

FRAV20030009 US NP Sequence Listing.txt SEQUENCE LISTING

<110> AVENTIS PHARMA SA
 GUILLAUME, Jean-Marc
 DITTRICH, Werner
 PEREZ, Sandrine
 ANDREONI, Christine Michelle Pierrette
 PAILLOT, Romain

<120> METHOD FOR OBTAINING MASTOCYTE LINES FROM PIG TISSUES AND FOR PRODUCING HEPARIN-TYPE MOLECULES

```
<130> FRAV2003/0009 US NP
<140> 10/823,142
<141> 2004-04-13
<150> 60/477,962
<151> 2003-06-12
<150> FR 0304671
<151> 2003-04-14
<160> 34
<170> PatentIn Ver. 2.1
<210>
      1
<211> 3952
<212> DNA
<213> Sus scrofa
<220>
<221> misc_feature
<222> (38)..(38)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (41)..(41)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (3637)..(3637)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (3923)..(3923)
<223> n is a, c, g, or t
<400>
attgggccga cgtcgcatgc tcccggccgg ccgccatntc ngccgcggga aattcgattg
                                                                       60
gaatteeteg agageaggaa egtggaaagg ageteeggte eeagageage cacegegatg
                                                                      120
agaggegete geegegeetg ggattttete ttegteetge agetettget tegegteeag
                                                                      180
```

acaggctctt	ctcagccatc	tgtgagtcca	gaggaactgt	ctccaccatc	catccagcca	240
gcaaaatcag	agttaatcgt	cagtgctggc	gatgagatta	ggctgttctg	caccgatcca	300
ggatctgtca	aatggacttt	tgagaccctg	ggtcagctga	gtgagaatac	tcacgcagag	360
tggatcgtgg	agaaagcaga	ggccatgaat	acaggcaatt	atacatgcac	caatgaaggc	420
ggtttaagca	gttccattta	tgtgtttgtt	agagatcctg	agaagctttt	cctcgtcgac	480
cctcccttgt	atgggaagga	ggacaatgac	gcgctggtcc	gctgtcctct	gacggaccca	540
gaggtgacca	attactccct	cacgggctgc	gaggggaaac	cccttcccaa	ggatttgacc	600
ttcgttgcag	accccaaggc	cggcatcacc	atcaaaaatg	tgaagcgcga	gtatcatcgg	660
ctgtgtctac	actgctccgc	caaccagggg	ggcaagtccg	tgctgtcgaa	gaaattcacc	720
ctgaaagtga	gggcagccat	cagagctgta	cctgttgtgg	ctgtgtccaa	agcaagctac	780
cttctcaggg	aaggggagga	atttgccgtg	atgtgcttga	tcaaagacgt	gtctagttcc	840
gtggactcca	tgtggatcag	ggagaacagc	cagactaaag	cacaggtgaa	gaggaatagc	900
tggcatcagg	gtgacttcaa	ttttctgcgg	caggaaaggc	tgacaatcag	ctcagcaaga	960
gttaatgatt	ctggcgtgtt	catgtgttac	gccaataata	cttttggatc	tgcaaatgtc	1020
acaaccacct	tagaagtagt	agataaagga	ttcattaata	tcttccctat	gatgaatacc	1080
actgtgtttg	taaacgatgg	agaggatgtg	gatctaattg	ttgagtacga	ggcgtacccc	1140
aaacctgaac	accgacagtg	gatatatatg	aaccgcactg	ccactgataa	gtgggaggat	1200
tatcccaagt	ctgagaatga	aagtaacatc	agatatgtaa	gtgaacttca	cttgaccaga	1260
ttaaaaggga	ccgaaggagg	cacttacaca	tttctcgtgt	ccaatgctga	tgtcaattct	1320
tctgtgacat	ttaatgttta	cgtgaacaca	aaaccagaaa	tcctgactca	tgacaggctc	1380
atgaacggca	tgctccagtg	tgtggcggca	ggcttcccag	agcccaccat	cgattggtat	1440
ttctgtccag	gcaccgagca	gagatgttcc	gttcccgttg	ggccagtgga	cgtgcagatc	1500
caaaactcat	ctgtatcacc	gtttggaaaa	ctagtgattc	acagctccat	tgattacagt	1560
gcattcaaac	acaacggcac	ggtggagtgc	agggcttaca	acgatgtggg	caagagttct	1620
gcctttttta	actttgcatt	taaagaacaa	atccatgccc	acaccctctt	cacgcctttg	1680
ctgattggtt	ttgtgatcgc	agcgggtatg	atgtgtatca	tcgtgatgat	tctcacctat	1740
aaatatctac	agaagcccat	gtatgaagta	cagtggaagg	ttgtcgagga	gataaatgga	1800
aacaattatg	tctacataga	cccaacgcaa	cttccttatg	atcacaaatg	ggaatttccc	1860
aggaacaggc	tgagttttgg	caaaaccttg	ggtgctggcg	ccttcgggaa	agtcgttgag	1920

