E2,M1 MULTIPOLE MIXING RATIOS IN EVEN-EVEN NUCLEI, $A \ge 152^*$

KENNETH S. KRANE

Department of Physics Oregon State University Corvallis, Oregon 97331

A survey is presented of E2,M1 mixing ratios of gamma-ray transitions in even-even nuclei with mass numbers $A \ge 152$. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. The cutoff date for the literature was June 1975. Based on an average of the experimental results from the literature, a recommended value of the E2,M1 mixing ratio for each transition is included.

^{*}The assistance of the Nuclear Data Group of the Oak Ridge National Laboratory in providing a literature search based on their keywords and a printout of the final reference list is acknowledged with appreciation

CONTENTS

INTRODUCTION

PHASE CONVENTION

COMPILATION AND POLICIES

EXPLANATION OF TABLE I

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

REFERENCES FOR TABLE I

TABLE II. Recommended Values of E2,M1 Mixing Ratios

INTRODUCTION

A nuclear gamma ray which connects a level of spin J_1 with one of spin J_2 may carry any angular momentum L between $J_1 + J_2$ and $|J_1 - J_2|$. Consideration of the emission probabilities for electromagnetic radiation leads one to expect a reduction of 1-3 orders of magnitude in the ratio of the emission probability of the L+1 multipole relative to the L multipole.¹ However, in practice this expectation is modified by the nuclear matrix elements, whose influence may be sufficient to cause the L+1 multipole to be favored strongly over the L multipole. The ratio of the transition probabilities of these multipoles then can provide a means for investigating nuclear states and for testing predictions of various nuclear models. The most frequently observed multipole mixture is the E2 + M1, which is the subject of the present study. Experimental results for even-even nuclei in the mass region $A \ge 152$ are surveyed; other mass regions will be considered in succeeding publications.

In the past, various compilations of angular correlation data have appeared; these have been primarily concerned with examining specific levels in a certain mass region (such as phonon levels in spherical nuclei) or with comparison between experiment and a certain specific theory. The most recent and comprehensive survey of the present type was done by Hamilton,² who examined even-even deformed and transitional nuclei. Comparison of data with theory in the nuclei presently under study has been made previously by, for example, Potnis and Rao,³ Tamura and Yoshida,⁴ Grechukhin,⁵ Kumar, ⁶ Bodenstedt, ⁷ Reddingius et al., ⁸ and Krane. ⁹ In order to update previous compilations and to provide a more comprehensive collection of experimental data analyzed in a consistent manner, the present survey was undertaken and includes published data available up to June 1975.

PHASE CONVENTION

The comparison between the transition strengths of the L+1 and L multipole transitions is usually expressed in terms of the multipole mixing ratio δ , defined as the ratio of the L+1 and L matrix elements:

$$\delta = \frac{\langle \|L + 1\| \rangle}{\langle \|L\| \rangle}.$$
 (1)

(The ratio of the intensities is then proportional to δ^2 .) Since δ is expressed as a ratio of matrix elements, the phase of δ becomes a meaningful observable which can be determined experimentally and can be predicted from theoretical calculations. It is therefore of the utmost importance that this phase be carefully defined, so that it can be extracted unambiguously from the experimental data and so that the appropriate electromagnetic multipole operators may be used for the theoretical calculations. The relationship between the experimentally determined multipole mixing ratios and the multipole operators used for theoretical calculations will not be considered in the present work. We state only that the mixing ratios as defined in the present work are related to the matrix elements of the electromagnetic multipole operators $\mathfrak{M}(E2)$ and $\mathfrak{M}(M1)$ (see, for example, Bohr and Mottelson¹⁰ for discussion of these operators), as

$$\delta = \frac{\sqrt{3}}{10} k \frac{\langle J_f \parallel \mathfrak{M}(E2) \parallel J_i \rangle}{\langle J_f \parallel \mathfrak{M}(M1) \parallel J_i \rangle}$$

$$\delta = 0.835 \, \operatorname{E}_{\gamma}(\text{MeV}) \frac{\langle J_f \parallel \mathfrak{M}(E2) \parallel J_i \rangle}{\langle J_f \parallel \mathfrak{M}(M1) \parallel J_i \rangle} \tag{2}$$

where k is the photon momentum and E_{γ} is its energy in MeV. A more comprehensive discussion of electromagnetic multipole operators and the transformation properties of their matrix elements is given in the work of Alder and Steffen.¹¹

The types of experimental determination of δ which we consider are those involving angular distributions and correlations; since each radiation multipole has a characteristic angular distribution pattern, a study of the composite radiation pattern for a given gammaray transition gives information on the multipolarities present. The experimental data are then expressed in terms of an angular distribution function, usually as a series of Legendre polynomials

$$W(\theta) = a_0 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) \tag{3}$$

where θ gives the emission direction of the gamma ray relative to a suitably chosen axis. The coefficients a_k contain the information on the nuclear spins and gamma-ray matrix elements. These coefficients are given in terms of the multipole mixing ratio by an expression of the form

$$a_k \sim A + B\delta + C\delta^2$$
. (4)

The constants A, B, and C are basically combinations of angular momentum coupling coefficients. The question of the phase of δ then relates directly to the choice of the coefficient B, which in turn depends on the details of the experiment. Since a meaningful comparison of results from different experiments (possibly employing different techniques) depends on the choice of the sign of the coefficient B, we present below a brief comparison of the different techniques which can be used to analyze angular correlation and distribution data. We will consider three basic types of experiment: angular distributions of gamma rays from oriented states, angular correlations of gamma rays from unoriented states, and angular correlations of gamma rays from oriented states. These experiments will be referred to as $J\gamma(\theta)$, $\gamma\gamma(\theta)$, and $J\gamma\gamma(\theta)$, respectively.

In the following sections, we present a summary of the formulism of the various phase conventions, as applied to $\gamma\gamma(\theta)$ experiments. The extension to experiments of the $J\gamma(\theta)$ type is straightforward and is accomplished by replacing the coefficients describing the first gamma ray by appropriate coefficients describing the degree of orientation of the emitting state. (These orientation parameters have been previously tabulated, for example, for cases in which the orientation is achieved by means of a nuclear reaction 12 or by means of static electromagnetic fields at low temperatures. 13)

Biedenharn-Rose Convention

The majority of the early angular correlation data

has been analyzed using the phase convention of Biedenharn and Rose. ¹⁴ In this convention, the angular distribution coefficients describing the various radiations are written in a symmetric manner. However, in the case of a $\gamma\gamma(\theta)$ measurement, this results in the mixing ratio of the first radiation being defined in terms of absorption matrix elements, while that of the second radiation is defined in terms of emission matrix elements. That is,

$$a_k = A_k(\gamma_1) A_k(\gamma_2), \tag{5}$$

where

$$A_{k}(\gamma_{i}) = \frac{F_{k}(L_{i}L_{i}J_{i}J) + 2\delta_{i}F_{k}(L_{i}L_{i}J_{i}J) + \delta_{i}^{2}F_{k}(L_{i}L_{i}J_{i}J)}{1 + \delta_{i}^{2}},$$
(6)

with i = 1,2. Here the cascade is assumed to be $J_1 \xrightarrow{\gamma_1} J \xrightarrow{\gamma_2} J_2$ and the mixing ratios are given by

$$\delta_{1} = \frac{\langle J_{1} || L_{1}^{'} || J \rangle}{\langle J_{1} || L_{1} || J \rangle},$$

$$\delta_{2} = \frac{\langle J_{2} || L_{2}^{'} || J \rangle}{\langle J_{2} || L_{2} || J \rangle}.$$
(7)

The coefficients $F_k(LL'J_iJ)$ are combinations of angular momentum coupling coefficients and have been tabulated previously. 15 As will be shown below, this choice of phase eliminates the necessity for the retention of an extraneous phase factor in the expression for the angular distribution coefficients A_k and allows the formulism to be applied more directly to the case of the angular distribution of radiation which follows a nuclear reaction. In the latter case, the first radiation can truly be considered in terms of an absorption process. However, as was pointed out by Ofer,16 this choice leads to possible confusion in the case of a cascade of three radiations γ_1 , γ_2 , and γ_3 . Here if one measures $\gamma_1 \gamma_2(\theta)$ and $\gamma_2 \gamma_3(\theta)$ the deduced δ_2 changes sign between the two experiments, and the selection of an unambiguous value for theoretical comparison must be modified with reference to the type of experiment employed in the measurement.

Rose-Brink Convention

The choice of phase of Rose and Brink¹⁷ eliminates the ambiguity discussed above, although the symmetry of the expression is correspondingly lost. Here we take

$$a_k = B_k(\gamma_1) A_k(\gamma_2) \tag{8}$$

where (for a cascade $J_1 \xrightarrow{\gamma_1} J_2 \xrightarrow{\gamma_2} J_3$)

$$B_k(\gamma_1) = \frac{R_k(L_1L_1J_2J_1) + (-)^{L_1-L_1}2\delta_1R_k(L_1L_1'J_2J_1) + \delta_1^2R_k(L_1'L_1'J_2J_1)}{1 + \delta_1^2}$$
(9)

$$A_k(\gamma_2) = \frac{R_k(L_2L_2J_2J_3) + 2\delta_2R_k(L_2L_2'J_2J_3) + \delta_2^2R_k(L_2'L_2'J_2J_3)}{1 + \delta_2^2} \tag{10}$$

with

$$R_k(LL'J_1J_2) = (-)^{L-L'+k}F_k(LL'J_2J_1). \tag{11}$$

The mixing ratios are defined in terms of absorption matrix elements for both transitions:

$$\delta_{1} = \frac{\langle J_{1} || L'_{1} || J_{2} \rangle}{\langle J_{1} || L_{1} || J_{2} \rangle},$$

$$\delta_{2} = \frac{\langle J_{2} || L'_{2} || J_{3} \rangle}{\langle J_{2} || L_{2} || J_{3} \rangle}.$$
(12)

The phase factor $(-)^{L_1-L_1'}$ which appears in Eq. (9) permits δ_1 and δ_2 to be expressed in terms of the same type (that is, absorption) of matrix element.

Ferguson Convention

Although the convention of Ferguson¹⁸ has not been widely used for the analysis of $\gamma\gamma(\theta)$ experiments, the extensive discussion of the $J\gamma\gamma(\theta)$ formulism presented therein has resulted in its frequent use for the analysis of experiments of the $J\gamma\gamma(\theta)$ type. In this convention, emission matrix elements are used to describe both radiations, and the angular distribution coefficients are expressed in terms of Z_1 coefficients, which are related to the F-coefficients by

$$\bar{Z}_1(LJ_1L'J_1; J_2k)
= (-)^{J_2-J_1+L-L'+k} \sqrt{2J_1+1} F_k(LL'J_2J_1).$$
(13)

The $\gamma\gamma(\theta)$ correlation coefficients are given by

$$a_k = B_k(\gamma_1) A_k(\gamma_2) \tag{14}$$

where

$$\begin{split} B_k(\gamma_1) &= \overline{Z}_1(L_1J_2L_1J_2;J_1k) \\ &+ (-)^{L_1+L_1'} 2\delta_1\overline{Z}_1(L_1J_2L_1'J_2;J_1k) \\ &+ \delta_1^2\overline{Z}_1(L_1'J_2L_1'J_2;J_1k), \quad (15) \end{split}$$

$$A_{k}(\gamma_{2}) = \overline{Z}_{1}(L_{2}J_{2}L_{2}J_{2}; J_{3}k) + 2\delta_{2}\overline{Z}_{1}(L_{2}J_{2}L'_{2}J_{2}; J_{3}k) + \delta_{2}^{2}\overline{Z}_{1}(L'_{2}J_{2}L'_{2}J_{2}; J_{3}k)$$
(16)

where the mixing ratios are given in terms of emission matrix elements

$$\delta_{1} = \frac{\langle J_{2} || L'_{1} || J_{1} \rangle}{\langle J_{2} || L_{1} || J_{1} \rangle},$$

$$\delta_{2} = \frac{\langle J_{3} || L'_{2} || J_{2} \rangle}{\langle J_{3} || L_{2} || J_{2} \rangle}.$$
(17)

It should be noted that the coefficients B_k and A_k defined in this manner are not normalized (that is, $a_0 \neq 1$).

The formulism of Ferguson for $J\gamma\gamma(\theta)$ measurements preserves the sense of the phases given above. Here the radiation γ_1 is described by an expression containing coefficients G_{γ} ; these coefficients are related to the generalized F-coefficients 19 through a phase $(-)^{L_1-L_1'}$.

Krane-Steffen Convention

In this convention,²⁰ the original formulation of Biedenharn and Rose is used for the radiation γ_2 , which is always expressed in terms of emission matrix elements. The difference lies in always expressing γ_1 in terms of emission matrix elements as well. In this convention,

$$a_k = B_k(\gamma_1) A_k(\gamma_2) \tag{18}$$

with

$$B_k(\gamma_1) = \frac{F_k(L_1L_1J_1J_2) + (-)^{L_1+L_1'}2\delta_1F_k(L_1L_1'J_1J_2) + \delta_1^2F_k(L_1'L_1'J_1J_2)}{1 + \delta_1^2},$$
(19)

$$A_k(\gamma_2) = \frac{F_k(L_2L_2J_3J_2) + 2\delta_2F_k(L_2L_2'J_3J_2) + \delta_2^2F_k(L_2'L_2'J_3J_2)}{1 + \delta_2^2},$$
 (20)

$$\delta_{1} = \frac{\langle J_{2} || L'_{1} || J_{1} \rangle}{\langle J_{2} || L_{1} || J_{1} \rangle},$$

$$\delta_{2} = \frac{\langle J_{3} || L'_{2} || J_{2} \rangle}{\langle J_{3} || L_{2} || J_{2} \rangle}.$$
(21)

A complete formulism for analyzing $J_{\gamma\gamma}(\theta)$ experiments using this phase convention recently has been published.¹⁹

Relationships of Phase Conventions

The relationships of the various phase conventions discussed above will be summarized briefly. More detailed examinations of these relationships have been given by Ferguson¹⁸ and by Rose and Brink.¹⁷ The multipole operators, which have been represented here

only symbolically by $\langle J||L||J'\rangle$, are discussed extensively by Rose and Brink¹⁷ and by Alder and Steffen.¹¹

The $\gamma\gamma(\theta)$ data summarized in the present compilation have been analyzed using the Krane-Steffen convention, and the mixing ratios are related to those ratios obtained using the other conventions as

$$\begin{split} \delta_{\text{KS}} &= -\delta_{\text{RB}} = -\delta_{\text{F}}; \\ \delta_{1_{\text{KS}}} &= -\delta_{1_{\text{BR}}}; \\ \delta_{2_{\text{KS}}} &= \delta_{2_{\text{RR}}}. \end{split} \tag{22}$$

In the case of $J\gamma(\theta)$ experiments, the gamma ray is represented by the appropriate equation given above for $A_k(\gamma_2)$ [Eqs. (6), (10), (16), or (20)] and the parameter $B_k(\gamma_1)$ is replaced by parameters which describe the degree of orientation of the emitting level.^{12,13} The $\gamma\gamma(\theta)$ and $J\gamma\gamma(\theta)$ experiments are analyzed as discussed above.

