$$f(x) = \sqrt{2\pi}$$

$$f = f(t(u(x))) \Rightarrow dx$$

$$f = f(t(u(x))) \Rightarrow dx$$

$$x^n + x^n$$
Лекция 12

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

f (8)

Области в п-мерном пространстве
$$\frac{1}{2}$$
 ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$

Функции нескольких переменных. Основные понятия

Рассмотрим множество различных систем n упорядоченных вещественных чисел вида $(x_1,x_2,...,x_n)$, которые мы назовем n — мерным пространством R^n а каждую такую систему чисел $(x_1,x_2,...,x_n)$ будем называть точкой этого пространства и будем обозначать ее M $(x_1,x_2,...,x_n)$. Числа $x_1,x_2...x_n$ называются координатами точки M. Точку 0 (0,0,...,0) будем называть нулевой точкой пространства

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

1 - r $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

MT. TAS = MIVEN

n (n) an-hah

{\fa\ ≤ \\!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Рассмотрим две различные точки M_1 $(x_1,x_2,...,x_n)$ и M_2 $(y_1,y_2,...,y_n)$ Величина $\rho(M_1,M_2) = \sqrt{(y_1-x_1)^2 + (y_2-x_2)^2 + ... + (y_n-x_n)^2}$

Величина
$$\rho(M_1, M_2) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}$$

называется расстоянием между точками M_1 и M_2 .

Рассмотрим некоторую n — мерную фиксированную точку M_0 $\left(x_1^{\ 0}, x_2^{\ 0}, \dots, x_n^{\ 0}\right)$

f(t)dt = f(b) - f(a)Определение 12.1

 $\frac{1-r}{dx} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial x} \frac{\partial u}{\partial x}$ Множество точек, удаленных от точки M_0 менее, чем на $\ \epsilon$, где $\ \epsilon > 0$

называется (${m E}$ — окрестностью точки M_0 и обозначается ${m U}_{m E}(M_0)$ или $R_{m E}(M_0)$ IIF TAS = IIIVEN

ein =

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

В частности, в трехмерном декартовом пространстве 0xyz $\mathcal E$ —окрестность точки $M_0(x_0,y_0,z_0)$ представляет собою множество точек, лежащих внутри шара радиуса $\mathcal E$ с центром в точке M_0 , а в двухмерном — $\mathcal E$ —окрестность точки $M_0(x_0,y_0)$

– есть множество точек, лежащих внутри круга радиуса ε с центром в точке M_0 .

Таким образом, $\left(oldsymbol{M} \in oldsymbol{U} \left(oldsymbol{M}_0, oldsymbol{arepsilon}
ight)_n
ight) \Leftrightarrow \left(
ho \left(oldsymbol{M}_0, oldsymbol{M}
ight) < arepsilon
ight)$

 $\left(oldsymbol{M} \in oldsymbol{U} \left(oldsymbol{M}_{0}, arepsilon
ight) \right) \Leftrightarrow \left(\sum_{k=1}^{n} \left(oldsymbol{x}_{k} - oldsymbol{x}_{k}^{0}
ight)^{2} < arepsilon^{2}
ight)$ или

При n=1 $(x \in U(x_0, \varepsilon)) \Leftrightarrow (|x-x_0|) < \varepsilon$

при n=2 $(x,y)\in U\left((x_0,y_0),\varepsilon\right)\Leftrightarrow \left((x-x_0)^2+(y-y_0)^2<\varepsilon^2\right)$ Введем понятие **области n**—**мерного пространства.** Определения дадим для n=2

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $2n+3^n=2^n$

n (n) (n-10)

ein =

[\fs\ \le \\!

Определения дадим для n=2

Однако их можно обобщить и для n > 2 $|| \overrightarrow{r} \cdot \overrightarrow{r} \cdot \overrightarrow{s}| = || | | | | | | | | | | | |$ **Определение** 12.2 Множество точек M(x,y), обладающее свойствами открытости и связности, будем называть областью.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

При этом:

- 1. Свойство открытости означает, что любая точка, принадлежащая области, принадлежит ей вместе с некоторой своей Е - окрестностью.
- 2. Свойство связности означает, что любые две точки, принадлежащие области, можно соединить непрерывной кривой, состоящей из точек, целиком принадлежащих области.

Примером области может служить ϵ -окрестность точки $M_0(x_0,y_0)$

| \fs\ ≤ \\1

Определение 12.3. Граничной точкой области называется точка области, ей не принадлежащая, но такая, что любая ее ε -окрестность содержит, как точки, принадлежащие области, так и точки, ей не принадлежащие.

