

Názov cvičenia:

Meranie prenosových vlastností Wienovho článku

Ciel': naučiť žiakov vypočítať kvázirezonančnú frekvenciu Wienovho článu, odmerať prenosovú a fázovú frekvenčnú charakteristiku, vypočítať šírku prenášaného frekvenčného pásma filtra, nakresliť pomocou programu Excel frekvenčné charakteristiky, vyhodnotiť odmerané a vypočítané hodnoty frekvenčných charakteristik

Úlohy:

- 1. Odmerajte na Wienovom článku:
 - prenosovú a fázovú frekvenčnú charakteristiku
- 2. Nakreslite odmerané charakteristiky s vyznačením B_3
- 3. Dopočítajte B_3
- 4. Porovnajte odmerané a vypočítané parametre

Wienov článok má podobné vlastnosti ako PRO, ale nemá cievku!

Súpis prístrojov a pomôcok:

G - generátor typ VELLEMAN 1 MGHz

OSC - dvojkanálový osciloskop typ *OSCILLOSCOPE TOS-2020CT*

EV - 2 krát elektronický voltmeter typ GVT-427B

Meraný prípravok Wienov článok s prvkami:

$$\mathbf{R} = 10 \, (\mathbf{k}\Omega)$$

$$C = 1000 \text{ (pF)}$$

Výpočet kvázirezonančnej frekvencie:

Napíšte vzťah a vypočítajte z daných prvkov:

$$f_m = \frac{1}{2\pi RC} = \frac{1}{2.\pi.10.10^3.100.10^{-12}} =$$
15915,49 Hz

Meranie na Wienovom článku

Meno a priezvisko: Daniel Orbán, IV.C

Tabuľka nameraných a vypočítaných hodnôt:

 $U_1 = 0,340 \text{ V}, \quad U_{2o} = 1,0 \text{ V} \rightarrow 100 \text{ mV}$ napätie U_{20} je výstupné napätie Wienovho článku pri frekvencii f_m

ČM	f (kHz)	U ₂ (V)	a _u (dB)	y _U (dB)	φ (°)
1.	1,1	0.3	-1,08	9,54	65,45
2.	1,5	0.4	1,41	12,04	72
3.	2	0,5	3,35	13,98	58,06
4.	2,6	0.6	4,93	15,56	49,66
5.	3,3	0,707	6,36	16,9	39,13
6.	4,2	0,8	7,43	18,06	34,52
7.	5,5	0,9	8,46	19,08	26,67
8.	11,08	1	9,37	20	0
9.	21,4	0,9	8,46	19,08	25
10.	28,8	0,8	7,43	18,06	40
11.	35,9	0,707	6,36	16,9	42,86
12.	46,3	0,6	4,93	15,56	49,09
13.	58,6	0,5	3,35	13,98	55,38
14.	75,6	0,4	1,41	12,04	61,46
15.	105,8	0,3	-1,08	9,54	68,28

Postup pri meraní frekvenčných charakteristík:

K samotnému meraniu potrebujeme **prípravok (WČ)**, kde sú použité súčiastky **R** a **C**. Ďalej **generátor harmonického signálu** (s možnosťou regulácie úrovne vst. napätia U_1 a frekvencie); **dvojkanálový EV** a **dvojkanálový osciloskop**. Najprv si v prvom kroku vypočítame fm_{Vyp} - **kvázirezonančnú frekvenciu**, ktorú nastavíme na generátore. V našom prípade si na CH1 nastavíme 15,915 kHz. Na osciloskope sa nám zobrazí priebeh, kde **pri vyradení ČZ** \rightarrow **X-V** máme obvod v kvázirezonancií – na osciloskope sa má zobraziť **úsečka**. Pokiaľ ju nevidíme, tak zmenou frekvencie nastavíme túto kvázirezonančnú frekvenciu, aby sme na obrazovke dostali priamku. Tým pádom sa bude **líšiť** od vypočítanej. Tu je fázový posun $\mathbf{0}^{\mathbf{c}}$. Overíme si to. Vrátime sa z režimu X-Y naspäť do **stavu časovej základe**, kde vidíme obidva priebehy. Ideme merať fázový posun. Tu je veľmi dôležitá **kalibrácia osciloskopu** (viď. PL1 meranie φ). V režime polohy zeme GND uzemníme obidva priebehy a snažíme sa nastaviť signály presne - zároveň s horizontálnou osou. Signál dáme naspäť do AC (striedavého signálu) a správne nastavíme variabilnú citlivost″, tak aby sa nám **signály prekrývali**. Tu vidíme že sa vst. aj výst. signál prekrývajú a obvod je v kvázirezonancií. Dialo sa nám to pri frekvencií $fm_{odm} = 11,08$ kHZ, ktorá je rozdielna od fm_{vyp} .

