Ch3: Rigid-Body Motions - Part 1

Amin Fakhari, Spring 2022

Stony Brook University

Rotation Matrices

Reference Frames

Exponential Coordinate Representation

- **Fixed Space Frame** $\{s\}$: A <u>stationary</u>, inertial frame and there is only one.
- **Body-attached Frame**: A frame fixed to a body and moves with it.
- **Body Frame** $\{b\}$: A <u>stationary</u>, inertial frame that is instantaneously coincident with the body-attached frame.

In this course, all frames are instantaneously stationary.

All reference frames are right-handed.

A **positive rotation** about an axis is defined as the direction in which the fingers of the right hand curl when the thumb is pointed along the axis.

Stony Brook University

Rotation in 2D Space

Exponential Coordinate Representation

In 2D, the simplest way to describe the orientation of the body frame $\{b\}$ relative to the fixed frame $\{s\}$ is by specifying the angle θ .

Another way is to specify the directions of the unit axes \hat{x}_b and \hat{y}_b of $\{b\}$ relative to $\{s\}$.

$$\Rightarrow \mathbf{R} = [\hat{x}_b \quad \hat{y}_b] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \theta \in [0, 2\pi)$$
Rotation Matrix

Rotation in 3D Space

Exponential Coordinate Representation

In 3D, a way to describe the orientation of the body frame $\{b\}$ relative to the fixed frame $\{s\}$ is by specifying the directions of the unit axes \hat{x}_b , \hat{y}_b and \hat{z}_b of $\{b\}$ relative to $\{s\}$.

$$\mathbf{R} = \begin{bmatrix} \hat{x}_b & \hat{y}_b & \hat{z}_b \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \quad \mathbf{R} \in \mathbb{R}^{3 \times 3}$$

Rotation Matrix

 $\det \mathbf{R} = |\mathbf{R}| = 1.$

Constraints on Rotation Matrix

1- The unit norm condition: \hat{x}_b , \hat{y}_b , and \hat{z}_b are all unit vectors.

2- The orthogonality condition: $\hat{x}_b \cdot \hat{y}_b = \hat{x}_b \cdot \hat{z}_b = \hat{y}_b \cdot \hat{z}_b = 0$

Compact form: $R^{T}R = I_{3}$

For right-handed frames: |R| = 1

Special Orthogonal Group SO(n)

The **special orthogonal group** SO(n), also known as the (Lie) group of rotation matrices, is the set of all $n \times n$ real matrices R that satisfy (i) $R^TR = I_3$ and (ii) |R| = 1, where n = 2,3.

Exponential Coordinate Representation

SO(2) is a subgroup of SO(3): $SO(2) \subset SO(3)$

$$\mathbf{R} \in SO(3)$$

$$SO(3) = \left\{ \mathbf{R} \in \mathbb{R}^{3 \times 3} \middle| \mathbf{R}^{\mathrm{T}} \mathbf{R} = \mathbf{R} \mathbf{R}^{\mathrm{T}} = \mathbf{I}_3, |\mathbf{R}| = 1 \right\}$$

Rotation Matrices

Group

Exponential Coordinate Representation

A group is a set of elements $G = \{a, b, c, ...\}$ and a binary operation \bullet on any two elements satisfying

 $a \bullet b \in G \quad \forall a, b \in G$ Closure:

 $(a \bullet b) \bullet c = a \bullet (b \bullet c) \quad \forall a, b, c \in G$ **Associativity**:

Identity Element Existence: $\exists I \in G$ such that $a \bullet I = I \bullet a = a$ $\forall a \in G$

 $\forall a \in G, \exists a^{-1} \in G \text{ such that } a \bullet a^{-1} = a^{-1} \bullet a = I$ **Inverse Element Existence:**

Properties of Rotation Matrices

Exponential Coordinate Representation

SO(3) (or SO(2)) is a matrix (Lie) group (and the group operation \bullet is matrix multiplication).

