1F,2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China.

Tel: +86-755-27559792 Report No.: GTI20140444F-1 Fax: +86-755-86116468

Page 1 of 56

TEST REPORT

Product Name: LTE mobile phone

Trademark : NUU

Model/Type reference: X1

Listed Model(s): X1 Series

X1 other series model No. are all the same with main model

Model difference: X1, except for body color, RAM and LOGO to meet different

customer requirements

FCC ID...... 2ADINNUUX1

FCC Part 22: PUBLIC MOBILE SERVICES Test Standards:

FCC Part 24: PERSONAL COMMUNICATIONS SERVICES

Applicant Sun Cupid Technology (HK) Ltd.

16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan, Address of Applicant....:

Kowloon, Hong Kong

Date of Receipt Nov.02, 2014

Date of Test Date...... Nov.02, 2014 - Nov.28, 2014

Data of Issue. Nov.28, 2014

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified above

GENERAL DESCRIPTION OF EUT Equipment: LTE Mobile Phone Model Name: X1 Manufacturer: Sun Cupid Technology (Shenzhen) Ltd. 10A, No.3 Bldg, China Academy of Sci & Tech Development, Manufacturer Address: No.1 High-Tech South St. Nanshan district, Shenzhen, China. Power Source: DC 3.8V from Li-ion battery Input: 100-240VAC, 50/60Hz 0.2A MAX Power Rating: Output: 5V===1.0A

Compiled By:

Allen Wang

(Allen Wang)

Reviewed By:

(Tony Wang)

Approved By:

(Walter Chen)

This test report consists of 56 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by GTI. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of compiler, reviewer and approver. Any objections must be raised to GTI within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Table of Contents

Page

Report No.: GTI20140444F-1

 SU 	IMMARY	4
1.1.	Test Standards	4
1.2.	TEST DESCRIPTION	
1.3.	TEST FACILITY	5
1.4.	MEASUREMENT UNCERTAINTY	
2. GE	NERAL INFORMATION	6
2.1.	Environmental conditions	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	6
2.4.	MEASUREMENT INSTRUMENTS LIST	7
3. TE	ST ITEM AND RESULTS	8
3.1.	CONDUCTED OUTPUT POWER	8
3.2.	Occupy Bandwidth	10
3.3.	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
3.4.	BAND EDGE COMPLIANCE	30
3.5.	RADIATED POWER MEASUREMENT	35
3.6.	RADIATED SPURIOUS EMISSION	38
3.7.	Frequency stability	44
4. EU	IT TEST PHOTO	47
5. PH	HOTOGRAPHS OF EUT CONSTRUCTIONAL	48

Tel.: (86)755-27588991

Fax: (86)755-86116468

Http://www.sz-ctc.com.cn

1. SUMMARY

1.1. Test Standards

FCC Part 22 (10-1-13 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 D June 2010:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

<u>KDB971168 D01:2014-10-17</u> Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems

<u>ANSI C63.4:2009:</u> Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Test Description

Test Item	Section in CFR 47	Result
	Part 2.1046	
RF Output Power	Part 22.913 (a)(2)	Pass
	Part 24.232 (c)	
Peak-to-Average Ratio	Part 24.232 (d)	N/A
Modulation Characteristics	Part 2.1047	N/A
	Part 2.1049	
99% & -26 dB Occupied Bandwidth	Part 22.917	Pass
	Part 24.238	
	Part 2.1051	
Spurious Emissions at Antenna Terminal	` ,	Pass
	Part 24.238 (a)	
	Part 2.1053	
Field Strength of Spurious Radiation	Part 22.917 (a)	Pass
	Part 24.238 (a)	
Out of band emission, Band Edge	Part 22.917 (a)	Pass
Out of band chilission, band Edge	Part 24.238 (a)	1 833
Frequency stability vs. temperature	Part 2.1055(a)(1)(b)	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2)	Pass

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. This EUT owns two SIM cards, after we perform the pre-test for these two SIM cards; we found the SIM 1 is the worst case, so its result is recorded in this report.

