

UMA COMPARAÇÃO ENTRE O
PROCESSO ESTOCÁSTICO DE
DEGRADAÇÃO GAMA E MODELOS DE
DEGRADAÇÃO DE EFEITOS
ALEATÓRIOS SOB A ABORDAGEM
BAYESIANA

Introdução

O que é degradação?

É a redução da capacidade de funcionamento e impossibilidade de se operar em condições ideais, sendo normalmente provocada por uma combinação de fatores.

Por que utilizar modelos de confiabilidade?

No caso de produtos altamente confiáveis, como a maioria das falhas surgem a partir de um mecanismo de degradação, esta é definida como quando se atinge um limiar de degradação pré-especificado, fornecendo informação útil para se avaliar a confiabilidade, mesmo quando falhas não ocorrem durante o período de teste.

Objetivos

Estudo Comparativo

Proposta de duas abordagens da literatura para análise de confiabilidade.

- Processo Estocástico de Degradação Gama;
- Modelos de Degradação com Efeito Aleatório.

Métricas de Interesse

Cálculo de métricas relacionadas a estimativa do tempo de falha.

- Mean Time to Failure (MTTF);
- Desvio padrão;
- Percentis da distribuição do tempo de falha;
- Intervalos HPD.

Finalidade

Dentre a aplicação a problemas reais, destaca-se:

- Auxiliar na implantação de regras de garantia;
- Estabelecer Políticas de manutenção preventiva.
- Competividade, eficiência, segurança e sustentabilidade.

Degradação da luminosidade de Lasers (Hamada, 2005; Meeker e Escobar, 1998):

- 15 unidades experimentais
- 16 medições por unidade (intervalos de 250h, considerando as primeiras 4000h de funcionamento)
- Limiar de falha: 10%

Estudo de casos com observações sintéticas (50 unidades em 16 intervalos de tempo):

- Dados gerados por um Processo Estocástico de Degradação Gama;
- Dados gerados por Modelos de Degradação de Efeito Aleatório (lognormal);
- Avaliar o desempenho dos métodos independente da estrutura geradora dos dados.

Modelagem

Processo Gama: é um processo estocástico com incrementos não-negativos independentes com uma distribuição gama que leva em conta a incerteza temporal.

Modelo de variáveis aleatórias: Considera baseiam-se na modelagem das degradações das unidades de estudo individualmente, utilizando a mesma forma funcional e efeitos aleatórios para as diferenças entre as unidades (incerteza amostral)

Inferência

- Inferência bayesiana sobre os parâmetros dos modelos.
- Estimativas atualizadas por um algoritmo do tipo Gibbs Sampling. Como a distribuição a posteriori não possui forma fechada, utilizou-se métodos do tipo MCMC e o software Jags.

Se $\lambda(t)$ é uma função real não decrescente e contínua para $t \ge 0$, com $\lambda(0) = 0$, então, o processo gama de parâmetros $\lambda(t)$ e β é um processo estocástico contínuo $\{X(t), t \ge 0\}$, com as seguintes propriedades:

- X(0) = 0 com probabilidade 1;
- $X(t_2) X(t_1) \sim Ga(\lambda(t_2) \lambda(t_1), \beta)$, para todo $t_2 > t_1 \ge 0$;
- X(t) tem incrementos independentes e não negativos, como a perda de metal devido à corrosão, tendo uma distribuição gama.

Assim, sendo X(t) a medida da deterioração não linear em t para $t \ge 0$, a função densidade de probabilidade a partir da definição do processo estocástico pode ser escrita como:

$$f_{X(t)}(x) = \frac{\beta^{\lambda(t)}}{\Gamma(\lambda(t))} x^{\lambda(t)-1} e^{-\beta x} = Ga(x|\lambda(t),\beta).$$

A função de distribuição acumulada do tempo de vida é definida como:

$$F_T(t) = P[X(t) \ge \rho] = \int_{x=\rho}^{\infty} f_{X(t)}(x) dx = \frac{\Gamma(\lambda(t), \rho\beta)}{\Gamma(\lambda(t))} = 1 - GA[\rho|\lambda(t), \beta],$$

onde ρ indica a margem de variação ou um limiar de deterioração, lembrando que falha é observada quando o montante acumulado de deterioração X(t) excede o limite ρ de deterioração e, a função densidade de probabilidade do tempo de vida é expressa como: $f_T(t) = -\frac{d}{dt}GA[\rho|\lambda(t),\beta]$. Como o cálculo de $F_T(t)$ depende da função gama incompleta, seu valor médio E(T), considerando que t assuma somente valores inteiros, será:

$$E(T) = \sum_{t=0}^{\infty} P(T > t) = \sum_{t=0}^{\infty} GA[\rho | \lambda(t), \beta] \approx \sum_{t=0}^{k} GA[\rho | \lambda(t), \beta],$$

sendo k é uma constante de truncamento.

