

Transfer Learning & Transformers

Artem Chernodub (guest speaker)
Grammarly & UCU

Short BIO

Kyiv Natural Sciences Lyceum # 145

Institute of Mathematical Machines and Systems NASU, Kyiv (PhD), 2016

Moscow Institute of Physics and Technology (B.Sc., M.Sc.), 2007

Grammarly

UCU

Agenda

- Transfer Learning
 - Recalling word embeddings
 - Multi-task Learning
 - Big Language Models (BERT, ELM and co.)
- Transformers
 - RNNs? ConvNets? Attention!
 - Recalling Attention Mechanism
 - Self-Attention
 - Transformers design
- Transformers + Transfer Learning: BERT

Transfer learning

Transfer learning

= storing knowledge gained while solving one problem and applying it to a different but related problem

Word embeddings

Distributional hypothesis

A word's meaning is given by the words that frequently appear close-by.

```
...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...
```

These context words will represent word "banking"!

Semantic similarity

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

- + king [0.30 0.70]
- man [0.20 0.20]
- + woman [0.60 0.30]

queen [0.70 0.80]

word2vec - MLP

We can consider either W or W' as the word's representation. Or even take the average.

Example: Argument Mining

- detection and evaluation of the arguments in natural texts;
- develop automatic systems for making judgments, support decision making and finding contradictions in the natural text, document summarization, analysis of scientific papers, writing assistance, essay scoring.
- domains: law, decision making, philosophy.

Argument Component Detection

List of Argument Components:

```
"THE" -- this token is a part of the thesis of the argument (claim);

"PRO" -- this token is a part of a statement that supports the thesis (premise);

"CON" -- this token is a part of a statement that supports the opposite statement to the thesis.
```

Input: Let us discuss which technology to use for our new project. In my opinion, Python is a good choice for scientific programming, because it is open source and has a rich collection of libraries, such as NumPy.

Output: Let_O us_O discuss_O which_O technology_O to_O use_O for_O our_O new_O project_O. In_O my_O opinion_O, Python_{B-THE} is_{I-THE} a_{I-THE} good_{I-THE} choice_{I-THE} for_{I-THE} scientific_{I-THE} programming_{I-THE}, because_I it_{B-PRO} is_{I-PRO} open_{I-PRO} source_{I-PRO} and_{I-PRO} has_{I-PRO} a_{I-PRO} rich_{I-PRO} collection_{I-PRO} of_{I-PRO} libraries_{I-PRO}, such_{I-PRO} a_{I-PRO} NumPy_{I-PRO}.

AM Feature set

Group	Feature	Description		
	Token position	Token present in introduction or conclusion*; token is first or last token in sentence; relative and absolute token position in document, paragraph and sentence		
Structural	Punctuation	Token precedes or follows any punctuation, full stop, comma and semicolon; token is any punctuation or full stop		
	Position of covering sentence	Absolute and relative position of the token's covering sen- tence in the document and paragraph		
	Part-of-speech	The token's part-of-speech		
Syntactic	Lowest common ancestor (LCA)	Normalized length of the path to the LCA with the follow- ing and preceding token in the parse tree		
	LCA types	The two constituent types of the LCA of the current token and its preceding and following token		
LexSyn	Lexico-syntactic	Combination of lexical and syntactic features as described by Soricut and Marcu (2003)		
Prob	Probability	Conditional probability of the current token being the be- ginning of a component given its preceding tokens		

Stab C., Gurevych I. Parsing Argumentation Structures in Persuasive Essays // Computational Linguistics. — 2017. — $T. 43. - N_{\odot}. 3. - C. 619-659.$

Embeddings vs hand-crafted features in AM

In-domain scenario

	Feature set combinations								
Domain	0	01	012	0123	01234	1234	234	34	4
HS	0.134	0.162	0.167	0.165	0.187	0.176	0.205	0.203	0.193
MS	0.072	0.123	0.138	0.151	0.198	0.216	0.165	0.190	0.226
PIS	0.152	0.174	0.178	0.168	0.212	0.192	0.175	0.177	0.181
PPS	0.235	0.233	0.230	0.240	0.265	0.250	0.239	0.250	0.243
RS	0.090	0.156	0.156	0.144	0.195	0.201	0.204	0.190	0.225
SSE	0.141	0.176	0.200	0.185	0.206	0.216	0.189	0.202	0.201
Aggregated	0.182	0.200	0.205	0.206	0.236	0.230	0.218	0.228	0.229
00 0	l								

