Capítulo 5

CURVAS PLANAS CLÁSSICAS

Diferentes fenômenos ocorrem naturalmente nas curvas planas e são de interesse em Topologia, Teoria das Catástrofes, Geometria Algébrica , Computação Gráfica e diversas área da Engenharia, como no desing de estradas.

Neste capítulo apresentamos algumas novas curvas e suas parametrizações e outras curvas, construídas a partir de uma curva dada; estas curvas são cumumente chamadas de clássicas.

Utilizaremos as definições e as notações de [VM].

5.1 Parábola semi-cúbica

É o lugar geométrico determinado pela equação:

$$27 a y^2 = 4 x^3, \quad a \neq 0.$$

Fazendo $y = \frac{2tx}{3}$, obtemos:

$$27 a y^2 - 4 x^3 = -4 x^2 (x - 3 a t^2) = 0,$$

se $x \neq 0$, temos $x - 3 a t^2 = 0$, logo temos a parametrização:

$$\begin{cases} x(t) &= 3 a t^2 \\ y(t) &= 2 a t^3, \quad t \in \mathbb{R}. \end{cases}$$

A parábola semi-cúbica, possui uma única interseção com os eixos na origem e é simétrica em relação ao eixo dos x.

Figura 5.1: Desenhos para a=0.5 e a=0.8

5.2 Folium de Descartes

É o lugar geométrico determinado pela equação:

$$3y^{2}(a-x) = x^{2}(x+3a), \quad a \neq 0.$$

Fazendo y = t x obtemos:

$$3y^{2}(a-x) - x^{2}(x+3a) = -x^{2}[x(3t^{2}+1) - 3at^{2} + 3a] = 0$$

se $x \neq 0$, temos $x (3t^2 + 1) - 3at^2 + 3a = 0$, logo temos a parametrização:

$$\begin{cases} x(t) &= \frac{3 a (t^2 - 1)}{3 t^2 + 1} \\ \\ y(t) &= \frac{3 a t (t^2 - 1)}{3 t^2 + 1}, \quad t \in \mathbb{R}. \end{cases}$$

O folium de Descartes tem um laço e possui uma única interseção com os eixos na origem.

Figura 5.2: Desenhos para a=2, a=3 e a=4

5.3 Lemmiscata de Bernoulli

É o lugar geométrico determinado pela equação:

$$(x^2 + y^2)^2 = a^2(x^2 - y^2), \quad a \neq 0.$$

Fazendo y = x sen(t), obtemos:

$$(x^{2} + y^{2})^{2} = x^{4} + 2x^{2}y^{2} + y^{4} = x^{4} + 2x^{4} \operatorname{sen}^{2}(t) + x^{4} \operatorname{sen}^{4}(t)$$
$$x^{2} - y^{2} = x^{2} - x^{2} \operatorname{sen}^{2}(t);$$

logo:

$$(x^2 + y^2)^2 - a^2(x^2 - y^2) = x^2 + 2x^2 \operatorname{sen}^2(t) + x^2 \operatorname{sen}^4(t) - a^2 + a^2 \operatorname{sen}^2(t)$$
$$= x^2 (1 + \operatorname{sen}^2(t))^2 - a^2 \cos^2(t) = 0,$$

então:

$$x = \frac{a\cos(t)}{1 + sen^2(t)}.$$

Finalmente, temos a parametrização::

$$\begin{cases} x(t) &= \frac{a\cos(t)}{1 + sen^2(t)} \\ y(t) &= \frac{a\cos(t)sen(t)}{1 + sen^2(t)}, \quad t \in [0, 2\pi]. \end{cases}$$

A lemmiscata de Bernoulli tem dois laços e possui interseções com os eixos na origem e nos pontos (-a,0) e (a,0).

