S2 Appendix. Grid experiment for selecting hyperparameters

A grid experiment was undertaken to test the performance of the DPMM for different hyperparameter specifications. The following hyperparameters were selected based on recommendations in the literature [1–4] and varied as follows. The precision parameter N_0 was set to 1, 0.5, 0.2, 0.1, 0.05, or 0.01 [2]. The degrees of freedom for the inverse Wishart, c_0 , was either $c_0 = r = 6$ or $c_0 = r + 1 = 7$, where r is equal to the number of covariates [4]. The scale parameter for the inverse Wishart, C_0 , was selected as either the covariance matrix of the data Σ_y , $0.75\Sigma_y$ or $0.5\Sigma_y$ [1,4], and finally, the prior for the concentration parameter, α , was specified as either Gamma(1,1) or Gamma(2,2) [5,6]. The vector of prior means \mathbf{b}_0 did not vary between models and was fixed at $\mathbf{b}_0 = \bar{\mathbf{y}}$. This resulted in 72 combinations of hyperparameters. The full list of hyperparameter combinations, as well as the effective sample size and autocorrelation statistics for the number of clusters, K, and concentration parameter, α , can be found in Table 1, Table 2 and Table 3 below.

The hyperparameter values chosen for the multivariate normal prior parameters (see Eq. 5 of the main text) were considered relatively uninformative while remaining within a sensible range for each parameter [7]. Similar hyperparameter specifications have been used in van Havre et al [7], Frühwirth-Schnatter [1] and Fraley and Rafferty [2]. The precision parameter N_0 is analogous to adding N_0 observations to each group in the data [2]. This parameter greatly influences the dispersion of the group means and, therefore, the values for this hyperparameter varied from small to large in order to compare and select the hyperparameter that would provide optimal dispersion. The hyperparameters for the prior on α were selected based on recommendations in the literature. The Gamma(1,1) prior was selected so that small values for α were more likely to be sampled, which results in the allocation of the data to fewer clusters [5]. The Gamma(2,2) prior was selected as it encourages both small and large values of α to be sampled [6].

The grid experiment was performed in two stages. In the first stage, each model ran for 100,000 iterations. Based on convergence statistics of the chains for the number of clusters, K, and α , 15 models that had the best effective sample size and autocorrelation for the different values of N_0 were selected (see Tables 1 to 3). The hyperparameters for the 15 selected models are displayed in Table 4. In the second stage, three chains for each of the 15 models were specified and run for 1,000,000 iterations each, to assess the long-term behaviour of the slice sampler. The three chains for each model were initialised using K-means, with the number of clusters specified as K=5, K=10 and K=15, respectively.

Due to the small sample size and "noisy" (i.e., individuals do not group easily into clusters) data, the precision hyperparameter, N_0 , had the largest effect on the performance of the slice sampler. For smaller values of N_0 , there was larger dispersion in the group means, so the sampler would only sample a small number of clusters. This resulted in very little movement in the chain for

K, small effective sample sizes and high autocorrelation between iterations. For larger values of N_0 , there was less dispersion, and more variation in the number of clusters sampled at each iteration, resulting in better convergence. However, this also resulted in a higher number of clusters to be sampled. The traceplots of α and K for the 15 selected models are available on Github [8]. The chains for each model were assessed for convergence using the Gelman-Rubin statistic [9]. Model convergence was achieved for 10 out of 15 models based on a Gelman-Rubin statistic of less than 1.1 for both K and α . The convergence statistics can be found in Table 5.

The chains for each model were combined by calculating the average posterior similarity matrix across the three chains. The PAM method was then used to select the optimal number of clusters for each model. The PAM procedure was implemented as follows: (1) The PAM algorithm was run on the pooled dissimilarity matrix for 2 to 20 clusters, (2) the average silhouette width for each clustering was recorded, (3) the scree plots of the average silhouette widths were inspected and (4) a clustering was selected that corresponded to the maximum average silhouette width prior to a dip or plateau in values on the scree plot. The scree plots for each model can be found on Github [8]. For some models, it was not immediately obvious which clustering to choose from the scree plot. For these models, the more parsimonious clustering was selected to avoid clusters of size N=1. The average silhouette width of the selected number of clusters for each model is also displayed in Table 5.

