Project Euler: Problem 45

Nathan Marianovsky

Problem (Triangular, Pentagonal, and Hexagonal). Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:

Triangle
$$T_n = \frac{n(n+1)}{2}$$
 1, 3, 6, 10, 15, . . .
Pentagonal $P_n = \frac{n(3n-1)}{2}$ 1, 5, 12, 22, 35, . . .
Hexagonal $H_n = n(2n-1)$ 1, 6, 15, 28, 45, . . .

It can be verified that $T_{285} = P_{165} = H_{143} = 40755$. Find the next triangle number that is also pentagonal and hexagonal.

Solution. To approach this, perhaps it might be a good idea to have a way of telling whether a given number is triangular, hexagonal, or pentagonal. To do this, rewrite each of the generating formula into quadratic form and solve for n:

Sequence	Quadratic Form	Solution
Triangle	$0 = n^2 + n - 2T_n$	$n = \frac{-1 \pm \sqrt{1 + 8T_n}}{2}$
Pentagonal	$0 = 3n^2 - n - 2P_n$	$n = \frac{1 \pm \sqrt{1 + 24P_n}}{6}$
Hexagonal	$0 = 2n^2 - n - H_n$	$n = \frac{1 \pm \sqrt{1 + 8H_n}}{4}$

Since each of the sequences consists of strictly positive integers, we can drop the negative radical for all three solutions. Now this problem can be generalized to finding the $n^{\rm th}$ number that satisfies all three sequences. If a number does belong to all three sequences then the following conditions will be met:

Sequence	Condition
Triangle	$-1 + \sqrt{1 + 8T_n} \equiv 0 \pmod{2}$
Pentagonal	$1 + \sqrt{1 + 24P_n} \equiv 0 \pmod{6}$
Hexagonal	$1 + \sqrt{1 + 8H_n} \equiv 0 \pmod{4}$

So keep iterating through the natural numbers until the $n^{\rm th}$ number that satisfies the above congruence relations is found.