$12a_{1033} \ (K12a_{1033})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{53} - u^{52} + \dots + u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{53} - u^{52} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{16} - 9u^{14} + 31u^{12} - 50u^{10} + 39u^{8} - 22u^{6} + 18u^{4} - 4u^{2} + 1 \\ u^{18} - 10u^{16} + 39u^{14} - 74u^{12} + 71u^{10} - 40u^{8} + 26u^{6} - 12u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{12} - 7u^{10} + 17u^{8} - 16u^{6} + 6u^{4} - 5u^{2} + 1 \\ -u^{12} + 6u^{10} - 12u^{8} + 8u^{6} - u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{29} - 16u^{27} + \cdots - 8u^{3} - u \\ -u^{29} + 15u^{27} + \cdots - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{46} + 25u^{44} + \cdots - 4u^{2} + 1 \\ -u^{48} + 26u^{46} + \cdots + 4u^{6} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{50} + 108u^{48} + \cdots + 4u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{53} - 13u^{52} + \dots - 51u + 3$
c_2, c_6, c_7	$u^{53} + u^{52} + \dots - u - 1$
c_3	$u^{53} - u^{52} + \dots - 3u - 5$
c_4, c_5, c_{10} c_{11}	$u^{53} - u^{52} + \dots + u - 1$
c_8, c_9, c_{12}	$u^{53} + 7u^{52} + \dots + 81u + 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} + 3y^{52} + \dots - 393y - 9$
c_2, c_6, c_7	$y^{53} + 47y^{52} + \dots + 3y - 1$
c_3	$y^{53} - 5y^{52} + \dots - 221y - 25$
c_4, c_5, c_{10} c_{11}	$y^{53} - 57y^{52} + \dots + 3y - 1$
c_8, c_9, c_{12}	$y^{53} + 51y^{52} + \dots + 247y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.548575 + 0.633673I	-1.51521 - 10.00010I	2.58535 + 7.98539I
u = -0.548575 - 0.633673I	-1.51521 + 10.00010I	2.58535 - 7.98539I
u = 0.535266 + 0.635034I	-6.68651 + 6.22464I	-2.12914 - 7.04200I
u = 0.535266 - 0.635034I	-6.68651 - 6.22464I	-2.12914 + 7.04200I
u = -0.512310 + 0.631969I	-4.69465 - 2.29803I	0.49220 + 2.27561I
u = -0.512310 - 0.631969I	-4.69465 + 2.29803I	0.49220 - 2.27561I
u = -0.487905 + 0.637564I	-4.76749 - 1.99907I	0.17746 + 4.07491I
u = -0.487905 - 0.637564I	-4.76749 + 1.99907I	0.17746 - 4.07491I
u = 0.464669 + 0.647606I	-6.89567 - 1.88935I	-2.89485 + 0.79576I
u = 0.464669 - 0.647606I	-6.89567 + 1.88935I	-2.89485 - 0.79576I
u = -0.449493 + 0.651810I	-1.80864 + 5.65716I	1.70059 - 1.94125I
u = -0.449493 - 0.651810I	-1.80864 - 5.65716I	1.70059 + 1.94125I
u = 0.504505 + 0.567177I	1.97412 + 1.94133I	4.71944 - 3.76784I
u = 0.504505 - 0.567177I	1.97412 - 1.94133I	4.71944 + 3.76784I
u = 0.652033 + 0.329464I	5.34002 + 6.28128I	8.12896 - 8.54610I
u = 0.652033 - 0.329464I	5.34002 - 6.28128I	8.12896 + 8.54610I
u = -0.687986 + 0.156912I	6.28732 + 1.58298I	11.28727 + 0.73154I
u = -0.687986 - 0.156912I	6.28732 - 1.58298I	11.28727 - 0.73154I
u = -0.591945 + 0.318276I	0.12349 - 3.23267I	3.04126 + 9.49675I
u = -0.591945 - 0.318276I	0.12349 + 3.23267I	3.04126 - 9.49675I
u = 0.372482 + 0.439549I	1.98957 + 1.52097I	1.80190 - 4.43655I
u = 0.372482 - 0.439549I	1.98957 - 1.52097I	1.80190 + 4.43655I
u = 0.541460 + 0.168929I	1.006470 + 0.410735I	8.40701 - 1.41779I
u = 0.541460 - 0.168929I	1.006470 - 0.410735I	8.40701 + 1.41779I
u = 1.45482	3.97144	0
u = -1.45391 + 0.05193I	7.75885 - 3.05240I	0
u = -1.45391 - 0.05193I	7.75885 + 3.05240I	0
u = 1.47881 + 0.19165I	4.44453 - 2.64829I	0
u = 1.47881 - 0.19165I	4.44453 + 2.64829I	0
u = -1.49019 + 0.19296I	-0.532397 - 1.115270I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.49019 - 0.19296I	-0.532397 + 1.115270I	0
u = 1.50599 + 0.19300I	1.75894 + 4.97978I	0
u = 1.50599 - 0.19300I	1.75894 - 4.97978I	0
u = 0.107192 + 0.466806I	3.69238 - 3.52663I	1.88659 + 2.63338I
u = 0.107192 - 0.466806I	3.69238 + 3.52663I	1.88659 - 2.63338I
u = 1.52075 + 0.19227I	1.99021 + 5.26775I	0
u = 1.52075 - 0.19227I	1.99021 - 5.26775I	0
u = -1.52792 + 0.16778I	8.71759 - 4.57599I	0
u = -1.52792 - 0.16778I	8.71759 + 4.57599I	0
u = -1.54203 + 0.04830I	8.05739 - 1.20567I	0
u = -1.54203 - 0.04830I	8.05739 + 1.20567I	0
u = -1.53145 + 0.19702I	0.12630 - 9.24228I	0
u = -1.53145 - 0.19702I	0.12630 + 9.24228I	0
u = 1.53796 + 0.19740I	5.37483 + 13.02300I	0
u = 1.53796 - 0.19740I	5.37483 - 13.02300I	0
u = 1.54965 + 0.07623I	7.32443 + 4.59016I	0
u = 1.54965 - 0.07623I	7.32443 - 4.59016I	0
u = -1.56535 + 0.08054I	12.8092 - 7.7128I	0
u = -1.56535 - 0.08054I	12.8092 + 7.7128I	0
u = 1.56726 + 0.03872I	13.86820 - 0.89997I	0
u = 1.56726 - 0.03872I	13.86820 + 0.89997I	0
u = -0.176376 + 0.389345I	-1.109150 + 0.706645I	-4.66602 - 1.44909I
u = -0.176376 - 0.389345I	-1.109150 - 0.706645I	-4.66602 + 1.44909I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{53} - 13u^{52} + \dots - 51u + 3$
c_2, c_6, c_7	$u^{53} + u^{52} + \dots - u - 1$
c_3	$u^{53} - u^{52} + \dots - 3u - 5$
c_4, c_5, c_{10} c_{11}	$u^{53} - u^{52} + \dots + u - 1$
c_8, c_9, c_{12}	$u^{53} + 7u^{52} + \dots + 81u + 7$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} + 3y^{52} + \dots - 393y - 9$
c_2, c_6, c_7	$y^{53} + 47y^{52} + \dots + 3y - 1$
c_3	$y^{53} - 5y^{52} + \dots - 221y - 25$
c_4, c_5, c_{10} c_{11}	$y^{53} - 57y^{52} + \dots + 3y - 1$
c_8, c_9, c_{12}	$y^{53} + 51y^{52} + \dots + 247y - 49$