Interaktive Computergrafik

Prof. Dr. Frank Steinicke
Human-Computer Interaction
Department of Computer Science
University of Hamburg

Interaktive Computergrafik Lektion 13

Prof. Dr. Frank Steinicke

Human-Computer Interaction, Universität Hamburg

https://threejs.org/examples/webgl_materials_lightmap.html

Interaktive Computergrafik Lektion 13

Displacement Mapping

3D Rendering Pipeline

Displacement-Mapping Ansätze

- Pre-Sampled Displacement Mapping: Bei (feinem) Polygonmesh wird Höhenposition der Vertices verschoben
- 2. Sampled Displacement Mapping: Einfaches Polygonmesh wird durch adaptive Tessellation zunächst verfeinert und Höhenposition der Vertices anschließend verschoben

Displacement-Mapping

Illustration

$$ightharpoonup P'(u,v) = P(u,v) + D(u,v) \cdot N(u,v)$$

Übung

Interaktive Computergrafik Lektion 13

Schatten

Schatten

Shadow Mapping

- Basierend auf konkreten Lichtquellen
- Harte Schatten

Ambient Occlusion

- Unabhängig von Lichtquellen (ambientes Licht)
- Weiche Schatten

Shadow-Mapping

Schritt 1:

 Speichere z-Werte der Szene aus Sicht der Lichtquelle in Textur (= Shadow-Map)

Diskussion

Wie muss die Projektion für eine Distant-Light-Lichtquelle eingestellt sein?

Diskussion

Wie muss die Projektion für eine Punkt-Lichtquelle eingestellt sein?

Diskussion

Was ist bei mehreren Lichtquellen zu beachten?

Shadow-Mapping

Schritt 2:

- Rendere Szene aus Sicht der Kamera
- Vergleiche Abstand von Fragment zur Lichtquelle mit in Shadow-Map gespeichertem Wert

Shadow-Mapping

Schritt 2:

- Rendere Szene aus Sicht der Kamera
- $z_{F1} \le z_2$ \rightarrow F_1 beleuchtet
- $z_{F2} > z_1$ $\rightarrow F_2$ im Schatten

http://www.nutty.ca/webgl/shadows/

Ambient Occlusion (AO)

 Berechne relativen Anteil S(V) der Strahlen, welche von Vertex V den "Himmel" erreichen ohne blockiert zu werden

Screen Space AO Sichtbarkeitsfunktion S

https://threejs.org/examples/ebgl_postprocessing_sao.html

