O que vou estudando ...

29 de outubro de 2010

Capítulo 1

G.D. e elementos isoparamétricos

1.1 Ferramentas de geometria diferencial

1.1.1 Notações e definições

Segue algumas notações que eventualmente são adotadas no decorrer deste relatório. Seja $\{x_i\}$, i=1,...,d (dimensão) um sistema de coordenadas canônica e ψ um campo escalar. Então

$$\nabla \psi|_i = \frac{\partial \psi}{\partial x_i} = \partial_i \psi = \psi_{,i} \quad i = 1, ..., d;$$

Seja agora $\{\xi_i\}$, i=1,...,d (dimensão) um sistema de coordenadas curvilíneas. Então

$$\left. \boldsymbol{\nabla}_{\boldsymbol{\xi}} \boldsymbol{\psi} \right|_{i} = \frac{\partial \boldsymbol{\psi}}{\partial \xi_{i}} = \partial_{i}^{\boldsymbol{\xi}} \boldsymbol{\psi} = \boldsymbol{\psi}_{,(i)} \quad i = 1,...,d;$$

1.1.2 O gradiente de superfície

Seja uma superfície contínua S na qual sobre esta esteja definida um vetor unitário normal n que aponta para o exterior da superfície. O gradiente de superfície em um ponto x_s de S de uma função escalar $f: \mathbb{R}^3 \to \mathbb{R}$, denotado por $\nabla_s f$, é definido como um vetor cuja a direção indica a direção na qual f(x) aumenta mais rapidamente na superfície, enquanto o módulo é o valor absoluto da taxa de variação de f(x) naquela direção.

Teorema 1.1. O gradiente de superfície da função f é dado por

$$\nabla_s f = \mathbb{P} \cdot \nabla f$$

onde \mathbb{P} é uma matriz de projeção data por $\mathbb{P}=\mathbb{1}-n\otimes n.$

prova (informal). Sem perda de generalidade, para calcular $\nabla_s f$ em um ponto $x_s \in S$, pode-se considerar que o sistema de coordenadas esteja posicionado de forma que $e_3 = n$ em x_s . Com isso, o plano tangente à superfície em x_s será o plano x_1x_2 , resultando da definição de gradiente que

$$\nabla_{\mathbf{s}} f = (\partial_{1} f, \, \partial_{2} f, \, 0) = (\partial_{1} f, \, \partial_{2} f, \, \partial_{3} f) - \mathbf{e_{3}} (\mathbf{e_{3}} \cdot \nabla f)$$

$$= \nabla f - (\mathbf{n} \otimes \mathbf{n}) \cdot \nabla f$$

$$= (\mathbb{1} - \mathbf{n} \otimes \mathbf{n}) \cdot \nabla f$$

$$= \mathbb{P} \cdot \nabla f$$

O teorema 1.1 pode ser usado para extender o conceito de gradiente de superfície para vetores, tensores, etc.. Por exemplo, seja um vetor v, como

$$\left.oldsymbol{
abla}_{oldsymbol{s}}f
ight|_{j}=\partial_{j}^{oldsymbol{s}}f=\mathbb{P}_{jk}\,\partial_{j}f=\mathbb{P}\cdotoldsymbol{
abla}f
ight|_{j}$$

então

$$\left.oldsymbol{
abla}_{oldsymbol{s}}oldsymbol{v}_{oldsymbol{s}}oldsymbol{v}_{oldsymbol{s}}oldsymbol{v}_{i} = \mathbb{P}_{jk}\,\partial_{j}v_{i} = oldsymbol{
abla}oldsymbol{v}\cdot\mathbb{P}
ight|_{ij}$$

1.1.3 Extensão de funções espaciais

Seja o subconjunto $\mathcal{K} \subseteq \mathbb{R}^3$ (pontos, curvas, superfícies, volumes, etc.) e uma função espacial $g: \mathcal{K} \to \mathbb{R}^d$, onde d é um inteiro positivo que indica se g é um função escalar (d=1), vetorial (d=2), tensorial (d=3), etc.. A extensão de g, denotada por \hat{g} , é definida como:

$$\hat{g}(m{x}) \equiv g(m{x_s}), \qquad egin{aligned} m{x} \in \mathbb{R}^3, \ m{x_s} = m{y} \in S \ ext{tal que } \min_{m{y}} \|m{x} - m{y}\| \, ; \end{aligned}$$

Ou seja, a extensão de g é uma função que extende os valores de g em \mathcal{K} para \mathbb{R}^3 . Notar que a extensão de uma função $f: \mathbb{R}^3 \to \mathbb{R}^d$ é ela mesma. Nos pontos em S, não é difícil provar a igualdade

$$\nabla_s q = \nabla \hat{q}$$

1.1.4 "Função distância"¹

Seja uma superfície contínua S na qual sobre esta esteja definida o vetor unitário normal \boldsymbol{n} que aponta para o exterior da superfície. A "função distância" $\phi(\boldsymbol{x};S)$ é definida por

$$\phi(\boldsymbol{x};S) = \begin{cases} +\min_{\boldsymbol{y} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|, & \text{se } \boldsymbol{x} \text{ \'e exterior \`a } S; \\ -\min_{\boldsymbol{y} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|, & \text{se } \boldsymbol{x} \text{ \'e interior \`a } S; \end{cases}$$

Desse modo, a função $\phi(x;S)$ representa a distância entre x e um ponto $y \in S$ que está mais próximo de x, a menos de um sinal. Se x_s for o ponto da superfície mais próximo de x e nela estiver definida uma normal n, não é difícil verifica que

$$\boldsymbol{x} - \boldsymbol{x_s} = \phi(\boldsymbol{x}; S) \boldsymbol{n}(\boldsymbol{x_s})$$

Teorema 1.2. Seja $\mathcal{X} = \{ \boldsymbol{y} \mid \exists \, \boldsymbol{n}(\boldsymbol{y_s}), \text{ onde } \boldsymbol{y_s} \in S \text{ \'e o ponto mais pr\'oximo de } \boldsymbol{y} \}.$ O gradiente de $\phi(\boldsymbol{x}; S)$ para todo $\boldsymbol{x} \in \mathcal{X} \text{ \'e dado por}$

$$\nabla \phi(\boldsymbol{x}; S) = \hat{\boldsymbol{n}}$$

onde \hat{n} é a extensão da normal n.

Prova. Seja $x_s \in S$ o ponto mais próximo de x e n a normal em x_s . Sem perda de generalidade, considera-se que o sistema de coordenadas esteja posicionado de forma que $e_3 = n$ e que $x_s = 0$. Como $x - x_s = \phi(x; S)n$, então $\phi(x; S) = x_3$, segue que

$$egin{aligned} oldsymbol{
abla} \phi(oldsymbol{x};S) &= oldsymbol{e_i} \partial_i x_3 = oldsymbol{e_3} \ &= oldsymbol{n}(oldsymbol{x}_s) \ &= \hat{oldsymbol{n}}(oldsymbol{x}) \end{aligned}$$

1.2 Elementos isoparamétricos

1.2.1 Motivação

Calcular uma integral do tipo

$$\int_{\mathcal{T}} \nabla_{\Gamma} \mathcal{N} \cdot \nabla_{\Gamma} u \, dS$$

¹aspas pois a função em questão não segue a definição de função distância de fato. Qual será o termo correto ???

onde \mathcal{T} é um triângulo (que pode ser linear, quadrático, etc.), dS o diferencial de superfície no espaço tridimensional e ∇_{Γ} é o gradiente na superfície.

1.2.2 Jacobiano da transformação

Sejam ξ_j , j=1,2, as coordenadas do triângulo de referência e \boldsymbol{n} a normal exterior da superfície. O incremento na posição d \boldsymbol{x} associado ao um incremento de ξ_j é dado por

$$\mathrm{d}m{x}^{(j)} = rac{\partial m{x}}{\partial \xi_j} \mathrm{d}\xi_i$$
 (não há soma em j)

Segue que o diferencial de área dS é dado por

$$dS = \left| \boldsymbol{\breve{n}} \cdot \left(d\boldsymbol{x}^{(1)} \times d\boldsymbol{x}^{(2)} \right) \right| = \left| \boldsymbol{\breve{n}} \cdot \left(\frac{\partial \boldsymbol{x}}{\partial \xi_1} \times \frac{\partial \boldsymbol{x}}{\partial \xi_2} \right) \right| d\xi_1 d\xi_2$$
$$= J d\xi_1 d\xi_2$$

Onde J é o jacobiano da transformação. Como os termos $\partial x/\partial \xi_i$ são perpendiculares à normal, então o jacobiano pode ser reduzido:

$$J = \left| \left(\frac{\partial \boldsymbol{x}}{\partial \xi_1} \times \frac{\partial \boldsymbol{x}}{\partial \xi_2} \right) \right|$$

ou escrito como o determinante de uma matriz:

$$J = \det \begin{bmatrix} \frac{\partial x_1}{\partial \xi_1} & \frac{\partial x_2}{\partial \xi_1} & \frac{\partial x_3}{\partial \xi_1} \\ \frac{\partial x_1}{\partial \xi_2} & \frac{\partial x_2}{\partial \xi_2} & \frac{\partial x_3}{\partial \xi_2} \\ n_1 & n_2 & n_3 \end{bmatrix}$$

A normal pode ser encontrada a partir da expressão:

$$\breve{\boldsymbol{n}} = \left(\frac{\partial \boldsymbol{x}}{\partial \xi_1} \times \frac{\partial \boldsymbol{x}}{\partial \xi_2}\right) / J$$

1.2.3 Cálculo do gradiente

Suponha que a função u esteja definida apenas na superfície. Então

$$\nabla_{\mathbf{s}} u = \mathbb{P} \cdot \nabla \hat{u} = \nabla \hat{u}$$

Para calcular $\nabla \hat{u}$ em função das coordenadas do triângulo, faz-se a seguinte transformação:

$$\hat{u}_{,i} = \hat{u}_{,(j)}\xi_{j,i}$$
 $i = 1, 2, 3$

Onde foi somado de j=1 até 2. Para calcular os termos $\xi_{j,i},\,i=1,2,3;\,j=1,2,$ pode-se completar a base $\{\xi_i\}$ acrescentando uma coordenada ξ_3 qualquer que satisfaça

$$\nabla_{\Gamma}\xi_3 = \mathbf{0}; \qquad \breve{n} \cdot \nabla \xi_3 \neq \mathbf{0};$$

e assim calcular o inverso da matrix $[x_{i,(j)}]$. O ξ_3 pode ser a "função distância" ou pode ser a coordenada baricêntrica de um 4º de um tetraedro que não esteja na superfície do triângulo.

Referências Bibliográficas