武汉大学 2017-2018 第一学期高等数学 B1 期末试题 A

- $1、(9 分) 求函数极限 \lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x 3\tan x}{\cos(x + \frac{\pi}{6})}.$
- 2、(9分) 设函数 y = y(x) 由参数方程 $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$ 所确定,求 $\frac{d^2y}{dx^2}.$
- 3、(9分) 已知 $\int_0^y e^{t^2} dt + \int_0^{\sin x} \cos^2 t dt = 0$,求 $\frac{dy}{dx}$.
- 4、(8 分) 设 $a_n \neq 0$,试用 " εN "语言证明: $\lim_{n \to \infty} a_n = 0$ 的充要条件是 $\lim_{n \to \infty} \frac{1}{a_n} = \infty$.
- 5、(9分) 设a > 0, 求 $\int_{0}^{+\infty} e^{-ax} \sin x dx$.
- 6、(9分)根据以下导函数y' = f'(x)的图像:

填写关于函数 f(x) 的表格 (其中 f(0) = 0):

单增区间	上凸区间	
单减区间	下凸区间	
极大值点	极小值点	

画出函数y = f(x)的图像:

- 7、(9分)确定常数a,b,使函数 $f(x) = \begin{cases} \frac{1}{x}(e^{2x} 1) &, x < 0 \\ a + \sin bx &, x \ge 0 \end{cases}$ 处处可导.
- 8、(9分) 求由 $\arctan x \le y \le x, 0 \le x \le 1$ 所确定的平面区域的面积.
- 9、(8分) 设 $\int f(x) dx = x^2 + C$, 求 $\int x f(1-x^2) dx$.

- 10、(1)(4分)求微分方程y''' 2y'' + y' = 0的通解;
 - (2)(4分)写出微分方程 $y'' + y = \sin x \cos 2x$ 的特解形式.
- 11、(8 分) 求由曲线 $y = \sqrt{x}, x = 1, x = 2$ 及 x 轴所围成的平面图形绕直线 x = -1 旋转而成的旋转体的体积.
- 12、(5分)设函数f(x)在区间[0,1]上连续,且

$$\int_0^1 f(t) dt = a \int_0^{\frac{1}{a}} e^{1-x^2} \left(\int_0^x f(t) dt \right) dx \quad (其中 a > 1 为定常数).$$

证明: 至少存在一点 $\xi \in (0,1)$ 使得 $f(\xi) = 2\xi \int_0^\xi f(x) \, \mathrm{d} x$.

武汉大学 2017-2018 第一学期高等数学 B1 期末试题 A 解答

取(次)人子 2011 2016 第 子州同等数子 B1 別木 政認 A 解音

1、(9分) 求极限
$$\lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos(x + \frac{\pi}{6})}$$
.

解 方法一: 原式 $= \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan^2 x - 3)}{\cos(x + \frac{\pi}{6})} = \sqrt{3} \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan x + \sqrt{3})}{\cos(x + \frac{\pi}{6})}$
 $= \sqrt{3} \lim_{x \to \frac{\pi}{3}} \frac{2\tan x \sec^2 x}{-\sin(x + \frac{\pi}{6})} = -24$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan x + \sqrt{3})(\tan x - \sqrt{3})}{\cos(x + \frac{\pi}{6})}$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\sec^2 x}{-\sin(x + \frac{\pi}{6})} = 6 \cdot \frac{(-1)}{\frac{1}{2} \cdot \frac{1}{2}} = -24$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan x + \sqrt{3})(\tan x - \sqrt{3})}{\sin(\frac{\pi}{3} - x)}$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan x + \sqrt{3})(\tan x - \sqrt{3})}{\sin(\frac{\pi}{3} - x)}$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan x + \sqrt{3})(\tan x - \sqrt{3})}{\sin(\frac{\pi}{3} - x)}$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\tan x(\tan x + \sqrt{3})(\tan x - \sqrt{3})}{\sin(\frac{\pi}{3} - x)}$
 $= \lim_{x \to \frac{\pi}{3}} \frac{\sin(x - \frac{\pi}{3})}{\cos x \cdot \cos \frac{\pi}{3} \cdot \sin(\frac{\pi}{3} - x)} = 6 \cdot \frac{(-1)}{\frac{1}{2} \cdot \frac{1}{2}} = -24$

2、(9分) 设函数 $y = y(x)$ 由参数方程 $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$ 所确定,来 $\frac{d^2 y}{dx^2}$.

解: $\frac{dy}{dx} = \frac{a \sin t}{a(1 - \cos t)} = \cot \frac{t}{2}$ $\frac{d^2 y}{dx^2} = \frac{(\cot \frac{t}{2})'}{a(1 - \cos t)} = \frac{-\frac{1}{2} \csc^2 \frac{t}{2}}{2a(1 - \cos t)} = \frac{-\csc^2 \frac{t}{2}}{2a(1 - \cos t)}$ 9分3、(9分) 已知 $\int_0^{\infty} e^{it} dt + \int_0^{\sin x} \cos^2 t dt = 0$,来 $\frac{dy}{dx}$.

解: $\frac{dy}{dx} = \frac{a \sin t}{a(1 - \cos t)} = \cot \frac{t}{2}$ $\frac{d^2 y}{dx^2} = \frac{(\cot \frac{t}{2})'}{a(1 - \cos t)} = \frac{-\frac{1}{2} \csc^2 \frac{t}{2}}{2a(1 - \cos t)} = \frac{-\csc^2 \frac{t}{2}}{2a(1 - \cos t)}$ 9分4、(8分) 设 $a_n \neq 0$,试用 " $\epsilon - N$ " 语言证明: $\lim_{x \to \infty} a_n = 0$ 的充要条件是

 $\lim_{n\to\infty}\frac{1}{a_n}=\infty.$

解: (充分性)设 $\lim_{n\to\infty}\frac{1}{a_n}=\infty$.

 $\forall \varepsilon > 0$. 根据无穷大的定义,对于 $M = \frac{1}{\varepsilon}$, $\exists N > 0$, 当 n > N 时, 有

$$\left|\frac{1}{a_n}\right| > M = \frac{1}{\varepsilon}$$
, $\mathbb{F}\left|a_n\right| < \varepsilon$, $\mathbb{F}\left|\bigcup_{n \to \infty} a_n = 0$.

(必有性)设 $\lim_{n\to\infty} a_n = 0$,且 $a_n \neq 0$.

 $\forall M>0$. 根据无穷小的定义,对于 $\varepsilon=\frac{1}{M}$, $\exists N>0$, 当n>N 时,有

$$\left|a_{n}\right| < \varepsilon = \frac{1}{M}$$
, $\left|\frac{1}{a_{n}}\right| > M$, $\left|\text{III}\right| \lim_{n \to \infty} \frac{1}{a_{n}} = \infty$.

5、(9分) 设a>0,求 $\int_0^{+\infty} e^{-ax} \sin x dx$.

解: 原式=
$$\left[e^{-ax}\left(-\frac{1}{1+a^2}\cos x - \frac{a}{1+a^2}\sin x\right)\right]_0^{+\infty} = \frac{1}{1+a^2}$$
 9分

6、(9分)根据以下导函数y = f'(x)的图像:

填写关于函数 f(x) 的表格(其中 f(0) = 0):

单增区间	$(0,x_2),(x_4,x_6)$	上凸区间	$(x_{\scriptscriptstyle 1},x_{\scriptscriptstyle 3})$
单减区间	$(x_{\scriptscriptstyle 2}, x_{\scriptscriptstyle 4})$	下凸区间	$(0,x_1),(x_3,x_6)$
极大值点	x_2	极小值点	x_4

画出函数 y = f(x) 的图像:

7、(9分)确定常数
$$a,b$$
 ,使函数 $f(x) = \begin{cases} \frac{1}{x}(e^{2x}-1) & \text{, } x < 0 \\ a + \sin bx & \text{, } x \geq 0 \end{cases}$ 处处可导.

解: 要使f(x)在x = 0可导,首先须在x = 0连续即 $\lim_{x \to 0} f(x) = f(0) = a$

即
$$a = \lim_{x \to 0^-} \frac{e^{2x} - 1}{x} = \lim_{x \to 0^-} \frac{2e^{2x}}{1} = 2$$
,要使 $f(x)$ 在 $x = 0$ 可导,须 $f'_{-}(0) = f'_{+}(0)$

$$\mathbb{E} f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\frac{1}{x} (e^{x} - 1) - 2}{x} = \lim_{x \to 0^{-}} \frac{e^{2x} - 1 - 2x}{x^{2}} = 2$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{2 + \sin bx - 2}{x} = b$$

