#### Universidade de Brasília - Faculdade Gama

Trabalho de Conclusão de Curso 1

**Engenharia Aeroespacial** 

#### **On-Board Computer**

Projeto de um Computador de Bordo para Pequenos Satélites

#### Guilherme Silva Lionço

Orientador: Prof. Dr. Giancarlo Santilli

Coorientador: Prof. Dr. Leonardo Aguayo



## Sumário



#### Sumário



#### 1. Introdução

- 1.1. Contexto e Justificativa
- 1.2. Objetivos
- 1.3. Metodologia
- 2. Referencial Bibliográfico
- 3. Hardware do OBC
- 4. Software do OBC
- **5. Resultados Preliminares**
- 6. Trabalhos Futuros

Referências



# Introdução



#### 1.Introdução



#### **Contexto**

• Parceria tecnológica com o Instituto de Aviação Polonês – ILOT.



- Proposta de criação de um CubeSat 3U.
  - Demonstrador Tecnológico
  - Uso de Câmera para monitoramento das calotas Polares;
  - Uso de um *Pulsed Plasma Thruster* (PPT) para controle orbital;
  - Uso de um acelerômetro para mapeamento do campo gravitacional terrestre.

#### **Justificativa**

 Um projeto desse porte abrirá várias oportunidades de pesquisa na área de subsistemas satelitais, sensoriamento remoto, controle orbital, entre outros. Alguns estudos já estão sendo realizados, com o intuito de oferecer soluções para essa futura missão.





#### **Objetivos**

- Desenvolvimento de um OBC para o controle e gerenciamento de um CubeSat.
  - Controle de uma Câmera CMOS;
  - Controle de um PPT;
  - Garantir uma subsistema com um alto nível de confiança, mesmo não utilizando dispositivos resistentes à radiação;
  - Divulgação da pesquisa na plataforma GitHub.



Figura 1 – Cronograma e Fluxograma do Projeto.







#### **Pequenos Satélites**

- Terminologia estabelecida pelo *Small Space Technology Program* (SSTP);
- Satélites que possuem massa úmida inferior a 500kg;



Figura 2 – Categoria de Pequenos Satélites e alguns exemplos.



Figura 3 – Lançamento de pequenos satélites entre 1995 e 2014.





#### **CubeSat**

- Nanosatélites cúbicos de 10cm de lado;
- Criadores: Jordi Puig-Suari (CalPoly) e Bob Twiggs (Stanford);
- Vantagens:
  - Modularidade;
  - Lançamento;
  - Custo;
  - Componentes;
  - Desenvolvimento;
  - Risco;
  - Nichos de Aplicação.



Fonte: (CUBESAT PROGRAM, 2014, pág.31).



Figura 5 – Especificações Estruturais para um CubeSat 3U+.





#### Subsistemas de um CubeSat

Fonte: (ADDAIM; KHERRAS; ZANTOU, 2010, adaptado pág.6).



Figura 6 – Arquitetura de um Satélite.





#### **Ambiente Espacial**

- Principais Fatores: Vácuo, Radiação Ultravioleta, Radiação Espacial, Plasma, Temperaturas Extremas,
   Fadiga Térmica e Impacto de Lixo Espacial;
- Os efeitos da radiação espacial são os mais relevantes para a analise da eletrônica embaraçada de um satélite;

#### Radiação Espacial

• Em órbitas LEO (altitude entre 100-1.000 km), TID de aproximadamente 0,1 krad/ano (PETKOV, 2003).



Figura 7 – Classificação dos efeitos da Radiação Espacial.





#### **Ambiente Espacial**

- Principais Fatores: Vácuo, Radiação Ultravioleta, Radiação Espacial, Plasma, Temperaturas Extremas,
   Fadiga Térmica e Impacto de Lixo Espacial;
- Os efeitos da radiação espacial são os mais relevantes para a analise da eletrônica embaraçada de um satélite;

#### Radiação Espacial

• Em órbitas LEO (altitude entre 100-1.000 km), TID de aproximadamente 0,1 krad/ano (PETKOV, 2003).

Efeitos mais utilizados nas especificações de componentes eletrônicos.

