PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-094679

(43) Date of publication of application: 26.03.1992

(51)Int.Cl.

C12M 3/00 C12N 5/06

C12N 11/00

(21)Application number: 02-210885

(71)Applicant: KAO CORP

TOKYO JIYOSHI IKA UNIV

(22)Date of filing:

08.08.1990

(72)Inventor: OKANO MITSUO

YAMADA NORIKO SAKURAI YASUHISA SAKAI HIDEAKI

NAKAMURA KOICHI

(54) CELL CULTURE SUPPORTER MATERIAL

(57)Abstract:

PURPOSE: To provide the subject material capable of culturing and recovering cells in simple processes without the contamination of impurities and without deteriorating the functions of the cells by coating the surface of a cell-adhesive substrate with a specific homo(co)polymer preferably in a specified pattern.

CONSTITUTION: The surface of a cell-adhesive substrate such as a petri dish shape substrate prepared by subjecting modified glass, polystyrene, etc., if necessary, to an ozone treatment, etc., is coated with a homopolymer or copolymer [e.g. acrylamide homo(co)polymer] having a critical dissolution temperature of 0-80° C in water preferably in a pattern such as a pattern having lines and spaces or a polka dot pattern in a total coverage degree of 5-90% to provide the objective material.

®日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A) 平4-94679

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成 4年(1992) 3月26日

12 M 3/00 12 N

5/06 11/00 Z 8717-4B

> 2121 - 4B7236 - 4B

C 12 N 5/00 E

審査請求 未請求 請求項の数 2 (全10頁)

❷発明の名称 細胞培養支持体材料

> ②1)特 顯 平2-210885

願 平2(1990)8月8日 22出

⑫発 明 者 韶 野 光夫 千葉県市川市国府台6-12-12

@発 明 者 Ш \mathbf{H} 則 子 東京都板橋区前野町6-10 前野町ハイツ1-601

72)発 明 者

井 桜

靖 久

東京都杉並区永福3-17-6

@発 明 者 井 坂

秀 昭 和歌山県那賀郡岩出町畑毛310-3 フレグランス畑毛210

@発 明 者 中 浩

葆

和歌山県和歌山市園部1030-15

の出 願 花王株式会社

東京都中央区日本橋茅場町1丁目14番10号

願 人 学校法人東京女子医科

村

東京都新宿区河田町8-1

大学

個代 理 人

勿出

弁理士 青 山

外2名

明細書

」. 発明の名称

細胞培養支持体材料

2. 特許請求の範囲

(1) 細胞付着性基材表面上に、水に対する臨 界容解温度が0~80℃の範囲にあるホモポリマ ーもしくはコポリマーを被覆してなり、その総被 覆率が5~90%である細胞培養支持体材料。

(2) 細胞付着性基材表面上に、該ホモポリマ ーもしくはコポリマーが、規則的、或は不規則的 な微細なパターンとして被覆している請求記1載 の細胞培養支持体材料。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、生化学、医学および免疫学等におけ る細胞類の培養用支持体材料に関するものである。 (従来の技術)

従来、細胞培養は、ガラス表面上あるいは種々 の処理を行った合成高分子材料の表面上にて行わ れていた。例えば、ポリスチレンを材料とする裏

面処理(例えば、7線照射、シリコンコーティン グ等)を行った種々の容器が細胞培養用容器とし て普及している。従来、このような細胞培養用容 器を用いて培養・増殖した細胞は、トリプシンの ような蛋白分解酵素や化学薬品により処理するこ とで容器表面から剥離・回収されていた。しかし ながら、上述のような処理を施して増殖した細胞 を回収する場合、①処理工程が煩雑になり、不純 物混入の可能性が多くなること、②増殖した細胞 が上記処理により変性し、細胞本来の機能が損な われる例があること、等の欠点が指摘されている。

本発明は、上記のような問題を解決するために なされたものであり、トリプシン、EDTAのよ うな蛋白分解酵素や化学薬品による処理を施さず に、環境温度を変化させることで、培養・増殖さ せた細胞を支持体表面から剥離・回収することが 可能となるような細胞培養に使用する材料を提供 することを目的とする。

(課題を解決するための手段)

(発明が解決しようとする課題)

