Recursion

Weiss Ch. 7, pp294-349

Recursive thinking

- Recursion is a programming technique in which a method can call itself to solve a problem
- A recursive definition is one which uses the word or concept being defined in the definition itself
- In some situations, a recursive definition can be an appropriate way to express a concept
- Before applying recursion to programming, it is best to practice thinking recursively

Recursive definitions

Consider the following list of numbers:

A list can be defined recursively

```
Either LIST = null /
  or LIST = element -> LIST
```

- That is, a LIST is defined to be either empty (null), or an element followed by a LIST
 - (The concept of a LIST is used to define itself)
 - How would we confirm that null is a LIST? That one element is a LIST? That three elements are a LIST?

More recursive definitions

- An arithmetic expression is defined as:
 - a numeric constant
 - an numeric identifier
 - an arithmetic expression enclosed in parentheses
 - 2 arithmetic expressions with a binary operator like + -/ * %
- Note: The term arithmetic expression is defined by using the term arithmetic expression!
 - (not the first two bullets)

Recursive algorithms

- A recursive algorithm is one that refers to itself
- Show everything in a folder and all it subfolders:
 - 1. show everything in top folder
 - show everything in each subfolder in the same manner
- Look up a word in a dictionary:
 - 1. look up a word (use alphabetical ordering) or
 - 2. look up word to define the word you are looking up

Factorial example

 The factorial for any positive integer N, written N!, is defined to be the product of all integers between 1 and N inclusive

$$n! = n \times (n-1) \times (n-2) \times ... \times 1$$

```
public static int factorial(int n) {
  int product = 1;
  for (int i = 1; i <= n; i++)
    product *= i;
  return product;
}</pre>
```

Exercise: trace execution (show method calls) for n=5

Recursive factorial

• factorial can also be defined recursively:

$$f(n) = \begin{cases} n \ge 1 \Rightarrow n \times f(n-1) \\ n = 0 \Rightarrow 1 \end{cases}$$

 A factorial is defined in terms of another factorial until the basic case of 0! is reached

```
public static int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n - 1);
}
```

Recursive programming

- A method in Java can call itself; if written that way, it is called a recursive method
- A recursive method solves some problem.
 The code of a recursive method should be written to handle the problem in one of two ways:
 - Base case: a simple case of the problem that can be answered directly; does not use recursion.
 - Recursive case: a more complicated case of the problem, that isn't easy to answer directly, but can be expressed elegantly with recursion; makes a recursive call to help compute the overall answer

Recursive power example

• Write method pow that takes integers x and y as parameters and returns x^y .

```
x^{y} = x * x * x * ... * x (y times, in total)
```

An iterative solution:

```
public static int pow(int x, int y) {
  int product = 1;
  for (int i = 0; i < y; i++)
    product = product * x;
  return product;
}</pre>
```

Recursive power function

Another way to define the power function:

```
pow(x, 0) = 1
pow(x, y) = x * pow(x, y-1),  y > 0

public static int pow(int x, int y) {
  if (y == 0)
    return 1;
  else
    return x * pow(x, y - 1);
```

Why Do Recursive Methods Work?

Activation Records on the Run-time Stack are the key:

- Each time you call a function (any function) you get a new activation record.
- Each activation record contains a copy of all local variables and parameters for that invocation.
- The activation record remains on the stack until the function returns, then it is destroyed.

Try yourself: use your IDE's debugger and put a breakpoint in the recursive algorithm

Look at the call-stack.

