

Lösningsförslag till tentamen 8 april 2021

DEL I – GRUNDLÄGGANDE PROBLEM

1. Låt A vara följande reella matris.

$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Bestäm det karakteristiska polynomet $p_A(t)$ och minimalpolynomet $q_A(t)$. (4 p)

Lösningsförslag. Vi beräknar

$$p_A(t) = \det(tI - A) = \begin{vmatrix} t - 1 & 1 & -1 & 0 \\ 1 & t & 1 & 0 \\ 0 & -1 & t & 0 \\ -1 & -1 & -1 & t - 1 \end{vmatrix} = (t - 1) \begin{vmatrix} t - 1 & 1 & -1 \\ 1 & t & 1 \\ 0 & -1 & t \end{vmatrix}$$
$$= (t - 1)((t - 1)(t^2 + 1) - 1 \cdot (t - 1)) = (t - 1)^2 t^2$$

Minimalpolynomet är alltså $t^a(t-1)^b$ där $a\in\{1,2\}$ och $b\in\{1,2\}$. Dvs t^2-t , t^3-t^2 , t^3-2t^2+t eller $t^4-2t^3+t^2$. Speciellt är graden minst 2. Vi beräknar

$$A^{2} = \begin{bmatrix} 2 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 2 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 2 & 0 & 2 & 0 \\ -1 & 0 & -1 & 0 \\ -1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Vi ser att $A^2 - A \neq 0$ medan $A^3 - A^2 = 0$ och alltså är minimalpolynomet $q_A(t) = t^3 - t^2$.

Svar.
$$p_A(t) = t^2(t-1)^2 = t^4 - 2t^3 + t^2 \text{ och } q_A(t) = t^2(t-1) = t^3 - t^2.$$

2. Låt $C^0([0,2\pi],\mathbb{C})$ vara vektorrummet av kontinuerliga komplexvärda funktioner på intervallet $[0,2\pi]$ med inre produkt $\langle f(x)|g(x)\rangle=\int_0^{2\pi}\overline{f(x)}g(x)\,dx$. Låt V vara delrummet av trigonometriska polynom, dvs $V=\mathrm{Span}\{e^{ikx}:k\in\mathbb{Z}\}$. Avgör om följande operatorer på V är självadjungerade och/eller unitära.

(a)
$$L_1(f)(x) = f'(x)$$

(b)
$$L_2(f)(x) = (e^{ix} + e^{-ix}) f(x)$$

Lösningsförslag. En självadjungerad operator uppfyller att $L^{\dagger} = L$ och en unitär operator uppfyller att $L^{\dagger} = L^{-1}$. Dessutom har självadjungerade operatorer reella egenvärden och unitära operatorer egenvärden av belopp 1.

Vi känner sedan tidigare till att $\{e^{ikx}\}$ är linjärt oberoende och alltså utgör en bas till V och till och med en ortogonal bas. Vi har att

$$L_1(e^{ikx}) = ike^{ikx}, \qquad L_2(e^{ikx}) = e^{i(k+1)x} + e^{i(k-1)x}$$

och alltså är basen en egenvektorbas för L_1 men inte för L_2 . Speciellt har L_1 egenvärdena $\{ik:k\in\mathbb{Z}\}$ vilka varken är reella eller har belopp 1. Alltså är L_1 varken självadjungerad eller unitär.

Operaton L_2 är på formen L(f)(x) = h(x)f(x). Från den inre produkten ser vi att

$$\langle f(x)|h(x)g(x)\rangle = \int_0^{2\pi} \overline{f(x)}h(x)g(x) dx = \int_0^{2\pi} \overline{f(x)}\overline{h(x)}g(x) dx$$
$$= \langle f(x)\overline{h(x)}|g(x)\rangle$$

Alltså är $L_2^\dagger(f)(x) = \overline{h(x)}f(x)$. Vi noterar att $\overline{h(x)} = \overline{e^{ix} + e^{-ix}} = e^{-ix} + e^{ix} = h(x)$ (det är för övrigt inget annat än den reella funktionen $2\cos(x)$). Alltså är L_2 självadjungerad. Däremot är inte L_2 unitär eftersom $h(x)^2 \neq 1$.

Alternativt kan man skriva ner matrisen för L_2 i den ortogonala basen $\{e^{ikx}\}$:

och notera att matrisen är hermitesk men att kolonnerna k och k+2 ej är ortogonala mot varandra.

