

FCC PART 15.247 TEST REPORT

For

Onclick Global Corporation

No.2 LN-334 FUXING RD. KEELUNG CITY, TAIWAN

FCC ID: 2ALS9CRMP3004

Report Type: Product Name: Mobile Phone Original Report Tom Tong Test Engineer: Tom Tang Report Number: RDG170706002B **Report Date:** 2017-08-01 Henry Ding **EMC Leader** Reviewed By: Bay Area Compliance Laboratories Corp. (Chengdu) **Test Laboratory:** No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China Tel: 028-65525123, Fax: 028-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATIONEUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
EXTERNAL CABLE	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
Antenna Connector Construction	9
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	11
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP	14
EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	20
APPLICABLE STANDARD	20
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	
APPLICABLE STANDARDTEST PROCEDURE	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	32

Bay Area Compliance Laboratories Corp. (Chengdu)

APPLICABLE STANDARD	32
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	36
APPLICABLE STANDARD	36
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	36
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	52
APPLICABLE STANDARD	
TEST PROCEDURE	52
TEST EQUIPMENT LIST AND DETAILS	52
TEST DATA	52
FCC §15.247(d) - BAND EDGES TESTING	58
APPLICABLE STANDARD	58
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	58
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Onclick Global Corporation* 's product, model number: *CR-MP3004* (*FCC ID: 2ALS9CRMP3004*) (the "EUT") in this report was a *Mobile Phone*, which was measured approximately: 11 cm (L) × 4.7 cm (W) × 1.6 cm (H), rated input voltage: DC3.7V from battery or DC5.0V from adapter.

Adapter information: Model: CR-MP3004

Input: AC 100-240V 50/60Hz 500mAh

Output: DC5.0V 300mAh

*All measurement and test data in this report was gathered from final production sample, serial number: 170706002 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-04-04, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *Onclick Global Corporation* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2ALS9CRMP3004. FCC Part 22H, 24E PCE submissions with FCC ID: 2ALS9CRMP3004.

Report No.: RDG170706002B Page 4 of 62

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All of the measurements detailed in this Test Report were performed by Bay Area Compliance Laboratories Corp. (Chengdu).

The Bay Area Compliance Laboratories Corp. Chengdu's measurement Uncertainties (calculated for a k=2 Coverage Factor corresponding to approximately 95% Coverage) were as follows:

- -For all of the AC Line Conducted Emissions Tests reported herein: ±3.17 dB.
- -For of all of the Direct Antenna Conducted Emissions Tests reported herein: ±0.56 dB.

-For of all of the direct Radiated Emissions Tests reported herein are:

30 MHz to 200 MHz: ±4.7 dB; 200 MHz to 1 GHz: ±6.0 dB; 1 GHz to 6 GHz: ±5.13dB; and, 6 GHz to 40 GHz: ±5.47dB.

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Test Facility

The test site used by BACL to collect test data is located in the No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG170706002B Page 5 of 62

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

The engineering mode configured the maximum power as default setting.

Equipment Modifications

No modification was made to the EUT.

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Adapter Cable	No	No	0.84	Adapter	EUT
Earphone Cable	No	No	1.2	EUT	Earphone

Block Diagram of Test Setup

Report No.: RDG170706002B Page 6 of 62

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

Report No.: RDG170706002B Page 7 of 62

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

- mm)] $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation
 - The result is rounded to one decimal place for comparison
 - 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max conducted power including tune-up tolerance is 6.0 dBm (3.98 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 3.98/5*($\sqrt{2.480}$) = 1.3 < 3.0

So the stand-alone SAR evaluation is not necessary.

Report No.: RDG170706002B Page 8 of 62

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement for BT, and the antenna gain is -3.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RDG170706002B Page 9 of 62

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Report No.: RDG170706002B Page 10 of 62

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

V_C: corrected voltage amplitude V_R: reading voltage amplitude

A_c: attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	100018	2016-12-02	2017-12-01
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	DE14781	2016-10-31	2017-10-30
Unknown	Conducted Cable	Unknown	NO.5	2016-11-10	2017-11-09
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	31.7 °C
Relative Humidity:	39.2 %
ATM Pressure:	100.1 kPa

The testing was performed by Tom Tang on 2017-07-12.

