Multi-Agent Systems

Authors: Chi Him Ng (2748786), Coen Nusse (2623380)

Homework Assignment 5 MScAl, VU

Version: December 6, 2023-Wednesday, December 13, 2022 (23h59)

NB: Unless otherwise indicated, the problems below can be solved using pen and paper.

1 Bellman equations

Rewrite the Bellman equations for v_π and q_π for the following special cases:

1. Deterministic policy π : each state is mapped to a single action (say a_s);

$$\pi(a \mid s) = \begin{cases} 1 & \text{if } a = a_s \\ 0 & \text{otherwise} \end{cases}$$

2. Combination of deterministic policy and deterministic transition $p(s' \mid s, a)$. The latter is characterized by the fact that applying an action a to a state s results each time in the same successor state s_a ;

Both answers are in the attached image for exercise 1.

Bellman equations:

Basic ->
$$V_{\pi}(s) = \sum_{\alpha} \pi(\alpha(s)) \sum_{s'} p(s'|s,\alpha) \Big[r(s,a,s') + y_{\pi}(s') \Big]$$
 $q_{\pi}(s,a) = \sum_{s'} p(s'|s,a) \Big[r(s,a,s') + y \sum_{\alpha'} \pi(\alpha'|s') q_{\pi}(s',a|) \Big]$

Deterministic Policy -> under policy $\pi: s$ mapped, α_s , thus s summation over action collapses

 $v_{\pi}(s) = \sum_{s'} p(s'|s,a_s) \Big[r(s,a,s') + y v_{\pi}(s') \Big]$
 $q_{\pi}(s,a) = \sum_{s'} p(s'|s,a_s) \Big[r(s,a,s') + y v_{\pi}(s') \Big]$

Determistic Policy + transition -> $p(s'|s,a) = 1$ if $s' = s_{\alpha}$

Using previous $\wedge p(s'|s,a) = 1$
 $\vee v_{\pi}(s) = r(s',a_{s'},s_{s'}) + y v_{\pi}(s_{s'})$
 $q_{\pi}(s,a) = r(s',a_{s'},s_{s'}) + y v_{\pi}(s_{s'})$
 $q_{\pi}(s,a) = r(s',a_{s'},s_{s'}) + y v_{\pi}(s_{s'})$

$$p(s' \mid s, a) = \begin{cases} 1 & \text{if } s' = s_a \\ 0 & \text{otherwise} \end{cases}$$

2 MDP 1

Consider an MDP with a circular state space with an odd number of nodes (i.e. the nodes are positioned along a circle and labeled 0 through n, with n even). Assume that the 0 -node is an absorbing terminal state and arriving at this state yields a one-time reward of 10 . In the other nodes, one can go in either one of the two circle directions, resulting in reward of 0 (unless you transition to the terminal state). Assume an equiprobable policy π (i.e. going in either direction with prob 1/2) and no discounting (i.e. $\gamma=1$).

- 1. What would be the corresponding values functions v_{π} and q_{π} ?
- 2. What would be an optimal policy? Is this unique? What are the corresponding value functions v^* and q^* ?
 - Any policy that will eventually lead to state 0.
- 3. How would your answer for (2) change if each non-terminal step accrued a reward of $r_{NT}=$ -1 ?

See attached image.

- 4. How would your answer for (2) change if $\gamma < 1$? (Assume $r_{NT} = 0$). The answer is the same as in (3).
- 5. How would your answer for (2) change if the number of non-terminal states was odd? (Assume $r_{NT}=-1$ and $\gamma=1$)

See attached image. It is almost the same, however there is a new policy with regards to n/2.

3 MDP 2

Consider the following MDP (see table and figure below). It has two absorbing states (A and B) that yield final rewards 0 and 20 , respectively. In each non-terminal state, there are two actions (L(eft) or R(ight)) and the corresponding probabilities (determined by the policy π) are tabulated below. Non-terminal

transitions in cur a (negative) reward of -2 . Furthermore, we assume throughout this question that there is no discounting, i.e. $\gamma=1.$

state (s)	action (a)	$\pi(a \mid s)$	reward (r)
1	L	1/4	0
1	R	3/4	-2
2	L	1/2	-2
2	R	1/2	-2
3	L	3/4	-2
3	R	1/4	20

1. Compute the state value function $v_{\pi}(s)$ under the policy π for all three states s=1,2,3.

See attached image below.

- 2. Compute the state-action values $q_{\pi}(2,R)$ and $q_{\pi}(3,L)$. See attached image below.
- 3. What would be an optimal policy π^* for this MDP? Is it unique? Always go right. It is unique, since it will always go right, meaning you basically cannot return.

4 GT: Shapley value for apex game (25%)

In this game there are five players. Player 1 is the big player and all the others are small players. The big player together with one or more small players can earn value 1 . If the four small players cooperate, they can also generate value 1 . Hence, a coalition S has value 1, i.e. v(S) = 1, if

- it comprises the big player and at least one small player, i.e. $1 \in S$ and $\#S \ge 2$;
- if all small players are part of it, i.e. $2,3,4,5 \in S$ (possibly in addition to 1).

See attached image below.

Compute the Shapley value for each of the players.

$$S = 0 - 7 0$$

$$S = 0 - 7 0$$

$$S = 1 - 7 1 \cdot h$$

$$S = 2 - 7 \cdot h$$

$$S = 2 - 7 \cdot h$$

$$S = 2 - 7 \cdot h$$

$$S = 3 - 7 \cdot h$$

$$S = 0 - 7 \cdot 0$$

$$S = 1 - 7 \cdot 0 + 1$$

$$S = 2 - 7 \cdot 0 + 1$$

$$S = 2 - 7 \cdot 0 + 1$$

$$S = 2 - 7 \cdot 0 + 3 \cdot 1$$

$$S = 3 - 7 \cdot 0 + 3 \cdot 1$$

$$S = 3 - 7 \cdot 0 + 3 \cdot 1$$

$$S = 4 - 7 \cdot 1 \cdot 1$$

$$S = 4 - 7 \cdot 1 \cdot 1$$