第二章 非线性方程求根

本章主要讨论**单变量非线性方程:**

$$f(x) = 0 ag{2.1}$$

的求根问题, $x \in R$, $f(x) \in C[a,b]$.

● 问题:

- (1)"根在哪里",即确定根所在的区间,进行根的隔离。
- (2)"根的求法", 通过数值方法, 近似求解, 并保证精度要求。

若 $f(x) \in C[a,b]$ 且 f(a)f(b) < 0,根据闭区间上连续函数性质可知 f(x) = 0 在 (a,b) 内至少有一个实根,这时称 [a,b] 为方程(2.1)的有根区间,通常可通过逐次搜索法求得方程 (2.1)的有根区间。

例 求 $f(x) = x^3 - 11.1x^2 + 38.8x - 41.77 = 0$ 的有根区间。

解 根据有根区间定义,对f(x) = 0的根进行搜索计算,结果如下:

X	0	1	2	3	4	5	6
f(x)的符号	ı	ı	+	+	ı	ı	+

由此可知方程的有根区间为: [1,2],[3,4],[5,6]。

● **根的近似求解**:将区间[*a*,*b*]分成若干小的子区间,由零点定理确定根所在的子区间,并根据精度要求,不断细分直到满足精度要求。最简单的方法就是**二分法**。

§1 二分法

二分法是方程求解的一个简单而可靠的方法。

设 $f(x) \in C[a,b]$ 且 f(a)f(b) < 0,根据连续函数性质可知 f(x) = 0 在 (a,b) 内至少有一个实根 x^* 。

• **二分法**: 考察有根区间 [a,b], 取中点 $x_0 = (a+b)/2$, 将它分为两半。假设中点 x_0 不是 f(x) 的零点, 然后进行根的搜索,即检查 $f(x_0)$ 与 f(a) 是否同号, 如果同号, 说明所求的根 x^* 在 x_0 的右侧, 这时令 $a_1 = x_0$, $b_1 = b$; 否则 x^* 必在 x_0 的左侧, 令 $a_1 = a$, $b_1 = x_0$ (如图)。

不管出现哪一种情况,新的有根区间 $[a_1,b_1]$ 的长度仅为 [a,b] 的一半,对压缩了的有限区间 $[a_1,b_1]$ 再分为两半,然后通过根的搜索判定所求的根在 x_1 的哪一侧. 从而又确定一个新的有根区间

图 7-1

 $[a_2,b_2]$, 其长度是 $[a_1,b_1]$ 的一半, 如此反复二分下去, 即可得出一系列的有根区间:

 $[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset \cdots \supset [a_k,b_k]\supset \cdots$

其中区间每个区间都是前一个区间的一半,因此 $[a_k,b_k]$ 的长度: $b_k-a_k=(b-a)/2^k$ 当 $k\to\infty$ 时趋于零,就是说,如果二分 过程无限地继续下去,这些区间最终必收缩于一点 x^* ,该点 就是所求的根。

每次二分后,取有根区间 $[a_n,b_n]$ 的中点 $x_n = (a_n + b_n)/2$ 作为根的近似值,则在二分过程中可以获得一个近似根的序列 x_0,x_1,x_2,\cdots ,该序列必以根 x^* 为极限。

由 $x^* \in [a_n, b_n]$,可得

$$\left|x^* - x_n\right| \le \frac{1}{2}(b_n - a_n) = \frac{1}{2^{n+1}}(b - a)$$
 (2.2)

只要足够多次(即n充分大), 使得

$$\frac{1}{2^{n+1}}(b-a) < \varepsilon$$

即
$$n > \left[\ln \frac{b-a}{\varepsilon} / \ln 2 \right]$$
,就有
$$\left| x^* - x_n \right| < \varepsilon$$

这里 ε 为预定的精度。

注:在实际计算中,若 $|f(x_n)|$ 很小: $|f(x_n)| < \delta$ (δ 为给定的误差限),则 x_n 就可作为近似根。

例1 见教材 p.14.

例 求方程 $f(x) = x^3 - x - 1 = 0$ 在区间 [1.0, 1.5] 内的一个实根,要求准确到小数点后的第 2 位。

解 a = 1.0, b = 1.5, 由 f(a) < 0, f(b) > 0 知 $x^* \in (a,b)$; 取 [a,b] 的中点 $x_0 = 1.25$, 将区间二等分, 由于 $f(x_0) < 0$, $f(x_0) f(b) < 0$, 故所求的根 x^* 必在 x_0 右侧,这时应令 $a_1 = x_0 = 1.25$, $b_1 = b = 1.5$, 得 $x^* \in (a_1,b_1)$;

如此反复二分下去,按误差估计(2.2)式,只要二分 6 次 (n=6),

便能达到预定的精度 $|x^* - x_6| \le 0.005$ $(x_6 = (a_6 + b_6)/2)$ 。

二分法的计算结果如下表:

表 计算结果

k	a_k	$b_{\scriptscriptstyle k}$	\boldsymbol{x}_k	$f(x_k)$ 符号
0	1.0	1.5	1.25	_
1	1.25	1.5	1.375	+
2	1.25	1.375	1.3125	_
3	1.3125	1.375	1.3438	+
4	1.3125	1.3438	1.3281	+
5	1.3125	1.3281	1.3203	_
6	1.3203	1.3281	1.3242	_

- 二分法程序框图见教材图 2-2 (p.15)。
- 二分法的优点是算法简单,且总是收敛的,缺点是事先要确定有根区间,且收敛较慢,且不能用于求复根或偶数重根,故一般不单独将其用于求根,只用其求根的一个较好的近似值。

§ 2 迭代法

迭代法是一种逐次逼近的方法。

2.1 不动点迭代法(简单迭代法)