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen General Testing & Inspection Technology Co., Ltd.

Add: 1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9783A

The 3m alternate test site of Shenzhen GTI Technology Co., Ltd.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Aug. 2011.

FCC-Registration No.: 214666

Shenzhen GTI Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 214666, Sep 19, 2011

1.4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements and is documented in the Shenzhen General Testing & Inspection Technology Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for General Testing & Inspection laboratory is reported:

Measurement Uncertainty	Notes
25 Hz	(1)
0.57 dB	(1)
2.20 dB	(1)
1.60 dB	(1)
3.39 dB	(1)
4.24 dB	(1)
5.16 dB	(1)
5.54 dB	(1)
	(1)
	(1)
	(1)
	(1)
	25 Hz 0.57 dB 2.20 dB 1.60 dB 3.39 dB 4.24 dB 5.16 dB

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	-30~50°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2.2. General Description of EUT

Product Name:	LTE Mobile Phone
Model/Type reference:	X1
Power supply:	DC 3.8V from Li-ion battery
Adapter information:	Model: HNFG050100UU
	Input: 100-240VAC, 50/60Hz 0.2A MAX
	Output: 5V===1.0A
Hardware version:	UALC04 VER E
Software version:	X1-US-01
2G	
Operation Band:	GSM850, PCS1900
Supported Type:	GSM/GPRS/EGPRS
Power Class:	GSM850:Power Class 4
	DCS1900:Power Class 1
Modulation Type:	GMSK for GSM/GPRS,8PSK for EDGE
GSM Release Version	R99
GPRS /EGPRS Class	Class B
GPRS Multislot Class	12
EGPRS Multislot Class	12
WCDMA	
Operation Band:	FDD Band V, FDD II
Power Class:	Power Class 3
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA
WCDMA Release Version:	R8
HSDPA Release Version:	Release 8
HSUPA Release Version:	Release 6
DC-HSUPA Release Version:	Not Supported

2.3. Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing.

Test Frequency:

GSM 850		PCS1900		FDD Band II		FDD Band V	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
128	824.20	512	1850.20	9262	1852.40	4132	826.40
190	836.60	661	1880.00	9400	1880.00	4182	836.60
251	848.80	810	1909.80	9538	1907.60	4233	846.60

Shenzhen General Testing & Inspection Technology Co., Ltd.

2.4. Measurement Instruments List

Output Power (Radiated) & Radiated Spurious Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
1	EMI Test Receiver	R&S	ESCI	100658	Dec 26, 2014		
2	High pass filter	Compliance Direction systems	BSU-6	34202	Oct 23,2015		
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec 27, 2014		
4	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4181	Dec 27, 2014		
5	Spectrum Analyzer	HP	8563E	02052	Dec 27, 2014		
6	Horn Antenna	Schwarzbeck	BBHA 9120D	648	Dec 27, 2014		
7	Horn Antenna	Schwarzbeck	BBHA 9120D	649	Dec 27, 2014		
8	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec 27,2014		
9	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25842	Dec 27,2014		
10	Pre-Amplifier	HP	8447D	1937A03050	Dec 26, 2014		
11	Pre-Amplifier	EMCI	EMC051835	980075	Dec 27, 2014		
12	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 26, 2014		
13	Signal Generator	Agilent	N5182A	1019356	Dec. 26, 2014		
14	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015		
15	Antenna Mast	UC	UC3000	N/A	N/A		
16	Turn Table	UC	UC3000	N/A	N/A		
17	Cable	Schwarzbeck	Cable002		Dec. 26,2014		
18	Cable	Schwarzbeck	Cable003		Dec. 26,2014		
19	Loop Antenna	Rohde & Schwarz	HFH2-Z2	829324	Dec. 26,2014		

Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance & Conducted Spurious Emission								
Item	Item Test Equipment Manufacturer Model No. Serial No. Calibrated until							
1	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015			
2	Spectrum Analyzer	Rohde & Schwarz	FSU26	201141	Dec. 26, 2014			
3	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 26, 2014			

Freque	Frequency Stability								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
1	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	March,15,2015				
2	Spectrum Analyzer	Rohde & Schwarz	FSU26	201141	Dec. 26, 2014				
3	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 26, 2014				
4	Climate Chamber	ESPEC	EL-10KA	05107008	Oct 25,2015				

Note: 1. The Cal. Interval was one year.

