STRUKTURE PODATAKA LETNJI SEMESTAR

GRAFOVI

Prof. Dr Leonid Stoimenov

Katedra za računarstvo Elektronski fakultet u Nišu

GRAF - PREGLED

- Graf
 - Definicije
 - Terminologija
 - Memorijska reprezentacija
 - Sekvencijalno matrice
 - Lančano
- o Operacije za rad sa grafom
 - ADT
 - Osnovne operacije
 - Traženje puteva
 - Obilazak grafa
 - Topološko sortiranje

GRAF — PRIMER

- Šta je graf:
 - Graf se sastoji od niza čvorova i niza potega.
 - Svaki poteg u grafu je određen parom čvorova.

• Primer:

- Čvorovi su aerodromi i sadrže kod aerodroma
- Poteg predstavlja rutu leta između dva aerodorma i sadrži vazdušno rastojanje

GRAF - DEFINICIJE

- Graf je uređeni par (V, E), gde je
 - V skup temena v, koji se zovu i čvorovi
 - E je kolekcija parova čvorova e=[u,v], koji čine potege ili grane
- Čvorovi i grane čuvaju odgovarajuće vrednosti (graf je obeležen)
- Svakom potegu u grafu može biti pridružen broj i takav graf se naziva težinski graf ili mreža.
- Nenegativan broj pridružen potegu naziva se težina.

TERMINOLOGIJA

Orijetisani poteg

- Uređeni par čvorova (u,v)
- Prvi čvor *u* je **početni**
- Poteg iz njega **izvire**
- drugi čvor v je **odredišni**
- Poteg u njega uvire
- <u>Primer</u>: avio let

o Orijetisani graf - digraf

- Svi potezi su orijentisani
- Primer: Mreža avio ruta

Neorijetisani poteg

- Neuređeni par (u,v)
- Primer: trasa avio leta

Neorijetisani graf

- Svi potezi su neorijentisani
- <u>Primer</u>: Mreža letova između gradova

PRIMER GRAFOVA

Orijentisani

V = {v0, v1, v2, v3, v4, v5, v6, v7} E = {e0 = {v0, v1}, e1 = {v1, v3}, e2 = {v3, v5}, e3 = {v2, v5}, e4 = {v0, v2}, e5 = {v0, v3}, e6 = {v3, v4}, e7 = {v5, v6}, e8 = {v5, v7}, e9 = {v7, v7}}

 $V = \{v0, v1, v2, v3, v4, v5, v6\}$ $E = \{e0 = (v0, v1), e1 = (v1, v4),$ e2 = (v1, v3), e3 = (v2, v0), e4 = (v2, v1), e5 = (v2, v3), e6 = (v1, v5), e7 = (v5, v3), $e8 = (v6, v5)\}$

Neorijentisani

TERMINOLOGIJA (NAST.)

o Završni čvorovi nekog potega

• Krajnje tačke potega

U i V su završni čvorovi za a

Incidentnost potega i čvorova

 Grana e je incidentna (vezana) za čvor v ukoliko je v jedna od krajnjih tačaka potega

 Čvor v je incidentan potegu x ako je v jedan od čvorova u uređenom paru čvorova koji čine poteg x.

• a, d, i b su *incidentni* za V

o Susedni čvorovi

- Čvor u je susedan čvoru v ako postoji poteg od u do v.
- Ako je čvor u susedan čvoru v onda se v naziva sledbenik čvora u, a čvor u je prethodnik čvora v.
- U i V su susedni

TERMINOLOGIJA (3)

Stepen čvora deg(u)

- broj potega incidentnih njemu
- X ima stepen deg(X)=5

o Izolovan čvor

• Ako je deg(u)=0

Orijetisani graf

- Ulazni stepen čvora indeg(u)
- Izlazni stepen čvora outdeg(u)

Paralelni potezi

- Potezi između dva čvora
- Potezi h, i su paralelni potezi

• Petlja (Self-loop)

- Poteg koji počinje i završava se u istom čvoru.
- j je *petlja*

TERMINOLOGIJA (4)

