Clustering

Agrupaments (Clustering)

Clustering

Clustering ieràrquic

Introducció

Problema: Donat un conjunt d'objectes, classificar-los en grups (clusters) basant-nos en les seves semblances i diferències

Algunes aplicacions en biologia:

- Classificació jeràrquica d'organismes (relacionada amb una filogènia)
- Agrupament de gens amb pautes d'expressió similars
- Agrupament de gens per semblança següencial
- Agrupament de proteïnes per semblança estructural

Principis bàsics

Clustering

k-means Clustering jeràrquic Clustering jeràrquic aglomerati Homogeneïtat: Objectes dins el mateix cluster han de ser propers (semblants)

Separació: Objectes dins clusters diferents han de ser llunyans

Com formalitzar i calcular aquests principis intuïtius?

Tipus de clustering

Clustering

Introducció k-means Clustering jeràrquic Clustering jeràrquic

aglomeratiu

 De partició: Dividim els objectes en un nombre prefixat de clusters; possiblement provam diversos nombres de clusters i ens quedam amb el millor

Tipus de clustering

Clustering

Introducció k-means Clustering jeràrquic Clustering jeràrquic Jeràrquic: Successivament agrupam (aglomeratius)
 o dividim (divisius) objectes o grups d'objectes.
 Produeix un arbre de classificació on els objectes
 pertanyen a clusters inclosos dins clusters inclosos
 dins clusters . . .

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu

k-means

L'algoritme de les k-mitjanes (k-means) cerca una partició del conjunt d'objectes, representats com a elements d'un espai \mathbb{R}^n , en un nombre fixat k de clusters Aquests clusters s'identifiquen per mitjà dels seus punts mitjans (means)

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu L'algoritme de les k-mitjanes (k-means) cerca una partició del conjunt d'objectes, representats com a elements d'un espai \mathbb{R}^n , en un nombre fixat k de clusters

Aquests clusters s'identifiquen per mitjà dels seus punts mitjans (means)

Recordau que donat $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^n x_i^2}$$

i que donats $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\|\mathbf{x} - \mathbf{y}\|$ és la distància euclidiana entre \mathbf{x} i \mathbf{y} .

Clustering jeràrquic Clustering jeràrquic aglomeratiu Fixem el nombre de clusters k

Donats punts $\mathbf{x}_1, \dots, \mathbf{x}_p \in \mathbb{R}^n$, l'objectiu és trobar k punts $\mathbf{c}_1, \dots, \mathbf{c}_k \in \mathbb{R}^n$ que minimitzin

$$SS_C(\mathbf{x}_1,...,\mathbf{x}_p;k) = \sum_{i=1}^p \min_{j=1,...,k} \|\mathbf{x}_i - \mathbf{c}_j\|^2$$

Aleshores cada c_j definirà el cluster format pels x_i que estan més a prop d'ell que de cap altre c_i :

$$C_j = \{\mathbf{x}_i \mid \|\mathbf{x}_i - \mathbf{c}_j\| < \|\mathbf{x}_i - \mathbf{c}_l\| \text{ per a tot } l \neq j\}$$

i

$$SS_C(\mathbf{x}_1,\ldots,\mathbf{x}_p;k) = \sum_{i=1}^k \sum_{\mathbf{x}_i \in C} \|\mathbf{x}_i - \mathbf{c}_j\|^2$$

k-means: Algoritme de Lloyd

- Escollim c_1, \ldots, c_k (com vulguem)
- ② Assignam cada punt x_i al cluster C_j definit pel centre c_j més proper
- 3 Substituïm cada centre \mathbf{c}_j pel punt mitjà del seu cluster C_j :

$$\mathbf{c}_j = \Big(\sum_{\mathbf{x}_i \in C_i} \mathbf{x}_i\Big) / |C_j|$$

 Es repeteixen (2)–(3) fins que els clusters estabilitzen, o un nombre prefixat d'iteracions

El resultat depèn dels $\mathbf{c}_1, \dots, \mathbf{c}_k$ inicials.

Aquest algoritme no té perquè donar un clustering òptim. Convé repetir-lo diverses vegades amb diferents inicialitzacions.

Clustering Introducció k-means

Clustering Introducció

Clustering Introducció

Clustering Introducció

Clustering Introducció k-means

Clustering Introducció k-means

Clustering Introducció k-means

Clustering Introducció k-means

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu

I s'atura: $SS_C = 7.25375$

k-means

Limitacions de k-means:

- No hi ha un mètode eficient i universal de triar els centres de partida
- No es pot garantir un òptim global
- No es pot determinar de manera efectiva el nombre k a priori
- No és invariant per canvi d'escala (convé estandarditzar dades)
- Sensible a outliers
- Només aplicable dins \mathbb{R}^n amb distància euclidiana
- Troba clusters esfèrics

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu La SS_C òptima $SS_C(k)$ minva amb k seguint una funció més o menys còncava. Si podem detectar un k a partir del qual SS_C minva molt més lentament que abans d'ell, aquest serà el k recomanable.

k = 3 és el recomanable

Quina k? Test F

Es calcula

$$F_k = \frac{SS_C(k) - SS_C(k+1)}{\frac{SS_C(k+1)}{p-k-1}}$$

Es pren com a p-valor

$$P(F_{n,n(p-k-1)} > F_k)$$

amb $F_{n,n(p-k-1)}$ una F de Fisher amb n i n(p-k-1) graus de llibertat, i triam el k amb p-valor més petit.

Cal dir que és un mètode molt emprat, però no massa justificable

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu En l'exemple del gràfic anterior

k	2	3	4	5	6	7	8
$\overline{SS_C(k)}$	8.264	5.344	3.254				1.27
$\overline{F_k}$	8.2	9	4.42	3.14	1.63	3.2	
p-valor	0.0014	0.001	0.02	0.06	0.229	0.06	

k = 3 torna a ser el més recomanable

Si el conjunt de punts és molt gran, tots els *p*-valors són propers a 0 i aquest mètode no és útil.

Introducció

k-means amb R

La instrucció bàsica per executar un k-means amb R és

```
kmeans(x,centres,iter.max=...)
```

amb

- x, una matriu amb els punts x_i com a fileres
- centres, una matriu amb els centres c_i de partida com a fileres, o el nombre k
- iter.max el nombre màxim d'iteracions

Aquesta instrucció no segueix exactament el nostre algoritme, si voleu que executi l'algoritme explicat hi heu d'entrar, a més, algorithm="Lloyd"

Clustering Introducció

```
> dades=matrix(c(0.8,1.3,0.8,1.8,1.0,0.9,1.1,
0.1,1.1,1.6,1.4,0.6,1.5,0.1,2,2.1,1.5,2.3,1.8,
1.8,2.3,0.5,0.3,2.2,1,2.5,2,0.5,2,1.5,2.5,1,
0.5, 0.5, 1, 2), nrow=18, byrow=TRUE)
> cent=matrix(c(0.5,0,0.5,1.5,0.5,3),
nrow=3,byrow=TRUE)
```

```
atemàtiques II
```

Clustering Introducció

```
> kmeans(dades,cent,algorithm="Lloyd")
$k$-means clustering with 3 clusters of sizes
8, 5, 5
Cluster means:
    [,1] [,2]
1 1.5375 0.525
2 1.3000 1.600
3 1.1600 2.220
Clustering vector:
 [1] 2 2 1 1 2 1 1 3 3 2 1 3 3 1 2 1 1 3
Within cluster sum of squares by cluster:
[1] 4.03375 1.46000 1.76000
 (between_SS / total_SS = 57.9 %)
```

Clustering Introducció

Clustering ieràrquic Clustering

k-means amb R

Components de la list kmeans:

- cluster: assignacions d'elements a clusters
 - > km=kmeans(dades,cent,algorithm="Lloyd")
 - > km\$cluster

```
[1] 2 2 1 1 2 1 1 3 3 2 1 3 3 1 2 1 1 3
```

- centers: els centres dels clusters
 - > km\$centers

$$[,1]$$
 $[,2]$

- 1 1.5375 0.525
- 2 1.3000 1.600
- 3 1.1600 2.220

Components de la list kmeans:

- totss: suma dels quadrats de les distàncies dels punts al punt mig de tots aquests punts.
 - > km\$totss
 [1] 17.20944
- withinss: vector de les sumes, per a cada cluster, dels quadrats de les distàncies dels seus punts al punt mig del seu cluster.
 - > km\$withinss [1] 4.03375 1.46000 1.76000

Components de la list kmeans:

- tot.withinss: suma de withinss, SS_C
 - > km\$tot.withinss
 [1] 7.25375
 - betweenss: diferència totss tot.withinss. És la suma, ponderada pel nombre d'objectes del cluster corresponent, dels quadrats de les distàncies dels centres dels clusters al punt mig de tots els punts.
 - > km\$betweenss
 [1] 9.955694

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu

Components de la list kmeans:

• Ens interessa betweenss/totss, que mesura la fracció de la variabilitat de les dades que expliquen els clusters. Com més gran millor.

