

Projects

FIFA World-Cup Analysis

Big Game Sensus Analysis

Hospitality Analysis

Crop Production Analysis

Chatbots

Climate Change Modeling

Healthcare(Heart Disease Analysis)

Projects

FIFA World-Cup Analysis

Introduction:

The FIFA World Cup is a global football competition contested by the various football-playing nations of the world. It is contested every four years and is the most prestigious and important trophy in the sport of football.

Task:

Find key metrics and insights from the dataset

DataBase

The World Cups dataset shows all information about all the World Cups in history, while the World Cup Matches dataset shows all the results from the matches contested as part of the cups

Data Queries Insert Calculations Sensitivity Share Copilot

FIFA World Cup-Analysis(1930-2014)

Mexico City

TopHostCity

23 Matches_Hosted

Top Host City Stadiums

Stadium

Estadio Azteca

Estadio Ol@mpico Universitario

Top 3 Players					
Player Name	Team Initials	Shirt Number	MatchesPlayed	Coach Name	
Sepp MAIER	FRG	1	19	SCHOEN Helmut (FRG)	
Wolfgang OVERATH	FRG	12	19	SCHOEN Helmut (FRG)	
Eric GERETS	BEL	2	16	THYS Guy (BEL)	
Jan CEULEMANS	BEL	11	16	THYS Guy (BEL)	

Top 2 Country - Matches Won							
Year ▲	Winner	Runners-Up	Third	Fourth	QualifiedTeams	MatchesPlayed	
1934	Italy	Czechoslovakia	Germany	Austria	16	17	
1938	Italy	Hungary	Brazil	Sweden	15	18	
1958	Brazil	Sweden	France	Germany FR	16	35	
1962	Brazil	Czechoslovakia	Chile	Yugoslavia	16	32	
1970	Brazil	Italy	Germany FR	Uruguay	16	32	
1982	Italy	Germany FR	Poland	France	24	52	
1994	Brazil	Italy	Sweden	Bulgaria	24	52	
2002	Brazil	Germany	Turkey	Korea Republic	32	64	
2006	Italy	France	Germany	Portugal	32	64	

reamwise Summary					
TeamInitial	TeamName	MatchesPlayed	GoalsScored		
ALG	Algeria	14	14		
ANG	Angola	3	1		
ARG	Argentina	81	133		
AUS	Australia	13	11		
AUT	Austria	29	43		
BEL	Belgium	43	54		
BOL	Bolivia	6	1		
BRA	Brazil	108	225		
BUL	Bulgaria	26	22		
CMR	Cameroon	23	18		

Insights

Mexico City
Hosted 23 matches

Brazil -5
Italy -4
Top 2 Countries Won most Matches

Coach Schoen Helmet

ToolTip for Top 5 Countries most matches won – citywise Matches Hosted

ToolTip for List of Position-wise Players

Projects

Big Game Sensus Analysis

BigGame Cencus Analysis

Introduction:

This Big Game Census data visualization where Super Bowl 52 players census dataset is used. Super Bowl LII, or Super Bowl 52, was the championship game of the National Football League (NFL) for the 2017 season. It was played on February 4, 2018, at U.S. Bank Stadium in Minneapolis, Minnesota. The Philadelphia Eagles defeated the New England Patriots with a score of 41-33, winning their first Super Bowl title.

Task:

Find key metrics and insights from the dataset

DataBase

The dataset has rosters for both, competing teams, with the corresponding roster information and birthplace and state population information. The developers utilized census data pulled from census.gov, and roster information from Yahoo Sports.

BIG GAME SUPER BOWL 52

Insights

New England – AFC Philadelphia – NFC

AFC – Texas NFC - California

Most Players

AFC – 13 to 40 yrs NFC- - 21 to 37 yrs

Age Distribution

Stanford Florida State Michigan

Top 3 Most Players Colleges

Mostly populated State -Texas

Projects

Hospitality Analysis

Introduction:

Atliq Grands owns multiple five-star hotels across India. They have been in the hospitality industry for the past 20 years. Due to strategic moves from other competitors and ineffective decision-making in management, Atliq Grands are losing its market share and revenue in the luxury/business hotels category.

Task:

They do not have an in-house data analytics team to provide them with these insights. Their revenue management team had decided to hire a 3rd party service provider to provide them with insights from their historical data.

