Medical Face Mask Detection

Goals

Data

Architectu

Resui

C..:

Video

Conclusion

Medical Face Mask Detection M.Sc. Final Project

Amir M. Dahan

Supervised by Prof. Margarita Osadchy

Department of Computer Science University Of Haifa

February 2022

Outline

Medical Face Mask Detection

- 1 Goals
- 2 Data
- 3 Architecture
- 4 Results
- 5 Gui
- 6 Video
- **7** Conclusions

Project Goals

Medical Face Mask Detection

Goals

Data

Architec

Reculte

Gui

vide

Conclusion

In this project, the goal is to label all faces in the given image as mask/no mask We'll need to determine which of these women is wearing a medical mask.

Expected Achievements

Medical Face Mask Detection

Goals

Data

rchitectı

. .

Gui

viaec

Conclusion

Contents:

I Take both datasets and use augmentation to improve pictures.

Expected Achievements

Medical Face Mask Detection

Goals

Data

chitecti

Poculto

Gui

Viuce

onclusion

Contents:

- Take both datasets and use augmentation to improve pictures.
- Pick two models best suits (CNN) our problem & search for the best hyper parameters.

Expected Achievements

Medical Face Mask Detection

Goals

Data

rchitect

Results

v iucc

Conclusion

Contents:

- Take both datasets and use augmentation to improve pictures.
- Pick two models best suits (CNN) our problem & search for the best hyper parameters.
- Train two models on datasets and save it for later use
 - Fine-tune the human detector model's upper layer
 - Train mask detector from scratch

Contents:

- Take both datasets and use augmentation to improve pictures.
- Pick two models best suits (CNN) our problem & search for the best hyper parameters.
- Train two models on datasets and save it for later use
 - Fine-tune the human detector model's upper layer
 - Train mask detector from scratch
- Test it using a GUI or a great integration script (see appendixes section), and run on an unseen test images

The Data

Medical Face Mask Detection

Goals

Architec

Results

Gui

Video

Conclus

In this project, the goal is to label all faces in the given image as mask/no mask We'll need to determine which of these women is wearing a medical mask.

Transformations

- Random Horizontal Flip: Horizontally flip the given image randomly with a given probability
- Random Resized Crop: Crop the given image to random size and aspect ratio

The Face Mask Detection Dataset

Medical Face Mask Detection

Goals

Architect

ircintect

<u>.</u> .

Video

 ${\sf Kaggle's\ face-mask-detection\ Dataset,\ Comprised\ of\ the\ following\ three\ classes:}$

- Face with mask (2997)
- Face without mask (2997)
- Mask worn incorrectly (2997)

A custom superset of Kaggle's face-mask-detection & natural-images, Comprised of

- **car** (968)
- **cat** (885)
- dog (702)
- flower (843)
- fruit (1000)
- mask_weared_incorrect (1000)
- motorbike (1000)
- with_mask (1000)
- without_mask (1000)

Architecture

Medical Face Mask Detection

Goal

Architecture

Results

Viace

Conclusion

In this section I'll describe the model and the modifications I've made during second phase.

- CNN, no other choice for that kind of task.
- Started from a known network for image classification.
- Hyper parameters tuning

Architecture (cont.)

Medical Face Mask Detection

Goal

Data

Architecture

Reculte

Video

Conclusio

```
CNN (
  (loss func): CrossEntropyLoss()
  (feature extractor): Sequential(
    (0): Conv2d(3, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
   (2): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (3): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (4): ReLU()
    (5): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (6): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU()
    (8): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (classifier): Sequential(
    (0): Flatten(start_dim=1, end_dim=-1)
    (1): Linear(in features=200704, out features=1024, bias=True)
    (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (3): ReLU()
    (4): Linear(in_features=1024, out_features=512, bias=True)
   (5): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (6): ReLU()
    (7): Linear(in features=512, out features=10, bias=True)
  )
```

```
SGD (
Parameter Group 0
dampening: 0
lr: 0.001
momentum: 0.9
nesterov: False
weight_decay: 0
```