将方程(2.1) (即 f(x) = 0) 改写成等价的形式:

$$x = g(x) \tag{2.3}$$

若 x^* 满足 $f(x^*)=0$,则 $x^*=g(x^*)$,反之亦然。称 x^* 为函数g(x)的一个**不动点**。

选择一个初始近似值 X_0 , 将它代入(2.3)右端, 即可求得:

$$x_1 = g(x_0)$$

可以如此反复迭代计算:

$$x_{k+1}=g(x_k), \qquad k=0,1,2,\cdots$$
 0 (2.4) 称 $g(x)$ 为**迭代函数**。

如果对 $x_0 \in [a,b]$, 由(2.4)得到的**迭代序列** $\{x_k\}$ 有极限:

$$\lim_{k\to\infty} x_k = x^*$$

则称**迭代法(2.4)收敛**,且 $x^* = g(x^*)$ 为g(x)的不动点,称(2.4) 为**不动点迭代法**。若迭代序列发散,则称**迭代法发散。**

- 不动点迭代法基本思想: 将隐式方程 f(x) = 0 化为显式的 计算公式 x = g(x), 然后通过迭代, 求方程的近似根。
- ▶ **迭代法几何意义:** 方程x = g(x)的求根问题在 xy 平面上 就是要确定曲线 x = g(x) 与直线 y = x 的交点 P^* 。

对于 x^* 的某个近似值 x_0 , 在曲线y = g(x)上 可确定一点 P_0 , 它以 x_0 为 横坐标, 而纵坐标等于 $g(x_0) = x_1$ 。过 P_0 引平行 x 轴的直线,设此直线交

7-2 冬

y = x 于点 Q_1 ,然后过 Q_1 再作平行于 y 轴的直线,它与曲线 y = g(x) 的交点记作 P_1 ,则点 P_1 的横坐标为 x_1 ,纵坐标则等于 $g(x_1) = x_2$ 。按图 7-2 中箭头所示的路径继续做下去,在曲线 y = g(x) 上得到点列 P_1, P_2 , … , 其横坐标分别为由 $x_{k+1} = g(x_k)$ 求得。如果点列 $\{P_k\}$ 趋向于点 P^* ,则相应的迭代值 x_k 收敛到所求的根 x^* 。

例 2 求方程: $f(x) = x^3 - x - 1 = 0$ 在 $x_0 = 1.5$ 附近的根 x^* 。

解 将上述方程改写成下列形式:

$$x = \sqrt[3]{x+1}$$

据此建立迭代公式

$$x_{k+1} = \sqrt[3]{x_k + 1}, \quad k = 0, 1, 2, \dots$$

表 2-2 计算结果

k	\mathcal{X}_k	k	\mathcal{X}_k
0	1.5	5	1. 32476
1	1. 35721	6	1. 32473
2	1. 33086	7	1. 32472
3	1. 32588	8	1. 32472
4	1. 32494		

我们看到,如果仅取 6 位数字,那么结果 x_7 与 x_8 完全相同,这时可以认为 x_7 实际上已满足方程,即为所求的根。

应当指出,**迭代法的效果并不是总能令人满意的。**譬如,设方程的另一种等价形式: $x = x^3 - 1$ 建立迭代公式

$$x_{k+1} = x_k^3 - 1$$

迭代初值仍取 $x_0 = 1.5$,则有 $x_1 = 2.375$, $x_2 = 12.39$,…, x_k 会越来越大,不可能趋于某个极限,这种不收敛的迭代过程称作是**发散的**。

上例表明原方程化为(2.3)的形式不同,有的收敛,有的发散, 而只有收敛的迭代过程(2.4)才有意义。

例 用迭代法求方程

$$f(x) = x - x^{1/3} - 2 = 0$$

的根。

解 方程在x=3.5 附近有根。构造如下三个迭代函数:

$$g_1(x) = x^{1/3} + 2$$
$$g_2(x) = (x - 2)^3$$
$$g_3(x) = \frac{6 + 2x^{1/3}}{3 - x^{-2/3}}$$

下表是初始值 $x_0 = 3$ 时,分别用三个迭代函数得到的 迭代序列。

表 迭代结果

k	$x_{k=}g_1(x_{k-1})$	$x_{k=}g_2(x_{k-1})$	$x_{k=}g_3(x_{k-1})$
0	3	3	3
1	3.4422495703	1	3.5266442931

2	3.5098974493	-1	3.5213801474
3	3.5197243050	-27	3.5213797068
4	3.5211412691	-24389	3.5213797068
5	3.5213453678	-1.45107e+013	
6	3.5213747615	-3.05539e+039	
7	3.5213789946	-2.85233e+118	
8	3.5213796042	−Inf	
9	3.5213796920	−Inf	
10	3.5213797047	−Inf	
11	3.5213797065	-Inf	

可知, $g_1(x)$, $g_3(x)$ 收敛, 但 $g_3(x)$ 比 $g_1(x)$ 快很多; 而 $g_2(x)$ 是发散的。

下面讨论 g(x)不动点的存在性及迭代法(2.4)的收敛性。

2.3 迭代法收敛的充分条件

● **压缩映照:** 在区间[a,b]上定义的函数g(x),若存在常数 $L,0 \le L < 1$,使得 $\forall x,y \in [a,b]$,都有

$$|g(x) - g(y)| \le L|x - y|$$

则称映照 g(x)在区间[a,b]上是**压缩的**。

● 不动点的存在唯一性及误差分析

定理 1 设 $g(x) \in C[a,b]$ 满足以下两个条件:

- (1) 对任意 $x \in [a,b]$, 有 $g(x) \in [a,b]$;
- (2) 存在常数 L, $0 \le L < 1$, 使对任意 $x, y \in [a,b]$, 有

$$|g(x) - g(y)| \le L|x - y|$$

则

- (1) x = g(x)在[a,b]上存在唯一实根 x^* ;
- (2) 对任意初值 $x_0 \in [a,b]$,由 $x_{k+1} = g(x_k)$ 得到的 迭代序列 $\{x_k\}$ 收剑到 x = g(x) 在[a,b]的唯一实根 x^* ,并有误差估计:

$$|x^* - x_k| \le \frac{1}{1-L} |x_{k+1} - x_k|$$
 (2.5)

$$|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0| \tag{2.6}$$

证明 先证不动点存在性。定义函数:

$$\varphi(x) = g(x) - x$$

显然 $\varphi(x) \in C[a,b]$ 。 因 $a \leq g(x) \leq b$,有

$$\varphi(a) = g(a) - a \ge 0, \quad \varphi(b) = g(b) - b \le 0$$

由连续函数性质可知存在 $x^* \in (a,b)$, 使 $\varphi(x^*) = 0$,

田连续函数性质可知存在 $x \in (a, b)$,使 $\varphi(x^*) = 0$,即 $x^* = g(x^*)$, x^* 即为g(x)的不动点。

