MBTI PREDICTOR 5000 Cady Li Dhruval Kothari Jonathan Tay

TABLE OF CONTENTS

- OVERVIEW
- - DATA VISUALIZATION, CLEANING & PREPROCESSING
- MACHINE LEARNING
- RESULTS & ACCURACY
- 5 FUTURE RECCOMMENDATIONS

OVERVIEW

WHAT DOES IT DO?

01

OVERVIEWAN INFORMATION GROWTH

Information growth has accelerated with the advent of social media especially in the form of textual data types.

01 OVERVIEW POSSIBLE APPLICATIONS

Job Applications

Relationship Apps

Online Marketing

OVERVIEWMYERS-BRIGGS TYPE INDICATOR

Extroverts

are energized by people, enjoy a variety of tasks, a quick pace, and are good at multitasking.

Introverts

often like working alone or in small groups, prefer a more deliberate pace, and like to focus on one task at a time.

Sensors

are realistic people who like to focus on the facts and details, and apply common sense and past experience to come up with practical solutions to problems.

Intuitives

prefer to focus on possibilities and the big picture, easily see patterns, value innovation, and seek creative solutions to problems.

Thinkers

tend to make decisions using logical analysis, objectively weigh pros and cons, and value honesty, consistency, and fairness.

Judgers

tend to be organized and prepared, like to make and stick to plans, and are comfortable following most rules.

Feelers

tend to be sensitive and cooperative, and decide based on their own personal values and how others will be affected by their actions.

Perceivers

prefer to keep their options open, like to be able to act spontaneously, and like to be flexible with making plans.

OVERVIEW OUR MODEL

Textual Data

MBTI

Predict personality type from textual data

DATA RETRIEVAL

Reddit: All comments from users in r/mbti

```
SELECT flair_text.author_flair_text as flair_text, comments.body as body, comments.subreddit as subreddit, comments.author as author FROM {
    SELECT author,author_flair_text
    FROM [fh-bigquery:reddit_comments.all]
    WHERE author_flair_text != 'null'
    AND REGEXP_MATCH(author_flair_text,r'([IEie][SNsn][TFtf][JPjp]\W)')
    GROUP BY author,author_flair_text
    ) AS flair_text
INNER JOIN {
    SELECT author_flair_text, body, subreddit, author
    FROM [fh-bigquery:reddit_comments.all]
    ) AS comments
    ON
    comments.author = flair_text.author
```


July 30, 2018 Dataset Open Access	
Myers Briggs Personality Tags on Reddit Data	
Dylan Storey	
This data was pulled on 11/10/2018 from google big query using the following query:	

DATA VISUALIZATION, CLEANING & PREPROCESSING

DATA CLEANING REMOVING AMBIGUOUS DATA

Plotting box plot for MBTI count per user

```
author_to_remove = df[df['MBTIs'].str.len() > 1]['author'].tolist()
df1 = df[~df['author'].isin(author_to_remove)].copy()
```

Removing users with more than one MBTI

DATA CLEANING REMOVING STOPWORDS

```
def preprocess_text(sentence):
    sentence = str(sentence)
    sentence = p.clean(sentence)
    #tokenize word and remove stop words
    word_tokens = word_tokenize(sentence)
    sentence = [w for w in word_tokens if not w.lower() in stop_words]
    sentence = [x for x in sentence if "'" not in x]
    sentence = ' '.join(sentence)
    # Removing multiple spaces
    sentence = re.sub(r"\s+", " ", sentence)
    sentence = sentence.strip()
    sentence = sentence.replace('\n',' ')
    return sentence

df1['clean'] = df1['body'].apply(lambda x:preprocess_text(x))
```

Removing stop words gives more **context** to the comments and removes **"noisy"** words that do not add value to our prediction

After removing stopwords

DATA CLEANING

NORMALIZING COMMENT LENGTHS

After removal of outliers

We limit comment lengths to between 20-30 words due to limited processing power and considering mean and median comment lengths

Before removal of outliers

DATA CLEANING DOWN SAMPLING CLASSES

There are unequal proportions of each MBTI type

DATA CLEANING DOWN SAMPLING CLASSES

Before

1,984,338 samples

12,356 samples

DATA CLEANING DOWN SAMPLING CLASSES

There is a wide distribution of each class and counts are largely unequal which may lead to the model over-fitting to the majority class

Before

DATA CLEANING DOWN SAMPLING CLASSES

Before

After

DATA CLEANING DOWN SAMPLING CLASSES

```
distrib = dict(allCounts)
counts = {}
for i in distrib:
   for j in i:
       c = counts.get(j,0)
       counts[j] = c+distrib[i]
ie = counts["I"] - counts["E"]
total = distrib["INTP"] + distrib["INFP"] + distrib["INTJ"] +
distrib["INFJ"] +distrib["ISTP"] + distrib["ISFP"] + distrib["ISTJ"] +
distrib["ISFJ"]
for i in distrib:
    if i[0] == "I":
        toremove = int(ie*(distrib[i]/total))
       distrib[i] -= toremove
```

DATA VISUALIZATION

WORDCLOUD

DATA VISUALIZATION

WORDCLOUD

Introvert Extrovert Sensors Intuitives

MACHINE LEARNING

WHAT DID WE USE?

