Kodierung

bν

Dr. Günter Kolousek

Überblick

- ► Kodierung (auch Code): Abbildung, die jedem Zeichen eines Quellalphabets (Menge!) eindeutig ein Zeichen eines Zielalphabets zuordnet.
 - kodieren vs. dekodieren
 - Kodierung mit
 - ► fixer Länge (z.B. ASCII)
 - ▶ variable Länge (z.B. UTF-8)
- Zweck
 - Speicherung
 - Informationsaustausch
 - Verarbeitung

Anwendungen

- Zeichenkodierung
 - ► → "character_encoding"
- Zahlenkodierungen
 - ganze Zahlen vs. Gleitkommazahlen
 - Zahlen mit einer variablen Länge zur Datenübertragung
- Leitungskodierung
 - z.B.: Manchesterkodierung, Morsecode
- ► Fehlererkennende und fehlerkorrigierende Codes
 - z.B.: CRC
- Komprimierung
 - z.B.: Huffman-Kodierung

Zahlen mit variabler Länge

- ► Zweck: Übertragen und Speichern einer beliebig großen Zahl
- ► LEB128
 - ► Little Endian Base 128
 - Unsigned LEB128
 - ► Signed LEB128

Unsigned LEB128

- 1. Zahl binär darstellen
- 2. 0en bis auf Vielfaches von 7 links auffüllen
- 3. in 7er Gruppen teilen
- auf 8 Bits bringen: MSB setzen in jeder Gruppe außer der höchstwertigsten
- 5. Daten beginnend mit dem niederwertigsten Byte übertragen

Unsigned LEB128 – 2

- 1. $123456_{10} = 11110001001000000_2$
- 2. 000011110001001000000
- 3. 0000111 1000100 1000000
- 4. 00000111 11000100 11000000
- 5. Übertragen: 11000000 11000100 00000111

Signed LEB128

- 1. Zahl binär darstellen
 - negativ → positiv, 0 Bit hinzu, 2er-Komplement
- 2. VZ bis auf Vielfaches von 7 links auffüllen
- 3. in 7er Gruppen teilen
- auf 8 Bits bringen: MSB setzen in jeder Gruppe außer der höchstwertigsten
- 5. Daten beginnend mit dem niederwertigsten Byte übertragen

Achtung: Empfänger muss wissen, ob Signed LEB128 oder Unsigned LEB128!

Signed LEB – 2

- 1. $-123456_{10} = -1 \cdot 11110001001000000_2 = -1 \cdot 011110001001000000_2 = 100001110111000000_2$
- 2. 111100001110111000000
- 3. 1111000 0111011 1000000
- 4. 01111000 10111011 11000000
- 5. Übertragen: 11000000 10111011 01111000

Konfiguration & Programmierung

- ► Betriebsystem konfigurieren!
- ► Terminal konfigurieren!
- ► Editor konfigurieren!
 - ▶ aber auch: Fonts installieren...
- ► HTML

- Webbrowser
 - ➤ wenn im HTML nicht spezifiziert...

Konfiguration & Programmierung – 2

- ► HTTP
 - ► Header für Inhalt

```
Content-Type: text/plain; charset="UTF-8"
```

- Datenbank
 - Datenbank, Tabelle, Spalte
- ► XML
 - jeder konforme XML-Prozessor muss UTF-8 unterstützen

```
<?xml version="1.0" encoding="UTF-16"?>
```

- Programmierung
 - ► z.B. Java

```
String name;
// ...
byte[] bytes = name.getBytes("utf-8");
// ...
name = new String(bytes, "utf-16")
```

Anwendungen – 2

- Verschlüsselung
 - ▶ aber nicht jeder Code ist eine Verschlüsselung!
 - z.B. DES, AES, RSA,...
- ▶ Identifizierung von Gegenständen,...
 - z.B.: ISBN-10 bzw. ISBN-13 (International Standard Book Number), ISSN (für Zeitschriften), GTIN (Global Trade Item Number), QR-Code
- ▶ Geekcode

```
GCS s a++ C UL++ L+++ E++ !tv b++ e++++ h----
```

