ゼミノート#1

Fine/Coarse Moduli Space の非存在

七条彰紀

2018年5月29日

間 0.1 -

Fine/Coarse moduli space とは何か?

moduli space は "moduli functor"の情報を可能な限り精密に写した scheme のことである. その理解のためにはまず "functor of points"の概念が必要である. 以下, 私が過去に書いたノート "Group Scheme"を引用・加筆する.

1 Functor of Points

圏論で言う "generalized point"の概念を、名前を変えて用いる.

定義 1.1

- (i) $X, T \in \mathbf{Sch}/S$ に対し、 $\underline{X}(T) = \mathrm{Hom}_{\mathbf{Sch}/S}(T, X)$ を X の T-valued points と呼ぶ、 $T = \mathrm{Spec}\,R$ と 書けるときは $\underline{X}(T)$ を $\underline{X}(R)$ と書く、したがって \underline{X} は \mathbf{Sch}/S からの covariant functor と見ることも、k-algebra の圏からの contravariant functor と見ることも出来る。この関手 \underline{X} は functor of points と 呼ばれる。
- (ii) 体 k 上の scheme :: X ($S = \operatorname{Spec} k, X \in \operatorname{\mathbf{Sch}}/S$) と field extension :: $k \subseteq K$ について、 $\underline{X}(K)$ を X の K-rational points と呼ぶ.
- (iii) morphism :: $h: X \to Y$ について自然変換 $\underline{h}: \underline{X} \to \underline{Y}$ は $\phi \mapsto h \circ \phi$ のように射を写す.

注意 1.2

Sch は locally small category である. すなわち, 任意の $X,T \in \mathbf{Sch}$ について $\underline{X}(T)$ は集合である. これを確かめるために, $X,Y \in \mathbf{Sch}$ を任意にとり, $\mathrm{Hom}(X,Y)$ の濃度がある濃度で抑えられることを見よう. 射 $X \to Y$ の作られ方に沿って考える.

- (1) base space の間の写像 $f:\operatorname{sp} X\to\operatorname{sp} Y$ をとる.このような写像全体の濃度は高々 $|\operatorname{sp} Y|^{|\operatorname{sp} X|}$.
- (2) |Y| の開集合 U をとる. 開集合全体の濃度は高々 $2^{|\operatorname{sp} Y|}$.
- (3) 写像 $f_U^\#: \mathcal{O}_Y(U) \to (f_*\mathcal{O}_X)(U)$ を定める. このような写像全体の濃度は高々 $|(f_*\mathcal{O}_X)(U)|^{|\mathcal{O}_Y(U)|}$.

したがって Hom(X,Y) の濃度は高々

$$|\operatorname{sp} Y|^{|\operatorname{sp} X|} \times \prod_{U \in 2^{\operatorname{sp} Y}} |(f_* \mathcal{O}_X)(U)|^{|\mathcal{O}_Y(U)|}$$

となる. 濃度の上限が存在する(すなわち、ある集合への単射を持つ)から、 $\operatorname{Hom}(X,Y)$ は集合である.

注意 1.3

上の注意から、Yoneda Lemma が成立する. したがって自然変換 $G \to H$ と射 $G \to H$ が一対一対応する. このため、scheme の間の射についての議論と functor of points の間の射の議論は(ある程度)互いに翻訳することが出来る.

注意 1.4

K-rational point については, $\underline{X}(K) = \{x \in X \mid k(x) \subseteq K\}$ とおく定義もある.ここで k(x) は x での residue field である.しかし [6] Chapter.2 Ex2.7 から分かる通り,この二つの定義は翻訳が出来る.すなわ ち, $k(x) \subseteq K$ を満たす $x \in X$ と,Spec k-morpsihm :: Spec $K \to X$ は一対一に対応する.

また X :: finite type /k であるとき、closed point :: $x \in X$ について、k(x) は k の有限次代数拡大体である.これは Zariski's Lemma の帰結である.したがって $\underline{X}(\bar{k})$ は X の closed point 全体に対応する.ただし \bar{k} は k の代数閉包である.

例 1.5

 \mathbb{R} 上の affine scheme $X=\operatorname{Spec}\mathbb{R}[x,y]/(x^2+y^2)$ の \mathbb{R} -rational point と \mathbb{C} -rational point を考えよう. $\operatorname{Spec}\mathbb{R}\to X$ の射は環準同型 $\mathbb{R}[x,y]/(x^2+y^2)\to\mathbb{R}$ と一対一に対応する. しかし直ちに分かる通り、このような環準同型は

$$(\bar{x},\bar{y})\mapsto(0,0)$$

で定まるものしか存在し得ない.ここで $\bar{x}=x \bmod (x^2+y^2), \bar{y}=y \bmod (x^2+y^2)$ と置いた.よって $\underline{X}(\mathbb{R})$ は 1 元集合.また,この環準同型が誘導する Spec $R\to X$ の射は 1 点空間 Spec \mathbb{R} を原点へ写す.

一方, 環準同型 $\mathbb{R}[x]/(x^2+1) \to \mathbb{C}$ は

$$(\bar{x}, \bar{y}) \mapsto (a, \pm ia)$$

(ここで $i=\sqrt{-1}, a\in\mathbb{R}$)で定まることが分かる。すなわち, $\mathcal{Z}_a(x^2+y^2)\subseteq\mathbb{A}^2_{\mathbb{C}}$ の点に対応して, $\mathbb{R}[x]/(x^2+1)\to\mathbb{C}$ の環準同型が定まる。逆の対応も明らか。よって $\underline{X}(\mathbb{C})$ の元は $\mathcal{Z}_a(x^2+y^2)\subseteq\mathbb{A}^2_{\mathbb{C}}$ の点に対応している。

例 1.6

体 k 上の affine variety :: $X \subseteq \mathbb{A}^n_k$ を多項式系 :: $F_1, \ldots, F_n \in k[x_1, \ldots, x_n]$ で定まるものとする. すると k 上の環 R に対して、次の集合が考えられる.

$$V_R = \{ p = (r_1, \dots, r_n) \in R^{\oplus n} \mid F_1(p) = \dots = F_n(p) = 0 \}.$$

この集合の元も R-value point と呼ばれる. ([12] ではこちらのみを R-value point と呼んでいる. 実際,こちらのほうが字句 "value point"の意味が分かりやすいだろう.) V_R の点が $\underline{X}(R)$ の元と一対一に対応することを見よう.

