58. Wiązka zadań Systemy liczbowe

Centralny ośrodek meteorologiczny planety Cyfrak codziennie w południe rejestruje wskazania zegarów oraz temperaturę w trzech stacjach pogodowych: S1, S2, S3. Zegary w stacjach pogodowych odliczają liczbę godzin, które upłynęły od uruchomienia stacji. W stacji S1 wszystkie wartości (wskazania zegara i temperatury) zapisywane są w systemie binarnym, w stacji S2 — w systemie czwórkowym (czyli systemie pozycyjnym o podstawie 4), a w stacji S3 — w systemie ósemkowym (czyli systemie pozycyjnym o podstawie 8). Temperatury ujemne poprzedzone są znakiem "-", np. –1101 w systemie dwójkowym oznacza liczbę o zapisie dziesiętnym –13.

Pliki dane_systemy1.txt, dane_systemy2.txt, dane_systemy3.txt zawiera-ją wyniki 1095 kolejnych pomiarów przeprowadzonych w stacjach S1, S2, S3 od czasu ich uruchomienia. Każdy wiersz pliku zawiera wyniki jednego pomiaru: stan zegara i temperaturę. Wartości w wierszach rozdzielone są spacjami.

Przykład

Wiersz opisujący pomiar, w którym zegar wskazuje liczbę 36, a termometr temperaturę –7, wyglądałby następująco:

Napisz program(-y), który pozwoli rozwiązać poniższe zadania. Odpowiedzi zapisz w pliku wyniki_systemy.txt. Odpowiedź do każdego zadania podaj w osobnym wierszu, poprzedzając ją numerem zadania.

58.1.

Dla każdej stacji pogodowej podaj najniższą zarejestrowaną temperaturę, a wszystkie wyniki zapisz w systemie binarnym (dwójkowym).

58.2.

Zgodnie z harmonogramem pomiary wykonywane są co 24 godziny, począwszy od pierwszego pomiaru. Oznacza to, że wyrażone dziesiętnie stany zegarów w kolejnych pomiarach powinny wynosić 12, 12+24=36, 12+2·24=60 itd.

Podaj liczbę pomiarów, w których zarejestrowany stan zegara był niepoprawny jednocześnie we wszystkich stacjach pogodowych.

Przykład

Rozważmy dane, w których pierwsze 3 wiersze pliku *dane_systemy1.txt* są następujące:

```
1100 -11
100100 -111
111101 1
```

Ponieważ zapisane binarnie stany zegara: 1100, 100100 i 111101 to odpowiednio wartości: 12, 36 i 61, to tylko stany podane w dwóch pierwszych wierszach są poprawne, zaś w trzecim wierszu stan jest nieprawidłowy.

58.3.

Rekordem temperatury dla danej stacji pogodowej nazywać będziemy pomiar temperatury, który jest większy od wszystkich wcześniejszych pomiarów dokonanych w tej stacji.

Przykład

Dla następujących wyników kolejnych pomiarów temperatur dokonanych od pierwszego pomiaru w danej stacji (podanych w zapisie dziesiętnym):

rekordami temperatury są wszystkie podkreślone wyniki.

Dniem rekordowym jest dzień, w którym **w co najmniej jednej** stacji pogodowej zarejestrowano rekord temperatury. Podaj liczbę dni rekordowych.

Przykład: przyjmijmy, że — podane w zapisie dziesiętnym — wyniki pomiarów dokonywanych w kolejnych dniach były w trzech stacjach następujące:

		ti 5 t	
Dzień	S_1	S_2	S_3
1	1	0	-1
2	2	1	-1
3	1	-1	-1
4	0	-2	0
5	1	2	1

Dla powyższych danych liczba dni rekordowych wynosi: 3.

58.4.

Oznaczmy kolejne zarejestrowane temperatury w stacji pogodowej S1 przez t_1 , t_2 , t_3 ,... Niech r_{ij} oznacza kwadrat różnicy między temperaturami w i-tym i j-tym pomiarze pierwszej stacji pogodowej, r_{ij} = $(t_i - t_j)^2$. Skokiem temperatury między i-tym a j-tym pomiarem nazywać będziemy zaokrąglenie w górę do liczby całkowitej ułamka r_{ij} / |i-j|.

Przykład

Dla następujących kolejnych pomiarów temperatur (zapisanych dziesiętnie):

skoki temperatur opisuje poniższa tabela

i, j	t_i, t_j	r _{ij}	i-j	Skok temperatury między <i>i-</i> tym a <i>j-</i> tym pomiarem
1, 2	3, 5	$2^2=4$	1	4
1, 3	3, 4	$1^2=1$	2	1
1, 4	3, 7	4 ² =16	3	6
2, 3	5, 4	$1^2=1$	1	1
2, 4	5, 7	$2^2=4$	2	2
3, 4	4, 7	$3^2=9$	1	9

Podaj największy skok temperatury w stacji pogodowej S1. Wynik podaj w systemie dziesiętnym.