▶ if you are really curious... →
 http://www.joereiss.net/geek/ungeek.html

ISBN

- Beispiel: 3765457280 bzw. 978-3765457289
- Aufbau
 - Präfix: 978 oder 979 (keiner bei ISBN-10)
 - ► Gruppennummer (national, sprachlich): 3 (deutsch)
 - Verlagsnummer (variabel, abhängig von Gruppennummer): 7654
 - ► Titelnummer: 5728
 - Prüfziffer: 9
- Prüfziffer für ISBN-13
 - Berechnung

$$z_{13} = (10 - ((z_1 + z_3 + z_5 + z_7 + z_9 + z_{11} + 3(z_2 + z_4 + z_6 + z_8 + z_{10} + z_{12})) \mod 10)) \mod 10$$

- Überprüfung
 - $(z_1 + z_3 + z_5 + z_7 + z_9 + z_{11} + z_{13} + 3(z_2 + z_4 + z_6 + z_8 + z_{10} + z_{12})) \mod 10 = 0$

Kodierung für die Datenübertragung

- Quellenkodierung
- Kanalkodierung
- Leitungskodierung

Quellenkodierung

- Aufgabe: Signale der Quelle einer Redundanzreduktion zu unterwerfen
- ursprüngliches Signal enthält oft redundante Anteile, die nicht benötigt werden (z.B. Audio, Video) oder Datenkompression
- verlustlos vs. verlustbehaftet

Quellenkodierung

- Aufgabe: Signale der Quelle einer Redundanzreduktion zu unterwerfen
- ursprüngliches Signal enthält oft redundante Anteile, die nicht benötigt werden (z.B. Audio, Video) oder Datenkompression
- verlustlos vs. verlustbehaftet
 - verlustlos
 - Lauflängenkodierung
 - Kodierung mit variabler Länge, z.B. Huffman-Kodierung
 - verlustbehaftet
 - z.B. JPEG
 - z.B. Audio: MPEG-1 Level III (mp3)
 - z.B. Audio & Video: MPEG-4 (mp4)

Lauflängenkodierung

- ▶ lange Folgen sich wiederholender Zeichen \rightarrow # der Wiederholungen und Zeichen
- ▶ Bsp.: AAAAAAXXXXTTTTQUUU \rightarrow 6A4X4T1Q3U
- ▶ Binäre Daten → Angabe des Zeichens nicht notwendig
 - ightharpoonup 00000111110000001010 \rightarrow 5461111

Huffman-Kodierung

- wird für Texte oder binäre Daten (z.B. PNG) verwendet
- variable Länge
 - häufige Zeichen weniger Bits als seltene Zeichen
 - redundanzfrei
 - ► → optimale Kodierung!
- präfixfrei
 - kein Codewort ist der Beginn eines anderen Codewortes
 - ► → keine Trennzeichen zwischen Codewörtern nötig!
- basierend auf Baum
 - Blätter stehen für die Codewörter
- Quellalphabet T
- ► Codealphabet C, n = |C|

Huffman-Kodierung – 2

Kodieren

- 1. n ermitteln
- 2. je Symbol $t \in T$: relative Häufigkeit p_t ermitteln
 - ► Anzahl ermitteln ÷ Gesamtanzahl aller Symbole
- 3. je Symbol: einen Knoten mit relativer Häufigkeit erstellen
 - d.h. je ein Baum mit genau einem Knoten
- 4. Wiederholen bis nur mehr ein Baum:
 - 4.1 Alle *n* Bäume mit geringster Häufigkeit in Wurzel auswählen
 - 4.2 Ausgewählte Bäume zu neuem Baum zusammenfassen
 - 4.3 Summe der Häufigkeiten der direkten Kinder addieren und in neuer Wurzel notieren
- 5. Codewörterbuch erstellen
- 6. Je Symbol im Codewörterbuch nachschlagen

Huffman-Kodierung – Beispiel

- ► Text: maxi;mini;otto;maria
- Quellalphabet: $T = \{m, a, x, i, ;, n, o, t, r\}$
- ightharpoonup Codealphabet: $C = \{1, 0\}$
- 1. n = 2
- 2. relative Häufigkeiten ermitteln:

$$p_m = 0.15, p_a = 0.15, p_x = 0.05, p_i = 0.2, p_i = 0.15, p_n = 0.05, p_o = 0.1, p_t = 0.1, p_r = 0.05$$

3. ...

