Úvod do teorie grafů

DELTA - Střední škola informatiky a ekonomie, s.r.o.

Ing. Luboš Zápotočný

24.10.2025

CC BY-NC-SA 4.0

"Zjednodušení reálného světa, kde je problém znázorněn pomocí bodů a čar které tyto body spojují."

"Zjednodušení reálného světa, kde je problém znázorněn pomocí bodů a čar které tyto body spojují."

Terminologie v teorii grafů

"Zjednodušení reálného světa, kde je problém znázorněn pomocí bodů a čar které tyto body spojují."

Terminologie v teorii grafů

Body nazýváme vrcholy grafu

"Zjednodušení reálného světa, kde je problém znázorněn pomocí bodů a čar které tyto body spojují."

Terminologie v teorii grafů

- Body nazýváme vrcholy grafu
- "Čáry", které tyto body spojují nazýváme hrany grafu

• V: množina vrcholů (vertices)

• V: množina vrcholů (vertices)

• E: množina hran (edges)

- V: množina vrcholů (vertices)
- E: množina hran (edges)
- G = (V, E): graf G je uspořádanou dvojicí množin V a E

- V: množina vrcholů (vertices)
- E: množina hran (edges)
- G = (V, E): graf G je **uspořádanou** dvojicí množin V a E
- Smyčka: hrana z vrcholu x do vrcholu x

Velikost množiny (počet prvků) je označena pomocí svislých čar

Velikost množiny (počet prvků) je označena pomocí svislých čar

Otázka

Tvoří množiny V a E, kde |V|=1 a |E|=0, graf?

Velikost množiny (počet prvků) je označena pomocí svislých čar

Otázka

Tvoří množiny V a E, kde |V|=1 a |E|=0, graf? Ano

Velikost množiny (počet prvků) je označena pomocí svislých čar

Otázka

Tvoří množiny V a E, kde |V|=1 a |E|=0, graf? Ano A co obráceně?

Velikost množiny (počet prvků) je označena pomocí svislých čar

Otázka

Tvoří množiny V a E, kde |V|=1 a |E|=0, graf? Ano A co obráceně? Ne

Neorientovaný graf G=(V,E) je definován jako uspořádaná dvojice množin V a E

Neorientovaný graf G=(V,E) je definován jako uspořádaná dvojice množin V a E

Orientovaný graf je definován analogicky, pouze každé hraně dodáme orientaci

Neorientovaný graf G=(V,E) je definován jako uspořádaná dvojice množin V a E

Orientovaný graf je definován analogicky, pouze každé hraně dodáme orientaci

 Tedy jeden z vrcholů hrany prohlásíme za počáteční a druhý z vrcholů hrany za koncový

Neorientovaný graf G=(V,E) je definován jako uspořádaná dvojice množin V a E

Orientovaný graf je definován analogicky, pouze každé hraně dodáme orientaci

- Tedy jeden z vrcholů hrany prohlásíme za počáteční a druhý z vrcholů hrany za koncový
- Graficky orientaci hrany znázorníme jednostrannou šipkou

Neorientovaný graf

Neorientovaný graf

$$V = \{A, B, C, D\}$$

Neorientovaný graf

$$V = \{A, B, C, D\}$$

$$E = \{\{A, B\}, \{B, C\}, \{C, D\}, \{D, A\}, \{A, C\}\}$$

Neorientovaný graf

$$V = \{A, B, C, D\}$$

$$E = \{\{A, B\}, \{B, C\}, \{C, D\}, \{D, A\}, \{A, C\}\}$$

Hrany nemají orientaci - znázorněny čarami bez šipek.

Orientovaný graf

Orientovaný graf

$$V = \{A, B, C, D\}$$

Orientovaný graf

$$V = \{A, B, C, D\}$$

 $E = \{(A, B), (B, C), (C, D), (D, A), (A, C)\}$

Orientovaný graf

$$V = \{A, B, C, D\}$$

 $E = \{(A, B), (B, C), (C, D), (D, A), (A, C)\}$

Hrany mají orientaci znázorněny šipkami. Hrany jsou uspořádané dvojice.

