Méthode du gradient

Hamza Ennaji

22 mars 2024

Directions de descente

Définition 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^1 . On dit qu'un vecteur non nul d de \mathbb{R}^n est une direction de descente de f en x si

$$f'(x; \mathbf{d}) = \nabla f(x)^T \mathbf{d} < 0.$$

Il se trouve que suivre des directions de descentes avec un pas suffisamment petit, on arrive à décroitre la fonction objective. On a le résultat suivant :

Lemme 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^1 et d une direction de descente de f en $x \in \mathbb{R}^n$. Alors, il existe $\epsilon > 0$ tel que

$$f(x + t\mathbf{d}) < f(x),$$

pour tout $t \in (0, \epsilon]$.

Preuve. Laissée en exercice.

D'une façon générale, une méthode de descente s'écrit comme suit

Méthode de descente

- Initialisation : On se donne un $x_0 \in \mathbb{R}^n$.
- Pour $k \ge 0$
 - Choisir une direction de descente \mathbf{d}_k .
 - Choisir un pas t_k tel que : $f(x + t_k \mathbf{d}) < f(x)$.
 - Prendre $x_{k+1} = x_k + t_k \mathbf{d}_k$.
 - Si un critère d'arrêt est vérifié, renvoyer x_{k+1} .

- Remarque. Le choix de la direction de descente donne lieu à des méthodes différentes de descentes (e.g., gradient, gradient conjugué, Newton, quasi-Newton etc).
- Il existe plusieurs critères d'arrêt, le plus utilisé est $\|\nabla f(x_{k+1})\| \le \epsilon$ pour une tolérance $\epsilon > 0$ donnée.
- Le procédé permettant de trouver le pas t_k s'appelle recherche linéaire (line search en anglais). L'appellation vient du fait que ça revient à minimiser la fonction $g(t) = f(x_k + t\mathbf{d}_k)$. On discute ici quelques choix populaires.
 - 1. **Pas constant**: dans ce cas $t_k = \bar{t}$ pour tout k. Bien que c'est un choix simple, un pas trop petit peut donner lieu à une convergence lente de l'algorithm tandis qu'un pas grand on peut perdre la décroissance de la fonction objective. (c.f. TP).
 - 2. Recherche linéaire exacte : dans ce cas on cherche à minimiser exactement la fonction g(t) définie ci-dessus. On choisit donc $t_k \in \operatorname{argmin}_{t \geq 0} f(x_k + t\mathbf{d}_k)$. Il se trouve qu'en général, on ne peut pas trouver le minimiseur exacte de g.
 - 3. **Backtracking** : cette approche est permet d'éviter une recherche linéaire exacte de en choisissant convenablement un pas assurant la décroissance de la fonction objective. L'approche requiert trois paramètres s>0 et α , $\beta\in(0,1)$. Dans un premier temps on prend $t_k=s$ et tant que

$$f(x_x) - f(x_k + t_k \mathbf{d}_k) < -\alpha t_k \nabla f(x_k)^T \mathbf{d}_k$$

on met à jour t_k par $t_k\beta$. Dans ce cas, le pas choisi serait $t_k=s\beta^{i_k}$ où i_k est le plus petit entier tel que

$$f(x_x) - f(x_k + t_k \mathbf{d}_k) \ge -\alpha s \beta^{i_k} \nabla f(x_k)^T \mathbf{d}_k$$

L'exemple suivant présente le cas d'une recherche linéaire exacte pour une fonction quadratique.

