ГЛАВА 2. МНОГОЧЛЕНЫ

§1. АЛГЕБРАИЧЕСКИЕ ОПЕРАЦИИ НАД МНОГОЧЛЕНАМИ

Многочленом или *полиномом* называют функцию вида

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n,$$

где

 a_0, a_1, \dots, a_n — комплексные числа — <u>коэффициенты</u> многочлена,

 $n\geqslant 0$ — целое число — <u>порядок</u> или <u>степень</u> многочлена,

 $a_n \neq 0$ — *старший коэффициент* многочлена,

z — комплексная nepemenhas.

Многочлены

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n,$$

$$Q_n(z) = b_0 + b_1 z + b_2 z^2 + \dots + b_n z^n,$$

равны,

$$P_n(z) = Q_n(z),$$

когда все их соответствующие коэффициенты совпадают:

$$a_i = b_i, \quad i = 0, 1, \dots, n.$$

Если все коэффициенты нули,

$$a_0 = a_1 = \ldots = a_n = 0,$$

то многочлен тождественно равен нулю:

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n \equiv 0.$$

Такому многочлену нельзя приписать никакой степени. Мы будем называть его *нулевым* и обозначать символом 0.

Сумма многочленов

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + \underline{a_n z^n},$$

$$Q_m(z) = b_0 + b_1 z + b_2 z^2 + \dots + \underline{b_n z^n} + \dots + b_m z^m,$$

есть либо многочлен

$$R_l(z) = P_n(z) + Q_m(z),$$

степень которого

$$l \leq \max(n, m),$$

либо — нулевой многочлен:

$$P_n(z) + Q_n(z) = 0.$$

Сумма любого многочлена с нулевым равна этому многочлену:

$$P_n + 0 = P_n.$$

Произведение многочленов

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + \underline{a_n z^n},$$

 $Q_m(z) = b_0 + b_1 z + b_2 z^2 + \dots + \underline{b_m z^m}$

есть многочлен, степень которого равна сумме степеней n+m:

$$R_{n+m}(z) = P_n(z)Q_m(z) =$$

$$= (a_0 + a_1z + \dots + \underline{a_nz^n})(b_0 + b_1z + \dots + \underline{b_mz^m}) = a_0b_0 + \dots + \underline{a_nb_mz^{n+m}}.$$

Произведение ненулевых многочленов не может равняться 0,

$$P_n(z)Q_m(z) =$$

$$= (a_0 + a_1z + \dots + \underline{a_nz^n})(b_0 + b_1z + \dots + \underline{b_mz^m}) =$$

$$= a_0b_0 + \dots + \underline{\underline{a_nb_mz^{n+m}}} \neq 0,$$

T. K.

$$a_n b_m \neq 0.$$

Произведение двух многочленов равно 0 тогда и только тогда, когда один из сомножителей — нулевой многочлен:

$$P_nQ_m=0$$
 \iff $P_n=0$ или $Q_m=0$.

_
_
L
٠.

Введем и исследуем операцию деления многочленов.

ТЕОРЕМА О ДЕЛЕНИИ МНОГОЧЛЕНОВ. Для любых двух многочленов P(z) и Q(z) можно найти многочлены q(z) и r(z), где r(z) имеет степень, меньшую степени многочлена Q(z), или является нулевым многочленом, такие, что

$$P(z) = Q(z)q(z) + r(z).$$

Многочлены q(z) и r(z), удовлетворяющие указанным условиям, определяются по многочленам $P(z),\,Q(z)$ однозначно.

Доказательство. Пусть

$$P=0.$$

Тогда равенство

$$P = Qq + r,$$

имеет вид

$$Qq + r = 0,$$

и выполняется лишь при

$$q = 0, \quad r = 0.$$

Пусть степень многочлена P меньше степени Q. Тогда равенство

$$P = Qq + r,$$

выполняется лишь при

$$q = 0, \quad r = P.$$

13

Положим теперь, что

$$P = P_n, \quad Q = Q_m,$$

причем

$$n \geqslant m$$
.

Для упрощения записей будем считать, что старший коэффициент многочлена Q равен единице:

$$Q(z) = b_0 + b_1 z + b_2 z^2 + \dots + z^m,$$

Случай, когда этот коэффициент — произвольное ненулевое число требует очевидных изменений в выписываемых ниже формулах.

