

AD-A254 190



(2)

TECHNICAL REPORT-RD-WS-92-9

REF ID: A53

SERIALLY COMPLETE SEQUENCES OF HOURLY  
TEMPERATURES FOR THREE SAUDI ARABIAN  
STATIONS

Helmut P. Dudel  
Dorothy A. Stewart  
Larry J. Levitt  
Weapons Sciences Directorate  
Research, Development, and Engineering Center

DTIC  
ELECTE  
JUL 13 1992  
S A D

JUNE 1992



Approved for public release; distribution is unlimited.

92-18138



92 18138 023

## **DESTRUCTION NOTICE**

**FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN  
DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION  
II-19 OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM  
REGULATION, CHAPTER IX. FOR UNCLASSIFIED, LIMITED  
DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT  
DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE  
DOCUMENT.**

## **DISCLAIMER**

**THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED  
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION  
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.**

## **TRADE NAMES**

**USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT  
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR  
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR  
SOFTWARE.**

Unclassified  
SECURITY CLASSIFICATION OF THIS PAGE

## REPORT DOCUMENTATION PAGE

Form Approved  
OMB No. 0704-0188

|                                                                                                                                             |                                                        |                                                                                                                                                                       |                         |                     |             |          |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|-------------|----------|-------------------------|
| 1a. REPORT SECURITY CLASSIFICATION<br><br>Unclassified                                                                                      |                                                        | 1b. RESTRICTIVE MARKINGS                                                                                                                                              |                         |                     |             |          |                         |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                                                                                       |                                                        | 3. DISTRIBUTION/AVAILABILITY OF REPORT<br><br>Approved for public release; distribution is unlimited.                                                                 |                         |                     |             |          |                         |
| 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                   |                                                        |                                                                                                                                                                       |                         |                     |             |          |                         |
| 4. PERFORMING ORGANIZATION REPORT NUMBER(S)<br><br>Technical Report RD-WS-92-9                                                              |                                                        | 5. MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                                                           |                         |                     |             |          |                         |
| 6a. NAME OF PERFORMING ORGANIZATION<br>Weapons Sciences Directorate<br>RD&E Center                                                          | 6b. OFFICE SYMBOL<br>(if applicable)<br>AMSMI-RD-WS-CM | 7a. NAME OF MONITORING ORGANIZATION                                                                                                                                   |                         |                     |             |          |                         |
| 6c. ADDRESS (City, State, and ZIP Code)<br>Commander, U. S. Army Missile Command<br>ATTN: AMSMI-RD-WS-CM<br>Redstone Arsenal, AL 35898-5248 |                                                        | 7b. ADDRESS (City, State, and ZIP Code)                                                                                                                               |                         |                     |             |          |                         |
| 8a. NAME OF FUNDING/SPONSORING<br>ORGANIZATION                                                                                              | 8b. OFFICE SYMBOL<br>(if applicable)                   | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER                                                                                                                       |                         |                     |             |          |                         |
| 8c. ADDRESS (City, State, and ZIP Code)                                                                                                     |                                                        | 10. SOURCE OF FUNDING NUMBERS<br><table border="1"><tr><td>PROGRAM ELEMENT NO.</td><td>PROJECT NO.</td><td>TASK NO.</td><td>WORK UNIT ACCESSION NO.</td></tr></table> |                         | PROGRAM ELEMENT NO. | PROJECT NO. | TASK NO. | WORK UNIT ACCESSION NO. |
| PROGRAM ELEMENT NO.                                                                                                                         | PROJECT NO.                                            | TASK NO.                                                                                                                                                              | WORK UNIT ACCESSION NO. |                     |             |          |                         |
| 11. TITLE (Include Security Classification)<br><br>SERIALLY COMPLETE SEQUENCES OF HOURLY TEMPERATURES FOR THREE SAUDI ARABIAN STATIONS      |                                                        |                                                                                                                                                                       |                         |                     |             |          |                         |
| 12. PERSONAL AUTHOR(S)<br><br>Helmut P. Dudel, Dorathy A. Stewart, and Larry J. Levitt                                                      | 13a. TYPE OF REPORT<br>Final                           |                                                                                                                                                                       |                         |                     |             |          |                         |
| 13b. TIME COVERED<br>FROM July 91 to Mar 92                                                                                                 | 14. DATE OF REPORT (Year, Month, Day)<br>June 1992     |                                                                                                                                                                       | 15. PAGE COUNT<br>69    |                     |             |          |                         |
| 16. SUPPLEMENTARY NOTATION                                                                                                                  |                                                        |                                                                                                                                                                       |                         |                     |             |          |                         |

|                                                                                                                                                                                                                   |       |           |           |  |  |  |  |  |  |  |  |  |                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-----------|--|--|--|--|--|--|--|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17. COSATI CODES<br><table border="1"><tr><td>FIELD</td><td>GROUP</td><td>SUB-GROUP</td></tr><tr><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td></tr></table> | FIELD | GROUP     | SUB-GROUP |  |  |  |  |  |  |  |  |  | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)<br><br>Climatology, Saudi Arabia, Temperature, Temperature Statistics, Temperature Tabulations, Temperature Time Series, Data Screening, Serially Complete Series, Riyadh, Dhahran, Qaisumah |
| FIELD                                                                                                                                                                                                             | GROUP | SUB-GROUP |           |  |  |  |  |  |  |  |  |  |                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                   |       |           |           |  |  |  |  |  |  |  |  |  |                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                   |       |           |           |  |  |  |  |  |  |  |  |  |                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                   |       |           |           |  |  |  |  |  |  |  |  |  |                                                                                                                                                                                                                                                                                |

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Serially completed sets of hourly temperatures have been produced for the three Saudi Arabian stations Riyadh, Dhahran, and Qaisumah for the ten-year period from January 1981 through December 1990. Daily maxima and minima which can occur between hourly observations have also been included. Following a brief survey of the climate of Saudi Arabia (Section II), the methods of quality control of the original data and the fill-in procedures are described (Section III). Sections IV-VI contain ten tables per station. These tables include five-day, monthly, and annual means and extremes, as well as frequency distributions of hourly temperatures. For Qaisumah, nine averaged diurnal temperature cycles are provided. After comparing the monthly temperature extremes with published data and other reference material, we conclude that the ten-year temperature series are representative of the salient features of the temperature climate of the Saudi Arabian region encompassed by the three stations.

|                                                                                                                                                                                   |                                                          |                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br><input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS | 21. ABSTRACT SECURITY CLASSIFICATION<br><br>Unclassified |                                      |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL<br>Helmut P. Dude                                                                                                                             | 22b. TELEPHONE (Include Area Code)<br>(205) 876-1666     | 22c. OFFICE SYMBOL<br>AMSMI-RD-WS-CM |

## ACKNOWLEDGMENTS

The authors appreciate the effort of the U.S. Air Force Environmental Technical Applications Center (USAFETAC) which provided the raw temperature data for this investigation. Two people who deserve particular thanks are Ms. H. Snelling of USAFETAC/ECE at Scott Air Force Base, IL, and Ms. J. Barger of USAFETAC/OL-A at Asheville, NC.

|                     |                                     |
|---------------------|-------------------------------------|
| Accession For       |                                     |
| NTIS CRA&I          | <input checked="" type="checkbox"/> |
| DTIC TAB            | <input type="checkbox"/>            |
| Unannounced         | <input type="checkbox"/>            |
| Justification ..... |                                     |
| By .....            |                                     |
| Distribution /      |                                     |
| Availability Codes  |                                     |
| Dist                | Avail and/or<br>Special             |
| A-1                 |                                     |



## TABLE OF CONTENTS

|                                                          | <u>Page</u> |
|----------------------------------------------------------|-------------|
| I. INTRODUCTION .....                                    | 1           |
| II. SAUDI ARABIAN TEMPERATURE CLIMATOLOGY BACKGROUND ... | 1           |
| A. Climate Classification .....                          | 1           |
| B. Ground and Air Temperatures .....                     | 2           |
| C. Comparison With Other Locations .....                 | 2           |
| D. Other Sources on Saudi Arabian Climate.....           | 4           |
| III. DATA SOURCE AND QUALITY CONTROL .....               | 4           |
| A. Data Source and Temperature Coding Practice.....      | 4           |
| B. Quality Control and Fill-In Procedure.....            | 5           |
| C. Brief Discussion of Output.....                       | 6           |
| IV. STATISTICS FOR RIYADH.....                           | 7           |
| A. Station Location.....                                 | 7           |
| B. Temperature Statistics .....                          | 7           |
| C. Comparison With Other Sources.....                    | 10          |
| V. STATISTICS FOR DHAHRAN .....                          | 11          |
| A. Station Location.....                                 | 11          |
| B. Comparison with Riyadh Temperatures .....             | 12          |
| C. Comparison With Other Sources.....                    | 12          |
| VI. STATISTICS FOR QAISUMAH .....                        | 14          |
| A. Station Location.....                                 | 14          |
| B. Comparison With Riyadh and Dhahran .....              | 15          |
| C. Comparison With Other Sources.....                    | 16          |
| D. Selected Temperature Cycles for Qaisumah .....        | 16          |
| VII. SUMMARY AND CONCLUSIONS .....                       | 19          |
| REFERENCES.....                                          | 51          |
| APPENDIX.....                                            | A-1         |

## LIST OF FIGURES

| <u>Figure</u> |                                                                                                                                                             | <u>Page</u> |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1             | Comparison of Average Temperatures from Eleven Subtropical Locations: Average January Daily Low, Annual Mean, and Average July Daily High Temperature ..... | 3           |
| 2             | Riyadh and Dhahran Average Diurnal Temperature Cycle for January and July .....                                                                             | 13          |
| 3             | Comparison of Dhahran Average Daily Low and High Temperatures From Different Periods of Record.....                                                         | 15          |
| 4             | Qaisumah Mean Diurnal Temperature Cycles Q1 – Q9 and Hot-Dry Temperature Cycle From AR 70-38 .....                                                          | 18          |
| A1            | Riyadh Daily Low and High Temperatures 1 Jul 90 to 30 Jun 91 and Climatological Background.....                                                             | A-2         |
| A2            | Riyadh Daily Low and High Temperatures 1 Jul 91 to 13 Mar 92 and Climatological Backgound.....                                                              | A-3         |

## LIST OF TABLES

| Table                                                                                                                                                                   | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1    Riyadh (OERY), Jan 1981 – Dec 1990: (a) Relative Frequencies<br>of Hourly Temperatures (percent), (b) 95% and 99% Hourly<br>Temperatures (Celsius) by Month.....   | 21   |
| 2    Riyadh (OERY), Jan 1981 – Dec 1990: Average Hourly Temperatures<br>by Month (Celsius*10).....                                                                      | 22   |
| 3    Riyadh (OERY), Jan 1981 – Dec 1990: "Five-Day" Mean and<br>Extreme Temperatures and Standard Deviation (Celsius*10).....                                           | 23   |
| 4    Riyadh (OERY), Jan 1981 – Dec 1990: Lowest Minimum<br>Temperature by Month and Year (Celsius*10).....                                                              | 25   |
| 5    Riyadh (OERY), Jan 1981 – Dec 1990: Average Minimum<br>Temperature by Month and Year (Celsius*10).....                                                             | 25   |
| 6    Riyadh (OERY), Jan 1981 – Dec 1990: Mean Temperature by<br>Month and Year (Celsius*10).....                                                                        | 26   |
| 7    Riyadh (OERY), Jan 1981 – Dec 1990: Average Maximum<br>Temperature by Month and Year (Celsius*10).....                                                             | 26   |
| 8    Riyadh (OERY), Jan 1981 – Dec 1990: Highest Maximum<br>Temperature by Month and Year (Celsius*10).....                                                             | 27   |
| 9    Riyadh (OERY): Minimum and Maximum Temperature for<br>Every Day of 1987 (Celsius*10) .....                                                                         | 28   |
| 10    Extreme Temperatures (°C) by Month from Available<br>Sources for Riyadh.....                                                                                      | 29   |
| 11    Dhahran (OEDR), Jan 1981 – Dec 1990: (a) Relative Frequencies<br>of Hourly Temperatures (percent), (b) 95% and 99% Hourly<br>Temperatures (Celsius) by Month..... | 30   |
| 12    Dhahran (OEDR), Jan 1981 – Dec 1990: Average Hourly<br>Temperatures by Month (Celsius*10).....                                                                    | 31   |
| 13    Dhahran (OEDR), Jan 1981 – Dec 1990: "Five-Day" Mean and<br>Extreme Temperatures and Standard Deviation (Celsius*10).....                                         | 32   |
| 14    Dhahran (OEDR), Jan 1981 – Dec 1990: Lowest Minimum<br>Temperature by Month and Year (Celsius*10).....                                                            | 34   |

**LIST OF TABLES (cont'd)**

| <u>Table</u> |                                                                                                                                                               | <u>Page</u> |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 15           | Dhahran (OEDR), Jan 1981 – Dec 1990: Average Minimum Temperature by Month and Year (Celsius*10).....                                                          | 34          |
| 16           | Dhahran (OEDR), Jan 1981 – Dec 1990: Mean Temperature by Month and Year (Celsius*10).....                                                                     | 35          |
| 17           | Dhahran (OEDR), Jan 1981 – Dec 1990: Average Maximum Temperature by Month and Year (Celsius*10).....                                                          | 35          |
| 18           | Dhahran (OEDR), Jan 1981 – Dec 1990: Highest Maximum Temperature by Month and Year (Celsius*10).....                                                          | 36          |
| 19           | Dhahran (OEDR): Minimum and Maximum Temperature for Every Day of 1987 (Celsius*10).....                                                                       | 37          |
| 20           | Extreme Temperatures (°C) by Month from Available Sources for Dhahran .....                                                                                   | 38          |
| 21           | Qaisumah (OEPA), Jan 1981 – Dec 1990: (a) Relative Frequencies of Hourly Temperatures (percent), (b) 95% and 99% Hourly Temperatures (Celsius) by Month ..... | 39          |
| 22           | Qaisumah (OEPA), Jan 1981 – Dec 1990: Average Hourly Temperatures by Month (Celsius*10) .....                                                                 | 40          |
| 23           | Qaisumah (OEPA), Jan 1981 – Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius*10).....                                       | 41          |
| 24           | Qaisumah (OEPA), Jan 1981 – Dec 1990: Lowest Minimum Temperature by Month and Year (Celsius*10).....                                                          | 43          |
| 25           | Qaisumah (OEPA), Jan 1981 – Dec 1990: Average Minimum Temperature by Month and Year (Celsius*10).....                                                         | 43          |
| 26           | Qaisumah (OEPA), Jan 1981 – Dec 1990: Mean Temperature by Month and Year (Celsius*10).....                                                                    | 44          |
| 27           | Qaisumah (OEPA), Jan 1981 – Dec 1990: Average Maximum Temperature by Month and Year (Celsius*10).....                                                         | 44          |
| 28           | Qaisumah (OEPA), Jan 1981 – Dec 1990: Highest Maximum Temperature by Month and Year (Celsius*10).....                                                         | 45          |

## LIST OF TABLES (cont'd)

| Table |                                                                                                                                                | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 29    | Qaisumah (OEPA): Minimum and Maximum Temperature for Every Day of 1987 (Celsius*10).....                                                       | 46   |
| 30    | Extreme Temperatures (°C) by Month from Available Sources for Qaisumah.....                                                                    | 47   |
| 31    | Thirteen Temperature Cycles for Qaisumah (OEPA): (a) Hourly Temperatures (Celsius*10), (b) Relative Frequency of Occurrence of Each Cycle..... | 48   |
| 32    | Thirteen Temperature Cycles for Qaisumah (OEPA): Mean Temperature and Fourier Coefficients (Celsius).....                                      | 49   |
| 33    | Summary of Ten-Year Temperature Statistics From Riyadh, Dhahran and Qaisumah (Celsius*10).....                                                 | 50   |

## I. INTRODUCTION

In the wake of Operations Desert Shield and Desert Storm, a variety of climatological investigations of the Southwest Asian environment have been performed including inputs into analyses of long-duration exposure effects on Army materiel. This report describes details of an effort to establish time series of hourly ambient temperatures for Riyadh, Dhahran and Qaisumah from a ten-year period of record. The resulting data files are, of course, too voluminous to be included here in toto, but can be obtained by interested users on data media.

This report is mainly concerned with the methods of deriving statistically and climatologically acceptable series from inhomogeneous sets of input data. As described in Section III, extensive screening of raw data was required.

The resulting serially-completed temperature time series serve as a data base for a variety of statistical evaluations that extend considerably beyond conventional monthly statistics. Results are presented here in groups of ten tables per station with corresponding arrangement of tables among the groups. For example, frequency distributions of hourly temperatures are presented in Table 1 for Riyadh, Table 11 for Dhahran, and Table 21 for Qaisumah.

The temperature time series should also be viewed against the background of long-term climatological records. To this effect, supplementary climatic information has been included in this report.

## II. SAUDI ARABIAN TEMPERATURE CLIMATOLOGY BACKGROUND

### A. Climate Classification

A hot desert climate prevails over a large portion of Saudi Arabia. It is characterized by (a) very high insolation throughout most of the year, (b) hot to extremely hot summer daytime temperatures, (c) very large diurnal temperature ranges, (d) relatively cold nighttime temperatures during winter with occasional freezing temperatures, (e) very low to extremely low relative humidities, (f) almost no precipitation between May and October, and (g) irregular light precipitation between November and April with annual totals of less than 100 mm.

Most climate classifications agree in including both Riyadh and Qaisumah in the hot-dry desert climate zone of the subtropics. A slight variation was given by Landsberg et al. (1965), who classified Riyadh and adjacent oases to the north and south as "Dry-Summer Steppe climate with humid winters." In another variation, Rudloff (1981) listed the climate of Riyadh as a Desert Mountain Climate.

The general climate classifications include Dhahran in the same zone as Riyadh and Qaisumah. Because of its proximity to the Persian Gulf, it experiences high absolute humidities during the warmer months. The contrast in dew point temperatures is often remarkable between Dhahran and the inland desert stations. Because of this, Dodd (1969) has suggested a separate "Humid-Hot

"Coastal Desert" category for Dhahran and similar coastal locations. Dhahran has a Marine Desert climate according to Rudloff (1981).

### B. Ground and Air Temperatures

The surface temperatures which were analyzed in this report are from standard weather data and should not be confused with temperatures of the ground or of exposed objects. Surface temperatures in standard meteorological data are measured in instrument shelters between 1 m and 2 m above the ground. Such shelters are supposed to be placed in open places away from the influence of buildings, but in practice this is not always done.

Vertical temperature gradients near the ground may be quite large, and this is especially true at midday on hot days when the ground is often 25-30 °C warmer than air in an instrument shelter. Griffiths (1966) gives an example where the temperature changed from 170 °F(76.7 °C) to 120 °C(48.9 °C) in the lowest 2 inches in the southern Arabian Peninsula. Another example of measurements of very high ground temperatures in Saudi Arabia is that by Smith (1986a) in June 1981 in the Saudi Arabian Empty Quarter. Smith's measurements revealed an average daily maximum temperature of approximately 60 °C and an average daily minimum temperature of 25 °C at a depth of 2 cm. During the very hot three days 30 May through 1 June 1981, the average daily maximum temperature was near 70 °C at the 2-cm depth.

Changes in the ground temperature can be quite rapid at daybreak. Blake et al. (1983) used a fast-response remote sensing technique to determine soil surface temperature. On 12 May 1979, the soil temperature rose from 24 °C to 48 °C within 45 minutes as the sun rose over the Empty Quarter (Rub-al-Khali Desert) in southern Saudi Arabia.

### C. Comparison With Other Locations

The question may be asked whether there are other locations in the world with temperature conditions similar to those encountered in Saudi Arabia. Of special interest are comparisons with stations in the southwestern United States. While a detailed month-by-month comparison has not been undertaken here, three benchmark values of the average annual temperature cycle have been selected, namely, the average January morning low temperature, the overall mean temperature, and the average July afternoon high temperature. Figure 1 contains bar graphs of these temperatures from several potentially similar locations.

It can be seen that comparable locations - based on the three temperatures - may be found in the Saharan desert (In Salah) and possibly in Sudan (Wadi Halfa), but not in the southwestern United States. The annual mean temperature at Greenland Ranch in the Californian Death Valley is very close to that from Qaisumah, but the other two benchmarks are dissimilar. Yuma, Arizona, benchmarks are 2 °C to 4 °C lower than those from Riyadh, Dhahran or Qaisumah.



Figure 1. Comparison of average temperatures from eleven sub-tropical locations:  
Average January daily low, annual mean, and average July daily high temperatures.

#### D. Other Sources on Saudi Arabian Climate

General descriptions of the overall climate of Saudi Arabia can be found in Takahashi and Arakawa (1981), Soltani (1990), and Vojtesak et al. (1991). More limited or specialized studies have been done by Pedgley (1974), Hastenrath et al. (1979), Blake et al. (1983), and Smith (1986a, b).

In addition, there exists a variety of statistical summaries of the climate of a number of Saudi Arabian locations based on various periods of record. All of them contain at least statistics on maximum and minimum temperature.

The tables published by the Meteorological Office of the Air Ministry of Great Britain (1958) are the earliest data referenced here. They include monthly and annual statistics for Riyadh (and Bahrain), but not for Dhahran or Qaisumah. Riyadh statistics were based on only three years of data from the period 1941-1945. A second edition was planned and would presumably include statistics on the latter two stations.

The U.S. Naval Weather Service (1967) World-Wide Airfield Summaries, Vol. II, Part 2, contain statistics for about 15 Saudi Arabian locations derived from different periods of record prior to 1966 and at most 10 years long. The period of record for Riyadh was 3 years, that for Dhahran was 10 years.

The U.S. Air Force Air Weather Service's Revised Uniform Summary of Surface Weather Observations (RUSSWO) and the Limited Surface Observations Climate Summary (LSOCS) contain temperature statistics in addition to lengthy climatological contingency tables. Compact summaries are available as Operational Climatic Data Summaries (OCDS) and Air Weather Service Climatic Briefs (AWS). These statistics are based on different periods of record. They are apparently revised periodically.

The International Station Meteorological Climate Summary (ISMCS, Dickenson, 1990) was jointly produced by the Naval Oceanography Command, the Air Weather Service, and the National Climatic Data Center (NCDC). It contains detailed climatological statistics from about 600 stations worldwide and mostly from the period of record from 1973 to 1989. All of this statistical information has been conveniently compiled on a single compact disc. The temperature extremes were derived from observations taken once every three hours or once every hour (if available), and therefore may not be true maximum or minimum temperatures because extremes may occur between these hours.

### III. DATA SOURCE AND QUALITY CONTROL

#### A. Data Source and Temperature Coding Practice

Input files were provided by the U.S. Air Force Environmental Technical Applications Center (USAFTAC) which functions as part of the Air Weather Service (AWS). These files were in the form of DATSAV2 records which contain information from weather messages transmitted via teletype in two World Meteorological Organization (WMO) codes. The SYNOP (synoptic) code format is

used for observations made every 3 hours at 0000 Z, 0300 Z, 0600 Z, etc., where 0000 Z is the same as 0000 UTC (Coordinated Universal Time). Hourly aviation routine weather reports are available in the METAR code format. While there are significant differences between the two types of messages, temperature observations can be retrieved from both types, namely, reports in whole degrees Celsius from the METAR reports, and temperatures in tenths of Celsius from the SYNOP reports. In addition, the 0600 Z SYNOP report contains the minimum and the 1800 Z report the maximum temperature of the preceding 18 hours. These extremes can occur between the time of recorded hourly values. Since Saudi Arabian local standard time is three hours ahead of UTC, these extreme temperature reports should represent the actual 24-hour extremes in almost all cases.

Since the temperature data extracted from the DATSAV2 files contain many garbled or otherwise corrupted values, especially those from the METAR reports, it was necessary to devise quality control procedures for the screening of every temperature value. There are also numerous missing observations, especially in the earlier years of the record. Therefore, quality control steps had to be supplemented by a gap fill-in procedure.

#### B. Quality Control and Fill-In Procedure

The first step in the quality control of the data was to flag large temperature changes from one hour to the next. Differences equal to or greater than 5 °C were flagged in the screen display of ten days of 24 hourly observations per day to permit manual correction of dubious values. There were about two errors flagged in this way for every 10-day period, with the most frequently encountered type of error arising from transposed digits. Typographical errors in which the reported value differed from a reasonable value by 10 °C sometimes occurred. Frequently the flagged temperatures stemming from METAR reports appeared to have been inserted into the wrong time slot, presumably caused by a garbling in the time-of-observation. This first step is effective in salvaging many observations that otherwise would have been rejected by the following screening phases.

Another reason for this rather time-consuming manual inspection and correction phase has been to accept true temperature changes exceeding the 5 °C threshold that would have been rejected by a straightforward automatic screening procedure. The most frequently accepted large changes were rapid temperature increases in the morning hours shortly after sunrise, especially during spring and fall. Rapid temperature decreases were apparently associated with thunderstorms during the warmer part of the year and with rainshowers and/or frontal passages during the cooler season. Some hour-to-hour temperature changes much larger than 5 °C were accepted in this step.

The second step consisted of converting the temperature values into departures from the mean value for the given month and hour. These departures were then subjected to a simple harmonic analysis in which missing values were simply assumed to have a zero departure from the respective mean. The Fourier analysis of the departures from the mean was extended over ten days, that is, 240

points. Twenty harmonics were found to be an acceptable compromise in obtaining realistic results. The resulting smooth fit was used (a) to replace missing values, and (b) to replace original values if these deviated from the smooth fit by more than 4 °C, thus achieving two goals: fill-in of missing points and elimination of large spikes in the time series. To reduce the screening effort, it was deemed necessary to reduce the fit to non-overlapping 10-day periods. Note that the largest portion of the original data was accepted in this step because Fourier-derived values were only used to fill in missing or rejected values.

In the third step, the times of minimum and maximum hourly values of each 24-hour UTC day were determined. The values in these two slots were then replaced by the separately reported daily minimum and maximum temperatures. This step is an attempt to retain the true extreme temperatures for users interested in simulation for some design purposes. Unfortunately, the separately reported daily extreme values were afflicted with the same types of errors as the hourly observations. Since it was difficult or impractical to correct these pairs of data, the uncorrected values were accepted and inserted into the record, even though this step did indeed re-introduce occasional unwanted spikes.

