Trabalho Nº1 - MRAC Direto

COE603 - Controle Adaptativo

Caio Cesar Leal Verissimo - 119046624 Leonardo Soares da Costa Tanaka - 121067652 Lincoln Rodrigues Proença - 121076407 Engenharia de Controle e Automação - UFRJ Rio de Janeiro, Rio de Janeiro, Brasil Maio de 2025

Conteúdo

1	Res	Resumo das equações do sistema					
	1.1	Equaç	ões do Algoritmo MRAC Direto	3			
	1.2	Estabi	lidade do Algoritmo MRAC Direto	4			
2	Diag	gramas	s de blocos	5			
3	Res	ultado	s das simulações	6			
	3.1	Simula	ιção #1	6			
		3.1.1	Configuração do experimento:	6			
		3.1.2	Resultados da simulação:	7			
		3.1.3	Comentários:	8			
	3.2	Simula	ıção #2	8			
		3.2.1	Configuração do experimento:	8			
		3.2.2	Resultados da simulação:	8			
		3.2.3	Comentários:	8			
	3.3	Simula	ıção #3	8			
		3.3.1	Configuração do experimento:	8			
		3.3.2	Resultados da simulação:	8			
		3.3.3	Comentários:	8			
	3.4	Simula	ıção #4	8			
		3.4.1	Configuração do experimento:	8			

	3.4.2	Resultados da simulação:	10
	3.4.3	Comentários:	10
3.5	Simula	ção #5	10
	3.5.1	Configuração do experimento:	10
	3.5.2	Resultados da simulação:	12
	3.5.3	Comentários:	12
3.6	Simula	ção #6	12
	3.6.1	Configuração do experimento:	12
	3.6.2	Resultados da simulação:	13
	3.6.3	Comentários:	14
3.7	Simula	ção #7	14
	3.7.1	Configuração do experimento:	14
	3.7.2	Resultados da simulação:	14
	3.7.3	Comentários:	14
3.8	Simula	ção #8	14
	3.8.1	Configuração do experimento:	14
	3.8.2	Resultados da simulação:	14
	3.8.3	Comentários:	14
3.9	Simula	ção #9	14
	3.9.1	Configuração do experimento:	14
	3.9.2	Resultados da simulação:	16
	3.9.3	Comentários:	16
3.10	Simula	ção #10	16
	3.10.1	Configuração do experimento:	16
	3.10.2	Resultados da simulação:	18
	3.10.3	Comentários:	18

1 Resumo das equações do sistema

Neste experimento, simulamos o algoritmo MRAC Direto para o caso:

• n = 1 (ordem da planta)

• $n^* = 1$ (grau relativo)

• $n_p = 2$ (número de parâmetros)

1.1 Equações do Algoritmo MRAC Direto

A Tabela 1 resume as equações fundamentais do algoritmo MRAC (Model Reference Adaptive Control) na forma direta, considerando uma planta de primeira ordem (n = 1), grau relativo igual a 1 $(n^* = 1)$ e número de parâmetros $n_p = 2$.

Descrição	Equação	Ordem
Planta	$\dot{y} = a_p y + k_p u$	1
Modelo	$\dot{y}_m = -a_m y_m + k_m r$	1
Erro da saída	$e_0 = y - y_m$	
Lei de controle	$u = \theta^T \omega$	
Regressor	$\omega^T = \begin{bmatrix} y & r \end{bmatrix}$	
Lei de adaptação	$\dot{\theta} = -\operatorname{sign}(k_p)\Gamma\omega e_0$	2

Tabela 1: Resumo do Algoritmo MRAC Direto

A Figura 1 ilustra o diagrama de blocos do sistema em malha fechada, juntamente com a verificação da equivalência com o modelo de referência. Este diagrama mostra como a combinação dos ganhos adaptativos θ_1^* e θ_2^* pode transformar o comportamento da planta para que ela imite o modelo de referência.

Figura 1: Diagrama de blocos e verificação da equivalência com o modelo de referência

As expressões ideais para os parâmetros θ_1^* e θ_2^* que garantem essa equivalência são apresentadas a seguir. Esses parâmetros são obtidos por identificação direta, com base nas constantes do modelo e da planta.

$$\theta_1^* = -\frac{a_p + a_m}{k_p} \qquad \qquad \theta_2^* = \frac{k_m}{k_p}$$

Essas equações representam os valores ideais dos parâmetros adaptativos para que a planta controlada siga o comportamento especificado pelo modelo de referência. Na prática, o algoritmo de adaptação busca aproximar esses valores ao longo do tempo.

1.2 Estabilidade do Algoritmo MRAC Direto

1. Forma vetorial e definições Escrevendo em forma vetorial:

$$\boldsymbol{\theta}^* = \begin{bmatrix} \theta_1^* \\ \theta_2^* \end{bmatrix}, \quad \boldsymbol{\omega} = \begin{bmatrix} y \\ r \end{bmatrix} \implies u^* = \boldsymbol{\theta}^{*T} \boldsymbol{\omega}.$$
 (1)

Analogamente, a lei de controle é

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad \Longrightarrow \quad u = \boldsymbol{\theta}^T \, \boldsymbol{\omega}. \tag{2}$$

2. Dinâmica do erro Definimos o erro de saída:

$$e = y - y_m. (3)$$

Subtraindo as dinâmicas da planta e do modelo:

$$\dot{e} = \dot{y} - \dot{y}_m = (a_p y + k_p u) - (-a_m y_m + k_m r)
= -a_m (y - y_m) + (a_p + a_m) y + k_p u - k_m r + \underbrace{(a_m y) - (a_m y)}_{=0}
= -a_m e + k_p \Big[\frac{a_p + a_m}{k_p} y + u - \frac{k_m}{k_p} r \Big]
= -a_m e + k_p \Big[u - \theta_1^* y - \theta_2^* r \Big]
= -a_m e + k_p \Big[u - u^* \Big].$$
(4)

3. Erro paramétrico Definimos o vetor de erro de parâmetro:

$$\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} - \boldsymbol{\theta}^* \implies \dot{e} = -a_m e + k_p \, \tilde{\boldsymbol{\theta}}^T \boldsymbol{\omega}.$$
 (5)

4. Função de Lyapunov Escolhemos

$$V(e,\tilde{\boldsymbol{\theta}}) = \frac{1}{2}e^2 + \frac{1}{2}|k_p|\tilde{\boldsymbol{\theta}}^T \Gamma^{-1}\tilde{\boldsymbol{\theta}}.$$
 (6)

Calculando sua derivada:

$$\dot{V} = e \,\dot{e} + |k_p| \,\tilde{\boldsymbol{\theta}}^T \,\Gamma^{-1} \,\dot{\tilde{\boldsymbol{\theta}}}
= -a_m e^2 + k_p \,\tilde{\boldsymbol{\theta}}^T \,\boldsymbol{\omega} \,e + |k_p| \,\tilde{\boldsymbol{\theta}}^T \,\Gamma^{-1} \,\dot{\tilde{\boldsymbol{\theta}}}.$$
(7)

Para garantir $\dot{V} \leq 0$, adotamos a lei de adaptação

$$\dot{\boldsymbol{\theta}} = -\Gamma \operatorname{sign}(k_p) \,\boldsymbol{\omega} \, e. \tag{8}$$

5. Conclusões de estabilidade Com essa escolha,

$$\dot{V} = -a_m e^2 \le 0, \quad \Longrightarrow \quad e(t), \ \tilde{\boldsymbol{\theta}}(t) \in \mathcal{L}_{\infty}. \tag{9}$$

