CAPSTONE 2

Supervised Learning

Research Question

What is the prediction on the total consumption of gas and electricity?

- Show 2 Regression models
- Target: is going to be the total KWH & total THERMS
- Variables:
 - TOTAL UNITS, KWH TOTAL SQFT, THERMS TOTAL SQFT, AVERAGE HOUSESIZE
 - Dummy (BUILDING TYPE) there are four: Residential, Commercial, Industrial, Other

Content

- 1- The Data
- 2- Clean Data
 - 2.1 Missing Values
 - 2.2 Outliers
- 3- Feature Engineering
 - 3.1 Target
 - 3.2 Correlation between Variables and target
 - 3.3 Set X and Y
- 4- Data split for Train and Test
 - 4.1 Split
 - 4.2 Standardize data
- 5- Regression (OLS) Model
 - 5.1 OLS MODEL: First Target (Total KWH)
 - 5.2 OLS MODEL: Second Target (Total Therms)
- 6- Random Forest
 - 6.1 Tests three different types
 - 6.2 Importance of Variable
- 7 -Conclusion

1. The Data

CHICAGO ENERGY USAGE

The data is based on Chicago energy usage for 2010. I loaded the data from Kaggle database. It shows the consumption of energy and gas for commercial, residential, industrial.

https://www.kaggle.com/chicago/chicago-energy-usage-2010 (https://www.kaggle.com/chicago/chicago-energy-usage-2010)

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn import ensemble
        from sklearn.model selection import cross val score
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model selection import train test split
        # This is the model we'll be using.
        from sklearn import tree
        # A convenience for displaying visualizations.
        from IPython.display import Image
        import seaborn as sns
        # Packages for rendering our tree.
        import pydotplus
        import graphviz
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import ensemble
        from sklearn.model selection import cross val score
        from sklearn.metrics import mean absolute error
        from statsmodels.tools.eval measures import mse, rmse
        # Display preferences.
        %matplotlib inline
        pd.options.display.float format = '{:.3f}'.format
```

In [3]: #display all columns in dataframe
 from IPython.display import display
 pd.options.display.max_columns= None
 display(df)

	COMMUNITY AREA NAME	CENSUS BLOCK	BUILDING TYPE	BUILDING_SUBTYPE	KWH JANUARY 2010	KWH FEBRUARY 2010	KWH MARCH 2010	KWH APRIL 2010	KWH MAY 2010	J
0	Archer Heights	170315704001006.000	Residential	Multi < 7	nan	nan	nan	nan	nan	
1	Ashburn	170317005014004.000	Residential	Multi 7+	7334.000	7741.000	4214.000	4284.000	2518.000	4270
2	Auburn Gresham	170317105001006.000	Commercial	Multi < 7	nan	nan	nan	nan	nan	
3	Austin	170312503003003.000	Commercial	Multi < 7	nan	nan	nan	nan	nan	
4	Austin	170312504002008.000	Commercial	Multi < 7	nan	nan	nan	nan	nan	
67046	Woodlawn	170318439002011.000	Residential	Single Family	2705.000	1318.000	1582.000	1465.000	1494.000	2990
67047	Woodlawn	170318439002012.000	Commercial	Multi < 7	1005.000	1760.000	1521.000	1832.000	2272.000	236 ⁻
67048	Woodlawn	170318439002012.000	Residential	Multi < 7	3567.000	3031.000	2582.000	2295.000	7902.000	498
67049	Woodlawn	170318439002013.000	Residential	Single Family	1208.000	1055.000	1008.000	1109.000	1591.000	1367
67050	Woodlawn	170318439002014.000	Residential	Multi < 7	2717.000	3057.000	2695.000	3793.000	4237.000	538(

67051 rows × 73 columns

Take a look at all the columns, count, and type

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 67051 entries, 0 to 67050 Data columns (total 73 columns): COMMUNITY AREA NAME 67051 non-null object CENSUS BLOCK 66974 non-null float64 66974 non-null object BUILDING TYPE BUILDING SUBTYPE 66974 non-null object KWH JANUARY 2010 66180 non-null float64 KWH FEBRUARY 2010 66180 non-null float64 KWH MARCH 2010 66180 non-null float64 KWH APRIL 2010 66180 non-null float64 KWH MAY 2010 66180 non-null float64 KWH JUNE 2010 66180 non-null float64 KWH JULY 2010 66180 non-null float64 KWH AUGUST 2010 66180 non-null float64 KWH SEPTEMBER 2010 66180 non-null float64 KWH OCTOBER 2010 66180 non-null float64 66180 non-null float64 KWH NOVEMBER 2010 66180 non-null float64 KWH DECEMBER 2010 TOTAL KWH 66180 non-null float64 ELECTRICITY ACCOUNTS 66180 non-null object ZERO KWH ACCOUNTS 67051 non-null int64 64821 non-null float64 THERM JANUARY 2010 THERM FEBRUARY 2010 62819 non-null float64 65569 non-null float64 THERM MARCH 2010 TERM APRIL 2010 65476 non-null float64 THERM MAY 2010 65194 non-null float64 THERM JUNE 2010 65284 non-null float64 65231 non-null float64 THERM JULY 2010 65143 non-null float64 THERM AUGUST 2010 THERM SEPTEMBER 2010 64769 non-null float64 THERM OCTOBER 2010 65329 non-null float64 THERM NOVEMBER 2010 65492 non-null float64 THERM DECEMBER 2010 65507 non-null float64 TOTAL THERMS 65755 non-null float64 GAS ACCOUNTS 65755 non-null object KWH TOTAL SQFT 65901 non-null float64 THERMS TOTAL SQFT 65378 non-null float64 KWH MEAN 2010 66180 non-null float64 KWH STANDARD DEVIATION 2010 57095 non-null float64 KWH MINIMUM 2010 66180 non-null float64 KWH 1ST QUARTILE 2010 66180 non-null float64 KWH 2ND QUARTILE 2010 66180 non-null float64

		_ 1	
KWH 3RD QUARTILE 2010	66180	non-null	float64
KWH MAXIMUM 2010	66180	non-null	float64
KWH SQFT MEAN 2010	65901	non-null	float64
KWH SQFT STANDARD DEVIATION 2010	51666	non-null	float64
KWH SQFT MINIMUM 2010	65901	non-null	float64
KWH SQFT 1ST QUARTILE 2010	65901	non-null	float64
KWH SQFT 2ND QUARTILE 2010	65901	non-null	float64
KWH SQFT 3RD QUARTILE 2010	65901	non-null	float64
KWH SQFT MAXIMUM 2010	65901	non-null	float64
THERM MEAN 2010	65755	non-null	float64
THERM STANDARD DEVIATION 2010	56821	non-null	float64
THERM MINIMUM 2010	65755	non-null	float64
THERM 1ST QUARTILE 2010	65755	non-null	float64
THERM 2ND QUARTILE 2010	65755	non-null	float64
THERM 3RD QUARTILE 2010	65755	non-null	float64
THERM MAXIMUM 2010	65755	non-null	float64
		non-null	
THERMS SQFT STANDARD DEVIATION 2010	51367	non-null	float64
THERMS SQFT MINIMUM 2010		non-null	float64
THERMS SQFT 1ST QUARTILE 2010	65378	non-null	float64
THERMS SQFT 2ND QUARTILE 2010	65378	non-null	float64
THERMS SQFT 3RD QUARTILE 2010	65378	non-null	float64
THERMS SQFT MAXIMUM 2010	65378	non-null	float64
TOTAL POPULATION	67037	non-null	float64
TOTAL UNITS	67037	non-null	float64
AVERAGE STORIES	67051	non-null	float64
AVERAGE BUILDING AGE	67051	non-null	float64
AVERAGE HOUSESIZE	67037	non-null	float64
OCCUPIED UNITS	67037	non-null	float64
		non-null	
RENTER-OCCUPIED HOUSING UNITS	67037	non-null	float64
RENTER-OCCUPIED HOUSING PERCENTAGE	64433	non-null	float64
OCCUPIED HOUSING UNITS	67037	non-null	float64
<pre>dtypes: float64(67), int64(1), object(!</pre>	5)		

memory usage: 37.3+ MB

2. Clean Data

2.1 Missing Values

Find what is the total and percentage of the missing values of the top 20 variable

