MA3402-1 Estadística

Profesor: Felipe Tobar

Auxiliares: Francisco Vásquez, Arie Worstman

Nelson Moreno

Auxiliar 2

Repaso y Estadísticos suficientes

- **P1.-** [Repaso] Considere un vector aleatorio (X,Y) con distribución uniforme en $C=\{(x,y): x^2+y^2\leq R^2\}$ Defina $W=\sqrt{X^2+Y^2}$ la distancia del punto (X,Y) al origen.
 - a) Pruebe que la densidad de probabilidad de la variable aleatoria viene dada por

$$f_W(w) = \frac{2w}{R^2} \mathbb{1}_{0 \le w \le R}$$

- b) Sea (W_1, \ldots, W_n) una MAS, determine el valor esperado de las siguientes variables aleatorias e interprete.
 - $\hat{R}_1 = \frac{3}{2}\overline{W}$
 - $\hat{R}_2 = \max\{W_i \mid i \in \{1, \dots, n\}\}$
- c) Sea R=5 y n=25 que asumiremos grande. Calcule $\mathbb{P}(3\leq \overline{W}\leq 3.5)$
- P2.- [Estadísticos suficientes]
 - a) Sea $X=(X_1,\ldots X_n)$ una MAS proveniente de una variable aleatoria $Z\sim Poisson(\lambda)$, $\lambda>0$. Encuentre un estadístico suficiente mediante definición.
 - b) Sea $X = (X_1, \dots X_n)$ una MAS con densidad

$$f(x|\theta) = \frac{\theta}{(1+x)^{1+\theta}} \quad 0 < x < \infty, \theta > 0$$

Encuentre un estadístico suficiente mediante factorización de Neyman-Fisher

P3.- [Suficiencia Conjunta] Considere la distribución pareto para $x_0 > 0$ y $\alpha > 0$ parámetros desconocidos. Con densidad de probabilidad dada por

$$f(x|x_0, \alpha) = \begin{cases} \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}} & \text{if } x \ge x_0\\ 0 & \text{if } x < x_0 \end{cases}$$

Encuentre estadísticos suficientes para ambos parámetros del modelo.

	Tipo	Soporte	Densidad
Bernoulli(p)	Discreta	$\{0,1\}$	$p^k(1-p)^{1-k}$
Binomial(n, p)	Discreta	$\{0 \dots n\}$	$\binom{n}{k} p^k (1-p)^{n-k}$
Geometrica(p)	Discreta	$\{1,2,\dots\}$	$p(1-p)^{k-1}$
$Poisson(\lambda)$	Discreta	$\{0,1,\dots\}$	$e^{-\lambda} rac{\lambda^k}{k!}$
Uniforme(a,b)	Continua	[a,b]	$\frac{1}{h}$
$Normal(\mu, \sigma^2)$	Continua	\mathbb{R}	$\frac{1}{\sigma\sqrt{2\pi}}exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$
$Exponencial(\lambda)$	Continua	$[0,\infty)$	$\lambda e^{-\lambda x}$
$Gamma(\theta,\lambda)$	Continua	$(0,\infty)$	$\frac{1}{\sigma\sqrt{2\pi}} exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$ $\lambda e^{-\lambda x}$ $\frac{\lambda^{\theta}}{\Gamma(\theta)} x^{\theta-1} e^{-\lambda x}$
	Esperanza	Varianza	F.G.M: (e^{sX})
Bernoulli(p)	p	p(1 - p)	$1 - p + pe^s$
Binomial(n, p)	np	np(1-p)	$(1 - p + pe^s)^n$
Geometrica(p)	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{e^{-s} - (1-p)}$
$Poisson(\lambda)$	$\stackrel{\cdot}{\lambda}$	λ	$exp\left(\lambda(e^s-1)\right)$
Uniforme(a,b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$rac{e^{bs}-e^{as}}{(b-a)s}$
$Normal(\mu, \sigma^2)$	μ	σ^2	$exp\left(\frac{\sigma^2s^2}{2} + \mu s\right)$
$Exponencial(\lambda)$	$\frac{1}{\lambda}$ $\frac{\theta}{\lambda}$	$\dfrac{\dfrac{1}{\lambda^2}}{\dfrac{ heta}{\lambda^2}}$	$(1-rac{\lambda}{\lambda-s})^{- heta}$
$Gamma(\theta, \lambda)$	$\widehat{ heta}$	$\dot{\theta}$	$(1 - \frac{s}{s}) - \theta$

Cuadro 1: Distribuciones y propiedades