Al resultat de kmeans és between_SS / total_SS

```
> km
```

```
(between_SS / total_SS = 57.9 %)
```

. . .

> 9.955694/17.20944 #betweenss/totss [1] 0.5785019

```
latemàtiques I
```

Clustering jeràrquic Clustering jeràrquic aglomeratiu

Clustering

Introducció

```
k-means amb R
```

```
> km.rand=kmeans(dades,3,algorithm="Lloyd")
> km.rand
$k$-means clustering with 3 clusters of sizes
6, 5, 7
Cluster means:
       \lceil .1 \rceil \qquad \lceil .2 \rceil
1 2.1000000 1.233333
2 1.1000000 0.440000
3 0.9285714 1.957143
Clustering vector:
 [1] 3 3 2 2 3 2 2 1 3 1 1 3 3 1 1 1 2 3
Within cluster sum of squares by cluster:
[1] 2.593333 1.092000 1.851429
 (between_SS / total_SS = 67.8 %)
> km.rand$tot.withinss
[1] 5.965111
```

```
latemàtiques I
```

```
Clustering
Introducció
```

```
> km2=kmeans(dades,3) #5a repeticio ;-)
> km2
K-means clustering with 3 clusters of sizes
5, 4, 9
Cluster means:
      \lceil .1 \rceil \qquad \lceil .2 \rceil
1 1.100000 0.440000
2 2.200000 0.875000
3 1.144444 1.955556
Clustering vector:
 [1] 3 3 1 1 3 1 1 3 3 3 2 3 3 2 2 2 1 3
Within cluster sum of squares by cluster:
[1] 1.092000 0.867500 3.384444
 (between_SS / total_SS = 68.9 %)
> km2$tot.withinss
[1] 5.343944
```

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu > plot(dades,col=km\$cluster,pch=19, main="El nostre")

Clustering Introducció

Clustering jeràrquic Clustering jeràrquic aglomeratiu > plot(dades,col=km2\$cluster,pch=19, main="Optim")

Mètodes jeràrquics

Clustering

Clustering

Clustering

Els mètodes jeràrquics parteixen d'una matriu D de semblances o de distàncies entre els objectes

Si tenim p objectes, necessitam una matriu

$$D = \begin{pmatrix} d_{11} & d_{12} & \dots & d_{1p} \\ d_{21} & d_{22} & \dots & d_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ d_{p1} & d_{p2} & \dots & d_{pp} \end{pmatrix}$$

on cada d_{ii} és la distància o la semblança entre l'objecte i i l'objecte j

Una semblança sobre un conjunt X és una aplicació $\sigma: X \times X \rightarrow [0,1]$ que és:

- Reflexiva: Si x = y, aleshores $\sigma(x, y) = 1$
- Simètrica: $\sigma(x,y) = \sigma(y,x)$

Dos objectes x, y són més semblants com més gran és $\sigma(x, y)$

Clustering Introducció k-means

Clustering jeràrquic

Clustering jeràrquic aglomeratiu Una distància sobre un conjunt X és una aplicació $d: X \times X \to [0, \infty[$ que satisfà:

- Separació: d(x, y) = 0 si, i només si, x = y
- Simetria: d(x, y) = d(y, x)
- Designaltat triangular: $d(x, z) \leq d(x, y) + d(y, z)$

Dos objectes x, y són més semblants com més petita és d(x, y)

Clustering

Clustering

Clustering

Distàncies

Una distància sobre un conjunt X és una aplicació $d: X \times X \to [0, \infty[$ que satisfà:

- Separació: d(x, y) = 0 si, i només si, x = y
- Simetria: d(x, y) = d(y, x)
- Designaltat triangular: $d(x,z) \leq d(x,y) + d(y,z)$

Dos objectes x, y són més semblants com més petita és d(x, y)

El primer problema és escollir la semblança o la distància a emprar, segons el significat que vulguem que tingui el clustering. És una decisió molt important!

Partim de p objectes, dels quals hem pres n medicions, i els organitzam en fileres d'una matriu

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & \dots & x_{pn} \end{pmatrix}$$

Suposem que les medicions són binàries (0 o 1)

Exemple: Propietats dicotòmiques d'organismes

	Pèl	Pulmons	Ovípar	Llet
Ca	1	1	0	1
Granot	0	1	1	0
Puput	0	1	1	0
Ornitorrinc	1	1	1	1
Salmó	0	0	1	0

Donades dues fileres (objectes)

$$\mathbf{x}_i = (x_{i1}, \ldots, x_{in}), \quad \mathbf{x}_j = (x_{j1}, \ldots, x_{jn}),$$

definim les quantitats següents:

$$a_{0} = |\{k \mid x_{ik} = x_{jk} = 0\}|$$

$$a_{1} = |\{k \mid x_{ik} = x_{jk} = 1\}|$$

$$a_{2} = |\{k \mid x_{ik} \neq x_{jk}\}|$$

Una semblança entre els objectes i i j es pot definir mitjançant la fórmula genèrica

$$\sigma_{ij} = \frac{a_1 + \delta a_0}{\alpha a_1 + \beta a_0 + \lambda a_2}$$

Dades binàries

Clustering Introducció

Clustering jeràrqui<u>c</u>

Clustering jeràrquic aglomeratiu Els paràmetres δ i λ són factors que donen pes a característiques. Els més comuns:

Nom	δ	λ	α	β	Definició
Hamming	1	1	1	1	$\frac{a_1+a_0}{n}$
Jaccard	0	1	1	0	$\frac{a_1}{a_1 + a_2}$
Tanimoto	1	2	1	1	$\frac{a_1 + a_0}{a_1 + 2a_2 + a_0}$
Rusell–Rao	0	1	1	1	$\frac{a_1}{n}$
Diu	0	0.5	1	0	$\frac{2a_1}{2a_1+a_2}$
Kulczynski	0	1	0	0	$\frac{a_1}{a_2}$

Clustering Introducció k-means

Clustering ieràrquic

Clustering jeràrquic aglomeratiu De 3 organismes hem observat si contenen o no gens homòlegs a 8 gens prototipus. Els resultats són els de la taula següent (1=Si, 0=No)

				Ge	ns			
Organisme	Α	В	C	D	Ε	F	G	Η
X	0	1	1	0 1	1	1	0	0
Υ	1	0	0	1	0 1	0	1	1
Z	0	0	1	0	1	0	1	0

La matriu de semblances de Hamming és

$$\mathbf{D}_H = \begin{pmatrix} 1.000 & 0.000 & 0.625 \\ & 1.000 & 0.375 \\ & & 1.000 \end{pmatrix}$$

Matrius de contingència

Clustering Introducció k-means

Clustering ieràrquic

Clustering jeràrquic aglomeratiu

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{p1} & x_{p2} & \dots & x_{pn} \end{pmatrix}$$

on cada entrada és una freqüència Siguin

$$x_{i\bullet} = \sum_{k=1}^{n} x_{ik}, \ x_{\bullet k} = \sum_{i=1}^{p} x_{ik}, \ x_{\bullet \bullet} = \sum_{i=1}^{p} x_{i\bullet} = \sum_{k=1}^{n} x_{\bullet k}$$

Se recomana prendre com a distància

$$d_{ij} = \sqrt{\sum_{k=1}^{n} \frac{x_{\bullet \bullet}}{x_{\bullet k}} \left(\frac{x_{ik}}{x_{i \bullet}} - \frac{x_{jk}}{x_{j \bullet}} \right)^2}$$

atemàtiques

Clustering Introducció

Clustering ieràrquic

Clustering jeràrquic aglomeratiu

Exemple

A 3 boscos s'hi ha escollit una àrea de la mateixa superfície i s'hi han comptat els nombres d'exemplars de 5 plantes.

			Planta						
	Bosc	Α	В	C	D	Ε			
•	Χ	12	3	8	0	24			
	Υ	3	22	15	8	11			
	Z	0	7	12	20	6			

Taula amb freqüències marginals:

	Planta							
Bosc	Α	В	C	D	Ε	X _i ∙		
X	12	3	8	0	24	47		
Υ	3	22	15	8	11	59		
Z	0	7	12	20	6	45		
X₀j	15	32	35	28	41	151		

Clustering Introducció k-means

Clustering jeràrquic

Clustering jeràrquic aglomeratiu

Planta

 Bosc
 A
 B
 C
 D
 E

$$x_{i\bullet}$$

 X
 12
 3
 8
 0
 24
 47

 Y
 3
 22
 15
 8
 11
 59

 Z
 0
 7
 12
 20
 6
 45

 $x_{\bullet j}$
 15
 32
 35
 28
 41
 151

$$d_{XY}^{2} = \frac{151}{15} \left(\frac{12}{47} - \frac{3}{59} \right)^{2} + \frac{151}{32} \left(\frac{3}{47} - \frac{22}{59} \right)^{2} + \frac{151}{35} \left(\frac{8}{47} - \frac{15}{59} \right)^{2} + \frac{151}{28} \left(\frac{0}{47} - \frac{8}{59} \right)^{2} + \frac{151}{41} \left(\frac{24}{47} - \frac{11}{59} \right)^{2} = \dots$$

Clustering Introducció k-means

Clustering

Clustering jeràrquic aglomeratiu

	Planta							
Bosc	Α	В	C	D	Ε	Xi∙		
X	12	3	8	0	24	47		
Υ	3	22	15	8	11	59		
Z	0	7	12	20	6	45		
$X_{\bullet j}$	15	32	35	28	41	151		

$$D = \left(\begin{array}{ccc} 0 & 1.178 & 1.525 \\ & 0 & 0.880 \\ & & 0 \end{array}\right)$$

Clustering Introducció k-means

Clustering ieràrquic

Clustering jeràrquic aglomeratiu Quan tenim els objectes descrits com a vectors de \mathbb{R}^n i cada entrada correspon a l'observació d'una variable contínua, se solen emprar distàncies basades en les normes L_r : Donats

$$\mathbf{x}_i = (x_{i1}, \ldots, x_{in}), \quad \mathbf{x}_j = (x_{j1}, \ldots, x_{jn}),$$

la distància L_r entre aquests és

$$d_{ij} = \|\mathbf{x_i} - \mathbf{x_j}\|_r = \left(\sum_{k=1}^n |x_{ik} - x_{jk}|^r\right)^{1/r}$$

Dades contínues

Clustering
Introducció

Clustering ieràrquic

Clustering jeràrquic aglomeratiu Quan r=1,

$$d_{ij} = \sum_{k=1}^{n} |x_{ik} - x_{jk}|$$

se'n diu la distància de Manhattan

Quan r=2,

$$d_{ij} = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}$$

és la distància euclidiana

Clustering Introducció k-means

Clustering ieràrquic

Jerarquic Clustering jeràrquic De vegades és convenient que les dades estiguin en la mateixa escala, per evitar diferències en les contribucions de les diferents columnes

Quan s'empra la distància euclidiana, per escalar es divideix cada entrada x_{ik} per la desviació típica $s_{\bullet k}$ de la columna corresponent abans d'aplicar la distància.

Queda

$$d_{ij} = \sqrt{\sum_{k=1}^{n} \frac{\left(x_{jk} - x_{jk}\right)^2}{S_{\bullet k}^2}}$$

Clustering jeràrquic

Clustering
Introducció
k-means
Clustering

jeràrquic Clustering ieràrquic Existeixen dos tipus de mètodes de clustering jeràrquic:

- Els algoritmes aglomeratius comencen amb la partició més fina possible (cada objecte constitueix un cluster) i els van agrupant.
- Els algoritmes de divisió comencen amb la partició més grollera possible (tots els objectes constitueixen un cluster) i van dividint els clusters en clusters més petits.