```
In [5]: total_missing= df.isnull().sum().sort_values(ascending= False)
    percent_missing = (df.isnull().sum()/df.isnull().count()).sort_values(ascending= False)
    missing_data = pd.concat ([total_missing, percent_missing], axis=1, keys = ['Total', 'Percent'])
    missing_data.head(20)
```

Out[5]:

	Total	Percent
THERMS SQFT STANDARD DEVIATION 2010	15684	0.234
KWH SQFT STANDARD DEVIATION 2010	15385	0.229
THERM STANDARD DEVIATION 2010	10230	0.153
KWH STANDARD DEVIATION 2010	9956	0.148
THERM FEBRUARY 2010	4232	0.063
RENTER-OCCUPIED HOUSING PERCENTAGE	2618	0.039
OCCUPIED UNITS PERCENTAGE	2445	0.036
THERM SEPTEMBER 2010	2282	0.034
THERM JANUARY 2010	2230	0.033
THERM AUGUST 2010	1908	0.028
THERM MAY 2010	1857	0.028
THERM JULY 2010	1820	0.027
THERM JUNE 2010	1767	0.026
THERM OCTOBER 2010	1722	0.026
THERMS SQFT 2ND QUARTILE 2010	1673	0.025
THERMS SQFT MAXIMUM 2010	1673	0.025
THERMS SQFT MINIMUM 2010	1673	0.025
THERMS SQFT 3RD QUARTILE 2010	1673	0.025
THERMS SQFT MEAN 2010	1673	0.025
THERMS TOTAL SQFT	1673	0.025

Non-Numeric Value

Let's check the missing value for the categorical variable:

Building Type

Building type will be our categorical variable, which will later be converted into a dummie to use in the modeling section.

First, lets see how many null values there is

```
In [7]: #had to rename a varible, for better use in coding
         rename= df.rename ({'BUILDING TYPE': 'BUILDING TYPE'}, axis=1, inplace=True)
In [8]: #percentage of missing value
         percent missing build type = df['BUILDING TYPE'].isnull().sum() * 100 / len(df)
         total missing build type= df.BUILDING TYPE.isnull().sum()
         print( 'Percentage of missing values: {}'.format(percent missing build type))
         print( 'Total of missing values: {}'.format(total missing build type))
         Percentage of missing values: 0.11483795916541141
         Total of missing values: 77
In [9]: df['BUILDING TYPE']= df['BUILDING TYPE'].fillna('Other')
         df['BUILDING_TYPE'].unique()
Out[9]: array(['Residential', 'Commercial', 'Industrial', 'Other'], dtype=object)
In [10]: #drop categorical features that will not be use. EX: account number is an information not needed.
         #Also drop CENSUS BLOCK. Is the address (geocoding algorithms)
         df= df.drop(['ELECTRICITY ACCOUNTS', 'GAS ACCOUNTS', 'BUILDING SUBTYPE', 'CENSUS BLOCK', 'COMMUNITY AREA
         NAME'], axis=1) #categorical features
```

Numeric Values

Fill in null values

Since some building types either consume gas or electricity, we will fill in the null values for Total Therms and Total KWH variables with 0.

