FIG. 1A

FIG. 1B

repeating steps (140), (150) and (160) for each set of weights provided in step (130) to determine a plurality of correlation factors R;

180

ranking said plurality of correlation factors R, wherein a particular correlation factor of said plurality of correlation factors having a particular correlation value closest to 1 represents a best ranking of the respective combined metrics in step (140) for each set of weights;

. 190

providing image quality information to at least one of a system optimizer and the video processing module as to the best ranking of the respective combined metrics obtained in step (i) to provide a best perceptual image quality

FIG. 1C

When a predetermined number of sets of metrics=n, the quadratic model to obtain the objective evaluation F is:

$$F = (\sum_{i=1}^{n} w_i x_i)^2$$
, wherein " n " is a non-zero value.

FIG. 1D

when a number of the set of metrics =4, then the quadratic model to obtain the objective evaluation F is:

$$\mathbf{F} = w1x1 + w2x2 + w3x3 + w4x4 + w5x1x2 + w6x1x3 + w7x1x4 + w8x2x3 + w9x2x4 + w10x3x4.$$

FIG. 1E

.190

selecting a best set of weights from the plurality of sets of weights provided in step (130), said best set of weights being heuristically determined by a genetic algorithm that increases dynamically a size of the assigned range of said each one set of weights provided in step (130).

FIG. 1F

_20C

selecting a best set of weights from the plurality of sets of weights provided in step (130), said best set of weights being heuristically determined by a genetic algorithm that enables finding the best solution that maximizes the correlation factor R of the overall objective image quality F with the subjective evaluation without the need to carry out an exhaustive search to find the best set of weights.

FIG. 2

Calculating of the correlation factor R in step (160) by using a Spearman rank order comprising the following equation:

R=1 -
$$\frac{6 * (X-Y)^{t} (X-Y)}{k(k^{2}-1)}$$

wherein X is equal to a vector of ranked k objective values for the k sequences (k * l), and

Y is equal to a vector of ranked k subjective evaluation for the k sequences (k * 1).