Linear models 2 More bells and whistles

Samuel Robinson, Ph.D.

October 15, 2020

Motivation

• I have 2+ groups of data, and I want to know whether the means are different

Motivation

- I have 2+ groups of data, and I want to know whether the means are different
- I have 2+ groups of bivariate data, and I want to know whether the relationships differ between groups

Motivation

- I have 2+ groups of data, and I want to know whether the means are different
- I have 2+ groups of bivariate data, and I want to know whether the relationships differ between groups
- How do we know if any of this matters?

Categorial data, 3 categories

$$mpg = b_0 + b_1 gears_4 + b_2 gears_5$$

 $mpg \sim Normal(mpg, \sigma)$

The more factor levels, the more coefficients:

- mpg is the thing you're interested in predicting
- mpg is the predicted value of mpg
- gear is the predictor of mpg
 - set of 0s and 1s
 - gears₄ = "is this data point from a 4-gear car?"
- $b_0 = intercept$
- $[b_1, b_2] = \text{are coefficients}$ for gears

How do I get R to fit this model?

```
##
## Call:
## lm(formula = mpg ~ factor(gear), data = mtcars)
##
## Residuals:
      Min 1Q Median 3Q
                                   Max
## -6.7333 -3.2333 -0.9067 2.8483 9.3667
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 16.107
                            1.216 13.250 7.87e-14 ***
## factor(gear)4 8.427 1.823 4.621 7.26e-05 ***
## factor(gear)5 5.273
                            2.431 2.169 0.0384 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.708 on 29 degrees of freedom
## Multiple R-squared: 0.4292, Adjusted R-squared: 0.3898
## F-statistic: 10.9 on 2 and 29 DF, p-value: 0.0002948
```

Dummy variables

```
mod1Matrix <- model.matrix(mod1) #Get model matrix (columns used to predict mpg)
head(mod1Matrix,28) #Show first 28 rows of model matrix</pre>
```

##		(Intercept)	factor(gear)4	factor(gear)5
##	Mazda RX4	1	1	0
##	Mazda RX4 Wag	1	1	0
##	Datsun 710	1	1	0
##	Hornet 4 Drive	1	0	0
##	Hornet Sportabout	1	0	0
##	Valiant	1	0	0
##	Duster 360	1	0	0
##	Merc 240D	1	1	0
##	Merc 230	1	1	0
##	Merc 280	1	1	0
##	Merc 280C	1	1	0
##	Merc 450SE	1	0	0
##	Merc 450SL	1	0	0
##	Merc 450SLC	1	0	0
##	Cadillac Fleetwood	1	0	0
##	Lincoln Continental	1	0	0
##	Chrysler Imperial	1	0	0
##	Fiat 128	1	1	0
##	Honda Civic	1	1	0
##	Toyota Corolla	1	1	0
##	Toyota Corona	1	0	0
##	Dodge Challenger	1	0	0
##	AMC Javelin	1	0	0
##	Camaro Z28	1	0	0
	Pontiac Firebird	1	0	0
	Fiat X1-9	1	1	0
##	Porsche 914-2	1	0	1
##	Lotus Europa	1	0	1

Interactions

What if the slopes and intercepts differ between groups?

Interactions


```
egin{aligned} 	extbf{mpg} &= b_0 + b_1 	ext{disp} \ &+ b_2 	ext{gears}_4 + b_3 	ext{gears}_5 \ &+ b_4 	ext{(disp} 	imes 	ext{gears}_4) \ &+ b_5 	ext{(disp} 	imes 	ext{gears}_5) \end{aligned}
egin{aligned} 	ext{mpg} &\sim 	ext{Normal}(	extbf{mpg}, \sigma) \end{aligned}
```

- Interactions occur when predictors are multiplied
- In this case, disp is multiplied by gears₄ and gears₅

How do I get R to fit this model?

```
#Formula structure: y - x
mod2 <- lm(mpg - disp*factor(gear), #mpg depends on disp interacted with gears
data = mtcars) #Name of the dataframe
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ disp * factor(gear), data = mtcars)
##
## Residuals:
             10 Median
##
      Min
                                  Max
## -4.5986 -1.5990 -0.0143 1.6329 4.9926
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                             2.462431 9.956 2.32e-10 ***
                   24.515566
## disp
                  -0.025770 0.007265 -3.547 0.001505 **
## factor(gear)4
                15.051963 3.558043 4.230 0.000256 ***
## factor(gear)5
                   7.145380 3.535913 2.021 0.053711 .
## disp:factor(gear)5 -0.025005 0.013320 -1.877 0.071742 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.579 on 26 degrees of freedom
## Multiple R-squared: 0.8465, Adjusted R-squared: 0.817
## F-statistic: 28.67 on 5 and 26 DF, p-value: 8.452e-10
```

Dummy variables

```
mod2Matrix <- model.matrix(mod2) #Get model matrix (columns used to predict mpg)
colnames(mod2Matrix) <- gsub('factor\\(gear\\)','gear',colnames(mod2Matrix)) #Shorten colnames
head(mod2Matrix,28) #Show first 28 rows of model matrix</pre>
```

