DAILY ASSESSMENT FORMAT

Date:	14/07/2020	Name:	Prajwal Kamagethi Chakravarti P L
Course:	Coursera	USN:	4AL17EC107
Topic:	Mathematics for machine learning: Linear Algebra	Semester & Section:	6 & B
Github Repository:	https://github.com/alvas- education-foundation/Prajwal- Kamagethi.git		

•	In such a presentation, the notions of length and angles are defined by means
	of the dot product. The length of a vector is defined as the square root of the dot product
	of the vector by itself, and the cosine of the (nonoriented) angle of two vectors of
	length one is defined as their dot product.

iongai one is defined as their det producti
 So the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of Euclidean geometry
The distance is covered along one ovice or in the direction of force and there is no more of
The distance is covered along one axis or in the direction of force and there is no need of
perpendicular axis or sin theta. In cross product the angle between must be greater than (
and less than 180 degree it is max at 90degree. That's why we use costheta for dot product
and sin theta for cross product

DAILY ASSESSMENT FORMAT

Date:	14/07/2020	Name:	Prajwal Kamagethi Chakravarti P L	
Course: Salesforce		USN:	4AL17EC107	
Topic:	 Build-your-career-with- salesforce-skills 	Semester & Section:	6 & B	
Github Repository:	https://github.com/alvas- education-foundation/Prajwal- Kamagethi.git			

A Quick Introduction to Career Development

Whether you're just starting out in your career or already have a few years of experience under your belt, it can be helpful to step back and think about your career plan. Career planning is not a one-time event; it's an ongoing process to revisit throughout your career as your priorities and interests shift and change.

Get to Know Yourself

The first step in managing your career is to get a clear picture of who you are and what you want.

This includes:

- . Knowing what motivates you and what matters in your life
- Identifying your strengths and opportunities to improve
- Finding out what you're most interested in

What we want can change over time—our priorities change, we can discover new interests or skills that we want to develop and learn. This is an opportunity to check in and see where you are today.

Land Your Next Opportunity

Learning Objectives

After completing this unit, you'll be able to:

- Prepare for interviewing by creating your elevator pitch.
- Create your Salesforce resume and profile.
- Connect with employers.

Now You are Ready!

Now that you know where you're headed and you've created your plan to get there, it's time to go out and land that next role. We've created a job seeker checklist, included in the Resources pack you downloaded, to help you make sure your personal presence is amazing both in person and online.