Finanzmathe Mitschrift vom 24.10.24

Sisam Khanal

20. November 2024

II.1 Einführung des Einperiodenmodells

Sei $d, p \in \mathbb{N}$. Wir betrachten einen Finanzmarkt mit d+1 Wertpapieren. Beim Einperiodenmodell gibt es genau zwei Zweitpunkt, den Anfangszeitpunkt 0 und der Endzeitpunkt 1. Es kann nur zum Zeitpunkt 0 gehandelt werden wobei man die Preise zum Zeitpunkt 0 kennt, aber i.A noch nicht klar ist, welches von l Szenarien für die Preise zum Zeitpunkt 1 eintreten wird.

Preisvektor zur Zeit 0:

$$\overline{S_0} = (S_0^0, S_0^1, \cdots, S_0^d)^T = (S_0^0, S_0^T)^T \in \mathbb{R}^{d+1}$$

wobei S_0^i der Preis des *i*-ten Wertpapiers zur Zeit 0 für $i \in \{0, 1, \dots, d\}$ ist.

Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein endlicher Wahrscheinlichkeitsraum mit

$$\begin{aligned} |\Omega| &= l, \Omega = \{\omega_1, \cdots, \omega_l\}, \\ \mathcal{F} &= 2^{\Omega} = \mathcal{P}(\Omega), \\ \mathbb{P} : \mathcal{F} &\to [0, 1], \\ \mathbb{P}[A] &= \sum_{\omega_k \in A} \mathbb{P}[\{\omega_k\}] \text{ für } A \subseteq \Omega, \\ \mathbb{P}[\{\omega_k\}] &> 0 \ \forall k \in \{1, \cdots, l\} \end{aligned}$$

Zufallsvektor der Preise zur Zeit l:

$$\overline{S_1} = (S_1^0, S_1^1, \dots, S_1^d)^T = (S_1^0, S_1^T)^T : \Omega \to \mathbb{R}^{d+1}$$

wobei $S_1^i\left(\omega_k\right)\in\mathbb{R}$ der Preis der *i*-ten Wertpapiers zur Zeit 1 unter Szenario k ist für $i\in(0,1,\cdots,d)\,,k\in(1,\cdots,l)$

Alternative können wir die Preise zur Zeit 1 als eine Preismatrix auffassen:

$$S_{1} = \left[\overline{S_{1}}(\omega_{1}) \ \overline{S_{1}}(\omega_{2}) \ \cdots \ \overline{S_{1}}(\omega_{l}) \ \right] = \begin{pmatrix} S_{1}^{0}(\omega_{1}) & S_{1}^{0}(\omega_{2}) & \cdots & S_{1}^{0}(\omega_{l}) \\ S_{1}^{1}(\omega_{1}) & S_{1}^{1}(\omega_{2}) & \cdots & S_{1}^{1}(\omega_{l}) \\ \vdots & \vdots & & \vdots \\ S_{1}^{d}(\omega_{1}) & S_{1}^{d}(\omega_{2}) & \cdots & S_{1}^{d}(\omega_{l}) \end{pmatrix} \in \mathbb{R}^{(d+1) \times l}$$

Wir nehmen an, dass das Orte Wertpapiers eine Anleihe mit fester Verzinsung $r \geq 0$ (Bankkonto) ist mit

$$S_0^0 = 1$$
 und $\forall \omega \in \Omega : S_1^0(\omega) = 1 + r$

Diskontierte Preise:

$$\begin{split} X_0 &= \left(X_0^1, \cdots, X_0^d\right)^T, X_1 = \left(X_1^1, \cdots, X_1^d\right)^T, \Delta X_1 = \left(\Delta X_1^1, \cdots, \Delta X_1^d\right)^T, \\ \text{mit } X_0^i &= S_0^i, X_1^i = \frac{S_1^i}{1+r}, \Delta X_1^i = X_1^i - X_0^i, i \in \{1, \cdots, d\} \end{split}$$

Zum Zeitpunkt 0 nählt man ein Portfolio.

1.1 Definition: Eine Handelsstrategie oder ein Portfolio (im Einperiodenmodell) ist ein Vektor

$$\overline{H} = \left(H^0, H^1, \cdots, H^d\right)^T = \left(H^0, H^T\right)^T \in \mathbb{R}^{d+1}$$

Bei einer Handelsstrategie $\overline{H} = (H^0, H^1, \cdots, H^d)^T$ beschreibt $H^i \in \mathbb{R}$ die Stückzahl von Wertpapier i in Portfolio Zwischen den beiden Zeitpunkten (für $i \in \{0, 1, \cdots, d\}$. Dabei ist H^i nicht zufällig.

Falls $H^0 < 0$: Kreditaufnahme,

Falls $H^i < 0$ für ein $i \in \{1, \dots, d\}$: Leerverkauf (short sell)

1.2 Definition: Sei $\overline{H} \in \mathbb{R}^{d+1}$. Der Wert der Handelsstrategie \overline{H} ist zur Zeit 0 durch:

$$V_0^{\overline{H}} = \left\langle \overline{S_0}, \overline{H} \right\rangle = \overline{S_0^T} \overline{H} = \sum_{i=0}^d S_0^i H^i$$

Und zur Zeit 1 durch die Zufallsvariable $V_1^{\overline{H}}: \Omega \to \mathbb{R}$,

$$V_1^{\overline{H}} = \langle \overline{S_1}(\omega), \overline{H} \rangle = \sum_{i=0}^d S_0^i(\omega) H^i$$

definiert. Weiter definieren wir die diskontierten Werte als

$$D_0^{\overline{H}} = V_0^{\overline{H}} \text{ und } D_1^{\overline{H}} = \frac{V_1^{\overline{H}}}{1+r}$$

1.3 Lemma: Sei $\overline{H} = (H^0, H^T)^T \in \mathbb{R}^{d+1}$ eine Handelsstrategie. Dann gilt

$$D_1^{\overline{H}} = D_0^{\overline{H}} + \langle \Delta X_1, H \rangle$$

Beweis: Übung

Beispiel 1.4

Seien $d = 1, l = 1, p \in (0, 1), \mathbb{P}[\{\omega_1\}] = p, \mathbb{P}[\{\omega_2\}] = 1 - p, S_0^1 = 1, S_1^1(\omega_1) = 2, S_1^1(\omega_2) = \frac{1}{2}$ Sei r = 2 und wähle die Handelsstrategie $\overline{H}(1, -1)$ Dann ist,

$$\begin{split} V_0^{\overline{H}} &= 1 \cdot 1 + 1 \cdot (-1) = 0, \\ V_1^{\overline{H}}(\omega_1) &= (1+r) \cdot 1 + S_1^1(\omega_1) \cdot (-1) = 1, \\ V_1^{\overline{H}}(\omega_2) &= (1+r) \cdot 1 + S_1^1(\omega_2) \cdot (-1) = \frac{5}{2} \end{split}$$

II.2 No-Arbitrage und FTAP1

- Ziel: Charakterirrung vom Markt, in dem es keine Arbitrage-Möglichkeiten gibt.
- Hilfsmittel: äquivalente Martingallmaße
- Hauptresultat: First Fundamental theorem of asset pricing (FTAP1)
- Praktische Umsetzung: prüfe Gleichungssystem auf Lösbarkeit (unter Nebenbedingungen)

- 2.1 Definition: Eine Handelsstrategie $\overline{H} \in \mathbb{R}^{d+1}$ heißt Arbitragemöglichkeit falls gelte:
 - a) $V_0^{\overline{H}} \leq 0$,
 - b) $\forall \omega \in \Omega : V_1^{\overline{H}}(\omega) \geq 0$ und
 - c) $\exists \omega \in \Omega : V_1^{\overline{H}}(\omega) > 0$

Wir sagen, es gilt No-Arbitrage (NA), falls keine Arbitragemöglichkeit existieren.

- 2.2 Lemma: Folgende Aussagen sind äquivalent
 - a) Es gibt eine Arbitragemöglichkeit.
 - b) Es gibt ein $\alpha \in \mathbb{R}^d$, sodass
 - $\forall \omega \in \Omega : \langle \Delta X_1(\omega), \alpha \rangle \geq 0$ und
 - $\exists \omega \in \Omega : \langle \Delta X_1(\omega), \alpha \rangle > 0$
 - c) Es gibt eine Arbitragemöglichkeit $\overline{H} \in \mathbb{R}^{d+1}$ mit $V_0^{\overline{H}} = 0$

Beweis

Übung Eine Wahrscheinlichkeitsmaß Q auf (Ω, \mathcal{F}) können wir durch den Vektoren $q \in \mathbb{R}^l$ mit $q_k = Q[\{\omega_k\}], k \in \{1, \cdots, l\}$ charakterisieren. Für eine Zufallsvariable $Y: \Omega \to \mathbb{R}$ notieren wir mit

$$\mathbb{E}^{Q}\left[Y\right] = \sum_{k=1}^{l} q_{k} Y\left(\omega_{k}\right)$$

den Erwartungswert von Y bzgl. Q. Für $m \in \mathbb{N}$ und einen m-dim Zufallsvektor $Y = (Y^1, \dots, Y^m)^T : \Omega to \mathbb{R}^m$ setzen wir

$$\mathbb{E}^{Q}\left[Y\right] = \left(\mathbb{E}^{Q}\left[Y^{1}\right], \cdots, \mathbb{E}^{Q}\left[Y^{m}\right]\right)^{T}$$

2.3 Definition: Ein Wahrscheinlichkeitsmaß Q auf (Ω, \mathcal{F}) heißt <u>risikoneutral</u> oder <u>Martingalmaße</u>, falls $\forall i \in \{1, \dots, d\}$:

$$\mathbb{E}^Q\left[X_1^i\right] = X_0^i$$

- **2.4 Lemma**: Sei Q ein Wahrscheinlichkeitsmaß auf $\{\Omega, \mathcal{F}\}$ und $q_k = Q[\{\omega_k\}], k \in \{1, \dots, l\}$. Es bezeichne e_i den i-ten Einheitsvektor im \mathbb{R}^d . Dann sind äquivalent:
 - a) Q ist eine Martingalmaße
 - b) $\forall i \in \{1, \dots, d\} : \sum_{k=1}^{l} q_k \langle \Delta X_1(\omega_k), e_i \rangle = 0$
 - c) $\forall \alpha \in \mathbb{R}^d : \sum_{k=1}^l q_k \langle \Delta X_1(\omega_k), \alpha \rangle = 0$

Beweis

Übung

2.5 Definition: Ein Wahrscheinlichkeitsmaß Q auf (Ω, \mathcal{F}) heißt (zu \mathbb{P}) äquivalentes Wahrscheinlichkeitsmaß, wenn $\forall k \in \{1, \dots, l\} : q_k = Q[\{\omega_k\}] > 0$

Wir hatten angenommen, dass $\forall k \in \{1, \dots, l\} : \mathbb{P}[\{\omega_k\}] > 0$ ein \mathbb{P} äquivalentes Wahrscheinlichkeitsmaß auf $\{\Omega, \mathcal{F}\}$ ist, dann stimmen also die Mengen der möglichen Szenarien unter \mathbb{P} und Q überein (aber die genauen Wahrscheinlichkeiten sind in der Regel unterschiedlich)

2.6 Definition: Ein Wahrscheinlichkeitsmaß Q auf $\{\Omega, \mathcal{F}\}$ heißt äquivalentes Martingalmaße (ÄMM) falls Q risikoneutral und äquivalent ist. Wir definieren

$$\mathcal{P} = \{ Q : Q \text{ ist ÄMM } \}$$

Beispiel 2.7:

Seien $d=1, l=2, p\in(0,1), \mathbb{P}\left[\{\omega_1\}\right]=p, \mathbb{P}\left[\{\omega_2\}\right]=1-p, S_0^1=1, S_1^1(\omega_1)=2, S_1^1(\omega_2)=\frac{1}{2}$ und r=0. Wir versuchen, ein ÄMM zu finden. Wenn Q ein ÄMM (charakterisiert durch $q\in\mathbb{R}_2$ ist, dann müssen gelten: $q_1>0, q_2>0$

$$\sum_{k=1}^{2} q_k S_1^1(\omega_k) = q_1 \underbrace{S_1^1(\omega_1)}_{=2} + q_2 \underbrace{S_1^1(\omega_2)}_{=\frac{1}{2}} = 1$$

LGS lösen:

$$q_1 + q_2 = 1$$
$$2q_1 + \frac{1}{2}q_2 = 1$$

Andere Schreibweise:

$$\begin{pmatrix} 1 & 1 \\ 2 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \implies \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{2} \end{pmatrix}$$

Im ersten fundamentalsatz wird ein Zusammenhang zwischen der Existenz von ÄMMs und NA hergestellt:

2.8 Satz (FTAP1): Es gilt: $NA \iff \mathcal{P} \neq \emptyset$. Andereseits gilt: Ein Vektor $q \in \mathbb{R}^l$ definiert genau dann ein ÄMM (via $Q[\{\omega_k\}] := q_k, k \in \{1, \dots, l\}$, wenn $k \in \{1, \dots, l\} : q_k > 0$ gilt, und q eine Lösung des Systems: $\forall i \in \{1, \dots, d\}$

$$q_1 + q_2 + \dots + q_l = 1$$

$$\frac{1}{1+r} \left(S_1^i(\omega_1) q_1 + S_1^i(\omega_2) q_2 + \dots + S_1^i(\omega_l) q_l \right) = S_0^i$$

ist. Um zu überprüfung, ab NA gilt, kann man wegen FTAP1 also testen, ob

$$S_1q = (1+r)\overline{S_0}$$

eine Lösung $q \in \mathbb{R}^l$ mit $\forall k \in \{1, \dots, l\} : q_k > 0$ besitzt

Für den Beweis des FTAP1 benötigen wir folgenden Trennungssatz (in \mathbb{R}^l)

- **2.9** Satz (Trennungssatz): Sei $n \in \mathbb{N}$
 - a) Sei $C \subseteq \mathbb{R}^n$ abgeschlossen, konvex und nichtleer mit $0 \notin C$. Dann existieren $y \in C$ und $\delta > 0$ sodass $\forall x \in C : \langle x, y \rangle \geq \delta > 0$
 - b) Sei $K \subseteq \mathbb{R}^n$ kompakt, konvex und nicht leer und sei $U \subseteq \mathbb{R}^n$ eine linearen Unterraum mit $K \cap U = \emptyset$. Dann existiert $y \in \mathbb{R}^n$ sodass
 - $\forall x \in K : \langle x, y \rangle > 0$,
 - $\forall x \in U : \langle x, y \rangle = 0$

2.10 Proposition

Die Menge \mathcal{P} aller ÄMMs ist konvex. Insbesondere gilt:

$$|\mathcal{P}| \implies |\mathcal{P}| = \infty$$

Beweis: Übung

II.3 Arbitragefreie Preise

Wir Identifizieren im Folgenden ein Derivat mit seiner Auszahlung zur Zeit T=1

3.1 Definition: Ein *Derivat* ist eine Zufallsvariable $\xi:\Omega\to\mathbb{R}$. Für $x,y\in\mathbb{R}$ notieren wir

$$(x-y)^+ = \max \{x-y, 0\}$$

3.2 Beispiel

Beispiele für Derivate:

a) Forward contract: Vereinbarung, zu einem zukünftigen, festgelegten Termin T ein Gut (z.B Wertpapier) zu einem heute vereinbarten Preis k zu kaufen bzw. zu verkaufen. Im Einperiodenmodell: Forward auf Papier

$$i: \xi = S_1^i - k$$

b) <u>Call-Option</u>: Recht, ein Gut zu festgelegt Preis K (dem Strike) zu zukünftigen Zeitpunkt T zu kaufen. <u>Im Einperio</u>denmodell: Call auf Papier

$$i: \xi = \left(S_1^i - k\right)^+$$

c) Put-Option: Analog zu Call, aber Verkaufen. Im Einperiodenmodell: Put auf Papier

$$i: \xi = \left\{k - S_1^i\right\}^+$$

d) Basket-Option: Option auf einen Index von Wertpapier z.B Basket-Call-Option mit Strike k und Gewicht $\alpha \in \mathbb{R}^d$ im Einperiodenmodell :

$$i: \xi = \left(K - S_1^i\right)$$

e) Basket-Option: Option auf einen Index von Wertpapier z.B Basket-Call-Option mit Strike k und Gewicht $\alpha \in \mathbb{R}^d$ im Einperiodenmodell:

$$(\langle S_1, \alpha \rangle - k)^+$$

3.3 Beispiel

Seien $d = 1, l = 2, \mathbb{P}[\{\omega_1\}] = \frac{1}{2} = \mathbb{P}[\{\omega_1\}], S_0^0 = 1, S_1^0 = 1 = 1 = 1, S_1^1(\omega_1) = 2, S_1^1(\omega_1) = \frac{1}{2}$. Betrachte Call $\xi = (S_1^1)^+$. Was ist ein angemessener Preis $P_0(\xi)$ für ξ zur Zeit 0?

Ersten Ansatz: Preis von ξ ist mittlere Auszahlung von ξ bei wiederhaltern Spiel, d.h

$$p_0(\xi) = \mathbb{E}^{\mathbb{P}}[\xi] = \frac{1}{2} \cdot (2-1)^+ + \frac{1}{2} \cdot \left(\frac{1}{2} - 1\right)^+ = \frac{1}{2}$$

Dadurch ergibt sich allerdings eine Arbitragemöglichkeit.

<u>Zeit 0</u>: Verkaufe $6 \times$ Call zum Preis $\frac{1}{2}$, Kaufe $3 \times$ die Aktie; Startkapital 0.

Zeit 1 Szenario ω_1 : Endkapital ist $3 \cdot 2 - 6 \cdot 1(2-1)^+ = 0$

Szenario ω_2 : Endkapital ist $3 \cdot \frac{1}{2} - 6 \cdot 1 \left(\frac{1}{2} - 1\right)^+ = 1,5$

Fischer Ansatz: Preis von ξ ist im Mittelwert unabhängig von ξ bei wiederholtem Spiel, d.h.

$$p_0(\xi) = \mathbb{E}^{\mathbb{P}}[\xi] = \frac{1}{2}(2-1)^+ + \frac{1}{2}\left(\frac{1}{2}-1\right)^+ = \frac{1}{2}$$

Dadurch ergibt sich allerdings eine Arbitragemöglichkeit:

Zeit 0:

- Verkaufe $6 \times$ Call zum Preis $\frac{1}{2}$.
- Kaufe 3× die Aktie; Startkapital 0.

Zeit 1:

- Szenario w_1 : Endkapital ist $3 \cdot 2 6(2-1)^+ = 0$
- Szenario w_2 : Endkapital ist $3 \cdot \frac{1}{2} 6 \left(\frac{1}{2} 1\right)^+ = 1.5$

Wir verwenden im Folgenden das No-Arbitrage-Prinzip zur Bewertung von Derivaten. Wähle den Preis $P_0(\xi)$ von ξ so, dass sich im um $\left(S_0^{d^0}, S_1^{d^1}\right) = (p_0(\xi), \xi)$ erweiterten Modell keine Arbitragemöglichkeit ergibt.

3.4 Definition: Sei ξ ein Derivat. Der Wert $p_0(\xi) \in \mathbb{R}$ heißt arbitragefreier/fairer Preis von ξ , falls das um $\left(S_0^{d+0}, S_1^{d+1}\right) = \left(p_0(\xi), \xi\right)$ erweiterte Marktmodell mit den Preisen $\left(S_0^0, \dots, S_0^d, S_0^{d+1}\right)^T$ und $\left(S_1^0, \dots, S_1^{d+1}\right)^T$ NA erfüllt. Wir bezeichnen mit $\Pi(\xi)$ die Menge aller arbitragefreien Preise von ξ .

Beachte: Wenn $\Pi(\xi)$ nicht leer ist, dann gilt im ursprünglichen Modell NA. Also: Falls NA im ursprünglichen Modell nicht erfüllt ist, dann ist $\Pi(\xi) = \emptyset$. Im Folgenden sei \mathcal{P} bezeichnet die Menge aller ÄMMs im ursprünglichen Modell.

