

Arm Cortex-A76 (MP052)

Software Developer Errata Notice

Date of issue: 14-Oct-2022

Non-Confidential Document version: v27.0

Document ID: SDEN-885749

Copyright © 2022 Arm® Limited (or its affiliates). All rights reserved.

This document contains all known errata since the rOpO release of the product.

Non-confidential proprietary notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with [®] or [™] are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm® Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product status

The information in this document is for a product in development and is not final.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Arm Cortex-A76 (MPO52), create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be offensive. Arm strives to lead the industry and create change.

If you find offensive language in this document, please email terms@arm.com.

Contents

r1p0 implementat	ion fixes	9				
r2p0 implementat	cion fixes	10				
r3p0 implementat	cion fixes	11				
r3p1 implementat	cion fixes	12				
Introduction		13				
Scope		13				
Categorization	n of errata	13				
Change Control		14				
Errata summary ta	able	22				
Errata description	is .	31				
Category A		31				
Category A (ra	are)	32				
1315703	Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-write ordering violation	32				
Category B		34				
905797	Failure to enforce read-after-read ordering rules					
961148	Reads from DSU CLUSTER* or ERX* system registers might return corrupted data	36				
977072	977072 Accessing certain Debug or Generic Timer system registers in AArch32 might cause incorrect system register values					
981980	Interrupt is taken immediately after MSR DAIF instruction masks the interrupt	38				
1043202	AArch32 T32 CLREX in an IT block will clear exclusive monitor even if it fails condition code check	39				
1073348	Concurrent instruction TLB miss and mispredicted return instruction might fetch wrong instruction stream	40				
1130799	TLBI VAAE1 or TLBI VAALE1 targeting a page within hardware page aggregated address translation data in the L2 TLB might cause corruption of address translation data	41				
1165347	Continuous failing STREX because of another core snooping from speculatively executed atomic behind constantly mispredicted branch might cause livelock	42				
1165522	1165522 Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation					
1188873	MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result	44				
1207823	The exclusive monitor might end up tracking an incorrect cache line in the presence of a VA-alias, causing a false pass on the exclusive access sequence	45				
1220197	Streaming store under specific conditions might cause deadlock or data corruption	47				

	125/314	and flushing back-to-back might cause data corruption	48
	1262606	Concurrent instruction TLB miss and mispredicted branch instruction located at the end of 32MB region might fetch wrong instruction stream	49
	1262888	Translation access hitting a prefetched L2 TLB entry under specific conditions might corrupt the L2 TLB leading to an incorrect translation	50
	1275112	A T32 instruction inside an IT block followed by a mispredicted speculative instruction stream might cause a deadlock	52
	1463225	Software Step might prevent interrupt recognition	53
	1791580	Atomic Store instructions to shareable write-back memory might cause memory consistency failures	55
	1800710	A transient single-bit ECC error in the MMU TC RAM might lead to stale translation in the L2 TLB $$	56
	1850713	Watchpoint exception on Ld/St does not report correct address in FAR or EDWAR	57
	1868343	The core might update ELR_ELn with an incorrect value when the core is stepping a conditional branch instruction located at the end of 32-byte boundary	59
	1923202	External debugger access to Debug registers might not work during Warm reset	60
	1946160	Atomic instructions with acquire semantics might not be ordered with respect to older stores with release semantics	61
	2356586	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch	63
	2743102	The core might deadlock during powerdown sequence	64
Ca	tegory B (ra	re)	65
	1286807	Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-read ordering violation	65
	1418040	MRRC reads of some Generic Timer system registers in AArch32 mode might return corrupt data	67
Ca	tegory C		69
	901865	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock	69
	930203	Persistent error response to transactions issued on behalf of Page descriptor Access bit and Dirty bit updates might livelock	70
	930239	Failure to report or incorrect reporting of L2 data RAM ECC errors	71
	933092	Critical beat data for an L2 cache miss, poisoned or tagged with error, consumed by a load without reporting an abort	72
	933779	DBGDTRTX register fails to hold value through Warm reset	73
	934968	DCPSx instruction with SCTLR_EL1.IESB = 1 while in debug state might not execute correctly	74

944783	Address breakpoint might cause a deadlock with certain AArch32 T32 code sequences	75
973981	L2 might report multiple RAS errors for the same prefetch request	76
974001	Deferred errors might cause silent data corruption following a hardware update of Access and Dirty bits in a translation table entry	77
978245	Executing unallocated encoding in conversion between floating-point and integer instruction class does not generate Undefined Instruction exception	78
980456	Stuck-at-fault in L1 instruction cache data array might cause deadlock with certain AArch32 T32 code sequences	79
986709	MRS to DBGDTR_EL0 might cause EDSCR.RXfull bit to clear incorrectly	80
988575	Unaligned cache line split load to NC or Device memory, tagged with poison or external error on its first half, might cause data corruption	81
1051464	CTI trigger occurring on same cycle PREADYCD is received might cause CTI trigger to be missed	82
1057923	Extra instruction might be executed during Halting Step when stepping WFI, WFE, and some self-synchronizing system register writes	83
1069401	Debug APB accesses to the ELA RAM might return incorrect data	84
1085091	The ERXADDR_EL1 register might report an incorrect physical address for an L1 data tag RAM single-bit correctable ECC error	85
1096402	Exception packet for return stack match might return incorrect [E1:E0] field	86
1109624	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock	87
1119735	16-bit T32 instruction close to breakpoint location might cause early breakpoint exception	88
1126105	Read from L1 instruction cache data array using RAMINDEX operation might return data from the wrong location	89
1144394	Software step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	90
1145826	ERROMISCO might report incorrect BANK and SUBBANK values for parity errors in L1 instruction cache data array	91
1192279	IMPLEMENTATION DEFINED fault for unsupported atomic operations is not routed to proper Exception level	92
1214504	Direct access to L1 data TLB might report incorrect value of valid bit of the corresponding TLB entry	93
1220808	ERROSTATUS.SERR encoding is incorrect for error responses from slave and deferred data errors from slave which are not supported	94
1227053	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering	95
1244984	Illegal return event might corrupt PSTATE.UA0	96
1256788	Halting step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	97

1264383	get invalid data	98
1346756	TLBI does not treat upper ASID bits as zero when TCR_EL1.AS is 0	99
1349291	Uncontainable (UC) SError might be incorrectly logged as an Unrecoverable (UEU) SError	100
1356341	L1D_CACHE access related PMU events and L1D_TLB access related PMU events increment on instructions/micro-operations excluded from these events	101
1395332	Read from PMCCNTR in AArch32 might return corrupted data	102
1406411	MSR DSPSR_ELO while in debug state might not correctly update PSTATE. {N,C,Z,V,GE} on debug exit	103
1408724	Portions of the branch target address recorded in ETM trace information might be incorrect for some branches immediately preceding an indirect branch with a malformed branch target address	104
1415323	Ordering violation might occur when a load encounters an L1 tag RAM single bit ECC error when a snoop request targets the same line	106
1430754	Write to External Debug Registers might cause a deadlock with certain AArch32 T32 code sequences	108
1487185	Waypoints from previous session might cause single-shot comparator match when trace enabled	109
1490853	TRCIDR3.CCITMIN value is incorrect	110
1514034	Error Synchronization Barrier (ESB) instruction execution with a pending masked Virtual SError might not clear HCR_EL2.VSE	111
1523502	CPUECTLR_EL1 controls for the MMU have no affect	112
1642217	ERROMISCO_EL1.SUBARRAY value for ECC errors in the L1 data cache might be incorrect	113
1655746	MRC read of DBGDSCRint into APSR_nzcv might produce wrong results and lead to corruption	114
1662412	Executing a cache maintenance by set/way instruction targeting the L1 data cache in the presence of snoops might result in a deadlock	115
1779123	External debug accesses in memory access mode with SCTLR_ELx.IESB set might result in unpredictable behavior	117
1788066	Possible loss of CTI event	118
1788068	Loss of CTI events during warm reset	119
1814889	Watchpoint Exception on DC ZVA does not report correct address in FAR or EDWAR	120
1857203	A memory mapped write to PMSSRR might falsely cause some PMU counters and counter overflow status to be reset after snapshot capture and read might return unknown/written data	121
1869881	ERROMISCO_EL1.SUBARRAY, ERROSTATUS.CE and ERROSTATUS.DE values for ECC errors in the L1 data cache might be incorrect	122
1872101	L2 data RAM may fail to report corrected ECC errors	123

SDEN-885749

18/3335	Uncorrectable tag errors in L2 cache might cause deadlock	124
1880110	Noncompliance with prioritization of Exception Catch debug events	125
1899433	PFG duplicate reported faults through a Warm reset	127
1913780	Some corrected errors might incorrectly increment ERROMISCO.CECR or ERROMISCO.CECO	128
1930283	The PE might deadlock if Pseudofault Injection is enabled in Debug State	129
2001418	DRPS might not execute correctly in Debug state with SCTLR_ELx.IESB set in the current EL	130
2019409	ETM trace information records a branch to the next instruction as an N atom	131
2052428	An execution of MSR instruction might not update the destination register correctly when an external debugger initiates an APB write operation to update debug registers	132
2110726	External APB write to a register located at offset 0x084 might incorrectly issue a write to External Debug Instruction Transfer Register	134
2141647	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely	136
2227007	PMU L1D_CACHE_REFILL_OUTER is inaccurate	138
2238117	Reads of DISR_EL1 incorrectly return 0s while in Debug State	139
2239143	DRPS instruction is not treated as UNDEFINED at ELO in Debug state	140
2263697	L1 Data poison is not cleared by a store	141
2307838	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk	142
2391683	Software-step not done after exit from Debug state with an illegal value in DSPSR	143

r1p0 implementation fixes

Note the following errata might be fixed in some implementations of r1p0. This can be determined by reading the REVIDR_EL1 register where a set bit indicates that the erratum is fixed in this part.

REVIDR_EL1[0]	1043202 AArch32 T32 CLREX in an IT block will clear exclusive monitor even if it fails condition code check
---------------	---

Note that there is no change to the MIDR_EL1 which remains at r1p0 but the REVIDR_EL1 is updated to indicate which errata are corrected. Software will identify this release through the combination of MIDR_EL1 and REVIDR_EL1.

r2p0 implementation fixes

Note the following errata might be fixed in some implementations of r2p0. This can be determined by reading the REVIDR_EL1 register where a set bit indicates that the erratum is fixed in this part.

I REVILIR EL LIUI	1220197 Streaming store under specific conditions might cause deadlock or data corruption
-------------------	---

Note that there is no change to the MIDR_EL1 which remains at r2p0 but the REVIDR_EL1 is updated to indicate which errata are corrected. Software will identify this release through the combination of MIDR_EL1 and REVIDR_EL1.

r3p0 implementation fixes

Note the following errata might be fixed in some implementations of r3p0. This can be determined by reading the REVIDR_EL1 register where a set bit indicates that the erratum is fixed in this part.

REVIDR_EL1[1]	1315703 Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-write ordering violation	
REVIDR_EL1[5]	1463225 Software Step might prevent interrupt recognition	

Note that there is no change to the MIDR_EL1 which remains at r3p0 but the REVIDR_EL1 is updated to indicate which errata are corrected. Software will identify this release through the combination of MIDR_EL1 and REVIDR_EL1.

r3p1 implementation fixes

Note the following errata might be fixed in some implementations of r3p1. This can be determined by reading the REVIDR_EL1 register where a set bit indicates that the erratum is fixed in this part.

REVIDR_EL1[7]	1463225 Software Step might prevent interrupt recognition
---------------	---

Note that there is no change to the MIDR_EL1 which remains at r3p1 but the REVIDR_EL1 is updated to indicate which errata are corrected. Software will identify this release through the combination of MIDR_EL1 and REVIDR_EL1.

Introduction

Scope

This document describes errata categorized by level of severity. Each description includes:

- The current status of the erratum.
- Where the implementation deviates from the specification and the conditions required for erroneous behavior to occur.
- The implications of the erratum with respect to typical applications.
- The application and limitations of a workaround where possible.

Categorization of errata

Errata are split into three levels of severity and further qualified as common or rare:

Category A	A critical error. No workaround is available or workarounds are impactful. The error is likely to be common for many systems and applications.
Category A (Rare)	A critical error. No workaround is available or workarounds are impactful. The error is likely to be rare for most systems and applications. Rare is determined by analysis, verification and usage.
Category B	A significant error or a critical error with an acceptable workaround. The error is likely to be common for many systems and applications.
Category B (Rare)	A significant error or a critical error with an acceptable workaround. The error is likely to be rare for most systems and applications. Rare is determined by analysis, verification and usage.
Category C	A minor error.

Change Control

Errata are listed in this section if they are new to the document, or marked as "updated" if there has been any change to the erratum text. Fixed errata are not shown as updated unless the erratum text has changed. The **errata summary table** identifies errata that have been fixed in each product revision.

14-Oct-2022: Changes in document version v27.0

ID	Status	Area	Category	Summary
1262888	Updated	Programmer	Category B	Translation access hitting a prefetched L2 TLB entry under specific conditions might corrupt the L2 TLB leading to an incorrect translation
2743102	New	Programmer	Category B	The core might deadlock during powerdown sequence

08-Feb-2022: Changes in document version v26.0

ID	Status	Area	Category	Summary
2356586	New	Programmer	Category B	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch
2227007	Updated	Programmer	Category C	PMU L1D_CACHE_REFILL_OUTER is inaccurate
2307838	New	Programmer	Category C	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk
2391683	New	Programmer	Category C	Software-step not done after exit from Debug state with an illegal value in DSPSR

16-Aug-2021: Changes in document version v25.0

ID	Status	Area	Category	Summary
1850713	Updated	Programmer	Category B	Watchpoint exception on Ld/St does not report correct address in FAR or EDWAR
2110726	New	Programmer	Category C	External APB write to a register located at offset 0x084 might incorrectly issue a write to External Debug Instruction Transfer Register
2141647	New	Programmer	Category C	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely
2227007	New	Programmer	Category C	PMU L1D_CACHE_REFILL_OUTER is inaccurate
2238117	New	Programmer	Category C	Reads of DISR_EL1 incorrectly return 0s while in Debug State
2239143	New	Programmer	Category C	DRPS instruction is not treated as UNDEFINED at ELO in Debug state
2263697	New	Programmer	Category C	L1 Data poison is not cleared by a store

02-Mar-2021: Changes in document version v24.0

ID	Status	Area	Category	Summary
2019409	New	Programmer	Category C	ETM trace information records a branch to the next instruction as an N atom
2052428	New	Programmer	Category C	An execution of MSR instruction might not update the destination register correctly when an external debugger initiates an APB write operation to update debug registers

06-Nov-2020: Changes in document version v23.0

ID	Status	Area	Category	Summary
2001418	New	Programmer	Category C	DRPS might not execute correctly in Debug state with SCTLR_ELx.IESB set in the current EL

29-Sep-2020: Changes in document version v22.0

ID	Status	Area	Category	Summary
1923202	New	Programmer	Category B	External debugger access to Debug registers might not work during Warm reset
1946160	New	Programmer	Category B	Atomic instructions with acquire semantics might not be ordered with respect to older stores with release semantics
1930283	New	Programmer	Category C	The PE might deadlock if Pseudofault Injection is enabled in Debug State

31-Jul-2020: Changes in document version v21.0

ID	Status	Area	Category	Summary
1165522	Updated	Programmer	Category B	Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation
1800710	Updated	Programmer	Category B	A transient single-bit ECC error in the MMU TC RAM might lead to stale translation in the L2 TLB
1850713	New	Programmer	Category B	Watchpoint exception on Ld/St does not report correct address in FAR or EDWAR
1868343	New	Programmer	Category B	The core might update ELR_ELn with an incorrect value when the core is stepping a conditional branch instruction located at the end of 32-byte boundary
1857203	New	Programmer	Category C	A memory mapped write to PMSSRR might falsely cause some PMU counters and counter overflow status to be reset after snapshot capture and read might return unknown/written data
1869881	New	Programmer	Category C	ERROMISCO_EL1.SUBARRAY, ERROSTATUS.CE and ERROSTATUS.DE values for ECC errors in the L1 data cache might be incorrect
1872101	New	Programmer	Category C	L2 data RAM may fail to report corrected ECC errors
1873335	New	Programmer	Category C	Uncorrectable tag errors in L2 cache might cause deadlock
1880110	New	Programmer	Category C	Noncompliance with prioritization of Exception Catch debug events
1899433	New	Programmer	Category C	PFG duplicate reported faults through a Warm reset
1913780	New	Programmer	Category C	Some corrected errors might incorrectly increment ERROMISCO.CECR or ERROMISCO.CECO

22-May-2020: Changes in document version v20.0

ID	Status	Area	Category	Summary
1791580	New	Programmer	Category B	Atomic Store instructions to shareable write-back memory might cause memory consistency failures
1800710	New	Programmer	Category B	A transient single-bit ECC error in the MMU TC RAM might lead to stale translation in the L2 TLB
1779123	New	Programmer	Category C	External debug accesses in memory access mode with SCTLR_ELx.IESB set might result in unpredictable behavior
1788066	New	Programmer	Category C	Possible loss of CTI event
1788068	New	Programmer	Category C	Loss of CTI events during warm reset
1814889	New	Programmer	Category C	Watchpoint Exception on DC ZVA does not report correct address in FAR or EDWAR