How recursion works

- each call sets up a new instance of all the parameters and the local variables
- as always, when the method completes, control returns to the method that invoked it (which might be another invocation of the same method)

```
pow(4, 3) = 4 * pow(4, 2)

= 4 * 4 * pow(4, 1)

= 4 * 4 * 4 * pow(4, 0)

= 4 * 4 * 4 * 1

= 64
```

Activation records

- activation record: memory that Java allocates to store information about each running method
 - return point ("RP"), argument values, local variable values
 - Java stacks up the records as methods are called; a method's activation record exists until it returns
 - drawing the act. records helps us trace the behavior of a recursive method

x = [4]	y = [0]	pow(4,	0)
$\frac{\mid RP = [pow(4)]}{\mid x = [4]}$	y = [1]	pow(4,	1)
$\frac{\mid RP = [pow(4)]}{\mid x = [4]}$	-	_	
RP = [pow(4)]	·, 3)]		
$\mid x = [4]$ $\mid RP = [main]$	y = [3]	pow(4,	3)
		main	

Infinite recursion

- a definition with a missing or badly written base case causes infinite recursion, similar to an infinite loop
 - avoided by making sure that the recursive call gets closer to the solution (moving toward the base case)

```
public static int pow(int x, int y) {
  return x * pow(x, y - 1); // Oops! Forgot base case
}

pow(4, 3) = 4 * pow(4, 2)
  = 4 * 4 * pow(4, 1)
  = 4 * 4 * 4 * pow(4, 0)
  = 4 * 4 * 4 * 4 * pow(4, -1)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * pow(4, -2)
  = 4 * 4 * pow(4, -2)
  = 4 * 4 * 4 * pow(
```

Another Example: Broken Recursive Factorial

```
public static int Brokenfactorial(int n) {
   int x = Brokenfactorial(n-1);
   if (n == 1)
   return 1;
   else
   return n * x;
  What's wrong here? Trace calls "by hand"
   — BrFact(2) -> BrFact(1) -> BrFact(0) -> BrFact(-1) -> BrFact(-2) -> ...

    Problem: we do the recursive call first before checking for the base

      case
   — Never stops! Like an infinite loop!
```

```
Consider the following method:
public static int mystery1(int x, int y)
  if (x < y)
    return x;
  else
    return mystery1(x - y, y);
For each call below, indicate what value is returned:
mystery1(6, 13)
mystery1(14, 10)
mystery1(37, 10)
mystery1(8, 2)
mystery1(50, 7)
```

```
public static void mystery2(int n) {
  if (n <= 1)
    System.out.print(n);
  else {
    mystery2(n/2);
    System.out.print(", " + n);
For each call below, indicate what output is printed:
mystery2(1)
mystery2(2)
mystery2(3)
mystery2(4)
mystery2(16)
mystery2(30)
mystery2(100)
```

```
public static int mystery3(int n) {
  if (n < 0)
    return -mystery3(-n);
  else if (n < 10)
    return n;
  else
    return mystery3(n/10 + n % 10);
For each call below, indicate what value is returned:
mystery3(6)
mystery3(17)
mystery3(259)
mystery3 (977)
mystery3(-479)
```

```
public static void mystery4(String s) {
  if (s.length() > 0) {
    System.out.print(s.charAt(0));
    if (s.length() % 2 == 0)
       mystery4(s.substring(0, s.length() - 1));
    else
       mystery4(s.substring(1, s.length()));
    System.out.print(s.charAt(s.length() - 1));
  }
}
```

For each call below, indicate what output is printed:

Recursive Design

Recursive methods/functions require:

1) One or more (non-recursive) **base cases** that will cause the recursion to end.

```
if (n == 1) return 1;
```

2) One or more <u>recursive cases</u> that operate on smaller problems **and** get you closer to the base case.

```
return n * factorial(n-1);
```

Note: The base case(s) should always be checked before the recursive call.

Rules for Recursive Algorithms

- Base case must have a way to end the recursion
- Recursive call must <u>change</u> at least one of the parameters <u>and</u> make progress towards the base case
 - exponentiation (x,y)
 - base: if y is 0 then return 1
 - recursive: else return (multiply x times exponentiation(x,y-1))

How to Think/Design with Recursion

- Many people have a hard time writing recursive algorithms
- The key: focus **only** at the current "stage" of the recursion
 - Handle the base case, then...
 - Decide what recursive-calls need to be made
 - Assume they work (as if by magic)
 - Determine how to use these calls' results

Example: List Processing

- Is an item in a list? First, get a reference current to the first node
 - (Base case) If *current* is null, return false
 - (Base case #2) If the first item equals the target,
 return true
 - (Recursive case might be on the remainder of the list)
 - current = current.next
 - return result of recursive call on new current

Recursive numeric problems

- Problem: Given a decimal integer n and a base b, print n in base b.
 (Hint: consider the / and % operators to divide n.)
- Problem: Given integers a and b where a >= b, find their greatest common divisor ("GCD"), which is the largest number that is a factor of both a and b. Use Euclid's formula, which states that:

GCD(a, b) = GCD(b, a MOD b)

(Hint: What should the base case be?)

Recursive printing problem

• *Problem*: Write a method starString that takes an integer n as an argument and returns a string of stars (asterisks) 2ⁿ long (i.e., 2 to the nth power). For example:

```
starString(0) should return "*" (because 2^0 == 1)
starString(1) should return "**" (because 2^1 == 2)
starString(2) should return "****" (because 2^2 == 4)
starString(3) should return "******" (because 2^3 == 8)
starString(4) should return "********* (2^4 == 16)
```

Recursive string problems

Problem: Write a recursive method
 isPalindrome that takes a string and returns
 whether the string is the same forwards as backwards.

(Hint: examine the end letters.)

• Problem: Write a recursive method areAnagrams that takes two strings w1 and w2 and returns whether they are anagrams of each other; that is, whether the letters of w1 can be rearranged to form the word w2.

Searching and recursion

- Problem: Given a <u>sorted</u> array a of integers and an integer i, find the index of any occurrence of i if it appears in the array. If not, return -1.
 - We could solve this problem using a standard iterative search; starting at the beginning, and looking at each element until we find i
 - What is the runtime of an iterative search?
- However, in this case, the array is sorted, so does that help us solve this problem more intelligently? Can recursion also help us?

Binary search algorithm

- Algorithm idea: Start in the middle, and only search the portions of the array that might contain the element *i*. Eliminate half of the array from consideration at each step.
 - can be written iteratively, but is harder to get right
- called binary search because it chops the area to examine in half each time
 - implemented in Java as method
 Arrays.binarySearch in java.util package

Binary search example

Binary search example, cont'd

Binary search example, cont'd

Binary search pseudocode

```
binary search array a for value i:
  if all elements have been searched,
     result is -1.
  examine middle element a[mid].
  if a[mid] equals i,
     result is mid.
  if a[mid] is greater than i,
    binary search left half of a for i.
  if a[mid] is less than i,
    binary search right half of a for i.
```

Runtime of binary search

- How do we analyze the runtime of binary search?
- binary search either exits immediately, when input size <= 1 or value found (base case), or executes itself on 1/2 as large an input (rec. case)

```
T(1) = c
T(2) = T(1) + c
T(4) = T(2) + c
T(8) = T(4) + c
...
T(n) = T(n/2) + c
```

How many times does this division in half take place?

Divide-and-conquer algorithms

- divide-and-conquer algorithm: a means for solving a problem that first separates the main problem into 2 or more smaller problems, then solves each of the smaller problems, then uses those sub-solutions to solve the original problem
 - 1: "divide" the problem up into pieces
 - 2: "conquer" each smaller piece
 - 3: (if necessary) combine the pieces at the end to produce the overall solution
- binary search is one such algorithm

Recurrences, in brief

- How can we prove the runtime of binary search?
- We can say that the runtime for a given input size n is T(n).
- At each step of the binary search, we do a constant number *c* of operations, and then we run the same algorithm on 1/2 the original amount of input. Therefore:
 - T(n) = T(n/2) + c- T(1) = c
- Since T is used to define itself, this is called a recurrence relation.

Solving recurrences

• Theorem 7.5 (modified):

A recurrence written in the form

$$T(n) = a * T(n / b) + f(n)$$

(where f(n) is a function that is $O(n^k)$ for some power k) has a solution such that

$$O(n^{\log_b a}), \quad a > b^k$$

$$T(n) = O(n^k \log n), a = b^k$$

• this form of recurrence is very common for divide-and-conquer algorithms $O(n^k)$, $a < b^k$

Runtime of binary search

• Binary search is of the correct format: T(n) = a * T(n / b) + f(n)

$$-T(n) = T(n/2) + c$$

$$-T(1) = c$$

$$-f(n) = c = O(1) = O(n^{0}) ... therefore $k = 0$

$$-a = 1, b = 2$$$$

- 1 = 2°, therefore: T(n) = O(n° log n) = O(log n)
- (recurrences not needed for our exams)

Recursive backtracking

- backtracking: an elegant technique of searching for a solution to a problem by exploring each possible solution to completion, then "backing out" if it is unsatisfactory
 - often implemented using recursion
 - can yield straightforward solutions for otherwise extremely difficult problems
 - a "depth-first" algorithmic technique (tries each possible solution as deeply as possible before giving up)

Backtracking: escape a maze

• Consider the problem of escaping a maze, from start at 's' to exiting the edge of the board.

XXXXXXXXXXXX					$\langle X \rangle$	XX		XXX	XXXXX	XX	
X		X	>	XX		X		X	X Z	XX	X
	X	X	X	$X\Sigma$	XX	X		X	X . X	XXX	X
X	X	X	X	X	S	ΣX		$X \cdot X$	X . X	Χ	. X
X	X	X			X	X	>	X.X	Χ	X	X
X	X	X	X	X	X	X		$X \cdot X$	X . X	XX	X
X			X	X	X	X		Χ	X	XX	X
X	$\langle X \rangle$	X		XXX	XXXXX	XXXXX	XX				

Backtracking: escape a maze

- Maze escaping algorithm, cases of interest:
 - if I am on an open square on the edge of the board, ...
 - if I am on a square I have visited before, …
 - if I am on an unvisited square and not on the edge, ...
 (look for a way to escape)
- algorithm works because we exhaust one search for a path out before trying another, and we never try a path more than once

More recursion

 Add the following method to our MyLinkedList class:

```
public void reverse()
```

It should reverse the order of the elements. Use recursion to solve this problem. Use only a constant amount of external storage.

– (Is it easier without the recursion?)

Recursion vs. iteration

- every recursive solution has a corresponding iterative solution
 - For example, N! can be calculated with a loop
- recursion has the overhead of multiple method invocations
- however, for some problems recursive solutions are often more simple and elegant than iterative solutions
- you must be able to determine when recursion is appropriate

Recursion can perform badly

• The *Fibonacci numbers* are a sequence of numbers F₀, F₁, ... F_n such that:

$$F_0 = F_1 = 1$$

 $F_i = F_{i-1} + F_{i-2}$ for any $i > 1$

- Problem: Write a method fib that, when given an integer i, computes the i th Fibonacci number.
- Why might a recursive solution to this problem be a bad idea? (Let's write it...)
 - Can we fix it? If so, how?

Revisiting Fibonacci...

- recursive Fibonacci was expensive because it made many, many recursive calls
 - fibonacci(n) recomputed fibonacci(n-1... 1) many times in finding its answer!
 - this is a common case of "overlapping subproblems" or "divide poorly and reconquer", where the subtasks handled by the recursion are redundant with each other and get recomputed
 - is there a way that we could optimize this runtime to avoid these unneeded calls?

Dynamic programming

- dynamic programming: saving results of subproblems so that they do not need to be recomputed, and can be used in solving other subproblems
 - example: saving results from sub-calls in a list or table
 - can dramatically speed up the number of calls for a recursive function with overlapping subproblems
 - what is the change in Big-Oh for fibonacciR?
 (non-trivial to calculate exactly)

Dynamic fibonacci pseudocode

```
table[] {table[0] = 1, table[2] = 1}
max = 2

fibonacciR(n):
    n is in table, return table[n]
    else
      compute fibonacciR(n-1) and fibonacciR(n-2)
    add them to get table[n] = fibonacciR(n)
    set max = n
```

• Let's write it...