Cheat sheet

3ikakke

Outline

- Objectives
- Data types
- Data type mapping to python primitives
- Exploring Data single variable (univariate)
- Exploring accross two variables (bivariate)
- Visualizing Single variables
- Visualizing Two Variables
- Hypothesis (AB) Testing
- Supervised Learning

Objectives

• One stop to remembering the core parts of statistics in datascience leading up to machine learning

Data types

- Numeric
 - Continuous (with no clear delineation between any two levels eg weight, height) => 2.2, 11.5, 18.2, 68.5
 - Discrete AKA Count AKA Interval (distinct numbers eg counts) => 1, 3, 7, 12
- Categorical
 - Binary (2 levels only) => male or female, dead or alive, healthy or ill, soldier or civilian
 - Nominal (Named with no inherent order eg location, firstname)
 - Ordinal (Named with inherent order eg) => small, medium, large, extra large
- Data may be missing

Data type mapping to python primitives

- Numeric
 - Continuous: Float

- Discrete: Integer
- Categorical
 - Binary: Boolean (True or False)
 - Nominal: String
 - Ordinal: String
- Missing: None

Exploring Data - single variable (univariate)

- Numeric
 - Report minimum, maximum, and range
 - Check for distribution by looking at a histogram (decide what to report as center and spread)
 - * if normally or approximately normally distributed report Mean (as center) and Standard Deviation (as spread)
 - * if not normally distributed report Median (as center) and Inter Quartile Range (IQR) as spread
 - Remember the five-number summary
 - * min, Q1, median, Q3, max
- Categorical
 - Report the frequencies
 - Report Proportions or percentages

Exploring accross two variables (bivariate)

- Numeric vs Numeric
 - Correlation (using Pearsons Correlation Coefficient)
 - Correlation ranges from -1 through 0 to +1
 - They correspond to strong negative correlation, no correlation and strong positive correlation respectively
- Categorical vs Categorical
 - Report a two way table showing:
 - * Frequencies
 - * Proportions or Percentages
- Numeric vs Categorical
 - Report the numeric summaries at each level of the categorical variable
 - eg Age vs Sex
 - * Mean and standard deviation for males
 - * Mean and standard deviation for females

Visualizing Single variables

- $\begin{array}{ccc} \bullet & \text{Numeric} \\ & & \text{Histogram} \end{array}$

Histogram of Age

- Boxplot

Boxplot of Age

- Categorical
 - Bar Charts

Bar Chart

Visualizing Two Variables

- Numeric vs Numeric
 - Scatterplot

Scatter Plot of Weight vs Height

- Categorical vs Categorical
 - Grouped bar charts

- Numeric vs Categorical
 - Grouped box plots

Age distribution by Race

Hypothesis AB Testing

- Numeric vs Numeric
 - Regression (tests for association)
- Categorical vs Categorical
 - Chi Squared Test (tests for eveness of distribution)
- Binary vs Numeric
 - T-Test (test for differences in mean)
- Categorical vs Numeric
 - Analysis of variance (ANOVA) (tests for difference in variance)

Supervised Learning

- Numeric label
 - Regression algorithms
- Categorical label
 - Classification algorithms

End