COMPILATION AND POLICIES

In Table I are presented the results of a survey to June 1975 of the angular distribution and correlation literature for even-even nuclei, $A \ge 152$. The angular correlation coefficients are given in terms of the Legendre polynomial expansion as

$$W(\theta) = a_0 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta).$$
 (23)

In some of the older literature, the angular distribution is expressed as

$$W(\theta) = b_0 + b_2 \cos 2\theta + b_4 \cos 4\theta \tag{24}$$

or as

$$W(\theta) = c_0 + c_2 \cos^2 \theta + c_4 \cos^4 \theta.$$
 (25)

These coefficients are related by

$$a_0 = b_0 - \frac{b_2}{3} - \frac{b_4}{15} = c_0 + \frac{c_2}{3} + \frac{c_4}{5},$$
 (26)

$$a_2 = \frac{4}{3}b_2 - \frac{16}{21}b_4 = \frac{2}{3}c_2 + \frac{4}{7}c_4,$$
 (27)

$$a_4 = \frac{64}{35}b_4 = \frac{8}{35}c_4. {(28)}$$

The angular correlation coefficients are normalized such that $a_0 = 1$.

In general, we have taken the distribution or correlation coefficients directly from the reference cited. Where necessary, we have applied the appropriate corrections for solid angle, attenuation due to external perturbations, and competing cascades, as given by the authors of the work.

Using the Krane-Steffen phase convention, we extracted the E2,M1 mixing ratios δ directly from the tabulated coefficients. [The relationships between the angular correlation coefficients (a_2 and a_4) for $\gamma\gamma(\theta)$ experiments and the mixing ratio δ have been tabulated by Taylor, Singh, Prato, and McPherson. For $J\gamma(\theta)$ experiments, the dependence of a_2 and a_4 on δ has been tabulated by der Mateosian and Sunyar. In actuality, we have used the a_2 coefficient to calculate the two allowed values of δ and then have selected that value of δ which gives the best agreement with a_4 (or with, for example, internal conversion coefficients). The uncertainties quoted for δ correspond directly to the uncertainties of a_2 . [A more direct and less ambiguous

means of extracting δ would be to analyze the measured angular distribution $W(\theta)$ directly using δ as a parameter, rather than extracting a_2 and a_4 values. This is frequently done, in the case of $J\gamma\gamma(\theta)$ experiments, for example, by means of a χ^2 plot. Such analyses would in fact be preferable also for the $\gamma\gamma(\theta)$ experiments; ambiguities and uncertainties which may arise resulting from the interpretation of the a_2 and a_4 values can often be eliminated by this type of analysis.] We have assumed, unless it was otherwise stated, that the authors' given uncertainties on a_2 and a_4 correspond to one standard deviation (that is, a 67% confidence limit).

In cases in which the coefficients a_2 and a_4 were not given, the corresponding entries have been left blank.

In several cases, when δ is large, only a lower limit on the magnitude of δ may be determined. These results are indicated, for example, as $|\delta| > 10$ (see Explanation of Table). In other cases, the sign may be determined, but the magnitude may be uncertain (again this occurs when δ is large). An example of this type would be $\delta = +10^{+\infty}_{5}$; this indicates that the a_2 and a_4 values suggest $\delta = +10$, but that the uncertainties permit δ to take any positive value $\geq +5$.

In Table II are presented the recommended values of the E2,M1 mixing ratios, derived from the data given in Table I. Wherever appropriate, in computing the value of δ presented in Table II, we have taken a weighted average of the angular distribution or correlation coefficients. In most cases the data from various references for a given transition were sufficiently consistent internally to permit the calculation of a weighted average. For the cases of transitions for which the various results were inconsistent with one another, preference was given to more recent data obtained with Ge(Li) detectors. For those few remaining cases in which, in the opinion of the compiler, reasonably strong support exists for either of two conflicting values, the value shown is that for which some preference, however slight, exists; these cases are designated by an asterisk

References for Introduction

- S. A. Moszkowski, in Alpha-, Beta-, and Gamma-Ray Spectroscopy (K. Siegbahn, ed.) p. 863, Vol. 2, North-Holland, Amsterdam (1965)
- J. H. Hamilton, in Angular Correlations in Nuclear Disintegration (H. van Krugten and B. van Nooijen, eds.) p. 181, Rotterdam University Press, Groningen, Netherlands (1971)
- 3. V. R. Potnis and J. N. Rao, Nucl. Phys. **42**, 620 (1963)

- 4. T. Tamura and H. Yoshida, Nucl. Phys. 30, 579 (1962)
- D. P. Grechukhin, Yad. Fiz. 10, 94 (1969); Sov. J. Nucl. Phys. 10, 55 (1970).
- 6. K. Kumar, Phys. Lett. B 29, 25 (1969)
- 7. E. Bodenstedt, in *Radioactivity in Nuclear Spectroscopy* (J. H. Hamilton and J. C. Manthuruthil, eds.) p. 905, Gordon & Breach, New York (1972)
- 8. E. R. Reddingius, J. F. M. Potters, and H. Postma, Physica (Utr) 38, 48 (1968)
- 9. K. S. Krane, Phys. Rev. C 8, 1494 (1973)
- 10. A. Bohr and B. R. Mottelson, *Nuclear Structure*, p. 381, Vol. 1, Benjamin, New York (1969)
- K. Alder and R. M. Steffen, in *The Electromagnetic Interaction in Nuclear Physics* (W. D. Hamilton, ed.) North-Holland, Amsterdam (1975)
- 12. T. Yamazaki, Nuclear Data 3, 1 (1967)
- 13. K. S. Krane, Nuclear Data Tables 11, 407 (1973)
- 14. L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys.

- **25,** 729 (1953)
- M. Ferentz and N. Rosenzweig, ANL-5324 (1955), available from National Technical Information Service, U.S. Dept. of Commerce, Springfield, Va. 22151; R. S. Hager and E. C. Seltzer, NUCLEAR DATA 4, 397 (1968)
- 16. S. Ofer, Phys. Rev. 114, 870 (1959)
- 17. H. J. Rose and D. M. Brink, Rev. Mod. Phys. 39, 306 (1967)
- 18. A. J. Ferguson, Angular Correlation Methods in Gamma-Ray Spectroscopy, North-Holland, Amsterdam (1965)
- 19. K. S. Krane, R. M. Steffen, and R. M. Wheeler, Nuclear Data Tables 11, 351 (1973)
- K. S. Krane and R. M. Steffen, Phys. Rev. C 2, 724 (1970)
- 21. H. W. Taylor et al., NUCLEAR DATA TABLES 9, 1 (1971)
- 22. E. der Mateosian and A. W. Sunyar, Atomic Data AND Nuclear Data Tables 13, 407 (1974)

EXPLANATION OF TABLE I

INITIAL LEVEL E(KEV) J	The energy in keV and spin-parity assignment of the initial state of the gamma-ray transition
FINAL LEVEL E(KEV) J	Same as above for final state
GAMMA-RAY E(KEV)	The energy in keV of the gamma-ray transition $E_{ m gamma} = E_{ m initial} - E_{ m final}$
ALIGNMENT	The means of obtaining the alignment of the initial level or of detecting the alignment of the final level
122, etc.	In this case the energy in keV of the coincident radiation is listed (angular correlation)
НТ	By application of a magnetic field H at low temperatures (cryogenic orientation)
QT	By electric quadrupole interactions at low temperatures (cryogenic orientation)
(A,A), (O,O) (P,N), etc.	Incoming, outgoing particles (nuclear reactions) A alpha (4He) P proton N neutron O 16O

A2,	A4

The coefficients a_2 , a_4 with the uncertainties in the last digit or digits indicated in parentheses

DELTA

The E2,M1 mixing ratio δ , with the uncertainty limits indicated in parentheses, using the following notation (00 is the symbol for ∞)

$$\begin{array}{lll} + 10 \ (1) & \delta = + 10 \pm 1 \\ + 10 \ (+ 2, - 1) & \delta = + 10^{+2} \\ - 10 \ (+ 2, - 1) & \delta = -(10^{+2}_{-1}) \\ + 1.0 \ (+ 10, - 5) & \delta = + 1.0^{+1.0}_{-0.5} \\ + 10 \ (+ 00, - 5) & \delta = + 10^{+\infty}_{-5} \\ 10 \ (00) & |\delta| \ge 10 \end{array}$$

Note that a positive sign indicates that the phase of δ has been explicitly determined; no sign indicates no phase determination

METHOD

J

Method used

Nuclear orientation by technique not using coincident emitted radiation; for example, nuclear reaction or low-temperature techniques

G

Gamma ray detected using solid-state Ge(Li) detectors

N

Gamma ray detected using NaI or equivalent scintillation detector

P E Gamma-ray polarization measurement

Conversion electron detected

For example:

 $GG = \gamma \gamma(\theta)$ with 2 Ge(Li) detectors

NG = $\gamma \gamma(\theta)$ with γ_1 detected in a NaI detector and γ_2 in a Ge(Li) detector

 $JG = J\gamma(\theta)$ with Ge(Li)

NNN = 3 gamma rays measured in cascade using NaI detectors

SAMPLE ENTRIES

Line 1 of page 1 of Table

69Aq01 measured the angular correlation between the 689- and 122-keV gamma rays in 152 Sm using a Ge(Li)-NaI combination. They reported $a_2=-0.082\pm0.015$ and $a_4=0.370\pm0.100$, from which is deduced $|\delta|>36$ for the 689-keV transition

Line 2 of page 1 of Table

69Fr01 measured the angular distribution of the 689-keV transition following Coulomb excitation by 16 O. They used a Ge(Li) detector and reported $a_2 = -0.131 \pm 0.090$ and $a_4 = -0.500 \pm 0.150$, from which is deduced $\delta = +67^{+\infty}_{-54}$ for the 689-keV transition

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

				-		Ŭ				•		
NUCLIDE	E(KEA) P FEAET INILIUT	FINAL LEVEL E(KEV)		GAMMA- RAY E(KEV)	ALIGN- MENT	A2	A4	•	DEL	. ТА	METHOD	REFERENCE
SM 152	911 24	122	2+	689	122 0.0 122 122 122 122	082 (15)131 (90)375 (30)371 (20)118 (13)125 (55)	500 .377 .390 .325	(70) (40) (24)	36 +67 25 29 +17 +15 +13	(20) (+20,+54) (30) (20) (+5,-3) (+80,+8) (+28,-5)	GN JG GG EG EG JG	69AQ01 69FR10 70BA32 70HE29 70RAZF 71RU05 72MC30
					122	163 (491 .320 (73)			+8 +8	(+9 ,-3) (+6 ,-3)	GN JG	73KA05 740004
SM 152	1026 44	367	4+	65 6	0+0 245 245 0+0	.014 (130 196 (291 150 (441 -120 (100	.181	(53) (70)	+2.9 +3.1 +8 +2.1	(+19,-9) (+15,-14) (+00,-7) (3)	76 66 76	69FR10 70RAZF 718A54 740004
SM 152	1687 24	12?	2+	·965	122 122 122 122 0,0 122 122 122 122 122 122 0,0	020 (20) .023 (35) .049 (30)035 (23)027 (5)029 (8) .006 (2)014 (10)008 (5)010 (5)010 (5)	.375 .312 .310 .550 .320 .280 .322 .306 .327	(50) (80) (60) (70) (22) (20) (5) (10) (12)	-7.7 -6.1 -18 -27 -8.1 -16 -9.2 -12 -11 -3.8	(+72,-34) (+40,-20) (+19,-12) (+22,-6) (+55,-11) (+55,-11) (+5,-4) (3) (2) (2) (1) (18) (+8,-7) (+03,-15)	2	570F06 59L148 60DE16 69AQ01 69FR10 70BA32 70HE29 70RAZF 70RW09 71LA11 72MG30 73KA05 74D004
SM 152	1235 34	367	4+	869	245 245 245 1245 245 245 245 245 245 245 245	.141 {34 .187 (26 .258 {24 .133 {16 .160 (9) .151 (6) .126 (13 .144 (8) .088 (8)	235 .167 .150 .173 190 167 189	(46) (64) (30) (33) (20) (13) (21) (13)	-6.6 -9.1 -6.2 -7.1 -5.6 -5.0 -6.1 -7.6 -6.4	(+28,-16) (+18,-13) (+8,-7) (+13,-9) (4) (7) (3) (+11,-8) (+6,-4) (+16,-12)	N E N E G G G G G G G G G G G G	59L148 60NA09 63B113 70BA32 70HE29 70LAZL 70RAZF 70RU09 71BA54 73KA05
SM 152	1235 3	+ 122	2*	1113	122 122 122 122 122 122 122 122 122 122	143 (4)169 (24250 (6)242 (7)264 (7)250 (8)291 (8)292 (8)232 (5))064)043 380	(22) (23) (16) (14) (16) (5) (15) (15)	-15	(+20,-4) (+51,-10) (+00,-10) (+5,-3) (+33,-21) (+3,-2) (+36,-25) (+10,-9) (+9,-7) (+6,+5)	NN NN NN GG G G G G G G	570F06 59L148 60DE16 69AQ01 70BA32 70HE29 70RAZF 70RU09 71LA11 73KA05
SM 152	1372 4	+ 367	4+	1005	0,0 122 122 245 245 245 245 122 0,0	360 (60 .005 (53 040 (30 .011 (12 008 (16 .010 (60 251 (99) .067) .130) .100) .102) .106	(100) (91) (60) (30) (24) (100) (146)	-13 -3.0 -4.5 -6 -2.8 -3.3 -2.8	(+00,-8) (+20,-9) (+25,-12) (+19,-3) (+3,-2) (+5,-4) (+22,-9)	90 90 90 90 90 90 90	69FR10 70BA32 70HE29 70LAZL 70RAZF 71BA54 73KA05 74D004
SH 152	1530 2	- 1041	3-	489	122	105 (15	324	(37)	-5.7	(6)	GG	703A32
GD 152	931 2	+ 344	2+	596	344 344	.282 (61 .172 (11		(104) (19)	-2.0 -3.05	(+5 ,-4) (14)	GG GN	708A32 72KA45
GO 152	1109 2	+ 344	?+	765	344	222 (17	.321	(39)	+4.3	(+7 ,-6)	GN	72KA45
GO 152	1318 2	+ 344	2+	974	344	149 (34	.114	(57)	+0.58	(7)	GN	72KA45
GD 152		+ 755	4+	679	411 344	.014 (30 .003 (74		(37) (128)	24 9	(00)	NN GG	655C06 708A32
GD 152	1434 3	+ 344	2+	1390	344 344 344 344	288 (45 168 (13 201 (16 243 (19	068 018		-0.29 -0.12 -0.17 -0.22	(+3 ,~2) (2)	N N N N N N G G	60DE16 61GR28 65SC06 708A32
GO 152	1941 2	1 31 9	2+	623	344	-1.010 (40	10)		+0.7	(+8 ,-5)	'ne	72KA45

