Segment 2: Randomized Studies

Section 02: Randomization-Based Inference

Randomization-Based Inference

For *population-level* inference we think of a sampling distribution dictated by:

- Randomly sampling units from a population
- ► Randomly assigning **Z** in accordance with the assignment mechanism

For sample-level inference

- We are interested in inferring something about potential outcomes/causal effects in a given sample
 - ightharpoonup (e.g, au_{SATE})
- We are not focused on repeated samples from a population
 - ► So what is random? Where does variability in a given estimate come from?
- ► View **Z** as the random quantity
- ► Envision re-randomization of the sample units in accordance with the assignment mechanism

Randomization-Based Inference

When estimating a sample average causal effect (τ_{SATE}):

- $ightharpoonup X, Y^c, Y^t$ in the sample are regarded as *fixed*
- ▶ **Z** is random
- "Sampling" different values of Z for this sample generates variability
 - ► From the assignment mechanism
 - ▶ Every value of **Z** gives different set of *observed* outcomes
- ► Will dictate a *randomization distribution* that plays a role analogous to a *sampling distribution*
- Will develop some intuition of how study design can dictate uncertainty of (causal) estimates

Randomization-Based Inference

Unbiasedness Under Completely Randomized Designs

Assignment mechanism:

$$Pr(\mathbf{Z}|\mathbf{X}, \mathbf{Y}^c, \mathbf{Y}^t) = \binom{n}{n_t}^{-1} \text{ if } \sum_{i=1}^n = n_t$$

and 0 otherwise, where n is the number of units in the sample and n_t is the desired number to receive the treatment

An example of an *ignorable* or *unconfounded* treatment design:

$$Z \perp \!\!\! \perp Y^t, Y^c$$

Observed-data comparison $\hat{\tau} = \frac{1}{n_t} \sum Y_i - \frac{1}{n_c} \sum Y_i$, is unbiased for τ_{PATE} and τ_{SATE}

How Design can Dictate Uncertainty

The rationale of randomization for unbiasedness is clear, but what about uncertainty?

- Unbiasedness tells us we should get the "right" answer on average
- ▶ Does not guarantee the estimate for any particular random assignment will be close to the truth
 - Could be "unlucky" and get poor balance
 - Particularly with small samples
- More "unlucky" randomizations ⇒ more variability in estimates across Z ⇒ more uncertainty
- ▶ Reducing the chances of "unlucky" randomizations → decrease the variance of effect estimates
- ► The comparison between Bernoulli randomization and the Completely Randomized Design is one example

Fisher's Randomization Inference

- ► RA Fisher was the first to graps the importance of randomization for assessing causal effects (1920s)
- ▶ Basic idea is to make inference based solely on the assignment mechanism
 - No modeling assumptions for the potential outcomes
 - ► Truly nonparametric
 - The assignment mechanism completely determines the randomization distribution of any specified test statistic
- Fisher focused on settings where
 - ► The assignment mechanism is **known**
 - Interest lies in a sharp null hypothesis of no causal effect whatsoever
 - Distinct from being interested in a "typical" or "average" causal effect

Pieces of Fisher's Exact Method

- ► A *known* randomized assignment mechanism
- Observed data Z, X, Y^{obs}
- ► A test statistic, T
 - A function of observed data (Y^{obs}, \mathbf{X}) and the (stochastic) assignment vector (\mathbf{Z})
- ► A sharp null hypothesis
 - A null hypothesis that is sufficiently specific to "fill in" a hypothetical value for each unit's missing potential outcome
- The randomization distribution
 - Distribution of possible values of the test statistic under all possible assignments according to the assignment mechanism, assuming the null hypothesis is true
- ► A p-value under the randomization distribution given the sharp null hypothesis
 - Probability of observing a value of the test statistic at least as extreme under the null hypothesis

Implementing a Fisher's Exact Test

of the sharp null hypothesis

- Decide on a test statistic, T
- Specify the sharp null hypothesis of no causal effect whatsoever
 - $ightharpoonup H_0: Y_i^0 = Y_i^1 \quad \forall i$
 - Stronger than a hypothesis about the average causal effect
 - Unobserved potential outcome is implied for every unit under the sharp null: $Y_i^{miss} = Y_i^{obs}$
- ightharpoonup Calculate the test statistic in the observed data, T^{obs}
- "Re-randomize" units from the assignment mechanism
 - ightharpoonup Calculate T^{sim} for each simulation from the assignment mechanism, ${f Z}^{sim}$
- ightharpoonup Compare T^{obs} to the distribution of T^{sim}
 - ▶ Calculate the exact p-value: $Pr(|T| > T^{obs})$
 - ▶ If T^{obs} looks very different than most of T^{sim} , \Rightarrow reject H_0

Fisher's Exact Test: Toy Example

Observed Data, Completely Randomized Experiment

Unit	Z	Y^{0}	Y^{\perp}
1	0	66	?
2	0	0	?
3	0	0	?
4	1	?	0
5	1	?	607
6	1	?	436

Fisher's Exact Test: Toy Example

Observed Data, Completely Randomized Experiment

Unit	Z	Y^0	Y^1	
1	0	66	?	
2	0	0	?	
3	0	0	?	
4	1	?	0	
5	1	?	607	
6	1	?	436	

▶ Test statistic, $T = T(\mathbf{Z}, Y^{obs})$:

$$\sum_{i} Z_i Y_i^{obs} / n_t - \sum_{i} (1 - Z_i) Y_i^{obs} / n_c$$

$$T^{obs} = 325.6$$

Fisher's Exact Test: Toy Example

One "Re-Randomization", Completely Randomized Experiment

Unit	Z^{sim}	Y^0	Y^1
1	0	66	?
2	0	0	?
3	1	0	?
4	1	?	0
5	0	?	607
6	1	?	436

$$ightharpoonup H_0: Y_i^0 = Y_i^1 \text{ for } i = 1, 2, \dots, 6$$

- Simulate Z from the randomization distribution
- "Fill in" potential outcomes under the null hypothesis
- $\blacktriangleright \ \ \mathsf{Recalculate} \ T = T(\mathbf{Z}, Y^{obs})$
- $T^{sim} = -79.0$

Basis of test: Where does T^{obs} fall in the distribution of would-be values of T^{sim} under every possible assignment to ${\bf Z}$, assuming that H_0 is true?

The Randomization Distribution

Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	T
0	0	0	1	1	1	325.6
0	0	1	0	1	1	325.6
0	0	1	1	0	1	-79.0
0	0	1	1	1	0	35.0
0	1	0	0	1	1	325.6
0	1	0	1	0	1	-79.0
0	1	0	1	1	0	35.0
0	1	1	0	0	1	-79.0
0	1	1	0	1	0	35.0
0	1	1	1	0	0	-369.6
1	0	0	0	1	1	369.6
1	0	0	1	0	1	-35.0
1	0	0	1	1	0	79.0
1	0	1	0	0	1	-35.0
1	0	1	0	1	0	79.0
1	0	1	1	0	0	-325.6
1	1	0	0	0	1	-35.0
1	1	0	0	1	0	79.0
1	1	0	1	0	0	-325.6
1	1	1	0	0	0	-325.6

Test Result

- ► How likely (under the randomization distribution) are we to have observed a value of the test statistic at least as large as T^{obs}?
- **Exact p-value**: $Pr(|T| \ge T^{obs}) = 8/20 = 0.40$ for the sharp null
- Under the sharp null of absolutely no effect, the observed difference could be due to chance

Comments and Extensions

- ightharpoonup With large n, impossible to enumerate all possible \mathbf{Z}^{sim}
 - lacktriangle Simulate a (large) random sample of ${f Z}^{sim}$ instead
- Extensions to other randomization schemes straightforward
 - If we know the **assignment mechanism** we can always simulate \mathbf{Z}^{sim} from it
- Nonzero null: $H_0: Y_i^1 Y_i^0 = \tau$
 - Equivalently, $H_0: Y^1 = Y^0 + \tau$
- Fisher interval estimates
 - lacktriangle Calculate Fisher p-value under a range of possible au
 - The uncertainty interval for τ will be all values for which we fail to reject $H_0: Y^0 = Y^1 + \tau$
- Choice of test statistics
 - Many options, context/problem dependent