Grenzen / Limits

Has to be able to drive on land
Has to be able to drive on water
Has to be able to swim until a given weigth
Has to be autonomus
Has to be water resistant
Has to be able to detect and aviod obstacles
Has to be able to detect and identify sound

Input (haben)

3D model
Use Case
Requirements
Diagrams and Models
Scenario
Environment Diagram

Input (brauchen)

all discipline specific models (Design/Mechanics, SW, HW/Electronics)

Integration of models is shown
Enviroment diagram
Colloquium
Realitation / Implementation of all parts
-3D printer realizations and laser-cutter realizations
-Implementation of all algorithems
-Simulation od environmental signals via test-stub
-Electric Model to real platfrom
Integration of all parts in one final solution
Documentation of the project

Aktivitäten / Activities

Swimlane Analyse all discipline specific models (Design/Mechanics, SW, HW/Electronics) Integration of models is shown

Nutzen / Result

Producible product

Ziele / Goals

Milestone 1: Principle solution
Milestone 2: Submodule definition and specication
Milestone 3: First discipline specific solution
Milestone 4: Specification and realization /
implementation of first integraded overall solution

Ergebnis / Result

Realizable model and implementation of the Bot Documentation of the project