Uma Introdução ao Data Distribution Service - DDS

Markus Endler Rafael Vasconcelos Lincoln David Silva

O que é DDS?

- É uma especificação da OMG que provê uma interface para desenvolvimento de aplicações distribuídas de tempo real
- Um modelo para comunicação assíncrona independente de plataforma e linguagem de programação
 - Windows, Linux, Android, Solaris,...
 - C, C++, Java, C#,...
- Interoperável com outros produtos DDS
- É essencialmente uma arquitetura P2P

O que é DDS?

- Objetivo de prover comunicação robusta e dinâmica para sistemas distribuídos e de tempo real
- Baseado no conceito de Publish/Subscribe de tempo real (RTPS – Real Time Publish Subscribe)
- Utiliza conceito de Data-Centric Publish-Subscribe
- Pub/Sub garante desacoplamento:
 - Temporal
 - Espacial e de referência

Aplicações

- US DoD United States Department of Defense
 - Sistema de combate naval
 - Sistema de defesa
- EuroControl
 - Controle de tráfego aéreo
- Boing, Bell Helicopter, Sikorsky, US DoD, LAC
 - Net-Ready Applications for Rotorcraft

Arquitetura do DDS

- DataReaders e DataWriters se comunicam através de Tópicos
- Tópico possui {Nome, Tipo e ParâmetrosQoS}
- Data serão transferidos somente quando itens publicados por um DataWriter casam com a assinatura feita por um
- p DataReader no mesmo tópico.

DDS in a nutshell

- DDS
 - Como todo Pub/Sub suporta comunicação one-to-one, one-to-many e many-to-many
 - Mensagens representam objetos
 - Arquitetura flexível e adaptável com suporte a descobrimento automático (de publicadores & assinantes)
 - Baixo overhead visando sistemas de alta performance
 - Escalabilidade e uso eficiente da largura de banda
 - Grande gama de parâmetros de QoS: Ownership, History, Reliability, ...
 - Middleware realiza cache de dados Data Reader Cache
 - Conceito de Global Data Space e Domain

Politicas de QoS suportadas

USER_DATA TIME_BASED_FILTER TOPIC_DATA **PARTITION** GROUP_DATA **RELIABILITY DURABILITY** TRANSPORT_PRIORITY DURABILITY_SERVICE **LIFESPAN PRESENTATION** DESTINATION_ORDER **DEADLINE HISTORY** LATENCY_BUDGET RESOURCE_LIMITS **OWNERSHIP** ENTITY_FACTORY WRITER_DATA_LIFECYCLE OWNERSHIP_STRENGTH **LIVELINESS** READER_DATA_LIFECYCLE

Modelo Centrado nos Dados

 Os Topicos s\u00e3o descritos em um modelo relacional (Diagramas Entidade-Relacionamento)

 Existe uma ferramenta que gera os DataWriters e DataReaders correspondentes

13

Funcionamento

- Subscrições são desacopladas das publicações
- Contratos estabelecidos por QoS
 - Possibilidade de ter várias configurações
- Descobrimento e configuração automáticos

Funcionamento

- DomainParticipant Permite aplicação entrar em um domínio
- **Publisher/Subscriber** Envia/recebe objetos
- DataWriter/Reader Envia/recebe um tópico específico
- Topic Associa nome único e tipo de dado

Interface do Subscriber

- Existem 2 estilos de interação distintos:
 - Listener-based data access
 - Participante é notificado por um *listener*
 - Middleware assincronamente informa o participante através dos métodos no listener
 - Simples e eficiente
 - Wait-based data access
 - Provê um conjunto de condições que as threads do participante podem usar para ficarem bloqueadas enquanto não há mudança
 - Semelhante ao uso de **select** em sockets
 - Estilo de interação simples, porém especificação de
 - condição e wait é mais complexa

25

Interface do Subscriber

Listener-based data access

Arquiteturas DDS

- Decentralizada
 - Prós
 - Aplicação independente
 - Menor latência e jitter Node (computer)
 - Menos locais de configuração
 - Menos um ponto de falha
 - Contras
 - Aplicação mais complexa
 - Detalhes de configuração manipulados na aplicação
 - Dificuldade em fazer buffer de dados enviados entre aplicações no mesmo nó

29

User process

Node (computer)

Arquiteturas DDS

- Federada
 - Prós
 - Maior número de participantes no mesmo nó
 - Priorização de mensagens entre aplicações
 - Simplifica a configuração da aplicação
 - Cache entre aplicações no mesmo nó

Contras

- Mais um ponto de falha User process
- Mais uma configuração
- Maior latência e jitter

Arquiteturas DDS

- Centralizada
 - Prós
 - Simplicidade de configuração e implementação
 - Contras
 - Ponto de falha central
 - Potencial gargalo
 - Problema com escalabilidade

31

Principais produtos DDS

- Arquitetura Descentralizada
 - CoreDX
 - OpenDDS
 - RTI
- Arquitetura Federada
 - OpenSplice

Resumindo...

- Define uma arquitetura Data-Centric Publish-Subscribe para conectar participantes anônimos
 - Desacoplamento de espaço, tempo, fluxo, plataforma, multiplicidade
- Menor complexidade no desenvolvimento de aplicações distribuídas
- Possibilita tolerância a falhas, descobrimento dinâmico, subscrição com filtro, escalabilidade, comunicação em tempo real, processamento de eventos...
- Além de ser interoperável com outras soluções
 DDS

39

Referências

- OMG, Data Distribution Service for Real-Time Systems Specification, www.omg.org/docs/formal/04-12-02.pdf.
- A. Corsaro, Getting Started with DDS, PrismTech.
- G. Pardo-Castellote, OMG Data-Distribution Service: Architectural Overview, Proc. of 23th IEEE Int. Conference on Distributed Computing Systems Workshops, pp. 200-206, 2003
- G. Pardo-Castellote, B. Farabaugh, R. Warren. An Introduction to DDS and Data-Centric Communications, RTI.
- M. Xiong et al. Evaluating the Performance of Publish/Subscribe Platforms for Information Management in Distributed Real-time and Embedded Systems, Vanderbilt University.
- M. Xiong et al. Evaluating the Performance of Pub/Sub Platforms for Tactical Information Management, Proc. of SPIE, International Society for Optical Engineering,
- http://portals.omg.org/dds/presentations

