

Hyperplane:

Hyperplane is a line (in 2d space) or a plane that separate the data points into 2 classes.

Support Vectors:

Support Vectors are the data points which lie nearest to the hyperplane. If theses data points changes, the position of the hyperplane changes.

Siddhardhan

SVM in 2 dimensions

Siddhardhan

Kernel

SVM in 3 dimensions

SVM Kernels

Feature (x)	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
x ²	36	25	16	9	4	1	0	1	4	9	16	25	36

Types of SVM Kernels

1. Linear Kernel:

$$K(x_1, x_2) = x_1^T x_2$$

3. Radial Basis Function (rbf) Kernel:

$$K(x_1, x_2) = \exp(-\gamma \cdot ||x_1 - x_2||^2)$$

2. Polynomial Kernel:

$$K(x_1, x_2) = (x_1^T x_2 + r)^d$$

Siddhardhan

4. Sigmoid Kernel:

$$K(x_1, x_2) = tanh(\gamma . x_1^T x_2 + r)$$

SVM in 3 dimensions