Carbohydrates

Chapter 16

Carbohydrates

- Carbohydrate or Saccharides are essential components of all living organisms and the most abundant class of biological molecules
- Monosaccharide: a carbohydrate that cannot be hydrolyzed to a simpler carbohydrate
- Oligosaccharides consist of a few covalently linked monosaccharide units
- Polysaccharides consist of many covalently linked monosaccharide units.

Carbohydrates

- Building blocks of all carbohydrates are Monosaccharide
- They have the general formula Cn (H₂O)n
- Aldose: a monosaccharide containing an aldehyde group
- Ketose: a monosaccharide containing a ketone group

Monosaccharides

Monosaccharides are classified by their number of carbon atoms

- 3 C atoms are simplest carbohydrate monosaccharides
- Dihydroxyacetone is the ketose (a ketotriose)
- Glyceraldehydes is the aldose with (aldotriose)

Monosaccharides

A comparison of glyceraldehyde (an aldotriose) and dihydroxyacetone (a ketotriose).

The structure of D-glyceraldehyde and a space-filling model of D-glyceraldehyde.

3 The structure of L-glyceraldehyde and a space-filling model of L-glyceraldehyde.

Fischer Projections

- Fischer projection: bonds are written in a two dimensional representation showing the configuration of tetrahedral stereocenters
 - Horizontal lines represent bonds projecting in front the paper
 - Vertical lines represent bonds projecting to the behind the paper

Fischer Projections

- According to the conventions proposed by Fischer:
- D-monosaccharide: a monosaccharide that, when written as a Fischer projection, has the -OH on its fifth carbon (highest-numbered chiral carbon) on the right.

•

 L-monosaccharide: a monosaccharide that, when written as a Fischer projection, has the -OH on its fifth carbon (highest-numbered chiral carbon) on the left

Aldotetroses

- Enantiomers: stereoisomers that are mirror images
 - Example: D-erythrose and L-erythrose

Aldotetroses

- Enantiomers: stereoisomers that are mirror images
 - Example: D-erythrose and L-erythrose

- Diastereomers: stereoisomers that are not mirror images
 - Example: D-erythrose and D-threose
 - Epimers: are diastereomers differ in their structures in only one chiral C

- Aldopentose has 8 possible steroeisomers (4 d and 4L forms)
- n-carbon aldose have 2ⁿ⁻² stereoisomers.
- n-carbon ketoses have 2ⁿ⁻³ stereoisomers.

What Happens if a Sugar Forms a Cyclic Molecule?

- Cyclization of sugars takes place due to interaction between functional groups on distant carbons
 - C1 to C5, to make a cyclic hemiacetal
 - C2 to C5 results in hemiketal formation

What Happens if a Sugar Forms a Cyclic Molecule?

- In both cases, the carbonyl carbon is new chiral center and becomes an anomeric carbon.
- Anomeric carbon: the new stereocenter resulting from cyclic hemiacetal formation
- Anomers: carbohydrates that differ in OH only at their anomeric carbons
- An α anomer according to Fischer is at the right while β is at the left
- α-D-glucose or α-D-glucose

Anomers

 Formation of the cyclic structures occurs as a distant hydroxyl group attacks the carbonyl carbon (the "anomeric" carbon atom).

Haworth Projections

- Five- and six-membered hemiacetals are represented as planar pentagons or hexagons
- Most commonly written with the anomeric carbon on the right and the hemiacetal oxygen to the back right
- The designation β means that -OH on the anomeric carbon is upward to the terminal -CH₂OH; α means that it is downward

© 2006 Brooks/Cole - Thomson

Haworth Projections

- A six-membered ring is shown by the infix —pyran (pyranose)
 - For pyranoses, the six-membered ring is more accurately represented as a chair conformation
- A five-membered ring is shown by the infix —furan (furanose)
 - Five-membered rings are so close to being planner that Haworth projections are adequate to represent furanoses

Comparison of Fischer & Haworth Representations

@ Brooks/Cole, Cengage Learning

Reaction of Monosaccharides

- The carbonyl group of a monosaccharide can be reduced to an hydroxyl group by a variety of reducing agents, such as NaBH₄
- Reduction of the C=O group of a monosaccharide gives a polyhydroxy compound called an aldito (sweeteners)

Glycosidic Bond Formation

 Glycoside: a carbohydrate in which the -OH of the anomeric carbon react with another OH to form

- R----R
 - Those derived from furanoses are furanosides
 - Those derived from pyranoses are pyranosides
- Glycosidic bond is the basis for the formation of Oligosaccharides and Polysaccharides

Glycosidic Bond Formation

© 2006 Brooks/Cole - Thomson

Two Different Disaccharides of α -D-Glucose

Glycosidic linkages can take various forms.

• The anomeric carbon of one sugar to any of the - OH groups of another sugar to form an α - or β – Glycosidic linkage

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

Amino Sugars

N-Acetyl-β-D-glucosamine

N-Acetylmuramic acid

Disaccharides

Sucrose:

- Table sugar; obtained from the juice of sugar cane and sugar beet
- One unit of D-glucose and one unit of D-fructose joined by an α-1,β2-glycosidic bond
- Both anomeric involve in glycosidic linkage (non reducing sugar)

Disaccharides

Lactose:

- Found in milk
- Made up of D-galactose and one unit of D-glucose joined by a β-1,4-glycosidic bond
- Galactose is a C-4 epimer of glucose
- Only different in one inversion at C4
- Reducing sugar free anomeric glucose

Disaccharides

Maltose:

- Two units of D-glucose joined by an α-1,4-glycosidic bond
- Formed from the hydrolysis of starch
- Differs from cellobiose by the conformation of the glycosidic linkage
- Cellobiose: Obtained from hydrolysis of cellulose

Isomaltose (glucose- α -1,6-glucose)

- Homopolysaccharides: a polymer that consists of only one type of monosaccharide components.
- Heteropolysaccharides: a polymer that consists of more than one type of monosaccharide components.

Polysaccharides can be characterized by:

- Specification of which monomers are present
- Type of glycosidic linkage (β or α glycosidic linkage)

Structures and Function of Polysaccharides

Cellulose:

- The major structural component of plants, especially wood and plant fibers
- A linear polymer of d-glucose units joined by b-1,4-glycosidic bonds
- Extensive intra- and intermolecular hydrogen bonding between chains
- Gives mechanical strength to plant fiber
- Animals!?? (Bacteria !!) lack enzymes, called cellulase, that hydrolyze cellulose to glucose.

Repeating disaccharide in cellulose (β-cellobiose)

Fig. 16-19, p.451

Carbohydrate is used for energy storage in plants

Starch

• Continuous chains of a-D-glucose units joined by α -1,4-glycosidic bonds

$$\begin{array}{c|ccccc} & CH_2OH & CH_2OH \\ H & OH & H & OH \\ \hline & OH & H & OH \\ \hline & OH & H & OH \\ \hline & Glucose & Glucose \\ \hline \end{array}$$

Degrees of branching:

- Amylose: is linear polymer consisting D-glucose joined by α -1,4-glycosidic bonds
 - Form helical structure
 - Iodine inserted inside which gives dark blue color (indicator of starch)
- Amylopectin: a highly branched polymer consisting of units of D-glucose joined by α -1,4-glycosidic bonds and branches created by α -1,6-glycosidic bonds
 - Iodine binds to amylopectin (glycogen) gives red blue
 - Different structure from Amylose

- α and β amylase catalyze hydrolysis of a-1,4-glycosidic bonds
- β-amylase is an exoglycosidase and cleaves from the non-reducing end of the polymer
 - Maltose is the product for the reaction
- α-amylase is an endoglycosidase and hydrolyzes glycosidic linkages anywhere along the chain
 - produce glucose and maltose
- Debranching enzymes catalyze the hydrolysis of a-1,6glycosidic bonds
 - Required for complete degradation of amylopectin

Chitin

- Chitin: the major structural component of the exoskeleton of invertebrates, such as insects and crustaceans; also occurs in cell walls of algae, fungi, and yeasts
- Composed of units of N-acetylglucosamine joined by □-1,4-glycosidic bonds
- Linear homopolysaccharides
- Similar to cellulose in structure and function
- Held together by H bond

N-Acetyl-β-D-glucosamine

Fig. 16-24, p.455

- Bacterial cell walls: prokaryotic cell walls are constructed on the framework of the repeating unit
 - NAM-NAG joined by β (1-4) glycosidic bonds prokaryotics
 - Heteropolysaccharides
 - NAM has lactic acid bond to C3 and replace –OH
 - NAM does not occur in Eukaryotic cells

Peptidoglycan

- Bacterial cell walls cross-linking between NAM-NAG with of small peptides
- Lactic acid join with Tetrapeptides
- Further cross linked by other small peptide (5 a.a. long(Gly))
 - Two cross links
- Peptide might contain L and D-amino acid
- D-amino acid and NAM occur in Prokaryotic but not in plants cell wall
 - Cross-linking gives strength

Fig. 16-25, p.456

Plant Cell Walls

- Contain little peptides and or protein
- Consist largely of cellulose
 - Also contain pectin which functions as an intercellular cementing material
- **Pectin** is a polymer of D-Galactouronic acid joined by α -1,4-glycosidic bonds
 - Galactose derivative where OH on C6 is oxidized to carboxyl group
 - Gelling agent in food processing
 - Jams, yogurt and jellies
- Lignin is non-polysaccriade component of plant (woody plant)
 - Consist of coniferyl alcohol

Plant Cell Walls

D-Galacturonic acid

© 2006 Brooks/Cole - Thomson

Glycogen

- Animal carbohydrate storage polymer.
- Branched-chain polymer of α -D-glucose (like amylopectin) $\Rightarrow \alpha$ (1 \rightarrow 6) linkage along the chain of $\Rightarrow \alpha$ (1 \rightarrow 4).
- The main difference between glycogen and amylopectin ⇒ Glycogen is more highly branched
 - Branch point occur ~ every 10 residues in glycogen and ~every 25 residues in amylopectin.
 - More branching mean more water soluble
 - Glycogen storage disease (crystals in muscle and liver)
 - Phosphorylase cleaves glucose from non-reducing end
 - Branching increase efficacy for cleavage and freeing glucose
 - Debranching enzymes also present and result in complete glycogen breakdown

Branching

Amylopectin Glycogen

Glycoproteins

- Glycoproteins contain CHO units covalently bonded to a polypeptide chain
 - Proteoglycans in CHO rich cell membrane
 - Antibodies are glycoproteins
 - Oligosaccharide portion of glycoproteins act as antigenic determinants
 - Among the first antigenic determinants discovered were the blood group substances
 - In the ABO system, individuals are classified according to four blood types: A, B, AB, and O
 - At the cellular level, the biochemical basis for this classification is a group of relatively small membranebound carbohydrates

ABO system

 These carbohydrates are attached to glycoproteins and glycolipids on the surfaces of red blood cells where they act as specialized anitgenic determinants.

Summary

- Polysaccharides are formed by linking monomeric sugars through glycosidic linkages
- Starch and glycogen are energy-storage polymers or sugars
- Cellulose and chitin are structural polymers
- Polysaccharides are important components of cell walls in bacteria and plants
- Sugars can be found in specific bonding arrangements in some proteins
- Glycoproteins frequently play a role in the immune response