Put u grafu

- Sekvenca čvorova i potega
- Počinje čvorom
- Završava se čvorom
- Za svaki poteg su poznati završni čvorovi
- Put dužine n od čvora u do čvora v se definiše kao sekvenca od n+1 čvorova $(v_0, v_1, v_2, ..., v_n)$ tako da je $\mathbf{v_0} = \mathbf{u}, \mathbf{v_n} = \mathbf{v}$.
 - Za svaki čvor i između 1 i k važi da su čvorovi v_i i v_{i+1} susedni.
 - Dužina puta = broja grana na putu n
- Prost put (Simple path)
 - Put kod koga su svi čvorovi i potezi različiti

• Primer

- $P_1 = (V,b,X,h,Z)$ je prost put
- P₂=(U,c,W,e,X,g,Y,f,W,d,V) je put koji nije prost

TERMINOLOGIJA (5)

o Zatvoreni put

- Kružni put
- $\mathbf{v}_0 = \mathbf{v}_n$
- Prost zatvoren put

• Ciklus (Cycle)

- Cirkularna sekvenca čvorova i potega
- Svaki poteg je definisan završnim čvorovima
- Put od čvora do njega samog se naziva *ciklus*.

o Prost ciklus

- Ciklus kod koje su svi čvorovi i potezi različiti
- <u>Def</u>: Zatvoren prost put dužine >=3

K-ciklus

- Ciklus dužine k
- Ciklus dužine 1 = petlja

Primer

C1=(V,b,X,g,Y,f,W,c,U,a,↓)
je prost ciklus
C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↓)
je ciklus koji nije prost

TERMINOLOGIJA (6)

- Aciklični graf
 - Graf koji nema cikluse
- o Orijetisani aciklični graf
 - Orijentisani graf bez ciklusa
- Povezani graf
 - akko postoji prost put imeđu bilo koja dva njegova čvora
- Strogo povezani graf
 - **akko** postoji samo po jedan put iz svakog čvora do svih ostalih čvorova

TERMINOLOGIJA (7)

- Neorijentisani graf je povezan ako postoji put u grafu između svakog para čvorova
- <u>Primer</u>: Nepovezan graf (ne postoji put između a i d)
 - $V = \{a,b,c,d,e,f\}$
 - $E=\{(a,b),(a,c),(b,c),(d,e),(e,f)\}$
- Povezane komponente povezani podgrafovi grafa
- Izolovane komponente izdvojeni podgrafovi grafa

TERMINOLOGIJA (8)

- Orijentisani graf strogo i slabo povezan
- Orijentisani graf je strogo povezan ako postoji put u grafu između svakog para čvorova
- Orijentisani graf je slabo povezan ako je odgovarajući neorijetisani graf povezan

<u>Primer</u>: Graf nije strogo povezan, ali je slabo povezan (ne postoji put između nekog od čvorova d,e,f i čvorova a,b,c)

PRIMENA GRAFOVA

- Elektronska kola
 - Štampane ploče
 - Integrisana kola
- Transportne mreže
 - Mreža puteva
 - Mreža letova
- o Računarske mreže
 - LAN
 - Internet
 - Web
- Baze podataka
 - Entity-relationship dijagram

SEKVENCIJALNA REPREZENTACIJA — MATRICA SUSEDSTVA

o Matrica susedstva

- Dimenzije: nxn, gde je n broj čvorova
- Elementi m_{ij} matrice definišu broj potega koji spajaju čvorove i i j:

$$A_{i,j} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & (v_i, v_j) \notin E \end{cases}$$

- Za neorijentisani graf matrica susedstva je simetrična u odnosu na glavnu dijagonalu
- Za digrafove to ne mora biti slučaj.
- Prema gornjoj definiciji, ako u čvoru i ne postoji petlja, tada je element m_{ii} = 0

MATRICA SUSEDSTVA (NAST.)

- Generalizacija matrice susedstva:
 - Element matrice m_{ij} je jednak broju grana između dva čvora v_i i v_i
 - A_{ij} = broj grana između v_i i v_j
- o Graf sa relativno malo potega je redak (sparse),
- Graf sa mnogo potega je gust (dense)
- Redak graf G=(V,E): |E|=O(|V|)
- Gust graf G=(V,E): $|E|=O(|V|^2)$
 - |V| broj čvorova
 - |E| broj grana

PRIMER MATRICE SUSEDSTVA

	0			3		5	
0	0	1	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
1	0	0	0	1	1	1	0
2	1	1	0	1	0	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	1	0	0	0
6	0 /	0	1	0	0	1	0/

	0			3				
0	0	1	1	1	0	0	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
1	1	0	0	1	0	0	0	0
2	1	0	0	0	0	1	0	0
3	1	1	0	0	1	0	0	0
4	- 0	-0	-0	1	-0	-0	-0	-0
5	- 0	-0	1	1	-0	0	1	1 1
6	0	0	0	0	0	1	0	0
7	0 /	0	0	0	0	1	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Matrica težina

- Težinski graf
 - Ako je svakom potegu dodeljena težina
 - Matrica susedstva -> matrica težina
 - Vrednost elementa matrice težina w_{ij} koji definiše poteg od čvora i do čvora j:
 - o umesto 1 sadrži vrednost težine tog potega
 - o 0 ili ∞, u zavisnosti od implementacije

$$\mathbf{W}_{ij} = \begin{cases} t & (v_i, v_j) \in E \\ \infty & (v_i, v_j) \notin E \end{cases}$$

Sekvencijalna reprezentacije -Matrica incidencije

- Matrica incidencije zasniva se na incidenciji čvorova i potega
- \bullet Neka graf G ima n čvorova $(v_0, \ldots, v_{n\text{-}1})$ i m potega $(e_0, \ldots, e_{m\text{-}1})$
- o Dimenzije matrice su n x m (|V| x |E|)
- \bullet Matrica incidencije je matrica čiji je element m_{ij} broj koliko puta su čvor v_i i poteg e_j incidentni.
- Vrednosti elementa m_{ij}:
 - 0 nisu incidentni,
 - 1 incidentni
 - [2 čvor v_i spaja sam sebe (petlja) potegom e_i].
- Ako je graf usmeren, broj može biti +1 (ulazak u čvor) ili -1 (izlazak iz čvora).

PRIMER MATRICE INCIDENCIJE

LANČANA REPREZENTACIJA GRAFA

- Pogodna za retke grafove
- Lančane liste
 - Jedna lančana lista za čvorove
 - Po jedna lančana lista za potege nekog čvora
- Element za čvor:
 - node vrenost čvora
 - next pokazivač na sledeći el. u listi
 - adj pokazivač na listu potega za taj čvor
- Element za poteg:
 - dest pointer na odredište potega
 - link sledeći u listi potega
 - Opciono: vrednost potega (napr weight)

PRIMER LANČANE REPREZENTACIJE GRAFA

GRAF - OPERACIJE

- Traženje puta
 - proizvoljnog puta
 - najkraćeg puta
- Traženje elemenata grafa
 - traženje potega
 - traženje čvora
- Umetanje
 - potega
 - čvora
- Brisanje
 - potega
 - čvora
- Obilazak grafa
- Topološko sortiranje
- Testiranje povezanosti grafa
- Da li graf ima cikluse

GRAF ADT - OSNOVNE METODE

- Čvorovi i potezi
 - Pozicije
 - Čuvaju elemente
- Accessor metode
 - aVertex()
 - incidentEdges(v)
 - endVertices(e)
 - isDirected(e)
 - origin(e)
 - destination(e)
 - opposite(v, e)
 - areAdjacent(v, w)

- Update metode
 - insertVertex(o)
 - insertEdge(v, w, o)
 - insertDirectedEdge(v, w, o)
 - removeVertex(v)
 - removeEdge(e)
- Generičke metode
 - numVertices()
 - numEdges()
 - vertices()
 - edges()

Pogledati Praktikum !!

TRAŽENJE PUTEVA U GRAFU SEKVENCIJALNA REPREZENTACIJA GRAFA

- Element a_k matrice A^k jednak je broju puteva dužine k od čvora v_i do čvora v_j
- Element $b_r(i,j)$ matrice $B_r = A + A^2 + A^3 + ... + A^r$ jednak je broju puteva dužine $\leq r$ od čvora v_i do čvora v_i
- Matrica puta ili matrica dostupnosti P=[p_{ij}] definiše se kao:

```
p_{ij} = \begin{cases} 1, \text{ ako postoji put iz } v_i \text{ u } v_j \\ 0, \text{ u ostalim slučajevima} \end{cases}
```