Report No.: RDG170706002B Page 11 of 62

Test Mode: Operating

AC120V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.166371	43.5	9.000	L1	19.7	21.6	65.1	Compliance
0.426011	39.8	9.000	L1	19.7	17.5	57.3	Compliance
0.432855	38.5	9.000	L1	19.7	18.7	57.2	Compliance
0.519918	35.7	9.000	L1	19.7	20.3	56.0	Compliance
0.681699	33.0	9.000	L1	19.7	23.0	56.0	Compliance
1.171949	30.4	9.000	L1	19.7	25.6	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.166371	33.2	9.000	L1	19.7	21.9	55.1	Compliance
0.429420	26.5	9.000	L1	19.7	20.8	47.3	Compliance
0.446873	29.4	9.000	L1	19.7	17.5	46.9	Compliance
0.503608	26.3	9.000	L1	19.7	19.7	46.0	Compliance
1.239175	24.5	9.000	L1	19.7	21.5	46.0	Compliance
1.310256	23.8	9.000	L1	19.7	22.2	46.0	Compliance

Report No.: RDG170706002B Page 12 of 62

AC120V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.167702	41.3	9.000	N	19.7	23.8	65.1	Compliance
0.499611	39.1	9.000	N	19.6	16.9	56.0	Compliance
0.665597	33.0	9.000	N	19.6	23.0	56.0	Compliance
1.171949	28.7	9.000	N	19.6	27.3	56.0	Compliance
1.385415	30.3	9.000	N	19.7	25.7	56.0	Compliance
2.558827	27.9	9.000	N	19.7	28.1	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.169044	31.2	9.000	N	19.7	23.8	55.0	Compliance
0.499611	26.5	9.000	N	19.6	19.5	46.0	Compliance
0.665597	22.0	9.000	N	19.6	24.0	46.0	Compliance
1.117238	20.9	9.000	N	19.7	25.1	46.0	Compliance
1.239175	26.4	9.000	N	19.6	19.6	46.0	Compliance
1.289541	26.2	9.000	N	19.6	19.8	46.0	Compliance

Report No.: RDG170706002B Page 13 of 62

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

Report No.: RDG170706002B Page 14 of 62

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above 1 GHZ	1MHz	10 Hz	/	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A121808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2017-06-16	2020-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2017-05-20	2018-05-19
HP	Amplifier	8449B	3008A00277	2016-12-02	2017-12-01
EMCT	Semi-Anechoic Chamber	966	966-1	2015-04-24	2018-04-23
Unknown	RF Cable (below 1GHz)	Unknown	NO.1	2016-11-10	2017-11-09
Unknown	RF Cable (below 1GHz)	Unknown	NO.4	2016-11-10	2017-11-09
Unknown	RF Cable (above 1GHz)	Unknown	NO.2	2016-11-10	2017-11-09

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Report No.: RDG170706002B Page 15 of 62

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	33.6 °C
Relative Humidity:	49.7%
ATM Pressure:	100.1 kPa

^{*} The testing was performed by Tom Tang on 2017-07-07.

Test Mode: Transmitting

Report No.: RDG170706002B Page 16 of 62

30MHz-25GHz BDR Mode (GESK):

