CSEP 573

Markov Decision Processes:
Heuristic Search & Real-Time Dynamic
Programming

Slides adapted from Andrey Kolobov and Mausam

1

Outline

- Stochastic Shortest Path (SSP) Problems
- Find-and Revise Framework
- Real-Time Dynamic Programming (RTDP)
- Heuristics
- LAO*

Stochastic Shortest-Path MDPs: Motivation

- Assume the agent pays cost to achieve a goal
- Example applications:
 - Controlling a Mars rover
 "How to collect scientific data without damaging the rover?"
 - Navigation

"What's the fastest way to get to a destination, taking into account the traffic jams?"

Value & Policy Iteration don't represent initial state!! Waste lots of effort!

10

Stochastic Shortest-Path MDPs: Definition

Bertsekas, 1995

SSP MDP is a tuple <*S*, *A*, *T*, *C*, *G*>, where:

- S is a finite state space, with a distinguished start state, s₀
- A is a finite action set
- $T: S \times A \times S \rightarrow [0, 1]$ is a stationary transition function
- C: $S \times A \times S \rightarrow \mathbb{R}$ is a stationary cost function (low cost is good!)
- G is a set of absorbing cost-free goal states

Under two conditions:

- There is a *proper policy* (reaches a goal with P= 1 from all states)
- Every *improper policy* incurs a cost of ∞ from every state from which it does not reach the goal with P=1

SSP MDP Details

- In SSP, *minimize* expected cost
- Every cost-minimizing policy is proper!
- Thus, an optimal policy = cheapest way to a goal
- Why are SSP MDPs called "indefinite-horizon"?
 - If a policy is optimal, it will take a finite, but apriori unknown, time to reach goal

12

SSP MDP Example, not!

SSP MDP Example, also not!

No cost-free "loops" allowed!

14

SSP MDP Example $C(s_1, a_2, s_1) = 7.2$ $c(s_1, a_2, s_1) = 7.2$ $c(s_1, a_2, s_2) = 1$ $c(s_2, a_2, s_3) = 1$ $c(s_2, a_2, s_3) = 1$ $c(s_2, a_2, s_3) = 0.3$ $c(s_2, a_2, s_3) = 1$ $c(s_2, a_2, s_3) = 0.3$

SSP MDPs: Optimality Principle

For an SSP MDP, let:

Exp. Lin. Add. Utility $- V^{\pi}(h) = \mathbb{E}_{h}^{\pi}[C_1 + C_2 + ...] \text{ for all } h$

Note: no discounting!

For every history,

the value of a policy

is well-defined!

Then: Every policy either takes a finite exp. # of steps to reach a goal, or has an infinite cost.

- $-V^*$ exists and is stationary Markovian, π^* exists and is stationary deterministic Markovian
- For all s:

$$V^*(s) = \min_{a \text{ in } A} \left[\sum_{s' \text{ in } S} T(s, a, s') \left[C(s, a, s') + V^*(s') \right] \right] \pi^*(s) = \operatorname{argmin}_{a \text{ in } A} \left[\sum_{s' \text{ in } S} T(s, a, s') \left[C(s, a, s') + V^*(s') \right] \right]$$

16

SSP and Other MDP Classes

E.g., Indefinite-horizon discounted reward

SSP and Other MDP Classes

- $FH \Rightarrow SSP$: $\forall s, \forall i \in [0, L]$ create a new states (s, i); (s, 0) are goals
- *IHDR* => *SSP*: add γ-probability transitions to goal
- Will concentrate on SSP in the rest of the tutorial

19

IHDR → SSP

IHDR → SSP

1) Invert rewards to costs

21

$IHDR \rightarrow SSP$

- 1) Invert rewards to costs
- 2) Add new goal state & edges from absorbing states
- 3) \forall s,a, add edges to goal with P = 1- γ

Computational Complexity of MDPs

Good news:

- Solving IHDR, SSP in flat representation is P-complete
- Solving FH in flat representation is P-hard
- That is, they don't benefit from parallelization, but are solvable in polynomial time!

24

Computational Complexity of MDPs

Bad news:

- Solving FH, IHDR, SSP in factored representation is EXPTIMEcomplete!
- Flat representation doesn't make MDPs harder to solve, it makes big ones easier to describe.

(General) Asynchronous VI

- $\mathbf{1}$ initialize V arbitrarily for each state
- 2 while $Res^V > \epsilon \ \mathbf{do}$
- s select a state s
- compute V(s) using a Bellman backup at s
- 5 update $Res^V(s)$
- 6 end
- 7 return greedy policy π^V

Res^V(s) = $|V(s) - \max \sum T(s,a,s')[R(s,a,s')+V(s')]|$ Res^V = $\max_s Res^V(s)$

Heuristic Search

- Insight 1
 - knowledge of a start state, s₀, to save on computation
 ~ (all sources shortest path → single source shortest path)
- Insight 2
 - additional knowledge in the form of heuristic function
 ~ (dfs/bfs → A*)

Partial Policy

- Define Partial policy
 - $-\pi$: S' \rightarrow A, where S'⊆ S
- Define Partial policy closed w.r.t. a state s.
 - is a partial policy π_s
 - defined for all states s' reachable by π_s starting from s

44

Partial policy closed wrt s₀

Is this policy closed wrt s_0 ? $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$

Greedy Policy Graph

- Define *greedy policy*: $\pi^V = \operatorname{argmin}_a Q^V(s,a)$
- Define greedy partial policy rooted at s₀
 - Partial policy rooted at s_0
 - Greedy policy
 - denoted by $\Pi_{\P_0}^{V}$
- Define greedy policy graph
 - Policy graph of $\Pi_{\$0}^{\lor}$: denoted by $G_{\$0}^{\lor}$

