MA7010 – Number Theory for Cryptography - Assignment 1

Ajeesh Thattukunnel Vijayan

January 11th 2024

- 1. Lower Range = 2800, Upper Range = 3100.
 - (a) List the elements of the set A = all primes p in the range, B = all composite numbers in the range.

Answer:

```
Primes = [2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 2927, 
                                                                  2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067,
                                                                 3079, 3083, 3089]
Composites = [2800, 2802, 2804, 2805, 2806, 2807, 2808, 2809, 2810, 2811, 2812, 2813, 2814, 2815, 2816, 2817, 2816, 2817, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 2818, 28
                                                                 2818, 2820, 2821, 2822, 2823, 2824, 2825, 2826, 2827, 2828, 2829, 2830, 2831, 2832, 2834, 2835,
                                                                 2836, 2838, 2839, 2840, 2841, 2842, 2844, 2845, 2846, 2847, 2848, 2849, 2850, 2852, 2853, 2854,
                                                                 2855, 2856, 2858, 2859, 2860, 2862, 2863, 2864, 2865, 2866, 2867, 2868, 2869, 2870, 2871, 2872,
                                                                 2873, 2874, 2875, 2876, 2877, 2878, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2888, 2889, 2890,
                                                                 2891, 2892, 2893, 2894, 2895, 2896, 2898, 2899, 2900, 2901, 2902, 2904, 2905, 2906, 2907, 2908,
                                                                 2910, 2911, 2912, 2913, 2914, 2915, 2916, 2918, 2919, 2920, 2921, 2922, 2923, 2924, 2925, 2926,
                                                                 2928, 2929, 2930, 2931, 2932, 2933, 2934, 2935, 2936, 2937, 2938, 2940, 2941, 2942, 2943, 2944,
                                                                 2945, 2946, 2947, 2948, 2949, 2950, 2951, 2952, 2954, 2955, 2956, 2958, 2959, 2960, 2961, 2962,
                                                                 2964, 2965, 2966, 2967, 2968, 2970, 2972, 2973, 2974, 2975, 2976, 2977, 2978, 2979, 2980, 2981,
                                                                 2982, 2983, 2984, 2985, 2986, 2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997,
                                                                 2998, 3000, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3012, 3013, 3014, 3015, 3016,
                                                                 3017, 3018, 3020, 3021, 3022, 3024, 3025, 3026, 3027, 3028, 3029, 3030, 3031, 3032, 3033, 3034,
                                                                 3035, 3036, 3038, 3039, 3040, 3042, 3043, 3044, 3045, 3046, 3047, 3048, 3050, 3051, 3052, 3053,
                                                                 3054, 3055, 3056, 3057, 3058, 3059, 3060, 3062, 3063, 3064, 3065, 3066, 3068, 3069, 3070, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071, 3071
                                                                 3072, 3073, 3074, 3075, 3076, 3077, 3078, 3080, 3081, 3082, 3084, 3085, 3086, 3087, 3088, 3090,
                                                                 3091, 3092, 3093, 3094, 3095, 3096, 3097, 3098, 3099, 3100]
```

The below images depicts the execution of the code on a powershell terminal:

Prime Numb	ers:				
Number	2851	2909	2969	3037	3089
2801	2857	2917	2971	3041	
2803	2861	2927	2999	3049	
2819	2879	2939	3001	3061	
2833	2887	2953	3011	3067	
2837	2897	2957	3019	3079	
2843	2903	2963	3023	3083	

Composite Numbers:															
N	Number	2821	2842	2865	2885	2907	2929	2949	2973	2992	3014	3035	3057	3078	3100
2	2800	2822	2844	2866	2886	2908	2930	2950	2974	2993	3015	3036	3058	3080	
2	2802	2823	2845	2867	2888	2910	2931	2951	2975	2994	3016	3038	3059	3081	
2	2804	2824	2846	2868	2889	2911	2932	2952	2976	2995	3017	3039	3060	3082	
2	2805	2825	2847	2869	2890	2912	2933	2954	2977	2996	3018	3040	3062	3084	
2	2806	2826	2848	2870	2891	2913	2934	2955	2978	2997	3020	3042	3063	3085	
2	2807	2827	2849	2871	2892	2914	2935	2956	2979	2998	3021	3043	3064	3086	
2	2808	2828	2850	2872	2893	2915	2936	2958	2980	3000	3022	3044	3065	3087	
2	2809	2829	2852	2873	2894	2916	2937	2959	2981	3002	3024	3045	3066	3088	
2	2810	2830	2853	2874	2895	2918	2938	2960	2982	3003	3025	3046	3068	3090	
2	2811	2831	2854	2875	2896	2919	2940	2961	2983	3004	3026	3047	3069	3091	
2	2812	2832	2855	2876	2898	2920	2941	2962	2984	3005	3027	3048	3070	3092	
2	2813	2834	2856	2877	2899	2921	2942	2964	2985	3006	3028	3050	3071	3093	
2	2814	2835	2858	2878	2900	2922	2943	2965	2986	3007	3029	3051	3072	3094	
2	2815	2836	2859	2880	2901	2923	2944	2966	2987	3008	3030	3052	3073	3095	
2	2816	2838	2860	2881	2902	2924	2945	2967	2988	3009	3031	3053	3074	3096	
2	2817	2839	2862	2882	2904	2925	2946	2968	2989	3010	3032	3054	3075	3097	
2	2818	2840	2863	2883	2905	2926	2947	2970	2990	3012	3033	3055	3076	3098	
2	2820	2841	2864	2884	2906	2928	2948	2972	2991	3013	3034	3056	3077	3099	

```
1
2
3
4
5
6
7
8
9
10
11
               Returns a boolean representing if the given number is prime or not
               # Arguments
               * 'n' - A BigInt
               # Examples
               use crate::primality::is_prime_trial_division_parallel;
let is_prime = is_prime_trial_division_parallel(BigInt::from(100u64));
12
13
14
15
16
17
18
          // returns true if the number is 2 or 3 if n <= &three {
20
21
22
23
24
25
               return n > &one;
            if n % 2 == zero || n % 3 == zero {
   return false;
26
27
28
29
30
31
32
33
34
35
36
37
38
39
             let upper_bound = n.sqrt() + 1; // +1 to get the ceiling value
             if let Some(_divisor) = range_inclusive(BigInt::from(5u64), upper_bound)
             .par_bridge()
.into_par_iter()
.find_first(|divisor| n % divisor == zero)
            false
            } else {
               t\,r\,u\,e
```

Listing 1: Prime Number Sieve

The above code verifies the primality of a number using trial division. It a sequence of numbers from 2 to sqrt(n) + 1 and divides these numbers into chunks of blocks and checks the divisibility in parallel to speed up the execution.

Student No: 22077273

The below command execute the Prime Number Sieve:

```
D:\workspace\nt-assignments>.\nt-assignments.exe list-primes -s 2800 -e 3100
```

Listing 2: Example command - Prime Number Sieve

(b) List the elements of the set C where $C = \{\text{composite numbers } n = pq \text{ in your range which are the product of exactly two distinct primes p and q}\}.$

```
Answer: H = \langle a \rangle = \{e, (1234), (13)(24), (1432)\}

If Hg is the right coset containing g, then we use \bar{g} to represent Hg; hence: coset containing a: \bar{a} = \{(1234), (13)(24), (1432), e\}

coset containing b: \bar{b} = \{(13)(5678), (14)(23)(5678), (24)(5678), (12)(34)(5678)\}

coset containing b^2: \bar{b}^2 = \{(57)(68), (1234)(57)(68), (13)(24)(57)(68), (1432)(57)(68)\}

coset containing b^3: \bar{b}^3 = \{(13)(5876), (14)(23)(5876), (24)(5876), (12)(34)(5876)\}

G/\langle a \rangle = \{\bar{a}, \bar{b}, \bar{b}^2, \bar{b}^3\}
```

This quotient group $G/\langle a \rangle$ is cyclic as we can generate the the whole group using the element \bar{b} By Lagrange's theorem, the order of a group is given by $|G| = |G/H| \times [G:H] = 4 \times 4 = 16$

(c) Show that $Z(G) = \langle a^2, b^2 \rangle$.

Answer: The center of a group commutes with all other elements in the group. i.e., $Z(G) = \{g \in G | gs = sg \forall s \in G\}$ Given $Z(G) = \langle a^2, b^2 \rangle = \{e, a^2, b^2, a^2b^2\} = \{e, (13)(24), (57)(68), (13)(24)(57)(68)\}$

0	$G = \{e, (13)(24), (57)(68), (13)(24)(57)(68)\}$
e	eG = Ge
a (1994)	$aG = \{(1234), (1432), (1234)(57)(68), (1432)(57)(68)\}$
a = (1234)	$Ga = \{(1234), (1432), (1234)(57)(68), (1432)(57)(68)\}$
$a^2 = (13)(24)$	$a^2G = \{(13)(24), e, (13)(24)(57)(68), (57)(68)\}$
a = (13)(24)	$Ga^2 = \{(13)(24), e, (13)(24)(57)(68), (57)(68)\}$
$a^3 = (1432)$	$a^3G = \{(1432), (1234), (1432)(57)(68), (1234)(57)(68)\}$
a = (1492)	$Ga^3 = \{(1432), (1234), (1432)(57)(68), (1234)(57)(68)\}$
b = (13)(5678)	$bG = \{(13)(5678), (24)(5876), (24)(5876)\}$
0 - (10)(0010)	$Gb = \{(13)(5678), (24)(5876), (24)(5876)\}$
$b^2 = (57)(68)$	$b^2G = \{(57)(68), (13)(24)(57)(68), (13)(24)\}$
(01)(00)	$Gb^2 = \{(57)(68), (13)(24)(57)(68), (13)(24)\}$
$b^3 = (13)(5876)$	$b^3G = \{(13)(5876), (24)(5876), (13)(5678), (24)(5678)\}$
	$Gb^{3} = \{(13)(5876), (24)(5876), (13)(5678), (24)(5678)\}$
ab = (14)(23)(5678)	$abG = \{(14)(23)(5678), (12)(34)(5678), (14)(23)(5876), (12)(34)(5876)\}$
	$Gab = \{(14)(23)(5678), (12)(34)(5678), (14)(23)(5876), (12)(34)(5876)\}$
$ab^2 = (1234)(57)(68)$	$ab^{2}G = \{(1234)(57)(68), (1432)(57)(68), (1234), (1432)\}$ $G_{2}b^{2} = \{(1234)(57)(68), (1432)(57)(68), (1234), (1432)\}$
	$Gab^{2} = \{(1234)(57)(68), (1432)(57)(68), (1234), (1432)\}$ $ab^{3}G = \{(14)(23)(5876), (12)(34)(5876), (14)(23)(5678), (12)(34)(5678)\}$
$ab^3 = (14)(23)(5876)$	$Gab^{3} = \{(14)(23)(5876), (12)(34)(5876), (14)(23)(5678), (12)(34)(5678)\}\$
	$ba^{2}G = \{(24)(5678), (13)(5678), (24)(5876), (13)(5876)\}$
$ba^2 = (24)(5678)$	$Gba^2 = \{(24)(5678), (13)(5678), (24)(5876), (13)(5876)\}\$
	$b^2a^2G = \{(13)(24)(57)(68), (57)(68), (13)(24), e\}$
$b^2a^2 = (13)(24)(57)(68)$	$b^2a^2G = \{(13)(24)(57)(68), (57)(68), (13)(24), e\}$
213 (24) (525)	$a^2b^3G = \{(24)(5876), (13)(5876), (24)(5678), (13)(5678)\}$
$a^2b^3 = (24)(5876)$	$Ga^2b^3 = \{(24)(5876), (13)(5876), (24)(5678), (13)(5678)\}\$
1 (10)(94)(5070)	$baG = \{(12)(34)(5678), (14)(23)(5678), (12)(34)(5876), (14)(23)(5876)\}$
ba = (12)(34)(5678)	$Gba = \{(12)(34)(5678), (14)(23)(5678), (12)(34)(5876), (14)(23)(5876)\}$
$h^2a^3 = (1/22)(57)(60)$	$b^2a^3G = \{(1432)(57)(68), (1234)(57)(68), (1432), (1234)\}$
$b^2a^3 = (1432)(57)(68)$	$Gb^2a^3 = \{(1432)(57)(68), (1234)(57)(68), (1432), (1234)\}$
$b^3a = (12)(34)(5876)$	$b^3aG = \{(12)(34)(5876), (14)(23)(5876), (12)(34)(5678), (14)(23)(5678)\}$
$0 \ a - (12)(34)(3010)$	$Gb^{3}a = \{(12)(34)(5876), (14)(23)(5876), (12)(34)(5678), (14)(23)(5678)\}$

From the table above, it's evident that all elements of G commute with $Z(G) = \langle a^2, b^2 \rangle$ and hence Z(G) is the center of the group.

(d) Find the conjugacy classes of G expressing their elements as permutations

Answer:

$$G = \{e, (1234), (13)(24), (1432), (13)(5678), (57)(68), (13)(5876), (14)(23)(5678), \\ (1234)(57)(68), (14)(23)(5876), (24)(5678), (13)(24)(57)(68), (24)(5876), \\ (12)(34)(5678), (1432)(57)(68), (12)(34)(5876)\}$$

$$g = (1234)$$

$$\sigma(1234)\sigma^{-1}$$
 (1234) (1432)

$$g = (13)(5678)$$

$$\sigma(13)(5678)\sigma^{-1} \mid (13)(5678) \mid (24)(5678)$$

$$g = (13)(5876)$$

$\sigma(13)(5876)\sigma$	-1 (13)(5876)	(24)(5876)

$$g = (14)(23)(5678)$$

$$\sigma(14)(23)(5678)\sigma^{-1}$$
 (14)(23)(5678) (12)(34)(5678)

$$g = (1234)(57)(68)$$

$$\sigma(1234)(57)(68)\sigma^{-1}$$
 (1234)(57)(68) (1432)(57)(68)

$$g = (14)(23)(5876)$$

$$\sigma(14)(23)(5876)\sigma^{-1}$$
 | $(14)(23)(5876)$ | $(12)(34)(5876)$

Trivial Conjugacy Classes

3. Let G be a group such that $126 \le |G| \le 132$. Given that G is simple find the possible values for |G|. In each case, justify your answer.

Answer: A group G is simple if the only normal subgroups are the trivial subgroup $\{e\}$ and the improper subgroup G itself.

Given $126 \le |G| \le 132$. Let's go through each numbers

(a) $|\mathbf{G}| = 126$. Upon prime factorization $|G| = 2 \times 3^2 \times 7$. Let n_7 represents the number of Sylow 7-subgroups in G. By Sylow's third theorem,

$$n_7 \equiv 1 \pmod{7}$$
 and $n_7 | 18$

Hence $n_7 = 1$ means that there exists a unique Sylow 7-subgroup of order 7 and it is normal. So |G| = 126 is not a valid order for a simple group.

(b) $|\mathbf{G}| = 127$.

127 is a prime number. By Lagrange's theorem, the order of a subgroup must divide the order of the group. The only divisors of 127 are 1 and 127 itself and hence there are no proper normal subgroups for a group or order 127. So the group is **Simple.**

(c) $|\mathbf{G}| = 128$.

The prime factorization is given by $128 = 2^7$. It's a p-group and hence the center of the group Z(G) is not trivial. Also Z(G) is a proper normal subgroup of G. By Cauchy's theorem, if |G| = n and if n = pm where p is a prime and p|m, then $\exists g \in G$ such that $g^p = e \implies |g| = p$

In our case, we can write |G| as $128 = 2 \times 2^6$. So p = 2 and $m = 2^6$. This implies that we can generate the entire group using the single element 'g', i.e,

 $G = \langle g | g^{128} = e \rangle$ and this is cyclic. Every cyclic group is abelian and hence Z(G) = G, but the order is not prime and hence **not simple**

(d) $|\mathbf{G}| = 129$. Upon prime factorization, $129 = 3 \times 43$

By Lagrange's theorem, the order of a subgroup must divide the order of the group. The factors of 129 are $\{1, 3, 43, 129\}$. For a simple group, the only normal subgroups are the trivial group $\{e\}$ and the improper subgroup G itself. So subgroups of order 1 and 129 are out of question here. We need to verify if subgroups of order 3 and 43 are normal.

Student No: 22077273

Let's verify if we have a Sylow 43-subgroup in G. By Sylow's third theorem, $n_{43} \equiv 1 \pmod{43}$ and $n_{43}|3$.

We have $n_{43} = 1$ satisfies the condition. That means there exists a unique proper normal Sylow 43-subgroup for a group of order 129. So the group is **not simple.**

(e) $|\mathbf{G}| = 130$.

 $|G| = 2 \times 5 \times 13$. If we consider Sylow 13-subgroup in G, by Sylow's third theorem, $n_{13} \equiv 1 \pmod{13}$ and $n_{13}|10$.

Only $n_{13} = 1$ can satisfies these two conditions. That means there exists a unique proper normal Sylow 13-subgroup for a group of order 130. So the group is **not simple.**

(f) $|\mathbf{G}| = 131$.

131 is a prime number. By Lagrange's theorem, the order of a subgroup must divide the order of the group. The only factors of 131 are 1 and 131 itself and hence there are no proper normal subgroups for a group or order 131. So the group is **Simple.**

(g) |G| = 132.