Of the Models that had converged, Model 7 was selected as the final model. Although Model 3 had converged and had the highest average silhouette width, this model only returned 3 clusters, which was much fewer than the remaining converged models. It could be seen that the dispersion of the group means was too wide for this model, which was attributable to the small specification of the N_0 parameter. Of the remaining models, Model 7, Model 8 and Model 9 had the highest average silhouette widths. Of these models, Model 7 and Model 8 returned exactly the same clusters. The hyperparameters for these models only differed in terms of the specification for α , which did not appear to make any difference to the resulting clusters. Finally, there was only one difference in the obtained clusters between Model 9 and Model 7, where one cluster in Model 7 split to form two smaller clusters in Model 9. Ultimately, Model 7 was chosen over Model 9 as it had a larger average silhouette width, and was more parsimonious.

Table 1: Hyperparameters for all 72 models. Rows in bold indicate the 15 models selected for stage 2 of the grid experiment. Model 26 was selected for the final model(italicised).

Model	N_0	c_0	C_0	α		
1	0.01	6	Σ_y	Gamma(1,1)		
2	0.01	7	Σ_y	Gamma(1,1)		
3	0.01	6	$0.75\Sigma_y$	Gamma(1,1)		
			Continued on next page			

Table 1 – continued from previous page

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,1)
$5 0.01 6 0.5\Sigma_y Gamma(1$, 1)
$6 0.01 7 0.5\Sigma_{\odot} Gamma(1)$, 1)
0 0.01 . 0.02 <i>y</i>	,1)
7 0.01 6 Σ_y $Gamma(2)$, 2)
8 0.01 7 Σ_y $Gamma(2)$, 2)
9 0.01 6 $0.75\Sigma_y$ $Gamma(2)$,2)
10 0.01 7 0.75 Σ_y Gamma(2)	, 2)
11 0.01 6 $0.5\Sigma_y$ $Gamma(2)$, 2)
$12 0.01 7 0.5\Sigma_y Gamma(2)$	(2, 2)
13 0.05 6 Σ_y Gamma(1	,1)
$14 0.05 7 \Sigma_y Gamma(1)$	1, 1)
15 0.05 6 $0.75\Sigma_y$ $Gamma(1)$, 1)
16 0.05 7 $0.75\Sigma_y$ $Gamma(1)$, 1)
17 0.05 6 $0.5\Sigma_y$ $Gamma(1)$, 1)
$18 0.05 7 0.5 \Sigma_y Gamma(1)$	
$19 0.05 6 \Sigma_y Gamma(2)$	(2,2)
$20 0.05 7 \Sigma_y Gamma(2)$, 2)
$21 0.05 6 0.75\Sigma_y Gamma(2)$, 2)
22 0.05 7 $0.75\Sigma_y$ $Gamma(2)$, 2)
$23 0.05 6 0.5\Sigma_y Gamma(2)$,2)
$24 0.05 7 0.5 \Sigma_y Gamma(2)$	(2, 2)
25 0.10 6 Σ_y $Gamma(1)$	
26 0.10 7 Σ_y $Gamma(1)$	
27 0.10 6 $0.75\Sigma_y$ $Gamma(1)$, 1)
$28 0.10 7 0.75\Sigma_y Gamma(1$,
$29 0.10 6 0.5\Sigma_y Gamma(1)$,
$30 0.10 7 0.5\Sigma_y Gamma(1)$	
31 0.10 6 Σ_y $Gamma(2)$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
33 0.10 6 $0.75\Sigma_y$ $Gamma(2)$	
$34 0.10 7 0.75 \Sigma_y Gamma(2)$	
35 0.10 6 $0.5\Sigma_y$ $Gamma(2)$	
$36 0.10 7 0.5\Sigma_y Gamma(2)$	
$37 0.20 6 \Sigma_y Gamma(1$,
38 0.20 7 Σ_y Gamma(1	,
39 0.20 6 $0.75\Sigma_y$ $Gamma(1)$. /
$40 0.20 7 0.75\Sigma_y Gamma(1)$	
41 0.20 6 $0.5\Sigma_y$ $Gamma(1$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
43 0.20 6 Σ_y Gamma(2	,
$44 0.20 7 \Sigma_y Gamma(2)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
46 0.20 7 $0.75\Sigma_y$ $Gamma(2)$,
Continued on next p	page