Therefore, a fourth step was added to the screening procedure. It consists of another harmonic fit with subsequent replacement of 4 °C or more departures from it. The harmonic fit in this phase was extended over 12 days, i.e., 288 points, in an attempt to eliminate also any spikes that might have escaped detection at the boundary between the non-overlapping ten-day sequences of the earlier screening phase.

### C. Brief Discussion of Output

The output has been stored on three ASCII files "TC8190.ERY," "TC8190.EDR," and "TC8190.EPA," for Riyadh, Dhahran, and Qaisumah, respectively. Each file contains 295,650 bytes. Each record contains the 24 hourly temperatures of one UTC-day, beginning with 0000 Z or 0300 LST. The record starts with a 6-character date group of the form YYMMDD (year-month-day), followed by a colon in column 7 and the 24 temperature values in tenths of a degree Celsius of 3 characters each.

As a by-product of the quality control procedure, a tally was kept of the number of missing observations that had to be filled in. The best station was Dhahran with 0.7 percent to 3.8 percent per year. Riyadh conditions were similar. The Qaisumah input file, however, was considerably worse because the METAR observations of the non-synoptic hours, that is, 0100 Z, 0200 Z, 0400 Z, etc., were frequently not made or not received. In addition, the synoptic reports from 0300 Z, 0900 Z, etc., were relatively often missing, so that the percentage of missing observations at Qaisumah ranged from 22.5 percent in 1987 to 49.1 percent in 1984.

The percentage of days on which the minimum and/or maximum temperature was missing at Dhahran ranged from 6.6 percent in 1981 to 25.5 percent in 1987, with individual months as high as 35.5 percent (July 1987). The frequency of days without minimum and/or maximum reports at Qaisumah varied between 8.1 percent in 1981 and 28.1 percent in 1990.

Statistical evaluation of the serially completed and screened temperature series will be discussed below. In the course of this evaluation, two peculiarities of the series were noted. First, there are occasional days in the record when the temperature appears to oscillate with a frequency of 2 or 3 hours and an amplitude of about 2 °C. This appears to have occurred when "ill-fitting" input values were alternately accepted and rejected by the 4 °C threshold of the fourth screening step discussed above. Secondly, frequency distributions of the screened temperatures with a class size of 1 °C show a preference for odd integers of the Celsius values. The same bias is apparent in the raw input data.

#### IV. STATISTICS FOR RIYADH

##### A. Station Location

Station Riyadh (OERY) was located at 24°42'N, 46°44'E, at an elevation of 634 m in January 1981, which is the beginning of the temperature series for this report. In March 1981 the station elevation changed to 608 m. In February 1986, the station was moved eastward to a location at 24°42'N, 46°53'E at an elevation of 611 m. Another move occurred in April 1987 when the station was moved to its present location at 24°43'N, 46°43'E at an elevation of 612 m. The WMO number of station OERY is 40438. This first-order station takes hourly observations around the clock.

Additional hourly observations as well as twice daily upper-air observations have been available since December 1983 from a second first-order station Riyadh King Khalid (OERK), WMO number 40437, with coordinates 24°56'N, 46°43'E, 612 m. Observations from this location will not be discussed here.

##### B. Temperature Statistics

Table 1 contains the relative frequencies of hourly temperatures by month and annually for classes of 2 degrees Celsius width. Note that during the months June through September, the frequency distributions are bimodal. The first mode corresponds to late-night hours with little change in temperature; the second mode arises from the hours before and after the time of the early afternoon maximum. In July, the first mode occurs near 32 °C, the second near 42 °C. In September, both modes shift to lower temperatures, namely 29 °C and 39 °C. This tendency toward a bimodal temperature distribution is suppressed in the colder months even though the range of temperatures is larger.

Simple interpolation was used to estimate the temperatures at the 95 and 99 percent level of non-exceedance. These values are included at the bottom of Table 1.

Table 2 contains mean hourly temperatures in tenths of degrees Celsius by month for Riyadh. Highest mean hourly temperatures occur at 1500 LST throughout the year, whereas the lowest mean hourly temperatures occur at 0600 LST except during winter when they may occur up to an hour later. The range between mean lowest and highest temperatures is larger during the

summer than during winter. The difference between the lowest and highest mean hourly temperatures is 14.2 °C during June and July. Corresponding temperature differences are 10.5 °C for December and 11.0 °C for January.

Seasonal changes of temperatures in the morning near the time of the minimum are smaller than during the warmer part of the day. The mean temperature at 0600 local time is 9.3 °C in January and 29.0 °C in July for a difference of 19.7 °C. The mean temperature at 1000 local time increases from 14.1 °C in January to 38.2 °C in July to produce an increase of 24.1 °C. The difference between the noon temperature in July and January is the difference between 41.1 °C and 17.4 °C, or 23.7 °C. The mean temperature difference between July and January is 22.9 °C at 1500 and 23.4 °C at 1800 local time. From 1800 until 0500 the difference between the mean July and January temperatures decreases monotonically.

Table 3 contains temperature statistics for 72 "five-day" periods of the year, whereby each month is partitioned into five sections of five days each plus a sixth section of variable length to complete the month. The last section is less than five days in February and is six days in thirty-one day months. All of these sections will be referred to as five-day periods in the subsequent discussion. The table contains average daily low temperatures, average daily mean temperatures, and average daily high temperatures for each five-day period. Daily means are averages of the 24 hourly values and may not agree with means from some other sources which are derived by taking half of the maximum plus the minimum. The table also includes the lowest and highest minimum temperatures recorded in each five-day period, the lowest and highest means, and the lowest and highest maxima. Also included is the standard deviation of temperature in each five-day period.

Variations of both maximum and minimum temperatures are greater in the colder part of the year than when the weather is warmer. In January, fluctuations of daily maximum temperatures are greater than fluctuations of minimum temperatures. In July, minimum temperatures show a larger variation than maximum temperatures.

At Riyadh, the coldest time of the year occurs on the average between 16 and 20 January with a mean of 13.7 °C. The hottest period is between 21 and 25 July with a mean of 37.0 °C, or in a wider sense between 1 July and 21 August. The average daily high temperature reaches at least 100 °F (37.8 °C) every day between 11 May and 5 October. During the winter, the average daily low remains below 10 °C between 16 December and 15 February.

The seasonal temperature rise in spring is usually interrupted in June. The average temperature between 16 and 25 June is lower than during the first three five-day periods. The average temperature again increases in July to reach a maximum between 21 and 25 July. The singularity in June cannot be recognized in monthly statistics. This is probably the reason that no reference to it could be found in the available literature. At this point, a definitive explanation cannot be given.

The final three columns of Table 3 contain average daily low, mean, and high temperatures which have been smoothed with a low-pass filter. A simple symmetric seven-point filter was used with the following weights: W(0)=.208333, W(1)=.19096, W(2)=.11494, and W(3)=.085744.

Table 4 contains the lowest monthly and annual temperatures in tenths of degrees Celsius. During the ten-year period, the extreme low temperature was -0.5 °C during January 1989. On the average, the annual minimum (once-a-year minimum) temperature was 2.5 °C. In every one of the ten years, there was at least one morning low of 4.3 °C or lower. On the other hand, the temperature during July was always at least 24.0 °C. During August 1988, the temperature never dropped below 28.0 °C.

Table 5 contains the average monthly and annual low temperatures by year in tenths of degrees Celsius for Riyadh. January 1989 had by far the lowest average morning low temperatures, namely 5.5 °C, compared with an average January low of 8.5 °C. On the other hand, average morning low temperatures were 28.6 °C during July and 28.2 °C during August. The month with the highest average morning lows was August 1987 with 30.1 °C.

Table 6 contains average temperatures for each month of the ten-year period. January is usually - but not always - the coldest month. January 1989 was the coldest month during this period, with 11.9 °C, compared to a ten-year January average of 14.4 °C and to the mildest January (1985) with 16.9 °C. The coldest winter season (December through February) was the winter of 1982/83 with 13.6 °C. The mildest winter periods occurred in 1986/87 and 1987/88 when the average temperatures were 16.1 °C and 16.0 °C, respectively.

The highest monthly average was the 37.9 °C in July 1987. The average temperature for July 1985 was 35.5 °C, and all other average July temperatures were between these two values. It can be seen that the variation from year to year is fairly small in July and only about half of the corresponding variation of the January averages.

Between 1981 and 1990, the hottest summer (June through August) periods were 36.6 °C in 1987 and 36.5 °C in 1988. The summer period with the lowest three-month average was during 1984 with 34.5 °C. This indicates that Riyadh summer temperatures are uniform and hot.

Table 7 shows the average daily maximum temperature by month and year. The month with the highest average daily maximum temperature was July 1987 with 45.2 °C. The average daily high of 43.6 °C for this ten-year period is not much lower which demonstrates again the uniformity of the hot summer conditions at Riyadh.

Table 8 contains the absolute maximum temperatures by month and year. The overall maximum was 48.0 °C which occurred in July 1987. It might also be mentioned that high temperatures of 100 °F (37.8 °C) or higher have occurred as early as March (in years before 1981) and as late as October. There

have been no months during the ten-year period when the afternoon temperature did not rise to at least 25.0 °C during at least one day of the month.

Table 9 contains low and high temperatures in tenths of degrees Celsius for every day in 1987 which was a very hot year at Riyadh. A string of days with a high temperature of at least 37.8 °C (100 °F) lasted from 24 April through 5 October 1987 with a single interruption on 7 May when the high was "only" 37.1 °C. During the month of July, the temperature reached or exceeded 43.0 °C on every day and never dropped below 27.0 °C. It was also during this month that the highest temperature of the ten-year period occurred, namely 48.0 °C on 25 July. Between 28 July and 13 August of that year the temperature at Riyadh did not drop below 30.0 °C.

### C. Comparison With Other Sources

Extreme temperatures by month for Riyadh from some other sources are compared in Table 10. Due to natural climatic variability, different temperature extremes may be derived for different periods of record in the same location.

The earliest data referenced in Table 10 are from the Meteorological Office of the Air Ministry of Great Britain (1958). Although the period of record is listed as 1941-1945, the U.S. Naval Weather Service (1967) World-Wide Airfield Summaries, Vol. II, Part 2, contains the same information verbatim with the additional note that only 28 months from this period were actually used. The station location listed in this reference has a latitude and longitude slightly different from the locations during the later period, and the station elevation is 43 m lower than it was during the 1970s and about 20 m lower than the present location (including the 1980s).

Substantially lower minimum temperatures were reported for this early period. For example, the earlier record low was -7.2 °C, compared with a record low of -1.1 °C for the 1973-1990 period. Minimum temperatures were also much lower during other months of the earlier period.

The average lowest (once-a-month) minimum temperatures were also lower, particularly during the warm season months. For example, the average lowest minimum for July was 20.6 °C compared with 25.8 °C from Table 4 for the 1981-1990 period. The average highest (once-a-month) maximum temperatures, on the other hand, appear to have increased much less. For July, the earlier statistics show 44.4 °C, compared with a value of 45.8 °C from Table 8.

We cannot offer a definitive explanation for this change, but it may indicate that the local topography of the earlier measurement site was more favorable for the pooling of cold air during clear nights, a phenomenon which occurs at sites known as "frost hollows" in other climatic zones. Of course, if the temperature sensor were moved to higher ground, one might consider that an increase of temperature naturally occurred with height if nocturnal inversions were present. Another consideration is that substantial urbanization has taken place at Riyadh since the 1940s (Encyclopedia Americana, 1987). The population

has increased rapidly and an international airport has been constructed. This can influence both minimum and maximum temperatures.

The U.S. Army Missile Command technical report by Billions (1972) was concerned with extreme probabilities and durations of temperatures above 110 °F and 115 °F, and discussion was limited to the months April through October. For these months, the 95 and 99 percentile temperatures at the bottom of Table 1 can be compared with Billions' percentile values for the years 1958 to 1969 except for the summer of 1962 which was missing. All of the 95 percentiles for April through October were smaller during the earlier period than during 1981 through 1990. The biggest difference was for July where Billions obtained a 95 percentile of 108 °F (42.2 °C) and the present study found 44.0 °C. Nevertheless, the overall agreement is satisfactory if one considers that the present statistics include the actual daily high temperatures, whereas Billions' evaluation was restricted to three-hourly temperatures.

The Operational Climatic Data Summaries (OCDS) and Air Weather Service Climatic Briefs (AWS) contain information on temperature extremes for various periods of record for Riyadh. In comparing the average monthly extreme temperatures of an AWS evaluation of the period from 1977 to 1984 with corresponding values in Tables 4 and 8, an agreement of better than 2.0 °C was found for all months. The differences for the annual extremes are smaller than 0.7 °C. The OCDS minima were identical to the British Meteorological Office Tables and apparently do not refer to the period of record 1973-1982. Therefore, these values were not included in Table 10.

## V. STATISTICS FOR DHAHRAN

### A. Station Location

Station OEDR, WMO Number 40416, is located at the Dhahran airport. Prior to December 1986, the station coordinates were 26°16'N, 50°10'E, with an elevation of 21 m. Since then, the coordinates are shown as 26°16'N, 50°09'E, and its elevation as 17 m. Station OEDR is a first-order station with hourly observations around the clock. In addition, upper-air soundings are made every 12 hours.

As mentioned in subsection C, there exist statistics from earlier observations. Those from the 1960s or earlier were made at 26°17'N, 50°09'E, elevation 22 m.

Data from Dhahran represent conditions of a Humid-Hot Coastal Desert climate (Dodd, 1969). Factors affecting local conditions are (a) closeness of the desert to the west, (b) peninsular location on the Persian Gulf with its very high water temperatures during summer and fall, and (c) a regular diurnal sea-breeze circulation with light winds from the west during the night and steady winds from the north during the afternoon.

## B. Comparison With Riyadh Temperatures

Tables 11-20 are arranged in the same way as Tables 1-10 for Riyadh. The following discussion will be restricted to differences between the temperature statistics at Dhahran and Riyadh.

In spite of the significant geographic differences between Dhahran and Riyadh, the mean temperatures of the two locations were almost the same, at least during the ten-year period between 1981 and 1990. The annual means differed by a mere  $0.1^{\circ}\text{C}$ , the average Dhahran minima were higher only by  $0.6^{\circ}\text{C}$ , and the average maxima were lower by  $0.7^{\circ}\text{C}$ . The absolute maximum in our screened ten-year record was  $48.0^{\circ}\text{C}$  at both locations, while the Dhahran record minimum of  $1.8^{\circ}\text{C}$  compares with  $-0.5^{\circ}\text{C}$  in the Riyadh record. There are, however, some systematic differences in the monthly averages, because the annual temperature cycle at a coastal station tends to lag behind that at an inland station. During May, for example, Dhahran was "colder" by  $1.0^{\circ}\text{C}$ , while during November and December it remained about  $1.2^{\circ}\text{C}$  warmer than Riyadh.

There are also differences in the average diurnal cycle which are apparently due to the influence of the sea breeze at the Dhahran airport. During the morning hours, Dhahran remains consistently warmer than Riyadh throughout all months. The daily maximum at Dhahran is reached around 1400 LST during winter and 1300 LST during summer, which is earlier than at Riyadh. Dhahran temperatures then remain lower than those at Riyadh throughout the afternoon. Between February and October this difference extends well into the night. The time of the early morning minimum at Dhahran varies between 0500 LST during summer and about 0615 LST during winter.

The diurnal cycles for January and July from both stations are shown in Figure 2. The curves represent a 4-term harmonic fit of the 24 hourly values.

Although humidity conditions are not otherwise discussed in this report, it should be mentioned that Dhahran sometimes experiences dew point temperatures which are among the highest recorded anywhere in the world. However, *average* Dhahran dew point temperatures are not excessive, and the annual average is approximately  $9^{\circ}\text{F}$  lower than at the Bahrain airport, located only 45 km to the east but on an island. The highest average monthly dew point at Dhahran occurs in September. During this month, Dhahran has an average dew point temperature of  $66^{\circ}\text{F}$  compared with  $77^{\circ}\text{F}$  at Bahrain,  $75^{\circ}\text{F}$  at Jiddah, or  $78^{\circ}\text{F}$  at Gizan. The latter two Saudi stations are located on the Red Sea.

## C. Comparison With Other Sources

There are more statistics from earlier periods available for Dhahran than for Riyadh or Qaisumah. Regular records apparently exist from at least 1946 onward. Extreme temperatures found in four of these evaluations are compared with current statistics in Table 20.



Figure 2. Riyadh and Dhahran average diurnal temperature cycle for January and July.

The combined extremes from the period 1946 to 1989 are naturally more extreme than those from the ten-year period 1981-1990. For example, the earlier data for January and February contain minima that are lower by 2 °C, including a -0.5 °C record low that seems to have occurred between 1963 and 1972. The earlier records for January and February also show daytime maxima of 35.6 °C (96 °F), while our ten-year record contains only 28.0 °C as maximum for January and 29.8 °C for February.

The most conspicuous earlier extreme value is a record maximum of 51.1 °C (124 °F), the highest among all available statistics from the three stations. It is listed as an August extreme and was apparently recorded between 1962 and 1973. The highest maximum reported since 1973 has been 48.9 °C (120 °F).

In addition to extremes, averages of the daily high and low temperatures have been compared. Figure 3 shows average daily lows and highs for January, July, and the year for four periods of record starting with 1955-1964, assumed to be the period of record of the World-Wide Airfield Summaries (U.S. Naval Weather Service, 1967). There is substantial overlap between the four periods of record. Therefore, caution is advised in interpreting any possible trend in the averages. Since earlier statistics are available only in whole degrees Fahrenheit, all data in Figure 3 are given in degrees Fahrenheit.

The annual average of the daily highs during the 1981-1990 period has remained essentially unchanged compared with earlier periods. For example, the World-Wide Airfield Summaries show an annual average of the daily high temperatures of 32.2 °C (90 °F) which coincides exactly with the corresponding value for the 1981-1990 period. The more recent average afternoon highs seem to be slightly lower during January, but slightly higher during July.

The average daily low temperatures of the 1981-1990 period are lower than during earlier periods, especially during the winter months. For example, recent January and February averages are 2.0 °C or 2.6 °C lower during the 1955-1964 period. This is in contrast to the possible trend discussed in the section on Riyadh.

## VI. STATISTICS FOR QAISUMAH

### A. Station Location

Station OEPA is located at the airport of Qaisumah (Al Qaisumah or Quaisumah), approximately 400 km to the north of Riyadh. Its WMO station number is 40373. In some catalogues, the station is called Hafar al Batin, which is a town 20 km to the northwest of the airport. Throughout the period 1981-1990, the station coordinates have remained the same at 28°20'N, 46°07'E. Slightly different values have been reported for the elevation of the observation site, namely 356 m or 359 m between January 1981 and June 1985, 360 m from June 1985 until May 1988, and 355 m from May 1988 to the present. Station OEPA is a first-order



**Figure 3. Comparison of Dhahran average daily low and high temperatures from different periods of record.**

meteorological site that takes hourly surface observations and twice-daily upper-air observations. According to a 1991 National Geographic map of Saudi Arabia, King Khalid Military City is located about 60 km to the southwest of Qaisumah.

#### B. Comparison With Riyadh and Dhahran

Tables 21-30 contain temperature statistics for Qaisumah. As might be expected from its more northerly location, Qaisumah experiences lower temperatures than Riyadh during the cooler months. Average minimum temperatures were lower by approximately 2.7 °C between November and March, while corresponding average maxima were also lower by about 2.5 °C. Compared with Dhahran, average cool season (November to March) minima at Qaisumah were lower by 4.0 °C, corresponding average maxima by 2.0 °C. The difference of the averages of the annual minimum, i.e. the once-a-year minimum, is also instructive. While the Qaisumah average was -0.3 °C, Riyadh had 2.5 °C and Dhahran 4.4 °C. The lowest temperature during the ten-year period at any of the three stations was the -2.8 °C recorded at Qaisumah during January 1989.

During summer, differences between the three stations are smaller. Average morning minima at Qaisumah are lower than those at Riyadh and Dhahran by about 1 °C. On the other hand, average afternoon maxima at Qaisumah are 0.5 °C and 1.6 °C higher than those at Riyadh and Dhahran, respectively. Once-a-year maxima were also higher by about 1.3 °C.

The relative frequency distributions of temperature for Qaisumah in Table 21 are similar to the ones for Riyadh in Table 1. This similarity includes distinct bimodality of the distributions for the months of June through September.

Interruption of the seasonal temperature increases in June can also be found at Qaisumah (see column Daily Mean/Average in Table 23). The average of the daily mean temperature decreases 1.0 °C from the first to the fourth five-day period in June. Thereafter, five-day mean temperatures increase again until highest mean temperatures of the year are reached during the period between 21 and 25 July, with 37.4 °C which is slightly higher than the corresponding value of 37.0 °C for Riyadh.

#### C. Comparison With Other Sources

Few temperature statistics are available for Qaisumah from earlier periods of record.

The 95 and 99 percentiles at the bottom of Table 21 can be compared to those found by Billions (1972) for April through October. Billions used the record for these months from 1963 through 1969. For July, both 95 and 99 percentiles were 2 °C higher in the Billions report, but the 95 percentile for August was 4 °C lower in the Billions report. Other 95 and 99 percentiles from April through October were similar in the two investigations. As mentioned earlier, differences are probably not only due to the different periods of record but also to the differences in the composition of the data inputs, since Billions' statistics were derived from three-hourly observations only.

In Table 30 Qaisumah extreme temperatures given in the Billions (1972) report and in the International Station Meteorological Climate Summary (Dickenson, 1990) are compared with extremes in this report. There is good agreement concerning the extreme maximum temperatures in the three statistics. There is also good agreement in most months between the extreme minimum temperatures from the ISMCS, based on the 1973-1989 period, and the present evaluation based on the 1981-1990 period. Exceptions are the lower ISMCS minima for July, August, and September. These three values were rejected by our screening procedures. Inspection of the hourly temperatures from the DATSAV2 files revealed discrepancies with the separately reported minimum for each of the three dates in question. These values are indicated by an asterisk in Table 30.

#### D. Selected Temperature Cycles for Qaisumah

Among the three stations, Qaisumah shows the most extreme temperatures climate. It has the lowest temperatures in winter and the highest

temperatures in summer. It is therefore suggested for those applications that are limited to the evaluation of a single station file.

If the ten-year series of hourly temperature data (87,648 data points) is too large as input for certain applications, various shortcuts can be suggested that attempt to retain some of the statistical characteristics of the full data set.

One can restrict the temperature input to a single year, i.e. 8,760 data points. The selection of a representative year or 12-month period is, however, rather arbitrary. At Qaisumah, the year 1988 had 11 months with small departures from the respective mean, and may therefore be considered as an average year. On the other hand, the year 1987 was the hottest year during the period of record at all three stations.

If only hot summer conditions are required, the conditions during the summer of 1987 are probably suitable. As mentioned elsewhere, above-average temperatures prevailed during that summer. At Qaisumah, the 92-day period with the highest mean temperature (36.4 °C) began on 23 May 1987, whereas the hottest 30-day period began on 18 July 1987. During this 30-day period, the average temperature was 39.0 °C, and the average daily maximum 47.0 °C.

For the users who require even more compact input data, a set of just nine representative diurnal temperature cycles Q1 through Q9 is presented in Table 31 and depicted in Figure 4. They were generated by averaging the hourly temperatures at Qaisumah on days with a high temperature falling into one of nine 5-degree ranges, with <12.5 °C for Q1, 12.5 °C to 17.4 °C for Q2, 17.5 °C to 22.4 °C for Q3, etc. The nine sets were sufficient to cover the annual range. Table 31 also contains the frequency with which each cycle occurred. For example cycle Q1 (cold winter days) occurred 1.5 percent of the time, cycle Q9 (hot summer days) occurred 0.5 percent of the time, and Q7 occurred 23.9 percent of the time.

For users interested in summer conditions only, diurnal cycles Q10 through Q13 were compiled and are listed in Table 31. These four cycles are sufficient to cover the range of summer conditions. Cycle Q13 is identical with cycle Q9 since both were derived entirely from summer days.

For comparison, the last column of Table 31 contains the 24 hourly design temperatures for Hot-Dry conditions according to both AR 70-38 (1979) and MIL-STD-810E (1989). The highest hourly design temperature is 49.0 °C as compared with 47.5 °C for cycle Q13. These design temperatures are higher than cycle Q13 throughout the afternoon and evening hours but agree reasonably well with Q13 during the remainder of the 24-hour period.

The 13 diurnal cycles have been approximated by a four-term harmonic fit of the form  $E(T) = TMEAN + A1*\cos(PHI) + B1*\sin(PHI) + A2*\cos(2*PHI) + B2*\sin(2*PHI) + \dots$ , where  $PHI=2\pi*t/24$  and  $t$  is in hours of Local Standard Time. Numerical values for TMEAN and the coefficients A1 through B4 are included in Table 32.

# AlQaisumah: Temperature Cycles Q1 – Q9



Figure 4. Qaisumah mean diurnal temperature cycles Q1 – Q9 and hot-dry temperature cycle from AR 70-38.

## VII. SUMMARY AND CONCLUSIONS

Seriously complete sets of hourly temperature data were established for Riyadh, Dhahran, and Qaisumah (Hafar al Batin) for the ten-year period from 1981 to 1990. Since the inputs contained many gaps and errors, the data were processed through a specially devised quality control procedure that replaced missing values and large outliers. Lowest and highest hourly values of every day were replaced by the reported minima and maxima.

Monthly means and extremes derived from these three temperature time series have been summarized in Table 33. Naturally, these statistics may differ somewhat from evaluations that did not replace missing observations or correct unreasonable raw data.

Riyadh, Dhahran, and Qaisumah are very hot from May through September. During July, normally the hottest month, average daytime maxima were near 43 °C, average monthly (once-a-month) maxima near 46 °C, and ten-year extremes 48 °C or 50 °C (Qaisumah). Average July morning minima were near 28 °C. At all three stations, July temperatures always remained above 23 °C. Differences between the three stations were small.

