Trajectory Design for Space Systems

EN.530.626 (Fall 2025)

Lecture 8

Instructor: Prof. Abhishek Cauligi

Course Assistant 1: Arnab Chatterjee

Course Assistant 2: Mark Gonzales

Class review

So far: smooth constrained optimization

$$\min_{x} f(x) \qquad \qquad f \in \mathscr{C}^2$$
 subject to: $h_i(x) = 0, \quad i = 1, \ldots, m \qquad h_i \in \mathscr{C}^2$
$$g_i(x) = 0, \quad i = 0, \ldots, p \qquad g_i \in \mathscr{C}^2$$

Allows us to leverage Newton method-style approaches for solving problem

Class review

Quadratic programs

One particular formulation we have returned to has been convex quadratic programs

$$\min_{x} \frac{1}{2} x^T P x + p^T x \qquad \qquad P \in \mathbb{S}^n_+$$
 subject to:
$$Ax = 0 \qquad \qquad A \in \mathbb{R}^{m \times n}$$

$$Gx \leq h \qquad \qquad G \in \mathbb{R}^{p \times n}$$

Applied primal-dual interior point methods to find solutions for these

What's next?

Recall optimization classes:

- Unconstrained vs. discrete
- Smooth vs. non smooth
- Convex vs. non-convex
- Continuous vs. discrete

- A whole field of optimization on its own
- Convex ≠ easy
- Advantages
 - (1) Enjoys strong convergence guarantees
 - (2) Local optimizer is global one

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

Convex sets

• A set \mathcal{X} is convex if $\forall x_1, x_2 \in \mathcal{X}$ and $\theta \in [0,1]$

$$\theta x_1 + (1 - \theta)x_2 \in \mathcal{X}$$

Convex sets

• A set \mathcal{X} is convex if $\forall x_1, x_2 \in \mathcal{X}$ and $\theta \in [0,1]$

$$\theta x_1 + (1 - \theta)x_2 \in \mathcal{X}$$

$$||x||_2 \le r_{\text{dist}}$$

Convex sets

• A set \mathcal{X} is convex if $\forall x_1, x_2 \in \mathcal{X}$ and $\theta \in [0,1]$

$$\theta x_1 + (1 - \theta)x_2 \in \mathcal{X}$$

$$\|x\|_2 \le r_{\text{dist}}$$

$$\|x\|_2 = r_{\text{dist}}$$

Convex sets

• A set \mathcal{X} is convex if $\forall x_1, x_2 \in \mathcal{X}$ and $\theta \in [0,1]$

$$\theta x_1 + (1 - \theta)x_2 \in \mathcal{X}$$

 $||x||_2 \le r_{\text{dist}}$

 $||x||_2 = r_{\text{dist}}$ $r_{\text{min}} \le ||x||_2 \le r_{\text{max}}$

Convex sets

The intersection of convex sets is convex

Convex functions

• A function f(x) is convex if $\forall x_1, x_2 \in \text{dom } f$ and $\theta \in [0,1]$

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

$$f(x) = x^2$$

$$f(x) = x^4 - 2 * x^3 - 10x^2 + 7x - 17$$

Convex functions

• A function f(x) is convex if $\forall x_1, x_2 \in \text{dom } f$ and $\theta \in [0,1]$

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

$$f(x) = x^2$$

$$f(x) = x^4 - 2 * x^3 - 10x^2 + 7x - 17$$

Convex functions

• A function f(x) is convex if $\forall x_1, x_2 \in \text{dom } f$ and $\theta \in [0,1]$

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

• Note: f need not be smooth (i.e., $\nabla_x f(x)$ might not exist)

Convex functions and sets

• The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is:

$$epi f = \{(x, t) | x \in dom f, f(x) \le t\}$$

• f is a convex function if and only if $\operatorname{epi} f$ is a convex set

f is convex function \Leftrightarrow epif is convex set

Convex functions and sets

• The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is:

$$epi f = \{(x, t) | x \in dom f, f(x) \le t\}$$

Convex functions and sets

• The epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is:

$$epi f = \{(x, t) | x \in dom f, f(x) \le t\}$$

Informally: is the space above a convex function a convex set?

Why does this matter?

