

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA

Brasília, 17 de Fevereiro de 2023.

2^a Avaliação de Formas Diferenciais e Aplicações - 02/2022

Questões	Nota
$A_{}$	
B	
C	
D	

Prof. Tarcísio Castro Silva

Office: A1-433/12

e-mail: tarcisio@mat.unb.br

ATENÇÃO:

A prova é individual e sem consulta. Haverá avaliação quanto à clareza, apresentação e formalização na resolução das questões da prova. A **nota** do aluno **poderá ser diminuída** em razão da inobservância desses parâmetros.

Este caderno de questões contém quatro grupos, A, B, C e D, onde cada grupo contém três questões. Escolha **uma única questão em cada grupo** e solucione. A prova vale, no máximo, 7 (sete) pontos.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA

GRUPO A

Questão A.1 [2 pts] Considere um campo vetorial diferenciável X sobre uma variedade riemanniana M. Diz-se que $p \in M$ é um ponto singular de X se X(p) = 0. Além disso, p é isolado se existe uma vizinhança $U \subset M$ de p que não contém outro ponto singular.

Admita que para qualquer curva fechada C, fronteira de uma região compacta $V \subset U$ contendo p,

$$\int_C \tau = 2\pi I,$$

onde I é conhecido como o *índice* de X em p e $\tau:=fdg-gdf$, com $f,g:M\to\mathbb{R}$ funções diferenciáveis satisfazendo $f^2+g^2=1$.

Prove que o índice de X em um ponto isolado $p \in M$ não depende da escolha da curva fechada C, fronteira de um subconjunto compacto de U que contém p. (sugestão: use o teorema de Stokes)

Questão A.2 [2 pts] Seja $S \subset \mathbb{R}^3$ uma superfície orientada. Dado $p \in S$, seja V uma vizinhança de p em S tal que exista um referencial $\{e_i\}$ adaptado a S e compatível com as orientações de S e \mathbb{R}^3 . Se ω_i e ω_{ij} são as restrições a $V \cap S$ das formas do coreferencial associado a $\{e_i\}$ e das formas de conexão, prove que $\omega_1 \wedge \omega_2$ não depende do referencial escolhido (dentro da classe dos referenciais compatíveis com a orientação de S). Além disso, mostre como ω_{12} muda com a mudança do referencial.

Questão A.3 [2 pts] (Questão "livre") Escolha um dos tópicos dentre aqueles que foram estudados em sala e disserte sobre o mesmo, isto é, produza um texto de no máximo 3 (três) páginas sobre o tema escolhido. O texto será avaliado da seguinte forma: motivação (0.5 ponto), pelo menos um resultado contendo uma ideia (ou roteiro) da demonstração (1 ponto) e pelo menos um exemplo (0.5 ponto).

GRUPO B

Questão B.1 [2 pts] Sejam M uma n-variedade riemanniana e $p \in M$ um ponto. Considere $\sigma \subset T_pM$ um subespaço de dimensão dois do espaço tangente T_pM . Defina o conceito de uma variedade riemannina, digamos M, ser isotrópica, e prove que M é isotrópica se e somente se

DEPARTAMENTO DE MATEMÁTICA

 $\Omega_{ij} = K_p \, \omega_i \wedge \omega_j$, onde K_p denota a curvatura seccional de M em p e $1 \leq i, j \leq n$.

Questão B.2 [2 pts] Mostre que o espaço hiperbólico $H^n \subset \mathbb{R}^{n+1}$ tem curvatura constante igual

a - 1.

Questão B.3 [2 pts] Considere a esfera unitária $\mathbb{S}^2\subset\mathbb{R}^3$ localmente parametrizada por coorde-

nadas esféricas (θ, φ) . Considere também o (2,0) - tensor sobre \mathbb{R}^3 dado por

 $\omega = x \, dy \otimes dz.$

Determine o pull-back $\iota^*\omega$ em termos de (θ, φ) , onde $\iota: \mathbb{S}^2 \to \mathbb{R}^3$ é a aplicação inclusão.

GRUPO C

Questão C.1 [2 pts] Considere M uma variedade riemannina e seja ν um campo normal unitário

em M. Podemos escolher a parte normal do referencial $\{e_{\alpha}\}$ em um aberto $U \subset M$ de modo que

 $e_{n+1}=\nu$ em U. Assim, denotamos por $II^{\nu}=II^{n+1}$ a segunda forma quadrática da irmersão

 $\chi:M\to\mathbb{R}^{n+q}$ na direção de ν . Prove que II^{ν} não depende da escolha do referencial (e, portanto,

está globalmente definida).

Questão C.2 [2 pts] No contexto do estudo das equações de estrutura em referenciais geodésicos,

explique o por quê sempre podemos considerar (ou seja, sempre existe) um tal referencial geodésico

e, além disso, o por quê de não perdermos generalizada nos cálculos com tais referenciais.

Questão C.3 [2 pts] Considere M^n uma variedade riemanniana conexa, $n \ge 3$. Se M é isotrópica

para todo $p \in M$, prove que M tem curvatura constante.

GRUPO D

Questão D.1 [1 pt] Prove que duas variedades riemannianas M e \overline{M} de mesma curvatura constante

K são localmente isométricas.

Questão D.2 [1 pt] Prove que a esfera unitária $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ centrada na origem tem curvatura

Campus Universitário Darcy Ribeiro ICC - Centro - Bloco A CEP: 70910-900 - Brasília - DF - Brasil

e-mail: tarcisio@mat.unb.br Office: A1-433/12

Prof. Tarcísio Castro Silva

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE MATEMÁTICA

constante igual a 1.

Questão D.3 [1 pt] Considere $\chi: M \to \mathbb{R}^{n+q}$ uma imersão de uma n-variedade diferenciável em \mathbb{R}^{n+q} . Explique de modo preciso o significado geométrico de (Ω_{ij}) , $1 \le i, j \le n$, a matriz das formas de curvatura.

Prof. Tarcísio Castro Silva

e-mail: tarcisio@mat.unb.br

Office: A1-433/12