

Low-power, rail-to-rail output, 36 V operational amplifier

Datasheet - production data

Features

- Low offset voltage: 1 mV max
- Low power consumption: 125 μA max. at
- Wide supply voltage: 2.7 to 36 VGain bandwidth product: 560 kHz typ
- Unity gain stable
- Rail-to-rail output
- Input common mode voltage includes ground
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 °C to 125 °C
- Automotive qualification

Applications

- Industrial
- Power supplies
- Automotive

Description

The TSB611 single operational amplifier (op amp) offers an extended supply voltage operating range and rail-to-rail output. It also offers an excellent speed/power consumption ratio with 560 kHz gain bandwidth product while consuming less than 125 μ A at 36 V supply voltage.

The TSB611 operates over a wide temperature range from -40 °C to 125°C making this device ideal for industrial and automotive applications.

Thanks to its small package size, the TSB611 can be used in applications where space on the board is limited. It can thus reduce the overall cost of the PCB.

Contents TSB611

Contents

1	Absolu	te maximum ratings and operating conditions	3
2		al characteristics	
3	Applica	tion information	13
	3.1	Operating voltages	13
	3.2	Input common-mode range	13
	3.3	Rail-to-rail output	13
	3.4	Input offset voltage drift over temperature	13
	3.5	Long term input offset voltage drift	13
	3.6	ESD structure of TSB611	15
	3.7	Initialization time	16
4	Packag	e information	17
	4.1	SOT23-5 package information	18
5	Orderin	g information	19
6	Povisio	n history	20

1 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage (1)	40	
Vid	Differential input voltage (2)	±V _{cc}	V
Vin	V _{in} Input voltage (V _{cc-}) - 0.2 to (V _{cc-}) -] v
lin	Input current (3)	10	mA
T _{stg}	Storage temperature	-65 to 150	°C
R _{thja}	Thermal resistance junction to ambient (4)(5)	250	°C/W
Tj	Maximum junction temperature	150	°C
	HBM: human body model (6)	4000	
ESD	MM: machine model (7)	200	V
	CDM: charged device model (8)	1500	
	Latch-up immunity	200	mA

Notes:

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	2.7 to 36	1/
V _{icm}	Common mode input voltage range	(V _{cc-)} - 0.1 to (V _{cc+}) - 1	V
Toper	Operating free air temperature range	-40 to 125	°C

⁽¹⁾All voltage values, except differential voltage are with respect to network ground terminal.

⁽²⁾Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

⁽³⁾Input current must be limited by a resistor in series with the inputs.

⁽⁴⁾Rth are typical values.

 $^{^{(5)}}$ Short-circuits can cause excessive heating and destructive dissipation.

⁽⁶⁾According to JEDEC standard JESD22-A114F.

⁽⁷⁾According to JEDEC standard JESD22-A115A.

⁽⁸⁾ According to ANSI/ESD STM5.3.1.

Electrical characteristics TSB611

2 Electrical characteristics

Table 3: Electrical characteristics at Vcc+ = 2.7 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 °C, and RL = 10 k Ω connected to Vcc/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
.,			-1		1	
Vio	Input offset voltage	-40 °C < T< 125 °C	-1.6		1.6	mV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T< 125 °C		1.8	6	μV/°C
,	land offers and			1	5	
l _{io}	Input offset current	-40 °C < T< 125 °C			10	- A
I.	Input hige current			5	10	nA
l _{ib}	Input bias current	-40 °C < T< 125 °C			15	
CMR	Common mode rejection	$V_{icm} = 0 \text{ V to V}_{cc+} -1 \text{ V},$ $V_{out} = V_{cc}/2$	90	115		
	ratio: 20 log (ΔV _{icm} /ΔV _{io})	-40 °C < T< 125 °C	85			dB
Λ.	Lorge signal voltage gain	$V_{out} = 0.5 \text{ V to } (V_{cc+} - 0.5 \text{ V})$	98	102		
A_{vd}	Large signal voltage gain	-40 °C < T< 125 °C	94			
Van	High level output voltage			13	25	
Vон	(voltage drop from V _{cc+})	-40 °C < T< 125 °C			30	mV
V_{OL}	Low level output voltage			26	30] ""
VOL	Low level output voltage	-40 °C < T< 125 °C			35	
	Lea	$V_{out} = V_{cc}$	13	20		
1	Isink	-40 °C < T< 125 °C	10			mA
l _{out}	1	V _{out} = 0 V	20	28		IIIA
	Isource	-40 °C < T< 125 °C	7			
laa	Supply current (per	No load, V _{out} = V _{cc} /2		92	110	
Icc	channel)	-40 °C < T< 125 °C			125	μΑ
		AC performance				
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		480		kU=
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		430		kHz
фт	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		60		Degrees
Gm	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		18		dB
SR+	Positive slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$	0.13	0.18		\//\
SR-	Negative slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$	0.10	0.14		V/µs
	Equivalent input noise	f = 1 kHz		37		nV/√Hz
en	voltage	f = 10 kHz		32		∏IV/√HZ
THD+N	Total harmonic distortion + noise	$\begin{aligned} f_{in} &= 1 \text{ kHz, Gain} = 1, \text{ R}_L = 100 \text{ k}\Omega, \\ V_{icm} &= (V_{cc} \text{ - 1 V})/2, \text{ BW} = 22 \text{ kHz,} \\ V_{out} &= 1 \text{ V}_{pp} \end{aligned}$		0.005		%