14-Feb-2020: Changes in document version v19.0

ID	Status	Area	Category	Summary
1655746	New	Programmer	Category C	MRC read of DBGDSCRint into APSR_nzcv might produce wrong results and lead to corruption

20-Dec-2019: Changes in document version v18.0

ID	Status	Area	Category	Summary
1642217	New	Programmer	Category C	ERROMISCO_EL1.SUBARRAY value for ECC errors in the L1 data cache might be incorrect
1662412	New	Programmer	Category C	Executing a cache maintenance by set/way instruction targeting the L1 data cache in the presence of snoops might result in a deadlock

24-Sep-2019: Changes in document version v17.0

ID	Status	Area	Category	Summary
1514034	New	Programmer	Category C	Error Synchronization Barrier (ESB) instruction execution with a pending masked Virtual SError might not clear HCR_EL2.VSE
1523502	New	Programmer	Category C	CPUECTLR_EL1 controls for the MMU have no affect

28-Jun-2019: Changes in document version v16.0

ID	Status	Area	Category	Summary
1346756	Updated	Programmer	Category C	TLBI does not treat upper ASID bits as zero when TCR_EL1.AS is 0
1487185	New	Programmer		Waypoints from previous session might cause single-shot comparator match when trace enabled
1490853	New	Programmer	Category C	TRCIDR3.CCITMIN value is incorrect

30-Apr-2019: Changes in document version v15.0

ID	Status	Area	Category	Summary
1463225	New	Programmer	Category B	Software Step might prevent interrupt recognition
1418040	Updated	Programmer	Category B (rare)	MRRC reads of some Generic Timer system registers in AArch32 mode might return corrupt data
1349291	Updated	Programmer	Category C	Uncontainable (UC) SError might be incorrectly logged as an Unrecoverable (UEU) SError
1356341	Updated	Programmer	Category C	L1D_CACHE access related PMU events and L1D_TLB access related PMU events increment on instructions/micro-operations excluded from these events
1395332	Updated	Programmer	Category C	Read from PMCCNTR in AArch32 might return corrupted data
1406411	Updated	Programmer	Category C	MSR DSPSR_ELO while in debug state might not correctly update PSTATE.{N,C,Z,V,GE} on debug exit
1408724	Updated	Programmer	Category C	Portions of the branch target address recorded in ETM trace information might be incorrect for some branches immediately preceding an indirect branch with a malformed branch target address
1415323	Updated	Programmer	Category C	Ordering violation might occur when a load encounters an L1 tag RAM single bit ECC error when a snoop request targets the same line
1430754	New	Programmer	Category C	Write to External Debug Registers might cause a deadlock with certain AArch32 T32 code sequences

26-Mar-2019: Changes in document version v14.0

ID	Status	Area	Category	Summary
1418040	New	Programmer	Category B (rare)	MRRC reads of some Generic Timer system registers in AArch32 mode might return corrupt data
1406411	New	Programmer	Category C	MSR DSPSR_ELO while in debug state might not correctly update PSTATE.{N,C,Z,V,GE} on debug exit
1408724	New	Programmer	Category C	Portions of the branch target address recorded in ETM trace information might be incorrect for some branches immediately preceding an indirect branch with a malformed branch target address
1415323	New	Programmer	Category C	Ordering violation might occur when a load encounters an L1 tag RAM single bit ECC error when a snoop request targets the same line

08-Mar-2019: Changes in document version v13.0

ID	Status	Area	Category	Summary	
1346756	New	Programmer	Category C	TLBI does not treat upper ASID bits as zero when TCR_EL1.AS is 0	
1349291	New	Programmer	Category C	Uncontainable (UC) SError might be incorrectly logged as an Unrecoverable (UEU) SError	
1356341	New	Programmer	Category C	L1D_CACHE access related PMU events and L1D_TLB access related PMU events increment on instructions/micro-operations excluded from these events	
1395332	New	Programmer	Category C	Read from PMCCNTR in AArch32 might return corrupted data	

21-Nov-2018: Changes in document version v12.0

ID	Status	Area	Category	Summary
1315703	New	Programmer	Category A (rare)	Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-write ordering violation
1257314	Updated	Programmer	Category B	Multiple floating-point divides/square roots concurrently completing back-to-back and flushing back-to-back might cause data corruption
1262606	Updated	Programmer	Category B	Concurrent instruction TLB miss and mispredicted branch instruction located at the end of 32MB region might fetch wrong instruction stream
1262888	Updated	Programmer	Category B	Translation access hitting a prefetched L2 TLB entry under specific conditions might corrupt the L2 TLB leading to an incorrect translation
1275112	Updated	Programmer	Category B	A T32 instruction inside an IT block followed by a mispredicted speculative instruction stream might cause a deadlock
1286807	New	Programmer	Category B (rare)	Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-read ordering violation
1227053	Updated	Programmer	Category C	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering
1244984	Updated	Programmer	Category C	Illegal return event might corrupt PSTATE.UAO
1256788	Updated	Programmer	Category C	Halting step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error
1264383	Updated	Programmer	Category C	Write-Back load after two Device-nG* stores to the same physical address might get invalid data

04-Oct-2018: Changes in document version v11.0

ID	Status	Area	Category	Summary	
1257314	New	Programmer	Category B	Multiple floating-point divides/square roots concurrently completing back-to-back and flushing back-to-back might cause data corruption	
1262606	New	Programmer	Category B	Concurrent instruction TLB miss and mispredicted branch instruction located at the end of 32MB region might fetch wrong instruction stream	
1262888	New	Programmer	Category B	Translation access hitting a prefetched L2 TLB entry under specific conditions might corrupt the L2 TLB leading to an incorrect translation	
1275112	New	Programmer	Category B	A T32 instruction inside an IT block followed by a mispredicted speculative instruction stream might cause a deadlock	
1227053	New	Programmer	Category C	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering	
1244984	New	Programmer	Category C	Illegal return event might corrupt PSTATE.UA0	
1256788	New	Programmer	Category C	Halting step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	
1264383	New	Programmer	Category C	Write-Back load after two Device-nG* stores to the same physical address might get invalid data	

07-Sep-2018: Changes in document version v10.0

ID	Status	Area	Category	Summary
1165522	Updated	Programmer	Category B	Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation
1188873	Updated	d Programmer Category B		MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result
1220197	New	Programmer	Category B	Streaming store under specific conditions might cause deadlock or data corruption

01-Aug-2018: Changes in document version v9.0

ID	Status	Area	Category	Summary	
1130799	New	Programmer	Category B	TLBI VAAE1 or TLBI VAALE1 targeting a page within hardware page aggregated address translation data in the L2 TLB might cause corruption of address translation data	
1165347	New	Programmer	Category B	Continuous failing STREX because of another core snooping from speculatively executed atomic behind constantly mispredicted branch migh cause livelock	
1165522	New	Programmer	Category B	Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation	
1188873	New	Programmer	Category B	MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result	
1207823	New	Programmer	Category B	The exclusive monitor might end up tracking an incorrect cache line in the presence of a VA-alias, causing a false pass on the exclusive access sequence	
1085091	Updated	Programmer	Category C	The ERXADDR_EL1 register might report an incorrect physical address for an L1 data tag RAM single-bit correctable ECC error	
1096402	Updated	Programmer	Category C	Exception packet for return stack match might return incorrect [E1:E0] field	
1109624	Updated	Programmer	Category C	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock	
1119735	Updated	Programmer	Category C	16-bit T32 instruction close to breakpoint location might cause early breakpoint exception	
1126105	Updated	Programmer	Category C	Read from L1 instruction cache data array using RAMINDEX operation might return data from the wrong location	
1144394	Updated	Programmer	Category C	Software step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	
1145826	Updated	Programmer	Category C	ERROMISCO might report incorrect BANK and SUBBANK values for parity errors in L1 instruction cache data array	
1192279	New	Programmer	Category C	IMPLEMENTATION DEFINED fault for unsupported atomic operations is not routed to proper Exception level	
1214504	New	Programmer	Category C	Direct access to L1 data TLB might report incorrect value of valid bit of the corresponding TLB entry	
1220808	New	Programmer	Category C	ERROSTATUS.SERR encoding is incorrect for error responses from slave and deferred data errors from slave which are not supported	

Date of issue: 14-Oct-2022

Version: 27.0

22-Jun-2018: Changes in document version v8.0

ID	Status	Area	Category	Summary	
1085091	New	Programmer	Category C	The ERXADDR_EL1 register might report an incorrect physical address for an L1 data tag RAM single-bit correctable ECC error	
1096402	New	Programmer	Category C	Exception packet for return stack match might return incorrect [E1:E0] field	
1109624	New	Programmer	Category C	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock	
1119735	New	Programmer	Category C	16-bit T32 instruction close to breakpoint location might cause early breakpoint exception	
1126105	New	Programmer	Category C	Read from L1 instruction cache data array using RAMINDEX operation might return data from the wrong location	
1144394	New	Programmer	Category C	Software step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	
1145826	New	Programmer	Category C	ERROMISCO might report incorrect BANK and SUBBANK values for parity errors in L1 instruction cache data array	

13-Apr-2018: Changes in document version v7.0

ID	Status	Area	Category	Summary
1043202	Updated	Programmer	Category B	AArch32 T32 CLREX in an IT block will clear exclusive monitor even if it fails condition code check
1073348	New	Programmer	Category B	Concurrent instruction TLB miss and mispredicted return instruction might fetch wrong instruction stream
1051464	Updated	Programmer	Category C	CTI trigger occurring on same cycle PREADYCD is received might cause CTI trigger to be missed
1057923	New	Programmer	Category C	Extra instruction might be executed during Halting Step when stepping WFI, WFE and some self-synchronizing system register writes
1069401	New	Programmer	Category C	Debug APB accesses to the ELA RAM might return incorrect data

03-Apr-2018: Changes in document version v6.0

No new or updated errata in this document version.

09-Feb-2018: Changes in document version v5.0

ID	Status	Area	Category	Summary
1043202	New	Programmer	Category B	AArch32 T32 CLREX in an IT block will clear exclusive monitor even if it fails condition code check
1051464	New	Programmer	Category C	CTI trigger occurring on same cycle PREADYCD is received might cause CTI trigger to be missed

23-Oct-2017: Changes in document version v4.0

ID	Status	Area	Category	Summary
977072	New	Programmer	Category B	Accessing certain Debug or Generic Timer system registers in AArch32 might cause incorrect system register values
981980	New	Programmer	Category B	Interrupt is taken immediately after MSR DAIF instruction masks the interrupt
944783	New	Programmer	Category C	Address breakpoint might cause a deadlock with certain AArch32 T32 code sequences
973981	New	Programmer	Category C	L2 might report multiple RAS errors for the same prefetch request
974001	New	Programmer	Category C	Deferred errors might cause silent data corruption following a hardware update of Access and Dirty bits in a translation table entry
978245	New	Programmer	Category C	Executing unallocated encoding in conversion between floating-point and integer instruction class does not generate Undefined Instruction exception
980456	New	Programmer	Category C	Stuck-at-fault in L1 instruction cache data array might cause deadlock with certain AArch32 T32 code sequences
986709	New	Programmer	Category C	MRS to DBGDTR_EL0 might cause EDSCR.RXfull bit to clear incorrectly
988575	New	Programmer	Category C	Unaligned cache line split load to NC or Device memory, tagged with poison or external error on its first half, might cause data corruption

25-Sep-2017: Changes in document version v3.0

ID	Status	Area	Category	Summary
961148	New	Programmer	Category B	Reads from DSU CLUSTER* or ERX* system registers might return corrupted data
933092	New	Programmer	Category C	Critical beat data for an L2 cache miss, poisoned or tagged with error, consumed by a load without reporting an abort
933779	New	Programmer	Category C	DBGDTRTX register fails to hold value through Warm reset
934968	New	Programmer	Category C	DCPSx instruction with SCTLR_EL1.IESB = 1 while in debug state might not execute correctly

18-Aug-2017: Changes in document version v2.0

ID	Status	Area	Category	Summary
905797	New	Programmer	Category B	Failure to enforce read-after-read ordering rules
901865	New	Programmer	Category C	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock
930239	New	Programmer	Category C	Failure to report or incorrect reporting of L2 data RAM ECC errors
930203	New	Programmer	Category C	Persistent error response to transactions issued on behalf of Page descriptor Access bit and Dirty bit updates might livelock

30-May-2017: Changes in document version v1.0

No errata in this document version.

Errata summary table

The errata associated with this product affect the product versions described in the following table.

ID	Area	Category	Summary	Found in versions	Fixed in version
1315703	Programmer	Category A (rare)	Modification of the translation table for a virtual page which is being accessed by an active process might lead to read- after-write ordering violation	r0p0, r1p0, r2p0, r3p0	r3p1
905797	Programmer	Category B	Failure to enforce read-after- read ordering rules	rOpO	r1p0
961148	Programmer	Category B	Reads from DSU CLUSTER* or ERX* system registers might return corrupted data	r0p0	r1p0
977072	Programmer	Category B	Accessing certain Debug or Generic Timer system registers in AArch32 might cause incorrect system register values	rOpO	r1p0
981980	Programmer	Category B	Interrupt is taken immediately after MSR DAIF instruction masks the interrupt	rOpO	r1p0
1043202	Programmer	Category B	AArch32 T32 CLREX in an IT block will clear exclusive monitor even if it fails condition code check	r0p0, r1p0	r2p0
1073348	Programmer	Category B	Concurrent instruction TLB miss and mispredicted return instruction might fetch wrong instruction stream	r0p0, r1p0	r2p0
1130799	Programmer	Category B	TLBI VAAE1 or TLBI VAALE1 targeting a page within hardware page aggregated address translation data in the L2 TLB might cause corruption of address translation data	r0p0, r1p0, r2p0	r3p0
1165347	Programmer	Category B	Continuous failing STREX because of another core snooping from speculatively executed atomic behind constantly mispredicted branch might cause livelock	r0p0, r1p0, r2p0	r3p0

ID	Area	Category	Summary	Found in versions	Fixed in version
1165522	Programmer	Category B	Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation	r0p0, r1p0, r2p0	r3p0
1188873	Programmer	Category B	MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result	r0p0, r1p0, r2p0	r3p0
1207823	Programmer	Category B	The exclusive monitor might end up tracking an incorrect cache line in the presence of a VA-alias, causing a false pass on the exclusive access sequence	r0p0, r1p0, r2p0	r3p0
1220197	Programmer	Category B	Streaming store under specific conditions might cause deadlock or data corruption	r0p0, r1p0, r2p0	r3p0
1257314	Programmer	Category B	Multiple floating-point divides/square roots concurrently completing back- to-back and flushing back-to- back might cause data corruption	r0p0, r1p0, r2p0, r3p0	r3p1
1262606	Programmer	Category B	Concurrent instruction TLB miss and mispredicted branch instruction located at the end of 32MB region might fetch wrong instruction stream	r0p0, r1p0, r2p0, r3p0	r3p1
1262888	Programmer	Category B	Translation access hitting a prefetched L2 TLB entry under specific conditions might corrupt the L2 TLB leading to an incorrect translation	r0p0, r1p0, r2p0, r3p0	r3p1
1275112	Programmer	Category B	A T32 instruction inside an IT block followed by a mispredicted speculative instruction stream might cause a deadlock	r0p0, r1p0, r2p0, r3p0	r3p1
1463225	Programmer	Category B	Software Step might prevent interrupt recognition	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1791580	Programmer	Category B	Atomic Store instructions to shareable write-back memory might cause memory consistency failures	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1

ID	Area	Category	Summary	Found in versions	Fixed in version
1800710	Programmer	Category B	A transient single-bit ECC error in the MMU TC RAM might lead to stale translation in the L2 TLB	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1850713	Programmer	Category B	Watchpoint exception on Ld/St does not report correct address in FAR or EDWAR	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1868343	Programmer	Category B	The core might update ELR_ELn with an incorrect value when the core is stepping a conditional branch instruction located at the end of 32-byte boundary	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1923202	Programmer	Category B	External debugger access to Debug registers might not work during Warm reset	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
1946160	Programmer	Category B	Atomic instructions with acquire semantics might not be ordered with respect to older stores with release semantics	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2356586	Programmer	Category B	Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2743102	Programmer	Category B	The core might deadlock during powerdown sequence	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
1286807	Programmer	Category B (rare)	Modification of the translation table for a virtual page which is being accessed by an active process might lead to read- after-read ordering violation	r0p0, r1p0, r2p0, r3p0	r3p1
1418040	Programmer	Category B (rare)	MRRC reads of some Generic Timer system registers in AArch32 mode might return corrupt data	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
901865	Programmer	Category C	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock	rOpO	r1p0
930203	Programmer	Category C	Persistent error response to transactions issued on behalf of Page descriptor Access bit and Dirty bit updates might livelock	rOpO	r1p0

