TEMA 1

Álgebras de Boole. Funciones booleanas (complementaria)

Ejercicio 1. Sea (B, \vee, \wedge) un álgebra de Boole. Demuestra que para cualesquiera $x, y, z \in B$ se verifica que

$$\begin{array}{rcl} (x \wedge y) \vee (y \wedge z) \vee (z \wedge x) & = & (x \vee y) \wedge (y \vee z) \wedge (z \vee x) \\ (x \wedge y) \vee (x \wedge z) & = & x \wedge (y \vee (x \wedge z)) \end{array}$$

Enuncia el resultado dual de cada una de estas identidades.

Ejercicio 2. En el conjunto $X = \{0, a, b, c, d, e, f, 1\}$ definimos las siguientes operaciones:

\vee	0	a	b	c	d	e	f	1
0	0	а	b	С	d	е	f	1
а	а	а	1	1	а	а	а	1
b	b	1	b	1	1	1	b	1
С	С	1	1	С	1	1	С	1
d	d	а	1	1	d	а	а	1
e	e	а	1	1	a	e	а	1
f	f	а	b	С	a	а	f	1
1	1	1	1	1	1	1	1	1

\wedge	0	а	b	c	d	e	f	1
0	0	0	0	0	0	0	0	0
a	0	а	f	f	d	e	f	а
ъ	0	f	b	f	0	0	f	b
С	0	f	f	С	0	0	f	С
d	0	d	0	0	d	0	0	d
e	0	e	0	0	0	e	0	е
f	0	f	f	f	0	0	f	f
1	0	а	b	c	d	e	f	1

Estudia si es o no álgebra de Boole.

Ejercicio 3 (Marzo 2014). Sean $X = \{0, a, b, 1\}$ e $Y = \{0, x, y, 1\}$ dos conjuntos. Definimos las siguientes operaciones en X y en Y:

■ En X:

\vee	0	a	b	1
0	0	а	b	1
а	а	а	b	1
b	b	b	b	1
1	1	1	1	1

\wedge	0	α	b	1
0	0	0	0	0
a	0	a	a	a
b	0	а	b	b
1	0	а	b	1

■ En Y:

\vee	0	χ	y	1
0	0	χ	y	1
χ	χ	χ	1	1
y	y	1	y	1
1	1	1	1	1

\wedge	0	χ	y	1
0	0	0	0	0
χ	0	χ	0	χ
y	0	0	y	y
1	0	χ	y	1

Estudia cual o cuales de los conjuntos X e Y, con las operaciones dadas, es un álgebra de Boole.

Ejercicio 4. Se desea construir un circuito que tenga como entrada cuatro líneas que suministran los dígitos de un número en binario $n=(\alpha_3\alpha_2\alpha_1\alpha_0)_2$, y que tenga como salida 1 si n es múltiplo de 3 ó de 4, y cero en otro caso. Obtén la expresión booleana de una función f que rige el comportamiento de dicho circuito. Calcula su forma normal canónica disyuntiva, y simplifica la expresión obtenida.

Ejercicio 5. Sea (B, +, ·) un álgebra de Boole. Definimos en B la operación binaria ⊕ como sigue:

$$x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$$

Demuestra que:

- 1. $x \oplus 0 = x$; $x \oplus 1 = \overline{x}$.
- 2. $x \oplus y = y \oplus x$.
- 3. $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- 4. $x \oplus x = 0$; $x \oplus \overline{x} = 1$.
- 5. $\mathbf{x} \cdot (\mathbf{y} \oplus \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \oplus (\mathbf{x} \cdot \mathbf{z}).$

Ejercicio 6. Calcula el dual de cada una de las siguientes expresiones booleanas:

- a) $x + \overline{x}y$.
- b) $xy + \overline{y}z$.
- c) $x \oplus (y + z)$.
- d) $x \downarrow y$.
- e) $(x 1 + \overline{y})(0 + zy)$.

Ejercicio 7. Sea e una expresión booleana en n variables, y f la función booleana definida por la expresión e. Definimos la función dual de f como la función booleana dada por la expresión dual de e. Llamaremos a esta función f^d. Calcula la función dual de cada una de las siguientes funciones booleanas.

