Teorija mere: domača naloga

7. januar 2020

Rešitve ali lepo napišite na papir in oddajte na vajah 14.1. oz. izpitu **22.1.** ali pa preko spletne učilnice (slikajte ali pa stipkajte) do **22.1.** Naloge rešujte samostojno. Pozor: na izpit se morate prijaviti v VISu.

Odgovore dobro utemeljite!

Veliko uspeha!

Z m označimo Lebesguovo mero, z ζ pa mero štetja. S $\mathcal{P}A$ označimo potenčno množico množice A.

- 1. Naj bo, za $n \in \mathbb{N}$, $a_n \in [0, \infty)$ in μ_n mera na σ -algebri \mathcal{A} . Dokaži, da je $\sum_{n \in \mathbb{N}} a_n \mu_n$ tudi mera na \mathcal{A} .
- 2. Naj bo μ translacijsko invariantna mera (tj. $\mu(\{x+a\mid a\in A\})=\mu(A)$ za vse $x\in\mathbb{R},\,A\in\mathcal{B}_{\mathbb{R}})$ na $\mathcal{B}_{\mathbb{R}}$ z $\mu([0,1))<\infty.$
 - (a) Pokaži, da je za nek $k \in [0, \infty)$

$$\mu([a,b)) = km([a,b))$$

za vsa realna števila a < b, za katera je $a - b \in \mathbb{Q}$

- (b) Pokaži, da je $\mu(A) = km(A)$ za vsako omejeno Borelovo množico A.
- (c) Dokaži, da je μ večkratnik Lebesguove mere.
- 3. Naj bo $m\times \zeta$ ena izmed 1 produktnih mer na $\mathcal{B}_{[0,1]^2},$ tj. taka mera na $\mathcal{B}_{[0,1]^2},$ da velja $(m\times \zeta)(A\times B)=m(A)\zeta(B)$ za vse $A,B\in \mathcal{B}_{[0,1]}.$ Z Δ označimo diagonalo $\{(x,x)\mid x\in [0,1]\}.$
 - (a) Pokaži, da je indikatorska funkcija $1_{\Delta}:[0,1]^2\to\mathbb{R}$ Borelovo merljiva.
 - (b) Izračunaj integrale $\int \int 1_{\Delta}(x,y) \, dm(x) \, d\zeta(y)$, $\int \int 1_{\Delta}(x,y) \, d\zeta(y) \, dm(x)$ in $\int 1_{\Delta} \, d(m \times \zeta)$.
 - (c) Katere predpostavke Fubini-Tonellijevega izreka niso izpolnjene?
- 4. Naj bo $2\mathbb{Z}$ množica sodih celih števil ter λ in μ kompleksna in pozitivna mera na σ -algebri $\mathcal{P}\mathbb{Z}$, podani z

$$\lambda(A) = \sum_{n \in A} \frac{e^{in^2}}{3^{|n|}}$$
$$\mu(A) = \sum_{n \in A \cap 2\mathbb{Z}} \frac{1}{(n+1)^2}$$

Izrazi totalno variacijo $|\lambda|$, meri λ_a , λ_s iz Lebesguovega razcepa λ glede na μ ter gostoto $\frac{d\lambda_a}{d\mu}$. Izračunaj tudi normo $|\lambda|(\mathbb{Z})$.

5. Naj bo

$$f: [0,1]^3 \longrightarrow [0,\infty]$$

$$f(x,y,z) = \begin{cases} \frac{1}{\sqrt{|y-z|}} & \text{\'e } y \neq z \\ \infty & \text{sicer} \end{cases}$$

Pokaži, da je $f \in L^1(m_3)$, kjer je m_3 trirazsežna Lebesguova mera.

 $^{^1{\}rm Ker}\ \zeta$ ni σ -končna na ${\cal B}_{[0,1]},$ produktna mera ni nujno enolična.

6. Na prostoru $([0,1],\mathcal{B}_{[0,1]},m)$ definiramo zaporedje funkcij $f_1=\mathbf{1}_{[0,1]},\ f_2=\sqrt{2}\mathbf{1}_{[0,\frac{1}{2}]},\ f_3=\sqrt{2}\mathbf{1}_{[\frac{1}{2},1]}$ in za $n\in\mathbb{N}$ ter $k\in\{0,1,\dots,2^n-1\}$

$$f_{2^n+k} = 2^{\frac{n}{2}} \mathbf{1}_{\left[\frac{k}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right]}.$$

Glede na katere načine (po točkah, skoraj povsod, enakomerno, skoraj enakomerno, po meri) je zaporedje $(f_n)_{n\in\mathbb{N}}$ konvergentno?