Figura 5.3: Desenhos para a = 1, a = 2 e a = 3

5.4 Astróide

É o lugar geométrico determinado pela equação:

$$\sqrt[3]{x^2} + \sqrt[3]{y^2} = \sqrt[3]{a^2}, \quad a \neq 0.$$

Não é difícil obter:

$$\begin{cases} x(t) &= a\cos^3(t) \\ y(t) &= a\sin^3(t), \quad t \in \mathbb{R}. \end{cases}$$

A astróide possui interseções com os eixos no pontos (-a,0), (a,0), (0,-a) e (0,a). É simétrica em relação à origem.

135

Figura 5.4: Desenhos para a > 0

5.5 Limaçon de Pascal

É o lugar geométrico determinado pela equação em coordenadas polares:

$$r=b+a\cos(t),\quad t\in[-\pi,\pi],\quad a,\,b\in\mathbb{R},\,\,b>0.$$

então $r^2 = b\,r + a\,r\,\cos(t)$,;
utilizando que $r^2 = x^2 + y^2$ e $x = r\cos(t)$, obtemos:

$$(x^2 + y^2 - ax)^2 = b^2(x^2 + y^2).$$

Não é difícil obter:

$$\begin{cases} x(t) &= (b + a\cos(t))\cos(t) \\ y(t) &= (b + a\cos(t))\sin(t), \quad t \in [-\pi, \pi]. \end{cases}$$

A limaçon de Pascal, possui possíveis interseções com os eixos, no pontos (0,0) e/ou $(\pm\sqrt{b},0)$ e/ou $(0,a\pm\sqrt{b})$. É simétrica em relação ao eixo dos x.

Figura 5.5: Desenhos para a=0.5 e b=1; a=1 e b=1, respectivamente

Figura 5.6: Desenhos para a=2e b=1

5.6 Espiral de Euler

É o lugar geométrico determinado pela parametrização:

$$\begin{cases} x(t) = \pm a \int_0^t \frac{sen(u)}{\sqrt{u}} du \\ \\ y(t) = \pm a \int_0^t \frac{cos(u)}{\sqrt{u}} du, \quad a \neq 0, \ t \in \mathbb{R}. \end{cases}$$

Figura 5.7: Desenhos para a=1 e a=-1

5.7 Espiral Logarítmico

É o lugar geométrico determinado pela parametrização:

$$\begin{cases} x(t) = \frac{a e^{at}}{a^2 + 1} \left[a \cos(t) + \sin(t) \right] \\ \\ y(t) = \frac{a e^{at}}{a^2 + 1} \left[a \sin(t) - \cos(t) \right], \quad a \neq 0, \ t \in \mathbb{R}. \end{cases}$$

Figura 5.8: Desenhos para a=-0.1

Figura 5.9: Desenhos para a = 0.1

5.8 Curvas Offset

A curva paralela ou offset de uma curva dada é o lugar geométrico dos pontos que (localmante) estão uma distância fixada da curva; equivalentemente, a curva cujas tangentes são paralelas às tangentes da curva dada, nos pontos com normal comum.

5.8. CURVAS OFFSET

139

Sejam $\gamma:I\longrightarrow\mathbb{R}$ uma curva de classe C^1 , $\vec{\mathbf{n}}$ vector normal unitário e $d\in\mathbb{R}$. A curva offset ou paralela à distância d de γ é denotada e definida por:

$$\gamma_d(t) = \gamma(t) + d \vec{\mathbf{n}}.$$

Se $\gamma(t)=(x(t),y(t))$, então $\gamma_d(t)=(X(t),Y(t))$ tal que:

$$\begin{cases} X(t) = x(t) - \frac{dy'(t)}{\sqrt{x'^2(t) + y'^2(t)}} \\ Y(t) = y(t) + \frac{dx'(t)}{\sqrt{x'^2(t) + y'^2(t)}}. \end{cases}$$

Exemplo 5.1.

[1] Seja a parábola $\gamma(t)=(t,t^2)$, $t\in\mathbb{R}$, então:

$$\begin{cases} X(t) = t - d \frac{2t}{\sqrt{1+4t^2}} \\ Y(t) = t^2 + \frac{d}{\sqrt{1+4t^2}}, \quad t \in \mathbb{R}. \end{cases}$$

Figura 5.10: A parábola e algumas offset

[2] Seja a elipse $\gamma(t)=(4\cos(t),sen(t))$, $t\in[0,2\,\pi]$, então:

$$\begin{cases} X(t) = 4\cos(t) - d\frac{\cos(t)}{\sqrt{\cos^2(t) + 16 \operatorname{sen}^2(t)}} \\ \\ Y(t) = \operatorname{sen}(t) - d\frac{4\operatorname{sen}(t)}{\sqrt{\cos^2(t) + 16 \operatorname{sen}^2(t)}}, \quad t \in \mathbb{R}. \end{cases}$$

Figura 5.11: A elipse e algumas offset

[3] Seja a curva $\gamma(t)=(t,t^3)$, $t\in\mathbb{R}$, então:

$$\begin{cases} X(t) = t - d \frac{3t^2}{\sqrt{1+9t^4}} \\ Y(t) = t^3 - \frac{d}{\sqrt{1+9t^4}}, \quad t \in \mathbb{R}. \end{cases}$$

141

Figura 5.12: A curva e algumas offset

5.9 Parametrização das Roletas

Definição 5.1. Uma roleta (roulette) é o lugar geométrico determinado por um ponto fixo P associado a uma curva C_1 que rola, sem deslizar, ao longo de outra curva fixa C_2 .

A seguir exemplos mais importantes de roletas.

5.10 Ciclóide

É a roleta onde C_2 é uma reta, C_1 é um círculo e P pertence à circunferência C_1 . Considere a reta como o eixo coordenado OX, C_1 um círculo de raio a centrado no ponto A; C_1 começa a rolar a partir da origem e P é o ponto fixo em C_1 . Sejam E e B os pés das perpendiculares passando por P=(x(t),y(t)) e A em relação a OX, respectivamente. Veja o desenho:

Figura 5.13: Construção da ciclóide

Seja $t = \angle DAP$, no sentido indicado; PD é perpendicular a BA; como C_1 rola sem deslizar de O a B, temos:

$$\overline{OB} = \operatorname{arco} PB = a t$$
,

$$x(t) = \overline{OE} = \overline{OB} - \overline{EB} = at - \overline{PD}$$

e

$$y(t) = \overline{EP} = \overline{BD} = = \overline{BA} - \overline{DA}.$$

Então, as equações paramétricas são:

$$\begin{cases} x(t) = a t - a \operatorname{sen}(t) \\ y(t) = a - a \cos(t) & t \in [0, 2 n \pi], n \in \mathbb{N}. \end{cases}$$

Figura 5.14: A ciclóide

Observação 5.1. As seguintes curvas, além de sua beleza, são utilizadas em Engenharia, no desing de ferramentas e engrenagens.

5.11 Epitrocóide

É a roleta descrita por um ponto P que fica a uma distância fixa do centro de um círculo C_1 de raio b, que rola sem deslizar, no exterior de outro círculo C_2 , fixo.

143

Figura 5.15: A epitrocóide

A parametrização da epitrocóide é:

$$\begin{cases} x(t) &= m\cos(t) - h\cos(\frac{mt}{b}) \\ \\ y(t) &= m\operatorname{sen}(t) - h\operatorname{sen}(\frac{mt}{b}), \qquad t \in [0, 2\pi]. \end{cases}$$

A curva possui $\frac{m}{b}-1$ auto-interseções se $\frac{m}{b}\in\mathbb{Z}.$

Figura 5.16: Desenhos para b=2, h=5 e m=8; b=2, h=6 e m=12, respectivamente

Figura 5.17: Desenhos para b=2, h=6 e m=20; b=2, h=20 e m=30, respectivamente

5.12 Hipotrocóide

É a roleta descrita por um ponto P que fica a uma distância fixa do centro de um círculo C_1 de raio b, que rola sem deslizar, no interior de outro círculo C_2 , fixo.

5.12. HIPOTROCÓIDE

145

Figura 5.18: Construção da hipotrocóide

As equações paramétricas da hipotrocóide são:

$$\begin{cases} x(t) &= n\cos(t) + h\cos\left(\frac{n\,t}{b}\right) \\ \\ y(t) &= n\sin(t) - h\sin\left(\frac{n\,t}{b}\right), \qquad t \in [0, 2\,\pi]. \end{cases}$$

- 1. Se h = b, a curva é chamada hipociclóide.
- 2. Se h = 2b é uma elipse.
- 3. Existem $\frac{n}{b} + 1$ auto-interseções se $\frac{n}{b} \in \mathbb{Z}$.
- 4. A curva tem simetria em relação ao eixo dos y se o inteiro $\frac{n}{b}$ é ímpar.

Figura 5.19: Desenhos para b=2, h=3 e n=4; b=2, h=4 e n=6, respectivamente

Figura 5.20: Desenhos para b=2, h=6 e n=10; b=2, h=20 e n=30, respectivamente

5.13. EXERCÍCIOS 147

5.13 Exercícios

1. Seja γ uma curva parametrizada em \mathbb{R}^2 de classe C^2 , definimos e denotamos a curvatura (com sinal) de γ por:

$$k(t) = \frac{x'(t) y''(t) - x''(t) y'(t)}{\left[x'^{2}(t) + y'^{2}(t)\right]^{3/2}}.$$

Determine a curvatura das seguintes curvas de \mathbb{R}^2 :

(a)
$$\gamma(t) = (t^2, t^3)$$
.

(b)
$$\gamma(t) = (t^3, t^2)$$
.

(c)
$$\gamma(t) = (e^t \operatorname{sen}(t), e^t \operatorname{cos}(t)).$$

(d)
$$\gamma(t) = (2 sen(t), 3 cos(t)).$$

(e)
$$\gamma(t) = (t - sen(t), 1 - cos(t))$$
.

- 2. Esboçe os gráficos das curvaturas das curvas do item anterior, que pode dizer das curvas a partir do gráfico da curvatura?
- 3. Determine a curvatura com sinal de:
 - (a) Folium de Descartes.
 - (b) Lemniscata de Bernoulli.
 - (c) Limação de Pascal.
- 4. Sejam γ uma curva parametrizada em \mathbb{R}^2 de classe C^2 e γ_d a curva offset de γ a distâcia d de γ . Se a curvatura com sinal de γ é k=k(t). Determine a curvatura com sinal de γ_d .
- 5. Seja γ uma curva parametrizada em \mathbb{R}^3 de classe C^2 , definimos e denotamos a curvatura de γ por:

$$k(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3}.$$

Determine a curvatura das seguintes curvas de \mathbb{R}^3 :

- (a) $\gamma(t) = (t^2, t^3, t)$.
- (b) $\gamma(t) = (t, t^3, t^2)$.
- (c) $\gamma(t) = (sen(t), cos(t), e^t)$.
- 6. É possível deducir da fórmula de curvatura em \mathbb{R}^2 a partir da fórmula de curvatura em \mathbb{R}^3 ?
- 7. Nas equações da epitrocóide: Se h=b a curva é chamada **epiciclóide**.
 - (a) Obtenha uma parametrização para esta curva.
 - (b) Esboce o traço desta curva para m = 16 e b = 2.
 - (c) Verifique que os laços degeneram a $\frac{m}{b}-1$ cúspides se $\frac{m}{b}\in\mathbb{Z}$. Se $a=2\,b$, a epitrocóide é chamada **nefróide**.
 - (d) Obtenha uma parametrização para esta curva.
 - (e) Esboce o traço desta curva para a=2.
 - (f) Determine o vetor tangente a esta curva e verifique se é regular. Se a=b a epitrocóide é chamada de **limaçon**.
 - (g) Obtenha uma parametrização para esta curva.
 - (h) Esboce o traço desta curva para a=3, h=8 e m=6.
 - (i) Determine os pontos múltiplos desta curva.