• Closure: $R_1 R_2 \in SO(3)$

Associative: $(R_1R_2)R_3 = R_1(R_2R_3)$ (but generally not commutative, $R_1R_2 \neq R_2R_1$)

 $\exists I \in SO(3)$ such that RI = IR = RIdentity:

 $\exists R^{-1} \in SO(3) \text{ such that } RR^{-1} = R^{-1}R = I \quad (\Rightarrow R^{-1} = R^T)$ • Inverse:

^{*} For any vector $x \in \mathbb{R}^3$ and $R \in SO(3)$, the vector y = Rx has the same length as x (||x|| = ||Rx||).

Uses of Rotation Matrices (1)

00000000

Exponential Coordinate Representation

(1) Representing orientation of a frame.

Notation: R_{bc} is the orientation of $\{c\}$ relative to $\{b\}$.

Uses of Rotation Matrices (2)

Exponential Coordinate Representation

(2) Changing the reference frame of a vector or frame.

Subscript Cancellation Rule:
$$R_{ab} p_b = R_{ab} p_{b} = p_a$$

$$R_{ab} R_{bc} = R_{ab} R_{bc} = R_{ac}$$

 R_{ab} can be viewed as a <u>mathematical operator</u> that changes the reference frame from $\{b\}$ to $\{a\}$.

Note: $R_{bc}R_{cb} = I$ or $R_{bc} = R_{cb}^T = R_{cb}^{-1}$

Example

00000000

Exponential Coordinate Representation

Given
$$\mathbf{R}_1 = \mathbf{R}_{ab}$$
, $\mathbf{R}_2 = \mathbf{R}_{bc}$, and $\mathbf{R}_3 = \mathbf{R}_{ad}$, write \mathbf{R}_{dc} in terms of \mathbf{R}_1 , \mathbf{R}_2 , and \mathbf{R}_3 .

Given p_b , what is p_d in terms of R_1 , R_2 , and R_3 ?

Uses of Rotation Matrices (3)

(3) Rotating a <u>vector</u> or <u>frame</u> (about a unit axis $\widehat{\boldsymbol{\omega}}$ by an amount θ).

$$\mathbf{R} = \mathbf{R}_{aa'} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta)$$

 $\textbf{\textit{R}}$ can be viewed as a <u>mathematical operator</u> that rotates $\{a\}$ about a unit axis $\widehat{\boldsymbol{\omega}} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$ (expressed in $\{a\}$) by an amount θ to obtain $\{a'\}$.

$$\operatorname{Rot}(\hat{x},\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \operatorname{Rot}(\hat{y},\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}, \operatorname{Rot}(\hat{z},\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\operatorname{Rot}(\widehat{\boldsymbol{\omega}},\boldsymbol{\theta}) = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1-c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1-c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1-c_{\theta}) \end{bmatrix}$$

$$s_{\theta} = \sin \theta, c_{\theta} = \cos \theta$$

• $Rot(\widehat{\boldsymbol{\omega}}, \theta) = Rot(-\widehat{\boldsymbol{\omega}}, -\theta)$

 $\mathbf{R}_{sb^{\prime\prime}} = \mathbf{R}_{sb} \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \boldsymbol{\theta})$

Uses of Rotation Matrices (3) (cont.)

Exponential Coordinate Representation

- Rotation of vector v about a unit axis $\widehat{\omega}$ (expressed in the same frame) by an amount θ is vector v' expressed in the same frame: $\mathbf{v}' = \mathbf{R}\mathbf{v} = \mathrm{Rot}(\widehat{\boldsymbol{\omega}}, \theta)\mathbf{v}$
- Fixed-frame Rotation: Rotation of frame $\{b\}$ about an axis $\widehat{\omega}$ expressed in $\{s\}$ by an $\mathbf{R}_{sb'} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta) \mathbf{R}_{sb}$ amount θ is frame $\{b'\}$:

Body-frame Rotation: Rotation of frame $\{b\}$ about an axis $\widehat{\omega}$ expressed in $\{b\}$ by an

Examples

$$\mathbf{R} = \mathbf{R}_{ba} = \operatorname{Rot}(\widehat{\boldsymbol{\omega}}, \theta): \qquad \theta = \frac{\pi}{2}, \qquad \widehat{\boldsymbol{\omega}} = ?$$

$$=\frac{\pi}{2}$$

$$\widehat{\boldsymbol{\omega}} = ?$$

$$R_{bc'} = RR_{bc} = ?$$

$$\mathbf{R}_{bc^{\prime\prime}} = \mathbf{R}_{bc}\mathbf{R} = ?$$

Stony Brook University

Set of Skew-Symmetric Matrices so(3)

The set of all 3×3 real skew-symmetric matrices is called so(3) (which is the Lie algebra of the Lie group SO(3)).

$$so(3) = {\mathbf{S} \in \mathbb{R}^{3 \times 3} | \mathbf{S}^T = -\mathbf{S}}$$
 $so(3) \subset \mathbb{R}^{3 \times 3}$
 $\mathbf{x} \in \mathbb{R}^3$ $[\mathbf{x}] \in so(3)$

• Given any $x \in \mathbb{R}^3$ and $R \in SO(3)$, $R[x]R^T = [Rx]$.

• Given $[x] \in so(3)$, $[x]^2 = xx^T - ||x||^2 I$ and $[x]^3 = -||x||^2 [x]$ and higher powers of [x] can be calculated recursively.

Reference Frames

Rotation Matrices

Angular Velocities

Finding the angular velocity $\omega \in \mathbb{R}^3$ of frame $\{b\}$ attached to a rotating body.

• If $\boldsymbol{\omega}$ is expressed in $\{s\}$: $\boldsymbol{\omega}_s = \dot{\theta} \widehat{\boldsymbol{\omega}}_s$

$$\dot{\hat{\mathbf{x}}}_b = \boldsymbol{\omega}_S \times \hat{\mathbf{x}}_b
\dot{\hat{\mathbf{y}}}_b = \boldsymbol{\omega}_S \times \hat{\mathbf{y}}_b
\dot{\hat{\mathbf{z}}}_b = \boldsymbol{\omega}_S \times \hat{\mathbf{z}}_b$$

 $\boldsymbol{\omega}_{\scriptscriptstyle S}$: Fixed-frame angular velocity

$$\mathbf{R}(t) = [\hat{\mathbf{x}}_b \quad \hat{\mathbf{y}}_b \quad \hat{\mathbf{z}}_b]$$
: \mathbf{R}_{sb} at time t

$$\dot{\mathbf{R}}(t) = [\dot{\hat{\mathbf{x}}}_b \quad \dot{\hat{\mathbf{y}}}_b \quad \dot{\hat{\mathbf{z}}}_b]$$
: Time rate of change of \mathbf{R}_{sb} at time t

$$\dot{\mathbf{R}} = [[\boldsymbol{\omega}_S]\hat{\mathbf{x}}_b \quad [\boldsymbol{\omega}_S]\hat{\mathbf{y}}_b \quad [\boldsymbol{\omega}_S]\hat{\mathbf{z}}_b] = [\boldsymbol{\omega}_S]\mathbf{R}$$

$$[\boldsymbol{\omega}_{\scriptscriptstyle S}] = \dot{\boldsymbol{R}} \boldsymbol{R}^{-1}$$

Angular Velocities

• If ω is expressed in $\{b\}$:

Reference Frames

$$\boldsymbol{\omega}_{S} = \boldsymbol{R} \boldsymbol{\omega}_{b}$$

$$\boldsymbol{\omega}_{b} = \boldsymbol{R}^{-1} \boldsymbol{\omega}_{S} = \boldsymbol{R}^{T} \boldsymbol{\omega}_{S}$$

$$[\boldsymbol{\omega}_b] = [\boldsymbol{R}^{\mathrm{T}} \boldsymbol{\omega}_S]$$

$$= \boldsymbol{R}^{\mathrm{T}} [\boldsymbol{\omega}_S] \boldsymbol{R}$$

$$= \boldsymbol{R}^{\mathrm{T}} (\dot{\boldsymbol{R}} \boldsymbol{R}^{\mathrm{T}}) \boldsymbol{R}$$

$$= \boldsymbol{R}^{\mathrm{T}} \dot{\boldsymbol{R}} = \boldsymbol{R}^{-1} \dot{\boldsymbol{R}}$$

 ω_h : Body-frame angular velocity

Recall:
$$R[x]R^{T} = [Rx]$$
.

$$[\boldsymbol{\omega}_b] = \boldsymbol{R}^{-1} \dot{\boldsymbol{R}}$$

Example

Find $\boldsymbol{\omega}_{\scriptscriptstyle S}$ and $\boldsymbol{\omega}_{\scriptscriptstyle b}$ for rotational motion of a one degree of freedom manipulator.

Other Representations of Rotations

000000

Exponential Coordinate Representation of Rotation

Matrix Exponential

Scalar Linear ODE:

Reference Frames

$$\dot{x}(t) = ax(t)$$
 $x(t) \in \mathbb{R}, a \in \mathbb{R} \text{ is constant}$ $x(0) = x_0$

$$x(t) = e^{at}x_0$$

Vector Linear ODE:

$$\dot{x}(t) = Ax(t)$$

$$\frac{x(t) \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n} \text{ is constant}}{x(0) = x_0} \qquad x(t) = e^{At} x_0$$

Properties of Matrix Exponential e^{At}

Exponential Coordinate Representation

$$\forall A \in \mathbb{R}^{n \times n}, t \in \mathbb{R}$$
:

$$d(e^{At})/dt = Ae^{At} = e^{At}A$$

If
$$A = PDP^{-1}$$
 for some $D \in \mathbb{R}^{n \times n}$ and invertible $P \in \mathbb{R}^{n \times n}$: $e^{At} = Pe^{Dt}P^{-1}$

$$e^{At} = \mathbf{P}e^{\mathbf{D}t}\mathbf{P}^{-1}$$

If
$$\mathbf{\textit{D}} \in \mathbb{R}^{n \times n}$$
 is diagonal, i.e., $\mathbf{\textit{D}} = \mathrm{diag}\{d_1, d_2, \dots, d_n\}$:

$$e^{Dt} = egin{bmatrix} e^{d_1t} & 0 & \cdots & 0 \ 0 & e^{d_2t} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & e^{d_nt} \end{bmatrix}$$

If
$$AB = BA$$
, then $e^A e^B = e^{A+B}$.

$$\left(e^A\right)^{-1}=e^{-A}$$

Rotation Matrices

Exponential Coordinates of Rotations

 $p \equiv p(0)$ The vector \boldsymbol{p} is rotated by an angle θ about the unit axis $\widehat{\boldsymbol{\omega}}$, to p'. This rotation can be achieved by imagining that p rotates at a constant rate of $\dot{\theta}=1$ rad/s from time t=0 to $t=\theta$ (all vectors are expressed in $\{s\}$). $\{s\}$

$$\dot{\boldsymbol{p}} = \widehat{\boldsymbol{\omega}} \times \boldsymbol{p}(t) = [\widehat{\boldsymbol{\omega}}] \boldsymbol{p}(t) \qquad (\|\widehat{\boldsymbol{\omega}}\| = 1)$$

