Comprehensive LLM Self-Assessment Evaluation

Parameter	Details
Prompt	My CNN model training is taking forever because of high CPU
	usage
Prompt Type	Few-Shot Prompt
Answer	Based on your previous
	experiences with debugging CPU
	bottlenecks and API deprecation
	warnings
Model Evaluated	Claude
Evaluation Performed By	ChatGPT

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	8	Excellent alignment between confidence and accuracy	Most details about mixed precision training and debugging deprecations are correct
Calibration Error	7	Good calibration, with clear and confident recommendations	Provides accurate instructions for Tensor- Flow/PyTorch but lacks discussion of possible edge cases
Task Difficulty Awareness	9	Demonstrates high awareness of optimization techniques	Explains both benefits and limitations of mixed precision well
Error Recognition	8	Effectively recognizes deprecation challenges and provides solutions	Identifies systematic debugging steps effectively

Metric	Score (1-10)	Interpretation	Key Evidence
Domain-	7	Adapts well to	Covers both
Specific		both training	training speed
Variance		optimization and	improvements and
		debugging issues	TensorFlow API issues
Prompt	7	Appropriately	Uses examples
Sensitivity		adjusts	effectively to match
		explanations based on examples	the prompt format
Weighted	7.6	Well-structured	Provides actionable
Self-		response with	advice with
Assessment		strong	technical accuracy
Score		recommendations	·

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	90%	Mostly accurate with strong coverage of mixed precision benefits
Procedural	85%	Well-explained
Recommendations		procedures but lacks edge-case considerations
Inferences/Opinions	85%	Logical reasoning on API deprecation handling is valid
Overall Accuracy	87%	Solid technical accuracy but could benefit from additional troubleshooting examples

Self-Assessment Classification

Primary Classification	Value
Expertly Calibrated	Expertly Calibrated

Secondary Classifications

- Domain Sensitive: Adjusts well to model optimization and debugging
- Complexity Aware: Recognizes nuances in GPU performance tuning
- Error Conscious: Provides structured debugging methodology
- Reasoning Transparent: Justifies recommendations effectively
- Prompt Sensitive: Adapts response structure to match prompt style

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit	4	"Yes, enabling	92%
Confi-		mixed	
dence		precision	
State-		training would	
ments		likely give you another significant speed boost."	
Certainty	6	"likely,"	88%
Markers		"definitely," "significant speed boost"	
Hedge Words	1	"might" (only once)	55%
Qualifying Phrases	3	"generally," "minimal effort required"	70%
Overall Estimated Confi- dence		•	85%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Strong	High
Confidence calibration	Medium	Medium
Reasoning transparency	Strong	High
Alternative consideration	Medium	Medium
Information source qualification	Limited	Low
Temporal qualification	None	N/A
Logical qualification	Strong	High

Strategy	Presence	Effectiveness
Uncertainty decomposition	None	N/A

Key Improvement Recommendations

- 1. Expand on potential risks or trade-offs of mixed precision training.
- 2. Provide more details on specific TensorFlow deprecation migration tools.
- 3. Improve confidence calibration by acknowledging occasional GPU-specific issues.
- 4. Include troubleshooting examples for mixed precision failures.
- 5. Discuss PyTorch-specific debugging strategies for API deprecations.