Maulana Azad National Institute of Technology Bhopal-462003

End Term Examination (Session: 2022-23)

Course: B.Tech.

Semester-I

Section: All

Time: 3 Hours

Subject: Mathematics-I

Subject Code: MTH-101

Max. Marks: 50

Note: All questions are compulsory.

S.No.	Question	
V(a)	$\begin{cases} y - x & z - x \end{cases}$	Marks
1(6)	If $\theta = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial \theta}{\partial x} + y^2 \frac{\partial \theta}{\partial y} + z^2 \frac{\partial \theta}{\partial z} = 0$	4
70,	an approximate value of f(1 0.8) using the man	4
1		4
2(a)	Discuss the maxima and minima of the function $u = \cos A \cos B \cos C$	1
	where A, B, C are the angles of a triangle.	4
2(6)	16 1x + 2y + 3z	
21	If $u = \sin^{-1} \frac{x + 2y + 3z}{x^8 + y^8 + z^8}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.	4
3(1)	Find the area lying inside the circle $r = \sin \theta$ and outside the cardioid	-
	$(1-\cos\theta)$.	5
3(b)	The loop of the curve $2ay^2 = x(x-a)^2$ revolves about the x-axis. Find the volume of the solid so generated.	5
4(a)	Verify the Stokes's theorem for the vector field $v = (3x-y)i-2yz^2j-2y^2z$ k, where S is the surface of the sphere $x^2 + y^2 + z^2 = 16$, $z > 0$	4
A(b)	Use the divergence theorem to evaluate $\iint_{S} (V. n) dA$, where $V = x^{2}zi + yj - xz^{2}k$	
/	and S is the boundary of the region bounded by the paraboloid $x^2 + y^2 = z$ and the plane $z = 4y$.	4
4(0)	Evaluate $\oint_C (x^2 + y^2) dx + (y + 2x) dy$, where C is the boundary of the	1
	region in the first quadrant, which is bounded by the	4
5(a)	region in the first quadrant, which is bounded by the curves $x^2 = y \& y^2 = x$.	
	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 8(x^2 + e^{2x} + \sin 2x)$	4
5 (b)	Solve by using the method of variation of parameter	1
	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$	4
5(e)	Solve $(y + \frac{1}{3}y^3 + \frac{1}{2}x^2)dx + \frac{1}{4}(x + xy^2)dy = 0$	4