

Polo Tijuca

Aluno Luiz Felippe Sarmento Bonet

Matrícula 2023.09.34276-6

Curso Desenvolvimento Full Stack

Disciplina RPG0015 - Vamos Manter as Informações?

Turma 9001

Período 2024 – 2º Semestre

Missão Prática: Mundo 3 - Nível 2

Título da Prática 1: Criando o Banco de Dados

Título da Prática 2: Alimentando a Base

Objetivos:

- Identificar os requisitos de um sistema e transformá-los no modelo adequado;
- Utilizar ferramentas de modelagem para bases de dados relacionais;
- Explorar a sintaxe SQL na criação das estruturas do banco (DDL);
- Explorar a sintaxe SQL na consulta e manipulação de dados (DML);
- Modelar a base de dados para um sistema simples, além de implementá-la, através da sintaxe SQL, na plataforma do SQL Server.

Resultados de Execução – Prática 1

Figura 1. Modelo de dados do sistema a ser criado. Após a criação no DBDesigner, o modelo foi editado no dbDiffo.

Resultados de Execução - Prática 2

Figura 2. Preenchimento da tabela de Pessoas.

Figura 3. Preenchimento das tabelas de Pessoa Física e Jurídica.

Figura 4. Preenchimento da tabela de Usuários.

	idProduto	Nome	Quantidade	PrecoVenda
>	1	Placa Mae	250	790,00
	2	Processador	150	850,00
	3	Placa de Video	100	1150,00
	4	Fonte de Alimentacao	300	650,00
	5	Memoria RAM	350	350,00
	6	Monitor	200	590,00
	7	Teclado	500	150,00
	8	Mouse	500	90,00
	NULL	NULL	NULL	NULL

Figura 5. Preenchimento da tabela de Produtos.

Felps-	-Notebook.Loja -	dbo.Movimento	⇒ × SQLQı	uery1.sql - feOTI	ЕВООК	\fel-f (52))*	
	idMovimento	FK_Usuario_id	FK_Pessoa_id	FK_Produto_id	Tipo	Quantidade	PrecoUnitario
>	1	1	1	4	E	2	650,00
	2	1	1	4	S	1	700,00
	3	2	2	5	S	2	450,00
	4	3	3	1	E	50	790,00
	5	3	3	2	E	50	850,00
	6	3	3	1	S	3	840,00
	7	3	3	3	S	2	1300,00
	8	4	4	6	E	25	590,00
	9	4	4	7	S	7	169,90
	10	4	4	8	S	9	109,90
	NULL	NULL	NULL	NULL	NULL	NULL	NULL

Figura 6. Preenchimento da tabela de Movimentos.

SQLQ	uery1.sql - fe	eOTEBOOK\fel-f (52))*	⇒ X								
		e.*, PF.CPF									
	FROM Pessoa Pe JOIN PessoaFisica PF ON Pe.idPessoa = PF.FK Pessoa id;										
100 %			_								
⊞F	Results 📳	Messages									
	idPessoa	Nome	Endereco	Cidade	Estado	Email	Telefone	CPF			
1	1	Joao Fernandes Correia	Rua Jose Aristides	Divinopolis	Minas Gerais	JoaoFernandesCorreia@rhyta.com	37 4647-9323	365.410.330-80			
2	2	Kaua Azevedo Silva	Rua Faustino Siqueira Franco	Guarulhos	Sao Paulo	KauaAzevedoSilva@amyspy.com	11 4681-5575	78349632011			

Figura 7. Resultados da consulta de dados letra A.

