1 Сходимост

1.1 Дефиниции

Нека $\{a_n\}_0^\infty$ е (безкрайна) числова редица, $b \in \mathbb{R}$.

- $\sum_{n=0}^{\infty} a_n (x-b)^n$ се нарича **степенен ред** около b.
- с транслация на аргумента $\sum_{n=0}^{\infty} a_n x^n$, т.е. b=0.
- Област на сходимост $\left\{x \in \mathbb{R} : \text{редът} \quad \sum_{n=0}^{\infty} a_n \left(x-b\right)^n \quad \text{е сходящ} \right\}.$
- В точката b (точката 0) степенният ред е сходящ.

1.2 Примери

1.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 — област на сходимост: \mathbb{R}

- 2. $\sum_{n=0}^{\infty} n!.x^n$ област на сходимост: $\{0\}$
- 3. $\sum_{n=0}^{\infty} x^n$ област на сходимост: (-1, 1)
- 4. $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$ област на сходимост: [0, 2)
- 5. $\sum_{n=1}^{\infty} \frac{(-x-3)^n}{n} \text{област на сходимост:} \quad (-4, -2]$
- 6. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} \text{област на сходимост:} \quad [-1, 1]$
- 7. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \text{област на сходимост:} \quad \mathbb{R}$
- 8. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \text{област на сходимост:} \quad \mathbb{R}$

1.3 Радиус на сходимост

1.3.1 Трихотомия

За степенния ред $\sum_{n=0}^{\infty} a_n x^n$ е изпълнено точно едно от трите:

- 1. Редът е сходящ само за x = 0.
- 2. Съществува число R > 0, за което
 - ullet при |x| < R редът е абсолютно сходящ;
 - при |x| > R редът е разходящ.
- 3. Редът е абсолютно сходящ за всяко $x \in \mathbb{R}$.

1.3.2 Основна лема

Нека степенният ред $\sum_{n=0}^{\infty} a_n x^n$ е сходящ при $x=u\neq 0$. Тогава той е абсолютно сходящ за всяко |x|<|u|.

Доказателство:
$$|a_n x^n| = |a_n u^n| \left| \frac{x}{u} \right|^n \le \left| \frac{x}{u} \right|^n$$
 за $n \ge n_0$.

 $\mathit{Cnedcmeue}\colon \ \mathrm{Pедът}\ \sum_{n=0}^\infty a_n x^n$ е абсолютно сходящ за всяко $x\in\mathbb{R}$ тогава и само тогава, когато той е сходящ за всяко $x\in\mathbb{R}$.

1.3.3 Доказателство на трихотомията

Нека редът не удовлетворява 1. и не удовлетворява 3. Тогава можем да предполагаме, че за $x=u_1\neq 0$ степенният ред е сходящ, а за $x=u_2\neq 0$ — разходящ. Множеството

$$\mathcal{R} = \left\{ 0 < r : \sum_{n=0}^{\infty} a_n x^n \text{ е абсолютно сходящ за всяко } |x| < r
ight\}$$

е непразно ($|u_1| \in \mathcal{R}$) и ограничено отгоре ($|u_2|$ е горна граница). Полагаме $R = \sup \mathcal{R}$.

- ullet За |x| < R има $r \in \mathcal{R}$ с |x| < r , т.е. редът е абсолютно сходящ.
- За |x| > R редът е разходящ, защото ако е сходящ, то (съгласно основната лема) $|x| \in \mathcal{R}$.

1.3.4 Дефиниция

 $R \in [0, +\infty) \cup \{+\infty\}$ се нарича радиус на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$, ако

- при |x| < R редът е абсолютно сходящ (включва и R = 0 , $R = +\infty$);
- при |x| > R редът е разходящ (включва и R = 0, $R = +\infty$).

1.3.5 Формула на Адамар

За радиуса R на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$ е изпълнено $R = \frac{1}{\limsup\limits_{n \to \infty} \sqrt[n]{|a_n|}}$.

(Дефиниция: За неограничена отгоре редица $\{b_n\}_0^\infty$ полагаме $\limsup_{n\to\infty} b_n = +\infty$.)

Доказателство:

- 1. случай: редицата $\left\{\sqrt[n]{|a_n|}\right\}_1^\infty$ е неограничена отгоре. Тогава съществува подредица с $\lim_{k\to\infty}\sqrt[n_k]{|a_{n_k}|}=+\infty$. Тогава за $x\neq 0$ общият член на реда $\sum_{n=0}^\infty |a_nx^n|$ не клони към 0. Степенният ред е сходящ само за x=0 (R=0).
- 2. случай: $0 < L = \limsup_{n \to \infty} \sqrt[n]{|a_n|} < +\infty$.
 - При $0<|x|<\frac{1}{L}$ имаме 0< L|x|<1. Нека 0< L|x|< q<1, тогава $\sqrt[n]{|a_n|}\leq \frac{q}{|x|}$ за $n\geq n_0$. Следователно, $\sqrt[n]{|a_nx^n|}\leq q<1$, т.е. степенният ред е абсолютно сходящ.
 - Нека $|x|>\frac{1}{L}$. Имаме подредица $\lim_{k\to\infty}\sqrt[n_k]{|a_{n_k}|}=L$, тогава $\lim_{k\to\infty}\sqrt[n_k]{|a_{n_k}x^{n_k}|}=L|x|>1$, т.е. общият член на реда $\sum_{n=0}^\infty |a_nx^n|$ не клони към 0 . Степенният ред е разходящ.
- 3. случай: $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = 0$. Тогава $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0$ и $\lim_{n\to\infty} \sqrt[n]{|a_nx^n|} = 0$ за всяко $x\in\mathbb{R}$. Степенният е абсолютно сходящ $(R=+\infty)$.

