## **CS578:** Internet of Things



# Smart Home Monitoring Using ESP8266 and Webserver



Dr. Manas Khatua

**Assistant Professor** 

Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

## **System Diagram**





## **Physical Setup**





## ThingSpeak cloud server accessing from a Laptop/PC/Smartphone







# Router Configuration To Connect with IITG Internet

## **Router Configuration**





- This is Tenda WiFi Router
- ESP8266 (local server) will connect to this WiFi AP
- Sensor data will be uploaded to ThingSpeak server through this WiFi AP.
- Login Tenda WiFi using given IP (192.168.0.1) and user ID (admin) and password (admin)
- Do the following:
  - Tenda WiFi SSID and Password under "Wireless" tab.
    - > SSID: Tenda 8060A0; Password: 12345678
  - > Time and Date settings under "Tools" tab
  - You can change admin password under "Tools" tab
  - ➤ Setup Internet Connection by Advanced → Internet Connection Setup
    - > Set the Static IP, Subnet Mask, Default Gateway, DNS Server, Alternate DNS Server
  - Reboot the router from "Tools" tab.















## **Tenda**°

Home Advanced

Wireless

QoS

Applications

Security

Tools

# Internet Connection Setup MAC Clone WAN Speed LAN Settings DNS Settings DHCP Server DHCP Client List

#### WAN Status

Connection Status Connected

Internet Connection Type Static IP

WAN IP 10.11.10.34

Subnet Mask 255.255.192.0

Gateway 10.11.0.254

DNS Server 172.17.1.1

Alternate DNS Server 172.17.1.2

#### Help

Connection Status: Refers to the connection between the router and the device connected to the router's WAN.

#### Internet Connection Type:

This can be set in Advanced > Internet Connection Setup. DHCP and PPPoE are the most common.

Connection Time:Displays WAN connection duration

## **Connecting with Internet**



| User Authentication Required           |  |  |  |  |  |  |
|----------------------------------------|--|--|--|--|--|--|
| Use IITG Credentials to Login Username |  |  |  |  |  |  |
| Password                               |  |  |  |  |  |  |
| LOGIN Forgot Password ? Reset Here     |  |  |  |  |  |  |
|                                        |  |  |  |  |  |  |

You should be able to access Internet in your Mobile/Laptop using Tenda WiFi AP



# Cloud Server Configuration to Access Web Service

## **Configure to use Cloud Server**





- We use ThingSpeak server <a href="http://www.thingspeak.com">http://www.thingspeak.com</a>
- First create an user account
- Then create a channel on the ThingSpeak to upload the data







| Name                                                          | Created    | Updated          |
|---------------------------------------------------------------|------------|------------------|
| ■ Temperature & Humidity Monitoring                           | 2019-07-09 | 2019-07-09 06:44 |
| Private Public Settings Sharing API Keys Data Import / Export |            |                  |
| ■ Monitoring Four sensors in Star Topology                    | 2019-07-09 | 2019-07-09 11:30 |
| Private Public Settings Sharing API Keys Data Import / Export |            |                  |
| ■ LED Control from Web                                        | 2019-07-12 | 2019-07-12 06:53 |
| Private Public Settings Sharing API Keys Data Import / Export |            |                  |

#### Help

Collect data in a ThingSpeak channel from a device, from another channel, or from the web.

Click **New Channel** to create a new ThingSpeak channel.

Click on the column headers of the table to sort by the entries in that column or click on a tag to show channels with that tag.

Learn to create channels, explore and transform data.

Learn more about ThingSpeak Channels.

#### Examples

- Arduino
- Arduino MKR1000
- ESP8266
- Raspberry Pi
- · Netduino Plus

#### Upgrade

Need to send more data faster?

Need to use ThingSpeak for a commercial project?



