

Probability Distribution Based Evolutionary Algorithms

Wei-Neng Chen
South China University of Technology

05-14-2018

广东省计算智能与网络 空间信息重点实验室

Outline

1. Background

- 2. Probability Distribution Based EAs for Seeking Multiple Solutions
- 3. Probability Distribution Based EAs for Discrete Optimization
- 4. Applications & Future Work

Data-Driven Optimization

☐ In big-data environment, many problems are driven by data

Portfolio Optimization

Order Dispatching

陈伟能,华南理工大学 2

Evolutionary Computation

- ☐ Population-based stochastic algorithms which simulate intelligent behaviors
- Popular Algorithms
 - **→** Genetic algorithms (GA)
 - Differential evolution (DE)
- ☐ Meta-heuristics
 - **→** Particle swarm optimization (PSO)
 - **→** Ant colony optimization (ACO)
 - > ...
- ☐ Advantages
 - > Do not make any assumption about the underlying fitness landscape
 - Find approximated solutions within acceptable time

Challenge 1: Premature Convergence

- ☐ How to escape from local optima in multimodal problems has long been a key issue in EC research
 - ➤ Parameter adaption (APSO, Zhan et al., 2009)
 - Modified mutation \ update rules (Local Topology PSO, Kennedy & Mendes, 2002, CLPSO, Liang et al. 2006, etc.)
 - > Hybrid approaches

Improved PSO variants:

local neighborhood topology multi-swarm PSOs try to introduce more exemplars to improve search diversity

Challenge 2: Curse of Dimensionality

- ☐ The search space is enlarged exponentially
- ☐ The number of local optima increases rapidly
- ☐ The execution time becomes too long

Other Challenges

☐ Mixed Variable Optimization

continuous variables categorical variables

Optimal Design of Power Electronic Circuits

☐ Optimization under Uncertain / Dynamic Environment

Maximize Profit Minimize Risk

Robust Optimization

Probability-Based EAs (1)

□ Estimation of Distribution Algorithm (EDA, Lozano et al., 2002): building and sampling explicit probabilistic models of promising candidate solutions

EDA: focus on the global fitness landscape

PSO: focus on the local neighborhood around the exemplar

陈伟能,华南理工大学

 $\overline{}$

Probability-Based EAs (2)

- ☐ In a broad sense, there are also some other EC algorithms that implicitly use probability distribution
 - ➤ Ant Colony Optimization (ACO, Dorigo et al., 1996)

The pheromone depositing behavior can be viewed as building a probability distribution in the search space.

- **□** Strengths
 - Good at global optimization and diversity preservation
- ☐ Weakness
 - > Speed, Precision

An Outline of Our Study

1 Probability Distribution Based EAs for Seeking Multiple Solutions

Build a framework with local (niched) probability distribution to improve search diversity of EC

2 Probability Distribution Based EAs for Discrete Optimization

Build a framework for probability distribution based EC algorithms for solving mixed-variable optimization problems

Outline

1. Background

- 2. Probability Distribution Based EAs for Seeking Multiple Solutions
- 3. Probability Distribution Based EAs for Discrete Optimization
- 4. Applications & Future Work

Motivation

- ☐ Seeking multiple optimal solutions requires extremely high search diversity
 - By now, almost all approaches to seek multiple solutions are based on PSO or DE
 - ➤ On some high dimension problems with many local optima, the detection rates of many approaches are below 15%, or even 0%.

□ EDA has shown good search diversity, but the potential of probability distribution based evolution for seeking multiple solutions have not been explored

Framework

☐ Combine Probability-Distribution Based EC with Niching

Niching

- > Fitness Sharing (Goldberg and Richardson, 1987)
- > Crowding (Thomsen, 2004)
- > Speciation (Li, 2005)
- Clustering (Gao and Yen, et al., 2014; Qu and Suganthan, et al. 2012)

Multimodal EDA

□ 1) Niching with Dynamic Niche Size

- $ightharpoonup C = \{c_1, c_2, \dots, c_t\} \text{ (different integers)}$
- Random selection before each generation
- > Small size beneficial for exploitation
- Large size profitable for exploration
- ➤ Better balance between exploration and exploitation (than with a fixed size)

