

Fonaments de computadors

Tema 1. INTRODUCCIÓ ALS COMPUTADORS

Objectius

- Conèixer els termes bàsics de l'assignatura.
- Oferir una perspectiva històrica dels computadors.
- Descriure les unitats funcionals bàsiques d'un computador.
- Introduir els sistemes de representació bàsics.

Bibliografía

- Introducción a los Computadores.
 - J. Sahuquillo y otros. Ed. SP-UPV, 1997 (ref. 97.491).
- Fundamentos de los computadores
 - P. de Miguel Miguel Anasagasti, (Ed. Thomson-Paraninfo, 9^a edición)
- Digital design : principles and practices
 - John F. Wakerly (Ed. Upper Saddle River: Pearson Prentice Hall, 2006)

Apartado de Contenidos en Poliformat

Índex

- Introducció
- Història i evolució
- Arquitectura de Von Neumann
- Unitats funcionals del computador
- Sistemes de representació bàsics

Introducció

- Informàtica → INFORmació + autoMÀTICA
- Computador → Màquina de programa emmagatzemat
- Programa → Seqüència d'instruccions que s'executa de forma seqüencial

Introducció

- Maquinari → Conjunt d'elements tangibles (mecànics o elèctrics)
- Programari → Conjunt d'elements intangibles (sistema operatiu, programes)
- Unitat funcional del computador →
 Circuit que realitza una tasca específica
- Bit → Unitat mínima (binària) d'informació (0 o 1)
- Byte → Unitat d'informació formada per 8 bits (2⁸ = 256 combinacions)

- El primer dispositiu mecànic considerat un computador va ser dissenyat per Charles Babbage en 1816.
 - Aquesta màquina analítica era un dispositiu mecànic que utilitzava targetes perforades per a la introducció de programes i dades.
 - Mai va ser construïda en la seua totalitat

- La història del computador modern durant el segle XX gira al voltant de la introducció i posterior evolució de l'interruptor electrònic (electronic switch).
 - És un dispositiu que controla el pas d'un corrent elèctric en funció d'un senyal eléctric extern.
 - Permet la implementació d'operacions lògiques senzilles que es combinen per a construir un computador.

 Exemple: Amb quines condicions s'encendran les peretes?

FCO

Generacions

- Primera generació (1940-1956)
 - Vàlvules de buit
 - Alt consum i dissipació de calor
 - Baixa fiabilitat
- Segona generació (1956-1963)
 - Transistor
 - Grans millores en consum, dissipació i fiabilitat
 - Redueix costos i inicia el camí de la miniaturització
- Tercera generació (1964-1971)
 - Circuits integrats (xips) amb múltiples transistors
 - Minicomputadors
- Quarta generació (1971-present)
 - Microprocessador
 - Alta escala d'integració
 - Computador personal

ENIAC 1ª gen.

IBM 608 2ª gen.

PDP-11 3^a gen.

Apple II 4^a gen.

- Cinquena generació (present i futur)
 - Noves tecnologies (òptica, quàntica, etc.)
 - Processadors multinucli
 - Grans sistemes multicomputadors, exascale
 - Processament distribuït i paral·lel, computació en núvol i grid
 - Computació i comunicacions ubiqües (Internet, dispositius mòbils, xarxes socials, etc.)
 - Aplicacions de la intel·ligència artificial (xarxes neuronals, sistemes experts, sistemes de reconeixement de veu, robòtica, etc.)

Arquitectura de Von Neumann

- És la base de la immensa majoria de computadors actuals.
 - La memòria principal emmagatzema instruccions i dades.
 - La unitat central de procés executa instruccions.
 - L'execució d'una instrucció pot tindre com a conseqüència la lectura i/o escriptura en memòria principal o l'accés al sistema d'entrada/eixida.

Unitats funcionals del computador

- Unitat central de procés (UCP o CPU)
 - És el component que interpreta les instruccions i processa les dades contingudes en els programes.
- Memòria principal
 - Dispositiu d'emmagatzemament (permet lectura i escriptura)
 - En general, el processador accedeix a la memòria principal com si aquesta fóra un vector indexat per adreces.

Unitats funcionals del computador

FCO

- Sistema d'entrada/eixida
 - Permet la comunicació de la UCP amb l'exterior.

Perifèrics Controlador Interfície Controlador Controlador

Unitats funcionals del computador

FCO

Perifèrics

- D'entrada: ratolí, teclat, llapis òptic, pantalla tàctil...
- D'eixida: pantalla, altaveu, impressora...
- D'emmagatzemament: disc dur, DVD, memòria flaix...
- De comunicació: mòdem, xarxa sense cable, Ethernet ...