Efeito da Radiação

Efeito de Evento Único
(SEE)

TID

DD

SEU

SEU

SEGR

SEB

ELDRS

Figura 7 - Classificação dos efeitos da Radiação Espacial.





#### **Categorias de Componentes**

#### Comercial:

- O processo de design não garante resistência à radiação.
- Pouco controle da radiação.
- Níveis de resistência:
  - \* **TID**: 2 a 10 krad (típico).
  - \* **SEU**: 5 *MeV/m.g.cm*2.
  - \* Taxa de erro SEU:  $10^{-5}$  erros/bit.dia
- O cliente realiza testes de radiação e assume todos os riscos.
- Avaliação e risco do cliente.

#### Rad Tolerant:

- O design garante resistência à radiação até um certo nível.
- Pouco controle da radiação.
- Níveis de resistência:
  - \* **TID**: 20 a 50 krad (típico).
  - \***SEU**: 20 *MeV/m.g.cm*2.
  - \* Taxa de erro SEU:  $10^{-7}$   $10^{-8}$

#### erros/bit.dia.

- Geralmente testado apenas para falha funcional.
- Avaliação e risco do cliente.

#### Rad-Hard:

- Projetado e processado para um nível de dureza específico
- Vários testes realizados com o substrato do chip
- Níveis de resistência:
  - \* **TID**: > 200 krad a > 1 Mrad.
  - \* **SEU**: 80-150 *MeV/mg.cm*2.
  - \*Taxa de erro SEU:  $10^{-10} 10^{-12} erros/$

#### bit.dia.

- Geralmente testado apenas para falha funcional.
- Avaliação e risco do cliente.



## Hardware do OBC





#### **Requisitos e Funcionalidades**

- Poucos requisitos foram delimitados, pois o projeto da missão CubeSat ainda está em fase de discussão;
- A abordagem utilizada para contornar essa situação foi adicionando requisitos das missões QB50 e Aato-1;

| Número do Requisito | Descrição do Requisito                                            |
|---------------------|-------------------------------------------------------------------|
|                     | OBC deve realizar a aquisição dos seguintes dados: Temperatura;   |
| OBC-H-R1            | Tensão e Corrente consumidas pelo sistema; Sensor Inercial; Dados |
|                     | dos demais subsistemas do CubeSat; Payload (Imagens da Câmera).   |
| OBC-H-R2            | Possuir sistema de proteção contra travamentos.                   |
| OBC-H-R3            | Os componentes devem operar entre -45°C e 80°C.                   |
| OBC-H-R4            | O OBC deve possuir interfaces condizente com cada                 |
| ОБО-п-ћ4            | subsistema do satélite.                                           |
| OBC-H-R5            | Possuir concepção versátil.                                       |
| OBC-H-R6            | Possuir soluções que protejam o sistema contra falhas.            |
| OBC-H-R7            | Possuir armazenamento não volátil de dados.                       |

Tabela 1 - Requisitos do Hardware.



#### 3. Hardware do OBC



#### Escolha do Microcontrolador

| Microcontrolador | Consumo  | AD       | I/O       | InterfaceSerial | PMW | Watchdog<br>Timer | Frequência | Faixa de<br>Temperatura [°C] | SOMA      |
|------------------|----------|----------|-----------|-----------------|-----|-------------------|------------|------------------------------|-----------|
| PESO             | 5        | 3        | 3         | 4               | 3   | 3                 | 5          | 4                            | 30        |
| MSP432P4111      | 5        | 3        | 3         | 3,5             | 3   | 3                 | 2,4        | 3,03                         | 25,93     |
| MC9S12XHZ512     | 2,83     | 2        | 2,04      | 3,7             | 3   | 3                 | 2          | $3,\!52$                     | 22,09     |
| MSP430F5529      | 1,8      | 1,5      | $^{2,25}$ | 3               | 3   | 3                 | 1,25       | 3,03                         | 18,83     |
| RM42L432         | $0,\!46$ | 2        | 1,61      | 3,7             | 3   | 3                 | 5          | $3,\!52$                     | 22,29     |
| ATSAMD21J18      | 5        | $^{2,5}$ | 1,86      | 4               | 3   | 3                 | $^{2,4}$   | 3,03                         | 24,79     |
| ADuCM360         | 1,93     | 0,5      | 0,68      | 3,5             | 3   | 3                 | 0,8        | 4                            | $17,\!41$ |

Tabela 2 - Pontuação de cada microcontrolador.