BDR Mode (GFSK):									
Frequency		Receiver		ntenna	Cable	Amplifier	Corrected	Limit	Margin
(MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
	, ,			Low Chan	nel: 2402	MHz			
2402	64.74	PK	Н	23.53	3.00	0.00	91.27	N/A	N/A
2402	54.43	AV	Н	23.53	3.00	0.00	80.96	N/A	N/A
2402	66.05	PK	V	23.53	3.00	0.00	92.58	N/A	N/A
2402	55.66	AV	V	23.53	3.00	0.00	82.19	N/A	N/A
2390	28.36	PK	V	23.57	3.00	0.00	54.93	74.00	19.07
2390	17.83	AV	V	23.57	3.00	0.00	44.40	54.00	9.60
4804	52.05	PK	V	30.77	5.12	26.87	61.07	74.00	12.93
4804	39.57	AV	V	30.77	5.12	26.87	48.59	54.00	5.41
7206	44.14	PK	V	34.71	6.16	26.35	58.66	74.00	15.34
7206	31.06	AV	V	34.71	6.16	26.35	45.58	54.00	8.42
9608	34.93	PK	V	37.06	7.82	26.18	53.63	74.00	20.37
9608	21.93	AV	V	37.06	7.82	26.18	40.63	54.00	13.37
5390	37.18	PK	V	32.10	5.41	26.67	48.02	74.00	25.98
5390	24.66	AV	V	32.10	5.41	26.67	35.50	54.00	18.50
194.9	42.51	QP	V	12.68	0.90	27.79	28.30	43.50	15.20
739.1	26.68	QP	V	21.35	2.16	28.59	21.60	46.00	24.40
			N	Middle Cha	nnel: 244	1 MHz			
2441	65.00	PK	Н	23.40	3.00	0.00	91.40	N/A	N/A
2441	54.58	AV	Н	23.40	3.00	0.00	80.98	N/A	N/A
2441	66.32	PK	V	23.40	3.00	0.00	92.72	N/A	N/A
2441	55.58	AV	V	23.40	3.00	0.00	81.98	N/A	N/A
4882	49.19	PK	V	31.02	5.09	26.87	58.43	74.00	15.57
4882	36.81	AV	V	31.02	5.09	26.87	46.05	54.00	7.95
7323	25.10	PK	V	34.95	6.22	26.40	39.87	74.00	34.13
7323	23.08	AV	V	34.95	6.22	26.40	37.85	54.00	16.15
9764	35.84	PK	V	37.16	7.71	26.27	54.44	74.00	19.56
9764	21.98	AV	V	37.16	7.71	26.27	40.58	54.00	13.42
2950	42.84	PK	V	24.10	3.39	26.46	43.87	74.00	30.13
2950	29.15	AV	V	24.10	3.39	26.46	30.18	54.00	23.82
194.9	42.47	QP	V	12.68	0.90	27.79	28.26	43.50	15.24
739.1	26.61	QP	V	21.35	2.16	28.59	21.53	46.00	24.47
			•	High Chan	nel: 2480	MHz	•	•	
2480	64.36	PK	Н	23.27	2.99	0.00	90.62	N/A	N/A
2480	53.05	AV	Н	23.27	2.99	0.00	79.31	N/A	N/A
2480	65.71	PK	V	23.27	2.99	0.00	91.97	N/A	N/A
2480	54.56	AV	V	23.27	2.99	0.00	80.82	N/A	N/A
2483.5	33.76	PK	V	23.26	2.99	0.00	60.01	74.00	13.99
2483.5	18.55	AV	V	23.26	2.99	0.00	44.80	54.00	9.20
4960	48.28	PK	V	31.27	5.05	26.88	57.72	74.00	16.28
4960	36.31	AV	V	31.27	5.05	26.88	45.75	54.00	8.25
7440	45.22	PK	V	35.18	6.27	26.45	60.22	74.00	13.78
7440	23.24	AV	V	35.18	6.27	26.45	38.24	54.00	15.76
9920	35.94	PK	V	37.25	7.60	26.37	54.42	74.00	19.58
9920	22.06	AV	V	37.25	7.60	26.37	40.54	54.00	13.46
2950	42.78	PK	V	24.10	3.39	26.46	43.81	74.00	30.19
2950	29.17	AV	V	24.10	3.39	26.46	30.20	54.00	23.80
194.9	42.53	QP	V	12.68	0.90	27.79	28.32	43.50	15.18
739.1	26.70	QP	V	21.35	2.16	28.59	21.62	46.00	24.38

Report No.: RDG170706002B Page 17 of 62

2EDR Mode (π/4-DQPSK):

2EDR Mode		eiver	Rx A	ntenna	Cable	Amplifier	Corrected		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel: 2402 MHz									
2402	65.19	PK	Н	23.53	3.00	0.00	91.72	N/A	N/A
2402	53.36	AV	Н	23.53	3.00	0.00	79.89	N/A	N/A
2402	65.43	PK	V	23.53	3.00	0.00	91.96	N/A	N/A
2402	53.14	AV	V	23.53	3.00	0.00	79.67	N/A	N/A
2390	28.89	PK	V	23.57	3.00	0.00	55.46	74.00	18.54
2390	17.88	AV	V	23.57	3.00	0.00	44.45	54.00	9.55
4804	52.29	PK	V	30.77	5.12	26.87	61.31	74.00	12.69
4804	38.95	AV	V	30.77	5.12	26.87	47.97	54.00	6.03
7206	49.54	PK	V	34.71	6.16	26.35	64.06	74.00	9.94
7206	30.31	AV	V	34.71	6.16	26.35	44.83	54.00	9.17
9608	35.77	PK	V	37.06	7.82	26.18	54.47	74.00	19.53
9608	21.51	AV	V	37.06	7.82	26.18	40.21	54.00	13.79
6390	36.61	PK	V	33.29	6.09	26.56	49.43	74.00	24.57
6390	22.90	AV	V	33.29	6.09	26.56	35.72	54.00	18.28
194.9	42.62	QP	V	12.68	0.90	27.79	28.41	43.50	15.09
739.1	26.78	QP	V	21.35	2.16	28.59	21.70	46.00	24.30
			M	iddle Chai					
2441	65.03	PK	Н	23.40	3.00	0.00	91.43	N/A	N/A
2441	53.26	AV	Н	23.40	3.00	0.00	79.66	N/A	N/A
2441	65.54	PK	V	23.40	3.00	0.00	91.94	N/A	N/A
2441	53.41	AV	V	23.40	3.00	0.00	79.81	N/A	N/A
4882	50.97	PK	V	31.02	5.09	26.87	60.21	74.00	13.79
4882	39.29	AV	V	31.02	5.09	26.87	48.53	54.00	5.47
7323	44.91	PK	V	34.95	6.22	26.40	59.68	74.00	14.32
7323	22.9	AV	V	34.95	6.22	26.40	37.67	54.00	16.33
9764	35.81	PK	V	37.16	7.71	26.27	54.41	74.00	19.59
9764	21.77	AV	V	37.16	7.71	26.27	40.37	54.00	13.63
5685	36.64	PK	V	32.52	5.68	26.63	48.21	74.00	25.79
5685	23.41	AV	V	32.52	5.68	26.63	34.98	54.00	19.02
194.9	42.59	QP	V	12.68	0.90	27.79	28.38	43.50	15.12
739.1	26.73	QP	V	21.35	2.16	28.59	21.65	46.00	24.35
700.1	20.70	Ψ.	•	ligh Chan			21.00	10.00	200
2480	65.49	PK	Н	23.27	2.99	0.00	91.75	N/A	N/A
2480	52.61	AV	Н	23.27	2.99	0.00	78.87	N/A	N/A
2480	65.91	PK	V	23.27	2.99	0.00	92.17	N/A	N/A
2480	52.72	AV	V	23.27	2.99	0.00	78.98	N/A	N/A
2483.5	35.47	PK	V	23.26	2.99	0.00	61.72	74.00	12.28
2483.5	18.97	AV	V	23.26	2.99	0.00	45.22	54.00	8.78
4960	49.22	PK	V	31.27	5.05	26.88	58.66	74.00	15.34
4960	34.41	AV	V	31.27	5.05	26.88	43.85	54.00	10.15
7440	46.04	PK	V	35.18	6.27	26.45	61.04	74.00	12.96
7440	24.07	AV	V	35.18	6.27	26.45	39.07	54.00	14.93
9920	36.04	PK	V	37.25	7.60	26.37	54.52	74.00	19.48
9920	21.85	AV	V	37.25	7.60	26.37	40.33	54.00	13.67
6155	36.97	PK	V	33.06	6.01	26.62	49.42	74.00	24.58
6155	23.13	AV	V	33.06	6.01	26.62	35.58	54.00	18.42
194.9	42.54	QP	V	12.68	0.90	27.79	28.33	43.50	15.17
739.1	26.79	QP	V	21.35	2.16	28.59	21.71	46.00	24.29

Report No.: RDG170706002B Page 18 of 62

3EDR Mode (8-DPSK):

3EDR Mod		<u>.</u> eiver	Ry A	ntenna	Cabla	A me := !!£! = -	Cormontari		
Frequency		GIVGI			Cable loss	Amplifier Gain	Corrected Amplitude	Limit	Margin
(MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
				Low Chan					
2402	64.81	PK	Н	23.53	3.00	0.00	91.34	N/A	N/A
2402	53.14	AV	Н	23.53	3.00	0.00	79.67	N/A	N/A
2402	65.51	PK	V	23.53	3.00	0.00	92.04	N/A	N/A
2402	53.13	AV	V	23.53	3.00	0.00	79.66	N/A	N/A
2390	28.73	PK	V	23.57	3.00	0.00	55.30	74.00	18.70
2390	17.74	AV	V	23.57	3.00	0.00	44.31	54.00	9.69
4804	52.64	PK	V	30.77	5.12	26.87	61.66	74.00	12.34
4804	32.02	AV	V	30.77	5.12	26.87	41.04	54.00	12.96
7206	44.13	PK	V	34.71	6.16	26.35	58.65	74.00	15.35
7206	25.67	AV	V	34.71	6.16	26.35	40.19	54.00	13.81
9608	35.59	PK	V	37.06	7.82	26.18	54.29	74.00	19.71
9608	21.65	AV	V	37.06	7.82	26.18	40.35	54.00	13.65
2390	41.6	PK	V	23.57	3.00	26.87	41.30	74.00	32.70
2390	28.05	AV	V	23.57	3.00	26.87	27.75	54.00	26.25
194.9	42.55	QP	V	12.68	0.90	27.79	28.34	43.50	15.16
739.1	26.73	QP	V	21.35	2.16	28.59	21.65	46.00	24.35
				liddle Cha					
2441	65.56	PK	H	23.40	3.00	0.00	91.96	N/A	N/A
2441	53.14	AV	Н	23.40	3.00	0.00	79.54	N/A	N/A
2441	65.78	PK	V	23.40	3.00	0.00	92.18	N/A	N/A
2441	53.51	AV	V	23.40	3.00	0.00	79.91	N/A	N/A
4882	49.36	PK	V	31.02	5.09	26.87	58.60	74.00	15.40
4882	30.64	AV	V	31.02	5.09	26.87	39.88	54.00	14.12
7323	45.08	PK	V	34.95	6.22	26.40	59.85	74.00	14.15
7323	25.1	AV	V	34.95	6.22	26.40	39.87	54.00	14.13
9764	35.81	PK	V	37.16	7.71	26.27	54.41	74.00	19.59
9764	21.74	AV	V	37.16	7.71	26.27	40.34	54.00	13.66
5965	37.21	PK	V	32.86	5.93	26.66	49.34	74.00	24.66
5965	23.12	AV	V	32.86	5.93	26.66	35.25	54.00	18.75
194.9	42.63	QP	V	12.68	0.90	27.79	28.42	43.50	15.08
739.1	26.66	QP	_	21.35	2.16	28.59	21.58	46.00	24.42
2490	65.27	DV	- 11	High Chan			01.52	NI/A	NI/A
2480 2480		PK AV	Н	23.27 23.27	2.99	0.00	91.53	N/A	N/A N/A
2480	53.92	PK	V		2.99		80.18	N/A N/A	N/A N/A
2480	65.45 53.73	AV	V	23.27 23.27	2.99 2.99	0.00	91.71 79.99	N/A N/A	N/A N/A
2483.5	35.9	PK	V	23.26	2.99	0.00	62.15	74.00	11.85
2483.5	19.06	AV	V	23.26	2.99	0.00	45.31	54.00	8.69
4960	45.22	PK	V	31.27	5.05	26.88	54.66	74.00	19.34
4960	28.86	AV	V	31.27	5.05	26.88	38.30	54.00	15.70
7440	41.83	PK	V	35.18	6.27	26.45	56.83	74.00	17.17
7440	24.61	AV	V	35.18	6.27	26.45	39.61	54.00	14.39
9920	36.54	PK	V	37.25	7.60	26.37	55.02	74.00	18.98
9920	22.28	AV	V	37.25	7.60	26.37	40.76	54.00	13.24
194.9	42.52	QP	V	12.68	0.90	27.79	28.31	43.50	15.24
739.1	26.75	QP QP	V	21.35	2.16	28.59	21.67	46.00	24.33
1 JJ. I	20.70	ער	V	۷۱.۵۵	2.10	20.09	21.07	40.00	24.33

Report No.: RDG170706002B Page 19 of 62

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Attenuator	3dB	3dB-1	Each Time	1
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	23.8 °C	
Relative Humidity:	44.7 %	
ATM Pressure:	100.7 kPa	

