1 Théorèmes de convergence

1.1 Théorème de Parseval

Théorème 1

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique et continue par morceaux. On a, alors, l'égalité suivante, dite égalité de Parseval.

$$\frac{1}{2\pi} \int_0^{2\pi} (f(x))^2 dx = \frac{a_0^2(f)}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n^2(f) + b_n^2(f))$$

1.2 Fonctions de classe C^1 par morceaux

Définition 1

Soient a et b deux réels tels que a < b. On dit que $f : [a, b] \to \mathbb{C}$ est une fonction de classe \mathcal{C}^1 par morceaux¹, s'il existe des points x_0, \ldots, x_n dans [a, b] tels que

- $x_0 = a < x_1 < \ldots < x_n = b$
- pour tout $i \in \{0, \dots, n-1\}$, f est de classe \mathcal{C}^1 sur chaque intervalle $]x_i, x_{i+1}[$
- pour tout $i \in \{0, ..., n\}$, f' admet une limite finie à gauche ² et à droite ³ en x_i .

Une fonction $f: \mathbb{R} \to \mathbb{C}$ est dite de classe \mathcal{C}^1 par morceaux si la restriction de f à chaque segment de \mathbb{R} est de classe \mathcal{C}^1 par morceaux.

Remarque

En reprenant les notations de la définition ci-dessus, on peut montrer que si f est de classe C^1 par morceaux sur [a,b], alors nécessairement, pour tout $i \in \{0,\ldots,n\}$, f admet une limite finie à gauche ⁴ et à droite ⁵ en x_i . Ainsi une fonction de classe C^1 par morceaux est nécessairement continue par morceaux.

Proposition 1

Soit T > 0. Une fonction T-périodique $f : \mathbb{R} \to \mathbb{C}$ est de classe \mathcal{C}^1 par morceaux si, et seulement si, sa restriction à un segment de longueur T l'est.

1.3 Théorème de Lejeune-Dirichlet

Théorème 2

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique et de classe \mathcal{C}^1 par morceaux. Alors, pour chaque $x \in \mathbb{R}$, la série de Fourier $\sum_{n \in \mathbb{R}} \left(a_n(f) \cos(nx) + b_n(f) \sin(nx) \right)$ est une série numérique convergente. De plus, en tout point x où f est continue, on a

$$\frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} \left(a_n(f) \cos(nx) + b_n(f) \sin(nx) \right) = f(x)$$

et sinon,

$$\frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} \left(a_n(f) \cos(nx) + b_n(f) \sin(nx) \right) = \frac{f(x^+) + f(x^-)}{2}$$

^{1.} cf. la remarque qui suit la définition.

^{2.} sauf pour i = 0.

^{3.} sauf pour i = n.

^{4.} sauf pour i = 0.

^{5.} sauf pour i = n.