Australian Math Olympiad 2021 — P5/8

Jonathan Kasongo

July 12, 2025

Australian Math Olympiad 2021 — P5/8

Find the solutions to

$$a^{2n} + b^{2n} = 1$$
 and $a^{2n+1} + b^{2n+1} = 1$

for positive integer n and real numbers a, b.

Solution

Firstly we can assume without loss of generality that $a \ge b$, since the equations have symmetry in a, b and any solution (a, b), a > b also has (b, a) as a solution. Indeed by re-arranging the second equation and multiplying the second equation by a then re-arranging we derive that $a^{2n+1} = 1 - b^{2n+1}$ and also $a^{2n+1} = a - ab^{2n}$ so $a - 1 = ab^{2n} - b^{2n+1} \iff a = b^{2n}(a - b) + 1$ and so $a \ge 1 \implies a^{2n} \ge 1$. But since a^{2n} , b^{2n} are both non-negative numbers and $a^{2n} + b^{2n} = 1$ and $a \ge 1$ we have to have a = 1, b = 0. Now clearly we can see that (a, b, n) = (1, 0, n) or (0, 1, n) work for any positive integer n.