Exemple. On considère $f(x) = x^T A x + 2b^T x + c$ avec $A \in \mathcal{S}_n^{++}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. Soit $x \in \mathbb{R}^n$ et $\mathbf{d} \in \mathbb{R}^n \setminus \{0\}$ une direction de descente de f en x. Effectuer une

recherche linéaire exacte revient à résoudre

$$\min_{t\geq 0} f(x+t\mathbf{d}) := g(t).$$

On a $g'(t) = t\mathbf{d}^T \nabla f(x+td)$ et comme $\nabla f(x) = 2(Ax+b)$, on trouve que $g'(t) = 2(\mathbf{d}^T A \mathbf{d})t + 2\mathbf{d}^T \nabla f(x)$. Donc

$$g'(t) = 0 \Leftrightarrow t = -\frac{\mathbf{d}^T \nabla f(x)}{2\mathbf{d}^T A \mathbf{d}} > 0.$$

Comme $g''(t) = 2(\mathbf{d}^T A \mathbf{d}) > 0$ alors le pas donné par la méthode de recherche linéaire exacte est $t^* = -\frac{\mathbf{d}^T \nabla f(x)}{2\mathbf{d}^T A \mathbf{d}}$.

* Descente de gradient

La méthode

Comme son nom l'indique, le choix de la direction de descente dans la méthode du gradient est $d_k = -\nabla f(x_k)$. Ce choix est bien une direction de descente au sens de la Définition-1. En effet, pour $\nabla f(x_k) \neq 0$:

$$f'(x_k; -\nabla f(x_k)) = -\nabla f(x_k)^T \nabla f(x_k) = -\|\nabla f(x_k)\|^2 < 0.$$

On présente ci-dessous les étapes de la méthode, avec comme critère d'arrêt $\|\nabla f(x_{k+1})\| \le \epsilon$ pour une tolérance ϵ donnée.

Méthode du gradient

- Initialisation : On se donne un $x_0 \in \mathbb{R}^n$.
- Pour k ≥ 0
 - Choisir un pas t_k par recherche linéaire sur $g(t) = f(x_k t\nabla f(x_k))$.
 - Prendre $x_{k+1} = x_k t_k \nabla f(x_k)$.
 - Si $\|\nabla f(x_{k+1})\| \le \epsilon$ s'arrêter et renvoyer x_{k+1} .

Analyse de convergence

Avons de commencer notre analyse, rappelons qu'une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est dans $C_L^{1,1}(\mathbb{R}^n)$ si elle est de classe C^1 est que son gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ est L-Lipschitz, i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$
 pour tout $x, y \in \mathbb{R}^n$.

Exemple. — On vérifie facilement que $f(x) = a^T x + b \in C_0^{1,1}(\mathbb{R}^n)$.

— Un fonction quadratique $f(x) = x^T A x + 2b^T x + c$ avec $A \in \mathcal{S}_n, b \in \mathbb{R}^n$ et $c \in R$ est $2\|A\|$ —Lipschitz. En effect, comme $\nabla f(x) = 2Ax + b$ on a

$$\|\nabla f(x) - \nabla f(y)\| = 2\|(Ax + b) - (Ay + b)\| \le 2\|A\| \|x - y\|.$$

Si la fonction est C^2 alors régularité Lipschitz du gradient est équivalente au fait que la Hessienne est bornée :

Théorème 1. Soit $f \in C^2(\mathbb{R}^n)$. Alors

$$f \in C_L^{1,1}(\mathbb{R}^n) \iff \|\nabla^2 f(x)\| \le L \text{ pour tout } x \in \mathbb{R}^n.$$

Le résultat suivant joue un rôle important dans la suite.

Lemme 2 (Lemme de descente). Soit $f \in C_L^{1,1}(\mathbb{R}^n)$. Alors pour tout $x, y \in \mathbb{R}^n$

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||^2.$$

Preuve. Voir TD.

Fixons $x \in \mathbb{R}^n$ et considérons $h_x(y) = f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} ||x-y||^2$ qui est quadratique en y et majore $f: f(y) \le h_x(y)$ pour tout $y \in \mathbb{R}^n$. En plus, le minimum de h_x est atteint en $x^* = x - \frac{1}{L} \nabla f(x)$ (see Figure-??).

