Improving Credit Card Fraud Detection using Generative Adversarial Networks

Group 4 Team Member: Hao Ning, Jun Ying

Working Schedule

Time	Milestone
09/21/2020	Exploratory Data Analysis (EDA): Jun Base Model: Hao
09/28/2020	Original data + GAN
10/05/2020	Network & Framework Development WGAN: Hao BAGAN: Jun
10/12/2020	WGAN & BAGAN Evaluation & Analysis
10/19/2020	Preliminary Presentation
10/26/2020	Network & Framework Development WGAN_GP: Hao BEGAN: Jun
11/02/2020	WGAN_GP, BEGAN Evaluation & Analysis
11/09/2020 & 11/16/2020	Summary of Results, Github
11/23/2020	Manuscript
11/30/2020 & 12/07/2020	Mock Presentation & Presentation and Journal Submission

09/21/2020

EDA

About the dataset, there are 30 features and 1 class (normal:0, fraud:1)

```
        Time
        V1
        V2
        V3
        ...
        V27
        V28
        Amount
        Class

        0
        0.0 -1.359807 -0.072781
        2.536347
        ...
        0.133558 -0.021053
        149.62
        0

        1
        0.0 1.191857
        0.266151
        0.166480
        ... -0.008983
        0.014724
        2.69
        0

        2
        1.0 -1.358354 -1.340163
        1.773209
        ... -0.055353 -0.059752
        378.66
        0

        3
        1.0 -0.966272 -0.185226
        1.792993
        ... 0.062723
        0.061458
        123.50
        0

        4
        2.0 -1.158233
        0.877737
        1.548718
        ... 0.219422
        0.215153
        69.99
        0
```

There is no null value in the dataset.

```
Total null values in the dataset 0
```

As we know, the dataset is extremely imbalanced (0.173%).

```
The amounts of normal transactions (class 0) & fraud transactions (class 1) 0 284315 1 492
```

We have observed that there are some transactions which are 0.

	Time	V1	 Amount	Class
count	284807.000000	2.848070e+05	284807.000000	284807.000000
mean	14.537951	3.919560e-15	88.349619	0.001727
std	5.847061	1.958696e+00	250.120109	0.041527
min	0.000000	-5.640751e+01	0.000000	0.000000
25%	10.598194	-9.203734e-01	5.600000	0.000000
50%	15.010833	1.810880e-02	22.000000	0.000000
75%	19.329722	1.315642e+00	77.165000	0.000000
max	23.999444	2.454930e+00	25691.160000	1.000000

The total number of 0 amount: 1825 (1.479% fraud)

```
The null amounts of normal transactions (class 0) & fraud transactions (class 1) 0 1798

1 27

Name: Class, dtype: int64
```


From the histogram, we can observe that normal transactions generally occur from 9 am to 0 am. However, the fraud transactions occur particularly frequently at 2 am and 12 pm.

We can find from this scatter plot that the amount of super large transactions is very small. In comparison, the largest amount of nurmal transactions is over €25,000. However, the largest amount of fraud transactions is only €2,000.

Normal amount was from ten to hundred. Fraud Amount distributed in less than €1.

Base Model:

- 1. Train Test Split & Stratified: 80% 227845 (**394 fraud**), 20% 56962 (**98 fraud**)
- 2. Random Under Sampling (RUS) and Random Over Sampling (ROS)
- 3. GridsearchCV for XGBoostClassifier
- 4. Predict with best_params
- 5. Test performance evaluation

RUS 1 394 0 394	ROS 1 227451 0 227451
Accuracy: 0.9542502018889786	Accuracy: 0.9994908886626171
Precision: 0.03382899628252788	Precision: 0.8556701030927835
Recall: 0.9285714285714286	Recall: 0.8469387755102041
F1 score: 0.06527977044476328	F1 score: 0.8512820512820514
ROC AUC score: 0.941432942760672	ROC AUC score: 0.923346287023532

09/28/2020

Implemented with Keras

A bit change from from original gan:

Vanilla gan deals with images, but we are dealing with tabular data, so tanh is removed.

