带有不等式约束的多元函数极值问题简介*

2023-2024 学年秋季学期 数学分析 (III)

作为对教材内容的拓展, 我们讨论带有不等式约束的多元函数极值问题,

设 $f:\mathbb{R}^n\to\mathbb{R}$, $\varphi:\mathbb{R}^n\to\mathbb{R}$, 且 f 和 φ 都是 \mathbb{R}^n 上的 C^1 函数. 考虑以下具有不等式约束的极值/最值问题

$$\min_{\text{s.t. } \varphi(\mathbf{x}) \leq 0} f(\mathbf{x}).$$

这里的记号是要求可行域 $K := \{ \mathbf{x} \in \mathbb{R}^n : \varphi(\mathbf{x}) \leq 0 \}$ 中 f 的最小值点, 但我们也可以考虑极小值点——它的定义是, 如果对于 $\mathbf{x}_* \in K$, 存在 $\varepsilon > 0$, 使得

$$f(\mathbf{x}_*) \le f(\mathbf{x}) \quad \forall \, \mathbf{x} \in U(\mathbf{x}_*, \varepsilon) \cap K,$$

那么就称 x_* 为条件极小值点. 同理可讨论条件最大值点或极大值点.

下面我们想要研究, 如果已知 $\mathbf{x}_* \in K$ 是一个条件极值点, 那它需要满足什么必要条件——我们期待能得到一些方程和不等式.

不妨假设 $\mathbf{x}_* \in K$ 是一个条件极小值点. 我们分两种情况考虑.

1. 如果 \mathbf{x}_* 为 K 的内点, 由定义, 存在 $\varepsilon_* > 0$ 使得 $U(\mathbf{x}_*, \varepsilon_*) \subset K$. 所以由上面极小值的定义, 对于 充分小的 ε , $\varepsilon < \varepsilon_*$, 都有

$$f(\mathbf{x}_*) \leq f(\mathbf{x}) \quad \forall \, \mathbf{x} \in U(\mathbf{x}_*, \varepsilon).$$

因而 \mathbf{x}_* 是 f 的一个一般极小值点, 故 $\nabla f(\mathbf{x}_*) = 0$.

2. 如果 \mathbf{x}_* 为 K 的边界点, 那么必然有 $\varphi(\mathbf{x}_*) = 0$. 事实上, $\mathbf{x}_* \in K$ 保证了 $\varphi(\mathbf{x}_*) \leq 0$, 而严格不等 号不可能成立, 因为如果 $\varphi(\mathbf{x}_*) < 0$, 由 φ 的连续性, 存在 \mathbf{x}_* 的一个邻域, 使得 φ 在其中取值均为 负, 因而这个邻域包含于 K, 这与 \mathbf{x}_* 是 K 的边界点矛盾.

于是 \mathbf{x}_* 也是等式约束 $\varphi(\mathbf{x}) = 0$ 下 f 的条件极值点. 由 Lagrange 乘子法, 存在 $\lambda_* \in \mathbb{R}$ 使得

$$\nabla f(\mathbf{x}_*) + \lambda_* \nabla \varphi(\mathbf{x}_*) = 0, \quad \varphi(\mathbf{x}_*) = 0.$$

进一步地, 在适当的条件下 (此处略去讨论) 可以证明 $\lambda_* \geq 0$. 我们仅做如下直观解释: 由于 K 中 φ 取值非正, K^c 上 φ 的取值为正, 故在 \mathbf{x}_* 处, $\nabla \varphi(\mathbf{x}_*)$ 指向 K 的外侧. 由上面的条件知 $\nabla f(\mathbf{x}_*)$ 与 $\nabla \varphi(\mathbf{x}_*)$ 平行. 如果 $\lambda_* < 0$, 那么它们指向相同, $\nabla f(\mathbf{x}_*)$ 也指向 K 的外侧. 故如果沿着 $-\nabla f(\mathbf{x}_*)$ 方向从 \mathbf{x}_* 移动到 $\mathbf{x} := \mathbf{x}_* - \delta \nabla f(\mathbf{x}_*)$ (这里 $0 < \delta \ll 1$ 是任意的), 那么就总会有 $\mathbf{x} \in K$ 且 $f(\mathbf{x}) < f(\mathbf{x}_*)$, 这是因为负梯度方向是 f 下降的方向. 这与 \mathbf{x}_* 是 K 中 f 的条件极小点矛盾. 综上, $\lambda_* \geq 0$.

下面我们尝试将这两种情形综合起来. 定义 Lagrange 增广函数

$$F(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda \varphi(\mathbf{x}).$$

^{*}最后更新日期: 2023 年 10 月 23 日

考虑以下这一族条件

$$\nabla_{\mathbf{x}} F(\mathbf{x}, \lambda) = \nabla f(\mathbf{x}) + \lambda \nabla \varphi(\mathbf{x}) = 0,$$

$$\varphi(\mathbf{x}) \le 0,$$

$$\lambda \ge 0,$$

$$\lambda \varphi(\mathbf{x}) = 0.$$
(1)

不难发现, 对于条件极小值点 \mathbf{x}_* , 总存在 $\lambda_* \geq 0$, 使得 $(\mathbf{x}_*, \lambda_*)$ 满足以上所有条件. 事实上, 如果出现上面的第一种情形, 只需补充定义 $\lambda_* = 0$ 即可.

