

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	AirTies Wireless Networks
Applicant Address	Gülbahar Mah. Avni Dilligil Sok. Celik Is Merkezi ISTANBUL, 34394 Turkey
FCC ID	Z3WAIR4820
Manufacturer's company	SHENZHEN GONGJIN ELECTRONICS CO.,LTD.
Manufacturer Address	2F/3F/4F Baiying Building,1019#Naihai RD,Nanshan Dist.,Shenzhen,Guangdong,CHINA

Product Name	2 Port Gigabit Ethernet 11ac/11n Wireless Router
Brand Name	AirTies
Model No.	Air 4820
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	5725 ~ 5850MHz
Received Date	Apr. 02, 2014
Final Test Date	Nov. 27, 2014
Submission Type	Original Equipment

Statement

Test result included is only for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v03r02, KDB 662911 D01 v02r01, KDB644545 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CER	RTIFICATE OF COMPLIANCE	
2. SUM	MARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	3
3.1.		
3.2.	Accessories	5
3.3.	Table for Filed Antenna	6
3.4.	Table for Carrier Frequencies	6
3.5.	Table for Test Modes	7
3.6.	Table for Testing Locations	8
3.7.	Table for Supporting Units	8
3.8.	Table for Parameters of Test Software Setting	9
3.9.	EUT Operation during Test	9
3.10	, ,	
3.11	. Test Configurations	11
4. TEST	TRESULT	14
4.1.	AC Power Line Conducted Emissions Measurement	14
4.2.	Maximum Conducted Output Power Measurement	18
4.3.	Power Spectral Density Measurement	21
4.4.	·	
4.5.	Radiated Emissions Measurement	39
4.6.		
4.7.	Antenna Requirements	100
5. LIST	OF MEASURING EQUIPMENTS	101
6. MEA	ASUREMENT UNCERTAINTY	103
APPENI	IDIX A. TEST PHOTOS	A1 ~ A5
APPFNI	IDIX B. MAXIMUM PERMISSIRI F EXPOSURE	R1 ~ R3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR440257-01AA	Rev. 01	Initial issue of report	Dec. 12, 2014

FCC ID: Z3WAIR4820

:Dec. 12, 2014

Issued Date

Certificate No.: CB10311285

1. CERTIFICATE OF COMPLIANCE

Product Name : 2 Port Gigabit Ethernet 11ac/11n Wireless Router

Brand Name : AirTies

Model No. : Air 4820

Applicant: AirTies Wireless Networks

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Apr. 02, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 103 Issued Date : Dec. 12, 2014

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	14.13 dB		
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	3.92 dB		
4.3	15.247(e)	Power Spectral Density	Complies	6.5 dB		
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-		
4.5	15.247(d)	Radiated Emissions	Complies	1.89 dB		
4.6	15.247(d)	Out of Band Emission	Complies	0.95 dB		
4.7	15.203	Antenna Requirements	Complies	-		

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description		
Product Type	WLAN (4TX, 4RX)		
Radio Type	Intentional Transceiver		
Power Type	From power adapter		
Modulation	see the below table for IEEE 802.11n/ac		
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)		
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac		
Frequency Range	5725 ~ 5850MHz		
Channel Number	5 for 20MHz bandwidth; 2 for 40MHz bandwidth;		
	1 for 80MHz bandwidth		
Channel Band Width (99%)	For Beamforming Mode		
	802.11ac MCS0/Nss1 (VHT20): 17.66 MHz ;		
	802.11ac MCS0/Nss1 (VHT40): 36.24 MHz ;		
	802.11ac MCS0/Nss1 (VHT80): 75.02 MHz		
Maximum Conducted Output Power	For Beamforming Mode		
	802.11ac MCS0/Nss1 (VHT20): 24.73 dBm ;		
	802.11ac MCS0/Nss1 (VHT40): 25.03 dBm ;		
	802.11ac MCS0/Nss1 (VHT80): 24.52 dBm		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

IEEE 802.11a

Items	Description
Product Type	WLAN (4TX, 4RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5725 ~ 5850MHz
Channel Number	5
Channel Band Width (99%)	For Non Beamforming Mode
	16.38 MHz
Maximum Conducted Output Power	For Non Beamforming Mode
	24.79 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description		
Beamforming Function	With beamforming for 802.11n/ac.	☐ Without beamforming	

Antenna and Band width

Antenna	Four (TX)			
Band width Mode	20 MHz	80 MHz		
IEEE 802.11a	V	X	X	
IEEE 802.11n	V	V	Х	
IEEE 802.11ac	V	V	V	