Cross-domain scenario

	Feature set combinations								
Domain	0	01	012	0123	01234	1234	234	34	4
HS	0.087	0.063	0.044	0.106	0.072	0.075	0.065	0.063	0.197
MS	0.072	0.060	0.070	0.058	0.038	0.062	0.045	0.060	0.188
PIS	0.078	0.073	0.083	0.074	0.086	0.073	0.096	0.081	0.166
PPS	0.070	0.059	0.070	0.132	0.059	0.062	0.071	0.067	0.203
RS	0.067	0.067	0.082	0.110	0.097	0.092	0.075	0.075	0.257
SSE	0.092	0.089	0.066	0.036	0.120	0.091	0.071	0.066	0.104
Aggregated	0.079	0.086	0.072	0.122	0.094	0.088	0.089	0.076	0.209

Multi-task learning

Multi-task Learning in NLP

- Proposed by Caruana [*], popularized for NLP by Collobert et.al [**], and recently by Anders Sogaard [***].
- Idea: training few datasets simultaneously, information/parameters sharing between similar problems
- Generalization is improved by using training data for similar or related tasks (datasets).

[*] Rich Caruana, Multi-task Leaning: A Knowledge-Based Source of Inductive Bias. Proceedings of ICML, 1993.

[**] Collobert, Ronan, et al. Natural language processing (almost) from scratch, Journal of Machine Learning Research 12, 2011.

[***] Augenstein, Isabelle, and Anders Søgaard. "Multi-Task Learning of Keyphrase Boundary Classification." arXiv preprint arXiv:1704.00514, 2017.

Multi-task Learning in NLP

- Auxiliary objectives from the same datasets (language modelling, predict data statistics, learning the inverse)
- Joint training on similar NLP tasks (machine translation, semantic parsing, chunking, speech recogntion)

Source: http://ruder.io/multi-task-learning-nlp/

Using Multi-Objective Loss Function for Multi-Task Learning

$$H(w) = F(w) + \lambda G(w)$$

Using Parameters Sharing for Multi-Task Learning

Using Parameters Sharing for Multi-Task Learning (backward pass)

Using Parameters Sharing for Multi-Task Learning (backward pass)

Example: keyphrase boundary classification

	Unlabelled			Labelled			
Method	Precision	Recall	F1	Precision	Recall	F1	
Finkel et al. (2005) Lample et al. (2016)	77.89 71.92	50.27 49.37	61.10 58.55		27.97 28.47	35.85 33.72	
BiLSTM	81.58	57.86	67.71	45.80	32.48	38.01	
BiLSTM + Chunking BiLSTM + Framenet BiLSTM + Hyperlinks BiLSTM + Multi-word BiLSTM + Super-sense	82.88 77.86 76.59 74.80 83.70	52.08 56.05 60.53 70.18 51.76	63.96 65.18 67.62 72.42 63.93	54.04	34.90 38.91 44.09 44.09 35.25	42.86 45.24 41.13 45.49 43.54	

Augenstein, Isabelle, and Anders Søgaard. "Multi-Task Learning of Keyphrase Boundary Classification." arXiv preprint arXiv:1704.00514, 2017.

Inspiration: Transfer learning in Computer Vision

ILSVRC 2012 results on ImageNet

#	Team name	Method	Top-5 error
1	SuperVision	AlexNet + extra data (CNN)	0.15315
2	SuperVision	AlexNet (CNN)	0.16422
3	ISI	SIFT+FV, LBP+FV, GIST+FV	0.26172
5	ISI	Naive sum of scores from classifiers using each FV	0.26646
7	OXFORD_ VGG	Mixed selection from High- Level SVM scores and Baseline Scores	0.26979

Transfer Learning in CV: AlexNet vs ImageNet, 2012

```
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[55x55x96] RELU
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[27x27x256] RELU
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] RELU
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x384] RELU
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[13x13x256] RELU
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)
```


Images copyright © A. Krizhevsky et. al, 2012

<u>Details:</u>

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate reduced by 10 manually when training become slow
- Top 5 on ImageNet error 16,4%.

Transfer Learning in CV, three main scenarios

Training deep neural network from scratch is very difficult task (e.g. ImageNet, which contains 1.2 million images with 1000 categories). The three major Transfer Learning scenarios:

- Trained deep neural networks as feature extractors: remove the last fully-connected layer (this layer's outputs are the 1000 class scores for a different task like ImageNet), then treat the rest as a fixed feature extractor.
- Fine-tuning deep neural networks. Train the weights of the pre-trained network by continuing the training via backpropagation
- Use pre-trained models, e.g. Model Zoo https://modelzoo.co/

Source: http://cs231n.github.io/transfer-learning/

Transfer Learning in CV: CNNs as feature extractors

A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson. CNN Features off-the-shelf: an Astounding Baseline for Recognition //2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 23-28 June 2014, Columbus, USA, p. 512 – 519.

Transfer learning task for NLP?

Transfer learning task for NLP – Language Modelling?

Language model: given a sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$, compute the probability distribution of the next word $x^{(t+1)}$:

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(1)})$$

where $m{x}^{(t+1)}$ can be any word in the vocabulary $V = \{m{w}_1,...,m{w}_{|V|}\}$

- ELMo ("Embeddings from Language Models") https://arxiv.org/pdf/1802.05365.pdf
 Deep LSTM language model: biLSTM layers with 4096 units and 512 dimension projections;
- ULM-Fit ("Universal Language Model Fine-tuning for Text Classification")
 https://arxiv.org/pdf/1801.06146.pdf AWD-LSTM language model: embedding size of 400, 3 layers, 1150 hidden size;
- coming soon: BERT, OpenAl Transformer...

Dynamic Neural Network Models

Recurrent Neural Networks: adding recurrent Connection

Convolutional Neural Networks 1D: adding memory banks to input

 X_t - network's input for time t; h - network's state for time t.

Dynamic Neural Network Models = dynamized feedforward models

Recurrent Neural Networks: adding recurrent Connection

RNN(W)

Convolutional Neural Networks 1D: adding memory banks to input

 X_t - network's input for time t; h - network's state for time t.

Recurrent Neural Networks

- sequential computation inhibits parallelization
- no explicit modeling of long and short range dependencies

1D Convolutional Neural Networks

- easy to parallelize!
- exploits local dependencies
- long-distance dependencies require many layers

Numerical Complexity

Model	FLOPs
RNN	$O(length \cdot dim^2)$
1D ConvNet	$O(length \cdot dim^2 \cdot K)$

Transformers

Transformers = "Attention Is All You Need"

Transformers – model architecture

- encoder-decoder architecture
- 6 layers stacked one-by-one in encoder an decoder
- positional encoding + residuals
- multihead attention in encoder
 + masked multi-head attentions
 in decoder

Recall Neural Machine Translation

Seq2Seq Architecture for NMT

- 100 % cotton endto-end learning
- better accuracy than for SMT (standard Google Translate since mid 2016)
- encoder-decoder architecture

Implementation details

- deep LSTMs with 4 layers, 1000 cells at each layer and 1000 dimensional word embeddings (in original paper are random, but could be initialized by word2vec, GloVe, fasttext, etc.)
- input vocabulary 160,000 words, output vocabulary 80,000 words
- 384M parameters of which 64M are pure recurrent connections
- 32M for the "encoder" LSTM and 32M for the "decoder" LSTM)
- BLEU score on WMT'14 English-to-French:
 ensemble of 5 reversed LSTMs = 34.81 vs basiline SMT = 33.30

Sutskever, I., Vinyals, O., & Le, Q. V. Sequence to Sequence Learning with Neural Networks // Advances in Neural Information Processing Systems, 2014, (pp. 3104-3112).

RNN encoder-decoder

Sutskever, I., Vinyals, O., & Le, Q. V. Sequence to Sequence Learning with Neural Networks // Advances in Neural Information Processing Systems, 2014, (pp. 3104-3112).

Attention mechanism

Attention mechanism

Problems with fixed-length encoded vectors (latent representations):

- input and output sequences may have different length;
- order of words in sequence may differ (not very important for French and even Chineese, but critical for Japanese, for example);
- complex relationships between input and output sequences: not necessarily one-to-one, may be many-to one, one-to-many, many-to-many.

Solution: attention mechanism

- We introduce attention mechanism, at each time step k we have a set of "importance weights" $\mathbf{a}(k)$ for the whole sequence at encoder.
- Decoder uses weighted sum of all hidden states of encoder at each time step instead the only last.

Bahdanau D., Cho K., Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate // ICLR 2015 Luong M., Pham H., Manning C. Effective approaches to attention-based neural machine translation // arXiv:1508.04025.

