1

AI1103-Assignment 4

Name: Umesh Kalvakuntla Roll No.: CS20BTECH11024

Download latex-tikz codes from

https://github.com/Umesh-k26/AI-1103/blob/main/Assignment4/assignment4.tex

and python codes from

https://github.com/Umesh-k26/AI-1103/tree/main/ Assignment4/codes

UGC/MATH 2019, Q.50

Let X_1, X_2, X_3, X_4, X_5 be *i.i.d.* random variables having a continuous distribution function. Then

$$Pr(X_1 > X_2 > X_3 > X_4 > X_5 | X_1 = max(X_1, X_2, X_3, X_4, X_5)$$

equals _____

- 1) $\frac{1}{4}$
- 2) $\frac{1}{5}$
- 3) $\frac{1}{4!}$
- 4) $\frac{1}{5!}$

Solution

Since X_1 , X_2 , X_3 , X_4 and X_5 are identical and independently distributed random variables, they can be represented by a single random variable X. Let

$$\{x_1, x_2, x_3, x_4, x_5\} \in X$$

Required probability,

=
$$\Pr(X_1 > X_2 > X_3 > X_4 > X_5 | X_1 = max(X_1, X_2, X_3, X_4, X_5))$$

$$(0.0.1)$$

=
$$\Pr(x_1 > x_2 > x_3 > x_4 > x_5 | x_1 = max(x_1, x_2, x_3, x_4, x_5))$$

$$(0.0.2)$$

Required probability,

$$= \Pr(x_2 > x_3 > x_4 > x_5)$$

$$= \Pr(x_2 = max(x_2, x_3, x_4, x_5))$$

$$\times \Pr(x_3 = max(x_3, x_4, x_5))$$

$$\times \Pr(x_4 = max(x_4, x_5))$$
(0.0.4)

Since x_2, x_3, x_4, x_5 are distinct, only one of them can be maximum. And the probability that x_2 being maximum is $\frac{1}{4}$.

Similarly, the probabilities of other two terms of the equation (0.0.4) are $\frac{1}{3}$ and $\frac{1}{2}$ respectively.

:. Required probability is,

$$= \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \tag{0.0.5}$$

$$=\frac{1}{4!}$$
 (0.0.6)

The correct answer is **Option 3**.