# $12a_{0206} (K12a_{0206})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{52} + u^{51} + \dots + 2u - 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 52 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{52} + u^{51} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} (-u^{6} - u^{4} + 1) \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 2u^{7} + u^{5} - 2u^{3} - u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{16} - 4u^{14} - 8u^{12} - 4u^{10} - u^{8} + 1 \\ -u^{16} - 4u^{14} - 8u^{12} - 8u^{10} - 4u^{8} + 2u^{6} + 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{25} + 6u^{23} + \dots + 2u^{3} + u \\ u^{27} + 7u^{25} + \dots + 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{36} - 9u^{34} + \dots + u^{2} + 1 \\ -u^{38} - 10u^{36} + \dots + 8u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{47} + 12u^{45} + \dots + 4u^{3} + 2u \\ u^{49} + 13u^{47} + \dots + 6u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-4u^{51} 4u^{50} + \cdots + 16u 14$

### (iv) u-Polynomials at the component

| Crossings                   | u-Polynomials at each crossing       |
|-----------------------------|--------------------------------------|
| $c_1$                       | $u^{52} + 29u^{51} + \dots - 2u + 1$ |
| $c_2, c_6$                  | $u^{52} - u^{51} + \dots - 2u - 1$   |
| $c_3, c_4, c_7$             | $u^{52} + u^{51} + \dots + 9u - 2$   |
| $c_5,c_{10}$                | $u^{52} + u^{51} + \dots - 2u - 1$   |
| $c_8, c_9, c_{11}$ $c_{12}$ | $u^{52} + 11u^{51} + \dots + 2u + 1$ |

### (v) Riley Polynomials at the component

| Crossings                   | Riley Polynomials at each crossing     |
|-----------------------------|----------------------------------------|
| $c_1$                       | $y^{52} - 11y^{51} + \dots - 54y + 1$  |
| $c_{2}, c_{6}$              | $y^{52} + 29y^{51} + \dots - 2y + 1$   |
| $c_3, c_4, c_7$             | $y^{52} - 51y^{51} + \dots + 115y + 4$ |
| $c_5,c_{10}$                | $y^{52} - 11y^{51} + \dots - 2y + 1$   |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^{52} + 61y^{51} + \dots + 2y + 1$   |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.444793 + 0.901226I | 0.92885 - 2.07964I                    | -4.26783 + 3.51699I  |
| u = -0.444793 - 0.901226I | 0.92885 + 2.07964I                    | -4.26783 - 3.51699I  |
| u = 0.146457 + 0.972329I  | -1.98877 - 1.22586I                   | -14.2459 + 3.8733I   |
| u = 0.146457 - 0.972329I  | -1.98877 + 1.22586I                   | -14.2459 - 3.8733I   |
| u = 0.323497 + 0.988659I  | -3.15249 + 2.68021I                   | -16.7312 - 6.1438I   |
| u = 0.323497 - 0.988659I  | -3.15249 - 2.68021I                   | -16.7312 + 6.1438I   |
| u = 0.456989 + 0.963997I  | 0.08024 + 6.29340I                    | -7.80687 - 10.48412I |
| u = 0.456989 - 0.963997I  | 0.08024 - 6.29340I                    | -7.80687 + 10.48412I |
| u = -0.533289 + 0.935620I | 8.97543 - 1.96457I                    | -4.12437 + 3.29680I  |
| u = -0.533289 - 0.935620I | 8.97543 + 1.96457I                    | -4.12437 - 3.29680I  |
| u = 0.010867 + 1.083970I  | 5.22663 - 3.18836I                    | -9.99011 + 2.49513I  |
| u = 0.010867 - 1.083970I  | 5.22663 + 3.18836I                    | -9.99011 - 2.49513I  |
| u = 0.533053 + 0.946195I  | 8.84021 + 8.51151I                    | -4.50581 - 8.08698I  |
| u = 0.533053 - 0.946195I  | 8.84021 - 8.51151I                    | -4.50581 + 8.08698I  |
| u = -0.286778 + 0.838173I | -0.49981 - 1.35692I                   | -5.02302 + 4.66234I  |
| u = -0.286778 - 0.838173I | -0.49981 + 1.35692I                   | -5.02302 - 4.66234I  |
| u = -0.844411 + 0.100508I | 4.53747 + 8.38588I                    | -5.64729 - 5.07323I  |
| u = -0.844411 - 0.100508I | 4.53747 - 8.38588I                    | -5.64729 + 5.07323I  |
| u = 0.835966 + 0.104158I  | 4.83277 - 1.89906I                    | -5.09326 + 0.33485I  |
| u = 0.835966 - 0.104158I  | 4.83277 + 1.89906I                    | -5.09326 - 0.33485I  |
| u = -0.836110 + 0.052296I | -3.96880 + 5.07450I                   | -9.58177 - 6.04455I  |
| u = -0.836110 - 0.052296I | -3.96880 - 5.07450I                   | -9.58177 + 6.04455I  |
| u = -0.837189             | -6.56025                              | -14.2030             |
| u = 0.800491 + 0.040631I  | -2.27501 - 0.99664I                   | -5.31105 + 0.16572I  |
| u = 0.800491 - 0.040631I  | -2.27501 + 0.99664I                   | -5.31105 - 0.16572I  |
| u = -0.590815 + 0.525994I | 10.12740 - 2.48798I                   | -1.62823 + 2.66940I  |
| u = -0.590815 - 0.525994I | 10.12740 + 2.48798I                   | -1.62823 - 2.66940I  |
| u = 0.595814 + 0.510152I  | 10.06680 - 4.04960I                   | -1.78451 + 2.29010I  |
| u = 0.595814 - 0.510152I  | 10.06680 + 4.04960I                   | -1.78451 - 2.29010I  |
| u = 0.440029 + 1.215220I  | -5.96613 + 3.38286I                   | 0                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.440029 - 1.215220I  | -5.96613 - 3.38286I                   | 0                   |
| u = -0.436602 + 0.554857I | 1.87781 - 1.71309I                    | -1.63672 + 4.44020I |
| u = -0.436602 - 0.554857I | 1.87781 + 1.71309I                    | -1.63672 - 4.44020I |
| u = 0.399851 + 1.232500I  | 0.78270 + 2.35026I                    | 0                   |
| u = 0.399851 - 1.232500I  | 0.78270 - 2.35026I                    | 0                   |
| u = 0.474496 + 1.211950I  | -5.71832 + 5.61366I                   | 0                   |
| u = 0.474496 - 1.211950I  | -5.71832 - 5.61366I                   | 0                   |
| u = -0.402451 + 1.238770I | 0.46667 + 4.08632I                    | 0                   |
| u = -0.402451 - 1.238770I | 0.46667 - 4.08632I                    | 0                   |
| u = -0.432707 + 1.233580I | -7.82605 + 0.62175I                   | 0                   |
| u = -0.432707 - 1.233580I | -7.82605 - 0.62175I                   | 0                   |
| u = -0.459952 + 1.231280I | -10.23690 - 4.62494I                  | 0                   |
| u = -0.459952 - 1.231280I | -10.23690 + 4.62494I                  | 0                   |
| u = 0.504700 + 1.214320I  | 1.52858 + 6.77648I                    | 0                   |
| u = 0.504700 - 1.214320I  | 1.52858 - 6.77648I                    | 0                   |
| u = -0.483738 + 1.224360I | -7.45916 - 9.83676I                   | 0                   |
| u = -0.483738 - 1.224360I | -7.45916 + 9.83676I                   | 0                   |
| u = -0.505337 + 1.218480I | 1.20269 - 13.28750I                   | 0                   |
| u = -0.505337 - 1.218480I | 1.20269 + 13.28750I                   | 0                   |
| u = 0.475410 + 0.418845I  | 1.55220 - 2.39312I                    | -3.19595 + 4.86079I |
| u = 0.475410 - 0.418845I  | 1.55220 + 2.39312I                    | -3.19595 - 4.86079I |
| u = 0.355912              | -0.860619                             | -11.7250            |

II. u-Polynomials

| Crossings                   | u-Polynomials at each crossing       |
|-----------------------------|--------------------------------------|
| $c_1$                       | $u^{52} + 29u^{51} + \dots - 2u + 1$ |
| $c_2, c_6$                  | $u^{52} - u^{51} + \dots - 2u - 1$   |
| $c_3, c_4, c_7$             | $u^{52} + u^{51} + \dots + 9u - 2$   |
| $c_5, c_{10}$               | $u^{52} + u^{51} + \dots - 2u - 1$   |
| $c_8, c_9, c_{11}$ $c_{12}$ | $u^{52} + 11u^{51} + \dots + 2u + 1$ |

III. Riley Polynomials

| Crossings                   | Riley Polynomials at each crossing     |
|-----------------------------|----------------------------------------|
| $c_1$                       | $y^{52} - 11y^{51} + \dots - 54y + 1$  |
| $c_2, c_6$                  | $y^{52} + 29y^{51} + \dots - 2y + 1$   |
| $c_3, c_4, c_7$             | $y^{52} - 51y^{51} + \dots + 115y + 4$ |
| $c_5, c_{10}$               | $y^{52} - 11y^{51} + \dots - 2y + 1$   |
| $c_8, c_9, c_{11}$ $c_{12}$ | $y^{52} + 61y^{51} + \dots + 2y + 1$   |