再证唯一性。设 x_1^* 及 $x_2^* \in [a,b]$ 是g(x) 的两个不同的不动点,则由压缩映射条件 2,得

 $|x_1^* - x_2^*| = |g(x_1^*) - g(x_2^*)| \le L|x_1^* - x_2^*| < |x_1^* - x_2^*|$ 矛盾。故 g(x) 的不动点只能是唯一的。

误差估计: 由条件(2)得

 $|x_k - x^*| = |g(x_{k-1}) - g(x^*)| \le L|x_{k-1} - x^*| \le \dots \le L^k|x_0 - x^*|$ 因 0 < L < 1,故当 $k \to \infty$ 时,序列 $\{x_k\}$ 收剑到 x^* 。

又

 $|x_{k+1}-x_k|=|g(x_k)-g(x_{k-1})|\leq L|x_k-x_{k-1}|\leq L^k|x_1-x_0|$ 于是,对任意正整数 p ,有

$$\begin{aligned} \left| x_{k+p} - x_k \right| &\leq \left| x_{k+p} - x_{k+p-1} \right| + \left| x_{k+p-1} - x_{k+p-2} \right| + \dots + \left| x_{k+1} - x_k \right| \\ &\leq \left(L^{k+p-1} + L^{k+p-2} + \dots + L^k \right) \left| x_1 - x_0 \right| \\ &\leq \frac{L^k}{1 - L} \left| x_1 - x_0 \right| \end{aligned}$$

令 $p \to \infty$, 注意到 $\lim_{p \to \infty} x_{k+p} = x^*$, 即得式(2.6)。

$$(|x_{k+1} - x_k| \ge |x^* - x_k| - |x^* - x_{k+1}| \ge |x^* - x_k| - L|x^* - x_k| = (1 - L)|x^* - x_k|$$

• 注: 在实际迭代计算过程中,有时由于 L 估计的困难性,所以,由 (2.5) 估计式:

$$|x^* - x_k| \le \frac{1}{1 - L} |x_{k+1} - x_k|$$

知,只要相邻两次计算结果的偏差 $\left|X_{k+1}-X_{k}\right|$ 足够小,即可保证近似值 $\left|X_{k}\right|$ 具有足够精度。

● 由 Lagrange 中值定理可知,如果 $g(x) \in C^1[a,b]$,且对任意 $x \in [a,b]$,有 $|g'(x)| \le L < 1$ 则对 $\forall x, y \in [a,b]$,有

$$|g(x) - g(y)| = |g'(\xi)(x - y)| \le L|x - y|, \xi \in (a, b)$$

表明定理中的条件 (2) 可用 g'(x) 的性质代替。

在例 2 中,
$$f(x) = x^3 - x - 1 = 0$$

当 $g(x) = \sqrt[3]{x+1}$ 时,对任意 $x \in [1,2]$,有
$$|g'(x)| = |\frac{1}{3}(x+1)^{-\frac{2}{3}}| \le \frac{1}{3}(\frac{1}{4})^{\frac{1}{3}} \triangleq L \approx 0.21 < 1$$

又因为 $1 \le \sqrt[3]{2} \le g(x) \le \sqrt[3]{3} \le 2$, 所以迭代法是收敛的。

而当 $g(x) = x^3 - 1$ 时,对任意 $x \in [1,2]$,有 $|g'(x)| = |3x^2| \ge 3 > 1$,不满足定理条件。

● 注: 一般情况下, L越小, 收敛速度越快。

● 局部收敛性

定理 1 中给出的迭代序列 $\{x_k\}$ 对于任何初始值 $x_0 \in [a,b]$ 都收敛,这种收敛性通常称为**全局收敛性(整体收敛性)**。有时不易检验,实际应用时通常只在不动点 x^* 的邻近考察其收敛性,即**局部收敛性**:

g(x)有不动点 x^* ,如果存在 x^* 的某个邻域 $S = \{x | |x - x^*| \le \delta\}$,对任意 $x_0 \in S$,迭代(2.4)产生的序列 $\{x_k\} \in S$,且收敛到 x^* ,则称**迭代法**(2.4)**局部收敛**。

定理 2 设 x^* 为 g(x)的不动点,g'(x)在 x^* 的某个邻域连续,且 |g'(x)| < 1,则迭代法(2.4)局部收敛。

证明 由连续函数的性质,存在L和 x^* 的某个领域 $S = \{x | |x - x^*| \le \delta\} = [x^* - \delta, x^* + \delta],$ 对任意 $x \in S$,成立: $|g'(x)| \le L < 1$

又

 $|g(x) - x^*| = |g(x) - g(x^*)| \le L|x - x^*| \le |x - x^*|$ $\text{知, 对任意 } x \in S, \text{ \emptyset find $g(x) \in S$}$

于是由定理1知,对任意 $x_0 \in S$, 迭代序列 $\{x_k\} \in S$, 且收

敛到 x^* 。

例 3 方程 $x = e^{-x}$ 有唯一实根 $x^* \in (0,1)$,试分析迭代过程 $x_{k+1} = e^{-x_k}$ $(k = 0,1,2,\cdots)$ 的收敛性。

解
$$g(x) = e^{-x}$$
, $g'(x) = -e^{-x}$, 对任意 $x \in (0,1)$, 有
$$|g'(x)| = |e^{-x}| < e^0 = 1$$

由定理 2 知, 迭代法 $x_{k+1} = e^{-x_k}$ 在 x^* 附近局部收敛, 只要取好的初值 x_0 (充分接近 x^*),则迭代法收敛。

§3 牛顿迭代法与弦割法

牛顿 (Newton) 迭代法是求解非线性方程(组)的重要方法之一。

- 3.1 牛顿迭代公式及其几何意义
- 牛顿法实质上是一种线性化方法,其基本思想:将非线性方程 f(x) = 0 逐步归结为某种线性方程求解。

对于单根和重根,收敛速度不同。

设 f(x) 可表示成 $f(x) = (x - x^*)^m q(x)$,且 $q(x^*) \neq 0$,则称 x^* 为方程 f(x) = 0 的 m 重根,当 m = 1 时,称 x^* 为方程 f(x) = 0 的单根。