Comme conséquence du Lemme-2, on a

Lemme 3. Soit $f \in C_L^{1,1}(\mathbb{R}^n)$. Alors pour tout $x \in \mathbb{R}^n$ et t > 0

$$f(x) - f(x - t\nabla f(x)) \ge t\left(1 - \frac{tL}{2}\right) \|\nabla f(x)\|^2.$$
 (1)

Preuve. On applique le Lemme de descente avec $y = x - t\nabla f(x)$ pour un $x \in \mathbb{R}^n$. On a donc

$$f(x - t\nabla f(x)) \le f(x) + t\nabla f(x)^T \nabla f(x) + \frac{Lt^2}{2} \|\nabla f(x)\|^2.$$

Si nous optons pour une stratégie avec un pas constant, i.e., $t_k = t_* \in (0, 2/L)$ pour tout k, on a alors d'après Lemme-3

$$f(x_k) - f(x_{k+1}) \ge t^* \left(1 - \frac{t^*L}{2}\right) \|\nabla f(x_k)\|^2.$$

La fonction $t \mapsto t\left(1 - \frac{tL}{2}\right)$ sur (0, 2/L) atteint un maximum en $t^* = 1/L$. Pour ce choix on a $x_{k+1} = x_k - \frac{1}{L}\nabla f(x_k)$ et

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{2L} \|\nabla f(x_k)\|^2.$$

Pour une recherche linéaire exacte, i.e., $x_{k+1} = x_k - t_k \nabla f(x_k)$ avec

$$t_k \in \operatorname{argmin}_{t \ge 0} f(x_k - t \nabla f(x_k)),$$

on remarque que $f(x_k - t_k \nabla f(x_k)) \le f\left(x_k - \frac{1}{L} \nabla f(x_k)\right)$ soit

$$f(x_k) - f(x_{k+1}) \ge f(x_k) - f\left(x_k - \frac{1}{L}\nabla f(x_k)\right) \ge \frac{1}{2L} \|f(x_k)\|^2.$$

Dans le cade de beckstracking, on cherche pour $\alpha \in (0, 1)$, un pas t_k suffisamment petit tel que

$$f(x_k) - f(x_{k+1}) \ge \alpha t_k ||f(x_k)||^2$$
.

Dans ce cas deux options se présentent : prendre $t_k = s$ où s > 0 est la valeur initiale du pas, soit prendre t_k avec la méthode de backtracking comme décrit dans la remarque-, et dans ce cas, le choix $t_k = t_k/\beta$ ne serait pas admissible, i.e.,

$$f(x_k) - f\left(x_k - \frac{t_k}{\beta} \nabla f(x_k)\right) < \frac{\alpha t_k}{\beta} ||f(x_k)||^2.$$
 (2)

En appliquant (15) avec $x = x_k$ et $t = \frac{t_k}{\beta}$ on obtient

$$f(x_k) - f\left(x_k - \frac{t_k}{\beta} \nabla f(x_k)\right) \ge \frac{t_k}{\beta} \left(1 - \frac{t_k L}{\beta}\right) \|\nabla f(x)\|^2.$$
 (3)

Les équations (2)-(3) impliquent que $\frac{t_k}{\beta}\left(1-\frac{t_kL}{\beta}\right)<\frac{\alpha t_k}{\beta}$, soit $t_k>\frac{2(\alpha-1)\beta}{L}$. Finalement, pour la méthode de backtracking, on

$$f(x_k) - f\left((x_k - t_k \nabla f(x_k))\right) \ge \alpha \min\left(s, \frac{2(\alpha - 1)\beta}{L}\right) ||f(x_k)||^2.$$

On récapitule cette discussion dans le résultat suivant :

Proposition 1. Soit $f \in C_L^{1,1}(\mathbb{R}^n)$ et $(x_k)_k$ la suite générée par la méthode du gradient pour résoudre

$$\min_{x \in \mathbb{R}^n} f(x),$$

avec pas contant, recherche linéaire exacte et becktracking de paramètres $s > 0, \alpha, \beta \in (0, 1)$. Alors

$$f(x_k) - f\left(x_k - \frac{t_k}{\beta} \nabla f(x_k)\right) \ge M \|\nabla f(x)\|^2, \tag{4}$$

avec

$$M = \begin{cases} t^* \left(1 - \frac{t^*L}{2}\right) & \text{pas constant,} \\ \frac{1}{2L} & \text{recherche linéaire exacte,} \\ \alpha \min\left(s, \frac{2(\alpha - 1)\beta}{L}\right) & \text{backtracking.} \end{cases}$$

On démontre maintenant que $\|\nabla f(x_k)\| \to 0$ quand $k \to \infty$.

