week4 Relation

Chapter9 section 9.1,9.2,9.5,9.6

Definition

Relationships between elements of sets are represented using the structure called a relation, which is just a subset of the Cartesian product of the sets.

Definition

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

We use a R b or R(a, b) to denote that $(a, b) \in R$.

Different Relations

Binary Relations

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Reflexive Relations

Definition

A relation R on a set A is called *reflexive*, if $(a, a) \in R$ for every element $a \in A$.

Symmetric Relations

Definition

A relation R on a set A is called *symmetric*, if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

Antisymmetric Relations

Definition

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

Antisymmetric and Symmetric is not opposite

if only (a,a) in R, it is both Symmetric and Antisymmetric

Transitive Relations

Definition

A relation R on a set A is called *transitive*, if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Combining Relations

Because relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.

Combining Relations: Composite

There is another way that relations are combined that is analogous to the composition of functions.

Definition

Let R be a relation from a set A to a set B and S a relation from B to a set C. The *composite* of R and S is the relation consisting of ordered pairs (a,c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$. We denote the composite of R and S by $S \circ R$.

Exercise

What is the composite of the relations R and S, where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with $S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?

(1,0) (1,1) (2,1) (2,2) (3,0) (3,1)

Composing a Relation with Itself

Definition

Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$.

Theorem

Theorem

The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Equivalence Relations

Equivalence relation: a reflexive, symmetric, and transitive relation.

The notation $\mathbf{a} \sim \mathbf{b}$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

Equivalence Classes

 $[a]_R$ (equivalence class of a with respect to R): the set of all elements of A that are equivalent to a

$$m{igl[a]_R}=\{m{s}|m{(a,s)}\in m{R}\}.$$
 $R=\{(x,y)|x=y(mod4)\}$ $[0]R=\{-12,-8,-4,0,4,8,12.....\}$

Partition

A partition of a set S is a collection of disjoint nonempty subsets of S t hat have S as their union.

- \blacksquare $A_i = \phi$ for $i \in I$
- $lacksquare A_i \cap A_j = \phi \text{ when } i \neq q$
- $\blacksquare \cup_{i \in I} A_i = S$

example

Partial Orderings

Partial ordering: a relation that is reflexive, antisymmetric, and transitive

A set S together with a partial ordering R is called a partially ordered set, or **poset**, and is denoted by (S^{**}, R) . Members of S are called elements of the poset.

$$poset:(Z,>=)$$
 the same as $\{(x,y)|x>=y\}$

Comparable V.S. Incomparable

if (a,b) and (b,a) is both in poset, a,b are comparable.

Comparable: the elements a and b in the poset (A, \leq) are comparable if $a \leq b$ or $b \leq a$

Incomparable: When a and b are elements of S such that neither $a \leq b$ nor $b \leq a$, a and b are called incomparable.