Els algoritmes aglomeratius són més populars, perquè en general requereixen menys temps de càlcul

atemàtiques I

Clustering
Introducció
k-means
Clustering
ieràrquic

Clustering jeràrquic aglomerati

Algoritme bàsic de clustering jeràrquic aglomeratiu

Algoritme bàsic

- Partim de p objectes, i de la matriu $p \times p$ de distàncies entre ells
- Formam un cluster amb cada objecte
- **3** Trobam dos clusters a distància mínima C_1 i C_2
- **1** Unim C_1 i C_2 en un cluster nou $C_1 + C_2$
- **5** Eliminam C_1 i C_2 de la llista de clusters
- **o** Recalculam la distància de $C_1 + C_2$ als altres clusters
- Repetim (3)–(6) fins que només queda un únic cluster

Clustering Clustering

Clustering

Clustering jeràrquic aglomeratiu

El càlcul de la distància entre clusters es pot fer de diverses maneres, donant lloc a resultats diferents:

Per enllaç simple:

$$d(C,C') = \min\{d(a,b) \mid a \in C, b \in C'\}$$

En aquest cas

$$d(C, C_1 + C_2) = \min\{d(C, C_1), d(C, C_2)\}\$$

Per enllaç complet:

$$d(C,C') = \max\{d(a,b) \mid a \in C, b \in C'\}$$

En aquest cas

$$d(C, C_1 + C_2) = \max\{d(C, C_1), d(C, C_2)\}$$

Clustering

Clustering jeràrquic aglomeratiu

El càlcul de la distància entre clusters es pot fer de diverses maneres, donant lloc a resultats diferents:

Per enllaç mitjà:

$$d(C,C') = \frac{\sum_{a \in C, b \in C'} d(a,b)}{|C| \cdot |C'|}$$

En aquest cas,

$$d(C, C_1 + C_2) = \frac{|C_1|}{|C_1| + |C_2|} d(C, C_1) + \frac{|C_2|}{|C_1| + |C_2|} d(C, C_2)$$

En general, conegudes

$$d(C, C_1), d(C, C_2), d(C_1, C_2),$$

hi ha una fórmula genèrica per calcular $d(C, C_1 + C_2)$:

$$d(C, C_1 + C_2) = \delta_1 d(C, C_1) + \delta_2 d(C, C_2) + \delta_3 d(C_1, C_2) + \delta_0 |d(C, C_1) - d(C, C_2)|,$$

on els δ_i son paràmetres a triar. Cada tria dóna un algoritme different, amb resultats possiblement differents.

Clustering jeràrquic aglomeratiu

Clustering
Introducció
k-means
Clustering
ieràrquic

Clustering jeràrquic aglomeratiu Si diem n_X al nombre d'elements d'un cluster X:

Nom	δ_1	δ_2	δ_3	δ_0
Enllaç simple	1/2	1/2	0	-1/2
Enllaç complet	1/2	1/2	0	1/2
Enllaç mitjà	$\frac{n_{C_1}}{n_{C_1}+n_{C_2}}$	$\frac{n_{C_2}}{n_{C_1}+n_{C_2}}$	0	0
Centroide	$\frac{n_{C_1}}{n_{C_1} + n_{C_2}}$	$\frac{n_{C_2}}{n_{C_1} + n_{C_2}}$	$-\frac{n_{C_1}n_{C_2}}{(n_{C_1}+n_{C_2})^2}$	0
Mediana	1/2	1/2	-1/4	0
Ward	$\frac{n_C + n_{C_1}}{n_C + n_{C_1} + n_{C_2}}$	$\frac{n_C + n_{C_2}}{n_C + n_{C_1} + n_{C_2}}$	$-\frac{n_C}{n_C + n_{C_1} + n_{C_2}}$	0

Clustering Introducció k-means Clustering jeràrquic

Clustering jeràrquic aglomeratiu A,B,C,D,E,F,G: plantes;

x, y: gens;

dades: expressió del gen en condicions de sequera

Comparam les dades amb distància euclidiana. Emprarem enllaç simple.

Clustering Introducció k-means Clustering jeràrquic

Clustering jeràrquic aglomeratiu

Matriu de distàncies

Α	В	C	D	Е	F	G
0.3606						
0.5000	0.4243					
0.9220	0.7071	0.4472				
1.3416	1.0440	0.9220	0.5000			
1.8385	1.5524	1.3892	0.9434	0.5099		
1.7263	1.5000	1.2369	0.8062	0.5381	0.4000	
	0.3606 0.5000 0.9220 1.3416 1.8385	0.3606 0.5000 0.4243 0.9220 0.7071 1.3416 1.0440 1.8385 1.5524	0.3606 0.5000 0.4243 0.9220 0.7071 0.4472 1.3416 1.0440 0.9220 1.8385 1.5524 1.3892	0.3606 0.5000 0.4243 0.9220 0.7071 0.4472 1.3416 1.0440 0.9220 0.5000 1.8385 1.5524 1.3892 0.9434	0.3606 0.5000	0.3606 0.5000

Clustering Introducció k-means Clustering jeràrquic

Clustering jeràrquic aglomeratiu

Detectam un mínim

	A	В	C	D	Ε	F	G
Α							
В	0.3606						
C	0.5000	0.4243					
D	0.9220	0.7071	0.4472				
Ε	1.3416	1.0440	0.9220	0.5000			
F	1.8385	1.5524	1.3892	0.9434	0.5099		
G	1.7263	1.5000	1.2369	0.8062	0.5381	0.4000	
	1						

Substituïm {A,B} per H i recalculam

	H	C	D	Ε	F	G
Н						
C	0.4243					
D	0.7071	0.4472				
Ε	1.0440	0.9220	0.5000			
F	1.5524	1.3892	0.9434	0.5099		
G	1.5000	1.2369	0.8062	0.5381	0.4000	

Clustering
Introducció
k-means
Clustering
jeràrquic
Clustering
jeràrquic

aglomeratiu

Clustering
Introducció
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratiu

Detectam un mínim

	Н	C	D	Е	F	G
Н						
C	0.4243					
D	0.7071	0.4472				
Ε	1.0440	0.9220	0.5000			
F	1.5524	1.3892	0.9434	0.5099		
G	1.5000	1.2369	0.8062	0.5381	0.4000	

Substitu \bar{i} m $\{F,G\}$ per I i recalculam

	H	C	D	Е	1
Н					
C	0.4243				
D	0.7071	0.4472			
Ε	1.0440	0.9220	0.5000		
- 1	1.5000	1.2369	0.8062	0.5099	

Clustering
Introducció
k-means
Clustering
jeràrquic
Clustering

aglomeratiu

Clustering Introducció k-means Clustering jeràrquic

Clustering jeràrquic aglomeratiu

Detectam un mínim

	H	C	D	Е	I
Н					
C	0.4243				
D		0.4472			
Ε	1.0440	0.9220	0.5000		
I	1.5000	1.2369	0.8062	0.5099	

Substituïm {H,C} per J i recalculam

	J	D	Ε	- 1	
J					
D	0.4472				
Ε	0.9220	0.5000			
- 1	1.2369	0.8062	0.5099		

Clustering
Introducció
k-means
Clustering
jeràrquic
Clustering

aglomeratiu

Clustering Introducció k-means Clustering jeràrquic

Detectam un mínim

	J	D	E	-
J				
D	0.4472			
Ε	0.9220	0.5000		
- 1	1.2369	0.8062	0.5099	

Substituïm {J,D} per K i recalculam

	K	Е	1
K			
Ε	0.5000		
ı	0.5000 0.8062	0.5099	

Clustering

jeràrquic aglomeratiu

Clustering
Introducció
k-means
Clustering
jeràrquic
Clustering

aglomeratiu

Clustering Introducció k-means Clustering jeràrquic

Detectam un mínim

	K	Е	ı
K			
Ε	0.5000		
- 1	0.5000 0.8062	0.5099	

Substituïm {K,E} per L i recalculam

Clustering jeràrquic aglomeratiu

Clustering
Introducció
k-means
Clustering
jeràrquic
Clustering

Clustering jeràrquic aglomeratiu

Clustering
Introducció
k-means
Clustering
jeràrquic
Clustering

jeràrquic aglomera<u>tiu</u> Finalment, unim L i I en un sol cluster

atemàtiques I

Clustering Introduccion k-means Clustering jeràrquic

Clustering jeràrquic aglomeratiu

Limitacions del clustering jeràrquic aglomeratiu

- La distància que s'hi empra és molt important
- No hi ha teoria que avali quin mètode per calcular la distància entre clusters és el millor en cada cas
- Realment, no defineix directament clusters, però tallant en una alçada del dendrograma n'obtenim
- Sempre agrupa de dos en dos, i de vegades pren decisions aleatòries per aconseguir-ho

Clustering

Clustering jeràrquic aglomeratiu amb R

La instrucció bàsica és

```
hclust(d, method = "...")
```

on

- d és una matriu de distàncies
- method serveix per especificar el mètode:
 "single", "complete", "average", "ward",
 "median", "centroid", ...

