insurance JCR

insurance JCR

Let agent i have distribution of insured losses F_i and a CARA(σ_i).

The contract $y_i = (R_i, P_i)$ where reimbursement R_i is a function of L and P_i is the premium. There is a no-insurance option $y_0 = \emptyset = (0, 0)$.

The certainty equivalent of a contract y=(R,P) for i is $V_i(R)-P$, with

$$V_i(R) = -rac{1}{\sigma_i}\log\int \exp(\sigma_i(L-R(L)))dF_i(L)$$

The participation constraint is $V_i(R_i) - P_i \geq V_i(0)$, so define

$$U_i = V_i(R_i) - P_i - V_i(0)$$

so that $P_i = V_i(R_i) - V_i(0) - U_i$.

We have by (IC):

$$U_i \ge V_i(R_j) - P_j - V_i(0)$$

= $(V_i(R_j) - V_i(0)) - (V_i(R_j) - V_i(0) - U_i),$

that is $U_i - U_j \ge (V_i(R_j) - V_i(0)) - (V_j(R_j) - V_j(0))$. The RHS should be $b_i(R_j) - b_j(R_j)$ so we define $b_i(y) = V_i(R) - V_i(0)$ for y = (R, P).

The monopoly insurer's objective function on agent i is, given a loading factor l:

$$P_i-(1+l)\int R_i(L)dF_i(L)=S_i(y)-U_i$$

where the first-best surplus is

$$S_i(y) = V_i(R) - V_i(0) - (1+l) \int R_i(L) dF_i(L) = b_i(y) - (1+l) \int R_i(L) dF_i(L),$$

so we take $\lambda=1$.

the algorithm

We need

$$\Lambda_{ij}(y) = b_i(y_j) - b_j(y_j)$$

and

$$egin{align} \left(\left(\Lambda'(y)
ight)^* u
ight)_j &= \sum_i (b_i'(y_j) - b_j'(y_j)) u_{ij}. \ \ y_i^{(k+1)} &= \operatorname{prox}_{- au f_i S_i} \left(y_i^{(k)} - au \left((\Lambda'(y^{(k)}))^* v^{(k)}
ight)_i
ight) \end{aligned}$$

then

$$ilde{y}^{(k+1)} = 2 y^{(k+1)} - y^{(k)}$$

and

$$v^{(k+1)} = \operatorname{proj}_K \left(v^{(k)} + c ilde{y}^{(k+1)}
ight).$$

We need $c\tau M^2<1$, with M an upper bound on the Lipschitz constant of Λ , that is the sup of $|b_i'(y)-b_j'(y)|$ over i,j, and y.

the proximal

 $\operatorname{prox}_{-\tau f_i S_i}(z_i)$ is obtained by minimizing

$$-S_i(y_i) + rac{1}{2 au f_i} \|y_i - z_i\|^2.$$

Here
$$z_i = y_i^{(k)} - au \sum_i (b_i'(y_i^{(k)}) - b_i'(y_i^{(k)})) v_{ii}^{(k)}$$
 .

Now denote the first best y_i^* . By definition, at least close to y_i^* the derivative $\frac{\partial S_i}{\partial y_i}$ has positive (negative) components on every axis to the left (right) of the corresponding component of y_i^* . Since $S_i'(y_i) = (y_i - z_i)/(\tau f_i)$, each component of $(y_i - z_i)$ must be positive (negative) to the left (right) of y_i^* .

It follows that (assuming concavity of S_i) each component of y_i is between the corresponding components of y_i^* and z_i .

the projection

To get $v = \operatorname{proj}_K(w)$, we define the function

$$v_{ij}(eta) = \max(0, w_{ij} - eta_i + eta_j)$$

for $\beta \in \mathbb{R}^N$.

