Mobilkommunikation - Mobile Communications Lecture 9: Bluetooth

Prof. Dr.-Ing. Markus Fidler

Institute of Communications Technology Leibniz Universität Hannover

June 24, 2016

Previous lecture: WLAN

Wireless local area networks (WLAN)

- ► IEEE 802.11
- ▶ 2.4 GHz and 5 GHz ISM bands
- ▶ gross data rate up to 600 Mb/s and beyond
- ▶ infrastructure mode but also ad-hoc mode possible
- application: replace wiring and support (nomadic) mobility
 - ► at home
 - ▶ in the office
 - ▶ on campus
- ▶ range
 - ► indoor: 30 m
 - outdoor: 300 m

Wireless Personal Area Networks (WPAN)

Bluetooth

- ► IEEE 802.15.1 PHY and MAC
- ▶ 2.4 GHz ISM band
- ▶ piconets, range of 10 m or less
- ▶ gross data rate 1 Mb/s and beyond
- ad-hoc communication
- ▶ small low cost devices, less than 5 €
- application: replace wiring and provide easy ad-hoc connectivity, e.g.
 - ▶ mobile phone to hands-free equipment e.g. earphone, car
 - mobile phone to computer
 - wii and playstation 3 controller

Outline

Bluetooth

Architecture

Radio layer

Baseband layer

Link manager protocol

Logical link control and adaptation protocol (L2CAP)

Outlook: IEEE 802.15 WPAN standards

History

Bluetooth

- ► 1994: Ericsson started studies on a so-called multi-communicator link
 - ▶ the project was renamed Bluetooth later after
 - ► Harald "Blåtand" Gormsen, king of Denmark, 10th century
- ▶ 1998: Bluetooth consortium founded
 - ▶ by Ericsson, Intel, IBM, Nokia, Toshiba
 - ► goal: single-chip, low-cost, radio-based network technology
- ▶ 2001: first mass market products

IEEE 802.15.1

- ► at the same time the IEEE 802.11 working group started to investigate WPANs
- ► IEEE founded the 802.15 working group for WPANs
- ▶ close cooperation with Bluetooth consortium: 802.15.1

4@ > 4 E > 4 E > 900

Characteristics

- ▶ 2.4 GHz ISM band
- ► channels with 1 MHz carrier spacing 79 channels from 2402 to 2480 MHz
- ► Gaussian frequency shift keying (GFSK) modulation
- ▶ time division duplexing (TDD) for send/receive separation
- frequency hopping spread spectrum (FHSS)
 - ► 1600 hops/second
 - different pseudo random hopping sequence (FH-CDMA)
- piconets
 - different piconets are separated by different pseudo random hopping sequences
 - ► master/slave configuration
 - hopping sequence is determined by the master
 - ▶ each piconet has a gross capacity of < 1 Mb/s (Bluetooth 1.x)

4日 → 4周 → 4 三 → 4 三 → 9 Q (*)

Piconets

Piconet: collection of connected devices

- ► each piconet has a unique hopping sequence
 - ▶ one master, up to seven slaves (> 200 can be parked)
 - master determines pseudo random hopping sequence
 - slaves have to synchronize to the hopping sequence
 - participation in a piconet is by synchronization

Devices can be in any of four states

- ▶ M: master
- ► S: slave
- ▶ P: parked
 - not actively participating
 - ▶ but known to the piconet
 - can be activated shortly
- ► SB: standby

Forming a piconet

All devices in a piconet hop together

- master provides its clock and its device identifier to slaves
 - ► device ID: 48 bit, worldwide unique
 - ► the device ID determines the unique hopping sequence
 - ▶ the phase in the hopping sequence is determined by the clock

Addressing

- ► AMA: active member address
 - ▶ 3 bit
 - 7 slaves
- ► PMA: passive member address
 - ▶ 8 bit
 - ► > 200 parked

Scatternets

Scatternet: co-located piconets that share a common device

- ► common device can be
 - slave in both piconets
 - master in one and slave in another piconet
 - why can a device not be master of two piconets?
- communication between piconets
 - devices jump back and forth between piconets

► M: master

► S: slave

► P: parked

► SB: standby

Protocol stack

AT: attention sequence SDP: service discovery protocol OBEX: object exchange RFCOMM radio frequency comm.

TCS BIN: telephony control protocol specification - binary

BNEP: Bluetooth network encapsulation protocol

Protocol stack continued

Bluetooth core protocol specification

- ► radio: air interface, i.e. frequencies, modulation, transmit power
- baseband: connection establishment, packet formats, timing, hopping, automatic repeat request, channels, quality of service
- ► link manager protocol (LMP): link setup and management between devices, security
- ► logical link control and adaptation protocol (L2CAP): adaptation layer, connectionless or connection-oriented
- service discovery protocol (SDP): device discovery, querying service characteristics

Host controller interface (HCI)

- ► command interface
- ► can be viewed as hardware/software boundary

Protocol stack continued

Profile specifications (adaptation of Bluetooth to legacy apps.)

