DSA2101

Essential Data Analytics Tools: Data Visualization

Yuting Huang

Weeks 10 Introduction to ggplot2

Introduction

- ▶ Just as the grammar of language that helps us construct meaningful sentences out of words, the **Grammar of Graphics** helps us construct graphs out of different visual elements.
- ▶ ggplot2 implements the Grammar of Graphics.
 - ► The quality of graphs produced by this package is very high.
 - Bear in mind though, this is not the only method for making graphs in R.

We start by loading the required package. ggplot2 is included in the tidyverse package.

library(tidyverse)

Artwork by Allison Horst

The mpg data set

Let's make a first plot using this package before we go any further.

- ▶ The mpg data frame in base R contains observations on 38 models of cars.
- ► For now, let's work with just two variables:
 - ▶ displ, car's engine size in litres.
 - ▶ hwy, fuel efficiency of the car on a highway.

```
data(mpg)
mpg %>% head(4)
```

```
## # A tibble: 4 x 11
##
    manufacturer model displ year
                                 cyl trans dry
                                                      ctv
                                                           hwy fl
                                                                    cl
    <chr>>
               <chr> <dbl> <int> <int> <chr>
                                              <chr> <int> <int> <chr>
##
                                                                    <c
## 1 audi
                      1.8 1999 4 auto(15)
               a4
                                              f
                                                      18
                                                           29 p
                                                                    СО
                      1.8 1999 4 manual(m5) f
## 2 audi
              a4
                                                      21
                                                            29 p
                                                                    CO
## 3 audi
                      2
                           2008 4 manual(m6) f
                                                      20
                                                           31 p
             a4
                                                                    СО
## 4 audi
               a4
                       2
                           2008 4 auto(av) f
                                                      21
                                                            30 p
                                                                    СО
```

The mpg data set

A scatterplot, with displ on the x-axis and hwy on the y-axis.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```


Breaking down the syntax

The function ggplot() creates a coordinate system that we can add layers to.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```

- ▶ The first line is the data set to use in the plot
- geom_point() adds a layer of points to the plot, thus creating a scatterplot.
 - ▶ displ is mapped to the x-axis and hwy to the y-axis.

ggplot() template

Every ggplot2 plot has three key components:

- 1. data
- 2. A set of **aesthetic** mappings between variables in the data and visual properties.
- 3. At least one layer which describes how to render each observation. Layers are usually created with a **geom function**.

In ggplot2, we create graphs by adding layers.

Choosing the right plot

There are many geoms available in the ggplot2 package.

The choice of which one to use largely depends on two questions:

- ▶ What are you trying to communicate?
- ▶ What type of variable(s) do you want to show?

Source: Alfredo Hernandez Sanchez

Outline

- 1. Aesthetics and geometrical objects
 - ► Scatterplot
 - ► Histogram
 - ▶ Line and text
 - ► Bar
 - ► Smoothers
 - ► Rug
 - ► Boxplot
 - ► Tiles and hexagons
- 2. Miscellaneous tasks
 - ► Arranging several plots
 - ► Themes
 - ► Colors

Aesthetics mappings

An **aesthetic** describes how properties of the data connects to visual properties of the graph, such as

- ▶ the position of a point.
- ▶ the size, shape, or color of the points plotted.
- ▶ the type of line (solid, dashed, etc), color and thickness of the line.

By adding aesthetics, we can extend a graph on a 2D medium to include several variables.

Geometrical objects

A **geom** refers to the geometrical object used to represent data.

In natural language, we typically use the geom to refer to a particular type of graph:

- ► Scatter plot uses the point geom.
- ▶ Bar chart uses the bar geom.
- ▶ Line chart uses the line geom.
- ▶ ..

Aesthetics and geoms

Each geom has a set of aesthetics associated with it.

- ▶ Some aesthetics are common to many geoms, but there are some aesthetics that only exist for a particular geom.
 - ► For instance, color, size, and coordinates are associated with the point geom. They can also be associated with the line geom.
 - ▶ Line type is associated with the line geom, but not with the point geom.

Scatterplot: geom_point()

geom_point() is used to create scatter plots.

The aesthetics associated with it are

- **X**
- **y**
- ► alpha
- ► color
- ▶ fill
- ▶ group
- shape
- size

The defining characteristic of a point is its position, hence the \mathbf{x} and \mathbf{y} aesthetics are **required**. Others are optional.

How to map an aesthetic

To map an aesthetic to a variable, associate the name of the aesthetic to the name of the variable inside aes()

- ▶ ggplot2 will automatically assign a unique value of the aesthetic to each unique value of the variable.
- ▶ It will also add a legend that explains what levels of the aesthetic correspond to which values of the data.

