Trig Final (SLTN v676)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 2.9 radians. The radius is 4 meters. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 11.6 meters.

Question 2

Consider angles $\frac{13\pi}{4}$ and $\frac{-11\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{13\pi}{4}\right)$ and $\sin\left(\frac{-11\pi}{3}\right)$ by using a unit circle (provided separately).

Find
$$cos(13\pi/4)$$

$$\cos(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $sin(-11\pi/3)$

$$\sin(-11\pi/3) = \frac{\sqrt{3}}{2}$$

Question 3

If $\sin(\theta) = \frac{-60}{61}$, and θ is in quadrant III, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 60^{2} = 61^{2}$$
$$A = \sqrt{61^{2} - 60^{2}}$$
$$A = 11$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\tan(\theta) = \frac{\frac{-60}{61}}{\frac{-11}{61}} = \frac{60}{11}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = -7.99 meters, a frequency of 6.22 Hz, and an amplitude of 4.61 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 4.61\cos(2\pi6.22t) - 7.99$$

or

$$y = 4.61\cos(12.44\pi t) - 7.99$$

or

$$y = 4.61\cos(39.08t) - 7.99$$