Visão Computacional Aula 09

Filtros Lineares Bordas e Ruídos

Derivadas em Imagens

• Relembrando:

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right)$$

 Observem que esta expressão é linear e invariante ao deslocamento, então pode ser o resultado de uma convolução.

Podendo ser aproximada como:

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

Extraindo as derivadas...

Ruído (Noise)

Modelo simplificado do ruído:

- Independente, estacionário com adição de ruído gaussiano;
- O valor do ruído em cada pixel é dado pela obtenção de uma distribuição de probabilidade normal;

• Problemas:

- Este modelo permite que valores de ruído podem ser maiores que a saída máxima (saturação no pixel) ou valores negativos de pixels;
- Para pequenos desvios padrões, o modelo funciona bem;
- A "independência" entre os valores de ruído podem não ser obtidas (ex.: danos físicos às lentes);
- O ruído pode não ser estacionário (ex.: variações térmicas no sensores CCDs);

sigma=16

Diferenças Finitas (Derivadas) e Ruído

- Filtros Derivativos (Diferenças Finitas) tem respostas "intensas" ao ruído:
 - Razão óbvia: ruído em imagens resultam em pixels que diferem em muito dos pixels vizinhos;
- Geralmente, quanto maior o ruído, mas intensa a resposta do filtro.

- O que deve ser feito?
 - Intuitivamente, os pixels se parecem em muito com seus vizinhos;
 - Esse processo acontece mesmo nas regiões de bordas:
 - Ao longo da borda eles são semelhantes; através da borda não são;
 - Realizar filtragem de suavização geralmente ajuda, forçando pixels diferentes dos vizinhos a serem semelhantes;

Resposta de derivadas ao Ruído

A resposta de um filtro linear ao ruído

• Geralmente aplicado para situações de ruído não somente gaussiano de média zero.

Idéia básica:

- A saída é uma soma poderada das entradas;
- Variáveis aleatórias;
- Média zero;

• Variância:

- Relembrando(propriedades):
 - Variância de uma soma de variáveis aleatórias é a soma das suas variâncias;
 - Variância de uma constante x variável aleatória é constante (ao quadrado) x variância;
- Então se σ é a variância do ruído e o Kernel é K, variância da resposta é dado por:

$$\sigma^2 \sum_{u,v} K_{u,v}^2$$

A resposta do filtro é correlacionada

- "Escala" semelhante a escala do filtro;
- Ruído Filtrado é usualmente aplicado em:
 - Simulação de texturas naturais,
 - ex.: simulação de fogo

Operando com um Kernel...

Operando com um Kernel...

Operando com um Kernel...

Suavização reduz o ruído

- Geralmente espera-se que os pixels seja semelhantes aos vizinhos:
 - Superfície varia lentamente;
 - Poucas mudanças na reflectância;
- Espera-se que os processos com ruídos sejam independente pixel a pixel.

- Implica que a suavização "suprime o ruído" com a utilização de modelos apropriados;
- Fator de Escala:
 - O parâmetro de uma Gaussiana simétrica;
 - O parâmetro aumenta e mais pixels são envolvidos;
 - Utiliza a média;
 - Aumenta o "borramento" da imagem;

Filtro de Suavização (Gaussiano)

n	2 ⁿ	Máscara de coeficientes		
1	2	1 1		
2	4	1 2 1		
3	8	1 3 3 1		
4	16	1 4 6 4 1		
5	32	1 5 10 10 5 1		
6	64	1 6 15 20 15 6 1		
7	128	1 7 21 35 35 21 7 1		
8	256	1 8 28 56 70 56 28 8 1		

1	1	2	1
$\frac{1}{16}$	2	4	2
10	1	2	1

	1	4	6	4	1
4	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
256	4	16	24	16	4
	1	4	6	4	1

Triângulo de pascal para geração discreta da Gaussiana

Gradientes e Contornos/Bordas

- Pontos de variação de sombreamento nas imagens são interessantes, pois indicam:
 - Mudança na reflectância;
 - Mudança no objeto;
 - Mudança na iluminação;
 - Ruído;
- Algumas vezes são chamados de pontos de bordas (edge points)

- Estratégia Geral:
 - Determinar o gradiente da imagem;
 - Indica posições onde o gradiente (amplitude) é elevado (em relação à vizinhança de pixels);

Existem três maiores problemas:

- 1) O gradiente em diferentes resoluções são diferentes? Se sim, qual escolher?
- 2) A amplitude é grande em direção de "uma linha", como identificar os pontos significantes?
- 3) Como "linkar" esses pontos com a curva?

Suavização e Diferenciação

- Problema: ruído
 - Suavizar antes de "diferenciar" (derivar)
 - Duas convolução para suavizar, então derivar?
 - Atualmente usa-se a derivada de um filtro gaussiano:
 - Utiliza-se a propriedade associativa da convolução

1 pixel 3 pixels 7 pixels

A escala da suavização afeta as estimativas das derivadas e também recuperação de bordas.

Queremos marcar pontos ao longo da curva onde a magnitude é maior.

Nós podemos fazer isso procurando por um máximo ao longo de uma fatia normal a curva (supressão não máxima). Esses pontos devem formar uma curva. Há duas questões algorítmicas: em que ponto é o máximo, e onde está o próximo máximo?

Atenção especial:

- Eventos desagradáveis acontecem nas "bordas"
- Escala afeta o contraste
- "Bordas" não são delimitadores de contornos

Filtros são "Templates"

- Aplicando um filtro em alguns pontos, estes podem ser "vistos" como o produto escalar entre uma imagem e algum vetor
- Filtragem em uma imagem é um conjunto de produtos escalares

Zero mean image, -1:1 scale

Positive responses

Zero mean image, -max:max scale

Zero mean image, -1:1 scale

Positive responses

O Laplaciano

- Um outra forma de detectar o maior valor da derivada de primeira ordem é utilizar a derivada de segunda ordem;
- Analogia: invariante à rotação
 - O Laplaciano!

Problemas/Avisos

- Necessita de suavização
 - Suavização Gaussiana em seguida Laplaciano
 - É a mesma idéia anterior utilizando o Laplaciano do Gaussiano

Filtro Laplaciano

- Filtro passa alta.
- Somar à imagem original para realçar os detalhes.

Próxima aula...

• Detecção de Bordas – Filtro de Canny