Report Format Version: Rev. 01 Page No. : 4 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	4	MCS0-31
802.11n (HT40)	4	MCS0-31
802.11ac (VHT20)	4	MCS 0-9/Nss1-4
802.11ac (VHT40)	4	MCS 0-9/Nss1-4
802.11ac (VHT80)	4	MCS 0-9/Nss1-4

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

Power	Brand	Model	Rating			
Adaptor	MOSO	MSP-C1500IC12.0-18W-US	Input: 100-240V \sim 50/60Hz 0.7A max			
Adapter	MOSO	WISF-C1500IC12.0-16W-03	Output: 12.0V, 1.5A			
Other						
RJ-45 Cable*1: Non-shielded, 1.5m						

 Report Format Version: Rev. 01
 Page No.
 : 5 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector Gain ((dBi)
AIII.	ыапа	Woder Name	Anienna type	The find type Connector	5150MHz ~ 5250MHz	5725MHz ~ 5850MHz
1	Airties	Airties#1	Printed Antenna	N/A	0.44	1.03
2	Airties	Airties#1	Printed Antenna	N/A	0.44	1.03
3	Airties	Airties#1	Printed Antenna	N/A	0.44	1.03
4	Airties	Airties#1	Printed Antenna	N/A	0.44	1.03

Note: The EUT has four antennas.

Ant.1, Ant.2, Ant.3 and Ant.4 will transmit/receive the same signal simultaneously.

Ant.1, Ant.2, Ant.3 and Ant.4 can be used as transmitting/receiving antennas

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 151, 159.

For 80MHz bandwidth systems, use Channel 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

Report Format Version: Rev. 01 Page No. : 6 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted Emissions	Normal Link	-	-	-
Maximum Conducted Output Power	11ac VHT20	MCS0/Nss1	149/157/165	1+2+3+4
	11ac VHT40	MCS0/Nss1	151/159	1+2+3+4
	11ac VHT80	MCS0/Nss1	155	1+2+3+4
	11a/BPSK	6 Mbps	149/157/165	1+2+3+4
Power Spectral Density	11ac VHT20	MCS0/Nss1	149/157/165	1+2+3+4
	11ac VHT40	MCS0/Nss1	151/159	1+2+3+4
	11ac VHT80	MCS0/Nss1	155	1+2+3+4
	11a/BPSK	6 Mbps	149/157/165	1+2+3+4
6dB Spectrum Bandwidth	11ac VHT20	MCS0/Nss1	149/157/165	1+2+3+4
	11ac VHT40	MCS0/Nss1	151/159	1+2+3+4
	11ac VHT80	MCS0/Nss1	155	1+2+3+4
	11a/BPSK	6 Mbps	149/157/165	1+2+3+4
Radiated Emissions Below 1GHz	Normal Link	-	-	-
Radiated Emissions Above 1GHz	11ac VHT20	MCS0/Nss1	149/157/165	1+2+3+4
	11ac VHT40	MCS0/Nss1	151/159	1+2+3+4
	11ac VHT80	MCS0/Nss1	155	1+2+3+4
	11a/BPSK	6 Mbps	149/157/165	1+2+3+4
Out of Band Emission	11ac VHT20	MCS0/Nss1	149/157/165	1+2+3+4
	11ac VHT40	MCS0/Nss1	151/159	1+2+3+4
	11ac VHT80	MCS0/Nss1	155	1+2+3+4
	11a/BPSK	6 Mbps	149/157/165	1+2+3+4

Note 1: VHT20/VHT40 covers HT20/HT40, due to same modulation.

Note 2: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11n/ac, after evaluating, beamforming mode has been evaluated to be the worst case, so it was selected to test and record in this test report.

The following test modes were performed for all tests:

For Conducted Emission test and Radiated Emission test (Below 1G):

Mode 1. Normal Link

For Radiated Emission test (Above 1G):

Mode 1. CTX

 Report Format Version: Rev. 01
 Page No. : 7 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

3.6. Table for Testing Locations

	Test Site Location				
Address:	ess: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.				
TEL:	886-3-	656-9065			
FAX:	886-3-656-9085				
Test Site	No. Site Category Location FCC Reg. No. IC File No.				IC File No.
03CH01	-CB SAC Hsin Chu 262045 IC 4086D				
CO01-	СВ	Conduction	Hsin Chu	262045	IC 4086D
TH01-0	СВ	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: 03CH01-CB (Below 1G)

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	DoC
Notebook	DELL	M1340	DoC

For Test Site No: 03CH01-CB (Above 1G)

For Non-Beamforming Mode:

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	DoC

For Beamforming Mode:

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	DoC
Notebook	DELL	M1340	DoC
WLAN ac Dongle	Netgear	A6200	PY31220200

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook*2	DELL	E6430	DoC

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC

Report Format Version: Rev. 01 Page No. : 8 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For Beamforming Mode:

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT20

Test Software Version	DOS		
Frequency	5745 MHz	5785 MHz	5825 MHz
MCS0/Nss1 VHT20	21	21	21

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT40

Test Software Version	DOS		
Frequency	5755 MHz	5795 MHz	
MCS0/Nss1 VHT40	21	21	

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT80

Test Software Version	DOS
Frequency	5775 MHz
MCS0/Nss1 VHT80	21

For Non-Beamforming Mode:

Power Parameters of IEEE 802.11a

Test Software Version	DOS		
Frequency	5745 MHz	5785 MHz	5825 MHz
IEEE 802.11a	21	21	21

3.9. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by WLAN ac Dongle and transmit duty cycle no less 98%

 Report Format Version: Rev. 01
 Page No. : 9 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

3.10. Duty Cycle

For Beamforming Mode:

3								
Band	Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)		
	802.11ac MCS0/Nss1 VHT20	3.880	4.000	97.00%	0.13	0.26		
5G	802.11ac MC\$0/Nss1 VHT40	1.720	1.760	97.73%	0.10	0.58		
	802.11ac MCS0/Nss1 VHT80	3.820	3.940	96.95%	0.13	0.26		

For Non-Beamforming Mode:

Band	Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
5G	802.11a	5.400	5.440	99.26%	0.03	0.01

 Report Format Version: Rev. 01
 Page No. : 10 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test and Radiation Emissions Test (Below 1G) Configuration

Item	Connection	Shielded	Length	Remark
1	Power cable	No	1.5m	-
2	RJ-45 cable	No	1.5m	Load
3	RJ-45 cable	No	1.5m	-
4	RJ-45 cable	No	10m	-

Report Format Version: Rev. 01 Page No. : 11 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

3.11.2. Radiation Emissions Test Configuration

For Non-Beamforming mode:

Test Configuration: above 1GHz

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

 Report Format Version: Rev. 01
 Page No. : 12 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

For Beamforming mode:

Test Configuration: above 1GHz

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

 Report Format Version: Rev. 01
 Page No. : 13 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 14 of 103

FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

Report Format Version: Rev. 01 Page No. : 15 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	23 ℃	Humidity	54%
Test Engineer	Sollo Luo	Phase	Line
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line			Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dВ	dBuV	dB	dBuV	dB		
1	0.15000	33.87	-22.13	56.00	0.10	33.61	0.16	LINE	AVERAGE
2	0.15000	44.66	-21.34	66.00	0.10	44.40	0.16	LINE	QP
3	0.16677	43.62	-21.50	65.12	0.10	43.36	0.16	LINE	QP
4 0	0.16677	39.27	-15.85	55.12	0.10	39.01	0.16	LINE	AVERAGE
5	0.40850	34.23	-23.45	57.68	0.10	33.95	0.18	LINE	QP
6 @	0.40850	33.55	-14.13	47.68	0.10	33.27	0.18	LINE	AVERAGE
7	2.946	19.48	-36.52	56.00	0.19	19.01	0.28	LINE	QP
8	2.946	9.57	-36.43	46.00	0.19	9.10	0.28	LINE	AVERAGE
9	11.080	22.49	-37.51	60.00	0.36	21.74	0.39	LINE	QP
10	11.080	16.30	-33.70	50.00	0.36	15.55	0.39	LINE	AVERAGE
11	23.387	14.50	-45.50	60.00	0.48	13.47	0.55	LINE	QP
12	23.387	9.64	-40.36	50.00	0.48	8.61	0.55	LINE	AVERAGE

Report Format Version: Rev. 01 Page No. : 16 of 103 FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Temperature	23 ℃	Humidity	54%
Test Engineer	Sollo Luo	Phase	Neutral
Configuration	Normal Link		

			0 ver	Limit	LISN	Read	Cable		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dB	dBuV	dВ		
1	0.15403	40.59	-25.19	65.78	0.09	40.34	0.16	NEUTRAL	QP
2	0.15403	26.51	-29.27	55.78	0.09	26.26	0.16	NEUTRAL	AVERAGE
3	0.16854	42.76	-22.27	65.03	0.09	42.51	0.16	NEUTRAL	QP
4 @	0.16854	38.35	-16.68	55.03	0.09	38.10	0.16	NEUTRAL	AVERAGE
5	0.40615	30.30	-27.43	57.73	0.09	30.03	0.18	NEUTRAL	QP
6	0.40615	26.78	-20.95	47.73	0.09	26.51	0.18	NEUTRAL	AVERAGE
7	2.346	19.24	-36.76	56.00	0.15	18.83	0.26	NEUTRAL	QP
8	2.346	11.66	-34.34	46.00	0.15	11.25	0.26	NEUTRAL	AVERAGE
9	4.874	13.82	-32.18	46.00	0.22	13.28	0.32	NEUTRAL	AVERAGE
10	4.874	21.39	-34.61	56.00	0.22	20.85	0.32	NEUTRAL	QP
11	11.996	26.66	-33.34	60.00	0.35	25.91	0.40	NEUTRAL	QP
12	11.996	21.17	-28.83	50.00	0.35	20.42	0.40	NEUTRAL	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter output power.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB 558074 D01 v03r02 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 18 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.2.7. Test Result of Maximum Conducted Output Power

For Beamforming mode:

Temperature 26°C		Humidity	63%	
Test Engineer	James Chou	Configurations	IEEE 802.11ac	
Test Date	Nov. 27, 2014			

Configuration IEEE 802.11ac MCS0/Nss1 VHT20

Channel	Fraguenay		Condu	Max. Limit	Result			
Charine	Channel Frequency	Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm)	Kesuii
149	5745 MHz	18.93	18.36	18.82	18.70	24.73	28.95	Complies
157	5785 MHz	18.72	18.32	18.51	18.57	24.55	28.95	Complies
165	5825 MHz	18.76	17.89	18.47	18.42	24.42	28.95	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ch}} \left\{ \sum_{k=1}^{N_{ch}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 7.05 dBi > 6 dBi, So Power Limit = 30-(7.05-6) = 28.95 dBm$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40

Channel Fraguency			Condu	Max. Limit	Result			
Channel	Frequency	Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm)	Keauli
151	5755 MHz	19.27	18.78	19.02	18.96	25.03	28.95	Complies
159	5795 MHz	19.12	18.39	18.94	18.79	24.84	28.95	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.05 dBi > 6 dBi, So Power Limit = 30-(7.05-6) = 28.95 dBm$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80

Channel	Channel Frequency		Conducted Power (dBm)					Result
Channel		Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm)	Kesuli
155	5775 MHz	18.96	18.36	18.26	18.38	24.52	28.95	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum\limits_{j=1}^{N_{col}} \left\{ \sum\limits_{k=1}^{N_{col}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 7.05 dBi > 6 dBi, So Power Limit = 30-(7.05-6) = 28.95 dBm$$

Report Format Version: Rev. 01 Page No. : 19 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

For Non-Beamforming mode:

Temperature	26°C	Humidity	63%
Test Engineer	James Chou	Configurations	IEEE 802.11a
Test Date	Nov. 27, 2014		

Configuration IEEE 802.11a

Channel	Fraguanay		Condu	Max. Limit	Result			
Channel	annel Frequency	Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm)	Kesuii
149	5745 MHz	19.18	18.12	18.92	18.78	24.79	30.00	Complies
157	5785 MHz	18.97	18.16	18.38	18.68	24.58	30.00	Complies
165	5825 MHz	18.98	17.84	18.40	18.83	24.56	30.00	Complies

 Report Format Version: Rev. 01
 Page No.
 : 20 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test was performed in accordance with KDB 558074 D01 v03r02 for Performing Compliance
 Measurements on Digital Transmission Systems (DTS) section 10.2 Method PKPSD (peak PSD) and
 KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b)
 Measure and sum spectral maximal across the outputs.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

 Report Format Version: Rev. 01
 Page No.
 : 21 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 22 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

4.3.7. Test Result of Power Spectral Density

For Beamforming mode:

Temperature	26℃	Humidity	63%
Test Engineer	James Chou	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 VHT20

Channel	Frequency		Power D	Power Density Limit	Result			
Charmer	riequericy	Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm/3kHz)	Kesuli
149	5745 MHz	-4.19	-4.43	-8.71	-6.32	0.45	6.95	Complies
157	5785 MHz	-8.85	-6.09	-8.34	-7.17	-1.46	6.95	Complies
165	5825 MHz	-6.38	-6.47	-7.91	-6.90	-0.85	6.95	Complies

Note:
$$DirectionalGain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^2 \\ N_{dNT} \end{bmatrix} = 7.05 dBi > 6 dBi, So Power Density Limit = 8 \cdot (7.05 - 6) = 6.95 dBm/3 kHz$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40

-								
Channel	Frequency	Power Density (dBm/3kHz)					Power Density Limit	•
Channel	riequency	Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm/3kHz)	Resuii
151	5755 MHz	-3.29	-5.31	-10.08	-7.85	0.11	6.95	Complies
159	5795 MHz	-8.13	-9.10	-8.80	-8.11	-2.49	6.95	Complies

Note:
$$DirectionalGain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^2 \\ N_{dNT} \end{bmatrix} = 7.05 dBi > 6 dBi, So Power Density Limit = 8 - (7.05-6) = 6.95 dBm/3 kHz$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80

Channel	Fraguenov		Power D	ensity (dBm	n/3kHz)		Power Density Limit	Result
Charmer	Channel Frequency		Ant.2	Ant.3	Ant.4	Total	(dBm/3kHz)	Result
155	5775 MHz	-8.45	-9.74	-12.59	-9.14	-3.71	6.95	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum\limits_{j=1}^{N_{col}} \left\{ \sum\limits_{k=1}^{N_{col}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.05 dBi > 6 dBi, So Power Density Limit = 8-(7.05-6) = 6.95 dBm/3 kHz$$

Report Format Version: Rev. 01 Page No. : 23 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

For Non-Beamforming mode:

Temperature	26°C	Humidity	63%
Test Engineer	James Chou	Configurations	IEEE 802.11a

Configuration IEEE 802.11a

Channel	Frequency	Power Density (dBm/3kHz)					Power Density Limit	Result
		Ant.1	Ant.2	Ant.3	Ant.4	Total	(dBm/3kHz)	Result
149	5745 MHz	-8.56	-5.60	-8.16	-8.82	-1.56	6.95	Complies
157	5785 MHz	-9.82	-5.35	-10.39	-8.91	-2.10	6.95	Complies
165	5825 MHz	-9.83	-7.98	-9.29	-6.90	-2.33	6.95	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 7.05 dBi > 6 dBi, So Power Density Limit = 8-(7.05-6) = 6.95 dBm/3 kHz$$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 24 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

For Beamforming mode:

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5745 MHz / Ant.1

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5745 MHz / Ant.2

 Report Format Version: Rev. 01
 Page No. : 25 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5745 MHz / Ant.3

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5745 MHz / Ant.4

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Ant.1

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Ant.2

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Ant.3

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Ant.4

 Report Format Version: Rev. 01
 Page No. : 28 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Ant.1

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Ant.2

Report Format Version: Rev. 01 Page No. : 29 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Ant.3

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Ant.4

Report Format Version: Rev. 01 Page No. : 30 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

For Non-Beamforming mode:

Power Density Plot on Configuration IEEE 802.11a / 5745 MHz / Ant.1

Power Density Plot on Configuration IEEE 802.11a / 5745 MHz / Ant.2

Report Format Version: Rev. 01 Page No. : 31 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Power Density Plot on Configuration IEEE 802.11a / 5745 MHz / Ant.3

Power Density Plot on Configuration IEEE 802.11a / 5745 MHz / Ant.4

Report Format Version: Rev. 01 Page No. : 32 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RBW	100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB 558074 D01 v03r02 for Performing Compliance Measurements on Digital Transmission Systems (DTS) section 8.0 DTS bandwidth=> 8.1 Option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 33 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.4.7. Test Result of 6dB Spectrum Bandwidth

For Beamforming mode:

Temperature	26°C	Humidity	63%
Test Engineer	James Chou	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant.1 + Ant.2 + Ant.3 + Ant.4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	17.45	17.66	500	Complies
157	5785 MHz	16.93	17.66	500	Complies
165	5825 MHz	17.28	17.60	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant.1 + Ant.2 + Ant.3 + Ant.4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
151	5755 MHz	36.29	36.24	500	Complies
159	5795 MHz	35.13	36.24	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant.1 + Ant.2 + Ant.3 + Ant.4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
155	5775 MHz	73.97	75.02	500	Complies

Report Format Version: Rev. 01 Page No. : 34 of 103 FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

For Non-Beamforming mode:

Temperature	26°C	Humidity	63%
Test Engineer	James Chou	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Ant.1 + Ant.2 + Ant.3 + Ant.4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	6.96	16.27	500	Complies
157	5785 MHz	5.10	16.32	500	Complies
165	5825 MHz	4.81	16.38	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

 Report Format Version: Rev. 01
 Page No. : 35 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

For Beamforming mode:

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5785 MHz / Ant.1 \pm Ant.2 \pm Ant.3 \pm Ant.4

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5795MHz / Ant.1 + Ant.2 + Ant.3 + Ant.4

 Report Format Version: Rev. 01
 Page No. : 36 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Ant.1 \pm Ant.2 \pm Ant.3 \pm Ant.4

For Non-Beamforming mode:

6 dB Bandwidth Plot on Configuration IEEE 802.11a / $5825 \, MHz$ / Ant.1 + Ant.2 + Ant.3 + Ant.4

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1 MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1GHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 39 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 40 of 103 FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 41 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24°C	Humidity	62%
Test Engineer	Serway Li	Configurations	Normal Link
Test Date	Sep. 11, 2014		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Report Format Version: Rev. 01 Page No. : 42 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	62%
Test Engineer	Serway Li	Configurations	Normal Link

