Database Systems Homework 4

April 24, 2016 Joon Hyuck Choi (jchoi100), William Sun (wsun19)

Part 1

Query 1

Id Operation	Name F	Rows Byt	es Cost (%CPL	J) Time
0 SELECT STATE	•		135 29727	(2) 00:00:02
1 HASH GROUP	•		135 29727	(2) 00:00:02
* 2 TABLE ACCES	S FULL LINE	ITEM 57	89K 149M 295	514(1) 00:00:02

Comments:

• If there were an index, we would not have to scan over the entire table

```
| Id | Operation
                     | Name
                               | Rows | Bytes |TempSpc| Cost (%CPU)| Time
| 0 | SELECT STATEMENT
                                     | 11620 | 680K|
                                                        | 42875 (1)| 00:00:02 |
| 1 | HASH GROUP BY
                                     | 11620 | 680K|
                                                        | 42875 (1)| 00:00:02 |
                          |* 2 | HASH JOIN
                               | 495K| 28M| 10M| 42859 (1)| 00:00:02 |
|* 3 | HASH JOIN
                                                  | 7479 (1)| 00:00:01 | | | | | | |
                               | 217K| 7847K|
|* 4 | TABLE ACCESS FULL| CUSTOMER | 30000 | 468K| | 935 (1)| 00:00:01 |
|* 5 | TABLE ACCESS FULL| ORDERS | 729K| 14M|
                                                        | 6542 (1)| 00:00:01 |
|* 6 | TABLE ACCESS FULL | LINEITEM | 3225K| 70M|
                                                        | 29514 (1)| 00:00:02 |
```

- It may be that the two hash joins could have their ordering switched around. To do this we would need to compute statistics or sample the tables.
- If there were an index, we would not have to scan over the entire table

```
| Id | Operation
                                | Rows | Bytes |TempSpc| Cost (%CPU)| Time
                      | Name
| 0 | SELECT STATEMENT
                                      | 25 | 2300 | | 42747 (1) | 00:00:02 |
                                             | 25 | 2300 | | 42747 (1) | 00:00:02 |
| 1 | HASH GROUP BY
|* 2 | HASH JOIN
                                      | 7410 | 665K| 2936K| 42746 (1)| 00:00:02 |
| 3 | TABLE ACCESS FULL
                                                   | 150K| 1171K|
                                  | CUSTOMER
                                                                      | 933 (1)|
00:00:01
|* 4 | HASH JOIN
                                      | 185K| 14M| 6912K| 40828 (1)| 00:00:02 |
      TABLE ACCESS FULL
                                  | ORDERS | 228K| 4235K|
                                                                | 6542 (1)| 00:00:01 |
|* 5|
|* 6 | HASH JOIN
                                      | 1200K| 74M| | | | |
                                                          | 29572 (1)| 00:00:02 |
                     | VW_GBF_33 | 2000 | 92000 | | 64 (2)| 00:00:01 |
| 7 |
       VIEW
| 8 |
        HASH GROUP BY
                                      | 2000 | 132K|
                                                         | 64 (2)| 00:00:01 |
        HASH JOIN
                                                            63 (0)| 00:00:01 |
|* 9|
                                      | 2000 | 132K|
| 10 | TABLE ACCESS FULL | NATION | 25 | 800 | |
                                                       2 (0)| 00:00:01 |
| 11 | MERGE JOIN CARTESIAN|
                                      | 10000 | 351K|
                                                         | 61 (0)| 00:00:01 |
                                                      2 (0)| 00:00:01 |
|* 12 | TABLE ACCESS FULL | REGION |
                                          1 | 29 | |
| 13 | BUFFER SORT
                                      | 10000 | 70000 |2
                                                         | 59 (0)| 00:00:01 |
                           TABLE ACCESS FULL | SUPPLIER
                                             | 10000 | 70000 |
                                                                | 59 (0)| 00:00:01 |
| 14 |
                                  |LINEITEM | 6001K| 108M|
       TABLE ACCESS FULL
| 15|
                                                               | 29486 (1)| 00:00:02|
```

- Like in query 3, the joins could be optimized if the tables were sampled or statistics were gathered. In addition, a lot of the operations (sort, join) may benefit from parallelism
- If there were an index, we would not have to scan over the entire table

Id Operation	Name	Rows Bytes
TempSpc Cost (%CPU) Time		
0 SELECT STATEMENT	- 1	1 48 2207 (1) 00:00:01
1 SORT AGGREGATE	1	1 48
* 2 TABLE ACCESS BY INDE	X ROWID BA	TCHED LINEITEM 114K 5355K
2207 (1) 00:00:01		
3 BITMAP CONVERSION T	O ROWIDS	
4 BITMAP AND		
5 BITMAP CONVERSION	FROM ROWID	DS
6 SORT ORDER BY	I	
* 7 INDEX RANGE SCAN	LINE	EITEM_DISCOUNT 39898 55 (0)
00:00:01		
8 BITMAP CONVERSION	FROM ROWID	DS
9 SORT ORDER BY	I	6968K
* 10 INDEX RANGE SCAN	LINE	EITEM_QUANTITY 39898 108 (0)
00:00:01		

Comments:

• Indexing would make the index range scan more efficient.

```
| Id | Operation
                         | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0|SELECT STATEMENT |
                                       4 |
                                            256 | 66675 (1)| 00:00:03 |
                                 | 1 | HASH GROUP BY
                                                  256 | 66675 (1)| 00:00:03 |
                                       |* 2 | HASH JOIN
                                       4 |
                                            256 | 66674 (1)| 00:00:03 |
|* 3 | HASH JOIN
                                            55 | 37175 (1)| 00:00:02 |
                                       1|
       HASH JOIN RIGHT SEMI |
                                             31 | 36241 (1)| 00:00:02 |
|* 4|
                                       1|
       VIEW
                   | VW_NSO_1 |
                                             6 | 29698 (2)| 00:00:02 |
| 5|
                                       1 |
       FILTER
|* 6|
                                       HASH GROUP BY |
                                             9 | 29698 (2)| 00:00:02 |
                                       1|
| 7 |
                                                   51M| 29478 (1)| 00:00:02 |
| 8 | TABLE ACCESS FULL| LINEITEM | 6001K|
                                | ORDERS | 1500K|
                                                         35M| 6538 (1)| 00:00:01 |
| 9|
       TABLE ACCESS FULL
| 10 | TABLE ACCESS FULL
                                | CUSTOMER |
                                                  150K| 3515K| 933 (1)| 00:00:01 |
                                | LINEITEM | 6001K| 51M| 29478 (1)| 00:00:02 |
| 11 | TABLE ACCESS FULL
```

- This query could be improved by statistics to improve the join ordering.
- If there were an index, we would not have to scan over the entire table

- This query could improve join ordering with statistics
- If there were an index, we would not have to scan over the entire table

Part 2

Query 1

Comments:

- Parallelism took shortest time:
 - Query was short and simple
 - Otherwise, mostly same performance as regular plan
 - Using indexes on attribute I_shipdate did not perform well.

Note: The first run using materialized views took disproportionately long. So we excluded it when computing the average run time for that method.