 $2^n+3^n=2^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Определение 12.4. Множество всех граничных точек области называется границей этой области.

Определение 12.5. Замкнутой областью называется множество точек, которое получается в результате присоединения к открытой области D всей ее границы.

Определение 12.6. Область называется ограниченной, если ее можно поместить внутрь некоторого круга(шара) конечного радиуса R.

 $x^n + y^n = z^n$

Пример. Рассмотрим множество точек M(x,y) , для которых $a) \quad x \cdot y > 0 \qquad \qquad 6) \quad x \ge 0, y \ge 0$ Являются ли эти множества областью?

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

a)
$$x \cdot y > 0$$

$$6) \quad x \ge 0, y \ge 0$$

- а) Множество $x \cdot y > 0$ областью не является, так как в точке O(0,0)нарушается условие связности
- $x \ge 0, y \ge 0$ представляет собою неограниченную замкнутую б) множество f(t)dt = f(b) - f(a)область

[\f9\≤\!!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$

Определение 12.7.Число не связанных друг с другом частей, из которых состоит вся граница области, называется порядком связности области, например, область, ограниченная окружностями радиусов r и R с центром в точке представляет собой двухсвязную область $M_0(x_0,y_0)$

[\fg\≤\!!

Понятие функции нескольких переменных

Переменная величина z называется функцией двух переменных x, y, если каждой совокупности их значений из данной области D соответствует единственное определенное значение z.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Соответствующая зависимость записывается в виде z = f(x,y) или z = z(x,y). Если имеется n переменных величин $x_1, x_2, ..., x_n$, то функциональная зависимость имеет вид $z = f(x_1, x_2, ..., x_n)$.

 $f(x) = \int_{-\infty}^{\infty} f(x) dx =$

1 - r $= \underbrace{\partial f}_{dt} \underbrace{\partial u}_{du} \underbrace{\partial u}_{du}$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $2c^n+3l^n=2^n$

Область D, в каждой точке которой определена данная функция, называется областью определения функции.

n=1 имеем функцию одного аргумента f(x) : В случае

при n=2 имеем f(x,y);
при n=3 будет u=f(x,y,z)

и т.д.

 $f(a) = \int_{a=1}^{\infty} (t(u(x))) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial h}{\partial u} \frac{\partial h}{\partial u}$ $f = f(t(u(x))) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial h}{\partial u} \frac{\partial h}{\partial u}$ f(t)dt = f(0) - f(0) $f(t)dt = \frac{1}{\sqrt{2\pi}} e^{-\frac{2}{3}t}$ $f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{2}{3}t}$

HT TAS = IIIVEN

e^{in z}

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Пример . Функция $z = \ln(x + y - 1)$ определена, если аргумент логарифма положителен, т.е. x + y - 1 > 0

Множество точек, удовлетворяющих этому неравенству, представляет собою область определения данной функции. Это есть точки, расположенные правее и выше прямой x + y - 1 = 0

[\fs\≤\!!

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Пример . Функция $z = \sqrt{1 - x^2 - y^2}$ дает нам множество точек, расположенных на верхней половине сферы $x^2 + y^2 + z^2 = 1$

ein =

f (8)

Областью определения этой функции является круг $x^2 + y^2 \le 1$

 $||fg|| \le ||f||_2 + ||g||_q$ $V = \frac{n}{2^n + y^n} = \frac{n}{2^n}$ HF. Tas = IIIVEN

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

Пусть функция z = f(x,y) определена в некоторой области D на плоскости xOy. Каждой точке (x,y) на плоскости будет соответствовать точка M(x,y,z) трехмерного пространства.

Множество таких точек M(x,y,z) в трехмерной декартовой системе координат представляет собой некоторую поверхность и называется графиком функции z = f(x,y).

Для построения графика функции z = f(x,y) можно рассматривать функции одной переменной $z = f(x_0,y)$ и $z = f(x,y_0)$, представляющие сечения графика плоскостями, параллельными координатным плоскостям xOz и yOz.

