Linearization and Transversality

D. Zack Garza

Review 8.2

Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F

Linearization and Transversality

Sections 8.3 and 8.4

D. Zack Garza

April 2020

Linearization and Transversality

D. Zack Garza

Review 8.2

Space of Perturbations of

Linearizing the Floer Equation: The Differential

Review 8.2

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential

Section 8.3: The Space of Perturbations of H

Goal

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F **Goal**: Given a fixed Hamiltonian $H \in C^{\infty}(W \times S^1; \mathbb{R})$, perturb it (without modifying the periodic orbits) so that $\mathcal{M}(x, y)$ are manifolds of the expected dimension.

Goal

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Start by trying to construct a subspace $\mathcal{C}^{\infty}_{\mathbb{C}}(H) \subset \mathcal{C}^{\infty}(W \times S^1; \mathbb{R})$, the space of perturbations of H depending on a certain sequence $\varepsilon = \{\varepsilon_k\}$, and show it is a dense subspace.

Idea

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Idea: similar to how you build $L^2(\mathbb{R})$, define a norm $\|\cdot\|_{\varepsilon}$ on $C_{\varepsilon}^{\infty}(H)$ and take the subspace of finite-norm elements.

- Let $h(\mathbf{x}, t) \in C_{\varepsilon}^{\infty}(H)$ denote a perturbation of H.
- Fix $\varepsilon = \left\{ \varepsilon_k \;\middle|\; k \in \mathbb{Z}^{\geq 0} \right\} \subset \mathbb{R}^{>0}$ a sequence of real numbers, which we will choose carefully later.
- For a fixed $\mathbf{x} \in W$, $t \in \mathbb{R}$ and $k \in \mathbb{Z}^{\geq 0}$, define

$$|d^k h(\mathbf{x}, t)| = \max \{d^{\alpha} h(\mathbf{x}, t) \mid |\alpha| = k\},$$

the maximum over all sets of multi-indices α of length k. Note: I interpret this as

$$d^{\alpha_1,\alpha_2,\cdots,\alpha_k}h=\frac{\partial^k h}{\partial x_{\alpha_1}\,\partial x_{\alpha_2}\cdots\partial x_{\alpha_k}},$$

the partial derivatives wrt the corresponding variables.

Linearization and Transversality

Section 8.4: Linearizing the Floer Equation: The Differential

Section 8.4: Linearizing the Floer Equation: The Differential of F