The solution v is v(eta) for the eta that minimizes

$$rac{1}{2}\sum_{i,j}v_{ij}(eta)^2+f\cdoteta.$$

The objective is C^1 , with gradient wrt β_i

$$\sum_{k,l} \max(0, w_{kl} - eta_k + eta_l) 1(w_{kl} > eta_k - eta_l) \left(1(l=i) - 1(k=i)
ight) + f_i,$$

that is

$$\sum_k \left(v_{ki}(eta)1(w_{ki}>eta_k-eta_i)-v_{ik}(eta)1(w_{ik}>eta_i-eta_k)
ight)+f_i.$$

We can get the minimizing β by Nesterov AGD:

ullet we start from some $eta^{(0)}=areta^{(0)}\in\mathbb{R}^N$ and $M\geq$ the largest eigenvalue of DD^* , with

$$(Du)_{ij} = u_i - u_j; \; (D^*v)_i = \sum_i (v_{ij} - v_{ji})$$

$$(DD^*v)_{ij}=\sum_k(v_{ik}-v_{ki}-v_{jk}+v_{kj})$$

so that

$$(DD^*)_{ij,kl} = 1(k=i) - 1(l=i) - 1(k=j) + 1(l=j).$$

The largest eigenvalue of DD^st is 2N-2 if $n_0=n_1$.

then we iterate

$$eta^{(k+1)} = \max\left(0,eta^{(k)} - rac{1}{M}(f-D^*v(areta^{(k)}))
ight)$$

then

$$ar{eta}^{(k+1)} = eta^{(k+1)} + rac{t^{(k)}-1}{t^{(k+1)}} (eta^{(k+1)} - eta^{(k)})$$

with
$$t^{(k+1)}=\left(1+\sqrt{1+4(t^{(k)})^2}
ight)/2$$
 and $t^{(0)}=0$.

the algorithm in proj_K works better.

0-L (degenerate) example

If F_i has mass $(1-p_i)$ in 0 and mass p_i in L, then with a straight deductible contract y=D (with $D\leq L$) we get for agent i with ARA(σ_i):

$$egin{align} V_i(D) &= -rac{1}{\sigma_i} \log(1-p_i+p_i \exp(\sigma_i D)) \ b_i(y) &= rac{1}{\sigma_i} \lograc{1-p_i+p_i \exp(\sigma_i L)}{1-p_i+p_i \exp(\sigma_i D)} \ S_i(y) &= b_i(y)-p_i(L-D). \end{split}$$

Only one instrument here so not that interesting (is it even covered in the paper?)

general CARA

Suppose agent i has type (σ_i, δ_i) with $F_i(L) = F(L, \delta_i)$; and R_i has parameters y_i : $R_i(L) = R(L, y_i)$, with $R(L, \emptyset) \equiv 0$ for the no-insurance contract \emptyset .

Then

$$b_{\sigma,\delta}(y) = -rac{1}{\sigma}\log\int\exp(\sigma(L-R(L,y)))dF(L,\delta) + rac{1}{\sigma}\log\int\exp(\sigma L)dF(L,\delta)$$

and

$$S_{\sigma,\delta}(y) = b_{\sigma,\delta}(y) - \int R(L,y) dF(L,\delta).$$

The proximal projector requires solving

$$y - au f_{\sigma,\delta} S'_{\sigma,\delta}(y) = z,$$

that is

$$y - au f_{\sigma,\delta} \int rac{\partial R}{\partial y}(L,y) \left(rac{\exp(\sigma(L-R(L,y))}{\int \exp(\sigma(t-R(t,y))dF(t,\delta)} - (1+l)
ight) dF(L,\delta) = z$$

since

$$b'_{\sigma,\delta}(y) = \int rac{\partial R}{\partial y}(L,y) rac{\exp(\sigma(L-R(L,y))}{\int \exp(\sigma(t-R(t,y))dF(t,\delta)} dF(L,\delta).$$

We need to study the integral

$$egin{aligned} I_{\sigma,\delta}(y) &\equiv \int \exp(\sigma(L-R(L,y))dF(L,\delta) \ &= F(0,\delta) \exp(-\sigma R(0,y)) \ &+ \int_{0^+}^{y_0} \exp(\sigma L)dF(L,\delta) \ &+ \int_{y_0}^{\infty} \exp\left(\sigma(y_1L+y_0(1-y_1))
ight)dF(L,\delta), \end{aligned}$$

and $b_{\sigma,\delta}(y) = (\log I_{\sigma,\delta}(\emptyset) - \log I_{\sigma,\delta}(y)) / \sigma$, where \emptyset denotes no insurance.

fixed deductible + proportional copay

Suppose $y=(y_0,y_1)$ and we look at contracts with a fixed deductible y_0 and proportional copay y_1 above the deductible: $R(L,y)=(1-y_1)\max(L-y_0,0)$.

No insurance is $y_1 = 1$; full insurance is $y_0 = y_1 = 0$.

Then L-R=L if $L < y_0$ and $L-R=y_1L+y_0(1-y_1)$ if $L > y_0.$ Moreover

$$rac{\partial R}{\partial y_0} = (y_1 - 1)\mathbf{1}(L > y_0)$$

and

$$rac{\partial R}{\partial y_1} = \min(y_0 - L, 0).$$

censored normal losses

Let's go crazy: $L=\max(0,N(\delta,s^2))$ for type (σ,δ) , so that L=0 with probability $\Phi(-\delta/s)$ and at L>0, the pdf is $\phi((L-\delta)/s)/s$.

Lemma 1:

$$\int_{lpha}^{eta} \exp(\gamma u +
u) \phi(u) du = \left(\Phi\left(eta - \gamma
ight) - \Phi\left(lpha - \gamma
ight)
ight) imes \exp(\gamma^2/2 +
u).$$

Lemma 2:

$$egin{aligned} \int_a^b \exp(cL+d)rac{1}{s}\phi\left(rac{L-\delta}{s}
ight)dL &= \int_{(a-\delta)/s}^{(b-\delta)/s} \exp(csu+c\delta+d)\phi(u)du \ &= \left(\Phi\left(rac{b-\delta}{s}-cs
ight)-\Phi\left(rac{a-\delta}{s}-cs
ight)
ight) \ & imes \exp(c^2s^2/2+c\delta+d). \end{aligned}$$

Therefore

$$egin{aligned} I_{\sigma,\delta}(y) &= F(0,\delta) imes 1 + \int_{0^+}^{y_0} \exp(\sigma L) dF(L,\delta) + \int_{y_0}^{\infty} \exp\left(\sigma(y_1 L + y_0(1-y_1))
ight) dF(L,\delta) \ &\equiv A_{\sigma,\delta} + B_{\sigma,\delta}(y) + C_{\sigma,\delta}(y) \ &= \Phi(-\delta/s) \ &+ (\Phi((y_0-\delta)/s - \sigma s) - \Phi(-\delta/s - \sigma s)) imes \exp(\sigma^2 s^2/2 + \sigma \delta) \ &+ \Phi(\sigma y_1 s - (y_0-\delta)/s) imes \exp(\sigma^2 y_1^2 s^2/2 + \sigma y_1 \delta + \sigma y_0(1-y_1)). \end{aligned}$$

The no-insurance case is

$$I_{\sigma,\delta}(0,1) = A_{\sigma,\delta} + C_{\sigma,\delta}(0,1) = \Phi(-\delta/s) + (1-\Phi(-\delta/s-\sigma s)) \exp(\sigma^2 s^2/2 + \sigma \delta).$$

This gives us $b_{\sigma,\delta}(y) = (\log I_{\sigma,\delta}(0,1) - \log I_{\sigma,\delta}(y))/\sigma$ and its derivatives:

$$rac{\partial b_{\sigma,\delta}}{\partial y_0} = -rac{1}{\sigma I_{\sigma,\delta}}rac{\partial (B_{\sigma,\delta}+C_{\sigma,\delta})}{\partial y_0}$$

and

$$rac{\partial b_{\sigma,\delta}}{\partial y_1} = -rac{1}{\sigma I_{\sigma,\delta}}rac{\partial C_{\sigma,\delta}}{\partial y_1}.$$