 $\frac{\partial t \, \partial u}{t \, du \, dx} \qquad f(z) = \sqrt{2\pi}$ $\lim_{z \to 0} \frac{\partial t \, \partial u}{\partial x} \qquad \lim_{z \to 0} \frac{\partial t \, \partial u}{\partial x} = \lim_{z \to 0} \frac{\partial u}{\partial x}$

n (n) an-hab

$$\int_{0}^{\infty} f(t) dt = \int_{0}^{\infty} \int_{$$

Линии уровня

Определение 12.8

 $(a+b)^n = \sum_{k=0}^{\infty} \binom{n}{k}$ **Линией уровня** функции z = f(x, y) называется такая линия f(x, y) = C на плоскости xOy, в точках которой функция принимает постоянное значение z = C.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

Пример

Функция $z = x^2 + y^2$, описывая поверхность, называемую параболоидом вращения, имеет линии вида $x^2 + y^2 = C$. Задавая параметру Cуровня различные значения из области $C \ge 0$, получим несколько линий уровня в виде совокупности концентрических окружностей с центром в начале Эта совокупность координат. называется фрагментом карты линий уровня.

|\fg\≤\!!

MF FAS = MVEW

 $f(x) = \sqrt{2\pi}$ f(x)(x) = f(x)(x) f(x) = f(x) f(x)

Поверхностью уровня скалярной функции u = f(x,y,z) называется множество точек пространства, в которых функция u принимает одно и то же значение c, то есть поверхность уровня определяется уравнением f(x,y,z) = c.

ein =

eurl F = 0 => & F.dF = 0 [191 ≤ ||f||2+ ||9||a f(t)dt = f(b) - f(a) $f = f(t)(u(x)) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $f = f(t)(u(x)) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial u}{\partial x}$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ MF TUS = MVEW

 $\frac{1}{1-r} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial u}$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ Предел функции

Пусть функция f(M) , где $M=M(x_1,x_2,...,x_n)$, определена в некоторой окрестности точки $M_0(x_1^0,x_2^0,...,x_n^0)$, причем в самой точке M_0 функция

ein =

f (8)

[\fs\ ≤\\1

может быть и не определена.

 $f(a) = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial x}$ $\int_{a}^{b} f(t) dt = f(b) - f(a)$ $f(a) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}}$ $f(a) = \sqrt{2\pi}$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ MT Tas = MVEW

Определение 12.9.

Число A называется пределом z = f(x, x)функции z = f(x, y) при $x \to x_0$, $y \to y_0$ (или в точке (x_0, y_0)), если для (x_0, y_0) любого числа $\varepsilon > 0$ найдется число $\delta > 0$ такое, что для всех точек M(x,y), отличных от точки $M_0(x_0,y_0)$ и отстоящих от этой точки на расстояние ρ (0 < ρ < δ), выполняется неравенство Математическое $|f(x,y)-A|<\varepsilon$ обозначение:

обозначение:
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = \lim_{\substack{M \to M_0 \\ y \to y_0}} f(x, y) = A$$

MF. TAS = MINVEW

 $f = f(t(u(x))) \Rightarrow \bar{a}x$

HOFW

 $x^n + y^n = z^n$

Аналогичные определения предела можно дать и для случая, когда M_0 бесконечно удаленная точка, а A — имеет конечное или бесконечное значение.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Эти различные формулировки определения конечного или бесконечного предела в конечной или бесконечной точке можно записать лаконично с помощью введенных ранее логических символов.

 $p(X=x) = \langle x \rangle$

Например, пусть
$$M_0$$
 — конечная точка, $A = +\infty$, то запись $\lim_{M \to M_0} f(M) = A$ означает:
$$\left(\lim_{M \to M_0} f(M) = A\right) \Leftrightarrow (\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0) : (0 < \rho(M, M_0) < \delta(\varepsilon)) \Rightarrow f(M) > \frac{1}{\varepsilon}$$

MF TAS = MINVEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

$$M=Mig(x,y,zig)$$
, $A=-\infty$, $ig(x,y,zig) o\infty$, тогда

В случае
$$M=M(x,y,z), \quad A=-\infty$$
 , $(x,y,z)\to\infty$, тогда
$$\left(\lim_{(x,y,z)\to\infty}f(x,y,z)=-\infty\right)\Leftrightarrow \left(\forall\,\varepsilon>0,\exists\,\delta=\delta\left(\varepsilon\right)>0\right);$$

$$\left\{\left(\left(x^{2}+y^{2}+z^{2}
ight) >rac{1}{\delta^{2}}
ight) \Rightarrow f\left(x,y,z
ight) <-rac{1}{arepsilon}$$

Напомним, что если A – число, то предел называется **конечным**, если же A равно ∞ , $+\infty$ или $-\infty$, то предел называется бесконечным или несобственным.

