Работа Д.2.5

Определение коэффициента диффузии гелия через резиновую оболочку воздушного шарика

Панферов Андрей

1 Цель работы:

Знакомство с явлениями переноса. Определениекоэффициента диффузии гелия через резиновую оболочку воздушного шарика.

2 В работе используются:

Два одинаковых резиновых шарика шарообразной формы, один из которых накачан гелием, весы, секундомер, небольшой груз (гайка),нитка, ножницы, бумажный метр, миллиметровая бумага.

3 Аннотация:

Воздушный шарик, накачанный гелием, со временем достаточно быстро сдувается. Это связано с диффузией гелия через резиновую оболочку шарика. Плотность потока гелия j определяется законом Фика:

$$j = D\Delta n/\delta$$
,

где D - коэффициент диффузии гелия через резину, δ - толщина резиновой оболочки накаченного шарика, $\Delta n = n - n_0$ - разность концентраций гелия внутри и вне шарика. За время t через всю поверхностьрезиновой оболочкишарика S в атмосферу выйдет:

$$\Delta N = jSt = \frac{DSNt}{\delta V}$$

молекул гелия.

Пренебрегая утечкой газа через узел, а также проникновением молекул воздуха внутрь шарикаи, т.е.,предполагая, что оболочка шарика проницаема только для гелия, получим, что относительное изменениевеличины подъёмной силы шарика за время t равно:

$$\Delta F_{\rm m} = -\frac{DS(\rho_{air} - \rho_{He})gt}{\delta}$$

При этом мы считали, чтодавление гелия внутри шарика незначительно превосходит атмосферное (реально, для шаров шарообразной формы давление в шарике превосходит атмосферное на $\approx 5\%$).

4 Методика измерений:

Привяжем к нити гелиевого шарика груз и положим груз на весы как показано на рисунке ??. Сила тяжести груза превышает подъёмную силу шарика.Сила, действующая на платформу весов, равна:

$$F = m_{\text{rp}}g - F_{\text{II}}$$

где $m_{\rm rp}$ - суммарная масса груза и оболочки с ниткой. Поскольку с течением времени подъёмная сила уменьшается линейно, то показания весов, начиная с некоторого начального значения m_0 , увеличиваются по линейному закону. Таким образом, коэффициент диффузии D можно определить по значению углового коэффициента β графика экспериментальной зависимости m(t) по формуле:

$$D = \beta \delta / S(\rho_{air} - \rho_{He})$$

Рис. 1: Схема установки

J CTAITOBILL	
t, мин	т, г
0	2.74
3	2.78
6	2.80
9	2.83
12	2.84
15	2.89
18	2.91
21	2.95
24	2.98
27	3.01
30	3.03
33	3.07
36	3.11
39	3.15
42	3.17
45	3.20
48	3.22
51	3.26
54	3.29
57	3.31
60	3.34
$\sigma t \approx 1 \mathrm{c}$	$\sigma m \approx 0.1$ g

5 Данные и их обработка:

Измерим параметры шарика до надувания: $m=(2.61\pm0.4)$ г, табличная плотность резины - 1.05г/см³

Геометрические параметры воздушного шарика будем измерять мерной лентой с экспериментальной погрешностью 0.1 см. Его форму приблизим объединением полусферы диаметра d и конуса с длиной стороны l.

Парамеры шарика до и после эксперимента:

$$\begin{array}{l} d_1 = 23,62 \pm 0.03 \mathrm{cm}, \, l_1 = 25.0 \pm 0.2 \mathrm{cm}, \\ V_0 = \pi d^2 (d + \sqrt{l^2 - (d/2)^2}) / 12 = (66.7 \pm 0.3) \cdot 10^2 \ \mathrm{cm}^3, \\ d_1 = 23,21 \pm 0.03 \mathrm{cm}, \, l_1 = 24.2 \pm 0.2 \mathrm{cm}, \\ V_1 = \pi d^2 (d + \sqrt{l^2 - (d/2)^2}) / 12 = (62.6 \pm 0.3) \cdot 10^2 \ \mathrm{cm}^3, \\ S = (1804 \pm 8) \mathrm{cm}^2, \, \delta = \frac{m}{\rho S} = (13.8 \pm 0.2) \mathrm{mkm} \end{array}$$

Как мы видим, $\frac{V_0-V_1}{V_0}\approx 6\%$, что в пределах наших приближений. Параметры окружающей среды:

$$ρair = (120.3 \pm 0.4) \cdot 10-2 κг/м3,
ρHe = (17.8 ± 0.1) · 10-2 κг/м3,
p = 101.5 κΠα,
T = (295 ± 1) Κ$$

Зависимость m от t

Методом наименьших квадратов найдем угловой коэффициент графика m(t):

$$\beta = (1.70 \pm 0.12) \cdot 10^{-7} \text{kg/c}$$

 \mathbf{W} из него находим D:

$$D = \frac{\beta \delta}{S(\rho_{ait} - \rho_{He})} = (1.25 \pm 0.09) \cdot 10^{-11} \frac{M}{c^2}$$

6 Вывод:

Получен коэффициент диффузии гелия через резину. Основной вклад в погрешность внесли измерения массы (порядка 4%).

Учитывая приближения, сделанные в данном эксперименте, такие как **Принебрежение изменением площади поверхности шарика** ($\approx 4~\%$), **Пренебрежение добавочным давлением в шарике** ($\approx 3~\%$), можно модифицировать погрешность итогового результата и получить:

$$D = (1.25 \pm 0.11) \cdot 10^{-11} \frac{\mathrm{M}}{\mathrm{c}^2}$$

Оценим коэффициент диффузии воздуха через резину, используя данные об изменении объема шарика:

$$\frac{|\Delta F|}{g} = (0.60 \pm 0.06) \text{r}$$

$$\Delta V - V = V - (406 \pm 60) \text{c}$$

$$\Delta V = V_0 - V_1 = (406 \pm 60) \text{cm}^3$$

Это позволяет нам оценить количество воздуха, проникшего внутрь шарика, и из него-коэффициент диффузии:

$$D_{air} \approx 10^{-14} \sim 10^{-13} \text{ m}^2/\text{c}$$

что на порядки меньше коэффициента для гелия. Что означает, что приближение, что оболочка непроницаема для воздуха - оправдано.