Théorème 2. Soit $f \in C_L^{1,1}(\mathbb{R}^n)$ et $(x_k)_k$ la suite générée par la méthode du gradient pour résoudre

$$\min_{x \in \mathbb{R}^n} f(x)$$

avec pas contant, recherche linéaire exacte et becktracking de paramètres s > 0, $\alpha, \beta \in (0, 1)$. Supposons que f est minorée, i.e., il existe c > 0 tel que f(x) > c pour tout $x \in \mathbb{R}^n$. Alors

1. La suite $(f(x_k))_k$ est décroissante, avec $f(x_{k+1}) < f(x_k)$ sauf si $\|\nabla f(x_k)\| = 0$.

- 2. $||f(x_k)|| \to 0$ quand $k \to \infty$.

Preuve. 1. On a grâce à (4)

$$f(x_k) - f\left(x_k - \frac{t_k}{\beta} \nabla f(x_k)\right) \ge M \|\nabla f(x)\|^2 \ge 0,$$
 (5)

pour M > 0. Donc $(f(x_k))_k$ est décroissante et $f(x_k) = f(x_{k+1})$ ne peut avoir lieu que si $\nabla f(x_k) = 0$.

2. Comme la suite $(f(x_k))_k$ est décroissante et f minorée, alors elle est convergente, i.e., $f(x_k) - f(x_{k+1}) \underset{k \to \infty}{\longrightarrow} 0$. Cela implique avec (5) que $\|\nabla f(x_k)\| \to 0$ quand $k \to \infty$.

On termine cette section avec le résultat suivant permettant d'avoir des taux de convergence de la norme du gradient.

Théorème 3. Sous les même hypothèses, on a pour tout $n \ge 0$

$$\min_{k=0,\dots,n} \|\nabla f(x_k)\| \le \sqrt{\frac{f(x_0) - f^*}{M(n+1)}},\tag{6}$$

où f^* est la limite de la suite $(f(x_k))_k$ et la constante M donnée dans Proposition-1.

Preuve. En sommant de 0 à n dans l'inégalité (4), on obtient

$$f(x_0) - f(x_{n+1}) = \sum_{k=0}^n f(x_k) - f(x_{k+1}) \ge M \sum_{k=0}^n \|\nabla f(x_k)\|^2.$$

Par définition, $f^* \le f(x_{k+1})$, et par la suite

$$f(x_0) - f^* \ge M \sum_{k=0}^n \|\nabla f(x_k)\|^2 \ge M \min_{k=0,\dots,n} \|\nabla f(x_k)\|^2 \sum_{k=0}^n 1$$
,

soit

$$f(x_0) - f^* \ge M(n+1) \min_{k=0,\dots,n} \|\nabla f(x_k)\|^2.$$

Finalement $\min_{k=0,...,n} \|\nabla f(x_k)\| \le \sqrt{\frac{f(x_0)-f^*}{M(n+1)}}$, comme voulu.