Table 1 – continued from previous page

			104 110111	previous page
Model	N_0	c_0	C_0	α
47	0.20	6	$0.5\Sigma_y$	Gamma(2,2)
48	0.20	7	$0.5\Sigma_y$	Gamma(2,2)
49	0.50	6	Σ_y	Gamma(1,1)
50	0.50	7	$oldsymbol{\Sigma_y}$	Gamma(1,1)
51	0.50	6	$0.75\Sigma_y$	Gamma(1,1)
52	0.50	7	$0.75\Sigma_y$	Gamma(1,1)
53	0.50	6	$0.5\Sigma_y$	Gamma(1,1)
54	0.50	7	$0.5\Sigma_y$	Gamma(1,1)
55	0.50	6	Σ_y	Gamma(2,2)
56	0.50	7	$oldsymbol{\Sigma_y}$	Gamma(2,2)
57	0.50	6	$0.75\Sigma_y$	Gamma(2,2)
58	0.50	7	$0.75\Sigma_y$	Gamma(2,2)
59	0.50	6	$0.5\Sigma_y$	Gamma(2,2)
60	0.50	7	$0.5\Sigma_y$	Gamma(2,2)
61	1.00	6	Σ_y	Gamma(1,1)
62	1.00	7	$oldsymbol{\Sigma_y}$	Gamma(1,1)
63	1.00	6	$0.75\Sigma_y$	Gamma(1,1)
64	1.00	7	$0.75\Sigma_y$	Gamma(1,1)
65	1.00	6	$0.5\Sigma_y$	Gamma(1,1)
66	1.00	7	$0.5\Sigma_y$	Gamma(1,1)
67	1.00	6	Σ_y	Gamma(2,2)
68	1.00	7	$oldsymbol{\Sigma_y}$	Gamma(2,2)
69	1.00	6	$0.75\Sigma_y$	Gamma(2,2)
70	1.00	7	$0.75\Sigma_y$	Gamma(2,2)
71	1.00	6	$0.5\Sigma_y$	Gamma(2,2)
72	1.00	7	$0.5\Sigma_y$	Gamma(2,2)

Table 2: Effective sample size (ESS) and autocorrelation (AC) for K for all 72 models after 100,000 iterations. Rows in bold indicate the 15 models selected for stage 2 of the grid experiment. Model 26 was chosen as the final model (italicised).

