Final Year of Computer Engineering (2015 P Course) Big Data & Data Analytics

Teaching Scheme:
TH: 04 Hours/Week

Credit

Examination Scheme:
In-Sem (Paper): 30 Marks
End-Sem (Paper): 70 Marks

Prerequisite: Data Mining, Knowledge of probability theory, statistics, and programming

Course Objectives:

- To understand Data Analytics Life Cycle and Business Challenges
- To understand Analytical Techniques and Statically Models
- To understand Statically Modelling Language

Course Outcomes:

On completion of the course, student will be able to-

- Deploying the Data Analytics Lifecycle to address big data analytics projects
- Reframing a business challenge as an analytics challenge
- Applying appropriate analytic techniques and tools to analyze big data, create statistical models, and identify insights that can lead to actionable results
- Selecting appropriate data visualizations to clearly communicate analytic insights to business sponsors and analytic audiences
- Using tools such as: R and R Studio, MapReduce/Hadoop, in-database analytics,
- Explain how advanced analytics can be leveraged to create competitive advantage

Course Contents

Unit I Introduction to Big Data 06Hours

Business Intelligence, Decision Support Systems, Data Warehousing; Definition of Big Data, Big data characteristics & considerations, Introduction to Hadoop

Unit II Big Data Analytics 06 Hours

Big data analytics, Drivers of Big data analytics, Big Data Stack, Typical analytical architecture, Virtualization & Big Data, Virtualization Approaches, Business Intelligence Vs Data science, Applications of Big data analytics.

Unit III Data Analytics Lifecycle 06 Hours

Need of Data analytic lifecycle, Key roles for successful analytic projects, **various phases of Data analytic lifecycle:** Discovery, Data Preparation, Model Planning, Model Building, Communicating Results, Operationalization.

Unit IV Machine Learning: Supervised Learning 08 Hours

What is Machine Learning? Application of Machine Learning; Supervised Learning Structure of Regression Model, Linear Regression, Logistics Regression, Time series analysis, Support Vector Machine.

Unit V Classification & Unsupervised Learning 08 Hours

Classification: Classification Problem, Classification Models, Classification Trees, Bayesian Method; Association Rule: Structure of Association Rule, Apriori Algorithm, General Association; Clustering: Clustering Methods, Partition Methods, Hierarchical Methods.

Unit VI Exploring Data in R 06 Hours

Basic features of R, Exploring R GUI, Data Frames & Lists, Handling Data in R Workspace, Reading Data Sets & Exporting Data from R, Manipulating & Processing Data in R.

Book:

Text:

- 1. David Dietrich, Barry Hiller, "Data Science & Big Data Analytics", EMC education services, Wiley publications, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer, Second Edition, 2011.

Reference Books:

- 1. Business Intelligence Data Mining and Optimization for Decision Making Carlo Vercellis Wiley Publications.
- 2. Big Data & Analytics Seema Acharya & Subhashini Chellappan Wiley Publications
- 3. Big Data (Black Book) DT Editorial Services Dreamtech Press.
- 4. Data Mining: Concepts and Techniques Second Edition Jiawei Han and Micheline Kamber Morgan KaufMan Publisher
- **5.** Beginning R: The Statistical Programming Language Mark Gardner Wrox Publication

List of Experiments: 410255- Laboratory Practices -IV

- 1. Installation of R
- 2. Study of R: Declaring Variable, Expression, Function and Executing R script.
- 3. Creating List in R merging two lists, adding matrices in lists, adding vectors in list.
- 4. Manipulating & Processing Data in R merging data sets, sorting data, plotting data, managing data using matrices & data frames

Mini Project (Any One)

- 1. Twitter Data Analysis with R
- 2. Sentiment Analysis of WhatsApp data with R

UNIT I: Introduction to Big Data

CONTENT

1. Business Intelligence

- 1.1 Business Intelligence
- 1.2 Effective and Timely decisions
- 1.3 Data information and knowledge
- 1.4 The role of mathematical models
- 1.5 Business intelligence architectures
 - 1.5.1 Cycle of business intelligence analytics
 - 1.5.2. Development of a business intelligence system

