

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年11月17日

出 願 番 号 Application Number:

特願2003-386694

[ST. 10/C]:

[J P 2 0 0 3 - 3 8 6 6 9 4]

出 願 人
Applicant(s):

独立行政法人産業技術総合研究所

特許庁長官 Commissioner, Japan Patent Office 2004年11月11日

【書類名】特許願【整理番号】324-03626【あて先】特許庁長官殿【国際特許分類】H01M 4/02

【発明者】

【住所又は居所】 茨城県つくば市東1-1-1 独立行政法人産業技術総合研究所

つくばセンター内

周 豪慎

【氏名】

【発明者】

【住所又は居所】 茨城県つくば市東1-1-1 独立行政法人産業技術総合研究所

つくばセンター内

【氏名】 本間格

【特許出願人】

【識別番号】 301021533

【氏名又は名称】 独立行政法人産業技術総合研究所

【代表者】 吉川 弘之 【電話番号】 029-861-3280

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

規則的に配列したメソ細孔を有する三次元構造を備えていることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜。

【請求項2】

六方 (ヘキサゴナル) 又は立方 (キュービック) 型の三次元構造を備えていることを特 徴とするナノサイズ微結晶酸化物-ガラス複合メソポーラス粉末又は薄膜。

【請求項3】

ポーラス構造のフレームワークの中に、均一なナノサイズ微結晶酸化物を備えていることを特徴とする請求項1又は2記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス 粉末又は薄膜。

【請求項4】

50から400m²/g範囲の高い比表面積を備えていることを特徴とする請求項1~3のいずれかに記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜。

【請求項5】

プロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は金属の塩化物、 $PO(0 C_2H_5)_3$ 又は $Si(0C_2H_5)_4$ (TEOS)の水溶液又はこれらをエターノール等のアルコールに溶かした溶液に、塩酸(HC1)を加える工程、ソルーゲル法によってガラス相の金属酸化物ー無機酸化物複合メソストラクチャ構造を有する粉末を製造する工程、室温~ 90° Cで熟成させゲル化させる工程、これを空気中 $350-400^\circ$ Cで加熱処理することによってブロック高分子又は界面活性化剤を除去しガラス相の金属酸化物ーガラス相複合メソポーラス粉末を製造する工程、更にこれを $400-700^\circ$ Cで熱処理することによってガラス相の金属酸化物を微結晶に相転移させる工程からなることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜の製造方法。

【請求項6】

ブロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は金属の塩化物、 $PO(0~C_2H_5)_3$ 又は $Si~(OC_2H_5)_4$ (TEOS)の水溶液又はこれらをエターノール等のアルコールに溶かした溶液に、塩酸(HC1)を加え、pHを調整しながら加水分解を行ってゾル溶液とする工程、基板に該ゾル溶液を滴下し、基板を高速回転させ、溶剤を蒸発させ、ゲル化させることにより基板上に、ガラス相の金属酸化物-無機酸化物-ブロック高分子(又は界面活性化剤)複合メソストラクチャ構造を有する薄膜を形成する工程、室温~ 90° Cで熟成させゲル化させる工程、これを空気中 $350-400^\circ$ Cで加熱処理することによってプロック高分子又は界面活性化剤を除去しガラス相の金属酸化物-ガラス相複合メソポーラス薄膜を形成する工程、更にこれを $400-700^\circ$ Cで熱処理することによってガラス相の金属酸化物を微結晶に相転移させる工程からなることを特徴とするナノサイズ微結晶酸化物-ガラス複合メソポーラス薄膜の製造方法。

【請求項7】

安定なガラス相の無機酸化物が、 SiO_2 、 P_2O_5 又は B_2O_3 であることを特徴とする請求項5又は6記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜の製造方法。

【請求項8】

合成段階で MnO_2 , NiO, Fe_2O_3 , CuO, Li_2O , WO_3 , SnO_2 などの異種金属酸化物を微量添加し、多元ガラス相を有するナノサイズ微結晶酸化物-無機酸化物のガラス相-異種金属酸化物($-MnO_2$, -NiO, $-Fe_2O_3$, -CuO, $-Li_2O$, $-WO_3$, $-SnO_2$ など)からなることを特徴とする請求項 $5\sim7$ のいずれかに記載のメソポーラス粉末又は薄膜の製造方法。

【請求項9】

金属アルコキシド又は金属の塩化物が、 $Ti(OC_3H_7)_3$, $Zr(OC_4H_9)_4$, $NbCl_5$, LiCl, $NiCl_2$, F eCl_3 , $CuCl_2$, $MnCl_2$, $SnCl_4$ 又は WCl_5 であることを特徴とする請求項 $5\sim 8$ のいずれかに 記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜の製造方法。

【請求項10】

請求項5~9によって製造されたナノサイズ微結晶酸化物ーガラス複合メソポーラス粉

末又は薄膜を用いることを特徴とするリチウム電池又はリチウムインタカレーション電気 デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイス。

【書類名】明細書

【発明の名称】ナノサイズ微結晶酸化物-ガラス複合メソポーラス粉末又は薄膜及びその 製造法並びに同粉末又は薄膜を用いる各種デバイス

【技術分野】

[0001]

本発明は、規則正しく整列したメソ細孔を有する三次元構造を備え、ポーラス構造のフレームワークの中にナノサイズ微結晶金属酸化物ーガラス有する複合メソポーラス粉末又は薄膜及びその製造法並びにリチウム電池又はリチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイスに関する。

【背景技術】

[0002]

金属酸化物メソポーラス材料は、三次元的に規則正しく整列したナノサイズ細孔や、高 比表面積などを有することで、電子材料、触媒材料、機能性セラミックス材料、電極材料 への応用が期待されているが、フレームワークの中の金属酸化物はアモルファスなので、 結晶に属した機能を引き出せないのが現状である。

また、世界中のグループが、色々な方法を試しているが、ナノオーダーのフレームワークの中で金属酸化物を結晶成長させた場合に、三次元的に規則正しく整列したナノ構造が潰されてしまうので、今まで成功した例がない。

[0003]

表面活性剤を鋳型としてMCM41(ヘキサゴナル)やMCM48(キュービック)のメソポーラスシリカ(SiO_2)粉末の合成が成功されている(文献1、2参照)。しかし、それ以上の技術的進展がないのが現状である。

【非特許文献 1】 C. T. Kresge, M. E. Leonowicz, W.J. Roth, J. C. Vartuli, J. S. Beck, Nature1992, 359, 710.

【非特許文献 2】 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W.Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, Journal American Chemical Society. 1992, 114, 10834.

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明で解決しようとする課題は、(1)高い比表面積を有する三次元構造を持つ微結晶 金属酸化物ーガラス有する複合メソポーラス粉末又は薄膜を製造すること、(2)ポーラス構造のフレームワークは、ナノサイズ微結晶金属酸化物微結晶と僅かなガラス相(SiO_2 或いは P_2O_5 , B_2O_3)によって構築されていること、(3)僅かなガラス相(SiO_2 或いは P_2O_5 , B_2O_3)によって金属酸化物の結晶成長が制御されること、(4)その製造プロセスが簡単化されること、(5)これらの材料を、リチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイスの製造に使用できることである。

【課題を解決するための手段】

[0005]

本発明は、1)規則的に配列したメソ細孔を有する三次元構造を備えていることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜、2)六方(ヘキサゴナル)又は立方(キュービック)型の三次元構造を備えていることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜、3)ポーラス構造のフレームワークの中に、均一なナノサイズ微結晶酸化物を備えていることを特徴とする1又は2記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜、4)50から400m²/g範囲の高い比表面積を備えていることを特徴とする1~3のいずれかに記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜を提供する。

[0006]

本発明は、また5)プロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は

金属の塩化物、 $PO(OC_2H_5)_3$ 又は $Si(OC_2H_5)_4$ (TEOS)の水溶液又はこれらをエターノール等のアルコールに溶かした溶液に、塩酸(HC1)を加える工程、ソルーゲル法によってガラス相の金属酸化物ー無機酸化物複合メソストラクチャ構造を有する粉末を製造する工程、室温~ 90° Cで熟成させゲル化させる工程、これを空気中350- 400° Cで加熱処理することによってブロック高分子又は界面活性化剤を除去しガラス相の金属酸化物ーガラス相複合メソポーラス粉末を製造する工程、更にこれを400- 700° Cで熱処理することによってガラス相の金属酸化物を微結晶に相転移させる工程からなることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末の製造方法を提供する。

[0007]

本発明は、また 5) ブロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は金属の塩化物、 $PO(OC_2H_5)_3$ 又は $Si(OC_2H_5)_4$ (TEOS)のエターノール等のアルコールに溶かした溶液に、塩酸(HC1)を加え、pHを調整しながら加水分解を行ってゾル溶液とする工程、基板にゾル溶液を滴下し、基板を高速回転させ、溶剤を蒸発させ、ゲル化させることにより基板上にガラス相の金属酸化物ー無機酸化物ーブロック高分子(又は界面活性化剤)複合メソストラクチャ構造を有する薄膜を形成する工程、室温~90°Cで熟成させゲル化させる工程、これを空気中350-400°Cで加熱処理することによってブロック高分子又は界面活性化剤を除去しガラス相の金属酸化物ーガラス相複合メソポーラス薄膜を形成する工程、更にこれを400-700°Cで熱処理することによってガラス相の金属酸化物を微結晶に相転移させる工程からなることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス薄膜の製造方法を提供する。

[0008]

本発明は、また 6)安定なガラス相の無機酸化物が、 SiO_2 、 P_2O_5 又は B_2O_3 であることを特徴とする 5 記載のナノサイズ微結晶酸化物 - ガラス複合メソポーラス粉末又は薄膜の製造方法を提供する。

[0009]

本発明は、また7)合成段階で MnO_2 , NiO, Fe $_2O_3$, CuO, Li $_2O$, WO $_3$, SnO $_2$ などの異種金属酸化物を微量添加し、多元ガラス相を有するナノサイズ微結晶酸化物-無機酸化物のガラス相-異種金属酸化物($-MnO_2$, -NiO, $-Fe_2O_3$, -CuO, $-Li_2O$, $-WO_3$, $-SnO_2$ など)からなることを特徴とする5又は6記載のメソポーラス粉末又は薄膜の製造方法、8)金属アルコキシド又は金属の塩化物が、 $Ti(OC_3H_7)_3$, $Zr(OC_4H_9)_4$, NbCl $_5$, LiCl, NiCl $_2$, FeCl $_3$, CuCl $_2$, MnCl $_2$, SnCl $_4$ 又はWCl $_5$ であることを特徴とする5~7のいずれかに記載のナノサイズ微結晶酸化物-ガラス複合メソポーラス粉末又は薄膜の製造方法を提供する。

[0010]

本発明は、また9)上記5~8によって製造されたナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜を用いることを特徴とするリチウム電池又はリチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイスを提供する。

【発明の効果】

[0011]

本発明の三次元構造を有するナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜の製造方法は、極めて簡便な方法であるばかりでなく、ポーラス細孔のサイズと構造を制御することが可能であり、表面積が大きく、規則正しく整列した六方(ヘキサゴナル)又は立方(キュービック)型構造を備え、ポーラス構造のフレームワークはナノサイズ微結晶金属酸化物微結晶と僅かなガラス相(SiO_2 或いは P_2O_5)により構築され、以上によるナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜を得ることができるという優れた特徴を有する。

【発明を実施するための最良の形態】

[0012]

本発明のナノサイズ微結晶酸化物-ガラス複合メソポーラス粉末又は薄膜は比表面積が 大きく、通常数十m²/g以上、特に数百m²/gに達する比表面積を得ることができる

また、後述するように、いずれの三次元構造であっても、ポーラス構造のフレームワークは、ナノサイズ微結晶金属酸化物微結晶と僅かな量のガラス相(SiO₂、P₂O₅又はB₂O₃など)により構築することができる。

ガラス相は通常、2~10wt%程度の量とする。特に、その量に上限を設ける必要はないが、必要に応じてその量を増やし、例えば10~20wt%とすることができる。必要に応じて、さらに35wt%程度にすることもできる。

図1は、三次元構造を有するナノサイズ微結晶酸化物ーガラス複合メソポーラスの構造のイメージを示す図である。

図1に示すように、ナノサイズ微結晶酸化物ーガラス複合層は、メソポーラス構造のフレームワーク、すなわちメソポーラス構造の壁を構成しており、そのフレームワークの中で、ガラス相を介在してナノ微細結晶が整列している様子が示されている。

【実施例】

[0013]

比表面積が大きく、六方(ヘキサゴナル)又は立方(キュービック)型三次元構造を有するナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末(例として、TiO₂-P₂O₅, ZrO₂-P₂O₅, Nb₂O₅-P₂O₅, Nb₂O₅-SiO₂, WO₃-P₂O₅, TiO₂-SiO₂, WO₃-SiO₂, ZrO₂-SiO₂, ZrO₂-B₂O₃, ZrO₂-P₂O₅SiO₂, TiO₂-P₂O₅SiO₂, TiO₂-P₂O₅B₂O₃) を製造する。

鋳型としてブロック高分子(例えば:(E0)₂₀(P0)₇₀(E0)₂₀=Pluronic123, BASF)) を使用した。

0.8-1.2gの $(E0)_{20}$ $(P0)_{70}$ $(E0)_{20}$ を8-10gのエタノール溶液の中に入れる。水溶液を使用しても良い。次に、2.5g のTi $(0C_3H_7)_3$ (他の金属酸化物としては、Zr $(0C_4H_9)_4$, NbCl₅ , Li Cl, NiCl₂, FeCl₃ , CuCl₂ , MnCl₂ , SnCl₄又はWCl₅ などを使用することができる)を加え、攪拌しながら、1g 0.5Nの塩酸 (HC1) を滴下し、さらに1gのPO $(C_2H_5)_3$ を加えて20時間攪拌し、室温 ~ 90 ° Cで五日間程度熟成させる。この熟成期間は温度との関連による。これによってゲル化させ、メソストラクチャ構造を有する TiO_2 $(PE)_2$ 05 (ガラス相) -P123を合成した。

[0014]

これらのサンプルを空気中350-400°Cで6時間程度、加熱処理することによってブロック高分子P123

 $=(E0)_{20}(P0)_{70}(E0)_{20}$ を除去し、フレームワークが TiO_2 (アモルファス相) $-P_2O_5$ (ガラス相)であるメソポーラス複合材料を合成した。

次に、更に高い温度領域400-600°Cの温度で、2時間程度加熱処理することによって、アモルファス相のTiO2を成核し、クラスタのTiO2から微結晶TiO2に成長させながら、ナノオーダーで複合化させる。

高い温度領域でも安定なガラス相である P_2O_5 を使用することによって、微結晶 TiO_2 がフレームワークを壊すほど大きな微粒子 TiO_2 に成長させることなく、3-6nmオーダーの均一な TiO_2 がフレームワークに留まることによって、均一なサイズを有するナノサイズ微結晶 TiO_2 ーガラス P_2O_5 複合メソポーラス粉末が得られた。

上記TiO₂-P₂O₅と同様の方法を用いて、ZrO₂-P₂O₅, Nb₂O₅-P₂O₅, Nb₂O₅-SiO₂, WO₃-P₂O₅, TiO₂-SiO₂, ZrO₂-SiO₂, ZrO₂-B₂O₃, ZrO₂-P₂O₅SiO₂, TiO₂-P₂O₅SiO₂, TiO₂-P₂O

[0015]

(ナノサイズ微結晶TiO2-ガラスP2O5複合メソポーラス粉末の構造の制御因子と性質) ナノサイズ微結晶TiO2-ガラスP2O5複合メソポーラス粉末のキャラクタリゼーションは 、X線回折、透過電子顕微鏡と窒素ガス吸着等温曲線を用いて行った。

加熱処理 (焼結する) 前後及び複数の異なる温度で再熱処理したナノサイズ微結晶TiO2 -ガラスP2O5複合メソポーラス粉末の小角度 X 線回折 (図 2 (a)) と高角度 X 線回折 (

図2 (b))から、450°C-650°Cまでの再熱処理下のサンプルが、三次元構造を有するナノサイズ微結晶酸化物-ガラス複合メソポーラスであること確認できた。

[0016]

複数の異なる温度で再熱処理した微量な異種金属酸化物(MnO_2 , NiO, $Fe2O_3$, CuO, Li_2O , WO_3 , SnO_2 など)を添加したナノサイズ微結晶 TiO_2- ガラス $P_2O_5-MnO_2$ (-NiO, Fe_2O_3 , CuO, Li_2O , WO_3 , SnO_2 など)複合メソポーラス粉末の小角度 X線回折(図 Y (Y (Y) と高角度 Y 8 線回折(図 Y (Y) から、Y 5 (Y) なること確認できた。

[0017]

また、同様に 400° Cで 6 時間ぐらい加熱処理してブロック高分子P123を除去した TiO_2 (アモルファス相) $-P_2O_5$ (ガラス相) であるメソポーラス複合材料の透過電子顕微鏡の写真を図 3 (a) に示す。これは六方晶(ヘキサゴナル)の構造を示した。

500° Cで2時間程度加熱処理したナノサイズ微結晶 TiO_2 – ガラス P_2O_5 複合メソポーラス粉末の透過電子顕微鏡の写真を図3(b)に示す。これも同様に六方晶(ヘキサゴナル)の構造を示した。

ポーラス構造のフレームワークはナノサイズ TiO_2 微結晶と僅かなガラス相(P_2O_5)により構築されていることが透過電子顕微鏡の写真(図3(c)と図3(d))で確認された

[0018]

更に、ポーラス構造のフレームワークはナノサイズ TiO_2 微結晶と微量な異種金属酸化物 MO_2 を添加したガラス相($P_2O_5-MnO_2$)による構築されていることが透過電子顕微鏡写真(図3(e)と図3(f))で確認された。

[0019]

窒素ガス吸着等温曲線により、BETプロットによって確認した結果、 450° Cで再熱処理したナノサイズ微結晶 TiO_2 - ガラス P_2O_5 複合メソポーラス粉末比表面積は約 $290\,\mathrm{m}^2$ / g であった。窒素ガス吸着等温曲線と細孔のサイズ(半径)を図 4 に示す。本発明においては、50から $400\,\mathrm{m}^2$ / g範囲の高い比表面積を得ることができる。

[0020]

ガラス相が変わって、ナノサイズ微結晶 TiO_2 - ガラス SiO_2 複合メソポーラス粉末の小角度 X 線回折と高角度 X 線回折結果を図S (a) に、透過電子顕微鏡の写真を図S (b) に示した。

微結晶相の金属酸化物が変わって、ナノサイズ微結晶ZrO₂ - ガラスP₂O₅ 複合メソポーラス 粉末の小角度X線回折と高角度X線回折結果を図5(c)に、透過電子顕微鏡の写真を図 5 (d) に示した。

【産業上の利用可能性】

[0021]

本発明は、三次元構造を有するナノサイズ微結晶酸化物ーガラス複合メソポーラスの製造方法は極めて簡便な方法であるばかりでなく、ポーラス構造のフレームワークはナノサイズ微結晶と僅かなガラス相により構築されているという特徴を有する。

この特性に基づき、リチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイス技術に適用できる。

【図面の簡単な説明】

[0022]

【図1】三次元構造を有するナノサイズ微結晶酸化物ーガラス複合メソポーラスの構造のイメージを示す図である。

【図2(a)】加熱処理する前後及び複数の異なる温度で再熱処理したナノサイズ微結品TiO2-ガラスP2O5複合メソポーラス粉末の小角度X線回折結果を示す図である。

【図2(b)】加熱処理する前後及び複数の異なる温度で再熱処理したナノサイズ微結品TiO2-ガラスP2O5複合メソポーラス粉末の高角度X線回折結果を示す図である

- 【図2 (c)】ナノサイズ微結晶 TiO_2 -ガラス P_2O_5 -MnO2 (-NiO, Fe2O3, CuO, Li2O, WO3, SnO2など)複合メソポーラス粉末の小角度X線回折結果を示す図である。
- 【図2 (d)】ナノサイズ微結晶TiO2-ガラスP2O5-MnO2 (-NiO, Fe2O3, CuO, Li2O, WO3, SnO2など)複合メソポーラス粉末の高角度X線回折結果を示す図である。
- 【図3 (a)】 400° Cで 6 時間程度加熱処理してブロック高分子P123を除去した $Ti0_2$ (アモルファス相) $-P_2O_5$ (ガラス相)であるメソポーラス複合材料の透過電子顕微鏡写真である。
- 【図3 (b)】 500° Cで2時間程度加熱処理したナノサイズ微結晶 TiO_2 ガラス P_2O_5 複合メソポーラス粉末の透過電子顕微鏡写真である。
- 【図3 (c)】ナノサイズTiO2微結晶と僅かガラス相(P2O5)による構築されているフレームワークの透過電子顕微鏡写真である。
- 【図3 (d) 】フレームワークの中のナノサイズ TiO_2 微結晶とガラス相 (P_2O_5) の透過電子顕微鏡写真である。
- 【図3 (e)】 500° Cで熱処理したナノサイズ TiO_2 微結晶とガラス相 ($P_2O_5 MnO_2$)複合メソポーラス粉末の透過電子顕微鏡写真である。
- 【図3 (f)】フレームワークの中のナノサイズ TiO_2 微結晶とガラス相 ($P_2O_5-MnO_2$) の透過電子顕微鏡写真である。
- 【図4】ナノサイズ微結晶 TiO_2 ガラス P_2O_5 複合メソポーラス粉末窒素ガス吸着等温曲線と細孔サイズ分布を示す図である。
- 【図5(a)】ナノサイズ微結晶TiO2-ガラスSiO2複合メソポーラス粉末の小角度X線回折と高角度X線回折結果を示す図である。
- 【図 5 (b) 】ナノサイズ微結晶 TiO_2 ガラス SiO_2 複合メソポーラス粉末の透過電子顕微鏡写真である。
- 【図5 (c)】ナノサイズ微結晶ZrO2-ガラスP2O5複合メソポーラス粉末の小角度X線回折と高角度X線回折結果を示す図である。
- 【図 5 (d)】ナノサイズ微結晶 ZrO_2- ガラス P_2O_5 複合メソポーラス粉末の透過電子顕微鏡写真である。

【図2 (b)】

【図2 (c)】

[図2 (d)]

【図3 (e)】

【図5 (d)】

【書類名】要約書

【要約】

【課題】(1)高い比表面積を有する三次元構造を持つ微結晶金属酸化物ーガラス有する複合メソポーラス粉末又は薄膜を製造すること、(2)ポーラス構造のフレームワークは、ナノサイズ微結晶金属酸化物微結晶と僅かなガラス相(SiO2或いはP2O5, B2O3)によって構築されていること、(3)僅かなガラス相(SiO2或いはP2O5, B2O3)によって金属酸化物の結晶成長が制御されること、(4)製造プロセスが簡単化されること、(5)リチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイスの製造に使用できること。

【解決手段】規則的に配列したメソ細孔を有する三次元構造を備えていることを特徴とするナノサイズ微結晶酸化物 – ガラス複合メソポーラス粉末又は薄膜。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2003-386694

受付番号 50301895922

書類名 特許願

担当官 神田 美恵 7397

作成日 平成15年11月18日

<認定情報・付加情報>

【提出日】 平成15年11月17日

特願2003-386694

出願人履歴情報

識別番号

[301021533]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所

東京都千代田区霞が関1-3-1

氏 名

独立行政法人産業技術総合研究所

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP04/016981

International filing date:

16 November 2004 (16.11.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2003-386694

Filing date: 17 November 2003 (17.11.2003)

Date of receipt at the International Bureau: 20 January 2005 (20.01.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

