

Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala UPIIT

Algoritmos y Estructuras de Datos

Esaú Eliezer Escobar Juárez

Ingeniería en Inteligencia Artificial (IIA)

Definición Algoritmo

- Conjunto finito de instrucciones que si las seguimos resuelven una tarea particular.
- 1. Entrada/Salida
- 2. Definido: sin ambigüedades
- 3. Finito: Termina después de un número de pasos
- 4. Efectivo: Cada instrucción debe ser básica

Áreas de estudio

- Cómo diseñar algoritmos
- Cómo validar algoritmos
 - Mostrar que computa la respuesta correcta para todas las entradas legales.
- Cómo analizar algoritmos
 - Determinar cuanto tiempo computacional y almacenamiento requiere un algoritmo.
- Cómo probar un programa
 - Depurar: ejecutar el programa sobre datos de ejemplo y ver si los resultados son correctos.
 - Medida de desempeño: Medir el tiempo y el espacio requerido por el programa.

Pseudocódigo

• El siguiente algoritmo encuentra y devuelve el máximo de n números dados.

```
Algorithm Max(A, n)

// A is an array of size n.

Result := A[1];

for i := 2 to n do

if A[i] > Result then Result := A[i];

return Result;

}
```

Convertir un problema en algoritmo

Enunciado:

Diseñar un algoritmo que ordene una colección de n>=1 elementos.

De aquellos elementos que se encuentran en desorden, encontrar el más pequeño y colocarlo en la siguiente posición en la lista ordenada.

```
for i := 1 to n do

{

Examine a[i] to a[n] and suppose

the smallest element is at a[j];

Interchange a[i] and a[j];

Algorithm SelectionSort(a, n)

Algorithm SelectionSort(a, n)

// Sort the array a[1:n] into nondecreasing order.

for i := 1 to n do

for k := i + 1 to n do

for k := i + 1 to n do

for k := a[i]; a[i] := a[j]; a[j] := k;

k := a[i]; a[i] := a[j]; a[j] := t;
```

11

Medidas

- ¿El algoritmo hace lo que queremos que haga?
- ¿Funciona correctamente?
- ¿Está documentado?
- ¿El código es legible?

Análisis de desempeño (Independiente de la máquina)

- Complejidad espacial
- Complejidad Temporal

Medida del desempeño (Dependiente de la máquina)

https://www.youtube.com/watch?v=UR2oDYZ-Sao

Es la suma de 2 partes

- Una parte fija que es independiente de las características (número, tamaño) de las entradas y salidas
- Una parte variable que consiste del espacio necesario por las variables.

El requerimiento de espacio S(P) de un algoritmo P puede escribirse como:

$$S(P) = c + S_P(Entrada)$$

Algoritmo 1: Computa a+b+b*c+(a+b-c)/(a+b)+4.0

```
Algorithm abc(a, b, c)

return a + b + b * c + (a + b - c)/(a + b) + 4.0;

}
```

El espacio necesario no depende de la entrada pues sólo necesitamos a, b y c. $S_P(Entrada) = 0$

Algoritmo 2: Computa $\sum_{i=1}^{n} a[i]$

```
1 Algorithm Sum(a, n)

2 {

3 s := 0.0;

4 for i := 1 to n do

5 s := s + a[i];

6 return s;

7 }
```

El espacio necesario para a[] es de tamaño n, además es necesario el espacio de s, i y n mismo.

$$S_{Sum}(n) = (n+3)$$

Algoritmo 3: Computa $\sum_{i=1}^{n} a[i]$ recursivamente

```
1 Algorithm \mathsf{RSum}(a,n)
2 {
3 if (n \le 0) then return 0.0;
4 else return \mathsf{RSum}(a,n-1) + a[n];
5 }
```

Cada llamada recursiva requiere de 3 variables: n, el apuntador de a[] y la dirección del "return". La profundidad de la recursión es n+1.

$$S_{RSum}(n) = 3(n+1)$$

Complejidad Temporal

- El tiempo T(P) requerido por un programa
 P es la suma del tiempo de compilación y el tiempo de ejecución
- Si bien puede estar relacionado a el tiempo que toma hacer cada operación, en nuestro caso sólo contaremos el número de pasos de programa.

Complejidad Temporal

- Las operaciones sólo cuentan un paso return a+b*+(a+b -c)/(a+b)+4.0
- Los comentarios no cuentan
- Las asignaciones cuentan un paso
- Las iteraciones cuentan el número de veces que se ejecutan multiplicado por el número de instrucciones que contienen.

Complejidad Temporal

 Una forma de medir la complejidad temporal es añadir instrucciones de cuenta dentro del algoritmo.

Complejidad temporal

Algoritmo 2: Computa $\sum_{i=1}^{n} a[i]$

```
Algorithm Sum(a, n) {
    s := 0.0;
    count := count + 1; // count is global; it is initially zero.
    for i := 1 to n do
    {
        count := count + 1; // For for
        s := s + a[i]; count := count + 1; // For assignment
    }
    count := count + 1; // For last time of for
    count := count + 1; // For the return
    return s;
}
```

Podemos ver que dentro del ciclo for el valor de count se incrementa en 2n, por lo que el tiempo total es de:

$$t_{Sum}(n) = 2n + 3$$

Complejidad temporal

Algoritmo 3: Computa $\sum_{i=1}^{n} a[i]$ recursivamente

```
Algorithm \mathsf{RSum}(a,n) {
    count := count + 1; \ // \ \mathsf{For the if conditional}
    if (n \le 0) then
    {
    count := count + 1; \ // \ \mathsf{For the return}
    return 0.0;
    }
    else
    {
    count := count + 1; \ // \ \mathsf{For the addition, function}
    // invocation and return
    return \mathsf{RSum}(a, n - 1) + a[n];
}

14 }
```

- Vemos que cuando n=0, tenemos: $t_{RSum}(0)=2$
- Cuando n>0, cuenta se incrementa en 2 mas el resultado de invocar a la función nuevamente: $2+t_{RSum}(n-1)$

$$t_{RSum}(n) = \begin{cases} 2, & Si \quad n = 0 \\ 2 + t_{RSum}(n-1), & Si \quad n > 0 \end{cases}$$

Complejidad temporal

- Vemos que cuando n=0, tenemos: $t_{RSum}(0)=2$
- Cuando n>0, cuenta se incrementa en 2 mas el resultado de invocar a la función nuevamente: $2+t_{RSum}(n-1)$

$$t_{RSum}(n) = \begin{cases} 2, & Si \ n = 0 \\ 2 + t_{RSum}(n-1), & Si \ n > 0 \end{cases}$$

• Esta relación de recurrencia puede resolverse de la siguiente manera:

$$\begin{array}{rcl} t_{\mathsf{RSum}}(n) & = & 2 + t_{\mathsf{RSum}}(n-1) \\ & = & 2 + 2 + t_{\mathsf{RSum}}(n-2) \\ & = & 2(2) + t_{\mathsf{RSum}}(n-2) \\ & \vdots \\ & = & n(2) + t_{\mathsf{RSum}}(0) \\ & = & 2n + 2, & n \geq 0 \end{array}$$

• Entonces la cuenta para RSum es $t_{RSum}(n)=2n+2$

Notación Asintótica

• La función f(n) = O(g(n)) si y solo si existe las constantes positivas c y n_0 tal que $f(n) \le c * g(n)$ para todo $n, n \ge n_0$

• Ejemplos:

```
3n + 2 = O(n) \rightarrow 3n + 2 \le 4n, para todo n \ge 2

3n + 3 = O(n) \rightarrow 3n + 3 \le 4n, para todo n \ge 3

10n^2 + 4n + 2 = O(n^2) \rightarrow 10n^2 + 4n + 2 = 11n^2,

para todo n \ge 5
```

De acuerdo a la notación O

$\log n$	n	$n \log n$	n^2	n^3	2^n
0	1	0	1	1	2
\parallel 1	2	2	4	8	4 $ $
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1,024	32,768	4,294,967,296

En tiempo...

En una computadora de 1 billón de instrucciones por segundo

	Time for $f(n)$ instructions on a 10^9 instr/sec computer										
n	f(n) = n	$f(n) = n \log_2 n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = n^4$	$f(n) = n^{10}$	$f(n) = 2^n$				
10 20 30 40 50 100 1,000	.01 µs .02 µs .03 µs .04 µs .05 µs .1 µs 1 µs 10 µs	.03 μs .09 μs .15 μs .21 μs .28 μs .66 μs 9.96 μs 130 μs	.1 μs .4 μs .9 μs 1.6 μs 2.5 μs 10 μs 1 ms 100 ms	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$10~\mu { m s}$ $160~\mu { m s}$ $810~\mu { m s}$ $2.56~{ m ms}$ $6.25~{ m ms}$ $100~{ m ms}$ $16.67~{ m min}$ $115.7~{ m d}$	10 s 2.84 hr 6.83 d 121.36 d 3.1 yr 3171 yr 3.17*10 ¹³ yr 3.17*10 ²³ yr	$1 \mu s$ $1 ms$ $1 s$ $18.3 min$ $13 d$ $4*10^{13} yr$ $32*10^{283} yr$				
100,000 1,000,000	100 μs 1 ms	1.66 ms 19.92 ms	10 s 16.67 min	11.57 d 31.71 yr	3171 yr 3.17*10 ⁷ yr	$3.17*10^{33} \text{ yr}$ $3.17*10^{43} \text{ yr}$					

```
Algorithm D(x, n)
3
         i := 1;
         repeat
               x[i] := x[i] + 2; i := i + 2;
          } until (i > n);
         i := 1;
          while (i \leq \lfloor n/2 \rfloor) do
10
               x[i] := x[i] + x[i+1]; i := i+1;
11
12
13
```