Reg. No.

B.Tech./M.Tech(Integrated) DEGREE EXAMINATION, JULY 2023

Third Semester

21CSC201J - DATA STRUCTURES AND ALGORITHMS

(For the candidates admitted from the academic year 2021-2022 & 2022-2023)

- 1	N.	`~	4	_	
	w	41	и	μ	ĕ

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over (i) to hall invigilator at the end of 40th minute.

ne: 3	: 3 Hours			Max. Marks: 75					
		$PART - A (20 \times 1 =$	20M	larks)	Marks	BL	CO	PO	
		Answer ALL Qu	estio	ns					
1.		is a variable that stores the	ne ado	dress of another variable.	1	1	1	1	
	(A)	Local variable	(B)	global variable					
	(C)	auto variable		pointer variable					
2.	Wha	at is the best case time complexity of	of Lin	ear search?	1	1	1	1	
		O(n)		O(1)					
	(C)	O(nlogn)		O(logn)					
3.	Whi	ch of the following data structure is	non	linear type?	1	1	1	3	
	(A)	string	(B)	list					
	(C)	Tree	(D)	Stack					
4.	Eler	nents in an array are accessed			1	1	1	1	
		randomly	(B)	sequentially					
	(C)	exponentially	(D)	logarithmically					
5.	The	primary benefit of the Linked List	data s	structure is	1	1	2	1	
	(A)	computation time	(B)	space utilisation					
	(C)	space utilisation and computation time	(D)	speed than array ds					
6.	Find	the correct code for the following	node	structure.	1	2	2	1	
		v* Data Next*							
	(A)	struct node {struct node *prev;int	(B)	struct node { struct node prev					
	` /	data;struct node *next;}	()	int data; struct node next;}	,				
	(C)		(D)						
		int *next;}		struct node data; struct node *next;}					
7.	Find	the concept which is right for the b	elow	condition	1	2	2	I	
		y node can be a starting point. We			r				
		any point. We just need to stop							
	(A)	Singly linked list	(B)	array					

8.		is a collection of similar type o	f dat	a items.	1	1	2	1
	(A)	array	(B)	table				
	(C)	record	(D)	structure				
9.		ch data structure follows LIFO conc	ept?		1	1	3	3
	(A)	queue	(B)	агтау				
	(C)	stack	(D)	deque				
								-
10.		result evaluating the postfix express			1	2	3	3
	(A)		(B)					
	(C)	80	(D)	60				
					1	1	3	3
11.	In Q	ueues, we can insert an element at		end and can delete an element at	1	1	J	,
	(4)	end.	(D)	PROME DE AR				
	` /	REAR, FRONT	` '	FRONT, REAR				
	(C)	TOP,BOTTOM	(D)	BOTTOM, TOP				
10	TT			a stack Data Structure? Consider	1	2	3	3
12.		many queues are needed to impler			•	_	-	
		e is no other Data Structure available		•			21	
	(A)		(B)					
	(C)	2	(D)	4				
12	Whi	le Inserting the elements 71, 65, 84	60	in an empty Ringry Search Tree	1	2	4	3
15.		Γ) in the sequence shown, the eleme						
	(A)	· ·	(B)					
	(C)		(D)					
	(0)		(1)	7.1				
14.	An A	AVL tree is a self - balancing binar	rv se	arch tree, in which the heights of	1	2	4	3
		wo child sub trees of any node diffe						
		Atleast one	(B)	0				
	\ /	Exactly one		Atmost one				
	` /	•	` '					
15.	Wha	t is full binary tree?			1	1	4	3
		Each node has exactly zero or	(B)	Each node has exactly two				
		two children	` '	children				
	(C)	All the leaves are at the same	(D)	Each node has exactly one or				
	` '	level	` '	two children				
16.	If "in	n order" traversal is performed in B	ST, t	hen the resultant is	1	2	4	3
	(A)	Elements are in non-increasing	(B)	Elements are in decreasing				
		order		order				
	(C)	Elements are in increasing order	(D)	Elements are in random order				
							_	2
17.	_	raph with all vertices having equal d	-		1	1	5	3
		Multi Graph	• •	Complete Graph				
	(C)	Simple Graph	(D)	Regular Graph				
10	3274 *	1 1		and the Control of the Control	1	2	5	3
18.		ch data structure is used to traver	rse ti	ne graph by using Breadth First	,	_	,	J
	Sear		(D)	21.21.2				
	` '	stack Array		queue List				
		ALIAV	ועו	LISI .				

19.	is a graph with no cycles.	1	1	5	3
	(A) weighted graph (C) acyclic graph (D) connected graph				
20.	Identify the data structure that performs insertion, deletion with an time complexity of O(1).	a average 1	2	5	4
	(A) stack (B) hash table				
	(C) List (D) queue				
	$PART - B (5 \times 8 = 40 Marks)$	Marks	BL	со	РО
	Answer ALL Questions				
21. a.	Write a program to add two n×n matrices and return the resultant ma	ntrix. 8	4	1	9
	(OR)				
b.	Write pseudo code to perform result processing of a student. The structure contains the following fields. i) name	e student ⁸	4	1	9
	ii) no iii) Mark1, Mark2, Mark3				
22. a.i.	. Write the advantages and disadvantages of Linked List over array.	4	3	2	3
ii.	. Write a pseudocode to insert an element in an array at the end.	4	3	2	3
b.	(OR) Discuss and demonstrate an algorithm for the following operations is linked list. i) Insert an element at the end	n a singly 8	3	2	9
	ii) Delete an element from beginning				
23. a.	. Write an algorithm for Push and Pop operations on Stack us implementation.	ing array ⁸	3	3	3
	(OR)				
b.	Explain the addition and deletion operations performed on a circu with necessary algorithms.	lar queue 8	3	3	3
24. a.	. Write the purpose of Rotation operation in AVL tree. Explain the rotations with example.	e types of 8	1	4	3
	(OR)				
b.	Write an algorithm for inserting and deleting a node in a binary so with example.	earch tree ⁸	1	4	3
25. a.	. Explain the various representation of graph with your own example	in detail. 8	5	5	2
	(OR)				
b	Describe Minimum Spanning Tree Problem. Explain how to minimum cost spanning tree with an example (Use Kruskal's Algori	determine 8 thm).	5	5	2

PART – C $(1 \times 15 = 15 \text{ Marks})$ Answer ANY ONE Questions

Marks BL CO PO

26. Simulate the call logs in the mobile using an appropriate data structure. The Call Logs can store the telephone number, name of the 10 most recent callers. Once the limit of 10 is reached, and another call is made, the least recent number is deleted to make room for the recent number. (Illustrate with your own example)

15 5 3 3

27. Compute the contents of a hash table of 5 entries using separate chaining method, how to insert the following data 28, 18, 13, 20, 25. Show all computation clearly. Also use Linear probing method to handle collision technique.

15 5 4 3

* * * * *