Quiz 4

HLIN401 : Algorithmique et Complexité

Université de Montpellier 2018 – 2019

Quelles affirmations sont correctes?

- 1. Un algorithme glouton ne revient jamais sur ses choix
- 2. Un algorithme glouton fournit une solution optimale
- 3. Un algorithme glouton est de nature récursive
- 4. La complexité d'un algorithme glouton est $O(n \log n)$

Quelles affirmations sont correctes?

- ✓ 1. Un algorithme glouton ne revient jamais sur ses choix
 - 2. Un algorithme glouton fournit une solution optimale
- √ 3. Un algorithme glouton est de *nature récursive*
 - 4. La complexité d'un algorithme glouton est $O(n \log n)$

Pour montrer l'optimalité d'un algorithme glouton, il suffit de

- montrer que toute solution optimale est constituée du 1^{er} élément et d'une solution optimale au sous-problème restant
- montrer qu'il existe une solution optimale constituée du 1^{er} élément et d'une solution optimale au sous-problème restant

Pour montrer l'optimalité d'un algorithme glouton, il suffit de

- montrer que toute solution optimale est constituée du 1^{er} élément et d'une solution optimale au sous-problème restant
- ✓ 2. montrer qu'il existe une solution optimale constituée du 1^{er} élément et d'une solution optimale au sous-problème restant

L'algorithme glouton du sac-à-dos sélectionne toujours

- 1. l'élément de valeur maximale
- 2. l'élément de taille minimale
- 3. l'élément de rapport valeur/taille minimal
- 4. l'élément de rapport taille/valeur minimal

L'algorithme glouton du sac-à-dos sélectionne toujours

- 1. l'élément de valeur maximale
- 2. l'élément de taille minimale
- 3. l'élément de rapport valeur/taille minimal
- √ 4. l'élément de rapport taille/valeur minimal

L'algorithme glouton du sac-à-dos à pour complexité

- 1. $O(\log n)$
- 2. O(n)
- 3. $O(n \log n)$
- 4. $O(n^2)$
- 5. $O(2^n)$

L'algorithme glouton du sac-à-dos à pour complexité

- 1. $O(\log n)$
- 2. O(n)
- \checkmark 3. $O(n \log n)$
- $\sqrt{4}$. $O(n^2)$
- $\sqrt{5}$. $O(2^n)$

L'algorithme glouton du sac-à-dos est

- 1. optimal pour les deux versions (fractionnaire et non fractionnaire) du problème
- 2. utilisable pour les versions, optimal pour la version fractionnaire
- 3. utilisable uniquement pour la version fractionnaire

L'algorithme glouton du sac-à-dos est

- 1. optimal pour les deux versions (fractionnaire et non fractionnaire) du problème
- ✓ 2. utilisable pour les versions, optimal pour la version fractionnaire
 - 3. utilisable uniquement pour la version fractionnaire

L'algorithme glouton pour SETCOVER dans le plan choisit de placer à chaque étape une antenne sur la maison qui

- 1. a le plus de voisin
- 2. a le moins de voisins déjà couverts
- 3. a le plus de voisins non encore couverts

L'algorithme glouton pour SETCOVER dans le plan choisit de placer à chaque étape une antenne sur la maison qui

- 1. a le plus de voisin
- 2. a le moins de voisins déjà couverts
- \checkmark 3. a le plus de voisins non encore couverts

L'algorithme glouton pour SETCOVER dans le plan fournit

- 1. une solution optimale
- 2. une solution de taille $\geq k \log n$ où k est l'optimal
- 3. une solution de taille $\leq k \log n$ où k est l'optimal

L'algorithme glouton pour SETCOVER dans le plan fournit

- 1. une solution optimale
- 2. une solution de taille $\geq k \log n$ où k est l'optimal
- \checkmark 3. une solution de taille ≤ $k \log n$ où k est l'optimal

Pour montrer que l'algorithme glouton pour SETCOVER renvoie une solution de taille $\leq k \log n$, on montre que lorsqu'il reste m maisons non couvertes,

- 1. il existe une maison ayant $\geq k$ voisins non couverts
- 2. toutes les maisons ont $\geq k$ voisins non couverts
- 3. il existe une maison ayant $\geq m/k$ voisins non couverts
- 4. toutes les maisons ont $\geq m/k$ voisins non couverts

Pour montrer que l'algorithme glouton pour SETCOVER renvoie une solution de taille $\leq k \log n$, on montre que lorsqu'il reste m maisons non couvertes,

- 1. il existe une maison ayant $\geq k$ voisins non couverts
- 2. toutes les maisons ont $\geq k$ voisins non couverts
- \checkmark 3. il existe une maison ayant $\geq m/k$ voisins non couverts
 - 4. toutes les maisons ont $\geq m/k$ voisins non couverts