MC304 Theory of Computation

Assignment-II

1. Find the language generated by the grammar with production rules:

$$S \to 0S1|0A1, A \to 1A0|10$$

- 2. Construct a grammar, accepting $\{0^n 1^m 0^n | m, n \ge 1\} \cup \{0^n 1^m 2^m | m, n \ge 1\}$.
- 3. What is a context-free grammar? Construct a context-free grammar to generate the set of all strings over $\{0,1\}$ containing twice as many 0's as 1's.
- 4. What is a regular grammar? Construct a regular grammar to generate $\{(ab)^n|n\geq 1\}$.
- 5. Test whether 001100, 001010, 01010 are in the language generated by the grammar with production rules:

$$S \to 0S1|0A|0|1B|1, A \to 0A|0, B \to 1B|1$$

- 6. Represent the following sets by regular expressions:
 - (a) $\{a^2, a^5, a^8, \ldots\}$
 - (b) $\{a^n | \text{n is divisible by 2 or 3 or n=5}\}$
 - (c) The set of all strings over $\{a, b\}$ beginning and ending with a.
- 7. Show that the language $L = \{vwv: v, w \in \{a,b\}^*, |v| = 2\}$ is regular.
- 8. Find a regular expression for the language $L = \{w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros}\}$.
- 9. Prove the identity:

$$(a^*ab + ba)^*a^* = (a + ab + ba)^*$$

10. Show that the language $L = \{awa : w \in \{a,b\}^*\}$ is regular.