

General Description

The SN74LVC2G17 is a high performan ce dual buffer operating from a 1.65 to 5.5V supply. At $V_{CC}=3.0V$,high impedan ce TTL compatible inputs significantly reduce current loading to input drivers while the TTL compatible outputs offer improved switching noise performance.

Features

- Extremely High Speed: t_{PD} 2.0ns (typical) at V_{CC}= 5.0V
- Designed for 1.65V to 5.5V V_{CC} Operation
- Overvoltage Tolerant Inputs
- LVTTL Compatible Interface Capability with 5.0V TTL Logic with V_{CC} = 3.0V (2.7–3.3)
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability at V_{CC} = 3.0V
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Chip Complexity: FET = 72; Equivalent Gate = 18
- These Devices are Pb-Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

Pin Configuration

Figure 1. Pinouts (Top View)

Pin Function

PIN	ASSIGNMENT		
1	IN A		
2	GND		
3	IN B		
4	Y2		
5	VCC		
6	Y1		

Block Diagram

Figure2.Logic symbol

Functional Description

Function Table

A Input	Y Output
L	L
Н	Н

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to 7.0	V
V _I	DC Input Voltage	$-0.5 \le V_I \le +7.0$	V
Vo	DC Output Voltage Output in Higher or Low State (Note 1)	-0.5 to $V_{CC} + 0.5$	V
I_{IK}	DC Input Diode Current $V_I < GND$	-50	mA
I_{OK}	DC Output Diode Current $V_O < GND, V_O > V_{CC}$	±50	mA
I _O	DC Output Sink Current	±50	mA
I_{CC}	DC Supply Current per Supply Pin	±100	mA
I_{GND}	DC Ground Current per Supply Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to 150	°C
$T_{\rm L}$	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
T_{J}	Junction Temperature Under Bias	150	°C
$\theta_{ m JA}$	Thermal Resistance	333	°C/W
P_{D}	Power Dissipation in Still Air at 85°C	200	mW
MSL	Moisture Sensitivity	Level 1	
F_R	Flammability Rating Oxygen Index:28 to 34	UL94V-0@0.12in	
	ESD Classification Human Body Model (Note 2)	2000	
ESD	Machine Model (Note3)	200	V
	Charged Device Model (Note 4)	N/A	
I _{Latchup}	Latchup Performance Above VCC and Below GND at 125°C (Note 5)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. IO absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
- 3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
3.7	DC Supply Voltage Operating	1.65	5.5	V
V_{CC}	Date Retention	1.5	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage (High or Low State)	0	5.5	V
T _A	Operating Temperature Range	-55	125	°C
	Input Rise and Fall Time $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0	20	
t_r, t_f	$V_{\rm CC}=3.0~{\rm V}\pm0.3~{\rm V}$	0	10	ns/V
	$V_{\rm CC}=5.0~V\pm0.5~V$	0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended.

Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS

G	Description	G. W.	MCCAD	T.	$A = 25^{\circ}$	PC	-55°C ≤TA≤125°C		Unit
Symbol	Parameter	Condition	VCC(V)	Min	Тур	Max	Min	Max	Unit
V_{IH}	High-Level Input Voltage		1.65to1.95 2.3 to 5.5	0.75Vcc 0.7Vcc			0.75Vcc 0.7Vcc		V
V_{IL}	Low-Level Input Voltage		1.65to1.95 2.3 to 5.5			0.25Vcc 0.3Vcc		0.25Vcc 0.3Vcc	V
$ m V_{OH}$	$\begin{aligned} & \text{High-Level} \\ & \text{Output} \\ & \text{Voltage V}_{\text{IN}} = \\ & \text{V}_{\text{IL}} \end{aligned}$	$I_{OH} = -100uA$ $I_{OH} = -3mA$ $I_{OH} = -8mA$ $I_{OH} = -12mA$ $I_{OH} = -16mA$ $I_{OH} = -24mA$	1.65to5.5 1.65 2.3 2.7 3.0 3.0	Vcc-0.1 1.29 1.9 2.2 2.4 2.3	Vcc 1.52 2.1 2.4 2.7 25		Vcc-0.1 1.29 1.9 2.2 2.4 2.3		V
V _{OL}	$\begin{array}{c} Low-Level \\ Output \\ Voltage \ V_{IN} = \\ V_{IH} \end{array}$	$I_{OH} = -32 \text{mA}$ $I_{OH} = 100 \text{uA}$ $I_{OL} = 3 \text{mA}$ $I_{OL} = 8 \text{mA}$ $I_{OL} = 12 \text{mA}$ $I_{OL} = 16 \text{mA}$ $I_{OL} = 24 \text{mA}$ $I_{OL} = 32 \text{mA}$	4.5 1.65to5.5 1.65 2.3 2.7 3.0 3.0 4.5	3.8	4.0 0.0 0.08 0.20 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55	3.8	0.1 0.24 0.3 0.4 0.4 0.55	V
I_{IN}	Input Leakage Current	$V_{IN} = 5.5 V$ or GND	0 to 5.5		±0.1			±1.0	uA
$I_{ m OFF}$	Power Off Leakage Current	$V_{IN} = 5.5 V$ or $V_{OUT} = 5.5 V$	0			1		10	uA
I _{CC}	Quiescent Supply Current	$V_{IN} = 5.5V$ or GND	5.5					10	uA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS tr=tf= 2.5ns; C_L = 50pF; R_L = 500 Ω

Symbol	Parameter	Condition	_{CC} (V)	TA = 25 °C			-55°C ≤TA≤125°C		Unit	
				Min	Тур	Max	Min	Max		
		D = 1MO C = 15 pE	1.65	2.0	5.3	11.4	2.0	12.0		
		$R_L = 1M\Omega C_L = 15 pF$	1.8	2.0	4.4	9.5	2.0	10.0		
			$R_L=1M\Omega C_L=15 pF$	2.5±0.2	0.2	3.5	6.5	0.8	4.1	
t _{PLH}		R_L = 1M Ω C_L = 15 pF	3.3±0.3	0.8	2.1	4.5	0.5	3.7	ns	
t _{PHL}		$R_L = 500\Omega C_L = 50 pF$	3.3±0.3	1.2	2.9	5.5	1.5	5.2		
		$R_L=1M\Omega C_L=15 pF$	5.0.0.5	0.5	1.8	3.9	0.5	4.1		
		$R_L = 500\Omega C_L = 50 pF$	5.0±0.5	0.8	2.4	4.3	0.8	4.5		

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V, } V_{I} = 0 \text{ V or } V_{CC}$	>2.5	pF
C	Power Dissipation Capacitance	10 MHz, $V_{CC} = 3.3$ V, $V_{I} = 0$ V or V_{CC}	4	"E
C_{PD}	(Note 6)	$10MHz$, $V_{CC} = 5.5 V$, $V_{I} = 0 V$ or V_{CC}	4	pF

 $6. C_{PD}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:

 $I_{\text{CC(OPR)}}\!\!=\!\!C_{\text{PD}}*V_{\text{CC}}*fin+I_{\text{CC}}*C_{\text{PD}} \text{ is used to determine the no-load dynamic power consumption;}$

$$P_D\!\!=\!\!C_{PD}\!\!*\!V_{CC}\!\!^2\!\!*\!fin\!\!+\!\!I_{CC}\!\!*\!V_{CC}\!\!*\!Fig.$$

Figure 3. Switching Waveforms

Figure 4. Test Circuit

Package Dimension

SC70-6

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	0.85	_	1.05
A1	0	_	0.10
A2	0.80	0.90	1.00
A3	0.47	0.52	0.57
_b NiPdAu	0.22	_	0.29
PURE Sn	0.23	_	0.33
b1	0.22	0.25	0.28
c NiPdAu	0.115	-	0.15
PURE Sn	0.12	_	0.18
c1	0.115	0.13	0.14
D	2.02	2.07	2.12
E	2.20	2.30	2.40
E1	1.25	1.30	1.35
е	0.60	0.65	0.70
e1	1.20	1.30	1.40
L	0.28	0.33	0.38
L1		0.50REF	
L2		0.15BSC	
R	0.10		
R1	0.10		0.25
θ	0,	-	8.
θ 1	6"	9.	12*
θ 2	6*	9.	12"

SOT23-6

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

	SYMBOL	MIN	NOM	MAX	
	Α	-	_	1.25	
	A1	0	-	0.15	
	A2	1.00	1.10	1.20	
	A3	0.60	0.65	0.70	
	b	0.36	_	0.50	
	b1	0.36	0.38	0.45	
	С	0.14		0.20	
	c1	0.14	0.15	0.16	
	D	2.826	2.926	3.026	
	E	2.60	2.80	3.00	
	E1	1.526	1.626	1.726	
A	e	0.90	0.95	1.00	
A A	e1	1.80	1.90	2.00	
	L	0.35	0.45	0.60	
	L1		0.59REF	, i	
	L2	0.	0.25BSC	38	
◬	R	0.10	<u> </u>		
<u>∧</u>	R1	0.10		0.20	
	θ	0.		8*	
	θ 1	3.	5*	7*	
A	θ 2	6*	-	14'	

DFN6

COMMON DIMENSIONS
(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX			
Α	0.50	_	0.60			
A1	0.00	0.02	0.05			
A3		0.10REF				
b	0.15	0.20	0.25			
D	0.90	1.00	1.10			
E	1.40	1.50	1.60			
е	0.40	0.50	0.60			
Н		0.10REF	1			
L	0.30	0.35	0.40			
L1	0.35	0.40	0.45			

Orderinginformation

Order code	Marking code	Package	Baseqty	Deliverymode
UMW SN74LVC2G17DBVR	C175	SOT23-6	3000	Tape and reel
UMW SN74LVC2G17DCKR	C75	SC70-6	3000	Tape and reel
UMW SN74LVC2G17DRYR	C7	DFN6	3000	Tape and reel