Huffman-Kodierung – Beispiel – 2

4. Baum

Huffman-Kodierung – Beispiel – 3

5. Codewörterbuch

```
i 00
o 010
a 100
; 101
m 110
r 0110
x 0111
t 1111
n 1110
```

Huffman-Kodierung – 3

- Wortlänge
 - ▶ naive Kodierung: $log_2(9) = 3.17 \rightarrow 4$ Bits je Zeichen $\rightarrow 80$ Bits
 - ► Huffman \rightarrow 61 Bits \rightarrow 3.05 Bits je Zeichen
 - ightharpoonup mittlere Wortlänge konkret: $61 \div 20 = 3.05$
 - mittlere Wortlänge mittels Auftrittswahrscheinlichkeiten: $(2 \cdot 0.2 + 3 \cdot 0.1 + 4 \cdot 0.05 + 4 \cdot 0.05 + 3 \cdot 0.15 + 3 \cdot 0.1$

$$(2 \cdot 0.2 + 3 \cdot 0.1 + 4 \cdot 0.05 + 4 \cdot 0.05 + 3 \cdot 0.15 + 3 \cdot 0.15 + 3 \cdot 0.15 + 4 \cdot 0.05 + 4 \cdot 0.1) \div 9 = 3.05$$

- Dekodieren
 - aus Codewörterbuch Baum erstellen
 - 2. Je Symbol im Baum bis Blatt navigieren → Symbol gefunden

Kanalkodierung

- ► Fehlerarten:
 - Rauschen (Störgröße mit breitem Frequenzspektrum)
 - Kurzzeitstörungen (magnetische Felder)
 - ► Signalverformung (z.B. physikalische Eigenschaften Kabel)
 - ► Nebensprechen (durch kapazitive Kopplung)
- Aufgabe: Erkennung und Korrektur von Fehlern
 - ► Erkennung: → Neuübertragung
 - Korrektur: Netzwerke mit hoher
 - Fehlerwahrscheinlichkeit (z.B. GSM)
 - ▶ Latenz (→ Neuübertragung dauert lange)
- Idee: zusätzliche Prüfbits (redundante Information)
- Methoden
 - Berechnung und Übertragung eines Codewertes
 - Hinzufügen nicht gültiger Codewörter zum Code

Hamming-Distanz

- ► Hamming-Distanz ∆ zweier Codewörter: Anzahl der unterschiedlichen Bitpositionen
- Hamming-Distanz d eines Codes: Minimaler Werte aller Distanzen
- ightharpoonup Beispiel: $C = \{1001, 1111, 0100\}$
 - \triangle $\Delta(x, y) = |x \oplus y|_1$
 - \triangle $\Delta(1001, 1111) = 2$
 - $\Delta(1001,0100) = 3$
 - \triangle $\Delta(1111,0100) = 3$
 - ightharpoonup d(C) = 2
- Fehlererkennung: d-1
- ► Fehlerkorrektur: $\lfloor \frac{d-1}{2} \rfloor$

Fehlererkennung – Paritätsbits

- Parität einer Zahl: Eigenschaft, ob diese gerade oder ungerade ist.
- ightharpoonup Hinzufügen von Paritätsbits, sodass die Anzahl der Einsen gerade ist
- Arten
 - eindimensionale Parität
 - zweidimensionale Parität

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0 1 1
0	0	1	0	0	1	0	0

 \rightarrow erkennt alle 1-, 2- und 3-Bitfehler sowie die meisten 4-Bitfehler!

