# **Countries Rating**

This Jupiter notebook constitutes part of a research project aimed at addressing the inquiry, "Which country is the most suitable for an individual?" utilizing data collected by the Organization for Economic Cooperation and Development (OECD). The project's full details are available in the webpage at \_\_\_ or in the PowerPoint presentation at \_.

This notebook covers the following steps:

- 1. Data Collection and Exploration: The OECD data will be obtained, transformed into a Pandas dataframe, investigated, cleansed, profiled, and extraneous data will be eliminated.
- 2. Data Wrangling: The missing values will be imputed using various linear regression models and the knearest neighbors method from Sklearn. In order to facilitate inter-country comparisons, new parameters will be generated by combining normalized specific characteristics. Following that, the dataframe will be restructured into a suitable format.
- 3. Data Visualization and Analysis: The dataset will be visualized and examined using interactive Plotly charts in order to extract insights and create an informative dashboard.

#### **Data Collection**

Import the required libraries.

```
In [1]: import pandas as pd
  import numpy as np
  import plotly.express as px
  from sklearn import linear_model
  from sklearn.preprocessing import MinMaxScaler
  from sklearn.impute import KNNImputer
```

The dataset in question is available on the OECD website at the URL: https://stats.oecd.org/Index.aspx? DataSetCode=BLI.

To facilitate subsequent work, we shall transform the dataset, which is stored in a .csv file, into a Pandas dataframe.

```
In [2]: df = pd.read_csv('BLI_11042023094335807.csv')
```

## **Data Exploration**

Firstly, we will print the dataset's shape and the top 5 rows to acquaint ourselves with the data. The dataset comprises 2369 rows and 17 columns.

```
In [3]: print(df.shape)
df.head(3)

(2369, 17)

Out[3]:

LOCATION Country INDICATOR Indicator MEASURE Measure INEQUALITY Inequality Code Unit
```

**0** AUS Australia JE\_LMIS Labour L Value TOT Total PC Percentage

market insecurity

| 1 | AUT | Austria | JE_LMIS | Labour<br>market<br>insecurity | L | Value | ТОТ | Total | РС | Percentage |
|---|-----|---------|---------|--------------------------------|---|-------|-----|-------|----|------------|
| 2 | BEL | Belgium | JE_LMIS | Labour<br>market<br>insecurity | L | Value | ТОТ | Total | PC | Percentage |

The dataset contains a substantial amount of information, while we are only interested in specific data. To achieve our aim, we shall employ the .pivot function to generate a dataframe from the data we require, with the country names as rows and the feature names as columns.

```
In [4]: Rating = df[df['INEQUALITY'] == 'TOT'] #to obtain general information, dataset contains se
Rating = Rating.pivot(index='Country', columns='Indicator', values='Value')
pd.options.display.max_columns = None #to see all columns
Rating
```

Out[4]:

| Indicator         | Air<br>pollution | Dwellings<br>without<br>basic<br>facilities | Educational<br>attainment | Employees<br>working<br>very long<br>hours | Employment<br>rate | Feeling<br>safe<br>walking<br>alone<br>at night | Homicide<br>rate | Household<br>net<br>adjusted<br>disposable<br>income | Houser<br>net we |
|-------------------|------------------|---------------------------------------------|---------------------------|--------------------------------------------|--------------------|-------------------------------------------------|------------------|------------------------------------------------------|------------------|
| Country           |                  |                                             |                           |                                            |                    |                                                 |                  |                                                      |                  |
| Australia         | 6.7              | NaN                                         | 84.0                      | 12.5                                       | 73.0               | 67.0                                            | 0.9              | 37433.0                                              | 5287             |
| Austria           | 12.2             | 0.8                                         | 86.0                      | 5.3                                        | 72.0               | 86.0                                            | 0.5              | 37001.0                                              | 3096             |
| Belgium           | 12.8             | 0.7                                         | 80.0                      | 4.3                                        | 65.0               | 56.0                                            | 1.1              | 34884.0                                              | 4476             |
| Brazil            | 11.7             | 6.7                                         | 57.0                      | 5.6                                        | 57.0               | 45.0                                            | 19.0             | NaN                                                  | 1                |
| Canada            | 7.1              | 0.2                                         | 92.0                      | 3.3                                        | 70.0               | 78.0                                            | 1.2              | 34421.0                                              | 4782             |
| Chile             | 23.4             | 9.4                                         | 67.0                      | 7.7                                        | 56.0               | 41.0                                            | 2.4              | NaN                                                  | 1357             |
| Colombia          | 22.6             | 12.3                                        | 59.0                      | 23.7                                       | 58.0               | 50.0                                            | 23.1             | NaN                                                  | 1                |
| Costa Rica        | 17.5             | 2.3                                         | 43.0                      | 22.0                                       | 55.0               | 47.0                                            | 10.0             | 16517.0                                              | 1                |
| Czech<br>Republic | 17.0             | 0.5                                         | 94.0                      | 4.5                                        | 74.0               | 77.0                                            | 0.7              | 26664.0                                              | 1                |
| Denmark           | 10.0             | 0.5                                         | 82.0                      | 1.1                                        | 74.0               | 85.0                                            | 0.5              | 33774.0                                              | 1498             |
| Estonia           | 5.9              | 5.7                                         | 91.0                      | 2.2                                        | 74.0               | 79.0                                            | 1.9              | 23784.0                                              | 1886             |
| Finland           | 5.5              | 0.4                                         | 91.0                      | 3.6                                        | 72.0               | 88.0                                            | 1.2              | 33471.0                                              | 2300             |
| France            | 11.4             | 0.5                                         | 81.0                      | 7.7                                        | 65.0               | 74.0                                            | 0.4              | 34375.0                                              | 2986             |
| Germany           | 12.0             | 0.1                                         | 86.0                      | 3.9                                        | 77.0               | 76.0                                            | 0.4              | 38971.0                                              | 3043             |
| Greece            | 14.5             | 0.4                                         | 76.0                      | 4.5                                        | 56.0               | 69.0                                            | 1.0              | 20791.0                                              | 1483             |
| Hungary           | 16.7             | 3.5                                         | 86.0                      | 1.5                                        | 70.0               | 74.0                                            | 0.9              | 21026.0                                              | 1502             |
| Iceland           | 6.4              | 0.0                                         | 76.0                      | 11.7                                       | 78.0               | 85.0                                            | 0.3              | NaN                                                  | 1                |
| Ireland           | 7.8              | 0.2                                         | 85.0                      | 4.7                                        | 68.0               | 76.0                                            | 0.5              | 29488.0                                              | 3703             |
| Israel            | 19.7             | NaN                                         | 88.0                      | 14.1                                       | 67.0               | 80.0                                            | 1.5              | NaN                                                  | 1                |

