Exercice 1

- 1. Si $f: E \to F$ est une application linéaire entre deux espaces vectoriels normés. Montrer que les propositions suivantes sont équivalentes :
 - (a) f est continue
 - (b) f est uniformément continue
 - (c) f est continue en 0
 - (d) f est bornée sur la boule unité de E
- 2. Donner un homéomorphisme explicite entre le carré $C=[0,1]^2\subset\mathbb{R}^2$ et le disque $D=\{z\in\mathbb{C}/|z|\leq 1\}$

Exercice 2

- 1. Soit (X, d) un espace métrique connexe et localement connexe par arcs. Montrer que X est connexe par arcs.
- 2. Soit U un ouvert d'un espace vectoriel normé E. Montrer que U est connexe si et seulement si il est connexe par arcs. Dans le cas où U est connexe, montrer aussi que U est connexe par lignes polygonales.

Exercice 3

- 1. Montrer que le complémentaire d'un ensemble fini de points du plan complexe est connexe. Et pour un ensemble dénombrable de points ?
- 2. Montrer que le groupe $GL_n(\mathbb{C})$ est connexe. (si A et B sont deux matrices de $GL_n(\mathbb{C})$, considérer le polynôme $P(z) = \det(zA + (1-z)B)$).
- 3. Montrer que $GL_n(\mathbb{R})$ n'est pas connexe. Décrire ses composantes connexes.
- 4. Si $M \notin GL_n(\mathbb{R})$, montrer que $GL_n(\mathbb{R}) \cup \{M\}$ est connexe par arcs.

Exercice 4

Soit $X = \{0, 1\}^{\mathbb{N}}$ et $d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sum_{n \in \mathbb{N}} 2^{-n} |x_n - y_n|$.

- 1. Vérifier que (X, d) est un espace métrique.
- 2. Montrer que X n'est pas connexe.
- 3. Déterminer les composantes connexes de X. Montrer qu'elles ne sont pas ouvertes.

Exercice 5

Montrer que \mathbb{R} et \mathbb{R}^n ne sont pas homéomorphes si $n \geq 2$.

Exercice 6

Soient (E, d) et (F, d') deux espaces métriques connexes.

- 1. Montrer que $E \times F$ est connexe.
- 2. Soient $A \subset E$ et $B \subset F$ tels que $A \neq E$ et $B \neq F$. Montrer que $(E \times F) \setminus (A \times B)$ est connexe.

Exercice 7

Soit (X, d) un espace métrique connexe et non borné. Montrer que toute sphère de X est non-vide.

Exercice 8

Soit E un \mathbb{R} -espace vectoriel normé de dimension finie et F un sous-espace vectoriel de E.

- 1. Si F est de codimension au moins 2, montrer que $E \setminus F$ est connexe.
- 2. Si F est de codimension 1, montrer que $E \setminus F$ a deux composantes connexes.
- 3. (difficile) Si E est de dimension quelconque et F est un hyperplan, montrer que F est fermé dans E si et seulement si $E \setminus F$ n'est pas connexe par arcs.

Exercice 9 Théorème de passage des douanes

Soient (E, d) un espace métrique et A une partie de E.

- 1. Montrer que $\partial A = \{x \in E/\forall r > 0B(x,r) \cap A \neq \emptyset \text{ et } B(x,r) \cap (E \setminus A) \neq \emptyset\}$
- 2. Si B est une partie connexe de E telle que $B \cap \mathring{A} \neq \emptyset$ et $B \cap \widehat{E \setminus A} \neq \emptyset$, montrer que $B \cap \partial A \neq \emptyset$.

Exercice 10

Soit (X, d) un espace métrique dans lequel toute boule ouverte est connexe. Soit A une partie connexe. Montrer que l'ensemble

$$A_{\epsilon} = \{ x \in X, d(x, A) < \epsilon \}$$

est connexe pour tout ϵ strictement positif.

Exercice 11 Connexe *⇒* connexe par arcs

On se place dans le plan \mathbb{R}^2 .