Model	ESS	AC lag 1	AC lag 5	AC lag 10	AC lag 50
1	23.73	0.999	0.996	0.993	0.972
2	15.50	0.999	0.998	0.996	0.984
3	12.32	0.999	0.998	0.997	0.987
4	6.31	0.999	0.999	0.999	0.994
5	5.32	0.999	0.999	0.998	0.994
6	1.68	0.999	0.999	0.999	0.998
7	15.09	0.999	0.998	0.996	0.985
8	9.02	0.999	0.999	0.998	0.991
9	10.94	0.999	0.998	0.997	0.987
10	3.77	0.999	0.999	0.999	0.996
11	1.79	0.999	0.999	0.999	0.998
12	19.17	0.999	0.998	0.996	0.980
13	31.41	0.998	0.994	0.989	0.963
14	46.76	0.998	0.991	0.985	0.946
15	13.40	0.999	0.996	0.994	0.980
16	7.25	0.999	0.998	0.997	0.991
17		r	non-converge	ence	
18	72.57	$\boldsymbol{0.997}$	0.989	0.980	$\boldsymbol{0.926}$
19	36.32	0.998	$\boldsymbol{0.992}$	0.987	0.954
20	13.19	0.999	0.997	0.995	0.983
21	9.49	0.999	0.998	0.997	0.989
22	12.03	0.999	0.997	0.996	0.985
23	14.37	0.999	0.997	0.995	0.983
24	74.60	$\boldsymbol{0.997}$	0.989	0.980	$\boldsymbol{0.925}$
25	19.80	0.998	0.994	0.991	0.974
26	181.87	0.990	0.962	0.936	0.804
27	22.09	0.998	0.994	0.990	0.971
28	173.26	0.992	0.968	0.944	0.819
29			non-converge		
30	146.49	0.994	0.976	0.956	0.847
31	26.82	0.998	0.993	0.988	0.964
32	150.78	$\boldsymbol{0.992}$	0.968	0.944	$\boldsymbol{0.827}$
33	32.35	0.997	0.991	0.985	0.956
34	153.33	0.992	0.969	0.946	0.824
35			non-converge		
36	148.84	0.995	0.979	0.962	0.861
37	67.71	0.994	0.980	0.968	0.913
38	327.24	0.984	0.937	0.895	0.699
				Continued of	n next page

