Problems

1 Give a proof of the mean ergodic theorem using the spectral theorem for unitary operators.

Proof. Let U be a unitary operator on a Hilbert space H. By the spectral theorem, there exists a unitary map $T: H \to L^2(X,\mu)$ for some finite measure space (X,μ) with $U=T^{-1}ST$ where S is multiplication by a function f taking values on the unit circle.

Note that we have $\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^N f^n=\chi_{f^{-1}(1)}$. Thus, $P:=\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^N U^n$ exists and is an orthogonal projection.

I claim that P is the orthogonal projection onto $\ker(I-U)$. If $v \in \ker(I-U)$, then $T^{-1}STv = Uv = v$. Hence S(Tv) = Tv. Therefore f(x) = 1 for all x where $Tv(x) \neq 0$. This implies that $Pv = T^{-1}\chi_{f^{-1}(1)}Tv = v$. All these steps are reversible, so the range of P is precisely $\ker(I-U)$.

2 Prove Khintchine's recurrence theorem: If G is a countable amenable group and G acts on (X, μ) via a p.m.p. action then for every measurable set $A \subset X$ and $\epsilon > 0$ the set $S := \{s \in G : \mu(sA \cap A) \ge \mu(A)^2 - \epsilon\}$ is syndetic.

Proof. Let $t \in G$, $\{F_n\}_{n=1}^{\infty}$ be a tempered Folner sequence in G, and P be the orthogonal projection onto the subspace of G-invariant functions in $L^2(X)$. From the mean ergodic theorem, we have

$$\lim_{n \to \infty} \frac{1}{|F_n|} \sum_{s \in tF_n} \mu(sA \cap A) = \lim_{n \to \infty} \frac{1}{|F_n|} \sum_{s \in tF_n} \langle \chi_{sA}, \chi_A \rangle$$

$$= \langle \lim_{n \to \infty} \frac{1}{|F_n|} \sum_{s \in F_n} s \chi_A, t^{-1} \chi_A \rangle$$

$$= \langle P\chi_A, t^{-1} \chi_A \rangle$$

$$= \langle P\chi_A, \chi_A \rangle$$

$$= \langle P\chi_A, \chi_A \rangle$$

$$= \|P\chi_A\|_2^2$$

$$\geq \langle P\chi_A, 1 \rangle^2$$

$$= \langle \chi_A, 1 \rangle^2$$

$$= \mu(A)^2.$$

Note that in the limiting step the error is

$$|\langle P\chi_A - \frac{1}{|F_n|} \sum_{s \in F_n} s\chi_A, t^{-1}\chi_A \rangle| \le ||P\chi_A - \frac{1}{|F_n|} \sum_{s \in F_n} s\chi_A||_2 ||\chi_A||_2,$$

and the last bound is independent of t.

It follows that by choosing n sufficiently large we can ensure that

$$\frac{1}{|F_n|} \sum_{s \in tF_n} \mu(sA \cap A) \ge \mu(A)^2 - \epsilon$$

for all $t \in G$. This implies that for any $t \in G$ there exists $s \in F_n$ such that $ts \in S$. Thus S is syndetic. \Box

5 Give examples of unitary representations π and ρ of \mathbb{Z} such that $\pi \otimes \rho$ is ergodic but neither π nor ρ is weakly mixing.

Proof. Let $\pi = \rho$ be the one-dimensional representation taking 1 to multiplication by i. Since this representation is finite-dimensional, it is not weakly mixing. Moreover, $(\pi \otimes \rho)(1)$ acts by multiplication by -1, so $\pi \otimes \rho$ is ergodic. \square

7 Show that a countable discrete group G is amenable iff every continuous action of G on a compact Hausdorff space has an invariant Borel probability measure.

Proof. Suppose G is amenable. The canonical map $\beta: l^{\infty}(G) \to C(\beta G)$ (extending a bounded function on G to the Stone-Cech compactification) is a G-equivariant C^* -algebra isomorphism. Thus, the left-invariant mean on $l^{\infty}(G)$ induces a G-invariant state on βG . By the Riesz Representation theorem, this gives us an invariant Borel probability measure on βG .

Now suppose G acts continuously on a compact Hausdorff space K. Fix any point $x_0 \in K$. Define $f: G \to K$ by $f(s) = sx_0$. Clearly f is G-equivariant, so $\beta f: \beta G \to K$ is equivariant also. The pushforward of the measure on βG by the function βf is the desired measure.

Now suppose the converse holds. Then action of G on βG gives us an invariant Borel probability measure on βG . Integrating against this measure and making use of the properties of the map β mentioned above, we get an invariant mean on $l^{\infty}(G)$.

8 Show that a subgroup H of an amenable countable discrete group G is amenable.

Proof. Suppose H were not amenable. Then it admits a paradoxical decomposition $C \sim D \sim H$. Let R be a complete set of representatives for the right cosets of H in G. Then $\{C_iR\}_{C_i \in C}$, $\{D_iR\}_{D_i \in D}$ forms a paradoxical decomposition for G, a contradiction.