nominal number,  16384 by 1 / (1 - 0.01).  Number to be entered would be  16549:  ]19=+16549 <cr>  If voltage on the VA input is high by  1% scale the nominal number,  16384 by 1/(1+0.01).  Number to be entered would be  16222:  ]19=+16222<cr>  Normally set CAL VB = CAL VA</cr></cr> |
| PHASE_<br>ADJ_IA | 1A            | -16384 ≤<br>PHASE_ADJ_I<br>A ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IA * 2 <sup>-14</sup> (degrees)    | No adjustment should be<br>necessary when using current<br>shunts.                                                                                                                                                                                                                                                                             |
| PHASE_<br>ADJ_IB | 1B            | -16384 ≤<br>PHASE_ADJ_I<br>B ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IB * 2 <sup>-14</sup> (degrees)    | No adjustment should be necessary when using current shunts.                                                                                                                                                                                                                                                                                   |
| PHASE_<br>ADJ_IC | 1C            | -16384 ≤<br>PHASE_ADJ_I<br>C ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IC * 2 <sup>-14</sup> (degrees)    | No adjustment should be necessary when using current shunts.                                                                                                                                                                                                                                                                                   |
| PHASE_<br>ADJ_ID | 1D            | -16384 ≤<br>PHASE_ADJ_I<br>D ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_ID * 2 <sup>-14</sup> (degrees)    | No adjustment should be necessary when using current shunts.                                                                                                                                                                                                                                                                                   |
| PHASE_<br>ADJ_IE | 1E            | -16384 ≤<br>PHASE_ADJ_I<br>E ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IE * 2 <sup>-14</sup> (degrees)    | No adjustment should be necessary when using current shunts.                                                                                                                                                                                                                                                                                   |
| PHASE_<br>ADJ_IF | 1F            | -16384 ≤<br>PHASE_ADJ_I<br>F ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IF * 2 <sup>-14</sup><br>(degrees) | No adjustment should be necessary when using current shunts.                                                                                                                                                                                                                                                                                   |
| PHASE_<br>ADJ_IG | 20            | -16384 ≤<br>PHASE_ADJ_I<br>G ≤ +16384                                                   | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IG * 2 <sup>-14</sup> (degrees)    | No adjustment should be necessary when using current shunts.                                                                                                                                                                                                                                                                                   |

| CE Parameter     | Addr<br>(hex) | LSB                                                   | Default | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Example                                                                                                                                                                           |
|------------------|---------------|-------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHASE_<br>ADJ_IH | 21            | -16384 ≤<br>PHASE_ADJ_I<br>H ≤ +16384                 | +0      | Outlet 1 Phase<br>adjustment =15 *<br>PHASE_ADJ_IH * 2 <sup>-1</sup><br>(degrees)                                                                                                                                                                                                                                                                                                                                                                        | No adjustment should be necessary when using current shunts.                                                                                                                      |
| CESTATE          | 22            |                                                       | 5005h   | Pulse Selection Bit 23:16 Bit x-15 selects which outlet does Watt pulsing.  SAG CNT Bits 15:8 – determines the consecutive voltage samples below SAG_Threshold before a sag alarm is declared. The maximum value is 255.  Reserved Bit 4:3  Voltage Sensor Configuration Bit 2 0 – Selects isolated mode (pseudo- differential voltage measurement) 1- Selects standard single ended  Pulse gain factor Bits 1:0 00 – 6x 01 – (6/64)x 10 – 96x 11 – 1.5x | J22=5005  Selects at least 80 (50h) consecutive voltage samples below SAG_Threshold before SAG alarm.  Select Outlet 1 as pulse source.  Selects Pulse Gain Factor equal to 6/64. |
| WRATE            | 23            | Kh = VMAX A * IMAX A / (WRATE * X) 1.6826E+01 WattSec | +2840   | Controls the number of pulses that are generated per measured Wh and VARh measurements.                                                                                                                                                                                                                                                                                                                                                                  | ]23=+4860<br>Kh = 0.32 * Wh / pulse with X = 6/64,<br>VMAX =600 V<br>and<br>IMAX A= 52 A                                                                                          |
| Reserved         | 24            |                                                       |         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   |

