【Embedding】Node2Vec: 一种有偏的随机游走

原创 阿泽crz 阿泽的学习笔记 2020-04-10

1. Introduction

我们今天看的论文是斯坦福大学的同学 2016 年发表于的 ACM 的论文——《node2vec: Scalable Feature Learning for Networks》, 到目前为止已经被引用 2600 多次。

在这篇论文中作者提出了一个半监督学习算法——Node2Vec,采用了有偏的随机游走算法并结合 Skip-gram 算法学习 Network Embedding, Node2Vec 可以通过参数设置来控制搜索策略,从而有效的平衡了 Embedding 的同质性和结构有效性。

接下来我们来看一下 Node2Vec 的具体实现。

2. Node2Vec

首先引入用于学习节点 Embedding 的 Skip-gram 算法,并给出目标函数为:

$$max \ \sum_{u \in V} log \ Pr(N_S(u)|f(u))$$

其中, u 为节点, $N_s(u)$ 为节点 u 通过采样策略 S 得到的邻居, f(u) 是一个映射矩阵, 相当于 Work2Vec 中的输入向量。

为简便起见,我们给出两个假设:

条件独立性假设:假设观察一个节点的领域与观察其他节点的领域相互独立,所以我们有:

$$Pr(N_S(u)|f(u)) = \prod_{n_i \in N_S(u)} Pr(n_i|f(u))$$

特征空间对称型假设:在特征空间中,源节点与邻节点相互对称。所以我们有:

$$pr(n_i|f(u)) = rac{exp(f(n_i) \cdot f(u))}{\sum_{v \in V} exp(f(v) \cdot f(u))}$$

基于上面的假设,目标函数改为

$$max \ \sum_{u \in V} ig[-log Z_u + \sum_{n_i \in N_S(u)} f(n_i) \cdot f(u) ig]$$

其中 $Z_u = \sum_{v \in V} exp(f(u) \cdot f(v))$, 由于计算代价昂贵,所以我们用 Negative Sampling 进行优化。

2.1 Search Strategies

由于网络是非线形的,所以我们需要一个策略来为 Skip-gram 提供一个线形的输入。一种常见的策略是通过游走的方式来对于给定源节点 u 的不同邻域进行采样,邻域 $N_S(u)$ 不仅限与邻近的节点,而是与采样策略 S 有关。

在评价网络节点的相似性我们有同质性和结构等价性两个概念。

- 同质性是指同属于一个集群的两个节点更加相似,如下图的节点 S1 和节点 u;
- 结构等价性是指两个具有相似结构的节点更加相似,如下图的节点 S6 和节点 u。

那么为了更能体现出网络的结构性,我们应该是用 BFS 采集还是 DFS 采集?这里可以简单思考一下。

答案是: BFS 可以获得每个节点的邻居,强调的是局部微观视图,所以通过 BFS 采样的网络更能体现网络的局部结构,从而 Embedding 结果更能体现结构性;而 DFS 可以探索更大的网络结构,只有从更高的角度才能观察到更大的集群,所以其 Embedding 结果更能体现同质性。

这个答案是不是与我们的直觉有所相悖?

2.2 Biased Random Walk

我们先给出随机游走的公式:

$$p(c_i = x | c_{i-1} = v) = egin{cases} rac{\pi_{vx}}{Z} & if \ (v, x) \in E \ 0 & other \end{cases}$$

其中, c_i 表示第 i 次游走, π_{vx} 表示节点之间的转移概率,Z 为常数。

如果需要产生**有偏的随机游走**,一个比较简单的方法是令 $\pi_{vx} = w_{vx}$,但这样就没法适应不同网络结构,也不能引导我们的程序去探索不同类型的网络邻居。另外这里有偏的随机游走策略应该是统筹 BFS 和 DFS 的,以平衡同质性和结构等价性。

