Quiz 2 Solutions

 $x[n] = \{-1, 0, 1, 2\}$ and $y[n] = \{-2, 2, 2, -2\}$ are two discrete time signals. Find their convolution $c[n] = x[n] \times y[n]$.

a) Draw the convolved signal c[n].

b) If c[n] is applied to a first order moving average filter (FIR), find and draw its output signal, d[n].

1			۹	١
ı	L			1
ı	ľ	٦	۱	
	•	•		d

n	chj	A	В	C	વિદાગુ
-3	2	0	0	1	1-2
-2	-2	2	100	-1	0
-1	-4.	2-5	-1	-2	-3
0	0	7-4	-2	0	-2
-1	6	00	0	3	3
2	2	96	3	1	4
3	- 4	>2	1	-2	-1

Please cheek the provided diagram to see the locations of A, B, and C.

$$A = c[n]. z^{-1}$$

$$B = \frac{A}{2}$$

$$C = \frac{c[n]}{2}$$