

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE R&D SAR EVALUATION

Mojoose Inc.

Dates of Test: Oct. 31 – Nov. 2 & Nov. 9, 2016

65 Enterprise

Test Report Number: R&D.20161102

Revision B

FCC ID: 2AFV8-CAMJPI6B1001

Model(s): MJ-i7-I1001 with iPhone 7 (FCC ID: BCG-E3085A)

Test Sample: Engineering Unit Same as Production Equipment Type: mJoose 3-in-1 Smartphone Case

Classification: Portable Transmitter Next to Head and Body

TX Frequency Range: 777 – 787 MHz; 824 – 849 MHz; 1710 – 1755 MHz; 1850 – 1910 MHz

Frequency Tolerance: ± 2.5 ppm
Maximum RF Output: Not Measured

Signal Modulation: QPSK, WCDMA, GMSK, CDMA

Antenna Type: Internal
Application Type: Evaluation
FCC Rule Parts: Part 2, 22, 24, 27

KDB Test Methodology: KDB 447498 D01 v06, KDB 648474 D01 v01r05, KDB 941225 D01 v03r01 & D05 v02r01

Max. Stand Alone SAR Value: 2.39 W/kg Measured Separation Distance: 0 mm Head; 5 mm Body

This wireless mobile and/or portable device has been tested for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in EN 62311:2008 and had been tested in accordance with the measurement procedures specified in IEC 62209-2:2010 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Jay M. Moulton Vice President

Table of Contents

1. Introduction	3
SAR Definition [5]	
2. SAR Measurement Setup	
Robotic System	5
System Hardware	
System Electronics	6
Probe Measurement System	
3. Probe and Dipole Calibration	13
4. Phantom & Simulating Tissue Specifications	14
Head & Body Simulating Mixture Characterization	
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	15
6. Measurement Uncertainty	16
7. System Validation	17
Tissue Verification	17
Test System Verification	17
8. SAR Test Data Summary	18
Procedures Used To Establish Test Signal	18
Device Test Condition	
9. FCC 3G Measurement Procedures	
10.1 Procedures Used to Establish RF Signal for SAR	19
9.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA	
10. FCC 3G Measurement Procedures	20
10.1 Procedures Used to Establish RF Signal for SAR	20
10.2 SAR Measurement Conditions for CDMA2000, 1xEV-DO	20
SAR Data Summary – 750/850 MHz	
SAR Data Summary – 1750/1900 MHz	
10. Test Equipment List	24
11. Conclusion	25
12. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	106

1. Introduction

This measurement report shows the result of the Mojoose Inc. Model iPhone 7 FCC ID 2AFV8-CAMJPI6B1001 with Repeater Case with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Mojoose Inc. Model iPhone 7 with Repeater Case and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], and IEC 62209 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures[5] were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure 2.1 SAR Measurement System Setup

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

Probe Specifications

Calibration: In air from 10 MHz to 6.0 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz,

5600 MHz, 5800 MHz

Frequency: 10 MHz to 6 GHz

Linearity: ±0.2dB (30 MHz to 6 GHz)

Dynamic: 10 mW/kg to 100 W/kg

Range: Linearity: ±0.2dB

Dimensions: Overall length: 330 mm

Tip length: 20 mm

Body diameter: 12 mm

Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of wireless device

Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{\left| E \right|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds), σ = simulated tissue conductivity,

C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue)

 ΔT = temperature increase due to RF exposure.

SAR is proportional to ΔT / Δt , the initial rate of tissue heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

Figure 2.4 E-Field and Temperature Measurements at 900MHz

Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i = \text{compensated signal of channel i}$$
 $(i=x,y,z)$ $U_i = \text{input signal of channel i}$ $(i=x,y,z)$ $U_i = \text{input signal of channel i}$ $(i=x,y,z)$ $C_i = \text{crest factor of exciting field}$ $C_i = C_i = C_i$ $C_i = C_$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{proc} = \frac{E_{tot}^2}{3770}$$
 with $P_{proc} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y-dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges					
Frequency range	Grid spacing				
≤ 2 GHz	≤ 15 mm				
2 – 4 GHz	≤ 12 mm				
4 – 6 GHz	≤ 10 mm				

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges						
Frequency range	Grid spacing	Grid spacing	Minimum zoom			
riequency range	for x, y axis	for z axis	scan volume			
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm			
2 – 3 GHz	≤ 5 mm	≤ 5 mm	≥ 28 mm			
3 – 4 GHz	≤ 5 mm	≤ 4 mm	≥ 28 mm			
4 – 5 GHz	≤ 4 mm	≤ 3 mm	≥ 25 mm			
5 – 6 GHz	≤ 4 mm	≤ 2 mm	≥ 22 mm			

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on Efield probes.

