Распознавание речи

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Представление звуковой информации
- 2 Listen-Attend-Spell
- 3 Connectionist Temporal Classification

Задачи обработки и генерации звука

- Звук -> класс либо сегментация звуковой дорожки
 - голосовой помощник: команда / фоновый шум
 - определение композиции (shazam)
 - категоризация музыкального стиля (spotify)
- Звук -> сегментация
 - разметка спикеров
- Звук -> текст (automatic speech recognition, ASR)
- Текст -> звук (text to speech, TTS)
- Удаление шумов (denoising)
- Повышение качества аудио
 - ↑ частоты дискретизации (bandwidth expansion)
- Стилизация голоса
- Генерация музыки

Звук (waveform)¹

• Звук - последовательность импульсов звуковой волны

$$x_1, x_2, ... x_T$$
 - силы давления звуковой волны

• Так звук представлен в wav файле.

- Две характеристики качества:
 - ullet частота (sampling frequency)-расстояние между t и t+1
 - ullet точность представления амплитуд x_t

¹Introduction to Speech Processing.

Частота (sampling frequency)

- Частота измеряется в Герцах (1 Регц (Hz)=1 сек $^{-1}$ одно колебание в секунду)
- Частота 300-3500 кГц ольшинство звуков речи
 - некоторые звуки (как "с") выше
- 16 кГц достаточно в большинстве случаев
- 48 кГц частота на компакт-дисках
 - высокие частоты нужны для не речевых сигналов, музыки

Квантизация сигнала - равномерная

- На устройствах звук представляется в целочисленном виде (int), используя квантизацию.
- Равномерная квантизация:

$$\widehat{x} = \Delta q \cdot \text{round} (x/\Delta q)$$

Квантизация сигнала - по μ -закону

- Громкий звук выходит за интервал int-представления
- Человек силу звука воспринимает логарифмически.
 - выше чуткость тихих звуков, ниже громких
- Поэтому квантизуют звук, преобразованный по μ -закону:

Квантизация сигнала - по μ -закону

Квантизуется сигнал, преобразованный по μ -закону:

$$x' = \operatorname{sign}(x) \frac{\log(1 + \mu|x|)}{\log(1 + \mu)}$$

Представление звука²

²Ссылка на иллюстрацию.

Обработка каждого фрагмента звука

- Звук режется на пересекающиеся окна (длины \sim 20мс).
- Для удаления артефактов обрезки домножаем на оконную функцию:

Спектр

 Для извлечения характеристик каждого фрагмента используется дискретное преобразование Фурье

$$X_{k} = \sum_{n=0}^{N-1} \tilde{x}_{n} e^{-i2\pi kn/N} = \sum_{n=0}^{N-1} x_{n} \cos(2\pi kn/N)$$
$$-i\sum_{n=0}^{N-1} x_{n} \sin(2\pi kn/N)$$

- это коэффициенты разложения сигнала по sin, cos разной частоты
- X_k -комплексный, поэтому анализируют $|X_k|$ или $|X_k|^2$.
- Силы частот измеряют децибелах= $20 \log_{10} |X_k|$.
 - человек силу звука воспринимает логарифмически

Построение лог-спектрограммы

Пики на огибающей

Пики на огибающей спектра

- называются формантами
- их частоты однозначно идентифицируют гласные звуки
- называются $F_1, F_2, ...$

Частота колебания голосовых связок называется фундаментальной частотой F_0

 не связана с формантами и характеризует высоту голоса человека

Этапы построения спектрограммы³

 $^{^{3}}$ Ссылка на иллюстрацию.

Мел-спектрограмма

- Человек воспринимает звук логарифмически.
 - ноты до на каждой след октаве частота в 2 раза выше
- Эмпирический закон восприятия:

$$m = 2595 \log 10(1 + \frac{f}{700})$$

• Также #частот избыточно, можно агрегировать соседние.

Мел-спектрограмма

Усредняем соседние частоты логарифма-спектрограммы по логарифмическому закону:

Кепстр, MFCC

- Также в качестве признаков используют преобразование Фурье (вдоль частот)
 - к лог-спектрограмме (кепстр, cepstr)
 - мел-спектрограмме (mel-frequency cepstral coefficients, MFCCs).
- Получаем декоррелированные признаки, характеризующие частоты в целом и их огибающую.

Содержание

- 2 Listen-Attend-Spell

Модель Listen-Attend-Spell⁴

- Listen-Attend-Spell распознавание речи с помощью seq2seq+attention.
- Выход распределение символов, начиная с <sos> и заканчивая <eos>.

⁴https://arxiv.org/abs/1508.01211

Модель Listen-Attend-Spell

- Декодер выдаёт распределение на символах
 - {a, b, c, · · · , z, 0, · · · , 9, <space>, <comma>, <period>, <apostrophe>, <unk> (для прочих символов).
- На вход декодеру (после <sos>)
 - с p = 0.9: реальный символ (teacher forcing)
 - с p=0.1: ранее сгенерированный (free run)
 - учим модель исправлять ошибки
- Энкодер 3х уровневый bidirectional LSTM (BLSTM)
- Перерасчет состояния на уровне 1:

$$h_t^{l} = BLSTM\left(h_{t-1}^{l}, \left[h_{2t}^{l-1}, h_{2t+1}^{l-1}\right]\right)$$

- уменьшение в 2 раза длины последовательности
- 3 уровня, длина выходных состояний в 2³ раз короче длины входа.

Внимание в декодировщике

$$c_i = \mathsf{AttentionContext}\left(s_i, \mathsf{h}\right)$$

 $s_i = \mathsf{RNN}\left(s_{i-1}, y_{i-1}, c_{i-1}\right)$
 $P\left(y_i | \mathsf{x}, y_{< i}\right) = \mathsf{CharacterDistribution}\left(s_i, c_i\right)$

• Расчёт контекста c_i :

$$c_{i} = \sum_{u} \alpha_{i,u} h_{u}$$

$$\alpha_{i,u} = \frac{\exp(e_{i,u})}{\sum_{u} \exp(e_{i,u})}$$

$$e_{i,u} = \langle \phi(s_{i}), \psi(h_{u}) \rangle$$

• $\phi(\cdot), \psi(\cdot)$ - многослойные персептроны.

• Генерация выходной последовательности - через BeamSearch (32 лучших гипотезы)

• Считался score:

$$s(\mathbf{y}|\mathbf{x}) = \frac{\log P(\mathbf{y}|\mathbf{x})}{|\mathbf{y}|_c} + \lambda \log P_{LM}(\mathbf{y})$$

- - чтобы поощрить модель выдавать более длинные последовательности
- $P_{LM}(y)$ вероятность y по языковой модели.
 - много текстов для обучения
 - существенно ↑ качество
- Аугментация при обучении:
 - добавление эхо (reverbations)
 - добавление внешних шумов (из видео YouTube)

Word-error-rate от #гипотез лучевого поиска

- С 16 гипотез качество почти не улучшается.
- Включение языковой модели ↑ качество

Визуализация внимания

Содержание

- 1 Представление звуковой информации
- 2 Listen-Attend-Spell
- 3 Connectionist Temporal Classification

CTC^{5,6}

- Требуется построить $x_1x_2...x_T o y_1y_s...y_U$,
 - $T \neq U$, объекты посл-тей монотонно связаны во времени
- Примеры:
 - рукописный текст->текст
 - звук->текст
 - видео->разметка событий на фреймах

Handwriting recognition: The input can be (x,y) coordinates of a pen stroke or pixels in an image.

Speech recognition: The input can be a spectrogram or some other frequency based feature extractor.

⁵https://www.cs.toronto.edu/~graves/icml_2006.pdf ⁶Туториал.

