11) Veröffentlichungsnummer:

0 133 510 **A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84108721.6

(5) Int. Cl.4: B 01 D 3/36

22 Anmeldetag: 24.07.84

B 01 D 3/40

30 Priorität: 03.08.83 DE 3327952

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

43 Veröffentlichungstag der Anmeldung: 27.02.85 Patentblatt 85/9

(72) Erfinder: Kaibel, Gerd Robert-Bosch-Strasse 4 D-6840 Lampertheim(DE)

(84) Benannte Vertragsstaaten: BE CH DE FR GB IT LI NL

(54) Verfahren zur destillativen Zerlegung eines azeotropen Stoffgemisches.

(57) Verfahren zur gestillativen Zerlegung eines azeotropen oder sich annähernd azeotrop verhaltenden, schwer destillativ trennbaren Stoffgemisches in zwei reine oder weitgehend reine Fraktionen durch Zugabe einer Zusatzkomponente analog einer Extraktivdestillation - mittels einer Destillationskolonne, die in einem Teilbereich durch eine in Längsrichtungwirksame Trenneinrichung, die eine Quervermischung von Flüssigkeits- und/oder Brüdenströmen ganz oder teilweise verhindert, in einen Zulaufteil und einen Entnahmeteil unterteilt ist, wobei dem Zulaufteil und dem Entnahmeteil das azetrope Stoffgemisch in Teilströmen jeweils am Kopf oder in der Nähe des Kopfes zugeführt wird, und die zwei reinen oder weitgehend reinen Fraktionen als Kopfprodukt aus der Destillationskolonne und als Seitenprodukt aus dem Entnahmeteil abgezogen werden.

0.2. 0359/36670 3351 0

BEZEICHNUNG GEÄNDERT

siehe Titelseite

Verfahren zur destillativen Zerlegung eines azeotropen Stoffgemisches - analog einer Extraktivdestillation - mittels einer Destillationskolonne

05 Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1.

Es ist bekannt, zur destillativen Zerlegung eines azeotropen Zweistoffgemisches in seine Einzelkomponenten verschiedene destillative Verfahren einzusetzen. Dies sind im wesentlichen die Zweidruckdestillation, die 10 azeotrope Destillation und die extraktive Destillation. Diese 3 Destillationsverfahren sind ausführlich im Lehrbuch von R. Billet, "Industrielle Destillation", Jahr 1972, Seiten 223 bis 231 beschrieben.

Als Nachteil erweist sich bei allen 3 Destillationsverfahren, daß min15 destens 2 Destillationskolonnen zur Auftrennung des azeotropen Zweistoffgemisches notwendig sind. Daraus resultiert apparativ und meß- und regeltechnisch ein erhöhter Aufwand.

Aufgabe der vorliegenden Erfindung ist es, die destillative Zerlegung von 20 azeotropen Zweistoffgemischen zu vereinfachen, d.h. in einem einstufigen Destillationsverfahren, mittels einer Destillationskolonne, durchzuführen.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 25 gelöst.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben.

30 Es zeigen

Figur 1

ein schematisches Verfahrensfließbild einer Destillationskolonne, bei der das azeotrope Zweistoffgemisch dem Zulaufteil und dem Entnahmeteil in 35 Teilströmen jeweils am Kopf zugeführt werden.

Figur 2

ein schematisches Verfahrensfließbild einer Destillationskolonne, bei der das azeotrope Zweistoffgemisch ausschließlich dem Zulaufteil zugeführt 40 wird.