| CE Parameter | Addr<br>(hex) | LSB                                          | Default | Comment                                                                                                                  | Example |
|--------------|---------------|----------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|---------|
| QUANTA       | 25            | VMAX A *<br>IMAX A *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 1. Used for compensation at low current levels. Keep below 10000d. |         |
| QUANTB       | 26            | VMAX A *<br>IMAX B *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 2. Used for compensation at low current levels. Keep below 10000d  |         |
| QUANTC       | 27            | VMAX A *<br>IMAX C *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 3. Used for compensation at low current levels. Keep below 10000d  |         |
| QUANTD       | 28            | VMAX A *<br>IMAX D *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 4. Used for compensation at low current levels. Keep below 10000d  |         |
| QUANTE       | 29            | VMAX A *<br>IMAX E *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 5. Used for compensation at low current levels. Keep below 10000d  |         |
| QUANTF       | 2A            | VMAX A *<br>IMAX F *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 6. Used for compensation at low current levels. Keep below 10000d  |         |
| QUANTG       | 2B            | VMAX A *<br>IMAX G *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 7. Used for compensation at low current levels. Keep below 10000d  |         |
| QUANTH       | 2C            | VMAX A *<br>IMAX H *<br>1.8541E-10<br>(Watt) | +0      | Compensation added to the Watt calculation for Outlet 8. Used for compensation at low current levels. Keep below 10000d  |         |

| CE Parameter | Addr<br>(hex) | LSB                                                     | Default | Comment                                                                                                                                                                     | Example |
|--------------|---------------|---------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| RESERVED     | 2D-34         |                                                         |         | Reserved                                                                                                                                                                    |         |
| QUANT IA     | 35            | (IMAX A) <sup>2</sup> * 4.6351E-11 (A <sup>2</sup> )    | +0      | IA input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |         |
| QUANT IB     | 36            | (IMAX B) <sup>2</sup> *<br>4.6351E-11 (A <sup>2</sup> ) | +0      | IB input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |         |
| QUANT IC     | 37            | (IMAX C) <sup>2</sup> *<br>4.6351E-11 (A <sup>2</sup> ) | +0      | IC input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |         |
| QUANT ID     | 38            | (IMAX D) <sup>2</sup> *<br>4.6351E-11 (A <sup>2</sup> ) | +0      | ID input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |         |
| QUANT IE     | 39            | (IMAX E) <sup>2</sup> *<br>4.6351E-11 (A <sup>2</sup> ) | +0      | IE input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |         |
| QUANT IF     | 3A            | (IMAX F) <sup>2</sup> *<br>4.6351E-11 (A <sup>2</sup> ) | +0      | IF input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |         |

| CE Parameter                         | Addr<br>(hex) | LSB                                                     | Default  | Comment                                                                                                                                                                     | Example                                                                                                                                                                                                                                                                                         |
|--------------------------------------|---------------|---------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUANT IG                             | 3B            | (IMAX G) <sup>2</sup> * 4.6351E-11 (A <sup>2</sup> )    | +0       | IG input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |                                                                                                                                                                                                                                                                                                 |
| QUANT IH                             | 3C            | (IMAX H) <sup>2</sup> *<br>4.6351E-11 (A <sup>2</sup> ) | +0       | IH input compensation added for input noise and truncation in the squaring calculation for I <sup>2</sup> . Used for compensation at low current levels. Keep below 10000d. |                                                                                                                                                                                                                                                                                                 |
| Temperature<br>Gain Adjust           | 3D            | 16384 is the<br>default and is a<br>gain of 1.          | +16256   | 32767 is max giving a<br>gain of 2.                                                                                                                                         | To increase all channels equally by 1% scale the nominal number, 16384 by 1 / (1 - 0.01).  Number to be entered would be 16549:  [3D=+16549 <cr> To decrease all channels 1% scale the nominal number, 16384 by 1 / (1 + 0.01).  Number to be entered would be 16222:  [3D=+16222<cr></cr></cr> |
| SAG VA<br>Threshold on               | 3E            |                                                         | +3350164 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                 |
| SAG VB<br>Threshold                  | 3F            |                                                         | +3350164 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                 |
| Reserved                             | 40            |                                                         |          | Reserved                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                 |
| PPMC                                 | 41            | ppm/°C                                                  | +33      | ppm per °C.                                                                                                                                                                 | Do not change the default setting.                                                                                                                                                                                                                                                              |
| PPMC <sup>2</sup>                    | 42            | ppm/°C <sup>2</sup>                                     | -511     | ADC temperature compensation ppm per °C <sup>2</sup> .                                                                                                                      | Do not change the default setting.                                                                                                                                                                                                                                                              |
| Temperature<br>Calibration<br>Status | 43            | 1                                                       | 0        | Set when temperature calibration is complete                                                                                                                                |                                                                                                                                                                                                                                                                                                 |

## 7 Address Content Summary

**Table 6: MPU Input Summary** 

| Basic Configuration |                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor Related      | Voltage - V(A) Voltage - V(B) Current - Outlet 1 Current - Outlet 2 Current - Outlet 3 Current - Outlet 4 Current - Outlet 5 Current - Outlet 6 Current - Outlet 7 Current - Outlet 8      | 200<br>201<br>202<br>203<br>204<br>205<br>206<br>207<br>208<br>209<br>20A – 20D                                                   | VMAX A VMAX B IMAX Outlet 1 (IA) IMAX Outlet 2 (IB) IMAX Outlet 3 (IC) IMAX Outlet 4 (ID) IMAX Outlet 5 (IE) IMAX Outlet 6 (IF) IMAX Outlet 7 (IG) IMAX Outlet 8 (IH) Reserved                                                                                                                                                                                                                                                                                                                    |
| Cost Related        | Cost                                                                                                                                                                                       | 20E<br>20F                                                                                                                        | Cost per KWh<br>Cost Unit string                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Relay Related       | Relay Configuration                                                                                                                                                                        | 210<br>211<br>212<br>213<br>214-21C                                                                                               | Polarity, Latch type<br>Sequence Delay<br>Energize Delay<br>De-energize Delay<br>Unused                                                                                                                                                                                                                                                                                                                                                                                                           |
| Calibration Related | Calibration<br>Configuration<br>Parameters                                                                                                                                                 | 21D<br>21E<br>21F<br>220<br>221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>22A<br>22B<br>22C<br>22D<br>22E<br>22F | Calibration Status Unused Tolerance on Phase Calibration Calibration Type Calibration Voltage (Target) Calibration Current (Target) Calibration Phase (Target) Tolerance on Voltage Calibration Tolerance on Current Calibration Average Count for Voltage Average Count for Current Max Iterations for Voltage Max Iterations for Current Tolerance on Watts Calibration Average Count for Watts Max Iterations for Watts Calibration WRATE Calibration Temperature Calibration Wattage (Target) |
| Creep Threshold     | Voltage (VA) Voltage (VB) Current -Outlet 1 Current - Outlet 2 Current - Outlet 3 Current - Outlet 4 Current - Outlet 5 Current - Outlet 6 Current - Outlet 7 Current - Outlet 8 Frequency | 230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>239<br>23A<br>23B-23F                                              | VA creep VB creep Imin(IA) - "creep" or squelch level Imin(IB) - "creep" or squelch level Imin(IC) - "creep" or squelch level Imin(ID) - "creep" or squelch level Imin(IE) - "creep" or squelch level Imin(IF) - "creep" or squelch level Imin(IG) - "creep" or squelch level Imin(IH) - "creep" or squelch level Imin(IH) - "creep" or squelch level VA min for Freq creep Unused                                                                                                                |

| Alarm Settings                  |                                        |            |                        |                                                                                                                 |
|---------------------------------|----------------------------------------|------------|------------------------|-----------------------------------------------------------------------------------------------------------------|
| Common Alarm Threshold          | Temperature                            |            | 40<br>41               | Min Temperature Alarm Threshold Max Temperature Alarm Threshold                                                 |
|                                 | Frequency                              |            | 42<br>43               | Min Frequency Alarm Threshold<br>Max Frequency Alarm Threshold                                                  |
|                                 | Voltage (A)                            | 24         | 44<br>45<br>46         | SAG (A) Voltage Alarm Threshold<br>Min Voltage (A) Alarm Threshold<br>Max Voltage (A) Alarm Threshold           |
|                                 | Voltage (B) Unused                     | 2.<br>2.   | 47<br>48<br>49<br>-24F | SAG (B) Voltage Alarm Threshold<br>Min Voltage (B) Alarm Threshold<br>Max Voltage (B) Alarm Threshold<br>Unused |
| Wideband (WB) / Narrowband (NB) | Olluseu                                | WB         | NB                     | Onuseu                                                                                                          |
| Outlet Specific Thresholds      | Current - Outlet 1                     | 250        | 269                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 1                | 251<br>252 | 26A<br>26B             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 2                     | 253        | 26C                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 2                | 254<br>255 | 26D<br>26E             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 3                     | 256        | 26F                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 3                | 257<br>258 | 270<br>271             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 4                     | 259        | 272                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 4                | 25A<br>25B | 273<br>274             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 5                     | 25C        | 275                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 5                | 25D<br>25E | 276<br>277             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 6                     | 25F        | 278                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 6                | 260<br>261 | 279<br>27A             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 7                     | 262        | 27B                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 7                | 263<br>264 | 27C<br>27D             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Current - Outlet 8                     | 265        | 27E                    | Max Current Alarm Threshold                                                                                     |
|                                 | Power Factor - Outlet 8                | 266<br>267 | 27F<br>280             | Power Factor Alarm - Threshold<br>Power Factor Alarm + Threshold                                                |
|                                 | Total Current                          | 268        | 281                    | Max Current Alarm Threshold                                                                                     |
| Alarm Masks                     | Common Alarm Mask for Status Registers | 2          | 82                     | Alarm Mask for Common Status                                                                                    |
|                                 | Common Alarm Mask<br>for Alarm DIO4    | 283        |                        | Alarm Mask for Common Alarm<br>DIO4                                                                             |
|                                 | WB Alarm Mask for<br>Status Registers  | 2          | 84                     | Alarm Mask for WB Status                                                                                        |
|                                 | WB Alarm Mask for<br>Alarm DIO4        | 2          | 85                     | Alarm Mask for WB Alarm DIO4                                                                                    |
|                                 | NB Alarm Mask for<br>Status Registers  | 2          | 86                     | Alarm Mask for NB Status                                                                                        |
|                                 | NB Alarm Mask for<br>Alarm DIO4        | 2          | 87                     | Alarm Mask for NB Alarm DIO4                                                                                    |

| MISC Controls |                  |     |                               |
|---------------|------------------|-----|-------------------------------|
|               | Relay Controls   | 288 | Relay On/Off Control          |
|               | Min/Max Controls | 289 | Min/Max Controls              |
|               | Clear Control    | 28A | Accumulator and Counter Clear |

If the rows in the sections below are shaded, the information in the table cells is different between narrowband and wideband measurements.

**Table 7: MPU Output Summary** 

| Common Data      |    | Wideband                     |     | Narrowband                   |
|------------------|----|------------------------------|-----|------------------------------|
| Common Data      | 00 | Delta Temp                   | 100 | Delta Temp                   |
|                  | 01 | Line Frequency               | 101 | Line Frequency               |
|                  | 02 | Alarm Status (common)        | 102 | Alarm Status (common)        |
|                  | 03 | Alarm Status (chan specific) | 103 | Alarm Status (chan specific) |
|                  | 04 | Over Current Event Count     | 104 | Over Current Event Count     |
|                  | 05 | Under Voltage Event Count    | 105 | Under Voltage Event Count    |
|                  | 06 | Over Voltage Event Count     | 106 | Over Voltage Event Count     |
|                  | 07 | Volts                        | 107 | Volts                        |
| Outlet 1         |    | Wideband                     |     | Narrowband                   |
| Common Data      | 08 | Watts (A)                    | 108 | Watts (A)                    |
|                  | 09 | Energy (A)                   | 109 | Energy (A)                   |
|                  | 0A | Cost (A)                     | 10A | Cost (A)                     |
| BW Specific Data | 0B | Current (A)                  | 10B | Current (A)                  |
|                  | 0C | VAR (A)                      | 10C | VAR (A)                      |
|                  | 0D | VA (A)                       | 10D | VA (A)                       |
|                  | 0E | Power Factor (A)             | 10E | Power Factor (A)             |
|                  | 0F | Phase (A)                    | 10F | Phase (A)                    |
| Outlet 2         |    | Wideband                     |     | Narrowband                   |
| Common Data      | 10 | Watts (B)                    | 110 | Watts (B)                    |
|                  | 11 | Energy (B)                   | 111 | Energy (B)                   |
|                  | 12 | Cost (B)                     | 112 | Cost (B)                     |
| BW Specific Data | 13 | Current (B)                  | 113 | Current (B)                  |
|                  | 14 | VAR (B)                      | 114 | VAR (B)                      |
|                  | 15 | VA (B)                       | 115 | VA (B)                       |
|                  | 16 | Power Factor (B)             | 116 | Power Factor (B)             |
|                  | 17 | Phase (B)                    | 117 | Phase (B)                    |
| Outlet 3         |    | Wideband                     |     | Narrowband                   |
| Common Data      | 18 | Watts (C)                    | 118 | Watts (C)                    |
|                  | 19 | Energy (C)                   | 119 | Energy (C)                   |
|                  | 1A | Cost (C)                     | 11A | Cost (C)                     |
| BW Specific Data | 1B | Current (C)                  | 11B | Current (C)                  |
|                  | 1C | VAR (C)                      | 11C | VAR (C)                      |
|                  | 1D | VA (C)                       | 11D | VA (C)                       |
|                  | 1E | Power Factor (C)             | 11E | Power Factor (C)             |
|                  | 1F | Phase (C)                    | 11F | Phase (C)                    |
| Outlet 4         |    | Wideband                     |     | Narrowband                   |
| Common Data      | 20 | Watts (D)                    | 120 | Watts (D)                    |
|                  | 21 | Energy (D)                   | 121 | Energy (D)                   |
|                  | 22 | Cost (D)                     | 122 | Cost (D)                     |
| BW Specific Data | 23 | Current (D)                  | 123 | Current (D)                  |
|                  | 24 | VAR (D)                      | 124 | VAR (D)                      |
|                  | 25 | VA (D)                       | 125 | VA (D)                       |
|                  | 26 | Power Factor (D)             | 126 | Power Factor (D)             |
|                  | 27 | Phase (D)                    | 127 | Phase (D)                    |

