

Convolutional Neural Networks CASA course (09/11/2018)

D. Freire-Obregón, PhD.

Plan for TS4

- Deep Learning
- Convolutional Operation
- Understanding border effects
- Max-pooling operation
- Fully Connected Layer
- What is happening?
- Where to use CNN?

Deep Learning

Does this scheme change? No!

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

Deep Learning

e-mail: info@siani.es · www.siani.es

What is the difference between a densely connected layer and a convolution layer?

- •Dense layers → Learn global patterns in their input space.
- •Convolutional layers → Learn local patterns

Dense layers:

e-mail: info@siani.es - www.siani.es

Images can be broken into local patterns: Edges, textures, etc...

Convolutional layers:

Convolutional layers:

The hability to break the image into local patterns gives convnets two properties:

1. The learned patterns are translation invariant \rightarrow After learning a certain pattern in the top-left corner of the picture, a convnet can recognize it anywhere (p.e. Lower-right corner) The visual world is fundamentally translation invariant:

The hability to break the image into local patterns gives convnets two properties:

They can learn spatial hierarchies of patterns. A first Conv. Layer will learn a small local patterns such as edges, then a second Conv. Layer will learn larger patterns made of the features of the first layer, and so on.

The visual world is fundamentally spatially hierarchical:

Operates over 3D tensors known as \rightarrow Featured maps (height x width x depth) For RGB image \rightarrow depth = 3 at the first feature map (input)

The convolutional operation:

- 1. extracts patches from its input feature map.
- Applies the same transformation to all this patches
- Generates an output feature map (height x width x depth) depth \rightarrow no longer RGB colors, now number of filters.

Convolutional layers:

MNIST example:

model = models.sequential() model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))

The first convolutional layer takes a feature map of (28, 28, 1) And outputs a feature map of size (26, 26, 32): It computes 32 filters over the input.

Each feature map contains a 26x26 grid of values.

Feature map \rightarrow is the 2D map of the response of this filter over the input.

Convolutions are defined by two keys parameters:

- Size of the patches extracted from the inputs \rightarrow Typically 3x3 or 5x5.
- Depth of the output feature map \rightarrow Number of filters computed by the convolution. It is a very dynamic value, usually you start with a depth at the first layers and end with another depth at the final layers.

These parameters can be specified in Keras Conv2D function: Conv2D(output_depth, (height, width))

Must read: http://cs231n.github.io/convolutional-networks/

MNIST example:

• • •

• •

The first convolutional layer takes a feature map of (28, 28, 1) And outputs a feature map of size (26, 26, 32):

26x26???

cnn model.summary()

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_1 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_2 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	5, 5, 64)	0
conv2d_3 (Conv2D)	(None,	3, 3, 64)	36928
flatten_1 (Flatten)	(None,	576)	0
dense_3 (Dense)	(None,	64)	36928
dense_4 (Dense)	(None,	10)	650

Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0

Understanding border effects

Note that the output width and height may differ from the input width and height.

Two possible reasons:

- 1. Border effects due to the padding of the input feature map.
- The use of strides

Understanding border effects: Padding

Let's consider:

A 5x5 feature map (25 pixels)

A 3x3 window

Then \rightarrow There are only 9 possibilities to center the window.

The output feature map shrinks a little (2 pixels x dim)

Same for our 28x28 previous example \rightarrow 26x26 output dim.

Understanding border effects: **Padding**

But, let's assume that you want to generate an output feature map with the same spatial dimension as the input \rightarrow use the parameter padding.

Padding consists of adding an appropriate number of rows&columns each side of the input feature map in order to be able to centre perfectly the convolution window.

Understanding border effects: Padding

In Keras → Conv2D layers are padding configurable through the padding argument, that takes two values:

'valid' → Means no padding (by default)

'same' → Means "pad in such way as to have the same width&height as the input

Understanding border effects: **Strides**

A factor that can influence the output size.

The description of convolution so far has assumed that the filters move in a contiguous way. But the distance between two succesive windows is a Conv2D parameter → strides

1	2	
3	4	

1	2
3	4

Understanding border effects: Strides

It is possible to have convolutions with a stride higher than 1.

P.e. Using stride 2 means the width&height of the feature map are downsampled by 2. This is rarely used in practice \rightarrow instead of strides, we tend to use max-pooling operation.

1	2	
3	4	

1		2	-
3		4	

cnn model.summary()

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_1 (MaxPooling2	(None,	13, 13, 32)	0
conv2d_2 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	5, 5, 64)	0
conv2d_3 (Conv2D)	(None,	3, 3, 64)	36928
flatten_1 (Flatten)	(None,	576)	0
dense_3 (Dense)	(None,	64)	36928
dense_4 (Dense)	(None,	10)	650

Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0

MNIST example:

•••

model = models.sequential()
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))
model.add(layers.MaxPooling2D((2, 2)))

Max pooling → Aggressively downsample the feature maps (like strided convolutions)

Makes the representation smaller and more manageable Operates over each feature map independently:

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

e-mail: info@siani.es - www.siani.es

Why downsample feature maps?

Why don't we remove the max-pooling layers and keep large feature maps all the way up?

```
model_no_max_pool = models.Sequential()
model_no_maxpool.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(28, 28, 1)))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))
```


Why downsample feature maps?

Why don't we remove the max-pooling layers and keep large feature maps all the way up?

>>> model no max pool.summary()

Layer (type)	Output	Shap	e 		Param #
conv2d_4 (Conv2D)	(None,	26,	26,	32)	320
conv2d_5 (Conv2D)	(None,	24,	24,	64)	18496
conv2d_6 (Conv2D)	(None,	22,	22,	64)	36928

Total params: 55,744

Trainable params: 55,744 Non-trainable params: 0

What is wrong with that setup?

The final feature map is $22 \times 22 \times 64 = 30,976$ total coefficients per sample!! That is huge!

If we want to flatten it to stick a Dense layer of 512 units,

we would have 15.800.000 parameters

Fully Connected Layer

Contains neurons that connect to the entire input volume, as an ordinary NN.

What is happening?

Convolutional layers:

What is happening? Feature Maps

What is happening? Feature Maps

What is happening? Feature Maps

What is happening? Feature Maps

These feature maps are flattened and stick into the Fully Connected layer!!

What is happening?

Convolutional layers:

What is happening? Filters Conv1

What is happening? Filters Conv2

What is happening? Filters Conv3

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Detection

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

[Taigman et al. 2014]

[Simonyan et al. 2014]

Figures copyright Simonyan et al., 2014. Reproduced with permission. Activations of <u>inception-v3 architecture</u> [Szegedy et al. 2015] to image of Emma McIntosh, used with permission. Figure and architecture not from Taigman et al. 2014.

e-mail: info@siani.es - www.siani.es

[Toshev, Szegedy 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

District O State O Sta

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.

[Dieleman et al. 2014]

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.

[Sermanet et al. 2011] [Ciresan et al.]

Photos by Lane McIntosh. Copyright CS231n 2017.

Applications

https://www.youtube.com/watch?v=kkha3sPoU70

https://www.youtube.com/watch?v=U1vb-NI9sKE

e-mail: info@siani.es · www.siani.es

Credits

