

Design Strategy & Spaces

- Exact Design Procedure
- Design Space Concept

Control Design Strategy

Control Design Procedures

Control design procedures **aim** to arrive at the **controller**, $G_c(s)$, for given closed loop **specifications**.

However, as **specifications** can be in different **domains**, the procedures to **arrive** at controllers also **differ**.

In this regard, let us first understand the design task.

Exact Design Procedure

If we wish for closed loop performance exactly as specified by benchmark 2nd order transfer function, we can adopt the following approach.

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{\left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)} = \frac{G_c G}{1 + G_c G}; \quad G(s) = \frac{N(s)}{D(s)}$$

$$G_c = \frac{C(s)}{G[R(s) - C(s)]} = \frac{\omega_n^2 D(s)}{s(s + 2\zeta\omega_n)N(s)}$$

Exact Solution Limitations

We see that **resulting** $G_c(s)$ is **fairly complex**, whose order depends on N(s) and realizability on D(s).

Further, if plant is **unstable**, it results in **non-minimum** phase **controller**, while if the plant is **non-minimum** phase, controller is **unstable**.

Thus, we need **methods** that give a **reasonable** $G_c(s)$.

For this, we **need** to map the various design **spaces**.

Design Space Formulation

Time Domain Design Space

Overall **time** domain design **space** is shown alongside.

We can **choose** nondimensional frequency, ' $\omega_n t$ ' and damping ratio, ' ζ ', depending on the desired **attributes**.

It can also be seen that for such a closed loop, K_V is ' $\omega_n/(2\zeta)$ '.

s – Domain Design Space

Once, ' ω_n ' & ' ζ ' are picked up from **t-domain** space, the **design** normally proceeds in **s-domain**, as shown below.

GCO, PM, ω_b Space

Following **relations**, derived earlier, provide a **basis** for developing the **design space** in frequency domain.

$$\omega_{GCO} = \omega_n \sqrt{\sqrt{1 + 4\zeta^4 - 2\zeta^2}}; \quad PM^o = \zeta \times 100^o$$

$$\omega_b = \omega_n \sqrt{\sqrt{\left(1 - 2\zeta^2\right)^2 + 1} + \left(1 - 2\zeta^2\right)}$$

M_r as Design Specification

 $\mathbf{M_r}$ provides indirect route to time domain design space through $\mathbf{M_p}$ correlation.

Figure along side shows mapping between ' M_r ' & ' M_p ', for different ' ζ '.

It is seen that **nature** of two plots is **nearly same** for $\zeta > 0.4 \& \zeta < 0.8$.

Thus, given M_p , we can arrive at M_r or vice versa.

M_r Design Space

In many cases, we can directly use M_r for design, along with ω_b , in the frequency domain, in order to avoid errors due to mapping in time domain.

This is **enabled** through the concept of **M-circles** as contours in closed loop **design space**.

We can **apply** this directly in the $G(j\omega)$ plane to arrive at **desired** controller **configurations** for specified M_r values.

M – Circle Formulation

M – circle can be formulated as shown below.

$$G(j\omega) = X(\omega) + jY(\omega); \quad \frac{C(j\omega)}{R(j\omega)} = \frac{G(j\omega)}{1 + G(j\omega)} = \frac{X + jY}{(1 + X) + jY}$$

$$M = \left| \frac{C(j\omega)}{R(j\omega)} \right| = \left| \frac{X + jY}{(1 + X) + jY} \right| = \frac{|X + jY|}{|(1 + X) + jY|} \rightarrow M^2 = \frac{X^2 + Y^2}{(1 + X)^2 + Y^2}$$

$$M \neq 1 \rightarrow X^2 \left(1 - M^2\right) - 2M^2X - M^2 + \left(1 - M^2\right)Y^2 = 0$$

$$X^2 + \frac{2M^2}{M^2 - 1}X + \frac{M^2}{M^2 - 1} + Y^2 = 0 \rightarrow \left(X + \frac{M^2}{M^2 - 1}\right)^2 + Y^2 = \frac{M^2}{\left(M^2 - 1\right)^2}$$
Circle with $R = \frac{M}{\left(M^2 - 1\right)}$; Centre: $\left(-\frac{M^2}{M^2 - 1}, 0\right)$; $M = 1 \rightarrow X = -\frac{1}{2}$

M – circle Plots

Given alongside is family of M-circles, in $G(j\omega)$ plane.

We find that for **no** resonance, M-circle is a straight line.

We also see that as $\mathbf{M} \rightarrow \infty$, circle becomes -1+j0.

M – circle Application

As Nyquist plot is created in $G(j\omega)$ plane, we realize that there will be intersections of Nyquist plot with M-circles of different magnitudes.

These intersection points indicate the closed loop resonant peaks & frequencies corresponding to $G(j\omega)$.

Thus, we can **design** a Nyquist plot of $G(j\omega)H(j\omega)$, based on a **desired** M_r for the closed loop system.

Control Design Procedure

As we see, the **design** can be carried out in **any domain**.

However, to do it in **time domain**, we need to generate a **large number** of time responses for **different** control **options**, which is quite **tedious**.

Therefore, we carry out the design in either s- or ω -domain and verify it in time domain.

However, specifications can be in any domain.

Summary

Exact design procedure generates a controller which may not be realizable or of very high order / unstable.

Time domain design space is in terms of M_p & T_s , while s-domain design space makes use of, σ , ζ , ω_n , & ω_d .

 $PM \& \omega_b$ are commonly used in **bode** and nyquist domain, while M_r maps help in **control design** with nyquist plot.

The **design** is carried out in **s- or \omega-** domain.