DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

- 🚺 Težinski graf
- Minimalno pokrivajuće stablo
- Kruskalov algoritam
- Primov algoritam

Težinski graf

Težinski graf

Definicija

Težinski graf je uređena trojka (V, E, ω) , gde je

$$\omega: E \to \mathbb{R}$$

funkcija koja svakoj grani $e \in E$ dodeljuje realan broj (njenu težinu) $\omega(e)$. Za težinski graf se često kaže da je mreža.

Minimalno pokrivajuće stablo

Minimalno pokrivajuće stablo

Problem određivanja minimalnog pokrivajućeg stabla:

Neka je ${\cal G}$ povezan graf. Odrediti pokrivajuće stablo ${\cal G}'$ grafa ${\cal G}$ tako da je

$$\sum_{e \in E(G')} \omega(e)$$

minimalna.

Kruskalov algoritam

Kruskalov algoritam

Neka je $G=(V,E,\omega)$ povezan težinski graf. Označimo grane grafa G tako da važi sledeće uređenje

$$\omega(e_1) \le \omega(e_2) \le \ldots \le \omega(e_n).$$

Za ovako označene grane, primeniti Algoritam 2 (iz skripte) za određivanje pokrivajućeg stabla.

Primov algoritam

Jarnik 1930, Boruvka 1928, Prim 1957

Neka je $G=(V,E,\omega)$ povezan težinski graf. Neka je izabran proizvoljan čvor v_0 i neka je

$$V_0 = \{v_0\}, E_0 = \emptyset.$$

KORAK: Ako postoji grana $uv \in E$ sa osobinom

$$u \in V_{i-1}$$
 $v \notin V_{i-1}$

$$\omega(uv) = \min\{\omega(t't) : t't \in E, t' \in V_{i-1}, t \notin V_{i-1}\}\$$

onda je

$$E_i = E_{i-1} \cup \{uv\}$$
 $V_i = V_{i-1} \cup \{v\}.$

Korak se ponavlja tačno n-1 puta.

