What We Talk About When We Talk About Cloud Network Performance

Best CCR of SIGCOMM 2013

Authors: Jeffrey Mogul, Lucian Popa

Presenter: Jian Zhao

Context: Cloud Computing

- Focusing on Infrastructure-as-a-Service clouds
- Resources in laaS clouds

Guaranteed CPU/RAM/DISK in size, service level, price

No guaranteed network performance! Best-effort globally sharing

What are the problems

- Studies have shown huge variations in application performance
 - Which are often caused by variable network performance
 - See "Towards Predictable Datacenter Networks" Ballani et.al., SIGCOMM2011
- Cloud customers want network performance guarantees
 - No network performance guarantees mean no application predictability
- The guarantee is harder than that for CPU/RAM/Disk
 - Best effort globally sharing
 - Hardware trends are unlikely to save us

Difficulties in cloud network performance guarantees

"Just give me enough bandwidth at a good price" But:

- Where, when, and how do we measure bandwidth?
- Is bandwidth the only important metric?
- How do we set the price?
- How do we actually make this work in practice?

There are lots of ways to approach these questions:

- So not much agreement on how to structure guarantees
- And it's hard to compare research results
- Or to guide research towards useful designs

Out of scope for this paper:

- Performance to/from external (Internet) endpoints
- Performance between VMs of different tenants
- Performance between "availability zones" (AZs) or "regions"

All of which are important and challenging problems

Outline

- What kinds of properties do we want to guarantee?
- The interaction between guarantees and pricing
- Implementation issues

• What properties do we want to guarantee?

Properties for cloud network performance guarantees

- ☐ Customer's point of view:
 - Predictable, high bandwidth
 - Predictable, low latency
 - Predictable, low loss
 - Predictable, low cost
 - Simple, flexible interface

- ☐ Provider's point of view:
 - Happy customers
 - Scalable to lots of VMs
 - Efficient implementation
 - High utilization of resources
 - Predicable profit margins
 - Simple/automated management

What does "guaranteed bandwidth" mean

- Between what endpoints do we measure bandwidth?
- Over what period do we measure it?
- When is the guarantee violated?

Between which endpoints: Two popular models

- Hose model
 - VMs all connected via one abstract "big switch"
 - Bandwidth guaranteed between switch and VMs

- Pipe model
 - Bandwidth guarantees between pairs of VMs

Hose model

- Pros & cons:
 - + Simple abstraction, matches "real world" provisioning
 - + Easy to specify: one value/VM (or 2, for bidirectional)
 - May force over-provisioning of underlying real resources

Pipe model

- Pros & cons
 - +Captures actual inter-VM requirements
 - Effectively, the inter-VM traffic matrix
 - -Requires O(N^2) parameters (vs. O(N) for hose model)

Variations on the hose model

- Hierarchical hose model
 - E.g., "Virtual Oversubscribed Cluster" Oktopus, SIGCOMM2011
- Tenant Application Graph
 - CloudMirror, HotCloud13

Request <N, S, B, O>

N VMs in groups of size S, Oversubscription factor O Group switch bandwidth = S*B, Root switch bandwidth = N*B/O

How to handle dynamic needs

- Bandwidth demands aren't static
 - Workloads vary over time
 - o Predictably, over long periods, e.g., daily/weekly cycles
 - Predictably, over short periods, e.g., phases of MapReduce jobs
 - Unpredictably, e.g., flash crowds
 - Cloud customers add/remove VMs
- Some possible approaches
 - Proteus(SIGCOMM'12) suggests scheduling MapReduce jobs so as to interleave their high-bandwidth phases
 - CloudMirror(HotCloud'13) adapts to changes in #of VMs at each tier

What are we measuring

- We could measure/guarantee
 - Mean bandwidth over a given period P
 - Peak bandwidth: worst case result over period P is bounded
 - "Tail latency" (99.99%ile latency)
 - Loss rate
- Different applications will require different measure
 - Batch jobs: mean bandwidth is probably OK
 - Interactive applications: need bounds on tail latency or flow completion time

What properties do we want to guarantee?

- Summing up
 - Mean bandwidth vs. peak bandwidth vs. latency
 - 100% guarantees vs. probabilistic guarantees
 - Models of communication patterns (pipe/hose/VOC/etc.)
 - The pipe model is the most expressive, and also complex
 - How to handle time-varying needs
 - How to support all of these without wasting resources

Cloud providers and customers need to agree on what matters

How do guarantees interact with pricing?

Differences with Internet

- Money flows from customers (tenants) to providers
 - Accounting for network use within a cloud data-center is quite different from the accounting arrangements on the Internet
 - Allocation of resources can follow the money more closely
- Be careful about transferring ideas about desirable properties of a network from our experience with the public Internet, especially:
 - Fairness
 - Work-conservation

Does fairness matters

- Fairness is one way to allocate resources among competing needs
 - In the absence of other allocation mechanisms, it's not bad
 - Between the flows of one application, fairness might be important
- Fairness between cloud tenants does not matter
- FairCloud(SIGCOMM'12) showed you can't simultaneously have both fairness and minimum bandwidth guarantees

What about spare bandwidth

- We typically like work-conserving systems
 - Otherwise, some capacity goes to waste
 - But these are not fully predictable: what you get tomorrow might not be what you got today
- Cloud providers do not want to give away spare BW for free
 - Otherwise they risk training their customers to expect this
- A possible solution:
 - Build a work-conserving system
 - Bill customers for spare BW, at a reduced rate

Pricing of multiple resources

- Ballani et.al. (HotNets'11) point out problems with simplistic pricing
 - VM time can be wasted waiting for slow network paths
 - Simply adding a bandwidth cost to the VM cost is a bad idea
 - Sneaky provider could stall network to increase VM hours billed per job
- They propose "Dominant Resource Pricing":
 - You pay only for the resource (CPU or net) you are using more of
 - o If network is the bottleneck, don't pay for idle CPU time
 - o If CPU is the bottleneck, don't pay for idle network bandwidth

Implementation issues

- Hard to implement
 - Hose model guarantees in an oversubscribed network
 - o The "one big virtual switch" isn't non-blocking
 - Virtual Oversubscribed Cluster does this with 2-level hose model + careful VM placement
 - Scalable pipe model guarantees
 - Hose model guarantees + fair work conserving allocation

Where are we headed

- The evidence suggests that we have not entirely converged
 - Few cloud providers offer bandwidth guarantees
 - Customers may not really understand how to request/use them
 - Efficient, scalable implementation is still an open problem
 - Technical solutions cannot be independent of pricing model

Promising areas for future research

- Can clouds support guarantees for network latency?
 - Especially for (say) 99.9%ile latency
- How do we deal with changing workloads
 - Including "flexing" of the number of active VMs
- Some challenges
 - Cloud providers are unlikely to release packet traces
 - True infrastructure costs (HW/SW/power/people) are secret

Thanks very much!