UCP vs perifèrics

- Diferents tecnologies
- Diferents velocitats de transferència d'informació
- Diversitat de modes d'operació (ex: R,W,RW) i funcionament
- Diferents formats de representació de dades

Interfície o controlador

- Dispositiu maquinari/programari que permet la comunicació entre la UCP i el perifèric
- Soluciona les diferències entre la UCP i el perifèric

- Sistema de numeració
 - Conjunt de signes, regles i convencions que permeten expressar quantitats verbalment i gràficament.
 - Exemple. Decimal, binari
- Base d'un sistema de numeració
 - Nombre de símbols distints que s'empren. Cada un d'aquests símbols es denomina dígit.
 - Exemple. Decimal (10 signes), binari (2 signes)
- Sistema de numeració posicional
 - Un nombre ve definit per una cadena de dígits, on cada un està afectat per un factor d'escala.
 - Aquell en què l'ordre dels símbols és important.
 - En decimal, 32 ≠ 23

- En el sistema binari,
 - Base = 2, Dígits = 0 i 1 (anomenats bits)
 - Una quantitat N es representa per mitjà d'una seqüència de bits
 - Exemple. N = 1 0 1 1
 MSB LSB
 (Most Significant Bit) (Least Significant Bit)
- Per a calcular la quantitat representada, es calcula el polinomi de potències de la base
 - Exemple. N = $1011_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 8 + 0 + 2 + 1 = 11_{10}$
 - Exemple. R = $10,11_2 = 1x2^1 + 1x2^{-1} + 1x2^{-2} = 2 + 0,5 + 0,25 = 2,75_{10}$
- El polinomi de potències de la base es pot utilitzar per a obtindre l'equivalència decimal de qualsevol quantitat representada en qualsevol base (no sols binari).

FCO

Algunes quantitats comunes

P.P.B.	Binari	Decimal
2-4	0,0001	0,0625
2-3	0,001	0,125
2-2	0,01	0,25
2-1	0,1	0,5
20	1	1
2 ¹	10	2
2 ²	100	4
2 ³	1000	8
24	10000	16
2 ⁵	100000	32
2 ⁶	1000000	64
27	10000000	128
28	100000000	256
2 ⁹	1000000000	512
210	10000000000	1024
2 ¹¹	100000000000	2048

P.P.B.	Binari	Decimal
	0	0
20	1	1
2 ¹	10	2
2 ¹ +2 ⁰	11	3
2 ²	100	4
2 ² +2 ⁰	101	5
2 ² +2 ¹	110	6
2 ² +2 ¹ +2 ⁰	111	7
2 ³	1000	8
2 ³ +2 ⁰	1001	9
2 ³ +2 ¹	1010	10
2 ³ +2 ¹ +2 ⁰	1011	11
2 ³ +2 ²	1100	12
2 ³ +2 ² +2 ⁰	1101	13
2 ³ +2 ² +2 ¹	1110	14
2 ³ +2 ² +2 ¹ +2 ⁰	1111	15

- Canvi de base (decimal a binari)
 - Mètode de les divisions successives
 - Aplicable a nombres sense part fraccionària.
 - Consisteix a dividir la quantitat entre la nova base (b=2). Mentre el quocient siga major o igual que la nova base, dividim de nou (aquesta vegada, només el quocient).
 - Una vegada fetes totes les divisions, la seqüència de dígits és la concatenació de l'últim quocient i els residus de les divisions anteriors, començant per l'última.
 - Exemple: passem el nombre 348₁₀ a binari.

$$348 \div 2 = 174 \div 2 = 87 \div 2 = 43 \div 2 = 21 \div 2 = 10 \div 2 = 5 \div 2 = 2 \div 2 = 1 \text{ (MSB)}$$
 (LSB) **0** \leftarrow **0** \leftarrow **1** \leftarrow **1** \leftarrow **1** \leftarrow **0** \leftarrow **1** \leftarrow **0** \leftarrow

Solució: $348_{10} = 101011100_2$

 Aquest mètode també és útil per a passar de decimal a qualsevol base (no sols binari).

- Canvi de base (decimal a binari)
 - Mètode de les multiplicacions successives
 - Aplicable a nombres que només tenen part fraccionària.
 - Consisteix a multiplicar el nombre per la nova base (b=2). La part entera resultant (0 o 1) serà un dels dígits de la seqüència.
 - Apliquem de nou la multiplicació a la part fraccionària restant.
 - Exemple: convertim 0,375₁₀ a base 2.

```
0,375 \times 2 = 0,750 \rightarrow 0 \text{ (MSB)}

0,750 \times 2 = 1,50 \rightarrow 1

0,50 \times 2 = 1 \rightarrow 1 \text{ (LSB)} Solució: 0,375_{10} = 0,011_2
```

- És possible que una quantitat que es representa amb un nombre finit de dígits en decimal requerisca infinits dígits en binari (exemple: 0,9).
- Aquest mètode també és útil per a passar de decimal a qualsevol base (no sols binari).