Table 2 – continued from previous page

Model ESS AC lag 1 AC lag 5 AC lag 10 AC lag 50 39 non-convergence 40 374.32 0.984 0.934 0.887 0.665 41 164.06 0.990 0.961 0.933 0.808 42 non-convergence 43 56.12 0.995 0.983 0.973 0.926 44 362.99 0.980 0.924 0.873 0.650 45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence 0.687 0.687 0.687 48 non-convergence 0.687 0.687 0.687 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.89					revious pag	
40 374.32 0.984 0.934 0.887 0.665 41 164.06 0.990 0.961 0.933 0.808 42 non-convergence 0.983 0.973 0.926 43 56.12 0.995 0.983 0.973 0.926 44 362.99 0.980 0.924 0.873 0.650 45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence non-convergence 0.687 48 non-convergence 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 <		ESS	AC lag 1	AC lag 5	AC lag 10	AC lag 50
41 164.06 0.990 0.961 0.933 0.808 42 non-convergence 43 56.12 0.995 0.983 0.973 0.926 44 362.99 0.980 0.924 0.873 0.650 45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence non-convergence 48 non-convergence 0.687 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.96	39		1	non-converge	ence	
42 non-convergence 43 56.12 0.995 0.983 0.973 0.926 44 362.99 0.980 0.924 0.873 0.650 45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence 0.687 48 non-convergence 0.687 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975	40	374.32	0.984	0.934	0.887	0.665
43 56.12 0.995 0.983 0.973 0.926 44 362.99 0.980 0.924 0.873 0.650 45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence 0.687 0.687 48 non-convergence 0.891 0.687 48 non-convergence 0.891 0.687 48 non-convergence 0.574 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.663 54 356.18 0.981 0.927 0.877 0.666 55 518.7	41	164.06	0.990	0.961	0.933	0.808
44 362.99 0.980 0.924 0.873 0.650 45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence 0.687 0.687 48 non-convergence 0.574 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855	42		1	non-converge	ence	
45 109.24 0.992 0.971 0.952 0.867 46 322.05 0.984 0.935 0.891 0.687 47 non-convergence 48 non-convergence 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 0.622 0.622 0.622 0.622 0.622	43	56.12	0.995	0.983	0.973	0.926
46 322.05 0.984 0.935 0.891 0.687 47 non-convergence 48 non-convergence 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747	44	362.99	0.980	0.924	0.873	0.650
47 non-convergence 48 non-convergence 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 <td></td> <td>109.24</td> <td>0.992</td> <td>0.971</td> <td>0.952</td> <td>0.867</td>		109.24	0.992	0.971	0.952	0.867
48 non-convergence 49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804	46	322.05	0.984	0.935	0.891	0.687
49 515.52 0.968 0.890 0.827 0.574 50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 <tr< td=""><td>47</td><td></td><td>1</td><td>non-converge</td><td>ence</td><td></td></tr<>	47		1	non-converge	ence	
50 704.41 0.964 0.873 0.796 0.483 51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence non-convergence 0.622 60 non-convergence 0.507 0.390 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865	48		1	non-converge	ence	
51 523.86 0.973 0.903 0.842 0.579 52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 43	49	515.52	0.968	0.890	0.827	0.574
52 619.48 0.970 0.890 0.820 0.517 53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 77	50	704.41	0.964	0.873	0.796	0.483
53 343.68 0.980 0.922 0.871 0.653 54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 10	51	523.86	0.973	0.903	0.842	0.579
54 356.18 0.981 0.927 0.877 0.666 55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 6	52	619.48	0.970	0.890	0.820	0.517
55 518.78 0.969 0.892 0.828 0.565 56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 <t< td=""><td>53</td><td>343.68</td><td>0.980</td><td>0.922</td><td>0.871</td><td>0.653</td></t<>	53	343.68	0.980	0.922	0.871	0.653
56 674.10 0.966 0.879 0.805 0.501 57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 <t< td=""><td>54</td><td>356.18</td><td>0.981</td><td>0.927</td><td>0.877</td><td>0.666</td></t<>	54	356.18	0.981	0.927	0.877	0.666
57 432.51 0.975 0.910 0.855 0.622 58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	55	518.78	0.969	0.892	0.828	0.565
58 563.02 0.971 0.894 0.827 0.543 59 non-convergence 60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	56	674.10	0.966	0.879	0.805	0.501
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	432.51	0.975	0.910	0.855	0.622
60 non-convergence 61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	58	563.02	0.971	0.894	0.827	0.543
61 662.02 0.961 0.871 0.799 0.507 62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	59		1	non-converge	ence	
62 929.18 0.953 0.840 0.747 0.390 63 565.91 0.965 0.876 0.804 0.520 64 798.95 0.961 0.865 0.782 0.455 65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	60		1	non-converge	ence	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	662.02	0.961	0.871	0.799	0.507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	929.18	0.953	0.840	0.747	0.390
65 437.72 0.975 0.909 0.853 0.610 66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	63	565.91	0.965	0.876	0.804	0.520
66 439.76 0.975 0.908 0.848 0.599 67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	64	798.95	0.961	0.865	0.782	0.455
67 773.98 0.959 0.865 0.789 0.471 68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	65	437.72	0.975	0.909	0.853	0.610
68 1015.70 0.954 0.841 0.751 0.384 69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	66	439.76	0.975	0.908	0.848	0.599
69 628.91 0.965 0.880 0.810 0.524 70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618	67	773.98	0.959	0.865	0.789	0.471
70 749.55 0.961 0.862 0.779 0.463 71 438.27 0.975 0.909 0.854 0.618		1015.70		0.841	0.751	
71 438.27 0.975 0.909 0.854 0.618	69	628.91	0.965	0.880	0.810	0.524
	70	749.55	0.961	0.862	0.779	0.463
72 364.87 0.977 0.913 0.858 0.635		438.27	0.975	0.909	0.854	0.618
	72	364.87	0.977	0.913	0.858	0.635

Table 3: Effective sample size (ESS) and autocorrelation (AC) for α for all 72 models after 100,000 iterations. Rows in bold indicate the 15 models selected for stage 2 of the grid experiment. Model 26 was chosen as the final model (italicised).