Итак, пусть

$$P(z) = Q(z)q(z) + r(z),$$

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0,$$

$$Q(z) = z^m + b_{m-1} z^{m-1} + \dots + b_0,$$

$$q(z) = c_{n-m} z^{n-m} + c_{n-m-1} z^{n-m-1} + \dots + c_0,$$

$$r(z) = d_{m-1} z^{m-1} + d_{m-2} z^{m-2} + \dots + d_0.$$

Приравняем коэффициенты при одинаковых степенях z.

$$\underline{a_n z^n} + a_{n-1} z^{n-1} + \dots + a_0 =$$

$$= \left(\underline{z^m} + b_{m-1}z^{m-1} + \dots + b_0\right).$$

$$\cdot \left(\underline{c_{n-m}} z^{n-m} + c_{n-m-1} z^{n-m-1} + \dots + c_0 \right) +$$

$$+d_{m-1}z^{m-1}+d_{m-2}z^{m-2}+\cdots+d_0$$

$$\underline{z^n}$$
: $a_n = \underline{c_{n-m}}$.

$$a_n z^n + \underline{a_{n-1} z^{n-1}} + \dots + a_0 =$$

$$= \left(\underline{z^m} + \underline{\underline{b_{m-1}z^{m-1}}} + \dots + b_0\right).$$

$$\cdot \left(\underline{\underline{c_{n-m}}}z^{n-m} + \underline{c_{n-m-1}}z^{n-m-1} + \dots + c_0\right) +$$

$$+d_{m-1}z^{m-1}+d_{m-2}z^{m-2}+\cdots+d_0$$

$$\underline{z^{n-1}}: \quad a_{n-1} = \underline{c_{n-m-1}} + \underline{c_{n-m}b_{m-1}}.$$

$$a_n z^n + a_{n-1} z^{n-1} + \dots + \underline{a_m z^m} + \dots + a_0 =$$

$$= \left(\underline{z^m} + \underline{b_{m-1}z^{m-1}} + \underline{\underline{b_{m-2}z^{m-2}}} + \cdots + \underline{\underline{b_0}}\right) \cdot$$

$$+d_{m-1}z^{m-1}+d_{m-2}z^{m-2}+\cdots+d_0$$

$$\underline{z^m}: \quad a_m = \underline{c_0} + \underline{\underline{c_1b_{m-1}}} + \underline{\underline{c_2b_{m-2}}} + \cdots + \underline{\underline{c_mb_0}}.$$

 N_3

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_m z^m + \underline{a_{m-1} z^{m-1}} + \dots + a_0 =$$

$$= \left(z^m + \underline{b_{m-1}z^{m-1}} + \underline{b_{m-2}z^{m-2}} + \dots + \underline{\underline{b_0}}\right) \cdot$$

$$+\underline{d_{m-1}z^{m-1}} + d_{m-2}z^{m-2} + \dots + d_0$$

$$\underline{z^{m-1}}: \quad a_{m-1} = \underline{d_{m-1}} + \underline{c_0 b_{m-1}} + \underline{c_1 b_{m-2}} + \cdots + \underline{c_{m-1} b_0}.$$

$$a_n z^n + a_{n-1} z^{n-1} + \dots + \underline{a_0} =$$

$$= \left(z^m + b_{m-1}z^{m-1} + \dots + \underline{b_0}\right).$$

$$\cdot \left(c_{n-m}z^{n-m} + c_{n-m-1}z^{n-m-1} + \dots + c_1z + \underline{\underline{c_0}}\right) +$$

$$+d_{m-1}z^{m-1} + d_{m-2}z^{m-2} + \dots + \underline{d_0}$$

$$\underline{z^0}: \quad a_0 = \underline{d_0} + \underline{\underline{c_0b_0}}.$$

Итак,

$$a_n = c_{n-m},$$
 $a_{n-1} = c_{n-m-1} + c_{n-m}b_{m-1},$
 $\cdots \cdots$
 $a_m = c_0 + c_1b_{m-1} + c_2b_{m-2} + \cdots + c_mb_0,$

 $a_{m-1} = d_{m-1} + c_0 b_{m-1} + c_1 b_{m-2} + \dots + c_{m-1} b_0,$

.

$$a_0 = d_0 + c_0 b_0.$$

Из первых равенств полученной системы уравнений

$$a_n = c_{n-m},$$

$$a_{n-1} = c_{n-m-1} + c_{n-m}b_{m-1},$$

$$a_m = c_0 + c_1 b_{m-1} + c_2 b_{m-2} + \dots + c_m b_0,$$

легко находятся коэффициенты c_j :

$$c_{n-m} = a_n,$$
 $c_{n-m-1} = a_{n-1} - c_{n-m}b_{m-1},$
 $\cdots \cdots \cdots$
 $c_0 = a_m - c_1b_{m-1} - c_2b_{m-2} - \cdots - c_mb_0.$

