MINI-PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree of Master of Computer Applications under National Institute of Technology Karnataka

By

Piyush Gupta (214CA037)

Sumit rajput (214CA058)

Abhijeet Sabu (214CA02)

Rajkumar Sharma (214CA043)

Under the Guidance of

Dr. Pushparaj Shetty

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCE

APRIL - 2023

Table of Contents

ABSTRACT
INTRODUCTION
METHODOLOGY
EXPERIMENTATION AND QUERY
a) Highest cited author and his h-index (from the world)
b) Highest publication author
c) Highest cited authors avg. citations, and the country name.
d) Total number of publications of the highest cited author
e) Total publication in year
f) Total citation per year
g) Author(country) having highest co-authorship with Indian authors
h) Highest cited author from India and the university.
i) Comparative year wise article publication analysis of India, China and USA
j) Total number of grants given to the field
k) Country wise total number of publications
REFERANCE

•

Deep teating is a branch of machine tearning Which is based on artificial neural network. It is capable of learning Complex partern and sealation-ship within the data. In deep learning we don't need to emplicitly program everything it has become increasingly popular in recent year due to the advance in processing power and the availability of large database because it is bassed on Artificial neural network (APINS) also known as deep neural networks. (ONNS) These neural network are inspired by the Structure and function of the human brains biological neurons, and they are designed to learn from large amount of data.

that involves the use of nuevel network to model and Silve Complex problem. newsal network are Consist of Jayer of interconnected nodes that process and transform data.

The key characteristic of deep learning is the use of deep neural networks which have multille layer of interconnected rodes.

Abathact

Deep leating (DH), a branch of machine learning (MI) and artificial intelligence (AI) is nowadays considered as a core technology of today's towith industrial Rovolution. The to its Lewining capabilities from data, DL technology originated from artificial newral networks (ANN), has become a hot topic in the content of computing, and is midely applied is various applications areas like hootto care, visual recognition tent analytics, sybersecurity, and many more flowever, building an appropriate Il model is a challenging task, due to the dynamic nature and variation in Healwould problems and data. Morever, the lack of coice understanding turns DL methods into black - bon machine that hamper development of the Standard Level. This writtle presents a structured and comprehensive view as DI techniques including a tournarry considering or conserversed. Overall, this which aims to chan a sig pirture on DL modeling that can be used as a reference quide for both ocademia and industry professionals.

- 'Crited by' It shows how many have refrred the author's publication for their works.
- "Country" It supresent the country from where the publication is done.
- 'Sponsors' It shows whether in not the authors got the spondorship for their work.

with this information in own complete database, we are in good position to analyze our database the problem statements given to us. we use 'python' and some of the libraries such as 'pondas', 'malphothib', 'Numpy', '-pickel'ere. for better supresentation and amalysis.

Methodology:

Now we will see the methodology that we have adopted to complete this project.

Step 1: Downloading database from scopus we downloaded database separately for each country and again for funding details.

Step 2: Preprocessing wf Main database: In this process we removed some unnecessary attributes which are not required for our analysis and other we merge all the separate databases of countries in to one single CSV fill.

Step 3 - Generating Necessary Data Required for Fwithi Analysis

In this process we have done operations to generate necessary data for further analysis i.c. to solve questions.

This step includes sub steps:

- 2. Generating Authors list
- 2. Creating python dictionary with Author name as buy and his / her coverponding database as value.
- 3. Creating list of Indian authors.
- 4. Generating Foreign Authors list.
- 5. Creating a dictionary with foreign author as they and number of papers published by him a with Indian authors as value.

Step 4. Finding answers to given questions.

```
> ×
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import warnings
         import seaborn as sns
        warnings.filterwarnings('ignore')
[185]
```

Downloading Database

As discussed earlier we used Scopus Reportably to download data base. Scopes repository allows use to download database with manimum 2000 entities directly from their website and for database with more than 2000 entities they Send a link provide email address and then one Can download the database from that clink also in Scopes reportitory 20000 in Cap on entities that can be downloaded database with more than 20000 entities. also as the member of entitles in the Selected database increases, the availability of Corresponding data attributes decreases this means that it we select a long database for downloading then we night not secrete Some of the Selected dots adjustes in the downloaded file. in our case this attribute was funding defairy him we Selecte funding advibute' for long database then the Repository did not give Corresponding data in Ane Alle.

To overcome this difficulty we downloaded database Corresponding to only funding details releatly and then manged it to our main database.

Now after Inclusing the avertion that where Supposed to answer we calculated that the date Should be downloaded Comity wire there we downloaded data Comity were there we will be able to add a Comfrig Column in respective Courties's database and Merge those logether (now wise) to get main data base.

In Country-wise database we found that it two author publish a paper together and they are from different Contries then the Same potent will be present in database of both Countries. This makes our work a fot Simpler because these we can analyze the database 'as per' Country also.

So with all this in mind we wred following steps to download the database.

- 1. Registration on Scoles with institute email id.
- d. Veriting email it and logging on to Scopes.
- 3. Selecting Search parameters as keyword.
- 4. Selecting document tyle as 'Arvide'.
- 5. Selecting Subject area as 'Computer Science'.
- G. Then we god the query as mendished.

Authors	Author(s) ID	Title	Year	Source title	Volume	Issue	Art. No.	Page start	Page end ·	ISBN	CODEN	PubMed ID	Language of Original Document	Abbreviated Source Title	Document Type	Publication Stage	Open Access	Sol
Chen LC., O Papandreou G., Kokkinos I., Murphy	56118862400;6603242401;9250105400;34875408300;	DeepLab: Semantic Image Segmentation with Deep		IEEE Transactions on Pattern Analysis and Mach			NaN	834	848 .	NaN	ITPID	28463186.0	English	IEEE Trans Pattern Anal Mach Intell	Article	Final	All Open Access, Green	Sco
Shelhamer E., 1 Long J., Darrell T.	56433480600;55457086300;7003377605;	Fully Convolutional Networks for Semantic Segm		IEEE Transactions on Pattern Analysis and Mach			7478072	640		NaN	ITPID	27244717.0	English	IEEE Trans Pattern Anal Mach Intell	Article	Final	All Open Access, Green	Sco
Zhang K., Zuo W., Chen Y., Meng D., Zhang L.	57169173100;56888903800;55902679100;2339305840	Beyond a Gaussian denoiser: Residual learning		IEEE Transactions on Image Processing				3142	3155	NaN	IIPRE	28166495.0	English	IEEE Trans Image Process	Article	Final	All Open Access, Green	Sco
Ganin Y., Ustinova E., 3 Ajakan H., Germain P., 	56938634700;57190427124;57190423376;3487469480	Domain- adversarial training of neural networks		Journal of Machine Learning Research		NaN	NaN	NaN	NaN .	NaN	NaN	NaN	English	J. Mach. Learn. Res.	Article	Final	NaN	Sco
Shorten C., 4 Khoshgoftaar T.M.	57209776315;7006211475;	A survey on Image Data Augmentation for Deep L	2019	Journal of Big Data	6	1	60	NaN	NaN .	NaN	NaN	NaN	English	J. Big Data	Article	Final	All Open Access, Gold	Sco

Dafa pre-processing

A. preprocessing of main Database.

As discussed in earlier Chapter we had downloaded database reperately for each Country and again for funding details. Also the repeated database had Some unnecessary attribute. So these database Can not be used discetly for data analysis that's why we have to do preprocessing on those.

for data preprocessing and also data analysis we used pythan programming danguage. Python language has many libraries which means data analysis Much easier. We improved the data base of each Countries using I read-csvcD' function of pamadas libraries and did preprocessing on of following is dre block of each code that we used to

1. Reading the csu files

This base-di Variable Contains a String which lath to data base directly.

Using the block of Code Mergod Filename.

entensim in database directly with base-der Variable and Stored the resultand String in

He are doing this for every file in database directory and appending it to python list thus the lython list will Contain String which are parns of database of each Country.

After getting pythen to detabases we imported those using lemdous read-csvc) function and removed un-necessary columns from them using drops function. then we also added a Country Column Is respective data base Containing Corresponding Country rame.

the shape of data was like:

de Removied the uncounted attributes:
we removed the following Columns attributes 'Authoris'

FD', 'Source etide', 'Volume', 'Issue', 'Art No.',

'Page Start', 'Page erd', 'Page Count', 'Dos', 'Link',

'Document type', 'Publication Stage', 'Open Access',

'Sources', 'ESD'.

