# HE SAID, SHE SAID

A Gendered Twist on Virtual Assistants



Presented by: Angel Mary Oviya, Rishabh Shukla, Shubhi Phartiyal





# **CURRENT STATE**



**Current Issue:** One-size-fits-all models lack personalization, leading to disengaged user experiences

**Opportunity:** Businesses can offer gender-sensitive, adaptive virtual assistants for improved user engagement, brand loyalty, and market positioning

Project Aim: Make corporate interactions great again!

#### **Key Benefits**

- 1) Creates more empathetic, relatable interactions
- 2) Paves the way for AI that adapts to age, personality, culture, etc.
- 3) Builds ethical AI that respects user individuality

### **REVIEWING OUR DATASET**

#### **Vocal Gender Features Dataset**

- **1. SPECTRAL** Describes the "texture" of the sound (eg. sharp, smooth)
- 2. PITCH Measures how high or low the voice is
- **3. ENERGY** Analyzes loudness and noisiness of the voice
- **4. FREQUENCY** Captures the unique quality or tone of the voice
- **5. COMPLEXITY** Contains unpredictability of voice pattern

Sample Size:



# FEATURE EXPLORATION

- From the 42 available features, we picked relevant ones based on descriptive statistics (mean, mode, median, range, etc) and qualitative knowledge
- Then we plotted histograms for each feature and observed key details



**MODEL TRAINING** 

# CORRELATION **HEATMAP**

- We had 42 features which added a risk of overfitting and complexity
- Features with a correlation above 0.9 were removed to reduce redundancy
- We removed 4 features from our data analysis













# **FEATURE SELECTION**

Feature importance ranking from Decision Tree and Random Forest, aggregated into a combined weighted average



Top 20 features were selected based on the combined ranking.

# REDUCING FEATURE COMPLEXITY

Combined Feature Importance: Selected top 20 features using feature importance scores where higher importance scores are better gender distinguishers

**Recursive Feature Elimination (RFE):** Selected the best subset of 10 features, to reduce model complexity and speed up training.

**Domain Knowledge Inclusion:** We included 2 pitch-based features (mean\_pitch & std\_pitch) based on domain expertise and qualitative research

|          | 12 Selected Features |        |           |            |  |  |  |  |  |
|----------|----------------------|--------|-----------|------------|--|--|--|--|--|
| SPECTRAL | PITCH                | ENERGY | FREQUENCY | COMPLEXITY |  |  |  |  |  |
| 1        | 2                    | 1      | 8         | 0          |  |  |  |  |  |

# **MODEL TRAINING & EVALUATION**

- Train-Test Split: The dataset was split into 70% training and 30% testing to assess model generalization on unseen data
- StandardScaler: Standardize features with larger values so they don't disproportionately affect the model, improving model stability and performance
  - Class Imbalance: Female voices, make up only 33% of the dataset. Using SMOTE, we addressed the imbalance by creating new synthetic samples



# **MODEL PERFORMANCE METRICS**

#### **General Performance Metrics**

| Accuracy         | Good starting point but misleading since classes are imbalanced                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------|
| Macro Average    | Gives equal weight to both classes, so it ensures model performs well on both classes, regardless of their frequency |
| Weighted Average | Accounts for class imbalance by weighting larger class (male) more                                                   |

#### **Model Sensitivity Metrics**

| Precision | Measures how many of the predicted gender classes are correct          |
|-----------|------------------------------------------------------------------------|
| Recall    | Measures how many of actual class were correctly predicted             |
| F1-Score  | Single metric that balances the trade-off between precision and recall |











# **MODEL PERFORMANCE COMPARISON**

| (%)              |                | LOGISTIC<br>REGRESSION | SVM | RANDOM<br>FOREST | LSTM | CNN |
|------------------|----------------|------------------------|-----|------------------|------|-----|
| WEIGHTED AVERAGE |                | 95                     | 98  | 97               | 98   | 96  |
|                  | Q              | 91                     | 98  | 97               | 97   | 94  |
| PRECISION        | ď              | 97                     | 98  | 97               | 98   | 97  |
| DEGALL           | Q              | 94                     | 98  | 95               | 96   | 95  |
| RECALL           | o <sup>*</sup> | 95                     | 99  | 98               | 98   | 97  |
| F1 660DF         | Q              | 93                     | 98  | 96               | 97   | 95  |
| F1-SCORE         | o <sup>r</sup> | 96                     | 99  | 98               | 98   | 97  |

#### **KEY FINDINGS:**

- SVM is the best choice for frequency-based voice features.
- Deep learning models need more data & raw spectrograms.

Q= Female

# **TESTING ON REAL AUDIO**

Testing Success: Recorded a few voices and fed into our trained model with 66.6% success



# **KEY LIMITATIONS & MITIGATIONS**

#### **LIMITATIONS**

MITIGATIONS

Binary classification of gender

Explore spectrum-based classification or unsupervised learning for diversity

Struggles with accents, speech speeds, and background noise

Train on multilingual datasets, do data augmentation, and fine-tune for real-world robustness.

Skewed dataset favors Male

Diversify data collection and use more balancing techniques.

# **FUTURE POTENTIAL**



#### **EMOTIONAL COMPREHENSION**

The current model detects gender only, but voice carries emotion, tone, intent and so much more.

#### **REAL TIME DEPLOYMENT**

Implement this as a real-time voice assistant feature that adapts responses based on gender tone & emotional state.

#### **MULTI-LANGUAGE SUPPORT**

Extend training to multi-language datasets for broader applicability

# APPENDIX



# **42 Features in Dataset**

mean\_spectral\_centroid: The average spectral centroid, representing the "center of mass" of the spectrum, indicating brightness. std\_spectral\_centroid: The standard deviation of the spectral centroid, measuring variability in brightness.

mean\_spectral\_bandwidth: The average width of the spectrum, reflecting how spread out the frequencies are.

std\_spectral\_bandwidth: The standard deviation of spectral bandwidth, indicating variability in frequency spread.

mean\_spectral\_contrast: The average difference between peaks and valleys in the spectrum, indicating tonal contrast.

mean\_spectral\_flatness: The average flatness of the spectrum, measuring the noisiness of the signal.

mean\_spectral\_rolloff: The average frequency below which a specified % of the spectral energy resides, indicating sharpness.

**zero\_crossing\_rate**: The rate at which the signal crosses the zero amplitude axis, representing noisiness or percussiveness.

rms\_energy: The root mean square energy of the signal, reflecting its loudness.

mean\_pitch: The average pitch frequency of the audio.

min\_pitch: The minimum pitch frequency.

max\_pitch: The maximum pitch frequency.

std\_pitch: The standard deviation of pitch frequency, measuring variability in pitch.

**spectral\_skew**: The skewness of the spectral distribution, indicating asymmetry.

**spectral\_kurtosis:** The kurtosis of the spectral distribution, indicating the peakiness of the spectrum.

**energy\_entropy**: The entropy of the signal energy, representing its randomness.

log\_energy: The logarithmic energy of the signal, a compressed representation of energy.

mfcc\_1\_mean to mfcc\_13\_mean: The mean of the first 13 Mel Frequency Cepstral Coefficients (MFCCs), representing the timbral characteristics of the audio.

mfcc\_1\_std to mfcc\_13\_std: The standard deviation of the first 13 MFCCs, indicating variability in timbral features.

# **Model Selection Rationale**

**Logistic Regression:** Efficient for binary classification with linear relationships, acting as a baseline model.

**SVM:** Maps data into a higher-dimensions to find non-linear decision boundaries, enhancing performance for complex gender patterns.

Random Forest: Captures non-linear patterns, handles noise, and doesn't require feature scaling.

LSTM: Captures long-term dependencies in sequential datas. It effectively handles context and order dependencies but can be computationally expensive.

**CNN**: Excels at feature extraction from structured data - recognizing patterns in voice characteristics without needing sequential memory.

# **Top 20 Feature Selection**



# **Most Critical Features Selected**

#### **Spectral Features:**

mean\_spectral\_contrast: Males emphasize lower frequencies, females have more high-frequency energy

#### **Pitch Features:**

mean\_pitch: Differentiates vocal range between genders (lower for males, higher for females).

std\_pitch: Measures pitch variation (more fluctuation in female voices).

#### **Energy Features:**

rms\_energy: Represents loudness (males typically have higher energy due to low-frequency components).

#### MFCCs (Mel-Frequency Cepstral Coefficients):

mfcc\_3\_std: Variability in mid-frequency components (differentiates speech patterns).

mfcc\_10\_std: Variation in high-order spectral features (helps differentiate vocal tone).

mfcc\_6\_mean: Mid-range spectral properties linked to formants (vocal tract length variations).

mfcc\_10\_mean: High-frequency details (stronger in female voices).

mfcc\_13\_mean: High-frequency characteristics (useful for distinguishing timbre).

mfcc\_2\_std: Variability in low-frequency components (more prominent in male voices).

mfcc\_4\_mean: Mid-frequency distribution (different resonance patterns).

mfcc\_9\_mean: Mid-to-high frequency characteristics (helps differentiate vocal texture).