本研究者らは、以上のような点に鑑み、鋭意研 究を重ねた結果、細胞支持体表面を特定の水溶性 高分子、即ち、臨界溶解温度(水にある物質を混 合するとき、ある温度では部分的にしか溶けない ため2層に分離しているが、温度を上げるかまた は下げて、ある一定の温度を過ぎると完全に溶解 して1層になることがある。温度を上げて完全裕 解に達する場合の温度を上限臨界溶解温度、温度 を下げて完全に溶解する場合の温度を下限臨界容 解温度という。)を示すようなポリマーにより処 理することにより、細胞培養終了後、温度を変化 させるだけで増殖細胞を囲収することが可能であ り、しかもこの現象は細胞を培養した培養液中に おいても可能であることを見い出した。さらにそ の剥離した細胞は集合状態を保持していることも 見い出した。

即ち、本発明は細胞付着性基材表面上に、水に 対する臨界容解温度が0~80℃の範囲にあるホ モポリマーもしくはコポリマーを被覆してなり、 その総被覆率が5~90%である細胞培養支持体

好ましくない。

本発明に用いるホモポリマーまたはコポリマー は、以下のモノマーの重合または共重合により得 られる。使用し得るモノマーは、これらの化合物 に限定されるものではないが、例えば、アクリル アミド、メタクリルアミドなどの(メタ)アクリル アミド化合物、N-エチルアクリルアミド(単独 重合体の下限臨界溶解温度72°)、N-n-プロ ピルアクリルアミド(問21°)、N-n-プロピ ルメタクリルアミド(筒27℃)、N-イソプロピ ルアクリルアミド(同32°)、N-イソプロピル メタクリルアミド(同43°C)、N-シクロブロビ ルアクリルアミド(同 4 5 °C)、N - シクロプロピ ルメタクリルアミド(問 6 0 °C)、N - エトキシエ チルアクリルアミド(同約35°C)、N-エトキシ エチルメタクリルアミド(同約45°C)、N-テト ラヒドロフルフリルアクリルアミド(同約28℃)、 N-テトラヒドロフルフリルメタクリルアミド(問 約35°C)等のN-アルキル置換(メタ)アクリル アミド誘導体、N,N-ジメチル(メタ)アクリル

材料を提供するものである。

水に対する臨界溶解温度は、通常、水(イオン交換水または蒸留水)との溶解相図を作成して求める。水との溶解相図は臨界溶解温度を求めるポリマーの種々の濃度(重量分率、容積分率、モル分率、モル比等いずれの単位を用いても構わない。)の水溶液を調製し、各々の温度を上下させ、①目視により2相分離を確認する方法の他、②臨界タンパク光の観測による方法、③散乱光強度の観測による方法、④透過光レーザー光の観測による方法、④透過光レーザー光の観測による方法、④透過光レーザー光の観測による方法、④透過光レーザー光の観測による方法、④透過光レーザー光の観測による方法、④透過光レーザー光の観測による方法、毎一般に知られている方法のいずれかを用いて、また、組み合わせて用いて作成される。

被覆に用いられる物質は水溶液中で臨界溶解温度を有する化合物であればすべて用いることができるが、好ましくは0~80℃、より好ましくは0~50℃の臨界溶解温度を有するものである。臨界溶解温度が80℃を越えると細胞が死滅する可能性があるので好ましくない。また、臨界溶解温度が0℃より低いと一般に細胞増殖速度が極度に低下するか、または細胞が死滅してしまうため

アミド、N-エチル-N-メチルアクリルアミド (単独重合体の下限臨界溶解温度56°)、N,N - ジェチルアクリルアミド(同32°)等のN,N - ジアルキル層棒(メタ)アクリルアミド蒸運体. さらに、N-アクリロイルピロリジン(単独重合 体の下限臨界溶解温度56°C)、N-アクリロイ ルピペリジン(同約6℃)等を代表とする1-(1 - オキソー2ープロペニル)- ピロリジン類、1 -(1-オキソー2-プロペニル)-ピペリジン類、 4-(1-オキソー2-プロペニル)-モルホリン、 1-(1-オキソー2-メチルー2-プロペニル) - ピロリジン、1-(1-オキソー2-メチルー 2-プロペニル)-ピペリジン、4-(1-オキソ - 2 - メチル - 2 - プロペニル) - モルホリン等 の環状基を有する(メタ)アクリルアミド誘導体、 メチルビニルエーテル(単独重合体の下限臨界容 解温度35℃)等のビニルエーテル誘導体等であ る。また、増殖細胞の種類によって臨界溶解温度 を調節する必要がある場合や、被覆物質と細胞培 養支持体との相互作用を高める必要が生じた場合

