

# Influences of Parameters on Defects of Asymmetrical Roll Forming

PR-Vortrag
Carrie Yan
02.08 2016



#### **Outline**



**Units & Abbreviations** 

Numerical Model & Measurements of Defects

Explanation of Defects

Investigation on Twist

Investigation on Curving

Conclusion and Outlook



#### Introduction



- Roll Forming: continuously transversal bending a long metal strip into constant, desirable cross-sectional profile
- Efficient and Effective in mass production for metals
- When deforming, only deformations in transversal direction are necessary
- Reluctant strains result in unexpected deformations
- Unexpected deformations over the elastic range cause permanent defects, such as curving, twist, spring-back
- Especially for asymmetrical profile, the sheet undergoes non-uniform bending forces
- Previous research has been done on
- —pertinent methods to reduce the defects for asymmetrical profile (Ona & Jimma 1983)
- —influences factors for symmetrical profiles (Safdarian et al, 2015)
- · Lack of research on the reason of defects and the influence factors for asymmetrical profiles



#### Units and Abbreviations



- MPA Units: mm in length, s in time, MPa in pressure
- Abbreviations
- S: short flange length (mm)
- W: web length of the desired cross section (mm)
- T: thickness of the sheet (mm)
- F: fillet radius of the top rolls (mm)
- HC: Horizontal Curving
   VC: Vertical Curving



#### Influence Factors



Short Flange and Long Flange Ratio

| short flange<br>(mm) | 15 | 25 | 35 |
|----------------------|----|----|----|
| Long<br>Flange(mm)   | 77 | 67 | 57 |

- Length of Web: 40mm or 80mm
- Thickness of the flat sheet: 1mm or 2mm
- Radius of the fillet of the top rolls: 3mm or 6mm



### **Numerical Model**





- leftmost bottom node on web section fixed (0,0) in x-y plane, marked as
- thickness × width × length(1002mm)
- initial position -100mm in z-direction
- ② 6 roll stations:
- distance between stands 400mm
- · radius & center of roll
- first stand location in z-direction
- ③ supporting rolls:
- · located at negative 400mm in z-direction
- no deforming forces, only supportive in y-direction







## Setting for simulations



- Material Properties ZstE500
- Young 's Modulus 210000 MPa =2.1×10<sup>5</sup>MPa
- Poisson ratio 0.29
- · Plastic Behavior



- Contact Body & Table
- flat sheet deformable
- rolls rigid: translate 100mm/s in negative z
- all touching

#### Boundary Conditions

- I center of sheet front-end fixed x-direction in the first
   5s
- II· center of sheet back-end fixed all directions in the simulation
- Job Setting
- stepping multicriteria
- save data every 0.5s



#### Measurements of Defects



- Curving:
- defined by translation of the centroid of the cross-section along the channel horizontally or vertically
- measured by coordinate differences of central nodes locating on the web section of two cross sections at the same time
- horizontal curving positive, when sheet convex in z-x plane; vertical curving positive, when sheet convex in z-y plane
- Twist:
- defined by rotation about centroid of cross section along the length of sheet
- measured by the magnitude of twist angle per meter
- positive, when the long flange approaches the short flange



## **Explanation of Defects**



Forces on the side rolls



- Horizontal Curving & Twist:
- —force on long flange occurs before force on short flange
- —torsional & horizontal bending moment
- · Vertical Curving: edges of flanges stretched more than web



Variation of Forces on side rolls along time



Fig. Force on side rolls for S35W40T1 profile

## **Explanation of Defects**



#### Non-uniform Distribution of Longitudinal Strain on Cross Section



Fig. Longitudinal Strain Distribution on Cross Section W40T1



Fig. Longitudinal Strain Distribution on Cross Section W80T2



## Progressive Twist Zone



#### Slope of the Web



 Progressively Twist Zone: approximately <u>Linearly</u> change of twist region

- Discontinuity of the slope (at 400mm)
- Boundary Condition 1 (center of sheet front-end fixed x-direction in the first 5s)
- After first 5s, a sudden change in x-direction
- Set BC1 lasted 2.5s, the location of



Fig. Slope of web S15W40T2



## Progressive Zones and Magnitude of Twist



#### Progressive Twist Zone

Choice of Measuring Zone (from/to a specific position on the sheet along length(mm))

|            |            |            |            |              | 0 1        |
|------------|------------|------------|------------|--------------|------------|
| S15 W80 T2 | S25 W80 T2 | S35 W80 T2 | S15 W40 T2 | S25 W40 T2   | S35 W40 T2 |
| 90/330     | 90/330     | 90/330     | 60/210     | 60/210       | 90/330     |
| S15 W80 T1 | S25 W80 T1 | S35 W80 T1 | S15 W40 T1 | S25 W40 T1   | S35 W40 T1 |
| 90/330     | 60/210     | 90/330     | 60/180     | Weird behave | 90/210     |