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom: SAM Twin Phantom (V4.0)

Shell Material: Vivac Composite **Thickness:** 2.0 ± 0.2 mm

Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. Probe and Dipole Calibration

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in IEEE1528 – 2013 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 4.1 Typical Composition of Ingredients for Tissue

Ingredients		Simulating Tissue					
		850 MHz Head	850 MHz Body	1900 MHz Head	1900 MHz Body		
Mixing Percentage							
Water		40.92	52.50	54.88	69.91		
Sugar		56.65	6.65 45.00 0.00		0.00		
Salt		1.49	1.40	0.21	0.13		
HEC	HEC		1.00	0.00	0.00		
Bactericide		0.10	0.10	0.00	0.00		
DGBE		0.00	0.00	44.91	29.96		
Dielectric Constant	Target	41.50	55.20	40.00	53.30		
Conductivity (S/m)	Target	0.91	0.97	1.40	1.52		

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required.

7. System Validation

Tissue Verification

Table 7.1 Measured Tissue Parameters

		835 MHz Head		1750 MHz Head		1900 MHz Head	
Date(s)		Nov	. 1, 2016	Nov.	Nov. 1, 2016		31, 2016
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		41.50 41.40		40.08	40.01	40.00	39.56
Conductivity: σ		0.91	0.93	1.37	1.39	1.40	1.44
		835 MHz Body		1750 MHz Body		1900 MHz Body	
Date(s)		Nov	. 2, 2016	Nov. 1, 2016		Oct. 31, 2016	
Liquid Temperature (°C)	20.0	Target Measured		Target	Measured	Target	Measured
Dielectric Constant: ε		55.20 54.93		53.43	53.32	53.30	52.07
Conductivity: σ		0.97 0.99		1.49 1.52		1.52	1.47

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 7.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)	Plot Number
01-Nov-2016	835 MHz	9.23	9.27	Head	+ 0.43	1
02-Nov-2016	835 MHz	9.28	9.51	Body	+ 2.48	2
01-Nov-2016	1750 MHz	36.80	38.50	Head	+ 4.62	3
01-Nov-2016	1750 MHz	37.70	37.50	Body	- 0.53	4
31-Oct-2016	1900 MHz	41.50	41.70	Head	+ 0.48	5
31-Oct-2016	1900 MHz	40.40	40.20	Body	- 0.50	6

See Appendix A for data plots.

Figure 7.1 Dipole Validation Test Setup

8. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

All testing was conducted based on the test plan submitted by the client.

9. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

10.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

9.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA

Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band.

For Rel99

- Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC).
- Set and send continuously Up power control commands to the device
- Measure the power at the device antenna connector using the power meter with average detector.

For HSDPA Rel 6

- Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP.
- Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below.
- Send continuously Up power control commands to the device
- Measure the power at the device antenna connector using the power meter with modulated average detector.
- Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below.

For HSUPA Rel 6

- Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5 10ms.
- Set the Absolute Grant for HSUPA Subtest1 according to Table below.
- Set the device power to be at least 5dB lower than the Maximum output power
- Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported.
- Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Then confirm that the E-TFCI transmitted by the UE is equal to the target E-TFCI in Table below.
- Measure the power using the power meter with modulated average detector.

10. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

10.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

10.2 SAR Measurement Conditions for CDMA2000, 1xEV-DO

10.2.1 Output Power Verification 1xRTT

Use CDMA2000 Rev 6 protocol in the call box.

- 1) Test for RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3, 4 and 5.
 - a. Set up a call using Supplemental Channel Test Mode 3 (RC 3, SO 32) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
 - b. As per C.S0011 or TIA/EIA-98-F Table 4.4.5.2-2, set the test parameters.
 - c. Send alternating '0' and '1' power control bit to the device
 - d. Determine the active channel configuration. If the desired channel configuration is not the active channel configuration, increase Îor by 1 dB and repeat the verification. Repeat this step until the desired channel configuration becomes active.
 - e. Measure the output power at the device antenna connector.
 - f. Decrease Îor by 0.5 dB.
 - g. Determine the active channel configuration. If the active channel configuration is the desired channel configuration, measure the output power at the device antenna connector.
 - h. Repeat step f and g until the output power no longer increases or the desired channel configuration is no longer active. Record the highest output power achieved with the desired channel configuration active.
 - Repeat step a through h ten times and average the result.

10.2.2 Output Power Verification 1xEvDo

- 1) Use 1xEV-DO Rel 0 protocol in the call box 8960.
 - a. FTAP
 - Select Test Application Protocol to FTAP
 - Set FTAP Rate to 307.2 kbps (2 Slot, QPSK)
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots
 - Set Îor to -60 dBm/1.23 MHz
 - Send continuously '0' power control bits
 - Measure the power at device antenna connector
 - b. RTAP
 - Select Test Application Protocol to RTAP
 - Set RTAP Rate to 9.6 kbps
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots

- Set Îor to -60 dBm/1.23 MHz
- Send continuously '0' power control bits
- Measure the power at device antenna connector
- Repeat above steps for RTAP Rate = 19.2 kbps, 38.4 kbps, 76.8 kbps and 153.6 kbps respectively
- 2) Use 1xEV-DO Rev A protocol in the call box 8960
 - a. FETAP
 - Select Test Application Protocol to FETAP
 - Set FETAP Rate to 307.2 kbps (2 Slot, QPSK)
 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots
 - Set Îor to -60 dBm/1.23 MHz
 - Send continuously '0' power control bits
 - Measure the power at device antenna connector

b. RETAP

- Select Test Application Protocol to RETAP
- F-Traffic Format -> 4 (1024, 2, 128) Canonical (307.2k, QPSK) Set R-Data Pkt Size to 128
- Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots -> ACK R-Data After -> Subpacket 0 (All ACK)
- Set Îor to -60 dBm/1.23 MHz
- Send continuously '0' power control bits
- Measure the power at device antenna connector
- Repeat above steps for R-Data Pkt Size = 256, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288 respectively.

SAR Data Summary – 750/850 MHz

MEASUREMENT RESULTS

Con	Plot	Frequ	ency	Modulation	Position	Power	RMC/RB	Test Setup/	Measured SAR	Scaled SAR
Gap	Piot	MHz	Ch.	Wiodulation	Position	[dBm]	KIVIC/KD	Offset	(W/kg)	(W/kg)
	1	836.6	4183	WCDMA	Left Touch	21.80	12.2 kbps	Test Loop 1	0.281	0.59
0 mm		836.6	4183	WCDMA	Left Touch with Case	21.80	12.2 kbps	Test Loop 1	0.072	0.15
	2	836.6	4183	WCDMA	Front Body	21.80	12.2 kbps	Test Loop 1	0.387	0.81
5 mm		836.6	4183	WCDMA	Front Body with Case	21.80	12.2 kbps	Test Loop 1	0.333	0.70
	3	782.0	23230	LTE	Right Touch	22.60	1	24	0.181	0.28
0 mm		782.0	23230	LTE	Right Touch with Case	22.60	1	24	0.085	0.13
	4	782.0	23230	LTE	Front Body	22.60	1	24	0.360	0.56
5 mm		782.0	23230	LTE	Front Body with Case	22.60	1	24	0.260	0.40
	5	836.6	190	GPRS	Left Touch	30.40	1 Slot	5	0.319	0.52
0 mm		836.6	190	GPRS	Left Touch with Case	30.40	1 Slot	5	0.318	0.52
	6	836.6	190	GPRS	Front Body	30.40	1 Slot	5	0.570	0.92
5 mm		836.6	190	GPRS	Front Body with Case	30.40	1 Slot	5	0.385	0.62
	7	836.6	384	CDMA	Left Touch	23.30	TDSO	SO32 RC3	0.265	0.39
0 mm		836.6	384	CDMA	Left Touch with Case	23.30	TDSO	SO32 RC3	0.068	0.10
	8	836.6	384	CDMA	Front Body	23.30	TDSO	SO32 RC3	0.376	0.56
5 mm		836.6	384	CDMA	Front Body with Case	23.30	TDSO	SO32 RC3	0.349	0.52

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for	all tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code	⊠Base Station S	Simulator
4.	Test Configuration	With Belt Clip	Without Belt	Clip N/A

5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary – 1750/1900 MHz

MEASUREMENT RESULTS

0	Dist	Frequency		Manufacture	Power	DMO/DD	Test Setup/	Measured	Scaled	
Gap	Plot	MHz	Ch.	Modulation	Position	[dBm]	RMC/RB	Offset	SAR (W/kg)	SAR (W/kg)
	9	1880	9400	WCDMA	Right Touch	24.90	12.2 kbps	Test Loop 1	0.939	1.01
0 mm		1880	9400	WCDMA	Right Touch with Case	24.90	12.2 kbps	Test Loop 1	0.624	0.67
	10	1880	9400	WCDMA	Front Body	24.90	12.2 kbps	Test Loop 1	2.39	0.69
5 mm		1880	9400	WCDMA	Front Body with Case	24.90	12.2 kbps	Test Loop 1	1.71	0.49
	11	1745	20300	LTE	Right Touch	22.30	1	49	0.541	0.90
0 mm		1745	20300	LTE	Right Touch with Case	22.30	1	49	0.390	0.65
	12	1745	20300	LTE	Front Body	22.30	1	49	1.53	0.84
5 mm		1745	20300	LTE	Front Body with Case	22.30	1	49	1.33	0.73
	13	1880	661	GPRS	Right Touch	26.80	1 Slot	0	0.318	0.59
0 mm		1880	661	GPRS	Right Touch with Case	26.80	1 Slot	0	0.209	0.39
	14	1909.8	810	GPRS	Front Body	26.80	1 Slot	0	1.26	0.93
5 mm		1909.8	810	GPRS	Front Body with Case	26.80	1 Slot	0	0.99	0.73
	15	1908.8	1175	CDMA	Right Touch	23.40	TDSO	SO32 RC3	0.537	0.78
0 mm		1908.8	1175	CDMA	Right Touch with Case	23.40	TDSO	SO32 RC3	0.527	0.76
	16	1908.8	1175	CDMA	Front Body	20.70	TDSO	SO32 RC3	1.39	1.05
5 mm		1908.8	1175	CDMA	Front Body with Case	20.70	TDSO	SO32 RC3	1.36	1.03

