Josua Kugler

Uniformisierungstheorie

03.11.2020

Ziel

•0

Theorem (Uniformisierungssatz)

Jede einfach zusammenhängende Riemann'sche Fläche ist biholomorph äquivalent zur Einheitskreisscheibe $\mathbb E$ oder zur Zahlebene $\mathbb C$ oder zur Zahlkugel $\overline{\mathbb C}$.

Beweisstrategie:

Grundlagen

- Fallunterscheidung je nach Eigenschaften des Randes (positiv berandet / nullberandet).
- Konstruiere jeweils eine injektive holomorphe Funktion $f: X \to \overline{\mathbb{C}}$.
- Erhalte eine biholomorphe Abbildung $X \cong f(X) \subseteq \mathbb{C}$.
- Ist $X \subsetneq \mathbb{C}$, so folgt mit dem Riemann'schen Abbildungssatz $X \cong \mathbb{C}$ oder $X \cong \mathbb{E}$.

 $\mathcal{M}_a(X)$ sei die Menge aller harmonischen Funktionen $u\colon X\setminus\{a\}\to\mathbb{R}$ mit $u\ge 0$ und u ist logarithmisch singulär bei a, d.h. $u(z)+\log|z|$ ist harmonisch auf ganz X.

Definition (Greensche Funktion)

Ist \mathcal{M}_a nichtleer, so besitzt sie ein minimales Element G_a , die Green'sche Funktion von X in Bezug auf a. (nicht trivial!)

Eine Riemann'sche Fläche X heißt positiv berandet, wenn zu jedem Punkt $a \in X$ die Greensche Funktion $G_a \colon X \to \mathbb{R}$ existiert. Sonst heißt X nullberandet.

Grundlagen

000000

7iel

Lemma

Auf nullberandeten Flächen gilt der Satz von Liouville.

Lemma

Auf einer Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} \colon X \setminus \{a,b\} \to \mathbb{C}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- −u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

7iel

Definition

Elementar: \Leftrightarrow Beträge meromorpher Funktionen bilden eine Garbe. d.h. aus $|f_i| = |f_i|$ auf $U_i \cap U_i \forall i, j \in I$ folgt die Existenz einer meromorphen Funktion $f: X \to \mathbb{C}$ mit $|f| = |f_i|$ auf U_i .

Theorem (Monodromiesatz)

Sei X eine einfach zusammenhängende Riemann'sche Fläche und $f: U(a) \to \overline{\mathbb{C}}$ entlang jedes von a ausgehenden Weges fortsetzbar. Dann existiert eine meromorphe Funktion $F: X \to \overline{\mathbb{C}}$ mit $F|_{U(a)}=f$.

Lemma

Einfach zusammenhängende Riemannsche Flächen sind elementar.

Lemma

Einfach zusammenhängende Riemannsche Flächen sind elementar.

Lemma

Einfach zusammenhängende Riemannsche Flächen sind elementar.

Beweis.

- $|f_i/f_j|=1$ auf $U_i\cap U_j\implies f_i/f_j=c_{ij}$
- Setze f_i fort durch $c_{ij} \cdot f_j$
- Erhalte f mit $f/f_k = \text{const}$ auf U_k mit $|f/f_k| = 1$.

Vorgehen

- Es existiert eine holomorphe Funktion $F_a: X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$.
- F_a ist injektiv.
- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt $(|F_a(x)| < 1)$ und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz folgt $X \cong \mathbb{E}$.

Lemma

Es existiert eine holomorphe Funktion $F_a\colon X\to\mathbb{C}$ mit $|F_a(x)|=e^{-G_a(x)}$ für $x\neq a,\ G_a\colon X\setminus\{a\}\to\mathbb{R}$ Greensche Funktion.

- Greensche Funktion existiert stets.
- Es genügt, zu jedem Punkt b mit Umgebung U(b) eine holomorphe Funktion F mit $|F(x)| = e^{-G_a(x)} \forall x \in U(b), x \neq a$ anzugeben. Nach Garbenaxiom 2 kann man diese zusammenkleben

Lemma

Es existiert eine holomorphe Funktion $F_a\colon U(b)\to \mathbb{C}$ mit $|F_a(x)|=e^{-G_a(x)}$ für $a\neq x\in U(b) \forall b\in X$.

- Fall $1:b \neq a$.
 - \implies OE U(b) Elementargebiet
 - $\implies \exists f \text{ mit } G_a = \operatorname{Re} f$
 - \implies Wähle $F_a := e^{-f}$
- Fall 2: b = a.
 - \implies OE $U(b) = \mathbb{E}$
 - \implies $G_a(z) = -\log|z|$
 - \implies Wähle $F_a := z$

Lemma

Es existiert eine holomorphe Funktion $F_a\colon X\to\mathbb{C}$ mit $|F_a(x)|=e^{-G_a(x)}$ für $x\neq a$, $G_a\colon X\setminus\{a\}\to\mathbb{R}$ Greensche Funktion.

Insbesondere:

$$\lim_{x\to a} |F_a(x)| = \lim_{x\to a} e^{-G_a(x)} = 0, \text{ also } F_a(a) = 0$$

•
$$G_a(x) > 0 \implies |F_a(x)| < 1.$$

Vorgehen

Ziel

- Es existiert eine holomorphe Funktion $F_a \colon X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$.
- F_a ist injektiv.
- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt $(|F_a(x)| < 1)$ und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz folgt $X \cong \mathbb{E}$.

F_a ist injektiv.

Betrachte

$$F_{a,b}(x) := \frac{F_a(x) - F_a(b)}{1 - \overline{F_a(b)}F_a(x)}.$$

Diese Funktion erfüllt folgende Eigenschaften.

- $|F_{a,b}| < 1$. (Rechnung)
- $F_{a,b}$ ist als Quotient analytischer Funktionen meromorph. Aufgrund der Beschränktheit muss $F_{a,b}$ aber sogar analytisch in X sein.
- $|F_a(b)|^2 < 1 \implies F_{a,b}(b) = 0$, Ordnung k.
- $F_a(a) = 0 \implies F_{a,b}(a) = -F_a(b).$

Behauptung. $|F_{a,b}(x)| = |F_b(x)| \forall x \in X$.

Beweis.

- $u(x) := -\frac{1}{k} \log |F_{a,b}(x)|$ ist außerhalb einer diskreten Teilmenge ≥ 0 und harmonisch mit einer logarithmischen Singularität bei x = b.
- Greensche Funktion: $G_b(x) \le u(x)$.
- ullet $e^{G_b(x)} \leq e^{u(x)}$. Umformen ergibt $\frac{|F_{a,b}(x)|}{|F_b(x)|} \leq 1$.
- Für x = a folgt $|F_a(b)| \le |F_b(a)|$. Symmetrie $\implies \frac{|F_{a,b}(x)|}{|F_b(x)|}$ nimmt an einer Stelle ein Maximum an, nach dem Maximumprinzip erhalten wir die Behauptung.

F_a ist injektiv.

Beweis.

Betrachte

$$F_{a,b}(x) := \frac{F_a(x) - F_a(b)}{1 - \overline{F_a(b)}F_a(x)}.$$

Es gilt $|F_{a,b}(x)| = |F_b(x)| \forall x \in X$. Daraus folgt $F_{a,b} \neq 0$ für $x \neq b$, also $F_a(x) \neq F_a(b)$ für $x \neq b$. b war beliebig $\Longrightarrow F_a$ injektiv. \square

Vorgehen

- Es existiert eine holomorphe Funktion $F_a \colon X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$.
- F_a ist injektiv.
- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt $(|F_a(x)| < 1)$ und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz folgt $X \cong \mathbb{E}$.

Theorem (Uniformisierungssatz)

Jede einfach zusammenhängende Riemann'sche Fläche ist biholomorph äquivalent zur Einheitskreisscheibe $\mathbb E$ oder zur Zahlebene $\mathbb C$ oder zur Zahlkugel $\overline{\mathbb C}$.

Wir haben gezeigt:

Lemma

Jede positiv berandete einfach zusammenhängende Riemann'sche Fläche ist biholomorph äquivalent zur Einheitskreisscheibe \mathbb{E} .

Definition (positiv berandet/nullberandet)

Eine Riemann'sche Fläche X heißt positiv berandet, wenn zu jedem Punkt $a \in X$ die Greensche Funktion $G_a \colon X \to \mathbb{R}$ existiert. Sonst heißt X nullberandet.

Lemma

Auf nullberandeten Flächen gilt der Satz von Liouville.

Lemma

Auf einer Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} \colon X \setminus \{a,b\} \to \mathbb{C}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- −u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

Lemma

Wähle $a \neq b \in X$. Dann existiert eine holomorphe Funktion

$$f_{a,b}\colon X\setminus\{a,b\}\to\mathbb{C}$$

mit folgenden Eigenschaften

- **1** $f_{a,b}$ hat in a bzw. b eine Null- bzw. Polstelle 1. Ordnung
- $\supseteq U(a), U(b)$ Umgebungen. $\exists C$ mit

$$C^{-1} \leq |f_{a,b}(x)| \leq C$$

 $f\ddot{u}r \times \neq U(a) \cup U(b)$, d.h. $f_{a,b}$ hat außer a und b weder Pole noch Nullstellen.

Lemma

Auf einer beliebigen Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} \colon X \setminus \{a,b\} \to \mathbb{C}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- −u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

- Lokal ist $u_{a,b}$ Realteil einer analytischen Funktion f.
- Wähle also $f_{a,b} = e^f$ für eine Umgebung U(c) mit $c \notin \{a,b\}$.
- X elementar, also $f_{a,b}$: $X \setminus \{a,b\} \to \mathbb{C}$ analytisch.
- $u_{a,b}$ ist beschränkt auf $X \setminus [U(a) \cup U(b)]$. Folglich gilt $e^{-C} \le f_{a,b} \le e^{C}$ auf $X \setminus [U(a) \cup U(b)]$.
- $f_{a,b}$ hat in a eine Nullstelle und in b eine Polstelle (jeweils 1. Ordnung), sonst aber werde Pol- noch Nullstellen.

Lemma

 $f_{a,b}$ ist injektiv.

Als Quotient analytischer Funktionen ist

$$g(z) := \frac{f_{a,b}(z) - f_{a,b}(c)}{f_{c,b}(z)}.$$

meromorph und beschränkt außerhalb einer gewissen Umgebung um a, b, c.

- Wegen $\lim_{z \to c} g(z) = \lim_{z \to c} \frac{f_{a,b}(z) f_{a,b}(c)}{f_{c,b}(z)} = \text{const}$ ist g analytisch und beschränkt auf ganz X und damit nach dem Satz von Liouville für nullberandete RF konstant.
- $f_{a,b}(z) f_{a,b}(c) = \lambda f_{c,b}(z)$. Insbesondere hat $f_{a,b}(z) f_{a,b}(c)$ genau eine Nullstelle bei z = c, d.h. $f_{a,b}$ ist injektiv.

- $f_{a,b}(X)$ nicht kompakt $\implies f_{a,b}(X) \neq \overline{\mathbb{C}}$ OE $f_{a,b}(X) \subset \mathbb{C}$. Riemann'scher Abbildungssatz $\implies X \cong \mathbb{C}$ oder $X \cong \mathbb{E}$
- $X \cong \mathbb{E} \implies X$ positiv berandet f, weil G_0 existiert und die konformen Selbstabbildungen von \mathbb{E} transitiv operieren.