

National Bureau of Standards

Library, N.W. Bldg

FEB 1 1965

Central Radio Propagation Laboratory

TK 6570
BTU47

ALL102 155021

IONOSPHERIC PREDICTIONS

for
April
1965

IMPORTANT
NOTICE

SEE
INTRODUCTION PAGE

TB 11-499-25/TO 31-3-28

U.S. DEPARTMENT of COMMERCE

National Bureau of Standards

Number 25/Issued January 1965

U.S. DEPARTMENT OF COMMERCE
Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

Central Radio Propagation Laboratory

Ionospheric Predictions

for April 1965

[Formerly "Basic Radio Propagation Predictions," CRPL Series D.]

The CRPL Ionospheric Predictions are issued monthly as an aid in determining the best sky-wave frequencies over any transmission path, at any time of day, for average conditions for the month. Issued three months in advance, each issue provides tables

of numerical coefficients that define the functions describing the predicted worldwide distribution of foF2 and M(3000)F2 and maps for each even hour of universal time of MUF(Zero)F2 and MUF(4000)F2.

NOTE: Department of Defense personnel see back cover.

Use of funds for printing this publication approved by the Director of the Bureau of the Budget (June 19, 1961).

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Price 25 cents.
Annual subscription (12 issues) \$2.50 (75 cents additional for foreign mailing).

Number 25

Issued

January 1965

National Bureau of Standards

The functions of the National Bureau of Standards are set forth in an Act of Congress, March 3, 1901, as amended. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and tech-

nical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. The Bureau also serves as the Federal technical research center in a number of specialized fields.

Central Radio Propagation Laboratory

The Central Radio Propagation Laboratory at Boulder, Colorado, is the central agency of the Federal Government for the collection, analysis, and dissemination of information on propagation of radio waves at all frequencies along the surface of the earth, in the atmosphere, and in space, and performs scientific studies looking toward new techniques for the efficient use and conservation of the radio spectrum. To carry out this responsibility, the CRPL—

1. Acts as the central agency for the conduct of basic research on the nature of radio waves, the pertinent properties of the media through which radio waves are transmitted, the interaction of radio waves with those media, and on the nature of radio noise and interference effects. This includes compilation of reports by other foreign and domestic agencies conducting research in this field and furnishing advice to government and nongovernment groups conducting propagation research.

2. Performs studies of specific radio propagation mechanisms and performs scientific studies looking

toward the development of techniques for efficient use and conservation of the radiofrequency spectrum as part of its regular program or as requested by other government agencies. In an advisory capacity, coordinates studies in this area undertaken by other government agencies.

3. Furnishes advisory and consultative service on radio wave propagation, on radiofrequency utilization, and on radio systems problems to other organizations within the United States, public and private.

4. Prepares and issues predictions of radio wave propagation and noise conditions and warnings of disturbances in these conditions.

5. Acts as a central repository for data, reports, and information in the field of radio wave propagation.

6. Performs scientific liaison and exchanges data and information with other countries to advance knowledge of radio wave propagation and interference phenomena and spectrum conservation techniques, including that liaison required by international responsibilities and agreements.

NOTICE

Beginning with the December issue, No. 24 of this series, polar plots of the prediction maps will be included for every even hour universal time. These are plotted on the same scale as the former polar plots, but extend only to 40° latitude. The contours of the rectangular world maps are now cut off at 80° latitude. Occasional slight discrepancies between the contours of the rectangular maps and those of the polar maps are due to the different computer programs used to derive the two sets of contours from the table of numerical coefficients. These discrepancies are well within the accuracy of the predictions.

These polar maps are being published on a trial basis for six months. They will be discontinued after six months unless there is a positive indication of their usefulness from a substantial proportion of users of these predictions. Therefore, if you wish these to continue, it is necessary to send us your comments in writing as soon as possible.

Introduction

The "Central Radio Propagation Laboratory Ionospheric Predictions" is the successor to the former "Basic Radio Propagation Predictions," CRPL Series D. To make effective use of these predictions, National Bureau of Standards Handbook 90, "Handbook for CRPL Ionospheric Predictions Based on Numerical Methods of Mapping," should be obtained from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402, price 40 cents. This Handbook includes required additional data, nomographs and graphical aids, as well as methods for use of the predictions. The Handbook supersedes the obsolete NBS Circular 465.

