

ECE 283 Lab3 Final Design Review

Mingjie Ma Chengming Li

University of California, San Diego, La Jolla, CA, USA

Agenda

- 1. Project Background & Introduction
- 2. Test-Performance Overview
- 3. Chip Design Review in Cadence
- 4. Chip-Testing Review
- 5. Takeaway

Project Background & Introduction

UC San Diego

Project Background & Introduction

- 1. ECE266A 9-bit high speed(Fs = 10M Hz) SAR ADC
 - 1. Layout-focus Design
 - 1. Comparator, CDAC, Digital logic, Non-overlapping clock generator, switches
 - 2. Mega-Chip combinations
 - 1. 4 groups of chip into one BIG CHIP
 - 2. Dummy fill, seal ring, custom pads, custom-DeCaps, wavier submission
- 2. ECE266B SAR ADC Testing
 - 1. PCB Design
 - 1. Mother(4-Layer) and daughterboard(2-Layer) combination
 - 2. Custom ADC chip footprint + Wirebonding Diagram
 - 2. Soldering & Assembly
 - 1. 0604 & 0802 Surface mount soldering
 - 3. Device characterization & Test Automation
 - 1. Test Automation using Keysight instruments in Python
 - 2. Data processing and plotting in MatLab

Test - Specs Overview

Speces	Performance
SNDR _{peak} @ 1kHZ	50.23 dB
SFDR _{peak} @ 1kHZ	61.45 dB
SNR _{peak} @ 1kHZ	50.68 dB
THD _{2,peak} @ 1kHZ	78.36 dB
THD _{3,peak} @ 1kHZ	61.45 dB

UC San Diego

Comparator Remarks

- Symmetry layout in differential pair
- Achieved 90uV offset in the differential pairs

Source Net	C+CC (F)	Difference(%)
FP(Hightlight)	9.8649f	
FN(Highlight)	9.89668f	-0.32%
CP	6.76178f	
CN	6.68441f	1.144%
INP	5.42497f	
INN	5.40371f	0.39%

Comparator Layout

Custom unit Cap Remarks

CDAC Remarks -1

CDAC Remarks -2

Bit TopP	B0	B1	B2	B3	B4	B5	B6	B7	B8
CC(fF)	5.51874	11.0181	21.9972	44.1238	88.179	176.362	352.691	705.664	1413.44
Ratio		1.9996	3.9859	7.9952	15.9781	31.9569	63.9080	127.866	256.116

Bi To	it opN	B0	B1	B2	B3	B4	B5	B6	B7	B8
C	C(fF)	5.51138	11.0222	21.9988	44.1662	88.2156	176.425	352.801	705.712	1413.26
Ra	atio		1.9998	3.9915	8.0136	16.0060	32.0110	64.0131	128.046	256.425

Final Layout – SAR-ADC

Final Layout – SAR-ADC after Dummy Fill

Layout after dummy fill

Die Photo

SNR: 52.3 dB after dummy fill

Mega Group 2 Chip Photos

Location of our SAR Core

Chip-Testing Review

UC San Diego

MotherBoard BlockDiagram

1 VDD_ESD_T12 2 VSS_ESD_T12 3 DVSS T12 AVSS 4 VDD T12 44 VDD_ANA_ESD 5 CLK_T12 43 AVSS 6 MUX 39 INP_T 7 MUX 02 **38 VCM T** 8 DOUT<8> 9 DOUT<7> 36 VDD_ANA_ESD 10 DOUT <6> 34 AVSS 11 DOUT<5> 32 INN_T12 12 DOUT<4> 29 AVSS 13 DOUT<3> 27 AVSS 14 DOUT <2> 15 DOUT<1> 1-2 22 AVSS 16 DOUT<0> 17 EOC

Chip Package and Wire bonding Diagram

	Pin Number	Туре	Description
	1	Power	VDD_ESD
	2	Power	VSS_ESD
	3	Power	DVSS_T12
	4	Power	VDD_T12
12	5	Digital Input	CLK_T12
12	6/7	Digital Input	MUX_SEL
	8 - 16	Digital Output	ADC_RESULT
	17	Digital Output	EOC
2	22/27/29/34/43/45/ 46/47/52	Power	AVSS
	32	Analog Input	INN_T12
	36/44	Power	VDD_ANA_ESD
	38	Analog Input	VCM_T12
	39	Analog Input	INP_T12

MotherBoard + DaugtherBoard 3D

MotherBoard + DaugtherBoard

1. Modularized the Design

- By having jumper between each IC
- 2. For debugging
- 3. SE-DE / ByPass Options