| ☐ ThingSpeak™ | Channels 🕶                     | Apps -                                                                                                                                | Community                                                                                                                                                                                 | Support -                                                                                                                                             | •                                                                                                                                                                                                            | Commercial Use       | How to Buy        | Account -        | Sign Out   |  |  |  |
|---------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|------------------|------------|--|--|--|
| Channel ID    | 814887                         |                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                       | Channel Settir                                                                                                                                                                                               | ngs                  |                   |                  |            |  |  |  |
| Name          | DEMO 2                         |                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                       | Channel Name: Enter a unique name for the ThingSpeak channel.                                                                                                                                                |                      |                   |                  |            |  |  |  |
| Description   | Getting different sensors data |                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                       | <ul> <li>Description: Enter a description of the ThingSpeak channel.</li> <li>Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak channel can have up to 8 fields.</li> </ul> |                      |                   |                  |            |  |  |  |
| Field 1       | Temperature                    |                                                                                                                                       | ✓                                                                                                                                                                                         | <ul> <li>Metadata: Enter information about channel data, including JSON, XML, or CSV data</li> </ul>                                                  |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 2       | Humidity                       |                                                                                                                                       | <ul> <li>Tags: Enter keywords that identify the channel. Separate tags with commas.</li> <li>Link to External Site: If you have a website that contains information about your</li> </ul> |                                                                                                                                                       |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 3       | LDR sensor                     |                                                                                                                                       | ThingSpeak channel, specify the URL.  ■ Show Channel Location:                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 4       | Pulse rate                     | o Latitude: Specify the latitude position in decimal degrees. For example, the latitude of the city of London is 51.5072.             |                                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 5       | Vibration Sensor               | Sensor   • Longitude: Specify the longitude position in decimal degrees. For example, the longitude of the city of London is -0.1275. |                                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 6       |                                | <ul> <li>Elevation: Specify the elevation position meters. For example, the elevation of<br/>the city of London is 35.052.</li> </ul> |                                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 7       |                                |                                                                                                                                       |                                                                                                                                                                                           | <ul> <li>Video URL: If you have a YouTube™ or Vimeo® video that displays your channel information, specify the full path of the video URL.</li> </ul> |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Field 8       |                                |                                                                                                                                       | <ul> <li>Link to GitHub: If you store your ThingSpeak code on GitHub®, specify the GitHub<br/>repository URL.</li> </ul>                                                                  |                                                                                                                                                       |                                                                                                                                                                                                              |                      |                   |                  |            |  |  |  |
| Metadata      |                                |                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                       | Using the Cha                                                                                                                                                                                                | nnel                 |                   |                  |            |  |  |  |
| Tags          |                                |                                                                                                                                       |                                                                                                                                                                                           |                                                                                                                                                       | You can get data into a c<br>can then visualize data a                                                                                                                                                       | •                    | -                 |                  | annel. You |  |  |  |
|               | _                              |                                                                                                                                       |                                                                                                                                                                                           | //                                                                                                                                                    | See Tutorial: ThingSp                                                                                                                                                                                        | eak and MATLAB for a | n example of meas | suring dew point | from a     |  |  |  |





#### My Channels



#### Help

Collect data in a ThingSpeak channel from a device, from another channel, or from the web.

Click **New Channel** to create a new ThingSpeak channel.

Click on the column headers of the table to sort by the entries in that column or click on a tag to show channels with that tag.

Learn to create channels, explore and transform data.

Learn more about ThingSpeak Channels.

#### Examples

- Arduino
- Arduino MKR1000
- ESP8266
- Raspberry Pi
- Netduino Plus

#### Upgrade

Need to send more data faster?

Need to use ThingSpeak for a commercial project?

## **Create Channel Display**







- Select **Private View** of the created channel.
- Click Add Widgets
- Select the Numeric Display widget, and then set the display options.

## **API Key and Channel ID**





- To send data to ThingSpeak, we need unique write API key and Channel ID, which will be used later in code to upload the data to ThingSpeak website
- Click on "API Keys" button to get your unique "Write API Key"
- "Channel ID" is also given on the top



## **IoT Network Configuration**

## **IoT Network Configuration**



- There are total five ESP8266
  - one is acting as server,
  - other four as clients in local network.

- ESP1- ESP8266 acting as local server
- ESP2- ESP8266 with Light sensor
- ESP3- ESP8266 with Pulse sensor
- ESP4- ESP8266 with vibration sensor
- ESP5- ESP8266 with temperature & humidity sensor
- Note: Unique ID for each ESP will be needed in programming



## **Sensor Configuration**



#### ESP8266 with LDR Sensor

- Connect VCC pin of LDR sensor with 3V3 pin of ESP2
- Connect GND pin of LDR sensor with GND pin of ESP2
- Connect DATA OUT pin of LDR sensor with A0 pin of ESP2.





