

Cod	e :	15	EC	232T

[Turn over

Register					
regiote.					
Managhan					i 1
Number					

III Semester Diploma Examination, Oct./Nov.-2019

DIGITAL ELECTRONICS

[Max. Marks : 100 Time: 3 Hours] **Instructions**: (i) Answer any six questions from Part – A. $(5 \times 6 = 30 \text{ marks})$ (ii) Answer any seven full questions from Part – **B**. $(7 \times 10 = 70 \text{ marks})$ PART - A 5 1. Define: (i) Encoder (ii) Decoder (iii) Multiplexer (iv) Demultiplexer (v) Priority Encoder 2. Describe different types of triggering used in Flip-Flops. 5 3. Define counter, modulus, register, up-counting and down-counting. 5 List the applications of Registers. 4. Define Resolution, Accuracy, Settling time, Monotonicity and Speed as related to 5. DAC. 5 6. List the features of DDR memory. 5 7. Compare the features of RAM and ROM. 5 5 8. Show how to implement 2-input X-NOR function using PAL. 5 9. Define the following terms with respect to logic gates: (i) Power dissipation (ii) Fan-in (iii) Fan-out (iv) Noise margin (v) Propagation delay

1 of 2

PART - B

10.	(a)	Explain the working of 2: 1 multiplexer.	_
	(b)	Differentiate between multiplexer and demultiplexer	5 5
11.	(a)	Show how to implement NAND and X-OR gate using 4: 1 multiplexer.	6
	(b)	Calculate the control lines and number of gates needed for 4 · 1 MUX and 1 · 8	v
		DEMUX.	4
12.	(a)	Write any five comparison between combinational and sequential circuits.	5
	(b)	Show how to configure JK Flip-Flop as D Flip-Flop and T Flip-Flop.	5
13.	(a)	Demonstrate how IC 555 timer can be used as monostable multivibrator.	5
	(b)	List the applications of Flip-Flops.	5
14.	(a)	Explain the functioning of a 3-bit SERIAL-IN-SERIAL-OUT shift register.	5
	(b)	Distinguish between Synchronous and Asynchronous counter.	5
15.	(a)	Demonstrate how to configure IC 7490 as decade counter and write its truth-	
	a .	table.	6
	(b)	Compute the overall modulus of a cascaded counter containing mod 5, mod 8	
		and mod 4 and justify your answer.	4
16.	(a)	Explain a binary Ladder network of DAC with suitable diagram.	6
	(b)	An 8 bit D/A converter has a step size of 20 mV. Determine the full-scale	
		output and percentage resolution.	4
17.	(a)	Show how successive approximation type ADC can be used to convert analog	
	4	signal into digital form with circuit diagram.	7
	(b)	List any three applications of ADC.	3
18.	(a)	Explain the working principle of Dynamic Random access memory.	5
	(b)	A certain memory is specified as $32 \text{ K} \times 8$. Determine:	5
		(i) The number of bits in each word	
		(ii) The number of words being stored.	
		(iii) The number of address input lines.	
19. (a)	(a)	Explain the functioning of CMOS-inverter.	5
	(b)	Illustrate CMOS-TO-TTL interface using 5 V supply voltage.	5