Svar. L_1 är varken unitär eller självadjungerad. L_2 är självadjungerad.

3. Vi har en stokastisk process $\mathbf{p}(t)$ som ges av $\mathbf{p}(t+1) = A\mathbf{p}(t)$ där

$$A = \frac{1}{3} \begin{bmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 1 & 3 & 2 \end{bmatrix}$$

med startfördelningen $\mathbf{p}(0) = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}^T$. Avgör om gränsvärdet $\lim_{t\to\infty} \mathbf{p}(t)$ existerar och beräkna i så fall det. (4 **p**)

Lösningsförslag. Vi beräknar

$$A^{2} = \frac{1}{9} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 2 \\ 8 & 6 & 5 \end{bmatrix}, \quad A^{3} = \frac{1}{27} \begin{bmatrix} 8 & 6 & 5 \\ 2 & 6 & 4 \\ 17 & 15 & 18 \end{bmatrix}$$

Alltså är A reguljär. Det innebär, enligt Perron-Frobenius sats, att oavsett startfördelning så går Markovprocessen mot den unika stokastiska egenvektorn med egenvärdet 1. Vi beräknar

$$A - I = \frac{1}{3} \begin{bmatrix} -3 & 0 & 1\\ 2 & -3 & 0\\ 1 & 3 & -1 \end{bmatrix} \sim \begin{bmatrix} -3 & 0 & 1\\ 2 & -3 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Vilket ger den unika egenvektorn ${\bf v}=(3,2,9)$ upp till multiplikation med skalär. Den unika stokastiska egenvektorn är alltså ${\bf p}_{\infty}=\frac{1}{14}(3,2,9)$. Detta ger

$$\lim_{t \to \infty} \mathbf{p}(t) = \mathbf{p}_{\infty} = \frac{1}{14} \begin{bmatrix} 3 \\ 2 \\ 9 \end{bmatrix}.$$

Alternativ lösning: Istället för att beräkna att A^3 är positiv kan man beräkna egenvärdena till A:

$$\det(\lambda I - A) = \lambda^3 - \frac{2}{3}\lambda^2 - \frac{1}{9}\lambda - \frac{2}{9} = (\lambda - 1)\left(\lambda^2 + \frac{1}{3}\lambda + \frac{2}{9}\right)$$

Detta ger $\lambda=1$ och $\lambda=\frac{1}{6}\left(-1\pm i\sqrt{7}\right)$. Alltså är A diagonaliserbar med ett egenvärde $\lambda=1$ och övriga egenvärden av belopp $\frac{2\sqrt{2}}{6}<1$. Detta innebär att varje vektor $a_1\boldsymbol{\xi}_1+a_2\boldsymbol{\xi}_2+a_3\boldsymbol{\xi}_3$ går mot $a_1\boldsymbol{\xi}_1$ då $t\to\infty$ där $\boldsymbol{\xi}_1=\mathbf{p}_\infty$ är egenvektorn med egenvärde 1.

Svar. Ja, gränsvärdet existerar och är $\frac{1}{14}\begin{bmatrix}3 & 2 & 9\end{bmatrix}^T$.

DEL II – BEGREPP OCH SATSER

- 4. Låt V vara ett ändligtdimensionellt komplext vektorrum och L en linjär operator på V.
 - (a) Definiera begreppen generaliserad egenvektor (kallas power vector i kursboken) och generaliserat egenrum för L. (1 \mathbf{p})
 - (b) Beskriv de operatorer vars generaliserade och vanliga egenrum sammanfaller. (1 p)
 - (c) Bestäm alla möjliga Jordans normalformer om L är nilpotent och dim V=3. (1 p)
 - (d) Ge ett exempel på två operatorer med samma karakteristiska polynom men inte samma Jordans normalform. (1 p)

Lösningsförslag.

- (a) En generaliserad egenvektor ξ är en nollskild vektor sådan att $(L \lambda I)^p \xi = 0$ för ett egenvärde λ och något p > 0. Det generaliserade egenrummet \tilde{E}_{λ} hörande till λ är delrummet av alla generaliserade egenvektorer (samt nollvektorn) tillhörande λ .
- (b) Dimensionen av \tilde{E}_{λ} är den algebraiska multipliciteten för λ och dimensionen av E_{λ} är den geometriska multipliciteten. Rummen sammanfaller alltså när L är diagonaliserbar.
- (c) En operator L är nilpotent precis när alla egenvärden är 0. Frågan är då hur många Jordanblock vi har och vilka storlekar de har. Vi kan antingen ha ett block (3), två block (2+1) eller tre block (1+1+1) och motsvarande Jordans normalformer är:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(d) Om V har dimension n och L är nilpotent så är $p_L(t) = t^n$. Vi kan alltså t ex välja två av matriserna i svaret till (c).

- 5. Låt V och W vara vektorrum med baser $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ och $\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m$.
 - (a) Ange en bas för tensorprodukten $V \otimes W$. Vad är dess dimension? (1 p)
 - (b) Ange en bas för den yttre potensen $\bigwedge^2 V$. Vad är dess dimension? (1 p)
 - (c) Definiera en naturlig linjär avbildning $L \colon W \otimes V^* \longrightarrow \operatorname{Hom}(V, W)$ utan att hänvisa till baserna (där V^* betecknar det duala vektorrummet). (1 p)
 - (d) Visa att L är en isomorfi. Tips: Här kan du använda baser. (1 p)

Lösningsförslag.

- (a) En bas för $V \otimes W$ är $\{\mathbf{e}_i \otimes \mathbf{f}_j\}_{1 \leq i \leq n, 1 \leq j \leq m}$ och dimensionen är alltså nm.
- (b) En bas för $\bigwedge^2 V$ är $\{\mathbf{e}_i \wedge \mathbf{e}_j\}_{1 \leq i < j \leq n}$ och alltså är dimensionen $\binom{n}{2} = \frac{n(n-1)}{2}$. (c) Vi har en avbildning $f: W \times V^* \longrightarrow \operatorname{Hom}(V, W)$ som definieras av $f(\mathbf{w}, \varphi)(\mathbf{v}) = 0$
- (c) Vi har en avbildning $f: W \times V^* \longrightarrow \operatorname{Hom}(V, W)$ som definieras av $f(\mathbf{w}, \varphi)(\mathbf{v}) = \mathbf{w}\varphi(\mathbf{v})$. Observera att $f(\mathbf{w}, \varphi)(-) \in \operatorname{Hom}(V, W)$ är linjär, dvs $\mathbf{w}\varphi(\mathbf{v})$ är linjär i \mathbf{v} och att f(-, -) är bilinjär, dvs $\mathbf{w}\varphi(\mathbf{v})$ är linjär i \mathbf{w} och φ .

 Den universella egenskapen för $W \otimes V^*$ ger en linjär avbildning $L: W \otimes V^* \longrightarrow \operatorname{Hom}(V, W)$ så att $L(\mathbf{w} \otimes \varphi) = \mathbf{w}\varphi$.
- (d) För att se att L är en isomorfi så utgår vi från baserna \mathbf{e}_i , \mathbf{f}_j och den duala basen \mathbf{e}_i^* . En bas för $W \otimes V^*$ är $\{\mathbf{f}_i \otimes \mathbf{e}_j^*\}_{1 \leq i \leq m, 1 \leq j \leq n}$ och $L(\mathbf{f}_i \otimes \mathbf{e}_j^*) = \mathbf{f}_i \mathbf{e}_j^*$ svarar mot matrisen med en etta i position (i,j) och nollor i övrigt. Alltså tar L en bas på en bas och är därmed en isomorfi.

DEL III - AVANCERADE PROBLEM

- 6. Betrakta Hilbertrummet $\ell_2(\mathbb{C})$ av oändliga följder $\mathbf{a}=(a_0,a_1,\dots)$ av komplexa tal sådana att $\sum_{j=0}^{\infty}|a_j|^2<\infty$ med den inre produkten $\langle \mathbf{a}|\mathbf{b}\rangle=\sum_{j=0}^{\infty}\overline{a_j}b_j$. Låt V vara delrummet av följder $\mathbf{a}=(a_0,a_1,\dots)$ sådana att $a_{2k+1}=a_{2k}$ för alla heltal $k\geq 0$.
 - (a) Bestäm det ortogonala komplementet V^{\perp} . (2 p)
 - (b) $\operatorname{Ar} \ell_2(\mathbb{C})$ en inre direkt summa av V och V^{\perp} ?

