Small Sample Sequential Multiple Assignment Randomized Trials with Continuous Repeated Measures ENAR 2020

Holly Hartman

Roy Tamura, Matthew Schipper, Kelley Kidwell

holhart@umich.edu https://holly-hartman.com @holly7holly

March 25, 2020

snSMART Goals

- snSMARTs designs can be used to more efficiently identify the best treatment overall and use Bayesian methods [1, 2].
- Both require dichotomous determination of "response" to determine the second stage treatment (sometimes called a tailoring variable) [3, 4].

snSMART Design

Problems with binary outcomes

- In rare diseases or other areas with little prior knowledge, a clear choice for a dichotomization method or a binary surrogate may not be available prior to the start of the study.
- Pilot studies can be expensive and cost prohibitive.
- If a dichotomized continuous variable is used as outcome, can result in loss of statistical power [5].

Continuous snSMART Design

snSMART design with continuous repeated measures

- Goal: identify the best treatment at the end of the first stage.
- Use a mapping function to map first stage outcome Y_{i1} to [0,1] and is the probability of staying on the same treatment.
- Better outcomes of Y_{i1} should map to values closer to 1
- Options for the Mapping Function:
 - ullet Linear function between minimum and maximum values of Y_1
 - $f(Y_1) = (Y_1 Y_{min})/(Y_{max} Y_{min})$
 - Can also modify with powers, f(Y₁)^k, if distribution is expected to be skewed or it would be beneficial to have more/fewer people stay on the treatment
 - ullet Function between practical/ethical values of Y_1 and 0 or 1 beyond these limits

Models

Goal (mathematically): Estimate all β_j parameters (treatment effects at the end of the first stage).

Mean Model:

$$\mu_1(T_{i1}) = \sum_{j=1}^{T} \beta_j I(T_{i1} = j)$$

$$\mu_2(T_{i1}, T_{i2}) = \alpha_1 \sum_{j=1}^{T} \beta_j I(T_{i1} = j) + \alpha_2 \sum_{k=1}^{T} \beta_k I(T_{i2} = k) + \alpha_3 I(T_{i1} = T_{i2})$$

Covariance Model:

$$V(T_{i1}, T_{i,2}) = V_1 I(T_{i1} = T_{i2}) + V_2 I(T_{i1} \neq T_{i2})$$

where V_1 and V_2 are both 2×2 variance-covariance matrices.

Priors

$$\begin{split} \beta_j &\sim \textit{N}(\mathsf{mean} = 50, \mathsf{standard \ deviation} \ (\mathsf{sd}) = 50) \ \mathsf{for \ all} \ j \\ \alpha_1 &\sim \textit{Unif} (0, 0.5) \\ \alpha_3 &\sim \textit{FN}(\mathsf{mean} = 0, \mathsf{sd} = 20) \\ V_1 &\sim W_2 \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, 2 \end{pmatrix} \\ V_2 &\sim W_2 \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, 2 \end{pmatrix} \end{split}$$

These priors impose 3 conditions for the α parameters:

- 1) $\alpha_2 = 1 \alpha_1$
- 2) $\alpha_2 > \alpha_1$
- 3) $\alpha_3 \ge 0$

Ideal scenarios

• $\alpha = (0.2, 0.8, 5)$

$$V_1 = \sigma^2 egin{bmatrix} 1 & au_1 \ au_1 & 1 \end{bmatrix}, V_2 = \sigma^2 egin{bmatrix} 1 & au_2 \ au_2 & 1 \end{bmatrix}$$

• $\tau_1 = 0.8$, $\tau_2 = 0.3$, and $\sigma = 20$

		β	
Scenario	1	2	3
1	40	50	60
2	20	30	40
3	60	70	80

Scenarios with model assumption violations

- We examined 3 assumption violations
 - Second stage treatment effect, μ_2 , is based on the treatment specific pathway (TSP) rather than weighted means
 - Variance, σ^2 , varies depending on treatment
 - Correlation, τ , depends on the TSP (treatments may have more or less correlation based on treatment mechanism similarities)
- All other parameters were the same as scenario 1.

Scenarios

	β			Violation		
Scenario	1	2	3	Mean	Variance	Correlation
1	40	50	60			
2	20	30	40			
3	60	70	80			
4	40	50	60	×		
5	40	50	60		×	
6	40	50	60			×
7	40	50	60	×	×	
8	40	50	60	×		×
9	40	50	60		×	×
10	40	50	60	×	×	×

Mapping functions

- Used 3 mapping functions
 - $MF1 = Y_1/100$
 - $MF2 = (Y_1/100)^2$
 - $MF1/2 = (Y_1/100)^{1/2}$
- For scenarios 1, 2, and 3 compared to dichotomized outcomes (DO) using dichotomization of the continuous first stage outcome with 3 different cut offs:
 - DO 30 = 30
 - DO 50 = 50
 - DO 70 = 70

Results for ideal scenarios

Results for model assumption violations

Patient outcomes

Conclusions

- Mapping functions are a reasonable method for conducting a snSMART design in the absence of a binary variable.
- Patient outcomes are similar to when using a dichotomous outcome.
- Using a mapping function improves the number of treatment pathways seen in a trial relative to a poorly selected dichotomous outcome.

References

- Tamura, RN, Krischer, JP, Pagnoux, C, Micheletti, R, Grayson, PC, Chen, YF, and Merkel, PA. A Small n Sequential Multiple Assignment Randomized Trial Design For Use in Rare Disease Research. Contemp Clin Trials 2016;46:48–51.
- Wei, B, Braun, TM, Tamura, RN, and Kidwell, KM. A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs). Statistics in Medicine 2018:1–10
- Lei, H, Nahum-Shani, I, Lynch, K, Oslin, D, and Murphy, S. A 'Smart' Design for Building Individualized Treatment Sequences. Ssrn 2012.
- Almirall, D, Compton, SN, Gunlicks-Stoessel, M, Duan, N, and Murphy, SA. Designing a Pilot Sequential Multiple Assignment Randomized Trial for Developing an Adaptive Treatment Strategy. Statistics in Medicine 2012;31:1887–1902.
- Snapinn, SM and Jiang, Q. Responder analyses and the assessment of a clinically relevant treatment effect. Trials 2007;8:31.
 - Zajonc, T. Bayesian Inference for Dynamic Treatment Regimes: Mobility, Equity, and Efficiency in Student Tracking. Journal of American Statistical Association 2012:107:80–92.