Algorithmic Foundations 2 - Tutorial Sheet 6

Induction and Recursive Definitions

1. Use the principle of mathematical induction to show $\sum_{i=1}^{n} i \cdot (i!) = (n+1)! - 1$ for all $n \in \mathbb{N}$.

Solution: Let P(n) be the proposition $\sum_{i=1}^{n} i \cdot (i!) = (n+1)! - 1$.

Base case: P(1) holds since $1 \cdot (1!) = 1 = 2 - 1 = (1+1)! - 1$.

Inductive step: We now assume P(n) is true for some $n \in \mathbb{N}$. Considering n+1 we have:

$$\begin{split} \sum_{i=1}^{n+1} i \cdot (i!) &= \sum_{i=1}^{n} i \cdot (i!) + (n+1) \cdot (n+1)! \\ &= \left((n+1)! - 1 \right) + (n+1) \cdot (n+1)! \quad \text{by the inductive hypothesis} \\ &= \left(1 + (n+1) \right) \cdot (n+1)! - 1 \quad \text{rearranging} \\ &= (n+2) \cdot (n+1)! - 1 \quad \text{simplifying} \\ &= (n+2)! - 1 \quad \text{by definition of factorial} \end{split}$$

and hence P(n+1) holds.

Therefore by the principle of induction we have proved that P(n) holds for all $n \in \mathbb{N}$.

2. Use the principle of mathematical induction to show $3^n < n!$ for all n > 6.

Solution: Let P(n) be the proposition $3^n < n!$.

Base case: P(7) is true, since 37 = 2187 < 5040 = 7!

Inductive step: Assume that P(n) is true for some n>6. Now considering n+1 we have:

$$3^{n+1}=3\cdot 3^n$$
 rearranging $<3\cdot n!$ by the inductive hypothesis $<(n+1)\cdot n!$ since $n>6$ by definition of factorial

and hence P(n+1) holds.

Therefore by the principle of induction we have proved that P(n) holds for all n>6.

3. Use the principle of mathematical induction to show $n^3 > n^2 + 3$ for all $n \ge 2$.

Solution: Let P(n) be the proposition $n^3 > n^2 + 3$.

Base case: P(2) is true, since $2^3 = 8 > 7 = 2^2 + 3$.

Inductive step: Assume that P(n) is true for some $n \geq 2$ and consider n+1. Now, expanding we have:

$$(n+1)^3 = n^3 + 3 \cdot n^2 + 3 \cdot n + 1$$

> $(n^2 + 3) + 3n^2 + 3n + 1$ by the inductive hypothesis
= $4n^2 + 3n + 1 + 3$ rearranging
 $\ge n^2 + 2n + 1 + 3$ since $n \ge 0$
= $(n+1)^2 + 3$ since $(n+1)^2 = n^2 + 2 \cdot n + 1$

and hence P(n+1) holds.

Therefore by the principle of induction we have proved that P(n) holds for all $n \geq 2$.

- 4. Suppose that
 - $a_1 = 2;$
 - $a_2 = 9$;
 - $a_n = 2 \cdot a_{n-1} + 3 \cdot a_{n-2}$ for $n \ge 3$.

Use (the second principle of) mathematical induction to show $a_n \leq 3^n$ for all $n \in \mathbb{Z}^+$.

Solution: Let P(n) be the proposition that $a_n \leq 3^n$.

Base cases: P(1) and P(2) are true, since $a_1 = 2 \le 3 = 3^1$ and $a_2 = 9 = 3^2$.

Inductive step: Let $n \ge 2$ and assume that P(k) is true for all $1 \le k \le n$. Now by definition we have

$$a_{n+1} = 2 \cdot a_n + 3 \cdot a_{n-1}$$

 $\leq 2 \cdot 3^n + 3 \cdot 3^{n-1}$ by the inductive hypothesis (using both $P(n)$ and $P(n-1)$)
 $= 2 \cdot 3^n + 3^n$ rearranging
 $= 3 \cdot 3^n$ rearranging
 $= 3^{n+1}$ and hence $P(n+1)$ holds.

Therefore by the principle of induction we have proved that P(n) holds for all $n \in \mathbb{Z}^+$.

5. Use the principle of mathematical induction to show a function f defined by specifying f(0) and a rule for obtaining f(n+1) from f(n) (for each $n \ge 0$) is well-defined.

Solution: Let P(n) be the proposition that f(n) is well-defined.

Base case: P(0) is true, since f(0) is well-defined.