January was usually the coldest month at all three stations with average morning minima ranging from 9.6 °C at Dhahran to 8.5 °C at Riyadh and 5.8 °C at Qaisumah. Corresponding average monthly (once-a-month) minima were 4.8 °C, 3.5 °C, and 0.9 °C. Absolute minima during the ten-year period were 1.8 °C at Dhahran, -0.5 °C at Riyadh, and -2.8 °C at Qaisumah. The average daily maximum for January was 17.5 °C at Qaisumah and approximately 3 °C higher at the other two stations.

The range between average daily minimum and maximum temperatures was larger at Riyadh and Qaisumah than at Dhahran and larger during summer than during winter. Average values for January were 10.4 °C at Dhahran, 11.7 °C at Qaisumah, and 12.1 °C at Riyadh. During July, the average diurnal ranges were 13.9 °C, 16.6 °C, and 15.0 °C, respectively.

Seasonal changes of average daily minimum temperature are smaller than seasonal changes of average daily maximum temperatures. This is particularly true at Qaisumah where the average daily minima are 27.6 °C and 5.8 °C for July and January, respectively, and the average daily maxima for these two months are 44.2 °C and 17.5 °C.

At Riyadh and Qaisumah, the maximum of the diurnal temperature cycle occurred on the average around 1500 LST in winter and 1600 LST during summer. At Dhahran, it occurred earlier, namely around 1400 LST in winter and already during 1300 LST during summer, probably because of a distinct sea breeze.

The average annual cycle of temperature shows the usual sine wave shape, but inspection of average temperatures at five-day intervals reveals an anomaly during the second half of June. In the average, the steady seasonal temperature rise is temporarily slowed down. At Qaisumah and Riyadh, the mean

temperatures during the fourth and fifth five-day periods in June are even slightly lower than the mean temperature during the first half of June. The temperature then increases during the last few days of June until near the end of July. At Dhahran, this pattern is followed by the maximum temperature but not by the minimum temperature. While it is reasonable to assume that this singularity is connected to the regular seasonal changes in the large-scale Southwest Asian circulation, the intervening meteorological factors remain to be investigated.

Monthly temperature records from some available technical publications and reference material were compared with those values derived from the ten-year time series of temperatures discussed in this report. Temperature statistics from earlier periods show the following more extreme minima and maxima: At Riyadh, a record low of -7.2 °C was reported from a pre-1946 location different from the present site; at Dhahran, a record high of 51.1 °C (124 °F) was recorded in the 1960s. Other than that, the 1981-1990 extreme temperatures are comparable to those found in earlier investigations. The present averages also compare well with earlier averages, except possibly at Dhahran where more recent average morning minima appear to be 1-2 °C cooler than earlier average minima. It may be assumed that our serially-complete hourly temperature series are representative of the Saudi Arabian region encompassed by Riyadh, Dhahran, and Qaisumah.

**TABLE 1. Riyadh (OERRY), Jan 1981 – Dec 1990: (a) Relative Frequencies of Hourly Temperatures (percent),  
(b) 95% and 99% Temperatures (Celsius), by Month**

| Temp.<br>Class | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV   | DEC   | YEAR  |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -4...-3C:      | 0.01  | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | 0.00  |
| -2...-1C:      | 0.11  | 0.08  | .     | .     | .     | .     | .     | .     | .     | .     | .     | 0.01  | 0.02  |
| 0...+1C:       | 0.59  | 0.10  | .     | .     | .     | .     | .     | .     | .     | .     | .     | 0.14  | 0.07  |
| 2...+3C:       | 1.68  | 0.79  | 0.04  | .     | .     | .     | .     | .     | .     | .     | .     | 1.09  | 0.30  |
| 4...+5C:       | 4.87  | 2.38  | 0.20  | .     | .     | .     | .     | .     | .     | .     | .     | 3.78  | 0.94  |
| 6...+7C:       | 9.97  | 6.40  | 0.74  | .     | .     | .     | .     | .     | .     | .     | .     | 0.56  | 6.83  |
| 8...+9C:       | 13.59 | 9.93  | 2.66  | 0.01  | .     | .     | .     | .     | .     | .     | .     | 1.79  | 10.24 |
| 10...11C:      | 15.65 | 12.75 | 5.22  | 0.25  | .     | .     | .     | .     | .     | .     | .     | 3.25  | 14.46 |
| 12...13C:      | 15.03 | 14.18 | 8.28  | 1.24  | .     | .     | .     | .     | .     | .     | .     | 7.71  | 14.80 |
| 14...15C:      | 13.29 | 13.53 | 12.02 | 3.28  | .     | .     | .     | .     | 0.03  | 2.31  | 11.90 | 14.42 | 5.86  |
| 16...17C:      | 9.77  | 12.62 | 14.18 | 6.63  | 0.24  | .     | .     | .     | 0.14  | 4.48  | 13.53 | 10.86 | 5.99  |
| 18...19C:      | 5.94  | 10.43 | 13.95 | 10.06 | 0.67  | 0.01  | .     | .     | 0.58  | 7.53  | 13.71 | 8.75  | 5.93  |
| 20...21C:      | 4.07  | 7.50  | 11.51 | 12.63 | 2.33  | 0.24  | .     | 0.07  | 2.10  | 10.38 | 13.01 | 6.08  | 5.80  |
| 22...23C:      | 3.01  | 4.45  | 10.26 | 13.74 | 5.96  | 1.38  | 0.27  | 0.74  | 5.82  | 12.69 | 10.92 | 4.61  | 6.15  |
| 24...25C:      | 1.75  | 3.07  | 7.77  | 13.07 | 9.85  | 6.11  | 1.67  | 3.63  | 9.04  | 11.75 | 10.29 | 2.94  | 6.74  |
| 26...27C:      | 0.50  | 1.13  | 5.74  | 11.83 | 12.12 | 11.31 | 6.94  | 8.27  | 12.15 | 11.84 | 7.24  | 0.95  | 7.52  |
| 28...29C:      | 0.18  | 0.54  | 3.95  | 10.11 | 12.69 | 11.72 | 11.94 | 11.56 | 11.57 | 11.49 | 4.22  | 0.04  | 7.54  |
| 30...31C:      | 0.13  | 2.27  | 7.96  | 12.88 | 11.26 | 11.96 | 12.42 | 11.01 | 9.69  | 1.68  | .     | .     | 6.81  |
| 32...33C:      | .     | 1.13  | 5.03  | 12.15 | 11.35 | 11.21 | 11.34 | 10.78 | 8.62  | 0.14  | .     | .     | 6.02  |
| 34...35C:      | .     | 0.09  | 2.71  | 11.72 | 11.38 | 10.66 | 10.70 | 12.15 | 6.55  | .     | .     | .     | 5.53  |
| 36...37C:      | .     | .     | 1.32  | 10.04 | 12.93 | 10.34 | 12.64 | 12.61 | 1.91  | .     | .     | .     | 5.17  |
| 38...39C:      | .     | .     | 0.15  | 7.35  | 13.81 | 14.09 | 14.03 | 8.88  | 0.20  | .     | .     | .     | 4.91  |
| 40...41C:      | .     | .     | .     | 1.83  | 7.03  | 14.49 | 11.29 | 2.94  | .     | .     | .     | .     | 3.16  |
| 42...43C:      | .     | .     | .     | 0.18  | 1.35  | 5.82  | 3.04  | 0.19  | .     | .     | .     | .     | 0.89  |
| 44...45C:      | .     | .     | .     | .     | 0.14  | 0.61  | 0.28  | .     | .     | .     | .     | 0.09  | 0.00  |
| 46...47C:      | .     | .     | .     | .     | 0.03  | .     | .     | .     | .     | .     | .     | .     | .     |
| 48...49C:      | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     |
| 49...50C:      | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     |
| T95 :          | 23.8  | 25.4  | 30.7  | 35.2  | 40.7  | 42.5  | 44.0  | 43.2  | 41.1  | 36.6  | 30.0  | 25.0  | 41.2C |
| T99 :          | 27.1  | 28.9  | 33.9  | 38.2  | 42.6  | 44.2  | 45.4  | 45.0  | 43.0  | 38.7  | 32.5  | 27.5  | 43.5C |

**TABLE 2. Riyadh (OERY), Jan 1981 – Dec 1990: Average Hourly Temperatures by Month (Celsius\*10)**

| Month: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| LST    |     |     |     |     |     |     |     |     |     |     |     |     |
| 0000   | 125 | 144 | 189 | 237 | 300 | 319 | 336 | 329 | 300 | 249 | 190 | 136 |
| 0100   | 119 | 137 | 182 | 230 | 291 | 309 | 326 | 319 | 290 | 239 | 182 | 130 |
| 0200   | 113 | 130 | 176 | 223 | 283 | 300 | 317 | 311 | 282 | 231 | 175 | 124 |
| 0300   | 107 | 123 | 170 | 216 | 274 | 291 | 308 | 304 | 275 | 226 | 171 | 121 |
| 0400   | 101 | 113 | 163 | 210 | 266 | 284 | 300 | 297 | 267 | 219 | 165 | 116 |
| 0500   | 98  | 113 | 159 | 205 | 261 | 276 | 294 | 290 | 261 | 213 | 160 | 111 |
| 0600   | 93  | 109 | 155 | 201 | 257 | 273 | 290 | 285 | 255 | 207 | 156 | 108 |
| 0700   | 93  | 108 | 158 | 209 | 271 | 290 | 306 | 296 | 266 | 214 | 159 | 108 |
| 0800   | 104 | 122 | 172 | 228 | 293 | 318 | 333 | 322 | 291 | 238 | 176 | 120 |
| 0900   | 122 | 142 | 191 | 249 | 315 | 342 | 360 | 351 | 322 | 268 | 201 | 141 |
| 1000   | 141 | 162 | 208 | 267 | 335 | 363 | 382 | 373 | 348 | 293 | 222 | 160 |
| 1100   | 159 | 179 | 225 | 284 | 351 | 379 | 400 | 390 | 367 | 313 | 240 | 177 |
| 1200   | 174 | 194 | 239 | 297 | 365 | 392 | 411 | 402 | 380 | 325 | 253 | 190 |
| 1300   | 186 | 205 | 250 | 307 | 375 | 402 | 421 | 412 | 390 | 335 | 264 | 201 |
| 1400   | 195 | 214 | 258 | 315 | 383 | 410 | 429 | 420 | 397 | 341 | 272 | 208 |
| 1500   | 203 | 221 | 265 | 320 | 387 | 415 | 432 | 423 | 399 | 344 | 275 | 213 |
| 1600   | 199 | 219 | 263 | 317 | 383 | 412 | 429 | 421 | 395 | 338 | 270 | 209 |
| 1700   | 190 | 212 | 257 | 310 | 377 | 406 | 423 | 414 | 386 | 329 | 259 | 200 |
| 1800   | 179 | 202 | 247 | 300 | 367 | 396 | 413 | 403 | 374 | 314 | 247 | 187 |
| 1900   | 167 | 189 | 235 | 287 | 355 | 382 | 399 | 389 | 358 | 299 | 235 | 175 |
| 2000   | 156 | 179 | 224 | 276 | 341 | 366 | 382 | 373 | 343 | 287 | 225 | 165 |
| 2100   | 148 | 169 | 214 | 265 | 329 | 352 | 368 | 361 | 331 | 277 | 215 | 158 |
| 2200   | 140 | 160 | 205 | 256 | 318 | 340 | 356 | 350 | 321 | 267 | 206 | 150 |
| 2300   | 132 | 151 | 196 | 246 | 309 | 329 | 345 | 340 | 309 | 258 | 197 | 144 |

**TABLE 3. Riyadh (OERY), Jan 1981 – Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius\*10)**

|                    | Daily Low |     |     |    | Daily Mean |     |     |    | Daily High |     |     |    | Smoothed Avg. |      |      |
|--------------------|-----------|-----|-----|----|------------|-----|-----|----|------------|-----|-----|----|---------------|------|------|
|                    | Min       | Avg | Max | SD | Min        | Avg | Max | SD | Min        | Avg | Max | SD | Low           | Mean | High |
| <b>"Five-Day":</b> |           |     |     |    |            |     |     |    |            |     |     |    |               |      |      |
| Period :           |           |     |     |    |            |     |     |    |            |     |     |    |               |      |      |
| :                  |           |     |     |    |            |     |     |    |            |     |     |    |               |      |      |
| JAN 01--05:        | 30        | 83  | 147 | 27 | 68         | 141 | 209 | 27 | 120        | 204 | 284 | 35 | 85            | 142  | 204  |
| JAN 06--10:        | -5        | 83  | 140 | 28 | 59         | 143 | 202 | 29 | 120        | 209 | 274 | 40 | 83            | 141  | 204  |
| JAN 11--15:        | 10        | 81  | 150 | 28 | 84         | 141 | 210 | 32 | 102        | 201 | 300 | 45 | 83            | 141  | 203  |
| JAN 16--20:        | 10        | 80  | 150 | 33 | 79         | 137 | 203 | 34 | 130        | 199 | 298 | 41 | 85            | 143  | 204  |
| JAN 21--25:        | 22        | 89  | 170 | 36 | 83         | 149 | 228 | 35 | 134        | 215 | 310 | 44 | 88            | 145  | 206  |
| JAN 26--31:        | 20        | 96  | 170 | 30 | 86         | 149 | 236 | 33 | 101        | 207 | 305 | 45 | 90            | 148  | 209  |
| FEB 01--05:        | 36        | 95  | 180 | 30 | 89         | 153 | 236 | 33 | 112        | 213 | 290 | 44 | 93            | 151  | 212  |
| FEB 06--10:        | 0         | 97  | 164 | 37 | 86         | 155 | 230 | 39 | 115        | 217 | 300 | 46 | 96            | 155  | 217  |
| FEB 11--15:        | 23        | 88  | 150 | 24 | 103        | 154 | 202 | 26 | 140        | 218 | 282 | 35 | 99            | 160  | 221  |
| FEB 16--20:        | 60        | 110 | 180 | 26 | 121        | 172 | 250 | 28 | 170        | 235 | 320 | 35 | 103           | 165  | 227  |
| FEB 21--25:        | 42        | 107 | 170 | 29 | 96         | 170 | 231 | 29 | 152        | 234 | 320 | 37 | 110           | 172  | 234  |
| FEB 26--28:        | 50        | 113 | 200 | 32 | 113        | 175 | 261 | 38 | 144        | 236 | 330 | 46 | 117           | 179  | 241  |
| MAR 01--05:        | 49        | 125 | 181 | 36 | 108        | 187 | 249 | 36 | 168        | 249 | 340 | 46 | 126           | 188  | 250  |
| MAR 06--10:        | 82        | 142 | 200 | 35 | 122        | 207 | 283 | 43 | 130        | 271 | 352 | 50 | 134           | 196  | 258  |
| MAR 11--15:        | 82        | 144 | 200 | 28 | 130        | 205 | 277 | 35 | 168        | 266 | 354 | 45 | 141           | 203  | 265  |
| MAR 16--20:        | 88        | 147 | 212 | 30 | 143        | 212 | 291 | 36 | 180        | 276 | 370 | 45 | 148           | 210  | 272  |
| MAR 21--25:        | 90        | 161 | 230 | 33 | 118        | 225 | 287 | 35 | 140        | 289 | 354 | 42 | 155           | 217  | 279  |
| MAR 26--31:        | 90        | 155 | 218 | 29 | 146        | 213 | 287 | 34 | 170        | 271 | 366 | 44 | 162           | 224  | 285  |
| APR 01--05:        | 110       | 168 | 230 | 28 | 159        | 231 | 288 | 32 | 200        | 294 | 370 | 40 | 170           | 233  | 295  |
| APR 06--10:        | 122       | 179 | 238 | 29 | 200        | 243 | 311 | 26 | 250        | 305 | 392 | 32 | 180           | 244  | 306  |
| APR 11--15:        | 152       | 198 | 250 | 22 | 215        | 262 | 325 | 25 | 248        | 325 | 406 | 32 | 189           | 253  | 317  |
| APR 16--20:        | 148       | 204 | 250 | 24 | 173        | 272 | 322 | 28 | 220        | 340 | 400 | 33 | 200           | 266  | 331  |
| APR 21--25:        | 144       | 209 | 270 | 30 | 198        | 276 | 326 | 30 | 250        | 344 | 400 | 35 | 209           | 275  | 341  |
| APR 26--30:        | 162       | 211 | 258 | 25 | 231        | 279 | 335 | 25 | 284        | 345 | 408 | 30 | 218           | 285  | 352  |
| MAY 01--05:        | 190       | 238 | 290 | 25 | 260        | 309 | 350 | 22 | 315        | 377 | 420 | 25 | 227           | 295  | 362  |
| MAY 06--10:        | 184       | 239 | 280 | 22 | 239        | 305 | 340 | 23 | 290        | 371 | 420 | 28 | 236           | 305  | 372  |
| MAY 11--15:        | 180       | 242 | 290 | 26 | 245        | 311 | 356 | 23 | 316        | 379 | 420 | 23 | 244           | 315  | 381  |
| MAY 16--20:        | 207       | 257 | 310 | 22 | 295        | 331 | 359 | 15 | 350        | 398 | 430 | 18 | 253           | 325  | 391  |
| MAY 21--25:        | 220       | 263 | 300 | 18 | 308        | 340 | 365 | 12 | 355        | 408 | 450 | 19 | 259           | 332  | 400  |
| MAY 26--31:        | 238       | 271 | 310 | 16 | 310        | 345 | 379 | 13 | 370        | 413 | 450 | 17 | 264           | 339  | 407  |
| JUN 01--05:        | 220       | 272 | 305 | 20 | 309        | 349 | 378 | 16 | 380        | 418 | 460 | 17 | 267           | 343  | 412  |
| JUN 06--10:        | 230       | 276 | 320 | 20 | 333        | 354 | 380 | 14 | 390        | 425 | 451 | 13 | 268           | 344  | 414  |
| JUN 11--15:        | 220       | 271 | 330 | 22 | 322        | 350 | 390 | 16 | 382        | 421 | 462 | 20 | 267           | 345  | 415  |
| JUN 16--20:        | 210       | 263 | 309 | 20 | 315        | 343 | 381 | 13 | 390        | 415 | 460 | 15 | 267           | 345  | 415  |
| JUN 21--25:        | 230       | 263 | 286 | 13 | 318        | 340 | 359 | 9  | 386        | 412 | 430 | 11 | 267           | 346  | 417  |
| JUN 26--30:        | 224       | 269 | 298 | 16 | 326        | 351 | 378 | 12 | 380        | 422 | 450 | 16 | 270           | 349  | 420  |
| JUL 01--05:        | 240       | 279 | 326 | 19 | 332        | 358 | 386 | 11 | 400        | 431 | 452 | 13 | 274           | 352  | 424  |
| JUL 06--10:        | 256       | 281 | 300 | 13 | 334        | 362 | 379 | 9  | 400        | 432 | 460 | 13 | 278           | 357  | 428  |
| JUL 11--15:        | 246       | 289 | 330 | 17 | 338        | 364 | 398 | 12 | 400        | 435 | 460 | 13 | 282           | 360  | 431  |
| JUL 16--20:        | 250       | 285 | 320 | 16 | 343        | 366 | 381 | 9  | 411        | 438 | 460 | 12 | 285           | 362  | 433  |
| JUL 21--25:        | 260       | 294 | 322 | 13 | 352        | 370 | 389 | 10 | 410        | 440 | 480 | 14 | 286           | 363  | 433  |
| JUL 26--31:        | 240       | 290 | 352 | 23 | 347        | 369 | 415 | 15 | 410        | 439 | 475 | 17 | 287           | 362  | 432  |

**TABLE 3. Riyadh (OERY), Jan 1981 – Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius\*10) (cont'd)**

|             | Daily Low |     |     |    |     | Daily Mean |     |     |     |     | Daily High |     |     |     |     | Smoothed Avg. |      |  |
|-------------|-----------|-----|-----|----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|---------------|------|--|
|             | Min       | Avg | Max | SD |     | Min        | Avg | Max | SD  |     | Min        | Avg | Max | SD  | Min | Avg           | High |  |
| "Five-Day": |           |     |     |    |     |            |     |     |     |     |            |     |     |     |     |               |      |  |
| Period :    |           |     |     |    |     |            |     |     |     |     |            |     |     |     |     |               |      |  |
| AUG 01--05: | 250       | 289 | 338 | 21 | 331 | 362        | 391 | 15  | 398 | 431 | 465        | 16  | 285 | 361 | 430 |               |      |  |
| AUG 06--10: | 248       | 286 | 324 | 18 | 336 | 362        | 394 | 14  | 385 | 432 | 468        | 16  | 284 | 359 | 428 |               |      |  |
| AUG 11--15: | 238       | 285 | 335 | 20 | 331 | 357        | 394 | 14  | 401 | 426 | 462        | 13  | 282 | 356 | 426 |               |      |  |
| AUG 16--20: | 229       | 282 | 330 | 24 | 318 | 358        | 392 | 16  | 384 | 429 | 468        | 16  | 279 | 353 | 424 |               |      |  |
| AUG 21--25: | 228       | 281 | 320 | 22 | 328 | 358        | 383 | 15  | 398 | 432 | 450        | 14  | 276 | 351 | 422 |               |      |  |
| AUG 26--31: | 227       | 273 | 320 | 20 | 329 | 348        | 380 | 14  | 392 | 420 | 458        | 15  | 272 | 347 | 418 |               |      |  |
| SEP 01--05: | 228       | 271 | 315 | 18 | 326 | 345        | 380 | 11  | 380 | 415 | 440        | 12  | 268 | 343 | 415 |               |      |  |
| SEP 06--10: | 240       | 270 | 293 | 14 | 320 | 347        | 362 | 9   | 390 | 421 | 440        | 11  | 262 | 337 | 410 |               |      |  |
| SEP 11--15: | 225       | 258 | 296 | 20 | 307 | 333        | 360 | 16  | 382 | 407 | 440        | 16  | 255 | 330 | 403 |               |      |  |
| SEP 16--20: | 220       | 250 | 290 | 20 | 278 | 326        | 352 | 14  | 350 | 400 | 430        | 15  | 247 | 323 | 397 |               |      |  |
| SEP 21--25: | 161       | 237 | 280 | 23 | 265 | 315        | 351 | 18  | 349 | 391 | 420        | 17  | 239 | 316 | 390 |               |      |  |
| SEP 26--30: | 189       | 229 | 270 | 21 | 282 | 311        | 335 | 13  | 360 | 387 | 410        | 12  | 231 | 307 | 381 |               |      |  |
| OCT 01--05: | 193       | 229 | 280 | 20 | 281 | 306        | 340 | 14  | 350 | 380 | 410        | 14  | 224 | 299 | 373 |               |      |  |
| OCT 06--10: | 170       | 220 | 270 | 22 | 245 | 295        | 319 | 18  | 310 | 370 | 393        | 18  | 216 | 289 | 362 |               |      |  |
| OCT 11--15: | 150       | 211 | 258 | 29 | 203 | 281        | 318 | 29  | 240 | 352 | 392        | 34  | 207 | 279 | 351 |               |      |  |
| OCT 16--20: | 150       | 200 | 244 | 23 | 189 | 271        | 303 | 22  | 243 | 342 | 388        | 24  | 198 | 269 | 339 |               |      |  |
| OCT 21--25: | 130       | 188 | 240 | 28 | 185 | 257        | 300 | 25  | 254 | 328 | 364        | 23  | 189 | 258 | 327 |               |      |  |
| OCT 26--31: | 134       | 180 | 227 | 23 | 212 | 251        | 290 | 17  | 277 | 319 | 364        | 21  | 180 | 247 | 314 |               |      |  |
| NOV 01--05: | 138       | 176 | 220 | 20 | 191 | 23         | 279 | 18  | 230 | 302 | 348        | 26  | 171 | 236 | 303 |               |      |  |
| NOV 06--10: | 126       | 170 | 210 | 23 | 177 | 234        | 265 | 18  | 220 | 301 | 334        | 24  | 161 | 225 | 292 |               |      |  |
| NOV 11--15: | 70        | 149 | 210 | 33 | 124 | 211        | 263 | 37  | 184 | 275 | 330        | 44  | 152 | 215 | 281 |               |      |  |
| NOV 16--20: | 80        | 137 | 176 | 26 | 135 | 202        | 244 | 24  | 196 | 271 | 330        | 29  | 143 | 205 | 270 |               |      |  |
| NOV 21--25: | 76        | 131 | 190 | 24 | 140 | 197        | 236 | 24  | 200 | 265 | 310        | 30  | 134 | 196 | 260 |               |      |  |
| NOV 26--30: | 90        | 139 | 180 | 19 | 107 | 198        | 245 | 26  | 128 | 258 | 312        | 36  | 126 | 186 | 249 |               |      |  |
| DEC 01--05: | 38        | 123 | 175 | 31 | 55  | 179        | 227 | 40  | 80  | 237 | 296        | 55  | 118 | 176 | 238 |               |      |  |
| DEC 06--10: | 32        | 97  | 148 | 29 | 82  | 154        | 208 | 36  | 120 | 217 | 290        | 49  | 110 | 167 | 229 |               |      |  |
| DEC 11--15: | 40        | 102 | 160 | 25 | 90  | 162        | 209 | 27  | 140 | 225 | 300        | 37  | 102 | 159 | 221 |               |      |  |
| DEC 16--20: | 50        | 96  | 148 | 28 | 89  | 152        | 205 | 34  | 110 | 214 | 294        | 47  | 96  | 153 | 214 |               |      |  |
| DEC 21--25: | 33        | 96  | 150 | 29 | 107 | 153        | 206 | 26  | 140 | 213 | 270        | 35  | 91  | 148 | 210 |               |      |  |
| DEC 26--31: | 10        | 85  | 158 | 32 | 84  | 142        | 203 | 32  | 130 | 203 | 280        | 41  | 88  | 145 | 207 |               |      |  |

**TABLE 4. Riyadh (OERY), Jan 1981 – Dec 1990: Lowest Minimum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Min. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 30  | 50  | 80  | 130 | 190 | 250 | 250 | 240 | 200 | 170 | 90  | 80  | 30             |
| 1982:       | 22  | 30  | 90  | 130 | 180 | 250 | 253 | 255 | 240 | 170 | 80  | 40  | 22             |
| 1983:       | 42  | 36  | 52  | 136 | 207 | 255 | 265 | 246 | 220 | 155 | 128 | 42  | 36             |
| 1984:       | 48  | 43  | 49  | 174 | 203 | 236 | 270 | 246 | 230 | 130 | 134 | 60  | 43             |
| 1985:       | 68  | 30  | 50  | 149 | 198 | 245 | 264 | 268 | 195 | 148 | 130 | 40  | 30             |
| 1986:       | 22  | 50  | 110 | 140 | 184 | 239 | 252 | 269 | 230 | 154 | 100 | 32  | 22             |
| 1987:       | 40  | 70  | 90  | 130 | 240 | 250 | 270 | 233 | 250 | 178 | 120 | 58  | 40             |
| 1988:       | 44  | 70  | 115 | 147 | 223 | 224 | 266 | 280 | 221 | 185 | 70  | 20  | 20             |
| 1989:       | -5  | 0   | 90  | 110 | 203 | 210 | 240 | 227 | 151 | 142 | 124 | 33  | -5             |
| 1990:       | 36  | 50  | 74  | 150 | 180 | 220 | 246 | 229 | 204 | 170 | 76  | 10  | 10             |
| Min:        | -5  | 0   | 49  | 110 | 180 | 210 | 240 | 227 | 161 | 130 | 70  | 10  | -5             |
| Avg:        | 35  | 43  | 80  | 140 | 201 | 238 | 258 | 249 | 215 | 160 | 105 | 42  | 25             |
| Max:        | 68  | 70  | 115 | 174 | 240 | 255 | 270 | 280 | 250 | 185 | 134 | 80  | 43             |

**TABLE 5. Riyadh (OERY), Jan 1981 – Dec 1990: Average Minimum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 110 | 112 | 152 | 200 | 245 | 270 | 286 | 279 | 247 | 204 | 148 | 113 | 197            |
| 1982:       | 90  | 85  | 139 | 196 | 250 | 277 | 286 | 277 | 270 | 219 | 131 | 78  | 192            |
| 1983:       | 76  | 88  | 118 | 188 | 261 | 288 | 292 | 291 | 249 | 180 | 151 | 96  | 190            |
| 1984:       | 77  | 110 | 159 | 216 | 246 | 262 | 288 | 263 | 254 | 192 | 164 | 104 | 195            |
| 1985:       | 115 | 89  | 146 | 189 | 249 | 267 | 281 | 290 | 250 | 199 | 167 | 93  | 195            |
| 1986:       | 76  | 98  | 146 | 174 | 248 | 262 | 286 | 293 | 254 | 215 | 147 | 88  | 191            |
| 1987:       | 84  | 122 | 146 | 199 | 278 | 274 | 296 | 301 | 272 | 234 | 151 | 117 | 206            |
| 1988:       | 87  | 116 | 160 | 202 | 257 | 283 | 300 | 300 | 264 | 216 | 145 | 106 | 203            |
| 1989:       | 55  | 80  | 146 | 183 | 241 | 251 | 272 | 265 | 228 | 183 | 172 | 96  | 181            |
| 1990:       | 84  | 107 | 147 | 198 | 245 | 255 | 275 | 264 | 238 | 196 | 127 | 96  | 186            |
| Min:        | 55  | 80  | 118 | 174 | 241 | 251 | 272 | 263 | 228 | 180 | 127 | 78  | 181            |
| Avg:        | 85  | 101 | 146 | 195 | 252 | 269 | 286 | 282 | 253 | 204 | 150 | 99  | 194            |
| Max:        | 115 | 122 | 160 | 216 | 278 | 288 | 300 | 301 | 272 | 234 | 172 | 117 | 206            |

TABLE 6. Riyadh (OERY), Jan 1981 – Dec 1990: Mean Temperature by Month and Year (Celsius\*10)

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 164 | 175 | 219 | 274 | 318 | 350 | 365 | 357 | 326 | 274 | 213 | 181 | 268            |
| 1982:       | 151 | 137 | 192 | 258 | 318 | 352 | 360 | 348 | 343 | 276 | 176 | 127 | 253            |
| 1983:       | 129 | 153 | 181 | 250 | 325 | 355 | 364 | 359 | 325 | 256 | 222 | 158 | 256            |
| 1984:       | 145 | 175 | 226 | 278 | 315 | 336 | 361 | 337 | 325 | 262 | 216 | 152 | 261            |
| 1985:       | 169 | 155 | 210 | 259 | 319 | 345 | 355 | 365 | 328 | 276 | 228 | 149 | 263            |
| 1986:       | 137 | 165 | 210 | 244 | 324 | 344 | 365 | 367 | 329 | 288 | 208 | 140 | 260            |
| 1987:       | 152 | 195 | 202 | 273 | 342 | 349 | 379 | 369 | 343 | 293 | 219 | 171 | 274            |
| 1988:       | 141 | 169 | 223 | 261 | 330 | 356 | 371 | 367 | 335 | 289 | 210 | 166 | 268            |
| 1989:       | 119 | 143 | 209 | 244 | 324 | 342 | 367 | 354 | 317 | 266 | 229 | 150 | 255            |
| 1990:       | 130 | 159 | 212 | 268 | 330 | 349 | 363 | 351 | 325 | 281 | 211 | 172 | 263            |
| Min:        | 119 | 137 | 181 | 244 | 315 | 336 | 355 | 337 | 317 | 256 | 176 | 127 | 253            |
| Avg:        | 144 | 163 | 208 | 261 | 325 | 348 | 365 | 357 | 330 | 276 | 213 | 157 | 262            |
| Max:        | 169 | 195 | 226 | 278 | 342 | 356 | 379 | 369 | 343 | 293 | 229 | 181 | 274            |

TABLE 7. Riyadh (OERY), Jan 1981 – Dec 1990: Average Maximum Temperature by Month and Year (Celsius\*10)

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 224 | 240 | 281 | 343 | 387 | 422 | 436 | 425 | 398 | 343 | 281 | 252 | 336            |
| 1982:       | 214 | 191 | 252 | 321 | 383 | 422 | 429 | 418 | 416 | 338 | 228 | 176 | 316            |
| 1983:       | 185 | 216 | 240 | 312 | 384 | 417 | 433 | 422 | 401 | 332 | 295 | 220 | 321            |
| 1984:       | 211 | 244 | 290 | 345 | 381 | 409 | 431 | 409 | 397 | 337 | 273 | 202 | 327            |
| 1985:       | 233 | 225 | 277 | 326 | 385 | 417 | 425 | 435 | 403 | 354 | 296 | 214 | 333            |
| 1986:       | 211 | 231 | 276 | 311 | 394 | 416 | 441 | 440 | 404 | 360 | 269 | 196 | 329            |
| 1987:       | 221 | 261 | 258 | 340 | 403 | 418 | 452 | 436 | 413 | 355 | 289 | 227 | 339            |
| 1988:       | 195 | 222 | 284 | 320 | 402 | 425 | 436 | 434 | 409 | 360 | 278 | 237 | 334            |
| 1989:       | 184 | 203 | 272 | 307 | 396 | 414 | 441 | 432 | 393 | 342 | 290 | 206 | 323            |
| 1990:       | 181 | 218 | 275 | 334 | 403 | 427 | 437 | 428 | 402 | 355 | 289 | 246 | 333            |
| Min:        | 181 | 191 | 240 | 307 | 381 | 409 | 425 | 409 | 393 | 332 | 228 | 176 | 316            |
| Avg:        | 206 | 225 | 271 | 326 | 392 | 419 | 436 | 428 | 404 | 348 | 279 | 218 | 329            |
| Max:        | 233 | 261 | 290 | 345 | 403 | 427 | 452 | 440 | 416 | 360 | 296 | 252 | 339            |

**TABLE 8. Riyadh (OERY), Jan 1981– Dec 1990: Highest Maximum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Max. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 310 | 320 | 350 | 390 | 430 | 460 | 460 | 460 | 420 | 380 | 330 | 290 | 460            |
| 1982:       | 305 | 260 | 340 | 400 | 424 | 442 | 448 | 446 | 434 | 410 | 310 | 274 | 448            |
| 1983:       | 274 | 300 | 310 | 360 | 422 | 458 | 456 | 456 | 423 | 386 | 332 | 296 | 458            |
| 1984:       | 280 | 292 | 354 | 392 | 424 | 428 | 445 | 432 | 432 | 384 | 314 | 290 | 445            |
| 1985:       | 298 | 285 | 370 | 374 | 424 | 430 | 443 | 468 | 432 | 393 | 332 | 290 | 468            |
| 1986:       | 260 | 295 | 366 | 374 | 450 | 432 | 470 | 465 | 432 | 400 | 334 | 260 | 470            |
| 1987:       | 286 | 330 | 340 | 408 | 420 | 450 | 480 | 468 | 435 | 410 | 340 | 290 | 480            |
| 1988:       | 280 | 290 | 345 | 390 | 430 | 462 | 460 | 460 | 440 | 392 | 330 | 294 | 462            |
| 1989:       | 250 | 300 | 340 | 360 | 436 | 448 | 460 | 450 | 440 | 390 | 348 | 290 | 460            |
| 1990:       | 265 | 280 | 340 | 406 | 450 | 450 | 460 | 444 | 440 | 390 | 328 | 300 | 460            |
| Min:        | 250 | 260 | 310 | 360 | 420 | 428 | 443 | 432 | 420 | 380 | 310 | 260 | 445            |
| Avg:        | 281 | 295 | 346 | 385 | 431 | 446 | 458 | 455 | 433 | 394 | 330 | 287 | 461            |
| Max:        | 310 | 330 | 370 | 408 | 450 | 462 | 480 | 468 | 440 | 410 | 348 | 300 | 480            |

**TABLE 9. Riyadh (OERY): Minimum and Maximum Temperature for Every Day of 1987 (Celsius\*10)**

| Month: | JAN<br>Min Max | FEB<br>Min Max | MAR<br>Min Max | APR<br>Min Max | MAY<br>Min Max | JUN<br>Min Max | JUL<br>Min Max | AUG<br>Min Max | SEP<br>Min Max | OCT<br>Min Max | NOV<br>Min Max | DEC<br>Min Max |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Day:   |                |                |                |                |                |                |                |                |                |                |                |                |
| 01:    | 70 170         | 110 280        | 160 220        | 130 260        | 250 416        | 268 380        | 290 450        | 275 460        | 275 400        | 280 400        | 215 215        | 330 330        |
| 02:    | 86 190         | 104 270        | 160 300        | 140 296        | 254 414        | 260 410        | 290 452        | 270 450        | 270 414        | 260 400        | 210 210        | 330 330        |
| 03:    | 84 220         | 120 280        | 160 260        | 170 340        | 280 410        | 274 410        | 288 450        | 270 450        | 270 420        | 260 410        | 200 200        | 340 340        |
| 04:    | 80 200         | 116 270        | 139 245        | 200 340        | 280 420        | 284 420        | 270 440        | 328*435        | 263 410        | 274 400        | 180 180        | 275 275        |
| 05:    | 90 230         | 120 224        | 110 230        | 170 260        | 280 410        | 286 410        | 280 440        | 318 430        | 270 428        | 265 400        | 160 160        | 292 292        |
| 06:    | 120 270        | 100 222        | 165 285        | 144 265        | 280 420        | 280 400        | 280 448        | 305 435        | 272 435        | 230 270        | 370 370        | 170 170        |
| 07:    | 100 196        | 110 240        | 170 265        | 142 270        | 254 371        | 280 400        | 285 450        | 300 454        | 270 418        | 254 270        | 174 174        | 330 330        |
| 08:    | 56 190         | 120 260        | 144 300        | 160 270        | 240 400        | 274 420        | 280 440        | 310*445        | 276 420        | 246 380        | 150 150        | 270 270        |
| 09:    | 100 195        | 164 300        | 170 300        | 190 320        | 250 400        | 270 430        | 300 430        | 320*451        | 280 430        | 220 340        | 142 142        | 280 280        |
| 10:    | 100 230        | 130 250        | 178 290        | 175 340        | 280 418        | 270 430        | 280 430        | 324*450        | 270 435        | 215 340        | 140 140        | 290 290        |
| 11:    | 100 200        | 100 100        | 210 200        | 310 190        | 320 275        | 400 270        | 420 280        | 435 335        | 345 454        | 275 430        | 207 350        | 136 136        |
| 12:    | 65 178         | 80 210         | 135 265        | 170 330        | 275 380        | 260 400        | 300 440        | 321*450        | 290 418        | 250 363        | 120 120        | 280 280        |
| 13:    | 40 180         | 84 230         | 170 280        | 200 350        | 270 390        | 280 430        | 300 450        | 320*452        | 270 420        | 240 370        | 140 140        | 318 318        |
| 14:    | 65 186         | 74 238         | 130 220        | 220 360        | 279 398        | 280 430        | 299 450        | 274 453        | 280 453        | 215 340        | 140 140        | 290 290        |
| 15:    | 60 190         | 80 250         | 112 248        | 237 380        | 290 414        | 250 430        | 300 450        | 303*462        | 270 394        | 250 380        | 144 144        | 282 282        |
| 16:    | 70 214         | 110 290        | 170 310        | 230 386        | 300 410        | 284 430        | 290 440        | 310*468        | 270 400        | 244 350        | 146 146        | 280 280        |
| 17:    | 56 210         | 135 310        | 180 304        | 234 380        | 290 400        | 280 410        | 290 450        | 324*436        | 270 410        | 240 350        | 130 130        | 290 290        |
| 18:    | 44 220         | 166 280        | 164 320        | 250 390        | 310 410        | 286 414        | 280 448        | 320*443        | 280 410        | 230 360        | 140 140        | 270 270        |
| 19:    | 67 220         | 144 250        | 180 340        | 240 400        | 298 405        | 280 420        | 290 440        | 320 431        | 284 420        | 237 350        | 120 120        | 270 270        |
| 20:    | 60 230         | 150 279        | 150 290        | 200 290        | 273 394        | 270 430        | 290 450        | 300 415        | 280 430        | 229 360        | 130 130        | 272 272        |
| 21:    | 60 254         | 128 240        | 160 260        | 185 300        | 250 410        | 272 420        | 300*460        | 280 432        | 264 400        | 223 340        | 140 140        | 278 278        |
| 22:    | 50 250         | 110 220        | 120 200        | 174 320        | 275 402        | 260 403        | 280 460        | 290 430        | 280 430        | 230 360        | 140 140        | 270 270        |
| 23:    | 84 260         | 70 220         | 94 140         | 200 340        | 300 400        | 265 410        | 290 460        | 292 430        | 280 430        | 229 350        | 150 150        | 300 300        |
| 24:    | 120 270        | 120 250        | 90 220         | 220 380        | 275 400        | 264 414        | 286*470        | 280 420        | 265 420        | 220 340        | 150 150        | 300 300        |
| 25:    | 120 270        | 140 280        | 135 300        | 250 400        | 300 390        | 270 410        | 300*480        | 233 420        | 280 415        | 220 340        | 155 155        | 280 280        |
| 26:    | 150 286        | 200 300        | 160 272        | 230 390        | 270 410        | 262 420        | 300*470        | 280 424        | 270 400        | 210 330        | 144 144        | 286 286        |
| 27:    | 130 220        | 170 320        | 130 225        | 234 380        | 270 410        | 270 420        | 280*475        | 270 400        | 260 400        | 200 281        | 135 135        | 250 250        |
| 28:    | 90 190         | 160 330        | 114 220        | 210 350        | 290 390        | 270 435        | 330*470        | 270 401        | 250 410        | 178 277        | 140 140        | 300 300        |
| 29:    | 100 210        | ... ...        | 136 163        | 220 380        | 288 390        | 298 450        | 350*470        | 270 400        | 250 400        | 180 320        | 140 140        | 290 290        |
| 30:    | 100 250        | ... ...        | 130 210        | 255 408        | 300 412        | 290 440        | 352*465        | 270 430        | 260 400        | 227 322        | 143 143        | 271 271        |
| 31:    | 100 275        | ... ...        | 107 215        | ... ...        | 290 410        | ... ...        | 330*455        | 265 412        | ... ...        | 225 330        | ... ...        | 160 160        |

\*: Daily Mean Temperature 100F or greater | (Min + Max)/2 > 37.7C ]

**TABLE 10. Extreme Temperatures (°C) by Month from Available Sources for Riyadh**

| Type of Extreme | Month | 1 BMOT<br>1941-1945 | 2 Billions<br>1958-1969 | 3 OCDS<br>1973-1982 | 4 ISMCS<br>1973-1989 | 5 AWS<br>1977-1984 | 6 Current<br>1981-1990 | Most Extreme Value |
|-----------------|-------|---------------------|-------------------------|---------------------|----------------------|--------------------|------------------------|--------------------|
| <b>Maximum</b>  |       |                     |                         |                     |                      |                    |                        |                    |
|                 | JAN   | 30.0                |                         | 30.0                | 31.1                 | 31.1               | 31.0                   | 31.1               |
|                 | FEB   | 32.8                |                         | 32.8                | 35.0                 | 35.0               | 33.0                   | 35.0               |
|                 | MAR   | 38.3                |                         | 37.2                | 37.8                 | 37.8               | 37.0                   | 38.3*              |
|                 | APR   | 40.0                | 41.7                    | 42.2                | 42.2                 | 42.2               | 40.8                   | 42.2               |
|                 | MAY   | 43.3                | 42.8                    | 45.0                | 47.8                 | 43.9               | 45.0                   | 47.8               |
|                 | JUN   | 45.0                | 46.1                    | 45.0                | 47.8                 | 46.1               | 46.2                   | 47.8               |
|                 | JUL   | 45.0                | 46.1                    | 47.2                | 47.2                 | 47.2               | 48.0                   | 48.0               |
|                 | AUG   | 44.4                | 45.0                    | 48.9                | 47.8                 | 46.1               | 46.8                   | 48.9               |
|                 | SEP   | 43.9                | 42.8                    | 45.0                | 43.9                 | 43.9               | 44.0                   | 45.0               |
|                 | OCT   | 38.3                | 38.9                    | 38.9                | 41.1                 | 41.1               | 41.0                   | 41.1               |
|                 | NOV   | 34.4                |                         | 32.8                | 35.0                 | 33.9               | 34.8                   | 35.0               |
|                 | DEC   | 30.6                |                         | 28.9                | 30.0                 | 30.0               | 30.0                   | 30.6*              |
|                 | ANN   | 45.0                | 46.1                    | 48.9                | 47.8                 | 47.2               | 48.0                   | 48.9               |
| <b>Minimum</b>  |       |                     |                         |                     |                      |                    |                        |                    |
|                 | JAN   | -7.2                |                         | -1.1                | 1.1                  | -0.5               | -7.2*                  |                    |
|                 | FEB   | -1.7                |                         | 0.0                 | 2.8                  | 0.0                | -1.7*                  |                    |
|                 | MAR   | 0.6                 |                         | 0.0                 | 5.0                  | 4.9                | 0.0                    |                    |
|                 | APR   | 2.2                 |                         | 11.1                | 11.7                 | 11.0               | 2.2*                   |                    |
|                 | MAY   | 15.0                |                         | 15.0                | 17.8                 | 18.0               | 15.0                   |                    |
|                 | JUN   | 19.4                |                         | 20.0                | 21.1                 | 21.0               | 19.4*                  |                    |
|                 | JUL   | 19.4                |                         | 21.1                | 22.8                 | 24.0               | 19.4*                  |                    |
|                 | AUG   | 16.7                |                         | 21.1                | 22.8                 | 22.7               | 16.7*                  |                    |
|                 | SEP   | 17.2                |                         | 16.1                | 20.0                 | 16.1               | 16.1                   |                    |
|                 | OCT   | 10.0                |                         | 11.1                | 12.8                 | 13.0               | 10.0*                  |                    |
|                 | NOV   | 1.7                 |                         | 7.2                 | 6.1                  | 7.0                | 1.7*                   |                    |
|                 | DEC   | 0.0                 |                         | 1.1                 | 1.1                  | 1.0                | 0.0*                   |                    |
|                 | ANN   | -7.2                |                         | 0.0                 | 1.1                  | -0.5               | -7.2*                  |                    |

<sup>1</sup> BMOT: British Meteorological Office Tables

<sup>2</sup> Billions: U.S. Army Missile Command Technical Report 72-13 (see Billions, 1972)

<sup>3</sup> OCDS: Operational Climatic Data Summary

<sup>4</sup> ISMCS: International Station Meteorological Climate Summary (Compact Disc)

<sup>5</sup> AWS: Air Weather Service Climatic Brief

<sup>6</sup> Current: The data set analyzed in this report

\* Different location for earliest period of record

TABLE 11. Dhahran (OEDR), Jan 1981 – Dec 1990: (a) Relative Frequencies of Hourly Temperatures (percent), (b) 95% and 99% Temperatures (Celsius), by Month

| Month:      | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV   | DEC  | YEAR  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|
| Temp. Class |       |       |       |       |       |       |       |       |       |       |       |      |       |
| -4...-3C:   | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .    | .     |
| -2...-1C:   | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .    | .     |
| 0...+1C:    | 0.11  | 0.02  | .     | .     | .     | .     | .     | .     | .     | .     | .     | .    | 0.01  |
| 2...+3C:    | 0.74  | 0.37  | 0.07  | .     | .     | .     | .     | .     | .     | .     | .     | .    | 0.39  |
| 4...+5C:    | 2.70  | 1.40  | 0.07  | .     | .     | .     | .     | .     | .     | .     | .     | .    | 3.45  |
| 6...+7C:    | 7.43  | 3.63  | 0.61  | .     | .     | .     | .     | .     | .     | .     | .     | .    | 1.26  |
| 8...+9C:    | 12.08 | 8.68  | 1.67  | 0.03  | .     | .     | .     | .     | .     | .     | .     | .    | 2.56  |
| 10...+11C:  | 15.27 | 12.13 | 4.68  | 0.26  | .     | .     | .     | .     | .     | .     | .     | .    | 3.73  |
| 12...+13C:  | 16.53 | 15.12 | 8.82  | 0.64  | .     | .     | .     | .     | .     | .     | .     | .    | 4.91  |
| 14...+15C:  | 16.65 | 20.31 | 11.94 | 2.71  | 0.01  | .     | .     | .     | .     | .     | .     | .    | 6.36  |
| 16...+17C:  | 14.73 | 16.37 | 18.27 | 6.24  | 0.18  | .     | .     | .     | .     | .     | .     | .    | 7.22  |
| 18...+19C:  | 9.37  | 12.38 | 18.11 | 11.26 | 0.75  | 0.01  | .     | .     | .     | .     | .     | .    | 3.73  |
| 20...+21C:  | 3.62  | 6.52  | 14.61 | 15.15 | 2.54  | 0.26  | .     | .     | .     | .     | .     | .    | 6.58  |
| 22...+23C:  | 0.62  | 2.23  | 10.13 | 17.37 | 7.34  | 1.57  | 0.09  | 0.01  | 1.42  | 9.73  | 16.68 | 8.67 | 14.72 |
| 24...+25C:  | 0.14  | 0.70  | 6.09  | 14.68 | 12.06 | 5.43  | 1.95  | 0.56  | 6.49  | 14.72 | 15.26 | 5.12 | 6.79  |
| 26...+27C:  | 0.01  | 0.12  | 2.94  | 11.90 | 15.63 | 11.03 | 8.40  | 2.78  | 12.71 | 14.89 | 12.85 | 2.12 | 7.21  |
| 28...+29C:  | 0.03  | 1.14  | 8.69  | 15.12 | 13.65 | 13.12 | 9.29  | 0.56  | 14.06 | 15.05 | 7.92  | 0.59 | 8.11  |
| 30...+31C:  | .     | 0.53  | 5.43  | 12.66 | 13.74 | 14.17 | 15.66 | 12.00 | 14.39 | 12.86 | 4.30  | 0.05 | 8.26  |
| 32...+33C:  | .     | 0.31  | 3.36  | 11.24 | 14.17 | 13.05 | 13.31 | 10.75 | 12.00 | 9.89  | 1.24  | .    | 7.16  |
| 34...+35C:  | .     | 0.11  | 1.39  | 9.40  | 13.94 | 11.10 | 11.52 | 10.76 | 7.50  | 0.25  | .     | .    | 6.20  |
| 36...+37C:  | .     | 0.07  | 1.60  | 4.31  | 9.87  | 5.15  | 1.38  | 0.07  | .     | .     | .     | .    | 5.27  |
| 38...+39C:  | .     | 0.10  | 4.01  | 8.24  | 12.98 | 12.22 | 5.50  | 0.62  | .     | .     | .     | .    | 4.72  |
| 40...+41C:  | .     | 0.07  | 1.60  | 4.31  | 9.87  | 5.15  | 1.38  | 0.07  | .     | .     | .     | .    | 3.67  |
| 42...+43C:  | .     | 0.35  | 1.11  | 3.16  | 1.33  | 0.17  | 0.01  | .     | .     | .     | .     | .    | 1.89  |
| 44...+45C:  | .     | 0.11  | 0.51  | 0.30  | 0.01  | .     | .     | .     | .     | .     | .     | .    | 0.52  |
| 46...+47C:  | .     | 0.11  | 0.51  | 0.30  | 0.01  | .     | .     | .     | .     | .     | .     | .    | 0.09  |
| 48...+49C:  | .     | 0.04  | 0.04  | 0.01  | .     | .     | .     | .     | .     | .     | .     | .    | 0.00  |
| 49...+50C:  | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .     | .    | .     |
| T95:        | 21.4  | 22.9  | 27.5  | 33.9  | 40.1  | 41.7  | 43.2  | 42.2  | 40.2  | 36.4  | 29.9  | 24.6 | 40.1C |
| T99:        | 23.4  | 25.4  | 31.4  | 37.3  | 42.9  | 43.9  | 45.2  | 44.4  | 42.3  | 39.1  | 32.4  | 27.2 | 43.1C |

