

КВАНТОВЫЕ ПОЛЯРИЗАЦИОННЫЕ СОСТОЯНИЯ ФОТОНОВ

Учебно-методическое пособие

москва МФТИ 2017

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (государственный университет)»

Кафедра теоретической физики

КВАНТОВЫЕ ПОЛЯРИЗАЦИОННЫЕ СОСТОЯНИЯ ФОТОНОВ

Учебно-методическое пособие

Составитель С. Н. Филиппов

москва МФТИ 2017

Рецензент

Доктор физико-математических наук, профессор В.И. Манько

Квантовые поляризационные состояния фотонов : уч.-метод. пособие / сост.: С. Н. Филиппов. – М. : МФТИ, 2017. – 36 с.

Рассматриваются вопросы квантового описания поляризационных состояний одиночных и перепутанных фотонов. Вводятся параметры Стокса, сфера Пуанкаре, чистые и смешанные состояния, матрица плотности ансамбля и подсистемы, перепутанные состояния. Излагаются принципы использования поляризационных состояний света в квантово-информационных приложениях: квантовой криптографии, сверхплотном кодировании, квантовой телепортации. Рассматриваются общие принципы динамики открытых квантовых систем. Вводится понятие квантового канала, приводятся примеры дефазирующего и деполяризационного каналов для поляризационных состояний фотонов.

Предназначено для студентов и аспирантов, специализирующихся в области теоретической физики, оптики и квантовой теории информации.

УДК 530.145

[©] Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (государственный университет)», 2017 © Филиппов С. Н., составление, 2017

Содержание

1.	Введение	4
2.	Поляризация классических электромагнитных волн	4
3.	Квантовое описание поляризации одиночных фотонов	6
4.	Унитарное пространство	10
5.	Измерения и наблюдаемые 5.1. Поляроид 5.2. Двулучепреломляющий кристалл 5.3. Поворот плоскости поляризации 5.4. Сдвиг фаз	11 12 15 16 18
6.	Сфера Пуанкаре	19
7.	Матрица плотности ансамбля	20
8.	Частично поляризованный свет	22
9.	Квантовая криптография	23
10	. Двухфотонные перепутанные состояния	24
11	. Сверхплотное кодирование	27
12	. Измерение в базисе состояний Белла	28
13	. Квантовая телепортация	31
14	. Поляризация произвольного многофотонного состояния	32
15	. Квантовые каналы	34
Лı	итература	35

1. Введение

Поляризационные состояния электромагнитного поля служат своеобразным связующим звеном, наглядно показывающим связь между законами классической электродинамики, справедливыми для волн большой интенсивности, и законами квантового мира, определяющими поведение одиночных фотонов. Этому способствуют как компактное теоретическое описание, так и (в большей степени) относительно простые экспериментальные методы работы с оптическими поляризационными состояниями. Именно при помощи поляризационных состояний впервые были продемонстрированы такие сугубо квантовые явления, как нарушение неравенств Белла [1], протокол квантовой криптографии [2], квантовое сверхплотное кодирование [3], квантовая телепортация [4]. Таким образом, изучение квантовых поляризационных состояний необходимо для успешного освоения квантовых информационных технологий, особенно в области квантовой коммуникации. Кроме того, основные принципы и постулаты квантовой механики (пространство состояний, принцип суперпозиции, физические наблюдаемые и измерения) находят своё простое выражение в экспериментах с поляризацией одиночных фотонов. Учёт дополнительных степеней свободы (например, частотный спектр) позволяет демонстрировать с помощью поляризационных состояний динамику открытых квантовых систем и познакомить с понятиями матрицы плотности и квантового канала, активно используемых в квантовой теории информации [5].

2. Поляризация классических электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну с частотой ω , распространяющуюся со скоростью света c вдоль оси z. Волновой вектор $\mathbf{k} \parallel z, \ k = \omega/c$. Вектор напряженности электрического поля $\mathbf{E} \perp \mathbf{k}$ и поэтому имеет нулевую компоненту $E_z = 0$. Из уравнений Максвелла следует, что векторная функция \mathbf{E} является гармонической функцией переменной $(kz - \omega t)$, называемой ϕ азой:

$$\mathbf{E} = \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = \begin{pmatrix} E_1 \cos(kz - \omega t + \varphi_1) \\ E_2 \cos(kz - \omega t + \varphi_2) \\ 0 \end{pmatrix}, \tag{1}$$

где φ_1 и φ_2 — сдвиги фазы для горизонтальной и вертикальной компонент поля.

Рис. 1. Слева: напряжённость поля в зависимости от координаты z при фиксированном времени. Справа: зависимость напряжённости поля в фиксированной точке от времени. Здесь и далее будем использовать сокращённые обозначения: $E_x \leftrightarrow x, \, E_y \leftrightarrow y$

Для фиксированного момента времени t=0 геометрическое место точек

$$(E_1\cos(kz+\varphi_1), E_2\cos(kz+\varphi_2), z) \tag{2}$$

представляет собой винтовую линию (рис. 1).

Для фиксированной координаты z=0 геометрическое место точек

$$(E_1 \cos(-\omega t + \varphi_1), E_2 \cos(-\omega t + \varphi_2), t) \tag{3}$$

также представляет собой винтовую линию, но с противоположной ориентацией (рис. 1). Для фиксированной координаты при увеличении времени t конец вектора \mathbf{E} описывает в xy-плоскости эллипс (рис. 2).

Рис. 2. Эллипс, описываемый вектором напряжённости поля с увеличением времени

3. Квантовое описание поляризации одиночных фотонов

Явление фотоэффекта и другие эксперименты по поглощению света показывают, что электромагнитная энергия поглощается квантами, т.е. порциями $\hbar\omega$, где $\hbar\approx 1,05\cdot 10^{-27}$ эрг·с — постоянная Планка. Кроме того, будем считать, что переносчиками электромагнитной энергии являются особые частицы — фотоны, несущие квант энергии.

Рассмотрим монохроматическую электромагнитную волну с *опре- делённой* поляризацией. Тогда и все фотоны в волне обладают этой *определённой* поляризацией. Рассмотрим *единичный* фотон. С одной стороны, единичный фотон ведёт себя подобно исходной волне (волновые свойства), а с другой стороны, фотон может быть поглощён детектором только полностью или не поглощён вовсе (свойства частицы). Таким образом, имеет место корпускулярно-волновой дуализм.

Для квантового описания единичного фотона мы можем абстрагироваться от абсолютных значений E_1 и E_2 , важен лишь вид той винтовой линии, которую описывает в пространстве вектор ${\bf E}$. Удобно задать эту форму также вектором, только двумерным, а не трёхмерным, поскольку всегда $E_z=0$. Далее, вид винтовой линиии определяет не только соотношение между E_1 и E_2 , а также соотношение между сдвигами фаз φ_1 и φ_2 . Как и в оптике, нагляднее всего соотношение между фазами можно увидеть с помощью комплексных амплитуд $E_1e^{i(kz-\omega t+\varphi_1)}$ и $E_2e^{i(kz-\omega t+\varphi_2)}$, действительные части которых равны $E_1\cos(kz-\omega t+\varphi_1)$ и $E_2\cos(kz-\omega t+\varphi_2)$ соответственно.

Перейдём на новый уровень абстракции и *для описания* единичного фотона (вида винтовой линии) будем использовать следующий комплексный вектор, известный в оптике как вектор Джонса:

$$\begin{pmatrix} E_1 \cos(kz - \omega t + \varphi_1) \\ E_2 \cos(kz - \omega t + \varphi_2) \\ 0 \end{pmatrix} \longrightarrow |\psi\rangle = \frac{1}{\sqrt{E_1^2 + E_2^2}} \begin{pmatrix} E_1 e^{i(kz - \omega t + \varphi_1)} \\ E_2 e^{i(kz - \omega t + \varphi_2)} \end{pmatrix}, \tag{4}$$

в котором намеренно подчёркивается тот факт, что интенсивность нас теперь не интересует (мы имеем дело с одним фотоном).

Далее заметим, что общий фазовый множитель $e^{i(kz-\omega t)}$ присущ самой волне, поскольку мы изначально рассматривали монохроматическую волну. Само значение ω определяет шаг винтовой линии ($\lambda=2\pi c/\omega$) или угловую скорость, с которой вектор ${\bf E}$ описывает эллипс в плоскости xy. Сама форма эллипса задаётся лишь соотношением между $E_1e^{i\varphi_1}$ и $E_2e^{i\varphi_2}$. По этой причине нас не интересуют сами зна-

чения φ_1 и φ_2 , а интересует лишь разность фаз $\varphi_2 - \varphi_1$ — именно она вкупе с отношением E_1/E_2 определяет форму эллипса. Это означает, что физически следующие записи состояния (4) эквивалентны:

$$\frac{1}{\sqrt{E_1^2 + E_2^2}} \begin{pmatrix} E_1 e^{i(kz - \omega t + \varphi_1)} \\ E_2 e^{i(kz - \omega t + \varphi_2)} \end{pmatrix} \longleftrightarrow \frac{1}{\sqrt{E_1^2 + E_2^2}} \begin{pmatrix} E_1 e^{i\varphi_1} \\ E_2 e^{i\varphi_2} \end{pmatrix} \longleftrightarrow \\
\longleftrightarrow \frac{1}{\sqrt{E_1^2 + E_2^2}} \begin{pmatrix} E_1 \\ E_2 e^{i(\varphi_2 - \varphi_1)} \end{pmatrix}.$$
(5)

 Φ изическая эквивалентность означает, что все выводимые нами заключения о наблюдаемых экспериментально величинах должны быть одинаковы для перечисленных выше математических записей состояния.

Запишем некоторые состояния в новых обозначениях. Состояние с горизонтальной поляризацией $(E_1 \neq 0, E_2 = 0)$: $|H\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Состояние с вертикальной поляризацией $(E_1 = 0, E_2 \neq 0)$: $|V\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Произвольное состояние поляризации фотона имеет вид

$$|\psi\rangle = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = c_1 |H\rangle + c_2 |V\rangle,$$
 (6)

где $c_1, c_2 \in \mathbb{C}$, $|c_1|^2 + |c_2|^2 = 1$, представляет собой суперпозицию состояний $|H\rangle$ и $|V\rangle$. Данное математическое описание имеет наглядную физическую интерпретацию: мы имеем дело со сложением гармонических колебаний в x и y направлениях.

Если аргументы φ_1 и φ_2 комплексных чисел c_1 и c_2 совпадают или различаются на π , т.е. $\varphi_1=\varphi_2$ или $\varphi_2-\varphi_1=\pm\pi$, то имеем дело с линейной поляризацией (эллипс вырождается в прямую, рис. 3).

