الجزء الأول: القياس في الكيمياء

1

1- تطور مجموعة خلال تحول كيميائى:

1-1- نشاط:

ننجز التركيب التجريبي جانبه حيث نملاً الأنبوب (أ) كليا بالماء قبل نكسه في الحوض فوق فوهة الأنبوب المعقوف . نضع قليلا من الزنك مع محلول حمض الكلوريدريك في الأنبوب (ب) قبل غلقه بسدادة يعبر ها الأنبوب المعقوف . وبعد امتلاء الأنبوب (أ) بالغاز نخرجه من الماء ونقرب اللهب من فوهته فنلاحظ حدوث فرقعة . ثم نأخذ قليلا من المحلول المحصل عليه في الأنبوب (ب) ، ونضيف إليه قطر ات من محلول هيدروكسيد الصوديوم فيتكون راسب أبيض . أ- حدد الأنواع الكيميائية الموجودة في الأنبوب (ب) قبل انطلاق التحول . تتكون المجموعة الكيميائية في الحالة البدئية من محلول حمض الكلوريدريك تتكون المجموعة الكيميائية في الحالة البدئية من محلول حمض الكلوريدريك $(H_{(aq)}^+ + Cl_{(aq)}^-)$

بُ- ما هو الغازُ الذي أبرزه حدوثُ الفرقعة عند تقريب اللهب؟

حدوث فرقعة عند تقريب اللهب مميز وجود غاز ثنائي الهيدروجين $H_{2(g)}$. + ما هو الأيون الذي تم إبرازه بإضافة محلول هيدروكسيد الصوديوم +

. $Zn^{2+}_{(aq)}$ على وجود الأيونات وكسيد الزنك يدل على وجود الأيونات المناب . $Zn^{2+}_{(aq)}$

د- ما هي الأنواع الكيميائية التي تحولت ؟

 $Zn^{2+}_{(aq)}$ و $H^+_{(aq)}$ إلى النواتج $H^+_{(aq)}$ و $H^+_{(aq)}$. $H^+_{(aq)}$ هـ ما هي الأنواع الكيميائية التي لم تشارك في التحول ؟

لم تشارك أيونات $cl_{(aq)}^{-1}$ في التحول لأنها أيونات غير نشيطة .

و- اكتب المعادلة الْكيميائية المقرونة بهذا التحول .

 $Zn_{(s)} + 2H^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_{2}_{(g)}$

1-2- التحولُ الكيميائي:

- انثاء تحول كيميائي ما ، تظهر أنواع كيميائية جديدة تسمى نواتج ، في حين تختفي أنواع كيميائية أخرى تسمى متفاعلات ، وذلك عند توفر ظروف معينة .
- ◄ تسمى مجموعة الأنواع الكيميائية المتكونة من المتفاعلات والنواتج والأنواع الكيميائية الأخرى التي لا تشارك (غير النشيطة) في التحول: مجموعة كيميائية.
 - 👃 توصف حالة مجموعة كيميائية بتحديد :
 - الطبيعة والحالة (صلب s سائل l غاز g مميه aq) وكميات المادة للأنواع الكيميائية المكونة للمجموعة .
 - درجة الحرارة T و الضغط P للمجموعة .
- + عند مزج مختلف الأنواع الكيميائية المكونة للمجموعة الكيميائية نقول إن المجموعة في الحالة البدئية ، فينطلق التحول الكيميائي باختفاء المتفاعلات وظهور النواتج ، فنقول إن المجموعة تتطور . وعند توقف تطور المجموعة ، نقول إن المجموعة في الحالة النهائية .
 - ♣ التحول الكيميائي هو مرور المجموعة الكيميائية من الحالة البدئية إلى الحالة النهائية .

1-3- التفاعل الكيميائي:

التفاعل الكيميائي هو نموذج وصفي للتحول الكيميائي ، ويتم التعبير عنه بكتابة رمزية تسمى المعادلة الكيميائية .

 $lpha A + eta B
ightarrow \gamma C + \delta D$: عامة ، تكتب المعادلة الكيميائية كالتالي : $eta A + eta B
ightarrow \gamma C + \delta D$ و eta B
ightarrow eta C الأنواع الكيميائية و الأعداد eta B
ightarrow eta C المعاملات التناسبية .