MACHINE LEARNING TOKENIZER

BERT: Bidirectional Encoder Representation From Transformers

 Pretrained on unsupervised Wikipedia and BookCorpus Datasets using language modelling.

ALBERT: A lite BERT that lowers memory consumption and increases the training speed of BERT

Learns contextual relations between words in a text

Transformer based approach is superior to the standard LSTM approaches and deeply bidirectional

MACHINE LEARNING

TOKENIZER --> Converts words to vectors

	text
0	post " try telling people time always joking
1	kind strange lump vague references religions o
2	helped friends mine purchase two Honda Civic S
3	, one come back ? , indeed , need meds , chang
4	promised fuck climate campaign . promises fuck
131335	EKIN . forget exact number . class small fills
131336	Congrats!! senior, makes nostalgic sad, ex
131337	Oh called . sanguine choleric * , whatever mea
131338	traditional calendar; Extraordinary Form pari
131339	feel pain , friend . Craigslist crap shoot , e
131340	rows × 1 columns

U	0.236103	-0.250498	0.364666	1.066560	0.058454	-0.560975	1.405643
1	-0.910153	0.755426	0.616445	0.529585	-0.573597	-0.533925	1.681382
2	-1.336975	-0.329202	1.147945	-1.601125	-0.038263	-0.191345	2.353152
3	0.852663	-1.131741	0.702313	0.933792	0.787668	0.265421	-1.255930
4	0.641273	0.661787	-0.949508	0.768758	-0.842885	0.330161	1.045339
131335	0.579979	1.240591	0.911377	-0.035959	0.736116	1.456866	0.607049
131336	0.070313	-0.476752	-0.300813	2.849004	1.418178	-1.435400	-0.612279
131337	0.087869	0.627987	-0.840733	0.125208	-0.803629	-0.430973	0.480788
131338	0.171308	-1.423708	0.447174	-0.527545	0.777886	0.094312	0.152559
131339	0.261051	0.582918	-0.841849	0.666375	-0.673524	0.883894	-1.360341

131340 rows × 768 columns

0 0.236103 -0.250408 0.364666 1.068560 0.058454 -0.560075 1.405643

MACHINE LEARNING CLASSIFIERS - sklearn

- 1. K Nearest Neighbors
- Linear SVM (Support Vector Machine)
- 3. Decision Tree Classifier
- 4. Neural Net (Multi Layer Perceptron)
- 5. Random Forest
- 6. RBF (Radial Basis Function) SVM
- 7. Naïve Bayes (Quadratic Discriminant Analysis)
- 8. AdaBoost

MACHINE LEARNING

Process

```
data_x, data_y = get_inputs(filename, layer)
data x = StandardScaler().fit transform(data x)
x_train, x_test, real_y_train, real_y_test = train_test_split(data_x, data_y, test_size = 0.2)
labels = ["Extraversion (E) vs Introversion (I)", "Intuition (N) vs Sensing (S)", "Feeling (F) vs
Thinking (T)", "Judging (J) vs Perceiving (P)" ]
for idx, label in enumerate(labels):
    y_train = real_y_train[:, idx]
    for clf in classifiers:
       score = clf.score(x test, y test)
       v pred = clf.predict(x test)
       tn, fp = conf matrix[0]
       fn, tp = conf_matrix[1]
       accuracv = (tp + tn) / (tp+tn+fp+fn)
```

- Train Test Split of 0.2
- Select axis to train on for binary classification
- Fit model from train data
- Plot Confusion Matrix and calculate metrics

MACHINE LEARNING WHAT WE USED

Techniques from Course	New Techniques tried
Sampling and Preprocessing	One-Hot Encoding, Down Sampling
Decision Tree Classifier	Word Vectorization and other NLP techniques
Confusion Matrices	Other classifiers (e.g. SVM)

RESULTS & ACCURACY 04

HOW WELL DID IT DO?

RESULTS & ACCURACY

Extraversion (E) vs Introversion (I)

Analysis of Extraversion (E) vs Introversion (I)

Model	Accuracy	F1 Score	Precision	Recall
K Nearest Neighbors	0.517	0.484	0.482	0.487
Linear SVM	0.537	0.467	0.504	0.436
Decision Tree	0.515	0.443	0.477	0.414
Neural Net (MLP)	0.530	0.500	0.496	0.504
Random Forest	0.542	0.483	0.509	0.460
RBF SVM	0.558	0.100	0.968	0.053
Naive Bayes	0.538	0.495	0.505	0.487
AdaBoost	0.529	0.453	0.493	0.419

The best models for E/I are RBF SVM and Neural Net.

RESULTS & ACCURACY

Extraversion (E) vs Introversion (I)

Trying out: Nearest Neighbors Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.4844559585492228 Precision: 0.4815450643776824 Recall: 0.48740225890529976 Accuracy: 0.5169902912621359 Took 89 seconds

Trying out: Linear SVM

Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.4674115456238361 Precision: 0.5035105315947843 Recall: 0.43614248479582973 Accuracy: 0.5372168284789643 Took 254 seconds

826

Trying out: Decision Tree

Labelling: Extraversion (E) vs Introversion (I)

524

477

0.5372168284789643 Classification Accuracy: F1 score: 0.44330855018587356 Precision: 0.47652347652347654 Recall: 0.4144222415291051 Accuracy: 0.5153721682847896 Took 9 seconds

797

0

0.5153721682847896

Trying out: Neural Net Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.4997845756139595 Precision: 0.49572649572649574 Recall: 0.5039096437880104 Accuracy: 0.5303398058252428 Took 10 seconds

731

0.5303398058252428

Trying out: Random Forest Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.4831050228310502 Precision: 0.5091434071222329 Recall: 0.4596003475238923 Accuracy: 0.5420711974110033 Took 0 seconds

0.5420711974110033

0.5169902912621359

Trying out: RBF SVM Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.10049423393739704 Precision: 0.9682539682539683 Recall: 0.052997393570807995 Accuracy: 0.558252427184466 Took 272 seconds

Trying out: Naive Bayes Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.49535603715170284 Precision: 0.5045045045045045 Recall: 0.48653344917463076 Accuracy: 0.5384304207119741 Took 0 seconds

0.5384304207119741

Trying out: AdaBoost

Labelling: Extraversion (E) vs Introversion (I)

Classification Accuracy: F1 score: 0.4530075187969924 Precision: 0.49334698055271237 Recall: 0.41876629018245004 Accuracy: 0.529126213592233 Took 41 seconds

0.529126213592233

RESULTS & ACCURACY

Intuition (N) vs Sensing (S)

Analysis of Intuition (N) vs Sensing (S)

Model	Accuracy	F1 Score	Precision	Recall
K Nearest Neighbors	0.511	0.538	0.530	0.547
Linear SVM	0.541	0.591	0.552	0.636
Decision Tree	0.513	0.552	0.530	0.576
Neural Net (MLP)	0.547	0.567	0.566	0.569
Random Forest	0.517	0.656	0.522	0.881
RBF SVM	0.551	0.699	0.537	1.0
Naive Bayes	0.520	0.547	0.539	0.555
AdaBoost	0.534	0.588	0.545	0.638

The best models for N/S are RBF SVM and Neural Net.

RESULTS & ACCURACY

Intuition (N) vs Sensing (S)

RESULTS & ACCURACY

Feeling (F) vs Thinking (T)

Analysis of Feeling (F) vs Thinking (T)

Model	Accuracy	F1 Score	Precision	Recall
K Nearest Neighbors	0.524	0.521	0.511	0.531
Linear SVM	0.552	0.558	0.537	0.580
Decision Tree	0.524	0.537	0.510	0.568
Neural Net (MLP)	0.546	0.545	0.532	0.558
Random Forest	0.540	0.544	0.525	0.564
RBF SVM	0.505	0.662	0.496	0.995
Naive Bayes	0.555	0.517	0.548	0.489
AdaBoost	0.530	0.536	0.516	0.557

The best models for F/T are RBF SVM and Naïve Bayes.

RESULTS & ACCURACY

Feeling (F) vs Thinking (T)

RESULTS & ACCURACY

Perceiving (P) vs Judging (J)

Analysis of Perceiving (P) vs Judging (J)

Model	Accuracy	F1 Score	Precision	Recall
K Nearest Neighbors	0.556	0.357	0.392	0.327
Linear SVM	0.621	0.150	0.482	0.089
Decision Tree	0.617	0.063	0.395	0.034
Neural Net (MLP)	0.565	0.408	0.418	0.398
Random Forest	0.623	0.002	0.500	0.001
RBF SVM	0.631	0.044	0.955	0.023
Naive Bayes	0.493	0.444	0.378	0.537
AdaBoost	0.596	0.204	0.395	0.137

The best models for P/J are RBF SVM and Naïve Bayes.

RESULTS & ACCURACY

Perceiving (P) vs Judging (J)

INSIGHTS & FUTURE RECOMMENDATIONS

DATA-DRIVEN INSIGHTS & WHATS NEXT?

INSIGHTS

No issue with classifiers as we tried a range of classifiers but all of them did not improve the accuracy above a bound of 65%.

We recommend the RBF SVM as it is the best performing classifier, with the highest average accuracy

FUTURE RECOMMENDATIONS

TRAIN OUR MODEL FROM OTHER TEXT SOURCES

Tweets

Personal Profile Captions

Personal Statements

Use primary text data instead of secondary text data.

FUTURE RECOMMENDATIONS

DIFFERENT MODELS

Trained on billions of parameters 470 times bigger than BERT model

Uses auto-regressive (AR) models instead of auto-encoding (AE) which has improved accuracy on tasks like natural language inference

FUTURE RECOMMENDATIONS: HYPERPARAMETER TUNING

Hyperparameters help us find the balance between overfitting and underfitting our model.

E.g. RBF SVM: We can optimize the C and Gamma parameters.

THANK YOU

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution