

CAN WE PREDICT 7-YEAR SURVIVAL?!

Prostate Cancer Case

Anisha Joshi | Healthcare Analytics

Our Agenda for Today

LIST OF KEY CONCEPTS

- -Introduction to data
- -Exploratory Data Analysis
- -Feature Engineering
- -Feature Selection
- -Model
- -Evaluation
- -Predict on Test Data

EXPLORATORY ANALYSIS

EXPLORATORY ANALYSIS

Subject Matter

The TNM system for prostate cancer is based on 5 key pieces of information:

- The extent of the main (primary) tumor (T category)
- Whether cancer has spread to nearby lymph nodes (N category)
- Whether cancer has spread (metastasized) to other parts of the body (M category)
- The **PSA level** at the time of diagnosis
- The <u>Grade Group</u> (based on the **Gleason score**), is a measure of how likely the cancer is to grow and spread quickly. This is determined by the results of the prostate <u>biopsy</u> (or <u>surgery</u>).

Instead of these 5 categories have TNM score

Feature Engineering

SYMPTOMS

Dummy One Hot Key Encoding, Add later, Sym > 3 = 1 as Sym

AGE

In different Brackets Initially, later 65+

Delete Date, ID and combined symptoms

DIFF. IN TUMOUR SIZE

From date of diagnosis to 6 months/year

HEIGHT & WEIGHT

Replaced with BMI

RFE - Feature Selection

With Estimater as Logistic Regression

```
print(rfe.ranking_)

[> [25 24 15 10 6 23 1 17 16 26 5 1 12 1 7 13 1 1 11 18 2 22 19 21 8 4 14 9 1 3 1 1 20 1 1]

Index numbers before age in bins - 6,13,15,16,27,29,30,32,33,43

Index number after Age 65+ >> 6,11,13,16,17,28,30,31,33,34
```

Final data

15,385

Rows

33

Features

12,972

Final Rows

10

Final Features

After Dummy Variables - 12972, 36 Removed all the Null Value Rows

Evaluation Metric & Model Performance

FN - PLAY A CRUCIAL ROLE

Metric - Recall is important Based on the Given Dataset

0	<pre>print(classification_report(y_test,y_pred))</pre>							
		precision	recall	f1-score	support			
	0	0.70	0.67	0.68	2185			
	1	0.60	0.62	0.61	1707			
	accuracy			0.65	3892			
	macro avg	0.65	0.65	0.65	3892			
	weighted avg	0.65	0.65	0.65	3892			

Predicted Actual	0	1	All	
0	1464	721	2185	
1	642	1065	1707	
All	2106	1786	3892	

Logistic Regression Model

Train-Test

Stratified Sampling of 70:30

Found 10 features that were able to define the model accuracy of 65%

Predict

RFE and model are fit on all available data, then the predict() function is used for test predictions

