Ag-Cu-Mg 23

Silver - Copper - Magnesium

Ernst-Theo Henig

Literature Data

[1943Gue] investigated three ternary alloys to determine various ranges of homo- or heterogeneity, the extension of the inter-mediate binary phases and any possible pseudobinary sections in the ternary system (clear cross method). The alloys were annealed at 400°C and X-ray analyzed at room temperature after slow cooling. AgMg₃ - Cu₂Mg and (Ag) - Cu₂Mg are found to be quasibinary at room temperature.

[1979She] and [1980She] reported on metallographic, X-ray and "micro-X-ray spectral analysis" as well as DTA measurements in the partial system Mg-Mg₂Cu-AgMg, stating that AgMg-Mg₂ is quasibinary [1979She].

The statements of [1943Gue] and of [1979She, 1980She] contradict one another; due to the higher number of alloys examined, the more recent results of [1979She, 1980She] are accepted here.

The present evaluation was published in the MSIT Evaluation Program earlier and reflects today's state of knowledge.

Binary Systems

The two binary systems Cu-Mg [1984Nay1] and Ag-Mg [1984Nay2] and the quasibinary AgMg-Mg₂Cu [1979She] are used as boundary systems (Fig. 1).

Solid Phases

No ternary phases have been found. The known binary phases are listed in Table 1. In the intermetallic phase $AgMg_3$ a considerable amount of Ag can be substituted by Cu (≤ 23 mass% Cu).

Pseudobinary Systems

The section AgMg-Mg₂Cu is established as quasibinary using DTA, metallography and X-ray analysis [1979She]. Unfortunately the pseudobinary eutectic is not given explicitly, only the composition of the liquid e₁ (30% Ag, 35.7% Cu and 34.3% Mg) at 530°C. The section is thus constructed and displayed in Fig. 1, using the information given in [1979She, 1980She]. Several mistakes in the liquidus surface given in [1980She] must be corrected, e.g. 550 and 540°C isotherms and the eutectic point 530°C all meet at one point; also the slope of the melting groove e₁-P is reversed.

Invariant Equilibria

Three ternary invariant equilibria are reported (Table 2), these being: maximum decomposition of liquid at 530°C, peritectic formation of (Ag,Cu)Mg₃ at 505°C and eutectic decomposition of liquid at 460°C. Only the composition of the liquid phases are given explicitly in [1980She] the composition of the solid phases are constructed from the three isopleths and the 400°C isothermal section of [1979She, 1980She]. The reaction scheme (Fig. 2) and a projection of the invariant equilibrium phases and the connecting lines of double saturation (Fig. 3) are presented.

Liquidus Surface

Figure 4 shows the isotherms of the liquidus surface and the melting grooves separating four areas of primary crystallization; β ', γ , ϵ and α (refer to the section on "Pseudobinary Systems" to see the corrections needed in the liquidus surface given in [1980She]).

Landolt-Börnstein New Series IV/11A1 24 Ag-Cu-Mg

Isothermal Sections

Figure 5 displays the isothermal section at 400°C after [1980She] with a minor correction to meet the boundary system Ag-Mg. [1980She] reports that with decreasing temperature (300, 200°C), there is no change in the solubility for β ', ε and γ , but a decrease is seen in the Ag and Cu solubilities in Mg.

Temperature-Composition Sections

Two isopleths at Ag = 20 mass% = const. and Cu = 10 mass% are given as Figs. 6 and 7; in addition [1980She] reports an isopleth at 15 mass% Ag.

Miscellaneous

[1982Miz] reports information about amorphous alloys of the type $(Ag_{0.5}Cu_{0.5})_{1-x}Mg_x$ with 0 < x < 0.8 which are used to test the extended Ziman theory experimentally. [1984Miz, 1986Mat] measured electrical resistivity, low-temperature specific heats and thermoelectric power of Ag-Cu-Mg metallic glasses. Information about dendritic segregation of silver-rich alloys Ag-7.5Cu-0.2Mg (at.%) is reported in [1981Duk].

References

- [1943Gue] Gürtler, W., Rassmann, G., "The Use of X-Ray Find Structure Pattents to Identified Phase Equilibria ternary System of Crystalline State", *Metallwirtschaft*, **22**, 34-42 (1943) (Experimental, Equi. Diagram, 30)
- [1979She] Shevakin, Y.F., Kolesnichenko, V.E., Karonik, V.V., Tsypin M.L., Meshkov, A.V., "Phase Composition of Mg-Ag-Cu Alloys in the Mg-rich Range", *Izv. Akad. Nauk SSSR, Met.*, **5**, 223-226 (1979) (Experimental, Equi. Diagram, #, *, 1)
- [1980She] Shevakin, Y.F., Karonik, V.V., Kolesnichenko, V.E., Meshkov A.V., Tsypin, M.I., "Reactions of Magnesium with Silver and Copper", *Izv. Akad. Nauk SSSR, Met.*, **4**, 237-239 (1980) (Experimental, Equi. Diagram, #, *, 1)
- [1981Duk] Dukiet-Zawadzka, B., Pawlowski, A., Ciach, R., Tasior-Grabianowska K., Wolczynski, W., "Dendritic Segregation of AgCu Alloys with Additions of Ti, Al, Mg and Ni", *Arch. Hutn.*, **26**, 429-448 (1981) (Thermodyn., 20)
- [1982Miz] Mizutani, U., Yoshida, T., "Experimental Test of the Extended Ziman Theory, Using Free Electron-Like Ag-Cu Based Amorphous Alloys", *J. Phys. F: Met. Phys.*, **12**, 2331-2348 (1982) (Experimental, 23)
- [1984Miz] Mizutani, U., Yoshino, K., "Formation and Low-Temperature Electronic-Properties of Liquid-Quenched Ag-Cu-Mg, Ag-Cu-Si, Ag-Cu-Sn and Ag-Cu-Sb Metallic Glasses", *J. Phys. F: Met. Phys.*, **14**(5), 1179-1192 (1984) (Electr. Prop., Experimental, 17)
- [1984Nay1] Nayeb-Hashemi, A.A., Clark, J.B., "The Cu-Mg System", *Bull. Alloy Phase Diagrams*, **5**, 36-43 (1984) (Assessment, Review, Equi. Diagram, 81)
- [1984Nay2] Nayeb-Hashemi, A.A., Clark, J.B., "The Ag-Mg System", *Bull. Alloy Phase Diagrams*, **5**, 348-358 (1984) (Assessment, Review, Equi. Diagram, 81)
- [1986Mat] Matsuda, T., Mizutani, U., Sato, H., "Thermoelectric Power of Mg-based Simple Metallic Glasses", *J. Phys. F: Met. Phys.*, **16**, 1005-1014 (1986) (Electr. Prop., Experimental, 37)

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

Ag-Cu-Mg

Table 1: Crystallographic Data of Solid Phases

Phase / Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments	
(Ag)	<i>cF4 Fm3m</i> Cu	a = 408.61	pure Ag [P]	
(Cu)	<i>cF</i> 4 <i>Fm</i> 3̄ <i>m</i> Cu	a = 361.49	pure Cu [P]	
α, (Mg)	hP2 P6 ₃ /mmc Mg	a = 320.94 c = 521.05	pure Mg, 25°C [P]	
Ag ₃ Mg < 392	cP4 Pm3m AuCu ₃	a = 411.2	25.0 at.% Mg, annealing time 2 d, [1984Nay2]	
β', AgMg	cP2 Pm3̄m CsCl	a = 333.00 a = 329.80	32.26 at.% Mg, 66.71 at.% Mg, slowly cooled	
ε, AgMg ₃	hP8 P6 ₃ /mmc AsNa ₃	a = 488.42 c = 778.68	25.17 at.% Mg, quenched from 440°C	
γ, Mg ₂ Cu	oF48 Fddd Mg ₂ Cu	a = 905.0 b = 1824.7 c = 528.3	[1984Nay1]	
MgCu ₂	$cF24$ $Fd\overline{3}m$ $MgCu_2$	a = 699 to 708.2	[1984Nay1]	

Table 2: Invariant Equilibria

Reaction	<i>T</i> [°C]	Туре	Phase	Composition (at.%)		
				Ag	Cu	Mg
$L + \beta' + \gamma \rightleftharpoons \varepsilon$	505	P	L	9.8	15.5	74.7
			β'	36.5	6.8	56.7
			γ	< 2.5	30.0	67.5>
			ε	<14.0	15.2	70.8>
$L \rightleftharpoons \epsilon + \gamma + \alpha$	460	Е	L	7.5	10.1	82.4
			ε	14.1	13.0	72.9
			γ	1.4	29.8	68.8
			α	0.4	0.1	99.5
$L \rightleftharpoons \beta' + \gamma$	530	e ₁ (max)	L	12.4	25.0	62.7
			β'	<37.3	8.3	54.5>
			γ	< 4.0	30.6	65.3>

Composition of the liquidus P, E and $e_1(max)$ given in [1979She] and [1980She]; other 4-phase equilibria phases constructed from isopleths; values in <> for γ , ϵ of P and β ', γ of $e_1(max)$ are estimated.

25

Fig. 1: Ag-Cu-Mg. The pseudobinary system Mg₂Cu-AgMg

Fig. 3: Ag-Cu-Mg. Polythermal projection of four-phase equilibria and edges of double saturation

 $\mathsf{MSIT}^{\circledR}$

Landolt-Börnstein New Series IV/11A1 Ag–Cu–Mg 27

Fig. 5: Ag-Cu-Mg. Isothermal section with some tie lines at 400°C

Fig. 6: Ag-Cu-Mg. Temperature - composition cut at 20 mass% Ag

Fig. 7: Ag-Cu-Mg. Temperature - composition cut at 10 mass% Cu

 $\mathsf{MSIT}^{\circledR}$