The basic prediction appears in tables 1 and 2, presenting predicted coefficients for foF2 and M(3000)F2 defining the numerical map functions describing the predicted worldwide variation of these characteristics. With additional auxiliary information, these coefficients may be used as input data for electronic computer programs solving specific high-frequency propagation problems. Basic equations, their interpretation, and methods of using numerical maps are described in papers by W. B. Jones and R. M. Gallet, "The Representation of Diurnal and Geographic Variations of Ionospheric Data by Numerical Methods," Vol. 66D, No. 4, July-Aug. 1962, pages 419-438, and "Methods for Applying Numerical Maps of Ionospheric Characteristics," Vol. 66D, No. 6, Nov.-Dec. 1962, pages 649-662, both in the Journal of Research of the National Bureau of Standards, Section D. Radio Propagation. The predicted numerical map coefficients of tables 1 and 2 may be purchased in the form of a tested set of punched cards. Write to Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo., to arrange for purchase of a set of punched cards, and for information and assistance in the application of computer methods and numerical prediction maps to specific propagation problems.

The graphical prediction maps, derived from the basic prediction, are provided for those unable to make use of an electronic computer. Figures 1 to 12 present world maps of MUF (Zero) F2 and MUF(4000)F2 for each even hour of universal time. Figures 13 to 24 present the same predictions for even hours 00 through 22 universal time for the North and South Polar areas. Handbook 90 describes methods for including regular E-F1 propagation. Figure A is a graph of predicted and observed Zürich sunspot numbers which shows the recent trend of solar activity. Table A lists observed and predicted Zürich smoothed relative sunspot numbers and includes the sunspot number used for the current prediction.

Members of U.S. Army, Navy, or Air Force desiring the Handbook and the Ionospheric Predictions should send requests to the proper service address; for Navy: The Director, Naval Communications, Department of the Navy, Washington, D.C., 20350; for Air Force: Directorate of Command Control and Communications, Headquarters, United States Air Force, Washington, D.C., 20330. Attention: AFOCCAA. Army personnel should refer to the Handbook as TM 11-499 and to monthly predictions as TB 11-499-(), predictions for the month of April 1965 being distributed in January 1965 and designated TB 11-499-(25), and should requisition these through normal publication channels.

Information concerning the theory of radio wave propagation and such important problems as absorption, field intensity, lowest useful high frequencies, etc., is given in National Bureau of Standards Circular 462, "Ionospheric Radio Propagation." A revised work is in preparation which will be announced in the Ionospheric Prediction series when available. Additional information about radio noise may be found in C.C.I.R. Report Number 322, "Revision of Atmospheric Noise Data," International Telecommunication Union, Geneva, 1964.

Reports to this Laboratory of experience with these predictions would be appreciated. Correspondence should be addressed to the Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado.

NOTE: The MUF(ZERO)F2 values of figures 1A through 12A were derived by adding one-half the gyrofrequency to the foF2 calculated by use of the predicted coefficients in table 1. The error introduced by this approximation is generally not important compared to other uncertainties in the predictions, and is significant only when the foF2 is near or below the gyrofrequency. If more precise values of predicted fxF2 are desired, the theoretical relationships should be applied to the foF2 values calculated by the coefficients in table 1.