Horizontal

	Freq	Level		Limit					A/POS	1/105	Pol/Phase	Remark
	MHz	dBu\//m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	250.19	41.61	46.00	-4.39	59.29	1.90	11.91	31.49	300	169	HORIZONTAL	Peak
2	375.32	38.73	46.00	-7.27	52.79	2.44	14.93	31.43	100	135	HORIZONTAL	Peak
3	500.45	39.07	46.00	-6.93	50.74	2.82	16.92	31.41	100	139	HORIZONTAL	Peak
4	624.61	37.47	46.00	-8.53	47.08	3.18	18.61	31.40	150	125	HORIZONTAL	Peak
5	749.74	33.30	46.00	-12.70	41.45	3.53	19.69	31.37	200	123	HORIZONTAL	Peak
6	874.87	40.69	46.00	-5.31	47.71	3.89	20.24	31.15	100	104	HORIZONTAL	Peak

Report Format Version: Rev. 01 Page No. : 43 of 103 FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Vertical

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu\//m	$\overline{\text{dBuV/m}}$	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	40.67	36.51	40.00	-3.49	55.78	0.75	11.85	31.87	100	183	VERTICAL	Peak
2	48.43	35.99	40.00	-4.01	58.64	0.83	8.32	31.80	100	246	VERTICAL	QP
3	125.06	39.54	43.50	-3.96	58.05	1.33	11.73	31.57	100	36	VERTICAL	Peak
4	250.19	44.11	46.00	-1.89	61.79	1.90	11.91	31.49	100	310	VERTICAL	QP
5	375.32	39.78	46.00	-6.22	53.84	2.44	14.93	31.43	100	216	VERTICAL	Peak
6	500.45	39.71	46.00	-6.29	51.38	2.82	16.92	31.41	125	224	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 Page No. : 44 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.5.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)

For Beamforming mode:

Temperature	24°C	Humidity	62%
Test Engineer	Serway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 / Ant.1 + Ant.2 + Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

Horizontal

	Freq	Level		Over Limit					Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m			deg	Cm	
1 2	11484.28 11488.34	58.40 43.64	74.00 54.00	-15.60 -10.36	48.18 33.42	6.74 6.74	38.30 38.30	34.82 34.82	Peak Average	136 136	226 226	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level			Read Level				Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBuV	₫B	dB/m	₫B		deg	Cm	
1 2	11486.53 11490.36	57.13 42.75	74.00 54.00	-16.87 -11.25	46.91 32.53	6.74 6.74	38.30 38.30	34.82 34.82	Peak Average	64 64		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No. : 45 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

Temperature	24°C	Humidity	56%
Test Engineer	Sorway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 157 /
Test Engineer	Serway Li	Configurations	Ant.1 + Ant.2 + Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

	Freq	Level	Limit Line	Over Limit	Read Level				T/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 deg	Cm	
1 2	11570.29 11570.72								144 144		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit			Antenna Factor		Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	₫B		deg	Cm	
1 2	11570.12 11579.49	44.16 58.40	54.00 74.00	-9.84 -15.60	33.91 48.15	6.77 6.77	38.33 38.33	34.85 34.85	Average Peak	185 185		VERTICAL VERTICAL

Temperature	24°C	Humidity	56%
Test Engineer	Serway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165 /
· ·	,	Ğ	Ant.1 + Ant.2 + Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

	Freq	Level		Over Limit					Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBuV	₫B	dB/m	<u></u> <u>dB</u>		deg	Cm	
1 2	11648.67 11650.26	60.65 47.01	74.00 54.00	-13.35 -6.99	50.36 36.72	6.80 6.80	38.36 38.36	34.87 34.87	Peak Average	116 116		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit					Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBu∇	₫B	dB/m	<u></u> <u>dB</u>		deg	Cm	
1 2	11648.55 11650.35	58.10 44.04	74.00 54.00	-15.90 -9.96	47.81 33.75	6.80 6.80	38.36 38.36	34.87 34.87	Peak Average	118 118		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No.
 : 47 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

Temperature	24°C	Humidity	56%
Test Engineer	Serway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 / Ant.1 + Ant.2 + Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

	Freq	Level		Over Limit					Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBu∇	₫B	dB/m	₫B		deg	Cm	
1 2	11510.06 11515.21	44.40 58.58	54.00 74.00	-9.60 -15.42	34.17 48.33	6.75 6.76	38.30 38.31	34.82 34.82	Average Peak	115 115		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit						T/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	11510.17 11529.80	40.97 54.67	54.00 74.00	-13.03 -19.33	30.74 44.43	6.75 6.76	38.30 38.31	34.82 34.83	Average Peak	7 7		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No.
 : 48 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

Temperature	24°C	Humidity	56%
Test Engineer	Sorway Li	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /
Test Engineer	Serway Li	Configurations	Ant.1 + Ant.2 + Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

