Propagação de um impulso elétrico num axônio nervoso

Rodrigo Gonçalves Schaefer^{1,*}, Guilherme das Neves Seguro¹

1. Instituto de Matemática, Universidade Federal do Rio de Janeiro *Contato: schaefer@ufrj.br

INTRODUÇÃO

O problema da transmissão de um impulso elétrico no axônio nervoso é biologicamente interessante e matematicamente rico, já que o mecanismo dos impulsos em uma célula nervosa é diferente da condução eletrônica em metais. Neste trabalho faremos uso de uma modelagem através das equações de FitzHugh-Nagumo que representam qualitativamente esse fenômeno. Nosso estudo é focado na sensibilidade dessa modelagem com relação aos parâmetros do modelo.

OBJETIVOS

Neste trabalho são estudados algumas características das células nervosas aonde ocorrem os impulsos elétricos. Faremos então uso das equações de FitzHugh-Nagumo, um modelo simplificado da equação de Hodgkin-Huxley, para a modelagem do problema. Iremos estudar a sensibilidade do sistema e comparar os resultados obtidos com as variações dos parâmetros do mesmo.

METODOLOGIA

Fizemos uso das equações de FitzHugh-Nagumo, um modelo simplificado da equação de Hodgkin-Huxley, para a modelagem do problema dado pelas equações abaixo. Apesar de ser qualitativo tem grande utilidade pela complexidade do modelo H-H.

$$\frac{du}{dt} = u(a - u)(u - 1) - z + I \qquad (1)$$

$$\frac{dz}{dt} = \varepsilon(u - cz) \qquad (2)$$

Os parâmetros a, c e ε são positivos e representam respectivamente o limiar de excitação e as mudança do estado de repouso e da dinâmica do sistema, enquanto o termo I representa o estímulo externo aplicado ao neurônio. As grandezas associadas ao sistema são adimensionais, o que implica que u e z, que representam respectivamente a voltagem através da membrana e a variável de recuperação após sua excitação são adimensionais.

Iremos estudar a sensibilidade do sistema através do plano de fase local e comparar os resultados obtidos com as variações dos parâmetros desse sistema, usando o método de Runge-Kutta de quarta or-

RESULTADOS

Vamos apresentar os diferentes casos que podem acontecer, mudando os valores dos parâmetros.

Existe um único ponto fixo (atrator ou repulsor)

Ponto atrator: potencial apresenta uma parte inicial elevadamente crescente, alcançado um pico e depois descendo de volta para o estado de repouso mantendo um valor estacionário.

Ponto repulsor: alcança um valor preciso, temos uma solução oscilante.

Existem três pontos fixos

2 pontos atratores e 1 repulsor: o (2) potencial u alcança diretamente um estado estacionário.

I = 0.07, $\varepsilon = 0.008$, a = 0.6 e c = 10 com (u, z) = (0.5, 0.5)

Sensibilidade com relação à condição inicial

Vemos que as soluções convergem para pontos fixos diferentes dependendo da sua condição inicial.

 $\varepsilon = 0.008, I = 0.07 \text{ e } c = 2.54$

CONCLUSÃO

Após todas as análise feitas no presente trabalho, tendo testado diferentes variações dos parâmetros que fazem parte do modelo proposto por FitzHugh-Nagumo, obtivemos resultados satisfatórios no que diz respeito a proposta qualitativa em questão. Um fato interessante constatado no desenvolvimento do trabalho foi a sensibilidade do sistema em relação aos seus parâmetros.

REFERÊNCIAS

- [1.] T.A. de Assis, J.G. V. Miranda, S. o potencial não L. P.Cavalcante, S.L.P, "A dinâmica de condução nervosa via modelo de FitzHugh-Nagumo", Revista Brasileira de Ensino de Física, v. 32, n. 1, (2010)
 - [2.] J. M.Guerra, Y. L. Liu, R. R. Rosa, "Análise dinâmica das equações de FitzHugh-Nagumo", CNMAC,2007.
 - [3.] G. C. Quiroga, "Análisis cualitativo del modelo de FitzHugh-Nagumo", Tese de mestrado, 2006