Aarush Goradia

aarush.goradia@princeton.edu | 609-255-3181 | aarushgoradia.com

EDUCATION

May 2027 **Princeton University**

B.S.E. in Electrical and Computer Engineering, Minor in Computer Science & English

Cumulative GPA: 3.69

Relevant Coursework: Contemporary Logic Design, Programming Systems, Data Structures and Algorithms, Advanced Circuit Design, Computer Architecture, Machine Learning, Probability and Stochastic Systems

HARDWARE EXPERIENCE

Technology Development Intern, Advanced Micro Foundry, Singapore

June 2025 - Present

- Developed a Python & C++ based program to automate preliminary checks on GDS files for fabrication requirements, transforming a previously manual process and reducing review time from hours to minutes.
- Rewrote core GDS analysis routines in C++ to reduce execution time by 15–20× over prior Python implementations.
- Built interactive wafer optimization scripts in Python using Jupyter to maximize die count based on configurable parameters.
- Integrated automated DRC and validation routines into tape-out workflows, collaborating closely with engineers.

Head of Embedded Systems, Princeton Rover Team, Princeton, NJ

September 2024 – Present

- Design, prototype, and build a Mars rover to compete in the University Rover Challenge 2025.
- Programmed the 915 MHz and 2.4 GHz communications systems between the base station and the rover.
- Designed power delivery and peripheral electronics PCB for Rover functioning using KiCAD.

Independent Researcher, Sengupta Lab, Princeton, NJ

August 2024 – May 2025

- Scripted (Python) & simulated transformer layouts in Cadence Virtuoso to create a synthetic geometry-performance dataset.
- Trained a 3-layer 32-neuron multi-layer perceptron neural network using Python to predict transformer geometry from lumped parameters with 90% accuracy.
- Wrote a Python algorithm to automate cascaded transformer-based low-noise amplifiers using the model's predictions.
- Authored two research papers detailing transformer layout simulation, model training pipeline, and LNA synthesis automation; each received an A from faculty reviewers.

PUnC (Princeton University Computer)

November 2024 - December 2024

- Designed a custom 16-instruction processor using FSM-based control and datapath logic.
- Wrote and simulated Verilog modules using AMD Vivado and deployed to an FPGA board for functional testing.
- Currently developing an extended RISC-V version with support for pipelining and branch prediction.

SOFTWARE EXPERIENCE

FixedPointDSP July 2025

- Built a header-only fixed-point C++ library with customizable overflow policies using modern type-safe design.
- Implemented FIR filters, dynamic coefficient generation, DFT, FFT, and convolution support.
- Achieved 100% test coverage with GoogleTest; benchmarked FFT with GoogleBenchmark to confirm O(n log n) complexity.

AI Engineering Intern, AI Seer, Singapore

May 2024 - July 2024

- Built a LangChain Agent process (Python) with custom tools to fact check which increased accuracy from 85% to 92%.
- Built a live-stream transcription system with real-time speaker diarization and punctuation, using whisper in Python.
- Presented the web app to Singapore's Senior Minister of State for Communications and Information.
- Filed patent for the fact checking process: U.S. Patent Application No.: 19/011,265.

SKILLS

Programming Languages: Advanced in Python, Java; Intermediate in C, C++, Verilog, Linux CLI; Basic in ARM Assembly

Design Software: KiCAD, AMD Vivado, NX Siemens, Cadence Virtuoso, Cadence EMX, KLayout Hardware Skills: PC Building, Embedded Systems Prototyping (Arduino, Microcontrollers)

Languages: English (Native), Chinese (Fluent), Hindi (Intermediate), Gujarati (Speaking Fluency)