Lösningsförslag. En ortogonal bas för Hilbertrummet $\ell_2(\mathbb{C})$ är $\{\mathbf{e}_i\}_{i\geq 0}$ där $\mathbf{e}_i=(\delta_{ij})_j$ är följden som är noll förutom en etta i position i.

(a) Vi har att $\mathbf{e}_{2k} + \mathbf{e}_{2k+1} \in V$ för alla $k \geq 0$. Om $\mathbf{b} = (b_0, b_1, \dots) \in V^{\perp}$ är alltså speciellt

$$0 = \langle \mathbf{e}_{2k} + \mathbf{e}_{2k+1} | \mathbf{b} \rangle = b_{2k} + b_{2k+1}$$

för alla $k \geq 0$. Detta innebär att $b_{2k+1} = -b_{2k}$ för alla $k \geq 0$. Omvänt, om $b_{2k+1} = -b_{2k}$ för alla $k \geq 0$ och $\mathbf{a} \in V$ så är

$$\langle \mathbf{a} | \mathbf{b} \rangle = \sum_{k=0}^{\infty} \left(\overline{a_{2k}} b_{2k} + \overline{a_{2k+1}} b_{2k+1} \right) = \sum_{k=0}^{\infty} \left(\overline{a_{2k}} b_{2k} + \overline{a_{2k}} (-b_{2k}) \right) = 0$$

och alltså är $\mathbf{b} \in V^{\perp}$.

(b) Vi behöver visa att varje följd i $\ell_2(\mathbb{C})$ unikt kan skrivas som en summa av en följd i V och en följd i V^{\perp} . För att bevisa unikheten räcker det att visa att $V \cap V^{\perp} = \{\mathbf{0}\}$. Men om $a_{2k+1} = a_{2k}$ och $a_{2k+1} = -a_{2k}$ för alla $k \geq 0$ så är $\mathbf{a} = \mathbf{0}$. För att visa existens, låt L vara operatorn på $\ell_2(\mathbb{C})$ definierad av $L(\mathbf{e}_{2k}) = \mathbf{e}_{2k+1}$ och $L(\mathbf{e}_{2k+1}) = \mathbf{e}_{2k}$ för alla $k \geq 0$. Det vill säga L tar följden $\mathbf{a} = (a_0, a_1, a_2, a_3, \dots)$ på följden $L(\mathbf{a}) = (a_1, a_0, a_3, a_2, \dots)$. Då är $\mathbf{a} + L(\mathbf{a}) \in V$ och $\mathbf{a} - L(\mathbf{a}) \in V^{\perp}$. Vi har alltså att

$$\mathbf{a} = \frac{1}{2} (\mathbf{a} + L(\mathbf{a})) + \frac{1}{2} (\mathbf{a} - L(\mathbf{a}))$$

där den första termen är i V och den andra termen är i V^{\perp} .

Svar.

- (a) V^{\perp} är delrummet av följder $\mathbf{b}=(b_0,b_1,\dots)$ sådana att $a_{2k+1}=-a_{2k}$ för alla heltal $k\geq 0$.
- (b) Ja.

7. Låt A vara följande 2×2 -matris med element i kroppen $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z} = \{0, 1, -1\}$:

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

- (a) Visa att $\{p(A): p(x) \in \mathbb{F}_3[x]\}$ utgör en kropp K och bestäm antalet element i denna kropp. (2 p)
- (b) Betrakta nu A som en 2×2 -matris över kroppen K. Bestäm dess egenvärden i K och motsvarande egenvektorer i K^2 . (2 p)

Lösningsförslag.

(a) Det karakteristiska polynomet till A är

$$p_A(t) = \det(tI - A) = \begin{vmatrix} t - 1 & 1 \\ -1 & t - 1 \end{vmatrix} = (t - 1)^2 + 1 = t^2 + t - 1.$$

Om $p_A(t)$ vore reducibelt skulle det ha en linjär faktor och därmed en rot (dvs ett egenvärde). Men $p_A(0) = -1$, $p_A(1) = 1$, $p_A(-1) = -1$ så $p_A(t)$ saknar rötter. Alltså är $p_A(t)$ irreducibelt och enligt känd sats är då K en kropp. Eftersom $\deg p_A(t) = 2$ så är $K = \{aA + b : a, b \in \mathbb{F}_3\}$ ett vektorrum av dimension 2 över \mathbb{F}_3 och har alltså $3^2 = 9$ element.

