Lecture 7 – Pushdown automata

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 6

- ullet Reducing a grammar: removing ϵ -productions, unit productions, useless symbols
- Chomsky Normal Form of a context-free grammar
- Pumping lemma for context-free languages, application: proving non-context-freeness
- Testing membership in a context-free language: the CYK algorithm

2.9 Pushdown automata

Pushdown automaton (PDA)

- an extension of ϵ -NFA, additional feature: a stack memory
- the stack has its own stack alphabet Γ (can contain Σ or not)
- at each step we pop the top stack symbol X, make a decision based on (q, a, X), push some word $\gamma \in \gamma^*$
- the stack can rememeber an infinite amount of information
- PDA define context-free languages, nondeterminism is important: deterministic PDA only recognize a proper subset of context-free languages (unlike DFA vs. NFA)

The definition

A pushdown automaton (PDA): $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, where

- Q is finite, nonempty set of states
- \bullet Σ is a finite, nonempty input alphabet
- Γ is a finite, nonempty stack alphabet
- δ is the transition function,

$$\delta \colon Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_{FIN}(Q \times \Gamma^*)$$

 $\delta(q, a, X) \ni (p, \gamma)$ where p is the new state and γ a finite string of stack symbols that replace X on top of the stack

- $q_0 \in Q$ is the initial state
- Z₀ ∈ Γ is the initial stack symbol (bottom of the stack); the only symbol on the stack at the beginning
- F is a set of accepting (final) states; may be undefined if our PDA accepts by empty stack

One transition of a PDA

- read one input letter $(a \in \Sigma)$ or do an ϵ -transition $(a = \epsilon)$
- pop *X* from the top of the stack
- based on a, X, and the current state q nondeterministically choose one of finitely many options $(p, \gamma) \in \delta(q, a, X)$
- switch to the new state p
- push the finite string γ to the stack (the first symbol of Γ is now on top)
- pop: $\gamma = \epsilon$, read only: $\gamma = X$, push: $\gamma = \gamma' X$

Example: $L_{wwr} = \{ww^R \mid w \in \{0, 1\}^*\}$

 q_0 read input letters pushing them onto the stack; guess the middle (nondeterministically), jump to q_1

 q_1 compare input with stack, consuming both; if empty stack (we see the bottom), accept by jumping to q_2 ; no input can remain

Example cont'd: full description of the PDA

$$P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$$

$$\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$$

$$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$$
push input onto stack, leave the bottom
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

$$\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$$
we have ww^R , go to accepting state

Notation

a, b, c	symbols of the input alphabet
q, p, r	states
u, w, x, y, z	words over input alphabet
X, Y, A, B	stack symbols
Z_0	bottom of the stack symbol
α, β, γ	words over stack alphabet

Transition diagram:

- nodes are states, initial and final denoted as usual
- a transition $\delta(q, a, X) \ni (p, \alpha)$: arc from p to q labelled $a, X \to \alpha$

The languages of a PDA

Configurations and moves (computation graph)

A configuration of a PDA is a triple (q, w, γ) , where

- q is the current state
- w is the remaining input and
- γ is the stack contents (the top is on the left)

We define moves between configurations (\vdash_P or \vdash) thus: for any transition $\delta(q, a, X) \ni (p, \alpha)$ and all $w \in \Sigma^*$ and $\beta \in \Gamma^*$ we have

$$(q, aw, X\beta) \vdash (p, w, \alpha\beta)$$

We use the symbol \vdash_{P}^{*} or \vdash^{*} to represent zero or more moves, i.e.

- $I \vdash^* I$ for any configuration I
- $I \vdash^* J$ if there exists K such that $I \vdash K$ and $K \vdash^* J$

Initial and accepting configurations, the languages of a PDA

The initial configuration of $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ for input word $w \in \Sigma^*$ is (q_0, w, Z_0) . Which configurations are accepting?

Two options:

1. Acceptance by final state: (f, ϵ, γ) for some final state $f \in F$ and arbitrary stack contents $\gamma \in \Gamma^*$

$$L(P) = \{ w \mid (q_0, w, Z_0) \vdash_P^* (f, \epsilon, \gamma) \text{ for some } f \in F \text{ and } \gamma \in \Gamma^* \}$$

2. Acceptance by empty stack: (q, ϵ, ϵ) for an arbitrary $q \in Q$

$$N(P) = \{ w \mid (q_0, w, Z_0) \vdash_P^* (q, \epsilon, \epsilon) \text{ for any } q \in Q \}$$

In this case we can write only $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$

Configurations for the input w = 1111

Our example

$$\begin{array}{c} 0, Z_0 \rightarrow 0Z_0 \\ 1, Z_0 \rightarrow 1Z_0 \\ 0, 0 \rightarrow 00 \\ 0, 1 \rightarrow 01 \\ 1, 0 \rightarrow 10 \\ 0, 0 \rightarrow \epsilon \\ 1, 1 \rightarrow 11 \\ 1, 1 \rightarrow \epsilon \\ \hline \\ \downarrow \\ q_0 \\ \hline \\ \epsilon, Z_0 \rightarrow Z_0 \\ \hline \\ \\ \epsilon, 0 \rightarrow 0 \\ \hline \\ \\ \epsilon, 1 \rightarrow 1 \\ \end{array}$$

