Business Analytics: Methods, Models, and Decisions

Third Edition

Chapter 4

Descriptive Statistics

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 1

Statistics

- Statistics, as defined by David Hand, past president of the Royal Statistical Society in the UK, is both the science of uncertainty and the technology of extracting information from data.
 - Statistics involves collecting, organizing, analyzing, interpreting, and presenting data.
 - A statistic is a summary measure of data.
- Descriptive statistics refers to methods of describing and summarizing data using tabular, visual, and quantitative techniques.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Metrics and Data Classification

- Metric a unit of measurement that provides a way to objectively quantify performance.
- Measurement the act of obtaining data associated with a metric.
- Measures numerical values associated with a metric.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 3

Types of Metrics

- Discrete metric one that is derived from counting something.
 - For example, a delivery is either on time or not; an order is complete or incomplete; or an invoice can have one, two, three, or any number of errors. Some discrete metrics would be the proportion of on-time deliveries; the number of incomplete orders each day, and the number of errors per invoice.
- Continuous metrics are based on a continuous scale of measurement.
 - Any metrics involving dollars, length, time, volume, or weight, for example, are continuous.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measurement Scales

- Categorical (nominal) data sorted into categories according to specified characteristics.
- Ordinal data can be ordered or ranked according to some relationship to one another.
- Interval data ordinal but have constant differences between observations and have arbitrary zero points.
- Ratio data continuous and have a natural zero.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 5

Example 4.1: Classifying Data Elements

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Frequency Distributions and Histograms

- A frequency distribution is a table that shows the number of observations in each of several nonoverlapping groups.
- A graphical depiction of a frequency distribution in the form of a column chart is called a histogram.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 7

Frequency Distributions for Categorical Data

- Categorical variables naturally define the groups in a frequency distribution.
- To construct a frequency distribution, we need only count the number of observations that appear in each category.
 - This can be done using the Excel COUNTIF function.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.2: Constructing a Frequency Distribution for Items in the Purchase Orders Database

- · List the item names in a column on the spreadsheet.
- Use the function = COUNTIF(\$D\$4:\$D\$97,cell_reference), where cell_reference is the cell containing the item name.

⊿ A		В	
100	Item Description	Frequency	
101	Airframe fasteners	=COUNTIF(\$D\$4:\$D\$97,A101)	
102	Bolt-nut package	=COUNTIF(\$D\$4:\$D\$97,A102)	
103	Control Panel	=COUNTIF(\$D\$4:\$D\$97,A103)	
104	Door Decal	=COUNTIF(\$D\$4:\$D\$97,A104)	
105	Electrical Connector	=COUNTIF(\$D\$4:\$D\$97,A105)	
106	Gasket	=COUNTIF(\$D\$4:\$D\$97,A106)	
107	Hatch Decal	=COUNTIF(\$D\$4:\$D\$97,A107)	
108	Machined Valve	=COUNTIF(\$D\$4:\$D\$97,A108)	
109	O-Ring	=COUNTIF(\$D\$4:\$D\$97,A109)	
110	Panel Decal	=COUNTIF(\$D\$4:\$D\$97,A110)	
111	Pressure Gauge	=COUNTIF(\$D\$4:\$D\$97,A111)	
112	Shielded Cable/ft.	=COUNTIF(\$D\$4:\$D\$97,A112)	
113	Side Panel	=COUNTIF(\$D\$4:\$D\$97,A113)	

⊿ A		В	
100	Item Description	Frequency	
101	Airframe fasteners	14	
102	Bolt-nut package	11	
103	Control Panel	4	
104	Door Decal	2	
105	Electrical Connector	8	
106	Gasket	10	
107	Hatch Decal	2	
108	Machined Valve	4	
109	O-Ring	12	
110	Panel Decal	1	
111	Pressure Gauge	7	
112	Shielded Cable/ft.	11	
113	Side Panel	8	

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 9

Example 4.2 Continued

Construct a column chart to visualize the frequencies.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Relative Frequency Distributions

- Relative frequency is the fraction, or proportion, of the total.
- If a data set has n observations, the relative frequency of category i is:

Relative Frequency of Category
$$i = \frac{\text{Frequency of Category } i}{n}$$
 (4.1)

- We often multiply the relative frequencies by 100 to express them as percentages.
- A relative frequency distribution is a tabular summary of the relative frequencies of all categories.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 11

Example 4.3: Constructing a Relative Frequency Distribution for Items in the Purchase Orders Database

- First, sum the frequencies to find the total number (note that the sum of the frequencies must be the same as the total number of observations, *n*).
- Then divide the frequency of each category by this value.

_/4	A	В	С
100	Item Description	Frequency	Relative Frequency
101	Airframe fasteners	14	0.1489
102	Bolt-nut package	11	0.1170
103	Control Panel	4	0.0426
104	Door Decal	2	0.0213
105	Electrical Connector	8	0.0851
106	Gasket	10	0.1064
107	Hatch Decal	2	0.0213
108	Machined Valve	4	0.0426
109	O-Ring	12	0.1277
110	Panel Decal	1	0.0106
111	Pressure Gauge	7	0.0745
112	Shielded Cable/ft.	11	0.1170
113	Side Panel	8	0.0851
114	Total	94	1.0000

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Frequency Distributions for Numerical Data

 For numerical data that consist of a small number of discrete values, we may construct a frequency distribution similar to the way we did for categorical data; that is, we simply use COUNTIF to count the frequencies of each discrete value.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 13

Example 4.4: Frequency and Relative Frequency Distribution for A/P Terms

• In the Purchase Orders data, the A/P terms are all whole numbers 15, 25, 30, and 45.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Excel Histogram Tool

- Frequency distributions and histograms can be created using the Analysis Toolpak in Excel.
 - Click the *Data Analysis* tools button in the *Analysis* group under the *Data* tab in the Excel menu bar and select *Histogram* from the list.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 15

Histogram Dialog

Specify the *Input Range* corresponding to the data. If you include the
column header, then also check the *Labels* box so Excel knows that
the range contains a label. The *Bin Range* defines the groups (Excel
calls these "bins") used for the frequency distribution.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Using Bin Ranges

- If you do not specify a bin range, Excel will automatically determine bin values for the frequency distribution and histogram, which often results in a rather poor choice.
- If you have discrete values, set up a column of these values in your spreadsheet for the bin range and specify this range in the *Bin Range* field.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 17

Example 4.5: Using the Histogram Tool

- We will create a frequency distribution and histogram for the A/P Terms variable in the Purchase Orders database.
- We defined the bin range below the data in cells

H99: H103 as follows:

Month 15 25 30 45

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.5 Continued

Histogram tool results:

Cumulative Relative Frequency Distributions

- The cumulative relative frequency represents the proportion of the total number of observations that fall at or below the upper limit of each group.
- A tabular summary of cumulative relative frequencies is called a cumulative relative frequency distribution.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.7: Computing Cumulative Relative Frequencies

- Set the cumulative relative frequency of the first group equal to its relative frequency. Then add the relative frequency of the next group to the cumulative relative frequency.
 - For example, the cumulative relative frequency in cell D3 is computed as =D2+C3 = 0.000 + 0.4468 = 0.4468.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 21

Constructing Frequency Distributions Using PivotTables

- In the Purchase Orders data, we can simply build a PivotTable to find a count of the number of orders for each item.
- For continuous numerical data, we can also use PivotTables to construct a grouped frequency distribution.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.8: Constructing a Grouped Frequency Distribution Using PivotTables

1. Using the Purchase Orders database, create a PivotTable as shown:

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 23

Example 4.8 Continued

2. Click on any value in the *Row Labels* column, and from the *Analyze* tab for *PivotTable Tools*, select *Group Field*. Edit the dialog to start at 0 and end at 130000, and use 26000 as the group range.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.8 Continued

Grouped frequency distribution results:

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 25

Percentiles

The kth percentile is a value at or below which at least k
percent of the observations lie. The most common way to
compute the kth percentile is to order the data values from
smallest to largest and calculate the rank of the kth percentile
using the formula:

 $\frac{nk}{100} + 0.5$ (4.3)

- Statistical software use different methods that often involve interpolating between ranks instead of rounding, thus producing different results.
 - The Excel function PERCENTILE.INC(array,k) computes the kth percentile of data in the range specified in the array field, where k is in the range 0 to 1, inclusive (i.e., including 0 and 1).

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Examples 4.9 and 4.10: Computing Percentiles

- Compute the 90th percentile for Cost per order in the Purchase Orders data.
- Rank of k^{th} percentile = $\frac{nk}{100 + 0.5}$
- n = 94: k = 90
- For the 90th percentile, the rank is

$$= \frac{94(90)}{100} + 0.5 = 85.1$$
 (round to 85)

- Value of the 85th observation = \$74,375
- Using the Excel function PERCENTILE.INC(G4: G97,0.9), the 90th percentile is \$73,737.50, which is different from using formula (3.3).
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.11: Excel Rank and Percentile Tool

Data > Data Analysis > Rank and Percentile

90.3rd percentile

= \$74,375

(same result as manually computing the 90th percentile)

	Α	В	С	D
1	Point	Cost per order	Rank	Percent
2	74	\$127,500.00	1	100.00%
3	62	\$121,000.00	2	98.90%
4	71	\$110,000.00	3	97.80%
5	16	\$103,530.00	4	96.70%
6	73	\$ 96,750.00	5	95.60%
7	1	\$ 82,875.00	6	94.60%
8	67	\$ 81,937.50	7	93.50%
9	82	\$ 77,400.00	8	92.40%
10	54	\$ 76,500.00	9	91.30%
11	80	\$ 74,375.00	10	90.30%
12	68	\$ 72,250.00	11	89.20%
13	20	\$ 65,875.00	12	88.10%
14	65	\$ 64,500.00	13	87.00%
15	28	\$ 63,750.00	14	86.00%

The Excel value of the 90th percentile that was computed in Example 4.9 as \$74,375 is the 90.3rd percentile value.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Quartiles

- Quartiles break the data into four parts.
 - The 25th percentile is called the first quartile,Q1;
 - the 50th percentile is called the second quartile, Q2;
 - the 75th percentile is called the third quartile, Q3; and
 - the 100th percentile is the fourth quartile, Q4.
- One-fourth of the data fall below the first quartile, one-half are below the second quartile, and three-fourths are below the third quartile.
- Excel function QUARTILE.INC(array, quart), where array specifies the range of the data and quart is a whole number between 1 and 4, designating the desired quartile

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 29

Example 4.12: Computing Quartiles in Excel

- Compute the Quartiles of the Cost per Order data
 - First quartile: = QUARTILE.INC(G4:G97,1) = \$6,757.81
 - Second quartile:=QUARTILE.INC(G4:G97,2)=\$15,656.25
 - Third quartile: = QUARTILE.INC(G4: G97,3) = \$27,593.75
 - Fourth quartile:=QUARTILE.INC(G4:G97,4)=\$127,500.00

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved