Computational Applications in International Trade. Lecture 1

Felix Tintelnot

University of Chicago

Open Source Economics Laboratory August 5th, 2019

Course Overview

- ▶ Three lectures on computational applications in international trade
- 1. Lecture 1: Gravity Trade model, Solution approach for counterfactuals (hat algebra), Dynamic hat algebra
 - Eaton and Kortum (2002); Dekle, Eaton, and Kortum (2007);
 Caliendo, Dvorkin, and Parro (forthcoming)
- 2. Lecture 2: Interdependent Discrete Choice Problems
 - Antras, Fort, and Tintelnot (2017), Jia (2008), Arkolakis and Eckert (2018)
- 3. Lecture 3: Endogenous Production Networks
 - ► Tintelnot, Kikkawa, Mogstad, and Dhyne (2018), Lim (2018)

Problem Set

- 1. Application of hat algebra: Simulate US-China trade conflict
- 2. Interdependent discrete choice problems: Document performance of Jia (2008) algorithm in your own application

Gravity trade model

- ► A simple yet powerful framework for quantitative analysis. Widely used in practice.
- ▶ We can extend the gravity model to include
 - Multiple sectors
 - Multiple factors of production
 - ► Intermediate inputs
 - Domestic geography, internal migration, etc

Counterfactuals and estimation

- Often we are interested in predictions "what would happen to Y if X or β changes?"
- Usually this involves estimating various parameters and then re-computing the new equilibrium for changed parameters / covariates
- ► However, in some contexts we can skip the estimation step and directly move to counterfactuals:
 - ▶ Dekle, Eaton, and Kortum (2008)
 - Still need an estimate of trade elasticity
 - You can answer interesting questions simply by solving a system of non-linear equations!

Gravity Trade model (in one slide)

▶ Recall that the Eaton and Kortum (2002) model implies the following expression for aggregate trade flows from country *j* to country *i*:

$$X_{ij} = \frac{T_j(w_j d_{ij})^{-\theta}}{\sum_{i=1}^{N} T_j(w_j d_{ij})^{-\theta}} X_i$$

Gravity Trade model (in one slide)

▶ Recall that the Eaton and Kortum (2002) model implies the following expression for aggregate trade flows from country *j* to country *i*:

$$X_{ij} = \frac{T_j(w_j d_{ij})^{-\theta}}{\sum_{i=1}^{N} T_j(w_j d_{ij})^{-\theta}} X_i$$

▶ The labor market clearing condition implies:

$$\sum_{i} X_{ij} = w_j L_j$$

Gravity Trade model (in one slide)

▶ Recall that the Eaton and Kortum (2002) model implies the following expression for aggregate trade flows from country j to country i:

$$X_{ij} = \frac{T_j(w_j d_{ij})^{-\theta}}{\sum_{i=1}^{N} T_j(w_j d_{ij})^{-\theta}} X_i$$

▶ The labor market clearing condition implies:

$$\sum_{i} X_{ij} = w_j L_j$$

▶ This leads to a system of non-linear equations to solve for wages,

$$w_j L_j = \sum_i \frac{T_j(w_j d_{ij})^{-\theta}}{\sum_k T_k \left(w_k d_{ik}\right)^{-\theta}} w_i L_i.$$

Consider a shock to labor endowments, trade costs, or productivity. One could compute the original equilibrium, the new equilibrium and compute the changes in endogenous variables.

- Consider a shock to labor endowments, trade costs, or productivity. One could compute the original equilibrium, the new equilibrium and compute the changes in endogenous variables.
- ▶ But there is a simpler way that uses only information for observables in the initial equilibrium, trade shares and GDP; the trade elasticity, θ ; and the exogenous shocks.

First solve for changes in wages by solving

$$\hat{w}_j \hat{L}_j Y_j = \sum_i \frac{\pi_{ij} \hat{T}_j \left(\hat{w}_j \hat{d}_{ij} \right)^{-\theta}}{\sum_k \pi_{ik} \hat{T}_k \left(\hat{w}_k \hat{d}_{ik} \right)^{-\theta}} \hat{w}_i \hat{L}_i Y_i$$

and then get changes in trade shares from

$$\hat{\pi}_{ij} = \frac{\hat{T}_j \left(\hat{w}_j \hat{d}_{ij} \right)^{-\theta}}{\sum_k \pi_{ik} \hat{T}_k \left(\hat{w}_k \hat{d}_{ik} \right)^{-\theta}}.$$

First solve for changes in wages by solving

$$\hat{w}_j \hat{L}_j Y_j = \sum_i \frac{\pi_{ij} \hat{T}_j \left(\hat{w}_j \hat{d}_{ij} \right)^{-\theta}}{\sum_k \pi_{ik} \hat{T}_k \left(\hat{w}_k \hat{d}_{ik} \right)^{-\theta}} \hat{w}_i \hat{L}_i Y_i$$

and then get changes in trade shares from

$$\hat{\pi}_{ij} = \frac{\hat{T}_j \left(\hat{w}_j \hat{d}_{ij} \right)^{-\theta}}{\sum_k \pi_{ik} \hat{T}_k \left(\hat{w}_k \hat{d}_{ik} \right)^{-\theta}}.$$

 From here, one can compute welfare changes as described further below.

▶ To show this, note that trade shares are

$$\pi_{ij} = \frac{T_{j} \left(w_{j} d_{ij} \right)^{-\theta}}{\sum_{k} T_{k} \left(w_{k} d_{ik} \right)^{-\theta}} \text{ and } \pi'_{ij} = \frac{T'_{j} \left(w'_{j} d'_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta}}.$$

▶ To show this, note that trade shares are

$$\pi_{ij} = \frac{T_{j} \left(w_{j} d_{ij} \right)^{-\theta}}{\sum_{k} T_{k} \left(w_{k} d_{ik} \right)^{-\theta}} \text{ and } \pi'_{ij} = \frac{T'_{j} \left(w'_{j} d'_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta}}.$$

▶ Letting $\hat{x} \equiv x'/x$, then we have

$$\hat{\pi}_{ij} = \frac{\hat{T}_{j} \left(\hat{w}_{j} \hat{d}_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta} / \sum_{\ell} T_{\ell} \left(w_{\ell} d_{i\ell} \right)^{-\theta}}$$

▶ To show this, note that trade shares are

$$\pi_{ij} = \frac{T_{j} \left(w_{j} d_{ij} \right)^{-\theta}}{\sum_{k} T_{k} \left(w_{k} d_{ik} \right)^{-\theta}} \text{ and } \pi'_{ij} = \frac{T'_{j} \left(w'_{j} d'_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta}}.$$

