

INGREDIENT AND CATALYST FOR OLEFIN POLYMERIZATION

Patent number: JP57063311
Publication date: 1982-04-16
Inventor: SANDORO PARODEI; ROBERUTO NOTSUCHI;
UMUBERUTO JIYANNINI; PIEERU KAMIRO BARUBE;
UMUBERUTO SUKATA
Applicant: MONTEDISON SPA
Classification:
- **International:** C08F10/00; C08F10/00; (IPC1-7): C08F4/02; C08F4/64;
C08F10/00
- **european:** C08F10/00
Application number: JP19810126026 19810813
Priority number(s): IT19800024141 19800813

Also published as:
 EP022301C
 EP0045977
 EP0045976
 EP0045975
 SU1457813

[more >>](#)

[Report a data error](#)

Abstract not available for JP57063311

Abstract of corresponding document: **EP0045975**

Catalysts for the polymerization of alpha-olefins which comprise the reaction product of: a) an Al-alkyl compound; b) a silicon compound containing at least one Si-OR or Si-OCOR or Si-NR₂ bond, R being hydrocarbyl radical; c) a solid comprising as essential support, a Mg dihalide in active form and supporting therein a Ti halide or a halo-Ti-alcoholate or said halogenated Ti compound and a silicon compound defined in b) in a molar ratio with the supported Ti compound from 0,1 to 5 mole of silicon compound per mole of Ti compound.

Data supplied from the **esp@cenet** database - Worldwide

⑯ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A)

昭57—63311

⑩ Int. Cl.³
C 08 F 10/00
4/02
4/64

識別記号

庁内整理番号

106

7823—4J

⑬ 公開 昭和57年(1982)4月16日
発明の数 4
審査請求 未請求
(全 10 頁)

⑭ オレフインの重合用の成分及び触媒

イタリー国ミラノ・ヴィアシス
モンディ53

⑮ 特 願 昭56—126026

⑯ 発明者 ピエール・カミロ・バルベ
イタリー国フェラーラ・ヴィア
バヴオーネ3

⑰ 出 願 昭56(1981)8月13日

⑰ 発明者 ウムベルト・スカタ
イタリー国フェラーラ・ヴィア
シーパティスティ31

優先権主張 ⑯ 1980年8月13日 ⑭ イタリア
(I T) ⑯ 24141A/80

⑯ 出願人 モンテジソン・ソチエタ・ベル
・アチオニ
イタリー国ミラノ・フォロボナ
バルテ31

⑰ 発明者 サンドロ・パロディ
イタリー国ノヴァラ・オレッジ
ヨ・ヴィアデイネグリ4

⑰ 発明者 ロベルト・ノツチ
イタリー国ノヴァラ・コルソX
XIIIマルツオ170

⑯ 代理人 弁理士 小田島平吉

⑰ 発明者 ウムベルト・ジャシニーニ

明細書

1 [発明の名称]

オレフインの重合用の成分及び触媒

不飽和の分枝鎖状の基又は炭素数が7～20のアリールアルキル基であるか、或はRはエステル基カルボニル基に直接もしくはメチレン基を介している炭素数が3～20のアリール基であり、そして、R'は炭素数が3より少ないヒドロカルビル基である)の飽和及び不飽和カルボン酸のエステル。

2 [特許請求の範囲]

1 必須組体としての活性形のMgハロゲン化物、並びにMgハロゲン化合物上に担持されているTi⁴⁺-ハライド又はTi⁴⁺-ハロアルコレート及び下記の群の化合物から選択された電子供与体化合物:

からなり、アルファ-オレフインの複合用触媒を形成するためにAl-アルキル化合物及び1個以上のSi-OH、Si-OCOR又はSi-NR₂結合(Rはヒドロカルビル基である)を含有しているケイ素化合物と組み合わせて使用される固体成分。

1.1 オルト位にCOOH基を有する芳香族ジカルボン酸のモノ及びジエステルであつて、そのジ-OH基のヒドロカルビル基が3個未満の炭素原子を含み且つ該基の少なくとも1個は炭素原子2個を含むモノ及びジエステル。

