Fall 2020 Middenn Solutions.

Implicit diffuentiation:

$$\frac{d}{dx} \operatorname{om}(\pi y^{x}) = \frac{d}{dx}(xy)$$

$$\Rightarrow (\cos(\pi y^2)) \cdot \pi^2 y \cdot y' = y + xy'$$

$$\Rightarrow ((\cos(\pi y^2)) \cdot 2\pi y - x) y' = y$$

$$\Rightarrow y' = \frac{y}{(\cos(\pi y^2)) \cdot 2\pi y - x}$$

So, the tangent line is given by

$$T(x)-1=m(x-0)$$

where m = y'(0). We have

$$y' = \frac{1}{(05/\pi) \cdot 2\pi - 0} = \frac{1}{2\pi}$$

$$T(x) = -\frac{1}{2\pi} \times +1 = -\frac{x}{2\pi} +1$$

r: radius (fet of time)

h: height (fet. of time).

the tank

V: volume of water in We have V= 哥於

change in h!

dh: rate of change of the height. cly: rate of change of the volume LD $\frac{dV}{dt} = -0.5 \text{ m}^3/\text{min}$.

司 张 = 芸·龙·姓.

We want
$$\frac{dh}{dt}$$
 at $h=6/2=3.50$,

if
$$\frac{dh}{dt}$$
 at $h=6/2=3$. So

$$-0.5 = \frac{\pi}{9} \cdot 3^{3} \cdot \frac{dh}{dt} = \pi \cdot \frac{dh}{dt}$$

$$\Rightarrow \frac{dh}{dt} = -0.5 \quad m/min$$

$$\Rightarrow \left| \frac{dh}{dt} = \frac{-0.5}{\pi} m/min \right|$$

$$\frac{\#4}{(a)} (1) \int '(x) = \frac{1}{3} x^{-2/3} (x-4) + x^{1/3}$$

$$= \frac{x-4}{3x^{-2/3}} + x^{1/3}.$$

$$\Rightarrow \int_{0}^{1}(x) = \frac{x-4+3x}{3x^{2/3}} = \frac{4(x-1)}{3x^{2/3}}.$$

(2) Critical pto.
$$f'(x) = 0 \iff x = 1$$

$$f'(x) \neq f(x) = 0.$$
Also, $x = -1$ or $x = 4$ are the end-points.

3 Max 4 min.

$$f(-1) = 5$$
, $f(0) = 0$, $f(0) = -3$ 4 $f(4) = 0$.

$$f(-1) = 5$$
, $f(0) = 0$, $f(0) = -3$ of $f(0) = -3$

(b) (1)
$$g''(x) = 0 \iff x = 0 \text{ or } x = 4$$
.
 $x = 0 \implies x = 0 \implies x = 0 \implies x = 4$.
 $x = 0 \implies x = 0 \implies x = 0 \implies x = 4$.

$$50$$
, g concave-up on $(-0.0)d$ (4.00)
 g concave-down on (0.4)

$$\frac{\#5}{(a)}$$
 (a) Approximate by the tangent line: $g(b) \approx L(b)$ where

$$L(x) = m(x-5) + g(5).$$

$$m = g'(5) = 5$$
. So,
 $L(x) = 5(x-5) + 74$

(b) HA at
$$\infty$$
 $\lim_{x\to\infty} \frac{4x^2-3}{2-x-x^2} = \lim_{x\to\infty} \frac{4-3/x^2}{2/x^2-1/x-1}$
 $= -4$.

AA at $-\infty$
 $\lim_{x\to-\infty} \frac{2/x^2-3}{2-x-x^2} = -4$.

So, $y = -4$ is a HA at ∞ & $-\infty$.

A: onea of the field se: width of the foeld. y: height of the field. $A = \propto g$. We know that 60 = 2x+4 => y= 60-2x. then, A(x) = x(60-20x) = 60x-2x2. thus, A/1x)= 60-4x =0

Thus, $A = 15.36 = 450 \text{ m}^2$

#8 (a) xz is less than the zero because the tangent line less above the graph of the fet.

- (b) xz is greater than the zno because the tangent line lie below the graph.
- (c) With $x_{i=0}$ because the slope of the tangent line at that point is steeper that the slope of the tangent line at the point $x_{i=1}$.