- a) $f(x, y) = x + \overline{x} y$.
- b) $f(x, y, z) = xy + \overline{y}z$.
- c) $f(x, y, z) = x \oplus (y + z)$.
- d) $f(x, y) = x \downarrow y$.
- e) $f(x, y, z) = (x 1 + \overline{y})(0 + z y)$.

Para cada una de estas funciones comprueba que $f^d(x,y) = \overline{f(\overline{x},\overline{y})}$ o $f^d(x,y,z) = \overline{f(\overline{x},\overline{y},\overline{z})}$ (dependiendo de que f sea una función de dos o tres variables).

Ejercicio 8. Una función $f: \mathbb{B}^n \to \mathbb{B}$ se dice *autodual* si coincide con la función f^d .

- 1. Comprueba cuales de las siguientes funciones son autoduales.
 - a) $f(x) = \overline{x}$.
 - b) $f(x,y) = x \oplus y$.
 - c) $f(x, y, z) = x \overline{y} + y \overline{z} + z \overline{x}$.
 - d) f(x,y,z) = xy + yz + zx.
- 2. Determina cuántas funciones autoduales hay en \mathcal{F}_n .

Ejercicio 9. Si para un álgebra de Boole finita B conocemos el conjunto M de todos sus átomos, así como la expresión de un elemento x de B como suma de átomos, ¿cómo podríamos obtener la expresión de \bar{x} como suma de átomos? Razona la respuesta.

Ejercicio 10. Expresa, utilizando sólo la función \downarrow , la aplicación $f(x, y, z) = (x + z) \cdot y$.

Ejercicio 11. Sea I el conjunto de los números reales que pertenecen al intervalo cerrado [0,1]. Para todo $a,b\in I$ definimos $a\lor b=\max\{a,b\},\ a\land b=\min\{a,b\}$ y $\overline{a}=1-a$ ¿Es I respecto de estas operaciones un álgebra de Boole? Razona la respuesta.

Ejercicio 12. Sean x,y dos bits. Da una expresión booleana para la función $f: \mathbb{B}^2 \to \mathbb{B}$ que devuelve 1 si $x \le y$ y 0 en caso contrario. Diseña un circuito combinacional que represente a dicha función. Vamos a llamar a este circuito *comparador*.

Sean α , b dos números naturales tales que $0 \le \alpha$, $b \le 15$. Supongamos que la expresión binaria de α es $(x_3x_2x_1x_0)_2$ y la de b es $(y_3y_2y_1y_0)_2$ (donde hemos añadido a la izquierda los ceros necesarios). Diseña un circuito combinacional de 8 entradas $(x_3, x_2, x_1, x_0, y_3, y_2, y_1, y_0)$ que devuelva 1 si $\alpha \le b$ y 0 en otro caso.

Ejercicio 13. Sean f, $g : \mathbb{B}^3 \to \mathbb{B}$ las funciones siguientes:

$$f(x, y, z) = \overline{y}(x \uparrow z) + x \overline{y} z;$$
 $g(x, y, z) = y + (x \downarrow z)$

Definimos la función $h : \mathbb{B}^4 \to \mathbb{B}$ como sigue:

$$h(x,y,z,t) = \left\{ \begin{array}{ll} f(x,y,z) & \text{ si } t=0 \\ g(x,y,z) & \text{ si } t=1. \end{array} \right.$$

Encuentra una expresión booleana como suma de productos lo más simplificada posible para representar la función h. Y otra expresión como producto de sumas (también lo más simplificada posible).

Ejercicio 14. Sean $f, g : \mathbb{B}^3 \to \mathbb{B}$ las funciones dadas por $f(x, y, z) = x \oplus y \oplus z$, $y \ g(x, y, z) = x \cdot (y \oplus \overline{z})$. Sea $h : \mathbb{B}^4 \to \mathbb{B}$ la función dada por:

$$h(x,y,z,t) = \left\{ \begin{array}{ll} f(x,y,z) & \text{si} & t=1 \\ g(x,y,z) & \text{si} & t=0 \end{array} \right.$$

Diseña un circuito combinacional para la función h.

Repite lo mismo para la función $h': \mathbb{B}^5 \to \mathbb{B}$ dada por:

$$h'(x,y,z,t,u) = \left\{ \begin{array}{ll} f(x,y,z) & \text{si} \quad t \leq u \\ g(x,y,z) & \text{si} \quad u < t \end{array} \right.$$

Ejercicio 15. Diseña un circuito combinacional que, dados dos números en binario de 4 cifras a, b devuelva el resultado de la resta a - b en el caso de que $a \ge b$.

Ejercicio 16. La aparición de una cifra decimal en una calculadora se produce mediante un circuito de cuatro entradas (que se corresponden con la expresión binaria de la cifra en cuestión) y siete salidas f_1 , f_2 , f_3 , f_4 , f_5 , f_6 y f_7 que representan cada uno de los siguientes segmentos:

Calcula siete posibles funciones booleanas $f_1, f_2, f_3, f_4, f_5, f_6, f_7 : \mathbb{B}^4 \to \mathbb{B}$ que devuelvan 1 ó 0 dependiendo de si el segmento correspondiente se ilumina o no, y que se puedan simplificar lo máximo posible.

Por ejemplo, tenemos que $f_1(0,0,0,0) = 1$ (ya que el segmento f_1 se ilumina con el dígito 0), $f_1(0,0,0,1) = 0$ (pues el segmento f_1 no se ilumina al visualizar el dígito 1), mientras que $f_1(1,0,1,0)$ no está determinado (pues el número 10 no representa ningún dígito) y podemos darle el valor que más nos convenga.

Una puerta umbral (threshold function en inglés) de n variables es una función booleana definida como

$$f(x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{si } p_1 x_1 + p_2 x_2 + \dots + p_n x_n \ge F \\ 0 & \text{si } p_1 x_1 + p_2 x_2 + \dots + p_n x_n < F \end{cases}$$

donde $p_1, p_2, \dots, p_n, F \in \mathbb{R}$.

El número F se llama valor de la puerta umbral, mientras que los parámetros p_1, p_2, \cdots, p_n se les llama pesos. Una función booleana se dice que es una $función \ umbral$ si está representada mediante una puerta umbral.

Ejercicio 17. Calcula una expresión booleana para una puerta umbral valor $\frac{1}{2}$ y pesos -1, 1, 2.

Ejercicio 18. Demuestra que la función $f(x, y) = x \oplus y$ no es una función umbral.

Ejercicio 19. Dadas las siguientes funciones booleanas, estudia si son o no funciones umbrales, y en caso afirmativo calcula un posible valor y posibles pesos.

- a) $f(x) = \overline{x}$.
- b) $f(x, y) = x \uparrow y$.

- c) f(x, y, z) = x + y z.
- d) f(x, y, z, t) = xy + zt.
- e) f(x, y, z, t) = x + yz + t.

Ejercicio 20 (Julio 2016). Sea B un álgebra de Boole, y sean $x, y, z \in B$. Demuestra que

$$xy + yz + zx = (x + y)(y + z)(z + x).$$

Sea ahora $f : \mathbb{B}^4 \to \mathbb{B}$ la función dada por:

$$f(x, y, z, t) = \begin{cases} xy + yz + zx & \text{si } x = t \\ (y + z)(z + t)(t + y) & \text{si } x \neq t \end{cases}$$

Calcula la forma normal canónica disyuntiva de f.

Encuentra una expresión óptima como suma de productos, tanto de f como de \bar{f} .

Preguntas test:

Ejercicio 21 (Marzo 2015). En un álgebra de Boole B se definen las operaciones $x \uparrow y = \overline{xy} \ y \ x \downarrow y = \overline{x+y}$. Estudia cuáles de las siguientes igualdades son ciertas:

- 1. $(x \downarrow y) \uparrow z = \overline{x} \uparrow (y \downarrow \overline{z})$.
- 2. $(x \downarrow y) \uparrow z = (x \uparrow y) \downarrow (y \uparrow z)$.
- 3. $(x \downarrow z) \uparrow (y \downarrow z) = x + y + z$.
- 4. $\overline{x \downarrow y} = \overline{x \uparrow y}$.
- 5. $\overline{x \uparrow y} = \overline{x} \downarrow \overline{y}$.
- 6. $(x \downarrow y) \uparrow z = x y \overline{z}$.
- 7. $(x \uparrow y) \uparrow z = x \uparrow (y \uparrow z)$.
- 8. $(x \uparrow x) \uparrow (y \uparrow y) = (x \uparrow y) \uparrow (x \uparrow y)$.