☐ 2) Distribution Estimation

- > Estimating each niche separately
- ➤ All individuals in one niche participating in the estimation to keep high diversity

$$\mu_i^d = \frac{1}{M} \sum_{j=1}^M x_j^d$$

$$\delta_i^d = \sqrt{\frac{1}{M-1} \sum_{j=1}^M (x_i^d - \mu_i^d)^2}$$

Multimodal EDA

☐ 3) Sampling with Cauchy / Gaussian Distribution

$$C_i = \begin{cases} Cauchy(\mu_i, \delta_i) & \text{if } rand() \le 0.5 \\ Gaussian(\mu_i, \delta_i) & \text{otherwise} \end{cases}$$

☐ 4) Selection with the Neighborhood Replacement Rule

□ 5) Local Search to Accelerate Search

- > Adaptively conduct around seeds of niches
- Local search by sampling *N* points using Gaussian Distribution around seeds

$$N(\mu, \delta)$$
 $\mu = seed_i, \delta = 1.0E - 4$

Results of Multimodal EDA

Clustering for Crowding (MCEDA) Clustering for Speciation (MSEDA)

Results of Multimodal EDA

						,															
F	DD.	Self_CCDE	CO.	DD	Self_CSDE	CO.	DD.	LoICDE	O.O.	DD	LoISDE	CS	DD	PNPCDE	00	DD	LMCEDA	G0	DD	LMSEDA	CS
—	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS
F_1	1.000	1.000	3.55E+2	1.000	1.000	7.15E+2	1.000	1.000	1.73E+2	1.000	1.000	1.68E+2	1.000	1.000	1.62E+2	1.000	1.000	3.23E+2	1.000	1.000	3.41E+2
	11000	1.000	5.00212	11000	1.000	7.102.12	11000	1.000	1173212	11000	1.000	1.002.12	11000	1.000	1.0225+2	2,000	1.000	5.252.12	11000	1.000	5111212
F_2	1.000	1.000	7.61E+2	1.000	1.000	1.03E+3	1.000	1.000	1.24E+3	0.486	0.353	3.25E+4	1.000	1.000	1.08E+3	1.000	1.000	1.07E+3	1.000	1.000	8.97E+2
_																					
F_3	1.000	1.000	5.55E+2	1.000	1.000	7.23E+2	1.000	1.000	5.84E+2	1.000	1.000	7.48E+2	1.000	1.000	8.33E+2	1.000	1.000	5.06E+2	1.000	1.000	4.84E+2
$F_{\mathcal{L}}$	1 000	1 000	7 07F 2	0.007	0.706	2.075.4	1 000	1.000	1.400.4	0.265	0.020	4.015.4	1 000	1.000	2.205.4	1 000	1.000	1.100.4	1 000	1.000	6 27F. 2
1.4	1.000	1.000	7.07E+3	0.907	0.706	2.97E+4	1.000	1.000	1.48E+4	0.265	0.020	4.91E+4	1.000	1.000	2.28E+4	1.000	1.000	1.18E+4	1.000	1.000	6.37E+3
F_{5}	1.000	1.000	1.97E+3	1.000	1.000	3.38E+3	1.000	1.000	1.88E+3	0.814	0.627	1.91E+4	1.000	1.000	3.69E+3	1.000	1.000	3.78E+3	1.000	1.000	2.51E+3
,,																					
F_6	0.972	0.647	1.37E+5	0.760	0.020	1.97E+5	1.000	1.000	9.58E+4	0.056	0.000	2.00E+5	0.806	0.157	1.97E+5	0.990	0.843	1.64E+5	0.973	0.588	1.43E+5
F7																					
F7	0.884	0.020	1.97E+5	0.696	0.000	2.00E+5	0.858	0.020	2.00E+5	0.029	0.000	2.00E+5	0.875	0.000	2.00E+5	0.782	0.000	2.00E+5	0.712	0.000	2.00E+5
F_8	0.997	0.902	2.35E+5	0.695	0.000	4.00E+5	0.000	0.000	4.00E+5	0.012	0.000	4.00E+5	0.000	0.000	4.00E+5	0.352	0.000	4.00E+5	0.622	0.000	4.00E+5
	0.227	0.702	2.33113	0.075	0.000	4.00E13	0.000	0.000	4.00E13	0.012	0.000	4.00E13	0.000	0.000	4.00E15	0.332	0.000	4.00E13	0.022	0.000	4.00E13
F_{9}	0.459	0.000	4.00E+5	0.265	0.000	4.00E+5	0.421	0.000	4.00E+5	0.005	0.000	4.00E+5	0.473	0.000	4.00E+5	0.333	0.000	4.00E+5	0.281	0.000	4.00E+5
_																					
F_{10}	1.000	1.000	8.15E+3	1.000	1.000	1.51E+4	1.000	1.000	3.04E+4	0.083	0.000	2.00E+5	1.000	1.000	2.16E+4	1.000	1.000	1.02E+4	0.998	0.980	1.23E+4
F ₁₁	0.824	0.255	1.92E+5	0.565	0.000	2.00E+5	0.667	0.000	2.00E+5	0.167	0.000	2.00E+5	0.667	0.000	2.00E+5	0.667	0,000	2.00E+5	0.905	0.451	1.80E+5
	0.824	0.233	1.92E+3	0.303	0.000	2.00E+3	0.007	0.000	2.00E+3	0.107	0.000	2.00E+3	0.007	0.000	2.00E+3	0.007	0.000	2.00E+3	0.903	0.431	1.60E+3
F ₁₂	0.591	0.000	2.00E+5	0.409	0.000	2.00E+5	0.615	0.000	2.00E+5	0.125	0.000	2.00E+5	0.015	0.000	2.00E+5	0.750	0.000	2.00E+5	0.990	0.922	1.09E+5
F_{13}	0.667	0.000	2.00E+5	0.493	0.000	2.00E+5	0.634	0.000	2.00E+5	0.167	0.000	2.00E+5	0.637	0.000	2.00E+5	0.667	0.000	2.00E+5	0.667	0.000	2.00E+5
F																					
F ₁₄	0.667	0.000	4.00E+5	0.500	0.000	4.00E+5	0.663	0.000	4.00E+5	0.167	0.000	4.00E+5	0.592	0.000	4.00E+5	0.667	0.000	4.00E+5	0.667	0.000	4.00E+5
F_{15}	0.370	0.000	4.00E+5	0.287	0.000	4.00E+5	0.358	0.000	4.00E+5	0.125	0.000	4.00E+5	0.152	0.000	4.00E+5	0.699	0.000	4.00E+5	0.738	0.000	4.00E+5