Рис. 3. Состояние $\frac{3}{5}|H\rangle+\frac{4}{5}|V\rangle$ — пример суперпозиции, реализующей фотон с линейной поляризацией

Рис. 4. Состояние $\frac{3}{5}|H\rangle+\frac{4}{5}e^{i\pi/2}|V\rangle$ — пример суперпозиции, реализующей фотон с правой эллиптической поляризацией

Рис. 5. Состояние $\frac{3}{5}|H\rangle+\frac{4}{5}e^{i5\pi/4}|V\rangle$ — пример суперпозиции, реализующей фотон с левой эллиптической поляризацией

Умножение вектора $|V\rangle$ на число $|c_2|e^{i\varphi_2}$ означает, что амплитуда колебания вдоль оси y умножается на $|c_2|$, а сама волна сдвинута по фазе на φ_2 (рис. 4 и 5).

Так, если $\varphi_2 - \varphi_1 \in (0,\pi)$, то с увеличением времени конец вектора **E** движется против часовой стрелки по эллипсу в плоскости xy (по кратчайшему повороту от x к y). Такое состояние называют состоянием с npasoù эллиптической поляризацией [6,7], поскольку это соответствует завинчиванию буравчика вдоль оси z и положительному моменту количества движения относительно направления распространения (рис. 6a).

Если $\varphi_2 - \varphi_1 \in (\pi, 2\pi)$, то с увеличением времени конец вектора **E** движется по часовой стрелке по эллипсу в плоскости xy (по кратчайшему повороту от y к x). Такое состояние называют состоянием с negoi эллиптической поляризацией [6, 7], поскольку это соответствует выкручиванию буравчика из оси z и отрицательному моменту количества движения относительно направления распространения (рис. 6b).

Если $|c_1| = |c_2|$ и $\varphi_2 - \varphi_1 = \pi/2$, то имеем фотон с правой круговой поляризацией, вектор такого состояния $|\circlearrowleft\rangle = \frac{1}{\sqrt{2}}(|H\rangle + i|V\rangle)$.

Рис. 6. (а) Правая поляризация. (b) Левая поляризация

Если $|c_1|=|c_2|$ и $\varphi_2-\varphi_1=3\pi/2$, то имеем дело с левой круговой поляризацией, вектор такого состояния $|\circlearrowright\rangle=\frac{1}{\sqrt{2}}(|H\rangle-i|V\rangle).$

Совершенно понятно, что складывать можно не только колебания в горизонтальной и вертикальной плоскостях. Так, например, складывая с равными по модулю коэффициентами состояния $|\circlearrowleft\rangle$ и $|\circlearrowright\rangle$, будем получать фотоны с линейной поляризацией. Сумма произвольных состояний также будет допустимым состоянием.

Если окажется, что $|c_1|^2+|c_2|^2\neq 1$, то нужно будет заменить $c_1\to c_1/\sqrt{|c_1|^2+|c_2|^2}$ и $c_2\to c_2/\sqrt{|c_1|^2+|c_2|^2}$. Как мы увидим в дальнейшем, сумма $|c_1|^2+|c_2|^2$ имеет смысл «количества» фотонов и должна равняться единице, если мы *знаем*, что имеем дело с одним фотоном. Если же фотон мог где-то поглотиться и мы *не знаем*, поглотился ли он или нет, то сумма $|c_1|^2+|c_2|^2$ может быть меньше единицы, и вероятность поглощения есть $1-(|c_1|^2+|c_2|^2)$.

Мы увидели, что если отвлечься от условия $|c_1|^2 + |c_2|^2 = 1$ и отождествить состояния, отличающиеся лишь *глобальным* фазовым множителем, т.е. отождествить состояния $|\psi\rangle$ и $c|\psi\rangle$, $c\in\mathbb{C}$, $c\neq 0$, то пространство векторов состояний будет *линейным*. Правило суперпозиции состояний тогда просто отражение линейности этого пространства. Следующий раздел посвящён краткому повторению соответствующей главы линейной алгебры.

4. Унитарное пространство

Рассмотренные нами векторы $|\psi\rangle$ — элементы унитарного пространства \mathbb{C}^2 .

Определение 1. Унитарное пространство — комплексное линейное пространство векторов $|\psi\rangle$, в котором каждой упорядоченной паре $|\varphi\rangle$ и $|\psi\rangle$ поставлено в соответствие комплексное число $\left(|\varphi\rangle,|\psi\rangle\right)$, обозначаемое кратко $\langle\varphi|\psi\rangle$ и называемое их скалярным произведением, так, что выполнены аксиомы:

- 1. $\langle \varphi | \psi \rangle = (\langle \psi | \varphi \rangle)^*$;
- 2. $\Big(|\varphi\rangle,a|\psi_1\rangle+b|\psi_2\rangle\Big)=a\langle\varphi|\psi_1\rangle+b\langle\varphi|\psi_2\rangle$ для любых $a,b\in\mathbb{C};$
- 3. $\langle \psi | \psi \rangle$ вещественно и $\langle \psi | \psi \rangle \geqslant 0$, причём $\langle \psi | \psi \rangle = 0 \Leftrightarrow | \psi \rangle = 0$ (нулевой элемент пространства).

Из аксиом 1 и 2 следует, что скалярное произведение линейно по второму аргументу и антилинейно по первому, т.е.

$$(a|\varphi_1\rangle + b|\varphi_2\rangle, |\psi\rangle) = a^*\langle \varphi_1|\psi\rangle + b^*\langle \varphi_2|\psi\rangle, \quad \forall \ a, b \in \mathbb{C}.$$
 (7)

Мы будем пользоваться конкретной реализацией скалярного произведения, которое легко понять в *обозначениях Дирака*: каждому вектору-столбцу $|\psi\rangle$ поставим в соответствие вектор-строку $\langle\psi|$ по следующему правилу:

$$|\psi\rangle = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \longrightarrow \langle \psi| = \begin{pmatrix} c_1^* & c_2^* \end{pmatrix} = (|\psi\rangle)^{\dagger}.$$
 (8)

В последнем равенстве мы использовали операцию *эрмитового со*пряжения матриц $\dagger = \top * = * \top$, которая осуществляет транспонирование и комплексное сопряжение.

Определение 2. Матрица $A^\dagger = A^{\top *}$ размерности $n \times m$ называется эрмитово сопряженной к матрице A размера $m \times n$:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}^{\dagger} = \begin{pmatrix} a_{11}^* & \cdots & a_{m1}^* \\ \vdots & \ddots & \vdots \\ a_{1n}^* & \cdots & a_{mn}^* \end{pmatrix}. \tag{9}$$

Тогда легко реализовать скалярное произведение векторов $|\varphi\rangle=\left(\begin{array}{c} d_1 \\ d_1 \end{array} \right)$ и $|\psi\rangle=\left(\begin{array}{c} c_1 \\ c_2 \end{array} \right)$ как произведение строки и столбца:

$$\underbrace{\langle \varphi | \psi \rangle}_{\text{bracket}} = \underbrace{\langle \varphi |}_{\text{bra}} \underbrace{| \psi \rangle}_{\text{ket}} = \begin{pmatrix} d_1^* & d_2^* \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = d_1^* c_1 + d_2^* c_2. \tag{10}$$

По понятной причине векторы-строки $\langle \cdot |$ принято называть *бра*векторами, а векторы-столбцы $| \cdot \rangle - \kappa em$ -векторами.

Очевидно, что введённое таким образом скалярное произведение удовлетворяет аксиомам 1-3. В частности, норма вектора

$$\langle \psi | \psi \rangle = |c_1|^2 + |c_2|^2.$$
 (11)

Пусть $|\chi\rangle = A|\psi\rangle$, где A — квадратная матрица с элементами a_{ij} (для наших примеров матрица размера 2×2). Тогда

$$\langle \varphi | \chi \rangle = \left(| \varphi \rangle, A | \psi \rangle \right) = \langle \varphi | A | \psi \rangle = \sum_{ij} d_i^* a_{ij} c_j = \left(\sum_{ji} c_j^* a_{ij}^* d_i \right)^* = \left(| \psi \rangle, A^{\dagger} | \varphi \rangle \right)^* = \left(A^{\dagger} | \varphi \rangle, | \psi \rangle \right), \tag{12}$$

т.е. $\left(|\varphi\rangle,A|\psi\rangle\right)=\left(A^{\dagger}|\varphi\rangle,|\psi\rangle\right)$ или кратко $\langle\varphi|A\psi\rangle=\langle A^{\dagger}\varphi|\psi\rangle$. Из равенства (12) сразу следует, что $(\hat{A}\hat{B}\dots\hat{F})^{\dagger}=\hat{F}^{\dagger}\dots\hat{B}^{\dagger}\hat{A}^{\dagger}$. В частности, $(A|f\rangle)^{\dagger}=\langle f|A^{\dagger}$.

Введём ещё два определения.

Определение 3. Квадратная матрица A называется эрмитовой, если $A=A^{\dagger}.$

Определение 4. Невырожденная квадратная матрица U называется унитарной, если $U^{\dagger}U=UU^{\dagger}=I$, где I — единичная матрица, т.е. $U^{-1}=U^{\dagger}$.

5. Измерения и наблюдаемые

Раздел квантовых измерений традиционно в недостаточной мере излагается в стандартных курсах квантовой механики. Отчасти это связано с тем, что в середине XX века возможности эксперимента не позволяли работать с одиночными квантовыми системами, опыты проводились с макроскопическими ансамблями, где главное значение имеют средние значения, а не результаты отдельных наблюдений. Тем не

менее в связи с продолжающейся миниатюризацией в микро- и наноэлектронике, развитием техники низких температур, созданием высокодобротных резонаторов для электромагнитного поля открылись новые возможности для манипулирования и проведения измерений над отдельными квантовыми системами. Квантовые поляризационные состояния фотонов начали использовать одними из первых, что позволило продемонстрировать с их помощью ряд интересных квантовых эффектов.

5.1. Поляроид

Если на пути фотона поставить идеальный фотодетектор, то он его зарегистрирует с вероятностью 1 («щелчок», рис. 7). Если же фотона нет, щелчка не будет.

Рис. 7. Фотон поглощается идеальным детектором

Проведем аналогичный опыт, но на пути фотона поставим *поляро- ид*. Для макроскопической электромагнитной волны поляроид, ориентированный вдоль некоторого направления, на выходе выдает компоненту волны с поляризацией вдоль этого направления, а перпендикулярную компоненту поглощает.

Рис. 8. Вероятностный характер срабатывания детектора для фиксированного состояния фотона

Опыт показывает, что одиночный фотон (в определённом состоянии $|\psi\rangle$) может как пройти через поляроид и вызвать щелчок детектора, так и поглотиться в поляроиде и не быть зафиксированным

детектором. Причём заранее невозможно предсказать, какой вариант реализуется. Результат носит принципиальный вероятностный характер (рис. 8).

Единственными случаями, когда результат можно предсказать, являются случаи линейной поляризации вдоль и поперёк оси поляроида: в первом случае фотон детектируется с вероятностью 1, во втором с вероятностью 0.

Дело в том, что поляроид *проецирует* состояния и может выдавать на выходе фотоны только с поляризацией вдоль этого направления. Например, если поляроид ориентирован горизонтально, то на выходе из него все пролетающие фотоны находятся в состоянии $|H\rangle$ (рис. 9).

Действие такого поляроида задаётся проектором

$$P = |H\rangle\langle H| = \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 1&0 \end{pmatrix} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}. \tag{13}$$

Подействуем этим проектором на произвольное состояние фотона $|\psi\rangle=c_1|H\rangle+c_2|V\rangle$:

$$P|\psi\rangle = |H\rangle\langle H||\psi\rangle = |H\rangle\underbrace{\langle H|\psi\rangle}_{\text{ЧИСЛЮ}} = \langle H|\psi\rangle|H\rangle = c_1|H\rangle = \begin{pmatrix} c_1\\0 \end{pmatrix}. \quad (14)$$

Рис. 9. Действие поляроида, ориентированного в горизонтальном направлении. Фотон либо поглощается поляроидом, либо проходит через него с горизонтальной поляризацией

Мы видим, что норма вектора $P|\psi\rangle$ равна $|c_1|^2 \leqslant 1$. Это указывает на поглощение фотона поляроидом. Действительно, *опыт показывает*, что вероятность зафиксировать фотон детектором в точности

равна $|c_1|^2$. С другой стороны, эта вероятность есть не что иное, как $|\langle H|\psi\rangle|^2$. Вероятность поглощения равна $1-|c_1|^2=|c_2|^2=|\langle V|\psi\rangle|^2$.

Для прояснения связи физики и математики вспомним математическую задачу поиска собственных векторов и собственных значений матрицы. Для заданной матрицы A требуется найти числа λ и ненулевые векторы $|f\rangle$ такие, что

$$A|f\rangle = \lambda|f\rangle. \tag{15}$$

Поиск собственных значений заключается в решении уравнения $\det(A-\lambda I)=0$, а затем решения системы уравнений $(A-\lambda I)|f\rangle=0$. Матрица P эрмитова, её собственные значения равны 1 и 0, соответствующие им собственные векторы — это векторы $|H\rangle$ и $|V\rangle$.

Заметим, что собственные значения матрицы (13) равны 1 и 0. Это можно интерпретировать следующим образом. Физической наблюдаемой «прохождение фотона» приписаны два значения: значение «1», если фотон задетектирован приёмником, и значение «0», если фотон не задетектирован (рис. 8). В единичном акте измерения с одним налетающим фотоном мы получаем одно значение: либо значение «1», либо значение «0». Вероятность исхода «1» равна $|\langle H|\psi\rangle|^2=|\langle\psi|H\rangle|^2$, т.е. квадрату модуля скалярного произведения вектора состояния фотона $|\psi\rangle$ и собственного вектора P, отвечающего собственному значению 1. Аналогично, вероятность исхода «0» равна $|\langle V|\psi\rangle|^2=|\langle\psi|V\rangle|^2$, т.е. квадрату модуля скалярного произведения вектора состояния фотона $|\psi\rangle$ и собственного вектора P, отвечающего собственному значению 0.

Среднее значение физической наблюдаемой «прохождение фотона» есть математическое ожидание:

$$\begin{split} &1\cdot \left(\text{вероятность исхода } *1*\right) + 0\cdot \left(\text{вероятность исхода } *0*\right) = \\ &= 1\cdot |c_1|^2 + 0\cdot |c_2|^2 = \left(\begin{array}{cc} c_1^* & c_2^* \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \langle \psi | P | \psi \rangle \equiv \langle P \rangle. \end{split}$$

Запись $\langle P \rangle$ означает среднее значение наблюдаемой, где усреднение ведётся по результатам измерений для фиксированного состояния фотона $|\psi\rangle$ (много фотонов, каждый из которых находится в состоянии $|\psi\rangle$, пропускаем через поляроид и смотрим, щёлкнул ли детектор). Такие средние называют *средними по состоянию* $|\psi\rangle$, что и подразумевает запись $\langle P \rangle \equiv \langle \psi | P | \psi \rangle$. Саму измеряемую величину «прохождение фотона» тоже можно обозначить буквой $P_{\text{физ.вел.}} = \{1,0\}$, которая может принимать два значения. Тогда

$$\langle P_{\text{физ.вел.}} \rangle = \langle \psi | P | \psi \rangle.$$
 (16)

5.2. Двулучепреломляющий кристалл

Рассмотрим более интересный случай измерения с двулучепреломляющим кристаллом (рис. 10). При попадании одиночного фотона на двулучепреломляющий кристалл компонента, поляризованная горизонтально, не отклоняется, а компонента, поляризованная вертикально, отклоняется от первоначального направления распространения луча (пунктирными линиями показаны фронты элементарных волн). Поставив два детектора, в каждом единичном акте мы будем наблюдать экспериментально срабатывание лишь одного из детекторов. Можно считать, что до попадания в детектор фотон находится в обоих лучах одновременно: и в верхнем, и в нижнем (принцип суперпозиции). Однако, будучи частицей, фотон может быть зарегистрирован только в одном детекторе — либо в верхнем, либо в нижнем, т.е. происходит коллапс состояния.

Рис. 10. Схема измерения параметра Стокса $\langle \psi | \sigma_3 | \psi \rangle$

Срабатыванию верхнего детектора припишем значение «+1», а срабатыванию нижнего – «-1». Обозначим соответствующую физическую величину $Z_{\text{физ.вел.}}$, тогда для состояния $|\psi\rangle=\left(\begin{array}{c}c_1\\c_2\end{array}\right)$ получим

$$\langle Z_{\Phi^{\text{из.вел.}}} \rangle = (+1) \cdot |c_1|^2 + (-1) \cdot |c_2|^2 =$$

$$= \begin{pmatrix} c_1^* & c_2^* \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \langle \psi | \sigma_3 | \psi \rangle, \tag{17}$$

где $\sigma_3=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$ — матрица, отвечающая физической наблюдаемой $Z_{\text{физ.вел.}}$. Видно, что собственные значения σ_3 — числа +1 и -1, а отвечающие им собственные векторы — $|H\rangle$ и $|V\rangle$.

Величину $\langle \psi | \sigma_3 | \psi \rangle = |c_1|^2 - |c_2|^2$ также называют 3-м параметром Стокса. Схема на рис. 10 показывает, как этот параметр можно измерить экспериментально, суммируя количество срабатываний верхнего (N_+) и нижнего (N_-) детекторов и вычисляя отношение $(N_+-N_-)/(N_++N_-)$ при многократном отправлении на двулучепреломляющий кристалл идентичных фотонов в состоянии $|\psi\rangle$.

5.3. Поворот плоскости поляризации

Рис. 11. Схема измерения параметра Стокса $\langle \psi | \sigma_1 | \psi \rangle$

Видоизменим эксперимент, поставив перед двулучепреломляющим кристаллом пластинку, в которой вследствие эффекта Фарадея плоскость поляризации поворачивается на угол -45° , рис. 11. Такой по-

ворот плоскости поляризации отвечает обычному повороту плоскости Oxy и задаётся унитарной матрицей $U=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Тогда

$$|\psi\rangle \longrightarrow |\varphi\rangle = U|\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} c_1 + c_2 \\ -c_1 + c_2 \end{pmatrix}.$$
 (18)

Получим новую физическую величину $X_{\text{физ.вел.}},$ среднее значение которой равно

$$\langle X_{\text{физ.вел.}}\rangle = \frac{1}{2}|c_1+c_2|^2 - \frac{1}{2}|-c_1+c_2|^2 = \langle \varphi|\sigma_3|\varphi\rangle = \langle \psi|U^\dagger\sigma_3U|\psi\rangle. \eqno(19)$$

Приходим к выводу, что среднее значение $\langle X_{\text{физ.вел.}} \rangle$ равно $\langle \psi | \sigma_1 | \psi \rangle$, где

$$\sigma_1 = U^{\dagger} \sigma_3 U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
(20)

Матрица σ_1 эрмитова, её собственные значения равны ± 1 , а собственные векторы равны $\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ \pm 1 \end{pmatrix}$ соответственно.

Если бы фотон изначально находился в состоянии $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$, то при повороте плоскости поляризации на -45° он бы превратился в фотон с горизонтальной поляризацией (вектор $|H\rangle=\begin{pmatrix}1\\0\end{pmatrix}$) и с определённостью попал бы в верхний детектор, и мы бы с определённостью получили значение «+1».

Если бы фотон изначально находился в состоянии $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$, то при повороте плоскости поляризации на -45° он бы превратился в фотон с вертикальной поляризацией (вектор $-|V\rangle=\begin{pmatrix}0\\-1\end{pmatrix}$) и с определённостью попал бы в нижний детектор, и мы бы с определённостью получили значение «-1».

Этот пример ещё раз показывает, что каждой измеряемой физической величине можно поставить в соответствие матрицу, собственные векторы которой определяют такие состояния, для которых исходы измерения принимают *определённое* значение.

Величину $\langle \psi | \sigma_1 | \psi \rangle = c_2^* c_1 + c_1^* c_2 = 2 \mathrm{Re}(c_1^* c_2)$ также называют 1-м параметром Стокса. Схема на рис. 11 показывает, как этот параметр можно измерить экспериментально.

