Predicting house prices

August 30, 2017

```
In [ ]: Aluno: Marco Antonio Santo
```

1 Fire up libraries

```
In [1]: import matplotlib
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn import linear_model
```

2 Load some house sales data

Dataset is from house sales in King County, the region where the city of Seattle, WA is located.

```
In [2]: sales = pd.read_csv('home_data.csv')
In [3]: sales.head()
Out[3]:
                    id
                                   date
                                          price
                                                  bedrooms
                                                            bathrooms
                                                                        sqft_living
           7129300520
                       20141013T000000
                                          221900
                                                                  1.00
                                                                               1180
          6414100192 20141209T000000
                                         538000
                                                         3
                                                                  2.25
                                                                               2570
                                                         2
        2 5631500400 20150225T000000
                                          180000
                                                                  1.00
                                                                                770
           2487200875
                      20141209T000000
                                         604000
                                                         4
                                                                  3.00
                                                                               1960
           1954400510 20150218T000000
                                         510000
                                                                  2.00
                                                                               1680
           sqft_lot
                     floors
                              waterfront
                                          view
                                                             grade
                                                                     sqft_above \
        0
               5650
                         1.0
                                                                           1180
        1
               7242
                         2.0
                                                                  7
                                                                           2170
        2
              10000
                         1.0
                                                                  6
                                                                            770
        3
               5000
                         1.0
                                       0
                                              0
                                                                  7
                                                                           1050
        4
               8080
                         1.0
                                                                           1680
           sqft_basement yr_built yr_renovated
                                                   zipcode
                                                                  lat
                                                                          long
        0
                                                      98178
                        0
                               1955
                                                             47.5112 -122.257
                      400
        1
                               1951
                                              1991
                                                      98125 47.7210 -122.319
```

```
2
                       0
                               1933
                                                 0
                                                      98028 47.7379 -122.233
        3
                      910
                               1965
                                                      98136 47.5208 -122.393
                                                 0
                                                      98074 47.6168 -122.045
        4
                        0
                               1987
           sqft_living15
                           sqft_lot15
        0
                                 5650
                     1340
        1
                     1690
                                 7639
        2
                    2720
                                 8062
        3
                     1360
                                 5000
                                 7503
        4
                     1800
        [5 rows x 21 columns]
In [4]: sales[sales['id']==1839920160]
Out [4]:
                        id
                                       date
                                               price
                                                      bedrooms
                                                                bathrooms
                                                                            sqft_living
        11860
               1839920160 20140714T000000
                                             432000
                                                                       2.0
                                                                                   1870
                                                                 grade sqft_above \
               sqft_lot
                         floors
                                 waterfront
                                              view
        11860
                   7080
                             1.0
                                                                               1210
                                                  0
                                                        zipcode
               sqft_basement
                               yr_built yr_renovated
                                                                      lat
                                                                              long \
        11860
                          660
                                   1969
                                                          98034
                                                                 47.7244 -122.179
               sqft_living15
                               sqft_lot15
        11860
                         1620
                                     8000
        [1 rows x 21 columns]
In [5]: sales.keys()
Out[5]: Index([u'id', u'date', u'price', u'bedrooms', u'bathrooms', u'sqft_living',
               u'sqft_lot', u'floors', u'waterfront', u'view', u'condition', u'grade',
               u'sqft_above', u'sqft_basement', u'yr_built', u'yr_renovated',
               u'zipcode', u'lat', u'long', u'sqft_living15', u'sqft_lot15'],
              dtype='object')
In [6]: sales.shape
Out[6]: (21613, 21)
```

3 Exploring the data for housing sales

The house price is correlated with the number of square feet of living space.

4 Create a simple regression model of sqft_living to price

Split data into training and testing.

We use random_state=200 so that everyone running this notebook gets the same results. In practice, you may set a random seed.

