

Deep Neural Networks

Deep L-layer Neural network

What is a deep neural network?

logistic regression

Deep neural network notation 4 layer NN x_2 x_3 X = 0[0] 1 = 4 (#layers) N = 5, N [2] = 5, N [3] = 3, N [4] = N[1] = 1 ncaz = tunts in lover & a [e] = autinotions in leger 1 nto] = nx = 3

Andrew Ng Andrew Ng

Deep Neural Networks

Forward Propagation in a Deep Network

Forward propagation in a deep network

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer l

Backward propagation for layer l

Summary

Andrew Ng

Deep Neural Networks

Getting your matrix dimensions right

Parameters $W^{[l]}$ and $b^{[l]}$

Andrew Ng

Vectorized implementation

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer l

Backward propagation for layer l

 \rightarrow Input $da^{[l]}$

$$\rightarrow$$
 Output $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

Andrew Ng

Summary

Deep Neural Networks

Parameters vs Hyperparameters

What are hyperparameters?

Parameters: $W^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$... Hyperparameters: hearn'y rate of # hidden layer L

hidden with N [12] Choice of autivortion fourtion dot: Monatur, min-Loth vize, regularjohns...

Applied deep learning is a very empirical process

Deep Neural Networks

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$

