Inhalt Berechnu

Be	erechnungen	1
	Allgemein	1
	Für Fall a	1
	GGBs:	1
	Schnittgrößen	2
	Für Fall b	3
	GGBs:	3
	Schnittgrößen	3
	Wellen- & Achsenauslegung	5
	Variablen	6
Di	agramme	7
	Anwendungsfaktor	7
	Biege-Dauerfestigkeit	7
	Torsions-Dauerfestigkeit	8

Berechnungen

Allgemein

Fall a: voll beladen

Fall b: einseitig halb voll beladen

$$\begin{split} &m_{\text{Material,ges,a}} = m_{\text{Material}} * A_k * A_h = 1,5 \text{kg * 6 * 9} = 81 \text{kg} \\ &m_{\text{Material,ges,b}} = m_{\text{Material}} * A_k / 2 * A_h = 1,5 \text{kg * 3 * 9} = 40,5 \text{kg} \end{split}$$

 m_{Trommel} = $m_{\text{B\"{o}den}}$ + $m_{\text{W\"{a}nde}}$ + m_{Ringe} $m_{Trommel}$ = 0,079kg* 10 + 0,079kg * 10 * 0,1 + 81kg * 0,1 $m_{Trommel}$ =8,969kg ~ 9kg

mwelle/Achse=2 x 15kg

$$F_{G-Trommel}$$
= ($m_{Trommel}$ + $m_{Welle/Achse}$) * g
 $F_{G-Trommel}$ = (9kg + 30kg) * 9,81 $\frac{m}{s^2}$
 $F_{G-Trommel}$ = 382,59 N

Für Fall a

 $F_{G,ges} = F_{G-Trommel} + F_{G-Material,ges,a}$ F_{G,ges} = 382,59 N+ 794,61N

 $F_{G,ges} = 1177,2N$

$$\Sigma F_{iY} = 0$$
: $F_{AY} - F_{G,ges} = 0 \Rightarrow F_{AY} = F_{G,ges} = 1177,2N$

 $\Sigma F_{iZ} = 0$: $F_{AZ} + F_{BZ} = 0 => F_{AZ} = F_{BZ} = 0N$

Schnittgrößen

Schnitt 1

 $\Sigma F_{iY} = 0$: $F_{AY} + F_L = 0 => F_L = -F_{AY} = -1177,2N$

 $\Sigma F_{iZ} = 0$: $F_{AZ} - F_{Q} = 0 => F_{Q} = F_{AZ} = 0N$

 $\Sigma M_{(S)} = 0$: $-F_{AZ} * z + M_S = 0 => M_S = F_{AZ} * z = 0Nm$

Schnitt 2

 $\Sigma F_{iY} = 0$: $F_{AY} - F_{G,ges} + F_L = 0 \Rightarrow F_L = -F_{AY} + F_{G,ges} = 0N$

 $\Sigma F_{iZ} = 0$: $F_{AZ} + F_{Q} = 0 => F_{Q} = F_{AZ} = 0N$

 $\Sigma M_{(S)} = 0$: $-F_{AZ} * z + M_S = 0 \Rightarrow M_S = F_{AZ} * z = 0Nm$

Für Fall b

$$I_{m} = \frac{l_{1} + l_{2}}{2}$$

$$I_{m} = \frac{0.29m + 0.12m}{2}$$

$$I_{m} = 0.205m$$

$$F_{G-Material,ges,b} = m_{Material,ges,b} * g = 40,5 kg * 9,81 \frac{m}{s^2} = 397,305 N_{g}$$

$$F_{G,ges} = F_{G-Trommel} + F_{G-Material,ges,b}$$

 $F_{G,ges} = 382,59 \text{ N} + 397,305 \text{N} F_{G,ges} = 779,89 \text{N}$

GGBs:

$$\Sigma F_{iY} = 0$$
: $F_{AY} - F_{G,ges} = 0 \Rightarrow F_{AY} = F_{G,ges} = 779,89N$

$$\Sigma M_{(A)} = 0: -F_{BZ} * I + M_{b,Material,ges} = 0 \Rightarrow F_{BZ} = \frac{M_{b,Material,ges}}{l} = \frac{F_{G-Material,ges,b}*l_m}{l} = \frac{397,305N*0,205m}{2,3m} = 35,412N$$

$$\Sigma F_{iZ} = 0$$
: $F_{AZ} + F_{BZ} = 0 => F_{AZ} = -F_{BZ} = -35,412N$

Schnittgrößen

Schnitt 1

$$\Sigma F_{iY} = 0$$
: $F_{AY} + F_{L} = 0 \Rightarrow F_{L} = -F_{AY} = -779,89N$

$$\Sigma F_{iZ} = 0$$
: $F_{AZ} - F_{Q} = 0 \Rightarrow F_{Q} = F_{AZ} = -35,412N$

$$\Sigma M_{(S)} = 0$$
: $-F_{AZ} * z + M_S = 0 => M_S = F_{AZ} * z = -1650,97Nm$

Schnitt 2

$$\Sigma F_{iY} = 0$$
: $F_{AY} - F_{G,ges} + F_L = 0 \Rightarrow F_L = -F_{AY} + F_{G,ges} = 0N$

$$\Sigma F_{iZ} = 0$$
: $F_{AZ} - F_{Q} = 0 \Rightarrow F_{Q} = F_{AZ} = 35,412N$

$$\Sigma M_{(S)} = 0$$
: $-F_{AZ} * z - M_{b,Material,ges} + M_S = 0 => M_S = F_{AZ} * z + M_{b,Material,ges} = 1650,97Nm$

Wellen- & Achsenauslegung

$$M_{bmax} = F_{AZ} * z_{max} = 35,412N * 0,15m = 5,3Nm$$

 $M_{tmax} = 50Nm$

Werkstoff: S235JR

M_b Lastfall III:
$$s_{bDIII} = 180 \frac{N}{mm^2}$$

M_t Lastfall III: $\tau_{tDIII} = 105 \frac{N}{mm^2}$
 $\phi = 1,73^{\circ}$

$$M_{v} = \sqrt{M_{bmax}^{2} + 0.75 * (\frac{\sigma_{bDIII} * M_{tmax}}{\varphi * \tau_{tDIII}})^{2}}$$

$$M_{v} = \sqrt{5.3Nm^{2} + 0.75 * (\frac{180 \frac{N}{mm^{2}} * 50Nm}{1.73^{\circ} * 105 \frac{N}{mm^{2}}})^{2}}$$

$$M_{v} = 42.97Nm$$

$$d' = 3.4 * \sqrt[3]{\frac{M_v}{\sigma_{bDIII}}} = 3.4 * \sqrt[3]{\frac{42,97Nm}{180\frac{N}{mm^2}}} = 19.2mm => d' = 20mm$$

$$\omega = 0.7 \frac{1}{s} = > \frac{\omega}{2*\pi} = n = 6.68 \frac{U}{min}$$

L_{10h}= 9000h aus Angabe

$$C_{erf} \ge P * \sqrt[p]{\frac{L_{10h} * 60 * n}{10^6}}$$

$$C_{erf} \ge 3.45 * \sqrt[3]{\frac{9000h * 60 * 6.68 \frac{U}{min}}{10^6}}$$

$$C_{erf} \ge 5.29N$$

Variablen

Variable	Erklärung		
m _{Material,ges,a/b}	Masse des gesamten Materials bei Fall a oder Fall b		
m _{Material}	Masse eines Materials		
m_{Ringe}	Masse der Ringe welche 10 % der Masse von m _{Material,ges,a} entspricht		
m _{Wände}	Masse der Wände welche 10 % der Masse von m _{Böden} entspricht		
m _{Böden}	Masse der Böden (aus Inventor)		
$m_{Trommel}$	Masse der Trommel ohne Welle und Achse		
m _{Welle/Achse}	Masse der Welle und Achse		
F _{G-Trommel}	Gewichtskraft der gesamten Trommel		
F _{G-Material,ges,a/b}	Gewichtskraft des gesamten Materials bei Fall a oder Fall b		
$F_{G,ges}$	Gesamte Gewichtskraft		
I	Gesamte Länge des Systems		
l _m , l ₁ ,l ₂	l ₁ und l ₂ sind die Abstände der Werkstücke zum Mittelpunkt und l _m ist der Mittelwert		
	dieser beiden		
M _{b,Material,ges}	Dieses Moment wirkt bei einseitiger Belastung		
M_{bmax}	Maximale Biegemoment		
M_{tmax}	Maximale Torsionsmoment		
S _{bDIII}	Dauerfestigkeit bei wechselnden Biegespannungen		
τ_{tDIII}	Dauerfestigkeit bei wechselnden Torsionsspannungen		
φ	Faktor zur Berechnung des Anstrengungsmomentes		
M_v	Vergleichsmoment zur Berechnung des Durchmessers		
d'	Der benötigte Durchmesser		
<u>d</u> gew	Der gewählte Durchmesser		
ω	Winkelgeschwindigkeit		
n	Drehzahl in Umdrehungen pro Minute		
C_{erf}	Erforderliche Tragzahl		
P	Kraft die auf das Lager wirkt		
p	Faktor für die Belastungsart		
L_{10h}	Lebensdauer in Stunden		

Diagramme

Anwendungsfaktor

Biege-Dauerfestigkeit

Torsions-Dauerfestigkeit

$$n = \frac{\omega}{2 * \pi}$$

$$n = \frac{1.2 \frac{1}{S}}{2 * \pi}$$

$$n = 0.11 \frac{1}{s} = 6.6 \frac{1}{min}$$