SQLQ	uery1.sql - f	eOTEBOOK\fel-f (52))	* + X					
Ę	SELECT P	e.*, PJ.CNPJ						
	FROM Pess JOIN Pess		Pe.idPessoa = PJ.FK_Pessoa_id;					
100 %								
III F	Results 📳	Messages						
	idPessoa	Nome	Endereco	Cidade	Estado	Email	Telefone	CNPJ
1	3	Heilig-Meyers	Estrada do Recanto 161	Timoteo	Minas Gerais	Heilig-Meyers@teleworm.us	31 5667-6663	95.823.031/0001-59
2	4	Grupo Técnico Jardins	Praça Presidente Gamal Abdel Nasser 1403	Sao Paulo	Sao Paulo	Henceall@dayrep.com	11 8783-6448	67652009000158

Figura 8. Resultados da consulta de dados letra B.

			OK\fel-f (54))* → ×								
E	SELECT idMo	ovimen	ito, Tipo, pe.Nome	AS Fornecedor, pr	.Nome AS P	roduto, Mov.	Quantidad	e, Mov.PrecoUnitari	o, (Mov.Quantio	.dade * Mov.PrecoUnitario)	AS Tot
	FROM Movime	ento M	lov								
	INNER JOIN	Pesso	a pe ON pe.idPesso	a = Mov.FK Pessoa	id						
	INNER JOIN	Produ	ito pr ON pr.idProd	uto = Mov.FK Prod	uto id						
	WHERE Mov. 1			-	_						
			- /								
100 %	, + ()
)
	Results Me	ssages)
			Fornecedor	Produto	Quantidade	Preco Unitario	Total				•
	Results 🗐 Me					Preco Unitario 650.00	Total 1300.00)
	Results 🗐 Me	Tipo	Fornecedor								
	Results 🗐 Me	Tipo E	Fornecedor Joao Fernandes Correia	Fonte de Alimentacao	2	650.00	1300.00)

Figura 9. Resultados da consulta de dados letra C.

Figura 10. Resultados da consulta de dados letra D.

Figura 11. Resultados da consulta de dados letra E.

Figura 12. Resultados da consulta de dados letra F.

Figura 13. Resultados da consulta de dados letra G.

Figura 14. Resultados da consulta de dados letra H.

Figura 15. Resultados da consulta de dados letra I.

Figura 16. Resultados da consulta de dados letra J.

Análise e Conclusão – Prática 1

A) Como são implementadas as diferentes cardinalidades, basicamente 1X1, 1XN ou NxN, em um banco de dados relacional?

1x1: É implementado entre tabelas através de uma *foreign key*, que é associada a uma (E somente uma, em 1x1) *primary key* de outra tabela.

1xN: É implementado de maneira similar a 1x1, envolvendo *primary keys* e *foreign keys*. Entretanto, nesse caso, uma *primary key* teria associação com mais de uma *foreign key*.

NxN: Diferentemente das demais cardinalidades, essa implementação faz uso de tabelas de associação. As *foreign keys* nas tabelas de associação estão associadas a elementos de outras tabelas, dessa forma, a relação é indireta.

B) Que tipo de relacionamento deve ser utilizado para representar o uso de herança em banços de dados relacionais?

Em bancos de dados relacionais usa-se a hierarquia para organizar as tabelas, especificamente uma relação de generalização e especialização. Com isso, tabelas podem ser organizadas mais facilmente. Utilizando como exemplo as classes utilizadas neste trabalho, uma Pessoa (superclasse, mais genérica) pode ser uma Pessoa Física ou Jurídica (subclasses, mais específicas). Em termos técnicos, herança é implementada em bancos de dados relacionais através do uso de *primary* e *foreign keys*.

C) Como o SQL Server Management Studio permite a melhoria da produtividade nas tarefas relacionadas ao gerenciamento do banco de dados?

Uma das principais vantagens do software é o fato de ser gratuito e, ainda assim, de alta qualidade. O SSMS possui ainda diversas ferramentas que facilitam a automação, monitoramento, segurança dos dados, entre outros. Deve-se destacar também a correção em tempo real do que é digitado no *query* do programa, que juntamente com a presença de uma interface gráfica, facilita incrivelmente a vida do programador, aumentando sua produtividade.

