loT- based Smart Dustbin Management

System

Peddineni Rupesh chowdary

S20210010173

Pagilla Saiteja

S20210010168

Rahul Pramod Marada

S20210010136

Sai Swetha Mekala

S20210010143

TABLE OF CONTENTS

- Introduction
- Components
- Overall Work-Flow
- Working Principle

- Problem Statement
- Steps Involved
- Connectiity and firebase setup
- Current Work

INTRODUCTION

 Effective Waste Monitoring is crucial for maintaining a clean and healthy environment

- There are various factors involved such as,
 - Poor waste management can cause health hazards and environmental pollution
 - Traditional methods rely on fixed routes, lacking real-time adaptability which is inefficient and leads to increased operational costs
 - Lack of real-time monitoring leading to delayed waste disposal

OUR AIM....

To develop a smart system that provides realtime data on dustbin fill levels, which thereby optimizes the waste collection routes and reduces health risks

COMPONENTS

Hardware components:

- NodeMCU ESP8266
- 3-4 Dustbins
- NodeMCU jumper wires

- Connector
- BreadBoard
- Power Supply

Software components:

Aurdino IDE

- Web Application (Interface)
- Firebase (To store data)

STEPS INVOLVED

• Data Collection:

 Ultra-Sonic Sensors installed in dustbins measure the fill level and send data to the NodeMCU.

• Data Transmission:

• NodeMCU transmits the data to a central server or cloud-based platform like Firebase etc

• Data Processing:

• In this step, Analysis of the data is performed to be sent to Application

Real-time Application:

• The processed data is now utilized in the application to monitor the dustbins and take efficient and necessary actions accordingly

OVERALL WORK FLOW

Web Application

SCHEMATIC

Ultrasonic Sensor	ESP8266
VCC	VIN
Trig	GPIO 12 (D6)
Echo	GPIO 14 (D5)
GND	GND

CONNECTIVITY AND FIREBASE SETUP

- NodeMCU Captures data from the ultrasonic sensor.
- It already has a built-in **WiFi module**. One need to connect to the WiFi network and configure it to communicate with Firebase by providing the HOST_URL and API_KEY
- Collection of Sensor Data: Measure the height of waste in the bin using the ultrasonic sensor (Consider 10 readings).
- The collected data will be sent to Real-Time Database in Firebase using the WiFi module.
- Firebase Stores average waste for remote monitoring as key-value pairs in the database

WORKING PRINCIPLE

Ultrasonic Sensor Functionality:

• The ultrasonic sensor measures the distance between itself and the waste in the dustbin. It has a 120° beam, which means some readings might come from the walls or bottom of the dustbin.

• Distance Calculation: The value of waste height is calculated using the formula:

Percentage of Waste Level= ((H-L) / H)*100

Contd..

Where:

- **H**: Total height of the dustbin
- L: Average Distance detected by the sensor

Why Average 'L' Value?

- To minimize network strain while maintaining real-time insights, we average sensor readings over time and transmit the data to Firebase at defined intervals (every n seconds)
- Averaging 10 recordings helps filter out in-accuracies caused by the ultrasonic sensor's 120° beam detecting signals from the dustbin walls or bottom, ensuring accurate waste-level measurements.

CURRENT WORK

Empty dustbin

Firebase Visuals

CONTD...

Partially filled dustbin

Firebase Visuals

THANKYOU

- Group 4