(1) (a) (10 points) Prove that the series

$$\sum_{n=0}^{\infty} \left(\frac{x^n}{n!} \right)^3$$

is convergent for any $x \in \mathbb{R}$.

(b) (20 points) Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)^3$$

is a continuous function on \mathbb{R}

1(a):

. If x=0, then the series clearly converges to O.

· Tf X+0

$$\lim_{N\to\infty} \left| \frac{\left(\frac{\chi^{N+1}}{(n+1)!} \right)^3}{\left(\frac{\chi^{N}}{(n+1)!} \right)^3} \right| = \lim_{N\to\infty} \frac{\left| \chi \right|^3}{(n+1)^3} = 0.$$

hence the series conv. by ratio test.

116):

Claim: The series $\left[\left(\frac{x^n}{n!} \right)^3 \right] \leq \left(\frac{x^n}{n!} \right)^3 = \left(\frac{x^n}{n!} \right)^3$.

- · $\sum_{n=1}^{\infty} \frac{(n^2)^3}{n!}$ converges by the ratio test as in part (a).
- · By Weierstass M-test, the claim follows. []
- Since $\sum_{n=0}^{\infty} \frac{(x^n)^3}{n!}$ is continuous for any N>0, by the claim,

we have $\sum_{n=0}^{\infty} \left(\frac{y^n}{n!}\right)^3$ is continuous on [-R,R] \forall R>0. Conti. Jan. is conti. J

• If $x_0 \in \mathbb{R}$, $\exists R>0$ st. $|x_0| < R$. Hence $\sum_{n=0}^{\infty} \left(\frac{y^n}{n!}\right)^3$ is

continuous at Xo: for any 20 ER. Therefore worth, on R. J.

Note: The series $\sum \left(\frac{x^n}{n!}\right)^3$ does not converge uniformly on \mathbb{R} .

The series $\sum \left(\frac{x^n}{n!}\right)^3 : x \in \mathbb{R}^3 = +\infty$ for any n.

(Recall that If the series conv. unif. on \mathbb{R} , then we should have:

 $\lim_{n\to\infty} \left(\sup \left\{ \left| \frac{x^n}{n!} \right|^3 : x \in \mathbb{R}^3 \right\} = 0 : \right)$

- (2) (20 points) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} satisfying $f(x + 2\pi) = f(x)$ for all $x \in \mathbb{R}$. Prove that f is uniformly continuous on \mathbb{R} .
- f is continuous on the compact set $[0,2\pi]$, therefore f is uniformly continuous on $[0,2\pi]$, i.e. $\forall \xi 70$, $\exists \xi > 0$ sit.

 If $\{x,y \in [0,2\pi], \text{ then } |f(x)-f(y)| < \frac{\varepsilon}{2}$. $|x-y| < \xi$
- Since $f(x+2\pi) = f(x)$ $\forall x \in \mathbb{R}$, we also have: $\forall n \in \mathbb{Z}$,

 If f(x) = f(x) = f(x) then $|f(x) f(y)| < \frac{\varepsilon}{2}$. $|f(x) f(x)| = \frac{\varepsilon}{2}$.
- · Define $S = \min\{S, \pi\} > 0$.

Claim: if sxiyelk, then Ifix - flyil < E.

pf: Since lx-41 < 5 ≤ 11, one of the following two situations happen:

then I fur fig) | < 2/2.

Case 2:

Then $|f(x)-f(y)| \le |f(x)-f(2\pi n)| + |f(y)-f(2\pi n)|$ $< \xi + \xi = \xi.$ (3) Let $S_1 = (\mathbb{R}, d_{\text{std}})$ be the standard metric space of real numbers, i.e. $d_{\text{std}}(x, y) = |x - y|$. Let $S_2 = (\mathbb{R}, d_0)$ be the metric space whose elements are still the real numbers, but equips with a different distance function:

$$d_0(x,y) = \begin{cases} 1, & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

- (a) (10 points) Characterize all the open subsets of S_2 , and justify your answer.
- (b) (10 points) Characterize all the compact subsets of S_2 , and justify your answer.
- (c) (15 points) Characterize all the continuous functions $f: S_2 \to S_1$, and justify your answer.
- (d) (15 points) Characterize all the continuous functions $f\colon S_1\to S_2$, and justify your answer.

(Warning: Do NOT simply copy and paste the definition of open, compact, or continuous. Give more explicit descriptions.)

La) Claim: Any subset of \$2 is open.

Pf: YxoE \$2, By(xo) = {xo}.

Hence the one-point set {xo} is open in \$2 YxoE \$2

Since any union of open subsets is open, the claim follows

(b) <u>Claim</u>: E ≤ \$2 is compact ⇔ E is a finite set.

pf: It's clear by the definition of compactness that any finite set is compact.

Now if $E \subseteq \S_2$ is an infinite set, $E = \{ \chi_{\alpha} \mid \alpha \in I \} \subseteq \S_2.$

Then $E = \bigcup \{x_{\alpha}\}$ is an open cover of E (Since any subset of $\{x_{\alpha}\}$ is open), which doesn't admit any finite subcover. So. E is not compact. E

(C) <u>Claim</u>: Any function f. Sz. -> Sq. is assitinuous. Pf: If: $S_2 \rightarrow S_1$ Continuous \iff If $U \subseteq S_1$, $S^1(u) \subseteq S_2$.

To open Since any subset of Sz is open, the claim follows. (d) Claim: f: 5, -> 52 continuous => f is a constant function. This First, it's easy to show using (a) that if $E \subseteq \beta_z$ is a nonempty connected subset, then E consists of a single point. (if F= {xo} v {xa: aet}, then the open sets {xo} and {xa: a e ?} separate E). Suppose $f: \S_1 \longrightarrow \S_2$ is anti., stree $\S_1 = (\mathbb{R}, d_{Std})$ is connected, we have fls1) S fz is connected. therefore must be a single point. [