

# Towards Federated Fleet Learning Leveraging Unannotated Data

Master's thesis in Data Science & Al









#### This is our research team



**Alexander Viala Bellander** Datateknik, MPDSC



Yazan Ghafir Informationsteknik, MPDSC















#### Our thesis is about

Federated Learning (FL) in the autonomous driving domain

- Is FL feasible?
- Can we leverage unlabelled data?
- Does semi-, self-, and/or unsupervised methods support the implementation of FL?







## **Agenda and Outline**







# Before we begin with the motivation for our research

Let's begin by clarifying some key definitions.





# **Centralised Learning**

Ex. In a data/compute center, on prem or cloud

- Data must be transferred to centralised storage
- Training is done centrally



**Central Server** 









Ex. vehicles

- Data never leaves the clients
- Training is done on edge

Client 1

Client 2

Client ...

Coordinator



Client n

Ex. In a data/compute center, on prem or cloud











#### The benefits of FL

Federated learning allows collaborative machine learning without sharing raw data.

- Promising for driver monitoring systems.
- Collaborative learning across different devices or entities.
- Beneficial in regulatory constrained environments.













# The data must not leave the vehicle, yet is should learn

How do we train ML models with data generated by the car, on the car?

- Label generation on the car is non-trivial
- Limited resources on the vehicle
- Unlabelled data in varying distributions







#### **Our methods**

- Twofold experiment where an AD ML model is trained on edge on vehicle generated data.
- Different benchmarks
  - Central
  - Federated
  - Isolated
- Compare to understand feasibility.







## Our experiments and AD ML tasks

**Trajectory Prediction** Approach: Imitation learning



**Road segmentation** Approach: Semi-supervision















### **Trajectory Prediction**

Goal: Predict the future path of the vehicle from an image.



Uses high precision GNSS/Inertial (OXTS)

Train: 1635 images Val: 3453 images

Scaled imgsize: 182x68





#### We based our method heavily on previous MSc work

Kilichenko & Khakhlyuk



Master's Thesis in Informatics

Multimodal Trajectory Prediction for Self-driving Vehicles using a Single Monocular Camera

Hlib Kilichenko





TECHNICAL UNIVERSITY OF MUNICH

Master's Thesis in Data Engineering and Analytics

Using Recurrency for Ego-lane Trajectory Prediction from a Single Monocular Camera

Oleksii Khakhlyuk













## The trajectory prediction task

A regression problem.

- Image as input
- 17x3 vector as output (17 xyz points)

L1 loss for training and evaluation

Validation set is also our test set

We balance the dataset from categories {left, straight, right}

Clients sample from the same distribution, IID assumption





#### **Results**

#### Benchmark comparison



Table 3.1: Model Evaluation Metrics

| Model                                          | min L1 |
|------------------------------------------------|--------|
| Centralised Traditional Machine Learning (ML)  | 2.12   |
| Federated Learning (Global Model)              | 1.95   |
| Local Centralised Machine Learning (Baseline)* | 2.54   |

<sup>\*</sup>This refers to the mean value of the lowest validation losses recorded for each individual client.

#### Similar curves

Uses the same validation set





#### **Results**

#### Federated learning results







## **Concluding Trajectory Prediction**

This is what we've learned.

- FL is applicable for trajectory prediction
- FL provides comparable accuracy
- Uses only on-car generated data

#### We recognise

- Simplification of the problem
- Non-IID







## **Coming up**



































# **Road Segmentation**





















# **Semi-Supervised Semantic Road Segmentation**

Scarce ground truth scenario with abundance of unlabelled data

- Leverage unlabelled data
- Make FL more applicable for AD

## FixMatchSeg: Fixing FixMatch for Semi-Supervised Semantic Segmentation



## FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence







## FixMatchSeg for road segmentation

Model setup and pseudo-labelling generation









### Our experiment setup and design

#### Benchmarks and methods

## Centralised Supervised Learning

Labelled Images 5100

Unlabelled Images 0

Normal Supervised Learning

## Federated FixMatchSeg

Labelled Images 100

Unlabelled Images 5000

Clients

1000 Unlabelled images per client

Labelled Images [100,100,100,100]

Unlabelled Images [1000,1000,1000,1000,1000]

## Centralised FixMatchSeg

Labelled Images 100

Unlabelled Images 5000

Clients 5

FixMatchSeg with 50x unlabelled data

#### Centralised Local Learning

Labelled Images 100

Unlabelled Images 0

Supervised learning with limited data





## Our experiment setup and design

#### **Centralised Supervised Learning**

5100 Labelled Images 0 Unlabelled Images

#### Federated FixMatchSeg Learning

100 Labelled Images 5000 Unlabelled Images

[100, 100, 100, 100, 100] [1000, 1000, 1000, 1000, 1000]

#### Centralised FixMatchSeg Learning

100 Labelled Images 5000 Unlabelled Images

#### **Centralised Local Learning**

100 Labelled Images 0 Unlabelled Images

**Federated Learning** 

5 Clients

Same Labelled images

## One last thing about our experiment design

2500 Validation frames

Federated Splits are uniformly random from a balanced dataset → IID assumption

$$D = \frac{2 \cdot \sum_{i=1}^{N} y_i \cdot \hat{y}_i}{\sum_{i=1}^{N} y_i + \sum_{i=1}^{N} \hat{y}_i}, \quad \text{Dice Loss} = 1 - D$$























# Our experiment setup and design

- Similar curves
- Focus on general shape
- Early convergence



| Model (# labelled images, # unlabelled images) | min DiceLoss |
|------------------------------------------------|--------------|
| Centralised Supervised Learning (5100, 0)      | 0.136        |
| Federated FixMatchSeg Learning (100, 5000)     | 0.156        |
| Centralised FixMatchSeg Learning (100, 5000)   | 0.151        |
| Centralised Local Learning (100, 0)            | 0.179        |





#### Model confidence & details







### **Discussion: Insights and Limitations**

Similar losses across all models

Simplification of the true problem

#### **Future Research Questions:**

- Will increasing labelled data diminish the value of unlabelled data?
- Could more capable encoders or larger image sizes differentiate model performance?
- Will our findings remain valid in more complex segmentation scenarios (cars, pedestrians, etc)?





## Federated Learning In the AD domain

Let's discuss this more broadly and what does our experiments say?





## Discussion: Insights and Limitations

► FL aligns with data minimisation principles.

- Native FL does not directly guarantee privacy in the face of malicious clients.
- ► FL holds promise as a potential solution if the challenges outlined in our thesis can be overcome.







## **Discussion: Insights and Limitations**

- Previous work's assumption: Abundance of labelled data on client vehicles.
- Real-world challenge: Need for localised learning on the vehicle.
- Implemented semi-supervised learning for road segmentation and imitation learning for trajectory prediction.











## **Unsupervised Visual Representation Learning**



#### **Emerging Properties in Self-Supervised Vision Transformers**













## **Concluding Remarks**

Explored Federated Learning in Autonomous Driving

Emphasised the potential of unlabelled data

Adopted semi-supervised learning and imitation learning in FL

Future direction: Unsupervised models in FL for AD



### **Towards Federated Fleet Learning**

Reimagining Autonomous Driving: A Study of Federated Learning Using Unannotated Data

**Big thanks to:** Zenseact & Al Sweden, Our supervisors, William Ljungberg, Pavel Lutskov.





Alexander Viala Bellander alexander@vialabellander.se



Yazan Ghafir ghafir@chalmers.se