Define $d=(\delta-y_0)/s$ and $d_1=\sigma sy_1+d$. We have

$$B = (\Phi(\delta/s + \sigma s) - \Phi(d + \sigma s)) \exp(\sigma^2 s^2/2 + \sigma \delta)$$

and

$$C = \Phi(d_1) \exp(\sigma^2 y_1^2 s^2/2 + \sigma(y_0 + s dy_1)).$$

We calculate

$$egin{aligned} rac{\partial B_{\sigma,\delta}}{\partial y_0} &= \phi(d+\sigma s) \; \exp(\sigma^2 s^2/2 + \sigma \delta)/s; \ rac{\partial C_{\sigma,\delta}}{\partial y_0} &= (\sigma(1-y_1)\Phi(d_1) - \phi(d_1)/s) \ & imes \exp(\sigma^2 y_1^2 s^2/2 + \sigma(y_0 + s d y_1)); \end{aligned}$$

and, denoting $H(x) \equiv \phi(x) + x\Phi(x)$,

$$rac{\partial C_{\sigma,\delta}}{\partial y_1} = \sigma s H(d_1) imes \exp(\sigma^2 y_1^2 s^2/2 + \sigma(y_0 + s d y_1))$$

Finally, we have

$$egin{aligned} D_{\sigma,\delta}(y) &\equiv \int R(L,y) dF(L,\delta) \ &= (1-y_1) \int_{y_0}^{\infty} (L-y_0) \phi((L-\delta)/s) dL/s \ &= (1-y_1) \int_{(y_0-\delta)/s}^{\infty} (su+\delta-y_0) \phi(u) du \ &= (1-y_1) ig[-s\phi(u)+(\delta-y_0)\Phi(u)ig]_{(y_0-\delta)/s}^{\infty} \ &= s(1-y_1) H(d) \end{aligned}$$

and $S_{\sigma,\delta}(y) = b_{\sigma,\delta}(y) - (1+l)D_{\sigma,\delta}(y)$.

Note that

$$rac{\partial D_{\sigma,\delta}}{\partial y_0} = -(1-y_1)\Phi(d)$$

and

$$rac{\partial D_{\sigma,\delta}}{\partial y_1} = -sH(d).$$

the first best

The first best maximizes S=b-(1+l)D. We know that it is a straight deductible contract, with $y_1=0$ and an $y_0>0$ if l>0.

At $y_0=y_1=0$, there is full insurance so I=1 and the value of $\partial S/\partial y_0$ is

$$rac{1}{\sigma s}\left(\phi(\delta/s)-\phi(-\delta/s-\sigma s)\ \exp(\sigma^2 s^2/2+\sigma \delta)
ight)+l\Phi(\delta/s).$$

Since $\phi(-\delta/s - \sigma s) \exp(\sigma^2 s^2/2 + \sigma \delta) = \phi(\delta/s)$ this gives $l\Phi(\delta/s)$ which is always positive, hence $y_0 > 0$.

The first-best y_0 is given by

$$\sigma(1+l)\Phi(\delta/s)I(y_0,0)=rac{\partial(B+C)}{\partial y_0}(y_0,0).$$

calibration

We take a loading factor l=0.25. Consider the ratio $r=\delta/s$. The probability of an accident is $\Phi(r)$; it should be between 0.03 and 0.1 (per year), which means -1.9 < r < -1.2. Then the expected positive

loss E(L|L>0) is $s\times (\phi(r)/\Phi(r)+r)$ which is between 0.4s and 0.5s. We want it to be about 2 (in k-euros) so we take s=4; this gives us δ between -8 and -5.