- A local solution to a convex problem is also the global solution
 - For smooth unconstrained optimization, if $f \in \mathscr{C}^2$:

$$x^*$$
 is global optimizer $\Leftrightarrow \nabla_x f(x^*) = 0$

• For smooth constrained optimization, if $f, h, g \in \mathscr{C}^2$:

$$x^*$$
 is global optimizer $\Leftrightarrow \nabla_x \mathscr{L}(x^*, y^*, z^*) = 0$

Completeness guarantees

• A function $f: \mathbb{R} \to \mathbb{R}$ is called *self-concordant* if f is convex and:

$$f'''(x) \le 2f''(x)^{\frac{3}{2}}$$

Loosely, "third derivative doesn't change too quickly"

ConvexityCompleteness guarantees

INTERIOR POINT

POLYNOMIAL TIME METHODS

IN

CONVEX PROGRAMMING

A. Nemirovski

Spring Semester 1996

Convexity In summary

• Convexity does not mean the problem is easy

Convexity In summary

- Convexity does not mean the problem is easy
- Convex programs do not have to be smooth

Convexity In summary

- Convexity does not mean the problem is easy
- Convex programs do not have to be smooth
- Convex programs are not the only ones with global optima

- Most practical systems of interest are non-convex
- For *smooth* non-convex optimization problems, most approaches rely on solving a sequence of convex approximations to the problem

- Most practical systems of interest are non-convex
- For *smooth* non-convex optimization problems, most approaches rely on solving a sequence of convex approximations to the problem

- Most practical systems of interest are non-convex
- For smooth non-convex optimization problems, most approaches rely on solving a sequence of convex approximations to the problem

Sequential quadratic programming

$$\min_{x} f(x)$$

$$h(x) = 0$$
subj. to:
$$g(x) \le 0$$

$$f, h, g \in \mathscr{C}^2$$

Sequential quadratic programming

$$\min_{x} f(x)$$

$$\sinh_{x} f(x) = 0$$

$$g(x) \le 0$$

$$f, h, g \in \mathscr{C}^{2}$$

1. Given
$$w^0 = (x^0, y^0, z^0)$$

2. Construct Lagrangian using w

for
$$k \in [1,N_{\text{max}}]$$

3. Solve local QP approximation

$$\min_{\Delta x} \frac{1}{2} \Delta x^T \nabla_x \mathcal{L}(\bar{x}) \Delta x + \nabla_x \mathcal{L}(\bar{x})$$
 subj. to:
$$h(\bar{x}) + \nabla_x h(\bar{x}) \Delta x = 0$$

$$g(\bar{x}) + \nabla_x g(\bar{x}) \Delta x \leq 0$$

4. Line search to find α

$$5. w^k = w^{k-1} + \alpha \Delta w^k$$

5. Terminate when necessary conditions satisfied

Collision avoidance

Collision avoidance

$$x_k \in \mathcal{X}_{safe}$$

Collision avoidance

 $x_k \in \mathcal{X}_{safe}$

Collision avoidance

 $x_k \in \mathcal{X}_{safe}$ Non-convex

Dynamics constraints

An equality constraint can be written as a two-sided inequality

$$x_{k+1} = f(x_k, u_k)$$
 $x_{k+1} \le f(x_k, u_k)$
 $x_{k+1} \le f(x_k, u_k)$

Dynamics constraints

An equality constraint can be written as a two-sided inequality

$$x_{k+1} = f(x_k, u_k)$$
 $x_{k+1} \le f(x_k, u_k)$
 $-x_{k+1} \le -f(x_k, u_k)$

Dynamics constraints

An equality constraint can be written as a two-sided inequality

• For both a function $f(x_k, u_k)$ and its negative $-f(x_k, u_k)$ to be convex with respect to x_k and $u_k, f(\cdot)$ must be an affine function

$$x_{k+1} = Ax_k + Bu_k + c$$

Dynamics constraints

An equality constraint can be written as a two-sided inequality

$$x_{k+1} = f(x_k, u_k)$$
 $x_{k+1} \le f(x_k, u_k)$
 $-x_{k+1} \le -f(x_k, u_k)$

• For both a function $f(x_k, u_k)$ and its negative $-f(x_k, u_k)$ to be convex with respect to x_k and $u_k, f(\cdot)$ must be an affine function

$$x_{k+1} = Ax_k + Bu_k + c$$

Any system with nonlinear dynamics is non-convex

Dynamics constraints

Spacecraft double integrator (convex)

$$x_{k+1} = \begin{pmatrix} I & \Delta tI \\ 0 & I \end{pmatrix} x_k + \begin{pmatrix} \Delta t^2 I \\ \Delta tI \end{pmatrix} u_k$$

Dynamics constraints

Spacecraft double integrator (convex)

$$x_{k+1} = \begin{pmatrix} I & \Delta tI \\ 0 & I \end{pmatrix} x_k + \begin{pmatrix} \Delta t^2 I \\ \Delta tI \end{pmatrix} u_k$$

Mars rover (non-convex)

$$x_{k+1} = x_k + \Delta t \begin{bmatrix} v_k \cos \theta_k \\ v_k \sin \theta_k \\ \omega_k \end{bmatrix}$$

Optimal control as nonlinear programs

How to convert a trajectory generation problem into standard optimization form?

