

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Batch: A3 Roll No.:16010122083

Experiment No.____

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Title: Implementation Matrix Chain Multiplication of Dynamic Programming

Objective: To learn Matrix chain multiplication using Dynamic Programming Approach

CO to be achieved:

CO 2 Describe various algorithm design strategies to solve different problems and analyse Complexity.

Books/ Journals/ Websites referred:

- 1. Ellis horowitz, Sarataj Sahni, S.Rajsekaran," Fundamentals of computer algorithm", University Press
- 2. T.H.Cormen ,C.E.Leiserson,R.L.Rivest and C.Stein," Introduction to algorithms",2nd Edition ,MIT press/McGraw Hill,2001
- 3. http://www.lsi.upc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf
- 4. http://www.geeksforgeeks.org/travelling-salesman-problem-set-1/
- 5. http://www.mafy.lut.fi/study/DiscreteOpt/tspdp.pdf
- 6. https://class.coursera.org/algo2-2012-001/lecture/181
- 7. http://www.quora.com/Algorithms/How-do-I-solve-the-travelling-salesman-problem-using-Dynamic-programming
- 8. www.cse.hcmut.edu.vn/~dtanh/download/Appendix B 2.ppt
- 9. www.ms.unimelb.edu.au/~s620261/powerpoint/chapter9 4.ppt

Pre Lab/ Prior Concepts:

Data structures, Concepts of algorithm analysis

Historical Profile:

Dynamic Programming (DP) is used heavily in optimization problems (finding the maximum and the minimum of something). Applications range from financial models and operation research to biology and basic algorithm research. So the good news is that understanding DP is profitable. However, the bad news is that DP is not an algorithm or a data structure that you can memorize. It is a powerful algorithmic design technique.

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

New Concepts to be learned:

Application of algorithmic design strategy to any problem, dynamic Programming method of problem solving Vs other methods of problem solving, optimality of the solution, Optimal Binary Search Tree Problems and their applications

Theory:

Problem definition:

Given a sequence of N matrices, the matrix chain multiplication problem is to find the most efficient way to multiply these matrices by minimizing the number of computations involved during multiplications.

Optimal Substructure: parameterization/ select the subgroup of matrices that will result in least number of computations.

For multiplication of matrix series Ai to Aj, choose Ak such that multiplication of matrices through Ai..k and Ak+1...j will incur least number of computations for any k such that i<=k<j.

Recursive Formula:

$$n[i,j] = \begin{cases} 0 & i = j, \\ \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & i < j, \end{cases}$$

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Algorithm:

Tak long lift
Algo: Matrix Chain Multiplication
→ Iterate from l=2 to N-1 which denotes the length of the range → Iterate from ī=0 to N-1 → Find the right end of the range is howing I portion
> Iterate from T=0 to N-1
range j having l matrix Therate from k-i+1 to j Which denotes the point of partition
Yange (i, k), and (k, j) This will create two
motrices with dimensions arr [i-1] * arr [k] and
arr [t] * am []
The no. of multi to be performance arm [-] tarr[k] ami]
The total no of multi is defilik + defix+ i]+ X
-> The value stored at dp[][N-1]

Example:

2 - W - 17/10 cm
- The value devel of down in
1 2 6 5
2×1 1×3 3×4 9×5
11,0 3,14 9,19
1 2 3 4
1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 3
3 3 3 3
4 MUST ICEN TOTAL GIMENTIAN
-> TIME (51) CTENTE +100
clinil = min 2 clik)
+ c [k+12] +
+0147334
ai-1 chay
ickcj
7 11/10/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1
Taylor I Daylor I pister
STAN THE FIGHT CAN ALL
-> 10-161016 THAN 1- CHAIN IN 1
THE HELD THE RELEASE A DEVENTED AS A DECEMBER OF THE PROPERTY

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Solution for the example:

Cost matrix
234
1 0 6 20 42
2 0 12 32
3 060
91. 1 101
do = 2 d1 = 1 d2 = 3 d3 = 8 d4 = 9
2 41-1 U2-3 U3- 4 dy-9
$c[2,3] = k = 2 \{ c[2,2] + c[3,3] \}$
d. d 2 d 2 9
0+0+72
$C[3,4] = K = 3 \{ c[3,3] + c[4,4] \}$
+ d2 d3 dy 3
5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×
$C(1,3) = \min_{k=1}^{\infty} \frac{2^{k}}{c(1,1) + c(2,3)}$
+ do d1d33
= 2 c (1,2) + c(3,3]
2 K=1 [3 K=2 c [1,2]+c[3,3] + dodeds
1.2 = 30

20
C[2,4] min K=2 c[2,2]+c[3,4]
+ d, d, d, d, u
0+0+24=30
1 K=3 C[2,3] + C(4,4)
+ dies dy
2 +0+\$20
32
C[1,4]= min 2 K=1 → 42
7 K-2 Min
$\frac{7}{5}$ $k=2$ $\frac{min}{value}$
:. The final answer is 42
0

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Analysis of algorithm:

```
#include<bits/stdc++.h>
using namespace <mark>std</mark>;
int matrixChainMulti(vector<int> p)
    int n = p.size();
    vector<vector<int>> dp(n, vector<int>(n, 0));
        dp[i][i + 1] = p[i - 1] * p[i] * p[i + 1];
            dp[i][j] = INT_MAX;
                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + p[i - 1] * p[k] * p[j]);
    return dp[1][n - 1];
int main()
    vector<int> p = {2,1,3,4,5};
    cout << "Matrix dimensions: ";</pre>
    for (int i = 0; i < p.size() - 1; i++)
        cout << p[i] << "x" << p[i + 1] << " ";
    cout<<endl;</pre>
    cout << "Minimum number of multiplications: " << matrixChainMulti(p) << endl;</pre>
    return 0;
```

```
mkkar@Minav MINGW64 /c/Desktop/DSA/AOA
$ ./a
Matrix dimensions: 2x1 1x3 3x4 4x5
Minimum number of multiplications: 42
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

CONCLUSION:

We learned the Matrix Chain Multiplication of Dynamic Programming and its implementation