:	Id	1	Operation	Name	١	Rows	Bytes	Cost	(%CPU)	Time	I
1	0	Ī	SELECT STATEMENT		Ī	6657K	425M	1598	(32)	00:00:01	Ī
ĺ	1	İ	HASH GROUP BY	İ	İ	6657K	425M	1598	(32)	00:00:01	İ
*	2	İ	TABLE ACCESS INMEMORY FULL	LINEITEM	Í	6657K	425M	1352	(20)	00:00:01	İ

Figure. Plan using inmemory table

- The optimizations that turned out better showed similar performance to regular
- Others performed worse than the unoptimized version
 - Query involved joining three tables
 - For Materialized Views, we used a view that already joined the tables

]	Id	I	Operation	Name	١	Rows	Bytes	Cost	(%CPU)	Time
	0	ī	SELECT STATEMENT		Ī	6657K	425M	1598	(32)	00:00:01
	1	İ	HASH GROUP BY		ĺ	6657K	425M	1598	(32)	00:00:01
*	2	İ	TABLE ACCESS INMEMORY FULL	LINEITEM	ĺ	6657K	425M	1352	(20)	00:00:01

Figure. Plan using materialized views

- For parallelism, it took too long to run the query, so we had to cut the query off.
 - So its runtime is not actually 10.
- Others performed better than the unoptimized version
- Unlike for most of the other queries, materialized views performed well here.
 - Again, the first couple of runs took too long, so we excluded them in avg.

Id	Operation	Name	Rows	Bytes	TempSpc	Cost	(%CPU)	Time
0	SELECT STATEMENT		8296	850K		7946	(4)	00:00:0
1	HASH GROUP BY		8296	850K		7946	(4)	00:00:0
2	HASH JOIN		8296	850K	10M	7945	(4)	00:00:0
3	VIEW	VW_GBF_39	215K	8189K		1114	(6)	00:00:0
4	HASH GROUP BY		215K	12M		1114	(6)	00:00:0
5	HASH JOIN		215K	12M	6096K	1107	(6)	00:00:0
6	TABLE ACCESS INMEMORY FULL	CUSTOMER	164K	4167K	į į	39	(11)	00:00:0
7	TABLE ACCESS INMEMORY FULL	ORDERS	215K	7349K	i i	292	(18)	00:00:0
8	VIEW	VW GBC 38	1351K	85M	į į	1319	(17)	00:00:0
9	HASH GROUP BY		1351K	220M	į į	1319	(17)	00:00:0
10	HASH JOIN		1351K	220M	i i	1273	(14)	00:00:0
11	JOIN FILTER CREATE	:BF0000	2151	249K	i i	4	(0)	00:00:0
12	HASH JOIN		2151	249K	i i	4	(0)	00:00:0
13	TABLE ACCESS INMEMORY FULL	NATION	25	1325	i i	1	(0)	00:00:0
14	MERGE JOIN CARTESIAN		10753	693K	i i	3	(0)	00:00:0
15	TABLE ACCESS INMEMORY FULL	REGION	1	40	i i	1	(0)	00:00:0
16	BUFFER SORT		10753	273K	i i	3	(0)	00:00:0
17	TABLE ACCESS INMEMORY FULL	SUPPLIER	10753	273K	i i	3	(0)	00:00:0
18	JOIN FILTER USE	:BF0000	6755K	335M	i i	1245	(13)	00:00:0
19	TABLE ACCESS INMEMORY FULL	LINEITEM	6755K	335M		1245		

Figure. Plan using inmemory table

- For all queries (except for query 5), parallelism took about half the time of unoptimized
- Using materialized views did not give much improvement.

Id	Operation	Name	Rows	Bytes	TempSpc	Cost	(%CPU)	Time
0	SELECT STATEMENT		1	13		10408	(1)	00:00:0
1	SORT AGGREGATE		1	13	1			
2	VIEW		2	26	1	10408	(1)	00:00:00
3	UNION-ALL				j			
4	SORT AGGREGATE		1	48	Ī			
5	MAT VIEW REWRITE ACCESS FULL	LINEITEM SHIPDATE2	479	22992	İ	8202	(1)	00:00:0
6	SORT AGGREGATE	The state of the s	1	48	j			
7	TABLE ACCESS BY INDEX ROWID BATCHED	LINEITEM	113K	5342K	i	2207	(1)	00:00:0
8	BITMAP CONVERSION TO ROWIDS		NASYMININA		į			
9	BITMAP AND			į į	į		İ	
10	BITMAP CONVERSION FROM ROWIDS			i i	i		İ	
11	SORT ORDER BY			į į	İ		İ	
12	INDEX RANGE SCAN	LINEITEM DISCOUNT	39898	i i	i	55	(0)	00:00:0
13	BITMAP CONVERSION FROM ROWIDS	_		i i	į		i	
14	SORT ORDER BY			i i	6968K		į	
15	INDEX RANGE SCAN	LINEITEM QUANTITY	39898	i i	i	108	(0)	00:00:0

Figure. Plan using materialized views

- In-memory and parallelism did better than unoptimized (t = 3.588)
- Others performed worse than the unoptimized version

Id	Operation	Name	Rows	Bytes	Cost	(%CPU)	Time
0	SELECT STATEMENT		5	570	78382	(1)	00:00:04
1	HASH GROUP BY		5	570	78382	(1)	00:00:04
* 2	HASH JOIN		5	570	78381	(1)	00:00:04
* 3	HASH JOIN		1	88	55543	(2)	00:00:03
* 4	HASH JOIN		1	61	55505	(2)	00:00:03
5	VIEW	VW_NSO_1	6755K	83M	23064	(2)	00:00:01
* 6	FILTER						
7	HASH GROUP BY		1	167M	23064	(2)	00:00:01
8	TABLE ACCESS INMEMORY FULL	LINEITEM	6755K	167M	22814	(1)	00:00:01
9	TABLE ACCESS INMEMORY FULL	ORDERS	1400K	64M	287	(16)	00:00:01
10	TABLE ACCESS INMEMORY FULL	CUSTOMER	164K	4328K	38	(8)	00:00:01
11	TABLE ACCESS INMEMORY FULL	LINEITEM	6755K	167M	22814	(1)	00:00:01

Figure. Plan using in-memory table

- Parallelism performed almost twice as fast as the unoptimized version
- Others performed similarly or worse than the unoptimized version

Id	Operation	Name	Rows	Bytes	Cost	(%CPU)	Time	TQ	IN-OUT	PQ Distrib
0	SELECT STATEMENT		10	560	2336	(1)	00:00:01		1 1	
1	PX COORDINATOR									
2	PX SEND QC (RANDOM)	:TQ20003	10	560	2336	(1)	00:00:01	Q2,03	P->S	QC (RAND)
3	HASH GROUP BY		10	560	2336	(1)	00:00:01	Q2,03	PCWP	
4	PX RECEIVE		10	560	2336	(1)	00:00:01	Q2,03	PCWP	
5	PX SEND HASH	:TQ20002	10	560	2336	(1)	00:00:01	Q2,02	P->P	HASH
6	HASH GROUP BY		10	560	2336	(1)	00:00:01	Q2,02	PCWP	
7	HASH JOIN ANTI		10	560	2076	(1)	00:00:01	Q2,02	PCWP	
8	PX RECEIVE		952	40936	260	(1)	00:00:01	Q2,02	PCWP	
9	PX SEND HASH	:TQ20000	952	40936	260	(1)	00:00:01	Q2,00	P->P	HASH
10	PX BLOCK ITERATOR		952	40936	260	(1)	00:00:01	Q2,00	PCWC	
11	TABLE ACCESS FULL	CUSTOMER	952	40936	260	(1)	00:00:01	Q2,00	PCWP	
12	SORT AGGREGATE		1	30				Q2,00	PCWP	
13	PX COORDINATOR		I I	1		1				
14	PX SEND QC (RANDOM)	:TQ10000	1	30		1	1	Q1,00	P->S	QC (RAND)
15	SORT AGGREGATE		1	30		İ	İ	Q1,00	PCWP	
16	PX BLOCK ITERATOR		44719	1310K	260	(1)	00:00:01	Q1,00	PCWC	
17	TABLE ACCESS FULL	CUSTOMER	44719	1310K	260	(1)	00:00:01	Q1,00	PCWP	
18	PX RECEIVE		1400K	17M	1815	(1)	00:00:01	Q2,02	PCWP	
19	PX SEND HASH	:TQ20001	1400K	17M	1815	(1)	00:00:01	Q2,01	P->P	HASH
20	PX BLOCK ITERATOR		1400K	17M	1815	(1)	00:00:01	Q2,01	PCWC	
21	TABLE ACCESS FULL	ORDERS	1400K	17M	1815		00:00:01	Q2,01	PCWP	

Figure. Plan using parallelism

Note: For each of the queries, we just showed one example plan output. Just for reference, all the plan outputs for each of the runs for each of the queries is in the /plans directory.

Note: The raw run-time statistics are included in the /stats directory.

Part 3

Based off the results in part 2, we tried multiple strategies for optimization on the various queries. They included:

- 1. Use all of the optimizations that resulted in lower run times than the unoptimized run.
- 2. Use only the optimizations that significantly reduced the run time.
- 3. Pairing parallelism with the optimizations that worked best.

Query 1 - Statistics, In-memory, Parallelism

```
Execution Plan
Plan hash value: 2698183184
| Id | Operation
                                           | Rows | Bytes | Cost (%CPU)| Time
                                 Name
       TQ |IN-OUT| PQ Distrib
 0 | SELECT STATEMENT
                                                        80 | 8251
                                                                      (2) | 00:00
| 1 | PX COORDINATOR
  2 | PX SEND QC (RANDOM)
                                  :TQ10001 |
                                                         80 | 8251
                                                                      (2) | 00:00
:01 | Q1,01 | P->S | QC (RAND)
 3 | HASH GROUP BY
                                                         80 | 8251
                                                                      (2) | 00:00
                                                  4 |
:01 | Q1,01 | PCWP |
         PX RECEIVE
                                                         80 | 8251
                                                                      (2) | 00:00
:01 | Q1,01 | PCWP |
| 5 | PX SEND HASH
:01 | Q1,00 | P->P | HASH
                                   :TQ10000 |
                                                         80 | 8251
                                                                      (2) | 00:00
| 6 | HASH GR
:01 | Q1,00 | PCWP |
            HASH GROUP BY
                                                              8251
                                                         80 |
                                                                      (2) | 00:00
              PX BLOCK ITERATOR
                                            [ 6387K]
                                                        121M|
                                                              8191
                                                                      (1) | 00:00
:01 | Q1,00 | PCWC |
               TABLE ACCESS FULL| LINEITEM | 6387K|
                                                        121M| 8191
                                                                      (1) | 00:00
:01 | Q1,00 | PCWP |
```

- Statistics and keeping the tables in-memory seem to have improved the runtime equally.
- Oddly, only using the materialized view improved run time, but using the materialized view with these three optimizations increased run time.

