

Distributed Intelligent Systems

Course Project:

Multi-robot navigation in cluttered and dynamic environments

1.04.2021

Goal

- To implement multi-robot navigation strategies
 - Flocking
 - Formation
- For a multi-robot system
 - Group of e-puck robots
- In simulation
 - Webots

Environments

Cluttered and dynamic:

- Simplify: two individual scenarios:
 - Static obstacles
 - Different groups crossing each other

Scenario 1: Obstacles

- Maze with obstacles
- The group should be able to navigate around them and regroup

Scenario 2: group collision

- Arena
 - 2 groups
 - Each group starts at opposite ends

Project Phases

1. Localization techniques

- Odometry
- GNSS
- Combo (Kalman filter)

2. Spatial coordination

- Formation
- Flocking
- Study influence of parameters on the performance / Scalability of the group.

3. Parameter optimization

– PSO (any variant)

Simulation

- Part 1- Localization
- Open the world localization.wbt. The controller localization_controller contains two pre-programmed trajectories.
- The provided code only makes the robot move along one of the two trajectories.
- You should implement localization using
 - Odometry based on wheel encoders
 - Odometry based on accelerometer measurements
 - GPS only.
 - Kalman filter with GPS and odometry
- Set GPS update interval is set to 1s (Don't change it). Make sure your code accounts for this update rate.

Simulation

Initial environment for the two scenarios

Scenario 1 Scenario 2

Ground rules

- No modifications in the simulation world
 - Check with a TA if needed
 - Any modification should be mentioned (e.g. number of robots)
- Use methods learned in the course
 - ex. Kalman filter, PSO, etc.
- Only distributed solutions
 - No communication from the supervisor
- Calculate metrics using the supervisor
 - Implement metrics in a supervisor
 - Statistics: multiple runs, different environments, etc.

Notes

New environments

 Feel free to make new worlds and test your methods, but only after it is done in the provided ones.

Different parameters

 Evaluate your method with different parameters will be appreciated (e.g. number of robots, localization technique)

Code Evaluation

- Performance evaluation
 - A test environment will be provided
 - The metrics will be calculated in a supervisor

Material to hand in

- Report
 - End of the semester
 - Details will be communicated later
- Code and Webots files
 - They will be checked by a TA for grading
- Presentation
 - Exam period
 - Details will be communicated later

Evaluation

- Initiative, commitment, autonomy, rigorousness (20%)
- Quality of the proposed solution (20%)
- Quantitative performance on distributed metrics, assessed after submission (20%)
- Quality of the report (30%)
- Teamwork (10%)

Assistance

- Last hour of each lab session
 - Please keep lab and project related questions in their respective times

Discord

- Voice channels are to communicate with a TA during the project assistance hour.
- Text channel is for out of hour questions. Feel free to help each other out.
- The TAs will only answer to the text channel questions according to their availability.
- No personal assistance is provided outside the lab/project.

QUESTIONS?