##		(Intercept)	disp	gear4	gear5	disp:gear4	disp:gear5
##	Mazda RX4	1	160.0	1	0	160.0	0.0
##	Mazda RX4 Wag	1	160.0	1	0	160.0	0.0
##	Datsun 710	1	108.0	1	0	108.0	0.0
##	Hornet 4 Drive	1	258.0	0	0	0.0	0.0
##	Hornet Sportabout	1	360.0	0	0	0.0	0.0
##	Valiant	1	225.0	0	0	0.0	0.0
##	Duster 360	1	360.0	0	0	0.0	0.0
##	Merc 240D	1	146.7	1	0	146.7	0.0
##	Merc 230	1	140.8	1	0	140.8	0.0
##	Merc 280	1	167.6	1	0	167.6	0.0
##	Merc 280C	1	167.6	1	0	167.6	0.0
##	Merc 450SE	1	275.8	0	0	0.0	0.0
##	Merc 450SL	1	275.8	0	0	0.0	0.0
##	Merc 450SLC	1	275.8	0	0	0.0	0.0
##	Cadillac Fleetwood	1	472.0	0	0	0.0	0.0
	Lincoln Continental	_	460.0	0	0	0.0	0.0
##	Chrysler Imperial	1	440.0	0	0	0.0	0.0
##	Fiat 128	1	78.7	1	0	78.7	0.0
##	Honda Civic	1	75.7	1	0	75.7	0.0
##	Toyota Corolla	1	71.1	1	0	71.1	0.0
##	Toyota Corona	1	120.1	0	0	0.0	0.0
	Dodge Challenger	_	318.0	0	0	0.0	0.0
##	AMC Javelin	1	304.0	0	0	0.0	0.0
	Camaro Z28		350.0	0	0	0.0	0.0
##	Pontiac Firebird	1	400.0	0	0	0.0	0.0
	Fiat X1-9	1	79.0	1	0	79.0	0.0
##	Porsche 914-2	1	120.3	0	1	0.0	120.3
##	Lotus Europa	1	95.1	0	1	0.0	95.1

How do I know if any of this matters?

- drop-1 (Type III) ANOVA for entire factors
 - e.g. "Does adding gear matter?"
- Wald t-scores/Z-scores for *levels of factors*
 - e.g. "Is gear3 different from gear4?"
- p-values are only meaningful if the model assumptions are valid

drop-1 ANOVA

```
#mpq depends on gears
mod1 <- lm(mpg ~ factor(gear), data = mtcars)</pre>
drop1(mod1.test='F') #Effect of gears is very strong
## Single term deletions
##
## Model:
## mpg ~ factor(gear)
               Df Sum of Sq RSS AIC F value Pr(>F)
                            642.8 102.00
## <none>
## factor(gear) 2 483.24 1126.0 115.94 10.901 0.0002948 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
#mpq depends on disp
mod2 <- lm(mpg ~ disp, data = mtcars)
drop1(mod2.test='F') #Effect of disp is also very strong
## Single term deletions
##
## Model:
## mpg ~ disp
         Df Sum of Sq RSS AIC F value Pr(>F)
## <none>
                      317.16 77.397
## disp 1 808.89 1126.05 115.943 76.513 9.38e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

drop-1 ANOVA

```
#mpq depends on disp and gear
mod3 <- lm(mpg ~ disp + factor(gear), data = mtcars)
drop1(mod3.test='F') #Effect of disp is very strong, and erases the effect of gear
## Single term deletions
##
## Model:
## mpg ~ disp + factor(gear)
##
               Df Sum of Sq RSS AIC F value Pr(>F)
## <none>
                           317.01 81.383
## disp 1 325.79 642.80 102.003 28.7755 1.025e-05 ***
## factor(gear) 2 0.15 317.16 77.397 0.0065
                                                    0.9935
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
#mpq depends on disp interacted with gear
mod4 <- lm(mpg ~ disp*factor(gear), data = mtcars)</pre>
drop1(mod4,test='F') #Interaction effect is strong. Why are disp and gear not shown?
## Single term deletions
##
## Model:
## mpg ~ disp * factor(gear)
                    Df Sum of Sq RSS AIC F value Pr(>F)
##
## <none>
                                172 87 65 978
## disp:factor(gear) 2 144.14 317.01 81.383 10.839 0.0003771 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Wald t-scores

- Wald t-scores are shown in model summary
- t-score (aka Z-score) = mean÷SD
- p-value comes from Student's t-distribution (similar to Normal, but has longer tails depending on sample size)

```
summary(mod1)
```

```
##
## Call:
## lm(formula = mpg ~ factor(gear), data = mtcars)
##
## Residuals:
      Min
              10 Median
                                     Max
## -6 7333 -3 2333 -0 9067 2 8483 9 3667
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                16.107
                             1.216 13.250 7.87e-14 ***
## factor(gear)4 8.427
                            1.823 4.621 7.26e-05 ***
## factor(gear)5 5.273
                             2.431 2.169 0.0384 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.708 on 29 degrees of freedom
## Multiple R-squared: 0.4292, Adjusted R-squared: 0.3898
## F-statistic: 10.9 on 2 and 29 DF, p-value: 0.0002948
```

Comparing between intercepts

- If you're comparing between many intercepts, you need to account for multiple comparisons
- One common method: Tukey's Honestly Significant Difference (HSD)

```
library(multcomp) #Loads the multcomp package (needs to be installed first)
mod1Comp <- glht(mod1, linfct = mcp('factor(gear)'='Tukey')) #Fits multcomp object using gear
summary(mod1Comp)
```

```
##
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = mpg ~ factor(gear), data = mtcars)
##
## Linear Hypotheses:
             Estimate Std. Error t value Pr(>|t|)
## 4 - 3 == 0 8.427
                         1.823 4.621 <0.001 ***
## 5 - 3 == 0 5.273 2.431 2.169 0.0919 .
## 5 - 4 == 0 -3.153 2.506 -1.258 0.4255
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```