

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO

ANA SOFIA DE MATOS LIMA NEMUEL LUCAS SEVERO VIEIRA

APROXIMAÇÃO DE DERIVADAS POR DIFERENÇAS FINITAS E IMPLEMENTAÇÃO DA SOMA DE RIEMANN PARA CÁLCULO DE INTEGRAL

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO

ANA SOFIA DE MATOS LIMA NEMUEL LUCAS SEVERO VIEIRA

APROXIMAÇÃO DE DERIVADAS POR DIFERENÇAS FINITAS E IMPLEMENTAÇÃO DA SOMA DE RIEMANN PARA CÁLCULO DE INTEGRAL

Trabalho apresentado à Universidade Federal do Vale do São Francisco - UNIVASF, Campus Tecnológico, como requisito para obtenção de nota na disciplina de Cálculo Diferencial e Integral I.

Professor: Carlos Antônio Freitas

RESUMO

Este trabalho aborda métodos numéricos para aproximação de derivadas utilizando diferenças finitas e a implementação da Soma de Riemann para cálculo de integrais. No contexto das diferenças finitas, são apresentados esquemas como diferença progressiva, regressiva e central, cada um com suas respectivas ordens de precisão (O(h)) ou $(O(h^2))$. Além disso, são discutidas fórmulas de alta ordem para derivadas de segunda ordem e quarta ordem ilustradas com exemplos numéricos, como a aproximação da derivada de e^x e da segunda derivada de $\sin(x)$.

Na parte dedicada à Soma de Riemann, o trabalho explica sua definição matemática, métodos para escolha de pontos (esquerdo, direito e médio) e sua aplicação no cálculo de integrais definidas, exemplificando com a função e^{-x^2} . O trabalho destaca a importância desses métodos em áreas como matemática, ciências aplicadas e análise de dados, reforçando sua utilidade prática quando funções são conhecidas apenas por pontos discretos ou não possuem expressões analíticas simples.

Palavras-chave: Diferenças finitas, derivadas numéricas, diferença progressiva, diferença regressiva, diferença central, Soma de Riemann, integração numérica, aproximação de integrais, métodos numéricos, cálculo diferencial e integral.

SUMÁRIO

APROXIMAÇÃO DE DERIVADAS POR DIFERENÇAS FINITAS	5
1. INTRODUÇÃO	5
2. DIFERENÇAS FINITAS	6
2.1. DIFERENÇA PROGRESSIVA (Forward Difference)	6
2.2. DIFERENÇA REGRESSIVA (Backward Difference)	6
2.3. DIFERENÇA CENTRAL (Central Difference)	6
3. FÓRMULAS DE ALTA ORDEM	7
3.1. DIFERENÇA CENTRAL DE SEGUNDA ORDEM PARA $f''(x)$	7
3.2. DIFERENÇA PROGRESSIVA DE QUARTA ORDEM PARA $f'(x)$.	7
4. EXEMPLOS NUMÉRICOS	8
5. CONSIDERAÇÕES FINAIS	9
SOMA DE RIEMANN PARA CÁLCULO DE INTEGRAL	10
6. INTRODUÇÃO	
7. DEFINIÇÃO MATEMÁTICA	11
8. MÉTODO DE ESCOLHA DO PONTO c_i	12
REFERÊNCIAS	13

APROXIMAÇÃO DE DERIVADAS POR DIFERENÇAS FINITAS

1. INTRODUÇÃO

O cálculo de derivadas é fundamental em diversas áreas da matemática e ciências aplicadas. Em muitos casos, não dispomos de uma expressão analítica para a derivada de uma função ou a função é conhecida apenas por meio de pontos discretos. Nesses casos, métodos numéricos, como **diferenças finitas**, são amplamente utilizados para aproximar derivadas.

Neste trabalho, discutiremos os principais esquemas de diferenças finitas para aproximação de derivadas, suas ordens de precisão e exemplos de aplicação.

6

2. DIFERENÇAS FINITAS

A ideia central do método de diferenças finitas é substituir a derivada de uma função f por uma combinação linear de valores da função em pontos próximos.

2.1. DIFERENÇA PROGRESSIVA (Forward Difference)

Aproxima a derivada utilizando um ponto à frente:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Ordem de precisão: O(h).

2.2. DIFERENÇA REGRESSIVA (Backward Difference)

Aproxima a derivada utilizando um ponto atrás:

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

Ordem de precisão: O(h).

2.3. DIFERENÇA CENTRAL (Central Difference)

Combina os pontos à frente e atrás para maior precisão:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Ordem de precisão: $O(h^2)$.

