§11.5–Alternating Series

Tom Lewis

Spring Semester 2015

An example Definitions and theorem The remainder theorem

Outline

An example

Definitions and theorem

The remainder theorem

Problem

Study the partial sums of the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

An example Definitions and theorem The remainder theorem

Definition

Let $\{a_n\}$ be a sequence of positive numbers. Infinite series of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$
$$\sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 - \cdots$$

are called alternating series.

Disclaimer

We will concentrate on alternating series of the form $a_1 - a_2 + a_3 - \cdots$. All of our results apply to the series $-a_1 + a_2 - a_3 + \cdots$ as well.

An example Definitions and theorem The remainder theorem

Theorem (Alternating Series Test (AST))

Let $\{a_n\}$ be a decreasing sequence of positive terms. If $a_n \to 0$, then the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges.

Problem

Show that
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1}$$
 converges by the alternating series test.

An example Definitions and theorem The remainder theorem

Problem

Show that the conditions of the alternating series test do not apply to the series $\sum_{n=1}^{\infty} (-1)^n n^4 e^{-n}$. Show that we can nonetheless snatch victory from the jaws of defeat.

Theorem

Let $\{a_n\}$ be a decreasing sequence of positive terms with $a_n \to 0$ and let

$$S = \sum_{n=1}^{\infty} (-1)^{n+1} a_n.$$

Then

$$\left|S - \sum_{n=1}^{N} (-1)^{n+1} a_n\right| \leqslant a_{N+1}$$

In other words...

The error in using a partial sum to approximate the full sum is no greater than the size of the next term of the series.

An example Definitions and theorem The remainder theorem

Problem

Let $S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n!}$. Compute $s_6 = \sum_{n=1}^{6} (-1)^{n+1} \frac{1}{n!}$ and estimate the error in the approximation $S \approx s_6$.