Majeure Machine Learning

Deep Learning Introduction

Contenu

- Principe de Deep Learning
- Réseau de neurones
- Fonctions d'activation
- Backpropagation

Ce que vous devrez savoir faire

- Comprendre ce qu'est le Deep Learning
- Comprendre ce qu'est un neurone artificiel
- Comprendre ce qu'est un réseau de neurones
- Comprendre l'intuition de la Backpropagation

Deep Learning

Définition

"L'apprentissage profond est un ensemble de méthodes d'apprentissage automatique tentant de modéliser avec un haut niveau d'abstraction des données grâce à des architectures articulées de différentes transformations non linéaires." Wikipedia

Définition

Définition

Source : http://www.deeplearningbook.org

Pourquoi un tel essor depuis 2010

Le deep learning aujourd'hui

Les réseaux de neurones

Une inspiration biologique

Le neurone artificiel

Pré-activation:

$$a(x) = b + \sum_i w_i x_i$$

Activation (output):

$$h(x) = g(a(x)) = g(b + \sum_i w_i x_i)$$

- w => poids
- **b** => biais
- g(.) => fonction d'activation

Feed Forward Neural Network

Feed Forward Neural Network

Feed Forward Neural Network

Intuition de capacité

Démo - Playground

Fonctions d'activation - Couches cachées

- Très utilisé jusqu'à il y a quelques années
- Problème : <u>Gradient</u> <u>Vanishing</u>

- Très utilisé dans les RNNs
- Même problème que la Sigmoid

- Référence actuelle pour les FeedForwards
- Sparse (peut être égale à 0) => bien pour l'optimisation et le stockage
- Plus de problème de Gradient Vanishing sur la partie positive
- Problème de "Diying"

Fonctions d'activation (Régression) - Output

$$o(x) = b + \sum_i w_i h_i^2$$

Fonctions d'activation (Classification) - Output

Binaire

Sigmoid : $\sigma(x) = rac{1}{1+e^{-x}}$

Multi-class

Softmax :
$$p(y=j|\mathbf{x}) = rac{e^{(\mathbf{w}_j^T\mathbf{x}+b_j)}}{\sum_{k\in K}e^{(\mathbf{w}_k^T\mathbf{x}+b_k)}}$$

Cost Function - Rappel

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

=> Objectif: Minimiser la Cost function

Fonction Coût: Régression

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

$$J(heta) = 1/N \sum_{n=1}^{N} (\hat{y}(x_n, heta) - y(x_n))^2 \ \ C(heta) = \sum_{i=1}^{n} y^i log(\hat{y}^i) + (1-y^i) log(1-\hat{y}^i)$$

Descente de gradients - rappel

$$J(heta) = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2$$

Dérivée partielle :
$$rac{\partial J(heta)}{\partial heta_1} = 1/N \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n)) x_n$$

Pour i allant de 1 à nombre choisi :

$$heta_1 = heta_1 - lpha rac{\partial J(heta)}{\partial heta_1}$$

Avec $\alpha > 0$, le pas d'avancement

$$\theta$$
1 = 5
Dérivé partielle = 3
=> θ 1 = 5 - 1*3 = 2

$$\theta$$
1 = 2
Dérivé partielle = -1
=> θ 1 = 2 - 1*(-1) = 2 + 1 = 3

Descente de gradients - problématique des réseaux de neurones

$$\hat{y}(x) - y(x)$$

=> Comment calculer les erreurs des couches précédentes ?

Backpropagation

Fin du chapitre 5.1