TSB611 Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{rec}	Overload recovery time			2		μs

Table 4: Electrical characteristics at Vcc+ = 12 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 °C, and RL = 10 k Ω connected to Vcc/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance					
.,			-1		1	.,	
Vio	Input offset voltage	-40 °C < T< 125 °C	-1.6		1.6	mV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T< 125 °C		1.6	6	μV/°C	
	land the state of			1	5		
l _{io}	Input offset current	-40 °C < T< 125 °C			15	^	
L.	Input bigg gurrent			5	10	nA	
l _{ib}	Input bias current	-40 °C < T< 125 °C			15		
CMR	Common mode rejection	$V_{icm} = 0 \text{ V to } V_{cc+} - 1 \text{ V},$ $V_{out} = V_{cc}/2$	95	126			
	ratio: 20 log (ΔV _{icm} /ΔV _{io})	-40 °C < T< 12 5°C	90				
CV/D	Supply voltage rejection	$V_{cc} = 2.8 \text{ to } 12 \text{ V}$	95	124		dB	
SVR	ratio: 20 log ($\Delta V_{cc}/\Delta V_{io}$)	-40 °C < T< 125 °C	90				
۸	Large signal voltage gain	$V_{out} = 0.5 \text{ V to } (V_{cc+} - 0.5 \text{ V})$	105	115			
A_{vd}	Large signal voltage gain	-40 °C < T< 125 °C	100				
	V_{OH} High level output voltage drop from V_{cc+}			37	60		
VOH		-40 °C < T< 125 °C			65	.,	
				56	65	mV	
Vol	Low level output voltage	-40 °C < T< 125 °C			75		
		V _{out} = V _{cc}	24	35			
	Isink	-40 °C < T< 125 °C	10			1	
lout		V _{out} = 0 V	28	40		mA	
	I _{source}	-40 °C < T< 125 °C	10				
1	Supply current (per	No load, V _{out} = V _{cc} /2		97	115		
Icc	channel)	-40 °C < T< 125 °C			130	μA	
		AC performance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		510			
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		460		kHz	
фm	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		60		Degrees	
Gm	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		18		dB	
SR+	Positive slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$	0.13	0.19			
SR-	Negative slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$	0.11	0.15		- V/μs	
	Equivalent input noise	f = 1 kHz		31		n)//s/LI=	
еn	voltage	f = 10 kHz		30		nV/√Hz	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
THD+N	Total harmonic distortion + noise	$ f_{in} = 1 \text{ kHz, } Gain = 1, R_L = 100 \text{ k}\Omega, \\ V_{icm} = (V_{cc} \text{ - 1 V})/2, BW = 22 \text{ kHz,} \\ V_{out} = 2 \text{ V}_{pp} $		0.004		%
t _{rec}	Overload recovery time			2	·	μs