所以我们定义了一个非标准的转移概率:

$$\pi_{vx} = lpha_{pq}(t,x) \cdot w_{vx}$$

其中:

$$lpha_{pq}(t,x)=egin{cases} rac{1}{p} & if\ d_{tx}=0\ 1 & if\ d_{tx}=1\ rac{1}{q} & if\ d_{tx}=2 \end{cases}$$

其中, d_{tx} 表示节点 t 和节点 x 之间的最短路径, 取值为 $\{0, 1, 2\}$ 。

我们结合下图来理解:

假设随机游走刚通过节点 t 来到节点 v ,现在考虑接下来的转移概率,节点 x_1 与节点 t 的最短路径为 1 所以 $\alpha=1$,节点 x_2 与节点 t 的最短路径为 2 所以 $\alpha=1/q$,同理节点 x_3 。

直觉来看,参数 p 和 q 可以用来引导游走,近似地在 BFS 和 DFS 之间穿插,从 而反映出不同节点在同质性和结构性上的亲和力。

- Return parameter, p:参数 p 允许搜索程序重新访问遍历过的节点,其值越高,越不可能搜索已访问过的节点;
- In-out parameter, q: 参数 q 允许搜索程序区分"向内"和"向外"的节点。如果 q > 1 则,倾向于访问靠近节点 t 的节点,类似于 BFS 策略;反之,倾向于访问远离节点 t 的节点,类似于 DFS 策略。

最初的随机游走算法由于要存储所有的边,所以空间复杂度为 O(|E|),而有偏置的随机游走空间复杂度为: $O(a^2|V|)$,其中 a 是网络节点的平均度数,其值通常非常小。

Node2Vec 的随机游走方法兼容了 DFS 和 BFS 的优点,并且具有较低的时间复杂度和空间复杂度。现在我们来看下 Node2Vec 的伪代码:

```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
   node r, Walk length l, Context size k, Return p, In-out q)
   \pi = \text{PreprocessModifiedWeights}(G, p, q)
   G' = (V, E, \pi)
   Initialize walks to Empty
   for iter = 1 to r do
     for all nodes u \in V do
        walk = node2vecWalk(G', u, l)
        Append walk to walks
   f = \text{StochasticGradientDescent}(k, d, walks)
   return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
   Inititalize walk to [u]
   for walk\_iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = \text{AliasSample}(V_{curr}, \pi)
     Append s to walk
   return walk
                                                   (全) 阿泽的学习笔记
```

Node2Vec 的算法共分为三个部分: 预处理计算转移概率

(Preprocess Modified Weights,这个可以实现计算好),**有偏置的随机游走** (Node 2 Vec Walk,加权采样使用的是 Alias 算法,我们在 LINE 那片论文里介绍过这个算法,其事件复杂度为 O(1))和**异步随机梯度下降**。每个阶段都可以并行化处理,这有助于加速 Node 2 Vec 算法的训练。

2.3 Learning Edge Feature

这篇文章还有一个创新的地方在于: 除了原本的 Embedding 任务还给出了**边的预测**的任务。对于两个节点 u 和 v,其 Embedding 向量 f(u) f(v) 可以映射一个新的 Embedding g(u,v),例如 $g:V\times V\to R^{d'}$ 。其中,d' 是映射后节点对 (u,v)的 Embedding 维度。可选的操作有:

Operator	Symbol	Definition
Average	\blacksquare	$[f(u) \boxplus f(v)]_i = \frac{f_i(u) + f_i(v)}{2}$
Hadamard	⊡	$[f(u) \boxdot f(v)]_i = f_i(u) * f_i(v)$
Weighted-L1	$\ \cdot\ _{ar{1}}$	$\ f(u)\cdot f(v)\ _{\bar{1}i}= f_i(u)-f_i(v) $
Weighted-L2	$\ \cdot\ _{ar{2}}$	$\ f(u)\cdot f(v)\ _{ar{2}i}= f_i $ 和河泽的訳記