Query 3 - Statistics, Parallelism

Query 0 - Otatistics	,							
Id Operation (%CPU) Time	TQ IN-OUT F	N PQ Dis	lame trib	1	Rows	Bytes Te	mpSpc	Cost
0 SELECT STATEM (1) 00:00:01	MENT	1	T	1	492K	23M		11788
1 PX COORDINAT	TOR	I,	1	1		1		
2 PX SEND QC (1) 00:00:01 C				1	492K	23M		11788
3 HASH GROUP (1) 00:00:01 0		1	E	1	492K	23M	30M	11788
4 PX RECEIN (1) 00:00:01 0		I	1	J	492K	23M		11788
5 PX SEND (1) 00:00:01 0				1	492K	23M		11788
6 HASH GF (1) 00:00:01 0			1	1	492K	23M	30M	11788
* 7 HASH I (1) 00:00:01 0		1		1	492K	23M		10270
8 JOIN (1) 00:00:01 0	FILTER CREATE Q1,01 PCWP	1 :	BF0000	1	218K	6622K		2076
9 PX F (1) 00:00:01 C		T.	1	1	218K	6622K		2076
10 PX (1) 00:00:01 C	SEND BROADCAST Q1,00 P->P E	: BROADO	TQ10000 AST	1	218K	6622K		2076
* 11 HA (1) 00:00:01 0	ASH JOIN Q1,00 PCWP	1	Ĺ	1	218K	6622K		2076
* 12	TABLE ACCESS FUL Q1,00 PCWP	L I C	USTOMER 		30000	410K		259
13 F (1) 00:00:01 C	PX BLOCK ITERATO Q1,00 PCWC	OR	1	1	729K	11M		1815
* 14 (1) 00:00:01 (TABLE ACCESS FU Q1,00 PCWP	טבבן כ	RDERS	1	729K	11M		1815
15 JOIN (1) 00:00:01 0		1 :	BF0000	1	3225K	58M		8191
16 PX E (1) 00:00:01 0		1	1	-	3225K	58M		8191
* 17 TAE (1) 00:00:01 C	BLE ACCESS FULL Q1,01 PCWP				3225K	58M	1	8191

• Statistics (1.946) and parallelism (1.88) alone did not produce significantly better results compared to the original (1.932); however, when combined, there was a big increase in performance (0.79).

Query 5 - Statistics, In Memory

query c	otationoo, iii momory					
	SELECT STATEMENT (3) 00:00:01	1		25	2000	
	HASH GROUP BY (3) 00:00:01			25	2000	
	HASH JOIN (3) 00:00:01			7306	570K	2640K
3 37	TABLE ACCESS INMEMORY FULL (6) 00:00:01		CUSTOMER	150K	878K	
	HASH JOIN (4) 00:00:01			182K	12M	6248K
	JOIN FILTER CREATE (15) 00:00:01		:BF0000	228K	3566K	
* 6 282		I	ORDERS	228KJ	3566KJ	
	HASH JOIN (11) 00:00:01			1200K	66M	
8	VIEW (20) 00:00:01		VW_GBF_40	2000	86000	
9		-		2000	119K	
	NIOL HZAH 10:00:00 (0)			2000	119K	
11	TABLE ACCESS INMEMORY FULL (0) 00:00:01		NATION	25	725	
12 3	MERGE JOIN CARTESIAN (Θ) ΘΘ:ΘΘ:Θ1			10000	312K	
* 13 1	TABLE ACCESS INMEMORY FULL (0) 00:00:01		REGION	1	27	
14	BUFFER SORT (0) 00:00:01			10000	50000	
15 3	TABLE ACCESS INMEMORY FULL (0) 00:00:01		SUPPLIER	10000	50000	
16 1195	JOIN FILTER USE (9) 00:00:01	1	:BF0000	6001K	85 M	
* 17 1195	TABLE ACCESS INMEMORY FULL (9) 00:00:01	1	LINEITEM	6001K	85M	

• Like for query 1, combining the memory view with these two optimizations increased run time. Also like in query 1, statistics and in memory view seemed to improve performance equally.

Query 6 - Statistics, In Memory, Parallelism

```
Elapsed: 00:00:00.03
Execution Plan
Plan hash value: 36873247
  Id | Operation
                                                 | Rows | Bytes | Cost (%CPU)
        | TQ |IN-OUT| PQ Distrib
   0 | SELECT STATEMENT
  00:00:01 |
         PX COORDINATOR
          PX SEND QC (RANDOM)
                                        :TQ10000 |
          | Q1,00 | P->S | QC (RAND)
            PX BLOCK ITERATOR
                                                     124K|
                                                           1948K|
                                                                    341 (12)
  00:00:01 | Q1,00 | PCWC |
             TABLE ACCESS INMEMORY FULL| LINEITEM | 124K| 1948K|
                                                                    341 (12)
 00:00:01 | Q1,00 | PCWP |
```

