Whatever the progress of human knowledge, there will always be room for ignorance, hence for chance and probability - \acute{E} mile Borel

1 Review Topics

Compactness, extreme value theorem (again!)

2 Exercises

- 2.1 Which of the following sets are compact?
 - $\mathbb{Q} \cap [0, 1]$, in \mathbb{R} .
 - $\{x \in \mathbb{Q} : 2 < x^2 < 3\}$, in \mathbb{Q} .
 - $f^{-1}([2, 3])$, where $f(x) = x^2$ on \mathbb{R} .
- 2.2 Prove that any closed set of a compact space is compact.

2.3 Prove that if K is a compact set, then $f\left(K\right)$ is compact whenever f is continuous.

2.4 Let K be a compact subset of \mathbb{R} . Prove that $\inf K$ and $\sup K$ exist and are in K.

2.5 Prove that $\sin x - \cos y$ attains a maximum on $[0, 2\pi] \times [0, 2\pi]$.

2.6 Prove that if a space (X, d) is compact, then it is complete