CHAOS Worksheet

Revised November 2016

Your Name:	Signature:	
Lab Partner(s):		
Lab Partner(s): Course and Section:	Station Number:	Date:
D.1 Record the Apparatus Preset Record the frequency found on your generator) in kHz: Record the oscilloscope preset TIM and the oscilloscope preset CH1 V and the oscilloscope preset CH2 V	r RLC box (and which you are E/DIV in µs/cm:OLTS/DIV in volts/cm:	presetting with your frequency
D.2 Observe Low Input and Outp Sketch the input CH1 voltage patter		e Input Frequency
Sketch the output CH2 voltage patter	ern and <i>comment on the differe</i>	nce with the input pattern:
Period T: μ	n grid steps on the oscilloscop Number n:(ms (this is n times Δt, the TIME/s (this is just τ divided by N) put frequency is:	be screen. cultiples of Δt = TIME/DIV) DIV setting) kHz
D.3 Observe Period Doubling v A) As Time Series Describe BR you increase the voltage throughou the input agrees with the FG digital	t the range available (check th	what you see qualitatively as
B) As Parametric Plots ("Loops") I qualitatively as you increase the voltage transition) which you have to pass through	e throughout the range available (including the initial "foldover"

D.4 Estimate the Famous Period Doubling Parameters:		
Crude Estimate of the First Feigenbaum Number:		
Measure the period doubling $V_0(n)$ in x-y mode (the FG gives the peak-to peak input voltage		
directly, $2V_0$, and keep as many digits as you can) and you can just keep the factor of two		
because it cancels out in the ratio for δ) for $n = 1,2,3$		
$2V_0(1)$:(volts) $2V_0(2)$:(volts) $2V_0(3)$:(volts)		
$\delta(2) = [2V_0(2) - 2V_0(1)]/[2V_0(3) - 2V_0(2)] = \underline{\hspace{1cm}}$		
How does your value compare with the theoretical limit of δ ? Try to estimate what $2V_0(4)$,		
and hence $\delta(3)$, might be and see if you're trending in the right direction.		
D.5 Observe Geometrical Decrease in the Maximum Output Voltages Splittings at		
Period-Doubling: Rough Estimate of the Second Feigenbaum Number:		
Measure the peak splitting $\varepsilon(n)$ in x-y mode (the vertical splitting observed and estimated by the		
oscilloscope grid):		
$\epsilon(1)$:(millivolts) $\epsilon(2)$:(millivolts)		
$\alpha(2) = \varepsilon(1)/\varepsilon(2) =$		
While you should not expect it to be close, how does your value compare with the theoretical		
limit of α ? Try to roughly (guess if you have to) what $\epsilon(3)$, and hence $\alpha(3)$, might be and see if		
you're trending in the right direction.		
D.6 Discussions and Errors		
$\delta(2)$: Estimate roughly the error in your $\delta(2)$ by a "bracket," i.e., an upper limit		
and a lower limit. That is, for the upper limit, put in your FG voltage measurement error (what		
do you think it is?) so as to make the numerator biggest and the denominator smallest (add the		
error to $V_0(2)$ and subtract it from $V_0(1)$ and $V_0(3)$). For the lower limit, do the reverse.		
$\alpha(2)$: Estimate roughly the error in your $\alpha(2)$ by putting in your grid voltage measurement		
error (what do you think it is?) so as to make the numerator biggest and the denominator smallest		
(add the error to $\varepsilon(1)$ and subtract it from $\varepsilon(3)$). For the lower limit, do the reverse.		
(4.4.4, 4.5(-) 4.5.4.5.4.5.4.5.4.5.5.5.5.5.5.5.5.5.5.5		
Discuss very briefly some of the limitations of this experiment – include considering how you		
are obtaining measurement numbers and the number of period doubling transitions.		
GRADE:(TA's initials)		