- O microcontrolador da Texas Instruments possui 32 GPIOs e 4 ADC a mais que o microcontrolador da Microchip;
- De acordo com ARM Microcontrollers, o MSP432P4111 (M4F) possui uma performance superior ao ATSAMD21J18 (M0+), aproximadamente 37%;
- Outro item que não foi colocado na tabela de comparação é a memória SRAM. O MSP432P4111 conta com 64 KB de SRAM contra 32 KB do ATSAMD21J18.



#### MSP432P4111

Principais Características:

| Recurso        | Valor          |
|----------------|----------------|
| Processador    | ARM Cortex-M4F |
| Instrução      | 32-bit         |
| Temporizadores | sim            |
| Clock          | 48 MHz         |
| Memoria Flash  | 2048KB         |
| Memoria Ram    | 256KB          |
| I2C            | 4              |
| UART/SPI       | 4              |
| PWM            | sim            |
| I/O            | 84             |
| ADC            | 24 canais      |
| Temperatura    | -40 a 85°C     |
|                |                |

Tabela 3 - Características do MSP432P4111.

Fonte: (Texas Instruments, 2018, pág.3).



Figura 8 – Arquitetura do microcontrolador MSP432P4111.



#### 3. Hardware do OBC



#### Unidade de Armazenamento

- Estimativa de 176MB/dia de dados provenientes de Imagem e Telemetria;
- Estimativa de 512KB para armazenamento do software embarcado;

Fonte: (FROST; AGASID, 2015, pág.97).

| Característica                            | SRAM                 | DRAM                 | Flash                                                   | MRAM              | FRAM                         | CRAM/PCM          |
|-------------------------------------------|----------------------|----------------------|---------------------------------------------------------|-------------------|------------------------------|-------------------|
| Não-Volátil                               | Não                  | Não                  | Sim                                                     | Sim               | Sim                          | Sim               |
| Tensão de operação,<br>+- 10%             | $3.3-5~\mathrm{V}$   | 3.3 V                | $3.3 \in 5 \text{ V}$                                   | 3.3 V             | 3.3 V                        | 3.3  V            |
| Organização<br>bits/die                   | $512\mathrm{k}\ge 8$ | $16\mathrm{M} \ge 8$ | $16\mathrm{M} \ge 8;\ 32\mathrm{M} \ge 8$               | 128k x 8          | 16k x 8                      | -                 |
| Retenção<br>de Dados (@70° C)             | N/A                  | N/A                  | 10 anos                                                 | 10 anos           | 10 anos                      | 10 anos           |
| Resistencia<br>(Ciclo de Deletar/Escrita) | Ilimitado            | Ilimitado            | 10^6                                                    | 10^13             | 10^13                        | 10^13             |
| Tempo de Acesso                           | $10~\mathrm{ns}$     | 25  ns               | 50 ns depois de uma<br>pagina lida;                     | 300  ns           | 300  ns                      | $100~\mathrm{ns}$ |
| $200 \mathrm{ms}$                         |                      |                      |                                                         |                   |                              |                   |
| escrita; 2ms para deletar                 |                      |                      |                                                         |                   |                              |                   |
| Radiação<br>(TID)                         | 1Mrad                | 59krad               | 30krad                                                  | 1Mrad             | 1 Mrad                       | 1 Mrad            |
| SEU<br>rate (relativo)                    | zero                 | Alto                 | zero (celulas); Baixo -Medio (dispositivos eletronicos) | zero              | zero                         | zero              |
| Faixa de                                  | Padrão               | T                    | Gi-1                                                    | Padrão            | Padrão                       | Padrão            |
| Temperatura                               | Militar              | Industrial           | Comercial                                               | Militar           | Militar                      | Militar           |
| Potência                                  | $500~\mathrm{mW}$    | $300~\mathrm{mW}$    | 30  mW                                                  | $900~\mathrm{mW}$ | 270  mW                      | -                 |
| Pacote                                    | 4MB                  | $128~\mathrm{MB}$    | $128-256~\mathrm{MB}$                                   | $1~\mathrm{MB}$   | 1.5 MB (pacote com 12 chips) |                   |