Model	ESS	AC lag 1	AC lag 5	AC lag 10	AC lag 50
1	1308.17	0.154	0.153	0.152	0.147
2	476.90	0.251	0.247	0.246	0.242
3	281.09	0.303	0.309	0.303	0.307
4	95.36	0.465	0.463	0.460	0.464
5	98.93	0.463	0.465	0.463	0.463
6	53.00	0.563	0.559	0.561	0.561
7	331.68	0.293	0.290	0.294	0.201
8	104.80	0.468	0.466	0.463	0.460
9	361.13	0.273	0.271	0.276	0.268
10	67.66	0.522	0.522	0.522	0.521
11	51.01	0.578	0.577	0.577	0.574
12	579.02	0.224	0.230	0.225	0.225
13	409.02	0.272	0.269	0.276	0.268
14	621.57	0.239	0.239	0.240	0.228
15	147.58	0.423	0.419	0.417	0.415
16	32.71	0.714	0.712	0.712	0.705
17		n	on-converge	ence	
18	599.43	0.259	0.260	0.256	0.239
19	876.39	0.188	$\boldsymbol{0.192}$	0.190	0.187
20	88.23	0.518	0.512	0.514	0.508
21	68.80	0.544	0.540	0.540	0.540
22	57.82	0.597	0.596	0.593	0.589
23	124.26	0.473	0.474	0.469	0.462
24	547.43	0.246	0.266	0.263	0.248
25	94.49	0.539	0.539	0.539	0.526
26	1251.31	0.219	0.217	0.208	0.179
27	99.86	0.536	0.535	0.531	0.521
28	843.01	0.273	0.271	0.264	0.227
29		n	on-converge	ence	
30	603.25	0.323	0.319	0.312	0.275
31	148.97	0.459	0.459	0.455	0.422
32	925.98	0.257	0.255	0.244	0.216
33	188.56	0.427	0.429	0.422	0.412
34	871.14	0.276	0.273	0.264	0.230
35			on-converge		
36	510.77	0.350	0.345	0.336	0.303
37	280.36	0.439	0.430	0.425	0.393
38	1191.52	0.295	0.288	0.270	0.209
				Continued or	n next page

Table 3 – continued from previous page

	Table 3 – continued from previous page					
Model	ESS	AC lag 1	AC lag 5	AC lag 10	AC lag 50	
39		r	on-converge	ence		
40	1328.22	0.304	0.293	0.276	0.203	
41	846.44	0.302	0.293	0.285	0.239	
42		r	on-converge	ence		
43	219.82	0.468	0.462	0.455	0.429	
44	1558.80	0.270	0.260	0.242	0.182	
45	453.65	0.375	0.367	0.359	0.326	
46	1250.88	0.298	0.287	0.279	0.208	
47		r	on-converge	ence		
48		r	on-converge	ence		
49	2044.40	0.259	0.242	0.222	0.154	
50	2283.61	0.302	0.282	0.256	0.149	
51	1694.30	0.282	0.272	0.245	0.161	
52	1963.11	0.310	0.297	0.272	0.168	
53	1491.91	0.291	0.278	0.263	0.191	
54	1159.67	0.337	0.320	0.305	0.228	
55	2104.50	0.263	0.244	0.224	0. 146	
56	2136.88	0.315	$\boldsymbol{0.295}$	0.268	0.162	
57	1663.99	0.290	0.278	0.258	0.183	
58	1770.63	0.322	0.303	0.277	0.177	
59		non-convergence				
60		r	on-converge	ence		
61	2304.06	0.285	0.268	0.244	0.148	
62	3020.09	0.300	$\boldsymbol{0.272}$	0.240	0.118	
63	2143.54	0.289	0.267	0.242	0.157	
64	2505.92	0.301	0.281	0.247	0.142	
65	1556.50	0.313	0.291	0.276	0.193	
66	1495.52	0.320	0.304	0.286	0.199	
67	2586.93	0.288	0.269	0.237	0.140	
68	3260.57	0.303	0.275	0.242	0.118	
69	2059.52	0.298	0.275	0.260	0.160	
70	2570.59	0.294	0.270	0.244	0.142	
71	1453.71	0.313	0.301	0.275	0.200	
72	1283.49	0.334	0.316	0.294	0.218	

Table 4: Hyperparameters and the number of obtained clusters for the 15 selected models. The final selected model is italicised.

