B2B34ELPA Přednáška 3

3.1 Generace a rekombinace

Nadbyteční nositelé náboje, generace a rekombinace nositelů náboje, mechanismy rekombinace, přímá a nepřímá rekombinace, doba života nadbytečných nositelů náboje, rekombinační centra

3.2 Transport nositelů náboje

Driftový a difúzní proud, unášivá rychlost a pohyblivost, Ohmův zákon a jeho omezení, lineární pásový diagram, rovnice kontinuity

3.3 Lineární pásový diagram polovodiče

3.4 Základní polovodičové rovnice

Rovnice kontinuity, injekce minoritních nositelů náboje, difúzní délka, injekce majoritních nositelů náboje, relaxační doba

3.1 Generace a rekombinace nositelů náboje

Vzájemná rovnováha mezi elektrony a dírami se ustanovuje jejich **generací** (přechod elektronu z valenčního do vodivostního pásu) a **rekombinací** (přechod elektronu z vodivostního pásu do volného stavu v pásu valenčním).

V tepelné rovnováze jsou si rychlosti generace $\bf G$ a rekombinace $\bf R$ rovny, taktéž rovnovážné koncentrace obou nositelů náboje $\bf n_0$ a $\bf p_0$ jsou rovny intrinzické koncentraci $\bf n_i$.

Tepelná rovnováha:
$$G = R$$
, $n_0 = p_0 = n_i$

G – rychlost generace: počet párů elektron-díra vytvořených v 1 cm³ za 1 sekundu

R – rychlost rekombinace: počet párů elektron-díra anihilovaných v 1 cm³ za 1 sekundu

3.1 Mechanismy rekombinace v polovodiči

Při generaci/rekombinaci nositelů náboje (přechodu elektronů mezi pásy) musí být dodrženy zákony zachování energie a hybnosti. Rozlišujeme následující typy g/r:

- při g/r nedochází je změně hybnosti
- typická pro polovodiče s přímým zakázaným pásem
- energie se vyzáří ve formě fotonu

- při g/r musí dojít ke změně hybnosti
- typická pro polovodiče s nepřímým zakázaným pásem
- energie se vyzáří ve formě fononu (kvantum kmitu krystalové mříže)

Elektronické prvky - B2B34ELPA - př.3

- energie/hybnost se předá jiné částici (elektronu ve vodivostním pásu)
- nastává při vysoké injekci (koncentraci) nositelů
- ve výsledku vede k ohřevu součástky

3.1 Přímá (mezipásové) rekombinace

Rychlost rekombinace **R** je úměrná koncentraci elektronů ve vodivostním pásu **n** a počtu neobsazených míst ve valenčím pásu (děr) **p**:

$$R = r \cdot n \cdot p$$
 r – koeficient úměrnosti

V tepelné rovnováze jsou si rychlosti generace a rekombinace rovny:

$$G_{th} = R_{th} = r \, n_0 p_0 = r \, n_i^2$$

V <u>nerovnovážném stavu</u> (při injekci, osvětlení) se koncentrace nositelů zvýší na hodnoty $n = n_0 + \Delta n$ a $p = p_0 + \Delta p$ a rychlost rekombinace se zvýší

$$R = r n p = r(n_0 + \Delta n)(p_0 + \Delta p)$$

<u>Časovou změnu koncentrace nositelů</u> náboje lze vyjádřit rozdílem mezi G a R:

$$\frac{d \Delta n}{dt} = G_{th} - R = r n_0 p_0 - r np = -r (np - n_i^2)$$

Rychlost ustanovení rovnováhy je úměrná rozdílu $np - n_i^2$ tj. čím více systém rozvážíme, tím rychleji se rovnováha ustanovuje.

3.1 Doba života minoritních nositelů náboje

Charakterizuje proces ustanovení rovnováhy po generaci/injekci minoritních nosičů

$$\frac{d\Delta n}{dt} = -r \left(np - n_i^2 \right)$$

polovodič typu P: $p_0 >> n_0 > \Delta n = \Delta p$ (slabá injekce)

V případě polovodiče typu P ($p_0 >> n_0$) a slabé injekce ($p_0 >> \Delta n = \Delta p$) se vztah zjednoduší na

$$\frac{d \Delta n}{dt} = -r p_0 \Delta n = \frac{\Delta n}{\tau_n}$$

$$\tau_n = \frac{1}{r \, p_0}$$

doba života minoritních nositelů náboje τ_n

hodnoty jsou v rozsahu ms až ns - závisí na typu a kvalitě polovodiče

Rovnováhy se v polovodiči dosahuje exponenciálně s časovou konstantou rovnou době života.