|     | Italy              | 15.9 | 0.6  | 63.0 | 3.3  | 58.0 | 73.0 | 0.5  | 29431.0 | 2950            |
|-----|--------------------|------|------|------|------|------|------|------|---------|-----------------|
|     | Japan              | 13.7 | 6.4  | NaN  | NaN  | 77.0 | 77.0 | 0.2  | 28872.0 | 2947            |
|     | Korea              | 27.3 | 2.5  | 89.0 | NaN  | 66.0 | 82.0 | 0.8  | 24590.0 | 3623            |
|     | Latvia             | 12.7 | 11.2 | 89.0 | 1.6  | 72.0 | 72.0 | 3.7  | 19783.0 | 792 <sub></sub> |
|     | Lithuania          | 10.5 | 11.8 | 94.0 | 1.0  | 72.0 | 62.0 | 2.5  | 26976.0 | 1820            |
| Lux | xembourg           | 10.0 | 0.1  | 74.0 | 2.8  | 67.0 | 87.0 | 0.2  | 44773.0 | 9411            |
|     | Mexico             | 20.3 | 25.9 | 42.0 | 27.0 | 59.0 | 42.0 | 26.8 | 16269.0 | 1               |
| Ne  | etherlands         | 12.2 | 0.1  | 81.0 | 0.3  | 78.0 | 83.0 | 0.6  | 34984.0 | 2485            |
|     | New<br>Zealand     | 6.0  | NaN  | 81.0 | 14.0 | 77.0 | 66.0 | 1.3  | 39024.0 | 5141            |
|     | Norway             | 6.7  | 0.0  | 82.0 | 1.4  | 75.0 | 93.0 | 0.6  | 39144.0 | 2683            |
| OE  | CD - Total         | 14.0 | 3.0  | 79.0 | 10.2 | 66.0 | 74.0 | 2.6  | 30490.0 | 3239            |
|     | Poland             | 22.8 | 2.3  | 93.0 | 4.2  | 69.0 | 71.0 | 0.5  | 23675.0 | 2332            |
|     | Portugal           | 8.3  | 0.9  | 55.0 | 5.6  | 69.0 | 83.0 | 0.7  | 24877.0 | 2553            |
|     | Russia             | 11.8 | 13.8 | 95.0 | 0.1  | 70.0 | 64.0 | 4.8  | 19546.0 | 1               |
|     | Slovak<br>Republic | 18.5 | 1.5  | 92.0 | 4.2  | 68.0 | 76.0 | 0.8  | 21149.0 | 1714            |
|     | Slovenia           | 17.0 | 0.2  | 90.0 | 5.6  | 71.0 | 91.0 | 0.4  | 25250.0 | 2332            |
| So  | outh Africa        | 28.5 | 35.9 | 48.0 | 15.4 | 39.0 | 40.0 | 13.7 | 9338.0  | 1               |
|     | Spain              | 10.0 | 0.3  | 63.0 | 2.5  | 62.0 | 80.0 | 0.7  | 27155.0 | 3665            |
|     | Sweden             | 5.8  | 0.0  | 84.0 | 0.9  | 75.0 | 79.0 | 1.1  | 33730.0 | 1               |
| Sı  | witzerland         | 10.1 | 0.0  | 89.0 | 0.4  | 80.0 | 86.0 | 0.3  | 39697.0 | 1               |
|     | Türkiye            | 27.1 | 4.9  | 42.0 | 25.0 | 48.0 | 59.0 | 1.0  | NaN     | 1               |
|     | United<br>Kingdom  | 10.1 | 0.5  | 82.0 | 10.8 | 75.0 | 78.0 | 0.2  | 33049.0 | 5244            |
|     | United<br>States   | 7.7  | 0.1  | 92.0 | 10.4 | 67.0 | 78.0 | 6.0  | 51147.0 | 6845            |

We shall examine the data types to check for any issues that may require attention.

## In [5]: Rating.info()

<class 'pandas.core.frame.DataFrame'>

Index: 42 entries, Australia to United States

| Data | columns (total 24 columns):              |                |         |
|------|------------------------------------------|----------------|---------|
| #    | Column                                   | Non-Null Count | Dtype   |
|      |                                          |                |         |
| 0    | Air pollution                            | 42 non-null    | float64 |
| 1    | Dwellings without basic facilities       | 39 non-null    | float64 |
| 2    | Educational attainment                   | 41 non-null    | float64 |
| 3    | Employees working very long hours        | 40 non-null    | float64 |
| 4    | Employment rate                          | 42 non-null    | float64 |
| 5    | Feeling safe walking alone at night      | 42 non-null    | float64 |
| 6    | Homicide rate                            | 42 non-null    | float64 |
| 7    | Household net adjusted disposable income | 36 non-null    | float64 |
| 8    | Household net wealth                     | 30 non-null    | float64 |
| 9    | Housing expenditure                      | 38 non-null    | float64 |
| 10   | Labour market insecurity                 | 35 non-null    | float64 |
|      |                                          |                |         |

```
11 Life expectancy
                                                                                          42 non-null float64
 12 Life satisfaction
                                                                                         42 non-null
                                                                                                                 float64
Long-term unemployment rate

40 non-null
14 Personal earnings
36 non-null
15 Quality of support network
42 non-null
16 Rooms per person
39 non-null
17 Self-reported health
40 non-null
18 Stakeholder engagement for developing regulations
40 non-null
41 float64
42 non-null
43 float64
44 non-null
45 non-null
46 non-null
47 float64
 13 Long-term unemployment rate
                                                                                         40 non-null
                                                                                                                float64
 20 Time devoted to leisure and personal care
                                                                                      23 non-null
                                                                                                                float64
                                                                                       42 non-null float64
42 non-null float64
40 non-null float64
 21 Voter turnout
 22 Water quality
 23 Years in education
dtypes: float64(24)
memory usage: 8.2+ KB
```

The dataframe contains missing values. We shall determine the number of missing values for each country and feature.

```
In [6]: nan cols = Rating.isna().sum().sort values(ascending=False)
       nan rows = Rating.isna().sum(axis=1).sort values(ascending=False)
       print(f'Nan in rows: {nan rows[nan rows > 0]}', f'\n\nNan in columns: {nan cols[nan cols
       Nan in rows: Country
      South All 5
Brazil 5
Chia 6
5
      Russia
      Costa Rica
      Israel
      Iceland4Türkiye3Switzerland3
      Chile
      Japan
      Mexico
      Australia
      Lithuania
       Sweden
      Czech Republic 2
       Slovak Republic 1
       Slovenia 1
       Portugal
      New Zealand
       Spain
      Luxembourg 1
      Korea
       Latvia
      Denmark
       dtype: int64
       Nan in columns: Indicator
       Time devoted to leisure and personal care
                                                       19
       Household net wealth
                                                        12
       Labour market insecurity
                                                         7
       Household net adjusted disposable income
                                                         6
       Personal earnings
                                                        6
       Housing expenditure
       Dwellings without basic facilities
                                                         3
                                                         3
       Rooms per person
       Self-reported health
                                                         2
       Student skills
                                                         2
       Employees working very long hours
       Long-term unemployment rate
       Stakeholder engagement for developing regulations
```

Years in education
Educational attainment

dtype: int64

The feature "Time devoted to leisure and personal care" has a high number of missing values. It would be incredibly challenging to replace such a high number of missing values without losing the veracity of the values. Furthermore, this feature seems contentious in terms of evaluating the overall work-life balance indicator, which was planned to be calculated using this feature. We have opted to remove this feature from the research. We shall also exclude the row "OECD - Total" from the dataframe, which represents the average values of features among all OECD member countries. This row is unnecessary for our research and may distort calculated indicators.

2

```
In [7]: Rating = Rating.drop(columns='Time devoted to leisure and personal care')
Rating = Rating.drop(index='OECD - Total')
```

Next, we shall explore the features' fundamental statistical characteristics.

```
In [8]: Rating.describe()
```

