Diagramas de Decisão Binária (BDDs)

Aula 2

Luiz Carlos Vieira

7 de outubro de 2015

MAC0239 - Introdução à Lógica e Verificação de Programas

Conteúdo de la contractiva del contractiva del contractiva de la c

- BDDs ordenados e reduzidos (ROBDDs)
- Algoritmos para ROBDDs
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

Relembrando: múltiplas ocorrências

 A definição de BDDs não impede uma variável de ocorrer mais de uma vez em um caminho

- Mas tal representação pode incorrer em desperdícios
 - linha sólida do p à esquerda (colorida) jamais será percorrida

Esse é um resultado comum após as operações discutidas na aula anterior

Relembrando: comparação de BDDs

Além de tornar um BDD menos eficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

• [p]

 \bullet [p,q]

ullet [p,q,p]

ullet $[p \]$

 $\bullet \quad [p,q]$

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p]

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r]

- \bullet [p,q]
- ullet [p,r,q]

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r,q]
- [p

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r,q]
- ullet [p,r]

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r,q]
- $\bullet \quad [p,r,p]$

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r,q]
- $\bullet \quad [p,r,p]$

• [p]

- ullet [p,q]
- ullet [p,r,q]
- $\bullet \quad [p,r,p]$

ullet [p,q]

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- ullet [p]

- \bullet [p,q,p]
- \bullet [p,q]
- ullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- ullet [p,q]

- \bullet [p,q]
- ullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- $\bullet \quad [p,q,r]$

- \bullet [p,q,p]
- ullet [p,q]
- ullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- $\bullet \quad [p,q,r]$
- ullet $[p \]$

- \bullet [p,q]
- ullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- $\bullet \quad [p,q,r]$
- ullet [p,q]

- [p,q,p]
- ullet [p,q]
- \bullet [p, r, q]
- $\bullet \quad [p,r,p]$

Ocorrem repetições e não há um padrão na ordenação

- ullet [p,q]
- ullet [p,q,r]
- \bullet [p,q]

Não ocorrem repetições e há um padrão na ordenação

BDDs ordenados

Quando a ordem das variáveis em qualquer caminho é sempre a mesma, o BDD passa a ser chamado Diagrama de Busca Binária Ordenado (OBDD)

Definição: OBDDs

Definição 6.6

Seja $[p_1, p_2, ..., p_n]$ uma lista ordenada de variáveis sem duplicação e seja B um BDD tal que todas as suas variáveis aparecem em algum lugar da lista. Dizemos que B tem a ordem $[p_1, p_2, ..., p_n]$ se todos os nós de variáveis de B ocorrem na lista, e, para toda ocorrência de p_i seguido de p_j ao longo de qualquer caminho em B temos i < j.

Exemplo de BDD ordenado

Ordem: [p,q,r]

Exemplo de BDD não ordenado

Não ordenado ([p,q,r] à esquerda e [p,r,q] à direita)

Vantagens da ordenação de BDDs

- A comparação de dois OBDDs de ordens compatíveis é imediata
 - basta verificar se suas estruturas são idênticas
- Aplicações das reduções C1-C3 em um OBDD garantidamente mantêm a ordem original
- O compromisso com a ordem produz uma representação única de funções booleanas
 - chamada de forma canônica

OBDDs reduzidos

OBDDs reduzidos são, por sua vez, chamados de Diagramas de Busca Binária Ordenados Reduzidos (ROBDD)

Teorema: ROBDDs são únicos

Teorema 6.7

A representação em ROBDD de uma função dada ϕ é unica. Isto é, sejam \mathbf{B} e \mathbf{B}' dois ROBDDs com ordens compatíveis. Se \mathbf{B} e \mathbf{B}' representam a mesma função booleana, então eles têm estruturas idênticas.

Características de ROBDDs

- RODDBs permitem representações compactas de certas classes de funções booleanas
 - que seriam exponenciais em outros formatos/representações
- Por outro lado, as operações ∧ e ∨ apresentadas anteriormente não funcionam
 - pois introduzem ocorrências múltiplas de uma mesma variável

Impacto da escolha da ordenação

Considere a escolha da ordem de variáveis para a seguinte função booleana em CNF:

$$\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land ... \land (p_{2n-1} \lor p_{2n})$$

- Se a escolha for a "ordem natural de ocorrência na fórmula" $([p_1, p_2, p_3, ..., p_{2n-1}, p_{2n}])$, o ROBDD terá 2n+2 nós
- Se a escolha for "indices impares antes de indices pares" $([p_1,p_3,p_5,...,p_{2n-1},p_2,p_4,p_6,...,p_2n])\text{, o ROBDD terá }2^{n+1}\text{ nós}$

Ordem "natural" para n=3

ROBDD para $\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land (p_5 \land p_6)$ com a ordem de variáveis $[p_1,p_2,p_3,p_4,p_5,p_6]$

Ordem "impar/par" para n=3

ROBDD para $\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land (p_5 \land p_6)$ com a ordem de variáveis $[p_1, p_3, p_5, p_2, p_4, p_6]$

Escolha da ordenação

- A sensibilidade do tamanho de um ROBDD à ordem escolhida é um preço que se paga pelas vantagens obtidas
- Encontrar a ordem ótima também é um problema computacional caro
 - mas há heurísticas que produzem ordens razoavelmente boas

 Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;

- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;

- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B_1 ;

- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B_1 ;
- ullet Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 .

- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B_1 ;
- ullet Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 .
- Teste de implicação. Pode-se testar se uma função ϕ implica em outra ψ calculando o ROBDD para $\phi \wedge \psi$ a implicação é verdadeira se e somente este ROBDD é igual a B_0 ;

Estrutura de dados

A estrutura de dados para representar um ROBDD é composta de:

- ullet Uma tabela $T:n\mapsto \langle v,t,f
 angle$
 - que associa a cada identificador n um nó com variável de teste v, filho esquerdo t e filho direito f
- ullet Uma tabela inversa $T^{-1}:\langle v,t,f
 angle\mapsto n$
 - que associa nós em identificadores
 - devido ao compartilhamento de sub-grafos
 - usada para garantir que os diagramas sejam reduzidos

Ilustração dessa estrutura de dados

Tabela $T:n\mapsto \langle v,t,f
angle$

n	T(n)
0	$\langle p_6, ext{NULL}, ext{NULL} angle$
1	$\langle p_6, ext{NULL}, ext{NULL} angle$
2	$\langle p, 3, 4 angle$
3	$\langle q,0,1 angle$
4	$\langle q, 5, 1 angle$
5	$\langle r,0,1 angle$

Tabela $T^{-1}:\langle v,t,f\rangle\mapsto n$

	_ •
$\langle v,t,f\rangle$	$T^{-1}(\langle v,t,f angle)$
$\langle p_6, ext{NULL}, ext{NULL} angle$	0
$\langle p_6, ext{NULL}, ext{NULL} angle$	1
$\langle p, 3, 4 angle$	2
$\langle q,0,1 angle$	3
$\langle q, 5, 1 angle$	4
$\langle r,0,1 angle$	5

 p_{6} : variável auxiliar usada nos nós terminais para manter a uniformidade da tabela

Observações

Nos algoritmos estudados a seguir, assume-se que:

- $ullet T(n) = T^{-1}(\langle v,t,f
 angle) =$ NULL sempre que $(n,\langle v,t,f
 angle)
 otin T$
- ullet A tabela T é uma variável global e |T| é o número de entradas existentes nessa tabela

Algoritmo de inicialização

Cria a tabela T de um ROBDD. Funciona assim:

ullet Recebe uma entrada m indicando o número máximo de variáveis existentes na expressão booleana

- ullet Inicia a tabela T com duas tuplas especiais
 - representando os nós terminais $0 \ e \ 1$
 - para garantir uniformidade, associa os nós terminais à uma variável auxiliar p_{m+1}

Pseudocódigo de INIT

```
1: procedure \operatorname{INIT}(T,m)
2: T \leftarrow \{(0,\langle m+1, \text{NULL}, \text{NULL}\rangle\}), \{(1,\langle m+1, \text{NULL}, \text{NULL}\rangle\})
```

Algoritmo de inserção de nós

Insere um nó em um ROBDD, mantendo-o reduzido e ordenado. Funciona assim:

- ullet Recebe como entrada uma variável v e os identificadores de seus filhos t e f
- ullet Se o nó v for redundante (t=f), devolve imediatamente o identificador do nó filho (t)
- ullet Caso o nó v já tenha sido criado, devolve seu identificador
- ullet Caso o nó v seja novo, cria-o e devolve o identificador

Pseudocódigo de INS

```
1: function INS(T, v, t, f)
    if t = f then
             return t
3:
        n \leftarrow T^{-1}(\langle v, t, f \rangle)
4:
     if n = \text{NULL} then
5:
             n \leftarrow |T|
6:
             T \leftarrow T \cup \{(n, \langle v, t, f \rangle)\}
7:
        return n
8:
```

Expansão de Shannon

Algoritmo de construção de ROBDDs

Constrói um ROBDD a partir de uma expressão booleana em CNF. Funciona assim:

- ullet Recebe como entrada uma variável v e os identificadores de seus filhos t e f
- ullet Se o nó v for redundante (t=f), devolve imediatamente o identificador do nó filho (t)
- ullet Caso o nó v já tenha sido criado, devolve seu identificador
- ullet Caso o nó v seja novo, cria-o e devolve o identificador

Pseudocódigo de BUILD

```
1: function BUILD(v, \varepsilon_t, \varepsilon_f)
          if \varepsilon_t, \varepsilon_f \in \{0,1\} then
                return INS(v, \varepsilon_t, \varepsilon_f)
3:
          if \varepsilon_f \in \{0,1\} then
4:
                return INS(v, \text{BUILD}(\varepsilon_t), \varepsilon_f)
5:
          if \varepsilon_t \in \{0,1\} then
6:
                return INS(v, \varepsilon_t, \mathrm{BUILD}(\varepsilon_f))
7:
          return INS(v, \text{BUILD}(\varepsilon_t), \text{BUILD}(\varepsilon_t))
8:
```