や、細胞支持体の親水、疎水性のバランスを調整する場合などに、上記以外のモノマー類との共重合体、ポリマー同士のグラフトまたはプロック共重合体、あるいはホモポリマー、コポリマーの混合物を用いてもよい。また、ポリマー本来の性質が損なわれない範囲で架橋することも可能である。

被覆を施される細胞付着性基材は細胞が付着する材質ならばいずれでも良く、その材質としては通常細胞培養に用いられるガラス、改質ガラス、ポリスチレン、ポリメチルメタクリレート等の高分子化合物、あるいはセラミックス、金属等が挙げられる。その際、基材表面はオゾン処理、ブラズマ処理、スパッタリング等の処理技術を用いて親水化を施されたものでも良い。形状は、ペトリディッシュに限定されることはなく、ブレート、ファイバー、(多孔質)粒子、また、一般に細胞培養に用いられる容器の形状(フラスコ等)を付与されていても構わない。

本発明においては、このような細胞付着性基材 表面上に、上記0~80℃の臨界溶解温度を有す

細胞付着性基材への被覆方法は、細胞付着性基 材と上記被覆物質を①化学的な反応によって結合 させる方法、②物理的な相互作用を利用する方法、 を単独でまたは併用して行うことができる。被覆 時にモノマーを用いて重合させる場合、そのモノ マーは気体、液体、固体いずれの状態でも良い。 また、ホモポリマー又はコポリマーを用いて被覆 する場合、そのポリマーは、液体、固体状態のい ずれの状態でも良い。これらのものを①化学的な 反応によって結合させる場合、電子線照射(EB)、 γ線照射、紫外線照射、プラズマ処理、コロナ処 理、さらに細胞付着性基材と被覆材料が適当な反 応性官能基を有する場合は、ラジカル反応、アニ オン反応、カチオン反応等の一般に用いられる有 機反応を用いることができる。②物理的な相互作 用による方法としては、被覆材料自身または細胞 付着性基材との相溶性の良いマトリックス(例え ば細胞付着性基材を形成する主モノマー、または これと相溶性の良いモノマーと被覆材料とのグラ フトポリマー、ブロックポリマー等)を媒体とし、

るホモポリマーもしくはコポリマーを被覆するが、その被覆とは基材表面を上部から観察して、被覆されている部分の総面積が付着性基材表面経面積の5~90%に相当するものであり、細胞の剥離性を考えると10~70%が好ましい。被覆部分を上部から観察して、その形態は何ら限定されるものではないが、例えば、ラインとスペースからなのではないが、例えば、ラインとスペースからなるパターン、水玉模様状のパターン、格子状のパターン、その他特殊な形のパターン、あるいはこれらが混ざっている状態等の散細なパターンが好ましい。また、その被覆部の大きさいさらいにではない。さらに、その被覆部分と非被覆部分の配置は規則的であっても、不規則的であっても良いが、その2者は散細に分散されていることが好ましい。

被覆率は、X線光電子分光法(XPS)による元素分析、被覆部もしくは非被覆部への染料や蛍光物質の染色による分析、さらに接触角測定等による表面分析を単独あるいは併用して求めることができる。

塗布、混練等の物理的吸着を用いる方法等がある がこれらに限られるわけではない。

本発明での微細に被覆する方法とは、例えば、 ①被覆時にマスクとなるものを置き非被覆部を設 ける方法、②被覆物質を噴霧し部分的に被覆部を 作成する方法、あるいは、③被覆物質をあらかじ め溶媒中に分散、あるいは乳化させ、これを塗布 することで部分的に被覆部を作成する方法、④被 覆物質をあらかじめ溶液状態にしておき、被覆時 に溶媒の蒸発速度と重合速度をコントロールして 部分的な被覆部を作成する方法、⑤被覆物質を細 胞付着性基材上に部分的に結晶化させ、その結晶 部を化学的な反応によって結合させ、部分的な被 覆部を作成する方法、⑥被覆時に走査型電子ビー ム等で代表されるような走査型機器を利用し部分 的な被覆部を作成する方法、さらに、⑦被覆後に 超音波等により洗浄し部分的な被覆部を作成する 方法、⑧被覆物質をオフセット印刷し、部分的に 被覆部を作成する方法、等を単独または併用する 方法が挙げられるが、本発明は細胞付着性基材上