ID	Area	Category	Summary	Found in versions	Fixed in version
930239	Programmer	Category C	Failure to report or incorrect reporting of L2 data RAM ECC errors	rOpO	r1p0
933092	Programmer	Category C	Critical beat data for an L2 cache miss, poisoned or tagged with error, consumed by a load without reporting an abort	rOpO	r1p0
933779	Programmer	Category C	DBGDTRTX register fails to hold value through Warm reset	rOpO	r1p0
934968	Programmer	Category C	DCPSx instruction with SCTLR_EL1.IESB = 1 while in debug state might not execute correctly	rOpO	r1p0
944783	Programmer	Category C	Address breakpoint might cause a deadlock with certain AArch32 T32 code sequences	rOpO	r1p0
973981	Programmer	Category C	L2 might report multiple RAS errors for the same prefetch request	rOpO	r1p0
974001	Programmer	Category C	Deferred errors might cause silent data corruption following a hardware update of Access and Dirty bits in a translation table entry	rOpO	r1p0
978245	Programmer	Category C	Executing unallocated encoding in conversion between floating-point and integer instruction class does not generate Undefined Instruction exception	rOpO	r1p0
980456	Programmer	Category C	Stuck-at-fault in L1 instruction cache data array might cause deadlock with certain AArch32 T32 code sequences	rOpO	r1p0
986709	Programmer	Category C	MRS to DBGDTR_ELO might cause EDSCR.RXfull bit to clear incorrectly	rOpO	r1p0
988575	Programmer	Category C	Unaligned cache line split load to NC or Device memory, tagged with poison or external error on its first half, might cause data corruption	rOpO	r1p0
1051464	Programmer	Category C	CTI trigger occurring on same cycle PREADYCD is received might cause CTI trigger to be missed	r0p0, r1p0	r2p0

ID	Area	Category	Summary	Found in versions	Fixed in version
1057923	Programmer	Category C	Extra instruction might be executed during Halting Step when stepping WFI, WFE and some self-synchronizing system register writes	r0p0, r1p0	r2p0
1069401	Programmer	Category C	Debug APB accesses to the ELA RAM might return incorrect data	r0p0, r1p0	r2p0
1085091	Programmer	Category C	The ERXADDR_EL1 register might report an incorrect physical address for an L1 data tag RAM single-bit correctable ECC error	r0p0, r1p0, r2p0	r3p0
1096402	Programmer	Category C	Exception packet for return stack match might return incorrect [E1:E0] field	r0p0, r1p0, r2p0	r3p0
1109624	Programmer	Category C	Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock	r0p0, r1p0, r2p0	r3p0
1119735	Programmer	Category C	16-bit T32 instruction close to breakpoint location might cause early breakpoint exception	r0p0, r1p0, r2p0	r3p0
1126105	Programmer	Category C	Read from L1 instruction cache data array using RAMINDEX operation might return data from the wrong location	r0p0, r1p0, r2p0	r3p0
1144394	Programmer	Category C	Software step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	r0p0, r1p0, r2p0	r3p0
1145826	Programmer	Category C	ERROMISCO might report incorrect BANK and SUBBANK values for parity errors in L1 instruction cache data array	r0p0, r1p0, r2p0	r3p0
1192279	Programmer	Category C	IMPLEMENTATION DEFINED fault for unsupported atomic operations is not routed to proper Exception level	r0p0, r1p0, r2p0	r3p0
1214504	Programmer	Category C	Direct access to L1 data TLB might report incorrect value of valid bit of the corresponding TLB entry	r0p0, r1p0, r2p0	r3p0

ID	Area	Category	Summary	Found in versions	Fixed in version
1220808	Programmer	Category C	ERROSTATUS.SERR encoding is incorrect for error responses from slave and deferred data errors from slave which are not supported	r0p0, r1p0, r2p0	r3p0
1227053	Programmer	Category C	Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering	r0p0, r1p0, r2p0, r3p0	r3p1
1244984	Programmer	Category C	Illegal return event might corrupt PSTATE.UAO	r0p0, r1p0, r2p0, r3p0	r3p1
1256788	Programmer	Category C	Halting step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error	r0p0, r1p0, r2p0, r3p0	r3p1
1264383	Programmer	Category C	Write-Back load after two Device-nG* stores to the same physical address might get invalid data	r0p0, r1p0, r2p0, r3p0	r3p1
1346756	Programmer	Category C	TLBI does not treat upper ASID bits as zero when TCR_EL1.AS is 0	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
1349291	Programmer	Category C	Uncontainable (UC) SError might be incorrectly logged as an Unrecoverable (UEU) SError	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1356341	Programmer	Category C	L1D_CACHE access related PMU events and L1D_TLB access related PMU events increment on instructions/micro-operations excluded from these events	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1395332	Programmer	Category C	Read from PMCCNTR in AArch32 might return corrupted data	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1406411	Programmer	Category C	MSR DSPSR_ELO while in debug state might not correctly update PSTATE.{N,C,Z,V,GE} on debug exit	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1408724	Programmer	Category C	Portions of the branch target address recorded in ETM trace information might be incorrect for some branches immediately preceding an indirect branch with a malformed branch target address	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0

ID	Area	Category	Summary	Found in versions	Fixed in version
1415323	Programmer	Category C	Ordering violation might occur when a load encounters an L1 tag RAM single bit ECC error when a snoop request targets the same line	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1430754	Programmer	Category C	Write to External Debug Registers might cause a deadlock with certain AArch32 T32 code sequences	r0p0, r1p0, r2p0, r3p0, r3p1	r4p0
1487185	Programmer	Category C	Waypoints from previous session might cause single-shot comparator match when trace enabled	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1490853	Programmer	Category C	TRCIDR3.CCITMIN value is incorrect	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1514034	Programmer	Category C	Error Synchronization Barrier (ESB) instruction execution with a pending masked Virtual SError might not clear HCR_EL2.VSE	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1523502	Programmer	Category C	CPUECTLR_EL1 controls for the MMU have no affect	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1642217	Programmer	Category C	ERROMISCO_EL1.SUBARRAY value for ECC errors in the L1 data cache might be incorrect	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1655746	Programmer	Category C	MRC read of DBGDSCRint into APSR_nzcv might produce wrong results and lead to corruption	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1662412	Programmer	Category C	Executing a cache maintenance by set/way instruction targeting the L1 data cache in the presence of snoops might result in a deadlock	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1779123	Programmer	Category C	External debug accesses in memory access mode with SCTLR_ELx.IESB set might result in unpredictable behavior	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1788066	Programmer	Category C	Possible loss of CTI event	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1788068	Programmer	Category C	Loss of CTI events during warm reset	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1814889	Programmer	Category C	Watchpoint Exception on DC ZVA does not report correct address in FAR or EDWAR	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1

ID	Area	Category	Summary	Found in versions	Fixed in version
1857203	Programmer	Category C	A memory mapped write to PMSSRR might falsely cause some PMU counters and counter overflow status to be reset after snapshot capture and read might return unknown/written data	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1869881	Programmer	Category C	ERROMISCO_EL1.SUBARRAY, ERROSTATUS.CE and ERROSTATUS.DE values for ECC errors in the L1 data cache might be incorrect	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1872101	Programmer	Category C	L2 data RAM may fail to report corrected ECC errors	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1873335	Programmer	Category C	Uncorrectable tag errors in L2 cache might cause deadlock	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0	r4p1
1880110	Programmer	Category C	Noncompliance with prioritization of Exception Catch debug events	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
1899433	Programmer	Category C	PFG duplicate reported faults through a Warm reset	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
1913780	Programmer	Category C	Some corrected errors might incorrectly increment ERROMISCO.CECR or ERROMISCO.CECO	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
1930283	Programmer	Category C	The PE might deadlock if Pseudofault Injection is enabled in Debug State	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2001418	Programmer	Category C	DRPS might not execute correctly in Debug state with SCTLR_ELx.IESB set in the current EL	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2019409	Programmer	Category C	ETM trace information records a branch to the next instruction as an N atom	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2052428	Programmer	Category C	An execution of MSR instruction might not update the destination register correctly when an external debugger initiates an APB write operation to update debug registers	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2110726	Programmer	Category C	External APB write to a register located at offset 0x084 might incorrectly issue a write to External Debug Instruction Transfer Register	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open

ID	Area	Category	Summary	Found in versions	Fixed in version
2141647	Programmer	Category C	A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2227007	Programmer	Category C	PMU L1D_CACHE_REFILL_OUTER is inaccurate	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2238117	Programmer	Category C	Reads of DISR_EL1 incorrectly return 0s while in Debug State	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2239143	Programmer	Category C	DRPS instruction is not treated as UNDEFINED at ELO in Debug state	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2263697	Programmer	Category C	L1 Data poison is not cleared by a store	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2307838	Programmer	Category C	ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open
2391683	Programmer	Category C	Software-step not done after exit from Debug state with an illegal value in DSPSR	r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, r4p1	Open

Errata descriptions

Category A

There are no errata in this category.

Date of issue: 14-Oct-2022

Category A (rare)

1315703

Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-write ordering violation

Status

Fault Type: Programmer Category A Rare

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

If a virtual address for a cacheable mapping of a location is being accessed by a core while another core is remapping the virtual address to a new physical page using the recommended break-before-make sequence, then under rare circumstances TLBI+DSB completes before a write using the translation being invalidated has been observed by other observers.

Configurations Affected

The erratum affects all multi-core configurations.

Conditions.

- 1. Core A has in program order a store (ST1) and a younger load (LD1) to the same cacheable virtual address.
- 2. Core B marks the associated translation table entry invalid, followed by a DSB; TLBI; DSB sequence which generates a sync request to Core A.
- 3. LD1 executes speculatively past ST1 and returns its result using the original physical address (PA1) under specific rare conditions before Core A has responded to the sync request.
- 4. At the time of receiving the sync request, on Core A:
 - a. No load younger than ST1 has executed out-of-order for any of the following instructions:
 - i. Load.
 - ii. DMB.
 - iii. DSB.
 - iv. Atomic instruction which updates a register and has acquire semantics.
 - b. No store younger than ST1 has already computed its physical address (PA).
- 5. Any memory request from core A which was initiated prior to the sync request completes.
- 6. ST1 is not able to compute its PA before Core A responds to the sync request.
- 7. Core B receives the sync response and updates the translation table entry to map a new PA (PA2), which has write permissions and differs on bits [23:12] from PA1, followed by a DSB.
- 8. ST1 performs memory write using PA2 on Core A and commits the result from LD1 using PA1 because the read-after-write ordering violation between ST1 and LD1 is not detected.

Implications

If the above conditions are met under certain rare conditions, then this erratum might result in a readafter-write ordering violation.

Workaround

This erratum can be avoided by setting PSTATE.SSBS to 0 or CPUACTLR2_EL1[16] to 1, hence preventing LD1 from speculating past ST1. This will have a performance impact on general workloads.

Category B

905797

Failure to enforce read-after-read ordering rules

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under a combination of unusual conditions, it is possible for a younger load to bypass an older load to the same address, and for the two loads to observe updates to that address in the wrong order. In other words, the younger load might observe data which is globally ordered before the data that is observed by the older load.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. PE 1 is executing a program which contains a load atomic to physical address A, followed by two cacheable loads to physical address B. The load atomic does not have acquire semantics.
- 2. PE 2 is executing a program which modifies the value stored at physical address B.

If the above conditions are met under certain unusual timing conditions, then it is possible for the older of the two loads on PE 1 to observe the newly modified value from PE 2 while the younger load on PE 1 observes the value before the modification by PE 2.

Implications

If this erratum occurs, then multi-threaded software which relies on the read ordering rules might get an incorrect result.

Workaround

A workaround is not expected to be necessary in most cases. This is because the conditions require a combination of unusual timing conditions and load atomic instructions, which are not yet widely in use.

However, for systems using an ACE interconnect or a CHI interconnect that does not support far atomic operations (thus input **BROADCASTATOMIC** pin is tied to 0), setting CPUACTRL2_EL1[2] to 1 will prevent the conditions necessary to hit this erratum.

961148

Reads from DSU CLUSTER* or ERX* system registers might return corrupted data

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When a system register read from a particular set of system registers is executed speculatively, a subsequent read from the same set of registers might return corrupted data. The registers affected are the DynamlQ Shared Unit (DSU) CLUSTER* control system registers, and the ERX* error system registers when ERRSELR EL1.SEL=1.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. For ERX* registers, the ERRSELR EL1.SEL is set to 1.
- 2. MRS Instruction A targeting a CLUSTER* or ERX* register is speculatively executed.
- 3. MRS Instruction B targeting a CLUSTER* or ERX* register is executed before the core receives the read response from Instruction A.

Note that the registers in the first MRS read and second MRS read do not have to be the same for this erratum to occur.

Implications

If the above conditions are met, data returned from the MRS instruction B targeting a CLUSTER* or ERX* register might be corrupted.

Workaround

In most cases, this erratum can be avoided by inserting an ISB instruction before the MRS to the CLUSTER* or ERX* system register, as the ISB can prevent the MRS from being speculatively executed.

Accessing certain Debug or Generic Timer system registers in AArch32 might cause incorrect system register values

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Conditional MRC/MCR/MRRC/MCRR accesses, or speculative unconditional MRC/MRRC reads, to certain Debug or Generic Timer system registers in AArch32 state can result in incorrect values for these system registers.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is executing in AArch32 state.
- 2. A non-exceptional MRC/MCR/MRRC/MCRR access is made to one of the following registers: DBGDTRTXint, DBGDTRRXint, CNTP_TVAL, CNTP_CTL, CNTV_TVAL, CNTV_CTL, CNTPCT, CNTVCT, CNTP_CVAL, or CNTV_CVAL.

Implications

If the above conditions are met, then a read of an affected register might return an incorrect result, and a write of an affected register might occur unconditionally.

Workaround

The erratum can be avoided by trapping MRC/MCR/MRRC/MCRR accesses in AArch32 to the affected registers and doing the equivalent code sequence in the trap handler. To trap the CNT* accesses, set CNTKCTL_EL1.{ELOPTEN, ELOVCTEN, ELOVCTEN, ELOPCTEN} to 0. To trap the DBG* accesses, set MDSCR_EL1.TDCC to 1.

Interrupt is taken immediately after MSR DAIF instruction masks the interrupt

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0. Fixed in r1p0.

Description

When an interrupt arrives during the execution of an instruction that causes the interrupt to be masked, either MSR DAIFSet (immediate) or MSR DAIF (register), in some circumstances the interrupt will be erroneously taken on the instruction immediately following the MSR. Under the simple sequential execution model, that interrupt should not be taken because it has just been masked. In the interrupt handler, SPSR_ELx and ELR_ELx will reflect the fact that the relevant PSTATE.{A,I,F} mask bit was set when the interrupt was taken.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. An MSR DAIFSet (immediate) or MSR DAIF (register) instruction that changes the relevant PSTATE. {A,I,F} bit from 0 to 1 is executing.
- 2. An interrupt arrives during the execution of that MSR instruction and the execution state of the machine is such that the decision to take that interrupt depends on the PSTATE.{A.I.F} bit.
- 3. The interrupt is taken on the next instruction after the MSR instruction although it is newly-masked and should not be taken.

Implications

If the above conditions are met, then the interrupt is incorrectly taken on the instruction following the MSR. The SPSR_ELx.{A,I,F} bits and ELR_ELx will indicate that the masking MSR executed before taking the interrupt.

Workaround

Generally, it is expected that software will be robust against taking an interrupt immediately after masking it in PSTATE. If not, then a workaround is to subtract 4 from the ELR and clear the relevant mask bit in the SPSR when the interrupt vector is entered erroneously.

AArch32 T32 CLREX in an IT block will clear exclusive monitor even if it fails condition code check

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0. Fixed in r2p0.

Description

The AArch32 T32 CLREX instruction in an IT block will always clear the exclusive monitor, even when the CLREX condition code fails.

Note: The CLREX instruction does not have a condition code outside of an IT block.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is executing in AArch32 state.
- 2. A T32 CLREX instruction is in an IT block, and the CLREX fails the condition code check while the exclusive monitor is in the exclusive state.

Implications

If the above conditions are met, then a subsequent store-exclusive might unexpectedly fail.

Workaround

This erratum can be avoided by replacing all T32 CLREX instructions with an ISB instruction. This can be done through the following write sequence to several IMPLEMENTATION DEFINED registers:

LDR x0,=0x0

MSR S3 6 c15 c8 0,x0; MSR CPUPSELR EL3, X0

LDR x0,=0xF3BF8F2F

MSR S3_6_c15_c8_2,x0; MSR CPUPOR_EL3, X0

LDR x0,=0xFFFFFFF

MSR S3_6_c15_c8_3,x0; MSR CPUPMR_EL3, X0

LDR x0,=0x800200071

MSR S3 6 c15 c8 1,x0; MSR CPUPCR EL3, X0

ISB

1073348

Concurrent instruction TLB miss and mispredicted return instruction might fetch wrong instruction stream

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0. Fixed in r2p0.

Description

When branches are speculatively executed, either the prediction is correct and the following speculative instruction stream is architecturally executed, or the branch is mispredicted and the pipeline is flushed. Under certain conditions, if an unconditional indirect branch is speculatively executed while a translation table walk response is almost complete, then the speculative instruction stream might not be flushed if the branch was incorrectly predicted.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. One of the following unconditional indirect branches is speculatively executed where the branch target crosses a 32MB boundary:
 - A64: RET.
 - A32: BX Ir; POP {...,pc}; LDMIA r13!, {...,pc}; LDR PC, [SP], #offset.
 - T32: BX Ir; POP {...,pc}; LDMIA r13!, {...,pc}; LDR PC, [SP], #offset.
- 2. A translation table walk response arrives around the time the branch is speculated.
- 3. When the branch resolves, bits[24:0] of the speculated address must match the actual address.

Implications

If the above conditions are met, then the core might execute the wrong instruction stream.

Workaround

This erratum can be avoided by setting CPUACTLR_EL1[6] to 1, which disables static prediction.