Como $r(t) \in \mathcal{L}_{\infty} \Rightarrow y_m(t) \in \mathcal{L}_{\infty}$ e

$$\dot{V} \le 0 \implies V(t) \le V(0),\tag{10}$$

segue que

$$\int_0^t e^2(\tau) \, d\tau < \infty \quad \Longrightarrow \quad e \in \mathcal{L}_2. \tag{11}$$

Finalmente, aplicando o lema de Barbalat,

$$e \in \mathcal{L}_2, \quad \dot{e} \in \mathcal{L}_\infty \quad \Longrightarrow \quad \lim_{t \to \infty} e(t) = 0.$$
 (12)

2 Diagramas de blocos

Nesta seção, apresentamos os principais diagramas de blocos que descrevem o funcionamento do controle adaptativo modeloreferência (MRAC) na sua forma direta. Cada figura ilustra uma parte fundamental do sistema, desde a estrutura geral até os componentes individuais como a planta, o modelo de referência e a malha de adaptação.

Figura 2: Diagrama de blocos geral do controle MRAC direto.

A Figura 2 mostra a arquitetura geral do controlador MRAC direto. O objetivo do sistema é ajustar os parâmetros do controlador de modo que a saída da planta acompanhe a saída do modelo de referência para qualquer entrada r(t). O sinal de erro $e = y - y_m$ é utilizado para atualizar os parâmetros adaptativos.

Figura 3: Malha de adaptação dos parâmetros θ .

Na Figura 3, destacamos a malha de adaptação, responsável por ajustar os parâmetros do controlador θ com base no erro de seguimento. Essa adaptação ocorre conforme uma lei de atualização derivada da função de Lyapunov, garantindo estabilidade do sistema.

Figura 4: Componentes individuais do sistema MRAC.

A Figura 4 agrupa os blocos fundamentais do sistema MRAC. À esquerda, o modelo de referência define a dinâmica desejada para o sistema. Ao centro, está a planta controlada, que deve seguir essa referência. À direita, o sinal de referência r(t) atua como entrada comum para ambos os blocos, sendo a base para comparação entre o comportamento ideal e o real.

3 Resultados das simulações

Cada subseção a seguir apresenta a configuração do experimento, espaço reservado para os dados obtidos em cada simulação e comentários sobre o desempenho do MRAC Direto.

3.1 Simulação #1

3.1.1 Configuração do experimento:

• Planta:
$$P(s) = \frac{k_p}{s - a_p} = \frac{1}{s - 2}$$

• Modelo de referência:
$$M(s) = \frac{k_m}{s + a_m} = \frac{1}{s + 1}$$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s = 0, \, \omega_s = 5, \mathrm{rad/s}$

• Ganho de matching ótimo: $\theta^* = \left[-(a_p + a_m)/k_p;;k_m/k_p\right] = [-3;,1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.1.2 Resultados da simulação:

Figura 5: Resultado da simulação (Script: simu01.m)

3.1.3 Comentários:

3.2 Simulação #2

3.2.1 Configuração do experimento:

• Planta:
$$P(s) = \frac{1}{s-2}$$

- Modelo de referência: $M(s) = \frac{1}{s+1}$
- Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$
- Sinal de referência: DC = 2 (constante), $A_s=1,\,\omega_s=5,\mathrm{rad/s}$
- Ganho de matching ótimo: $\theta^* = [-3;,1]$
- Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$
- Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.2.2 Resultados da simulação:

3.2.3 Comentários:

3.3 Simulação #3

3.3.1 Configuração do experimento:

• **Planta:**
$$P(s) = \frac{1}{s-2}$$

- Modelo de referência: $M(s) = \frac{1}{s+1}$
- Condições iniciais: $y_p(0) = 3$, $y_m(0) = 0$
- Sinal de referência: DC = 1 (constante), $A_s = 0$, $\omega_s = 5$, rad/s
- Ganho de matching ótimo: $\theta^* = [-3; 1]$
- Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

3.3.2 Resultados da simulação:

3.3.3 Comentários:

3.4 Simulação #4

3.4.1 Configuração do experimento:

• **Planta:**
$$P(s) = \frac{1}{s-2}$$

Figura 6: Resultado da simulação (Script: simu02.m)

- Modelo de referência: $M(s) = \frac{1}{s+1}$
- Condições iniciais: $y_p(0) = 3$, $y_m(0) = 0$
- Sinal de referência: DC = 2 (constante), $A_s=1,\,\omega_s=5,\mathrm{rad/s}$
- Ganho de matching ótimo: $\theta^* = [-3; 1]$
- Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$
- Condição inicial do parâmetro: $\theta(0) = [0; 0]$

Figura 7: Resultado da simulação (Script: simu03.m)

3.4.2 Resultados da simulação:

3.4.3 Comentários:

3.5 Simulação #5

3.5.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+4}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

Figura 8: Resultado da simulação (Script: simu04.m)

- Sinal de referência: DC = 1 (constante), $A_s=0,\,\omega_s=5,\mathrm{rad/s}$
- Ganho de matching ótimo: $\theta^* = [-(2+4)/1;,1/1] = [-6;,1]$
- Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$
- Condição inicial do parâmetro: $\theta(0) = [0; 0]$

Figura 9: Resultado da simulação (Script: simu05.m)

3.5.2 Resultados da simulação:

3.5.3 Comentários:

3.6 Simulação #6

3.6.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

 $F(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+4}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

- Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5 \text{ rad/s}$
- Ganho de matching ótimo: $\theta^* = [-(2+4)/1;;2/1] = [-6;;2]$
- Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$
- Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.6.2 Resultados da simulação:

Figura 10: Resultado da simulação (Script: simu06.m)

3.6.3 Comentários:

3.7 Simulação #7

3.7.1 Configuração do experimento:

• **Planta:**
$$P(s) = \frac{1}{s-2}$$

- Modelo de referência: $M(s) = \frac{2}{s+1}$
- Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$
- Sinal de referência: DC = 1, $A_s = 0$, $\omega_s = 5 \text{ rad/s}$
- Ganho de matching ótimo: $\theta^* = [-(2+1)/1;;2/1] = [-3;;2]$
- Ganho de adaptação: $\Gamma_1 = 2I_{2\times 2}, \ \Gamma_2 = 100I_{2\times 2}$
- Condição inicial do parâmetro: $\theta(0) = [0;;0]$

3.7.2 Resultados da simulação:

3.7.3 Comentários:

3.8 Simulação #8

3.8.1 Configuração do experimento:

• **Planta:**
$$P(s) = \frac{1}{s-2}$$

- Modelo de referência: $M(s) = \frac{2}{s+1}$
- Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$
- Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5 \text{ rad/s}$
- Ganho de matching ótimo: $\theta^* = [-(2+1)/1;;2/1] = [-3;;2]$
- \bullet Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$
- Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.8.2 Resultados da simulação:

3.8.3 Comentários:

3.9 Simulação #9

3.9.1 Configuração do experimento:

• **Planta:**
$$P(s) = \frac{1}{s-2}$$

Figura 11: Resultado da simulação (Script: simu07.m)

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1, $A_s = 0$, $\omega_s = 5 \text{ rad/s}$

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1;;1/1] = [-3;;1]$

• Ganho de adaptação:

$$\Gamma_1 = 2 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}, \quad \Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}$$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

Figura 12: Resultado da simulação (Script: simu08.m)

3.9.2 Resultados da simulação:

3.9.3 Comentários:

3.10 Simulação #10

3.10.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

Figura 13: Resultado da simulação (Script: simu09.m)

- Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s
- Ganho de matching ótimo: $\theta^* = [-(2+1)/1;;1/1] = [-3;;1]$
- Ganho de adaptação:

$$\Gamma_1 = 2 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}, \quad \Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}$$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

Figura 14: Resultado da simulação (Script: simu10.m)

3.10.2 Resultados da simulação:

3.10.3 Comentários: