Математическая логика

Метод резолюций для исчисления высказываний

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Определение дизъюнкта

Дизъюнктом называется дизъюнкция пропозициональных переменных.

Пропозициональные переменные p и \bar{p} называются контрарными.

Определение резольвенты

Для любых двух дизъюнктов C_1 и C_2 , если существует переменная σ в C_1 , которая контрарна переменной $\bar{\sigma}$ в C_2 , то вычеркнув σ и $\bar{\sigma}$ из C_1 и C_2 соответственно, и построив дизъюнкцию оставшихся дизъюнктов, получим резольвенту C_1 и C_2 (Определение верно для одной пары контрарных переменных).

Определение пустого дизъюнкта

Дизъюнкт, не содержащий переменных, называется пустым (обозначаем Π).

Пустой дизъюнкт по определению противоречив.

Пример. Для двух дизъюнктов C_1 и C_2 найти резольвенту.

$$C_1: p \lor r$$
 $C_2: p \lor q$
 $p \lor r, p \lor q$
 $r \lor q$.

В данном примере $r \lor q$ — резольвента.

Пример. Для двух дизъюнктов C_1 и C_2 найти резольвенту.

$$C_1: p \lor q \lor r$$
 $C_2: q \lor s$

$$p \lor q \lor r, q \lor s$$

$$p \lor r \lor s$$

В данном примере $p \lor r \lor s$ — резольвента.

Пример. Для двух дизъюнктов C_1 и C_2 найти резольвенту.

$$C_1: p \lor q$$
 $C_2: \overline{p}$
 $p \lor q, \overline{p}$
 q

В данном примере q – резольвента.

Пример. Для двух дизъюнктов C_1 и C_2 найти резольвенту.

$$C_{1}: \overline{p} \vee q$$

$$C_{2}: \overline{p} \vee r$$

$$\overline{p} \vee q, \overline{p} \vee r$$

$$\gamma$$

В данном примере резольвенты не существует, т.к. нет пары контрарных переменных.

Пример. Для двух дизъюнктов C_1 и C_2 найти резольвенту.

$$C_1: p \vee \overline{q}$$
 $C_2: p \vee q$
 $p \vee \overline{q}, \overline{p} \vee q$
 γ

В данном примере резольвенты не существует, т.к. рассматриваюся более одной пары контрарных переменных.

Пусть даны два дизъюнкта C_1 и C_2 . Тогда резольвента C дизъюнктов C_1 и C_2 есть их логическое следствие.

Доказательство:

Док-во. Пусть C_1 и C_2 истинны в некоторой интерпретации K. Нужно показать, что резольвента C дизъюнктов C_1 и C_2 также истинна в K, тогда C будет логическим следствием (по определению логического следствия).

Доказывать истинность логического следствия можно, например, по 2-й теореме о логическом следствии: $C_1 \cdot C_2 \cdot \overline{C} = 0$.

1) Пусть дизьюнкты C_1 и C_2 содержат контрарную пару переменных σ и σ , т.е. $C_1 = \sigma \vee C_1'$ и $C_2 = \overline{\sigma} \vee C_2'$, где C_1' и C_2' - некоторые дизьюнкты. Пусть также $C = C_1' \vee C_2'$ – резольвента C_1 и C_2 .

$$C_{1} \cdot C_{2} \cdot \overline{C} = (\sigma \vee C'_{1})(\overline{\sigma} \vee C'_{2})(\overline{C'_{1} \vee C'_{2}}) =$$

$$= (\sigma \overline{\sigma} \vee \sigma C'_{2} \vee \overline{\sigma} C'_{1} \vee C'_{1} C'_{2})(\overline{C'_{1} \vee C'_{2}}) =$$

$$= (\sigma C'_{2} \vee \overline{\sigma} C'_{1} \vee C'_{1} C'_{2})(\overline{C'_{1} \vee C'_{2}}) = 0,$$

следовательно C - логическое следствие.

2) Пусть дизъюнкты $C_1 = \sigma$ и $C_2 = \bar{\sigma} \vee C_2'$, $C = C_2'$ – резольвента C_1 и C_2 . $C_1 \cdot C_2 \cdot \bar{C} = \sigma(\bar{\sigma} \vee C_2') \overline{C_2'} = (\sigma \bar{\sigma} \vee \sigma C_2') \overline{C_2'} = 0$, следовательно C – логическое следствие.

3) Пусть дизьюнкты $C_1 = \sigma$ и $C_2 = \bar{\sigma}$, тогда C_1 и C_2 не могут быть одновременно истинны, их резольвента $C = \Pi$, а пустой дизьюнкт по определению противоречив, т.е. C не является логическим следствием.

Резолютивный метод

Резолютивный метод — поиск резольвенты C из посылок и логического следствия, образующих множество дизъюнктов S.

Рассмотренный метод может быть использован для проверки того, является ли формула G логическим следствием формул F_1, \ldots, F_n .

Алгоритм решения задач резолютивным методом:

- 1) Представить формулу $F_1 \cdot F_2 \cdot ... \cdot F_n \cdot \overline{G}$ в виде КНФ, заменив, например, $x \to y = \overline{x} \vee y$.
- 2) Если из множества дизъюнктов $S = \{F_1, F_2, ..., F_n, \overline{G}\}$ удалось вывести пустой дизъюнкт Π , задействовав все дизъюнкты, то G является логическим следствием, иначе нет.

Пример. Является ли резольвента

логическим следствием?

$$S = {\overline{p} \lor q, \overline{q}, p}$$
.

Резолютивный вывод:

$$\frac{p\vee q,q}{p}$$
, $\frac{p,p}{\Pi}$.

Следовательно, $(\overline{p} \lor q)(\overline{q})(p) \equiv 0$.

Пример. Доказать, что r является логическим следствием формул $p \to q, \ q \to r, \ p$.

Представляем формулы $p \rightarrow q, q \rightarrow r$ в виде

KHΦ:
$$p \rightarrow q = \overline{p} \lor q$$
, $q \rightarrow r = \overline{q} \lor r$.

$$S = {\overline{p} \lor q, \overline{q} \lor r, p, \overline{r}}.$$

Резолютивный вывод:

$$\frac{\overline{p} \vee q, \overline{q} \vee r}{\overline{p} \vee r}; \qquad \frac{\overline{p} \vee r, p}{r}; \qquad \frac{r, \overline{r}}{\Pi}$$

Пример. Для задачи проверить вывод на логическое следствие.

Если Андрей интересуется логикой, то он посещает лекции по дискретной математике и не пропускает семинарские занятия. Если Андрей посещает лекции, то он пропускает семинарские занятия. Следовательно, Андрей не интересуется логикой.

Тогда рассматриваемое высказывание может быть записано на языке исчисления высказываний следующим образом:

$$F_1: p \rightarrow qr$$

$$F_2: q \to \overline{r}$$

$$G:\overline{p}$$
.

1) Представляем формулу $F_1 \cdot F_2 \cdot G$ в виде КНФ:

$$F_{1} \cdot F_{2} \cdot \overline{G} = (p \to qr)(q \to \overline{r})\overline{\overline{p}} =$$

$$= (\overline{p} \lor qr)(\overline{q} \lor \overline{r})p =$$

$$= (\overline{p} \lor q)(\overline{p} \lor r)(\overline{q} \lor \overline{r})p.$$

2) Резолютивный вывод

$$S = \{ \overline{p} \lor q, \overline{p} \lor r, \overline{q} \lor \overline{r}, p \}$$

$$\frac{\overline{p} \lor q, \overline{q} \lor \overline{r}}{\overline{p} \lor \overline{r}}; \qquad \frac{\overline{p} \lor \overline{r}, \overline{p} \lor r}{\overline{p}}; \qquad \frac{\overline{p}, p}{\overline{\Pi}}.$$

Поскольку резолютивный вывод заканчивается пустым дизъюнктом, то G является логическим следствием формул F_1 и F_2 .

Тема следующей лекции:

«Исчисление предикатов».