**COMP 546** 

Lecture 13

Psychophysics

Thurs. Feb. 21, 2019

How do we measure how well someone can perform a vision task? E.g. How well can one *discriminate* ...

- color or luminance (intensity)
- orientation of lines
- depths from binocular disparity
- 3D surface shapes (slant, tilt, curvature, ...)

• ....

"Psychophysics": (loose definition)

the study of *mappings* from physical variables to perceptual variables, *as measured by behavioral response* 



### Example 1a: intensity discrimination (or detection)



Is the central square brighter or darker than the background?

### Psychometric function



## Example 1a: intensity discrimination (increment or decrement?)





## Example 1b: intensity detection (left or right?)





Q: Why are psychometric curves not step functions?

A:

Q: Why are psychometric curves not step functions?

#### A:

- noise in the display or stimulus
- noise in the sensors/brain
- limited resolution: finite samples
- subjects press the wrong button (stop paying attention)

## Example 1c: intensity increment (left or right? with added noise)







### Psychophysical threshold au

Defines the stimulus level that gives a particular performance level e.g. 75% correct.



### Psychophysical threshold au

Defines the stimulus level that gives a particular performance level e.g. 75% correct.



#### How to estimate a threshold $\tau$ ?



## How to estimate a threshold $\tau$ ? Fit a (sigmoid shaped) curve.



### Overview

- Psychometric function
- Threshold
- Examples
  - Contrast Sensitivity
  - Depth discrimination (binocular disparity)
  - Slant from texture

### Contrast (recall Assignment 1)



Weber Contrast 
$$\equiv \frac{\Delta I}{I_0}$$

### Threshold versus Intensity ("tvi")



### Threshold versus Intensity ("tvi")





### Threshold versus Intensity ("tvi")

ASIDE: Linear on a log-log plot means a power law.



## Example 2: Detecting a 2D sinusoid grating (vertical or horizontal?)



## Example 2: Detecting a 2D sinusoid grating (vertical or horizontal?)



Michelson Contrast 
$$\equiv \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$



Michelson Contrast 
$$\frac{\Delta I}{\overline{I}} = \frac{(I_{max} - I_{min})/2}{(I_{max} + I_{min})/2}$$

### Contrast thresholds depend on spatial frequency



### Contrast thresholds depend on spatial frequency



#### Measure detection threshold at each spatial frequency.

(For 2D sinusoid of size 20x20 degrees)



spatial frequency k (cycles per degree)

# Example 2a: Depth discrimination from binocular disparity



Which is closer to viewer? Left or right?

# Example 2b: Depth discrimination from binocular disparity



#### anaglyph



Is square closer or farther than background?

(measure Weber contrast)<sub>27</sub>

# Example 2c: Depth discrimination for 2D sinusoidal binocular disparity





## Example 2c: Depth discrimination for 2D sinusoidal binocular disparity



## Example 2c: Depth discrimination for 2D sinusoidal binocular disparity



Minimum threshold occurs at much lower  $(\frac{1}{10})$  spatial frequency than that of luminance contrast.

Why?

## Disparity thresholds increase (worse performance) at larger eccentricity.





### Example 3: Slant from texture



# Recall: Texture cues for slant & tilt (lecture 11)

• size gradient (scale)

density gradient (position)

foreshortening gradient



Given two images of slanted surfaces, which surface has greater slant? (They might be displayed one after the other, in random order)



#### Slant discrimination threshold $\Delta\theta$

Which is more slanted?  $\theta$  versus  $\theta + \Delta \theta$ ?



### Thresholds $\Delta\theta$ depend on slant $\theta$ . How and why?



0 deg

65 deg

#### $\Delta\theta$ threshold decreases as $\theta$ increases.



#### $\Delta\theta$ threshold decreases as $\theta$ increases.



 $\theta$ 

# Shape from texture: computational model

You can make a model that *knows* the laws of perspective: how do size, density, foreshortening vary in the image of a slanted surface ?

How do these models perform (on random texture)?



### Summary

#### Discrimination thresholds can tell us about:

- underlying mechanisms and models
   (how the brain codes of luminance, 2D orientation, disparity, surface slant ...)
- inherent difficulty of the computational problem that is due to randomness ("noise")