DS 100/200: Principles and Techniques of Data Science

Date: October 23, 2019

Discussion #9 Solutions

Name:

Geometry of Least Squares

- 1. Consider the following diagram for the geometry of least squares. Fill in the blanks on the diagram with one of the following: (Note that $\hat{\beta}$ is the optimal β , and α is an arbitrary vector.)
 - $span\{X\}$
 - \bullet \vec{y}
 - $\mathbb{X}\vec{\alpha}$
 - $\mathbb{X}\hat{\beta}$
 - $\vec{y} \mathbb{X}\hat{\beta}$

2. Use the figure above, to explain why, for all $\alpha \in \mathbb{R}^p$,

$$\|\vec{y} - \mathbb{X}\alpha\|^2 \ge \|\vec{y} - \mathbb{X}\hat{\beta}\|^2$$

Solution: Since \vec{y} is the projection of \vec{y} onto the column space of \mathbb{X} , by definition of projection, it is closest to \vec{y} , i.e.,

$$\|\vec{y} - \mathbb{X}\hat{\beta}\| \le \|\vec{y} - \mathbb{X}\alpha\|$$

3. From the figure above, what can we say about the residuals and the column space of X? Explain your statement using linear algebra ideas.

Solution: We can say that the residuals are orthogonal to the column space of \mathbb{X} . The residuals are:

$$\vec{e} := \vec{y} - \vec{\hat{y}}$$

 $:= \vec{y} - \mathbb{X}\hat{\hat{\beta}}$

The projection of \vec{y} onto the column space of \mathbb{X} implies that $\vec{e} \cdot \vec{\hat{y}} = 0$. The notion of Pythagorean's theorem is

$$\|\vec{y}\|^2 = \|\vec{\hat{y}}\|^2 + \|\vec{e}\|^2.$$

4. Derive the normal equations from the fact above. That is, starting from the orthogonality of the residuals and column space of \mathbb{X} , derive $\mathbb{X}^t \vec{y} = \mathbb{X}^t \mathbb{X} \hat{\beta}$.

Solution: From above, every vector $\vec{x_i}$, $i=1,2,\ldots,p$ is orthogonal to the residuals, i.e. their dot product is 0.

Mathematically,

5. What must be be true about \mathbb{X} for the normal equation to be solvable, i.e., to get a solution for $\hat{\beta}$? What does this imply about the rank of \mathbb{X} and the features that it represents?

Solution: The design matrix must be invertible; hence, no linearly dependent features.

In order for the columns to be linearly independent, the rank of \mathbb{X} must match the number of columns in \mathbb{X} .

In addition, it must be the case that the number of columns of the design matrix is less than or equal to the number of rows.

Dummy Variables/One-hot Encoding

In order to include a qualitative variable in a model, we convert it into a collection of dummy variables. These dummy variables take on only the values 0 and 1. For example, suppose we have a qualitative variable with 3 levels, call them A, B, and C, respectively. For concreteness, we use a specific example with 10 observations:

$$[A, A, A, A, B, B, B, C, C, C]$$

In linear modeling, we represent this variable with 3 dummy variables, \vec{x}_A , \vec{x}_B , and \vec{x}_C arranged left to right in the following design matrix. This representation is also called one-hot encoding.

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

We will show that the fitted coefficients for \vec{x}_A , \vec{x}_B , and \vec{x}_C are \bar{y}_A , \bar{y}_B , and \bar{y}_C , the average of the y_i values for each of the groups, respectively.

6. Show that the columns of X are orthogonal, (i.e., the dot product between any pair of column vectors is 0).

Solution: The argument is the same for any pair of \vec{x} s so we show the orthogonality for one pair, $\vec{x}_A \dot{\vec{x}}_B$.

$$\vec{x}_{A}\dot{\vec{x}}_{B} = \sum_{i=1}^{1} 0x_{A,i}x_{B,i}$$

$$= \sum_{i=1}^{4} (1 \times 0) + \sum_{i=5}^{7} (0 \times 1) + \sum_{i=8}^{10} (0 \times 0)$$

$$= 0$$

7. Show that

$$\mathbb{X}^t \mathbb{X} = \begin{bmatrix} n_A & 0 & 0 \\ 0 & n_B & 0 \\ 0 & 0 & n_C \end{bmatrix}$$

Here, n_A , n_B , n_C are the number of observations in each of the three groups defined by the levels of the qualitative variable.

Solution: Here, we note that

We also note that

$$\mathbb{X}^{t}\mathbb{X} = \begin{bmatrix} \vec{x}_{A}^{t}\vec{x}_{A} & \vec{x}_{A}^{t}\vec{x}_{B} & \vec{x}_{A}^{t}\vec{x}_{C} \\ \vec{x}_{B}^{t}\vec{x}_{A} & \vec{x}_{B}^{t}\vec{x}_{B} & \vec{x}_{B}^{t}\vec{x}_{C} \\ \vec{x}_{C}^{t}\vec{x}_{A} & \vec{x}_{C}^{t}\vec{x}_{B} & \vec{x}_{C}^{t}\vec{x}_{C} \end{bmatrix}$$

Since we earlier established the orthogonality of the vectors in \mathbb{X} , we find $\mathbb{X}^t\mathbb{X}$ to be the diagonal matrix:

$$\mathbb{X}^t \mathbb{X} = \begin{bmatrix} n_A & 0 & 0 \\ 0 & n_B & 0 \\ 0 & 0 & n_C \end{bmatrix}$$

8. Show that

$$\mathbb{X}^t \vec{y} = \begin{bmatrix} \sum_{i \in A} y_i \\ \sum_{i \in B} y_i \\ \sum_{i \in C} y_i \end{bmatrix}$$

Solution: Note in the previous solution we found \mathbb{X}^t . The solution follows from recognizing that for a row in \mathbb{X}^t , e.g., the first row, we have

$$\sum_{i=1}^{n} x_{A,i} \times y_i = \sum_{i=1}^{4} y_i = \sum_{i \in \text{group A}} y_i$$

9. Use the results from the previous questions to solve the normal equations for $\hat{\beta}$, i.e.,

$$\hat{\beta} = [\mathbb{X}^t \mathbb{X}]^{-1} \mathbb{X}^t \bar{y}$$

$$= \begin{bmatrix} \bar{y}_A \\ \bar{y}_B \\ \bar{y}_C \end{bmatrix}$$

6

Solution: By inspection, we can find

$$[\mathbb{X}^t \mathbb{X}]^{-1} = \begin{bmatrix} \frac{1}{n_A} & 0 & 0\\ 0 & \frac{1}{n_B} & 0\\ 0 & 0 & \frac{1}{n_C} \end{bmatrix}$$

When we pre-multiply $\mathbb{X}^t \vec{y}$ by this matrix, we get

$$\begin{bmatrix} \frac{1}{n_A} & 0 & 0\\ 0 & \frac{1}{n_B} & 0\\ 0 & 0 & \frac{1}{n_C} \end{bmatrix} \begin{bmatrix} \sum_{i \in A} y_i\\ \sum_{i \in B} y_i\\ \sum_{i \in C} y_i \end{bmatrix} = \begin{bmatrix} \bar{y}_A\\ \bar{y}_B\\ \bar{y}_C \end{bmatrix}$$