Линейная комбинация, линейная оболочка

Алгебра. Глава 5. Линейные пространства

Д.В.Карпов

Алгебра. Глава 5. Линейные

Условия:

 $a+b \in M$ $k*a \in M$

Определение

Пусть V — линейное пространство над полем K.

- 1) Пусть $x_1, \ldots, x_n \in V$, $\alpha_1, \ldots, \alpha_n \in K$. Тогда $\alpha_1 x_1 + \cdots + \alpha_n x_n$ линейная комбинация векторов x_1, \ldots, x_n . Линейная комбинация называется нетривиальной, если не все $\alpha_1, \ldots, \alpha_n$ нули.
- 2) Пусть $M \subset V$. Линейная оболочка множества M это множество $\mathrm{Lin}(M)$ всех линейных комбинаций векторов из M (с любым количеством векторов).

Свойство 1

Если $M \subset V$, то и $\operatorname{Lin}(M) \subset V$.

Доказательство. Несложно проверить, что линейная комбинация векторов линейного пространства V всегда

лежит в V.

Действительно: операции + и * определены так, что $x_i + x_j => M$ и $k^* x_j => M$ Тогда все $a_i x_i$ принадлежат $M \in V$, а их сумма тем более.

Свойство 2

Для любого $M\subset V$, $\mathrm{Lin}(M)$ — линейное подпространство V.

Доказательство. • Достаточно проверить замкнутость по сложению и умножению.

ullet Пусть $x_1, \dots, x_n \in M, \ \alpha_1, \dots, \alpha_n \in K.$ Тогда

$$\beta(\alpha_1x_1+\cdots+\alpha_nx_n)=$$

$$(\beta\alpha_1)x_1+\cdots+(\beta\alpha_n)x_n\in \operatorname{Lin}(M).$$

ullet Пусть, кроме того, $eta_1,\ldots,eta_n\in K$. Тогда

$$\alpha_1 x_1 + \dots + \alpha_n x_n + \beta_1 x_1 + \dots + \beta_n x_n = (\alpha_1 + \beta_1) x_1 + \dots + (\alpha_n + \beta_n) x_n \in \operatorname{Lin}(M).$$

(Здесь достаточно проверить сложение линейных комбинаций одних и тех же векторов, так как в линейную комбинацию можно добавить отсутствующие в ней вектора с нулевыми коэффициентами.)

4. Линейно зависимые и линейно независимые системы векторов и их свойства.

Определение

- 1) Пусть V линейное пространство над полем K и $M \subset V$ Если $\mathrm{Lin}(M) = V$, то M порождающая система векторов пространства V.
- 2) Пространство V называется конечно порожденным, если оно имеет конечную порождающую систему векторов.
- В основном, мы будем изучать конечно порожденные линейные пространства. P^n пространства

каждый вектор из V можно выразить через мн-во всех линейных комбинаций векторов пример: R- поле, $V=\{ka\}$, $k\in R$ $15a=5a+10a=a_1+\ldots+a_{15}$

представление

базис – единственное

• P^n — пространство всех многочленов степени не выше n. Размерность этс пространства n+1. Многочлены $1,x,x^2,\ldots,x^n$ образуют в нём базис.

• Пусть X — произвольное линейное пространство и пусть $\{x_1, x_2, \dots, x_n\}$ некоторая линейно-независимая система векторов. Тогда линейная оболочк натенулав на эту систему есть конечноменное пространство

Определение

Пусть V — линейное пространство над полем K.

- Вектора $x_1, \ldots, x_n \in V$ называются линейно зависимыми (коротко: ЛЗ), если существует их нетривиальная линейная комбинация, равная 0. (То есть, $\alpha_1, \ldots, \alpha_n \in K$ не все равны 0, а $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$.) Если такой комбинации нет, то вектора $x_1, \ldots, x_n \in V$ называются линейно независимыми (коротко: ЛНЗ).
- Бесконечное множество векторов называется *линейно зависимым*, если из них можно составить нетривиальную линейную комбинацию, равную 0 и *линейно независимым*, если нельзя.