2 该Mgハロゲン化合物がMgジハライドである特許請求の範囲第1項記載の固体成分。

1.2 R₂RCOO₂R'(ここで、ヒドロカルビル基Rは炭素数が3～20の飽和もしくは

又はMgジプロマイドであり、該Tiハライドが

Ti テトラハライドであり、そして電子供与体化合物がジエチルフタレート、メチル-及びエチル-ビペラート、メチル-及びエチル-メタクリレートである、特許請求の範囲第1項記載の固体成分。

4 下記成分：

- a) Al -アルキル化合物。
- b) 1個以上の $Si-OH$ 、 $Si-OCOK$ 又は $Si-NR_2$ 結合（ここで R はヒドロカルビル基である）を含有しているケイ素化合物。
- c) 特許請求の範囲第1項～第3項に記載されている如き固体成分。

の反応生成物からなる、アルファ-オレフィンの重合用触媒。

5 该 Al -アルキル化合物が、 Al -トリアルキル或は硫酸もしくは塩素原子を介して、又は SO_4 もしくは HSO_4 基を介して互に結合してい

該オレフィンとエチレンの混合物の重合方法。

6 特許請求の範囲第8項記載の方法で得られたアルファ-オレフィンの重合体。

3 [発明の詳細な説明]

本発明は、 $CH_2=CHR$ オレフィン（ここで R は炭素数が1～4のアルキル基又はアリール基である）及び該オレフィンとエチレンの混合物の重合用触媒の形成に有用な新規な固体成分、並びに該成分から形成された触媒、更には重合方法に関するものである。

今までに知られているプレビレン及びそれより高級なオレフィンの重合用の担持されている高活性のそして高選択性の触媒は、電子供与体化合物（外部電子供与体）で部分的に錯体化されている Al -アルキル化合物を、活性形の Mg -ハライド上に担持されている Ti 化合物及び電子供与体化合物（内部電子供与体）からなる固体

る2個以上の Al 原子を含有している Al -アルキル化合物である特許請求の範囲第4項記載の触媒。

6 成分b)のケイ素化合物がフェニルトリ-アルコキシシラン又はジフェニルジアルコキシシラン又はアルキルジ-もしくはトリ-アルコキシシランである。特許請求の範囲第4項もしくは第5項記載の触媒。

7 成分c)が特許請求の範囲第2項もしくは第3項記載の固体成分である。特許請求の範囲第6項記載の触媒。

8 重合方法を液相で不活性炭化水素溶液の存在下もしくは不存在下で又は気相で、特許請求の範囲第4項～第7項のいずれかに記載の触媒の存在下で、実施することを特徴とする、アルファ-オレフィン $CH_2=CHR$ （ここで R は炭素数が1～4のアルキル基又はアリール基である）及び

成分と反応させることにより得られる。

そのような触媒の例は英國特許1559194及びベルギー特許868682中に記載されている。

$Si-O-C$ 結合を含有しているケイ素化合物からなる外部電子供与体も記されている〔特開昭54-94590号及び特開昭55-36203号〕。種々のそして多数の内部電子供与体の中には、メタクリル酸メチル及びビバリン酸エチルの如き化合物も挙げられている。しかしながら、

$Si-O-C$ 結合を含有しているケイ素化合物を外部電子供与体として使用する全ての先行技術の触媒においては、主として安息香酸のエステル及びそれらの誘導体が内部電子供与体として使用される。

活性及び立体特異性という点で我が国で最も上記の触媒の性能は、安息香酸エチル及び安息

香酸の同様なエステルを外部電子供与体として使用する触媒の性能と変わりない。今回、特別な構造を有するエステルを内部電子供与体として使用することにより、意外なことも、Si-O-C結合を含有しているケイ素化合物を外部電子供与体としてなる先行技術の担持触媒の活性及び立体特異性を増大できることが発見された。

本発明の触媒は、下記の成分の反応生成物からなっている：

- a) Al-アルキル化合物、たとえばAl-トリアルキル又は炭素もしくは炭素原子を介して又はSO₂もしくはSO₃基を介して互に結合している2個以上のAl原子を含有しているAl-アルキル化合物。
- b) 1個以上のSi-OR、Si-OCOR又はSi-NR₂結合（ここでRはヒドロカルビル基である）を含有しているケイ素化合物。

ン基を介して結合している炭素数が3～20のアリール基であり、そして、R'は炭素数が3より少ないヒドロカルビル基である）の飽和及び不飽和カルボン酸のエステル。

好適な代表的電子供与体化合物は下記のものである：ジエチルフタレート、メチルエチルフタレート、ジエチル-2,3-ナフタレンジカルボキシレート、メチル-及びエチル-ビバレート、メチル-及びエチル-メタクリレート。ポリカルボン酸のエステルはエステル基の他にエステル化されていないジヒドロビン酸も含有することもできる。成分c)の製造においては、エステルを活性形のMgハロゲン化合物たとえば活性Mgジハライドもしくは予め形成された該ジハライドの光触体と接触させて製造することができる。更に、例えばアルコールとアリールハライドの間のエステル化により、又はポリカルボン酸の無水物もしくは

c) 必須組体としての活性形のMgハロゲン化合物好ましくはMgジハライド、並びにMgハロゲン化合物上に担持されているTi-ハライド又はTi-ハロアルコレート及び下記の群の化合物から選択された電子供与体化合物：

- 1) オルト位側にCOOH基を有する芳香族ジカルボン酸のモノ及びジエステルであつて、そのCOOH基のヒドロカルビル基Rが3個未満の炭素原子を含み且つ該基の少なくとも1個は炭素原子2個を含むモノ及びジエステル。
- 2) 式RCOOH'（ここで、ヒドロカルビル基Rは既、炭素数が3～20の飽和もしくは不飽和の分枝鎖状の基又は炭素数が7～20のアリールアルキル基であるか、又はRはエステル系カルボニル基に直接もしくはメチレ

半エステルとアルコールとの間のエステル化により、又はエステル交換による如き公知の反応によりエステルをその場で製造することができる。エステルは他の公知の内部電子供与体と併用することができる、成分c)の必須組体を形成する活性形のMgハロゲン化合物たとえば活性な無水Mgジハライドは、成分c)のX線粉末スペクトル中で1ミクロンの表面積を有するジハライドの粉末スペクトル中に現れる最も強い回折線の少なくとも30%の広がりを示すMgジハライドであるか、又は該強度ピークが吸収線の面間距離に関してシフトしているハローにより置き換わっているようなX線粉末スペクトルを示すMgジハライドであるか、又は3ミクロンより大きい表面積を有するMgジハライドである。

Mgジハライドの表面積の測定は、成分c)を沸騰TiCl₄で2時間処理した後に行なわれる。

側面値を Mg ジハライドの表面積とする。 Mg ジハライドの非常に活性な形は、 $1 \text{ m}^2/\text{g}$ の表面積を有する対応するジハライドのスペクトル中に現われる最も強い回折線が相対的強度において減少しそして広がつてハロを形成するような X 線粉末スペクトルを示すものであるか、又は最も強い線が面間距離に関してシフトしたハロにより引き換わっているようなものである。一般に、上記の形の表面積は $30 \sim 40 \text{ m}^2/\text{g}$ より大きく、そして特に $100 \sim 300 \text{ m}^2/\text{g}$ である。

活性形は、上記の形から、不活性炭化水素溶液中の成分 c) の熱処理によつても誘導でき、それは X 線スペクトル中でハロの代りに鋭い回折線を示すものである。

これらの形の鋭い最强線は、いずれの場合にも、 $1 \text{ m}^2/\text{g}$ の表面積を有する Mg ジハライドの対応する線に関して少なくとも 30% の広がりを示し

いても実施できる。化合物 b) を加えそして成分 c) 自身と反応させることもできる。成分 b) を、成分 c) 上に担持されているハロゲン化 Ti 化合物 成分 a) として使用されている Al-アルキル化合物にに関して少なくとも 1 のモル比で、そして 120° より少ない、好適には $0.05 \sim 0.3$ の間のモル比で反応させることができる。