Затем с использованием уже найденных значений c_j и равенств

$$a_{m-1} = d_{m-1} + c_0 b_{m-1} + c_1 b_{m-2} + \dots + c_{m-1} b_0,$$

.

$$a_0 = d_0 + c_0 b_0.$$

вычисляются коэффициенты d_i :

$$d_{m-1} = a_{m-1} - c_0 b_{m-1} - c_1 b_{m-2} + \dots - c_{m-1} b_0,$$

.

$$d_0 = a_0 - c_0 b_0.$$

В равенстве

$$P(z) = Q(z)q(z) + r(z)$$

полином

$$q(z) = c_{n-m}z^{n-m} + c_{n-m-1}z^{n-m-1} + \dots + c_0 \neq 0$$

T. K.

$$c_{n-m} = a_n,$$

a

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 \neq 0.$$

25

В равенстве

$$P(z) = Q(z)q(z) + r(z)$$

полином r(z) может оказаться равным нулю:

$$r=0.$$

Описанный в ходе доказательства теоремы способ вычисления коэффициентов многочленов q и r называется $\underline{cxemoй}$ $\underline{Fophepa}$ и широко применяется на практике.

Уильям Джордж Горнер (William George Horner, 1786-1837) — британский математик, в честь которого названа схема Горнера.

Формулу

$$P(z) = Q(z)q(z) + r(z)$$

интерпретируют как <u>деление</u> многочлена P на многочлен Q, где $q-\underline{\textit{частноe}}$ от деления,

 $r-\underline{ocmamo\kappa}$.

В случае, когда остаток равен нулю,

$$r=0,$$

говорят, что многочлен P делится (нацело) на многочлен Q:

$$P(z) = Q(z)q(z).$$

ЗАМЕЧАНИЕ. Из формул, полученных в ходе доказательства теоремы, очевидно следует, что если $P,\,Q$ являются многочленами с действительными коэффициентами, то коэффициенты многочленов $q,\,r$ — действительные числа.

ПРИМЕР. Разделим

$$P_4(z) = 2z^4 - 3z^3 + 4z^2 - 5z + 6$$
 на $Q_2(z) = z^2 - 3z + 1$,

т. е. найдем такие многочлены

$$q_2(z) = c_2 z^2 + c_1 z + c_0$$
 и $r(z) = d_1 z + d_0$

что выполняется равенство

$$P_4(z) = Q_2(z)q_2(z) + r(z).$$

Итак,

$$P_4(z) = Q_2(z)q_2(z) + r(z),$$

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (z^2 - 3z + 1)(c_2z^2 + c_1z + c_0) + d_1z + d_0.$$

Используя равенство

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (\underline{z^2} - 3z + 1)(\underline{c_2 z^2} + c_1 z + c_0) + d_1 z + d_0,$$

вычислим c_2 :

$$\underline{z^4}$$
: $c_2 = 2$.

Теперь $c_2 = 2$, и из равенства

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (\underline{z^2} \underline{\underline{-3z}} + 1)(\underline{\underline{2z^2}} + \underline{c_1z} + c_0) + d_1z + d_0$$

вычислим c_1 :

$$\underline{z^3}$$
: $-3 = c_1 - 3 \cdot 2$,

$$c_1 = -3 + 6 = 3.$$

Теперь $c_2 = 2$, $c_1 = 3$, и из равенства

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (\underline{z^2} - 3\underline{z} + \underline{\underline{1}})(\underline{\underline{z}^2} + \underline{\underline{3}}\underline{z} + \underline{\underline{c_0}}) + d_1\underline{z} + d_0$$

вычислим c_0 :

$$\underline{z^2}$$
: $4 = c_0 - 3 \cdot 3 + 2$,

$$c_0 = 4 + 9 - 2 = 11.$$

Теперь $c_2=2,\ c_1=3,\ c_0=11,\$ и из равенства

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (z^2 \underline{-3z} + \underline{\underline{1}})(2z^2 + \underline{\underline{3z}} + \underline{\underline{11}}) + \underline{\underline{d_1z}} + d_0$$