```
In [11]: #unique values
    df['TOTAL THERMS'].unique()
Out[11]: array([10917., nan, 6057., ..., 18598., 7080., 11656.])
In [12]: #unique values
    df['TOTAL KWH'].unique()
Out[12]: array([ nan, 82064., 1994., ..., 29288., 41977., 57736.])
In [13]: #fill NAN values with 0, since each building type either uses Gas or Electricity
    df= df.fillna(0)
    df.shape
Out[13]: (67051, 68)
```

In [14]: #double checking that we do not have any null values left
 total_missing= df.isnull().sum().sort_values(ascending= False)
 percent_missing = (df.isnull().sum()/df.isnull().count()).sort_values(ascending= False)
 missing_data = pd.concat ([total_missing, percent_missing], axis=1, keys = ['Total', 'Percent'])
 missing_data.head(10)

Out[14]:

	Total	Percent
OCCUPIED HOUSING UNITS	0	0.000
THERM OCTOBER 2010	0	0.000
TERM APRIL 2010	0	0.000
THERM MAY 2010	0	0.000
THERM JUNE 2010	0	0.000
THERM JULY 2010	0	0.000
THERM AUGUST 2010	0	0.000
THERM SEPTEMBER 2010	0	0.000
THERM NOVEMBER 2010	0	0.000
RENTER-OCCUPIED HOUSING PERCENTAGE	0	0.000

In [15]: df

Out[15]:

	BUILDING_TYPE	KWH JANUARY 2010	KWH FEBRUARY 2010	KWH MARCH 2010	KWH APRIL 2010	KWH MAY 2010	KWH JUNE 2010	KWH JULY 2010	KWH AUGUST 2010	KWH SEPTEMBER 2010	KWH OCTOBER 2010	I
0	Residential	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	_
1	Residential	7334.000	7741.000	4214.000	4284.000	2518.000	4273.000	4566.000	2787.000	3357.000	5540.000	
2	Commercial	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
3	Commercial	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
4	Commercial	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	•••											
67046	Residential	2705.000	1318.000	1582.000	1465.000	1494.000	2990.000	2449.000	2351.000	1213.000	2174.000	
67047	Commercial	1005.000	1760.000	1521.000	1832.000	2272.000	2361.000	3018.000	3030.000	2886.000	3833.000	
67048	Residential	3567.000	3031.000	2582.000	2295.000	7902.000	4987.000	5773.000	3996.000	3050.000	3103.000	
67049	Residential	1208.000	1055.000	1008.000	1109.000	1591.000	1367.000	1569.000	1551.000	1376.000	1236.000	
67050	Residential	2717.000	3057.000	2695.000	3793.000	4237.000	5383.000	5544.000	6929.000	5280.000	5971.000	

67051 rows × 68 columns

Buildings that only use KWH: (871, 68)
Buildings that only use therms: (1296, 68)

871 buildings only use gas energy, and 1,296 buildings only use electrical energy. Leaving 64,884 buildings using both types of energy. Since only a total of 2,167 buildings uses either gas or electrical power, we will drop those rows.

```
In [17]: #drop any bulding that uses only one type of enery
df= df[df['TOTAL THERMS'] != 0]
df= df[df['TOTAL KWH'] != 0]
df
```

Out[17]:

	BUILDING_TYPE	KWH JANUARY 2010	KWH FEBRUARY 2010	KWH MARCH 2010	KWH APRIL 2010	KWH MAY 2010	KWH JUNE 2010	KWH JULY 2010	KWH AUGUST 2010	KWH SEPTEMBER 2010	KWH OCTOBER 2010
97	Residential	1526.000	1665.000	1824.000	1579.000	2916.000	4211.000	4884.000	6874.000	4105.000	3460.000
103	Residential	242.000	136.000	134.000	134.000	144.000	122.000	3427.000	1626.000	2194.000	2218.000
104	Commercial	0.000	0.000	0.000	0.000	0.000	9.000	96.000	406.000	516.000	1891.000
120	Commercial	6171.000	3593.000	3812.000	4376.000	4431.000	5945.000	10220.000	9527.000	4271.000	3009.000
131	Residential	1959.000	2039.000	1647.000	1504.000	1790.000	3340.000	4368.000	4376.000	2426.000	3208.000
67046	Residential	2705.000	1318.000	1582.000	1465.000	1494.000	2990.000	2449.000	2351.000	1213.000	2174.000
67047	Commercial	1005.000	1760.000	1521.000	1832.000	2272.000	2361.000	3018.000	3030.000	2886.000	3833.000
67048	Residential	3567.000	3031.000	2582.000	2295.000	7902.000	4987.000	5773.000	3996.000	3050.000	3103.000
67049	Residential	1208.000	1055.000	1008.000	1109.000	1591.000	1367.000	1569.000	1551.000	1376.000	1236.000
67050	Residential	2717.000	3057.000	2695.000	3793.000	4237.000	5383.000	5544.000	6929.000	5280.000	5971.000

64884 rows × 68 columns

2.2 Outliers

This are just the outliers for the variables we will be using for the target: TOTAL KWH AND TOTAL THERMS

```
In [18]: chart=sns.catplot(
    data=df,
    y='TOTAL KWH',
    x='BUILDING_TYPE',
    kind='box',
    height=5, # make the plot 5 units high
    aspect=4)
    chart.set_xticklabels(rotation=30, horizontalalignment='right')
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x107196a10>

There seems to be some outliers just on this two variables alone, and since the data is too big to display it with boxplot. We will just clean the outliers for the whole data.

```
In [20]: # See the numeric variables to use on winsorize
numeric_columns = df.select_dtypes(['int64', 'float64']).columns
```

```
In [21]: #zcore to clean outliers
    from scipy import stats
    df[(np.abs(stats.zscore(df[numeric_columns]))<3).all(axis=1)]</pre>
```

Out[21]:

	BUILDING_TYPE	KWH JANUARY 2010	KWH FEBRUARY 2010	KWH MARCH 2010	KWH APRIL 2010	KWH MAY 2010	KWH JUNE 2010	KWH JULY 2010	KWH AUGUST 2010	KWH SEPTEMBER 2010	KW OCTOBE 201
97	Residential	1526.000	1665.000	1824.000	1579.000	2916.000	4211.000	4884.000	6874.000	4105.000	3460.00
103	Residential	242.000	136.000	134.000	134.000	144.000	122.000	3427.000	1626.000	2194.000	2218.00
104	Commercial	0.000	0.000	0.000	0.000	0.000	9.000	96.000	406.000	516.000	1891.00
120	Commercial	6171.000	3593.000	3812.000	4376.000	4431.000	5945.000	10220.000	9527.000	4271.000	3009.00
131	Residential	1959.000	2039.000	1647.000	1504.000	1790.000	3340.000	4368.000	4376.000	2426.000	3208.00
67045	Residential	9572.000	9104.000	8525.000	7756.000	11256.000	11669.000	12099.000	13200.000	9694.000	8419.00
67046	Residential	2705.000	1318.000	1582.000	1465.000	1494.000	2990.000	2449.000	2351.000	1213.000	2174.00
67047	Commercial	1005.000	1760.000	1521.000	1832.000	2272.000	2361.000	3018.000	3030.000	2886.000	3833.00
67048	Residential	3567.000	3031.000	2582.000	2295.000	7902.000	4987.000	5773.000	3996.000	3050.000	3103.00
67050	Residential	2717.000	3057.000	2695.000	3793.000	4237.000	5383.000	5544.000	6929.000	5280.000	5971.00

61892 rows × 68 columns

To clean outliers, drop values with a zscore less than -3 or greater than 3. Leaving the full data at 61,892 rows.