For risk-aversion σ , we note that with no copay, the first-best deductible when we have a 0-1 loss with probability p is given by

$$\sigma D^* = \log \frac{(1-p)(1+l)}{1-p(1+l)}.$$

for small p, this gives $\sigma D^* \simeq \log(1+l)$, which in our case is 0.22. Say we want D^* between 0.5 and 2 k-euros; then we need σ between 0.1 and 0.5.

intro

It is nonlinear; it is not clear what the second derivatives $\frac{\partial b_i}{\partial i \partial y}$ look like, so even less so what the implications of

$$rac{\partial b_i}{\partial i_k \partial y_0} rac{\partial y_0}{\partial i_l} + rac{\partial b_i}{\partial i_k \partial y_1} rac{\partial y_1}{\partial i_l} \gg 0$$

for the properties of $i o (y_0,y_1)$ might be.

If we compare two nearby types with the same value of y_1 , then we have

$$\frac{\partial b_i}{\partial i_k \partial y_0} \frac{\partial y_0}{\partial i_l} \gg 0,$$

a bit better.

On the other hand, there is a clear "top": when risk aversion and risk are at their highest the WTP for insurance is maximal and there we have SB=FB, a straight deductible contract.

to do

plots and stats

Compute the expected claims $(1-y_1)E_{\sigma,\delta}\max(L-y_0,0)$ under both FB and SB; the surplus loss $S_{SB}-S_{FB}$.

Get the informational rents U_i . Start from $U_i^{(0)}=0$ and iterate

$$U_i^{(k+1)} = \max_j (U_j^{(k)} + \Lambda_{ij}(y))$$

where $\Lambda_{ij}(y) = b_i(y_j) - b_j(y_j)$. Plot the U_i, S_i , and $S_i - U_i$.

IR is binding for i iff $U_i=0$; IC i o j is binding iff $U_i-U_j=\Lambda_{ij}(y).$

try straight deductible contracts

R(L,y)=0 for $L\leq y_0$ and $R(L,y)=L-y_0$ above; like the 2-parameter contract with $y_1=0$.

A and B are unchanged; C becomes

$$\Phi((\delta - y_0)/s) \exp(\sigma y_0)$$

and D becomes

$$s\phi((y_0-\delta)/s)+(\delta-y_0)\Phi((\delta-y_0)/s).$$

try more contract parameters

Zero bracket: R(L,y)=0 for $L\leq y_0$.

For contracts of dimension 2K: choose $(y_0 <) \ y_2 < \ldots < y_{2K-2}$, $0 < y_1, \ldots, y_{2K-1} < 1$.

Bracket $k=1,\ldots,K$ has $y_{2k-2}\leq L\leq y_{2k}$; there $R(L,y)=A_k(y)+(1-y_{2k-1})(L-y_{2k-2})$ with

$$A_k(y) = \sum_{l=1}^{k-1} (1-y_{2l-1})(y_{2l}-y_{2l-2}).$$

This gives 2K parameters. The 2-dimensional contract has K=1.

maybe optimize further

imposed penalties

We need interior optima, so allow y_0, y_1 to take any values but penalize $y_0 < 0, y_1 < 0$, y_0 large, $y_1 > 1$. Still, sometimes we get stuck with $y_0 = y_1 = 0$ for some type. To avoid that, penalty on $y_0 + y_1 < 0.1$.

fix at the top

Easy: just fix the SB at the first B and run the proximal part only on the lower types.

interpolate

If we solved for an (n, n) grid, then we can interpolate linearly any point in the square, on a (n+k,n+k) grid for instance, and start from there.

new calibration

January 4, 2024: keep s=4, make $\delta=-8$ to -4 so probabilities of accident are between 0.02 and 0.16.

The resutst are better, in noxn1new.

optimized [JLambda to [JLambda_j]

It was the most costly piece by far. Now it runs 10 times faster.

todo

- how should the algorithm change with bounds on contract variables?
- make it general (number of types/contract vars, utilities)
- test it on the linear examples of the paper.
- try reasonable distributions (not uniform in square)
- play with slack coefficients on the IC constraints
 That is:

$$U_i - U_j \geq b_i(y_j) - b_j(y_j) - K$$

with K starting large and then decreasing.

• play with range of (σ, δ) Start small and increase.