F ₁₆	0.663	0.000	4.00E+5	0.232	0.000	4.00E+5	0.621	0.000	4.00E+5	0.167	0.000	4.00E+5	0.010	0.000	4.00E+5	0.667	0.000	4.00E+5	0.667	0.000	4.00E+5
E																					
F ₁₇	0.260	0.000	4.00E+5	0.103	0.000	4.00E+5	0.238	0.000	4.00E+5	0.076	0.000	4.00E+5	0.000	0.000	4.00E+5	0.456	0.000	4.00E+5	0.620	0.000	4.00E+5
F ₁₈	0.353	0.000	4.00E+5	0.016	0.000	4.00E+5	0.222	0.000	4.00E+5	0.157	0.000	4.00E+5	0.160	0.000	4.00E+5	0.657	0,000	4.00E+5	0.660	0.000	4.00E+5
- 10	0.555	0.000		0.010	0.000	00113	0.222	0.000		0.157	0.000	7.00E13	0.100	0.000	7.00E13	0.057	0.000	7.00E13	0.000	0.000	2.00E13
F ₁₉	0.150	0.000	4.00E+5	0.000	0.000	4.00E+5	0.054	0.000	4.00E+5	0.027	0.000	4.00E+5	0.000	0.000	4.00E+5	0.451	0.000	4.00E+5	0.458	0.000	4.00E+5
_																					
F ₂₀	0.069	0.000	4.00E+5	0.000	0.000	4.00E+5	0.125	0.000	4.00E+5	0.088	0.000	4.00E+5	0.000	0.000	4.00E+5	0.250	0.000	4.00E+5	0.250	0.000	4.00E+5
bprs		9			5			7			2			6			9			13	

MEDA performs well on high-dimensional multimodal problems with many local optima, as they can locate more globally optimal solutions.

