Revisiting Data Prefetching for Database Systems with Machine Learning Techniques

Yu Chen, Yong Zhang, Jiacheng Wu, Jin Wang, Chunxiao Xing

Presenter: Xiling Li

Overview

- Access page in memory is faster than access in the disk.
- Prefetch (Predict + fetch):
 - Predict future page access patterns
 - Fetch pages into buffer pool ahead before being accessed.
 - Existing methods are mostly heuristic-based methods
 - E.g. One Block Lookahead (OBL)
 - Inefficiently prefetch pages with random access by indexing
- Machine Learning (neural-network based approach)
 - Learning page access patterns from history
 - Formalize prefetching as a classification problem

Formulation

- Input:
 - A sequence of pages previously accessed
 - Represent as a sequence of page offsets (d1,d2,...,dn)

- Output:
 - A page in the disk
 - Page offset dt
- Classification
 - Get output distribution by softmax function

Sparsity Issue

- Sparsity of target space
 - E.g. TPC-H approximately contains 10^7 target pages
 - Bad: Locate a page by its universal id (di)
- Extent in MySQL can be a feasible solution
 - An extent is a group of consecutive pages within a data file
 - # of extents is much smaller than # of pages
 - Better: Locate a page by extent it belongs and the offset in the extent

Architecture

Fig. 1: Overall Architecture

- Data preparation
 - Collect access traces by running some queries
- Input transformation
 - Transform page offsets di into extent
 - Overcome sparsity issue
- Representation learning
 - Learn access pattern by traces
- Prediction
 - Fetch corresponding pages from disk

Transformation

· Transform a page offset di into extent offset ei and in-extent offset fi

$$e_i = \lfloor \frac{d_i}{\text{\# pages in a extent}} \rfloor \tag{1}$$

$$f_i = d_i - e_i \times \#$$
 pages in a extent (2)

- In MySQL, each extent has 64 pages
 - E.g. if di = 76, ei = 1 and fi = 12
- Triplet ti = <di, ei, fi> becomes input of latter NN models.

Single-model Framework

- Prediction model
 - Convolutional Neural Network
 - Recurrent Neural Network
 - Long Short-Term Memory
- Input: a sequence of ti
- Output: on = {en, fn}
- Loss function
 - Sum of two cross-entropies

$$\mathcal{L}(p(\boldsymbol{o}_n), p(\boldsymbol{\hat{o}}_n)) = -\sum_{e_n} p(\hat{e}_n) \log p(e_n) - \sum_{f_n} p(\hat{f}_n) \log p(f_n)$$

Fig. 2: Single Model with Prefetching Decision

Single-model Framework - Cont'd

- Avoiding wrong prefetching is to prevent extra dish I/O.
- Use decision model to decide if DBMS needs fetch or not at a certain timestamp n
- Input: a sequence of ti
- Output: $bn = \{0,1\}$
- Predict K pages for decision

```
Algorithm 1: Training for Decision Model
  Input: Prediction Model \mathcal{M}, Input Representation t_i.
  Output: Decision Model \mathcal{D}.
1 train\_set = \emptyset.
2 foreach timestep n do
       Obtain the label \hat{o}_n.
       Obtain p(o_n) by applying \mathcal{M} on input series.
       Select K page offsets from p(o_n) as collection S.
       if \hat{o}_n \in \mathcal{S} then
           Mark timestep n with positive label.
       else
           Mark timestep n with negative label.
       Add timestep n into train\_set.
10
11 Train Decision Model \mathcal{D} on train\_set.
12 return D.
```

Multi-model Framework

- TXNs from different SQL templates produce distinct access patterns
- Same architecture with different parameters for prediction models
- Classification model provides probability for each model to be chosen
- Output $\begin{aligned} &\text{distribution} \ \{\bar{p}(e_n), \bar{p}(f_n)\} = \{\sum_{j=1}^G c_j \cdot p_j(e_n), \sum_{j=1}^G c_j \cdot p_j(f_n)\} \end{aligned}$
- Same loss function

Fig. 3: Multi-Model Framework

Evaluation

TABLE I: Model Comparison

	TPC-H		TPC-DS		SSB	
	Precision(%)1	Recall(%)	Precision(%)	Recall(%)	Precision(%)	Recall(%)
LookAhead	20/-	81	7/-	81	22/-	88
Random	14/28	80	7/15	78	40/55	85
DNN	41/75	77	33/78	79	62/69	82
CNN	41/85	70	40/79	81	80/74	86
RNN	33/64	63	29/62	70	46/62	73
LSTM	33/64	63	30/62	71	46/63	73
Multi-Model	76/87	82	78/87	94	87/84	94

We measure 2 precisions: Overall-Precision / Decision-Precision. Overall-Precision means we measure the prefetcher's precision all the timesteps, and Decision-Precision only counts when the prefetcher decides to make a prefetching.

Thank you!