Also we filled all emity cells in database with O. For doing all this we have used following block of Code.

df.columns

```
pre_process=df[['Authors','Authors with affiliations','Cited by','Year']]
```

pre_process.head()

	Authors	Authors with affiliations	Cited by	Year
0	Chen LC., Papandreou G., Kokkinos I., Murphy	Chen, LC., Google Inc., Mountain View, CA 9	6528	2018
1	Shelhamer E., Long J., Darrell T.	Shelhamer, E., Department of Electrical Engine	4086	2017
2	Zhang K., Zuo W., Chen Y., Meng D., Zhang L.	Zhang, K., School of Computer Science and Tech	3176	2017
3	Ganin Y., Ustinova E., Ajakan H., Germain P.,	Ganin, Y., Skolkovo Institute of Science and T	2549	2016
4	Shorten C., Khoshgoftaar T.M.	Shorten, C., Department of Computer and Electr	1882	2019

Experimentation And Query:

```
In [ ]: pre_process.shape
Out[]: (9992, 4)
In [ ]: authors=[]
        Citation=[]
         Year=[]
         country=[]
         for i in range(9991):
             k=pre_process['Authors with affiliations'][i].split(';')
             for j in range(len(k)):
                     m = k[j].split(',')
                     if(len(m)>=3):
                         auth = m[0]+m[1]
                         authors.append(auth.strip())
                         con = m[-1]
                         {\sf country.append(con.strip())}
                         Year.append(pre_process['Year'][i])
                         {\tt Citation.append(pre\_process['Cited\ by'][i])}
In [ ]: ACCY = pd.DataFrame(list(zip(authors,country,Citation,Year)),columns=['Authors','Country','Citation','Year']
In [ ]: ACCY.head()
Out[]:
                                                Authors
                                                            Country Citation
            Chowdhury M.E.H. Department of Electrical Engi...
                                                                          639 2020
         1 Rahman T. Department of Biomedical Physics and... Bangladesh
                                                                         639 2020
            Khandakar A. Department of Electrical Engineering
                                                                          639 2020
         3
                                Mazhar R. Thoracic Surgery
                                                                          639
                                                                              2020
                                                                         639 2020
             Kadir M.A. Department of Biomedical Physics an... Bangladesh
```

a) Highest cited author and his h-index (from the world)

```
In [ ]: # Created a new dataframe 'auth_info' by first using Group By Authors then extracted total citations for i
        auth_info = pd.DataFrame(ACCY.groupby('Authors')['Citation'].sum()).reset_index()
        auth_info.sort_values(by = 'Citation', ascending=False)
                                                       Authors Citation
         36961
                           Yu P.S. Department of Computer Science
                                                                    2437
          6669
                                             Del Ser J. TECNALIA
                                                                   2150
         28291
                                              Shazeer N. Google
                                                                   2127
         22984
                                               Narang S. Google
                                                                    2103
         17926
                                                   Li W. Google
                                                                   2103
         10722 Gupta B.B. The Department of Computer Engineering
                                                                      13
         13573
                                 Javeed D. Northeastern University
                                                                      13
         20427
                    Luo H.-S. National Engineering Research Center...
         26358
                   Reghunadhan R. Department of Computer Science
                                                                      13
         38607
                                      Zhang Y. College of Sciences
                                                                      13
        40495 rows × 2 columns
In [ ]: auth_info[auth_info['Citation']==auth_info['Citation'].max()]
```

2437

Highest Cited Auhtor is Yu P.S.with 2437 Citations

36961 Yu P.S. Department of Computer Science

```
In []:
    authors_df=pd.DataFrame({
        'Authors':df['Authors'].str.split(';').explode(),
        'Titles':df['Titles'].repeat(df['Authors'].str.count(';')+1),
        'Year':df['Year'].repeat(df['Authors'].str.count(';')+1),
        'Cited by':df['Cited by'].repeat(df['Authors'].str.count(';')+1),
        'Authors with affiliation':df['Authors with affiliations'].repeat(df['Authors'].str.count(';')+1)
})

authors_df.dropna(subset=['Authors with affiliation'],inplace=True)
    authors_df['Country']=authors_df['Authors with affiliation'].apply(lambda x:x.split(',')[-1].strip())

In []: yu_ps=authors_df[authors_df['Authors'].str.contains('Yu.P.S.')]
    yu_ps=yu_ps.sort_values(by='Cited by',ascending=False)
    yu_ps
```