3- The Target and Variables and Correlation (Feature Engineering)

3.1 Target

Target: TOTAL KWH & TOTAL THERMS

3.2 Correlation with target

CORRELATION WITH TOTAL KWH

```
In [22]: # See the numeric variables
    numeric_columns = df.select_dtypes(['int64', 'float64']).columns
    #correlation with target
    pd.set_option('display.max_row', 100) #display all rows
    np.abs(df[numeric_columns].iloc[:,1:].corr().loc[:,'TOTAL KWH']).sort_values(ascending=False).head
```

Out[22]:	<pre><bound method="" ndframe.head="" of="" pre="" tot.<=""></bound></pre>	AT, KWH	1.000
	KWH MARCH 2010	0.998	
	KWH APRIL 2010	0.998	
	KWH OCTOBER 2010	0.998	
	KWH SEPTEMBER 2010	0.997	
	KWH MAY 2010	0.996	
	KWH FEBRUARY 2010	0.996	
	KWH NOVEMBER 2010	0.995	
	KWH JUNE 2010	0.995	
	KWH AUGUST 2010	0.994	
	KWH JULY 2010	0.992	
	KWH DECEMBER 2010	0.982	
	KWH TOTAL SQFT	0.863	
	THERMS TOTAL SQFT	0.847	
	KWH MAXIMUM 2010	0.776	
	THERM DECEMBER 2010	0.744	
	THERM JANUARY 2010	0.733	
	THERM FEBRUARY 2010	0.726	
	THERM MARCH 2010	0.716	
	THERM NOVEMBER 2010	0.715	
	TOTAL THERMS	0.710	
	TERM APRIL 2010	0.684	
	THERM OCTOBER 2010	0.670	
	THERM MAY 2010	0.660	
	THERM JUNE 2010	0.619	
	ZERO KWH ACCOUNTS	0.616	
	THERM SEPTEMBER 2010	0.613	
	THERM JULY 2010	0.598	
	THERM AUGUST 2010	0.596	
	THERM MAXIMUM 2010	0.556	
	KWH SQFT MAXIMUM 2010	0.541	
	THERMS SQFT MAXIMUM 2010	0.538	
	TOTAL UNITS	0.486	
	RENTER-OCCUPIED HOUSING UNITS	0.476	
	OCCUPIED HOUSING UNITS	0.475	
	OCCUPIED UNITS	0.475	
	TOTAL POPULATION	0.462	
	KWH STANDARD DEVIATION 2010	0.451	
	KWH 3RD QUARTILE 2010	0.394	
	KWH MEAN 2010	0.385	
	KWH 2ND QUARTILE 2010	0.328	
	AVERAGE HOUSESIZE	0.315	
	KWH SQFT STANDARD DEVIATION 2010	0.302	

THERMS SQFT STANDARD DEVIATION 2010	0.271
KWH SQFT 3RD QUARTILE 2010	0.243
THERM STANDARD DEVIATION 2010	0.242
KWH SQFT MEAN 2010	0.239
THERMS SQFT MEAN 2010	0.232
THERMS SQFT 3RD QUARTILE 2010	0.230
KWH SQFT 2ND QUARTILE 2010	0.210
KWH 1ST QUARTILE 2010	0.206
	0.205
KWH MINIMUM 2010	0.204
AVERAGE STORIES	0.182
THERMS SQFT 1ST QUARTILE 2010	0.167
THERMS SQFT MINIMUM 2010	0.163
KWH SQFT 1ST QUARTILE 2010	0.152
KWH SQFT MINIMUM 2010	0.147
THERM 3RD QUARTILE 2010	0.137
THERM MEAN 2010	0.136
THERM 2ND QUARTILE 2010	0.102
THERM 1ST QUARTILE 2010	0.084
THERM MINIMUM 2010	0.082
OCCUPIED UNITS PERCENTAGE	0.042
AVERAGE BUILDING AGE	0.032
RENTER-OCCUPIED HOUSING PERCENTAGE	0.010
Name: TOTAL KWH, dtype: float64>	

```
In [23]: # See the numeric variables
    numeric_columns = df.select_dtypes(['int64', 'float64']).columns
    #correlation with target
    pd.set_option('display.max_row', 100) #display all rows
    np.abs(df[numeric_columns].iloc[:,1:].corr().loc[:,'TOTAL_THERMS']).sort_values(ascending=False)
```

Out[23]:	TOTAL THERMS	1.000
	THERM NOVEMBER 2010	0.996
	TERM APRIL 2010	0.996
	THERM MARCH 2010	0.994
	THERM JANUARY 2010	0.989
	THERM FEBRUARY 2010	0.988
	THERM DECEMBER 2010	0.988
	THERM OCTOBER 2010	0.988
	THERM MAY 2010	0.983
	THERM JUNE 2010	0.955
	THERM SEPTEMBER 2010	0.950
	THERM JULY 2010	0.932
	THERM MAXIMUM 2010	0.929
	THERM AUGUST 2010	0.928
	KWH AUGUST 2010	0.734
	KWH JUNE 2010	0.733
	KWH JULY 2010	0.733
	KWH MAY 2010	0.730
	ZERO KWH ACCOUNTS	0.714
	KWH APRIL 2010	0.712
	TOTAL KWH	0.710
	KWH OCTOBER 2010	0.708
	KWH SEPTEMBER 2010	0.706
	KWH MARCH 2010	0.705
	KWH NOVEMBER 2010	0.689
	KWH TOTAL SQFT	0.684
	KWH FEBRUARY 2010	0.678
	KWH DECEMBER 2010	0.664
	THERMS TOTAL SQFT	0.653
	TOTAL POPULATION	0.591
	TOTAL UNITS	0.568
	RENTER-OCCUPIED HOUSING UNITS	0.564
	OCCUPIED HOUSING UNITS	0.563
	OCCUPIED UNITS	0.563
	AVERAGE HOUSESIZE	0.463
	KWH MAXIMUM 2010	0.443
	THERM STANDARD DEVIATION 2010	0.442
	KWH SQFT MAXIMUM 2010	0.363
	THERMS SQFT MAXIMUM 2010	0.349
	THERM MEAN 2010	0.257
	THERM 3RD QUARTILE 2010	0.254
	THERM 2ND QUARTILE 2010	0.219
	KWH SQFT STANDARD DEVIATION 2010	0.163
	WHI PALL DIVIDUED DEALVITON 5010	0.103

THERMS SQFT STANDARD DEVIATION 2010	0.156
THERM 1ST QUARTILE 2010	0.152
THERM MINIMUM 2010 KWH STANDARD DEVIATION 2010	0.150
KWH STANDARD DEVIATION 2010	0.139
KWH SQFT 3RD QUARTILE 2010	0.101
KWH SQFT 3RD QUARTILE 2010 KWH SQFT MEAN 2010	0.095
AVERAGE STORIES	0.094
THERMS SQFT 3RD QUARTILE 2010	0.091
THERMS SQFT MEAN 2010	
KWH MEAN 2010	0.078
KWH MEAN 2010 KWH 3RD QUARTILE 2010	0.078
KWH SOFT 2ND OUARTILE 2010	0.076
THERMS SQFT 2ND QUARTILE 2010 KWH 2ND QUARTILE 2010	0.068
KWH 2ND QUARTILE 2010	0.052
THERMS SQFT 1ST QUARTILE 2010 KWH SQFT 1ST QUARTILE 2010	0.049
KWH SQFT 1ST QUARTILE 2010	0.049
THERMS SQFT MINIMUM 2010 KWH SQFT MINIMUM 2010	0.047
KWH SQFT MINIMUM 2010	0.047
KWH 1ST QUARTILE 2010 KWH MINIMUM 2010	0.034
KWH MINIMUM 2010	0.033
AVERAGE BUILDING AGE	0.027
AVERAGE BUILDING AGE OCCUPIED UNITS PERCENTAGE	0.021
RENTER-OCCUPIED HOUSING PERCENTAGE	
Name: TOTAL THERMS, dtype: float64	

Grab the variables that have an important significances, and have a correlation close as possible to a .5 from the targets. Which are the following four:

- TOTAL UNITS: Total number of housing units
- OCCUPIED UNITS: Number of housing units that are occupied
- TOTAL POPULATION: Total population from Census 2010 report (QT-P6) Race alone or in combination and Hispanic or Latino 2010
- KWH TOTAL SQFT: Total square footage associated with the electric energy
- THERMS TOTAL SQFT: Total square footage associated with the natural gas energy usage for Kilowatt Hours

```
In [24]: df_corr_kwh= df[['TOTAL KWH','KWH TOTAL SQFT','TOTAL UNITS','OCCUPIED UNITS','TOTAL POPULATION']]
df_corr_therms= df[['TOTAL THERMS', 'THERMS TOTAL SQFT','TOTAL UNITS','OCCUPIED UNITS','TOTAL POPULAT
ION']]
```

```
In [25]: fig, ax = plt.subplots(figsize=(8,6))
sns.heatmap(df_corr_kwh.corr(),annot = True,vmin=-1, vmax=1, center= 0, cmap= 'coolwarm',linewidths=2, linecolor='white')
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
ax.set_title('NON-MONTHS VARIABLES & TARGET(TOTAL KWH)')
plt.show()

fig, ax = plt.subplots(figsize=(8,6))

sns.heatmap(df_corr_therms.corr(),annot = True,vmin=-1, vmax=1, center= 0, cmap= 'coolwarm',linewidth s=2, linecolor='white')
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
ax.set_title('NON-MONTHS VARIABLES & TARGET(TOTAL THERMS)')
plt.show()
```


Display bar graphs to show the variables and target with our categorical variable, building type. As well as the target and building type.

```
In [26]: import seaborn as sns
         plt.figure(figsize=(15,12))
         #categorical variable: building type
         plt.subplot(4,2,1)
         sns.barplot(df["BUILDING_TYPE"], df["THERMS TOTAL SQFT"])
         plt.title("TOTAL GAS SQFT BY BUILDING TYPE")
         plt.subplot(4,2,2)
         sns.barplot(df["BUILDING TYPE"], df["KWH TOTAL SQFT"])
         plt.title("TOTAL KWH SQFT BY BUILDING TYPE")
         plt.subplot(4,2,3)
         sns.barplot(df["BUILDING TYPE"], df["TOTAL UNITS"])
         plt.title("TOTAL UNITS BY BUILDING TYPE")
         plt.subplot(4,2,4)
         sns.barplot(df["BUILDING TYPE"], df["AVERAGE HOUSESIZE"])
         plt.title("AVERAGE HOUSESIZE BY BUILDING TYPE")
         plt.subplot(4,2,5)
         sns.barplot(df["BUILDING TYPE"], df["TOTAL THERMS"])
         plt.title("TOTAL THERMS BY BUILDING TYPE")
         plt.subplot(4,2,6)
         sns.barplot(df["BUILDING TYPE"], df["TOTAL KWH"])
         plt.title("TOTAL KWH BY BUILDING TYPE")
         plt.subplot(4,2,7)
         sns.barplot(df["BUILDING TYPE"], df["OCCUPIED UNITS"])
         plt.title("OCCUPIED UNITS BY BUILDING TYPE")
         plt.subplot(4,2,8)
         sns.barplot(df["BUILDING TYPE"], df["TOTAL POPULATION"])
         plt.title("TOTAL POPULATION BY BUILDING TYPE")
         plt.tight layout()
         plt.show()
```


As shown, most of variance in the data is in building type 'other'.