<u>l ne nnai</u>	<u>seiectea</u>	moc	<u>iei is itanc</u>	isea.
Model	N_0	c_0	C_0	α
1	0.01	6	Σ_y	Gamma(1,1)
2	0.01	7	$0.5\Sigma_y$	Gamma(2,2)
3	0.05	7	Σ_y	Gamma(1,1)
4	0.05	7	$0.5\Sigma_y$	Gamma(1,1)
5	0.05	6	Σ_{y}°	Gamma(2,2)
6	0.05	7	$0.5\Sigma_y$	Gamma(2,2)
7	0.10	γ	Σ_y	Gamma(1,1)
8	0.10	7	Σ_y	Gamma(2,2)
9	0.10	7	$0.75\Sigma_y$	Gamma(2,2)
10	0.20	7	$0.75\Sigma_y$	Gamma(1,1)
11	0.20	7	Σ_y°	Gamma(2,2)
12	0.50	7	Σ_y	Gamma(1,1)
13	0.50	7	Σ_y	Gamma(2,2)
14	1.00	7	Σ_y°	Gamma(1,1)
15	1.00	7	$\Sigma_y^{'}$	Gamma(2,2)

Table 5: Gelman Rubin (GR) statistic for K and α , the average silhouette width (ASW) of the optimal number of clusters using the PAM method for the combined chains of each converged model. The PAM method was not performed for models that did not converge. The final selected model is italicised.

Model	GR K	GR α	ASW	No. of clusters
1	1.25	1.00	-	-
2	2.42	1.05	-	-
3	1.02	1.00	0.851	3
4	2.56	2.00	-	=
5	1.15	1.01	-	-
6	1.59	1.43	-	-
γ	1.01	1.00	0.452	9
8	1.10	1.02	0.449	9
9	1.00	1.00	0.448	10
10	1.00	1.00	0.406	13
11	1.00	1.00	0.425	12
12	1.00	1.00	0.358	11
13	1.00	1.00	0.358	11
14	1.00	1.00	0.326	16
15	1.00	1.00	0.327	16

References

- [1] Frühwirth-Schnatter S. Finite mixture and Markov switching models. Springer Science & Business Media; 2006.
- [2] Fraley C, Raftery AE. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of classification. 2007;24(2):155–181.
- [3] Schaefer J. Analysis of incomplete multivariate data by simulation. Chapmann and Hall, London. 1997;.
- [4] Schuurman N, Grasman R, Hamaker E. A comparison of inverse-wishart prior specifications for covariance matrices in multilevel autoregressive models. Multivariate Behavioral Research. 2016;51(2-3):185–206.
- [5] Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. Chapman and Hall/CRC; 2013.
- [6] Ishwaran H, James LF. Approximate Dirichlet process computing in finite normal mixtures: smoothing and prior information. Journal of Computational and Graphical statistics. 2002;11(3):508–532.
- [7] van Havre Z, White N, Rousseau J, Mengersen K. Clustering action potential spikes: Insights on the use of overfitted finite mixture models and Dirichlet process mixture models. arXiv preprint arXiv:160201915. 2016;.
- [8] Gilholm P. Bayesian Sequential Updating DPMM supplementary; 2019. Available from: https://github.com/TrishG89/Bayesian_Sequential_Updating_DPMM_supplementary.
- [9] Gelman A, Rubin DB, et al. Inference from iterative simulation using multiple sequences. Statistical science. 1992;7(4):457–472.