Superposition and Dipole \vec{E} field

PHYS 272 - David Blasing

Tuesday June 11th

Principle of Superposition

Definition: Superposition

The net electric field at a position in space is the vector sum of every electric field made at that location by all the *other* charged particles around.

The electric field created by a charged particle is *not* affected by the presence of other charged particles or electric fields nearby.

Superposition Example

Definition
Clicker Question \vec{E} from a Uniformly Charged Sphere

\vec{E}_{net} is related to \vec{F}_{net}

• Once you have calculated the \vec{E}_{net} due to all the other charges, then you can quickly calculate the force $\vec{F}_{net} = Q * \vec{E}_{net}$ on **any** amount of charge Q placed at that location

What is the direction of \vec{E}_{net} at the location of q_3 if $|q_2|\approx 2|q_1|$?

e. There is no electric field

What is the direction of \vec{E}_{net} at the location of q_3 ?

Tom places a negative charge at the top corner of an isosceles triangle to test the electric field produced by the +Q and -Q charges at the bottom of the triangle. What is the direction of the **net force** on the **top** negative charge?

B. Down.

C. Right.

D. Up.

E. The net force is zero

Now, Tom removes the test charge. What is the direction of the *electric field* at the previous point (top of triangle)?

- A. Left.
- B. Down.
- C. Right.
- D. Up.
- E. The electric field is zero

Tom never quits. He now wishes to find the direction of the electric field at the origin, as shown by the black dot. The **electric field** at the origin points

- A. Left.
- B. Down.
- C. Right.
- D. Up.
- E. The net field is zero

Now, Tom changes one of the positive charges on the bottom to negative, as shown below. At the position of the dot, the *electric field* points approximately

• Electric field of a uniformly charged sphere

• for r > R

$$\vec{E}_{sphere} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$$

• for r < R

$$\vec{E}_{sphere} = 0$$

$ec{E}$ from a Uniformly Charged Sphere

1 Note: for r > R, $\vec{E}_{sphere} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$. Does this formula look familiar?

$ec{E}$ from a Uniformly Charged Sphere

- **1** Note: for r > R, $\vec{E}_{sphere} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$. Does this formula look familiar?
- ② A uniformly charged sphere at locations outside the sphere produces the same \vec{E} field of a point charge with charge equal to the total charge on the sphere.

The charged sphere responds to applied electric fields in the same way as a point charge at its center would

Electric Dipoles Parallel to the Axis Perpendicular to the Axis Dipole Summary

\vec{E} field of a dipole and the electric dipole moment vector

Electric Dipoles
Parallel to the Axis
Perpendicular to the Axis
Dipole Summary

$ec{E}$ field of a dipole and the electric dipole moment vector

Definition: Dipole Moment Vector \vec{p}

 $\vec{p}=q\vec{s}$ where q is the *magnitude* of both charges that make up a dipole, \vec{s} is the position of the positive charge relative to the negative charge.

$ec{E}$ field of a dipole at other locations

- Now we are going to apply the principal of superposition to get the electric field of a dipole.
- As a general hint, symmetry is your friend. Doing math is usually simpler when you somehow preserve or take advantage of a physical symmetry.

- Now we are going to apply the principal of superposition to get the electric field of a dipole.
- As a general hint, symmetry is your friend. Doing math is usually simpler when you somehow preserve or take advantage of a physical symmetry.
- There are two lines of symmetry for a dipole, and we are going to derive simpler formulas along each of those lines.

$$E_{1,x} = \frac{1}{4\pi\varepsilon_0} \frac{2srq}{\left(r - \frac{s}{2}\right)^2 \left(r + \frac{s}{2}\right)^2}$$

$$E_{1,x} = \frac{1}{4\pi\varepsilon_0} \frac{2srq}{\left(r - \frac{s}{2}\right)^2 \left(r + \frac{s}{2}\right)^2}$$

if r>>s, then
$$\left(r - \frac{s}{2}\right)^2 \approx \left(r + \frac{s}{2}\right)^2 \approx r^2$$

$$E_{1,x} = \frac{1}{4\pi\varepsilon_0} \frac{2srq}{\left(r - \frac{s}{2}\right)^2 \left(r + \frac{s}{2}\right)^2}$$

if r>>s, then
$$\left(r - \frac{s}{2}\right)^2 \approx \left(r + \frac{s}{2}\right)^2 \approx r^2$$

$$E_{1,x} = \frac{1}{4\pi\varepsilon_0} \frac{2sq}{r^3} \qquad \qquad \vec{E}_1 = \left\langle \frac{1}{4\pi\varepsilon_0} \frac{2sq}{r^3}, 0, 0 \right\rangle$$

While the electric field of a point charge is proportional to $\frac{1}{r^2}$, electric fields created by several charges may have a different distance dependence.

Summary Dipole \vec{E} Field

\vec{E} Far From the Dipole

$$|\vec{E}_{perp}| = \frac{1}{4\pi\epsilon_0} \frac{p}{y^3} \qquad |\vec{E}_{onaxis}| = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}$$

For the same distance r, $|\vec{E}_{onaxis}| = 2 * |\vec{E}_{perp}|$. At other locations you can still use superposition, it is just that the formula doesn't simplify as nicely.

Dipole in a uniform \vec{E} field, What is the net force?

$$\vec{F} = q\vec{E}$$

$$\vec{P} = q\vec{E}$$

Dipole in a uniform \vec{E} field, What is the net force?

$$\vec{F} = q\vec{E}$$

$$\vec{P} = q\vec{E}$$

The force on the positive is equal in magnitude but opposite in direction of the force on the negative, so $\vec{F}_{net} = \vec{F}_+ + \vec{F}_- = \vec{0}$

Dipole in a uniform \vec{E} field, What is the net force?

$$\vec{F} = q\vec{E}$$

$$\vec{P} = q\vec{E}$$

The force on the positive is equal in magnitude but opposite in direction of the force on the negative, so $\vec{F}_{net} = \vec{F}_+ + \vec{F}_- = \vec{0}$

So what could a dipole be used to measure?

Dipole in a uniform \vec{E} field, What is the net force?

$$\vec{F} = q\vec{E}$$

$$\vec{P} = q\vec{E}$$

The force on the positive is equal in magnitude but opposite in direction of the force on the negative, so $\vec{F}_{net} = \vec{F}_+ + \vec{F}_- = \vec{0}$

So what could a dipole be used to measure? A dipole would experience a force in a *non-uniform* \vec{E} field. So they can measure the uniformity of the \vec{E} field

Dipole in a uniform \vec{E} field

The \vec{E} field results in a torque on the dipole, aligning \vec{p} to \vec{E} . Given this, what additional piece of information might a dipole measure?

Electric Dipoles Parallel to the Axis Perpendicular to the Axis Dipole Summary

Group Question 2

Dipole in a uniform \vec{E} field

The \vec{E} field results in a torque on the dipole, aligning \vec{p} to \vec{E} . Given this, what additional piece of information might a dipole measure? The direction of \vec{E} (i.e. \hat{E})