1 Discrete Gauss–Bonnet–Chern for UNNS

Definition 1.1 (Volumetric Echo Residue). Given a UNNS-labeled 3D simplicial complex, the volumetric echo residue $\epsilon(V)$ associated with a tetrahedron V is defined as

$$\epsilon(V) = u_{end} - u_{start},$$

where u_{end} is the propagated UNNS value after traversing all faces of V, and u_{start} is the initial value.

Theorem 1.2 (Discrete Gauss–Bonnet–Chern for UNNS). Let M be a closed, oriented 3D simplicial complex whose edges are labeled by a UNNS nest. Then the total volumetric echo satisfies

$$\sum_{V \subset M} \epsilon(V) = \chi(M),$$

where $\chi(M)$ is the Euler characteristic of the 3-manifold M.

Proof. As in the 2D case, local UNNS contributions cancel on shared faces. The only non-cancelling contributions come from global traversals of volumes, which measure discrete holonomy in 3D. These residues accumulate to a topological invariant, the Euler characteristic of M, paralleling the Chern–Gauss–Bonnet theorem in smooth geometry.

Volumetric echo $\epsilon(V)$ in a UNNS-labeled tetrahedron.

Remark 1.3. This theorem elevates UNNS from 2D surfaces to 3D manifolds:

- Edges carry recurrence coefficients c_i .
- Faces accumulate 2D echo residues (curvature).
- Volumes accumulate 3D echo residues (Chern-class quanta).

In analogy with topological field theory, UNNS defines a discrete substrate where recursion constants manifest as topological invariants.