вычислим d_1 :

$$\underline{z^1}$$
: $-5 = -3 \cdot 11 + 1 \cdot 3 + d_1$,

$$d_1 = -5 + 33 - 3 = 25.$$

Теперь $c_2=2,\ c_1=3,\ c_0=11,\ d_1=25,\$ и из равенства

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (z^2 - 3z + \underline{1})(2z^2 + 3z + \underline{11}) + 25z + \underline{d_0}$$

вычислим d_0 :

$$\underline{z^0}$$
: $6 = 11 + d_0$,

т. е.

$$d_0 = 6 - 11 = -5.$$

Окончательно получим:

$$2z^4 - 3z^3 + 4z^2 - 5z + 6 =$$

$$= (z^2 - 3z + 1)(2z^2 + 3z + 11) + 25z - 5.$$

Вопрос: Если многочлен тождественно равен нулю,

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n \equiv 0,$$

будут ли все коэффициенты равны нулю:

$$a_0 = a_1 = \ldots = a_n = 0$$
?

Это действительно так, но доказательство удобно будет выполнить несколько позже. Как ни странно, наиболее просто оно проводится при изучении систем линейных алгебраических уравнений.

§2. КОРНИ МНОГОЧЛЕНОВ

 ${\it Kopehb}$ многочлена $P_n(z)$ — это число lpha такое, что

$$P_n(\alpha) = 0.$$

2

ТЕОРЕМА (БЕЗУ). Пусть $n \geqslant 1$, α — произвольное комплексное число. Тогда многочлен $P_n(z) - P_n(\alpha)$ делится на $z - \alpha$:

$$P_n(z) - P_n(\alpha) = q_{n-1}(z)(z - \alpha).$$

Доказательство. По теореме о делении многочленов

$$P_n(z) - P_n(\alpha) = q_{n-1}(z)(z - \alpha) + r,$$

где r — число (многочлен нулевой степени). Полагая в этом равенстве $z=\alpha$, получим, что r=0, т. е.

$$P_n(z) - P_n(\alpha) = q_{n-1}(z)(z-\alpha). \square$$

4

Этьенн Безу (Etienne Bezout; 1730-1783) — французский математик.

Перепишем равенство

$$P_n(z) - P_n(\alpha) = q_{n-1}(z)(z - \alpha)$$

в виде

$$P_n(z) = q_{n-1}(z)(z - \alpha) + P_n(\alpha).$$

Теперь из теоремы Безу очевидным образом вытекает

Следствие. Многочлен

$$P_n(z) = q_{n-1}(z)(z - \alpha) + P_n(\alpha)$$

тогда и только тогда делится на $z-\alpha$, когда

$$P_n(\alpha) = 0,$$

т. е. α — корень многочлена $P_n(z)$.

Число α называется корнем <u>кратности</u> $k \ge 1$ многочлена P_n , если $P_n(z)$ делится на $(z-\alpha)^k$:

$$P_n(z) = (z - \alpha)^k q_{n-k}(z),$$

а $q_{n-k}(z)$ не делится на $(z-\alpha)$,

т. е. α не является корнем многочлена $q_{n-k}(z)$.

Если кратность корня равна единице, то корень называют npocmы m:

$$P_n(z) = (z - \alpha)q_{n-1}(z).$$

ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ. Всякий полином

$$P_n(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0, \quad n \geqslant 1,$$

имеет хотя бы один корень.

Пусть $P_n(z)=z^n+a_{n-1}z^{n-1}+\cdots a_0$. По основной тереме алгебры полином P_n имеет корень. Обозначим его через α_1 . Пусть этот корень имеет кратность $k_1\geqslant 1$. По следствию из теоремы Безу

$$P_n(z) = (z - \alpha_1)^{k_1} q_{n-k_1}(z).$$

Если в равенстве

$$P_n(z) = (z - \alpha_1)^{k_1} q_{n-k_1}(z)$$

имеем

$$k_1=n,$$

 \mathbf{TO}

$$q_{n-k_1}(z) = 1.$$

Действительно,

$$z^{n} + a_{n-1}z^{n-1} + \cdots + a_{0} = (z - \alpha_{1})^{n} \cdot 1.$$

Если в равенстве

ению отличным от α_1 .

$$P_n(z) = (z - \alpha_1)^{k_1} q_{n-k_1}(z)$$

имеем

$$k_1 < n,$$

то полином $q_{n-k_1}(z)$ имеет корень. Обозначим его через α_2 . Понятно, что α_2 является корнем полинома P_n , причем по постро-

Пусть кратность α_2 как корня полинома q_{n-k_1} равна k_2 . Тогда в

$$P_n(z) = (z - \alpha_1)^{k_1} q_{n-k_1}(z)$$

имеем

$$q_{n-k_1}(z) = (z - \alpha_2)^{k_2} q_{n-k_1-k_2}(z),$$

следовательно,

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} q_{n-k_1-k_2}(z).$$

Ясно, что k_2 — кратность α_2 как корня полинома P_n .

Продолжая это процесс, получим, что

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_m)^{k_m},$$

где k_1, k_2, \ldots, k_m — целые числа, не меньшие единицы и такие, что

$$k_1 + k_2 + \dots + k_m = n.$$

Таким образом, всякий полином степени $n \geqslant 1$ имеет n корней с учетом их кратности:

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_m)^{k_m},$$

где

$$k_1 + k_2 + \dots + k_m = n.$$

ТЕОРЕМА. Полином P_n степени $n\geqslant 1$ не может иметь больше чем n корней.

ДОКАЗАТЕЛЬСТВО. Пусть $P_n(\alpha) = 0$ и α не совпадает ни с одним из чисел $\alpha_1, \ldots, \alpha_m$. По следствию из теоремы Безу имеем

$$P_n(z) = (z - \alpha)q_{n-1}(z),$$

откуда на основании

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_m)^{k_m}$$

получаем равенство

$$(z - \alpha_1)^{k_1}(z - \alpha_2)^{k_2} \cdots (z - \alpha_m)^{k_m} = (z - \alpha)q_{n-1}(z).$$

Правая часть этого равенства при $z=\alpha$ равна нулю, а левая не равна нулю. \square

_	
1	- (
	- 2
	•

Выразим теперь коэффициенты полинома через его корни.

Занумеруем корни полинома

$$P_n(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$$

целыми числами от 1 до n, повторяя каждый корень столько раз, какова его кратность, и запишем $P_n(z)$ в виде

$$P_n(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n).$$

Итак,

$$z^{n} + \underline{a_{n-1}z^{n-1}} + \dots + a_{0} = (z - \alpha_{1})(z - \alpha_{2}) \dots (z - \alpha_{n}).$$

Тогда

$$a_{n-1} = -\alpha_1 - \alpha_2 - \dots - \alpha_n.$$

M3

$$z^{n} + a_{n-1}z^{n-1} + \underline{a_{n-2}z^{n-2}} + \dots + a_{0} =$$

$$= (z - \alpha_1)(z - \alpha_2)(z - \alpha_3) \cdots (z - \alpha_n)$$

имеем

$$a_{n-2} = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \cdots + \alpha_{n-1} \alpha_n.$$

22

 M_3

$$z^{n} + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + \underline{a_0} =$$

$$= (z - \alpha_1)(z - \alpha_2)(z - \alpha_3) \cdots (z - \alpha_n)$$

имеем

$$a_0 = (-1)^n \alpha_1 \alpha_2 \cdots \alpha_n.$$

Полученные формулы называются формулами Въета:

$$a_{n-1} = -(\alpha_1 + \alpha_2 + \dots + \alpha_n),$$

$$a_{n-2} = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \cdots + \alpha_{n-1} \alpha_n,$$

.

$$a_0 = (-1)^n \alpha_1 \alpha_2 \cdots \alpha_n.$$

Франсуа Виет (Francois Viete; 1540 - 1603) — французский математик, основоположник символической алгебры. По образованию и основной профессии — юрист.

§3. МНОГОЧЛЕНЫ С ДЕЙСТВИТЕЛЬНЫМИ КОЭФФИЦИЕНТАМИ

Пусть все коэффициенты полинома

$$P_n(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$$

есть вещественные числа, тогда если α — корень этого полинома, то и сопряженное число $\overline{\alpha}$ — корень полинома P_n :

$$P_n(\alpha) = 0 \implies P_n(\overline{\alpha}) = 0.$$

Действительно, пусть

$$P_n(\alpha) = 0.$$

Тогда

$$\overline{P_n(\alpha)} = 0.$$

С другой стороны,

$$\overline{P_n(\alpha)} = \overline{\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0} =$$

$$= \overline{\alpha}^n + a_{n-1}\overline{\alpha}^{n-1} + \ldots + a_0 = P_n(\overline{\alpha}).$$

Следовательно,

$$P_n(\overline{\alpha}) = 0.$$

Обозначим через

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$

все вещественные корни полинома P_n , а через

$$k_1, k_2, \ldots, k_s$$

обозначим их кратности. Положим

$$r = k_1 + k_2 + \dots + k_s,$$

$$Q_r(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_s)^{k_s}.$$

Тогда

$$P_n(z) = Q_r(z)R_{n-r}(z).$$

Все коэффициенты многочлена

$$P_n(z) = Q_r(z)R_{n-r}(z).$$

вещественны. Все коэффициенты многочлена

$$Q_r(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_s)^{k_s}$$

также вещественны, поэтому и все коэффициенты многочлена

$$R_{n-r}(z)$$

вещественны. По построению многочлен R_{n-r} может иметь только комплексные корни.