5.4. Сдвиг фаз

Рассмотрим, наконец, случай, когда перед двулучепреломляющим кристаллом и пластинкой, вращающей плоскость поляризации на угол -45° , установлена так называемая пластинка $\lambda/4$, которая создаёт между горизонтальной и вертикальной компонентами поляризации разность фаз $\pi/2$ (из-за разных скоростей распространения волн, поляризованных горизонтально и вертикально). Действие такой пластинки задаётся унитарной матрицей:

$$W = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}, \qquad |\psi\rangle \longrightarrow |\chi\rangle = W|\psi\rangle = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} ic_1 \\ c_2 \end{pmatrix}. \tag{21}$$

Получим новую физическую величину $Y_{\text{физ.вел.}},$ среднее значение которой равно

$$\langle Y_{\text{физ,вел.}} \rangle = \langle \chi | \sigma_1 | \chi \rangle = \langle \psi | W^{\dagger} \sigma_1 W | \psi \rangle.$$
 (22)

Рис. 12. Схема измерения параметра Стокса $\langle \psi | \sigma_2 | \psi \rangle$

Приходим к выводу, что среднее значение $\langle Y_{\text{физ.вел.}} \rangle$ равно $\langle \psi | \sigma_2 | \psi \rangle$, где

$$\sigma_2 = W^{\dagger} \sigma_1 W = \begin{pmatrix} -i & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}. \quad (23)$$

Матрица σ_2 эрмитова, её собственные значения равны ± 1 , а собственные векторы равны $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\\pm i\end{pmatrix}$ соответственно.

Если бы фотон изначально находился в состоянии с правой круговой поляризацией $|\circlearrowleft\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\i\end{pmatrix}$, то после сдвига фаз он бы превратился в фотон с линейной поляризацией $\frac{i}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$ и в итоге с определённостью попал бы в верхний детектор, и мы бы с определённостью получили значение «+1».

Если бы фотон изначально находился в состоянии с левой круговой поляризацией $|\circlearrowright\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-i\end{pmatrix}$, то после сдвига фаз он бы превратился в фотон с линейной поляризацией $\frac{i}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$ и в итоге с определённостью попал бы в нижний детектор, и мы бы с определённостью получили значение «-1».

Величину $\langle \psi | \sigma_2 | \psi \rangle = i(c_2^*c_1 - c_1^*c_2) = 2 \mathrm{Im}(c_1^*c_2)$ также называют 2-м параметром Стокса. Схема на рис. 12 показывает, как этот параметр можно измерить экспериментально.

6. Сфера Пуанкаре

Для начала покажем, что физические свойства квантового состояния $|\psi\rangle=c_1|H\rangle+c_2|V\rangle$ одиночного фотона определяются двумя вещественными параметрами. Несмотря на то, что задание комплексных чисел c_1 и c_2 эквивалентно заданию 4-х вещественных параметров, вопервых, общий фазовый множитель не изменяет физических свойств состояния, во-вторых, имеется условие нормировки $|c_1|^2+|c_2|^2=1$. Таким образом, состояние $|\psi\rangle$ можно описать двумя действительными параметрами, в частности углами на сфере $\theta\in[0,\pi]$ и $\varphi\in[0,2\pi]$:

$$|\psi\rangle = \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\varphi/2} \\ \sin\frac{\theta}{2}e^{i\varphi/2} \end{pmatrix}. \tag{24}$$

При такой параметризации

$$s_x := \langle \psi | \sigma_x | \psi \rangle = \sin \theta \cos \varphi,$$
 (25)

$$s_y := \langle \psi | \sigma_y | \psi \rangle = \sin \theta \sin \varphi,$$
 (26)

$$s_z := \langle \psi | \sigma_z | \psi \rangle = \cos \theta.$$
 (27)

Величины s_x , s_y , s_z называются параметрами Стокса и полностью характеризуют поляризационное квантовое состояние одиночного фотона $|\psi\rangle$. Заметим, что состояние (24) является собственным для оператора $\mathbf{s}\cdot\hat{\boldsymbol{\sigma}}=s_x\hat{\sigma}_x+s_y\hat{\sigma}_y+s_z\hat{\sigma}_z$.

Таким образом, множеству физических состояний $|\psi\rangle$ можно поставить в соответствие сферу Пуанкаре (см. рис. 13). Линейной поляризации соответствует сечение сферы плоскостью Oxz. Правой круговой поляризации соответствует точка (0,1,0), левой круговой поляризации — точка (0,-1,0).

Рис. 13. Сфера Пуанкаре

7. Матрица плотности ансамбля

Рассмотренные выше понятия были сформулированы для одиночных фотонов, описываемых векторами состояния $|\psi\rangle$, называемых так-

же чистыми состояниями. Рассмотрим теперь ансамбль чистых состояний $\{p_i, |\psi_i\rangle\}$, в котором каждое состояние $|\psi_i\rangle$ встречается с вероятностью p_i , причём $\sum_i p_i = 1$. Тогда среднее значение некоторой физической величины \hat{A} по такому ансамблю будет определяться формулой

$$\langle \hat{A} \rangle = \sum_{i} p_i \langle \psi_i | \hat{A} | \psi_i \rangle = \operatorname{tr} \left(\hat{A} \hat{\varrho} \right),$$
 (28)

где $\hat{\varrho} = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ — оператор плотности, $\mathrm{tr}\hat{M} = \sum_i \langle i|\hat{M}|i\rangle = \sum_i M_{ii}$ — след оператора, вычисляемый как сумма диагональных элементов матрицы оператора, записанного в ортонормированном базисе $\{|i\rangle\}$.

Матрица плотности ϱ с элементами $\varrho_{ij} = \langle i|\hat{\varrho}|j\rangle$ обладает следующими свойствами: 1) эрмитовость $\varrho^{\dagger} = \varrho$; 2) неотрицательная определённость $\varrho \geqslant 0$; 3) единичный след $\operatorname{tr} \varrho = 1$. Действительно,

1)
$$\hat{\varrho}^{\dagger} = \sum_{i} p_{i} (|\psi_{i}\rangle\langle\psi_{i}|)^{\dagger} = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| = \hat{\varrho};$$
 (29)

2)
$$\langle \chi | \hat{\varrho} | \chi \rangle = \sum_{i} p_{i} \langle \chi | \psi_{i} \rangle \langle \psi_{i} | \chi \rangle = \sum_{i} p_{i} | \langle \chi | \psi_{i} \rangle |^{2} \geqslant 0, \quad \forall | \chi \rangle; \quad (30)$$

3)
$$\operatorname{tr}\hat{\varrho} = \sum_{i} p_{i} \operatorname{tr}(|\psi_{i}\rangle\langle\psi_{i}|) = \sum_{i} p_{i}\langle\psi_{i}|\psi_{i}\rangle = \sum_{i} p_{i} = 1.$$
 (31)

Обратно, пусть имеется оператор $\hat{\varrho}$, удовлетворяющий свойствам (29) – (31), тогда найдутся вероятности p_i и состояния $|\psi_i\rangle$ такие, что $\hat{\varrho} = \sum_i p_i |\psi_i\rangle \langle \psi_i|$. Заметим, что в общем случае представление суммой $\hat{\varrho} = \sum_i p_i |\psi_i\rangle \langle \psi_i|$ не единственно. Один из способов заключается в том, чтобы в качестве p_i взять собственные значения ϱ , а в качестве $|\psi_i\rangle$ – соответствующие им ортонормированные собственные векторы.

Мы приходим к выводу, что статистические свойства ансамбля одиночных фотонов полностью определяются оператором плотности. В этом случае поляризационная матрица плотности имеет вид

$$\varrho = \begin{pmatrix} \varrho_{HH} & \varrho_{HV} \\ \varrho_{VH} & \varrho_{VV} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + s_3 & s_1 - is_2 \\ s_1 + is_2 & 1 - s_3 \end{pmatrix},$$
(32)

где $s_i = \langle \sigma_i \rangle = \operatorname{tr}(\varrho \sigma_i)$ – параметры Стокса в общем случае.

Условие $\varrho \geqslant 0$ эквивалентно условию $s_1^2 + s_2^2 + s_3^2 \leqslant 1$, т.е. матрица плотности задаётся точкой внутри шара на рис. 13. Граница шара (сфера Пуанкаре) соответствует так называемым *чистым* состояниям $\hat{\varrho} = |\psi\rangle\langle\psi|$, а внутренние точки шара – *смешанным* состояниям $\hat{\varrho} \neq |\psi\rangle\langle\psi|$. Нетрудно заметить, что состояние является чистым тогда и только тогда, когда $\operatorname{tr}(\varrho^2) = 1$.

8. Частично поляризованный свет

Смешанные состояния соответствуют частично поляризованному свету. В классической теории поля такая ситуация возникает для немонохроматической электромагнитной волны. Напряжённость электрического поля в некоторой точке пространства: $\mathbf{E} = \mathbf{E}_0(t)e^{-i\omega t}$, где ω средняя частота излучения. Амплитуда $\mathbf{E}_0(t) \in \mathbb{C}^2$ медленно меняется со временем на временах ω^{-1} , если волна почти монохроматическая, т.е. $\Delta\omega \ll \omega$. Зависимость $\mathbf{E}_0(t)$ показывает, что форма эллиптической поляризации меняется со временем, причём характерное время изменения формы эллипса — $(\Delta\omega)^{-1}$. Средняя интенсивность волны определяется выражением $J = \overline{\mathbf{E}} \mathbf{E}^* = \overline{\mathbf{E}}_0 \overline{\mathbf{E}}_0^*$, где черта сверху означает усреднение по времени $T \gg (\Delta\omega)^{-1}$. Усреднённые по времени свойства поляризации описываются тензором

$$\rho_{\alpha\beta} = \frac{1}{J} \overline{\mathbf{E}_{\alpha} \mathbf{E}_{\beta}^*} = \frac{1}{J} \overline{\mathbf{E}_{0\alpha} \mathbf{E}_{0\beta}^*},\tag{33}$$

называемым поляризационным тензором классического электромагнитного излучения [8]. Индексы $\alpha, \beta = 1, 2$ обозначают направления в пространстве, ортогональные направлению распространения волны. Заметьте, что $\sum_{\alpha} \rho_{\alpha\alpha} = 1$.

Связь классического и квантового описания сводится к тому, что усреднение по времени для классической электромагнитной волны эквивалентно усреднению по ансамблю для квантовых состояний фотонов, т.е. введённая в квантовой теории матрица плотности $\varrho_{\alpha\beta}$ совпадает с поляризационным тензором $\rho_{\alpha\beta}$. Введённые ранее параметры Стокса определяют *степень поляризации*: $P = \sqrt{s_1^2 + s_2^2 + s_3^2}$.

Для неполяризованного света $\varrho=\frac{1}{2}\begin{pmatrix}1&0\\0&1\end{pmatrix}$ и P=0. Неполяризованный свет может быть представлен как равновероятная смесь состояний $|H\rangle$ и $|V\rangle$ или равновероятная смесь любых других ортогональных состояний, например $|\circlearrowleft\rangle$ и $|\circlearrowright\rangle$, или равновероятная смесь всех состояний на сфере Пуанкаре.

Если разброс частот $\Delta\omega=0$, то классическое описание разрешает лишь поляризационные тензоры вида $\rho_{\alpha\beta}=\frac{1}{J}{\bf E}_{0\alpha}{\bf E}_{0\beta}^*$, т.е. такие, для которых $\det\rho=0$ и степень поляризации P=1. Неполяризованный свет можно описать классически только статистически, т.е. как серию волн, поляризации которых различны и никак не коррелированы между собой. Таким образом, само существование неполяризованного света указывает на его квантовую природу [9]. В квантовом описании фотон может с разной вероятностью находиться в различных состояниях поляризации с одной и той же частотой.

9. Квантовая криптография

Рассмотрим принцип работы простейшей квантовой криптографической схемы BB84 (названной так по фамилиям авторов и году публикации [2]). Протокол предназначен для секретной передачи классической информации, закодированной бинарным образом, т.е. нулями и единицами.

На передающем устройстве А установлен однофотонный источник, приготавливающий состояния $|H\rangle$, $|V\rangle$, $|\nearrow\rangle=\frac{1}{\sqrt{2}}(|H\rangle+|V\rangle)$, $|\swarrow\rangle=$ $=\frac{1}{\sqrt{2}}(|H\rangle-|V\rangle).$ Состояния $|H\rangle$ и $|V\rangle$ образуют 1-й ортонормированный базис, состояния | $\nearrow\rangle$ и | $\swarrow\rangle$ образуют 2-й ортонормированный базис. Таким образом, состояния можно переобозначить следующим образом: $|H\rangle=|0+\rangle,\ |V\rangle=|1+\rangle,\ |\nearrow\rangle=|0\times\rangle,\ |\swarrow\rangle=|1\times\rangle,$ где первый символ соответствует передаваемому биту (0 или 1), а второй – используемому базису (+ или ×). На передающем устройстве равновероятно выбирается одно из 4-х состояний и отправляется адресату. Для каждого приходящего фотона адресат на приемном конце B использует либо схему, показанную на рис. 10, либо схему, показанную на рис. 11 (равновероятно). Схема на рис. 10 однозначно различает состояния $|H\rangle$ и $|V\rangle$, поэтому обозначим её «+». Схема на рис. 11 однозначно различает состояния $|\nearrow\rangle$ и $|\checkmark\rangle$, поэтому обозначим её «×». Щелчок верхнего детектора (0) или нижнего детектора (1) для каждой из схем фиксируется и записывается как результат измерения в выбранном базисе.

Рассмотрим возможный вариант измерений:

состояние A базис B	0×	0+	1+ ×	1+	1× ×	0×	1+	$0\times$	0+ ×	$1 \times$
измерение В	1	$\begin{array}{c c} + \\ 0 \end{array}$	1	$\begin{array}{c c} & + \\ 1 & \end{array}$	1	$\begin{bmatrix} + \\ 0 \end{bmatrix}$	1	$\begin{vmatrix} \hat{0} \end{vmatrix}$	1	0
\cos г. баз. A и B	нет	да	нет	да	да	нет	да	да	нет	нет
бит A		0		1	1		1	0		
бит B		0		1	1		1	0		

С вероятностью $\frac{1}{2}$ на передающем и принимающем концах выберут разные базисы (+ и ×) и результат измерения на конце B с вероятностью $\frac{1}{2}$ будет 0 или 1. Если же базисы на передающем и принимающем концах совпадают, то с вероятностью 1 на конце B зарегистрируется именно тот исход (0 или 1), который был использован на передающем конце. Сверка базисов между A и B производится по открытому каналу связи (телефону), однако результат измерения не сообщается! В случае совпадения базисов A знает переданный бит, B знает результат

измерения, и они должны совпадать! Таким способом можно осуществить передачу ключа.

Допустим, что подслушиватель E внедряется в квантовую линию передачи фотонов и пытается измерить их до того, как они будут зарегистрированы на принимающем конце. Для получения хоть какойнибудь информации подслушиватель E должен измерять фотоны, а новые приготовленные фотоны отправлять к принимающему концу. Если подслушиватель E угадывает базис A, то он может оставаться незамеченным. Вероятность угадывания равна $\frac{1}{2}$. При неправильном угадывании испущенный подслушивателем E фотон будет отличаться от фотона, испущенного A, и с вероятностью $\frac{1}{2}$ приведёт к неправильному исходу даже при совпадении базисов A и B:

\cos состояние A	$0 \times$	0+	1+	1+	$1\times$	$0 \times$	1+	$0 \times$	0+	$1 \times$
базис E	×	+	×	+	×	+	×	+	×	+
базис B	+	+	×	+	×	+	+	×	×	+
измерение B	1	0	1	1	1	0	1	1	1	0
совп. баз. A и B	нет	да	нет	да	да	нет	да	да	нет	нет
бит A		0		1	1		1	0		
бит B		0		1	1		1	1		

Несовпадение показано квадратной рамкой. Таким образом, A и B по незащищенному каналу связи открывают базисы измерений, и для совпадающих базисов проверяют на совпадение ${\it ``uacmb}$ результатов измерений B и приготовлений A. Обнаружение ошибки в этой части означает подслушивание. Вероятность ошибки при подслушивании равна 25%. Таким образом, квантово-механический принцип суперпозиции позволяет обеспечить секретную коммуникацию.

На практике ошибки могут возникать не только в результате подслушивания, но и вследствие шумов. Поэтому устанавливается некоторый порог ошибок ($p_{\rm cut} < 25\%$), в пределах которого связь является секретной и допускает процедуру исправления.

10. Двухфотонные перепутанные состояния

Рассмотрим поляризационные степени свободы системы, составленной из двух фотонов, и пренебрежем пространственно-частотными характеристиками электромагнитного поля. Базисными векторами составной системы являются состояния H_1H_2 , H_1V_2 , V_1H_2 , V_1V_2 , т.е. мы

имеем дело с пространством состояний \mathbb{C}^4 . Определим *тензорное* произведение векторов $|\psi\rangle = \begin{pmatrix} c_H & c_V \end{pmatrix}^\top$ и $|\chi\rangle = \begin{pmatrix} d_H & d_V \end{pmatrix}^\top$ по правилу

$$|\psi\rangle\otimes|\chi\rangle = \begin{pmatrix} c_H \\ c_V \end{pmatrix}\otimes \begin{pmatrix} d_H \\ d_V \end{pmatrix} = \begin{pmatrix} c_H d_H \\ c_H d_V \\ c_V d_H \\ c_V d_V \end{pmatrix}$$
 (34)

и обобщим его на матрицы

$$(A \otimes B)_{ik,jl} = A_{ij}B_{kl}, \tag{35}$$

где ik и jl – мультииндексы.

Если оператор \hat{A} действует только на степени свободы 1-го фотона (оператор действует в \mathbb{C}^2), то в пространстве состояний составной системы этому оператору нужно поставить в соответствие оператор $\hat{A}\otimes\hat{I}$, где \hat{I} — тождественный оператор. Аналогично, если оператор \hat{B} действует только на степени свободы 2-го фотона, то в пространстве состояний составной системы этому оператору нужно поставить в соответствие оператор $\hat{I}\otimes\hat{B}$.

Математическое свойство

$$(\hat{A} \otimes \hat{B})|\psi\rangle \otimes |\chi\rangle = \hat{A}|\psi\rangle \otimes \hat{B}|\chi\rangle \tag{36}$$

показывает действие локальных операторов $\hat{A}\otimes\hat{B}$ на факторизованные состояния $|\psi\rangle\otimes|\chi\rangle$. С точки зрения физики это соответствует описанию невзаимодействующих подсистем.

Для краткости записи знак тензорного произведения часто опускают, например: $|H\rangle|H\rangle=|H\rangle\otimes|H\rangle.$

Согласно квантово-механическому принципу суперпозиции произвольное чистое двухфотонное поляризационное состояние задаётся вектором

$$|\Psi\rangle = c_1|H\rangle|H\rangle + c_2|H\rangle|V\rangle + c_3|V\rangle|H\rangle + c_4|V\rangle|V\rangle, \tag{37}$$

где $c_i \in \mathbb{C}, \; \sum_{i=1}^4 |c_i|^2 = 1.$

В общем случае $|\Psi\rangle\neq|\psi\rangle|\chi\rangle$ ни для каких $|\psi\rangle$ и $|\chi\rangle$. В этом случае говорят, что состояние $|\Psi\rangle$ является *перепутанным* (также используют термины запутанный, сцепленный, зацепленный). Примером перепутанного состояния является состояние $|\Psi\rangle=\frac{1}{\sqrt{2}}(|H\rangle|V\rangle+|V\rangle|H\rangle).$

Смешанное двухфотонное поляризационное состояние задаётся матрицей плотности

$$\varrho = \begin{pmatrix}
\varrho_{HH,HH} & \varrho_{HH,HV} & \varrho_{HH,VH} & \varrho_{HH,VV} \\
\varrho_{HV,HH} & \varrho_{HV,HV} & \varrho_{HV,VH} & \varrho_{HV,VV} \\
\varrho_{VH,HH} & \varrho_{VH,HV} & \varrho_{VH,VH} & \varrho_{VH,VV} \\
\varrho_{VV,HH} & \varrho_{VV,HV} & \varrho_{VV,VH} & \varrho_{VV,VV}
\end{pmatrix}.$$
(38)

Оператор плотности первой подсистемы определяется выражением

$$\hat{\varrho}_1 = \sum_{i} \hat{I} \otimes \langle i| \cdot \hat{\varrho} \cdot \hat{I} \otimes |i\rangle =: \operatorname{tr}_2 \hat{\varrho}, \tag{39}$$

где суммирование ведётся по ортонормированному базису второй подсистемы. Процедура редукции матрицы плотности на подсистему — взятие *частичного следа* по другим подсистемам. Аналогично, оператор плотности второй подсистемы определяется выражением

$$\hat{\varrho}_2 = \sum_i \langle i | \otimes \hat{I} \cdot \hat{\varrho} \cdot | i \rangle \otimes \hat{I} =: \operatorname{tr}_1 \hat{\varrho}. \tag{40}$$

Нетрудно убедиться, что среднее значение $\langle \hat{A} \otimes \hat{I} \rangle = \operatorname{tr}(\hat{A}\varrho_1)$, а среднее значение $\langle \hat{I} \otimes \hat{B} \rangle = \operatorname{tr}(\hat{B}\varrho_2)$. Таким образом, среднее значение *по-кального* оператора определяется редуцированной матрицей плотности подсистемы.

Смешанное состояние ϱ называют перепутанным, если его невозможно представить в виде выпуклой суммы факторизованных состояний, т.е. $\varrho \neq \sum_i p_i |\psi_i\rangle \langle \psi_i| \otimes |\chi_i\rangle \langle \chi_i|$.

Для матриц 4×4 справедлив простой критерий перепутанности: матрица плотности ϱ отвечает перепутанному состоянию тогда и только тогда, когда её $частичное\ mpancnohupogahue$

$$\varrho^{\Gamma} = \begin{pmatrix}
\varrho_{HH,HH} & \varrho_{HV,HH} & \varrho_{HH,VH} & \varrho_{HV,VH} \\
\varrho_{HH,HV} & \varrho_{HV,HV} & \varrho_{HH,VV} & \varrho_{HV,VV} \\
\varrho_{VH,HH} & \varrho_{VV,HH} & \varrho_{VH,VH} & \varrho_{VV,VH} \\
\varrho_{VH,HV} & \varrho_{VV,HV} & \varrho_{VH,VV} & \varrho_{VV,VV}
\end{pmatrix} \not\geqslant 0, \tag{41}$$

т.е. ϱ^{Γ} имеет отрицательные собственные значения [10, 11]. Геометрические свойства перепутанных матриц плотности рассмотрены в [12].

Существует несколько способов приготовления перепутанных двухфотонных состояний. Одним из наиболее распространенных является спонтанное параметрическое рассеяние на нелинейных кристаллах с синхронизмом типа II, где два рассеянных фотона в паре всегда поляризованы ортогонально, и принципиально нет никакой возможности различить состояния $|H\rangle|V\rangle$ и $|V\rangle|H\rangle$, т.е. реализуется квантовое состояние $\frac{1}{\sqrt{2}}(|H\rangle|V\rangle + |V\rangle|H\rangle)$ [13].

11. Сверхплотное кодирование

В данном разделе показывается, что квантовая перепутанность является ресурсом для передачи информации. Допустим, что в лабораториях A и B имеются по одному фотону, причём двухфотонное состояние $|\Psi\rangle_{AB}=\frac{1}{\sqrt{2}}(|H\rangle|V\rangle+|V\rangle|H\rangle)$ является перепутанным. Для передачи информации из A в B можно воспользоваться алфавитом из 4-х элементов (0,1,2,3) и следующим кодированием:

для передачи «0» просто переправить фотон из A в B;

для передачи «1» повернуть плоскость поляризации фотона в лаборатории A на угол $\pi/2$, затем переправить фотон из A в B;

для передачи «2» создать сдвиг фаз π между вертикальной и горизонтальной поляризациями фотона в лаборатории A, затем переправить фотон из A в B;

для передачи «3» в лаборатории A повернуть плоскость поляризации фотона на угол $\pi/2$, создать сдвиг фаз π между вертикальной и горизонтальной поляризациями фотона, затем переправить фотон из A в B.

В результате таких *локальных* операций и пересылки одного фотона из A в B на приёмном устройстве в лаборатории B окажутся следующие состояния соответственно:

$$|\Psi_{+}\rangle = \frac{1}{\sqrt{2}}(|H\rangle|V\rangle + |V\rangle|H\rangle),$$
 (42)

$$|\Phi_{+}\rangle = \frac{1}{\sqrt{2}}(|V\rangle|V\rangle + |H\rangle|H\rangle),$$
 (43)

$$|\Psi_{-}\rangle = \frac{1}{\sqrt{2}}(|H\rangle|V\rangle - |V\rangle|H\rangle),$$
 (44)

$$|\Phi_{-}\rangle = \frac{1}{\sqrt{2}}(|H\rangle|H\rangle - |V\rangle|V\rangle).$$
 (45)

Эти четыре состояния являются взаимно ортогональными и образуют базис Белла в \mathbb{C}^4 . В силу ортогональности эти состояния однозначно различаются в лаборатории B. Схема однозначного различения поляризационных состояний Белла представлена в работе [14] и изложена в следующем разделе. Таким образом, пересылая один фотон, можно передавать 4 буквы алфавита, т.е. 2 бита информации. Без применения перепутанного состояния при пересылке одного фотона можно передать лишь 1 бит информации (две ортогональные поляризации). Использование перепутанного состояния (между отправителем и приемником) позволяет получить выигрыш в 2 раза, т.е. перепутанные состояния повышают плотность кодирования информации.

12. Измерение в базисе состояний Белла

Измерить поляризационное двухфотонное состояние в базисе Белла – реализовать проекторы $|\Phi_{\pm}\rangle\langle\Phi_{\pm}|, |\Psi_{\pm}\rangle\langle\Psi_{\pm}|,$ сумма которых равна I (проекторнозначная мера). Другими словами, необходимо реализовать эксперимент, в котором можно достоверно различить 4 состояния: $|\Phi_{+}\rangle, |\Phi_{-}\rangle, |\Psi_{+}\rangle, |\Psi_{-}\rangle$. Задача различения этих состояний не является простой с экспериментальной точки зрения, и первоначальные варианты обладали низкой эффективностью [13]. Эффективная схема была предложена в работе [14], схема установки представлена на рис. 14.

Рис. 14. Схема измерений в базисе поляризационных состояний Белла

Входное состояние попадает на делитель пучка с равными коэффициентами прохождения и отражения (BS), действие которого определяется преобразованием $\begin{pmatrix} \hat{a}_{\uparrow}^{\dagger} \\ \hat{a}_{\downarrow}^{\dagger} \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \hat{a}_{\uparrow}^{\dagger} \\ \hat{a}_{\downarrow}^{\dagger} \end{pmatrix}$ для операторов рождения фотонов в верхней (\uparrow) и нижней (\downarrow) частях схемы,

в результате чего

$$|H\rangle_{\uparrow}|H\rangle_{\downarrow} \to \frac{1}{\sqrt{2}}(|H\rangle_{\uparrow}|H\rangle_{\uparrow} + |H\rangle_{\downarrow}|H\rangle_{\downarrow}),$$
 (46)

$$|H\rangle_{\uparrow}|V\rangle_{\downarrow} \to \frac{1}{2}(-|H\rangle_{\uparrow}|V\rangle_{\uparrow} + |H\rangle_{\uparrow}|V\rangle_{\downarrow} - |H\rangle_{\downarrow}|V\rangle_{\uparrow} + |H\rangle_{\downarrow}|H\rangle_{\downarrow}), (47)$$

$$|V\rangle_{\uparrow}|H\rangle_{\downarrow} \to \frac{1}{2}(-|H\rangle_{\uparrow}|V\rangle_{\uparrow} - |H\rangle_{\uparrow}|V\rangle_{\downarrow} + |H\rangle_{\downarrow}|V\rangle_{\uparrow} + |H\rangle_{\downarrow}|H\rangle_{\downarrow}), (48)$$

$$|V\rangle_{\uparrow}|V\rangle_{\downarrow} \to \frac{1}{\sqrt{2}}(|V\rangle_{\uparrow}|V\rangle_{\uparrow} + |V\rangle_{\downarrow}|V\rangle_{\downarrow}).$$
 (49)

Состояния Белла с точностью до общего фазового множителя преобразуются следующим образом:

$$|\Phi_{+}\rangle \to \frac{1}{2}(|H\rangle_{\uparrow}|H\rangle_{\uparrow} + |H\rangle_{\downarrow}|H\rangle_{\downarrow} + |V\rangle_{\uparrow}|V\rangle_{\uparrow} + |V\rangle_{\downarrow}|V\rangle_{\downarrow}), \quad (50)$$

$$|\Phi_{-}\rangle \rightarrow \frac{1}{2}(|H\rangle_{\uparrow}|H\rangle_{\uparrow} + |H\rangle_{\downarrow}|H\rangle_{\downarrow} - |V\rangle_{\uparrow}|V\rangle_{\uparrow} - |V\rangle_{\downarrow}|V\rangle_{\downarrow}), \quad (51)$$

$$|\Psi_{+}\rangle \to \frac{1}{\sqrt{2}}(-|H\rangle_{\uparrow}|V\rangle_{\uparrow} + |H\rangle_{\downarrow}|V\rangle_{\downarrow}),$$
 (52)

$$|\Psi_{-}\rangle \to \frac{1}{\sqrt{2}}(|H\rangle_{\uparrow}|V\rangle_{\downarrow} - |H\rangle_{\downarrow}|V\rangle_{\uparrow}).$$
 (53)

Из последней формулы видно, что один детектор в верхней части схемы и один детектор в нижней части схемы могут сработать одновременно только для состояния $|\Psi_{-}\rangle$ (критерий детектирования $|\Psi_{-}\rangle$).

После прохождения через первый поляризационный делитель пучка (PBS) вертикально и горизонтально поляризованные компоненты становятся разнесёнными во времени, появляется дополнительная степень свободы — время f для быстрого фотона, s для медленного.

$$|\Phi_{+}\rangle \to \frac{1}{2}(|H\rangle_{\uparrow f}|H\rangle_{\uparrow f} + |H\rangle_{\downarrow f}|H\rangle_{\downarrow f} + |V\rangle_{\uparrow s}|V\rangle_{\uparrow s} + |V\rangle_{\downarrow s}|V\rangle_{\downarrow s}), (54)$$

$$|\Phi_{-}\rangle \to \frac{1}{2}(|H\rangle_{\uparrow f}|H\rangle_{\uparrow f} + |H\rangle_{\downarrow f}|H\rangle_{\downarrow f} - |V\rangle_{\uparrow s}|V\rangle_{\uparrow s} - |V\rangle_{\downarrow s}|V\rangle_{\downarrow s}), (55)$$

$$|\Psi_{+}\rangle \to \frac{1}{\sqrt{2}}(-|H\rangle_{\uparrow f}|V\rangle_{\uparrow s} + |H\rangle_{\downarrow f}|V\rangle_{\downarrow s}). \tag{56}$$

Видно, что $|\Psi_{+}\rangle$ преобразуется таким образом, что один фотон будет регистрироваться раньше, а другой позже. Экспериментально на схеме рис. 14 будет зафиксировано одно из совпадений событий: 1 и 4, 1 и 6, 1 и 8, 3 и 6, 3 и 8, 5 и 8, 2 и 3, 2 и 5, 2 и 7, 4 и 5, 4 и 7, 6 и 7 (в верхней или нижней части установки).

Рис. 15. Слева: состояние $|H\rangle_f|V\rangle_s=\int f(t)|H\rangle_t|V\rangle_{t+s-f}dt$. Справа: состояние $\frac{1}{\sqrt{2}}(|H\rangle_f|H\rangle_f+|V\rangle_s|V\rangle_s)=\frac{1}{\sqrt{2}}\int f(t)(|H\rangle_t|H\rangle_t+|V\rangle_{t+s-f}|V\rangle_{t+s-f})dt\approx \approx \frac{1}{\sqrt{2}}\int f(t)(|H\rangle_t|H\rangle_t+|V\rangle_t|V\rangle_t)dt$

Для различения состояний $|\Phi_{+}\rangle$ и $|\Phi_{-}\rangle$ нужно отметить, что поскольку волновая функция перепутанной napu фотонов имеет характерный разброс по времени создания в пределах времени когерентности импульсного лазера (17 нс), что превышает время s-f=3 нс, то для napu фотонов с волновыми функциями $\frac{1}{\sqrt{2}}(|H\rangle_{\uparrow f}|H\rangle_{\uparrow f}\pm|V\rangle_{\uparrow s}|V\rangle_{\uparrow s}$ волновые пакеты $|H\rangle_{\uparrow f}|H\rangle_{\uparrow f}$ и $|V\rangle_{\uparrow s}|V\rangle_{\uparrow s}$ полностью перекрываются, и поэтому задержка не влияет на когерентность (рис. 15). Состояния можно переписать в виде

$$|\Phi_{+}\rangle \to \frac{1}{2}(|/\rangle_{\uparrow}|/\rangle_{\uparrow} + |/\rangle_{\downarrow}|/\rangle_{\downarrow} + |\backslash\rangle_{\uparrow}|/\rangle_{\uparrow} + |\backslash\rangle_{\downarrow}|/\rangle_{\downarrow}), \quad (57)$$

$$|\Phi_{-}\rangle \to \frac{1}{2}(|/\rangle_{\uparrow}|/\rangle_{\uparrow} + |/\rangle_{\downarrow}|/\rangle_{\downarrow} + |/\rangle_{\uparrow}|/\rangle_{\uparrow} + |/\rangle_{\downarrow}|/\rangle_{\downarrow}), \quad (58)$$

где $|/\rangle = (|H\rangle + |V\rangle)/\sqrt{2}$ и $|\backslash\rangle = \rightarrow (|H\rangle - |V\rangle)/\sqrt{2}$. При пропускании света через полуволновую пластинку $(\lambda/2)$, повернутую на угол 225° , осуществляется преобразование состояний $|/\rangle \rightarrow |H\rangle$, $|\backslash\rangle \rightarrow |V\rangle$, т.е.

$$|\Phi_{+}\rangle \to \frac{1}{2}(|H\rangle_{\uparrow}|H\rangle_{\uparrow} + |H\rangle_{\downarrow}|H\rangle_{\downarrow} + |V\rangle_{\uparrow}|V\rangle_{\uparrow} + |V\rangle_{\downarrow}|V\rangle_{\downarrow}), \tag{59}$$

$$|\Phi_{-}\rangle \to \frac{1}{2}(|H\rangle_{\uparrow}|V\rangle_{\uparrow} + |H\rangle_{\downarrow}|V\rangle_{\downarrow} + |V\rangle_{\uparrow}|H\rangle_{\uparrow} + |V\rangle_{\downarrow}|H\rangle_{\downarrow}).$$
 (60)

После прохождения заключительного поляризационного делителя пучка (PBS) фотоны летят в одном направлении для состояния $|\Phi_+\rangle$ и в разных направлениях для состояния $|\Phi_-\rangle$. Таким образом, одновременные события 1 и 3 (2 и 4), 5 и 7 (6 и 8) или наблюдение только одного из событий 1, 2, 3, 4, 5, 6, 7, 8 (в верхней или нижней части установки) означают, что исходное состояние было состоянием $|\Phi_+\rangle$. Одновременные наблюдения событий 1 и 5 (2 и 6), 1 и 7 (2 и 8), 3 и 5 (4 и 6), 3 и 7 (4 и 8) в верхней или нижней части установки означают, что исходное состояние было состоянием $|\Phi_-\rangle$.

Таким образом, по наблюдению исходов можно однозначно произвести измерение в базисе состояний Белла.

13. Квантовая телепортация

Рассмотрим процедуру передачи неизвестного квантового состояния $|\psi\rangle = c_1|H\rangle + c_2|V\rangle$ с произвольными c_1 , c_2 между удалёнными лабораториями (рис. 16). Сразу отметим, что передаётся не материя, а именно квантовое состояние. Другими словами, не происходит передачи энергии. В удалённой лаборатории лишь воссоздаётся квантовое состояние $|\psi\rangle$ в уже имеющемся в этой лаборатории фотоне.

Ресурсом для квантовой телепортации является квантовая перепутанность между лабораториями. Допустим, в лабораториях A и B имеется по одному фотону, которые являются частями двухфотонного состояния $|\Psi\rangle_{AB}=\frac{1}{\sqrt{2}}(|H\rangle_A|V\rangle_B+|V\rangle_A|H\rangle_B)$. Дополнительно в лаборатории имеется состояние $|\psi\rangle_A=c_1|H\rangle+c_2|V\rangle$, которое и требуется воссоздать в лаборатории B. Начальное состояние всей трёхфотонной системы

$$|\psi\rangle_{A}|\Psi\rangle_{AB} = \frac{1}{\sqrt{2}} \Big(c_{1}|H\rangle|H\rangle|V\rangle + c_{2}|V\rangle|H\rangle|V\rangle + c_{1}|H\rangle|V\rangle|H\rangle + c_{2}|V\rangle|V\rangle|H\rangle \Big).$$
(61)

Рис. 16. Схема квантовой телепортации неизвестного состояния $|\psi\rangle$

 ${\rm K}$ первым двум фотонам, находящимся в лаборатории A, применяют измерение в базисе состояний Белла. Поскольку

$$|\psi\rangle_{A}|\Psi\rangle_{AB} = |\Phi_{+}\rangle(c_{1}|V\rangle + c_{2}|H\rangle) + |\Phi_{-}\rangle(c_{1}|V\rangle - c_{2}|H\rangle) + |\Psi_{+}\rangle(c_{1}|H\rangle + c_{2}|V\rangle) + |\Psi_{-}\rangle(c_{1}|H\rangle - c_{2}|V\rangle), (62)$$

то при наблюдении конкретного исхода $(\Phi_+, \Phi_-, \Psi_+, \Psi_-)$ квантовое состояние 3-го фотона становится определённым: $\Psi_+ \longleftrightarrow c_1|H\rangle + c_2|V\rangle$, $\Phi_+ \longleftrightarrow c_1|V\rangle + c_2|H\rangle$, $\Psi_- \longleftrightarrow -c_1|H\rangle + c_2|V\rangle$, $\Phi_- \longleftrightarrow -c_1|V\rangle + c_2|H\rangle$.

Результат измерения в лаборатории A передаётся по классическому каналу связи (телефону) в лабораторию B. В зависимости от полученного сообщения в лаборатории B применяют одну из унитарных операций U, описанных в разделе 5.:

$$\begin{split} &\Psi_{+} \longrightarrow I, \quad c_{1}|H\rangle + c_{2}|V\rangle \longrightarrow c_{1}|H\rangle + c_{2}|V\rangle, \\ &\Phi_{+} \longrightarrow \sigma_{x}, \quad c_{1}|V\rangle + c_{2}|H\rangle \longrightarrow c_{1}|H\rangle + c_{2}|V\rangle, \\ &\Psi_{-} \longrightarrow \sigma_{z}, \quad -c_{1}|H\rangle + c_{2}|V\rangle \longrightarrow c_{1}|H\rangle + c_{2}|V\rangle, \\ &\Phi_{-} \longrightarrow i\sigma_{y}, \quad -c_{1}|V\rangle + c_{2}|H\rangle \longrightarrow c_{1}|H\rangle + c_{2}|V\rangle. \end{split}$$

В итоге состояние 3-го кубита в любом случае преобразуется к виду $c_1|H\rangle+c_2|V\rangle=|\psi\rangle$, т.е. в лаборатории B осуществляется восстановление произвольного квантового состояния 1-го кубита, изначально находившегося в A. Протокол «телепортации» напрямую связан с передачей классической информации, поэтому противоречий с теорией относительности нет. Также отметим, что 3-й фотон не берётся из ниоткуда, он уже представлен в лаборатории B как часть перепутанного состояния.

14. Поляризация произвольного многофотонного состояния

Рассмотрим горизонтально поляризованную плоскую электромагнитную волну с заданным волновым вектором ${\bf k}$, т.е. фиксированную моду излучения. В предыдущих разделах рассматривались ситуации, когда в одной моде излучения находился один фотон или не находился вовсе. На самом деле фотоны являются бозонами, поэтому в фиксированной моде излучения может находиться $n_H=0,1,2,\ldots$ тождественных фотонов (любое неотрицательное число). Многофотонные квантовые состояния удобно описывать в представлении чисел заполнения, где базисными векторами являются состояния $|n_H\rangle$ с заданным числом фотонов, причём состояния с различным числом частиц ортогональны: $\langle n_H|k_H\rangle = \delta_{nk}$. Произвольное многофотонное состояние в фиксированной моде с горизонтальной поляризацией записывается в виде $|\psi\rangle = \sum_n c_n |n_H\rangle \in l_2(Z_+)$. Произвольное состояние в моде с вертикальной поляризацией записывается в виде $|\varphi\rangle = \sum_m c_m |m_V\rangle \in l_2(Z_+)$, где

 $|m_V\rangle$ — состояние с m вертикально поляризованными фотонами. Заметим, что $|\psi\rangle$ и $|\varphi\rangle$ — элементы разных пространств. Двухмодовое пространство состояний состоит из векторов

$$|\Psi\rangle = \sum_{n,m} c_{nm} |n_H, m_V\rangle, \tag{63}$$

представляющих собой линейную комбинацию векторов с определённым числом фотонов в каждой из мод, $|\Psi\rangle\in l_2(Z_+\times Z_+)$. В частном случае однофотонного состояния имеем $c_1|1,0\rangle+c_2|0,1\rangle$, т.е. такое физическое состояние, которое ранее обозначалось $c_1|H\rangle+c_2|V\rangle$. Состояние без фотонов $|0,0\rangle$ называют вакуумным.

Введём оператор уничтожения \hat{a}_i и оператор рождения \hat{a}_i^{\dagger} фотонов в i-й моде согласно правилу [15]

$$\hat{a}_i | \dots n_i \dots \rangle = \sqrt{n_i} | \dots n_i - 1 \dots \rangle,$$
 (64)

$$\hat{a}_i^{\dagger} | \dots n_i \dots \rangle = \sqrt{n_i + 1} | \dots n_i + 1 \dots \rangle. \tag{65}$$

Обобщением введённых ранее операторов Стокса на случай произвольного многофотонного состояния являются эрмитовы операторы

$$\hat{S}_1 = \hat{a}_H \hat{a}_V^\dagger + \hat{a}_H^\dagger \hat{a}_V, \tag{66}$$

$$\hat{S}_2 = i(\hat{a}_H \hat{a}_V^{\dagger} - \hat{a}_H^{\dagger} \hat{a}_V), \tag{67}$$

$$\hat{S}_3 = \hat{a}_H^{\dagger} \hat{a}_H - \hat{a}_V^{\dagger} \hat{a}_V. \tag{68}$$

Дополнительно также вводят оператор $\hat{S}_0 = \hat{a}_H^\dagger \hat{a}_H + \hat{a}_V^\dagger \hat{a}_V$, который представляет собой оператор числа фотонов. Заметьте, что сужение оператора \hat{S}_0 на подпространство однофотонных состояний $c_1|1,0\rangle+c_2|0,1\rangle$ есть единичный оператор. Из коммутатора $[\hat{a}_\alpha,\hat{a}_\beta^\dagger]=\delta_{\alpha\beta}$ следует, что $[\hat{S}_\alpha,\hat{S}_\beta]=2i\varepsilon_{\alpha\beta\gamma}\hat{S}_\gamma$, т.е. операторы Стокса удовлетворяют тем же самым коммутационным соотношениям, что и матрицы Паули.

Рассмотрим двухфотонные состояния $|\Psi\rangle=\frac{1}{\sqrt{2}}(|2,0\rangle+|0,2\rangle)$ и $|\Phi\rangle=|1,1\rangle$. Заметим, что $\langle\Psi|\hat{S}_i|\Psi\rangle=\langle\Phi|\hat{S}_i|\Phi\rangle$ для всех i=0,1,2,3, т.е. состояния $|\Psi\rangle$ и $|\Phi\rangle$ невозможно различить в обычных поляризационных экспериментах, рассмотренных ранее! Этот пример показывает, что одним и тем же параметрам Стокса могут отвечать различные многофотонные поляризационные состояния. Заметим, однако, что в рассмотренном примере состояния $|\Psi\rangle$ и $|\Phi\rangle$ ортогональны друг другу, и их можно однозначно различить с помощью другого эксперимента, основанного на интерференции фотонов. Полное восстановление (томография) многофотонных поляризационных состояний рассмотрено в работе [16].

15. Квантовые каналы

Рассмотрим взаимодействие квантовой системы с окружением. Начальное состояние системы задаётся оператором плотности ϱ , начальное состояние окружения — оператором плотности ξ . Начальное состояние системы и окружения — оператор плотности $\varrho \otimes \xi$. Гамильтониан системы и окружения $\hat{H} = \hat{H}_{\rm sys} \otimes \hat{I} + \hat{I} \otimes \hat{H}_{\rm env} + \hat{H}_{\rm int}$ состоит из гамильтониана системы $\hat{H}_{\rm sys}$, гамильтониана окружения $\hat{H}_{\rm env}$ и гамильтониана взаимодействия системы с окружением $\hat{H}_{\rm int}$. Для простоты предположим, что \hat{H} не зависит от времени, а система взаимодействует с окружением в течение конечного времени t, тогда оператор эволюции $\hat{U} = \exp(-i\hat{H}t/\hbar)$. Состояние системы и окружения после взаимодействия есть $\hat{U}(\varrho \otimes \xi)\hat{U}^{\dagger}$ и является перепутанным в общем случае. Если мы интересуемся только состоянием системы после взаимодействия, то оно получается взятием частичного следа по окружению. В результате реализуется следующее отображение оператора плотности системы:

$$\varrho \longrightarrow \Phi[\varrho] = \operatorname{tr}_{\mathrm{env}} \left[\hat{U}(\varrho \otimes \xi) \hat{U}^{\dagger} \right].$$
 (69)

С математической точки зрения Φ — линейное вполне положительное отображение, сохраняющее след (СРТ), называемое *квантовым каналом* [5, 17]. Из теоремы Стайнспринга следует, что для любого СРТ-отображения Φ найдутся ξ и \hat{U} такие, что верно (69).

Примером квантового канала является дефазировка. В качестве системы рассмотрим поляризационные степени свободы одиночного фотона, т.е. матрицу плотности $\varrho = \begin{pmatrix} \varrho_{HH} & \varrho_{HV} \\ \varrho_{VH} & \varrho_{VV} \end{pmatrix}$. В качестве окружения рассмотрим пространственные моды электромагнитного поля с частотами ω . Вазисные состояния пространственных мод обозначим $|\omega\rangle$, тогда $\langle\omega|\omega'\rangle = \delta_{\omega\omega'}$. Начальное состояние системы и окружения – оператор $\varrho\otimes|\chi\rangle\langle\chi|$, где $|\chi\rangle = \int d\omega \, f(\omega)|\omega\rangle$. Функция $f(\omega)$ – амплитуда вероятности обнаружить фотон в моде с частотой ω , поэтому $\int d\omega \, |f(\omega)|^2 = 1$. В результате двулучепреломления при прохождении расстояния z в среде между состояниями z и z в озникает набег фаз z и z в среде между состояниями z и z в озникает набег фаз z поэтом и вертикально поляризованных воли. Изменение квантового состояния при распространении фотона в пространстве соответствует эволюции во времени z с эффективным гамильтонианом

$$\hat{H} = \int d\omega \, \hbar \omega (n_H |H\rangle \langle H| + n_V |V\rangle \langle V|) \otimes |\omega\rangle \langle \omega|. \tag{70}$$

Подставляя оператор эволюции

$$\hat{U} = \int d\omega \left[\exp(-in_H \omega t) |H\rangle \langle H| + \exp(-in_V \omega t) |V\rangle \langle V| \right] \otimes |\omega\rangle \langle \omega| \quad (71)$$

в уравнение (69), получаем

$$\Phi[\varrho] = \begin{pmatrix} \varrho_{HH} & G^*(t)\varrho_{HV} \\ G(t)\varrho_{VH} & \varrho_{VV} \end{pmatrix}, \tag{72}$$

где $G(t)=\int d\omega\,|f(\omega)|^2e^{i(n_H-n_V)\omega t}$ — функция декогеренции. Заметим, что $G(t)\to 0$ при $t\to\infty$, поэтому на больших временах матрица плотности становится диагональной, т.е. происходит $\partial e \phi$ азировка. Действие канала (72) сводится к сжатию сферы Пуанкаре вдоль направлений s_x и s_y с коэффициентом |G(t)| и повороту вокруг оси s_z на угол arg G(t).

Отметим важный случай *деполяризующего* канала, реализующегося для поляризационных степеней свободы в многомодовом волокне вследствие перекачки энергии между модами с разными поляризациями [18]:

$$\Phi[\varrho] = q\varrho + \text{tr}[\varrho] \frac{1}{2}I, \tag{73}$$

где $q \in [0,1]$ – параметр деполяризации. Действие канала (73) сводится к сжатию сферы Пуанкаре во всех направлениях с коэффициентом q.

Действие дефазирующих и деполяризующих локальных каналов вида $\Phi \otimes \Phi$ на перепутанные состояния изучено в работе [19].

Литература

- Aspect A., Dalibard J., Roger G. Experimental test of Bell's inequalities using time-varying analyzers // Physical Review Letters.

 1982.
 V. 49.
 P. 1804.
- Bennett C.H., Brassard G. Quantum cryptography: Public key distribution and coin tossing // Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. – 1984. – V. 175. – P. 8.
- 3. Bennett C., Wiesner S. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states // Physical Review Letters. 1992. V. 69. P. 2881.
- Bennett C. H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W. K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels // Physical Review Letters. – 1993.
 V. 70. – P. 1895.

- 5. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. М.: Мир, 2006.
- 6. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Вып. 3. Излучение. Волны. Кванты. М.: Либроком, 2014.
- 7. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Вып. 8, 9: Квантовая механика. М.: Либроком, 2014.
- 8. Ландау Л. Д., Лифшиц Е. М. Курс теоретической физики. Т. 2. Теория поля. М.: Физматлит, 2012.
- 9. Липкин Г. Квантовая механика. М.: Мир, 1977.
- Peres A. Separability criterion for density matrices // Physical Review Letters. – 1996. – V. 77. – P. 1413.
- 11. Horodecki M., Horodecki P., Horodecki R. Separability of mixed states: necessary and sufficient conditions // Physics Letters A. 1996. V. 223. P. 1.
- 12. Filippov S. N., Man'ko V. I. Geometrical interpretation of density matrix: mixed and entangled states // Journal of Russian Laser Research. 2008. V. 29. P. 564.
- 13. Бауместер Д., Экерт А., Цайлингер А. Физика квантовой информации. М.: Постмаркет, 2002.
- 14. Schuck C., Huber G., Kurtsiefer C., Weinfurter H. Complete deterministic linear optics Bell state analysis // Physical Review Letters. 2006. V. 96. P. 190501.
- 15. Фейнман Р. Статистическая механика. М.: Мир, 1978.
- Söderholm J., Björk G., Klimov A. B., Sánchez-Soto L. L., Leuchs G. Quantum polarization characterization and tomography // New Journal of Physics. 2012. V. 14. P. 115014.
- 17. Холево А. С. Квантовые системы, каналы, информация. М.: МЦ- НМО, 2010.
- 18. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography // Reviews of Modern Physics. 2002. V. 74. P. 145.
- 19. Filippov S. N., Rybár T., Ziman M. Local two-qubit entanglement-annihilating channels // Physical Review A. 2012. V. 85. P. 012303.

Учебное издание

Филиппов Сергей Николаевич

КВАНТОВЫЕ ПОЛЯРИЗАЦИОННЫЕ СОСТОЯНИЯ ФОТОНОВ

Учебно-методическое пособие

Редактор О. П. Котова.. Корректор Л. В. Себова

Компьютерная верстка С. Н. Филиппов

Подписано в печать 24.03.2017. Формат $60\times 84^{-1}/_{16}$. Усл. печ. л. 2,25. Уч.-изд. л. 2,0. Тираж 100 экз. Заказ № 83.

Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (государственный университет)» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-58-22, e-mail: rio@ mipt.ru

Отдел оперативной полиграфии «Физтех-полиграф» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел.: (495) 408-84-30, e-mail: polygraph@mipt.ru