Table A
 Observed and Predicted Zurich Smoothed Relative
 Sunspot Numbers

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954	6 (14)	6 (12)	4 (11)	3 (10)	4 (10)	4 (9)	5 (8)	7 (8)	8 (8)	8 (10)	10 (10)	12 (11)
1955	14 (12)	16 (14)	20 (14)	23 (13)	29 (16)	35 (18)	40 (22)	46 (27)	55 (30)	64 (31)	73 (35)	81 (42)
1956	89 (48)	98 (53)	109 (60)	119 (68)	127 (77)	137 (89)	146 (95)	150 (105)	151 (119)	156 (135)	160 (147)	164 (150)
1957	170 (150)	172 (150)	174 (150)	181 (150)	186 (150)	188 (150)	191 (150)	194 (150)	197 (150)	200 (150)	201 (150)	200 (150)
1958	199 (150)	201 (150)	201 (150)	197 (150)	191 (150)	187 (150)	185 (150)	185 (150)	184 (150)	182 (150)	181 (150)	180 (150)
1959	179 (150)	177 (150)	174 (150)	169 (150)	165 (146)	161 (143)	156 (141)	151 (142)	146 (141)	141 (139)	137 (137)	132 (137)
1960	129 (136)	125 (135)	122 (133)	120 (130)	117 (125)	114 (120)	109 (118)	102 (115)	98 (110)	93 (108)	88 (105)	84 (100)
1961	80 (100)	75 (90)	69 (90)	64 (90)	60 (85)	56 (85)	53 (80)	52 (75)	52 (70)	51 (70)	50 (65)	49 (60)
1962	45 (60)	42 (50)	40 (48)	39 (45)	39 (42)	38 (37)	37 (34)	35 (31)	33 (29)	31 (28)	30 (27)	30 (34)
1963	29 (31)	30 (28)	30 (26)	29 (25)	29 (25)	28 (25)	28 (23)	27 (21)	27 (20)	26 (18)	23 (18)	21 (17)
1964	19 (17)	17 (17)	15 (17)	12 (17)			(17)	(17)	(17.5)	(17.3)	(17.0)	(17.0)
1965												
1966												

Note: Final numbers are listed through June 1963, the succeeding values being based on provisional data. The predicted numbers are in parentheses.

* Number used for predictions in this issue.

FIG. A. PREDICTED AND OBSERVED SUNSPOT NUMBERS

TABLE I

TIME VARIATION

Harmonic	0		1		2		3		4		5		6		7		8	
	K	S																
I	0	7.6337207E-00	2.4066219E-00	1.7875039E-00	-6.4351957E-01	3.4533292E-01	-3.1917170E-01	-6.0696540E-01	-2.9672048E-01	-1.478962E-01	-2.9672048E-01	-7.105314E-01	-4.0825813E-01	-4.082525E-01	-2.433879E-01	-2.433879E-01	-1.172836E-01	-1.172836E-01
	1	7.2889242E-01	-2.4779505E-01	-2.486888E-01	2.9217171E-01	-2.8887244E-01	3.1512249E-01	-1.492525E-01	-4.4302525E-01	-2.433879E-01	-4.4302525E-01	-2.433879E-01						
	2	-1.0316163E-01	-2.479513E-01	-2.551422E-01	4.771944E-01	1.3141982E-01	-3.9919505E-01	-1.5691339E-01	-1.5691339E-01	9.3560688E-01								
	3	6.147505E-01	-2.4794525E-01	-1.4452518E-01	5.460831E-01	-5.873848E-01	4.40831E-01	-2.4794525E-01	-2.4794525E-01	-1.4452518E-01								
	4	2.794525E-01	-1.4167358E-01	-2.5707259E-02	1.2454645E-02	-9.9316298E-02	2.470895E-01	4.0076131E-01	4.0076131E-01	-1.5691339E-01								
	5	-9.843845E-01	-1.6621915E-02	3.450187E-02	5.5258697E-02	-1.4476414E-02	2.2762422E-02	-5.8051662E-01	-1.1193950E-01	-6.4906767E-01								
	6	8.4895845E-01	-1.4167358E-02	-1.2454645E-02	1.2454645E-02	-1.2454645E-02	1.2454645E-02	-1.2454645E-02										
	7	1.881331E-02	-3.816209E-02	-5.2076178E-02														
	8	-7.5444559E-01	-1.6600206E-02	-1.0925893E-02														
	9	1.6600206E-01	-1.2319693E-01	-1.7965001E-01														
	10	5.4096965E-01	-3.3119693E-01	-1.3119693E-01	-1.3522725E-02	-2.3264605E-01												
	11	2.5222049E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01	-8.0921447E-01
	12	5.4096965E-01	-3.3119693E-01	-1.3119693E-01	-1.3522725E-02	-2.3264605E-01												
	13	-4.2964225E-02	-2.2761020E-01	-3.1212744E-01	-1.0252272E-01	1.7992120E-02	-5.7147652E-02	-1.0884945E-01	-1.8533390E-02	-6.8049300E-02								
	14	1.4353593E-01	-1.881331E-02	-2.8652886E-01	-1.2878663E-01													
	15	8.0921447E-01	-2.023239E-01	-9.284593E-01														
	16	-1.3462625E-01	-1.0925893E-02	-1.6600206E-02														
	17	-6.9839939E-01	-2.4794525E-02	-1.2454645E-02														
	18	1.681331E-02	-1.5217373E-01	-8.6831717E-01														
	19	-1.1522623E-01	-6.5817931E-02	-9.3002088E-02														
	20	7.9189510E-01	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02	-1.3739220E-02
	21	8.9745017E-01	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02	-1.6628617E-02
	22	8.9922137E-01	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02	-1.0925893E-02
	23	5.41360394E-01	-4.4392622E-02	-6.13531318E-02														
	24	-4.0599532E-02	-1.0925893E-02	-2.5798936E-02														
	25	2.26E-02	-1.0925893E-02	-2.5798936E-02														
	26	-2.94E-02	-1.0925893E-02	-2.5798936E-02														
	27	-1.0656822E-02	-1.0925893E-02	-2.5798936E-02														
	28	1.0171933E-02	-1.0925893E-02	-2.5798936E-02														
	29	8.2626544E-02	-1.0925893E-02	-2.5798936E-02														
	30	1.6205866E-02	-1.0925893E-02	-2.5798936E-02														
	31	-1.01719281E-02	-1.0925893E-02	-2.5798936E-02														
	32	-4.731273E-02	-1.0925893E-02	-2.5798936E-02														
	33	-4.731273E-02	-1.0925893E-02	-2.5798936E-02														
	34	-4.731273E-02	-1.0925893E-02	-2.5798936E-02														
	35	-1.2050750E-02																

