As a consequence of $(*_{11})$, we obtain

$$L(u_{\lambda}, \mu) = J(u_{\lambda}) + \sum_{i=1}^{m} \mu_{i} \varphi_{i}(u_{\lambda})$$

$$\leq J(u_{\lambda}) + \sum_{i=1}^{m} \lambda_{i} \varphi_{i}(u_{\lambda}) = L(u_{\lambda}, \lambda),$$

for all $\mu \in \mathbb{R}^m_+$, that is,

$$L(u_{\lambda}, \mu) \le L(u_{\lambda}, \lambda), \quad \text{for all } \mu \in \mathbb{R}^{m}_{+},$$
 (*12)

which implies the second inequality

$$\sup_{\mu \in \mathbb{R}_+^m} L(u_\mu, \mu) = L(u_\lambda, \lambda)$$

stating that (u_{λ}, λ) is a saddle point. Therefore, (u_{λ}, λ) is a saddle point of L, as claimed.

(2) The hypotheses are exactly those required by Theorem 50.15(2), thus there is some $\lambda \in \mathbb{R}^m_+$ such that (u, λ) is a saddle point of the Lagrangian L, and by Theorem 50.15(1) we have $J(u) = L(u, \lambda)$. By Proposition 50.14, we have

$$J(u) = L(u, \lambda) = \inf_{v \in \Omega} L(v, \lambda) = \sup_{\mu \in \mathbb{R}^m_+} \inf_{v \in \Omega} L(v, \mu),$$

which can be rewritten as

$$J(u) = G(\lambda) = \sup_{\mu \in \mathbb{R}^m_+} G(\mu).$$

In other words, Problem (D) has a solution, and $J(u) = G(\lambda)$.

Remark: Note that Theorem 50.17(2) could have already be obtained as a consequence of Theorem 50.15(2), but the dual function G was not yet defined. If (u, λ) is a saddle point of the Lagrangian L (defined on $\Omega \times \mathbb{R}^m_+$), then by Proposition 50.14, the vector λ is a solution of Problem (D). Conversely, under the hypotheses of Part (1) of Theorem 50.17, if λ is a solution of Problem (D), then (u_{λ}, λ) is a saddle point of L. Consequently, under the above hypotheses, the set of solutions of the Dual Problem (D) coincide with the set of second arguments λ of the saddle points (u, λ) of L. In some sense, this result is the "dual" of the result stated in Theorem 50.15, namely that the set of solutions of Problem (P) coincides with set of first arguments u of the saddle points (u, λ) of L.

Informally, in Theorem 50.17(1), the hypotheses say that if $G(\mu)$ can be "computed nicely," in the sense that there is a unique minimizer u_{μ} of $L(v,\mu)$ (with $v \in \Omega$) such that $G(\mu) = L(u_{\mu}, \mu)$, and if a maximizer λ of $G(\mu)$ (with $\mu \in \mathbb{R}^m_+$) can be determined, then u_{λ} yields the minimum value of J, that is, $p^* = J(u_{\lambda})$. If the constraints are qualified and if the functions J and φ_i are convex and differentiable, then since the KKT conditions hold, the duality gap is zero; that is,

$$G(\lambda) = L(u_{\lambda}, \lambda) = J(u_{\lambda}).$$