(19)日本国特許庁 (JP)

(51) Int.CL6

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平9-209092 (43)公開日 平成9年(1997) 8月12日

埼玉県大宮市北袋町1-297 三菱マテリ アル株式会社総合研究所内 (74)代理人 弁理士 富田 和夫 (外1名)

技術表示簡所

最終頁に続く

C 2 2 C		302	C 2 2 C 38/00 3 0 2 Z	
	38/54		38/54	
F 0 2 B	19/08		F 0 2 B 19/08 K	
	19/16		19/16 C	
			審査請求 有 請求項の数8 FI	(全 18 頁)
(21)出願番	₹	特願平8-37306	(71)出額人 000006264 三菱マテリアル株式会社	
(22)出顧日		平成8年(1996)1月31日	東京都千代田区大手町1丁目	15张1县
(22) [[] [[] []		十成8年(1990)1月31日		101817
			,	
			三菱自動車工業株式会社	
			東京都港区芝五丁目33番8月	ļ.
			(72)発明者 松井 孝憲	
			埼玉県大宮市北袋町1-297	三菱マテリ
			アル株式会社総合研究所内	
			(72)発明者 三橋 章	

FΙ

(54) 【発明の名称】 ディーゼルエンジン用副燃焼室口金

識別記号

(57)【要約】

【課題】 高温強度、耐熱疲労特性および耐高温変形特性に優れたディーゼルエンジン用副燃焼室口金を提供す

(解決手段) Cr:15~27%、Ni:1~8%、Mn:0.1~2.0%、Nb:0.1~2.0%、Ni:0.1~2.0%、Nb:0.3~2.5%、W:0.1~2.5%、Zr:0.06~0.2%、Nb:0.02~0.1%、C:0.06~0.2%、N:0.01~0.1%、C:0.06~0.2%、N:0.01~0.15%を含有し、必要に応じて下記の(a)~(c)の内の少なくとも1権を含有し、残部がFeおよび不可避不納物からなる根成、ただし、(a)Ta、Ti、Vの内の1種または2種以上:0.01~2.0%、(b)Mo、Co、Cuの内の1種または2種以上:0.01~2.0%、(b)Mo、Co、Cuの内の1種または2種以上:0.01~2.0%は30%(c)Ali = 1.00%、(c)Ali = 0.00%、(c)Ali = 0.00% (c)Ali = 0.

【特許請求の範囲】

 $Cr:15\sim27\%$ $Mn: 0. 1\sim 2. 0\%$ $Nb:0.3\sim2.5\%$

 $Zr:0.002\sim0.1\%$ C: 0. 06~0. 2%.

を含有し、残部がFeおよび不可避不純物からなる組 成、並びに体積%でフェライト相:20~80%、炭窒 化物相: 0. 3~7%、残部: オーステナイト相からな※

1

 $Cr:15\sim2.7\%$

 $Mn: 0.1 \sim 2.0\%$ Nb:0.3~2.5%,

 $Zr:0.002\sim0.1\%$

 $C:0.06\sim0.2\%$ を含有し、さらに、

Ta、Ti、Vの内の1種または2種以上: 0.01~ 2.0%、を含有し、残部がFeおよび不可避不純物か

らなる組成、並びに体積%でフェライト相:20~80★ $Cr:15\sim2.7\%$

 $Mn: 0. 1\sim 2. 0\%$ Nb: 0. 3~2. 5%

 $Zr:0.002\sim0.1\%$

C: 0. 06~0. 2%

を含有し、さらに、 Mo、Co、Cuの内の1種または2種以上: 0. 01 ~ 2. 0%、を含有し、残部が Fe および不可避不純物 からなる組成、並びに体積%でフェライト相:20~8 0%、炭窒化物相: 0. 3~7%、残部:オーステナイ☆

> $Cr:15\sim27\%$ $Mn: 0. 1\sim 2. 0\%$

Nb: 0. 3~2. 5% Zr: 0.002~0.1%,

C: 0. 06~0. 2%

を含有し、さらに、

A 1:0.01~2.0%およびYを含む希土類元素 (以下、Rと記す。):0.001~0.05%の内の 少なくとも1種、を含有し、残部がFeおよび不可避不 純物からなる組成、並びに体積%でフェライト相:20◆

Cr:15~27%

 $Mn: 0. 1\sim 2. 0\%$

Nb: 0. 3~2. 5%

 $Zr:0.002\sim0.1\%$ $C:0.06\sim0.2\%$

を含有し、さらに、

Ta、Ti、Vの内の1種または2種以上: 0. 01~ 2. 0%、を含有し、さらに、

Mo、Co、Cuの内の1種または2種以上: 0. 01 ~2.0%、を含有し、残部がFeおよび不可避不純物 からなる組成、並びに体積%でフェライト相:20~8*

 $Cr:15\sim27\%$

* *【請求項1】 重量%で、

 $Si:0.1\sim2.0\%$

Ni:1~8% $W: 0, 1\sim 2, 5\%$

 $B: 0.002 \sim 0.1\%$

 $N: 0.01 \sim 0.15\%$

※る3相組織を有する耐熱ステンレス鋼で構成されている ことを特徴とするディーゼルエンジン用副燃焼室口金。 【請求項2】 重量%で、

Ni:1~8%

Si: 0. 1~2. 0%

 $W: 0. 1 \sim 2. 5\%$

 $B:0.002\sim0.1\%$

 $N: 0, 01 \sim 0, 15\%$

★%、炭窒化物相:0.3~7%、残部:オーステナイト 相からなる3相組織を有する耐熱ステンレス鋼からなる ことを特徴とするディーゼルエンジン用副燃焼室口金。 【請求項3】 重量%で、

Ni:1~8%

Si: 0. 1~2. 0%,

 $W: 0, 1\sim 2, 5\%$

 $B:0.002\sim0.1\%$

 $N: 0.01 \sim 0.15\%$

☆ ト相からなる3相組織を有する耐熱ステンレス細からな ることを特徴とするディーゼルエンジン用副燃焼室口 金。

【請求項4】 重量%で、

Ni:1~8%、

Si:0.1~2.0%,

W: 0. 1~2. 5%

 $B: 0.002 \sim 0.1\%$

 $N: 0.01 \sim 0.15\%$

◆~80%、炭窒化物相:0.3~7%、残部:オーステ ナイト相からなる3相組織を有する耐熱ステンレス鋼か

らなることを特徴とするディーゼルエンジン用副燃焼室 口金。

【請求項5】 重量%で、

Ni:1~8%

 $Si:0.1\sim2.0\%$ W: 0. 1~2. 5%

 $B:0.002\sim0.1\%$

 $N: 0.01 \sim 0.15\%$

* 0%、炭窒化物相: 0. 3~7%、残部: オーステナイ ト相からなる3相組織を有する耐熱ステンレス鋼からな ることを特徴とするディーゼルエンジン用副燃焼室口

【請求項6】 重量%で、

 $Ni: 1 \sim 8\%$

3 $Mn: 0. 1\sim 2. 0\%$ $Nb:0.3\sim2.5\%$ $Zr:0.002\sim0.1\%$ $C:0.06\sim0.2\%$

を含有し、さらに、

Ta、Ti、Vの内の1種または2種以上: 0.01~ 2. 0%、を含有し、さらに、

Al:0.01~2.0%およびR:0.001~0. 05%の内の少なくとも1種、を含有し、残部がFeお

よび不可避不純物からなる組成、並びに体積%でフェラ*10

Cr:15~27%、 $Mn: 0. 1\sim 2. 0\%$ Nb: 0. 3~2. 5%

 $Zr:0.002\sim0.1\%$ C: 0. 06~0. 2%

を含有し、さらに、

Mo、Co、Cuの内の1種または2種以上: 0. 01 ~2.0%、を含有し、さらに、

A1:0.01~2.0%およびR:0.001~0. 05%の内の少なくとも1種、を含有し、残部がFeお 20 【請求項8】 重量%で、 よび不可避不純物からなる組成、並びに体積%でフェラ※

 $Cr:15\sim27\%$

 $Mn: 0, 1\sim 2, 0\%$ $Nb:0.3\sim2.5\%$

 $Zr:0.002\sim0.1\%$ C:0.06~0.2%

を含有し、さらに、

Ta、Ti、Vの内の1種または2種以上: 0. 01~ 2. 0%、を含有し、さらに、

~2.0%、を含有し、さらに、 Al: 0.01~2.0%およびR: 0.001~0. 05%の内の少なくとも1種、を含有し、残部がFeお

よび不可避不純物からなる組成、並びに体積%でフェラ イト相:20~80%、炭窒化物相:0,3~7%、残 部:オーステナイト相からなる3相組織を有する耐熱ス テンレス鋼からなることを特徴とするディーゼルエンジ ン用副燃焼室口金。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、高温強度、耐熱 疲労特性および耐高温変形特性に優れたディーゼルエン ジン用副燃焼室口金に関するものである。

[0002]

【従来の技術】一般に、ディーゼルエンジンの副燃焼室 には図1の一部断面図に示されるように口金1が設けら れており、この口金1は高温強度、耐熱疲労特性および 耐高温変形特性が要求されている。図1において、2は インジェクションノズル、3はグロープラグ、4はシリ $Si: 0. 1 \sim 2. 0\%$ $W: 0, 1\sim 2, 5\%$

 $B:0.002\sim0.1\%$ $N: 0.01 \sim 0.15\%$

*イト相:20~80%、炭窒化物相:0.3~7%、残 部:オーステナイト相からなる3相組織を有する耐熱ス テンレス鋼からなることを特徴とするディーゼルエンジ ン用副燃焼室口金。

【請求項7】 重量%で、

Ni:1~8%

 $Si: 0. 1 \sim 2. 0\%$

W: 0. 1~2. 5%

 $B: 0.002 \sim 0.1\%$

 $N: 0. 01 \sim 0. 15\%$

※イト相:20~80%、炭窒化物相:0.3~7%、残 部:オーステナイト相からなる3相組織を有する耐熱ス テンレス鋼からなることを特徴とするディーゼルエンジ ン用副燃焼室口金。