Table Progressive Twist Zones

#### Magnitude of Twist (degree per 1000mm)

| profile  | twist   | profile  | twist   | profile  | twist   | profile  | twist  |
|----------|---------|----------|---------|----------|---------|----------|--------|
| S15W80T2 | 11.3006 | S15W40T2 | 4.9517  | S15W80T1 | 13.2461 | S15W40T1 | 6.7630 |
| S25W80T2 | 8.0791  | S25W40T2 | 12.5284 | S25W80T1 | 7.8057  | S25W40T1 | 0.2671 |
| S35W80T2 | 3.1807  | S35W40T2 | 7.3903  | S35W80T1 | 3.4236  | S35W40T1 | 1.4859 |

Table · Magnitude of Twist

- Tolerance of Twist: 1 degree per 1000mm
- Unexpected Results:
- Web length=40mm
- Short flange=15mm

## **Tendency**



Fig. Tendency of Twist with respect to ratio of flanges



## Effect of Input Parameters on **Twist**





Fig. Tendency of Twist with respect to radius of top rolls fillet

-twist values are decreasing with increase of ratio of flanges, except W40T2 grows up first and then drops, and W40T1 decrease first and increase then -fillet radius has very less influence on the magnitude of twist



## Effect of Input Parameters on Twist





-twist values are increasing with increase of web length, except S25T2 and S35T2 -twist values are decreasing with increase of thickness, except S25W80, S25W40 and S35W40





non-constant longitudinal

counterclockwise twist



Fig. Flange Edge Longitudinal Strain S15W40T2





· constant longitudinal strain on web for web length 20mm



Fig. Cross Section Longitudinal Strain W80T2

Fig. Cross Section Longitudinal Strain W80T1





Long Flange

Short Flange 15mm Short Flange 25mm Short Flange 35mm

#### unstable behaviour for web length 40mm



Fig. Cross Section Longitudinal Strain W40T2

Fig. Cross Section Longitudinal Strain W40T1





Deformation Length

$$L = \sqrt{\frac{8a^3\Delta\Theta}{3t}}$$

bending angle increments Δθ are 13°, 16°, 18°, 18°, 15°, 10°

|              | (mm) | minimum deformation<br>length | maximum<br>deformation length | (mm) | minimum deformation<br>length | maximum deformation<br>length |
|--------------|------|-------------------------------|-------------------------------|------|-------------------------------|-------------------------------|
| short flange | 15   | 28.0178514522438              | 37.589892258425               | 15   | 39.6232255123179              | 53.160135440008               |
| long flange  | 77   | 325.862231739234              | 437.19006088123               | 77   | 460.838787590789              | 618.280113432954              |
| thickness    | 2    |                               |                               | 1    |                               | 1                             |
| short flange | 25   | 60.284817817252               | 80.8805703903395              | 25   | 85.2556069623489              | 114.38239957849               |
| long flange  | 67   | 264.490540333536              | 354.851296554862              | 67   | 374.046109259075              | 501.835516213563              |
| thickness    | 2    |                               |                               | 1    |                               |                               |
| short flange | 35   | 99.8619417366166              | 133.978854052919              | 35   | 141.226112368835              | 189.474712472843              |
| long flange  | 57   | 207.544019427205              | 278.44952145766               | 57   | 293.511567063378              | 393.787089681721              |
| thickness    | 2    |                               |                               | 1    |                               |                               |

Table Deformation Length

distance between stands = 400mm



## Effect of Input Parameters on Curving





◆The magnitude of curving is always around 1mm per 1000mm

+not problematic

Fig. Tendency of Curving with respect to flange ratios

#### **Conclusion & Outlook**



#### Conclusion

- 1. In summary, magnitude of twist decrease when the profile cross-sectional area grows to more symmetry.
- —ratio of short flange length to the long flange length increases,
- -web length decreases,
- —thickness increases.
- 2. The twist is partially progressive because of the boundary condition I.
- 3. For S15T2, S15T1 and S25T1 profile, the deformation length is sometimes larger than distance between two neighbour stands, which is problematic.

#### Outlook

- 1. In order to neutralize the effect of boundary condition I, we can implement supportive rolls in both x and y directions
- 2. Investigation on different type of materials
- 3. Investigation on simulations with asymmetric fillet radius of top rolls





#### Thank you for your attention!





#### → Front View of the Sheet <u>after deformation</u> at time t=25s





#### **Initial Position of Sheet**