**TABLE 12. Dhahran (OEDR), Jan 1981 – Dec 1990: Average Hourly Temperatures by Month (Celsius\*10)**

| Month: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| LST    |     |     |     |     |     |     |     |     |     |     |     |     |
| 0000   | 131 | 142 | 178 | 227 | 281 | 306 | 316 | 310 | 284 | 250 | 203 | 151 |
| 0100   | 126 | 138 | 174 | 222 | 276 | 302 | 311 | 306 | 277 | 244 | 198 | 146 |
| 0200   | 123 | 134 | 171 | 219 | 272 | 299 | 309 | 304 | 274 | 239 | 193 | 142 |
| 0300   | 118 | 129 | 167 | 212 | 266 | 294 | 305 | 301 | 271 | 236 | 191 | 141 |
| 0400   | 116 | 127 | 163 | 210 | 264 | 290 | 305 | 300 | 267 | 233 | 186 | 137 |
| 0500   | 112 | 125 | 162 | 209 | 261 | 287 | 304 | 297 | 265 | 229 | 183 | 134 |
| 0600   | 110 | 122 | 160 | 207 | 264 | 289 | 304 | 296 | 263 | 225 | 178 | 131 |
| 0700   | 107 | 114 | 165 | 222 | 284 | 308 | 323 | 312 | 277 | 235 | 183 | 130 |
| 0800   | 118 | 118 | 184 | 244 | 309 | 333 | 348 | 336 | 304 | 261 | 201 | 143 |
| 0900   | 136 | 111 | 203 | 266 | 331 | 358 | 373 | 361 | 331 | 287 | 224 | 161 |
| 1000   | 157 | 119 | 220 | 284 | 351 | 378 | 396 | 384 | 356 | 310 | 246 | 182 |
| 1100   | 174 | 149 | 233 | 297 | 364 | 392 | 411 | 400 | 375 | 327 | 262 | 198 |
| 1200   | 185 | 201 | 242 | 305 | 371 | 398 | 418 | 407 | 386 | 337 | 272 | 210 |
| 1300   | 193 | 208 | 247 | 308 | 374 | 402 | 421 | 410 | 390 | 343 | 278 | 217 |
| 1400   | 196 | 210 | 248 | 308 | 372 | 399 | 419 | 409 | 388 | 341 | 278 | 219 |
| 1500   | 195 | 208 | 246 | 303 | 367 | 394 | 414 | 403 | 382 | 336 | 273 | 217 |
| 1600   | 188 | 202 | 238 | 294 | 359 | 386 | 406 | 395 | 372 | 326 | 264 | 209 |
| 1700   | 178 | 192 | 228 | 283 | 347 | 376 | 395 | 384 | 358 | 312 | 251 | 197 |
| 1800   | 167 | 179 | 216 | 270 | 333 | 364 | 381 | 369 | 342 | 297 | 239 | 186 |
| 1900   | 158 | 170 | 205 | 257 | 318 | 348 | 363 | 353 | 327 | 286 | 231 | 178 |
| 2000   | 153 | 165 | 199 | 249 | 309 | 337 | 351 | 343 | 317 | 279 | 225 | 171 |
| 2100   | 147 | 160 | 194 | 244 | 302 | 329 | 341 | 336 | 309 | 272 | 220 | 166 |
| 2200   | 141 | 154 | 189 | 237 | 294 | 321 | 331 | 327 | 300 | 265 | 214 | 161 |
| 2300   | 136 | 149 | 183 | 232 | 288 | 313 | 322 | 318 | 292 | 257 | 208 | 155 |

**TABLE 13. Dhahran (OEDR), Jan 1981 -Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius\*10)**

|                    | Daily Low |     |     |    |     | Daily Mean |     |     |     | Daily High |     |     |     | Smoothed Avg. |      |      |
|--------------------|-----------|-----|-----|----|-----|------------|-----|-----|-----|------------|-----|-----|-----|---------------|------|------|
|                    | Min       | Avg | Max | SD |     | Min        | Avg | Max | SD  | Min        | Avg | Max | SD  | Low           | Mean | High |
| <b>"Five-Day":</b> |           |     |     |    |     |            |     |     |     |            |     |     |     |               |      |      |
| Period :           |           |     |     |    |     |            |     |     |     |            |     |     |     |               |      |      |
| JAN 01--05:        | 52        | 100 | 180 | 27 | 80  | 152        | 202 | 22  | 110 | 203        | 270 | 24  | 102 | 152           | 204  |      |
| JAN 06--10:        | 28        | 99  | 153 | 27 | 82  | 150        | 203 | 24  | 133 | 201        | 250 | 27  | 98  | 149           | 201  |      |
| JAN 11--15:        | 26        | 94  | 170 | 25 | 89  | 144        | 195 | 24  | 108 | 198        | 280 | 30  | 96  | 147           | 199  |      |
| JAN 16--20:        | 18        | 91  | 160 | 30 | 97  | 144        | 204 | 28  | 130 | 198        | 280 | 30  | 96  | 147           | 199  |      |
| JAN 21--25:        | 40        | 99  | 180 | 36 | 100 | 151        | 209 | 28  | 132 | 201        | 290 | 27  | 98  | 149           | 200  |      |
| JAN 26--31:        | 42        | 100 | 180 | 30 | 98  | 150        | 203 | 23  | 150 | 198        | 261 | 24  | 99  | 151           | 202  |      |
| FEB 01--05:        | 38        | 99  | 185 | 32 | 97  | 154        | 223 | 26  | 140 | 208        | 270 | 28  | 103 | 154           | 206  |      |
| FEB 06--10:        | 32        | 114 | 170 | 31 | 103 | 162        | 210 | 26  | 130 | 212        | 270 | 28  | 106 | 158           | 210  |      |
| FEB 11--15:        | 40        | 104 | 170 | 23 | 117 | 158        | 201 | 17  | 170 | 216        | 295 | 25  | 110 | 162           | 214  |      |
| FEB 16--20:        | 56        | 116 | 164 | 26 | 123 | 171        | 206 | 19  | 170 | 226        | 298 | 26  | 114 | 166           | 219  |      |
| FEB 21--25:        | 50        | 123 | 170 | 27 | 115 | 174        | 215 | 20  | 150 | 223        | 280 | 26  | 119 | 172           | 224  |      |
| FEB 26--28:        | 60        | 120 | 176 | 30 | 137 | 173        | 229 | 25  | 170 | 225        | 290 | 28  | 125 | 177           | 230  |      |
| MAR 01--05:        | 64        | 130 | 190 | 32 | 119 | 183        | 228 | 26  | 160 | 238        | 320 | 33  | 131 | 183           | 237  |      |
| MAR 06--10:        | 72        | 140 | 210 | 33 | 141 | 194        | 275 | 33  | 180 | 251        | 360 | 42  | 138 | 191           | 244  |      |
| MAR 11--15:        | 65        | 152 | 200 | 28 | 137 | 201        | 256 | 25  | 155 | 251        | 325 | 35  | 145 | 197           | 251  |      |
| MAR 16--20:        | 90        | 148 | 200 | 26 | 155 | 203        | 267 | 25  | 200 | 261        | 370 | 37  | 152 | 205           | 259  |      |
| MAR 21--25:        | 93        | 162 | 230 | 31 | 169 | 218        | 266 | 25  | 220 | 274        | 360 | 32  | 159 | 212           | 266  |      |
| MAR 26--31:        | 98        | 167 | 230 | 30 | 159 | 216        | 276 | 27  | 190 | 267        | 360 | 36  | 167 | 221           | 276  |      |
| APR 01--05:        | 100       | 174 | 250 | 30 | 181 | 227        | 306 | 26  | 220 | 283        | 370 | 35  | 174 | 229           | 286  |      |
| APR 06--10:        | 140       | 182 | 250 | 22 | 207 | 241        | 295 | 21  | 250 | 299        | 370 | 30  | 183 | 240           | 299  |      |
| APR 11--15:        | 150       | 201 | 250 | 22 | 224 | 262        | 314 | 20  | 270 | 327        | 430 | 35  | 191 | 249           | 309  |      |
| APR 16--20:        | 110       | 198 | 250 | 30 | 192 | 258        | 311 | 25  | 230 | 320        | 415 | 37  | 199 | 259           | 321  |      |
| APR 21--25:        | 130       | 210 | 267 | 23 | 225 | 274        | 316 | 21  | 270 | 340        | 400 | 35  | 206 | 267           | 329  |      |
| APR 26--30:        | 150       | 210 | 250 | 24 | 219 | 269        | 320 | 20  | 270 | 329        | 405 | 29  | 214 | 275           | 338  |      |
| MAY 01--05:        | 140       | 224 | 270 | 29 | 240 | 287        | 330 | 22  | 280 | 350        | 420 | 31  | 221 | 284           | 346  |      |
| MAY 06--10:        | 170       | 235 | 280 | 23 | 255 | 296        | 345 | 19  | 310 | 357        | 440 | 28  | 230 | 294           | 357  |      |
| MAY 11--15:        | 198       | 239 | 285 | 20 | 273 | 306        | 335 | 15  | 315 | 371        | 420 | 24  | 238 | 303           | 368  |      |
| MAY 16--20:        | 190       | 246 | 290 | 22 | 270 | 317        | 361 | 19  | 310 | 385        | 440 | 27  | 245 | 313           | 379  |      |
| MAY 21--25:        | 210       | 259 | 310 | 23 | 289 | 329        | 376 | 17  | 340 | 399        | 460 | 28  | 253 | 322           | 388  |      |
| MAY 26--31:        | 210       | 263 | 330 | 23 | 297 | 333        | 382 | 16  | 340 | 401        | 480 | 25  | 259 | 328           | 396  |      |
| JUN 01--05:        | 210       | 263 | 330 | 24 | 295 | 336        | 376 | 16  | 342 | 407        | 470 | 26  | 264 | 333           | 400  |      |
| JUN 06--10:        | 218       | 279 | 340 | 25 | 293 | 347        | 390 | 19  | 350 | 410        | 470 | 27  | 268 | 336           | 402  |      |
| JUN 11--15:        | 220       | 275 | 328 | 23 | 310 | 341        | 381 | 16  | 360 | 407        | 470 | 27  | 271 | 338           | 403  |      |
| JUN 16--20:        | 230       | 273 | 310 | 18 | 306 | 340        | 367 | 14  | 360 | 406        | 452 | 23  | 273 | 340           | 404  |      |
| JUN 21--25:        | 220       | 277 | 330 | 22 | 304 | 339        | 374 | 14  | 360 | 400        | 440 | 19  | 276 | 342           | 406  |      |
| JUN 26--30:        | 230       | 281 | 348 | 24 | 316 | 348        | 380 | 13  | 360 | 414        | 450 | 21  | 278 | 344           | 409  |      |
| JUL 01--05:        | 240       | 286 | 330 | 19 | 320 | 352        | 381 | 15  | 370 | 419        | 460 | 22  | 281 | 346           | 412  |      |
| JUL 06--10:        | 245       | 285 | 334 | 20 | 328 | 351        | 381 | 12  | 370 | 420        | 460 | 20  | 283 | 349           | 416  |      |
| JUL 11--15:        | 240       | 290 | 348 | 21 | 332 | 354        | 384 | 12  | 370 | 421        | 470 | 20  | 285 | 351           | 419  |      |
| JUL 16--20:        | 245       | 287 | 330 | 18 | 321 | 354        | 383 | 13  | 370 | 428        | 470 | 22  | 287 | 352           | 420  |      |
| JUL 21--25:        | 245       | 291 | 348 | 20 | 325 | 359        | 388 | 13  | 390 | 430        | 470 | 20  | 287 | 352           | 421  |      |
| JUL 26--31:        | 250       | 292 | 340 | 21 | 331 | 356        | 396 | 14  | 370 | 423        | 480 | 20  | 287 | 352           | 419  |      |

**TABLE 13. Dhahran (OEDR), Jan 1981 -Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius\*10) (cont'd)**

|                    | Daily Low |     |     |    | Daily Mean |     |     |    | Daily High |     |     |    | Smoothed Avg. |      |      |
|--------------------|-----------|-----|-----|----|------------|-----|-----|----|------------|-----|-----|----|---------------|------|------|
|                    | Min       | Avg | Max | SD | Min        | Avg | Max | SD | Min        | Avg | Max | SD | Low           | Mean | High |
| <b>"Five-Day":</b> |           |     |     |    |            |     |     |    |            |     |     |    |               |      |      |
| Period :           |           |     |     |    |            |     |     |    |            |     |     |    |               |      |      |
| AUG 01--05:        | 255       | 292 | 340 | 18 | 331        | 353 | 371 | 10 | 370        | 418 | 452 | 18 | 286           | 350  | 417  |
| AUG 06--10:        | 250       | 287 | 320 | 18 | 335        | 352 | 381 | 11 | 390        | 421 | 470 | 20 | 284           | 348  | 414  |
| AUG 11--15:        | 239       | 283 | 320 | 18 | 324        | 348 | 382 | 11 | 370        | 414 | 470 | 21 | 282           | 345  | 411  |
| AUG 16--20:        | 240       | 282 | 315 | 16 | 319        | 345 | 368 | 10 | 370        | 411 | 450 | 19 | 278           | 341  | 408  |
| AUG 21--25:        | 240       | 278 | 325 | 20 | 307        | 342 | 372 | 15 | 360        | 410 | 470 | 21 | 274           | 338  | 406  |
| AUG 26--31:        | 228       | 273 | 320 | 22 | 310        | 336 | 378 | 14 | 370        | 404 | 450 | 20 | 269           | 333  | 402  |
| SEP 01--05:        | 232       | 263 | 302 | 17 | 302        | 330 | 356 | 12 | 360        | 400 | 450 | 20 | 264           | 329  | 399  |
| SEP 06--10:        | 225       | 262 | 320 | 19 | 297        | 330 | 367 | 14 | 350        | 405 | 460 | 22 | 258           | 324  | 396  |
| SEP 11--15:        | 210       | 253 | 295 | 16 | 299        | 322 | 348 | 11 | 350        | 397 | 440 | 20 | 253           | 319  | 392  |
| SEP 16--20:        | 216       | 250 | 296 | 17 | 287        | 316 | 342 | 12 | 350        | 388 | 430 | 21 | 247           | 314  | 387  |
| SEP 21--25:        | 210       | 244 | 290 | 15 | 283        | 310 | 344 | 12 | 335        | 383 | 430 | 22 | 242           | 308  | 381  |
| SEP 26--30:        | 190       | 239 | 280 | 18 | 275        | 307 | 330 | 13 | 330        | 383 | 430 | 21 | 236           | 302  | 375  |
| OCT 01--05:        | 190       | 230 | 280 | 16 | 260        | 299 | 332 | 14 | 318        | 374 | 430 | 23 | 231           | 296  | 367  |
| OCT 06--10:        | 179       | 231 | 280 | 20 | 256        | 294 | 323 | 16 | 310        | 362 | 410 | 23 | 225           | 289  | 359  |
| OCT 11--15:        | 145       | 223 | 270 | 21 | 248        | 284 | 309 | 16 | 290        | 350 | 400 | 20 | 219           | 282  | 349  |
| OCT 16--20:        | 170       | 212 | 240 | 19 | 216        | 277 | 302 | 18 | 260        | 347 | 390 | 26 | 213           | 273  | 339  |
| OCT 21--25:        | 146       | 211 | 270 | 28 | 202        | 269 | 304 | 24 | 253        | 331 | 400 | 27 | 206           | 265  | 328  |
| OCT 26--31:        | 130       | 198 | 270 | 22 | 217        | 258 | 303 | 16 | 279        | 320 | 370 | 23 | 198           | 256  | 316  |
| NOV 01--05:        | 150       | 194 | 233 | 18 | 216        | 248 | 283 | 16 | 240        | 305 | 368 | 23 | 190           | 246  | 305  |
| NOV 06--10:        | 135       | 185 | 232 | 21 | 195        | 241 | 287 | 17 | 250        | 298 | 365 | 20 | 181           | 236  | 293  |
| NOV 11--15:        | 111       | 175 | 235 | 28 | 158        | 226 | 270 | 26 | 200        | 281 | 330 | 30 | 172           | 226  | 283  |
| NOV 16--20:        | 108       | 160 | 210 | 23 | 166        | 216 | 262 | 19 | 215        | 275 | 330 | 25 | 162           | 216  | 273  |
| NOV 21--25:        | 110       | 150 | 200 | 19 | 155        | 204 | 240 | 20 | 200        | 263 | 310 | 26 | 152           | 206  | 263  |
| NOV 26--30:        | 90        | 150 | 218 | 24 | 134        | 204 | 250 | 21 | 170        | 260 | 330 | 25 | 144           | 198  | 253  |
| DEC 01--05:        | 70        | 138 | 210 | 32 | 92         | 191 | 245 | 31 | 110        | 244 | 300 | 34 | 136           | 189  | 244  |
| DEC 06--10:        | 60        | 121 | 185 | 30 | 103        | 175 | 230 | 31 | 150        | 230 | 290 | 37 | 129           | 181  | 235  |
| DEC 11--15:        | 60        | 128 | 191 | 28 | 111        | 180 | 223 | 24 | 153        | 231 | 300 | 29 | 123           | 174  | 227  |
| DEC 16--20:        | 70        | 119 | 190 | 31 | 118        | 167 | 224 | 30 | 150        | 219 | 270 | 31 | 117           | 168  | 220  |
| DEC 21--25:        | 50        | 111 | 190 | 32 | 125        | 164 | 220 | 24 | 150        | 218 | 302 | 24 | 111           | 162  | 214  |
| DEC 26--31:        | 50        | 105 | 170 | 29 | 103        | 155 | 202 | 24 | 150        | 207 | 270 | 26 | 107           | 157  | 209  |
| :                  |           |     |     |    |            |     |     |    |            |     |     |    |               |      |      |

**TABLE 14. Dhahran (OEDR), Jan 1981 – Dec 1990: Lowest Minimum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-M.<br>Min. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |               |
| 1981:       | 50  | 50  | 90  | 100 | 190 | 220 | 260 | 240 | 190 | 160 | 110 | 80  | 50            |
| 1982:       | 18  | 63  | 96  | 118 | 200 | 220 | 245 | 250 | 230 | 195 | 90  | 60  | 18            |
| 1983:       | 50  | 45  | 64  | 133 | 205 | 260 | 258 | 228 | 216 | 145 | 141 | 70  | 45            |
| 1984:       | 54  | 53  | 78  | 154 | 174 | 233 | 250 | 239 | 210 | 146 | 130 | 70  | 53            |
| 1985:       | 70  | 50  | 72  | 148 | 210 | 218 | 263 | 255 | 219 | 160 | 145 | 64  | 50            |
| 1986:       | 40  | 70  | 112 | 170 | 202 | 238 | 255 | 259 | 229 | 180 | 108 | 60  | 40            |
| 1987:       | 60  | 83  | 93  | 125 | 210 | 240 | 255 | 240 | 216 | 184 | 120 | 66  | 60            |
| 1988:       | 52  | 73  | 110 | 150 | 212 | 246 | 265 | 256 | 212 | 185 | 111 | 59  | 52            |
| 1989:       | 26  | 32  | 112 | 124 | 208 | 210 | 252 | 264 | 214 | 188 | 148 | 81  | 26            |
| 1990:       | 62  | 60  | 82  | 140 | 198 | 232 | 258 | 248 | 216 | 190 | 146 | 50  | 50            |
| Min:        | 18  | 32  | 64  | 100 | 174 | 210 | 245 | 228 | 190 | 145 | 90  | 50  | 18            |
| Avg:        | 48  | 58  | 91  | 136 | 201 | 232 | 257 | 248 | 215 | 173 | 125 | 66  | 44            |
| Max:        | 70  | 83  | 112 | 170 | 212 | 260 | 265 | 264 | 230 | 195 | 148 | 81  | 60            |

**TABLE 15. Dhahran (OEDR), Jan 1981 – Dec 1990: Average Minimum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 125 | 117 | 159 | 185 | 234 | 256 | 288 | 275 | 249 | 211 | 159 | 122 | 199            |
| 1982:       | 89  | 99  | 146 | 190 | 245 | 271 | 269 | 285 | 260 | 236 | 154 | 97  | 196            |
| 1983:       | 89  | 101 | 121 | 186 | 259 | 289 | 285 | 288 | 243 | 192 | 167 | 116 | 195            |
| 1984:       | 88  | 110 | 165 | 207 | 233 | 275 | 286 | 276 | 248 | 203 | 182 | 115 | 199            |
| 1985:       | 122 | 103 | 141 | 191 | 248 | 270 | 291 | 278 | 249 | 210 | 182 | 127 | 202            |
| 1986:       | 95  | 115 | 149 | 202 | 253 | 273 | 285 | 292 | 259 | 227 | 173 | 107 | 203            |
| 1987:       | 95  | 118 | 153 | 191 | 245 | 274 | 290 | 292 | 256 | 231 | 162 | 127 | 203            |
| 1988:       | 93  | 119 | 157 | 206 | 251 | 274 | 292 | 288 | 260 | 224 | 162 | 128 | 205            |
| 1989:       | 69  | 87  | 147 | 191 | 249 | 272 | 289 | 287 | 250 | 210 | 187 | 117 | 197            |
| 1990:       | 99  | 119 | 145 | 198 | 244 | 271 | 293 | 276 | 254 | 222 | 173 | 129 | 202            |
| Min:        | 69  | 87  | 121 | 185 | 233 | 256 | 269 | 275 | 243 | 192 | 154 | 97  | 195            |
| Avg:        | 96  | 109 | 148 | 195 | 246 | 273 | 287 | 284 | 253 | 217 | 170 | 119 | 200            |
| Max:        | 125 | 119 | 165 | 207 | 259 | 289 | 293 | 292 | 260 | 236 | 187 | 129 | 205            |

**TABLE 16. Dhahran (OEDR), Jan 1981-Dec 1990: Mean Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 169 | 170 | 212 | 251 | 304 | 332 | 356 | 345 | 319 | 275 | 221 | 180 | 262            |
| 1982:       | 149 | 146 | 185 | 251 | 310 | 344 | 348 | 346 | 325 | 289 | 198 | 144 | 254            |
| 1983:       | 134 | 151 | 173 | 238 | 316 | 348 | 354 | 345 | 313 | 257 | 225 | 172 | 253            |
| 1984:       | 148 | 168 | 216 | 269 | 299 | 341 | 357 | 339 | 314 | 268 | 234 | 162 | 260            |
| 1985:       | 169 | 158 | 197 | 256 | 316 | 337 | 354 | 347 | 319 | 276 | 235 | 173 | 262            |
| 1986:       | 150 | 166 | 203 | 255 | 321 | 342 | 358 | 353 | 329 | 294 | 225 | 155 | 263            |
| 1987:       | 152 | 181 | 205 | 256 | 322 | 345 | 364 | 351 | 325 | 289 | 223 | 181 | 267            |
| 1988:       | 146 | 168 | 206 | 261 | 319 | 347 | 358 | 357 | 328 | 291 | 222 | 182 | 266            |
| 1989:       | 128 | 147 | 206 | 255 | 321 | 338 | 358 | 355 | 316 | 279 | 238 | 165 | 259            |
| 1990:       | 142 | 167 | 204 | 257 | 322 | 344 | 362 | 346 | 324 | 286 | 230 | 186 | 265            |
| Min:        | 128 | 146 | 173 | 238 | 299 | 332 | 348 | 339 | 313 | 257 | 198 | 144 | 253            |
| Avg:        | 149 | 162 | 201 | 255 | 315 | 342 | 357 | 348 | 321 | 280 | 225 | 170 | 261            |
| Max:        | 169 | 181 | 216 | 269 | 322 | 348 | 364 | 357 | 329 | 294 | 238 | 186 | 267            |

**TABLE 17. Dhahran (OEDR), Jan 1981 - Dec 1990: Average Maximum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 212 | 221 | 267 | 313 | 362 | 405 | 426 | 412 | 393 | 338 | 286 | 242 | 324            |
| 1982:       | 199 | 189 | 224 | 311 | 369 | 406 | 421 | 410 | 399 | 346 | 240 | 190 | 309            |
| 1983:       | 183 | 203 | 223 | 290 | 374 | 403 | 424 | 405 | 387 | 327 | 284 | 228 | 311            |
| 1984:       | 207 | 226 | 269 | 330 | 364 | 404 | 427 | 402 | 387 | 341 | 283 | 208 | 321            |
| 1985:       | 219 | 215 | 253 | 320 | 382 | 403 | 414 | 423 | 395 | 344 | 291 | 216 | 323            |
| 1986:       | 203 | 213 | 259 | 307 | 383 | 397 | 428 | 414 | 401 | 360 | 274 | 205 | 321            |
| 1987:       | 212 | 243 | 255 | 321 | 395 | 411 | 435 | 412 | 397 | 345 | 293 | 233 | 330            |
| 1988:       | 197 | 213 | 259 | 320 | 383 | 412 | 424 | 427 | 403 | 363 | 287 | 235 | 328            |
| 1989:       | 181 | 202 | 263 | 318 | 383 | 401 | 430 | 427 | 387 | 347 | 292 | 212 | 321            |
| 1990:       | 184 | 215 | 259 | 316 | 394 | 412 | 432 | 412 | 398 | 354 | 294 | 255 | 328            |
| Min:        | 181 | 189 | 223 | 290 | 362 | 397 | 414 | 402 | 387 | 327 | 240 | 190 | 309            |
| Avg:        | 200 | 214 | 253 | 315 | 379 | 405 | 426 | 414 | 395 | 347 | 282 | 222 | 322            |
| Max:        | 219 | 243 | 269 | 330 | 395 | 412 | 435 | 427 | 403 | 363 | 294 | 255 | 330            |

