Data

Economic, health and demographic factors that can influence life expectancy.

Data obtained from *Global Health Observatory* and *United Nations*websites.

After exploratory analysis: **2980 rows** and **7 variables**.

Name	Type	% Range
Life expectancy	continous	36.30 - 84.17
Adult Mortality	continous	49.2 - 696.6
Infant Mortality	continous	0.00 - 0.16
Alcohol	continous	0.00 - 20.18
BMI	continous	19.80 - 32.20
Polio	continous	8.00 - 99.00
Domestic GGHE	continous	0.06 - 12.06

Network

3 networks tested, changes:

- 1. latent variable alcohol↔polio
- 2. remove bmi→alcohol

3 significant conditional independencies obtained.

Model **fitting** conclusions:

- BMI, Polio > Alcohol. influencing Adult Mort.
- 2. **Adult Mort. most** influence **Life Exp.**


```
estimate p.value 2.5% 97.5% alch _||_ bmi | ggh. 0.03377041 0.06533356 -0.002144621 0.069598546 bmi _||_ lf_x | adl_, alch, ggh., inf_ -0.03924450 0.03228090 -0.075069341 -0.003318651 lf_x _||_ poli | adl_, alch, ggh., inf_ 0.02765999 0.13141339 -0.008278774 0.063527450
```

Conclusions

Problems:

- Life expectancy is influenced by a lot of variables, related between them
- Small sample of variables.

Leading to a **high number** of **latent variables** and a **low number** of **independencies**.

Future work:

- Consider more variables.
- **Explicit** some of the **latent** ones.

Even with these improvements, we think it's difficult to obtain a high number of independencies.