

سمینار دفاع از پروژه کارشناسی

موضوع

بهینه سازی مسئله جانمایی ماشینهای مجازی بر روی سرورها با استفاده از الگوریتم شاهین هریس

> ارائه دهنده مهدی شیخ صراف

استاد راهنما: دكتر محسن كياني

٣

شرح پروژه

۶

مراجع

فهرست مطالب

٢

مفاهيم

۵

جمعبندي

1

مقدمه

۴

نتايج

مقدمه

مقدمه

جانمایی ماشین مجازی چیست؟

- یکی از مسائل کلیدی در مدیریت مراکز داده ابری، جانمایی موثر ماشینهای مجازی (VMs) بر روی ماشینهای فیزیکی (PMs) است.
- هدف آن به حداکثر رساندن کارایی ، بهبود عملکرد کلی سیستم و به حداقل رساندن مصرف منابع
 است.
 - به عنوان VM Placement شناخته می شود.

مقدمه

كدام الگوريتم مناسب است؟

- در گذشته الگوریتمهای تکاملی مانند ژنتیک، کلونی مورچهها و زنبور عسل به کار گرفته میشد.
 - ویایی و تطبیقپذیری، از ویژگیهای این الگوریتمها بود.
 - آخرین پیشرفت در این زمینه الگوریتم تکاملی شاهین هریس (HHO) است.

مقدمه

الگوريتم شاهين هريس

- الگوريتم شاهين هريس يک الگوريتم بهينه سازي است.
- در این مسئله هدف آن بهینهسازی استفاده از منابع سختافزاری و افزایش قابلیت اطمینان و کارایی سیستمهای مجازیسازی است.
- این الگوریتم از روشهای ترکیبی، از جمله الگوریتمهای تکاملی و الگوریتمهای فراابتکاری استفاده میکند.

مفاهيم

مدلسازی مسئله جانمایی ماشین مجازی

فرضيات مسئله:

- تمام سرورهای فیزیکی (PM) دارای مشخصات ثابتی مانند حافظه، ظرفیت پردازشی، و میزان انرژی مصرفی هستند.
- هر ماشین مجازی (VM) نیازمند مقدار معینی از منابع است که بایستی بدون قطعی به صورت کامل توسط PM تامین شود.

مدلسازی مسئله جانمایی ماشین مجازی

توابع هدف:

۱– <mark>کمینه سازی مصرف انرژی:</mark>

$$\left[\min \sum_{j=1}^{n} \left(E_{idle_j} + \left(E_{max_j} - E_{idle_j} \right) \times U_j \right) \right]$$

مصرف انرژی سرور j در حالت بیکاری: E_{iale_j}

 \mathbf{j} مصرف انرژی حداکثری سرور: E_{max_i}

استفاده کلی از PM که بر اساس مجموع منابع اختصاصی به VM ها بر روی این PM محاسبه می شود. U_j

مدلسازی مسئله جانمایی ماشین مجازی

توابع هدف:

۲– <mark>بهینه سازی بار ماشینهای فیزیکی:</mark>

 $\left[\min \sum_{j=1}^{n} U_j - U_{avg}\right]$

متوسط استفاده از تمام PM ها:

مدلسازی مسئله جانمایی ماشین مجازی

توابع هدف:

۳- کمینه سازی تعداد PM های فعال:

$$[\min \sum_{j=1}^{n} y_j]$$

است. PM_j متغیر باینری که نشان دهنده فعال یا غیر فعال بودن y_j

X_{rabbit} X_{rabbit} X_{rabbit} X_{rabbit}

مفاهيم

استراتژی الگوریتم شاهین هریس

۱- کشف طعمه

۲- يور<mark>ش غافلگيرانه</mark>

۳- حمله به شکار

دو فاز اصلی الگوریتم شاهین هریس

۱_ فاز اکتشاف

- در نظر گرفتن شاهینها به عنوان راه حل کاندید
- قرارگیری شاهینها در مناطق مختلف در انتظار شناسایی طعمه بر اساس دو استراتژی:
- استراتژی ۱: شاهینها بر اساس موقعیت سایر اعضای خانواده و موقعیت طعمه، موقعیت خود را تعیین می کنند.
 - استراتژی ۲: شاهینها بصورت تصادفی بر روی درختان بلند قرار می گیرند.

فاز اكتشاف

$$[X(t+1) = X_{rand} - r_1 \times r_2 \times X_{rand} - X(t)]$$

t+1 موقعیت جدید شاهین در زمان:X(t+1)

یک موقعیت اتفاقی از میان جمعیت X_{rand}

[0,1] و r_1 : اعداد تصادفی در بازه r_2

۲-فاز بهرهبرداری

- شاهینها رفتار یورش غافلگیرانه را با حمله به طعمهای که در مرحله قبلی تشخیص داده شده بود انجام میدهند.
 - شاهینها ، محاصره سخت یا نرم را برای گرفتن طعمه شکل میدهند.
- شاهینها به طعمه مورد نظر نزدیک میشوند تا شانس گروهی خود را برای شکار طعمه افزایش دهند.
- طعمه بعد از مدتی، انرژی خود را از دست میدهد، سپس شاهینها روند محاصره را تشدید میکنند.

فاز بهرهبرداری

$$[X(t+1) = X_{\text{prey}} - r_3 \times \left(X_{\text{prey}} - X(t)\right) \text{ if } r_4 > 0.5]$$

$$[X(t+1) = \left(X_{\text{prey}} - X(t)\right) - r_3 \times \left(LB + r_5 \times (UB - LB)\right) \text{ otherwise}]$$

موقعیت فعلی شاهین:X(t)

موقعیت شکار (بهترین راهحل فعلی) $X_{ extsf{prey}}$

این فضای جستجو LB

الای فضای جستجوUB: کران بالای

و r_3 و r_4 اعداد تصادفی r_5

شرح پروژه

انواع نگاشت (mapping):

١:

۲:

انواع نگاشت (mapping):

مكانيزم حل مسئله با الگوريتم شاهين هريس:

پارامترهای اصلی:

Hho_epoch

Hho_pop_size

max_energy_Hho

Hho_expolit_rate

Hho_attack_rate

مكانيزم حل مسئله با الگوريتم شاهين هريس:

توابع اصلى:

- run()
- explorePhase()
- exploitPhase()
 - attackPhase()

عملگرهای حل مسئله با الگوریتم شاهین هریس:

فاز اكتشاف:

۱-تغییر مکان با استفاده از مکان دیگر شاهین ها (استفاده از عملگر متقاطع تک نقطهای):

۲- تغییر مکان به صورت تصادفی (استفاده از عملگر جهش تعویض):

فاز بهرهبرداری:

محاصره نرم:

۱- استفاده از موقعیت نزدیک ترین شاهین به طعمه (استفاده از عملگر متقاطع تک نقطهای با بهترین جواب)

۲- محاصره نرم به صورت تصادفی (استفاده از عملگر جهش وارونگی)

بحاصره سخت:

۱- تغییر در نزدیک ترین شاهین به طعمه (استفاده از عملگر جهش تعویض روی بهترین جواب)

۲- تغییر در موقیت شاهین اگر به طعمه نزدیک تر شد(استفاده از عملگر جهش وارونگی)

نتايج

پارامتر P نسبت درخواست پردازنده به حافظه را در

ماشینهای مجازی مشخص مینماید.

این کد با زبان برنامه نویسی ++ در کامپیوتری به مشخصات زیر اجرا شده است: α مرتبه هربار با تعداد ماشین مجازی مختلف و α بار تغییر پارامتر α .

Processor Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz

Installed RAM 12.0 GB (11.9 GB usable)

Device ID EE52F43B-42AE-4088-97F4-EDCB0594B463

Product ID 00331-10000-00001-AA459

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Edition Windows 11 Pro

Version 21H2

OS build 22000.2538

Compiler:

g++ (x86 64-posix-seh-rev0, Built by MinGW-W64 project) 8.1.0

نتايج

این نتایج از میانگین ۱۰ بار اجرای هر الگوریتم بدست آمدهاند.

جمعبندي

جمعبندي

در دنیای کنونی با پیشرفت علم و تکنولوژی، جانمایی ماشین مجازی با هدف به حداکثر رساندن کارایی و عملکرد کلی سیستم امری ضروری است.

هدف از انجام این پروژه، بهینه سازی این مسئله با استفاده از الگوریتم شاهین هریس بود که الهام گرفته شده از رفتار شاهینها است.

جمعبندي

- تعویض عملگرهای به کار برده شده ومقایسه آن با عملگرهای قبلی
- تغییر پارامترهای اصلی کد و بدست آوردن بهینه به صورت تجربی
 - تعویض نگاشت به نوع اول

<mark>دانشگاه ا</mark>صفهان <mark>دانشکده ریا</mark>ضی و کامپیوتر خوانسار گروه علوم کامپیوتر

مراجع

۳۴ از ۳۴

مراجع اصلي

[1] Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. "Harris hawks optimisation: Algorithm and applications", Future generation computer systems. 2019 Aug 1; 97:849–72...

[2] https://programstore.ir/الگوريتم-شاهين Accessed 4 February 2024

[3] H. S. M, T. SK, Gupta P, McArdle G (2023) A Harris Hawk Optimisation system for energy and resource efficient virtual machine placement in cloud data centers. PLoS ONE. 2023 August 11, 18(8): e0289156. https://doi.org/10.1371/journal. pone.0289156

با سپاس از صبر و توجه شما

