

Question 1 Max. score: 100.00

Predict time taken by delivery person

You are working as a data scientist at a food delivery company. The company wants to improve its system that calculates ETA for delivery persons. Rather than relying on some fixed method/formula, The management has decided to develop intelligent software that can predict the time of arrival for the delivery persons.

Task

Develop a machine learning model that can calculate the time taken by the delivery person to deliver the order, given relevant information.

Dataset description

train(folder): contains 45593 .txt files
test.csv: contains 11399 .txt files

• sample_submission.csv: 5 x 2

The columns provided in the dataset are as follows:

Column name	Description
ID	Represents a unique identification of an entry.
Delivery_person_ID	Represents a unique identification of a delivery person.
Delivery_person_Age	Represents the age of a delivery person.
Delivery_person_Ratings	Represents the average ratings given to the delivery person. (1 to 5)
Restaurant_latitude	Represents the latitude of the restaurant.
Restaurant_longitude	Represents the longitude of the restaurant.
Delivery_location_latitude	Represents the latitude of the Delivery location.
Delivery_location_longitude	Represents the longitude of the Delivery location.
Order_Date	Represents the date when the order was placed.
Time_Orderd	Represents the time when the order was placed.
Time_Order_picked	Represents the time when the order was picked from the restaurant.
Weather conditions	Represent the weather conditions (Windy, Sunny, Cloudy, Stormy, Fog, Sandstorms, etc)
Road_traffic_density	Represents the road traffic density (Jam, High, Medium and Low)
Vehicle_condition	Represents the condition of the vehicle. (Smooth, good or average)
Type_of_order	Represents the type of order (Snack, Meal, Buffet, Drinks, etc.)
Type_of_vehicle	Represents the type of vehicle one is using (motorbike, bicycle etc.)
multiple_deliveries	Represents the number of orders to be delivered in one attempt
Festival	Represents whether day is festive or not
City	Represents the city
Time_taken	Represents the time taken by the delivery person to deliver the order. [TARGET]

Evaluation metric

Result submission guidelines

- \bullet The index is "ID" and the target is the "Time_taken (min)" column.
- The submission file must be submitted in .csv format only.
- \bullet The size of this submission file must be 11399 x 2.

Note: Ensure that your submission file contains the following:

- Correct index values as per the test.csv file
- Correct names of columns as provided in the <code>sample_submission.csv</code> file

?

Instructions:

- Click Download dataset to download the dataset.
- Solve the problem in your local environment.
- Save the submission in a .csv file.
- Click Upload File (under the Upload File section) to upload your prediction file (.csv).
- Click Upload File (under the Upload Source Code section) to upload your .ipynb file along with any presentation file.
- Add any instructions or comments in the *Your Answer* section.
- Click Submit.

Download dataset

New Submission All Submissions

Upload File

♣ Upload File File size limit is 50 MB

Upload Source Code

♣ Upload File

Your Answer

Preview

Submit