TABLE 2
TIME VARIATION

Harmonic		0		1		2		3		4		5		6			
K	S	0	0	1	1	2	2	3	3	4	4	5	5	6			
I	0	3.0066910E+00	-1.5231160E-01	-2.4317686E-01	4.44242260E-02	-1.2301798E-01	3.6004010E-02	-2.1454233E-02	4.9272051E-02	-8.9433924E-02	4.9272051E-02	-2.6395375E-01	-8.9433924E-01	-2.2295058E-01	-1.7888136E-01		
	1	-3.1631595E-01	-1.4879538E-01	-2.7646832E-01	-2.75522255E-02	-5.2066853E-01	-5.2066853E-02	-2.041379E-00	6.4114252E-01	-5.2066853E-01	-5.2066853E-02	-2.041379E-01	-5.2066853E-02	-2.2295058E-01	-1.7888136E-01		
	2	1.95171804E+00	1.1810956E+00	2.6446832E+00	1.1810956E+00	-2.041379E-00	6.4114252E-01	-5.2066853E-01	-5.2066853E-02	-2.041379E-00	6.4114252E-01	-5.2066853E-02	-2.041379E-01	-5.2066853E-02	-2.2295058E-01		
	3	1.34203679E+00	5.02268541E+00	1.1810956E+00	1.1810956E+00	-2.041379E-00	6.4114252E-01	-5.2066853E-01	-5.2066853E-02	-2.041379E-00	6.4114252E-01	-5.2066853E-02	-2.041379E-01	-5.2066853E-02	-2.2295058E-01		
	4	-6.1098812E+00	-3.0728764E+00	-6.44242260E+00	-6.44242260E+00	-1.2301798E+00	-1.2301798E+00	-2.4317686E+00	-4.44242260E+00	-1.2301798E+00	-1.2301798E+00	-2.4317686E+00	-4.44242260E+00	-1.2301798E+00	-1.2301798E+00		
	5	-2.46203193E+00	-6.7812113E+00	-1.8029553E+00	-1.8029553E+00	-3.6004010E+00	-3.6004010E+00	-7.0928528E+00	-1.4428020E+00	-3.6004010E+00	-3.6004010E+00	-7.0928528E+00	-1.4428020E+00	-3.6004010E+00	-3.6004010E+00		
	6	6.7879393E+00	3.7615514E+00	6.5668426E+00	6.5668426E+00	2.205418E+00	2.205418E+00	-3.3673499E+00	-2.205418E+00	2.205418E+00	2.205418E+00	-3.3673499E+00	-2.205418E+00	-1.9589403E+00	-1.9589403E+00		
	7	1.3845144E+00	2.3315531E+01	8.5126663E+01	8.5126663E+01	-1.6539213E+00	-1.6539213E+00	-1.614117E+00	-1.614117E+00	-1.6539213E+00	-1.6539213E+00	-1.614117E+00	-1.614117E+00	-2.3634800E+01	-2.3634800E+01		
	8	-2.6010328E+00	-1.7065529E+00	-2.5226111E+00	-2.5226111E+00	-1.1614117E+00	-1.1614117E+00	1.5466155E+00	1.5466155E+00	-1.1614117E+00	-1.1614117E+00	1.5466155E+00	1.5466155E+00	5.2577587E-01	5.2577587E-01		
II	9	1.3193563E+02	1.2838119E-02	5.3503504E-02	-1.2367096E-02	-1.1595638E-02	-1.1595638E-02	-9.9669551E-03	-9.9669551E-03	-8.0810224E-03	-8.0810224E-03	-2.7744660E-02	-2.7744660E-02	-2.1165019E-02	-2.1165019E-02		
	10	1.2932405E+02	3.4452281E-02	3.00443816E-02	-5.5242725E-02	-7.462150E-02	-6.9913839E-02	-4.710528E-02	-2.942244E-02	-2.1005505E-01	-5.3947816E-02	-2.1005505E-01	-1.4107611E-01	-1.4107611E-01	-1.4107611E-01	-1.4107611E-01	
	11	3.5332090E+02	-1.2849422E+01	7.6578552E+00	-1.0316515E+01	-1.3618044E+01	-2.942244E-02	-1.8036351E+01	-1.8036351E+01	-1.6126662E+01	-1.6126662E+01	-1.391114E-01	-1.391114E-01	-1.1131710E-01	-1.1131710E-01		
	12	-5.8141084E+01	-4.8701318E+01	-1.8036351E+01	-1.3618044E+01												
