Representación: caso general

Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa

2022

Sea L un retículo. Un subconjunto J de L no vacío es llamado ideal si

- 1. Si $a \in J$ y $b \le a$, entonces $b \in J$.
- 2. Si $a, b \in J$, entonces $a \vee b \in J$.

Definición 2

Diremos que un ideal I de un retículo L es primo si cumple que para todos $a,b\in L$

$$a \wedge b \in I \implies a \in I \text{ o } b \in I.$$

Definición 3

Sea L un retículo e I un ideal propio de L. Entonces I es dicho a ser un ideal máximal de L si el único ideal que contiene propiamente a I es L.

Sea L un retículo. Un subconjunto J de L no vacío es llamado ideal si

- 1. Si $a \in J$ y $b \le a$, entonces $b \in J$.
- 2. Si $a, b \in J$, entonces $a \vee b \in J$.

Definición 2

Diremos que un ideal I de un retículo L es primo si cumple que para todos $a,b\in L$

$$a \wedge b \in I \implies a \in I \text{ o } b \in I.$$

Definición 3

Sea L un retículo e I un ideal propio de L. Entonces I es dicho a ser un ideal máximal de L si el único ideal que contiene propiamente a I es L.

Sea L un retículo. Un subconjunto J de L no vacío es llamado ideal si

- 1. Si $a \in J$ y $b \le a$, entonces $b \in J$.
- 2. Si $a, b \in J$, entonces $a \vee b \in J$.

Definición 2

Diremos que un ideal I de un retículo L es primo si cumple que para todos $a,b\in L$

$$a \wedge b \in I \implies a \in I \text{ o } b \in I.$$

Definición 3

Sea L un retículo e I un ideal propio de L. Entonces I es dicho a ser un ideal máximal de L si el único ideal que contiene propiamente a I es L.

Sea P un conjunto ordenado no vacío en el cual cada cada cadena no vacía tiene una cota superior (en P). Entonces P tiene un elemento máximal.

Lema de Zorn 2

Sea \mathcal{A} una familia de conjuntos tal que $\bigcup_{i \in I} A_i \in \mathcal{A}$ siempre que $\{A_i\}_{i \in I}$ es una cadena no vacía en $\langle \mathcal{A}, \subseteq \rangle$. Entonces \mathcal{A} tiene un elemento máximal

Teorema del ideal primo para retículos distributivos

Sea L un retículo distributivo. Si I es un ideal y F un filtro de L tales que $I \cap F = \emptyset$, entonces existe un ideal primo P tal que $I \subseteq P$ y $P \cap F = \emptyset$.

Teorema del ideal primo para álgebras de Boole

Dado un ideal propio I de un álgebra de Boole B, existe un ideal primo P de B tal que $I \subseteq P$.

Sea P un conjunto ordenado no vacío en el cual cada cada cadena no vacía tiene una cota superior (en P). Entonces P tiene un elemento máximal.

Lema de Zorn 2

Sea \mathcal{A} una familia de conjuntos tal que $\bigcup_{i \in I} A_i \in \mathcal{A}$ siempre que $\{A_i\}_{i \in I}$ es una cadena no vacía en $\langle \mathcal{A}, \subseteq \rangle$. Entonces \mathcal{A} tiene un elemento máximal.

Teorema del ideal primo para retículos distributivos Sea L un retículo distributivo. Si I es un ideal y F un filtro de L tales que $I \cap F = \emptyset$, entonces existe un ideal primo P tal que $I \subseteq P$ y $P \cap F = \emptyset$.

Teorema del ideal primo para álgebras de Boole Dado un ideal propio I de un álgebra de Boole B, existe un ideal primo P de B tal que $I \subseteq P$.

Sea P un conjunto ordenado no vacío en el cual cada cada cadena no vacía tiene una cota superior (en P). Entonces P tiene un elemento máximal.

Lema de Zorn 2

Sea \mathcal{A} una familia de conjuntos tal que $\bigcup_{i \in I} A_i \in \mathcal{A}$ siempre que $\{A_i\}_{i \in I}$ es una cadena no vacía en $\langle \mathcal{A}, \subseteq \rangle$. Entonces \mathcal{A} tiene un elemento máximal.

