Examenul de bacalaureat național 2019

Proba E. c)

Matematică *M_mate-info*

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați suma primilor trei termeni ai progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1=1$ și $b_2=3$.
- **5p 2.** Se consideră x_1 și x_2 soluțiile ecuației $x^2 + mx + 7 = 0$, unde m este număr real. Determinați numărul real m pentru care $2x_1 + 2x_2 + 3x_1x_2 = 1$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x-2) + \log_2(x+2) = 5$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte se pot forma cu elementele mulțimii $\{1,2,3,4,5\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,6) și B(6,2). Determinați coordonatele punctului M, știind că $\overrightarrow{AM} = \overrightarrow{MB}$.
- **5p 6.** Se consideră triunghiul ABC cu $AB = 3\sqrt{3}$, AC = 4 și $A = \frac{2\pi}{3}$. Arătați că aria triunghiului ABC este egală cu 9.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} a & 1 & 1 \\ 1 & -a & -1 \\ 1 & 1 & a \end{pmatrix}$ și sistemul de ecuații $\begin{cases} ax + y + z = 1 \\ x ay z = 1, \text{ unde } a \text{ este } \\ x + y + az = 2 \end{cases}$
- număr real.
- **5p** a) Arătați că $\det(A(0)) = 0$.
- **5p b**) Demonstrați că $\det(A(a)) = a(1-a)(1+a)$, pentru orice număr real a.
- **5p** c) Pentru a = 0, demonstrați că sistemul de ecuații are o infinitate de soluții de forma (x_0, y_0, z_0) cu x_0, y_0 și z_0 numere întregi.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = (x 2019)(y 2019) + 2019.
- **5p** a) Arătați că x * 2019 = 2019, pentru orice număr real x.
- **5p b**) Determinați numerele reale x, știind că (x*x)*x = x.
- **5p** c) Determinați perechile de numere întregi m și n pentru care m*n=2020.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=\sqrt{x}-\ln x$.
- **5p** a) Arătați că $f'(x) = \frac{\sqrt{x} 2}{2x}$, $x \in (0, +\infty)$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f, în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\sqrt{x} \ln \frac{x}{4} \ge 2$, pentru orice $x \in (0, +\infty)$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2}{x^2 + 9}$.
- **5p a)** Arătați că $\int_{0}^{1} (x^2 + 9) f(x) dx = \frac{1}{3}$.
- **5p** \mid **b**) Demonstrați că orice primitivă a funcției f are un singur punct de inflexiune.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră $I_n = \int_0^1 x^{2n} f(x) dx$. Arătați că $\lim_{n \to +\infty} I_n = 0$.