Inductive step: Assume that P(n) is true for some $n \in \mathbb{Z}^+$. Now f(n+1) is defined in terms of f(n) and by the inductive hypothesis, f(n) is well-defined. Therefore f(n+1) is well-defined and P(n+1) holds.

Therefore by the principle of induction we have proved that P(n) holds for all $n \in \mathbb{Z}^+$.

- 6. Find f(i) for i = 1, 2, 3, 4 given f(n) is defined recursively by f(0) = 3 and for each $n \ge 0$:
 - (a) $f(n+1) = -2 \cdot f(n)$;

Solution: -6, 12, -24, 48

(b) $f(n+1) = 3 \cdot f(n) + 7$;

Solution: 16, 55, 172, 523

(c) $f(n+1) = f(n)^2 - 2 \cdot f(n) - 2$;

Solution: 1, -3, 13, 141

(d) $f(n+1) = 3 \cdot f(n)/3$.

Solution: 3, 3, 3, 3

- 7. Give a recursive definition for each of the following non-recursive definitions:
 - (a) $g_1(n) = 4.7^n$ for all $n \ge 0$;

Solution: $g_1(0) = 4$ and $g_1(n+1) = 7 \cdot g_2(n)$ for $n \ge 0$

This can derived as follows: by definition we have $g_1(0) = 4 \cdot 7^0 = 4 \cdot 1 = 4$, while expanding $g_1(n+1)$ yields:

$$g_1(n+1) = 4 \cdot 7^{n+1}$$
 by definition
= $7 \cdot (4 \cdot 7^n)$ rearranging
= $7 \cdot g_1(n)$ by definition of g_1

(b) $g_2(n) = 3 \cdot n + 5$ for all $n \ge 0$;

Solution: $g_2(0) = 5$ and $g_2(n+1) = g_2(n) + 3$ for $n \ge 0$ This can derived as follows: by definition we have $g_2(0) = 3 \cdot 0 + 5 = 0 + 5 = 5$, while expanding $g_2(n+1)$ yields:

$$g_2(n+1) = 3 \cdot (n+1) + 5$$
 by definition
 $= 3 \cdot n + 3 + 5$ rearranging
 $= (3 \cdot n + 5) + 3$ rearranging
 $= g_2(n) + 3$ by definition of g_2

(c) $g_3(n) = n!$ for all $n \ge 1$;

Solution: $g_3(1) = 1$ and $g_3(n+1) = (n+1) \cdot g_3(n)$ for $n \ge 1$ This can derived as follows: by definition we have $g_3(1) = 1! = 1$, while expanding $g_2(n+1)$ yields:

$$g_2(n+1) = (n+1)!$$
 by definition
= $(n+1) \cdot n!$ rearranging since $n \ge 1$
= $(n+1) \cdot g_3(n)$ by definition of g_3

4

(d) $g_4(n) = n^2 \text{ for all } n \ge 0.$

Solution:
$$g_4(0) = 0$$
 and $g_4(n+1) = g_4(n) + 2 \cdot n + 1$ for $n \ge 0$

This can derived as follows: by definition we have $g_4(0) = n^2 = 0$, while expanding $g_4(n+1)$ yields:

$$g_4(n+1) = (n+1)^2$$
 by definition
 $= n^2 + 2 \cdot n + 1$ rearranging
 $= g_4(n) + 2 \cdot n + 1$ by definition of g_4

8. Give recursive definitions of the functions max and min, so that $\max(a_1, a_2, \ldots, a_n)$ and $\min(a_1, a_2, \ldots, a_n)$ are the maximum and minimum of the n real numbers a_1, a_2, \ldots, a_n respectively.

Solution: The recursive definitions of the max and min functions are denoted here by \max_r and \min_r respectively.

$$\max_{r}(a_1) = a_1
\max_{r}(a_1, a_2, \dots, a_n, a_{n+1}) = \max(\max_{r}(a_1, a_2, \dots, a_n), a_{n+1})
\min_{r}(a_1) = a_1
\min_{r}(a_1, a_2, \dots, a_n, a_{n+1}) = \min(\min_{r}(a_1, a_2, \dots, a_n), a_{n+1})$$

where

$$\max(x,y) = \left\{ \begin{array}{ll} y & \text{if } x \leq y \\ x & \text{if } x > y \end{array} \right. \text{ and } \min(x,y) = \left\{ \begin{array}{ll} x & \text{if } x \leq y \\ y & \text{if } x > y \end{array} \right.$$

- 9. Give a recursive definition of the following sets:
 - (a) the odd positive integers;

Solution: $1 \in S$ and if $x \in S$, then $x+2 \in S$

(b) the positive integer powers of 3;

Solution: $3 \in S$ and if $x \in S$, then $3 \cdot x \in S$

(c) the polynomials with integer coefficients.