Medical Face Mask Detection

Cook

Data

Architecture

Results

Vide

Conclusio

In training phase we train two models, in three steps as followed:

- Natural Image:
 - A Pre-Trained Resnet18 Model that detects human beings (alongside other)
 - Fine tune model's top layers with training data
 - Isn't being used for final classification
 - Used for Human Model Retraining

Medical Face Mask Detection

Goals

Architecture

Results

Gui

Video

Conclusio

In training phase we train two models, in three steps as followed:

- Natural Image:
 - A Pre-Trained Resnet18 Model that detects human beings (alongside other)
 - Fine tune model's top layers with training data
 - Isn't being used for final classification
 - Used for Human Model Retraining
- Human Model
 - Fine tune Natural Image model's top layer
 - Add three classes (with_mask, without_mask, mask_weared_incorrect)
 - Remove 'person' class in return
 - Used to determine if the object is a person

Medical Face Mask Detection

Goals

Architecture

Results

Gui

Conclusio

Natural Image:

- A Pre-Trained Resnet18 Model that detects human beings (alongside other)
- Fine tune model's top layers with training data

In training phase we train two models, in three steps as followed:

- Isn't being used for final classification
- Used for Human Model Retraining
- Human Model
 - Fine tune Natural Image model's top layer
 - Add three classes (with_mask, without_mask, mask_weared_incorrect)
 - Remove 'person' class in return
 - Used to determine if the object is a person
- Face Mask Detection
 - A model we train from scratch
 - Used for Human Model Retraining

Medical Face Mask Detection

Goals

Architecture

Results

Gui

Video

In training phase we train two models, in three steps as followed:

- Natural Image:
 - A Pre-Trained Resnet18 Model that detects human beings (alongside other)
 - Fine tune model's top layers with training data
 - Isn't being used for final classification
 - Used for Human Model Retraining
- Human Model
 - Fine tune Natural Image model's top layer
 - Add three classes (with_mask, without_mask, mask_weared_incorrect)
 - Remove 'person' class in return
 - Used to determine if the object is a person
- 3 Face Mask Detection
 - A model we train from scratch
 - Used for Human Model Retraining

Implementation Note

- High RAM and CUDA memory consumption (over 4GB)
- Works perfectly on a google-collab machine
- Debugged on a pre-trained resnet18
- My model is more accurate
- Code knows to automatically detect environment and use model accordingly

.

Architecture

Result

Gui

Video

Conclusi

Take an image

- Determine if the object/s in the picture are human (using Human Detection Model model)
- Crop the object/s one by one (using first model), & determine masked/non-masked/partially-masked (using second model)

Results

Gui

Video

Conclusio

Human Detection - Accuracy: 97.49%, Loss: 0.4224

Results

Medical Face Mask Detection - Accuracy: 93.10% Loss: 1.6244

A

Architect

C..:

Video

Conclusio

For our convenience, a simple GUI is also implemented

Figure: Non-Masked Sample

Video

Medical Face Masl Detection

Goals

A -----

Archit

Gui

Video

A Nice Video tool is also added, allowing having a video as an input, and working as follows:

- Open the video with cv2 API
- Cut it into frames and save it in a list
- Classify and annotate each frame
- Present it to the user with the desired frame rate

Disclaimer

- Since x11 server over network has inherent latency, suspension is redundant here and not applied.
- There's also an option to have frames coming from a USB camera

Architect

Gui

vided

Conclusions

An itemized thank-you:

- I'd like to thank you for the opportunity to work on this project
- I learned a lot of new things from, which I'll surely take with me throughout my career.
- Also, thanks to you, I got familiar with the area of ML (course taken back in 2017), Deep Learning (taken this year) course & Lab.
- Oh, and I didn't forget to enjoy the ride!