$$\boldsymbol{p}(t) = e^{[\widehat{\boldsymbol{\omega}}]t} \boldsymbol{p}(0)$$

$$\text{at } t = \theta$$

$$\boldsymbol{p}(\theta) = e^{[\widehat{\boldsymbol{\omega}}]\theta} \boldsymbol{p}(0) \xrightarrow{\boldsymbol{p}' = \boldsymbol{R}\boldsymbol{p}} \boldsymbol{R} = e^{[\widehat{\boldsymbol{\omega}}]\theta} = \text{Rot}(\widehat{\boldsymbol{\omega}}, \theta) \in SO(3) \qquad [\widehat{\boldsymbol{\omega}}]\theta = [\widehat{\boldsymbol{\omega}}\theta] \in so(3)$$

$$p(\theta) = e^{[\omega]\theta} p(0) \xrightarrow{P} R = e^{[\omega]\theta} = \text{Rot}(\widehat{\omega}, \theta) \in SO(3)$$
 $[\widehat{\omega}]\theta = [\widehat{\omega}\theta] \in so(3)$ \Rightarrow Any rotation matrix $R \in SO(3)$ can be obtained by rotating from the identity matrix I about a unit rotation axis $\widehat{\omega} \in \mathbb{R}^3$ ($\|\widehat{\omega}\| = 1$) by an angle of rotation $\theta \in \mathbb{R}$ about that axis.

This motivates a three-parameter representation of a rotation R called the exponential **coordinates** as $\widehat{\omega}\theta \in \mathbb{R}^3$ (equivalently, $\widehat{\omega}$ and θ can be written individually as the axis-angle **representation** of a rotation).

Matrix Exponential of Rotations

Exponential Coordinate Representation

$$e^{[\widehat{\boldsymbol{\omega}}]\theta} = I + [\widehat{\boldsymbol{\omega}}]\theta + [\widehat{\boldsymbol{\omega}}]^2 \frac{\theta^2}{2!} + [\widehat{\boldsymbol{\omega}}]^3 \frac{\theta^3}{3!} + \cdots$$

$$= I + \underbrace{\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right)}_{\sin \theta} [\widehat{\boldsymbol{\omega}}] + \underbrace{\left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \frac{\theta^6}{6!} - \cdots\right)}_{1 - \cos \theta} [\widehat{\boldsymbol{\omega}}]^2$$

$$Rot(\widehat{\boldsymbol{\omega}}, \theta) = e^{[\widehat{\boldsymbol{\omega}}]\theta} = \boldsymbol{I} + \sin\theta[\widehat{\boldsymbol{\omega}}] + (1 - \cos\theta)[\widehat{\boldsymbol{\omega}}]^2$$

(Rodrigues' formula for rotations)

$$\operatorname{Rot}(\widehat{\boldsymbol{\omega}},\boldsymbol{\theta}) = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1-c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1-c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1-c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1-c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1-c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1-c_{\theta}) \end{bmatrix}$$

$$s_{\theta} = \sin \theta, c_{\theta} = \cos \theta$$

$$\widehat{\boldsymbol{\omega}} = (\widehat{\omega}_{1}, \widehat{\omega}_{2}, \widehat{\omega}_{3})$$

Matrix Exponential of Rotations

For a given $\widehat{\boldsymbol{\omega}}$: $(\widehat{\boldsymbol{\omega}}_s = \boldsymbol{R}_{sb}\widehat{\boldsymbol{\omega}}_b)$

 $\widehat{\boldsymbol{\omega}}$ is expressed in $\{b\}$

 $\mathbf{R}_{sb'} = \mathbf{R}_{sb} e^{[\widehat{\boldsymbol{\omega}}_b]\theta}$ Body-frame displacement:

Fixed-frame displacement:

 $\mathbf{R}_{sb'} = e^{[\widehat{\boldsymbol{\omega}}_s]\theta} \mathbf{R}_{sb}$ $\widehat{\boldsymbol{\omega}}$ is expressed in $\{s\}$

Example

Exponential Coordinate Representation

The frame $\{b\}$ is obtained by a rotation from $\{s\}$ by $\theta_1 = 30^\circ$ about $\widehat{\boldsymbol{\omega}}_1 = (0,0.866,0.5)$. Find the rotation matrix representation of $\{b\}$.