#### **ESP8266** with Pulse Sensor

- Connect VCC pin of pulse sensor with 3V3 pin of ESP3
- Connect GND pin of pulse sensor with GND pin of ESP3
- Connect SIGNAL pin of pulse sensor with A0 pin of ESP3



#### **ESP8266** with Vibration Sensor

- Connect VCC pin of vibration sensor
- Connect GND pin of vibration sensor
- Connect DATA OUT pin of vibration sensor with A0 pin of ESP4







#### **ESP8266 with Temperature & Humidity Sensor (DHT11)**

- Connect VCC pin of DHT11 with VIN pin of ESP5
- Connect DATA OUT pin of DHT11 with D3 pin of ESP5
- Connect GND pin of DHT11 with GND pin of ESP5



# Arduino Tool Configuration

## **Configure Arduino IDE**



- Download and Install Arduino IDE <a href="https://www.arduino.cc/en/Main/Software">https://www.arduino.cc/en/Main/Software</a>
- When the Arduino IDE first opens, this is what you should see:

```
sketch_jul11a | Arduino 1.8.9
sketch_jul11a
1 void setup() {
   // put your setup code here, to run once:
6 void loop() {
   // put your main code here, to run repeatedly:
9 }
```

## **Install ESP8266 Board in IDE**



- Go to File --> Preferences
- Enter the below URL into Additional Board Manager URLs field and press the "OK" button <a href="http://arduino.esp8266.com/stable/package\_esp8266com\_index.json">http://arduino.esp8266.com/stable/package\_esp8266com\_index.json</a> OR <a href="https://github.com/esp8266/Arduino/releases/download/2.3.0/package\_esp8266com\_index.json">https://github.com/esp8266/Arduino/releases/download/2.3.0/package\_esp8266com\_index.json</a>





- Go to Tools > Board > Board Manager
- Scroll down, select the ESP8266 board menu and install "esp8266 by ESP8266 Community"







- Select the appropriate board
  - Go to Tools >Board > NodeMCU 1.0 (ESP-12E Module)
- Finally, re-open the Arduino IDE

## **Install Sensor Libraries**



- In this demo, we use DHT11 sensor for which we will be using DHT.h
  header file in the code. So, this header file should be installed.
- Install Using the Library Manager
  - click to Sketch menu then Include Library > Manage Libraries
  - Search for "DHT" on the Search box and install the DHT library from Adafruit.





After installing the DHT library from Adafruit, install "Adafruit Unified Sensor" libraries.



- There exist other methods for installing libraries
  - Importing a .zip Library
    - Sketch --> Include Library --> Add .Zip Library
  - Manual Installation of Library
    - Download the library as .Zip --> extract it
    - Place the files in File --> Preferences --> Sketchbook location
    - Restart Arduino IDE



## **MCU Programming**

## **ESP8266** with Local Server



For ESP5, write the following code in the Arduino IDE and save as **Local\_Server\_ESP1.ino** Install **ThingSpeak.h** library. Change the **red colored text** in code according to your setup.

```
#include <ESP8266WiFi.h>
                                  //Including ESP8266 library
#include<ESP8266WebServer.h>
                                  //Including ESP8266WebServer library for web server
#include<ThingSpeak.h>
                                  //Including ThingSpeak library
IPAddress IP(192,168,4,15);
                                  //Static IP address of local server
IPAddress gateway(192,168,4,1);
                                  //Gateway of the network
IPAddress mask(255, 255, 255, 0); //Subnet mask of the network
WiFiClient client;
WiFiServer server(80);
unsigned long myChannelNumber = 819306; //Replace with channelID of ThingSpeak channel ID
const char * myWriteAPIKey = "SW7ENB9IAXJT3STP"; //Replace WriteAPIKey of channel
const char* softAPssid = "ESP1 Server";
                                             //SSID of the hotspot of ESP8266 acting as local server
const char* password = "12345678";
                                             //Password of the hotspot of ESP8266 acting as local server
const char* wifissid = "Tenda 8060A0";
                                             //Replace with SSID of WIFI router providing internet access
const char* pass = "12345678";
                                             //Password of WIFI router providing internet access
```



```
void setup() {
 WiFi.mode(WIFI AP STA);
                                          //station mode and access point mode both at the same time
 Serial.begin(9600);
                                          //Serial communication at baud rate of 9600 for debugging purpose
 delay(100);
 Serial.println(WiFi.getMode());
 Serial.print("Configuring SoftAP....");
 Serial.println(WiFi.softAPConfig(IP, gateway, mask)? "Ready": "Failed");
 delay(10);
 Serial.println("Setting SoftAP...");
 Serial.println(WiFi.softAP(softAPssid, password));
 delay(10);
 Serial.println(WiFi.softAPIP());
 delay(500);
 WiFi.begin(wifissid, pass);
 while(WiFi.status()!=WL CONNECTED) {
   Serial.print(".");
   delay(500);
 Serial.print("Connected to Wifi with ssid ");
 Serial.println(wifissid);
 Serial.print("WiFi IP address: ");
 Serial.println(WiFi.localIP());
                                          // WIFI router IP address
 ThingSpeak.begin(client);
 server.begin();
                                          //Start local server
```