Also, we removed batch normalization since the training results are bad.

Noise = 32 len(features) = 30

Generator

Input	Output size
(32, 1)	(64,1)
(64, 1)	(128, 1)
(128, 1)	(256, 1)
(256, 1)	(30, 1)

LeakyReLU(0.2)

Discriminator

Input	Output size
(30, 1)	(256,1)
(256, 1)	(128, 1)
(128, 1)	(64, 1)
(64, 1)	(1, 1)

LeakyReLU(0.2)

Train

epoch=10, batch_size=128, steps_per_epoch=100

epoch=20, batch_size=128, steps_per_epoch=100

Original data + GAN

Original x train has total of 227451 transactions, 227451 normal & 394 Fraud

1000

	Time	V1	V2	V3	V4	V5	V6	V7
coun	t 1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000
mear	n 3.198658	-0.762727	0.550367	-0.873793	1.195856	-0.272612	-0.130996	-0.884949
sto	d 0.809518	0.242217	0.253704	0.331019	0.368733	0.255425	0.269881	0.360904
mir	n 1.008744	-1.553868	-0.155640	-2.179475	0.302933	-1.204325	-1.027105	-2.258104
259	6 2.607475	-0.912981	0.371793	-1.077172	0.923517	-0.423956	-0.310939	-1.102170
509	6 3. <mark>14161</mark> 6	-0.749497	0.537789	-0.843910	1.163639	-0.256563	-0.115827	-0.863040
759	3.701715	-0.591140	0.721689	-0.630434	1.437751	-0.110544	0.049115	-0.619941
max	6.568467	-0.130614	1.558176	-0.094866	2.794897	0.407353	0.780389	-0.010803
2274	51	V1	V2	V3	V4	V5	V6	V7
count	227057.000000	227057.000000	227057.000000	227057.000000	227057.000000	227057.000000	227057.000000	227057.000000
mean	3.218182	-0.756782	0.545352	-0.866097	1.202468	-0.291984	-0.135337	-0.896145
std	0.811016	0.237066	0.248467	0.324762	0.375655	0.256962	0.262601	0.354981
min	0.864484	-2.054668	-0.467559	-3.083328	-0.161810	-1.679709	-1.472434	-2.770730
25%	2.637128	-0.907640	0.373894	-1.067587	0.936952	-0.454703	-0.305321	-1.119700
50%	3.155144	-0.741693	0.535582	-0.835388	1.177741	-0.278191	-0.129604	-0.866557
75%	3.728471	-0.590163	0.706314	-0.633782	1.443069	-0.115094	0.040692	-0.641359
max	8.098510	0.093333	1.781384	0.096544	3.173466	0.693545	1.145589	0.370842

The fraud in x_train

	Time	V1	V2	V3	V4	V5	V6	V7
count	394.000000	394.000000	394.000000	394.000000	394.000000	394.000000	394.000000	394.000000
mean	23.008938	-4.707808	3.588729	-7.068378	4.592975	-3.101629	-1.387192	-5.539909
std	13.347935	6.841390	4.309436	7.166449	2.883467	5.406586	1.864770	7.316745
min	1.239444	-30.552380	-8.402154	-31.103685	-1.313275	-22.105532	-5.773192	-43.557242
25%	11.500278	-5.996596	1.229209	-8.436924	2.419178	-4.741036	-2.504633	-7.765017
50%	21.393056	-2.272114	2.662472	-5.133485	4.258196	-1.522962	-1.421577	-2.926216
75%	35.912917	-0.410418	4.737900	-2.302626	6.390866	0.240184	-0.361122	-0.900824
max	47.318889	2.132386	22.057729	2.250210	12.114672	11.095089	6.474115	5.802537

The little std observed in the GAN generated data indicates **mode collapse** in vanilla gan