- acceptance by final state: $L(P) = L_{wwr}$
- to accept by empty stack: modify $\delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$ to $\delta(q_1, \epsilon, Z_0) = \{(q_2, \epsilon)\}$ (erase bottom of the stack symbol), then also $N(P') = L_{wwr}$

Another example: if-else

Stop (accept) at first error, e.g. more else's than if's

By empty stack:
$$P_N = (\{q\}, \{\text{if}, \text{else}\}, \{Z\}, \delta_N, q, Z)$$

$$\begin{array}{ccc} \text{if,} Z \to ZZ \\ \text{else,} Z \to \epsilon & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

By final state: $P_F = (\{p, q, r\}, \{\text{if}, \text{else}\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\})$

$$\delta_F(p,\epsilon,X_0) = \{(q,ZX_0)\} \text{ (start)}$$

$$\delta_F(p,\epsilon,X_0) = \{(q,ZX_0)\} \text{ (push)}$$

$$\delta_F(q,\operatorname{if},Z) = \{(q,ZZ)\} \text{ (push)}$$

$$\delta_F(q,\operatorname{else},Z) = \{(q,\epsilon)\} \text{ (pop)}$$

$$\delta_F(q,\epsilon,X_0) = \{(r,\epsilon)\} \text{ (accept)}$$

From empty stack to final state

Lemma

If $L = N(P_N)$ for some PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, then there is a PDA P_F such that $L = L(P_F)$.

Idea: Make Z_0 a fake bottom (insert a new bottom X_0 below), so that we can tell when P_N 's stack was empty. Add ϵ -transitions upon seeing X_0 from all states to a new, accepting state.

The proof

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_F\}), \text{ where } \delta_F \text{ is}$$

- $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$ (start).
- $\forall (q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma), \ \delta_F(q, a, Y) = \delta_N(q, a, Y).$
- In addition, $\delta_F(q, \epsilon, X_0) \ni (p_f, \epsilon)$ for every $q \in Q$.

We must show that $w \in L(P_N)$ iff $w \in L(P_F)$.

- (If) P_F accepts as follows: $(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F = N_F}^* (q, \epsilon, X_0) \vdash_{P_F} (p_f, \epsilon, \epsilon).$
- (Only if) No other way to go to p_F than the above.

From final state to empty stack

Lemma

If $L = L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, then there exists a PDA P_N such that $L = N(P_N)$.

Idea: Make Z_0 a fake bottom (insert a new bottom below), because P_F could accidentally empty stack in a nonfinal state. Add ϵ -transitions (upon any stack symbol) from final states to a new state, there empty the stack without reading any input symbols.

The proof

Let $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$, where

- $\delta_N(p_0, \epsilon, X_0) = \{(q, Z_0 X_0)\}$ (start)
- $\forall (q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma) \ \delta_N(q, a, Y) = \delta_F(q, a, Y)$ (simulate)
- $\forall (q \in F, Y \in \Gamma \cup \{X_0\}), \ \delta_N(q, \epsilon, Y) \ni (p, \epsilon)$ (i.e. accept if P_F accepts)
- $\forall (Y \in \Gamma \cup \{X_0\}), \delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$ clean the stack.

The proof $w \in N(P_N)$ iff $w \in L(P_F)$ is similar as before.

Unseen data cannot affect computation

Lemma

If $(q, x, \alpha) \vdash_P (p, y, \beta)$, then for any $w \in \Sigma^*$ and $\gamma \in \Gamma^*$ we also have $(q, xw, \alpha\gamma) \vdash_P^* (p, yw, \beta\gamma)$. (In particular, $\gamma = \epsilon$ or $w = \epsilon$.)

Proof: Induction on the number length of the sequence of configurations that take $(q, xw, \alpha\gamma)$ to $(p, yw, \beta\gamma)$. Each of the moves $(q, x, \alpha) \vdash_P^* (p, y, \beta)$ is justified without using w and/or γ in any way. The moves are still valid with w, γ on the input/stack. \square

Lemma

If
$$(q, xw, \alpha) \vdash_{P}^{*} (p, yw, \beta)$$
, then also $(q, x, \alpha) \vdash_{P}^{*} (p, y, \beta)$.

NB: Not true for stack, the computation may require γ on the stack and then push it back. (E.g. $L = \{0^i 1^i 0^j 1^j\}$, configuration $(p, 0^{i-j} 1^i 0^j 1^j, 0^j Z_0) \vdash^* (q, 1^j, 0^j Z_0)$, inbetween clear the stack.)

