

# EE5110 Segment 3

## a) Calculus of variations

The input signal is:

$$u = -\frac{a}{2}y + \frac{\dot{y}}{2}$$

The function J(y, u) changes to:

$$\begin{split} J(y) &= \int_0^\infty [y^2 + (-\frac{a}{2}y + \frac{\dot{y}}{2})^2] dt \\ &= \int_0^\infty [(1 + \frac{a^2}{4})y^2 + \frac{1}{4}\dot{y}^2] dt - \frac{a}{2} \int_0^\infty y\dot{y} dt \end{split}$$

···

$$\int_0^\infty y\dot{y}dt = y^2|_0^\infty - \int_0^\infty y\dot{y}dt$$
$$\int_0^\infty y\dot{y}dt = \frac{1}{2}[y^2(\infty) - y^2(0)]$$

∴.

$$J(y) = \int_0^\infty \left[ \left( \frac{a^2}{4} + 1 \right) y^2 + \frac{1}{4} \dot{y}^2 \right] dt - \frac{a}{4} y^2(\infty) + \frac{a}{4} c^2$$

Let 
$$z(t)$$
 denote any function of  $t$  with the property that  $J(z)$  exists. Take  $\varepsilon$  to be a scalar parameter. 
$$J(y_0 + \varepsilon z) = \int_0^\infty \left[ \left( \frac{a^2}{4} + 1 \right) (y_0 + \varepsilon z)^2 + \frac{1}{4} (\dot{y}_0 + \varepsilon \dot{z})^2 \right] dt - \frac{a}{4} y^2(\infty) + \frac{a}{4} c^2$$

The  $J(y_0 + \varepsilon z)$  must have an absolute minimum at  $\varepsilon$ 

$$\begin{split} \frac{d}{d\varepsilon}J(y_0 + \varepsilon z)|_{\varepsilon = 0} &= 0\\ J(y_0 + \varepsilon z) &= \int_0^\infty [(\frac{a^2}{4} + 1)y_0^2 + \frac{1}{4}\dot{y}_0^2]dt + 2\varepsilon \int_0^\infty [(\frac{a^2}{4} + 1)(y_0 z) + \frac{a^2}{4}\dot{y}_0\dot{z}]dt \\ &+ \varepsilon^2 \int_0^\infty [(\frac{a^2}{4} + 1)z^2 + \frac{a^2}{4}\dot{z}^2]dt - \frac{a^2}{4}y^2(\infty) + \frac{a^2}{4}c^2 \end{split}$$

We see then that the variational condition der

$$\begin{split} \int_0^\infty [(\frac{a^2}{4}+1)y_0^2+\frac{1}{4}\dot{y}_0^2]dt &= 0\\ 2\varepsilon \int_0^\infty [(\frac{a^2}{4}+1)(y_0z)+\frac{a^2}{4}\dot{y}_0\dot{z}]dt &= 0\\ int_0^\infty [(\frac{a^2}{4}+1)z^2+\frac{a^2}{4}\dot{z}^2]dt - \frac{a^2}{4}y^2(\infty)+\frac{a^2}{4}c^2 &= 0 \end{split}$$

Since  $y_0 + \varepsilon$  z is an admissible function satisfies the initial condition:

$$y_0(0) + \varepsilon z(0) = c$$

We see that z(0) = 0.

Since the left - hand side must be zero for all admissible z, we suspect that

$$(\frac{a^2}{4} + 1)y_0 - \frac{1}{4}\ddot{y}_0 = 0$$

First, we use T to replace  $\infty$ ,  $\dot{y_0}(T) = 0$ . And we obtain no condition on  $\dot{y_0}(0)$ . We can get:

$$y_0(0) = c$$
,  $\dot{y}_o(T) = 0$ 

The general solution of the differential equation is:

$$y = c_1 e^{\sqrt{4+a^2} \cdot t} + c_2 e^{-\sqrt{4+a^2} \cdot t}$$

Using the boundary conditions, we have the two equations to determine the coefficients  $c_1$  and  $c_2$ .