	13	-9.7842859E+02	-5.1456783E+01	-1.3813430E+01	-1.3813430E+01	-1.0766604E+01											
	14	-6.1398740E+02	-4.1560150E+01	4.252866E+01	3.7659114E+01	5.7893334E+00	-5.7893334E+00	-1.5109591E+00									
	15	-1.6524952E+02	9.7341915E+01	2.7234949E+00	6.0775958E+00	-5.3208228E+00	-5.3208228E+00	-9.0331591E+00	-9.0331591E+00	-1.9570628E+00	-1.9570628E+00	-6.7651318E+00	-6.7651318E+00	-3.276328E+00	-3.276328E+00	-3.276328E+00	-3.276328E+00
	16	3.9237709E+00	3.0509963E+00	2.6098888E+00	-3.5192055E+00	-4.7629351E+00	-8.6038083E+00	-1.7164226E+00	-1.7164226E+00	-1.7164226E+00	-1.7164226E+00	-4.1939188E+00	-4.1939188E+00	-2.8035622E+00	-2.8035622E+00	-2.8035622E+00	-2.8035622E+00
III	17	2.2018959L+01	1.2802082E+01	1.8713267E+00	-3.5192055E+00	-7.7129351E+00	-1.7164226E+00										
	18	1.2802082E+01	1.8713267E+00	-3.5192055E+00	-7.7129351E+00	-1.7164226E+00											
	19	-2.4937423E+01	-2.4937423E+01	-2.4937423E+01	-2.4937423E+01	-1.9121718E+00											
	20	-6.898505E+00	-4.7594359E+00	-9.5594558E+00	-1.02864626E+00												
	21	3.12933329E+00	-5.91333329E+00	-2.9352731E+00	7.2175928E+00	6.6118619E+00	1.6118619E+00	1.444489E+00	1.444489E+00	-5.3616498E+00	-5.3616498E+00	-7.46612446E+00	-7.46612446E+00	-2.8441609E+00	-2.8441609E+00	-2.5059783E+00	-2.5059783E+00
	22	-2.44868958E+01	-2.61319267E+00	-1.4881812E+00	-1.7010152E+00	-6.6119578E+00	-1.5517681E+00										
	23	2.1715074E+01	3.62205064E+00	4.93109272E+00	5.0594123E+00	-5.5784606E+00											
	24	-1.64339610E+01	3.5544963E+00	1.2402589E+00	1.3962139E+00	-4.2516891E+00	-3.5111988E+00	-0.6334559E+00									
IV	27	-1.1525887E+03	-1.9726165E+02	-3.9419155E+02	-8.6039367E+02	-1.7396914E+02	-1.7396914E+02	-1.1299060E+02									
	28	-1.9558984E+02	-2.8548719E+02	-1.6229821E+01	-1.5506626E+01	-5.2475360E+02	-5.2475360E+02	-5.2204702E+02									
	29	-3.2853676E+02	-1.0813544E+03	-9.1339465E+03	-1.8620020E+02	-6.03021916E+02	-6.03021916E+02	-1.9190370E+02									
	30	-1.0813544E+03	2.5469644E+02	9.37974442E+02	-1.0316367E+02	-5.0192622E+02	-5.0192622E+02	-2.1785975E+02									
	31	7.7220106E+03	3.50832334E+01	3.42222935E+01	1.4818435E+02	-4.9408619E+03	-1.0264425E+01	-2.6686814E+02									
	32	3.3	-7.6479473E+02	-4.6708486E+02	-5.1374377E+02	-1.9592001E+02	-2.9547644E+02	-2.8504993E+02	-1.8300124E+02								
	33	3.4	-7.6479473E+02	-4.6708486E+02	-5.1374377E+02	-1.9592001E+02	-2.9547644E+02	-2.8504993E+02	-1.8300124E+02								
	34	3.5	-7.6479473E+02	-4.6708486E+02	-5.1374377E+02	-1.9592001E+02	-2.9547644E+02	-2.8504993E+02	-1.8300124E+02								
	35	3.6	-7.6479473E+02	-4.6708486E+02	-5.1374377E+02	-1.9592001E+02	-2.9547644E+02	-2.8504993E+02	-1.8300124E+02								

