Série 2016

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires: Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation:

- Le nombre de points maximum est donné pour chaque exercice.
- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.
- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

1,0

Barème: Nombres de points maximum: 19,0

0.0 -

18,5	-	19,0	Points = Note	6,0
16,5	-	18,0	Points = Note	5,5
14,5	-	16,0	Points = Note	5,0
12,5	-	14,0	Points = Note	4,5
10,5	-	12,0	Points = Note	4,0
9,0	-	10,0	Points = Note	3,5
7,0	-	8,5	Points = Note	3,0
5,0	-	6,5	Points = Note	2,5
3,0	-	4,5	Points = Note	2,0
1,0	-	2,5	Points = Note	1,5

0,5 Points = Note

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des expertes / experts:		Points obtenus	Note	

Délai d'attente:	Cette épreuve d'examen ne peut pas être utilisée librement comme
	exercice avant le 1 ^{er} septembre 2017.

Créé par: Groupe de travail EFA de l'USIE pour la profession

d'installatrice-électricienne CFC / installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

cices	Nombre maximal	de points obtenus
Une électrode de terre en acier galvanisé a une longueur de 80 m et une section de 100 mm².	2	
Calculez:		
a) son volume en dm³	1	
b) sa masse en kg	1	
$ \rho_{Acier/fer} = 7.8 \frac{kg}{dm^3} $		
Les illustrations ci-dessous montrent deux différentes variantes de production	2	
d'énergie électrique. Nommez et décrivez chacun de ces types de production.		
Type de production:	0,5	
N S Description:	0,5	
b)		
Electrode Type de production: de carbone de zinc	0,5	
Description: Electrolyte	0,5	
	de 100 mm². Calculez: a) son volume en dm³ b) sa masse en kg $\rho_{Acier / fer} = 7.8 \frac{kg}{dm³}$ Les illustrations ci-dessous montrent deux différentes variantes de production d'énergie électrique. Nommez et décrivez chacun de ces types de production. a) Type de production: Description: Description:	Une électrode de terre en acier galvanisé a une longueur de 80 m et une section de 100 mm². Calculez: a) son volume en dm³ b) sa masse en kg $\rho_{Acier / fer} = 7.8 \frac{kg}{dm³}$ Les illustrations ci-dessous montrent deux différentes variantes de production d'énergie électrique. Nommez et décrivez chacun de ces types de production: a) Type de production: Description: 0,5 0,5

Exer	cices	Nombre maximal	de points obtenus
3.	Calculez dans le circuit suivant:	3	
	a) le courant total I	1	
	b) la tension aux bornes de R ₃	1	
	c) la résistance R₁	1	
	$\begin{array}{c c} 0,8 & A \\ \hline R_1 & 1,2 & A \end{array}$		
4.	A l'aide d'un ohmmètre, un installateur-électricien mesure la résistance de boucle d'un câble dont les conducteurs en cuivre ont une section de 1,5 mm². L'ohmmètre indique 1,2 Ω entre L et N. $ (\rho = 0.0175 \ \frac{\Omega \cdot mm^2}{m}) $	2	
	Calculez:	1	
	a) la longueur du câbleb) la chute de tension en volts lorsqu'un courant de 8,5 A circule dans le câble	1	

Bases technologiques

Exer	Exercices			
5.	Le graphique ci-dessous montre la caractéristique d'une résistance non-linéaire. Quelle affirmation est correcte?	maximal 1	obtenus	
	Graphique $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
	Affirmations juste			
	Caractéristique d'une thermistance NTC			
	Caractéristique d'une thermistance PTC			
6.	Sur une batterie de piles 4,5 V, la tension aux bornes chute à 4,3 V lorsque la batterie débite un courant de 0,6 A. Calculez: a) la chute de tension aux bornes de la résistance interne R _i b) la résistance interne R _i	1 1		

Bases technologiques

Exer	cices	Nombre maximal	de points obtenus
7.	Une grue soulève une charge de 120 kg en 6 secondes à une hauteur de 8 m. g = 9,81 $\frac{m}{s^2}$; g = 9,81 $\frac{N}{kg}$ Calculez:	3	
		2	
	a) la puissance utile (puissance mécanique)		
	b) la puissance absorbée sur le réseau électrique, sachant que le système de levage a un rendement de 71 % et le moteur a un rendement de 81 %.	1	
8.	Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 lampes halogène à basse tension ayant chacune les caractéristiques suivantes: $P = 50 \text{ W}, \Phi = 950 \text{ lm}$	2	
	Le rendement de l'éclairage est de 45 %.		
	Calculez l'éclairement moyen E _M .		

Bases technologiques

Exer	cices			Mombre maximal	maximal
9.	9. Une boucle conductrice est déplacée dans le champ magnétique. Cochez la bonne réponse pour chacune des affirmations. N Sens du déplacement				
	Déclarations / Affirmations	juste	faux		
	L'aiguille de l'appareil ne bouge pas lorsque la boucle est déplacée horizontalement			0,5	
	L'aiguille de l'appareil bouge lorsque la boucle est déplacée verticalement			0,5	
	Un déplacement horizontal provoque l'apparition d'une tension			0,5	
	La tension augmente lorsque la vitesse de déplacement augmente			0,5	
	Total			19	
	I Olai			19	