Gemäß Figur 1 wird eine Destillationskolonne 1 - im folgenden Kolonne 1 genannt - durch eine in Längsrichtung wirksame Trenneinrichtung 2 in Go/P

einen Zulaufteil 3 und einen Entnahmeteil 4 unterteilt. Der Entnahmeteil 4 ist am oberen Ende der Trenneinrichtung 2 durch einen Flüssigkeitssammler 5 üblicher Bauart so abgeschlossen, daß die von oben aus dem nicht unterteilten oberen Bereich 6 der Kolonne 1 herabströmende Flüssigkeit 05 vollständig in den Zulaufteil 3 der Kolonne abgeleitet wird, so daß von dem nicht unterteilten oberen Bereich 6 keine Zusatzkomponente E (Extraktionsmittel) in den Entnahmeteil 4 gelangen kann. Dem Kopf des oben offenen Zulaufteils 3 und dem Kopf des oben Dampf durchlassenden, jedoch Flüssigkeit absperrenden Entnahmeteils 4 werden in Teilströmen das azeotrope 10 Zweistoffgemisch A,B zugegeben. Die Zufuhr des Teilstroms am Kopf des Entnahmeteils 4 entspricht der erforderlichen Flüssigkeitsmenge für den Stoffaustausch innerhalb des Entnahmeteils 4. Diese Funktion erklärt, daß dieser Zulaufstrom bevorzugt flüssig und mit möglichst niedriger Temperatur zugegeben wird, um die Menge möglichst klein zu halten. Gemäß Figur l 15 wird demnach das azeotrope Zweistoffgemisch A,B in Teilströmen jeweils dem Kopf oder in der Nähe des Kopfes des Zulaufteils und Entnahmeteils zugegeben, während die sich in der Zusatzkomponente E schlecht lösende Komponente A des Zweistoffgemisches in üblicher Weise über Kopf der Kolonne abdestilliert wird, und die sich in der Zusatzkomponente E leicht 20 lösende Komponente B des Zweistoffgemisches dampfförmig oder flüssig aus dem Entnahmeteil abgezogen wird. Die Zusatzkomponente E wird wie bei der bekannten extraktiven Destillation in den oberen nicht unterteilten Bereich der Kolonne zugefahren und als Sumpfprodukt rein oder mit geringen Resten der sich leicht lösenden Komponente B als Sumpfprodukt abgezogen 25 und gegebenenfalls im Kreislauf wieder der Kolonne zugeführt.

Gemäß Figur 2 ist der Entnahmeteil A am Kopf gegen den nicht unterteilten oberen Bereich 6 dicht abgeschlossen. Des weiteren ist der Kopf des Entnahmeteils 4 mit einem Kondensator 7 für die Teil- oder Totalkondensation der aus dem Entnahmeteil 4 abzuziehenden sich leicht lösenden Komponente B des Zweistoffgemisches ausgerüstet. Der Entnahmeteil 4 entspricht hier der nachgeschalteten Verstärkungssäule bei der bekannten extraktiven Destillation zur Trennung der sich in der Zusatzkomponente leicht lösenden Komponente von der Zusatzkomponente (Extraktionsmittel).

Im Gegensatz zu einfachen Destillationen in längsunterteilten Kolonnen ist die erfindungsgemäße Ausführung der Extraktivdestillation dadurch gekennzeichnet, daß die im Entnahmeteil abgezogene Seitenfraktion nur am unteren Ende der Längsunterteilung vorbei vom Zulauf- in den Entnahmeteil gelangt. Abgesehen vom Sonderfall einer Totalkondensation des im Entnahmeteil aufsteigenden Brüdens am oberen Ende der Längsunterteilung kann sogar eine Strömung in umgekehrter Richtung stattfinden, d.h. eine Teilmenge

der im Seitenabzug zu entnehmenden Fraktion gelangt am oberen Ende der Längsunterteilung aus dem Entnahmeteil zurück in den oberen gemeinsamen Kolonnenbereich bzw. den Zulaufteil.

05 Der entscheidende Vorteil des erfindungsgemäßen Verfahrens liegt darin, die Trennung eines azeotropen Zweistoffgemisches in seine Einzelkomponenten mittels einer Destillationskolonne durchzuführen.

Patentansprüche

- Verfahren zur destillativen Zerlegung eines azeotropen oder sich an-1. nähernd azeotrop verhaltenden, schwer destillativ trennbaren Stoffgemisches in zwei reine oder weitgehend reine Fraktionen durch Zugabe 05 einer Zusatzkomponente - analog einer Extraktivdestillation - mittels einer Destillationskolonne, die in einem Teilbereich durch eine in Längsrichtung wirksame Trenneinrichtung, die eine Quervermischung von Plüssigkeits- und/oder Brüdenströmen ganz oder teilweise verhindert, in einen Zulaufteil und einen Entnahmeteil unterteilt ist, dadurch 10 gekennzeichnet, daß dem Zulaufteil und dem Entnahmeteil das azeotrope Stoffgemisch in Teilströmen jeweils am Kopf oder in der Nähe des Kopfes zugeführt wird, und die zwei reinen oder weitgehend reinen Fraktionen als Kopfprodukt aus der Destillationskolonne und als Seitenprodukt aus dem Entnahmeteil abgezogen werden. 15
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Zulaufteil das azeotrope Stoffgemisch am Kopf oder in der Nähe des Kopfes zugeführt wird, und die zwei reinen oder weitgehend reinen Fraktionen als Kopfprodukt aus der Destillationskolonne und als Seitenprodukt aus dem Entnahmeteil abgezogen werden.

Zeichn.

25

30

35

fe

FUROPÄISCHER RECHERCHENBERICH

0133510

EP 84 10 8721

		IGE DOKUMENTE	Bataita	KLASSIFIKATION DER
ategone	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile		Betrifft Anspruch	ANMELDUNG (Int. Ct.4)
A	US-A-4 419 188 * Spalte 16, 2 17, Zeile 31; Fig	(T.F. McCALL) Zeile 38 - Spalte gur 4 *	1,2	B 01 D 3/36 B 01 D 3/40
A	US-A-3 881 994 * Figur *	(R.G. FICKEL)	1	
A	US-A-341#2 016 * Figur *	(R.G. GRAVEN)	1	
		**		·
		. * *		
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
				B 01 D C 07 C
. •				
	9			
	er vortiegende Recherchenbericht wur	de für alle Patentansprüche erstellt	-	
	Recherchenort DEN HAAG	Abschlußdatum der Becherche	. VAN	BELLEGHEM W.R.
X:V Y:V B	DEN HAAG KATEGORIE DER GENANNTEN DO on besonderer Bedeutung allein b on besonderer Bedeutung in Verb underen Veröffentlichung derselbe echnologischer Hintergrund nichtschriftliche Offenbarung	OKUMENTEN E : älter petrachtet nach pindung mit einer D : in de en Kategorie L : aus	es Patentdokun dem Anmelde er Anmeldung t andern Gründe	ment, das jedoch erst am oder datum veröffentlicht worden is angeführtes Dokument en angeführtes Dokument en Patentfamilie, überein-

(11) (A) No. 1 222 717

(45) ISSUED 870609

(52) CLASS 202-67

(51) INT. CL. BOID 3/40

(19) (CA) CANADIAN PATENT (12)

- (54) Separation of an Azeotropic Mixture by Distillation in a Distillation Column by a Procedure Similar to Extractive Distillation
- (73) Granted to BASF Aktiengesellschaft Germany (Federal Republic of)

(21) APPLICATION No.

459,954

(22) FILED

840730

(30) PRIORITY DATE Germany (Federal Republic of) (P 33 27 952.7) 830803

7

No. OF CLAIMS

Canadä

Abst

Abstract of the Disclosure: A mixture which is azeotropic or which behaves almost azeotropically and is difficult to separate by distillation, is separated into two pure or substantially pure fractions by distillation, by adding a further component, using a procedure which is similar to extractive distillation and is carried out in a distillation column, a section of which is divided into a feed part and a take off part by means of a separating unit which is effective in the longitudinal direction and completely or partially prevents cross-mixing of liquid streams and/or vapor streams. In this process, the azeotropic mixture is fed as bleed streams to the feed part and to the take off part, in each case at or near the top, and one of the two pure or substantially pure fractions is removed as a top product from the distillation column while the other is removed as a side product from the take off part.

- 1 -

Separation of an azeotropic mixture by distillation in a distillation column by a procedure similar to extractive distillation

The present invention relates to a process for separating a mixture which is azeotropic or behaves almost azeotropically and is difficult to separate by distillation, into two pure or substantially pure fractions by distillation, by adding a further component, using a procedure which is similar to extractive distillation and is carried out in a distillation column, a section of which is divided into a feed part and a take off part by means of a separating unit which is effective in the longitudinal direction and completely or partially prevents cross-mixing of liquid streams and/or vapor streams.

It is known that a two-component azeotropic mixture can be separated into its individual components by means of various distillation methods. These are essentially two-pressure distillation, azeotropic distillation and extractive distillation. These three distillation methods are described in detail by R. Billet in Distillation Industrielle, 1972, pages 223-231.

All three distillation methods have the disadvantage that two or more distillation columns are required for separating the two-component azeotropic mixture, entailing high costs in terms of apparatus and instrumentation.

It is an object of the present invention to simplify the separation by distillation of two-component azeotropic mixtures ie. to carry out the procedure in a singlestage distillation process using one distillation column.

It has been found that this object is achieved, in accordance with the invention, if the azeotropic mixture is fed as bleed streams to the feed part and to the take off part, in each case at or near the top, and one of the two pure or substantially pure fractions is removed as a top product from the distillation column while the

35

5

10

15

20

25

other is removed as a side product from the take off part.

More particularly, the present invention proposes
a process for separating by distillation a mixture which is
azeotropic or behaves almost azeotropically and is difficult
to separate by distillation into two pure or substantially
pure fractions, wherein:

- a) use is made of a single distilation column having a section divided into a feed part and a take off part by means of a separating unit which is effective in the longitudinal direction and prevents cross-mixing of liquid stream, vapor stream or both of them;
- b) a further component in which one of the two fractions to be separated is readily soluble, is added as an extraction agent into the mixture;
- c) the mixture to be separated is fed as a bleed stream to the feed part of the distillation column, at or near the top of said feed part;
- d) the fraction readily soluble in the further component added to the mixture is removed as a side product from the take-off part of the column, and
- e) the other fraction sparingly soluble in the further component is removed as a top product from the column.

In accordance with a first preferred embodiment of the invention:

- the column has an undivided section located above the divided section;
- the take-off part of the divided section of the column has its top sealed off tightly from the undivided upper sections; and
- the top of said take-off part is equipped with a condenser for partial or total condensation of the readily soluble fraction of the mixture, which is removed from said take-off part.

In accordance with another preferred embodiment of

B

10

15

20

25

- 2a -

the invention, the mixture to be separated is also fed as a bleed stream to the take-off part of the distillation column, at or near the top of said take-off part.

These two preferred embodiments of the invention

5. are illustrated in the accompanying drawing, and are described in detail below.

Figure 1 shows a process flowchart for a distillation column in which the two-component azeotropic mixture is fed as bleed streams to the feed part and to the take off part, in each case at the top.

Figure 2 shows a process flowchart for a distillation column in which the two-component azeotropic mixture is fed exclusively to the feed part.

In Figure 1, a distillation column 1 (referred to below as column 1) is divided into a feed part 3 and a take off part 4 by means of a separating unit 2 which is effective in the longitudinal direction. The take off part 4 is closed at the upper end of the separating unit 2 by means of a liquid collector 5 of conventional construction, so that the liquid flowing downward from the undivided upper section 6 of column 1 is conducted completely into the feed part 3 of the column, with the result that the further component E (extraction agent) cannot pass from the undivided upper section 6 into the take off part 4. The two-component azeotropic mixture A, B is fed as bleed streams to the top of the feed part 3, which is open at the top, and the top of the take off part 4, which allows the vapor to pass through the top but prevents liquid from doing so. The bleed stream is fed in at the top of the take off part 4 in an amount corresponding to the amount of liquid required for mass transfer within the take off part 4. has this function, this feed is preferably introduced in liquid form and at a very low temperature, in order to keep

10

15

20

25

the amount very small. Accordingly, in Figure 1, the two-component azeotropic mixture A, B is fed as bleed streams to the feed part and to the take off part, in each case at or near the top, while that component, A, of the said mixture which is sparingly soluble in the ______

- 3 - 0.Z. 0050/36670

further component E is distilled off via the top of the column in a conventional manner, and that component, B, of the stated mixture which is readily soluble in the further component E is removed from the take off part, in the form of vapor or liquid. As in the conventional extractive distillation, the further component E is fed into the upper, undivided section of the column, and is removed as a bottom product, either in pure form or containing small residual amounts of the readily soluble component B, and, if required, is recycled to the column.

In Figure 2, the top of the take off part 4 is sealed off tightly from the undivided upper section 6. Furthermore, the top of the take off part 4 is equipped with a condenser 7 for partial or total condensation of the readily soluble component B of the two-component mixture, which is to be removed from the take off part 4. In this case, the take off part 4 corresponds to the downstream rectification column in the conventional extractive distillation, for separating the component which is readily soluble in the further component from this component (extraction agent).

In contrast to simple distillations in columns divided lengthwise, in the novel procedure for extractive distillation the side fraction removed from the take off part passes from the feed part into the take off part only at the lower end of the longitudinal partition.

Apart from the special case where the vapor rising in the take off part undergoes total condensation at the upper end of the longitudinal partition, it is even possible for flow to take place in the opposite direction, ie. some of the fraction to be removed as a side stream passes, at the upper end of the longitudinal partition, from the take off part back into the upper, common column section or into the feed part.

The decisive advantage of the novel process is that the separation of a two-component azeotropic mix-

- 4 -

ture into its individual components can be carried out by means of one distillation column.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

- l. A process for separating by distillation a mixture which is azeotropic or behaves almost azeotropically and is difficult to separate by distillation into two pure or substantially pure fractions, wherein:
- a) use is made of a single distilation column having a section divided into a feed part and a take off part by means of a separating unit which is effective in the longitudinal direction and prevents cross-mixing of liquid stream, vapor stream or both of them;
- b) a further component in which one of the two fractions to be separated is readily soluble, is added as an extraction agent into the mixture;
- c) the mixture to be separated is fed as a bleed stream to the feed part of the distillation column, at or near the top of said feed part;
- d) the fraction readily soluble in the further component added to the mixture is removed as a side product from the take-off part of the column, and
- e) the other fraction sparingly soluble in the further component is removed as a top product from the column.
 - 2. The process of claim 1, wherein:
- the column has an undivided section located above the divided section;
- the take-off part of the divided section of the column has its top sealed off tightly from the undivided upper sections; and
- the top of said take-off part is equipped with a condenser for partial or total condensation of the readily soluble fraction of the mixture, which is removed from said take-off part.

- 3. The process of claim 2, wherein:
- the further component used as an extraction agent is removed from the bottom of the column up and recycled up to the undivided upper section of said column.
- 4. The process of claim 1, wherein the mixture to be separated is also fed as a bleed stream to the take-off part of the distillation column, at or near the top of said take-off part.
 - 5. The process of claim 4, wherein:
- the column has an undivided section located above the divided section;
- the take-off part of the divided section of the column has its top designed to allow the vapors to pass therethrough but to prevent the liquids from doing so; and
- the mixture fed as a bleed stream at or near the top of said take-off part is introduced in an amount corresponding to the amount of liquid required for mass transfer within said take-off part.
 - The process of claim 5, wherein:
- the mixture fed as a bleed stream at or near the top of the take-off of the column is in liquid form and at a very low temperature.
 - 7. The process of claim 6, wherein:
- the further component used as an extraction agent is removed from the bottom of the column up and recycled up to the undivided upper section of said column.

