Maze-Generating Algorithms

20080610 Lee, Ki Sang

KAIST

Physical Mathematics Conference 2009

- Maze Basics
- Question of Maze Generating
- 3 Perfect Maze Generating
 - Depth-First Search
 - Kruskal's Algorithm

Between any two points,

A Perfect Maze

Between any two points, Only one path exists!

In 2-Dimensional Rectangular Grid

In 2-Dimensional Rectangular Grid
Perfect

In 2-Dimensional Rectangular Grid Perfect Orthogonal Path

0		0	0
0	0	0	0
0	0	0	0
0	0	0	0
\perp			
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

How can the 'perfect' graph be made?

Depth-First Search Kruskal's Algorithm

• Go deeper as you can.

- Go deeper as you can.
- Backtrack to possible branch when you are stuck.

Perfect Maze!

Minimum Spanning Tree

Not Spanning Tree

Not Spanning Tree

Spanning Tree With Not Minimum Weights

Not Spanning Tree(Cycle Exists)

Spanning Tree With Minimum Weights

Subgraph S

Subgraph *S* 1 —— 1

Subgraph S (Cycle Exists) 1 - 2

Subgraph
$$S$$
 1 — 1 — \times — 3

Subgraph S (Cycle Exists) $1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 4$

Subgraph S is minimum spanning tree!

• If all weights are same, we can ignore order of the weights.

- If all weights are same, we can ignore order of the weights.
- Just check a node makes cycles or not, for random order.

Minimum Spanning Tree

Minimum Spanning Tree Also 'Perfect' Graph!

А	В	С	D
Е	F	G	Н
I	J	К	L
М	N	0	Р

В	В	С	D
Е	F	G	Н
I	J	К	L
М	N	0	Р

В	В	С	D
E	F	G	Н
ı	J	К	L
М	N	K	Р

В	В	С	D
Е	F	G	Н
М	J	К	L
M	N	K	Р

В	В	С	D
Е	F	Н	H
М	J	К	L
M	N	K	Р

В	В	С	D
E	F	н	 H
М	M	К	L
M	N	— — К	Р

E	E	С	D
E	F	Н	Н
М	М	К	L
M	N	— — К	Р

E	E	С	D
Е	E	н	 H
М	M	К	L
М	N	— — К	Р

E	E	С	D
Е	E	Н	Н
Е	E	К	L
E	N	— — К	Р

E	E	С	D
E	E	Н	H
E	E	К	Н
E	N	— — К	Р

E	E	С	D
E	E	K	K
E	E	K	K
E	N	— — К	Р

E	E	С	D
E	E	K	K
E	E	K	K
E	N	_ K	K

E	E	D	D
E	Е	К	K L
E	E	К	К
E	N	— — К	K

E	E	D	D
E	Е	D	D
E	E	D	D
E	N	D	D

D	D	D	D
D	D	D	D
D	D	D	D
D	N		D

D	D	D I	D
D	D	D	D
D	D	D	D
D	D	D	D

Perfect Maze!