In [9]: train_data.head()

Out[9]:	id		date	price	bedrooms	bathrooms	sqft_living	\
11860	1839920160	20140	714T000000	432000	3	2.00	1870	
12440	6705850140	20141	009T000000	750000	4	2.75	3170	
10550	924069190	20140	819T000000	440000	3	1.75	2000	
4828	3211270170	20140	523T000000	404000	4	3.00	4060	
3502	9523103001	20141	013T000000	389000	2	1.00	850	
	sqft_lot i	floors	waterfront	view		grade s	qft_above \	
11860	7080	1.0	0	0		7	1210	
12440	7634	2.0	0	0		10	3170	

10556	11880 2	2.0	0	0		8	2000	1
4828	35621 1	0	0	0		9	2030	1
3502	3276 1	0	0	0		6	850	1
	sqft_basement	<pre>yr_built</pre>	yr_re	novated	zipcode	lat	long	\
11860	660	1969		0	98034	47.7244	-122.179	
12446	0	1992		0	98075	47.5774	-122.054	
10556	0	1979		0	98075	47.5882	-122.052	
4828	2030	1989		0	98092	47.3059	-122.108	
3502	0	1910		0	98103	47.6742	-122.350	
	sqft_living15	sqft_lot1	5					
11860	1620	800	0					
12446	2940	784	6					
10556	1820	1512	0					
4828	2950	3525	9					
3502	1460	410	0					

[5 rows x 21 columns]

In [10]: test_data.head()

Out[10]:		i	d	d	ate	price	bedrooms	bathro	oms sq	ft_li	ving	\
	3	248720087	5 2014	1209T000	000	604000	4		3.0		1960	
	4	195440051	0 2015	0218T000	000	510000	3		2.0		1680	
	5	723755031	0 2014	0512T000	000	1225000	4		4.5		5420	
	17	686520014	0 2014	0529T000	000	485000	4		1.0		1600	
	18	1600039	7 2014	1205T000	000	189000	2		1.0		1200	
		sqft_lot	floors	waterf	ront	view		grade	sqft_a	bove	\	
	3	5000	1.0		0	0		7		1050		
	4	8080	1.0		0	0		8		1680		
	5	101930	1.0		0	0		11		3890		
	17	4300	1.5		0	0		7		1600		
	18	9850	1.0		0	0		7		1200		
		sqft_base	ment y:	r_built	yr_ı	renovated	zipcode	la	t l	ong	\	
	3	_	910	1965		0	98136	47.520	8 -122.	393		
	4		0	1987		0	98074	47.616	8 -122.	045		
	5		1530	2001		0	98053	47.656	1 -122.	005		
	17		0	1916		0	98103	47.664	8 -122.	343		
	18		0	1921		0	98002	47.308	9 -122.	210		
		sqft_livi	ng15 s	qft_lot1	5							
	3		1360	500	0							
	4		1800	750	3							
	5		4760	10193	0							
	17		1610	430	0							

```
18 1060 5095
[5 rows x 21 columns]
```

4.1 Build the regression model using only sqft_living as a feature

5 Let's show what our predictions look like

6 Evaluate the simple model

RMSE of about \$254.323,39

7 Explore other features in the data

To build a more elaborate model, we will explore using more features.

```
In [18]: my_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']
```

In [19]: sales[my_features].describe()

Out[19]:		bedrooms	bathrooms	$sqft_living$	${ t sqft_lot}$	floors	\
	count	21613.000000	21613.000000	21613.000000	2.161300e+04	21613.000000	
	mean	3.370842	2.114757	2079.899736	1.510697e+04	1.494309	
	std	0.930062	0.770163	918.440897	4.142051e+04	0.539989	
	min	0.000000	0.000000	290.000000	5.200000e+02	1.000000	
	25%	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	
	50%	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	
	75%	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	
	max	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	

zipcode 21613.000000 count 98077.939805 mean 53.505026 std min 98001.000000 25% 98033.000000 50% 98065.000000 75% 98118.000000 max 98199.000000

In [20]: #sales.show(view='BoxWhisker Plot', x='zipcode', y='price')
 plt.grid('on')
 plt.scatter(sales['zipcode'], sales['price'])
 plt.show()

8 Build a regression model with more features

```
x_train = train_data[my_features].values.reshape(-1,len(my_features))
    y_train = train_data['price'].values.reshape(-1,1)

In [22]: mult_model = linear_model.LinearRegression()
    mult_model.fit(x_train, y_train)

Out[22]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

8.1 Comparing the results of the simple model with adding more features

In [23]: x_test = test_data[my_features].values.reshape(-1,len(my_features))
    y_test = test_data['price'].values.reshape(-1,1)

    y_pred = mult_model.predict(x_test)

In [24]: print('intercept:', mult_model.intercept_, 'coefficients:', mult_model.coef_)
    # The mean squared error
    print("RMSE: %.2f" % (rmse(y_pred, y_test)))
```

('intercept:', array([-56348418.9495597]), 'coefficients:', array([[-6.17445455e+04,

5.75218487e+02]]))

1.880533

In [21]: #my_features_model = (train_data, target='price', features=my_features, validation_set=Non

The RMSE goes down from \$254.323,39 to \$228.024,43 with more features.