1130799

TLBI VAAE1 or TLBI VAALE1 targeting a page within hardware page aggregated address translation data in the L2 TLB might cause corruption of address translation data

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

TLBI VAAE1 or TLBI VAALE1 targeting a page within aggregated address translation data in the L2 TLB invalidates the page, but might also corrupt the translation for other pages in the group. A subsequent translation miss request to a different page within the aggregated group might result in incorrect translation.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Full hardware page aggregation is enabled by setting CPUECTLR EL1[48] to 1.
- 2. Multiple ASIDs have aggregated address translation data in different ways of the L2 TLB for the same VA range.
- 3. TLBI VAAE1 or TLBI VAALE1 targeting a page within the aggregated address translation data is executed.

Implications

If the above conditions are met, then the MMU might generate incorrect translation.

Workaround

This erratum can be avoided by setting CPUACTLR2_EL1[59] to 1. Setting CPUACTLR2_EL1[59] to 1 might have a small impact on performance.

Continuous failing STREX because of another core snooping from speculatively executed atomic behind constantly mispredicted branch might cause livelock

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

Under certain conditions, a loop might continuously mispredict. If the speculative instruction path has an atomic instruction to the same physical address as another core's exclusive monitor address, then this might cause a repeatable loop where the cache line is requested by the atomic instruction to be unique, opening the exclusive monitor on the other core.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. There is a loop that has a branch that is consistently mispredicted.
- 2. There is an atomic instruction outside of the loop that has the same physical address as the exclusive monitor address of another core, within a cache line. The atomic instruction makes a unique request, snooping that cache line from other cores, and opening the exclusive monitor.

Implications

If the above conditions are met, the core might livelock.

Workaround

This erratum can be avoided by setting CPUACTLR2_EL1[0] to 1 and CPUACTLR2_EL1[15] to 1.

Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

A speculative Address Translation (AT) instruction translates using registers associated with an out-of-context translation regime and caches the resulting translation in the L2 TLB. A subsequent translation request generated when the out-of-context translation regime is current uses the previous cached L2 TLB entry producing an incorrect virtual to physical mapping.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. A speculative AT instruction performs a table walk translating virtual address to physical address using registers associated with an out-of-context translation regime.
- 2. Address translation data generated during the walk is cached in the L2 TLB.
- 3. The out-of-context translation regime becomes current and a subsequent memory access is translated using previously cached address translation data in the L2 TLB, resulting in an incorrect virtual to physical mapping.

Implications

If the above conditions are met, the resulting translation would be incorrect.

Workaround

When context-switching the register state for an out-of-context translation regime, system software at EL2 or above must ensure that all intermediate states during the context-switch would report a level 0 translation fault in response to an AT instruction targeting the out-of-context translation regime. Note that a workaround is only required if the system software contains an AT instruction as part of an executable page at EL2 or above.

MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

Under certain internal timing conditions, an MRC instruction that closely follows an MRRC instruction might produce incorrect data when the MRRC is a read of specific Generic Timer system registers in AArch32 state.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is executing at AArch32 ELO.
- 2. An MRRC instruction which reads either the CNTPCT, CNTVCT, CNTP_CVAL, or CNTV_CVAL register is executed.
- 3. An MRC instruction is executed.

Implications

If this erratum occurs, then the destination register of the MRC is incorrect.

Workarounds

The erratum can be avoided by trapping MRC/MCR/MRRC/MCRR accesses in AArch32 to the affected registers and doing the equivalent code sequence in the trap handler. To trap the CNT* accesses, set CNTKCTL_EL1.{ELOPTEN, ELOVCTEN, ELOVCTEN, ELOPCTEN} to 0. If HCR_EL2.{E2H,TGE}={1,1} then set CNTHCTL_EL2.{ELOPTEN, ELOVTEN, ELOVCTEN, ELOPCTEN} to 0. The following registers will be trapped: CNTP_CTL, CNTP_CVAL, CNTP_TVAL, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, CNTPCT, CNTVCT, CNTFRQ.

1207823

The exclusive monitor might end up tracking an incorrect cache line in the presence of a VA-alias, causing a false pass on the exclusive access sequence

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

Under certain conditions, the exclusive monitor that tracks the Physical Address (PA) for the exclusive-access sequence, might end up tracking the incorrect way the cache line is in the L1 cache. As a result, a subsequent STREX might get a false pass, even though the cache line was written to by another master.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. There is a load preceding the LDREX/STREX loop that has the same PA as the exclusive monitor address, within a cache line. However the load has a different VA, specifically a different VA[13:12] for 64KB L1 cache.
- 2. The LDREX issues ahead of this older load, misses the L1, and makes a request out to the L2 by allocating a request buffer. The L2 responds to the request for the LDREX, the line is allocated into the L1 cache, but the LDREX is prevented from picking up the response.
- 3. The older load subsequently misses the L1 and makes a request to the L2, using the same request buffer as that was previously used by the LDREX.
- 4. If the LDREX now replays, such that it coincides with the L2 response for the older load with the same PA, but a different VA, then it can forward from the L2 response for this load and complete. At this point, the exclusive monitor ends up capturing the way that this VA-aliased load is allocated into the L1, but the correct index that corresponds to the LDREX.
- 5. The exclusive monitor now ends up tracking the incorrect cache line. If the line was snooped out, it would therefore not transition to the open state.

Implications

If the above conditions are met, then the core might allow a subsequent STREX to pass, even though the LDREX/STREX sequence was not atomic.

Workaround

This erratum can be avoided by setting CPUACTLR2_EL1[11] to 1.

1220197

Streaming store under specific conditions might cause deadlock or data corruption

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

Under certain rare conditions, a streaming write of at least 64 consecutive bytes might send only 32 bytes of data from the L1 data cache to higher level caches.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. A store to address A is dispatched down a speculative path, before the write stream was engaged.
- 2. The write stream was engaged for a full cache line write.
- 3. A younger store instruction with address A is dispatched.

Implications

If the above conditions are met under certain timing conditions, then this erratum might result in deadlock or data corruption.

Workaround

This erratum can be avoided by setting CPUECTLR_EL1[25:24] to 0b11, which disables write streaming to the L2. This will have an impact on performance for streaming workloads.

Multiple floating-point divides/square roots concurrently completing back-to-back and flushing back-to-back might cause data corruption

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

Under certain conditions, two floating-point divide or square root instructions completing back-to-back and concurrently getting flushed by back-to-back branch mispredicts might result in data corruption.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Two or more concurrently executing floating-point divide and/or square root instructions need to complete in back-to-back cycles.
- 2. A branch mispredict arrives concurrently with the completion of the first divide. This divide will flush.
- 3. Another branch mispredict arrives concurrently with the completion of the second divide. This divide will flush.
- 4. No other floating-point/vector instructions are in the scheduler to be issued.
- 5. Newly dispatched instructions coincidentally pick up a register resource that was freed up by the last flushed divide.
- 6. The newly dispatched instruction gets issued before its producer is issued.

Implications

If the above conditions are met, then this erratum might result in data corruption.

Workaround

This erratum can be avoided by setting CPUACTLR3_EL1[10] to 1, which prevents parallel execution of divide and square root instructions.

Concurrent instruction TLB miss and mispredicted branch instruction located at the end of 32MB region might fetch wrong instruction stream

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

When branches are speculatively executed, either the prediction is correct and the following speculative instruction stream is architecturally executed, or the branch is mispredicted and the pipeline is flushed. Under certain conditions, if a branch located at the end of a 32MB region is speculatively executed while a translation table walk response is almost complete, then the speculative instruction stream might not be flushed if the branch was incorrectly predicted.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. A branch instruction located at the end of a 32MB region (if the branch address is PC=X[63:0], PC[24:6]=all1) is speculatively executed.
- 2. The target of the speculatively executed branch belongs to neither the current 32MB region (PC[63:25] = X[63:25]+0) nor the next sequential region (PC[63:25] = X[63:25]+1).
- 3. A translation table walk response for the other 32MB region arrives around the time the branch is speculated and written into the L1 instruction TLB.
- 4. When the branch resolves, bits[24:0] of the speculated address must match the actual address.

Implications

If the above conditions are met, then the core might execute the wrong instruction stream.

Workaround

This erratum can be avoided by setting CPUACTLR_EL1[13] to 1, which delays instruction fetch after branch misprediction. This workaround will have a small impact on performance.

1262888

Translation access hitting a prefetched L2 TLB entry under specific conditions might corrupt the L2 TLB leading to an incorrect translation

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

Under specific conditions, an incorrect virtual to physical mapping might happen because the L2 TLB is corrupted. The L2 TLB might be corrupted because of both:

- A translation access hitting an entry in the L2 TLB which was previously allocated by the MMU hardware prefetch mechanism.
- A TLBI VAAE1, TLBI VAAE1IS, TLBI VAALE1 or TLBI VAALE1IS for a non-active VMID context invalidating an entry.

A subsequent translation which hits against the corrupted entry generates an incorrect translation.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Virtualization is enabled.
- 2. The MMU hardware prefetcher installs an entry in the L2 TLB using VMID-A.
- 3. A translation request using VMID-A hits on the prefetched entry.
- 4. TLBI VAAE1, TLBI VAAE1IS, TLBI VAALE1 or TLBI VAALE1IS targeting a page using VMID-B where Stage 1 mapping is greater than Stage 2 mapping is in the process of invalidating a L2 TLB entry.

Implications

If the above conditions are met, then the MMU might generate an incorrect translation.

Workaround

The original workaround of setting CPUECTLR_EL1[51], which disables the MMU hardware prefetcher, will not resolve this issue due to a subsequent erratum 1523502. Therefore a new software workaround has been identified, which consists of:

Version: 27.0

• Executing TLBI VMALLE1 on exiting a guest VM

The above workaround will invalidate all guest VM TLB entries and avoid the corruption of the L2 TLB.

1275112

A T32 instruction inside an IT block followed by a mispredicted speculative instruction stream might cause a deadlock

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0. r2p0, and r3p0. Fixed in r3p1.

Description

The core might hang when it executes a T32 instruction inside an IT block.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. A T32 instruction is inside an IT block.
- 2. Subsequent instructions repeatedly create branch misprediction. Branch predictor misprediction occurs either because:
 - a. Address translation is disabled.
 - b. The second half of the T32 instruction can be decoded as 16-bit instruction updating R15 (PC).
 - c. Branch predictor RAMs have soft errors.
- 3. Another IT block instruction is fetched from the speculative instruction stream (that is corrected by the above branch misprediction) and executed before the first T32 instruction is retired from pipeline.

Implications

If the above conditions are met, the core might deadlock as the instruction in the IT block does not complete.

Workaround

This erratum can be avoided by setting CPUACTLR_EL1[13] to 1, which delays instruction fetch after branch misprediction. This workaround will have a small impact on performance.

The workaround for this erratum is the same as the workaround for erratum 1262606.

Software Step might prevent interrupt recognition

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

The Software Stepping of a system call instruction (SVC, HVC, or SMC) can prevent recognition of subsequent interrupts when Software Stepping is disabled in the exception handler of the system call. Additionally, unconventional code involving the Software Stepping of an MSR instruction that clears the MDSCR_EL1.SS bit (disables Software Step while stepping) can prevent recognition of subsequent interrupts.

Configurations Affected

This erratum affects all configurations.

Conditions:

Case A:

- 1. Software Step is enabled.
- 2. The system configuration is (MDSCR_EL1.KDE==1) or (MDSCR_EL1.KDE==0 and HCR_EL2.E2H==1 and (HCR_EL2.TGE==1 or MDCR_EL2.TDE==1)).
- 3. An ERET with SPSR_ELx.SS==1 is executed to cause the Software Step state machine to enter the active-not-pending state.
- 4. A system call instruction (SVC, HVC, or SMC) is executed and generates its system call exception (that is, it is not trapped).
- 5. The exception handler of the system call disables Software Step by clearing MDSCR_EL1.SS or by setting SPSR ELx.D such that, upon return, no Software Step exception is taken.

Case B:

- 1. Software Step is enabled.
- 2. An ERET with SPSR_ELx.SS==1 is executed to cause the Software Step state machine to enter the active-not-pending state.
- 3. An MSR MDSCR_EL1 instruction that clears the MDSCR_EL1.SS bit is executed (disables Software Step).

Implications

Case A:

Arm believes that for this product, MDSCR_EL1.KDE is not set to 1 by deployed devices in the field and is only used when debugging the system software during initial product development. In these cases, the effect of the erratum is for interrupts to be disabled even after switching to other software contexts that are not being debugged as part of the system software debugging. Arm believes that a workaround does not need to be deployed for the situation where MDSCR_EL1.KDE==1, and a workaround is not available.

Some devices are expected to run an operating system at EL2 with HCR_EL2.E2H set to 1. The implication of this erratum for such a system is that single-stepping of an untrusted user application at ELO can lead to subsequent execution not recognizing interrupts where it should, leading to errant behavior. The software workaround described below can be deployed in the operating system at EL2 to prevent single-stepping of untrusted user applications from triggering this erratum.

Case B:

Unconventional code involving the Software Stepping of the disabling instruction is not expected to be encountered, therefore no workaround is required.

Workaround

When Software Step is used to debug an application under an operating system running at EL2 with HCR_EL2.E2H set to 1, the software workaround involves explicitly triggering a Software Step exception with modifications to the system call exception handler code and Software Step exception handler code. This entails setting MDSCR_EL1.KDE and MDSCR_EL1.SS and clearing PSTATE.D to trigger a Software Step exception from the system call handler. The Software Step handler then sets SPSR_ELx.D before returning back to the system call handler, where MDSCR_EL1.KDE and MDSCR_EL1.SS are restored to their original values.

If a workaround is required when MDSCR_EL1.KDE is set to 1, then please contact Arm.

Atomic Store instructions to shareable write-back memory might cause memory consistency failures

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

Atomic Store instructions to shareable write-back memory that are performed as far atomics might cause memory consistency failures if the initiating PE has a shared copy of the cache line containing the addressed memory.

Configurations Affected

This erratum affects all configurations that have an interconnect capable of handling far atomic transactions indicated by the BROADCASTATOMIC pin being set to 1.

Conditions

- 1. PEO executes Atomic Store instruction that hits in the L1 data cache and L2 cache in the Shared state
- 2. PEO changes the L2 state to Invalid, sends an invalidating snoop to the L1 data cache, and issues a AtomicStore transaction on the CHI interconnect.
- 3. PEO invalidating snoop to the L1 data cache is delayed due to internal queueing.

Implications

If the above conditions are met, PEO might not observe invalidating snoops caused by other PEs in the same coherency domain and thus might violate memory consistency for loads to the same cache line as the Atomic Store.

Workaround

Set CPUACTLR2_EL1[2] to force Atomic Store operations to write-back memory to be performed in the L1 data cache.

Version: 27.0

1800710

A transient single-bit ECC error in the MMU TC RAM might lead to stale translation in the L2 TLB

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

Under certain conditions, a transient single-bit ECC error in the MMU TC RAM might prevent a TLB invalidate (TLBI) instruction from removing the entry. If the transient error is not detected for a subsequent miss request targeting the affected page, then the MMU might return a stale translation.

Configurations Affected

All configurations are affected.

Conditions

All of the following conditions must be met:

- Both stage 1 and stage 2 translations are enabled.
- Stage 1 page or block size is larger than stage 2 page or block size.
- MMU TC RAM entry has a transient single-bit ECC error.
- TLBI targets the translation in the MMU TC RAM entry containing the single-bit ECC error.
- The single-bit ECC error prevents the TLBI from removing the entry.
- Transient single-bit ECC error goes away before a subsequent translation request matching the L2 TLB entry is issued.

Implications

If the above conditions are met, then the MMU might return stale translation for a subsequent access. The transient single-bit ECC error will be reported in ERROMISCO EL1 register.

Workaround

This condition can be detected by ERROSTATUS[25:24] == 0b10, indicating a corrected error, and ERROMISCO[3:0] == 0b0010, indicating the source to be the MMU TC RAM. If enabled, the fault handling interrupt is asserted when an error is recorded in the ERRO* error record, and software can check for this condition. Software should treat this condition as an uncontainable uncorrected error (i.e. as if ERROSTATUS[29,21:20] == 0b100).

Watchpoint exception on Ld/St does not report correct address in FAR or EDWAR

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

If a load or store crosses a cache line (cache line size = 64 bytes) and a watchpoint address targets a location in the upper cache line, the Fault Address Register (FAR) or the External Debug Watchpoint Address Register (EDWAR) (if set up for Debug Halt) will contain an incorrect address.

Configurations Affected

This erratum affects all configurations.

Conditions

Incorrect address in FAR or EDWAR appears when the:

- 1. Watchpoint targets a double word (or less or more) at cache line address B.
- 2. Load or store targets accesses two cache lines: lower cache line A and upper cache line B. The cache line size is 64 bytes.

Implications

FAR contains the target address of load or store.

EDWAR contains the target address of load or store if enabled for Debug Halt.

Workaround

There is no hardware workaround.

The following software workaround can be applied:

If the Fault Address Register (FAR) or External Debug Watchpoint Address Register (EDWAR) does not match a watchpoint, software can attempt to identify a relevant watchpoint:

Version: 27.0

a) For A DC ZVA whose address is not aligned to DCZID_EL0.BS, by rounding the faulting address down to a cache line boundary (64 bytes) and attempting to match this against active watchpoints.

Note: Most software aligns addresses used by DC ZVA, and this case is expected to be rare in practice.

b) For all other loads and stores, by attempting to use the address of the next cache line boundary (64 bytes) and attempting to match this against active watchpoints.

1868343

The core might update ELR_ELn with an incorrect value when the core is stepping a conditional branch instruction located at the end of 32-byte boundary

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

When the core executes a conditional branch instruction with software step or halt step, the core might write an incorrect address into ELR_ELn after the core completes stepping.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is stepping a conditional branch instruction located at the end of a 32-byte aligned block.
- 2. The conditional branch is resolved as not taken.

Implications

If the above conditions are met, the core might not write the correct instruction address (PC+4 of stepping instruction) into the ELR_ELn register after stepping is completed.

Workaround

This erratum can be avoided by setting CPUACTLR_EL1[13] to 1, which delays instruction fetch after branch misprediction. This workaround will have a small impact on performance.

The workaround for this erratum is the same as the workaround for errata 1262606 and 1275112.

1923202

External debugger access to Debug registers might not work during Warm reset

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

During Warm reset, external debugger access for Debug registers might be ignored.

Configurations Affected

All configurations are affected.

Conditions

- 1. Warm reset is asserted.
- 2. External debugger access is initiated for one of following Debug registers:
 - a. DBGBCR<n>_EL1 (n=0-5)
 - b. DBGBVR<n> EL1 (n=0-5)
 - c. EDECCR

Implications

If the above conditions are met, the core might ignore the access request. The read operation might return incorrect data. The write operation might not take effect and stale data might be retained.

Workaround

There is no workaround.

Atomic instructions with acquire semantics might not be ordered with respect to older stores with release semantics

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

Under certain conditions, atomic instructions with acquire semantics might not be ordered with respect to older instructions with release semantics. The older instruction could either be a store or store atomic.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Load atomic, CAS or SWP with acquire but no release semantics is executed.
- 2. There is an older instruction with release semantics and it could either be a store to non-WB memory or a store atomic instruction that is executed as a far atomic.

Implications

If the above condition are met, a memory ordering violation might happen.

Workaround

There is no workaround for this erratum for versions r0p0, r1p0, and r2p0.

This erratum can be avoided in versions r3p0, r3p1, r4p0, and r4p1 by inserting a DMB ST before acquire atomic instructions without release semantics. This can be done through the following write sequence to several IMPLEMENTATION DEFINED registers:

Version: 27.0

LDR x0,=0x3 MSR S3_6_c15_c8_0,x0 LDR x0,= 0x10E3900002 MSR S3_6_c15_c8_2,x0 LDR x0,= 0x10FFF00083 MSR S3_6_c15_c8_3,x0 LDR x0,= 0x2001003FF MSR S3_6_c15_c8_1,x0

LDR x0,=0x4 MSR S3_6_c15_c8_0,x0 LDR x0,= 0x10E3800082 MSR S3_6_c15_c8_2,x0 LDR x0,= 0x10FFF00083 MSR S3_6_c15_c8_3,x0 LDR x0,= 0x2001003FF MSR S3_6_c15_c8_1,x0

LDR x0,=0x5 MSR S3_6_c15_c8_0,x0 LDR x0,= 0x10E3800200 MSR S3_6_c15_c8_2,x0 LDR x0,= 0x10FFF003E0 MSR S3_6_c15_c8_3,x0 LDR x0,= 0x2001003FF MSR S3_6_c15_c8_1,x0

ISB

Continuous failing STREX because of another PE executing prefetch for store behind consistently mispredicted branch

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

A PE executing a PLDW or PRFM PST instruction that lies on a mispredicted branch path might cause a second PE executing a store exclusive to the same cache line address to fail continuously.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. One PE is executing store exclusive.
- 2. A second PE has branches that are consistently mispredicted.
- 3. The second PE instruction stream contains a PLDW or PRFM PST instruction on the mispredicted path that accesses the same cache line address as the store exclusive executed by the first PE.
- 4. PLDW/PRFM PST causes an invalidation of the first PE's caches and a loss of the exclusive monitor.

Implications

If the above conditions are met, the store exclusive instruction might continuously fail.

Workaround

Set CPUACTLR2_EL1[0] to 1 to force PLDW/PFRM ST to behave like PLD/PRFM LD and not cause invalidations to other PE caches. There might be a small performance degradation to this workaround for certain workloads that share data.

The core might deadlock during powerdown sequence

Status

Fault Type: Programmer Category B

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

While powering down the *Processing Element* (PE), a correctable L2 tag ECC error might cause a deadlock in the power-down sequence.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. Error detection and correction is enabled through ERXCTLR_EL1.ED=1.
- 2. PE executes more than 24 writes to Device-nGnRnE or Device-nGnRE memory.
- 3. PE executes power-down sequence as described in TRM.

Implications

If the above conditions are met, the PE might deadlock during the hardware cache flush that automatically occurs as part of the power-down sequence.

Workaround

Add a DSB instruction before the ISB of the power-down code sequence specified in the TRM.

Category B (rare)

1286807

Modification of the translation table for a virtual page which is being accessed by an active process might lead to read-after-read ordering violation

Status

Fault Type: Programmer Category B Rare

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

If a virtual address for a cacheable mapping of a location is being accessed by a core while another core is remapping the virtual address to a new physical page using the recommended break-before-make sequence, then under very rare circumstances TLBI+DSB completes before a read using the translation being invalidated has been observed by other observers.

Configurations Affected

The erratum affects all multi-core configurations.

Conditions

- 1. Core A speculatively executes a load (LD2) ahead of an older load (LD1) to the same cacheable virtual address.
- 2. Core B marks the associated translation table entry invalid, followed by a DSB; TLBI; DSB sequence which generates a sync request.
- 3. LD2 returns its result using the original physical address (PA1) under specific narrow timing conditions before Core A has responded to the sync request.
- 4. Core B receives the response and updates the translation table entry to map a new physical address (PA2) followed by a DSB.
- 5. LD1 returns its result using PA2 on Core A and commits the result from LD2 using PA1 because the read-ordering violation is not detected.

Implications

If the above conditions are met under certain timing conditions, then this erratum might result in a read ordering violation.

Workaround

This erratum can be avoided by executing the TLB invalidate and DSB instructions a second time before modifying the translation table of a virtual page that is being accessed by an active process.

1418040

MRRC reads of some Generic Timer system registers in AArch32 mode might return corrupt data

Status

Fault Type: Programmer Category B Rare

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

An MRRC read of certain Generic Timer system registers in AArch32 mode might return corrupt data.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs when the following conditions are met under rare internal timing conditions:

- 1. The core is executing at AArch32 at ELO.
- 2. An MRRC to CNTPCT, CNTVCT, CNTP_CVAL, or CNTV_CVAL is executed.

Implications

If the erratum occurs, then the second destination register [Rt2] of the MRRC will incorrectly contain the same data as the first destination register [Rt].

Workarounds

The erratum can be avoided by trapping MRC/MCR/MRRC/MCRR accesses in AArch32 to the affected registers and doing the equivalent code sequence in the trap handler.

To trap the CNT* accesses, set CNTKCTL_EL1.{ELOPTEN, ELOVTEN, ELOVCTEN, ELOPCTEN} to 0. If HCR_EL2.{E2H,TGE}={1,1} then set CNTHCTL_EL2.{ELOPTEN, ELOVCTEN, ELOVCTEN, ELOPCTEN} to 0. The following registers will be trapped:

- CNTP_CTL.
- CNTP CVAL.
- CNTP TVAL.
- CNTV_CTL.
- CNTV CVAL.
- CNTV TVAL.

- CNTPCT.
- CNTVCT.
- CNTFRQ.

Category C

901865

Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain conditions, an LDREX/STREX loop might continuously mispredict. If the speculative instruction path has a load or store to the same Physical Address (PA) as the exclusive monitor address, but with a different Virtual Address (VA), this might cause a repeatable loop where the cache line is lost, opening the exclusive monitor.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. The LDREX/STREX loop has a branch that is consistently mispredicted. This includes all Device memory code, which the branch predictor does not train.
- 2. There is a load or store outside of the loop that has the same PA as the exclusive monitor address, within a cache line. However, this load or store has a different VA, specifically VA[13:12] for 64KB L1 cache. The load or store makes a request to the L2 that snoops the L1, opening the exclusive monitor. The Arm architecture disallows a load or store inside an LDREX/STREX loop with VA aliasing to the exclusive monitor cache line.

Implications

If the above conditions are met, the core might livelock.

Workaround

This erratum is not expected to be encountered in real software. There is no workaround for this erratum.

Persistent error response to transactions issued on behalf of Page descriptor Access bit and Dirty bit updates might livelock

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

A Page descriptor Access bit and Dirty bit update request by the MMU might not be successful if accessing the memory location encounters an uncorrectable error. In this case, the MMU might retry the request repeatedly instead of reporting an external abort.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core cache has the descriptor in SharedClean state.
- 2. A ReadUnique request is sent to the system to update the Access Flag bit or the Dirty bit of the descriptor.
- 3. And either of the following:
 - The system responds with a Non-Data Error (NDErr).
 - The core is configured with CORE_CACHE_PROTECTION set to FALSE and receives a Poisoned or DataError(DErr) response.

Implications

If the above conditions occur in a persistent manner, then the processor might livelock.

Workaround

For Non-Data Error conditions, there is no workaround, as these represent a permanent error. For Data Error and Poisoned responses, this erratum can be avoided by setting CPUACTLR2_EL1[41] to 1. This forces the core to perform Access Flag bit and Dirty bit updates as far atomics, which causes an invalidation of the SharedClean copy in the core cache.

Note this is effective only when the system can support far atomics.

Version: 27.0

930239

Failure to report or incorrect reporting of L2 data RAM ECC errors

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

For certain operation types, a data read from the L2 data RAMs caused by a cache line victimization might fail to report and log a RAS error if such data contains a single or double bit ECC error. In some cases, an error is reported, but the physical address recorded is incorrect.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

When performing a refill of the L2 cache on behalf of an instruction fetch, load, store, or table walk, a data read from the L2 data RAMs for the cache line being replaced encounters a single or double bit ECC error.

Implications

If this erratum occurs, either:

- The L2 data RAM ECC error is detected, but the error is not reported or logged in the CPU RAS registers.
- The error is reported and logged, but the wrong physical address is recorded.

Error recovery software will not be able to correctly determine the source of a data error.

Note that any required error propagation to consumers of the data from the L2 data RAMs in the form of poison occurs correctly.

Workaround

A partial workaround is possible. Setting CPUACTLR2_EL1[45] to 1 forces reporting and logging of all L2 data RAM ECC errors. However, the reported physical address might still be incorrect. Other recorded information, such as array, subarray, and index are correct. Setting CPUACTLR2_EL1[45] to 1 might have a small impact on performance.

Critical beat data for an L2 cache miss, poisoned or tagged with error, consumed by a load without reporting an abort

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain conditions, an external error or poison flagged on a critical beat response for a linefill might get dropped. As a result, a load that forwards data from that critical beat, might return data without signaling an abort.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. The Processing Element (PE) executes one or more load instructions that miss in both the L1 and L2 caches, and initiates a linefill request.
- 2. The system returns the critical beat tagged with either poisoned data or an external error indication.
- 3. The critical beat is returned to the Load/Store (LS) unit of the PE, and no more data beats are returned to the LS for three or more cycles.
- 4. Load instructions that can complete by getting their data from the critical beat, are sent down the pipeline so that they pick up data three or more cycles after it was returned to the LS.

Implications

If the above conditions are met, the PE might consume poisoned data or data tagged with an error, without signaling an abort.

Workaround

A workaround is not expected to be necessary in most cases, as this erratum will only cause a negligible increase in the failure in time (FIT) rate.

If a workaround is required, set CPUACTLR2_EL1[43] to 1. This prevents critical beat forwarding, and ensures that the load will abort in case the system reports an error. Setting CPUACTLR2_EL1[43] to 1 might have a small impact on performance.

933779 DBGDTRTX register fails to hold value through Warm reset

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

The DBGDTRTX register is architecturally required to hold value through a Warm reset. Because of this erratum, a reset connection error has it resetting the value on a Warm reset instead.

Configurations Affected

This erratum affects all configurations.

Conditions

DBGDTRTX is holding a value other than the initial reset value and a Warm reset occurs.

Implications

If this erratum occurs, the content of the DBGDTRTX register is inaccurate.

Workaround

There is no workaround for this erratum.

DCPSx instruction with SCTLR_EL1.IESB = 1 while in debug state might not execute correctly

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

A DCPS1, DCPS2, or DCPS3 instruction that is executed in debug state while SCTLR_EL1.IESB is set to 1 might result in incorrect execution of the instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. SCTLR EL1.IESB is set to 1.
- 2. The core is in debug state.
- 3. The core executes a DCPS1, DCPS2, or DCPS3 instruction.

Implications

If the above conditions are met, then this erratum might result in deadlock, data corruption, or produce other undesirable effects. However, this erratum will not result in violation of access controls, for example, this erratum will not result in the core making accesses to Secure memory from Non-secure mode.

Workaround

The erratum can be avoided by clearing SCTLR_EL1.IESB before executing a DCPSx instruction in debug state. If the core is in a state where SCTLR_EL1 writes are trapped, then up to three write attempts might be required where each attempt might be trapped to a higher Exception level.

Address breakpoint might cause a deadlock with certain AArch32 T32 code sequences

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

If an Address breakpoint is set on a T32 instruction, then under certain conditions the core might stop executing a few instructions before the Breakpoint exception should occur.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is executing in AArch32 T32 instruction state.
- 2. The breakpoint is set on a Cacheable line.
- 3. The breakpoint is not quadword aligned.
- 4. The cache line contains at least two 32-bit instructions, of which at least one must be after the breakpoint.

Implications

If the above conditions are met, the processor might deadlock.

Workaround

Any interrupt will break the processor out of the deadlock state. The deadlock can be avoided by forcing the page containing the T32 instruction to be Non-cacheable.

L2 might report multiple RAS errors for the same prefetch request

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

If a hardware or software prefetch targeting the L2 encounters a tag ECC error and hazards against an outstanding request for the same cache line, then multiple RAS errors might be reported.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

A hardware or software prefetch operation that hazards against an outstanding read request for the same cache line and detects a tag ECC error might allow the internal signals for RAS errors to remain asserted, leading to multiple reported errors for the same operation.

Implications

If this erratum occurs, then the ERROSTATUS.OF bit might be set when only one error has actually occurred.

Workaround

No workaround is required for this erratum.

974001

Deferred errors might cause silent data corruption following a hardware update of Access and Dirty bits in a translation table entry

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

An L2 linefill caused by a hardware update to the Access and Dirty bits in the translation tables might cause silent data corruption if the data received from the system contains an external error or poison indication.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The configuration option CORE_CACHE_PROTECTION is set to FALSE or error correction is disabled with ERROCTLR.ED set to 0.
- 2. A memory access causes a hardware update of the Access and/or Dirty flags of the corresponding translation table entry.
- 3. The hardware update causes the L2 cache to initiate a linefill operation because of a cache miss or hit to SharedClean state.
- 4. The data returned from the system contains a deferred error indicated by poison, a data error, or non-data error responses in data other than the doubleword containing the Access and Dirty flags.

Implications

If the above conditions are met, the translation table Access and Dirty bits might not be updated if the cache line containing the translation table entry contains a deferrable data error.

Workaround

If the system supports far atomic accesses to cacheable memory, then setting CPUACTLR2_EL1[41] to 1 forces the L2 cache to perform hardware updates of the Access and Dirty flags as far atomics.

Executing unallocated encoding in conversion between floating-point and integer instruction class does not generate Undefined Instruction exception

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

If the core executes the following unallocated encoding in the A64 conversion between floating-point and integer instruction class, where sf = x, S = 0, type = 11, rmode = 01, opcode = 11x, then instead of taking an Undefined Instruction exception, the core incorrectly executes this unallocated encoding as a vector half-precision "FABD <Vd>.<T>, <Vn>.<T>" instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is executing in AArch64 state.
- 2. An unallocated encoding in the conversion between floating-point and integer instruction class, where sf = x, S = 0, type = 11, rmode = 01, opcode = 11x, is executed.

Implications

If the above conditions are met, the core does not take an Undefined Instruction exception.

Workaround

There is no workaround for this erratum.

980456

Stuck-at-fault in L1 instruction cache data array might cause deadlock with certain AArch32 T32 code sequences

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Detected parity errors in the L1 instruction cache data array will trigger a line fill request to repeat the instructions. In certain scenarios, the returned data is not used directly but is first stored in the cache. If a stuck-at-fault is present, then the core will continuously request the same line fill and no further instructions will be executed.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. The core is executing in AArch32 T32 instruction state.
- 2. The cache line contains a 32-bit instruction starting at odd halfword alignment.
- 3. The upper 5 bits of the second halfword of this 32-bit instruction must be 0b11101, 0b11110, or 0b11111.
- 4. A stuck-at-fault must exist in the second halfword of the instruction.

Implications

If the above conditions are met, the processor might deadlock.

Workaround

Any interrupt will break the processor out of the deadlock state. The stuck-at-fault can be bypassed by forcing the page containing the T32 instruction to be Non-cacheable.

Version: 27.0

986709 MRS to DBGDTR_EL0 might cause EDSCR.RXfull bit to clear incorrectly

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

An MRS to DBGDTR_ELO which is speculatively executed might cause the EDSCR.RXfull bit to incorrectly clear before the data is read from DBGDTR_ELO.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The EDSCR.RXfull bit is set to 1.
- 2. An MRS to DBGDTR_ELO is speculatively executed.