2. Testability

- Jumper for GND for easy probeing
- 2. Grab & Probe

3. Configurability

 Potentiometer for tweaking the perfect Vcm, AVDD, AVDDESD

4. 4-Layer Stack

- 1. Signal
- 2. DGND + AGND
- 3. +5V
- 4. -5V

Board Bring-up Checklist

	Power Supply Test				
est No.	Test Plan	What Components	What Exepect to See	Status	Notes
	0 Produce -5 V and 5 V on breadboard	Breadboard and Power supply with 3 separate power supply	Neg 5V and Pos 5V	Pass	
	1 After connecting 2.5V, Measure the LDO U7 U8 U9's output	U7, U8, U9	1.5V @ Pin 5 of LDOS	Pass	
	After connecting -5 V and 5V, makre sure power vias are		Pos 5V on the leftmost pin and		
	2 shown 5V and -5Vcorrectly	3-Pins Jumer near the Vsin_IN_NP	Neg 5V on the rightmost	Pass	
	3 LDO U3 regulated down from 5V to 2.5	P1 Jumer Right Most Pin	2.5V on P1 rightmost	Pass	
	4 LDO U11 regulated down from 2.5V to 0.5V	Jumer head in P1, U11's Pin 1 and 2, and TP	0.5V on TP	Pass	
	5 Tweak Potentiometer U7 to get 1V for DVDD	Potentiometer near U7, Jumer Top pin	1V DVDD @ Jumer Top Pin	Pass	
	6 Tweak Potentiometer U8 to get 1V for AVDDESD	Potentiometer near U8, Jumer Top pin	1V AVDD_ESD @Jumer Top Pin	Pass	
	7 Tweak Potentiometer U9 to get 0.5V VCM	Potentiometer near U9, Jumer left pin	0.5V VCM @Jumper Left Pin	Pass	
	Sig_IN Test				
			200K Hz Offset 0V, Amp 0.4V		
	0 Connect 200K Hz Offset OV, Amp 0.4V Sine wave into J2 SN	J2 SMA, TestPoint Near J2	Sine wave	Pass	
	U10(LPF) Connect to 1M filter choice				
	200K Hz Offset 0V, Amp 0.4V Sine wave shows up at P4, no		200K Hz Offset 0V, Amp 0.4V		
	1 distortion	U10 filter choice jumer, jumper head, P4 right pins, TP2	Sine wave into J2	Pass	
	Connect P4 Jumer, siganal go through U4 buffer and		200K Hz Offset 0V, Amp 0.4V		
	2 measure P12 Output	U4, P12 rightmost Pin	Sine wave	Pass	
			SIN_P: 200K Hz Offset 0.5V, Amp		
			0.4V Sine wave		
	U5(SE_DE) signal coming from P12, Measure SIN_IN_P and	P12 Jumer head	SIN_N: 200K Hz Offset 0.5V, Amp		
	3 SIN_IN_N Sig property	SIN_IN_P header and SIN_IN_N header right most pin	0.4V Sine wave, 180 out of phase	Pass	
	Digital Test				
	0 CLK Connect to J1	J1		Pass	
	1 MUX Choice	Used female to female jumer to connect the MUX choices		Pass	MUX0: 1, MUX1: 0

- By knowing what to expect after each IC
- 2. Actual vs. Expect
- 3. Handy to debug the problem

Test Setup Documentation

SE-DE Test Setup

- 1. Power Supply
 - a. 1 channel is used as 5V. 0.2A
 - b. 1 channel is used as -5V, 0.2A
 - c. 1 channel is used as 2.5V, 0.2A
- 2. Function Generator
 - a. SIN Input Channel 1
 - i. High-Z Load
 - ii. 1Vpp
 - iii. 0 V offset
 - iv. Frequency at 1KHz as initial
 - b. Clock Input Channel2
 - i. High-Z Load
 - ii. 2.5 Vpp
 - iii. 1.25 Offset
 - iv. Frequency at 1MHz
 - v. Duty Cycle 50%
- c. Sync Both Channels every time the parameters are changed
- 3. Oscilloscope
 - a. Time Base 1ms/div
 - b. Digital Bus1
 - i. Digital Code 0-8 (C0-8)
 - ii. Digital Code 11 End of Code (EOC)
 - iii. Trigger Level 1.8V
 - iv. Turns off Others
 - c. Trigger Source
 - i. EOC, D11 Rising Edge
 - ii. Possibly CLK from Function Generator OR CLK from buffer
 - d. Collect data
 - i. Stop or Single
 - ii. MSB First
 - iii. ASCII format
 - iv. Maximum Points

