1. In the absolute 1-center of a network problem
The facility can be anywhere in the plane
The facility must be placed in a vertex
The facility can be in the middle of an edge
In some optimal solution the facility is placed in a vertex
2. A new city is designed. The location of 2 fire-stations should be determined. This problem is
2-center problem, NP-hard
2-median problem, NP-hard
2-center problem, can be solved optimally
2-median problem, can be solved optimally.
3. In a covering problem
Clients' weight (demand) show how often they need a facility
The number of facilities is a given integer k
There is a facility in every node or in every adjacent node
The number of facilities is unknown in advance.
4. What's the minimal number of centers required to cover a cycle of n nodes with unit demands
ceiling (n/3)
ceiling(n/4)
ceiling (n/2)
n-1
5. When finding a local center of an edge, the plot d(x,v) has at most one extermum point
<u>True</u>
False
6. Assume that (a,b) has length 10, m(a)=20 and m(b)=20. The local center of (a,b) is at least:

20

<u>15</u>

30

7. Consider the metric 1-vertex center problem. Choosing an arbitrary node:

Provides a (log n)-approximation

Does not provide any constant approximation

Provides a 3-approximation

Provides a 2-approximation

8. In the analysis of 2-approximation algorithm for metric k-center. The main argument was We can't have k+1 nodes, each pair is more than OPT apart.
In a tree there is only one path connecting two vertices
k+1 arbitrary nodes con not be covered by only k centers
By Δ-inequality, the chosen centers are at most OPT apart.

9. If a 1.5-approximation for metric k-center exists, then Metric k-center has an optimal poly-time solution Dominating Set has an optimal poly-time solution The partition problem has an optimal poly-time solution All of the above

10. If all nodes have the same weight, and all nodes have the same length, then... some optimal k-median is also an optimal vertex k-center some optimal vertex k-center is an optimal k-median every optimal k-median is also an optimal vertex k-center dist(opt 1-median, opt 1-center) may be unbounded

11. G is a graph for which some Hamiltonian cycle is also an Euler cycle

G must be a bipartite
G must be a cycle
There are many different graphs with this property
12. "Tomorrow" in Hebrew:
Boker Tov
Shalom
Toda
<u>Mahar</u>

G must be a complete graph