Find the new rotation matrix if $\{b\}$ is then rotated by θ_2 about

(a) an axis $\widehat{\boldsymbol{\omega}}_2$ expressed in $\{s\}$.

Rotation Matrices

00000000000

(b) an axis $\widehat{\boldsymbol{\omega}}_2$ expressed in $\{b\}$.

Rotation Matrices

Matrix Logarithm of Rotations

Exponential Coordinate Representation

For any rotation matrix $\mathbf{R} \in SO(3)$, we can always find a unit rotation axis $\widehat{\boldsymbol{\omega}} \in \mathbb{R}^3$ ($\|\widehat{\boldsymbol{\omega}}\| = 1$) and scalar $\theta \in \mathbb{R}$ such that $\mathbf{R} = e^{[\widehat{\boldsymbol{\omega}}]\theta}$.

exp: $[\widehat{\boldsymbol{\omega}}]\theta \in so(3) \rightarrow \boldsymbol{R} \in SO(3)$: $e^{[\widehat{\boldsymbol{\omega}}]\theta} = Rot(\widehat{\boldsymbol{\omega}}, \theta) = \boldsymbol{R}$

log: $\mathbf{R} \in SO(3) \rightarrow [\widehat{\boldsymbol{\omega}}] \theta \in so(3) : \log(\mathbf{R}) = [\widehat{\boldsymbol{\omega}}] \theta$

 $\widehat{\boldsymbol{\omega}}\theta \in \mathbb{R}^3$: Exponential coordinates of $\boldsymbol{R} \in SO(3)$

 $[\widehat{\boldsymbol{\omega}}]\theta = [\widehat{\boldsymbol{\omega}}\theta] \in so(3)$: Matrix logarithm of **R** (inverse of the matrix exponential)

Algorithm to Find $\widehat{\boldsymbol{\omega}}$ and $\theta \in [0, \pi]$

Exponential Coordinate Representation

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1 - c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1 - c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1 - c_{\theta}) \end{bmatrix}$$

$$\operatorname{tr} \mathbf{R} = r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta$$

Rotation Matrices

$$\frac{1}{2\sin\theta} (\mathbf{R} - \mathbf{R}^{\mathrm{T}}) = \begin{bmatrix} 0 & -\widehat{\omega}_{3} & \widehat{\omega}_{2} \\ \widehat{\omega}_{3} & 0 & -\widehat{\omega}_{1} \\ -\widehat{\omega}_{2} & \widehat{\omega}_{1} & 0 \end{bmatrix} = [\widehat{\boldsymbol{\omega}}]$$

$$\mathbf{R} \Big|_{\theta=0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} \Big|_{\theta=\pi} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} -1 + 2\widehat{\omega}_1^2 & 2\widehat{\omega}_1\widehat{\omega}_2 & 2\widehat{\omega}_1\widehat{\omega}_3 \\ 2\widehat{\omega}_1\widehat{\omega}_2 & -1 + 2\widehat{\omega}_2^2 & 2\widehat{\omega}_2\widehat{\omega}_3 \\ 2\widehat{\omega}_1\widehat{\omega}_3 & 2\widehat{\omega}_2\widehat{\omega}_3 & -1 + 2\widehat{\omega}_3^2 \end{bmatrix}$$

Algorithm to Find $\widehat{\boldsymbol{\omega}}$ and $\theta \in [0, \pi]$

(a) If $\operatorname{tr} R = 3$ (or R = I), then $\theta = 0$ and $\widehat{\omega}$ is undefined.

(b) If ${\rm tr} {\pmb R} = -1$, then $\theta = \pi$ and $\widehat{\pmb \omega}$ is equal to any of the three vectors that is a feasible solution:

$$\widehat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{31} \end{bmatrix} \quad \text{or} \quad \widehat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix} \quad \text{or} \quad \widehat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix}$$

(Note that if $\widehat{\boldsymbol{\omega}}$ is a solution, then so is $-\widehat{\boldsymbol{\omega}}$)

(c) Otherwise,
$$\theta = \cos^{-1}\left(\frac{1}{2}(\operatorname{tr} \mathbf{R} - 1)\right) \in (0, \pi)$$

$$[\widehat{\boldsymbol{\omega}}] = \frac{1}{2\sin\theta}(\mathbf{R} - \mathbf{R}^{\mathrm{T}})$$

Other Representations of Rotations

Euler Angles

Another minimal representation of orientation can be obtained by using a set of three angles (α, β, γ) , i.e., by composing a suitable sequence of three elementary rotations about the (fixed frame $\{s\}$ or body/current frame $\{b\}$) coordinate axes.

Two Examples:

- ZYX Euler angles (with rotations about the body/current frame $\{b\}$).
- XYZ Euler angles (with rotations about the fixed frame $\{s\}$). This is also called **roll-pitch-yaw** angles.

Euler Angles ZYX

ZYX Euler angles (with rotations about the body/current frame $\{b\}$):

$$\mathbf{R}(\alpha, \beta, \gamma) = \mathbf{I} \operatorname{Rot}(\widehat{\mathbf{z}}, \alpha) \operatorname{Rot}(\widehat{\mathbf{y}}, \beta) \operatorname{Rot}(\widehat{\mathbf{x}}, \gamma)$$

$$\operatorname{Rot}(\widehat{\boldsymbol{x}}, \gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}, \operatorname{Rot}(\widehat{\boldsymbol{y}}, \beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix},$$
$$\operatorname{Rot}(\widehat{\boldsymbol{z}}, \alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$\mathbf{R}(\alpha, \beta, \gamma) = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$$

Euler Angles ZYX

Exponential Coordinate Representation

Finding (α, β, γ) for any given rotation matrix $\mathbf{R} \in SO(3)$:

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$$

• If
$$r_{31} \neq \pm 1$$
 (i.e., when $\beta \in (-\pi/2, \pi/2)$):

$$\beta = \operatorname{atan} 2\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$

$$\alpha = \text{atan } 2(r_{21}, r_{11})$$

$$\gamma = \operatorname{atan} 2(r_{32}, r_{33})$$

• If $r_{31}=-1$, then $\beta=\pi/2$, and if $r_{31}=1$, then $\beta=-\pi/2$. In these cases, it is possible to determine only the sum or difference of α and γ .

(Gimbal lock)

Roll-Pitch-Yaw Angles (XYZ)

Exponential Coordinate Representation

XYZ Euler angles (with rotations about the fixed frame $\{s\}$):

$$\boldsymbol{R}(\alpha,\beta,\gamma) = \operatorname{Rot}(\widehat{\boldsymbol{z}},\alpha) \operatorname{Rot}(\widehat{\boldsymbol{y}},\beta) \operatorname{Rot}(\widehat{\boldsymbol{x}},\gamma) \boldsymbol{I}$$

$$\hat{\boldsymbol{x}} = \hat{\boldsymbol{x}} \hat{\boldsymbol{y}} \hat{\boldsymbol{y}}$$

$$\mathbf{R}(\alpha, \beta, \gamma) = \begin{bmatrix} c_{\alpha}c_{\beta} & c_{\alpha}s_{\beta}s_{\gamma} - s_{\alpha}c_{\gamma} & c_{\alpha}s_{\beta}c_{\gamma} + s_{\alpha}s_{\gamma} \\ s_{\alpha}c_{\beta} & s_{\alpha}s_{\beta}s_{\gamma} + c_{\alpha}c_{\gamma} & s_{\alpha}s_{\beta}c_{\gamma} - c_{\alpha}s_{\gamma} \\ -s_{\beta} & c_{\beta}s_{\gamma} & c_{\beta}c_{\gamma} \end{bmatrix}$$

This product of three rotations is the same as that for the ZYX Euler angles with rotations about the body/current frame $\{b\}$, i.e., the same product of three rotations admits two different physical interpretations.