成分 c) においては、 Mg ジハライド及びそれに担持されているハロゲン化 Ti 化合物の間のモル比は $1 \sim 500$ の間であり、そして Mg ジハライド上に担持されている該ハロゲン化 Ti 化合物及び電子供与体の間のモル比は $0.1 \sim 50$ の間である。

b) に示されているケイ素化合物には、一般式

式中、R は炭素数が $1 \sim 20$ のアルキル、アルケニル、アリール、アリールアルキル、シクロアルキル基であり、

ている。好適な Mg ジハライドは Mg ジクロライド及び Mg ジブロマイドである。ジハライドの含水量は一般に 1 重量 % より少ない。

活性 Mg ジハライド上に担持されている Ti ハライド又は Ti ハロアルコレート及びエステルとは、固体上に化学的もしくは物理的に固着され、成分 c) を沸騰している 1, 2-ジクロロエタンで 2 時間処理することによつても成分 c) から抽出できないような上記の化合物を意味する。

成分 a)、b) 及び c) は互いにいずれの順序でも反応させられるが、好適には成分 a) 及び b) を予偏混合し、その後成分 c) と接触させる。

成分 c) を成分 a) 及び b) 又は c) と予偏混合させることもできる。a) 及び b) の予偏混合は、普通、室温乃至重合温度の間の温度において行なうことができる。

c) 及び b) の予偏反応は比較的高い温度にお

Y は $-OR'$ 、 $-OCOR'$ 、 $-NR'_2$ であり、ここで R' は R とは同一であるか又は異なるつておりそして R と同じ意味を有し。

X はハロゲンもしくは水素原子又は $-OCO R''$ 、 $-NR''_2$ 基であり、ここで R'' は R' と等しいか又は異なるつており、そして R' と同じ意味を有し。

m 、 n 及び p はそれぞれ、 m は $0 \sim 3$ 、 n は $1 \sim 4$ そして p は $0 \sim 1$ の数であり、そして $m + n + p$ は 4 に等しい」

の化合物が包含される。

使用できる他のケイ素化合物は、2 個以上のケイ素原子が、酸素又は銀素原子を介して、互いに結合されているような化合物である。

これらの化合物の例は、ヘキサエトキシジシロキサン、対称性ジフェニルテトラエトキシジシロキサン

である。

好適なケイ素化合物は、フェニルトリアルコキシラン、ジフェニルジアルコキシランの如きフェニルアルコキシラン、例えばフェニルトリエトキシ又はトリメトキシラン、ジフェニルジメトキシ及びジエトキシラン、モノクロロフェニルジエトキシラン；アルキルジ-もしくはトリ-アルコキシランの如きアルキルアルコキシラン、例えばエチルトリエトキシラン、エチルトリイソプロポキシランである。

他の適当な化合物の例は、クロロトリエトキシラン、アセトキシトリエトキシラン、ビニルトリエトキシラン、ブチルトリエトキシラン、トリフェニルモノエトキシラン、フェニルトリ

る2個以上のAl原子を含有している化合物、例えば

が包含される。上記の如く、Al原子が例えばSO₄又はSO₃の如き橋を介して結合されているようなAl-アルキル化合物も適している。これらAl-アルキル化合物は複数種併用することができる。例えば、上記例示の如きAl-アルキル化合物とAlCl₃の如きAl-アルキルハライドとの併用で使用することもできる。

成分c)は公知の方法に従つて製造できる。これらの方のうちの一つは、Mgハライド及び

シクロエトキシシラン、フェニルジエトキシジエチルアミノシラン、テトラフェノキシシラン又はトライアルコキシシラン、例えばテトラメトキシランである。

ケイ素化合物を、例えばSiCl₄の如きハログン化されたケイ素化合物とアルコール又はMgもしくはAlのアルコレートとの反応によりその場で生成することもできる。

本発明の触媒中では、ケイ素化合物は、種々の触媒生成成分の間の反応の固体生成物中に結合された形で、そして0.05より大きい、一般的に0.1~5のケイ素化合物とハログン化されたTi化合物のモル比で、存在している。

成分d)を形成しているAl-アルキル化合物には、Al-トリアルキル、例えばAl-トリエチル、Al-トリイソブチル、Al-トリイソブロピル及びヘテロ原子を介して互いに結合してい

本発明の電子供与体化合物を、粉碎生成物のX線スペクトル中にMgジハライドのスペクトルに關して前記されている変化現象が現われるまで一端に粉碎し、そしてその後粉碎された生成物をTi-化合物と反応させることからなつている。この成の製造は英國特許1,559,194中に記されている。

同様な製法は米国特許4,107,413、4,107,414及び4,107,415中に記されている。

他の方法は、Mgハライドとアルコールの付加物を、活性水素原子を含有していない電子供与体化合物の存在下で、Ti化合物と反応させることからなつている。この方法はベルギー特許8,68,682中に記されている。

公告されたドイツ出願3,022,738中に記されている他の方法によると、Mgジハライドとアルコールの間の付加物を液体状で、ハログン化

Ti 化合物及び電子供与体化合物と反応させる。
他の方法はドイツ特許出願公開 2 9 2 4 0 2 9、
米国特許 4 2 2 0 5 5 4 並びにイタリア特許出願
2 7 2 6 1 / 7 9 中に記されている。

他の方法は、 Mg ジハライド、ハロゲン化 Ti 化合物電子供与体化合物を Mg ジハライドの活性化まで一緒に粉碎し、そして粉碎された生成物をハロゲン化炭化水素、例えば 1, 2-ジクロロエタン、クロロベンゼン、塩化メチレン、ヘキサクロロエタン、中に触媒処理することからなつてゐる。

処理は 40 度乃至ハロゲン化炭化水素の沸点の温度において、一般に 1 ~ 4 時間の範囲の時間にわたつて行なうことができる。

他の方法によると、低い H 含有量（好適には 1 軒車 % 以下）を有する SiO_2 又は Al_2O_3 のような多孔性担体に、液状の Mg ジハライドたと

えに Mg ジハライドの電子供与体（たとえば、アルコール、エーテルなど）溶液を含浸させ、次にこの担体を例えはドイツ特許出願公開 3 0 2 2 7 3 8 又はベルギー特許 8 6 8 6 8 2 中に記されている方法に従つて、溶解されている電子供与体化合物を含有している過剰の $TiCl_4$ で処理する。

上記の全ての方法では、最終生成物は、上記の活性形で存在している Mg ジハライドを含有している。

活性形の Mg ジハライドを生成するため、又はジハライドが活性形で存在しているような Ti 含有 Mg ジハライド担持成分を生成するための他の公知の方法の例としては下記の如き反応があげられる。

— グリニヤール試薬又は MgR_2 化合物（ R はヒドロカルビル基である）又は該 MgR_2 化合物と Al -トリアルキルとの錯体、及びハ

- ロゲン化硝、例えは AlX_3 もしくは AlR_mX_n 化合物（ X はハロゲンであり、 R はヒドロカルビルであり、 $m+n=3$ である）、
 $SiCl_4$ 又は H_2SiCl_3 の反応。
- グリニヤール試薬とシラノールもしくはポリシロキサン、 H_2O 又はアルコールとの反応及びその後のハロゲン化剤又は $TiCl_4$ との反応。
- Mg とアルコール及びハロゲン化水素酸との反応又は Mg とヒドロカルビルハライド及びアルコールとの反応。
- MgO と Cl_2 又は $AlCl_3$ との反応。
- $MgX_2 \cdot nH_2O$ (X =ハロゲン) とハロゲン化剤又は $TiCl_4$ との反応。
- Mg モノもしくはジアルコレート又は Mg カルボキシレートとハロゲン化剤との反応。
 Ti -ハライド又は Ti -ハロゲンアルコレート

トには特に、 Ti -テトラハライド、 Ti -トリハライド及び Ti -トリハロゲンアルコレートが含まれる。好適な化合物は、 $TiCl_4$ 、 $TiBr_4$ 、2, 6-ジメチルフェノキシトリクロロチタンである。

Ti -トリハライドは公知の方法により、例えは $TiCl_4$ を Al もしくは有機金屬 Al 化合物を用いて又は水素を用いて還元することにより、得られる。

Ti -トリハライドの場合、触媒性能を改良する目的のためには、チタンの酸化（専門的であつてもよい）を、成分 c) の製造中又は後に行なうことが簡便である。この目的用には、ハロゲン、ヨウ素ハライドを使用できる。

