Pascal Romon

Introduction:

En pratique, le déterminant d'une matrice $n \times n$ mesure l'aire d'un parallélogramme (n=2), le volume d'un parallélépipède (n=3), ou d'un pavé de dimension supérieure. Il sert donc à mesurer les aires et volumes.

Utilisation pratique:

Détermine l'unicité de la solution d'un système linéaire.

Pascal Romon Déterminant 2/31

Déterminant et parallélogramme

Soit le parallélogramme défini par
$$\mathbf{u} = \begin{pmatrix} u_x \\ u_y \end{pmatrix}$$
 et $\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$:

Le déterminant de la matrice $[\mathbf{u}|\mathbf{v}]$,noté $\det(\mathbf{u},\mathbf{v})$, est l'aire de ce parallélogramme, affecté du signe – si le trajet de \mathbf{u} à \mathbf{v} se fait dans le sens des aiguilles d'une montre (contraire au sens dit trigonométrique).

Pascal Romon Déterminant 3 / 31

Propriété:

Colinéarité

$$\det(\mathbf{u}, \lambda \mathbf{u}) = 0 \quad \forall \lambda$$

l'aire d'un parallélogramme issu de 2 vecteurs colinéaires (aplati) est nulle.

Antisymétrie Pascal Romon

Parallélogramme

L'aire d'un parallélogramme = base × hauteur

Pascal Romon Déterminant 5 / 31

Parallélogramme

Les parallélogrammes définis par (\mathbf{u}, \mathbf{v}) et $(\mathbf{u}, \mathbf{v} + \lambda \mathbf{u})$ ont la même base et la même hauteur, donc la même surface .

Pascal Romon Déterminant 6 / 31

Déterminant 2D

Propriété:

$$det(\mathbf{u}, \mathbf{v}) = det(\mathbf{u}, \mathbf{v} + \lambda \mathbf{u}) \quad \forall \lambda$$

pour une matrice, l'ajout à une colonne d'une combinaison linéaire des autres colonnes ne change pas son déterminant.

Pascal Romon Déterminant 7 / 31

Propriété:

Additivité

$$det(\mathbf{u}, \mathbf{v} + \mathbf{w}) = det(\mathbf{u}, \mathbf{v}) + det(\mathbf{u}, \mathbf{w})$$

Pascal Romon Déterminant 8 / 31

Propriété:

$$\det(\mathbf{u}, \lambda \mathbf{v}) = \lambda \det(\mathbf{u}, \mathbf{v})$$

multiplier une colonne de la matrice par λ multiplie aussi le déterminant par λ .

Pascal Romon Déterminant 9 / 31

Déterminant 2D

Propriété:

$$\det(\mathbf{u}, \mathbf{v} + \mathbf{w}) = \det(\mathbf{u}, \mathbf{v}) + \det(\mathbf{u}, \mathbf{w})$$
et
$$\det(\lambda \mathbf{u}, \mathbf{v}) = \lambda \det(\mathbf{u}, \mathbf{v})$$

$$\downarrow$$

Linéarité

$$\det(\mathbf{u}, \lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \det(\mathbf{u}, \mathbf{v}) + \mu \det(\mathbf{u}, \mathbf{w})$$

Pascal Romon Déterminant 10 / 31 Déterminant 2D

Propriété:

$$\det(\mathbf{i}, \mathbf{j}) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

Pascal Romon Déterminant 11 / 31

Déterminant 2 × 2

Soient i et j les vecteurs unitaires du référentiel, on a :

$$\begin{vmatrix} a & c \\ b & d \end{vmatrix} = \det(a\mathbf{i} + c\mathbf{j}, b\mathbf{i} + d\mathbf{j})$$

$$= \det(a\mathbf{i} + c\mathbf{j}, b\mathbf{i}) + \det(a\mathbf{i} + c\mathbf{j}, d\mathbf{j})$$

$$= \det(a\mathbf{i}, b\mathbf{i}) + \det(c\mathbf{j}, b\mathbf{i}) + \det(a\mathbf{i}, d\mathbf{j}) + \det(c\mathbf{j}, d\mathbf{j})$$