		•				
gccactgcat	acggcttaat		09 US NP Se gcggccatga			1980
aaaccaagtg	cccatttaac	ggaacgagaa	gccctgatgt	ctgaactcaa	agtcttaagt	2040
tacctcggta	atcacatgaa	tattgtgaat	cttctcggcg	cctgcaccat	tggagggccc	2100
accctggtca	ttacagaata	ttgttgctat	ggtgatctcc	tgaattttt	gagacggaaa	2160
cgtgattcgt	ttatttgctc	aaagcaggaa	gatcacgcag	aagcggcgct	ttataagaac	2220
cttctgcatt	caaaggagtc	ttcctgcagt	gacagtacta	acgagtacat	ggacatgaaa	2280
cccggagtgt	cttatgtggt	accaaccaag	gcagacaaaa	ggagatctgc	gagaataggc	2340
tcatacatag	aacgagatgt	gactcctgcc	atcatggaag	atgatgagtt	ggccctagac	2400
ctggaggact	tgctcagctt	ttcttaccaa	gtggcaaagg	gcatggcctt	cctcgcctcg	2460
aagaattgta	ttcacagaga	cttggcggcc	agaaatatcc	tccttactca	tggtcgaatc	2520
acaaagattt	gtgattttgg	tctagccaga	gacatcaaga	atgattctaa	ttacgtggtc	2580
aaaggaaacg	ctcggctacc	cgtgaagtgg	atggcacccg	agagcatttt	caactgtgtc	2640
tacacatttg	aaagcgatgt	ctggtcctat	gggattttc	tgtgggagct	cttctcttta	2700
gggagcagcc	cctaccctgg	aatgccagtt	gattctaaat	tctacaagat	gatcaaggag	2760
ggtttccgaa	tgctcagtcc	tgagcatgca	cctgcggaaa	tgtatgacat	catgaagact	2820
tgctgggatg	cggatcccct	caaaagacca	acgtttaagc	agattgtgca	gctgattgag	2880
aagcagattt	cggagagcac	caatcacatt	tattccaact	tagcgaactg	cagcccccac	2940
cgggagaacc	ccgcggtgga	tcattctgtg	cggatcaact	ccgtgggcag	cagtgcctcc	3000
tccacgcagc	cgctgcttgt	ccacgaagac	gtctgaagca	gaatgggtgt	ccggggtggg	3060
gggtggggg	gctcctcccc	cacagcaccg	gcctactgcc	attctttttg	gttttcataa	3120
tggttatttt	gtttcccttc	aacttgcatc	ctactccagg	gtagtggatg	ctccgctgta	3180
atcctcttta	cgagcacact	ttagtggcca	atgatttttg	tcatcagctg	ccattgagct	3240
gtatatgttc	ccaatagcac	gctagccccc	attaacggag	agcattcaga	cttagggaag	3300
aggagggtag	gacgggctgg	acaccccagg	tccttgacaa	gtcttctcca	gtttctgtcc	3360
aataagtgct	gtaatggttt	atttgagcac	ctggctgtcg	tcacctccgg	tccttgtcat	3420
catctgtaac	aatatgatga	tgatgatgcc	agaacctaat	cccttgatgt	ggaaaatagg	3480
atgttaatca	aacaaagggc	agaaagaagc	ctgtgactat	ctgggctcga	gaagtcaagt	3540
atttcatgct	gggagtaaga	cgtaagccat	ggaaaaatgc	tctccgggca	tgaataaggc	3600
tgctggccat	gagccttttt	actcctgacc	tggtttntaa	gtagtttgtt	attagggagc	3660
tggatcggag	ggaaggcttc	tgcctgcatt	ttgtatatac		attgttcatg	3720

