[முழுப்பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2013 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2013 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, Univer

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

இரசாயனவியல் I Chemistry I 02 T I

இரண்டு மணித்தியாலம் Two hours

கவனிக்க:

- 💠 இவ்வினாத்தாள் 12 பக்கங்களைக் கொண்டது (ஆவர்த்தன அட்டவணையும் தரப்பட்டுள்ளது)
- 💠 எல்லா வினாக்களுக்கும் விடை எழுதுக
- 💠 கணிப்பானைப் பயன்படுத்தக் கூடாது
- 💠 விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது **சுட்டெண்ணை** எழுதுக
- 💠 விடைத்தாளின் பிற்பக்கத்தில் வழங்கப்பட்டுள்ள அறிவுறுத்தல்களைக் கவனமாகப் பின்பற்றுக
- 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப்பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (x) இடுக

அகில வாயு மாறிலி R $=8.314~\mathrm{J~K^{-1}mol^{-1}}$ அவகாதரோ மாறிலி $\mathrm{N_A}=6.022\times10^{23}\,\mathrm{mol^{-1}}$ பிளாங்கின் மாறிலி $\mathrm{h}=6.626\times10^{-34}~\mathrm{Js}$ ஒளியின் வேகம் $c=3\times10^8ms^{-1}$

- 01. குறித்த ஒரு மின்காந்தக் கதிர்ப்பு ஒன்றின் ஒரு போட்டோனிற்குரிய சக்தியானது $6.62 \mathrm{x} 10^{-22} \, \mathrm{kJ}$ ஆகும். இக்கதிர்ப்பின் அலைநீளமாக அமைவது,
 - $(1) 3 \times 10^{-4} \text{ nm}$
- $(2) 3x10^{-7}$ nm
- $(3) 3 \times 10^2 \text{nm}$
- $(4) 3 \times 10^5 \text{nm}$
- $(5) 3 \times 10^{-5} \text{nm}$
- 02. N, F, Ar, Cl, Al, K ஆகிய மூலகங்களின் முதலாம் அயனாக்கற்சக்தி அதிகரிக்கும் வரிசை.
 - (1) K < Al < Cl < Ar < N < F
- (2) K < Al < Ar < Cl < N < F
- (3) K < Al < Cl < N < F < Ar

- (4) K < Al < N < F < Cl < Ar
- (5) K < Al < Cl < N < Ar < F
- O COOH 03. $H-C-CH=CH-C-CH_2-CH_3$ சேர்வை X இன் IUPAC பெயர் யாது? [X] NH_2
 - (1) 3- amino-2-formylhex-4-en-3-oic acid
- (2) 4-formyl-2-amino-2-ethylpent-3-enoic acid
- (3) 2-amino -2-ethyl-4-formylbut -3-enoic acid
- (4) 2-amino-2-ethyl -5-oxopent-3-enoic acid
- (5) 2-ammine-2-ethyl-5-oxopent-3-enoicacid
- 04. மூன்றாம் ஆவர்த்தன மூலகங்கள், அவை உருவாக்கும் சேர்வைகள் தொடர்பான பின்வரும் கூற்றுக்களில் எது **தவறானது**
 - (1) இவை உருவாக்கும் அதியுயர் ஒட்சியேற்ற நிலைக்குரிய ஒட்சைட்டுக்களின் அமிலச் சிறப்பியல்பு இடமிருந்து வலமாக ஆவர்த்தனத்தின் வழியே அதிகரிக்கிறது.
 - (2) Si,P,S,Cl என்பன உருவாக்கும் ஒட்சியமிலங்களில் அம்மூலகவணுக்கள் ${
 m sp}^3$ கலப்புநிலையில் காணப்படுகிறது.
 - (3) இம்மூலகங்களின் பங்கீட்டு வலுச்சேர்வைகளை உருவாக்கும் தன்மை ஆவர்த்தனத்தின் வழியே இடமிருந்து வலமாக அதிகரிக்கிறது.

- (4) இவற்றின் உறுதியான அயன்களைக் கருதுமிடத்து மிகக்குறைந்த, மிகக்கூடிய ஆரையை முறையே Al,Si என்பன கொண்டிருக்கும்.
- (5) Na,Mg,Al ஆகியவற்றின் அயன்கள், குறித்தவொரு அன்னயனின் இலத்திரன் முகிலை முனைவாக்குவதற்கான திறன் Na, Mg, Al எனும் போக்கில் அதிகரிக்கிறது.

- 05. Sc இன் மிக உறுதியான அயனின் வெளியோட்டு இலத்திரனொன்றிற்கு சாத்தியமில்லாத சக்திச்சொட்டெண் தொடை பின்வருவனவற்றுள் எது?
 - $(1)(3,2,-1,+\frac{1}{2})$
- $(2) (3,0,0,+\frac{1}{2})$
- $(3)(3,1,0,-\frac{1}{2})$

- $(4)(3,1,-1,+\frac{1}{2})$
- $(5)(3,0,0,-\frac{1}{2})$

மேலே தரப்பட்ட சேர்வைகளின் மூலவலிமை அதிகரிக்கும் சரியான வரிசை.

- (1) D < B < C < A
- (2) A < B < C < D
- (3) B < C < A < D

- (4) C < B < D < A
- (5) C < B < A < D
- 07. குறித்த வெப்பநிலையில் $0.1 \text{moldm}^{-3} \text{ Ba}(\text{NO}_3)_2, 0.1 \text{moldm}^{-3} \text{ Na}_3 \text{PO}_4$ கரைசல்களில் $\text{Ba}_3(\text{PO}_4)_{2(3)}$ இன் கரைதிறன்கள் முறையே S_1,S_2 ஆகும். S_1 இன் பெறுமதியினை S_2 சார்பாக சரியாகத்தருவது?

$$(1) S_1 = (10S_2^3)^{1/2}$$

$$(2)S_1 = \left(\frac{5}{2}S_2^3\right)^{1/2}$$

$$(3) S_1 = \left(\frac{270}{4} S_2^3\right)^{1/2}$$

$$(4) S_1 = (270S_2^3)^{1/2}$$

$$(2)S_1 = \left(\frac{5}{2}S_2^3\right)^{1/2}$$

$$(5) S_1 = \left(\frac{45}{2}S_2^3\right)^{1/2}$$

- 08. திணிவுப்படி 75% KHCO3 ஐக் கொண்ட KHCO3, CaCO3 திண்மக்கலவையினது 0.8g முற்றாகப்பிரியும் வரை உயர் வெப்பநிலைக்கு வெப்பப்படுத்தி நியம வெப்ப அமுக்க நிபந்தனையில் குளிர்விக்கும் போது பெறப்படும் CO_2 வாயுவின் கனவளவு (K-39, Ca-40, C-12, O-16, H-1)
 - $(1) 0.1792 \, dm^3$
- $(2) 0.0672 \, dm^3$
- $(3) 0.112 dm^3$

- $(4) 0.0448 \, dm^3$
- $(5) 0.168 \, \mathrm{dm}^3$
- 09. S தொகுதி மூலகங்கள் தொடர்பாக பின்வரும் கூற்றுக்களில் **தவறானது** எது?

- (1) S ஒழுக்குகளில் மாத்திரம் இவை வலுவளவு இலத்திரன்களை கொண்டிருக்கும்.
- (2) Ca,Sr,Ba என்பன NaOH நீர்க்கரைசல், HCl நீர்க்கரைசல் ஆகியவற்றின் p^H இல் அதிகரிப்பை ஏற்படுத்துகின்றது.
- (3) He S தொகுதிக்குரியதாகும்
- (4) இவற்றில் மிகச்சிறந்த தாழ்த்தியாக Cs ஐயும், ஒட்சியேற்றியாக H ஐயும் கருத முடியும்.
- (5) இவையாவும் அரைவெப்பநிலையில் நீருடன் தாக்கி H_2 வாயுவை விடுவிக்கக்கூடியன.
- $10.\,\,
 m H_2S_2O_2$ என்னும் ஓர் சமச்சீரற்ற கட்டமைப்பையுடைய இருமூல ஒட்சியமிலத்தின் மையக்கந்தகஅணு தொடர்பான பின்வரும் எந்நிரை சரியான தகவலைத்தருகிறது

	ஒட்சியேற்றநிலை	கலப்பு	அணுக்களின் ஒழுங்கமைப்பு வடிவம்	இலத்திரன் சோடிக் கேத்திரகணிதம்
(1)	+2	sp ³	நான்முகி	நான்முகி
(2)	+4	sp ³	முக்கோணகும்பகம்	நான்முகி
(3)	+4	sp ³	நான்முகி	நான்முகி
(4)	+2	sp ³	முக்கோணகும்பகம்	நான்முகி
(5)	+2	sp ²	நான்முகி	நான்முகி

 $11.\ 1dm^3$ கனவளவுடைய மூடிய பாத்திரமொன்றில் $1mol\ NOBr_{(g)}$ மாதிரியானது பிரிகையடையச்செய்யப்பட்டு சமநிலை பெறப்பட்டது. சமநிலையில் $x\ mol$ கள் $NOBr\$ பிரிகையடைந்தது எனின் இச்சமநிலைக்கான சமநிலை மாநிலி k_c யானது?

 $2NOBr_{(g)} \rightleftharpoons 2NO_{(g)} + Br_{2(g)}$

$$(1)^{\frac{x}{2(1-x)}}$$

$$(2)\frac{x^3}{2(1-x)^2}$$

$$(3)\frac{2(1-x)^2}{x^3}$$

$$(4)\frac{x^3}{(1-x)^2}$$

$$(5)\frac{x^2}{2(1-x)}$$

12. Potassium dicarbonyldicyanidodihydroxidochromate(iii) இனது IUPAC விதிக்கமைவான இரசாயனச் சூத்திரம்.

(1) K[Cr(CN)₂(CO)₂(OH)₂]

(2) $K_2[Cr(CN)(CO)_2(OH)_2]$

(3) $K[Cr(CN)_2(OH)_2(CO)_2]$

(4) $K_3[Cr(CO)_2(CN)_2(OH)_2]$

(5) $K[Cr(OH)_2(CO)_2(CN)_2]$

13. கந்தகத்தை கரைந்த நிலையில் கொண்டுள்ள C_7H_{16} மாதிரியின் 13.2g ஆனது 1.3 $mol\ O_2$ உடன் மூடிய பாத்திரமொன்றில் கலக்கப்பட்டு முற்றாக தகனமாக்கப்பட்டு குளிர்விக்கப்பட்டது. இதன் போது 14.4g நீர் பெறப்பட்டது. இங்கு பெறப்பட்ட வாயு விளைவு எதுவும் நீரில் கரையவில்லை எனக் கொண்டு தகன இறுதியில் காணப்படும் O_2 , CO_2 , SO_2 வாயுக்களின் மொத்த மூல்கள்

(1) 0.75

(2) 0.8

(3) 0.85

(4) 0.9

(5) 0.95

 $14.\ 0^{0}$ C வெப்பநிலையிலும் 1atm அமுக்கத்திலும் பனிக்கட்டியும் திரவ நீரும் ஒன்றுடன் ஒன்று சமநிலையில் காணப்படக்கூடியது.1mol பனிக்கட்டியானது 0^{0} C யில் திரவநீராக மாறும் போது ஏற்படும் எந்திரப்பி மாற்றம் 22Jmol $^{-1}$ K $^{-1}$ ஆகும். இதே வெப்ப அமுக்க நிபந்தனையில் 54g நீர் முழுமையாக பனிக்கட்டியாக உறைதலில் ஏற்படும் வெப்ப உள்ளுறை மாற்றம்

(1) -6kJmol⁻¹

(2) -18kJmol⁻¹

(3) 6kJmol⁻¹

(4) 0.6kJmol⁻¹

(5)18kJmol⁻¹

15. குறித்த வெப்பநிலையில் A, B எனும் திரவங்கள் உள்ளடங்கலான இரு இலட்சிய கரைசல்கள் தயாரிக்கப்பட்டது. இக்கரைசல்கள் அதன் ஆவியுடன் சமநிலையில் உள்ள போது A இன் மூல் பின்னங்கள் முறையே 0.6, 0.3 ஆகும். இவ்விரு கரைசல்களினதும் ஆவி அமுக்கங்கள் முறையே P_1 , P_2 ஆகும். A, B யின் தூயநிலை ஆவி அமுக்கங்கள் முறையே P^0_A , P^0_B எனின் இக்கரைசல் தொடர்பான பின்வரும் தொடர்புகளில் சரியானது?