Meranie na Wienovom článku Meno a priezvisko: *Daniel Orbán, IV.C*

Máme nastavenú úroveň výstupného napätia **100 mV** pri kvázirez. frekvencií a úroveň vst. napätia je **0,340 V** čo je spôsobené tým, že Wienov článok je konštruovaný ako pasívny filter. Budeme postupne meniť úrovne frekvencie **nadol** od kvázirez. frekv. a sledovať **úroveň výstupného napätia**. Meriame aj **fázový posun**, čiže nás budú zaujímať **dieliky** a opäť je potrebné **validiravní** osciloskop. Následne meriame frekvencie smerom **nahor** od kvázirez. frekv. Určíme šírku pásma **B**₃.

Príklady výpočtov:

$$a_U = 20.\log \frac{U_2}{U_1}$$
 (dB) $y_U = 20\log \frac{U_2}{U_{20}}$ (dB)

Vyhodnotenie: nakresliť a vyhodnotiť frekvenčné charakteristiky, porovnať vypočítanú a odmeranú kvázirezonančnú frekvenciu a dôvody vzniku odchýlok, vyhodnotiť fázu Wienovho článku, napíšte odmeranú **B**₃

Odchýlky medzi **fm**_{vyp} a **fm**_{odm} vznikajú, pretože súčiastky sú dané toleranciami vplyvom výrobného procesu. Sú to reálne súčiastky z nejakého materiálu, ktorý to ovplyvňuje. Ďalej to môžu ovplyvňovať parazitné kapacity, alebo taktiež odpor. Nič nie je ideálne či perfektné.

2B je zariadenie, obsahuje 2 brány (vst. a výst.), alebo **4póly** so štyrmi svorkami pripojené v el. obvode. Dôležitou vlastnosťou je **Napäťový prenos** – ozn. **A**, kt. je daný vzťahom $A = U_2/U_1$

Filtre sú zariadenia (proces), ktorý zo signálu odstráni nechcenú časť, alebo vlastnosť - najčastejšie frekvencií, kvôli potlačeniu rušenia (zníženie šumu).

<u>Delíme</u>: **PASÍVNE**: obsahujú pasívne súčiastky RL, RC a **AKTÍVNE** okrem reaktančných aj zosilňovacie súčiastky (OZ).

Využitie má v rôznych každodenných situáciách, technických či priemyselných aplikáciach (PC pri úprave obrázkov). Filtrácia napájacích zdrojov, použitie v audio technike na delenú reprodukciu. Analógové filtre = telekomunikácie, boli zdrojom veľkých ziskov pre spoločnosti, stále aj dnes majú uplatnenie pri jednoduchých úlohách.. Filtrovanie v digitálnej oblasti (dnes).

Wienov článok je selektívny článok (sérioparalelné zapojenie 2R a 2C), ktorý ma pri svojej kritickej frekvencií najlepšie prenosové vlastnosti, ak je A pri kritickej frekvencií max. pracuje ako priepust, ak je min. ako zadrž

- 1. DP filter prepúšťa nižšie frekvencie ako je hraničná frekvencia (RC, LR integračný)
- 2. HP filter prepúšťa vyššie frekvencie ako je hraničná frekvencia (CR, RL derivačný)
- 3. Pásmová priepust prepúšťa pásmo frekvencii v okolí hraničnej frekvencie (RO, Wienov článok)
- 4. Pásmová zadrž zadržiava pásmo frekvencii v okolí hraničnej frekvencie (T článok)

Meranie na Wienovom článku

Meno a priezvisko: Daniel Orbán, IV.C

 $B_3 = fh - fd = 35.9 - 3.3 = 32.6 \text{ kHz}$

Meranie na Wienovom článku Meno a priezvisko: *Daniel Orbán, IV.C*