שעור 5 אסטרטגיות מעורבות

5.1 אסטרטגיות מעורבות

הגדרה 5.1 אסטרטגיה מעורבת

נתון משחק בצורה אסטרטגיה ($G=\left(\left(S_{1},\ldots,S_{n}\right),\left(u_{1},\ldots,u_{n}\right)\right)$ אסטרטגיה מעורבת היא פונקצית הסתברות על כל קבוצות האסטרטגיותת של השחקנים.

כלומר, אם $S_1 = (s_{11}, s_{12}, \dots, s_{1k_1})$ אז נגדיר פונקצית הסתברות

$$P_{S_1}(s_{11}) = p_{11}$$
, $P_{S_1}(s_{12}) = p_{12}$, ... $P_{S_1}(s_{1k_1}) = p_{1k_1}$.

אם הסתברות אז נגדיר $S_2=(s_{21},s_{22},\ldots,s_{2k_2})$ אם

$$P_{S_2}(s_{21}) = p_{21}$$
, $P_{S_2}(s_{22}) = p_{22}$, ... $P_{S_2}(s_{2k_2}) = p_{2k_2}$.

אט הסתברות איז נגדיר פונקצית הסתברות $S_n=(s_{n1},s_{n2},\ldots,s_{nk_n})$ אם

$$P_{S_n}(s_{n1}) = p_{n1}, \quad P_{S_n}(s_{n2}) = p_{n2}, \quad \dots \quad P_{S_n}(s_{nk_n}) = p_{nk_n}.$$

דוגמה 5.1 ()

נתון משחק שני שחקנים סכום אפס.

I	L	R
T	4	1
В	2	3

- א) מצאו את הערך של המשחק באסטרטגיות טהורות.
- ב) מצאו את הערך של המשחק באסטרטגיות מעורבות.

פתרון:

(N

I	L	R	$\min_{s_2 \in S_2}$
T	4	1	1
В	2	3	2
$\max_{s_1 \in S_1}$	4	3	2,3

ערך המקסמין של שחקן 1:

$$\underline{\mathbf{v}} = \max_{s_1 \in \{T,B\}} \min_{s_2 \in \{L,R\}} = 2 \ .$$

B ישחק B יכול להבטיח שיקבל לפחות B אם הוא ישחק B

ערך המינמקס של שחקן 2:

$$\bar{\mathbf{v}} = \min_{s_2 \in \{L,R\}} \max_{s_1 \in \{T,B\}} = 3 \ .$$

R ישחקן 2 יכול להבטיח שישלם לכל היותר 3 אם הוא ישחקן ז"א שחקן 2

$$\overline{\mathbf{v}} = 3 > 2 = \mathbf{v}$$
.

למשחק אין ערך.

בא כאשר לשחקן 1 יש שתי אסטרטגיות טהורות T ו- B, נזהה את האסטרטגיה המעורבת ב

$$[x(T), (1-x)(B)]$$

T שבה נבחרת האסטרטגיה הטהורה x

באופן דומה, כאשר יש לשחקן 2 יש שתי אסטרטגיות טהורות L ו- R, נזהה את האסטרטגיה המעורבת

$$[y(L), (1-y)(R)]$$

 ${\it L}$ עם ההסתברות ${\it y}$ שבה נבחרת האסטרטגיה שנה ע

לכל זוג אסטרטגיות מעורבות התשלום ניתן על ידי פונקצית התועלת

$$U(x,y) = 4xy + 1x(1-y) + 2(1-x)y + 3(1-x)(1-y) = 4xy - 2x - y + 3.$$

ראשית נחשב לכל $x \in [0,1]$ את

$$\min_{y \in [0,1]} U(x,y) = \min_{y \in [0,1]} \left(4xy - 2x - y + 3 \right) = \min_{y \in [0,1]} \left(y(4x - 1) - 2x + 3 \right)$$