 $Zn_{(s)} + 2H_{(aq)}^+ o Zn_{(aq)}^{2+} + H_{2}_{(q)}$ يثال:

2- تطور كميات المادة للأنواع الكيميائية أثناء تحول كيميائي:

2_1_ تقدم التفاعل:

أثناء تحول ، تتناسب تغيرات كميات المادة للمتفاعلات والنواتج مع مقدار يسمى تقدم التفاعل ونرمز له بالحرف x ونعبر عنه بالوحدة mol . ثابتة التناسب هي معامل التناسب للمتفاعل أو النواتج .

$$Zn_{(s)}+2H_{(aq)}^+ o Zn_{(aq)}^{2+}+H_{2(g)}$$
 مثال : نعتبر التحول الكيميائي مثال الكيميائي

خلال التحول تستهلك x mol من x nol و x nol من x nol و تتكون x nol عن x nol و خلال التحول تستهلك x nol من x nol .

2-2- الجدول الوصفي للتفاعل:

لتتبع تطور كميات المادة للأنواع الكيميائية المتفاعلة و الناتجة ، نقوم بإنشاء جدول وصفي خاص بالتفاعل ، حيث يتم تحديد كمية المادة لكل نوع كيميائي بدلالة تقدم التفاعل x .

تصل المجموعة الكيميائية إلى حالتها النهائية بانقضاء كمية المادة لأحد المتفاعلات على الأقل ، ويسمى هذا المتفاعل المتفاعل المحد . ويأخذ تقدم التفاعل x قيمته القصوى التي تسمى التقدم الأقصى x_{max} .

αΑ	+ β B →	γC -	+ δD	معادلة التفاعل	
كميات المادة (mol)				تقدم التفاعل	حالة المجموعة
$n_i(A)$	$n_i(B)$	0	0	0	الحالة البدئية
$n_i(A) - \alpha x$	$n_i(B) - \beta x$	γx	δx	X	خلال التحول
$n_i(A) - \alpha x_{max}$	$n_i(B) - \beta x_{max}$	γx_{max}	δx_{max}	x_{max}	الحالة النهائية

مثال:

$Zn_{(s)} + 2H_{(aq)}^+ \rightarrow Zn_{(aq)}^{2+} + H_{2(g)}$				معادلة التفاعل	
كميات المادة (mol)				تقدم التفاعل	حالة المجموعة
2	2	0	0	0	الحالة البدئية
2-x	2 - 2x	x	x	X	خلال التحول
$2-x_{max}$	$2-2x_{max}$	x_{max}	x_{max}	x_{max}	الحالة النهائية

Page 2 الأستاذ : عزيز العطور

2

$$n_fig(Zn_{(s)}ig)=2-x_{max}ig(Zn_{(s)}ig)=0$$
 هو المتفاعل المحد فإن $z_{m(s)}$

$$x_{max}(\mathbf{Z}\mathbf{n}_{(s)}) = 2 \ mol$$
 أي

$$n_f(Zn_{(s)})=2-2x_{max}(Zn_{(s)})=0$$
 إذا كان $H^+_{(aq)}$ هو المتفاعل المحد فإن

$$x_{max}(H_{(aq)}^+) = \frac{2}{2} = 1 \, mol$$
 أي

بما أن $H^+_{(aq)}$ والتقدم الأقصى هو $x_{max}(H^+_{(aq)})^2 < x_{max}(Zn_{(s)})$ بما أن

 $. \quad x_{max} = 1 \ mol$

ملحوظة:

تمكن معرفة التقدم الأقصى من تحديد كميات المادة لكل المتفاعلات والنواتج في الحالة النهائية ، و هذا ما يسمى حصيلة المادة

فمثلاً: حصيلة المادة للتفاعل السابق هي تركيب الخليط عند الحالة النهائية.

$Zn_{(s)} + 2H_{(aq)}^+ \rightarrow Zn_{(aq)}^{2+} + H_{2(g)}$			معادلة التفاعل		
1 mol	0 mol	1 mol	1 mol	$x_{max} = 1mol$	حصيلة المادة

2-3- الخليط الستوكيومتري (التناسبي):

يكون الخليط استوكيومتريا إذا كانت كميات المادة البدئية للمتفاعلات متوفرة حسب المعاملات التناسبية للمتفاعلات في المائة النهائية .

بالنسبة للتفاعل التالي لتسمية الخليط lpha $A+eta B
ightarrow \gamma C+\delta D$ يجب تحقق الشرط التالي لتسمية الخليط استوكيو متريا $rac{n_i(A)}{a}=rac{n_i(B)}{a}$.

3-1- توقع الحجم النهائي لغاز:

نضع كتلة m=0.2g من مسحوق الزنك في أنبوب اختبار ثم نغلقه مباشرة $V=10 \mathrm{mL}$. $V=10 \mathrm{mL}$ بعد إضافة $V=10 \mathrm{mL}$ من حمض الكلوريدريك $V=10 \mathrm{mL}$ عند انتهاء التفاعل ، نسجل الحجم النهائي لغاز ثنائي الهيدروجين المتكون $V_f(H_2)=74 \mathrm{mL}$.