3.5 Satz: Es gelte NA. Sei ξ ein Derivat. Dann ist $\Pi(\xi)$ nicht leer, und es gilt

$$\Pi(\xi) = \left\{ \mathbb{E}^{Q} \left[\frac{\xi}{1+r} \right] \middle| Q \in \mathcal{P} \right\}.$$

Beweis:

" \subseteq ": Sei $Q \in \mathcal{P}$ und $p_0(\xi) = \mathbb{E}^Q\left[\frac{\xi}{1+r}\right]$. Dann ist Q auch ein ÄMM in dem um $(p_0(\xi), \xi)$ erweiterten Markt. FTAP1 impliziert, dass im erweiterten Markt NA gilt, also $p_0(\xi) \in \Pi(\xi)$.

" \supseteq ": $p_0(\xi) \in \mathbb{R}$ ist ein arbitragefreier Preis. Der um $(p_0(\xi), \xi)$ erweiterte Modell erfüllt dann NA. Wende FTAP1 auf dem erweiterten Markt an. Dann existiert ein Wahrscheinlichkeitsmaß auf Q auf (Ω, \mathcal{F}) sodass $\forall k \in \{1, \ldots, l\} : Q[\{\omega_k\}] > 0$ und $\forall k \in \{1, \ldots, d\} : \mathbb{E}^Q[X_1^i] = X_0^i = 0$ Insbesondere gilt $Q \in \mathcal{P}$

$$p_0(\xi) = S_0^{d+1} = X_0^{d+1} = \mathbb{E}^Q \left[X_1^{d+1} \right] = \mathbb{E}^Q \left[\frac{S_1^{d+1}}{1+r} \right] = \mathbb{E}^Q \left[\frac{\xi}{1+r} \right].$$

3.6 Beispiel

Fortsetzung von Bsp 3.3

Neuer Ansatz: NA-Prinzip Aus Bsp 2.7 ist bekannt, dass $q = \left(\frac{1}{3}, \frac{2}{3}\right)^T \in \mathbb{R}^2$ in diesem Marktmodell ein ÄMM Q def. Somit ist (siehe Satz 3.5) $p_0(\xi) = \mathbb{E}^Q\left[\frac{S}{1+r}\right] = \mathbb{E}^Q\left[\left(S_1^1 - 1\right)^+\right] = \frac{1}{3}\left(S_1^1(\omega_1) - 1\right)^+ + \frac{2}{3}\left(S_1^1(\omega_2) - 1\right)^+ = \frac{1}{3}$ ein arbitragefreier Preis.

3.5 Proposition

Es gelte NA. Sei ξ ein Derivat. Dann $\emptyset \neq \Pi(\xi) \subset \mathbb{R}$ Konvex und somit ein Intervall.

Beweis: Übung

Zum Folgenden wollen wir die Intervallgrenzen $\Pi^X(\xi_i) := \sup \Pi(\xi)$ und $\Pi_X(\xi)$ für ein keivert ξ

3.5 Definition: Wir sagen, es gilt Nicht-Redundanz NR wenn die Vektoren

$$\begin{pmatrix} \Delta x_1^i(\omega_1) \\ \vdots \\ \Delta x_1^i(\omega_l) \end{pmatrix}, i \in (1, \dots, d)$$

linear unabhängig sind.

Damit NR erfüllt sein kann, muss notwendigerweise $d \leq l$ gelten. Falls NR nicht erfüllt ist, dann existiert eine strikte Teilmenge dieser Vektoren.

$$\begin{pmatrix} \Delta x_1^i(\omega_1) \\ \vdots \\ \Delta x_1^i(\omega_l) \end{pmatrix}, i \in (1, \dots, d) \text{ s.d } \forall j \in \{m + 1, \dots, d\} \exists \alpha_1, \dots, \alpha_n \in \mathbb{R} \text{ mit}$$

$$\begin{pmatrix} \Delta x_1^j(\omega_1) \\ \vdots \\ \Delta x_1^j(\omega_l) \end{pmatrix} = \sum_{i=1}^m \alpha_i \begin{pmatrix} \Delta x_1^i(\omega_1) \\ \vdots \\ \Delta x_1^i(\omega_l) \end{pmatrix}$$

Die Vektoren (Wertpapier) für $j \in \{m+1, \cdots, d\}$ sind also überflüssig redundant. Durch Wegwerfen von redundanten Wertpapieren können wir jeden Markt zu einem Markt, in dem NR gilt reduzieren.

Erinnerung:

Für eine Handelsstrategie $\overline{H} = (H^O, H^T)^T$ ist

$$V_0^{\overline{H}} = \langle \Delta_1, H \rangle = \frac{V_1^{\overline{H}}}{1+r}$$

3.9 Definition: Sei ξ ein Derivat. Ein Vektor $(X, H^T)^T \in \mathbb{R}^{d+1}$ mit $x \in \mathbb{R}$ (Anfangskapital) und $H \in \mathbb{R}^d$ (Position in Aktien) wird als Superhedging-Strategie für ξ bezeichnet, wenn

Vorlesung 20. November 2024

5.3 Definition: Seien $K, L \in \mathbb{R}$ mit $K \ge L$, sei $\lambda \in [0,1]$ und sei $M = \lambda K + (1-\lambda)L$. Wir nehem an, dass zur Zeit 0 die Call-Option $\left(S_1^1 - K\right)^+$, $\left(S_1^1 - L\right)^+$ zu dem Preisen C(K), C(L) und C(M) gehandelt werden. Der um $\left(C(K), \left(S_1^1 - K\right)^+\right)$, $\left(C(L), \left(S_1^1 - L\right)^+\right)$ erweiterte Markt NA. Dann gilt:

- a) $C(K) \leq C(L)$
- b) $(1+r)(C(K)-C(L)) \le L-K$
- c) $C(\lambda K + (1 \lambda)L) \le \lambda C(K) + (1 \lambda)C(L)$

§3 Elemente der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheoretische Grundlagen, um das Einperiodenmodell auf mehrere Handelszeitpunkte zu erweitern und Informationszunahme im Lauf der Zeit zu modellieren.

Literatur:

- Kremer Einführung in die diskrete Finanzmathe
- Shiryaev Probability-1
- Klenke Wahrscheinlichkeitstheorie
- Mentrup und Schäffler Stochastik

III.1 σ -Algebra

Sei $\Omega \neq \emptyset$ eine Menge. Bezeichne mit $\mathcal{P}(\Omega)$ die Potenzmenge von Ω

- 1.1 Definition: Ein Mengensystem $G \subseteq \mathcal{P}(\Omega)$ heißt Algebra auf Ω , falls gelten:
 - a) $\Omega \in G$
 - b) $A \in G \implies A^c \in G$
 - c) $A, B \in G \implies A \cup B \in G$
- 1.2 Definition: Eine Algebra G auf Ω heißt σ -Algebra auf Ω , falls zusätzlich gilt:

$$A_n \in G \forall n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in G$$

Beispiele für σ -Algebra (und damit auch für Algebra) sind die "triviale" σ -Algebra und die Potenzmenge $\mathcal{P}(\Omega)$. Wenn G eine Algebra ist, dann gilt $\emptyset \in G$ und $\forall A, B \in G$ sind $A \cap B = \left(A^{\complement} \cup B^{\complement}\right)^{\complement} \in G$ und $A \setminus B = A \cap B^{\complement} \in G$. Wenn G eine σ -Algebra ist, dann gilt zusätzlich $A_n \in G \ \forall n \in \mathbb{N} \implies \bigcap_{n \in \mathbb{N}} A_n \in G$

1.3 Lemma: Sei $\Omega \neq \emptyset$ eine Menge und $\{G_{\lambda}\}_{{\lambda} \in \Omega}$ eine Familie von Algebra (bzw. σ -Algebra) auf Ω . Dann ist auch $\cap_{{\lambda} \in \Omega} G_{\lambda}$ eine Algebra (bzw. σ -Algebra) auf Ω .