- This was by far the best optimization we had during the bake-off. It is worth noting that this may be because caching was very effective for this query; the first run took .97 seconds, and subsequent runs took around .03 seconds.
 - However, caching was also very effective for the runner-up setup (statistics and parallelism), where the first run was 1.48 seconds and subsequent runs were about .29 seconds
- It seemed that statistics made a huge difference in performance. Only in memory tables and parallelism ran for 1.45 seconds, but this setup of memory tables, parallelism, statistics ran in .03 seconds.
- Indexing, when combined with other optimizations, harmed performance

Query 18 - Statistics, In Memory, Parallelism, Indexing

Elapsed: 00:00:00.75		
Execution Plan		
Plan hash value: 2239335018		
Id Operation		Rows
0 SELECT STATEMENT	J	12
1 PX COORDINATOR	Ţ	
2 PX SEND QC (RANDOM) :TQ10004 0 6600 746 (14) 00:00:01 Q1,04 P->S QC (RAND)	J	12
3 HASH GROUP BY	1	12
4 PX RECEIVE	1	12
5 PX SEND HASH :TQ10003 0 6600 746 (14) 00:00:01 Q1,03 P->P HASH	V)	12
6 HASH GROUP BY 0 6600 746 (14) 00:00:01 Q1,03 PCWP	1	12
* 7 HASH JOIN 0 6600 745 (14) 00:00:01 Q1,03 PCWP	1	12
8 PX RECEIVE	1	3
9 PX SEND BROADCAST :TQ10002 0 1440 420 (18) 00:00:01 Q1,02 P->P BROADCAST	1	3
* 10 HASH JOIN 0 1440 420 (18) 00:00:01 Q1,02 PCWP	J	3
11 PX RECEIVE	1	3
12 PX SEND BROADCAST :TQ10001 0 780 410 (19) 00:00:01 Q1,01 P->P BROADCAST	1	3
13 NESTED LOOPS 0 780 410 (19) 00:00:01 Q1,01 PCWP	İ	3
14 NESTED LOOPS 7 780 410 (19) 00:00:01 Q1,01 PCWP	1	
15 VIEW VW_NSO_1 7 285 376 (20) 00:00:01 Q1,01 PCWP	1	5

```
* 16 |
                         FILTER
                                    | Q1,01 | PCWC |
                          HASH GROUP BY
                                                                                  18
                    (20) | 00:00:01 | Q1,01 | PCWP |
                           PX RECEIVE
                                                                                  18
                    (20) | 00:00:01 | Q1,01 | PCWP |
                            PX SEND HASH
                                                           | :TQ10000
                                                                                  18
                    (20) | 00:00:01 | Q1,00 | P->P | HASH
      399 1
                             HASH GROUP BY
                                                                                  18
                    (20) | 00:00:01 | Q1,00 | PCWP |
                              PX BLOCK ITERATOR
                                                                                 600
       40MI
              320
                     (6) | 00:00:01 | Q1,00 | PCWC |
                     TABLE ACCESS INMEMORY FULL| LINEITEM (6) | 00:00:01 | Q1,00 | PCWP |
                                                                                 600
      40M1
              320
                        INDEX RANGE SCAN
                                                           | ORDERS_ORDERKEY |
                     (0) | 00:00:01 | Q1,01 | PCWP |
                       TABLE ACCESS BY INDEX ROWID
                                                           I ORDERS
                     (0) | 00:00:01 | Q1,01 | PCWP |
                    PX BLOCK ITERATOR
                                                                                  15
0K[ 3222K]
                    (0) | 00:00:01 | Q1,02 | PCWC |
               10
                     TABLE ACCESS INMEMORY FULL
| 26 |
| 0K| 3222K|
                                                           CUSTOMER
               10
                     (0) | 00:00:01 | Q1,02 | PCWP |
                PX BLOCK ITERATOR
                                                                                 600
       40M1
              320 (6) | 00:00:01 | Q1,03 | PCWC |
| 28 |
1K| 40M|
                 TABLE ACCESS INMEMORY FULL
                                                           LINEITEM
                                                                                 600
                     (6) | 00:00:01 | Q1,03 | PCWP |
              320
```