ttcacatatt	tgagggggga	aaacccgcaa	ggtgtagttt	ctggatacaa	tcctggctcg	3780
agtctgctgc	gtgtagaaat	agctgaagag	ccagacacgt	ttgaaggaaa	cagtgctttt	3840
tttaagaaaa	aaaaaaaaa	aagtcgacat	cgatacgcgt	ggtcaatcac	tagtgaattc	3900
gcggccgcct	gcaggtcgac	canaaggaga	gctcccaacg	cgtggagcaa	gc	3952

<210> 2 <211> 972 <212> PRT <213> Sus scrofa <400> 2 Met Arg Gly Ala Arg Arg Ala Trp Asp Phe Leu Phe Val Leu Gln Leu Leu Leu Arg Val Gln Thr Gly Ser Ser Gln Pro Ser Val Ser Pro Glu 25 Glu Leu Ser Pro Pro Ser Ile Gln Pro Ala Lys Ser Glu Leu Ile Val Ser Ala Gly Asp Glu Ile Arg Leu Phe Cys Thr Asp Pro Gly Ser Val Lys Trp Thr Phe Glu Thr Leu Gly Gln Leu Ser Glu Asn Thr His Ala Glu Trp Ile Val Glu Lys Ala Glu Ala Met Asn Thr Gly Asn Tyr Thr 90 Cys Thr Asn Glu Gly Gly Leu Ser Ser Ser Ile Tyr Val Phe Val Arg Asp Pro Glu Lys Leu Phe Leu Val Asp Pro Pro Leu Tyr Gly Lys Glu 120 Asp Asn Asp Ala Leu Val Arg Cys Pro Leu Thr Asp Pro Glu Val Thr Asn Tyr Ser Leu Thr Gly Cys Glu Gly Lys Pro Leu Pro Lys Asp Leu 150 155 Thr Phe Val Ala Asp Pro Lys Ala Gly Ile Thr Ile Lys Asn Val Lys 170 Arg Glu Tyr His Arg Leu Cys Leu His Cys Ser Ala Asn Gln Gly Gly 185 Lys Ser Val Leu Ser Lys Lys Phe Thr Leu Lys Val Arg Ala Ala Ile 195

Arg Ala Val Pro Val Val Ala Val Ser Lys Ala Ser Tyr Leu Leu Arg

215

210

220

Glu	Glv	Glu	Glu	Phe			0030 Met								
225	0-1		-		230			-2 -		235					240
Ser	Val	Asp	Ser	Met 245	Trp	Ile	Arg	Glu	Asn 250	Ser	Gln	Thr	Lys	Ala 255	Gln
Val	Lys	Arg	Asn 260	Ser	Trp	His	Gln	Gly 265	Asp	Phe	Asn	Phe	Leu 270	Arg	Gln
Glu	Arg	Leu 275	Thr	Ile	Ser	Ser	Ala 280	Arg	Val	Asn	Asp	Ser 285	Gly	Val	Phe
Met	Cys 290	Tyr	Ala	Asn	Asn	Thr 295	Phe	Gly	Ser	Ala	Asn 300	Val	Thr	Thr	Thr
Leu 305	Glu	Val	Val	Asp	Lys 310	Gly	Phe	Ile	Asn	Ile 315	Phe	Pro	Met	Met	Asn 320
Thr	Thr	Val	Phe	Val 325	Asn	Asp	Gly	Glu	Asp 330	Val	Asp	Leu	Ile	Val 335	Glu
Tyr	Glu	Ala	Туг 340	Pro	Lys	Pro	Glu	His 345	Arg	Gln	Trp	Ile	Tyr 350	Met	Asn
Arg	Thr	Ala 355	Thr	Asp	Lys	Trp	Glu 360	Asp	Tyr	Pro	Lys	Ser 365	Glu	Asn	Glu
Ser	Asn 370	Ile	Arg	Tyr	Val	Ser 375	Glu	Leu	His	Leu	Thr 380	Arg	Leu	Lys	Gly
Thr 385	Glu	Gly	Gly	Thr	Tyr 390	Thr	Phe	Leu	Val	Ser 395	Asn	Ala	Asp	Val	Asn 400
Ser	Ser	Val	Thr	Phe 405	Asn	Val	Tyr	Val	Asn 410	Thr	Lys	Pro	Glu	Ile 415	Leu
Thr	His	Asp	Arg 420	Leu	Met	Asn	Gly	Met 425	Leu	Gln	Cys	Val	Ala 430	Ala	Gly
Phe	Pro	Glu 435	Pro	Thr	Ile	Asp	Trp 440	Tyr		_		Gly 445	Thr	Glu	Gln
Arg	Cys 450	Ser	Val	Pro	Val	Gly 455	Pro	Val	Asp	Val	Gln 460	Ile	Gln	Asn	Ser
Ser 465	Val	Ser	Pro	Phe	Gly 470	Lys	Leu	Val	Ile	His 475	Ser	Ser	Ile	Asp	Tyr 480
Ser	Ala	Phe	Lys	His 485	Asn	Gly	Thr	Val	Glu 490	Суѕ	Arg	Ala	Tyr	Asn 495	Asp
Val	Gly	Lys	Ser 500	Ser	Ala	Phe	Phe	Asn 505	Phe	Ala	Phe	Lys	Glu 510	Gln	Ile
His	Ala	His 515	Thr	Leu	Phe	Thr	Pro 520	Leu	Leu	Ile	Gly	Phe 525	Val	Ile	Ala
Ala	Gly 530	Met	Met	Cys	Ile	Ile 535	Val	Met		Leu	Thr 540	Tyr	Lys	Tyr	Leu

Gln 545	Lys	Pro	Met	Tyr	Glu 550	Val	Gln	Trp	Lys	Val 555	Val	Glu	Glu	Ile	Asn 560
Gly	Asn	Asn	Tyr	Va1 565	Tyr	Ile	Asp	Pro	Thr 570	Gln	Leu	Pro	Tyr	Asp 575	His
Lys	Trp	Glu	Phe 580	Pro	Arg	Asn	Arg	Leu 585	Ser	Phe	Gly	Lys	Thr 590	Leu	Gly
Ala	Gly	Ala 595	Phe	Gly	Lys	Val	Val 600	Glu	Ala	Thr	Ala	Туr 605	Gly	Leu	Ile
Lys	Ser 610	Asp	Ala	Ala	Met	Thr 615	Val	Ala	Val	Lys	Met 620	Leu	Lys	Pro	Ser
Ala 625	His	Leu	Thr	Glu	Arg 630	Glu	Ala	Leu	Met	Ser 635	Glu	Leu	Lys	Val	Leu 640
Ser	Tyr	Leu	Gly	Asn 645	His	Met	Asn	Ile	Val 650	Asn	Leu	Leu	Gly	Ala 655	Cys
Thr	Ile	Gly	Gly 660	Pro	Thr	Leu	Val	Ile 665	Thr	Glu	Tyr	Cys	Cys 670	Tyr	Gly
Asp	Leu	Leu 675	Asn	Phe	Leu	Arg	Arg 680	Lys	Arg	Asp	Ser	Phe 685	Ile	Cys	Ser
Lys	Gln 690	Glu	Asp	His	Ala	Glu 695	Ala	Ala	Leu	Tyr	Lys 700	Asn	Leu	Leu	His
Ser 705	Lys	Glu	Ser	Ser	Cys 710	Ser	Asp	Ser	Thr	Asn 715	Glu	Tyr	Met	Asp	Met 720
Lys	Pro	Gly	Val	Ser 725	Tyr	Val	Val	Pro	Thr 730	Lys	Ala	Asp	Lys	Arg 735	Arg
Ser	Ala	Arg	Ile 740	Gly	Ser	Tyr	Ile	Glu 745	Arg	Asp	Val	Thr	Pro 750	Ala	Ile
Met	Glu	Asp 755	Asp	Glu	Leu	Ala	Leu 760	Asp	Leu	Glu	Asp	Leu 765	Leu	Ser	Phe
Ser	Tyr 770	Gln	Val	Ala	Lys	Gly 775	Met	Ala	Phe	Leu	Ala 780	Ser	Lys	Asn	Cys
Ile 785	His	Arg	Asp	Leu	Ala 790	Ala	Arg	Asn	Ile	Leu 795	Leu	Thr	His	Gly	Arg 800
Ile	Thr	Lys	Ile	Cys 805	Asp	Phe	Gly	Leu	Ala 810	Arg	Asp	Ile	Lys	Asn 815	Asp
Ser	Asn	Tyr	Val 820	Val	Lys	Gly	Asn	Ala 825	Arg	Leu	Pro	Val	Lys 830	Trp	Met
Ala	Pro	Glu 835	Ser	Ile	Phe	Asn	Cys 840	Val	Tyr	Thr	Phe	Glu 845	Ser	Asp	Val
Trp	Ser	Tyr	Gly	Ile	Phe	Leu	Trp	Glu		Phe Page	_	Leu	Gly	Ser	Ser