 $Ni: 1 \sim 8\%$

Si: 0. 1~2. 0%

 $W: 0, 1\sim 2, 5\%$ $B: 0.002 \sim 0.1\%$

 $N: 0.01 \sim 0.15\%$ エンジンの副燃焼室口金として、重量%で、Cr:16 ~20%, Mn: 0. 1~2. 0%, Si: 0. 1~ 2. 0%、Mo:1. 1~2. 4%、Nb:0. 3~ Mo、Co、Cuの内の1種または2種以上: 0. 01 30 2. 1%、Ta: 0. 1~2. 2%、Co: 0. 2~ 2. 5%, C: 0. 1~0. 2%, N: 0. 05~0. 15%を含有し、さらに、必要に応じて、Ni:0.2 ~2. 5%、W: 0. 2~2. 5%を含有し、残部がF eおよび不可避不練物からなる組成を有するFe-Cr 系合金鋳物で構成されたディーゼルエンジン用副燃焼室 口金が知られている(特開平7-228952号公報参 照)。

[0003]

【発明が解決しようとする課題】しかし、ディーゼルエ 40 ンジンの高性能化に伴って副燃焼室に取り付けられる口 金は、なお一層の高温強度、耐熱疲労特性および耐高温 変形特性が要求されれており、従来のF e − C r 系合金 鋳物で構成されたディーゼルエンジン用副燃焼室口金で はかかる要求に十分に対応することができなかった。

[0004]

【課題を解決する手段】そこで本発明者らは、鋭意研究 の結果、従来のFe-Cr系合金に、さらに、Zr: 0.002~0.1%およびB:0.002~0.1% を添加した組成とし、さらにその組成を有するFe-C ンダーブロック、5はピストンを示す。このディーゼル 50 r系合金を溶解後、900~1050°に等温保持の熱

(4)

処理を施すと、体積%でフェライト相:20~80%、 炭窒化物相: 0. 3~7%、残部:オーステナイト相か らなる3相組織となり、この3相組織を有する耐熱ステ ンレス鋼で構成されたディーゼルエンジン用副燃焼室口 金は、従来よりも高温強度、高温耐酸化性および耐熱疲 労特性に優れている、という知見を得たのである。

【0005】この発明は、かかる知見に基づいてなされ たものであって、重量%で、Cr:15~27%、N i:1~8%, Mn:0, 1~2, 0%, Si:0, 1 ~2. 0%, Nb: 0. 3~2. 5%, W: 0. 1~ 2. 5%, Zr: 0. 002~0. 1%, B: 0. 00 2~0. 1%, C:0. 06~0. 2%, N:0. 01 ~0. 15%を含有し、さらに、必要に応じて、

- (a) Ta、Ti、Vの内の1種または2種以上:0. $0.1 \sim 2.0\%$
- (b) Mo、Co、Cuの内の1種または2種以上: 0.01~2.0%
- (c) A1:0.01~2.0%およびR:0.001 ~0.05%の内の少なくとも1種、

部がFeおよび不可避不純物からなる組成、並びに体積 %でフェライト相:20~80%、炭窒化物相:0.3 ~7%、残部:オーステナイト相からなる3相組織を有 する耐熱ステンレス鋼からなるディーゼルエンジン用副 燃焼室口金に特徴を有するものである。

【0006】以下に、この発明の耐熱ステンレス鋼製デ ィーゼルエンジン用副燃焼室口金の合金組成および組織 を前記のごとく限定した理由について詳述する。 A、成分組成

ト相に固溶して耐熱ステンレス鋼からなるディーゼルエ ンジン用副燃焼室口金の高温耐酸化性を著しく向上させ る作用があるが、その含有量が15%未満ではその効果 は少なく、一方、27%を越えて含有すると有害相であ るo相が析出して脆化し、靱性が急激に低下するので好 ましくない。したがって、この発明のディーゼルエンジ ン用副燃焼室口金を作製するための耐熱ステンレス鋼に 含まれるCr含有量は、15~27%と定めた。Cr含 有量の一層好ましい範囲は16~21.5%である。

耐酸化性および靱性を向上させる作用があるが、その含 有量が1.0%未満ではその効果が不十分であり、一 方、8%を越えて含有すると、耐熱疲労特性を確保する ことが困難となるので好ましくない。したがって、この 発明のディーゼルエンジン用副燃焼室口金を作製するた めの耐熱ステンレス鋼に含まれるNi含有量は1.0~ 8%と定めた。Ni含有量の一層好ましい範囲は、2~ 7%である。

【0008】Mn:Mnは、溶解時の脱酸に効果がある 成分であるが、その含有量が 0. 1 %未満では所望の効 50 B含有量を 0. 0 0 2 ~ 0. 1 % に定めた。

果が得られず、一方、2.0%よりも多量に添加し過ぎ ると耐酸化性を阻害する。従って、この発明のディーゼ ルエンジン用副燃焼室口金を構成する耐熱ステンレス鋼 に含まれるMn含有量は0.1~2.0%に定めた。M n含有量の一層好ましい範囲は、0.3~1.5%であ

【0009】Si:Siは、溶解時の脱酸作用を有する と共に鋳造性を上昇させる作用があるが、その含有量が 0. 1%未満では不十分であり、一方、2. 0%を越え 10 て添加し過ぎると有害相の析出による耐酸化性を阻害す る。したがって、この発明のディーゼルエンジン用副燃 焼室口金を構成する耐熱ステンレス鋼に含まれるSi含 有量は、0,1~2,0%に定めた。Si含有量の一層 好ましい範囲は、0.3~1.5%である。

