

GRUNDLAGEN DER SENSORIK

Prof. Dr. Martin Jogwich – Elektrotechnik, Medientechnik und Informatik

innovativ & lebendig - Bildungsregion DonauWald

VORLESUNGSINHALTE

- 1 Einleitung
- **2** Sensorprinzipien der Mechanik
- 3 Sensorprinzipien der Wärmelehre
- 4 Sensorprinzipien der Elektrostatik und –dynamik
- 5 Sensorprinzipien der Ausbreitung elektromagnetischer Wellen und der Optik

VORLESUNGSINHALTE

- 1 Einleitung
- 1.1 Organisatorisches
- 1.2 Literaturhinweise
- 1.3 Physikalische Größen, Einheiten und Vorsätze
- 1.4 Sensordefinition
- 1.5 Sensorkenngrößen
- **2** Sensorprinzipien der Mechanik
- 3 Sensorprinzipien der Wärmelehre
- 4 Sensorprinzipien der Elektrostatik und –dynamik
- 5 Sensorprinzipien der Ausbreitung elektromagnetischer Wellen und der Optik

1. EINLEITUNG: 1.2 LITERATURHINWEISE (PHYSIK-LEHRBÜCHER)

Autor	Titel	Verlag
A. Böge, J. Eichler	Physik	Vieweg Verlag
P. Dobrinski, G. Krakau, A. Vogel	Physik für Ingenieure	Teubner Verlag
U. Harten	Physik	Springer Verlag
E. Hering, R. Martin, M. Stohrer	Physik für Ingenieure	VDI-Verlag
F. Heywang, E. Nücke, J. Timm, W. Timm	Physik für Techniker	Verlag Handwerk und Technik
A. Jogwich, M. Jogwich	Technische Strömungsmechanik für Studium und Praxis	Oldenbourg Industrieverlag
H. Lindner	Physik für Ingenieure	Fachbuchverlag Leipzig
H. Stroppe	Physik für Studenten der Natur- und Technikwissenschaften	Fachbuchverlag Leipzig
H. E. Stuart, G. Klages	Kurzes Lehrbuch der Physik	Springer Verlag
H. Treiber, F. Heywang	Physik für Fachhochschulen und technische Berufe – Schwingungen, Wellen, Optik	Verlag Handwerk und Technik

1. EINLEITUNG: 1.2 LITERATURHINWEISE (SENSORIK-LEHRBÜCHER)

Autor	Titel	Verlag
ABB	Praxis der industriellen Temperaturmessung	ABB
Robert Bosch GmbH	Autoelektrik/Autoelektronik	Vieweg Verlag
W. Eißler et al.	Praktischer Einsatz von berührungslos arbeitenden Sensoren	Expert Verlag
A. Freudenberger	Prozessmesstechnik	Vogel Buchverlag
S. Hesse, G. Schnell	Sensoren für die Prozess- und Fabrikautomation	Vieweg Verlag
Infineon	Halbleiter	Publicis Corporate Publishing
R. Kleger	Sensorik für Praktiker	AZ Verlag, VDE Verlag
M. Nau	Elektrische Temperaturmessung	JUMO
J. Niebuhr, G. Lindner	Physikalische Messtechnik mit Sensoren	Oldenbourg Verlag
R. Parthier	Messtechnik	Vieweg Verlag
F. Rubner	Druckmesstechnik	Oldenbourg Verlag
G.W. Schanz	Sensoren	Hüthig Verlag
G. Strohrmann	Messtechnik im Chemiebetrieb	Oldenbourg Verlag
E. Schiessle	Industriesensorik	Vogel Buchverlag
WIKA	Druck- und Temperaturmesstechnik	WIKA

1. EINLEITUNG: 1.3 PHYSIKALISCHE GRÖSSEN, EINHEITEN UND VORSÄTZE (1)

Größe	Formel- zeichen	Basis- einheit	Abk. d. Einheit	Definition der Basiseinheit
Zeit	t	Sekunde	S	Vielfaches der Periodendauer eines atomaren Übergangs
Masse	m	Kilogramm	kg	Masse eines Eichkörpers
Länge	/	Meter	m	Streckenlänge, die Licht in def. Zeit zurücklegt
Temperatur	T	Kelvin	K	Bruchteil der Wasser-temperatur am Tripelpunkt
Stromstärke	I	Ampere	А	Stromstärke, die zwischen 2 Leitern def. Kraft erzeugt
Lichtstärke	I_{L}	Candela	cd	Lichtstärke einer Strahlungsquelle mit def. Frequenz und Strahlstärke
Stoffmenge	п	Mol	mol	Stoffmenge wie Atomanzahl in def. Masse vom ¹² C

