1. (2p.) Narysuj przykładowy graf przydziału (jednokrotnych) zasobów (bez zakleszczenia) i sprawdź, jakie przykładowe żądania przydzielenia zasobów spowodują powstanie zakleszczenia, a jakie nie.

W przypadku równej ilości procesów i pojedynczych zasobów zakleszczenie zawsze nastąpi po żądaniu innego zasobu przez wszystkie procesy jednocześnie.

Natomiast żądanie przez jeden z procesów dowolnego z zajętych zasobów nigdy nie doprowadzi do zakleszczenia. W zilustrowanym przypadku jeśli proces 3 zażąda zasobu numer 3 a proces 2 zażąda zasobu 1 - nie nastąpi zakleszczenie.

Uogólniając, stworzenie powiązań generujących dowolny cykl w grafie przydziału jednokrotnych zasobów automatycznie powoduje zakleszczenie. Jeśli zasobów byłoby więcej niż procesów, ryzyko zakleszczenia byłoby mniejsze (z powodu większego wyboru zasobów i większej szansy na trafienie niezajętego) choć również możliwe, ponieważ niezależnie od ilości wolnych zasobów dany proces może żądać zasobu zajmowanego przez inny proces który z kolei potrzebuje zasobu zajmowanego przez ten pierwszy. Podobnie w przypadku większej liczby procesów niż zasobów - proces bez zasobów nie może stworzyć zakleszczenia, ponieważ nie zajmuje żadnego zasobu.

- 2. (5p.) W systemie są następujące liczby egzemplarzy zasobów:
 - A: 10,
 - B: 3,
 - C: 1,
 - D: 4,
 - E: 5.

Aktualnie przydzielone zasoby (i maksymalne zapotrzebowania) są następujące:

	Aktualny przydział				Mak	symal	ne za	apotr	zebo	wani	e	
	A	В	C	D	E		A	В	C	D	E	
P1	2	0	0	1	0	P1	5	0	0	2	3	
P2	3	2	0	2	0	P2	3	2	1	3	0	
P3	0	0	1	0	3	P3	0	1	1	0	3	
P4	3	0	0	0	0	P4	6	0	0	2	4	
P5	0	0	0	0	2	P5	2	3	0	4	2	

Czy ten system jest w stanie bezpiecznym? Podaj sekwencję kończenia procesów świadczącą o tym.

Korzystając z algorytmu bankiera sprawdzam czy system znajduje się w stanie bezpiecznym. Tablice PRZYDZIAŁ podano w treści zadania (na potrzeby indeksowania przyjmuję A=1, B=2...). Tablice DOSTĘPNE i POTRZEBY tworzone są na podstawie danych z treści zadania:

DOSTEPNE = [2,1,0,1,0]

POTRZEBY

	A	В	C	D	E
P1	3	0	0	1	3
P2	0	0	1	1	0
P3	0	1	0	0	0
P4	3	0	0	2	4
P5	2	3	0	4	0

Lista kroków:

- 1. KONIEC = [false, false, false, false, false]

 ROBOCZE = DOSTĘPNE = [2,1,0,1,0]
- 2. dla j = 3 zachodzi Koniec[j] = true i zarazem Potrzeby[j] ≤ Robocze
 Robocze = Robocze + Przydział [3] = [2,1,1,1,3]
 Koniec[3]=true
- 3. Wracam do kroku 2: dla j=2 Koniec[j] = true i Potrzeby[j] ≤ Robocze Robocze = Robocze + Przydział [2] = [5,3,1,3,3] Koniec[2] = true
- **4.** Wracam do kroku 2: dla j=1 Koniec[j] = true i Potrzeby[j] ≤ Robocze Robocze = Robocze + Przydział [1] = [7,3,1,4,3]
- Koniec[1] = true
- 5. Wracam do kroku 2: dla j=5 Koniec[j] = true i Potrzeby[j] ≤ Robocze
 Robocze = Robocze + Przydział [5] = [7,3,1,4,5]
 Koniec[5] = true
- 6. Wracam do kroku 2: dla j=4 Koniec[j] = true i Potrzeby[j] ≤ Robocze
 Robocze = Robocze + Przydział [4] = [10,3,1,4,5]
 Koniec[4] = true

Dla każdego j= j = 1, 2, ..., n Koniec[j]=true. Stan przedstawiony w treści zadania jest bezpieczny, a sekwencja ciągu bezpiecznego to (3,2,1,5,4)

- 3. (3p.) Co się stanie, gdy zgłoszone zostaną następujące żądania przydzielenia zasobów:
 - o P4: 2xD,
 - o P4: 2xA,
 - o P5: 1xD,

Jeżeli zasoby zostaną przydzielone, podaj odpowiednią sekwencję kończenia procesów. Jeżeli nie, podaj przyczynę.

Zgodnie z zasadą unikania zakleszczeń, przed każdym dodatkowym przydzieleniem zasobów system musi sprawdzić, czy spełnienie żądania doprowadziłoby do zakleszczenia. Jednakże w przypadku istniejącego skonstruowanego ciągu bezpiecznego, nie ma znaczenia, czy dany proces skorzysta ze swojego maksymalnego zapotrzebowania czy też nie, ponieważ bezpieczna sekwencja umożliwia zawsze wyjście z ciągu procesów niezależnie od ich realnego wykorzystania zasobów (względem maksymalnego deklarowanego).

Jeśli jednak pytanie dotyczy zwiększenia aktualnych przydziałów przed sprawdzeniem, czy da się wyjść z ciągu, wymaga to przeprowadzenia ponownie algorytmu bankiera dla zmodyfikowanych danych wejściowych (czyli tablicy PRZYDZIAŁ).

