Laser a diodo

Alberto Bordin, Giulio Cappelli

7-8 novembre 2017

Sommario

Misura della corrente di soglia di un diodo laser per varie temperature di operazione. Misura della divergenza del fascio.

Misura della dipendenza della lunghezza d'onda dalla temperatura.

1 To do

- Foto apparato
- Trovare informazioni fotodiodo
- Sistemare errori sui grafici
- \bullet Eventuale stima teorica dell'andamento λ vs T

2 Teoria

3 Apparato sperimentale

Come si vede in Figura per poter effettuare le varie misure abbiamo a disposizione:

- Un laser a diodo modello HL7812G prodotto dalla Hitachi.
- Un circuito di controllo in corrente del laser.
- Una cella peltier, controllata in corrente, che utilizziamo per variare la temperatura del laser.
- Un sensore ti temperatura DIGIMASTER DM102
- Un analizzatore di spettro USB4000 della Ocean Optics.
- Una fibra ottica utilizzata per portare il segnale del laser al monocromatore.
- Un piccolo ventilatore montato in modo tale da evitare la formazione di gocce d'acqua all'interno del laser durante i processi di riscaldamento e/o raffreddamento del laser.
- Una lente utilizzata per focalizzare il laser nella misura della caratteristica P-I.
- Un supporto per il laser montato su un goniometro con una precisione di 0.5°.
- Un fotodiodo PD300 della Ophir.
- Un altro fotodiodo di cui non sappiamo niente.
- Un power meter NOVA della Ophir.

 Un rilevatore IR per poter osservare il fascio laser ed allinearlo.

3.1 Laser a diodo

Il laser a diodo a nostra disposizione è il modello HL7812G della Hitachi ed è una giunzione di GaAlAs.

Sul datasheet sono riportate le seguenti caratteristiche:

	Min	Tipico	Max
I_{th} [mA]	_	50	90
$\lambda_p \text{ [nm]}$	770	785	795
$\theta_{//} [\deg]$	7	11	18
$ heta_{\perp}^{'} \; [\mathrm{deg}]$	20	30	40

Tabella 1: Caratteristiche laser a diodo <code>HL7812G</code> misurate a $T=25^{\circ}\mathrm{C}$

dove I_{th} è la corrente di soglia oltre la quale si è in regime laser, λ_p è la lunghezza d'onda della luce in uscita dal laser e $\theta_{//}$ e θ_{\perp} sono gli angoli di emissione del laser rispetto agli assi della giunzione e sono calcolati misurando l'intensità ad una distanza di 10 cm dal diodo.

Sono inoltre presenti sul datasheet i seguenti grafici:

Figura 1

Figura 2

Figura 4

Figura 3

che mostrano le caratteristiche principali di dispositivi di questo tipo come la dipendenza della corrente di soglia dalla temperatura, l'astigmatismo e la dipendenza della lunghezza d'onda dalla temperatura.

3.2 Monocromatore

L'analizzatore di spettro è costituito da un monocromatore, ovvero un apparato in grado di sfruttare un reticolo di diffrazione (costituito da $\sim\!1000$ specchi \forall mm) in riflessione per separare angolarmente le lunghezze d'onda della luce incidente. Prendendo come riferimento la Figura 4 si nota la presenza di due specchi (4 e 6) che servono, rispettivamente, a collimare il fascio sul reticolo di diffrazione e a focalizzare il primo ordine dello spettro sull'array di fotodiodi (8) che permettono di rilevare l'intensità delle varie lunghezze d'onda che compongono la luce incidente.

Quello a nostra disposizione è un USB4000 della Ocean Optics mostrato in Figura 4, a cui la luce laser viene portata tramite una fibra ottica.

3.3 Fotodiodi

Entrambi i fotodiodi a nostra disposizione sono al silicio in quanto la sua responsività in funzione della lunghezza d'onda incidente ha un massimo intorno ad 800 nm.

FOTO FOTODIODI

I due fotodiodi hanno però una superficie attiva diversa, infatti il PD300 della Ophir ha una superficie di 1 cm² mentre l'altro di 1 mm²; per questo il primo lo utilizziamo per misurare la caratteristica P-I, mentre il secondo per valutare l'allargamento angolare.

4 Caratteristica P-I

Analizziamo la dipendenza della corrente di soglia del diodo laser dalla temperatura misurando la caratteristica P-I in tre diverse condizioni: $T=12,\ 25,\ 45$ °C.