Análise e Conclusão – Prática 2

A) Quais as diferenças no uso de sequence e identity?

Ambas podem ser usadas para gerar numeração automática que pode ser incrementada de acordo com a necessidade. Entretanto, *identity* é uma propriedade que fica associada a uma tabela, enquanto *sequence* é uma propriedade independente, que pode ser utilizado em várias tabelas. Cada uma possui, portanto, seu caso de uso.

B) Qual a importância das chaves estrangeiras para a consistência do banco?

Funcionalmente, foreign keys são conexões entre tabelas de um banco de dados. Essa conexão facilita o gerenciamento de bancos de dados pois automaticamente mantém a consistência dos dados mesmo quando são feitas operações sobre estes, sem a necessidade de o programador perder muito tempo checando e rechecando os dados.

C) Quais operadores do SQL pertencem à álgebra relacional e quais são definidos no cálculo relacional?

Os operadores de álgebra relacional utilizados no SQL incluem: selection, projection, union, intersection, difference, cartesian product, join, renaming. SQL tem maior alinhamento com álgebra relacional do que cálculo relacional, mas ainda assim existem algumas aplicações deste como cálculo de tuplas e de domínios.

D) Como é feito o agrupamento em consultas, e qual requisito é obrigatório?

O agrupamento em consultas se faz através do uso de GROUP BY, que agrupa linhas que tem valores iguais em colunas específicas. Alguns requisitos são obrigatórios para o uso dessa técnica. Primeiramente, o uso de funções de agregação (como COUNT, SUM, AVG, MAX, MIN) que serão usadas para calcular o valor de cada grupo. Também é essencial que todas as colunas declaradas em SELECT que não estão em funções de agregação devem estar dentro da clausula GROUP BY.

Anexo - Códigos do Projeto

```
<u>Arquivo – New model.sql</u>
CREATE DATABASE Loja
CREATE LOGIN loja WITH PASSWORD = 'loja', CHECK POLICY = OFF
CREATE USER loja FOR LOGIN loja
USE Loja
CREATE SEQUENCE listaPessoa AS INTEGER START WITH 1
INCREMENTED BY 1;
CREATE TABLE [Pessoa] (
 idPessoa int NOT NULL,
 Nome varchar(100) NOT NULL,
 Endereco varchar(200) NOT NULL,
 Cidade varchar(50) NOT NULL,
 Estado varchar(50) NOT NULL,
 Email varchar(255) NOT NULL,
 Telefone varchar(15) NOT NULL
 CONSTRAINT PK Pessoa PRIMARY KEY CLUSTERED (idPessoa)
CREATE TABLE [PessoaFisica] (
 FK Pessoa id int NOT NULL,
 CPF varchar(14) NOT NULL,
 CONSTRAINT PK PessoaFisica PRIMARY KEY CLUSTERED
(FK Pessoa id),
 CONSTRAINT FK Pessoa Fisica FOREIGN KEY (FK Pessoa id)
REFERENCES Pessoa(idPessoa)
     ON UPDATE CASCADE ON DELETE CASCADE,
CREATE TABLE [PessoaJuridica] (
 FK Pessoa id int NOT NULL,
 CNPJ varchar(18) NOT NULL.
 CONSTRAINT PK PessoaJuridica PRIMARY KEY CLUSTERED
(FK Pessoa id),
 CONSTRAINT FK Pessoa Juridica FOREIGN KEY (FK Pessoa id)
REFERENCES Pessoa(idPessoa)
```

```
ON UPDATE CASCADE ON DELETE CASCADE.
CREATE TABLE [Produto] (
idProduto int NOT NULL,
 Nome varchar(255) NOT NULL,
 Quantidade int NOT NULL,
PrecoVenda decimal(25,2) NOT NULL,
 CONSTRAINT PK Produto PRIMARY KEY CLUSTERED (idProduto)
CREATE TABLE [Usuario] (
idUsuario int NOT NULL.
Login varchar(25) NOT NULL,
Senha varchar(25) NOT NULL,
 CONSTRAINT PK Usuario PRIMARY KEY CLUSTERED (idUsuario)
CREATE TABLE [Movimento] (
idMovimento int NOT NULL UNIQUE,
FK Usuario id int NOT NULL,
FK Pessoa id int NOT NULL,
 FK Produto id int NOT NULL,
Tipo varchar(255) NOT NULL,
 Quantidade int NOT NULL,
 PrecoUnitario decimal(25,2) NOT NULL,
 CONSTRAINT PK Movimento PRIMARY KEY CLUSTERED (idMovimento),
 CONSTRAINT FK Usuario FOREIGN KEY (FK Usuario id) REFERENCES
Usuario(idUsuario)
     ON UPDATE CASCADE ON DELETE CASCADE,
 CONSTRAINT FK Pessoa FOREIGN KEY (FK Pessoa id) REFERENCES
Pessoa(idPessoa)
     ON UPDATE CASCADE ON DELETE CASCADE,
 CONSTRAINT FK Produto FOREIGN KEY (FK Produto id) REFERENCES
Produto(idProduto)
     ON UPDATE CASCADE ON DELETE CASCADE
```