Ohodnocení uzlu či hrany

Graf rovněž může být **hranově** či **vrcholově** ohodnocený. Hraně či vrcholu můžeme přidělit libovolné reálné číslo (**ohodnocení**).

Příklad ohodnoceného grafu

Příklad ohodnoceného grafu

Hrany mají přiřazené hodnoty (váhy), které mohou reprezentovat:

Příklad ohodnoceného grafu

Hrany mají přiřazené hodnoty (váhy), které mohou reprezentovat:

Vzdálenost mezi místy

Příklad ohodnoceného grafu

Hrany mají přiřazené hodnoty (váhy), které mohou reprezentovat:

- Vzdálenost mezi místy
- Cenu přepravy

Ohodnocení uzlu či hrany

Příklad ohodnoceného grafu

Hrany mají přiřazené hodnoty (váhy), které mohou reprezentovat:

- Vzdálenost mezi místy
- Cenu přepravy
- Čas cesty

Ohodnocení uzlu či hrany

Příklad ohodnoceného grafu

Hrany mají přiřazené hodnoty (váhy), které mohou reprezentovat:

- Vzdálenost mezi místy
- Cenu přepravy
- Čas cesty
- Kapacitu spojení

Úplný graf je takový graf, ve kterém

Úplný graf je takový graf, ve kterém jsou každé dva vrcholy spojené hranou. Takový graf značíme K_n , kde n je počet vrcholů

 \bigcirc

 K_1

Úplný graf je takový graf, ve kterém jsou každé dva vrcholy spojené hranou. Takový graf značíme K_n , kde n je počet vrcholů

 K_1 K_2

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

$$\sum_{i=1}^{n-1} i =$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S =$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$2S =$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$2S = n + n + \dots + n =$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ? Konstruktivně lze odvodit následující součet:

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$2S = n + n + \dots + n = n * (n-1)$$

$$S = \sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ? Konstruktivně lze odvodit následující součet:

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$2S = n + n + \dots + n = n * (n-1)$$

$$S = \frac{n * (n-1)}{2}$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$2S = n + n + \dots + n = n * (n-1)$$

$$S = \frac{n * (n-1)}{2} \dots \mathcal{O}(n^2)$$

Kolik je maximální počet neorientovaných hran v úplném grafu K_n ?

$$\sum_{i=1}^{n-1} i = S = 1 + 2 + 3 + \dots + (n-1)$$

$$S = (n-1) + (n-2) + (n-3) + \dots + 1$$

$$2S = n + n + \dots + n = n * (n-1)$$

$$S = \frac{n * (n-1)}{2} \dots \mathcal{O}(n^2)$$

Podgraf grafu G je graf G', který

Podgraf grafu G je graf G', který vznikl odebráním některých vrcholů a hran z původního grafu G

Podgraf grafu G je grafG', který vznikl odebráním některých vrcholů a hran z původního grafu G

Máme-li graf G=(V,E) a jsou-li V' a E' podmnožiny V a E a platí, že G'=(V',E') je grafem, pak nazýváme G' podgrafem grafu G

Podgraf grafu G je graf G', který vznikl odebráním některých vrcholů a hran z původního grafu G

Máme-li graf G=(V,E) a jsou-li V' a E' podmnožiny V a E a platí, že G'=(V',E') je grafem, pak nazýváme G' podgrafem grafu G

Pokud platí, že V'=V (podgraf obsahuje všechny vrcholy původního grafu), pak nazýváme G' faktorem grafu G

Podgraf grafu G je graf G', který vznikl odebráním některých vrcholů a hran z původního grafu G

Máme-li graf G=(V,E) a jsou-li V' a E' podmnožiny V a E a platí, že G'=(V',E') je grafem, pak nazýváme G' podgrafem grafu G

Pokud platí, že V'=V (podgraf obsahuje všechny vrcholy původního grafu), pak nazýváme G' faktorem grafu G

Pokud podgraf obsahuje všechny hrany původního grafu na vybraných vrcholech, pak nazýváme G' indukovaným podgrafem grafu G

Graf G

$$V = \{A, B, C, D, E\}$$

Podgraf G'

$$V' = \{A, B, C, E\}$$

Sled, tah, cesta a kružnice

Sled

Sled je posloupnost vrcholů V_i a hran E_i

Sled

Příklad sledu:

Sled

Příklad sledu:

$$A \to \{A, B\} \to B \to \{B, C\} \to$$

$$C \to \{C, B\} \to B \to \{B, D\} \to$$

$$D$$

Všimněte si, že uzel B i hrana (B,C) se ve sledu opakují.

Tah je sled, ve kterém se neopakují hrany

Příklad tahu:

Příklad tahu:

$$A \to \{A,B\} \to B \to \{B,D\} \to \\ D \to \{D,C\} \to C \to \{C,B\} \to \\ B$$

Příklad tahu:

$$A \to \{A, B\} \to B \to \{B, D\} \to$$
$$D \to \{D, C\} \to C \to \{C, B\} \to$$
$$B$$

Všimněte si, že uzel *B* se opakuje, ale žádná hrana se neopakuje.

Cesta je tah, ve kterém se neopakují uzly

Příklad cesty:

Příklad cesty:

$$\begin{array}{l} A \rightarrow \{A,B\} \rightarrow B \rightarrow \{B,D\} \rightarrow \\ D \rightarrow \{D,C\} \rightarrow C \end{array}$$

Příklad cesty:

$$\begin{array}{l} A \rightarrow \{A,B\} \rightarrow B \rightarrow \{B,D\} \rightarrow \\ D \rightarrow \{D,C\} \rightarrow C \end{array}$$

Všimněte si, že se neopakují ani uzly, ani hrany.

Kružnice je uzavřená cesta, ve které se neopakují hrany

• Uzavřená cesta je cesta, ve které se shoduje první a poslední uzel

Příklad kružnice:

Příklad kružnice:

$$\begin{array}{l} A \rightarrow (A,B) \rightarrow B \rightarrow (B,D) \rightarrow \\ D \rightarrow (D,A) \rightarrow A \end{array}$$

Příklad kružnice:

$$\begin{array}{l} A \rightarrow (A,B) \rightarrow B \rightarrow (B,D) \rightarrow \\ D \rightarrow (D,A) \rightarrow A \end{array}$$

Všimněte si, že začínáme a končíme v uzlu A, přičemž se žádný jiný uzel ani hrana neopakuje.

Kružnicí (resp. cyklem) rozumíme posloupnost vrcholů a hran $(V_0,E_1,V_1,...,E_t,V_t=V_0) \text{ kde vrcholy } V_0,...,V_t \text{ jsou navzájem různé vrcholy grafu } G$

Kružnice na minulém obrázku je

Kružnice na minulém obrázku je **podgrafem** původního grafu

Kružnice na minulém obrázku je **podgrafem** původního grafu

Kružnice z minulého obrázku ale

Kružnice na minulém obrázku je podgrafem původního grafu

Kružnice z minulého obrázku ale **není indukovaný podgrafem** původního grafu, protože

Kružnice na minulém obrázku je podgrafem původního grafu

Kružnice z minulého obrázku ale **není indukovaný podgrafem** původního grafu, protože neobsahuje hranu mezi vrcholy A a D

Les a strom

Souvislý graf je takový graf, ve kterém z každého vrcholu existuje cesta do jakéhokoli jiného vrcholu

Les a strom

Souvislý graf je takový graf, ve kterém z každého vrcholu existuje cesta do jakéhokoli jiného vrcholu

Poznámka

Neorientovaný graf bez kružnic nazýváme les.

Les a strom

Souvislý graf je takový graf, ve kterém z každého vrcholu existuje cesta do jakéhokoli jiného vrcholu

Poznámka

Neorientovaný graf bez kružnic nazýváme **les**. Souvislý les pak nazýváme **strom**.

Bipartitní graf

Bipartitní graf je takový graf, jehož množinu vrcholů lze rozdělit na dvě části, tak, že z každého vrcholu jedné části jde hrana pouze do vrcholů druhé části a naopak

Bipartitní graf

Bipartitní graf je takový graf, jehož množinu vrcholů lze rozdělit na dvě části, tak, že z každého vrcholu jedné části jde hrana pouze do vrcholů druhé části a naopak

Pokud jde z každého vrcholu jedné části hrana do každého vrcholu druhé části, mluvíme o **úplném bipartitním grafu**

Pokud jde z každého vrcholu jedné části hrana do každého vrcholu druhé části, mluvíme o **úplném bipartitním grafu**

$$K_{3,2}$$

Jak by vypadal graf

• $K_{2,2}$

- K_{2,2}
 K_{1,5}

- $K_{2,2}$
- $K_{1,5}$
- $K_{5,1}$

- $K_{2,2}$
- $K_{1,5}$
- $K_{5,1}$
- $K_{2,3,2}$

- $K_{2,2}$
- $K_{1,5}$
- $K_{5,1}$
- $K_{2,3,2}$

Eulerova úloha

Je možné projít každým mostem ve městě právě jednou?

Eulerova úloha

Je možné projít každým mostem ve městě právě jednou?

Sedm mostů města Königsbergu (převzato z teorie-grafu.cz)

Eulerova úloha

Euler matematicky dokázal (1736), že úloha není řešitelná

Mapa - nalezení nejkratší cesty

Reprezentace grafů v počítači

Náležitosti reprezentace:

Náležitosti reprezentace:

• Musí popisovat množinu vrcholů **V**

Náležitosti reprezentace:

- Musí popisovat množinu vrcholů **V**
- Množinu hran E

Náležitosti reprezentace:

- Musí popisovat množinu vrcholů V
- Množinu hran E
- Incidenční zobrazení f

Náležitosti reprezentace:

- Musí popisovat množinu vrcholů V
- Množinu hran E
- Incidenční zobrazení f

Metody reprezentace:

Reprezentace grafů obecně

Náležitosti reprezentace:

- Musí popisovat množinu vrcholů V
- Množinu hran E
- Incidenční zobrazení f

Metody reprezentace:

1. Maticová reprezentace

Reprezentace grafů obecně

Náležitosti reprezentace:

- Musí popisovat množinu vrcholů V
- Množinu hran E
- Incidenční zobrazení f

Metody reprezentace:

- 1. Maticová reprezentace
- 2. Reprezentace formou seznamu sousedů

• Matice uzel - uzel

- Matice uzel uzel
- V neorientovaném grafu je matice symetrická

- Matice uzel uzel
- V neorientovaném grafu je matice symetrická
- Hodnota prvku na indexu a_{ij} odpovídá počtu hran vedoucích z vrcholu i do j

/						\
$\int 0$	1	0	0	0	1	0
1	0	1	0	0	0	0
0	1	0	1	0	0	0
0	0	1	0	1	0	1
0	0	0	1	0	1	0
1	0	0	0	1	0	0
0	0	0	1	0	0	0 /

- Matice uzel uzel
- V neorientovaném grafu je matice symetrická
- Hodnota prvku na indexu a_{ij} odpovídá počtu hran vedoucích z vrcholu i do j

/						\
$\int 0$	1	0	0	0	1	0
1	0	1	0	0	0	0
0	1	0	1	0	0	0
0	0	1	0	1	0	1
0	0	0	1	0	1	0
1	0	0	0	1	0	0
0	0	0	1	0	0	0 /

Jaký graf reprezentuje tato matice?

Poznámka

U orientovaných grafů je hodnota prvku v i-tém sloupci a j-tém řádku 1, pokud je i-tý vrchol počátečním vrcholem j-té hrany, a −1, pokud je jejím koncovým vrcholem.