(1) $P_B^0 = 2P_2 - P_1$

 $(2) P_A^0 + P_B^0 < P_1 + P_2$

(3) $P_A^0 = 2P_2 - P_1$

(4) $P_A^0 = \frac{1}{2} (5P_1 - 4P_2)$

(5) $P_B^0 = 2P_1 - P_2$

16. குறித்த செறிவுடைய ஒருமூல மென்அமிலம் HA யுடன் பிறிதொரு குறித்த செறிவுடைய NaOH இன் சமகனவளவுகளை கலப்பதன் மூலம் $p^H=6$ ஆக உள்ள ஒரு தாங்கற் கரைசல் தயாரிக்கப்பட்டது. இக்கரைசலில் கலக்கப்பட்ட அமிலத்தினதும் காரத்தினதும் செறிவுகளுக்கிடையிலான விகிதம் $(k_a=1 \ x \ 10^{-5} moldm^{-3})$

(1) 3:7

(2) 10:11

(3) 11:12

(4) 7:3

(5) 11:10

- 17. $\bigcap_{C-NH-CH_3}^{Q}$ எனும் சேர்வையை LiAlH_4 உடன் தாக்கம் புரியச் செய்யப்பட்டு பின்னர் நீர்ப்பகுப்புச் செய்யப்படும் போது கிடைக்கும் விளைவுகள் யாவை?
 - COOH $(1) \bigcirc CH_2OH$ $(2) \bigcirc CH_3NH_2, CH_3COOH$ $(2) \bigcirc CH_2OH$ $(3) \bigcirc CH_2OH$
 - $\begin{array}{c} CH_2NH-CH_3\\ \hline C-NH-CH_3\\ \hline C-NH-CH_3\\ \hline CH_2OH\\ \end{array}$
 - (5) CH₂OH , CH₃NH₂, CH₃OH CH₂OH
- 18. $2P_{(g)} + Q_{(g)} \overset{\kappa_1}{\underset{\kappa_2}{\rightleftarrows}} 3R_{(g)}$ இல் K_1 , K_2 என்பன முற்தாக்க, பிற்தாக்க வீதமாறிலிகளாகும். இச்சமநிலை தொடர்பான பின்வரும் கூற்றுகளில் சரியானது.
 - (1) P,Q வின் செநிவு அதிகரிப்பு, வீத மாநிலி K_1 ஐ அதிகரிக்கும் அதேவேளை R இன் செநிவு அதிகரிப்பு, வீதமாநிலி K_2 ஐ அதிகரிக்கும்.
 - $(2)\ K_2/K_1$ விகிதம் சமநிலை மாறிலி k_c ஐ தரும்.
 - (3) $\frac{\Delta[P_{(g)}]}{\Delta t} = \frac{1}{2} \frac{\Delta[Q_{(g)}]}{\Delta t}$
 - (4) தொகுதியின் கனவளவை குறைப்பதன் மூலம் அமுக்கத்தை அதிகரிக்கும் போது முற்தாக்க, பிற்தாக்க வீதங்கள் இரண்டும் அதிகரிக்கும் எனினும் சமநிலை ஸ்தானத்தில் மாற்றம் ஏற்படாது.
 - (5) R இன் செறிவைக்குறைத்தல் முற்தாக்க வீதத்தை அதிகரிக்க செய்யும்.

- 19. மின்வாய்கள் A,B,C என்பவற்றை கொண்டு இரு மின்கலங்கள் உருவாக்கப்படுகின்றன. A ஐயும் B ஐயும் கொண்டு உருவாக்கப்பட்ட மின்கலத்தின் மின் இயக்கவிசை 1.1V ஆகும். B ஐயும் C ஐயும் கொண்டு உருவாக்கப்பட்ட மின் கலத்தின் மின் இயக்கவிசை 2.72V ஆகும். இங்கு B யின் தாழ்த்தல் அழுத்தம் $E^{\emptyset}_{B^{2+}_{(aq)}/B_{(s)}} = 0.34V$ இரு கலங்களிலும் B ஆனது நேர் மின்வாயாக செயற்படுகிறது எனின் A ஐயும் C ஐயும் கொண்டு உருவாக்கப்படும் கலத்தின் நியம மின்னியக்கவிசை,
 - (1) 3.14V (2) 1.62V (3) 4.5V (4) 2.3V (5) 3.82V
- 20. மூலக்கூறு N_2O_2 இந்கு எத்தனை பரிவுக்கட்டமைப்புகளை வரையலாம்(அடிப்படைக்கட்டமைப்பு O-N-N-O) $(1)\ 2$ $(2)\ 3$ $(3)\ 5$ $(4)\ 6$ $(5)\ 7$

- 21. 3d வரிசைத்தாண்டல் மூலகங்கள் தொடர்பான பின்வரும் கூற்றுக்களில் சரியானது.
 - (1) Cr இன் ஒட்சி அன்னயன்களாகிய $\operatorname{CrO_4}^{2-}$, $\operatorname{Cr_2O_7}^{2-}$ என்பன முறையே அமில கார ஊடகங்களில் உறுதியாகக் காணப்படும்.
 - (2) Mn இன் ஒட்சைட்டு MnO_2 ஈரியல்புத்தன்மையுடையதாக இருப்பதுடன் நடுநிலை ஊடகத்தில் மிகச்சிறந்த ஒட்சியேற்றியாகவும் தொழிற்படும்.
 - (3) இம்மூலகங்களின் உறுதி நேரயன்கள் யாவற்றிலும் 4S ஒழுக்கு வெற்றுநிலையில் காணப்படும்.
 - (4) இம்முலகங்களில் Ti, Mn ஆகியன மாத்திரமே ஈரொட்சைட்டுக்களைத் தோற்றுவிக்கின்றன.
 - (5) V,Cr,Mn என்பன அவற்றின் அதியுயர் ஒட்சியேற்ற நிலைகளை இலத்திரன்களை இழந்து உருவாக்கும் நேரயன்களை தோற்றுவிப்பதனால் பெற்றுக் கொள்கின்றன.
- 22. மூடிய பாத்திரமொன்றில் $PCl_{5(g)}$ ஆனது எடுக்கப்பட்டு குறித்த வெப்பநிலையில் பிரிகையடையச் செய்யப்பட்டு சமநிலை பெறப்பட்டது.

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

மாநா வெப்பநிலையில் இச்சமனிலைத் தொகுதியினுள் Cl_2 வாயு செலுத்தப்பட்டு மீண்டும் சமனிலை அடைய அனுமதிக்கப்பட்டது. ஆரம்பச்சமனிலையுடன் ஒப்பிடுகையில் புதிய சமனிலையில் முற்தாக்க, பிற்தாக்க வீதங்களின் மாறல்களைச் சரியாகத்தருவது.

	முற்தாக்க வீதம்	பிற்தாக்க வீதம்
(1)	அதிகரிக்கும்	குறைவடையும்
(2)	குறைவடையும்	அதிகரிக்கும்
(3)	குறைவடையும்	குறைவடையும்
(4)	அதிகரிக்கும்	அதிகரிக்கும்
(5)	மாற்றமடையாது	அதிகரிக்கும்

23. $N_2O_{5(s)}$ இன் நியமத்தோன்றல் வெப்பவுள்ளுறை 11.3kJmol $^{-1}$ ஆகும். 25^0 C இல் $2N_{2(g)}+5O_{2(g)} \rightarrow 2N_2O_{5(s)}$ தாக்கம் தொடர்பான $\Delta G^\theta, \Delta S^\theta$ என்பவற்றிற்கான பின்வருவனவற்றுள் எது உண்மையானது?

	$\Delta ext{G}^{ heta}$	$\Delta S^{ heta}$
(1)	நேர்	நேர்
(2)	ഥഞ്ങ	ഥഞ്ഞ
(3)	நேர்	ഥഞ്ങ
(4)	மறை	நேர்
(5)	நேர்	பூச்சியம்

^^^^^

24. 3d தாண்டல் உலோகங்கள் L,M,N என்பன Cl_2 உடன் தாக்கமடைந்து தனித்தனியே மஞ்சள் நிறமான நீரற்ற குளோரைட்டு திண்மங்களை தந்தது. L,M,N இன் குளோரைட்டுச் சேர்வைகளுக்கு நீரைச்சேர்த்த போது முறையே நீலநிற கரைசல், மஞ்சள்நிற கரைசல், பச்சை நிற கரைசல்களை விளைவாகத்தந்தது எனின் உலோகங்கள் L,M,N முறையே,

(1) Ni, Co,Fe

(2) Ni,Mn,Cr

(3) Ni,Cu,Fe

(4) Cu,Co,Cr

(5) Cu,Fe, Ni

25.
$$CH_3O$$
 C CH_3 C CH_3 C CH_3 C CH_3 C C

மேலே தரப்பட்ட தாக்கத்தின் பிரதான விளைபொருட்கள்

$$(1) \bigcirc \begin{matrix} O^{\text{T}} N a^{\text{+}} \\ + C H_3 \text{ OH} + C H_3 \text{COO}^{\text{-}} N a^{\text{+}} \end{matrix}$$

$$(2) \bigcirc \begin{matrix} O^{\text{-}} N a^{\text{+}} \\ + C H_3 O^{\text{-}} N a^{\text{+}} + C H_3 \text{COO}^{\text{-}} N a^{\text{+}} \end{matrix}$$

$$(2) \bigcirc \begin{matrix} COO^{\text{-}} N a^{\text{+}} \\ + C H_3 O^{\text{-}} N a^{\text{+}} \end{matrix}$$

$$(3) \bigcirc O^{\text{T}} Na^{\text{+}} + CH_3OH + CH_3COO^{\text{-}} Na^{\text{+}}$$

$$O^{\text{T}} Na^{\text{+}} + CH_3OH + CH_3COO^{\text{-}} Na^{\text{+}}$$

$$COO^{\text{-}} Na^{\text{+}} + CH_3O^{\text{-}} Na^{\text{+}}$$

$$COO^{\text{-}} Na^{\text{+}} + COO^{\text{-}} Na^{\text{+}}$$

(5)
$$\bigcirc$$
 + CH₃COO $^{-}$ Na $^{+}$

26.
$$CH_2C \equiv CH$$

$$CH_3MgBr$$

$$S \xrightarrow{1} \xrightarrow{Q} T \xrightarrow{PCC/CH_2Cl_2} U$$

மேற்படி தாக்கத்திட்டத்தில் \mathbf{S},\mathbf{U} இன் கட்டமைப்புக்கள் முறையே

(4)
$$\bigcirc$$
 $CH_2C \equiv CMgBr$, $CH_2 - C \equiv C - C$

(5)
$$CH_2C \equiv CMgBr$$
 , $CH_2 - C - H$

- $27. \ H_2O_2$ தொடர்பான பின்வரும் கூற்றுகளில் **தவநானது**
 - (1) மென்நீலநிறமான பாகுநிலை திரவமாகும்.
 - (2) ஒளிமுன்னிலையில் இதன் பிரிகை ஓர் இருவழிவிகார தாக்கமாகும்.
 - (3) தாழ்த்தியாக தொழிற்படும் சந்தாப்பங்களில் O_2 ஐ ஓர் விளைவாக தருகிறது.
 - (4) திண்ம PbS உடன் தாக்கமடைந்து PbO ஐயும் வெண்மஞ்சள் நிறமான கந்தக மீதியையும் தரும்.
 - (5) நீர் மூலக்கூற்றை காட்டிலும் இதன் விளையுள் இருமுனைவுத் திருப்புதிறன் உயர்வானதாகும்.
- 28. $Cu_{(s)}/Cu^{2+}_{(aq)}$ மின்வாயையும் $Ag_{(s)},AgCl_{(s)}/Cl_{(aq)}$ மின்வாயையும் இணைப்பதன் மூலம் மின்கலம் ஒன்று வடிவமைக்கப்பட்டது.

$$E_{Cu_{(aq)}^{2+}|Cu_{(s)}}^{\emptyset} = 0.34V$$

$$E_{AgCl_{(s)},Ag_{(s)}/Cl_{(aq)}^{-}}^{\emptyset} = 0.22V$$

மேற்படி மின்கலம் தொடர்பான பின்வரும் கூற்றுக்களில் சரியானது.

