Rudy Fasano

Data Glacier, Week 2

Cab Data Data Investigation

```
import pandas as pd
import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
import seaborn as sns; sns.set_theme(color_codes=True)
%matplotlib inline
```

Reading in necessary files in order to get a snapshot at the collective data.

```
In [4]: cab_data = pd.read_csv("D:/DataGlacier/Week2/DataSets-main/Cab_Data.csv")
cab_data.head()
```

```
Out[4]:
             Transaction ID Date of Travel Company
                                                                   KM Travelled Price Charged Cost of Trip
                                                             City
          0
                  10000011
                                    42377
                                            Pink Cab ATLANTA GA
                                                                          30.45
                                                                                        370.95
                                                                                                    313.635
          1
                  10000012
                                    42375
                                            Pink Cab ATLANTA GA
                                                                          28.62
                                                                                        358.52
                                                                                                    334.854
                  10000013
         2
                                    42371
                                            Pink Cab ATLANTA GA
                                                                           9.04
                                                                                        125.20
                                                                                                     97.632
          3
                  10000014
                                    42376
                                            Pink Cab ATLANTA GA
                                                                          33.17
                                                                                        377.40
                                                                                                    351.602
                  10000015
                                    42372
                                            Pink Cab ATLANTA GA
                                                                           8.73
                                                                                        114.62
                                                                                                     97.776
```

```
In [5]: city = pd.read_csv("D:/DataGlacier/Week2/DataSets-main/City.csv")
    city.head()
```

```
Out[5]:
                        City
                              Population
                                            Users
          0
               NEW YORK NY
                                8,405,837 302,149
          1
                  CHICAGO IL
                                1,955,130 164,468
             LOS ANGELES CA
                                1,595,037 144,132
          3
                    MIAMI FL
                                1,339,155
                                           17,675
              SILICON VALLEY
                                1,177,609
                                           27,247
```

```
customer_id = pd.read_csv("D:/DataGlacier/Week2/DataSets-
main/Customer_ID.csv")
```

```
customer_id.head()
```

```
Out[9]:
            Customer ID Gender Age Income (USD/Month)
         0
                   29290
                            Male
                                   28
                                                      10813
         1
                   27703
                            Male
                                   27
                                                       9237
         2
                   28712
                            Male
                                   53
                                                      11242
         3
                   28020
                            Male
                                   23
                                                      23327
                   27182
                            Male
                                   33
                                                       8536
```

```
Transaction ID Customer ID Payment_Mode
Out[7]:
         0
                 10000011
                                  29290
                                                   Card
          1
                 10000012
                                  27703
                                                   Card
                 10000013
                                                   Cash
         2
                                  28712
                 10000014
                                  28020
                                                   Cash
                 10000015
                                  27182
                                                   Card
```

identifying number of observations and variables we have in the data sets.

```
In [6]:
    print('cab data shape:', cab_data.shape,
        '\ncity shape:', city.shape,
        '\ncustomer ID shape,:', customer_id.shape,
        '\ntransaction_id shape:', transaction_id.shape)

cab data shape: (359392, 7)
```

city shape: (20, 3) customer ID shape,: (49171, 4) transaction_id shape: (440098, 3)

identifying any null values - none identified

```
Price Charged
Cost of Trip
dtype: int64
city null values: City
Population
Users
              0
dtype: int64
customer ID null values,: Customer ID
Gender
                      0
Age
Income (USD/Month)
dtype: int64
transaction_id null values: Transaction ID
Customer ID
                  0
Payment Mode
                  0
dtype: int64
```

filtering cab data into two dataframes including pink and yellow cab company data.