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	an tests.			
	Power Measured		☐ERP	☐EIRP	
2.	SAR Measurement				
	Phantom Configuration	Left Head	⊠Eli4	Right Head	
	SAR Configuration	Head	\boxtimes Body		
3.	Test Signal Call Mode	Test Code	⊠Base Station Simulator		
4.	Test Configuration	☐With Belt Clip	Without Belt Cli	p N/A	

5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

10. Test Equipment List

Table 10.1 Equipment Specifications

Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
Twin SAM Phantom	N/A	N/A	1554
ELI4 Flat Phantom	N/A	N/A	1251
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	01/14/2017	01/14/2016	1321
SPEAG E-Field Probe EX3DV4	01/27/2017	01/27/2016	3833
Speag Validation Dipole D835V2	08/10/2017	08/10/2015	4d131
Speag Validation Dipole D1750V2	08/13/2017	08/13/2015	1061
Speag Validation Dipole D1900V2	08/13/2017	08/13/2015	5d147
Agilent N1911A Power Meter	05/20/2017	05/20/2015	GB45100254
Agilent N1922A Power Sensor	06/25/2017	06/25/2015	MY45240464
Advantest R3261A Spectrum Analyzer	03/26/2017	03/26/2015	31720068
Agilent (HP) 8350B Signal Generator	03/26/2017	03/26/2015	2749A10226
Agilent (HP) 83525A RF Plug-In	03/26/2017	03/26/2015	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/26/2017	03/26/2015	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/26/2017	03/26/2015	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/31/2017	03/31/2015	MY48360364
Anritsu MT8820C	07/28/2017	07/28/2015	6201176199
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184
MiniCircuits BW-N20W5+ Fixed 20 dB	N/A	N/A	N/A
Attenuator			
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Head Equivalent Matter (835 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A
Head Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Head Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A

11. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ISED. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

12. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.
- [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.
- [6] ISED, RSS 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

```
Test Result for UIM Dielectric Parameter
 Tue 01/Nov/2016
 Freq Frequency(GHz)
 FCC_eH Limits for Head Epsilon
 FCC_sH Limits for Head Sigma
 Test_e Epsilon of UIM
 Test_s Sigma of UIM
 *****************
Freq FCC_eH FCC_sH Test_e Test_s 0.7750 41.82 0.90 41.71 0.89 0.7820 41.776 0.90 41.661 0.89* 0.7850 41.71 0.90 41.64 0.89 0.7950 41.71 0.90 41.59 0.90 0.8050 41.66 0.90 41.53 0.90 0.8150 41.60 0.90 41.48 0.91 0.8250 41.55 0.90 41.44 0.92 0.8350 41.50 0.90 41.40 0.93 0.8365 41.50 0.902 41.396 0.932* 0.8366 41.50 0.902 41.395 0.932* 0.8450 41.50 0.91 41.37 0.94 0.8550 41.50 0.92 41.35 0.95 0.8650 41.50 0.93 41.33 0.96
Freq FCC_eH FCC_sH Test_e Test_s
 * value interpolated
 ******************
 Test Result for UIM Dielectric Parameter
 Wed 02/Nov/2016
 Freq Frequency(GHz)
 FCC_eH Limits for Head Epsilon
FCC_sH Limits for Head Sigma
 FCC_eB Limits for Body Epsilon
 FCC_sB Limits for Body Sigma
 Test_e Epsilon of UIM
 Test_s Sigma of UIM
 ***************
 Freq FCC_eB FCC_sB Test_e Test_s
55.196 0.972 54.924 0.992*
 0.8365

      0.8366
      55.195 0.972
      54.924 0.992*

      0.8450
      55.17 0.98
      54.89 1.00

      0.8550
      55.14 0.99
      54.86 1.02

      0.8650
      55.11 1.01 54.83 1.03
```

* value interpolated

^{© 2016} RF Exposure Lab, LLC

*************** Test Result for UIM Dielectric Parameter Tue 01/Nov/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************* FCC_eH FCC_sH Test_e Test_s 40.14 1.35 40.11 1.36 40.13 1.35 40.09 1.36 1.7100 1.7200 1.7300 40.11 1.36 40.06 1.37 40.09 1.37 40.03 1.38 1.7400

 1.7450
 40.085 1.37
 40.02 1.38

 1.7500
 40.08 1.37 40.01 1.39

 1.7600
 40.06 1.38 39.98 1.40

 40.085 1.37 40.02 1.385* * value interpolated **************** Test Result for UIM Dielectric Parameter Tue 01/Nov/2016 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************** Freq FCC_eB FCC_sB Test_e Test_s
1.7100 53.53 1.47 53.55 1.48
1.7200 53.51 1.47 53.52 1.49
1.7300 53.48 1.48 53.38 1.50
1.7400 53.46 1.48 53.36 1.51
1.7450 53.445 1.485 53.34 1.515*
1.7500 53.43 1.49 53.32 1.52
1.7600 53.41 1.49 53.30 1.53
1.7700 53.38 1.50 53.27 1.55
1.7800 53.35 1.51 53.23 1.55

^{*} value interpolated


```
***************
Test Result for UIM Dielectric Parameter
Mon 31/Oct/2016
Freq Frequency(GHz)
FCC_eH Limits for Head Epsilon
FCC_sH Limits for Head Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*************
          FCC_eH FCC_sH Test_e Test_s
40.00 1.40 39.62 1.41
40.00 1.40 39.59 1.42
40.00 1.40 39.58 1.43
Freq
1.8700
1.8800
1.8900
            40.00 1.40 39.56 1.44
1.9000
           40.00 1.40 39.542 1.44*
40.00 1.40 39.54 1.44*
1.9088
1.9098

      1.9100
      40.00
      1.40
      39.54
      1.44

      1.9200
      40.00
      1.40
      39.52
      1.45

      1.9300
      40.00
      1.40
      38.49
      1.46

* value interpolated
*****************
Test Result for UIM Dielectric Parameter
Mon 31/Oct/2016
Freq Frequency(GHz)
FCC_eH Limits for Head Epsilon
FCC_sH Limits for Head Sigma
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test e Epsilon of UIM
Test_s Sigma of UIM
************
Freq FCC_eB FCC_sB Test_e Test_s
```

^{*} value interpolated

RF Exposure Lab

Plot 1

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_{r} = 41.4$; $\rho = 1000 \text{ kg/m}^{3}$

Phantom section: Flat Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833: ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016:

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

835 MHz Verification/Head/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.973 W/kg

835 MHz Verification/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.385 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.432 mW/g

SAR(1 g) = 0.927 mW/g; SAR(10 g) = 0.605 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.25 W/kg

RF Exposure Lab

Plot 2

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_f = 54.93$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833: ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016:

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

835 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 W/kg

835 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.468 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.625 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.20 W/kg

RF Exposure Lab

Plot 3

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.39 \text{ S/m}$; $\epsilon_r = 40.01$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.62, 7.62, 7.62); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.89 W/kg

SAR(1 g) = 3.85 W/kg; SAR(10 g) = 2.03 W/kg Maximum value of SAR (measured) = 5.49 W/kg

RF Exposure Lab

Plot 4

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.52 \text{ S/m}$; $\epsilon_r = 53.32$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.89 W/kg

SAR(1 g) = 3.75 W/kg; SAR(10 g) = 2.03 W/kg Maximum value of SAR (measured) = 5.49 W/kg

RF Exposure Lab

Plot 5

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: 5d147

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ε_f = 39.56; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1900 MHz Verification/Head/Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.56 W/kg

1900 MHz Verification/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.385 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 7.437 mW/g

SAR(1 g) = 4.17 mW/g; SAR(10 g) = 2.19 mW/g Maximum value of SAR (measured) = 6.14 W/kg

RF Exposure Lab

Plot 6

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\epsilon_r = 52.07$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833: ConvF(7.13, 7.13, 7.13): Calibrated: 1/27/2016:

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.63 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.612 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 6.68 W/kg

SAR(1 g) = 4.02 W/kg; SAR(10 g) = 1.92 W/kg Maximum value of SAR (measured) = 5.63 W/kg

Appendix B – SAR Test Data Plots

RF Exposure Lab

Plot 1

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.932 \text{ S/m}$; $\epsilon_r = 41.395$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

WCDMA 850 Head/Left 850 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.267 W/kg

WCDMA 850 Head/Left 850 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.334 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.221 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.293 W/kg

RF Exposure Lab

Plot 2

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.992 \text{ S/m}$; $\epsilon_r = 54.924$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

WCDMA 850 Body/Front 850 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.410 W/kg

WCDMA 850 Body/Front 850 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 20.27 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.472 W/kg

SAR(1 g) = 0.387 W/kg; SAR(10 g) = 0.311 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.403 W/kg

RF Exposure Lab

Plot 3

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 782 MHz; σ = 0.89 S/m; ϵ_r = 41.661; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.23, 9.23, 9.23); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

LTE 750 Head/Right 750 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.188 W/kg

LTE 750 Head/Right 750 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.260 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.213 W/kg

SAR(1 g) = 0.181 W/kg; SAR(10 g) = 0.145 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.185 W/kg

RF Exposure Lab

Plot 4

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (extrapolated): f = 782 MHz; $\sigma = 0.957 \text{ S/m}$; $\epsilon_r = 55.162$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(9.06, 9.06, 9.06); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