Out[8]:

| Air<br>pollution | Dwellings<br>without<br>basic<br>facilities                                         | Educational<br>attainment                                                                                                                                                              | Employees<br>working<br>very long<br>hours                                                                                                                                                                                                                                                                                                                                                                                                                            | Employment<br>rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Feeling<br>safe<br>walking<br>alone at<br>night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Homicide<br>rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Household<br>net adjusted<br>disposable<br>income                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ho<br>ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41.000000        | 38.000000                                                                           | 40.00000                                                                                                                                                                               | 39.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13.509756        | 4.294737                                                                            | 78.10000                                                                                                                                                                               | 7.189744                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.682927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.073171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.290244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29573.114286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 323959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.394169         | 7.589180                                                                            | 15.68406                                                                                                                                                                               | 7.199481                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.818841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.299284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.251792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8880.424174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.500000         | 0.000000                                                                            | 42.00000                                                                                                                                                                               | 0.100000                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9338.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7924!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.300000         | 0.200000                                                                            | 72.25000                                                                                                                                                                               | 2.350000                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23729.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12.000000        | 0.650000                                                                            | 83.00000                                                                                                                                                                               | 4.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.900000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29431.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29473!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17.000000        | 5.500000                                                                            | 89.25000                                                                                                                                                                               | 10.600000                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.900000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34934.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.500000        | 35.900000                                                                           | 95.00000                                                                                                                                                                               | 27.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51147.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 941167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | pollution  41.000000  13.509756  6.394169  5.500000  8.300000  12.000000  17.000000 | Air pollution without basic facilities  41.000000 38.000000  13.509756 4.294737  6.394169 7.589180  5.500000 0.0000000  8.300000 0.2000000  12.0000000 0.6500000  17.0000000 5.5000000 | Air pollution         without basic facilities         Educational attainment           41.000000         38.000000         40.00000           13.509756         4.294737         78.10000           6.394169         7.589180         15.68406           5.500000         0.000000         42.00000           8.300000         0.200000         72.25000           12.000000         0.650000         83.00000           17.000000         5.500000         89.25000 | Air pollution         without basic facilities         Educational attainment attainment         working very long hours           41.000000         38.000000         40.00000         39.000000           13.509756         4.294737         78.10000         7.189744           6.394169         7.589180         15.68406         7.199481           5.500000         0.000000         42.00000         0.100000           8.300000         0.200000         72.25000         2.350000           12.000000         0.650000         83.00000         4.500000           17.000000         5.500000         89.25000         10.600000 | Air pollution         without basic facilities         Educational attainment attainment         working very long hours         Employment rate           41.000000         38.000000         40.00000         39.000000         41.000000           13.509756         4.294737         78.10000         7.189744         67.682927           6.394169         7.589180         15.68406         7.199481         8.818841           5.500000         0.000000         42.00000         0.100000         39.000000           8.300000         0.200000         72.25000         2.350000         65.000000           12.000000         0.650000         83.00000         4.500000         70.000000           17.000000         5.500000         89.25000         10.600000         74.000000 | Air pollution         without basic facilities         Educational attainment facilities         Employees working very long hours         Employment rate walking alone at night           41.000000         38.000000         40.00000         39.000000         41.000000         41.000000           13.509756         4.294737         78.10000         7.189744         67.682927         72.073171           6.394169         7.589180         15.68406         7.199481         8.818841         14.299284           5.500000         0.000000         42.00000         0.100000         39.000000         40.000000           8.300000         0.200000         72.25000         2.350000         65.000000         66.000000           12.000000         0.650000         83.00000         4.500000         70.000000         76.000000           17.000000         5.500000         89.25000         10.600000         74.000000         82.000000 | Air pollution         without basic facilities         Educational attainment basic facilities         Employees working very long hours         Employment rate walking alone at night         Homicide walking alone at night           41.000000         38.000000         40.00000         39.000000         41.000000         41.000000         41.000000           13.509756         4.294737         78.10000         7.189744         67.682927         72.073171         3.290244           6.394169         7.589180         15.68406         7.199481         8.818841         14.299284         6.251792           5.500000         0.000000         42.00000         0.100000         39.000000         40.000000         0.200000           8.300000         0.200000         72.25000         2.350000         65.000000         66.000000         0.500000           12.000000         0.650000         83.00000         4.500000         70.000000         76.000000         0.900000           17.000000         5.500000         89.25000         10.600000         74.000000         82.000000         1.900000 | Air pollution pollution solution         Educational facilities         Educational attainment basic facilities         Educational attainment bours         Employees working very long hours         Employment rate walking alone at night         Homicide walking alone at night         Homicide rate walking alone at night           41.000000         38.000000         40.00000         39.000000         41.000000         41.000000         41.000000         35.000000           13.509756         4.294737         78.10000         7.189744         67.682927         72.073171         3.290244         29573.114286           6.394169         7.589180         15.68406         7.199481         8.818841         14.299284         6.251792         8880.424174           5.500000         0.000000         42.00000         0.100000         39.000000         40.000000         0.200000         9338.00000           8.300000         0.200000         72.25000         2.350000         65.000000         76.000000         0.900000         29431.000000           17.000000         5.500000         89.25000         10.600000         74.000000         82.000000         1.900000         34934.000000 |

We explore the distribution of features using interactive boxplots. We can hover over the outlier to find out which country the value belongs to.

```
In [9]: for i in Rating.columns:
    fig = px.box(Rating, x=i, hover_data=[Rating.index])
    fig.show()
```



0 10 20 30

Dwellings without basic facilities





Educational attainment



Employees working very long hours



40 50 60 70 80 90

Feeling safe walking alone at night



Homicide rate



Household net adjusted disposable income





14 16 18 20 22 24 26 28

Housing expenditure



Labour market insecurity





Life satisfaction



Long-term unemployment rate



Personal earnings





Rooms per person





Stakeholder engagement for developing regulations









Let us explore the correlation between the features. To visualize the correlation, we shall construct a heatmap graph utilizing Plotly. The graph is interactive, allowing us to zoom in and out and pan across the plot as needed.

In [10]: px.imshow(Rating.corr(), text\_auto=True)



Next, we shall construct a scatter plot with a trend line to investigate the spread of feature values around the trend line. We shall generate a loop that will examine the correlation between the features and plot a graph if it surpasses an absolute value of 0.7.

```
In [11]: for c in Rating.columns:
    for i in Rating.columns:
        if (abs(Rating.corr().loc[i, c]) > 0.7) & (abs(Rating.corr().loc[i, c]) !=1):
            fig = px.scatter(Rating, y=i, x=c, hover_data=[Rating.index], trendline="ols fig.show()
            print(f'Corr_coef of "{c}" and "{i}" = {Rating.corr().loc[i, c]}')
```

#### Correlation of "Dwellings without basic facilities" and "Life expectancy"



Corr\_coef of "Dwellings without basic facilities" and "Life expectancy" = -0.8491067567051078

### Correlation of "Educational attainment" and "Employment rate"





Corr coef of "Educational attainment" and "Employment rate" = 0.742192168999446

#### Correlation of "Educational attainment" and "Student skills"



Corr coef of "Educational attainment" and "Student skills" = 0.7280897847632455

## Correlation of "Employment rate" and "Educational attainment"





Corr coef of "Employment rate" and "Educational attainment" = 0.742192168999446

#### Correlation of "Employment rate" and "Feeling safe walking alone at nigh



Corr\_coef of "Employment rate" and "Feeling safe walking alone at night" = 0.7115112744119984

### Correlation of "Employment rate" and "Life satisfaction"





Corr\_coef of "Employment rate" and "Life satisfaction" = 0.7082618221255973

## Correlation of "Employment rate" and "Student skills"



Corr\_coef of "Employment rate" and "Student skills" = 0.717330689097553

## Correlation of "Employment rate" and "Water quality"





Corr coef of "Employment rate" and "Water quality" = 0.7122696113676107

## Correlation of "Feeling safe walking alone at night" and "Employment rate



 $Corr\_coef$  of "Feeling safe walking alone at night" and "Employment rate" = 0.71151127441 10984

Correlation of "Feeling safe walking alone at night" and "Homicide rate"



Corr\_coef of "Feeling safe walking alone at night" and "Homicide rate" = -0.705838797888833

### Correlation of "Feeling safe walking alone at night" and "Student skills"





Corr\_coef of "Homicide rate" and "Feeling safe walking alone at night" = -0.7058387978888833

## Correlation of "Homicide rate" and "Student skills"



#### Correlation of "Household net adjusted disposable income" and "Household net adjusted net adjusted disposable income and the adjusted net adjusted net



 $Corr\_coef$  of "Household net adjusted disposable income" and "Household net wealth" = 0.7 412799751880902