Bypass Setup

- 1. Power Supply
 - a. 1 channel is used as 5V, 0.2A
 - b. 1 channel is used as -5V, 0.2A
 - c. 1 channel is used as 2.5V, 0.2A
- 2. Function Generator
 - a. SIN Input Channel 1
 - i. High-Z Load
 - ii. 1Vpp
 - iii. 0 V offset
 - iv. Frequency at 1KHz as initial
 - b. SIN Input Inverted Channel 2
 - i. Polarity Inverted
 - ii. High-Z Load
 - iii. 1Vpp
 - iv. 0 V offset
 - v. Frequency at 1KHz as initial
 - c. Sync Both Channels every time the parameters are changed
- 3. Oscilloscope
 - a. WaveGen used as CLK
 - i. Load Infinity
 - ii. Frequency 1M
 - iii. Amplitude 2.5V
 - $iv. \quad Offset-1.25V \\$
 - v. Duty Cycle 50%
 - b. Time Base 1ms/div
 - c. Digital Bus1
 - i. Digital Code 0-8 (C0-8)
 - ii. Digital Code 11 End of Code (EOC)
 - iii. Trigger Level 1.8V
 - iv. Turns off Others
 - d. Trigger Source
 - i. EOC, D11 Rising Edge
 - ii. Possibly CLK from Function Generator OR CLK from buffer
 - e. Collect data
 - i. Stop or Single
 - ii. MSB First
 - iii. ASCII format
 - iv. Maximum Points

Test Automation Setup - 1

- 1. Power Supply
 - 1. +5V, -5V, and 2.5V
- 2. Function Generator
 - 1. CLK & SIN INPUT
- 3. Oscilloscope
 - 1. Digital Analyzer
 - 2. Digital Output
- 4. 4-Layer Stack
 - 1. Signal
 - 2. DGND + AGND
 - 3. +5V
 - 4. -5V

Test Automation Setup - 2

- 1. Power Supply
 - 1. +5V, -5V, and 2.5V
- 2. Function Generator
 - 1. CLK & SIN INPUT
- 3. Oscilloscope
 - 1. Digital Analyzer
 - 2. Digital Output

Test Automation Code Prep

1. Keysight Connection Expert & Keysight Command Expert

- 1. Extremely accelerate the code development time
- 2. And check if the instrument is there

2. Python Test Automation

- 1. Function Generator
 - Freq_coupling', 'FuncGenConnect', 'Load__setup', 'PWM_setup',
 'Polarity_invert', 'Sin_setup', 'Sync_phase', 'UnitVpp_setup', 'Voltage_coupling',
 'output_OFF', 'output_ON
- 2. PowerSupply
 - 'Channel_Select', 'Current_Setup', 'Output_OFF', 'Output_ON', 'PowerSupply_Connect', 'Voltage_Setup'
- 3. Oscilloscope
 - 'DigitalDisplay_ON', 'Digitalizer_ON_OFF', 'Oscilloscope_Connect',
 'Oscilloscope_RUN', 'Oscilloscope_SetBUS', 'Oscilloscope_Single',
 'Oscilloscope_Stop', 'Oscilloscope_TimeBase', 'Oscilloscope_Trigger_Dchan',
 'Oscilloscope_Trigger_External', 'Oscilloscope_WGen_Square',
 'Oscilloscope_WGen_Square_OFF', 'Oscilloscope_WGen_Square_ON',
 'Save_waveform', 'SetDigital_Threshold'

3. Code Version Control

- 1. GitHub
 - 1. Never lost what I did on "Yesterday"

Peak SNDR Plot

Speces	Performance
SNDR _{peak} @ 1kHZ	50.23 dB
SFDR _{peak} @ 1kHZ	61.45 dB
SNR _{peak} @ 1kHZ	50.68 dB
<i>THD</i> _{2,peak} @ 1kHZ	78.36 dB
<i>THD</i> _{3,peak} @ 1kHZ	61.45 dB

INL & DNL Plot

Future Work

- 1. Improve the code to make coherent sampling using: $\frac{f_{in}}{f_{sample}} = \frac{\# integer \ cycles}{\# FFT_points}$
 - 1. By adjusting the input frequency f_{in}
 - 2. By grabbing enough cycles, no more no less (ideally prime number)
 - 3. By grabbing 2^x data points
- 2. Rework the mother and daughter board
 - 1. Putting more decaps to filter-out the supply noise
 - 2. Make it to be plugging-in and direct-use Eval-Board
- 3. Bypass the fronted-end module

Takeaway

UC San Diego

Takeaway

- 1. Always Always document everything
- 2. Simple Eval-board Design = Robust Debuggability & Reconfigurality
- 3. Cross-check everything with partners

Acknowledgement

- Prof. Hall
 - For running this 6-months course/projects
 - Helping us debug the problems
- TA: Darshan
 - Supporting the Lab work
 - Extending the Lab Hours
- MegaGroup2
 - Putting everything together in the Mega-Chip
- Apple
 - For sponsoring this projects, buying the chips, PCBs, components, etc
- Keysight
 - Instruments, instrument command & connection expert