Control Tema 2	Cognoms, Nom:
Tipus A	

Solucions

Qüestions: Bé: 1p, Mal: -0.25p Blanc: 0p

1. En el circuit de la figura, indique la tensió en el drenador del transistor quan la tensió en l'entrada fa que s'il.lumine el díode LED. El transistor funciona en commutació, entre tall i zona lineal.

Dades: $V_T=1V$, $K=1\text{mA}/V^2$, $R_D=0.5K\Omega$, $V_{LED}=1.7V$ Zona Ohmica $\rightarrow I_{DS}=2K$ ($V_{GS}-V_T$) V_{DS} $V_1=0V \rightarrow V_{GS} \times V_T \rightarrow Tall \rightarrow L \in D \text{ apagat}$ $[A] 10V \qquad V_1=10V \rightarrow V_{GS} \times V_T \rightarrow liveal \qquad 10V$ $[B] 0.37V \qquad OV \qquad V_1=10V \rightarrow V_1=10V \rightarrow V_2=10V \rightarrow liveal \qquad 10V$ $[C] 8.3V \qquad Ren = \frac{1}{2K(V_{GS}-V_T)} \qquad 0V \qquad V_1=10V \rightarrow V_2=10V \rightarrow V_3=10V \rightarrow V_3=$

2. Indique el punt de treball del transistor MOSFET de la figura quan Vent =3V

- 3. ¿Quina de les següents afirmacions sobre el transistor MOSFET d'acumulació de canal N és FALSA?
- [A] La Font i el Drenador són zones semiconductors altament dopades de tipus N, mentre que el Substrat és de tipus P.
- [B] La Porta està unida a una capa molt fina d'aïllant, el que justifica que el corrent per dit terminal es considere nul $(I_G = 0)$.
- [C] En un transistor MOSFET que es trobe en conducció (I_{DS}>0), si algun dels terminals del transistor està connectat al Substrat sabrem que es tracta del Drenador.
 - [D] En un transistor MOSFET que es trobe en conducció (I_{DS}>0), depenent de la zona de funcionament, el dispositiu pot comportar-se com una resistència (zona lineal/òhmica) ò com una font de corrent (saturació).

El defendor mera es connecta al rubitrat

La font fi que es connecta

Exemple: porta NOT

Ve l'a substrat

S

4. ¿Quin dels següents transistors funciona en saturació? Suposeu per a tots ells:

 $K = 0.25 \text{ mA/V}^2$, |VT| = 1 V:

[A] NMOS:
$$V_{DS} = 5 \text{ V}$$
, $V_{GS} = 0 \text{ V} \rightarrow \text{Tall}$, $V_{GS} \angle V_T$
[B] PMOS: $V_{DS} = -1 \text{ V}$, $V_{GS} = -3 \text{ V} \rightarrow \text{VDS} \angle V_{GS} + V_T \rightarrow \text{VOS}$
[C] PMOS: $V_{DS} = -4 \text{ V}$, $V_{GS} = -4 \text{ V} \rightarrow \text{VDS} \angle V_{GS} + V_T \rightarrow \text{SI}$
[D] NMOS: $V_{DS} = 5 \text{ V}$, $V_{GS} = 7 \text{ V} \rightarrow \text{VDS} \rightarrow V_{GS} - V_T \rightarrow \text{NO}$

- 5. La següent porta es una:
 - [A] NOR NMOS
 - [B] NAND bipolar
 - [C] NAND NMOS
 - [D] NAND CMOS

6. Per controlar el funcionament d'un motor per part d'un circuit lògic, es dissenya el següent esquema. El motor funciona amb 18V i 60mA.

Voure solució antique B

Indique la resposta CORRECTA:

- [A] El motor funciona quan F = '0' lògic.
- [B] Quan F='1', el transistor Mosfet condueix amb una Ron = 33Ω .
 - [C] La potencia dissipada pel Mosfet (P = VDS x IDS) es 1200mW.
- [D] Quan F='1', el transistor Mosfet condueix amb una Ron = 100Ω .

7. Sabent que la tensió d'entrada (V _{IN}) és de 10 V per als 2 transistors, indique quina de les següents afirmacions és FALSA .
Nota: En zona òhmica utilitze l'expressió I_{DS} = 2K(V_{GS} – V_T) V_{DS} , i en zona de saturació I_{DS} = K(V_{GS} – V_T) 2 .
[A] Es tracta d'una porta NOR NMOS.
[B] Ambdos transistors estan tallats, llavors $V_{OUT} \approx 10V$. $K = 0.5 \text{ mA/V}^2$ $V_T = 2V$
[C] Ambos transistors condueixen en zona lineal, i $V_{OUT} \approx 0.025 \text{ V}$. VIN Q1 VIN Q2 Q2
[D] El corrent en les entrades es 0.
Voure sausio en tipus B
RESPOSTES:
A B C D 1
2
3
4
5
6
7
NOTA:

Qüestions: Bé: 1p, Mal: -0.25p Blanc: 0p

- 1. ¿Quina de les següents afirmacions sobre el transistor Mosfet d'acumulació de canal N és FALSA?
- El seu nom és l'acrònim de Metal-Oxide-Semiconductor Field Effect Transistor. [A]
- En un NMOS, és suficient posar una tensió V_{GS} > V_T per a què circule corrent [B] des del drenador fins la font.
 - En la zona lineal, amb V_{DS} petites, es comporta com una resistència variable, el valor de la qual depén de V_{GS}
 - Una vegada creat el canal amb V_{GS} > V_T , al augmentar la V_{DS} augmenta la I_{DS} fins que s'arriba al corrent de saturació, que es mantindrà aproximadament constant encara que cresca V_{DS}.

Per a gue atule corrent, a més de Vas>VT, cal que Vos>0

El circuit de la figura utilitza un transistor MOSFET. Indique quina de les afirmacions següents és correcta, si l'entrada V₁ la connectem al drenador de M₁:

- [A] El Mosfet està en tall sempre, donat que no circula corrent per la porta.
- [B] El Mosfet està en saturació, perquè $\forall_{DS} = \bigvee_{GS}$.
- [C] El Mosfet està en Zona Òhmica.
- [D] L'estat del transistor dependrà del valor de

3. ¿Quin dels següents transistors funciona en saturació? Suposeu per a tots ells:

 $K = 0.25 \text{ mA/V}^2$, |VT| = 1 V:

- [A] NMOS: $V_{DS} = 5 \text{ V}$, $V_{GS} = 0 \text{ V}$ \rightarrow $V_{DS} > V_{GS} V_{T} \rightarrow 5 > 0 1 \rightarrow 5$?

 [B] PMOS: $V_{DS} = -1 \text{ V}$, $V_{GS} = -3 \text{ V} \rightarrow$ $V_{DS} < V_{GS} + V_{T} \rightarrow -1 < -3 + 1 \rightarrow No$ [C] PMOS: $V_{DS} = -4 \text{ V}$, $V_{GS} = -4 \text{ V} \rightarrow$ $V_{DS} < V_{GS} + V_{T} \rightarrow -4 < -4 + 1 \rightarrow 1$ [D] NMOS: $V_{DS} = 5 \text{ V}$, $V_{GS} = 7 \text{ V} \rightarrow$ $V_{DS} > V_{GS} + V_{T} \rightarrow 5 > 7 1 \rightarrow No$

PERO COM VGS < VT, ESTA TALIFIT

[A]
$$VGS = 2.5 \text{ V}$$
, $VDS = 5 \text{ V}$, $I_{DS} = 1 \text{ mA}$.

[B]
$$V_{GS} = 2.5 \text{ V}, V_{DS} = 4.4 \text{ V}, I_{DS} = 0.56 \text{ mA}.$$

[C]
$$V_{GS} = 5 \text{ V}, V_{DS} = 4.5 \text{ V}, I_{DS} = 1.5$$

[D]
$$V_{GS} = 1 \text{ V}, V_{DS} = 10 \text{ V}, I_{DS} = 0$$

Supojem saturació: IDS = K(VGS-V+) = Saturació: $\frac{20.5}{2.5-1}$ = $\frac{10-(10\times0.56)}{2.5-1}$ = $\frac{4.4V}{2.5-1}$ = $\frac{$

150K ≥

quina de les següents afirmacions és CERTA.

Nota: En zona òhmica utilitze l'expressió $I_{DS} = 2K(V_{GS} - V_T) V_{DS}$, i en zona de saturació $I_{DS} = K(V_{GS} - V_T)^2$.

- [A] Ambdos transistors estan tallats, llavors $V_{OUT} \approx 10V$.
- [B] Ambos transistors condueixen en zona lineal, i $V_{OUT} \approx 0.025 \text{ V}$.
 - [C] Ambos transistors condueixen en zona lineal, i V_{OUT} ≈ 0.5 V.

+10 V

10K

V₆₅ > V_T → on . Al ser un utunit dizital, conducixen en zona liheal (Ron)
Es una NOS *

6. La següent porta es una:

7. Per controlar el funcionament d'un motor per part d'un circuit lògic, es dissenya el següent esquema. El motor funciona amb 18V i 60mA.

- [A] El motor funciona quan F = '1' lògic.
- [B] Quan F='0', el transistor Mosfet està tallat i el motor parat.
- [C] La potencia dissipada pel Mosfet (P = VDS x IDS) es 120mW.
- D Quan F='1', el transistor Mosfet condueix amb una Ron = 100Ω .

RESPOSTES:

A	В	C	D
	X		
	\times		
		\times	
	X		
	X		
	X		
			X

