

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2016 - الموضوع - كة المفربية لتربية الوئمنية نوبن المهنب في المائية المهنبي في المائية المهنبي المهنبي المهنبي المهنبي المائية المائي

> المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعبة أو المسلك

RS 25

- o La durée de l'épreuve est de 4 heures.
- o L'épreuve comporte 5 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- Le premier exercice se rapporte au calcul des probabilités(3 pts)
- Le deuxième exercice se rapporte aux structures algébriques.. (3.5 pts)
- Le troisième exercice se rapporte aux nombres complexes.....(3.5 pts)
- Le quatrième exercice se rapporte à l'analyse.....(6.5 pts)
- Le cinquième exercice se rapporte à l'analyse.....(3.5 pts)

L'usage de la calculatrice n'est pas autorisé

L'usage de la couleur rouge n'est pas autorisé

0.5

0.5

0.5

1

RS 25

EXERCICE 1:(3pts)

On a deux boites U et V. La boite U contient 4 boules rouges et 4 boules bleues.

La boite V contient deux boules rouges 4 boules bleues.

On considère l'épreuve suivante : On tire au hasard une boule de la boite U :Si elle est rouge, on la remet dans la boite V puis on tire au hasard une boule de la boite V ;si elle est bleue on la pose de coté puis on tire une boule de la boite V .

Soient les événements suivants : $R_{\!\scriptscriptstyle U}$ « La boule tirée de la boite U est rouge »

 $B_{\!\scriptscriptstyle II}\,$ « La boule tirée de la boite U est bleue »

 $R_{\scriptscriptstyle V}$ « La boule tirée de la boiteV est rouge »

 $B_{\!\scriptscriptstyle V}\,$ « La boule tirée de la boiteV est bleue »

- 0.5 1- Calculer la probabilité de chacun des deux événements R_U et B_U .
 - 2- a)Calculer la probabilité de l'événement $B_{\scriptscriptstyle V}$ sachant que l'événement $R_{\scriptscriptstyle U}$ est réalisé.
 - b) Calculer la probabilité de l'événement $B_{\scriptscriptstyle U}$ sachant que l'événement $B_{\scriptscriptstyle U}$ est réalisé.
 - 3- Montrer que la probabilité de l'événement $B_{\scriptscriptstyle V}$ est : $\frac{13}{21}$
 - 4- En déduire la probabilité de l'événement $R_{_{\! V}}$.

EXERCICE 2: (3.5 pts)

est un corps commutatif.

Pour chaque nombre complexe z = x + iy où $(x, y)\dot{z}$, on pose :

1- On munit $\it E$ de la loi de composition interne $\it ^*$ définie par :

$$("z \dot{z} f) ("z' \dot{z} f) : M(z) * M(z') = M(z) + M(z') - M(0)$$

1 Montrer que (E,*) est un groupe commutatif.

- 2- On considère l'application ${f j}:{f f}^*$ a E qui associe au nombre complexe z de ${f f}^*$ la matrice M(z) de E
- a) Montrer que j est un homomorphisme de $(\pounds^*, ')$ dans(E, ')
- 0.5 b) En déduire que $(E \{M(0)\},')$ est un groupe commutatif.

1

3- Montrer que (E, *, ') est un corps commutatif.

EXERCICE 3: (3.5 pts)

On considère dans l'ensemble £ l'équation : (E): z^2 - $(1+\sqrt{3})(1+i)z+4i=0$

- 0.5 1-a) Vérifier que le discriminant de l'équation (E) est : $D = (\sqrt{3} 1)(1 i)_{\hat{\mathbf{U}}}^{\hat{\mathbf{U}}}$
 - b) Ecrire sous forme trigonométrique les deux solutions de (E)
 - 2- Le plan complexe est rapporté à un repère orthonormé direct (O, u, v).

On considère les deux points A et B d'affixes respectives $a=1+i\sqrt{3}$ et $b=\sqrt{3}+i$

- 0.75 a) Montrer que l'ensemble (D) des points du plan complexe dont l'affixe z vérifie $z = \frac{1}{2}az$ est une droite qui passe par le point B
 - b)Soient M et M 'deux points d'affixes respectives z et z 'tels que : z '= $a\overline{z}$ b et z 1 b
- 0.5 Montrer que : $\frac{b^2}{(z'-b)(z-b)} = \frac{2}{|z-b|^2}$
- 0.75 c) En déduire que la droite (D)est une bissectrice de l'angle (BM,BM')

EXERCICE 4: (6.5 pts)

n est un entier naturel non nul.

Soit f_n la fonction numérique définie sur l'intervalle $]0,+\infty[$ par : $f_n(x)=\ln(x)-\frac{n}{x}$ et soit (C_n) la courbe représentative de la fonction f_n dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 0.75 1-a) Etudier les deux branches infinies de la courbe (C_n) .
- 0.75 b) Etudier les variations de la fonction f_n sur $]0,+\infty[$ puis donner son tableau de variation.
- 0.5 c) Construire (C_2)
- 0.5 2- Montrer que la fonction f_n est une bijection de $]0,+\infty[$ dans \square
- 0.5 3-a) Montrer que pour tout entier naturel n supérieur ou égal à 1 ,il existe un unique nombre réel α_n de l'intervalle $]0,+\infty[$ tel que : $f_n(\alpha_n)=0$
- b) Comparer $f_n(x)$ et $f_{n+1}(x)$ pour tout x de $]0,+\infty[$
- 0.5 c) Montrer que la suite $(\alpha_n)_{n\geq 1}$ est strictement croissante.
- 0.5 4-a) Montrer que : ("x > 0); $\ln(x) < x$