- (1) இக்கலத்தின் மின் இயக்கவிசை 0.56V ஆகும்.
- (2) இக்கலத்தில் Cu எதிர்மின்வாயாக தொழிற்படுகிறது.
- (3) இக்கலத்தின் கலத்தாக்கம் $2Ag_{(s)}+CuCl_{2(aq)} \rightarrow 2AgCl_{(s)}+Cu_{(s)}$
- (4) மின்னோட்டம் $Ag_{(s)}$, $AgCl_{(s)}/Cl_{(aq)}^{-}$ மின்வாயிலிருந்து $Cu_{(s)}/Cu_{(aq)}^{2+}$ மின்வாயை நோக்கி பாய்கிறது.
- (5) மின்வாய்களுக்கிடையேயான தூரத்தை குறைக்கும் போது மின்னோட்டத்தில் மாற்றம் ஏற்படாது.
- 29. $C_6H_5CONH_2$ தொடர்பான பின்வரும் கூற்றுகளில் சரியானது?
 - (1) அசற்றைல் குளோரைட்டுடன் தாக்கம் புரிந்து ஒரு பிரதியீட்டு ஏமைட்டை விளைவாகத்தரும்.
 - (2) இது நைத்திரஸ்அமிலத்துடன் தாக்கமடைந்து $N_{2(g)}$ வாயு வெளியேற்றத்தையும் வெண்வீழ்படிவையும் தருகிறது.
 - (3) ஐதான $HCl_{(aq)}$ உடன் உப்பொன்றை தோற்றுவித்து நீரில் கரைகிறது.
 - (4) NaBH $_4$ இனால் தாழ்த்தல் அடைந்து $C_6H_5CH_2NH_2$ ஐ விளைவிக்கிறது
 - (5) இது $C_6H_5NH_2$ ஐக் காட்டிலும் ஓர் வலிமையான மூலமாகும்.
- 30. வெப்பநிலை (T) யுடன் நீரின் எந்திரோப்பி (S) இன்மாற்றத்திற்கான ஒரு மாதிரிவரைபடத்தை பின்வருவனவற்றில் எது சரியாக பிரதிநிதித்துவப்படுத்துகிறது.

- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a), (b), (c), (d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்ப்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளைத் தேர்ந்தெடுக்க.
 - (a), (b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - (c), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
 - (a), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம்.

1	2	3	4	5	
(a), (b) ஆகியன	(b), (c) ஆகியன	(c), (d) ஆகியன	(a) , (d) ஆகியன	வேறு தெரிவுகளின்	
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	எண்ணோ சேர்மானங்களோ	
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	

31. பின்வரும் தாக்கத்தை கருதுக.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$
 $\Delta H < 0$

இத்தாக்கம் குநித்த வெப்பநிலையில் மூடிய விறைத்த கொள்கலத்தில் நடைபெற்று சமநிலை அடைந்தது சமநிலை அமுக்கம் $1x10^6$ Pa ஆகவும் $P_{CO} = P_{H_2O} = 2x10^5$ Pa ஆகவும் உள்ளது. பின்வரும் கூற்றுக்களில் எது/ எவை சரியானது/ சரியானவை.

- (a) ஆரம்ப அ**மு**க்கம் 1x10⁶ Pa ஆகும்.
- (b) k_p = 2.25 ஆகும்.
- (c) நீரற்ற $CaCl_2$ திண்மம் சேர்க்க சமநிலை அமுக்கம் குறைவதோடு P_{CO} உம் குறைவடையும்.
- (d) வெப்பநிலை அதிகரிப்புடன் kp அதிகரிக்கும்.

32. $\langle \bigcirc \rangle_{\overline{a}} \stackrel{b}{\text{CH}} = \stackrel{c}{\text{CH}} - \stackrel{d}{\text{CHO}}$

என்னும் மூலக்கூறு தொடர்பான பின்வரும் கூற்றுகளில் எது/எவை உண்மையானது/உண்மையானவை,

- (a) a,b,c,d எனப்பெயரிடப்பட்ட காபன் அணுக்கள் யாவும் ஒரே தளத்தில் காணப்படும்.
- (b) இவ் மூலக்கூறில் அனைத்து காபன் அணுக்களும் ${
 m sp}^2$ கலப்பு நிலையில் உள்ளன.
- (c) இவ் மூலக்கூறில் 7 காபன் அணுக்கள் ஒரே தளத்தில் காணப்படும்.

- (d) பென்சீன் வளையத்தில் உள்ள காபன், காபன் அணுக்களுக்கிடையிலான பிணைப்பு நீளமும் b,c எனப் பெயரிடப்பட்ட காபன் அணுக்களுக்கிடையிலான பிணைப்பு நீளமும் ஒன்றுக்கொன்று சமனாகும்.
- 33. இரும்பு உற்பத்தியுடன் தொடர்புபட்ட சில தாக்கங்களாவன,
 - (a) $FeO_{(s)} + CO_{(g)} \rightarrow Fe_{(l)} + CO_{2(g)}$
 - (b) $CaCO_{3(s)} + SiO_{2(s)} \rightarrow CaSiO_{3(l)} + CO_{(g)}$
 - (c) $Fe_3O_{4(s)} + CO_{(g)} \rightarrow Fe_2O_{3(s)} + CO_{2(g)}$
 - (d) $CaO_{(s)} + Al_2O_{3(s)} \rightarrow Ca (AlO_2)_{2(l)}$

- 34. $A_{(g)} + B_{(g)} \rightarrow C_{(g)} + D_{(g)}$ எனும் தாக்கத்தின் வீதவிதி $R = K[B_{(g)}]$ ஆகும். இத்தாக்கம் தொடர்பாக பின்வரும் கூற்றுகளில் எது/ எவை உண்மையானது/ உண்மையானவை.
 - (a) A யின் செநிவில் தாக்கவீதம் தங்கவில்லை.
 - (b) இத்தாக்கம் ஓர் முதலாம் வரிசை தாக்கமாகும்.
 - (c) தாக்கம் நடைபெறும் போது A யின் செறிவில் மாற்றம் ஏற்படுவதில்லை
 - (d) இங்கு வீதமாநிலியின் அலகு s^{-1} ஆகும்.
- 35. சமபகுதியங்கள் தொடர்பான பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை
 - (a) அனைத்து அல்டிகைட்டு மூலக்கூறுகளும் KCN / ஐதான H_2SO_4 உடன் தாக்கமுற்று ஒளியியல் தொழிற்பாடு உடைய விளைவுகளை தோற்றுவிக்கின்றன.
 - (b) 2-pentenal, NaBH₄ உடன் தாக்கமுற்று உருவாகும் விளைவு கேத்திரகணிதச்சமபகுதிய தன்மையை வெளிக்காட்டும்.
 - (c) 2-pentene, HBr உடன் தாக்கி ஸ்தான சமபகுதிய (Positional isomerism) விளைவுகளை உருவாக்கும்.
 - (d) சேதன மூலக்கூறு ஒன்றின் சமச்சீரற்ற மையத்தில் உள்ள கூட்டங்கள் திணிவில் வேறுபட்டவையாக இருத்தல் வேண்டும்.
- $36.~0.2 moldm^{-3}$ ஒருமூல மென்னமிலம் HA கரைசல் தொடர்பான பின்வரும் கூற்றுகளுள் சரியானது/ சரியானவை $(k_a=1x10^{-5} moldm^{-3},\,k_w=1x10^{-14} mol^2 dm^{-6})$
 - (a) மேற்படி கரைசலின் $10\mathrm{cm}^3$ காய்ச்சி வடித்த நீரை சேர்த்து $1\mathrm{dm}^3$ இற்கு ஐதாக்கிய போது p^OH ஆனது ஓரலகால் வீழ்ச்சி அடையும்.
 - (b) இக்கரைசலின் 10cm^3 இற்குள் $0.2 \text{moldm}^{-3} \text{ NaOH}$ ஐ துளித்துளியாக சேர்க்கும் போது பெறப்படும் விளைவுக்கரைசல்களில் மென்னமிலம் HA இன் அயனாக்க அளவு அதிகரிக்கும்
 - (c) இக்கரைசலின் $10 \mathrm{cm}^3$ இற்குள் $0.2 \mathrm{moldm}^{-3}$ HClஜ துளித்துளியாக சேர்க்கும் போது பெறப்படும் விளைவுக்கரைசல்களில் மென்அமிலம் HA இன் அயனாக்க அளவு குறையும்
 - (d) இக்கரைசலின் $10 {\rm cm}^3$ ஆனது $0.2 {\rm moldm}^{-3}$ NaOH இனால் நடுநிலையாக்கலின் போது சமவலு புள்ளியின் ${\bf p}^{\rm H}=9$ ஆகும்.
- 37. பின்வரும் தாக்கத்தை கருதுக.

$$A_{(g)} \rightarrow 2B_{(g)}$$
 $\Delta H < 0$

இத்தாக்கம் தொடர்பான பின்வரும் கூற்றுகளுள் எது/ எவை சரியானது/ சரியானவை

- (a) மேற்படி தாக்கத்தின் போது சூழலுக்கு வெப்பம் இழக்கப்படுகின்றமையினால் தரப்பட்ட வெப்பநிலையில் விளைவு மூலக்கூறுகளின் சராசரி இயக்கப்பாட்டுச்சக்தி தாக்கி மூலக்கூறுகளிலும் பார்க்க இழிவானதாகும்.
- (b) இத்தாக்கத்தில் ஏவற்பட்ட இடைநிலைச் சிக்கலிலிருந்து விளைவு உருவாகும் போது சக்தி உறிஞ்சப்படுகிறது.
- (c) தரப்பட்ட எவ்வெப்பநிலையிலும் இம்மாற்றம் சுயமானது.
- (d) தாக்கி மூலக்கூறுகளினதும் விளைவு மூலக்கூறுகளினதும் உள்ளுறைச்சக்தி வேறுபாடானது இத்தாக்கத்தின் வெப்பவுள்ளுறை மாற்றமாகும்.

- 38. இரசாயன இயக்கவியல் தொடர்பான பின்வரும் பின்வரும் கூற்றுகளில் எது/எவை சரியானது/சரியானவை?
 - (a) குறித்த வெப்பநிலை அதிகரிப்பிற்கு வாயுக்கூறுகள் சம்பந்தப்படும் தாக்கமொன்றை காட்டிலும் திரவக்கூறுகள் சம்பந்தப்படும் தாக்கமானது உயர் தாக்கவீத அதிகரிப்பைக் காட்டும்.