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIDE	INITIAL LEVEL F(KEV) J	E(KEA) 7 FEALT EINVT	GAMMA- RAY E (KEV)	ALIGN~ MENT	A 2	Α4	DELTA	METHOO	REFERENCE
G7 154	916 2 +	123 2+	5 92	123 123 123 123 123	~.154 (26) ~.150 (43) ~.040 (109) ~.145 (35) ~.144 (22)	.235 (41) .369 (56) .305 (55) .311 (40)	+12 (+11,-4) +9 (+11,-3) +1.75 (+30,-10) +10 (+11,-4) +10 (+5,-3)	GN GN EN GN GN	67HA35 69HA01 71MA65 71RU05 71WHC1
69 154	946 2+	123 2+	973	722 723 123 123 123 722 123 722 123 722 123 722	133 (24)083 (15)040 (55)012 (14)018 (21)126 (16)012 (16)012 (12)097 (4)017 (13)002 (12)113 (15)366 (11)	039 (37)007 (20) .278 (94) .324 (1) .302 (46) .304 (2) .303 (42) .322 (21) .094 (4) .330 (23) .323 (1)	-4.2 (+25,-14) -30 (+00,-17) -6.6 (+74,-19) -11.8 (+30,-21) -5.1 (+21,-14) -5.9 (+16,-11) -10.2 (+27,-18) -8 (1) -9.7 (+16,-12) -13.9 (+30,-20) -9.7 (+14,-13) -13.9 (+13,-15) -10.9 (+4,-2)	NN	58H173 60DE16 60DE16 67HA35 69HA01 69VA09 70TU09 71LA11 71LA11 71HH01 72G035 730901
60 154	1948 4+	37.1 4+	677	24 5 246	168 (20) 200 (23)	.178 (29) .153 (39)	+4.4 (+46,-17) +2.6 [5]	G N	71HHQ1 73CO37
GB 154	1131 3+	371 4+	757	248 248 248 248	.179 (13) .156 (15) .161 (4) .185 (21)	154 (21) 186 (37) 174 (5) 157 (25)	-4.9 (4) +5.9 (7) -5.6 (2) -4.7 (6)	NN GN GN GG	69VA09 70RU09 71WH01 72G035
GD 154	1131 3+	123 24	1035	591 123 123 123 123 123 123 123 591	868 (23)181 (72)161 (11)205 (25)294 (11)316 (10)239 (18)248 (16)	.011 (32) 311 (37) 09. (21) 026 (50) 076 (15) 082 (10) 073 (26) 088 (36)	-18 (+13,-5) 11 (29) +8.0 (+14,-9) 30 (00) -8.4 (+11,-3) -6.7 (7) -22 (+24,-7) -18 (+13,-5) -9.5 (+76,-40)	NN NN GN GN GG GG GC	58HI73 60DE16 67HA35 69VA09 70RU09 71LA11 71HH01 72G035 730801
G9 154	1265 4+	371 4+	3 G.S	248 248 248	.003 (28) 037 (10) 035 (15)	.098 (98) .162 (13) .114 (19)	-3.0 [+8,-5] -4.4 [5] -4.2 (+13,-5]	NN GN GN	69VA09 71WH01 73C037
GD 156	1154 2+	89 24	1J65	512 512 39 376 39 512 39	011 (1))030 (2))060 (2))029 (55)120 (79)063 (10)035 (6)110 (40)	.000 (21) .310 (21) -349 (97) .216 (191) .307 (10) .337 (12) .017 (40)	+7.4 (+22,-14) +5.6 (+22,-12) -5.6 (+10,-7) 2 (JJ) 5 (GU) -18 (+21,-6) -18 (3) -6.5 (+79,-26)	NN NN ND ND ND ND ND	61CL02 628A33 628A38 67KE15 67KE15 70RU09 72HA17 75UL01
Gn 156	1129 2+	89 24	1340	8.8	.054 (43)	·254 (96)	-5.9 (+29,-14)	GN	72HA17
G7 156	1249 3+	288 4+	960	262 HT	.257 (93) .375 (38)	.138 (151) .301 (30)	+5 (+20,-3) -11.7 (+53,-27)	JG JG	67KE15 75UL01
GD 156	1249 **	89, 2+	1154	39 252 HT	235 (131) .033 (60) .028 (9)	112 (162) .020 (30) 015 (9)	6 (00) -13 (+00,-5) -11.8 (+7,-6)	NG GN JG	67KE15 67KE15 75UL01
GD 156	1355 4+	38 å . 4+	1566	199 199	184 (79) 030 (27)	.196 (105) .134 (64)	3 (0)) -4.0 (+16,-9)	NG GN	67KE15 75UL01
GO 156	1511 4+	1240 3+	262	535 ∃T	59 (112) 161 (9)	.002 (198) .035 (9)	5 (00) +9.2 (+7,-5)	NG NG	67KE15 75UL01
60 156	1511 4+	. 299 4+	1223	199 535 QT 199 535 199 199	.040 (17)110 (2) -134 (5) -057 (29)142 (6) -080 (5) -053 (15) -268 (4)	.110 (21) .001 (10) .108 (31) .001 (1) .121 (6) .126 (35) 011 (5)	-2.3 (3) -2.5 (+25,-9) -1.15 (13) -2.1 (4) -1.68 (17) -1.83 (6) -2.07 (+14,-13) -2.5 (+8,-5)	NN NN NG NN NN GN JG	590F11 590F11 62L001 67KE15 68HE17 68HE17 75UL01
GO 156	1522 5+		117	356	.026 (56)	.235 (185)	+0.15 (+10,-9)	GN	75UL01
GB 156 GB 156	1622 5+ 1622 5+		1038	199	. 492 (76)	.152 (176)	-7 {+21,-3 }	GN	75UL01
			1333	199 #T	352 (67) .348 (12)	126 (104) .382 (12)	-3.5 (+26,-14) -3.8 (2)	JC NC	57KE15 75UL01
G7 196	1965 1+	1154 ?+	312	1154 1154 1154 39	145 (23) 180 (23) 196 (13) 045 (7)	310 (20) 002 (10) 012 (13)	-9.092 (19) -0.062 (18) -0.048 (-8) -0.035 (30)	NN NN NG GN	61CL02 62AA38 70RU09 72HA17
GD 156	1966 1+	89 2+	1977	99	583 (28)	126 (34)	+0.41 (+8 ,-6)	GN	72HA17
69 156 60 156	2027 1+	89 2+ 49 2+	1938	39	.321 (21)	198 (27)	-0.55 (3)	G N	72HA17
90 T.99	capt 1*	A9 24	2098	3 3	.273 (23) .581 (22)	416 (?6)	-0.48 (3) -1.2 (2)	N N G N	529A38 72HA17

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

					•			•				-		
NUCLIDE	INITIA LEVEL E(KEV)		FINAL LEVEL E(KEV)		GAMMA- RAY E (KEV)	ALIGN- MENT	A 2	!	Δι	•	DEL	.TA	METHOD	REFERENCE
ER 168	821	2+	80	2+	7 41	720 726 0.0	.068 .013 181	(1)	011 .001 423	(2)	6 +65 19	(00) (+00,-26) (00)	NN NN JG	64RE05 71LA11 72D001
						A,A 720 80	.036 050		010 .326		70 5 -28	(00) (00) (+22,-8)	66 66 16	72MC30 73QU01 73QU01
ER 165	3 96	3+	264	4+	6 32	184 194	004 .180		.170 177		+37 -4.8	(+11,-7) (3)	EN GG	71HA50 73QU01
ER 168	896	3+	8 0	2+	816	198 198	019	(4)	.000		7 -60	(00) (+00,-30)	NN EN	64RE05 71HA50
ER 168	995	4+	264	4+	731	80 194	157 180		091		+16.8	(+32,-25) (+29,-7)	GG EN	73QU01 71HA50
24 255	,,,	, .	20.	•		0+0 134 99	413 130 120	(64) (12)	557 .160 .J02	(96)	+5 +25 +50	(+13,-3) (+00,-13) (+00,-33)	JG GG GG	720001 730001 730001
ER 168	1541	3-	1994	4-	447	198	.007				-0.15	(1)	NN	73KI09
ER 170	932	2+	79	5+	853	0, 0 A, A	179	(42)	509	(70)	-57 13	(+00, -36)	ne ne	72D001 72MC30
ER 170	1101	4+	26 1	4+	840	0,0	306	(73)	623	(113)	9	(99)	JG	720001
ER 170	1124	4+	261	4+	863	0.0	416	(121)	661	(205)	- 5	(+00,-3))e	720001
¥8 172	1172	3+	260	4+	912	181 191	.39u .465		16ü	(40)	-1.2 -1.7	(+7 ,-4) (2)	NN NE	65GU01 69VU01
YB 172	1172	3+	79	2+	1094	79	240	(32)	-,006	(24)	-0.22	(4)	NN	63ST09
						79 91	281 .348	(16)	949 .077		-10 -3.7	(+3,-2)	NN NN	65GU01 65GU01
						233	083	(16)	.019	(26)	-3.6	(+6 ,-5)	NN	65GU@1
						79 91	413 .420		042 .012		-3.3 -3.14	(2) (+16,-14)	GN GN	678L01 678L01
						203	172	(17)		(24)	-4.0	(+9 ,-6)	G N	678L01
						79 79	136 045		.005	(3)	-2.8 -2.3	(+27,-7) (+4,-3)	NE PN	67KL01 67WE08
						79 79	123 386		081	(161	-3.3 -3.8	(41 (+5 ,=3)	NE NN	69VU01 71WA03
						91	.354			(28)		(+15,-14)	NN	71WA03
¥8 172	1263	4+	260	4+	1903	131 131	100 .250		-130	(20)	-17 13	(30)	NN NE	65GU01 69 V U01
YB 172	1376	5◆	260	44	1115	181	. 430	(860)			3.3	(00)	NE	691/01
YB 172	1466	2+	79	2+	1387	79					-9.3	(+50,-25)	GG	70LAZL
¥8 172	1477	2+	79	2+	1398	79					+1.0	(+00,-6)	66	70LAZL
Y8 172	1 55 0	3+	79	2+	1471	79					-5.6	(+30,-20)	GG	70LAZL
YB 172	1609	2+	79	2+	1530	79					+8.0	(+20,-15)	GG	70LAZL
¥8 172	1663	3+	79	2+	1584	79	130	(15)	.002	(32)	-0.07	4 (20)	NN	63ST09
YB 172	2073	4+	1263	4+	810	1394 181 91	146 350 380	(100)	009	(11) (50)	+0.12	(+50,-13) (13) (+13,-17)	NN NE NN	65GU01 69VU01 714A03
WB 430	0.7.7.7		4470	3+	2.04	1094		(22)	020			9 (38)	N.N	635709
YB 172	2073	4+	1172	3*	901	79 1094		(14)	036		-9.38		NN NN	63ST09 65GU01
¥8 174	1519	6+	526	6+	392	272 272		(10) (15)		(10) (22)		(+13,-12) (+17,-14)	NN NG	71GI06 74SC15
HF 174	901	2+	91	2+	909	A,N	067	(40)	044	(53)	-11	(+00,-7)	Je	71EJ01
HF 174	1963	4+	298	4+	765	A , N	290	(30)	~.085	(40)	-2.5	(+13,-7)	JG	71EJ01
HF 174	1308	6+	609	6+	6 9 9	A , N	198	(63)	075	(50)	-0.9	(2)	JG	71EJ01