Méthode de Newton

Avant de présenter la méthode de Newton comme une méthode de décente, rappelons la méthode de Newton pour trouver les zéros d'une fonction réelle. Soit donc $f: \mathbb{R} \to \mathbb{R}$, on cherche à résoudre l'équation f(t) = 0. L'idée est de remplacer f par son approximation de premier ordre en un point t_0 , i.e., résoudre $\tilde{f}(t) = f(t_0) + (t - t_0)f'(t_0) = 0$ au lieu de f(t) = 0. Si $f'(t_0) \neq 0$, on obtient $t = t_0 - \frac{f(t_0)}{f'(t_0)}$. Les itérations de Newton s'écrivent

$$t_{k+1} = t_k - \frac{f(t_k)}{f'(t_k)}.$$

Maintenant, soit $g: \mathbb{R}^n \to \mathbb{R}^n$. On s'intéresse au système linéaire g(x) = 0. De la même manière, en approchant g à l'ordre un autour d'un point $x_0 \in \mathbb{R}^n$, i.e., $g(x_0) + \nabla g(x_0)(x - x_0) = 0$. On obtient

$$\tilde{g}(x) := g(x_0) + \nabla g(x_0)(x - x_0) = 0 \Rightarrow x = x_0 - (\nabla g(x_0))^{-1} g(x_0).$$

L'équation ci-dessus suppose évidemment que $\det \left(\nabla g(x_0) \right) \neq 0$. De même, on peut construire une suite $(x_k)_k$ qui approchera, à priori le zéro de g, en définissant

$$x_{k+1} = x_k - \left(\nabla g(x_k)\right)^{-1} g(x_k).$$
 (7)

Maintenant, revenons à notre problème d'optimisation

$$\min_{x \in \mathbb{R}^n} f(x). \tag{8}$$

On s'intéresse ici au système linéaire $\nabla f(x) = 0$. Rappelons que lorsque f est convexe, la conditions $\nabla f(x^*) = 0$ est nécessaire et suffisante pour dire que x^* minimise f. On applique (7) avec $g = \nabla f$, pour trouver

$$x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k).$$
 (9)

Ceci est une façon pour faire le lien entre Newton et Newton...

Une autre façon pour retrouver (12) est la suivante. Supposons que f est C^2 et que $\nabla^2 f(x) \in \mathcal{S}_n^{++}$ pour tout $x \in \mathbb{R}^n$. On cherchera donc à minimiser l'approximation d'ordre deux de f autour d'un certain $x_0 \in \mathbb{R}^n$, i.e., remplacer f

$$\tilde{f}(x) = f(x_0) + (x - x_0)^T \nabla f(x_0) + \frac{1}{2} (x - x_0) \nabla^2 f(x) (x - x_0)$$
(10)

dans le problème (8). Donc étant donnée une itérée x_k , x_{k+1} est obtenue comme suit

$$x_{k+1} = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ f(x_k) + (x - x_k)^T \nabla f(x_k) + \frac{1}{2} (x - x_k) \nabla^2 f(x) (x - x_k) \right\}.$$
 (11)

L'unique minimiseur de (11) est en fait l'unique point stationnaire, et on a

$$\nabla \tilde{f}(x_{k+1}) = 0 \Leftrightarrow \nabla f(x_k) + \nabla^2 f(x_k)(x_{k+1} - x_k) = 0,$$

ce qui donne

$$x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k). \tag{12}$$

La méthode de Newton est donc une méthode de descente avec comme direction $d_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k).$

Il se trouve que sous certaines conditions de régularité sur la Hessienne, on peut obtenir autour de la solution optimale un taux de convergence quadratique.

Théorème 4. Soit $f \in C^2(\mathbb{R}^n)$ et supposons que :

- 1. il existe m > 0 tel que $\nabla^2 f(x) \ge mI_n$ pour tout $x \in \mathbb{R}^n$, 2. il existe L > 0 tel que

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|$$

pour tout $x, y \in \mathbb{R}^n$.

Alors

$$||x_{k+1} - x^*|| \le \frac{L}{2m} ||x_k - x^*||^2,$$

où $(x_k)_k$ est la suite générée par la méthode de Newton et x^* l'unique minimiseur de f sur \mathbb{R}^n . De plus, si $||x_0 - x^*|| \le m/L$, alors

$$||x_k - x^*|| \le \frac{2m}{L} \left(\frac{1}{2}\right)^{2^k}, \quad k \ge 0.$$

Preuve. Laissée en exercice.

Méthode de gradient projeté

6.1 Cas général

On s'intéresse ici à des problèmes du type

$$\min_{x \in C} f(x), \tag{13}$$

où $C \subset \mathbb{R}^n$ est un convexe fermé et $f: C \to \mathbb{R}$ de classe C^1 . Il se trouve qu'on peut caractériser les points stationnaires de (16) en terme de l'opérateur de projection orthogonale.

Théorème 5. Soit $f: C \to \mathbb{R}$ de classe C^1 où C est un convexe fermé et s > 0. Alors x^* est un point stationnaire de (16) si et seulement si

$$x^* = P_C(x^* - s\nabla f(x^*)). \tag{14}$$

Preuve. Laissée en exercice.

L'équation (14) affirme que x^* est point fixe de l'application $x \mapsto P_C(x - s\nabla f(x))$.. Cela suggère des algorithmes du type point fixe pour résoudre (14), et donc (16).

Méthode du gradient projeté

On se donne une tolérance $\epsilon > 0$.

- Initialisation : On se donne un $x_0 \in C$.
- Pour $k \ge 0$
 - Choisir un pas t_k par recherche linéaire.
 - Prendre $x_{k+1} = P_C(x_k t_k \nabla f(x_k))$.
 - Si $||x_k x_{k+1}|| \le \epsilon$, renvoyer x_{k+1} .

On démontre un résultat similaire au Lemme-3.

Lemme 4. Soit $f \in C_L^{1,1}(\mathbb{R}^n)$. Alors pour tout $x \in \mathbb{R}^n$ et t > 0

$$f(x) - f(P_C(x - t\nabla f(x))) \ge t \left(1 - \frac{tL}{2}\right) \left\|\nabla \frac{1}{t}(x - P_C(x - t\nabla f(x)))\right\|^2. \tag{15}$$

Preuve. Il suffit d'appliquer le Lemme-2 avec $y = P_C(x - t\nabla f(x))$ et utiliser le fait que

$$\langle x - t \nabla f(x) - y, x - y \rangle \le 0.$$

Remarque. Quand $C = \mathbb{R}^n$, la méthode du gradient projeté n'est rien d'autre que la méthode de descente du gradient classique présentée en Section-3.

Notation. Par la suite, on note, pour M > 0

$$G_M(x) = M\left(x - P_C(x - \frac{1}{M}\nabla f(x))\right).$$

On note que pour $C = \mathbb{R}^n$, $G_M(x) = \nabla f(x)$. L'opérateur servira comme une mesure d'optimalité. Avec cette notation, le Lemme-4 se réécrit

$$f(x) - f(P_C(x - t\nabla f(x))) \ge t\left(1 - \frac{tL}{2}\right) \|G_{1/t}(x)\|^2.$$

On peut démontrer sans difficultés un résultat similaire au Théorème-2 pour la méthode du gradient projeté, on changera $\nabla f(x)$ par $G_M(x)$.

6.2 Cas convexe

On s'intéresse ici à des problèmes du type

$$\min_{x \in C} f(x), \tag{16}$$

où $C \subset \mathbb{R}^n$ est un convexe fermé et $f \in C^{1,1}_L(C)$ est convexe. Dans ce cas, on peut démontrer à la fois la convergence de $(f(x_k))_k$ vers f^* ainsi que la suite $(x_k)_k$.

Théorème 6. Soit $f \in C_L^{1,1}(C)$ une fonction convexe avec C un convexe fermé de \mathbb{R}^n . Soit $(x_k)_k$ la suite générée par la méthode du gradient projeté avec un pas $t_k = t^* \in (0, 1/L]$. Supposons que $\operatorname{argmin}_C f := S \neq \emptyset$. Alors

1. Pour tout $k \geq 0$ et $x^* \in S$

$$f(x_k) - f^* \le \frac{\|x_0 - x^*\|^2}{2t^*k}.$$