<u>Arquivo – New content.sql</u>

USE Loja;

INSERT INTO [Pessoa] (idPessoa, Nome, Endereco, Cidade, Estado, Email, Telefone)

VALUES

(NEXT VALUE FOR listaPESSOA, 'Joao Fernandes Correia', 'Rua Jose Aristides', 'Divinopolis', 'Minas Gerais', 'JoaoFernandesCorreia@rhyta.com', '37 4647-9323'),

(NEXT VALUE FOR listaPESSOA, 'Kaua Azevedo Silva', 'Rua Faustino Siqueira Franco', 'Guarulhos', 'Sao Paulo', 'KauaAzevedoSilva@armyspy.com', '11 4681-5575'),

(NEXT VALUE FOR listaPESSOA, 'Heilig-Meyers', 'Estrada do Recanto 161', 'Timoteo', 'Minas Gerais', 'Heilig-Meyers@teleworm.us', '31 5667-6663'),

(NEXT VALUE FOR listaPESSOA, 'Grupo Técnico Jardins', 'Praça Presidente Gamal Abdel Nasser 1403', 'Sao Paulo', 'Sao Paulo', 'Henceall@dayrep.com', '11 8783-6448');

INSERT INTO [PessoaFisica] (FK_Pessoa_id, CPF)

VALUES

(1, '365.410.330-80'),

(2, '78349632011');

INSERT INTO [PessoaJuridica] (FK_Pessoa_id, CNPJ)

VALUES

(3, 95.823.031/0001-59),

(4, '67652009000158');

INSERT INTO [Usuario] (idUsuario, Login, Senha)

VALUES

- (1, 'CorreiaJF', 'hDq\$@j8'),
- (2, 'KakuaA', 'Gjyakyjav'),
- (3, 'HM.Estoque', 'hgd6au28'),
- (4, 'LojaGTJ', 'senha123');

INSERT INTO [Produto] (idProduto, Nome, Quantidade, PrecoVenda)

VALUES

- (1, 'Placa Mae', 250, 790.00),
- (2, 'Processador', 150, 850.00),
- (3, 'Placa de Video', 100, 1150.00),
- (4, 'Fonte de Alimentacao', 300, 650.00),
- (5, 'Memoria RAM', 350, 350.00),
- (6, 'Monitor', 200, 590.00),
- (7, 'Teclado', 500, 150.00),
- (8, 'Mouse', 500, 90.00);

INSERT INTO [Movimento] (idMovimento, FK_Usuario_id, FK_Pessoa_id, FK_Produto_id, Tipo, Quantidade, PrecoUnitario)

