Матанализ лекция 1

Линьков Вадим

9 сентября 2024 г.

Всякое рациональное число представимо в виде периодической десят. дроби

$$\sum_{i=1}^{k} x_i \qquad \sum_{i=1}^{k} x_i$$

12,60(714285) - предст в виде обык дроби

 $12,6+\frac{714285}{10^8}+\frac{714285}{10^14}$ - бесконечно убывающая геометрическая прогрессия, член которой $b_0=\frac{714285}{10^8}$ $q=10^-6$

Тогда
$$S=\frac{b_0}{1-q}+12.6=\frac{714285}{10^8\cdot (1-\frac{1}{10^6})}+12.6=\frac{714285}{100\cdot 999999}+12.6=\frac{5}{700}+\frac{63}{5}=\frac{353}{28}$$

Определение. Число c=a+b - сумма действительных чисел a и b, если $\forall q_1,q_2,r_1,r_2:q_1\leq a\leq q_2$ и $r_1\leq b\leq r_2$

Опр. Мн-во $E \in R$ наз-ся ограниченным сверху если $\exists M: \forall x \in E: x \leq M$

Опр. точная верх грань - наим их всех граней: $M = \sup E$

$$\sup[0;1] = 1$$
 $\sup(0;1) = 1$

Док-во:

- 1) 1 верх грань 2) Покажем, что $\forall B < 1$ не верхняя грань $\exists x_0 = \frac{b+1}{2} > b$ чтд
- 0, (9) = 1(ШОК КОНТЕНТ) $0, (9) = \frac{9}{10} + \frac{9}{100} + \dots = \frac{\frac{9}{10}}{1 \frac{1}{10}} = 1$

 $M = \sup E,$ если: 1)М - верхняя грань $2) \forall b < M : \overline{b}$ - верхняя грань $(\forall x \in E \mapsto x \leq b)$

 $\forall b < M \exists x \in E : x > b$ Onp. $M = \sup E \longleftrightarrow$

- $1) \forall x \in E \mapsto x \leq M$
- $(2) \forall b < m \exists x \in E : x > M$

Oпр. $M = \sup E \longleftrightarrow$

- 1) $\forall x \in E \mapsto x \leq M$
- 2) $\forall \epsilon > 0 \exists x \in E : x > M \epsilon$

Опр. Точная нижняя грань - наиб из ниж. граней.(инфинум)

Док: $\sup(A + B) = \sup(A) + \sup(B)$

Док-во: 1) $\alpha = \sup A \longrightarrow \forall a \in A \mapsto a \leq \alpha$

 $\beta = \sup B \longrightarrow \forall b \in B \mapsto b <= \beta$ $\theta = \sup(A+B)$, r.e $a+b \le \theta$

 $\forall (a+b) \in A + Ba + b \le \alpha + \beta$

2) $\alpha = \sup A \longrightarrow \forall \epsilon > 0 : \exists a \in A : a > \alpha - \epsilon$ $\beta = \sup B \longrightarrow \forall \epsilon > 0 \exists b \in B : b > \beta - \epsilon$

 $\forall \epsilon > 0 \\ \exists (a+b) \in (A+B): a+b > \alpha+\beta-2 \cdot \epsilon \qquad (\alpha+\beta=\theta)$

Th. (об отделимости)

Пусть $\forall x \in X, \forall y \in Y \mapsto x \leq y$ Тогда $\exists \sup X, \inf Y,$ причем $\sup X \leq \inf Y$

Д-во:

 $\forall x \in X \mapsto x \leq y_0 \in Y \Longrightarrow X$ - огр.
сверху, а у всякого огр сверху мн - ва $\exists \sup X$

 $2) \forall y \in Y \mapsto \sup X \leq y$ - это значит, что $\sup X - Y, \ \leq \inf Y \ \longrightarrow \sup X \leq \inf Y$ чтд

