MPDL Base Station Sleep Control Algorithm and Variables

Algorithm 1: MPDL Base Station Sleep Control

Inputs:

- Initial network state: $X(0) = \{x_1(0), x_2(0), \dots, x_N(0)\}$ (loads of all base stations).
- Arrival probabilities: v_i for each base station i.
- Departure probabilities: w_i for each base station i.
- Light sleep threshold L.
- Deep sleep decision function $J(u_i, u_j)$.

Steps:

- 1. Initialization:
 - Set the initial state t = 1 and X(0).
- 2. For each time step t = 1 to T:
 - \bullet Randomly generate a parameter c between 0 and 1.
- 3. Determine User Activity Based on c:
 - If $\sum_{k=1}^{i-1} v_k < c \le \sum_{k=1}^{i} v_k$ (A user arrives at base station i):
 - Case 1: If $u_i(t-1) = 0$ (base station is empty):
 - * Find max $J(1, u_i(t-1))$, where $j \in K(i)$ (neighboring base stations).
 - * If $\max J(1, u_i(t-1)) > 0$:
 - · Increment $u_i(t+1) = u_i(t) + 1$ (neighbor takes the user).
 - * Else:
 - · Set $u_i(t) = 1$ (base station becomes active).
 - Case 2: If $u_i(t-1) + 1 > U_{\text{max}}$ (load exceeds capacity):
 - * Find neighboring base stations $\{j|u_i(t-1)=0\}.$
 - st Distribute load among base station i and its neighbors:

$$u_i(t) = u_j(t) = \frac{u_i(t-1)+1}{k+1}$$
, where k is the number of neighbors.

- Case 3: If $u_i(t-1) + 1 \le U_{\text{max}}$:
 - * Increment $u_i(t) = u_i(t-1) + 1$.
- If $\sum_{k=1}^{n} v_k + \sum_{k=1}^{i-1} w_k < c \le \sum_{k=1}^{n} v_k + \sum_{k=1}^{i} w_k$ (A user departs from base station i):
 - Case 1: If the base station transitions to deep sleep:
 - * Find $\max J(u_i(t-1) 1, u_i(t-1))$, where $j \in K(i)$.
 - * Distribute load among neighbors or wake up base station j.
- If no user activity: (User remains stationary)
 - Retain the same state X(t+1) = X(t).

4. Evaluate Sleep Transitions:

- If $\rho_i(t) < L$ (light sleep threshold) and delay $D(\rho_i)$ is acceptable:
 - Transition base station i to light sleep.
- If $\max J(u_i,u_j)>0$ and neighbors can take the load:
 - Transition base station i to deep sleep.

5. Update Network State:

• Adjust states X(t+1) based on user activity and base station transitions.

Variables and Formulas

Variable	Description	How to Find It
X(t)	Network state at time t , represented as	Update using user arrival (v_i) and departure
	$\{x_1(t), x_2(t),, x_N(t)\},$ where $x_i(t)$ is the load	(w_i) .
	of base station i .	
v_i	Probability of a user arriving at base station i .	Typically modeled using a Poisson process.
w_i	Probability of a user leaving base station i .	Derived from user behavior or historical data.
$J(u_i,u_j)$	Decision function for deep sleep transition.	$J(u_i, u_j) = P(u_i) + P(u_j) - P(u_i + u_j) -$
		$w_{i,j}(u_i)$, where $P(u)$ is power consumption.
$ ho_i$	Load of base station i, defined as $\rho_i = \frac{u_i}{U_{\text{max}}}$.	Calculate using u_i , the number of users, and
	- Hox	$U_{\rm max}$, the base station's maximum capacity.
P(u)	Power consumption of the base station.	Different formulas for normal, light sleep, and
		deep sleep states:
		$P(u) = \begin{cases} \frac{u}{U_{\text{max}}} P_t + P_0 & \text{if active} \\ P_{\text{doze}} + F_m E_s & \text{if light sleep} \\ 0 & \text{if deep sleep} \end{cases}$
F_m	Frequency of entering the doze state in light sleep.	$F_m = \frac{(U_{\text{max}} - u)(1 - \Gamma_V)}{U_{\text{max}}V}.$ $\Gamma_V = e^{-p\mu V}, \text{ where } p \text{ is the probability of a}$
Γ_V	Probability that there is no queue at the end of a	
	doze window.	request in a time slot, μ is service rate, and V
		is the doze window.
L	Light sleep threshold for base station i .	$L = -\frac{\ln\left(1 - \frac{V(P_0 - P_{\text{doze}})}{E_s}\right)}{Vp}.$
$w_{i,j}(u_i)$	Transition cost when moving users from base station	Typically a constant or function of user mo-
	i to j.	bility.