t[]:		Authors	Titles	Year	Cited by	Authors wi
	2	Yu P.S.	A Comprehensive Survey on Graph Neural Networks	2021	1906	Wu Z., Centre for Artificial Inte
	73	Yu P.S.	A Survey on Knowledge Graphs: Representation,	2022	313	Ji S., Department of Computer Scie
	329	Yu P.S.	Spatial temporal incidence dynamic graph neura	2020	128	Peng H., School of Cyber Science and
	885	Yu P.S.	Deep Learning for Spatio-Temporal Data Mining:	2022	79	Wang S., Nanjing University of Aerc
	1937	Yu P.S.	A Comprehensive Survey on Community Detection	2022	48	Su X., School of Computing, Macqui
	3205	Yu P.S.	A Survey of Community Detection Approaches: Fr	2023	34	Jin D., Tianjin University, Colle
	5983	Yu P.S.	Higher-Order Attribute-Enhancing Heterogeneous	2023	21	Li J., Beihang University, Beijing ,

```
6037
                 Yu P.S.
                               More Than Privacy: Applying Differential Priva... 2022
                                                                                             Zhu T., School of Computer Science
                 Yu P.S.
         6137
                                      Deep graph similarity learning: a survey 2021
                                                                                      21
                                                                                                 Ma G., Intel Labs, Intel Corporat
                 Yu P.S.
                            A Comprehensive Survey of the Key Technologies... 2021
         6880
                                                                                               Xia Z., Wuhan University, China, X
         8182
                 Yu P.S. Reinforcement-Learning-Guided Source Code Summ... 2022
                                                                                      16 Wang W., Department of Computer Science
In [ ]: h_index = max([min(i+1, row['Cited by']) for i, row in yu_ps.iterrows()])
        print("h-index of Yu P.S who is the highest cited author is : ",h_index)
       h-index of Yu P.S who is the highest cited author is : 128
        h-index of Yu P.S who is the highest cited author is: 128
```

b) Highest publication author

```
In [ ]: auth_pub, count = np.unique(ACCY['Authors'].str.split('D'), return_counts=True)
  In [ ]: auth_pub = list(auth_pub)
           count = list(count)
  In [ ]: high_pub = pd.DataFrame({'Author':auth_pub, 'Total Publications':count}).sort_values(by=['Total Publication
  In [ ]: high_pub.head()
                                                        Author Total Publications
           15141
                                                                               40
                       [Khan M.A., epartment of Computer Science]
            1725
                     [Acharya U.R., epartment of Electronics and C...
                                                                               22
           27514
                    [Sarkar R., epartment of Computer Science and...
                                                                               19
           28132 [Shankar K., epartment of Computer Applications]
                                                                                18
           28207
                        [Sharif M., epartment of Computer Science]
                                                                               15
In [ ]: print("Highest Publication Author = ",auth_pub[count.index(max(count))][0])
      Highest Publication Author = Khan M.A.
```

Higest Publication Author = Khan M.A.

c) Highest cited authors avg. citations, and the country name.

```
In [ ]: tot_citation = auth_info['Citation'].max()
    print('Total Citations Highest cited Author = ',tot_citation)
    tot_publications = 112

Total Citations Highest cited Author = 2437
```

Total Citations Highest cited Author = 2437

```
In [ ]: avg_citation = tot_citation/tot_publications
    print('Average Citations of Highest Cited Author = ', avg_citation)

Average Citations of Highest Cited Author = 21.758928571428573
```

Average Citations of Highest Cited Author = 21.758928571428573

```
In []: country = ACCY[(ACCY['Authors']=='Yu P.S. Department of Computer Science')]['Country'].iloc[0]
    print('Country of Higest Cited Author = ',country)
Country of Higest Cited Author = United States
```

Country of Higest Cited Author = United States

d) Total number of publications of the highest cited author

```
In [ ]: tot_pub_hca = ACCY[ACCY['Authors']=='Yu P.S. Department of Computer Science'].shape[0]
print('Total number of publications of the highest cited author = ',tot_pub_hca)
```

Total number of publications of the highest cited author = 6

Total number of publications of the highest cited author = 6/span>

e) Total publication in year

```
In []:
df_tot_pub_per_year = pd.DataFrame(df['Year'].value_counts()).sort_values(by = 'Year').sort_index().reset_index()
df_tot_pub_per_year.rename({'index': 'Year', 'Year' : 'Total Publications in a Year'}, axis=1, inplace= True)
df_tot_pub_per_year
```

]:		Total Publications in a Year	count
	0	2020	5056
	1	2021	3784
	2	2022	1131
	3	2023	29

f) Total citation per year

t[]:		Year	Total Citations in a Year
	0	2020	236579
	1	2021	129025
	2	2022	29644
	3	2023	763

h) Highest cited author from India and the university

In []: ACCY[ACCY['Country']=='India'].groupby('Authors')['Citation'].sum().sort_values(axis=0, ascending=False).reset_index()

Out[]: Authors Citation

]:		Authors	Citation
	0	Gupta D. Maharaja Agrasen Institute of Technology	1377
	1	Shankar K. Department of Computer Applications	902
	2	Khanna A. Maharaja Agrasen Institute of Techno	881
	3	Bhat M.M. Lelafe IT Solutions	674
	4	Shah J.L. Higher Education Department	674
	2410	Bhawal S. School of Computer Engineering	13
	2411	Singh V. School of Computer Science	13
	2412	Vakharia V. School of Technology	13
	2413	Vaichole T.S. School of Computer Science and E	13
	2414	Gupta S. Department of Computer Science Engine	13

2415 rows \times 2 columns

In []: print('Higest Cited Author from India : ',ACCY[ACCY['Country']=='India'].groupby('Authors')['Citation'].sum().sort_values
print('Total Citations : ',ACCY[ACCY['Country']=='India'].groupby('Authors')['Citation'].sum().sort_values(axis=0, ascend

Higest Cited Author from India : Gupta D. Maharaja Agrasen Institute of Technology Total Citations : 1377

i) Comparative year wise article publication analysis of India, China and United States:

```
In [ ]: df_new = ACCY[(ACCY['Country']== 'India') | (ACCY['Country']== 'China') | (ACCY['Country']== 'United States')]
                                         Authors Country Citation Year
         19
                   Yu P.S. Department of Computer Science United States
      20 Cui Z. Department of Civil and Environmental E... United States 278 2020
       22 Ke R. Department of Civil and Environmental En... United States 278 2020
         23 Wang Y. Department of Civil and Environmental ... United States
                                                              278 2020
       48116 Chen Y. National Engineering Research Center f...
                                                    China 13 2022
       48117 Zhang Z. National Engineering Research Center ... China 13 2022
       48119 Sadeghi Eshkevari S. Senseable City Laboratory United States
                                                                13 2022
       48120 Cronin L. Department of Civil and Environmenta... United States 13 2022
       48121 Pakzad S.N. Department of Civil and Environmen... United States
                                                                13 2022
      25992 rows × 4 columns
In [ ]: df_1 = df_new.groupby(['Country', 'Year'])['Country'].agg(Total_Publications_in_a_Year = 'count').reset_index()
                   Country Year Total_Publications_in_a_Year
                      China 2020
           1
                      China 2021
                                                             6231
           2
                      China 2022
                                                             2041
                      China 2023
                                                               72
           3
                      India 2020
                      India 2021
                                                             1276
           5
           6
                       India 2022
                                                              589
                      India 2023
                                                               16
           8 United States 2020
                                                             3281
           9 United States 2021
                                                             2311
          10 United States 2022
                                                              435
          11 United States 2023
                                                                14
In [ ]: plt.figure(figsize=(12,8))
          sns.barplot(x="Year"
                       y="Total_Publications_in_a_Year",
                       hue="Country",
                       data=df_1)
         plt.title('Yearly publication from India, China, US')
Out[]: Text(0.5, 1.0, 'Yearly publication from India, China, US')
```


j) Total number of grants given to the field

In []:	df.lo	c[:, ['Titles','Funding Details','Authors']]							
Out[]:		Titles	Funding Details						
	0	Can Al Help in Screening Viral and COVID-19 Pn	Qatar National Library; Qatar National Researc	Chowdhury M.E.H.; Rahman					
	1	Recent advances in deep learning for object de	NaN	Wu					
	2	A Comprehensive Survey on Graph Neural Networks	National Science Foundation, NSF, (1763325, CN	Wu Z.; Pan S.; Chen F.; I					
	3	Traffic Graph Convolutional Recurrent Neural N	USDOT	Cui Z.; Henric					
	4	A Survey on Deep Learning for Named Entity Rec	NaN	1					
	9995	Hybrid beamforming with relay and dual-base st	NaN	Alsunbuli B.N.; Fakhruld					
	9996	A Hybrid Intelligent Framework to Combat Sophi	National Natural Science Foundation of China,	Javeed D.; Gao T.					
	9997	EHPE: Skeleton Cues-based Gaussian Coordinate	NaN	Liu H.; Liu T.;					
	9998	Input estimation of nonlinear systems using pr	MIT Senseable City Lab Consortium; Pennsylvani	Sadeghi Eshkevari S					
	9999	DECIMER 1.0: deep learning for chemical image	Google	Rajan K.; Z					
	10000 rows × 3 columns								
In []:	print	("Total number of grants given to the field	of 'Deep learning' are",df1['Funding Detai	ls'].notnull().sum())					
Т	Total n	number of grants given to the field of 'Deep	learning' are 6993						

Total number of grants given to the field of 'Deep learning' are 6993

k) Country with total number of publication:

China: 17061, United States: 6041, India: 2890

```
In [ ]: plt.figure(figsize=(12,8))
    cwp.plot(kind= 'bar', color = 'y',width=0.25)
    plt.title('Total Publications from contries India, China, US')
```

 $\texttt{Out[\]:\ Text(0.5,\ 1.0,\ 'Total\ Publications\ from\ contries\ India,\ China,\ US')}$

g) Author having highest co-authorship with indian authors.

Out[]:		Authors	Titles	Year	Cited by	Authors with affiliation	Country		
	49	Khan A.I.	CoroNet: A deep neural network for detection a	2020	674	Khan A.I., Department of Computer Science, Jam	India		
	49	Shah J.L.	CoroNet: A deep neural network for detection a	2020	674	Khan A.I., Department of Computer Science, Jam	India		
	49	Bhat M.M.	CoroNet: A deep neural network for detection a	2020	674	Khan A.I., Department of Computer Science, Jam	India		
	55	Dargan S.	A Survey of Deep Learning and Its Applications	2020	316	Dargan S., Department of Computational Science	India		
	55	Kumar M.	A Survey of Deep Learning and Its Applications	2020	316	Dargan S., Department of Computational Science	India		
	9982	Venugopalan A.	Applying deep neural networks for the automati $\label{eq:constraint}$	2021	13	Venugopalan A., Department of Computer Science	India		
	9982	Reghunadhan R.	Applying deep neural networks for the automati	2021	13	Venugopalan A., Department of Computer Science	India		
	9983	Das R.	High granular and short term time series forec	2022	13	Das R., Dept. of Computer Science and Engineer	India		
	9983	Middya A.I.	High granular and short term time series forec	2022	13	Das R., Dept. of Computer Science and Engineer	India		
	9983	Roy S.	High granular and short term time series forec	2022	13	Das R., Dept. of Computer Science and Engineer	India		
	2487 rd	ows × 6 columns							
In []:	india	n_author_cnt = :	indian_authors.groupby('Authors').size()						
In []:	In []: highest_count_index=indian_author_cnt.sort_values(ascending=False).index[1]								
In []:	highe	st_cnt_author=h	ighest_count_index.split(';')[0]						
In []:	print	("Author with H	ighest Co-Authorship with Indian authorors	is :	',highest_	_cnt_author)			
А	uthor	with Highest Co	-Authorship with an Indian author is : G	upta D	-				

Author with Highest Co-Authorship with an Indian author is: Gupta D.

REFERENCES

- https://www.scopus.com
 https://apps.webofknowledge.com/
 http://networksciencebook.com/translations/en/resources/data.html
 https://pandas.pydata.org/docs/