GEOGRAPHICAL VARIATION		PREDICTED COEFFICIENTS D _{SK} DEFINING THE FUNCTION $\Gamma(\lambda, \theta, t)$ FOR MONTHLY MEDIAN M(3000)F2 APRIL 1965				
Harmonic	4	5	6	7	8	
I	0	3.9446171E-02	6.6672864E-03	1.2916225E-02	3.446684E-02	-1.707787E-02
I	1	5.203402E-02	3.309781E-02	-3.941839E-02	-9.5632578E-03	-8.1115075E-03
I	2	-4.6708486E-02	-5.1374377E+02	-1.0264425E-01	-2.6686814E-02	2.1295909E-02
I	3	-7.6479473E+02	-1.9592001E+02	-2.9547644E+02	-8.6686814E+02	1.4995504E+02

I - Main latitudinal variation.

II - Longitudinal variation.

III - Second order in longitude.

Notation : For each entry the number given by the first eight digits and sign is multiplied by the power of ten defined by the last two digits and sign.

FIG. 1 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 1 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 02

LONGITUDE

FIG. 2 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 2 B. PREDICTED MEDIAN MUF (4000)F2 (Mc/s)

APRIL 1965 UT = 04

LONGITUDE

APRIL 1965 UT = 06

LONGITUDE

FIG. 4 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 4 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 08

LONGITUDE

FIG. 5 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 5 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 10

LONGITUDE

FIG. 6 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

LONGITUDE

FIG. 6 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 12
LONGITUDE

FIG. 7 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 7 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 14

LONGITUDE

FIG. 8 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

LONGITUDE

FIG. 8 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 16

LONGITUDE

FIG. 9 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 9 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 18
LONGITUDE

FIG.10 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 10 B. PREDICTED MEDIAN MUF (4000)F2 (Mc/s)

APRIL 1965 UT = 20
LONGITUDE

FIG.II A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

LONGITUDE

FIG.II B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT = 22
LONGITUDE

FIG. 12 A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 12 B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

APRIL 1965 UT=00

FIG. 13A. PREDICTED MEDIAN MUF (ZERO) F2 (Mc/s)

FIG. 13 B. PREDICTED MEDIAN MUF (4000) F2 (Mc/s)

APRIL 1965 UT=02

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 14A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S).

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 14B. PREDICTED MEDIAN MUF (4000) F2 (Mc/s)

APRIL 1965 UT=04

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 15 A. PREDICTED MEDIAN MUF (ZERO) F2 (Mc/s)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 15 B. PREDICTED MEDIAN MUF (4000) F2 (Mc/s)

APRIL 1965 UT=06

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 16A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 16B. PREDICTED MEDIAN MUF (4000) F2 (MC/S)

APRIL 1965 UT=08

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 17A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 17B PREDICTED MEDIAN MUF (4000) F2 (MC/S)

APRIL 1965 UT=10

NORTH POLAR AREA

SOUTH POLAR AREA

FIG 18A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 18B. PREDICTED MEDIAN MUF (4000) F2 (MC/S)

APRIL 1965 UT=12

FIG. 19A. PREDICTED MEDIAN MUF (ZERO) F2 (Mc/s)

FIG. 19 B. PREDICTED MEDIAN MUF (4000) F2 (Mc/s)

APRIL 1965 UT=14

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 20A PREDICTED MEDIAN MUF (ZERO) F2 (Mc/s)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 20B. PREDICTED MEDIAN MUF (4000) F2 (Mc/s)

APRIL 1965 UT=16

FIG. 21A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S)

FIG. 21B. PREDICTED MEDIAN MUF (4000) F2 (MC/S)

APRIL 1965 UT=18

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 22A PREDICTED MEDIAN MUF (ZERO) F2 (Mc/s)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 22B. PREDICTED MEDIAN MUF (4000) F2 (Mc/s)

APRIL 1965 UT=20

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 23A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 23B. PREDICTED MEDIAN MUF (4000) F2 (MC/S)

APRIL 1965 UT=22

NORTH POLAR AREA

SOUTH POLAR AREA

FIG 24A. PREDICTED MEDIAN MUF (ZERO) F2 (MC/S)

NORTH POLAR AREA

SOUTH POLAR AREA

FIG. 24 B. PREDICTED MEDIAN MUF (4000) F2 (MC/S)

UNITED STATES
GOVERNMENT PRINTING OFFICE
DIVISION OF PUBLIC DOCUMENTS
WASHINGTON, D. C., 20402

PENALTY FOR PRIVATE USE TO AVOID
PAYMENT OF POSTAGE. \$300
(GPO)

OFFICIAL BUSINESS

DEPARTMENTS OF THE ARMY
AND THE AIR FORCE
WASHINGTON, D. C., 20301, 1 January 1965

TB 11-499-25/TO 31-3-28, Central Radio Propagation Laboratory Ionospheric Predictions for April 1965, is published for the use of all concerned.

BY ORDER OF THE SECRETARIES OF THE ARMY AND THE AIR FORCE:

HAROLD K. JOHNSON,
General, United States Army,
Chief of Staff.

OFFICIAL:

J. C. LAMBERT,
Major General, United States Army,
The Adjutant General.

CURTIS E. LEMAY,
Chief of Staff, United States Air Force.

OFFICIAL:

R. J. PUGH,
Colonel, United States Air Force,
Director of Administrative Services.

DISTRIBUTION:

Active Army:

USASA (4); USA Elet Comd (1); USA MI Comd (1); USA Test & Eval Comd (1); CC-E (1); US CONARC (3); ARADCOM (2); OS Maj Comd (5); OS Base Comd (2); Log Comd (2); MDW (1); Armies (5); Corps (2); Div (2); USAEPG (2); USA Elet RD Agcy, W (4); Svc Colleges (4); Br Svc Sch (4) except USASCS (20); USAADCEN (4); ARADCOM Rgn (2); WSMR (2); USA Elet RD Agcy A (4); JBUSMC (12); USA Corps (1); USA Mbl Spt Cen (1); USAMC (1); USACDA (1); USA Msl Spt Comd (1); Units org under fol TOE: 11-18 (1); 11-95 (1); 11-500 (Tm AC) (1).

NG: None.

USAR: None.

For explanation of abbreviations used, see AR 320-50.