Меры связи

1 Коэффициент корреляции К.Пирсона.

Используется для выявления *линейной* связи между двумя показателями, измеренными в количественной шкале. Желательно, чтобы в данных не было нетипичных значений (выбросов), так как их наличие может искажать полученные результаты.

• Расчет коэффициента корреляции R

$$R = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}},$$

где \bar{x} — среднее арифметическое, посчитанное по первой выборке, где \bar{y} — среднее арифметическое, посчитанное по второй выборке, n — число элементов в выборке.

 $R \in [-1;1]$, если R > 0 — связь между показателями прямая, если R < 0 — связь между показателями обратная, $R \neq 0$ — линейной связи между показателями нет.

ullet Проверка гипотезы о равенстве теоретического коэффициента корреляции ho нулю

 $H_0: \rho = 0$ (связи между показателями нет)

 $H_A: \rho \neq 0$ (связь между показателями есть)

$$t_{ ext{haбл}} = rac{R}{\sqrt{1-R^2}}\sqrt{n-2}$$

$$t_{\text{крит}} = t_{(1-\frac{\alpha}{2}, df=n-2)}$$

 $|t_{
m Ha6J}| > t_{
m Kput} \Rightarrow {\it H}_0$ отвергается, связь между показателями есть.

 $|t_{\rm Ha6J}| < t_{
m KDUT} \Rightarrow H_0$ не отвергается, связи между показателями нет.

2 Коэффициент корреляции Ч.Спирмена.

Используется для выявления связи между двумя показателями, измеренными в ранговой (ординальной) шкале. ¹ Можно использовать и для выявления связи между показателями, измеренными в метрической шкале; более того, данный коэффициент уместно вычислять в случае, когда в выборках присутствуют нетипичные значения (выбросы), так как коэффициент корреляции Ч.Спирмена является более устойчивым к выбросам по сравнению с коэффициентом корреляции К.Пирсона.

• Расчет коэффициента корреляции $R_{\mathbf{C}_{\mathbf{\Pi}\mathbf{u}\mathbf{p}\mathbf{M}\mathbf{e}\mathbf{H}\mathbf{a}}}$

$$R_{\text{Спирмена}} = 1 - \frac{6 \cdot \sum\limits_{i=1}^{n} d_i^2}{n(n^2 - 1)},$$

где d_i – разность между рангом i-того наблюдения в первой выборке и рангом i-того наблюдения во второй выборке, n – число элементов в выборке.

 $R_{\text{Спирмена}} \in [-1;1]$, если R>0 – согласованность рангов прямая, если R<0 – согласованность рангов обратная, $R\neq 0$ – связи между рангами нет.

 $^{^{1}}$ Примеры показателей: места в рейтинге, экспертные оценки от 1 до 5.

• Проверка гипотезы о равенстве теоретического коэффициента корреляции ρ нулю

 $H_0: \rho_{\text{Спирмена}} = 0$ (связи между показателями нет)

 $H_A: \rho_{\text{Спирмена}} \neq 0$ (связь между показателями есть)

$$z_{
m набл} = R_{
m Cпирмена} \sqrt{n-1}$$

$$z_{\text{крит}} = z_{(1-\frac{\alpha}{2})}$$

 $|z_{
m Had_{I}}|>z_{
m KDHT}\Rightarrow {\it H}_0$ отвергается, связь между показателями есть.

 $|z_{
m Hadol}| < z_{
m KDHT} \Rightarrow H_0$ не отвергается, связи между показателями нет.

3 Таблицы сопряженности и проверка независимости признаков, измеренных в качественной шкале.

Используется для выявления связи между двумя показателями, измеренными в качественной (номинальной) шкале. 2

• Таблица сопряженности

Есть таблица сопряженности 2×2 (пол – любовь к шоколаду) и на 5% уровне значимости мы хотим проверить гипотезу о независимости признаков «пол» и «любовь к шоколаду».

	люблю шоколад	не люблю шоколад	
мужчины	20	15	$n_{1.} = 35$
женщины	35	20	$n_{2.} = 55$
	$n_{.1} = 55$	$n_{.2} = 35$	N = 90

Нумерация элементов таблицы – как в матрице (первый индекс элемента – номер строки, в которой находится элемент, второй индекс – номер столбца). Точка на месте индекса означает любую строку/столбец. Например, $n_{1.}=35$ – сумма по первой строке (одна строка, все столбцы), а $n_{.1}=55$ – сумма по первому столбцу (один столбец, все строки). N – сумма всех значений в таблице.

$$n_{11}^{\text{набл}} = 20$$

$$n_{12}^{\text{набл}} = 15$$

$$n_{22}^{\text{набл}} = 20$$

• Проверка гипотезы о независимости признаков

 H_0 : связи между признаками нет, они независимы

 H_A : связь между признаками есть, они не независимы

Для того, чтобы, как всегда, сравнивать наблюдаемое и критическое значение статистики критерия, необходимо определить ожидаемые частоты – значения в ячейках, которые имели

 $^{^2}$ Примеры показателей: пол, уровень образования, согласие/несогласие с утверждением, поддержка/неподдержка кандидата.

бы место, если бы нулевая гипотеза была верна, и признаки были бы независимы. Общая формула расчета выглядит так:

$$n_{ij}^{\text{ожид}} = \frac{n_{i.} \cdot n_{.j}}{N_{,}}$$

где i и j — номер строки и столбца, в которых находится интересующее число n. То есть, мы перемножаем сумму по соответствующей строке и столбцу и делим на общее число N. Рассчитаем ожидаемые значения всех частот в таблице.

$$n_{11}^{\text{ожид}} = \frac{35.55}{90} \approx 21.4$$
 $n_{12}^{\text{ожид}} = \frac{35.35}{90} \approx 13.6$ $n_{21}^{\text{ожид}} = \frac{55.55}{90} \approx 33.6$ $n_{22}^{\text{ожид}} = \frac{55.35}{90} \approx 21.4$

Интересующие нас наблюдаемые частоты мы берем из таблицы. Получаем такие пары:

$$n_{11}^{ ext{набл}} = 20$$
 $n_{11}^{ ext{ожид}} = rac{35.55}{90} pprox 21.4$ $n_{12}^{ ext{набл}} = 15$ $n_{12}^{ ext{ожид}} = rac{35.35}{90} pprox 13.6$ $n_{21}^{ ext{набл}} = 35$ $n_{21}^{ ext{ожид}} = rac{55.55}{90} pprox 33.6$ $n_{22}^{ ext{набл}} = 20$ $n_{22}^{ ext{ожид}} = rac{55.35}{90} pprox 21.4$

Статистика использумого критерия имеет распределение хи-квадрат (χ^2). Наблюдаемое значение статистики считается следующим образом:

$$\chi^2_{ ext{набл}} = \sum_{i,j=1}^n rac{(n_{ij}^{ ext{набл}} - n_{ij}^{ ext{ожид}})^2}{n_{ij}^{ ext{ожид}}}$$

Посчитаем для нашего случая:

$$\chi^2_{\text{\tiny HaGJI}} = \frac{(20 - 21.4)^2}{21.4} + \frac{(15 - 13.6)^2}{13.6} + \frac{(35 - 33.6)^2}{33.6} + \frac{(20 - 21.4)^2}{21.4} \approx 0.39$$

Критическое значение статистики критерия определяется следующим образом:

$$\chi^2_{\text{крит}} = \chi^2_{1-\alpha, df=(r-1)(c-1)},$$

где r — число строк в таблице сопряженности, c — число столбцов в таблице. В простом случае 2×2 , в таком, как наш, число степеней свободы будет всегда равняться 1.

$$\chi^2_{\text{крит}} = \chi^2_{1-0.05, df=1} = 3.841$$

Сравниваем наблюдаемое значение и критическое, видим, что наблюдаемое меньше критического, делаем вывод о том, что на уровне значимости 5% нет оснований отвергнуть нулевую гипотезу о независимости признаков. Любовь к шоколаду никак не связана с полом человека.