4x-1 עבור x קבוע זוהי פונקציה לינארית ב-y, ולכן הנקודה שבה המינימום מתקבל נקבעת לפי השיפוע y=0.

y=1 -אם השיפוע שלילי הפונקציה יורדת והמינימום מתקבל ב

אם השיפוע 0 הפונקציה קבועה וכל הנקודות הן נקודות מינימום. לכן

$$\min_{y \in [0,1]} u(x,y) = \begin{cases} 2x+2 & x \le \frac{1}{4}, \\ -2x+3 & x \ge \frac{1}{4}, \end{cases}$$

לפונקציה זו של x יש מקסימום יחיד ב- $\frac{1}{4}$ -ב וערכו $x=\frac{5}{2}$ לכן $\underline{\mathbf{v}}=\max_{x\in[0,1]}\min_{y\in[0,1]}U(x,y)=\frac{5}{2}\;.$

באופן דומה נחשב:

$$\begin{split} \max_{x \in [0,1]} U(x,y) &= \max_{x \in [0,1]} \left[4xy - 2x - y + 3 \right] \\ &= \max_{x \in [0,1]} \left[x \left(4y - 2 \right) - y + 3 \right] \\ &= \begin{cases} -y + 3 & y \leq \frac{1}{2} \ , \\ 3y + 1 & y \geq \frac{1}{2} \ , \end{cases} \end{split}$$

לפונקציה זו של
$$y$$
 יש מינימום יחיד ב- $\frac{1}{2}$ - ערכו וערכו y יש מינימום יחיד ב- $\overline{\mathbf{v}}=\min_{y\in[0,1]}\max_{x\in[0,1]}U(x,y)=\frac{5}{2}$.

$$x^*=rac{1}{4},\ y^*=rac{1}{2}$$
 יש ערך, אופטימליות אופטרטגיות יש ערך, ערך, ערך יש ערך ערך, והאסטרטגיות יש ערך, ערך יש

מכיוון ש- x^* ו- y^* הן אסטרטגיות האופטימליות היחיודת של השחקנים, אז y^* הוא שיווי המשקל נאש היחיד במשחק.

דוגמה 5.2 ()

נתון משחק שני שחקנים (שאינו סכום אפס) בצורה אסטרטגית על ידי המטריצה הבאה.

I	L	R
T	1, -1	0, 2
В	0, 1	2,0

מצאו התשלום מקסמין והתשלום מינמקס באסטרטגיות מעורבות.

מצאו שיווי משקל באסטרטגיות מעורבות.

פתרון:

ראשית נחשב את התשלום מקסמין של השחקנים.

קבוצות האסטרטגיות של שחקן 1:

$$S_1 = \{ [x(T), (1-x)(B)], x \in [0,1] \}$$
.

[0,1] המזוהה עם הקטע

קבוצות האסטרטגיות של שחקן 2:

$$S_2 = \{ [y(L), (1-y)(R)], y \in [0,1] \}$$
.

פונקצית התועלת של שחקן 1:

$$U_1(x,y) = xy + 2(1-x)(1-y) = 3xy - 2x - 2y + 2$$
.

פונקצית התועלת של שחקן 2:

$$U_2(x,y) = -xy + 2x(1-y) + y(1-x) = -4xy + 2x + y.$$

התשלום מקסמין של שחקן 1 הינו:

$$\underline{\mathbf{v}}_1 = \max_{x \in [0,1]} \min_{y \in [0,1]} U_1(x,y) \ .$$

התשלום מקסמין של שחקן 2 הינו:

$$\underline{\mathbf{v}}_2 = \max_{y \in [0,1]} \min_{x \in [0,1]} U_2(x,y) \ .$$

$$\min_{y \in [0,1]} U_1(x,y) = \min_{y \in [0,1]} 3xy - 2x - 2y + 2$$

$$= \min_{y \in [0,1]} y (3x - 2) - 2x + 2$$

$$= \begin{cases} x & x \le \frac{2}{3} \\ -2x + 2 & x \ge \frac{2}{3} \end{cases}$$

לפיכך $.x=rac{2}{3}$ -לפיכך או יש מקסימום ב

$$\underline{\mathbf{v}}_1 = \max_{x \in [0,1]} \min_{y \in [0,1]} U_1(x,y) = \frac{2}{3} \ .$$

התשלום מקסמין של שחקן 2 הינו:

$$\underline{\mathbf{v}}_2 = \max_{y \in [0,1]} \min_{x \in [0,1]} U_2(x,y) \ .$$

$$\begin{split} \min_{x \in [0,1]} U_2(x,y) &= \min_{x \in [0,1]} 3xy - 2x - 2y + 2 \\ &= \min_{x \in [0,1]} x \left(2 - 4y\right) + y \\ &= \begin{cases} y & y \leq \frac{1}{2} \\ \\ 2 - 3y & y \geq \frac{1}{2} \end{cases} \end{split}$$

לפונקציה זו יש מקסימום ב- $y=rac{1}{2}$ לפיכך

$$\underline{\mathbf{v}}_2 = \max_{x \in [0,1]} \min_{y \in [0,1]} U_2(x,y) = \frac{1}{2} \ .$$

2 כעת נחשב את השיווי משקל של המשחק באסטרטגיות מעורבות. נסמן תשובה טובה ביותר של שחקן לאסטרטגיה x של שחקן x

$$\sigma_2(x) = \operatorname*{argmax}_{y \in [0,1]} U_2(x,y) = \{ y \in [0,1], U_2(x,y) \geq U_2(x,z) \forall z \in [0,1] \}$$

. יש מקסימום על $U_2(x,y)$ - עבורם על עבורם של כל הערכים של אוסף אוסף הוא $\sigma_2(x)$

בצורה $U_2(x,y)$ בצורה $\sigma_2(x)$ את בדי לחשב כדי

$$U_2(x,y) = y(1-4x) + 2x .$$

1-4x עבור אוהי פונקציה לינארית ב- y, ולכן הנקודה שבה המינימום מתקבל נקבעת לפי השיפוע עבור x אם השיפוע חיובי הפונקציה עולה והמקסימום מתקבל ב- y=1

y=0 ב- מתקבל מתקסימום וורדת יורדת הפונקציה אם אם אלילי

אם השיפוע 0 הפונקציה קבועה וכל הנקודות הן נקודות מקסימום. הסימן של השיפוע משתנה ב- $x=rac{1}{4}$. הגרף של $\sigma_2(x)$ מתואר להלן.

.[0,1] אלא לתחום לנקודה אלא $\sigma_2\left(\frac{1}{4}\right)$ -שימו בגלל ש
 $\sigma_2(x)$ -שימו לב שימו שימו שימו הגלל ש

נסמן תשובה טובה ביותר של שחקן 1 לאסטרטגיה y של שחקן כ

$$\sigma_1(y) = \operatorname*{argmax}_{x \in [0,1]} U_1(x,y) = \{x \in [0,1], U_1(x,y) \geq U_1(x,z) \forall z \in [0,1] \}$$

. יש מקסימום $U_1(x,y)$ - עבורם x עבורם כל הערכים של אוסף של $\sigma_1(y)$ הוא אוסף של במילים

כדי לחשב $U_1(x,y)$ רושמים $\sigma_1(y)$ את כדי

$$U_1(x,y) = x(3y-2) - 2y + 2$$
.

3y-2 עבור y קבוע זוהי פונקציה לינארית ב- x, ולכן הנקודה שבה המינימום מתקבל נקבעת לפי השיפוע אם השיפוע חיובי הפונקציה עולה והמקסימום מתקבל ב- x=1

 $oldsymbol{x} = 0$ -ם מתקבל מתקבל והמקסימום אם הפונקציה יורדת הפונקציה אם השיפוע שלילי

אם השיפוע 0 הפונקציה קבועה וכל הנקודות הן נקודות מקסימום. הסימן של השיפוע משתנה ב- $y=rac{2}{3}$ הגרף $\sigma_1(y)$ של $\sigma_1(y)$ מתואר להלן.