Beweis: Übung

1.4 Definition: Sei $A \subseteq \mathcal{P}(\Omega)$ eine Mengensystem. Wir definieren:

$$\begin{split} \mathcal{B}^{\mathcal{A}}_{\sigma} &= \{G \subseteq \mathcal{P}(\Omega) : G \text{ Algebra und } G \supseteq \mathcal{A}\} \\ \mathcal{B}^{\mathcal{A}}_{\sigma} &= \{G \subseteq \mathcal{P}(\Omega) : G \text{ } \sigma - \text{ Algebra und } G \supseteq \mathcal{A}\} \end{split}$$

Weiter definieren wir die durch \mathcal{A} erzeugte Algebra:

$$\alpha(\mathcal{A}) = \bigcap_{G \in \mathcal{B}_\sigma^\mathcal{A}} G$$

Lemma 13 Zeigt, dass $\alpha(A)$ eine Algebra und $\sigma(A)$ eine σ -Algebra ist.

1.5 Lemma: Es gelte $|\Omega| < \infty$ Sei G ein Algebra. Dann ist G eine σ -Algebra.

Beweis: Seien $A_n, n \in \mathbb{N}$, Elemente von G und $B = \bigcup_{n \in \mathbb{N}} A_n$. Weil Ω endlich ist, hat G nur endlich viele Elemente und daher geht die Vereinigung nur über endlich viele verschieden Elemente von G. Per Induktion und (iii) in Def 1.1 folgt, dass $B \in G$

Also, Auf endlichen Ω sind Algebren σ -Algebren äquivalent. Für allgemeines Ω gibt es aber Algebra , die keine σ -Algebra sind z.B:

1.6 Bsp.

Sei $\Omega = \mathbb{N}$, $\mathcal{A} = \{A \subseteq \mathbb{N} : |A| = 1\}$ und $G := \alpha(A)$. Dann gilt (Übung).

$$G = \{B \subseteq \mathbb{N} : |B| < \infty \text{ oder } |B^{\mathsf{c}}| < \infty\}$$

. Aus Lemma 1.2 wissen wir, dass G eine Algebra ist. Aber G ist keine σ -Algebra, denn $\forall k \in \mathbb{N} : \{2k\} \in G$ und (wir setzen $\cup_{\lambda \in \emptyset} \cdots = \emptyset$

$$\bigcup_{k\in\mathbb{N}}\left\{ 2k\right\} =2\mathbb{N}\notin G$$

- 1.7 Definition: Sei Ω ein Menge. Ein Mengensystem $D = \{D_{\lambda}\}_{{\lambda} \in \Omega}$ heißt <u>Partition</u> oder <u>Zerlegung</u> von Ω , falls gelten:
 - a) $\forall \lambda \in \Omega : D_{\lambda} \neq \emptyset$
 - b) $\forall \lambda_1, \lambda_2 \in \omega \text{ mit } \lambda_1 \neq \lambda_2 : D_{\lambda_1} \cap D_{\lambda_2} = \emptyset$
 - c) $\cup_{\lambda \in \omega} D_{\lambda} = \Omega$

1.8 Proposition

Sei Ω höchstens abzählbar und $D = \{D_{\lambda}\}_{{\lambda} \in \Omega}$ eine Partition. Dann gilt

$$\sigma(\mathcal{D}) = \left\{ \bigcup_{\lambda \in A} D_{\lambda} : A \subseteq \Omega \right\}$$

Beweis: Sei $\mathcal{F} := \{ \cup_{\lambda \in A} D_{\lambda} : A \subseteq \Omega \}$

- ⊇: Trivial
- \subseteq : Zeige, dass $\mathcal{F} \in \mathcal{B}^{\mathcal{D}}_{\sigma}$. Klar: $\mathcal{D} \subset \mathcal{F}$. Noch zu zeigen: \mathcal{F} ist σ -Algebra.
 - a) Wegen (iii) in Def 1.7 gilt $\Omega = \bigcup_{\lambda \in \Omega} D_{\lambda} \in \mathcal{F}$
 - b) Sei $A \subseteq \mathcal{A}$. Es gilt (wegen (ii) in Def 1.7)

$$\left(\bigcup_{\lambda \in A} D_{\lambda}\right)^{c} = \bigcap_{\lambda \in A} D_{\lambda}^{c} = \bigcup_{\lambda \in \Omega \setminus A} D_{\lambda} \in \mathcal{F}$$

c) Seien $\mathcal{B}_n \in \mathcal{F}, n \in \mathbb{N}$. Für jedes $n \in \mathbb{N}$ gibt es dann $A_n \subseteq \Omega$ sodass $\mathcal{B}_n = \bigcup_{\lambda \in A_n} D_{\lambda}$. Es folgt, dass

$$\bigcup_{n\in\mathbb{N}}\mathcal{B}_n=\bigcup_{n\in\mathbb{N}}\bigcup_{\lambda\in A_n}D_\lambda=\bigcup_{\lambda\in\cup_{n\in\mathbb{N}}A_n}D_\lambda\in\mathcal{F}$$

1.9 Lemma: Es gelte $|\Omega| \leq \infty$. Seien \mathcal{D} und $\tilde{\mathcal{D}}$ zwei Partitionen mit $\sigma(\mathcal{D}) = \sigma(\tilde{\mathcal{D}})$. Dann gilt $\mathcal{D} = \tilde{\mathcal{D}}$

Beweis: Betrachte, dass die Partitionen nur endlich viele Elemente haben, und daher die Darstellung aus Proposition 1.8 gilt. Angenommen, es gibt ein $B \in \tilde{\mathcal{D}}$ mit $B \notin \mathcal{D}$.