• This performance was not significantly better than just in memory tables and parallelism (.76 seconds vs .81 seconds)

Query 22 - Statistics, Parallelism

Elapsed: 00:00:00.16						
Execution Plan						
Plan hash value: 1374175114						
Id Operation	ame	Rows	Bytes	10	ost (%	CP
0 SELECT STATEMENT 1) 00:00:01		1	28	T	2337	(
1 PX COORDINATOR		l	Ĺ	1		
2 PX SEND QC (RANDOM) :7 1) 00:00:01 Q2,03 P->S QC (RAND)	TQ20003	1	28	1	2337	(
3 HASH GROUP BY 1) 00:00:01 Q2,03 PCWP		1	28	1	2337	(
4 PX RECEIVE 1) 00:00:01 Q2,03 PCWP		1	28	1	2337	(
5 PX SEND HASH :1 1) 00:00:01 Q2,02 P->P HASH	TQ20002	1	28	1	2337	(
6 HASH GROUP BY 1) 00:00:01 Q2,02 PCWP		1	28	1	2337	(
* 7 HASH JOIN ANTI 1) 00:00:01 Q2,02 PCWP		5	140	1	2076	(
8 PX RECEIVE 0) 00:00:01 Q2,02 PCWP		510	12240	Ï	259	(
9 PX SEND HASH :7 0) 00:00:01 Q2,00 P->P HASH	TQ20000	510	12240	1	259	(
10 PX BLOCK ITERATOR 0) 00:00:01 Q2,00 PCWC		510	12240	L	259	(
* 11 TABLE ACCESS FULL CU 0) 00:00:01 Q2,00 PCWP	USTOMER	510	12240	I	259	(
12 SORT AGGREGATE Q2,00 PCWP		1	20	T		
13 PX COORDINATOR		Į.	l	T		

```
PX SEND QC (RANDOM)
                                              :TQ10000 |
                                                                    20 |
                Q1,00 | P->S | QC (RAND)
                        SORT AGGREGATE
                                                                    20 |
                Q1,00 | PCWP |
                         PX BLOCK ITERATOR
                                                       44719
1) | 00:00:01 |
                Q1,00 | PCWC |
                          TABLE ACCESS FULL| CUSTOMER | 44719 |
                                                                   873KI
                                                                            260
1) | 00:00:01 |
                Q1,00 | PCWP |
                PX RECEIVE
                                                          1500K
                                                                  5859KI
                                                                           1815
1) | 00:00:01 |
                Q2,02 | PCWP |
                 PX SEND HASH
                                              :TQ20001 |
                                                                  5859K|
                                                          1500K
                                                                           1815
1)| 00:00:01 | Q2,01 | P->P | HASH
                  PX BLOCK ITERATOR
                                                          1500K|
                                                                  5859K|
                                                                           1815
1) | 00:00:01 | Q2,01 | PCWC |
                   TABLE ACCESS FULL
                                             ORDERS
                                                          1500K
                                                                  5859KI
                                                                           1815
1) | 00:00:01 |
               Q2,01 | PCWP |
```

 In-memory tables, when combined with other optimizations, harmed the performance of this query.

Concluding comments

- Since the statistics are precomputed, the greater amount of information while running a query will almost always improve performance.
- Putting the tables in memory should have also led to a general performance increase, since the I/O of memory is significantly faster than that of hard drives.
- Furthermore, parallelism should generally increase performance, though not always linearly, because of the greater number of cores processing the guery at the same time.
- Indexing and creating memory views did not always improve performance. It may have been because we did not create the most optimal indices and memory views.

Thank you!