

Comparison of MetAP2 Homologues (mouse SEQ ID NO:13; rat SEQ ID NO:14; human = SEQ ID NO:12; yeast = SEQ ID NO:14)

	15	16	30	31	45	46	60	61	75	76	90	90
mouse	MAGEQAAASFGGHLN	GDLDPDDREEGTSST	AAAACKKKRKKKKKG	KGAVSAVQOELDKES	GALVDEVAKOLESQLA	LEEKERDDDEDGNG						
rat	MAGEEEAASSFFGHLN	RDLDPDDREEGTSST	AAAACKKKRKKKKKG	KGAVSAGQOELDKES	GTSVDEVAKQLERQA	LEEKEKDDDEDGDD	90					
human	MAGVEEVAASGSHLN	GDLDPDDREEGAAT	AAAACKKKRKKKKKS	KGPSSAAGEQEPDKES	GASVDEVAROLERSA	LEDKERDDDEDGDD	90					
yeast	-----	-----	-----	-----	-----	-----	SPASDLKELNNEG	VEQQDQAKADESDPV	38			
	91	105	106	120	121	135	136	150	151	165	166	180
mouse	DADGATGKKKKKKK	KRGPKVQTDPGSVPI	CDLYPNGVPKGQEC	EYPPTDGRTAAWRT	TSEEKKALDQASEEI	WNDFREAAEAHRQVR						180
rat	DGDGAAGKKKKKKK	KRGPRVQTDPGSVPI	CDLYPNGVTFKGQEC	EYPPTDGRTAAWRT	TSEEKKALDQASEEI	WNDFREAAEAHRQVR	180					
human	DGDGATGKKKKKKK	KRGPKVQTDPGSVPI	CDLYPNGVPKGQEC	EYPPTDGRTAAWRT	TSEEKKALDQASEEI	WNDFREAAEAHRQVR	180					
yeast	ESKKKKKKKKKKKS	N-----VKKI	ELLFPDGKYPEGAWM	DYHQDENLQRTDEE	SRYLKRDLERA--EH	WNDVRKGAEIHRVR	116					
	181	195	196	210	211	225	226	240	241	255	256	270
mouse	KYVMSWIKPGMTMIE	ICEKLEDCSRKLIKE	NGLNAG-----LA	FPTGCSLNNCAAHYT	PNAGDTTVLQYDDIC	KIDFGTHISGRIIDC	263					
rat	KYVMSWIKPGMTMIE	ICEKLEDCSRKLIKE	NGLNAG-----LA	FPTGCSLNNCAAHYT	PNAGDTTVLQYDDIC	KIDFGTHISGRIIDC	263					
human	KYVMSWIKPGMTMIE	ICEKLEDCSRKLIKE	NGLNAG-----LA	FPTGCSLNNCAAHYT	PNAGDTTVLQYDDIC	KIDFGTHISGRIIDC	263					
yeast	RAIKDRIVPGMKLMD	IADMINTTRKYTAGA	ENLLAMEDPKSQGIG	FPTGSLNHNCAAHFT	PNAGDTTVLKYEDVM	KVDYGWQYNGNLIDS	206					
	271	285	286	300	301	315	316	330	331	345	346	360
mouse	AFTVTENPKYDILIT	AVKDATNTGIKCAGI	DYRLCDVGAEIQEVN	ESYEVEILDGKTYQVK	PIRNLNGHSIGPYRI	HAGKTVPIVKGGEAT						353
rat	AFTVTENPKYDILIK	AVKDATNTGIKCAGI	DYRLCDVGAEIQEVN	ESYEVEILDGKTYQVK	PIRNLNGHSIGPYRI	HAGKTVPIVKGGEAT						353
human	AFTVTENPKYDILIK	AVKDATNTGIKCAGI	DYRLCDVGAEIQEVN	ESYEVEILDGKTYQVK	PIRNLNGHSIGQYRI	HAGKTVPIVKGGEAT						353
yeast	ATVVSFDQYDNLLA	AVKDATATGIKEAGI	DYRLTDIGEAIQEVN	ESYEVEINGETYQVK	PCRNLCGHSHIAPYRI	HGGKSVPIVKNGDTT	296					
	361	375	376	390	391	405	406	420	421	435	436	450
mouse	RMEEGEVYAAETFGS	TGKGVVHDDMECSHY	MKNFDVGHVPIRLPR	TKHLLNVINENFGTL	AFCRRWLDRLGESKY	LMALKNLCDLGIVDP	443					
rat	RMEEGEVYAAETFGS	TGKGVVHDDMECSHY	MKNFDVGHVPIRLPR	TKHLLNVINENFGTL	AFCRRWLDRLGESKY	LMALKNLCDLGIVDP	443					
human	RMEEGEVYAAETFGS	TGKGVVHDDMECSHY	MKNFDVGHVPIRLPR	TKHLLNVINENFGTL	AFCRRWLDRLGESKY	LMALKNLCDLGIVDP	443					
yeast	KMEEGEHFATEETFGS	TGRGYVTAGEVSHY	ARSAEDHQVMPLDS	AKNLLKTDNRNGFTL	PFCCRRLDRLQEKY	LFALNNLVRHGLVQD	386					
	451	465	466	480								
mouse	YPLCDIKGSYTAQF	EHTILLRPTCKEVVS	RGDDY--									
rat	YPLCDIKGSYTAQF	EHTILCAQFVKKLSA	EEMTIKT	478								
human	YPLCDIKGSYTAQF	EHTILLRPTCKEVVS	RGDDY--	480								
yeast	YPLNDIPGSYTAQF	EHTILLHAHKKEVVS	KGDDY--	478								

Figure 1

MetAP2

Figure 2

A. Glucose

B. Galactose

FIGURE 3

Figure 4

A. Glucose

B. Galactose

H174A-MetAP2 requires N-terminal residues 2-57 for inhibition of map1 Δ growth under the GAL1 promoter.

Figure 5

The steady state levels of each MetAP2 construct are comparable. Immunoblot comparison of HA-MetAP2 wt, HA-MetAP2 H174A, and MetAP2 Δ2-57 H174A steady state levels in map1Δ.

Figure 6

Overexpression of H174A-MetAP2 under the GPD promoter does not inhibit the growth of map2Δ

Figure 7

Figure 8

Figure 9

Figure 10

A

B

Figure 11