- Two functions exist in the programme: setup () and loop ()
  - **setup():** This function runs once when FSP first boots
  - **loop():** This function reads the LDR sensor value and connects to local server then send sends data to local server



```
void loop() {
  Serial.printf("Stations connected = %d\n", WiFi.softAPgetStationNum());
  WiFiClient client = server.available();
                                        //Waiting for the incoming data if client is ready to send
  if (!client) {return;}
  String select fun = client.readStringUntil('\r');
                                                           //Reads the ESP8266 ID (of clients)
  if(select fun=="5") {
                                                           //If ESP5 sends the data
    String temp = client.readStringUntil('\r');
                                                           //Reads the temperature value
    String Humidity = client.readStringUntil('\r');
                                                           //Reads the humidity value
                       //Upload the temp value to ThingSpeak server as first field of channel
    ThingSpeak.writeField(myChannelNumber, 1, temp, myWriteAPIKey);
    delay(15000);
                       //Wait for 15 sec after one entry
                       //Upload the humidity value to ThingSpeak server as second field of channel
    ThingSpeak.writeField(myChannelNumber, 2, Humidity, myWriteAPIKev):
    Serial.print("Temperature: ");
    Serial.print(temp);
    Serial.print(" degree celsius, Humidity: ");
    Serial.print(Humidity);
    Serial.print("%. ");
    Serial.println("Sent to ThingSpeak Server...");
```



```
//If ESP2 sends the data
if(select fun=="2") {
    String LDRval = client.readStringUntil('\r');
                                                       //Reads light sensor value
                           //Upload the light sensor value to ThingSpeak server as third field of channel
    ThingSpeak.writeField(myChannelNumber, 3, LDRval, myWriteAPIKey);
    Serial.print("LDR sensor data value: ");
    Serial.println(LDRval);
    Serial.println("Sent to ThingSpeak Server...");
if(select fun=="3") {
                                                       //If ESP3 sends the data
    String pulseRate = client.readStringUntil('\r');
                                                       //Reads pulse rate
                            //Upload the pulse rate to ThingSpeak server as fourth field of channel
    ThingSpeak.writeField(myChannelNumber, 4, pulseRate, myWriteAPIKey);
    Serial.print("Pulse rate: ");
    Serial.print(pulseRate);
    Serial.println(" BPM. Sent to ThingSpeak Server..");
  if(select fun=="4"){
                                                       //If ESP4 sends the data
    String Vibval = client.readStringUntil('\r');
                                                      //Reads vibration sensor data
                           //Upload the vibration sensor data value to ThingSpeak server as fifth field of channel
    ThingSpeak.writeField(myChannelNumber, 5, Vibval, myWriteAPIKey);
    Serial.print("Vibration Sensor data: ");
    Serial.print(Vibval);
    Serial.println(" Sent to ThingSpeak server..");
  delay(15000);
                           //waits for 15 secs after each transmission
```

## ESP8266 with LDR Sensor



#### For **ESP2**, write the following code in the Arduino IDE and save as **LDR\_client.ino**

```
#include<ESP8266WiFi.h> // Including ESP8266 library

char ssid[]="ESP1_Server"; // Network ssid of hotspot of local server
char pass[]="12345678"; // Password of hotspot of local server
int val;
int LDRpin = A0; // LDR Pin Connected to A0 pin
IPAddress server(192,168,4,15); // IP address of local server
WiFiClient client;
```

- Change the IP address of Local Server (i.e. ESP1)
- Change the SSID and Password of WiFi AP hosted in Local Server
- Two functions exist in the programme: setup () and loop ()
  - **setup():** This function runs once when ESP first boots
  - loop(): This function reads the LDR sensor value and connects to local server then send sends data to local server



```
void setup()
  Serial.begin(9600);
                                    // Serial communication at baud rate of 9600 for debugging purpose
  delay(10);
  WiFi.mode(WIFI STA);
                                    // ESP8266 in station mode
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, pass);
  Serial.println();
  while (WiFi.status() != WL CONNECTED)
    Serial.print(".");
    delay(500);
  Serial.println();
  Serial.println("WiFi connected");
  Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
  Serial.println("MAC:" + WiFi.macAddress());
  Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
  Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr());
                                                                        // MAC address of access point
```



```
void loop()
  val = analogRead(LDRpin);
                                                 // Reads the light sensor value
  if(client.connect(server,80))
                                                 // Connect to local server
    client.print("2\r");
                                                  // before sending data first send ESP8266 ID as 2
    Serial.print("LDR sensor value: ");
    Serial.println(val);
    String LDRval = String(val);
    LDRval += "\r";
                                                 // Add end delimiter
    client.print(LDRval);
                                                 // Send to local server
    Serial.println("Sent to Local Server..");
    delay(15000);
  client.stop();
```

### **ESP8266** with Pulse Sensor



```
#define pulsePin A0
                                  // Pulse sensor input pin A0
#include<ESP8266WiFi.h>
                                  // Including ESP8266 library
char ssid[] = "ESP1 Server";
                                  // Replace with SSID of hotspot of local server
char pass[] = "12345678";
                                  // Replace with password of hotspot of local server
 IPAddress server(192,168,4,15); // IP address of local server
                                                                               For ESP3, write the
WiFiClient client:
                                                                               following code in the
int rate[10];
                                  // array to hold last ten IBI value
                                                                               Arduino IDE and save as
unsigned long sampleCounter = 0; // used to determine pulse timing
                                                                               Pulse client.ino
unsigned long lastBeatTime = 0; // used to find IBI
unsigned long lastTime = 0, N;
int BPM = 0;
                       // int that holds raw analog in 0. updated every 2mS
                      // int that holds time interval between beats! Must be seeded!
int IBI = 0;
                      // used to find peak in pulse wave, seeded
int P = 512;
                      // used to find trough in pulse wave, seeded
int T = 512;
int thresh = 512:
                      // used to find instant moment of heart beat, seeded
int amp = 100;
                      // used to hold amplitude of pulse waveform, seeded
int Signal;
                      // holds incoming raw data
boolean Pulse = false:
                                  // "True" when heartbeat is detected. "False" when not a "live beat".
boolean firstBeat = true;
                                  // used to seed rate array so we startup with reasonable BPM
                                  // used to seed rate array so we startup with reasonable BPM
boolean secondBeat = true;
boolean QS = false;
                                  // Becomes true when ESP8266 finds a beat
```



```
void setup()
 Serial.begin(9600);
                                    // Serial communication at baud rate of 9600 for debugging purpose
 delay(10);
 WiFi.mode(WIFI STA);
                                    // ESP8266 in station mode
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, pass);
 Serial.println();
 while (WiFi.status() != WL CONNECTED)
  Serial.print(".");
  delay(500);
 Serial.println();
 Serial.println("WiFi connected");
 Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
 Serial.println("MAC:" + WiFi.macAddress());
 Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
 Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr());
                                                            // MAC address of access point
```



```
void loop(){
 if (QS == true){
                                                  //if ESP8266 finds a beat
    if (client.connect(server, 80)){
                                                  // Connect to local server
                                                  // before sending data first send ESP8266 ID as 3
      client.print("3\r");
      String pulseRate = String(BPM);
                                                  // Convert into string
      pulseRate +="\r";
                                                  // Add "r" as end delimiter
      Serial.print("Pulse rate: ");
      Serial.print(BPM);
      Serial.println(" BPM.");
      client.print(pulseRate);
                                                  // send data to local server
      Serial.println("Sent to local server..");
    QS = false;
    client.stop();
    delay(15000);
   else if(millis() >= (lastTime + 2)) {
    readPulse();
    lastTime = millis();
```



```
void readPulse() {
 Signal = analogRead(pulsePin);
                                         //Read pulse sensor value
                                         // Keeps track of the time in mS
 sampleCounter += 2;
 int N = sampleCounter - lastBeatTime; // Monitor the time since the last beat to avoid noise
                                         // find the peak and trough of the pulse wave
 detectSetHighLow();
                                          // Now it's time to look for the heart beat
                                         // signal surges up in value every time there is a pulse
 if(N > 250){
                                          // avoid high frequency noise
   if((Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3))
    pulseDetected();
 if (Signal < thresh && Pulse == true) {
   Pulse = false:
   amp = P - T;
                                                     void detectSetHighLow() {
   thresh = amp / 2 + T;
                                                        if(Signal < thresh && N > (IBI/5)^* 3)
   P = thresh;
                                                                   // avoid dichrotic noise by waiting 3/5 of last IBI
   T = thresh;
                                                          if (Signal < T) {
                                                                                 // T is the trough
 if (N > 2500) {
                                                           T = Signal;
                                                                                 // Keep track of lowest point in pulse wave
   thresh = 512;
   P = 512;
   T = 512;
                                                        if (Signal > thresh && Signal > P) // thresh condition helps avoid noise
   lastBeatTime = sampleCounter;
   firstBeat = true;
                                                          P = Signal;
                                                                                 // P is the peak
   secondBeat = true;
                                                                                  // Keep track of highest point in pulse wave
```



```
void pulseDetected()
                     // set the pulse flag when there is a pulse
  Pulse = true;
  IBI = sampleCounter - lastBeatTime; // time between beats in mS
  lastBeatTime = sampleCounter; //keep track of time for next pulse
                           // if it's the first time beat is found
  if (firstBeat)
                           //clear firstBeat flag
   firstBeat = false:
    return;
  if (secondBeat)
                           // if this is second beat
    secondBeat = false; // clear secondBeat flag
    for (int i = 0; i <= 9; i++)
     rate[i] = IBI;
  word runningTotal = 0; // clear the runningTotal variable
  for (int i = 0; i \le 8; i++) //Shift data in the rate array
   rate[i] = rate[i + 1]; // and drop the oldest IBI value
   runningTotal += rate[i]; // add up the 9 oldest IBI value
  rate[9] = IBI;
                        // add the latest IBI to the rate array
  runningTotal += rate[9]; //add the latest IBI to runningTotal
  runningTotal /= 10;
                            // average the last 10 IBI values
```

```
BPM = 60000 / runningTotal;
// how many beats can fit into a minute? that's BPM!
QS = true;
if (client.connect(server, 80)) //Connects to local server
 client.print("3\r");
          //before sending the data sends ESP8266 ID as 3
 String pulseRate = String(BPM);
          // Converting integer data into string
 pulseRate +="\r";
          // Add end Delimiter "r" in the data
 Serial.print("Pulse rate: ");
 Serial.print(BPM);
 Serial.println(" BPM.");
 client.print(pulseRate);
                             //sends data to locals server
 Serial.println("Sent to local server..");
client.stop();
delay(15000);
           // Wait for 15 seconds after each transmission
```

### ESP8266 with Vibration Sensor



For **ESP4**, write the following code in the Arduino IDE and save as **Vibration\_client.ino** 

```
#include <ESP8266WiFi.h> // Including ESP8266 library #define vib A0 // sensor input from A0 pin of ESP8266

char ssid[] = "ESP1_Server"; // Replace with SSID of hotspot of local server char pass[] = "12345678"; // Replace with password of hotspot of local server IPAddress server(192,168,4,15); // IP address of local server WiFiClient client;
```

- Change the IP address of Local Server (i.e. ESP1)
- Change the SSID and Password of WiFi AP hosted in Local Server



```
void setup(){
                                    // Serial communication at baud rate of 9600 for debugging purpose
  Serial.begin(9600);
  delay(10);
                                   // Input of vibration sensor
  pinMode(vib, INPUT);
  WiFi.mode(WIFI STA);
                                   // ESP8266 as station mode
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, pass);
  Serial.println();
  while (WiFi.status() != WL CONNECTED) {
    Serial.print(".");
    delay(500);
  Serial.println();
  Serial.println("WiFi connected");
  Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
                                                            // IP address of local server
  Serial.println("MAC:" + WiFi.macAddress());
  Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
  Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr()); // MAC address of access point
```



```
void loop(){
  int val = analogRead(vib);
                                    // Reads the sensor value
  if(client.connect(server,80))
                                    //connects to local server
   client.print("4\r");
                                     // Before sending the data sends ESP8266 ID as 4
   Serial.print("Vibration sensor value: ");
   Serial.println(val);
   String data = String(val);
                                    // Converting integer data into string type
   data += "\r";
                                    // Add end delimiter "r" in the data
   client.print(data);
                                    // sends sensor data to local server
   Serial.println("Sent to Local server..!!");
   delay(15000);
                                                 // After each transmission wait for 15 seconds
   client.stop();
```

### ESP8266 with DHT11 Sensor



For **ESP5**, write the following code in the Arduino IDE and save as **Temp\_Humidity\_Client.ino** 

- Change the IP address of Local Server (i.e. ESP1)
- Change the SSID and Password of WiFi AP hosted in Local Server
- Install the DHT11 library and Adafruit Unified Sensor library for DHT11 sensor



```
void setup() {
                                    //serial communication at baud rate of 9600 for debugging purpose
  Serial.begin(9600);
  delay(10);
                                   // start Temperature and Humidity sensor
  dht.begin();
                                   // ESP8266 mode as station mode
  WiFi.mode(WIFI STA);
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, pass);
  Serial.println();
  while (WiFi.status() != WL CONNECTED) {
   Serial.print(".");
   delay(500);
  Serial.println();
  Serial.println("WiFi connected");
  Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
  Serial.println("MAC:" + WiFi.macAddress());
  Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
  Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr()); // MAC address of access point
```



```
void loop() {
  float h = dht.readHumidity();
                                          // Read Humidity value from sensor
  float t = dht.readTemperature();
                                          // Read temp value from sensor
  if(isnan(h) | | isnan(t)) {
    Serial.println("Failed to read from DHT sensor");
                                                                      // Error message
    return;
  if(client.connect(server,80))
                                          // Connect to local server
    client.print("5\r");
                                          // before sending the data first send ESP8266 ID as 5
    String temp = String(t);
    temp += "\r";
                                          // Add "r" as end delimiter
    client.print(temp);
                                          // send temperature to local server
    Serial.print("Temperature: ");
    Serial.print(t);
    Serial.print(" degree celsius, Humidity: ");
    Serial.print(h);
    Serial.print("%. ");
    String humidity = String(h);
    humidity += "\r";
                                          // Add "r" in data as end delimiter
    client.print(humidity);
                                          // send to Local server
    Serial.println("Sent to local server");
    delay(15000);
                                          // delay of 15sec after each transmission
  client.stop();
```