DataBase

3 dimension tables – date, hotels, rooms

2 Fact Tables – aggregated Bookings, Bookings

Data Modeling was done and new measures and summary tables were built

Overview 1

Overview 2

HOSPITALITY ANALYSIS

KPI and Metrics

Top_Revenue_Property
Atliq Exotica-Luxury-Mumbai

Top_Ratings 4.32

Top_Occupancy_Property
Atliq Blu-Luxury-Mumbai

Top_Revenue 248M

Top_Ratings_Property
Atliq Exotica-Luxury-Mumbai

Top_Occupancy 68.27

City	Property Name	Revenue_generated ▼	Revenue_realized	Ratings	%Occupancy
Mumbai	Atliq Exotica	248395500	212444988	4.32	66.09
Mumbai	Atliq Palace	118616735	101511080	4.29	66.01
Delhi	Atliq Palace	105200620	89135998	4.27	66.35
Mumbai	Atliq City	103776330	87996216	3.04	52.94
Bangalore	Atliq City	97486125	81876345	4.28	65.69
Bangalore	Atliq Bay	96540375	82443540	4.28	65.95
Mumbai	Atliq Grands	88430770	74730742	3.05	53.95
Mumbai	Atliq Blu	86646790	73918312	4.30	68.27
Bangalore	Atliq Blu	85807575	72963360	3.08	53.20
Hyderabad	Atliq Bay	81067000	69255910	4.30	65.88
Bangalore	Atliq Palace	80945850	68596005	3.02	53.87
Mumbai	Atlia Sessons	77665265	66125/05	2 20	11 51
Total		2007546215	1708771229	3.62	58.31

Insights

Bookings Mumbai – 43K Delhi -23K

Delhi business can be reworked for improvement

Cancellation – 34K No show – 7K

Booking platforms and partners strategy to be revised to reduce this

Max Occupany % = 68

This can be improved by matching with demand of standard and elite rooms is more

City-wise Details

ToolTip for Weedays/weekends bookings for each week

Projects

Crop Production Analysis

Introduction:

The Agriculture business domain, as a vital part of the overall supply chain, is expected to highly evolve in the upcoming years via the developments, which are taking place on the side of the Future Internet. This paper presents a novel Business-to-Business collaboration platform from the agri-food sector perspective, which aims to facilitate the collaboration of numerous stakeholders belonging to associated business domains, in an effective and flexible manner

Task:

Make views and dashboards first and also make a story out of it

DataBase

This dataset provides a huge amount of information on crop production in India

• ranging from several years.

• 33 states

646 districts

. . 19 years

6 seasons

124 Crops

Insights

Kerala – 77 %

Andra Pradesh – 13.5 %

Tamil Nadu – 9.5%

Top 3 Crop Production

States

Kerala – 97.88 bnTop Crop Production State

Coconut – 129.98 bn
Area – 28.38M
Top production crop in
Country

State-wise Details

Projects

Chatbots

Research Papers QAbot

Introduction:

The Chatbots Machine Learning project involves developing a conversational agent (chatbot) capable of interacting with users in natural language. This can include answering questions, providing information, performing tasks, or holding a conversation.

Task:

An intelligent Question-Answering Bot that lets you upload research papers (PDFs) and ask natural language queries. The bot uses semantic search and text summarization to retrieve the most relevant content from your uploaded papers.

DataBase

I have used Research Papers regarding Autism Syndrome Disease(ASD) in children and how AI helps in early detection of it.

Any no. of research papers(PDFs) can be uploaded and the Bot will answer your related queries.

How It Works

- **1.Upload PDFs** → Extracts (PyPDF2) and splits text into chunks.
- 2.Huggingface Sentence Transformers/all-MiniLM-L6-v2 tokenizer/Embedding → Each chunk is converted to a vector.
- **3.Pinecone Indexing** → Embeddings are stored in Pinecone.
- **4.Query Input** → User asks a question.
- **5.Similarity Search** → Bot finds closest matching chunks with pinecone index cosine metrics
- **6.Summarize/Answer** → Cohere IIm command nightly generates the final answer.
- 7. App: https://research-appbot-d9qnnrbgn9piznzet28rcw.streamlit.app/
- 8. Project: https://github.com/gitmamtahub/Research-QAbot

Architecture

All-MiniLM-L6-v2

Huggingface Sentencetransformers tokenizer, embedding

Pinecone

Vector DB with dimensions=384 and metric=cosine

Command-nightly

Cohere model to generate/summarize answer

Interactive QA Bot with Document Upload

How many research papers to upload: 2.00 Upload a PDF document Drag and drop file here Browse files Limit 200MB per file • PDF autism.pdf 1.2MB Document uploaded successfully! Upload a PDF document Drag and drop file here Browse files Limit 200MB per file • PDF Dawson.pdf 1.1MB X Document uploaded successfully!

Stored 778 document segments in Pinecone.

Ask a question based on the reserch papers:

what is digital behavioral phenotyping?

Answer:

Digital behavioral phenotyping refers to the use of digital technologies and tools to objectively and automatically measure and analyze dynamic features of behavior, particularly in the context of neurodevelopmental conditions such as Autism Spectrum Disorder (ASD). This approach leverages advancements in technology to capture and quantify behavioral patterns at a spatiotemporal scale that is often imperceptible to human observation alone.