Teorema del ideal primo para retículos distributivos

Sea L un retículo distributivo. Si I es un ideal y F un filtro de L tales que $I \cap F = \emptyset$, entonces existe un ideal primo P tal que $I \subseteq P$ y $P \cap F = \emptyset$.

Teorema del ideal primo para álgebras de Boole Dado un ideal propio I de un álgebra de Boole B, existe un ideal primo P de B tal que $I \subseteq P$.

Sea P un conjunto ordenado no vacío en el cual cada cada cadena no vacía tiene una cota superior (en P). Entonces P tiene un elemento máximal.

Lema de Zorn 2

Sea \mathcal{A} una familia de conjuntos tal que $\bigcup_{i \in I} A_i \in \mathcal{A}$ siempre que $\{A_i\}_{i \in I}$ es una cadena no vacía en $\langle \mathcal{A}, \subseteq \rangle$. Entonces \mathcal{A} tiene un elemento máximal.

Teorema del ideal primo para retículos distributivos

Sea L un retículo distributivo. Si I es un ideal y F un filtro de L tales que $I \cap F = \emptyset$, entonces existe un ideal primo P tal que $I \subset P$ y $P \cap F = \emptyset$.

Teorema del ideal primo para álgebras de Boole

Dado un ideal propio I de un álgebra de Boole B, existe un ideal primo P de B tal que $I \subseteq P$.

Sea L un retículo distributivo acotado. Sea $X = \mathcal{I}_p(L)$. Entonces la función $\eta \colon L \to \mathcal{P}(X)$ definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un $\{0,1\}$ -homomorfismo de retículo inyectivo.

Corolario

Todo retículo distributivo acotado es isomorfico a un retículo de conjuntos.

Teorema

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$. Entonces la función $\eta \colon B \to \mathcal{P}(X)$ es un homomorfismo booleano inyectivo.

Corolario

Sea L un retículo distributivo acotado. Sea $X = \mathcal{I}_p(L)$. Entonces la función $\eta \colon L \to \mathcal{P}(X)$ definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un $\{0,1\}$ -homomorfismo de retículo inyectivo.

Corolario

Todo retículo distributivo acotado es isomorfico a un retículo de conjuntos.

Teorema

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$. Entonces la función $\eta \colon B \to \mathcal{P}(X)$ es un homomorfismo booleano inyectivo.

Corolario

Sea L un retículo distributivo acotado. Sea $X = \mathcal{I}_p(L)$. Entonces la función $\eta \colon L \to \mathcal{P}(X)$ definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un $\{0,1\}$ -homomorfismo de retículo inyectivo.

Corolario

Todo retículo distributivo acotado es isomorfico a un retículo de conjuntos.

Teorema

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$. Entonces la función $\eta \colon B \to \mathcal{P}(X)$ es un homomorfismo booleano inyectivo.

Corolario

Sea L un retículo distributivo acotado. Sea $X = \mathcal{I}_p(L)$. Entonces la función $\eta \colon L \to \mathcal{P}(X)$ definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un $\{0,1\}$ -homomorfismo de retículo inyectivo.

Corolario

Todo retículo distributivo acotado es isomorfico a un retículo de conjuntos.

Teorema

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$. Entonces la función $\eta \colon B \to \mathcal{P}(X)$ es un homomorfismo booleano inyectivo.

Corolario

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$.

Recordemos que $\eta \colon B \to \mathcal{P}(X)$ es definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(B) : a \notin P \}.$$

Vamos a denotar que $X_a = \eta(a)$.

Consideremos la colección

$$\mathcal{B} = \{X_a : a \in B\}$$

Entonces \mathcal{B} es una base para una topología τ_B sobre X:

$$\tau_B = \{U \subseteq X : U \text{ es una unión de miembros de } \mathcal{B}\}.$$

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es llamado el espacio dual de B

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$.

