北京大学信息学院期末试题

2014 -2015 学年第一学期

考试科目:	高等数学B(上)	考试时间:	2015 年 01	月 16 日

姓 名:_____ 学 号: _____

本试题共7 道大题,满分100分

- 一 (每空 4 分, 共 20 分)
 - (1) 设 $y = \arctan x x$. 该函数有拐点 ______, $x \to -\infty$ 的渐近线为 _______.
 - (2) 设 $f(x,y) = \arcsin(x\sqrt{y})$, 则该函数在 $(\frac{1}{2},1)$ 处的全微分为 _____,在 $(\frac{1}{2},1)$ 处沿方向 (1,1) 的方向导数为 _____。
 - (3) 设 f(x) 在 \mathbb{R} 上有任意阶导数。令 $a_n = f^{(n)}(0)(n$ 为正整数), $g(x) = f(x^2)$, 则 $g^{(2n)}(0) = \underline{\hspace{1cm}}$
- 二 (共 18 分)计算

(1)
$$\int (\arcsin x)^2 dx$$
. (2) $\int_0^{\frac{1}{2}} \sqrt{\frac{1-x}{1+x}} dx$. (3) $\lim_{x \to 0} \left(\frac{1}{\int_0^x e^{t^2} dt} - \frac{1}{x} \right)$.

- 三 (共 12 分)见右图. 曲边形 OPA (阴影部分)由 $y = \frac{1}{2}x^2$, $y = \sqrt{x \frac{3}{4}}$ 和 x 轴围成.
 - (1) 求图中曲边形 OPA 的面积. (2) 求曲边形 OPA 绕 x 轴旋转所得旋转体的体积.
- 四 (共 10 分) $D = \{(x,y): x^2 + 4y^2 \le 4, y \ge \frac{1}{2}x 1\}$. 求 $f(x,y) = x^2 + 4y^2 + xy$ 在 D 上的最大值和最小值.
- 五 (共 15 分)两条直线 $L_1: \frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{1}, L_2: \frac{x}{1} = \frac{y-1}{1} = \frac{z-1}{-1}.$
 - (1) 证明两直线是异面直线。
 - (2) 求 L_1 上的点和 L_2 上的点之间的最短距离.
 - (3) 求过 L_2 且与 L_1 平行的平面方程.

- (1)证明该函数在原点处的偏导数存在,并求出 $f_x(x,y), f_y(x,y)$.
- (2)讨论 $f_x(x,y), f_y(x,y)$ 在原点处的连续性.
- (3)讨论 f(x,y) 在原点处的可微性.
- 七 (共 10 分)f(x) 在 [a,b] 上连续,在 (a,b) 上可导,且存在 $c \in (a,b)$,使得 $\int_a^c f(x)dx = \int_c^b f(x)dx = 0$. 证明
 - (1)存在 $\xi_1 \in (a,c)$, $\xi_2 \in (c,b)$, 使得 $f(\xi_1) = \int_a^{\xi_1} f(x) dx$, $f(\xi_2) = \int_a^{\xi_2} f(x) dx$.
 - (2)存在 $\eta \in (a,b)$, 使得 $f'(\eta) = \int_a^{\eta} f(x) dx$.