

1.

- (a) (j). 2NaNO_{3(s)} 2KNO_{2(s)} + O_{2(g)} √ 1
 - (ii). 2 cu (NO3)₂ 2 CuO₍₅₎ + 4NO_{2(g)} + O2_{(g} $\sqrt{1}$
- b. (i). $2\sqrt{1}$. Has two energy levels $\sqrt{1}$
 - I.Q has greater nuclear charge than P.O.R. Atomic number of Q THAT OF p.1 exerting greater pull /attraction.

S gains an electronic. The incoming election is repelled by other elections in the atom or election cloud increases.

- iii Q√
- iy.

- a. The molar heat of neutralization is the enthalpy change that occurs when one mole of hydrogen ion from an acid is completely neutralized by an alkali. √ 1
 - b. NaOH_{aq} + Hcl_{aq} Nacl_{aq} + $H_2O_{(1)}$ $\sqrt{1}$
 - c. (i). $DT = 34.0^{\circ}C (25.0+25.0)$

ii. Heat change = MCDT

 $\sqrt{2}$

1000

Moles of NGO used
$$=2x 50$$

1000

 $= 0.1 \sqrt{1/2}$

DH heat $= \underline{1} \times \underline{5.67} \sqrt{1}$

0.1

= 56.7KJ MOI⁻¹ $\sqrt{\frac{1}{2}}$ $\sqrt{2}$

NaOH_{aq} +HCl_{aq} Nacl_{aq} +H₂O₁ $\sqrt{1}$ DH = 56.7 KJmol⁻¹

11

(i). Dilute sulphuric (vi) acid / hydrochloric acid. √

ii. It is highly soluble in water. √

iii. It would be bleached / turns to while. √

iv. Sulphur (iv) oxide, √ it loses oxygen or oxidation number of sulphur in SO₂ decrease
 from +4 to zero. √

b. Exothermic √-as the temperature increases the equilibrium moves to the left hence the yield of sulphur trioxide decreases.√

C(i). Vanadium pentaoxide is cheaper than platinum is easily be poisoned by impurities. √ 1.

ii. Ca (OH)_{2(g)} (s + SO_{2(g)} CaSO_{3(s)} +H₂O_(l)
$$\sqrt{}$$
 1

Ca (OH)_{2(aq)} + SO₂ CaSO_{3(aq)} +H₂O_(l)

KCSE CLUSTER TESTS 25

Chemistry Paper 2 Marking Scheme

4. <u>a</u>

i. 0.188 -0.12 =0.068 √ 1

Mass of hydrated copper (II) sulphate
=0.068 x 250 √

179g √ 22

b. **i**. <u>24.1x0.1</u> =0.00241

1000

ii. $0.00241 \times 25 = 0.241 \times 10^{-2} \sqrt{1}$

Or moles of Nacl = moles of AgNO₃ = 0.00241

iii. Moles of Nacl = $0.00241 \times 250 = 0.0241 \sqrt{1}$

25

iv. Mass of Nacl is 5.0. cm³ = 0.0241 x 58.5 = 1.41g $\sqrt{ }$ 1

v. 5.35 - 1.41 = 3.94g $\sqrt{}$

vi. $\underline{100} \times 1.41 \sqrt{=35.79g/100g \text{ water}}$ 2

3.94 12

5.

KCSE CLUSTER TESTS 25

Chemistry Paper 2 Marking Scheme

- g. F. its ions have the greatest tendency (+0.34) to accept electrons/ os the strongest oxidising agent.
- bi. $F F^{2+}_{aq} + 2e \longrightarrow F_{(s)} \sqrt{1}$ $y_{(.s)} \longrightarrow y^{2+} + 2e \sqrt{1}$
- The blue- green colour √ 1 of the solution fades -Cu²⁺ ions are removed from the solutions. √ 1
 - The two gases are chlorine and oxygen. Initially Cl⁻² ions are at much higher concentration hence preferentially discharged with time att are discharged accept equs.
- (a)i. Yeast√½
 ii. Distillation / fractional distillation. √½
 iii. Sodium / Potassium/Lithum √½
 - iv. Ethane gas
 v. Polythene /polythene √½ 2½
 - b. Addition polymerization. √½
 - c. It pollutes environment /produce poisonous gas on burning. $\sqrt{1}$
 - d(i). C₆H₁₂O_{6(l)} _____ 2C₂H₅OH _(l)+2CO_{2(g)}
 - ii. Rfm (C₆H₁₂O₆) = $6x12 + 12 \times 1 + 6 \times 16$ = 72+12+96= $180 \sqrt{\frac{1}{2}}$

Moles of sugar =
$$\underline{144} \quad \sqrt{\frac{1}{2}}$$
 2

180

= 0.8 $\sqrt{}$ 1

iii. Moles of $C_2H_5OH = 2 \times 0.8 \sqrt{\frac{1}{2}}$ 1 = 1.6 $\sqrt{\frac{1}{2}}$

7.

KCSE CLUSTER TESTS 25

Chemistry Paper 2 Marking Scheme

IV. Rfm (C₂H₅OH) = (2x12+5x1+16H) =
$$46 \sqrt{2}$$

Mass o C₂H₅OH = $46 \times 1.6 \sqrt{1}$ 2
= $73.6g \sqrt{2}$

- e. Further fractional distallion √ 1
- Manufacture of aleoholic drink as a fuel

As a solvent any two 2 12

- (a)i. lower mpt of sodium √chloride hence lower temp from 800°c to 600°c hence reducing cost of production of Na(s) √ 2
- ii. Steel would react with chloride unlike graphite.√ 1
- iii. Its mpts is lower than that of the electrolyte /molten sodium chloride. $\sqrt{}$
 - -It is less dense than the electrolyte.√
 - -To prevent products (Na & Cl₂) from reacting.√ 1
- v. (i). $Na^+_{(1)} + e \longrightarrow Na_{(1)}$ $\sqrt{}$
 - (ii) 2Cl⁻ (i) Cl₂(g) + 2e √ 1
- vi. Manufacture NaCN, Na2O2 (any one) √
 - -Sodium vapour used in sodium lamps.
 - Extration of Gtanium.
- b. To prevent it from reacting with air. 10