Recordemos que $\eta \colon B \to \mathcal{P}(X)$ es definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(B) : a \notin P \}.$$

Vamos a denotar que $X_a = \eta(a)$.

Consideremos la colección

$$\mathcal{B} = \{X_a : a \in B\}$$

Entonces \mathcal{B} es una base para una topología τ_B sobre X:

 $\tau_B = \{U \subseteq X : U \text{ es una unión de miembros de } \mathcal{B}\}.$

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es llamado el espacio dual de B.

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$.

Recordemos que $\eta: B \to \mathcal{P}(X)$ es definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(B) : a \notin P \}.$$

Vamos a denotar que $X_a = \eta(a)$.

Consideremos la colección

$$\mathcal{B} = \{X_a : a \in B\}$$

Entonces \mathcal{B} es una base para una topología τ_B sobre X:

 $\tau_B = \{U \subseteq X : U \text{ es una unión de miembros de } \mathcal{B}\}.$

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es llamado el espacio dual de B.

Sea B un álgebra de Boole. Sea $X = \mathcal{I}_p(B)$.

Recordemos que $\eta: B \to \mathcal{P}(X)$ es definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(B) : a \notin P \}.$$

Vamos a denotar que $X_a = \eta(a)$.

Consideremos la colección

$$\mathcal{B} = \{X_a : a \in B\}$$

Entonces \mathcal{B} es una base para una topología τ_B sobre X:

$$\tau_B = \{U \subseteq X : U \text{ es una unión de miembros de } \mathcal{B}\}.$$

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es llamado el espacio dual de B.

Sea $\langle X, \tau \rangle$ un espacio topológico. Sea $\mathcal{C}\ell(X)$ la colección de todos los conjuntos que son al mimo tiempo abiertos y cerrados de X. Entonces $\mathcal{C}\ell(X)$ es un álgebra de Boole de conjuntos.

Proposición

Cada miembro de la base \mathcal{B} es abierto y cerrado (clopen) del espacio $\langle X, \tau_B \rangle$.

Proposición

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es compacto.

Proposición

Los conjuntos clopen del espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ son exactamente los conjuntos de la forma X_a para $a \in B$.

Sea $\langle X, \tau \rangle$ un espacio topológico. Sea $\mathcal{C}\ell(X)$ la colección de todos los conjuntos que son al mimo tiempo abiertos y cerrados de X. Entonces $\mathcal{C}\ell(X)$ es un álgebra de Boole de conjuntos.

Proposición

Cada miembro de la base \mathcal{B} es abierto y cerrado (clopen) del espacio $\langle X, \tau_B \rangle$.

Proposición

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es compacto.

Proposición

Los conjuntos clopen del espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ son exactamente los conjuntos de la forma X_a para $a \in B$.

Sea $\langle X, \tau \rangle$ un espacio topológico. Sea $\mathcal{C}\ell(X)$ la colección de todos los conjuntos que son al mimo tiempo abiertos y cerrados de X. Entonces $\mathcal{C}\ell(X)$ es un álgebra de Boole de conjuntos.

Proposición

Cada miembro de la base \mathcal{B} es abierto y cerrado (clopen) del espacio $\langle X, \tau_B \rangle$.

Proposición

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es compacto.

Proposición

Los conjuntos clopen del espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ son exactamente los conjuntos de la forma X_a para $a \in B$.

Sea $\langle X, \tau \rangle$ un espacio topológico. Sea $\mathcal{C}\ell(X)$ la colección de todos los conjuntos que son al mimo tiempo abiertos y cerrados de X. Entonces $\mathcal{C}\ell(X)$ es un álgebra de Boole de conjuntos.

Proposición

Cada miembro de la base \mathcal{B} es abierto y cerrado (clopen) del espacio $\langle X, \tau_B \rangle$.

Proposición

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es compacto.

Proposición

Los conjuntos clopen del espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ son exactamente los conjuntos de la forma X_a para $a \in B$.