好適な触媒は、成分 c) が $MgCl_2$ 、 $TiCl_4$ 及びマレイン酸、ビバリン酸及びフタル酸のエステルから得られ、そして成分 c) がフェニル-も

しくはエチル-トリエトキシシラン又はジフェニルジメトキシ-もしくはジフェニルジエトキシシランであるものである。

成分c)はAl-トリアルキル例えばAl-トリエチル又はAl-トリイソブチル、である。

成分c)は英國特許1559194、ベルギー特許868682、ドイツ特許出願公開2924029、米国特許4220554、イタリア特許出願27261/79又はドイツ特許出願公開3002738中に記されている方法に従つて製造できる。

成分c)の好適な製造方法は、 $MgCl_2$ 、 $TiCl_4$ 及びエステルと一緒に粉碎しそして粉碎された生成物をハロゲン化された炭化水素、例えば1,2-ジクロロエタン、で処理することも包含している。

本発明に従う触媒は、アルファ-オレフインを

合体を得るためにも使用できる。

下記の実施例は単に説明目的のために示されているものであり、本発明の範囲を限定しようとするものではない。

実施例 1～2

固体触媒成分の調製：

ヨーロッパ特許出願公報第29232号の実施例1に従つて、以下のようにして固体触媒成分を調製した。

a) 粉碎

86.8 gの無水 $MgCl_2$ （1%より少ない水分有り）、表1に記載されたエステル及び13.9 gのビニル-トリエトキシシラン（VTS）（エステル/VTSのモル比=1.75及び $MgCl_2$ /（エステル+VTS）のモル比=4.5に相当する）を1000ccの全容積を有しそして3485 ccの直径が15.8 cmのイノックス鋼（inox

公知の方法により重合するために、すなわち重合を液相で不活性炭化水素溶媒の存在下もしくは不存在下で、又は気相で、又は例えば液相重合段階と気相段階を組み合わせることにより実施する際に、使用できる。一般に、温度は40°～160°の間、好適には60°～90°の間、であり、大気圧以上の圧力において行なうことができる。

分子量調整剤として、水素又は他の公知の型の調節剤が使用できる。

これらの触媒は、プロピレン、ブテン-1、ステレン、4-メチルペンテンの重合において特に良好に使用できる。該触媒はまた、公知の方法に従つて、プロピレン及びエチレンを重合させて低密度における比較的良好な耐衝撃性を有する改質ポリプロピレン（いわゆるプロピレン及びエチレンのブロック共重合体）を製造するため、又はプロピレンと少割合のエチレンの結晶性ランダム共重

合体球を含有しているスーパテクニツク（SIEBTECHNIK）製のビブラトム（VIBRATUM）型の振動ミル中で共粉碎した。

粉碎は1ℓの全容積当たり1208に等しい充填効率を適用させて、約70℃のミル内部温度においてそして60時間の粉碎時間にわたつて行なわれた。

粉碎された生成物のミルへの充填、引き続いての粉碎及び粉碎された生成物のミルからの除去は、乾燥器内空気下で行なわれる。

b) $TiCl_4$ を用いる処理

25 gの共粉碎された生成物を依然として塩素雰囲気下で500℃の反応器中に移し、その中でそれらを210℃の $TiCl_4$ と接触させた。

$TiCl_4$ を用いる処理は、100 rpmでは拌しながら80℃で2時間にわたつて行なわれ、

その過剰の $TiCl_4$ 及びその中に溶解された生成物を 80℃でサイホンにより除去した。

この操作の後に 65℃のエタンを 1 回の洗浄毎に 200cc を用いて 5 回洗浄した。

このようにして製造された触媒成分は、1 g/8 の表面積を有する $MgCl_2$ のスペクトル中に現われる最も強い回折線が相対的強度において減少そして広がつてハロを生成するような X 線粉末スペクトルを示した。

プロピレンの重合：

60℃に維持された銀素導通気による圧力下に保たれている。銀導通管及び熱電対を備えている 3.8 の全容積を有するステンレス鋼オートクレーブ中に、5 ミリモルのトリエチルアルミニウム、フェニルトリエトキシラン (PES) 及び上記で調製した固体触媒成分を含有しているガス抜きされた無水メタヘプタン中の懸濁液 1000 cc を

触媒成分の表面積及びテトラリン中で 135℃において測定された固有粘度を表 1 に示す。

実施例 3

以下の如くして製造された固体触媒成分を用いて実施例 1 を模倣した。無水 $MgCl_2$ 、銀 IC 単位で挙げられているエステル、及びエステルに關して 1:1 モル比の $TiCl_4$ を、1.8 の純容積を有しそして 3.8 の直径が 1.6 cm のステンレス鋼球を含有している N.V. テマ社、グラベンハーゲ (オランダ) 製の VIBRATUM 型の振動ミル中で粉碎した。粉碎は 100 g / 全容積 (空) 4 分に亘り光導体を用いて 25℃のミルの内部温度において、72 時間にわたつて行なわれた。ミルの充填、粉碎、及びミルの排出は銀素導通気下で行なわれた。10 g の共粉碎生成物を 100 cc の 1,2-ジクロロエタンと 80℃において 2 時間接触させた。この時間後、1,2-ジクロロ

特開昭 57-63311(8)
加え、その間にプロピレンも供給した。オートクレーブを閉じ、その後水素を 0.2 気圧までの圧力で加え、温度を 70℃にあげ、そして同時にプロピレンを 7 気圧の全圧となるまで加えた。重合中、重合体を連続的に供給することにより圧力を一定に保つた。4 時間後、重合体スラリーを急速に冷却そしてガス抜きすることにより重合を停止させた。重合体を沪過により浴槽から分離し、そして熱い懸濁液中で 70℃において乾燥した。次に沪液中に溶解されているるる量の重合体を単離し、重量測定し、そしてアイソタクチック指数 (I.I.) の計算のために沸騰しているメタヘプタン中に可溶性である重合体の重量と合計した。触媒成分の使用量並びに該成分中の Ti 含有量、トリエチルアルミニウムに関するフェニルエトキシランのモル比、加えられた触媒成分に関する重合体の収率、アイソタクチック指数 (I.I.)、固体

エタンを 80℃において沪過により除去し、そして残っている固体生成物を、沪液から銀イオンが消えるまで、室温においてメタヘプタンで洗浄しきれし、次にメタヘプタン懸濁液中に保つた。このようにして製造された触媒成分は、1 g/8 の表面積を有する $MgCl_2$ のスペクトル中に現われる最も強い回折線が相対的強度において減少そして広がつてハロを生成するような X 線粉末スペクトルを示した。エステル、固体触媒成分の特徴及び重合試験の結果を表 1 に示す。

実施例 4

実施例 1 を模倣したが、イタリア特許出願 26,908 A / 78 (特開昭 55-29591 号) の実施例 1 と同様な方法で製造した球状粒子形の固体付加物 $MgCl_2 \cdot 3C_2H_5OH$ を $TiCl_4$ -モノエチルフタレート付加物の $TiCl_4$ 懸濁液 IC、6 の Hg / モノエチルフタレートモル比及び 1.2 の

特開昭57-63311(9)

$TiCl_4 / C_2H_6 / H$ モル比を用いて、ゆっくりと加えた。次に全体を 100℃ で加熱し、この温度に 2 時間保ら、その後 100℃ で戻した。生成した固体生成物を 120℃ で 2 時間にわたって 110℃ の $TiCl_4$ で処理した。この時間後に、 $TiCl_4$ を炉内により除去し、固体を次に 90℃ から室温に降下する温度において、塩素イオンが炉液から消えるまで、カーヘブタンで洗浄し、そして次にヘブタン溶液中に保つた。このようにして生成された触媒成分は、実施例 1 の触媒成分のそれと同じ X 線スペクトルを示した。エステル、固体触媒成分の特徴及び重合試験の結果を表 1 に示す。