- Falls es ein $D \in \mathcal{D}$ gibt, sodass $B \subsetneq D$, dann ist $B \notin \sigma(\mathcal{D}) = \sigma(\tilde{\mathcal{D}})$. Widerspruch.
- Andernfalls gilt $\forall D \in \mathcal{D}$, dass B keine Teilmenge von D ist.
 - Falls es ein $C \in \mathcal{D}$ gibt mit $C \subseteq B$, dann ist $C \notin \sigma(\tilde{\mathcal{D}}) = \sigma(\mathcal{D})$. Widerspruch.
 - Falls es kein $C \in \mathcal{D}$ gibt, das Teilmenge von B ist, dann folgt $B \notin \sigma(\mathcal{D}) = \sigma(\mathcal{D})$. Widerspruch.

Jede σ -Algebra auf einem endlichen Ω kann durch eine Partition erzeugt werden:

1.10 Proposition

Es gelte $|\Omega| < \infty$. Sei G eine σ -Algebra auf Ω . Dann existiert genau eine Partition \mathcal{D} von Ω , sodass $G = \sigma(\mathcal{D})$ Beweis: Für alle $x \in \Omega$ sei $\mathcal{M}_x := \{A \in G : x \in A\}$ und $A_x := \cap_{A \in \mathcal{M}_x} A$. Für $x, y \in \Omega$ definiere $x \ y : \iff y \in A_x$. Dann ist eine Äquivalenzrelation auf Ω denn:

- Reflexivität: Sei $x \in \Omega$. Es gilt $\forall A \in \mathcal{M}_x$, dass $x \in A$ also $x \in A_x$. Somit gilt $x \sim x$
- Symmetrie: Seien $x,y \in \Omega$ mit $x \sim y$. Dann ist $y \in A_x$. Deshalb gilt $\forall A \in G$ mit $x \in A$, dass $y \in A$. Angenommen, $x \notin A_y$. Dann ist $x \in A_x \setminus A_y$. Da G endlich ist, gilt $A_x \setminus A_y \in G$. Es folgt, dass $y \in A_x \setminus A_y$ Widerspruch zu $y \in A_y$. Somit gilt $y \sim x$.
- Transitivität: Seien $x, y, z \in \Omega$ mit $x \sim y$ und $y \sim z$. Sei $C \in \mathcal{M}_x$. Dann ist $C \in G$ und $x \in C$. Wegen $y \in A_x$ folgt heraus $y \in C$, also $C \in \mathcal{M}_y$. Hieraus folgt mit $z \in A_y$, dass $z \in C$. Somit gilt $x \sim z$.

Die Menge der Äquivalenzklassen $\{A_x: x \in \Omega\}$ ist eine Partition \mathcal{D} von Ω . Sei $G' \in G$. Dann gilt $G' = \bigcup_{x \in G} \{x\} \subseteq \bigcup_{x \in G} A_x$. Für alle $x \in G'$ ist $G' \in \mathcal{M}_x$ und daher $A_x = \bigcap_{A \in \mathcal{M}_x} A \subseteq G'$. Also ist $G = \bigcup_{x \in G} A_x \in \sigma(\mathcal{D})$. Es folgt $G \subseteq \sigma(\mathcal{D})$. Für alle $x \in \Omega$ gilt $A_x = \bigcap_{A \in \mathcal{M}_x} A \in G$ und G ist eine σ -Algebra, somit $\sigma(\mathcal{D}) \in G$. Eindeutigkeit folgt aus Lemma 1.9.

1.11 Definition: Es gelte $|\Omega| < \infty$. Sei G eine σ -Algebra auf Ω . Die Partition \mathcal{D} , für die $G = \sigma(\mathcal{D})$ gilt, bezeichnen wir mit $\mathcal{D}(G)$ und sagen dass $\mathcal{D}(G)$ die σ -Algebra G erzeugt.

1.12 Beispiel

Wenn $|\Omega| < \infty$ gilt, dass ist $\mathcal{D}(\mathcal{P}(\Omega)) = \{\{\omega\} : \omega \in \Omega\}.$

1.13 Definition: Es gelte $|\Omega| < \infty$. Sei G eine σ -Algebra auf Ω . Eine Abbildung $\xi : \Omega \to \mathbb{R}$ heißt $\underline{\mathcal{G}}$ -messbar, falls ξ konstant auf den Mengen von $\mathcal{D}(\mathcal{G})$ ist. (genauer: falls es für jedes $D \in \mathcal{D}(\mathcal{G})$ ein $c \in \mathbb{R}$ gibt, sodass $\forall \omega \in D : \xi(\omega) = c$)

Beachte: Wenn $|\Omega| < \infty$ gilt und $\xi : \Omega \in \mathbb{R}$ eine Abbildung ist, dann gibt es $m \in \mathbb{N}$ und $x_1, \dots, x_m \in \mathbb{R}$, sodass $\xi(\Omega) := \{\xi(\omega) : \omega \in \Omega\} = \{x_1, \dots, x_m\}$

- **1.14 Lemma**: Es gelte $|\Omega| < \infty$. Sei \mathcal{G} eine σ -Algebra auf Ω . Seien $m \in \mathbb{N}$, $x_1, \dots, x_m \in \mathbb{R}$ und $\xi : \Omega \to \{x_1, \dots, x_m\}$. Dann sind äquivalent:
 - a) ξ ist \mathcal{G} -messbar
 - b) Für alle $A \subseteq \{x_1, \dots, x_m\}$ gilt $\xi^{-1}(A) := \{\omega \in \Omega : \xi(\omega) \in A\} \in \mathcal{G}$

Beweis: Übung.

Im Allgemeinen (also auch wenn $|\Omega| = \infty$ definiert man Messbarkeit ähnlich zu (ii) in Lemma 1.14.)

1.15 Definition: Sei $\Omega \neq \emptyset$ eine Menge. Für jedes $\lambda \in \Omega$ sei $\xi_{\lambda} : \Omega \to \mathbb{R}$ eine Abbildung. Dann definieren wir

$$\sigma\left(\xi_{\lambda};\lambda\in\Omega\right):=\cap\left\{\mathcal{G}\subseteq\mathcal{P}(\Omega):\mathcal{G}\text{ ist }\sigma\text{-messbar und }\forall\lambda\in\Omega:\xi_{\lambda}\text{ ist }\mathcal{G}\text{-messbar }\right\}$$

In der Def 1.15 kann $\sigma(\xi_{\lambda}; \lambda \in \Omega)$ interpretiert werden als die kleinste σ -Algebra \mathcal{G} , sodass alle $\xi_{\lambda}, \lambda \in \Omega$ \mathcal{G} -messbar sind.

1.16 Beispiel

Wir betrachten einen Würfelwurf: Sei $\Omega = \{1, 2, 3, 4, 5, 6\}$ und $\xi : \Omega \to \{0, 1\}$ und $\xi(\omega)$ ist 1, wenn ω und 0, wenn ω ungerade.