- audio: encoded audio signals are directly supported by the baseband layer
- ► telephony control protocol specification binary (TCS BIN): call control signalling for voice and data calls
- ► radio frequency comm. (RFCOMM): emulates a serial line interface (RS-232), allows Bluetooth to act as a cable replacement
 - ► AT modem commands: telephony applications can use standard modem commands
 - object exchange protocol (OBEX): exchange of calender and business card objects (as in IrDA)
 - ► point-to-point protocol (PPP): Internet applications running over the TCP/IP stack
- ► Bluetooth network encapsulation protocol (BNEP): more efficient than PPP

4日 → 4周 → 4 三 → 4 三 → 9 Q (*)

Radio layer

Specification (ten pages) of carrier frequency and transmit power

Requirements for Bluetooth radio interface

- ▶ low power consumption, size, weight, prize
- world-wide usage

Characteristics

- ▶ 2.4 GHz ISM band, GFSK modulation
- ► TDD, FHSS with FH-CDMA
- ▶ 79 carriers with 1 MHz spacing
- ▶ 1600 hops/second, 625 μ s time slots
- ► 3 power classes
 - ► class 1: 1...100 mW with power control, up to 100 m range
 - ► class 2: 0.25...2.5 mW, typically 10 m range
 - ► class 3: less than 1 mW, about 1 m range

Baseband layer

Complex functionality

- frequency hopping for
 - ► interference mitigation
 - ► medium access
- definition of physical links
- many packet formats

Basic principle: FH-CDMA

- each piconet uses a unique hopping sequence
- the hopping sequences of several piconets can overlap, i.e. devices that belong to different piconets may transmit at the same time on the same frequency (no carrier sense is used)
 - result: interference and possibly collisions
 - ▶ however, usually only a small number of slots are affected
 - ► Bluetooth uses a fast retransmit mechanism
 - ▶ at the time of the retransmission stations have hopped again

Transmission scheme

- frequency hopping sequence f_i
- master's and slaves' transmissions alternate (TDD)
- ▶ 1-, 3-, and 5-slot packets for higher data rates
 - frequency hopping is suspended for the duration of a packet
 - frequency hopping is resumed afterwards using the original sequence (otherwise the piconet would break apart)

Baseband packet format

- ► access code
 - ► e.g. derived from the master's globally unique 48-bit address
- packet header
 - ▶ 3-bit active member address (AMA) of a slave
 - slave is either source or destination (all communication is via the master)
 - ► 4-bit type field determines the type of the packet
 - ► 1-bit flow for flow control (if flow=0 transmission must stop)
 - ▶ 1-bit sequence number (SEQN) and ack. number (ARQN)
 - alternating bit protocol (stop and wait ARQ)
 - ► 8-bit header error check (HEC)
 - ▶ one third rate forward error correction (FEC), i.e. plus 36 bit

900

Physical links

synchronous connection-oriented link (SCO):

- for classical telephone (voice) connections
- symmetrical, circuit-switched point-to-point connection
- master reserves two consecutive time slots at fixed intervals (forward and reverse)
- can use forward error correction (FEC)
- ▶ does not use automatic repeat request (ARQ)

asynchronous connectionless link (ACL):

- ► for data applications
- symmetrical or asymmetrical packet-switched traffic
- point-to-point or point-to-multipoint communications
- the master uses a polling scheme, clients may only answer if polled in the preceding slot
- ► can use forward error correction (FEC)
- uses fast automatic repeat request (ARQ)
- ► can use multi-slot packets

4□ > 4回 > 4 豆 > 4 豆 > 1 回 9 Q CP

SCO payload types

Synchronous connection-oriented link payload types

- ▶ voice data at 64 kb/s
- ► FEC: no, 2/3, or 1/3

ACL payload types

Asynchronous connectionless link payload types

1.3. or 5 slot packets

200

4 □ > 4 □ > 4 □ > 4 □ >

Baseband data rates

type	payload	user	FEC	CRC	symmetric	asymmetric	
	header	payload			max rate	forward	reverse
	[byte]	[byte]			[kb/s]	[kb/s]	[kb/s]
DM1	1	0-17	2/3	yes	108.8	108.8	108.8
DH1	1	0-27	no	yes	172.8	172.8	172.8
DM3	2	0-121	2/3	yes	258.1	387.2	54.4
DH3	2	0-183	no	yes	390.4	585.6	86.4
DM5	2	0-224	2/3	yes	286.7	477.8	36.3
DH5	2	0-339	no	yes	433.9	723.2	57.6
HV1	_	10	1/3	no	64.0	-	-
HV2	_	20	2/3	no	64.0	-	-
HV3	_	30	no	no	64.0	-	-