48

Heuristic Function

- h(s): S→R
 - estimates V*(s)
 - gives an indication about "goodness" of a state
 - usually used in initialization $V_0(s) = h(s)$
 - helps us avoid seemingly bad states
- Define admissible heuristic
 - Optimistic (underestimates cost)
 - $-h(s) \leq V^*(s)$

A General Scheme for Heuristic Search in MDPs

- Two (over)simplified intuitions
 - Focus on states in greedy policy wrt. V rooted at s₀
 - Focus on states with residual $> \varepsilon$
- Find & Revise:
 - repeat
 - find a state that satisfies the two properties above
 - perform a Bellman backup
 - until no such state remains

52

FIND & REVISE [Bonet&Geffner 03a]

```
1 Start with a heuristic value function V \leftarrow h

2 while V's greedy graph G_{s_0}^V contains a state s with Res^V(s) > \epsilon do

3 | FIND a state s in G_{s_0}^V with Res^V(s) > \epsilon

4 | REVISE V(s) (perform Bellman backups)

5 end

6 return a \pi^V
```

- Convergence to V* is guaranteed
 - if heuristic function is admissible, and
 - ~no state gets starved in ∞ FIND steps

Heuristic Search Algorithms

- Definitions
- Find & Revise Scheme.
- LAO* and Extensions
- RTDP and Extensions
- Other uses of Heuristics/Bounds
- Heuristic Design

89

Real Time Dynamic Programming

[Barto et al 95]

- Original Motivation
 - agent acting in the real world
- Trial
 - simulate greedy policy starting from start state;
 - perform Bellman backup on visited states
 - stop when you hit the goal
- RTDP: repeat trials forever
 - Converges in the limit #trials $\rightarrow \infty$

start at start state repeat

perform a Bellman backup simulate greedy action

95

Trial

start at start state repeat

perform a Bellman backup simulate greedy action

Real Time Dynamic Programming

[Barto et al 95]

Ignores residual; Spot any problems?

Lacks focus!

- Trial
 - simulate greedy policy starting from start state;
 - perform Bellman backup on visited states
 - stop when you hit the goal

No termination condition!

- RTDP: repeat trials forever
 - Converges in the limit #trials → ∞

99

RTDP Family of Algorithms

```
repeat s \leftarrow s_0

repeat //trials

REVISE s; identify a_{greedy}

FIND: pick s' s.t. T(s, a_{greedy}, s') > 0

s \leftarrow s'

until s \in G
```

until termination test

Termination Test Take 1: Labeling

- Admissible neuristic & monotonicity
 - $\Rightarrow V(s) \leq V^*(s)$
 - \Rightarrow Q(s,a) \leq Q*(s,a)
- If V(s) has converged Then label state, s, as solved

Case 0

label all goals as solved

Termination Test Take 1: Labeling

- Admissible neuristic & monotonicity
 - $\Rightarrow V(s) \leq V^*(s)$
 - \Rightarrow Q(s,a) \leq Q*(s,a)
- If V(s) has converged Then label state, s, as solved

Case 1

 $Res^{V}(s) \le \varepsilon$

 \Rightarrow V(s) won't change! labels as solved

Labeling (contd)

Res^V(s) $< \varepsilon$ s' already solved \Rightarrow V(s) won't change!

label s as solved

103

Labeling (contd)

 $Res^{V}(s) < \varepsilon$

s' already solved

 \Rightarrow V(s) won't change!

label s as solved

 $Res^{V}(s) \le \varepsilon$

 $Res^{V}(s') \le \epsilon$

V(s), V(s') won't change! label s, s' as solved

Labeled RTDP [Bonet&Geffner 03b]

```
repeat s \leftarrow s_0 label all goal states as solved repeat //trials REVISE s; identify a_{greedy} FIND: sample s' from T(s, a_{greedy}, s') s \leftarrow s' until s is solved for all states s in the trial try to label s as solved until s_0 is solved
```

105

LRTDP

- · terminates in finite time
 - due to labeling procedure
- anytime
 - focuses attention on more probable states
- fast convergence
 - focuses attention on unconverged states

Picking a Successor Take 2

- - Advantages
 - · more probable states are explored first
 - no time wasted on converged states
 - Disadvantages
 - Convergence test is a hard constraint
 - Sampling ignores "amount" of convergence
- If we knew how much V(s) was expected to change?

109

Upper Bounds in SSPs

- RTDP/LAO* maintain lower bounds
 - call it V_I
- Additionally associate upper bound with s
 - $-V_{II}(s) \ge V^*(s)$
- Define gap(s) = $V_u(s) V_l(s)$
 - low gap(s): more converged a state
 - high gap(s): more expected change in its value

Backups on Bounds

- Recall monotonicity
- Backups on lower bound
 - continue to be lower bounds
- Backups on upper bound
 - continues to be upper bounds
- Intuitively
 - V₁ will increase to converge to V*
 - V_u will decrease to converge to V*

111

Bounded RTDP [McMahan et al 05]

```
repeat s \leftarrow s_0 repeat //trials identify \ a_{greedy} \ based \ on \ V_I FIND: sample \ s' \propto T(s, \ a_{greedy'} \ s').gap(s') s \leftarrow s' until \ gap(s) < \epsilon for \ all \ states \ s \ in \ trial \ in \ reverse \ order REVISE \ s \ // \ backup \ both \ upper \ and \ lower \ bounds until \ gap(s_0) < \epsilon
```