Dann ist $\mathcal{D} = \{\{1,3,5\}, \{2,4,6\}\}$ eine Partition von Ω und es gilt $\sigma(\xi) = \sigma(\mathcal{D}) = \{\emptyset, \omega, \{1,3,5\}, \{2,4,6\}\}$ Interpretation: Nach Beobachtung von $\xi(\omega)$ können wir für jedes Ereignis $A \in \sigma(\xi)$ sagen, ob es eingetreten ist oder nicht. Mit anderen Worten: Wir kennen zwar das eingetretene ω nicht, aber wir wissen, ob $\omega \in \emptyset$ (nie), $\omega \in \{1,3,5\}, \omega \in \{2,4,6\}$ und $\omega \in \Omega$ (immer). In diesen Sinne spiegelt $\sigma(\xi)$ die Information wider, die durch ξ erzeugt wird. Jede $\sigma(\xi)$ -messbare Zufallsvariable $\hat{\xi} : \Omega \to \mathbb{R}$ verwendet nur Information, die bereits in ξ enthalten ist. Man kann zeigen, dass $\hat{\xi} = g \circ \xi$ für eine geeignete Funktion $g : \{0,1\} \to \mathbb{R}$.

- 1.17 Lemma: Es gelte $|\Omega| < \infty$. Sei \mathcal{G} eine σ -Algebra auf Ω und seien $\xi, \eta : \Omega \to \mathbb{R}$ \mathcal{G} -messbar. Dann:
 - a) $\xi + \eta, \xi \eta$ und $\xi \cdot \eta$ sind \mathcal{G} -messbar.
 - b) Falls $\forall \omega \in \Omega : \eta(\omega) \neq 0$ so ist $\frac{\xi}{\eta}$ \mathcal{G} -messbar.
 - c) Für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist $f(\xi) = f \circ \xi : \Omega \to \mathbb{R}$ G-messbar.

Beweis:

- a) Sei $D \in \mathcal{D}(\mathcal{G})$. Es gibt $a, c \in \mathbb{R}$, sodass $\forall \omega \in D : \xi(\omega) = c$ und $\eta(\omega) = a$. Somit gilt $\omega \in D : (\xi + \eta)(\omega) = \xi(\omega) + \eta(\omega) = c + a$. Rest analog.
- b) Analog
- c) Sei $D \in \mathcal{D}(\mathcal{G})$. Es gibt $c \in \mathbb{R}$, sodass $\forall \omega \in D : \xi(\omega) = c$. Also : $\forall \omega \in D : (f \circ \xi)(\omega) = f(\xi(\omega)) = f(c)$

Wiederholung:

Wenn \mathcal{G} eine σ -Algebra auf Ω ist, dann heißt ein Abbildung $\mathbb{P}: \mathcal{G} \to [0,1]$ Wahrscheinlichkeitsmaß (auf dem messbaren Raum (Ω,\mathcal{G})), falls $\mathbb{P}[\omega] = 1$ und aus $A_j \in \mathcal{G}, \forall j \in \mathbb{N}$ mit $\forall i \neq j : A_i \cap A_j = \emptyset$ folgt, dass

$$\mathbb{P}\left[\bigcup_{j=1}^{\infty} A_j\right] = \sum_{j=1}^{\infty} \mathbb{P}\left[A_j\right]$$

Weiter heißt dann $(\Omega, \mathcal{G}, \mathbb{P})$ Wahrscheinlichkeitsraum.

1.18 Definition: Sei $(\Omega, \mathcal{G}, \mathbb{P})$ Wahrscheinlichkeitsraum mit $|\Omega| < \infty$. Zwei σ -Algebren $\mathcal{G}_1, \mathcal{G}_2$ heißen unabhängig, falls $\forall A_1 \in \mathcal{G}_1$ und $A_2 \in \mathcal{G}_i$, $\mathbb{P}[A_1 \cap A_2] = \mathbb{P}[A_1] \cdot \mathbb{P}[A_2]$. Eine Zufallsvariable $\xi : \Omega \to \mathbb{R}$ heißt unabhängig von einer σ -Algebra \mathcal{G} wenn die σ -Algebra $\sigma(\xi)$ und \mathcal{G} unabhängig sind. Zwei Zufallsvariable $\xi, \eta : \sigma \to \mathbb{R}$ heißen unabhängig, wenn die σ -Algebra $\sigma(\xi)$ und $\sigma(\eta)$ unabhängig sind.

1.19 Bemerkung

Sei $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ eine Wahrscheinlichkeitsraum mit $|\Omega| < \infty$ und \mathcal{G} eine σ -Algebra auf Ω . Wenn $\xi : \Omega \to \mathbb{R}$ unabhängig von \mathcal{G} ist, dann gilt $\forall A \in \mathcal{G}$ und $\forall x \in \xi(\Omega)$, dass $\mathcal{P}\left[\{\xi = x\} \cap A\right] = \mathbb{P}\left[\{\xi = x\}\right] \mathbb{P}[A]$.

§III.2 Bedingte Erwartung

In diesen Abschnitt setzen wir einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ mit $|\Omega| < \infty$ und $\forall \omega \in \Omega : \mathbb{P}[\omega] > 0$ voraus.

Wiederholung:

Betrachte $m \in \mathbb{N}, x_1, \dots, x_m \in \mathbb{R}$ und $X : \Omega \to \{x_1, \dots, x_m\}$. Dann ist der Erwartungswert von X gegeben durch

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}[\{\omega\}] = \sum_{j=1}^{m} x_j \mathbb{P}[X = x_j]$$

2.1 Beispiel

Wir betrachten einen Würfelwurf, also $\Omega=\{1,2,3,4,5,6\}$ und $\mathbb{P}[\{\omega\}]=\frac{1}{6},\omega\in\Omega$ mit $X:\Omega\to\{1,2,3,4,5,6\}$, $X(\omega)=\omega$, beschreiben wir die geworfene Augenzahl. Dann ist $\mathbb{E}[X]=\sum_{\omega=1}^6\omega\cdot\frac{1}{6}=\frac{21}{6}=3,5$.

Man kann $\mathbb E$ als die "beste
SSchätzung von X ohne weitere Informationen interpretieren.

Wiederholung:

Wenn $D \in \Omega$ ist mit $\mathbb{P}[D] > 0$ ($\iff D \neq \emptyset$ hier) und $A \subseteq \Omega$ dann ist:

$$\mathbb{P}\left[A|D\right] := \frac{\mathbb{P}\left[A\cap D\right]}{\mathbb{P}\left[D\right]}$$

die elementare bedingte Wahrscheinlichkeit. Die Abbildung $\mathbb{P}\left[\cdot|D\right]:\mathcal{P}(\omega)\to\left[0,1\right]$ ist ein Wahrscheinlichkeitsmaß.

2.2 Bsp

Fortsetzung von Bsp. 2.1. Für $\omega \in \{1, 3, 5\}$ gilt:

$$\mathbb{P}\left[\{\omega\} | \{1,3,5\}\right] = \frac{\mathbb{P}\left[\{\omega\} \cap \{1,3,5\}\right]}{\mathbb{P}\left[\{1,3,5\}\right]} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$

2.3 Definition: Die IndikatorFunktion einer Menge $A \in \Omega$ ist definiert als

$$\mathbb{F}_A: \Omega \to \mathbb{R}, \mathbb{F}_A = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \notin A \end{cases}$$

13 Bedingte Erwartung

Für $A, D \subseteq \Omega$ mit $\mathbb{P}[D] > 0$ gilt $\mathbb{E}[\mathbb{M}_A] = \mathbb{P}[A]$ und

$$\frac{\mathbb{P}\left[A\cap D\right]}{\mathbb{P}\left[D\right]} = \frac{\mathbb{E}\left[\mathbb{W}_A\mathbb{W}_D\right]}{\mathbb{P}\left[D\right]}$$

2.4 Definition: Sei $X:\omega\to\mathbb{R}$ eine Zufallsvariable und sei $D\subseteq\Omega$ mit $\mathbb{P}\left[D\right]>0$. Dann heißt die reelle Zahl

 $\mathbb{E}\left[X|D\right] = \frac{\mathbb{E}\left[X \mathbb{1}_D\right]}{\mathbb{P}\left[D\right]}$

elementare bedingte Erwartung

2.5 Bemerkung

Seien $m \in \mathbb{N}, x_1, \dots, x_m \in \mathbb{R}$ und $X : \Omega \to \{x_1, \dots, x_m\}$. Sei $D \in \Omega$ und $\mathbb{P}[D] > 0$. Dann ist

$$\mathbb{E}[X|D] = \sum_{\omega \in \Omega} X(\omega) \mathbb{1}_{D}(\omega) \frac{\mathbb{P}[\{\omega\}]}{\mathbb{P}[D]} = \sum_{\omega \in \Omega} X(\omega) \frac{\mathbb{P}[\{\omega\} \cap D]}{\mathbb{P}[D]}$$
$$= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}[\{\omega\} \mid D] = \sum_{j=1}^{m} x_{j} \mathbb{P}[X = x_{j} \mid D]$$

Erinnerung:

Zu jeder σ -Algebra \mathcal{G} auf Ω gibt es eine (eindeutige) Partition mit endliche vielen Elementen, die \mathcal{G} erzeugt (wegen $|\omega| < \infty$ und Proposition III.1.10)

2.7 Definition: Sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Sei \mathcal{G} eine σ -Algebra auf Ω und $\mathcal{D}(y) = \{D_1, \dots, D_n\}$. Die bedingte Erwartung $\mathbb{E}[X|Y]$ ist die Zufallsvariable $\mathbb{E}[X|Y] : \Omega \to \mathbb{R}$,

$$\mathbb{E}[X|Y](\omega) := \begin{cases} \mathbb{E}[X|D_1], & \text{falls } \omega \in D_1 \\ \vdots \\ \mathbb{E}[X|X_n], & \text{falls } \omega \in D_n \end{cases}$$
$$= \sum_{i=1}^n \mathbb{E}[E|D_i] \mathbb{1}_{D_i}(\omega)$$

Beachte: Die elementare bedingte Erwartung ist eine reelle Zahl, nährend die bedingte Erwartung $\mathbb{E}[X|\mathcal{G}]$ (vgl. Def 2.7) eine \mathcal{G} -messbare Abbildung

2.8 Bsp

Fortsetzung von Bsp 1.16, 2.1, 2.6 mit $G = \sigma(\xi)$ also $\mathcal{D}(G) = \{\{1, 3, 4\}, \{2, 4, 6\}\}$ ist

$$\mathbb{E}\left[X|\mathcal{G}\right](\omega) = \begin{cases} \mathbb{E}\left[X|\left\{1,3,5\right\}\right] = 3, & \text{falls } \omega \in \left\{1,3,5\right\} \\ \mathbb{E}\left[X|\left\{2,4,6\right\}\right] = 4, & \text{falls } \omega \in \left\{2,4,6\right\} \end{cases}$$

Die bedingte Erwartung $\mathbb{E}[X|\mathcal{G}]$ kann als die "besteSSchätzung von X (der Augenzahl) unter der Information \mathcal{G} (gerade oder ungerade) interpretiert werden.

Einige wichtige Eigenschaften der bedingten Erwartung:

2.9 Proposition

Seien $X, Y: \Omega \to \mathbb{R}$ Zufallsvariablen, $a, b \in \mathbb{R}$ und \mathcal{G}, \mathcal{H} σ -Algebren auf Ω . Dann gelten:

- a) Linearität: $\mathbb{E}[aX + bY|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}]$
- b) Monotonie: $X \leq Y \implies \mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$

14 Bedingte Erwartung

- c) $X \mathcal{G}$ -messbar $\Longrightarrow \mathbb{E}[X|\mathcal{G}] = X$
- d) X unabhängig von $\mathcal{G} \implies \mathbb{E}[X|\mathcal{G}] \mathbb{E}[X]$
- e) Turmeigenschaft: $\mathcal{H} \subseteq \mathcal{G} \implies \mathbb{E}\left[\mathbb{E}\left[X|Y\right]|\mathcal{H}\right] = \mathbb{E}\left[X|\mathcal{H}\right] \text{ und } \mathbb{E}\left[\mathbb{E}\left[X|H\right]|\mathcal{G}\right] = \mathbb{E}\left[X|\mathcal{H}\right]$
- f) $Y \mathcal{G}$ -messbar $\Longrightarrow \mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}]$
- g) Jensen-Ungleichung: $f: \mathbb{R} \to \mathbb{R}$ konvex $\implies \mathbb{E}\left[f(x)|\mathcal{G}\right] \geq f\left(\mathbb{E}\left[X|\mathcal{G}\right]\right)$

Beweis:

- a) Übungsaufgabe
- b) Es gelte $\forall \omega \in \Omega$, dass $X(\omega) \leq Y(\omega)$. Sei $\mathcal{DG}\{D_1, \dots, D_n\}$. Es gilt $\forall i \in \{1, \dots, n\}$, dass

$$\mathbb{E}\left[X|D_i\right] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}\left[\left\{\omega\right\}|D_i\right] \leq \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}\left[\left\{\omega\right\}|D_i\right] = \mathbb{E}\left[Y|D_i\right]$$

Es gilt $\forall \omega \in \Omega$ dass

$$\mathbb{E}\left[X|\mathcal{G}\right](\omega) = \sum_{i=1}^{n} \mathbb{E}\left[X|D_{i}\right] \mathbb{1}_{D_{i}}(\omega) \leq \sum_{i=1}^{n} \mathbb{E}\left[Y|D_{i}\right] \mathbb{1}_{D_{i}}(\omega) = \mathbb{E}\left[Y|\mathcal{G}\right](\omega)$$

c) Sei X \mathcal{G} -messbar und $\mathcal{D}(\mathcal{G}) = \{D_1, \dots, D_n\}$. Dann gibt es für alle $j \in \{1, \dots, n\}$ ein $c_j \in \mathbb{R}$ sodass $\forall \omega \in D_j$]