Prostorová složitost

• Prostorová složitost $\mathcal{O}(|V|^2)$

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(1)$

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(1)$
- Časová složitost přidání vrcholu

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(1)$
- Časová složitost přidání vrcholu $\mathcal{O}(|V|^2)$

• Matice vrchol - hrana

- Matice vrchol hrana
- Využití u grafů bez smyček

- Matice vrchol hrana
- Využití u grafů bez smyček
- V neorientovaném grafu má prvek a_{ij} hodnotu 1, pokud i-tý vrchol inciduje s j-tou hranou (je jejím koncovým bodem), jinak 0

- Matice vrchol hrana
- Využití u grafů bez smyček
- V neorientovaném grafu má prvek a_{ij} hodnotu 1, pokud i-tý vrchol inciduje s j-tou hranou (je jejím koncovým bodem), jinak 0

Jaký graf reprezentuje tato matice?

Poznámka

U orientovaných grafů je hodnota 1 u počátečního uzlu hrany a −1 u koncového uzlu hrany.

Spojový seznam sousednosti

• Pro každý vrchol ukládáme (spojový) seznam sousedů

Spojový seznam sousednosti

- Pro každý vrchol ukládáme (spojový) seznam sousedů
- Sousedící vrcholy jsou uloženy v seznamech (v libovolném pořadí)

Spojový seznam sousednosti - orientovaný graf

Spojový seznam sousednosti - neorientovaný graf

Prostorová složitost

• Prostorová složitost $\mathcal{O}(|V|+|E|)$

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - $ightharpoonup \Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - ullet $\Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - $ightharpoonup \Delta(G)$ je maximální stupeň vrcholu v grafu G

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - ullet $\Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - ullet $\Delta(G)$ je maximální stupeň vrcholu v grafu G
- Časová složitost přidání hrany

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - ullet $\Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - ullet $\Delta(G)$ je maximální stupeň vrcholu v grafu G
- Časová složitost přidání hrany $\mathcal{O}(1)$

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - $ightharpoonup \Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - ullet $\Delta(G)$ je maximální stupeň vrcholu v grafu G
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - $ightharpoonup \Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - ullet $\Delta(G)$ je maximální stupeň vrcholu v grafu G
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(\Delta(G))$

Spojový seznam sousednosti - složitost operací

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - $ightharpoonup \Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - ullet $\Delta(G)$ je maximální stupeň vrcholu v grafu G
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(\Delta(G))$
- Časová složitost přidání vrcholu

Spojový seznam sousednosti - složitost operací

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(\Delta(G))$
 - ullet $\Delta(v)$ je stupeň vrcholu v = maximální počet sousedů vrcholu v
 - ullet $\Delta(G)$ je maximální stupeň vrcholu v grafu G
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(\Delta(G))$
- Časová složitost přidání vrcholu $\mathcal{O}(|V|)$

Obarvení politické mapy

Obarvení libovolné mapy tak, aby dvě sousední země nebyly obarveny stejnou barvou (*four color theorem*)

Obarvení politické mapy

Obarvení politické mapy

V roce 1976 dokázáno, že stačí 4 barvy (Appel-Haken, 1976)

Znalostní ontologie

Znalostní ontologie

• PageRank (Google)

- PageRank (Google)
- CPM (Critical Path Method) (řízení projektů)

- PageRank (Google)
- CPM (Critical Path Method) (řízení projektů)
- Mapy

- PageRank (Google)
- CPM (Critical Path Method) (řízení projektů)
- Mapy
- Grafové databáze, ontologie (znalostní grafy)

- PageRank (Google)
- CPM (Critical Path Method) (řízení projektů)
- Mapy
- Grafové databáze, ontologie (znalostní grafy)
- Pravděpodobnostní grafické modely

- PageRank (Google)
- CPM (Critical Path Method) (řízení projektů)
- Mapy
- Grafové databáze, ontologie (znalostní grafy)
- Pravděpodobnostní grafické modely
- Jádro grafu v teorii her, stavový prostor

- PageRank (Google)
- CPM (Critical Path Method) (řízení projektů)
- Mapy
- Grafové databáze, ontologie (znalostní grafy)
- Pravděpodobnostní grafické modely
- Jádro grafu v teorii her, stavový prostor
- ... mnoho dalších úloh