Sea $\langle X, \tau \rangle$ un espacio topológico. Sea $\mathcal{C}\ell(X)$ la colección de todos los conjuntos que son al mimo tiempo abiertos y cerrados de X. Entonces $\mathcal{C}\ell(X)$ es un álgebra de Boole de conjuntos.

Proposición

Cada miembro de la base \mathcal{B} es abierto y cerrado (clopen) del espacio $\langle X, \tau_B \rangle$.

Proposición

El espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ es compacto.

Proposición

Los conjuntos clopen del espacio $\langle \mathcal{I}_p(B), \tau_B \rangle$ son exactamente los conjuntos de la forma X_a para $a \in B$.

Teorema de representación de Stone para álgebras de Boole

Sea B un álgebra de Boole. Entonces la función $\eta\colon B\to \mathcal{C}\ell(X)$ es un isomorfismo booleano, siendo $X=\mathcal{I}_p(B)$ el espacio dual de B.

Espacios booleanos

Un espacio topológico $\langle X, \tau \rangle$ es llamado espacio booleano si:

- 1. X es compacto.
- 2. Para cada par de puntos distintos existe un clopen que contiene exactamente a uno de ellos. (totalmente disconexo).

Proposición

Sea B un álgebra de Boole. Entonces su espacio dual $\langle \mathcal{I}_p(B), \tau_B \rangle$ es un espacio booleano.

Espacios booleanos

Un espacio topológico $\langle X, \tau \rangle$ es llamado espacio booleano si:

- 1. X es compacto.
- 2. Para cada par de puntos distintos existe un clopen que contiene exactamente a uno de ellos. (totalmente disconexo).

Proposición

Sea B un álgebra de Boole. Entonces su espacio dual $\langle \mathcal{I}_p(B), \tau_B \rangle$ es un espacio booleano.

Teorema

- 1. Sea B un álgebra de Boole. Entonces B es isomorfa al álgebra de Boole $\mathcal{C}\ell(X)$ de los conjuntos clopen del espacio booleano dual $X = \mathcal{I}_p(B)$ de B.
- 2. Sea $\langle X, \tau \rangle$ sea un espacio booleano. Sea $\langle \mathcal{I}_p(\mathcal{C}\ell(X)), \tau_{\mathcal{C}\ell(X)} \rangle$ el espacio booleano dual del álgebra de Boole $\mathcal{C}\ell(X)$. Entonces la función $\theta \colon X \to \mathcal{I}_p(\mathcal{C}\ell(X))$ definida por

$$\theta(x) = \{ U \in \mathcal{C}\ell(X) : x \notin U \}$$

es un homeomorfismo del espacio $\langle X, \tau \rangle$ sobre el espacio $\langle \mathcal{I}_p(\mathcal{C}\ell(X)), \tau_{\mathcal{C}\ell(X)} \rangle$.

Teorema

- 1. Sea B un álgebra de Boole. Entonces B es isomorfa al álgebra de Boole $\mathcal{C}\ell(X)$ de los conjuntos clopen del espacio booleano dual $X = \mathcal{I}_p(B)$ de B.
- 2. Sea $\langle X, \tau \rangle$ sea un espacio booleano. Sea $\langle \mathcal{I}_p(\mathcal{C}\ell(X)), \tau_{\mathcal{C}\ell(X)} \rangle$ el espacio booleano dual del álgebra de Boole $\mathcal{C}\ell(X)$. Entonces la función $\theta \colon X \to \mathcal{I}_p(\mathcal{C}\ell(X))$ definida por

$$\theta(x) = \{ U \in \mathcal{C}\ell(X) : x \notin U \}$$

es un homeomorfismo del espacio $\langle X, \tau \rangle$ sobre el espacio $\langle \mathcal{I}_p(\mathcal{C}\ell(X)), \tau_{\mathcal{C}\ell(X)} \rangle$.