▶ Letting $\hat{x} \equiv x'/x$, then we have

$$\hat{\pi}_{ij} = \frac{\hat{T}_{j} \left(\hat{w}_{j} \hat{d}_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta} / \sum_{\ell} T_{\ell} \left(w_{\ell} d_{i\ell} \right)^{-\theta}}$$

$$= \frac{\hat{T}_{j} \left(\hat{w}_{j} \hat{d}_{ij} \right)^{-\theta}}{\sum_{k} \hat{T}_{k} \left(\hat{w}_{k} \hat{d}_{ik} \right)^{-\theta} T_{k} \left(w_{k} d_{ik} \right)^{-\theta} / \sum_{\ell} T_{\ell} \left(w_{\ell} d_{i\ell} \right)^{-\theta}}$$

▶ To show this, note that trade shares are

$$\pi_{ij} = \frac{T_{j} \left(w_{j} d_{ij} \right)^{-\theta}}{\sum_{k} T_{k} \left(w_{k} d_{ik} \right)^{-\theta}} \text{ and } \pi'_{ij} = \frac{T'_{j} \left(w'_{j} d'_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta}}.$$

▶ Letting $\hat{x} \equiv x'/x$, then we have

$$\hat{\pi}_{ij} = \frac{\hat{T}_{j} \left(\hat{w}_{j} \hat{d}_{ij} \right)^{-\theta}}{\sum_{k} T'_{k} \left(w'_{k} d'_{ik} \right)^{-\theta} / \sum_{\ell} T_{\ell} \left(w_{\ell} d_{i\ell} \right)^{-\theta}}$$

$$= \frac{\hat{T}_{j} \left(\hat{w}_{j} \hat{d}_{ij} \right)^{-\theta}}{\sum_{k} \hat{T}_{k} \left(\hat{w}_{k} \hat{d}_{ik} \right)^{-\theta} T_{k} \left(w_{k} d_{ik} \right)^{-\theta} / \sum_{\ell} T_{\ell} \left(w_{\ell} d_{i\ell} \right)^{-\theta}}$$

$$= \frac{\hat{T}_{j} \left(\hat{w}_{j} \hat{d}_{ij} \right)^{-\theta}}{\sum_{k} \pi_{ik} \hat{T}_{k} \left(\hat{w}_{k} \hat{d}_{ik} \right)^{-\theta}}.$$

▶ On the other hand, for equilibrium we have

$$w_j'L_j' = \sum_i \pi_{ij}' w_i' L_i' = \sum_i \hat{\pi}_{ij} \pi_{ij} w_i' L_i'$$

▶ Letting $Y_i \equiv w_i L_i$ and using the result above for $\hat{\pi}_{ij}$ we get

$$\hat{w}_j \hat{L}_j Y_j = \sum_i \frac{\pi_{ij} \hat{T}_j \left(\hat{w}_j \hat{d}_{ij} \right)^{-\theta}}{\sum_k \pi_{ik} \hat{T}_k \left(\hat{w}_k \hat{d}_{ik} \right)^{-\theta}} \hat{w}_i \hat{L}_i Y_i$$

▶ This forms a system of N equations in N unknowns, \hat{w}_j , from which we can get \hat{w}_j as a function of shocks and initial observables (establishing some numeraire). Here π_{ij} and Y_j are data and we know \hat{d}_{ij} , \hat{T}_j , \hat{L}_j , as well as θ .

Welfare (Dekle, Eaton and Kortum, 2008)

▶ Recall that $p_i = \gamma \Phi_i^{-1/\theta}$ and $\pi_{ii} = \frac{T_i w_i^{-\theta}}{\Phi_i}$, so

$$\omega_i \equiv w_i/p_i = \gamma^{-1} T_i^{1/\theta} \pi_{ii}^{-1/\theta}.$$

► Hence,

$$\hat{\omega}_i = \left(\hat{T}_i\right)^{1/\theta} \hat{\pi}_{ii}^{-1/\theta}$$

▶ To compute the implications for welfare of a foreign shock, simply impose that $\hat{L}_i = \hat{T}_i = 1$, solve the system above to get \hat{w}_j and get the implied $\hat{\pi}_{ii}$ through

$$\hat{\pi}_{ij} = \frac{\hat{T}_j \left(\hat{w}_j \hat{d}_{ij} \right)^{-\theta}}{\sum_k \pi_{ik} \hat{T}_k \left(\hat{w}_k \hat{d}_{ik} \right)^{-\theta}}.$$

Remember, we only needed data for GDP, trade shares, and the knowledge of the trade elasiticity parameter for this. Caliendo, Dvorkin, and Parro (forthcoming)

Outline

- Dynamic model with migration and trade. Tractable way to conduct counterfactuals
- ► Recent application: Balboni (2018)
- No capital accumulation. Assume perfect foresight.
- ▶ We will go over the paper in various steps:
 - 1. Dynamic model of migration only
 - 2. Adding production and trade
 - 3. Dynamic hat algebra
 - 4. Full model: multiple sectors, non-employment option
 - Application: Effect of the rise of China on local labor markets in the US

A simple model of migration

- ► Start with a simple model of migration dynamics. Take wages as given.
- ► Dynamic discrete choice problem
 - In response to shocks, worker choose whether to remain where she is or to move to another location
 - ▶ If the worker moves, she will pay a cost, which has two components:
 - A portion that is the same for all workers making the same move (moving costs, learning costs, etc.)
 - ► A time-varying idiosyncratic cost or preference (personal situation)

Idiosyncratic shocks

- ▶ No capital accumulation dynamics arise from idiosyncratic shocks
- Idiosyncratic shocks rationalize some observed labor-market behavior:
 - First, gross flows are an order of magnitude larger than net flows, implying large numbers of workers moving in opposite directions at the same time
 - Evidence shows that a significant fraction of workers who change jobs voluntarily move to jobs which pay less than the job the worker left behind
 - ► These idiosyncratic costs will generate dynamics

Simple model

- lacktriangleq N locations indexed by i and n
- ightharpoonup The value of a household in location n at time t given by

$$\begin{split} \mathbf{v}_t^n &= U(C_t^n) + \max_{\{i\}_{i=1}^N} \left\{\beta E\left[\mathbf{v}_{t+1}^i\right] - \tau^{n,i} + \nu \epsilon_t^i\right\},\\ s.t.\ U(C_t^n) &\equiv \log(w_t^n) \end{split}$$

- ▶ $\beta \in (0,1)$ discount factor
- $ightharpoonup au^{n,i}$ additive, time invariant migration costs to i from n
- lacksquare ϵ^i_t are stochastic *i.i.d idiosyncratic* taste shocks
 - ullet $\epsilon \sim$ Type-I Extreme Value distribution with zero mean
 - ightharpoonup
 u>0 is the dispersion of taste shocks
- Employed households supply a unit of labor inelastically
 - lacktriangle Receive the competitive market wage w_t^n

Households' problem - Dynamic discrete control

- \blacktriangleright Denote by $V^n_t \equiv E[\mathbf{v}^n_t]$ to the expected (expectation over $\epsilon)$ lifetime utility of a worker in n
- ightharpoonup The value of a household in location n at time t given by

$$E\left[\mathbf{v}_{t}^{n}\right] = E\left[U(C_{t}^{n}) + \max_{\left\{i\right\}_{i=1}^{N}}\left\{\beta E\left[\mathbf{v}_{t+1}^{i}\right] - \tau^{n,i} + \nu \epsilon_{t}^{i}\right\}\right],$$

▶ We seek to solve for

$$\Phi_t^n = E \left| \max_{\{i\}_{i=1}^N} \left\{ \beta E\left[\mathbf{v}_{t+1}^i\right] - \tau^{n,i} + \nu \, \epsilon_t^i \right\} \right|$$

Households' problem - Dynamic discrete control

► Assumption, Type-I Extreme Value

$$F(\epsilon) = \exp\left(-\exp\left(-\epsilon - \bar{\gamma}\right)\right)$$

► Then

$$\Phi_t^n = \nu \log \left[\sum_{i=1}^N \exp \left(\beta V_{t+1}^i - \tau^{n,i} \right)^{1/\nu} \right]$$

Standard type 1 extreme value distribution result (see book by Train, 2009)

Households' problem - Dynamic discrete choice

- \blacktriangleright Define $\mu_t^{n,i}$ as the fraction of workers that reallocate from location n to i
- ▶ This fraction is equal to the probability that a given worker moves from n to i at time t. Formally,

$$\mu_t^{n,i} = \Pr\left(\frac{\beta V_{t+1}^i - \tau^{n,i}}{\nu} + \epsilon_t^i \geq \max_h\{\frac{\beta V_{t+1}^h - \tau^{n,h}}{\nu} + \epsilon_t^h\}\right).$$

▶ Fraction of workers that reallocate from location n to i

$$\mu_t^{n,i} = \frac{\exp(\beta V_{t+1}^i - \tau^{n,i})^{1/\nu}}{\sum_{h=1}^N \exp(\beta V_{t+1}^h - \tau^{n,h})^{1/\nu}}$$

Households' problem - Dynamic discrete control

Equilibrium conditions:

▶ The expected (expectation over ϵ) lifetime utility of a worker at n

$$V_t^n = U(C_t^n) + \nu \log \left[\sum_{i=1}^N \exp \left(\beta V_{t+1}^i - \tau^{n,i} \right)^{1/\nu} \right]$$

▶ Fraction of workers that reallocate from market n to i

$$\mu_t^{n,i} = \frac{\exp(\beta V_{t+1}^i - \tau^{n,i})^{1/\nu}}{\sum_{h=1}^N \exp(\beta V_{t+1}^h - \tau^{n,h})^{1/\nu}}$$

Finally, evolution of the distribution of labor across markets

$$L_{t+1}^n = \sum_{i=1}^N \mu_t^{i,n} \, L_t^i$$

▶ Wages, taken as given $\{w_t^n\}_{t=0}^{\infty}$

Welfare

- Seek to obtain a simple expression to evaluate the welfare gains from migration
- Re-writing the value of being in a particular n is given by

$$v_t^n = \underbrace{\log C_t^n}_{\text{current period utility}} + \underbrace{\beta E\left[\mathbf{v}_{t+1}^n\right]}_{\text{value of staying}} + \underbrace{\max_{\left\{i\right\}_{i=1}^N}\left\{\beta E\left[\mathbf{v}_{t+1}^i - \mathbf{v}_{t+1}^n\right] - \tau^{n,i} + \nu\,\epsilon_t^i\right\}}_{\text{option value of migration}}$$

As before, taking the expected value of this equation, we can write the expected lifetime utility of being in n at time t as

$$V_{t}^{n} = \log C_{t}^{n} + \beta V_{t+1}^{n} + \nu \log \left[\sum_{i=1}^{N} \exp \left(\beta \left(V_{t+1}^{i} - V_{t+1}^{n} \right) - \tau^{n,i} \right)^{1/\nu} \right]$$

▶ Use

$$\mu_t^{n,n} = \frac{\exp(\beta V_{t+1}^n)^{1/\nu}}{\sum_{h=1}^N \exp(\beta V_{t+1}^h - \tau^{n,h})^{1/\nu}},$$

divide numerator and denominator by $(\beta V_{t+1}^n)^{1/\nu}$, take logs, and rearrange to obtain:

$$\nu\log\sum\nolimits_{h=1}^{N}\exp\left(\beta\left(V_{t+1}^{h}-V_{t+1}^{n}\right)-\tau^{n,h}\right)^{1/\nu}=-\nu\log\mu_{t}^{n,n}.$$

Welfare

▶ Plugging this equation into the value function, we get

$$V_t^n = \log C_t^n + \beta V_{t+1}^n - \nu \log \mu_t^{n,n}$$

▶ Finally, iterating this equation forward we obtain

$$V_0^n = \sum_{t=0}^{\infty} \beta^t \log \frac{w_t^n}{(\mu_t^{n,n})^{\nu}}$$

 $\blacktriangleright \ \mu^{n,n}_t$ summarizes the option value of migration

Trade, migration, and labor market dynamics

Trade and labor market dynamics

- ▶ Next: introduce international trade into the model
- Expand description of the production structure
 - ▶ Determine wages such that each labor markets clears
 - ► Given real wages, labor supply determined as before
 - Production structure and international trade will determine labor demand
 - Prices endogenously determined

Households' - Dynamic problem

- As before, equilibrium conditions:
- \blacktriangleright The expected (expectation over ϵ) lifetime utility of a worker at n

$$V_t^n = U(C_t^n) + \nu \log \left[\sum_{i=1}^N \exp \left(\beta V_{t+1}^i - \tau^{n,i} \right)^{1/\nu} \right]$$

but now $U(C_{\star}^{n}) \equiv \log(w_{\star}^{n}/P_{\star}^{n})$

 \blacktriangleright Fraction of workers that reallocate from market n to i

$$\mu_t^{n,i} = \frac{\exp(\beta V_{t+1}^i - \tau^{n,i})^{1/\nu}}{\sum_{h=1}^N \exp(\beta V_{t+1}^h - \tau^{n,h})^{1/\nu}}$$

Finally, evolution of the distribution of labor across markets

$$L_{t+1}^n = \sum_{i=1}^N \mu_t^{i,n} \, L_t^i$$

Production - Static sub-problem

- ▶ At each time period, t, simple gravity trade structure
 - Let X_t^n denote the total expenditure on final goods in n
 - Goods market clearing condition is given by

$$X_t^n = w_t^n L_t^n$$

lacktriangle The share of total expenditure in market n on goods from i is given by

$$\pi_t^{n,i} = \frac{A_t^i [w_t^i \kappa_t^{n,i}]^{-\theta}}{\sum_{h=1}^N A_t^h [w_t^h \kappa_t^{n,h}]^{-\theta}}$$

► Labor market clearing in *n* is

$$w_t^n L_t^n = \sum_{i=1}^N \pi_t^{i,n} X_t^i,$$

► Assume balanced trade (for now).

Production - Static sub-problem

Price index:

$$P_t^n = \bar{\gamma} \left[\sum\nolimits_{i=1}^N A_t^i \left[w_t^i \kappa_t^{n,i} \right]^{-\theta} \right]^{-1/\theta}$$

► Real wages:

$$\frac{w_t^n}{P_t^n} = (\pi_t^{n,n}/T_t^{n,n})^{-1/\theta},\,$$

where
$$T_t^{n,i} \equiv \bar{\gamma}^{-\theta} A_t^i \left(\kappa_t^{n,i}\right)^{-\theta}$$

Welfare

Now $\log C_t^n = \log w_t^n/P_t^n$, therefore

$$V_0^n = \sum_{t=0}^\infty \beta^t \log \frac{(\pi_t^{n,n}/T_t^{n,n})^{-\frac{1}{\theta}}}{(\mu_t^{n,n})^{\nu}} = \frac{\text{gains from trade}}{\text{gains from migration}}$$

 \blacktriangleright Sufficient statistic to measure welfare gains from trade and migration relative to autarky $\pi^{n,n}_t=1$ and no migration $\mu^{n,n}_t=1$

Sequential and temporary equilibrium

- Given real wages, HH dynamic problem solve for the path of labor supply
- Given labor supply at each time t firms decide production and labor demand. Wages clear markets
- General equilibrium: path of employment and path of wages have to be consistent with both the HH dynamic problem and the static sub-problem

▶ Let $\tilde{\tau}^{n,i} \equiv e^{\tau^{n,i}}, u_t^n \equiv e^{V_t^n}$, then

$$V_{t}^{n} = \log(w_{t}^{n}/P_{t}^{n}) + \nu \log \left[\sum_{i=1}^{N} \exp \left(\beta V_{t+1}^{i} - \tau^{n,i} \right)^{1/\nu} \right]$$

► Can be written as

$$\exp(V_t^n) = (w_t^n / P_t^n) \left[\sum_{i=1}^N \exp(\beta V_{t+1}^i - \tau^{n,i})^{1/\nu} \right]^{\nu}$$

▶ Using $w_t^n/P_t^n = (\pi_t^{n,n}/T_t^{n,n})^{-1/\theta}$

$$u_{t}^{n} = \left[\sum_{i=1}^{N} \left(\pi_{t}^{n,n} / T_{t}^{n,n} \right)^{-1/\theta \nu} \left(u_{t+1}^{i} \right)^{\beta / \nu} \left(\tilde{\tau}^{n,i} \right)^{-1/\nu} \right]^{\nu}$$

Equilibrium conditions - simple system of equations

► Temporary equilibrium, trade

$$\pi_t^{n,i} = \frac{(w_t^i)^{-\theta} T_t^{n,i}}{\sum_{h=1}^N (w_t^h)^{-\theta} T_t^{n,h}}$$
$$w_t^n L_t^n = \sum_{i=1}^N \pi_t^{i,n} w_t^i L_t^i$$

▶ Dynamics, migration

$$\begin{split} u_{t}^{n} &= \left[\sum\nolimits_{i=1}^{N} \left(\pi_{t}^{n,n} / T_{t}^{n,n} \right)^{-1/\theta\nu} \left(u_{t+1}^{i} \right)^{\beta/\nu} \left(\tilde{\tau}^{n,i} \right)^{-1/\nu} \right]^{\nu} \\ \mu_{t}^{n,i} &= \frac{\left(u_{t+1}^{i} \right)^{\beta/\nu} \left(\tilde{\tau}^{n,i} \right)^{-1/\nu}}{\sum\nolimits_{h=1}^{N} \left(u_{t+1}^{h} \right)^{\beta/\nu} \left(\tilde{\tau}^{n,h} \right)^{-1/\nu}} \\ L_{t+1}^{n} &= \sum\nolimits_{i=1}^{N} \mu_{t}^{i,n} L_{t}^{i} \end{split}$$

Sequential and temporary equilibrium

- lacktriangle State of the economy = distribution of labor $L_t = \{L^n_t\}_{n=1}^N$
 - ► Exogenous: $\Theta_t \equiv \left(\{A_t^n\}, \{\kappa_t^{n,i}\}, \{\tau^{n,i}\}\right)_{n=1,i=1}^{N,N}$

Definition 1

Given (L_t, Θ_t) , a **temporary equilibrium** is a vector of $w_t(L_t, \Theta_t)$ that satisfies the equilibrium conditions of the static sub-problem

Definition 2

Given $(L_0,\{\Theta_t\}_{t=0}^\infty)$, a **sequential competitive equilibrium** is a sequence of $\{L_t,\,\mu_t,\,V_t,\,w_t\}_{t=0}^\infty$ that solves HH dynamic problem and the temporary equilibrium at each t

Steady state

Definition 3

A stationary equilibrium of the model is a sequential competitive equilibrium such that $\{L_t,\,\mu_t,\,V_t,\,w_t\}_{t=0}^\infty=\{\bar{L},\,\bar{\mu},\,\bar{V},\,\bar{w}\}$ are constant for all t.

 $\label{eq:lambda} \mbox{$\blacktriangleright$ At the steady state, $u^n_t=\bar{u}^n$, $\mu^{n,i}_t=\bar{\mu}^{n,i}$, $L^n_t=\bar{L}^n$, $\pi^{n,i}_t=\bar{\pi}^{n,i}$, $w^n_t=\bar{w}^n$, $T^{n,i}_t=\bar{T}^{n,i}$, for all t }$

Steady state: solution to

$$\bar{\pi}^{n,i} = \frac{(\bar{w}^i)^{-\theta} \bar{T}^{n,i}}{\sum_{h=1}^{N} (\bar{w}^h)^{-\theta} \bar{T}^{n,h}}$$

$$\bar{w}^n \bar{L}^n = \sum_{i=1}^{N} \bar{\pi}^{i,n} \, \bar{w}^i \bar{L}^i$$

$$\bar{u}^n = (\bar{\pi}^{n,n}/\bar{T}^{n,n})^{-\frac{1}{\theta(1-\beta)}} (\bar{\mu}^{n,n})^{-\frac{\nu}{1-\beta}}$$

$$\bar{\mu}^{n,i} = \frac{(\bar{u}^i)^{\beta/\nu} (\tilde{\tau}^{n,i})^{-1/\nu}}{\sum_{h=1}^{N} (\bar{u}^h)^{\beta/\nu} (\tilde{\tau}^{n,h})^{-1/\nu}}$$

$$\bar{L}^n = \sum_{i=1}^{N} \bar{\mu}^{i,n} \, \bar{L}^i$$

Solution Method: Dynamic Hat Algebra

Solution method: Dynamic Hat Algebra

- lacktriangle Solving for an equilibrium of the model requires information on Θ
 - ▶ Large # of unknowns
- As we increase the dimension of the problem—adding countries, regions, or sectors—the number of parameters grows geometrically
- We solve this problem by computing the equilibrium dynamics of the model in time differences
- ▶ Why is this progress?
 - \blacktriangleright Conditioning on observables one can solve the model without knowing the *levels* of Θ
 - ▶ Solve for the value function in time differences
- ► Start description of the *Dynamic Hat Algebra* with *constant* fundamentals
 - ▶ Then discuss how to deal with time varying fundamentals

► Expected lifetime utility

$$V_{t}^{n} = \log(\frac{w_{t}^{n}}{P_{t}^{n}}) + \nu \log \left[\sum_{i=1}^{N} \exp\left(\beta V_{t+1}^{i} - \tau^{n,i}\right)^{1/\nu} \right]$$

► Transition matrix (migration flows)

$$\mu_t^{n,i} = \frac{\exp(\beta V_{t+1}^i - \tau^{n,i})^{1/\nu}}{\sum_{h=1}^{N} \exp(\beta V_{t+1}^h - \tau^{n,h})^{1/\nu}}$$

▶ Transition matrix (migration flows) at t = -1, Data

$$\mu_{-1}^{\mathbf{n},\mathbf{i}} = \frac{\exp\left(\beta V_0^i - \tau^{n,i}\right)^{1/\nu}}{\sum_{h=1}^{N} \exp\left(\beta V_0^h - \tau^{n,h}\right)^{1/\nu}}$$

▶ Transition matrix (migration flows) at t = 0, Model

$$\mu_0^{n,i} = \frac{\exp(\beta V_1^i - \tau^{n,i})^{1/\nu}}{\sum_{h=1}^{N} \exp(\beta V_1^h - \tau^{n,h})^{1/\nu}}$$

▶ Take the time difference

$$\frac{\mu_{0}^{n,i}}{\mu_{-1}^{n,i}} = \frac{\frac{\exp\left(\beta V_{1}^{i} - \tau^{n,i}\right)^{1/\nu}}{\exp\left(\beta V_{0}^{i} - \tau^{n,i}\right)^{1/\nu}}}{\sum_{h=1}^{N} \frac{\exp\left(\beta V_{1}^{h} - \tau^{n,h}\right)^{1/\nu}}{\sum_{m=1}^{N} \exp\left(\beta V_{0}^{m} - \tau^{n,m}\right)^{1/\nu}}}$$

▶ Take the time difference

$$\frac{\mu_0^{n,i}}{\mu_{-1}^{n,i}} = \frac{\frac{\exp\left(\beta V_1^{i} - \boldsymbol{\tau}^{n,i}\right)^{1/\nu}}{\exp\left(\beta V_0^{i} - \boldsymbol{\tau}^{n,i}\right)^{1/\nu}}}{\sum_{h=1}^{N} \frac{\exp\left(\beta V_1^{h} - \boldsymbol{\tau}^{n,h}\right)^{1/\nu}}{\sum_{m=1}^{N} \exp\left(\beta V_0^{m} - \boldsymbol{\tau}^{n,m}\right)^{1/\nu}}}$$

Simplify

$$\frac{\mu_0^{n,i}}{\mu_{-1}^{n,i}} = \frac{\exp\left(V_1^i - V_0^i\right)^{\beta/\nu}}{\sum_{h=1}^{N} \frac{\exp\left(\beta V_1^{h} - \tau^{n,h}\right)^{1/\nu}}{\sum_{m=1}^{N} \exp\left(\beta V_0^{m} - \tau^{n,m}\right)^{1/\nu}}}$$

▶ Use $\mu_{-1}^{n,h}$ once again

$$\mu_0^{n,i} = \frac{\mu_{-1}^{\mathbf{n},i} \exp\left(V_1^i - V_0^i\right)^{\beta/\nu}}{\sum_{h=1}^{N} \mu_{-1}^{\mathbf{n},h} \exp\left(V_1^h - V_0^h\right)^{\beta/\nu}}$$

Expected lifetime utility

$$V_t^n = \log(\frac{w_t^n}{P_t^n}) + \nu \log\left[\sum_{i=1}^N \exp(\beta V_{t+1}^i - \frac{\tau^{n,i}}{T^{n,i}})^{1/\nu}\right]$$

► Transition matrix

$$\mu_t^{n,i} = \frac{\exp(\beta V_{t+1}^i - \tau^{n,i})^{1/\nu}}{\sum_{h=1}^{N} \exp(\beta V_{t+1}^h - \tau^{n,h})^{1/\nu}}$$

Equilibrium conditions - Time differences

Expected lifetime utility

$$V_{t+1}^n - V_t^n = \log(\frac{w_{t+1}^n/w_t^n}{P_{t+1}^n/P_t^n}) + \nu\log\left[\sum_{i=1}^N \mu_t^{n,i}\,\exp\left(V_{t+2}^i - V_{t+1}^i\right)^{\beta/\nu}\right]$$

► Transition matrix

$$\frac{\mu_{t+1}^{n,i}}{\mu_t^{n,i}} = \frac{\exp\left(V_{t+2}^i - V_{t+1}^i\right)^{\beta/\nu}}{\sum\limits_{h=1}^N \mu_t^{n,h} \exp\left(V_{t+2}^h - V_{t+1}^h\right)^{\beta/\nu}}$$

where $\frac{w_{t+1}^n/w_t^n}{P_{t+1}^n/P_t^n}$ is the solution to the temporary equilibrium in time differences

Temporary equilibrium conditions

- ▶ How to solve for the temporary equilibrium in time differences?
 - ► Trade shares

$$\pi_t^{n,i} = \frac{[w_t^i \kappa^{n,i}]^{-\theta} A^i}{\sum_{h=1}^N [w_t^h \kappa^{n,h}]^{-\theta} A^h},$$

► Labor market clearing

$$w_t^n L_t^n = \sum_{i=1}^N \pi_t^{i,n} w_t^i L_t^i$$

Price index

$$P_t^n = \mathbf{\Gamma}^n \left[\sum_{i=1}^N \mathbf{A}^i [w_t^i \kappa^{n,i}]^{-\theta} \right]^{-1/\theta},$$

Temporary equilibrium - Time differences

► Trade shares

$$\pi_{t+1}^{n,i} = \frac{\pi_t^{n,i} (\dot{w}_{t+1}^i)^{-\theta}}{\sum_{h=1}^N \pi_t^{n,h} (\dot{w}_{t+1}^h)^{-\theta}},$$

Labor market clearing

$$\dot{w}_{t+1}^{n}\dot{L}_{t+1}^{n}w_{t}^{n}L_{t}^{n} = \sum_{i=1}^{N} \pi_{t+1}^{i,n} \dot{w}_{t+1}^{i}\dot{L}_{t+1}^{i}w_{t}^{i}L_{t}^{i}$$

Price index

$$\dot{P}_{t+1}^n = \quad \left[\sum\nolimits_{i=1}^N \pi_t^{n,i} (\dot{w}_{t+1}^i)^{-\theta} \right]^{-1/\theta},$$

- ▶ Notation: $\dot{P}_{t+1}^n = P_{t+1}^n / P_t^n$, $\dot{w}_{t+1} = \mathbf{w}_{t+1} / \mathbf{w}_t$
- ► Same "dot trick" applies to all equilibrium conditions

Solving the model with constant fundamentals

Proposition 1.1

Given $(\mathbf{L_0}, \mu_{-1}, \pi_0, \mathbf{X_0})$, (ν, θ, β) , solving the equilibrium in time differences does not require the level of Θ , and solves

$$\begin{split} \dot{u}^n_{t+1} &= (\dot{w}^n_{t+1}/\dot{P}^n_{t+1}) \left(\sum_{i=1}^N \mu^{n,i}_t [\dot{u}^i_{t+2}]^{\beta/\nu} \right)^{1/\nu}, \\ \mu^{n,i}_{t+1} &= \frac{\mu^{n,i}_t [\dot{u}^i_{t+2}]^{\beta/\nu}}{\sum_{h=1}^N \mu^{n,h}_t [\dot{u}^h_{t+2}]^{\beta/\nu}}, \\ \dot{L}^n_{t+1} L^n_t &= \sum_{i=1}^N \mu^{i,n}_t L^i_t, \end{split}$$

where $\dot{u}_{t+1}^i \equiv \exp(V_{t+1}^i - V_t^i)$, and $\dot{w}_{t+1}^n/\dot{P}_{t+1}^n$ solves the temporary equilibrium given \dot{L}_{t+1} .

Solution algorithm

- 1. Initiate guess for a path of $\{\dot{u}_{t+1}^{i(0)}\}_{t=0}^T$ for a sufficiently large T.
- 2. Assume no change in fundamentals after t=0 (could be changed).
- 3. Path should converge to $\dot{u}_{t+1}^{i(0)}\}_{t=0}^{T+1}=1$.
- 4. Solve for $\mu^{n,i}_{t+1}$ and \dot{L}^n_{t+1} using the last two equations on the previous slide. Get $\dot{w}^n_{t+1}/\dot{P}^n_{t+1}$ from temporary equilibrium.
- 5. Then update $\{\dot{u}_{t+1}^{i(1)}\}_{t=0}^T$ solving backward the top equation on the previous slide.
- ► See Appendix D for details

Solving the model (example)

Figure 1: Equilibrium Value Functions in Time Differences

Solving for counterfactuals

- lacktriangle Want to study the effects of changes in fundamentals Θ'/Θ
 - ▶ Recall that $\Theta \equiv \left(\{A^n\}, \{\kappa^{n,i}\}, \{\tau^{n,i}\}\right)_{n=1, i=1}^{N, N}$
 - ► TFP, trade costs, labor migration costs, endowments of local structures, home production

Solving for counterfactuals

lacksquare Suppose we want to study the effects of a change in $A_t^{\prime i}/A_t^i$

Counterfactual I

- Economy with $\dot{\Theta}_t' = \dot{A}_t'^i$ relative to economy with $\dot{\Theta}_t = 1$
 - Pros: requires only data on an initial allocation (for one year)
 - \blacktriangleright Cons: need to compute the model twice, one under $\dot{\Theta}_t=1$ "baseline economy", and one under $\dot{\Theta}_t'=\dot{A}_t'^i$

Counterfactual II

- Economy with actual change in fundamentals $\dot{\Theta}_t$ relative to an economy with all fundamentals changing except \dot{A}_t^i
 - Pros: only requires computing the equilibrium once: "baseline economy" is the data
 - lackbox Cons: larger data requirements, need data for many t, need to deal with t=T?

Equilibrium conditions: Time-varying fundamentals

► Transition matrix (migration flows) $\{\mu_t^{n,i}\}_{t=0}^T$, Data

$$\mu_t^{n,i} = \frac{\exp\left(\beta V_{t+1}^i - \tau_t^{n,i}\right)^{1/\nu}}{\sum\limits_{h=1}^{N} \exp\left(\beta V_{t+1}^m - \tau_t^{n,h}\right)^{1/\nu}}$$

▶ Transition matrix at t, from Model given fundamentals τ'_t

$$\mu_t^{\prime n,i} = \frac{\exp\left(\beta V_{t+1}^{\prime i} - \tau_t^{\prime n,i}\right)^{1/\nu}}{\sum_{h=1}^{N} \exp\left(\beta V_{t+1}^{\prime h} - \tau_t^{\prime n,h}\right)^{1/\nu}}$$

▶ Take the differences at each t, Model relative to Data

$$\mu_t'^{n,i} = \frac{\mu_t^{n,i} \exp\left(V_{t+1}'^i - V_{t+1}^i\right)^{\beta/\nu} \exp\left(\tau_t'^{n,i} - \tau_t^{n,i}\right)^{-1/\nu}}{\sum\limits_{h=1}^N \mu_t^{n,h} \exp\left(V_{t+1}'^h - V_{t+1}^h\right)^{\beta/\nu} \exp\left(\tau_t'^{n,h} - \tau_t^{n,h}\right)^{-1/\nu}}$$

Equilibrium conditions in "hats"

▶ Denote by

$$\begin{split} \hat{u}_t^n &= \dot{u}_t'^n / \dot{u}_t^n, \\ \hat{\tau}_t^{n,i} &= \exp\left(\tau_t'^{n,i} - \tau_t^{n,i}\right) / \exp\left(\tau_{t-1}'^{n,i} - \tau_{t-1}^{n,i}\right), \\ \dot{\mu}_t^{n,i} &= \mu_t^{n,i} / \mu_{t-1}^{n,i}, \end{split}$$

and generically

$$\hat{\Theta}_t = \dot{\Theta}_t'/\dot{\Theta}_t$$

- ▶ ^ counterfactual change; ` time series change
- ► Take the time difference to obtain

$$\mu_t'^{n,i} = \frac{\mu_{t-1}'^{n,i} \left(\hat{\tau}_t^{n,i}\right)^{-1/\nu} \dot{\mu}_t^{n,i} \left(\hat{u}_{t+1}^i\right)^{\beta/\nu}}{\sum\limits_{h=1}^N \mu_{t-1}'^{n,h} \left(\hat{\tau}_t^{n,h}\right)^{-1/\nu} \dot{\mu}_t^{n,h} \left(\hat{u}_{t+1}^h\right)^{\beta/\nu}}$$

Solving the model for counterfactuals

Proposition 1.2

Given $(L_t, \mu_{t-1}, \pi_t, X_t) \underset{t=0}{\infty}$, (ν, θ, β) , and $\{\hat{\Theta}_t\}_{t=1}^{\infty}$, solving the model with the Dynamic Hat-Algebra does not require Θ_t , and solves

$$\begin{split} \hat{u}^n_t &= (\hat{w}^n_t/\hat{P}^n_t) \left(\sum_{i=1}^N \mu_t'^{n,i} \left(\hat{\tau}^{n,i}_t \right)^{-1/\nu} \dot{\mu}^{n,i}_t \left(\hat{u}^i_{t+1} \right)^{\beta/\nu} \right)^{\nu} \ , \\ \mu_t'^{n,i} &= \frac{\mu_{t-1}'^{n,i} \left(\hat{\tau}^{n,i}_t \right)^{-1/\nu} \dot{\mu}^{n,i}_t \left(\hat{u}^i_{t+1} \right)^{\beta/\nu}}{\sum\limits_{h=1}^N \mu_{t-1}'^{n,h} \left(\hat{\tau}^{n,h}_t \right)^{-1/\nu} \dot{\mu}^{n,h}_t \left(\hat{u}^h_{t+1} \right)^{\beta/\nu}}, \\ L_{t+1}'^n &= \sum_{i=1}^N \mu_t'^{i,n} L_t'^i, \end{split}$$

where \hat{w}_t^n/\hat{P}_t^n solves the temporary equilibrium.

Solution algorithm: similar to before, guess path of \hat{u}^h_{t+1} and use the above system to update.

Adding sectors and non-employment: Full model

Households' problem

- \blacktriangleright N locations (index n and i) and each has J sectors (index j and k)
- \blacktriangleright The value of a household in market nj at time t given by

$$\begin{split} \mathbf{v}_t^{nj} &= u(c_t^{nj}) + \max_{\{i,k\}_{i=1,k=0}^{N,J}} \left\{\beta E\left[\mathbf{v}_{t+1}^{ik}\right] - \tau^{nj,ik} + \nu\,\epsilon_t^{ik}\right\},\\ s.t. \; u(c_t^{nj}) &\equiv \left\{ \begin{array}{ll} \log(b^n) & if \;\; j=0,\\ \log(w_t^{nj}/P_t^n) & \text{otherwise,} \end{array} \right. \end{split}$$

- ▶ $\beta \in (0,1)$ discount factor
- $ightharpoonup au^{nj,ik}$ additive, time invariant migration costs to ik from nj
- $ightharpoonup \epsilon_t^{ik}$ are stochastic *i.i.d idiosyncratic* shocks
 - ightharpoonup $\epsilon \sim$ Type-I Extreme Value distribution with zero mean
 - $\triangleright \nu > 0$ is the dispersion of shocks
- ▶ Non-employed HH obtain home production b^n
- ▶ Employed households supply a unit of labor inelastically
 - Receive the competitive market wage w_t^{nj}
 - ► Consume $c_t^{nj} = \prod_{k=1}^{J} (c_t^{nj,k})^{\alpha^k}$, where P_t^n is the local price index

Households' problem - Dynamic discrete choice

- ▶ Using properties of Type-I Extreme Value distributions one obtains:
- ▶ The expected (expectation over ϵ) lifetime utility of a worker at nj

$$V_{t}^{nj} = u(c_{t}^{nj}) + \nu \log \left[\sum_{i=1}^{N} \sum_{k=0}^{J} \exp \left(\beta V_{t+1}^{ik} - \tau^{nj,ik} \right)^{1/\nu} \right]$$

 \blacktriangleright Fraction of workers that reallocate from market nj to ik

$$\mu_t^{nj,ik} = \frac{\exp(\beta V_{t+1}^{ik} - \tau^{nj,ik})^{1/\nu}}{\sum_{m=1}^{N} \sum_{h=0}^{J} \exp(\beta V_{t+1}^{mh} - \tau^{nj,mh})^{1/\nu}}.$$

Evolution of the distribution of labor across markets

$$L_{t+1}^{nj} = \sum_{i=1}^{N} \sum_{k=0}^{J} \, \mu_{t}^{ik,nj} \, L_{t}^{ik}$$

Production - Static sub-problem

- Notice that at each t, labor supply across markets is fully determined
- \blacktriangleright In each nj there is a continuum of intermediate good producers
 - Perfect competition, CRS technology, *idiosyncratic* productivity $z^{nj} \sim \text{Fr\'echet}(1, \theta^j)$, deterministic sectoral regional TFP A^{nj}

$$q_t^{nj}(z^{nj}) = z^{nj} \left[A^{nj} \left[l_t^{nj} \right]^{\xi^n} \left[h_t^{nj} \right]^{1-\xi^n} \right]^{\gamma^{nj}} \prod_{k=1}^J \left[M_t^{nj,nk} \right]^{\gamma^{nj,nk}}$$

- \blacktriangleright Each n, j produces a final good (for final consumption and materials)
 - ▶ CES (elasticity η) aggregator of sector j goods from the lowest cost supplier in the world subject to $\kappa^{nj,ij} \geq 1$ "iceberg" bilateral trade cost

Production - Static sub-problem - Equilibrium conditions

Sectoral price index.

$$P_t^{nj}(\mathbf{w}_t) = \Gamma^{nj} \left[\sum_{i=1}^N A^{ij} [x_t^{ij}(\mathbf{w}_t) \kappa^{nj,ij}]^{-\theta^j} \right]^{-1/\theta^j}$$

 \blacktriangleright Let $X_t^{ij}(\mathbf{w}_t)$ be total expenditure. Expenditure shares given by

$$\pi_t^{nj,ij}(\mathbf{w}_t) = \frac{[x_t^{ij}(\mathbf{w}_t)\kappa^{nj,ij}]^{-\theta^j}A^{ij}}{\sum_{m=1}^N [x_t^{mj}(\mathbf{w}_t)\kappa^{nj,mj}]^{-\theta^j}A^{mj}},$$

where $x_t^{ij}(\mathbf{w}_t)$ is the unit cost of an input bundle

Labor Market clearing

$$L_t^{nj} = \frac{\gamma^{nj} (1 - \xi^n)}{w_t^{nj}} \sum_{i=1}^N \pi_t^{ij,nj} (\mathbf{w}_t) X_t^{ij} (\mathbf{w}_t),$$

where $\gamma^{nj}(1-\xi^n)$ labor share

Sequential and temporary equilibrium

- ▶ State of the economy = distribution of labor $L_t = \{L_t^{nj}\}_{n=1}^{N,J}$
 - ▶ Let $\Theta \equiv \left(\{A^{nj}\}, \{\kappa^{nj,ij}\}, \{\tau^{nj,ik}\}, \{H^{nj}\}, \{b^n\}\right)_{n=1, j=0, i=1, k=0}^{N, J, J, N}$