Заметим, что при любых z, α имеем

$$(z - \alpha)(z - \overline{\alpha}) = z^2 - \alpha - \overline{\alpha} + \alpha \overline{\alpha} =$$
$$= z^2 + pz + q,$$

где р и q вещественные числа:

$$p = -\alpha - \overline{\alpha} = -2 \operatorname{Re} \alpha,$$
$$q = \alpha \overline{\alpha} = |\alpha|^2.$$

Поэтому, если α — комплексный корень полинома

$$P_n(z) = Q_r(z)R_{n-r}(z),$$

а следовательно, и корень полинома R_{n-r} , то

$$P_n(z) = Q_r(z)(z^2 + pz + q)R_{n-r-2}(z),$$

причем числа p,q вещественны, значит, полином R_{n-r-2} имеет толь-ко вещественные коэффициенты.

Продолжая этот процесс, получим, что

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_s)^{k_s} (z^2 + p_1 z + q_1) \cdots (z^2 + p_t z + q_t),$$

где s — количество различных вещественных корней полинома P_n , а t — количество пар комплексно сопряженных корней этого полинома.

Из представления

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_s)^{k_s} (z^2 + p_1 z + q_1) \cdots$$
$$\cdots (z^2 + p_t z + q_t)$$

сразу следует, что у полинома с вещественным коэффициентами <u>нечетного</u> порядка существует по крайней мере один вещественный корень.

Полагая, что в равенстве

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_s)^{k_s} (z^2 + p_1 z + q_1) \cdots (z^2 + p_t z + q_t),$$

число z — вещественное, можно сказать, что полином с вещественными коэффициентами допускает представление в виде произведения линейных и квадратичных вещественных сомножителей.

ПРИМЕР. Нетрудно видеть, что одним из корней полинома

$$P_3(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0 = z^3 - 6z + 9$$

является число $\alpha = -3$. Разделим многочлен $P_3(z)$ на

$$Q_1(z) = z + b_0 = z + 3,$$

т. е. найдем такой многочлен

$$q_2(z) = c_2 z^2 + c_1 z + c_0,$$

что выполняется равенство

$$P_3(z) = Q_1(z)q_2(z).$$

Итак,

$$z^3 - 6z + 9 = (z+3)(c_2z^2 + c_1z + c_0).$$

Вычисления проведем с помощью схемы Горнера. Их удобно оформить в виде таблицы:

	$a_3 = 1$	$a_2 = 0$	$a_1 = -6$	$a_0 = 9$
$b_0 = 3$		$c_2b_0 =$	$c_1b_0 =$	$c_0b_0 =$
		$= 1 \cdot 3 = 3$	=(-3)3=-9	$= 3 \cdot 3 = 9$
	$c_2 = a_3 =$	$c_1 = a_2 - c_2 b_0 =$	$c_0 = a_1 - c_1 b_0 =$	$r_0 = a_0 - c_0 b_0 = 0$
	=1	=-3	=3	=0

Таким образом,

$$q_2(z) = z^2 - 3z + 3,$$

а остаток r_0 равен нулю, поскольку многочлен

$$P_3(z) = z^3 - 6z + 9$$

нацело делится на z + 3:

$$z^{3} - 6z + 9 = (z+3)\left(z^{2} - 3z + 3\right).$$

Очевидно, число $\alpha = -3$ не является корнем полинома

$$q_2(z) = z^2 - 3z + 3.$$

Поэтому α — простой корень полинома

$$P_3(z) = (z+3)(z^2-3z+3).$$

Для того, чтобы найти оставшиеся два его корня, надо решить квадратное уравнение

$$z^2 - 3z + 3 = 0.$$

Дискриминант уравнения

$$z^2 - 3z + 3 = 0$$

равен -3, следовательно, оно не имеет вещественных корней. Таким образом, полином третьего порядка $P_3(z)$ с вещественными коэффициентами мы представили в виде произведения линейного и квадратичного вещественных сомножителей:

$$P_3(z) = (z+3)(z^2-3z+3).$$