∠⁷ Expand

probably make your model classify the sentence as a "1".

 \bigcirc Correct

Congratulations! You passed!

 $\textbf{Grade received}~80\% \quad \textbf{Latest Submission Grade}~80\% \quad \textbf{To pass}~80\% \text{ or higher}$

Go to next item

	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors could be 100 variation and meaning in those words.	000 dimensional, so as to capture the full range of	1/1 point
	True		
	False		
	∠ [⊅] Expand		
	2 Expand		
	Correct The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for wo	ord vectors range between 50 and 1000.	
2.	What is t-SNE?		1/1 point
	A supervised learning algorithm for learning word embeddings		
	An open-source sequence modeling library		
	A linear transformation that allows us to solve analogies on word vectors		
	A non-linear dimensionality reduction technique		
	∠ ⁷ Expand		
	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then language task of recognizing if someone is happy from a short snippet of text, using a small training set.	use this word embedding to train an RNN for a	1/1 point
	x (input text)	y (happy?)	
	I'm feeling wonderful today!	1	
	I'm bummed my cat is ill.	0	
	Really enjoying this!	1	
	Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expect $y=1$.	ed to recognize "I'm ecstatic" as deserving a label	
	True		
	○ False		

 $Yes, word \ vectors \ empower your \ model \ with \ an \ incredible \ ability \ to \ generalize. \ The \ vector \ for \ "ecstatic" \ would \ contain \ a \ positive/happy \ connotation \ which \ will \ will \ provide \ an \ a \ positive \ by \ provide \ p$

4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1/1 point
	$\checkmark e_{man} - e_{woman} pprox e_{uncle} - e_{aunt}$	
	✓ Correct The order of words is correct in this analogy.	
	$igsqcup e_{man} - e_{woman} pprox e_{aunt} - e_{uncle}$	
	$igsqcup e_{man} - e_{aunt} pprox e_{woman} - e_{uncle}$	
	$ ightharpoonup e_{man} - e_{uncle} pprox e_{woman} - e_{aunt}$	
	Correct The order of words is correct in this analogy.	
	∠ ⁷ Expand	
5.	Let A be an embedding matrix, and let o_{4567} be a one-hot vector corresponding to word 4567. Then to get the embedding of word 4567, why don't we call $A*o_{4567}$ in Python?	0 / 1 point
	None of the answers are correct: calling the Python snippet as described above is fine.	
	lt is computationally wasteful.	
	\bigcirc The correct formula is A^T*o_{4567}	
	This doesn't handle unknown words (<unk>).</unk>	
	∠ [¬] Expand	
	No, one of the answers is true.	
6.	When learning word embeddings, we pick a given word and try to predict its surrounding words or vice versa. False	0 / 1 point
	○ True	
	∠ [¬] Expand	
	⊗ Incorrect Word embeddings are learned by picking a given word and trying to predict its surrounding words or vice versa.	
7.	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	1/1 point
	$igoldsymbol{igoldsymbol{igli}}$ c and t are chosen to be nearby words.	
	\bigcirc c is the one word that comes immediately before t	
	$\bigcirc \ c$ is the sequence of all the words in the sentence before t	

	$\bigcirc \ c$ is a sequence of several words immediately before t	
	∠ ⁿ Expand	
	○ Correct	
	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t=1}^{10000} e^{\theta_t^D e_c}}$ Which of these statements are correct? Check all that apply.	1/1 point
	✓ Correct ✓ Correct Great, you got all the right answers.	
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$	1/1 point
	Which of these statements are correct? Check all that apply.	
	igspace Theoretically, the weighting function $f(.)$ must satisfy $f(0)=0$	
	\checkmark Correct $arphi$ and e_j should be initialized randomly at the beginning of training.	
	✓ Correct	
	$ extstyle Z$ X_{ij} is the number of times word j appears in the context of word i.	
	\checkmark Correct $ hilde{ hildeta}_i$ and e_j should be initialized to 0 at the beginning of training.	
	∠ [¬] Expand ⊘ Correct	
	Great, you got all the right answers.	
10.	. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you	1 / 1 point

expect the word embeddings to be helpful?

 $\bigcirc \ m_1 << m_2$

∠⁷ Expand

⊘ Correct