Teorema

- 1. Sean B_1 y B_2 álgebras de Boole y sea $h\colon B_1\to B_2$ un homomorfismo booleano. Sean X_1 y X_2 los espacios booleanos duales de B_1 y B_2 , respectivamente. Entonces, $h^{-1}\colon X_2\to X_1$ es una función continua.
- 2. Sean X_1 y X_2 dos espacios booleanos y $f: X_1 \to X_2$ una función continua. Sean $B_1 = \mathcal{C}\ell(X_1)$ y $B_2 = \mathcal{C}\ell(X_2)$. Entonces $f^{-1}: B_2 \to B_1$ es un homomorfismo booleano.
- 3. Para cada homomorfismo booleano $h: B_1 \to B_2$,

$$(h^{-1})^{-1} \circ \eta_{B_1} = \eta_{B_2} \circ h.$$

4. Para cada función continua $f: X_1 \to X_2$,

$$(f^{-1})^{-1} \circ \theta_{X_1} = \theta_{X_2} \circ f$$

Teorema

- 1. Sean B_1 y B_2 álgebras de Boole y sea $h\colon B_1\to B_2$ un homomorfismo booleano. Sean X_1 y X_2 los espacios booleanos duales de B_1 y B_2 , respectivamente. Entonces, $h^{-1}\colon X_2\to X_1$ es una función continua.
- 2. Sean X_1 y X_2 dos espacios booleanos y $f: X_1 \to X_2$ una función continua. Sean $B_1 = \mathcal{C}\ell(X_1)$ y $B_2 = \mathcal{C}\ell(X_2)$. Entonces $f^{-1}: B_2 \to B_1$ es un homomorfismo booleano.
- 3. Para cada homomorfismo booleano $h: B_1 \to B_2$,

$$(h^{-1})^{-1} \circ \eta_{B_1} = \eta_{B_2} \circ h.$$

4. Para cada función continua $f: X_1 \to X_2$,

$$(f^{-1})^{-1} \circ \theta_{X_1} = \theta_{X_2} \circ f$$

Teorema

- 1. Sean B_1 y B_2 álgebras de Boole y sea $h: B_1 \to B_2$ un homomorfismo booleano. Sean X_1 y X_2 los espacios booleanos duales de B_1 y B_2 , respectivamente. Entonces, $h^{-1}: X_2 \to X_1$ es una función continua.
- 2. Sean X_1 y X_2 dos espacios booleanos y $f: X_1 \to X_2$ una función continua. Sean $B_1 = \mathcal{C}\ell(X_1)$ y $B_2 = \mathcal{C}\ell(X_2)$. Entonces $f^{-1}: B_2 \to B_1$ es un homomorfismo booleano.
- 3. Para cada homomorfismo booleano $h: B_1 \to B_2$,

$$(h^{-1})^{-1} \circ \eta_{B_1} = \eta_{B_2} \circ h.$$

4. Para cada función continua $f: X_1 \to X_2$,

$$(f^{-1})^{-1} \circ \theta_{X_1} = \theta_{X_2} \circ f.$$

Sea L un retículo distributivo acotado. Recordemos

Teorema

Sea L un retículo distributivo acotado. Sea $X = \mathcal{I}_p(L)$. Entonces la función $\eta \colon L \to \mathcal{P}(X)$ definida por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un $\{0,1\}$ -homomorfismo de retículo inyectivo.

Sea L un retículo distributivo acotado.

Sea

$$X_a = \{ P \in \mathcal{I}_p(L) : a \notin P \}.$$

Sea

$$S_L = \{X_a : a \in L\} \cup \{X_b^c : b \in L\}.$$

Sea

$$\mathcal{B}_L = \{ X_a \cap X_b^c : a, b \in L \}$$

Entonces \mathcal{B}_L es una base para una topología τ_L sobre X:

$$\tau_L = \{ U \subseteq X : U \text{ es unión de miembros de } \mathcal{B}_L \}.$$

Entonces, S_L es una **subbase** del espacio $\langle \mathcal{I}_n(L), \tau_L \rangle$

Proposición

Sea L un retículo distributivo acotado.

Sea

$$X_a = \{ P \in \mathcal{I}_p(L) : a \notin P \}.$$

Sea

$$S_L = \{X_a : a \in L\} \cup \{X_b^c : b \in L\}.$$

Sea

$$\mathcal{B}_L = \{X_a \cap X_b^c : a, b \in L\}$$

Entonces \mathcal{B}_L es una base para una topología τ_L sobre X:

$$\tau_L = \{ U \subseteq X : U \text{ es unión de miembros de } \mathcal{B}_L \}.$$

Entonces, S_L es una **subbase** del espacio $\langle \mathcal{I}_n(L), \tau_L \rangle$

Proposición

Sea L un retículo distributivo acotado.

Sea

$$X_a = \{ P \in \mathcal{I}_p(L) : a \notin P \}.$$

Sea

$$S_L = \{X_a : a \in L\} \cup \{X_b^c : b \in L\}.$$

Sea

$$\mathcal{B}_L = \{ X_a \cap X_b^c : a, b \in L \}$$

Entonces \mathcal{B}_L es una base para una topología τ_L sobre X:

$$\tau_L = \{ U \subseteq X : U \text{ es unión de miembros de } \mathcal{B}_L \}.$$

Entonces, S_L es una subbase del espacio $\langle \mathcal{I}_p(L), \tau_L \rangle$

Proposición

Sea L un retículo distributivo acotado.

Sea

$$X_a = \{ P \in \mathcal{I}_p(L) : a \notin P \}.$$

Sea

$$S_L = \{X_a : a \in L\} \cup \{X_b^c : b \in L\}.$$

Sea

$$\mathcal{B}_L = \{X_a \cap X_b^c : a, b \in L\}$$

Entonces \mathcal{B}_L es una base para una topología τ_L sobre X:

$$\tau_L = \{ U \subseteq X : U \text{ es unión de miembros de } \mathcal{B}_L \}.$$

Entonces, S_L es una **subbase** del espacio $\langle \mathcal{I}_p(L), \tau_L \rangle$

Proposición

Sea L un retículo distributivo acotado.

Sea

$$X_a = \{ P \in \mathcal{I}_p(L) : a \notin P \}.$$

Sea

$$S_L = \{X_a : a \in L\} \cup \{X_b^c : b \in L\}.$$

Sea

$$\mathcal{B}_L = \{X_a \cap X_b^c : a, b \in L\}$$

Entonces \mathcal{B}_L es una base para una topología τ_L sobre X:

$$\tau_L = \{ U \subseteq X : U \text{ es unión de miembros de } \mathcal{B}_L \}.$$

Entonces, S_L es una **subbase** del espacio $\langle \mathcal{I}_p(L), \tau_L \rangle$.

Proposición

Sea L un retículo distributivo acotado.

Sea

$$X_a = \{ P \in \mathcal{I}_p(L) : a \notin P \}.$$

Sea

$$S_L = \{X_a : a \in L\} \cup \{X_b^c : b \in L\}.$$

Sea

$$\mathcal{B}_L = \{X_a \cap X_b^c : a, b \in L\}$$

Entonces \mathcal{B}_L es una base para una topología τ_L sobre X:

$$\tau_L = \{U \subseteq X : U \text{ es unión de miembros de } \mathcal{B}_L\}.$$

Entonces, S_L es una **subbase** del espacio $\langle \mathcal{I}_p(L), \tau_L \rangle$.

Proposición

Diremos que una estructura $\langle X, \leq, \tau \rangle$ es un espacio de Priestley si:

- 1. $\langle X, \leq \rangle$ es un conjunto ordenado.
- 2. $\langle X, \tau \rangle$ es un espacio topológico.
- 3. El espacio $\langle X, \tau \rangle$ es compacto.
- 4. Para todos $x,y\in X,$ si $x\nleq y,$ entonces existe un conjunto clopen decreciente U tal que $x\notin U$ e $y\in U.$

Dado un espacio Priestley $\langle X, \leq, \tau \rangle$. Denotamos por $\mathcal{O}^{\tau}(X)$ la colección de subconjuntos clopen decrecientes.

Teorema

Sea L un retículo distributivo acotado. Entonces el espacio $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$ es de Priestley. Además

$$\mathcal{O}^{\tau}(\mathcal{I}_p(L)) = \{X_a : a \in L\}$$

Llamaremos a $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$ el espacio de Priestley dual de L.

