Uebungsblatt 06

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

a. Wir betrachten die folgende unendliche Menge von L-trennbaren Worten: $\{\epsilon, a, a^2, a^3, ...\}$ (also die Menge $\{\epsilon\} \cup \{a^i \mid i \in \mathbb{N}\}$)

 $\mathrm{Mit}\ L = \{w \in \Sigma^* | \exists k \le m \le n : w = a^k b^n a^m \}$

Für $i \in \mathbb{N}$: ϵ trennt ϵ und a^i , da $\epsilon \circ \epsilon = \epsilon \in L$ aber $a^i \circ \epsilon = a^i \notin L$

- ϵ trennt ϵ und a, da $\epsilon \circ \epsilon = \epsilon \in L$ aber $a \circ \epsilon = a \notin L$
- ϵ trennt ϵ und a^2 , da $\epsilon \circ \epsilon = \epsilon \in L$ aber $a^2 \circ \epsilon = a^2 \notin L$
- ... $\text{F\"{u}r } p < q(p,q \in \mathbb{N})$
- $b^p a^p$ trennt a^p und a^q , da $a^p b^p a^p \in L$ aber $a^q b^p a^p \notin L$

trennt	ϵ	$\mid a \mid$	a^2	a^3	
ϵ	_	ϵ	ϵ	ϵ	
\overline{a}			ba	ba	
a^2			_	b^2a^2	
a^3					
				_	

Nach Nerode Lemma folgt: jeder Automat, der L erkennt, hat unendlich viele Zustände.

- \Rightarrow Die Sprache L kann nicht von einem endlichen Automat erkannt werden. \Box
 - b. L hat 4 Äquivalenzklassen: (basiert auf dem minimalen DFA A mit L(A) = L) (alle Worte in L enthalten das Teilwort aba)
 - 1. $[\epsilon] = b^*(a^+bb^+)^*$
 - 2. $[a] = b^*a^+(bb^+a^+)^*$
 - 3. $[ab] = b^*a^+b(b^+a^+b)^*$
 - 4. $[aba] = (a+b)^*aba(a+b)^*$

IMGHERE

Automat A

Aufgabe 2

Aufgabe 3

Notation: F = Fehlerzust and

a.

```
[\epsilon] = (ab)^*
[a] = (ab)^*a
[F] = (b + (ab)^*a)(a + b)^*
b.
[\epsilon] = b^*(ab^+)^*
[a] = b^*a(b^+a)^*
[aa] = b^*a(b^+a)^*a^+
[aab] = (a + b)^*(aab)(a + b)^*
c.
[\epsilon] = (ab + c)^*
[a] = (ab + c)^*a
[b] = (ab + c)^*b^+
[F] = (ab + c)^*(a + b^+)(a + c)(a + b + c)^*
```

Aufgabe 4

a. Angenommen, L wäre durch einen deterministischen endlichen Automat A erkennbar. Dann gäbe es ein k wie im Pumping Lemma. Jedes k-große $(|w| \ge k)$ Wort $w \in L$ hätte im k-vorderen Bereich $(|xy| \le k)$ ein nicht leeres Teilwort y, das sich "aufpumpen" lässt.

Mit dem k von oben betrachten wir das Wort $w = a^k b^k$. Es gilt:

```
1. w \in L (da |w|_a = |w|_b = k)
2. |w| = 2k \ge k, also w ist k-gross.
```

Es muss im k-vorderen Bereich ein Teilwort y geben, das sich aufpumpen lässt. Der k-vordere Bereich von w besteht aber nur aus a's. Wenn wir hier einen nichtleeren Teil y aufpumpen, bekommen wir ein Wort mit mehr a's als b's. Das neue Wort wäre nicht merhr in L. Widerspruch!

Es gibt daher keinen endlichen Automat A mit L = L(A)

b. Angenommen, L wäre durch einen deterministischen endlichen Automat A erkennbar. Dann gäbe es ein k wie im Pumping Lemma. Jedes k-große $(|w| \ge k)$ Wort $w \in L$ hätte im k-vorderen Bereich $(|xy| \le k)$ ein nicht leeres Teilwort y, das sich "aufpumpen" lässt.

Mit dem k von oben betrachten wir das Wort $w=uu^R$ mit $u\in\Sigma^*, |u|=k, u$ enthält kein Palindrom als Teilwort. Es gilt:

```
1. w \in L
2. w \text{ ist k-gross } (|w| = 2k \ge k)
```

Es muss im k-vorderen Bereich ein Teilwort y geben, das sich aufpumpen lässt. Aber wenn wir einen nichtleeren Teil y aufpumpen, bekommen wir ein neues Wort $w' = uyu^R$, das tatsächlich kein Palindrom ist. $((w')^R = uy^Ru^R \neq uyu^R = w', \text{ denn } y \text{ ist kein Palindrom aus der Voraussetzung von } u)$