Multimodal ACO

- ☐ ACO is developed for discrete optimization (Dorigo et al., 1996)
- ☐ By modeling pheromone as probability distribution, ACO can also solve continuous problems (Socha and Dorigo, 2008)
- ☐ The capability of EDA is usually limited by the distribution model (usually Cauchy or Gaussian)
- ☐ The pheromone depositing behavior of ACO may provide a more flexible probability distribution

Multimodal ACO

□ 1) Niching with Dynamic Niche Size

□ 2) Pheromone Deposition

- Each individual deposits pheromone according to its fitness
- The pheromone of an individual determines the probability of sampling new children around this individual
- \triangleright Adaptive configuration for the parameter σ

$$w_i = \frac{1}{\sigma NP\sqrt{2\pi}} e^{-\frac{(rank(i)-1)^2}{2\sigma^2 NP^2}}$$

$$p_j = \frac{w_j}{\sum_{i=1}^{NP} w_i}$$

Pheromone Deposition to form a probability distribution for each niche

Multimodal ACO

□ 3) Sampling new solutions

- > Step 1. Select an individual according to their pheromone distribution
- > Step 2. Determine the center of sampling

$$\mu = \begin{cases} x_j \text{ (selected solution)} & rand() \le 0.5\\ u = x_j + F(\mathbf{x}_{seed} - x_j) & \text{otherwise} \end{cases}$$

- > Step 3. Sampling with Gaussian Distribution
- > Step 4. Repeat 1-3 until a new generation has been built
- **□** 4) Selection with the Neighborhood Replacement Rule
- **□** 5) Local Search

