Diszkrét matematika 1.

5. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Kombinatorika

Alapproblémák

- sorbarendezések
- kiválasztások
- leszámlálások

Miket használunk

- négy alapművelet
 - összadás esetszétválasztás
 - kivonás "összes-rossz"
 - szorzás független választás
 - osztás "tehén-szabály"
- skatulya-elv
- bijekció

Permutációk

Példa

Egy elsős informatikus hallgatónak 15 vizsgát kell letennie. Hány különböző sorrendben teheti ezt meg?

Definíció

 $Az \ 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ szorzatot n faktoriálisnak nevezzük. Jele n!, továbbá 0! = 1

Állítás

n különböző elem összes lehetséges sorrendjeinek száma n! (Ezt az n elem (ismétlés nélküli) permutációinak nevezzük.)

Tétel (Stirling formula)

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

Permutációk

Példa

A fent említett hallgató 1 vizsgát 1esre, 2 vizsgát 2esre, ..., 5 vizsgát 5ösre teljesített. Hányféle sorrendben írhatja le a jegyeket?

Állítás

 k_1 darab első típusú elem, k_2 darab második típusú elem, ..., k_n darab n-ik típusú elem lehetséges sorrendjeinek száma

$$\frac{(k_1+k_2+\cdots+k_n)!}{k_1!\cdot k_2!\cdots k_n!}$$

(Ezt az elemek ismétléses permutációinak nevezzük.)

Variációk

Példa

Az egyetemen összesen 15 különböző óra van. Ebből 6ot szeretnénk hétfőre tenni. Hányféle lehet a hétfői órarend?

Állítás

n különböző elemből minden lehetséges sorrendben k elem kiválasztásainak száma

$$n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

(Ezt az elemek k-ad osztályú variációinak nevezzük.)

Variációk

Példa

Egy 48 fős dimat évfolyam hallgatói összesen hányféleképpen kaphatnak osztályzatot?

Állítás

n elemből képezhető k tagú sorozatok száma n^k . (Ezt az elemek k-ad osztályú ismétlés variációinak nevezzük.)

Kombinációk

Példa

A 14 dimat előadásról 3szor lehet hiányozni. Hányféleképpen lehet ezt megtenni?

Állítás

Egy n elemű halmaz k elemű részhalmazainak száma

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

(Ezt az elemek k-ad osztályú kombinációinak nevezzük.)

Binomiális együtthatók

Tétel

 $Az\binom{n}{k}$ binomiális együtthatókra teljesülnek az alábbi azonosságok:

$$\binom{n}{k} = \binom{n}{n-k};$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k};$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Kombinációk

Példa

A büfében 5-féle süteményt árulnak. 15 darabot hányféleképpen lehet megvenni?

Állítás

n elemből k kiválasztásainak száma, ha egy elem többször is szerepelhet és a sorrend nem számít

$$\binom{n+k-1}{k}$$

(Ezt az elemek k-ad osztályú ismétléses kombinációinak nevezzük.)

Binomiális tétel

Binomiális tétel

 $\forall x, y \in \mathbb{R}, n \in \mathbb{N}^+$ esetén

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Következm<u>ény</u>

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

*inomiális tétel

Binomiális tétel

 $\forall x, y \in \mathbb{R}, n \in \mathbb{N}^+$ esetén

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Polinomiális tétel

 $\forall x_1, x_2, \dots, x_r \in \mathbb{R}, n, r \in \mathbb{N}^+$ esetén

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{i_1 + i_2 + \dots + i_r = n} \frac{n!}{i_1! \cdot i_2! \cdot \dots \cdot i_r!} x_1^{i_1} \cdot x_2^{i_2} \cdot \dots \cdot x_r^{i_r}.$$

Pascal-háromszög

圆方蔡七法古

Pascal-háromszög

圆方蔡七法古

Pascal-háromszög

Azonosságok a Pascal-△-ben

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = ?$$
$$\sum_{k=0}^n \binom{n}{k}^2 = ?$$
$$\sum_{k=0}^k \binom{n+i}{i} = ?$$

Szita módszer

Példa

Hány olyan 100nál kisebb pozitív egész van, ami nem osztható 2, 3 és 5 egyikével sem?

Állítás

Legyenek A_1, \ldots, A_n véges halmazok. Ekkor

$$|\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots$$

Fibonacci-számok

Példa

Egy lépcsőnek n foka van. Hányféleképpen mehetünk fel rajta, ha egy lépésben egy vagy két fokot lépünk?

Definíció

Az F_i számokat Fibonacci-számoknak nevezzük, ahol $F_0=0, F_1=1$, valamint $n\geq 1$ esetén

$$F_{n+1} = F_n + F_{n-1}$$

Azonosságok

- $F_0 + F_1 + \cdots + F_n = ?$
- Pascal-háromszög?
- és még rengeteg érdekesség...

Fibonacci-számok

<u>Definíció</u>

Az F_i számokat Fibonacci-számoknak nevezzük, ahol $F_0=0, F_1=1$, valamint $n\geq 1$ esetén

$$F_{n+1} = F_n + F_{n-1}$$

Tétel

Az F_n Fibonacci-számra fennáll az alábbi azonosság:

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Születésnap paradoxon

Példa

Annak az esélye, hogy lesz két ember, akinek ugyanazon napon van a születésnapja:

- 367 embernél 100%
- 23 embernél több, mint 50%
- 58 embernél már több, mint 99%...

Tétel (Születésnap paradoxon)

Válasszunk n véletlen értéket az $\{1,\ldots,d\}$ számok közül. Ekkor annak az esélye, hogy lesz közöttük két egyforma

$$pprox 1 - e^{-rac{n(n-1)}{2d}}$$
. (NemBiz.)

Alkalmazás: kriptográfiai hash-függvények

Motiváció

Tetszőleges hosszúságú üzenetnek egy fix hosszú "lenyomatát" képezzünk, ami eléggé "szétszórja" az üzeneteket.

Definíció

Egy $H: \{0,1\}^* \mapsto \{0,1\}^k$ függvényt hash-függvénynek nevezünk, ahol $k = 128, 160, 256, \ldots$ fix érték.

Egy ütközés H(.)-ban egy $x \neq y \in \{0,1\}^*$ pár, amire H(x) = H(y).

Hash-függvény ütközések

- kriptográfiai hash-függvény egyik fő kritériuma, hogy nehéz legyen ütközést találni benne (számítási értelemben)
- ullet skatulya-elv $\Rightarrow 2^k+1$ üzenetből biztosan lesz ütközés
- születésnap paradoxon: $\Rightarrow 2^{k/2}$ üzenetből legalább 50% eséllyel lesz ütközés...