Autores: Ing. Andrés D. Cassagnes, Ing. Federico G. Zacchigna, Ing. Octavio Alapago, Dr. Ing. Ariel Lutenberg

Laboratorio de Sistemas Embebidos (LSE) Facultad de Ingeniría Universidad de Buenos Aires FIUBA

16/08/2018

OFDM

Orthogonal Frequency Divider Multiplexing

LSE-FIUBA SASE 2018 16/08/2018 2 / 24

OFDM

Introducción •00

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias

OFDM

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias
- Bandas de frecuencia solapadas

(1)

2/24

Introducción

•00

Orthogonal Frequency Divider

Multiplexing

- Divide la información en múltiples frecuencias
- Bandas de frecuencia solapadas
 - Representación matemática

atemática
$$s_k(t-kT) = \sum_{j=1}^{N/2-1} x_{i,k} e^{j2\pi \left(rac{i}{T}
ight)(t-kT)}$$

16/08/2018

2/24

OFDM

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias

solapadas

Representación matemática

Asumiendo que x_{i,k} es constante a lo largo del período de símbolo T, se puede utilizar una IDFT/DFT para modular.

LSE-FIUBA SASE 2018

FFT

■ Transformada rápida de Fourier

LSE-FIUBA SASE 2018 16/08/2018 3 / 24

FFT

- Transformada rápida de Fourier
- Sumas, restas y multiplicaciones

FFT

- Transformada rápida de Fourier
- Sumas, restas y multiplicaciones
- Cada salida = suma y resta de todas las entradas

Objetivos

Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.

LSE-FIUBA **SASE 2018** 16/08/2018

Introducción

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.

LSE-FIUBA SASE 2018 16/08/2018

Objetivos

Introducción

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).

LSE-FIUBA SASE 2018 16/08/2018

Conclusiones y trabajos futuros

4/24

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (según estandar ISDB-T).

LSE-FIUBA SASE 2018 16/08/2018

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (según estandar ISDB-T).
 - Entrada y salida continua.

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (según estandar ISDB-T).
 - Entrada y salida continua.
 - Aritmética de punto fijo.

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (según estandar ISDB-T).
 - Entrada y salida continua.
 - Aritmética de punto fijo.
 - Unidad de escalamiento configurable en ejecución con opción de seleccionar la etapa a escalar y el método (redondeo/truncamiento).

LSE-FIUBA SASE 2018 16/08/2018

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (según estandar ISDB-T).
 - Entrada y salida continua.
 - Aritmética de punto fijo.
 - Unidad de escalamiento configurable en ejecución con opción de seleccionar la etapa a escalar y el método (redondeo/truncamiento).
 - Bajo consumo de recursos comparados con otras implementaciones (ref: Xilinx IP FFT 7.0 y un core FFT abierto diseñado para modulación OFDM ISDB-T¹)

LSE-FIUBA SASE 2018 16/08/2018

Introducción Objetivos

Realizar una evaluación de desempeño

SASE 2018 LSE-FIUBA 16/08/2018 5/24

Introducción Objetivos

- Realizar una evaluación de desempeño
 - Funcional

SASE 2018 LSE-FIUBA 16/08/2018 5/24

Objetivos

- Realizar una evaluación de desempeño
 - Funcional
 - Ruido / error

SASE 2018 LSE-FIUBA 16/08/2018 5/24

Objetivos

- Realizar una evaluación de desempeño
 - Funcional
 - Ruido / error
 - Distorsión armónica

Objetivos

- Realizar una evaluación de desempeño
 - Funcional
 - Ruido / error
 - Distorsión armónica
 - Recursos de HW

Objetivos

- Realizar una evaluación de desempeño
 - Funcional
 - Ruido / error
 - Distorsión armónica
 - Recursos de HW
- Realizar una comparativa con desarrollos de terceros para evaluar el diseño realizado

LSE-FIUBA **SASE 2018** 16/08/2018

Objetivos

- Realizar una evaluación de desempeño
 - Funcional
 - Ruido / error
 - Distorsión armónica
 - Recursos de HW
- Realizar una comparativa con desarrollos de terceros para evaluar el diseño realizado
- Proponer trabajos futuros para continuar y mejorar el diseño.

■ Algoritmo: Radix-r

LSE-FIUBA SASE 2018 16/08/2018 7 / 24

Transformada de Fourier

Arquitectura

- Algoritmo: Radix-r
 - Flexibilidad en la longitud

LSE-FIUBA SASE 2018 16/08/2018 7 / 24

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos
- Longitud del bloque: 2 y 4

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos.
- Longitud del bloque: 2 y 4
 - No implican multiplicaciones no triviales (solo por twiddle factors)

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos.
- Longitud del bloque: 2 y 4
 - No implican multiplicaciones no triviales (solo por twiddle factors)
- Implementación: arquitectura iterativa

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos
- Longitud del bloque: 2 y 4
 - No implican multiplicaciones no triviales (solo por twiddle factors)
- Implementación: arquitectura iterativa
 - Un solo bloque para todos los cálculos

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos
- Longitud del bloque: 2 y 4
 - No implican multiplicaciones no triviales (solo por twiddle factors)
- Implementación: arquitectura iterativa
 - Un solo bloque para todos los cálculos
 - Es la implementación más pequeña (requerimiento)

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos
- Longitud del bloque: 2 y 4
 - No implican multiplicaciones no triviales (solo por twiddle factors)
- Implementación: arquitectura iterativa
 - Un solo bloque para todos los cálculos
 - Es la implementación más pequeña (requerimiento)
 - Se computa una etapa a la vez

Arquitectura

- Algoritmo: Radix-r
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos
- Longitud del bloque: 2 y 4
 - No implican multiplicaciones no triviales (solo por twiddle factors)
- Implementación: arquitectura iterativa
 - Un solo bloque para todos los cálculos
 - Es la implementación más pequeña (requerimiento)
 - Se computa una etapa a la vez

IMPLEMENTACIÓN DE LAS ARQUITECTURAS

Radix-2 Iterativa

Implementación 0.00

Radix-2 Iterativa

Arquitecturas radix

SASE 2018 LSE-FIUBA 16/08/2018 9/24 Implementación 0000

Radix-4 Iterativa

Radix-4 Iterativa

Unidad aritmética (incluyendo unidad de escalamiento)

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria
 - Datapath

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria
- Datapath
- Unidad de control

CARACTERIZACIÓN Y PRUEBAS

■ Transformación de señales patrón

- Transformación de señales patrón
- Medición del error

- Transformación de señales patrón
- Medición del error
- Medición de la THD

- Transformación de señales patrón
- Medición del error
- Medición de la THD
- Efecto del escalamiento

- Transformación de señales patrón
- Medición del error
- Medición de la THD
- Efecto del escalamiento
- Medición de los recursos necesarios

- Transformación de señales patrón
- Medición del error
- Medición de la THD
- Efecto del escalamiento
- Medición de los recursos necesarios
- Comparación con core FFT abierto para modulación OFDM/ISDB-T

Medición del error

Resultados de la medición de error

	1024, 12	1024, 16	4096, 12	4096, 16
R-2, cordic	0,092	0,006	0,099	0,008
R-2, Mult.	0,232	0,003	0,340	0,108
R-4, cordic	0,077	0,003	0,074	0,007
R-4, Mult.	0,224	0,002	0,334	0,105
Kiss FFT		0,017		0,035
Xilinx FFT v7.1	0,0007	0,0001	0,0008	0,0004

Medición de la THD

Radix-2, Cordic, 16 bits

Radix-4, Mult., 16 bits

Kiss FFT. C++. 16 bits

Xilinx LogiCORE FFT 7.1

Tamaño de implementación para 1024 puntos

Tamaño de implementación para 4096 puntos

LSE-FIUBA **SASE 2018** 16/08/2018

Comparación con IP Core FFT abierto

■ IP Core abierto para modulación/demodulación OFDM para ISDB-T (Melo, R., Salomón, F., Valinoti, B., (2016) "IP core FFT configurable en Runtime")

Comparación con IP Core FFT abierto

- IP Core abierto para modulación/demodulación OFDM para ISDB-T (Melo, R., Salomón, F., Valinoti, B., (2016) "IP core FFT configurable en Runtime")
- Comparación con la versión básica del IP Core, 8K muestras, 16 bits

Comparación con IP Core FFT abierto

- IP Core abierto para modulación/demodulación OFDM para ISDB-T (Melo, R., Salomón, F., Valinoti, B., (2016) "IP core FFT configurable en Runtime")
- Comparación con la versión básica del IP Core, 8K muestras, 16 bits

	Iterative radix-2	Reference core
FF	533	1334
LUT	3046	4133
BRAM	62	62
MUL		48
MHz	107	61

LSE-FIUBA SASE 2018 16/08/2018

LSE-FIUBA SASE 2018 16/08/2018

 Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima

LSE-FIUBA SASE 2018 16/08/2018

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.
- Se cumplió el requerimiento de baja demanda de recursos/espacio.

LSE-FIUBA SASE 2018 16/08/2018

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.
- Se cumplió el requerimiento de baja demanda de recursos/espacio.
- Las argiutecturas fueron implementadas en Verilog HDL.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.
- Se cumplió el requerimiento de baja demanda de recursos/espacio.
- Las argiutecturas fueron implementadas en Verilog HDL.
- Se generaron además herramientas de testing en Verilog, C++ y Matlab scriptng.

LSE-FIUBA SASE 2018 16/08/2018

■ Estudiar posibles implementaciones de algoritmos de *dithering* para reducir el ruido generado en las arquitecturas.

Trabajos Futuros

Trabajos futuros

- Estudiar posibles implementaciones de algoritmos de dithering para reducir el ruido generado en las arquitecturas.
- Modificar el módulo de rotación Cordic agregando un pipeline que permita aumentar la velocidad de *clock* de las arquitecturas, sin agregar ciclos de clock extra al cómputo total de la FFT.

SASE 2018 16/08/2018 22 / 24 PREGUNTAS?

MUCHAS GRACIAS!

FIN!