Mixup: Beyond Empirical Risk Minimization

Radek Bartyzal

GLAMI AI

27. 10. 2020

Motivation

- Empirical Risk Minimization = minimize errors on samples from dataset
- Data Augmentation = create new samples "around" the existing samples = capture more of the "true" distribution
- ullet regularization \Longrightarrow better generalization

Downsides of classic Data Augmentation:

- ullet dataset dependent \Longrightarrow expert knowledge
- assumes examples in the vicinity share the same class
- does not model vicinity relation across examples of different classes

Mixup

- data agnostic generation of new training samples
- linear interpolation

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$
 where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda) y_j,$ where y_i, y_j are one-hot label encodings

Figure: Generate new training samples. $\lambda \in [0,1]$

Mixup: Easy implementation

```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

(a) One epoch of *mixup* training in PyTorch.

Mixup: Smoother decision boundary

Figure: Effect of mixup ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).

Mixup: Vicinal Risk Minimization (VRM)

VRM approximation of true distribution *P*:

$$P_{\nu}(\tilde{x}, \tilde{y}) = \frac{1}{n} \sum_{i=1}^{n} \nu(\tilde{x}, \tilde{y} | x_i, y_i),$$

- ν is a vicinity distribution that measures the probability of finding the virtual feature-target pair (\tilde{x}, \tilde{y}) in the vicinity of the training feature-target pair (x_i, y_i) .
- to train we sample the vicinal distribution to construct a dataset D_{ν} and minimize the empirical vicinal risk: $R_{\nu}(f)$

$$R_{\nu}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell(f(\tilde{x}_i), \tilde{y}_i).$$

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

6 / 16

Mixup: Vicinal Risk Minimization (VRM)

Contribution: Generic vicinal distribution, called mixup:

$$\mu(\tilde{x}, \tilde{y}|x_i, y_i) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{E} \left[\delta(\tilde{x} = \lambda \cdot x_i + (1 - \lambda) \cdot x_j, \tilde{y} = \lambda \cdot y_i + (1 - \lambda) \cdot y_j) \right]$$

• where $\lambda \sim Beta(\alpha, \alpha)$, for $\alpha \in (0, \inf)$. In a nutshell, sampling from the mixup vicinal distribution produces virtual feature-target vectors:

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

$$\tilde{y} = \lambda y_i + (1 - \lambda) y_i,$$

Beta distribution ($\alpha = 0.4, \beta = 0.4$)

Samples generated by Mixup on Two Moons Dataset

Mixup: ImageNet results

Model	Method	Epochs	Top-1 Error	Top-5 Error
ResNet-50	ERM (Goyal et al., 2017)	90	23.5	-
D 17 101	$mixup \alpha = 0.2$	90	23.3	6.6
ResNet-101	ERM (Goyal et al., 2017) $mixup \ \alpha = 0.2$	90 90	22.1 21.5	5.6
ResNeXt-101 32*4d	ERM (Xie et al., 2016) ERM	100 90	$\frac{21.2}{21.2}$	5.6
	$mixup \ \alpha = 0.4$	90	$\frac{21.2}{20.7}$	5.3
ResNeXt-101 64*4d	ERM (Xie et al., 2016) $mixup \alpha = 0.4$	100 90	20.4 19.8	5.3 4.9
ResNet-50	ERM	200	23.6	7.0
Resnet-30	mixup $\alpha = 0.2$	200	$\begin{array}{c} 23.0 \\ 22.1 \end{array}$	6.1
ResNet-101	ERM	200	22.0	6.1
	mixup $\alpha = 0.2$	200	20.8	5.4
ResNeXt-101 32*4d	ERM	200	21.3	5.9
	mixup $\alpha = 0.4$	200	20.1	5.0

Table 1: Validation errors for ERM and *mixup* on the development set of ImageNet-2012.

Mixup: ImageNet results

- trained with standard augmentations: scale and aspect ratio distortions, random crops, and horizontal flip
- $\alpha \in [0.1, 0.4]$ leads to improved performance over ERM
- ullet large $lpha \implies$ underfitting
- models with higher capacities and/or longer training runs benefit more from mixup

Mixup: CIFAR results

Dataset	Model	ERM	тіхир
CIFAR-10	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	5.6 3.8 3.7	$4.2 \\ 2.7 \\ 2.7$
CIFAR-100	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	25.6 19.4 19.0	$21.1 \\ 17.5 \\ 16.8$

(a) Test errors for the CIFAR experiments.

Mixup: Further experiments

Mixup helps with:

- speech commands recognition using VGG
- tabular data: UCI datasets with 2-layer nets trained by Adam
- robustness against adversarial attacks
- stabilisation of GAN training

Mixup: Conclusion

Implementation details:

- mix 1 batch with itself just shuffled
- ullet sample λ for each created example
- to remove duplicates: $\lambda = max(\lambda, 1 \lambda) \implies \lambda \in [0.5, 1.0]$
- if using mixup lower weight decay

Further results:

- SMOTE (interpolate only between same-class samples) performs worse
- combining more than 2 samples does not help

CutMix: Cut and paste + mix labels acc. to area pasted

Image	ResNet-50	Mixup [48]	Cutout [3]	CutMix
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet	76.3	77.4	77.1	78.6
Cls (%)	(+0.0)	(+1.1)	(+0.8)	(+2.3)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

Sources

1. Zhang, Hongyi, et al. "mixup: Beyond empirical risk minimization." arXiv preprint arXiv:1710.09412 (2017).

https://arxiv.org/abs/1710.09412

2. FastAl implementation comments.

https://forums.fast.ai/t/mixup-data-augmentation/22764

3. INFERENCE blog (two moons analysis). https:
//www.inference.vc/mixup-data-dependent-data-augmentation/

4. Yun, Sangdoo, et al. "Cutmix: Regularization strategy to train strong classifiers with localizable features." Proceedings of the IEEE International Conference on Computer Vision. 2019.

https://arxiv.org/abs/1905.04899