הצמד אסטרטגיות $y^*\in\sigma_2(x^*)$ ו- $x^*\in\sigma_1(y^*)$ הורק אם ורק אם ורק שיווי משקל נקודת שיווי (x^*,y^*) ו- (x^*,y^*) המקודה היחידה שמקיימת את התנאי הזה (x^*,y^*) תהיה על שני הגרפים של $\sigma_2(x)$ ו- $\sigma_2(x)$ ו- $\sigma_2(x)$ תהיה על שני הגרפים של הגרפים של $\sigma_2(x)$ ו- $\sigma_2(x)$ היא $\sigma_2(x)$ היא $\sigma_2(x)$ היא $\sigma_2(x)$ משקל אם ורק שיווי משקל אם ורק שיווים ורק שיווי משקל אם ורק

לכן השיווי משקל היחיד של המשחק הוא $\left(x^*=\frac{1}{4},y^*=\frac{2}{3}\right)$ והתשלומים לשחקן 2 ולשחקן של השיווי משקל לכן השיווי משקל היחיד של המשחק הוא $U_1\left(x^*,y^*\right)=\frac{2}{3}$, $U_2\left(x^*,y^*\right)=\frac{1}{2}$.

5.2 שיטה ישירה למציאת אסטרטגיה אופטימלית

דוגמה 5.3 ()

נתון משחק שני שחקנים סכום אפס בצורה אסטרטגית על ידי המטריצה הבאה.

I	L	R
T	5	0
B	3	4

מצאו את הערך של המשחק באסטרטגיות מעורבות.

פתרון:

[x(T),(1-x)(B)] תחילה נחשב את המסטמין של שחקן 1. אם שחקן 1 משחק אם המסטרטגיה המעורבת המקסמין של שחקן x תלוי על האסטרטגיה של שחקן x:

$$U(x, L) = 5x + 3(1 - x) = 2x + 3.$$

אז L משחק שחקן \bullet

$$U(x,R) = 4(1-x) = -4x + 4.$$

אז R או שחקן 2 משחק \bullet

המינימלי מראה את הגרפים של הפונקציות האלו. הקו של $\frac{\min}{s_2 \in \{L,R\}} U(x,s_2)$ מראה את התשלום המינימלי ששחקן $\frac{1}{s_2}$ יקבל אם הוא משחק $\frac{1}{s_2}$ הקו הזה נקרא מעטפת תחתונה של התשלומים.

הערך של מתקבל בנקודת מעורבות אשר , $\max_{x \in [0,1]} \min_{s_2 \in \{L,R\}} U(x,s_2)$ - הערך שווה מעורבות מעורבות מעורבות שווה ל- המעטפת התחתונה. המקסימום מתקבל בנקודת חיתוך של הקווים של שתי הפונקציות, כלומר בנקודה

$$2x + 3 = -4x + 4 \qquad \Rightarrow \qquad x = \frac{1}{6} \ .$$

מכאן האסטרטגיה האופטילית של שחקן 1 היא $x^*=\left(rac{1}{6}(T),rac{5}{6}(B)
ight)$ היא $x^*=\left(rac{1}{6}(T),rac{5}{6}(B)
ight)$ היתוך: $x=rac{10}{3}$:

כעת נחשב את המינמקס של שחקן 2. אם שחקן 2 משחק את האסטרטגיה המעורבת [y(L),(1-y)(R)] התשלום כעת נחשב את המינמקס של שחקן 2. שלו כפונקציה של y תלוי על האסטרטגיה של שחקן y

$$U(T,y)=5y.$$
 אם שחקן 1 משחק T אם שחקן Φ

$$U(B,y)=4-y.$$
 אם שחקן 1 משחק θ אז •

הגרף למטה מראה את הגרפים של הפונקציות האלו. הקו של $\max_{s_1 \in \{B,T\}} U(s_1,y)$ שלונה הקונקציות האלום הפונקציות האלו. הקו הזה נקרא מעטפת עליונה של התשלומים. y

הערך של מתקבל בנקודת מעורבות אשר , $\displaystyle \min_{y \in [0,1]} \max_{s_1 \in \{B,T\}} U(s_1,y)$ - שווה לי מעורבות מעורבות מעורבות מעורבות שווה לי המינימום מתקבל בנקודת חיתוך של הקווים של שתי הפונקציות, כלומר בנקודה המעטפת העליונה.

$$5y = 4 - y \qquad \Rightarrow \qquad y = \frac{2}{3} \ .$$

מכאן האסטרטגיה האופטילית של שחקן 2 היא $y^*=\left(\frac{2}{3}(L),\frac{1}{3}(R)\right)$ היא $y^*=\left(\frac{2}{3}(L),\frac{1}{3}(R)\right)$ היתוך: $y^*=\left(\frac{2}{3}(L),\frac{1}{3}(R)\right)$ היתוך: $y^*=\left(\frac{2}{3}(L),\frac{1}{3}(R)\right)$ היא $y^*=\left(\frac{2}{3}(L),\frac{1}{3}(R)\right)$ היתוך: $y^*=\left(\frac{10}{3}(L),\frac{1}{3}(R)\right)$

דוגמה 5.4 ()

נתון משחק שני שחקנים סכום אפס בצורה אסטרטגית על ידי המטריצה הבאה.

I	L	M	R
T	2	5	-1
B	1	-2	5

מצאו את הערך של המשחק באסטרטגיות מעורבות.

פתרון:

נחשב את המקסמין של שחקן [x(T),(1-x)(B)] התשלום את האסטרטגיה שחקן [x(T),(1-x)(B)] התשלום שלו כפונקציה של האסטרטגיה של שחקן [x(T),(1-x)(B)]

$$U(x, L) = 2x + (1 - x) = 1 + x.$$

$$U(x, M) = 5x - 2(1 - x) = 7x - 2.$$

אז
$$M$$
 אז פאחקן 2 משחק $ullet$

$$U(x,R) = -x + 5(1-x) = -6x + 5.$$

אז
$$R$$
 אם שחקן Φ אז \bullet

התרשים למטה מתאר את הגרפים של שלוש פונקציות אלו.

U(x,R) ו- וU(x,L) ו- ווים של המקטימום של המעטפת התחתונה מתקבל בנקודת חיתוך של המעטפת התחתונה ווים ו

$$1 + x \stackrel{!}{=} -6x + 5 \qquad \Rightarrow \qquad x = \frac{4}{7}$$

5.3 חישוב נקודות שיווי משקל באסטרטגיות מערבות

דוגמה 5.5 ()

נתון משחק שני שחקנים בצורה אסטרטגית על ידי המטריצה הבאה.

I	F	C
F	2, 1	0,0
C	0,0	1, 2

מצאו שיווי משקל באסטרטגיות מעורבות.

לכל אסטרטגיה מעורבת, [x(F),(1-x)(C)] של שחקן [x(F),(1-x)(C)] לכל אסטרטגיה מעורבת,

$$\sigma_2(x) = \argmax_{y \in [0,1]} u_2(x,y) = \left\{ y \in [0,1] \, \middle| \, u_2(x,y) \geq u_2(x,z) \forall z \in [0,1] \right\} \ .$$

 $:U_2(x,y)$ את נרשום את $\sigma_2(x)$ את כדי לחשב

$$U_2(x,y) = xy + 2(1-x)(1-y) = 3xy - 2x - 2y + 2 = y(3x-2) - 2x + 2$$
.

y של אינארית פונקציה לינארית של לכל x

- y=1 -ם השיפוע חיובי ויש מקסימום ב- $x>rac{2}{3}$
- y=0 -השיפוע שלילי ויש מקסימום ב $\mathbf{x}x<rac{2}{3}$
- . נקודת אפס ווהפונקציה קבוע וכל נקודה $y \in [0,1]$ השיפוע וווה אפס והפונקציה קבוע וכל נקודה $x = \frac{2}{3}$

. הארף מתואר בתרשים מחיובי לשלילי ב- $x=rac{2}{3}$ הגרף של משתנה מחיובי לשלילי ב-

באותה מידה, לכל אסטרטגיה מעורבת, [y(F),(1-y)(C)] של שחקן ביותר של שחקן מידה, לכל אסטרטגיה מעורבת, [y(F),(1-y)(C)] הן

$$\sigma_1(y) = \argmax_{x \in [0,1]} u_1(x,y) = \left\{ x \in [0,1] \, \big| \, u_1(x,y) \geq u_1(z,y) \forall z \in [0,1] \right\} \ .$$

 $:U_1(x,y)$ את נרשום את $\sigma_1(y)$, נרשום את

$$U_1(x,y) = 2xy + (1-x)(1-y) = 3xy - x - y + 1 = x(3y-1) - y + 1$$
.

x לכל של לינארית של זוהי פונקציה לינארית של

- x=1 -ם מקסימום ויש השיפוע חיובי השיפוע $\Leftarrow y>rac{1}{3}$
- x=0 -השיפוע שלילי ויש מקסימום ב $y<rac{1}{3}$
- . נקודת מקסימום אפס והפונקציה אפס והפונקציה השיפוע ווכל $x \in [0,1]$ השיפוע ווה אפס והפונקציה הפונקציה ל $x \in [0,1]$

. השיפוע משתנה מחיובי לשלילי ב- $\frac{1}{3}$ -הגרף של $\sigma_1(y)$ מתואר בתרשים למטה.

לסיכום, עבור משחק זה,

$$\sigma_2(x) = \begin{cases} 0 & x < \frac{2}{3} ,\\ [0,1] & x = \frac{2}{3} ,\\ 1 & x > \frac{2}{3} , \end{cases}, \qquad \sigma_1(y) = \begin{cases} 0 & y < \frac{1}{3} ,\\ [0,1] & x = \frac{1}{3} ,\\ 1 & y > \frac{1}{3} ,\end{cases}$$

נקודת שיווי משקל אם (x^*,y^*) ז"א $y^*\in\sigma_2(x^*)$ ו- $x^*\in\sigma_1(y^*)$ אם ורק אם ורק אם יווי משקל אם (x^*,y^*) היא שיווי משקל אם ורק אם היא נקודת חיתוך של הגרפים של $\sigma_1(y)$ ורק אם היא נקודת חיתוך של הגרפים של יווי משקל אם היא נקודת חיתוך של הגרפים של יווים היווים ה

- .(C,C) אשר טהורה לאסטרטגיה אשר $(x^*,y^*)=(0,0)$
- .(F,F) אשר טהורה לאסטרטגיה מתאימה ($x^*,y^*)=(1,1)$
- אשר מעורבות משקל אשיווי משקל אשר היא (x^*,y^*) $=\left(\frac{2}{3},\frac{1}{3}\right)$

$$x^* = \left[\frac{2}{3}(F), \frac{1}{3}(C)\right], \qquad y^* = \left[\frac{1}{3}(F), \frac{2}{3}(C)\right],$$

5.4 תחרות דואפול על פי קורנוט

דוגמה 5.6 ()

שני יצרניים 1 ו- 2 מייצרים אותו מוצר ומתחרים על שוק הקונים הפוטנציאלים. היצרנים מחליטים שני יצרניים 1 ו- 2 מייצרנים. נסמן סימולטנית על הכמות שהם ייצרו, וההיצע הכולל קובע את מחיר המוצר, שהוא זהה לשני היצרנים. נסמן ב- q_1 וב- q_2 את הכמויות שמייצרים היצרנים q_1 ו- q_2 בהתאמה. אזי הכמות הכוללת של מוצרים בשוק היא q_2 ב- q_1 נניח כי המחיר של יחידה שווה ל-

$$2-q_1-q_2$$
.

