Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat No.

[5352]-538

S.E. (Electronics/E & TC) (II Semester) EXAMINATION, 2018 ANALOG COMMUNICATION

(2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B.: (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - iii) Assume suitable data, if necessary.
- 1. (a) What are the different types of amplitude modulation? Explain any one in detail. [6]
 - (b) For receiver with IF and RF frequencies of 455 kHz and 900 kHz respectively. Determine: [6]
 - (i) The local oscillator frequency
 - (ii) Image frequency
 - (iii) Image frequency rejection ratio for Q of 80.

Or

- 2. (a) Draw and explain phase shift method of SSB-SC modulator. [6]
 - (b) AM transmitter has carrier of 550 Watt and modulated at depth of 65%, find the total power in transmitted wave and power saving in the following cases: [6]
 - (i) DSBSC
 - (ii) SSBSC.

3. (a)	Explain the performance characteristics of receiver with response
	curve:
	(i) Sensitivity
	(ii) Selectivity
	(iii) Fidelity.
(<i>b</i>)	A carrier is frequency modulated with a sinusoidal signal of
	2 kHz resulting in frequency deviation of 5 kHz:
	(i) Find bandwidth and modulation index of modulated wave.
	(ii) If amplitude of modulating sinusoidal signal is increased
	by 3 and its frequency is halved. Find maximum frequency
	deviation and bandwidth of new modulated signal. [6]
	9,30
	Qr ,
4. (a) (b)	What neat phasor diagram explain balanced slope detector in
	FM. [6]
	FM wave is represented by the following equation,
	$V = 10 \sin [5 \times 10^8 t + 4 \sin 1250 t]$. Calculate :
	(i) Carrier and modulating frequency
	(ii) Modulation index and maximum deviation
	(iii) Power dissipated by FM wave in 5Ω resistor. [6]
5. (a)	Derive the expression to calculate effective noise for series
	and parallel connection for resistors. [7]
(<i>b</i>)	Define the terms: [6]
	(i) Noise figure 1D Noise temperature
	(ii) Noise bandwidth.
[5352]-538	2

- 6. A mixer stage has a noise figure of 20 dB and this is preceded (a) by amplifier that has a noise figure of 9 dB and an available power gain of 15 dB. Calculate the overall noise figure referred to input. [6]
 - Explain the performance of SSBSC in the presence of (*b*) noise. [7]
- With suitable example, explain band limited and time limited 7. (a) [6] signal.
 - Discuss PWM generation and detection in detail. (*b*) [7]

- State sampling theorem and discuss its types. 8. (a) [6]
 - Differentiate between pulse analog modulation and pulse digital (*b*) 27. 16.28 11105 1019 101. 16^t modulation. Discuss pulse code modulation.