Пример ЛЗ системы векторов:

1).
$$k=2, n=3$$
; $a_1=\begin{pmatrix} 1\\0\\2\end{pmatrix}, a_2=\begin{pmatrix} -2\\0\\-4\end{pmatrix} \Rightarrow 2\cdot a_1+1\cdot a_2=2\cdot \begin{pmatrix} 1\\0\\2\end{pmatrix}+1\cdot \begin{pmatrix} -2\\0\\-4\end{pmatrix}=\begin{pmatrix} 0\\0\\0\end{pmatrix}=\theta$ при том, что

 $\alpha_1^2 + \alpha_2^2 = 2^2 + 1^2 \neq 0$. Следовательно, система векторов $\{a_1, a_2\}$ линейно зависима.

2).
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, a = \begin{pmatrix} 7 \\ -3 \\ 2010 \end{pmatrix}.$$

Очевидно, что $7 \cdot e_1 + (-3) \cdot e_2 + 2010 \cdot e_3 + (-1) \cdot a = \theta$. Следовательно, система векторов $\{e_1, e_2, e_3, a\}$ линейно зависима. Здесь специальное «устройство» векторов e_1, e_2, e_3 позволило нам быстро угадать нетривиальную линейную комбинацию векторов системы, равную нуль-вектору.

Пример ЛНЗ: $\{a\} \in V$, где a — ненулевой (очевидно, никогда не получим 0)

Свойства ЛЗ и ЛНЗ множеств векторов

Алгебра. Глава 5. Линейные пространства

Д.В.Карпов

Свойство 0

Пусть V — линейное пространство над полем K, $0 \in M \subset V$. Тогда множество векторов M J3.

Доказательство. Есть нетривиальная линейная комбинация $1 \cdot 0 = 0$.

Свойство 1

Если множество векторов ЛЗ, то любое его надмножество тоже ЛЗ.

Доказательство. Можно не использовать добавленные вектора в линейных комбинациях.

Добавленные из надмножества

Свойство 2

Если множество векторов ЛНЗ, то любое его подмножество тоже ЛНЗ.

Доказательство. Убрав некоторые вектора из множества, мы не добавим новых линейных комбинаций.

Свойство 3

Если $x_1, \ldots, x_n \in V$ ЛЗ, то среди них есть вектор, который является линейной комбинацией остальных.

Доказательство. • Пусть $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$, НУО $\alpha_n \neq 0$.

Тогда

$$x_n = \frac{-\alpha_1}{\alpha_n}x_1 + \cdots + \frac{-\alpha_{n-1}}{\alpha_n}x_{n-1} \in \operatorname{Lin}(x_1, \ldots, x_{n-1}).$$

Свойство 4

Если $x_1, \ldots, x_n \in V$ ЛНЗ и $y \notin \text{Lin}(x_1, \ldots, x_n)$, то x_1, \ldots, x_n, y — ЛНЗ.

Доказательство. • Пусть x_1, \ldots, x_n, y — ЛЗ. Тогда существует нетривиальная линейная комбинация $\alpha_1 x_1 + \cdots + \alpha_n x_n + \beta y = 0$.

- Если $\beta=0$, то не все α_1,\dots,α_n равны 0 и $\alpha_1x_1+\dots+\alpha_nx_n=0$, а значит, x_1,\dots,x_n ЛЗ, противоречие.
- ullet Значит, eta
 eq 0. Тогда

$$y = \frac{-\alpha_1}{\beta}x_1 + \cdots + \frac{-\alpha_n}{\beta}x_n \in \operatorname{Lin}(x_1, \ldots, x_n),$$

40 × 40 × 40 × 40 × 00 00

противоречие.

Свойство 5

Если $x_1, \ldots, x_n \in V$ ЛНЗ, а $y \in V$ таков, что x_1, \ldots, x_n, y — ЛЗ, то $y \in \operatorname{Lin}(x_1, \ldots, x_n)$.

Доказательство. Прямое следствие Свойства 4.

Алгебра. Глава 5. Линейные пространства

Д.В. Карпов

Алгебра. Глава 5. Линейные пространства

Д.В.Карпов