Isogenies & Pairings

 $E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$

orders that divide

supersingular elliptic curve

this implies the rational points on

points in

 $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$

	 	 	 :	
1				
Ī				
i				
•				
•				
•				
1				
•				
I				
•				
•				
Ì				
•				

points on such curves

We have that

 $E(\mathbb{F}_p) \cong \mathbb{Z}_4 \times \mathbb{Z}_{\ell_1} \times \mathbb{Z}_{\ell_2} \times \ldots \times \mathbb{Z}_{\ell_n},$

So think of a point

as a sum of points

 $P = P_0 + P_1 + P_2 + \dots + P_n$

which shows how scalars

affect the torsion

 $[\ell_2]P = [\ell_2]P_0 + [\ell_2]P_1 + [\ell_2]P_2 + \dots + [\ell_2]P_n$

 $= [\ell_2]P_0 + [\ell_2]P_1 +$

 $\mathcal{O} + \ldots + [\mathcal{E}_2]P_n$

the order of *P* is readable

from the non-zero P_i 's

the torsion that *P* is *missing*

are precisely the zero P_i 's

a full-torsion point

equivalently, all

we call a point

if the order is

are non-zero

torsion points and isogenies

generated by point

given by kernel of size

1. Any* isogeny

order

-

$$P = P_3 + P_5 + P_7 \in E(\mathbb{F}_p)$$

*cyclic, separable

- splits into sub-isogenies of degree

each generated by point

2. Any* isogeny

of order

3. Any* isogeny

computed using one full-torsion

compute

 $[5 \cdot 7]P = P_3' + \mathcal{O} + \mathcal{O} \in E(\mathbb{F}_p)$

$$\varphi_1(P) = \mathcal{O} + P_5' + P_7' \in E'(\mathbb{F}_p)$$

points on such curves

from the non-zero P_i 's

the order of P is readable.

the torsion that P is missing

are precisely the zero P_i 's

a full-torsion point

, equivalently, all

we call a point

if the order is

are non-zero

torsion points and isogenies

$$P = P_3 + P_5 + P_7 \in E(\mathbb{F}_p)$$