2. Decision support system

- 2.1 Definition of system
- 2.2 Representation of the decision-making process
 - 2.2.1 Rationality and problem solving
 - 2.2.2 The decision making process
 - 2.2.3 Types of decision
 - 2.2.4 Approaches to decision making process
 - 2.2.5 Characteristics and capabilities of DSS
 - 2.2.6 Approaches to design making process

3. Data warehousing

3.1 Data warehousing

3.1.1. Benefits of Data Warehousing

3.2. Types of Data Warehouse

- 3.2.1 General Stages of Data Warehouse
- 3.2.2 Component of Data Warehouse

3.3 Difference between OLTP and OLAP system

4. Big data

- 4.1 Definition of Big data
- 4.2 Characteristics of Big data and consideration
- 4.3 Benefits of Big data Processing

5. Introduction to Hadoop

- 5.1 Introduction to Hadoop
- 5.2 Architecture of Hadoop
- 5.4 HDFS (Hadoop distributed file system)

UNIT II: Big Data Analytics

- 2.1 Big data analytics
- 2.2 Drivers of Big data analytics
- 2.3. Big Data Stack
- 2.4. Typical analytical architecture
- 2.5. Virtualization & Big Data
- 2.6. Virtualization Approaches
 - 1. Big Data Server Virtualization:
 - 2 Big Data Application Virtualization:
 - 3 Big Data Network Virtualization:
 - 4 Big Data and Storage Virtualization
 - 5 Big Data processor and Memory Virtualization
- 2.7. Business Intelligence vs. Data science
- 2.8 Applications of Big data analytics.

UNIT III: Data Analytics Lifecycle

- 3.1. Need of Data analytic lifecycle
- 3.2 Key roles for successful analytic projects
- 3.3. Various phases of Data analytic lifecycle
 - 3.3.1 Discovery
 - 3.3.2 Data Preparation
 - 3.3.3 Model Planning
 - 3.3.4 Model Building
 - 3.3.5. Communicating Results
 - 3.3.6 Operationalization.

UNIT IV Machine Learning: Supervised Learning

- 4.1 What is Machine learning?
- 4.2Application of Machine learning
 - 4.2.1 Supervised learning
 - 4.2.2 Unsupervised learning
- 4.3 Structure of Regression Model
- 4.4 Linear Regression

- 4.5. Logistics Regression
- 4.6 Time series analysis
- 4.7 Support Vector Machine

UNIT V Classification & Unsupervised Learning

- 5.1 Classification: Classification Problem
- 5.2 Classification Models
- 5.3 Classification Trees
 - 5.3.1 Bayesian Method;
 - 5.3.2. Association Rule: Structure of Association Rule
 - 5.3.3. Apriori Algorithm
- 5.4. General Association
 - 5.4.1. Clustering Methods
 - 5.4.2. Partition Methods
 - 5.4.3 Hierarchical Methods.

UNIT VI Exploring Data in R

- 6.1. What is R? Its advantages
- 6.2 Basic features of R
- 6.3 Exploring R GUI
 - 6.3.1 Managing graphics
 - 6.3.1.1. Opening several graphics devices
 - 6.3.1.2. Partitioning graphics
- 6.4. Data Frames & Lists
 - 6.4.1 Data Frames
 - 6.4.1.1. Making Data Frames
 - 6.4.1.2. attach () and detach ()
 - 6.4.1.3 Working with data frames
 - 6.4.1.4 Attaching arbitrary list
 - 6.4.1.5. Managing the search path
 - 6.4.2 Lists
 - 6.4.2.1 Constructing and modifying lists
 - 6.4.2.2. Concatenating lists
- 6.5. Handling Data in R Workspace
- 6.6. Reading Data Sets & Exporting Data from R

```
6.6.1 Import
6.6.1.1. Encodings
6.6.2. Export to text files
6.6.3. XML
6.6.4. Reading and Writing data in R
6.6.4.1. Reading data in R
6.6.4.2 Writing data to Files
6.6.4.3 Reading data files with read.table ()
6.6.4.4. read.table () and read.csv () examples
6.6.4.4.1 read.table ()
6.6.4.5. Writing data files with write.table ()
6.7. Manipulating & Processing Data in R.
6.7.1. What is Data Manipulation in R
```

6.7.2. Crating subset data in R
