

Premessa

Per dimensionalità dei dati si intende il numero di variabili o features che descrivono ogni punto o campione di un dataset.

Indica, cioè:

La quantità di informazioni che vengono prese in considerazione per rappresentare ciascun campione.

Un dataset di dimensionalità cinque, ad esempio:

Modello	Anno immatricolazione	Costo	Città	Numero incidenti	Numero porte
Α	2013	5000	FC	0	3
В	2014	8000	RA	3	5
С	2020	10000	ВО	0	3
D	2019	5000	RM	2	3

Premessa

La gestione adeguata della dimensionalità è un aspetto importante nel processo di analisi dei dati e nella costruzione di modelli di machine learning efficaci:

- Alta dimensionalità può portare a overfitting, ridondanza delle informazioni...
- Bassa dimensionalità può portare a una rappresentazione insufficiente dei dati...

Si pensi, ad esempio, ci venga chiesto di replicare un quadro:

Replicare la gioconda con solo una matita non permetterà di descrivere ogni sfumatura, ogni tratto, ogni colore dell'opera.

Si è di fronte ad un limite intrinseco nella quantità di informazioni che si potrà rappresentare.

Premessa

La gestione adeguata della dimensionalità è un aspetto importante nel processo di analisi dei dati e nella costruzione di modelli di machine learning efficaci:

- Alta dimensionalità può portare a overfitting, ridondanza delle informazioni...
- Bassa dimensionalità può portare a una rappresentazione insufficiente dei dati...

Si pensi, ad esempio, ci venga chiesto di trovare un documento:

Conosciamo scaffale e cassetto. Rimane da esplorare una sola dimensione: il cassetto in profondità.

Conosciamo lo scaffale. Si dovrà esplorare ogni cassetto, dall'alto in basso, in profondità.

Non conosciamo nemmeno lo scaffale. Si dovrà esplorare tre dimensioni: ogni cassetto di ogni scaffale.

Premessa

Trattando l'ambito del machine learning e del deep learning si ha modo di affrontare entrambi questi problemi.

Vale la pena però porre una maggiore attenzione all'importanza di condensare le informazioni, la conoscenza appresa e apprendere come distillare le sole informazioni di cui un problema necessita per essere affrontato.

In breve, come affrontare correttamente la riduzione della dimensionalità.

Premessa

Ritornando al precedente esempio, ad una rete neurale sarebbe richiesto il compito di trovare quel condensato di informazioni, ridotte, che semplifica la gestione dei dati...senza andarvene a precludere il significato.

L'accesso ad un documento, prima complesso, può essere semplificato con sole tre informazioni: anno, categoria, iniziale...

Course of dimensionality

Con il termine Course of Dimensionality, 'maledizione della dimensionalità', ci si riferisce ad una serie di problemi che si vengono a verificare quando la dimensionalità dei dati è troppo alta.

Si identificano fra questi:

- 1. Sparsità dei dati.
- Crescita del numero di parametri.
- Ridondanza delle variabili.
- 4. Complessità del modello.

Course of dimensionality

Spesso, volendo affrontare uno specifico task/problema, ci si rende conto che il numero di informazioni legate ai dati è immotivatamente alto. Alcune informazioni sono effettivamente non necessarie.

La riduzione, in questo caso, può avvenire direttamente a livello di campioni.

Modello	Anno immatricolazione	Costo	Città	Numero incidenti	Numero porte
Α	2013	5000	FC	0	3
В	2014	8000	RA	3	5
С	2020	10000	ВО	0	3
D	2019	5000	RM	2	3

Modello	Anno immatricolazione	Città	Numero incidenti
Α	2013	FC	0
В	2014	RA	3
С	2020	ВО	0
D	2019	RM	2

Vantaggi

Ridurre la dimensionalità significa:

Estrarre la quantità minima di informazioni che permettono di risolvere un problema trascurando tutto il resto.

Da un punto di vista pratico questo porta a:

- Ridurre i tempi di calcolo.
- Evitare che un modello si concentri erroneamente su dati che non sono importanti.
- Migliorare le prestazioni.
- Agevolare il raggiungimento della convergenza.

Variabili latenti

Per *variabile latente*, si intende una variabile 'nascosta', non direttamente osservabile nei dati di input, ma utilizzata per rappresentare o spiegare determinati fenomeni/caratteristiche che portano l'input all'output.

Queste variabili catturano informazioni complesse, pattern, relazioni presenti nei dati e nella variabili osservabili.

Variabili latenti

In termini pratici, la rappresentazione latente di una codifica di informazioni, non sarà nient'altro che un vettore di numeri, il cui significato è intrinsecamente appreso dalla rete.

Variabili latenti

Nell'ambito del **ML** e dell'apprendimento supervisionato le variabili latenti possono essere utilizzate per modellare correlazioni complesse tra le variabili di input e l'output desiderato.

Variabili latenti

Nell'ambito del ML e dell'apprendimento non supervisionato (clusterizzazione o riduzione della dimensionalità) le variabili latenti possono essere utilizzate per estrarre strutture nascoste o pattern nei dati di input.

Variabili latenti

Nei modelli di **DL**, nelle reti neurali, le variabili latenti vengono spesso chiamate *latent features* o *latent representation*.

Queste caratteristiche latenti vengono **apprese automaticamente durante il processo di addestramento** e condensano in esse, informazioni rilevanti e significative nei dati di input.

In una CNN, ad esempio:

Al crescere della profondità dei layer, la features latenti apprendono nuove relazioni, combinano pattern precedenti...

Riferimenti di interesse

Di seguito alcuni riferimenti a visualizzatori e 'play-ground' dove vedere l'azione e la generalizzazione delle variabili latenti e dei condensati di informazioni:

- An Interactive Node-Link Visualization (adamharley.com)
- <u>CNN Explainer (poloclub.github.io)</u>
- ConvNetJS: Deep Learning in your browser (stanford.edu)

Proviamo?