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIDE	INITIAL LEVEL E(KEV) J	FINAL LEVEL E(KEV) J	GAMMA- RAY ALIGN- E(KFV) MENT	AZ	A 4	DELTA	метноо	REFERENCE
GD 198	1188 2	87 24	+ 11 03 83	044 (56)	.260 (66)	9 (38)	NN	685004
D¥ 169	966 24	÷ 87 21	299 41 239 392 239 397 299 299 37 299 37 299 37 299	045 (13)126 (26) .310 (45)116 (37)062 (16)120 (23)081 (6)043 (6)124 (22)079 (3)092 (10)126 (21)088 (15)098 (15)098 (15)099 (11) .012 (17)017 (42)030 (4)	J2((2() .015 (20) .015 (20) .J11 (19) .J09 (14) .J02 (9) .J27 (6) .J14 (22) 004 (3) .J00 (10) 008 (11) .J25 (3) J26 (22) 015 (17) .J24 (25) .J26 (26) .J26 (26)	75 (00) -7 (+6,-3) -6.1 (+23,-14) -6 (+17,-3) -23 (+00,-11) -7 (+4,-3) -14.3 (+39,-25) -22 (+5,-3) -6 (+7,-2) -15.7 (+18,-14) 30 (00) -6.4 (+27,-16) -13 (+63,-33) -9.7 (+25,-17) -7.9 (+30,-14) -16.1 (+15,-13)	NN	580F01 59AR59 60J012 60KL01 62SI06 63MI07 65GU02 65GU02 65GU05 65GU02 65RE04 67JA04 71KR02 71KR02 71KR02 73GA10
D¥ 160	1049 3+	284 44		088 (5) .065 (5)	004 (6) .010 (4)	-16.9 (+33,-24) -18 (+8,-4) -4.7 (+50,-17)	96 96	73GA10 74F027 70LAZL
			97 HT	.140 (133) .049 (6)	.116 (130) 014 (4)	-7 (+35,-4) -7,7 (+7,-6)	ne Ge	71KR02 74F027
DY 160	1049 34	· 87 24	962 HT 215 215 37 215 97 215 215 215 37 HT	.301 (157) .379 (16)010 (20)070 (31)005 (20)109 (42) .380 (53)247 (44) .380 (52)	016 (21) .001 (10) .008 (34)113 (105) .000 (50)057 (33)055 (32)	-4,5 (+27,-13) -5,5 (+11,-3) -20 (+30,-8) +5,9 (+16,-12) -18 (+20,-6) +8,3 (+65,-26) -9,0 (+28,-17) -16 (+00,-9) -16 (+4,-2)	JN NN NN GN GG GG GG	60J012 63MTD7 65GU85 65RED4 67JAD4 67JAD4 70LAZL 71KRD2 74FO27
DY 162	888 2+	81 24	908 A,A	135 (62)	557 (95)	-7 (+00,-6) 20 (90)	ne ne	70ENZX 720001
DY 162	1061 4+	256 41	795 0,0	564 (92)	379 (132)	-2.4 (+47,-10)	Je	720001
0 Y 164	76? 2+	73 24	· 689 A.A			-8 (+00,-6)	16	70ENZX
ER 166	78 6 2+	81 2+	785 0,0 A,A	֥242 (42)	464 (68)	-27 (+33,-12) 21 (60)	ne ne	720001 724G30
ER 166	A59 3+	81 2+	779 31			10 (09)	NN	618020
ER 165	956 44	265 4	691 0,0	465 (63)	546 (93)	-3.3 (+30,-12)	Je	720001
ER 166	1074 5+	545 6+	530 290	463 (91	101 (16)	-85 (+08,-43)	NN	65RE02
ER 166	1374 5+	265 4∗	310 134 4T 134 712 134 712 134 134	190 (60) .071 (14) 084 (19) .013 (3) 146 (4) .013 (4) 116 (5) 169 (7)	.010 (60) .468 (22) 046 (10) .004 (5) 042 (6) .007 (5) 030 (5) 059 (2)	-11 (+00,-6) -26 (+11,-5) +16 (+12,-5) -11 (+20,-5) -36 (+12,-6) +19 (+40,-20) -16.4 (+31,-26)	N N J N N N N N N N N N N N G N	58GR43 59P062 63GE09 63GE09 65RE02 72CA42 72MI21
ER 166	1376 7+	545 6 +	331 290 290 290	266 (19) 111 (?) 117 (?)	043 (24) 047 (11) 051 (3)	-5.9 (+14,-9) -70 (+00,-30) -42 (+25,-13)	NN NN GN	63GE09 65RE02 72MI21

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIN	INITIAL E(KEV) J	FINA LEVE F(KEV)	L	GA (MA- RAY E (KEV)	ALIGN- MENT	A?	Δ4	DELTA	METHOD	REFERENCE
HF 176	1227 2	. 84	2+	1139	4 , N	383 (130)	.08((140)	4 (60)	JG	73HA07
HF 176	1391 4	+ 39 n	4+	1161	5 , N	200 (130)	36u (123)	6.7 (50)	ne	73HAG7
HF 178	1175 2	9.8	2+	1382	A, A 93	110 (200)	.756 (286)	11 (60) ? (00)	JG GN	71VAQ6 72LI03
HF 178	1275 2	93	2+	1183	93	uf6 (51)	025 (57)	+0.41 (+9 ,-7)	NN	68NI03
					43 43	064 (29) 054 (23)	.363 (431 .341 (33)	+0.43 (+4 ,-5) +0.410 (36)	GN GN	70HA43 72LI03
HF 178	1496 24	93	2+	1433	93 93 93	.451 (35) .494 (15) .505 (14)	.122 (40) .143 (20) .118 (16)	-1.0 (+2 ,-3) -0.5 (1) -0.73 (5)	NN SN GN	68NI03 70HA43 72LI03
HF 183	1281 2	, q?	2+	11 ^7	Δ,Δ			+13 (+22,-6)	JG	74VA09
W 142	1221 2	105	2∳	1121	152 68 130 68 130 152 P,P 130 4T 68	010 (14) .039 (8)138 (15)147 (51)981 (5)021 (16)023 (25)107 (14) .022 (8)006 (6)	.013 (19) .066 (10) .316 (22)002 (1) .302 (1) .302 (1) .317 (11) .326 (16) .047 (11) .046 (40)	+4 (+16,-2) +5,0 (+6,-4) +12 (3) -5 (+7,-3) +230 (+00,-99) +2 (+4,-1) +16 (+15,-6) +23 (+21,-7) +21 (+19,-6) +12 (+2,-1)	NN NN NN NN NN NG NG OG GG	60HI02 53EL02 63EL02 65RE12 65RE12 55RE12 71HI08 72HE10 75CU01
W 192	1257 2	100	2+	1157	P,P 130 4T	154 (33) .441 (99) 011 (40)	.234 (136) .049 (47)	+3.59 (6) -1.0 (+6,-4) -0.62 (+35,-20)	JG GG JG	714108 724E10 72KR05
W 192	1331 3	329	4+	1112	229 11	.111 (12) .078 (22)	.172 (1) .031 (25)	-8.9 (+16,-13) -8.9 (+3),-18)	NN JG	659E12 72KR05
W 192	1331 3	• 10g	24	12 31	100 222 108 222 HT 110	.837 (12)012 (14)041 (12)047 (11) .050 (9)228 (20)	032 (18) 001 (20) 331 (1) 336 (13) .327 (14) 079 (20)	+3.1 (2) 14 (00) +4.8 (5) 24 (00) -60 (+99,-20) -32 (+0),-15)	NN NN NN NN JG GG	60HI02 60HI02 65RE12 67MA31 72KR05 75QU01
H 182	1374 3	1239	2-	85	НТ 58	125 (17) .1(6 (18)	025 (21) .J04 (12)	+0.30 (2) +0.31 (5)	JG	72KR05 75QU01
W 192	1487 4	- 1374	₹=	114	НТ 192 152	162 (15) 160 (90) 080 (15)	.018 (17) .090 (120) .005 (15)	+0.31 { 2} +0.9 {+17,-6 } +0.31 { 5}	JG GN GG	72KR05 73SE14 75QU01
W 182	1553 4	1487	4-	66	114	.981 (13)	.030 (30)	+0.15 (15)	GG	750001
H 192	1553 4	- 1374	3~	179	192 HT 152 152	150 (10) 504 (16) 165 (12) 153 (9)	035 (25) .006 (7) .018 (22) 005 (12)	+0.56 (+8 ,-5) +1.92 (+13,-7) +G.68 (+22,-10) +0.96 (40)	NN JG GN GG	63EL02 72KR05 73SE14 75QU01
W 154	903 2	+ 111	2+	7 92	111 111 111 111 P.P 4T 111 HT	265 (8) 327 (3) 38 (11) 336 (8) 114 (14) 043 (7)	.327 (9) .397 (15)	-60 (+00,-22) -15.0 (+10,-8) -20 (+7,-5) -18.7 (+46,-31) -19 (+11,-5) -16.65 (85) -22.0 (+60,-35) -13.2 (12) -16.1 (3)	NN NN E B D D D D D D D D D D D D D D D D D D	608007 64K013 69ZU91 70D008 71M108 728U35 73CA05 73HU06 73KR01
W 154	1006 3	+ 354	4+	5 4 2	253	.116 (19)	185 (29)	-8.5 (+21,-14)	GG	73CA08
					4T 4T	.095 (8)	.037 (11)	-6.7 (18) -8.5 (7)	ne ne	73HU06 73KR01
W 184	1906 3	• 111	2+	3 95	111 111 111 4T HT	322 (29) 197 (57) 263 (13)	064 (36) 057 (48) 063 (20)	-6.3 (+22,-14) 12 (00) -13.1 (+37,-21) -17.5 (12) -13.2 (9)	NN DO DC DC	6080J7 700008 73CA08 73HU06 73KR01
W 184	1122 2	+ 111	2+	1311	4 T	428 (57)	265 (88)	+2.3 (+7 ,-5)		73KR01
н 194	1135 4	ŧ 154	4+	771	НŤ НТ	.279 (161	016 (26)	14 (00) -6.3 (+32,-20)	JG JG	73HU06 73KR01
H 134	1346 2	+ 111	2+	1275	P• P HT	.050 (60) .091 (41)	.075 (62)	+6 (+6 ,-2) 18 (39)		71MID8 73KR01

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIDE	INITIAL LEVEL E(KEV) J	FINAL LEVEL E(KEV) J	GAMMA- RAY ALIGN- E(KEV) MENT	AZ	A 4	DELTA	METHOO	REFERENCE
PT 134	649 2+	163 2+	486 163			+18 (+00,-13)	GG	74CA13
PT 184	940 3+	163 2+	486 163			+9 (+00,-5)	GG	74CA13
W 186	737 24	122 21	515 A,A	140 (15)		-11.1 (+35,-24)	Je	71HI08
H 186	1285 24	122 2+	1164 A.A	019 (50)		+13 (+79,-6)	1G	714108
05 196	767 2+	137 2+	630 137 137 137 137 137 0,0 137 137	020 (10)081 (7)070 (10)060 (10)070 (24)165 (40)129 (17)ut1 (52)041 (51)034 (48)	.180 (3C) .320 (2C) .310 (14) .286 (3U) .305 (38) 492 (7C) .332 (12) .302 (49) .184 (5) .202 (55)	-13 (+3,-2) 60 (00) 50 (00) -45 (+55,-17) 24 (00) 25 (00) +13.5 (+65,-35) -19 (+22,-4) -21 (3) -18 (+00,-10)	N N N N N N N N N N J G N N G G N N G G	57LI35 59KI44 618008 61LE06 63VE11 69CA19 69SG11 71KR01 72NA32 72RAYQ
05 185	910 3+	137 2+	773 137	269 (38)	~.016 (51)	-12 (+17,-5)	GG	71KR01
OS 189	633 2+	155 ?+	478 155 155 155 155 0,0 155 P,P	038 (64) 055 (11) 079 (54) 033 (10) 157 (40) 155 (14) 357 (24)	.353 (18) .289 (27) .402 (83) .317 (20) 437 (60) .258 (21)	-19 (+00,-11) -34 (+36,-11) 25 (00) -17 (+5,-3) 30 (00) -12 (+3,-2) 17 (00)	ии ии ии Эб Эб Эб	56P013 59KI44 60AR01 63YA01 69CA19 71KR01 71MI08
05 198	790 3+	155 ?₩	635 155 155	430 (175) 312 (33)	.048 (210) 003 (19)	-8 (+12,-3) -7 (+3 ,-2)	NN GG	63YA01 71KR01
05 188	1843 1+	633 Z +	1216 633	209 (13)	.050 (14)	-0.036 (11)	NN	69YA02
PT 188	586 Z +	266 2+	340 P,N			-54 (+39,-17)	JG	724004
0S 19N	55 7 Z +	197 2+	371 187 0,0 P,P 187 187 P,P 187 615	.028 (12) +.275 (50) 675 (43) .013 (10) 156 (18) 010 (20) 043 (9)	.156 (16) 469 (70) .296 (15) .286 (30) 004 (13)	-14 (+11,-4) -10.8 (+67,-33) -11 (3) -6.3 (+17,-11) -9.5 (+11,-9) -8.6 (+28,-17) -11.4 (+46,-26) -9 (+8,-3)	NG JN NG OG OG GG	63YA01 69CA19 69R003 69SA18 71KR01 71MI08 74HE08
08 191	755 3+	557 2+	198 557	320 (33)	320 (40)	-6.4 (+24,-14)	GG	74HE08
05 190	755 3+	543 4+	248 361	.074 (20)	170 (46)	-17 (+11,-5)	GG	74HE08
OS 190	7 55 3 +	187 2+	569 197 187 187	+.208 (51) 288 (18) 282 (15)	964 (64) .008 (23) 050 (20)	+14 (+00,-7) -9.0 (+26,-16) -9.8 (+24,-17)	EN GG GG	65YA01 71KR01 74HE08
05 190	955 4+	549 4+	407 361	010 (20)	.130 (40)	-3.3 (+7 ,-5)	GG	74HEQ8
08 193	1163 4+	756 3+	407 569	.049 (11)	.096 (17)	-5 (+27,-3)	GG	74HE0 5
08 190	1204 5+	548 4+	656 361	200 (30)	050 (40)	-9 (+7 ,-3)	GG	74HE08
05 198	1584 4-	1387 3-	197 829	119 (39)	096 (5()	-2.0 (+6 ,-5)	GG	74HE08
PT 199	598 2+	296 2+	302 P,N			+6.8 (+30,-12)	٦e	72Y004