## **Code Compilation and Upload**

### **Code Compilation**



```
temp_client | Arduino 1.8.9
                                                                                   Ø
    p client
  1 #include<DHT.h> //Including temperature and Humidity sensor library
  2 #includes = SP8266 library
          Compile Button
 4 char sstal = ESPOZOO; //Replace with ssid of hotspot of local server
  5 char pass∏ = "12345678"; // Replace with password of hotspot of local server
  7 IPAddress server(192,168,4,15); // IP address of local server
  8 WiFiClient client;
                      // D3 pin of ESP8266
 10 #define DHTPIN 0
 11 DHT dht(DHTPIN, DHT11); // Data of DHT11 sensor in D3 pin of ESP8266
 12
 13 void setup(){
     Serial.begin(9600); //serial communication at baud rate of 9600 for debugging purpos
 15
     delay(10);
     dht.begin(); // start Temperature and Humidity sensor
 16
     WiFi.mode(WIFI_STA);
                            // ESP8266 mode as station mode
 17
     Serial.print("Connecting to ");
 18
 19 Serial.println(ssid);
 20 WiFi.begin(ssid,pass);
     Serial.println();
     while (WiFi state() I- WI CONNECTED)
Done compiling.
Sketch uses 2/6220 bytes (26%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27012 bytes (32%) of dynamic memory, leaving 54908 bytes for local va
```

Compilation successful message in bottom left corner.

### **Code Uploading**



- Plug in the ESP8266 boards one by one to PC/Laptop via USB cable
- Go to Tool menu, select Board "NodeMCU 1.0 (ESP-12E Module)" and Port "COM3".
- Open the corresponding code and do uploading code in Node MCU.

Note: If COM port is not detected automatically then it is needed to install. Download port drivers from the given link and then install and then restart the system:

https://www.silabs.com/pro ducts/developmenttools/software/usb-to-uartbridge-vcp-drivers

```
local_server | Arduino 1.8.9
  local serv
 1 #include ₹SP8266WiFi.h>
                            //Including ESP8266 library
 2 #include<ESP 266WebServer.h> //Including ESP8266WebServer library for web serv
 3 #include<Thing
                              (/Including ThingSpeak library)
                                       c IP address of local server
 6 IPAddress gateway(192,168,4,1); //Gateway of the network
 7 IPAddress mask(255, 255, 255, 0); //Subnet mask of the network
 9 WiFiClient client:
10 WiFiServer server(80);
12 unsigned long myChannelNumber = 814887; //Replace with channelID of ThingSpeak
13 const char * myWriteAPIKey = "EK4LTPHWU4GGEOVP"; //Replace with WriteAPIKey of
14
15 const char* softAPssid = "ESP8266";
                                          //SSID of the hotspot of ESP8266 acting
16 const char* password = "12345678";
                                          //Password of the hotspot of ESP8266 act
17
18 const char* wifiss d = "Tenda_8060A0"; //Replace with SSID of WIF router provi
19 const char* pass = "12345678";
                                          //Password of WIFI router providing inte
 rd resetting via RTS pin...
```



## **Observe Outputs**

### **Open Serial Monitor**



• First **select the port** (go to Tools > Port: ) to which the board is connected then click the icon of **Serial Monitor** on the top right side of the Arduino IDE

Serial Monitor of Local Server

```
/dev/cu.SLAB_USBtoUART
                                                                                                                                           Send
14:39:43.602 -> Stations connected = 4
14:39:44.864 -> Vibration Sensor data: 29 Sent to ThingSpeak server..
14:39:59.873 -> Stations connected = 4
14:39:59.873 -> Stations connected = 4
14:39:59.907 -> Stations connected = 4
14:39:59.945 -> Stations connected = 4
14:40:17.586 -> Temperature: 23.30 degree celcius, Humidity: 70.00%. Sent to ThingSpeak Server...
14:40:32.597 -> Stations connected = 4
14:40:32.630 -> Stations connected = 4
14:40:32.630 -> Stations connected = 4
14:40:32.665 -> Stations connected = 4
14:40:32.702 -> Stations connected = 4
14:40:32.702 -> Stations connected = 4
14:40:32.735 -> Stations connected = 4
14:40:32.770 -> Stations connected = 4
14:40:34.148 -> LDR sensor data value: 1024
14:40:34.148 -> Sent to ThingSpeak Server...
                                                                                      Newline
                                                                                                             9600 baud
                                                                                                                                    Clear output
 Autoscroll  Show timestamp
```





