Homework set 3

Due by 15:00 on Monday, September 11, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io. You may quote problems from older homework sets and results we've read in the textbook if you feel like they help.

Recall that in last week's problems we defined a subset $E \subset V$ of a metrizable vector space to be *bounded* if for any neighborhood U of 0 there exists a $\lambda > 0$ such that $E \subset \mu U$ for any $\mu \geq \lambda$.

Problem 1. Let V be a normed vector space. Show that $E \subset V$ is bounded in the metrizable sense if and only if it is bounded in the usual sense, that is, there exists r > 0 such that $|x| \le r$ for all $x \in E$.

Problem 2. Let V be finite-dimensional and let $|\cdot|_1$ and $|\cdot|_2$ be two norms on V. Show that the norms are equivalent, meaning that there exist constants c and C such that

$$c|x|_1 \le |x|_2 \le C|x|_1$$

for all $x \neq 0$.

A set $E \subset V$ is *convex* if for any $x,y \in E$ the vectors $\lambda x + (1-\lambda)y$ are also in E for $0 \le \lambda \le 1$.

Problem 3. 1. Show that the unit ball in a normed vector space is convex.

- 2. Show that a linear subspace $E \subset V$ is convex.
- 3. If $f: V \to W$ is linear and $E \subset V$ is convex, show that f(E) is convex.

Problem 4. Let V and W be normed vector spaces and let $f:V\to W$ be linear. Show that f is continuous if and only if it is bounded, in the sense that there exists a constant C>0 such that $|f(x)|\leq C|x|$ for all x.

Problem 5. Let V be a normed vector space. We are going to prove that V can be embedded in a Banach space.

- 1. Define *X* to be the set of Cauchy sequences in *V*. Show that *X* may be given the structure of a vector space.
- 2. Show that $(x_n) \mapsto \lim_{n \to \infty} |x_n|$ defines a seminorm on X; that is a function that satisfies the conditions to be norm except |x| = 0 does not imply x = 0.

- 3. Show that $N := \{x \in X \mid |x| = 0\}$ is a closed subspace of X, and that the seminorm on X induces a norm on the quotient space X/N.
- 4. Show that X/N is complete, and thus a Banach space.
- 5. Show that the map $f:V\to X/N$ that sends x to the image of the sequence (x,x,\ldots) under the quotient map is linear, injective, and continuous.
- 6. Show that X/N satisfies the following universal property: If Y is a Banach space and $f:V\to Y$ is a continuous linear map, then there is a unique continuous linear map $\hat{f}:X/N\to Y$ such that the following diagram commutes:

