Cálculo 1

Integração por partes

Vimos nos textos anteriores que a técnica de mudança de variáveis é muito útil no cálculo de algumas primitivas. Porém, existem casos em que ela não é suficiente. Por exemplo, suponha que queremos resolver a integral

$$\int xe^x \mathrm{d}x.$$

Uma análise inicial mostra que esta integral não é de resolução imediata. De fato, se estivéssemos integrando somente o termo x, teríamos a primitiva $x^2/2$, enquanto que se o integrando fosse somente e^x , poderíamos tomar a primitiva e^x . Contudo, neste caso, temos o produto destas duas funções.

Uma tentativa inicial seria usar a mudança $u=e^x$, que nos fornece $du=e^x dx$ e $x=\ln(u)$. Assim,

$$\int xe^x dx = \int xdu = \int \ln(u)du.$$

Embora a igualdade acima esteja correta, ela não nos ajuda muito, porque também não sabemos uma primitiva para a função $\ln(u)$. Portanto, a integral proposta não deve ser resolvida por mudança de variáveis. Neste texto vamos introduzir uma nova técnica que vai nos permitir, entre outras coisas, encontrar uma primitiva para a função xe^x .

Lembre que a fórmula de mudança de variáveis foi obtida a partir da Regra da Cadeia. O que vamos fazer inicialmente é obter, a partir da regra de derivação de um produto, uma nova fórmula. Para tanto, lembre que

$$\frac{d}{dx}[f(x)\cdot g(x)] = f'(x)g(x) + f(x)g'(x),$$

sempre que f e g são deriváveis. Integrando a igualdade acima com respeito a x, e lembrando que uma primitiva de (f(x)g(x))' é o produto f(x)g(x), obtemos

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$

A igualdade acima é conhecida como fórmula de integração por partes. Na sequência, vamos mostrar como ela pode ser útil.

Exemplo 1. Vamos usar a fórmula para resolver a integral $\int xe^x dx$. Se denotarmos f(x) = x e $g'(x) = e^x$, obtemos

$$\int xe^x dx = \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx = x \cdot g(x) - \int 1 \cdot g(x)dx.$$

Para finalizar o cálculo, precisamos descobrir quem é g(x). Como $g'(x) = e^x$, temos que $g(x) = \int g'(x) dx = \int e^x dx = e^x + K_1$, em que K_1 é a constante de integração. Deste modo

$$\int xe^{x} dx = x(e^{x} + K_{1}) - \int (e^{x} + K_{1}) dx = xe^{x} - \int e^{x} dx,$$

ou ainda,

$$\int xe^x dx = (x-1)e^x + K.$$

Se você quiser, pode checar o resultado acima simplesmente derivando o lado direito.

Vale notar que, no cálculo da função g acima, a constante de integração K_1 sempre vai desaparecer. De fato, basta notar que

$$f(x)(g(x) + K_1) - \int f'(x)(g(x) + K_1) dx = f(x)g(x) - \int f'(x)g(x) dx,$$

qualquer que seja o número K_1 . Deste modo, ao aplicarmos a fórmula, é comum escolher $K_1 = 0$ na expressão de g(x).

Outra observação importante é que a fórmula pode ser reescrita de uma maneira mais simples de ser lembrada, através do seguinte artifício: considere u = f(x) e v = g(x). Com esta definição, temos que $\frac{du}{dx} = f'(x)$. Se considerarmos, formalmente, o símbolo $\frac{du}{dx}$ como sendo uma fração, isso nos leva a du = f'(x)dx e, de maneira análoga, dv = g'(x)dx. Assim, a fórmula de integração por partes pode ser escrita como

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u.$$

Exemplo 2. Para a integral indefinida $\int x \cos(x) dx$, vamos considerar u = x e $dv = \cos(x) dx$. Deste modo, temos que

$$u = x,$$
 $dv = \cos(x)dx$
 $du = dx,$ $v = \int dv = \int \cos(x)dx = \sin(x),$

onde escolhemos a constante de integração como sendo 0 no cálculo de v. Assim, usando a fórmula, obtemos

$$\int x \cos(x) dx = \int u dv = uv - \int v du = x \sin(x) - \int \sin(x) dx,$$

ou ainda

$$\int x \cos(x) dx = x \sin(x) + \cos(x) + K.$$

Novamente, a igualdade pode ser checada pela simples derivação do lado direito. □

Ao aplicar a fórmula, é fundamental fazer uma escolha apropriada do termo dv. A primeira dica para esta escolha é lembrar que, para aplicar a fórmula, será necessário conhecer o valor de v, isto é, calcular a integral $\int dv$. Deste modo, o termo dv deve ser uma função que sabemos integrar. Esta observação, quando aplicada no Exemplo 2 acima, descarta imediatamente a escolha d $v = x \cos(x)$. Porém, ainda restariam três possibilidades:

$$dv = xdx$$
, $dv = dx$, $dv = \cos(x)dx$.

Já vimos que a terceira escolha acima funciona. Para a primeira teríamos

$$u = \cos(x),$$
 $dv = xdx$ $du = -\sin(x) dx,$ $v = \int xdx = x^2/2,$

de modo que

$$\int x \cos(x) dx = \frac{x^2}{2} \cos(x) + \int \frac{x^2}{2} \sin(x) dx.$$

Esta igualdade, embora correta, não ajuda muito, porque a integral que aparece do lado direito não parece ser mais simples do que a inicial. Deixamos para o leitor a verificação de que a escolha dv = dx também não é boa.

Exemplo 3. Vamos calcular

$$\int \ln(x) \mathrm{d}x,$$

integrando por partes. Fazendo a escolha $u = \ln(x)$, somos levados a dv = dx,

$$u = \ln(x),$$
 $dv = dx$
 $du = \frac{1}{x}dx,$ $v = \int dx = x,$

e portanto

$$\int \ln(x)dx = x\ln(x) - \int \frac{1}{x}xdx = x\ln(x) - x + K.$$

Novamente aqui, a escolha $dv = \ln(x)$ não seria boa, porque a princípio não sabemos uma primitiva de $\ln(x)$. \square

Exemplo 4. Em alguns casos precisamos aplicar o método mais de uma vez. Por exemplo, para

$$\int x^2 \operatorname{sen}(x) \mathrm{d}x,$$

fazemos $u=x^2$ e $dv=\mathrm{sen}(x)dx$, de modo que du=2xdx e $v=-\cos(x)$. Assim

$$\int x^2 \operatorname{sen}(x) dx = -x^2 \cos(x) + \int 2x \cos(x) dx.$$

Resolvendo a última integral partes (cf. Exemplo 2), obtemos

$$\int x^{2} \sin(x) dx = -x^{2} \cos(x) + 2 (x \sin(x) + \cos(x)) + K,$$

que é o resultado desejado. □

Observe que a ideia do exemplo acima funciona em qualquer integral do tipo $\int x^n f(x) dx$, quando $n \in \mathbb{N}$ e a função f é, por exemplo, do tipo $\cos(ax)$, $\sin(ax)$ ou e^{ax} , $\cos a \in \mathbb{R}$. Quanto maior o valor de n, mais vezes teremos que integrar por partes. A parte boa é que, a cada integração, o expoente do termo x da nova integral diminui até chegarmos em $x^0 = 1$.

Exemplo 5. Vamos agora aplicar integração por partes na integral

$$\int \operatorname{sen}(\ln(x)) \mathrm{d}x,$$

com as escolhas seguintes

$$u = \operatorname{sen}(\ln(x)),$$
 $dv = dx$
 $du = \frac{\cos(\ln(x))}{x}dx,$ $v = x.$

Substituindo, vem

$$\int \operatorname{sen}(\ln(x)) dx = x \operatorname{sen}(\ln(x)) - \int \cos(\ln(x)) dx.$$
 (1)

Note que a integral resultante parece ter a mesma complexidade da inicial, o que poderia nos levar a pensar que a ideia não foi boa. Porém, vamos aplicar integração por partes a esta nova integral, com a seguinte escolha

$$u = \cos(\ln(x)),$$
 $dv = dx,$
 $du = -\frac{\sin(\ln(x))}{x}dx,$ $v = x,$

para obter

$$\int \cos(\ln(x))dx = x\cos(\ln(x)) + \int \sin(\ln(x))dx.$$

Substituindo a igualdade acima em (1), obtemos

$$\int \operatorname{sen}(\ln(x)) dx = x \operatorname{sen}(\ln(x)) - x \cos(\ln(x)) - \int \operatorname{sen}(\ln(x)) dx.$$

Note que a integral que queríamos calcular apareceu novamente, do lado direito, multiplicada por um fator diferente de 1. Podemos então levá-la para o lado esquerdo da igualdade e obter

$$\int \operatorname{sen}(\ln(x)) dx = \frac{1}{2} \left[x \operatorname{sen}(\ln(x)) - x \cos(\ln(x)) \right] + K,$$

com K sendo a constante de integração.

A mesma ideia acima nos permite calcular integrais do tipo $\int e^{ax} \sin(bx) dx$ ou $\int e^{ax} \cos(bx)$, com $a, b \in \mathbb{R}$. Deixamos para o leitor a tarefa de considerar casos como esses. \square

Exemplo 6. Em alguns casos, as técnicas de integração podem se misturar. Por exemplo, na integral $\int e^{\sqrt{x}} dx$, podemos fazer a mudança de variáveis $y = \sqrt{x}$ para obter $dx = 2\sqrt{y}dy = 2ydy$, e portanto

$$\int e^{\sqrt{x}} \mathrm{d}x = 2 \int y e^y \mathrm{d}y.$$

Esta última integral pode ser facilmente resolvida por integração por partes. De maneira análoga podemos tratar, por exemplo, $\int \operatorname{sen}(\sqrt{x}) dx$ ou $\int \cos(\sqrt{x}) dx$. \square

Finalizamos observando que a fórmula de integração por partes pode ser aplicada na integral definida. De fato, o Teorema Fundamental do Cálculo implica que

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{x=a}^{b} - \int_{a}^{b} f'(x)g(x)dx.$$

Assim, lembrando do Exemplo 1, temos

$$\int_0^1 x e^x dx = x e^x \Big|_{x=0}^1 - \int_0^1 e^x dx = (e-0) - (e^x) \Big|_{x=0}^1 = e - (e-1) = 1.$$

Tarefa

A fórmula de integração por partes nos permite obter fórmulas recurssivas para algumas integrais. Por exemplo, para todo natural $n \ge 3$, considere

$$I_n = \int_0^{\pi/2} \cos^n(x) \mathrm{d}x.$$

1. Use integração por partes, com $u = \cos^{n-1}(x)$ e $dv = \cos(x)dx$, para obter

$$\int \cos^{n}(x) dx = \sin(x) \cos^{n-1}(x) + (n-1) \int \cos^{n-2}(x) \sin^{2}(x) dx.$$

2. Lembrando que $\mathrm{sen}^2(x) + \mathrm{cos}^2(x) = 1$, conclua que

$$I_n = \frac{n-1}{n} I_{n-2}, \qquad n \ge 3.$$

3. Escreva uma fórmula recursiva para a integral indefinida $\int \cos^n(x) dx$.