Дифракция света на ультразвуковой волне

Шмаков Владимир - Б04-105 МФТИ - февраль 2023

Введение

В работе изучается дифракция света на синусоидальной акустической решетке. Метод тёмного поля даёт возможность пронаблюдать фазовую решетку.

Цель работы

- Изучить дифракцию света на амплитудной и фазовой акустической решетке
- Определить скорость ультразвука в воде

Теоретические сведения

При прохождении УЗ волны через жидкость в ней возникают периодические неоднородности коэффициента преломления:

Распределение коэффициента преломления n описывается формулой:

$$n = n_0(1 + m\cos(2\pi x/\Lambda)) \tag{1}$$

где Λ - длина УЗ волны, m - глубина модуляции, определяемая амплитудой волны

Неоднородность коэффициента преломления вызывает неоднородность фаз выходящих волн - возникает фазовая решетка. Распределение фазы описывает формула (2):

$$\varphi = knL = \varphi_0(1 + a\cos 2\pi x/\Lambda) \tag{2}$$

Опишем дифракцию на синусоидальной фазовой решетке. При малых коэффициентах модуляции, функция пропускания описывается формулой:

$$t(x)pprox 1+im\cos\Omega x=1+rac{im}{2}e^{i\Omega x}+rac{im}{2}e^{-i\Omega x}$$

А значит, распределение амплитуды волн описывается формулой:

$$f(x,z) = ae^{ikz} + rac{iam}{2}e^{i\left(\Omega x + \sqrt{k^2 - \Omega^2}z
ight)} + rac{iam}{2}e^{i\left(-\Omega x + \sqrt{k^2 - \Omega^2}z
ight)}$$
 (3)

В общем случае световое поле представляет из себя сумму большого числа плоских волн, распространяющихся под углами, определяемыми условием:

$$\Lambda \sin \psi_m = m\lambda \quad (m = 0, \pm 1, \pm 2, \ldots) \tag{4}$$

Методика

Оборудование

- Оптические приборы
 - Оптическая скамья
 - Осветитель
 - Светофильтры
 - Конденсатор
 - Два длиннофокусных объектива
 - Линза
 - Микроскоп
- Прочее
 - Щель
 - Кювета с водой
 - Пьезодинамик
 - Генератор УЗ частоты
 - Частотометр

Экспериментальная установка

На вход изображенной выше оптической схемы подаётся монохроматическая волна, длина которой определяется выбранным светофильтром Φ . Колебания в жидкости возбуждаются при помощи пьезодинамика закреплённого на кювете C.

На пьезодинамик подаётся переменное напряжение с генератора, частота которого определяется частотометром.

Считаем углы ψ_m достаточно малыми. Тогда, формула (4) упрощается. Для нахождения длины волны будем использовать:

$$\Lambda = mfrac{\lambda}{l_m}$$

Для моей установки используется красный фильтр, пропускающий длину волны: $6400 \pm 200 \dot{A}$. Фокусное расстояние линз O_1 и O_2 - f=30~cм.

Для наблюдения оптических неоднородностей, создаваемых УЗ волной в жидкости соберём следующую оптическую систему:

Собирательная линза O позволяет получить изображение задней плоскости кюветы(a-b). Однако фазовая картина всё равно остаётся невидимой. Поэтому необходимо закрыть главный дифракционный максимум при помощи проволоки.

Так, несущая гармоника фазомодулированного сигнала поглащается, и результирующее распределение интенсивности света определяется по формуле:

$$f(x)=rac{im}{2}e^{i\Omega x}+rac{im}{2}e^{-i\Omega x}=im\cos\Omega x\Rightarrow I(x)=f^2=m^2\cos^2\Omega x=m^2rac{1+\cos^22\Omega x}{2}$$

Обработка результатов

Эксперимент 1 - Определение скорости ультразвука по дифракционной картине

Настроим установку согласно инструкции:

- Проведём юстировку цепи
- Сфокусируем микроскоп на изображении щели S(см. описание установки) поместим микроскоп в фокальную плоскость объектива O_2
- Включим генератор УЗ частоты, и получим дифракционную картину(картина наблюдается на частотах порядка одного мегагерца)

Измерим положения дифракционных максимумов, и построим зависимости положения максимума от его порядка. В результате трёх экспериментов при частотах $(1.46, 1.56, 1.31 \, \text{м}\Gamma u)$ получены следующие зависимости:

По формуле $\Lambda = f \lambda / \alpha$ можем определить длину волны. Для определения погрешностей используем метод частных производных:

$$\Delta \Lambda_{lpha} = rac{\partial \Lambda}{\partial lpha} \Delta lpha = -rac{\Lambda}{lpha} \Delta lpha \hspace{0.5cm} \Delta \Lambda_{\lambda} = rac{\partial \Lambda}{\partial \lambda} \Delta \lambda = rac{\Lambda}{\lambda} \Delta \lambda$$

Домножив длину волны на частоту, узнаем скорость распространения УЗ:

Номер эксперимента	Скорость звука $[{\scriptscriptstyle M}/c]$	Длина волны [мм]
1	1300 ± 40	0.89 ± 0.03
2	1480 ± 50	0.95 ± 0.03
3	1480 ± 70	1.13 ± 0.06

Согласно источнику википедия, скорость ультразвука в воде при комнатной температуре равна $1500\, {\rm M/c}$. Таким образом значения, полученные в экспериментах 2 и 3 в пределах погрешности совпали с «табличным». Эксперимент является достаточно точным, погрешность составляет примерно 4%.

Эксперимент 2 - Определение скорости ультразвука методом тёмного поля

Для наблюдения акустической решетки могут быть использованы два метода. А именно - метод фазового контраста (изменение фазы несущей на $\pi/2$), или метод тёмного поля (устранение несущей гармоники).

Закроем центральный дифракционный максимум вертикальной нитью. С помощью окулярной шкалы измерим расстояние между самой дальней и самой ближней тёмной полосой. «Частота» акустической решетки прямо пропорциональна длине ультразвуковой волны:

$$\Lambda = 2 \cdot rac{Qc}{q-1}$$

(где q - число тёмных полос, c - цена деления, Q - число делений)

Для оценки погрешности заметим, что тёмная полоса может закрывать сразу несколько делений(в моём случае четыре деления). Таким образом, погрешность измерения Q - $\Delta Q = 4~\partial e$ л.

Для каждой из полученных дифракционных картин определим длину волны. Построим график $\Lambda(1/\nu)$, и методом наименьших квадратов определим скорость распространения УЗ волн:

Результат отличается от табличного значения на 3%. Эксперимент можно считать достаточно точным

Вывод

В работе удалось оценить скорость распространения ультразвука в воде. Результаты экспериментов в пределах погрешности совпали с табличными значениями.

Удалось пронаблюдать акустическую решетку методом тёмного поля.