### Correlation of "Household net adjusted disposable income" and "Life satis



#### Household net adjusted disposable income

 $Corr\_coef$  of "Household net adjusted disposable income" and "Life satisfaction" = 0.8109 686465037127

## Correlation of "Household net adjusted disposable income" and "Personal



Corr\_coef of "Household net adjusted disposable income" and "Personal earnings" = 0.9226125412771972

#### Correlation of "Household net adjusted disposable income" and "Rooms p





 $Corr\_coef$  of "Household net adjusted disposable income" and "Rooms per person" = 0.80091 51260152061

#### Correlation of "Household net wealth" and "Household net adjusted dispo



 $Corr\_coef$  of "Household net wealth" and "Household net adjusted disposable income" = 0.7 412799751880902

### Correlation of "Labour market insecurity" and "Long-term unemployment





Corr\_coef of "Labour market insecurity" and "Long-term unemployment rate" = 0.8718381718523023

#### Correlation of "Life expectancy" and "Dwellings without basic facilities"



Corr\_coef of "Life expectancy" and "Dwellings without basic facilities" = -0.8491067567051078

#### Correlation of "Life satisfaction" and "Employment rate"





Corr coef of "Life satisfaction" and "Employment rate" = 0.7082618221255973

#### Correlation of "Life satisfaction" and "Household net adjusted disposable



 $Corr\_coef$  of "Life satisfaction" and "Household net adjusted disposable income" = 0.8109 686465037127

## Correlation of "Life satisfaction" and "Personal earnings"





Corr coef of "Life satisfaction" and "Personal earnings" = 0.7721451682502471

## Correlation of "Life satisfaction" and "Water quality"



Corr coef of "Life satisfaction" and "Water quality" = 0.726316058357149

Correlation of "Long-term unemployment rate" and "Labour market insec



Corr\_coef of "Long-term unemployment rate" and "Labour market insecurity" = 0.8718381718523023

### Correlation of "Personal earnings" and "Household net adjusted disposab



Corr\_coef of "Personal earnings" and "Household net adjusted disposable income" = 0.9226125412771972

Correlation of "Personal earnings" and "Life satisfaction"



Corr coef of "Personal earnings" and "Life satisfaction" = 0.7721451682502471

## Correlation of "Rooms per person" and "Household net adjusted disposab



Corr\_coef of "Rooms per person" and "Household net adjusted disposable income" = 0.8009151260152061



Corr coef of "Student skills" and "Educational attainment" = 0.7280897847632455

## Correlation of "Student skills" and "Employment rate"



#### Correlation of "Student skills" and "Feeling safe walking alone at night"



 $Corr\_coef$  of "Student skills" and "Feeling safe walking alone at night" = 0.748058094763 088

#### Correlation of "Student skills" and "Homicide rate"



 $Corr\_coef$  of "Student skills" and "Homicide rate" = -0.7687731742066118

## Correlation of "Water quality" and "Employment rate"



Corr coef of "Water quality" and "Employment rate" = 0.7122696113676107

## Correlation of "Water quality" and "Life satisfaction"



```
Corr coef of "Water quality" and "Life satisfaction" = 0.726316058357149
```

For ease of future work, we shall generate a dictionary indicating which features have an absolute correlation value greater than 0.7.

```
In [12]: high corr dict = {}
         corr matrix = Rating.corr().abs()
         for i in corr matrix.index:
             for j in corr matrix.columns:
                 if (abs(Rating.corr().loc[i, j]) > 0.7) & (abs(Rating.corr().loc[i, j]) !=1):
                     if i not in high corr dict:
                         high corr dict[i] = [j]
                     else:
                         high corr dict[i].append(j)
         high corr dict
         {'Dwellings without basic facilities': ['Life expectancy'],
Out[12]:
         'Educational attainment': ['Employment rate', 'Student skills'],
          'Employment rate': ['Educational attainment',
          'Feeling safe walking alone at night',
          'Life satisfaction',
           'Student skills',
          'Water quality'],
          'Feeling safe walking alone at night': ['Employment rate',
          'Homicide rate',
          'Student skills'],
          'Homicide rate': ['Feeling safe walking alone at night', 'Student skills'],
          'Household net adjusted disposable income': ['Household net wealth',
          'Life satisfaction',
          'Personal earnings',
          'Rooms per person'],
          'Household net wealth': ['Household net adjusted disposable income'],
          'Labour market insecurity': ['Long-term unemployment rate'],
          'Life expectancy': ['Dwellings without basic facilities'],
          'Life satisfaction': ['Employment rate',
          'Household net adjusted disposable income',
          'Personal earnings',
          'Water quality'],
          'Long-term unemployment rate': ['Labour market insecurity'],
          'Personal earnings': ['Household net adjusted disposable income',
          'Life satisfaction'],
          'Rooms per person': ['Household net adjusted disposable income'],
          'Student skills': ['Educational attainment',
          'Employment rate',
           'Feeling safe walking alone at night',
           'Homicide rate'],
          'Water quality': ['Employment rate', 'Life satisfaction']}
```

## **Data Wrangling**

### Handle missing values

We will create a loop that will fill in the missing values in the dataframe utilizing a unique regression model for each feature. The correlated features will vary for each feature. Additionally, we shall use a unique regression model for each missing value, as the corresponding value may also be absent among the

correlated features. Linear regression may produce negative values, which are inappropriate for our analysis. Therefore, we have resolved to replace negative values with the minimum value of the feature in these instances.

```
In [13]: reg = linear model.LinearRegression()
         for key, items in high corr dict.items(): #iterate through the dict created in the previ
             if Rating[key].isna().any():
                 predict = Rating.loc[Rating[key].isna(), [key] + items] #form dataframe with onl
                 for row ind in range(len(predict.index)):
                     predict row = predict.iloc[row ind, 1:].dropna().to frame().transpose() #get
                     if not predict row.empty:
                         train = Rating.loc[:, [key] + predict row.columns.tolist()].dropna() #fo
                         reg.fit(train[predict row.columns], train[key])
                         predicted = reg.predict(predict row)
                         print(f'Pridicted value: {key} - {predict row.index[0]} = {predicted}')
                         if predicted >= 0: #check if value of feature >=0. If not we fill the mi
                             Rating.loc[predict row.index, key] = predicted
                             Rating.loc[predict row.index, key] = Rating[key].min()
        Pridicted value: Dwellings without basic facilities - Australia = [-0.50468298]
        Pridicted value: Dwellings without basic facilities - Israel = [-0.32104909]
        Pridicted value: Dwellings without basic facilities - New Zealand = [0.99864883]
        Pridicted value: Educational attainment - Japan = [93.90552215]
        Pridicted value: Household net adjusted disposable income - Brazil = [23654.63841578]
        Pridicted value: Household net adjusted disposable income - Chile = [22012.48807711]
        Pridicted value: Household net adjusted disposable income - Colombia = [16586.7753286]
        Pridicted value: Household net adjusted disposable income - Iceland = [41825.30166147]
        Pridicted value: Household net adjusted disposable income - Israel = [28160.73196938]
        Pridicted value: Household net adjusted disposable income - Türkiye = [10844.89115628]
        Pridicted value: Household net wealth - Brazil = [194843.81009083]
        Pridicted value: Household net wealth - Colombia = [68416.05355773]
        Pridicted value: Household net wealth - Costa Rica = [67167.93398498]
        Pridicted value: Household net wealth - Czech Republic = [248674.34260066]
        Pridicted value: Household net wealth - Iceland = [519875.03388992]
        Pridicted value: Household net wealth - Israel = [275447.42276454]
        Pridicted value: Household net wealth - Mexico = [62731.78642051]
        Pridicted value: Household net wealth - Russia = [121349.75242362]
        Pridicted value: Household net wealth - South Africa = [-61247.80539139]
        Pridicted value: Household net wealth - Sweden = [374291.81648731]
        Pridicted value: Household net wealth - Switzerland = [476152.13501893]
        Pridicted value: Household net wealth - Türkiye = [-16370.90790552]
        Pridicted value: Labour market insecurity - Colombia = [3.92362841]
        Pridicted value: Labour market insecurity - Costa Rica = [4.67306733]
        Pridicted value: Labour market insecurity - Lithuania = [6.54666461]
        Pridicted value: Labour market insecurity - Russia = [3.92362841]
        Pridicted value: Labour market insecurity - South Africa = [35.40006273]
        Pridicted value: Labour market insecurity - Switzerland = [5.04778678]
        Pridicted value: Long-term unemployment rate - Chile = [2.68342068]
        Pridicted value: Personal earnings - Brazil = [31040.1507386]
        Pridicted value: Personal earnings - Colombia = [19512.23061536]
        Pridicted value: Personal earnings - Costa Rica = [21477.71964118]
        Pridicted value: Personal earnings - Russia = [23073.66994545]
        Pridicted value: Personal earnings - South Africa = [6347.3532691]
        Pridicted value: Personal earnings - Türkiye = [8511.53373956]
        Pridicted value: Rooms per person - Australia = [1.96005331]
        Pridicted value: Rooms per person - Brazil = [1.45739839]
        Pridicted value: Rooms per person - South Africa = [0.93510634]
        Pridicted value: Student skills - South Africa = [403.29317733]
         Pridicted value: Student skills - Spain = [477.48205627]
```

We shall verify the results of missing value imputation by displaying the number of missing values for each country and feature on the screen. We shall then generate a dataset from the remaining missing values to

investigate them.

```
In [14]:
        nan cols = Rating.isna().sum().sort values(ascending=False)
        nan rows = Rating.isna().sum(axis=1).sort values(ascending=False)
        print(nan_rows[nan_rows > 0], nan cols[nan cols > 0])
        Rating miss = Rating.loc[Rating.isna().any(axis=1), Rating.isna().any()]
        Rating miss
        Country
        Brazil
        South Africa 3
        Japan
        Korea
        Colombia
        Costa Rica
        Israel
        Iceland
        Russia
                       1
        dtype: int64 Indicator
        Housing expenditure
                                                             4
        Years in education
                                                             2
        Employees working very long hours
        Stakeholder engagement for developing regulations
                                                             2
                                                             2
        Self-reported health
        Long-term unemployment rate
                                                             1
        Labour market insecurity
                                                             1
        dtype: int64
Out[14]:
                                                                           Stakeholder
                                                                Self-
                    Employees
                                         Labour
                                                    Long-term
```

| Indicator       | working very<br>long hours | Housing expenditure | market<br>insecurity | unemployment<br>rate | reported<br>health | engagement for<br>developing<br>regulations | Years in education |
|-----------------|----------------------------|---------------------|----------------------|----------------------|--------------------|---------------------------------------------|--------------------|
| Country         |                            |                     |                      |                      |                    |                                             |                    |
| Brazil          | 5.6                        | NaN                 | NaN                  | NaN                  | NaN                | 2.2                                         | 16.0               |
| Colombia        | 23.7                       | NaN                 | 3.923628             | 1.1                  | 80.0               | 1.4                                         | 14.0               |
| Costa<br>Rica   | 22.0                       | 17.0                | 4.673067             | 1.5                  | 73.0               | 1.8                                         | NaN                |
| Iceland         | 11.7                       | NaN                 | 1.000000             | 0.7                  | 77.0               | 2.1                                         | 19.0               |
| Israel          | 14.1                       | NaN                 | 4.600000             | 0.2                  | 74.0               | 2.5                                         | 16.0               |
| Japan           | NaN                        | 21.8                | 2.700000             | 0.8                  | 37.0               | 1.4                                         | 16.0               |
| Korea           | NaN                        | 14.7                | 2.900000             | 0.0                  | 34.0               | 2.9                                         | 17.0               |
| Russia          | 0.1                        | 17.4                | 3.923628             | 1.1                  | 43.0               | NaN                                         | 16.0               |
| South<br>Africa | 15.4                       | 18.1                | 35.400063            | 17.9                 | NaN                | NaN                                         | NaN                |

The dataset contains missing values in columns that do not exhibit significant correlation with other columns or where the corresponding values in columns with significant correlation are absent. To fill in the missing values, we will employ the method of nearest neighbors. However, the nearest neighbors method is highly sensitive to non-normalized data. Hence, we will first normalize our dataset using the min-max normalization method.

```
In [15]: min_max_scaler = MinMaxScaler()
Rating_normalized = pd.DataFrame(min_max_scaler.fit_transform(Rating), columns=Rating.co
```

Next, using the normalized dataset, we will fill in the missing values, while selecting the number of nearest

In [16]: imputer = KNNImputer(n\_neighbors=5)
Rating\_normalized\_imputed = pd.DataFrame(imputer.fit\_transform(Rating\_normalized), colum
Rating\_normalized\_imputed

Out[16]:

| Indicator         | Air<br>pollution_norm | Dwellings<br>without basic<br>facilities_norm | Educational attainment_norm | Employees<br>working<br>very long<br>hours_norm | Employment<br>rate_norm | Feeling<br>safe<br>walking<br>alone at<br>night_norm | Homicide<br>rate_norm |
|-------------------|-----------------------|-----------------------------------------------|-----------------------------|-------------------------------------------------|-------------------------|------------------------------------------------------|-----------------------|
| Country           |                       |                                               |                             |                                                 |                         |                                                      |                       |
| Australia         | 0.052174              | 0.000000                                      | 0.792453                    | 0.460967                                        | 0.829268                | 0.509434                                             | 0.026316              |
| Austria           | 0.291304              | 0.022284                                      | 0.830189                    | 0.193309                                        | 0.804878                | 0.867925                                             | 0.011278              |
| Belgium           | 0.317391              | 0.019499                                      | 0.716981                    | 0.156134                                        | 0.634146                | 0.301887                                             | 0.033835              |
| Brazil            | 0.269565              | 0.186630                                      | 0.283019                    | 0.204461                                        | 0.439024                | 0.094340                                             | 0.706767              |
| Canada            | 0.069565              | 0.005571                                      | 0.943396                    | 0.118959                                        | 0.756098                | 0.716981                                             | 0.037594              |
| Chile             | 0.778261              | 0.261838                                      | 0.471698                    | 0.282528                                        | 0.414634                | 0.018868                                             | 0.082707              |
| Colombia          | 0.743478              | 0.342618                                      | 0.320755                    | 0.877323                                        | 0.463415                | 0.188679                                             | 0.860902              |
| Costa Rica        | 0.521739              | 0.064067                                      | 0.018868                    | 0.814126                                        | 0.390244                | 0.132075                                             | 0.368421              |
| Czech<br>Republic | 0.500000              | 0.013928                                      | 0.981132                    | 0.163569                                        | 0.853659                | 0.698113                                             | 0.018797              |
| Denmark           | 0.195652              | 0.013928                                      | 0.754717                    | 0.037175                                        | 0.853659                | 0.849057                                             | 0.011278              |
| Estonia           | 0.017391              | 0.158774                                      | 0.924528                    | 0.078067                                        | 0.853659                | 0.735849                                             | 0.063910              |
| Finland           | 0.000000              | 0.011142                                      | 0.924528                    | 0.130112                                        | 0.804878                | 0.905660                                             | 0.037594              |
| France            | 0.256522              | 0.013928                                      | 0.735849                    | 0.282528                                        | 0.634146                | 0.641509                                             | 0.007519              |
| Germany           | 0.282609              | 0.002786                                      | 0.830189                    | 0.141264                                        | 0.926829                | 0.679245                                             | 0.007519              |
| Greece            | 0.391304              | 0.011142                                      | 0.641509                    | 0.163569                                        | 0.414634                | 0.547170                                             | 0.030075              |
| Hungary           | 0.486957              | 0.097493                                      | 0.830189                    | 0.052045                                        | 0.756098                | 0.641509                                             | 0.026316              |
| Iceland           | 0.039130              | 0.000000                                      | 0.641509                    | 0.431227                                        | 0.951220                | 0.849057                                             | 0.003759              |
| Ireland           | 0.100000              | 0.005571                                      | 0.811321                    | 0.171004                                        | 0.707317                | 0.679245                                             | 0.011278              |
| Israel            | 0.617391              | 0.000000                                      | 0.867925                    | 0.520446                                        | 0.682927                | 0.754717                                             | 0.048872              |
| Italy             | 0.452174              | 0.016713                                      | 0.396226                    | 0.118959                                        | 0.463415                | 0.622642                                             | 0.011278              |
| Japan             | 0.356522              | 0.178273                                      | 0.979349                    | 0.101859                                        | 0.926829                | 0.698113                                             | 0.000000              |
| Korea             | 0.947826              | 0.069638                                      | 0.886792                    | 0.193309                                        | 0.658537                | 0.792453                                             | 0.022556              |
| Latvia            | 0.313043              | 0.311978                                      | 0.886792                    | 0.055762                                        | 0.804878                | 0.603774                                             | 0.131579              |
| Lithuania         | 0.217391              | 0.328691                                      | 0.981132                    | 0.033457                                        | 0.804878                | 0.415094                                             | 0.086466              |
| Luxembourg        | 0.195652              | 0.002786                                      | 0.603774                    | 0.100372                                        | 0.682927                | 0.886792                                             | 0.000000              |
| Mexico            | 0.643478              | 0.721448                                      | 0.000000                    | 1.000000                                        | 0.487805                | 0.037736                                             | 1.000000              |
| Netherlands       | 0.291304              | 0.002786                                      | 0.735849                    | 0.007435                                        | 0.951220                | 0.811321                                             | 0.015038              |
| New<br>Zealand    | 0.021739              | 0.027818                                      | 0.735849                    | 0.516729                                        | 0.926829                | 0.490566                                             | 0.041353              |