	Freq	Level		Over Limit					Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	₫B	dB/m	- dB		deg	Cm	
1 2	11576.45 11577.15	43.87 58.02	54.00 74.00	-10.13 -15.98	33.62 47.77	6.77 6.77	38.33 38.33	34.85 34.85	Average Peak	148 148		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level				T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	- dB	 deg	Cm	
1	11590.17								357 357		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No.
 : 49 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

Temperature	24°C	Humidity	56%
Test Engineer	Serway Li	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT80 CH 155 /
			Ant.1 + Ant.2 + Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

	Freq	Level	Limi t Line	Over Limit						T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dВ	dB/m	dB		deg	Cm	
1 2	11558.08 11559.52	40.71 54.64	54.00 74.00	-13.29 -19.36	30.46 44.39	6.77 6.77	38.32 38.32	34.84 34.84	Average Peak	326 326		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level			Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	11540.10 11558.83	39.77 53.49	54.00 74.00	-14.23 -20.51	29.53 43.24	6.76	38.31 38.32	34.83 34.84	Average Peak	5 5		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No.
 : 50 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

For Non-Beamforming mode:

Temperature	24°C	Humidity	62%
Tost Engineer	Sorway Li	Configurations	IEEE 802.11a CH 149 / Ant.1 + Ant.2 +
Test Engineer	Serway Li	Configurations	Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

Horizontal

	Freq	Level			Read Level				Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	₫B	dB/m	<u>g</u>		deg	Cm	
1 2	11487.51 11490.43	57.10 44.00	74.00 54.00	-16.90 -10.00	46.88 33.78	6.74 6.74	38.30 38.30	34.82 34.82	Peak Average	343 343		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit						T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	11489.88 11490.35	44.45 57.47	54.00 74.00	-9.55 -16.53	34.23 47.25	6.74 6.74	38.30 38.30	34.82 34.82	Average Peak	4		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No. : 51 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

Temperature	24°C	Humidity	62%
Test Engineer	Serway Li	Configurations	IEEE 802.11a CH 157 / Ant.1 + Ant.2 +
lesi Engineei	Serway Li	Cornigulations	Ant.3 + Ant.4
Test Date	Nov. 11, 2014		

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	₫BuV	₫B	dB/m	<u>−−−dB</u>		deg	Cm	
1 2	11568.90 11570.14	58.19 44.98	74.00 54.00	-15.81 -9.02	47.93 34.73	6.77 6.77	38.33 38.33	34.84 34.85	Peak Average	344 344		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	—dB	dBuV	dB.	dB/m	dB		deg	Cm	
1 2	11570.26 11570.46	45.14 57.85	54.00 74.00	-8.86 -16.15	34.89 47.60	6.77 6.77	38.33 38.33	34.85 34.85	Average Peak	2 2		VERTICAL VERTICAL

 Report Format Version: Rev. 01
 Page No.
 : 52 of 103

 FCC ID: Z3WAIR4820
 Issued Date
 : Dec. 12, 2014

Temperature	24°C	Humidity	62%		
Test Engineer	Sonugu Li	Configurations	IEEE 802.11a CH 165 / Ant.1 + Ant.2 +		
Test Engineer	Serway Li	Configurations	Ant.3 + Ant.4		
Test Date	Nov. 11, 2014				

	Freq	Level				CableA Loss			Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	₫BuV	₫B	dB/m	<u>−−−dB</u>		deg	Cm	
1 2	11643.00 11643.81	54.15 47.18	74.00 54.00	-19.85 -6.82	43.85 36.88	6.80 6.80	38.36 38.36	34.86 34.86	Peak Average	119 119		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit						T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	₫B	dB/m	dB		deg	Cm	
1 2	11650.03 11650.78	44.36 57.60	54.00 74.00	-9.64 -16.40	34.07 47.31	6.80	38.36 38.36	34.87 34.87	Average Peak	355 355		VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 Page No. : 53 of 103 FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.6. Ouf of Band Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

-		
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	100 MHz		
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,		
	1MHz / 1/T for Average		
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	100 kHz / 300 kHz for Peak		

4.6.3. Test Procedures

For Conducted Out of Band Emission Measurement:

- Test was performed in accordance with KDB 558074 D01 v03r02 Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure
- The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit. Only worst data of each operating mode is presented.

Report Format Version: Rev. 01 Page No. : 54 of 103

FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.6.4. Test Setup Layout

For Conducted Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.4.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

Report Format Version: Rev. 01 Page No. : 55 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

4.6.7. For Emission not in Restricted Band

Temperature	26°C	Humidity	63%
Test Engineer	Serway Li		

Ant.1

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level

Date: 12.NOV.2014 17:43:34

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:44:09

 Report Format Version: Rev. 01
 Page No. : 56 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:44:52

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:45:48

Report Format Version: Rev. 01 Page No. : 57 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:45:26

SPORTON LAB.