Fehlererkennung - Prüfsummen

- Prinzip:
 - ▶ Sender: mathematische Operationen \rightarrow Prüfsumme \rightarrow mitübertragen
 - lacktriangle Empfänger: mathematische Operationen ightarrow Prüfsumme ightarrow vergleichen
- Beispiel: IPv4 Prüfsummen
 - Sender
 - Daten als 16-Bitwörter
 - aussummieren mittels Einerkomplementarithmetik (normale binäre Addition, jedoch wird eine 1 am Ende addiert, wenn Übertrag)
 - ▶ von Ergebnis Einerkomplement bilden → mitübertragen
 - Empfänger
 - ► Berechnung wie Sender
 - zum Ergebnis Prüfsumme addieren
 - ► Ergebnis ungleich 0xFFFF → Fehler

Beispiel: IPv4 Prüfsummen

► mit 8-Bitworten:

1	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	1
1 2 3 4	1	0	1	0	0	1	0	1
4	0	0	1	0	0	1	0	0

- Sender
 - Rechenging
 - Zeile 1 + Zeile 2: 10000001
 - 2. Ergebnis von Schritt 1 + Zeile 3: 100100110
 - 3. Übertrag addieren: 00100111
 - 4. Zeile Ergebnis von Schritt 3 + Zeile 4: 01001011
 - 5. Einerkomplement bilden: 10110100 (= Prüfsumme)
- Empfänger

```
01001011 wie Sender Schritte 1-4
10110100 Prüfsumme
------
11111111
```

Fehlererkennung – CRC

- ebenfalls Prüfsumme
 - ausgelegt, dass Fehler durch Rauschen mit hoher Wahrscheinlichkeit erkannt wird.
 - kann einfach in HW implementiert werden.
- Nachricht der Länge m wird als Polynom mit dem Grad m−1 aufgefasst.
- Polynom wird durch ein gewähltes Polynom mit dem Grad k (Generatorpolynom) dividiert.
- Der entstehende Rest wird zur Bildung der Prüfziffern herangezogen.
- Bei "gutem" Generatorpolynom, dann
 - alle Fehler mit ungerader Anzahl an Bitfehlern
 - ▶ alle Bündelfehler der Länge ≤ k
- ► → Polynomarithmetik und Binärarithmetik

Fehlererkennung - CRC - 2

Nachricht	Nachricht multipliziert mit Generator	Codewort
000	$0\odot(\mathbf{x}\oplus 1)=0$	0000
001	$1\odot(x\oplus 1)=x\oplus 1$	0011
010	$\mathbf{x}\odot(\mathbf{x}\oplus 1)=\mathbf{x}^2\oplus\mathbf{x}$	0110
011	$(x \oplus 1) \odot (x \oplus 1) = x^2 \oplus 1$	0101
100	$x^2 \odot (x \oplus 1) = x^3 \oplus x^2$	1100
101	$(x^2 \oplus 1) \odot (x \oplus 1) = x^3 \oplus x^2 \oplus x \oplus 1$	1111
110	$(x^2 \oplus x) \odot (x \oplus 1) = x^3 \oplus x$	1010
111	$(x^2 \oplus x \oplus 1) \odot (x \oplus 1) = x^3 \oplus 1$	1001

- erzeugte Codewörter bilden 3-Bit-Binärcode mit angehängtem Paritätsbit.
- ▶ einfaches Generatorpolynom → kein Vorteil gegenüber Paritätsbits...
- ▶ Prinzip: Alle Wörter, die nicht durch Generatorpolynom teilbar → Fehler!

Fehlererkennung – CRC – 3

- 1. Multipliziere Nachricht p mit x^k . D.h. es werden k Nullbits am rechten Ende der Nachricht angehängt. Leicht durch Verschieben realisierbar.
 - ▶ p = 10001001, d.h. als Polynom: $x^7 \oplus x^3 \oplus 1$
 - ▶ als Generatorpolynom wählen wir CRC-4, d.h.: $x^4 \oplus x \oplus 1$.
 - ▶ p mit x^k multiplizieren: $(x^7 \oplus x^3 \oplus 1) \odot x^4 = x^{11} \oplus x^7 \oplus x^4$. Als Bitmuster: 100010010000!