- Conversió d'un nombre R = e,f a una base b
 - Convertim la part entera (e), amb la qual cosa obtindrem una seqüència de dígits de la base b, a_na_{n-1} ... a₁a₀
 - Convertim la part fraccionària (f), amb la qual cosa obtindrem una altra seqüència de dígits de la base b, a₋₁a₋₂ ... a_{-p}
 - Reunim els dígits que s'han obtingut per separat, mantenint la posició de la coma entre els dígits de e i els de f
 - R en base b s'escriu a_na_{n-1} ... a₁a₀ , a₋₁a₋₂ ... a_{-p}
- Exemple: convertim 10,375₁₀ a binari
 - $-10_{10} = 1010_2 \text{ i } 0.375_{10} = 0.011_2 \rightarrow 10.375_{10} = 1010.011_2$
 - Podem verificar el resultat només calculant el valor decimal de la seqüència binària obtinguda:

$$1010,011_2 = 2^3 + 2^1 + 2^{-2} + 2^{-3} = 8 + 2 + 0,25 + 0,125 = 10,375_{10}$$

- A més del sistema binari, s'utilitzen també:
 - Octal (base $8 = 2^3$)
 - Cada dígit octal representa un grup exactament de 3 bits.
 - Dígits octals: 0, 1, 2, 3, 4, 5, 6, 7
- Hexadecimal (base $16 = 2^4$)
 - Cada dígit hexadecimal representa un grup exactament de 4 bits.
 - Dígits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (=10₁₀), B (=11₁₀), C (=12₁₀), D (=13₁₀), E (=14₁₀), F (=15₁₀)
- I l'ús d'aquest s'ha estés per
 - La facilitat de conversió a / des de binari, i
 - Perquè permeten representar llargues seqüències de bits amb pocs dígits (més fàcils de manejar que les seqüències de bits).

- Canvi de bases binària, octal, hexadecimal
 - Atès que les bases octal i hexadecimal són potències de 2 (la base binària), es pot demostrar que
 - En octal (base 2³) un dígit representa un grup de 3 bits.
 - En hexadecimal (base 2⁴) un dígit representa un grup de 4 bits.
 - En els dos casos, el canvi d'una representació a una altra es realitza utilitzant una taula, agrupant els bits en blocs de 3 o 4.

Octal	Binari	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

Hexadecimal	Binari Hex.		Binari	
0	0000	8	1000	
1	0001	9	1001	
2	0010	Α	1010	
3	0011	В	1011	
4	0100	С	1100	
5	0101	D	1101	
6	0110	E	1110	
7	0111	F	1111	

- Canvi a/de binari des d'octal i hexadecimal
 - Quan el grup de 3/4 bits no està complet, s'ompli amb zeros.
 - Zeros a l'esquerra si els bits són de la part entera.
 - Zeros a la dreta si els bits són de la part fraccionària.
 - Un grup de bits mai pot incloure la coma.
 - No es poden barrejar bits de la part entera i de la fraccionària en el mateix grup.
 - Cal començar les agrupacions al voltant de la coma.

Omplit amb zeros

 $111000011011,10000001_2 = 111 000 011 011, 100 000 010_2 = 7033,402_8$ $111000011011,10000001_2 = 1110 0001 1011, 1000 0001_2 = E1B,81_{16}$

FCO

- Codi BCD (Binary Coded Decimal)
 - Mètode senzill de codificació de quantitats utilitzant dígits binaris.

 S'utilitzen quatre bits (denominats D, C, B i A), per a codificar un dígit decimal.

- Cada dígit decimal es codifica per separat, per mitjà d'una taula.
- Exemple. Codifiquem 348_{10} en BCD. $3_{10} = 0011_{\text{BCD}}, 4_{10} = 0100_{\text{BCD}}, 8_{10} = 1000_{\text{BCD}}$ $348_{10} = 001101001000_{\text{BCD}}$
- Exemple. Quina quantitat és 00101001_{BCD} ? $0010_{BCD} = 2_{10}$, $1001_{BCD} = 9_{10}$ $00101001_{BCD} = 29_{10}$

Dígit	Dígit BCD			
decimal	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
1 2 3 4 5	0	0	1	0
3	0	0	1	1
4	0	1	0	0
	0	1	0	1
6	0	1	1	0
7	0	1	1	0 1
8	1	0	0	0
9	1	0	0	1

Fonaments de computadors

Tema 1. INTRODUCCIÓ ALS COMPUTADORS