MINI PROJECT ON

OBJECT DECION

Overview and Code Analysis

Project Overview and Objectives

OBJECTIVE

Develop a CNN-based model to detect objects in images using the COCO dataset.

METHODOLOGY

- 1. Load and filter dataset annotations.
- 2. Preprocess images and handle missing data.
- 3. Design a CNN for multi-label classification.
- 4. Train and evaluate the model on 25,000 images.

OUTCOME

Efficiently classify 80 object categories with the trained model.

Data Loading and Filtering Annotations

LOADING ANNOTATIONS

- Import COCO dataset annotations from JSON.
- Define valid categories (IDs 1 to 80) to filter out irrelevant classes.

DATA FILTERING

- 1. Exclude missing images by using a pre-defined list of IDs to skip.
- 2. Keep only valid images for training to ensure model accuracy.

Preprocessing and Data Generator

IMAGE PREPROCESSING

- Resize images to (128x128) and normalize pixel values to the [0, 1] range.
- Simplifies data for consistent model input and faster computation.

DATA GENERATOR

- 1. Load images in batches using a generator to reduce memory usage.
- 2. Efficiently labels images with valid category IDs for multi-label classification.

CNN Model Architecture

MODEL DESIGN

- Uses convolutional and pooling layers for feature extraction.
- Flatten layer followed by Dense layers for classification.

OUTPUT LAYER

- 1. Sigmoid activation for multi-label classification across 80 object categories.
- 2. Uses binary cross-entropy loss to handle independent class probabilities

Training and Evaluation

TRAINING

- Model compiled with the Adam optimizer and binary cross-entropy loss.
- Trained with a validation split to monitor accuracy and loss over epochs.

EVALUATION

• Performance evaluated on validation data for accuracy and loss metrics

Results and Analysis

ACCURACY AND LOSS PLOTS

- Training vs validation accuracy and loss plotted over epochs.
- Analyzes model's performance and identifies any overfitting or underfitting issues.
- Accuracy: Our model achieved 59.50% accuracy.

INSIGHTS

 Observing the accuracy and loss curves helps evaluate the effectiveness of the CNN and guides further improvements.

CODE SNIPPET

```
Epoch 15/15

3/3 — 1s 112ms/step - accuracy: 0.5525 - loss: 0.1310 - val_accuracy: 0.7000 - val_loss: 0.1270

1/1 — 1s 578ms/step - accuracy: 0.5950 - loss: 0.1272

Validation Loss: 0.1272, Validation Accuracy: 59.50%
```

Conclusion and Future Enhancements

PROJECT SUMMARY

- Developed an object detection model on the COCO dataset with a multi-label CNN.
- Achieved a validation accuracy suitable for real-world applications.

FUTURE SCOPE

- Explore deeper CNN architectures for enhanced accuracy.
- Fine-tune with a larger dataset or implement transfer learning.
- Test the model on real-world images and deploy as an application.

Our Team Members

Vaibhav Sakharwade

ugmr20230012@ihub-data.iiit.ac.in

Sarang Walke

ugmr20230022 @ihub-data.iiit.ac.in

Akanksha Raut

ugmr20230021@ihub-data.iiit.ac.in

Rohit Bisen

ugmr20230017@ihub-data.iiit.ac.in

Ansh Agraval

ugmr20230043@ihub-data.iiit.ac.in

Aakarsh B

ugmr20230045@ihub-data.iiit.ac.in

THANKYOU

 \sim TEAM 404