Human face recognition

What is human face recognition

A multitude of applications

- → Face recognition used for:
 - security systems
 - authentication for banking, mobile phone
 - law enforcement

Project aim

→ Creating a program in python in order to identify each person

The data set

- → Yale Face Database of human faces
- → 165 images from 15 subjects 11 images per subject
- → GIF files
- → grayscale images normalized by size (320x243 pixels)

The data set

→ challenge: finding the best pattern, while...

The data set

emotion: sad

01 Z-TRANSFORMATION

02 PCA

03 k-NN

04 ADDITIONAL IMPLEMENTATIONS

05 MILESTONES

- before: picture → vector
- transforms discrete functions
- centering and scaling data

$$Z = \frac{X - \mu(X)}{\sigma(X)}$$

- before: picture → vector
- transforms discrete functions
- centering and scaling data

- before: picture → vector
- transforms discrete functions
- centering and scaling data

- before: picture → vector
- transforms discrete functions
- centering and scaling data

USE FOR US

- investigation of system properties
- basis for PCA

standardization of pixel values

PCA

MAIN GOAL: REDUCING DIMENSIONS TO MOST INFORMATIVE

- elimination of redundant covariance
- numbers of dimension: number of intensity values per picture

MEANING FOR PROJECT

 identifying most variable feature and removing it reducing dimension → program is faster

WHAT IS k-NN ALGORITHM?

- Classifies unknown data points by finding the most common class among k closest examples
- simple and effective for classification tasks
- k is a number of neighbors that will be considered
- k can be any integer number, chosen experimentally

k-NN ON IMAGE PROCESSING

- data points represent images of faces
- images to vectors of numbers
- searches images with closest face-features under euclidean distance
- facial landmarks are used as those features

FACIAL LANDMARKS

k-NN FOR HUMAN FACE RECOGNITION

- 1. use our given dataset
- 2. split the dataset into training and testing set
- 3. training
- 4. testing

CHALLENGES USING k-NN

- 1. curse of dimensionality
- 2. imbalance classes
- 3. scalability
- 4. sensitivity to parameter k
- 5. feature quality

OTHER CLASSIFIERS

- 1. Support Vector Machines (SVMs)
- 2. Neuronal Networks (CNN)

BUT...

ADVANTAGES OF k-NN

- Non-parametric
- simple
- robust to noise
- interpretability

Additional Implementations

- LDA instead of PCA
- noise reduction at the beginning
- comparison with packages
- Other classifiers

Evaluation

accuracy: rightly detected images/ total number of images

comparison with other programs/ methods \rightarrow time & accuracy

comparison accuracy of our program with state-of-the-art technology

Image preprocessing

Uploading pictures

Z – transformation

28th May

May

Image preprocessing

Uploading pictures

Z – transformation

28th May

May

June

Reducing dimensions

PCA

10th June

PCA

10th June

References

- [1] https://unsplash.com/de/fotos/a40akJxBhT8, accessed 14.05.2023
- [2] Pfaffel, A. (2019). Standardisierung (z-Transformation). Statistik Verstehen.
- [3] http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html, accessed 14.05.2023 Tutorial 1: Image Filtering.
- [4] https://machinelearningmastery.com/face-recognition-using-principal-component-analysis/, accessed 14.05.2023
- [5] https://static.hindawi.com/articles/mse/volume-2019/8234124/figures/8234124.fig.005.jpg, accessed 14.05.2023
- [6] https://static.packt-cdn.com/products/9781789347999/graphics/assets/c7c2a1bf-2e9f-4fbc-91ef-6dc853ac9898.png, accessed 14.05.2023

OTHER CLASSIFIERS

- 1. Support Vector Machines (SVMs)
- 2. Neuronal Networks (CNN)
- 3. Decision Trees
- 4. Random Forests
- 5. Naive Bayes