- (b) முதன்மைத்தாக்கமொன்றில் தாக்கவீதத்தைப் பாதிக்கும் பெரும்பாலான காரணிகள் அத்தாக்கத்தின் ஏவற்சக்தியையும் பாதிக்கும்.
- (c) சிக்கல் தாக்கமொன்றில் ஏவற்சக்தி கூடிய படியே தாக்கவீதத்தைத் தீர்மானிக்கும் படியாகும்
- (d) ஒரு தாக்கத்தின் வெவ்வேறு கூறுகள் சார்பான தாக்கவீதங்களுக்கு இடையிலான தொடர்பானது தாக்கிக் கூறுகள் சார்பான பீசமானக்குணகங்களினால் தீர்மானிக்கப்படும்.
- 39. பின்வரும் எச்சேர்வை/சேர்வைகள் கீழே தரப்பட்டுள்ள தாக்கங்கள் இரண்டிற்கும் உட்படும்?
 - i. சூடான NaOH கரைசலுடன் NH₃ஐ தருவது.
 - ii. PCl_5 உடன் வெண்புகையை வெளியேற்றுவது.

- 40. பல்பகுதியங்கள் தொடர்பான பின்வரும் கூற்றுகளுள் எது/எவை **தவறானது/ தவறானவை**?
 - (a) இயற்கைப் பல்பகுதியங்கள் கூட்டல் பல்பகுதியங்களாகும்.
 - (b) ரெப்லோனில் அலசன் பிரதியீடு இருப்பதனால் கூடிய வெப்பநிலையை தாங்கும் பல்பகுதியமாகும்.
 - (c) நைலோன் பல்பகுதியத்தை NaOH கரைசலை சேர்த்து வெப்பப்படுத்தும் போது NH_3 வாயு வெளிப்படுகிறது.
 - (d) PVC, ஸ்ரைரீன், பொலிப்புரப்பீன் என்பன வெப்பமிளக்கும் ஒடுங்கற் பல்பகுதியங்களாகும்.
- 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன.
 அட்டவணையில் உள்ள (1), (2), (3), (4), (5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுக்களுக்கும் மிகவும் சிறப்பாக பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

தெரிவுகள்	கூற்று I	கற்று II
(1)	உண்மை	உண்மை, கூற்று I இன் விளக்கம்
(2)	உண்மை	உண்மை, கூற்று I இன் விளக்கமல்ல
(3)	உண்மை	பொய்
(4)	பொய்	உண்மை
(5)	பொய்	பொய்

	முதலாம் கூற்று	இரண்டாம் கூற்று
41	Na, N ₂ உடன் தாக்கி Na ₃ Nஐ உருவாக்குவதில்லை	Na இன் முதலாம் அயனாக்கற் சக்தியை காட்டிலும் மூன்றாம் அயனாக்கற்சக்தி மிக உயர்வானது.
42	பரா நைத்திரோபென்சல்டிகைட் இனது குறித்த ஒரு கருநாடியுடனான தாக்கவீதமானது மெற்றா நைத்திரோ பென்சல்டிகைட் ஐக் காட்டிலும் அதிகமாகும்.	NO ₂ ஆனது மெற்றா ஸ்தான காபன் அணுக்களுடன் ஒப்பிடுகையில் ஓதோ, பரா ஸ்தான காபன் அணுக்களில் அதிக மின்னெதிர் இயல்பு அதிகரிப்பை ஏற்படுத்தும்.
43	$ ho_2$ ஐ காட்டிலும் $ ho_2$ இன் பொயிலின் வெப்பநிலை (T_B) உயர்வாகும்.	$\mathrm{CO}_{2(\mathrm{g})}$ இன் அவதிவெப்பநிலை $(\mathrm{T}_{\mathrm{C}})$ ஐ காட்டிலும் $\mathrm{N}_{2(\mathrm{g})}$ இன் அவதிவெப்பநிலை உயர்வாகும்.
44	காரமண் உலோக உப்புக்கள் யாவற்றினதும் கரைதிறன் கூட்டத்தின் வழியே கீழ்நோக்கி செல்லும்போது குறையும்.	காரமண்உலோக அயன் பருமன் கூட்டத்தின் வழியே கீழ்நோக்கி அதிகரிப்பதால் உப்புக்களின் சாலக சக்தி குறைவடைகிறது.
45	ெ — CH₂CH₂Cl ஐகாட்டிலும்	சேதன அலசன் சேர்வைகளில் நிகழும் நீர்பகுப்புத் தாக்கத்தில் NO_3 ் ஓர் கருநாடியாக செயற்படுகிறது.
46	முதன்மை தாக்கமொன்றில் சமப்படுத்தப்பட்ட இரசாயன சமன்பாட்டை கருத்தில் கொண்டு வீத மாறிலியின் அலகை உய்த்தறியலாம்	முதன்மை தாக்கத்தில் தாக்கிகளின் மூலக்கூற்றுதிறனானது அத்தாக்கிகள் தொடர்பான தாக்கவரிசைக்கு சமனாகும்.
47	தொடுகை முறை சல்பூரிக் அமில உந்பத்தியில் உயர்விளைவினை பெறும் பொருட்டு உயர் அமுக்கம் பயன்படுத்தப்படுகிறது.	2SO _{2(g)} +O _{2(g)} ⇌2SO _{3(g)} தாக்கமானது மூல் எண்ணிக்கை குறைவுடன் நடைபெறும் ஒரு அகவெப்பதாக்கமாகும்.
48	But-2-ene ஈர்மயவெளி சமபகுதியத் தன்மையை உடைய நிரம்பாத ஐதரோக்காபன் ஆகும்.	But-2-ene இன் இரு ஈர்மயவெளி சமபகுதியங்களும் ஒன்றுக்கொன்று ஆடிவிம்பமாக அமையும் திண்ம சமபகுதியங்கள் ஆகும்.
49	இலட்சிய கரைசல் ஒன்றின் கொதிநிலையானது அதன் அமைப்புடன் ஓர் சீரான நேர்கோட்டு மாற்றத்தைக்காட்டும்.	இலட்சிய கரைசலில் தனித்தனிகூறுகளிடையே காணப்படும் இடைக்கவர்ச்சி விசைகள், கரைசலில் வெவ்வேறு இனங்களிடையே காணப்படும் இடைக்கவர்ச்சிவிசைகள் யாவும் ஒன்றுக்கொன்று சமனாகும்.
50	நீராவி மூலக்கூறுகள் பூகோள வெப்பமாதலுக்கு (Global warming) பங்களிப்பு செய்கிறது.	நீராவி மூலக்கூறுகள் பச்சைவீட்டு வாயுமூலக்கூறுகள் ஆகும்.

ஆவர்த்தன அட்டவணை

	1																	2
1	Н																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg		-									Al	Si	P	s	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uaa	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

[முழுப்பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2013 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2013 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2019 Tamil MURA E-TAMILS 2019 Tamil MURA E-TAMILS 2019 Tamil MU

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

இரசாயனவியல் IIChemistry II

Т H 02

மூன்று மணித்தியாலம் Three hours

அறிவுறுத்தல்கள் :-

- இவ்வினாத்தாள் 18 பக்கங்களைக் கொண்டுள்ளது.
- கணிப்பானை பயன்படுத்தக்கூடாது.
- அகில வாயு மாறிலி $R = 8.314 \, \mathrm{J \, K^{-1} mol^{-1}}$
- அவகாதரோ மாறிலி $N_A = 6.022 \times 10^{23} \, \mathrm{mol}^{-1}$
- இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

உ-ம் :
$$CH_3CH_2$$
 - ஐ H — $\overset{H}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}}}{\overset{}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}}$ எனக்

பகுதி A – அமைப்புக்கட்டுரை (பக்கங்கள் 2 – 10)

- எல்லா வினாக்களுக்கும் விடைகளை இவ் வினாத்தாளிலேயே எழுதுக.
- ஓவ்வொரு வினாவுக்கும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக.
- கொடுக்கப்பட்டுள்ள இடம் உமது விடைகளுக்குப் போதுமானது என்பதையும் விரிவான விடைகள் அவசியமில்லை என்பதையும் கவனிக்க.

💠 பகுதி **B -** கட்டுரை (பக்கங்கள் 11 - 18)

- ஒவ்வொரு பகுதியிலிருந்தும் இரண்டு வினாக்களைத் தெரிவு செய்து எல்லாமாக நான்கு வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் தாள்களை இதற்கு பயன்படுத்துக.
- இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேரமுடிவில் பகுதி A மேலே இருக்கும்படியாக **A, B, C** ஆகிய **மூன்று பகுதியையும்** ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரீட்சை மேற்பார்வைளரிடம் கையளிக்க.
- வினாத்தாளின் ப**குதிகள்** B, C யை **மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகரின்	உபயோகத்திற்கு	மாத்திரம்

பகுதி	வினா இல.	புள்ளிகள்
	1	
A	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
\mathbf{C}	9	
	10	
(மொத்தம்	
	சதவீதம்	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி **A — அமைப்புக் கட்டுரை நான்கு** வினாக்களுக்கும் விடை எழுதுக.

இந்நிரலில் எதனையும் எழுதுதல்

(ஒவ்வொரு வினாவிற்கும் 10 புள்ளிகள் வழங்கப்படும்)	ஆகாது.
01.(a) பின்வருவனவற்றை அடைப்புக்குறிக்குள் குறிக்கப்பட்டுள்ள இயல்புகள் அதிகரிக்கும் வரிசையில் ஒழுங்குபடுத்துக.	
i. S,C,H,Br (மின்னெதிர் இயல்பு)	
<	
ii. $\mathrm{Ag^+},\mathrm{Mg^{2+}},\mathrm{Zn^{2+}},\mathrm{Fe^{2+}}$ (நீர்க்கரைசலில் ஒட்சியேற்றும் கருவியாகத் தொழிற்படும் ஆற்றல்)	
iii. AgI, AgBr, AgCl, AgF (பங்கீட்டுச் சிறப்பியல்பு)	
iv. CH ₄ , HCl, PH ₃ , H ₂ S (கொதிநிலை) 	
v. SOCl ₂ , XeF ₂ , ICl ₄ ⁻ , CO ₃ ²⁻ (மைய அணுவைச் சூழவுள்ள தள்ளுகை அலகுகளின் எண்ணிக்கை)	
(b) மூலகங்கள் P,Q,R,S என்பன அணு எண் 20 இலும் குறைந்த அலோக மூலகங்கள் ஆகும். இவை உறுதி உயர் வலுவளவாக முறையே $7,6,4,5$ இனைப் பெறுகின்றன. R,S என்பன அவற்றிற்குரித்தான கூட்டங்களில் அதி உயர் மின்னெதிர்த்தன்மையைக் கொண்ட மூலகங்கள் ஆகும். இம் மூலகங்களினால் உருவாக்கப்படும் மூலக்கூறு H_2RQPSO_3 இன் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.	ı
Ο Ο Η P – Q – R – S – H Ο	
i. P, Q, R, S ஆகிய மூலகங்களை இனங்காண்க.	
P Q	
R	
ii. இம் மூலக்கூறுக்கு மிகவும் ஏற்றுக்கொள்ளத்தக்க லூயிக் கட்டமைப்பை வரைக.	
iii. இம் மூலக்கூறுக்கு ஆறு பரிவுக்கட்டமைப்புகளை வரைக. (மேலே (ii) இல் வரையப்பட்ட கட்டமைப்பைத் தவிர)	
	1

<u>AL/2017/02/T-II - 5 -</u> iv. மேலே (ii) இல் வரைந்த லூயிக் கட்டமைப்பின் அடிப்படையில் கீழே தரப்பட்டுள்ள அட்டவணையில் Q,R,S ஆகிய அணுக்களின்

உ*ட்ட* எதனையும் எழுதுதல் ஆகாது.

S

- 1. அணுவைச் சூழவுள்ள இலத்திரன் சோடிக் கேத்திரகணிதம் (இலத்திரன் சோடிகளின் ஒழுங்கமைப்பு)
- அணுவைச் சூழவுள்ள வடிவம்.

இலத்திரன் சோடிக் கேத்திர

- 3. அணுவின் கலப்பாக்கம்.
- 4. அணுவைச் சூழவுள்ள பிணைப்புக் கோணத்தின் அண்ணளவான பெறுமானம் என்பவற்றைக் குறிப்பிடுக.

Q

R

		கணாதம				
	2.	வடிவம்				
	3.	கலப்பாக்கம்				
	4.	பிணைப்புக் கோணம்				
	_	5தி (ii) இல் வரைந்த லூயி ச ட்ட அணு/ கலப்பின் ஒபிற்றல்		-	களின் உருவாக்கத்த	துடன்
	P - Q	: P				
	Q - R	: Q				
	R - S	: R	S			
vi.	1. மேற்படி	மூலக்கூறில் மூலகங்கள் Q, I	R இல் உயர் மின்(னெதிர்த்தன்மை உ	டையது எது?	
	_	நூ ஒன்றில் உள்ள மூலக அ எள் 2 ஐக் குறிப்பிடுக.	_ ,			ான
(c) e		 தரைட்டுக்களான HCl, HBr, H				
	 கலை தருக. 	வு இடைஈர்ப்பு விசை (லண்டன் 	இடைக்கவர்ச்சிவி	·		5
		னைவு இருமுனைவு இடைக்கவ <				
		நிலை அதிகரிக்கும் ஒழுங்கைத		<		
		நிலை அதிகரிப்புக்கு எவ்வகை				

_										_
xxxxxx	****	000000000000000000000000000000000000000	xxxxxxxxxxxx	******	0000000000000000	0000000000000000	xxxxxxxxxxxxx	000000000000000000000000000000000000000	^^^	20000000
										இந்நிரலி
)2.a)	S தொகுதி	மூலகம் M	ஆனது Na	юОН воль	லில் கரைந்த	ı கரைசல் A g	ஐயும் வாயு	ഖിണെഖു $ { m X} $	ஐயும்	ாதனையு
	தருகிறது.	கரைசல் A ந	ந்குள் துளி	த்துளியாக]	HCl இனைச் (சேர்த்த போது	வெண்நிற	வீழ்படிவு ${f B}$		எழுதுதல் ஆகாது.

02.a)	தருகிற தரும் உருவ	குதி மூலகம் M ஆனது $NaOH$ கரைசலில் கரைந்து கரைசல் A ஐயும் வாடிது. கரைசல் A ற்குள் துளித்துளியாக HCl இனைச் சேர்த்த போது வெண்நிற எனினும் இவ் வீழ்படிவு மிகை தாக்கு பொருளில் கரைந்து தெளிவான கன எக்குகிறது. M ஆனது உயர் வெப்பநிலையில் வாயு X உடன் தாக்கி வெவிக்கின்றது. D ஆனது நீருடன் தாக்கி விளைவு B ஐயும் அதே வாயு வினை	ற வீழ்படிவு B இனைத் வரசல் C ஐ ண்நிறத் திண்மம் D ஐ	எதனையு எழுதுதல் ஆகாது.
	i. மு	லகம் М ஐ இனங்காண்க?		
	ii. Сச 	ர்வைகள் A,B,C,D மற்றும் வாயு X ஐயும் இனங்காண்க?		
		ற்படி சேர்வைகள் A,B,C,D உருவாவதற்கான தாக்கங்களுக்குரிய சமன்படு ஒன்பாடுகளைத் தருக.		
		ஆனது தனது கூட்ட அங்கத்தவர்களில் இருந்து வேறுபடும் மூன்று இயல்ட	புகளைக் குறிப்பிடுக.	
(b) (i) தரப்பட	ட்ட சோதனைப் பொருள் போத்தல்களில் பின்வரும் திண்மங்கள்/ கரைசல்க		
		Cr ₂ (SO ₄) ₃ , Co(NO ₃) ₂ , Na ₂ S ₂ O ₃ , (NH ₄) ₂ Cr ₂ O ₇ , BiCl ₃ , Pb(CH ₃ COO) ₂		
	பின்வரு	ம் அவதானிப்புக்களுக்குப் பொருத்தமான சேர்வைகளை எதிரே தரப்பட்டுள்	ள கூட்டில் எழுதுக.	
	A.	BaCl_2 கரைசல் சேர்க்கப்பட்டதும் மஞ்சள் வீழ்படிவு பெறப்படுகிறது.		
	В.	மிகை நீர் சேர்த்து ஐதாக்கி அவதானிக்கும் போது நீல ஊதாக் கரைசலைத் தருகின்றது.		
	C.	ஐதான HCl கரைசலுடன் வெண்மஞ்சள் கலங்கல் கரைசலை உருவாக்குகின்றது.		
	D.	நீர் சேர்த்து ஐதாக்கும் போது தடித்த வெண்வீழ்படிவைத் தருகின்றது. இவ்வீழ்படிவு ஐதான HCl இல் கரைகிறது.		
	E.	செறிந்த HCl ஐ மிகையாகச் சேர்க்கும் போது நீலநிறக் கரைசல் பெறப்படுகிறது.		
	F.	KI கரைசலைச் சேர்த்த போது வீழ்படிவு பெறப்படுவதுடன் சூடாக்கும் போது அவ்வீழ்படிவு கரைந்து தெளிந்த கரைசல் பெறப்படுகிறது.		

AL/2017/02/	T-II	- 5 -			
•	ுக்கம் F வரையுமான உ நகளைத் தருக.	oocoooooooooooooooooooooooooooooooooo	ஹைணைணை தாக்கங்களின் சம	ஹைணைணைண் ன்செய்த இரசாயனச்	0000000000000000000000000000000000000
T^0_{A}, T^0_{B} கலப்பத q ஆவி அமைய வெப்பநி q கணிக்கம $q>x, \ q$ q q q q q q q q q	, Γ^0_C யும் ஆகும். இங்கு ன் மூலம் கரைசல் A - B முக்கங்கள் முறையே நடப்பன எனக் கருதி லையில் அவதானிக்கப்பட்ட, அவதானிக்கப்ப $z=y,\ r< z$ ஆக அமைந்கத்து அச்சுகளில் P^0_A இன் மாறல்களை கல்களில் P_A - A யின் க	$_{ m A},{ m P}^0_{{ m B}},{ m P}^0_{{ m C}}$ என்பவற்றைக் அச்சுகளில் வரைந்து அ ஆவி அமுக்கம், ${ m P}_{ m B}$ ய	அமைகின்றது. திரல் B-C என்பன பெறிக்கரைசல்கள் மூன்முக்கங்கள் முறைபே p, q, நிகளுக்கு இடையே களுக்கு இடையே களுக்க.	வங்களை ஒன்றுடன் ஒ gப்பட்டன. இவற்றின் றும் இரவோற்றின் விதி யே x, y, z ஆகவும், அச பூகவும் காணப்பட்டன பயான தொடர்பு	ென்று க்கு தே 1. இங்கு அமுக்கம்)
iii. கரைச	ல்களின் மொத்த ஆவிட	பமுக்கங்கள் $\mathrm{P}_{\mathrm{AB}},\mathrm{P}_{\mathrm{AC}},\mathrm{F}$	P _{BC} இன் மா <u>ந</u> ல்க <i>ை</i>	ள அச்சுகளில் வரைந்த	_I குறிக்க
ஆவிய மு க்கம் 	ஆவியமுக்கம் எ	ஆவியமுக்கம் ஆஎ 	வியமுக்கம் ஆவிய 	பமுக்கம் ஆவிய	முக்கம்
$X_A = 0$	1	X _A =1	0 X _E	:=1	
$X_B = 1$	0	$X_C = 0$		= 0	1
iv. மேற்படி	கரைசல்கள் தொடர்பா	ன பின்வரும் அட்டவகை	னயை பூர்த்தி செய்	155	
		கரைசல் A - B	கரைசல் A - C	கரைசல் B - C	<u>.</u>
8	கரைசலின் வகை				
ଭ	வப்பநிலை மாற்றம்				
<u> </u>		•	•		

- எழுதுதல் ஆகாது.
- v. திரவங்கள் A ஐயும் C ஐயும் மொத்த மூல் எண்ணிக்கை மாநாது இருக்கதக்க வகையில் கலந்து பெறப்பட்ட விளைவுக் கரைசல்கள் தொடர்பான
 - 1. அமைப்பு எதிர் வெப்ப உள்ளுறை மாற்றம்.
 - 2. அமைப்பு எதிர் எந்திரப்பி மாற்றம்.
 - 3. அமைப்பு எதிர் கிப்ஸின் சுயாதீன சக்தி மாற்றம் என்பவற்றை பின்வரும் அச்சுகளில் வரைக.

(b)நியம் $Pt(s)/Cl_2(g)$, $Cl_{(aq)}$ மின்வாயையும் நியம் Ag(s), $AgCl(s)/Cl_{(aq)}$ மின்வாயையும் பயன்படுத்தி வடிவமைக்கப்பட்ட கலம் ஒன்றின் வரைபடம் கீழே காட்டப்பட்டுள்ளது. கலத்தின் வெளிச்சுற்றின் ஊடான இலத்திரன் ஓட்டத்திசை வரைபடத்தில் காட்டப்பட்டுள்ளது

i.	மேற்தரப்பட்ட நி	யம கலத்தில்	A-F இனை	இனங்காண்க.	பொருத்தமான	இடங்களில்	பௌதிக	நிலை,
	செறிவு, அமுக்க	₅ ம் என்பவற்றை	3 தருக.					

A.....

B.....

C.....

D.....

E.....

F.....

G.....

H.....