X の affine coordinate ring を $A = k[x_1, \ldots, x_n]/(F_1, \ldots, F_n)$ とし、 $\bar{x}_i = x_i \mod (F_1, \ldots, F_n)$ $(i = 1, \ldots, n)$ とおく、 $\phi: A \to R$ を考えてみると、これは次のようにして定まる.

$$(\bar{x}_1,\ldots,\bar{x}_n)\mapsto (r_1,\ldots,r_n)\in V_R.$$

すなわち、 V_R の点に対して $\operatorname{Hom}_{\mathbf{Ring}/k}(A,R)$ の元が定まる。逆の対応は明らか。そして、 $\operatorname{Hom}_{\mathbf{Ring}/k}(A,R)$ が $\operatorname{Hom}_{\mathbf{Sch}/\operatorname{Spec}\,k}(\operatorname{Spec}\,R,X)=\underline{X}(R)$ と一対一対応することはよく知られている。

2 Moduli Functor and Fine/Corse Moduli Space

A を代数幾何学的対象の集合とし、 \sim を A の中の同値関係とする."naive moduli problem"は、M の点 $^{\dagger 1}$ と A/\sim の元(同値類)が一対一対応するような scheme :: M を見つけよ、という問題である.更に A/\sim の元が「連続的に変化」する様子も「エンコード」しているような M を見つけよ、という問題を "extended moduli problem"と呼ぶ(正確な定義は [8] §2.2)."extended moduli problem"を定式化するには、「連続的に変化」と「エンコード」を定式化しなくてはならない.前者の為に "family"が定義され,後者の為に "moduli functor"が定義される.すると「エンコード」は関手の表現であると理解できる.射の fibre として実現される,scheme(例えば smooth curve)の family は deformation theory の対象である.

2.1 Families

定義 2.1

 \mathcal{P} を集合のクラス $\frac{1^2}{2}$ とする. 集合 B について,B の構造と整合的な構造を持った集合 \mathcal{F} と全射写像 $\pi: \mathcal{F} \to B$ の組が \mathcal{P} の B 上の family であるとは,各 $b \in B$ について集合 $\pi^{-1}(b) \subseteq \mathcal{F}$ が \mathcal{P} に属すということ.

「B の構造と整合的な構造」というのは、例えば、S が位相空間であって写像 $F \to S$ を連続にするような位相が F に入っている、ということである。family の構造は場合毎に明示されなくてはならない。

用語 "family"を厳密に定義しているものは全くと言っていいほど無いが、ここでは Renzo のノート^{†3} の定義を参考にした。"family"を上のように解釈して不整合が生じたことは、私の経験の中ではない。

注意 2.2

moduli theory 以外で "family of \mathcal{C} "と言えば、単に \mathcal{C} の部分集合であろう。 "family parametrized by S"の様に言えば、S-indexed family (or set) のことを想像するであろう。 しかし S-indexed family :: $\mathcal{F} \subset \mathcal{C}$ は $S \to \mathcal{F}$ という写像で定まるから、ここでの "family"とは写像の向きが逆である。

上の定義を無心に読めば分かる通り、「C の family :: F」と言った時には、C に属すのは F の部分集合である。属すのは(-般に)F の元ではない。また F は C の元の和集合とみなせる。(正確には C の元を S に沿って並べたものである。)

例 2.3

 $^{^{\}dagger 1}$ [9] では、特に M の geometric point. 定義は後述.

 $^{^{\}dagger 2}$ 集合 X を変数とする述語 $X \in \mathcal{C}$ の意味を「X はある条件を満たす対象である」と定義した,と考えて良い.「属す」の意味は集合と同様に定める.

^{†3} http://www.math.colostate.edu/~renzo/teaching/Topics10/Notes.pdf

X,B:: scheme, $f:X\to B$:: morphism of schemes をとる. X は f によって B 上の family となる. B の 点における f の fiber が moduli 問題の対象である. 我々が代数幾何学の一分野として Moduli 問題を扱う場合, 現れる family はこのようなもののみである.

例 2.4

k を体, S を適当な scheme とする. \mathbb{A}^2_k の原点を通る直線の S 上の family として, line bundle :: $\mathcal{L} \subset \mathbb{A}^2 \times_k S$ を考えることが出来る. $\mathcal{L} \to S$ は射影写像で与えられる. 同様に \mathbb{A}^n の r 次元線形空間の S 上の family は r 次元 vector bundle :: $\mathcal{E} \subset \mathbb{A}^n \times S$ である.

例 2.5

k を適当な体とし、 \mathbb{P}^1_k の点 O_i (i=1,2,3) を順に (0:1),(1:0),(1:1) とする.この時, $PGL_2(k)$ は次の全 単射で \mathbb{P}^1_k の自己同型写像の $(\mathbb{P}^1_k)^{\oplus 3}$ 上の family になる.

注意 2.6

family にしばしば要請される性質として、特に "flat" がある. projective flat family は、base scheme に適切な条件をつけると各 fiber :: X_t の Hilbert 多項式が t に依らない、という特徴がある ([6] III, Thm9.9). 詳細は [6] III, 9 を参照せよ.

2.2 Moduli Functor

以下の定義は[5]など、Moduli 問題に関する殆どの入門書で述べられている.

定義 2.7

moduli functor (または functor of families) とは、各 scheme :: S に対して、 $\mathcal{M}(S)$ が代数幾何学的対象の S 上の family 達を family の間の同値関係で割ったもの ("{families over $S}/\sim_S$ " in [8]) であるような $\mathcal{M}: \mathbf{Sch} \to \mathbf{Set}$ のことである。morphism :: $f: S \to T$ は、 \mathcal{M} によって pullback に写される。すなわち、 $\phi: \mathcal{F} \to T$ は $\mathcal{M}(f)$ によって $\mathcal{F} \times_T S \to S$ に写される。

$$\begin{array}{c|c}
\mathcal{F} \times_T S \longrightarrow \mathcal{F} \\
\mathcal{M}(f)(\phi) \middle\downarrow & & & \downarrow \phi \\
S \longrightarrow T
\end{array}$$

moduli functor の定義はあえて曖昧に述べられている. これは「出来る限り多くのものを moduli theory の範疇に取り込みたい」という思いがあるからである ([5]).

2.3 Fine Moduli Space

定義 2.8

scheme :: M が moduli fuctor :: \mathcal{M} に対する fine moduli space であるとは, M が \mathcal{M} を表現する (represent) ということである. 言い換えれば、関手 $\underline{M} = \operatorname{Hom}_{\mathbf{Sch}}(-, M)$ が \mathcal{M} と自然同型,ということである.

注意 2.9

moduli functor :: M の fine moduli space :: M が存在したとしよう. この時、任意の $X \in \mathbf{Sch}$ について $\mathcal{M}(X) \cong \underline{M}(X)$. これは X 上の family が成す同値類が M の X-valued point と一対一に対応していること を意味する. したがって、M が指定する代数幾何学的対象の集合の同値類を M が「パラメトライズ」していると考えられる.

定義 2.10

moduli fuctor :: \mathcal{M} に対する fine moduli space を M であるとする. また $\Psi: \mathcal{M} \to \underline{M}$ を自然同型とする. $u = \Psi_M^{-1}(\mathrm{id}_M): \mathcal{U} \to M$ を universal family と呼ぶ.

universal family の名前の由来は次の命題に拠る.

命題 2.11

任意の family :: $\phi: \mathcal{F} \to B \in \mathcal{M}(B)$ は、 $\chi = \Psi(\phi): B \to M$ と universal family :: $u: \mathcal{U} \to M$ の pullback (fiber product) として得られる.