**TABLE 18. Dhahran (OEDR), Jan 1981 – Dec 1990: Highest Maximum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Max. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 250 | 270 | 340 | 370 | 430 | 450 | 450 | 450 | 420 | 390 | 330 | 290 | 450            |
| 1982:       | 230 | 240 | 270 | 390 | 430 | 450 | 450 | 440 | 440 | 410 | 290 | 260 | 450            |
| 1983:       | 250 | 251 | 280 | 350 | 430 | 450 | 470 | 440 | 420 | 390 | 310 | 290 | 470            |
| 1984:       | 250 | 295 | 360 | 405 | 420 | 431 | 460 | 430 | 430 | 410 | 310 | 260 | 460            |
| 1985:       | 280 | 270 | 350 | 390 | 430 | 440 | 450 | 470 | 430 | 410 | 330 | 280 | 470            |
| 1986:       | 235 | 260 | 350 | 350 | 480 | 433 | 470 | 450 | 430 | 430 | 365 | 270 | 480            |
| 1987:       | 261 | 298 | 370 | 415 | 440 | 452 | 480 | 470 | 430 | 410 | 368 | 270 | 480            |
| 1988:       | 230 | 260 | 360 | 390 | 440 | 470 | 470 | 460 | 460 | 400 | 360 | 270 | 470            |
| 1989:       | 220 | 252 | 330 | 400 | 440 | 450 | 460 | 470 | 440 | 400 | 350 | 295 | 470            |
| 1990:       | 240 | 280 | 300 | 430 | 460 | 450 | 470 | 440 | 430 | 390 | 340 | 302 | 470            |
| Min:        | 220 | 240 | 270 | 350 | 420 | 431 | 450 | 430 | 420 | 390 | 290 | 260 | 450            |
| Avg:        | 245 | 268 | 331 | 389 | 440 | 448 | 463 | 452 | 433 | 404 | 335 | 279 | 467            |
| Max:        | 280 | 298 | 370 | 430 | 480 | 470 | 480 | 470 | 460 | 430 | 368 | 302 | 480            |

**TABLE 19. Dhahran (OEDR): Minimum and Maximum Temperature of Every Day of 1987 (Celsius\*10)**

| Month: | JAN<br>Min Max | FEB<br>Min Max | MAR<br>Min Max | APR<br>Min Max | MAY<br>Min Max | JUN<br>Min Max | JUL<br>Min Max | AUG<br>Min Max | SEP<br>Min Max | OCT<br>Min Max | NOV<br>Min Max | DEC<br>Min Max |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Day:   |                |                |                |                |                |                |                |                |                |                |                |                |
| 01:    | 80 170         | 110 270        | 190 250        | 125 260        | 230 420        | 260 390        | 305*440        | 308 410        | 238 400        | 230 380        | 228 320        | 160 270        |
| 02:    | 100 187        | 120 260        | 173 277        | 135 270        | 220 395        | 240 405        | 290*450        | 290 400        | 232 395        | 238 390        | 210 350        | 160 252        |
| 03:    | 82 200         | 94 250         | 179 290        | 148 290        | 226 370        | 250 410        | 290 440        | 275 420        | 242 410        | 245 400        | 220 368        | 151 250        |
| 04:    | 109 205        | 108 240        | 170 260        | 206 300        | 232 390        | 259 400        | 285 430        | 302 410        | 265 390        | 222 370        | 190 282        | 135 250        |
| 05:    | 85 220         | 130 230        | 130 230        | 190 240        | 238 390        | 270 380        | 270 430        | 302*452        | 270 400        | 250 360        | 162 290        | 158 265        |
| 06:    | 110 220        | 110 230        | 120 250        | 173 250        | 232 440        | 286 370        | 282 430        | 300*450        | 280 410        | 280 400        | 158 300        | 172 240        |
| 07:    | 110 210        | 100 230        | 163 270        | 170 260        | 250 375        | 272 390        | 255 430        | 320*430        | 275 395        | 245 395        | 155 310        | 140 230        |
| 08:    | 90 200         | 88 210         | 175 230        | 165 260        | 230 380        | 275 390        | 265 430        | 302 400        | 273 400        | 238 410        | 180 289        | 100 205        |
| 09:    | 91 200         | 155 260        | 168 280        | 210 350        | 272 430        | 258 430        | 300 410        | 270 420        | 210 336        | 160 270        | 80 210         |                |
| 10:    | 82 200         | 150 240        | 190 290        | 162 295        | 220 370        | 310 390        | 298 440        | 309 410        | 255 430        | 203 330        | 168 280        | 100 220        |
| 11:    | 110 210        | 110 220        | 170 295        | 171 313        | 232 350        | 274 390        | 290 430        | 302*440        | 261 430        | 205 340        | 158 270        | 88 230         |
| 12:    | 92 190         | 94 210         | 150 250        | 184 310        | 214 360        | 290 390        | 310 427        | 294*470        | 262 370        | 202 335        | 134 270        | 106 240        |
| 13:    | 96 210         | 90 230         | 142 270        | 176 330        | 253 380        | 262 410        | 310*430        | 310*470        | 260 390        | 230 330        | 150 290        | 114 257        |
| 14:    | 98 200         | 83 223         | 136 215        | 189 350        | 265 390        | 252 430        | 300 430        | 315 415        | 250 380        | 270 330        | 160 300        | 130 240        |
| 15:    | 70 192         | 100 250        | 123 220        | 192 370        | 250 400        | 274 440        | 286 410        | 300 405        | 285 390        | 246 350        | 170 300        | 128 230        |
| 16:    | 68 210         | 108 298        | 160 300        | 211 350        | 238 350        | 270 440        | 290 430        | 310 390        | 249 391        | 210 330        | 160 300        | 122 230        |
| 17:    | 80 210         | 138 265        | 200 350        | 215 370        | 236 400        | 264 450        | 273 410        | 290 390        | 240 350        | 230 320        | 170 280        | 110 250        |
| 18:    | 80 217         | 140 220        | 184 285        | 210 415        | 249 420        | 292*452        | 280 430        | 268 410        | 265 350        | 236 333        | 150 290        | 100 222        |
| 19:    | 85 230         | 112 260        | 180 370        | 250 380        | 268 410        | 306 420        | 279*470        | 292 410        | 280 385        | 246 350        | 170 300        | 128 230        |
| 20:    | 70 232         | 142 245        | 185 232        | 222 273        | 280 390        | 293 420        | 290 430        | 310 410        | 278 430        | 202 334        | 135 290        | 130 220        |
| 21:    | 62 230         | 130 220        | 160 230        | 207 270        | 252 410        | 295 394        | 280 430        | 284 410        | 270 390        | 223 355        | 170 290        | 156 235        |
| 22:    | 60 210         | 83 220         | 149 220        | 196 280        | 258 430        | 280 390        | 261 420        | 275 410        | 216 410        | 255 320        | 154 310        | 154 249        |
| 23:    | 105 190        | 102 233        | 110 220        | 193 345        | 250 390        | 270 390        | 280 450        | 286 415        | 240 430        | 270 340        | 156 310        | 181 250        |
| 24:    | 110 220        | 121 240        | 93 250         | 210 375        | 232 410        | 256 400        | 310*430        | 302 420        | 260 395        | 242 340        | 161 310        | 150 240        |
| 25:    | 118 240        | 110 253        | 103 250        | 190 390        | 250 420        | 272 410        | 260 470        | 302 470        | 232 410        | 234 340        | 170 290        | 125 220        |
| 26:    | 133 261        | 148 250        | 190 230        | 220 380        | 263 430        | 278 395        | 284*465        | 296 380        | 240 410        | 270 350        | 160 260        | 130 250        |
| 27:    | 131 230        | 176 275        | 150 230        | 198 350        | 266 420        | 266 440        | 293*480        | 288 370        | 251 410        | 210 291        | 130 250        | 156 250        |
| 28:    | 130 195        | 166 280        | 116 240        | 220 330        | 270 393        | 265 450        | 328*445        | 262 372        | 246 405        | 200 290        | 120 270        | 160 260        |
| 29:    | 110 210        | ... ...        | 140 190        | 220 355        | 263 410        | 275 440        | 340*420        | 264 400        | 245 370        | 184 313        | 270 270        | 80 180         |
| 30:    | 85 230         | ... ...        | 130 200        | 222 390        | 253 430        | 288 410        | 321*420        | 260 395        | 239 370        | 201 305        | 146 265        | 66 190         |
| 31:    | 102 250        | ... ...        | 108 240        | ... ...        | 280 380        | ... ...        | 318 420        | 240 410        | ... ...        | 210 315        | ... ...        | 68 180         |

\*: Daily Mean Temperature 100F or greater [(Min + Max)/2 > 37.7 C]

TABLE 20. Extreme Temperatures (°C) by Month from Available Sources for Dhahran

| Type of Extreme | Month | 1<br>RUSSWO<br>1946-1962 | 2<br>AWS<br>1961-1987 | 3<br>LSOCS<br>1973-1984 | 4<br>ISMCS<br>1973-1989 | 5<br>Current<br>1981-1990 | Most Extreme Value |
|-----------------|-------|--------------------------|-----------------------|-------------------------|-------------------------|---------------------------|--------------------|
| <b>Maximum</b>  |       |                          |                       |                         |                         |                           |                    |
|                 | JAN   | 35.6                     | 35.6                  | 28.9                    | 28.9                    | 28.0                      | 35.6               |
|                 | FEB   | 33.3                     | 35.6                  | 30.0                    | 36.1                    | 29.8                      | 35.6               |
|                 | MAR   | 37.2                     | 37.8                  | 36.1                    | 37.2                    | 37.0                      | 37.8               |
|                 | APR   | 43.3                     | 45.0                  | 42.8                    | 42.8                    | 43.0                      | 45.0               |
|                 | MAY   | 46.7                     | 47.8                  | 47.2                    | 47.8                    | 48.0                      | 48.0               |
|                 | JUN   | 46.7                     | 48.9                  | 47.2                    | 47.2                    | 47.0                      | 48.9               |
|                 | JUL   | 47.8                     | 48.9                  | 47.2                    | 48.9                    | 48.0                      | 48.9               |
|                 | AUG   | 48.9                     | 51.1                  | 45.0                    | 47.2                    | 47.0                      | 51.1               |
|                 | SEP   | 46.7                     | 47.8                  | 45.0                    | 46.1                    | 46.0                      | 47.8               |
|                 | OCT   | 44.4                     | 44.4                  | 41.1                    | 42.8                    | 43.0                      | 44.4               |
|                 | NOV   | 37.2                     | 37.2                  | 36.1                    | 36.7                    | 36.8                      | 37.2               |
|                 | DEC   | 30.6                     | 32.2                  | 30.0                    | 30.0                    | 30.2                      | 32.2               |
|                 | ANN   | 48.9                     | 51.1                  | 47.2                    | 48.9                    | 48.0                      | 51.1               |
| <b>Minimum</b>  |       |                          |                       |                         |                         |                           |                    |
|                 | JAN   | 1.7                      | -0.5                  | 2.2                     | 2.2                     | 1.8                       | -0.5               |
|                 | FEB   | 2.8                      | 1.1                   | 5.0                     | 1.1                     | 3.2                       | 1.1                |
|                 | MAR   | 7.8                      | 5.0                   | 7.2                     | 7.2                     | 6.4                       | 5.0                |
|                 | APR   | 11.1                     | 10.0                  | 10.0                    | 10.0                    | 10.0                      | 10.0               |
|                 | MAY   | 17.1                     | 15.0                  | 16.1                    | 15.0                    | 17.4                      | 15.0               |
|                 | JUN   | 19.4                     | 19.4                  | 21.1                    | 20.0                    | 21.0                      | 19.4               |
|                 | JUL   | 23.3                     | 21.1                  | 21.7                    | 20.0                    | 24.5                      | 20.0               |
|                 | AUG   | 24.4                     | 22.2                  | 22.8                    | 21.1                    | 22.8                      | 21.1               |
|                 | SEP   | 21.1                     | 18.9                  | 18.9                    | 18.9                    | 19.0                      | 18.9               |
|                 | OCT   | 15.6                     | 12.2                  | 13.9                    | 13.9                    | 14.5                      | 12.2               |
|                 | NOV   | 10.0                     | 7.8                   | 10.0                    | 8.9                     | 9.0                       | 7.8                |
|                 | DEC   | 4.4                      | 3.3                   | 2.8                     | 2.8                     | 5.0                       | 2.8                |
|                 | ANN   | 1.7                      | -0.5                  | 2.2                     | 1.1                     | 1.8                       | -0.5               |

1 RUSSWO: Revised Uniform Summary of Surface Weather Observations

2 AWS: Air Weather Service Climatic Brief

3 LSOCS: Limited Surface Observations Climatic Summary

4 ISMCS: International Station Meteorological Climate Summary (Compact Disc)

5 Current: The data set analyzed in this report

**TABLE 21. Qaisumah (OEPA), Jan 1981 – Dec 1990: (a) Relative Frequencies of Hourly Temperatures (percent), (b) 95% and 99% Temperatures (Celsius), by Month**

| Month:      | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV  | DEC  | YEAR  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|
| Temp. Class |       |       |       |       |       |       |       |       |       |       |      |      |       |
| -4..-3C:    | 0.01  |       |       |       |       |       |       |       |       |       |      |      | 0.00  |
| -2..-1C:    | 0.16  | 0.08  |       |       |       |       |       |       |       |       |      |      | 0.02  |
| 0..1C:      | 0.62  | 0.49  | 0.05  |       |       |       |       |       |       |       |      |      | 0.13  |
| 2..3C:      | 2.46  | 1.12  | 0.22  |       |       |       |       |       |       |       |      |      | 0.44  |
| 4..5C:      | 6.63  | 3.30  | 0.44  |       |       |       |       |       |       |       |      |      | 1.22  |
| 6..7C:      | 12.18 | 6.67  | 0.98  |       |       |       |       |       |       |       |      |      | 2.37  |
| 8..9C:      | 15.23 | 11.65 | 2.88  | 0.07  |       |       |       |       |       |       |      |      | 3.65  |
| 10..11C:    | 16.53 | 14.20 | 6.01  | 0.31  |       |       |       |       |       |       |      |      | 4.61  |
| 12..13C:    | 14.97 | 15.18 | 9.81  | 0.96  |       |       |       |       |       |       |      |      | 5.30  |
| 14..15C:    | 12.02 | 13.23 | 12.57 | 2.99  | 0.04  |       |       |       |       |       |      |      | 5.69  |
| 16..17C:    | 8.70  | 11.59 | 14.54 | 5.93  | 0.19  |       |       |       |       |       |      |      | 5.79  |
| 18..19C:    | 5.28  | 9.29  | 12.80 | 9.32  | 0.66  |       |       |       |       |       |      |      | 5.43  |
| 20..21C:    | 2.73  | 6.65  | 12.88 | 10.93 | 2.22  | 0.01  |       |       |       |       |      |      | 5.20  |
| 22..23C:    | 1.69  | 3.33  | 9.93  | 13.00 | 4.73  | 0.90  | 0.04  |       |       |       |      |      | 5.16  |
| 24..25C:    | 0.66  | 1.68  | 7.10  | 12.89 | 9.10  | 4.82  | 0.66  | 1.96  |       |       |      |      | 5.73  |
| 26..27C:    | 0.12  | 1.03  | 4.70  | 12.67 | 11.53 | 9.46  | 4.06  | 5.43  | 11.54 |       |      |      | 6.55  |
| 28..29C:    | 0.01  | 0.39  | 2.88  | 10.19 | 11.90 | 10.69 | 9.24  | 9.79  | 12.14 | 10.15 |      |      | 6.84  |
| 30..31C:    | 0.13  | 1.43  | 7.81  | 11.09 | 10.06 | 11.31 | 10.75 | 10.22 | 9.09  | 2.28  | 0.11 |      | 6.22  |
| 32..33C:    | 0.46  | 5.97  | 10.91 | 9.78  | 10.19 | 10.67 | 9.10  | 8.44  | 1.19  |       |      |      | 5.60  |
| 34..35C:    | 0.27  | 4.08  | 10.59 | 9.63  | 9.57  | 9.89  | 8.58  | 6.64  | 0.39  |       |      |      | 5.00  |
| 36..37C:    | 0.07  | 1.75  | 9.83  | 10.64 | 8.43  | 9.43  | 9.79  | 5.65  |       |       |      |      | 4.66  |
| 38..39C:    | 0.92  | 8.56  | 12.65 | 9.28  | 10.70 | 10.92 | 10.73 |       |       |       |      |      | 4.67  |
| 40..41C:    | 0.17  | 5.67  | 11.90 | 12.44 | 11.71 | 9.17  | 0.66  |       |       |       |      |      | 4.33  |
| 42..43C:    | 0.06  | 2.50  | 6.64  | 14.00 | 10.75 | 6.04  | 0.13  |       |       |       |      |      | 3.37  |
| 44..45C:    | 0.44  | 2.28  | 8.31  | 6.18  | 1.33  |       |       |       |       |       |      |      | 1.57  |
| 46..47C:    | 0.04  | 0.49  | 2.33  | 2.20  | 0.03  |       |       |       |       |       |      |      | 0.43  |
| 48..49C:    | 0.06  | 0.06  | 0.15  | 0.17  |       |       |       |       |       |       |      |      | 0.03  |
| 49..50C:    |       |       |       |       |       |       |       |       |       |       |      |      |       |
| T95:        | 19.7  | 22.4  | 27.6  | 34.5  | 40.8  | 42.8  | 44.9  | 44.7  | 42.3  | 37.0  | 28.9 | 22.9 | 41.7C |
| T99:        | 23.3  | 26.6  | 31.2  | 37.8  | 43.1  | 45.1  | 46.8  | 46.8  | 44.0  | 39.3  | 32.5 | 26.9 | 44.8C |

TABLE 22. Qaisumah (OEPA), Jan 1981 – Dec 1990: Average Hourly Temperatures by Month (Celsius\*10)

| Month: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| LST    |     |     |     |     |     |     |     |     |     |     |     |     |
| 0000   | 95  | 114 | 158 | 220 | 282 | 305 | 327 | 321 | 292 | 235 | 162 | 110 |
| 0100   | 90  | 108 | 151 | 212 | 273 | 296 | 318 | 312 | 282 | 226 | 156 | 105 |
| 0200   | 84  | 102 | 146 | 206 | 265 | 284 | 308 | 303 | 274 | 220 | 152 | 100 |
| 0300   | 79  | 95  | 140 | 199 | 258 | 276 | 299 | 295 | 269 | 217 | 146 | 97  |
| 0400   | 74  | 91  | 135 | 194 | 253 | 269 | 290 | 291 | 260 | 212 | 143 | 94  |
| 0500   | 72  | 87  | 131 | 188 | 247 | 263 | 283 | 283 | 257 | 206 | 138 | 88  |
| 0600   | 68  | 83  | 127 | 183 | 242 | 259 | 280 | 274 | 248 | 202 | 135 | 87  |
| 0700   | 68  | 81  | 129 | 190 | 256 | 279 | 299 | 288 | 257 | 203 | 136 | 84  |
| 0800   | 74  | 95  | 144 | 213 | 285 | 314 | 332 | 319 | 284 | 227 | 147 | 90  |
| 0900   | 89  | 112 | 166 | 238 | 308 | 340 | 361 | 350 | 321 | 257 | 172 | 111 |
| 1000   | 111 | 136 | 188 | 257 | 332 | 363 | 389 | 378 | 350 | 287 | 198 | 136 |
| 1100   | 131 | 155 | 205 | 274 | 347 | 380 | 407 | 398 | 372 | 306 | 219 | 156 |
| 1200   | 146 | 170 | 218 | 289 | 359 | 391 | 416 | 408 | 386 | 322 | 230 | 171 |
| 1300   | 157 | 181 | 228 | 296 | 371 | 403 | 425 | 420 | 396 | 332 | 242 | 182 |
| 1400   | 163 | 189 | 234 | 307 | 375 | 407 | 432 | 425 | 405 | 335 | 249 | 187 |
| 1500   | 170 | 193 | 240 | 308 | 378 | 410 | 434 | 426 | 406 | 342 | 252 | 191 |
| 1600   | 167 | 192 | 238 | 306 | 378 | 414 | 436 | 428 | 404 | 339 | 246 | 189 |
| 1700   | 160 | 186 | 233 | 300 | 374 | 408 | 432 | 421 | 396 | 329 | 238 | 180 |
| 1800   | 147 | 176 | 224 | 292 | 363 | 398 | 421 | 411 | 384 | 312 | 220 | 163 |
| 1900   | 131 | 155 | 205 | 272 | 347 | 384 | 405 | 394 | 357 | 287 | 206 | 149 |
| 2000   | 122 | 148 | 195 | 261 | 331 | 361 | 387 | 376 | 338 | 274 | 193 | 139 |
| 2100   | 114 | 136 | 184 | 249 | 315 | 344 | 367 | 357 | 326 | 262 | 185 | 130 |
| 2200   | 108 | 128 | 174 | 238 | 302 | 330 | 353 | 346 | 314 | 251 | 175 | 124 |
| 2300   | 100 | 122 | 166 | 229 | 291 | 319 | 340 | 335 | 301 | 242 | 169 | 115 |

**TABLE 23. Qaisumah (OEPA), Jan 1981 – Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius\*10)**

| "Five-Day"<br>Period : | Daily Low |     |     |    |     | Daily Mean |     |     |     |     | Daily High |     |     |     |     | Smoothed Avg. |      |  |
|------------------------|-----------|-----|-----|----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|---------------|------|--|
|                        | Min       | Avg | Max | SD |     | Min        | Avg | Max | SD  |     | Min        | Avg | Max | SD  | Low | Mean          | High |  |
| JAN 01--05:            | -19       | 55  | 108 | 27 | 27  | 110        | 161 | 25  | 78  | 170 | 230        | 33  | 60  | 116 | 177 |               |      |  |
| JAN 06--10:            | -28       | 61  | 140 | 32 | 51  | 117        | 201 | 33  | 95  | 183 | 264        | 44  | 58  | 114 | 177 |               |      |  |
| JAN 11--15:            | 9         | 57  | 134 | 31 | 68  | 114        | 184 | 32  | 94  | 178 | 259        | 41  | 57  | 112 | 174 |               |      |  |
| JAN 16--20:            | -7        | 52  | 110 | 28 | 62  | 109        | 162 | 25  | 110 | 169 | 240        | 32  | 57  | 113 | 175 |               |      |  |
| JAN 21--25:            | 8         | 59  | 108 | 27 | 57  | 117        | 175 | 27  | 106 | 183 | 280        | 39  | 59  | 115 | 176 |               |      |  |
| JAN 26--31:            | 9         | 62  | 116 | 27 | 57  | 113        | 172 | 26  | 80  | 166 | 245        | 36  | 61  | 118 | 179 |               |      |  |
| FEB 01--05:            | -20       | 63  | 140 | 34 | 51  | 123        | 204 | 35  | 114 | 188 | 302        | 44  | 64  | 122 | 184 |               |      |  |
| FEB 06--10:            | -3        | 64  | 125 | 33 | 64  | 126        | 208 | 35  | 90  | 188 | 282        | 41  | 67  | 127 | 190 |               |      |  |
| FEB 11--15:            | 9         | 72  | 136 | 27 | 80  | 136        | 205 | 29  | 144 | 203 | 306        | 38  | 71  | 132 | 196 |               |      |  |
| FEB 16--20:            | 26        | 80  | 140 | 26 | 91  | 142        | 224 | 25  | 116 | 206 | 312        | 35  | 76  | 138 | 203 |               |      |  |
| FEB 21--25:            | -19       | 77  | 130 | 32 | 76  | 139        | 220 | 29  | 133 | 203 | 312        | 39  | 82  | 145 | 210 |               |      |  |
| FEB 26--28:            | 20        | 82  | 135 | 28 | 88  | 149        | 205 | 29  | 152 | 218 | 290        | 36  | 90  | 152 | 218 |               |      |  |
| MAR 01--05:            | 0         | 104 | 180 | 38 | 69  | 165        | 239 | 39  | 121 | 232 | 324        | 50  | 98  | 160 | 226 |               |      |  |
| MAR 06--10:            | 14        | 110 | 200 | 43 | 96  | 175        | 266 | 42  | 164 | 243 | 360        | 53  | 106 | 168 | 234 |               |      |  |
| MAR 11--15:            | 54        | 115 | 198 | 28 | 120 | 176        | 250 | 28  | 156 | 239 | 320        | 36  | 113 | 176 | 241 |               |      |  |
| MAR 16--20:            | 65        | 121 | 194 | 32 | 128 | 183        | 253 | 31  | 168 | 248 | 340        | 40  | 121 | 184 | 249 |               |      |  |
| MAR 21--25:            | 70        | 130 | 190 | 30 | 129 | 197        | 261 | 28  | 154 | 263 | 335        | 35  | 127 | 191 | 256 |               |      |  |
| MAR 26--31:            | 60        | 129 | 189 | 27 | 123 | 192        | 266 | 31  | 153 | 256 | 371        | 42  | 136 | 201 | 267 |               |      |  |
| APR 01--05:            | 80        | 142 | 210 | 27 | 144 | 211        | 269 | 25  | 200 | 279 | 358        | 34  | 146 | 213 | 280 |               |      |  |
| APR 06--10:            | 100       | 156 | 219 | 26 | 186 | 223        | 272 | 21  | 242 | 292 | 350        | 26  | 159 | 227 | 295 |               |      |  |
| APR 11--15:            | 130       | 181 | 246 | 26 | 206 | 254        | 319 | 27  | 253 | 325 | 426        | 36  | 170 | 239 | 307 |               |      |  |
| APR 16--20:            | 136       | 189 | 250 | 32 | 201 | 260        | 315 | 29  | 228 | 328 | 402        | 37  | 183 | 253 | 321 |               |      |  |
| APR 21--25:            | 139       | 197 | 252 | 27 | 194 | 266        | 326 | 30  | 225 | 334 | 410        | 42  | 192 | 263 | 332 |               |      |  |
| APR 26--30:            | 138       | 194 | 258 | 25 | 203 | 266        | 328 | 26  | 251 | 337 | 430        | 35  | 202 | 273 | 342 |               |      |  |
| MAY 01--05:            | 148       | 219 | 294 | 29 | 237 | 290        | 343 | 30  | 280 | 361 | 430        | 40  | 211 | 282 | 352 |               |      |  |
| MAY 06--10:            | 144       | 219 | 290 | 26 | 222 | 291        | 349 | 26  | 250 | 364 | 432        | 33  | 220 | 293 | 364 |               |      |  |
| MAY 11--15:            | 178       | 230 | 274 | 23 | 265 | 304        | 358 | 20  | 322 | 374 | 428        | 26  | 229 | 304 | 376 |               |      |  |
| MAY 16--20:            | 170       | 242 | 282 | 24 | 264 | 323        | 355 | 21  | 330 | 397 | 445        | 25  | 238 | 316 | 388 |               |      |  |
| MAY 21--25:            | 210       | 251 | 300 | 22 | 301 | 334        | 377 | 19  | 364 | 409 | 462        | 25  | 245 | 324 | 398 |               |      |  |
| MAY 26--31:            | 202       | 257 | 320 | 22 | 290 | 336        | 368 | 17  | 347 | 409 | 454        | 23  | 250 | 332 | 406 |               |      |  |
| JUN 01--05:            | 221       | 260 | 307 | 19 | 311 | 345        | 374 | 17  | 380 | 422 | 473        | 23  | 253 | 336 | 410 |               |      |  |
| JUN 06--10:            | 220       | 259 | 310 | 20 | 303 | 344        | 380 | 17  | 380 | 420 | 456        | 19  | 253 | 337 | 412 |               |      |  |
| JUN 11--15:            | 210       | 255 | 303 | 24 | 314 | 341        | 397 | 22  | 380 | 416 | 484        | 27  | 253 | 338 | 413 |               |      |  |
| JUN 16--20:            | 218       | 248 | 290 | 17 | 309 | 335        | 368 | 13  | 370 | 409 | 445        | 16  | 252 | 339 | 414 |               |      |  |
| JUN 21--25:            | 215       | 248 | 280 | 15 | 310 | 335        | 370 | 13  | 374 | 412 | 456        | 16  | 254 | 341 | 417 |               |      |  |
| JUN 26--30:            | 232       | 260 | 295 | 15 | 315 | 349        | 385 | 17  | 378 | 427 | 470        | 22  | 257 | 345 | 421 |               |      |  |
| JUL 01--05:            | 230       | 265 | 290 | 15 | 328 | 356        | 377 | 12  | 400 | 434 | 461        | 15  | 262 | 350 | 426 |               |      |  |
| JUL 06--10:            | 230       | 274 | 305 | 17 | 321 | 359        | 385 | 14  | 390 | 435 | 470        | 18  | 267 | 355 | 432 |               |      |  |
| JUL 11--15:            | 240       | 273 | 318 | 17 | 327 | 362        | 393 | 15  | 400 | 442 | 472        | 17  | 272 | 359 | 437 |               |      |  |
| JUL 16--20:            | 252       | 278 | 305 | 13 | 337 | 367        | 395 | 13  | 396 | 445 | 475        | 18  | 275 | 362 | 439 |               |      |  |
| JUL 21--25:            | 250       | 287 | 313 | 15 | 348 | 374        | 408 | 15  | 421 | 451 | 498        | 19  | 277 | 363 | 440 |               |      |  |
| JUL 26--31:            | 248       | 281 | 321 | 17 | 339 | 367        | 400 | 17  | 412 | 443 | 495        | 20  | 277 | 363 | 439 |               |      |  |
| AUG 01--05:            | 224       | 277 | 324 | 26 | 319 | 363        | 409 | 21  | 384 | 437 | 482        | 25  | 276 | 361 | 437 |               |      |  |
| AUG 06--10:            | 228       | 282 | 370 | 27 | 321 | 364        | 420 | 23  | 385 | 440 | 490        | 25  | 274 | 359 | 434 |               |      |  |
| AUG 11--15:            | 218       | 268 | 325 | 22 | 316 | 355        | 403 | 18  | 390 | 431 | 474        | 20  | 271 | 356 | 432 |               |      |  |
| AUG 16--20:            | 220       | 274 | 315 | 20 | 307 | 359        | 386 | 19  | 375 | 436 | 472        | 24  | 268 | 353 | 429 |               |      |  |
| AUG 21--25:            | 223       | 270 | 326 | 23 | 314 | 355        | 399 | 22  | 386 | 434 | 483        | 26  | 266 | 350 | 427 |               |      |  |
| AUG 26--31:            | 226       | 262 | 320 | 24 | 308 | 346        | 393 | 21  | 379 | 424 | 470        | 23  | 262 | 346 | 424 |               |      |  |

**TABLE 23. Qaisumah (OEPA), Jan 1981 – Dec 1990: "Five-Day" Mean and Extreme Temperatures and Standard Deviation (Celsius\*10) (cont'd)**

| "Five-Day"<br>Period : | Daily Low |     |     |    |     | Daily Mean |     |     |     |     | Daily High |     |     |     |     | Smoothed Avg. |      |  |
|------------------------|-----------|-----|-----|----|-----|------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|---------------|------|--|
|                        | Min       | Avg | Max | SD |     | Min        | Avg | Max | SD  |     | Min        | Avg | Max | SD  | Low | Mean          | High |  |
| SEP 01--05 :           | 193       | 260 | 290 | 18 | 304 | 344        | 374 | 14  | 366 | 426 | 462        | 19  | 259 | 341 | 421 |               |      |  |
| SEP 06--10 :           | 232       | 268 | 298 | 17 | 307 | 348        | 373 | 15  | 371 | 427 | 454        | 18  | 253 | 335 | 416 |               |      |  |
| SEP 11--15 :           | 211       | 249 | 280 | 18 | 300 | 331        | 358 | 16  | 380 | 414 | 450        | 18  | 247 | 329 | 411 |               |      |  |
| SEP 16--20 :           | 183       | 238 | 280 | 18 | 271 | 322        | 343 | 15  | 331 | 406 | 442        | 20  | 239 | 321 | 404 |               |      |  |
| SEP 21--25 :           | 180       | 228 | 276 | 22 | 273 | 312        | 349 | 17  | 360 | 398 | 450        | 20  | 232 | 313 | 396 |               |      |  |
| SEP 26--30 :           | 187       | 229 | 280 | 20 | 281 | 312        | 354 | 15  | 366 | 397 | 446        | 18  | 224 | 304 | 387 |               |      |  |
| OCT 01--05 :           | 190       | 223 | 258 | 16 | 258 | 302        | 339 | 18  | 332 | 386 | 426        | 20  | 216 | 294 | 376 |               |      |  |
| OCT 06--10 :           | 129       | 210 | 280 | 28 | 213 | 284        | 337 | 27  | 292 | 363 | 412        | 29  | 208 | 283 | 363 |               |      |  |
| OCT 11--15 :           | 126       | 199 | 245 | 26 | 217 | 271        | 326 | 25  | 269 | 350 | 420        | 34  | 199 | 272 | 351 |               |      |  |
| OCT 16--20 :           | 94        | 196 | 243 | 33 | 157 | 268        | 300 | 30  | 243 | 346 | 392        | 34  | 189 | 259 | 337 |               |      |  |
| OCT 21--25 :           | 70        | 175 | 226 | 32 | 148 | 246        | 293 | 30  | 222 | 323 | 385        | 36  | 178 | 247 | 322 |               |      |  |
| OCT 26--31 :           | 122       | 172 | 230 | 22 | 180 | 240        | 285 | 21  | 206 | 317 | 370        | 30  | 166 | 232 | 305 |               |      |  |
| NOV 01--05 :           | 102       | 157 | 220 | 23 | 158 | 218        | 261 | 26  | 206 | 288 | 342        | 37  | 154 | 218 | 290 |               |      |  |
| NOV 06--10 :           | 90        | 147 | 190 | 24 | 157 | 209        | 265 | 29  | 197 | 281 | 350        | 42  | 141 | 203 | 272 |               |      |  |
| NOV 11--15 :           | 15        | 119 | 180 | 35 | 83  | 174        | 244 | 36  | 126 | 237 | 346        | 44  | 131 | 191 | 260 |               |      |  |
| NOV 16--20 :           | 54        | 117 | 164 | 27 | 119 | 179        | 234 | 29  | 184 | 251 | 330        | 40  | 120 | 179 | 246 |               |      |  |
| NOV 21--25 :           | 40        | 111 | 183 | 37 | 96  | 172        | 234 | 39  | 113 | 242 | 322        | 50  | 111 | 170 | 237 |               |      |  |
| NOV 26--30 :           | 40        | 116 | 177 | 31 | 84  | 175        | 224 | 31  | 139 | 241 | 315        | 40  | 102 | 161 | 227 |               |      |  |
| DEC 01--05 :           | 20        | 94  | 150 | 36 | 64  | 148        | 214 | 40  | 98  | 210 | 301        | 52  | 94  | 152 | 218 |               |      |  |
| DEC 06--10 :           | 0         | 75  | 152 | 38 | 69  | 136        | 212 | 40  | 120 | 204 | 300        | 50  | 86  | 144 | 209 |               |      |  |
| DEC 11--15 :           | -2        | 79  | 137 | 30 | 63  | 139        | 211 | 33  | 127 | 208 | 295        | 42  | 79  | 137 | 201 |               |      |  |
| DEC 16--20 :           | 10        | 73  | 140 | 32 | 76  | 129        | 203 | 33  | 93  | 190 | 292        | 41  | 72  | 130 | 193 |               |      |  |
| DEC 21--25 :           | 4         | 73  | 130 | 26 | 76  | 132        | 192 | 27  | 133 | 196 | 270        | 35  | 67  | 124 | 187 |               |      |  |
| DEC 26--31 :           | -10       | 58  | 113 | 30 | 48  | 115        | 186 | 30  | 72  | 176 | 286        | 38  | 64  | 120 | 182 |               |      |  |

**TABLE 24. Qaisumah (OEPA), Jan 1981 – Dec 1990: Lowest Minimum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Min. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 10  | 30  | 60  | 80  | 160 | 210 | 230 | 230 | 200 | 138 | 40  | 50  | 10             |
| 1982:       | 2   | 6   | 60  | 92  | 182 | 216 | 240 | 224 | 220 | 140 | 40  | -2  | -2             |
| 1983:       | 5   | 16  | 38  | 103 | 188 | 235 | 230 | 228 | 191 | 126 | 111 | 4   | 4              |
| 1984:       | 9   | 20  | 81  | 130 | 144 | 215 | 248 | 218 | 198 | 70  | 108 | 21  | 9              |
| 1985:       | 43  | -19 | 0   | 110 | 202 | 224 | 247 | 250 | 181 | 122 | 120 | 6   | -19            |
| 1986:       | 8   | 42  | 78  | 140 | 170 | 216 | 232 | 260 | 218 | 140 | 50  | 0   | 0              |
| 1987:       | 10  | 38  | 70  | 113 | 215 | 230 | 270 | 230 | 193 | 139 | 90  | 4   | 4              |
| 1988:       | 18  | 38  | 52  | 110 | 202 | 230 | 252 | 246 | 187 | 171 | 15  | -10 | -10            |
| 1989:       | -28 | -20 | 75  | 100 | 196 | 220 | 250 | 250 | 180 | 148 | 50  | 44  | -28            |
| 1990:       | 12  | 48  | 65  | 124 | 182 | 232 | 250 | 250 | 208 | 158 | 93  | 2   | 2              |
| Min:        | -28 | -20 | 0   | 80  | 144 | 210 | 230 | 218 | 180 | 70  | 15  | -10 | -28            |
| Avg:        | 9   | 20  | 58  | 110 | 184 | 223 | 245 | 239 | 198 | 135 | 72  | 12  | -3             |
| Max:        | 43  | 48  | 81  | 140 | 215 | 235 | 270 | 260 | 220 | 171 | 120 | 50  | 10             |

**TABLE 25. Qaisumah (OEPA), Jan 1981 – Dec 1990: Average Minimum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 68  | 82  | 125 | 165 | 215 | 243 | 275 | 270 | 244 | 184 | 117 | 86  | 173            |
| 1982:       | 59  | 49  | 104 | 178 | 241 | 260 | 268 | 252 | 259 | 197 | 92  | 52  | 168            |
| 1983:       | 43  | 58  | 96  | 153 | 240 | 265 | 274 | 269 | 230 | 166 | 139 | 76  | 168            |
| 1984:       | 57  | 76  | 142 | 179 | 217 | 242 | 271 | 239 | 240 | 183 | 145 | 62  | 172            |
| 1985:       | 84  | 61  | 110 | 177 | 241 | 248 | 261 | 276 | 243 | 184 | 147 | 72  | 176            |
| 1986:       | 65  | 84  | 119 | 179 | 230 | 251 | 277 | 290 | 255 | 211 | 112 | 58  | 178            |
| 1987:       | 57  | 100 | 119 | 180 | 262 | 262 | 291 | 290 | 253 | 210 | 127 | 90  | 187            |
| 1988:       | 61  | 84  | 123 | 182 | 234 | 263 | 283 | 279 | 244 | 210 | 124 | 85  | 182            |
| 1989:       | 30  | 54  | 127 | 188 | 245 | 251 | 280 | 275 | 240 | 197 | 134 | 71  | 175            |
| 1990:       | 51  | 72  | 117 | 183 | 240 | 262 | 284 | 273 | 243 | 204 | 136 | 94  | 181            |
| Min:        | 30  | 49  | 96  | 153 | 215 | 242 | 261 | 239 | 230 | 166 | 92  | 52  | 168            |
| Avg:        | 58  | 72  | 118 | 176 | 237 | 255 | 276 | 271 | 245 | 195 | 127 | 75  | 176            |
| Max:        | 84  | 100 | 142 | 188 | 262 | 265 | 291 | 290 | 259 | 211 | 147 | 94  | 187            |

**TABLE 26. Qaisumah (OEPA), Jan 1981 – Dec 1990: Mean Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 126 | 140 | 191 | 244 | 299 | 337 | 361 | 359 | 331 | 264 | 188 | 155 | 250            |
| 1982:       | 112 | 109 | 163 | 247 | 310 | 345 | 356 | 339 | 343 | 259 | 146 | 104 | 237            |
| 1983:       | 92  | 119 | 160 | 221 | 317 | 345 | 363 | 352 | 313 | 246 | 209 | 139 | 240            |
| 1984:       | 120 | 150 | 204 | 254 | 299 | 331 | 359 | 325 | 321 | 257 | 190 | 116 | 244            |
| 1985:       | 138 | 129 | 174 | 251 | 317 | 337 | 348 | 366 | 325 | 259 | 200 | 126 | 248            |
| 1986:       | 119 | 145 | 184 | 241 | 304 | 333 | 367 | 374 | 339 | 285 | 172 | 118 | 249            |
| 1987:       | 125 | 170 | 175 | 251 | 335 | 346 | 378 | 368 | 335 | 272 | 194 | 149 | 259            |
| 1988:       | 112 | 144 | 189 | 248 | 315 | 349 | 369 | 362 | 328 | 282 | 189 | 138 | 253            |
| 1989:       | 90  | 115 | 193 | 258 | 321 | 340 | 370 | 363 | 321 | 272 | 187 | 122 | 247            |
| 1990:       | 98  | 127 | 183 | 252 | 322 | 352 | 371 | 357 | 327 | 280 | 203 | 156 | 253            |
| Min:        | 90  | 109 | 160 | 221 | 299 | 331 | 348 | 325 | 313 | 246 | 146 | 104 | 237            |
| Avg:        | 113 | 135 | 182 | 247 | 314 | 342 | 364 | 357 | 328 | 268 | 188 | 132 | 248            |
| Max:        | 138 | 170 | 204 | 258 | 335 | 352 | 378 | 374 | 343 | 285 | 209 | 156 | 259            |

**TABLE 27. Qaisumah (OEPA), Jan 1981 – Dec 1990: Average Maximum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Avg. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 182 | 203 | 260 | 319 | 374 | 414 | 434 | 436 | 413 | 344 | 266 | 229 | 323            |
| 1982:       | 171 | 167 | 223 | 314 | 376 | 419 | 432 | 414 | 426 | 325 | 205 | 158 | 303            |
| 1983:       | 141 | 181 | 222 | 288 | 386 | 415 | 441 | 427 | 394 | 330 | 289 | 206 | 311            |
| 1984:       | 190 | 224 | 269 | 324 | 367 | 407 | 433 | 399 | 403 | 333 | 247 | 174 | 315            |
| 1985:       | 195 | 195 | 241 | 322 | 389 | 416 | 426 | 448 | 410 | 344 | 264 | 183 | 320            |
| 1986:       | 182 | 208 | 250 | 306 | 376 | 406 | 448 | 453 | 422 | 368 | 238 | 190 | 321            |
| 1987:       | 205 | 245 | 235 | 322 | 406 | 423 | 460 | 442 | 419 | 340 | 271 | 214 | 332            |
| 1988:       | 168 | 207 | 259 | 312 | 392 | 428 | 444 | 436 | 414 | 363 | 263 | 202 | 325            |
| 1989:       | 157 | 182 | 263 | 329 | 394 | 418 | 454 | 443 | 403 | 354 | 243 | 179 | 319            |
| 1990:       | 154 | 187 | 250 | 323 | 403 | 431 | 447 | 435 | 411 | 365 | 281 | 230 | 327            |
| Min:        | 141 | 167 | 222 | 288 | 367 | 406 | 426 | 399 | 394 | 325 | 205 | 158 | 303            |
| Avg:        | 175 | 200 | 247 | 316 | 386 | 418 | 442 | 433 | 412 | 347 | 257 | 197 | 320            |
| Max:        | 205 | 245 | 269 | 329 | 406 | 431 | 460 | 453 | 426 | 368 | 289 | 230 | 332            |

**TABLE 28. Qaisumah (OEPA), Jan 1981 – Dec 1990: Highest Maximum Temperature by Month and Year (Celsius\*10)**

| Month:      | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | 12-Mo.<br>Max. |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| <b>Year</b> |     |     |     |     |     |     |     |     |     |     |     |     |                |
| 1981:       | 270 | 280 | 340 | 410 | 430 | 460 | 470 | 490 | 440 | 390 | 340 | 282 | 490            |
| 1982:       | 224 | 254 | 288 | 386 | 424 | 448 | 461 | 440 | 454 | 396 | 272 | 248 | 461            |
| 1983:       | 230 | 239 | 301 | 373 | 435 | 462 | 475 | 468 | 425 | 398 | 330 | 300 | 475            |
| 1984:       | 264 | 306 | 360 | 380 | 421 | 444 | 452 | 428 | 430 | 398 | 310 | 244 | 452            |
| 1985:       | 255 | 259 | 335 | 382 | 436 | 445 | 444 | 478 | 450 | 402 | 322 | 260 | 478            |
| 1986:       | 259 | 268 | 350 | 354 | 454 | 443 | 480 | 483 | 445 | 420 | 334 | 286 | 483            |
| 1987:       | 280 | 312 | 294 | 430 | 432 | 468 | 498 | 488 | 450 | 426 | 340 | 292 | 498            |
| 1988:       | 230 | 276 | 348 | 402 | 452 | 484 | 470 | 465 | 450 | 404 | 350 | 280 | 484            |
| 1989:       | 213 | 290 | 371 | 380 | 448 | 470 | 463 | 472 | 460 | 406 | 300 | 278 | 472            |
| 1990:       | 235 | 254 | 320 | 426 | 462 | 462 | 474 | 461 | 462 | 418 | 346 | 301 | 474            |
| Min:        | 213 | 239 | 288 | 354 | 421 | 443 | 444 | 428 | 425 | 390 | 272 | 244 | 452            |
| Avg:        | 246 | 275 | 331 | 392 | 439 | 459 | 469 | 467 | 447 | 406 | 324 | 277 | 477            |
| Max:        | 280 | 312 | 371 | 430 | 462 | 484 | 498 | 490 | 462 | 426 | 350 | 301 | 498            |

**TABLE 29. Qaisumah (OEPA): Minimum and Maximum Temperature of Every Day of 1987 (Celsius\*10)**

| Month: | JAN<br>Min Max | FEB<br>Min Max | MAR<br>Min Max | APR<br>Min Max | MAY<br>Min Max | JUN<br>Min Max | JUL<br>Min Max | AUG<br>Min Max | SEP<br>Min Max | OCT<br>Min Max | NOV<br>Min Max | DEC<br>Min Max |     |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----|
| Day:   |                |                |                |                |                |                |                |                |                |                |                |                |     |
| 01:    | 14 144         | 140 302        | 180 284        | 128 249        | 250 430        | 246 404        | 289 455        | 320*455        | 193 423        | 242 415        | 170 296        | 109 296        | .38 |
| 02:    | 59 163         | 132 286        | 154 294        | 140 280        | 226 390        | 260 420        | 280 461        | 313*453        | 261 420        | 250 410        | 178 330        | 95 330         | 238 |
| 03:    | 40 190         | 112 299        | 150 194        | 162 344        | 225 410        | 270 421        | 270 433        | 321*482        | 262 428        | 240 426        | 140 268        | 129 268        | 244 |
| 04:    | 50 192         | 110 222        | 102 212        | 150 256        | 250 421        | 265 428        | 290 430        | 320*462        | 270 438        | 250 398        | 120 320        | 147 320        | 252 |
| 05:    | 70 211         | 80 205         | 110 220        | 127 247        | 262 422        | 260 390        | 290 443        | 320*480        | 272 440        | 250 410        | 120 275        | 150 275        | 194 |
| 06:    | 112 234        | 75 216         | 128 250        | 113 242        | 250 380        | 230 390        | 270 440        | 343*480        | 272 423        | 250 412        | 174 336        | 108 336        | 209 |
| 07:    | 37 170         | 90 250         | 110 250        | 140 266        | 220 378        | 250 408        | 280 453        | 370*488        | 265 422        | 280 392        | 150 270        | 79 270         | 184 |
| 08:    | 45 172         | 105 282        | 140 281        | 135 267        | 215 396        | 248 420        | 282 470        | 345*470        | 264 425        | 229 360        | 120 230        | 66 230         | 172 |
| 09:    | 70 194         | 118 215        | 142 260        | 154 280        | 250 430        | 260 423        | 299 448        | 304*459        | 272 430        | 180 316        | 109 229        | 84 229         | 210 |
| 10:    | 85 252         | 90 193         | 116 278        | 144 310        | 290 411        | 260 412        | 282 438        | 290 453        | 262 433        | 160 313        | 106 230        | 63 230         | 192 |
| 11:    | 50 180         | 60 188         | 140 270        | 162 331        | 274 395        | 241 399        | 285 453        | 318*470        | 272 442        | 200 330        | 100 232        | 90 232         | 218 |
| 12:    | 20 160         | 38 190         | 102 238        | 165 312        | 279 380        | 240 400        | 295*470        | 312*474        | 274 429        | 205 354        | 90 241         | 90 241         | 275 |
| 13:    | 10 163         | 38 208         | 130 262        | 196 351        | 251 394        | 260 420        | 290 455        | 310*470        | 268 411        | 223 328        | 130 310        | 130 310        | 232 |
| 14:    | 32 161         | 79 226         | 104 210        | 198 398        | 260 414        | 278 430        | 290 448        | 306*470        | 250 393        | 221 338        | 160 340        | 95 340         | 200 |
| 15:    | 18 182         | 110 282        | 90 256         | 246 393        | 255 428        | 261 444        | 282 453        | 325*473        | 245 398        | 225 360        | 135 360        | 81 360         | 215 |
| 16:    | 40 200         | 130 312        | 178 272        | 250 366        | 280 398        | 290 445        | 345 450        | 315*465        | 236 403        | 230 331        | 120 331        | 86 331         | 210 |
| 17:    | 35 209         | 140 250        | 134 240        | 248 379        | 268 413        | 280 430        | 299 452        | 282*475        | 250 433        | 220 399        | 194 351        | 112 351        | 273 |
| 18:    | 32 211         | 119 239        | 149 286        | 232 402        | 272 406        | 285 402        | 278 458        | 306*459        | 240 429        | 243 340        | 110 340        | 106 340        | 261 |
| 19:    | 38 226         | 99 240         | 150 256        | 190 272        | 270 396        | 260 411        | 290 460        | 412 444        | 290 422        | 236 368        | 108 368        | 121 368        | 292 |
| 20:    | 50 240         | 86 240         | 118 211        | 152 260        | 265 392        | 270 420        | 292 460        | 260 410        | 240 398        | 208 320        | 128 320        | 295 320        | 212 |
| 21:    | 65 249         | 85 214         | 110 154        | 148 278        | 263 430        | 255 422        | 282*475        | 250 433        | 220 399        | 194 351        | 112 351        | 273 351        | 263 |
| 22:    | 52 265         | 80 209         | 80 212         | 150 293        | 269 412        | 240 390        | 310*483        | 262 442        | 250 416        | 190 254        | 150 254        | 104 254        | 240 |
| 23:    | 108 280        | 70 230         | 70 216         | 204 353        | 248 406        | 246 412        | 300*480        | 272 420        | 252 420        | 219 334        | 144 334        | 101 334        | 255 |
| 24:    | 80 210         | 105 260        | 78 238         | 222 408        | 270 419        | 260 420        | 312*495        | 260 395        | 240 412        | 210 360        | 135 360        | 80 360         | 219 |
| 25:    | 99 242         | 125 312        | 126 290        | 230 369        | 300 392        | 245 432        | 313*498        | 250 392        | 272 450        | 190 326        | 134 326        | 68 326         | 192 |
| 26:    | 99 230         | 135 250        | 110 193        | 206 312        | 276 416        | 250 440        | 302*484        | 245 393        | 275 446        | 170 296        | 113 296        | 100 296        | 230 |
| 27:    | 80 190         | 134 259        | 100 219        | 190 298        | 296 374        | 281 465        | 290*478        | 240 383        | 270 430        | 150 258        | 101 258        | 107 258        | 195 |
| 28:    | 45 170         | 116 282        | 100 219        | 180 316        | 269 396        | 290 460        | 302*495        | 231 379        | 240 390        | 139 270        | 118 270        | 60 271         | 151 |
| 29:    | 39 186         | ... ...        | 100 153        | 210 368        | 294 429        | 295*468        | 290 449        | 230 398        | 240 392        | 168 308        | 98 242         | 18 242         | 132 |
| 30:    | 72 245         | ... ...        | 90 184         | 222 430        | 274 432        | 292 460        | 297 443        | 230 402        | 230 396        | 185 282        | 94 220         | 4 150          |     |
| 31:    | 110 230        | ... ...        | 99 217         | ... ...        | 270 392        | ... ...        | 312 440        | 248 413        | ... ...        | 180 285        | ... ...        | 20 133         |     |

\*: Daily Mean Temperature 100F or greater [ (Min + Max)/2 > 37.7C ]

