BERT: Pre-training of Bidirectional Transformers for Language Understanding

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language under-standing. arXiv preprint arXiv:1810.04805, 2018.

- 많은 NLP task에서 language model pre-training은 유의미한 성능 향상을 보여줌
- Pre-train된 language representation을 적용하는 방식에는 크게 두 가지가 존재
 - 1. Feature-based
 - 2. Fine-tuning

1. Feature-based

- 특정 task에 맞춰진 구조의 모델에 pre-trained representation을 추가적인 feature로 사용
- 추가적으로 사용되는 pre-trained representation은 학습하지 않음
- Ex: ELMo²

2. Fine-tuning

- Task에 따라 달라지는 파라미터들을 최소화하여 모델을 구성
- Task마다 pre-trained representation을 포함한 모든 파라미터들을 재학습
- Ex: OpenAl GPT³

- 2. Matthew Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018a. Deep contextualized word rep- resentations. In NAACL.
- 3. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language under- standing with unsupervised learning. Technical re- port, OpenAI.

(a) Original Model

new task

ground truth

random initialize + train
fine-tune
unchanged

(c) Feature Extraction

Input:

new task image

new task ground truth

• 기존에는 앞의 두 가지 방식 모두 unidirectional language model을 사용하여 general language representation을 학습

• 이는 양방향에서의 문맥이 중요한 언어 task에서 치명적인 문제

• BERT는 "masked language model(MLM)"을 사용함으로 이 문제를 해결

• 추가적으로 "next sentence prediction" task를 동시에 학습함으로 성능을 향상시킴

BERT

- 두 단계로 나눠서 진행
 - 1. Pre-training
 - Label이 없는 데이터를 사용해 앞서 언급된 pre-training task를 학습
 - 2. Fine-tuning
 - 상기 단계에서 pre-train된 파라미터들에 실제로 사용될 여러 task에 맞춰진 최소한의 파라미터들만을 더하여 재학습

BERT 모델 구조

- Transformer⁴의 encoder 부분을 차용
 - Bidirectional한 구조
- 2 가지 크기의 모델을 실험
 - 1. BERT_{BASE}
 - 비교를 위해 OpenAl GPT(Tramsformer의 decoder 부분 사용)와 같은 크기로 설계
 - Total Parameters = 110M
 - 2. BERT_{LARGE}
 - Total Parameters = 340M

^{4.} Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro-cessing Systems, pages 6000–6010.

BERT 입력

- 한 token sequence로 하나의 문장 혹은 한 쌍의 문장을 입력
 - 한 쌍의 문장을 입력하는 경우 각 문장 사이를 특수한 token [SEP]으로 분리
 - 각 토큰이 문장 A 혹은 문장 B에 속하는지를 학습한 embedding 추가
- 30,000 token 어휘를 가진 WordPiece embedding 사용
- 모든 sequence의 첫 token은 언제나 특수한 토큰 [CLS]로 고정
 - 이 token으로부터의 출력을 sequence 단위 representation으로 사용
- WordPiece embedding, 문장 segment embedding, positional embedding(기존 transformer에서 사용)을 더하여 최종 입력 완성

1. Masked Language Model(Masked LM)

- Left-to-right LM 혹은 right-to-left LM의 경우 양방향을 보게 된다면 정답을 보는 것과 같은 효과
- 이를 완화하기 위해 항상 다음 token을 예측하는 것이 아닌 무작위로 중간 token을 지우고 해당 token을 예측하는 masked LM 사용

1. Masked Language Model(Masked LM)

- 각 sequence에서 무작위로 15% 정도의 token을 채택
 - 채택된 token의 결과에 대해서만 loss 계산

- 1. Masked Language Model(Masked LM)
 - 채택된 15%의 토큰에 대해 다음의 작업을 진행
 - 80%는 masking

80%: my dog is hairy — my dog is [MASK]

• 10%는 무작위로 다른 token 할당

10%: my dog is hairy — my dog is apple

• 10%는 본래 token 재사용

10%: my dog is hairy — my dog is hairy

• 실제 task에서는 masking된 어휘가 등장하지 않기 때문에 이 차이를 완화하기 위한 조치

2. Next Sentence Prediction(NSP)

- 두 문장 간의 관계를 기반으로 한 task(ex: QA, NLI) 성능 향상을 위해 해당 관계를 학습하고자 함
- 이를 완화하기 위해 항상 다음 token을 예측하는 것이 아닌 무작위로 중간 token을 지우고 해당 token을 예측하는 masked LM 사용

2. Next Sentence Prediction(NSP)

- 50%의 경우 실제로 연속된 문장으로 sequence 구성
- 나머지의 경우 두 문장을 무작위로 채택해 sequence 구성

2. Next Sentence Prediction(NSP)

Pre-training

• CLS token의 출력으로 나온 C를 사용하여 예측

- Data
 - BooksCorpus(800M 단어)
 - English Wikipedia(2,500M 단어)
 - 연속된 sequence를 추출하기 위해 문장들이 무작위로 배치되지 않은 데이터를 사용하는 것이 중요

- 학습 절차
 - 두 문장에 속한 token 수의 합이 512를 넘지 않도록 sequence를 구성
 - Batch size: 256 sequences
 - Training steps: 1,000,000 steps
 - Optimizer: Adam
 - Learning rate = 1e-4
 - $\beta_1 = 0.9$
 - $\beta_2 = 0.999$
 - L2 weight decay = 0.01
 - Learning rate warmup over the first 10,000 steps, and linear decay or the learning rate
 - Dropout probability: 0.1
 - gelu activation
 - Loss: mean masked LM likelihood + mean NSP likelihood
 - Pre-training 시간을 줄이기 위해 90%의 training step에서는 sequence 길이를 128로 조정(나머지 10% step에서 sequence 길이 512 사용)

BERT fine-tuning

Single Sentence

(d) Single Sentence Tagging Tasks:

CoNLL-2003 NER

• 각 task에 맞는 입출력을 가지도록 수정한 뒤 재학습

Question

SQuAD v1.1

(c) Question Answering Tasks:

Paragraph

General Language Understanding Evaluation(GLUE)

- 단일 sequence 혹은 한 쌍의 sequence를 입력으로 하는 sequence-level task들로 구성
- ex: MNLI(한 쌍의 문장이 주어졌을 때 문장 간의 관계를 예측), SST-2(단일 문장으로 구성된 영화 리뷰로부터 감성 분석), ...
- [CLS] token으로부터 pre-trained된 BERT를 사용하여 산출된 $C \in \mathbb{R}^H$ 벡터와 새로 추가된 classification layer weights $W \in \mathbb{R}^{K \times H} (K = \# \text{ of labels})$ 를 사용하여 출력 산출
- $softmax(CW^T)$
- 위의 출력과 label을 비교하여 전체 모델 재학습

General Language Understanding Evaluation(GLUE)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BER T _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

• BERT_{LARGE} 모델은 작은 데이터셋에서 안정적이지 않아 random initialization을 여러번 시도하여 가장 높은 성능의 모델을 채택

Stanford Question Answering Dataset(SQuAD v1.1)

(c) Question Answering Tasks: SQuAD v1.1

- 100K 개의 문답 쌍으로 구성
- 질문 그리고 답이 포함된 지문이 주어졌을 때 지문에서 답을 찾는 task

Stanford Question Answering Dataset(SQuAD v1.1)

(c) Question Answering Tasks: SQuAD v1.1

- 새로운 벡터 2개 추가
 - $S \in \mathbb{R}^H$ (정답의 시작 부분을 찾기 위한 벡터)
 - $E \in \mathbb{R}^H$ (정답의 끝 부분을 찾기 위한 벡터)
- i번째 단어가 정답의 시작일 확률: $P_i = \frac{e^{ST_i}}{\Sigma_i e^{ST_j}}$
- i보다 크거나 같은 k번째 단어가 정답의 끝일 확률도 같은 방식으로 구한 뒤 ST_i + ET_k 가 제일 높은 span을 출력하도록 학습
- 학습 objective 함수는 옳은 시작과 끝 위치의 log-likelihood의 합

Stanford Question Answering Dataset(SQuAD v1.1)

System	D	Dev		Test	
	EM	F1	EM	F1	
Top Leaderboard System	s (Dec	10th,	2018)		
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	1-1	-	84.5	90.5	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.6	-	85.8	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