3. Experience

来简单看一下实验,对比的实验除了 DeepWalk、LINE 外,还有谱聚类,实验目标是多分类,评价指标为 Macro-F1 和 Micro-F1:

Algorithm	Dataset			
	BlogCatalog	PPI	Wikipedia	
Spectral Clustering	0.0405	0.0681	0.0395	
DeepWalk	0.2110	0.1768	0.1274	
LINE	0.0784	0.1447	0.1164	
node2vec	0.2581	0.1791	0.1552	
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5	
Gain of node2vec [%]	22.3	1.3 泛 阿泽的学业笔记		

来看下 Node2Vec 关于同质性和结构等价性的效果,下图为 Node2Vec 生成《悲惨世界》共现网络的可视化图,标签颜色可以反映同质性(上)和结构等价性(下)。图片的上半部分参数值为 p=1, q=0.5,图片的下半部分参数值为 p=1, q=2。

再来看下参数敏感性:

最后看一下边的预测:

Op	Algorithm]	Dataset	
		Facebook	PPI	arXiv
e 2	Common Neighbors	0.8100	0.7142	0.8153
	Jaccard's Coefficient	0.8880	0.7018	0.8067
	Adamic-Adar	0.8289	0.7126	0.8315
	Pref. Attachment	0.7137	0.6670	0.6996
	Spectral Clustering	0.5960	0.6588	0.5812
(a)	DeepWalk	0.7238	0.6923	0.7066
	LINE	0.7029	0.6330	0.6516
	node2vec	0.7266	0.7543	0.7221
	Spectral Clustering	0.6192	0.4920	0.5740
(b)	DeepWalk	0.9680	0.7441	0.9340
	LINE	0.9490	0.7249	0.8902
	node2vec	0.9680	0.7719	0.9366
	Spectral Clustering	0.7200	0.6356	0.7099
(c)	DeepWalk	0.9574	0.6026	0.8282
	LINE	0.9483	0.7024	0.8809
	node2vec	0.9602	0.6292	0.8468
10	Spectral Clustering	0.7107	0.6026	0.6765
(d)	DeepWalk	0.9584	0.6118	0.8305
100500 700	LINE	0.9460	0.7106	0.8862
	node2vec	0.9606	0.6238	0.8477

上图的第一行是一些指标,用于评测数据集,评测方法如下:

Score	Definition		
Common Neighbors	$\mid \mathcal{N}(u) \cap \mathcal{N}(v) \mid$		
Jaccard's Coefficient	$rac{ \mathcal{N}(u) \cap \mathcal{N}(v) }{ \mathcal{N}(u) \cup \mathcal{N}(v) }$		
Adamic-Adar Score	$\sum_{t \in \mathcal{N}(u) \cap \mathcal{N}(v)} \frac{1}{\log \mathcal{N}(t) }$		
Preferential Attachment	$ig \sum_{t\in\mathcal{N}(u)\cap\mathcal{N}(v)}rac{1}{\log \mathcal{N}(t) }\ ig \mathcal{N}(u)ig \cdotig $ 人類學學习笔记		

4. Conclusion

一句话总结: Node2Vec 是一个新的 NetWork Embedding 算法, 其综合 BFS 和 DFS 优缺点,提出了有偏的随机游走算法,最终的实验表明其具有良好的性能和可伸缩性。

从这篇文章中我们可以学到:

- 1. 一种新的 Network Embedding 算法——Node2Vec;
- 2. 有偏的随机游走算法;
- 3. BFS 和 DFS 采样方法带来的结构性和同质性;
- 4. 一种边预测的判定条件。

5. Reference

- 1. 《node2vec: Scalable Feature Learning for Networks》
- 2. 《关于Node2vec算法中Graph Embedding同质性和结构性的进一步探讨》

关注公众号跟踪最新内容: 阿泽的学习笔记。

阿泽的学习笔记