أ- أنشئ الجدول الوصفي لتطور التحول الكيميائي .

$$n_iig(Zn_{(s)}ig)=rac{m}{M(Zn_{(s)})}=rac{0.2}{65.4}=3.\,10^{-3}mol$$
 لينا

$$n_i(H_{(aq)}^+) = C.V = 2 \times 10.10^{-3} = 2.10^{-2} mol$$

$Zn_{(s)} + 2H_{(aq)}^+ \rightarrow Zn_{(aq)}^{2+} + H_{2(g)}$				معادلة التفاعل	
كميات المادة (mmol)				تقدم التفاعل	حالة المجموعة
3	20	0	0	0	الحالة البدئية
3-x	20 - 2x	x	x	X	خلال التحول
$3-x_{max}$	$20-2x_{max}$	x_{max}	x_{max}	x_{max}	الحالة النهائية

ب- حدد المتفاعل المحد و احسب التقدم الأقصى .

$$n_fig(Zn_{(s)}ig)=3-x_{max}ig(Zn_{(s)}ig)=0$$
 هو المتفاعل المحد فإن $Zn_{(s)}$

$$x_{max}(\mathbf{Z}\mathbf{n}_{(s)}) = 3 \; mmol$$
 أي

$$n_fig(Zn_{(s)}ig)=20-2x_{max}ig(Zn_{(s)}ig)=0$$
 إذا كان $H^+_{(aq)}$ هو المتفاعل المحد فإن

$$x_{max}(H_{(aq)}^+) = \frac{20}{2} = 10 \ mmol$$
 أي

بما أن $egin{aligned} Zn_{(s)} & Zn_{(s)}$

يمكن تحديد حجم غاز ، انطلاقا من حصيلة التفاعل ، بكميات المادة عند الحالة النهائية للمجموعة الكيميائية

2-3 توقع الضغط النهائي لغاز

نلاحظ أن القيمة المتوقعة توافق تقريبا القيمة التجريبية .

نضع كتلة V=1L من مسحوق الزنك في حوجلة حجمها V=1L ثم نغلقها مباشرة بعد إضافة V=20 من حمض الكلوريدريك V=20 من مباشرة بعد إضافة V=20 من حمض الكلوريدريك $\theta=20$ مع $\theta=20$ م عند انتهاء التفاعل ، ننتظر قليلا حتى تتعادل درجة الحرارة مع قيمتها البدئية ، ثم نسجل ضغط الغاز داخل الحوجلة $P_f=1360$. $P_f=1360$

قبل التفاعل ، يوجد الهواء داخل الحوجلة أي (الهواء) $P_i = P($. ويؤدي التفاعل بين الزنك وحمض الكلوريدريك إلى تكون غاز ثنائي الهيدر وجين فيصبح الضغط داخل الحوجلة هو (الهواء) $P = P(H_2) + P($. ب- احسب كمية المادة للمتفاعلات في الحالة البدئية .

 $n_iig(Zn_{(s)}ig)=rac{m}{M(Zn_{(s)})}=rac{1}{65,4}=1,5.\,10^{-2}mol$ لدينا

 $n_i(H_{(aq)}^+) = C.V' = 2 \times 20.10^{-3} = 4.10^{-2} mol$

ج- اعط حصيلة المادة للتفاعل الحاصل.

بما أن $Zn_{(s)}$ و التقدم الأقصى هو $x_{max}(Zn_{(s)}) < x_{max}(H_{(aq)}^+)$ و التقدم الأقصى هو $n_f(Zn) = 0 mol$: وبالتالي حصيلة المادة هي $n_f(Zn) = 0 mol$ و $n_f(H_2) = 0 ,015 mol$ و $n_f(H_1) = 0 ,011 mol$ د- احسب الضغط النهائي المتوقع باستعمال معادلة الحالة للغازات الكاملة . مع $P_f(H_2) = \frac{n_f(H_2)RT}{V} = \frac{0 ,015 \times 8 ,314 \times (20 + 273 ,15)}{1.10^{-3}} = 365 ,6 hPa$ إذن الضغط النهائي المتوقع داخل الحوجلة هو $P_f = P_f(H_2) + P(h_2) + P(h_2) = \frac{n_f(H_2) + P(h_2)}{V} = \frac{n_f(H_2) + P(h_2)}{V}$ نلاحظ أن القيمة المتوقعة تو افق تقريبا القيمة التجريبية .

يمكن تحديد ضغط غاز ، انطلاقا من حصيلة التفاعل ، بكميات المادة عند الحالة النهائية للمجموعة الكيميائية .

4 Page 4