A basic scatterplot

Recall the scatterplot we made under ggplot2:

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```


A basic scatterplot

Another way to write the code is:

```
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()
```

Pay attention to the structure of this function call:

- ▶ Data and aesthetic mappings are supplied in ggplot()
- ► Layer(s) are added on with +

We can also drop the x= and y= if wanted to, since these are the first and second expected arguments of the function.

A basic scatterplot

This is an important pattern.

- As we learn more about ggplot2, we will construct increasingly sophisticated plots with multiple layers.
- ▶ Almost every layer maps a variable to x and y, so naming these aesthetics is tedious.
- ► We can avoid the tediousness by a **global aesthetic mapping** supply the aesthetics in **ggplot()**, instead of individual geom functions.

In this way, all geom functions that are added as layers will default to these aesthetic mappings.

Mapping color

Suppose we want to map the colors of the points to the class variable.

```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class))
```


Mapping size

If we map the size of the points, instead of their color, then we get what is sometimes referred to as a bubble chart.

```
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(size = class))
```


Mapping size, warning message

Notice that ggplot2 gives a warning message:

Warning: Using size for a discrete variable is not advised.

- ▶ This is because class is an unordered categorical variable.
- ► It is unclear how to map it to the size aesthetic, which is on a ratio scale. Hence the warning from ggplot()

Also notice that some circles are overlapping, making it difficult to see the actual size of the circles.

Maping shape

Instead of mapping size to class, we can use the shape aesthetic, which does not require ordering.

```
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(shape = class))
```


Maping shape, warning message

The earlier warning no longer appears, but we get a different warning, suggesting that we have too many categories for the class variable:

```
## Warning: The shape palette can deal with a maximum of 6 discrete values beca
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.
```

Warning: Removed 62 rows containing missing values (geom_point).

Furthermore, we still have **overplotting** – several points are plotted on top of each other.

Mapping shape (revised code)

- 1. To get rid of the warning, we can edit the **scale** that maps variables to shapes
 - ► The default scale in ggplot2 uses only six entries. We need to manually add one.
- 2. To solve the overplotting problem, we need to **jitter** the points.
 - ▶ Jittering is referred to as a position adjustment for this geom.
 - ► The position adjustment should be specified **outside** the mapping argument of the geom function.

Maping shape (revised code)

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point(aes(shape = class), position = "jitter") +
scale_shape_manual(values = 1:7)
```


Braking distance and speed

In Week 2, we created a scatterplot on the relationship between braking distance and speed using the base R plotting function.

Relationship between Speed and Braking

We can recreate this in ggplot2:

- ▶ Set the point colors to be red using the color aesthetic.
- ▶ Add transparency to the points with alpha; change the font size with size.

```
ggplot(data = cars, aes(x = speed, y = dist)) +
  geom_point(color = "red", alpha = 0.5, size = 4)
```


Braking distance and speed

The other differences with the original plot was that we added labels and a title to the plot.

- ▶ To do so in ggplot2, we need to specify the labs() layer:
 - ▶ title
 - ▶ subtitle
 - **▶** x
 - **y**

We can also remove the grid lines and the background (more on this next week).

Braking distance and speed

Histogram: geom_histogram()

A histogram allows us to visualize the distribution of a single **continuous** variable.

- ▶ The x-axis will first be divided into bins. Then the number of observations in each bin will be counted.
- ► Three related geoms:
 - geom_histogram() displays the counts in each bin with bars.
 - geom_density() computes and draws kernel density estimate. It is a smoothed version of the histogram.
 - Allows comparison between distribution of a variable conditioned on a categorical one, e.g., income distribution for male and female.
 - ▶ stat_ecdf() displays the empirical distribution function.

Aesthetics

Some of the aesthetics for this geom are:

- **X**
- ► alpha
- ▶ color
- ▶ fill

Apart from the aesthetics, we also need to consider the following issues:

- ► The width of the bins used
- ▶ The number of bins
- ► The location of the bins

Distribution of earnings

Let us revisit the histogram we encountered in Week 3.

Distribution of earnings

Here is the first attempt to recreate it in ggplot2.

