Examining Hotelling's law

CS-302 Modeling and Simulation Prof. Mukesh Tiwari DA-IICT

Karan Jivani (201501401) Kishan Thesiya (201501409) Utsav Patel (201501443) Meet Rayvadera (201501444)

Problem

- Different stores will apply different strategies to compete with each other, these strategies include actions like changing <u>price</u> of product, changing <u>location</u> of store, etc.
 - Hotelling's law: "There is an undue tendency for competitors to imitate each other in quality of goods, in location and in other essential ways."
- <u>Purpose</u>: Model different strategies using Cellular Automata by defining rules for store actions and then observing collective behavior and examining Hotelling's law

Model

- Cellular Automata based model. Each cell represents either <u>Customer</u> or <u>Store</u>.
 - o If customer then value will be prefered store number.
 - If store then value will be store number (shifted by total number of stores to differentiate from customer cell).

Assumptions

- Consider only changing location of store and price of product (same and only one product at each store) as actions
- All stores apply same set of rules for actions
- All stores will follow same strategy
- Instantaneous change in Customer preference

Rules

- Store Action: Changing location
 - Store will choose one of the 4 directions which are possible and unfilled.
 - If there is no any such direction then it will stay.
 - Else it will check share of customers at new position.
 - If share of customer is higher than previous, then it will move to new location
 - Else it will stay
- Store Action: Changing price
 - If customer share of store is higher than equally distributed customer share (1/(Number of stores)), then it will increase price by constant value
 - Else keep it constant or decrease it by constant randomly
- Rule for customer: Customer will buy product from only one store which offers lowest cost according to new defined cost formula (cost = price + physical distance bet. Customer and store)

Strategy 1: Change Location Only (Same prices)

Real world interpretation: Vendors on the beach

Strategy 1: Change Location Only (Different prices)

Strategy 2: Change Price Only

Real world interpretation: Store at the Centre of City vs. Store on Outskirts

Strategy 3: Alternate Change in Price and Location

Higher number of stores & Strategy 3

Any Questions?