AES GCM (Gunn High school, March 29/30, 2016) - Today Tip of crypto ice berg - Ohline demo. google. com uses AES-GCM Goal: Build il From scratch What is a cipher? Alas E & D E(Key, msg) -> cipher lext

D(Key, cipher lext) -> message Ley

Josepher Eext

-> hisg Flice Ciphartext

E(Kay, msg)

Eve?? one-time pad example cipher: message: HELLOWWORLD ASCZ Z: 4845404045205745524044 # No Carry 21 34 52 71 23 44 28 91 80 57 98 random Key: across by les Cipher lext: 69 79 9E BD 72 6A 82 E002 A3 E2 How does doct yption work?

| Shahhoh: (1949) IF Key is random                                            |     |
|-----------------------------------------------------------------------------|-----|
| then ciphertext vereals nothing about messa                                 | 190 |
| Problem. Key is really big!                                                 |     |
| Solution: Pseaudorandem generator (PR6)                                     |     |
| Tkey - 3/                                                                   |     |
| Short (16 byles)  as long as hipssage  public algorithm "looks random"      |     |
| Se:    H E 2 1 0 W O R L D   Ho carry   Stream    Key   -6                  |     |
| 1 Pref (CC)                                                                 |     |
| Decryption works by subtraction.                                            |     |
| How to build PRG?                                                           |     |
| (1) Bad example: G(Key)= Key   Key   Key   Key   Key                        |     |
| Show code they write decryption, show that using wrong key doesn't decrypt. |     |
| Affaul 1: le l'er Frequency                                                 | , 1 |
| Show code inserve even though sile looks encry                              | ed  |



-> Show code. Show that letter freq attercie Problem: what if we encrypt two files under same key? m, - file #1, m2 - 5ile #2  $-\sum_{i=1}^{n} C_{i} = E(xey, m_{i}) = m_{i} + f(xey)$   $C_{2} = E(xey, m_{2}) = m_{2} + f(xey)$  $(1) \quad C_1 = (2 \quad \Longrightarrow \quad m_1 = m_2$  $(2) \quad c_1 - c_2 = m, \quad \underline{-} \quad m_2$ = enough to recover both messages Solulish. randomness During encryption chose a random starting point For counter. E(Keys, m): 1. choose random 128-bit IV 2. TAES(K, ZV) | AES(K, ZVII) | AES(K, ZVIZ) | .... cipherdext II m

| => show (=de<br>Pun twice (= show disterent cipher (exts                                 |
|------------------------------------------------------------------------------------------|
| Problem: no integrity  => show changing ciphertext w/o detection                         |
| 1/to:/das/ -> [to/sosh///]                                                               |
| Solvligh: Message Auth. Code (MAC)                                                       |
| Solvligh: Message Avth. Code (MAC)  Key  Alice  Toighertext  MIIIII                      |
| compule MAC                                                                              |
| S(key, cipherlex!) -3 t                                                                  |
| Security affactor sees many valid drausmissions,  (annot create a new volid transmission |
| An example secure MAC: (Carter-Legman)                                                   |
| 128 128 128 128 128 129<br>data:   ds   d4   d3   d2   d1   d0                           |
| $F(x) = x^6 + d_5 x^5 + d_4 x^4 + \dots + d_1 x + d_0$                                   |
| Key-(K,s) {wo 128-bit values                                                             |

s(key, data) choose random IV. Set  $r \in AES(k, ZV)$ compute:  $f \in F(s) + V$  (mod  $2^{128} + SI$ )

=  $s^6 + d_s s^5 + d_u s^u + ... + d_o + V$  (mod  $2^{128} + SI$ )

output: [IV, t]

I show (ode: Show that changing CT

results in rejection.

This is a variant of AES-GCM.