2.10 Equivalence of PDA and

context-free grammars

Equivalence of PDA and CFG

Theorem

The following statements about $L \subset \Sigma^*$ are equivalent:

- (i) There exists a context-free grammar such that L(G) = L.
- (ii) There exists a PDA such that L(P) = L.
- (iii) There exists a PDA such that N(P) = L.

We have already shown (ii) \Leftrightarrow (iii). To prove equivalence with a context-free grammar, we use acceptance by empty stack.

Context-free grammar to pushdown

automaton

CFG to PDA

The construction

Given
$$G = (V, T, P, S)$$
, construct $P = (\{q\}, T, V \cup T, \delta, q, S)$:

- (1) for each $A \in V$, $\delta(q, \epsilon, A) = \{(q, \beta) \mid A \to \beta \in \mathcal{P}\}$
 - [apply rule]

(2) for each $a \in T$, $\delta(q, a, a) = \{(q, \epsilon)\}$

[match terminal]

How it works:

- a leftmost derivation is simulated by the PDA
- current sentential form = part of input read + stack contents
- see a variable: apply rule, a terminal: read & pop from stack

An example

Example

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

 $E \rightarrow I \mid E * E \mid E + E \mid (E)$

 $\Sigma = \{a, b, 0, 1, (,), +, *\}$, $\Gamma = \Sigma \cup \{I, E\}$, δ is defined as follows:

- $\delta(q, \epsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$
- $\delta(q, \epsilon, E) = \{(q, I), (q, E * E), (q, E + E), (q, (E))\}$
- $\delta(q, s, s) = \{(q, \epsilon)\}$ for all $s \in \Sigma$ (e.g. $\delta(q, +, +) = \{(q, \epsilon)\}$)
- $\delta(q, x)$ is empty otherwise

Leftmost derivation: $E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * I \Rightarrow a * b$

The sequence of configurations:

$$(q, a*b, E) \vdash (q, a*b, E*E) \vdash (q, a*b, I*E) \vdash (q, a*b, a*E)$$

 $\vdash (q, b, *E) \vdash (q, b, E) \vdash (q, b, I) \vdash (q, b, b) \vdash (q, \epsilon, \epsilon)$

Start with a leftmost derivation $S = \gamma_1 \Rightarrow_{lm} \ldots \Rightarrow_{lm} \gamma_n = w$.

Prove by induction on i that $(q, w, S) \vdash_P^* (q, v_i, \alpha_i)$, where $\gamma_i = u_i \alpha_i$ is the i-th sentential form and $u_i v_i = w$.

If γ_i contains only terminals, set $\gamma_i = w = u_i, v_i = \epsilon = \alpha_i$. Otherwise, write $\gamma_i = u_i A \alpha_i$, where $u_i \in T^*$ and $A \in V$ is the leftmost variable.

By induction we have $(q, w, S) \vdash_{P}^{*} (q, v_i, A\alpha_i)$, $w = u_i v_i$.

For the step $\gamma_i \Rightarrow_{lm} \gamma_{i+1}$ we used some rule $A \to \beta \in P$. The PDA replaces A on the stack with β , moves to configuration $(q, v_i, \beta \alpha_i)$.

We pop all terminals $v \in \Sigma^*$ from the beginning of $\beta \alpha$ (matching them with the input): $v_i = vv_{i+1}$ and $\beta \alpha = v\alpha_{i+1}$

We got to $(q, v_{i+1}, \alpha_{i+1})$, corresponds to the sentential form γ_{i+1} .

The proof that N(P) = L(G)

(ii) $w \in N(P) \Rightarrow w \in L(G)$

Prove that if $(q, u, X) \vdash_P^* (q, \epsilon, \epsilon)$, then $X \Rightarrow_G^* u$. By induction on the number of moves. **Basis** n = 1 move:

- $X = a \in \Sigma$: $\delta(q, a, a) \ni (q, \epsilon)$, u = a, 0-step derivation
- $X = A \in \Gamma$: $\delta(q, \epsilon, A) \ni (q, \epsilon)$ coming from $A \to \epsilon \in \mathcal{P}$, $u = \epsilon$

Induction step n>1 moves: if the first move is [match terminal], don't extend the derivation, if it is [apply rule]: A on top of stack was replaced by $\beta=Y_1Y_2\ldots Y_k$, for a rule $A\to\beta\in\mathcal{P}$.

Split $u = u_1 \dots u_k$ s.t. while popping Y_i we read u_i , i.e. $(q, u_i u_{i+1} \dots u_k, Y_i) \vdash^* (q, u_{i+1} \dots u_k, \epsilon)$

Thus also $(q, u_i, Y_i) \vdash^* (q, \epsilon, \epsilon)$, by induction assumption we get $Y_i \Rightarrow^* u_i$. Together:

$$A \Rightarrow Y_1 Y_2 \dots Y_k \Rightarrow^* u_1 Y_2 \dots Y_k \Rightarrow^* \dots \Rightarrow^* u_1 u_2 \dots u_k$$