4	<u>الصفحة</u> 4	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)
C).5	b) Montrer que : $\lim_{n\to+\infty}\alpha_n=+\infty$
		5- Pour tout entier naturel n supérieur ou égal à 1 on pose : $I_n = \frac{1}{\alpha_{n+1} - \alpha_n} \int_{\alpha_n}^{\alpha_{n+1}} f_n(x) dx$
C).5	a) Montrer que : $\left(\forall n\in\square^*\right)\left(\exists c_n\in[\alpha_n,\alpha_{n+1}]\right)$: $I_n=f_n\left(c_n\right)$
C).5	b) Montrer que : $(\forall n \in \square^*)$; $0 \le I_n \le \frac{1}{\alpha_{n+1}}$
C).5	c) Déterminer $\lim_{n \circledast + {\mathbbmsp{1}}} I_n$
		EXERCICE 5: (3.5 pts) n est un entier naturel supérieur ou égal à2. On considère la fonction numérique g_n à variable réelle x définie sur l'intervalle $\left[n,+\infty\right[$ par : $g_n\left(x\right) = \int_n^x \frac{1}{\ln t} dt$
).5	··· III l
		1-a) Montrer que la fonction g_n est dérivable sur l'intervalle $[n,+\infty[$ puis déterminer sa fonction
0).25	dérivée première g'_n b) Montrer que la fonction g_n est strictement croissante sur l'intervalle $[n,+\infty[$
0).5	2-a) Montrer que : $(\forall x \ge n)$; $g_n(x) \ge \ln\left(\frac{x-1}{n-1}\right)$
		(On pourra utiliser l'inégalité : $(\forall t \ge 0)$; $\ln(1+t) \le t$)
0	.25	b) En déduire que : $\lim_{x\to+\infty} g_n(x) = +\infty$
0	.25	3-a) Montrer que g_n est une bijection de l'intervalle $[n,+\infty[$ dans l'intervalle $[0,+\infty[$.
0).5	b) En déduire que : $(\forall n \ge 2)$ $(\exists ! u_n \ge n)$: $\int_n^{u_n} \frac{1}{\ln t} dt = 1$
		4- On considère la suite numérique $(u_n)_{n\geq 2}$ définie dans la question 3-b).
0).5	a) Montrer que : $(\forall n \ge 2)$; $\int_{u_n}^{u_{n+1}} \frac{1}{\ln t} dt = \int_{n}^{n+1} \frac{1}{\ln t} dt$
0).5	b) En déduire que la suite $\left(u_{n}\right)_{n\geq 2}$ est strictement croissante.

FIN

c) Déterminer $\lim_{n\to +\infty} u_n$

0.25

الامتمان الوطني الموحد للبكالوريا الدورة الاستدراكية 2016

- عناصر الإجابة -

المركز الوطني للتقويم والامتحانات والتوجيه

RR 25

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و(ب) (الترجمة الفرنسية)	الشعبة أو المسلك

النقط	عناصر الإجابة	ن الأول	التمرير
0.5	$p(R_{\scriptscriptstyle V}) = \frac{1}{2} \text{s} p(R_{\scriptscriptstyle U}) = \frac{1}{2}$		-1
0.5	$p(B_V/R_U) = \frac{4}{7}$	(1	-2
0.5	$p(B_V/B_U) = \frac{4}{6}$	Ţ.	
1	$p(B_V) = \frac{13}{21}$		-3
0.5	$p(R_{V}) = \frac{8}{21}$		-4

النقط	عناصر الإجابة	ن الثاني	التمرير
1	زمرة تبادلية $(E,*)$		-1
1	j تشاکل j	(أ	-2
0.5	الإستنتاج	ب)	
1	جسم تبادلي $(E, *, ')$		-3

النقط	عناصر الإجابة	التمرين الثالث ع
0.5	ً) التحقق	-1

ä	الصفحا
<u></u>	2

RR 25

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

0.5+0.5	$z=2e^{irac{ m p}{6}}$ او $z=2e^{irac{ m p}{3}}$	<u>J</u> .	
0.75	0.5 مستقیم (D) مستقیم $b = \frac{1}{2} a \bar{b}$	(1	-2
0.5	اثباث المتساوية	<u>J</u> .	
0.75	الاستنتاج	ج)	

النقط	سر الاجابة	عناص	التمرين الرابع
0.75	بالنسبة للدراسة على اليمين في 0	(أ	-1
	بالنسبة للدراسة بجوار ¥ +		
0.75	دراسة التغيرات	ب)	
	جدول التغيرات		
0.5	الإنشاء	ج)	
0.5	الدالة تقابل		-2
0.5	استعمال التقابل أو أية طريقة صحيحة أخرى	(1	-3
0.5	المقارنة	ب)	
0.5	رتابة المتتالية	ج)	
0.5	اثباث المتفاوتة	(1	-4
0.5	اثباث النهاية	Ţ.	
0.5	البر هنة	(1	-5
0.5	اثبات المتفاوثة المزدوجة	Ţ.	
0.5	تحديد النهاية	ج)	

النقط	صر الإجابة	عنام	التمرين الخامس
0.5	قابلية الاشتقاق	(أ	-1
	حساب المشتقة		

الصفحة
$\overline{}$
3

RR 25

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

0.25	الدالة تزايدية قطعا	<u>J</u> .	
0.5	0.25 $\int_{n}^{x} \frac{1}{t-1} dt = \ln \underbrace{\frac{x-1}{x-n}}_{\stackrel{\div}{+}} \frac{1}{t-1} dt$	(1	-2
	المتفاوتة		
0.25	الاستنتاج	ب)	
0.25	تقابل ${m g}_n$	(1	-3
0.5	الإستنتاج	ب)	
0.5	اثباث المتساوية	(1	-4
0.5	الاستنتاج	Ţ.	
0.25	تحديد النهاية	ج)	