OPTIMIZACIÓN

Primer Cuatrimestre 2025

Práctica de Laboratorio N° 4

Métodos de Penalización y de Barrera

min
$$f(x)$$

s.a. $g_i(x) \le 0$ $i \in \mathcal{I}$
 $h_j(x) = 0$ $j \in \mathcal{E}$

Con $f, g, h \in C^1(\Omega)$. Consideraremos Ω al conjunto de puntos factibles, es decir:

$$\Omega = \{ x \in \mathbb{R}^n : g_i(x) \le 0 \ \forall i \in \mathcal{I}, \ h_j(x) = 0 \ \forall j \in \mathcal{E} \}$$

Método de Penalización

Motivación: minimizar f sobre \mathbb{R}^n , aplicándole una penalización a los puntos que no están en Ω . Si podemos conseguir una función $P: \mathbb{R}^n \to \mathbb{R}$ tal que:

- \bullet P es continua
- $P(x) \ge 0 \quad \forall x \in \mathbb{R}^n$
- $P(x) = 0 \iff x \in \Omega$

Entonces podemos minimizar f(x) + cP(x) con $c \in \mathbb{R}$ utilizando técnicas de optimización irrestricta.

Función de penalización cuadrática

Si tenemos el siguiente problema:

min
$$f(x)$$

s.a. $g_i(x) \le 0$ $i \in \mathcal{I}$
 $h_j(x) = 0$ $j \in \mathcal{E}$

Definimos la función de penalización cuadrática como:

$$Q(x,c) = f(x) + c \sum_{j \in \mathcal{E}} h_j(x)^2 + c \sum_{i \in \mathcal{I}} (g_i^+(x))^2$$

donde c es el parámetro de penalización y $g_i^+ = \max\{0, g_i(x)\}$. Si hacemos $c \to \infty$, la violación de las restricciones será castigada con mayor severidad.

Idea: considerar una secuencia $\{c_k\}$ tal que $c_k \to \infty$ y utilizar métodos de optimización irrestricta para encontrar el minimizador x_k de $Q(x, c_k)$ para cada k.

*Ejemplo:

min
$$f(x) = (x-4)^2 + 4$$

s.a. $x \le 5$ $(g_1(x) = x - 5)$
 $x \ge 3$ $(g_2(x) = 3 - x)$

$$\Rightarrow Q(x,c) = f(x) + cg_1^+(x)^2 + cg_2^+(x)^2$$

Implementación

Dadas $f, h_j, g_i, x_0 \in \mathbb{R}^n, c_0 \in \mathbb{R}, \alpha \in \mathbb{R}_{>1}, \varepsilon, k_{\text{MAX}},$

- REPEAT mientras $||x^k x^{k+1}|| > \varepsilon$ y $k < k_{\text{MAX}}$:
 - Definir $Q(x, c_k)$
 - $-x^{k+1}$ = mínimo de $Q(x,c_k)$ utilizando optimización irrestricta (punto inicial: x_k)
 - Si $x^{k+1} \in \Omega$:
 - * PARAR
 - Si no:
 - $* c_{k+1} = \alpha c_k$
 - * k = k + 1

Valores iniciales estándar podrían ser: $c=1.5, \, \varepsilon=10^{-3}, \, \alpha=2$. Una buena idea es tomar $x_0\in\Omega^c$.

Método de Barrera

Motivación: acercarnos a los puntos de la frontera de Ω desde su interior.

Aplicable a problemas con restricciones dadas por desigualdades, ya que, en particular, es necesario que $\Omega^{\circ} \neq \emptyset$. En general, es necesario poder aproximarse a cualquier punto de $\partial\Omega$ desde Ω° .

Si conseguimos una función B tal que:

- \bullet B es continua
- B(x) > 0
- $B(x) \to \infty$ cuando x se acerca a $\partial \Omega$

Entonces podemos resolver el problema

$$\min_{x \in \Omega^{\circ}} f(x) + \mu B(x)$$

con herramientas de optimización irrestricta, tomando como punto inicial $x_0 \in \Omega^{\circ}$. A medida que $\mu \to 0$, permitiremos que se consideren puntos más cercanos a $\partial\Omega$.

Las funciones de Barrera más comunes son

$$B(x) = \sum_{i} \left(-\frac{1}{g_i(x)}\right)$$
 y $B(x) = \sum_{i} \log(-g_i(x))$.

De esta manera, el problema se convierte en minimizar la siguiente función:

$$R(x,\mu) = f(x) + \mu B(x)$$

Ejemplo:

$$\min \quad f(x) = (x-4)^2 + 4$$
s.a. $x \le 5 \quad (\Rightarrow g_1(x) = x - 5)$

$$x \ge 3 \quad (\Rightarrow g_2(x) = 3 - x)$$

$$\Rightarrow R(x,\mu) = f(x) - \mu \left(\frac{1}{g_1(x)} + \frac{1}{g_2(x)}\right)$$

Implementación

Análoga a la del Método de Penalidad Dadas $f, g_i, x_0 \in \Omega^{\circ}, \mu_0 \in \mathbb{R}, \alpha \in \mathbb{R}_{<1}, \varepsilon, k_{\text{MAX}},$

- REPEAT mientras $||x^k x^{k+1}|| > \varepsilon$ y $k < k_{\text{MAX}}$:
 - Definir $R(x, \mu_k)$
 - $-\ x^{k+1} =$ mínimo de $R(x,\mu_k)$ utilizando optimización irrestricta (punto inicial: $x_k)$
 - $-\mu_{k+1} = \alpha \mu_k$
 - k = k + 1

Valores iniciales estándar podrían ser: $\mu = 1$, $\varepsilon = 10^{-3}$, $\alpha = 0.5$. Se debe tomar $x_0 \in \Omega^{\circ}$.

Ejercicio 1

Implementar las funciones metodo_penalidad y metodo_barrera. Como input deben tomar:

- f la función a minimizar,
- x_0 el punto inicial,
- G una tupla con funciones que definen las restricciones por desigualdad,
- una tupla con las restricciones de igualdad (sólo para Método de Penalidad),
- alpha el factor de cambio de los parámetros de penalidad/barrera,
- epsilon la tolerancia y
- k_max el número máximo de iteraciones.

Ejercicio 2 El siguiente problema busca hallar el punto de una esfera más cercana a un plano:

min
$$f(x) = \frac{1}{10}(x_2 + x_3 - 3)^2$$

s.a. $x_2^2 + x_3^2 \le 1$

Utilizar el Método de Barrera y el Método de Penalidad que resuelvan este problema. Solución: $\left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$

Ejercicio 3 Resolver el siguiente problema utilizando el Método de Penalidad:

min
$$f(x) = x_1 + x_2$$

s.a. $x_1^2 + x_2^2 = 2$
 $x_1 \ge 0$

Solución: $(0, -\sqrt{2})$