Universidad de Guadalajara

Seminario de programación de sistemas reconfigurables

Contadores en cascada

Nombre:

Muñoz Nuñez Ian Emmanuel

Sección: D01

Código: 216464457

Maestra:

María Patricia Ventura Nuñez

Ingeniería Robótica

1. Objetivo

Solucionar problemas de diseño utilizando las herramientas aprendidas en programación de sistemas reconfigurables.

Simular circuitos digitales en progrmas de diseño como *Proteus* e implementarlos físicamente.

2. Material

- Protoboard.
- Fuente VCC (5V).
- Resistencias 220Ω y $2K\Omega$.
- Dip-switch de 8 y 4 bits.
- 2 contadores *4029*.
- 2 decodificadores 74LS48.
- 1 compuerta AND.
- 2 Display's de 7 segmentos de cátodo común.

3. Marco teórico

Para este proyecto lo más complicado fue entender el funcionamiento de los contadores, pero después de eso, es sencillo, pues cada que un contador termina su secuencia o se desborda, se manda la señal al siguiente contador, por lo que simplemente se tiene que conectar el el acarreo de salida (en el caso del contador 4029) o a la terminal de salida del conteo ascendente o descendente (en el caso del contador 74LS193).

4. Procedimiento

Para realizar el proyecto primero se entendió el funcionamiento de los contadores, una vez hecho eso, solo se conectaron los pines de *preset* se conectaron correctamente para que la secuencia iniciara en 68, que es el número con el que inicia mi secuencia en el circuito binario, y ya que en el circuito de *BCD* la secuencia inicia en 0, todas las entradas de *preset* se conectaron a tierra. Las salidas se conectaron a los *led's* en el caso del circuito en binario, y en el de *BCD* se conectaron a los decodificadores, y la salida de estos se conecto a los *display's*. Al final, se condicionaron las salidas de los contadores, para que cuando lleguen al último número de la secuencia estos se reiniciaran y así, la secuencia comenzara de nuevo.

Los materiales utilizados son: 1 dip-switch de 8 bits y otro de 4 bits, resistencias de $2k\Omega$ y de 220Ω , 12 led's, 4 compuertas AND 74LS08, 2 decodificadores 74LS48, 2 display's de 7 segmentos de cátodo común, y por último, 2 contadores 4029 y 2 74LS193.

5. Circuito a implementar

El circuito que se eligió para implementar en protoboard fue el *BCD*, pues es más sencillo y visualmente más interesante.

5.1. Simulación

En las siguientes 2 páginas se muestra el diseño de los circuitos en simulación. El primero es el circuito en binario, y el segundo en *BCD*.

Contadores en cascada con 74LS193 en binario

Contadores en cascada con 4029 en BCD

Secuencia: 0-80

Maestra: Maria Patricia ventura Nuñez

Seccion: D01

Codigo: 216464457

Nombre: Muñoz Nuñez Ian Emmanuel

5.2. Protoboard

Figura 1: Circuito en protoboard

6. Conclusión

Comprender el funcionamiento de los contadores es importante pues son componentes muy utilizados en los circuitos, y no de esta forma no es necesario diseñar por nuestra cuenta un contador, y tienen lo necesario para poder utilizarlos en bastantes escenarios, y lo mejor es que son baratos, accesibles y sencillos de comprender y usar.