The prime factorization of |G| is given by $|G| = 2^2 \times 3 \times 11$. We will consider Sylow 11-subgroups first.

The constraints are $n_{11} \equiv 1 \pmod{11}$ and $n_{11}|12$ and $n_{11} = \{1, 12\}$ satisfies these constraints. If $n_{11} = 1$, then the group has a proper normal Sylow 11-subgroup and hence G is not simple. If $n_{11} = 12$, there are 12 subgroups with 10 elements of order 11 in each (the identity element is shared). So The total number of elements of order 11 in G is 120.

Now if we consider Sylow 3-subgroups, the constraints are $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 44$. $n_3 = \{1, 4, 22\}$ satisfies these constraints. Now if we consider $n_3 = 1$, then there exists a proper normal Sylow 3-subgroup and hence G is not simple. If we consider $n_3 = 4$, there exist 4 Sylow 3-subgroups. Hence the total number of elements in the group now is $120 + 4 \times 2 = 128$. Only 4 elements remaining and a Sylow 2-subgroup of order 4 will fill that. Then the Sylow 2-subgroup is a unique proper normal subgroup hence G is not simple. If we consider $n_3 = 22$, then the total number of elements becomes $120 + 22 \times 2 = 164$ which is greater than 132 and hence $n_3 = 22$ is not possible.

We will now consider the Sylow 2-Subgroups. The constraints are $n_2 \equiv 1 \pmod{2}$ and $n_2 \mid 33$. $n_2 = \{1, 3, 11, 33\}$ satisfies these constraints. If $n_2 = 1$, then there exists a proper normal Sylow 2-subgroup of order 4 and hence the group G is not simple. $n_2 = \{3, 11, 33\}$ will not tally to 132 and hence those values are not possible. So a group of order |G| = 132 is not a simple group

- 4. Let G be a group and suppose H_1 and H_2 are subgroups of G such that there exists $g \in G$ such that $H_1 = H_2 = \{h^g : h \in H\}$
 - (a) Show that $H_1 \cong H_2$.

Answer: Given $H_1, H_2 \leq G$

Let σ be the isomorphic mapping from H_1 to H_2 . Then σ is given by: $\sigma_g: H_1 \to H_2$ and is defined as $\sigma_g: h \mapsto ghg^{-1}$, $\forall h \in H_1$. Let $h_1, h_2 \in H_1$. Then for an isomorphism, the following constraint must be satisfied along with the mapping σ being bijective.

$$\sigma(h_1h_2) = \sigma(h_1)\sigma(h_2)$$

LHS: $\sigma(h_1h_2) = g(h_1h_2)g^{-1}$ RHS: $\sigma(h_1)\sigma(h_2) = gh_1g^{-1}gh_2g^{-1} = gh_1eh_2g^{-1} = gh_1h_2g^{-1}$

Hence LHS = RHS and σ is a homomorphism.

Proof for Bijection: We can prove it by showing σ_q has two sided inverse, that's if $\sigma_q^{-1} = h :\mapsto g^{-1}hg$ then we need to prove $\sigma_q^{-1}(\sigma_g(h)) = h$, $\forall h \in H1$ and $\sigma_g(\sigma_q^{-1}(h)) = h$, $\forall h \in H1$

1.
$$\sigma_g^{-1}(\sigma_g(h)) = \sigma_g^{-1}(ghg^{-1}) = g^{-1}(ghg^{-1})g = h$$

2. $\sigma_g(\sigma_g^{-1}(h)) = \sigma_g(g^{-1}hg) = g(g^{-1}hg)g^{-1} = h$

2.
$$\sigma_g(\sigma_g^{-1}(h)) = \sigma_g(g^{-1}hg) = g(g^{-1}hg)g^{-1} = h$$

Hence the mapping is bijective. $\therefore H_1 \cong H_2$

(b) Now suppose that G is finite and that $P, P' \in Syl_p(G)$. Explain why P and P' are isomorphic.

Answer: If we have $P, P' \in Syl_p(G)$ then they are conjugates in G by Sylow's second theorem. i.e, $\exists g \in G$ such that $P' = gPg^{-1}$. Conjugate groups are always isomorphic.

References

- [1] C R Jordan & D A Jordan $MODULAR\ MATHEMATICS\ Groups$.
- [2] Dr. Ben Fairbairn GROUP THEORY Solutions to Exercises.
- $[3] \ https://yutsumura.com/sylows-theorem-summary/$