Case - Time de Dados e Analytics

Thaís Souza Godoy

1.1. Solução com SQL:

```
-- Verificação da quantidade de linhas da tabela e suas diferenças
```

SELECT

```
*
,TB_LOCAL - TB_GCP AS DIFERENCA

FROM( SELECT

(SELECT COUNT(*) FROM application_record_local) AS TB_LOCAL, (SELECT COUNT(*) FROM application_record_gcp) AS TB_GCP
);
```

Diferença absoluta de linhas entre as tabelas local e GCP:

-- Verificação da quantidade de ID distintos da tabela e suas diferenças

SELECT

```
*
,TB_LOCAL - TB_GCP AS DIFERENCA_ID_DISTINTOS

FROM( SELECT

(SELECT COUNT(DISTINCT ID) FROM application_record_local) AS TB_LOCAL,
(SELECT COUNT(DISTINCT ID) FROM application_record_gcp) AS TB_GCP
);
```

Diferença da quantidade de IDs distintos entre as tabelas:

```
123 TB_LOCAL ▼ 123 TB_GCP ▼ 123 DIFERENCA_ID_DISTINTOS ▼ 438.510 434.459 4.051
```

É possível concluir que existe uma diferença absoluta de 1051 linhas de uma tabela para outra. No entanto, há 3000 linhas repetidas na tabela do GCP. Há duplicidade de IDs na tabela GCP, se considerarmos apenas os ID distintos.

```
-- Lista do ID que tem na tabela local e não tem no GCP
SELECT tb local.ID
FROM application record local tb local
LEFT JOIN application record gcp tb gcp
ON tb local.ID = tb gcp.ID
WHERE tb gcp.ID IS NULL;
Retorna os IDs que tem na tabela local e não na do GCP.
-- Lista de ID que tem no GCP e não tem no local
SELECT tb local.ID
FROM application record gcp tb gcp
LEFT JOIN application record local tb local
ON tb local.ID = tb gcp.ID
WHERE tb local.ID IS NULL;
Com o retorno desta consulta, conclui-se que todos os IDs que estão no GCP
estão presentes também na tabela local.
-- Contagem de IDs duplicados no GCP
SELECT COUNT (1) FROM (
SELECT ID, COUNT (1)
FROM application record gcp tb gcp
GROUP BY ID
HAVING COUNT (1) > 1
)
```


Número de IDs duplicados na tabela do GCP.

```
-- IDs duplicados no GCP
SELECT ID, COUNT (1)
FROM application_record_gcp tb_gcp
GROUP BY ID
HAVING COUNT (1) > 1
ORDER BY COUNT (1) DESC
Retorna quais IDs estão duplicados e quantas vezes aparecem na tabela.
-- Análise de padrão das colunas das duas tabelas
SELECT tb local.*
FROM application_record_local tb_local
LEFT JOIN application_record_gcp tb_gcp
ON tb local.ID = tb gcp.ID
WHERE tb gcp.ID IS NULL;
O retorno desta consulta mostra que dos IDs que não estão presentes na tabela
GCP, todos possuem o campo FLAG MOBIL como 1. Não há mais informações sobre
esse campo para que uma análise mais profunda seja feita.
SELECT COUNT (1)
FROM application record local tb local
LEFT JOIN (SELECT DISTINCT * FROM application record gcp) tb gcp
ON tb local.ID = tb gcp.ID
AND tb local.CODE GENDER = tb gcp.CODE GENDER
AND tb local.FLAG OWN CAR = tb gcp.FLAG OWN CAR
AND tb_local.FLAG_OWN_REALTY = tb_gcp.FLAG_OWN_REALTY
AND tb local.CNT CHILDREN = tb gcp.CNT CHILDREN
AND tb local.AMT INCOME TOTAL = tb gcp.AMT INCOME TOTAL
```

```
AND tb_local.NAME_INCOME_TYPE = tb_gcp.NAME_INCOME_TYPE

AND tb_local.NAME_EDUCATION_TYPE = tb_gcp.NAME_EDUCATION_TYPE

AND tb_local.NAME_FAMILY_STATUS = tb_gcp.NAME_FAMILY_STATUS

AND tb_local.NAME_HOUSING_TYPE = tb_gcp.NAME_HOUSING_TYPE

AND tb_local.DAYS_BIRTH = tb_gcp.DAYS_BIRTH

AND tb_local.DAYS_EMPLOYED = tb_gcp.DAYS_EMPLOYED

AND tb_local.FLAG_MOBIL = tb_gcp.FLAG_MOBIL

AND tb_local.FLAG_WORK_PHONE = tb_gcp.FLAG_WORK_PHONE

AND tb_local.FLAG_EMAIL = tb_gcp.FLAG_PHONE

AND tb_local.FLAG_EMAIL = tb_gcp.FLAG_EMAIL

AND tb_local.OCCUPATION_TYPE = tb_gcp.OCCUPATION_TYPE

AND tb_local.CNT_FAM_MEMBERS = tb_gcp.CNT_FAM_MEMBERS
```

WHERE tb gcp.ID IS NOT NULL;

Por meio da consulta ON + AND para cada campo foi possível identificar quais colunas apresentam diferenças entre as tabelas. As colunas CODE GENDER, AMT INCOME TOTAL, DAYS BIRTH e OCCUPATION TYPE tem diferenças de formatação da tabela local para a GCP. A coluna FLAG WORK PHONE apresenta inconsistências na tabela GCP, parte dos dados não foram migrados e não há um padrão que permita algum tipo de tratamento.

Exemplo de inconsistências encontradas nas tabelas:

ABC CODE_GENDER	ABC CODE_GENDER	•	123 AMT_INCOME_TOTAL	•	123 AMT_INCOME_TOTAL ▼
М	Male		427.	500	42.750.000
M	Male		427.	500	42.750.000
M	Male		112.	500	11.250.000

-- Tratando a tabela do GCP

SELECT DISTINCT

ID,

CASE WHEN CODE_GENDER = 'Male' THEN 'M'
WHEN CODE GENDER = 'Female' THEN 'F'

```
ELSE NULL END AS CODE GENDER,
FLAG OWN CAR,
FLAG_OWN_REALTY,
CNT CHILDREN,
AMT INCOME TOTAL/100 AS AMT INCOME TOTAL,
NAME INCOME TYPE,
NAME EDUCATION TYPE,
NAME FAMILY STATUS,
NAME HOUSING TYPE,
DAYS BIRTH*(-1) AS DAYS BIRTH,
DAYS EMPLOYED,
FLAG MOBIL,
FLAG WORK PHONE,
FLAG_PHONE,
FLAG EMAIL,
CASE WHEN OCCUPATION TYPE = 'Without Occupation' THEN ''
ELSE OCCUPATION TYPE END AS OCCUPATION TYPE,
CNT FAM MEMBERS
FROM application_record_gcp;
```

As diferenças foram tratadas com essa query, para que o dado fosse apresentado da mesma forma que na tabela origem local.

1.2. Solução com Python

*Os desenvolvimentos em Python foram feitos usando Pyspark por conta dos meus estudos atuais na pós-graduação, mas poderiam ser feitos em Pandas.

O código Python para solucionar o problema foi desenvolvido em um notebook e apresenta os mesmos resultados obtidos pela consulta SQL. Para executar o arquivo `.ipynb`, é necessário ter o PySpark instalado. Além disso, comentários explicativos foram incluídos ao longo do código para facilitar a compreensão.

- verificando a quantidade de linha e diferenças entre as tabelas:

DIFERENCA: 1051 TB_LOCAL: 438510 TB_GCP: 437459

- verificando a quantidade de IDs distintos da tabela e suas diferenças:

TB_GCP_DISTINCT: 434459
TB_LOCAL_DISTINCT: 438510
DIFERENCA_ID_DISTINTOS: 4051

- lista de IDs que aparecem na tabela local e não na GCP:

ID C													
	ODE_GENDER FLAG_0	WN_CAR FLAG_0	WN_REALTY CNT_CHI	LDREN AMT	_INCOME_TOTAL NAME	_INCOME_TYPE NA	ME_EDUCATION	ON_TYPE	NAME_FAMILY_STATUS	NAME_HO	USING_TYPE D	AYS_BIRTH DAY	S_EMPLOYED FLAG
++-					*******					+			2052421
5033986	<u> </u>	N I	N	91	144000.0	Pensioner	Lower se				apartment	-21675	365243
5045921	<u> </u>	N I		9	40500.0	Pensioner	Lower se				apartment	-23933	365243
5052997	<u> </u>	N I		9	94500.0	Pensioner	Lower se		Separated		apartment	-22926	365243
5087743		N I		0	112500.0	Pensioner	Lower se		Married		apartment	-24821	365243
5126743		N	N	0	135000.0	Working	Lower se		Married		apartment	-19019	
5260593	F	N	N	0	225000.0	Working	Lower se		Widow		apartment	-21811	-2563
5354898	M				247500.0	Working	Lower se		Married	House /	apartment	-20950	-196
5427531					135000.0	Pensioner	Lower se	condary	Married	House /	apartment	-24210	365243
5467022					112500.0 Commercia	al associate	Lower se	condary S:	ingle 🖊 not married	Municipal	apartment	-12824	
5501357					135000.0	Working	Lower se	condary	Civil marriage	House /	apartment	-14550	-516
5585006					112500.0 Commercia	al associate	Lower se	condary	Married	House /	apartment	-19742	-4230
5702391					112500.0	Working	Lower se	condary	Married	House /	apartment	-10123	-190
5742776	F				135000.0	Pensioner	Lower se	condary	Married	House /	apartment	-22486	365243
5872792	F				157500.0	Pensioner	Lower se	condary	Married	Municipal	apartment	-22941	365243
5970743	F				126000.0	Pensioner	Lower se	condary	Widow	House /	apartment	-21595	365243
6009146	FΪ				60750.0	Pensioner	Lower se	condary	Widow	House /	apartment	-22653	365243
6060382					270000.0	Working	Lower se	condary	Married	House /	apartmenti	-14200	-467
6077889					202500.0	Working	Lower se	condary	Married	House /	apartmenti	-14489	-2377
6088956	FΪ	Nİ		Θİ	202500.0	Pensioner	Lower se	condary S:	ingle ∠ not married	House /	apartmenti	-23232	365243
6103539					112500.0 S	tate servant	Lower se		Married		apartment	-19238	-3509
only showi	ng top 20 rows												

- Contagem de IDs duplicados no GCP e ordenação:

```
Número de IDs com mais de uma ocorrência: 3000
| gcp_ID|ID_Count|
|5008957|
5009141
|5009198|
|5009628|
                2
|5010058|
|5010338|
|5010568|
                2|2|2|
|5010623|
|5010674|
|5010781|
|5010801|
                2
|5010820|
|5018477|
|5021662|
|5021682|
|5021738|
|5021818|
|5021849|
                2
[5021878]
|5021947|
only showing top 20 rows
```

- filtro para identificar as colunas diferentes:

	_CODE_GENDER tb_gc	p_CODE_GENDER tb_local	AMT_INCOME_TOTAL tb_gcp	_AMT_INCOME_TOTAL tb_lo	cal_DAYS_BIRTH tb_gcp	_DAYS_BIRTH tb_local_	FLAG_WORK_PHONE tb_gcp_FLA	G_WORK_PHONE
5008895		Female	297000.0	29700000.0	-15519	15519	0	
5009246	F	Female	135000.0	13500000.0	-14201	14201	0	0.0
5009335	F	Female	139500.0	13950000.0	-16203	16203	0	null
5009766		Male	135000.0	13500000.0	-14118	14118		null
5009999		Female	157500.0	15750000.0	-12330	12330		0.0
5010368		Female	157500.0	15750000.0	-9800	9800		null
5010949		Female	270000.0	27000000.0	-13768	13768		
5021309		Male	270000.0	27000000.0	-16896	16896		
5021967		Female	103500.0	10350000.0	-11720	11720		
5022410		Female	153000.0	15300000.0	-21899	21899		0.0
5022555	F)	Female	112500.0	11250000.0	-11234	11234		0.0
5022720		Male	157500.0	15750000.0	- 15202	15202		
[5022759]		Female	180000.0	18000000.0	-9791	9791		
[5022800]	F	Female	202500.0	20250000.0	-11998	11998		
[5022836]		Male	202500.0	20250000.0	-17262	17262		
[5022988]	F	Female	76500.0	7650000.0	-24311	24311		0.0
[5023261]		Male	180000.0	18000000.0	-21202	21202		
[5023441]	F	Female	180000.0	18000000.0	-22730	22730		1.0
[5023454]	F	Female	180000.0	18000000.0	-20560	20560		
5023617	F	Female	157500.0	15750000.0	-10806	10806		
only showing top 2	20 rows							

- transformação da tabela GCP:

2. Código SQL

Na primeira questão desenvolvi o código no ambiente Dbeaver + Sqlite, nesta precisei de um ambiente mais robusto para executar a procedure, portanto, desenvolvi a consulta no ambiente do Bigquery.

Para a solução 2 foi necessária a criação de uma procedure, conjunto de instruções que funcionam como uma função encapsulando várias operações. Como a data referência para a análise precisaria ser uma variável, ela foi definida como o parâmetro para a execução da procedure.

Uma tabela temporária foi criada para facilitar a operação das consultas:

```
CREATE TEMP TABLE tb_dias_atraso AS (
SELECT

re.nm_revendedor, IF(dt_pagamento IS
NULL, DATE_DIFF(data_parametro, dt_vencimento, DAY
), MAX(DATE_DIFF(dt_pagamento, dt_vencimento, DAY ))) AS dias_atraso

FROM teste.tb_revendedor re

LEFT JOIN teste.tb_titulos ti

ON re.id_revendedor = ti.id_revendedor

GROUP BY nm_revendedor, dt_pagamento, dt_vencimento);
```

Como resultado para a data parâmetro 2022-09-20, temos:

- tabela temporária:

- resultado para a consulta máximo dias de atraso em 1 mês:

JSON	GRÁFICO	OO JOB RESULTADOS GI		INFORMAÇÕES DO JOB	
	DIAS_ATRASO	MAX_D	nm_revendedor ▼	Linha /	
	30		Ariel	1	
	23		Lucas	2	
	26		Mateus	3	
	30		Renata	4	
	25		Adriane	5	
	30		Beatriz	6	
	21		Gabriel	7	
	29		Jessica	8	
	28		Mariana	9	
	28		Fernando	10	

- resultado para a consulta máximo dias de atraso para 3 meses:

INFOR	MAÇÕES DO JOB	RESULTADOS	GRÁFICO
Linha //	nm_revendedor ▼	// MAX_D	IAS_ATRASO
1	Ariel		55
2	Lucas		44
3	Mateus		58
4	Renata		54
5	Adriane		59
6	Beatriz		47
7	Gabriel		57
8	Jessica		53
9	Mariana		58
10	Fernando		54

- total faturado em 3 meses:

INFOR	MAÇÕES DO JOB	RESULTADOS	GRÁFICO
Linha /	nm_revendedor ▼	// vlr_total ▼	
1	Lucas		6890.6
2	Fernando		5493.4
3	Renata		7959.1
4	Mariana		4797.0
5	Beatriz		9889.7
6	Mateus		4834.1
7	Gabriel		8744.4
8	Ariel		6248.0
9	Adriane		8867.5
10	Jessica		6955.2

- quantidade de boletos a prazo em 3 meses:

← Resultados da consulta

INFOR	MAÇÕES DO JOB	RESULTADOS	GRÁFICO
Linha /	nm_revendedor ▼	/ qtde_ti	tulo 🕶 //
1	Lucas		2
2	Fernando		4
3	Renata		4
4	Mariana		4
5	Beatriz		2
6	Mateus		2
7	Ariel		2
8	Adriane		6
9	Jessica		2

3. Código Python

No problema 3 foi implementada uma função que calcula a métrica KS (Kolmogorov-Smirnov). Medida usada para verificar a eficácia de um modelo de classificação, comparando as distribuições acumuladas de duas classes, a fim de identificar o maior desvio entre elas.

O código foi feito para ler um arquivo, passado como parâmetro para a função. Alguns outros parâmetros como nome das colunas também poderiam ser parametrizados, mas considerei que todos os arquivos possuem a mesma formatação.

É feita a contagem de 'BOM' e 'MAU'. Pelos valores do 'SCORE' foi aberta uma janela de ordenação para o cálculo da porcentagem acumulada da classificação binária de bons e maus.

O valor de KS foi calculado pela diferença absoluta entre os valores acumulados de 'BOM' e 'MAU'.

4. Código Python

No problema 4 foi desenvolvido um script 100% automatizado que retorna a tabela filtrada para o ano de 2023 e 2024:

+								+	+		+		
C0	_AN0 C0	_MES	CO_NCM CO	_UNID CO_	PAIS	SG_UF_NCM	CO_VIA	CO_URF	QT_ESTAT	KG_LIQUIDO	VL_F0B	VL_FRETE VL	_SEGUR0
+								+	++	4	+		
	2023	01 3	3030010	10	275	SP	1	0817800	333	333	7799.0	469	22
	2023	11 3	3030010	10	275	SP	1	0817800	807	807	23778.0	107	34
i i	2023	09 3	3030010	10	275	SP	1	0817800	24	24	986.0	4	1
	2023	06 3	3030010	10	275	SP	1	0817800	1024	1024	29167.0	236	42
	2023	03 3	3030010	10	275	SP	1	0817800	544	544	14606.0	172	37
	2023	05 3	3030010	10	275	SP	1	0817800	164	164	4229.0	55	10
	2023	04 3	3030010	10	275	SP	1	0817800	500	500	12619.0	209	31
	2023	10 3	3030010	10	275	SP	1	0817800	76	76	3319.0	11	5
	2023	12 3	3030010	10	275	SP	1	0817800	393	393	9909.0	55	14
	2023	08 3	3030010	10	275	SP	1	0817800	499	499	9114.0	96	13
Ī	2023	07 3	3030010	10	275	SP	1	0817800	626	626	29725.0	136	43
+		+-						+	+		+		

+			+							+		
C0	_AN0 C0_	MES	CO_NCM	CO_UNID C	O_PAIS SG	_UF_NCM CO	VIA CO_URF	QT_ESTAT K	_LIQUIDO	VL_F0B	VL_FRETE VL	_SEGUR0
+			+							+		
	2024	02 3	33030010	10	275	SP	1 0817800	155	155	5076.0	33	7
i i	2024	07 3	33030010	10	275	SP	1 0817800	1076	1076	24415.0	120	35
l i	2024	06 3	33030010	10	275	SP	1 0817800	126	126	4542.0	24	7
l i	2024	04	33030010	10	275	SPİ	1 0817800	23	23	225.0	5 į	Θİ
l i	2024	05	33030010	10	275	SP	1 0817800	1014	1014	33592.0	105	48
l i	2024	03 i 3	33030010	10 İ	275 İ	SPİ	1 0817800	58	58 İ	2494.0	8	4 ј
l i	2024		33030010		275	SPİ	1 0817800	282	282	6311.0	83	9 i
Ti .	2024		33030010		275	SP	1 0817800	938		41757.0		60
ļ									+		₁	

O script pode ser reexecutado a cada mês já que ainda não finalizamos o ano de 2024. O código faz o download da tabela direto do site do Governo, foi necessário um tratamento para essa primeira parte, porque o site está apresentando um problema de SSL. A solução temporária foi desabilitar a verificação do SSL, não é algo recomendado, mas impossibilitaria o script ser totalmente automático.

Após baixar o arquivo, o script faz o tratamento de algumas colunas, transformando-as em tipo int ou float, filtra o dataframe de acordo com os requisitos: país França, via navio, produto 33030010 e negociação no estado de SP.

As colunas **KG_LIQUIDO** e **VL_FOB** foram somadas, e a média anual do valor da negociação foi calculada. Mantive os valores em dólar para preservar a moeda de referência utilizada nas transações e evitar as flutuações cambiais do real. Isso garante uma análise mais precisa e consistente do valor negociado, evitando distorções que poderiam ocorrer, como no caso de variações no câmbio em 2023, por exemplo.

Média em 2023: U\$29,11

Média em 2024: U\$32,23