$$c = c_1 + c_2$$

$$0 = c_1 e^{\sqrt{4+a^2} \cdot T} - c_2 e^{-\sqrt{4+a^2} \cdot T}$$

Solving, we obtain the expression:

$$y_o(t) = c(\frac{e^{\sqrt{4 + a^2}(t - T)} + e^{-\sqrt{4 + a^2}(t - T)}}{e^{-\sqrt{4 + a^2} \cdot T} + e^{\sqrt{4 + a^2} \cdot T}}) = c\frac{\cosh(\sqrt{4 + a^2}(t - T))}{\cosh(\sqrt{4 + a^2} \cdot T)}$$

Let  $T \to \infty$ , We have

$$y_o(t) = c(\frac{e^{\sqrt{4+a^2}(t-T)} + e^{-\sqrt{4+a^2}(t-T)}}{e^{-\sqrt{4+a^2}\cdot T}}) = c(\frac{e^{\sqrt{4+a^2}(t-2T)} + e^{-\sqrt{4+a^2}\cdot t}}{e^{-2\sqrt{4+a^2}\cdot T}}) \rightarrow ce^{-\sqrt{4+a^2}\cdot t}$$
 
$$\dot{y}_o(t) = c\sqrt{4+a^2} \cdot (\frac{e^{\sqrt{4+a^2}(t-T)} - e^{-\sqrt{4+a^2}(t-T)}}{e^{-\sqrt{4+a^2}\cdot T}}) = c\sqrt{4+a^2} \cdot (\frac{e^{\sqrt{4+a^2}(t-2T)} - e^{-\sqrt{4+a^2}\cdot t}}{e^{-2\sqrt{4+a^2}\cdot T}}) \rightarrow -c\sqrt{4+a^2} \cdot e^{-\sqrt{4+a^2}\cdot t}$$
 
$$\dot{y}_o = -\sqrt{4+a^2} \cdot y_o(t)$$

So we have the control laws

## b) Dynamic programming

Optimal Value function:

$$V(c,T) = \min_{y} J(y)$$

$$J(y) = \int_0^{\Delta} + \int_{\Delta}^{T} = (c^2 + u^2)\Delta + V(c + (ac + 2u)\Delta, T - \Delta) + O(\Delta^2)$$

We can use Taylor series to relate  $V(c + (ac + 2u)\Delta, T - \Delta)$  with V(c, T), J(y) will change to

$$V(c,T) = \min_{u}[(c^2+u^2)\Delta + V(c,T) + \frac{\partial V}{\partial c}(ac+2u)\Delta - \frac{\partial V}{\partial T}\Delta + O(\Delta^2)]$$
 Ignoring the higher order terms of  $\Delta$ , we have 
$$\frac{\partial V}{\partial T} = \min_{u}[(c^2+u^2) + \frac{\partial V}{\partial c}(ac+2u)]$$
 When  $T \to \infty$ ,  $V(c,T)$  becomes  $V(c)$ ,

$$\frac{\partial V}{\partial T} = \min_{u} [(c^2 + u^2) + \frac{\partial V}{\partial c}(ac + 2u)]$$

When  $T \to \infty$ , V(c,T) becomes V(c),

$$V(c) = \min_{u} [(c^2 + u^2)\Delta + V(c + (ac + 2u)\Delta)] + O(\Delta^2)$$

$$0 = \min_{u} [(c^2 + u^2) + \dot{V}(c)(ac + 2u)]$$

Take the derivative respect to u gives  $2u + 2\dot{V}(c)a = 0$ , so

$$u = -\dot{V}(c)$$

$$0 = (c^2 + (\dot{V}(c))^2) + \dot{V}(c)(ac - 2\dot{V}(c))$$

$$\dot{V}^2(c) - ac\dot{V}(c) + c^2 = 0$$

So we have two possibilities, with the condition V(0) = 0, we can obtain two possible solutions:

$$V(c) = \frac{a + \sqrt{a^2 + 4}}{2}$$
$$V(c) = \frac{a - \sqrt{a^2 + 4}}{2}$$

Since  $V(c) \ge 0$ , we see that  $V(c) = \frac{a + \sqrt{a^2 + 4}}{2}$ , the optimal value can be easily obtained as

$$u = -\frac{a + \sqrt{a^2 + 4}}{2}c$$

Since y(0) = c, so we have  $u(0) = \frac{a + \sqrt{a^2 + 4}}{2} y(0)$ . At any time t, we will have the control law:

$$u(t) = -\frac{a + \sqrt{a^2 + 4}}{2}y(t)$$

The results from two method are same

We write the optimal value function as

$$V_N(c) = \min_{u_n} J_N(y, u)$$

After u(0) is chosen, the new state of the system is y(1) = 2c + au(0), The cost function takes the form

$$c^{2} + u^{2}(0) + \sum_{n=1}^{N} (y^{2}(n) + u^{2}(n))$$

The long term cost can be expressed as optimal value starting from 2c + au(0) withe N-1 steps left

$$\sum_{n=1}^{N} (y^2(n) + u^2(n)) = V_{N-1}(ac + 2u(0))$$

Then

$$V_N(c) = \min_{u(0)} [c^2 + u^2(0) + V_{N-1}(ac + 2u(0))]$$

For the continuous case we have  $V(c,T) = c^2 r(T)$ 

It is reasonable to guess that

$$\begin{split} V_N(c) &= c^2 r_N \\ c^2 r_N &= \min_{u(0)} [c^2 + u^2(0) + (ac + 2u(0))^2 r_{N-1}] \end{split}$$

The value of u(0) that minimizes is readily obtained by differentiation

$$2u(0) + 2a(2a + au(0))r_{N-1} = 0$$

$$u(0) = -\frac{2acr_{N-1}}{1 + 4r_{N-1}}$$

Using this value, we obtain the recurrence relation

$$r_N = 1 + \frac{a^2 r_{N-1}}{1 + 4r_{N-1}}$$

At each time t = k, the input control is

$$u(k) = -\frac{2acr_{N-k-1}y(k)}{1 + 4r_{N-k-1}}$$

 $u(k) = -\frac{2acr_{N-k-1}y(k)}{1+4r_{N-k-1}}$  When  $N\to\infty$ , let  $r=\lim_{N\to\infty}r_N$ , then r is the positive root of the quadratic equation

$$r = \frac{(a^2 + 3) + \sqrt{a^4 + 6a^2 + 25}}{8}$$

The control signal will change to:

$$\lim_{N \to \infty} u(0) = -\frac{2acr}{1 + 4r}$$

:. for the inftyite time process, the optimal feedback controller is:

Assume that the lifeguard will run to (a,0), and then swim to the swimmer. The parameter we can get from question: v/s. The optimal function can be expressed as:

/s. The optimal function can be expressed as : 
$$T = \min_{a} [(\frac{\sqrt{a^2 + 10^2}}{v_1}) + (\frac{\sqrt{(20 - a)^2 + (-10)^2}}{v_2})]$$
 Take the derivative respect to a, we get 
$$\frac{29a^2}{v_1} - 10a + 129 = 0$$

$$\frac{29a^2}{100} - 10a + 129 = 0$$
$$a = \frac{10}{0.58} = 17.24$$

$$\frac{100}{100} - 10a + 129 = 0$$

$$a = \frac{10}{0.58} = 17.24$$
So, the shortest time path is that lifeguard run to (18.823, 0) and then swim to the swimmer. The shortest time is:
$$t_{min} = \frac{\sqrt{a^2 + 10^2}}{v_1} + \frac{\sqrt{(20 - a)^2 + (-20)^2}}{v_2} = 9.17s$$

In [1]: import numpy as np
 np.sqrt(17.24\*\*2+100)/5+np.sqrt((20-17.24)\*\*2+100)/2

Out[1]: 9.173008873571147

Q4

Method1: Programming view

This question we can refer to Dijkstra, Floyd method. It has the same principle with optimal solution method. The basic logicis:

Based on the algorism, suppose we get the optimal result of set S, S includes the places we traveled. We have n place, suppose we traveled k places, k < n and belongs to S, the S(k) should also be optimal result.