| Outlet 5           |    | Wideband              |
|--------------------|----|-----------------------|
| Common Data        | 28 | Watts (E)             |
|                    | 29 | Energy (E)            |
|                    | 2A | Cost (E)              |
| BW Specific Data   | 2B | Current (E)           |
|                    | 2C | VAR (E)               |
|                    | 2D | VA (E)                |
|                    | 2E | Power Factor (E)      |
|                    | 2F | Phase (E)             |
| Outlet 6           |    | Wideband              |
| Common Data        | 30 | Watts (F)             |
|                    | 31 | Energy (F)            |
|                    | 32 | Cost (F)              |
| BW Specific Data   | 33 | Current (F)           |
|                    | 34 | VAR (F)               |
|                    | 35 | VA (F)                |
|                    | 36 | Power Factor (F)      |
|                    | 37 | Phase (F)             |
| Outlet 7           |    | Wideband              |
| Common Data        | 38 | Watts (G)             |
|                    | 39 | Energy (G)            |
|                    | 3A | Cost (G)              |
| BW Specific Data   | 3B | Current (G)           |
|                    | 3C | VAR (G)               |
|                    | 3D | VA (G)                |
|                    | 3E | Power Factor (G)      |
|                    | 3F | Phase (G)             |
| Outlet 8           |    | Wideband              |
| Common Data        | 40 | Watts (H)             |
|                    | 41 | Energy (H)            |
|                    | 42 | Cost (H)              |
| BW Specific Data   | 43 | Current (H)           |
|                    | 44 | VAR (H)               |
|                    | 45 | VA (H)                |
|                    | 46 | Power Factor (H)      |
|                    | 47 | Phase (H)             |
| Total of Outlets   |    | Wideband              |
| Common Totals      | 48 | Total Watts           |
|                    | 49 | Total Energy          |
|                    | 4A | Total Cost            |
| BW Specific Totals | 4B | Total Current         |
|                    | 4C | Total VARs            |
|                    | 4D | Total VA's            |
|                    | 4E | (Reserved for Future) |
|                    | 4F | (Reserved for Future) |

|     | Narrowband            |
|-----|-----------------------|
| 128 | Watts (E)             |
| 129 | Energy (E)            |
| 12A | Cost (E)              |
| 12B | Current (E)           |
| 12C | VAR (E)               |
| 12D | VA (E)                |
| 12E | Power Factor (E)      |
| 12F | Phase (E)             |
|     | Narrowband            |
| 130 | Watts (F)             |
| 131 | Energy (F)            |
| 132 | Cost (F)              |
| 133 | Current (F)           |
| 134 | VAR (F)               |
| 135 | VA (F)                |
| 136 | Power Factor (F)      |
| 137 | Phase (F)             |
|     | Narrowband            |
| 138 | Watts (G)             |
| 139 | Energy (G)            |
| 13A | Cost (G)              |
| 13B | Current (G)           |
| 13C | VAR (G)               |
| 13D | VA (G)                |
| 13E | Power Factor (G)      |
| 13F | Phase (G)             |
|     | Narrowband            |
| 140 | Watts (H)             |
| 141 | Energy (H)            |
| 142 | Cost (H)              |
| 143 | Current (H)           |
| 144 | VAR (H)               |
| 145 | VA (H)                |
| 146 | Power Factor (H)      |
| 147 | Phase (H)             |
|     | Narrowband            |
| 148 | Total Watts           |
| 149 | Total Energy          |
| 14A | Total Cost            |
| 14B | Total Current         |
| 14C | Total VARs            |
| 14D | Total VA's            |
| 14E | (Reserved for Future) |
| 14F | (Reserved for Future) |
|     |                       |

| Min/Max Data     |    | Wideband             |
|------------------|----|----------------------|
| Common Data      | 50 | Vrms Min             |
|                  | 51 | Vrms Max             |
| Outlet 1         |    | Wideband             |
| Common Data      | 52 | Watts Min (A)        |
|                  | 53 | Watts Max (A)        |
| BW Specific Data | 54 | Current Min (A)      |
|                  | 55 | Current Max (A)      |
|                  | 56 | VAR Min (A)          |
|                  | 57 | VAR Max (A)          |
|                  | 58 | VA Min (A)           |
|                  | 59 | VA Max (A)           |
|                  | 5A | Power Factor Max (A) |
|                  | 5B | Power Factor Min (A) |
|                  | 5C | Phase Max (A)        |
|                  | 5D | Phase Min(A)         |
| Outlet 2         |    | Wideband             |
| Common Data      | 5E | Watts Min (B)        |
|                  | 5F | Watts Max (B)        |
| BW Specific Data | 60 | Current Min (B)      |
|                  | 61 | Current Max (B)      |
|                  | 62 | VAR Min (B)          |
|                  | 63 | VAR Max (B)          |
|                  | 64 | VA Min (B)           |
|                  | 65 | VA Max (B)           |
|                  | 66 | Power Factor Max (B) |
|                  | 67 | Power Factor Min (B) |
|                  | 68 | Phase Max (B)        |
|                  | 69 | Phase Min(B)         |
| Outlet 3         |    | Wideband             |
| Common Data      | 6A | Watts Min (C)        |
|                  | 6B | Watts Max (C)        |
| BW Specific Data | 6C | Current Min (C)      |
|                  | 6D | Current Max (C)      |
|                  | 6E | VAR Min (C)          |
|                  | 6F | VAR Max (C)          |
|                  | 70 | VA Min (C)           |
|                  | 71 | VA Max (C)           |
|                  | 72 | Power Factor Max (C) |
|                  | 73 | Power Factor Min (C) |
|                  | 74 | Phase Max (C)        |
|                  | 75 | Phase Min (C)        |

|     | Narrowband           |
|-----|----------------------|
| 150 | Vrms Min             |
| 151 | Vrms Max             |
|     | Narrowband           |
| 152 | Watts Min (A)        |
| 153 | Watts Max (A)        |
| 154 | Current Min (A)      |
| 155 | Current Max (A)      |
| 156 | VAR Min (A)          |
| 157 | VAR Max (A)          |
| 158 | VA Min (A)           |
| 159 | VA Max (A)           |
| 15A | Power Factor Max (A) |
| 15B | Power Factor Min (A) |
| 15C | Phase Max (A)        |
| 15D | Phase Min(A)         |
|     | Narrowband           |
| 15E | Watts Min (B)        |
| 15F | Watts Max (B)        |
| 160 | Current Min (B)      |
| 161 | Current Max (B)      |
| 162 | VAR Min (B)          |
| 163 | VAR Max (B)          |
| 164 | VA Min (B)           |
| 165 | VA Max (B)           |
| 166 | Power Factor Max (B) |
| 167 | Power Factor Min (B) |
| 168 | Phase Max (B)        |
| 169 | Phase Min(B)         |
|     | Narrowband           |
| 16A | Watts Min (C)        |
| 16B | Watts Max (C)        |
| 16C | Current Min (C)      |
| 16D | Current Max (C)      |
| 16E | VAR Min (C)          |
| 16F | VAR Max (C)          |
| 170 | VA Min (C)           |
| 171 | VA Max (C)           |
| 172 | Power Factor Max (C) |
| 173 | Power Factor Min (C) |
| 174 | Phase Max (C)        |
| 175 | Phase Min (C)        |

| Outlet 4         |    | Wideband             |
|------------------|----|----------------------|
| Common Data      | 76 | Watts Min (D)        |
|                  | 77 | Watts Max (D)        |
| BW Specific Data | 78 | Current Min (D)      |
|                  | 79 | Current Max (D)      |
|                  | 7A | VAR Min (D)          |
|                  | 7B | VAR Max (D)          |
|                  | 7C | VA Min (D)           |
|                  | 7D | VA Max (D)           |
|                  | 7E | Power Factor Max (D) |
|                  | 7F | Power Factor Min (D) |
|                  | 80 | Phase Max (D)        |
|                  | 81 | Phase Min(D)         |
| Outlet 5         |    | Wideband             |
| Common Data      | 82 | Watts Min (E)        |
|                  | 83 | Watts Max (E)        |
| BW Specific Data | 84 | Current Min (E)      |
|                  | 85 | Current Max (E)      |
|                  | 86 | VAR Min (E)          |
|                  | 87 | VAR Max (E)          |
|                  | 88 | VA Min (E)           |
|                  | 89 | VA Max (E)           |
|                  | 8A | Power Factor Max (E) |
|                  | 8B | Power Factor Min (E) |
|                  | 8C | Phase Max (E)        |
|                  | 8D | Phase Min (E)        |
| Outlet 6         |    | Wideband             |
| Common Data      | 8E | Watts Min (F)        |
|                  | 8F | Watts Max (F)        |
| BW Specific Data | 90 | Current Min (F)      |
|                  | 91 | Current Max (F)      |
|                  | 92 | VAR Min (F)          |
|                  | 93 | VAR Max (F)          |
|                  | 94 | VA Min (F)           |
|                  | 95 | VA Max (F)           |
|                  | 96 | Power Factor Max (F) |
|                  | 97 | Power Factor Min (F) |
|                  | 98 | Phase Max (F)        |
|                  | 99 | Phase Min (F)        |

|            | Narrowband                  |
|------------|-----------------------------|
| 176        |                             |
| 176<br>177 | Watts Min (D) Watts Max (D) |
| 178        | Current Min (D)             |
| 179        | Current Max (D)             |
|            |                             |
| 17A<br>17B | VAR Min (D) VAR Max (D)     |
| 17C        | VA Min (D)                  |
| 17D        | VA Max (D)                  |
| 17E        | Power Factor Max (D)        |
| 17F        | Power Factor Min (D)        |
| 180        | Phase Max (D)               |
| 181        | Phase Min(D)                |
| 101        | Narrowband                  |
| 182        | Watts Min (E)               |
| 183        | Watts Max (E)               |
| 184        | Current Min (E)             |
| 185        | Current Max (E)             |
| 186        | VAR Min (E)                 |
| 187        | VAR Max (E)                 |
| 188        | VA Min (E)                  |
| 189        | VA Max (E)                  |
| 18A        | Power Factor Max (E)        |
| 18B        | Power Factor Min (E)        |
| 18C        | Phase Max (E)               |
| 18D        | Phase Min (E)               |
|            | Narrowband                  |
| 18E        | Watts Min (F)               |
| 18F        | Watts Max (F)               |
| 190        | Current Min (F)             |
| 191        | Current Max (F)             |
| 192        | VAR Min (F)                 |
| 193        | VAR Max (F)                 |
| 194        | VA Min (F)                  |
| 195        | VA Max (F)                  |
| 196        | Power Factor Max (F)        |
| 197        | Power Factor Min (F)        |
| 198        | Phase Max (F)               |
| 199        | Phase Min (F)               |

| Outlet 7           |           | Wideband                |
|--------------------|-----------|-------------------------|
| Common Data        | 9A        | Watts Min (G)           |
|                    | 9B        | Watts Max (G)           |
| BW Specific Data   | 9C        | Current Min (G)         |
|                    | 9D        | Current Max (G)         |
|                    | 9E        | VAR Min (G)             |
|                    | 9F        | VAR Max (G)             |
|                    | A0        | VA Min (G)              |
|                    | A1        | VA Max (G)              |
|                    | A2        | Power Factor Max<br>(G) |
|                    | A3        | Power Factor Min (G)    |
|                    | A4        | Phase Max (G)           |
|                    | A5        | Phase Min (G)           |
| Outlet 8           |           | Wideband                |
| Common Data        | A6        | Watts Min (H)           |
|                    | A7        | Watts Max (H)           |
| BW Specific Data   | A8        | Current Min (H)         |
|                    | A9        | Current Max (H)         |
|                    | AA        | VAR Min (H)             |
|                    | AB        | VAR Max (H)             |
|                    | AC        | VA Min (H)              |
|                    | AD        | VA Max (H)              |
|                    | AE        | Power Factor Max (H)    |
|                    | AF        | Power Factor Min (H)    |
|                    | B0        | Phase Max (H)           |
|                    | B1        | Phase Min (H)           |
| Total of Outlets   |           | Wideband                |
| Common Totals      | B2        | Total Watts Max         |
|                    | В3        | Total Watts Min         |
| BW Specific Totals | B4        | Total Current Max       |
|                    | B5        | Total Current Min       |
|                    | B6        | Total VAR Max           |
|                    | B7        | Total VAR Min           |
|                    | B8        | Total VA Max            |
|                    | B9        | Total VA Min            |
|                    | BA-<br>BF | Unused                  |

