NMMB538 - DÚ2 Jan Oupický

1

Chceme ukázat, že $F/F^{p^i}, i \geq 0, p = char(F)$ je čistě neseparabilní. Toto tělesové rozšíření je zřejmě algebraické, jelikož $\forall \alpha \in F : m_{\alpha,F^{p^i}} = x^{p^i} - \alpha^{p^i} \in F^{p^i}[x]$. Chceme tedy ukázat, že $\forall \alpha \in F$ je čistě neseparabilní.

Využijeme prop. S.5 implikaci $(ii) \implies (i)$. Čistě z definice F^{p^i} tedy dokážeme nalézt dané $j \ge 0$ tž. $\alpha^{p^{i^j}} \in F^{p^i}$ (j = 1). Rozšíření je tedy čistě neseparabilní.

2

Máme char(K)=p. Předpokládejme, že K je perfektní, neboli $a\mapsto a^p$ je automorfimus K. Máme tedy $F=K(x), F^p=(K(x))^p$. Víme, že platí $a,b\in K[x]:(a+b)^p=a^p+b^p$. Tudíž $f(x)=\sum f_ix^i\in K[x]\implies (f(x))^p=\sum f_i^px^{ip}$. Díky tomu, že je K perfektní, víme $\forall a\in K\exists b\in K:b^p=a$. Poté již nahledéneme, že $(K(x))^p=K(x^p)=F^p$.

Chceme tedy spočítat $[F:F^p]=[K(x):K(x^p)]$. x je algebraický prvek nad $K(x^p)$, protože $g(T)=T^p-x^p\in K(x^p)[T]=F^p[T]$. Tento polynom je m_{x,F^p} , protože kdyby existoval $f\in F^p[T]:deg(f)< deg(g)$, tak by f|g. Zároveň ale $g(T)=T^p-x^p=(T-x)^p$, takže by f musel být polynom, který je tvaru $(T-x)^i, i< p$, ale to nemůže být polynom $F^p[T]=K(x^p)[T]$, protože x^i se v tam nevyskytují.

Zároveň zřejmě $K(x^p)(x) = K(x, x^p) = K(x)$, takže

$$p = \deg m_{x,F^p} = [K(x) : K(x^p)] = [F : F^p]$$

Není důvod proč stejný postup nebude fungovat pro $[F:F^{p^i}]$, takže $[F:F^{p^i}]=p^i$. Nyní spočteme hodnoty $N_{F|F_p}(\alpha)$, $\alpha=x^2+1$ a $Tr_{F|F_p}(\alpha)$. Víme, že $[F:F^p]=p$, tedy báze F nad F^p má p elementů. Zvolme například bázi (x^0,x^1,\ldots,x^{p-1}) . Tato množina zřejmě generuje Fa má p prvků, tedy je to opravdu báze. Spočítáme jak vypadá matice M_{α} .

$$\alpha u_{1} = \alpha \cdot 1 \implies \mu_{1} = (1, 0, 1, 0, \dots, 0)$$

$$\alpha u_{2} = \alpha \cdot x \implies \mu_{2} = (0, 1, 0, 1, 0, \dots, 0)$$

$$\vdots$$

$$\alpha u_{p-2} = \alpha \cdot x^{p-3} = x^{p-3} + x^{p-1} \implies \mu_{p-2} = (0, \dots, 1, 0, 1)$$

$$\alpha u_{p-1} = \alpha \cdot x^{p-2} = x^{p-2} + x^{p} \implies \mu_{p-1} = (x^{p}, \dots, 0, 1, 0)$$

$$\alpha u_{p} = \alpha \cdot x^{p-1} = x^{p-1} + x \cdot x^{p} \implies \mu_{p-2} = (0, x^{p}, 0, \dots, 0, 1)$$

Ze stejných důvodů jako výše (pokud je K perfektní) platí $K(x,y)^p = K(x^p,y^p)$. Chceme tedy $[K(x,y):K(x^p,y^p)]$. Platí $[K(x,y):K(x^p,y^p)]=[K(x,y):K(x^p,y^p)(x)]\cdot [K(x^p,y^p,x):K(x^p,y^p)]$. Hodnotu $[K(x^p,y^p,x):K(x^p,y^p)]$ známe z předchozího bodu, protože $K(x^p,y^p,x)=K(x,y^p)$. A pokud definijeme $D=K(y^p)$, tak platí

$$[K(x^p, y^p, x) : K(x^p, y^p)] = [D(x) : D(x^p)] = p$$

Stejně tak symetricky můžeme nově definovat D=K(x) a hodnotu $[K(x,y):K(x^p,y^p,x)]=[D(y):D(y^p)]$ spočítat obdobně. Máme tedy $[K(x,y):K(x^p,y^p)]=p^2$.