Kapitel 1

Allgemeine Chemie

Michal Sudwoj Stand: 25. November 2011

Kapitel 2

Organische Chemie

		Nomer	ıklatur		Iden	tifiktation				
St	offklasse	Präfix	Suffix	Fuktionelle Grup- pe	Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
	Alkane	-	-an	Einfachbindung	С	sp ³				Verbrennung / OxidationRadikale Halo- genierung
	Cycloalkane	Cyclo-	-an	Ring	С					
	Alkene		-en	Doppelbindung	С	sp ²				 Katalytische Hydrierung (cis- /syn-Addition) Brom-Addtion (Elektrophile- /trans-/anti- Addtiton) Bromwasserstoff- Addition (HX) Radikalische Polymerisation

		Nomen				tifiktation				
Stoff	klasse	Präfix	Suffix	Fuktionelle Grup- pe	Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
	Alkine		-in	Dreifachbindung	С	sp				 Katalytische Hydrierung Halogenwassersto Addition (HX) Salzbildung (endständige Alkine mit starken Basen)
	Aromate			 planar cyclisch konjugierter π-Bindungssystem mit 4n + 2, n ∈ Z≥1 π-Elektronen 	С	sp ²				Elektrophile aro- matische Addition
	Alkohole	hydroxy-	-ol	—— ОН	С	sp ³	+1	 H-Brücken (Donor & Acceptor) hohe Sdp. Viskozität von Polyolen pKs = 16-18 farblos 	Biologische Prozesse Hydratisierung von Alkanen Reduktion von Aldehyden/Ketonen nicht durch direkte Substitution von H in Alkanen	 Elimination mit H⁺ an benachbartem Atom ⇒ Alken Bildung von Estern (mit Carbonsäuren) Acetatbildung (mit Aldehyden/Ketonen) Oxidation zu Aldehyden/Ketonen (ausprim./sek. Alk.) Substitution mit einem Nucleophil nach Aktivierung

		Nomen					Iden	tifiktation				
Stof	fklasse	Präfix	Suffix	1	onelle		Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
	Ether		-ether	pe	-0-		С	sp ³ /sp ² /sp				
	Peroxide		-ether	<u> </u>	-0-	<u> </u>	<u></u>	sp ³ /sp ⁻ /sp	+1			
	retoxide									explosiv schwache O O Bindung (homolytische Spaltung)	 aus Ethern mit O₂ + hv (Radikalreaktion) Ether in brauen Flaschen aufbewahren durch Umsetzung von Hydroperoxidlonen (HOO) mit Halogenalkanen 	• katalytisch zu Alk. + O ₂ abgebaut
	Phenole			Ar —	— ОН		С	sp ²	+1	 farblos hohe Schmp. & Sdp. pKs ≈ 10 		elektrophile aromatische Substitution
	Enole			C	— OI	Н	С	sp ²	+1	 pKs = 10-12 unstabil ⇒ Carbonyl-		

		Nomen				ntifiktation				
Stoff	fklasse	Präfix	Suffix	Fuktionelle Gru	up- Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
Carbonylverbindun	Aldehyde	OXO-	-al	pe O R — C H	C	sp²	+	• bathochrone Verschiebung (grösseres λ)	Ox. von prim. Alk, Red. von Carbonsäuren	 Nachweis: Tollens- Reaktion (Silberspie- gel): Ox. mit [Ag(NH₃)₂]⁺ Fehling- Reaktion: Ox. mit Cu2+ Ox. zu Carbon- säuren Addition mit Nucleophilen
	Ketone	OXO-	-on	R C===0 R'				 bathochrome Verschiebung (grösseres λ) stabiler als Ald. gute LSM für org. Stoffe Nu langsamer als bei Ald. 	• Ox. von sek. Alk.	

		Nomen				tifiktation				
Stoffk	dasse	Präfix	Suffix	Fuktionelle Grup-	Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
	Carbonsäuren (CS)			ре	€	sp ² — C	+III H	• Ox. von Ald.	 hydrophil niedere CS H₂O lös. H-Brücken ⇒ Dimere pKs ≤ 5 Elektronenakep erhöhen Elektronendona erniedrigen ! 3- Oxocarbonsäuren instabil (Zerfallen in Raumtemperatur zu Ketonen + C)₂) 	
	Carbonsäurechlorid	e							mit Thionylchlorid ,	• Acylierungsmittel (aktivierte Car- bonsäurederiva- Phosphorpentachlorid, e

		Nomen	klatur			Iden	tifiktation				
Stoffklas	sse	Präfix	Suffix	Fuktionelle	Grup-	Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
Ca	arbonsäureanhydri	de		pe					 2 Carbonsäuren unter Abspaltung H₂O Carbonsäurechlor + Carbonsäure aus Dicar- 	• Acylierungsmittel ("Acylgruppen- Überträger")(auf OH / NH ₂ über- id tragen)	
Th	hioester								bonsäuren → cyclische Anhydride • aus Carbonsäurechlor	• "aktivierte ide/Carbonsäure"	
Ca	arbonsäureester								anhydride mit Thiolen/Thio- phenolen		
									Carbonsäurechlor anhydride mit Alk./Phenole • Fischer- Verseterung: Carbonsäure + Alk. (Säure Kat.)	 relativ flüchtig ide/- riechen fruchtig 	

		Nomer	nklatur			Iden	tifiktation				
Stof	Stoffklasse		Suffix	Fuktionelle pe	Grup-	Atom	Hybridisierung	Oxidationszahl	Eigenschaften	Herstellung	Reaktionen
	Carbonsäureamide								Carbonsäurechlor anhydride/Thioes mit Ammo-niak/prim./sek. Aminen nicht aus Carbonsäuren mit Aminen → Salzen (Ammoniumcaboxylate) Lactane = cyclische Amide aus Amincarbonsäuren	 relativ schwer- ide/flüchtig (ins- ter besondere un-/monosubst. ← H-Brücken neutrale Verbin- dungen ← delok. e-Paar von N 	
	Kohlensäurederivate	•									
	Amine	amino-	-amin								
	Imine										
	Nitrile										
	Amide										
	Thiole										
S-Verbindungen	Sulfone										
	Sulfonsäuren										
	Halogenverbindung	en									

@**()**®

Anhang A

Molekülkatalog

Isopropyl = 1-Meth**yleblog**lyl = 2-Meth**yleknomyl**irer Butyl = 1-Methylerenylyl = 1,1-Dimethylethyl

A.o.2 Alkene

1,3-Butadien

2-Methylbuta-1,3-dien

A.o.3 Cykloalkane

Cyclopentan Cyclohexan

A.o.4 Aromaten

A.o.5 Akohole, Ether, Amine

Alkohole

Methanol (primär)Ethanol

Propanol Isoropanol (sekundä@lykol (zweiwertig)

Glycerin (dreiwertig)

Ether

Diethylether

Amine

Methylam**Dim(petimyläm)**nin**T(siekethdäa)**min (teriär)

Cholin

Diverse

Thiazol

Vitamin B₁

Nicotin

A.o.6 Heterocyclen (aromatische und nichtaromatische)

Indigo

Michal Sudwoj Stand: 25. November 2011

Indol

Porphyrin

A.o.7 Halogenide

 $Methylenchlorid \ (Dichlorme \textbf{Chda}) of or \vec{\textbf{me}} trachlork ohlens to \textbf{\textbf{f}} \vec{\textbf{b}} do form$

A.o.8 Oxo-Verbindungen (Aldehyde und Ketone)

Aldehyde

Ketone

Propanon (AcetonButanon (Methylethylketon)

Acetophenon

Pentan-2,4-dion (Acetylaceton)

3-oxopropionsäure

A.o.9 Carbonsäuren und deren Derivate

Ameisensäure (formic acid ssigsäure CHO

Buttersäure

Benzoesäure

Nicotinsäure

Zimtsäure

Harnsäure

ОН

2-Hydroxybenzaldehyd

Todo list