Ejercicio 22 (Marzo 2015). Denotamos por D(m) al conjunto de los divisores positivos del número natural m. En D(m) definimos las operaciones $x \vee y = mcm(x,y)$ y $x \wedge y = mcd(x,y)$. Entonces:

- 1. D(132) es un álgebra de Boole con 3 coátomos: 33, 22 y 6.
- 2. D(165) es un álgebra de Boole con 3 coátomos: 33, 55 y 15.
- 3. D(24) es un álgebra de Boole con 3 átomos: 2, 4 y 8.
- 4. D(110) es un álgebra de Boole con 3 átomos: 2, 5 y 11.
- 5. D(105) es un álgebra de Boole con 3 coátomos: 35, 21 y 15.
- 6. D(90) es un álgebra de Boole con 3 átomos: 2, 5 y 9.
- 7. D(27) es un álgebra de Boole con 3 átomos: 1, 3 y 9.
- 8. D(154) es un álgebra de Boole con 3 coátomos: 7, 14 y 77.

Ejercicio 23 (Marzo 2015). Dadas las funciones booleanas $f, g : \mathbb{B}^5 \to \mathbb{B}$ dadas por:

$$\begin{split} f &= m_0 + m_5 + m_{15} + m_{21} + m_{23} + m_{24} + m_{27} + m_{31} \\ g &= M_0 \cdot M_1 \cdot M_4 \cdot M_6 \cdot M_{10} \cdot M_{15} \cdot M_{22} \cdot M_{23} \cdot M_{28} \cdot M_{30} \end{split}$$

se tiene que:

- 1. $f + g = m_5 + m_{21} + m_{24} + m_{27} + m_{31}$.
- 2. $fg = m_1 + m_4 + m_6 + m_{10} + m_{22} + m_{28} + m_{30} + m_{31}$.

- 3. $\overline{f} = m_1 + m_2 + m_3 + m_4 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{14} + m_{14} + m_{16} + m_{17} + m_{18} + m_{19} + m_{20} + m_{22} + m_{25} + m_{26} + m_{28} + m_{29} + m_{30}.$
- 4. $\overline{g} = m_0 + m_1 + m_4 + m_6 + m_{10} + m_{15} + m_{22} + m_{23} + m_{28} + m_{30}$.

Ejercicio 24 (Abril 2016). Del número n se conoce que el conjunto D(n) es un álgebra de Boole (con las operaciones mcd y mcm) con 4 átomos y que $66 \in D(n)$. Así que n podría ser

- 1. 666
- 2. 858
- 3. 99
- 4. 660
- 5. 330
- 6. 660
- 7. 726
- 8. 198

Ejercicio 25. Sea B un álgebra de Boole. Di cuáles de las siguientes igualdades son necesariamente ciertas:

- a) $\overline{x} \oplus y = \overline{x \oplus y}$.
- b) $(x \uparrow y) \uparrow x = \overline{x} + y$.
- c) $(x \uparrow z) \downarrow (y \uparrow z) = x + y + z$.
- d) $x \uparrow (y + z) = (x \uparrow y) + (x \uparrow z)$.

Ejercicio 26 (Abril 2016). La función booleana de 3 variables $f = M_0 \cdot M_4 \cdot M_5 \cdot M_6$ puede expresarse como

- a) $f(x, y, z) = \overline{x}y + \overline{y}z$.
- b) f(x, y, z) = xy + yz.
- c) $f(x, y, z) = (\overline{x} + \overline{y})(y + z)$.
- d) $f(x, y, z) = \overline{x}y + \overline{x}z + \overline{y}z$.