Análise de Algoritmos

Estruturas de Dados

Universidade de Brasília

Departamento de Ciência da Computação

Algoritmo

Um algoritmo são instruções não ambiguas passo a passo para resolver um documinado problema.

Análise de Algoritmos

Comparar algoritmos (ou soluções) principalmente em termos de tempo de exacução, mas também em termos de outros fatores (por exemplo, memória, esforço do desenvolvedor, etc.)

Análise de Algoritmos

Análise de Tempo de Execução

Determinar como o tempo de processamento cresce à medida que o tamanho de entrada aumenta.

- "Tempo" de execução?
- Número de instruções?

"Tempo" de execução?

"Tempo" de execução?

Número de instruções?

```
def eh_primo_simples(n):
    if n <= 1:
        return False
    for i in range(2, n):
        if n % i == 0:
            return False
    return True</pre>
```

```
eh_primo_otim zado(n):
    return False
    return True
if n % 2 == 0 or n % 3 == 0:
    return False
while i * i <= n:
    if n \% i == 0 or n \% (i + 2) == 0:
         return False
    i += 6
return True
```

Número de instruções?

Mais rápido


```
def eh_primo_simples(n):
    if n <= 1:
        return False
    for i in range(2, n):
        if n % i == 0:
            return False
    return True</pre>
```

```
deviet eh_primo_otim zado(n):
        return False
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    i = 5
    while i * i <= n:
        if n \% i == 0 or n \% (i + 2) == 0:
            return False
        i += 6
    return True
```

Então, qual o parâmetro ideal?

Definir o algoritmo como uma função f(n) or de n é o tamanho da entrada. Ex:

$$f(n) = n^2 + 500$$
 para o pior caso

$$f(n) = n + 100n + 500$$
 para o melhor caso

Qual o melhor e pior caso?

```
def eh_primo_otin.izaio(r)
    if n <= 1:
       return False
    while i * i <= n:
        if n \% i == 0 or n \% (i + 2) == 0:
            return False
        i += 6
    return True
```

Notação Big O

Esta notação utiliza a **ordem de magnitude** da tunção **do pior caso** para expressar a complexidade do algoritmo.

$$f(n) = 5n + 15$$
 $\rightarrow C(n)$
 $f(n) = n^2 - 100$ $\rightarrow O(n^2)$
 $f(n) = n^4 + 100n^2 + 10n + 50$ $\rightarrow O(n^4)$

Notação Big O

Notação Big O

Diretrizes para cálculo de complexidade

- Estruturas sequenciais
- Iterações
- ltereções encadeadas
- Instruções consecutivas
- Condicionais
- ...

Estruturas Sequenciais

A complexidade é constante. Isso ocorre pois o tempo sempre será o mesmo para qualquer valor de entrada.

```
a, b = tinnut().split() # 0(1)
soma = int(a) = in'(b) # 0(1)
multiplication = a * b # 0(1)
print(soma, multiplicacao) # 0(1)
# Complexidade: 0(4) = 0(1)
```

Iterações

A complexidade depende de *n*, pois ele determina o número de iterações.

```
n = int(input())

soma = 0

for i in range(i):

soma + : i

print(soma)

# Complexidade: O(n)
```

Iterações

Se as iterações forem fixas, a complexidade e constante.

```
sor a = ?
for i in range(10):
        soma += i

prin+(soma)

# Complexidade: 0(10) = 0(1)
```

Iterações Encadeadas

A complexidade é o produto do tamanho de cada iteração do encadeamento.

```
n_1 = inc(input())
n_2 = int(input())

contador = 0
for i in range(n_1):
    for j in range(n_2):
        contador += 1

print(contador)

# Complexidade: 0(n_1 * n_2)
```


Condicionais

Se teste simples, a complexidade é igual a pier complexidade dentre todas as condições.

```
for j in range(n_2):
          contador += 1
    print(contador)
else:
    print("Só um print")
# Complexidade: 0(n_1 * n_2)
```

Exemplo

```
def eh_primo_otimizado(n):
    if n <= 1:
                 i == 0 \text{ or } n \% (i + 2) == 0:
              return False
         i += 6
    return True
```

Exemplo

```
def eh_primo_otimizado(n):
    if n <= 1:
         return False
    if n <= 3:
         return True
    if n % 2 == 0 or n
         return False
                                              # O(√n/6 * 1)
                                               # 0(1)
             return False
         i += 6
    return True
# Complexidade = 0(1 + \sqrt{n/6})
# Complexidade = 0(\sqrt{n} * 1/6) = 0(\sqrt{n})
```


Exemplo

```
def eh_primo_otimizado(n):
    if n <= 1:
         return False
    if n <= 3:
         return True
    if n % 2 == 0 or n
         return False
                                              # 0(√n/6 * 1)
                                                # 0(1)
             return False
         i += 6
    return True
# Melhor(es) caso(s) \rightarrow n < 4 \rightarrow 0(1)
```


Para casa

Calcular a complexidade dos algoritmos abaixo

- Busca linear
- Busca binária
- Bubble sort
- Selection sort
- Insertion sort

Resumo

Algoritmos podem ser analisados por meio de sua taxa de crescimento expressa por meio de função.

A notação Big O expressa a complexidade do algoritmo considerando seu pior caso.

A complexidade é calculada em função da entrada.

Bibliografia