Liste der Basisgrößen

1. EINLEITUNG: 1.3 PHYSIKALISCHE GRÖSSEN, EINHEITEN UND VORSÄTZE (2)

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele
10 ¹	Deka	da	
10 ²	Hekto	h	Durchschnittlicher jährlicher Bierkonsum pro Kopf in Deutschland = 1,069 hl (in 2014)
10 ³	Kilo	k	Gesamtlänge der deutschen Autobahn = 12917 km (in 2014)
10 ⁶	Mega	М	Nettoleistung Isar II = 1410 MW
10 ⁹	Giga	G	durchschnittliche Energie eines Blitzes = 1,5 GJ
10 ¹²	Tera	Т	Abstand Sonne – Saturn = 1,4 Tm
10 ¹⁵	Peta	Р	Jährlicher Primärenergieverbrauch in Bayern = 2081 PJ (in 2010)
10 ¹⁸	Exa	Е	Jährlicher Primärenergieverbrauch in Deutschland = 13,828 EJ (in 2013)

Liste von Vorsätzen > 1

1. EINLEITUNG: 1.3 PHYSIKALISCHE GRÖSSEN, EINHEITEN UND VORSÄTZE (3)

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele
10 ⁻¹	Dezi	d	Maximal zugelassene Breite und Tiefe von Fußballtorpfosten = 1,2 dm
10 ⁻²	Centi	С	Durchmesser der 1-€-Münze = 2,325 cm
10 ⁻³	Milli	m	Dicke der 1-€-Münze = 2,33 mm
10 ⁻⁶	Mikro	μ	Größe von Bakterien ~ μm
10 ⁻⁹	Nano	n	typische Größe von organischen Molekülen = 20 nm
10 ⁻¹²	Piko	р	Kapazität von Kondensatoren ~ pF
10 ⁻¹⁵	Femto	f	Pulsdauer von Hochleistungslaser = 100 fs
10 ⁻¹⁸	Atto	а	Dauer ultrakurzer Lichtpulse = 650 as

Liste von Vorsätzen < 1

1. EINLEITUNG: 1.3 PHYSIKALISCHE GRÖSSEN, EINHEITEN UND VORSÄTZE (4)

Größe	Formel- zeichen	Kohärente Einheiten	Basis- Einheiten	Bemerkungen
Kraft	F	N	$\frac{\text{kg} \cdot \text{m}}{\text{s}^2}$	
Druck	р	$Pa = \frac{N}{m^2}$	$\frac{kg}{s^2 \cdot m}$	1 bar = 10 ⁵ Pa 1 atm = 760 Torr = 1,031 bar 1 at = 0,981 bar
Arbeit, Energie; Wärmemenge	W; Q	$J=N\cdot m=W\cdot s$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$	1 kWh = 3,6 MJ
Leistung	Р	$W = \frac{J}{s}$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$	1 PS = 0,7355 kW
Moment einer Kraft, Drehmoment	М	N · m	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$	nicht mit J abkürzen!
Impuls	p, (I)	N⋅s	kg⋅m s	
Drehimpuls, Drall	L, (D)	N·s·m	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}}$	

Liste abgeleiteter Größen (Mechanik und Wärmelehre, Auswahl)

1. EINLEITUNG: 1.3 PHYSIKALISCHE GRÖSSEN, EINHEITEN UND VORSÄTZE (5)

Größe	Formel- zeichen	Kohärente Einheiten	Basis- Einheiten	Bemerkungen
Ladung	q, Q	С	A·s	q: Ladung eines Ladungsträgers,Q: Gesamtladung
Spannung	u, U	$V = \frac{W}{A}$	$\frac{kg \cdot m^2}{s^3 \cdot A}$	u: t-abh. Spannung u(t);U: Spannungswert
(Ohmscher)Wi derstand	R	$\Omega = \frac{V}{A}$	$\frac{kg \cdot m^2}{s^3 \cdot A^2}$	
Arbeit, Energie	W	$J = V \cdot A \cdot s = W \cdot s$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$	1 eV = 1,6022 · 10 ⁻¹⁹ J
Leistung	Р	$W = V \cdot A = \frac{J}{s}$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$	
Elektrische Feldstärke	E	$\frac{N}{C} = \frac{V}{m}$	$\frac{kg \cdot m}{A \cdot s^3}$ $A^2 \cdot s^4$	
Kapazität	С	$F = \frac{C}{V}$	$\frac{A^2 \cdot s^4}{m^2 \cdot kg}$	
Magnetische Feldstärke	В	$T = \frac{N \cdot s}{C \cdot m} = \frac{V \cdot s}{m^2}$	$\frac{kg}{A \cdot s^2}$	$1 G = 10^{-4} T$
Magnetischer Fluss	Φ	$Wb = V \cdot s = T \cdot m^2$	$\frac{kg \cdot m^2}{A \cdot s^2}$	
Induktivität	L	$H = \frac{V \cdot s}{A} = \frac{Wb}{A}$	$\frac{kg \cdot m^2}{A^2 \cdot s^2}$	

Liste abgeleiteter Größen (Elektromagnetismus, Auswahl)

1. EINLEITUNG: 1.3 PHYSIKALISCHE GRÖSSEN, EINHEITEN UND VORSÄTZE (6)

Name	Buch- staben	Verwendung
Alpha	Α,α	Winkel, Winkelbeschleunigung
Beta	Β,β	Winkel
Gamma	Γ,γ	Winkel, Wichte
Delta	Δ , δ	Winkel
Epsilon	Ε,ε	Influenzkonstante, Dehnung
Zeta	Z,ζ	Widerstandsbeiwert
Eta	Η,η	Wirkungsgrad
Theta	Θ, θ	Winkel, Temperatur
Jota	I, t	
Карра	Κ,κ	Adiabatenexponent
Lambda	Λ,λ	Wellenlänge
Му	Μ, μ	Induktionskonstante

Name	Buch- staben	Verwendung
Ny	Ν,ν	Frequenz
Xi	Ξ,ξ	Schallauslenkung
Omikron	Ο, ο	
Pi	Π,π	
Rho	Ρ, ρ	Dichte
Sigma	Σ, σ	Stefan-Boltzmann- Konstante
Tau	Τ, τ	Zeit
Ypsilon	Υ,υ	
Phi	Φ, φ	Winkel
Chi	Χ, χ	Suszeptibilität
Psi	Ψ,ψ	
Omega	Ω , ω	Kreisfrequenz

Griechische Buchstaben

1. EINLEITUNG: 1.4 SENSORDEFINITION (1)

Sensor als Komponente des PLT-Stellenplans

Sensor als Block im Wirkungsplan (Blockschaltbild)

1. EINLEITUNG: 1.4 SENSORDEFINITION (2)

Sensorkomponenten und -signale

1. EINLEITUNG: 1.5 SENSORKENNGRÖSSEN: 1.5.1 STATISCHE KENNGRÖSSEN

Spezialfall: <u>lineare Kennlinie</u>

$$X_{\rm a}(X_{\rm e}) = X_{\rm a0} + \frac{\Delta X_{\rm a0}}{\Delta X_{\rm e}} \cdot (X_{\rm e} - X_{\rm e0})$$

Übertragungsfaktor
$$k = \frac{\Delta X_a}{\Delta X_e}$$

Empfindlichkeit
$$E = \frac{dx_a}{dx_e}$$

Spezialfall: <u>lineare Kennlinie</u>

Empfindlichkeit
$$E = \frac{\Delta X_a}{\Delta X_e}$$

1. EINLEITUNG: 1.5 SENSORKENNGRÖSSEN: 1.5.2 DYNAMISCHE KENNGRÖSSEN

1. EINLEITUNG: 1.5 SENSORKENNGRÖSSEN: 1.5.3 FEHLERANGABEN

Bezug (dt.)	Abk. (dt.)	Bezug (engl.)	Abk. (engl.)
Messwert	v. M.		
Anzeige	v. A.	of reading	
Messbereichsendwert, obere Messbereichsgrenze	v. E.	upper range limit, high operating limit, of range	URL
Skalenendwert	SEW	full scale output, full scale deflection	FSO FSD
Messbereich, Messspanne		full scale, full scale span	