

Vorlesung Forschungsmethoden

29.11.2018

Urte Scholz

Lernziele der heutigen Veranstaltung

Am Ende der Veranstaltung ...

- ... wissen Sie, was unter einem quer- und einem längsschnittlichen deskriptiven Forschungsdesign zu verstehen ist. Sie können einem Laien erklären, welche Fragestellungen Sie mit diesen verschiedenen Designs beantworten können und welche nicht sowie welche Vorund Nachteile mit den jeweiligen Designs verbunden sind.
- ... können Sie den Unterschied zwischen korrelativen und non-experimentellen Designs erklären und können Beispiele dafür nennen.
- ... wissen Sie, was korrelative Studien aussagen können und wo ihre Grenzen sind.
- ... sind Sie in der Lage, einem Laien zu erklären, was ein cross-lagged panel design ist und was man damit untersuchen kann und was nicht.
- ... können Sie definieren, was ein Experiment ist und können die wichtigsten mit dem Experiment verknüpften Begriffe definieren sowie Beispiele dafür generieren.

Das Zusammenspiel interner und externer Validität erfordert meistens Kompromisse

- Interne Validität: steigt, wenn Alternativerklärungen ausgeschlossen, Störquellen kontrolliert werden
- Externe Validität: steigt, wenn Setting natürlich, repräsentative Stichprobe
- → selten beide Gütekriterien in einer Untersuchung voll erfüllt
- → Kompromisslösung

Das Nonplusultra-Design (?): Randomisiertes Kontrollgruppenexperiment im Feld mit grossen Stichproben

■ Tabelle 7.5 Interne und externe Validität für (quasi-)experimentelle Labor- und Feldstudien

	Externe Validität: gering	Externe Validität: hoch
Interne Validität: hoch	Laborexperiment	Feldexperiment
Interne Validität: gering	Quasi-experimentelle Laborstudie	Quasi-experimentelle Feldstudie

Döring & Bortz, 2016, S. 208

Forschungsdesign wählen (Gravetter & Forzano, 2018)

- Hängt vom Stand der Forschung und von Fragestellung ab
- → Basisziele der Psychologie

Forschungsdesigns - Arten:

- Deskriptiv → reine Beschreibung einzelner Merkmale
- Korrelativ → Zusammenhänge zwischen zwei Variablen, keine Erklärung
- Nicht-experimentell → Zusammenhänge zwischen zwei Variablen (i.d.R. Gruppenunterschiede), keine Erklärung
- Quasi-experimentell → Versuch einer Annäherung an Ursache-Wirkungs-Zusammenhänge (Versuch der Erklärung); Problem der natürlichen Gruppen und Konfundierung von Alternativerklärungen mit dem Design
- Experimentell → Ursache-Wirkungs-Zusammenhänge (Erklärung) zwischen Variablen
 - Weiterhin Unterscheidung von Quer- und Längsschnittdesigns

Deskriptives Forschungsdesign: Querschnittstudie

Prinzip der deskriptiven Querschnittmethode:

Beschreibung der Ausprägung eines Merkmals anhand einer (oder mehrerer) möglichst repräsentativen Stichprobe(n) zu einem Messzeitpunkt

→ Umfrage- / Survey - Forschung

Beispiel:

Repräs. Stichprobe A

Variable A

Zeitpunkt t1

Anmerkung: Repräs. = Reprasentativ

Deskriptives Forschungsdesign: Querschnittstudie

Psychologisches Institut

Beschreibung der Ausprägung eines Merkmals anhand einer (oder mehrerer) möglichst repräsentativen Stichprobe(n) zu einem Messzeitpunkt

Abbildung 5.2: Rauchstatus der 14- bis 65-jährigen Wohnbevölkerung in den Jahren 2001-2010

Deskriptives Forschungsdesign: Längsschnittstudie

Prinzip der deskriptiven Längsschnittmethode:

Beschreibung der Ausprägung eines Merkmals anhand einer oder verschiedener möglichst repräsentativer Stichprobe(n) **zu verschiedenen Messzeitpunkten**

Beispiel: Repräs. Stichprobe A	Repräs. Stichprobe B	Repräs. Stichprobe C	Repräs. Stichprobe D
Variable A	Variable A	Variable A	Variable A
Zeitpunkt t1	Zeitpunkt t2	Zeitpunkt t3	Zeitpunkt t4

Anmerkung: Repräs. = Repräsentativ

Deskriptives Forschungsdesign: Längsschnittstudie

Beschreibung der Ausprägung eines Merkmals anhand einer oder verschiedener möglichst repräsentativer Stichprobe(n) **zu verschiedenen Messzeitpunkten**

Abbildung 5.2: Rauchstatus der 14- bis 65-jährigen Wohnbevölkerung in den Jahren 2001-2010

HS 2018

9

Korrelatives Forschungsdesign

Ziel: Art und Stärke der Zusammenhänge zwischen Variablen prüfen

- → Keine Kausalaussagen (→ experimentell)
- → Keine Gruppenunterschiede (→ nonexperimentell)

Abb. 1.2 aus Hussy et al., 2013, S. 13

Verschiedene Korrelationsmuster im Scatterplot

Aus: Gravetter & Forzano, 2018, S. 301

Korrelatives Forschungsdesign: Querschnittstudie

Prinzip der korrelativen Querschnittmethode:

 Zusammenhänge zwischen verschiedenen Variablen zum gleichen Messzeitpunkt in der gleichen Stichprobe

Beispiel:

 Stichprobe A
 Stichprobe A
 Stichprobe A

 Variable A
 Variable B
 Variable C
 Variable X

 Zeitpunkt t1
 Zeitpunkt t1
 Zeitpunkt t1
 Zeitpunkt t1

Korrelatives Forschungsdesign: Beispiel Querschnittanalyse

Abbildung 12: Querschnittbefunde der Seattle Longitudinal Study Aus Lang et al.: Entwicklungspsychologie – Erwachsenenalter © 2012 Hogrefe, Göttingen

Korrelatives Forschungsdesign: Längsschnittstudie

Prinzip der korrelativen Längsschnittmethode:

 Zusammenhänge zwischen Variablen zu verschiedenen Messzeitpunkten in der gleichen Stichprobe (= Panel)

Beispiel:

Korrelatives Forschungsdesign: Beispiel Längsschnittanalyse

Abbildung 13: Längsschnittbefunde der Seattle Longitudinal Study

Aus Lang et al.: Entwicklungspsychologie – Erwachsenenalter © 2012 Hogrefe, Göttingen

Möglichkeit der Überprüfung:

- Korrelationen innerhalb einer Variablen über die Zeit → Stabilität / Retest-Reliabilität
- Zusammenhänge zwischen zwei Variablen über die Zeit

Mögliche Probleme?

Zum Vergleich - nonexperimentelles Forschungsdesign: Querschnittstudie

Prinzip der nonexperimentellen Querschnittmethode:

 Mittelwertunterschiede zwischen verschiedenen Stichproben / natürlichen Gruppen zum gleichen Messzeitpunkt (z.B. ex post facto design)

Beispiel:

Stichprobe / Gruppe A

Stichprobe / Gruppe B

Stichprobe / Gruppe C Stichprobe / Gruppe D

Variable A

Variable A

Variable A

Variable A

Zeitpunkt t1

Zeitpunkt t1

Zeitpunkt t1

Zeitpunkt t1

Non-experimentelles Querschnittsdesign: Differential research design / Ex-post-facto design

Zum Vergleich - nonexperimentelles Forschungsdesign: Längsschnittstudie (Gravetter & Forzano, 2018)

Prinzip der nonexperimentellen Längsschnittmethode:

Mittelwertunterschiede innerhalb einer Stichprobe / natürlichen Gruppe über zwei
 Messzeitpunkte mit zwischengeschaltetem Treatment

Zum Vergleich: Non-experimentelles Längsschnittsdesign: One-group pretest-posttest design (Gravetter & Forzano, 2018)

- Eine Stichprobe zu zwei oder mehreren Zeitpunkten mit zwischengeschaltetem Treatment

Vor- und Nachteile von (korrelativen) Quer- und Längsschnittstudien

	Querschnitt	Längsschnitt (Panel)
Vorteile	 schnell ökonomisch Zusammenhänge zwischen Variablen prüfbar (korrelatives Design) nützlicher Vergleich zwischen Gruppen (nonexperimentelles Design) 	 Veränderungen abbildbar / Feststellbarkeit von Merkmalsstabilitäten Zusammenhänge von Merkmalen über die Zeit
Nachteile	 alle Vorteile der Längsschnittstudie nicht möglich Übertragbarkeit auf andere Erhebungszeitpunkte fraglich Stichproben möglicherweise nicht vergleichbar Kohorteneffekte 	 Mögliches Auftreten von Testungseffekten Selektive Stichprobenausfälle möglich Hoher Zeit- und Personalaufwand

Zusammenhänge / Korrelationen und Kausalität

Psyc

(x) → (y) (x) **◄**(y) x beeinflusst y y beeinflusst x а $\mathbf{x} \stackrel{\mathbf{y}}{=} \mathbf{y}$ $(x) \rightarrow (z) \rightarrow (y)$ x und y beeinflussen sich wechselseitig x beeinflusst eine dritte Variable z, die ihrerseits y beeinflusst C x und y werden durch eine Variable z eine vierte Variable w beeinflusst y beeinflusst über z indirekt und x direkt e

Aus Döring & Bortz, 2016, S.696, Abb. 12.30

Abb. 12.30 Kausalmodelle und ihre Stützung durch eine Korrelati on

Zusammenhänge / Korrelationen und Kausalität

Flimmervielfalt-wordpress.com

«Korrelationen sind nicht geeignet, die Gültigkeit eines Kausalmodells nachzuweisen. Allerdings ist es möglich, durch Nullkorrelationen Kausalmodelle zu falsifizieren, da Kausalrelationen Korrelationen implizieren.» (Döring & Bortz, 2016, S. 696)

Annäherung an Kausalitätsprüfung durch «cross-lagged-panel design»

- durch zeitversetzte Überprüfung konkurrierender Hypothesen zur Richtung des Zusammenhang
- Annäherung an Kausalitätsprüfung
- Aber: Kausalitätsprüfung nicht abschliessend möglich

Aus Döring & Bortz, 2016, S. 698, Abb. 12.33

Fazit korrelatives Forschungsdesign

Korrelative Forschungsdesigns:

- → Funktionen: Zusammenhänge zwischen Variablen erkennen; Kausalhypothesen ausschliessen
- → geringe interne Validität, vor allem bei Querschnittdesigns
- → Höhere interne Validität bei Längsschnittdesigns durch zeitliche Reihenfolge; noch höher bei cross-lagged panel designs
- → Trotzdem nie abschliessend kausale Aussagen möglich, da Drittvariablenproblem bleibt

Experiment - Begriffe

Unabhängige Variable, UV: von den Forschenden manipulierte Variable (Gravetter & Forzano, 2018, S.160)

Abhängige Variable, AV: wird im Hinblick auf ihr Auftreten oder ihre Ausprägung beobachtet, um Effekte der UV zu messen (Gravetter & Forzano, 2018, S.160)

Störvariablen: Einflussgrössen, die systematisch mit der UV variieren und auf die AV einwirken.

→ Konfundierung (Hussy et al., 2013)

Comics: Oswald Huber

Experiment

"Unter einem Experiment versteht man die systematische Beobachtung einer abhängigen Variablen unter verschiedenen Bedingungen einer unabhängigen Variablen bei gleichzeitiger Kontrolle der Störvariablen, wobei die zufällige Zuordnung (Randomisierung) von Probanden und experimentellen Bedingungen gewährleistet sein muss." (Hussy et al., 2013, S. 120)

Experiment

Wichtigstes Merkmal zur Unterscheidung von Experiment und Quasi-Experiment: Randomisierung

Randomisierung: per Zufall Einteilung in experimentelle Gruppen

→ durch Randomisierung werden personenbezogene Störvariablen bei ausreichend grosser Gruppengrösse neutralisiert.

(Döring & Bortz, 2016)

Quasi-Experiment: natürliche Gruppen

Experiment → einzige Möglichkeit, um Kausalhypothesen zu prüfen

● aus ethischen, ökonomischen oder praktischen Gründen häufig nicht durchführbar

Achtung mögliche Begriffsverwirrung: Zufallsstichprobe und zufällige (randomisierte) Zuteilung zu Experimentalgruppen

- ... ist nicht das selbe
- Einfache Zufallsstichprobe: Ziehung nach Zufall aus einer vorher bekannten Grundgesamtheit
- Randomisierte Zuteilung zu Experimentalgruppen: Teilnehmende der Stichprobe werden per Zufall zu den Bedingungen des Experiments zugeteilt
- → Letzteres z.B. auch mit Gelegenheitsstichprobe möglich

Versuchsplan

= logischer Aufbau einer empirischen Untersuchung im Hinblick auf Hypothesenprüfung (Huber, 2013)

Versuchsplan

= logischer Aufbau einer empirischen Untersuchung im Hinblick auf Hypothesenprüfung. (Huber, 2013)

vier Entscheidungen (Hussy et al., 2013):

- 1. vollständige oder unvollständige Pläne
- 2. Bestimmung der Anzahl der Beobachtungen pro Zelle/experimenteller Bedingung
- 3. interindividuelle oder intraindividuelle Bedingungsvariation
- 4. randomisierte oder nichtrandomisierte Zuordnung der Vpn zu den Zellen
- → nachfolgend: Beispiele für vollständige und interindividuelle (Zwischensubjekt /betweensubjects) Versuchspläne

Kontrollgruppen (Gravetter & Forzano, 2016, S.207)

https://www.youtube.com/watch?v=RMIHnky-N6Y

Kontrollgruppen (Gravetter & Forzano, 2018, S.175)

Definitionen:

Experimentalgruppe heisst die Gruppe, die in der Behandlungs- / Interventions- / experimentellen Manipulations-Bedingung ist.

Kontrollgruppe heisst die Gruppe, die *nicht* in der Behandlungs- / Interventions- / experimentellen Manipulations-Bedingung ist.

Generell im Experiment: Vergleich der abhängigen Variablen (AV) in verschiedenen Bedingungen.

Verschiedene Arten von Kontrollgruppen:

- No-treatment Kontrollgruppen
- 2. Placebo-Kontrollgruppen / aktive Kontrollgruppen

Lernziele erreicht?

Am Ende der Veranstaltung ...

- ... wissen Sie, was unter einem quer- und einem längsschnittlichen deskriptiven Forschungsdesign zu verstehen ist. Sie können einem Laien erklären, welche Fragestellungen Sie mit diesen verschiedenen Designs beantworten können und welche nicht sowie welche Vorund Nachteile mit den jeweiligen Designs verbunden sind.
- ... können Sie den Unterschied zwischen korrelativen und non-experimentellen Designs erklären und können Beispiele dafür nennen.
- ... wissen Sie, was korrelative Studien aussagen können und wo ihre Grenzen sind.
- ... sind Sie in der Lage, einem Laien zu erklären, was ein cross-lagged panel design ist und was man damit untersuchen kann und was nicht.
- ... können Sie definieren, was ein Experiment ist und können die wichtigsten mit dem Experiment verknüpften Begriffe definieren sowie Beispiele dafür generieren.