1 Formal Development

Lemma 1 (Value inversion). Inversion lemma for values:

- 1. If v: uint, then v = n
- 2. If v: bool, then $v = \top$ or $v = \bot$
- 3. If $v : \sigma[n]$, then $v = [c_i]_n$ and $c_i : \sigma$

Lemma 2 (Consistency of source type and target type). If $\psi \sim \tau$, then one of the following holds:

- 1. $\psi = \sigma$ and $\tau = \sigma^{\ell}$.
- 2. $\psi = \sigma[n]$ and $\tau = \sigma^{\ell}[n]$.

Lemma 3 (Consistency of type environment and source runtime environment). If $\Gamma \sim \rho$ and $\Gamma(x) = \tau$, then $\rho(x) = v$ s.t. $v : \psi$ and $\psi \sim \tau$.

Lemma 4 (Compilation of source environment). If $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}$; $\widehat{\rho}_1, \widehat{\rho}_2$ and $\Gamma(x) = \tau$, then one of the following holds:

1.
$$\tau = \sigma^{\mathcal{P}}$$
, $\rho(x) = c$, and $\widetilde{\rho}(x) = c$.

2.
$$\tau = \sigma^m$$
, $\rho(x) = c$, $\widetilde{\rho}(x) = r$, and $(\widehat{\rho}_1[r], \widehat{\rho}_2[r]) = \mathcal{E}_m(c)$.

3.
$$\tau = \sigma^{\mathcal{P}}[n]$$
, $\rho(x) = [c_i]_n$, and $\widetilde{\rho}(x) = [c_i]_n$.

4.
$$\tau = \sigma^m[n], \ \rho(x) = [c_i]_n, \ \widetilde{\rho}(x) = [r_i]_n, \ (\widehat{\rho}_1[r_i], \widehat{\rho}_2[r_i]) = \mathcal{E}_m(c_i)$$

Lemma 5 (Soundness of scalar expressions). *If*

- 1. $\Gamma \vdash e : \sigma^{\ell} \leadsto \widetilde{e}$
- 2. $\Gamma \sim \rho$
- 3. $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$

Then

- (a) $\rho \vdash e \downarrow v$
- (b) $v:\sigma$
- (c) $\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa$

where either $\ell = \mathcal{P}$, $\widetilde{v} = v$, and $\kappa = \cdot$ or $\exists r, m$. $\ell = m$, $\widetilde{v} = r$, $\widehat{\rho}_1$, $\widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}_1'$, $\widehat{\rho}_2'$; \cdot , and $\mathcal{D}_m(\widehat{\rho}_1[r], \widehat{\rho}_2'[r]) = v$.

Proof. Proof by induction on the derivation (1), case analysis on the last rule. Case S_CONS: e = c, $\sigma = \delta(c)$, $\ell = \mathcal{P}$, $\widetilde{e} = c$.

- (a) follows from SE_CONST.
- (b) follows from V_CONS.
- (c) follows from Ee_const with $\kappa = \cdot$.

And first case of either holds.

Case S_VAR: e = x, $\sigma^{\ell} = \tau$, $\tilde{e} = x$.

Lemma 6 (Soundness of array expressions). *If*

1.
$$\Gamma \vdash e : \sigma^{\ell}[n] \leadsto \widetilde{e}$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

Then

(a)
$$\rho \vdash e \downarrow [c_i]_n$$

(b)
$$[c_i]_n : \sigma[n]$$

(c)
$$\widetilde{\rho} \vdash \widetilde{e} \Downarrow \widetilde{v}; \kappa$$

where either $\widetilde{v} = [c_i]_n$ and $\kappa = \cdot$

or $\exists r_i, m. \ \widetilde{v} = [r_i]_n, \ \widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; \cdot, \ and \ \forall i. \ \mathcal{D}_m(\widehat{\rho}'_1[r_i], \widehat{\rho}'_2[r_i]) =$

Proof. Proof by Induction on (1).

Lemma 7 (Target semantics correspondence). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

3.
$$\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$$

4.
$$\rho \vdash s \downarrow \rho'; O$$

then:

(a)
$$\widetilde{\rho} \vdash \widetilde{s} \Longrightarrow \widetilde{\rho}'; \kappa$$

(b)
$$\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; O$$

Lemma 8 (Soundness of source semantics). If:

1.
$$\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$$

2.
$$\Gamma \sim \rho$$

then, $\rho \vdash s \downarrow \rho'; O$

Theorem 9 (Soundness). If:

- 1. $\Gamma \vdash s \leadsto \widetilde{s} \mid \Gamma'$
- 2. $\Gamma \sim \rho$
- 3. $\Gamma \vdash \rho \hookrightarrow \widetilde{\rho}; \widehat{\rho}_1, \widehat{\rho}_2$

then:

- (a) $\rho \vdash s \downarrow \rho'; O$
- $(b) \ \widetilde{\rho} \vdash \widetilde{s} \Longrightarrow \widetilde{\rho}'; \kappa$
- (c) $\widehat{\rho}_1, \widehat{\rho}_2 \vdash \kappa \longmapsto \widehat{\rho}'_1, \widehat{\rho}'_2; O$

Proof. Follows from Lemma 7 and 8.