由 Taylor 公式, 得:

● 设 $f(x) \in C^m[a,b]$, 则 f(x) 在内的点 x^* 具有m重根的充要条件是:

$$f(x^*) = f'(x^*) = \dots = f^{(m-1)}(x^*) = 0, \ f^{(m)}(x^*) \neq 0$$

● 单根情形

设 $f(x) \in C^1(x^* - \delta, x^* + \delta)$, $f'(x^*) \neq 0$, 即 x^* 为方程 f(x) = 0 的单根。

设已知方程 f(x)=0 有近似根 x_k ($f'(x_k)\neq 0$), 将函数 f(x) 在点 x_k 展开,有

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

于是方程 f(x) = 0 可近似地表示为

$$f(x_k) + f'(x_k)(x - x_k) = 0$$

记其根为 x_{k+1} ,则 x_{k+1} 的计算公式为:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
, $k = 0, 1, \cdots$ (2.8)

——牛顿迭代法

● 牛顿法的几何解释: 方程 f(x) = 0 的根 x^* 可解释为曲线 y = f(x) 与 x 轴的交点的横坐标(下图所示)。

570

设 x_k 是根 x^* 的某个近似值, 过曲线y = f(x)上横坐标 x_k

的点 P_k 引切线,并将该切线与 x 轴的交点的横坐标 x_{k+1} 作为 x^* 的新的近似值。注意到切线方程为

$$y = f(x_k) + f'(x_k)(x - x_k)$$

这样求得的值 x_{k+1} 就是牛顿法(2.8)的计算结果。所以,牛顿法亦称切线法。

3.2 牛顿迭代法收敛的充分条件

● 牛顿迭代法的收敛性, 可直接由定理 2 得到:

定理 3 设 f(x) 在其零点 x^* 的某邻域 $S = \{x | |x - x^*| \le \delta\}$ 内有二阶连续导数,且 $f'(x^*) \ne 0$ (即 x^* 为单根),则牛顿迭代 法在 x^* 附近具有局部收敛性。

证明 牛顿迭代法的迭代函数为:

$$g(x) = x - \frac{f(x)}{f'(x)}$$
 (2.9)

有:
$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

假定 x^* 是f(x)的一个单根,即 $f(x^*)=0$, $f'(x^*)\neq 0$,则由上式知 $g'(x^*)=0$,于是由定理 2 得,牛顿迭代法在 x^* 附近具有局部收敛性。

定理 4 对方程 f(x) = 0,若存在区间 [a,b],使

- (1) f''(x)在 [a,b]上连续;
- (2) f(a)f(b) < 0;
- (3) 对任意 $x \in [a,b]$, 都有 $f^{'}(x) \neq 0$;
- (4) f''(x)在 [a,b]上保号。

则当初值 $x_0 \in [a,b]$ 且 $f(x_0)f''(x_0) > 0$ 时,牛顿迭代法(2.8) 产生的迭代序列 $\{x_k\}$ 收敛于方程 f(x) = 0在 [a,b]上的唯一实根 x^* 。

(几何意义见教材 p.24, 图 2-7)

例 4 用牛顿迭代法方程 x - cosx = 0 的实根,要求准确到 $|x_{k+1} - x_k| < 10^{-5}$.

解 方程 x - cosx = 0 存在唯一实根 $x^* \in [0, \frac{\pi}{2}]$, f(x) = x - cosx 在 $\left[0, \frac{\pi}{2}\right]$ 上满足**定理 4** 的条件。

取 $x_0 = 1$, 有 $f(x_0)f''(x_0) > 0$, 则相应的牛顿迭代法:

$$x_{k+1} = x_k - \frac{x_k - \cos x_k}{1 + \sin x_k}$$
, $k = 0, 1, \dots$

收敛, 计算可得 $x_4 = 0.739085$ 满足精度要求, 参见表 2-3.

表 2-3

● 牛顿迭代法的计算步骤:

- (1) 选定初始近似值 x_0 , 计算 $f_0 = f(x_0)$, $f_0' = f'(x_0)$
- (2) 迭代。按公式:

$$x_1 = x_0 - f_0 / f_0'$$

迭代一次,得新的近似值 x_1 ,计算 $f_1 = f(x_1)$, $f_1' = f'(x_1)$ 。

(3) **控制。**如果 X_1 满足 $|\delta| < \varsigma_1$ 或 $|f_1| < \varsigma_2$,则终止迭代,以 X_1 作为所求的根,否则转(4)。此处 ς_1 , ς_2 是允许误差,而

$$\delta = \begin{cases} |x_1 - x_0|, & \dot{\exists} |x_1| < C 时 \\ \frac{|x_1 - x_0|}{|x_1|}, & \dot{\exists} |x_1| \ge C \end{bmatrix}$$

其中 C 是取绝对误差或相对误差的控制常数,一般可取 C=1。

(4) 修正。如果迭代次数达到预先指定的次数 N,或者 f'=0,则方法失败,否则以 (x_1,f_1,f_1') 代替 (x_0,f_0,f_0') 转 (2) 继续迭代。

注: 牛顿法的优点是收敛快,缺点一是每步迭代要计算 $f(x_k)$ 及 $f'(x_k)$,计算量较大且有时 $f'(x_k)$ 计算较困难,缺点 二是初始近似 x_0 只在根 x^* 附近才能保证收敛,如 x_0 给的不 合适可能不收敛。为克服这两个缺点,通常可用下述方法。

