9. UČENJE SA NADZOROM I TEORIJA APROKSIMACIJE?

Učenje s nadzorom i teorija aproksimacije

w* zavisi od nekog priraštaja ∆w u odnosu na početno w.

10. UČENJE SA NADZOROM – JEDAN NEURON

Učenje s nadzorom - jedan neuron

wi vektor težina i-tog neurona

ti željeni izlaz i-tog neurona

ai aktuelni izlaz i-tog neurona

ri signal učenja za i-ti neuron

p vektor ulaza

lr brzina učenja

Sa slike vidimo da je:

$$a_i = a_i(p, w_i)$$

$$r_i = r_i(a_i, t_i) = r_i(p, w_i, t_i)$$

$$\Delta w_i = l_r \cdot r_i(p, w_i, t_i) \cdot p$$

Kod supervizijskog učenja (s nadzorom) $r_i = t_i - a_i$

Posmatrajmo ove jednačine u vremenskim koracima:

$$wi(k+1) = wi(k) + \Delta wi(k+1) =$$

= $wi(k) + lr \cdot ri(wi(k), p(k+1), ti(k+1)) \cdot p(k+1)$

11. BRZINA (STEPEN) UČENJA

Brzina (stepen) učenja

Brzina učenja se bira tako da bude između 0 i 0.9. Ona određuje veličinu koraka kojom se neuronska mreža približava optimalnom stanju.

12. SLUČAJEVI IZBORA KRITERIJA GREŠKE?

Izbor kriterija greške - prvi slučaj

t= ciljna vrijednost a= realna vrijednost na izlazu sse= sum square error mse= medium square error

Izbor kriterija greške - drugi slučaj

Izbor kriterija greške - treći slučaj

$$sse = \sum_{d=1}^{D} e_{d^2}$$

$$mse = \frac{1}{D} \sum_{d=1}^{D} e_{d^2}$$

Izbor kriterija greške - četvrti slučaj

13. DIMENZIONALNOST NEURONSKIH MREŽA?

Dimenzionalnost (i-ta ćelija)

1 NEURON / vektor na ulazu

Dimenzionalnost (s ćelija)

S NEURONA / vektor na ulazu

Dimenzionalnost (s ćelija)

S NEURONA / matrica na ulazu

A matrica SxQ W matrica SxR P matrica RxQ b vektor kolona

E=T-A E,T,A matrice Pošto se ne može izvršiti direktno sabiranje matrice W s vektorom b (zbog dimenzija), zato se u svakoj iteraciji sabire jedna vektor-kolona matrice W sa vektorom b i prosljeđuje funkciji F. Ovaj način procesiranja obilježava se s izrazom:

A=F(W*P,b)

14. TIPOVI NEURONSKIH MREŽA NA OSNOVU PRIJENOSNE FUNKCIJE?

Tipovi NM na osnovu prenosne funkcije

15. PERCEPTON - MODEL?

Perceptron - Model

r je indeks komponente vektora na ulazu u mrežu

n se naziva iznos aktivacije ili aktivacija = w*p + b

Računanje izlaza u procesu treniranja(učenja) a =hardlim(w*p + b)

Testiranje izlaza a = sim(net,p)

16. PERCEPTON AKTIVACIJA I PRAG AKTIVACIJE?

17. GENERALNO PRAVILO UČENJA PRIMJENJENO NA PERCEPTONU?

18. PERCEPTONSKO PRAVILO UČENJA

Generalno pravilo učenja primjenjeno na perceptron

$$w_i(k+1) = w_i(k) + \Delta w_i(k+1) =$$

= $w_i(k) + (l_r \cdot r_i(w_i(k), p(k+1), t_i(k+1)) \cdot p(k+1)$

w_i vektor težina i-tog neurona t_i željeni izlaz i-tog neurona a_i aktuelni izlaz i-tog neurona r_i signal učenja za i-ti neuron p vektor ulaza l_r, brzina učenja