• SQuAD fine-tuning하기 전 TriviaQA 데이터를 사용하여 fine-tuning 진행

• SQuAD v2.0

(c) Question Answering Tasks: SQuAD v1.1

- SQuAD 1.1 task의 (질문, 지문) 쌍 중 지문 부분에 답이 없는 경우도 추가한 task
- 답이 없는 경우는 [CLS] token에서 답이 시작하고 끝나도록 학습
- 답이 없는 경우의 점수 $S_{null} = SC + EC$
- 지문 안에서 답일 확률이 제일 높은 점수 $S_{i,j} = \max_{j \ge i} ST_i + ET_j$
- $S_{i,j} > S_{null} + \tau$ (τ = hyperparameter) 이면 $S_{i,j}$ 를 정답으로 출력 그 외에는 정답이 없는 것으로 출력

• SQuAD v2.0

System	Dev		Test	
	EM	F1	EM	F1
Top Leaderboard Systems	(Dec	10th,	2018)	
Human	86.3	89.0	86.9	89.5
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0
#2 Single - nlnet	i —	-	74.2	77.1
Publishe	d			
unet (Ensemble)	-	-	71.4	74.9
SLQA+ (Single)	-		71.4	74.4
Ours				
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1

Situations with Adversarial Generations(SWAG)

- (a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG
- 113K 개의 문장 쌍으로 구성
- 문장이 주어졌을 때 4 가지 선택지 중 이어질 문장으로 가장 올바른 것을 고르는 task
- 문장과 선택지 4개를 하나씩 각각 붙인(ex: (문장, 선택지 1), (문장, 선택지 2), ...) 4 개의 sequence를 입력
- Sequence-level task이므로 [CLS] token의 embedding C를 사용하여 normalization, classification 진행

• Situations with Adversarial Generations(SWAG)

System	Dev	Test
ESIM+GloVe ESIM+ELMo OpenAI GPT		52.7 59.2 78.0
BERT _{BASE} BERT _{LARGE}	81.6 86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	-	85.0 88.0

• Pre-training task의 효과

Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)
$BERT_{BASE}$	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

- No NSP -> QNLI, MNLI, SQuAD 성능 크게 하락
- No bidirectionality -> 전체적으로 성능 하락했지만 MRPC, SQuAD에서 특히 크게 하락
- 오른쪽 context가 아예 없는 것에 대한 보상으로 BiLSTM 추가
 - SQuAD 성능은 좋아졌지만 여전히 Masked LM 사용한 것에 못 미치고, 나머지 task에서는 오히려 성능이 하락
- ELMo처럼 LTR, RTL 모델을 concat하는 것은 밑의 이유로 실험하지 않음
 - 학습 시간 두 배로 소요
 - QA 등의 task에서 RTL은 정답을 보는 격이므로 합당하지 않음
 - 한 층에서 bidirectional한 것보다 성능이 안 좋을 것이 자명하기 때문

• 모델 크기의 효과

Hyperparams			Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
3	768	12	5.84	77.9	79.8	88.4	
6	768	3	5.24	80.6	82.2	90.7	
6	768	12	4.68	81.9	84.8	91.3	
12	768	12	3.99	84.4	86.7	92.9	
12	1024	16	3.54	85.7	86.9	93.3	
24	1024	16	3.23	86.6	87.8	93.7	

- Fine-tuning 시 5 번 무작위로 초기화하여 학습한 결과의 평균
- 모델 크기가 클수록 성능이 향상됨
 - 비교적 사이즈가 작은 MRPC 역시 해당
- 모델이 충분히 pre-train됐다면 작은 scale의 task에서도 모델 크기를 키우는 것이 성능을 향상시킨다는 것을 보여줌

• Feature-based 접근의 효과

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Feature-based 접근에는 다음의 장점이 존재
 - Transformer encoder 구조가 모든 task를 represent할 수 없기 때문에 task에 적합한 모델 구조를 사용할 수 있다는 장점
 - 학습 비용 절감
- CoNLL-2003 Named Entity Recognition(NER) task로 두 접근 성능 비교
- Tagging task에서 흔히 사용되는 CRF(conditional random field) 사용하지 않음
- 대신 첫 번째 sub-token의 representation을 token-level classification의 입력으로 사용

• Feature-based 접근의 효과

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	_
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	_
Concat Last Four Hidden	96.1	·-
Weighted Sum All 12 Layers	95.5	-

- BERT의 한 개 혹은 그 이상의 층에서의 결과를 조합해 feature로 사용
- 2 층, 768 차원의 BiLSTM 분류기의 입력으로 사용
- 가장 좋은 성능의 feature-based 모델은 finu-tuning모델과 성능 차이가 크지 않음
- BERT는 두 가지 접근 모두에서 좋은 성능을 보여줌

결론

• Bidirectionality가 중요함을 입증