(1) 简化牛顿法,也称平行弦法,其迭代公式为:

$$x_{k+1} = x_k - Cf(x_k), C \neq 0, k = 0,1,\dots$$

迭代函数为:

$$g(x) = x - Cf(x)$$

若 |g'(x)| = |1 - Cf'(x)| < 1, 即取 0 < Cf'(x) < 2,

在根 x^* 附近成立,则迭代法局部收

敛。若取 $C = \frac{1}{f'(x_0)}$,则称为**简化**

牛顿法,其几何意义是用平行弦与x轴交点作为x的近似。

(2)牛顿下山法。牛顿法收敛性依赖初值 x_0 的选取。如果 x_0 偏离所求根 x^* 较远,则牛顿法可能发散。例如,用牛顿法求解方程:

$$x^3 - x - 1 = 0$$

此方程在 x=1.5 附近的一个根 x^* 。取迭代初值 $x_0=1.5$,用牛顿法公式

$$x_{k+1} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

计算得:

$$x_1 = 1.34783$$
, $x_2 = 1.32520$, $x_3 = 1.32472$

迭代3次得到的结果X3有6位有效数字。

但是,如果改用 $x_0 = 0.6$ 作为迭代初值,则依牛顿法公式 迭代一次得 $x_1 = 17.9$,这个结果反而比 $x_0 = 0.6$ 更偏离了所求 的根 $x^* = 1.32472$ 。

● 为了防止迭代发散,对迭代过程附加一项要求,即具有单调性:

$$|f(x_{k+1})| < |f(x_k)|$$

满足这项要求的算法称下山法。

将牛顿法与下山法结合起来使用,即在下山法保证函数值稳 定下降的前提下,用牛顿法加快收敛速度。

● 牛顿下山法:将牛顿法的计算结果:

$$\bar{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

与前一步的近似值 x_k 适当加权平均作为新的改进值:

$$x_{k+1} = \lambda \bar{x}_{k+1} + (1 - \lambda)x_k = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

选择**下山因子** λ 时从 $\lambda = 1$ 开始,逐次将 λ 减半进行试算,直到能使下降条件满足为止。

若用此法解上述方程,当 $x_0=0.6$ 时,由牛顿迭代法求得 $x_1=17.9$,它不满足条件下降条件,通过 λ 逐次取半进行试算, 当 $\lambda=\frac{1}{32}$ 时可求得 $x_1=1.140625$ 。此时 $f(x_1)=-0.656643$,

而 $f(x_0) = -1.384$,显然 $|f(x_1)| < |f(x_0)|$ 。由 x_1 计算 x_2 , x_3 时 $\lambda = 1$, 均能使下降条件成立。 计算结果如下:

$$x_2 = 1.36181$$
, $f(x_2) = 0.1866$
 $x_3 = 1.32628$, $f(x_3) = 0.00667$
 $x_4 = 1.32472$, $f(x_4) = 0.0000086$

 x_4 即为 x^* 的近似。一般情况只要能使下降条件成立,则可得到 $\lim_{k\to\infty}f(x_k)=0$,从而使 $\left\{x_k\right\}$ 收敛。

3.3 弦割法(割线法)

• 建立在插值原理基础上,利用已求函数 $f(x_k)$, $f(x_{k-1})$, ····来 回避导数值 $f'(x_k)$ 的计算。

设 x_k , x_{k-1} 是 f(x) = 0 的近似根,利用 $f(x_k)$, $f(x_{k-1})$ 构造一次插值多项式 $p_1(x)$,并用 $p_1(x) = 0$ 的根作为 f(x) = 0 的新

的近似根 x_{k+1} 。由

$$p_1(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k)$$

因此有 (令 $p_1(x_{k+1}) = 0$):

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}) \qquad k = 1, 2, \dots$$
 (2.10)

—— 弦割法(割线法, Secant method)

弦割法: 牛顿法 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ 中的导数 $f'(x_k)$ 用

差商
$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
 取代的结果。

● 弦割法的几何意义:

如图所示,曲线 y=f(x) 上 横坐标 x_k 、 x_{k-1} 的点分别记为 P_k 、 P_{k-1} ,则弦线 $\overline{P_k P_{k-1}}$ 的斜率等差商

值
$$\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$$
 (= $f'(\xi)$), 其方程是:

$$y = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k)$$

因此,按(2.10)求得的 x_{k+1} 实际上是弦线 $\overline{P_k P_{k-1}}$ 与x轴交点的横坐标。因此称这种算法为**弦割法**。

弦割法与牛顿法都是线性化方法,但两者有本质的区别。牛顿法在计算 x_{k+1} 时只用到前一步的值 x_k ,而弦割法在求 x_{k+1}

时要用到前面两步的结果 x_k 、 x_{k-1} ,因此使用这种方法给出两个开始值 x_0 、 x_1 。弦割法避免了求导数,但收敛速度不如牛顿法。

例5 用弦割法求方程 $f(x) = x^3 - x - 1 = 0$ 在区间[1,1.5] 内的一个根。

(参见教材 p.26)

例 用弦割法解方程

$$f(x) = xe^x - 1 = 0$$

解 设 $x_0 = 0.5$ 、 $x_1 = 0.6$ 作为开始值,用弦割法求得的结果见下表,比较上例牛顿法的计算结果可以看出,弦割法的收敛速度也是相当快的。

k	x_k	k	x_k
0	0.5	3	0.56709
1	0.6	4	0.56714
2	0.56532		

§4 非线性方程组牛顿迭代法求根

非线性方程组牛顿迭代法设计思想:单个方程的推广,即先线性化,然后求解。

考虑方程组

$$\begin{cases} f_1(x_{1,\dots}, x_n) = 0 \\ \dots \\ f_n(x_1, \dots x_n) = 0 \end{cases}$$
(*)

其中 f_1, f_2, \dots, f_n 均为 (x_1, \dots, x_n) 的多元函数。若用向量记号记 $X = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, $F = (f_1, \dots, f_n)^T$, 可以写成 F(X) = 0

当 $n \ge 2$, 且 $f_i(i=1,\dots,n)$ 中至少有一个是自变量 $x_i(i=1,\dots,n)$ 的非线性函数时,则称方程组为**非线性方程组**。

非线性方程组求根问题是非线性方程(即n=1)求根的 直接推广,实际上只要把单变量函数 f(x) 看成函数 F(X),则 可将单变量方程求根方法推广到方程组(*)。