```
ggplot(data = heights) +
  geom_histogram(aes(x = earn/1000))
```


Distribution of earnings

- ▶ Let us work with bin widths of 10,000 as in Lecture 3.
- ▶ Notice that the left-most rectangle is centered at 0. This is not what we want as there are no negative incomes. We want the lower limit of the left-most bin to be 0.
- ▶ Also add color that we used last time.
- ► As well as labels and titles.

Distribution of earnings (revised code)

Distribution of earnings (revised code)

- ▶ The white outlines are interfering with the grid lines. We should drop them henceforth.
- ▶ In Lecture 3, we use the density for each bin, instead of counts. This makes the histogram closer in spirit to a pdf, since the area would sum to one.
 - ► The geom_histogram() computes certain summaries of the data. Among them are count and density
 - ▶ We can to tell ggplot2 to use density instead of count on the y aesthetic.

Distribution of earnings (revised)

In Lecture 3, we realized that there was a stark difference between males and females in terms of income earned.

▶ How do we present this information?

Mapping a categorical variable to the fill aesthetics:

Notice that the bars for female have been stacked on top of the bars for males.

- ▶ We need a position adjustment of the bars in order to compare them side by side. To do this, we use the position = "dodge" adjustment.
- ► Also, use the scale_fill_discrete() function to control the fill scale and labels .

Earnings, smooth density

If we want to compare distribution conditional on a categorical variable, we would be better off using smooth density plots.

► The smooth density is a curve that gets through the top of the histogram bars when the bins are very, very small.

Earnings, smooth density

Compare densities using the geom_density function:

Earnings, smooth density

Note that **smoothness** is a relative term. We can actually control it through an option in the <code>geom_density()</code> function.

- ▶ The option that controls the smoothing bandwidth is bw.
- ▶ We should select a degree of smoothness that we can defend as being representative of the underlying data.

Earnings, eCDF

We can also use an **empirical cumulative distribution function** (**eCDF**) to examine a distribution.

- ▶ In ggplot2, we use stat_ecdf() to draw such graph.
- ▶ An eCDF for 20 randomly selected females.

Earnings, eCDF

How to read the plot?

- ▶ About 75% of the sample earned less than 25,000 in a year.
- \blacktriangleright Only one female from this sample made more than 50,000.

Earnings, eCDF for multiple groups

The normal distribution

Histogram and density plots provides good summaries of a distribution. What can we do further?

▶ We often see the average and standard deviation used as summary statistics.

```
ggplot(data = data.frame(x = seq(-5, 5)), aes(x)) +
  stat_function(fun = dnorm, n = 101, args = list(mean = 0, sd = 1)) +
  labs(x = "", y = "", title = "A standard normal distribution")
```


The normal distribution

The normal distribution is one of the most famous mathematical concepts in history. Many distributions in real life can be approximated with normal distribution.

▶ Blood pressure, heights, weights, standardized test scores, etc.

Normal distribution can be adapted to different data sets by adjusting two numbers: mean and standard deviation (SD).

- ▶ Once we are convinced that a variable has a distribution that is approximately normal,
- ▶ we can find the specific one that matches our data by matching the mean and SD of the data to the mean and SD of the normal distribution, respectively.

Distribution of height

Mapping the mean and SD of female heights to the arguments passed on to the normal distribution:

Line: geom_line()

The line geom connects observations in the order of the variable on the x-axis (usually date and time).

- ▶ Suitable for plotting time-series data
- ▶ The aesthetics that the line geom uses are
 - **X**
 - 7
 - ► alpha
 - ► color

UNESCAP population data

Let us return to the UN data set from Week 3.

```
UN_data = readxl::read_excel("../data/UNESCAP_population_2010_2015.xlsx",
                           sheet = 3)
head(UN data, n = 3)
## # A tibble: 3 x 7
##
    e fname Y2010 Y2011 Y2012 Y2013 Y2014 Y2015
##
    <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 Afghanistan 2447 2459 2454 2438 2422 2412
## 2 Armenia
              92
                        94 97
                                   99 101 101
## 3 Australia 710 731 740 743 745 752
pop1 = UN data %>%
 gather(Y2010:Y2015, key = years, value = population) %>%
 mutate(year = as.integer(substr(years, 2, 5))) %>%
 filter(e_fname %in% c("Singapore", "Malaysia", "Cambodia",
                      "Thailand", "Viet Nam", "Lao PDR",
                      "Brunei Darussalam"))
```

UNESCAP population data

```
ggplot(data = pop1) +
  geom_line(aes (x = year, y = population, color = e_fname))
```


UNESCAP population data (revised code)

Several problems:

- ▶ The colors are not very helpful. We have to look very closely to distinguish them and match the lines to colors.
 - ► Instead, we shall use the same color for each line, and label it with texts, corresponding to the name of the country.
 - ► If we want to add text near the last point of each line, we will have to make space for it by extending the limits of the graph using the xlim() layer.
- ► The name "Brunei Darussalam" is too long for our purpose. We shall shorten it to "Brunei" using the recode() function from the tidyverse.

Text geom

geom_text() directly adds text to the plot.

- ▶ The aesthetics that it uses are
 - **▶** x
 - **>** y
 - ► label()
- ► There are also additional arguments that allow us to control the position, alignment, and size of the labels.

UNESCAP population data (revised code)

- ▶ Prepare the data for the text geom.
- ► Move the aesthetics mappings to the global level, inside the ggplot() function call.
- ▶ When necessary, we can override the global mapping by defining a new mapping within each layer.
- ▶ Also notice how we add multiple geoms on one graph.