Sampling using Gaussian Distribution

Results of AM-ACO

Results of AM-ACO

F		Self CSDE			LoICDE			LoISDE			PNPCDE			MOMMOP			LAMC-ACO			LAMS-ACO	
F	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS	PR	SR	CS
F_1	1.000	1.000	7.15E+2	1.000	1.000	1.73E+2	1.000	1.000	1.68E+2	1.000	1.000	1.62E+2	1.000	1.000	1.66E+2	1.000	1.000	2.59E+2	1.000	1.000	2.14E+2
F_2	1.000	1.000	1.03E+3	1.000	1.000	1.24E+3	0.486	0.353	3.25E+4	1.000	1.000	1.08E+3	1.000	1.000	1.09E+3	1.000	1.000	5.35E+2	1.000	1.000	4.90E+2
F_3	1.000	1.000	7.23E+2	1.000	1.000	5.84E+2	1.000	1.000	7.48E+2	1.000	1.000	8.33E+2	1.000	1.000	9.58E+2	1.000	1.000	3.50E+2	1.000	1.000	3.53E+2
F_4	0.907	0.706	2.97E+4	1.000	1.000	1.48E+4	0.265	0.020	4.91E+4	1.000	1.000	2.28E+4	1.000	1.000	3.50E+4	1.000	1.000	5.04E+3	1.000	1.000	3.50E+3
F_5	1.000	1.000	3.38E+3	1.000	1.000	1.88E+3	0.814	0.627	1.91E+4	1.000	1.000	3.69E+3	1.000	1.000	1.48E+4	1.000	1.000	1.42E+3	1.000	1.000	1.10E+3
F_6	0.760	0.020	1.97E+5	1.000	1.000	9.58E+4	0.056	0.000	2.00E+5	0.806	0.157	1.97E+5	1.000	1.000	5.61E+4	0.999	0.980	1.10E+5	0.990	0.824	1.05E+5
F ₇	0.696	0.000	2.00E+5	0.858	0.020	2.00E+5	0.029	0.000	2.00E+5	0.875	0.000	2.00E+5	1.000	1.000	6.32E+4	0.789	0.000	2.00E+5	0.716	0.000	2.00E+5
F_8	0.695	0.000	4.00E+5	0.000	0.000	4.00E+5	0.012	0.000	4.00E+5	0.000	0.000	4.00E+5	1.000	1.000	2.85E+5	0.680	0.000	4.00E+5	0.782	0.000	4.00E+5
F_{Q}	0.265	0.000	4.00E+5	0.421	0.000	4.00E+5	0.005	0.000	4.00E+5	0.473	0.000	4.00E+5	1.000	1.000	2.95E+5	0.348	0.000	4.00E+5	0.295	0.000	4.00E+5
F ₁₀	1.000	1.000	1.51E+4	1.000	1.000	3.04E+4	0.083	0.000	2.00E+5	1.000	1.000	2.16E+4	1.000	1.000	4.24E+4	1.000	1.000	9.47E+3	1.000	1.000	9.02E+3
F ₁₁	0.565	0.000	2.00E+5	0.667	0.000	2.00E+5	0.167	0.000	2.00E+5	0.667	0.000	2.00E+5	0.938	0.647	1.73E+5	0.683	0.000	2.00E+5	0.974	0.843	1.40E+5
F ₁₂	0.409	0.000	2.00E+5	0.615	0.000	2.00E+5	0.125	0.000	2.00E+5	0.015	0.000	2.00E+5	0.949	0.627	1.73E+5	0.824	0.098	1.99E+5	0.983	0.863	1.03E+5
F ₁₃	0.493	0.000	2.00E+5	0.634	0.000	2.00E+5	0.167	0.000	2.00E+5	0.637	0.000	2.00E+5	0.667	0.000	2.00E+5	0.667	0.000	2.00E+5	0.676	0.000	2.00E+5
F ₁₄	0.500	0.000	4.00E+5	0.663	0.000	4.00E+5	0.167	0.000	4.00E+5	0.592	0.000	4.00E+5	0.667	0.000	4.00E+5	0.667	0.000	4.00E+5	0.667	0.000	4.00E+5
F ₁₅	0.287	0.000	4.00E+5	0.358	0.000	4.00E+5	0.125	0.000	4.00E+5	0.152	0.000	4.00E+5	0.627	0.000	4.00E+5	0.740	0.000	4.00E+5	0.748	0.000	4.00E+5
F ₁₆	0.232	0.000	4.00E+5	0.621	0.000	4.00E+5	0.167	0.000	4.00E+5	0.010	0.000	4.00E+5	0.650	0.000	4.00E+5	0.667	0.000	4.00E+5	0.667	0.000	4.00E+5
F ₁₇	0.103	0.000	4.00E+5	0.238	0.000	4.00E+5	0.076	0.000	4.00E+5	0.000	0.000	4.00E+5	0.512	0.000	4.00E+5	0.608	0.000	4.00E+5	0.708	0.000	4.00E+5
F ₁₈	0.016	0.000	4.00E+5	0.222	0.000	4.00E+5	0.157	0.000	4.00E+5	0.160	0.000	4.00E+5	0.497	0.000	4.00E+5	0.667	0.000	4.00E+5	0.667	0.000	4.00E+5
F ₁₉	0.000	0.000	4.00E+5	0.054	0.000	4.00E+5	0.027	0.000	4.00E+5	0.000	0.000	4.00E+5	0.223	0.000	4.00E+5	0.500	0.000	4.00E+5	0.502	0.000	4.00E+5
F ₂₀	0.000	0.000	4.00E+5	0.125	0.000 7	4.00E+5	0.088	0.000	4.00E+5	0.000	0.000	4.00E+5	0.125	0.000	4.00E+5	0.272	0.000	4.00E+5	0.348	0.000	4.00E+5
											-										

AM-ACO achieved even better results than MEDA. E.g., for the most difficult problem F20, AM-ACO yields a detection rate 34.8%, MEDA is 25%, while most other existing approaches are below 12.5%

Conclusion

- ☐ Probability Distribution Based EC algorithms are good at maintaining sufficient search diversity
- ☐ Combing Probability Distribution Based EC & Niching is promising for problems with high diversity requirement, e.g., seeking multiple solutions in multimodal optimization
- ☐ Local search and parameter adaption are helpful to improve search efficiency
- ☐ Implicit Probability Distribution Approaches, e.g., ACO, may sometimes provide a more flexible way to build distribution

"Multimodal Estimation of Distribution Algorithms", *IEEE Transactions on Cybernetics*, vol. 47, no. 3, pp. 636-650, 2017.

"Adaptive Multimodal Continuous Ant Colony Optimization", *IEEE Transactions* on *Evolutionary Computation*, vol. 21, no. 2, pp. 191-205, 2017.

Outline

1. Background

- Multimodal Optimization
- Probability Distribution Based EAs
- 2. Probability Distribution Based EAs for Seeking Multiple Solutions
- 3. Probability Distribution Based EAs for Discrete Optimization
- 4. Applications & Future Work

Motivation

□ Probability Distribution is suitable on both continuous and discrete problems

☐ Some popular EC algorithms, e.g., PSO, are originally defined on continuous real vector space

Velocity Update
$$v_i^j \leftarrow wv_i^j + c_1r_1^j(pbest_i^j - x_i^j) + c_2r_2^j(gbest^j - x_i^j), \quad j = 1, 2, ..., n$$

☐ Is it possible to use Probability Distribution to build a more general discrete PSO (DE, etc.) framework?

Set-Based Representation

COPs can be formulated in the abstract as "find from a set E a subset X that satisfies some constraints and optimizes the objective function f" (Lin and Kernighan 1973)

Continuous Search Space

Representation: Real Vector

$$\boldsymbol{x}_{i}(x_{i}^{1},x_{i}^{2},\cdots,x_{i}^{n})$$

Discrete Search Space

Representation: Set

 $\{(1,2), (2,3), (3,4), ..., (1,5)\}$

Set-Based Representation

☐ Position: a crisp set

$$E = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

$$E^{1} = \{(1,2), (1,3), (1,4)\}$$
 $E^{2} = \{(1,2), (2,3), (2,4)\}$

$$E^{3} = \{(1,3),(2,3),(3,4)\}$$
 $E^{4} = \{(1,4),(2,4),(3,4)\}$

$$X = \{(1,2), (2,3), (3,4), (1,4)\}$$

$$X^{1} = \{(1,2), (1,4)\}$$
 $X^{2} = \{(1,2), (2,3)\}$

$$X^{3} = \{(2,3),(3,4)\}$$
 $X^{4} = \{(1,4),(3,4)\}$

□ Velocity: a set with possibilities

$$V = \{(1,2)/0.5, (2,3)/0.6, (3,4)/0.7\}$$

$$V^1 = \{(1,2)/0.5\}$$

$$V^2 = \{(1,2)/0.5, (2,3)/0.6\}$$

$$V^3 = \{(2,3)/0.6\}$$

Velocity Update

☐ Essence of velocity update: build a probability distribution of the "promising elements" for particles to learn from

Union of two sets with possibilities

$$V_1^1 = \{(1, 2)/0.6, (1, 4)/0.9\}$$
 $V_1^2 = \{(1, 2)/0.9, (1, 3)/0.3\}$
 $V_1^1 + V_1^2 = \{(1, 2)/0.9, (1, 3)/0.3, (1, 4)/0.9\}$

Position Update

☐ Particles uses the elements sampling from the probability distribution defined by "velocity" to update positions

Convert the velocity (probability distribution) into a crisp set

$$cut_{\alpha}(V_i^j) = \{e \mid e \mid p(e) \in V_i^j \text{ and } p(e) \ge \alpha\}$$

Learn from the elements in $cut_{\alpha}(V_i^j)$

Reuse the elements from the previous position X_i^j

Use other unselected elements to build a complete feasible solution

Constraint Handling

☐ Step-by-Step

☐ Build and Repair

 X_i $cut_{\alpha}(V_i^j)$ New Position (infeasible)

Item 1	selected
Item 2	unselected
Item 3	selected
Item 4	unselected
Item 5	selected
Item 6	unselected

Item 1	selected
Item 2	selected
Item 3	selected
Item 4	selected
Item 5	selected
Item 6	unselected

	Item 1	selected
•	Item 2	selected
	Item 3	unselected
	Item 4	selected
	Item 5	selected
	Item 6	unselected

~

Search Behavior

Velocity update in GPSO

Redefine Discrete PSO

$$v_i^j \leftarrow wv_i^j + c_1r_1^j(pbest_i^j - x_i^j) + c_2r_2^j(gbest^j - x_i^j), \quad j = 1, 2, ..., n$$

S-GPSO

Velocity update in LPSO

$$v_i^j \leftarrow wv_i^j + c_1r_1^j(pbest_i^j - x_i^j) + c_2r_2^j(lbest_i^j - x_i^j), \quad j = 1, 2, ..., n$$

S-LPSO

Velocity update in CLPSO

$$v_i^j \leftarrow \omega \cdot v_i^j + cr^j (pbest_{f_i(j)}^j - x_i^j), \quad j = 1, 2, ..., n$$

S-CLPSO

Different PSO variants can be directly extended to their discrete versions based on the S-PSO.