Pink Cab data exploration.

```
In [9]: ### Pink cab data
f1 = cab_data[p_cab]
f1
```

Out[9]:		Transaction ID	Date of Travel	Company	City	KM Travelled	Price Charged	Cost of Trip
	0	10000011	42377	Pink Cab	ATLANTA GA	30.45	370.95	313.635
	1	10000012	42375	Pink Cab	ATLANTA GA	28.62	358.52	334.854
	2	10000013	42371	Pink Cab	ATLANTA GA	9.04	125.20	97.632
	3	10000014	42376	Pink Cab	ATLANTA GA	33.17	377.40	351.602
	4	10000015	42372	Pink Cab	ATLANTA GA	8.73	114.62	97.776
	•••							
	357449	10437610	43106	Pink Cab	WASHINGTON DC	13.56	184.19	135.600
	357450	10437611	43465	Pink Cab	WASHINGTON DC	29.68	388.08	302.736
	357451	10437612	43107	Pink Cab	WASHINGTON DC	28.50	369.04	310.650
	357452	10437614	43102	Pink Cab	WASHINGTON DC	16.10	194.17	162.610
	357453	10437615	43105	Pink Cab	WASHINGTON DC	22.20	287.46	244.200

84711 rows × 7 columns

```
### finding simple statistics for the Pink cab company
f1.describe()
f1.sum(axis = 0, skipna = True)
```

Out[10]: Transaction ID
Date of Travel
Company
City
KM Travelled
Price Charged
Cost of Trip
dtype: object

866080030579
3640470764
Pink CabPink CabPink CabPink CabPink CabPink C...
ATLANTA GAATLANTA GAATLANTA GAATLANTA GAATLANT...
1.91107e+06
2.63283e+07
2.10209e+07

In [10]:

```
### plotting for visualizations
ax = sns.regplot(x='KM Travelled', y='Price Charged',
data=f1).set_title('Figure 1: Pink Cab Co. Data')
```


In [11]: ## visualizations cont.

```
ax1 = sns.regplot(x='Cost of Trip', y='Price Charged',
data=f1).set_title('Figure 2: Pink Cab Co. Data')
```


Pink Cab Co. Hypotheses: As KM travelled increases, as does price charged. As cost of trip increases as does the price being charged proportionately increases.

In [13]:

Pink Cab Co. Data: The correlation coefficient between KM Travelled and Price Charged i s: 0.9277652782594881 which indicates high positive correlation. The P-value between the same variables is 0.0 indicating stati stical significance. This provides sufficient evidence to reject the null hypothesis in favor ot the alternative hypothesi s.

In [14]:

statistical significance. This provides \nsufficient evidence to reject the null hypothesis in favor ot the alternative hypothesis.')

Pink Cab Co. Data: The correlation coefficient between Cost of Trip and Price Charged i s: 0.9218956544941218 which indicates high positive correlation. The P-value between the same variables is 0.0 indicating stati stical significance. This provides sufficient evidence to reject the null hypothesis in favor ot the alternative hypothesi s.

Yellow Cab data exploration.

```
In [13]:
```

Yellow cab data
f2 = cab_data[y_cab]

Out[13]:

	Transaction ID	Date of Travel	Company	City	KM Travelled	Price Charged	Cost of Trip
233	10000384	42371	Yellow Cab	ATLANTA GA	33.93	1341.17	464.1624
234	10000385	42378	Yellow Cab	ATLANTA GA	42.18	1412.06	516.2832
235	10000386	42372	Yellow Cab	ATLANTA GA	10.60	364.62	132.2880
236	10000387	42375	Yellow Cab	ATLANTA GA	26.75	838.00	333.8400
237	10000388	42376	Yellow Cab	ATLANTA GA	46.02	1540.61	596.4192
•••							
359387	10440101	43108	Yellow Cab	WASHINGTON DC	4.80	69.24	63.3600
359388	10440104	43104	Yellow Cab	WASHINGTON DC	8.40	113.75	106.8480
359389	10440105	43105	Yellow Cab	WASHINGTON DC	27.75	437.07	349.6500
359390	10440106	43105	Yellow Cab	WASHINGTON DC	8.80	146.19	114.0480
359391	10440107	43102	Yellow Cab	WASHINGTON DC	12.76	191.58	177.6192

274681 rows × 7 columns

```
In [ ]:
```

```
### discovering simple statistics for the yellow cab company
f2.describe()
f2.sum(axis = 0, skipna = True)
```

```
In [14]:
```

```
#plotting for visualizations
ax2 = sns.regplot(x='KM Travelled', y='Price Charged', color='g',
data=f2).set_title('Figure 3: Yellow Cab Co. Data')
```



```
In [15]:
```

```
## visualizations cont.
ax3 = sns.regplot(x='Cost of Trip', y='Price Charged', color='g',
data=f2).set_title('Figure: 4 Yellow Cab Co. Data')
```