Нетрудно заметить, что определение предела функции нескольких переменных аналогично соответствующему определению предела для функции одной переменной.

HE TAS = MINVEW

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Замечание.

Вычисление пределов функции двух переменных является более сложной задачей по сравнению с вычислением пределов функции одной переменной.

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ $(n+b)^n = (n+b)^n = (n+b)^n$

Это связано с тем, что точка N может стремиться к точке M по любому направлению на плоскости в отличие от функции одной переменной, где переменная x может стремиться к числу x_0 на числовой прямой только справа или слева.

Получающиеся при этом многочисленные пределы функции двух переменных должны совпадать друг с другом.

 $\frac{a}{1-r} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

(1) = VATO (1) F · Tas = JJJ VF W $x^n + y^n = x^n$

| \fg| \le || !

でしているからか

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Пример. Найти предел функции $f(x,y) = \frac{\sin xy}{y}$ при $x \to 0$, $y \to 0$.

Решение. Функция f(x,y) определена всюду, кроме линии y = 0. Функция в точке (0,0) не определена. При нахождении предела следует умножить числитель и знаменатель на x, сделать замену $xy = \rho$, а затем воспользоваться 1-м замечательным пределом

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin xy}{y} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x \sin xy}{xy} = \lim_{\substack{x \to 0 \\ \rho \to 0}} \left(x \cdot \frac{\sin \rho}{\rho} \right) = 0.$$

T-19

at di du da

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ F. TOS = III

Пример. Существует ли предел у функции $f(x,y) = \sqrt{\frac{y}{x}}$ при $x \to 0$, $y \to 0$? **Решение**. Выберем направление

что при $x \to 0$ переменная $y \to 0$. Получим

$$\lim_{\substack{x \to 0 \\ y \to 0}} \sqrt{\frac{y}{x}} = \lim_{x \to 0} \sqrt{\frac{kx}{x}} = \lim_{x \to 0} \sqrt{k} = \sqrt{k}$$

При различных значениях k предел имеет различные значения. Наблюдается зависимость величины предела от пути, по которому точка (x,y) стремится к точке f = f(t(u(x))) =(0,0). Предел не существует

MT TOS = MIN VEW

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

Понятие предела функции нескольких переменных предполагает одновременное стремление всех аргументов к своим предельным значениям. Наряду с понятием предела вводится понятие повторного предела.

Определение 12.10.

Предел называется *повторным*, если он получен при последовательном стремлении каждого аргумента к предельному значению при фиксированных остальных аргументах аргумента x, затем y.

 $\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Пример. Найти повторные пределы функции $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, |x| \le 4, |y| \le 1$ при $x \to 0$, $y \to 0$. переменную x к нулю, оставляя переменную y постоянной и не равной нулю. Затем устремим переменную у к нулю. Тогда

$$\lim_{y \to 0} \left(\lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{y \to 0} \left(\frac{-y^2}{y^2} \right) = \lim_{y \to 0} \left(-1 \right) = -1.$$

Теперь оставляем постоянной величину y, а переменную x устремим к нулю. Потом находим предел при $x \to 0$

одим предел при
$$x \to 0$$

$$\lim_{x \to 0} \left(\lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x \to 0} \left(\frac{x^2}{x^2} \right) = \lim_{y \to 0} (1) = 1.$$

MF. HAS = IIIVEW

 $\lim_{M \to M_0} [f_1(M) \pm f_2(M)] = \lim_{M \to M_0} f_1(M) \pm \lim_{M \to M_0} f_2(M)$ $\lim_{M \to M_0} [f_1(M) \cdot f_2(M)] = \lim_{M \to M_0} f_1(M) \cdot \lim_{M \to M_0} f_2(M)$ $\lim_{M \to M_0} \left[\frac{f_1(M)}{f_2(M)} \right] = \lim_{M \to M_0} f_1(M) \cdot \lim_{M \to M_0} f_2(M)$ $\lim_{M \to M_0} \left[\frac{f_1(M)}{f_2(M)} \right] = \frac{\lim_{M \to M_0} f_1(M)}{\lim_{M \to M_0} f_2(M)} \cdot (\lim_{M \to M_0} f_2(M) \neq 0)$ Нетрудно показать, что имеют место теоремы о пределах, сформулированные и пределе суммы, разности, произведения и частного двух функций нескольких