```
pop2 = filter(pop1, year == 2015) %>%
  mutate(fname = recode(e_fname, "Brunei Darussalam" = "Brunei"))
```

UNESCAP population data (revised)

Reference lines

To add a reference line, we can use one of the followings:

- ▶ geom_vline for virtical lines
- ▶ geom_hline for horizontal lines
- ▶ geom_abline for straight lines defined by a slope or an intercept
 - ggplot2 uses ab in the name to remind us that we are supplying the intercept (a) and slope (b).

Line types

Suppose that in the income distribution histogram, we want to indicate high-income earners (more than 100K per annum) with a dashed vertical line.

- ▶ The argument lty or linetype specifies the type of the line.
- ► The argument lwd or size controls the thickness of the line.

Reference lines

First summary on ggplot2

Summary on some geoms and stats we have learned so far.

Case study: US gun murders

Last week, we examined the components of a graph on US gun murders.

▶ We now construct this plot layer-by-layer in ggplot2.

We start by loading the data set:

```
# install.packages("dslabs")
library(dslabs)
df = murders
head(df)
```

```
##
          state abb region population total
## 1
        Alabama
                ΑL
                     South
                              4779736
                                        135
## 2
       Alaska
                AK
                     West
                               710231
                                         19
## 3
        Arizona
                ΑZ
                    West
                              6392017
                                        232
## 4
       Arkansas
               AR.
                    South
                              2915918
                                       93
## 5 California CA
                     West
                             37253956
                                       1257
## 6
      Colorado
                CO
                    West
                              5029196
                                         65
```

1. Aesthetic mappings in a point geom:

```
ggplot(data = df) +
  geom_point(aes(x = population/1e6, y = total))
```


2. A second layer of the plot: Labels to each point to identify the state.

```
ggplot(data = df) +
  geom_point(aes(x = population/1e6, y = total)) +
  geom_text(aes(population/1e6, total, label = abb))
```


3. Tinkering the arguments:

- ▶ In the original plot, the points are larger than the default size. We can change the point size using the size argument in geom_point.
- Now because the points are larger, it is hard to see the labels.
- ► We can move the text slightly to the right or to the left using the nudge_x argument in geom_text().

```
ggplot(data = df) +
  geom_point(aes(x = population/1e6, y = total), size = 3) +
  geom_text(aes(population/1e6, total, label = abb), nudge_x = 1.5)
```

3. Tinkering the arguments makes the plot easier to read.

4. Scales

- ► The original plot is in log-scale. This is not the default in ggplot2. We can use the scale_x_log10() function to control the behavior of scales of the x axis.
- ▶ Because we are in log-scale now, the *nudge* must be made smaller.

```
ggplot(data = df) +
  geom_point(aes(x = population/1e6, y = total), size = 3) +
  geom_text(aes(population/1e6, total, label = abb), nudge_x = 0.07) +
  scale_x_log10() +
  scale_y_log10()
```


5. Next, change the labels and add a title.

6. Categories as colors.

- ► Change the color of the points using the col argument in the geom_point() function.
- ▶ Since the choice of color is determined by a feature of each observation, this is an aesthetic mapping we need to use it inside aes.

- 6. Categories as colors.
 - ggplot2 automatically adds a legend that maps color to region. To disable it, we can further set the geom_point() argument show.legend = FALSE.

- 7. Annotation, shapes, and adjustments:
 - ▶ Next, we want to add a dashed line that represents the average murder rate for the entire country.
 - ▶ The line is defined by the formula: y = rx.
 - ▶ In log-scale, this line turns into log(y) = log(r) + log(x).
 - \triangleright So in our plot, it is a line with slope 1 and intercept $\log(r)$.
 - ► To compute this value, we use our tidyverse skills:

```
r = df %>%
summarize(rate = sum(total) / (sum(population) / 1e6)) %>%
pull(rate) # extract a single column
```

- 7. Annotation, shapes, and adjustments:
 - ► To add the line, we use the geom_abline() function.
 - ▶ We can change the line type and line color using arguments.

7. Annotation, shapes, and adjustments.

Simplify our code using global aesthetic mappings:

8. Add-on packages:

The power of ggplot2 is augmented further due to the availability of add-on packages. In the remaining steps, we improve our plot using the ggthemes and ggrepel packages.

- ggthemes contains many popular themes such as theme_economist and theme_fivethirtyeight.
- ggrepel stands for repulsive textual annotations. It includes a geometry that adds labels while ensuring that they do not fall on top of each other.

```
# install.packages(c("ggthemes", "ggrepel"))
library(ggthemes); library(ggrepel)
```

Gallery of themes: https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/

Final touch:

- ▶ Draw the line first so it doesn't go over the points.
- ► Replace geom_text() with geom_text_repel().