Проблема выравнивания

ullet Для оценки модели X o Y необходимо оценивать $p\left(Y|X
ight)$

- Важно построить соответствие между символами.
 - линейная связь во времени? -> нет
 - вручную -> дорого
- СТС агрегирует по всем возможным выравниваниям:

$$p(Y\mid X) \;\; = \;\;\;\; \sum_{A\in A_{X,Y}} \qquad \qquad \prod_{t=1}^T \; p_t(a_t\mid X)$$

The CTC conditional probability

marginalizes over the set of valid alignments

computing the **probability** for a single alignment step-by-step.

- ullet Распределение $p\left(a_{t}|X
 ight)$ выдает модель
 - сначала CNN (conv1d идидширокая свёртка), потом RNN.

Выравнивание и кодировка

- Введем пустой символ ϵ в кодировке a_t .
- Преобразование A o Y:
 - объединить повторяющиеся символы в один
 - $oldsymbol{2}$ убрать ϵ (за счёт этого шага Y может повторять символы)

First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

Выравнивание и кодировка

Valid Alignments Invalid Alignments ϵ C ϵ C ϵ C ϵ C ϵ C ϵ ϵ

- Свойства выравнивания:
 - ullet монотонность соответствий символов $A_t o Y_s$
 - ullet отображение $A_t o Y_s$ many-to-one, $|A| \ge |Y|$

Последовательность

Агрегация по выравниваниям

- По строкам $Z = [\epsilon, y_1, \epsilon, y_2, \epsilon, ...\epsilon, y_N, \epsilon]$
 - $Y = ' \text{hello}' \rightarrow Z = ' \epsilon \text{h} \epsilon \text{e} \epsilon \text{l} \epsilon \text{l} \epsilon \text{o} \epsilon'$
- По столбцам входы (фреймы аудио)
- $\alpha_{s,t} = p(Z_{1:s}|X_{1:t})$

Агрегация по выравниваниям

Случай 1

In this case, we can't jump over z_{s-1} , the previous token in Z. The first reason is that the previous token can be an element of Y, and we can't skip elements of Y. Since every element of Y in Z is followed by an ϵ , we can identify this when $z_s=\epsilon$. The second reason is that we must have an ϵ between repeat characters in Y. We can identify this when $z_s=z_{s-2}$.

$$lpha_{s,t} = (lpha_{s-1,t-1} + lpha_{s,t-1}) \cdot \underbrace{p\left(z_s|X\right)}_{ ext{из модели для выхода }t}$$

Случай 2

In the second case, we're allowed to skip the previous token in Z. We have this case whenever z_{s-1} is an ϵ between unique characters. As a result there are three positions we could have come from at the previous step.

$$lpha_{s,t} = (lpha_{s-2,t-1} + lpha_{s-1,t-1} + lpha_{s,t-1}) \cdot \underbrace{p\left(\emph{z}_s|\emph{X}\right)}_{$$
из модели для выхода t

Пример выравнивания

- Нужно агрегировать по 2м узлам на старте (ϵ, a) и 2м узлам на финише (b, ϵ) .
- ullet Можем эффективно вычислить $p\left(Y|X
 ight)$ и настраивать модель $f_{ heta}:X o p\left(a|X
 ight)$ из

$$\sum_{(X,Y) \in \mathit{TrainSet}} \log p_{ heta}\left(Y|X
ight)
ightarrow \max_{ heta}$$

Построение прогноза (наивный подход)

Построение прогноза

$$\widehat{Y} = \underset{Y}{\operatorname{arg max}} p(Y|X)$$

Простой прогноз:

$$\widehat{A}=rg\max_{A}\prod_{t=1}^{T}p\left(a_{t}|X
ight)$$
 $\widehat{A}
ightarrow\widehat{Y}$ через СТС преобразование

Построение прогноза (наивный подход)

Недостаток простого подхода: разные выравнивания могут соответствовать одному выходу

• например $p(bbb) > p(aa\epsilon)$ и p(bbb) > p(aaa), но $p(aa\epsilon) + p(aaa) > p(bbb)$ и нужно выдавать $\widehat{Y} = a$.

Построение прогноза с учетом выходного Y

Поэтому правильнее в лучевом поиске ранжировать не лучшие $A_{:t}$ гипотезы, а лучшие соответствующие $Y_{:s}$ гипотезы

The CTC beam search algorithm with an output alphabet $\{\epsilon, a, b\}$ and a beam size of three.

• Для этого агрегируем

$$\epsilon$$
a + a ϵ + aa $ightarrow$ a, ϵ aa + ϵ a ϵ $ightarrow$ a, baa + ba ϵ $ightarrow$ ba, ...

Построение прогноза с учетом выходного Y

• $\epsilon a + a\epsilon + aa \to a$ но внутри нужно разделять 2 случая (и запоминать их вероятности отдельно) $\epsilon a + aa \to a$ и $a\epsilon \to a$ т.к. при последующей склейке с a результат различный:

$$\epsilon a + a
ightarrow a$$
, но $a \epsilon a
ightarrow aa$

• При склейке же с b результат одинаковый:

$$\epsilon a + b
ightarrow ab$$
 и а $\epsilon b
ightarrow ab$

Повышение качества прогнозов

Улучшенный рейтинг для ↑ качества выходов:

$$p(Y|X) \cdot p(Y)^{\alpha} \cdot |Y|^{\beta}$$

- p(Y) языковая модель (можем оценить по большим корпусам текстов)
- |Y| длина последовательности (иначе поощряются более короткие из-за $p \times p \times p...$)

Проверка корректной реализации СТС:

- ullet считаем $p_{true}\left(Y|X
 ight)$ по всем разбиениям
- $m{Q}$ считаем $p_{CTC,eta}\left(Y|X
 ight)$ с помощью СТС и лучевого поиска ширины eta

Должно получиться:

$$p_{CTC,eta}\left(Y|X
ight) \leq p_{true}\left(Y|X
ight) \ p_{CTC,eta}\left(Y|X
ight)
ightarrow p_{true}\left(Y|X
ight)$$
 при \uparroweta

DeepSpeech⁷

- Модель DeepSpeech реализует СТС.
- X_t окно спектрограммы (+- 3,5,7 фреймов).
- ullet Для прогнозирования $p\left(a_t|X_t
 ight)$ используются
 - 3 FC, left-to-right и right-to-left RNN, 1 FC (от суммы состояний RNN), SoftMax:

 $^{^{7}\}overline{\text{https://arxiv.org/pdf/1412.5567.pdf}}$

DeepSpeech - особенности

- FC слои можно воспринимать как 1D свёртку
 - ullet т.к. веса FC слоев не зависят от t
- Использовался DropOut на всех FC слоях
 - $p_{drop} = 0.05, 0.1.$
 - но не к пересчету состояний RNN
- Во время обучения и теста использовался ансамбль:

$$\frac{1}{3}(F(x_{-5ms}) + F(x) + F(x_{+5ms}))$$

- x_{Kms} сигнал x, сдвинутый на K миллисекунд.
- Нелинейность Clipped ReLU:

$$ReL U_{clip}(x) = \min \left\{ \max \left\{ x, 0 \right\}, 20 \right\}$$

DeepSpeech 2⁸

- DeepSpeech 2 также реализует СТС.
- Прогноз $p(a_t|X_t)$:

⁸https://arxiv.org/pdf/1512.02595.pdf

DeepSpeech 2 - детали архитектуры

- свёрточные слои (2D-conv по времени и частоте лучше себя показала)
- stride>1 для ↓ #параметров и вычислений
- 7 двунаправленных RNN (GRU)
- BatchNorm на всех слоях ↑ качество прогнозов.
 - в RNN он использовался только при учёте нижестоящего слоя:

$$h_t^l = f\left(\mathsf{BatchNorm}\left(Wh_t^{l-1}\right) + Uh_{t-1}^l\right)$$

Заключение

- Распознавание речи основано на
 - seq2seq+attention: Listen-Attend-Spell (LAS)
 - потери СТС: DeepSpeech, DeepSpeech 2.
- качество ↑, если
 - используем языковую модель
 - поощряем длительность у
 - используем аугментацию
 - добавляется эхо
 - учимся на x чуть смещенных по t
 - добавляем посторонний шум