Implications

If the above conditions are met, then the EDSCR.RXfull bit might be cleared before the data is read from DBGDTR_ELO. This might cause:

- The core to not receive all data when an external debugger sees the RXfull bit cleared and, as a result, sends new data before the core receives the old data.
- Earlier Instructions in the instruction stream to see the RXfull bit cleared out of program order.

Workaround

This erratum can be avoided by inserting an ISB instruction before the MRS to DBGDTR_ELO, because the ISB can prevent the MRS from being speculatively executed.

988575

Unaligned cache line split load to NC or Device memory, tagged with poison or external error on its first half, might cause data corruption

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0. Fixed in r1p0.

Description

Under certain conditions, an external error or poison flagged on the first half of an unaligned load to Non-Cacheable (NC) or Device memory that crosses a cache line boundary, might get dropped. As a result, the unaligned NC or Device load can return data without signaling an abort.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. The Processing Element (PE) executes an unaligned load to NC or Device memory that crosses a cache line boundary.
- 2. The system returns data for the first line tagged with either poisoned data or an external error indication.
- 3. The second half of the cache line split is not tagged with either poisoned data or an external error.
- 4. The load, on receiving data for the first half, executes such that the second half of the unaligned load gets squashed by either an older load or some other high priority requestor and will be replayed.

Implications

If the above conditions are met, the PE might consume poisoned data or data tagged with an error, without signaling an abort.

Workaround

There is no workaround for this erratum.

Version: 27.0

1051464

CTI trigger occurring on same cycle PREADYCD is received might cause CTI trigger to be missed

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r2p0.

Description

A CTI trigger arriving on the same cycle the core debug block receives the **PREADYCD** from an outstanding CTI trigger transaction might result in the arriving CTI trigger to be lost. This erratum occurs only on CTI trigger events from the core to the external debug block.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Multiple CTI triggers are generated in the core going to the external debug block in close time proximity.
- 2. A CTI trigger event arrives in the same cycle the core debug block receives **PREADYCD** from an outstanding CTI trigger transaction.

Implications

If the above conditions are met, then the arriving CTI trigger might be lost and the system does not receive a trigger event. If the trigger event is from the same CTI source, then no issues will be seen as CTI triggers are allowed to be merged. If the trigger is from a different CTI source, then the debug system might not behave in an optimal fashion although debug operations can continue.

Workaround

No workaround is required for this erratum.

Extra instruction might be executed during Halting Step when stepping WFI, WFE, and some self-synchronizing system register writes

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r2p0.

Description

During Halting Step, execution of a small set of instructions in the Active-not-pending state can result in the execution of that instruction and the next instruction before returning control to the debugger by entering debug state. That is, instead of a single instruction executed between returns to the debugger, two instructions are executed. The set of instructions that can cause the stepping of an extra instruction is WFE, WFI, and some self-synchronizing system register writes.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Core is in Halting Step mode.
- 2. The instruction being stepped is either a WFE, a WFI, or some self-synchronizing system register writes.

Implications

If the above conditions are met, then two instructions will be stepped when a single step is expected, causing a potential DLR_ELO mismatch by software. However, the instructions still execute in the correct order and function correctly.

Workaround

There is no workaround for this erratum.

Version: 27.0

1069401 Debug APB accesses to the ELA RAM might return incorrect data

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0. Fixed in r2p0.

Description

Debug APB registers support direct write and read accesses to the ELA RAM, using the following registers:

- RAM Write Address Register (RWAR).
- RAM Write Data Register (RWDR).
- RAM Read Address Register (RRAR).
- RAM Read Data Register (RRDR).

After writing the ELA RAM using the RWAR/RWDR registers, a subsequent read access using the RRAR/RRDR registers might return old data from the RRDR register. The ELA RAM read operation is dropped and the previous contents of the RRDR register are returned instead of the contents associated with the current operation.

Configurations Affected

This erratum affects all configurations with ELA set to TRUE.

Conditions

- 1. Write RWAR register with target index of ELA RAM.
- 2. Write RWDR register with write data to trigger the ELA RAM write access.
- 3. Write RRAR register with target index of ELA RAM to trigger the ELA RAM read access.
- 4. Read RRDR register to return the data.

Implications

If the above conditions are met, then old data is returned from the RRDR register because the write to the RRAR register to trigger the ELA RAM read access is dropped.

Workaround

This erratum can be avoided by inserting two writes to the ELA Lock Access Register (LAR) before writing the RRAR register.

The ERXADDR_EL1 register might report an incorrect physical address for an L1 data tag RAM single-bit correctable ECC error

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

If a load, store, prefetch, or snoop request encounters a single-bit correctable ECC error in the L1 data cache tag RAM, then the physical address captured in the ERXADDR_EL1 register might be incorrect, even if the ERXSTATUS_EL1.AV bit is set to 1, indicating a valid address.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. An L1 data cache tag RAM lookup on behalf of a load, store, prefetch, or snoop request encounters a single-bit correctable ECC error.
- 2. The address of the line that has the ECC error is not the address that is being looked up in the L1 data cache tag RAM.

Implications

If this erratum occurs, then the ERXSTATUS_EL1.AV bit is set to 1, but the address captured in the ERXADDR_EL1 register is not the correct physical address of the line that had the single-bit correctable ECC error.

Workaround

There is no workaround for this erratum.

Exception packet for return stack match might return incorrect [E1:E0] field

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

When an abort or trap is taken at the target of an indirect branch matching the return stack value in the core ETM, an Exception packet might be generated with the 2-bit field [E1:E0] = 0b10, which implies an Address element before the Exception element. When there is a trace return stack match, an Address element should not be generated before the Exception element. With [E1:E0] = 0b10, the external Trace Analyzer might read the trace packet sequence to expect an Address element output before the Exception element and not complete the stack pop, which is incorrect. The correct value in the [E1:E0] field in the Exception packet for this case, should be 0b01.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. ETM is enabled.
- 2. TRCCONFIGR.RS = 1, which indicates the return stack is enabled.
- 3. Abort or trap is taken at the target of an indirect branch matching the return stack.

Implications

If the above conditions are met, then the external Trace Analyzer does not pop on the return stack match, causing it to go out of sync with the core ETM.

Workaround

If tracing only ELO, then no workaround is required.

Otherwise, setting TRCCONFIGR.RS = 0 to disable return stack is the workaround.

1109624

Continuous failing STREX with VA alias access outside mispredicted exclusive sequence (LDREX/STREX) loop might cause livelock

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

Under certain conditions, an LDREX/STREX loop might continuously mispredict. If the speculative instruction path has a load or store to the same Physical Address (PA) as the exclusive monitor address, but a different Virtual Address (VA), then this might cause a repeatable loop where the cache line is lost, opening the exclusive monitor.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. The LDREX/STREX loop has a branch that is consistently mispredicted. This includes all Device memory code, which the branch predictor does not train.
- 2. There is a load or store outside of the loop that has the same PA as the exclusive monitor address, within a cache line. However, this load or store has a different VA, specifically VA[13:12] for 64KB L1 cache. The load or store makes a request to the L2 that snoops the L1, opening the exclusive monitor. The Arm architecture disallows a load or store inside an LDREX/STREX loop with VA aliasing to the exclusive monitor cache line.
- 3. The LDREX-STREX loop also contains an ISB instruction.

Implications

If the above conditions are met, then the core might livelock.

Workaround

This erratum is not expected to be encountered in real software. There is no workaround for this erratum.

1119735

16-bit T32 instruction close to breakpoint location might cause early breakpoint exception

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

If an address breakpoint is set on the instruction following a 16-bit T32 instruction, then under certain conditions the core might trigger the breakpoint on that 16-bit T32 instruction. This can happen if there is a parity error on the 16-bit T32 instruction before the breakpoint, or if the 16-bit T32 instruction has different cacheability than prior instructions.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is executing an AArch32 T32 code sequence.
- 2. A breakpoint is set on the instruction following a 16-bit T32 instruction.
- 3. One of the following conditions is true:
 - The breakpoint instruction follows a 16-bit T32 instruction containing a parity error.
 - The breakpoint instruction and the prior 16-bit T32 instruction both belong to a cache line that has different cacheability than the previous cache line.

Implications

If the above conditions are met, then the breakpoint might be triggered on the preceding 16-bit T32 instruction.

Workaround

There is no workaround for this erratum. This situation can be detected by reading the contents of the appropriate ELR_ELx register after the breakpoint exception has been taken.

Read from L1 instruction cache data array using RAMINDEX operation might return data from the wrong location

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

The RAMINDEX operation can be used to read the L1 instruction cache data array contents using the Index and Way fields. Because of this erratum, bits of the Index field of the RAMINDEX operation are swapped and Index [13:6], Index [4:3], Index [5] is used instead of Index [13:3].

Configurations Affected

This erratum affects all configurations.

Conditions

A RAMINDEX operation is performed targeting the L1 instruction cache data array.

Implications

Data read from the RAMINDEX operation targeting the L1 instruction cache data array might not come from the specified Index field of the RAMINDEX operation.

Workaround

The Index field for the RAMINDEX operation can be adjusted appropriately to access the desired L1 instruction cache data array entry.

Software step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

During software step, execution of some load instructions in the Active-not-pending state might result in the execution of that instruction and the next instruction before returning control to debugger software by taking a software step exception, instead of returning after a single instruction executed.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is in software step mode.
- 2. The instruction being stepped is a load instruction that loads two or more destination registers.
- 3. Snoop invalidation of a cache line referenced by the load occurs during its execution, or an ECC error response occurs on the load.

Implications

If the above conditions are met, then two instructions can be stepped when a single step is expected, causing a potential ELR_ELx mismatch by software. However, the instructions still execute in the correct order and function correctly.

Workaround

There is no workaround for this erratum.

ERROMISCO might report incorrect BANK and SUBBANK values for parity errors in L1 instruction cache data array

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

If a parity error is detected in the L1 instruction cache data array, then the error location might not be computed correctly. This results in incorrect BANK and SUBBANK information in the ERROMISCO register.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

A parity error is detected in the L1 instruction cache data array.

Implications

If the above conditions are met, then the BANK and SUBBANK fields of the ERROMISCO register might have incorrect information. This does not impact other fields in the ERROMISCO register that apply to the L1 instruction cache.

Workaround

There is no workaround for this erratum.

IMPLEMENTATION DEFINED fault for unsupported atomic operations is not routed to proper Exception level

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

If the interconnect does not support atomic memory operations, then instructions which try to perform these to Non-cacheable or Device memory take an IMPLEMENTATION DEFINED fault with Data Fault Status Code of ESR_ELx.DFSC = 0b110101. If the PE is executing at ELO or EL1, Stage 2 translation is enabled, and HCR_EL2.CD forces the final memory type to be Non-Cacheable, then this fault is not routed to EL2.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. The interconnect does not support atomic operations.
- 2. The PE is executing at ELO or EL1.
- 3. There is an atomic instruction to memory which is mapped as Non-cacheable because Stage 2 translation is enabled and HCR_EL2.CD is set.

Implications

If the above conditions are met, then the IMPLEMENTATION DEFINED fault with Data Fault Status Code of ESR_ELx.DFSC = 0b110101 is not routed to EL2.

Workaround

There is no workaround for this erratum.

1214504

Direct access to L1 data TLB might report incorrect value of valid bit of the corresponding TLB entry

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

An IMPLEMENTATION DEFINED instruction that reads the contents of the L1 data TLB after a context switch might report an incorrect value of the valid bit for the corresponding TLB entry.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. An instruction to perform a direct access to the L1 data TLB is present in program order before a context switch event.
- 2. The read of the L1 data TLB contents as part of the direct access instruction occurs after the context switch.

Implications

If the above conditions are met, then an incorrect value might be reported for the valid bit of the L1 data TLB entry being accessed directly.

Workaround

This erratum can be avoided by inserting a DSB after every instruction that accesses the L1 data TLB directly.

Version: 27.0

1220808

ERROSTATUS.SERR encoding is incorrect for error responses from slave and deferred data errors from slave which are not supported

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, and r2p0. Fixed in r3p0.

Description

The ERROSTATUS.SERR field is updated incorrectly for Error responses from slave and Deferred errors from slave not supported at master. Error responses from the interconnect for copyback transactions should record ERROSTATUS.SERR = 0x12. Because of this erratum, they incorrectly record 0x18. Undeferrable data errors received from the interconnect should record ERROSTATUS.SERR = 0x15. Because of this erratum, they incorrectly record 0x12.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs if one of the following conditions is true:

- The core issues a copyback transaction (WriteBackFull, WriteEvictFull, Evict, or WriteNoSnpFull) which then receives an error response.
- The core receives data containing an error (Poison or DErr response), but the core caches cannot defer the error by marking the data as poisoned in its caches. This occurs when the core is configured with CORE_CACHE_PROTECTION set to FALSE, or when ERROCTLR.ED is 0.

Implications

If either of the above conditions are met, then the ERROSTATUS.SERR field is incorrect and software handling these errors reports the wrong class of error.

Workaround

There is no workaround for this erratum.

1227053

Streaming writes to memory mapped Non-shareable and write-back might cause data corruption because of reordering

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

Writes to contiguous bytes might be coalesced into one streaming write of 64 bytes. If such writes are performed to memory mapped Non-shareable and write-back, then two streaming writes to the same physical address might be performed in the wrong order.

Configurations Affected

This erratum affects configurations without a DSU L3 cache and snoop filter. Such systems are defined as direct connect using the following RTL parameter values:

• L3 CACHE: FALSE.

• ACE: FALSE.

• PORTER SAM: TRUE.

• ACP: FALSE.

PERIPH_PORT: FALSE.ASYNC BRIDGE: TRUE.

Conditions

Write stream operations to memory mapped Non-shareable and write-back, or shareable and write-back with the *BROADCASTOUTER *pin deasserted can allocate the L2 cache without issuing a request on the CHI interface. This creates the possibility of two concurrent pending WriteNoSnpFull transactions of the same cache line on CHI without the proper sequencing to guarantee their order of performance.

Implications

If the above conditions are met, then the coalesced writes might be performed in the wrong order as determined by the sequential execution model.

Workaround

This erratum can be avoided by mapping all write-back memory as Inner or Outer Shareable.

Illegal return event might corrupt PSTATE.UA0

Status

Fault Type: Programmer Category C

Fault Status: Present on r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

An illegal return event from AArch64 state erroneously updates PSTATE.UAO from the saved process state bit[23] when the saved process state stipulates an intended return to AArch32. The correct behavior is to leave PSTATE.UAO unchanged.

Configurations Affected

This erratum affects all configurations.

Conditions

- An illegal return event from AArch64 state occurs. This involves at least one of the following, where the saved process state stipulates return to a mode or state that is illegal:
 - Execution of an ERET instruction.
 - Execution of a DRPS instruction in Debug state.
 - Exit from Debug state.
- The saved process state specifies the AArch32 target execution state. The saved process state bit, M[4], is 1.

Implications

PSTATE.UAO might be corrupted.

This corrupted value is saved in SPSR_ELx on taking an Illegal Execution state exception or an asynchronous exception immediately after the illegal return event. The corrupted PSTATE.UAO has no impact on instruction execution until returning from the Illegal Execution state exception handler.

Workaround

No workaround is required for this erratum.

Halting step might see extra instruction executed for some loads when crossed with snoop invalidation or ECC error

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

During Halting Step, execution of some load instructions in the Active-not-pending state might result in the execution of that instruction and the next instruction before returning control to the debugger by entering Debug state, instead of returning after a single instruction executed.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is in Halting Step mode.
- 2. The instruction being stepped is a load instruction that loads two or more destination registers.
- 3. Snoop invalidation of a cache line referenced by the load occurs during its execution, or an ECC error response occurs on the load.

Implications

If the above conditions are met, then two instructions can be stepped when a single step is expected, potentially resulting in unexpected DLR_ELO and DSPSR_ELO values upon entry to Debug state. However, the instructions still execute in the correct order and function correctly.

Workaround

There is no workaround for this erratum.

Version: 27.0

1264383

Write-Back load after two Device-nG* stores to the same physical address might get invalid data

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, and r3p0. Fixed in r3p1.

Description

In certain circumstances, a load to Write-Back memory might get a logical OR of two Device-nG* stores to the same physical address. This does not happen with proper break-before-make page remapping, and only happens with two virtual addresses mapped to the same physical address and mismatched attributes. A data cache maintenance operation to this physical address between the stores and load to guarantee coherency also prevents this erratum. The load page translation needs to replace the store translation in the L1 data TLB, requiring accesses to 47 other pages in between.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Two stores to physical address A with Device-nG* memory attribute occur.
- 2. Load/store accesses to 47 or more pages occur.
- 3. A load to physical address A with Write-Back memory attribute occurs.

Implications

If the above conditions are met, then under specific microarchitectural conditions, the load returns data that is a logical OR of the two or more stores.

Workaround

There is no workaround for this erratum.

Version: 27.0

1346756

TLBI does not treat upper ASID bits as zero when TCR_EL1.AS is 0

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

TLBI instructions are not treating ASID[15:8] as zero when TCR_EL1.AS=0, as specified in the Arm Architecture Reference Manual. In this configuration, the bits are RESO, which should be written to zero by software, and ignored by hardware.

Configurations Affected

The erratum affects all configurations.

Conditions

- 1. TCR EL1.AS=0.
- 2. A TLBI is executed with ASID[15:8] not equal to zero.