Example: data transmission

- ▶ TDD with 625 μ s slots: master polls slaves
- ► synchronous connection-oriented (SCO): periodic single-slot assignment with 64 kb/s
- ▶ asynchronous connectionless (ACL): variable packet size with 1, 3, or 5 slot packets

Example: automatic repeat request

- ► header uses 1/3 rate FEC
- ▶ ACL payload uses CRC plus 2/3 FEC or no FEC
- ► fast ARQ with alternating bit protocol:
 - ► ARQN: 1 bit acknowledgement number
 - ► SEQN: 1 bit sequence number

Link manager protocol (LMP)

- ▶ pairing, authentication, and encryption: pairing establishes a trust relationship between devices that have never communicated before resulting in a link key that is used as input for authentication and encryption
- synchronization: adjust clock offset upon packet reception
- capability negotiation: not all devices support all features,
 e.g. multi-slot packets
- quality of service negotiation: e.g. the poll interval determines latency and throughput
- power control: depending on the receive power the receiver may request the sender to adapt its send power
- ▶ link supervision: e.g. setup of SCO links
- ► state and transmission mode changes: e.g. attach to, detach from a piconet; switch master/slave role

State transition diagram

- ► AMA: 3-bit active member address
- ► PMA: 8-bit passive member address

State transition diagram continued

- ► standby: any device that is not participating in a piconet
- ▶ inquiry: devices that want to establish or join a piconet
 - a master that wants to establish a piconet repeatedly sends a specific inquiry access code (IAC) on so-called wake-up carriers
 - ► a slave that wants to join a piconet periodically searches for IAC messages on the wake-up carriers and if it receives an IAC message it returns its address and timing information
- ► page: after successful inquiry the master pages each slave on its specific hopping sequence; the slaves synchronize with the master and start using the master's hopping sequence
- connected: synchronized devices (after paging)
 - ► sniff: device listens to the piconet at reduced rate
 - ▶ hold: device stops ACL transmissions but may still use SCO
 - ▶ park: device releases its AMA and receives a PMA; wakes up at certain beacon intervals to stay synchronized

Inquiry

Which hopping sequence has to be used for inquiry?

- usually the hopping sequence is determined from device identifiers
- devices do, however, not yet know each other
- specific hopping sequences (using 32 channels) for
 - inquiry and
 - ▶ inquiry response

Which phase (reference clock) has to be used for hopping?

- usually the clocks are synchronized to one reference clock
- clocks are, however, not yet synchronized during inquiry
- devices use different speed for hopping
 - master hops after 312.5 μ s
 - ► slave hops after 1.28 s

Power consumption

operating mode	average current [mA]		
SCO, HV1	53		
SCO, HV3	26		
ACL, 723.2 kb/s	53		
ACL, 115.2 kb/s	15.5		
ACL, 38.4 kb/s, 40 ms interval sniff mode	4		
park mode, 1.28 s beacon interval	0.6		
standby	0.047		

- ► provides logical channels with unique channel identifier (CID)
 - ▶ signaling: CID 1
 - ► connectionless: broadcast from master to slaves, CID 2
 - ▶ connection-oriented: bi-directional with QoS (RFC 1363), CID \geq 64 (CID = 3...63 are reserved)
- ▶ protocol multiplexing: e.g. RFCOMM, SDP, etc.
- ► segmentation and reassembly:
 - ▶ L2CAP data units have up to 64 kbyte user data
 - ▶ baseband packets carry at most 339 byte user data

Logical channels

Packet format

990

IEEE 802.15 family of WPAN standards

IEEE 802.15 working groups

- ▶ 1: PHY and MAC as used by Bluetooth
- 2: Coexistence of Bluetooth 802.11 WLAN
 - ▶ both operate in the 2.4 GHz ISM band
 - ▶ interference model
- ► 3: high bit rates of more than 100 Mb/s
 - ► 3a: ultra wide band (UWB)
- ► 4: PHY and MAC as used by ZigBee
 - ▶ low data rate, tens of kb/s
 - low complexity
 - multi-month up to multi-year battery life
 - ▶ application: sensors, remote control, smart badges etc.
- ► 5: WPAN mesh networking, i.e. interconnection of WPANs
- ► 6: body area networks (BAN)
- ▶ 7: visible light communications (VLC)

Literature

► Jochen Schiller, Mobile Communications, Second Edition, Addison-Wesley, 2003.