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIDE	INITIAL LEVEL E(KEV)	j	FINAL LEVEL E(KEV)	J	GAMMA- RAY E (KEV)	ALIGN-	A 2	!	A 4	,	DEŁ	.TA	METHOD	REFERENCE
05 192	489	2+	205	2+	283	0+0 P,P	390		451	(50)	-5.2 -4.7	(+16,-11) (+6,-7)	JN JG	69CA19 69R083
						P,P 201236	261 .180		.130	(30)	-3.0. -3.8	(+9 ,-7) (7)	JG GN	71MI08 758E19
05 192	690	3+	206	?+	4.84	296 206	274 280		073 076		-10.9 -10	(+21,-15) (+7,-3)	NG NG	69GR19 69KH04
						206 HT	384		060		-7.6 -5.8	(+20,-13) (8)	NG JG	709E08 70HI12
						216 216	368 280		378 082		-7.2 -10	(+13,-10) (1)	GG NG	74HE18 75BE19
05 192	690	3+	499	2+	201	нт					1.9	(00)	JG	70HI12
						283 489	.24. 360		.020 030		-3.7 -4.6	(+33,-15) (18)	GG GN	74HE08 758E19
PT 192	612	2+	316	2+	296	316	051	(2)	.091	(1)	+6.7	(5)	NN	67K013
* * * * * * * * * * * * * * * * * * * *				-		316 316	148 152	(13)	.292	1201	+9.6 +9.1	(+24,-15) (+27,-17)	G N G G	68H A4 6 69GR19
						538	.000		.000		+10	(+00,-5)	NG	69KHQ4 69RE06
						НТ 316	177	(18)	092	(38)	+15 +5.5	(+10,-5) (+17,-10)	NE 16	70HI02
						HT 316	154		.313		+6 +8.8	(+3 ,-1) (+6 ,-5)	ee ne	70HI12 73H020
						316	150	(3)	.312	(4)	+9.4	(4)	GG	74HE08
PT 192	921	3+	612	2+	308	61 <i>2</i> 296	094 .000		023 012		+7.1 +3.7	(+12,-8) (+12,-7)	G N G G	68HA46 69GR19
						512	124	(8)	080	(13)	+9.9	(10)	GN	69GR19
						612 612	120 130		027 078		+9.4 +7.6	(+13,-13)	GN NG	69KE11 69KH04
						HT 612	084	(13)	075	(12)	+7.3 +6.5	{ 2} {+6 ,-5 }	JG NG	69RE06 70BE08
						512 41	172		.193	(97)	*11 *7.1	(+00,-6) (6)	NE JG	70HI02 70HI12
						296316	.198		.062		2.5	(+13,-7) (§0)	NNN GG	72SI39 73H020
						296 316	003	(4)	031	(8)	+ 5	(+00,-3)	GG GG	73H020 73H020 74HE08
						316	.025		430	(6)	+9.6	(+28,-19)		
PT 192	921	3+	31 6	2+	605	316 316	480 492		051	(26)	-2.1 -2.3	(+3 ,-2)	NG GN	68HA46 69GR19
						316 316	410 490		070 050		-3.3 -2.0	(3) { 4)	NG GN	69KE11 69KH04
						HT 316	450		965		-1.5 -2.6	(1)	NG NG	69RE06 70BE08
						316	626			(167)	-3.3	(+7 +-4)	NE	70HI02
						НТ 316					-1.5 -3.0	(1) (+12,-9)	NE JG	70HI12 70SE09
						316	507	(13)	045	(19)	-1.9	(2)	GG	74HE08
PT 192	1201	4+	785	4+	417	468 468	12. 120		027 .110	(80)	8 8	(00)	GN GN	69KE11 69KH 0 4
						HT	210			(60)	-4	(+7 ,-3) (+16,-8)	Se Je	70HI12 74HE08
						316 468	150			(66)	+8	(+00,-7)	ĞĞ	74HEQ8
PT 194	622	2+	329	2+	293	329	045			(16)	9	(00) (00)	NN NN	55MA34 628U03
						3?9 645	071 107	(56)	.315	(70) (72)	16 10	(39)	NN	628083
						645 645	050 .083			(11) (15)	+10 +3.0	(3)	N N N N	65KE11 66AG02
						329 329	131 181	(17)		(18) (22)	+7.û +30	(+30,-17) (+39,-11)	NE GN	67AL09 69HA43
						329	127			(10)		(+28,-19)	GG	71KR81
PT '194		3 +	329	2+	594	329	230		160		-30	(+00,-16)	GN	735122
PT 194	1513	2+	329	2+	1194	329 329	420 250			(210) (50)		(+10,-6) (+9 ,-7)	N N G N	65MA10 73SI22
PT 194	1623	2+	329	5 +	1294	329	.370	(73)	.300	(130)	-1.5	(4)	GN	735122
PT 194	1672	2+	329	2+	1343	329	.410	(60)	.140	(12ú)	-3.7	(+9 ,-6)	GN	735122
PT 194	2114	2 +	329	2+	1786	329	133	(114)	. 214	(139)	+0.55	(+29,-19)	NN	65MA10

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIBE	E(KEA) T FEAEF INILIAT	FINAL LEVEL E(KEV)	GAMMA- RAY J ETKEV)	ALIGN- MENT	Δ2	А	4	DELTA	METHOO	REFERENCE
PT 196	688 2+	355	2+ 3.33	355 355 355 355 355 355	.J80 (6 .DL8 (2 .C70 (3 .114 (7 .113 (5 .058 (7	.287 .296 .296 .315	(3) (7) (7) (10)	-4.9 (+30,-14) -9.0 (+43,-21) -5.0 (5) -4.9 (2) -4.03 (12) -5.7 (3)	NK NN NK NE GN GG	53ST05 56P047 63IK01 65PE06 69MA43 71KR01
HG 198	1088 2+	41 ?	2+ 676	412 412 412 412 412 412 412 412 412 412	261 (2 32 u (3 258 (6 260 (1 332 (9 27 u (2 310 (6 315 (1 253 (5 267 (1 290 (1 272 (1 272 (1 272 (1 272 (1	0) .237 41 .180 9) .150 1) .232 3) .190 1) .201 3) .239 1) .107 0) .194 61 .194 9) .143	(22) (7() (26) (13) (20) (10) (9) (7) (17) (23) (6)	+1.90 (+14,-9) +1.5 (+4,-2) +0.9 (+9,-2) +0.90 (+10,-8) +1.6 (2) +1.95 (+14,-3) +1.26 (9) +1.4 (2) +0.87 (2) +1.07 (8) +1.09 (+13,-12) +0.96 (+7,-5) +1.17 (2)	24	53SC19 53SC23 64JE04 64KE02 64SA11 65PE05 66UH01 697A02 719E09 71PA06 71PA06 74KA18
HG 198	1419 3+	412	2+ 1jû8	412 412	.220 (4 .220 (4			+1.3 (+3 ,-4) +1.3 (+3 ,-4)	G N G N	718E09 71PA06
HG 198	1613 2+	412	2+ 1201	412 412	.421 (1 .35u (3	7) .017	(23)	-0.15 (5)	GN GN	718E09 71PA06
HG 199	1837 2+	412	2+ 1421	412 412	.363 (1 .370 (3	7) .021	(24)	-0.17 (3) -0.19 (+5 ,-6)	GN GN	718E09 71PA06
HG 198	1847 3+	1049	44 798	637	.270 (6			-2.8 (+12,-9)	G N	718E09
HG 195	1147 3+	412	2+ 1436	412 412	.854 (3)			+0.17 (5) +0.12 (7)	GN GN	718E09 71PA06
HS 198	1859 2+	412	?+ 1447	412 412	.387 (3	11 .056	(43)	-0.22 (6) -0.29 (+17,-10)	GN GN	719E09 71PA06
HG 198	1901 2+	412	2+ 1490	412	.400 (4			-0.24 (+10,-7)	GN	718E09
HG 198	2361 3+	1048	4+ 1312	412 637	066 (2 066 (2			-0.088(+29,-29) -0.088 (26)	GN GN	718E09 718E09
HG 198	2453 1*	412	2+ 2041	412	215 12	4)631	132)	-0.831 (21)	GN	718E09
HG 200	1254 2+	36 e :	?+ 8 <u>4</u> 6	368 368	.28J (9	3) .326		-2.7 (+14,-9) -2.0 (+10,-5)	GN	71HA09 749R02
HG 200	1574 24	368	2+ 1206	368 368 368 368 358	.063 (4) .065 (3) .078 (6) .100 (4)) -028) -029))030	(7) (9) (60)	+0.244 (6) +0.241 (4) +3.224 (8) +3.20 (5) +0.275 (29)	NN NN NN GN GN	57LI39 60GR06 65SA02 69BE66 71HA09
HG 200	1593 2+	358 2	2+ 1225	368	.260 (4	11 .250	(70)	-2.2 (3)	GN	71HA09
HG 200	1642 2+	368	2+ 1273	368	.240 (3.	J) 010	(40)	*0.014 (49)	GN	71HA09
HC 500	1731 2+	368 3	2+ 1363	358	.490 (8	196.	1130)	-0.7 (+6 ,-4)	GN	71HA09
HG 230	1776 3+	948 4	++ 928	58J 58C 356 358	123 (7) 376 (6) 680 (4) 057 (1))J12 J) .U3C	(7) (60)	-0.020 (81 -3.076 (7) -0.071 (47) -0.098 (12)	N N N N G N G N	57LI39 65SAQ2 699E66 71HAQ9
HG 200	1776 3+	36 9 2	2+ 1437	368	380 (2)	.010	(30)	-0.44 (4)	GN	71HA09
HG 200	1883 2+	368 2	2+ 1515	368 368	.101 (51 .104 (14 .140 (3)	4)017	(20)	+0.19 (1) +0.19 (2) +0.14 (4)	NN NN GN	60GRD6 69SA02 71HA09

TABLE I. Experimental Data on Angular Distributions and Mixing Ratios

NUCLIDE	INITIAL LEVEL E(KEV) J	ı F	FINAL LEVEL (KEV)	J	GAMMA- PAY E (KFV)	ALIGN- MENT	Α2		A 4	•	0 E L	ГА	METHOD	REFERENCE
P9 206	1341 3	+	893	2+	538	нт	. 243	(4)	. 15	(15)	-1.033	(5)	JG	73KA35
PR 206	1684 4	+	1 34 1	3+	343	нт	.237	(4)	037	(20)	-0.027	(3)	ne	73KA35
PS 206	2384 6		2200	7-	184	398	.030	(5)	007	(7)	-0.340	(13)	NN	7 0 Z A 0 3
P3 206	2782 5	-	2394	6-	399	нт	. 260	(3)	.013	(15)	+0.038	(3)	JG	73KA35
P9 236	3279 5		2792	5-	497	HT	 352	(4)			-3.09	(2)	JG	73KA35
P8 236	3279 5	-	2384	5-	8 95	нт	•1 ¢7	(3)	.940	(20)	-0.030	(3)	JG	73KA35
P9 206	3403 5	; -	2384	6-	1)19	нT	.127	(4)	003	(36)	-0.018	(3)	JG	73KA35
												-		
PB 208	³475 4		3198	5-	277	2615	245	(171	.974	(22)	+0.050	(24)	GN	72JA25
P9 209	3475 4	. -	2615	3-	363	2615 2615	196 159		.020 .017		+0.923 +0.113	(7) (10)	MN NN	61SI11 52W005
						2615	105		009		+0.016	(11)	GN	72JA25
PB 204	3709 5	i-	3198	5-	511	543	.168		010		+0.072	(29)	NN	61SI11
						2615	.311		008		+0.034	(24)	NN NN	51SI11 52W005
						583 583	.129 .159		.014 .009		+0.20 +0.10	(4) (6)	NN	64SP06
						2515	. 242		.023		+0.172	(25)	NN	64SP06
						533	.123	(19)	. 164		+0.22	(12)	NN	67J017
						583	.162		.720		+0.093	(36)	NN	698001
						2615	• 31 8	(1))	016	(11)	+0.017	(24)	GN	72JA25
PS 208	3961 4		3198	5-	763	2615	.279	(49)	.035	(46)	-0.39	(5)	NN	615111
PO 212	1513 2	? +	727	ž+	7 85	727 727	.200	(19)			+0.10 +0.066	(+2 ,-3) (24)	NN NN	60GA15 61GI05
P0 212	1806 2	? +	727	2+	1379	727					-3	(1)	NN	60GA15
P0 212	1900 2	. •	***	24	10/9	727	.182	(60)			+0.09	(8)	NN	61GI05
P0 214	1378 2	2+	609	2+	769	679	220	(65)	.378	(125)	+4.4	(+43,-19)	NN	61TA07
PO 214	1544 3	5+	613	2+	335	619	073	(30)			a.00	(40)	NN	588187
PO 214	1739 2	! +	609	2+	1126	619	.210	(40)	002	(46)	+0.05	(5)	NN	588187
PO 214	1948 2	' +	609	2+	1238	519	•165	(31)	.024	(37)	+0.11	(4)	NN	588187
PO 214	2017 2	?+	609	2+	1478	609	003	(13)	. 325	(20)	-10.3	(+16,-12)	NN	589187
PO 214	2119 1	L+	639	2+	1509	609	102	1531	.064	(15)	-0.13	(2)	NN	588187
TH 232	774 2	? +	50	2+	724	Δ,Δ					-1.5	(+28,-7)	JG	72MG30
TH 232	785 2	?+	50	2+	7 35	Δ,Δ					+23	(10)	JG	72MC30
CH 244	1042 6	5 +	296	6+	745	154	050	(12)	. 359	(15)	+0.92	(8)	NN	63HA29

```
C.D.Schrader - Phys. Rev. 92, 928 (1953)
53Sc19
         The Angular Correlation of the Cascade Gamma-Rays from the Decay of Au196
        D.Schiff, F.R.Metzger - Phys. Rev. 90, 849 (1953)
53Sc 23
         Gamma-Gamma Directional Correlations in Co59, Xe131, Hg198
        R.M. Steffen - Phys.Rev. 89, 665 (1953)
The Angular Momenta of the Excited States of Pt196
53St 05
        C.E. Mandeville, J. Varma, B. Saraf - Phys. Rev. 98, 94 (1955)
55Ma 34
         Iridium-194
        V.R.Potnis, V.S.Dubey, C.E.Mandeville - Phys.Rev. 102, 459 (1956)
56Po 13
         Angular Correlation in Os188
        V.R.Potnis - Indian J.Phys. 30, 375 (1956)
Radiations from Two Radioactive Isotopes of Gold
56Po47
        T.Lindqvist, I.Marklund - Nuclear Phys. 4, 189 (1957)
Mixing Ratios of 2+ - 2+ Transitions in Some Even Nuclei
57Li35
        T.Lindqvist - Arkiv Fysik 12, 495 (1957)
57Li 39
         Gamma-Gamma Angular Correlations in Ca43, Hg200, and Pb206
         S.Ofer - Nuclear Phys. 4, 477 (1957)
570f 06
         Angular Correlations of Gamma Ray Cascades Pollowing the Decay of Eu152
        G.R.Bishop - Nuclear Phys. 5, 358(1958)
58Bi.87
         A Contribution to the Establishment of the Level Scheme of Radium C.
58Gr 43
        M.A.Grace, R.T.Taylor, P.B.Treacy - Phil.Mag. 3, 90 (1958)
         The Decay of Long-Lived Holmium 166
         G.D.Hickman, M.L.Wiedenbeck - Phys.Rev. 111, 539 (1958)
Directional Correlation of the Gamma Rays in Gd<sup>154</sup>
58Hi 73
        S.Ofer - Nuclear Phys. 5. 331 (1958)
580f 01
         The Energy Levels of Dy160
         R.G. Arns, R.E. Sund, M.L. Wiedenbeck - Nuclear Phys. 11, 411 (1959)
59Ar59
         The Level Structure of Dy160
         W.J.King, M.W.Johns - Can.J.Phys. 37, 755 (1959)
Spins of Excited States of Ostes
59Ki44
59Li48
        R.W.Lide, M.L.Wiedenbeck - Phys.Rev. 113, 840 (1959)
         Directional Correlation of Gamma Rays Following the Decay of Eu<sup>152</sup>
590f11
        S.Ofer - Phys.Rev. 115, 412 (1959)
         Decay of Tb156 (5-Day)
59Po62
         H.Postma, A.R.Miedema, M.C.Eversdijk Smulders - Physica 25, 671 (1959)
         Angular Distribution and Linear Polarization of Gamma Rays from Aligned 166m-Ho
           Nuclei
60Ar01
         R.G.Arns, R.D.Riggs, M.L.Wiedenbeck - Nuclear Phys. 15, 125 (1960)
         Decay of Re188
60Bo07
         E.Bodenstedt, E.Matthias, H.J.Korner, E.Gerdau, F.Frisius, D.Hovestadt -
         Nuclear Phys. 15, 239 (1960)
The Nuclear g-Factor of the 111 keV Rotational Level and Other Angular
           Correlation Measurements on W184
60De 16
         P.Debrunner, W.Kundig - Helv. Phys. Acta 33, 395 (1960)
         γ-γ-Korrelationsmessung an 152Sm, 152Gd und 154Gd: Spinzuordnung,
           Mischungsverhaltnis und g-Faktor
         Y.N.Gangrskii, G.M.Gusinskii, I.K.Lemberg - Izvest.Akad.Nauk SSSR, Ser.Fiz. 24,
60 Ga 15
           1449 (1960); Columbia Tech. Transl. 24, 1443 (1961)
         Studies of Decay Schemes Bi<sup>212</sup> - Po<sup>212</sup> by \alpha-\gamma and \gamma-\gamma Coincidences
         Z.Grabowski, B.van Nooijen - Arkiv Fysik 16, 479 (1960)
60Gr06
         Gamma-Gamma Directional Correlation in 200Hg
         G.D. Hickman, M.L. Wiedenbeck - Phys. Rev. 118, 1049 (1960)
Directional Correlation of the Gamma Rays in W182
60Hi 02
         C.E.Johnson, J.F.Schooley, D.A.Shirley - Phys.Rev. 120, 2108 (1960) Nuclear Orientation of Thiso
60Jo 12
         M.V.Klimentovskaya, G.Chandra - Zhur. Eksptl.i Teoret. Fiz. 38, 290 (1960);
Soviet Phys. JETP 11, 210 (1960)
60K101
         Measurement of the Angular Correlations of 298-880 keV and 298-966 keV Gamma
           Cascades of Dy160
         O.Nathan - Nuclear Phys. 19, 148 (1960)
60 Na 09
         Multipole Order of the 869 keV Gamma Ray in Sm152
61Bo08
        E.Bodenstedt, H.-J.Korner, G.Strube, C.Gunther, J.Radeloff, E.Gerdau - Z.Physik
           163, 1 (1961)
         Das gyromagnetische Verhaltnis des 137 keV Rotationsniveaus von Os186
```

61Bo20 E.Bozek, H.Niewodniczanski, S.Ogaza, S.Szymczyk, T.Walczak, I.A.Yutlandov - Acta.Phys.Polon. 20, 351 (1961) Gamma-Vibrational Levels in 166 Er 61C102 J.E.Cline, R.L. Heath - Nuclear Phys. 22, 598 (1961) Levels in Gd156 Ped by the Decay of 15-Day Eu156 M.Giannini, D. Prosperi, S. Sciuti - Nuovo cimento 22, 31 (1961) Spins and Parities of Excited Levels in 212Fo Z.Grabovski - Arkiv Fysik 20, 177 (1961) 61Gr28 Gamma-Gamma Angular Correlation Measurements in Gd152 C.A.Leriefors, E. Matthias, E. Karlsson - Nuclear Phys. 25, 404 (1961) The Gyromagnetic Ratic of the 137 keV Rotational Level in Os186 L.Simons, M.Brenner, L.Kald, K.E.Nysten, E.Spring - Soc.Sci.Fennica, 61Si11 Commentationes Phys. Math 26, No. 6 (1961) Angular Correlations of Gamma-Gamma Cascades in Pb208 H.W.Taylor, R.McPherson - Can.J.Phys. 39, 1235 (1961)
Directional Correlation of the 769-609 keV Gamma-Ray Cascade in Po214 61Ta07 R.W.Bauer, M.Deutsch - Phys.Rev. 128, 751 (1962) 62Ba38 Magnetic Moments of the First Excited 2+ States in Sm152, Gd154, and Gd154 62Bu03 D.K.Butt, P.W. Nicholson - Nuclear Phys. 31, 460 (1962) The Angular Correlation of Some Coincident Gamma Rays of Pt194 62LoO1 C.A.Lovejov, D.A.Shirley - Nuclear Phys. 30, 452 (1962) Nuclear Orientation of Th156 L.Simons, E.Spring, G.Wendt, L.Kald - Soc.Sci.Fennica, Commentationes Phys.-Math 26, No. 10 (1962) Measurement of the Angular Correlations of Gamma-Gamma Cascades of Dy160 62W005 G.T.Wood, P.S.Jastram - Nuclear Phys. 32, 411 (1962) Direction and Polarization Angular Correlations of Gamma-Ray Cascades in Pb208 63Bi13 K.M.Bisqard, K.B. Nielsen, J. Sodemann - Phys. Letters 7, 57 (1963); Erratum Phys.Letters 8, 220 (1964) The State at 1576 keV in Sm152 M.S.El-Nesr, Z.Grabowski, E.Bashandy - Arkiv Fysik 23, 283 (1963) 63E102 Gamma-Gamma Directional Correlation in W182 E.Gerdau, W.Krull, L.Mayer, J.Braunsfurth, J.Heisenberg, P.Steiner, 63Ge09 E.Bodenstedt - Z.Physik 174, 389 (1963) Winkelkorrelationsmessungen an > 30 y Holmium 166 und Bestimmung des g(R) Faktors des 4+ Rotationsniveaus von Erbium 166 P.G. Hansen. K. Wilsky, C. V. K. Baba, S. E. Vandenbosch - Nucl. Phys. 45, 410 (1963) 63Ha 29 Decay of an Isomeric State in Cm244 63Ik01 H.Ikegami, K.Sugiyama, T.Yamazaki, H.Sakai - Nucl. Phys. 41, 130 (1963) Structure of Platinum Nuclei. (I) New Decay Scheme of Au¹⁹⁶ W.Nichaelis - Nucl. Phys. 44, 78 (1963) 63Mi07 Excited Energy Levels in Dy160 H.M.Stautberg, E.Brooks Shera, K.J.Casper - Phys. Rev. 130, 1901 (1963) 635t09 Angular Correlations of Cascade Gamma Rays in the Decay of Lu172 J. Vervier - J. Phys. 24, 763 (1963) 63Ve11 Perturbations des Correlations Angulaires γ - γ dans la Desexcitation de Ho¹⁶⁶ et Re186 T. Yamazaki - Nucl. Phys. 44, 353 (1963) 63Ya01 Lower Excited States in Os188 and Os190 Investigated by Electron-Gamma Directional Correlation A.E. Jech, M.L. Ligatto de Slobodrian, M.A. Mariscotti - Rev. Union 64Je04 Mat.Arq. Asoc. Fis. Arq. 22, 75(1964) Angular Correlation in Hq198 L.Keszthelyi, I.Berkes, I.Dezsi, B.Molnar, I.Pocs - Phys.Letters 8, 195(1964) Measurement of the q-Factor of the 412 keV State in Hq198 64Ko13 H.J.Korner. E.Gerdau, J.Heisenberg, J.Braunsfurth - Perturbed Angular Correlations, E.Karlsson, E.Matthias, K.Siegbahn, Ed., North-Holland Publishing Co., p.200(1964) Measurement of the q(R)-Factor of the Rotational Level in W184 J.J.Reidy, E.G.Funk, J.W.Mihelich - Phys.Rev. 133, E556(1964) 64Re05 Study of the Decay of Tm168 to Levels in Er168 Using Coincidence and Directional Correlation Techniques

- 64Sa11 M.Sakai, M.Nozawa, H.Ikeqami, T.Yamazaki Nucl.Phys. 53, 529 (1964) The 2 - 2 Electric Monopole Transition in Hq198
- 64Sp06 E.Spring Acta Polytech.Scand. Phys. Nucl. Ser. No. 32 (1964)
- Triple Coincidence and Correlation Measurements of Gamma Rays from Pt208
- 65Gu01 C.Gunther, H.Blumberg, W.Engels, G.Strube, J.Voss, R.-M.Lieder, H.Luig, E.Bodenstedt Nucl.Phys. 61, 65 (1965)
 - Observation of Dipole-Octupole Mixture in the Gamma-Decay of the 1174 keV Isomeric State of YL¹⁷² and its Magnetic Mcment
- 65Gu02 C.Gunther, G.Strube, U.Wehmann, W.Enqels, H.Blumberq, H.Luiq, R.M.Lieder, E.Bodenstedt, H.J.Kcrner Z.Physik 183, 472 (1965)
 Messung des q(R)-Faktcrs des 2*-Rotationsniveaus von Dy160 nach der Spinrotationsmethode und Bestimmung der Multipolmischungen mehrerer γ-Ubergange im Zerfall des Tb160
- 65Gu05 S.L.Gupta, N.K.Saha Nucl.Phys. 70, 203 (1965) Gamma-Gamma Directional Correlation in Dy¹⁶⁰
- 65Kell L.Keszthelvi, I.Berkes, I.Dezsi, L.Pocs Nucl.Phys. 71, 662(1965) The q Factors of the Excited States in 1920s, 192Pt and 194Pt
- 65 Ma10 J.D. MacArthur, M.W.Johns Nucl. Phys. 61, 394 (1965)
 The Decay of Ir199
- 65Pe05 B.-G. Pettersson, L. Holmberg, T. R. Gerholm Nucl. Phys. 65, 454 (1965)
 Non-Existence of Dynamic Contributions to the 412 keV E2 Conversion Process in
 Hq198 Demonstrated by a New Experimental Method
- 65Pe06 B.-G.Pettersson, L.Holmberq, T.R.Gerholm Nucl. Phys. 65, 466 (1965) Confirmation of the Presence of EO in Direct Competition with M1 and E2
- 65Re02 C.W.Reich, J.E.Cline Phys.Rev. 137, B1424(1965)
- Decay of Long-Lived Hc166
 65Re04 K.V.Reddy, B.B.V.Raju, R.V.RamaMohan, S.Jnanananda Phys.Rev. 138, P33(1965)
 Gamma-Gamma Directional Correlations in the Decay of Tb160
- 65Re12 K.V.Reddy, B.B.V.Raju, R.V.Rama Mohan, S.Jnanannada Indian J.Pure Appl.Phys. 3, 284(1965)
- Decay Scheme and Directional Correlations of Gamma Rays from 102Ta 65Sa02 M.Sakai, H.Ikeqami, T.Yamazaki, K.Saito Nucl. Phys. 65, 177 (1965)
- Nuclear Structure of Eq200 65Sc06 W.Schick, L.Grodzins - Nucl.Phys. 62, 254(1965) Spins and Parities of States in Gd152
- 65YaO1 T.Yamazaki Nucl.Phys. 61, 497(1965)

 The Sign of the EO Strength Parameters in the 2+-2+ Transitions in Os1*8 and Os190
- 66Aq02 Y.K.Aqarwal, C.V.K.Baba, S.K.Bhattacherjee Nucl.Phys. 79, 437 (1966):
 Y.K.Aqarwal Priv.Ccmm. (April 1972)

 Measurement of the q-Factors of 2+ States in Even Nuclei Utilizing Hyperfine
 Fields in Iron Lattice (I). The 346 keV State in 192Pt and 328 and 622 keV
- States in 194Pt
 66Uh01 M.Uhl. H. Warhanek Oesterr. Akad. Wiss., Math. Naturw. Kl., Sitzber., Abt.II,
 175, 77 (1966)
 - Zur Auswertung von Richtungskorrelationsexperimenten an Gamma-Gamma-Kaskaden mit einem Gemischten M1-E2-Ubergang. Das Mischungsverhaltnis des 675 keV-Uberganges in Hg198
- 67A109 S.Alwyn, D.K.Butt Nucl.Phys. A100, 477(1967)
 K-Conversion Electron, Gamma Ray Angular Correlation Studies on the
 de-Excitation of 194Pt
- 67Bl01 H.Blumberq, K.-H.Speidel, H.Schlenz, P.Weiqt, H.Hubel, P.Gottel, H.-F.Wagner, E.Bodenstedt Nucl.Phys. A90, 65(1967)

 The Multipolarity of the K-Forbidden 1094 keV γ-Transition in the Decay of 172Lu
- 67Ha35 J.H.Hamilton, A.V.Ramayya, L.C. Whitlock, A.Huelenberg Phys.Rev.Letters 19, 1484 (1967)
- Test of M1 E2 Mixing in the Decay of 2+° Feta Vibrational States
 67Ja04 J.H.Jaklevic, E.G.Funk, J.W.Mihelich Nucl.Phys. A99, 83(1967)
 Coincidence and Directional Correlation Measurements on the Decay of 160Th
 Employing a Ge(Li) Detector
- 67Jo 17 K. Johansson, S. Gustafsson, A. G. Svensson Arkiv Fysik 34, 97 (1967) The Nuclear Magnetic Homent of the 3.2 MeV State in 200pb

- 67Ke15 P.F.Kenealy, E.G.Funk, J.W.Mihelich Nucl. Fhys. A105, 522(1967)
 Coincidence and Directional Measurements on the Decay of 156Tb(5.3d)
- 67Kl01 P.Kleinheinz, R.Vukanovic, M.Zupancic, L.Samuelsson, H.Lindstrom Nucl.Phys. A91, 329(1967) A Determination of the Multipole Mixture of the K-Forbidden 1095 keV Transition
 - A Determination of the multipole dixture of the K-forbidden 1095 KeV Transition in 172Yb

 1. I Koch P Munnich II Schotzig Nucl Phys 1103 300/1967)
- 67Ko13 J.Koch, F. Munnich, U.Schotziq Nucl.Phys. A103, 300(1967)

 Messung des B2/H1 Hischungsverhaltnisses von 2+-2+ Ubergangen in *2Kr, 106Pd,
 122Te, 192Pt und 198Hq
- 67Ma31 P.C.Mangal, P.N.Trehan Current Sci.(India) 36, 337(1967)
 Gamma-Gamma Angular Correlation in W102
- 67We08 P.Weigt, H.Hubel, P.Gottel, P.Herzog, E.Bodenstedt Nucl.Instr.Methods 57, 295(1967)
 - A Multidetector Apparatus for Linear Polarisation Correlation Measurements
- 68Ha46 W.D.Hamilton, K.E.Davies Nucl.Phys. A122, 165(1968) Angular Correlation Measurements in 192Pt
- 68Ni03 H.L.Nielsen, K.B.Nielsen, N.Rud Phys.Letters 27B, 150(1968) The E2 + M1 Decay of the 2+ Beta-Vibrational State in 178Hf
- 68Sc04 D.Schroeer, P.S.Jastram Phys. Rev. 166, 1212(1968)
 Decay Scheme of 150Tb
- 68We17 A.Weitsch, H.K.Walter Z.Physik 216, 459 (1968) q-Paktoren und Multipol-Mischungsverhaltnisse in 156Gd
- 69Aq01 A.Aquili, R.Cesareo, M.Giannini Nuovo Cimento 62B, 20 (1969)
- Gamma-Ray Transitions and Gamma-Gamma Angular Correlations in 152 Sm 69Be66 R.Beraud, I.Berkes, J.Daniere, R.Haroutunian, M.Levy, G.Harest, R.Rougny Phys.Rev. 188, 1958 (1969)
- Phys.Rev. 188, 1958 (1969)
 Structure of the Low-Lying Energy Levels of Hg²⁰⁰
 69Bo01 J.D.Bowman, F.C.Zawislak Nucl.Phys. & 138, 90 (1969)
- Hyperfine Fields at Pb in Fe, Co and Ni Lattices and the g-Factor of the First 5- State in 208 Pb
- 69Ca19 R.F.Casten, J.S.Greenberg, S.H.Sie, G.A.Burginyon, D.A.Bromley Phys.Rev. 187, 1532 (1969)