Implications

The TLBI will execute locally and broadcast with an ASID that is out of range for this configuration.

Workaround

This erratum can be avoided if software is properly writing zero to RESO bits.

Uncontainable (UC) SError might be incorrectly logged as an Unrecoverable (UEU) SError

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

When an Uncontainable (UC) SError is reported or deferred by the core, it might be incorrectly logged as an Unrecoverable (UEU) SError. This is an inappropriate categorization downgrade which might allow for silent error propagation.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. An Uncontainable (UC) SError occurs in the system.
- 2. The Uncontainable (UC) SError is reported or deferred.

Implications

If the above conditions are met, then the ESR_ELx.AET or DISR_EL1.AET field might log the Uncontainable (UC) SError as an Unrecoverable (UEU) SError.

Workaround

This erratum can be mitigated by treating all SErrors reported with type Unrecoverable (UEU) as type Uncontainable (UC).

L1D_CACHE access related PMU events and L1D_TLB access related PMU events increment on instructions/micro-operations excluded from these events

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

The L1D_CACHE access related PMU events 0x4, 0x40, and 0x41 and the L1D_TLB access related PMU events 0x25, 0x4E, and 0x4F are incorrectly counting non-memory read/write operations that must be excluded. Software prefetch instructions are counted as read accesses and all other instructions are counted as write accesses.

Configurations Affected

This erratum affects all configurations.

Conditions

A software prefetch (PRFM) instruction or one of the following non-memory write operations is issued to the Load/Store Unit:

- A barrier (DMB, DSB, ESB, or PSB).
- A TLB Maintenance Operation (TMO).
- A Cache Maintenance Operation (CMO).
- An Address Translation operation (AT).
- A debug RAM read operation.

Implications

If any of the non-memory read/write operations listed above are issued to the Load/Store Unit, then the PMU counts for events L1D_CACHE (0x4), L1D_CACHE_RD (0x40), L1D_CACHE_WR (0x41) or L1D_TLB (0x25), L1D_TLB_RD (0x4E), and L1D_TLB_WR (0x4F) are incremented incorrectly.

Workaround

There is no workaround for this erratum.

Read from PMCCNTR in AArch32 might return corrupted data

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

When PMCCNTR is configured to count core clock cycles, the result of a read from the PMCCNTR system register in AArch32 state might be corrupted. This corruption is predictable and occurs when the clock cycle count rolls over into the upper 32 bits of the register. For example, if PMCCNTR=0xFFFF_FFFF and a read is executed around the time the clock cycle count is incremented, then the value returned might be 0x1_FFFF_FFFF rather than 0x1_0000_0000.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. PMCCNTR is configured to count core clock cycles.
- 2. The lower 32 bits of PMCCNTR contains a value close to 0xFFFF FFFF.
- 3. A read from PMCCNTR is performed in AArch32.

Implications

If the above conditions are met, then the read from the PMCCNTR register might return corrupted data.

Workaround

This erratum is not expected to require a workaround.

1406411

MSR DSPSR_ELO while in debug state might not correctly update PSTATE. {N,C,Z,V,GE} on debug exit

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

An MSR DSPSR_ELO instruction that is executed in debug state and alters the Debug Saved Program Status Register, might fail to update PSTATE.{N,Z,C,V,GE} values on exit from debug state. This erratum applies to both AArch32 (MCR DSPSR) and AArch64 (MSR DSPSR_ELO) operation.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is in debug state.
- 2. The core executes an MSR instruction to alter the Debug Saved Program Status Register.
- 3. The core exits debug state.
- 4. The core might expose the incorrect PSTATE through execution of a conditional instruction or a read of PSTATE.{N,Z,C,V,GE} state.

Implications

If the above conditions are met, then this erratum might result in data corruption, incorrect program flow, or produce other undesirable effects. However, this erratum will not result in violation of access controls, for example, this erratum will not result in the core making accesses to Secure memory from Non-secure mode.

Workaround

The erratum can be avoided by setting CPUACTLR_EL1[45] to 1 prior to exiting from debug state. Power consumption in the core will be higher when CPUACTLR_EL1[45] is 1, as this prevents dynamic clock gating within sections of the core.

1408724

Portions of the branch target address recorded in ETM trace information might be incorrect for some branches immediately preceding an indirect branch with a malformed branch target address

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

The errant behavior described in this erratum pertains solely to ETM reporting information, and strictly in close vicinity of ETM reporting of an indirect branch with a malformed branch target address (a programming error).

Information recorded in the ETM trace buffer for branch instructions includes the Virtual Address (VA) of the branch target. An indirect branch has a malformed branch target address when either the lowermost bits of the target address stipulate a misaligned instruction address, or the uppermost bits are non-canonical. Execution of an indirect branch with a malformed target address results in an Instruction Abort. ETM trace information correctly reports the malformed target address for the branch execution, and also correctly reports exception information for the Instruction Abort.

However, under rare circumstances, a few branches immediately preceding the indirect branch with malformed target address can incorrectly include the upper and lower portions of the malformed target address in the ETM trace information for the target of these earlier branches. Only the upper and lower portions of the branch target VAs are potentially mis-reported in the ETM trace information.

Configurations Affected

This erratum affects all configurations.

Conditions:

- 1. ETM is enabled.
- 2. An indirect branch with a malformed branch target address is executed and traced.
- 3. Branch instructions immediately preceding the indirect branch with malformed target address are executed and traced.

Implications

If the above conditions are met, then within a tightly constrained window the branches immediately preceding the indirect branch with malformed target address might record partially corrupted target addresses in the ETM trace buffer.

Workaround

No workaround is required. The programming error should be evident to users from the ETM trace information pertaining to the indirect branch with a malformed branch target address and trace information from its resultant Instruction Abort.

Ordering violation might occur when a load encounters an L1 tag RAM single bit ECC error when a snoop request targets the same line

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

If a core detects a false miss due to a single bit L1 tag RAM ECC error when executing a younger load instruction that bypassed another load or barrier and completed by forwarding data from a prior store instruction, then an ordering violation might occur in the presence of a snoop request.

Configurations Affected

The erratum affects all multi-core configurations with CORE_CACHE_PROTECTION= 1.

Conditions

- 1. Core A has a cache line X resident in the L1 data cache with write permissions, and has one or more stores in flight.
- 2. Core A performs a load (LD1) out-of-order for line X, bypassing another load or a barrier. The load encounters a tag single-bit ECC error, which makes the line appear as a miss, it allocates a miss request buffer requesting the line from L2.
- 3. LD1 is able to complete by forwarding data from an older store.
- 4. The older store drains and updates the L1 data cache.
- 5. Core B sends a snoop for line X and the snoop is ordered ahead of the miss request from LD1.
- 6. Core B performs a store to the line X.
- 7. Core A then receives the line X on behalf of its read request from LD1 and allocates the line.
- 8. Core A does not detect an ordering violation for the following:
 - An older load LD2 now observes this newer store, or
 - LD1 bypassed a load with acquire or barrier and is now required to observe the newer store.

Implications

If the above conditions are met, then under specific microarchitectural timing conditions, there might be an ordering violation, such as a read after read violation.

This has been graded as Programmer Category C because Arm expects this erratum to have a negligible impact over the undetected ECC failure rate in real systems. The reason for this categorization is that the issue only occurs during a very short window in time when using a highly implausible code sequence involving racing writes by multiple different cores.

Workaround

There is no workaround for this erratum.

Write to External Debug Registers might cause a deadlock with certain AArch32 T32 code sequences

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, and r3p1. Fixed in r4p0.

Description

If a write to the External Debug Registers occurs such that it activates an address breakpoint, then under certain conditions the core might stop executing a few instructions before the breakpoint exception should occur.

Configurations Affected

This erratum affects all configurations with CORE CACHE PROTECTION set to TRUE.

Conditions

- 1. The core is executing in AArch32 T32 instruction state.
- 2. The breakpoint is set on a cacheable line.
- 3. The breakpoint is set on a cache line that starts with the final 16 bits of a 32-bit instruction.
- 4. There is a stuck-at-fault in the L1 instruction data array near the breakpoint location.
- 5. The breakpoint is activated using the External Debug Registers while the core is fetching.

Implications

If the above conditions are met, then the core might deadlock.

Workaround

Any interrupt will break the core out of the deadlock state.

Waypoints from previous session might cause single-shot comparator match when trace enabled

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

On the first waypoint after the core ETM is enabled, it is possible for a single-shot comparator to have a spurious match based on the address from the last waypoint in the previous trace session.

Configurations Affected

This erratum affects all configurations.

Conditions

- The core ETM has been enabled, disabled, and re-enabled since the last reset.
- Single-shot address comparators are enabled.
- The last waypoint address before the core ETM was disabled either matches a single-shot comparator or causes a match in the range between waypoints depending on the single-shot control setup.

Implications

There might be a spurious single-shot comparator match, which might be used by the trace analyzer to activate other trace events.

Workaround

Between tracing sessions, set the core ETM to enter a prohibited region either instead of or in addition to disabling the ETM.

1490853 TRCIDR3.CCITMIN value is incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

Software reads of the TRCIDR3.CCITMIN field, corresponding to the instruction trace counting minimum threshold, observe the value 0x100 or a minimum cycle count threshold of 256. The correct value should be 0x4 for a minimum cycle count threshold of 4.

Configurations Affected

This erratum affects all configurations.

Conditions

- Software reads the TRCIDR3 ID register.
- Software uses the value of the CCITMIN field to determine minimum instruction trace cycle counting threshold to program the ETM.

Implications

If software uses the value returned by the TRCIDR3.CCITMIN field, then it will limit the range which could be used for programming the ETM. In reality, the ETM could be programmed with a much smaller value than what is indicated by the TRCIDR3.CCITMIN field and function correctly.

Workaround

The value for the TRCIDR3.CCITMIN field should be treated as 0x4.

Error Synchronization Barrier (ESB) instruction execution with a pending masked Virtual SError might not clear HCR_EL2.VSE

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

If a Virtual SError is pending and masked at the current Exception level when an ESB instruction is executed, then the VDISR_EL2 update occurs properly but in some cases the clearing of HCR_EL2.VSE might not occur. This failure to clear HCR_EL2.VSE can only occur when the Virtual SError is masked.

Configurations Affected

This erratum affects all configurations.

Conditions:

- 1. A Virtual SError is pending at the current Exception level.
- 2. Virtual SErrors are masked at the current Exception level.
- 3. An ESB instruction executes.

Implications

If the above conditions are met, then under specific microarchitectural timing conditions HCR_EL2.VSE might not be cleared to 0, which is required by the Arm architecture. This might result in spurious Virtual SErrors. Under all circumstances, the Virtual SError syndrome from VSESR_EL2 is correctly recorded in VDISR_EL2 and VDISR_EL2.A is correctly set to 1.

Workaround

A workaround is not expected to be required. This is because existing software only executes ESB instructions at EL2 and above. If your software executes ESB instructions at EL1 with the conditions described above, then contact Arm support for more details.

1523502 CPUECTLR_EL1 controls for the MMU have no affect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

The CPUECTLR_EL1 register contains IMPLEMENTATION DEFINED configuration and control options for the MMU. The MMU bits affected by this erratum are CPUECTLR_EL1[54:46]. Any changes to these values have no affect on the functionality or performance.

Configurations Affected

This erratum affects all configurations.

Conditions

Software updates to modify MMU control bits CPUECTLR_EL1[54:46] from reset values have no effect.

Implications

Software attempts to change the functionality or performance of the core by changing reset values of CPUECTLR_EL1[54:46] have no affect. The value is updated in the register correctly, such that any subsequent read of the CPUECTLR_EL1 register will return the expected data, however, the modifications have no affect on the behavior of the core.

Workaround

There is no workaround.

1642217

ERROMISCO_EL1.SUBARRAY value for ECC errors in the L1 data cache might be incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

Under certain conditions, the ERROMISCO_EL1.SUBARRAY value recorded for ECC errors in the L1 data cache might be incorrect.

Configurations Affected

This erratum affects configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. A load, store, or atomic instruction accesses multiple banks of the L1 data cache.
- 2. One of the banks accessed has an ECC error.

Implications

If the above conditions are met, then ERROMISCO_EL1.SUBARRAY might have an incorrect value. The remaining fields of the ERROMISCO_EL1 register remain correct.

Workaround

There is no workaround for this erratum.

MRC read of DBGDSCRint into APSR_nzcv might produce wrong results and lead to corruption

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

In AArch32, MRC reads of DBGDSCRint into destination APSR_nzcv (Rt=15) always produce a result of 0. Also, if there is a younger MRC or MRRC read to any accessible register following the DBGDSCRint read into APSR_nzcv, then the younger read result might be corrupted.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is in AArch32 state at ELO.
- 2. An MRC read of DBGDSCRint into APSR nzcv (Rt=15) occurs.

Implications

If the above conditions are met, then:

- 1. APSR nzcv is always written with 0.
- 2. Under specific microarchitectural timing conditions in AArch32 ELO, a subsequent MRC or MRRC might be corrupted.

Workaround

Directly read DBGDSCRint with an MRC instruction into a general-purpose register (R0-R14), and then write that general-purpose register to the flags by doing an MSR APSR_f. To avoid the possible corruption, add an ISB instruction before any subsequent MRC or MRRC instructions.

1662412

Executing a cache maintenance by set/way instruction targeting the L1 data cache in the presence of snoops might result in a deadlock

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1 and r4p0. Fixed in r4p1.

Description

Under certain conditions, executing a cache maintenance by set/way instruction targeting the L1 data cache in close proximity to multiple snoops where the older snoop detects a transient ECC error might result in a deadlock.

Configurations Affected

This erratum affects configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. The core has executed at least two snoop requests looking up the L1 data cache. These could have been generated internally from this core or from another core in the system.
- 2. The older snoop detects a transient single-bit or double-bit ECC error, but at least two snoops have performed a lookup of the L1 data cache.
- 3. The core executes a cache maintenance by set/way instruction targeting the L1 data cache.
- 4. The snoops are required to perform another lookup due to the ECC error detected. All snoops are rescheduled to maintain ordering of the snoop transactions.
- 5. The snoop transactions continuously retry the L1 data cache lookup, preventing the cache maintenance operation from completing.

Implications

If the above conditions are met under certain timing conditions, then the snoops might not make progress, resulting in a deadlock. Arm does not expect cache maintenance operations by set/way to be executed in most code sequences, since hardware mechanisms have been incorporated for flushing the caches as a part of powerdown sequences. Software is expected to use cache maintenance operations by VA to manage coherency.

Note that cache maintenance by set/way instructions are UNDEFINED at ELO.

Workaround

Software should avoid the use of cache maintenance operations by set/way. A hypervisor should trap these instructions by setting HCR_EL2.TSW = 1 and emulate the instructions with equivalent cache maintenance operations by virtual address for the entire address space of the guest.

External debug accesses in memory access mode with SCTLR_ELx.IESB set might result in unpredictable behavior

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

In Debug state with SCTLR_ELx.IESB set to 1, memory uploads and downloads executed in memory access mode might lead to unpredictable behavior for the current exception level.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Core is In Debug state.
- 2. SCTLR_ELx.IESB is set to 1 for the current exception level.
- 3. Memory access mode is enabled via EDSCR.MA set to 1.

Implications

If the above conditions are met, memory upload and download behavior is unpredictable for the current exception level and might lead to incorrect operation or results. The unpredictable behavior is limited to legal behavior at the current exception level.

Workaround

The erratum can be avoided by clearing SCTLR_ELx.IESB before performing memory uploads or downloads in Debug state using memory access mode.

1788066 Possible loss of CTI event

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

A CTI event from the core to the external DebugBlock might be dropped, in rare occurrences, if close in temporal proximity to a previous CTI event.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. CTI event occurs.
- 2. Another CTI event occurs before completion of the processing of the previous CTI event.

Implications

CTI events might be dropped.

Workaround

This erratum has no workaround.

1788068

Loss of CTI events during warm reset

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

ETM external output CTI events from the core to the external DebugBlock will not be reported during warm reset.

Configurations Affected

This erratum affects all configurations.

Conditions

1. An ETM external output CTI event occurs while warm reset is asserted.

Implications

The ETM external output CTI event will be dropped and any cross triggering that depends on this CTI event will not occur. For example, if the ETM external output was to be used to trigger a trace capture component to stop trace capture, then trace capture will not stop due to this event.

Workaround

This erratum has no workaround.

Watchpoint Exception on DC ZVA does not report correct address in FAR or EDWAR

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

If the watchpoint address targets a lower portion of a cache line, but not all of the cache line, and the address target of the Data Cache Zero by VA (DC ZVA) falls in the upper portion of the cache line that the watchpoint does not target, the Fault Address Register (FAR) (or External Debug Watchpoint Address Register (EDWAR) if setup for Debug Halt) will contain an incorrect address.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Watchpoint targets double word (or less or more) at address A.
- 2. DC ZVA targets address greater than A+7, but less than A+63. The cache line size is 64 bytes, which is a mis-aligned address.

Implications:

FAR contains target address of DC ZVA.
EDWAR contains target address of DC ZVA if enabled for Debug Halt.

Workaround:

There is no hardware workaround. The common case for DC ZVA targets is to be granule aligned, thus most software will not be affected by this case.

1857203

A memory mapped write to PMSSRR might falsely cause some PMU counters and counter overflow status to be reset after snapshot capture and read might return unknown/written data

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description:

A memory mapped write to PMSSRR at offset 0x6f4 might configure the Cycle counter and/or Performance Monitor event counters to be reset along with reset of corresponding overflow status bits in the PMOVSR register. The register supports read/write functionality instead of RAZ/WI.