比較例 1 及び 2

実施例 1において、ジエチルフタレートの代わりに IC 19.3% のエチルベンゾエートを用いるほかは同様にして固体触媒成分を調製した。X 線粉末

スペクトルは実施例 1 の触媒成分のそれと同様であつた。得られた固体触媒成分を用いて、実施例 1 と同様の方法でプロピレンの重合を行なつた。

実施例 3

実施例 4において、モノエチルフタレートの代りにエチルベンゾエートを用いるほかは同様にして固体触媒成分を調製した。その触媒成分の X 線スペクトルは実施例 1 ~ 2 のそれと同様であつた。得られた固体触媒成分を用いて実施例 4 と同様にしてプロピレンの重合を行なつた。固体生成物の特徴及び重合試験の結果を表 1 に示す。

表 1

実施例 序号	固体触媒成分			重合				
	エステル	$MgCl_2$ モル/モル	固体成分の I % 含有量 重量 %	$Al(C_2H_5)_3$	收率 g 重合体	I. I.	引脚有効度 db/g	
				P.E.S.	触媒 モル/モル	g 触媒成分		
1	ジエチルフタレート	1.4	2.3	2.0	5.0	7.800	9.3.3	1.4
2	エチルメタクリレート	7	2.9	1.0	4.7	7.000	9.0.7	1.3
3	エチルベンゾイルアセテート	7	2.2	1.0	4.3	4.900	9.5.4	1.2
4	モノエチルフタレート	6	2.8	2.0	2.6	6.000	9.6.9	1.3
比較例 1	エナルベンゾエート	7	2.0	1.0	4.6	6.000	9.0.6	1.4
比較例 2	エチルベンゾエート	7	2.0	5	4.7	4.000	9.2.7	1.6
比較例 3	エチルベンゾエート		3.8	3	4.5	4.500	9.4	1.5

手 続 補 正 書

昭和 56 年 10 月 23 日

特許庁技官 島 田 春 寛 殿

1. 事件の表示

昭和 56 年 特許請求第 126026 号

2. 発明の名称

オレフィンの重合用の成分及び組成

3. 補正をする者

事件との関係 特許出願人

住所 イタリー・ミラノ・フォロボナパルテ 31

名前 モンテジソン・ソチエタ・ペル・アチオニ
(氏名)

4. 代理人 下 107

住所 東京都港区赤坂 1 丁目 9 番 15 号

日本自動車会館

氏名 (6078)弁理士 小田島 平吉

住所

氏名 (自免)

5. 補正命令の日付 昭和 56 年 10 月 23 日 (発送日)

6. 補正の対象

明細書の「発明の詳細な説明」の欄

7. 補正の内容

別紙のとおり

特許庁

特開昭 57-63311(10)

(1) 明細書第 19 頁末行に、「液状の Mg ジヘライド」とある前に、「液状の Mg ヘロゲン化合物」とえは」と加入する。

(2) 明細書第 20 頁 5 ~ 6 行に、「溶解されている……含有している」とあるを、「電子供与体の存在下に」と訂正する。

(3) 明細書第 27 頁 3 行に「エタン」とあるを、「ヘキサン」と訂正する。

手 続 補 正 書

昭和 56 年 11 月 13 日

特許庁技官 島 田 春 寛 殿

1. 事件の表示

昭和 56 年 特許請求第 126026 号

2. 発明の名称

オレフィンの重合用の成分及び組成

3. 補正をする者

事件との関係 特許出願人

住所 イタリー・ミラノ・フォロボナパルテ 31

名前 モンテジソン・ソチエタ・ペル・アチオニ
(氏名)

4. 代理人 下 107

住所 東京都港区赤坂 1 丁目 9 番 15 号

日本自動車会館

氏名 (6078)弁理士 小田島 平吉

住所

氏名 (自免)

5. 補正命令の日付 昭和 56 年 10 月 23 日 (発送日)

6. 補正の対象

明細書の「発明の詳細な説明」の欄

7. 補正の内容

別紙のとおり

(1) 明細書第 7 頁下から 2 行 ~ 末行に、「ヒドロカルビル基である」とあるを、

「ヒドロカルビル基である。該基はハロゲン、アルコキシ、アリーロキシなどの置換基を有してもよく、本発明に於てはヒドロカルビル基と総称する。」

と訂正する。