Ant.2
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level

Date: 12.NOV.2014 17:40:07

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:40:50

Report Format Version: Rev. 01 Page No. : 59 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:41:18

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:42:16

Report Format Version: Rev. 01 Page No. : 60 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:41:54

SPORTON LAB.

Ant.3
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level

Date: 12.NOV.2014 17:37:02

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:37:39

Report Format Version: Rev. 01 Page No. : 62 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:38:03

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:38:54

Report Format Version: Rev. 01 Page No. : 63 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:38:33

Ant.4
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level

Date: 12.NOV.2014 17:33:59

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:34:33

Report Format Version: Rev. 01 Page No. : 65 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:35:07

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:36:05

Report Format Version: Rev. 01 Page No. : 66 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:35:43

Ant.1
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level

Date: 12.NOV.2014 17:46:56

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:47:34

Report Format Version: Rev. 01 Page No. : 68 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:48:14

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:49:28

Report Format Version: Rev. 01 Page No. : 69 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:49:00

SPORTON LAB.

Ant.2
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level

Date: 12.NOV.2014 17:57:15

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:57:46

Report Format Version: Rev. 01 Page No. : 71 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:58:09

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:58:58

Report Format Version: Rev. 01 Page No. : 72 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:58:38

SPORTON LAB.

Ant.3
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level

Date: 12.NOV.2014 18:00:05

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:00:36

Report Format Version: Rev. 01 Page No. : 74 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:01:10

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:02:00

Report Format Version: Rev. 01 Page No. : 75 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:01:38

SPORTON LAB.

Ant.4
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level

Date: 12.NOV.2014 18:02:58

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:03:26

Report Format Version: Rev. 01 Page No. : 77 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:03:46

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:04:36

Report Format Version: Rev. 01 Page No. : 78 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:04:15

SPORTON LAB.

Ant.1
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Reference Level

Date: 12.NOV.2014 18:12:56

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:13:29

Report Format Version: Rev. 01 Page No. : 80 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:13:48

SPORTON LAB.

Ant.2
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Reference Level

Date: 12.NOV.2014 18:11:14

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:11:45

Report Format Version: Rev. 01 Page No. : 82 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:12:08

SPORTON LAB.

Ant.3
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Reference Level

Date: 12.NOV.2014 18:09:39

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:10:08

Report Format Version: Rev. 01 Page No. : 84 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:10:28

SPORTON LAB.

Ant.4
Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Reference Level

Date: 12.NOV.2014 18:07:43

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 18:08:13

Report Format Version: Rev. 01 Page No. : 86 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 18:08:46

Ant.1
Plot on Configuration IEEE 802.11a / Reference Level

Date: 12.NOV.2014 17:22:45

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:23:29

Report Format Version: Rev. 01 Page No. : 88 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:24:03

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:25:03

Plot on Configuration IEEE 802.11a / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:24:40

Ant.2
Plot on Configuration IEEE 802.11a / Reference Level

Date: 12.NOV.2014 17:19:06

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:19:54

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:20:26

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:21:46

Plot on Configuration IEEE 802.11a / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:21:24

Ant.3
Plot on Configuration IEEE 802.11a / Reference Level

Date: 12.NOV.2014 17:12:42

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:13:21

Report Format Version: Rev. 01 Page No. : 94 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:13:49

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:17:54

Plot on Configuration IEEE 802.11a / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:17:31

Ant.4
Plot on Configuration IEEE 802.11a / Reference Level

Date: 12.NOV.2014 17:28:47

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:32:04

Report Format Version: Rev. 01 Page No. : 97 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:31:40

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 12.NOV.2014 17:29:42

Plot on Configuration IEEE 802.11a / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 12.NOV.2014 17:31:00

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 100 of 103
FCC ID: Z3WAIR4820 Issued Date : Dec. 12, 2014

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 23, 2014	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 23, 2013	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Nov. 23, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 26, 2014	Radiation (03CH01-CB)
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz - 30 MHz	Dec. 02, 2012*	Radiation (03CH01-CB
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Oct. 28, 2014	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-HG	1864479	18GHz ~ 40GHz	Apr. 22, 2014	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)

 Report Format Version: Rev. 01
 Page No. : 101 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Oct. 06, 2014	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Oct. 06, 2014	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

" \star " Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

 Report Format Version: Rev. 01
 Page No. : 102 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark	
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%	
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%	
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%	
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%	
Conducted Emission	1.7 dB	Confidence levels of 95%	

 Report Format Version: Rev. 01
 Page No. : 103 of 103

 FCC ID: Z3WAIR4820
 Issued Date : Dec. 12, 2014