Serial Monitor of ESP2

# Serial Monitor of ESP3

```
/dev/cu.SLAB USBtoUART6
                                                                                                                              Send
.. `HSsssconnecting to ESP8266
13:55:10.018 ->
13:55:10.018 -> .....
13:55:16.314 -> WiFi connected
13:55:16.347 -> LocalIP:192.168.4.118
13:55:16.347 -> MAC:3C:71:BF:32:44:4E
13:55:16.380 -> Gateway:192.168.4.1
13:55:16.418 -> AP MAC:3E:71:BF:32:6E:AD
13:55:47.738 -> Pulse rate: 71 BPM.
13:55:47.738 -> Sent to local server...
13:56:03.260 -> Pulse rate: 71 BPM.
13:56:03.260 -> Sent to local server..
13:56:24.758 -> Pulse rate: 236 BPM.
13:56:24.758 -> Sent to local server...
                                                                           Newline
                                                                                                 9600 baud
                                                                                                                       Clear output
 Autoscroll  Show timestamp
```



```
/dev/cu.SLAB_USBtoUART8
                                                                                                                              Send
{ldo||llo|| 0 $0 b||00 0 0{0b0 b00nn0$nn000 "p00c$ {lp0n0 0 1 00 #n0||l0 0p 00nN0 l00d`0 oo$ o{000N #0$ r00n #0$0 0 1$0 0$ 00n0
14:19:56.258 -> ......
14:20:02.041 -> WiFi connected
14:20:02.074 -> LocalIP:192.168.4.115
14:20:02.074 -> MAC:3C:71:BF:32:71:5B
14:20:02.109 -> Gateway:192.168.4.1
14:20:02.142 -> AP MAC:3E:71:BF:32:6E:AD
14:20:02.175 -> Vibration sensor value: 29
14:20:02.175 -> Sent to Local server..!!
14:20:17.089 -> Vibration sensor value: 30
14:20:17.122 -> Sent to Local server..!!
14:20:32.108 -> Vibration sensor value: 1013
14:20:32.142 -> Sent to Local server..!!
14:20:47.104 -> Vibration sensor value: 30
14.20.47 138 -> Sent to Local server II
                                                                           Newline
                                                                                                 9600 baud
                                                                                                                       Clear output
 Autoscroll V Show timestamp
```

Serial Monitor of ESP4

## Serial Monitor of ESP5

```
/dev/cu.SLAB USBtoUART5
                                                                                                                                Send
 " 0 $0 0p01$0 01 00n0 0 0=r00Connecting to ESP8266
13:42:16.359 ->
13:42:16.359 -> ......
13:42:20.639 -> WiFi connected
13:42:20.673 -> LocalIP:192.168.4.116
13:42:20.673 -> MAC:3C:71:BF:32:70:77
13:42:20.706 -> Gateway:192.168.4.1
13:42:20.741 -> AP MAC:3E:71:BF:32:6E:AD
13:42:20.774 -> Temperature: 24.00 degree celcius, Humidity: 68.00%. Sent to local server
13:42:35.736 -> Temperature: 24.10 degree celcius, Humidity: 68.00%. Sent to local server
13:42:50.771 -> Temperature: 25.00 degree celcius, Humidity: 95.00%. Sent to local server
13:43:05.799 -> Temperature: 26.80 degree celcius, Humidity: 90.00%. Sent to local server
13:43:20.841 -> Temperature: 27.70 degree celcius, Humidity: 76.00%. Sent to local server
13:43:35.862 -> Temperature: 28.20 degree celcius, Humidity: 75.00%. Sent to local server
                                                                            Newline
                                                                                                   9600 baud
                                                                                                                          Clear output
 Autoscroll Show timestamp
```

### **Results & Graphs in Web**



- Open the ThingSpeak page and click on Channels > My channels
- Now select the channel that is created for this experiment (In this case 'Monitoring Four Sensors in Star Topology').





click on 'Private View' to see the uploaded data





#### Temperature and Humidity











### **Light Sensor**

#### Pulse Sensor

#### **Vibration Sensor**















# Thanks!

