Interpolating a fixed-step ODE solution

Juho Timonen April 17, 2020

Problem

Given a differential equation

$$\frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = f\left(t, \boldsymbol{y}\right),$$

initial condition $\mathbf{y}(t_0) = \mathbf{y}_0$, and n increasing time points $t_i > t_0$, i = 1, ..., n, solve values $\mathbf{x}_i = \mathbf{y}(t_i)$, where i = 1, ..., n, using a fixed-step ODE solver with step size h.

Algorithm

- 1. For i = 1, ..., n, define R_i as the smallest integer r which satisfies $t_0 + r \cdot h \ge t_i$.
- 2. For i = 1, ..., n, define $A_i = \frac{D_i}{h}$, where $D_i = t_0 + R_i \cdot h t_i$.
- 3. Set $R = \max_i R_i$.
- 4. Solve $\mathbf{y}_j = \mathbf{y}(t_0 + j \cdot h)$, for $j = 0, \dots, R$, using the fixed-step solver.
- 5. Use linear interpolation

$$\boldsymbol{x}_i = (1 - A_i) \cdot \boldsymbol{y}_{R_i - 1} + A_i \cdot \boldsymbol{y}_{R_i}.$$

for each $i = 1, \ldots, n$.