Base ROS from Original data	Add GAN 1000 then ros.fit	GAN 227057
Normal: 227451	Normal: 227451	Normal: 227451
Fraud: 227451	Fraud: 227451	Fraud: 227451
Accuracy: 0.9994908886626171 Precision: 0.8556701030927835 Recall: 0.8469387755102041 F1 score: 0.8512820512820514 ROC AUC score: 0.923346287023532	Accuracy: 0.9995084442259752 Precision: 0.8645833333333334 Recall: 0.8469387755102041 F1 score: 0.8556701030927835 ROC AUC score: 0.9233550799329299	Accuracy: 0.9995435553526912 Precision: 0.9 Recall: 0.826530612244898 F1 score: 0.8617021276595744 ROC AUC score: 0.9131861699378682

GAN didn't really improve much of the performance of the classification model for now, we think this is because the generator is only producing low spectrum data. We will work on a few improved GAN algorithms to see if the problems are resolved.

10/05/2020

WGAN development: Hao

Why WGAN:

- Prevent mode collapse and gradient vanishing in vanilla GAN.
- Evaluate the difference between real and generated samples with wasserstein distance, using a score rather than label.

Implementation in Keras, compared to vanilla GAN:

- Loss function, no log
- D: no sigmoid
- Clip the weight of D (-c,c), if w>c, w=c, if w<-c, w=-c
- Use RMSProp
- Train D more than G

Training Parameters: RMSprop(Ir=0.00001), batch_size=128, train D twice

Generate 1000 'Fraud', visually compare the data distribution using boxplot:

- GAN has very narrow spectrum of data distribution
- WGAN shows a wider distribution and close to the original data distribution
 - Good overlapping with the original distribution

BAGAN development: JUN

Why BAGAN:

- It is an augmentation tool to restore the dataset balance by generating new minority-class data.
- It can learn the underlying features of the specific classification problem starting from all data and then to apply these features for the generation of new minority-class data.

Compared to original GAN:

- Discriminator has a single output that returns either a problem-specific class label c or the label fake.
- Coupling GAN and autoencoding techniques to provide a precise selection of the class conditioning and to better avoid mode collapse.

10/12/2020

WGAN performance evaluation: Hao

Obvious improvement on model performance

Base ROS from Original data	Add GAN 1000 then ros.fit	Add WGAN 1000 then ros.fit
Normal: 227451	Normal: 227451	Normal: 227451
Fraud: 227451	Fraud: 227451	Fraud: 227451
Accuracy: 0.9994908886626171 Precision: 0.8556701030927835 Recall: 0.8469387755102041 F1 score: 0.8512820512820514 ROC AUC score: 0.923346287023532	Accuracy: 0.9995084442259752 Precision: 0.8645833333333334 Recall: 0.8469387755102041 F1 score: 0.8556701030927835 ROC AUC score: 0.9233550799329299	Accuracy: 0.9995435553526912 Precision: 0.8673469387755102 Recall: 0.8673469387755102 F1 score: 0.8673469387755102 ROC AUC score: 0.9335591615655828

GAN with Pre-Train Performance: JUN

Better than Original GAN, slightly worse than WGAN, adding 1000 generated fraud Wider spectrum of data & Overlap well with the original data

	GAN	GAN + AE
Accuracy	0.999508	0.999544
Precision	0.864583	0.882979
Recall	0.846939	0.846939
F1 score	0.855670	0.864583
ROC AUC score	0.923355	0.923373

Preliminary Presentation

10/19/2020

WGAN_GP development: Hao

Why WGAN_GP:

• WGAN weight clipping does not strictly fullil the 1-Lipschitz function requirement $|f(x_1) - f(x_2)| \le K|x_1 - x_2|$.

