Counting People Using a PIR Sensor

Martin Beneš

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 612 66 Brno - Královo Pole xbenes49@stud.fit.vutbr.cz

The aim

- Study the topic.
- Design a theoretical system, that could:
 - Localize a person.
 - Estimate a count of people.
- Implement and test the approach.
- Summarize.

The design

- Sensor device
 - Sampling
- Classification server
 - Classification
 - Fusion

Classification: feature extraction

Classification: classifier

Based on set of linear regression classifiers.

• Spatial model of sensed area.

Classification: training

Classification: postprocessing

- For localization cluster analysis is used.
 - K-means
 - Medoids (PAM)
- Count of people by minimal within-cluster sum of squares.

Implementation: sensor device

B+B Sensors: PIR STD

- NodeMCU (C++/Arduino)
 - ESP8266 (WiFi)
 - mDNS, HTTP

Communication with server via multicast

Implementation: classification server

- Python3
 - NumPy, SciPy, scikit
 - MatPlotLib, PySerial
- Linux, Bash

Posterior probability (%)

Aspect	Presence	Distance	Center	Left
Positive rate	75.972	75.785	63.725	49.263
Negative rate	86.542	69.793	53.436	59.327

- Possible improvements
 - Labelling
 - Multiple sensors

Thank You For Your Attention!