TRAŽENJE PUTEVA U GRAFU SEKVENCIJALNA REPREZENTACIJA GRAFA

Ako je za orijentisani graf sa m čvorova

- A=[a_{ii}] matrica susedstva i
- P=[p_{ij}] matrica puta, Tada je
- o p_{ij} =1 ako i samo ako matrica B_m = $A+A^2+A^3+...+A^m$ ima nenulti element b_{ij}
- Ako graf ima m čvorova tada prost put ili ciklus mora biti dužine $\leq m$
- Matrica P strogo povezanog grafa nema nultih elemenata

Primer izračunavanja matrice puta P

$$A^{3} = \begin{bmatrix} x & y & z & w \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 2 & 2 \\ z & 1 & 0 & 1 & 1 \\ w & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} x & y & z & w \\ x & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 2 \\ z & 0 & 0 & 1 & 1 \\ w & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}^{4} = \begin{bmatrix} x & y & z & w \\ 0 & 0 & 1 & 1 \\ 2 & 0 & 2 & 3 \\ z & 1 & 0 & 1 & 2 \\ w & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$B_4 = A + A^2 + A^3 + A^4 = \begin{vmatrix} x & y & z & w \\ 1 & 0 & 2 & 3 \\ 5 & 0 & 6 & 8 \\ z & 3 & 0 & 3 & 5 \\ w & 2 & 0 & 3 & 3 \end{vmatrix}$$

$$\Rightarrow$$

y se ne može doseći!

ALGORITAM ZA NALAŽENJE MATRICE PUTA P

- Na osnovu definicije matrice P:
 - Algoritam G.1. Matrica P za graf sa m čvorova
 - 1. Naći matricu susedstva A
 - 2. Naći redom matrice A², A³, ..., A^m
 - 3. Naći matricu $B = [b_{ij}] = A + A^2 + A^3 + ... + A^m$
 - 4. Generisati matricu P korišćenjem matrice B
 - i. $p_{ij}=1$, ako je $b_{ij} \neq 0$
 - ii. $p_{ij}=0$, ako je $b_{ij}=0$
- Bolja varijanta: Warshall-ov algortiam

WARSHALL-OV ALGORITAM

- o Definišemo matrice P_0 , P_1 , ... P_m , tako da je matrica P_k :
 - $P_k[i,j]=1$, ako postoji prost put od čvora v_i do čvora v_j koji ne koristi nijedan drugi čvor osim eventualno čvorova $v_1, v_2, ..., v_k$
 - $P_k[i,j]=0$, u ostalim slučajevima.

• Primer:

- $P_0[i,j]=1$, ako postoji poteg od v_i do v_j
- $P_1[i,j]=1$, ako postoji poteg od v_i do v_j , koji ne koristi nijedan drugi čvor osim možda v_1
- P₂[i,j]=1, ako postoji poteg od v_i do v_j, koji ne koristi nijedan drugi čvor osim možda v_i i v_i

WARSHALL-OV ALGORITAM (2)

- Može se uočiti da je:
 - P₀=A,
 pošto je jedini put od čvora i do čvora j bez
 prolaska kroz druge čvorove direktan put od i do j
 - P_m=P, pošto put može da prođe kroz bilo koji čvor obeležen od 1 do m.

Warshall-ov algoritam (3)

Tada važi da je

$$P_k[i,j]=1,$$

ako i samo ako važi jedan od sledeća dva uslova:

 Ako postoji prost put od v_i do v_j koji ne koristi nijedan drugi čvor osim možda v₁, v₂, ...

$$v_{k-1}$$
: $P_{k-1}[i,j]=1$,

• Ako postoji prost put od v_i do v_k i prost put od v_k do v_j i ako oba ova puta ne koriste nijedan drugi čvor osim možda $v_1, v_2, ..., v_{k-1}$:

$$P_{k-1}[i,k]=1 i P_{k-1}[k,j]=1$$

WARSHALL-OV ALGORITAM (4)

Posledica:

- ullet Matrica P_k se može dobiti na osnovu prethodne matrice P_{k-1}
- \circ Element $P_k[i,j]$ se može izračunati na osnovu prethodno ozračunatih vrednosti:

$$P_{k}[i,j] = P_{k-1}[i,j] OR$$

$$(P_{k-1}[i,k] AND P_{k-1}[k,j])$$

WARSHALL-OV ALGORITAM

PSEUDOKOD

```
Algoritam G.2. Warshall-ov algoritam
Warshall(A,m)
    {// data je matrica susedstva A i broj čvorova m
     // algoritam generiše matricu P
    repeat for (i=1,m) //inicijalizacija matrice P<sub>0</sub>
        { repeat for (j=1,m) }
           \{ if (A[i,j]=0) \}
                 then P[i,j]=0
5.
                 else P[i,j ]=1 }}
6.
     repeat for k=1,m //Azuriranje P
        {repeat for i=1,m
8.
          {repeat for j=1,m
9.
          P[i,j] = P[i,j] or (P[i,k] and P[k,j])
10.
                                                       33
    return }
11.
```

WARSHALL-OV ALGORITAM - PRIMER

$$P_0 = A = \begin{bmatrix} x & y & z & w \\ y & 1 & 0 & 1 \\ z & 1 & 0 & 1 & 1 \\ w & 0 & 0 & 1 & 0 \end{bmatrix} \qquad P_1 = \begin{bmatrix} x & y & z & w \\ x & 0 & 0 & 0 & 1 \\ y & 1 & 0 & 1 & 1 \\ y & 1 & 0 & 1 & 1 \\ w & 0 & 0 & 1 & 0 \end{bmatrix}$$

put preko x

$$P_2 = \begin{bmatrix} x & y & z & w \\ x & 0 & 0 & 0 & 1 \\ y & 1 & 0 & 1 & 1 \\ z & 1 & 0 & 0 & 1 \\ w & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P_3 = \begin{bmatrix} y & 1 & 0 & 0 & 1 \\ z & 1 & 0 & 1 & 1 \\ w & 1 & 0 & 1 & 1 \end{bmatrix}$$

put preko x,y

put preko x,y,z

$$\mathbf{P=P_4} = \begin{bmatrix} x & y & z & w \\ 1 & 0 & 1 & 1 \\ y & 1 & 0 & 1 & 1 \\ z & 1 & 0 & 1 & 1 \\ w & 1 & 0 & 1 & 1 \end{bmatrix}$$

putevi preko x,y,z,w

OSTALE OSNOVNE OPERACIJE (LANČANA REPREZENTACIJA)

Traženje čvora i potega Dodavanje čvora i potega Brisanje čvora i potega Depth-First Search

Traženje čvora i Traženje Potega

- Lančana reprezentacija grafa
- Traženje čvora
 - Zadata vrednost čvora koji se traži
 - Procedura vraća lokaciju čvora
- Traženje potega
 - Zadati završni čvorovi potega A i B
 - Rezultat je lokacija čvora B u listi grana čvora A

Traženje čvora u grafu

```
Algoritam G.6. Traženje čvora
findNode(start, A, loc)
                                  start
   pok = start
                                                  la 🏲
   repeat while (pok <> null)
   \{ if (pok.node = A) \}
      then {
       loc=pok
      return }
      else pok = pok.link
                                 node
                                     next
    loc = null
                                  weight
                                                       37
    return
12.}
```

Traženje potega u grafu

```
Algoritam G.7. Traženje potega
  findEdge(start, A, B, loc)
1. { call findNode(start, A, locA)
                                         start
    call findNode(start, B, locB)
    if (locA=null or locB=null)
  then loc=null
  - else \{
       pok = locA.adj
       repeat while (pok <> null)
       { if (pok.dest=locB)
          then
9.
             loc=pok
10.
11.
             return
                                            node
                                                  next
          else pok=pok.link
12.
13.
                                                                   38
                                             weight
     loc= null
14
     return }
15.
```

OPERACIJE UMETANJA

DODAVANJE ČVORA ILI GRANE

Dodavanje čvora

- Čvor se dodaje na početak liste čvorova
- Odogovara operaciji dodavanja elementa na početak liste
- start U adj se upisuje null

Dodavanje potega

- Podrazmeva se da čvorovi A i B postoje
- Zadati su svojom vrednošću, pa se najpre pozivom findNode određuju lokacije u listi čvorova
- Novi poteg se dodaje kao prvi element u listu potega prvog čvora
- U *dest* se upisuje lokacija drugog čvora

Dodavanje čvora

Odgovara algoritmu dodavanja na početak jednostruko spregnute lančane liste (SLL.4)

Algoritam G.8. Dodavanje čvora

insertNode(start, A)

```
1  novi ← getnode()
2  node(novi) ← A
3  link(novi) ← start /*povezivanje novog čvora*/
4  start ← novi /*izmena početka liste*/
5  adj(novi) ← NULL /* lista potega je prazna */
6  exit /*kraj algoritma*/
```

