CPU Algorithm Design

Exercise 3 Students: Vishal Mangukiya, Konstantin Benz

3.1 Adapting reduce and transform

The input containers in reduce_LoopUnrolling_view.hpp and transform_LoopUnrolling_view.hpp were adapted to use range-based views as requested in the assignment.

In the reduction routines, the memory-backed containers were replaced with std::views::repeat(1.0f, N), using decltype(std::views::repeat(...)) to define a compatible member variable. This makes the code compute-bound and avoids unnecessary memory usage. For the transform routines, the input values were changed to std::ranges::views::iota(0, N). Additionally, the output container W was replaced by a fixed-size std::vector<Real>(256) with modulo-indexed access to enable reuse of the output buffer and simulate non-memory-bound processing.

Challenges encountered:

- ullet Initially, the range variables V and W were only declared inside each function. However, since multiple functions need access to them, we had to promote them to class-level member variables.
- Using std::views::repeat or std::views::iota as class members required careful type declarations. Simple type aliases like std::ranges::repeat_view or std::ranges::iota_view caused type mismatch errors when assigning views with bounds.
- The correct approach was to use decltype(std::views::repeat(...)) and decltype(std::views::iota(...)) for the member declarations, as this ensured compatibility with the generated view types and compiler support on the cluster (GCC 14).
- Some loops were not vectorized according to compiler warnings. Since manual unrolling was explicitly requested in the assignment, we did not attempt further refactoring in these cases.

All modified functions were compiled and tested successfully via the targets reduceVbenchmarkUnroll and transformVbenchmarkUnroll.

3.2 Adapting benchTransformUnrollLoopPeelingDirective

The function benchTransformUnrollLoopPeelingDirective was implemented using std::views::iota for input generation and a fixed-size std::vector with modulo indexing for the output buffer. The loop is unrolled using the custom UNROLLFACTOR macro and processes SIMD batches via xsimd::batch. We ensured compatibility by using static_assert(unroll_factor % simd_width == 0) and unaligned load/store operations for safe access to the input and output.

We used unrollScript.sh to benchmark the function for various unroll factors. The results are stored in the changingUnrollFactor/res/ directory on the cluster and in the benchmark folder in the submitted archive and will be analyzed in section 3.5.

3.3 Adapting benchReduceUnrollTreeDirective

The function benchReduceUnrollTreeDirective was implemented using a recursive tree-reduction strategy with a configurable tree degree. The reduction starts with a std::array<Real, unroll_factor> which is filled from the std::views::repeat input.

A loop successively reduces this array in-place using groups of tree_deg elements per node. This process continues as long as the array size is divisible by tree_deg. If a remainder is left (i.e. fewer than tree_deg values remain), a final sequential sum is performed.

This design ensures flexibility for various unroll and tree degrees. We used static_assert(unroll_factor % tree_deg == 0) to catch invalid configurations at compile time. The remainder of the input (N % unroll_factor) is processed separately via a scalar OpenMP loop.

The implementation successfully compiles and runs within the benchmark target reduceVbenchmarkUnroll.

3.4 Adapting benchReduceUnrollSimdXHorizontal and benchReduceUnrollSimdXVertical

Horizontal

The function benchReduceUnrollSimdXHorizontal performs a flat reduction of all elements within an unroll_factor-sized block. Each SIMD batch of simd_width elements is summed and accumulated into a single SIMD register, which is then reduced to scalar using xsimd::reduce_add.

Vertical

The function benchReduceUnrollSimdXVertical uses a tree-like structure of SIMD lanes. It maintains unroll_factor / simd_width SIMD accumulators, one for each logical reduction path. Input vectors are dispatched into different SIMD accumulators in parallel. The final scalar result is obtained by reducing all lanes individually.

3.5 Benchmarking