Reference Sheet for Logic and Program Proofs

Logical Equivalences

Definition of \land	Idempotent Laws	DeMorgan's Laws	Distributive Laws
$P \land \neg P \equiv False$	$p \lor p \equiv p$	$\neg(p \land q) \equiv \neg p \lor \neg q$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
$P \wedge False \equiv False$	$p \wedge p \equiv p$	$\neg(p \lor q) \equiv \neg p \land \neg q$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
$P \wedge True \equiv P$			
Definition of ∨	Double Negation	Absorption Laws	Associative Laws
$P \lor \neg P \equiv True$	$\neg(\neg p) \equiv p$	$p \lor (p \land q) \equiv p$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
$P \vee False \equiv P$		$p \land (p \lor q) \equiv p$	$(p \land q) \land r \equiv p \land (q \land r)$
$P \lor True \equiv True$		•	
	Commutative Laws	Implication Laws	Biconditional Laws
	$p \vee q \equiv q \vee p$	$p \to q \equiv \neg p \vee q$	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
	$p \wedge q \equiv q \wedge p$	$p \to q \equiv \neg q \to \neg p$	$p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

Inference Rules

Simplification	Modus Ponens	Modus Tollens	Hypothetical Syllogism
$p \wedge q$	p	$\neg q$	p o q
	p o q	p o q	$q \rightarrow r$
Therefore, p	Therefore, q	Therefore, $\neg p$	Therefore, $p \to r$
Conjunction	Addition	Resolution	Disjunctive Syllogism
p	p	$p \lor q$	$p \lor q$
q		$\neg p \lor r$	$\neg p$
Therefore, $p \wedge q$	Therefore, $p \lor q$	Therefore, $q \vee r$	Therefore, q
Universal Instantiation	Universal Generalization	Existential Instantiation	Existential Generalization
$\forall x P(x)$	P(c)	$\exists x P(x)$	P(c)
Therefore, $P(c)$	Therefore, $\forall x P(x)$	Therefore, $P(c)$	Therefore, $\exists x P(x)$

Inference Rules For Program Proofs

Composition Rule	Conditional Rule $(p \land condition)\{S\}q$	Conditional with Else Rule $(p \land condition)\{S_1\}q$
$p\{S_1\}q$ $q\{S_2\}r$	$(p \land \neg condition) \{S\}q$ $(p \land \neg condition) \rightarrow q$	$(p \land \neg condition)\{S_1\}q$ $(p \land \neg condition)\{S_2\}q$
${p\{S_1;S_2\}r}$		$p\{ \text{ if } condition } S_1 \text{ else } S_2 \} q$
p (>1, >2),	p in contantion b jq	