

Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

Informática e Sistemas de Informação Aplicados em Economia

Descoberta de Conhecimento em Bases de Dados. Associações

Descoberta de Conhecimento em Bases de Dados. Classificação e Associações

- Associações
- Conjuntos frequentes
- Algoritmos para a descoberta

A Pesquisa de Associações

- Regras de Associação
- Espaços para aplicação
- Frequências
- Descoberta de Subconjuntos Frequentes
- Geração de Regras de Associação

A Pesquisa de Associações

A pesquisa de associações ou análise de afinidades é a procura de padrões e condições que descrevem como vários items se agrupam juntos ou acontecem juntos em séries de eventos ou transacções.

Uma **regra de associação** ou **afinidade** tem a forma:

Quando Item1 **Também** Item2

O problema considerado é encontrar regras de associação a partir de dados binários que por seu lado terão sido obtidos a partir de ficheiros de transacções organizados de acordo com os modelos usuais, nomeadamente o modelo relacional.

Regras de Associação

Assuma-se que temos um **conjunto** $R = \{A_{1,...}, A_{p}\}$ de atributos binários, isto é, o domínio de cada A_{i} é $\{0,1\}$.

Uma **relação** $r = \{t_1, ..., t_n\}$ no esquema R é uma matriz com colunas R and n linhas, sendo cada linha um vector de comprimento p cujos elementos são 0 e 1.

Uma **regra de associação** em r é uma expressão da forma $X \to B$, onde $X \subseteq R$ e $B \in R \setminus X$. O significado intuitivo da regra é que se uma linha da matriz r tem um 1 em cada coluna de X, então a linha tende a ter um 1 também na coluna B.

Exemplos de Espaços para Regras de Associação

- Uma base de dados de estudantes numa universidade: as linhas correspondem a estudantes, as colunas a cursos, e um 1 na posição (e, c) indica que o estudante e frequentou o curso c.
- Dados recolhidos a partir de leitores de código de barras em supermercados: as colunas correspondem a produtos, e cada linha corresponde ao conjunto de produtos comprado uma vez.
- ☐ Uma base de dados sobre o IDE: as linhas correspondem a investidores, as colunas a sectores e um 1 na posição (i,s) significa que houve investimento de i no sector s.

Frequências

- \square Dado $W \subseteq R$, representamos por s(W, r) a frequência de W em r: a fracção de linhas de r que tem um 1 em cada coluna de W.
- riangleq A frequência da regra X o B em r é definida por $s(X o \{B\}, r)$, e a confiança da regra é $s(X o \{B\}, r) / s(X, r)$.

Na **descoberta de regras de associação**, a tarefa é encontrar todas as regras X→B tais que

- $extstyle ag{requência da regra seja pelo menos um valor dado } \sigma$ e
- riangleq a confiança seja pelo menos igual a outro valor heta.

Limitações

Não há limites predefinidos ao número de atributos do lado esquerdoX duma regra de associação X→B

- isto é importante para que associações não esperadas não sejam desprezadas antes de o processamento se iniciar.
- espaço de pesquisa tem um tamanho exponencial no número de elementos da relação de input o que requer algum cuidado com os algoritmos de tratamento.

Subconjuntos Frequentes

Um subconjunto $X \subseteq R$ é frequente em r, se $s(X, r) \ge \sigma$.

Uma vez conhecidos todos os conjuntos frequentes de r, encontrar as regras de associação é fácil.

Concretamente, para cada conjunto frequente X e cada $B \in X$ verificar se a regra $X \setminus \{B\} \rightarrow B$ tem uma confiança suficientemente alta.

A descoberta de todos os conjuntos frequentes pode ser feita de muitos modos diferentes. Uma abordagem típica é usar o facto de que todos os subconjuntos de um conjunto frequente são também frequentes.

- Descobrir os conjuntos frequentes de tamanho 1 lendo os dados uma vez e registando o número de vezes que cada atributo A ocorre.
- Formar conjuntos de tamanho 2 tomando todos os pares de atributos {B,C} tais que {B} e {C} sejam ambos frequentes.
- Avaliar a frequência dos conjuntos candidatos relativamente à base de dados.
- Formar os candidatos de tamanho 3: estes são conjuntos {B,C,D} tais que {B,C}, {B,D}, e {C,D} sejam todos frequentes.
- o processo continua até que não possam ser formados mais conjuntos candidatos.

Transacções do Período

Número de transação	Código de Produto	Número de transação	Código de Produto
1	Α	5	D
1	В	6	В
1	С	7	Α
2	Α	8	Α
2	С	8	С
3	Α	8	D
4	С	9	В
4	В	9	D
4	D	10	Α
4	А	10	В
5	Α	10	D

Produtos Envolvidos em Transacções

A partir do ficheiro é possível

 \square definir o conjunto $R=\{A,B,C,D\}$ e

□ a relação r que terá o seguinte aspecto

Número de transacção	A	В	С	D
1	1	1	1	0
2	1	0	1	0
3	1	0	0	0
4	1	1	1	1
5	1	0	0	1
6	0	1	0	0
7	1	0	0	0
8	1	0	1	1
9	0	1	0	1
10	1	1	0	1

Frequência dos Produtos - 1

Conjunto	Frequência absoluta
{A}	8
{B}	5
{C}	4
{D}	5

Admitam-se os seguintes valores: σ = 0.1 e θ = 0.8. Com base nestes valores todos os subconjuntos são frequentes pelo que todos os formados por 2 elementos são candidatos a frequentes.

Frequência dos Produtos - 2

Conjunto	Frequência absoluta
{A,B}	3
{A,C}	4
{A,D}	4
{B,C}	2
{B,D}	3
{C,D}	2

Quadro de Regras Potenciais - 1

Regra	Confiança		Regra	Confiança
A→B	3/8	σ = 0.1 e	В→А	3/5
A→C	4/8	$\theta = 0.8$	C→A	4/4
A→D	4/8		С→В	2/4
В→С	2/5		D→A	4/5
B→D	3/5		D→B	3/5
C→D	2/4		D→C	2/5

Associações: C→A e D→A

 $C \rightarrow A$

Com confiança de 100%

Se Produto C

Também Produto A

 $D \rightarrow A$

Com confiança de 80%

Se Produto D

Também Produto A

Frequência dos Produtos - 3

Conjunto	Frequência absoluta
{A,B,C}	2
{A,C,D}	2
{A,B,D}	2
{B,C,D}	1

Como considerámos σ = 0.1 qualquer dos subconjuntos é frequente pelo que {A,B,C,D} também o é. Da tabela de frequências anterior podem deduzir-se as associações possíveis.

Quadro de Regras Potenciais - 2

Regra	Confiança
$A,B \rightarrow C$	2/3
A,C→B	2/4
A,B→D	2/3
A,D→B	2/4
$A,C \rightarrow D$	2/4
A,D→C	2/4

Regra	Confiança
B,C→D	1/ 2
B,D→C	1/3
B,C→A	2/2
B,D→A	2/3
C,D→A	2/2
C,D→B	1/2

Associações: B,C→A e C,D→A

 $B,C \rightarrow A$

Com confiança de 100%

Se Produto B e Produto C

Também Produto A

 $C,D \rightarrow A$

Com confiança de 100%

Se Produto C e Produto D

Também Produto A

Quadro de Regras Potenciais - 3

Regra	Confiança
A,B,C→D	1/2
A,C,D→B	1/2
A,B,D→C	1/2
B,C,D→A	1/1

Com confiança de 100%

Se Produto B e Produto C e Produto D

Também Produto A