K =1, is 1-Lipschitz function, it has strong uniform continuity

- A differentiable function is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere
- WGAN_GP constrain the weight more effectively

Note: batch normalization is already removed, so we don't need to do anything here

Changes compared to WGAN

Gradient penalty

$$\underbrace{\lambda \mathop{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

Adam optimizer

Training Parameters: ADAM(Ir=0.00001), batch_size=128, gp_lambda=5

Generate 1000 'Fraud', visually compare the data distribution using boxplot:

Wider range and better overlaps with original data compared to WGAN

BEGAN development: Jun

Why BEGAN:

- a novel equilibrium method for balancing adversarial networks
- using an autoencoder as the discriminator
- using a variable kt∈ [0, 1] to control equilibrium(kt is adjusted at each step)

$$\begin{cases} \mathcal{L}_D = \mathcal{L}(x) - k_t . \mathcal{L}(G(z_D)) & \text{for } \theta_D \\ \mathcal{L}_G = \mathcal{L}(G(z_G)) & \text{for } \theta_G \\ k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))) & \text{for each training step } t \end{cases}$$

Derive a global measure of convergence by using the equilibrium concept:

$$\mathcal{M}_{qlobal} = \mathcal{L}(x) + |\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))|$$

This measure can be used to determine when the network has reached its final state or if the model has collapsed.

Training Parameters: ADAM(Ir=0.0001), batch size=128, gp lambda=5

Generate 1000 'Fraud', visually compare the data distribution using boxplot:

- Although better than the basic GAN, it does not overlap with the dataset well.
- There are cases where Time or Amount is less than 0.

Future work

- Fix and improve the loss function
- Adjustment parameters

10/26/2020

WGAN_GP performance evaluation: Hao

Interpolated part explanation

```
def gradient_penalty(self, batch_size, real_data, fake_data):
    """ Calculates the gradient penalty.
    This loss is calculated on an interpolated data
    and added to the discriminator loss.
    """
    # get the interplated image
    alpha = tf.random.normal([batch_size, 1, 1, 1], 0.0, 1.0)
    diff = fake_data - real_data
    interpolated = real_data + alpha * diff
```

The points interpolated between real and generated data should have a gradient norm of 1.

It's hard to get gradients with norm at most 1 everywhere, so we interpolate between real and generated samples. Instead of applying clipping, WGAN-GP applies a penalty if the gradient norm moves away from its target norm value 1.

Obvious further improvement on model performance with WGAN_GP, best model

	Base	GAN	WGAN	WGAN_GP
Accuracy	0.999491	0.999491	0.999544	0.999596
Precision	0.855670	0.864583	0.867347	0.894737
Recall	0.846939	0.846939	0.867347	0.867347
F1 score	0.851282	0.855670	0.867347	0.880829
ROC AUC score	0.923346	0.923355	0.933559	0.933586

BEGAN performance evaluation: Jun

Discriminator: Autoencoder (Encoder + Decoder)

Generator: Decoder

Loss Function:

$$\begin{cases} \mathcal{L}_D = \mathcal{L}(x) - k_t . \mathcal{L}(G(z_D)) & \text{for } \theta_D \\ \mathcal{L}_G = \mathcal{L}(G(z_G)) & \text{for } \theta_G \\ k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))) & \text{for each training step } t \end{cases}$$

$$\mathcal{M}_{global} = \mathcal{L}(x) + |\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))|$$

This measure can be used to determine when the network has reached its final state or if the model has collapsed.