に被覆部と非被覆部とが上記割合で存在していればその方法は何ら制限されるものではない。

また、細胞支持体上にて培養した細胞を支持体から剥離させ回収するには、上限臨界溶解温度以上もしくは下限臨界溶解温度以下にするだけで良く、細胞を培養していた培養液においてもその他の等張液においても可能であり、目的に合わせて選択することができる。

本発明の細胞培養支持体材料によれば、細胞増殖時には、細胞は非被覆部である細胞付着性基材上に接着し、増殖をする。細胞剥離時には、被覆部である臨界溶解温度が0~80℃の範囲にあるホモポリマーもしくはコポリマーにおいて水分子の占める体積分率が上昇するため細胞は剥離することになる。

本発明の作用をポリーNーイソプロビルアクリ ルアミドを例にとって説明する。ポリーNーイソ プロビルアクリルアミドは水溶液中で約32℃に 下限臨界溶解温度を有することが知られている。 例えば、一般に細胞培養用ペトリディッシュ材料

することが可能である。

この方法によれば、トリプシン、EDTAのような蛋白分解酵素、化学薬品による処理を経ずに細胞培養支持体から培養した細胞を剥離・回収することができるので、①処理工程が簡略化される、②不純物等の混入の可能性が完全になくなる、③増殖した細胞が化学的処理により細胞膜が障害され細胞本来の機能が損なわれることがない、④剥離した細胞が集合状態を保持している等の顕著な特徴を獲得することが可能である。

(実施例)

以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。

実施例1、2、3、4

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア(Becton Dickinson Labware)
社製ファルコン(FALCON)3002ペトリディッシュを用い、培養する細胞としては、ウシ大動
脈血管内皮細胞を採用した。N-イソプロピルア
クリルアミド(モノマー又はポリマー)を表-1に

として用いられるポリスチレン上でN-イソプロピルアクリルアミドを電子線照射(EB)により重合を行うと、下限臨界溶解温度である32℃以上ではポリーN-イソプロピルアクリルアミドの占有体積は小さくなり、ポリマー中の水分子を排除するため、支持体表面は疎水性を示し、逆に32℃以下ではポリーN-イソプロピルアクリルアミドの占有体積は大きくなるのでポリマー中の水分子の占める体積分率が上昇するため、支持体表面は親水性を示すようになる。

通常の細胞培養では、トリプシン、EDTA等の蛋白分解酵素、化学薬品で処理することにより培養・増殖後の細胞を支持体表面から剥離・回収するが、上述したような物性を有するポリードーイソプロピルアクリルアミドを表面コーティングされた支持体では、温度を制御することにより支持体表面の親水・疎水性がコントロールでき細胞の細胞支持体への接着性が変化する。そのため、温度を変化させるだけで培養・増殖後の細胞を破壊することなく細胞支持体から容易に剥離、回収

示す濃度で、イソプロピルアルコールに溶解して、ペトリディッシュに 0.35 m2 添加後、各々表ー1に示すマスク(ステンレス製網)を用い、電子線を照射することにより、ペトリディッシュ表面にポリー N ーイソプロピルアクリルアミドを敵細なパターンとして被覆した。電子線照射終了後、イオン交換水によりペトリディッシュを洗浄し、残存モノマーおよびペトリディッシュ表面に結合していないポリー N ーイソプロピルアクリルアミドを取り除き、クリーンベンチ内で乾燥して、細胞培養支持体を得た。

得られた細胞培養支持体表面上の被覆率は、 X 線光電子分光法(XPS)を用い、入射角30度の分析値より下式に従って求めた。得られた結果を表-2に示す。

また、得られた細胞培養支持体材料は、細胞培養前にエチレンオキサイドガスで級菌し、十分に 脱気した。 ウシ大動脈血管内皮細胞の培養は、得られた細胞支持体上にて、ウシ胎児血清(FCS)を10%含むダルベッコー改変イーグル培地(DMEM)を培地として、5%二酸化炭素中、37℃で行った。十分、細胞が増殖したのを確認後、5℃に冷却し、放置して、付着培養細胞を剥離させ、増殖細胞剥離回収率を下式に従って求めた。結果を表-2に示す。