FRAV20030009 US NP Sequence Listing.txt 850 Pro Tyr Pro Gly Met Pro Val Asp Ser Lys Phe Tyr Lys Met Ile Lys 875 Glu Gly Phe Arg Met Leu Ser Pro Glu His Ala Pro Ala Glu Met Tyr Asp Ile Met Lys Thr Cys Trp Asp Ala Asp Pro Leu Lys Arg Pro Thr 905 Phe Lys Gln Ile Val Gln Leu Ile Glu Lys Gln Ile Ser Glu Ser Thr 915 920 Asn His Ile Tyr Ser Asn Leu Ala Asn Cys Ser Pro His Arg Glu Asn 940 935 Pro Ala Val Asp His Ser Val Arg Ile Asn Ser Val Gly Ser Ser Ala 950 945 Ser Ser Thr Gln Pro Leu Leu Val His Glu Asp Val 965 <210> 3 <211> 8 <212> PRT <213> Sus scrofa <400> 3 Pro Leu Leu Val His Glu Asp Val <210> 4 <211> 936 <212> DNA <213> Sus scrofa <220> <221> CDS <222> (1)..(936) <400> 4 atggccgcgc tgctcctggg cgcggtgatg ctggtccttc agctccagct ggtgccttgc 60 cgcccgcca tgcccgggc cgggccgagc cagcaggagc ttgtgcggaa agcggcgacc 120 ctccaggatg aggtccggga cagcgcggcc cccaacggct ccgtccagca gctgccgcag 180 240 accatcatca teggegtgeg caagggeggg accegegege tgetggagat geteageetg 300 catecegacg tggctgctgc ggagaacgag gtgcacttct tcgactggga ggagcattac agccaaggcc tggactggta cctcagccag atgcccttct cctacccgca ccagctcacg 360 gttgaaaaga cccccgcgta cttcacgtcg cccaaagtgc ctgagcgggt ccaccgcatg 420

Page 7

480

aacccgtcca tccggctgct gctcatcctg cgggacccgt cggagcgcgt gctgtccgac

tacacccaag	tgttctacaa	ccacgtgcag	aagcacaagc	cctacccgtc	catcgaggag	540
ttcctggtgc	gcgacggccg	cctcaacgtg	gactacaagg	ccctcaaccg	aagcctgtac	600
cacgtgcaca	tgcagaactg	gctgcgcttc	ttcccgctgc	gccgcatcca	catcgtggat	660
ggcgaccgcc	tcatcaggga	cccttttcct	gagatccaga	aggtcgagag	gttcctgatg	720
ctgtcgccgc	agatcaacgc	ctcgaacttc	tactttaaca	aaaccaaggg	cttttactgc	780
ctgcgggacg	gcggccggga	ccgctgctta	catgagtcca	aaggccgggc	gcacccccag	840
atcgacccca	aactcctcaa	taaactgcac	gaatattttc	atgagccaaa	taagaaattt	900
ttcgagcttg	tgggcagaac	atttgactgg	cactaa			936