3.1 Nezářivá (tepelná) rekombinace

Rekombinaci/generaci ovlivňují (urychlují) diskrétní hladiny uvnitř zakázaného pásu polovodiče (tzv. hluboké úrovně) vytvářené bodovými (či čárovými) poruchami.

SRH (Shockley-Read-Hall) model

Typické bodové poruchy v křemíku

Rychlost rekombinace stoupá s koncentrací poruch a jejich schopností zachytit elektron/díru (tzv. záchytný průřez centra).

Na poloze hladiny uvnitř pásu a záchytném průřezu pak závisí, zda se bude centrum chovat jako centrum rekombinace, past či centrum generující náboj.

Náboj spojený s hlubokými úrovněmi také ovlivňuje rozložení potenciálu.

$$\nabla^2 \phi = -\frac{e}{\varepsilon} \left(p - n + N_D^+ - N_A^- + N_T^+ \right)$$

Elektronické prvky - B2B34ELPA - př.3

3.2 Transport nositelů náboje v polovodičích

(vedení proudu)

Driftemunášením v náboje elektrickém poli

Si Si Si Si Si F

Difúzíunášením gradientem koncentrace

Tepelný pohyb elektronů

$$E = 0$$

rozptyl (srážka) na atomu mříže nebo nečistotě

Bez přítomnosti elektrického pole se elektrony se pohybují nahodile střední tepelnou rychlostí $\langle V_T \rangle = \sqrt{3kT/m_n^*}$ Si 300K $\langle V_T \rangle = 1.1x10^5 \, \text{ms}^{-1}$

neboť tepelná energie elektronu $E_T = 3/2kT$ je rovna kinetické $E_K = \frac{1}{2} m_n^* v_T^2$

Drift elektronů

rozptyl (srážka) na atomu mříže nebo nečistotě

V elektrickém poli na elektrony působí navíc vnější unášivá síla elektrického pole

$$F = -eE$$

3.2 Pohyb elektronu v unášivém poli

2. Newtonův zákon

$$m_n^* \frac{d\mathbf{v_u}}{dt} = \mathbf{F}$$

 $m_n^* \left(\frac{d \mathbf{v_u}}{dt} + \frac{\mathbf{v_u}}{\tau} \right) = -e \mathbf{E}$ t čas $m_n^* \text{ efektivní hmotnost elektronu}$ \mathbf{F} síla

na elektron pohlížíme jako na volnou částici (vliv periodického působení elektrického potenciálu v krystalu je aproximován efektivní hmotností m,*), kinetickou rovnici řešíme pro střední hodnoty (statistický soubor elektronů)

v_{II} unášivá rychlost

relaxační doba (střední doba mezi srážkami)

akcelerace elektrickým polem

deakcelerace

rozptyl elektronu (srážka s atomy mříže, defekty)

3.2 Pohyb elektronu v unášivém poli

$$m_n^* \left(\frac{d \mathbf{v_u}}{dt} + \frac{\mathbf{v_u}}{\tau} \right) = -e \mathbf{E}$$
akcelerace polem

Řešení pro ustálený stav (konstantní proud), tj. nulovou změnu rychlosti $\frac{d\mathbf{v}_{u}}{dt} = 0$

$$m_n^* \frac{\mathbf{v}_u}{\tau} = -e\mathbf{E}$$

Definujeme tzv. pohyblivost nositelů náboje μ, vztah mezi intenzitou elektrického pole E a unášivou rychlostí nositelů v_u je lineární

$$\mathbf{v_u} = -\frac{e\tau}{m_n^*} \mathbf{E} = -\mu_n \mathbf{E}$$
 $\mu_n = \frac{e\tau}{m_n^*}$ pohyblivost elektronů

Proudová hustota = náboj prošlý plochou za 1s = náboj x koncentrace x rychlost elektronů

$$\mathbf{j_n} = -e n \mathbf{v_u} = e n \mu_n \mathbf{E} = \sigma_n \mathbf{E}$$
 Ohmův zákon diferenciální tvar

Platí za podmínky, že unášivá rychlost nositelů je lineárně závislá na intenzitě el. pole (nízké intenzity E).

