Betriebssysteme

11. Tutorium - Storage

ITEC - Operating Systems Group

Peter Bohner 24. Januar 2025

211,411441 2020

What kind of I/O Devices do you find in a typical system?

What kind of I/O Devices do you find in a typical system?

• Block devices

What kind of I/O Devices do you find in a typical system?

- · Block devices
- Character devices

What kind of I/O Devices do you find in a typical system?

- · Block devices
- Character devices
- Network devices

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples?

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples? SSD, HDD, ...

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- · Applications typically deal with a file system on top of the device
- Examples? SSD, HDD, ...

Character Devices

- Provide a stream of characters
- Examples?

What kind of I/O Devices do you find in a typical system?

- Block devices
- Character devices
- Network devices

Block Devices

- Offer random access to fixed-size blocks
- Applications typically deal with a file system on top of the device
- Examples? SSD, HDD, ...

Character Devices

- Provide a stream of characters
- Examples? Mice, Keyboard, (classic) text terminals

Port Based I/O

Port Based I/O

Separate address space with dedicated instructions for reading/writing

- + Clear distinction in code ⇒ Optimizing easier (reordering, caching, ...)
- Less flexible, often lower performance

Port Based I/O

Separate address space with dedicated instructions for reading/writing

- + Clear distinction in code ⇒ Optimizing easier (reordering, caching, ...)
- Less flexible, often lower performance

Memory-mapped I/O

Device registers are mapped into the physical address space. How do you access that?

Port Based I/O

Separate address space with dedicated instructions for reading/writing

- + Clear distinction in code ⇒ Optimizing easier (reordering, caching, ...)
- Less flexible, often lower performance

Memory-mapped I/O

Device registers are mapped into the physical address space. How do you access that? Normal instructions!

- + Higher flexibility: Virtual memory, larger instruction set, mostly transparent
- Some special rules apply to I/O regions software needs to be aware of

DMA

DMA

Direct Memory Access

DMA

Direct Memory Access

· Devices can access the physical memory without involving the CPU

DMA

Direct Memory Access

- · Devices can access the physical memory without involving the CPU
- Needs special setup from the OS to know how and what to read/write

Memory Mapped Files

DMA

Direct Memory Access

- · Devices can access the physical memory without involving the CPU
- Needs special setup from the OS to know how and what to read/write

Memory Mapped Files

· OS abstraction: Treat a file like a normal range of virtual memory

DMA

Direct Memory Access

- · Devices can access the physical memory without involving the CPU
- Needs special setup from the OS to know how and what to read/write

Memory Mapped Files

- · OS abstraction: Treat a file like a normal range of virtual memory
- No real relation to DMA, though the OS might use it to synchronize Memory Mapped Files with the underlying device

How does the OS know an I/O operation is finished?

How does the OS know an I/O operation is finished?

Polling

How does the OS know an I/O operation is finished?

Polling ⇒ Periodically check device registers

How does the OS know an I/O operation is finished?

- \cdot Polling \Rightarrow Periodically check device registers
- Interrupts

How does the OS know an I/O operation is finished?

- Polling ⇒ Periodically check device registers
- Interrupts \Rightarrow I/O devices send an interrupt signal

Hard Disks

What parts can you find in a hard disk?

• Heads

- Heads
- Arms

- Heads
- Arms
- Platters

- Heads
- Arms
- Platters
- Spindle

What do they do?

What do they do?

· Spindle: Spin connected platters!

What do they do?

- · Spindle: Spin connected platters!
- · Head: Read/Write

6

What do they do?

· Spindle: Spin connected platters!

· Head: Read/Write

· Arm: Move heads

6

How can you address data (512 byte blocks typically) on the disk?

How can you address data (512 byte blocks typically) on the disk?

 Cylinder - Head - Sector (CHS). Limited to "small" disks (< 8GB), rarely used these days

How can you address data (512 byte blocks typically) on the disk?

- Cylinder Head Sector (CHS). Limited to "small" disks (< 8GB), rarely used these days
- · Logical Block Addressing (LBA). Each data block has its own unique number.

Qing

How could you optimize the OS ⇔ Disk interface?

Native-Command-Queuing. OS sends reads and writes in batches and (the disk | the OS) reorders them based on internal geometry.

Qing

How could you optimize the OS ⇔ Disk interface?

Native-Command-Queuing. OS sends reads and writes in batches and *the disk* reorders them based on internal geometry.

Wear and Tear

What do you do when a sector is damaged?

Wear and Tear

What do you do when a sector is damaged?

Disk marks it as such and never uses it again \Rightarrow Sector sparing. What adverse effect might this have?

Wear and Tear

What do you do when a sector is damaged?

Disk marks it as such and never uses it again \Rightarrow Sector sparing. What adverse effect might this have? OS disk scheduler is unaware and optimizes for wrong geometry.

Shingled Magnet Recording

Shingled Magnet Recording

Shingled Magnet Recording

What happens when you write to this track? You overwrite the adjacent ones!

⇒ Append only and group shingled tracks

Shingled Magnet Recording

What happens when you write to this track? You overwrite the adjacent ones!

- \Rightarrow Append only and group shingled tracks
- \Rightarrow Can rewrite the whole group at once

How can such a device interface with the OS?

How can such a device interface with the OS?

- Pretend you are a normal disk. Buffer writes in a normal zone and flush them once they fill up a group.
 - ⇒ Device Managed

How can such a device interface with the OS?

- Pretend you are a normal disk. Buffer writes in a normal zone and flush them once they fill up a group.
 - ⇒ Device Managed
- Tell the OS where your shingled zones are. The OS needs to write carefully to not destroy data
 - ⇒ Host Managed

How can such a device interface with the OS?

- Pretend you are a normal disk. Buffer writes in a normal zone and flush them once they fill up a group.
 - ⇒ Device Managed
- Tell the OS where your shingled zones are. The OS needs to write carefully to not destroy data
 - \Rightarrow Host Managed
- Compromise. Tell the OS where your singled zones are and expose their tail. If the OS writes to the tail, directly commit it else buffer.
 - \Rightarrow Host Aware

XKCD 1360 - Old Files

FRAGEN?

https://forms.gle/9CwJSKidKibubran9

Bis nächste Woche