LTE 750 Body/Front 750 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Extrapolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.371 W/kg

LTE 750 Body/Front 750 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.70 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.621 W/kg

SAR(1 g) = 0.360 W/kg; SAR(10 g) = 0.210 W/kg

Info: Extrapolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.395 W/kg

RF Exposure Lab

Plot 5

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: GPRS 2-Slot (GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:4.00037

Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.932 \text{ S/m}$; $\epsilon_r = 41.395$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

GSM 850 Head/Left 850 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.301 W/kg

GSM 850 Head/Left 850 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.423 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.319 W/kg; SAR(10 g) = 0.250 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.332 W/kg

RF Exposure Lab

Plot 6

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: GSM (GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.992 \text{ S/m}$; $\epsilon_r = 54.924$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

GSM 850 Body/Front 850 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.514 W/kg

GSM 850 Body/Front 850 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.61 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.322 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.635 W/kg

RF Exposure Lab

Plot 7

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: CDMA2000 (1xRTT); Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.932 S/m; ϵ_r = 41.396; ρ = 1000 kg/m³

Phantom section: Left Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.72, 8.72, 8.72); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

CDMA 850 Head/Left 850 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.248 W/kg

CDMA 850 Head/Left 850 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.291 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.322 W/kg

SAR(1 g) = 0.265 W/kg; SAR(10 g) = 0.208 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.276 W/kg

RF Exposure Lab

Plot 8

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: CDMA2000 (1xRTT); Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.992$ S/m; $\epsilon_r = 54.924$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 11/2/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(8.73, 8.73, 8.73); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

CDMA 850 Body/Front 850 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.386 W/kg

CDMA 850 Body/Front 850 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.79 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.480 W/kg

SAR(1 g) = 0.376 W/kg; SAR(10 g) = 0.301 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.390 W/kg

RF Exposure Lab

Plot 9

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1880 MHz; σ = 1.42 S/m; ϵ_r = 39.59; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

WCDMA 1900 Head/Right 1900 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.934 W/kg

WCDMA 1900 Head/Right 1900 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 6.216 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.939 W/kg; SAR(10 g) = 0.593 W/kg Maximum value of SAR (measured) = 1.02 W/kg

RF Exposure Lab

Plot 10

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: UMTS (WCDMA); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

WCDMA 1900 Body/Front 1900 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.49 W/kg

WCDMA 1900 Body/Front 1900 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 13.18 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 4.86 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.16 W/kg Maximum value of SAR (measured) = 2.80 W/kg

RF Exposure Lab

Plot 11

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.385$ S/m; $\varepsilon_r = 40.02$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.62, 7.62, 7.62); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

LTE 1750 Head/Right 1750 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.408 W/kg

LTE 1750 Head/Right 1750 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.415 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.541 W/kg; SAR(10 g) = 0.366 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.580 W/kg

RF Exposure Lab

Plot 12

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.515$ S/m; $\epsilon_r = 53.34$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 11/1/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

LTE 1750 Body/Front 1750 With Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.51 W/kg

LTE 1750 Body/Front 1750 With Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 9.863 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 1.53 W/kg; SAR(10 g) = 0.789 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.48 W/kg

RF Exposure Lab

Plot 13

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: GSM (GMSK); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium: HSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.42 \text{ S/m}$; $\epsilon_r = 39.59$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

GSM 1900 Head/Right 1900 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.308 W/kg

GSM 1900 Head/Right 1900 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 3.596 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.318 W/kg; SAR(10 g) = 0.198 W/kg Maximum value of SAR (measured) = 0.344 W/kg

RF Exposure Lab

Plot 14

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: GSM (GMSK); Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042

Medium: MSL1900; Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.499 \text{ S/m}$; $\epsilon_r = 52.119$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

GSM 1900 Body/Front 1900 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.46 W/kg

GSM 1900 Body/Front 1900 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 9.438 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.54 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.622 W/kg Maximum value of SAR (measured) = 1.46 W/kg

RF Exposure Lab

Plot 15

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: CDMA2000 (1xRTT); Frequency: 1908.8 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used (interpolated): f = 1908.8 MHz; $\sigma = 1.44 \text{ S/m}$; $\epsilon_r = 39.542$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.27, 7.27, 7.27); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: SAM with CRP; Type: SAM; Serial: 1554

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

CDMA 1900 Head/Right 1900 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.557 W/kg

CDMA 1900 Head/Right 1900 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 6.287 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.572 W/kg

SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.490 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.545 W/kg

RF Exposure Lab

Plot 16

DUT: iPhone 7; Type: Cell Phone; Serial: Test

Communication System: CDMA2000 (1xRTT); Frequency: 1908.8 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used (interpolated): f = 1908.8 MHz; $\sigma = 1.496 \text{ S/m}$; $\epsilon_r = 52.114$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 10/31/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3833; ConvF(7.13, 7.13, 7.13); Calibrated: 1/27/2016;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/14/2016 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1251

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

CDMA 1900 Body/Front 1900 Baseline/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.55 W/kg

CDMA 1900 Body/Front 1900 Baseline/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 12.29 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.80 W/kg

SAR(1 g) = 1.39 W/kg; SAR(10 g) = 0.696 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.64 W/kg

Appendix C – Test Setup Photos

Right Touch Side View No Case

Right Touch End View No Case

Right Touch Side View With Case

Right Touch End View With Case

Left Touch Side View No Case

Left Touch End View No Case

Left Touch Side View With Case

Left Touch End View With Case

Body Configuration No Case 5 mm Gap

Body Configuration With Case 5 mm Gap

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: EX3-3833_Jan16

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3833

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: January 27, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: January 28, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3833_Jan16 Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL t NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- E) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3833_Jan16 Page 2 of 11

January 27, 2016 EX3DV4 - SN:3833

Probe EX3DV4

SN:3833

Calibrated:

Manufactured: November 7, 2011 January 27, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

January 27, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.49	0.35	± 10.1 %
DCP (mV) ^B	100.8	100.2	102.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊦] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	131.4	±2.5 %
		Y	0.0	0.0	1.0		134.5	
		Z	0.0	0.0	1.0		128.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.38	11.38	11.38	0.00	1.00	± 13.3 %
220	49.0	0.81	10.71	10.71	10.71	0.00	1.00	± 13.3 %
300	45.3	0.87	10.68	10.68	10.68	0.08	1.15	± 13.3 %
450	43.5	0.87	9.47	9.47	9.47	0.15	1.15	± 13.3 %
600	42.7	0.88	9.41	9.41	9.41	0.09	1.15	± 13.3 %
750	41.9	0.89	9.23	9.23	9.23	0.37	1.00	± 12.0 %
900	41.5	0.97	8.72	8.72	8.72	0.29	1.17	± 12.0 %
1640	40.3	1.29	7.85	7.85	7.85	0.41	0.88	± 12.0 %
1750	40.1	1.37	7.62	7.62	7.62	0.46	0.80	± 12.0 %
1900	40.0	1.40	7.27	7.27	7.27	0.45	0.80	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.39	0.91	± 12.0 %
5200	36.0	4.66	4.64	4.64	4.64	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.47	4.47	4.47	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.23	4.23	4.23	0.40	1.80	± 13.1 %
5600	35.5	5.07	3.94	3.94	3.94	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.11	4.11	4.11	0.45	1.80	± 13.1 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.03	11.03	11.03	0.00	1.00	± 13.3 %
220	60.2	0.86	10.39	10.39	10.39	0.00	1.00	± 13.3 %
300	58.2	0.92	10.08	10.08	10.08	0.07	1.15	± 13.3 %
450	56.7	0.94	10.23	10.23	10.23	0.09	1.15	± 13.3 %
600	56.1	0.95	9.68	9.68	9.68	0.08	1.15	± 13.3 %
750	55.5	0.96	9.06	9.06	9.06	0.44	0.87	± 12.0 %
900	55.0	1.05	8.73	8.73	8.73	0.32	1.06	± 12.0 %
1640	53.8	1.40	7.77	7.77	7.77	0.38	0.82	± 12.0 %
1750	53.4	1.49	7.32	7.32	7.32	0.42	0.84	± 12.0 %
1900	53.3	1.52	7.13	7.13	7.13	0.38	0.80	± 12.0 %
2450	52.7	1.95	6.87	6.87	6.87	0.40	0.85	± 12.0 %
5200	49.0	5.30	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5300	48.9	5.42	3.85	3.85	3.85	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.56	3.56	3.56	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.25	3.25	3.25	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.49	3.49	3.49	0.60	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX3-3833_Jan16 Page 6 of 11

validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3833_Jan16

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Ą

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833

Other Probe Parameters

Triangular
14.7
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

Report Number: SAR.20161102

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client RF

RF Exposure Lab

Certificate No: D835V2-4d131_Aug15

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d131

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 10, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name

Function

Laboratory Technician

Approved by:

Katja Pokovic

Michael Weber

Technical Manager

Issued: August 12, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d131_Aug15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d131_Aug15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	•
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.23 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.01 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d131_Aug15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω - 1.6 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 3.8 jΩ
Return Loss	- 26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D835V2 SN: 4d131 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/2015	-31.2		52.3		-1.6	
8/9/2016	-29.2	-6.4	51.3	-1.0	-1.8	-0.2

D835V2 SN: 4d131 - Body						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/10/2015	-26.8		47.7		-3.8	
8/9/2016	-28.5	6.3	51.2	3.5	-3.8	0.0

Certificate No: D835V2-4d131 Aug15 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.25 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.77 W/kg

0 dB = 2.77 W/kg = 4.42 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.25 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D1750V2-1061_Aug15

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1061

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 13, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name

Function

Signature

Calibrated by:

Jeton Kastrati

Katja Pokovic

Laboratory Technician

Approved by:

Technical Manager

Issued: August 13, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1061_Aug15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1061 Aug15 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	***

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω + 1.2 jΩ	
Return Loss	- 37.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 0.8 jΩ
Return Loss	- 30.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 000
Liectrical Delay (one direction)	1.220 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 15, 2010

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

D1750V2 SN: 1061 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/13/2015	-37.8		50.5		1.2	
8/12/2016	-39.4	4.2	49.2	-1.3	0.7	-0.5

D1750V2 SN: 1061 - Body						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/13/2015	-30.7		47.3		0.8	
8/12/2016	-29.4	-4.2	46.1	-1.2	0.6	-0.2

DASY5 Validation Report for Head TSL

Date: 13.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.55 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.9 W/kg

Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.6 W/kg = 10.64 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.33 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 9.43 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D1900V2-5d147 Aug15

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d147

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 13, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name

Function

Signature

Calibrated by:

Jeton Kastrati

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: August 13, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d147_Aug15

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d147_Aug15

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	41.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.1 \Omega + 6.2 j\Omega$		
Return Loss	- 23.5 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 6.5 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

Extended Calibration

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04.

		D1900V	2 SN: 5d147	- Head		
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/13/2015	-23.5		53.1		6.2	
8/12/2016	-24.9	6.0	53.9	0.8	5.4	-0.8

D1900V2 SN: 5d147 - Body						
Date of Measurement	Return Loss (dB)	Δ%	Impedance Real (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
8/13/2015	-23.5		48.9		6.5	
8/12/2016	-22.8	-3.0	46.3	-2.6	6.9	0.4

artificate No: D1900V2-5d147 Aug15 Ps

Pane 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.3 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.47 W/kg

Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.00 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Certificate No: D1900V2-5d147_Aug15

Impedance Measurement Plot for Body TSL

Report Number: SAR.20161102

Appendix F – Phantom Calibration Data Sheets

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	SAM Twin Phantom V4.0		
Type No	QD 000 P40 C		
Series No	TP-1150 and higher		
Manufacturer	SPEAG		
	Zeughausstrasse 43		
	CH-8004 Zürich		
	Switzerland		

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry	IT'IS CAD File (*)	First article,
	according to the CAD model.		Samples
Material thickness	Compliant with the requirements	2mm +/- 0.2mm in flat	First article,
of shell	according to the standards	and specific areas of	Samples,
		head section	TP-1314 ff.
Material thickness	Compliant with the requirements	6mm +/- 0.2mm at ERP	First article,
at ERP	according to the standards		All items
Material	Dielectric parameters for required	300 MHz – 6 GHz:	Material
parameters	frequencies	Relative permittivity < 5,	samples
		Loss tangent < 0.05	
Material resistivity	The material has been tested to be	DEGMBE based	Pre-series,
	compatible with the liquids defined in	simulating liquids	First article,
	the standards if handled and cleaned		Material
	according to the instructions.		samples
	Observe technical Note for material		
	compatibility.		
Sagging	Compliant with the requirements	< 1% typical < 0.8% if	Prototypes,
	according to the standards.	filled with 155mm of	Sample
	Sagging of the flat section when filled	HSL900 and without	testing
	with tissue simulating liquid.	DUT below	

Standards

- [1] CENELEC EN 50361
- [2] IEEE Std 1528-2003
- [3] IEC 62209 Part I
- [4] FCC OET Bulletin 65, Supplement C, Edition 01-01
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

Date

07.07.2005

Schmid & Partner Engineering AG
-Zeughausstasse 43, 8004 Zurich Switzerland
Phone 1411245 9700 Fax 4417 245 9779
Info@speag.com, http://www.speag.com

e

Signature / Stamp

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 4.0
Type No	QD OVA 001 B
Series No	1003 and higher
Manufacturer	Untersee Composites
	Knebelstrasse 8
	CH-8268 Mannenbach, Switzerland

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

Test	Requirement	Details	Units tested
Material	Compliant with the standard	Bottom plate:	all
thickness	requirements	2.0mm +/- 0.2mm	
Material	Dielectric parameters for required	< 6 GHz: Rel. permittivity = 4	Material
parameters	frequencies	+/-1, Loss tangent ≤ 0.05	sample
Material	The material has been tested to be	DGBE based simulating	Equivalent
resistivity	compatible with the liquids defined in	liquids.	phantoms,
	the standards if handled and cleaned	Observe Technical Note for	Material
	according to the instructions.	material compatibility.	sample
Shape	Thickness of bottom material,	Bottom elliptical 600 x 400 mm	Prototypes,
	Internal dimensions,	Depth 190 mm,	Sample
	Sagging	Shape is within tolerance for	testing
	compatible with standards from	filling height up to 155 mm,	
	minimum frequency	Eventual sagging is reduced or	
		eliminated by support via DUT	

Standards

- [1] CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT.

Date

28.4.2008

Signature / Stamp

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41,44 245 9779 info@speag.com; http://www.speag.com