3.3 Set X and Y

```
In [27]: #setting Y and X
         #GET DUMMIES
         df= pd.concat([df, pd.get_dummies(df.BUILDING_TYPE, prefix= 'Type', drop_first=True)], axis=1)
         dummy BUILDING = list(pd.get_dummies(df.BUILDING_TYPE, prefix= 'Type', drop_first=True).columns)
         #EVERYTHING WITH 2 IS FOR TARGET: TOTAL THERMS
         X = df[['KWH TOTAL SQFT', 'TOTAL UNITS', 'OCCUPIED UNITS', 'TOTAL POPULATION'] + dummy_BUILDING ]
         X2 = df[['THERMS TOTAL SQFT', 'TOTAL UNITS', 'OCCUPIED UNITS', 'TOTAL POPULATION'] + dummy BUILDING]
         Y = df['TOTAL KWH']
         Y2 = df['TOTAL THERMS']
In [28]: Y
Out[28]: 97
                 41662.000
         103
                 15665.000
         104
                 5357.000
         120
                 68474.000
         131
                 32429.000
         67046
                 27654.000
         67047
                 41977.000
         67048
                 48850.000
         67049
                 17707.000
         67050
                 57736.000
         Name: TOTAL KWH, Length: 64884, dtype: float64
```

4- Split the data for train and test to be perform on regression model

4.1 Split for each target and its corresponding variables

Split train and test for first target (TOTAL KWH)

```
In [29]: #20% for test and 80% for train
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state = 60)
    print("The number of observations in training set(Target: Total KWH) is {}".format(X_train.shape[0]))
    print("The number of observations in test set(Target: Total KWH) is {}".format(X_test.shape[0]))

The number of observations in training set(Target: Total KWH) is 51907
The number of observations in test set(Target: Total KWH) is 12977
```

Split train and test for second target (TOTAL THERMS)

```
In [30]: #20% for test and 80% for train
X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, Y2, test_size = 0.2, random_state = 60)
print("The number of observations in training set(Target: Total THERMS) is {}".format(X_train2.shape[
0]))
print("The number of observations in test set(Target: Total THERMS) is {}".format(X_test2.shape[0]))
The number of observations in training set(Target: Total THERMS) is 51907
The number of observations in test set(Target: Total THERMS) is 12977
```

4.2 Standardize the variables

```
In [31]: #standarize data
from sklearn.preprocessing import StandardScaler

sc= StandardScaler()

X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
X_train2 = sc.fit_transform(X_train2)
X_test2 = sc.transform(X_test2)
```

```
In [32]: #standarize y
    #y_train = y_train / np.max(y_train)
    #y_test = y_test / np.max(y_test)
    #y_train2 = y_train2 / np.max(y_train2)
    #y_test2 = y_test2 / np.max(y_test2)
```

5- Regression (OLS) Model

5.1 OLS MODEL: FOR FIRST TARGET (TOTAL KWH)

```
In [33]: #Train with OLS
         import statsmodels.api as sm
         X_train_sm = sm.add_constant(X_train)
         # We fit an OLS model using statsmodels
         results_train = sm.OLS(y_train, X_train_sm).fit()
         # We print the summary results
         print(results_train.summary())
```

OT.S	Regression	Reguilta
ОПО	Regression	ICSUICS

============			=========
Dep. Variable:	TOTAL KWH	R-squared:	0.770
Model:	OLS	Adj. R-squared:	0.770
Method:	Least Squares	F-statistic:	2.484e+04
Date:	Tue, 14 Apr 2020	Prob (F-statistic):	0.00
Time:	22:05:55	Log-Likelihood:	-8.3234e+05
No. Observations:	51907	AIC:	1.665e+06
Df Residuals:	51899	BIC:	1.665e+06
Df Model:	7		

Covariance Type: nonrobust

=======	==========	========	========	========	:========	========
	coef	std err	t	P> t	[0.025	0.975]
const	2.369e+05	9776.968	24.230	0.000	2.18e+05	2.56e+05
x1	4.029e+06	1.28e+04	314.638	0.000	4e+06	4.05e+06
x2	3.425e+06	1.91e+05	17.935	0.000	3.05e+06	3.8e+06
x3	-4.344e+06	1.87e+05	-23.272	0.000	-4.71e+06	-3.98e+06
x4	5.546e+05	3.91e+04	14.200	0.000	4.78e+05	6.31e+05
x5	1137.5071	9782.557	0.116	0.907	-1.8e+04	2.03e+04
x6	5.156e+05	1.68e+04	30.703	0.000	4.83e+05	5.49e+05
x 7	-3.315e+04	9807.134	-3.381	0.001	-5.24e+04	-1.39e+04
Omnibus:	=========	======== 185249	======== 50/ Durk	======== oin-Watson:	:========	2.012
	'1				14226	
Prob(Omn	ibus):	0	.000 Jaro	que-Bera (JB	3): 14339	3419890.645
Skew:		71	.844 Prob	o(JB):		0.00
Kurtosis	:	8144	.223 Cond	d. No.		54.3

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [34]: #RESULTS FOR TEST OLS (total kwh)
X_test_sm = sm.add_constant(X_test)
results_test = sm.OLS(y_test, X_test_sm).fit()
print(results_test.summary())
```

OLS Regression Results

Dep. Vari Model: Method: Date: Time: No. Obser Df Residu	Trvations:	Least Squa ue, 14 Apr 2 22:05 12	OLS Adj. I res F-sta 020 Prob	ared: R-squared: tistic: (F-statisti ikelihood:	Lc):	0.630 0.630 3154. 0.00 -1.9818e+05 3.964e+05 3.964e+05
Df Model: Covariance		nonrob	7 ust			
=======	coef	std err	======================================	P> t	[0.025	0.975]
const	2.188e+05	9121.168	23.992	0.000	2.01e+05	2.37e+05
x1	3.502e+06	3.83e+04	91.507	0.000	3.43e+06	3.58e+06
x2	-9.818e+05	1.52e+05	-6.453	0.000	-1.28e+06	-6.84e+05
x 3	4.569e+04	1.25e+05	0.367	0.714	-1.99e+05	2.9e+05
x4	4.216e+05	6.93e+04	6.081	0.000	2.86e+05	5.58e+05
x 5	-1608.7726	8890.191	-0.181	0.856	-1.9e+04	1.58e+04
x6	2.097e+05	1.51e+04	13.855	0.000	1.8e+05	2.39e+05
x 7	-6.024e+04	9154.834	-6.580	0.000	-7.82e+04	-4.23e+04
Omnibus:		35406.	======== 808 Durbi:	======= n-Watson:		2.001
Prob(Omn	ibus):	0.	000 Jarque	e-Bera (JB)	: 170	54974947.482
Skew:		33.	826 Prob(JВ):		0.00
Kurtosis	:	1808.	440 Cond.	No.		51.1
=======	========	=======	========	========	=======	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [35]: #display graph to show predicted values and true values
    # We are making predictions here

y_preds = results_test.predict(X_test_sm)
plt.figure(figsize=(10,6))
plt.scatter(y_test, y_preds)
plt.plot(y_test, y_test, color="red")
plt.xlabel("true values")
plt.ylabel("predicted values")
plt.title("Total KWH/THERMS consumption: true and predicted values")
plt.show()

print("Mean squared error of the prediction is: {}".format(mse(y_test, y_preds)))
```


Mean squared error of the prediction is: 1077575562468.0375

5.2 OLS MODEL: FOR SECOND TARGET (TOTAL THERMS)

```
In [36]: #Train with OLS
         import statsmodels.api as sm
         X_train_sm2 = sm.add_constant(X_train2)
         # We fit an OLS model using statsmodels
         results_train2 = sm.OLS(y_train2, X_train_sm2).fit()
         # We print the summary results
         print(results_train2.summary())
```

~ - ~		
MIC	Dogroccion	D C C 11 + C
CHIC	Regression	RESULLS
~-~		

===========	============		=========
Dep. Variable:	TOTAL THERMS	R-squared:	0.506
Model:	OLS	Adj. R-squared:	0.506
Method:	Least Squares	F-statistic:	7606.
Date:	Tue, 14 Apr 2020	Prob (F-statistic):	0.00
Time:	22:05:56	Log-Likelihood:	-6.9478e+05
No. Observations:	51907	AIC:	1.390e+06
Df Residuals:	51899	BIC:	1.390e+06
Df Model:	7		
a			

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	2.007e+04	690.679	29.052	0.000	1.87e+04	2.14e+04
x1	1.189e+05	926.717	128.264	0.000	1.17e+05	1.21e+05
x2	-2.481e+05	1.36e+04	-18.274	0.000	-2.75e+05	-2.21e+05
x 3	1.548e+05	1.32e+04	11.686	0.000	1.29e+05	1.81e+05
x4	1.558e+05	2760.736	56.425	0.000	1.5e+05	1.61e+05
x 5	-18.1487	691.074	-0.026	0.979	-1372.661	1336.363
x 6	-551.0570	1187.522	-0.464	0.643	-2878.612	1776.499
x7	-479.5142	692.796	-0.692	0.489	-1837.402	878.373
Omnibus:	=========	 221632.	983 Durbir	======== n-Watson:	========	2.000
Prob(Omni	ibus):	0.	000 Jarque	e-Bera (JB)	1225972	2352741.483
Skew:		125.	902 Prob(3	JB):		0.00
Kurtosis	:	23810.	221 Cond.	No.		54.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [37]: X_test_sm2 = sm.add_constant(X_test2)
#RESULTS FOR TEST OLS (total therms)
results_test2 = sm.OLS(y_test2, X_test_sm2).fit()
print(results_test2.summary())
```

OLS Regression Results

Dep. Var	iable:	TOTAL THE	RMS R-squa	red:		0.784
Model:			OLS Adj. R	-squared:		0.784
Method:		Least Squa	res F-stat	istic:		6730.
Date:	Т	ue, 14 Apr 2	020 Prob (F-statist:	ic):	0.00
Time:		22:05	•	kelihood:	,	-1.5935e+05
No. Obse	rvations:	12	977 AIC:			3.187e+05
Df Residu	uals:	12	969 BIC:			3.188e+05
Df Model:			7			311000.03
Covariand		nonrob	oust			
=======	coef	std err	t	P> t	[0.025	 0.975]
const	2.03e+04	457.448	44.380	0.000	1.94e+04	2.12e+04
x1	1.248e+05	1810.387	68.910	0.000	1.21e+05	1.28e+05
x2	-5.167e+04	7683.985	-6.724	0.000	-6.67e+04	-3.66e+04
x3	-9.225e+04	6238.160	-14.789	0.000	-1.04e+05	-8e+04
x4	1.963e+05	3488.757	56.252	0.000	1.89e+05	2.03e+05
x5	-206.9153	445.843	-0.464	0.643	-1080.832	667.002
x6	-222.1629	759.915	-0.292	0.770	-1711.708	1267.382
x 7	-1308.3213	458.856	-2.851	0.004	-2207.746	-408.896
Omnibus:	========	======== 27879.	940 Durbin	======= -Watson:	=======	2.001
Prob(Omn	ibus):	0.	000 Jarque	-Bera (JB)): 4:	37401217.718
Skew:	,	18.	534 Prob(J	B):	-	0.00
Kurtosis	•	901.	•	•		51.2

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [38]: #display graph to show predicted values and true values
    # We are making predictions here

y_preds2 = results_test2.predict(X_test_sm2)
plt.figure(figsize=(10,6))
plt.scatter(y_test2, y_preds2)
plt.plot(y_test2, y_test2, color="red")
plt.xlabel("true values")
plt.ylabel("predicted values")
plt.title("Total KWH/THERMS consumption: true and predicted values")
plt.show()

print("Mean squared error of the prediction is: {}".format(mse(y_test2, y_preds2)))
```


Mean squared error of the prediction is: 2710135081.5501847

6- Random Forest

With Random Forest, there will be 3 random forest model with different parameters to show which one results with the best accuracy score.

6.1 Tests

1st RF

TARGET 1: (TOTAL KWH)

```
In [39]: #random forest regression model
         #number of leaf (levels) = 2
         #random state set at 0 to get the same random picking consistent
         from sklearn.ensemble import RandomForestRegressor
         regr = RandomForestRegressor(max_depth=2, random_state=0)
         regr.fit(X_train, y_train)
Out[39]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                               max depth=2, max features='auto', max leaf nodes=None,
                               max_samples=None, min_impurity_decrease=0.0,
                               min_impurity_split=None, min_samples leaf=1,
                               min samples split=2, min weight fraction leaf=0.0,
                               n estimators=100, n jobs=None, oob score=False,
                               random state=0, verbose=0, warm start=False)
In [40]: #accuracy 1st target
         regr.score(X test, y test)
Out[40]: 0.4261795586272281
```

TARGET 2: (TOTAL THERMS)

```
In [41]: | #random forest regression model
         #number of leaf (levels) = 2
         #random state set at 0 to get the same random picking consistent
         from sklearn.ensemble import RandomForestRegressor
         regr = RandomForestRegressor(max_depth=2, random_state=0)
         regr.fit(X_train2, y_train2)
Out[41]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                               max_depth=2, max_features='auto', max_leaf_nodes=None,
                               max samples=None, min impurity decrease=0.0,
                               min impurity split=None, min samples leaf=1,
                               min_samples_split=2, min_weight_fraction_leaf=0.0,
                               n_estimators=100, n_jobs=None, oob_score=False,
                               random state=0, verbose=0, warm start=False)
In [42]: #accuracy TARGET 2
         regr.score(X test2, y test2)
Out[42]: 0.6593803824063855
```

2nd RF

TARGET 1: (TOTAL KWH)

```
In [43]: #random forest regression model
         #n estimator = 5 how many trees
         #random state set at 0 to get the same random picking consistent
         from sklearn.ensemble import RandomForestRegressor
         regr = RandomForestRegressor(max depth=5, random state=0, n estimators= 2)
         regr.fit(X train, y train)
Out[43]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                               max depth=5, max features='auto', max leaf nodes=None,
                               max samples=None, min impurity decrease=0.0,
                               min impurity split=None, min samples leaf=1,
                               min samples split=2, min weight fraction leaf=0.0,
                               n estimators=2, n jobs=None, oob score=False,
                               random state=0, verbose=0, warm start=False)
In [44]: #accuracy
         regr.score(X_test, y_test)
Out[44]: -1.876942634004389
In [45]: #TARGET 2
         #random forest regression model
         #number of leaf (levels) = 5
         #random state set at 0 to get the same random picking consistent
         from sklearn.ensemble import RandomForestRegressor
         regr = RandomForestRegressor(max_depth=5, random_state=0)
         regr.fit(X_train2, y_train2)
Out[45]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                               max depth=5, max features='auto', max leaf nodes=None,
                               max samples=None, min impurity decrease=0.0,
                               min impurity split=None, min samples leaf=1,
                               min samples split=2, min weight fraction leaf=0.0,
                               n estimators=100, n jobs=None, oob score=False,
                               random state=0, verbose=0, warm start=False)
```

```
In [46]: #accuracy
regr.score(X_test2, y_test2)
Out[46]: 0.7127274640919277
```

Since this random forest was the one that gave us the best result, lest test the cross validation score

```
In [47]: # CV FOR TARGET 1: TOTAL KWH
         from sklearn.model_selection import cross_val_score
         cross_val= cross_val_score(regr, X, Y, cv=10)
         print(cross val)
         print ('cv score mean:{}'.format(np.mean(cross_val)))
         [ 0.41633997 -2.12415902  0.58201797  0.75473265  0.22096259  0.71850575
           0.51098585 0.38120564 0.81510389 0.090949321
         cv_score mean:0.2366644609358583
In [48]: # CV FOR TARGET 2: TOTAL THERMS
         from sklearn.model selection import cross val score
         cross val2= cross val score(regr, X2, Y2, cv=10)
         print(cross_val2)
         print ('cv_score mean:{}'.format(np.mean(cross_val2)))
         [ 0.17859304 \ 0.65721866 \ 0.77484326 \ 0.87005857 \ 0.38978478 \ -0.16561426 
           0.36128666 0.52461839 0.73845082 0.789286791
         cv score mean: 0.5118526702056964
```

Cross validation scores, are very low. Not very good prediction of the targets.

3rd RF

TARGET 1: (TOTAL KWH)

```
In [49]: #random forest regression model
         #number of leaf (levels)= 10
         #random state set at 0 to get the same random picking consistent
         from sklearn.ensemble import RandomForestRegressor
         regr = RandomForestRegressor(max depth=10, random state=0)
         regr.fit(X train, y train)
Out[49]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                               max depth=10, max features='auto', max leaf nodes=None,
                               max samples=None, min impurity decrease=0.0,
                               min impurity split=None, min samples leaf=1,
                               min samples split=2, min weight fraction leaf=0.0,
                               n estimators=100, n jobs=None, oob score=False,
                               random state=0, verbose=0, warm start=False)
In [50]: #accuracy
         regr.score(X_test, y_test)
Out[50]: 0.5332547368915355
```

TARGET 2: (TOTAL THERMS)

```
In [52]: #accuracy
    regr.score(X_test2, y_test2)
Out[52]: 0.6700268740235923
```

6.2 Importance of Variable

```
In [53]: #counting how many times a feature is used over the course of many decision trees.
    feature_importance = regr.feature_importances_
    plt.figure(figsize=(15,8))
    # Make importances relative to max importance.
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5
    plt.subplot(1, 2, 2)
    plt.barh(pos, feature_importance[sorted_idx], align='center')
    plt.yticks(pos, X.columns[sorted_idx])
    plt.xlabel('Relative Importance')
    plt.title('Variable Importance')
    plt.tight_layout()
    plt.show()
```


KWH total Sqft is the varible with the most importance. Is used over the course of many decision trees

```
In [54]: #counting how many times a feature is used over the course of many decision trees.
    feature_importance = regr.feature_importances_
    plt.figure(figsize=(15,8))
    # Make importances relative to max importance.
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5
    plt.subplot(1, 2, 2)
    plt.barh(pos, feature_importance[sorted_idx], align='center')
    plt.yticks(pos, X2.columns[sorted_idx])
    plt.xlabel('Relative Importance')
    plt.title('Variable Importance')
    plt.tight_layout()
    plt.show()
```


6 -Conclusion

Models:

- In this capstone two regression models were used to show how well each perform in predicting the target. The first model was the Regression Model OLS (Ordinary least squares) and the second model was the Random Forest Regression.
- The model prediction scores where very low, but out of both model i will go with the OLS regression model. It had the best scores. From the graph many graphs were not predicted and way off the line. Also, the Mean Squared error was very high, which shows the model does not predict very well the targets. Target 1, Total KWH, was predicted the best out of the two. This could mean there were higher consumption of KWH, and therefore the predictions were higher.

What is it useful for:

The model can show the prediction of what type of building will use what amount of energy/gas consumption based on SQFT, units, population, average housesize, and along with other features. It can help people who are looking into spending less energy/gas as much as possible, or what will be there average consumption base on what they have or are planning to have.