Jeśli tak:

Aktualny przydział

	A	В	C	D	Е
P1	2	0	0	1	0
P2	3	2	0	2	0
P3	0	0	1	0	3
P4	5	0	0	2	0
P5	0	0	0	1	2

DOSTĘPNE = [0,1,0,-2,0] - odmówiony zostałby najprawdopodobniej (jeśli kolejność odpowiedzi na zapytania z pytania jest chronologiczna) przydział 1xD dla P5 oraz P4 dostałoby tylko jeden egzemplarz D, ponieważ zabrakłoby dwóch egzemplarzy zasobu D.

W tym przypadku rzeczywista tablica przydziału to:

Aktualny przydział

	A	В	C	D	E
P1	2	0	0	1	0
P2	3	2	0	2	0
P3	0	0	1	0	3
P4	5	0	0	1	0
P5	0	0	0	0	2

DOSTEPNE = [0,1,0,0,0]

POTRZEBY

	A	В	C	D	E
P1	3	0	0	1	3
P2	0	0	1	1	0
P3	0	1	0	0	0
P4	1	0	0	1	4
P5	2.	3	0	4	0

Lista kroków:

- 1. KONIEC = [false, false, false, false, false]

 ROBOCZE = DOSTĘPNE = [0,1,0,0,0]
- 2. dla j = 3 zachodzi Koniec[j] = true i zarazem Potrzeby[j] ≤ Robocze
 Robocze = Robocze + Przydział [3] = [0,1,1,0,3]
 Koniec[3]=true

Nie można znaleźć innego j, dla którego potrzeby procesu byłyby >= od zasobów roboczych. W związku z tym nie istniałby ciąg bezpieczny, byłaby szansa zakleszczenia jako że stan jest niebezpieczny. Żądanie 1xD mogłoby być na tej podstawie oddalone.

Wariant dla przydzielenia 1xD dla P5 zamiast P4:

Aktualny przydział

	Α	В	C	D	Е
P1	2	0	0	1	0
P2	3	2	0	2	0
P3	0	0	1	0	3
P4	5	0	0	0	0
P5	0	0	0	1	2

DOSTEPNE = [0, 1, 0, 0, 0]

POTRZEBY

	Α	В	C	D	E
P1	3	0	0	1	3
P2	0	0	1	1	0
P3	0	1	0	0	0
P4	1	0	0	2	4
P5	2.	3	0	3	0

Lista kroków:

- 1. KONIEC = [false, false, false, false, false]

 ROBOCZE = DOSTĘPNE = [0,1,0,0,0]
- 2. dla j = 3 zachodzi Koniec[j] = true i zarazem Potrzeby[j] ≤ Robocze
 Robocze = Robocze + Przydział [3] = [0,1,1,0,3]
 Koniec[3]=true

Nie można znaleźć innego j, dla którego potrzeby procesu byłyby >= od zasobów roboczych. W związku z tym nie istniałby ciąg bezpieczny, byłaby szansa zakleszczenia jako że stan jest niebezpieczny. Żądanie 1xD mogłoby być na tej podstawie oddalone.

Wariant dla odmówienia przydziału zasobu D i przydzielenia tylko 2xA dla P4:

Aktualny przydział

	A	В	C	D	E
P1	2	0	0	1	0
P2	3	2	0	2	0
P3	0	0	1	0	3
P4	5	0	0	0	0

DOSTEPNE = [0,1,0,1,0]

POTRZEBY

C D E В P1 3 0 0 1 3 P2 0 1 1 0 0 P3 0 1 0 0 0 P4 1 0 0 2 4 P5 2 3 0 4 0

Lista kroków:

- 1. KONIEC = [false, false, false, false, false]

 ROBOCZE = DOSTĘPNE = [0,1,0,1,0]
- 2. dla j = 3 zachodzi Koniec[j] = true i zarazem Potrzeby[j]≤Robocze Robocze = Robocze + Przydział [3] = [0,1,1,1,3] Koniec[3]=true
- 3. Wracam do kroku 2: dla j=2 Koniec[j] = true i Potrzeby[j] ≤ Robocze Robocze = Robocze + Przydział [2] = [3,3,1,3,3] Koniec[2] = true
- **4.** Wracam do kroku 2: dla j=1 Koniec[j] = true i Potrzeby[j] ≤ Robocze Robocze = Robocze + Przydział [1] = [5,3,1,4,3] Koniec[1] = true
- 5. Wracam do kroku 2: dla j=5 Koniec[j] = true i Potrzeby[j] ≤ Robocze
 Robocze = Robocze + Przydział [5] = [5,3,1,4,5]
 Koniec[5] = true
- **6.** Wracam do kroku 2: dla j=4 Koniec[j] = true i Potrzeby[j] ≤ Robocze Robocze = Robocze + Przydział [4] = [10,3,1,4,5] Koniec[4] = true

Dla każdego j= j = 1, 2, ..., n Koniec[j]=true. Stan przedstawiony w treści zadania jest bezpieczny, a sekwencja ciągu bezpiecznego to (3,2,1,5,4).

Żądanie 2xA dla P4 zostanie spełnione, sekwencja bezpiecznego wykonania procesów nie zmieni się. Na żadnym pośrednim etapie (po wykonaniu któregoś z procesów) żądanie przez którykolwiek proces zasobu D doprowadziłoby do przejścia w stan niebezpieczny i zakleszczenia.