4.1 Presa dati

Abbiamo misurato la potenza fornita dal diodo laser in funzione della corrente di alimentazione mantenendo la temperatura del diodo costante attraverso l'utilizzo della cella peltier.

Il fascio è stato focalizzato sul fotodiodo attraverso una lente e per ogni valore della corrente abbiamo registrato il corrispondente valore della potenza leggendolo sul power meter NOVA RS232.

FOTO APPARATO

Abbiamo effettuato questa misura per tre valori diversi della temperatura del laser a diodo; tutte le misure effettuate sono riportate nelle Tabelle 2, 3, 4 in appendice.

Per ogni valore della temperatura è stato impostato sul power meter il valore previsto della lunghezza d'onda del laser a diodo come riportato sul datasheet (Figura 2).

T [°C]	12	25	43
$\lambda \text{ [nm]}$	784	786	790

4.2 Analisi dati

Al fine di trovare il valore della corrente di *threshold* abbiamo eseguito un fit della parte lineare dei dati mi-

surati. Sono stati considerati valori di P maggiori di 300 μW così da avere un andamento lineare ben definito. Sui valori della potenza è stato considerato un errore relativo del 5% come riportato sul datasheet.

Figura 5

I valori ottenuti di I_{th} sono riportati in Figura 5 e sono stati ricavati trovando l'intercetta con l'asse delle ascisse una volta ottenuti tramite il fit lineare i valori di coefficiente angolare e intercetta con l'asse delle ordinate.

Come si può vedere in Figura 5 il comportamento della caratteristica P-I all'aumentare della temperatura è quello aspettato (vedi Figura 1) e i valori ottenuti della corrente di soglia sono in accordo con quanto riportato sul datasheet (vedi Tabella 1).

5 Divergenza del fascio

In questa seconda sezione valutiamo un'altra importante caratteristica di un diodo laser; i valori dell'allargamento angolare lungo i due assi della giunzione. Per farlo abbiamo misurato l'andamento della potenza emessa dal diodo laser in funzione dell'angolo di emissione.

5.1 Presa dati

Per queste misure utilizziamo un fotodiodo collegato ad un multimetro, configurato come amperometro. I valori misurati sono stati letti sul monitor del p
c attraverso il programma $DIGITAL\ MULTIMETER.$

Le misure di allargamento angolare sono comunemente eseguite ad una distanza di 10 cm dal diodo laser, quindi per poter effettuare un confronto con quanto riportato sul datasheet ci siamo adeguati a questo standard.

FOTO APPARATO

Abbiamo fissato il laser su di un sostegno alla cui base è presente un goniometro con una risoluzione del mezzo grado e l'abbiamo posizionato in modo tale che l'allargamento angolare misurato fosse quello relativo ad uno degli assi dell'ellisse di emissione. Per fare ciò abbiamo sfruttato il polarizzatore e il power meter dato che la luce emessa dal diodo laser è polarizzata, per circa il 90%, lungo il semiasse minore dell'ellisse di emissione. Questo procedimento non ci ha soddisfatto, quindi abbiamo utilizzato il rivelatore IR osservando la forma del fascio e poi abbiamo controllato col polarizzatore di essere entro la sua precisione.

Le misure sono state fatte a 23°C e con una corrente di controllo di 82.1 mA. I dati ottenuti sono riportati nelle Tabelle 6 e 5 in appendice.

5.2 Analisi dati

Per stimate i valori di θ_{\perp} e $\theta_{//}$ con una migliore precisione è stata fatta un'interpolazione dei punti intorno alla metà altezza. Questa è stata calcolata come la

media dei valori di massimo e minimo: il vantaggio è che supponendo simmetriche le fluttuazioni intorno al vero massimo e al vero minimo queste si cancellano, lo svantaggio è che la misura è molto sensibile al valore del picco.

Figura 6

I valori ottenuti sono riportati in Figura 6 e sono in accordo con quanto riportato nel datasheet (vedi Tabella 1).

6 Dipendenza λ da T

In quest'ultima sezione studiamo l'andamento della lunghezza d'onda del laser a diodo in funzione della temperatura.

6.1 Presa dati

La temperatura del diodo laser è stata controllata utilizzando la cella peltier ed è stato esplorato l'intervallo da 12°C a 45°C così da evitare danni dovuti alla condensazione o al surriscaldamento del diodo. La lundrata del diodo.

ghezza d'onda è stata invece misurata utilizzando il monocromatore a cui è stato portato il segnale attraverso una fibra ottica. Abbiamo una risoluzione di 1°C sulla temperatura e di 1 nm sulla lunghezza d'onda. Abbiamo alimentato il laser poco sopra soglia ~ 65 mA.

