Function Six

Patrick Ferraz e Jefson Matos

O problema

- Calcular a média dos valores das linhas de uma matriz l x c
 - Sequencial
 - Paralelo
- Identificar a maior diferença entre as médias encontrada com ambos resultados
- Calcular o speedup e eficiência para matrizes de tamanho variados com 'n' processamentos

O problema - Sequencial

```
* Laço para percorrer linhas da matriz
* somar os valores e calcular a média.
* lsize = linha; csize = coluna
for (size_t i = 0; i < lsize; i++)</pre>
    media[i] = 0.0;
    for (size_t j = 0; j < csize; j++)</pre>
        media[i] += A[i*csize + j];
    media[i] = media[i]/(double)csize;
```

O problema - Paralelo

```
// Setando o número de threads que serão utilizadas
omp set num threads(num threads);
 * Laço paralelo para percorrer linhas da matriz
 * somar os valores e calcular a média.
 * lsize = linha; csize = coluna
#pragma omp parallel for schedule(dynamic)
for (size t i = 0; i < lsize; i++)</pre>
                                                     static
    media[i] = 0.0;
    for (size_t j = 0; j < csize; j++)</pre>
        media[i] += A[i*csize + j];
    media[i] = media[i]/(double)csize;
```

Metodologia de teste

- Comprovação do desempenho:
 - o Processamento sequencial paralelo 2, 4 e 8
 - Matrizes
 - **2.048** x 4.096 (x2 até) 16.384 x 32.768
 - 5.120 x 5.120 (x2 até) 40.960 x 40.960
 - Quantidade de processamento: 50, 25, 12, 6 respectivamente
 - Geração da maior diferença encontrada entre as médias
- Comprovação de tempo:
 - omp_get_wtime() para cada chamada e registro do menor e maior
- Script para processar e gerar saída com todos resultados

Metodologia de teste

```
double diff;
       double maior tempo;
       double menor tempo;
       size t num threads;
    } tRecord:
#!/bin/bash
#SBATCH -J MatrixLine
#SBATCH -p long
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 8
srun ./run 5120 5120
```

typedef struct registro

```
for (size t t = 1, nt = 2; nt <= numThreads; nt *= 2, t++)
    r[t].num threads = nt;
    r[t].maior tempo = 0.0;
    r[t].menor tempo = umax;
    for (size t j = qtProcess; j > 0; j--)
        r[t].diff = processMatrix(A, lsize, csize, nt, &ptime);
        if (r[0].maior tempo < ptime.tempo sq) r[0].maior tempo = ptime.tempo sq;</pre>
        if (r[0].menor tempo > ptime.tempo sq) r[0].menor tempo = ptime.tempo sq;
        if (r[t].maior tempo < ptime.tempo pp) r[t].maior tempo = ptime.tempo pp;</pre>
        if (r[t].menor tempo > ptime.tempo_pp) r[t].menor_tempo = ptime.tempo_pp;
recordGenerator(r, qtRecord, lsize, csize, qtProcess, f out);
lsize <<= growMatrix; // *2
csize <<= growMatrix; // *2
if (qtProcess >= 6) qtProcess >>= growProcess; // /2
```

Resultados - Speedup

Resultados - Eficiência

Resultados - Dynamic

Tamanho matriz: 10240 x 10240 (104857600)

Quantidade de processamento: 25

1	Tempo		1		[
N Thread(s)	min	max	Maior Diff	Speedup	Eficiencia
1	0.295095	0.296529	0.000000	1.000000	1.000000
2	0.273215	0.274017	0.000000	1.080081	0.540041
4	0.143590	0.146351	0.000000	2.055123	0.513781
8	0.146231	0.146774	0.000000	2.018009	0.252251

Tamanho matriz: 40960 x 40960 (1677721600)

Quantidade de processamento: 6

1	Tempo		1	1	1	Ĭ.
N Thread(s)	min	max	Maior Dif:		Speedup	Eficiencia
1	4.735877	4.746447	0.00000	1 2	1.000000	1.000000
2	2.628494	2.632325	0.00000	0	1.801746	0.900873
4	2.271081	2.277200	0.00000	0	2.085296	0.521324
8	2.283173	2.285442	0.00000) [2.074253	0.259282

Discussão e conclusões

• Tamanho não é documento