Diremos que una estructura $\langle X, \leq, \tau \rangle$ es un espacio de Priestley si:

- 1. $\langle X, \leq \rangle$ es un conjunto ordenado.
- 2. $\langle X, \tau \rangle$ es un espacio topológico.
- 3. El espacio $\langle X, \tau \rangle$ es compacto.
- 4. Para todos $x, y \in X$, si $x \nleq y$, entonces existe un conjunto clopen decreciente U tal que $x \notin U$ e $y \in U$.

Dado un espacio Priestley $\langle X, \leq, \tau \rangle$. Denotamos por $\mathcal{O}^{\tau}(X)$ la colección de subconjuntos clopen decrecientes.

Teorema

Sea L un retículo distributivo acotado. Entonces el espacio $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$ es de Priestley. Además

$$\mathcal{O}^{\tau}(\mathcal{I}_p(L)) = \{X_a : a \in L\}$$

Llamaremos a $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$ el espacio de Priestley dual de L.

Diremos que una estructura $\langle X, \leq, \tau \rangle$ es un espacio de Priestley si:

- 1. $\langle X, \leq \rangle$ es un conjunto ordenado.
- 2. $\langle X, \tau \rangle$ es un espacio topológico.
- 3. El espacio $\langle X, \tau \rangle$ es compacto.
- 4. Para todos $x, y \in X$, si $x \nleq y$, entonces existe un conjunto clopen decreciente U tal que $x \notin U$ e $y \in U$.

Dado un espacio Priestley $\langle X, \leq, \tau \rangle$. Denotamos por $\mathcal{O}^{\tau}(X)$ la colección de subconjuntos clopen decrecientes.

Teorema.

Sea L un retículo distributivo acotado. Entonces el espacio $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$ es de Priestley. Además

$$\mathcal{O}^{\tau}(\mathcal{I}_p(L)) = \{X_a : a \in L\}.$$

Llamaremos a $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$ el espacio de Priestley dual de L.

Teorema de representación de Priestley

Sea L un retículo distributivo acotado. Entonces la función

$$\eta\colon L\to \mathcal{O}^{\tau}(\mathcal{I}_p(L))$$

dada por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un isomorfismo de retículos.

Definición

Sean X e Y dos espacios de Priestley. Una función $f: X \to Y$ es llamada un orden-homeomorfismo si es simultáneamente un isomorfismo de orden y un homeomorfismo.

Teorema

Sea $\langle X \leq, \tau \rangle$ un espacio de Priestley. Consideremos el retículo distributivo L= $\mathcal{O}^{\tau}(X)$. Entonces, el espacio $\langle X \leq, \tau \rangle$ es orden-homeomorfo al espacio de Priestley dual de L $\langle \mathcal{I}_{p}(L), \subseteq, \tau_{L} \rangle$.

Teorema de representación de Priestley

Sea L un retículo distributivo acotado. Entonces la función

$$\eta\colon L\to \mathcal{O}^{\tau}(\mathcal{I}_p(L))$$

dada por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un isomorfismo de retículos.

Definición

Sean X e Y dos espacios de Priestley. Una función $f: X \to Y$ es llamada un orden-homeomorfismo si es simultáneamente un isomorfismo de orden y un homeomorfismo.

Teorema

Sea $\langle X \leq, \tau \rangle$ un espacio de Priestley. Consideremos el retículo distributivo L= $\mathcal{O}^{\tau}(X)$. Entonces, el espacio $\langle X \leq, \tau \rangle$ es orden-homeomorfo al espacio de Priestley dual de L $\langle \mathcal{I}_n(L), \subset, \tau_L \rangle$.

Teorema de representación de Priestley

Sea L un retículo distributivo acotado. Entonces la función

$$\eta\colon L\to \mathcal{O}^{\tau}(\mathcal{I}_p(L))$$

dada por

$$\eta(a) = \{ P \in \mathcal{I}_p(L) : a \notin P \}$$

es un isomorfismo de retículos.