【0010】Nb: Nbは、主にM(CN)型の炭窒化 物を形成し、さらに素地に固溶して高温強度および耐熱 疲労特性を増加する作用があるが、その量は0.3%未 満ではその効果が不十分であり、一方、2.5%を越え て多量に添加し過ぎると炭窒化物形成と素地への固溶を 前記(a) \sim (c)の内の少なくとも1種を含有し、残 20 越えた量は有害相の析出につながり、靱性を阻害するた めに好ましくない。したがって、この発明のディーゼル エンジン用副燃焼室口金を構成する耐熱ステンレス鋼に 含まれるNb含有量は0.3~2.5%と定めた。Nb 含有量の一層好ましい範囲は、1. 1~2. 0%であ

【0011】W:Wは、素地に固溶して高温強度、耐熱 疲労特性および耐高温変形特性を増加するとともにσ相 の析出を抑制する作用があるが、その含有量が 0.1% 未満では所望の効果が得られず、一方、2.5%を越え Cr: Cr成分には、オーステナイト相およびフェライ 30 て含有させると靱性および延性を著しく劣化させるので 好ましくない。したがって、この発明のディーゼルエン ジン用副燃焼室口金を構成する耐熱ステンレス鋼に含ま れるW含有量を0.1~2.5%に定めた。

【0012】Zr:Zrは、粒界を強化すると共に炭窒 化物を微細化して高温強度、耐熱疲労特性および耐高温 変形特性を向上させる作用があるが、その含有量が 0. 002%未満では所望の効果が得られず、一方、0.1 %を越えて含有させると有害相が析出し、靱件および延 性を著しく劣化させるので好ましくない。したがって、 【0007】Ni:Ni成分は、Crとの共存下で高温 40 この発明のディーゼルエンジン用副燃焼室口金を構成す

る耐熱ステンレス鋼に含まれるZr含有量を0.002 ~0.1%に定めた。

【0013】B:Bは、結晶粒界を強化し、高温強度を 向上させると共に、炭化物を微細化して靱件を向上させ る作用があるが、その含有量が0.002%未満では所 望も効果が得られず、一方、0.1%を越えて含有させ ると有害相が析出し、靱性および高温強度が低下するの で好ましくない。従って、この発明のヂーゼルエンジン 用副燃焼室口金を構成する耐熱ステンレス鋼に含まれる

【0014】C:Cは、Nbとともに炭窒化物を形成し て高温強度、高温耐酸化性および耐熱疲労特性を向上さ せる作用があるが、その含有量が0.06%未満添加し ても、所望の効果が得られず、一方、0.2%をを越えて 添加し過ぎると炭窒化物が過剰となり、靱性が低下する ので好ましくない。したがって、この発明のディーゼル エンジン用副燃焼室口金を構成する耐熱ステンレス鋼に 含まれるCは0.06~0.2%に定めた。C含有量の 一層好ましい範囲は0.07~0.16%である。

[0015] N

Nは、C共存下において主にNbと炭窒化物を形成する とともに、素地(主にオーステナイト相)に固溶して高 温強度、耐熱疲労特性および耐高温変形特性を向上させ る作用があるが、その含有量が 0.01%未満では所望 の効果が得られず、一方、0.15%よりも多量に添加 し過ぎると炭窒化物析出が過剰となって靱件を阻害す る。従って、この発明のディーゼルエンジン用副燃焼室 口金を構成する耐熱ステンレス鋼に含まれるN含有量 は、0.01~0.15%に定めた。

【0016】 Ta, Ti, V: これら成分は、炭窒化物 20 を形成するとともに、素地に固溶して高温強度、耐熱疲 労特性および耐高温変形特性を向上させる作用があるの で必要に応じて添加されるが、その含有量が0.01% 未満では所望の効果が得られず、一方、2、0%よりも 多量に添加し過ぎると炭窒化物形成と素地への固溶を越 えた量は有害相の析出につながり、靱件を阻害するため に好ましくない。従って、この発明のディーゼルエンジ ン用副燃焼室口金を構成する耐熱ステンレス鋼に含まれ るTa, Ti, Vの内の1種または2種以上の含有量 の1種または2種以上の含有量の一層好ましい範囲は 0.04~1.5%である。

【0017】Mo. Co. Cu:これら成分は、オース テナイト相およびフェライト相にに固溶して高温強度、 耐熱疲労特性および耐高温変形特性を向上させる作用が あるので必要に応じて添加されるが、その含有量が 0. 01%未満では所望の効果が得られず、一方、2.0% よりも多量に添加し過ぎると有害相の析出により靱件を 阻害するので好ましくない。従って、この発明のディー ゼルエンジン用副燃焼室口金を構成する耐熱ステンレス 40 比較口金という) 1~8 および従来ディーゼルエンジン 鋼に含まれるMo、Co、Cuの内の1種または2種以 上の含有量は、0.01~2.0%に定めた。Mo, C o. C u の内の1 種または2種以上の含有量の一層好ま しい範囲は0.04~1.5%である。