- 1. Montrer que l'adhérence de $\Gamma = \{(x, \sin(\frac{1}{x})), x \in]0, 1]\}$ est connexe, mais n'est pas connexe par arcs.
- 2. Montrer que la réunion A des sous-ensembles $\{(x,y): x \in \mathbb{R} \setminus \mathbb{Q}, y \geq 0\}$ et $\{(x,y): x \in \mathbb{Q}, y < 0\}$ est connexe, non localement connexe et non connexe par arcs.

Exercice 12 Pas de théorème de Cantor-Bernstein topologique

1. Soit h un homéomorphisme de X sur Y. Montrer que h échange les composantes connexes de X et Y.

- 2. Soit $X = \bigcup_{n=0}^{\infty} (]3n, 3n+1[\cup \{3n+2\})$ et $Y = (X-\{2\})\cup \{1\}$. D'une part, montrer que X et Y ne sont pas homéomorphes. D'autre part, trouver deux bijections continues $f: X \to Y$ et $g: Y \to X$. Conclure.
- (\star) Remarque : f et g sont des applications bijectives continues, d'inverses non continues.

Exercice 13

Pour $x, y \in]0, +\infty[$ on pose $\delta(x, y) = \left| \frac{1}{x} - \frac{1}{y} \right|.$

- 1. Montrer que δ est une distance sur $]0, +\infty[$.
- 2. Montre que $(]0, +\infty[, \delta)$ et $([1, +\infty[, \delta)$ ne sont pas complets.
- 3. Montrer que $(]0,1],\delta)$ est complet.

Exercice 14

Soit (X, d) un espace métrique.

- 1. Montrer que X est complet si et seulement si pour toute suite décroissante de fermés non vides $(F_n)_{n\geq 0}$ dont le diamètre tend vers 0, il existe $x\in X$ tel que $\bigcap_{n\geq 0} F_n = \{x\}$.
- 2. On suppose que X est complet. Soit (Y, d') un espace métrique et $f: X \to Y$ une fonction continue. Soit $(F_n)_{n\geq 0}$ une suite décroissante de fermés non vides dont le diamètre tend vers 0. Montrer que $f(\bigcap_{n\geq 0} F_n) = \bigcap_{n\geq 0} f(F_n)$.

Exercice 15 Soient (X, d) et (Y, d') deux espaces métriques. Soit $A \subset X$ une partie dense.

- 1. Soient deux fonctions $f_1, f_2 : X \to Y$ continues telles que $f_1(x) = f_2(x)$ pour tout $x \in A$. Montrer que $f_1 = f_2$.
- 2. On suppose (Y, d') complet. Soit $f: A \to Y$ une fonction uniformément continue. Montrer qu'il existe une unique fonction continue $g: X \to Y$ telle que $g_{/A} = f$. Montrer que g est uniformément continue.

Exercice 16 Soit $(E, \|.\|)$ un espace vectoriel normé.

- 1. On suppose que E est complet. Soit $\sum_{n\geq 0} x_n$ une série absolument convergente dans E (i.e. $\sum_{n\geq 0} \|x_n\| < \infty$), montrer que $\sum_{n\geq 0} x_n$ est convergente.
- 2. Réciproquement, on suppose que toute série absolument convergente dans E est convergente. Montrer que E est complet. (indication : montrer que dans un espace métrique une suite de Cauchy qui admet une valeur d'adhérence est convergente)

Exercice 17

Soit E l'ensemble des applications f de $\mathbb C$ dans $\mathbb C$ telles que $|f(z)| \leq \frac{1}{1+|z|}, (\forall z \in \mathbb C)$.

- 1. On définit $d(f,g) = \sup\{|f(z) g(z)|, z \in \mathbb{C}\}$. Montrer que d est une distance sur E. Montrer que (E,d) est complet.
- 2. On définit $d'(f,g) = \sup\{(1+|z|)|f(z)-g(z)|, z \in \mathbb{C}\}$. Montrer que d' est une distance sur E. Montrer que (E,d') est complet.
- 3. Ces deux distances sont-elles topologiquement équivalentes?