

UZUPEŁNIA ZDAJĄCY		
KOD PESEL		miaisaa
		miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Część I

DATA: 13 maja 2019 r.

GODZINA ROZPOCZĘCIA: 14:00

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

UZUPEŁNIA ZDAJĄCY	WYBRANE:	
	(system operacyjny)	
	(program użytkowy)	
	(środowisko programistyczne)	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NOWA FORMUŁA

00

0

Zadanie 1. Ulubione liczby

Małgosia i Jaś lubią liczby. Małgosia lubi liczby nieparzyste, a Jaś lubi liczby parzyste. Każde z dzieci zapisało po kilka spośród swoich ulubionych liczb na jednej wspólnej kartce. Najpierw Małgosia zapisała wszystkie swoje liczby, a potem Jaś dopisał swoje.

Zadanie 1.1. (0-5)

Napisz algorytm (w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który dla danego ciągu liczb zapisanych przez dzieci znajdzie pierwszą liczbę zapisaną przez Jasia. Zakładamy, że każde z dzieci zapisało co najmniej jedną liczbę.

Przy ocenie będzie brana pod uwagę złożoność czasowa Twojego algorytmu. Maksymalną liczbę punktów uzyskasz za algorytm o złożoności lepszej niż liniowa.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), instrukcje porównania, instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące wyżej wymienione operacje.

Specyfikacja:

Dane:

n – liczba całkowita większa od 1

A[1..n] – tablica zawierająca ciąg n liczb zapisanych przez dzieci (najpierw

wszystkie liczby nieparzyste, a potem wszystkie liczby parzyste)

Wynik:

w – pierwsza od lewej parzysta liczba w tablicy *A*

Przykład:

Dane:

$$n = 10$$

 $A[1..n] = \{5, 99, 3, 7, 111, 13, 4, 24, 4, 8\}$
Wynik:
 $w = 4$

Zadanie 1.2. (0-1)

Podaj, jaką złożoność czasową – kwadratową, liniową, logarytmiczną lub inną (napisz jaką) – ma Twój algorytm.

.....

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt.	5	1
egzaminator	Uzyskana liczba pkt.		

Zadanie 2. Analiza algorytmu

Przeanalizuj podaną funkcję pisz.

Specyfikacja:

```
Dane:
```

s – napis

n – liczba całkowita dodatnia, nie mniejsza niż długość napisu s

k – liczba całkowita z zakresu [2..10]

```
funkcja pisz(s,n,k)
   jeżeli dł(s) = n
       wypisz s
   w przeciwnym razie
       dla i=0,1 ... k-1 wykonuj
       pisz(s + napis(i), n, k)
```

Uwaga:

dl(x) – daje w wyniku długość napisu x

s1 + s2 – daje w wyniku złączenie napisów s1 i s2

napis(p) – daje w wyniku napis będący zapisem dziesiętnym liczby całkowitej p

Zadanie 2.1. (0-2)

- a) Uzupełnij miejsca oznaczone kropkami w drzewie wywołań funkcji pisz otrzymanym w wyniku wywołania pisz("",2,2).
- b) W kwadratowych polach, przy węzłach drzewa, podaj odpowiednią kolejność wywołań funkcji pisz, tzn. przy pierwszym wywołaniu 1, przy kolejnym 2 itd.

Zadanie 2.2. (0-2)

Uzupełnij poniższą tabelę – przeanalizuj podane w niej wywołania funkcji pisz. Podaj napisy wypisywane w wyniku wywołania funkcji pisz z zadanymi parametrami oraz łączną liczbę wywołań tej funkcji.

Pierwsze wywołanie funkcji pisz	Napisy wypisane w wyniku wywołania funkcji pisz	Łączna liczba wywołań funkcji pisz
pisz("", 3, 2)		_
pisz("", 2, 3)		

Zadanie 2.3. (0-2)

Podaj wzór na łączną liczbę wywołań funkcji pisz w wyniku wywołania pisz("", n, k).

......

	Nr zadania	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt.	2	2	2
egzaminator	Uzyskana liczba pkt.			

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz \mathbf{P} , jeśli zdanie jest prawdziwe, albo \mathbf{F} – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Dana jest tabela PRACOWNICY.

Nr_P	Nazwisko	Imię	Stanowisko	Nr_działu
736	Smitko	Alan	urzędnik	20
7499	Nowak	Kazimierz	sprzedawca	30
7521	Więcek	Mariusz	sprzedawca	30
7566	Jonas	Kamil	kierownik	20
7654	Martin	Leon	sprzedawca	30
7698	Bracki	Bartosz	kierownik	30
7782	Celerek	Agnieszka	kierownik	10
7788	Skotnik	Natalia	analityk	20
7839	King	Mirosława	prezes	10

	Wynikiem zapytania		
	SELECT COUNT(Stanowisko)		
1.	FROM PRACOWNICY;	P	F
	jest		
	Stanowisko 5		
	Wynikiem zapytania		
	SELECT COUNT(Stanowisko)		
2.	FROM PRACOWNICY	P	F
2.	WHERE Stanowisko <> "kierownik";	1	I.
	jest		
	6		
	Wynikiem zapytania		
	SELECT Stanowisko, COUNT(*)		
	FROM PRACOWNICY		
	GROUP BY Stanowisko;		
3.	jest	P	F
	urzędnik 1	_	
	sprzedawca 3		
	kierownik 3		
	analityk 1		
	prezes 1		
	Wynikiem zapytania		
	SELECT COUNT(Stanowisko)		
4.	FROM PRACOWNICY	P	F
	WHERE Stanowisko LIKE "*nik";		
	jest		
	2		

Zadanie 3.2. (0-1)

Po pomnożeniu dwóch liczb 11111102 oraz 1012 zapisanych w systemie dwójkowym otrzymamy:

1.	213124	P	F
2.	10010101102	P	F
3.	11668	P	F
4.	276 ₁₆	P	F

Miejsce na obliczenia

Zadanie 3.3. (0-1)

1.	DNS to skrót od Domain Name System.	P	F
2.	Do danego adresu IP może być przypisanych wiele różnych nazw.	P	F
3.	Przy zmianie adresu IP komputera pełniącego funkcję serwera WWW jest konieczna zmiana nazwy domeny internetowej.	P	F
4.	System DNS ma jedną centralną bazę danych adresów IP i nazw.	P	F

	Nr zadania	3.1.	3.2.	3.3.
	Maks. liczba pkt.	1	1	1
egzaminator	Uzyskana liczba pkt.			

BRUDNOPIS (nie podlega ocenie)