We can put all attractions and hotel in the x y plane and sort them by x coordinate from small to large  $p_0, p_1, p_2, \ldots, p_n$ .  $p_0$ 

In order to get the shortest circle, we set  $dist(i,j) = \sqrt{(x_i - x_j)^2 + (y_i - y_i)^2}$  as the distance between place i and j.

step1: Set S contains only the source point.  $S = p_0$ , and the distance of  $p_0$  is 0. U contains vertices other than places, i.e. and we can calculate all the distance between two places.

step2

: Select a vertex  $p_k$  from U with the smallest distance from  $p_0$  and add  $p_k$  to S (the selected distance is the shortest path

 $step3: Take\ k\ as\ the\ newly\ considered\ intermediate\ point\ and\ modify\ the\ distance\ of\ each\ vertex\ in\ U;$ 

If the distance from the source point  $p_0$  to the vertex  $p_u$  (through the vertex  $p_k$ ) is shorter than the original distance (without passing through the vertex  $p_k$ ), the distance value of the vertex  $p_u$  is modified,

and the modified distance value is the distance of the vertex  $p_k$  plus the distance between two places.

step4: Repeat the step2 and step 3 until all the places are in S set.

Method2: Mathmatic view

First, we can put all attractions and hotel in the x y plane and sort them by x coordinate from small to large  $p_0, p_1, p_2, \ldots$ 

Assume that  $V_{i,j}$   $(i \leq j)$  is the shortest closed curve which contain  $p_0, p_1, \ldots, p_n$ .

This path goes from  $p_i$  to  $p_0$ , and then goes from  $p_0$  right to  $p_i$ . So,  $V_{n,n}$  is what we want in this topic.

Assume that the length of  $V_{i,j}$  is l(i,j), the distance between  $p_i$  and  $p_j$  is  $dist(i,j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ 

In the path  $V_{i,j}$ ,  $p_i$  is in the path  $p_i \to p_1$ ,  $p_i$  is in the path  $p_1 \to p_i$ . Now, let's talk about the position of  $p_{i-1}$ 

(1) 
$$i < j - 1$$

Because  $p_{i-1}$  is on the right side of  $p_i$ , so  $p_{i-1}$  is in the path  $p_1 \to p_i$ .

Besides,  $p_{j-1}$  is the rightmost point except  $p_j$ , so it connect to  $p_j$  directly. We can get

$$l(i, j) = l(i, j - 1) + dist(j - 1, j)$$

(2) 
$$i = j - 1$$

In this case,  $p_{j-1}$  is  $p_i$ , so  $p_{j-1}$  is in the path  $p_i \to p_1$ . Any point from  $p_1, p_2, \ldots, p_{j-2}$  can connect to p+j.

Assume that point is  $p_k(1 \le k \le j-2)$ . We need to chose an appropriate point  $p_k$  so that we can get the shortest  $l(i,j) = \min_{1 \le k \le j-2} [l(k,j-1) + dist(k,j)]$ 

(3)i = j

This only happens when i = j = n. In this case,  $p_{n-1}$  connect to  $p_n$ , we can get:

$$l(n,n) = l(n-1,n) + dist(n-1,n)$$

In conclusion the optimal function is:

$$l(i,j) = \begin{cases} l(i,j-1) + dist(j-1,j), & i < j-1 \\ \min_{1 \le k \le j-2} [l(k,j-1) + dist(k,j)], & i = j-1 \\ l(n-1,n) + dist(n-1,n), & i = j = n \end{cases}$$

This function is what we want.