Single-Source Shortest-Paths Problem

The Problem: Given a digraph with non-negative edge weights G = (V, E) and a distinguished *source vertex*, $s \in V$, determine the distance and a shortest path from the source vertex to every vertex in the digraph.

Question: How do you design an efficient algorithm for this problem?

Implementing the Idea of Relaxation

Consider an edge from a vertex u to v whose weight is w(u,v). Suppose that we have already processed u so that we know $d[u] = \delta(s,u)$ and also computed a current estimate for d[v]. Then

- There is a (shortest) path from s to u with length d[u].
- There is a path from s to v with length d[v].

Combining this path from s to u with the edge (u, v), we obtain another path from s to v with length d[u] + w(u, v).

If d[u]+w(u,v) < d[v], then we replace the old path $\langle s, \ldots, w, v \rangle$ with the new shorter path $\langle s, \ldots, u, v \rangle$. Hence we update

- $\bullet \ d[v] = d[u] + w(u, v)$
- pred[v] = u (originally, pred[v] == w).

The Algorithm for Relaxing an Edge

```
Relax(u,v)  \{ \\ & \text{if } (d[u] + w(u,v) < d[v]) \\ & \{ \quad d[v] = d[u] + w(u,v); \\ & \quad pred[v] = u; \\ & \} \\ \}
```

Remark: The predecessor pointer $pred[\]$ is for determining the shortest paths.

Idea of Dijkstra's Algorithm: Repeated Relaxation

- Dijkstra's algorithm operates by maintaining a subset of vertices, $S \subseteq V$, for which we know the true distance, that is $d[v] = \delta(s, v)$.
- Initially $S = \emptyset$, the empty set, and we set d[s] = 0 and $d[v] = \infty$ for all others vertices v. One by one we select vertices from $V \setminus S$ to add to S.
- The set S can be implemented using an array of vertex colors. Initially all vertices are white, and we set color[v] = black to indicate that $v \in S$.

Description of Dijkstra's Algorithm

```
Dijkstra(G,w,s)
                                          % Initialize
for (each u \in V)
    d[u] = \infty;
    color[u] = white;
d[s] = 0;
pred[s] = NIL;
Q = (queue with all vertices);
while (Non-Empty(Q))
                                          % Process all vertices
    u = \mathsf{Extract}\text{-}\mathsf{Min}(Q);
                                          % Find new vertex
    for (each v \in Adj[u])
       if (d[u] + w(u,v) < d[v])
                                         % If estimate improves
           d[v] = d[u] + w(u, v);
                                             relax
           Decrease-Key(Q, v, d[v]);
           pred[v] = u;
    color[u] = black;
```

Example:

Step 0: Initialization.

v	S	а	b	С	d
d[v]	0	∞	∞	∞	∞
pred[v]	nil	nil	nil	nil	nil
$\overline{color[v]}$	W	1 4 /		\ A /	\ A /

Example:

Step 1: As $Adj[s] = \{a,b\}$, work on a and b and update information.

v	S	а	b	С	d
d[v]	0	2	7	∞	∞
pred[v]	nil	S	S	nil	nil
color[v]	В	W	W	W	W

Priority Queue: $\dfrac{v}{d[v]} \, \dfrac{\mathsf{a} \ \mathsf{b} \ \mathsf{c} \ \mathsf{d}}{2 \ \mathsf{7} \ \infty \ \infty}$

Example:

Step 2: After Step 1, a has the minimum key in the priority queue. As $Adj[a] = \{b, c, d\}$, work on b, c, d and update information.

v	S	а	b	С	d
d[v]	0	2	5	10	7
pred[v]	nil	S	a	a	a
$\overline{color[v]}$	В	В	W	W	W

Priority Queue:
$$\dfrac{v}{d[v]} \, \dfrac{\text{b}}{\text{5}} \, \dfrac{\text{d}}{\text{7}}$$

Example:

Step 3: After Step 2, b has the minimum key in the priority queue. As $Adj[b] = \{a,c\}$, work on a, c and update information.

v	S	a	b	С	d
$\overline{d[v]}$	0	2	5	6	7
pred[v]	nil	S	а	b	а

Priority Queue: $\begin{array}{c|ccc} v & c & d \\ \hline d[v] & 6 & 7 \\ \hline \end{array}$

Example:

Step 4: After Step 3, c has the minimum key in the priority queue. As $Adj[c] = \{d\}$, work on d and update information.

v	S	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а
color[v]	В	В	В	В	W

Priority Queue: $\begin{array}{c|c} v & \mathsf{d} \\ \hline d[v] & 7 \end{array}$

Example:

Step 5: After Step 4, d has the minimum key in the priority queue. As $Adj[d] = \{c\}$, work on c and update information.

v	S	а	b	С	d
$\overline{d[v]}$	0	2	5	6	7
pred[v]	nil	S	а	b	а

Priority Queue: $Q = \emptyset$.

We are done.

Shortest Path Tree: T = (V, A), where

$$A = \{(pred[v], v) | v \in V \setminus \{s\}\}.$$

The array pred[v] is used to build the tree.

Example:

v	S	а	b	С	d
d[v]	0	2	5	6	7
pred[v]	nil	S	а	b	а

Analysis of Dijkstra's Algorithm:

The initialization uses only O(n) time.

Each vertex is processed exactly once so Non-Empty() and Extract-Min() are called exactly once, e.g., n times in total.

The inner loop for (each $v \in Adj[u]$) is called once for each edge in the graph. Each call of the inner loop does O(1) work plus, possibly, one Decrease-Key operation.

Recalling that all of the priority queue operations require $O(\log |Q|) = O(\log n)$ time we have that the algorithm uses

 $nO(1+\log n) + O(e) + O(e\log n) = O((n+e)\log n)$ time.