(証明). $\Psi: \mathcal{M} \to M$ は自然同型であるから、 $\chi = \Psi(\phi): B \to M$ から次の可換図式が得られる.

$$\mathcal{M}(B) \stackrel{\mathcal{M}(\chi)}{\longleftarrow} \mathcal{M}(M)$$

$$\downarrow^{\Psi_B} \qquad \qquad \downarrow^{\Psi_M}$$

$$\underline{M}(B) \stackrel{\mathcal{M}(\chi)}{\longleftarrow} \underline{M}(M)$$

 $u \in \mathcal{M}(M)$ を $\mathcal{M}(\chi)$ で写すと $\mathcal{U} \times_M B \to B$ になる.同じ u を $\underline{M}(B)$ まで写すと, $\Psi_M(u) \circ \chi = \chi$ になる.これを Ψ_B^{-1} で写せば $\phi : \mathcal{F} \to B$. 上の図式は可換図式であったから, $\phi = \mathcal{U} \times_M B \to B$.

例 **2.12** ([8], Exercise 2.20)

例 2.4 で述べた \mathbb{A}^n の r 次元線形空間の S 上の family (vector bundle over S) の集合を, vector bundle の 同型で割った集合を $\mathcal{M}(S)$ とする. $f: T \to S$ に対する $\mathcal{M}(f)$ は, vector bundle への post-composition で 自然に定まる.

この moduli functor は fine moduli space を持つことが知られている. これが Grassmannian variety である.

残念ながら、多くの moduli functor に対して fine moduli space が存在し得ない. (このあたりの議論は [5] p.3 や [7] p.150 にある. この節の終わりでも理由と例を示す.) そのため Mumford は [9] で

2.4 Coarse Moduli Space

定義 2.13

moduli functor :: M に対して、以下を満たす scheme :: M を M の coarse moduli space と呼ぶ.

(i) 自然変換 $\Psi: \mathcal{M} \to \underline{M}$ が存在する.

(ii) Ψ は functor of points への自然変換の中で最も普遍的である:

この図式で \tilde{M} :: scheme, $f: M \to \tilde{M}$.

(iii) 任意の代数閉体 k について、 $\Psi_{\operatorname{Spec} k}: \mathcal{M}(k) \to \underline{M}(k)$ は全単射である.

条件 (ii) は "M is the best (possible) approximation of \mathcal{M} "だとか,"M is corepresent of \mathcal{M} "と表現される.

注意 2.14

条件 (ii) において f の向きを反転させると、coarse moduli space の定義が無意義に成る.実際,f の向きを反転させた条件を考えると、 \mathbf{Sch} の initial object $!: \emptyset$ が条件を満たす.普遍ならば一意なので,任意の moduli functor に対する coarse moduli space は空集合 \emptyset しかなくなる.これは条件 (iii) を満たさないので、coarse moduli space は一切存在しないことに成る.

注意 2.15

代数閉体 k について,M(k) の元は "geometric point" と呼ばれる ([9], p.1).

例 2.16

楕円曲線の j-invariant. 後に示すとおり、これは fine でない coarse moduli space である. 自然変換 Ψ は j-invariant(楕円曲線についての関数)を用いて

$$\Psi_S(\mathcal{F} \to S) : S \to \mathbb{A}^1; \qquad s \mapsto j(\mathcal{F}_s)$$

のように定義できる. 条件 (iii) は [6] IV, Thm4.1 で示されている. 以下, 条件 (ii) を示す.

ここでは [7] Prop 26.3 の証明を参照した. [11] では違う方針の証明が述べられている.

 $B=\operatorname{Spec} k[\lambda,1/\lambda,1/(1-\lambda)]$ とし、family :: $\phi:\mathcal{F}\to B$ を λ をパラメータとする family :: $y^2=x(x-1)(x-\lambda)$ で定める。j-invariant は

$$j(\lambda) = \frac{(1 - \lambda + \lambda^2)^3}{\lambda^2 (1 - \lambda)^2}$$

で定める。また、 $\lambda \in B$ を以下の 6 元のいずれかへ写す 6 つの B の自己同型群 G は、B に作用する位数 6 の群となる.

$$\lambda, 1 - \lambda, 1/\lambda, 1/(1 - \lambda), (\lambda - 1)/\lambda, \lambda/(\lambda - 1).$$

今, scheme :: M' と自然変換 Ψ' : $\mathcal{M} \to \underline{M'}$ が存在したとしよう. $\phi: \mathcal{F} \to B$ の Ψ' による像を $\chi': B \to M'$ とする.

 $y^2=x(x-1)(x-\lambda)$ と $y^2=x(x-1)(x-(1-\lambda))$ は同型であることが知られている。他の $1/\lambda,1/(1-\lambda),\dots$ についても同様である。 χ' は fiber の同型類と M' の点を(B の 6 点を経由して)一対一対応させる。なので,任意の $g\in G$ について $\chi'\circ g=\chi'$ すなわち, χ' は G-invariant map である.

G-invariant map は B の G による categorical quotient を介する二つの射に分解される. GIT quotient の 理論により,

$$B /\!\!/ G = \operatorname{Spec}(k[\lambda]^G)$$

が categorical quotient (特に good quotient. [8] 参照.). そしてこれは $\mathbb{A}^1_j = \operatorname{Spec} k[j]$ に等しい ([6] IV, Thm4.1 参照). なので $\chi': B \to M'$ は $B \to \mathbb{A}^1_j \to M'$ に分解される. こうして $\psi: \mathbb{A}^1_j \to M'$ が得られた. この ψ によって以下の図式が可換であることを確かめる. (TODO)

2.5 Properties of Fine / Coarse Moduli Spaces

命題 2.17

moduli functor :: *M* に対して coarse moduli space は同型を除いて一意である.

命題 **2.18** ([7], Prop23.6)

scheme :: M が moduli functor :: M に対する fine moduli space であるならば、M は M の coarse moduli space でもある.

この二つをまとめると次の図式に成る.

命題 2.19

M を moduli functor \underline{M} の coarse moduli space とする. また $\Psi: \mathcal{M} \to \underline{M}$ を自然変換とする. M が fine moduli space であることは次と同値.

- 1. $\Psi(u) = \mathrm{id}_M$ となる family :: $u: \mathcal{U} \to M$ が存在する.
- 2. 任意の scheme :: S について $\Psi_S : \mathcal{M}(S) \to \underline{M}(S)$ は単射.

(証明). M が fine moduli space である(すなわち Ψ が自然同型である)ときに 2 条件が成り立つことは明らか.

任意の scheme :: S について Ψ_S が同型 (iso) であることを示す。今, $\mathcal{M}(S), \underline{M}$ がどちらも集合であるから, Ψ_S は写像である。iso map は surj+inj map と同値であるから,我々は Ψ_S :: surj のみ示せば良い。しかしこのことは命題 2.11 で証明されている.

命題 **2.20** ([7], Prop23.5)

S :: scheme の open subscheme と包含写像が成す圏を $\mathbf{OpenSubSch}(S)$ と書くことにする. これは \mathbf{Sch}/S の full subcategory である.

moduli functor :: \mathcal{M} が fine moduli space をもつならば、任意の S :: scheme について $\mathcal{M}|_{\mathbf{OpenSubSch}(S)}$ は S 上の sheaf である. 言い換えれば、 \mathcal{M} は Zariski topology 上の sheaf である.

(証明). M :: fine moduli scheme for \mathcal{M} とし,S :: scheme を固定する. $\mathcal{F} := \underline{M}|_{\mathbf{OpenSubSch}(S)}$ は開集合系からの contravariant functor だから presheaf であることは定義から従う.また \mathcal{F} の元は scheme の

morphism である. このことから sheaf の公理 Identity Axiom と Gluability Axiom を満たすことも簡単に分かる. (一応, [6] II, Thm3.3 Step3 を参考に挙げる.)