9 Apply learned models to predict prices of 3 houses

The first house we will use is considered an "average" house in Seattle.

-2.88006880e-01, -9.68870610e+03,

RMSE: 249311.90

```
In [25]: house1 = sales[sales['id']==5309101200]
In [26]: house1
Out [26]:
                                      date
                                             price
                                                   bedrooms
                                                              bathrooms sqft_living \
         1054 5309101200 20140605T000000
                                           620000
                                                                   2.25
                                                                                2400
               sqft_lot floors waterfront
                                           view
                                                               grade sqft_above \
         1054
                   5350
                            1.5
                                                0
                                                                            1460
                                                                   7
               sqft_basement yr_built yr_renovated zipcode
                                                                   lat
                                                                          long \
                                  1929
                                                        98117 47.6763 -122.37
         1054
                         940
```

```
[1 rows x 21 columns]
In [27]: print house1['price']
1054 620000
Name: price, dtype: int64
In [28]: print simple_model.predict(house1['sqft_living'])
[[ 630959.4568039]]
/home/aluno/anaconda3/envs/gl-env/lib/python2.7/site-packages/sklearn/utils/validation.py:386: DeprecationWarning)
In [29]: print mult_model.predict(house1[my_features])
```

In this case, the model with more features provides a worse prediction than the simpler model with only 1 feature. However, on average, the model with more features is better.

9.1 Prediction for a second, fancier house

We will now examine the predictions for a fancier house.

sqft_living15 sqft_lot15

4880

1250

1054

[[630924.33807747]]

```
In [30]: house2 = sales[sales['id']==1925069082]
In [31]: house2
Out [31]:
                       id
                                                     bedrooms
                                                                           sqft_living \
                                      date
                                              price
                                                                bathrooms
              1925069082 20150511T000000
                                            2200000
                                                                                  4640
                                                                     4.25
               sqft_lot floors waterfront
                                            view
                                                                grade sqft_above \
                  22703
                                                                             2860
         1361
               sqft_basement yr_built yr_renovated
                                                      zipcode
                                                                    lat
                                                                            long
         1361
                        1780
                                  1952
                                                         98052 47.6393 -122.097
               sqft_living15 sqft_lot15
                        3140
                                   14200
         1361
         [1 rows x 21 columns]
```

```
In [32]: print house2['price']
1361     2200000
Name: price, dtype: int64
In [33]: print simple_model.predict(house2['sqft_living'].values.reshape(-1,1))
[[ 1263248.45867172]]
In [34]: print mult_model.predict(house2[my_features])
[[ 1270172.16078085]]
```

In this case, the model with more features provides a better prediction. This behavior is expected here, because this house is more differentiated by features that go beyond its square feet of living space, especially the fact that it's a waterfront house.

9.2 Last house, super fancy

Our last house is a very large one owned by a famous Seattleite.

```
In [35]: bill_gates = {'bedrooms':[8],
                        'bathrooms': [25],
                        'sqft_living':[50000],
                        'sqft_lot':[225000],
                        'floors':[4],
                        'zipcode':['98039'],
                        'condition':[10],
                        'grade':[10],
                        'waterfront':[1],
                        'view':[4],
                        'sqft_above':[37500],
                        'sqft_basement':[12500],
                        'yr_built':[1994],
                        'yr_renovated':[2010],
                        'lat':[47.627606],
                        'long': [-122.242054],
                        'sqft_living15':[5000],
                        'sqft_lot15':[40000]}
In [36]: print simple_model.predict(pd.DataFrame(bill_gates)['sqft_living'].values.reshape(-1,1)
[[ 14067100.74649496]]
```

The model predicts a price of over \$14M for this house! But we expect the house to cost much more. (There are very few samples in the dataset of houses that are this fancy, so we don't expect the model to capture a perfect prediction here.)

```
In [37]: print mult_model.predict(pd.DataFrame(bill_gates)[my_features])
[[ 15779944.98847022]]
```

10 Answers

11 1 - Selection and summary statistics

In [38]: sales[sales['zipcode']==98039]

Out[38]:	id	date	price	bedrooms	bathrooms	sqft_living	\
2974	3625049014	20140829T000000	2950000	4	3.50	4860	
3761	2540700110	20150212T000000	1905000	4	3.50	4210	
4077	3262300940	20141107T000000	875000	3	1.00	1220	
4078	3262300940	20150210T000000	940000	3	1.00	1220	
4149	6447300265	20141014T000000	4000000	4	5.50	7080	
4411	2470100110	20140804T000000	5570000	5	5.75	9200	
4791	2210500019	20150324T000000	937500	3	1.00	1320	
5178	6447300345	20150406T000000	1160000	4	3.00	2680	
5589	6447300225	20141106T000000	1880000	3	2.75	2620	
5880	2525049148	20141007T000000	3418800	5	5.00	5450	
6868	3262300235	20141126T000000	1555000	5	2.50	2870	
7501	2525049133	20150402T000000	1398000	5	2.25	2640	
8241	3262301355	20140725T000000	1320000	3	2.75	2680	
9254	9208900037	20140919T000000	6885000	6	7.75	9890	
9694	3262301610	20141118T000000	865000	3	1.50	1530	
9809	5426300060	20141008T000000	1000000	3	2.25	2300	
11278	3025300226	20140515T000000	2100000	4	1.75	3550	
1195	2 2260300060	20150410T000000	2575000	5	3.00	4780	
1229	3738000070	20150309T000000	1712750	5	2.50	2660	
1281	1 5425700150	20140804T000000	787500	4	1.75	1580	
1323	3262300322	20150408T000000	1651000	4	3.25	3640	
1326	7 5425700205	20140520T000000	1800000	4	3.50	4460	
13419	2525049246	20141017T000000	1550000	2	2.25	2950	
1362	1 2525049266	20140821T000000	1762000	3	2.25	3060	
13988	3 5427110040	20140609T000000	1225000	4	2.50	2740	
14052	2 7397300220	20140529T000000	2750000	4	3.25	4430	
14254	4 2425049107	20150305T000000	1950000	4	3.75	4150	
1438	5 2425049061	20140825T000000	2200000	3	2.00	3570	
14803	3835502815	20140925T000000	1260000	3	2.50	3110	
15022	2 2210500010	20140930T000000	2450000	7	4.25	4670	
1525	5 2425049063	20140911T000000	3640900	4	3.25	4830	
15633	3625049088	20140702T000000	2271150	4	3.25	4040	
16268	3025300250	20150513T000000	1620000	4	2.25	2350	
16302	2 7397300170	20140530T000000	3710000	4	3.50	5550	
1637	7 3262300920	20150408T000000	1200000	4	3.00	2150	

16825	3025300095		09T000000	2500000	4		.50	4300
17001	2525049259	201408	12T000000	2187730	4		.50	4240
17209	3025300225	201410	31T000000	1450000	5	2	.75	3090
17230	2470200020	201405	14T000000	1880000	4	2	.75	3260
17899	3262300555	201407	000000T80	2458000	4	5	. 25	6500
17930	3625049079	201408	01T000000	1350000	3	2	.00	2070
18793	2525049263	201407	09T000000	2680000	5	3	.00	4290
18892	5427100150	201406	26T000000	1410000	4	2	. 25	3250
18912	2425049066	201406	16T000000	1920000	4	2	.50	3070
19148	3625049042	201410	11T000000	3635000	5	6	.00	5490
19236	2525049086	201410	03T000000	2720000	4	3	. 25	3990
19351	2525049113	201407	25T000000	1950000	4	3	.50	4065
20096	3262300485	201504	21T000000	2250000	5	5	.25	3410
21040	6447300365	201411	13T000000	2900000	5	4	.00	5190
21514	3262300818	201502	27T000000	1865000	4	3	.75	3790
	sqft_lot f	loors	waterfront	view		grade	sqft_above	e \
2974	23885	2.0	0	0		12	4860)
3761	18564	2.0	0	0		11	4210)
4077	8119	1.0	0	0		7	1220)
4078	8119	1.0	0	0		7	1220)
4149	16573	2.0	0	0		12	5760)
4411	35069	2.0	0	0		13	6200)
4791	8500	1.0	0	0		7	1320	
5178	15438	2.0	0	2		8	2680	
5589	17919	1.0	0	1		9	2620)
5880	20412	2.0	0	0		11	5450)
6868	16238	2.0	0	0		8	2870)
7501	14959	1.0	0	0		7	1770)
8241	20104	1.0	0	0		9	1820)
9254	31374	2.0	0	4		13	8860)
9694	10827	1.0	0	0		8	1530)
9809	15952	1.0	0	0		8	1150)
11278	19865	2.0	0	0		9	3550	
11952	20440	1.0	0	0		10	3660)
12295	6572	1.0	0	0		9	1960	
12811	9382	1.0	0	0		7	1080	
13235	13530	1.0	0	0		9	2570	
13267	16953	1.0	0	0		9	2550	
13419	15593	1.0	0	0		8	1560)
13621	16000	2.0	0	0		10	3060	
13988	16007	2.0	0	0		9	2740	
14052	21000	2.0	0	0		10	4430	
14254	17424	1.0	0	0		9	3130	
14385	30456	1.0	0	1		8	2070	
14803	9930	1.0	0	1		8	1640	
15022	23115	2.0	0	2		11	4670	
15255	22257	2.0	1	4		11	4830	
			-	-				

