Opgave 1 For at $\mathbb{C}[z]$ skal være et underrum, skal det opfylde kravene i **Definition 4.1.1** af vektorrum.

1) Lukkethed under addition

Lad $p, q \in \mathbb{C}[z]$ være polynomier af grad n hhv. med komplekse koefficienter $a_0...a_n$ og $b_0...b_n$. Da gælder, at

$$p + q = (a_0 + b_0) + (a_1 + b_1)z^1 + \dots + (a_n + b_n)z^n,$$
(1)

som er et polynomium med komplekse koefficienter $(a_0 + b_0)...(a_n + b_n)$. Altså gælder, at $\mathbb{C}[z]$ er lukket under skalarmoltiplikation.

2) Lukkethed under skalarmultiplikation

Lad $p \in \mathbb{C}[z]$ være et polynomium af grad med komplekse koefficienter $a_0...a_n$. Da gælder, at

$$cp = ca_0 + a_1 z^1 + \dots ca_n z^n (2)$$

som er et polynomium med komplekse koefficienter $ca_0...ca_n$. Altså gælder, at $cp \in \mathbb{C}[z]$.

3) Kommutativitet

Lad $p, q \in \mathbb{C}[z]$ være polynomier af grad n hhv. med komplekse koefficienter $a_0...a_n$ og $b_0...b_n$. Da gælder, at

$$p + q = (a_0 + b_0) + (a_1 + b_1)z^1 + \dots + (a_n + b_n)z^n$$
(3)

$$= (b_0 + a_0) + (b_1 + a_1)z^1 + \dots + (b_n + a_n)z^n$$
(4)

$$= q + p \tag{5}$$

4) Associativitet

Lad $p, q, r \in \mathbb{C}[z]$ være polynomier af grad n hhv. med komplekse koefficienter $a_0...a_n$, $b_0...b_n$ og $c_0...c_n$. Da gælder, at

$$(p+q) + r = ((a_0 + b_0) + (a_1 + b_1)z^1 + \dots + (a_n + b_n)z^n) + c_0 + c_1 z^1 + \dots + c_n z^n$$

$$= ((a_0 + b_0 + c_0) + (a_1 + b_1 + c_1)z^1 + \dots + (a_n + b_n + c_n)z^n)$$

$$= ((a_0 + (b_0 + c_0)) + (a_1 + (b_1 + c_1))z^1 + \dots + (a_n + (b_n + c_n))z^n$$

$$= a_0 + a_1 z^1 + \dots + a_n z^n + (b_0 + c_0) + (b_1 + c_1)z^1 + \dots + (b_n + c_n)z^n$$

$$= p + (q + r)$$

5) Additiv identitet

Det trivielle polynomium p = 0 er den additive identitet.

6) Additiv invers

Lad $p \in \mathbb{C}[z]$ være et polynomium af grad med komplekse koefficienter $a_0...a_n$. Lad q = -p. Da gælder, at

$$p + q = (a_0 + (-a_0)) + (a_1 + (-a_1))z^1 + \dots + (a_n + (-a_n))z^n = 0,$$
 (6)

hvilket gør q til den additive invers.

7) Multiplikativ identitet

Polynomiet p = 1 er den multiplikative identitet.

8) Distributivitet

Lad $p, q \in \mathbb{C}[z]$ være polynomier af grad n hhv. med komplekse koefficienter $a_0...a_n$ og $b_0...b_n$ og $a, b \in \mathbb{F}$. Da gælder, at

$$a(p+q) = a(a_0 + b_0) + a(a_1 + b_1)z^1 + \dots + a(a_n + b_n)z^n$$

$$= (aa_0 + ab_0) + (aa_1 + ab_1)z^1 + \dots + (aa_n + ab_n)z^n$$

$$= aa_0 + aa_1z^1 + \dots + aa_nz^n + ab_0 + ab_1z^1 + \dots + ab_nz^n$$

$$= ap + aq.$$

Der gælder desuden også, at

$$(a+b)p = (a+b)a_0 + (a+b)a_1z^1 + \dots + (a+b)a_nz^n$$

= $(aa_0 + ba_0) + (aa_1 + ba_1)z^1 + \dots + (aa_n + ba_n)z^n$
= $aa_0 + aa_1z^1 + \dots + aa_nz^n + ba_0 + ba_1z^1 + \dots + ba_nz^n$
= $ap + bp$

Siden $\mathbb{C}[z]$ opfylder ovenstående krav, da er det et vektorrum over \mathbb{C} .

 $\mathbb{R}[z]$ er ikke et vektorrum over \mathbb{C} , da dette ikke er lukket under skalarmultiplikation.

Lad p være et polynomium med reelle koefficienter af grad n i $\mathbb{R}[z]$, hvor $z \in \mathbb{C}$.

$$p = a_0 + a_1 z^1 + \dots + a_n z^n (7)$$

Ved skalarmultiplikation med en kompleks konstant c fås

$$cp = ca_0 + ca_1 z^1 + \dots + ca_n z^n,$$
 (8)

som er et polynomium med komplekse koefficienter $ca_0...ca_n$, og altså gælder, at $cp \notin \mathbb{R}[z]$. Altså er $\mathbb{R}[z]$ over \mathbb{C} ikke et vektorrum.

For $\mathbb{R}[x]$ over \mathbb{C} , hvor x er en reel variabel gælder samme som for $\mathbb{R}[z]$ over \mathbb{C} , hvor z er en kompleks variabel - det er ikke et vektorrum.