^{*} The testing was performed by Tom Tang on 2017-04-14.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG170706002B Page 20 of 62

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)
000	Low	2402	1.038	0.66
BDR (GFSK)	Middle	2441	0.998	0.67
(Gr Sit)	High	2480	1.002	0.67
EDD	Low	2402	0.998	0.87
EDR (π/4-DQPSK)	Middle	2441	1.002	0.94
(11/4-DQF3K)	High	2480	0.998	0.95
500	Low	2402	1.014	0.91
EDR (8DPSK)	Middle	2441	0.95	0.92
(001 311)	High	2480	1.002	0.93

Note: Limit= (2/3) × 20dB bandwidth

BDR Mode (GFSK):

Low Channel

Report No.: RDG170706002B Page 21 of 62

Middle Channel

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Middle Channel

Report No.: RDG170706002B Page 23 of 62

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG170706002B Page 24 of 62

Middle Channel

Date: 14.APR.2017 23:18:56

High Channel

Report No.: RDG170706002B

FCC §15.247(a) (1) - 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Attenuator	3dB	3dB-1	Each Time	1
Unknown	RF Cable	Unknown	C-2	Each Time	/

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.8 °C
Relative Humidity:	44.7 %
ATM Pressure:	100.7 kPa

^{*} The testing was performed by Tom Tang on 2017-04-14.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG170706002B Page 26 of 62

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
DDD M. J.	Low	2402	0.99
BDR Mode (GFSK)	Middle	2441	1.01
(Ol Olt)	High	2480	1.01
EDD M -	Low	2402	1.31
EDR Mode (π/4-DQPSK)	Middle	2441	1.41
(III + DQI OIV)	High	2480	1.42
	Low	2402	1.36
EDR Mode (8-DPSK)	Middle	2441	1.38
(0 51 011)	High	2480	1.39

BDR Mode (GFSK):

Low Channel

Report No.: RDG170706002B Page 27 of 62

Middle Channel

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Middle Channel

Report No.: RDG170706002B Page 29 of 62

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG170706002B Page 30 of 62

Middle Channel

High Channel

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Attenuator	3dB	3dB-1	Each Time	1
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.8 °C
Relative Humidity:	44.7 %
ATM Pressure:	100.7 kPa

^{*} The testing was performed by Tom Tang on 2017-04-14.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG170706002B Page 32 of 62

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Report No.: RDG170706002B Page 33 of 62

EDR Mode ($\pi/4$ -DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Report No.: RDG170706002B Page 34 of 62

EDR Mode (8-DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit	
2400-2483.5	79	≥15	

Number of Hopping Channels

Report No.: RDG170706002B Page 35 of 62

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Attenuator	3dB	3dB-1	Each Time	1
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	22.6~23.8 °C
Relative Humidity:	44.7~48.1 %
ATM Pressure:	100.7~100.8 kPa

^{*} The testing was performed by Tom Tang on 2017-04-14 and 2017-04-15.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG170706002B Page 36 of 62

Test Mode: Transmitting

BDR Mode (GFSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.401	0.128	0.4	Compliance	
DH1	Middle	0.401	0.128	0.4	Compliance	
וווט	High	0.401	0.128	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s					
	Low	1.664	0.266	0.4	Compliance	
DH3	Middle	1.664	0.266	0.4	Compliance	
DHS	High	1.664	0.266	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
	Low	2.921	0.312	0.4	Compliance	
DH5	Middle	2.921	0.312	0.4	Compliance	
Diis	High	2.921	0.312	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s					

DH1: Low Channel

Report No.: RDG170706002B Page 37 of 62

DH1: Middle Channel

DH1: High Channel

DH3: Low Channel

DH3: Middle Channel

DH3: High Channel

Date: 14.APR.2017 23:42:02

DH5: Low Channel

Report No.: RDG170706002B

DH5: Middle Channel

DH5: High Channel

Report No.: RDG170706002B Page 41 of 62

EDR Mode ($\pi/4$ -DQPSK):

