

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Batch Means

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

Batch Means

- ♦ Two types of DES models: transient and steady-state
- ♦ For transient, construct interval estimates using *replication*
- ♦ For steady-state, obtain *point* estimate by simulating for a long time
- ♦ Can we obtain interval estimates for steady-state statistics?

→ use method of batch means

Prof. Vittoria de Nitto Personè

2

Transient vs. Steady-State

Example 8.4.1: Transient vs. Steady-State Estimates

(valore

Analytically, utilization is 0.8 and expected steady-state wait is 4.0 s. teorico)

Can transient estimates be accurate steady-state estimates?

- Eliminate the initial state bias by setting departure to 4.2: the simulation begins in its expected steady-state condition
- Use 16 replications to construct transient interval estimates for 8, 16, 32, ..., 1024 jobs

Prof. Vittoria de Nitto Personè

3

3

ragioniamo su medie:

trova departure a 4.2; 4.2 - 1 = 3.2 tempo attesa

3.2 + 0.8 = 4 tempo

in coda.

risposta.

1/1.25 = 0.8

prendiamo

exponential(0.8)

nb:

primo arrivo con media=1,

0.8 è il tempo di servizio =

avrà esattamente 0.8, sarà

Non è che il primo che

4 = valore teorico.

Potremmo usare le repliche, ma essendo STAZIONARIO dovrei simulare tempi lunghi. Abbiamo diversi problemi: stato iniziale? Lunghezza tempo simulato? Quante repliche? Sui primi due punti abbiamo già discusso: lo stato iniziale non influenza nell'orizzonte infinito, e il tempo di simulazione deve essere abbastanza lungo. Ma sul numero delle repliche?

Transient vs. Steady-State

Interval Estimates for Steady-State

- Use replication-based transient interval estimates
- Each replication must correspond to a long simulated time period

Three issues:

- What is the initial state?
- What is the length of the simulated time?
- How many replications?

Previous example provides insight into first two issues

Prof. Vittoria de Nitto Personè

7

7

Qui vediamo un confronto tra 16 repliche(grafico in alto) e 64 repliche (grafico sotto).

9

10

La dimensione di 16 repliche era troppo piccola, la variabilità pesava troppo. Con 64 repliche, condizioni invariate, l'influenza dello stato iniziale si perde. Abbiamo potuto settare a 4.2 perchè conoscevamo il valore teorico! Altrimenti non posso.

11

FIN

Summary

- Want interval estimates for steady-state
- Replicated transient statistics can be used
- However, initial bias problem
- Need technique that avoids the initial bias problem

Prof. Vittoria de Nitto Personè

13

13

Batch Means

Method of Batch Means

- Previously, each replication was initialized with same state
- Gives initial bias problem

Batch means:

- Make one long run and partition into batches
- Compute an average statistic for each batch
- Construct an interval estimate using the batch means
- Initial state bias is eliminated
- State at the beginning of each batch is the state at the end of previous batch

Prof. Vittoria de Nitto Personè

14

Batch Means

Algorithm 8.4.1: Method of Batch Means

Consider a sequence of samples x_1, x_2, \ldots, x_n

- 1. Select a batch size b > 1
- 2. Group the sequence into *k* batches

$$\underbrace{x_1, x_2, \cdots, x_b}_{\text{batch 1}}, \underbrace{x_{b+1}, x_{b+2}, \dots, x_{2b}}_{\text{batch 2}}, \underbrace{x_{2b+1}, x_{2b+2}, \dots, x_{3b}}_{\text{batch 3}}, \dots$$

and for each calculate the batch mean

$$\overline{X}_j = \frac{1}{b} \sum_{i=1}^b \overline{X}_{(j-1)b+i}$$
 $j = 1, 2, ..., k$

3. Compute \bar{x} and s of batch means $\bar{x}_1, \bar{x}_2, ..., \bar{x}_k$

Prof. Vittoria de Nitto Personè

15

15

Batch Means

Algorithm 8.4.1: Method of Batch Means

- **4.** Pick a *level of confidence* 1 α (typically α = 0.05)
- 5. Calculate the critical value t^* = idfStudent(k 1, 1 α /2)
- **6.** Calculate the interval endpoints $\bar{x} \pm t^* s / \sqrt{k-1}$
- $(1 \alpha) \times 100\%$ confident that the true *unknown* steady-state mean lies in the interval
- Provided b is large, true even if the sample is autocorrelated

Prof. Vittoria de Nitto Personè

Batch Means

Effect of Batch Parameters

Provided no points are discarded:

$$\overline{x} = \frac{1}{k} \sum_{j=1}^{k} \overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$x_{1}, x_{2}, \dots, x_{b}, x_{b+1}, x_{b+2}, \dots, x_{2b}, x_{2b+1}, x_{2}, \dots, x_{3b}, \dots, x_{n}$$

$$\overline{x}_{1} \qquad \overline{x}_{2} \qquad \overline{x}_{3} \qquad \overline{x}_{k}$$

- Choice of (b, k) has no impact on the point estimate
- Only the width of the interval estimate is affected

Prof. Vittoria de Nitto Personè

17

17

Batch Means

Example 8.4.5: Effect of (b, k)

Consider the queue is initially idle, use ssq2 to generate n = 32768 consecutive waits

Using batch means with different (b, k):

$$(b,k)$$
 (8,4096) (64,512) (512,64) (4096,8) \bar{w} 3.94 \pm 0.11 3.94 \pm 0.25 3.94 \pm 0.29 3.94 \pm 0.48

- Note that 3.94 is independent of (b, k)
- Width of the interval estimate is not

Prof. Vittoria de Nitto Personè

18

Batch Means

Is the Method of Batch Means Valid?

For interval estimation, the batch means must be iid Normal

- 1. Are the batch means Normal?

 As b increases, mean of b RVs tends to Normal
- 2. Is the data actually independent?

Autocorrelation (Section 4.4) becomes zero if b is large

Therefore, as *b* increases, method of batch means becomes increasingly more valid

Prof. Vittoria de Nitto Personè

19

19

Batch Means

Guidelines for Choosing (b, k)

- Note: If b is too large, k will be small giving wide interval estimates
- Number of batches *k*:
 - Avoid small-sample variation
 - o $k \ge 32$; k = 64 is recommended
- Batch size b:
 - Want to ensure (approximate) independence
 - b should be at least twice the autocorrelation "cut-off" lag (Section 4.4)

(See example 8.4.6)

Prof. Vittoria de Nitto Personè

20

