Espaces préhilbertiens complexes

$$\alpha 12 - MP^*$$

1 Généralités

1.1 Formes sesquilinéaires

Soit E un \mathbb{C} – ev. $f:(x,y)\in E^2\longmapsto f(x,y)\in \mathbb{C}$ est une forme sesquilinéaire si :

- $\forall x \in E, y \longmapsto f(x,y)$ est une forme linéaire
- $\forall y \in E, x \longmapsto f(x,y)$ est une forme semi-linéaire, c'est à dire $\forall (x,y) \in E^2, \forall \lambda \in \mathbb{C}, f(\lambda x,y) = \overline{\lambda} f(x,y)$.

f est hermitienne si de plus $\forall (x,y) \in E^2$, $f(x,y) = \overline{f(y,x)}$.

L'ensemble des formes sesquilinéaires sur E, noté FS(E), est un sev de $\mathbb{C}^{E\times E}$; l'ensemble des formes sesquilinéaires hermitiennes FSH(E) est un sev de FS(E) vu comme un \mathbb{R} – ev.

Soit $M \in \mathfrak{M}_n(\mathbb{C})$, on note M^* la transconjuguée de M, c'est à dire $M^* = {}^t\overline{M}$. M est hermitienne ssi $M = M^*$. On note $H_n(\mathbb{C})$ l'ensemble des matrices $n \times n$ hermitiennes ; c'est un sous $-\mathbb{R}$ – ev de $\mathfrak{M}_n(\mathbb{C})$. On a : $\dim_{\mathbb{R}}(H_n(\mathbb{C})) = n^2$.

1.2 Identité de polarisation

Soit $f \in FS(E)$, on pose q(x) = f(x, x) pour tout $x \in E$. On a :

$$\forall x, y \in E, f(x, y) = \frac{1}{4}(q(x + y) - q(-x + y) + iq(ix + y) - iq(-ix + y))$$

Conséquences:

- 1. Soit $f \in FS(E)$, si $\forall x \in E$, f(x,x) = 0, alors f = 0.
- 2. Soit $M \in \mathfrak{M}_n(\mathbb{C})$; $(X,Y) \longmapsto X^*MY$ est sesquilinéaire. Si $\forall X \in \mathbb{C}^n$, $X^*MX = 0$, alors M = 0.
- 3. $f \in FS(E)$ est hermitienne ssi $\forall x, q(x) \in \mathbb{R}$.

2 Formes positives

2.1 Notion de forme quadratique hermitienne

Soit E un \mathbb{C} – ev. $q: E \longrightarrow \mathbb{R}$ est une forme quadratique hermitienne si il existe une forme sesquilinéaire hermitienne f telle que $\forall x \in E, q(x) = f(x, x)$. Dans ce cas, f est l'unique forme polaire de g.

 $g: E \longrightarrow \mathbb{R}$ est une forme quadratique hermitienne ssi :

- 1. $\forall x \in E, \forall \lambda \in \mathbb{C}, q(\lambda x) = \overline{\lambda} \lambda q(x)$
- 2. $(x,y) \mapsto \frac{1}{4}(q(x+y)-q(-x+y)+iq(ix+y)-iq(-ix+y))$ est une forme sesquilinéaire hermitienne

2.2 Propriétés des formes quadratiques hermitiennes positives

Soit f une forme sesquilinéaire hermitienne sur E, q la forme quadratique hermitienne associée. Si q est positive, on a l'inégalité de Cauchy-Schwarz : $\forall (x,y) \in E^2$, $|f(x,y)| \leq \sqrt{q(x)q(y)}$. Dans ce cas, on a les corollaires suivants :

Corollaire 1: q(x) = 0 implique $\forall y \in E, f(x, y) = 0$.

Corollaire 2: $x \mapsto \sqrt{q(x)}$ est une semi-norme.

2.3 Formes définies positives

f une fsh, q la fq associée. On dit que f est définie positive si $\forall x \neq 0, f(x,x) \in \mathbb{R}^{+*}$. On parlera de même de q définie positive lorsque f l'est. On dit encore que f est un produit scalaire hermitien, souvent noté $(x \mid y), x \bullet y, \dots x \longmapsto \sqrt{q(x)}$ est alors une vraie norme, notée $\|\cdot\|$.

Cas d'égalité dans Cauchy-Schwarz : lorsque (x, y) est liée.

Cas d'égalité dans l'inégalité triangulaire : lorsque (x, y) est positivement liée $(E \text{ considéré comme } \mathbb{R} - \text{ev})$.

Procédé de Gram-Schmidt : avec ces notations, soit $(e_i)_{i \in \mathcal{I}}$ une famille libre $(\mathcal{I}$ étant une partie non vide de \mathbb{N}). Il existe alors une unique famille orthonormale $(\varepsilon_i)_{i \in \mathcal{I}}$ telle que :

- $\forall i \in \mathcal{I}, \, \varepsilon_i \in \text{Vect}(e_j)_{j \in \mathcal{I}}$
- $\forall i \in \mathcal{I}, (e_i \mid \varepsilon_i) \in \mathbb{R}^{+*}$

Si \mathcal{I} est fini, $M_{(e_i)}(\varepsilon_j)$ est triangulaire supérieure avec coefficients diagonaux dans \mathbb{R}^{+*} .

Un \mathbb{C} – ev muni d'un produit scalaire hermitien est appelé *préhilbertien* (complexe) ; s'il est de dimension finie, on dit qu'il est hermitien. Un ev préhilbertien complexe et complet est appelé espace de Hilbert.

2.4 Projections orthogonales

2.4.1 Projections orthogonales sur un sous-espace de dimension finie

Soit E un ev préhilbertien, F un sev de dimension finie. Si $x \in E$, $\exists ! y \in F$ tel que $x - y \in F^{\perp}$. Si $(\varepsilon_1, \dots, \varepsilon_m)$ est une BON de F, $y = \sum_{i=1}^m (\varepsilon_i \mid x) \varepsilon_i$. On a alors $E = F \oplus F^{\perp}$. $x \stackrel{p}{\longmapsto} y$ est le projecteur sur F associé à cette somme directe. Im(p) = F, ker $p = F^{\perp}$.

2.4.2 Propriétés liées à la distance

Avec les mêmes notations, si $x \in E$, p vérifie $\forall z \in F$, $\|x-z\| \geqslant \|x-y\|$ avec égalité si et seulement si z=y. Le théorème de Pythagore subsiste : $\forall x,y \in E$, $(x\perp y) \Longrightarrow \|x+y\|^2 = \|x\|^2 + \|y\|^2$; de même, on a la formule du parallélogramme $\forall x,y \in E$, $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$.

2.5 Inégalités de Bessel-Parseval

E un ev préhilbertien, $(\varepsilon_1, \ldots, \varepsilon_m)$ une famille ON finie. On a

$$\forall x \in E, \sum_{i=1}^{m} |(\varepsilon_i \mid x)|^2 \leqslant ||x||^2$$

avec égalité ssi $x \in \text{Vect}(\varepsilon_1, \dots, \varepsilon_m)$. En conséquence, si $(e_i)_{i \in \mathbb{N}}$ est une famille ON, $\forall x \in E$, $((e_i \mid x))_{i \in \mathbb{N}}$ est de carré sommable et

$$\sum_{i=0}^{+\infty} |(e_i \mid x)|^2 \leqslant ||x||^2$$

avec égalité ssi $x \in \overline{\text{Vect}((e_i)_{i \in \mathbb{N}})}$

3 Compléments

E est un ev hermitien

3.1 Adjoints d'un endomorphisme

Si $u \in \mathcal{L}(E)$, $\exists ! v \in \mathcal{L}(E) / \forall x, y \in E$, $(u(x) \mid y) = (x \mid v(y))$; on note $v = u^* : v$ est l'adjoint de u. Si \mathcal{B} est une BON, $M_{\mathcal{B}}(u^*) = (M_{\mathcal{B}}(u))^* = {}^t\overline{M_{\mathcal{B}}(u)}. \ u \longmapsto u^*$ est semi-linéaire involutive. u est normal si u et u^* commutent ; u est autoadjoint (ou hermitien) si $u = u^*$; u est unitaire si $u^*u = Id$. On peut caractériser les endomorphismes unitaires de la manière suivante :

- \bullet u est unitaire ssi
- $\forall (x,y) \in E^2$, (u(x) | u(y)) = (x | y) ssi
- $\forall x \in E, ||u(x)||^2 = ||x||^2$

On note $\mathbb{U}(E) = \{u \in \mathcal{L}(E)/u^*u = Id\}$ le groupe unitaire ; c'est un sous-groupe de GL(E). u est antihermitien si $u^* = -u$; dans ce cas. iu est hermitien.

3.2 Réduction des endomorphismes

Lemme : Si $u \in \mathcal{L}(E)$, il existe une BON \mathcal{B} telle que $M_{\mathcal{B}}(u)$ soit triangulaire supérieure.

Propriété : si u est normal, alors u est diagonalisable et il existe une BON \mathcal{B} telle que $M_{\mathcal{B}}(u)$ soit diagonale.

3.3 Cas des endomorphismes hermitiens

Si $u^* = u$, les résultats du paragraphe précédent s'appliquent. Mieux : $\operatorname{Sp}(u) \subset \mathbb{R}$; $\forall \lambda \neq \mu \in \operatorname{Sp}(u)$, $E_{\lambda} \perp E_{\mu}$; si F est un sev stable par u, alors F^{\perp} l'est aussi.

u hermitien est positif si $\forall x \in E$, $(u(x) \mid x) \in \mathbb{R}^+$ (ssi $\mathrm{Sp}(u) \subset \mathbb{R}^+$); u est défini positif ssi $\forall x \neq 0$, $(u(x) \mid x) \in \mathbb{R}^{+*}$ (ssi $\mathrm{Sp}(u) \subset \mathbb{R}^{+*}$).

Si $v \in \mathcal{L}(E)$, $u = v^*v$ est hermitien positif; il est défini positif ssi de plus $v \in GL(E)$. Si u est hermitien positif, $\exists v \in \mathcal{L}(E)$ tel que $u = v^*v$. v est unique si on le suppose hermitien positif, et dans ce cas $v \in \mathbb{R}[u]$. De même si u est hermitien défini positif, il existe $v \in GL(E)$ tel que $u = v^*v$; v est unique si on le suppose défini positif, et dans ce cas $v \in \mathbb{R}[u]$.

Décomposition de Cholesky: Soit M une matrice hermitienne définie positive dans $\mathfrak{M}_n(\mathbb{C})$. Alors il existe une matrice T triangulaire supérieure telle que $M = T^*T$.

3.4 Endomorphismes unitaires

Soit $u \in \mathbb{U}(E)$, alors:

- 1. u est scindé et $Sp(u) \subset \mathbb{U}$
- 2. u est diagonalisable et $\exists \mathcal{B}$ BON telle que $M_{\mathcal{B}}(u)$ soit diagonale

Réciproquement, si u satisfait 1. et 2. alors u est unitaire.

Rappel: $\mathbb{U} = \{ z \in \mathbb{C}/|z| = 1 \}.$

3