Yellow Cab Co. Alt. Hypotheses: As KM travelled increases, as does price charged. As cost of trip increases as does the price being charged proportionately increases.

```
In [16]:
```

```
### finding correlation and P-value of pink cab prices charges by cost of
trip
cor2, p2 = scipy.stats.pearsonr(x=f2['KM Travelled'], y=f2['Price
Charged'])
print('Yellow Cab Co. Data: The correlation coefficient between KM
Travelled and Price Charged is:', cor2, 'which indicates \nhigh positive
correlation.'
    'The P-value between the same variables is', p2, 'indicating
```

statistical significance. This provides \nsufficient evidence to reject the null hypothesis in favor of the alternative hypothesis.')

Yellow Cab Co. Data: The correlation coefficient between KM Travelled and Price Charged is: 0.8597086294478448 which indicates

high positive correlation. The P-value between the same variables is 0.0 indicating stati stical significance. This provides

sufficient evidence to reject the null hypothesis in favor of the alternative hypothesis.

In [17]:

```
### finding correlation and P-value of pink cab prices charges by cost of
trip

cor3, p3 = scipy.stats.pearsonr(x=f2['Cost of Trip'], y=f2['Price
Charged'])
print('Yellow Cab Co. Data: The correlation coefficient between Cost of
Trip and Price Charged is:', cor3, 'which indicates \nhigh positive
correlation.'
```

'The P-value between the same variables is', p3, 'indicating statistical significance. This provides \nsufficient evidence to reject the null hypothesis in favor ot the alternative hypothesis.')

Yellow Cab Co. Data: The correlation coefficient between Cost of Trip and Price Charged is: 0.8539958911683975 which indicates

high positive correlation. The P-value between the same variables is 0.0 indicating stati stical significance. This provides

sufficient evidence to reject the null hypothesis in favor ot the alternative hypothesis.

merging of datasets for further investigation

```
In [12]:
```

```
####### merging datasets to find relationships

df = pd.merge(customer_id, transaction_id)

df

df1 = pd.merge(df, cab_data)

df1
```

Out[12]:

Cit	Company	Date of Travel	Payment_Mode	Transaction ID	Income (USD/Month)	Age	Gender	Customer ID		t[12]: _
ATLANT G	Pink Cab	42377	Card	10000011	10813	28	Male	29290	0	
ATLANT G	Yellow Cab	43302	Cash	10351127	10813	28	Male	29290	1	
ATLANT G	Yellow Cab	43427	Card	10412921	10813	28	Male	29290	2	
ATLANT G	Pink Cab	42375	Card	10000012	9237	27	Male	27703	3	

	Customer ID	Gender	Age	Income (USD/Month)	Transaction ID	Payment_Mode	Date of Travel	Company	Cit
4	27703	Male	27	9237	10320494	Card	43211	Yellow Cab	ATLANT G
•••									
359387	38520	Female	42	19417	10439790	Card	43107	Yellow Cab	SEATTI W
359388	12490	Male	33	18713	10439799	Cash	43103	Yellow Cab	SILICO VALLE
359389	41414	Male	38	3960	10439838	Card	43104	Yellow Cab	TUCSO A
359390	41677	Male	23	19454	10439840	Cash	43106	Yellow Cab	TUCSO A
359391	39761	Female	32	10128	10439846	Card	43104	Yellow Cab	TUCSO A

359392 rows × 12 columns

```
In [14]: ## separating into two dataframes to pull information from both cab
    companies
    p_cab1 = df1['Company'] == 'Pink Cab'
    y_cab1 = df1['Company'] == 'Yellow Cab'
    f3 = df1[p_cab1]
    f4 = df1[y_cab1]
```

In [16]:

```
### plotting for visualizations
ax = sns.regplot(x='Price Charged', y='Income (USD/Month)',
data=f3).set_title('Figure 1: Pink Cab Co. Data')
```


Merged dataset Alternative Hypotheses: As income increases, so does KM travelled for both cab companies.