Solution: $q \in S$ for any $q \in \mathbb{Z}$ and if $p(x) \in S$, then $x \cdot p(x) + q \in S$ for any $q \in \mathbb{Z}$.

- 10. Give recursive definitions with initial condition(s) for each of the following sets:
 - (a) $\{0.1, 0.01, 0.001, \dots\}$

Solution: $0.1 \in S$ and if $x \in S$, then $x/10 \in S$

(b) the set of positive integers congruent to 4 (mod 7)

Solution: $4 \in S$ and if $x \in S$, then $x+7 \in S$

(c) the set of integers not divisible by 3

Solution: $1 \in S$, $2 \in S$ and if $x \in S$, then $x+3 \in S$ and $x-3 \in S$

- 11. Assume that we have a list l, and are given the functions:
 - head(l) which returns the first element of a non-empty list;
 - tail(l) which returns the tail of a non-empty list;
 - isEmpty(l) returns true if the list is empty and false otherwise.

For example if l equals (5,3,4,2,7,8,3,4), then $\mathtt{head}(l)$ would deliver 5, $\mathtt{tail}(l)$ would deliver (3,4,2,7,8,3,4), and $\mathtt{isEmpty}(l)$ would deliver false.

Using the above functions, in a pseudo code of your choice:

(a) write a recursive function length(l) that returns the length of the list l as an integer.

For example, $length(\langle 1, 5, 2, 9, 8, 3, 2 \rangle)$ would return 7.

Solution:

$$length(l) = if isEmpty(l) then 0 else 1 + length(tail(l))$$

(b) write a recursive function sum(l), that returns the summation of the elements in a list.

For example, sum((1, 5, 2, 3)) returns 1 + 5 + 2 + 3 = 11.

Solution:

$$sum(l) = if isEmpty(l) then 0 else head(l) + sum(tail(l))$$

(c) write a recursive function present(e, l), that delivers true if e appears in the list l and false otherwise.

For example, $present(6, \langle 1, 5, 2, 3 \rangle)$ returns false and $present(4, \langle 1, 2, 3, 1, 2, 4, 2 \rangle)$ returns true.

Solution:

$$present(e, l) = if isEmpty(l) then false else $Equals(e, head(l)) \lor present(e, tail(l))$$$

where Equals(x,y) is the predicate that returns true if and only if x=y.

(d) write a recursive function remove(e, l) that removes all occurrences of e from the list l.

For example, remove($5, \langle 1, 5, 2, 3, 5 \rangle$) returns $\langle 1, 2, 3 \rangle$.

Solution:

```
\begin{split} \texttt{remove}(e,l) = &\textbf{if} \ \texttt{isEmpty}(l) \ \textbf{then} \ l \\ &\textbf{else} \ \textbf{if} \ Equals(e,\texttt{head}(l)) \ \textbf{then} \ \texttt{remove}(e,\texttt{tail}(l)) \\ &\textbf{else} \ \langle \texttt{head}(l),\texttt{remove}(e,\texttt{tail}(l)) \rangle \end{split}
```

Difficult/challenging questions.

12. Show that the set S defined by:

- $5 \in S$;
- if $s \in S$ and $t \in S$, then $s + t \in S$

is the set of positive integers divisible by 5.

Solution: Let T be the set of positive integers divisible by 5. In order to show that S = T, we prove that $S \subseteq T$ and $T \subseteq S$.

• In order to prove that $S \subseteq T$, we use the following method of mathematical induction over the recursively defined set S:

Let P(s) be the proposition that $s \in T$, for each $s \in S$. The proof by induction consists of establishing the following:

```
Base case: P(5) holds;
Inductive step: if P(s) and P(t) hold for s \in S and t \in S, then P(s+t) holds.
```

Notice that this is a different form of induction from the one we have used previously; however, in view of the recursive definition of S, establishing each of these steps corresponds exactly to showing that $S \subseteq T$.

Clearly the base case holds, since $5 = 5 \cdot 1$. For the inductive step, assume that P(s) is true and P(t) is true, for some $s \in S$ and $t \in S$. Then each of s and t is divisible by 5, so that s+t is divisible by 5, and hence P(s+t) is true.

Thus by unduction P(s) holds for all $s \in T$, and hence $S \subseteq T$.

