Data Visualizations

Why do we need visualizations

Before

```
array([ 22.2545198 ,
                      9.46306667.
                                  12.06767132,
                                                18.59783811,
       11.86490354, 14.68040278,
                                  20.30153772,
                                                25.24777714,
       34.3022338 .
                     34.12490434,
                                  44.33391473.
                                                44.38379237.
       40.00574845.
                     42.57340636.
                                  36.10801652.
                                                36.80541831.
       40.04538794.
                     43.69025546, 53.46028177,
                                                52.50945039.
                                                58.65185448,
       59.19988263,
                     65.21990689,
                                  59.65118444,
                     60.44817943.
       55.92723599,
                                  58.09343653.
                                                52.79842096.
       60.93714419.
                                  69.26647731, 72.62978286,
                     67.40567495.
       76.95759959.
                     80.0000368 .
                                  79.51964481.
                                                81.56353416.
       87.97679347,
                     88.05404069,
                                  83.47695913,
                                                80.17622344,
       81.63942456.
                     83.11399608, 74.75389511, 75.35131548,
       85.5736879 , 93.56250189 ,104.63174345 ,104.31686973 ,
      108.96186346, 114.64848866])
```

After

Fundamental

Fundamental

Fundamental

Interactive

Fundamental

Interactive

Geospatial

Fundamental

Interactive

Geospatial

Other visualization apps

Other visualization apps

How to visualize data distribution

New Notebook

Titanic dataset

Gender submission and test file merged

Data Card Code (394) Discussion (2) Suggestions (1)

About Dataset

Usability 0

10.00

License

CC0: Public Domain

Expected update frequency

Never

Tags

Beginner

Data Visualization

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	Third	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	Third	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	Second	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	Third	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	1	Third	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
5	897	0	Third	Svensson, Mr. Johan Cervin	male	14.0	0	0	7538	9.2250	NaN	S
6	898	1	Third	Connolly, Miss. Kate	female	30.0	0	0	330972	7.6292	NaN	Q
7	899	0	Second	Caldwell, Mr. Albert Francis	male	26.0	1	1	248738	29.0000	NaN	S
8	900	1	Third	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	female	18.0	0	0	2657	7.2292	NaN	С
9	901	0	Third	Davies, Mr. John Samuel	male	21.0	2	0	A/4 48871	24.1500	NaN	S

Histogram

KDE

KDE - Kernel Density Estimator

$$K(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$

$$K(x-x_i)$$

$$K(x - x_i)$$

$$K\left(\frac{x - x_i}{h}\right)$$

h - kernel bandwidth

$$K(x - x_i)$$

$$K\left(\frac{x - x_i}{h}\right)$$

h - kernel bandwidth

$$K(x - x_i)$$

$$K\left(\frac{x - x_i}{h}\right)$$

$$\frac{1}{h}K\left(\frac{x - x_i}{h}\right)$$

$$X = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$X = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$\frac{1}{h}K\left(\frac{x-x_1}{h}\right)$$

$$X = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$\frac{1}{h}K\left(\frac{x-x_1}{h}\right) + \frac{1}{h}K\left(\frac{x-x_2}{h}\right)$$

$$f(x) = \frac{1}{2} \left[\frac{1}{h} K \left(\frac{x - x_1}{h} \right) + \frac{1}{h} K \left(\frac{x - x_2}{h} \right) \right]$$

$$f(x) = \frac{1}{2} \left[\frac{1}{h} K \left(\frac{x - x_1}{h} \right) + \frac{1}{h} K \left(\frac{x - x_2}{h} \right) \right] =$$

$$= \frac{1}{2h} \left[K\left(\frac{x - x_1}{h}\right) + K\left(\frac{x - x_2}{h}\right) \right]$$

$$f(x) = \frac{1}{2} \left[\frac{1}{h} K \left(\frac{x - x_1}{h} \right) + \frac{1}{h} K \left(\frac{x - x_2}{h} \right) \right] =$$

$$= \frac{1}{2h} \left[K\left(\frac{x - x_1}{h}\right) + K\left(\frac{x - x_2}{h}\right) \right] =$$

$$= \frac{1}{2h} \sum_{i=1}^{2} K\left(\frac{x - x_i}{h}\right)$$

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

Comparing multiple distributions

Stacked histogram

Stacked density plot

Overlaping density plot

Overlapping density plot

Box plots

Violin plot

Strip plot

Logarithmic scale

Logarithmic scale

Real vs theoretical distribution

Real vs theoretical distribution

Real vs theoretical distribution

Frequently made mistakes

Incorrect color scale

Informing about missing data

Informing about missing data

Informing about missing data

Too many informations

Too many informations

References

- https://github.com/Skamlo/Visualization-Techniques-in-Python
- https://towardsdatascience.com/kernel-density-estimation-explained-step-by-step-7cc5b5bc4517
- https://www.kaggle.com/datasets/brendan45774/test-file
- https://stat.gov.pl/sygnalne/komunikaty-i-obwieszczenia/lista-komunikatow-i-obwieszczen/obwieszczenie-w-sprawiewysokosci-przecietnego-miesiecznego-wynagrodzenia-brutto-w-gospodarce-narodowej-w-wojewodztwach-w-2022roku,295,9.html
- https://www.zus.pl/baza-wiedzy/skladki-wskazniki-odsetki/wskazniki/przecietne-wynagrodzenie-w-latach
- https://www.kaggle.com/datasets/aleksandrglotov/car-prices-poland
- https://towardsdatascience.com/kernel-density-estimation-explained-step-by-step-7cc5b5bc4517
- https://www.youtube.com/watch?v=cy8r7WSuT1I