Programozáselmélet - Levezetési szabályok

Készítette: Borsi Zsolt

Tétel: A szekvencia levezetési szabálya

Legyen A közös alap-állapotterű S_1 és S_2 programok szekvenciája $S=(S_1;S_2)$. Legyenek Q, Q' és R logikai függvények A-n. Ha

1.
$$Q \implies lf(S_1, Q')$$
 és

2.
$$Q' \implies lf(S_2, R)$$

 $akkor Q \implies lf(S, R).$

Tétel: Az elágazás levezetési szabálya

Legyen $IF = (\pi_1:S_1, \dots \pi_n:S_n)$ a közös A alap-állapotterű S_i programokból képzett, A feletti π_i logikai függvényekkel meghatározott elágazás. Legyenek továbbá Q és R logikai függvények A-n. Ha

1.
$$Q \implies \bigwedge_{i=1}^{n} (\pi_i \vee \neg \pi_i) \text{ \'es}$$

2.
$$Q \implies \bigvee_{i=1}^{n} \pi_i \text{ \'es}$$

3.
$$\forall i \in [1..n] : Q \wedge \pi_i \implies lf(S_i, R)$$

 $akkor Q \implies lf(IF, R).$

Tétel: A ciklus levezetési szabálya

Legyen $DO = (\pi, S_0)$ az A alap-állapottér feletti S_0 programból és a $\pi \in A \to \mathbb{L}$ feltétellel képzett ciklus. Továbbá legyenek P, Q és R logikai függvények A-n és $t \colon A \to \mathbb{Z}$ függvény adottak. Ha

1.
$$Q \implies P$$
 és

2.
$$P \land \neg \pi \implies R \ \text{\'es}$$

3.
$$P \implies \pi \vee \neg \pi \ \text{\'es}$$

4.
$$P \wedge \pi \implies t > 0$$
 és

5.
$$P \wedge \pi \implies lf(S_0, P)$$

6.
$$P \wedge \pi \wedge t = t_0 \implies lf(S_0, t < t_0)$$
 bármely t_0 egész számra

 $akkor Q \implies lf(DO, R).$

A levezetési szabályban szereplő P állítást a ciklus invariáns tulajdonságának, a t függvényt terminálófüggvénynek nevezzük.

Az utolsó két pont összevonható:

$$5-6$$
. $P \wedge \pi \wedge t = t_0 \implies lf(S_0, P \wedge t < t_0)$ bármely t_0 egész számra