Machine Learning on Microcontrollers

Arduino Days 2024 @ Bitraf, Oslo Jon Nordby

Motivation

Why ML on microcontrollers?

Extracting useful **information** from sensor *data*

Automatic classification of noise for Noise Monitoring

Tracking coffee bean roasting

Feasibility

What can be done & not (on generic microcontroller)

Machine Learning requires compute

Microcontrollers have limited RAM, FLASH, CPU

Task feasibility versus microcontroller type

	RAM (kB)	FLASH (kB)	CPU (CoreMark)	IM 100 I 5		Image 64x64 px 1 fps
Arduino Uno ATMega 328 @ 16 Mhz	2	32	4.0	✓	×	×
Arduino Nano BLE 33 NRF52840 ARM Cortex M4F @ 64 Mhz	256	1 000	215	✓	✓	×
Arduino Nano ESP32 ESP32-S3 @ 240 Mhz	8 000	16 000	613 (per core)	✓	✓	1
Teensy 4.0 ARM Cortex M7 @ 600 Mhz	1 000	2 000	2313 (per core)	✓	1	1

Examples

For Getting Started

"Magic Wand" using Accelerometer

"Magic Wand" using Accelerometer

TensorFlow Lite Micro Arduino library https://github.com/tensorflow/tflite-micro-arduino-examples#how-to-install

Create custom gestures. Online gesture recorder

https://tinyml.seas.harvard.edu/magic_wand/

tinyML Summit 2021 Tutorial: Building a Magic Wand (Pete Warden)

https://www.youtube.com/watch?v=vKRdQHO7tIY

Speech Command Recognition using Microphone

Speech Command Recognition using Microphone

Build Your Own Voice-Controlled Robot with ESP32 & TensorFlow Lite https://www.youtube.com/watch?v=cp2qRrhaZRA

Official example

https://github.com/tensorflow/tflite-micro/

tree/main/tensorflow/lite/micro/examples/micro_speech

Can train custom models

Can be adapted to detecting Sound Events that are not speech

Object Detection / Object tracking using camera

Object Detection / Object tracking using camera

OpenMV Tensorflow Lite micro

https://docs.openmv.io/library/omv.tf.html

Cup detection

OpenMV Convolutional Neural Network

https://github.com/ARM-software/EndpointAl/tree/

60b2a782194d74662eaf57051c71b799f5076f60/ProofOfConcepts/Vision/OpenMv

<u>CupDetect</u>

OpenMV Arduino tutorial face detection Haar

https://docs.arduino.cc/tutorials/portenta-vision-shield/creating-basic-face-filter/

My Projects

emlearn

Project for "classical" ML models (pre neural-networks) Running on the smallest microcontrollers < 16 kB RAM Used in 30+ RnD projects worldwide http://github.com/emlearn/emlearn

National

SAMSUNG Research

1 dollar TinyML system

Goal: Sound and accelerometer sensing using ML for under 1 USD in total component cost (BOM) https://hackaday.io/project/194511-1-dollar-tinyml

Challenge: 3 kB RAM / 32 kB FLASH

Summary

Machine Learning is used in sensor-systems to extract useful information

Current microcontrollers can handle many tasks: motion data, sound and image analysis

Open source software libraries available