Mathematics Homework Sheet 5

Author: Abdullah Oguz Topcuoglu & Yousef Farag

Problem 1

Problem 1(b)

Problem 1(b)(i)

We want to prove $\bigcap_{i \in I} U_i$ is closed. We are given $(\forall i \in I \ U_i \subseteq R)$ is closed.

A set being closed means that its complement is open. So we want to prove that $\bigcup_{i \in I} U_i^c$ is open.

Since each U_i is closed, we know that U_i^c is open.

And from the lecture we know that union or intersection of open sets is open.

Thus $\bigcup_{i\in I} U_i^c$ is open. Which means that $\bigcap_{i\in I} U_i$ is closed.

And this completes the proof.

Problem 1(b)(ii)

We want to prove $\bigcup_{i=1}^{n} U_i$ is closed.

We are given $(U_1, ..., U_n \subseteq R)$ are closed.

A set being closed means that its complement is open. So we want to prove that $\bigcap_{i=1}^n U_i^c$ is open.

Since each U_i is closed, we know that U_i^c is open.

And from the lecture we know that union or intersection of open sets is open.

Thus $\bigcap_{i=1}^n U_i^c$ is open. Which means that $\bigcup_{i=1}^n U_i$ is closed.

And this completes the proof.