<210> 5

<211> 311

<212> PRT

<213> Sus scrofa

<400> 5

Met Ala Ala Leu Leu Gly Ala Val Met Leu Val Leu Gln Leu Gln 1 5 10 15

Leu Val Pro Cys Arg Pro Ala Met Pro Gly Ala Gly Pro Ser Gln Gln
20 25 30

Glu Leu Val Arg Lys Ala Ala Thr Leu Gln Asp Glu Val Arg Asp Ser 35 40 45

Ala Ala Pro Asn Gly Ser Val Gln Gln Leu Pro Gln Thr Ile Ile Ile 50 55 60

Gly Val Arg Lys Gly Gly Thr Arg Ala Leu Leu Glu Met Leu Ser Leu 65 70 75 80

His Pro Asp Val Ala Ala Ala Glu Asn Glu Val His Phe Phe Asp Trp 85 90 95

Glu Glu His Tyr Ser Gln Gly Leu Asp Trp Tyr Leu Ser Gln Met Pro 100 105 110

Phe Ser Tyr Pro His Gln Leu Thr Val Glu Lys Thr Pro Ala Tyr Phe 115 120 125

Thr Ser Pro Lys Val Pro Glu Arg Val His Arg Met Asn Pro Ser Ile 130 135 140

Arg Leu Leu Ile Leu Arg Asp Pro Ser Glu Arg Val Leu Ser Asp 145 150 155 160

Tyr Thr Gln Val Phe Tyr Asn His Val Gln Lys His Lys Pro Tyr Pro 165 170 175

Ser Ile Glu Glu Phe Leu Val Arg Asp Gly Arg Leu Asn Val Asp Tyr 180 185 190

Lys Ala Leu Asn Arg Ser Leu Tyr His Val His Met Gln Asn Trp Leu 195 200 205	
Arg Phe Phe Pro Leu Arg Arg Ile His Ile Val Asp Gly Asp Arg Leu 210 215 220	
Ile Arg Asp Pro Phe Pro Glu Ile Gln Lys Val Glu Arg Phe Leu Met225230235240	
Leu Ser Pro Gln Ile Asn Ala Ser Asn Phe Tyr Phe Asn Lys Thr Lys 245 250 255	
Gly Phe Tyr Cys Leu Arg Asp Gly Gly Arg Asp Arg Cys Leu His Glu 260 265 270	
Ser Lys Gly Arg Ala His Pro Gln Ile Asp Pro Lys Leu Leu Asn Lys 275 280 285	
Leu His Glu Tyr Phe His Glu Pro Asn Lys Lys Phe Phe Glu Leu Val 290 295 300	
Gly Arg Thr Phe Asp Trp His 305 310	
<210> 6 <211> 1236 <212> DNA <213> Sus scrofa <220> <221> CDS <222> (1)(1236)	
<400> 6 atgcggcggc ggcgcgctgg cagcaggacc atggttgagc gcgccagcaa gttcgtgctg	60
gtcgtggcgg gctcggcgtg cttcatgctc atcctctacc agtacgcggg cccggggctg	120
agcetgggeg egeeeggegg eegegegeeg eeegaegaee tggaeetett eeecaegeee	180
gacccgcact acgagaagaa gtactacttc ccggtgcgcg agctggagcg ctcgctgcac	240
ttcgacatga agggcgacga cgtgatagtc ttcttgcaca tccagaaaac gggcggcacc	300
accttcggcc gtcacctcgt gcagaacgtg cgcctcgagg tgccctgcga ctgccggccc	360
ggccagaaga agtgcacctg ctaccggccc aaccgccgcg agacctggct cttctcccgc	420
ttctccacgg gctggagctg cggactgcac gccgactgga ccgagctcac caactgcgtg	480
ceeggegtge tggaeegeeg egaeeeegee gegetgegea egeeeaggaa gttetaetae	540
atcaccctgc tgcgagaccc cgtgtcccgc tacctgagtg agtggcggca tgtacagcgg	600
ggggccacat ggaagacgtc gctgcacatg tgtgacgggc gcacgcccac ccctgaggag	660
ctgccaccct gctacgaggg cacggactgg tcgggctgca cactgcagga gttcatggac Page 9	720

tgcccctaca	acctggccaa	taaccgccag	gtgcgaatgc	tggccgacct	gagcctggtg	780
ggctgctaca	acctgtcctt	catccccgag	ggcaagcggt	cccaactgct	gctggaaagc	840
gccaagaaga	acctgcgggg	catggccttc	ttcggcctga	ccgagttcca	gcgcaagacg	900
cagtacctgt	tcgagcggac	gttcaacctc	aagttcatcc	ggcctttcat	gcagtacaac	960
agcacgcgag	cgggtggcgt	ggaggtgggt	gaggacacca	tccggcgcat	tgaggagctc	1020
aacgacctgg	acatgcagct	gtacgactac	gccagggacc	tcttccagca	gcgctatcag	1080
tacaagcggc	agctggagcg	ccggcagcag	cgcctccgga	gccgcgagga	gcgcctgctg	1140
caccgggcca	aggaggcgcc	acctcggggg	gacaccgagg	agccgggccg	agtgcccact	1200
gaggactaca	tgagccacat	catcgagaag	tggtag			1236

<210> 7

<211> 411

<212> PRT

<213> Sus scrofa

<400> 7

Met Arg Arg Arg Ala Gly Ser Arg Thr Met Val Glu Arg Ala Ser 1 5 10 15

Lys Phe Val Leu Val Val Ala Gly Ser Ala Cys Phe Met Leu Ile Leu 20 25 30

Tyr Gln Tyr Ala Gly Pro Gly Leu Ser Leu Gly Ala Pro Gly Gly Arg 35 40 45

Ala Pro Pro Asp Asp Leu Asp Leu Phe Pro Thr Pro Asp Pro His Tyr 50 55 60

Glu Lys Lys Tyr Tyr Phe Pro Val Arg Glu Leu Glu Arg Ser Leu His 65 70 75 80

Phe Asp Met Lys Gly Asp Asp Val Ile Val Phe Leu His Ile Gln Lys 85 90 95

Thr Gly Gly Thr Thr Phe Gly Arg His Leu Val Gln Asn Val Arg Leu 100 105 110

Glu Val Pro Cys Asp Cys Arg Pro Gly Gln Lys Lys Cys Thr Cys Tyr 115 120 125

Arg Pro Asn Arg Arg Glu Thr Trp Leu Phe Ser Arg Phe Ser Thr Gly 130 135 140

Trp Ser Cys Gly Leu His Ala Asp Trp Thr Glu Leu Thr Asn Cys Val 145 150 155 160

Pro Gly Val Leu Asp Arg Asp Pro Ala Ala Leu Arg Thr Pro Arg 165 170 175

FRAV20030009 US NP Sequence Listing.txt Lys Phe Tyr Tyr Ile Thr Leu Leu Arg Asp Pro Val Ser Arg Tyr Leu 180 Ser Glu Trp Arg His Val Gln Arg Gly Ala Thr Trp Lys Thr Ser Leu 195 His Met Cys Asp Gly Arg Thr Pro Thr Pro Glu Glu Leu Pro Pro Cys 210

Tyr Glu Gly Thr Asp Trp Ser Gly Cys Thr Leu Gln Glu Phe Met Asp 225 230 235 240

Cys Pro Tyr Asn Leu Ala Asn Asn Arg Gln Val Arg Met Leu Ala Asp 245 250 255

Leu Ser Leu Val Gly Cys Tyr Asn Leu Ser Phe Ile Pro Glu Gly Lys 260 265 270

Arg Ser Gln Leu Leu Glu Ser Ala Lys Lys Asn Leu Arg Gly Met 275 280 285

Ala Phe Phe Gly Leu Thr Glu Phe Gln Arg Lys Thr Gln Tyr Leu Phe 290 295 300

Glu Arg Thr Phe Asn Leu Lys Phe Ile Arg Pro Phe Met Gln Tyr Asn 305 310 315 320

Ser Thr Arg Ala Gly Gly Val Glu Val Gly Glu Asp Thr Ile Arg Arg 325 330 335

Ile Glu Glu Leu Asn Asp Leu Asp Met Gln Leu Tyr Asp Tyr Ala Arg 340 345 350

Asp Leu Phe Gln Gln Arg Tyr Gln Tyr Lys Arg Gln Leu Glu Arg Arg 355 360 365

Gln Gln Arg Leu Arg Ser Arg Glu Glu Arg Leu Leu His Arg Ala Lys 370 380

Glu Ala Pro Pro Arg Gly Asp Thr Glu Glu Pro Gly Arg Val Pro Thr 385 390 395 400

Glu Asp Tyr Met Ser His Ile Ile Glu Lys Trp
405 410

<210> 8

<211> 39

<212> DNA

<213> Sus scrofa

<400> 8

gaccacgcgt atcgatgtcg acttttttt ttttttv

39

<210> 9

<211> 33

<212> DNA

<213> Sus scrofa

<400> 9 ggaattcctc gagagcagga acgtggaaag gag	33
<210> 10 <211> 22 <212> DNA <213> Sus scrofa	
<400> 10 gaccacgcgt atcgatgtcg ac	22
<210> 11 <211> 17 <212> DNA <213> Sus scrofa	
<400> 11 gcagcagcca cgtcggg	17
<210> 12 <211> 20 <212> DNA <213> Sus scrofa	
<400> 12 tcagtgycag tcraatgttc	20
<210> 13 <211> 18 <212> DNA <213> Sus scrofa	
<220> <221> misc_feature <222> (4)(4) <223> n is a, c, g, or t	
<220> <221> misc_feature <222> (13)(13) <223> n is a, c, g, or t	
<400> 13 cggngaccgc ctnatcag	18
<210> 14 <211> 20 <212> DNA <213> Sus scrofa	
<400> 14 tcagtgycag tcraatgttc	20

<210> 15 <211> 27 <212> DNA <213> Sus scrofa	
<400> 15 attctagagg ccgaggcggc cgacatg	27
<210> 16 <211> 19 <212> DNA <213> Sus scrofa	
<400> 16 gcaccccag atcgacccc	19
<210> 17 <211> 23 <212> DNA <213> Sus scrofa	
<400> 17 caaactcctc aataaactgc acg	23
<210> 18 <211> 48 <212> DNA <213> Sus scrofa	
<400> 18 ggggacaagt ttgtacaaaa aagcaggctc agcatggccg cgctgctc	48
<210> 19 <211> 52 <212> DNA <213> Sus scrofa	
<400> 19 gggaccactt tgtacaagaa agctgggttt agtgccagtc aaatgttctg cc	52
<210> 20 <211> 19 <212> DNA <213> Sus scrofa	
<400> 20 agatgactgg tcgggctgc	19
<210> 21 <211> 23 <212> DNA	

	FRAV20030009	US NE	Sequence	Listing.txt	
<213> Sus scrofa		0.0 111			
<400> 21 caatgatrtg gctcatgtag	tcc				23
<210> 22 <211> 25 <212> DNA <213> Sus scrofa					
<400> 22 atggttgagc gcgccagcaa	gttcg				25
<210> 23 <211> 24 <212> DNA <213> Sus scrofa					
<400> 23 ggttattggc caggttgtag	gggc				24
<210> 24 <211> 28 <212> DNA <213> Sus scrofa					
<400> 24 attctagagg ccgaggcggc	cgacatgt				28
<210> 25 <211> 18 <212> DNA <213> Sus scrofa					
<400> 25 ggacctette cageageg					18
<210> 26 <211> 21 <212> DNA <213> Sus scrofa					
<400> 26 gctatcagta caagcggcag	С				21
<210> 27 <211> 16 <212> DNA <213> Sus scrofa					
<400> 27					16

<210> 28 <211> 39 <212> DNA <213> Sus scrofa	
<400> 28 gaccacgcgt atcgatgtcg acttttttt tttttttv	39
<210> 29 <211> 23 <212> DNA <213> Sus scrofa	
<400> 29 ggcaatgtcg acctccctac aac	23
<210> 30 <211> 17 <212> DNA <213> Sus scrofa	
<400> 30 teagecegg geeegeg	17
<210> 31 <211> 23 <212> DNA <213> Sus scrofa	
<400> 31 ctccctacaa cccgaattcc tac	23
<210> 32 <211> 19 <212> DNA <213> Sus scrofa	
<400> 32 gcccgcgtac tggtagagg	19
<210> 33 <211> 56 <212> DNA <213> Sus scrofa	
<400> 33 ggggacaagt ttgtacaaaa aagcaggctt aggacaatgg tgacacatgc ggcggc	56
<210> 34 <211> 55 <212> DNA	

<400> 34 ggggaccact ttgtacaaga aagctgggtc ctaccacttc tcgatgatgt ggctc 55