UFPR – Bacharelado em Ciência da Computação CI210 – Projetos Digitais e Microprocessadores Desafio MIPS - Prof. Marco A. Zanata Alves

Para este desafio, vamos comparar o desempenho de um programa de acordo com o mix de instruções que são de fato executadas. Considere, na Tabela 1, os pesos para cada tipo de instrução.

Tipo	Peso
ALU	1
Jump	1
Branch	2
Memória	3
Outras	1

Tabela 1: Pesos (custo) para cada tipo de instrução

Portanto, um código com a quantidade de instruções descrita na Tabela 2 teria um peso (custo) total de 190.

Tipo	Quantidade	Desempenho
ALU	100	100
Jump	5	5
Branch	10	20
Memória	15	45
Outras	20	20
Soma	150	190

Tabela 2: Exemplo de programa

Considere agora o problema da soma de dois vetores. Dados dois vetores, somar os elementos de mesmo índice e salvar o resultado em outro vetor (veja Figura 1).

Figura 1: Soma de dois vetores

O desafio é escrever um código mais eficiente que o código do professor. O resultado de desempenho do código do professor pode ser conferido na Figura 2.

Figura 2: Resultado do professor

As estatísticas do seu programa podem ser computadas a partir do simulador Mars (http://courses.missouristate.edu/kenvollmar/mars/). Use a ferramenta *Instruction Statistics* disponível no menu *Tools*.

Use também o código base disponível no Moodle. Esse código já fornece a declaração dos vetores bem como instruções para impressão do vetor resultado, **esses trechos de código não podem ser alterados**.

Você deverá entregar o seu código em assembly do MIPS, bem como um mini relatório com o resultado de desempenho do seu código.