|            | M               | emórias          |
|------------|-----------------|------------------|
| Recurso    | FM25V05-GTR     | SQF-MSDM1-4G-21E |
|            | Cypress         |                  |
| Fabricante | Semiconductor   | Advantech Corp   |
|            | Corporation     |                  |
| Temp Op.   | -40∘C ~85∘C     | -40°C ~85°C      |
| Corrente   | 300uA           | 150uA            |
| Tensão Op. | 2 V ~3.6 V      | 2.7 V ~3.6 V     |
| Capaciade  | 512Kb (64K x 8) | 4GB              |
| Protocolo  | SPI             | SPI              |

Tabela 5 – Especificação das memórias da Unidade de Armazenamento.

Tabela 4 – Arquitetura do microcontrolador MSP432P4111.



#### 3. Hardware do OBC



#### **Periféricos**

#### Sensor de Corrente

Fonte: (TEXAS INSTRUMENTS, 2018d, pág.2)

V<sub>IN+</sub> O

V<sub>IN-</sub> O

V<sub>IN</sub>

Figura 9 – Esquemático Eletrônico de uma aplicação usual do INA193A-EP.

• **Produto**: INA193A-EP;

Fabricante: Texas Instruments;

• **Temp Op.:**  $-55 \sim 105$ °C;

• **Corrente:** 1.3mA;

• **Tensão**: 2.7 ∼18V.

#### Sensor Inercial

Fonte: (INVENSENSE, 2018, pág.20)



Figura 10 – Esquemático Eletrônico de uma aplicação usual do MPU9250.

• **Produto:** MPU-9250;

• **Fabricante:** TDK InvenSense;

• **Temp Op.:**  $-40 \sim 85$ °C;

• **Corrente**: 3.2mA;

• **Tensão:** 2.4 ~3.6 V.

Protocolo: SPI

#### Sensor de Temperatura

Fonte: (TEXAS INSTRUMENTS, 2018, pág.1)



Figura 11 – Esquemático Eletrônico de uma aplicação usual do TMP422-EP

Produto: TMP422-EP;

• **Fabricante:** Texas Instruments;

• **Temp Op.:**  $-55 \sim 127$ °C;

• **Corrente**: 60mA;

• **Tensão:**  $2.7 \sim 5.5$ .

Protocolo: SPI





#### **Dimensões Físicas**

Cada placa deve ter uma forma de 90x96mm;

• Furos M3;

Fonte: (PC/104 EMBEDDED CONSORTIUM, 2008, pág.20)



Figura 12 – Dimensões do módulo PC/104-Plus em polegadas e milímetros.





#### Watchdog Externo

- Normalmente utilizado para monitorar o estado do microcontrolador, evitando o travamento do sistema. Basicamente, um Watchdog externo é um contador regressivo que, ao final da contagem, reinicia o microcontrolador em caso de um evento SEE;
- O contador STWD100, produzido pela fabricante STMicroelectronics, possui três tempos para reset (3.4ms, 6.3ms, 102ms e 1.6s).

Fonte: (STMicroelectronics, 2017, pág.4)



Figura 13 – Diagrama Lógico do STWD100.







#### **Requisitos e Funcionalidades**

- Poucos requisitos foram delimitados, pois o projeto da missão CubeSat ainda está em fase de discussão;
- A abordagem utilizada para contornar essa situação foi adicionando requisitos das missões QB50 e Aato-1;

| Número do Requisito | Descrição do Requisíto                                                                   |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------|--|--|--|--|
|                     | O OBC deve armazenar os seguintes dados a cada um segundo: Imagens da Carga Útil e       |  |  |  |  |
| OBC-SW-R1           | informações temporais e espaciais das imagens; Temperatura do sistema; Tensão e Corrente |  |  |  |  |
|                     | consumidas pelo sistema; Atitude do CubeSat; Resposta de cada subsistema.                |  |  |  |  |
| OBC-SW-R2           | O OBC deve controlar os subsistemas do CubeSat.                                          |  |  |  |  |
| OBC-SW-R3           | O OBC deve realizar um log de eventos do sistema.                                        |  |  |  |  |
| OBC-SW-R4           | O OBC deve ter um controle da referência temporal, com uma precisão de 500ms.            |  |  |  |  |
| OBC-SW-R5           | O OBC deve realizar o pacote de telemetria/payload e enviar dados                        |  |  |  |  |
| OBC-SW-RS           | para o subsistema de TT&C, durante uma janela de transmissão.                            |  |  |  |  |
| OBC-SW-R6           | O OBC deve identificar e executar os comandos recebidos da Estação Terrestre.            |  |  |  |  |
| OBC-SW-R7           | O OBC deve alternar os modos de operação de acordo com o a potência na bateria.          |  |  |  |  |
| OBC-SW-R8           | O OBC deve possuir um sistema anti travamento.                                           |  |  |  |  |

Tabela 6 – Requisitos do *Software*.





#### Arquitetura

- Arquitetura baseada em Camadas (LBA, do inglês Layered-based Architecture);
- Abstrai o *software* embarcado de acordo com sua proximidade com o *hardware*;

|            | Aplicação Final                                   |          | Camada de Aplicação                |
|------------|---------------------------------------------------|----------|------------------------------------|
|            | Gerenciamento das Tarefas Sistema de Arquivos     |          | Camada de Serviço do Sistema       |
|            | Sistema Operacional em Ten                        | npo Real | Camada do Sistema Operacional      |
| Bootloader | Pacote de Suporte da Placa Drivers do Dispositivo |          | Camada de Abstração de Hardware    |
|            | Hardware                                          |          | Camada de Baixo Nível Placa do OBC |

Figura 14 – Arquitetura de abstração de Camadas.





#### Arquitetura

- Arquitetura baseada em Camadas (LBA, do inglês Layered-based Architecture);
- Abstrai o software embarcado de acordo com sua proximidade com o hardware;

|            | Aplicação Final                                            |                     | Camada de Aplicação                       |
|------------|------------------------------------------------------------|---------------------|-------------------------------------------|
|            | Gerenciamento das Tarefas                                  | Sistema de Arquivos | Camada de Serviço do Sistema              |
|            | Sistema Operacional em Tem                                 | npo Real            | Camada do Sistema Operacional             |
| Bootloader | otloader Pacote de Suporte da Placa Drivers do Dispositivo |                     | Camada de Abstração de Hardware DriverLib |
|            | Hardware                                                   |                     | Camada de Baixo Nível Placa do OBC        |

Figura 14 – Arquitetura de abstração de Camadas.





#### Arquitetura

- Arquitetura baseada em Camadas (LBA, do inglês Layered-based Architecture);
- Abstrai o *software* embarcado de acordo com sua proximidade com o *hardware*;

| Aplicação Final |                            |                        | Camada de Aplicação                       |
|-----------------|----------------------------|------------------------|-------------------------------------------|
|                 | Gerenciamento das Tarefas  | Sistema de Arquivos    | Camada de Serviço do Sistema              |
|                 | Sistema Operacional em Ten | ıpo Real               | Camada do Sistema Operacional FreeRTOS    |
| Bootloader      | Pacote de Suporte da Placa | Drivers do Dispositivo | Camada de Abstração de Hardware DriverLib |
| Hardware        |                            |                        | Camada de Baixo Nível Placa do OBC        |

Figura 14 – Arquitetura de abstração de Camadas.





#### Arquitetura

- Arquitetura baseada em Camadas (LBA, do inglês Layered-based Architecture);
- Abstrai o *software* embarcado de acordo com sua proximidade com o *hardware*;

| Aplicação Final |                            |                                        | Camada de Aplicação                       |
|-----------------|----------------------------|----------------------------------------|-------------------------------------------|
|                 | Gerenciamento das Tarefas  | Sistema de Arquivos                    | Camada de Serviço do Sistema CSS          |
|                 | Sistema Operacional em Tem | Camada do Sistema Operacional FreeRTOS |                                           |
| Bootloader      | Pacote de Suporte da Placa | Drivers do Dispositivo                 | Camada de Abstração de Hardware DriverLib |
| Hardware        |                            |                                        | Camada de Baixo Nível Placa do OBC        |

Figura 14 – Arquitetura de abstração de Camadas.





#### Arquitetura

- Arquitetura baseada em Camadas (LBA, do inglês Layered-based Architecture);
- Abstrai o software embarcado de acordo com sua proximidade com o hardware;

Fonte: (EBRARY, 2018, adaptado pág.1). Software de Voo Aplicação Final Camada de Aplicação CSS Gerenciamento das Tarefas Sistema de Arquivos Camada de Serviço do Sistema **FreeRTOS** Sistema Operacional em Tempo Real Camada do Sistema Operacional DriverLib Camada de Abstração de Hardware **Bootloader** Drivers do Dispositivo Pacote de Suporte da Placa Camada de Baixo Nível Hardware Placa do OBC

Figura 14 – Arquitetura de abstração de Camadas.





#### **DriverLib**

- Conjunto de APIs, distribuído pela Texas Instruments, utilizado para controlar, configurar e manipular os periféricos do microcontroladores da família MSP432 e MSP430;
- Facilita a implementação do código embarcado, deixando-o mais intuitivo;
- O DriverLib possui 25 APIs;

```
1 int main(void){
2 //...
3 CSKEY = 0x695A;
4 CSCTL |= SELM_1 | DIVM_2;
5 SKEY = 0;
6 //...
Figura 16 - Configurando o MasterClock com a API do DriverLib.
```

Figura 15 - Configurando o *MasterClock* a nível de registrador.





#### **FreeRTOS**

- Kernel gratuito utilizado em aplicações embarcadas que necessitam de aplicação em tempo real, sendo normalmente empregado em CubeSats;
- Imagem típica de 6K a 12K bytes;

• O sistema controla as tarefas (*Tasks*) de acordo com sua prioridade;

• O FreeRTOS possui 145 APIs;

• As APIs mais utilizadas são as que envolvem o controle das *Tasks*.





Fonte: (LIN,2010, adaptado pág.20)

Figura 17 - Estados das Tasks no FreeRTOS





#### Camada de Serviço do Sistema

- Uso da UML para modelar a CSS;
  - rápido entendimento do software a partir do diagrama UML;
  - fácil manutenção do software;
  - portabilidade do software para várias plataformas e linguagens;
  - linguagem de modelagem amplamente utilizada na engenharia de software.

Fonte: (DOUGLASS, 2009, pág.5). Usar a extensão *FunctionalC*, permitindo 1 extern int mins; a modelagem do sistema na linguagem C; 2 extern int secs; Fonte: (DOUGLASS, 2009, pág.5). <<File>> 4/\*## operation Reset() \*/ **Timer** 5 void Reset(); + mins : int + secs : int 7/\*## operation tick() \*/ 8 void tick(); - tick(): void - reset(): void 10 } Figura 22 – Exemplo Timer UML.

Figura 23 – Transcrição do Timer UML para código em C.



#### Camada de Serviço do Sistema



Figura 18 – UML da Camada de Serviço do Sistema.



### Resultados Preliminares





#### **Arquitetura do Hardware:**



Figura 19 – Arquitetura prévia do OBC.





#### **Esquemático Eletrônico:**







DC - DC

VCORE

Figura 20 – Esquemático prévio do OBC.





#### **Esquemático Eletrônico:**





Figura 22 – Desenho do MPU-9250 no KiCad.

Figura 21 – Desenho do MSP432P4111 no KiCad.





#### **Esquemático Eletrônico:**



Figura 23 – Desenho do Regulador de Tensão LM317 no KiCad.



Figura 24 – Desenho do Watchdog STWD100 no KiCad.



#### **5.Resultados Preliminares**



#### **Problemas:**

- Não cumprimento do cronograma;
- Fatores não cogitados durante a elaboração do cronograma;
  - Atraso de alguns componentes comprados no exterior;
  - Atraso do desenvolvimento do software devido a falta de experiência com o FreeRTOS;
  - entre outros.



## Trabalhos Futuros



#### **6.Trabalhos Futuros**



- Realizar as atividades faltantes durante as férias para não interferir no cronograma;
  - Definição das interfaces do barramento ISA;
  - Teste em protoboard com todos os componentes;
  - Realização do Esquemático completo do sistema;
  - Realização do Fluxograma da camada de Serviço do Sistema;
- Alguns pontos, como *shielding* metálico e códigos corretores, não sejam implementados devido o tempo escasso.



## Referências



#### Referencias



ADDAIM, Adnane; KHERRAS, Abdelhaq; ZANTOU, El Bachir. **Design of Low-cost Telecommunications CubeSat-class Spacecraft.** Centre For Space Research And Studies, EMI, Marocos: [s.n.], 2010. 6 p. Disponível em: <goo.gl/ciGc2d>. Acesso em: 05 abr. 2018.

BARNHART, David J. **Very Small Satellite Design for Space Sensor Networks.** United Kingdom: Faculty Of Engineering And Physical Sciences - Faculty Of Engineering And Physical Sciences, 2008. 233 p. Disponível em: <a href="http://www.dtic.mil/dtic/tr/fulltext/u2/a486188.pdf">http://www.dtic.mil/dtic/tr/fulltext/u2/a486188.pdf</a>>. Acesso em: 31 mar. 2018.

CUBESAT PROGRAM. **CubeSat Design Specification Rev. 13**. California: California Polytechnic, 2014. 42 p. Disponível em: <a href="https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds-rev13-final2.pdf">https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds-rev13-final2.pdf</a>. Acesso em: 31 mar. 2018.

EBRARY. **Typical Software Architecture.** 2018. Disponível em: <a href="https://ebrary.net/22045/computer science/typical software architecture">https://ebrary.net/22045/computer science/typical software architecture</a>>. Acesso em: 06 jun. 2018.

INVENSENSE. **MPU-9250 Product Specification Revision 1.1.** 2018. Disponível em: <a href="https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf">https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf</a>>. Acesso em: 18 jun. 2018.

LIN, Yuhui. **Formal Analysis of FreeRTOS.** 2010. 177 p. Tese (Mestrado em Engenharia de Software)- University of York, Departamento de Ciência da Computação, Estados Unidos, 2010. Disponível em: <goo.gl/R397j8>. Acesso em: 18 jun. 2018.

MABROUK, Elizabeth . **What are SmallSats and CubeSats?.** Disponível em: <a href="https://www.nasa.gov/content/what-are-smallsats-and-cubesats">https://www.nasa.gov/content/what-are-smallsats-and-cubesats</a>>. Acesso em: 25 mar. 2018.

PC/104 Embedded Consortium (a). **PC/104 Embedded Consortium**. 2.6. ed. [S.l.:s.n.], 2008. 25 p. Disponível em: <a href="https://pc104.org/wp-content/uploads/2015/02/PC104\_Spec\_v2\_6.pdf">https://pc104.org/wp-content/uploads/2015/02/PC104\_Spec\_v2\_6.pdf</a>. Acesso em: 06 abr. 2018.

TEXAS INSTRUMENTS. (d) **CURRENT SHUNT MONITORS -16-V to 80-V COMMON MODE RANGE**. 2018. Disponível em: <a href="http://www.ti.com/lit/ds/symlink/ina193a-ep.pdf">http://www.ti.com/lit/ds/symlink/ina193a-ep.pdf</a>>. Acesso em: 18 jun. 2018

WEKERLE, Timo; FILHO, José Bezerra Pessoa. **Status and Trends of Smallsats and Their Launch Vehicles** — An Up-to-date Review. São Paulo: Departamento de Ciência e Tecnologia Aeroespacial - Instituto Tecnológico de Aeronáutica – Divisão de Engenharia Aeronáutica e Mecânica, 2017. 18 p. v. 3. Disponível em: <a href="http://www.scielo.br/pdf/jatm/v9n3/2175-9146-jatm-09-03-0269.pdf">http://www.scielo.br/pdf/jatm/v9n3/2175-9146-jatm-09-03-0269.pdf</a>>. Acesso em: 31 mar. 2018.

# Muito Obrigado!