Configurations affected

This erratum affects all configurations.

Conditions

- 1. System enables PMU snapshot mechanism.
- 2. System performs memory mapped write of PMSSRR setting PMSSRR[x], where x is 31 or any value from 0 to 5 (inclusive).
- 3. Snapshot trigger is seen through a legal mechanism.

Implications

If the above conditions are met, the corresponding counter (PMCCNTR_ELO if x=31 or PMEVCNTR<x>_ELO if x=[0,5]) will reset after a snapshot is taken. Further, the corresponding bit in the PMOVSR ELO register will be reset.

A memory mapped read will return data that is written to these bits and 0 otherwise.

This register is supposed to have RAZ/WI functionality and no effect on other counters.

Workaround

Avoid write of PMSSRR when system is using the PMU Snapshot mechanism.

1869881

ERROMISCO_EL1.SUBARRAY, ERROSTATUS.CE and ERROSTATUS.DE values for ECC errors in the L1 data cache might be incorrect

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

Under certain conditions, the ERROMISCO_EL1.SUBARRAY, ERROSTATUS.CE and ERROSTATUS.DE values recorded for ECC errors in the L1 data cache might be incorrect.

Configurations affected

This erratum affects configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. The L1 data cache contains both a single-bit and double-bit ECC error on different words within the same 64-byte cacheline.
- 2. An access is made to the cacheline in the L1 data cache containing both the single-bit and double-bit ECC errors simultaneously.

Implications

If the above conditions are met, then ERROMISCO_EL1.SUBARRAY, ERROSTATUS.CE and ERROSTATUS.DE might have an incorrect values.

Workaround

There is no workaround for this erratum.

1872101 L2 data RAM may fail to report corrected ECC errors

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

For specific operation types and cache states, a read of the L2 data RAM might fail to report a detected and corrected single-bit ECC error.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. PE L1 data cache and L2 cache are in a SharedClean state and the exclusive monitor is armed for a given physical address.
- 2. PE executes a store exclusive instruction to this physical address.
- 3. L2 cache reads its data RAMs, and detects and corrects a single-bit ECC error.

Implications

If the above conditions are met, the PE will correct the error, but might fail to report it in the RAS error log registers. This can cause a small loss in diagnostic capability.

Workaround

There is no workaround.

1873335

Uncorrectable tag errors in L2 cache might cause deadlock

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, and r4p0. Fixed in r4p1.

Description

Under rare conditions that include the aliasing of multiple virtual addresses to a single physical address, a detected and reported double-bit ECC error in the L2 cache tag RAM might lead to a state in which an unexpected L1 cache eviction can cause a deadlock in the L2 cache.

Configurations affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. L2 cache detects and reports a tag double-bit ECC error.
- 2. A set of rare conditions occur within the PE memory system.

Implications

If the above conditions are met, the L2 transaction queue might deadlock and never complete the prefetch operation.

Workaround

There is no workaround for this erratum.

1880110

Noncompliance with prioritization of Exception Catch debug events

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

ARMv8.2 architecture requires that Debug state entry due to an Exception Catch debug event (generated on exception entry) occur before any asynchronous exception is taken at the first instruction in the exception handler. An asynchronous exception might be taken as a higher priority exception than Exception Catch and the Exception Catch might be missed altogether.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. Debug Halting is allowed.
- 2. EDECCR bits are configured to catch exception entry to ELx.
- 3. A first exception is taken resulting in entry to ELx.
- 4. A second, asynchronous exception becomes visible at the same time as exception entry to ELx.
- 5. The second, asynchronous exception targets an Exception level ELy that is higher than ELx.

Implications

If the above conditions are met, the core might recognize the second exception and not enter Debug state as a result of Exception Catch on the first exception. When the handler for the second exception completes, software might return to execute the first exception handler, and assuming the core does not halt for any other reason, the first exception handler will be executed and entry to Debug state via Exception Catch will not occur.

Workaround

When setting Exception Catch on exceptions taken to an Exception level ELx, the debugger should do either or both of the following:

- 1. Ensure that Exception Catch is also set for exceptions taken to all higher Exception Levels, so that the second (asynchronous) exception generates an Exception Catch debug event.
- 2. Set Exception Catch for an Exception Return to ELx, so that when the second (asynchronous)

exception handler completes, the exception return to ELx generates an Exception Catch debug event.

Additionally, when a debugger detects that the core has halted on an Exception Catch to an Exception level ELy, where y > x, it should check the ELR_ELy and SPSR_ELy values to determine whether the exception was taken on an ELx exception vector address, meaning an Exception Catch on entry to ELx has been missed.

1899433 PFG duplicate reported faults through a Warm reset

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

Under certain conditions, the Pseudo-fault Generation Error Record Registers might generate duplicate faults through a Warm reset.

Configurations affected

All configurations are affected.

Conditions

- 1. ERROPFGCDN is set with a non-zero countdown value.
- 2. ERROPFGCTL is set to generate a pseudo-fault with ERROPFGCTL.CDEN enabled.
- 3. The countdown value expires, generating a pseudo-fault.
- 4. Warm reset asserts.

Implications

After the Warm reset, a second generated pseudo-fault might occur.

Workaround

De-assert the ERROPFGCTL control bits before asserting a Warm reset.

Some corrected errors might incorrectly increment ERROMISCO.CECR or ERROMISCO.CECO

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

If a Corrected Error is recorded because of a bus error which has no valid location (ERROSTATUS.MV=0x0), then a subsequent Corrected Error might incorrectly increment either of the ERROMISCO.CECR or ERROMISCO.CECO counters.

Configurations Affected

This erratum affects all configurations with CORE_CACHE_PROTECTION set to TRUE.

Conditions

- 1. A Corrected Error which has no valid location (ERROSTATUS.MV=0x0) is recorded.
- 2. A subsequent Corrected Error occurs.

Implications

The subsequent Corrected Error might improperly increment either of the ERROMISCO.CECR or ERROMISCO.CECO counters.

Workaround

No workaround is expected to be required.

The PE might deadlock if Pseudofault Injection is enabled in Debug State

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

If Pseudofault Injection is enabled for the PE node (ERROPFGCTL.CDNEN=0x1) and the PE subsequently enters Debug State, then the PE might deadlock. Alternatively, if the PE is executing in Debug State and the PE enables Pseudofault Injection for the PE node (ERROPFGCTL.CDNEN=0x1), then the PE might deadlock.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. ERROPFGCTL.CDNEN is set to 0x1 to enable Pseudofault Injection.
- 2. The PE enters Debug State.

OR

- 1. The PE is executing in Debug State.
- 2. ERROPFGCTL.CDNEN is set to 0x1 to enable Pseudofault Injection.

Implications

If the above conditions are met, then the PE might deadlock.

Workaround

Ensure ERROPFGCTL.CDNEN=0x0 before entering Debug State and while executing in Debug State.

DRPS might not execute correctly in Debug state with SCTLR_ELx.IESB set in the current EL

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

In Debug state with SCTLR_ELx.IESB set to 1, the DRPS (debug only) instruction does not execute properly. Only partial functionality of the DRPS instruction is performed.

Configurations Affected

This erratum affects all configurations.

Conditions

The erratum occurs under the following conditions:

- 1. The core is in Debug state.
- 2. SCTLR ELx.IESB is set to 1 for the current exception level.
- 3. The DRPS instruction is executed.

Implications

If the above conditions are met, the DRPS instruction does not complete as intended, which might lead to incorrect operation or results. Register data or memory will not be corrupted. There are also no security or privilege violations.

Workaround

The erratum can be avoided by clearing SCTLR_ELx.IESB followed by the insertion of an ISB and an ESB instruction in code before the DRPS instruction.

ETM trace information records a branch to the next instruction as an N atom

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r0p1, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

If a branch is taken to the next instruction, and if the instruction state remains the same, then the ETM traces it as an N atom rather than an E atom or branch address packet. This is incorrect as the ETM architecture says a taken branch should be traced as an E atom. This affects all forms of branches. State-changing branches are traced correctly.

Configurations Affected

This erratum affects all configurations.

Conditions

This issue might occur when:

- 1. ETM is enabled.
- 2. A branch is taken to the next instruction.
- 3. The instruction state does not change.

Implications

A trace decoder that interprets an N atom to move to the next instruction in the same state without a push or pop from the return stack will correctly maintain the control flow but will not be able to infer anything from a conditional branch.

A trace decoder that checks if unconditional branches were not traced as N atom might report an error.

Workaround

To ensure continued control flow, ensure the trace decoder always interprets an N atom to move to the next instruction in same state without a push or pop from the return stack.

2052428

An execution of MSR instruction might not update the destination register correctly when an external debugger initiates an APB write operation to update debug registers

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

When an MSR instruction and an APB write operation are processed on the same cycle, the MSR instruction might not update the destination register correctly.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. A CPU executes an MSR instruction to update any of following SPR registers:
 - a. DBGBCR<n> EL1
 - b. DBGBVR<n> EL1
 - c. DBGWCR<n> EL1
 - d. DBGWVR<n>_EL1
 - e. OSECCR EL1
- 2. An external debugger initiates an APB write operation for any of following registers:
 - a. DBGBCR<n>
 - b. DBGBVR<n>
 - c. DBGBXVR<n>
 - d. DBGWCR<n>
 - e. DBGWVR<n>
 - f. DBGWXVR<n>
 - g. EDECCR
 - h. EDITR
- 3. The SPR registers (for example, OSLSR_EL1.OSLK and EDSCR.TDA) and external pins are programmed to allow the following behavior:
 - a. The execution of an MSR instruction in condition 1 to update its destination register without neither a system trap nor a debug halt
 - b. The APB write operation in condition 2 to update its destination register without error
- 4. The MSR instruction execution in condition 1 and APB write operation in condition 2 happen in same

cycle.

5. The MSR write and the APB write are to two different registers. The architecture specifies that it is the software or debugger's responsibility to ensure writes to the same register are updated as expected.

Implications

If the above conditions are met, an execution of the MSR instruction might not update the destination register correctly. The destination register might contain one of following values after execution:

- 1. The execution of the MSR instruction is ignored. The destination register of the MSR instruction holds an old value.
- 2. The execution of the MSR instruction writes an incorrect value to its destination register.

A external debugger and system software are expected to be coordinated to prevent conflict in these registers.

Workaround

No workaround is required for this erratum.

2110726

External APB write to a register located at offset 0x084 might incorrectly issue a write to External Debug Instruction Transfer Register

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

The core might incorrectly issue a write to External Debug Instruction Transfer Register (EDITR) when an external APB write to another register that is located at offset 0x084 is performed in the Debug state. The following debug components share the offset alias with the EDITR register:

- ETE TRCVIIECTLR ViewInst Include/Exclude Control Register
- Reserved locations

The following debug component shares the offset alias with the EDITR register when the PE is configured with 20-PMUs:

• PMU - PMEVCNTR16[63:32] - Event Counter 16

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The core is in debug state.
- 2. The External Debug Status and Control Register (EDSCR) cumulative error flag field is 0b0.
- 3. Memory access mode is disabled, in example, EDSCR.MA = 0b0.
- 4. The OS Lock is unlocked.
- 5. External APB write is performed to a memory mapped register at offset 0x084 other than the EDITR.

Implications

If the above conditions are met, then the core might issue a write to the EDITR and try to execute the instruction pointed to by the ITR. As a result of the execution, the following might happen:

- CPU state and/or memory might get corrupted.
- The CPU might generate an UNDEFINED exception.
- The EDSCR.ITE bit will be set to 0.

Workaround

Before programming any register at this offset when the PE is in Debug state, the debugger should either:

- Set the EDSCR.ERR bit by executing some Undefined instruction (e.g. writing zero to EDITR); or
- Set the OS Lock and then unlock it afterwards.

2141647

A64 WFI or A64 WFE executed in Debug state suspends execution indefinitely

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

Executing an A64 WFI or WFE instruction while in Debug state results in suspension of execution, and execution cannot be resumed by the normal WFI or WFE wake-up events while in Debug state.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The Processing Element (PE) is in Debug state and in AArch64 Execution state.
- 2. A WFI or WFF instruction is executed from FDITR.

Implications

If the above conditions are met, the PE will suspend execution.

This is not thought to be a serious erratum, because an attempt to execute a WFI or WFE instruction while in Debug state is not expected.

For WFI executed in Debug state, execution can only resume by any of the following:

- A Cold or Warm reset
- A Restart request trigger event from the Cross Trigger Interface (CTI) causing exit from Debug state, followed by a WFI wake-up event

For WFE executed in Debug state, execution can only resume by any of the following:

- A Cold or Warm reset
- A Restart request trigger event from the CTI causing exit from Debug state, followed by a WFE wake-up event
- An external event that sets the Event Register. Examples include executing an SEV instruction on another PE in the system or an event triggered by the Generic Timer.

Workaround

A workaround is unnecessary, because an attempt to execute a WFI or WFE instruction while in Debug state is not expected.

2227007 PMU L1D_CACHE_REFILL_OUTER is inaccurate

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

The L1D_CACHE_REFILL_OUTER PMU event 0x45 is inaccurate due to ignoring refills generated from a system cache. The L1D_CACHE_REFILL PMU event 0x3 should be the sum of PMU events L1D_CACHE_REFILL_INNER 0x44 and L1D_CACHE_REFILL_OUTER 0x45, however, due to the inaccuracy of L1D_CACHE_REFILL_OUTER 0x45 it is possible that this might not be the case.

Note: L1D_CACHE_REFILL PMU event 0x3 does accurately count all L1D cache refills, including refills from a system cache.

Configurations Affected

This erratum affects all configurations which implement a system cache.

Conditions

This erratum occurs under the following conditions:

1. The L2 inner cache is allocated with data transferred from a system cache.

Implications

When the previous condition is met, the L1D_CACHE_REFILL_OUTER PMU event 0x45 does not increment properly.

Workaround

The correct value of L1D_CACHE_REFILL_OUTER PMU event 0x45 can be calculated by subtracting the value of L1D_CACHE_REFILL_INNER PMU event 0x44 from L1D_CACHE_REFILL PMU event 0x3.

2238117

Reads of DISR_EL1 incorrectly return 0s while in Debug State

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

When the Processing Element (PE) is in Debug State, reads of DISR_EL1 from EL1 or EL2 with SCR_EL3.EA=0x1 will incorrectly return 0s.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The PE is executing in Debug State at EL1 or EL2, with SCR_EL3.EA=0x1.
- 2. The PE executes an MRS to DISR_EL1.

Implications

If the above conditions are met, then the read of DISR_EL1 will incorrectly return 0s.

Workaround

No workaround is expected to be required.

DRPS instruction is not treated as UNDEFINED at ELO in Debug state

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

In Debug state, DRPS is not treated as an UNDEFINED instruction.

Configurations Affected

This erratum affects all configurations.

Conditions

- 1. The Processing Element (PE) is in Debug state.
- 2. PE is executing at ELO.
- 3. PE executes DRPS instruction.

Implications

If the above conditions are met, then the PE will incorrectly execute DRPS as NOP instead of treating it as an UNDEFINFED instruction.

Workaround

There is no workaround.

2263697

L1 Data poison is not cleared by a store

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

The L1 Data poison is not cleared by a store under certain conditions.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following conditions:

- 1. A Processing Element (PE) executes a store that does not write a full word to a location that has data marked as poison.
- 2. The PE executes another store that writes to all bytes that contain data poison before the previous store is globally observable.

Implications

If the above conditions are met, then the poison bit in the L1 Data cache does not get cleared.

Workaround

This erratum can be avoided by inserting a DMB before and after a word-aligned store that is intended to clear the poison bit.

2307838

ESR_ELx.ISV can be set incorrectly for an external abort on translation table walk

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

When a data double bit error or external abort is encountered during a translation table walk, a synchronous exception is reported with the ISV bit set in the ESR ELx register.

Configurations Affected

This erratum affects all configurations.

Conditions

This erratum occurs under the following condition:

1. A data double bit error or external abort is encountered during a translation table walk, and a synchronous exception is reported.

Implications

If the previous condition is met, the ESR_ELx.ISV bit will be set. The ESR[23:14] bits are set with the correct syndrome for the instruction making the access. That is SAS, SSE, SRT, SF, and AR are all set according to the instruction.

Workaround

This erratum has no workaround.

Software-step not done after exit from Debug state with an illegal value in DSPSR

Status

Fault Type: Programmer Category C

Fault Status: Present in r0p0, r1p0, r2p0, r3p0, r3p1, r4p0, and r4p1. Open.

Description

On exit from Debug state, PSTATE.SS is set according to DSPSR.SS and DSPSR.M. If DSPSR.M encodes an illegal value, then PSTATE.SS should be set according to the current Exception level. When the erratum occurs, the PE always writes PSTATE.SS to 0.

Configurations Affected

This erratum affects all configurations.

Conditions

- Software-step is enabled in current Exception level
- DSPSR.M encodes an illegal value, like:
 - M[4] set
 - M is a higher Exception level than current Exception level
 - M targets EL2 or EL1, when they are not available
- DSPSR.D is not set
- DSPSR.SS is set

Implications

If the previous conditions are met, then, on exit from Debug state the PE will directly take a Software-step Exception, without stepping an instruction as expected from DSPSR.SS=1.

Workaround

This erratum has no workaround.