K∈[0,1] k=1e-05

```
EPOCH # 20 -
Steps (10 / 100): [loss_D: 23.763582] [Loss_G: 5191.047363] [M_global: 5191.140451] 
Steps (20 / 100): [loss_D: 23.283887] [Loss_G: 5037.947266] [M_global: 5038.038371]
                                                                                                               count 1000.000000
                                                                                                               mean 45316 074219
               100): [loss_D: 20.021150] [Loss_G: 5360.807129]
                                                                              [M_global: 5360.880726]
Steps (30 /
                                                                                                                 std 9665.684570
Steps (40 / 100):
                       [loss_D: 19.312572]
                                                 [Loss_G: 5416.488770]
                                                                              [M_global: 5416.558218]
                       [loss_D: 21.133590] [Loss_G: 5494.187012] [loss_D: 21.643043] [Loss_G: 5638.911621]
               100):
                                                                              [M_global: 5494.264138]
                                                                                                                 min 18976.361328
Steps (50 /
                                                                              [M_global: 5638.991511]
Steps (60 / 100):
                                                                                                                25% 38610.062500
Steps (70 / 100): [loss_D: 20.518601] [Loss_G: 5681.296387] [M_global: 5681.370212] Steps (80 / 100): [loss_D: 19.534069] [Loss_G: 5762.511230] [M_global: 5762.579990]
                                                                                                                50% 45014.445312
                                                                                                                75% 51699.350586
Steps (90 / 100): [loss_D: 21.824670] [Loss_G: 5780.583496] [M_global: 5780.663860]
Steps (100 / 100): [loss_D: 19.115582] [Loss_G: 6058.291992] [M_global: 6058.358950]
                                                                                                                max 78984.054688
```

k=1

k=0.08

Time		0.687436]	 [M_global:	0.5908531	Lloss G.	23 4022951	[loss D:		EPOCH Steps
1000.000000	count		[M_global:		The second secon		(C) (C)		Steps
5.871967	mean		[M_global:		- CONTRACTOR - CONTRACTOR				Steps
1.094325	std		[M_global:	The second second second	- CO		100000	Control of the contro	Steps
3.122333	min	0.552923]	[M_global:	0.456806]	LLoss_G:	22. 483769]	Lloss_D:	(50 / 100):	Steps
5.059084	25%							(60 / 100):	Steps
5.770874	50%		[M_global:		4400		11277		Steps
6.568066	75%		[M_global:	THE RESERVE AS A SECOND PORT OF THE PERSON NAMED IN	The state of the s		A CONTRACTOR OF THE PARTY OF TH	(90 / 100):	Steps
9.851136	max	100			Control of the contro	y y	- S	(100 / 100)	-

k=0.06, batch_size=64 (previous batch_size=128)

```
Time
Steps (10 / 100): [loss_D: -10.341525] [Loss_G: 12.585917] [M_global: 12.199375]
                                                                                   count 1000.000000
Steps (20 / 100): [loss_D: -3.326088] [Loss_G: 11.233190] [M_global: 10.936512]
                                                                                   mean
                                                                                          46.818562
Steps (30 / 100): [loss_D: 20.852566] [Loss_G: 7.410180] [M_global: 7.314507]
Steps (40 / 100): [loss_D: 30.622616] [Loss_G: 4.393467] [M_global: 4.416713]
                                                                                     std
                                                                                           16.844614
Steps (50 / 100): [loss_D: 29.780138] [Loss_G: 3.984214] [M_global: 4.020640]
                                                                                    min
                                                                                           6.206626
Steps (60 / 100): [loss_D: 28.448325] [Loss_G: 4.266831] [M_global: 4.289491]
                                                                                    25%
                                                                                          34.534291
Steps (70 / 100): [loss_D: 17.527455] [Loss_G: 4.801738] [M_global: 4.757676]
                                                                                    50%
                                                                                          45.042454
Steps (80 / 100): [loss_D: 16.920543] [Loss_G: 5.242315] [M_global: 5.196826]
                                                                                          57.417752
Steps (90 / 100): [loss_D: 15.595847] [Loss_G: 4.730126] [M_global: 4.674268]
Steps (100 / 100): [loss_D: 18.740515] [Loss_G: 4.700145] [M_global: 4.672210]
                                                                                    max
                                                                                          114.041725
```


	Base	GAN	BEGAN
Accuracy	0.999491	0.999491	0.999613
Precision	0.855670	0.864583	0.922222
Recall	0.846939	0.846939	0.846939
F1 score	0.851282	0.855670	0.882979
ROC AUC score	0.923346	0.923355	0.923408