Key advantages of digital behavioral phenotyping include:

localhost:8501 1/2

4/23/25, 4:24 PM

1. **Objectivity**: It reduces reliance on subjective human coding, providing more consistent and unbiased measurements.

Streamlit

Projects

Climate Change Modeling

Climate Change Modeling

Introduction:

The Climate Change Modeling project aims to develop a machine learning model to predict and understand various aspects of climate change. This can include Sentiment Analysis, Trend Analysis, Engagement Analysis, Topic Modeling, etc.

Task:

Sentiment Analysis: Gauge public opinion on climate change and NASA's communication strategies.

Topic Modeling: Discover prevalent themes in public discourse about climate change.

DataBase

- This dataset encompasses over 500 user comments
- collected from high-performing posts on NASA's
- Facebook page dedicated to climate change
 - (https://web.facebook.com/NASAClimateChange/).
 - The comments, gathered from various posts
- between 2020 and 2023, offer a diverse range of
- public opinions and sentiments about climate change
 - and NASA's related activities.

DataBase

Column Descriptors

- 1. **Date:** The date and time when the comment was posted.
- 2. **LikesCount:** The number of likes each comment received.
- 3. **ProfileName:** The anonymized name of the user
- who posted the comment.
 - 4. **CommentsCount:** The number of responses each comment received.
- 5. **Text:** The actual text content of the comment.

How It Works

1. Libraries → keybert, transformers, torch, langchain, wordcloud

2. Sentiment Analysis -

Autotokenizer/AutoModelForSequenceClassification, open source model - "cardiffnlp/twitter-roberta-base-sentiment"

- 3.Topic Modeling KeyBERT(model='all-MiniLM-L6-v2')
- 4. Colab code file:

https://colab.research.google.com/drive/1mE0WqxBTZwXzpi3lrlbcYndVZhdqA5aK?usp=sharing

Architecture

AutoTokenizer AutoModelForSequenceClas sification

transformers

"cardiffnlp/twitterroberta-basesentiment"

Sentiment Analysis

KeyBERT(All-MiniLM-L6-v2)

Topic Modeling

Sentiment Analysis and Toping Modeling Plots

WordCloud

Projects

Healthcare(Heart Disease Analysis)

Introduction:

Blood datasets typically encompass a broad array of information related to hematology, blood chemistry, and related health indicators. These datasets often include data points such as blood cell counts, hemoglobin levels, hematocrit, platelet counts, white blood cell differentials, and various blood chemistry parameters such as glucose, cholesterol, and electrolyte levels. Machine learning techniques are often applied to blood datasets to develop predictive models for diagnosing Diseases.

Task:

Diagnosis of Heart Disease

DataBase

- Diagnosis of Heart Disease from health details like BMI, Race, Age, Smoking, Asthma, Diabetic, etc. Also physically
- Active, Skin cancer, Kidney Disease, Sleep time, etc.

Key-Concern

- Main Focus is no Heart Disease patient should be left
- undetected. In ML terms False Negative cases should be
- as low as possible near to null Means If Patient is having
 - heart disease but Reports are negative i.e. False Negative

Note:

- The Confusion Matrix created has four different
 - quadrants: (for Python) TN FP FN TP True Negative (Top-
 - Left Quadrant) False Positive (Top-Right Quadrant) False
 - Negative (Bottom-Left Quadrant) True Positive (Bottom-
- Right Quadrant)

UnBalanced Dataset

Have Heart Disease

- 1)More data collection
- 2)SMOTE
- 3) Explicitly Balance data

EDA for Patients having Heart Disease

- 1) Male 58.9%, Female 41.4%
- 2) Smokers 63% of Male, 52.4% of Female
- 3) Alcohol 4.4% of Male, 3.8% of Female
- 4) Stroke 14.8% of Male, 17.9% of Female
- 5) Difficult Walking 30.5% of Male, 45.8 % of Female
- 6) Physical Active 68.5% of Male, 57% of Female
- 7) Diabetic 33.4% of Male, 32% of Female
- 8) Asthma 13.9% of Male, 24.1% of Female
- 9) Skin cancer 20.5% of Male, 14.9% of Female
- 10) Kidney Disease 11.4% of Male, 14.5% of Female
- 11) Age > 40, BMI>18.5
- 12) General Health and Sleep time doesnot give any clear idea for heart disease

Insights

Colab code file: https://colab.research.google.com/drive/1h0OFc0a7wGy2MNvXz1zLojEvNmUwgfrr?usp=sharing

PowerBI skills: Learnt making interactive visuals Dashboards, Extract, Transform and Load Data

Exploratory Data Analysis skills: Python with libraries like pandas, numpy, matplotlib, pyplot

ML-AI Skills:
ML models LR, DT, RF, XGB.
Transformers- tokenizer,
embedding, vector DB(pinecone),
LLM models – KeyBert, Roberta,
cohere, RAG

Thank you!