# Information Fusion in Attention Networks Using Adaptive and Multi-Level Factorized Bilinear Pooling for Audio-Visual Emotion Recognition

报告人:周恒顺

指导老师: 杜俊副教授





# Outline

- Introduction
- The Proposed Attention and Fusion Strategy
- Experiment and Result Analyses
- Q&A

# Introduction

# Multimodal Emotion Recognition



Video



Audio

Shut up! I don't want to hear anything from you.

**Text** 

# Motivation

- > Improve the robustness of emotion recognition system in complex scenes.
  - detected face is blurred or occluded
  - audio signal is polluted by noise

- ➤ How to fully utilize both audio and visual information is still an open problem.
  - feature-level
  - decision-level fusions
  - model-level fusion



# The Proposed Attention and Fusion Strategy



Fig. 1: An overall architecture of the proposed multimodal attention and fusion network based on adaptive and multi-level factorized bilinear pooling for audio-visual emotion recognition.

## Audio/Video Stream



$$egin{aligned} oldsymbol{A} &= \left\{oldsymbol{a}_1, \cdots, oldsymbol{a}_T 
ight\}, oldsymbol{a}_i \in \mathbb{R}^C \ & \gamma_i^a &= egin{aligned} oldsymbol{u}_a^{ op} anh(oldsymbol{W}_a oldsymbol{a}_i + oldsymbol{b}_a) \ \hline ar{\gamma}_i^a &= rac{\exp(\lambda_a \gamma_i^a)}{\sum_{k=1}^T \exp(\lambda_a \gamma_k^a)} \ & oldsymbol{e}_a^i &= ar{\gamma}_i^a oldsymbol{a}_i \ & oldsymbol{e}_a^i &= \sum_{i=1} oldsymbol{e}_a^i \end{aligned}$$



Fig. 2: FCN based audio encoder.

Fig. 3: Structure of audio/video self-attention.



# Global Factorized Bilinear Pooling (G-FBP)

For the audio feature vector,  $e_a^g \in R^C$ , and video feature vector,  $e_v^g \in R^D$ , the bilinear pooling for the output,  $I_j \in R$ , is defined as follows:

$$I_j = oldsymbol{e}_a^g ^ op oldsymbol{\Lambda}_j oldsymbol{e}_v^g$$

According to [1], the projection matrix  $\Lambda_i$  can be factorized into two low-rank matrices:

$$egin{aligned} I_j &= oldsymbol{e}_a^g^ op oldsymbol{P}_j oldsymbol{Q}_j^ op oldsymbol{e}_v^g \ &= \sum\limits_{d=1}^K oldsymbol{e}_a^g^ op oldsymbol{p}_j^d oldsymbol{q}_j^d^ op oldsymbol{e}_v^g \ &= \mathbb{1}^ op (oldsymbol{P}_j^ op oldsymbol{e}_a^g \, \circ \, oldsymbol{Q}_j^ op oldsymbol{e}_v^g) \end{aligned}$$

To obtain the output feature vector I below, two 3-D tensors,  $P = [P_1, \cdots, P_O] \in \mathbb{R}^{C \times K \times O}$  and  $Q = [Q_1, \cdots, Q_O] \in \mathbb{R}^{D \times K \times O}$ , need to be learned. Note P and Q can be reformulated as 2-D matrices,  $\tilde{P} \in \mathbb{R}^{C \times KO}$  and  $\tilde{Q} \in \mathbb{R}^{D \times KO}$  respectively.

$$I = \text{SumPooling}(\widetilde{\boldsymbol{P}}^{\top} \boldsymbol{e}_a^g \circ \widetilde{\boldsymbol{Q}}^{\top} \boldsymbol{e}_v^g, K_G)$$



Fig. 4: FBP module

[1] Z. Yu, J. Yu, J. Fan, and D. Tao, "Multi-modal factorized bilinear pooling with co-attention learning for visual question answering," in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 1821–1830.



# Improved FBP

### **Adaptive Global Factorized Bilinear Pooling (AG-FBP)**

The two coefficients are calculated dynamically by adopting the encoder vectors before audio and video fusion:

$$\mu = \frac{\|\boldsymbol{e}_{a}^{g}\|}{\|\boldsymbol{e}_{a}^{g}\| + \|\boldsymbol{e}_{v}^{g}\|}$$

$$\eta = rac{\|oldsymbol{e}_v^g\|}{\|oldsymbol{e}_a^g\| + \|oldsymbol{e}_v^g\|}$$

And the new fusion formulation is shown below:

$$I_j^{\mathrm{A}} = (\mu \boldsymbol{e}_a^g)^{\top} \boldsymbol{\Lambda}_j (\eta \boldsymbol{e}_v^g)$$

Correspondingly, the formulation of G-FBP is modified as:

$$\boldsymbol{I}^{\mathrm{A}} = \mathrm{SumPooling}(\widetilde{\boldsymbol{P}}^{\top}(\mu \boldsymbol{e}_{a}^{g}) \circ \widetilde{\boldsymbol{Q}}^{\top}(\eta \boldsymbol{e}_{v}^{g}), K_{G})$$

# Improved FBP

### **Multi-Level factorized bilinear pooling (M-FBP)**

To implement M-FBP, the stride of the pooling layer of the audio stream can be modified to adjust the length of intratrunk audio data, namely  $e_a = [e_a^1, \dots, e_a^H]$ . H is the number of intra-trunks and determined by the time lengths of the sample (L) and one intra-trunk (T), and  $L = H \times T$ .