Attention algorithm

- 1. We have source sequence $x = [x_1, ..., x_n]$ and target output sequence $y = [y_1, ..., y_m]$.
- 2. The decoder network has hidden state

$$\boldsymbol{s_t} = f(\boldsymbol{s_{t-1}}, \boldsymbol{y_{t-1}}, \boldsymbol{c_t})$$

3. We calculate:

$$egin{align*} \mathbf{c}_t &= \sum_{i=1}^n lpha_{t,i} oldsymbol{h}_i & oldsymbol{\subset} & \operatorname{Context vector} \ lpha_{t,i} &= \operatorname{align}(y_t, x_i) & oldsymbol{\leftarrow} & \operatorname{Alignment score} \ &= \frac{\exp(\operatorname{score}(oldsymbol{s}_{t-1}, oldsymbol{h}_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(oldsymbol{s}_{t-1}, oldsymbol{h}_{i'}))} \end{aligned}$$

Context vector

 $\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])$ Trainable alignment model

Attention algorithm

- 1. We have source sequence $x = [x_1, ..., x_n]$ and target output sequence $y = [y_1, ..., y_m]$.
- 2. The decoder network has hidden state

$$\boldsymbol{s_t} = f(\boldsymbol{s_{t-1}}, \boldsymbol{y_{t-1}}, \boldsymbol{c_t})$$

3. We calculate:

$$egin{align*} \mathbf{c}_t &= \sum_{i=1}^n lpha_{t,i} oldsymbol{h}_i & oldsymbol{\subset} & ext{Context vector} \ lpha_{t,i} &= \operatorname{align}(y_t, x_i) & oldsymbol{\leftarrow} & ext{Alignment score} \ &= rac{\exp(\operatorname{score}(oldsymbol{s}_{t-1}, oldsymbol{h}_i))}{\sum_{i'=1}^n \exp(\operatorname{score}(oldsymbol{s}_{t-1}, oldsymbol{h}_{i'}))} \end{aligned}$$

 $\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])$ Trainable alignment model

Attention algorithm

- 1. We have source sequence $x = [x_1, ..., x_n]$ and target output sequence $y = [y_1, ..., y_m]$.
- 2. The decoder network has hidden state

$$\boldsymbol{s_t} = f(\boldsymbol{s_{t-1}}, \boldsymbol{y_{t-1}}, \boldsymbol{c_t})$$

3. We calculate:

Attention visualization

Family of Attentions (alignment models)

Name	Alignment score function	Citation
Content-base attention	$\operatorname{score}(m{s}_t,m{h}_i) = \operatorname{cosine}[m{s}_t,m{h}_i]$	Graves2014
Additive(*)	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \mathbf{v}_a^ op \operatorname{tanh}(\mathbf{W}_a[oldsymbol{s}_t;oldsymbol{h}_i])$	Bahdanau2015
Location- Base	$lpha_{t,i} = \mathrm{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$\mathrm{score}(m{s}_t, m{h}_i) = m{s}_t^{\top} \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \frac{\boldsymbol{s}_t^{\scriptscriptstyle T} \boldsymbol{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Source: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention algorithm – Query, Key, Value

Query

source sequence $\mathbf{x}=[x_1,\dots,x_n]$ ~ <**Key, Value>** target sequence $\mathbf{y}=[y_1,\dots,y_m]$ ~ <**Query>** \mathbf{h}_i - encoder's hidden state.

Self-attention

```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
The
     FBI is chasing a criminal on the run.
          is chasing a criminal on the run.
     FBI
The
              chasing a criminal on the run.
The
     FBI
     FBI
              chasing a criminal on the run.
The
              chasing a criminal on the run.
     FBI is
The
              chasing a criminal on the run.
The
              chasing a
                          criminal
     FBI
The
                                        the
                                            run .
                                    on
```

Jianpeng Cheng, Li Dong, Mirella Lapata. Long Short-Term Memory-Networks for Machine Reading // EMNLP 2016

Self-attention

Numerical Complexity

Model	FLOPs
RNN	$O(length \cdot dim^2)$
1D ConvNet	$O(length \cdot dim^2 \cdot K)$
Self-attention	$O(length^2 \cdot dim)$

Numerical Complexity

Model	FLOPs
RNN	$O(length \cdot dim^2)$
1D ConvNet	$O(length \cdot dim^2 \cdot K)$
Self-attention	$O(length^2 \cdot dim)$

length ~ 100, dim ~ 1000

Scaled Dot-Product Attention

Scaled Dot-Product Attention

In matrix form:

encoder self attention

- 1. Multi-head Attention
- 2. Query=Key=Value

decoder self attention

- 1. Masked Multi-head Attention
- 2. Query=Key=Value

encoder-decoder attention

- 1. Multi-head Attention
- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query

Multi-Head Attention

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Positional Encodings

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

Goal: add to input embeddings information about the place and order of inputs

BLEU scores on English-to-German and English-to-French news test2014

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S 8	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 •	10^{18}	
Transformer (big)	28.4	41.0	$2.3 \cdot 10^{19}$		

BERT

BERT

- BERT is designed to pre-train <u>deep</u>
 <u>bidirectional representations</u> by
 jointly conditioning on both left and
 right context in all layers
- pre-trained BERT representations can be fine-tuned with just <u>one</u> additional output layer to create SOTA models for a wide range of tasks

Pre-training Data

- BooksCorpus (800M words) (Zhu et al., 2015)
- English Wikipedia (2,500M words).

- use a document-level corpus (for getting sentence context)
- extract only the text passages and ignore lists, tables, and headers

	Training Compute + Time	Usage Compute
BERT _{BASE}	4 Cloud TPUs, 4 days	1 GPU
BERT _{LARGE}	16 Cloud TPUs, 4 days	1 TPU

Setup details

- BERT's model architecture is a multi-layer bidirectional Transformer encoder.
- Parameters: the number of layers (i.e., Transformer blocks) as **L**, the hidden size as **H**, and the number of self-attention heads as **A**.

BERT_BASE: L=12, H=768, A=12 Total Parameters=110M

BERT_LARGE: L=24, H=1024, A=16 Total Parameters=340M

Pre-training task: Masked LM

- Before feeding word sequences into BERT, 15% of the words in each sequence are replaced with a [MASK] token.
- 80% of the time: Replace the word with the [MASK] token,
 e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word,
 e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged,
 e.g., my dog is hairy → my dog is hairy

Pre-training task: Masked LM

Pre-training task: Next Sentence Prediction

```
Input = [CLS] the man went to [MASK] store [SEP]
         he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
         penguin [MASK] are flight ##less birds [SEP]
Label = NotNext
```

Model achieves 97%-98% accuracy on this task

Fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Use the final hidden state (which corresponds to [CLS]) as sentence representation
- Batch size: 16, 32
- Learning rate (Adam): 5e-5, 3e-5, 2e-5
- Number of epochs: 3, 4

General Language Understanding Evaluation (GLUE)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERT_{BASE} = (L=12, H=768, A=12); BERT_{LARGE} = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.com/language-unsupervised/.

Standford Question Answering Dataset (SQuAD)

• Input Question:

Where do water droplets collide with ice crystals to form precipitation?

• Input Paragraph:

... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. ...

• Output Answer:

within a cloud

System	Dev		Test		
•	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	018)			
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

Named Entity Recognition (NER)

System	Dev F1	Test F1
ELMo+BiLSTM+CRF CVT+Multi (Clark et al., 2018)	95.7 -	92.2 92.6
BERT _{BASE} BERT _{LARGE}	96.4 96.6	92.4 92.8

Table 3: CoNLL-2003 Named Entity Recognition results. The hyperparameters were selected using the Dev set, and the reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

References

- 1. С. Николенко, А. Кадурин, Е. Архангельская. "Глубокое обучение: погружение в мир нейронных сетей", 2018.
- 2. Stanford course CS224d, Deep Learning for Natural Language Processing.
- 3. https://github.com/tensorflow/nmt
- 4. Sebastian Ruder. NLP's ImageNet moment has arrived http://ruder.io/nlp-imagenet/
- 5. Attention? Attention. Lilian Weng blog. https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
- 6. Kostia Omelianchuk, BERT tutorial // Grammarly's blog

Links

- 1. TransferNLP lib for Pytorch https://github.com/feedly/transfer-nlp
- 2. Google's Tensor2Tensor package(Tensorflow) https://github.com/tensorflow/tensor2tensor
- 3. The Annotated Transformer Harward NLP http://nlp.seas.harvard.edu/2018/04/03/attention.html
- 4. Pytorch-pretrained-BERT (huggingface) https://github.com/huggingface/pytorch-pretrained-BERT
- 5. AllenNLP for PyTorch (BERT, ELMo, etc.) https://allennlp.org/

Thank you for attention!

artem.chernodub@grammarly.com