Table 5: Electrical characteristics at Vcc+ = 36 V with Vcc- = 0 V, Vicm = Vcc/2, Tamb = 25 °C, and RL = 10 kΩ connected to Vcc/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance	'			1
V: Input offset voltage			-1		1	.,
V_{io}	Input offset voltage	-40 °C < T< 125 °C	-1.6		1.6	mV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T< 125 °C		1.3	6	μV/°C
	land the standard			1	5	
l _{io}	Input offset current	-40 °C < T< 125 °C			20	
				5	10	nA
l _{ib}	Input bias current	-40 °C < T< 125 °C			20	
CMR	CMR Common mode rejection	$V_{icm} = 0 \text{ V to V}_{cc+} - 1 \text{ V},$ $V_{out} = V_{cc}/2$	105	130		
	ratio: 20 log (ΔV _{icm} /ΔV _{io})	-40 °C < T< 125 °C	100			
0) (D	Supply voltage rejection	V _{cc} = 12 to 36 V	100	124		dB
SVR	ratio 20 log (ΔV _{cc} /ΔV _{io})	-40 °C < T< 125 °C	95			
^	Large signal voltage gain	$V_{out} = 0.5 \text{ V to } (V_{cc+} - 0.5 \text{ V})$	110	120		
A_{vd}		-40 °C < T< 125 °C	105			
	High level output voltage			80	110	
Vон	drop from V _{CC+}	-40 °C < T< 125 °C			150] ,,
.,				90	110	mV
V_{OL}	Low level output voltage	-40 °C < T< 125 °C			150	
		V _{out} = V _{cc}	40	60		
	Isink	-40 °C < T< 125 °C	10			1 .
lout		V _{out} = 0 V	40	70		mA
	Isource	-40 °C < T< 125 °C	20			
	Supply current (per	No load, V _{out} = V _{cc} /2		103	125	
Icc	channel)	-40 °C < T< 125 °C			140	μΑ
		AC performance				
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		560		
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		500		kHz
фm	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		58		Degrees
Gm	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		18		dB
SR+	Positive slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$	0.15	0.20		V/µs

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
SR-	Negative slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$	0.12	0.16		
	Equivalent input noise	f = 1 kHz		29		nV/√Hz
e _n	voltage	f = 10 kHz		28		NV/VHZ
THD+N	Total harmonic distortion + noise	$ f_{in} = 1 \text{ kHz, } Gain = 1, R_L = 100 \text{ k}\Omega, \\ V_{icm} = (V_{cc} \text{ - 1 V})/2, BW = 22 \text{ kHz,} \\ V_{out} = 2 \text{ V}_{pp} $		0.004		%
t _{rec}	Overload recovery time	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF, Gain} = 1$		2		μs

Figure 2: Input offset voltage distribution at VCC = 2.7 V

Figure 7: Input offset voltage vs. supply voltage 600 Vicm=Vcc/2 400 Offset Voltage (µV) 200 -200 Input (400 -600 T=125°C T=-40°C T=25°C -800 12 16 20 24 28 32 36 Supply voltage (V)

Figure 8: Input offset voltage vs. common-mode voltage at VCC = 2.7 V 400 Vcc=2.7V Input Offset Voltage (µV) 200 0 -200 -400 T=125°C T=25°C T=-40°C -600 -800 0.0 0.5 1.0 1.5 Input Common Mode Voltage (V)

TSB611 Electrical characteristics

Figure 12: Output current vs. output voltage at VCC = 2.7 V Sink 23 Vid=-1V Output Current (mA) 8 T=-40°C 0 T=125°C -8 -15 -23 Source Vcc=2.7V Vid=1V -30 0.0 1.0 1.5 Output Voltage (V) 0.5 2.5

Figure 13: Output current vs. output voltage at VCC = 36 V Sink Vid=-1V 50 Output Current (mA) 25 T=25°C T=-40°C T=125°C -25 -50 Source Vid=1V Vcc=36V 12 16 20 24 Output Voltage (V) 4 8 28 32

Figure 14: Output voltage (Voh) vs. supply voltage Vid=0.1V Output voltage (from Vcc+) (mV) RI=10kΩto Vcc/2 75 T=-40°C 50 T=25°C 25 T=125°C 0 4 8 20 24 28 32 36 Supply Voltage (V)

Figure 18: Slew rate vs. supply voltage Slew rate (V/µs) 0.1 Vicm=Vcc/2 Vload=Vcc/2 T=125°C 0.0 T=25°C RI=10kΩ CI=100pF -0.2 -0.312 16 20 24 32 Supply Voltage (V)

Figure 19: Negative slew rate behavior vs. temperature at VCC = 36 V Vcc=36V Vicm=Vcc/2 RI=10kΩ CI=100pF Signal Amplitude (V) T=-40°C T=25°C T=125°C -6∟ -20 20 100 0 40 60 80 120 Time (µs)

TSB611 Electrical characteristics

Figure 24: Gain and phase vs. frequency at VCC = 36 V Phase 50 -30 40 Gain (dB) T=-40°C -120 es -120 Bhase 20 Vcc=36V Vicm=18V -180 RI=10kΩ CI=100pF -10--210 Gain=101 -240 100k 1M Frequency (Hz)

Figure 25: Phase margin vs. output current at VCC = 2.7 V and 36 V 80 70 Phase margin (°) Vcc=2.7V Vcc=36V Vicm=Vcc/2 RI=10kΩ 20 CI=100pF T=25°C -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 Output current (pF)

Figure 31: THD+N vs. output voltage RI=10kΩ 0.1 RI=100kΩ Vcc=2.7V (%) N + QHL RI=10kΩ Vcc=36V 0.01 Vicm=Vcc/2 1E-3 Gain=1 f=1kHz BW=22kHz Vcc=36V T=25°C 0.01 1 Output Voltage (Vpp) 10

Figure 33: Output impedance vs. frequency at VCC = 2.7 V and 36 V

1000
Vicm=Vcc/2
Gain=1
Vosc=30mV
T=25°C
Vcc=36V

0.1
100
100
1k
10k
10k
10k
10d
10M
Frequency (Hz)

3 Application information

3.1 Operating voltages

The TSB611 operational amplifier can operate from 2.7 V to 36 V. The parameters are fully specified at 2.7 V, 12 V, and 36 V power supplies. However, parameters are very stable in the full V_{cc} range. Additionally, main specifications are guaranteed in the extended temperature range from -40 to 125 °C.

3.2 Input common-mode range

The TSB611 has an input common-mode range that includes ground. The input common-mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) - 1 V.

3.3 Rail-to-rail output

The operational amplifier's output levels can go close to the rails: 100 mV maximum below the positive rail and 110 mV maximum above the negative rail when connected to a 10 k Ω resistive load to $V_{CC}/2$ for a power supply voltage of 36 V.

3.4 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \text{max} \left| \frac{V_{io}(T) - V_{io}(25\,^{\circ}\text{C})}{T - 25\,^{\circ}\text{C}} \right|$$

Where T = -40 °C and 125 °C.

The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 2.

3.5 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

Equation 2

$$A_{FV} \,=\, e^{\beta \,.\, (V_S \,-\, V_U)}$$

Where:

A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

Vs is the stress voltage used for the accelerated test

V_∪ is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in *Equation* 3.

Equation 3

$$A_{FT} \,=\, e^{\frac{E_a}{k} \,\cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

AFT is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10⁻⁵ eV.K⁻¹)

 T_U is the temperature of the die when V_U is used (K)

Ts is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months = $A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$

To evaluate the op amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

Equation 6

$$V_{CC} = maxV_{op}$$
 with $V_{icm} = V_{CC}/2$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (*Equation* 7).

Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(month s)}}$$

Where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

3.6 ESD structure of TSB611

The TSB611 is protected against electrostatic discharge (ESD) with dedicated diodes (see *Figure 35*). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (V_{CC+} or V_{CC-}). Current through the diodes must be limited to a maximum of 10 mA as stated in *Table 1*. A serial resistor or a Schottky diode can be used on the inputs to improve protection but the 10 mA limit of input current must be strictly observed.

Figure 35: ESD structure

3.7 Initialization time

The TSB611 has a good power supply rejection ratio (PSRR), but as with all devices, it is recommended to use a 22 nF bypass capacitor as close as possible to the power supply pins. It prevents the noise present on the power supply impacting the signal conditioning. In addition, this bypass capacitor enhances the initialization time (see *Figure 36* and *Figure 37*).

TSB611 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 SOT23-5 package information

Figure 38: SOT23-5 package outline

Table 6: SOT23-5 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
Е	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
K	0 degrees		10 degrees	0 degrees		10 degrees	

5 Ordering information

Table 7: Order codes

Order code	Temperature range	Package	Packing	Marking
TSB611ILT	-40 °C to 125 °C	COTOO F	Tana and real	K191
TSB611IYLT (1)	-40 C to 125 C	SOT23-5	Tape and reel	K194

Notes:

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

Revision history TSB611

6 Revision history

Table 8: Document revision history

Date	Revision	Changes
17-Aug-2015	1	Initial release
15-May-2017	2	Updated automotive footnote in <i>Table 7: "Order codes"</i> .

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