以上这族条件被称为 Karush-Kuhn-Tucker 条件 (简称 KKT 条件). 其中的 (1) 被称为互补条件, 它表明 "约束不起作用, $\lambda=0$ ",和 "约束起作用, $\varphi(\mathbf{x})=0$ ",这两者至少居其一. 所以上面的讨论说明, (在适当的条件下) KKT 条件是条件极值点需满足的一个必要条件. 所以如果要求原问题的条件极小值点, 可以先求满足 KKT 条件的点, 然后再从这些点中筛选.

注记. 如果要求的是条件极大值, KKT 条件中的 $\lambda \ge 0$ 需换为 $\lambda \le 0$.

更进一步地, 我们可以将上述方法推广到同时含有等式和不等式约束的最值/极值问题中. 考虑

$$\min_{\mathbf{x}} f(\mathbf{x}), \quad \text{s.t. } \varphi_i(\mathbf{x}) = 0, \quad i = 1, \dots m,$$
$$\psi_j(\mathbf{x}) \le 0, \quad j = 1, \dots l.$$

定义 Lagrange 增广函数

$$F(\mathbf{x}, \lambda, \mu) := f(\mathbf{x}) + \sum_{j=1}^{m} \lambda_j \varphi_j(\mathbf{x}) + \sum_{k=1}^{l} \mu_k \psi_k(\mathbf{x}),$$

这里 $\lambda := (\lambda_1, \dots, \lambda_m), \, \mu := (\mu_1, \dots, \mu_l)$. 此时的 KKT 条件为

$$abla_{\mathbf{x}}F(\mathbf{x},\lambda,\mu)=0,$$
 $abla_{j}(\mathbf{x})=0, \quad j=1,\cdots,m, \quad$
也即 $abla_{\lambda}F(\mathbf{x},\lambda,\mu)=0,$
 $abla_{k}(\mathbf{x})\leq0,$
 $abla_{k}\geq0,$
 $abla_{k}\psi_{k}(\mathbf{x})=0, \quad$
以上三式对 $abla=1,\cdots,l$ 成立.

同样地, 我们可以先求满足以上 KKT 条件的点, 然后从中筛选出原问题的条件极小值点. 如果求的是极大值, 那么同样需要将 $\mu_k \geq 0$ 换为 $\mu_k \leq 0$.

例 1. 在条件 $x^2 + y^2 = 1$, $x \ge \frac{1}{2}$ 下求函数 f(x,y) = xy 的极大值点.

解. 定义

$$F(x, y, \lambda, \mu) := xy + \lambda(x^2 + y^2 - 1) + \mu\left(\frac{1}{2} - x\right).$$

注意为了应用上述方法, 需将不等式约束写成 $\frac{1}{2} - x \le 0$ 的形式. 由 KKT 条件,

$$\begin{split} &\nabla_x F(x,y,\lambda,\mu) = 0, &\Leftrightarrow y + 2\lambda x - \mu = 0, \\ &\nabla_y F(x,y,\lambda,\mu) = 0, &\Leftrightarrow x + 2\lambda y = 0, \\ &\nabla_\lambda F(x,y,\lambda,\mu) = 0, &\Leftrightarrow x^2 + y^2 = 1, \\ &\frac{1}{2} - x \leq 0, \\ &\mu \leq 0, \\ &\mu \left(\frac{1}{2} - x\right) = 0. \end{split}$$

注意因为求的是极大值, 所以 μ 的符号条件为 $\mu \leq 0$. 可以从最后一个式子入手求解以上方程.

1. 如果 $\mu = 0$, 那么最后两式自然成立, 而前面四式变成

$$y = -2\lambda x$$
, $x = -2\lambda y$, $x^2 + y^2 = 1$, $x \ge \frac{1}{2}$.

将这里的第二式代入第一以及第三式得

$$(1-4\lambda^2)y = 0$$
, $(1+4\lambda^2)y^2 = 1$.

由于后一式子表明 $y \neq 0$, 故 $\lambda^2 = \frac{1}{4}$, 进而 $y^2 = \frac{1}{2}$. 所以 $x^2 = 1 - y^2 = \frac{1}{2}$. 最终可以解得两组解

$$(x,y,\lambda,\mu) = \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-\frac{1}{2},0\right), \ \left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},\frac{1}{2},0\right).$$

2. 如果 $\mu \neq 0$, 那么 $x = \frac{1}{2}$. 代入 KKT 条件得

$$\mu = y + \lambda$$
, $1 + 4\lambda y = 0$, $y^2 = \frac{3}{4}$, $\mu \le 0$.

最终可以得到一组解

$$(x, y, \lambda, \mu) = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{3}}, -\frac{1}{\sqrt{3}}\right).$$

从以上三组解中, 我们可以证明

$$(x,y) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

为条件极大值点, 而另一组解给出的是条件极小值点. 这部分的论证可以通过直接验证极值点定义来完成, 我们留给读者补全细节.