|             | Narrowband           |
|-------------|----------------------|
| 19A         | Watts Min (G)        |
| 19B         | Watts Max (G)        |
| 19C         | Current Min (G)      |
| 19D         | Current Max (G)      |
| 19E         | VAR Min (G)          |
| 19F         | VAR Max (G)          |
| 1A0         | VA Min (G)           |
| 1A1         | VA Max (G)           |
| 1A2         | Power Factor Max (G) |
| 1A3         | Power Factor Min (G) |
| 1A4         | Phase Max (G)        |
| 1A5         | Phase Min (G)        |
|             | Narrowband           |
| 1A6         | Watts Min (H)        |
| 1A7         | Watts Max (H)        |
| 1A8         | Current Min (H)      |
| 1A9         | Current Max (H)      |
| 1AA         | VAR Min (H)          |
| 1AB         | VAR Max (H)          |
| 1AC         | VA Min (H)           |
| 1AD         | VA Max (H)           |
| 1AE         | Power Factor Max (H) |
| 1AF         | Power Factor Min (H) |
| 1B0         | Phase Max (H)        |
| 1B1         | Phase Min (H)        |
|             | Narrowband           |
| 1B2         | Total Watts Max      |
| 1B3         | Total Watts Min      |
| 1B4         | Total Current Max    |
| 1B5         | Total Current Min    |
| 1B6         | Total VAR Max        |
| 1B7         | Total VAR Min        |
| 1B8         | Total VA Max         |
| 1B9         | Total VA Min         |
| 1BA-<br>1BF | Unused               |

**Table 8: CE Input Summary** 

| Calibration                   | 10    | Calibration Gain IA (Outlet 1)    |
|-------------------------------|-------|-----------------------------------|
|                               | 11    | Calibration Gain IB (Outlet 2)    |
|                               | 12    | Calibration Gain IC (Outlet 3)    |
|                               | 13    | Calibration Gain ID (Outlet 4)    |
|                               | 14    | Calibration Gain IE (Outlet 5)    |
|                               | 15    | Calibration Gain IF (Outlet 6)    |
|                               | 16    | Calibration Gain IG (Outlet 7)    |
|                               | 17    | Calibration Gain IH (Outlet 8)    |
|                               | 18    | Calibration Gain VA               |
|                               | 19    | Calibration Gain VB               |
| Phase Adjust                  | 1A    | Phase Adjust IA                   |
|                               | 1B    | Phase Adjust IB                   |
|                               | 1C    | Phase Adjust IC                   |
|                               | 1D    | Phase Adjust ID                   |
|                               | 1E    | Phase Adjust IE                   |
|                               | 1F    | Phase Adjust IF                   |
|                               | 20    | Phase Adjust IG                   |
|                               | 21    | Phase Adjust IH                   |
| CE Configuration              | 22    | CE State                          |
| Pulse Rate                    | 23    | Wrate                             |
|                               | 24    | Reserved                          |
| Quantization Corrections      | 25    | Quantization offset Outlet 1      |
|                               | 26    | Quantization offset Outlet 2      |
|                               | 27    | Quantization offset Outlet 3      |
|                               | 28    | Quantization offset Outlet 4      |
|                               | 29    | Quantization offset Outlet 5      |
|                               | 2A    | Quantization offset Outlet 6      |
|                               | 2B    | Quantization offset Outlet 7      |
|                               | 2C    | Quantization offset Outlet 8      |
|                               | 2D-34 | Reserved                          |
|                               | 35    | Quantization offset IA (Outlet 1) |
|                               | 36    | Quantization offset IB (Outlet 2) |
|                               | 37    | Quantization offset IC (Outlet 3) |
|                               | 38    | Quantization offset ID (Outlet 4) |
|                               | 39    | Quantization offset IE (Outlet 5) |
|                               | 3A    | Quantization offset IF (Outlet 6) |
|                               | 3B    | Quantization offset IG (Outlet 7) |
|                               | 3C    | Quantization offset IH (Outlet 8) |
| Temperature Compensation      | 3D    | Temperature Gain Adjust           |
| SAG Detection                 | 3E    | SAG Threshold on VA               |
|                               | 3F    | SAG Threshold on VB               |
| More Temperature Compensation | 40    | Degree Scale                      |
|                               | 41    | ppm/°c                            |
|                               | 42    | ppm / °c <sup>2</sup>             |
|                               | 43    | Temperature Calibration Value     |
|                               | 44-46 | Reserved                          |
|                               |       |                                   |

## 8 Contact Information

For more information about Teridian Semiconductor products or to check the availability of the 78M6618, contact us at: http://www.teridian.com/contact-us/

6440 Oak Canyon Road Suite 100 Irvine, CA 92618-5201

Telephone: (714) 508-8800 FAX: (714) 508-8878

For a complete list of worldwide sales offices, go to http://www.teridian.com.

## **Revision History**

| Revision | Date       | Description                                                                                                                                |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0      | 4/28/2010  | First publication.                                                                                                                         |
| 1.1      | 10/11/2010 | Added Section 4.5.2, Setting Target and Tolerance Parameters.  Added Section 4.6, Relay Control Command.  Added Section 4.6.1, TC Command. |
| 1.2      | 4/28/2011  | Corrected the description of the CESTATE parameter in Section 6.2.                                                                         |