Fehlererkennung - CRC - 4

2. Teile erhaltenes Ergebnis (Modulo-2 Arithmetik) durch das Generatorpolynom: → Restpolynom

```
100010010000

10011

----

00010001

10011

----

00010000

10011

----

000110
```

- Division durch sukzessives Abziehen des Generatorpolynoms
- ▶ Differenzoperator: ⊖ herangezogen (leicht durch XOR)

Fehlererkennung - CRC - 5

- 3. Restpolynom zum Ergebnis von Punkt 1 addieren: $(x^{11} \oplus x^7 \oplus x^4) \oplus (x^2 \oplus x)$. D.h. es ergibt sich der Bitstring 100010010110. Ebenfalls leicht durch XOR realisierbar, da letzte Stellen alle 0 (siehe Punkt 1) und Anzahl der Stellen des Restes...
- 4. Übertragung
- Empfänger dividiert empfangenes Polynom durch Generatorpolynom (wie Punkt 2). Entsteht ein Rest ungleich Null, dann ist ein Fehler aufgetreten.

Leitungskodierung

- Aufgabe: Umwandlung digitaler Signale zur Übertragung über den (physischen) Übertragungskanal
- hauptsächlich im Basisband
- binäre Signale meist durch 2 Pegeln
 - ▶ positives Potential U+ (z.B. 5V) \equiv 1, Nullpotential \equiv 0
 - ▶ positives Potential U+ \equiv 1, negatives Potential U- \equiv 0
- 3 Kriterien
 - Gute Ausnützung der Bandbreite
 - Gute Regenerierung des Sendetaktes
 - Möglichst geringer Gleichspannungsanteil

Leitungskodierung – 2

- NRZ (Non-Return to Zero): eigentlich keine richtige Kodierung...
- RZ (Return to Zero)
 - Vermeidung langer Perioden von U+ bei bei langen Folgen von Einsen
 - sonst: höherer Gleichspannungsanteil, schlecht Regenerierung
 - allerdings: höhere Frequenz!
- NRZ-I (Non-Return to Zero Inverse)
 - ▶ Bei jeder $1 \rightarrow$ Pegelwechsel, $0 \rightarrow$ keine Änderung
 - löst Problem aufeinanderfolgender Einsen
 - ...aber nicht aufeinanderfolgende Nullen
- AMI (Alternate Mark Inversion)
 - 1 abwechselnd U+ und U-, 0

 ≡ Nullpotential
 - kein Gleichspannungsanteil, lange Perioden von 0er!

Leitungskodierung – 3

- ► MLT-3 (Multilevel Transmission Encoding)
 - ► 1 abwechselnd ...,0,U+,0,U-,0,U+,...
 - 0 keine Änderung
 - ähnlich AMI
- Manchester Code
 - 1 ≡ Übergang von U+ zu U- (negative Flanke)
 - 0 ≡ positive Flanke
 - de facto kein Gleichspannungsanteil, gute Taktrückgewinnung
 - Möglichkeit Codeverletzungen zu erkennen
 - oder absichtlich einbauen, um z.B. Anfang/Ende eines Frame zu erkennen
 - Verdopplung des Frequenzbandes!

Leitungskodierung - 4

Blockkodierung

- Ziele
 - Vermeidung langer Folgen von 0en und 1en
 - Zusatzinformationen mitübertragen wie beim Manchester-Code
- Notation: mBnx
 - m ... Anzahl der Bits
 - ► B ... "Bits"
 - n ... Länge des Blocks
 - x ... Anzahl der verschiedenen Symbole
 - ▶ B... binär
 - ► T ... ternär
 - Q ... quarternär

Blockkodierung – 2

▶ 4B5B

- 4 Bits werden zu 5 Bits umkodiert
- ▶ 16 Bitkombinationen auf 32 Codewörter
- ► Hälfte der Codewörter können zusätzlich verwendet werden
 - z.B. Fehlererkennung
- Nie mehr als 3 Nullen aufeinanderfolgend
 - kann optimal mit NRZ-I kombiniert werden
- nur 25% höhere Bandbreite

4B3T

- 4 Bits auf 3 ternäre Signalparameter
- ▶ 16 Bitkombinationen auf 27 (3³) Codewörter
- redundante Signalgruppen werden benutzt, um Gleichspannungsanteil auszugleichen
 - dazu bisherigen Gleichspannungsanteile summieren und entsprechend einen von zwei möglichen ternären Codes wählen