Следствие

Ако съществува границата $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$, то $R = \frac{1}{L}$.

Удобна формула

Ако съществува границата $L = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$, то R = L .

1.3.6 Примери

•
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$ $R = +\infty$

•
$$\sum_{n=0}^{\infty} x^n$$
, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$, $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ - $R = 1$

2 Свойства на сумата на степенен ред

2.1 Диференциране

2.1.1 Формулировка

Нека
$$S(x) = \sum_{n=0}^{\infty} a_n x^n$$
 има радиус на сходимост $R > 0$. Тогава

- 1. $\sum_{n=1}^{\infty} n a_n x^{n-1}$ има същия радиус на сходимост.
- 2. S(x) има производна за всяко $x \in (-R, R)$ и $S'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$.
- 3. За всяко $k \in \mathbb{N}$ S(x) има производна ред k за всяко $x \in (-R, R)$ и

$$S^{(k)}(x) = \sum_{n=k}^{\infty} k! \binom{n}{k} a_n x^{n-k} .$$

2.1.2 Доказателство

- 1. Нека 0 < r < R. Тогава $\sum_{n=0}^{\infty} |a_n r^n|$, r > 0 е сходящ и, понеже $\left| na_n x^{n-1} \right| \ = \ |a_n r^n| \cdot \frac{1}{r} \cdot n \left| \frac{x}{r} \right|^{n-1} , \text{ то } \sum_{n=1}^{\infty} na_n x^{n-1} \ \text{ е абсолютно сходящ за всяко } |x| < r \, .$ Следователно, $r \leq R'$, откъдето $R \leq R'$.
- 2. Нека 0 < r < R'. Тогава $\sum_{n=1}^{\infty} \left| na_n r^{n-1} \right|$, r > 0 е сходящ и, понеже $|a_n x^n| = \left| na_n r^{n-1} \right| \cdot \frac{r}{n} \cdot \left| \frac{x}{r} \right|^n$, то $\sum_{n=0}^{\infty} a_n x^n$ е абсолютно сходящ за всяко |x| < r. Следователно, $r \le R$, откъдето $R' \le R$.
- 3. Нека $|x_0| < R$. Избираме $|x_0| < r < R$. Полагаме $C = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1) \, |a_n| \, r^{n-2} \, .$ Тогава за |x| < r е изпълнено

$$\left| \frac{\sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n x_0^n}{x - x_0} - \sum_{n=1}^{\infty} n a_n x_0^{n-1} \right| = \left| \sum_{n=1}^{\infty} a_n \left(\sum_{k=0}^{n-1} x^{n-1-k} x_0^k - n x_0^{n-1} \right) \right| =$$

$$= \left| \sum_{n=2}^{\infty} a_n \left(\sum_{k=0}^{n-1} x_0^k (x - x_0) \sum_{p=0}^{n-2-k} x^{n-2-k-p} x_0^p \right) \right| \le |x - x_0| \sum_{n=2}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{p=0}^{\infty} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{k=0}^{n-1} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{k=0}^{n-2-k} |a_n| \left(\sum_{k=0}^{n-1} \sum_{p=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{k=0}^{n-2-k} |a_n| \left(\sum_{k=0}^{n-1} \sum_{k=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{k=0}^{n-2-k} |a_n| \left(\sum_{k=0}^{n-1} \sum_{k=0}^{n-2-k} r^{n-2} \right) = C |x - x_0| \sum_{k=0}^{n-2-k} |a_n| \left($$

Примери

- За всяко $x \in \mathbb{R}$ е изпълнено $\left(\sum_{n=1}^{\infty} \frac{x^n}{n!}\right)' = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$, следователно $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- За всяко $x \in \mathbb{R}$ е изпълнено $\left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}\right)' = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$.

- 3. За всяко $x \in \mathbb{R}$ е изпълнено $\left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\right)' = -\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$.
- 4. За всяко $x \in (-1,1)$ е изпълнено $\left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}\right)' = \sum_{n=1}^{\infty} (-1)^{n-1} x^{n-1} = \frac{1}{1+x}$, следователно $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$.
- 5. За всяко $x \in (-1,1)$ е изпълнено $\left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}\right)' = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$, следователно $\operatorname{arctg} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$.