| Norway             | 0.052174               | 0.000000 | 0.754717 | 0.048327 | 0.878049 | 1.000000 | 0.015038 |
|--------------------|------------------------|----------|----------|----------|----------|----------|----------|
| Poland             | <b>Poland</b> 0.752174 | 0.064067 | 0.962264 | 0.152416 | 0.731707 | 0.584906 | 0.011278 |
| Portugal           | 0.121739               | 0.025070 | 0.245283 | 0.204461 | 0.731707 | 0.811321 | 0.018797 |
| Russia             | 0.273913               | 0.384401 | 1.000000 | 0.000000 | 0.756098 | 0.452830 | 0.172932 |
| Slovak<br>Republic | 0 565217               | 0.041783 | 0.943396 | 0.152416 | 0.707317 | 0.679245 | 0.022556 |
| Slovenia           | 0.500000               | 0.005571 | 0.905660 | 0.204461 | 0.780488 | 0.962264 | 0.007519 |
| South Africa       | 1.000000               | 1.000000 | 0.113208 | 0.568773 | 0.000000 | 0.000000 | 0.507519 |
| Spain              | 0.195652               | 0.008357 | 0.396226 | 0.089219 | 0.560976 | 0.754717 | 0.018797 |
| Sweden             | n 0.013043             | 0.000000 | 0.792453 | 0.029740 | 0.878049 | 0.735849 | 0.033835 |
| Switzerland        | 0.200000               | 0.000000 | 0.886792 | 0.011152 | 1.000000 | 0.867925 | 0.003759 |
| Türkiye            | 0.939130               | 0.136490 | 0.000000 | 0.925651 | 0.219512 | 0.358491 | 0.030075 |
| United<br>Kingdom  | 0.200000               | 0.013928 | 0.754717 | 0.397770 | 0.878049 | 0.716981 | 0.000000 |
| United<br>States   | 0.095652               | 0.002786 | 0.943396 | 0.382900 | 0.682927 | 0.716981 | 0.218045 |

Although all values seem plausible, we have observed that the "Employees working very long hours\_norm" feature in Japan is not consistent with the OCID study on the distribution of citizens use of their time, available at https://stats.oecd.org/Index.aspx?DataSetCode=BLI. Therefore, we will assign the maximum value of this feature in Japan relative to our sample.

```
In [17]: Rating_normalized_imputed.loc['Japan','Employees working very long hours_norm'] = Rating
```

Once we convert the normalized values back to their original scale, we can fill our dataset with the predicted values.

Finally, we check if there are any remaining missing values.

```
In [19]: nan_cols = Rating.isna().sum().sort_values(ascending=False)
    nan_rows = Rating.isna().sum(axis=1).sort_values(ascending=False)
    print(nan_rows[nan_rows > 0], nan_cols[nan_cols > 0])

Series([], dtype: int64) Series([], dtype: int64)
```

## **Preparing Data**

To enable subsequent comparative analyses, we need to define some overall features for comparing countries. These overall features already exist in the OECD-collected data, and they consist of groups of existing features in our dataset. The following are the overall features and their specific constituent features:

<sup>&#</sup>x27;Housing': 'Dwellings without basic facilities', 'Housing expenditure', 'Rooms per person'.

<sup>&#</sup>x27;Income': 'Household net adjusted disposable income', 'Household net wealth'.

```
'Jobs': 'Labour market insecurity', 'Employment rate', 'Long-term unemployment rate', 'Personal earnings'.
```

'Community': 'Quality of support network'.

'Education': 'Educational attainment', 'Student skills', 'Years in education'.

**'Environment'**: 'Air pollution', 'Water quality'.

'Civic engagement': 'Stakeholder engagement for developing regulations', 'Voter turnout'.

'Health': 'Life expectancy', 'Self-reported health'.

'Life satisfaction': 'Life satisfaction'.

'Safety': 'Feeling safe walking alone at night', 'Homicide rate'.

'Work-life balance': 'Employees working very long hours'.

Further information regarding project features and other related details can be accessed via the following link: .

Certain features exhibit negative implications, such as a high level of air pollution, which is considered undesirable. To facilitate subsequent comparative analyses, such features need to be inverted. This can be achieved by subtracting the normalized value of the feature from 1.

```
In [20]: Rating_normalized_imputed = np.around(Rating_normalized_imputed, decimals=2)
Rating_normalized_imputed['Air pollution_norm'] = 1 - Rating_normalized_imputed['Air pol
Rating_normalized_imputed['Dwellings without basic facilities_norm'] = 1 - Rating_normal
Rating_normalized_imputed['Employees working very long hours_norm'] = 1 - Rating_normali
Rating_normalized_imputed['Homicide rate_norm'] = 1 - Rating_normalized_imputed['Homicid
Rating_normalized_imputed['Housing expenditure_norm'] = 1 - Rating_normalized_imputed['H
Rating_normalized_imputed['Labour market insecurity_norm'] = 1 - Rating_normalized_imput
Rating_normalized_imputed['Long-term unemployment rate_norm'] = 1 - Rating_normalized_im
```

We will create columns in the dataframe for overall features by adding the normalized values of the individual features that constitute them.

The resultant values of the overall features must be normalized to avoid any feature having a disproportionate influence.