15632	18916 1	.0	0	0		9	4040)
16268	17709 2	.0	0	0		9	2350)
16302	28078 2	.0	0	2		12	3350)
16377	8119 2	.0	0	0		8	2150)
16825	19844 2	.0	0	0		11	4300)
17001	13162 2	.0	0	0		10	4240)
17209	19865 1	.0	0	0		9	3090)
17230	19542 1	.0	0	0		10	2170)
17899	14986 2	.0	0	0		11	5180)
17930	9600 1	.0	0	1		7	1590)
18793	20445 2	.0	0	0		11	4290)
18892	16684 2	.0	0	0		9	3250)
18912	34412 1	.0	0	3		9	2070)
19148	19897 2	.0	0	0		12	5490)
19236	18115 2	.0	0	0		11	3990)
19351	18713 2	.0	0	0		10	4065	·)
20096	8118 2	.0	0	0		11	3410)
21040	14600 2	.0	0	1		11	5190)
21514	8797 2	.0	0	0		11	3290)
	sqft_basement	<pre>yr_built</pre>	yr_ren	ovated	zipcode	lat	long	\
2974	0	1996		0	98039	47.6172	-122.230	
3761	0	2001		0	98039	47.6206	-122.225	
4077	0	1955		0	98039	47.6328	-122.236	
4078	0	1955		0	98039	47.6328	-122.236	
4149	1320	2008		0	98039		-122.224	
4411	3000	2001		0	98039	47.6289	-122.233	
4791	0	1954		0	98039	47.6187	-122.226	
5178	0	1902		1956	98039	47.6109	-122.226	
5589	0	1949		0	98039		-122.228	
5880	0	2014		0	98039		-122.237	
6868	0	1962		0	98039	47.6308	-122.238	
7501	870	1929		0	98039	47.6191	-122.234	
8241	860	1964		0	98039	47.6304	-122.234	
9254	1030	2001		0	98039	47.6305	-122.240	
9694	0	1955		0	98039	47.6354	-122.234	
9809	1150	1963		0	98039	47.6322	-122.232	
11278	0	1962		2002	98039	47.6236	-122.235	
11952	1120	1975		0	98039	47.6242	-122.239	
12295	700	1959		0	98039	47.6176	-122.223	
12811	500	1963		0	98039	47.6353	-122.232	
13235	1070	1924		2000	98039	47.6293	-122.238	
13267	1910	1962		1994	98039	47.6338	-122.232	
13419	1390	1942		1986	98039	47.6209	-122.236	
13621	0	1988		0	98039		-122.230	
13988	0	1984		0	98039	47.6353	-122.229	
14052	0	1952		2007	98039	47.6398	-122.237	
14254	1020	1963		2000	98039	47.6390	-122.236	