Parameter configurations in original PSO can be still used in S-PSO

Conclusion

- ☐ Probability Distribution can also be used to extend EC algorithms from continuous space to discrete space
- ☐ Different kinds of PSO variants (including multiobjective ones) can be extended to their discrete versions
- ☐ First verified on TSP and MKP,
- **☐** Solve other discrete optimization problems:
 - **□** Vehicle routing (Gong et al., 2012)
 - □ Coverage array generation (Wu et al., 2015)

"A novel set-based particle swarm optimization method for discrete optimization problem", *IEEE Transactions on Evolutionary Computation*, 2010

"Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems", *IEEE Trans. on Cybernetics*, in press

"Set-based discrete particle warm optimization and its applications: a survey", *Frontiers of Computer Science*, 2018

Outline

1. Background

- 2. Probability Distribution Based EAs for Seeking Multiple Solutions
- 3. Probability Distribution Based EAs for Discrete Optimization
- 4. Applications & Future Work

Application 1: Insurance Purchase Optimization

Insurance is an important way for investment and risk aversion Many insurance products exist No exact model for insurance purchase Optimal Insurance Purchase Plan **Optimization Data** Adaption **Estimation of** Information Insurance Distribution of Insured Purchase Model Algorithm **Optimization** Modelling Insurance Data Product Data Sales Data Life/Health Data

Estimation of Distribution Approach

"An Adaptive Estimation of Distribution Algorithm for Multi-Policy Insurance Investment Planning", *IEEE Transactions on Evolutionary Computation*, Accepted in Nov. 2017

Application 2: Dynamic Vehicle Routing

Definition

Designing routes for a fleet of vehicles to serve a set of customers

□ Objective:

- Minimize total travel distances subject to various constraints
- ☐ A crucial issue in transportation and logistics systems
- NP-hard

Probability-based EC for Vehicle Routing

Set-based Representation with a decoding scheme

☐ Provide new best-known results on 60+ benchmark instances

Set-based comprehensive learning PSO

 $V_1^2 = \{(1, 2)/0.9, (1, 3)/0.3\}$

 $V_1^1 = \{(1, 2)/0.6, (1, 4)/0.9\}$

 $V_1^1 + V_1^2 = \{(1, 2)/0.9, (1, 3)/0.3, (1, 4)/0.9\}$

Dynamic Logistics Dispatching System

□ Dynamic orders

☐ Dynamic optimization

- > Archive strategy to store historical results and accelerate convergence
- Region partition to cut a large-scale problem into small pieces

"A Dynamic Logistic Dispatching System With Set-Based Particle Swarm Optimization", *IEEE TSMC-Systems*, in press, 2017

Architecture of the dispatching system

Application 3: Community Detection

□ Detection of Overlapping Social Network Communities

"A Maximal Clique Based Multiobjective Evolutionary Algorithm for Overlapping Community Detection", *IEEE Transactions on Evolutionary Computation*, 2017

Potential Future Work

- ☐ Large-scale and high-dimensional problems
 - **Cooperatively Coevolution** (Li and Yao, 2013 etc., ...)
 - **Competitive Swarm Optimizer (Cheng & Jin, 2015)**

Level-based Learning / Segment-Based Predominant Learning Optimizer

Exploration:

A lot of exemplars

Exploitation:

- Predominant exemplars
- Short distances between learners and exemplars

"A Level-based Learning Swarm Optimizer for Large Scale Optimization", *IEEE Transactions on Evolutionary Computation*, in press

"Segment-Based Predominant Learning Swarm Optimizer for Large-Scale Optimization," *IEEE Transactions on Cybernetics*, vol. 47, no. 9, pp. 2896-2910, 2017

Potential Future Work

☐ Distributed Design & Implementation

"Distributed Cooperative Co-evolution with Adaptive Computing Resource Allocation for Large Scale Optimization", *IEEE Transactions on Evolutionary Computation*, in press

Conclusions

- ☐ Probability distribution based EC algorithms are good at preserver search diversity
- ☐ Probability distribution is also helpful to extend applicable domain of EC algorithms
- ☐ Potential future studies
- > Large-scale optimization
 - Cooperatively coevolution
 - Parallel & distributed design & implementation
- > Optimization under uncertainty
- > Real world applications

Thanks for your attention!