Multiple Hypothesis Testing in Conjoint Analysis

Yuki Shiraito

University of Michigan

Formal and Quantitative Seminar
Department of Political Science
The University of North Carolina at Chapel Hill

March 11, 2022

Joint work with Guoer Liu (U-M)

Motivation Correction Methods Simulation Reanalysis Concluding Remark

Conjoint Analysis

Conjoint Analysis

Do conjoint, and you will get at least one significant result

Advice given to a presenter in a conference

Conjoint Analysis

Conjoint Design

Please read the descriptions of the potential immigrants carefully. Then, please indicate which of the two immigrants you would personally prefer to see admitted to the United States.

	Immigrant 1	Immigrant 2
Prior Trips to the U.S.	Entered the U.S. once before on a tourist visa	Entered the U.S. once before on a tourist visa
Reason for Application	Reunite with family members already in U.S.	Reunite with family members already in U.S.
Country of Origin	Mexico	Iraq
Language Skills	During admission interview, this applicant spoke fluent English	During admission interview, this applicant spoke fluent English
Profession	Child care provider	Teacher
Job Experience	One to two years of job training and experience	Three to five years of job training and experience
Employment Plans	Does not have a contract with a U.S. employer but has done job interviews	Will look for work after arriving in the U.S.
Education Level	Equivalent to completing two years of college in the U.S.	Equivalent to completing a college degree in the U.S.
Gender	Female	Male

Conjoint Analysis

Conjoint Design

Please read the descriptions of the potential immigrants carefully. Then, please indicate which of the two immigrants you would personally prefer to see admitted to the United States.

	Immigrant 1	Immigrant 2
Prior Trips to the U.S.	Entered the U.S. once before on a tourist visa	Entered the U.S. once before on a tourist visa
Reason for Application	Reunite with family members already in U.S.	Reunite with family members already in U.S.
Country of Origin	Mexico	Iraq
Language Skills	During admission interview, this applicant spoke fluent English	During admission interview, this applicant spoke fluent English
Profession	Child care provider	Teacher
Job Experience	One to two years of job training and experience	Three to five years of job training and experience
Employment Plans	Does not have a contract with a U.S. employer but has done job interviews	Will look for work after arriving in the U.S.
Education Level	Equivalent to completing two years of college in the U.S.	Equivalent to completing a college degree in the U.S.
Gender	Female	Male

AMCE: test multiple causal hypotheses simultaneously

Classic Conjoint Results

ullet Test one hypothesis, $\alpha \equiv \mathbb{P}(\text{Reject null} \mid \text{Null is true}) = 0.05$

- Test one hypothesis, $\alpha \equiv \mathbb{P}(\text{Reject null} \mid \text{Null is true}) = 0.05$
- \bullet Test ten hypotheses simultaneously with $\alpha=$ 0.05

- Test one hypothesis, $\alpha \equiv \mathbb{P}(\text{Reject null} \mid \text{Null is true}) = 0.05$
- ullet Test ten hypotheses simultaneously with lpha= 0.05

FWER
$$\equiv \mathbb{P}(\text{At least one null is rejected} \mid \text{All nulls are true})$$

=1 $-(1-\alpha)^{10} \approx .4$

- Test one hypothesis, $\alpha \equiv \mathbb{P}(\text{Reject null} \mid \text{Null is true}) = 0.05$
- ullet Test ten hypotheses simultaneously with lpha= 0.05

FWER
$$\equiv \mathbb{P}(\text{At least one null is rejected} \mid \text{All nulls are true})$$

=1 - (1 - α)¹⁰ \approx .4

Theoretical results

Number of Hypotheses in Conjoint Analysis: 41

• If AMCE is zero, in how many samples do you get false findings?

- If AMCE is zero, in how many samples do you get false findings?
- Two scenarios for 41 attribute levels:

- If AMCE is zero, in how many samples do you get false findings?
- Two scenarios for 41 attribute levels:
 - No individual effect

- If AMCE is zero, in how many samples do you get false findings?
- Two scenarios for 41 attribute levels:
 - No individual effect
 - 2 Nonzero individual effect, but zero average effect

- If AMCE is zero, in how many samples do you get false findings?
- Two scenarios for 41 attribute levels:
 - No individual effect
 - Nonzero individual effect, but zero average effect
- Number of samples for each number of false findings:

(a) Zero Individual MCE

(b) Nonzero Individual MCE but Zero AMCE

ptivation Correction Methods Simulation Reanalysis Concluding Remark

• Objective: contain false positive conclusions

- Objective: contain false positive conclusions
- Trade-off: risk false negative conclusions

- Objective: contain false positive conclusions
- Trade-off: risk false negative conclusions
- Correction methods
 - Control family-wise error rate (FWER)
 - Bonferroni Correction
 - Control false discovery rate (FDR)
 - Benjamini-Hochberg Procedure
 - Control false discovery rate (FDR) & Reduce RMSE
 - Adaptive Shrinkage

- Objective: contain false positive conclusions
- Trade-off: risk false negative conclusions
- Correction methods
 - Control family-wise error rate (FWER)
 - Bonferroni Correction
 - Control false discovery rate (FDR)
 - Benjamini-Hochberg Procedure
 - Control false discovery rate (FDR) & Reduce RMSE
 - Adaptive Shrinkage
- Proposal:

otivation Correction Methods Simulation Reanalysis Concluding Remark

Bonferroni Correction

ullet Controls FWER to lpha

- ullet Controls FWER to α
- Procedure: set $\alpha^* = \frac{\alpha}{\# \text{ of tests}}$ for each test

Correction Methods

- Controls FWER to α
- Procedure: set $\alpha^* = \frac{\alpha}{\# \text{ of tests}}$ for each test
- Strength: easy to construct confidence intervals

Correction Methods

- ullet Controls FWER to α
- Procedure: set $\alpha^* = \frac{\alpha}{\# \text{ of tests}}$ for each test
- Strength: easy to construct confidence intervals
- Shortcomings:
 - high risk of false negative conclusions ambiguous definition of "total number of tests"

ptivation Correction Methods Simulation Reanalysis Concluding Remark

Benjamini-Hochberg Procedure

Correction Methods

Controls FDR:

$$\mathbb{E}\left[\frac{\text{\# of false discoveries}}{\text{\# of total discoveries}}\right] \leq \alpha$$

Benjamini-Hochberg Procedure

Correction Methods

Controls FDR:

$$\mathbb{E}\left[\frac{\textit{\# of false discoveries}}{\textit{\# of total discoveries}}\right] \leq \alpha$$

- Solution:
 - Rank p-values from smallest to largest
 - Reject the null up to the largest p-value such that

$$p \le \frac{\text{rank of } p}{\text{# of tests}} \ \alpha$$

Benjamini-Hochberg Procedure

Controls FDR:

$$\mathbb{E}\left[\frac{\textit{\# of false discoveries}}{\textit{\# of total discoveries}}\right] \leq \alpha$$

- Solution:
 - Rank p-values from smallest to largest
 - Reject the null up to the largest p-value such that

$$p \le \frac{\text{rank of } p}{\text{# of tests}} \ \alpha$$

• Strength: less susceptive to false negative conclusion

Benjamini-Hochberg Procedure

Controls FDR:

$$\mathbb{E}\left[\frac{\textit{\# of false discoveries}}{\textit{\# of total discoveries}}\right] \leq \alpha$$

- Solution:
 - Rank p-values from smallest to largest
 - Reject the null up to the largest p-value such that

$$p \le \frac{\text{rank of } p}{\text{# of tests}} \ \alpha$$

- Strength: less susceptive to false negative conclusion
- Shortcomings: sensitive to pre-specified FDR no uncertainty measures

ptivation Correction Methods Simulation Reanalysis Concluding Remark

Adaptive Shrinkage

Adaptive Shrinkage

ullet Regularizes eta by placing a *spike-and-slab* prior

Adaptive Shrinkage

Correction Methods

• Regularizes β by placing a *spike-and-slab* prior

$$p(\beta|\hat{\beta},\hat{\sigma}) \propto \underbrace{p(\hat{\beta}|\beta,\hat{\sigma})}_{\text{Likelihood}} \underbrace{p(\beta|\hat{\sigma})}_{\text{Prior}}$$

• Regularizes β by placing a *spike-and-slab* prior

$$p(\beta|\hat{\beta},\hat{\sigma}) \propto \underbrace{p(\hat{\beta}|\beta,\hat{\sigma})}_{\text{Likelihood}} \underbrace{p(\beta|\hat{\sigma})}_{\text{Prior}}$$

Adaptive Shrinkage

• Regularizes β by placing a *spike-and-slab* prior

$$p(\beta|\hat{eta},\hat{\sigma}) \propto \underbrace{p(\hat{eta}|eta,\hat{\sigma})}_{\text{Likelihood}} \underbrace{p(eta|\hat{\sigma})}_{\text{Prior}}$$

- Procedure: empirical Bayes post-estimation procedure
- Strength: transparent, flexible, credible interval more precise point estimates

otivation Correction Methods Simulation Reanalysis Concluding Remark

Simulations

Simulations

• Design matrix based on the immigration conjoint by Heimuller et al.

Simulations

- Design matrix based on the immigration conjoint by Heimuller et al.
- Avoiding false positives: zero AMCE
 - No individual effect
 - Nonzero individual effect, but zero average effect

Simulations

- Design matrix based on the immigration conjoint by Heimuller et al.
- Avoiding false positives: zero AMCE
 - No individual effect
 - Nonzero individual effect, but zero average effect
- Avoiding both false positives and false negatives: nonzero AMCE
 - Only gender has effect (appendix)
 - 2 All levels of gender, education, English have effects

Zero AMCE

(a) Zero Individual MCE

(b) Nonzero Individual MCE but Zero AMCE

Nonzero AMCE

					No.	of Fa	lse F	ositi	ves			
			0	1	2	3	4	5	6	7	8	9
	No corr.	9	2	8	3	1	4	1				_
	110 0011.	10	258	270	196	133	54	42	13	10	4	1
		8	38									_
	Bonf corr.	9	305	6	2							
N CE D III		10	623	25	1							
No. of True Positives		8	4									_
	BH corr.	9	47	25	4		1					
		10	607	208	66	23	7	6	2			_
		8	17	2								_
	ashUnif corr.	9	160	26	4	1		1				
		10	620	127	30	6	5	1				
		8	21	2								_
	ashNorm corr.	9	172	29	3	1	1					
		10	647	99	14	7	4					

Correct number of positives: 10

otivation Correction Methods Simulation Reanalysis Concluding Remark

• Immigrants preferred by the U.S. public (Hainmueller et al. 2014)

- Immigrants preferred by the U.S. public (Hainmueller et al. 2014)
 - Focus on Country of Origin and Profession

- Immigrants preferred by the U.S. public (Hainmueller et al. 2014)
 - Focus on Country of Origin and Profession
 - To show:
 - How corrected results differ
 - ASh attains the middle

- Immigrants preferred by the U.S. public (Hainmueller et al. 2014)
 - Focus on Country of Origin and Profession
 - To show:
 - How corrected results differ
 - ASh attains the middle
- Trading partners preferred in Vietnam (Spiker et al. 2016)

- Immigrants preferred by the U.S. public (Hainmueller et al. 2014)
 - Focus on Country of Origin and Profession
 - To show:
 - How corrected results differ
 - ASh attains the middle
- Trading partners preferred in Vietnam (Spiker et al. 2016)
 - Focus on Military Ally and Environmental Standards

- Immigrants preferred by the U.S. public (Hainmueller et al. 2014)
 - Focus on Country of Origin and Profession
 - To show:
 - How corrected results differ
 - ASh attains the middle
- Trading partners preferred in Vietnam (Spiker et al. 2016)
 - Focus on Military Ally and Environmental Standards
 - To show:
 - Bonf. and ASh recovers the null correctly
 - 2 BH does not correct at all with few number of discoveries

Country of Origin

Country of Origin

Profession

Profession

Selecting Trading Partners in Vietnam

Conjoint analysis inherently needs multiple hypothesis testing

- Conjoint analysis inherently needs multiple hypothesis testing
- No correction → danger of false findings

- Conjoint analysis inherently needs multiple hypothesis testing
- No correction → danger of false findings
- Correction methods
 - Bonferroni Correction (Most conservative)
 - Benjamini-Hochberg Procedure (Least conservative)
 - Adaptive shrinkage (middle-ground)

- Conjoint analysis inherently needs multiple hypothesis testing
- No correction → danger of false findings
- Correction methods
 - Bonferroni Correction (Most conservative)
 - Benjamini-Hochberg Procedure (Least conservative)
 - Adaptive shrinkage (middle-ground)

- Conjoint analysis inherently needs multiple hypothesis testing
- No correction → danger of false findings
- Correction methods
 - Bonferroni Correction (Most conservative)
 - Benjamini-Hochberg Procedure (Least conservative)
 - Adaptive shrinkage (middle-ground)

Do correction, or you will get at least one false result

ASh Model

• Model:
$$\beta = (\beta_1, ..., \beta_J)$$
; est. $\hat{\beta}$, std.err $\hat{\sigma}$
$$p(\beta|\hat{\beta}, \hat{\sigma}) \propto \underbrace{p(\hat{\beta}|\beta, \hat{\sigma})}_{\text{Likelihood}} \underbrace{p(\beta|\hat{\sigma})}_{\text{Prior}}$$

$$\beta_1, ..., \beta_J \overset{\textit{iid}}{\sim} g$$

where

$$g(\cdot; \boldsymbol{\pi}) = \pi_0 \delta_0(\cdot) + \sum_{k=1}^K \pi_k \mathcal{N}(\cdot; 0, \delta_k^2),$$
$$\sum_{k=0}^K \pi_k = 1 \quad \text{and} \quad \pi_k \ge 0$$

Emprical Bayes estimates:

$$\hat{\boldsymbol{\pi}} = \operatorname*{argmax}_{\boldsymbol{\pi}} \prod_{j=1}^{J} \sum_{k=0}^{K} \pi_k \mathcal{N}(\hat{\beta}_j; \mathbf{0}, \delta_k^2 + \hat{\mathbf{s}}_j^2)$$

Simulation Result: Only One Nonzero AMCE

			No. of False Positives										
			0	1	2	3	4	5	6	7	8		
	No corr.	1	230	290	215	123	69	42	19	9	3		
No. of True Positives	Bonf. corr.	1	966	32	2						_		
ivo. of frue rositives	BH corr.	1	931	61	7	1					_		
	$ashUnif\ corr.$	1	996	4									
	$ashNorm\ corr.$	1	998	2							_		

$$\epsilon_i \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, 0.01^2)$$

Simulation Result: Only One Nonzero AMCE

						No	of l	False	Posi	tive	2S				
			0	1	2	3	4	5	6	7	8	9	10	11	12
	No corr.	1	237	253	223	134	83	38	17	6	2	6			1
No. of True Positives	Bonf. corr.	1	962	37	1										
140. Of True Tositives	BH corr.	1	930	55	7	5	1	1	1						
	$ash Unif\ corr.$	1	984	14	2										
	$ash Norm\ corr.$	1	987	12	1										

$$\epsilon_i \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, 0.1^2)$$

Simulation Result: Nonzero AMCE in Each Attribute

	No. of False Positives														
			0	1	2	3	4	5	6	7	8	9	10	11	12
	No corr.	7		2				1							
		8	10	22	27	16	22	8	2	3	1				
		9	118	194	179	169	86	58	39	19	13	7	2	1	1
		5	7	3											
	Bonf corr.	6	77	5	2										
	Dom corr.	7	244	15	7										
		8	396	37	5										
No. of True Positives		9	180	20	2										
		6	5	2											
	BH corr.	7	37	15	5	1	1								
		8	147	89	36	11	4	1		3					
		9	321	187	75	35	12	8	1	3	1				
		6	12	3	1	1									
	ashUnif corr.	7	84	25	4	1	1								
		8	220	99	23	12	1	1							
		9	294	130	46	29	8	2	2		1				
		5		1											
	ashNorm corr.	6	11	5	2	1									
	asmvorm corr.	7	98	21	5	2									
		8	224	100	24	10	1	1							
		9	295	124	42	21	7	2	2	1					

Figure: The true AMCE for each attribute has one significant levels I.

Simulation Result: Nonzero AMCE in Each Attribute

					o. of										
			0 1	2	3	4	5	6	7	8	9	10	11	12	13
		6		5	7	4	4	1	1						
	No corr.	7		41	46	34	17	8	9	3					
		8		115	100	88	52	22	16	12	6	1		2	1
		9		100	116	82	49	31	17	5	1	4			
		4	1	37											
		5	2	247	14	1									
	Bonf corr.	6	4	365	15	1									
		7	4	224	7	3	1								
		8	2	63	2										
		9		7											
No. of True Positives		4		3											
		5		32	4	2									
	BH corr.	6		106	28	7	4	2							
		7		212	70	17	8	1	1						
		8		229	82	38	9	7	2	1	1				
		9		77	34	13	5	3	2						
		4		2	1		1								
		5	1	52	13	4									
	ashUnif corr.	6	1	176	50	13	5								
		7		233	72	14	11	1	1						
		8		180	62	23	6	1	1	2					
		9		40	20	10	2	1	1						
		4		4			1								
		5	1	47	13	4									
	ashNorm corr.	6	1	174	49	11	3								
		7	234	71	17	8		1							
		8		187	63	23	7	1	2	1					
		9		43	20	11	1	2							

Figure: The true AMCE for each attribute has one significant levels II. The standard deviation for the reference category of *Job Experience* is four times larger.

Simulation Result: ASh RMSE