TABLE 30. Extreme Temperatures (°C) by Month from Available Sources for Qaisumah

| Type of Extreme | Month | 1 Billions<br>1963-1969 | 2 ISMCS<br>1973-1989 | 3 Current<br>1981-1990 | Most Extreme Value |
|-----------------|-------|-------------------------|----------------------|------------------------|--------------------|
| <b>Maximum</b>  |       |                         |                      |                        |                    |
|                 | JAN   |                         | 27.8                 | 28.0                   | 28.0               |
|                 | FEB   |                         | 31.1                 | 31.2                   | 31.2               |
|                 | MAR   |                         | 37.8                 | 37.1                   | 37.8               |
|                 | APR   | 42.2                    | 42.8                 | 43.0                   | 43.0               |
|                 | MAY   | 46.1                    | 45.0                 | 46.2                   | 46.2               |
|                 | JUN   | 47.8                    | 47.8                 | 48.4                   | 48.4               |
|                 | JUL   | 48.9                    | 48.3                 | 49.8                   | 49.8               |
|                 | AUG   | 47.8                    | 47.8                 | 49.0                   | 49.0               |
|                 | SEP   | 45.0                    | 46.1                 | 46.2                   | 46.2               |
|                 | OCT   | 46.1                    | 42.2                 | 42.6                   | 46.1               |
|                 | NOV   |                         | 36.1                 | 35.0                   | 36.1               |
|                 | DEC   |                         | 30.0                 | 30.1                   | 30.1               |
|                 | ANN   | 48.9                    | 48.3                 | 49.8                   | 49.8               |
| <b>Minimum</b>  |       |                         |                      |                        |                    |
|                 | JAN   |                         | -2.2                 | -2.8                   | -2.8               |
|                 | FEB   |                         | -1.1                 | -2.0                   | -2.0               |
|                 | MAR   |                         | 0.0                  | 0.0                    | 0.0                |
|                 | APR   |                         | 8.9                  | 8.0                    | 8.0                |
|                 | MAY   |                         | 16.1                 | 14.4                   | 14.4               |
|                 | JUN   |                         | 20.0                 | 21.0                   | 20.0               |
|                 | JUL   | (18.9)*                 | 23.0                 | 23.0                   | 23.0               |
|                 | AUG   | (17.2)*                 | 21.8                 | 21.8                   | 21.8               |
|                 | SEP   | (12.8)*                 | 18.0                 | 18.0                   | 18.0               |
|                 | OCT   |                         | 7.8                  | 7.0                    | 7.0                |
|                 | NOV   |                         | 2.2                  | 1.5                    | 1.5                |
|                 | DEC   |                         | 0.0                  | -1.0                   | -1.0               |
|                 | ANN   |                         | -2.2                 | -2.8                   | -2.8               |

<sup>1</sup> Billions: U.S. Army Missile Command Technical Report 72-13 (see Billions, 1972)

<sup>2</sup> ISMCS: International Station Meteorological Climate Summary (Compact Disc)

<sup>3</sup> Current: The data set analyzed in this report

\* Dubious value (see explanation in text)

TABLE 31. Thirteen Temperature Cycles for Qaisumah (OEPA): (a) Hourly Temperatures (Celsius\*10), (b) Relative Frequency of Occurrence of Each Cycle

| Cycle:                        | Q1          | Q2  | Q3   | Q4   | Q5   | Q6   | Q7   | Q8   | Q9  | Q10                 | Q11  | Q12  | Q13 | MIL-STD-810E |
|-------------------------------|-------------|-----|------|------|------|------|------|------|-----|---------------------|------|------|-----|--------------|
|                               | Year ←————→ |     |      |      |      |      |      |      |     | Summer (JJA) ←————→ |      |      |     |              |
| <b>LST</b>                    |             |     |      |      |      |      |      |      |     |                     |      |      |     |              |
| 0000:                         | 56          | 83  | 120  | 160  | 200  | 245  | 293  | 327  | 362 | 275                 | 302  | 330  | 362 | 370          |
| 0100:                         | 52          | 77  | 113  | 153  | 192  | 237  | 284  | 318  | 354 | 268                 | 293  | 321  | 354 | 350          |
| 0200:                         | 51          | 74  | 109  | 148  | 186  | 231  | 277  | 310  | 346 | 262                 | 284  | 313  | 346 | 340          |
| 0300:                         | 52          | 73  | 105  | 143  | 181  | 226  | 269  | 301  | 336 | 255                 | 275  | 303  | 336 | 340          |
| 0400:                         | 52          | 71  | 101  | 138  | 175  | 219  | 259  | 291  | 326 | 247                 | 265  | 293  | 326 | 330          |
| 0500:                         | 49          | 66  | 95   | 132  | 168  | 213  | 252  | 283  | 318 | 241                 | 258  | 285  | 318 | 330          |
| 0600:                         | 44          | 61  | 91   | 128  | 165  | 211  | 252  | 284  | 321 | 242                 | 260  | 287  | 321 | 320          |
| 0700:                         | 42          | 60  | 92   | 131  | 171  | 219  | 265  | 299  | 337 | 255                 | 276  | 302  | 337 | 330          |
| 0800:                         | 47          | 68  | 103  | 144  | 188  | 239  | 290  | 326  | 364 | 279                 | 303  | 329  | 364 | 350          |
| 0900:                         | 58          | 85  | 121  | 165  | 212  | 267  | 322  | 359  | 396 | 306                 | 334  | 362  | 396 | 380          |
| 1000:                         | 71          | 104 | 143  | 188  | 238  | 294  | 350  | 389  | 423 | 330                 | 360  | 391  | 423 | 410          |
| 1100:                         | 83          | 122 | 163  | 209  | 259  | 315  | 370  | 409  | 442 | 346                 | 377  | 411  | 442 | 430          |
| 1200:                         | 91          | 134 | 177  | 224  | 273  | 328  | 382  | 421  | 454 | 355                 | 387  | 422  | 454 | 440          |
| 1300:                         | 96          | 142 | 187  | 234  | 283  | 337  | 389  | 428  | 463 | 361                 | 393  | 429  | 463 | 470          |
| 1400:                         | 101         | 148 | 194  | 241  | 290  | 343  | 395  | 434  | 470 | 367                 | 399  | 435  | 470 | 480          |
| 1500:                         | 104         | 152 | 198  | 245  | 295  | 348  | 400  | 440  | 475 | 372                 | 405  | 440  | 475 | 480          |
| 1600:                         | 105         | 151 | 196  | 244  | 293  | 347  | 401  | 440  | 474 | 374                 | 407  | 442  | 474 | 490          |
| 1700:                         | 100         | 144 | 189  | 236  | 284  | 338  | 394  | 434  | 466 | 371                 | 402  | 436  | 466 | 480          |
| 1800:                         | 91          | 133 | 176  | 222  | 269  | 322  | 380  | 421  | 452 | 361                 | 390  | 424  | 452 | 480          |
| 1900:                         | 82          | 120 | 162  | 206  | 253  | 304  | 363  | 403  | 436 | 347                 | 375  | 407  | 436 | 460          |
| 2000:                         | 76          | 110 | 149  | 193  | 238  | 288  | 346  | 385  | 420 | 332                 | 358  | 389  | 420 | 420          |
| 2100:                         | 72          | 102 | 141  | 183  | 227  | 275  | 330  | 367  | 404 | 316                 | 342  | 371  | 404 | 410          |
| 2200:                         | 68          | 97  | 134  | 175  | 218  | 265  | 316  | 352  | 388 | 300                 | 327  | 355  | 388 | 390          |
| 2300:                         | 63          | 90  | 127  | 168  | 209  | 254  | 304  | 339  | 374 | 286                 | 313  | 341  | 374 | 380          |
| <b>Relative Frequency (%)</b> |             |     |      |      |      |      |      |      |     |                     |      |      |     |              |
| Year :                        | 1.5         | 9.9 | 14.2 | 11.9 | 11.0 | 10.8 | 23.9 | 16.2 | 0.5 | ---                 | ---  | ---  | --- |              |
| Summer:                       | ---         | --- | ---  | ---  | ---  | ---  | ---  | ---  | --- | 0.8                 | 43.9 | 53.4 | 2.0 |              |

**TABLE 32. Thirteen Temperature Cycles for Qaisumah (OEPA): Mean Temperature and Fourier Coefficients (Celsius)**

| TMEAN     | A1      | A2     | A3      | A4      | B1      | B2     | B3      | B4      |
|-----------|---------|--------|---------|---------|---------|--------|---------|---------|
| Q01: 7.1  | -1.5288 | 0.2910 | -0.1859 | -0.0458 | -2.3462 | 0.6739 | -0.0014 | -0.3248 |
| Q02: 10.3 | -2.3499 | 0.5812 | -0.2120 | -0.0167 | -3.4908 | 0.9444 | 0.0933  | -0.3175 |
| Q03: 14.1 | -2.7133 | 0.7636 | -0.1398 | -0.0125 | -4.1102 | 1.0199 | 0.1516  | -0.2815 |
| Q04: 18.4 | -3.0764 | 0.8527 | -0.1197 | -0.0167 | -4.4723 | 1.0105 | 0.2051  | -0.2742 |
| Q05: 22.8 | -3.5821 | 0.9627 | -0.0912 | -0.0833 | -4.8737 | 0.9172 | 0.3390  | -0.3031 |
| Q06: 27.8 | -4.0908 | 0.9885 | -0.0864 | -0.1167 | -5.1025 | 0.7919 | 0.4764  | -0.3320 |
| Q07: 32.8 | -4.3919 | 1.0465 | -0.0329 | -0.1708 | -5.6797 | 0.4343 | 0.7192  | -0.2670 |
| Q08: 36.5 | -4.6393 | 1.0860 | -0.0471 | -0.1708 | -6.0166 | 0.3554 | 0.8222  | -0.2382 |
| Q09: 40.0 | -4.6033 | 1.0876 | 0.0122  | -0.2708 | -5.8810 | 0.2871 | 0.7123  | -0.1516 |
| Q10: 31.0 | -3.9147 | 0.6892 | -0.0918 | -0.1875 | -5.1993 | 0.1353 | 0.7198  | -0.1804 |
| Q11: 33.7 | -4.2855 | 0.9388 | 0.0348  | -0.2125 | -5.6881 | 0.1028 | 0.8291  | -0.2093 |
| Q12: 36.7 | -4.5671 | 1.0465 | -0.0471 | -0.1708 | -6.0111 | 0.2644 | 0.8174  | -0.2093 |
| Q13: 40.0 | -4.6033 | 1.0876 | 0.0122  | -0.2708 | -5.8810 | 0.2871 | 0.7123  | -0.1516 |

**TABLE 33. Summary of Ten-Year Temperature Statistics From Riyadh,  
Dahran and Qaisumah (Celsius\*10)**

| Month                                  | :   | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC    | YEAR |
|----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|------|
| RIYADH (OERY) , Jan 1981 -- Dec 1990:  |     |     |     |     |     |     |     |     |     |     |     |     |        |      |
| Record Maximum :                       | 310 | 330 | 370 | 408 | 450 | 462 | 480 | 468 | 440 | 410 | 348 | 300 | 480    |      |
| Average Monthly Max:                   | 281 | 295 | 346 | 385 | 431 | 446 | 458 | 455 | 433 | 394 | 330 | 287 | 461(*) |      |
| Average Daily Max :                    | 206 | 225 | 271 | 326 | 392 | 419 | 436 | 428 | 404 | 348 | 279 | 218 | 329    |      |
| Mean :                                 | 144 | 163 | 208 | 261 | 325 | 348 | 365 | 357 | 330 | 276 | 213 | 157 | 262    |      |
| Average Daily Min :                    | 85  | 101 | 146 | 195 | 252 | 269 | 286 | 282 | 253 | 204 | 150 | 99  | 194    |      |
| Average Monthly Min:                   | 35  | 43  | 80  | 140 | 201 | 238 | 258 | 249 | 215 | 160 | 105 | 42  | 25(*)  |      |
| Record Minimum :                       | -5  | 0   | 49  | 110 | 180 | 210 | 240 | 227 | 161 | 130 | 70  | 10  | -5     |      |
| DHAHRAN (OEDR) , Jan 1981 -- Dec 1990: |     |     |     |     |     |     |     |     |     |     |     |     |        |      |
| Record Maximum :                       | 280 | 298 | 370 | 430 | 480 | 470 | 480 | 470 | 460 | 430 | 368 | 302 | 480    |      |
| Average Monthly Max:                   | 245 | 268 | 331 | 389 | 440 | 448 | 463 | 452 | 433 | 404 | 335 | 279 | 467(*) |      |
| Average Daily Max :                    | 200 | 214 | 253 | 315 | 379 | 405 | 426 | 414 | 395 | 347 | 282 | 222 | 322    |      |
| Mean :                                 | 149 | 162 | 201 | 255 | 315 | 342 | 357 | 348 | 321 | 280 | 225 | 170 | 261    |      |
| Average Daily Min :                    | 96  | 109 | 148 | 195 | 246 | 273 | 287 | 284 | 253 | 217 | 170 | 119 | 200    |      |
| Average Monthly Min:                   | 48  | 58  | 91  | 136 | 201 | 232 | 257 | 248 | 215 | 173 | 125 | 66  | 44(*)  |      |
| Record Minimum :                       | 18  | 32  | 64  | 100 | 174 | 210 | 245 | 228 | 190 | 145 | 90  | 50  | 18     |      |
| QAISUMAH (OEPA), Jan 1981 -- Dec 1990: |     |     |     |     |     |     |     |     |     |     |     |     |        |      |
| Record Maximum :                       | 280 | 312 | 371 | 430 | 462 | 484 | 498 | 490 | 462 | 426 | 350 | 301 | 498    |      |
| Average Monthly Max:                   | 246 | 275 | 331 | 392 | 439 | 459 | 469 | 467 | 447 | 406 | 324 | 277 | 477(*) |      |
| Average Daily Max :                    | 175 | 200 | 247 | 316 | 386 | 418 | 442 | 433 | 412 | 347 | 257 | 197 | 320    |      |
| Mean :                                 | 113 | 135 | 182 | 247 | 314 | 342 | 364 | 357 | 328 | 268 | 188 | 132 | 248    |      |
| Average Daily Min :                    | 57  | 72  | 118 | 176 | 236 | 255 | 276 | 272 | 245 | 195 | 127 | 75  | 176    |      |
| Average Monthly Min:                   | 9   | 20  | 58  | 110 | 184 | 223 | 245 | 239 | 198 | 135 | 72  | 12  | -3(*)  |      |
| Record Minimum :                       | -28 | -20 | 0   | 80  | 144 | 210 | 230 | 218 | 180 | 70  | 15  | -10 | -28    |      |
| (*) Average annual extreme             |     |     |     |     |     |     |     |     |     |     |     |     |        |      |

## REFERENCES

AR 70-38, *Research, Development, Test and Evaluation of Materiel for Extreme Climatic Conditions*, 1 August 1979.

Billions, N. S., *Frequencies and Durations of Surface Temperatures in Hot-Dry Climatic Category Areas (Cat. 4, AR 70-38)*, TR-RR-72-13, U.S. Army Missile Command, Redstone Arsenal, AL, December 1972.

Blake, D. W., T. N. Krishnamurti, S. V. Low-Nam, and J. S. Fein, "Heat Low Over the Saudi Arabian Desert During May 1979 (Summer MONEX)," *Monthly Weather Review*, Vol. 111, No. 9, pp. 1759-1775, September 1983.

Dickenson, M. L., Project Director, *International Station Meteorological Climate Summary (Compact Disc)*, joint publication of Naval Oceanography Command Detachment (LCDR M. L. Dickenson's organization), U.S. Air Force Environmental Technical Applications Center Operating Location A (USAFETAC OL-A), and the National Climatic Data Center (NCDC), Asheville, NC, October 1990.

Dodd, A. V., *Areal and Temporal Occurrence of High Dew Points and Associated Temperatures*, U.S. Army Natick Laboratories Technical Report 70-4-ES, Natick, MA, August 1969.

*Encyclopedia Americana International Edition*, Vol. 23: Pumps to Russell. Grolier Inc., Danbury, CT, 1987.

Environmental Technical Applications Center, *Air Weather Service Climatic Brief for Dhahran*, USAFETAC, Scott Air Force Base, IL, June 1988.

Environmental Technical Applications Center, *Air Weather Service Climatic Brief for Riyadh*, USAFETAC, Scott Air Force Base, IL, July 1985.

Environmental Technical Applications Center, *Limited Surface Observations Climatic Summary for Dhahran, Saudi Arabia*, USAFETAC/DS-85/013, Scott Air Force Base, IL, May 1985.

Environmental Technical Applications Center, *Operational Climatic Data Summary for Riyadh, Saudi Arabia*, USAFETAC/ECR, Scott Air Force Base, IL, June 1984.

Environmental Technical Applications Center, *Revised Uniform Summary of Surface Weather Observations for Dhahran, Saudi Arabia*, USAFETAC/DS-83/050, Scott Air Force Base, IL, December 1983.

Griffiths, J. F., *Applied Climatology*, Oxford University Press, London, 1966.

Hastenrath, S., A. Hafez, and E. B. Kaczmarczyk, "A Contribution to the Dynamic Climatology of Arabia," *Archiv für Meteorologie, Geophysik, und Bioklimatologie, Ser. B*, Vol. 27, pp. 105-120, 1979.

Landsberg, H. E., H. Lippmann, Kh. Paffen, and C. Troll, *World Maps of Climatology, Second Edition*, Springer-Verlag, New York, NY, 1965.

Meteorological Office of the Air Ministry of Great Britain, *Tables of Temperature, Relative Humidity, and Precipitation for the World, Part V, Asia*, Publication M. O. 617e, Her Majesty's Stationery Office, London, 1958.

Meteorological Office of Great Britain, *Tables of Temperature, Relative Humidity, Precipitation and Sunshine for the World, Part I, North America and Greenland (Including Hawaii and Bermuda)*, Publication M. O. 856a, Her Majesty's Stationery Office, London, 1980.

Meteorological Office of Great Britain, *Tables of Temperature, Relative Humidity, Precipitation and Sunshine for the World, Part IV, Africa, the Atlantic Ocean South of 35°N and the Indian Ocean*, Publication M. O. 856d, Her Majesty's Stationery Office, London, 1983.

MIL-STD-810E, *Environmental Test Methods and Engineering Guidelines*, 14 July 1989.

Pedgley, D. E., "Winter and Spring Weather at Riyadh, Saudi Arabia," *Meteorological Magazine*, Vol. 103, pp. 225-236, 1974.

Rudloff, W., *World-Climates*, Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, 1981.

Smith, E. A., "The Structure of the Arabian Heat Low, Part I: Surface Energy Budget," *Monthly Weather Review*, Vol. 114, No. 6, pp. 1067-1083, June 1986a.

Smith, E. A., "The Structure of the Arabian Heat Low, Part II: Bulk Tropospheric Heat Budget and Implications," *Monthly Weather Review*, Vol. 114, No. 6, pp. 1084-1102, June 1986b.

Soltani, G., *The Climate of Iraq and the Arabian Peninsula*, Air Weather Service Forecaster Memo AWS/FM-90/004, September 1990.

Takahashi, K., and H. Arakawa, *Climates of Southern and Western Asia, World Survey of Climatology*, Vol. 9, H. E. Landsberg, Editor-in-Chief, Elsevier, Amsterdam, see pp. 183-255, 1981.

U.S. Naval Weather Service, *World-Wide Airfield Summaries, Vol. II, Part 2, Middle East*, October 1967.

Vojtesak, M. J., K. P. Martin, G. Myles, and M. T. Gilford, *SWANEA (Southwest Asia-Northeast Africa), A Climatological Study, Vol. II--The Middle East Peninsula*, USAFETAC/TN-91/002, Scott Air Force Base, IL, February 1991.

## **APPENDIX**

## APPENDIX

Figure A1 shows actual daily minimum and maximum Riyadh temperatures from the period 1 July 1990 to 30 June 1991 plotted as vertical lines. The climatological background is represented by smooth curves. The middle three curves are the smoothed five-day averages of daily low, daily mean, and daily high temperatures from Table 3. The two outside curves are envelopes of five-day extremes during the ten-year period. The wavy center curve is a plot of the daily mean computed as simple average of the 1990/91 minimum and maximum, but smoothed by the low-pass filter mentioned earlier in the text. The graph vividly shows the larger interdiurnal changes during winter caused by synoptic-scale weather systems that moved across Saudi Arabia between December and May and led to invasions of colder air in intervals of about 14 days.

While cooler-than-normal May 1991 temperatures at Dhahran and Bahrain have been mentioned in connection with the then still burning oil-well fires in Kuwait, the graph shows that May 1991 was also cooler than average at Riyadh. This would indicate that the below-normal May temperatures were a widespread phenomenon which may have been caused by large-scale meteorological processes.

During the winter of 1991/92 unusually harsh winter conditions occurred in the Middle East and Southwest Asia. Reports of heavy snow fall and low temperatures were received from eastern Turkey, Israel and Jordan. At the Saudi stations discussed here, several low temperature records were broken: Qaisumah experienced a December record low of  $-3^{\circ}\text{C}$  on the 19th. Then, on 5 January 1992, a low temperature of  $-4.0^{\circ}\text{C}$  was reported by Qaisumah, exceeding the previous extreme of  $-2.8^{\circ}\text{C}$  (Table 30). On the next day (6 January 1992), Riyadh International (OERY) recorded  $-1.0^{\circ}\text{C}$ , slightly exceeding the 1981-1990 record low of  $-0.5^{\circ}\text{C}$ . Riyadh also had the coldest month of January, at least since 1979.

As a continuation of the plot of Riyadh temperatures depicted in Figure A1, Figure A2 has been constructed directly from the teletype reports received between 1 July 1991 and 13 March 1992. The graph of the smoothed daily mean temperatures reveals that cold spells tended to occur in intervals of approximately 17 to 20 days, starting in mid-December. During January, temperatures remained below average, even between these cold spells.



**Figure A1.** Riyadh daily low and high temperatures 1 Jul 90 to 30 Jun 91 and climatological background



A-3 / (A-4 Blank)

Figure A2. Riyadh daily low and high temperatures 1 Jan 91 to 13 March 92 and climatological background.

## DISTRIBUTION

|                                                                                                                                             | <u>Copies</u> |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| U. S. Army Materiel System Analysis Activity<br>ATTN: AMXSY-MP/Herbert Cohen<br>Aberdeen Proving Ground, MD 21005                           | 1             |
| Director<br>U. S. Army Research Office<br>ATTN: SLCRO-PH<br>P. O. Box 12211<br>Research Triangle Park, NC 27709-2211                        | 1             |
| Headquarters<br>Department of the Army<br>ATTN: DAMA-ARR<br>Washington, DC 20310-0632                                                       | 1             |
| Headquarters, Department of the Army<br>ATTN: DDR&E/R&AT/E&LS<br>The Pentagon<br>Washington, D. C. 20310-0632                               | 1             |
| HQDA/OACSI<br>ATTN: DAMI-POI/Mr. Lee Page<br>Washington, DC 20310-1067                                                                      | 1             |
| U.S. Army CETEC/GL-AE<br>ATTN: Mr. Paul Krause<br>Ft. Belvoir, VA 22060                                                                     | 1             |
| U.S. Army Laboratory Command<br>Atmospheric Sciences Laboratory<br>ATTN: SLCAS-AM-A, Mr. Abel Blanco<br>White Sands Missile Range, NM 88002 | 1             |
| USAFETAC/OL-A<br>ATTN: Mr. Jon Whiteside<br>Federal Building<br>Asheville, NC 28801                                                         | 1             |
| USAFETAC/ECE<br>ATTN: Ms. Snelling<br>Scott Air Force Base, IL 62225-5438                                                                   | 1             |
| Air Weather Service Technical Library<br>FL 4414<br>Scott Air Force Base, IL 62225-5438                                                     | 1             |

DISTRIBUTION (cont'd)

|                                                                                                                    | <u>Copies</u> |
|--------------------------------------------------------------------------------------------------------------------|---------------|
| National Oceanic and Atmospheric Administration<br>Library - EOC4WSC4<br>ATTN: ACQ<br>Washington, DC 20230         | 1             |
| Director<br>Atmospheric Science Program<br>National Science Foundation<br>Washington, DC 20550                     | 1             |
| GL Library<br>ATTN: SULLR, Stop 29<br>Hanscom AFB, MA 01731-5000                                                   | 1             |
| ITT Research Institute<br>ATTN: GACIAC<br>10 W. 35th Street<br>Chicago, IL 60616                                   | 1             |
| NASA/Marshall Space Flight Center<br>ATTN: Mail Code ED43<br>Huntsville, AL 35812                                  | 1             |
| Commander<br>U. S. Army Strategic Defense Command<br>ATTN: DASD-H-V<br>P. O. Box 1500<br>Huntsville, AL 35807-3801 | 1             |
| AMSMI-RD                                                                                                           | 1             |
| AMSMI-RD-AC, Dr. B. W. Fowler                                                                                      | 1             |
| AMSMI-RD-AS, Mr. Guilford J. Hutcheson                                                                             | 1             |
| AMSMI-RD-CS-R                                                                                                      | 15            |
| AMSMI-RD-CS-T                                                                                                      | 1             |
| AMSMI-RD-PR-S, Mr. J. M. Lyon                                                                                      | 1             |
| Mr. M. S. Counter                                                                                                  | 1             |
| AMSMI-RD-SE-EA, Dr. J. H. Donnelly                                                                                 | 1             |
| AMSMI-RD-SI, Mr. W. D. Hagler                                                                                      | 1             |
| AMSMI-RD-SS, Mr. J. D. Coombs                                                                                      | 1             |
| AMSMI-RD-ST-CM, Mr. L. W. Howard                                                                                   | 1             |
| AMSMI-RD-TE                                                                                                        | 1             |
| AMSMI-RD-TI                                                                                                        | 1             |
| AMSMI-RD-WS, Dr. Bennett<br>S. Troglen                                                                             | 1             |

DISTRIBUTION (cont'd)

|                                     | <u>Copies</u> |
|-------------------------------------|---------------|
| AMSMI-RD-WS-CM, Dr. Stewart         | 10            |
| Mr. Dudel                           | 10            |
| Mr. Levitt                          | 10            |
| AMSMI-GC-IP, Mr. Fred Bush          | 1             |
| SFAE-FS-HD-E-M, Mr. D. G. Boyd      | 1             |
| SFAE-FS-ML-MG, Mr. B. L. Crosswhite | 1             |
| SFAE-FS-ML-MS, LTC Wolfe            | 1             |