2.2 Непрекъснатост

2.2.1 Формулировка

Нека $S(x) = \sum_{n=0}^{\infty} a_n x^n$ има радиус на сходимост $0 < R < +\infty$ и редът $S = \sum_{n=0}^{\infty} a_n R^n$ е сходящ

(или
$$S = \sum_{n=0}^{\infty} a_n (-R)^n$$
 е сходящ). Тогава
$$\lim_{x\to R,\,x< R} S(x) = S \ \text{(съответно} \ \lim_{x\to -R,\,x>-R} S(x) = S \ \text{)}.$$

2.2.2 Доказателство за R=1

Нека $0<\varepsilon$. Съществува $N\in\mathbb{N}$, за което $\left|\sum_{k=n+1}^{n+p}a_k\right|<\frac{\varepsilon}{2}$ за всяко $n\geq N$ и всяко $p\in\mathbb{N}$.

Тогава за всяко 0 < x < 1

$$\left| \sum_{n=N+1}^{N+p} a_n \left(1 - x^n \right) \right| = (1-x) \left| \sum_{n=N+1}^{N+p} a_n \sum_{k=0}^{n-1} x^k \right| = (1-x) \left| \sum_{k=0}^{N} x^k \sum_{n=N+1}^{N+p} a_n + \sum_{k=N+1}^{N+p-1} x^k \sum_{n=k+1}^{N+p} a_n \right| \le \left| \sum_{n=N+1}^{N+p} a_n \left(1 - x^n \right) \right| = \left| \sum_{n=$$

$$\leq (1-x)\sum_{k=0}^{N} x^k \left| \sum_{n=N+1}^{N+p} a_n \right| + \sum_{k=N+1}^{N+p-1} x^k \left| \sum_{n=k+1}^{N+p} a_n \right| < \frac{\varepsilon}{2} (1-x) \sum_{k=0}^{N+p-1} x^k < \frac{\varepsilon}{2}$$

за всяко $p \in \mathbb{N}$. Следователно, $\left|\sum_{n=N+1}^{\infty} a_n \left(1-x^n\right)\right| \leq \frac{\varepsilon}{2}$ за всяко 0 < x < 1 .

Съществува
$$0<\delta<1$$
 , за което $\left|\sum_{n=0}^N a_n \left(1-x^n\right)\right|<rac{arepsilon}{2}$ за всяко $1-\delta< x<1$. Тогава

$$\left| \sum_{n=0}^{\infty} a_n \left(1 - x^n \right) \right| < \varepsilon \text{ за всяко } 1 - \delta < x < 1.$$

2.2.3 Примери

1.
$$\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
.

2.
$$\frac{\pi}{4} = \arctan 1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
.

3 Ред на Маклорен за някои функции

3.1 Ред на Тейлор

з.1.1 Дефиниция

Нека f(x) има производни от всеки ред в околност на b .

Редът
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (x-b)^n$$
 се нарича **ред на Тейлор** за $f(x)$ около b .

з.1.2 Необходими условия

Нека
$$f(x) = \sum_{n=0}^{\infty} a_n (x-b)^n$$
 има радиус на сходимост $0 < R < +\infty$. Тогава

ullet f(x) има производни от всеки ред в околност на b .

$$\bullet \qquad a_n = \frac{f^{(n)}(b)}{n!} \ .$$

з.1.3 Пример

Функцията

$$F(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0 \\ 0 & x \le 0 \end{cases}$$

- ullet има производни от всеки ред навсякъде в ${\mathbb R}$.
- редът и́ на Тейлор около 0 е сходящ.
- ullet сумата му не съвпада с F(x) .

з.1.4 Сходимост

Нека f(x) има производни от всеки ред в околност на b .

Редът на Тейлор $\sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (x-b)^n$ е сходящ и сумата му съвпада с f(x) за онези x , за които

$$\lim_{n \to \infty} \left(f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!} (x - b)^{k} \right) = 0 \quad \left(f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!} (x - b)^{k} = R_{n+1}(x, b) \right).$$

3.2 Ред на Маклорен

з.2.1 Примери

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 за всяко $x \in \mathbb{R}$.

2.
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 за всяко $x \in \mathbb{R}$.

- 3. $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$ за всяко $x \in \mathbb{R}$.
- 4. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ за всяко $x \in (-1, 1)$.
- 5. $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$ за всяко $x \in (-1, 1]$.
- 6. $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ за всяко $x \in [-1, 1]$.
- 7. $(1+x)^p = \sum_{n=0}^{\infty} \binom{p}{n} x^n$ за всяко $x \in (-1, 1)$.
- 8.

(a)
$$\frac{1}{\sqrt{1-x^2}} = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \cdot x^{2n} \text{ за всяко } x \in (-1, 1).$$

- (б) $\arcsin x = x + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)} \cdot x^{2n+1}$ за всяко $x \in [-1, 1]$.
- (в) $x = \sin x + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)} \cdot \sin^{2n+1} x$ за всяко $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.
- (Γ) $\frac{\pi^2}{8} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$.
- $(д) \qquad \frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} \ .$
- 9
- (a) $\frac{1}{\sqrt{1+x^2}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n)!!} \cdot x^{2n} \text{ за всяко } x \in [-1, 1].$
- (б) $\ln\left(x+\sqrt{1+x^2}\right) = x + \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n)!! (2n+1)} \cdot x^{2n+1}$ за всяко $x \in [-1, 1]$.