Definición

Sean X e Y dos espacios de Priestley. Una función $f: X \to Y$ es llamada un orden-homeomorfismo si es simultáneamente un isomorfismo de orden y un homeomorfismo.

Teorema

Sea $\langle X \leq, \tau \rangle$ un espacio de Priestley. Consideremos el retículo distributivo L= $\mathcal{O}^{\tau}(X)$. Entonces, el espacio $\langle X \leq, \tau \rangle$ es orden-homeomorfo al espacio de Priestley dual de L $\langle \mathcal{I}_p(L), \subseteq, \tau_L \rangle$.

- 1. Sean L_1 y L_2 retículos distributivos acotados y sea $h\colon L_1\to L_2$ un $\{0,1\}$ -homomorfismo. Sean X_1 y X_2 los espacios Priestley duales de L_1 y L_2 , respectivamente. Entonces, $h^{-1}\colon X_2\to X_1$ es una función continua y monótona.
- 2. Sean X_1 y X_2 dos espacios Priestley y $f: X_1 \to X_2$ una función continua y monótona. Sean $L_1 = \mathcal{O}^{\tau_1}(X_1)$ y $L_2 = \mathcal{O}^{\tau_2}(X_2)$. Entonces $f^{-1}: L_2 \to L_1$ es un $\{0,1\}$ -homomorfismo.
- 3. Para cada $\{0,1\}$ -homomorfismo $h: L_1 \to L_2$,

$$(h^{-1})^{-1} \circ \eta_{L_1} = \eta_{L_2} \circ h.$$

4. Para cada función continua y monótona $f: X_1 \to X_2$,

$$(f^{-1})^{-1} \circ \epsilon_{X_1} = \epsilon_{X_2} \circ f$$

- 1. Sean L_1 y L_2 retículos distributivos acotados y sea $h\colon L_1\to L_2$ un $\{0,1\}$ -homomorfismo. Sean X_1 y X_2 los espacios Priestley duales de L_1 y L_2 , respectivamente. Entonces, $h^{-1}\colon X_2\to X_1$ es una función continua y monótona.
- 2. Sean X_1 y X_2 dos espacios Priestley y $f: X_1 \to X_2$ una función continua y monótona. Sean $L_1 = \mathcal{O}^{\tau_1}(X_1)$ y $L_2 = \mathcal{O}^{\tau_2}(X_2)$. Entonces $f^{-1}: L_2 \to L_1$ es un $\{0,1\}$ -homomorfismo.
- 3. Para cada $\{0,1\}$ -homomorfismo $h: L_1 \to L_2$,

$$(h^{-1})^{-1} \circ \eta_{L_1} = \eta_{L_2} \circ h.$$

4. Para cada función continua y monótona $f: X_1 \to X_2$,

$$(f^{-1})^{-1} \circ \epsilon_{X_1} = \epsilon_{X_2} \circ f$$

- 1. Sean L_1 y L_2 retículos distributivos acotados y sea $h\colon L_1\to L_2$ un $\{0,1\}$ -homomorfismo. Sean X_1 y X_2 los espacios Priestley duales de L_1 y L_2 , respectivamente. Entonces, $h^{-1}\colon X_2\to X_1$ es una función continua y monótona.
- 2. Sean X_1 y X_2 dos espacios Priestley y $f: X_1 \to X_2$ una función continua y monótona. Sean $L_1 = \mathcal{O}^{\tau_1}(X_1)$ y $L_2 = \mathcal{O}^{\tau_2}(X_2)$. Entonces $f^{-1}: L_2 \to L_1$ es un $\{0,1\}$ -homomorfismo.
- 3. Para cada $\{0,1\}$ -homomorfismo $h: L_1 \to L_2$,

$$(h^{-1})^{-1} \circ \eta_{L_1} = \eta_{L_2} \circ h.$$

4. Para cada función continua y monótona $f: X_1 \to X_2$,

$$(f^{-1})^{-1} \circ \epsilon_{X_1} = \epsilon_{X_2} \circ f.$$