

Ultra Low Current Consumption 300mA CMOS Voltage Regulator

LR6232 Series

■ INTRODUCTION

The LR6232 series are a group of positive voltage regulators manufactured by CMOS technologies with ultra low consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The LR6232 series can deliver 300mA output current and allow an input voltage as high as 8V. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

FEATURES

Low Quiescent Current: 0.8µA

Operating Voltage Range: 1.8V∼8V

Output Current: 300mA

Low Dropout Voltage: 110mV@100mA(V_{OUT}=3.3V)

Output Voltage: 1.2~ 5.0V

• High Accuracy: ±2%/±1% (Typ.)

 High Power Supply Rejection Ratio: 50dB@1kHz

Low Output Noise:
 27xV_{OUT} μV_{RMS} (10Hz~100kHz)

 Excellent Line and Load Transient Response

 Built-in Current Limiter, Short-Circuit Protection

APPLICATIONS

- Portable consumer equipments
- Radio control systems
- Laptop, Palmtops and PDAs
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Ultra Low Power Microcontroller

■ BLOCK DIAGRAM

ORDER INFORMATION

LR6232(1)2(3)4(5)

DESIGNATOR	SYMBOL	DESCRIPTION
	А	Standard
1)	В	High Active, pull-down resistor built in, with
		C _{OUT} discharge resistor
00	Intogor	Output Voltage
20	Integer	e.g.1.8V=2:1, 3:8
	F	Package:DFN1X1-4
	M/ MC/ MY	Package:SOT-23-3
4	M	Package:SOT-23-5
	P/PT/PL	Package:SOT-89-3
(5)	-	2% Accuracy
	1	1% Accuracy

Ver0.3 1/9

■ PIN CONFIGURATION

			PIN N	IUMBE	R	DIN		
SOT-23-3			SOT-89-3			PIN	FUNCTION	
M	MC	MY	Р	PT	PL	NAME		
1	3	3	1	2	2	V _{SS}	Ground	
2	2	1	3	1	3	V _{OUT}	Output	
3	1	2	2	3	1	V _{IN}	Power input	

SOT-23-5

PIN NUMBER	SYMBOL	FUNCTION	
1	V _{IN} Power Input Pin		
2	V _{SS}	Ground	
3	CE	Chip Enable Pin	
4	NC	No Connection	
5	V _{OUT}	Output Pin	

DFN1X1-4

PIN NUMBER F	SYMBOL	FUNCTION	
1	V _{OUT}	Output Pin	
2	V _{SS}	Ground	
3	CE	Chip Enable Pin	
4	V _{IN}	Power Input Pin	

■ ABSOLUTE MAXIMUM RATINGS⁽¹⁾

(Unless otherwise specified, T_A=25°C)

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage ⁽²⁾		V _{IN}	-0.3~9	V
Output Voltage ⁽²⁾		V _{OUT}	-0.3~V _{IN} +0.3	V
Output Current		I _{OUT}	600	mA
	SOT-23		0.4	W
Dower Dissipation	DFN1X1-4	D	0.4	W
Power Dissipation	SOT-89	P_{D}	0.6	W
TO-92			0.6	W
Operating Junction Temperature Range		T _j	-40~125	°C
Storage Temperature		T _{stg}	-40~125	°C
Lead Temperature(Solo	dering, 10 sec)	T _{solder}	260	°C

Note:

- (1) Stresses beyond those listed under *absolute maximum ratings may* cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
- (2) All voltages are with respect to network ground terminal.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	MIN.	NOM.	MAX.	UNITS
Supply voltage at V _{IN}	1.8		8	V
Operating junction temperature range, T _j	-40		125	°C
Operating free air temperature range, T _A	-40		85	°C

■ ELECTRICAL CHARACTERISTICS

LR6232 Series ($V_{IN}=V_{OUT}+1V$, $C_{IN}=C_{OUT}=1\mu F$, $T_A=25\,^{\circ}C$,unless otherwise specified)

2110202 001100	CRO232 Series (VIN=VOUT+1V, CIN=COUT=1µF, 1A=23 C, utiless otherwise specified)						
PARAMETER	SYMBOL	COND	ITIONS	MIN.	TYP. ⁽³⁾	MAX.	UNITS
Input Voltage	V _{IN}			1.8	_	8	V
Output Voltage Range	V _{OUT}			1.2	_	5	V
DC Output Acquirecy		ı	1m /\	-2	_	2	%
DC Output Accuracy		IOUT=	=1mA	-1	_	1	%
Dropout Voltage	V _{dif} ⁽⁴⁾	I _{OUT} =100m	$A,V_{OUT}=3.3V$		110		mV
Supply Current		I _{OUT} 1.2V	≤V _{OUT} ≤3.3V		0.8	1.3	μA
Supply Current	I _{SS}	=0 3.3V	<v<sub>OUT≤5.0V</v<sub>		1.0	1.5	μΑ
Standby Current	I _{STBY}	CE:	=V _{SS}			0.1	μΑ
Line Degulation	$\Delta V_{ m OUT}$	I _{OUT} =	:10mA		0.05	0.3	%/V
Line Regulation	$\overline{V_{OUT} \times \Delta V_{IN}}$	V _{OUT} +1\	/≤V _{IN} ≤8V		0.05	0.3	%/ V
Load Population	41/	V _{IN} = V ₀	_{DUT} +1V,		10		mV
Load Regulation	ΔV_{OUT}	1mA≤l _{OU}	_T ≤100mA		10		IIIV
Temperature	$\Delta V_{ m OUT}$	I _{OUT} =	10mA,		100		nnm
Coefficient	$\overline{V_{OUT} \times \Delta T_A}$	-40°C <t< td=""><td>_A<125°C</td><td></td><td>100</td><td></td><td>ppm</td></t<>	_A <125°C		100		ppm
Output Current Limit		V _{OUT} = 0.5 x	$V_{\text{OUT(Normal)}}$,	550	700	850	m A
Output Current Limit	I _{LIM}	$V_{IN} = 5V$		550	700	650	mA
Short Current	I _{SHORT}	V _{OUT}	=V _{SS}	_	20	_	mA
			100Hz		70		
Power Supply	PSRR	I 50m A	1kHz	_	50	_	dB
Rejection Ratio	PSKK	I _{OUT} =50mA	10kHz	_	40	_	иь
			100kHz	_	35	_	
Output Noise Voltage	V _{ON}	BW=10Hz to 100kHz		_	27 x V _{OUT}	_	μV_{RMS}
CE "High" Voltage	V _{CE} "H"			1.5		V _{IN}	V
CE "Low" Voltage	V _{CE} "L"					0.3	V
C _{OUT} Auto-Discharge		V _{IN} =5V, V _{OUT} =3.0V,			200		0
Resistance	R _{DISCHRG}	V _{CE}	=V _{SS}		200		Ω

Note:

- (3) Typical numbers are at 25°C and represent the most likely norm.
- (4) V_{dif} : The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).

■ TYPICAL APPLICATION CIRCUIT

APPLICATION INFORMATION

Selection of Input/ Output Capacitors

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current.

A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a 3Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.

The LDO also requires an output capacitor for loop stability. Connect a $1\mu F$ tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

TYPICAL PERFORMANCE CHARACTERISTICS

(V_{IN}=V_{OUT}+1V, C_{IN}=C_{OUT}=1μF, T_A=25℃,unless otherwise specified)

■ PACKAGING INFORMATION

SOT-23-3 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimension	ns In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-5 PACKAGE OUTLINE DIMENSIONS

Cymphol	Dimensions	Dimensions In Millimeters		ns In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

• DFNXX1-4 PACKAGE OUTLINE DIMENSIONS

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	0.34	0.37	0.40
A1	0.00	0.02	0.05
A3		0.100REF	
b	0.17	0.22	0.27
D	0.95	1.00	1.05
E	0.95	1.00	1.05
D2	0.43	0.48	0.53
E2	0.43	0.48	0.53
L	0.20	0.25	0.30
е	_	0.65	_
K	0.15	_	_

• SOT-89-3 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.55	0 REF	0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060 TYP		
e1	3.000 TYP		0.11	8 TYP	
L	0.900	1.200	0.035	0.047	