Shenzhen General Testing & Inspection Technology Co., Ltd.

1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China
Tel.: (86)755-27588991 Fax: (86)755-86116468 Http://www.sz-ctc.com.cn

^{2.} The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Output Power

LIMIT

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II: 2W

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum PK burst power using Peak detector by spectrum

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result
GSM 850	128	824.20	32.59	38.45	Pass
(GMSK)	190	836.60	32.71	38.45	Pass
(GIVISK)	251	848.80	32.85	38.45	Pass
GPR 850	128	824.20	32.42	38.45	Pass
(GMSK)	190	836.60	32.58	38.45	Pass
(GIVISIN)	251	848.80	32.79	38.45	Pass
ECDDC 050	128	824.20	27.36	38.45	Pass
EGPRS 850 (8PSK)	190	836.60	27.49	38.45	Pass
(or six)	251	848.80	27.65	38.45	Pass
PCS1900	512	1850.20	29.74	33.01	Pass
	661	1880.00	29.89	33.01	Pass
(GMSK)	810	1909.80	29.53	33.01	Pass
PCS1900	512	1850.20	29.71	33.01	Pass
	661	1880.00	29.85	33.01	Pass
(GMSK)	810	1909.80	29.53	33.01	Pass
EGPRS 1900	512	1850.20	26.57	33.01	Pass
(8PSK)	661	1880.00	26.76	33.01	Pass
(or SK)	810	1909.80	26.48	33.01	Pass

Shenzhen General Testing & Inspection Technology Co., Ltd.

Page 9 of 56 Report No.: GTI20140444F-1

WCDMA Band	9262	1852.40	24.61	33.01	Pass
II	9400	1880.00	24.72	33.01	Pass
11	9538	1907.60	24.55	33.01	Pass
MODMA Dand	4132	826.40	24.59	38.45	Pass
WCDMA Band	4183	836.60	24.66	38.45	Pass
V	4233	846.60	24.23	38.45	Pass

Note: 1.According to KDB971168 D01 "If peak power or power density is used to demonstrate compliance, a PAPR measurement is not required"

3.2. Occupy Bandwidth

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW= 3 times RBW.
- 3. Set 99% bandwidth function for occupied bandwidth and -26dBc for Emission Bandwidth, the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
0014.050	128	824.20	245.19	313.30
GSM 850	190	836.60	241.99	313.30
(GMSK)	251	848.80	245.19	314.90
GPR 850	128	824.20	249.20	310.90
	190	836.60	245.99	310.90
(GMSK)	251	848.80	245.99	312.50
EGPRS 850	128	824.20	245.99	313.30
	190	836.60	246.79	319.71
(8PSK)	251	848.80	243.59	318.10
PCS 1900	512	1850.20	247.60	313.30
	661	1880.00	243.59	313.30
(GMSK)	810	1909.80	242.79	312.50
GPRS1900	512	1850.20	245.99	309.29
	661	1880.00	245.99	315.71
(GMSK)	810	1909.80	241.19	312.50
EGPRS 1900	512	1850.20	240.38	318.91
	661	1880.00	240.38	318.91
(8PSK)	810	1909.80	240.38	314.90
	9262	1852.40	4214.74	4663.46
WCDMA Band II	9400	1880.00	4230.77	4727.56
	9538	1907.60	4246.79	4695.51
	4132	826.40	4182.69	4647.36
WCDMA Band V	4183	836.60	4166.67	4647.36
	4233	846.60	4166.67	4631.41

3.3. Out of band emission at antenna terminals

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 and WCDMA Band II, this equates to a frequency range of 9 KHz to 19.1 GHz, data taken from 9 KHz to 20 GHz. For GSM850 and WCDMA Band V, data taken from 9 KHz to 10 GHz.

3. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
GSM850/ WCDMA Band V	0.000009~0.000015	1KHz	3KHz	Auto
	0.000015~0.03	10KHz	30KHz	Auto
	0.03~1	1 MHz	3 MHz	Auto
	1-2.5	1 MHz	3 MHz	Auto
	2.5~7.5	1 MHz	3 MHz	Auto
	7.5~10	1 MHz	3 MHz	Auto
PCS1900/ WCDMA Band II	0.000009~0.000015	1KHz	3KHz	Auto
	0.000015~0.03	10KHz	30KHz	Auto
	0.03~1	1 MHz	3 MHz	Auto
	1-2.5	1 MHz	3 MHz	Auto
	2.5~7.5	1 MHz	3 MHz	Auto
	7.5~10	1 MHz	3 MHz	Auto
	10~15	1 MHz	3 MHz	Auto
	15~20	1 MHz	3 MHz	Auto

TEST RESULTS

1. We were not recorded any values from 9 KHz to 30 MHz as values at least 20dB lower than limit.

15GHz~20GHz

10GHz~15GHz

15GHz~20GHz

10GHz~15GHz

South Testing & Color

15GHz~20GHz

10GHz~15GHz

15GHz~20GHz

10GHz~15GHz

3.4. Band Edge compliance

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. Set the RBW=5 KHz, VBW = 50 KHz, Span=1MHz Sweep time= Auto for 2G system measurement.
- 3. Set the RBW=50 KHz, VBW = 100 KHz, Span=5MHz Sweep time= Auto for 3G system measurement.

TEST RESULTS

		GPR	S850		
Channel	Frequency	Measurement Results		Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
128	824.20	823.99	-14.18	-13.00	Pass
251	848.80	849.02	-14.48	-13.00	Pass
Ref 10 dBm 10 Offset 22 dB	*RBW 5 kHz *VBW 50 kF *Att 20 dB *SWT 300 n	z -14.18 dBm	Ref 10 dBm 10 Offset 22 dB	* RBW 5 kHz * VBW 50 kHz * Att 20 dB * SWT 300 ms	Marker 1 [T1] -14.48 dBm 849.017628205 MHz
-10 D1 -13 dBm -20 D1 -13 dBm -20 -30 -40 -50 -70 -60 -70 -80 -90 Center 823.5 MHz	100 kHz/	Span 1 MHz	-30 D1 -13 dBm203060708090 Center 849.5 MHz	100 kHz/	EXT 3DB

EGPRS1900 Measurement Results Channel Frequency Limit Frequency Verdict Number (MHz) Values (dBm) (dBm) (MHz) 1850.20 -14.33 512 1850.00 -13.00 **Pass** 810 1909.80 1910.00 -13.60 -13.00 **Pass** * RBW 5 kHz * VBW 50 kHz * SWT 300 ms ॐ * VBW 50 kHz * SWT 300 ms

Page 34 of 56

3.5. Radiated Power Measurement

LIMIT

GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.80 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 0.80m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (Pcl), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 - ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

GSM:

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
GSM850	128	V	29.92	38.45	Pass
		Н	25.64		
	190	V	31.55		
		Н	26.73		
	251	V	30.97		
	231	Н	26.44		
	128	V	29.37	38.45	Pass
GPRS850		Н	25.12		
	190	V	31.08		
		Н	26.24		
	251	V	30.46		
		Н	26.38		
EGPRS850	128	V	23.45	38.45	Pass
		Н	19.96		
	190	V	24.78		
		Н	20.54		
	251	V	24.07		
		Н	20.13		