×××××××××××××××××××××××××××××××××××××××		~~@ 6
. இக்கலத்	தில் நடைபெறும் கலத்தாக்கத்தை தருக?	6
i. இக்கலத்	திற்கு பொருத்தமான கலக்குறியீட்டை தருக?	
	த்தின் நியம் வெப்பவுள்ளுறை மாற்றம், நியம் எந்திரபி மாற்றம் என்பன முறையே	
	DI^{-1} , - $116\mathrm{Jmol}^{-1}\mathrm{K}^{-1}$ ஆகும். இக்கலத்திற்குரிய நியம கிப்ஸ் சக்தி மாற்றம் ($\Delta\mathrm{G}^{0}$) இற்கும்	
நியம மி இங்கு,	ன் இயக்கவிசை ($ ext{E}^ heta_{_{ ext{BND}}}$) இந்கும் இடையேயான தொடர்பு $\Delta ext{G}^ heta=- ext{nFE}^ heta_{_{ ext{BND}}}$ இனால் தரப்படும்	
n	- சமப்படுத்தப்பட்ட சமன்பாட்டில் ஒட்சியேற்றம் அல்லது தாழ்த்தலில் ஈடுபடும் இலத்திரனின் மூல்களின் எண்ணிக்கை.	
F	- பரடே மாறிலி (96500 Cmol ⁻¹)	
E ⁰ cl ₂₍ காண்க.	$E^{ heta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{ heta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{ heta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}=+1.36$ V எனின் $E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^{\theta}_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	
	$E^0_{Ag(s),AgCl(s)/Cl-(aq)}$ இன் நியம தாழ்த்தல் மின்வாய் அழுத்தத்தை	

பும் ல்

	000000000000000000000000000000000000000	000000000000000000000000000000000000000	×××××××××××××××××××××××××××××××××××××
04.(a) A,B,C,D என்பன C ₅ H ₁₁ Cl இன் நா			எதனைய
தளமுனைவாக்கப்பட்ட ஒளியின் தள			எழுதுதல் ஆகாது.
தாக்கமுற்று உருவாகும் விளைவு E .			
B,C,D என்பவற்றை $\mathrm{C_2H_5OH/~KOH}$ ഉ			
என்பன பெறப்பட்டன. H ஆனது கேத்	திர கணித சமபகுதியத் தன்மை	ை வெளிக்காட்டுகிறது. B ஐ	
NaOH _(aq) உடன் தாக்கமுறச் செய்து	பின்னர் PCC/CH ₂ Cl ₂ இனால் ஒ	ட்சியேற்றும் போது பெறப்படும்	
விளைவு I ஆனது தொலனின் சோத			
i. A, B, C, D, E, F, G, H, I ஆகியவற்			
(திண்மத் தோந்ந சமபகுதியத்திற்கு	நிய நிலைகளை வரைய வேண்டி	ുധ്വ <u>ട്</u> ടിலതെം <i>)</i>	
Δ	В	C	
A	Б	C	
D	E	F	
D			
G	Н	I	

i. H இன்	திண்மத்தோற்ற	g சமபகுத <u>ி</u> ய	ங்களை	கீழே	தரப்பட்ட	பெட்டிகளில்	வரைந்து	காட்டுக.		அ எ(ர
			Ī							
			•		'				1	
. F ஆன	து HBr உடன்	தாக்கமுற்று	பெறப்படு)ம் வி	ளைவுகஎ்	ന് எவை?				
										1
	 குறிப்பிட்ட வி எவ பெரப்படுக						டுகிறது எ	 னக் குறிட்	பிட்டு	
	ക്രളിப்பிட்ட வி ளவு பெறப்படுவ			ந்தையு	µம் தருக.					
				ந்தையு	µம் தருக.					
				ந்தையு	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
		பதற்கான டெ	பாறிநுட்பத்	ந்தையு 	µம் தருக.					
அவ்வி 		பதற்கான டெ	பாறிநுட்ப த்	; ————————————————————————————————————	<u>ம்</u> தருக.					
அவ்வி 	ளவு பெறப்படுவ	பதற்கான டெ	பாறிநுட்ப த்	; ————————————————————————————————————	<u>ம்</u> தருக.					
அவ்வி ை	ளவு பெறப்படுவ	பதற்கான டெ	பாறிநுட்ப த்	; ————————————————————————————————————	<u>ம்</u> தருக.					
அவ்வி ை	ளவு பெறப்படுவ	பதற்கான டெ	பாறிநுட்ப த்	; ————————————————————————————————————	<u>ம்</u> தருக.					
அவ்வி ை	ளவு பெறப்படுவ	பதற்கான டெ	பாறிநுட்ப த்	; ————————————————————————————————————	<u>ம்</u> தருக.					

<u>AL/2017/02/T-11 - 10 -</u> (b) கீழேயுள்ள அட்டவணையில் தரப்பட்ட தாக்கங்களின் பிரதான விளைபொருட்களின் கட்டமைப்புக்களை வரைக. தரப்பட்டுள்ள தாக்கங்களை கருநாட்டக் கூட்டல் (A_N) இலத்திரன் நாட்டக்கூட்டல் (A_E) , கருநாட்டப் பிரதியீடு (S_N) , இலத்திரன் நாட்டப்பிரதியீடு (S_E) , நீக்கல் (E), வேறு வகை (Mo) என வகைப்படுத்தி $A_{N},\,A_{E},\,S_{N},\,S_{E},\,\,E,\,Mo$ எனப் பொருத்தமான கூட்டில் எழுதுக.

எதனையும் எழுதுதல் ஆகாது.

தாக்க இலக்கம்	தாக்கி	சோதனைப் பொருள்	பிரதான விளைபொருள்	தாக்க வகை
1	$CH = CH_2$	Br ₂ /CCl ₄		
2	O CH ₃ CH ₂ –C – CH ₃	KCN/ Dil H ₂ SO ₄		
3	$CH_3 - CH = CH_2$	HBr/ (CH ₃) ₂ O ₂		
4	Q C – CH ₃	2-4-DNPH		
5	CH₂I	$H - C \equiv C \cdot Na^{+}$		
6	СООН	C.HNO ₃ / C. H ₂ SO ₄		

MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2016 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, Univers

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

> இரசாயனவியல் II Chemistry II

 $oxed{02}$ T $oxed{II}$

அகில வாயு மாறிலி $R=8.314\,JK^{-1}mol^{-1}$ அவகாதரோ மாறிலி $L=6.022\,x\,10^{23}\,mol^{-1}$

பகுதி B – கட்டுரை

இர வினாக்களுக்கு **மட்டும்** விடை எழுதுக. (ஒவ்வொரு வினாவிற்கும் **15** புள்ளிகள் வழங்கப்படும்)

05.(a) A, X, Ne வாயுக்கள் விறைப்பான குடுவையொன்றில் எடுக்கப்பட்டன. குடுவையினுள் வாயுக்கள் மூன்றினதும் கனவளவுச் சதவீதங்கள் சமனாகக் காணப்பட்டது. தாக்கம் எதுவும் இடம்பெறாத நிலையில் தொகுதியின் வெப்பநிலை 300K இல் உள்ள போது தொகுதியின் அமுக்கம் 3.6 x10⁵Pa ஆகும்.A யானது 200K வெப்பநிலைக்கு மேலும் X ஆனது 550K வெப்பநிலைக்கு மேலும் பிரிகையடையக்கூடியவை. 300K, 600K வெப்பநிலைகளில் C யின் பகுதியமுக்கங்கள் முறையே 4x10⁴Pa, 1x10⁵Pa ஆகக்காணப் பட்டதுடன் 600K வெப்பநிலையில் தொகுதியின் அமுக்கம் 7.8 x10⁵Pa ஆகவும் காணப்பட்டது.

$$\begin{array}{ccc} 2A_{(g)} \; \rightleftarrows \; B_{(g)} \; + C_{(g)} \\ 2X_{(g)} \; \rightleftarrows \; 2Y_{(g)} + Z_{(g)} \end{array}$$

- i. 300 K இல் $2A_{(g)} \rightleftharpoons B_{(g)} + C_{(g)}$ தாக்கத்தின் A யின் கூட்டற்பிரிவளவைக் கணிக்க.
- ii. 300 K இல் $2A_{(g)} \rightleftharpoons B_{(g)} + C_{(g)}$ தாக்கத்திற்கான K_p ஐக் கணிக்க.
- $iii.\ 600 K$ இல் $2A_{(g)}\ \
 ightleftharpoons \ B_{(g)}+C_{(g)}$ தாக்கத்திற்கான K_p ஐக் கணிக்க.
- iv. $2A_{(g)} \rightleftharpoons B_{(g)} + C_{(g)}$ தாக்கம் புறவெப்பத்தாக்கமா அல்லது அகவெப்பத்தாக்கமா என்பதை காரணத்துடன் குறிப்பிடுக.
- v. $600 \, \mathrm{K}$ இல் $2 \, \mathrm{X}_{(\mathrm{g})} \rightleftharpoons 2 \, \mathrm{Y}_{(\mathrm{g})} + \, \mathrm{Z}_{(\mathrm{g})}$ தாக்கத்தில் X இன் கூட்டற்பிரிவளவைக் கணிக்க.
- vi. 600 K இல் $2X_{(g)} \rightleftharpoons 2Y_{(g)} + Z_{(g)}$ தாக்கத்திற்கான K_p ஐக் கணிக்க.
- vii.600K இல் அத்தொகுதிக்குள் Ne இன் அதே திணிவுடைய Ar வாயு சேர்க்கப்படின் தொகுதியின் மொத்த அமுக்கத்தினையும் ஒவ்வொரு வாயுக்களினதும் பகுதியமுக்கங்களையும் கணிக்க. (Ne -20, Ar-40)

(b)
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H^{\theta} = -284 \text{kJ/mol}$ $2NO_{(g)} + 2CO_{(g)} \rightarrow N_{2(g)} + 2CO_{2(g)}$ $\Delta H^{\theta} = -748 \text{kJ/mol}$

 $\Delta H_{f}^{\theta}[H_{2}O_{(g)}], \ \Delta H_{f}^{\theta}[NH_{3(g)}]$ முறையே -242 kJmol $^{-1}$, -46 kJmol $^{-1}$ ஆகும். $S^{\theta}[H_{2}O_{(g)}], \ S^{\theta}[O_{2(g)}], \ S^{\theta}[NH_{3(g)}], \ S^{\theta}[NO_{(g)}]$ முறையே +189 Jmol $^{-1}K^{-1}$, +205 Jmol $^{-1}K^{-1}$, +193 Jmol $^{-1}K^{-1}$, +211 Jmol $^{-1}K^{-1}$ ஆகும். $4NH_{3(g)}+5O_{2(g)} \longrightarrow 4NO_{(g)}+6H_{2}O_{(g)} \ \text{ தாக்கத்திற்கான}$ 25 0 C யில்,

- i. $\Delta H_R^{\;\theta}$ இனைக் கணிக்க.
- ii. ΔS^{θ} இனைக் கணிக்க.
- iii. ΔG^{θ} இனைக் கணிக்க.
- $iv. 25^{0}C$ யில் இத்தாக்கம் சுயமாக நிகழுமா/ இல்லையா எனத் தீர்மானிக்க.

- 06.(a) i. NH₄Cl நீர்க்கரைசலின் செறிவு C moldm $^{-3}$ ஆகும். NH₄OH இன் அயனாக்கமாநிலி K_b moldm $^{-3}$ உம் நீரின் அயன் பெருக்கம் K_w உம் எனின் இவ் NH₄Cl இன் $p^H = \frac{1}{2} p K_w \frac{1}{2} p K_b \frac{1}{2} \log_{10}C$ எனக் காட்டுக.
 - 1 ii. $0.66 \mathrm{g} \; (\mathrm{NH_4})_2 \mathrm{SO_4} \;$ திண்மத்தை நீரில் கரைத்து $500 \mathrm{cm}^3$ கரைசலாக்கப்பட்டால் அக்கரைசலின் $\mathrm{p}^\mathrm{H} \; \mathrm{gg}$ $25^0 \mathrm{C} \; \mathrm{ul}$ ல் கணிக்க $(\mathrm{K_b} = 1 \mathrm{x} 10^{-5} \mathrm{moldm}^{-3}, \; \mathrm{K_w} = 1 \mathrm{x} 10^{-14} \, \mathrm{mol}^2 \mathrm{dm}^{-6}) \; (\mathrm{N-14, S-32, O-16, H-1})$
 - $10^{-3} \, \mathrm{C}$ யில் $0.1 \mathrm{moldm}^{-3}$, $1 \mathrm{dm}^3 \, \mathrm{NH_4OH}$ நீர்க்கரைசலில் $0.66 \mathrm{g} \, (\mathrm{NH_4})_2 \mathrm{SO_4}$ திண்மம் கரைக்கப்பட்டால், கரைசலின் p^{H} இனைக் கணிக்க. ($25^0 \mathrm{C}$ யில் $\mathrm{NH_4OH}$ இன் $\mathrm{K_b} = 1 \mathrm{x} 10^{-5} \mathrm{moldm}^{-3}$ ஆகும்)
 - iv. 25^{0} C யில் $N(OH)_{2}$ இன் கரைதிறன் பெருக்கம் $1x10^{-10}mol^{3}dm^{-9}$ எனின் 25^{0} C யில் மட்டுமட்டாக அதனை வீழ்படிவாக்க வினா (iii) இன் கரைசலில் கரைக்க வேண்டிய $N(NO_{3})_{2}$ இன் மூல் அளவினைக் கணிக்க.
 - v. 25^{0} C யில் 0.01mol MCl_{2} திண்மமானது வினா (iii) இன் கரைசலில் கரைக்கப்பட்டால் $M(OH)_{2}$ ஆக வீழ்படியுமா? அல்லது வீழ்படியாதா? எனத் தீர்மானிக்க. $[25^{0}$ C யில் $M(OH)_{2}$ இன் கரைதிறன் பெருக்கம் 4×10^{-11} mol 3 dm $^{-9}$ ஆகும்.]

ஒருமூல மென் அமிலம் HA யின் $25 cm^3$ ஆனது $0.1 moldm^{-3}$ NaOH கரைசலினால் வலுப்பார்க்கப்பட்ட போது கரைசலில் ஏற்படும் p^H மாற்றம் தொடர்பான வளைகோடு மேலே தரப்பட்டுள்ளது. $(25^0C\ \ \text{@width}\ K_w = 1\ x10^{-14}\ mol^2dm^{-6})$

- i. மென்னமிலம் HA யின் செநிவு யாது?
- ii. மென்னமிலத்தின் அயனாக்க மாநிலி (K_a) ஐ கணிக்க.
- iii. இந் நியமிப்பின் சமவலுநிலை கரைசலுக்குரிய p^H ஐக் கணிக்க.
- iv. NaOH ஐ சேர்க்கும் போது HA யின் அயனாக்க அளவிற்கு யாது நிகழும் என்பதனை காரணத்துடன் குறிப்பிடுக.
- v. நியமிப்புக்கு பொருத்தமான காட்டி ஒன்றினை குறிப்பிடுக.
- (c) குறித்தவொரு வெப்பநிலையில் A வாயுவானது பிரிகையடைந்து B,C,D வாயுக்களை உருவாக்கியது.

$$A_{(g)} \to B_{(g)} + C_{(g)} + D_{(g)}$$

A யினது பிரிகையினால் t=0, t=400s, t=800s நேரங்களில் தொகுதியின் அமுக்கங்கள் முறையே 400kPa, 800kPa, 1000kPa ஆக அமைந்தது.

- i. இத்தாக்கத்தின் தாக்கவரிசையைக் கணிக்க.
- ii. தாக்கம் ஆரம்பித்து 1200s இல் தொகுதியின் அமுக்கத்தைக் கணிக்க.
- iii. தாக்கம் ஆரம்பித்து எவ்வளவு நேரத்தின் பின்னர் A யின் பகுதியமுக்கம் 25kPa ஆக அமையும்.

07.(a) பட்டியலில் தரப்பட்டுள்ள இரசாயனப் பொருள்களை **மாத்திரம்** பயன்படுத்தி பென்சல்டிகைட்டை ஆரம்பச் சேதனத்தொடக்கப்பொருளாகப் பயன்படுத்தி பின்வரும் மாற்றத்தை எங்ஙனம் செய்வீரெனக் காட்டுக.

CHO
$$C \equiv C - C = CH_2$$

இரசாயனப் பொருள்களின் பட்டியல்.

 H_2O , Br_2/CCl_4 , செறிந்த H_2SO_4 , CH_3MgBr / உலர்ஈதர், அற்ககோல்சேர் KOH, PCC/CH_2Cl_2

(b) பின்வரும் தாக்கத்திட்டத்தை பூரணப்படுத்துவதற்காக P_1 - P_8 , R_1 - R_7 ஆகியவற்றை இணங்காண்க

- ho (c) i. CH_3 C Cl ஆனது $C_6H_5O^{ au}Na^{^+}$, $CH_3O^{^+}Na^{^+}$ உடன் தாக்கி பெறப்படும் விளைவுகளை தருக.
 - ii. $C_6H_5O^*Na^+$, $CH_3O^*Na^+$ என்பவற்றில் கருநாடியாக தொழிற்படும் தன்மை கூடியது எது? காரணத்தை கருக?
 - iii. $C_6H_5O^-Na^+$, உடன் $CH_3-\overset{\parallel}{C}-Cl$ தாக்குவதற்கான பொறிமுறையைத் தருக?

பகுதி С – கட்டுரை

இரு வினாக்களுக்கு **மட்டும்** விடை எழுதுக. (ஒவ்வொரு வினாவிற்கும் **15** புள்ளிகள் வழங்கப்படும்)

- 08. (a) உலோகம் A யினை அலோகம் B யுடன் சேர்த்து வெப்பப்படுத்தும் போது வெண்ணிறத்திண்மம் C ஐத் தருகிறது. C ஆனது நீரில் கரைவதுடன் வாயு D ஐத் தருகின்றது. C இற்கு HCl சேர்த்து சுவாலைச் சோதனைக்கு உட்படுத்தும் போது பச்சைநிற சுவாலை பெறப்படுகிறது. வாயு D ஆனது பிறிதொரு வாயு E யுடன் தாக்கம் புரிந்து விளைபொருட்களாக மூலகம் B ஐயும் அறைவெப்பநிலையில் திரவ நிலையில் உள்ள பதார்த்தம் F ஐயும் தருகின்றது. F ஆனது நிறமற்ற CuSO₄ பளிங்கினை நீல நிறமாக மாற்றுகின்றது. C யானது மிகை H₂O₂ உடன் தாக்கம் புரிந்து பெறப்படும் விளைவு G ஆனது ஐதான HNO₃ இல் கரையவில்லை
 - i. A, B, C, D, E, F, G ஆகியவற்றை இனங்காண்க.
 - ii. மூலகம் B யினது NaOH உடனான தாக்கத்தில் பெறச்சாத்தியமான விளைவுகள் எவை? அவ்விளைவுகள் பெறப்படுவதற்கான சமப்படுத்திய இரசாயனச் சமன்பாடுகளையும் தருக.
 - (b) ஒரே வகையான எதிரயன் பகுதியைக் கொண்ட இரு உலோக உப்புக்களின் கலவை பின்வரும் சோதனைகளுக்கு உட்படுத்தப்பட்டு பெறப்பட்ட அவதானிப்புக்கள் கீழே தரப்பட்டுள்ளது.

	பரிசோதனை	<u> அ</u> வதானிப்பு
(1)	உப்புக்கலவை மாதிரி மிகை ஐதான அசற்றிக் அமிலத்தில் கரைக்கப்பட்டது.	நிறம், மணமற்ற வாயு வெளியேற்றத்துடன் தெளிந்த கரைசல் பெறப்பட்டது.
(2)	(1) இல் பெறப்பட்ட விளைவுக் கரைசலினுள் NaOH மிகையாக சேர்க்கப்பட்டது	கபில நிற வீழ்படிவு P_1 பெறப்பட்டது.
(3)	(2) இல் பெறப்பட்ட வீழ்படிவு P_1 க்கு அமோனியா நீர்க்கரைசல் சேர்க்கப்பட்டது	வீழ்படிவு P_1 கரைந்து தெளிந்த கரைசல் பெறப்பட்டது.
(4)	(2) இல் பெறப்பட்ட வடிதிரவத்தினுள் $ m K_2CrO_4$ சேர்க்கப்பட்டது.	மஞ்சள் வீழ்படிவு P_2 பெறப்பட்டது.
(5)	(4) இல் பெறப்பட்ட வீழ்படிவு P_2 க்கு ஐதான $HC1$ சேர்க்கப்பட்டது.	வெண்வீழ்படிவு P_3 உம் செம்மஞ்சள் கரைசலும் பெறப்பட்டது.
(6)	(5) இல் பெறப்பட்ட வீழ்படிவு P_3 க்கு மிகை செறிந்த HCl சேர்க்கப்பட்டது.	நிநமற்ற தெளிந்த கரைசல் பெறப்பட்டது.
(7)	(1) இல் பெறப்பட்ட வாயு அமில KMnO ₄ உடன் சோதிக்கப்பட்டது.	KMnO ₄ கரைசலின் நிறத்தில் மாற்றத்தை ஏற்படுத்தவில்லை

- i. உலோக உப்புக்கள் எவை? (காரணங்கள் அவசியமன்று)
- ii. வீழ்படிவுகள் P_1, P_2, P_3 என்பவற்றின் இரசாயனச் சூத்திரங்களை எழுதுக?
- iii. உப்பில் உள்ள அன்னயனை உறுதிப்படுத்த மேலும் ஒரு சோதனையை குறிப்பிடுக.

(c) நீரின் வன்மையானது நீரில் Ca^{2+} , Mg^{2+} உப்புக்கள் கரைந்திருப்பதனால் எழுகின்றது. நீரின் நிலையில் வன்மையானது Ca^{2+} , Mg^{2+} இன் இருகாபனேற்றுக்களாலும், நிலையான வன்மையானது இவ் அயன்களின் குளோரைட்டு, சல்பேற்று உப்புக்கள் இருப்பதனாலும் ஏற்படுகிறது. ஓர் நீர்க்கரைசலில் உள்ள Ca^{2+} , Mg^{2+} அயன்களின் மொத்த அளவை துணிவதில் $EDTA[H_2Y^{2-}]$ உடன் நியமித்தல் ஒரு பொருத்தமான நடவடிக்கையாகும். இந்நியமிப்பின் துல்லியமான முடிவுநிலையை கண்டறிவதற்கு Erichrome black T (In) என்னும் காட்டி பயன்படுத்தப்படுகிறது. இக்கரைசலின் p^H 10 ஐ விட உயர்வாக உள்ளபோது காட்டியானது உலோக அயனுடன் சேர்ந்து வைன் சிவப்பு [wine red] நிறமாக காணப்படும் அதேவேளை இக்காட்டியானது H^+ உடன் சேர்ந்து சுயாதீனமாக இருக்குமாயின் நீலநிறமாகவும் காணப்படும்.

$$MIn^{-} + H_{2}Y^{2-} \rightarrow HIn^{2-} + MY^{2-} + H^{+}$$
(Wine red) (Blue)

(இங்கு M ஆனது Ca^{2+} அல்லது Mg^{2+} ஐயும் In என்பது காட்டியையும் குறிக்கும்)

மாணவன் ஒருவன் நீர்மாதிரியில் உள்ள நிலையான வன்மையை துணிய பின்வரும் நடை**மு**றைகளை பின்பற்றினான்.

- நடைமுறை I:- வன்நீர் மாதிரியின் $50 \mathrm{cm}^3$ ஆனது நியமிப்பு குடுவையினுள் எடுக்கப்பட்டு \mathbf{p}^H ஐ 10 இல் நிலைநிறுத்துவதற்காக $\mathrm{NH_4Cl/\ NH_4OH}$ தாங்கற் கரைசலும், சிறிதளவு காட்டியும் சேர்க்கப்பட்டு விளைவுக் கரைசல் $0.1 \mathrm{moldm}^{-3}$ செறிவுள்ள EDTA கரைசலுடன் வலுப்பார்க்கப்பட்டது. கரைசல் மென்சிவப்பில் இருந்து நீலமாக மாறும் போது தேவைப்பட்ட EDTA இன் கனவளவு $22 \mathrm{cm}^3$ ஆகும்.
- நடைமுறை II:- மேற்படி வன்நீர் மாதிரியின் பிறிதொரு 25cm³ மாதிரியானது சிலதுளி மெதயில் செம்மஞ்சள்காட்டி முன்னிலையில் குறித்த செறிவுடைய HCl இனால் வலுப்பார்க்கப்பட்டது. கரைசல் செம்மஞ்சளில் இருந்து சிவப்பாக மாறும் போது தேவைப்பட்ட HCl இன் கனவளவு 30cm³ஆகும்.
- நடைமுறை III:- நடைமுறை II இல் பயன்படுத்தப்பட்ட HCl கரைசலின் $20 {
 m cm}^3$ இனுள் மிகையளவு KIO $_3$, KI என்பன சேர்க்கப்பட்டு பெறப்பட்ட விளைவுக்கரைசல் மாப்பொருள் காட்டி முன்னிலையில் $0.04 {
 m moldm}^{-3} \ {
 m Na}_2 {
 m S}_2 {
 m O}_3$ இனால் வலுப்பார்த்த போது அதன் $25 {
 m cm}^3$ தேவைப்பட்டது.