atemàtiques I

Clustering
Introduccio
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratio

```
Clustering jeràrquic aglomeratiu amb R
```

Per representar el clustering per mitjà d'un dendrograma, cal aplicar al resultat de hclust la instrucció

```
plot(clust, labels=..., hang=..., ...)
```

on

- clust és un hclust
- labels serveix per posar noms als objectes
- hang serveix per especificar la posició de les etiquetes: mirau el help
- Altres paràmetres usuals dels plot

Clustering

Clustering jeràrquic aglomeratiu amb R

Per calcular la distància entre les fileres d'una matriu, podem emprar

$$dist(x, method = "...")$$

on

- x és una matriu de dades
- method serveix per especificar el mètode: "euclidean", "manhattan", ...

Clustering Introducció Clustering ieràrquic

```
Clustering
jeràrquic
aglomeratiu
```

> dades=matrix(data=c(0.8,1.8,1.1,1.6, 0.8,1.3, 1.0,0.9,1.4,0.6,1.5,0.1,1.1,0.1),nrow=7,byrow=TRUE)

```
> dades
```

```
[,1] [,2]
[1.] 0.8 1.8
[2,] 1.1 1.6
[3,] 0.8 1.3
```

[4.] 1.0 0.9

[5,] 1.4 0.6

[6,] 1.5 0.1

[7,] 1.1 0.1

Clustering
Introducció
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratiu

```
> distancies=dist(dades,method="euclidean")
> distancies
                                          6
2 0.3606
3 0.5000 0.4243
  0.9220 0.7071
                 0.4472
5 1.3417 1.0440
                 0.9220
                          0.5000
 1.8385 1.5524
                  1.3892
                          0.9434
                                  0.5099
7 1.7263 1.5000
                  1.2370
                                  0.5831
                          0.8062
                                           0.4000
```

Clustering
Introducció
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratiu

```
> clustering=hclust(distancies,method="single")
> clustering$merge #formació de clusters
```

```
[,1] [,2]
[1,] -1 -2
[2,] -6 -7
[3,] -3 1
[4,] -4 3
[5,] -5 4
[6,] 2 5
```

> clustering\$height #distàncies mínimes
[1] 0.3605551 0.4000000 0.4242641 0.4472136
0.5000000 0.5099020

Clustering
Introducció
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratiu

- > especies=c("A","B","C","D","E","F","G")
- > plot(clustering, labels = especies)

distancies hclust (*, "single")

Clustering
Introducció
k-means
Clustering
ieràrquic

Clustering jeràrquic aglomeratiu > plot(hclust(distancies,method="single"),
 labels=especies,hang=-1)

Clustering
Introducció
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratiu > plot(hclust(distancies,method="average"),
 labels=especies,hang=-1)

Clustering Introducció k-means Clustering jeràrquic

Clustering jeràrquic aglomeratiu > plot(hclust(distancies,method="complete"),
 labels=especies,hang=-1)

Clustering
Introducció
k-means
Clustering
jeràrquic

Clustering jeràrquic aglomeratiu > plot(hclust(distancies,method="ward"),
 labels=especies,hang=-1)

Algunes propietats dels mètodes

Clustering
Introduccio
k-means
Clustering
jeràrquic

jeràrquic Clustering jeràrquic aglomeratiu El mètode d'enllaç simple, on

$$d(C, C_1 + C_2) = \min(d(C, C_1), d(C, C_2)),$$

tendeix a construir clusters grans: clusters que haurien de ser diferents però que tenen dos individus propers s'uneixen en un únic cluster.

El mètode d'enllaç complet, on

$$d(C, C_1 + C_2) = \max(d(C, C_1), d(C, C_2)),$$

se'n va a l'altre extrem, i tendeix a agrupar clusters només quan tots els punts estan propers.

Algunes propietats dels mètodes

• El mètode d'enllaç mitjà, on

$$d(C, C_1+C_2) = \frac{n_{C_1}}{n_{C_1}+n_{C_2}}d(C, C_1) + \frac{n_{C_2}}{n_{C_1}+n_{C_2}}d(C, C_2)$$

és una solució intermèdia.

És molt emprat en la reconstrucció d'arbres filogenètics a partir de matrius de distàncies (mètode UPGMA, Unweighted Pair Group Method Using Arithmetic averages)