注意 2.21

それぞれの fiber が互いに同型である (i.e. $\forall t, s \in S, \ \mathcal{F}_t \cong \mathcal{F}_s$) ような family を fiberwise trivial family, 対象 X (なめらかな曲線など) を用いて $X \times S \to S$ の形に書ける family を trivial family と呼ぶ.

fine moduli space が存在するならば、fiberwise trivial family は trivial family である (cf. [7] Remark 23.1.1). 実際、任意の fiber が X と同型であるような family :: $\mathcal{F} \to S$ から得られる $\Psi_S(\mathcal{F} \to S)$: $S \to M$ は X に対応する点への constant map になっている. $\Psi_S(X \times S \to S)$ も明らかに同じ constant map となるから、 Ψ_S :: isomorphism より $X \times S \to S \sim \mathcal{F} \to S$.

3 Non-existence of Fine/Coarse Moduli Space

問 3.1 -

Fine/Coarse Moduli Space はいつ存在するのか?

十分条件を示すのではなく $,^{\dagger 4}$. ここでは問を次のように限定する.

- 間 3.2 -

Fine/Coarse Moduli Space はいつ存在しないのか?

Moduli 問題の対象と一対一に対応する scheme が見つかったからと言って、それが fine moduli space であるとは言えない. 問題と成るのは、family の同型である. 以下では特に automorphism の存在と jump phenomenon が fine moduli space が存在するための障害と成ることを見る.

注意 (2.21) の内容を用いて証明する.

3.1 j-invariant is not a fine moduli space.

一つ例を見よう.

 $S = \mathbb{A}^1_k - \{0\}$ とする. S 上の楕円曲線の family :: \mathcal{F} を次で定める.

$$\mathcal{F} = \mathcal{Z}_a(y^2 - x^3 - s) \subseteq \mathbb{A}_k^2 \times_k S \xrightarrow{\mathrm{pr}} S.$$

 $\Psi(\mathcal{F})$ を j 不変量を用いて $s\mapsto j(\mathcal{F}_s)$ で定める. j 不変量が coarse moduli であることは既に見た. 計算すると分かる通り, $\Psi(\mathcal{F})$ は定値写像である. したがって \mathcal{F} のそれぞれの fiber は互いに同型である. 一方, $\mathcal{F}'=\mathcal{Z}_a(y^2-x^3-1)\times S$ について同様に $\Psi(\mathcal{F}')$ を定めると,これも自明に定値写像である. しかし, $\mathcal{F}\not\cong\mathcal{F}'$ であることが示せる. よって注意 (2.21) から j 不変量は fine moduli にならない. fine/coarse moduli の一意性から,楕円曲線は fine moduli を持たない.

 $proof\ of\ \mathcal{F}\ncong\mathcal{F}'$. [6] $I,\ Ex6.2$ を参考にする. 我々が調べるのは次の二つの環である. それぞれ \mathcal{F},\mathcal{F}' で

^{†4} 十分条件については次の命題が有る: https://stacks.math.columbia.edu/tag/01JJ. 次のページでは、この命題を用いて Grassmannian functor が表現可能であることを示している: https://stacks.math.columbia.edu/tag/089R.

ある.

$$A = k[x, y, t, t^{-1}]/(y^2 - x^3 - t),$$
 $B = k[x, y]/(y^2 - x^3 - 1) \otimes_k k[t, t^{-1}],$

A は UFD であるが B は UFD でない (GCD domain でさえない), ということを示す.

A は $k[x,y]_{y^2-x^3}$ (1 元での局所化) と同型である. k[x,y] は UFD であり、irreducible element での局所化でこれは保たれる。 すなわち A は UFD.

B が UFD でないことを示すために, $\bar{x}=x \bmod (y^2-x^3-1)$ が not prime だが irreducible であることを示す.

 \bar{x} :: not prime を示すために次の等式を考える.

$$\bar{x}^3 = \bar{x} \cdot \bar{x} \cdot \bar{x} = (\bar{y} + 1) \cdot (\bar{y} - 1).$$

 \bar{x} :: prime と仮定すると、 $\bar{y}+1$ or $\bar{y}-1\in(\bar{x})$ となる. そこで例えば

$$\bar{y} + 1 = a\bar{x}$$

なる $\bar{a} \in B$ が存在するとしよう. すると $y+1-ax \in I$ が得られる. これは楕円曲線 $y^2=x^3+1$ が y+1-ax=0 という曲線に含まれていることを意味する. したがって x=0 と楕円曲線の交点は,存在して も (x,y)=(0,-1) の一つのみ,ということになる. しかし実際は (0,-1) もこの楕円曲線に属すので矛盾.

 \bar{x} :: irreducible を示すために σ と N を準備する. $\sigma: k[x,y] \to k[x,y]$ を $y \mapsto -y$ で他の元は変化させないものとする. すると $\sigma(I) \subseteq I$ なので $\sigma: B \to B$ が誘導される. さらに $N(a) = a \cdot \sigma(a)$ で $N: B \to k[\bar{x}]$ を定める. N は積について準同型であることに注意せよ.

 \bar{x} が irreducible でないならば、 $\bar{x}=fg \bmod I$ なる $f,g\in k[x,y]$ が存在する。 $f \bmod I,g \bmod I$ はどちらも単元でない。両辺を N で写すと次のように成る。

$$(x^2 - N(f)N(g)) \bmod I = 0.$$

したがって $x^2-N(f)N(g)=a(y^2-x^3-1)$ なる $a\in k[x,y]$ が存在する。左辺は k[x] に属すから,y の次数を考えると a=0 が示される。また N(f),N(g) の次数は 2 以上であるから,N(f),N(g) のいずれかは k^{\times} の元である。しかし $N(f)=f\cdot\sigma(f)$ (resp. N(g)) が単元ならば f (resp. g) も単元であり,f,g についての仮定に反する。よって \bar{x} :: irreducible.

したがって moduli functor は必ずしも fine moduli space を持たない.

3.2 Automorphism is an obstruction to the existence of fine moduli space.

Moduli 問題の対象が非自明な自己同型写像をもつなら、多くの場合で fine moduli space が存在し得ない. 例を二つ考える. 最初の例は構成の仕方が schemeatic でないが、直観的である.

例 3.1

k :: field とし, \mathbb{A}^2_k の原点を通る直線を,向型を無視して分類する.直線は全て同型であるから,これは一つしか無い.したがってこの問題に対する fine moduli space が存在すれば,それは一点空間である.したがって任意の scheme :: B について,B 上の family は全て trivial family と同型である.

L を \mathbb{A}^2 の原点を通る直線とし、その非自明な自己同型 $\sigma:L\to L$ をとる. [0,1] 上の trivial fiber :: $[0,1]\times L$ を、次の同値関係で割って商空間を作る.

$$(t,Q) \sim (s,Q) \iff |t-s| = 1 \land P = \sigma(Q) \text{ where } s,t \in [0,1], P,Q \in L.$$

例えば σ を $(x,y)\mapsto (-x,-y)$ と置くと、これは丁度メビウスの帯である。そしてこれは S^1 上の family となっている。

今 S^1 上の family として, σ を使って構成したもの(メビウスの帯)と trivial family (斜めになった円筒)がある.これらは明らかに同型ではない.

例 3.2

scheme :: B と family over B :: X を次のように定める.

$$B = \operatorname{Spec} \mathbb{C}[\lambda, (\lambda(1-\lambda))^{-1}] = \mathbb{A}^1_{\mathbb{C}} - \{0, 1\}, \qquad X = \operatorname{Proj} \frac{\mathbb{C}[x, y, z, \lambda, (\lambda(1-\lambda))^{-1}]}{(y^2z - x(x-z)(x-\lambda z))} \subset \mathbb{P}^2_{\mathbb{C}} \times_{\mathbb{C}} B.$$

任意の $\mathbb C$ 上の楕円曲線と同型なものが family :: $\operatorname{pr}:X\to B$ に含まれている。そして j-invariant :: $A^1_{[j]}$ は B の次の群 G による商として得られる(このことは [7] $\operatorname{Prop}\ 26.3$ の証明で示されている)。

$$G = \left\{ \lambda \mapsto \frac{a-b}{c-b} \;\middle|\; \{a,b,c\} = \{0,1,\lambda\} \right\}.$$

したがって \mathbb{C} 上の楕円曲線の universal family は,"quotient of family" $X/G \to B/G = \mathbb{A}^1_{[j]}$ として得られるはずである.同型な fiber はひとつの fiber にまとめてしまえば,同型類の代表をひとつづつ fiber にもつ family が作れるであろう,というわけである.

問題は X/G である。 X/G に言及するには G の X への作用を定める必要が有るが,楕円曲線には非自明な自己同型があるため,奇妙な族を作ることが出来る.これは以降の段落でもう少し具体的に述べる.もし楕円曲線の族の fine moduli space が存在するならば,fine moduli space も,universal family も,同型を除いて一意である.なので, $X/G \to B/G$ が唯一の候補である.しかし $X/G \to B/G$ は楕円曲線の族ではない.したがって楕円曲線の universal family は存在せず,fine moduli space も存在しない.

ここでは B/G でなく,G の元 σ で生成される G の部分群 $G'=\{\mathrm{id},\sigma\}$ による商 B/G' を考える.

$$G \ni \sigma : \lambda \mapsto \frac{\lambda - 1}{0 - 1} = 1 - \lambda.$$

 σ は involution(i.e. $\sigma \circ \sigma = id$) である. 対して X の自己同型を次のように取る.

$$\tau:(x,y,z,\lambda)\mapsto (x,-y,z,1-\lambda).$$

こちらも σ 同様 involution である. そして τ は $\sigma:\mathbb{A}^1\to\mathbb{A}^1$ の持ち上げである. すなわち, 次の図式は可換である.

$$X \xrightarrow{\tau} X$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$\mathbb{A}^1 \xrightarrow{\sigma} \mathbb{A}^1$$

今, $H'=\{\mathrm{id},\tau\}$ は明らかに X に作用する。そして上の図式が可換であることから,family :: $\phi:X/H'\to B/G'$ が得られる。そこでこの family を考えてみると, σ の不動点 $\lambda=1/2$ における ϕ の fiber $\phi^{-1}(1/2)$ は, $X_{1/2}$ の $\tau_{1/2}:(x,y,z)\mapsto (x,-y,z)$ による商となっている。この商は,Riemann-Hurwitz の公式によると,genus が 0 となっている $^{\dagger 5}$. しかし楕円曲線の種数は 1 でないから, ϕ は楕円曲線の族ではない。同様にして $X/G\to B/G$ も楕円曲線ではないように作用 $G\curvearrowright X$ を作れる。

より抽象的な設定で証明しよう. これも fiberwise trivial but non-trivial family を構成すれば良い. ここでは [2] §4.8.2 と M.Hoeve のノート "An Introduction to Moduli Spaces of Curves" Example 3.2 を参照した. 他, D.Eisenbud and J.Harris "Schemes:The Language of Modern Algebric Geometry" IV.B vii にも同様のことが記述されているのを発見した.

例 3.3

X を scheme over \mathbb{Z} とし、これが non-trivial automorphism :: $\sigma: X \to X$ を持つとする.

order of σ を n とする. すなわち、n を $\sigma^n = \mathrm{id}$ となる最小のものとする. n は 2 以上の整数または無限大である. σ で生成される群を G_σ とする. これは cyclic group of order n.

n=2: $B=\mathbb{P}^1-\{(\pm 1:1)\}$ とし、 τ を座標の交換 $(x:y)\mapsto (y:x)$ とする.

 $2 < n < \infty$: $B = \mathbb{P}^1_{\mathbb{C}} - \{(\pm i:1)\}$ とし, τ を $2\pi/n$ 回転(アフィン平面の回転から誘導されるもの)とする. $n = \infty$: $B = \mathbb{A}^1_{\mathbb{C}}$ とし, τ を $z \mapsto z + 2\pi i$ とする.

いずれの場合でも τ で生成される群 G_{τ} は cyclic group of order n であり、 $\psi: \sigma \mapsto \tau$ によって G_{σ} と同型である. さらに τ は固定点をもたず、B は smooth irreducible scheme over $\mathbb C$ となっている.

 G_{σ} の $X \times B$ への作用を次で定める ^{†6}.

$$\alpha: G_{\sigma} \times (X \times_{\mathbb{Z}} B) \rightarrow X \times_{\mathbb{Z}} B$$

$$(g, (x, b)) \mapsto (g(x), \psi(g)(b))$$

B にも G_{σ} の自明な作用を与えると、 $\phi: (X \times B)/G_{\sigma} \to B/G_{\sigma}$ が得られる.

この時, $\phi: (X \times B)/G_{\sigma} \to B/G_{\sigma}$ は fiberwise trivial but non-trivial family である.

3.3 Jump Phenomenon.

coarse moduli space さえ持ち得ない moduli functor もある.

命題 **3.4** ([8] Lemma2.27, [7])

moduli functor :: \mathcal{M} を考える. さらに \mathcal{M} とは無関係に algebraically closed field :: k をとる. family :: $\mathcal{F} \to \mathbb{A}^1_k \in \mathcal{M}(\mathbb{A}^1_k)$ が以下の条件を満たすと仮定する. すると \mathcal{M} の coarse moduli space は finite type over

^{†5} 楕円曲線は genus が 1 で、 $0,1,\lambda,\infty$ の 4 点で分岐しており、この 4 点それぞれの分岐指数は 2 である。 $\phi^{-1}(1/2)$ は商写像 $X_{1/2} \to X/\tau_{1/2}$ による 2 重被覆だから、 $\phi^{-1}(1/2)$ の genus を h とすると、 $2-2\cdot 1=2h-4\cdot (2-1)$. 故に h=0.

^{†6} [2] §4.8.2 ではこの辺りに大きな間違いがある.

kではない. この条件とはすなわち:

$$\mathcal{F}_s \sim \mathcal{F}_t$$
 and $\mathcal{F}_0 \nsim \mathcal{F}_s$ (for $s, t \in \mathbb{A}^1 - \{0\}$).

特に the best approximation of \mathcal{M} (定義 2.13 直後) が代数閉体上 finite type な scheme であった場合, \mathcal{M} は coarse moduli space を持たない.

