FUNCTION APPROXIMATION

QUANTITATIVE ECONOMICS 2023

Piotr Żoch

October 23, 2023

WHAT IS IT?

Goal: approximate a complicated function $f: \mathbb{R}^n \to \mathbb{R}$ by a simpler function $\hat{f}: \mathbb{R}^n \to \mathbb{R}$.

- We know f only at a finite number of points and we want to approximate it at other points x.
- *f* is too complicated to work with directly (e.g. non-analytic) and we need to represent on a computer.

I will talk only about the most basic ideas.

FUNCTION APPROXIMATION

- What data should be produced and used?
- What family of "simpler" functions should be used?
- What notion of approximation do we use?
- How good can the approximation be?
- How simple can a good approximation be?

Notice similarities and differences between function approximation and statistical regression.

NOTATION

- Today we will focus on continuous functions $f : \mathbb{R}^n \to \mathbb{R}$.
- We can represent every continuous function in a particular function space by a linear combination of basis functions.
- Analogy: Every vector in a vector space V can be represented by a linear combination of basis vectors.

NOTATION

- Let F by the space of continuous real-valued functions with domain $X \subset \mathbb{R}^n$.
- Define the inner product of two functions $f, g \in F$ as

$$\langle f, g \rangle = \int_X f(x)g(x)w(x)dx$$

where $f, g, w \in F$, w is a weighting function.

- $\{F, \langle \cdot, \cdot \rangle\}$ is an inner product space.
- We want to approximate a known function $f: X \to \mathbb{R}$ in $\{F, \langle \cdot, \cdot \rangle\}$.

NOTATION

• Let $\hat{f}(\cdot, \beta)$ be a parametric approximation of f. We have

$$\hat{f}(x, \beta) = \sum_{j=0}^{J} \beta_j \phi_j(x)$$

- $\phi_i(x)$ are basis functions. Write $\Phi_J = \{\phi_0, \phi_1, \dots, \phi_J\}$.
- $\beta = [\beta_0, \beta_1, \dots, \beta_J]$ is a vector of coefficients.
- *J* is the order of interpolation.
- We want to find β such that $\hat{f}(\cdot, \beta)$ is a "good" approximation of f.
- Define the residual function $r(x, \beta) f(x) \hat{f}(x, \beta)$. We want to make it small in some sense.

SPECTRAL METHODS

- Spectral methods: basis functions are non-zero on the entire domain of f.
- Polynomial interpolation: basis functions are polynomials
- Fourier series: basis functions are sines and cosines

INTERPOLATION

- Suppose we know f at N = J + 1 points $\{x_i\}_{i=0}^J$. We call these points interpolation nodes.
- Note: we have the same number of points as basis functions.
- Let r_i be the residual at x_i . We have

$$\begin{bmatrix} r_0 \\ \vdots \\ r_J \end{bmatrix} = \begin{bmatrix} f(x_0) \\ \vdots \\ f(x_0) \end{bmatrix} - \begin{bmatrix} \phi_0(x_0) & \cdots & \phi_0(x_J) \\ \vdots & \ddots & \vdots \\ \phi_J(x_0) & \cdots & \phi_J(x_J) \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_J \end{bmatrix}$$

Abuse notation and write it as

$$r = f - \Phi \beta$$

INTERPOLATION

- The idea of interpolation is to find β such that $r_i = 0$ for all i.
- The unknowns are the coefficients β.
- This is equivalent to solving the linear system of equations

$$\Phi \beta = f$$

with an obvious solution $\beta = \Phi^{-1} f$.

REGRESSION

- If we have more points than basis functions, M > J + 1 we cannot interpolate.
- We have to define a loss function $L(\cdot, r)$ and minimize it.
- If we use the squared loss function

$$L(x,r) = \sum_{i=0}^{M} r(x_i, \beta)^2,$$

we get the least squares problem with solution

$$\beta = \left(\Phi^T \Phi\right)^{-1} \Phi^T f$$

WEIERSTRASS THEOREM

Theorem

Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then for every $\varepsilon>0$ there exists a polynomial p such that

$$\sup_{x \in [a,b]} |f(x) - p(x)| \le \varepsilon.$$

 We can approximate any continuous function on a compact set by a polynomial as closely as we want.

BASIS FUNCTION CHOICE

- Which basis functions should we use?
- The most natural choice seems to be monomials: $\phi_i(x) = x^j$.
- Problem: consecutive monomials are very similar to each other does x^{10} really add much to x^{9} ?
- The resulting matrix Φ is a Vandermonde matrix, which is ill-conditioned.

BASIS FUNCTION CHOICE

- If Φ look like a diagonal matrix, then Φ^{-1} is easy to compute.
- Intiuition: use basis functions that give us different information about f
- Orthogonal polynomials are a good choice: $\langle \phi_i, \phi_i \rangle = 0$ for $i \neq j$.

ORTHOGONAL POLYNOMIALS

For orthogonal polynomials, we have

$$\beta_j = \int_X f(x) \phi_j(x) w(x) dx$$

- Intiuition: use basis functions that give us different information about
 f.
- Orthogonal polynomials are a good choice: $\langle \phi_i, \phi_i \rangle = 0$ for $i \neq j$.
- Examples: Legendre, Chebyshev, Hermite, Laguerre, Jacobi polynomials.

CHEBYSHEV POLYNOMIALS

• Chebyshev polynomials $T_n(x): [-1,1] \to \mathbb{R}$ are given by

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_{j+1}(x) = 2xT_j(x) - T_{j-1}(x)$$

• Let X = [-1, 1] and $w(x) = \frac{1}{\sqrt{1-x^2}}$. We have

$$\langle T_i, T_j \rangle = \int_{-1}^1 T_i(x) T_j(x) \frac{1}{\sqrt{1 - x^2}} dx = \begin{cases} 0 & i \neq j \\ \pi & i = j = 0 \\ \frac{\pi}{2} & i = j \neq 0 \end{cases}$$

CHEBYSHEV POLYNOMIALS

CHEBYSHEV NODES

- But it is not the only nice property of Chebyshev polynomials.
- Chebyshev nodes are roots of Chebyshev polynomials on [-1, 1]:

$$x_i = \cos\left(\frac{2i-1}{2n}\pi\right)$$
 for $i = 1, ..., n$.

It can be verified that T_n equals 0 at these points.

 Chebyshev nodes are not equally spaced, they are clustered at the endpoints of the interval.

NODES CHOICE

- Why are these nodes useful?
- We know that at the interpolation nodes x_i we have $r_i = 0$.
- We want to make the residual as small as possible at other points x.
- A silly choice of nodes (e.g. equidistant) can lead to a large residual at other points, even with a high order of interpolation – Runge phenomenon.
- Minmax approximation: polynomial approximation using Chebyshev nodes minimizes the maximum absolute error on [-1, 1].