Successive Rotations about Axes of Fixed & **Body/Current Frames**

Unit Quaternions

Exponential Coordinate Representation

The unit quaternions are an alternative representation of rotations that alleviates the singularity of the division by $\sin \theta$ in the logarithm formula of the exponential coordinates, but at the cost of four variables subject to one constraint in the representation.

Let $R \in SO(3)$ have the exponential coordinate representation $\widehat{\omega}\theta$, i.e., $R = e^{[\widehat{\omega}]\theta}$, where $\|\widehat{\boldsymbol{\omega}}\| = 1$ and $\theta = [0, \pi]$.

$$\boldsymbol{q} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) \\ \widehat{\boldsymbol{\omega}}\sin(\theta/2) \end{bmatrix} \in \mathbb{R}^4 \qquad \text{Clearly } \|\boldsymbol{q}\| = 1$$

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\theta} + \widehat{\omega}_{1}^{2}(1 - c_{\theta}) & \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) - \widehat{\omega}_{3}s_{\theta} & \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{2}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{2}(1 - c_{\theta}) + \widehat{\omega}_{3}s_{\theta} & c_{\theta} + \widehat{\omega}_{2}^{2}(1 - c_{\theta}) & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{1}s_{\theta} \\ \widehat{\omega}_{1}\widehat{\omega}_{3}(1 - c_{\theta}) - \widehat{\omega}_{2}s_{\theta} & \widehat{\omega}_{2}\widehat{\omega}_{3}(1 - c_{\theta}) + \widehat{\omega}_{1}s_{\theta} & c_{\theta} + \widehat{\omega}_{3}^{2}(1 - c_{\theta}) \end{bmatrix}$$

$$\operatorname{tr} \boldsymbol{R} = r_{11} + r_{22} + r_{33} = 1 + 2\cos\theta \\ \Rightarrow q_0 = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}} , \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \frac{1}{4q_0} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - 2_{12} \end{bmatrix}$$

Unit Quaternions

Exponential Coordinate Representation

$$\mathbf{q} = (q_0, q_1, q_2, q_3) \qquad \Rightarrow \qquad \mathbf{R} = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_0q_3 + q_1q_2) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

It is interpreted as a rotation about the unit axis, in the direction of (q_1, q_2, q_3) by an angle $2\cos^{-1}q_0$.

- If
$${m p}=(p_0,p_1,p_2,p_3)$$
 and ${m q}=(q_0,q_1,q_2,q_3),$ then ${m n}={m p}{m q}$ is computed by:
$$\begin{bmatrix} n_0\\ n_1\\ n_2\\ n_3 \end{bmatrix} = \begin{bmatrix} q_0p_0-q_1p_1-q_2p_2-q_3p_3\\ q_0p_1+p_0q_1+q_2p_3-q_3p_2\\ q_0p_2+p_0q_2-q_1p_3+q_3p_1\\ q_0p_3+p_0q_3+q_1p_2-q_2p_1 \end{bmatrix}$$

- The rotation of a point or vector $oldsymbol{v} \in \mathbb{R}^3$ by the angle heta about an axis in the direction $\widehat{oldsymbol{\omega}}$ through the origin is determined as $m{q}_{v'} = m{q}m{q}_vm{q}^*$ where $m{q}$ is quaternion representation of $\widehat{\boldsymbol{\omega}}\theta$, $\boldsymbol{q}^*=(q_0,-q_1,-q_2,-q_3)$ is conjugate of \boldsymbol{q} , $\boldsymbol{q}_v=(0,\boldsymbol{v})$, and $\boldsymbol{q}_{v'}=(0,\boldsymbol{v}')$.