VALUES

- (1, 1, 1, 4, 'E', 2, 650.00),
- (2, 1, 1, 4, 'S', 1, 700.00),
- (3, 2, 2, 5, 'S', 2, 450.00),
- (4, 3, 3, 1, 'E', 50, 790.00),
- (5, 3, 3, 2, 'E', 50, 850.00),
- (6, 3, 3, 1, 'S', 3, 840.00),
- (7, 3, 3, 3, 'S', 2, 1300.00),
- (8, 4, 4, 6, 'E', 25, 590.00),
- (9, 4, 4, 7, 'S', 7, 169.90),
- (10, 4, 4, 8, 'S', 9, 109.90);

Arquivo – New search.sql

SELECT Pe.*, PF.CPF

FROM Pessoa Pe

JOIN PessoaFisica PF ON Pe.idPessoa = PF.FK_Pessoa_id;

SELECT Pe.*, PJ.CNPJ

FROM Pessoa Pe

JOIN PessoaJuridica PJ ON Pe.idPessoa = PJ.FK Pessoa id;

SELECT Mov.idMovimento, Tipo, pe.Nome AS Fornecedor, pr.Nome AS Produto, Mov.Quantidade, Mov.PrecoUnitario, (Mov.Quantidade * Mov.PrecoUnitario) AS Total

FROM Movimento Mov

INNER JOIN Pessoa pe ON pe.idPessoa = Mov.FK_Pessoa_id

INNER JOIN Produto pr ON pr.idProduto = Mov.FK_Produto_id

WHERE Mov.Tipo = 'E';

SELECT Mov.idMovimento, Tipo, pe.Nome AS Fornecedor, pr.Nome AS Produto, Mov.Quantidade, Mov.PrecoUnitario, (Mov.Quantidade * Mov.PrecoUnitario) AS Total

FROM Movimento Mov

INNER JOIN Pessoa pe ON pe.idPessoa = Mov.FK_Pessoa_id

INNER JOIN Produto pr ON pr.idProduto = Mov.FK Produto id

WHERE Mov.Tipo = 'S';

SELECT pr.Nome, SUM(Mov.Quantidade * Mov.PrecoUnitario) AS Compras

FROM Movimento Mov

INNER JOIN Produto pr ON Mov.FK_Produto_id = pr.idProduto

WHERE Mov.Tipo = 'E'

GROUP BY pr.Nome;

SELECT pr.Nome, SUM(Mov.Quantidade * Mov.PrecoUnitario) AS Vendas

FROM Movimento Mov

INNER JOIN Produto pr ON Mov.FK_Produto_id = pr.idProduto

WHERE Mov.Tipo = 'S'

GROUP BY pr.Nome;

SELECT Us.*

FROM Usuario Us

LEFT JOIN Movimento mov ON Us.idUsuario = mov.FK_Usuario_id AND mov.Tipo = 'E'

WHERE mov. Movimento IS NULL;

SELECT us.Login, SUM(Mov.PrecoUnitario * Mov.Quantidade) AS Compras

FROM Movimento Mov

INNER JOIN Usuario us ON Mov.FK Usuario id = us.idUsuario

WHERE Mov.Tipo = 'E'

GROUP BY us.Login;

SELECT us.Login, SUM(Mov.PrecoUnitario * Mov.Quantidade) AS Vendas

FROM Movimento Mov

INNER JOIN Usuario us ON Mov.FK Usuario id = us.idUsuario

WHERE Mov.Tipo = 'S'

GROUP BY us.Login;

SELECT pr.Nome, SUM(Mov.PrecoUnitario * Mov.Quantidade) / SUM(Mov.Quantidade AS Media)

FROM Movimento Mov

INNER JOIN Produto pr ON Mov.FK Produto id = pr.idProduto

WHERE Mov.Tipo = 'S'

GROUP BY pr.Nome;