Introduction to the Theory of Computation Solutions $$\operatorname{\textbf{Ryan}}$$ Dougherty

${\bf Contents}$

1 Chapter 4 5

4.2

Consider the problem of determining whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.

Solution: We formulate the problem $EQ_{DFA,REX} = \{ \langle A, R \rangle \mid A \text{ is a DFA, } R \text{ is a regular expression, and } L(A) = L(R) \}$. We will design a TM T that decides $EQ_{DFA,REX}$:

T = "On input $\langle A, R \rangle$ where A is a DFA, R is a regular expression:

- 1. Use Theorem 1.54 to convert R into an equivalent DFA B. Therefore, L(B) = L(R).
- 2. Run EQ_{DFA} on input $\langle A, B \rangle$. Output what EQ_{DFA} outputs."

Since EQ_{DFA} is decidable, and the conversion from regular expressions to DFAs takes finite time, $EQ_{DFA,REX}$ is decidable.

4.3

Let $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$. Show that ALL_{DFA} is decidable. **Solution:** We will design a TM T that decides ALL_{DFA} : $T = \text{"On input } \langle A \rangle$ where A is a DFA:

- 1. Construct a DFA B such that $L(A) = \overline{L(B)}$.
- 2. Run E_{DFA} on input $\langle B \rangle$. Output what E_{DFA} outputs."

Since E_{DFA} is decidable, ALL_{DFA} is decidable.