Introduction to Quantum Information and Computing - Lecture 1

3rd January, 2023

Shrikara A, Arnav Negi, Kriti Gupta, Manav Shah, Mohammed Shamil, Shiven Sinha, Swayam Agarwal, Vineeth Bhat, Yash Adivarekar

Contents

1	Introduction and Motivation		1
	1.1	Introduction	1
	1.2	Stern-Gerlach Experiment	1
	1.3	Shannon's Theory of Information	1
	1.4	Entropy as the Expectation of Surprise	1
	1.5	No Cloning Theorem	1
	1.6	Computation as a Subset of Information	1
	1.7	Outline of the Course	1
2	Finite Dimensional Hilbert Spaces		1
3	Des	cribing a Closed Physical System	1

1 Introduction and Motivation

- 1.1 Introduction
- 1.2 Stern-Gerlach Experiment
- 1.3 Shannon's Theory of Information
- 1.4 Entropy as the Expectation of Surprise
- 1.5 No Cloning Theorem
- 1.6 Computation as a Subset of Information
- 1.7 Outline of the Course
 - 1. Postulates
 - 2. Everything is a quantum channel
 - 3. Entanglement, Separability, Nonlocality
 - 4. Teleportation, No Cloning
 - 5. Entropy, Trace Distance

2 Finite Dimensional Hilbert Spaces

A d-dimensional Hilbert space \mathcal{H} $(1 \leq d < \infty)$ is a complex vector space with an inner product defined on it. A vector in the Hilbert space \mathcal{H} is denoted by $|\psi\rangle$. The inner product $\langle .,. \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ has the following properties:

- Non negativity $\langle \psi, \psi \rangle \geq 0 \ \forall \ |\psi\rangle \in \mathcal{H}. \ \langle \psi, \psi \rangle = 0 \ \text{if and only if} \ \langle \psi \rangle = 0.$
- Linearity in Second Argument $\langle \psi, \alpha \phi_1 + \beta \phi_2 \rangle = \alpha \langle \psi, \phi_1 \rangle + \beta \langle \psi, \phi_2 \rangle$
- Conjugate Linearity in First Argument $\langle \alpha \psi_1 + \beta \psi_2, \phi \rangle = \bar{\alpha} \langle \psi_1, \phi \rangle + \bar{\beta} \langle \psi_2, \phi \rangle$
- Conjugate Symmetry $\langle \psi, \phi \rangle = \overline{\langle \phi, \psi \rangle}$

3 Describing a Closed Physical System

The complete description of a closed physical system is given by its state $|\psi\rangle$ where $|\psi\rangle \in \mathcal{H}$ (\mathcal{H} is a Hilbert Space) and norm of $|\psi\rangle$ is 1 ($\langle\psi,\psi\rangle = 1$). For every state $|\psi\rangle \in \mathcal{H}$, $\exists \langle\psi|$ in the dual vector space of \mathcal{H} . Also, $\langle\psi| = (|\psi\rangle)^{\dagger}$.

For $|\psi\rangle$ to represent a closed system, the Hilbert Space it belongs to must have dimension $d \geq 2, d \in \mathbb{N}$.