Further examples of 1-dimensional problem

$$H = \frac{p^2}{2m} + V(x)$$
 (Classical) Hamiltonian $\widehat{H} = \frac{\widehat{p}^2}{2m} + V(\widehat{X})$ (Quantum) Hamiltonian operator

$$\widehat{H}|E\rangle = \left[\frac{\widehat{P}^2}{2m} + V(\widehat{X})\right]|E\rangle = E|E\rangle$$
 Time-independent Schrödinger equation (TISE)

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] \psi_E(x) = E \psi_E(x)$$
 Representation of TISE in the X basis

 $\psi_E(x)$ is continuous at the two boundaries, x=-L/2 & x=L/2

Parity operation on a state

Classical	Quantum
$x \rightarrow -x$	Parity operator Π
p o -p	$\widehat{\Pi} x\rangle = -x\rangle \ \widehat{\Pi} p\rangle = -p\rangle$

For any state $|\psi\rangle$,

$$\langle x|\psi\rangle = \psi(x) \rightarrow \langle x|\widehat{\Pi}|\psi\rangle = \psi(-x)$$

$$\langle p|\psi\rangle = \psi(p) \rightarrow \langle p|\widehat{\Pi}|\psi\rangle = \psi(-p)$$

(Can you derive these relations using the completeness relation?)

Properties

- Eigenvalues ±1 (eigenstates having even/odd parity)
- Hermitian & unitary ($\widehat{\Pi}^{\dagger} = \widehat{\Pi}^{-1} = \widehat{\Pi}$)
- If $\widehat{H}(-\widehat{X}, -\widehat{P}) = \widehat{H}(\widehat{X}, \widehat{P})$,
 - the Hamiltonian \widehat{H} is said to be parity invariant.
 - $-\left[\widehat{\Pi},\widehat{H}\right]=0$

Bound states

- The energy levels are always quantized.
- No degeneracy in 1D bound states (How about a free particle?)

Expectation value of momentum $\langle P \rangle = 0$

Ground-state energy $E_1 \neq 0$ (why?)

Can you quickly make an order-of-magnitude estimation of the ground-state energy of a particle in an (infinite) box?

Evolution of a state with time

- All the eigenstates are stationary.
- How will the state $|\psi(0)\rangle = \frac{1}{\sqrt{2}}[|1\rangle + |2\rangle]$ evolve with time?
- How will the state $|\psi(0)\rangle = \frac{1}{\sqrt{2}}[|1\rangle + |3\rangle]$ evolve with time?
- How do they look in the X basis?

(The mathematical detail left as your homework)

 $\psi_E(x) \& \psi_{E}'(x)$ are continuous at the two boundaries, x = -L/2 & x = L/2

E is continuous.

(The mathematical detail left as your homework)

 $\psi_E(x) \& \psi_{E}'(x)$ are continuous at the two boundaries, x = -L/2 & x = L/2

E is quantized (discrete).

of bound states are finite.

- More bound states for higher V₀ and/or longer L
- There exists at least 1 bound state (for 1D potential well).

Double potential wells Two potential wells placed closely (coupled) to each other

- Parity invariance & eigenstates of \widehat{H}
- Tunneling through the barrier
- Inversion doubling of an NH₃ molecule (24 GHz)
- NH₃ maser (by Charles Townes)

1D scattering problem

(Quasi) plane wave propagating along the +x direction

What are the probabilities of reflection & transmission?

Probability current

The rate of change of probability density $P(x,t) = |\psi(x,t)|^2$ at x

$$\psi(x) = Ae^{ipx/\hbar} + Be^{-ipx/\hbar} \rightarrow j(x) = \frac{p}{m}(|A|^2 - |B|^2)$$

$$\psi(x) = A\tilde{\psi}(x), \ \tilde{\psi}(x) \text{ is real } \rightarrow j(x) = 0$$

1D scattering problem

(Quasi) plane wave propagating along the +x direction

What are the probabilities of reflection & transmission?