• In order to prove that $T \subseteq S$, we again use induction again, but this time over \mathbb{N} rather than over the recursive set S. Let Q(n) be the proposition that $5 \cdot n \in S$, for each $n \in \mathbb{Z}^+$.

Base case: Q(1) is true since $5 \in S$.

Inductive step: Assume that Q(n) is true for some $n \in \mathbb{Z}^+$. Now combining the facts:

- using the inductive hypothesis we have $5 \cdot n \in S$;
- using the initial conditions of S we have $5 \in S$.
- $-5 \cdot (n+1) = 5 \cdot n + 5;$

- by the definition of S, if $s, t \in S$, then $s + t \in S$;

we have $5 \cdot n + 5 \in S$, and hence Q(n+1) is true.

Therefore by mathematical induction Q(n) holds for all $n \in \mathbb{Z}^+$. Now suppose $t \in T$, by definition $t = 5 \cdot k$ for some positive integer k and since Q(k) holds, it follows that $t \in S$, and hence $T \subseteq S$ completing the proof.

13. Prove that

$$\sum_{i=0}^{n} \left(-\frac{1}{2} \right)^{j} = \frac{2^{n+1} + (-1)^{n}}{3 \cdot 2^{n}}$$

for all $n \in \mathbb{N}$.

Solution: Let P(n) be the proposition that $\sum_{j=0}^{n} (-\frac{1}{2})^j = \frac{2^{n+1} + (-1)^n}{3 \cdot 2^n}$, for each $n \in \mathbb{N}$.

Base case: For P(0) we have:

$$\sum_{i=0}^{0} \left(-\frac{1}{2} \right)^{i} = \left(-\frac{1}{2} \right)^{0} = 1 = \frac{3}{3} = \frac{2+1}{3 \cdot 1} = \frac{2^{0+1} + (-1)^{n}}{3 \cdot 2^{0}}$$

Inductive step: Assume that P(n) holds for some $n \in \mathbb{N}$. To prove that P(n+1) holds we will split into two cases: when n is even and when n odd.

• If n is even, then considering n+1 we have that:

$$\sum_{j=0}^{n+1} \left(-\frac{1}{2}\right)^j = \sum_{j=0}^n \left(-\frac{1}{2}\right)^j + \left(-\frac{1}{2}\right)^{n+1}$$
 rearranging
$$= \frac{2^{n+1} + (-1)^n}{3 \cdot 2^n} + \left(-\frac{1}{2}\right)^{n+1}$$
 by induction
$$= \frac{2^{n+1} + 1}{3 \cdot 2^n} - \frac{1}{2^{n+1}}$$
 since n is even (and $n+1$ is odd)
$$= \frac{2^{n+2} + 2 - 3}{3 \cdot 2^{n+1}}$$
 rearranging
$$= \frac{2^{(n+1)+1} - 1}{3 \cdot 2^{n+1}}$$
 rearranging
$$= \frac{2^{(n+1)+1} + (-1)^{n+1}}{3 \cdot 2^{n+1}}$$
 since n is even (and $n+1$ is odd)

and hence P(n+1) holds in this case.

• If n is odd, then considering n+1 we have:

$$\begin{split} \sum_{j=0}^{n+2} \left(-\frac{1}{2}\right)^j &= \sum_{j=0}^n \left(-\frac{1}{2}\right)^j + \left(-\frac{1}{2}\right)^{n+1} & \text{rearranging} \\ &= \frac{2^{n+1} + (-1)^n}{3 \cdot 2^n} + \left(-\frac{1}{2}\right)^{n+1} & \text{by induction} \\ &= \frac{2^{n+1} - 1}{3 \cdot 2^n} + \frac{1}{2^{n+1}} & \text{since n is odd (and $n+1$ is even)} \\ &= \frac{2^{n+2} - 2 + 3}{3 \cdot 2^{n+1}} & \text{rearranging} \\ &= \frac{2^{n+2} + 1}{3 \cdot 2^{n+1}} & \text{rearranging} \\ &= \frac{2^{((n+1)+1)+1} + 1}{3 \cdot 2^{n+1}} & \text{rearranging} \\ &= \frac{2^{((n+1)+1)+1} + (-1)^{n+2}}{3 \cdot 2^{n+1}} & \text{since n is odd (and $n+1$ is even)} \end{split}$$

and hence P(n+1) holds in this case.

Since these are the only cases to consider we have proved P(n+1) holds.

Therefore by the principle of induction we have proved that P(n) holds for all $n \in \mathbb{N}$.