Linear Algebra

Introduction to Vectors (History, Definition, Types, Representation, Norm)

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

History

Simon Stevin (네델란드, 1548~1620)

- 16세기 열강의 등장
- 식민지 쟁탈 경쟁 🔿 대항해 시대
- 출발/도착지, 배의 위치, 속도, 조류...

힘의 평행사변형 법칙

Isaac Newton (영국, 1643~1727)

- 수학자, 물리학자, 천문학자
- 만유인력의 법칙, 3가지 운동 법칙
- 근대 수학 집대성 (저서: 프린키피아)

벡터에 대한 명확한 정립

Friedrich Gauss(독일, 1777~1855)

- 수많은 업적(물리, 천문, 기하학,···)
- 복소평면: 복소수 ©를 실수평면 ℝ²에 표현
- 벡터를 이용한 복소수의 대수적 연산

Perspectives

Physics

화살표로 표시 운동, 자기장, 전기장, …

좌표공간에서 자유롭게

이동하는 것도 가능

Mathematics

화살표, 리스트(튜플) 어떤 형태든 상호 사용할 수 있게 (더하기, 곱하기 등)

$$\begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$$

$$2\begin{pmatrix} 1\\2\\-4 \end{pmatrix} = \begin{pmatrix} 2\\4\\-8 \end{pmatrix}$$

Computer Science

리스트, 튜플로 표시 Features, Dataset, ...

$$\begin{pmatrix} 2021 \\ 20 \\ 20961 \end{pmatrix} \begin{pmatrix} 2018 \\ 18 \\ 20813 \end{pmatrix} .$$

딥러닝에서 벡터가 어디에 있어요???

	Δ	В	C	D	F	F	G	н			К
1	Order#	First Name	Last Name	Email	Country	IP address	Total	Item #	Payment	Shipping	Status
2	1	Dalton	Kramer	dalton@email.com	France	211.91.226.108	99	868	Card	Regular	In progress
3	2	Gita	Tetterton	gita@email.com	USA	222.153.179.100	99	537	Card	Regular	Delivered
4	3	Weston	Jurgens	weston@email.com	Spain	203.123.236.1	99	616	Paypal	Regular	Delivered
5	4	Brad	Chupp	brad@email.com	France	202.183.111.122	49	673	Card	Fast	Delivered
6	5	Marybeth	Baumann	marybeth@email.com	Italy	214.132.168.129	199	829	Bank	Regular	In progress
7	6	Allyson	Feder	allyson@email.com	Italy	182.108.190.85	29	40	Card	Regular	In progress
8	7	Lucile	Folks	lucile@email.com	Greece	18.64.161.62	199	548	Paypal	Fast	In progress
9	8	Mickey	Rusk	mickey@email.com	Canada	40.18.115.207	49	53	Paypal	Fast	Deliv
10	9	Clarine	Esslinger	clarine@email.com	Greece	185.134.23.86	49	817	Bank	Regular	Deliv
11	10	Kimberly	Penny	kimberly@email.com	France	34.72.165.11	99	998	Bank	Regular	In proces
12	11	Colleen	Kellough	colleen@email.com	USA	73.51.152.185	49	14	Paypal	Regular	In pro _b .
13	12	Nettie	Edmonds	nettie@email.com	Spain	94.133.138.234	99	670	Card	Fast	Deliv
14	13	Duncan	Rickenbacker	duncan@email.com	France	211.91.226.108	199	869	Card	Regular	Delivered
15	14	Marchelle	Diedrich	marchelle@email.com	Italy	222.153.179.100	29	53€	Paypal	Regular	Delivered
16	15	Mariano	Murrell	mariano@email.com	Italy	203.123.236.1	99	477	Card	Fast	Delivered

$$h^{1} = \begin{pmatrix} w_{11} & w_{21} & \cdots & w_{n1} \\ w_{12} & w_{22} & \cdots & w_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1m} & w_{2m} & \cdots & w_{nm} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$h^1 = W_1^T X + b_1$$

여러분이 갖고 있는 딥러닝 네트워크

우리가 사용할 벡터

물리적 벡터에서 시점, 종점은 의미 없음 크기, 방향이 같으면 모두 같은 벡터

딥러닝에서...

우리가 사용할 벡터는 오직 원점(origin)에서 출발하는 벡터만 사용합니다! 출발점이 원점이 아닌 유일한 경우 → 벡터 덧셈할 때

데이터의 의미를 곰곰히 생각해 보세요 ^^.

사실 Linear Algebra 에서는 거의 모든 경우 벡터는 원점에서 출발합니다.

그림으로 보는 벡터

벡터의 표현

- 좌표계 (단위 포함)
- 원점

3차원 공간 - 3차원 벡터

3Blue1Brown

강력히! 강력히! 추천합니다 ^^. 동영상 출처: https://youtu.be/fNk_zzaMoSs?list=PLZHQOb OWTQDPD3MizzM2xVFitgF8hE_ab&t=245

벡터의 표현

Compter Science에서는 그냥 가로로 쓰기도 합니다. ('행벡터'라로 부름) 어떤 경우 화살표도 안쓰고, 굵은 표시도 안하는 경우도 있습니다 ^^.

저도 그냥 소문자로 표현하는 경우가 많아요 ^^. 알아서 들으세요 ~

Basis Vectors - 맛보기

Basis Vector: î, ĵ

만약 기저 벡터를 다르게 선택하면 어떻게 될까???

벡터의 종류

Zero vector (영벡터): 벡터의 모든 성분이 0인 벡터, ₫ 또는 <u>0</u> 으로 표현

Unit vector (단위 벡터): Norm이 1인 벡터

어떤 벡터를 단위 벡터로 만들기 (정규화, Normalizaiton)

Normalization of
$$v \mid v \mid v \mid$$

Standard unit vector (표준 단위 벡터): 하나의 원소의 크기가 1이고 나머지는 0인 벡터

$$e_1 = (1, 0, 0, \cdots, 0)^T$$

$$e_2 = (0, 1, 0, \cdots, 0)^T$$

$$e_n = (0, 0, 0, \dots, 1)^T$$

임의의 벡터 v는 표준단위벡터로 표현할 수 있다!

$$v = (v_1, v_2, \dots, v_n)^T$$

= $(v_1e_1 + v_2e_2 + \dots + v_ne_n)^T$

벡터의 크기? Norm?

Definition

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin. (source: online wiki) 한글로 '노름' 으로 읽음 (정보통신기술용어해설집)

■ 벡터의 Norm

- 정의
$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \qquad where \ v = (v_1, v_2, \dots, v_n)^T$$

- Toy example

$$v = \binom{2}{3}$$

$$||v|| = \sqrt{2^2 + 3^2} = \sqrt{13}$$

2차원 실수 공간에서는 원점으로부터의 거리와 동일

하지만 n차원일 경우

거리 개념이 모호해진다...

Norm 이라는 용어를 사용하자!

수고하셨습니다 ..^^..