Definition 4

Given (L_t, Θ) , a **temporary equilibrium** is a vector of $w(L_t, \Theta)$ that satisfies the equilibrium conditions of the static sub-problem

Definition 5

Given (L_0, Θ) , a sequential competitive equilibrium of the model is a sequence of $\{L_t, \mu_t, V_t, w(L_t, \Theta)\}_{t=0}^{\infty}$ that solves HH dynamic problem and the temporary equilibrium at each t

▶ With $\mu_t = \{\mu_t^{nj,ik}\}_{n=1}^{N,J,J,N}$ and $V_t = \{V_t^{nj}\}_{n=1}^{N,J}$

Application: The Rise of China

The rise of China

- ▶ U.S. imports from China almost doubled from 2000 to 2007
 - ► At the same time, manufacturing employment fell while employment in other sectors, such as construction and services, grew
- ► Several studies document that an important part of the employment loss in manufactures was a consequence of China's trade expansion
 - e.g., Pierce and Schott (2012); Autor, Dorn, and Hanson (2013), Acemoglu, Autor, Dorn, and Hanson (2014)
- ► Use model to quantify the effects of the rise of China's trade expansion, "China shock"
 - ▶ Initial period is the year 2000
 - Calculate the sectoral, regional, and aggregate employment and welfare effects of the China shock

Taking the model to the data (quarterly)

- ▶ Model with 50 U.S. states, 22 sectors + non-empl. and 38 countries
 - ▶ More than 1000 labor markets
- ▶ Need data for $(L_0, \mu_{-1}, \pi_0, VA_0, GO_0)$
 - ▶ L₀ : PUMS of the U.S. Census for the year 2000
 - ► Exclude empl. in farming, mining, utilities, and public sect.
 - \blacktriangleright μ_{-1} : Use CPS to compute intersectoral mobility and ACS to compute interstate mobility
 - π_0 : CFS and WIOD year 2000
 - VA₀ and GO₀: BEA VA shares and U.S. IO, WIOD for other countries
- ▶ Need values for parameters (ν, θ, β)
 - θ : We use Caliendo and Parro (2015)
 - ho $\beta=0.99$ Implies approximately a 4% annual interest rate
 - v=5.34 (implied elasticity of 0.2) Using ACM's data and specification, adapted to our model
- ► Trade deficits through owners of housing (rentiers)

Identifying the China "shock"

- ► Follow Autor, Dorn, and Hanson (2013)
 - Estimate

$$\Delta M_{USA,j} = a_1 + a_2 \Delta M_{other,j} + u_j,$$

where j is a NAICS sector, $\Delta M_{USA,j}$ and $\Delta M_{other,j}$ are changes in U.S. and other adv. countries, imports from China from 2000 to 2007

- ▶ Find $a_2 = 1.27$
- ▶ Obtain predicted changes in U.S. imports with this specification
- ▶ Use the model to solve for the change in China's 12 manufacturing industries TFP $\left\{\hat{A}^{China,j}\right\}_{j=1}^{12}$ such that model's imports match predicted imports from China from 2000 to 2007
 - ▶ With model's generated data obtain $a_2 = 1.52$
 - Feed in model $\left\{\hat{A}^{China,j}\right\}_{j=1}^{12}$ by quarter from 2000 to 2007 to study the effects of the shock

Identifying the China shock

Figure 2: Predicted change in imports vs. model-based Chinese TFP change

Employment effects

- \blacktriangleright Chinese competition reduced the share of manufacturing employment by 0.36% in the long run, ${\sim}0.55$ million employment loss
 - About 36% of the change not explained by a secular trend

Non-employment shares

- ▶ Fall mainly due to a decline in flows from non-manuf. to non-empl.
- ► Flow from manuf. to non-empl. increased in states that are concentrated in the manuf. industries
 - ► Alabama, Arkansas, Mississippi, Michigan, and Ohio, among others

Employment effects: Manufacturing

- Sectors most exposed to Chinese import competition contribute more
 - 1/2 of the decline in manuf. employment originated in the Computer
 & Electronics and Furniture sectors
 - ▶ 1/4 of the total decline comes from the Metal and Textiles sectors
 - ► Food, Beverage and Tobacco, gained employment
 - Less exposed to China, benefited from cheaper intermediate goods, other sectors, like Services, demanded more of them (I-O linkages)
- ► Unequal regional effects
 - Regions with a larger concentration of sectors that are more exposed to China lose more jobs
 - California, the region with largest share of employment in Computer
 & Electronics, contributed to about 12% of the decline

Welfare effects across labor markets

Figure 5: Welfare effects of the China shock across U.S. labor markets

- ▶ Very heterogeneous response to the same aggregate shock
 - Most labor markets gain as a consequence of cheaper imports
 - Unequal regional effects

Regional welfare effects

Regional real wage changes in the manuf. sector

Transition cost to the steady state

Figure 6: Adjustment costs

- ▶ Adjustment costs reflect the importance of labor market dynamics
 - ▶ With free labor mobility AC=0
 - Heterogeneity due to trade/migration frictions and geographic factors

Adjustment costs

- ▶ We follow Dix-Carneiro (2014)'s measure of adjustment cost
- ▶ The steady-state change in the value function due changes in fundamentals is given by $V_{SS}^{nj}(\hat{\Theta}) V_{SS}^{nj}$
- ► Therefore, the transition cost for market nj to the new long-run equilibrium, $AC^{nj}(\hat{\Theta})$, is given by

$$AC^{nj}(\hat{\Theta}) = \log \left(\frac{\frac{1}{1-\beta} \left(V_{SS}^{nj}(\hat{\Theta}) - V_{SS}^{nj} \right)}{\sum_{t=0}^{\infty} \beta^t \left(V_{t+1}^{nj}(\hat{\Theta}) - V_{t+1}^{nj} \right)} \right),$$

Figure 7: Welfare effects across countries

Transition cost to the steady state

Figure 8: Adjustment costs

- ► Adjustment costs reflect the importance of labor market dynamics
 - ► With free labor mobility AC=0
 - ► Heterogeneity due to trade/migration frictions and geographic factors

Adjustment costs

- ▶ We follow Dix-Carneiro (2014)'s measure of adjustment cost
- ▶ The steady-state change in the value function due changes in fundamentals is given by $V_{SS}^{nj}(\hat{\Theta}) V_{SS}^{nj}$
- ► Therefore, the transition cost for market nj to the new long-run equilibrium, $AC^{nj}(\hat{\Theta})$, is given by

$$AC^{nj}(\hat{\Theta}) = \log \left(\frac{\frac{1}{1-\beta} \left(V_{SS}^{nj}(\hat{\Theta}) - V_{SS}^{nj} \right)}{\sum_{t=0}^{\infty} \beta^t \left(V_{t+1}^{nj}(\hat{\Theta}) - V_{t+1}^{nj} \right)} \right),$$