Lecture 20: Digital CMOS circuits (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

RC circuit

- Consider a serial RC circuit.
 - The KCL states

$$\frac{V_{out} - V_{in}}{R} + C \frac{dV_{out}}{dt} = 0$$

- Assume a step-wise change of V_{in} at t=0. It becomes V_{DD} .
- Initial output voltage is V_0 .
- Its solution is given by

$$V_{out}(t) = V_{DD} + (V_0 - V_{DD}) \exp\left(-\frac{t}{RC}\right)$$

Speed of inverter (1/4)

- VTC merely describes the dc behavior.
 - Input voltages with different frequencies (1 kHz, 1 MHz, 1 GHz, 1 THz, ...)
- Time-dependent behavior
 - Can a resistor introduce time-lagging effect? No.

Speed of inverter (2/4)

- A rapid transition of V_{in} from V_{DD} to 0
 - Then, the capacitor should be charged.
 - What is the electrical route to charge the capacitor?

Speed of inverter (3/4)

- Simply, it is a RC circuit.
 - Then, the solution is simply

$$V_{out}(t) = V_{out}(0^{-}) + [V_{DD} - V_{out}(0^{-})] \left(1 - \exp\frac{-t}{R_D C_L}\right)$$

- Since exp(-3) ≈ 0.05, after $3R_DC_L$, V_{out} reaches 0.95 V_{DD} .
- Yes, it takes time to get the stable output voltage...
- The delayt restricts the maximum signal frequency.

Speed of inverter (4/4)

- A rapid transition of V_{in} from 0 to V_{DD} to 0
 - At the initial phase, the resistor does not conduct.
 - Also the MOSFET is operated in its saturation mode.
 - Then,

$$I_{D,sat} + C_L \frac{dV_{out}}{dt} = 0$$

Origin of C_L ?

- Consider an inverter chain.
 - Then, what is the load capacitance for the first stage?

Another origin

Interconnect

Fan-out

- (It is not "Pan out" written in the lecture. Sorry!)
- The fan-out of a logic gate output is the number of gate inputs it can drive.
 - In order to minimize the delay, a large fan-out should be avoided.

Homework#9

- Due: 09:00, May 28
- Solve the following problems of the final exam in 2017.
 - P35
 - P36
 - P37
 - P38
 - P39
 - P41
 - P42
 - P43