増殖細胞剥離 回収率(%) 増殖させた細胞 終数

実施例5、6

被覆物質としてN-イソプロピルアクリルアミドの代わりに、N,N-ジエチルアクリルアミドを使用する点以外は、実施例1、2と同様にして、細胞培養支持体を得、被覆率を求め、さらに、細胞培養し、これを剥離、回収し、増殖細胞剥離回収率を求めた。結果を表-2に示す。

比較例]

細胞培養支持体として、ベクトン・ディキンソ

トリディッシュを用い、被覆物質として、N-イソプロピルアクリルアミドさらに、架橋剤として、N,N-メチレンピスアクリルアミド(対N-イソプロピルアクリルアミド0.5 wt%)を用い、マスクを用いずに電子線を照射することにより支持体表面全体にポリマーを被覆し、細胞支持体を得、被覆率を求め、さらに、細胞培養し、これを剥離、回収し、増殖細胞剥離回収率を求めた。結果を表-2に示す。

ン・ラブウェア社製ファルコン3002 ペトリ ディッシュを用い、表面処理を全く行わずに、実 施例と同様の実験を行った。結果を表ー2に示す。

比較例2

細胞培養支持体として、細胞付着性のないベクトン・ディキンソン・ラブウェア社製、一般細菌用ファルコン1007 ペトリディッシュを用い、表面処理を全く行わずに、実施例と同様の実験を行った。結果を表-2に示す。

比較例3、4

細胞培養用支持体として、細胞付着性のないベクトン・ディキンソン・ラブウェア社製、一般細菌用ファルコン1007 ペトリディッシュを用い、実施例1、2と同様にして、細胞培養支持体を得、被覆率を求め、さらに、細胞培養し、これを剥離、回収し、増殖細胞剥離回収率を求めた。結果を表-2に示す。

比較例5

細胞培養用支持体として、ベクトン・ディキン ソン・ラブウェア社製 ファルコン3002 ペ

表 - l

	· 	,	
	もりでもしくは	使用したマスク	電子線
,	ギリマーの濃度	(ステンレス製網)	照射量(Mrad)
実施例1	N - 1770 CA 77 JA72 F E17- 40 w L%	100/1/2	20
実施例2	N - 17702n 779n725 E17- 40wt%	440/+>=,	20
実施例3	N - (1702n 719n7: F E17- 20wt%	751992	20
実施例4	N - 17702x 799x7:F 497-20wt%	100/7/2	15
実施例5	N, N - 917a T19a7if E17- 40wt%	100/1/2	20
実施例6	N , N — 51fa 194a7	440/792	20
比較例1	使用せず	使用せず	0
比較例2	使用せず	使用せず	0
比較例3	N - 17704n 719n7:F E17- 40wt%	100/1/2	20
比較例 4	N — 17702x 779x7:F E17- 40wt%	440/1/2	20
比較例 5	N 477024 7944755 477- 40wt% + N.N-3747 EXT944755	使用せず	20

	被覆率(%)	增殖細胞剥離回収率(%)
実施例Ⅰ	6 5	> 9 0
実施例2	5 3	> 9 0
実施例3	6 0	> 9 0
実施例4	3 5	> 9 0
実施例5	6 7	> 9 0
実施例6	5 4	> 9 0
比較例上	0	全く剥離せず(回収不可能)
比較例2	0	[細胞が付着/増殖せず]
比較例3	6 4	[細胞が付着/増殖せず]
比較例 4	5 1	[細胞が付着/増殖せず]
比較例5	9 4	[細胞が付着/増殖せず]

なお、実施例、比較例とも支持体の親・疎水性 を調べるために、フェース(FACE)接触角計 (CA-D型)[協和界面科学株式会社製]および付 属品として、三態系測定装置を用い液滴法で接触 角を測定した。結果を表-3に示す。

ており、これは、数細なパターンとして被覆されたポリN-イソプロピルアクリルアミドまたはポリN,N-ジェチルアクリルアミドにより、支持体材料表面が疎水性から親水性へと変化していることを示している。このような材料を使用した実施例1、2、3、4、5、6の場合、表-2に示されるように、温度を低下させると、付着細胞は、培養支持体から良好に剥離し、回収することが可能であった。