若已给出方程(*)的一个近似根 $X^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)})^T$, 将函数 F(X) 的分量 $f_i(x)$ $(i=1,\dots,n)$ 在 $X^{(k)}$ 用多元函数泰勒 展开,并取线性部分,则可表示为

$$F(X) \approx F(X^{(k)}) + F'(X^{(k)})(X - X^{(k)})$$

令上式右端为零,得到线性方程组

$$F'(X^{(k)})(X-X^{(k)}) = -F(X^{(k)}) \tag{**}$$

其中F'(X)为 f_1, f_2, \dots, f_n 的 $n \times n$ 阶的**雅可比 (Jacobi) 矩阵:**

$$F'(X) = \frac{\partial (f_1, f_2, \dots, f_n)}{\partial (x_1, x_2, \dots, x_n)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

求解线性方程组 (**), 并记解为 $X^{(k+1)}$, 则得

$$X^{(k+1)} = X^{(k)} - F'(X^{(k)})^{-1}F(X^{(k)}), \quad k = 0,1,\dots$$
 (***)
——解非线性方程组(**)的牛顿迭代法。

二元非线性方程组的情况见教材 p.27。

定理 5 设 F(X)的定义域 $D \subset R^n$, $X^* \in D$ 满足 $F(X^*) = 0$,在 X^* 的开邻域 $S_0 \subset D$ 上 F'(X)存在且连续, $F'(X^*)$ 非奇异,则牛顿法生成的序列 $\{X^{(k)}\}$ 在闭域 $S \subset S_0$ 上超线性收敛于 X^* ,若还存在常数 L > 0,使 $\|F'(X) - F'(X^*)\| \le L \cdot \|X - X^*\|$, $\forall X \in S$,则 $\{X^{(k)}\}$ 至少平方收敛。

例 求解方程组

$$\begin{cases} f_1(x_1, x_2) = x_1 + 2x_2 - 3 = 0 \\ f_2(x_1, x_2) = 2x_1^2 + x_2^2 - 5 = 0 \end{cases}$$

给定初值 $x^{(0)} = (1.5, 1.0)^T$, 用牛顿法求解。

解 先求雅可比矩阵

$$F'(X) = \begin{pmatrix} 1 & 2 \\ 4x_1 & 2x_2 \end{pmatrix}, \quad F'(X)^{-1} = \frac{1}{2x_2 - 8x_1} \begin{bmatrix} 2x_2 & -2 \\ -4x_1 & 1 \end{bmatrix}$$

由牛顿法(***), 得

$$\begin{split} X^{(k+1)} &= X^{(k)} - \frac{1}{2x_2^{(k)} - 8x_1^{(k)}} \begin{bmatrix} 2x_2^{(k)} & -2 \\ -4x_1^{(k)} & 1 \end{bmatrix} \begin{bmatrix} x_1^{(k)} + 2x_2^{(k)} - 3 \\ 2(x_1^{(k)})^2 + (x_2^{(k)})^2 - 5 \end{bmatrix} \\ \begin{cases} x_1^{(k+1)} &= x_1^{(k)} - \frac{x_1^{(k)}x_2^{(k)} - 2(x_1^{(k)})^2 - 3x_2^{(k)} + 5}{x_2^{(k)} - 4x_1^{(k)}} \\ x_2^{(k)} &= x_2^{(k)} - \frac{(x_2^{(k)})^2 - 2(x_1^{(k)})^2 - 4x_1^{(k)}x_2^{(k)} - 12x_1^{(k)} - 5}{2x_2^{(k)} - 8x_1^{(k)}} \end{split}$$

由
$$x^{(0)} = (1.5, 1.0)^T$$
, 逐次迭代得到 $x^{(2)} = (1.488095, 0.755952)^T$ $x^{(3)} = (1.488034, 0.755983)^T$

§ 5 迭代法的收敛阶与加速收敛方法

先看一个例子。

例 用不同方法求方程 $x^2 - 3 = 0$ 的根 $x^* = \sqrt{3}$ 。

解 方程 $f(x) = x^2 - 3$,可改写为各种不同的等价形式 x = g(x),其不动点为 $x^* = \sqrt{3}$ 。构造不同的迭代法如下:

(1)
$$x_{k+1} = x_k^2 + x_k - 3$$
, $g_1(x) = x^2 + x - 3$, $g_1'(x) = 2x + 1$, $g_1'(x^*) = g_1'(\sqrt{3}) = 2\sqrt{3} + 1 > 1$

(2)
$$x_{k+1} = \frac{3}{x_k}$$
, $g_2(x) = \frac{3}{x}$
 $g_2'(x) = -\frac{3}{x^2}$, $g_2'(x^*) = -1$

(3)
$$x_{k+1} = x_k - \frac{1}{4}(x_k^2 - 3), g_3(x) = x - \frac{1}{4}(x^2 - 3),$$

$$g_3'(x) = 1 - \frac{1}{2}x$$
, $g_3'(x^*) = 1 - \frac{\sqrt{3}}{2} \approx 0.314 < 1$

(4)
$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{3}{x_k} \right), g_4(x) = \frac{1}{2} \left(x + \frac{3}{x} \right),$$

$$g_4'(x) = \frac{1}{2} \left(1 - \frac{3}{x^2} \right), \ g_4'(x^*) = g_4'(\sqrt{3}) = 0$$

取 $x_0 = 2$, 对上述 4 种迭代法, 计算三步所得的结果如下表:

表 计算结果

k	x_k	迭代法(1)	迭代法(2)	迭代法(3)	迭代法(4)
0	x_0	2	2	2	2
1	x_1	3	1.5	1. 75	1. 75
2	x_2	9	2	1. 734475	1. 732143
3	x_3	87	1.5	1. 732361	1. 732051
:	:	:	:	:	:

注意到: $\sqrt{3}$ = 1.7320508,从计算结果看到迭代法(1)及(2)均不收敛,且它们均不满足**定理 2** 中的局部收敛条件; 迭代法(3)和(4)均满足局部收敛条件,且迭代法(4)比(3)收敛快,其中在迭代法(4)中 $g_4'(x^*)$ = 0。为了衡量迭代法(2.4)收敛速度的快慢给出以下定义。

定义 设迭代法 $x_{k+1} = g(x_k)$ 收敛于方程 x = g(x) 的根 x^* ,若存在常数 $p(p \ge 1)$ 和 c(c > 0),使得

$$\lim_{k \to \infty} \frac{|x^* - x_{k+1}|}{|x^* - x_k|^p} = c$$

则称该迭代过程是 p阶收敛的。特别地,p=1(0 < c < 1)时称线性收敛,p > 1时称超线性收敛,p = 2时称平方收敛。

● 迭代法的收敛速度依赖于迭代函数 g(x) 的选取

定理 6 设 x^* 是方程 x = g(x) 的根,

$$g(x), g'(x), \cdots, g^{(p)}(x)$$
 在 x^* 的邻近连续,且
$$g'(x^*) = g''(x^*) = \cdots = g^{(p-1)}(x^*) = 0, g^{(p)}(x^*) \neq 0$$
 则迭代法 $x_{k+1} = g(x_k)$ 在 x^* 邻近是 p 阶收敛的。特别地 当 $0 < |g'(x^*)| < 1$ 时,迭代法是线性收敛的;

当 $g'(x^*) = 0$, $g''(x^*) \neq 0$ 时,迭代法是平方收敛的。

证明 由 $g'(x^*)=0$,根据定理 2,可知迭代法 $x_{k+1}=g(x_k)$ 具有局部收敛性。

将 $g(x_k)$ 在根 x^* 处泰勒展开,则有

$$g(x_k) = g(x^*) + \frac{g^{(p)}(\xi)}{p!} (x_k - x^*)^p \quad (\xi \in X_k \leq x^* \geq n)$$

注意到 $g(x_k) = x_{k+1}$, $g(x^*) = x^*$, 由上式得

$$x_{k+1} - x^* = \frac{g^{(p)}(\xi)}{p!} (x_k - x^*)^p \to \frac{g^{(p)}(x^*)}{p!} (x_k - x^*)^p$$

即迭代过程 $x_{k+1} = g(x_k)$ 在 x^* 邻近是 p 阶收敛的。

• 注: 在上例中,迭代法(3)中的 $g'(x^*) \neq 0$,故它只是线性收敛,而迭代法(4)(牛顿迭代法)中的 $g'(x^*) = 0$, $g''(x^*) = \frac{2}{\sqrt{3}} \neq 0$,由定理 6 知 p = 2,即该迭代法是 2 阶收敛的。

又在前例中,
$$f(x) = x - x^{\frac{1}{3}} - 2 = 0$$

$$g_1(x) = x^{1/3} + 2$$
, $g_2(x) = (x - 2)^3$, $g_3(x) = \frac{6 + 2x^{1/3}}{3 - x^{-2/3}}$

$$g_1'(x) = \frac{1}{3\sqrt[3]{x^2}}, \quad g_3'(x) = \frac{2(x - x^{1/3} - 2)}{x^{1/3}(3x^{2/3} - 1)^2}$$

$$g_3''(x) = 2 \frac{x^{1/3} \left(3x^{2/3} - 1\right)^2 \left(1 - \frac{1}{3}x^{-2/3}\right) - (x - x^{1/3} - 2)(x^{1/3} \left(3x^{2/3} - 1\right)^2)'}{x^{2/3} (3x^{2/3} - 1)^4}$$

其中 $x^* \approx 3.52$,故 $0 < g_1'(x^*) < 1$, $g_3'(x^*) = 0$, $g''(x^*) \neq 0$,知以 $g_1(x)$ 为迭代函数的迭代法是线性收敛的,以 $g_3(x)$ 为迭代函数的迭代法(牛顿迭代法)是平方收敛的。而

$$g_2'(x^*) = 3|x^* - 2|^2 \approx 6.9312 > 1$$
, 是发散的。

例 6 分析简单迭代法与牛顿迭代法的收敛速度。

解 简单迭代法:

由:
$$x^* - x_{k+1} = g(x^*) - g(x_k) = g'(\zeta_k)(x^* - x_k)$$

得:

$$\lim_{k \to \infty} \frac{|x^* - x_{k+1}|}{|x^* - x_k|} = \lim_{k \to \infty} |g'(\zeta_k)| = |g'(x^*)|$$

所以, 当 $0 < |g'(x^*)| < 1$ 时, 简单迭代法线性收敛。

牛顿迭代法:(1)单根情形:

由
$$g(x) = x - \frac{f(x)}{f'(x)}$$
, 知:

$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

 x^* 是 f(x) 的一个单根,即 $f(x^*) = 0$, $f'(x^*) \neq 0$,则由 上式知

$$g'(x^*) = 0$$
, $g''(x^*) = \frac{f''(x^*)}{f'(x^*)}$

于是由定理 6 得,**牛顿迭代法在零点** x^* **的邻近是平方收敛的**。

$$\lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x_k - x^*)^2} = \frac{g''(x^*)}{2!} = \frac{f''(x^*)}{2f'(x^*)}$$

(2) 重根情形:

设 $f(x) = (x - x^*)^m q(x)$,整数 $m \ge 2$, $q(x^*) \ne 0$,则 x^* 为方程f(x) = 0的m 重根,只要 $f'(x_k) \ne 0$ 仍可用牛顿 迭代法计算,此时迭代函数 $g(x) = x - \frac{f(x)}{f'(x)}$ 的导数为:

$$g'(x^*) = \frac{f(x)f''(x)}{[f'(x)]^2}|_{x=x^*} = 1 - \frac{1}{m} \neq 0, \quad |g'(x^*)| < 1$$

所以,当 x^* 为f(x) = 0的 $m(m \ge 2)$ 重零点,f(x) 在其零点 x^* 的某邻域内有二阶连续导数,则牛顿法局部线性收敛。

为使迭代法仍保持二次收敛,须对牛顿迭代法进行修正。

● **若已知重根数** m: 取 $g(x) = x - m \frac{f(x)}{f'(x)}$, 可得: $g'(x^*) = 0$, 则迭代法:

$$x_{k+1} = x_k - \frac{mf(x_k)}{f'(x_k)}, \quad k = 0,1,\dots$$

是局部二次收敛的。

● 若重根数 m 未知:

令
$$F(x) = \frac{f(x)}{f'(x)}$$
,若 x^* 是 $f(x) = 0$ 的 m 重根,则
$$F(x) = \frac{(x-x^*)q(x)}{mq(x)+(x-x^*)q'(x)}$$

得 x^* 是F(x) = 0的单根,对它用牛顿法,其迭代函数为:

$$g(x) = x - \frac{F(x)}{F'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

从而可构造迭代法

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{[f'(x_k)]^2 - f(x_k)f''(x_k)}, \quad k = 0,1,\dots$$

是二阶收敛的。

例 方程 $x^4 - 4x^2 + 4 = 0$ 的根 $x^* = \sqrt{2}$ 是二重根,用上述三种方法求根。

解 先求出三种方法的迭代公式:

(1) 牛顿迭代法:
$$x_{k+1} = x_k - \frac{x_k^2 - 2}{4x_k}$$

(2) 重根数已知:
$$x_{k+1} = x_k - \frac{x_k^2 - 2}{2x_k}$$

(3) 重根数未知:
$$x_{k+1} = x_k - \frac{x_k^2 - 2}{x_k^2 + 2}$$

取初值 $x_0 = 1.5$, 计算结果如下表。

k方法(1) 方法(2) 方法(3) \mathcal{X}_k 1 1.458333333 1.416666667 1.411764706 χ_1 2 1.436607143 1.412156860 1.414211380 χ_2 3 1.425497619 1.414213562 1.414213562 χ_3

表 三种方法数值结果

计算三步,方法(2)及(3)均达到10位有效数字,而牛顿法(1)只有线性收敛,要达到同样精度需迭代30次。

● 迭代加速方法

1. 艾特肯(Aitken)加速方法

对于收敛于 x^* 的不动点迭代算法 $x_{k+1} = g(x_k)$

设 X_k 是根 X^* 的某个近似值,用迭代公式校正一次得

$$x_{k+1} = g(x_k)$$

由微分中值定理, 有

$$x_{k+1} - x^* = g(x_k) - g(x^*) = g'(\zeta)(x_k - x^*)$$

其中 ζ 介于 X_k 与 X^* 之间。

假定g'(x)改变不大,近似地取某个近似值L,则有

$$x_{k+1} - x^* \approx L(x_k - x^*) \tag{*}$$

若将校正值 $x_{k+1} = g(x_k)$, 再校正一次, 又得

$$x_{k+2} = g(x_{k+1})$$

由于 $x_{k+2} - x^* \approx L(x_{k+1} - x^*)$, 将它与 (*) 式联立, 消去未知的 L. 有

$$\frac{x^* - x_{k+1}}{x^* - x_k} \approx \frac{x^* - x_{k+2}}{x^* - x_{k+1}}$$
 (2.11)

由此推知

$$x^* \approx \frac{x_k x_{k+2} - x_{k+1}^2}{x_{k+2} - 2x_{k+1} + x_k} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$

在计算了 X_{k+1} 及 X_{k+2} 之后,可用上式右端作为 X^* 的新近似。记

$$\tilde{x}_k = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k}$$
 (**)

式(**)称为艾特肯(Aitken)加速方法。

2. 斯蒂芬森(Steffensen)方法

把艾特肯加速技巧与不动点迭代结合, 可得如下的迭代法:

$$\begin{cases} y_k = g(x_k) \\ z_k = g(y_k) \\ x_{k+1} = x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k} \end{cases} (k = 0, 1, 2, \dots) \quad (2.12)$$

——斯蒂芬森(Steffensen)迭代法

(教材上称为**艾特肯算法**)

● 注: (2.12)是将不动点迭代法计算两步合并成一步得到的,可将它写成另一种不动点迭代

其中
$$g(x)$$
 $(k = 0,1,2,\cdots)$
其中 $g(x) = x - \frac{(g(x)-x)^2}{g(g(x))-2g(x)+x}$

例 用斯蒂芬森方法求解方程 $f(x) = x^3 - x - 1 = 0$ 。

解 前面已经指出迭代 $x_{k+1} = x_k^3 - 1$ 是发散的,现用 (2.12) 计算,取 $g(x) = x^3 - 1$,计算结果如下表。

k	x_k	y_k	Z_k
0	1.5	2. 37500	12. 3965
1	1. 41629	1. 84092	5. 23888
2	1. 35565	1. 49140	2. 31728
3	1. 32895	1. 34710	1. 44435
4	1. 32480	1. 32518	1. 32714
5	1. 32472		

计算表明: 它是收敛的,这说明即使迭代法 $x_{k+1} = g(x_k)$ 不收敛,用斯蒂芬森迭代法(2.12)仍可能收敛。若 $x_{k+1} = g(x_k)$ 线性收敛,则艾特肯算法(2.12)达到 2 阶收敛。更进一步还可知若 $x_{k+1} = g(x_k)$ 为 p 阶收敛,则(2.12)为 p+1 阶收敛。

例 求方程
$$3x^2 - e^x = 0$$
 的 [3,4] 中的解。

解 由方程得
$$e^x = 3x^2$$
, 两边取对数得:
 $x = \ln 3x^2 = 2\ln x + \ln 3 \triangleq g(x)$

构造迭代法:

$$x_{k+1} = 2\ln x_k + \ln 3$$

由于 $g'(x) = \frac{2}{x}$, $\max_{3 \le x \le 4} |g'(x)| < 1$, 当 $x \in [3,4]$, 可知此迭代法是收敛的。若取 $x_0 = 3.5$, 迭代 16 次,得: $x_{16} = 3.73307$,有六位有效数字。

若用斯蒂芬森迭代法(2.12)进行加速, 计算结果如下表所示:

k	x_k	y_k	z_k
0	3. 5	3. 60414	3. 66202
1	3. 73444	3. 73381	3. 73347
2	3. 73307		

这里计算 2 步 (相当于一般迭代法的 4 步) 结果与 X₁₆ 相同,说明用艾特肯算法(2.12)的收敛速度比一般迭代法快得多。

例7 用迭代法求方程 $f(x) = x - 2^{-x} = 0$ 在[0,1]内根 x^* 的近似值,精确到 $|x_{k+1} - x_k| < 10^{-4}$.

(见教材 p. 30)