命題の条件を満たす family を, jump phenomenon が起きている family と呼ぶ.

(証明). 代数閉体 k 上 finite type な scheme :: M をとり、自然変換 $\Psi: \mathcal{M} \to \underline{M}$ が存在したとしよう. 主張 にある family :: $\mathcal{F} \to \mathbb{A}^1$ を Ψ で写したものを $f: \mathbb{A}^1 \to M$ としよう.

 \mathbb{A}^1 の closed points は M の closed point に写る^{†7}. k :: algebraically closed field かつ \mathbb{A}^1_k , M 共に finite type over k であるから、closed points を考えることは $\operatorname{Spec} k$ からの射を考えることに等しい。今、functor of points の間の natural transformation ::

$$f(k): \underline{\mathbb{A}}^1(k) \to \underline{M}(k)$$

による $\underline{\mathbb{A}}^1(k) \ni s: \operatorname{Spec} k \to \mathbb{A}^1$ の像は、 $\underline{f}(s) \in \underline{M}(k)$ である。このことを closed points の言葉に書きなおせば: closed point :: $s(\operatorname{Spec} k) \in \mathbb{A}^1$ の像は M の closed point.

f が coarse moduli space ならば、 $\Psi_k: \mathcal{M}(k) \to \underline{M}(k)$ は全単射である。 $s \in \mathbb{A}^1$ に対応する $\operatorname{Spec} k \to \mathbb{A}^1$ を \overline{s} と書くことにすると、

$$f(\bar{s}) = f \circ \bar{s} = \Psi_k(\mathcal{F}_s) : \operatorname{Spec} k \to M.$$

 $s \neq 0$ ならば、 $\mathcal{F}_s \not\sim \mathcal{F}_0$ なので $\Psi_k(\mathcal{F}_s) \neq \Psi_k(\mathcal{F}_0)$. これは $\operatorname{Spec} k$ は 1 点空間だから、これは次と同値.

$$(f \circ \bar{s})(\operatorname{Spec} k) = f(s) \neq f(0) = (f \circ \bar{0})(\operatorname{Spec} k).$$

 $s,t \neq 0$ ならば $\mathcal{F}_s \sim \mathcal{F}_t$ であるから,合わせて $f^{-1}(f(\{0\})) = \mathbb{A}^1 - \{0\}$ となる.これは closed subset ではない.しかし $f(\{0\}) \subset M$ は closed set であり,かつ f は連続であるから,これは有り得ない.

注意 3.5

命題中の \mathbb{A}^1 と $0 \in \mathbb{A}^1$ は,より一般に connected scheme of finite type over an algebraically closed field と closed point に置き換えられる.connected は closed point の補集合が closed にならないために必要である.M の条件「finite type over k ではない」についても,脚注の通り一般化出来る.

例 **3.6** ([5] Exercise (1.7))

moduli functor :: \mathcal{M} を, "flat families of reduced plane curves of degree 2 over \mathbb{C} , up to isomorphism" \mathcal{O} moduli functor として定める。ただし,ここでは $\mathbb{A}^2_{\mathbb{C}}$ の曲線を考える。 $\mathcal{M}(\mathbb{C})$ の元,すなわち "reduced plane curves of degree 2"の同型類は 2 つしかないことに注意する。

以下, the best approximation of \mathcal{M} は Spec $\mathbb C$ であることを示す. t-line :: $\mathbb A^1_{\mathbb C}$ 上の family :: xy=t で jump phenomenon が起きるため, $\mathcal M$ は coarse moduli space を持たない.

^{†&}lt;sup>7</sup> finite type over an algebraically closed field という条件は、このことを示すために付いている。実際のところは"M :: Jacobson and f :: locally finite type"という条件が必要十分である。詳細は https://stacks.math.columbia.edu/tag/01TB を参照して欲しい、この必要十分条件が成立する典型例が今回の M,f の条件である。

(証明).

■There exists natural transformations $\mathcal{M} \to \underline{\mathbb{C}}$. $\mathcal{M}(B) \ni \phi : \mathcal{F} \to B$ に対し、 $\Psi(\phi) \in \underline{\mathbb{C}}(B)$ を次のように定める. $b \in B$ について $\mathcal{F}_b \subseteq \mathbb{A}^2_{\mathbb{C}}$ であることに注意せよ.

$$B \ni b \mapsto \mathcal{F}_b \xrightarrow{\mathrm{pr}} \mathbb{A}^1_{\mathbb{C}} \xrightarrow{\mathrm{pr}} \mathrm{Spec} \, \mathbb{C}$$

これは自然変換である. よって $M \rightarrow \underline{M}$ の自然変換が存在する.

■The best approximation of \mathcal{M} is $\operatorname{Spec}\mathbb{C}$. scheme :: M' と自然変換 $\Psi': \mathcal{M} \to \underline{M'}$ をとって固定する. Ψ は引き続き自然変換 $\mathcal{M} \to \underline{\mathbb{C}}$ とする. $\phi: \mathcal{F} \to B$:: flat family of smooth conic とする. この family は fiberwise trivial family だから, $\Psi'_B(\phi): B \to X$ は定値写像である. その値を $x \in X$ とすると, 包含写像 $k(x) \to \mathbb{C}$ から射 $\pi: \operatorname{Spec}\mathbb{C} \to X$ が定まる ([6] II, Ex2.7). これは $\pi(\operatorname{Spec}\mathbb{C}) = \{x\}$ を満たす. この射に 依って $\Psi'(\phi) = \pi \circ \Psi(\phi)$ となることは明らか (TODO: どうすれば $k(x) \to \mathbb{C}$ の存在が保証できる?).

4 Dealing with Non-existence of Fine/Coarse Moduli Space.

fine moduli space が存在するための障害を回避する方法は幾つかある. 以下, moduli 問題の対象を object と呼ぶ.

4.1 Sub-Moduli Functor of "Objects Without Non-Trivial Automorphism".

考えている moduli 問題を修正し、対象を自明な自己同型しか持たないものに限定する. すると多くの場合で fine moduli が存在しうる. しかし、この修正された moduli 問題が解けても、元の moduli 問題に関する情報が殆ど出てこないことが多い.

4.2 Rigidifying of Moduli Problem.

これは、追加の情報を考慮に入れることで、objects を予め大雑把に分類しておく、ということである. 追加の情報としては以下のようなものが考えられる.

- 1. fixed sub-objects.
- 2. level structure.
- 3. ordered sets of (higher-order) Weierstrass points.

4.2.1 Fixed Sub-object

fixed sub-objects は、例えば幾つかの固定された点を通る曲線の moduli 問題を考えるということである. この場合、十分に固定点の個数を大きくすれば、non-trivial automorphism が存在しなくなる. この修正によって得られる moduli space がどれだけ元の問題の moduli を反映しているか、というのは不透明である. しかしこの修正はしばしば自然に現れる.

4.2.2 Level Structure

level structure は irreducibility of \mathcal{M}_g を証明する際に導入された. level structure を考慮して moduli 問題を修正すると,元の問題の moduli space の finite cover が得られる. level n, genus g の curve の moduli space を $\mathcal{U}_g^{(n)}$ と書く.

level structure は様々な定義が存在する. abelian scheme の level structure の定義は [9] p.129, Definition 7.1 にある. これは abelian scheme の moduli space を研究するために用いられている。特に elliptic curve over $\mathbb C$ の Weil paring, level structure については,[4] に詳しい記述がある。F.Voloch による course note にも整理された記述がある。 18 また,symplectic level structure は [3] で整理されている。Teichmüller structure of level G (G は有限群) は [10] で導入されている。

最初に二つ、事前に定義しておく、

定義 4.1

 $(\mathbb{Z}/n\mathbb{Z})^{2g}$ を standerd symplectic space と呼ぶ時, $(\mathbb{Z}/n\mathbb{Z})^{2g}$ には,以下のように symplectic form :: ω を与える: $\Omega = \begin{bmatrix} 0 & -I_g \\ I_g & 0 \end{bmatrix}$ $(I_g$ は $g \times g$ 単位行列)として,

$$\omega(a,b) = {}^t a\Omega b$$
 for $a,b \in (\mathbb{Z}/n\mathbb{Z})^{2g}$

定義 4.2 (From Jana Sotáková "Weil pairing")

k:: algebraically closed field, A:: abelian variety over k, m:: positive integer with gcd(m, char k) = 1 とする. $A \mathcal{O} m$ -torsion points を A[m] と表す。

Weil pairing とは、以下の条件を満たす pairing (bilinear form)

$$e_m : A[m] \times A[m] \to \mu_m = \{x \in k \mid x^m = 1\}$$

のことである. これは存在する (ここでは証明しない).

- (i) $e_m(S_1 + S_2, T) = e_m(S_1, T)e_m(S_2, T)$.
- (ii) $e_m(S, T_1 + T_2) = e_m(S, T_1)e_m(S, T_2)$.
- (iii) $e_m(T,T) = 1$.
- (iv) $e_m(S,T) = e_m(T,S)^{-1}$.
- (v) $\forall T \in A[m], \exists S \in A[m], e_m(S,T) \neq 1.$

注意 4.3

 $S,T \in A[m]$ とし、 $a,b,c,d \in \mathbb{Z}/m\mathbb{Z}$ とする.定義から次が成り立つ.

$$e_m(aS + bT, cS + dT) = e_m(S, T)^{ad-bc}.$$

したがって $A[m] \times A[m]$ に $M \in GL(2,\mathbb{Z}/m\mathbb{Z})$ を作用させた時,M の作用で e_m が保たれる必要十分条件は $\det M=1$,すなわち $M \in SL(2,\mathbb{Z}/m\mathbb{Z})$ である.

以下は一般の体上の curve で定義できる level structure である. O. Bergvall "Cohomology of the moduli space of curves of genus three with level two structure" †9 Def2.3.1 からとった.

^{†8} https://www.ma.utexas.edu/users/voloch/390-10.html

^{†9} http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A715000&dswid=5675

定義 4.4

k:: algebraically closed field, C:: smooth, irreducible, and projective curve of genus g, n:: positive integer with $\gcd(n,\operatorname{char} k)=1$ とする. n-torsion points of Jacobi variety of C:: J(C)[n] を, Weil paring を symplectic form とする symplectic vector space とみなす.

- (i) C の level n-structure とは、symplectic isomorphism $:: \alpha: (\mathbb{Z}/n\mathbb{Z})^{2g} \to J(C)[n]$ のことである. したがって、任意の $a,b \in (\mathbb{Z}/n\mathbb{Z})^{2g}$ について $\omega(a,b) = e_m(\alpha(a),\alpha(b))$ が成立する.ここで $(\mathbb{Z}/n\mathbb{Z})^{2g}$ は standard symplectic space である.
- (ii) morphism :: $\phi: C \to C'$ に対して、 $\phi^*: J(C') \to J(C)$ が誘導される (line bundle の pullback で定まる). そこで、curves with level n-structure :: $(C,\alpha),(C',\alpha')$ が同型であることを、以下のように定める: isomorphism :: $\phi: C \to C'$ が存在し、 ϕ^* が $\phi^* \circ \alpha = \alpha'$ を満たす.

C が楕円曲線である場合 (g=1) には,J(C)=C([6] ThmIII.4.11) である.またこの時, $\phi:C\to C'$ から誘導される $J(C')\to J(C)$ の射は ϕ に一致する.

ここでは Hesse cubic form を用いて、代数閉体 $k(\operatorname{char} k \neq 3)$ 上の楕円曲線の level 3-structure と、level 3-structure を持つ楕円曲線の moduli space を解説する。参考文献は二つ: https://arxiv.org/abs/math/0611590, http://www.math.chalmers.se/~ulfp/Teaching/AG.html.

k を $\mathbb{Z}[1/3,\xi]/(\xi^2+\xi+1)$ を含む体,すなわち,標数が 3 でなく 1 の原始 3 乗根を持つ体とする。k 上の 楕円曲線 E を予め埋め込んで射影平面上のものと考える。E の level 3-structure とは, $(\mathbb{Z}/3\mathbb{Z})^2$ と group of 3-torsion points in E ::

$$E[3] = \{ P \in E \mid 3P = O. \}$$

の間の同型 $\alpha:(\mathbb{Z}/3\mathbb{Z})^2\to E[3]$ のことである.この同型は $\alpha(0,1)$ と $\alpha(1,0)$ の点を与えれば定まることに注意する.

この同型 α が存在することは,以下のように分かる.具体的な考察により,E[3] の元は,その 1 点のみで E と交わる点,すなわち変曲点であることが分かる.これは E が 3 次曲線であることから,これは 9 点存在する.すなわち E[3] は位数 9 のアーベル群.アーベル群の構造定理と,E[3] の任意の元の位数が高々 3 であることから, $E[3]\cong (\mathbb{Z}/3\mathbb{Z})^2$ が分かる.

我々がこれから主張することは,

$$B = \mathbb{A}^1 - \{1, \xi, \xi^2\}$$

が level 3-structure を持つ k 上の楕円曲線の fine moduli space であることである。まず level 3-structure を持つ k 上の楕円曲線の family を考える。S を k 上の scheme として,楕円曲線とその 2 つの 3-torsion point の family を取る。

k 上の楕円曲線 E と level 3-structure :: $\alpha: (\mathbb{Z}/3\mathbb{Z})^2 \to E[3]$ をとる. 埋め込み $i: E \to \mathbb{P}^2_k$ の像と $i \circ \alpha$ をとれば,最初から E は \mathbb{P}^2 内の楕円曲線と考えられる.E を以下のような写像で写す.

$$\alpha(0,0) \mapsto (0:1:-1), \quad \alpha(1,0) \mapsto (0:1:-\xi), \quad \alpha(0,1) \mapsto (-1:0:1), \quad \alpha(1,1) \mapsto (-\xi:0:1).$$

このような \mathbb{P}^2 の自己同型はただひとつ存在する.そしてこれは E[3] の群構造を維持し,像は以下の 9 点を通る.

$$K = \{(0:1:-\beta): (-\beta:0:1), (1:-\beta:0) \mid \text{ where } \beta^3 = 1\}.$$

 \mathbb{P}^2 の種数 1 の曲線は 3 次曲線である.そして以上の 9 点を通る非特異曲線は,以下の形の多項式で定義される.

$$x^3 + y^3 + z^3 - 3\mu xyz = 0$$

こうして (E,α) から $\mu \in B$ への写像が定まる. この楕円曲線の 3-torsion points は上の 9 点である.