14385	1500	1946	1982	98039	47.6413 -122.240
14803	1470	1954	0	98039	47.6112 -122.226
15022	0	1992	0	98039	47.6183 -122.227
15255	0	1990	0	98039	47.6409 -122.241
15632	0	1954	0	98039	47.6155 -122.238
16268	0	1977	0	98039	47.6232 -122.236
16302	2200	2000	0	98039	47.6395 -122.234
16377	0	1953	2004	98039	47.6335 -122.236
16825	0	1985	1999	98039	47.6218 -122.237
17001	0	2004	0	98039	47.6193 -122.229
17209	0	1953	0	98039	47.6232 -122.235
17230	1090	1968	0	98039	47.6245 -122.236
17899	1320	2001	0	98039	47.6304 -122.236
17930	480	1946	0	98039	47.6160 -122.239
18793	0	1985	0	98039	47.6217 -122.239
18892	0	1979	0	98039	47.6334 -122.229
18912	1000	1950	0	98039	47.6400 -122.240
19148	0	2005	0	98039	47.6165 -122.236
19236	0	1989	0	98039	47.6177 -122.229
19351	0	1987	0	98039	47.6209 -122.237
20096	0	2006	0	98039	47.6295 -122.236
21040	0	2013	0	98039	47.6102 -122.225
21514	500	2006	0	98039	47.6351 -122.236
	sqft_living15	sqft_lot15			
2974	3580	16054			
3761	3520	18564			
4077	1910	8119			
4078	1910	8119			
4149	3140	15996			
4411	3560	24345			
4791	2790	10800			
5178	4480	14406			
5589	3400	14400			
5880	3160	17825			
6868	2870	16238			
7501	3240	17904			
8241	3060	19837			
9254	4540	42730			
9694	2050	10827			
9809	2200	14284			
11278	3000	19862			
11278 11952	3000 4660	19862 20440			

```
13621
                 3510
                              13162
13988
                 2760
                              16008
14052
                 3930
                              20000
14254
                 3930
                              21420
14385
                 3570
                              27418
14803
                 3650
                              14399
15022
                 3240
                              13912
15255
                 3820
                              25582
15632
                 3000
                              18831
16268
                 3360
                              19855
16302
                 2980
                              19602
16377
                 1590
                               8119
                 3070
16825
                              19845
17001
                 3010
                              12163
17209
                 2970
                              19862
17230
                 3480
                              19863
17899
                 2270
                               8119
17930
                 3000
                              16215
18793
                 3620
                              22325
18892
                 2890
                              16927
18912
                 3780
                              27940
19148
                 2910
                              17600
19236
                 3450
                              16087
19351
                 3070
                              18713
20096
                              16236
                 3410
21040
                              19250
                 3840
21514
                 2660
                              12150
[50 rows x 21 columns]
```

```
In [39]: sales[sales['zipcode']==98039]['price'].mean()
Out[39]: 2160606.6
```

2 - Filtering data

```
In [40]: num = len(sales[(sales['sqft_living']>2000) & (sales['sqft_living']<4000)])</pre>
         num
Out[40]: 9111
In [41]: num/float(len(sales))
Out [41]: 0.4215518437977143
```

3 - Building a regression model with several more features

```
In [42]: advanced_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode'
                         'waterfront','view','sqft_above','sqft_basement','yr_built','yr_renovate
```

```
'sqft_living15','sqft_lot15']
         x_train2 = train_data[advanced_features].values.reshape(-1,len(advanced_features))
        y_train2 = train_data['price'].values.reshape(-1,1)
In [43]: mult_model = linear_model.LinearRegression()
        mult_model.fit(x_train2, y_train2)
Out[43]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [44]: x_test2 = test_data[advanced_features].values.reshape(-1,len(advanced_features))
        v_test2 = test_data['price'].values.reshape(-1,1)
        y_pred2 = mult_model.predict(x_test2)
In [45]: print('intercept:', simple_model.intercept_, 'coefficients:', simple_model.coef_)
         # The mean squared error
        print("RMSE: %.2f" % (rmse(y_pred2, y_test2)))
('intercept:', array([-46493.04519733]), 'coefficients:', array([[ 282.27187583]]))
RMSE: 193713.58
In [46]: print('intercept:', mult_model.intercept_, 'coefficients:', mult_model.coef_)
         # The mean squared error
        print("RMSE: %.2f" % (rmse(y_pred, y_test)))
('intercept:', array([ 7220465.95346491]), 'coefficients:', array([[ -3.85547540e+04, 4.429332
          1.59043347e-01,
                           4.14361852e+03, -6.01513553e+02,
                           9.34950344e+04, 6.12210257e+05,
          2.44382135e+04,
          5.06076502e+04,
                           6.98882157e+01, 4.40768912e+01,
                           1.96225739e+01, 6.03747455e+05,
         -2.62156390e+03,
         -2.25535679e+05,
                           2.24949849e+01, -4.25865615e-01]]))
RMSE: 249311.90
In [52]: print('Difference: ',(rmse(y_pred, y_test))-(rmse(y_pred2, y_test2)))
('Difference: ', 55598.322088692774)
```