3. FÓRMULAS DE ALTA ORDEM

Para melhorar a precisão, podemos usar esquemas com mais pontos:

3.1. DIFERENÇA CENTRAL DE SEGUNDA ORDEM PARA f''(x)

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

3.2. DIFERENÇA PROGRESSIVA DE QUARTA ORDEM PARA f'(x)

$$f'(x) \approx \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

4. EXEMPLOS NUMÉRICOS

Exemplo 1: Aproximação de f'(x) para $f(x) = e^x$ em x = 1

- Valor exato: $f'(1) = e^1 = 2.71828$.
- Usando diferença progressiva com h = 0.1:

$$f'(1) \approx \frac{e^{1.1} - e^1}{0.1} \approx 2.8588$$

• Usando diferença central com h = 0.1:

$$f'(1) \approx \frac{e^{1.1} - e^{0.9}}{0.2} \approx 2.7228$$

Exemplo 2: Aproximação de f''(x) para $f(x) = \sin(x)$ em $x = \frac{\pi}{2}$

- Valor exato: $f''\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$.
- Usando diferença central com h = 0.01:

$$f''\left(\frac{\pi}{2}\right) \approx \frac{\sin\left(\frac{\pi}{2} + 0.01\right) - 2\sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2} - 0.01\right)}{0.0001} \approx -0.99998$$

5. CONSIDERAÇÕES FINAIS

O método de diferenças finitas é uma ferramenta poderosa para aproximação numérica de derivadas. A escolha do esquema (progressivo, regressivo ou central) e do passo h impacta diretamente na precisão.

SOMA DE RIEMANN PARA CÁLCULO DE INTEGRAL

6. INTRODUÇÃO

A Soma de Riemann é um método fundamental no Cálculo Integral para aproximar a área sob uma curva de uma função em um intervalo definido. Sendo fundamental para fornecer a base teórica para a definição da integral definida. Seu uso vai desde cálculo de áreas e volumes de figuras geométricas até análise de dados e machine learning.

7. DEFINIÇÃO MATEMÁTICA

Dada uma função f(x) contínua em [a, b], dividimos o intervalo em n subintervalos de largura $\Delta x = \frac{(b-a)}{n}$. Em cada subintervalo $[x_{i-1}, x_i]$, escolhemos um ponto c_i (pode ser o extremo esquerdo, direito ou o ponto médio). A Soma de Riemann é dada por:

$$S_n = \sum_{i=1}^n f(c_i) \cdot \Delta x$$

Quando $n\to\infty$, S_n converge para a integral definida:

$$\lim_{n\to\infty} S_n = \int_a^b f(x) dx$$

8. MÉTODOS DE ESCOLHA DO PONTO c_i

• Ponto esquerdo: $c_i = x_i - 1$

• Ponto direito: $c_i = x_i$

• Ponto médio: $c_i = \frac{(x_{i-1} + x_i)}{2}$

É válido notar que a escolha do ponto médio geralmente fornece uma aproximação mais precisa porque reduz o erro de superestimação/subestimação.

Exemplo: Calcular a **integral definida** da função $f(x) = e^{-x^2}$ no intervalo [0, 1]:

$$\int_0^1 e^{-x^2} dx$$

Resolução:

Dividimos o intervalo em quatro partes iguais, logo:

$$\Delta x = \frac{1-0}{4} = 0.25$$

Obtendo o ponto médio desses intervalos, descobrimos que suas alturas serão:

Assim, podemos calcular a área, chegando em:

$$S_4 = \sum_{i=1}^4 f(c_i) \cdot \Delta x$$

$$S_4 = \left(e^{-0.125^2} + e^{-0.375^2} + e^{-0.625^2} + e^{-0.875^2}\right) \cdot 0.25$$

$$S_4 \approx (0.984 + 0.868 + 0.677 + 0.472) \cdot 0.25 \approx 0.750$$

REFERÊNCIAS

STEWART, J. Cálculo - Volume 1. 8ª ed. São Paulo: Cengage Learning, 2017.

BURDEN, R. L.; FAIRES, J. D. Análise Numérica. 8. ed. São Paulo: Cengage Learning, 2008.

- Capítulo 4: Diferenciação Numérica.
- Obra completa: 688 p.

ATKINSON, K. E. An Introduction to Numerical Analysis. 2. ed. New York: Wiley, 1989.

- Seção 5.1: Finite Difference Approximations.
- Obra completa: 712 p.

CHAPRA, S. C.; CANALE, R. P. Métodos Numéricos para Engenharia. 5. ed. Porto Alegre: McGraw-Hill, 2008.

- Capítulo 23: Diferenciação Numérica.
- Obra completa: 839 p.

RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo Numérico: Aspectos Teóricos e Computacionais. 2. ed. São Paulo: Pearson, 1996.

- Capítulo 7: Derivação Numérica.
- Obra completa: 406 p.

FORNBERG, B. Generation of Finite Difference Formulas on Arbitrarily Spaced Grids. *Mathematics of Computation*, v. 51, n. 184, p. 699-706, 1988.

• **DOI:** 10.1090/S0025-5718-1988-0935077-0.

• **Disponível em:** https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/. Acesso em: 10 jul. 2025.

LEVEQUE, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations. Philadelphia: SIAM, 2007.

- Capítulo 1: Introduction to Finite Differences.
- **Obra completa:** 340 p.

PRESS, W. H. et al. *Numerical Recipes: The Art of Scientific Computing.* 3. ed. Cambridge: Cambridge University Press, 2007.

- Capítulo 5: Numerical Derivatives.
- **Obra completa:** 1256 p.