$$= ab \det(\mathbf{i}, \mathbf{i}) + bc \det(\mathbf{j}, \mathbf{i}) + ad \det(\mathbf{i}, \mathbf{j}) + cd \det(\mathbf{j}, \mathbf{j})$$

$$= -bc \det(\mathbf{i}, \mathbf{j}) + ad \det(\mathbf{i}, \mathbf{j}) = ad - bc$$

déterminant 2×2

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

Pascal Romon Déterminant 12 / 31

Système linéaire

Soit le système :
$$\begin{cases} 4x - y = 1 \\ 2x + 3y = 5 \end{cases}$$

On pose:
$$\mathbf{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 $\mathbf{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\mathbf{b} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$

Le système s'écrit alors : $\mathbf{u}x + \mathbf{v}y = \mathbf{b}$

Pascal Romon Déterminant 13 / 31

Système linéaire

$$\mathbf{u}x + \mathbf{v}y = \mathbf{b}$$

$$\det(\mathbf{b}, \mathbf{v}) = \det(\mathbf{u}x + \mathbf{v}y, \mathbf{v})$$

$$= x \det(\mathbf{u}, \mathbf{v}) + y \det(\mathbf{v}, \mathbf{v})$$

$$= x \det(\mathbf{u}, \mathbf{v})$$

$$\Rightarrow x = \frac{\det(\mathbf{b}, \mathbf{v})}{\det(\mathbf{u}, \mathbf{v})}$$

de même ...

$$\Rightarrow y = \frac{\det(\mathbf{u}, \mathbf{b})}{\det(\mathbf{u}, \mathbf{v})}$$

Pascal Romon Déterminant 14 / 31

Système linéaire

$$\begin{cases} 4x - y &= 1\\ 2x + 3y &= 5 \end{cases} \text{ et } \mathbf{u} = \begin{pmatrix} 4\\ 2 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} -1\\ 3 \end{pmatrix} \text{ et } \mathbf{b} = \begin{pmatrix} 1\\ 5 \end{pmatrix}$$

$$x = \frac{\det(\mathbf{b}, \mathbf{v})}{\det(\mathbf{u}, \mathbf{v})} \qquad y = \frac{\det(\mathbf{u}, \mathbf{b})}{\det(\mathbf{u}, \mathbf{v})}$$

$$x = \begin{vmatrix} 1 & -1\\ 5 & 3 \end{vmatrix} = \frac{8}{14} \qquad y = \frac{\begin{vmatrix} 4 & 1\\ 2 & 5 \end{vmatrix}}{\begin{vmatrix} 4 & -1\\ 2 & 3 \end{vmatrix}} = \frac{18}{14}$$

méthode directe et rapide — attention au cas où $det(\mathbf{u}, \mathbf{v}) = 0$!

Pascal Romon Déterminant 15 / 31

Déterminant 3×3

Introduction:

Le déterminant $\det(\mathbf{u}, \mathbf{v}, \mathbf{w})$ correspond au volume du parallélépipède issu des vecteurs \mathbf{u}, \mathbf{v} et \mathbf{w} .

Pascal Romon Déterminant 16 / 31

Déterminant 3 × 3

Propriétés :

- Si au moins deux vecteurs parmi u, v et w sont colinéaires ou (plus généralement) si u, v et w sont coplanaires, alors $det(\mathbf{u}, \mathbf{v}, \mathbf{w}) = 0.$
- Le signe du déterminant dépend de la "règle de la main droite".

Pascal Romon Déterminant 17 / 31

Déterminant 3×3

Calcul (rapide) par la règle de Sarrus :

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$
$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{11} & m_{12} \\ m_{21} & m_{22} & m_{23} & m_{21} & m_{22} \\ m_{31} & m_{32} & m_{33} & m_{31} & m_{32} \end{bmatrix}$$

$$\det(\mathbf{M}) = m_{11} m_{22} m_{33} + m_{12} m_{23} m_{31} + m_{13} m_{21} m_{32} - m_{31} m_{22} m_{13} - m_{32} m_{23} m_{11} - m_{33} m_{21} m_{12}$$

Attention : ne marche qu'en dimension 3, et pas forcément plus rapide qu'un pivot.