(b) För att hitta egenvärdena så behöver vi lösa ekvationen:

$$0 = p_A(aA + b) = (aA + b)^2 + (aA + b) - 1$$
$$= a^2A^2 - abA + b^2 + aA + b - 1$$
$$= (-a^2 - ab + a)A + (a^2 + b^2 + b - 1)$$

där vi använt att 2=-1 och att $A^2=-A+I$ (Cayley–Hamiltons sats). Detta ger lösningarna (a,b)=(1,0) och (a,b)=(-1,-1), dvs egenvärdena

$$\lambda_1 = A, \quad \lambda_2 = -A - 1.$$

(Att A är ett egenvärde följer också direkt av Cayley–Hamiltons sats och eftersom spåret är -1 så är det andra egenvärdet -A-1.)

Vi bestämmer slutligen egenvektorerna. För $\lambda_1 = A$ får vi ekvationen:

$$\begin{bmatrix} 1 - A & -1 & 0 \\ 1 & 1 - A & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 - A & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

med lösning $\xi_1=\begin{bmatrix}A-1\\1\end{bmatrix}$. (Observera att skriver vi $A-\lambda_1I$ får detta inte tolkas som A-AI=A-A=0 utan λ_1 är en skalär i K och inte en matris.)

För $\lambda_2 = -1 - A$ får vi ekvationen:

$$\begin{bmatrix} A-1 & -1 & 0 \\ 1 & A-1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & A-1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\text{med l\"{o}sning } \xi_2 = \begin{bmatrix} A-1\\-1 \end{bmatrix}.$

Svar.

(a) K har 9 element.

(b) Egenvärdena är
$$\lambda_1=A$$
 och $\lambda_2=-A-1$ med egenvektorer $\xi_1=\begin{bmatrix}A-1\\1\end{bmatrix}$ och $\xi_2=\begin{bmatrix}A-1\\-1\end{bmatrix}$.

8. Låt A vara en komplex $n \times n$ -matris med egenvärden $\lambda_1, \lambda_2, \ldots, \lambda_n$ och singulärvärden $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$.

(a) Visa att
$$|\lambda_1 \lambda_2 \cdots \lambda_n| = \sigma_1 \sigma_2 \cdots \sigma_n$$
. (2 **p**)

(b) Visa att
$$|\lambda_i| \leq \sigma_1$$
 för alla i . (2 **p**)

Lösningsförslag.

- (a) Produkten av egenvärdena är determinanten av A. Singulärvärdesuppdelning ger $A=Y\Sigma X^\dagger$ där X och Y är unitära matriser och $\Sigma=\mathrm{diag}(\sigma_1,\sigma_2,\ldots,\sigma_n)$. Vi ska alltså visa att $|\det(A)|=\det(\Sigma)$. Men $\det(A)=\det(Y)\det(\Sigma)\overline{\det(X)}$ och eftersom X och Y är unitära har alla deras egenvärden belopp 1 och därmed även deras determinanter belopp 1. Vi drar slutsatsen att $|\det(A)|=|\det(\Sigma)|=\det(\Sigma)$ eftersom singulärvärdena är reella och positiva.
- (b) Låt $\mathbf{v} \in \mathbb{C}^n$ vara en vektor. Då är $\left| X^\dagger \mathbf{v} \right| = |\mathbf{v}|$ och $|Y\mathbf{v}| = |\mathbf{v}|$ medan $|\Sigma \mathbf{v}| = \sqrt{\sum_{i=1}^n \sigma_i^2 |v_i|^2} \le \sigma_1 |\mathbf{v}|$. Speciellt, om \mathbf{v} är en egenvektor med egenvärde λ så gäller:

$$|\lambda| |\mathbf{v}| = |\lambda \mathbf{v}| = |A\mathbf{v}| = |Y \Sigma X^{\dagger} \mathbf{v}| \le \sigma_1 |\mathbf{v}|$$

och det följer att $|\lambda| \leq \sigma_1$.

Observera att det inte är sant att $\sigma_i = |\lambda_i|$ i allmänhet. Ta t ex

$$Y\Sigma X^{\dagger} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

vilken har singulärvärden 2,1 och egenvärden $\pm\sqrt{2}$.

9. Låt V och W vara vektorrum med baserna $\{e_1, e_2, \dots, e_n\}$ och $\{f_1, f_2, \dots, f_m\}$. För en delmängd $S = \{s_1, s_2, \ldots, s_m\} \subseteq \{1, 2, \ldots, n\}$ av storlek $m \mod s_1 < s_2 < \cdots < s_m$ låter vi $P_S \colon V \to W$ och $J_S \colon W \to V$ vara de linjära avbildningarna som ges av

$$J_S(\mathbf{f}_i) = \mathbf{e}_{s_i}, \qquad P_S(\mathbf{e}_j) = \begin{cases} \mathbf{f}_i & \text{om } j = s_i \\ \mathbf{0} & \text{om } j \notin S \end{cases}$$

Låt $L_S = J_S \circ P_S$.

(a) Visa att $\sum_{S} (\bigwedge^{m} L_{S})$ är identitetsoperatorn på $\bigwedge^{m} V$. (2 **p**) (b) Visa att $\det(A \circ B) = \sum_{S} \det(A \circ J_{S}) \det(P_{S} \circ B)$ om $A \colon V \to W$ och $B \colon W \to V$ är linjära avbildningar.

Summorna är över alla delmängder $S \subseteq \{1, 2, \dots, n\}$ av storlek m. Finns inga sådana delmängder så är summan 0.

Lösningsförslag.

(a) Vi noterar att $L_S = J_S \circ P_S$ ges av

$$L_S(\mathbf{e}_j) = \begin{cases} \mathbf{e}_j & \text{om } j \in S \\ \mathbf{0} & \text{om } j \notin S \end{cases}$$

Vektorerna $\mathbf{e}_S := \mathbf{e}_{s_1} \wedge \cdots \wedge \mathbf{e}_{s_m}$ för alla S som i uppgiften utgör en bas för $\bigwedge^m V$. Det följer nu att

$$\left(\bigwedge^{m} L_{S}\right)(\mathbf{e}_{S'}) = \begin{cases} \mathbf{e}_{S'} & \text{om } S' = S \\ \mathbf{0} & \text{om } S' \neq S \end{cases}$$

Alltså är $\sum_{S} (\bigwedge^{m} L_{S})$ identitetsoperatorn på $\bigwedge^{m} V$.

(b) Vi har linjära avbildningar

$$\bigwedge^{m} A \colon \bigwedge^{m} V \longrightarrow \bigwedge^{m} W, \qquad \bigwedge^{m} B \colon \bigwedge^{m} W \longrightarrow \bigwedge^{m} V$$
och
$$\bigwedge^{m} (A \circ B) \colon \bigwedge^{m} W \longrightarrow \bigwedge^{m} W$$

Eftersom $A \circ B$ är en operator på W som har dimension m så är $\bigwedge^m (A \circ B)$ multiplikation med $det(A \circ B)$:

$$\bigwedge^{m} (A \circ B)(\mathbf{f}_{1} \wedge \cdots \wedge \mathbf{f}_{m}) = \det(A \circ B)(\mathbf{f}_{1} \wedge \cdots \wedge \mathbf{f}_{m})$$

Enligt (a) har vi att:

$$\bigwedge^{m}(A \circ B) = \bigwedge^{m} A \circ \bigwedge^{m} B = \bigwedge^{m} A \circ \left(\sum_{S} \bigwedge^{m} L_{S}\right) \circ \bigwedge^{m} B$$

$$= \sum_{S} \left(\bigwedge^{m} (A \circ P_{S}) \circ \bigwedge^{m} (J_{S} \circ B)\right)$$

Eftersom $A \circ P_S$ och $J_S \circ B$ är operatorer på W så får vi att

$$\bigwedge^{m} (A \circ B)(\mathbf{f}_{1} \wedge \cdots \wedge \mathbf{f}_{m}) = \sum_{S} \bigwedge^{m} (A \circ J_{S}) \left(\det(P_{S} \circ B)(\mathbf{f}_{1} \wedge \cdots \wedge \mathbf{f}_{m}) \right)$$

$$= \sum_{S} \det(A \circ J_{S}) \det(P_{S} \circ B)(\mathbf{f}_{1} \wedge \cdots \wedge \mathbf{f}_{m})$$

Alltså är $\det(A \circ B) = \sum_{S} \det(A \circ J_S) \det(P_S \circ B)$. (Detta är en version av Cauchy– Binets formel.)