Mode	Channel		Dwell Time (s)	Limit (s)	Result	
	Low	0.399	0.128	0.4	Compliance	
2DH1	Middle	0.401	0.128	0.4	Compliance	
2011	High	0.399	0.128	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s					
2DH3	Low	1.661	0.266	0.4	Compliance	
	Middle	1.661	0.266	0.4	Compliance	
ZDNS	High	1.661	0.266	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
2DH5	Low	2.914	0.311	0.4	Compliance	
	Middle	2.914	0.311	0.4	Compliance	
2003	High	2.924	0.312	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s					

2DH1: Low Channel

Report No.: RDG170706002B Page 42 of 62

2DH1: Middle Channel

Delta 1 [T1] 1 MHz RBW RF Att 30 dB Ref Lvl -1.99 dB VBW 3 MHz 20 dBm 398.797595 **\s** SWT 1 ms Unit 4 dB Offset \mathbf{v}_1 37 dB 846 Ns dВ 398.79 595 **y**s 1MA

100 Ns/

2DH1: High Channel

Report No.: RDG170706002B Page 43 of 62

Center 2.48 GHz

Date:

14.APR.2017 23:55:20

2DH3: Low Channel

2DH3: Middle Channel

2DH3: High Channel

2DH5: Low Channel

Report No.: RDG170706002B

2DH5: Middle Channel

EDR Mode (8-DPSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.392	0.125	0.4	Compliance	
3DH1	Middle	0.398	0.127	0.4	Compliance	
JUIT	High	0.398	0.127	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s					
3DH3	Low	1.661	0.266	0.4	Compliance	
	Middle	1.661	0.266	0.4	Compliance	
зынз	High	1.661	0.266	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
	Low	2.924	0.312	0.4	Compliance	
3DH5	Middle	2.916	0.311	0.4	Compliance	
SDHS	High	2.916	0.311	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s					

3DH1: Low Channel

Report No.: RDG170706002B Page 47 of 62

3DH1: Middle Channel

3DH1: High Channel

3DH3: Low Channel

3DH3: Middle Channel

3DH3: High Channel

3DH5: Low Channel

3DH5: Middle Channel

Date: 15.APR.2017 00:02:20

3DH5: High Channel

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Attenuator	3dB	3dB-1	Each Time	1
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.8 °C	
Relative Humidity:	44.7 %	
ATM Pressure:	100.7 kPa	

^{*} The testing was performed by Tom Tang on 2017-04-14.

Test Result: Compliance.

Report No.: RDG170706002B Page 52 of 62

Test Mode: Transmitting

Mode	Frequency (MHz)	Peak Conducted Output power (dBm)	Limit (dBm)
DDD 14	2402	5.65	30
BDR Mode (GFSK)	2441	5.16	30
(Of Oit)	2480	4.13	30
EDR Mode (π/4-DQPSK)	2402	5.88	30
	2441	5.16	30
	2480	4.13	30
EDR Mode (8-DPSK)	2402	5.76	30
	2441	5.16	30
	2480	4.13	30

Note: The data above was tested in conducted mode.

BDR Mode (GFSK):

Low Channel

Report No.: RDG170706002B Page 53 of 62

Middle Channel

Date: 14.APR.2017 22:47:06

High Channel

Date: 14.APR.2017 22:48:57

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Middle Channel

Report No.: RDG170706002B Page 55 of 62

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG170706002B Page 56 of 62

Middle Channel

Date: 14.APR.2017 23:02:22

High Channel

Report No.: RDG170706002B

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW/ VBW of spectrum analyzer to 100/300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
Unknown	RF Attenuator	3dB	3dB-1	Each Time	1
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Report No.: RDG170706002B Page 58 of 62

Test Data

Environmental Conditions

Temperature:	23.8 °C
Relative Humidity:	44.7 %
ATM Pressure:	100.7 kPa

^{*} The testing was performed by Tom Tang on 2017-04-14.

Test Result: Compliance

BDR Mode (GFSK):

Band Edge, Left Side

Report No.: RDG170706002B Page 59 of 62

Band Edge, Right Side

EDR Mode (π/4-DQPSK):

Band Edge, Left Side

Report No.: RDG170706002B Page 60 of 62

Band Edge, Right Side

EDR Mode (8-DPSK):

Band Edge, Left Side

Report No.: RDG170706002B Page 61 of 62

Band Edge, Right Side

***** END OF REPORT *****

Report No.: RDG170706002B Page 62 of 62