Lecture notes in Derived Algebraic Geometry Session 2

Course by F. Binda, notes by E. Hecky

10 February 2025

1 More on limits in an ∞ -category

There is another way to define the notion of a (co)limit in an ∞ -category, which looks a bit more like the 1-categorical notion. Let $F: I \to \mathcal{C}$ be an element of Map (I, \mathcal{C}) , with I a simplicial set and \mathcal{C} an ∞ -category.

Definition 1. A cone over F is a pair (y, η) where $y \in \mathcal{C}$ and $\eta : \mathcal{C}_y \to F$ is a natural transformation (i.e. a map $\eta : I \times \Delta^1 \to C$ which restricts to $C_y : I \to \Delta^0 \xrightarrow{y} \mathcal{C}$ on $\{0\}$ and to F on $\{1\}$).

Let (y, η) be a cone over F and $x \in \mathcal{C}$. Letting $c : \mathcal{C} \to \mathcal{C}^I$ be the functor taking an object $z \in \mathcal{C}$ to the constant diagram $c_z : I \to \mathcal{C}$ on z, we can define a map:

$$\operatorname{Map}_{\mathcal{C}}(x,y) \xrightarrow{c} \operatorname{Map}_{\operatorname{Fun}(I,\mathcal{C})}(c_x,c_y) \xrightarrow{\eta_*} \operatorname{Map}_{\operatorname{Fun}(I,\mathcal{C})}(c_x,F)$$

up to a contractible choice for the composition with η .

Proposition 1. A cone (y, η) over F is a limit cone for F if for all $x \in C$, the map above is a homotopy equivalence.

Example 1. If I is discrete, then $\operatorname{Fun}(I,\mathcal{C}) = \prod_I \mathcal{C}$. A diagram $F: I \to \mathcal{C}$ is then a collection of objects $\{y_i\}_{i\in I}$, and a cone over F is a collection of maps of the form $\{y \xrightarrow{\pi_i} y_i\}_{i\in I}$. It is a limit cone if and only if $\operatorname{Map}(x,y) \simeq \prod_{i\in I} \operatorname{Map}(x,y_i)$.

Lemma 1. Any two limits (y, η) and (y', η') for F are equivalent.

Proof. Since (y', η') is a limit, we have $\operatorname{Map}(c_y, F) \simeq \operatorname{Map}(y, y')$. The image of η gives a map $f: y \to y'$ such that $\eta' \circ f \simeq \eta$. Similarly, there is a map $g: y' \to y$ such that $\eta \circ g \simeq \eta'$. We then get

$$\eta \circ g \circ f \simeq \eta' \circ f \simeq \eta$$

so $g \circ f \simeq id$. Similarly, $f \circ g \simeq id$.

Remark 1. One can show the (much) stronger statement that the ∞ -category of limit cones over a given functor is either empty or trivial (equivalent to $\{*\}$). This means that when a diagram has a limit, then the "space" of limits is contractible, whereas the lemma only showed that it is connected.

Exercise 1. Let $I = \{0 \to 1 \leftarrow 0'\}$ be the "pullback" diagram. A functor $F: I \to \mathcal{C}$ is equivalently the data of two maps $b \xrightarrow{h} d \xleftarrow{k} c$ in \mathcal{C} . Show that up to equivalence, the datum of a cone $\eta: c_a \to F$ is equivalent to the data of two morphisms $b \xleftarrow{i} a \xrightarrow{j} c$ and of a choice of equivalence $h \circ i \simeq k \circ j$.

Proposition 2. A cone (y, η) over $F : I \to \mathcal{S}pc$ is a limit cone if and only if for all $x \in \mathcal{S}pc$, the map

$$[x, y]_{\mathcal{S}_{pc}} = \pi_0 \operatorname{Map}(x, y) \to [c_x, F]_{\mathcal{S}_{pc}^I} = \pi_0 \operatorname{Map}(c_x, F)$$

is an equivalence.

In other words, the fact that a cone of spaces is a limit can be checked in the homotopy category. (This does not mean that the limit can be computed in the homotopy category.)

Exercise 2. Check that the pullback of a diagram $b \to c \leftarrow d$ in \mathcal{S} pc can be computed as the ordinary limit (iterated pullback) of the following diagram in sSet:

Proposition 3. Let C be a Kan-enriched category, I a simplicial set and $F: I \to N_{\Delta}(C)$ a map to the simplicial nerve. Consider the functor $\underline{\mathrm{Hom}}_{\mathcal{C}}(x,-): \mathcal{C} \to \mathrm{sSet}$ and apply the simplicial nerve functor to get a functor

$$N_{\Delta}(\underline{\operatorname{Hom}}(x,-)): N_{\Delta}(\mathcal{C}) \to \mathcal{S}pc.$$

Then a cone (y, η) is a limit cone for F if and only if the cone $(\underline{\text{Hom}}(x, y), N_{\Delta}(\underline{\text{Hom}}(x, \eta)))$ is a limit in Spc.

In other words, "the Map functor preserves limits in the second argument" in the following way :

$$\operatorname{Map}_{\mathcal{C}}(x, \lim_{I} F) \simeq \lim_{i \in I} \operatorname{Map}(x, F(i)).$$

The limit on the left is performed in C, whereas the one on the right is performed in the ∞ -category of spaces Spc.

Remark 2. A cone for F is equivalent to the datum of a map

$$(I \times \Delta^1)/(I \times \Delta^0) \to \mathcal{C}$$

where the contracted $I \times \Delta^0$ is the copy of I that is located at $\{0\}$. This quotient is another model for I^{\triangleleft} .

Of course, one gets the notion of a colimit by dualizing this whole section.

Theorem 1. Let C be an ∞ -category. Then the following are equivalent:

1. C has an initial object and pushouts;

- 2. \mathcal{C} has finite coproducts and coequalizers;
- 3. C has finite limits.

Moreover, if C has arbitrary coproducts, then the following are equivalent:

- 1. C has all colimits;
- 2. C has pushouts;
- 3. \mathcal{C} has coequalizers;
- 4. C has geometric realizations (colimits of diagrams of shape $\Delta^{\mathrm{op}}).$