 Transition Matrix Elements in the Even-Even Osmium Isotopes: A Comparison with Pairing-Plus-Quadrupole Model Calculations
- 69Fr10 I.A.Fraser, J.S.Greenberg, S.H.Sie, R.G.Stokstad, G.A.Burginyon, D.A.Bromley Phys.Rev.Letters 23, 1047 (1969); Erratum Phys.Rev.Letters 23, 1270 (1969)
 Investigation of Band-Mixing Anomalies in Sm152
- 69Gr19 Z.W.Grabowski Phys.Rev. 183, 1019 (1969)
 Hixing Ratios of Transitions in the Decay of Ir¹⁹²
- 69HaO1 J.H.Hamilton, A.V.Ramayya, L.C. Whitlock Phys.Rev.Letters 22, 65 (1969) Further Test of Ml Admixtures in the Decay of 2+0 Beta Vibrational States
- 69Ha43 W.D.Hamilton Nucl.Phys. A136, 257 (1969)

 The Multipole Mixing Ratio of 2*+-2* Transitions in 194Pt and 194Pt
- 69Ke11 D.B.Kenyon, L.Keszthelyi, J.A.Cameron Can.J.Phys. 47, 2395 (1969)
 Nuclear q Factors of Three Levels of 192Pt
- 69Kh04 M.Y.Khan, L.D.Wyly, C.H.Braden, E.T.Patronis, Jr. Phys. Rev. 182, 1259 (1969) γ-γ Directional Correlations in the Decay of 192 Ir
- 69Re06 P.G.E.Reid, M.Sott, N.J.Stone Nucl.Phys. A129, 273 (1969)

 A Study of the Magnetic Dipole Moments of 192Ir and 194Ir and the Decay Scheme of 192Ir by Nuclear Orientation
- 69Ro03 R.L.Robinson, F.K.McGowan, P.H. Stelson, W.T.Milner, R.O.Sayer Nucl.Phys. A123, 193(1969)
 Gamma-Gamma Angular Correlations Following Coulomb Excitation
- 69Sa18 L.Samuelsson, R.Vukanovic, M.Higahed, M.Zupancic, L.O.Bdvardson, L.Westerberg Nucl.Phys. A135, 657 (1969)

 The 371 keV 2+ 2+ Transition in ***OS** Investigated by Electron-Electron and Gamma-Electron Directional Correlations
- 69Sc11 U.Schotziq, H.Schrader, R.Stippler, F.Hunnich Z.Physik 222, 479 (1969) E2/M1 Mixing Ratios of 2+ - 2+ Transitions in 58Fe, 74Ge and 1860s
- 69Va09 L. Varnell, J.D. Bowman, J. Trischuk Nucl. Phys. A 127, 270 (1969)
- Beta and Gamma Vibrational Bands in 152Sm and 154Gd
 69VuO1 R.Vukanovic, M.Zupancic, H.A.Lindstrom, L.Samuelsson Arkiv Fysik 39, 113
 (1969)
 - A Directional Correlation Study of Interband Transitions in 172Yb

69Ya02 T.Yamazaki, J.Sato - Nucl. Phys. A130, 456 (1969) Levels of 1880s Populated by 1881r and 188Re F.C.Zawislak, D.D.Cook, M.Levanoni - Phys. Letters 30B, 541 (1969) Internal Magnetic Fields at Hq and Tl in Ferromagnets M.Zupancic, R. Vukanovic, L. Samuelsson - Arkiv Fysik 39, 313 (1969) 69Zu01 The Multipolarity Mixture of the 793 keV 2+ - 2+ Transition in 184W 70Ba32 J. Barrette, M. Barrette, A. Boutard, G. Lamoureux, S. Monaro - Can. J. Phys. 48, 2011 (1970)Directional Correlations of Gamma Rays in 152Sm and 152Gd Measured by Meanns of Two Ge(Li) Counters 70Be08 R.Beraud. I.Berkes. R.Chery, R. Haroutunian, M. Levy, G. Marquier, G. Marest, R.Rougny - Phys.Rev. C1, 303 (1970) Lifetimes and Nuclear Moments in Os192 and Ft192 70Do08 H.A. Doubt, W.D. Hamilton, K.E. Davies, Z. W. Grabowski - Nucl. Phys. A 156, 353 (1970)Monopole Mixing Ratio of the 793 keV 2* - 2* Transition in 184W 70EnZX G.Engler, S.A. Lane - Full. Amer. Phys. Soc. 15, No. 1, 100, HD10 (1970) Coulomb Excitation of 162,164Dy 70Ha43 J.H. Hamilton, A.V. Ramayya, P.E. Little, N.R. Johnson - Phys. Rev. Lett. 25, 946 (1970) New Band-Mixing Anomalies in 178Hf H.Helppi, J.Hattula - Phys.Scr. 2, 155 (1970) 70He29 Multipole Character of Some Gamma Transitions in 152Sm 70H102 T.Hirose, S.Morinobu, H.Ikeqami - Nucl. Phys. A146, 220 (1970) Structure of Pt Nuclei (II). Structure of 192Pt Investigated by Electron-Gamma and Gamma-Gamma Directional Correlations 70Hi12 A.T.Hirshfeld, D.D.Hoppes - Phys. Rev. C2, 2341 (1970) Transition Mixing Ratios Determined from a Study of the Electron and Gamma-Ray Distributions from Oriented 1921r 70LazL J.Lange - Proc.Int.Conf.Angular Correlations in Nuclear Disintegration, Delft, Netherlands (1970), H. van Krugton, B. van Nooijen, Eds., Wolters-Noordhoff Publ., Groningen, p.242 (1971) Determination of F2/M1-Mixing Parameters for Collective Transitions in Deformed Nuclei 70RaZF A.V.Ramayva, W.Lourens, B.van Nooijen, H.van Krugton - Proc. Int. Conf. Angular Correlations in Nuclear Disintegration, Delft, Netherlands (1970), H.van Krugten, B.van Nooijen, Eds., Wolters-Noordhoff Publ., Groningen, p.247 (1971)M1-E2 Admixtures in Transitions from Beta- and Gamma-Levels in 1525m N.Rud, K. Bonde Nielsen - Nucl. Phys. A158, 546 (1970) M1 Admixtures in Transitions from γ-Vibrational States in 152Sm. 154Gd and 156Gd J.W.Seubert, R.G. Wilkinson - Phys. Rev. C2, 721 (1970) 70Se 08 Angular Correlations in the Decay of Ir192 707a03 F.C. Zawislak, J.D. Bowman - Nucl. Phys. & 146, 215 (1970) Nuclear q-Factor Measurements of Two Short-Lived States in 206Pb J.Barrette, M. Barrette, R. Haroutunian, G. Lamoureux, S. Monaro, S. Markiza -71Ba54 Phys.Rev. C4, 991 (1971) Directional Correlations of Gamma Rays in 152Sm Measured by Gating on the 244.66-keV Transition 71Be 09 R.Beraud, I.Berkes, R.Haroutunian, G.Marest, M.Meyer-Levy, R.Rougny, A.Troncy A.Baudry, V.Lopac - Phys.Rev. C4, 1829 (1971) Low-Energy Level Structure of 198Hq 71E101 H.Eiiri, G.B.Hagemann - Nucl. Phys. A161, 449 (1971) Electromagnetic Transitions from Levels in the Beta-Vibrational Band of 174 Hf 71Gi06 L.Gidefeldt, L.Eriksson, C.Bargholtz, L.Holmberg - Phys.Scr. 4, 33 (1971) The Spin of the 1518 keV Level in 174Yb 71Ha09 J.Hattula, H.Helppi, J.Kantele - 2.Phys. 241, 117 (1971) Directional Correlations of Some y-Ray Cascades in 200Hq 71Ha50 L.Hasselgren, H.S.Sahota, J.E.Thun, F.Falk - Phys.Scr. 3, 119 (1971) Electron-Gamma Directional Correlations in 168Er 71Kr01 K.S.Krane, R.M.Steffen - Phys.Rev. C3, 240 (1971)

the A = 190 Region Through E2-M1 Mixing Amplitudes

Experimental Test of the Kumar-Baranger Pairing-Plus-Quadrupole Force Model in

- 71Kr02 K.S.Krane, R.M.Steffen Nucl.Phys. A164, 439 (1971)
 Directional Correlation Measurements of the Gamma Rays Emitted in the Decay of
 160Th
- 71La11 J.Lange, R.L.Rasera, E.F.Wagner, W.Schaffner Nucl.Phys. A171, 92 (1971)
 E2/M1 Mixing Ratios of γ-Transitions from the γ-Vibrational Band to the Ground
 State Band in 152Sm, 154Gd and 146Er
- 71Ma65 L.Marinkov, I.Bikit, I.Anicin, M.Zupancic, D.Cveticanin, R.Stepic, R.Vukanovic Z.Phys. 248, 345 (1971)
 The 693 keV 2+1 2+ Transition in 154Gd
- 71Mi08 W.T.Milner, F.K.McGowan, R.L.Robinson, P.H.Stelson, R.O.Sayer Nucl.Phys. A177, 1 (1971)

 Coulomb Excitation of 182,184,186W, 186,188,190,1920s and 192,194,196,198Pt with Protons, 4He and 160 Ions
- 71Pa06 A-Pakkanen Nucl.Phys.A172, 193(1971)
 Decay of 1.9 h 198m-Tl and 5.3 h 198q-Tl to Levels in 198Hg
- 71Pa25 U.S.Pande, B.P.Singh Can.J.Phys. 49, 2088 (1971)
 Sign of delta the Amplitude Mixing Ratio of Gamma Transitions, and
 Gamma-Gamma-Gamma Angular Correlation Studies in 160Dy
- 71Ru05 N.Rud, H.L.Nielsen, K.Wilsky Nucl.Phys. A167, 401 (1971)
 Experimental Investigation of the Perturbed β-Vibrational Bands in 152Sm, 154Gd
 and 156Gd
- 71Va06 L.Varnell, J.H.Hamilton, R.L.Robinson Phys.Rev. C3, 1265 (1971) Collective States in ¹⁷⁸Hf via Coulomb Excitation
- 71Wa03 H.F.Wagner, J.Lange Z.Phys. 242, 292 (1971)
 Investigation of the Two Quasiparticle Rotational Band at 1172 keV in 172Yb and
 Determination of the g(R)-Factor of the 3+ 3 Band Head
- 71Wh01 L.C.Whitlock, J.H.Hamilton, A.V.Ramayya Phys.Rev. C3, 313 (1971)
 Multipole Admixtures of Transitions from Beta, Gamma, and Octupole Vibrational
 States in 15 Gd
- 72Bu35 T.Butz. G. Eska, E. Haqn, F. Kienle, E. Umlauf Z. Phys. 254, 312 (1972)
 Nuclear Orientation of 183Re and 184Re in Iron
- 72Ca42 G.Carlsson, E.Karlsson, K.Pernestal, R.Wappling, M.M.Bajaj Phys.Scr. 6, 247 (1972)
 q-Factor of the 6+ Rotational State in 166Br
- 72Do01 J.M.Domingos, G.D.Symons, A.C.Douqlas Nucl.Phys. A180, 600 (1972)
 Multiple Coulomb Excitation of γ-Vibrational Bands in 162Dy, 166Er, 168Er and
 170Er
- 72Go35 P.Gottel, W.Delang, H.Seyfarth Z.Phys. 255, 450 (1972)
 Angular Correlation Measurements in 154Gd
- 72Ha17 J.H.Hamilton, P.E.Little, A.V.Ramayya, E.Collins, N.R.Johnson, J.J.Pinajian, A.F.Kluk Phys.Rev. C5, 899 (1972)
 H1 Admixture of Transitions in 156Gd
- 72He10 P.Herzog, M.J.Canty, K.D.Killig Nucl. Phys. A187, 49 (1972); Priv.Comm. (October 1973)
- The Kw = 2- Octupole Vibration Band in *** W 72Ja25 P.Jagam, D.S.Murty Nucl. Phys. A197, 540 (1972)
 - Multipole Mixing Ratios of γ -Transitions in ²⁰⁸Pb (I)
- 72Ka45 C.A.Kalfas, W.D.Hamilton, R.A.Fox, M.Finger Nucl.Phys. A196, 615 (1972) Multipole Mixing Ratics of Electromagnetic Transitions in 152Gd
- 72Kr05 K.S.Krane, J.R.Sites, W.A.Stevert Phys.Rev. C5, 1104 (1972)
- Nuclear Structure and Parity Mixing in the Decays from Oriented 182 Ta 72Li03 P.E.Little, J.H.Hamilton, A.V.Ramayya, N.R.Johnson Phys. Rev. C5, 252 (1972)
- Level Structure of *7*Hf
 72Hc30 F.K.HcGowan Proc.Int.Conf.Radioactivity in Nucl.Spectrosc., Nashville, Tenn.
 (1969), J.H.Hamilton, J.C.Hanthuruthil, Eds., Gordon and Breach, New York,
 - Vol.2, p. 1039 (1972)
 Coulomb Excitation of 152Sm, 166,168,170Er, and 232Th
- 72Mi21 T.Miyokawa, I.Katayama, S.Morinobu, H.Ikegami Contrib.Int.Conf.Nuclear
 Homents and Nuclear Structure, Osaka, Japan, p.247 (1972)
 The Magnetic Moment of the 4+ Ground-Rotational State in 166Er
- 72Na32 M.L.Narasimha Raju, P.Jagam, B.Vema Reddy, C.L.Sastry Indian J.Pure Appl.Phys. 10, 632 (1972)
 Directional Correlation Measurements on the (631-137) keV γ-γ Cascade in 1860s

- 72RaYO B.N.S.Rao Proc. Nucl. Phys. and Solid State Phys. Symp., Nucl. Phys. and Beactor Phys., Bombay, Vol. 14B, p.437 (1972) Electromagnetic Transitions in 186W, 186,1880s B.P.Singh, H.S.Dahiya - Phys.Rev. C6, 1789 (1972) 72S i 39 Gamma-Gamma-Gamma Angular-Correlation Method for the Study of 308 → 296 → 316-keV Cascade in Ft192 K. Venkata Ramana Rao, V. Lakshminarayana - Nuovo Cim. 8A, 298 (1972) 72**Ve**03 Angular-Correlation Studies in the Decay of 198Au N.Yoshikawa, M.Ishihara, H.Kawakami, H.Kusakari, M.Sakai, K.Ishii - INS-J-134 724004 (1972)In-Beam Gamma-Ray Study on 186,190,192Pt M.J.Canty, C.Gunther, P.Herzog, B.Richter - Nucl. Phys. A203, 421 (1973) 73Ca08 Vibrational Band Structure in 186W Populated in the Decay of 186Re W.E.Collins, J.H. Hamilton - Part. Nucl. 6, 82 (1973) 73Co37 Note on the Spin Dependence of M1 Admixtures in Transitions from Beta and Gamma Vibrational States in 154Gd P.L.Gardulski, M.L.Wiedenbeck - Phys.Rev. C7, 2080 (1973) E0 Contributions in 2+ to 2+ Transitions in 160Dy, 134Ba, 110Cd, and 82Kr 73Ga10 T.Hammer, H.Ejiri, G.E.Haqemann - Nucl. Phys. A202, 321 (1973) 73 Ha07 Electromagnetic Transitions in 176 Hf Studied by the $(\alpha, 2n)$ Reaction 73Ho20 J.L.Holm - Nucl. Phys. A206, 614 (1973) EO/E2 and E2/M1 Multipole Mixing Amplitudes of 7-Transitions in 192Pt H.Hubel, C.Gunther, E.Schoeters, R.E.Silverans, L.Vanneste - Nucl.Phys. A210, 73Hu06 317 (1973) Nuclear Orientation Measurements on 183Re and 184Re C.A. Kalfas, W. D. Hamilton, H.A. Doubt - J. Phys. (London), A6, 247 (1973) 73 Ka 05 Multipole Mixing Ratios of Electromagnetic Transitions in 152 Sm M.Kaplan, P.D. Johnston, F. Kittel, N.J. Stone - Nucl. Phys. A212, 478 (1973) 73Ka35 Gamma-Ray Multipolarity Studies by the Nuclear Orientation of 206Bi in Nickel: Perturbation in the 12C µs 2.2 MeV State of 206Pb 73Ki09 B.T.Kim, W.K.Chu, J.C.Glass - Phys.Rev. C8, 1920 (1973) Spin and Magnetic Moment of the 1.094-MeV State in 168 Er R.S.Krane, C.E.Olsen, W.A.Steyert - Phys.Rev. C7, 263 (1973) 73Kr01 Parity Mixing and the Nuclear Structure of 183,184W and Nuclear Spin-Lattice Relaxation Following the Decays of Oriented 183,184q,184m-Re 730b01 D.R.Ober, W.Weeber, R.I.Flace - Phys. Rev. C7, 738 (1973) Multipole Mixing Ratios for Selected Transitions in 154Gd 730u01 L.M. Quinones, M. Behar, Z.W. Grabowski - Bull. Amer. Phys. Soc. 18, No. 4, 37, BG8 (1973)Multipole Mixing Ratics of Transitions in 168Er 73Se14 T.Seo, T. Hayashi - Nucl. Phys. A211, 573 (1973) The q-Factors of the Two Members of the Kw = 2+ Band in 182W 735i22 B.Singh, M.W.Johns - Nucl. Phys. A208, 55 (1973) Spins of Levels in 194Pt 74Br02 D.Breitiq, R.F.Casten, G.W.Cole - Phys.Rev. C9, 366 (1974); Erratum Fhys.Rev. C9. 2088 (1974) Low-Spin States in 200Hq Studied with the (n, 7) Reaction 74Ca13 M.Cailliau, R.Foucher, J.P.Husson, J.Letessier - J.Phys. (Paris) 35, 469 (1974) Etude de la Desintegration 184 Au + 184 Pt $(T_s/_2 = 53.0 \pm 1.4 \text{ s})$ 74Do04 J.M.Domingos, G.D.Symons, A.C.Douglas - Phys.Rev. C10, 250 (1974) Experimental Study of Collective Properties of 152Sm by Multiple Coulcmb Excitation 74Fo27 R.A.Fox, W.D.Hamilton, D.D.Warner - J.Phys. (London) A7, 1716 (1974) Multipole Mixing Ratios of Gamma Rays Emitted in the Decay of Polarized 160 Tb H.Helppi, A.Pakkanen, J.Hattula - Nucl. Phys. A223, 13 (1974) 74He08 The E2/M1 Mixing of the Transitions from the Kw = 2+ Bands in 190,1920s and 192 Pt
- 74 Ka 18 M. Kawamura, T. Tomiyama - J. Phys. Soc. Jap. 36, 27 (1974) Hyperfine Magnetic Field at Mercury in Perromagnetic Iron
- 745c15 A.G.Schnidt, J.W. Mihelich, E.G. Funk - Phys. Rev. C9, 2346 (1974) Hultipole Mixtures of Gamma-Ray Transitions Depopulating the 1318-keV (2-) and 1518-keV (6+ or 7-) States in 17+Yb

- 74Va09 L.Varnell, J.H.Hamilton, R.L.Robinson Nucl.Phys. A223, 442 (1974) Coulomb Excitation in 188Hf
- 75Be19 J.Becker, S.Beshai, L.Eriksson, L.Gidefeldt Z.Phys. A273, 43 (1975) Gamma-Gamma Directional Correlation Measurements in 1920s
- 750u01 L.M.Quinones, Z.W.Grabowski Nucl.Phys. A242, 243 (1975) Multipole Mixing Ratios of γ -Transitions in ¹⁸²W
- 75Ul01 I.Uluer, C.A.Kalfas, W.D.Hamilton, R.A.Fox, D.D.Warner, M.Finger, Do Kim Chung J.Phys. (London) G1, 476 (1975)
 Hultipole Hixing Ratios of Transitions in 186Gd

TABLE II. Recommended Values of E2,M1 Mixing Ratios

$\delta = +10 (1)$	indicates	$\delta = +10 \pm 1$
$\delta = -10^{+2}_{-1}$	indicates	$-12 \le \delta \le -9$
$\delta = +1.0^{+10}_{-5}$	indicates	$+0.5 \leq \delta \leq +2.0$

NUCLIDE	$E_{\gamma}(\text{keV})$	δ	NUCLIDE	$E_{\gamma}(\text{keV})$	δ
¹⁵² Sm	489	-5.7 (6)		705	-27^{+33}_{-12}
	656	+2.1 (3)		770	> +10, < -10
	689	$+12^{+4}_{-2}$		810	-17 (3)
	869	-5.9^{2} (2)		831	-35^{+13}_{-7}
	965	-9.5 (2)	¹⁶⁸ Er	447	-0.15 (1)
	1005	-2.9 (2)	 -	632	-4.8 (3)
	1113	– 16 (2)*		731	- 100 ^{+ ∞} _{- 60}
¹⁵² Gd	586	-3.05 (14)		741	-28^{+22}_{-8}
o u	623	$+0.7^{+8}_{-5}$		816	$+16.8^{+32}_{-25}$
	679	> +9, < -14	¹⁷⁰ Er	840	> + 12, < -9
	765	+ 4.3 (7)	_ -	853	$-57^{+\infty}_{-36}$
	974	+0.58 (7)		863	$-5^{+\infty}_{-3}$
	1090	-0.20 (2)	¹⁷² Yb	810	+0.05 (9)
¹⁵⁴ Gd	677	+2.6 (5)	10	901	+0.06 (1)
.	692	$+10^{+4}_{-2}$		912	-1.6 (2)
	757	-5.4 (2)		1003	$-17^{+\infty}_{-9}$
	873	- 9.1 (7)		1094	-3.3 (2)
	893	-4.0 (4)		1115	> +3, < -3
	1008	- 20 (5)*		1387	-9.3^{+50}_{-25}
¹⁵⁶ Gd	112	+ 0.15 (10)		1398	$+1.0^{+\infty}_{-6}$
O u	262	+ 9.2 (6)		1471	-5.6^{+30}_{-20}
	812	-0.56 (7)		1530	$+8.0^{+20}_{-15}$
	960	- 12 ⁺⁵ ₃		1584	-0.074 (20)
	1038	-7^{+21}_{-3}	¹⁷⁴ Yb	992	- 1.75 (10)
	1040	-5.9^{+28}_{-14}	¹⁷⁴ Hf	699	-0.9 (2)
	1065	-18 (3)	*11	765	-2.5^{+13}_{-7}
	1066	-4.0^{+16}_{-9}		809	-2.5_{-7} $-11^{+\infty}_{-7}$
	1159	-11.8 (6)	¹⁷⁶ Hf	1101	> +8, < -3
	1223	-1.9 (1)	111	1138	> + 5, < -0.7 > + 5, < -0.7
	1333	-3.8 (2)	¹⁷⁸ Hf	1082	> +3, $< -0.7> +32$, < -1
	1877	$+0.41^{+8}_{-6}$	nı	1183	+0.410 (36)
	1938	-0.55 (3)		1403	
	2098	-0.55 (3) -1.2 (2)	¹⁸⁰ Hf	1107	
¹⁵⁸ Gd	1108	> +30, < -9	182W	66	$+10^{+22}_{-6}$
		_	VV		+0.15 (15)
¹⁶⁰ Dy	765 870	-7.7 (6) -15 (1)		85	+ 0.30 (2)
	879			114	+ 0.31 (2)
1627	962 705	-7.9^{+24}_{-13}		179	$+0.84^{+11}_{-6}$
¹⁶² Dy	795	-2.4^{+47}_{-10}		1002	-8.9^{+14}_{-8}
1647	808	> +26, < -26		1121	+ 14 (2)
¹⁶⁴ Dy	689	-8+20 05+∞		1157	-0.59 (6)
¹⁶⁶ Er	530	$-85^{+\infty}_{-43}$	184337	1231	-50^{+80}_{-10}
	691	-3.3^{+30}_{-12}	$^{184}\mathrm{W}$	642	-8.3 (6)
				771 702	-10^{+6}_{-3}
*The literate	— ure for this transition s	suggests two or more values		792 805	-17.0 (6)
for δ which are not	in mutual agreement.	The selection of this particu-		895	-14.7 (7)
		basis of a very weak prefer-		1011	$+2.3^{+7}_{-5}$
ence				1275	$+20^{+30}_{-8}$

TABLE II. Recommended Values of E2,M1 Mixing Ratios

$\delta = +10 (1)$	indicates	$\delta = +10 \pm 1$
$\delta = -10^{+2}_{-1}$	indicates	$-12 \le \delta \le -9$
$\delta = +1.0^{+10}_{-5}$	indicates	$+0.5 \leq \delta \leq +2.0$

NUCLIDE	$E_{\gamma}(\text{keV})$	δ	NUCLIDE	$E_{\gamma}(\text{keV})$	δ
¹⁸⁴ Pt	486	+ 18 ^{+ \infty}		1312	- 0.088 (19)
· · ·	777	+ 9+\overline{0}{5}		1421	-0.17 (3)
186W	615	-11.1^{+35}_{-24}		1436	+0.15 (4)
	1164	$+13^{+70}_{-6}$		1447	-0.23 (6)
¹⁸⁶ Os	630	-28 (5)		1490	-0.24^{+10}_{-7}
	773	-12^{+17}_{-5}		2041	-0.031 (21)
¹⁸⁸ Os	478	-15 (2)	²⁰⁰ Hg	828	-0.081 (6)
	635	-7^{+3}_{-2}	Ü	886	-2.3^{+8}_{-4}
	1210	$-0.0\overline{3}6$ (11)		1206	+0.238 (3)
¹⁸⁸ Pt	340	-54^{+39}_{-17}		1225	-2.2 (3)
¹⁹⁰ Os	197	-2.0 (6)		1273	+0.014 (40)
	198	-6.4^{+24}_{-14}		1363	-0.7^{+6}_{-4}
	208	-17^{+11}_{-5}		1407	-0.44 (4)
	371	-8.6 (5)		1515	+0.19 (1)
	407 ^a	-3.3^{+7}_{-5}	²⁰⁶ Pb	184	-0.040 (13)
	407 ^b	-5^{+27}_{-3}		343	-0.027 (3)
	569	-9.4^{+18}_{-12}		398	+0.038 (3)
	656	-9^{+7}_{-3}		497	-0.09 (2)
¹⁹⁰ Pt	302	$+6.8^{+30}_{-12}$		538	-0.033 (5)
¹⁹² Os	201	-4.5 (9)		895	-0.030 (3)
	283	-4.1 (5)		1019	-0.018 (3)
	484	-8.2 (5)	$^{208}{\rm Pb}$	277	+0.050 (24)
¹⁹² Pt	296	+ 9.1 (3)		511	+0.07 (3)
	308	+7.2 (2)		763	-0.39 (5)
	417	-4^{+7}_{-3} *		860	+0.018 (5)
	605	-1.5 (1)*	²¹² Po	785	+0.083 (17)
¹⁹⁴ Pt	293	$+16^{+3}_{-2}$		1079	+0.09 (8)
	594	$-30^{+\frac{5}{16}}$	²¹⁴ Po	769	$+4.4^{+43}_{-19}$
	1184	$+0.86^{+9}_{-7}$		935	0.00 (40)
	1294	– 1.5 (4)		1120	+0.05 (5)
	1343	-0.7^{+9}_{-6}		1238	+0.11 (4)
	1786	$+0.55^{+29}_{-19}$		1408	-10.3^{+16}_{-12}
^{196}Pt	333	-5.0 (3)*		1509	$-0.13^{-12}(2)$
¹⁹⁸ Hg	676	+ 1.17 (2)*	²³² Th	724	-1.5^{+28}_{-7}
	798	-2.8^{+12}_{-9}		734	+23 (10)
	1008	+1.3 (3)	²⁴⁴ Cm	746	+0.92 (8)
	1201	-0.22 (4)			` '

a)955-548 keV (4 + -4+) transition b)1163-756 keV (4+-3+) transition

^{*}The literature for this transition suggests two or more values for δ which are not in mutual agreement. The selection of this particular value over the others is made on the basis of a very weak preference