Resolución del 1er parcial de Matemática Discreta II Lunes 13 de mayo de 2002

Problema 1

a) (4 Puntos) Hallar x entre 0 y 21 inclusive tal que $x \equiv 5^{2002} \pmod{22}$.

Resolución: Por el teorema chino de los restos $x \equiv 5^{2002} \pmod{22}$ si y solo si

$$\begin{cases} x \equiv 5^{2002} \pmod{2} \\ x \equiv 5^{2002} \pmod{11} \end{cases}.$$

La primer ecuación es trivial ya que al ser $5 \equiv 1 \pmod{2}$ nos queda que $x \equiv 5^{2002}$ (mod 2) si y solo si $x \equiv 1^{2002}$ (mod 2) si y solo si $x \equiv 1 \pmod{2}$ de Fermat que en la versión que dice que $a^{p-1} \equiv 1 \pmod{p}$ si $a \neq p$. En este caso tenemos que $5^{10} \equiv 1 \pmod{11}$ por lo tanto $5^{2000} \equiv (5^{10})^{200} \equiv 1 \pmod{11}$ y entonces la segunda ecuación será equivalente a la ecuación $x \equiv 5^2 \pmod{11}$. Como $5^2 \equiv 25 \equiv 3 \pmod{11}$ y 3 es impar y está entre 0 y 21 inclusive, la solución al sistema es $x \equiv 3$.

b) (4 Puntos) Hallar y entre 0 y 22 inclusive tal que $y \equiv 13^{5^{2002}} \pmod{23}$.

Resolución: Por la parte anterior sabemos que $5^{2002} = 22k + 3$ para algún k. Además por el teorema (pequeño) de Fermat sabemos, por ser 23 primo, que $13^{22} \equiv 1 \pmod{23}$ por lo tanto $13^{5^{2002}} \equiv 13^{22k+3} \equiv (13^{22})^k 13^3 \equiv 13^3 \equiv (-10)^3 \equiv -1000 \equiv -(1000 - 4.230) \equiv -(1000 - 920) \equiv -80 \equiv -80 + 4.23) \equiv 12 \pmod{23}$. Por lo tanto x = 12 es la solución.

Problema 2

a) (3 Puntos) Hallar MCD(a, b) sabiendo que MCD(a, b).mcm(a, b) = 48 y que $a^2 = b^2 + 28$.

Resolución: Una forma es resolver el sistema

$$\begin{cases} a.b = 48 & , \\ a^2 = b^2 + 28 & . \end{cases}$$

ya que MCD(a,b).mcm(a,b) = ab. Otra forma podría ser expresar la segunda ecuación en la forma (a+b)(a-b) = 28 = 4.7 por lo tanto tenemos las siguientes posibilidades

- 1) a + b = 28 y a b = 1, pero sumando daría 2a = 29, lo cual es imposible para un entero a.
- 2) a + b = 14 y a b = 2.
- 3) a + b = 7 y a b = 4, pero sumando daría 2a = 11.

Por lo tanto la única posibilidad es la segunda que nos da a=8 y b=6, la cual es la solución del problema ya que 8.6=48.

b) (5 Puntos) ¿Existe algún múltiplo de 28 cuyas dos últimas cifras sean 16?. En caso afirmativo, hallar una fórmula para ellos.

Resolución: El problema tiene solución si y solo si la ecuación diofántica 28x = 16 + 100y tiene solución o equivalentemente si la ecuación en congruencias $28x \equiv 16 \pmod{100}$ tiene solución. Como mcd(28, 100) = 4|16 las ecuaciones tiene solución. Además al ser 25.2 - 7.7 = 1 tenemos que 100.2 - 28.7 = 4 y las soluciones serán y = 2.4 - 7k y x = 7.4 + 25k para todo k entero, es decir, los múltiplos positivos de 28 serán los de la forma 28(-28 + 25k) para cada entero $k \geq 2$ mientras que los múltiplos negativos serán los de la forma -28(-28 + 25k) para cada entero $k \geq 2$.

Problema 3 (8 Puntos) Sean H y K subgrupos de un grupo G. Demostrar que HK es normales y finitos de un grupo G, tales que un subgrupo de G si y solo si HK = KH.

Problema 4 Sean H y K dos subgrupos

$$MCD(|H|, |K|) = 1.$$

Resolución:

- $HK < G \Rightarrow HK = KH$
 - $-HK \subset KH$: Sea $hk \in HK$, debemos probar que $hk \in KH$.

$$hk \in HK \underset{HK \leq G}{\Longrightarrow} (hk)^{-1} \in HK \implies$$
$$k^{-1}h^{-1} \in HK \implies$$
$$\exists h', k' : k^{-1}h^{-1} = h'k'.$$

Ahora bien, como tanto H como Kson subgrupos de G, contendrán a los inversos de h' y k' respectivamente, por lo tanto $k'^{-1}h'^{-1} \in KH$, pero $k'^{-1}h'^{-1} = (h'k')^{-1} = (k^{-1}h^{-1})^{-1}$

- $-KH \subset HK$: Sea $kh \in KH$, como H y K son subgrupos de G, contendrán a h^{-1} y k^{-1} respectivemente, por lo tanto $h^{-1}k^{-1} \in HK$. Pero como HK <G, entonces $(h^{-1}k^{-1})^{-1} \in HK$, pero $(h^{-1}k^{-1})^{-1} = kh$, por lo tanto $kh \in HK$.
- $HK = KH \Rightarrow HK \leq G$
 - $-a, b \in HK \Rightarrow ab \in HK$: Sean $h, h' \in$ $H \ y \ k, k' \in K \ \text{tales que } a = hk \ y$ a = h'k', entonces ab = hkh'k'. Como HK = KH, entonces $kh' \in HK$, por lo que existirán $h'' \in H$ y $k'' \in K$ tales que kh = h''k''' y por lo tanto hkh'k' = hh''k''k', pero al ser H y K son subgrupos de G, $hh'' \in H \vee k''k' \in$ K lo cual implica que $ab = hh''k''k' \in$
 - $-a \in HK \Rightarrow a^{-1} \in HK$: Sean $h \in H$ $y \ k \in K$ tales que a = hk, entonces $a^{-1} = k^{-1}h^{-1} \in KH = HK.$

Aclaración: Le recordamos que HK se define como el conjunto de todos los productos posibles de la forma hk con $h \in H$ y $k \in K$.

- a) (3 Puntos) Demostrar que $hk = kh \forall h \in$ $H, k \in K$. Resolución: Primero observamos que como H y K son subgrupos, $H \cap K$ también lo será. Por lo tanto, por el teorema de Lagrange: $|H \cap K| | |H|, |K|$ por lo tanto $|H \cap K| |MCD(|H|, |K|) = 1$, así que $|H \cap K| = 1$, es decir $H \cap K =$ $\{e\}$. Ahora sabemos que hk = kh sii $hkh^{-1}k^{-1} = e$, es decir, bastaría entonces probar que $hkh^{-1}k^{-1} \in H \cap K$. Esto último es así porque al ser K normal x = $hkh^{-1} \in K$ y por ser subgrupo $k^{-1} \in K$ por lo que el producto estará en K. De forma similar, por ser H normal, tenemos que $kh^{-1}k^{-1} \in H$ y por ser subgrupo que el producto con h también estará en H. Al es- $\tan hkh^{-1}k^{-1}$ tanto en H como en K estará en su intersección, como queríamos demostrar.
- b) (5 Puntos) Demostrar que la función f: $H \times K \longrightarrow HK$ definida por f((h, k)) = hkes un isomorfismo de grupos. Resolución:
 - Homomorfismo: f((h,k)(h',k'))f((hh',kk')) $hh'kk' =_{\text{parte anterior}} hkh'k'$ f((h,k))f((h',k'))
 - Inyectiva: $f((h,k)) = e \implies hk =$ $e \implies h = k^{-1} \implies h \in K \implies h \in$ $H \cap K \implies h = e \implies k = e.$
 - Sobreyectiva: si $z \in HK \implies \exists h, k$: z = hk = f((h, k)).

Aclaración: $H \times K$ es el grupo cuyos elementos son las parejas ordenadas (h, k) del producto cartesiano de H por K con la operación (h,k)(h',k') = (hh',kk').

Problema 5 Sea a > 0 y Γ el conjunto formado por las siguientes biyecciones de $\mathbb{R} \setminus \{0, 1\}$ en si mismo:

$$\varphi_1(z) = z, \qquad \varphi_2(z) = \frac{1}{1-z}, \qquad \varphi_3(z) = \frac{z-1}{z},$$

$$\varphi_4(z) = \frac{a}{z}, \qquad \varphi_5(z) = 1 - z, \qquad \varphi_6(z) = \frac{z}{z - 1}.$$

Se sabe que (Γ, \circ) es un grupo.

- a) (2 Puntos) Hallar a. Resolución: Sabemos que al ser Γ un grupo, tiene que ser cerrado bajo la composición, por lo que $\varphi_4 \circ \varphi_5 \in \Gamma$, pero $\varphi_4 \circ \varphi_5(z) = a/(1-z)$ y la única función de Γ que tiende a infinito cuando z tiene a 1 y no vale 0 en 0 es φ_2 por lo tanto a=1.
- b) (2 Puntos) Escribir la tabla de composición de estas funciones.

c) (2 Puntos) Hallar el orden de cada elemento de Γ .

$$egin{array}{cccc} i & o(arphi_i) & 1 & 1 & & & & & & & & \\ 2 & 3 & 3 & 3 & & 3 & & & & & & & & \\ 4 & 2 & 5 & 2 & & & & & & & & & & \\ 5 & 2 & 6 & 2 & & & & & & & & & & \end{array}$$

d) (2 Puntos) ¿Es $\{\varphi_1, \varphi_4\}$ un subgrupo normal de Γ? Justificar. Resolución: No es normal ya que $\varphi_5\varphi_4\varphi_5^{-1} = \varphi_2\varphi_4\varphi_5 = \varphi_6\varphi_5 = \varphi_3 \notin \{\varphi_1, \varphi_4\}.$