Out[22]:

Indicator Air pollution\_norm

Dwellings without basic facilities norm

Educational attainment\_norm

Employees
working Employment
very long rate\_norm
hours\_norm

Feeling safe walking alone at night\_norm

Homicide rate\_norm

| Country            |      |      |      |      |      |      |      |
|--------------------|------|------|------|------|------|------|------|
| Australia          | 0.95 | 1.00 | 0.79 | 0.54 | 0.83 | 0.51 | 0.97 |
| Austria            | 0.71 | 0.98 | 0.83 | 0.81 | 0.80 | 0.87 | 0.99 |
| Belgium            | 0.68 | 0.98 | 0.72 | 0.84 | 0.63 | 0.30 | 0.97 |
| Brazil             | 0.73 | 0.81 | 0.28 | 0.80 | 0.44 | 0.09 | 0.29 |
| Canada             | 0.93 | 0.99 | 0.94 | 0.88 | 0.76 | 0.72 | 0.96 |
| Chile              | 0.22 | 0.74 | 0.47 | 0.72 | 0.41 | 0.02 | 0.92 |
| Colombia           | 0.26 | 0.66 | 0.32 | 0.12 | 0.46 | 0.19 | 0.14 |
| Costa Rica         | 0.48 | 0.94 | 0.02 | 0.19 | 0.39 | 0.13 | 0.63 |
| Czech<br>Republic  | 0.50 | 0.99 | 0.98 | 0.84 | 0.85 | 0.70 | 0.98 |
| Denmark            | 0.80 | 0.99 | 0.75 | 0.96 | 0.85 | 0.85 | 0.99 |
| Estonia            | 0.98 | 0.84 | 0.92 | 0.92 | 0.85 | 0.74 | 0.94 |
| Finland            | 1.00 | 0.99 | 0.92 | 0.87 | 0.80 | 0.91 | 0.96 |
| France             | 0.74 | 0.99 | 0.74 | 0.72 | 0.63 | 0.64 | 0.99 |
| Germany            | 0.72 | 1.00 | 0.83 | 0.86 | 0.93 | 0.68 | 0.99 |
| Greece             | 0.61 | 0.99 | 0.64 | 0.84 | 0.41 | 0.55 | 0.97 |
| Hungary            | 0.51 | 0.90 | 0.83 | 0.95 | 0.76 | 0.64 | 0.97 |
| Iceland            | 0.96 | 1.00 | 0.64 | 0.57 | 0.95 | 0.85 | 1.00 |
| Ireland            | 0.90 | 0.99 | 0.81 | 0.83 | 0.71 | 0.68 | 0.99 |
| Israel             | 0.38 | 1.00 | 0.87 | 0.48 | 0.68 | 0.75 | 0.95 |
| Italy              | 0.55 | 0.98 | 0.40 | 0.88 | 0.46 | 0.62 | 0.99 |
| Japan              | 0.64 | 0.82 | 0.98 | 0.00 | 0.93 | 0.70 | 1.00 |
| Korea              | 0.05 | 0.93 | 0.89 | 0.81 | 0.66 | 0.79 | 0.98 |
| Latvia             | 0.69 | 0.69 | 0.89 | 0.94 | 0.80 | 0.60 | 0.87 |
| Lithuania          | 0.78 | 0.67 | 0.98 | 0.97 | 0.80 | 0.42 | 0.91 |
| Luxembourg         | 0.80 | 1.00 | 0.60 | 0.90 | 0.68 | 0.89 | 1.00 |
| Mexico             | 0.36 | 0.28 | 0.00 | 0.00 | 0.49 | 0.04 | 0.00 |
| Netherlands        | 0.71 | 1.00 | 0.74 | 0.99 | 0.95 | 0.81 | 0.98 |
| New<br>Zealand     | 0.98 | 0.97 | 0.74 | 0.48 | 0.93 | 0.49 | 0.96 |
| Norway             | 0.95 | 1.00 | 0.75 | 0.95 | 0.88 | 1.00 | 0.98 |
| Poland             | 0.25 | 0.94 | 0.96 | 0.85 | 0.73 | 0.58 | 0.99 |
| Portugal           | 0.88 | 0.97 | 0.25 | 0.80 | 0.73 | 0.81 | 0.98 |
| Russia             | 0.73 | 0.62 | 1.00 | 1.00 | 0.76 | 0.45 | 0.83 |
| Slovak<br>Republic | 0.43 | 0.96 | 0.94 | 0.85 | 0.71 | 0.68 | 0.98 |
| Slovenia           | 0.50 | 0.99 | 0.91 | 0.80 | 0.78 | 0.96 | 0.99 |
| South Africa       | 0.00 | 0.00 | 0.11 | 0.43 | 0.00 | 0.00 | 0.49 |

| Spain             | 0.80 | 0.99 | 0.40 | 0.91 | 0.56 | 0.75 | 0.98 |
|-------------------|------|------|------|------|------|------|------|
| Sweden            | 0.99 | 1.00 | 0.79 | 0.97 | 0.88 | 0.74 | 0.97 |
| Switzerland       | 0.80 | 1.00 | 0.89 | 0.99 | 1.00 | 0.87 | 1.00 |
| Türkiye           | 0.06 | 0.86 | 0.00 | 0.07 | 0.22 | 0.36 | 0.97 |
| United<br>Kingdom | 0.80 | 0.99 | 0.75 | 0.60 | 0.88 | 0.72 | 1.00 |
| United<br>States  | 0.90 | 1.00 | 0.94 | 0.62 | 0.68 | 0.72 | 0.78 |

Let us merge the dataset with the computed overall features and the original dataset.

```
In [23]: Rating_fin = Rating.merge(Rating_normalized_imputed, left_index=True, right_index=True)
   Rating_fin = np.around(Rating_fin, decimals=2)
```

Than we will calculate the overall country ratings based on the overall features and add a corresponding column to the dataset. We will display the resulting dataset on the screen and analyze the obtained results.

| Out[24]: | Indicator         | Air<br>pollution | Dwellings<br>without<br>basic<br>facilities | Educational<br>attainment | Employees<br>working<br>very long<br>hours | Employment<br>rate | Feeling<br>safe<br>walking<br>alone<br>at night | Homicide<br>rate | Household<br>net<br>adjusted<br>disposable<br>income | Housel<br>net we |
|----------|-------------------|------------------|---------------------------------------------|---------------------------|--------------------------------------------|--------------------|-------------------------------------------------|------------------|------------------------------------------------------|------------------|
|          | Country           |                  |                                             |                           |                                            |                    |                                                 |                  |                                                      |                  |
|          | Norway            | 6.7              | 0.0                                         | 82.00                     | 1.4                                        | 75.0               | 93.0                                            | 0.6              | 39144.00                                             | 26835            |
|          | Iceland           | 6.4              | 0.0                                         | 76.00                     | 11.7                                       | 78.0               | 85.0                                            | 0.3              | 41825.30                                             | 51987            |
|          | Sweden            | 5.8              | 0.0                                         | 84.00                     | 0.9                                        | 75.0               | 79.0                                            | 1.1              | 33730.00                                             | 37429            |
|          | Netherlands       | 12.2             | 0.1                                         | 81.00                     | 0.3                                        | 78.0               | 83.0                                            | 0.6              | 34984.00                                             | 24859            |
|          | Canada            | 7.1              | 0.2                                         | 92.00                     | 3.3                                        | 70.0               | 78.0                                            | 1.2              | 34421.00                                             | 47824            |
|          | United<br>States  | 7.7              | 0.1                                         | 92.00                     | 10.4                                       | 67.0               | 78.0                                            | 6.0              | 51147.00                                             | 68450            |
|          | Australia         | 6.7              | 0.0                                         | 84.00                     | 12.5                                       | 73.0               | 67.0                                            | 0.9              | 37433.00                                             | 52876            |
|          | Finland           | 5.5              | 0.4                                         | 91.00                     | 3.6                                        | 72.0               | 88.0                                            | 1.2              | 33471.00                                             | 23003            |
|          | Switzerland       | 10.1             | 0.0                                         | 89.00                     | 0.4                                        | 80.0               | 86.0                                            | 0.3              | 39697.00                                             | 47615            |
|          | Luxembourg        | 10.0             | 0.1                                         | 74.00                     | 2.8                                        | 67.0               | 87.0                                            | 0.2              | 44773.00                                             | 94116            |
|          | Denmark           | 10.0             | 0.5                                         | 82.00                     | 1.1                                        | 74.0               | 85.0                                            | 0.5              | 33774.00                                             | 14986            |
|          | New<br>Zealand    | 6.0              | 1.0                                         | 81.00                     | 14.0                                       | 77.0               | 66.0                                            | 1.3              | 39024.00                                             | 51416            |
|          | Germany           | 12.0             | 0.1                                         | 86.00                     | 3.9                                        | 77.0               | 76.0                                            | 0.4              | 38971.00                                             | 30431            |
|          | Ireland           | 7.8              | 0.2                                         | 85.00                     | 4.7                                        | 68.0               | 76.0                                            | 0.5              | 29488.00                                             | 37034            |
|          | United<br>Kingdom | 10.1             | 0.5                                         | 82.00                     | 10.8                                       | 75.0               | 78.0                                            | 0.2              | 33049.00                                             | 52442            |
|          | Belgium           | 12.8             | 0.7                                         | 80.00                     | 4.3                                        | 65.0               | 56.0                                            | 1.1              | 34884.00                                             | 44760            |