Solve for trajectory $(x_{0:N}, u_{0:N})$

$$\min_{x_{0:N}, u_{0:N}} g_T(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

subject to:
$$x_0 = x_{\text{init}}$$

$$x_{k+1} = f(x_k, u_k)$$

$$x_k \in \mathcal{X}_{\text{safe}}$$

$$u_k \in \mathcal{U}$$

Optimal control as nonlinear programs

How to convert a trajectory generation problem into standard optimization form?

Solve for trajectory $(x_{0:N}, u_{0:N})$

$$\min_{x_{0:N}, u_{0:N}} g_T(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

subject to:
$$x_0 = x_{\text{init}}$$

$$x_{k+1} = f(x_k, u_k)$$

$$x_k \in \mathcal{X}_{\text{safe}}$$

$$u_k \in \mathcal{U}$$

- 1. Convert to standard form with inequality constraints written as $g_i(x_k, u_k) \le 0$ and equality constraints as $h_i(x_{k+1}, x_k, u_k) = 0$
- 2. Provide gradient and Hessian for each constraint and cost

Converting an optimal control problem into standard form can be <u>cumbersome!</u>

Off-the-shelf trajectory optimization

Interface vs. solver

- An interface allows for solving the same optimization problem with different backend solvers
- Allows for rapid prototyping and testing

Off-the-shelf trajectory optimization

Interface vs. solver

```
X = cp.Variable(shape=(nx, N+1))
    U = cp.Variable(shape=(nu, N))
                                                                                                        CVXPY
    cost = 0.0
    constraints = []
   # Initial condition for system
    constraints += [X[:,0] == x_init]
  v for cp_idx in range(N):
        # Add stage-wise cost
11
12
        cost += cp.quad_form(X[:, cp_idx+1] - x_goal, Q) + cp.quad_form(U[:, cp_idx], R)
13
14
        # Dynamics constraint
        constraints += [X[:, cp_idx+1] == Ak @ X[:,cp_idx] + Bk @ U[:,cp_idx]]
15
16
17
        # State upper and lower bounds
        constraints += [X[:, cp_idx+1] <= x_max]</pre>
        constraints += [X[:, cp_idx+1] >= x_min]
19
20
21
        # Control upper and lower bounds
        constraints += [U[:, cp_idx] <= u_max]</pre>
        constraints += [U[:, cp_idx] >= u_min]
24
    prob = cp.Problem(cp.Minimize(cost), constraints)
    prob.solve()
    print(prob.value)
 4677.378851800433
```

Solver interfaces

Python

>>acados >>pyomo

CVXPY (CasADi

C++

CasADi

acados

Convex solvers

Linear programs: GLPK, SCIP

Quadratic programs: OSQP, HPIPM, QPOASES

Second-order cone programs: SCS, ECOS, Clarabel

Semidefinite programs: SEDUMI, SDPT3

General nonlinear programs: IPOPT, SNOPT, KNITRO

Mixed integer linear programs: CPLEX, KNITRO, MOSEK, Gurobi

Mixed integer quadratic programs: MOSEK, Gurobi

Mixed integer nonlinear programming

NLLS solvers

Popular for SLAM

• Many problems in SLAM yield nonlinear least squares (NLLS) problems

$$\min_{x} \|f(x) - y\|_2^2$$

- Constraints are managed by "penalizing" violations
- Weaker guarantees and recent work in SLAM has sought to connect convex optimization with such problems
- Solvers: g2o, GTSAM, ceres, symforce, theseus

References

- D. Malyuta, Y. Yu, P. Elango, and B. Acikmese, "Advances in trajectory optimization for space vehicle control," Annual Reviews in Control, vol. 52, pp. 282 315, 2021.
- M. Kelly, "An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation," SIAM Review, vol. 59, no. 4, pp. 849 —904, 2017.
- D. Malta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone, and B. Acikmese, "Convex Optimization for Trajectory Generation," *IEEE Control Systems Magazine*, vol. 42, no. 5, pp. 40 113, 2022.