一方、比較例1のように、細胞付着性基材上に 表面処理を施さない場合は、表-3に示されるように、周りの温度を下げても接触角はほとんど変 化せず、支持体材料表面は疎水性のままであった。 この支持体材料では、表-2に示されるように、 温度を低下させても付着細胞の剥離現象は観察されなかった。

また、比較例2のように、細胞付着性の認められない基材を用いた場合、表-2に示すように、細胞は付着/増殖ともに認められず、また、この表面に比較例3、4のように、実施例1、2と問

表 - 3

	3 7 ℃における 接触角(度)	5℃における 接触角(度)
実施例 1	4 1	2 4
実施例2	4 7	2 9
実施例3	4 2	2 6
実施例4	4 9	3 3
実施例5	4 2	2 4
実施例6	4 5	2 6
比較例1	5 7	6 4
比較例2	8 5	8 7
比較例3	6 7	7 0
比較例4	7 0	7 1
比較例5	3 9	2 0

以上の実施例および比較例の結果より、細胞付着性基材表面上にN-イソプロピルアクリルアミドまたはN,N-ジエチルアクリルアミドで表面 . 処理を行った実施例1、2、3、4、5、6では、表-3に示されるように、支持体材料周囲の温度を37℃から5℃に下げることで接触角が減少し

様にポリマーを被覆しても、細胞の付着は認められなかった。

さらに、比較例5のように、細胞付着性基材表面全体に、ポリマーを被覆した場合においても、 表-2で示す通り、細胞は付着しなかった。

実施例7

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア社製 ファルコン3002
ベトリディッシュを用い、その表面に、Nーイソプロピルアクリルアミド30et%イソプロピルアルコール溶液を0.1me噴霧後、20Mradの電子線を照射し、ベトリディッシュ表面にボリーNーイソプロピルアクリルアミドを散細なパターンとして被覆した。後の操作は、実施例1、2、3、4、5、6と同様に細胞培養支持体を得、被覆率、接触角を求め、さらに細胞を培養、これを剥離、回収して、増殖細胞剥離回収率を求めた。結果を表ー4に示す。

実施例8

被覆物質として、Nーイソプロピルアクリルア

ミドの代わりに、N-n-プロピルアクリルアミドを使用する点以外は、実施例7と同様に細胞支持体を得、被覆率、接触角を求め、さらに細胞を培養し、これを剥離、回収して増殖細胞剥離回収率を求めた。結果を表-4に示す。

実施例 9

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア社製 ファルコン3002 ベトリディッシュを用い、その表面に、N-イソプロピルアクリルアミド結晶微粉末10g(平均粒径10μ)をヘキサン50g中に分散させ、その懸濁液をベトリディッシュに0.1 m2鉱加後、15Mradの電子線を照射し、ベトリディッシュ表面にポリーN-イソプロピルアクリルアミドを微細なパターンとして被覆した。後の操作は、実施例1、2、3、4、5、6と同様に細胞培養支持体を得、被覆率、接触角を求め、さらに細胞を培養し、これを剥離、回収して、増殖細胞剥離回収率を求めた。結果を表-4に示す。

実施例 1 0

シュ表面に結合していないポリーN-イソプロピルアクリルアミドを取り除き、クリーンベンチ内で乾燥することによりポリーN-イソプロピルアクリルアミドが敬細なパターンとして被覆した細胞培養支持体を得た。後の操作は、実施例1、2、3、4、5、6と同様に、被覆率、接触角を求め、さらに細胞を培養し、これを剥離、回収して、増殖細胞剥離回収率を求めた。結果を表-4に示す。

実施例12

被覆物質として、N-イソプロピルアクリルアミドの代わりに、N-エトキシエチルアクリルアミドを使用する点以外は、実施例11と同様に、細胞支持体を得、被覆率、接触角を求め、さらに細胞を培養し、これを剥離、回収して増殖細胞剥離回収率を求めた。結果を表-4に示す。

実施例13

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア社製 ファルコン 3 0 0 2 ペトリディッシュを用い、その表面に、N-イソブロビルアクリルアミド 5 0 vt % イソブロビルア

被覆物質として、N-イソプロピルアクリルアミドの代わりに、N-イソプロピルメタクリルアミドを使用する点以外は、実施例9と同様に細胞支持体を得、被覆率、接触角を求めた。次にこのものに対しては45℃で細胞を培養し、以下は実施例9と同様にこれを剥離、回収して、増殖細胞剥離回収率を求めた。結果を表-4に示す。

実施例!」

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア社製 ファルコン3002
ベトリディッシュを用い、その表面に、N-イソプロピルアクリルアミド55 wt%イソプロピルアルコール溶液を0.35 ml添加後、25 Mradの電子線を照射する。その際、照射部付近の温度を40℃とし、さらにその部分へ窒素ガスを毎時9㎡ 導入した。イソプロピルアルコール溶液は、照射中に突沸し、ベトリディッシュの表面は見かけ上、ポリーN-イソプロピルアクリルアミドが発泡、乾燥した状態で得られた。その後、イオン交換水により、洗浄し、幾存モノマーおよびベトリディッ

ルコール溶液を0.1 m & 添加後、26°Cクリーンベンチ内で40分間放置し、溶解しているN-イソプロピルアクリルアミドを部分的に結晶折出させた後、15 M radの電子線を照射し、ペトリディッシュ表面にポリーN-イソプロピルアクリルアミドを微細なパターンとして被覆した。後の操作1、2、3、4、5、6と同様にして、細胞培養支持体を得、被覆率、接触角を求め、さらに細胞を培養し、これを剥離、回収して、増殖細胞剥離回収率を求めた。結果を表-4に示す。

比較例的

クリーンベンチ内の放置時間を4時間とし、ベトリディッシュ表面全体に、N-イソプロビルアクリルアミドを結晶折出させる点以外は、実施例13と同様にして、ペトリディッシュ表面全体にポリーN-イソプロビルアクリルアミドが被覆された細胞培養支持体を得、被覆率、接触角を求め、さらに細胞を培養し、これを剥離、回収して、増殖を細胞剥離回収率を求めた。結果を表-4に示す。

実施例14

細胞培養支持体基材として、ベクトン・ディキ ンソン・ラブウェア社製 ファルコン3002 ペトリディッシュを用い、その表面にN-イソプ ロビルアクリルアミド45vt%イソプロビルアル コール溶液を 0.2 ml添加後、 20 Mrad電子線を 照射し、その後、イオン交換水中で超音波洗浄を 30分間行い、残存モノマーおよびペトリディッ シュ表面に結合していない、ポリーN-イソプロ ピルアクリルアミドを取り除き、クリーンベンチ 内で乾燥することにより、ポリーNーイソプロピ ルアクリルアミドが散細なパターンとして被覆し た細胞培養支持体を得た。後の操作は、実施例1、 2、3、4、5、6と同様に、被覆率、接触角を 求め、さらに、細胞を培養し、これを剥離、回収 して、増殖細胞剥離回収率を求めた。結果を表っ 4に示す。

実施例15

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア社製 ファルコン3002

数~4

	被覆率	接触角(度)		增殖細胞剥離
	(%)	37℃	5 ° C	回収率(%)
実施例 7	32	49	32	>90
実施例 8	36	49	34	>90
実施例 9	68	39	24	>90
実施例10	67	40 (45°)	23	>90
実施例]]	57	45	27	>90
実施例12	55	47	29	>90
実施例13	60	43	25	>90
実施例14	42	48	28	>90
実施例15	31	50	33	>90
比較例 6	95	38	20	細胞が付着/ 増殖せず

実施例7から15の結果より、ペトリディッシュ 表面上に非被覆部として細胞付着性基材部分が数 ・細なパターン状に存在していれば、増殖細胞剥離 回収率は90%以上の値が得られ、この現象を実 現するための方法は、いずれの方法によっても可 ベトリディッシュを用い、その表面に、N-イソプロピルアクリルアミド20vt%イソプロピルアルコール溶液をオフセット印刷し、20Mradの電子線を照射し、ベトリディッシュ表面にポリーN-イソプロピルアクリルアミドを微細なパターンとして被覆した。後の操作は、実施例1、2、3、4、5、6と同様に細胞培養支持体を得、被覆率、接触角を求め、さらに、細胞を培養し、これを剥離、回収して、増殖細胞剥離回収率を求めた。結果を表-4に示す。

能であることが分かる。

また、比較例6においては、比較例5と同様、 細胞付着性基材上に被覆されているものの、ポリートーイソプロビルアクリルアミドがペトリディッシュ表面上を95%被覆しているため、細胞は付着せず増殖も認められなかった。

実施例16

実施例1で得られた剥離細胞の損傷度合を確認するため、これを遠心分離(600G、5分)により回収し、得られた2×10°個の細胞をベクトン・ディキンソン・ラブウェア社製 ファルコン3002 ペトリディッシュ上で再び培養させた。細胞の培養は実施例1と同様の方法を採用した。結果を表-5に示す。

比較例7

比較例1で培養した付着細胞を0.05%トリプシン-0.02%EDTA処理し、剥離させた細胞の損傷度合を確認するため、これを遠心分離(600G、5分)することにより回収し、得られた2×10°個の細胞をベクトン・ディキンソン・

手続補正書

(E

平成 3年10月23日

ッシュ上で再び培養させた。培養は実施例1と同様の方法を採用した。結果を表-5に示す。

ラプウェア社製 ファルコン3002 ペトリディ

表 - 5

	培養開始時の細胞数	4 日後の細胞数
実施例16	2 × 1 0 °	2 × 1 0 °
比較例7	2 × 1 0 *	1 × 1 0 •

実施例16と比較例7の結果から、剥離回収細胞の損傷度合については、表-5に示すように、実施例16では培養開始時の10倍まで再増強させることが可能であるが、比較例7では5倍までしか再増強させることができなかった。このことは、本発明の剥離回収細胞は従来のそれよりも損傷度が小さいことを意味する。

(発明の効果)

本発明は、低温処理という簡便な操作で、不純 物等を全く混入させることなく、しかも、従来の 方法と比較すると細胞機能を十分に保持しながら、 培養・回収の繰り返し操作を行うことができる。

7. 補正の内容

(1)明細書第31頁下から第6行、「を意味する。」の後に

「実施例17、18、19

細胞培養支持体基材として、ベクトン・ディキンソン・ラブウェア社製ファルコン3002ペトリディッシュを用い、Nーイソプロピルアクリルアミドを40 wt%濃度のイソプロピルアルコール溶液として、ペトリディッシュ上に0.1 m1添加後、100メッシュのマスク(ポリエステル製網)を用い、表ー6に示す電子線を照射することにより、ベトリディッシュ表面にポリーNーイソプロピルアクリルアミドを微細なパターンとして被覆した。後の操作は、実施例1、2、3、4、5、6と同様に細胞培養支持体を得、被覆率、接触角を求め、さらに細胞を培養、これを剥離回収して、増殖細胞剥離回収率を求めた。結果を表ー7に示す。

<u>実施例20、21、22</u>

細胞培養支持体基材として、ベクトン・ディキ

特許庁長官殿

1.事件の表示

平成 2年 特許康 第210885号

2. 発明の名称

細胞培養支持体材料

3. 補正をする者

事件との関係 特許出願人 名称 花王株式会社

(他1名)

4. 代 理 人

住所 〒540 大阪府大阪市中央区域見2丁目1番61号 ツイン21 MIDタワー内 電話(06)949-1261 FAX(06)949-0361

氏名 弁理士 (6214) 青 山

Ш

5 , 補正命令の日付

自 発

6. 補正の対象

明細書の「発明の詳細な説明」の欄

特許庁 13.10.25

方式

ンソン・ラブウェア社製ファルコン3002ベトリディッシュを用い、Nーイソプロピルアクリルアミドを40 wt % 濃度のイソプロピルアルコール溶液として、ペトリディッシュ上に0.1 ml 添加後、135メッシュのマスク(ポリエステル製網)を用い、表-6に示す電子線を照射することにより、ベトリディッシュ表面にポリーNーイソプロピルアクリルアミドを敬細なパターンとして被覆した。後の操作は、実施例1、2、3、4、5、6と同様に細胞培養支持体を得、被覆率、接触角を求め、さらに細胞を培養、これを剥離回収して、増殖細胞剥離回収率を求めた。結果を表-7に示す。

表 - 6

	電子線照射線量(Nrad)
実施例17	1 5
実施例18	2 0
実施例19	2 5
実施例20	1 5
実施例21	2 0
実施例22	2 5

表-7

	被覆率	接触角(度)		增殖細胞剥離
	(%)	37℃	5℃	回収率(%)
実施例17	38	45	30	>90
実施例18	40	47	30	>90
実施例19	43	47	31	>90
実施例20	35	43	29	>90
実施例21	37	45	30	>90
実施例22	39	46	32	>90

を挿入する。

以上