|   | Austria            | 12.2 | 0.8  | 86.00 | 5.3  | 72.0 | 86.0 | 0.5  | 37001.00 | 30963 <sup>°</sup> |
|---|--------------------|------|------|-------|------|------|------|------|----------|--------------------|
|   | Estonia            | 5.9  | 5.7  | 91.00 | 2.2  | 74.0 | 79.0 | 1.9  | 23784.00 | 18862              |
|   | Slovenia           | 17.0 | 0.2  | 90.00 | 5.6  | 71.0 | 91.0 | 0.4  | 25250.00 | 23328              |
|   | France             | 11.4 | 0.5  | 81.00 | 7.7  | 65.0 | 74.0 | 0.4  | 34375.00 | 29863              |
|   | Spain              | 10.0 | 0.3  | 63.00 | 2.5  | 62.0 | 80.0 | 0.7  | 27155.00 | 36653              |
|   | Czech<br>Republic  | 17.0 | 0.5  | 94.00 | 4.5  | 74.0 | 77.0 | 0.7  | 26664.00 | 24867              |
|   | Israel             | 19.7 | 0.0  | 88.00 | 14.1 | 67.0 | 80.0 | 1.5  | 28160.73 | 27544              |
|   | Italy              | 15.9 | 0.6  | 63.00 | 3.3  | 58.0 | 73.0 | 0.5  | 29431.00 | 29502              |
|   | Poland             | 22.8 | 2.3  | 93.00 | 4.2  | 69.0 | 71.0 | 0.5  | 23675.00 | 23322              |
|   | Slovak<br>Republic | 18.5 | 1.5  | 92.00 | 4.2  | 68.0 | 76.0 | 0.8  | 21149.00 | 17142              |
|   | Korea              | 27.3 | 2.5  | 89.00 | 5.3  | 66.0 | 82.0 | 0.8  | 24590.00 | 36234              |
|   | Lithuania          | 10.5 | 11.8 | 94.00 | 1.0  | 72.0 | 62.0 | 2.5  | 26976.00 | 18203              |
|   | Hungary            | 16.7 | 3.5  | 86.00 | 1.5  | 70.0 | 74.0 | 0.9  | 21026.00 | 15029              |
|   | Portugal           | 8.3  | 0.9  | 55.00 | 5.6  | 69.0 | 83.0 | 0.7  | 24877.00 | 25530              |
|   | Latvia             | 12.7 | 11.2 | 89.00 | 1.6  | 72.0 | 72.0 | 3.7  | 19783.00 | 7924               |
|   | Japan              | 13.7 | 6.4  | 93.91 | 27.0 | 77.0 | 77.0 | 0.2  | 28872.00 | 29473              |
|   | Russia             | 11.8 | 13.8 | 95.00 | 0.1  | 70.0 | 64.0 | 4.8  | 19546.00 | 12134              |
|   | Greece             | 14.5 | 0.4  | 76.00 | 4.5  | 56.0 | 69.0 | 1.0  | 20791.00 | 14832              |
|   | Brazil             | 11.7 | 6.7  | 57.00 | 5.6  | 57.0 | 45.0 | 19.0 | 23654.64 | 19484              |
|   | Chile              | 23.4 | 9.4  | 67.00 | 7.7  | 56.0 | 41.0 | 2.4  | 22012.49 | 13578              |
|   | Costa Rica         | 17.5 | 2.3  | 43.00 | 22.0 | 55.0 | 47.0 | 10.0 | 16517.00 | 6716               |
|   | Türkiye            | 27.1 | 4.9  | 42.00 | 25.0 | 48.0 | 59.0 | 1.0  | 10844.89 | 6273               |
|   | Colombia           | 22.6 | 12.3 | 59.00 | 23.7 | 58.0 | 50.0 | 23.1 | 16586.78 | 6841               |
|   | Mexico             | 20.3 | 25.9 | 42.00 | 27.0 | 59.0 | 42.0 | 26.8 | 16269.00 | 6273               |
| S | outh Africa        | 28.5 | 35.9 | 48.00 | 15.4 | 39.0 | 40.0 | 13.7 | 9338.00  | 6273               |

## **Data Visualization and Analysis**

We can create a bar chart to visually evaluate the country ratings. Norway tops the rating, along with several other Scandinavian countries, while North American countries feature prominently. At the bottom of the rating, we observe South Africa and countries in South America.

```
In [25]: px.bar(Rating_fin[['Total_Score']].sort_values('Total_Score'), orientation='h')
```





Similar charts can be created to explore all the overall features.















varac









Examining specific countries, such as Japan, Russia, and Norway, it is observed that Japan ranks low due to low scores in 'Civic engagement', 'Health', 'Life satisfaction', and 'Work-life balance'. In Russia, low scores can be attributed to 'Housing', 'Environment', 'Health', and 'Life satisfaction'. Norway, as the leader of our rating, has high scores in all features, although 'Income' and 'Civic engagement' stand out slightly. We can identify areas where different countries need to work particularly hard.

```
In [27]: fig_j = px.bar(Rating_fin.loc['Japan', Overal_features], orientation='h')
    fig_r = px.bar(Rating_fin.loc['Russia', Overal_features], orientation='h')
    fig_n = px.bar(Rating_fin.loc['Norway', Overal_features], orientation='h')
    fig_j.show()
    fig_r.show()
```









To identify specific areas for improvement, we can compare neighboring countries with moderately similar levels of development, for example, Germany, Portugal, and Italy. It can be observed that Portugal lacks in indicators such as "Community" and "Civic engagement," while Italy needs to work on such indicators as "Environment" and "Work-life balance." In comparison to these countries, Germany shows high levels across all dimensions, with the lowest scores in the categories of "Income" and "Civic engagement."



A similar analysis can be conducted among the top-ranked countries in our rating (Switzerland, Netherlands, Canada, United States). The author suggests that you draw your own conclusions based on the analysis.

```
In [29]: fig_top = px.bar(Rating_fin.loc[['Switzerland', 'Netherlands', 'Canada', 'United States'
fig_top.show()
```



```
0 2 4 6 8 value
```

To better understand possible conclusions, we can investigate specific features by building graphs to visualize them.























































Indicator

**Finland** 

Switzerland









Finally, we will write the final dataset to a CSV file for its further use in Power BI for creating a dashboard.

The research conducted within this notebook is complete, and the dashboard for convenient exploration of the project results can be viewed in the webpage at \_\_\_ or in the PowerPoint presentation at \_.

Thank you for your time and attention!