For the video stream, through the reshape and sum operation, we have  $e_v = [e_v^1, \cdots, e_v^H]$ .

Finally, we formulate intra-trunk based FBP as follows:

$$m{I}^{ ext{M}} = \sum_{h=1}^{H} ext{SumPooling} \left( \widetilde{m{P}}_h^ op m{e}_a^h \, \circ \, \widetilde{m{Q}}_h^ op m{e}_v^h, K_M 
ight)$$

And both  $I_A$  of global-trunk data and  $I_M$  of intra-trunk data are concatenated as the fusion vector for the AM-FBP system.

• Data set: IEMOCAP database

4 categories: angry, happy, neutral, sad

Table I: Classification accuracy comparison of different audio network architectures and parameter initializations on IEMOCAP test set.

| Systems             | Initialization | Accuracy |  |
|---------------------|----------------|----------|--|
| Att.+BLSTM+FCN [73] | Random         | 68.10%   |  |
| CNN+LSTM [5]        | Random         | 68.80%   |  |
| Fusion_TACN [74]    | Random         | 69.75%   |  |
| 2D-ABFCN [12]       | Pre-trained    | 70.40%   |  |
| 1D-ABFCN (No LRN)   | Random         | 70.79%   |  |
| 1D-ABFCN            | Random         | 71.40%   |  |



Fig. 5: Comparison of learning curves of different audio emotion recognition systems.



• Data set: AFEW database

7 categories: angry, disgust, fear, surprise, happy, neutral, sad

Table III: Classification accuracy and p-value of our improved FBP approaches on the AFEW validation set.

| Systems | Accuracy | p-value |
|---------|----------|---------|
| G-FBP   | 61.10%   | -       |
| AG-FBP  | 62.40%   | 0.004   |
| M-FBP   | 63.18%   | 0.002   |
| AM-FBP  | 64.17%   | 0.001   |

Table II: Classification accuracy comparison of different systems on AFEW validation set.

| Systems                                                 | Accuracy                             |
|---------------------------------------------------------|--------------------------------------|
| EmotiW2019 baseline [7] Audio system Video system G-FBP | 38.81%<br>34.99%<br>52.07%<br>61.10% |



Fig. 6: Learning curves of different FBP systems on the validation set.





Fig. 7: Attention analysis of two randomly selected examples.



Table V: The overall performance comparison and p-value of different systems on the AFEW test set.

| Systems                   | Single model | Accuracy | p-value |
|---------------------------|--------------|----------|---------|
| EmotiW2019 baseline [7]   | ✓            | 41.07%   | -       |
| MAFN [30]                 | ×            | 58.65%   | _       |
| 4CNNs+LMED+DL-A+LSTM [29] | ×            | 61.87%   | -       |
| 4CNNs+BLSTM+Audio [22]    | ×            | 62.78%   | -       |
| G-FBP                     | ✓            | 60.64%   | -       |
| 4G-FBP                    | ×            | 62.48%   | -       |
| AG-FBP                    | ✓            | 61.26%   | 0.008   |
| M-FBP                     | ✓            | 61.87%   | 0.001   |
| AM-FBP                    | $\checkmark$ | 62.17%   | < 0.001 |
| 2AM-FBP                   | ×            | 62.79%   | < 0.001 |
| 2AM-FBP+4G-FBP            | ×            | 63.09%   | < 0.001 |

|           | Pudi | y disdi | ust keat | Hapr | Neur | sad sad | Surprise |
|-----------|------|---------|----------|------|------|---------|----------|
| Angry     | 0.77 | 0       | 0.05     | 0.03 | 0.1  | 0.05    | 0        |
| Disgust : | 0.13 | 0       | 0.02     | 0.28 | 0.32 | 0.25    | 0        |
| Fear      | 0.27 | 0       | 0.42     | 0.01 | 0.17 | 0.13    | 0        |
| Нарру     | 0.05 | 0       | 0.01     | 0.88 | 0.05 | 0.01    | 0        |
| Neutral   | 0.06 | 0       | 0.02     | 0.08 | 0.75 | 0.09    | 0        |
| Sad       | 0.14 | 0       | 0.06     | 0.14 | 0.21 | 0.45    | 0        |
| Surprise  | 0.11 | 0       | 0.18     | 0.14 | 0.36 | 0.21    | 0        |

Fig. 10: Confusion matrix on AFEW test set.



Table VI: Classification accuracy comparison and p-value of different systems on IEMOCAP test set.

| Systems              | Accuracy | p-value |  |
|----------------------|----------|---------|--|
| Audio system [78]    | 63.00%   | -       |  |
| Decision fusion [78] | 65.40%   | -       |  |
| Audio system [58]    | 50.97%   | -       |  |
| Video system [58]    | 49.39%   | -       |  |
| Encoder concat [58]  | 67.58%   | -       |  |
| Audio system         | 71.40%   | (2)     |  |
| Video system         | 53.42%   | -       |  |
| Decision fusion      | 72.54%   | -       |  |
| Encoder concat       | 73.11%   |         |  |
| G-FBP                | 73.98%   | 0.001   |  |
| AM-FBP               | 75.49%   | < 0.001 |  |

# Thanks!