【0018】A1、R: これら成分は、酸化膜の密着性 を向上させ、高温耐酸化性を向上させる作用があるので

必要に応じて添加されるが、その含有量が A 1:0.0 1%未満、R:0.001%未満では所望の効果が得ら れず、一方、A1:2.0%を越え、R:0.05%を 越えて添加すると観性および延性を阻害するので好まし くない。従って、この発明のディーゼルエンジン用副燃 焼室□金を構成する耐熱ステンレス鋼に含まれる A 1. Rの内の少なくとも1種は、それぞれA1:0.01~ 2.0%(一層好ましくは、0.04~1.5%)、 R: 0. 001~0. 05% (一層好ましくは、0. 0 10 04~0.03%) に定めた。

【0019】B、組織

フェライト相:フェライト相は、熱膨脹係数が小さく耐 熱疲労特性に優れる相であるが、フェライト相が体積% で20%未満存在するようではオーステナイト相が多く なって熱膨脹係数が大きくなり耐熱疲労特性が低くなり 過ぎるので好ましくなく、一方、素地中にフェライト相 が80%を越えて存在すると高温強度が低下するので好 ましくない。したがって、素地中に存在するフェライト 相は体積%で20~80%に定めた。

【0020】炭窒化物相:炭窒化物相が体積%で0.3 %未満存在するようでは高温強度および耐熱疲労特性が 低くなるので好ましくなく、一方、7%を越えて存在す ると延性および靱性が低下するので好ましくない。した がって、オーステナイト相素地およびフェライト相中に 均一分散して存在する炭窒化物相は体積%で0.3~7 %に定めた。

[0021]

【発明の実施の形態】表1~表5に示される成分組成を 有する耐熱ステンレス鋼を大気溶解し、得られた溶湯を は、O. 01~2.0%に定めた。Ta, Ti, Vの内 30 ロストワックス精密鋳造法にて鋳型に鋳込み、上端部外 径:35mm、上端部内径:30mm、高さ:25mm の寸法を有する図1の1で示される形状のディーゼルエ ンジン用副燃焼室口金および平行部直径:6mm、平行 部長さ:30mmの寸法を有する試験片を作製し、これ ら口金および引張り試験片を表6~表10に示される条 件で熱処理し、表1~表5に示される成分組成および表 6~表10に示される組織を有する本発明ディーゼルエ ンジン用副燃焼室口金(以下、本発明口金という) 1~ 42、比較ディーゼルエンジン用副燃焼室口金(以下、

用副燃焼室口金(以下、従来口金という)1~2、並び に前記本発明口金1~42、比較口金1~8および従来 口金1~2と同じ成分組成並びに組織を有する試験片を 作製した。

[0022] 【表1】

ĺ		DI.				眩	9	Ħ	点 (重	融份 (資本	Festo	不可遵不執例〉	
	植別	<i>M</i> 1	Cr	Ni	Mn	8 i	Nb	w	Zr	В	С	N	€ n me
		1	19. 1	3. 53	0. 46	0. 41	1. 13	0. 43	0. 023	0. 021	0. 09	0. 022	-
		2	15. 3	1. 52	0. 48	0. 45	1. 21	0. 38	0.019	0. 024	0. 11	0. 031	-
	*	3	26. 8	4. 04	0. 42	0. 43	1. 11	0. 22	0. 024	0. 022	0. 10	0. 043	-
ı	æ .	4	15. 2	1. 22	0. 41	0. 46	1. 12	0. 33	0.013	0. 028	0. 08	0. 050	-
	96	5	20. 9	7. 75	0.46	0. 49	1. 16	0. 36	0. 018	0. 015	0. 10	0. 036	-
	明	6	21. 2	5. 36	0. 23	0.44	1. 13	0. 39	0. 023	0. 019	0. 11	0. 035	-
	п	7	20. 3	8. 70	1. 90	0. 45	1. 11	D. 34	0. 026	0. 020	0. 09	0.052	-
	ц	8	21. 0	4. 83	0.46	0. 32	1. 14	0. 37	0. 029	0.018	0. 10	0. 021	-
	鱼	9	20.5	6. 29	0. 39	1. 81	1. 13	0. 42	0. 020	0.017	0. 09	0.062	-
		10	21. 5	4. 48	0.48	0. 47	0. 32	1. 40	0. 024	0. 029	0. 07	0.013	-
		11	20. 9	3. 02	0. 52	0. 50	2. 41	0. 16	0.018	0. 025	0. 15	0. 121	-

[0023]

* *【表2】

Γ	11				成	Я	Æ	咸 (熊	%) (慈悲	Festo.	(可養不幹後)	
ľ	65	C r	Ni	Мn	8 i	Nb	₩	2 r	В	c	N	その権
Г	12	20. 8	3. 77	0. 47	0. 48	1. 23	0. 18	0. 012	0. 029	0. 08	0. 040	-
	13	21. 5	5. 18	0.43	0. 54	1, 12	2. 41	0. 017	0. 032	0. 07	0. 021	-
*	14	20. 3	4, 61	0.49	0. 51	1, 17	0. 34	0. 003	0. 025	0. 09	0. 035	~
	15	20. 4	4. 01	0. 54	0. 50	1. 20	0. 31	0. 097	0. 020	0. 11	0. 028	-
7	16	19. 5	4. 23	0. 52	0. 52	1. 13	0. 33	0. 022	0. 002	0. 10	0. 031	-
明	17	20. 6	5. 42	0. 41	0. 56	1. 15	0. 36	0.014	0. 091	0. 08	0. 026	-
	18	20. 9	5. 71	0.46	0. 59	1. 11	0. 30	0. 019	0. 026	0. 07	0. 051	-
ľ	19	21, 2	3. 03	0.48	0. 55	1. 19	0. 35	0. 024	0. 024	0. 18	0. 027	-
2	20	21. 0	5. 27	0. 51	0. 50	1. 17	0. 40	0. 022	0. 030	0. 10	0. 015	-
	21	19. 0	3. 98	0. 53	0. 58	1. 12	0. 29	0. 020	0. 021	0. 08	0.140	-
	22	16. 3	2. 43	0. 47	0. 53	1. 10	0. 35	0. 025	0. 027	0. 09	0. 042	-

[0024]

【表3】

			11									12
	Ħ				成	Я	Æ	成 (重	E%) (56%	Peblo	可遵不转物)	
*	25	Cr	Ni	Mn	\$ i	Nb	w	2 r	В	С	N	その世
	23	21. 2	6. 42	0. 55	C. 49	1. 16	0. 43	0. 029	0. 023	0. 11	0. 022	-
	24	20. 4	2. 33	0. 49	0. 53	1. 13	0. 45	0. 027	0. 019	0. 12	0. 031	-
*	25	21. C	6. 85	0. 45	0. 57	1. 20	0. 39	0. 033	0. 025	0. 10	0. 044	-
R	26	21. 0	4. 51	0. 41	0. 54	1. 12	0. 44	0. 024	0. 031	0. 07	0. 032	-
	27	20. 4	4. 99	0, 46	0. 44	1. 91	0. 38	0. 026	0. 020	0. 08	0. 018	-
明	28	20. 7	4. 05	0. 52	0. 50	1. 11	0. 25	0. 023	0. 017	0. 09	0.045	Ta: 0. 46
0	29	21. 1	3. 70	0. 50	0. 48	1. 17	0. 22	0. 021	0. 021	0. 11	0. 034	Ti: 0. 48
	30	19. 9	5. 92	0. 47	0. 52	1. 14	0. 19	0. 028	0. 024	0. 10	0. 023	V:0. 50
â	31	20. 2	5. 51	0. 52	0. 56	1. 12	0, 24	0. 018	0. 022	0, 08	0. 053	Ta:0. 08, Ti:0. 22
	32	20 0	4 11	0.46	0.54	1 16	0.26	0 020	0 027	0 11	0 035	Ta: 0. 03, Ti: 0. 10

[0025]

							*	* [表4】			
	~				成	H	E	成伍	E%) (5.55	: Feblu	不可能不夠他	
	Ŋ	Cr	Ni	Mn	Si	Nb	W	Zr	В	С	N	その他
	33	19. 8	5. 29	0. 40	0. 51	1. 13	0. 21	0. 014	0. 030	0. 10	0. 020	Mo: 0. 32
	34	20. 3	3. 10	0. 42	0.46	1. 18	0. 23	0. 022	0. 027	0. 12	0. 018	Co:0. 20
*	35	20.6	3. 01	0. 45	0.49	1. 14	0. 17	0. 019	0. 022	0.09	0. 051	Cu: 0. 28
2	36	20. 9	6. 03	0. 52	0. 53	1. 12	0. 19	0.018	0. 020	0. 11	0. 042	Mo: 0. 11, Cu: 0. 18
	37	20. 7	5. 88	0. 51	0. 55	1. 14	0. 16	0. 028	0. 026	0. 10	0. 024	Mo: 0, 04, Co: 0, 30 Cu: 0, 08
-	38	21. 5	3. 94	0. 47	0. 47	1. 20	0. 24	0. 022	0. 021	0. 08	0. 031	A1:0.21
П	39	21. 0	4. 13	0.42	0. 48	1. 17	6. 22	0. 018	0. 025	0.09	0. 037	La:0. 013
4	40	21, 4	4. 25	0. 44	0. 53	1. 19	0. 21	0. 025	0. 029	0. 11	0. 040	Ta: 0. 12, Mo: 0. 13, Al: 0. 06
	41	20. 8	6. 39	0. 50	0. 54	1. 13	0. 16	0, 023	0. 019	0. 10	0. 025	Co:0. 22, Ti:0. 07 Ce:0. 009

【0026】 【表5】

0. 081 Ta:1. 18, Co:1. 58

			13									14
_	_				蚨	Я	Ħ	成 (銀	(66) (施事	Fe 520	下可護不執無)	
Æ	91	Cr	Ni	Ma	Si	Nb	W	Zr	В	С	N	€ o de
本□ 発金 明	42	20. 9	3. 82	0. 55	0. 48	1. 18	0. 18	0. 029	0. 024	0, 08	0. 021	V: 0. 05. Ti: 0. 08. Cu: 0. 04, Co: 0. 11 Al: 0. 06, Y: 0. 012
	1	21. 2	5. 69	0. 52	0.44	0. 71	0. 23	- *	0. 018	0. 07	0.014	-
	2	22. 2	6. 02	0. 48	0. 81	1. 21	0. 45	0. 15 [*]	0. 039	0. 16	0.062	-
壯	3	20.8	7. 17	0. 51	0.48	0. 68	0. 13	0. 017		0. 06	0. 018	-
ĸ	4	22. 0	5. 31	0. 46	0.84	1. 18	1. 23	0. 040	0. 15*	0. 13	0. 090	-
п	5	20. 5	7. 97	0. 52	0.46	0. 18*	0.35	0. 021	0. 024	0. 08	0. 026	-
ŵ	6	21. 4	2, 40	0. 56	0. 52	3. 08*	0. 61	0. 023	0. 019	0, 12	0. 111	-
	7	18. 8	3. 78	0. 49	0. 55	0. 62	0. 23	0. 018	0. 027	0. 02*	0. 012	-
	\vdash	_			_			_		_		

(8)

0. 15

r o	Ω	2	7	٦
LU	v	~	- 1	4

				* *【表	6]				
		無差差	5条件	粗 職 (体積%)					
看	8 1	等是保持温度 (℃)	等温保持時間 (hr)	フェライト相	炭窒化物相	オーステナイト相			
	1	950	2 4	4 8	1. 8	技			
	2	950	2 4	4 0	2. 3	裁			
*	3	950	2 4	78	2. 4	銭			
発	4	950	2 4	4 3	2. 1	莪			
R	5	950	2 4	2 2	2. 2	鷃			
明	6	950	2 4	41	2. 3	夷			
В	7	950	2 4	5 7	2. 5	鴺			
ы	8	950	2 4	46	2. 0	摄			
*	9	950	2 4	2 8	2. 6	换			
	10	950	2 4	5 2	0. 5	燕			
	11	950	2 4	7 0	6. 8	技			

【0028】 【表7】

|--|

	,					
		熟题目	E 条 件		1 4	(体徴%)
種	81	等基保持温度 (♡)	等混保持時間 (hr)	フェライト相	炭浆化物相	オーステナイト相
	12	950	2 4	6 2	1. 7	簽
	13	950	2 4	5 3	1, 4	莪
*	14	1000	18	41	1. 8	线
発	15	1050	1 2	6.8	2. 0	莪
76	16	900	40	40	2. 3	残
明	17	950	2 4	3 6	1. 6	践
,	18	950	2 4	4.5	1. 9	莪
"	19	950	2 4	7 6	3. 4	戎
金	20	950	2 4	4 2	1, 8	燕
	21	950	2 4	3 9	3. 5	残
	2 2	950	2 4	2 3	2. 2	莪

[0029] [表8]

_1	7				E #	(ILBAA)
種	SN	照		フェライト相		(体養%) オーステナイト相
	2 3	950	2 4	6 3	2. 1	疫
	2 4	950	2 4	7 6	2. 5	聂
*	2 5	950	2 4	3 1	2. 3	夷
_	26	950	2 4	5 2	1. 6	賤
発	27	950	2 4	4 0	1. 5	莪
明	28	1000	18	47	2. 2	展
	2 9	1000	18	60	2. 4	残
п	30	1000	18	3 8	2. 0	摄
金	3 1	1000	18	3 6	2. 1	莪
	3 2	1000	18	4 5	2. 3	残

[0030] [表9]

1000

18

3 2

2. 0

19						
		新処理条件		框 織 (体徴%)		
和	SP)	等温保持湿度 (℃)	等温保持時間 (hr)	フェライト相	炭奎化物相	オーステナイト相
	3 4	1000	18	63	2. 1	莪
	3 5	1000	18	75	2. 3	莪
*	3 6	1000	18	3 4	2. 6	莪
発	3 7	1000	18	3 5	2. 0	畏
朝	3 8	1000	18	6 1	1. 8	莪
п	3 9	1000	18	5 2	1. 9	技
÷	40	1000	18	4 2	2. 5	叕
	41	1000	18	3 0	2. 0	莪
	4 2	1000	1 8	5 7	1, 5	銭
比較	1	950	2 4	3 8	1, 4	技
	2	950	2 4	4 2	3. 8	幾

【0031】 【表10】

(12)

熱処理条件 組 繊 (体積光) 雅則 等温保持温度 等温保持時間 フェライト相 炭蜜化物相 オーステナイト相 (2) (hr) 3 950 24 42 2, 0 薎 Ŀ 4 950 24 46 3. 6 薎 18* 5 950 較 24 2, 1 莪 82* U 950 24 3. 9 残 0. 2* 숓 7 950 24 40 軞 8* 8 950 24 7.3 甦 1 琏 3. 8 来 П 2 -푡 3. 6

(*印は、この発明の範囲から外れた値を示す)

【0032】これら本発明口金1~42、比較口金1~ 8 および従来口金1~2並びに試験片を用い、下記のエ ンジンテストを行って耐熱疲労特性および耐高温変形特 性を評価し、さらに900℃で高温引張り試験を行って 30 機試験を行い、試験後に口金を取り出し、口金の底面噴 高温強度を測定し、それらの試験結果を表11~表15 に示した。

21

【0033】エンジンテスト本発明口金1~42、比較 □金1~8および従来□金1~2をそれぞれ排気量:2

500ccのディーゼルエンジンに組み込み、エンジン を回転数: 4000rpmで3分間運転した後、4分間 停止を1サイクルとし、これを5000サイクル行う実 口部における最大割れ長さおよび最大変形量を測定して 耐熱疲労特性を耐熱疲労特性を評価した。

[0034] 【表11】

22

23

種別		エンジ	ンテスト	引張試験
		最大変形量 (nm)	最大割れ長さ (mm)	900℃での引張り強さ (kg/mm²)
	1	0.02	0. 3	19.1
	2	0.03	0. 2	18.9
本	3	0.02	0. 3	19.6
杂	4	0.03	0. 2	18.7
発	5	0.02	0.5	20.0
明	6	0.02	0. 3	19.3
	7	0.02	0. 3	19.4
ы	8	0.02	0. 2	19.2
œ	9	0.01	0.4	19.9
	10	0.02	0. 3	19.3
	11	0.01	0, 5	21.0

【0035】 【表12】

25

權別		エンジンテスト		引要試験
		最大変形量 (mm)	最大割れ長さ (mm)	900℃での引張り強さ (kg/mm ²)
	1 2	0.03	0. 2	19.0
	1 3	0.01	0.5	21, 7
*	14	0.02	0. 3	19, 2
発	1 5	0.02	0. 2	19.3
Æ	16	0.02	0. 1	19.1
明	17	0.02	0. 2	19.2
п	18	0, 02	0. 2	19.1
ш	19	0.02	0.3	19.4
♠	2 0	0.02	0. 2	19.3
	2 1	0.02	0, 3	19.4
	2 2	0.02	0.3	19.5

【0036】 【表13】

27

種別		エンジンテスト		引張試験	
		最大変形量 (mm)	最大割れ長さ (mm)	900℃での引張り強さ (kg/mm ²)	
	2 3	0.01	0. 3	19. 5	
	2 4	0.02	0. 2	19.3	
本	2 5	0.02	0.4	19.5	
発	2 6	0.02	0. 2	19.2	
*	2 7	0.01	0.5	20.1	
明	2 8	0.02	0. 8	19.4	
	2 9	0.01	0. 4	19.8	
1	3 0	0.01	0.3	19.6	
٠	8 1	0.02	0.3	19.4	
	3 2	0.01	0.3	19.5	
	3 3	0.02	0. 2	19.4	

[0037] [表14]

種別		エンジンテスト		引張試験
		最大変形量 (mm)	最大割れ長さ (mm)	900℃での引張り強さ (kg/mm²)
	3 4	0.02	0. 3	19. 2
	3 5	0.02	0, 2	19.2
本	3 6	0.02	0. 4	19.4
発	3 7	0.02	0. 3	19.3
明	3 8	0.02	0. 3	19.2
п	3 9	0.03	0. 2	19.1
愈	4 0	0.01	0. 3	19.5
	4 1	0.02	0.4	19.3
	4 2	0.01	0. 8	19.2
乾較	1	0.22	1. 5	14, 2
全	2	0.01	2. 3	20.0

[0038] [表15]

31 エンジンテスト 引張試験 種別 最大変形量 最大割れ長さ 900℃での引張り強さ (kg/mm²) (m) (mm) 3 0.21 1. 2 13.9 0.02 2. 7 21.0 比 釸 5 0.18 1.6 13.2 0.04 2. 2 6 18.5 金 7 0.25 1. 1 13.3 8 0.01 2.9 22.8 従 1 0.07 1. 3 6.0 来

1, 2

[0039]

【発明の効果】表1~表15に示される結果から、本発 明口金1~42は、従来口金1~2と比べて、高温強 30 【図面の簡単な説明】 度、耐熱疲労特性および耐高温変形特性が優れているこ とがわかる。しかし、この発明の条件から外れている成 分組成を有する比較口金(この発明の条件から外れてい る成分組成に*印を付して示す) 1~8は、高温確度、 耐熱疲労特性および耐高温変形特性のうちのいずれかの 特性が低下することが分かる。

п 2

0.09

【0040】上述のように、この発明の耐熱ステンレス 鋼製ディーゼルエンジン用副燃焼室口金は、高温確度だ けでなく、耐熱疲労特性および耐高温変形特性がともに

優れており、ディーゼルエンジンの性能向上に大いに貢 献し得るものである。

【図1】ディーゼルエンジンの副燃焼室に口金を取り付 けた状態を示す断面説明図である。

【符号の説明】 1 口金

2 インジェクションノズル

6.1

- 3 グロープラグ
- 4 シリンダーブロック
- 5 ピストン

32

フロントページの続き

(72)発明者 脇田 三郎 埼玉県大宮市北袋町1-297 三菱マテリ アル株式会社総合研究所内 (72)発明者 浅野 謙一

京都府京都市右京区太秦巽町1番地 三菱 自動車工業株式会社内

(72)発明者 河本 進

京都府京都市右京区太秦巽町1番地 三菱 自動車工業株式会社内