逆に、Hesse pencil $H_{\mu}: x^3 + y^3 + z^3 - 3\mu xyz = 0$ をとる. これの level 3-structure は

$$\alpha(0,0) \mapsto (0:1:-1), \quad \alpha(1,0) \mapsto (0:1:-\xi), \quad \alpha(0,1) \mapsto (-1:0:1).$$

で定まる.

level 3-structure のとり方には $SL(2,\mathbb{Z}/3\mathbb{Z})$ の自由度がある. より具体的には $M\in SL(2,\mathbb{Z}/3\mathbb{Z})$ について、以下のように変換する.

$$\sigma \quad (\mathbb{Z}/3\mathbb{Z})^2 \quad \to \quad (\mathbb{Z}/3\mathbb{Z})^2$$

$$(s,t) \quad \mapsto \quad (s,t)M$$

これに伴って、PGL(3,k) の元 $\alpha\circ\sigma$ (正確には PGL(2,k) の元であって E[3] への制限が $\alpha\circ\sigma$ であるもの)が定まる.なお, $\sigma\in GL(2,\mathbb{Z}/3\mathbb{Z})$ を $\det\sigma\neq 1$ であるものとすると,Remark 4.3 より, α に課せられた条件 $\omega(a,b)=e_m(\alpha(a),\alpha(b))$ が成立しない.

 H_{μ} のパラメータ μ は μ は $PSL(2,\mathbb{Z}/3\mathbb{Z}) = SL(2,\mathbb{Z}/3\mathbb{Z})/\{\pm I\}$ の作用を反映する. $-I = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ の作用では変化しない. -I は α と合成すると,y,z 軸の交換に成る.

命題 4.5

同型 $f: H_{\mu} \to H_{\mu'}$ を, $H_{\mu}, H_{\mu'}$ の 3-torsion points :: K を固定するものとする. この時, $f = \mathrm{id}$.

(証明). Iku Nakamura "Compactification by GIT-stability of the moduli space of abelian varieties" †10 Claim 2.3.2 の証明を参照した.

f は K の点を固定するから,K の 3 点が乗った直線全体も固定する.そのため,f は線形変換とみなせる. f を行列 A で書いた時,A がスカラー行列であることを示そう.

K は直線 x=0,y=0,z=0 上の 3 点を含むから,A はこれら 3 直線を固定する.したがって A は対角行列である.さらに (0:1:-1) と (1:-1:0) を固定することから,A はスカラー行列.よって $f=\mathrm{id}$.

 \mathbb{C} 上の解析的な曲線 (compact Riemann surface) については、torsion point は $\mathbb{Z}/3\mathbb{Z}$ 係数の 1-cycle として理解できる。 \mathbb{C} 上の楕円曲線はトーラスとみなせるが、その上の原点 (0,0) を固定し、大円を 3 等分した位置に (0,1) を、小円を 3 等分した位置に (1,0) をとる。そして加法的に (1,0), (0,1), (-1,0), (0,-1), . . . をとる。

^{†10} https://arxiv.org/abs/1406.0174

そして (0,0) から各頂点への辺を 1-cycle として考える. こうして考えると, compact Riemann surface の level structure は homology を用いて定義することが出来る.

定義 4.6

C :: curve of genus g over \mathbb{C} , n :: positive integer とする. $H_1(C^{an}, \mathbb{Z}/n\mathbb{Z})$ を, intersection paring を symplectic form とする symplectic vector space とみなす.

- (i) C の level n-structure とは、symplectic isomorphism :: $\alpha: (\mathbb{Z}/n\mathbb{Z})^{2g} \to H_1(C^{an}, \mathbb{Z}/n\mathbb{Z})$ のことである. る.ここで $(\mathbb{Z}/n\mathbb{Z})^{2g}$ は standard symplectic space である.
- (ii) curves with level structure :: (C,α) , (C',α') が同型であることを,以下のように定める: isomorphism :: $\phi:C\to C'$ が存在し, ϕ から誘導される写像 $\phi^*:H_1(C'^{an},\mathbb{Z}/n\mathbb{Z})\to H_1(C'^{an},\mathbb{Z}/n\mathbb{Z})$ が $\phi^*\circ\alpha=\alpha'$ を満たす.

4.2.3 Weierstrass points

こちらを考えても元の問題の moduli space の finite cover が得られる修正としては, ordered sets of (higher-order) Weierstrass points を考える, というものもある. Weierstrass points の定義は [1] pp.41-44 にある. C. Shor, T. Shaska "Weierstrass points of superelliptic curves" †11 にも解説がある.

4.3 Representation by Algebraic Stacks.

moduli functor を scheme で表現できないのならもっと「情報量が多い」もので表現しよう, というのが動機である. stack は groupoid (全ての射が isomorphism である圏), または 2-functor (**Sch**^{op} から圏の圏 **Cat** への sheaf) として定義される. 詳細は Tomás L. Gómez "Algebraic stacks" †12.

参考文献

[1] Enrico Arbarello, Maurizio Cornalba, Phillip Griffiths, and Joseph Daniel Harris. Geometry of Algebraic Curves: Volume I (Grundlehren der mathematischen Wissenschaften). Springer, 1st ed.

^{†11} https://arxiv.org/pdf/1502.06285.pdf

^{†12} https://arxiv.org/abs/math/9911199.

- 1985, corr. 2nd printing 2007 edition, 6 2006.
- [2] T.E.V. Balaji and Deutsche Nationalbibliothek. An Introduction to Families, Deformations and Moduli. Universitätsdrucke Göttingen. Universitätsverlag Göttingen, 2010.
- [3] Frans Oort Bert van Geemen. A Compactification of a Fine Moduli Space of Curves, pp. 285–298. Birkhäuser Basel, Basel, 2000.
- [4] Fred Diamond and Jerry Michael Shurman. A First Course in Modular Forms (Graduate Texts in Mathematics). Springer, 1st ed. 2005, corr. 4th printing 2016 edition, 10 2016.
- [5] Joe Harris and Ian Morrison. Moduli of Curves (Graduate Texts in Mathematics). Springer, 1998 edition, 8 1998.
- [6] Robin Hartshorne. Algebraic Geometry (Graduate Texts in Mathematics. 52). Springer, 1st ed. 1977. corr. 8th printing 1997 edition, 4 1997.
- [7] Robin Hartshorne. Deformation Theory (Graduate Texts in Mathematics). Springer, 2010 edition, 12 2009.
- [8] Victoria Hoskins. Moduli problems and geometric invariant theory. https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf, 2016.
- [9] David Mumford, John Fogarty, and Frances Kirwan. Geometric Invariant Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete 34). Springer-Verlag, 3rd ed. edition, 1992.
- [10] D. Mumford P. Deligne. The irreducibility of the space of curves of given genus. *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, Vol. 36, No. 1, pp. 75–109, Jan 1969.
- [11] Jenia Tevelev. Moduli spaces and invariant theory. http://people.math.umass.edu/~tevelev/797_2017/.
- [12] 向井茂. モジュライ理論〈1〉. 岩波書店, 12 2008.