Reflection coefficient
$$R = j_R/j_I$$

Transmission coefficient
$$T = j_T/j_I$$

(Ex4) Negative potential step

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundary x = 0.

$$B = \frac{k_1 - k_2}{k_1 + k_2} A$$

$$C = \frac{2k_1}{k_1 + k_2} A$$

$$R = \frac{j_R}{j_I} = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

$$R + T = 1$$
(Conservation of probability)
$$T = \frac{j_T}{j_I} = \frac{4k_1k_2}{(k_1 + k_2)^2}$$

Partial reflection & partial transmission

(Ex5) Positive potential step

(1)
$$E > V_0$$

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundary x = 0.

$$B = \frac{k_1 - k_2}{k_1 + k_2} A$$

$$C = \frac{2k_1}{k_1 + k_2} A$$

$$R = \frac{j_R}{j_I} = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

$$R + T = 1$$
(Conservation of probability)
$$T = \frac{j_T}{j_I} = \frac{4k_1k_2}{(k_1 + k_2)^2}$$

Partial reflection & partial transmission

(Ex5) Positive potential step

(2)
$$E < V_0$$

 $\psi_E(x) \& \psi_E{'}(x)$ are continuous at the boundary x = 0.

$$B = \frac{k_1 - ik_2}{k_1 + ik_2} A$$

$$C = \frac{2k_1}{k_1 + ik_2} A$$

$$R = \frac{j_R}{j_I} = 1$$

$$R + T = 1$$
(Conservation of probability)
$$T = \frac{j_T}{j_I} = 0$$

(Ex5) Positive potential step

(2)
$$E < V_0$$

 $\psi_E(x) \& \psi_E{'}(x)$ are continuous at the boundary x = 0.

$$B = \frac{k_1 - ik_2}{k_1 + ik_2} A$$

$$C = \frac{2k_1}{k_1 + ik_2} A$$

$$R = \frac{j_R}{j_I} = 1$$

$$R + T = 1$$
(Conservation of probability)
$$T = \frac{j_T}{j_I} = 0$$

(1)
$$E < V_0$$

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundaries $x = \pm L/2$.

$$T = \frac{j_T}{j_I} = \left[1 + \left(\frac{k_1^2 + k_2^2}{2k_1k_2}\sinh(k_2L)\right)^2\right]^{-1}$$

$$R + T = 1$$
(Conservation of probability)

(1)
$$E < V_0$$

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundaries $x = \pm L/2$.

$$T = \frac{j_T}{j_I} = \left[1 + \left(\frac{k_1^2 + k_2^2}{2k_1k_2}\sinh(k_2L)\right)^2\right]^{-1}$$

$$R + T = 1$$
(Conservation of probability)

(2)
$$E > V_0$$

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundaries $x = \pm L/2$.

$$T = \frac{j_T}{j_I} = \left[1 + \left(\frac{k_1^2 - k_2^2}{2k_1 k_2} \sin(k_2 L) \right)^2 \right]^{-1}$$

$$R + T = 1$$
(Conservation of probability)

(2)
$$E > V_0$$

 $\psi_E(x) \& \psi_{E}'(x)$ are continuous at the boundaries $x = \pm L/2$.

$$T = \frac{j_T}{j_I} = \left[1 + \left(\frac{k_1^2 - k_2^2}{2k_1 k_2} \sin(k_2 L) \right)^2 \right]^{-1}$$

$$R + T = 1$$
(Conservation of probability)

(Ex7) Potential well

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundaries $x = \pm L/2$.

$$T = \frac{j_T}{j_I} = \left[1 + \left(\frac{k_1^2 - k_2^2}{2k_1 k_2} \sin(k_2 L) \right)^2 \right]^{-1}$$

$$R + T = 1$$
(Conservation of probability)

(Ex7) Potential well

 $\psi_E(x) \& \psi_E'(x)$ are continuous at the boundaries $x = \pm L/2$.

$$T = \frac{j_T}{j_I} = \left[1 + \left(\frac{k_1^2 - k_2^2}{2k_1 k_2} \sin(k_2 L) \right)^2 \right]^{-1}$$

$$R + T = 1$$
(Conservation of probability)

(Ex4) Negative potential step

Can you devise a "photonic" system corresponding to this case?

How about the other cases?

Can you find out similarity between the TISE in the X basis & the 1D EM wave equation?