

Some definitions

Black boxes

Systems that hide their internal logic to the user (either the internals are unknown or uninterpretable to humans)

Interpretability (also: explainability)

Ability to explain or to present in understandable terms to a human

Reliability

Allows to trust the model predictions

The form of data determines how you want the machine to explain its predictions

Images

They contain interpretable objects, features have spatial structure, and make sense only in relation to their neighbors

Tabular data

They have interpretable features! Like age, velocity, mass...

What is your data??

ŠŠŠ

Outline

INTERPRETABILITY
BY ML COMMUNITY

INTERPRETABILITY
IN PHYSICS

OVERVIEW OF INTERPRETABILITY METHODS

in the ML community

Possible approaches

methods assigning meaning to individual **model** components

methods analyzing model predictions when **data is perturbed**

surrogate approach where the model is approximated by a simpler, more interpretable surrogate model

Molnar, Casalicchio, Bischl (2020) arXiv:2010.09337

Feature vizualization Influence functions Class Activation Mapping (CAM) Locally Interpretable Model-Agnostic Explanations (LIME) Shapley values

Feature visualization

finding the image that maximizes the activation of certain part of the model

Dataset Examples show us what neurons respond to

Optimization

in practice

isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

Baseball—or stripes? *mixed4a, Unit 6*

Animal faces—or snouts? *mixed4a, Unit 240*

Clouds—or fluffiness? *mixed4a, Unit 453*

Buildings—or sky? *mixed4a, Unit 492*

Feature visualization

finding the image that maximizes the output corresponding to a selected class

We can look at whole layers! Deep Dream

enhance what was detected by a chosen layer and visualise

Left: Original photo by Zachi Evenor. Right: processed by Günther Noack, Software Engineer

We can look at whole layers! Deep Dream

enhance what was detected by a chosen layer and visualise

Leave-one-out training

super expensive!

Figure 4. Inception vs. RBF SVM. Bottom left: $-\mathcal{I}_{\text{up,loss}}(z, z_{\text{test}})$ vs. $||z - z_{\text{test}}||_2^2$. Green dots are fish and red dots are dogs. Bottom right: The two most helpful training images, for each model, on the test. Top right: An image of a dog in the training set that helped the Inception model correctly classify the test image as a fish.

Its approximation are: influence functions

(They can be used to NNs after generalizing to non-convex problems)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Figure 1. A simple modification of the global average pooling layer combined with our class activation mapping (CAM) technique allows the classification-trained CNN to both classify the image and localize class-specific image regions in a single forward-pass e.g., the toothbrush for *brushing teeth* and the chainsaw for *cutting trees*.

LIME (Local Interpretable Model-Agnostic Explanations)

LIME (Local Interpretable Model-Agnostic Explanations)

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Shapley values and SHAP

Shapley value is the average marginal contribution of an instance of a feature among all possible coalitions.

is given by:

$$\phi_i = \frac{\delta_1 + \delta_3 + \delta_4 + \delta_5 + \delta_6 + \delta_7 + \delta_8}{8}$$

Shapley values and SHAP

Shapley value is the average marginal contribution of an instance of a feature among all possible coalitions.

is given by:

$$\phi_i = \frac{\delta_1 + \delta_3 + \delta_4 + \delta_5 + \delta_6 + \delta_7 + \delta_8}{8}$$

NP-hard for ML problems!
SHAP trains a linear classifier on various coalitions and model predictions

Shapley values and SHAP

INTERPRETABILITY METHODS IN PHYSICS

So far

The form of data determines how you want the machine to explain its predictions

Images

They contain interpretable objects, features have spatial structure, and make sense only in relation to their neighbors

Tabular data

They have interpretable features! Like age, velocity, mass...

What is your data??

Spin configurations

Autoencoders

S. Wetzel (2017) Phys. Rev. E 96, 022140

Siamese neural networks

motion of a particle in a central potential

dominant regression term has a connection to the angular momentum of the particle

Correlation probing neural network

Hessian-based analysis

9.02.2023

Correlator convolutional neural networks

C. Miles et al. (2021) Nat. Comm. 12, 3905