Pascal Romon Déterminant 18 / 31

Calcul (rapide) par le pivot :

(1) faire le pivot de Gauss (simple), (2) multiplier les coefficients diagonaux.

Attention la multiplication d'une ligne par k multiplie le déterminant par k, l'échange de ligne (ou colonne) par -1.

Déterminant $n \times n$

$$\mathbf{M} = \left[\begin{array}{ccccc} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{array} \right]$$

Comatrice (matrice des cofacteurs)

Calcul récursif : $\det(\mathbf{M}) = \sum_{j=1}^{n} m_{i,j}.\mathbf{Cof}_{i,j}$ (*i* arbitraire)

Pascal Romon Déterminant 21/31

Déterminant $n \times n$

Calcul récursif : exemple avec déterminant 3×3

(développement par rapport à la première colonne)

$$\mathbf{M} = \left[\begin{array}{ccc} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{array} \right]$$

$$\det(\mathbf{M}) = m_{11} \begin{vmatrix} m_{22} & m_{23} \\ m_{32} & m_{33} \end{vmatrix} - m_{21} \begin{vmatrix} m_{12} & m_{13} \\ m_{32} & m_{33} \end{vmatrix} + m_{31} \begin{vmatrix} m_{12} & m_{13} \\ m_{22} & m_{23} \end{vmatrix}$$

Pascal Romon Déterminant 22 / 31

Déterminant nD

Pour calculer le déterminant d'une matrice :

 3×3 : 3 déterminants de matrices 2×2

 4×4 : 4 déterminants de matrices 3×3

 $\mathbf{5} \times \mathbf{5}$: 5 déterminants de matrices 4×4

 $\mathbf{6} \times \mathbf{6}$: 6 déterminants de matrices 5×5

 \rightarrow 120 déterminants 3×3

Pascal Romon Déterminant 24/31

Déterminant nD

Temps de calcul:

Le calcul de l'inverse d'une matrice d'ordre n par la méthode du déterminant est en $\mathcal{O}(n^2n!)$.

n	temps de calcul (processeur 3GHz)
10	10^{-5} s
15	11 s
20	1 an
25	11 millions d'années (trop long)

Pascal Romon Déterminant 25 / 31

Complexité : $O(n^2n!)$

Pascal Romon Déterminant 26 / 31

Propriétés :

- $\det(A') = -\det(A)$ si A' = A avec 1 permutation de ligne
- det(A') = -det(A) si A' = A avec 1 permutation de colonne
- $\det(A)$ invariant si $L_A(i) = L_A(i) + kL_A(j)$ $(i \neq j)$
- $\det(A') = k \cdot \det(A)$ si $L_{A'}(i) = k \cdot L_A(i)$
- $\det(kA) = k^n \det(A)$
- $\det(A) = \det(A^{\mathsf{T}})$
- det(A) = 0 si A est singulière (c-à-d non inversible)
- $det(A) = \prod A_{ii}$ si A est triangulaire ou diagonale

Pascal Romon Déterminant 27 / 31

Calcul numérique

Algorithm 1: déterminant

input: une matrice carrée A

Triangulariser A pivot de Gauss

- en faisant des permutations de lignes et de colonnes
- en ajoutant aux lignes une combinaison linéaire d'autres lignes
- → noter pour chaque opération le changement de signe du déterminant

return
$$\pm \prod A_{ii}$$

Cette méthode permet aussi de calculer le rang de ${\cal A}.$

Pascal Romon Déterminant 28 / 31

Calcul numérique

Applications:

- savoir si un système linéaire a une solution.
- vision par ordinateur: connaître l'orientation d'une caméra à partir du signe du déterminant de sa matrice de projection.
- synthèse d'image : connaître le facteur de changement de volume d'une transformation 3D.

Pascal Romon Déterminant 31 / 31