Задача 1

Обязательно ли старейший математик среди шахматистов и старейший шахматист среди математиков один и тот же человек?

Задача 2

Обязательно ли лучший математик среди шахматистов и лучший шахматист среди математиков один и тот же человек?

Определение 1

Множество - неупорядоченная совокупность элементов.

Пример 1.
$$\{1,2,3\} = \{3,2,1\} = \{1,1,3,2,3,3\}$$

Пример 2. $\{\} = \emptyset$

Пример 3. $\{a, \{b, c\}, \{\{d\}, e\}, \emptyset\}$

Определение 2

 $a \in A$ - означает, что во множестве A есть элемент a

Определение 3

 $B \subseteq A$ - означает, что если $b \in B$, то $b \in A$.

Пример 4. $1 \in \{1, 2, 3\};$ $\{1, 2\} \subseteq \{1, 2, 3\}.$

Пример 5. $1 \notin \emptyset$.

Пример 6. $\{b,c\} \in \{a,\{b,c\},\{\{d\},e\},\varnothing\}.$

Задача 3

Какие из выражений верны для произвольного x?

 $\bullet \ x \in \{x\}$

- $\bullet \{x, x\} \subseteq \{x\}$
- $\bullet \varnothing \in \{x\}$

• $\{x\} \subseteq \{x\}$

- $\{x\} \in \{\{x\}\}$
- $\bullet \varnothing \subseteq \{x\}$

 $\bullet \ \{x\} \in \{x\}$

 $\bullet \varnothing \in \varnothing$

 $\bullet \varnothing \subseteq \varnothing$

Предикат от x — это такая функция $\varphi(x)$, которая принимает два возможных значения: либо истина, либо ложь (0 или 1)

 $\Pi pumep\ 7.\ \varphi(x)=(x=239)$ — принимает истинное значение только, если x=239

Определение 5

Чтобы работать с предикатами, нужно познакомиться с логическими связками:

- ullet $\neg-ompu$ иание "не ...",
- $\wedge \kappa$ онъюнкция "... и ...",
- ullet $\vee \partial u$ зъюнкцuя "... или ...",
- ullet ightarrow uмnлuкaиua "если ..., то ...",
- ullet \longleftrightarrow эквивалентность "... тогда и только тогда, когда ...";

и кванторами:

- $\bullet \ \forall x \kappa$ вантор в $ceo \delta \omega$ ности "для любого х верно ..."
- ullet $\exists x \kappa bahmop\ cywecmbobahus$ "существует х, такой что верно ..."

Пример 8. $\varphi(x) = (\forall z \exists y : z + y = x)$ — "для любого z найдется y, такие что они в сумме дают x". Это утверждение всегда верно, если мы рассматриваем предикат на множестве вещественных чисел.

 $\Pi pumep\ 9.\ {\rm A}\ {\rm Bot\ 3anucaho}\ {\rm ytbep}$ ждение "множества равны тогда и только тогда, когда у них совпадает набор элементов" $\forall X \forall Y (\forall u(u \in X \leftrightarrow u \in Y) \to X = Y)$

Определение 6

$$A=\underbrace{\{}_{\text{множество}}\underbrace{x}\underbrace{\downarrow}_{\text{всех иксов}}\underbrace{\varphi(x)}_{\text{таких, что выполнено условие }}\},$$
 где $\varphi(x)$ предикат от $x.$

Парадокс 1 (Рассел)

Рассмотрим множество $A = \{x \mid x \notin x\}$. То есть множество всех множеств, которые не содержат себя в качестве своего собственного элемента. Что тогда можно сказать про утверждение $A \in A$?

Пусть даны множества A и B. Тогда их **пересечением** называется множество:

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$

Пусть дано семейство множеств $\{M_{\alpha}\}_{{\alpha}\in A}$. Тогда его пересечением называется **мно- жество**, состоящее из элементов, которые входят во все множества семейства:

$$\bigcap_{\alpha \in A} M_{\alpha} = \{ x \mid \forall \alpha \in A, \ x \in M_{\alpha} \}.$$

Пример 10. $\{1,2,3\} \cap \{3,4,5\} = \{3\}$

Пример 11. $x \cap \emptyset = \emptyset$

Пример 12. \bigcap {{1,2,3,4,5},{2,3,4,9},{0,2,3}} = {2,3}

Определение 8

Пусть даны два множества A и B. Тогда их **объединением** называется множество

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

Пусть дано семейство множеств $\{M_{\alpha}\}_{{\alpha}\in A}$. Тогда его объединением называется множество, состоящее из всех элементов всех множеств семейства:

$$\bigcup_{\alpha \in A} M_{\alpha} = \{ x \mid \exists \alpha \in A, \ x \in M_{\alpha} \}.$$

Пример 13. $\{1,2,3\} \cup \{3,4,5\} = \{1,2,3,4,5\}$

Пример 14. $x \cup \emptyset = x$

Пример 15. $\bigcup \{\{1,2,3,4,5\},\{2,3,4,9\},\{0,2,3\}\} = \{0,1,2,3,4,5,9\}$

Определение 9

Пусть даны два множества A и B. Тогда их ${\it pashocmbo}$ называется множество

$$A \setminus B = \{ x \in A \mid x \notin B \}.$$

Пример 16. $\{1,2,3\} \setminus \{3,4,5\} = \{1,2\}$

Пример 17. $\{3,4,5\} \setminus \{1,2,3\} = \{4,5\}$

Пусть даны два множества A и B. Тогда их ${\it cummempuчeckoй pashocmью}$ называется множество

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

Пример 18. $\{1,2,3\} \triangle \{3,4,5\} = \{1,2,4,5\}$

Определение 11

Равенство называется *тождественно верным*, или *тождеством*, если оно истинно для любых значений входящих в него переменных.

Задача 4

Какие из равенств тождественно верны для множеств X,Y,Z? Приведите контрпримеры к неверным тождествам.

$$\bullet \ (X \cup Y) \cup Z = X \cup (Y \cup Z)$$

•
$$X \cup Y = Y \cup X$$

$$\bullet \ X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

•
$$X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$$

•
$$(X \cup Y) \setminus Z = (X \setminus Z) \cup Y$$

$$\bullet \ X \setminus (X \setminus Y) = X \cap Y$$

$$\bullet (X \cap Y) \cap Z = X \cap (Y \cap Z)$$

•
$$X \cap Y = Y \cap X$$

$$\bullet \ X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

•
$$X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z)$$

$$\bullet \ (X \cap Y) \setminus Z = (X \setminus Z) \cap Y$$

$$\bullet \ (X \triangle Y) \triangle Z = X \triangle (Y \triangle Z)$$

Задача 5

Докажите, что если какое-то равенство, содержащее переменные для множеств и операции \cap , \cup , \setminus , не является тождеством, то можно найти контрпример к нему, в котором множества пусты или состоят из одного элемента.

Задача 6*

Сколько различных выражений для множеств можно составить из переменных A и B с помощью операций пересечения, объединения и разности? Из n переменных? (Два выражения считаются одинаковыми, если они тождественно равны.)

Определим ynopядоченную пару X_1 и X_2 как $(X_1,X_2)\coloneqq\{\{X_1\},\{X_1,X_2\}\}$

Пример 19. $(1,1) = \{\{1\},\{1,1\}\} = \{\{1\}\}.$

Определение 13

Пусть даны два множества X и Y. Тогда их ∂ екартовым произведением называется множество упорядоченных пар

$$X \times Y := \{(x, y) \mid x \in X \land y \in Y\}$$

Будем обозначать $A^n := \underbrace{A \times A \times \ldots \times A}_{n \text{ раз}}.$

Пример 20.
$$\{a,b\} \times \{0,1,2\} = \{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)\}.$$

Пример 21. $\{a,b\}^2 = \{(a,a),(a,b),(b,a),(b,b)\}.$

Пример 22. $\{1\}^6 = \{(1,1,1,1,1,1)\}.$

Определение 14

Под **бинарными отношениями** между X и Y мы будем понимать произвольные подможества $X \times Y$. В частности, при X = Y мы будем называть их еще бинарными отношениями на X. Для удобства будем писать xRy вместо $(x,y) \in R$.

Пример 23. **Тождественное** отношение на X

$$id_x := \{(x, x) \mid x \in X\} = \{(x, y) \in X^2 \mid x = y\}.$$

Определение 15

Бинарное отношение $R \subseteq X \times X$ на X будем называть:

- *рефлексивным*, если $\forall x (x \in X \to xRx)$;
- *иррефлексивным*, если $\neg \exists x (x \in X \land xRx)$;
- *транзитивным*, если $\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz);$
- *симметричным*, если $\forall x \forall y (xRy \rightarrow yRx)$;
- антисимметричным, если $\forall x \forall y ((xRy \land yRx) \rightarrow x = y).$

- Пример 24. Отношение "=" на вещественных числах является рефлексивным.
- Пример 25. Отношение ">" на вещественных числах является иррефлексивным.
- *Пример* 26. Отношение параллельности на множестве прямых на плоскости является *транзитивным* и симметричным.
- Пример 27. Отношение "≤" на вещественных числах является антисимметричным.

Будем говорить, что отношение R является:

- npednopяdком на X, если R pedpлeксивно и mpaнзитивно;
- строгим частичным порядком на X, если R иррефлексивно и транзитивно;
- частичным порядком на X, если R рефлексивно, антисимметрично и транзитивно;
- ullet эквивалентностью на X, если R рефлексивно, симметрично и транзитивно.
- Пример 28. Отношение делимости на натуральных числах является предпорядком.
- Пример 29. Отношение ">" (строго больше) на вещественных числах является строгим частичным порядком.
- Пример 30. Отношение "≥" (нестрого больше) на вещественных числах является va-cmuvным nops ∂ kom.
- Пример 31. Отношение параллельности на множестве прямых на плоскости является эквивалентностью.

Определение 17

Пусть \approx — эквивалентность на X. Для каждого $x \in X$ под **классом эквивалентности** x по \approx понимается множество $[x]_{\approx} \coloneqq \{u \in X \mid x \approx u\}$

Определение 18

Будем называть Y (взаимно, или попарно) **дизъюнктным**, если оно удовлетворяет условию $\forall u \forall v ((u \in Y \land v \in Y \land u \neq v) \rightarrow u \cap v = \varnothing)$

Будем говорить, что Y является $\textit{pas6uehuem}\ X$, если Y $\textit{дизъюнктно}, \varnothing \notin Y$ и $\bigcup Y = X$.

Задача 7

Показать:

- (a) Если Y разбиение X, то $\mathscr{E}_Y \coloneqq \{(u,v) \in X^2 \mid \exists y (y \in Y \land u \in y \land v \in y)\}$ эквивалентность на X, причём $X_{/\mathscr{E}_Y}$ равно Y.
- (b) Если pprox эквивалентность на X, то $X_{/pprox}$ разбиение X, причём $\mathscr{E}_{X_{/pprox}}$ равно pprox.

Задача 8

Пусть R-npednopяdoк на X. Тогда

- (a) $\mathscr{S}_R := \{(u,v) \in X^2 \mid uRv \wedge vRu\}$ эквивалентность на X;
- (b) $R^{\#}\coloneqq\{([u]_{\mathscr{S}_R},[v]_{\mathscr{S}_R})\mid u\in X\wedge v\in X\wedge uRv\}$ частичный порядок на $X_{\mathscr{S}_R}$.

Задача 9

Доказать:

- (а) Если R- строгий частичный порядок на X , то $R\cup id_X-$ частичный порядок на X ;
- (b) Если R частичный порядок на X, то $R \setminus id_X$ строгий частичный порядок на X.

Определение 19

Множество $dom(R) \coloneqq \{u \in X \mid \exists v : uRv\}$, называют *областью определения* R.

Определение 20

Множество range(R) := { $v \in Y \mid \exists u : uRv$ }, называют и **областью значений** R.

Определение 21

Для каждого $U\subseteq X$ множество

$$R[U] \coloneqq \operatorname{range}(R \cap U \times Y) = \{v \in Y \mid \exists u(u \in U \land uRv)\}\$$

называется *образом* U относительно R.

Пример 32. Рассмотрим строгий частичный порядок "<" на $\{0,1,2,3,4,5,6,7,8,9\}$. Тогда $<[\{4,5,8\}]=\{5,6,7,8,9\}$.

Обратное отношение к R определяется как $R^{-1} := \{(y,x) \mid (x,y) \in R\}$

Пример 33. Рассмотрим частичный порядок ">>" на $\{0,1,2,3,4,5,6,7,8,9\}$. Тогда >⁻¹ равно ≤ .

Определение 23

Для каждого $V \subseteq Y$ образ V под действием R^{-1} называется **прообразом** V относительно R.

Пример 34. range(R) = dom(R⁻¹) = R[X].

Пример 35. range $(R^{-1}) = \text{dom}(R) = R^{-1}[Y]$.

Определение 24

Бинарные отношения можно естественным образом комбинировать: для любых $R\subseteq X\times Y$ и $Q\subseteq Y\times Z$ множество

$$R \circ Q := \{(x, z) \in X \times Z \mid \exists y (xRy \land yQz)\}$$

называется **композицией** R и Q.

Определение 25

Говорят, что $R \subseteq X \times Y$ функционально, если

$$\forall x \forall y_1 \forall y_2 ((xRy_1 \land xRy_2) \rightarrow y_1 = y_2).$$

Далее, R называют **функцией** из X в Y , и пишут $R: X \to Y$, если $\mathrm{dom}(R) = X$ и R функционально.

Определение 26

Пусть $f: X \to Y$. Значит, для любого $x \in X$ имеется единственное $y \in Y$ такое, что $(x,y) \in f$, которое называется **значением** f в x и обозначается через f(x).

Пример 36. range $(f) = \{f(x) \mid x \in X\}.$

Для каждого $U \subseteq X$ *ограничение* (или *сужение*) f на U определяется как

$$f|_U := f \cap U \times Y$$
.

 $f|_{U}$ будет функцией из U в Y. Вообще, если $f: X \to Y$ и $g: U \to Y$ таковы, что $U \subseteq X$ и $f|_{U} = g$, то g называют **ограничением** f, а f **расширением** g.

Определение 28

Обозначим $Y^X \coloneqq \{f \mid f: X \to Y\}$. Под двухместными, трехместными и так далее функциями из X в Y понимают элементы Y^{X^2} , Y^{X^3} и так далее.

Определение 29

Функцию f из X в Y называют:

сюрьективной, если $\operatorname{range}(f) = Y$;

инъективной, если f^{-1} функционально.

биективной, если f сюрьективна и интективна.

Сюрьективные функции также называют **сюрьекциями**, интективные **интекциями**, а биективные **биекциями**.

Определение 30

Введём особые символы для часто использующихся множеств.

 $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ - множество *натуральных* чисел.

 $\mathbb{N}_0 = \{0, 1, 2, 3, 4, \dots\}$ - множество натуральных чисел и ноль.

 $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ - множество *целых* чисел.

 \mathbb{Q} - множество payuoнaльных чисел.

 $\mathbb R$ - множество $\mathit{вещественныx}$ чисел.

 $\mathbb{R}\backslash\mathbb{Q}$ - множество uppayuonaльных чисел.

А - множество алгебраических чисел (вещественные числа, которые могут быть корнями многочленов с целыми коэффициентами).

Пример 37. $\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{A} \subset \mathbb{R}$.

 Π ример 38. $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$ является интективной.

 Π ример 39. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 3x$ является сюрьективной.

Пример 40. $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}, f(x) = \frac{1}{x}$ является биективной.

|A| = |B| — множества A и B **равномощны** — между ними есть биекция.

Задача 10

Покажите, что для любых X, Y, Z верно:

 $\bullet |X \times Y| = |Y \times X|$

- если |X| = |Y|, то $|X \times Z| = |Y \times Z|$
- $|(X \times Y) \times Z| = |X \times (Y \times Z)|$ $|Z^{X \times Y}| = |(Z^Y)^X|$

 Π ример 41. Если $|A| = |\mathbb{N}|$, то A называется **счётным** множеством (его элементы можно пересчитать).

Определение 32

Для конечных множеств A определим |A|- **мощность** множества — количество элементов в нем.

Пример 42. $|\{a, \{b, c\}, \{\{d\}, e\}, \emptyset\}| = |\{0, 1, 2, 3\}| = 4.$

Определение 33

Говорят, что X по мощности меньше или равно Y, и пишут $X \preccurlyeq Y$ или $|X| \leqslant |Y|$, если существует инъекция из X в Y.

Теорема 1 (Кантора-Шрёдера-Бернштейна)

Если $X \preccurlyeq Y$ и $Y \preccurlyeq X$, то |X| = |Y|.

Определение 34

 $A^* = \{\varnothing\} \cup A \cup A^2 \cup A^3 \dots$ — множество всех конечных последовательностей.

Пример 43. $\{a,b\}^* = \{\emptyset, a, b, aa, ab, ba, bb, aaa, aab, \dots\}.$

Определение 35

 $\mathcal{P}(A) = 2^A$ - множество всех подмножеств множества A.

Пример 44. $2^{\{1,2,3\}} = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$

Задача 11

• Докажите, что |Чётных положительных| = $|\mathbb{N}|$.

• $|\mathbb{Z}| \stackrel{?}{=} |\mathbb{N}|$.

• Докажите, что |Нечётных положительных| = $|\mathbb{N}|$.

• $|\mathbb{Q}| \stackrel{?}{=} |\mathbb{N}|$.

• Докажите, что если $|A|=|B|=|\mathbb{N}|,$ то $A\cup B=|\mathbb{N}|.$

• $|\mathbb{N}^2| \stackrel{?}{=} |\mathbb{N}|$.

• Докажите, что $|(0,1)| = |\mathbb{R}|$.

• $|\mathbb{N}^*| \stackrel{?}{=} |\mathbb{N}|$.

• Докажите, что $|(0,1)| = |2^{\mathbb{N}}|$.

• $|\mathbb{A}| \stackrel{?}{=} |\mathbb{N}|$.

• Докажите, что $|\mathbb{R}| \neq |\mathbb{N}|$.

• $|\mathbb{R}| \stackrel{?}{=} |\mathbb{N}|$.

• Докажите, что $|\mathbb{R}^2| = |\mathbb{R}|$.

 $\bullet |\mathbb{R}^*| \stackrel{?}{=} |\mathbb{R}|.$

Теорема 2 (Кантора)

Для любого A верно $|2^A| \neq |A|$.

Теорема 3 (Континуум-гипотеза)

Для любого A если $\mathbb{N} \preccurlyeq A \preccurlyeq \mathbb{R}$, то либо $|A| = |\mathbb{N}|$, либо $|A| = |\mathbb{R}|$.