Per permettere al laser di arrivare all'equilibrio termico con la cella abbiamo variato la temperatura molto lentamente e aspettato che il picco visibile sullo spettrometro fosse stabile prima di prendere ogni misura. I valori ottenuti sono riportati in Tabella 7 in appendice.

6.2 Analisi dati

É stato eseguito un fit lineare considerando un errore di ± 1 nm sui valori misurati della lunghezza d'onda come riportato sul datasheet del monocromatore.

Figura 7

Come mostrato in Figura 7 si ha un andamento lineare di $\lambda(T)$ compatibile con quanto riportato sul datasheet (vedi Figura 2) con un coefficiente angolare di 0.22(2) nm/°C.

L'andamento a scalini dei valori misurati è causato dalla risoluzione dello spettrometro, non sono infatti misurabili variazioni di λ al di sotto del nanometro.

Appendice

$\mid I(\Delta I) \text{ [mA]}$	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P \left[\mu W \right]$
82.0(1)	6230	67.3(1)	2990	50.8(1)	64.1	43.2(1)	34.8
81.0(1)	6030	64.8(1)	2468	51.3(1)	69.3	41.8(1)	32.2
79.9(1)	5800	63.0(1)	2077	52.6(1)	89.8	39.7(1)	28.5
78.8(1)	5480	60.5(1)	1544	49.9(1)	57.5	38.1(1)	26.10
77.8(1)	5290	58.5(1)	1100	49.4(1)	54.8	36.5(1)	23.96
76.6(1)	5050	57.3(1)	848	48.8(1)	51.9	34.4(1)	21.34
75.3(1)	4740	56.1(1)	578	48.1(1)	48.6	31.8(1)	18.53
73.9(1)	4430	55.1(1)	385	47.0(1)	44.8	29.5(1)	16.25
71.0(1)	3800	54.3(1)	218.9	45.9(1)	41.4	26.7(1)	13.82
69.1(1)	3380	53.7(1)	142.3	44.5(1)	37.8	25.1(1)	12.56

Tabella 2: Valori misurati di corrente e potenza alla temperatura di $T=12^{\circ}\mathrm{C}$

\mid I(Δ I) [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	P $[\mu W]$
81.9(1)	5180	72.1(1)	3090	60.5(1)	655	47.2(1)	38.2
80.8(1)	4940	71.3(1)	2907	59.7(1)	497	45.8(1)	35.3
80.3(1)	4830	69.7(1)	2585	58.6(1)	270.9	43.3(1)	31.0
79.2(1)	4610	68.3(1)	2267	57.6(1)	138.5	40.5(1)	26.80
78.4(1)	4420	67.2(1)	2082	56.8(1)	101.3	38(1)	23.61
77.7(1)	4280	66.3(1)	1836	55.2(1)	72.2	35.6(1)	20.91
77.2(1)	4170	65.5(1)	1675	54.6(1)	67.4	32.5(1)	17.83
76.1(1)	3950	64.5(1)	1471	53.6(1)	60.3	30.6(1)	16.14
75.2(1)	3750	63.1(1)	1190	52.7(1)	55.5	28.3(1)	14.20
74.7(1)	3640	62.5(1)	1098	50.4(1)	46.5	26.8(1)	13.04
73.7(1)	3430	61.7(1)	924	48.4(1)	40.9	25.1(1)	11.80

Tabella 3: Valori misurati di corrente e potenza alla temperatura di $T=25^{\circ}\mathrm{C}$

$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P \left[\mu W \right]$
82.4(1)	3760	72.8(1)	1659	64.4(1)	128.5	52.7(1)	40.8
81.1(1)	3480	71.1(1)	1314	63.8(1)	106.8	50.2(1)	36.2
80.4(1)	3330	70.0(1)	1077	62.9(1)	90.0	48.8(1)	33.9
79.5(1)	3130	68.8(1)	839	61.1(1)	71.3	45.3(1)	28.9
77.8(1)	2772	68.2(1)	695	60.3(1)	66.1	43.9(1)	27.2
77.4(1)	2679	67.5(1)	558	59.5(1)	61.4	37.8(1)	20.63
76.3(1)	2431	66.8(1)	423	58.2(1)	55.9	33.9(1)	17.09
75.4(1)	2228	65.6(1)	338	57.2(1)	52.2	29.9(1)	13.98
74.5(1)	2027	65.0(1)	168.5	55.7(1)	48.0	25.2(1)	10.77

Tabella 4: Valori misurati di corrente e potenza alla temperatura di $T=43^{\circ}\mathrm{C}$

$\theta_{//}$ [°]	I $[\mu A]$						
0.0(5)	4.30	11.0(5)	0.57	-3.5(5)	2.38	-1.5(5)	3.56
1.0(5)	4.53	12.0(5)	0.33	-4.0(5)	2.16	-0.5(5)	4.10
2.0(5)	4.83	14.0(5)	0.16	-4.5(5)	1.85	0.5(5)	4.69
3.0(5)	4.59	16.0(5)	0.06	-5.0(5)	1.54	0.0(5)	4.64
4.0(5)	4.26	19.0(5)	0.04	-5.5(5)	1.20	1.5(5)	4.52
5.0(5)	3.75	23.0(5)	0.03	-6.0(5)	1.05	2.5(5)	4.82
5.5(5)	3.38	30.0(5)	0.02	-7.0(5)	0.71	2.0(5)	4.95
6.0(5)	2.99	45.0(5)	0.02	-8.0(5)	0.44	2.0(5)	4.96
6.5(5)	2.58	90.0(5)	0.02	-10.0(5)	0.17	3.5(5)	4.37
7.0(5)	2.30	0.0(5)	4.40	-12.0(5)	0.07	4.5(5)	3.89
7.5(5)	1.98	-1.0(5)	3.73	-15.0(5)	0.03	-2.5(5)	3.19
8.0(5)	1.79	-2.0(5)	3.42	-30.0(5)	0.03	1.5(5)	4.44
9.0(5)	1.25	-2.5(5)	3.05	-45.0(5)	0.02	2.0(5)	4.61
10.0(5)	0.86	-3.0(5)	2.66	-85.0(5)	0.02	2.5(5)	4.27

Tabella 5: P vs angolo di incidenza parallelo

θ_{\perp} [°]	I $[\mu A]$						
-85.0(5)	0.02	-17.0(5)	1.73	-1.0(5)	4.27	14.0(5)	2.51
-70.0(5)	0.02	-16.0(5)	1.92	0.0(5)	4.71	15.0(5)	2.27
-60.0(5)	0.03	-15.0(5)	2.08	1.0(5)	4.22	16.0(5)	2.05
-50.0(5)	0.03	-14.0(5)	2.37	2.0(5)	4.31	17.0(5)	1.82
-45.0(5)	0.10	-13.0(5)	2.58	3.0(5)	4.38	18.0(5)	1.87
-40.0(5)	0.15	-12.0(5)	2.73	4.0(5)	4.47	19.0(5)	1.45
-37.0(5)	0.20	-11.0(5)	3.01	5.0(5)	4.16	21.0(5)	1.21
-34.0(5)	0.28	-10.0(5)	2.99	6.0(5)	4.15	23.0(5)	0.96
-31.0(5)	0.35	-11.0(5)	3.04	7.0(5)	3.90	25.0(5)	0.87
-28.0(5)	0.51	-10.0(5)	2.99	8.0(5)	3.31	27.0(5)	0.62
-25.0(5)	0.70	-8.0(5)	3.39	9.0(5)	3.72	30.0(5)	0.44
-23.0(5)	0.88	-6.0(5)	4.12	10.0(5)	3.21	35.0(5)	0.10
-21.0(5)	1.13	-4.0(5)	4.15	11.0(5)	3.13	45.0(5)	0.11
-19.0(5)	1.37	-3.0(5)	3.98	12.0(5)	2.88	40.0(5)	0.17
-18.0(5)	1.55	-2.0(5)	4.23	13.0(5)	2.70	50.0(5)	0.04
60.0(5)	0.02	90.0(5)	0.02				

Tabella 6: P vs angolo di incidenza perpendicolare

T [°C]	$\lambda \text{ [nm]}$	T [°C]	$\lambda \text{ [nm]}$
12	778	29	781
13	778	30	782
14	778	31	782
15	779	32	782
16	779	33	783
17	779	34	783
18	780	35	783
19	780	36	783
20	780	37	784
21	780	38	784
22	781	39	784
23	781	40	785
24	781	41	785
25	781	42	785
26	781	43	785
27	781	44	785
28	781	45	785

Tabella 7: Valori misurati di temperatura e lunghezza d'onda