Data Science 2

Prof. Dr. Mark Trede

Institut für Ökonometrie und Wirtschaftsstatistik

September 2023

Grenzwertsätze

• Gegeben sei eine Folge von unabhängigen, identisch verteilten Zufallsvariablen (i.i.d.)

$$X_1, X_2, X_3, \dots,$$

 \blacksquare Die Folgenelemente X_1,X_2,\ldots heißen auch unabhängige Wiederholungen von X

lacktriangle Für gegebenes n ist das arithmetische Mittel

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

lacksquare Achtung: $ar{X}_n$ ist eine **Zufallsvariable**!

Gesetz der großen Zahl

- Was passiert mit der Verteilung von \bar{X}_n , wenn $n \to \infty$ geht?
- Sei $E(X) = \mu$ und $Var(X) = \sigma^2$
- Dann gilt

$$E(\bar{X}_n) = \mu$$

$$Var(\bar{X}_n) = \frac{\sigma^2}{n}$$

$$E(\bar{X}_n) =$$

$$Var(\bar{X}_n) =$$

Gesetz der großen Zahl

Schwaches Gesetz der großen Zahl

Für jedes (noch so kleine) $\varepsilon>0$ gilt

$$\lim_{n\to\infty}P(|\bar{X}_n-\mu|\geq\varepsilon)=0$$

Alternative Schreibweise

$$\mathrm{plim}_{n\to\infty}\bar{X}_n=\mu$$

Gesetz der großen Zahl

- \blacksquare Anschaulich: Die Verteilung von \bar{X}_n zieht sich immer mehr auf μ zusammen
- \blacksquare Spezialfall: X sei Bernoulli-verteilt mit Parameter $P(X=1)=\pi$
- lacksquare Dann ist $ar{X}_n$ die relative Häufigkeit der Erfolge
- Wegen $E(X) = \pi$ gilt

$$\lim_{n \to \infty} P\left(\left|\bar{X}_n - \pi\right| \ge \varepsilon\right) = 0$$

Beispiel: Ein Würfel wird geworfen

Sei

$$X = \left\{ \begin{array}{ll} 0 & \text{wenn Augenzahl nicht 5 ist} \\ 1 & \text{wenn Augenzahl 5 ist} \end{array} \right.$$

Es gilt

$$P(X=1) = \frac{1}{6}$$

Gesetz der großen Zahl

Forts. Beispiel: Ein Würfel wird geworfen

- Der Würfel wird nun sehr oft geworfen (n Mal)
- $lacksquare X_1, X_2, \dots$ geben jeweils an, ob eine 5 geworfen wurde
- lacksquare X_n ist der Anteil der Fünfen
- lacksquare Für großes n geht \bar{X}_n gegen 1/6
- Simulation in R: [wlln.R]

Gesetz der großen Zahl

Beispiel: Produktgewicht

- Die Zufallsvariable $X \sim N(201,4)$ sei das tatsächliche Gewicht einer 200g-Tafel Schokolade
- $lacksquare X_i$ ist das Gewicht der *i*-ten Tafel, i=1,2,...
- ullet $ar{X}_n$ ist das Durchschnittsgewicht dieser Tafeln
- lacksquare Für großes n geht X_n gegen 201 [wlln.R]

Zentraler Grenzwertsatz

- Zentraler Grenzwertsatz (Begründung für die extreme Wichtigkeit der Normalverteilung)
- Definiere das standardisierte arithmetische Mittel

$$U_n = \frac{X_n - \mu}{\sqrt{\sigma^2/n}} = \sqrt{n} \frac{X_n - \mu}{\sigma}$$

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz

Für alle $u \in \mathbb{R}$ gilt

$$\lim_{n\to\infty}P(U_n\leq u)=\Phi(u),$$

wobei Φ die Verteilungsfunktion der N(0,1) ist

Für großes n gilt approximativ

$$U_n \overset{appr}{\sim} N(0,1)$$

Zentraler Grenzwertsatz

■ Folglich gilt auch

$$\sum_{i=1}^{n} X_i \overset{appr}{\sim} N(n\mu, n\sigma^2)$$

und

$$\bar{X}_n \overset{appr}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

Grenzwertsätze Zentraler Grenzwertsatz

- Die Summe und der Durchschnitt von n beliebig verteilten Zufallsvariablen ist approximativ normalverteilt, wenn n groß genug ist!
- Es gibt einige einschränkende Bedingungen, aber in den meisten Situationen gilt der zentrale Grenzwertsatz
- Simulationen in R

Zentraler Grenzwertsatz

lacksquare Spezialfall: X Bernoulli-verteilt mit π

$$\begin{split} E(X) &= \pi \\ V(X) &= \pi \left(1 - \pi \right) \end{split}$$

und daher

$$\sum_{i=1}^{n} X_i \overset{appr}{\sim} N(n\pi, n\pi(1-\pi))$$

Zentraler Grenzwertsatz

- Approximation der Binomialverteilung durch die Normalverteilung (De Moivre, 1733)
- Wegen

$$\sum_{i=1}^n X_i \overset{appr}{\sim} N(n\pi, n\pi(1-\pi))$$

gilt

$$P\left(\sum_{i=1}^{n}X_{i}\leq b\right)\approx\Phi\left(\frac{b-n\pi}{\sqrt{n\pi\left(1-\pi\right)}}\right)$$

Zentraler Grenzwertsatz

Beispiel: Marketing

Eine Marketing-Abteilung verschickt an n=500 zufällig ausgewählte Kunden Fragebögen.

 X_i sind Bernoulli-verteilt mit Parameter $\pi=0.2$

$$X_i = \left\{ \begin{array}{ll} 1 & \quad \text{wenn Kunde } i \text{ antwortet} \\ 0 & \quad \text{wenn Kunde } i \text{ nicht antwortet} \end{array} \right.$$

Sei $Y = \sum_{i=1}^{500} X_i$ die Zahl der Antworten.

Gesetz der großen Zahl

Forts. Beispiel: Marketing

Die Wahrscheinlichkeit, dass zwischen 95 und 105 Kunden antworten, ist $\,$