மேற்படி வன்நீர் மாதிரியின் நிலையான வன்மையை [Permanent hardness] $CaCO_3$ $mgdm^{-3}$ சார்பாகக் காண்க? (Ca-40, C-12, O-16)

09.(a) சில கைத்தொழில் தயாரிப்புக்களின் உந்பத்தி சம்பந்தமான பாய்ச்சற்கோட்டு வரைபடம் தரப்பட்டுள்ளது. மூலப்பொருட்கள், ഖിതെബ്വക്തബ பெறுவதற்கான செய்கைகள், பிரதான உந்பத்தி இயந்கை ஆகியவந்நை பின்வரும் குறியீடுகள் செயன்முறைகள், விளைபொருட்கள் வகைகுறிப்பதற்கு பயன்படுத்தப்படுகிறது. இயற்கை மூலப்பொருட்கள் - விளைவுகளை பெறுவதற்கான செய்கைகள் பிரதான கைத்தொழில் உற்பத்தி செயன்முறை - விளைபொருட்கள் M_2 M_1 M_4 M_3 P_{10} M_2

- lacktriangle P_3 குடிநீர் சுத்திகரிப்பில் பயன்படுத்தப்படும் வாயு நிலைப் பதார்த்தம்.
- lacktriangledown P_9 ஆய்வுசாலையில் CO_2 ஐ சோதித்து அறிவதில் பயன்படுத்தப்படுகிறது.
- lacktriangle P_{10} வெதுப்பகங்களில் பயன்படுத்தப்படுகிறது.
- lacktriangle P_{13} பயிர்களில் விளைச்சலை அதிகரிப்பதற்கு பயன்படுத்தப்படுகிறது.

- $i. \ R_1, R_2, R_3, R_4$ ஆகிய இயற்கை மூலப்பொருட்களைத் தருக.
- $ii. \ M_1, M_2, M_3, M_4$ ஆகிய விளைவுகளை பெறுவதற்கான செய்கைகளைக் குறிப்பிடுக.
- $iii.\ I_1,\ I_2,\ I_3$ ஆகிய பிரதான கைத்தொழில் உற்பத்தி செயன்முறைகளைத் தருக.
- iv. P₁ தொடக்கம் P₁₃ வரையான விளைபொருள்களை இனங்காண்க.
- v. I₂,I₃ ஆகிய கைத்தொழில் உற்பத்தி செயற்பாடுகளுடன் சம்பந்தப்படும் தாக்கங்களுக்கு சமப்படுத்திய இரசாயன சமன்பாடுகளை தருக? அத்தாக்கங்களில் கையாளப்படும் பொருத்தமான வெப்பநிலை, அமுக்க நிபந்தனைகளை குறிப்பிடுக.
- vi. கைத்தொழில் செய்கை I_1 இந்கு தேவையான P_6 ஐ மீள் உருவாக்கம் செய்வதந்கு மேலே குறிப்பிட்ட எவ்விரு விளைவுகளை பயன்படுத்தலாம் என்பதனை சமப்படுத்திய இரசாயன சமன்பாடு மூலமாக குறிப்பிடுக.
- vii. P₆ இல் காணப்படும் இழிவு ஒட்சியேற்ற நிலையில் மைய அணு மூலகமானது அதன் காணப்படுகிறது. இதனை அதன் உயர் ஒட்சியேற்ற நிலைக்குரிய ஓட்சி அமிலமாக மாந்நுதலுடன் தொடர்புபட்ட கைத்தொழில் செய்கையையும் தொடர்பான அதனுடன் சமப்படுத்தப்பட்ட சமன்பாடுகளையும் தருக.
- $viii.\ P_2, P_4, P_{12}$ ஆகிய விளைவுகள் ஒவ்வொன்றினதும் ஒவ்வொரு பயன்பாடுகளை தருக.
- (b) பின்வரும் வினாக்கள் காபனின் பல்வேறு சூழல் பிரச்சினைகளில் தாக்கம் செலுத்தும் சேர்வைகளை அடிப்படையாகக் கொண்டவை.
 - i. பூகோள வெப்பமாதலுக்கு பங்களிப்பு செய்யும் இரு பிரதான காபன் சேர்வைகளைக் குறிப்பிடுக.
 - மேலே (i) இல் குறிப்பிட்ட ஒவ்வொரு சேர்வையும் வளிமண்டலத்தை சென்றடைவதற்கான இரு மனித செயற்பாடுகள் வீதம் குறிப்பிடுக.
 - iii. ஒளி இரசாயன புகார் விளைவுக்கு அடிப்படையாக அமையும் முதலான காபன் மாசாக்கி எது?
 - iv. மேலே (iii) இல் குறிப்பிட்ட சேர்வை ஒளி இரசாயன தாக்கத்திற்கு உட்படுவதன் மூலம் உருவாகச் சாத்தியமான நான்கு காபன் சேர்வைகளை தருக.
 - v. ஓசோன் படை சிதைவுக்கு காரணமாக அமையும் பிரதான காபன் சேர்வையின் வகையை தருக? அவ்வகைக்குரியதான ஒரு காபன் அணுவை மாத்திரம் கொண்ட மூன்று சேர்வைகளின் கட்டமைப்பை வரைக.
 - vi. மேலே (v) இல் குறிப்பிட்ட சேர்வை ஓசோன் படை சிதைவை எவ்வாறு ஏற்படுத்துகிறது என்பதை சமன்பாடுகள் மூலம் காட்டுக.
 - ${
 m vii.an}$ வளியில் அதிகளவில் காணப்படும் அமில வாயு ${
 m CO_2}$ ஆகும். இது அமில மழைக்கு பங்களிப்பு செய்யுமா? உமது விடையை சுருக்கமாக ஆராய்க.

- 10. (a) X,Y,Z ஆகியன கோபோல்ற்றின் மூன்று இணைப்புச் சிக்கல் சேர்வைகள் ஆகும். அவை எண்கோணக் கேத்திரகணிதத்தைக் கொண்டவை. எல்லா சேர்வைகளும் ஒரு கோபோல்ற் அயனாலும் பங்கீட்டு வலு அத்துடன் / அல்லது அயன் பிணைப்பை கொண்ட புரோமைட் அயன்கள், நீர் மூலக்கூறுகளினால் ஆக்கப்பட்டுள்ளன. மூன்று சேர்வைகளிலும் புரோமைட் அயன்களின் எண்ணிக்கை சமனாக அமையும் எனினும் நீர் மூலக்கூறுகளின் எண்ணிக்கை மாறுபடும்.
 - $X,\,Y,\,Z$ ஆகியவற்றின் ஒவ்வோர் மூல்களை தனித்தனியே காய்ச்சி வடித்த நீரில் கரைத்து பெறப்பட்ட விளைவுக் கரைசல்களுக்கு மிகை $AgNO_3/\ dil HNO_3$ சேர்த்த போது பெறப்பட்ட வீழ்படிவுகளின் உலர்திணிவுகளுக்கிடையிலான விகிதம் 1:2:3 எனக் காணப்பட்டது.
 - i. இங்கு பெறப்பட்ட வீழ்படிவு யாது? அதன் நிறம் என்ன?
 - ${
 m ii.}$ மேற்படி இணைப்பு சிக்கல் சேர்வைகள் ${
 m X,Y,Z}$ இன் கட்டமைப்பு சூத்திரங்களை தருக?
 - iii. மேற்படி இணைப்பு சிக்கல் சேர்வைகள் X,Y,Z இல் கோபோல்ற்றின் ஒட்சியேற்ற நிலை யாது?
 - iv. X, Y, Z இன் IUPAC பெயர்களைத் தருக?
 - v. Z இன் நிறத்தை தருக?
 - vi. கிளைசீன் எனும் அமினோ அமிலத்தின் அயனாக்கத்தினால் உருவாக்கப்படும் எதிரயன் கிளைசீனேநோ (Glycinato) வின் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

கிளைசீனேநோ அயனானது எதிர் ஏற்றம் உடைய ஒட்சிசன் அணுவின் ஊடாகவும் நைதரசன் அணுவின் ஊடாகவும் மேலே குறிப்பிடப்பட்ட ஒட்சியேற்ற நிலைக்குரிய கோபோல்ற்றுடன் இணைந்து எண்முக வடிவ சிக்கல் சேர்வை ஒன்றினை தருகிறது. இதன் கட்டமைப்பு சூத்திரத்தை எழுதி அதன் கட்டமைப்பையும் வரைக.

- குறிப்பு : உமது கட்டமைப்புச் சூத்திரத்தில் மாத்திரம் கிளைசீனேறோ அயனை $\mathbf{gly}^{\bar{}}$ எனச் சுருக்கமாக கருதுக.
- (b) $25^{0}\mathrm{C}$ வெப்பநிலையில் X எனும் சடத்துவ மின்வாயை கதோட்டாகவும் தூய மக்னீசிய மின்வாயை 1moldm⁻³ MgSO₄ நீர்க்கரைசலின் 4dm³ அனோட்டாகவும் பயன்படுத்தி ஆனது மின்பகுப்பு செய்யப்பட்டது. இங்கு 2mA மின்னோட்டம் பயன்படுத்தப்படுவதாகவும் மின்பகுப்பின் போது மின்வாய்களில் தோற்றுவிக்கப்படுகின்ற அயன்கள் அதேகணத்தில் கரைசல் பரவி ஏகவீனக் கரைசலை உருவாக்குகிறது எனவும் கருதி பின்வரும் வினாக்களுக்கு விடை தருக (1mol இலத்திரனின் ஏற்றம் - 96500 Cmol⁻¹)
 - i. மின்பகுப்பில் பயன்படுத்தப்பட்ட மின்பகுப்புக் கலத்தின் பெயரிடப்பட்ட வரைபடத்தை வரைக.
 - மின்வாய்களில் நடைபெறும் இரசாயனத் தாக்கங்களுக்கு சமப்படுத்திய இரசாயன சமன்பாடுகளை தருக.
 - $_{\rm SP}$ கரைசலில் மட்டாக ${
 m Mg(OH)_2}$ வீழ்படிவாவதை அவதானிப்பதந்கு எவ்வளவு நேரம் மின்பகுப்பை தொடர வேண்டும். [$25^{
 m OC}$ வெப்பநிலையில் ${
 m K_{SP}\,Mg(OH)_2}=1~{
 m x10^{-12}mol^3dm^{-9}}]$
 - iv. 965 நிமிடங்களுக்கு மின்பகுப்பு தொடரப்பட்டு உருவாகும் ${
 m Mg}({
 m OH})_2$ வீழ்படிவை வடித்து மாநாத்திணிவு பெறும்வரை உயர் வெப்பநிலைக்கு வெப்பப்படுத்திய போது பெறப்படும் மீதியின் திணிவு யாது? $({
 m Mg}-24,{
 m O}{
 m -}16)$
 - v. கணிப்புக்கள் (iii), (iv) இல் உம்மால் கவனத்திற் கொள்ளப்பட்ட எடுகோள்கள் யாவை?