In [18]: f3.describe()

Out[18]: Customer ID Age Income Transaction Date of Charge (USD/Month) ID Travel
KM Travelled Charge

count 84711.000000 84711.000000 84711.000000 8.4711000000 8.4711.000000 84711.000000 84711.000000

Untitled1 3/9/2021

	Customer ID	Age	Income (USD/Month)	Transaction ID	Date of Travel	KM Travelled	Pri Charg
mean	18422.581577	35.322414	15059.047137	1.022394e+07	42975.183435	22.559917	310.8008
std	18084.830799	12.644780	7991.077762	1.261782e+05	305.502235	12.231092	181.9956
min	1.000000	18.000000	2000.000000	1.000001e+07	42371.000000	1.900000	15.6000
25%	5317.500000	25.000000	8371.000000	1.011014e+07	42700.000000	12.000000	159.9700
50%	8876.000000	33.000000	14713.000000	1.022590e+07	43000.000000	22.440000	298.0600
75%	27190.000000	42.000000	21055.000000	1.033642e+07	43252.000000	32.960000	441.5050
max	60000.000000	65.000000	35000.000000	1.043762e+07	43465.000000	48.000000	1623.4800

In [19]: f4.describe()

Out[19]:

	Customer ID	Age	Income (USD/Month)	Transaction ID	Date of Travel	KM Travelled	Price
count	274681.000000	274681.000000	274681.000000	2.746810e+05	274681.000000	274681.000000	27468
mean	19428.831732	35.341112	15045.669817	1.021978e+07	42960.640022	22.569517	45
std	21830.791423	12.578625	7962.727062	1.269829e+05	307.990287	12.234298	28
min	1.000000	18.000000	2000.000000	1.000038e+07	42371.000000	1.900000	2
25%	2403.000000	25.000000	8439.000000	1.011084e+07	42695.000000	11.990000	22
50%	6445.000000	33.000000	14676.000000	1.021987e+07	42984.000000	22.440000	42
75%	38916.000000	42.000000	21023.000000	1.032939e+07	43225.000000	32.960000	63
max	60000.000000	65.000000	34996.000000	1.044011e+07	43465.000000	48.000000	204

In [22]:

print('The Pink Cab Co. had', len(f3), 'transactions during from 2016-2018. \nThe Yellow Cab Co. had', len(f4), 'transactions in turn')

The Pink Cab Co. had 84711 transactions during from 2016-2018. The Yellow Cab Co. had 274681 transactions in turn

In [23]:

print('The grand total of charged trips for the Pink Cab Co. was', f3['Price Charged'].sum(),'from 2016-2018, \nwhere as the Yellow Cab Co. accrued', f4['Price Charged'].sum(), 'during this same time period.')

The grand total of charged trips for the Pink Cab Co. was 26328251.33 from 2016-2018, where as the Yellow Cab Co. accrued 125853887.19 during this same time period.

In [26]:

```
#simple statistics
sil = 274681 / 84711
print('The Yellow Cab Co. is', sil, 'the size of the Pink Cab Co.
\nMathematically, if this rate of sales continue up to the point of the
```

Yellow Cab Co., \nthe Pink Cab Co. would still experience less earnings, resulting in', final)

The Yellow Cab Co. is 3.2425659005323983 the size of the Pink Cab Co. Mathematically, if this rate of sales continue up to the point of the Yellow Cab Co., the Pink Cab Co. would still experience less earnings, resulting in 85303533.24000001

In [25]:

#simple statistics cont.
final = 26328251 * 3.24
print('The Yellow Cab Co. is', sil, 'the size of the Pink Cab Co.
\nMathematically, if this rate of sales continue up to the point of the
Yellow Cab Co., \nthe Pink Cab Co. would still experience less earnings,
resulting in', final)

The Yellow Cab Co. is 3.2425659005323983 the size of the Pink Cab Co. Mathematically, if this rate of sales continue up to the point of the Yellow Cab Co., the Pink Cab Co. would still experience less earnings, resulting in 85303533.24000001