则
$$a = b = 2$$
时, $f(x)$ 在 $x = 0$ 可导, 从而处处可导。

8、(9分) 求由 $\arctan x \le y \le x, 0 \le x \le 1$ 所确定的区域的面积。

解:
$$s = \int_0^1 (x - \arctan x) dx = \left(\frac{x^2}{2} - x \arctan x\right) \Big|_0^1 + \int_0^1 \frac{x}{1 + x^2} dx$$

$$= \frac{1}{2} - \frac{\pi}{4} + \frac{1}{2} \ln(1 + x^2) \Big|_{0}^{1} = \frac{1}{2} - \frac{\pi}{4} + \frac{1}{2} \ln 2$$
 9 \(\frac{\psi}{2}\)

9、(8分) 设
$$\int f(x) dx = x^2 + C$$
, 求 $\int x f(1-x^2) dx$.

解: 令
$$F(x) = \int f(x) dx$$
, 贝 $\int x f(1-x^2) dx = \frac{1}{2} \int f(1-x^2) d(x^2)$

$$= -\frac{1}{2} \int f(1-x^2) d(1-x^2) = -\frac{1}{2} F(1-x^2) = x^2 - \frac{1}{2} x^4 + C$$

- 10、(1)(4分)求微分方程y''' 2y'' + y' = 0的通解;
 - (2) (4 分) 写出微分方程 $y'' + y = \sin x \cos 2x$ 的特解形式.

解 (1)特征方程为 $\lambda^3-2\lambda^2+\lambda=0$,因此特征根为 $\lambda_1=0,\lambda_2=\lambda_3=1$,因此方程的通解为 $y=C_1+C_2e^x+C_3xe^x$ 4 分

(2) 特征方程为 $\lambda^2+1=0$,特征根为 $\lambda_{1,2}=\pm i$,所以非齐次方程的特解形式为 $y=x(A\cos x+B\sin x)+(C\cos 2x+D\sin 2x)$ 4分

11、(8 分) 求由曲线 $y = \sqrt{x}, x = 1, x = 2$ 及 x 轴所围成的平面图形绕直线 x = -1 旋转而成的旋转体的体积。

解 建立新的坐标系,原点o'在原坐标的坐标点o'(-1,0),则由 $y=\sqrt{x'-1},x'=2,x'=3$ 及x轴所围成的区域绕x'=0旋转而成体积。

$$V_{x=-1} = 2\pi \int_{2}^{3} xy dx = 2\pi \int_{2}^{3} x \sqrt{x - 1} dx \qquad \forall x = \sqrt{x - 1}$$

$$= 2\pi \int_{1}^{\sqrt{2}} 2t^{2} (t^{2} + 1) dt = 4\pi \int_{1}^{\sqrt{2}} (t^{4} + t^{2}) dt$$

$$= 4\pi (\frac{1}{5}t^{5} + \frac{1}{3}t^{3}) \Big|_{1}^{\sqrt{2}} = \frac{8}{15}\pi (11\sqrt{2} - 4). \qquad 8 \%$$

12、(5 分) 设函数 f(x) 在区间 [0,1] 上连续,且 $\int_0^1 f(t) dt = a \int_0^{\frac{1}{a}} e^{1-x^2} \left(\int_0^x f(t) dt \right) dx$ (其

中 a > 1 为定常数). 证明至少存在一点 $\xi \in (0,1)$ 使得 $f(\xi) = 2\xi \int_0^\xi f(x) \, \mathrm{d} \, x$.

证明: 令
$$F(x) = e^{1-x^2} \left(\int_0^x f(t) \, \mathrm{d} \, t \right), \ \ \square F'(x) = e^{1-x^2} \left[-2x \left(\int_0^x f(t) \, \mathrm{d} \, t \right) + f(x) \right]$$

且由积分中值定理有 $F(1) = \int_0^1 f(t) dt = 3 \int_0^{\frac{1}{3}} e^{1-x^2} \left(\int_0^x f(t) dt \right) dx$

$$=e^{1-y^2}\left(\int_0^y f(t) dt\right) = f(y) \quad y \in [0, \frac{1}{3}]$$

由罗尔定理知至少存在一点 $\xi \in (y,1) \subset (0,1)$ 使得 $F'(\xi) = 0$

即
$$f(\xi) = 2\xi \int_0^{\xi} f(x) dx$$
 5 分