

Quantum Denoising Diffusion Probabilistic Models for Image Generation

2023.02.15

Dohun Kim and Seokhyeong Kang

Pohang University of Science and Technology Department of Electrical Engineering CAD and SoC Design Lab.

Email. dohunkim@postech.ac.kr

Animation of CIFAR-10 samples generated from noise by a diffusion model

Google's Quantum Computer

- Diffusion Models + Quantum Computing
 - To the best of our knowledge, this is the first attempt to apply quantum computing to diffusion model for image generation

I. INTRODUCTION

- Quantum Computing
- Quantum Machine Learning

Quantum Computing

- What is Quantum Computing?

Superposition

Classical physics

Heads or Tails 0 or 1

Quantum physics

Heads and Tails 0 and 1

Entanglement

Quantum physics

The two qubits can no longer be treated separately

- Quantum Computing
 - > Use quantum phenomena such as superposition and entanglement to perform computation
 - > Can achieve exponential speed-ups for complex problems (e.g., Shor's factoring algorithm)

Quantum Computing

- Quantum Circuits (≈ Quantum Algorithms)

Probability Distribution

After the measurement, quantum state collapses to the basis state probabilistically

- Quantum Gate
 - > Operators on qubits, analogous to logic gate in classical circuit
- Quantum Circuit
 - Sequence of quantum gates, measurements, initializations of qubits

Quantum Machine Learning

- Why Quantum for Machine Learning?

Exponential growth of number of parameters in classical machine learning models

 $2^N \times 2^N$ Matrix Multiplication

- Quantum Machine Learning
 - Using quantum algorithms to improve existing machine learning techniques
 - > Offering potential advantages of enhanced performance and reduced computational resources

Quantum Machine Learning

- Parameterized Quantum Circuits

- Parameterized Quantum Circuits (PQCs)
 - Quantum circuits which contain the parameterized quantum gates
 - > Parameters are trained by a classical optimization algorithms

II. PRELIMINARIES

- Denoising Diffusion Probabilistic Models (Classical)

- Denoising Diffusion Probabilistic Models (DDPM)

 $q(\mathbf{x}_t|\mathbf{x}_{t-1})$: Forward process

- Forward Process (Degrade)
 - > Add small amount of Gaussian noise to the sample
- Reverse Process (Restore)
 - Recreate the true sample from a Gaussian noise input

- Model Components and Training

- Forward Process (Degrade)
 - > Add small amount of Gaussian noise to the sample
- Reverse Process (Restore)
 - Recreate the true sample from a Gaussian noise input

- Noise Scheduling (Degradation)

• Degrade function: $x_t = D(x_0, t)$

Given beta scheduling: $\beta_1 < \beta_2 < \cdots < \beta_T$

Let
$$lpha_t = 1 - eta_t$$
 and $ar{lpha}_t = \prod_{i=1}^t lpha_i$

Then,
$$\mathbf{x}_t = \sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{\epsilon}$$

Example

- Denoising Model (Restoration)

III. PROPOSED METHODS

- Quantum Denoising Diffusion Probabilistic Models

- Model Components and Training

- Training objective of model
 - \triangleright Minimization problem: $\min_{\theta} E \| \text{Restore}(\text{Degrade}(x_0, t), t) x_0 \|_2$

- Quantum Denoising Model (Restoration)

- Skip-connections are not feasible for quantum circuit
 - Quantum physics does not allow us to copy an arbitrary quantum state
 - New model architecture is required to design quantum denoising model

- Quantum Denoising Model (Restoration)

- Barren plateau: vanishing gradients in parameterized quantum circuits
 - Quantum circuit for the denoising model must be short-depth
 - > New model architecture is required to design quantum denoising model

- Quantum Denoising Model (Restoration)

- Restore function: $\hat{x}_0 = R(x_t, t)$
 - > Input:

$$|x_t\rangle = \frac{1}{\|x_t\|} \sum_k x_{t,k} |k\rangle, \ k = 0, ..., 2^{N-1}$$

Parameters:

 θ_t : Timestep-wise parameters

 θ_s : Shared parameters

Parametric Quantum Circuit at timestep t

- Quantum Denoising Model (Restoration)

Parametric Quantum Circuit at timestep t

 \triangleright Convolution Module: SU(4) gate

$$\theta = \underbrace{\begin{array}{c} U3(\theta_1, \phi_2, \lambda_3) \\ U3(\theta_4, \phi_5, \lambda_6) \end{array}}_{R_z(\theta_8)} \underbrace{\begin{array}{c} R_y(\theta_7) \\ R_y(\theta_9) \end{array}}_{R_z(\theta_8)} \underbrace{\begin{array}{c} U3(\theta_{10}, \phi_{11}, \lambda_{12}) \\ U3(\theta_{13}, \phi_{14}, \lambda_{15}) \end{array}}_{U3(\theta_{13}, \phi_{14}, \lambda_{15})}$$

> Pixel arrangement (8 x 8 image)

$$x_t = \begin{bmatrix} x_{t,(000000)_2} & \cdots & x_{t,(000111)_2} \\ \vdots & \ddots & \vdots \\ x_{t,(111000)_2} & \cdots & x_{t,(111111)_2} \end{bmatrix}$$

- Sampling from gaussian noise

- Sampling (Image generation)
 - ➤ Iteratively applying the denoising operator and then adding noise back to the image, with the level of added noise decreasing over time

IV. EXPERIMENTAL SETUP AND RESULTS

Experimental Result

- Implementation with PennyLane

8 x 8 image

- \rightarrow 64 = 2⁶ pixels
- \rightarrow 6 qubit circuit

16 x 16 image

- \rightarrow 256 = 28 pixels
- → 8 qubit circuit

Experimental Result

- Sampling from gaussian noise

V. CONCLUSION

Conclusion

Summary

- We showed the feasibility of quantum diffusion models in the image generation task
- The proposed quantum circuit has better representation ability for the amplitudeencoded 2D image compared to the general QNN structure
- Our image generation method is scalable and has a logarithmic space/time complexity according to the image size

Future Work

- We plan to further develop the quantum denoising model by designing the statistical realization of quantum U-net structure
- Also, we plan to conduct the experiments on the real quantum devices

THANK YOU