DODAVANJE POTEGA

```
Algoritam G.9. Dodavanje potega
insertEdge(start, A, B)
    call findNode(start, A, locA)
   call findNode(start, B, locB)
    if (locA = null or locB = null)
   then loc \leftarrow null
    else
       novi \leftarrow getnode()
       dest(novi) \leftarrow locB
                                           SLL.4
       link(novi) \leftarrow adj(locA)
8
       adj(locA) \leftarrow novi
       loc \leftarrow novi
10
11
     return loc
```

Brisanje potega

- Brišemo poteg između dva zadata čvora A i B
- Nalazimo lokacije oba čvora
- U listi potega prvog čvora brišemo element koji ukazuje na drugi čvor
- Ovaj deo odgovara operaciji brisanja zadatog elementa liste

- locA=findNode(A)
- locB=findNode(B)
- Brisanje
 - Iz liste locA.adj
 - Element locB

Brisanje čvora

- Nalazimo lokaciju čvora N
- Obrisati sve potege koji se završavaju na čvoru N
 - Zahteva obilazak celog grafa, tj liste čvorova, i za svaki čvor obilazak njegove liste potega
 - Obrisati poteg prema N iz listi potega svih čvorova
- Obrisati listu potega čvora N
 - Odogovara brisanju cele liste
- Obrisati čvor N iz liste čvorova
 - Ovaj deo odgovara operaciji brisanja zadatog elementa liste

- Neophodne operacije
 - Obilazak liste čvorova
 - Obilazak liste potega
 - Brisanje zadatog elementa iz liste potega
 - Brisanje cele liste potega
 - Brisanje zadatog elementa iz liste čvorova

OBILAZAK GRAFA

OBILAZAK GRAFA

- Sistematski se ispituju svi čvorovi i grane grafa
- Svaki čvor se obilazi samo jednom
- Obilazak po širini BFS
 - Red kao pomoćna struktura
- Obilazak po dubini DFS
 - Magacin kao pomoćna struktura
- Status čvorova
 - 1 (spreman): inicijalno stanje
 - 2 (čekanje): čvor čeka na obradu
 - 3 (obrađen): čvor je obrađen
- Ako neki od čvorova nisu obiđeni, ponoviti postupak počev od prvog čvora kome je status ostao 1.

OBILAZAK PO ŠIRINI/DUBINI

BFS/DFS – razlika je u pomoćnoj strukturi!!

Algoritam G.10 Obilazak po širini / dubini

- 1. Postaviti sve čvorove u STATUS=1
- 2. Upisati prvi čvor u **RED / MAGACIN** i promeniti mu status na STATUS=2
- 3. Sve dok **RED / MAGACIN** ne bude prazan
 - a) Uzeti čvor sa početka REDa / MAGACINa. Obraditi N u promeniti mu STATUS=3
 - b) Dodati u **RED / MAGACIN** sve susede čvora N čiji je STATUS=1.
 - Promeniti im STATUS=2

4. Kraj.

ILUSTRACIJA RADA DFS/BFS

Obilazak grafa: a) primer grafa, b) obilazak po širini, c) obilazak po dubini

Redosled obilaska po BFS

DFS

- o DFS je generalna tehnika za obilazak grafa
- DFS obilazak
 - Obilazi sve čvorove i potege grafa G (uz modifikaciju)
 - Određuje da li je graf povezan

Primena DFS

- Naći i prikazati put između dva zadata potega
- Određuje povezane komponente grafa G
- Određuje *spanning forest* grafa G
- Pronaći cikluse u grafu

Redosled obilaska po DFS

PRIMER ZA DFS Čvor kome je SATUS=1 STATUS=3 Neobrađeni poteg AB Poteg koji se obrađuje Povratni poteg 51 **ABC**

PRIMER ZA DFS (NAST.)

PSEUDIKOD ZA DFS

```
Algoritam G.11. Traženje po dubini
DFS(G,v) // v je početni čvor za obradu
  S := null; // prazan magacin
  for each vertex u, set visited[u] := false;
  push(S, v);
      while (S is not empty) do
4
       u := pop(S);
5
        if (not visited[u]) then
6
          visited[u] := true;
8
         for each unvisited neighbour w of u
9
            push(S, w);
         end if
10
11
        end while
12
     exit
```

NAJKRAĆI PUT U GRAFU

TEŽINSKI GRAF

 Matrica težina: umesto 1 i 0, vrednosti su težine potega 0 ili ∞ (definisano kod implementacije)

$$W_{ij} = \begin{cases} t & (v_i, v_j) \in E \\ \infty & (v_i, v_j) \notin E \end{cases}$$

Problem najkraćeg puta

- o Ako je dat težinski graf, i dva čvora *u* i *v*, treba naći put sa minimalnom ukupnom težinom između *u* i *v*.
 - Dužina puta je **zbir težina potega** koji su deo puta.

• Primer:

 Najkraći put između aerodroma u Providence PVD i Honolulu HNL

• Primena

- Rutiranje Internet paketa
- Rezervacije letova
- Uputstva za vožnju, i sl.

Najkraći put - osobine

Osobina 1:

Put koji je deo najkraćeg puta je takođe najkraći put

Osobina 2:

Počev od startnog čvora, postoji **stablo najkraćih puteva** do svih ostalih čvorova

Primer:

Stablo najkraćih puteva od aerodroma u Providence-u PVD

Traženje najkraćeg puta u grafu – SEKVENCIJALNA REPREZENTACIJA

- Polazimo od matrice težina W
- Matrica P pokazuje da postoji put između dva čvora
- Matrica Q, čiji elementi sadrže dužinu najkraćeg puta
- o Modifikovani Warshall-ov algoritam za nalaženje matrice Q
- Definišemo matrice $Q_0, Q_1, \dots Q_m$, tako da je matrica Q_k : $Q_{k}[i,j]=min(Q_{k-1}[i,j], (Q_{k-1}[i,k] + Q_{k-1}[k,j])$
- Može se uočiti da je:
 - \bullet Q₀=W
 - \bullet $Q_m = Q$
- Ako je graf zadat matricom A, podrazumeva se da su težine za svaki poteg = 1, i primenjuje se isti algoritam 58

Modifikovani Warshall-ov algoritam – pseudokod

```
Algoritam G.3. Modifikovani Warshall-ov algoritam
ModifWarshall(W,m)
    {// data je matrica težina W i broj čvorova m
     // algoritam generiše matricu Q
    repeat for (i=1,m) //inicijalizacija matrice Q_0
        \{ repeat for (j=1,m) \}
           \{ if (W[i,j]=0) \}
                 then Q[i,j]=MAX
5
                 else Q[i,j]=W[i,j] }}
6.
     repeat for k=1,m //Azuriranje Q
        {\bf repeat \ for \ i=1,m}
8.
          {repeat for j=1,m
9.
           Q[i,j]=min(Q[i,j], (Q[i,k] + Q[k,j]))
10.
                                                        59
    return}
```

Modifikovani Warshall-ov Algoritam - Primer

$$\mathbf{Q} = \mathbf{Q_4} = \begin{bmatrix} x & y & z & w \\ x & 7 & 5 & 8 & 7 \\ y & 7 & 11 & 3 & 2 \\ z & 9 & 3 & 6 & 5 \\ w & 4 & 4 & 1 & 6 \end{bmatrix}$$

NAJKRAĆI PUT U GRAFU: DIJKSTRA-IN ALGORITAM

- LANČANA REPREZENTACIJA GRAFA
 - Rastojanje čvora v od čvora s je dužina najkraćeg puta između s i v
 - Dijkstra-in algoritam računa rastojanja za sve čvorove počev od startnog čvora s
 - Pretpostavke:
 - Graf je povezan
 - Težine potega su ne-negativne

Najkraći put u grafu: Dijkstra-in algoritam

LANČANA REPREZENTACIJA GRAFA

- Algoritam počinje od startnog čvora obradom svih njegovih potega, tako što se formira "oblak"
- Za svaki čvor v pamti se vrednost/labela d(v) koja predstavlja rastojanje v od s u pod-grafu koji se sastoji od "oblaka" i povezanih čvorova
- U svakom koraku
 - Dodajemo" oblaku" čvor u, koji je izvan oblaka, i sa najmanjom vrednosti distance d(u)
 - Ažuriramo vrednosti distanci za sve čvorove susedne sa u

RELAKSACIJA POTEGA

• Posmatramo poteg *e* = (*u*,*z*) takav da je

 u čvor koji je skoro dodat oblaku

• z nije u oblaku

• Relaksacija potega *e* podrazumeva ažuriranje d(z):

 $d(z) \leftarrow \min\{d(z), d(u) + weight(e)\}$

PRIMER (NAST.)

DIJKSTRA-IN ALGORITAM

- Red sa proritetom čuva čvorove koji su van oblaka
 - Ključ *Key*: distanca
 - Element: čvor
- Locator-based metoda
 - *insert(k,e)* vraća locator
 - *replaceKey(l,k)* menja vrednost ključa zadatog elementa
- Čuvamo dve labele za svaki čvor:
 - distanca (labela d(v))
 - lokator u redu sa prioritetom

```
Algoritam G.4. DijkstraDistances (G, s)
  Q \leftarrow new heap-based priority queue
  for all v \in G.vertices()
     if v = s
        setDistance(v, 0)
     else
        setDistance(v, \infty)
     l \leftarrow Q.insert(getDistance(v), v)
     setLocator(v,l)
  while \neg Q.isEmpty()
     u \leftarrow Q.removeMin()
     for all e \in G.incidentEdges(u)
        \{ \text{ relax edge } e \}
        z \leftarrow G.opposite(u,e)
        r \leftarrow getDistance(u) + weight(e)
        if r < getDistance(z)
           setDistance(z,r)
                                                 66
           Q.replaceKey(getLocator(z),r)
```

Proširenje Dijkstra-inog algoritma — stablo najkraćih puteva

- Vraća stablo najkraćih puteva od startnog čvora do svih ostalih
- Pamtimo uz svaki čvor treću labelu:
 - Roditeljski poteg u stablu najkraćeg puta
- U procesu relaksacije potega ažuriramo i ovu labelu

```
Algoritam G.5.
DijkstraShortestPathsTree(G, s)
  for all v \in G.vertices()
     setParent(v, \emptyset)
     for all e \in G.incidentEdges(u)
        \{ \text{ relax edge } e \}
        z \leftarrow G.opposite(u,e)
        r \leftarrow getDistance(u) + weight(e)
        if r < getDistance(z)
           setDistance(z,r)
           setParent(z,e)
           Q.replaceKey(getLocator(z),r)
```

DIJKSTRA ALGORITAM - PREGLED

- Ne-negativne težine potega
- Greedy algoritam
- Odgovara BFS (breadth-first search) algoritmu (ako su sve težine = 1, može se jednostavno koristiti BFS)
- Koristi ADT Q, red sa prioritetom, prioritet/ključ je vrednost labele u čvoru (BFS koristi FIFO red)
- Osnovna ideja
 - "Oblak" skup S obrađenih čvorova/potega
 - U svakom koraku bira "najbliži" čvor u, dodaje ga S, i relaksira sve potege iz u

DIJKSTRA – PRIMER 2

DIJKSTRA – PRIMER 2 (NAST.)

DODATNE INFORMACIJE: BELLMAN-FORD ALGORITAM

- o Dijkstra ne radi sa negativnim potezima:
 - Intuicija ne možemo biti pohlepni (greedy) uz pretpostavku da će s dužine puta povećavati u narednim koracima obrade
- Bellman-Ford algoritam detektuje negativne cikluse (vraća *false*) ili vraća stablo najkraćih puteva

RELAKSACIJA POTEGA

- Za svali čvor v u grafu, čuvamo $v.\mathbf{d}()$, procenjeni najkraći put, inicijalizovan na ∞ na početku
- Relaksacija potega (*u*,*v*) znači proveru da li možda možemo da nađemo kraći put do *v* preko čvora *u*

Relax (u,v,G)
if v.d() > u.d()+G.w(u,v) then
 v.setd(u.d()+G.w(u,v))
 v.setparent(u)

Bellman-Ford Algoritam

```
Bellman-Ford(G,s)
01 for each vertex u \in G.V()
02 \quad u.setd(\infty)
03 u.setparent(NIL)
04 s.setd(0)
05 for i \leftarrow 1 to |G.V()|-1 do
of for each edge (u,v) \in G.E() do
        Relax (u,v,G)
08 for each edge (u,v) \in G.E() do
      if v.d() > u.d() + G.w(u,v) then
09
       return false
10
11 return true
```

Bellman-Ford — Primer

Bellman-Ford — Primer

PITANJA, IDEJE, KOMENTARI