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

$$\lim_{M \to M_0} [f_1(M) \pm f_2(M)] = \lim_{M \to M_0} f_1(M) \pm \lim_{M \to M_0} f_2(M)$$

$$\lim_{M \to M_0} [f_1(M) \cdot f_2(M)] = \lim_{M \to M_0} f_1(M) \cdot \lim_{M \to M_0} f_2(M)$$

$$\lim_{M \to M_0} \left[\frac{f_1(M)}{f_2(M)} \right] = \frac{\lim_{M \to M_0} f_1(M)}{\lim_{M \to M_0} f_2(M)} \quad (\lim_{M \to M_0} f_2(M) \neq 0)$$

HE TAS = MINVEW

Непрерывность функции

Понятие непрерывности, подробно рассмотренное ранее для функции одной переменной, можно обобщить также и для функции нескольких переменных, причем, как и ранее, понятие непрерывности тесно связано с понятием предела функции в точке. Приведем несколько различных определений непрерывности функции в точке, которые эквивалентны между собой.

 $x^n + y^n = z^n$

 $x^n + y^n = x^n$ $\sum_{n=1}^{\infty} \binom{n}{n} a^{n-k}b^k$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Oпределение 12.11. Функция f(M) называется непрерывной в точке $M_{0^{\circ}}$ если $\lim_{M \to M_0} f(M) = f(M_0)$

$$\lim_{M\to M_0} f(M) = f(M_0)$$

 $\sum_{n=1}^{\infty} \alpha r^{n-1} = 1 - r$ $\sum_{n=1}^{\infty} \alpha r^{n-1} = 1 - r$ $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ Для функции двух переменных то дадим более развернутое определение.

MT TAS = MINTEN

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ CHARN

Определение 12.12. Функция f(x, y) называется непрерывной в точке $M_0(x_0, y_0)$,

если для любого

всегда можно указать такое число $\epsilon > 0$

 $\delta = \delta(\varepsilon) > 0.$

что для всех точек

M(x,y)

, попадающих в проколотую δ – окрестность точки

, будет выполняться неравенство $|f(x,y)-f(x_0,y_0)|< \varepsilon$ $M_0(x_0, y_0)$

京=0= Т.е. для функции непрерывной в некоторой точке достаточно малым изменениям координат этой точки соответствуют малые изменения значения самой функции.

MF. HAS = MIVEN

Производя дальнейшие аналогии, будем называть функцию $f(x_1, x_2, ..., x_n)$ непрерывной в некоторой области D, если она непрерывна в каждой точке этой $p(X=x) = \langle x,$ области.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Если в некоторой точке функция не является непрерывной, то она называется разрывной в этой точке.

Функция нескольких переменных может претерпевать разрыв не только в точке, но и на некоторой кривой и т.п.

 $f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ HO (ch-Для функций, непрерывных в точке, можно сформулировать несколько теорем, -рорг одной переменной. аналогичных соответствующим теоремам, рассмотренным ранее для функции

f(t) dt = f(b) - f(a)

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Теорема 12.1.

Если функции $f_1(x_1,x_2,...,x_n)$ и $f_2(x_1,x_2,...,x_n)$ непрерывны в точке $M_0(x_1^0,x_2^0,...,x_n^0)$, то в этой точке: непрерывно произведение $c\cdot f_1(M)$, где c=const; непрерывно произведение $f_1(M)\pm f_2(M);$ непрерывно частное $f_1(M)\cdot f_2(M);$ непрерывно частное $f_1(M)\cdot f_2(M)$;

Функции нескольких переменных, непрерывные в области, обладают такими же свойствами, что и функции одной переменной, непрерывные на отрезке..

IIF TAS = IIIVEN

Теорема 12.2. Если функция $f(x_1, x_2, ..., x_n)$ непрерывна в замкнутой ограниченной области \overline{D} , то в этой области она принимает наименьшее значение k и наибольшее значение K, т.е. существуют точки M_1 и M_2 такие, что $f(M_1) = k$, $f(M_2) = K$ и при этом для всех точек $M \in \overline{D}$: $k \le f(M) \le K$

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Теорема 12.3. Если функция $f(x_1, x_2, ..., x_n)$ непрерывна в ограниченной замкнутой области \overline{D} , то в \overline{D} она принимает по крайне мере хотя бы один раз любое значение, заключенное между ее наименьшим значением k и наибольшим значение K.

$$f(x) = \int_{\mathbb{R}^n} f(x) dx$$

$$f(x) = \int_{\mathbb{R}^n} f(x) dx$$