자료구조 프로젝트 1 보고서

2014170119 신소재공학부 정준

- 선택한 자료구조
 - 리스트 (파이썬 기본)
 - 선택한 이유: 구현이 간편했기 때문에. 일단 구현 후 다른 자료구조로 대체하려 하였다.
- 성능 예상
 - u = 사용자, f = 친구 정보, t = 트윗

기능	성능 분석	
Read data files	O(u) + O(f) + O(t)	O(u) + O(t)
Display statistics	O(u)(for each users) × O(t) (TweetsByUser)	$O(u \times t)$
Top 5 most tweeted words	O(t log t)(python 기본 정렬)	O(t log t)
Top 5 most tweeted users	O(u) × O(t)(TweetsByUser) × O(u log u)(python 기본 정렬)	$O(t \times u^2 \log u)$
Find users who tweeted a word	O(t)	O(t)
Find all people who are friends of the above users	O(u')(u'=위 기능에서 선택된 사용자)	O(u')
Delete all mentions of a word	O(t)	O(t)
Delete all users who mentioned a word	$O(u)(Transpose) \times O(f) + O(u) \times O(f) \times (O(u)(UserByNum) + O(t) \times (TweetsByUser))$	$O(u^3) + O(u^2 \times t)$
Find strongly connected components	2 × (O(u)(DFS) + O(u log u) (pyton 기 본 정렬)) + O(u) (Transpose)	O(u log u)
Find shortest path from a given user	O(u') + O(u') × O(u' log u') (u'=선택된 사용자와 연결된 모든 사용자)	O(u'² log u')

- 성능을 개선할 수 있는 방법
 - 자료구조로 binary search tree를 사용하고 red-black tree를 적용한다.
 - 다익스트라 알고리즘에서 우선순위 큐를 사용한다.
 - 해시 테이블을 사용한다.