עלות הייצור של יחידה ליצרן הראשון היא היא וליצרן השני היא וליצרן האטווי משקל במשחק עלות הייצור של יחידה ליצרן הראשון היא

זה, ואם כן, מה הוא?

פתרון:

זהו משחק שני שחקנים (היצרנים 1 ו- 2) שבו קבוצת האטסטרגיות של כל שחקן היא $[0,\infty)$. אם שחקן 1 בוחר באסטרטגיה q_2 התשלום לשחקן q_3 הוא באסטרטגיה q_2 בוחר באסטרטגיה באסטרטגיה ווא

$$u_1(q_1, q_2) = q_1(2 - q_1 - q_2) - q_1c_1 = q_1(2 - c_1 - q_1 - q_2)$$
, (*)

והתשלום לשחקן 2 הוא

$$u_2(q_1, q_2) = q_2(2 - q_1 - q_2) - q_1c_2 = q_2(2 - c_2 - q_1 - q_2)$$
.

 $u_1(q_1,q_2)$ את מביא למקסימום ערך q_1 התשובה בטובה ביותר של שחקן לאסטרטגיה q_2 של שחקן לאסטרטגיה ביותר של חקן q_1 היא פונקציה ריבועית עם מקסימום בנקודה שבה הנגזרת מתאפסת:

$$\frac{\partial u_1(q_1, q_2)}{\partial q_1} = 0 .$$

על ידי גזירה של אגף ימין של משוואה (*) נקבל את התנאי על ידי גזירה של אגף ימין של משוואה או $2-c_1-2q_1-q_2=0$

$$q_1 = \frac{2 - c_1 - q_2}{2} \ . \tag{1*}$$

באותו אופן, התשובה הטובה ביותר של שחקן 2 לאסטרטגיה q_1 של שחקן q_2 היא ערך q_2 שבו הנגדרת של באותו אופן, התשובה ביותר של ידי גזירה נקבל על ידי $u_2(q_1,q_2)$

$$q_2 = \frac{2 - c_2 - q_1}{2} \ . \tag{2*}$$

פתרון המשוואות (*1) ו- (2*) נותן

$$q_1^* = \frac{2 - 2c_1 + c_2}{3}$$
, $q_2^* = \frac{2 - 2c_2 + c_1}{3}$.

זה אמנם שיווי משקל וזהו שיווי משקל היחיד של המשחק. התשלומים של השחקנים בשיווי משקל זה הם

$$u_1(q_1^*, q_2^*) = \left(\frac{2 - 2c_1 + c_2}{3}\right)^2 = (q_1^*)^2$$
, $u_2(q_1^*, q_2^*) = \left(\frac{2 - 2c_2 + c_1}{3}\right)^2 = (q_2^*)^2$.

כעת נוכיח כי הצמד אסטרטגיות (q_1^*,q_2^*) מהווה נקודת שיווי משקל. יש להוכיח כי הצמד אסטרטגיות (q_1^*,q_2^*) מהווה נקודת שיווי משקל. יש להוכיח כי הצמד אסטרטגיות q_2^* מהווה נקודת שיווי משקל. ביחס ל- q_2^* ולהפך.

$$u(q_1, q_2^*) = q_1(2 - c_1 - q_1 - q_2^*) = -q_1^2 + (2 - c_1 - q_2^*)q_1$$
.

לכן המקסימום המקסימום לכן -1 הוא q_1^2 של המקדם אל , q_1 של 2 מסדר מסדר פולינום לכן לכן לכן לכן

$$q_1 = \frac{(2 - c_1 - q_2^*)}{2} = \frac{(2 - c_1 - \frac{2 - 2c_2 + c_1}{3})}{2} = q_1^*$$
.

 q_2^st -ל ביחס ביחקן שחקן שובה טובה ביותר לביחס ל-