Para a obtenção do percentil de ordem q, precisamos encontrar o quantil P_q tal que a área sob a curva da função densidade de probabilidade seja igual a q, ou seja, $\int_0^{P_q} f_T(t)dt = q$, o que é equivalente a fazer

$$F_T(t = P_q) = q = 1 - GA[\rho | \lambda(t), \beta].$$

O objetivo passa a ser encontrar de forma numérica, uma raiz para essa função, de modo que:

$$g(t) = GA[\rho|\lambda(t), \beta] - 1 + q = 0.$$

O modelo de degradação linear sem intercepto (degradação nulo no ponto inicial) e com efeito aleatório, é definido da seguinte maneira:

$$y_{ij} = D_i(t_{ij}) + \varepsilon_{ij} = \left(\frac{1}{\theta_i}\right)t_{ij} + \varepsilon_{ij}, \ i = 1, \dots, k \ e \ j = 1, \dots, m,$$

onde a inclinação do modelo associada a *i*-ésima unidade é $1/\theta_i$, sendo θ_i o efeito aleatório associado a cada unidade experimental e, $\varepsilon_{ij} \sim N(0, \sigma^2)$ é o erro de medição associada e *i*-ésima unidade no *j*-ésimo tempo.

A abordagem geral é modelar as degradações individualmente, utilizando a mesma forma funcional e diferenças entre as unidades individuais usando efeitos aleatórios.

A proporção de falhas no momento t é equivalente à fração dos caminhos de degradação que excedem ao nível crítico D_f no tempo t. Assim, é possível definir a distribuição do tempo de falha T para quando as medições de degradação estão a aumentar com o tempo como:

$$F_T(t) = F_t(t; \lambda; \beta; D_f; D) = P(T \le t) = P[D(t; \lambda; \beta) \ge D_f].$$

Os dados referentes a degradação de cada unidade experimental provêm informação sobre θ_i , possibilitando obter informações sobre λ e β , parâmetros da distribuição para os efeitos aleatórios de θ_i .

A função de confiabilidade sob a suposição de que $\theta_i \sim \log normal(\beta, \lambda^2)$ é dada por:

$$R(t) = 1 - F(t) = \emptyset \left\{ -\frac{\left[\ln(t) - \left(\ln(D_f) + \beta\right)\right]}{\lambda} \right\},$$

em que Φ é a função de distribuição acumulada de uma distribuição normal padrão.

O quantil α da distribuição do tempo de vida e o tempo médio de vida, serão, respectivamente:

$$t_{\alpha} = \exp\{z_{\alpha}\lambda + \ln(D_f) + \beta\},\$$

$$MTTF = \exp\{\ln(D_f) + \beta + \frac{\lambda^2}{2}\}.$$

Tempo (h)	Mínimo	Média	Mediana	Máximo	D. Padrão
250	0,2707	0,4469	0,438	0,7078	0,126
500	0,6144	0,961	0,9255	1,488	0,2652
750	1,0515	1,5682	1,5225	2,381	0,3818
1000	1,3526	2,0128	1,9525	2,995	0,4982
1250	1,7998	2,5853	2,5093	3,835	0,6287
1500	2,2697	3,1447	2,9473	4,501	0,7102
1750	2,6799	3,6309	3,4682	5,251	0,823
2000	2,9397	4,1615	3,9354	6,256	0,9691
2250	3,289	4,6625	4,5124	7,051	1,0692
2500	3,7542	5,1543	4,8018	7,803	1,1817
2750	4,1595	5,6303	5,237	8,321	1,2574
3000	4,6295	6,1441	5,6556	8,93	1,4051
3250	5,1145	6,6392	6,1951	9,554	1,5062
3500	5,4591	7,1362	6,5405	10,45	1,6651
3750	5,8085	7,6007	7,0952	11,28	1,7399
4000	6,1438	8,1516	7,5941	12,21	1,8685

- Já nas 250 primeiras horas de estudo, o percentual de degradação encontra-se entre 0,27% e 0,71% (2,63 vezes mais);
- Após as 4000 horas de estudo, a degradação média é de 8,15%, enquanto a mediana é 7,59%;

Evolução da degradação do laser

- A Variabilidade entre as unidade experimentais aumenta com o tempo;
- A Degradação tende a ser linear para um mesmo laser;
- Para o exemplo em questão, houveram 3 falhas.

Função de Distribuição Acumulada

Função Densidade de Probabilidade

	Média	DP		Percentil		н	PD
	ivieuia	DP	5%	50%	95%	LI	LF
Lambda	0,010	0,001	0,009	0,010	0,012	0,009	0,012
Beta	4,976	0,449	4,296	4,940	5,754	4,261	5,697

Parâmetros

β~Gama(0,01;0,01)

λ~Gama(0,01;0,01)

β1=1

Iterações:110000

λ1=0,1

Burn-in=10000

Lag=100

Função de Distribuição Acumulada

Função Densidade de Probabilidade

	Mádia	DD.	Percentil				HPD		
	Média	DP	5%	50%	95%	LI	LF		
beta	6,210	0,064	6,105	6,211	6,311	6,105	6,311		
lambda	21,167	7,968	9,528	20,136	35,354	8,892	33,714		
sigma	0,206	0,010	0,191	0,206	0,223	0,191	0,222		

Parâmetros:

β~N(0;0,01)
λ^2 ~GamaInvertida(0,02;0,02)
σ^2 ~GamaInvertida(0,01;0,01)

β1=1	Iterações:20000
λ1=0,1	Burn-in=10000
$\sigma^2 1 = 10$	Lag=10

	Pr	ocesso Gan	na	RV - Lognormal			
	MTTF t0,5 R4500			MTTF	t0,5	R4500	
Média	4932,830	4915,814	0,728	5130,584	4989,603	0,670	
Mediana	4933,071	4915,785	0,728	5098,385	4981,274	0,676	
SD	69,449	69,464	0,034	341,950	319,602	0,098	
LI HPD	4809,590	4795,139	0,670	4515,880	4481,388	0,503	
LS HPD	5036,466	5023,765	0,779	5606,058	5507,129	0,825	
Amplitude	226,876	228,626	0,109	1090,179	1025,740	0,322	

Função de Distribuição Acumulada

Função Densidade de Probabilidade

Mas como avaliar os ajustes?

Embora as **estimativas pontuais** sejam relativamente **próximas**, verifica-se que o **processo gama** é mais **conservador** e possui **menor variabilidade**.

Para uma comparação justa, foram **simulados dados** com os parâmetros estimados em ambos os modelos, de forma que saibamos os **valores reais** dos parâmetros de interesse.

Dados Simulados - Comparando Resultados

Resultados

Dados Simulados Processo Gama

Dados Simulados com Efeito Aleatório

Simulação	Tempo (h)	Falhas		Não Falhas		Total
Efeitos Aleatórios	4000	8	16,0%	42	84,0%	50
Processo Gama	4000	2	0,04	48	0,96	50

Comparação entre os valores estimados e os reais do Processo gama simulado

	MTTF		t0,5		R(4500)	
Real	5041,49		5024,29		0,775	
	Estimado	Viés	Estimado	Viés	Estimado	Viés
P. Gama	5085,614	0,88%	5071,186	0,93%	0,815	5,13%
RV Lognormal	5119,079	1,54%	5069,110	0,89%	0,802	3,46%

Comparação entre os valores estimados e os reais do RV simulado

	MTTF		t0,5		R(4500)	
Real	5043,97		4927,49		0,663	
	Estimado	Viés	Estimado	Viés	Estimado	Viés
P. Gama	4914,001	2,58%	4898,376	0,59%	0,729	10,00%
RV Lognormal	5073,589	0,59%	4968,228	0,83%	0,686	3,52%

Conclusões

- Os modelos atendem importante demanda da atualidade (acompanhamento de produtos gerando informação para remanejamento de recursos e melhoramento dos mesmos);
- Resultados robustos, dentro do esperado e coerentes com mercado;
- Em geral, ambos os modelos foram bons e apresentam seus prós e contras, mas uma vez que o modelo de efeitos aleatórios lognormal apresentou bom desempenho em ambas as situações simuladas, o mesmo pode ser considerada a melhor opção de ajuste.