3.2 Závislost pohyblivosti nositelů na teplotě

S rostoucí teplotou a množstvím poruch se zvyšuje pravděpodobnost srážky (rozptylu) a relaxační doba τ klesá. Pohyblivost nositelů se s teplotou snižuje.

$$\mu = \frac{e \, \tau}{m^*}$$

$$\frac{1}{\mu} = \frac{1}{\mu_{I}} + \frac{1}{\mu_{L}}$$
rozptyl na atomech ionizovaných příměsí

rozptyl na kmitech mřížky

- vlivem odlišné pásové struktury (m_{eff}) se pohyblivosti elektronů a děr liší, jsou jiné i pro různé polovodiče
- s rostoucí dotací pohyblivost podstatně (několikanásobně) klesá
- pohyblivost elektronů je většinou vyšší než pohyblivost děr (součástky s vodivostí N mají lepší parametry)

3.2 Ohmův zákon

v polovodiči je nutné uvažovat tok (proudovou hustotu **J**) elektronů i děr

$$\boldsymbol{J} = \boldsymbol{J}_n + \boldsymbol{J}_n = e n \mu_n \boldsymbol{E} + e p \mu_p \boldsymbol{E} = \sigma \boldsymbol{E}$$

Ohmův zákon získáme integrací vodivosti ve vodivé dráze délky L a průřezu S

Elektronické prvky - B2B34ELPA - př.3

3.2 Omezení platnosti Ohmova zákona

Závislost $\mathbf{j}_{n} = -e n \mathbf{v}_{u} = e n \mu_{n} \mathbf{E} = \sigma_{n} \mathbf{E}$

platí pouze pro nízké intenzity elektrického pole E < 10³ V/cm

Při vyšších intenzitách se driftová rychlost saturuje

$$\mathbf{j_n} = -en\mathbf{v}_{u\max}$$

driftová rychlost začne dosahovat hodnotu tepelné rychlosti a rozptyl elektronů začne převažovat, může docházet i k dalším jevům – lavinové násobení nositelů náboje, pokles rychlosti (GaAs), apod.

$$V_{umax} \approx 10^5 \text{ ms}^{-1}$$

Tepelná rychlost elektronů

$$< v_{\scriptscriptstyle T}> = \sqrt{3kT/m_n^*}$$

Si 300K
$$< V_T > = 1.1 \times 10^5 \text{ ms}^{-1}$$

3.2 Difúze nositelů náboje

- hnací sílou je gradient koncentrace (snaha částic dosáhnout stavu s minimální entropií)

Gradient koncentrace v neutrálním polovodiči lze vyvolat lokálním zvýšením koncentrace ozářením přes štěrbinu

3.2 Difúze nositelů náboje

Samovolné rozptylování nositelů náboje způsobené gradientem jejich koncentrace

Hustota difúzního toku j_D je úměrná gradientu a difúznímu koeficientu D (Fickův zákon).

$$\mathbf{j}_{D} = -D_{n} \operatorname{grad} n = -D_{n} \frac{dn}{dx}$$
 $\mathbf{j}_{D} = -D_{p} \operatorname{grad} p = -D_{p} \frac{dp}{dx}$

Difúzní proudová hustota (elektronů/děr) $j_{\rm Dn}$ ($j_{\rm Dp}$) je difúzní tok násobený nábojem.

$$\mathbf{j_{Dn}} = eD_n \frac{dn}{dx}$$
 $D_n \dots$ difúzní koeficient elektronů $D_p \dots$ difúzní koeficient děr $\mathbf{j_{Dp}} = -eD_p \frac{dp}{dx}$

3.2 Celkový proud v polovodiči

je dán součtem proudové hustoty elektronů $oldsymbol{J}_{\!\scriptscriptstyle D}$ a děr $oldsymbol{J}_{\!\scriptscriptstyle D}$

$$J = J_n + J_p$$

z nichž každá má svou driftovou a difúzní složku

$$J_n = en\mu_n E + eD_n \frac{dn}{dx}$$
 proud elektronů $J_p = ep\mu_p E - eD_p \frac{dp}{dx}$ proud děr

V termodynamické rovnováze je celkový proud v polovodiči nulový

$$j_{drift} = -j_{dif}$$
 $D = \frac{\mu kT}{e}$

Einsteinův vztah

vzájemný vztah mezi difúzním koeficientem a pohyblivostí

k .. Boltzmannova konstanta T ... teplota

3.3 Lineární pásový diagram polovodiče

- využívá se pro popis pohybu elektronů a děr v potenciálovém poli
- uvažuje pouze elektrony/díry s nízkou energií (poblíž hran pásů)
- přiložení kladného potenciálu znamená ohyb pásu směrem dolů
- elektrony se pohybují jako "kuličky", díry jako "balónky"

potenciál

3.4 Rovnice kontinuity popisuje celkovou bilanci elektrického náboje v polovodiči

$$\frac{\partial n(x)}{\partial t} = \frac{1}{e} \frac{\partial J_n(x)}{\partial x} + G(x) - R(x)$$

$$\frac{\partial p(x)}{\partial t} = -\frac{1}{e} \frac{\partial J_{p}(x)}{\partial x} + G(x) - R(x)$$

Rovnice kontinuity odráží vliv rekombinace/generace na transport náboje. Současná přítomnost elektronů a děr vede k jejich rekombinaci/generaci, kterou je nutné zahrnout do celkové bilance toku proudu (na rozdíl od 1. Kirchhoffova zákona může být nenulová bilance mezi vtokem a výtokem do jednotkového objemu – volný náboj může vznikat i zanikat.

časová změna koncentrace nositelů náboje

generace a rekombinace

$$\frac{\partial n}{\partial t} = \frac{1}{e} \frac{J_n(x) - J_n(x + \Delta x)}{\Delta x} + G_n - R_n$$

divergence proudové hustory

3.4 Základní polovodičové rovnice

Poissonova rovnice

div grad
$$\phi = \Delta \phi = -\frac{e}{\varepsilon} (p - n + N_D^+ - N_A^-)$$

Rovnice kontinuity pro elektrony a pro díry

$$\frac{\partial n}{\partial t} = \frac{1}{e} \operatorname{div} \mathbf{j}_{n} + G - R$$

$$\frac{\partial p}{\partial t} = -\frac{1}{e} div \, \mathbf{j_p} + G - R$$

$$\mathbf{j_p} = \mathbf{e} n \mu_p \mathbf{E} - \mathbf{e} D_p \mathbf{g} \mathbf{r} \mathbf{a} \mathbf{d} \mathbf{p}$$

$$\mathbf{j_n} = \mathbf{e} n \mu_n \mathbf{E} + \mathbf{e} D_n \operatorname{grad} n$$

$$\mathbf{E} = -\operatorname{grad}\phi$$

Využívají se pro popis rozložení a transportu náboje a rozložení potenciálu v polovodiči

Vstupní parametry: rozměry, dotace, materiálové parametry polovodiče, přiložené napětí

Výstupní parametry: rozložení nositelů, potenciálu a proudových hustot.

3.4 Injekce minoritních nositelů – difúzní délka 🔍

$$hv > \Delta E_g$$
 $\wedge \wedge \wedge \rightarrow$ P

Vyšetřujeme rozložení koncentrace nadbytečných nositelů náboje v polovodiči při osvětlení jeho povrchu – polovodič je neutrální, koncentrace generovaných elektronů a děr si jsou rovny.

$$\frac{\partial n(x)}{\partial t} = \frac{1}{e} \frac{\partial J_n(x)}{\partial x} + G(x) - R(x)$$

rovnice kontinuity pro elektrony

Předpoklady: řešíme pro nadbytečné nositele (n = Δ n+n₀), oblast je kvazi-neutrální (E=0)

rychlost rekombinace úměrná "době života" τ_n

uvažujeme pouze difúzní proud, neboť polovodič je neutrální $J_n = e D_n \frac{\partial \Delta n}{\partial x}$

v ustáleném stavu (dynamická rovnováze)

 $\frac{\partial \Delta n}{\partial t} = 0$

$$rac{d^2 \Delta n}{dx^2} = rac{\Delta n}{D_n au_n} = rac{\Delta n}{L_n^2}$$
 $L_n = \sqrt{D_n au_n}$ difúzní délka L_n

$$\Delta n(x) = \Delta n(0)e^{-x/L_n}$$

Koncentrace injektovaných minoritních nositelů exponenciálně klesá úměrně jejich tzv. difúzní délce L

Elektronické prvky - B2B34ELPA - př.3

3.4 Injekce majoritních nositelů – reaxační doba

$$\frac{\partial n(x)}{\partial t} = \frac{1}{e} \frac{\partial J_n(x)}{\partial x} + G(x) - R(x)$$

v případě majoritních nositelů lze generaci a rekombinaci zanedbat

- injektovaný náboj není kompenzován nábojem opačné polarity (elektrické pole je nenulové)
- vzniklý prostorový náboj vyvolá elektrické pole, v jehož důsledku se náboj rychle rozptýlí

$$\frac{\partial n(x)}{\partial t} = \frac{1}{e} \frac{\partial \mathbf{J_n}(x)}{\partial x}$$

$$J_n = \sigma E$$

$$\mathbf{J_n} = \sigma \mathbf{E} \qquad \qquad \frac{\partial \mathbf{E}}{\partial \mathbf{X}} = -\frac{\rho}{\varepsilon} = -\frac{\mathbf{e}n}{\varepsilon}$$

Ohmův zákon

Poissonova rce.

$$n = n_0 e^{-t/\tau_{rel}}$$

$$au_{rel} = rac{\mathcal{E}}{\sigma}$$
 dielektrická relaxační doba pro polovodič typicky $pprox$ 1 ps

Udává rychlost s jakou je náboj majoritních nositelů reagovat na změny potenciálu