Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет Инфокоммуникационных технологий (ИКТ)
Образовательная программа Интеллектуальные системы в гуманитарной сфере

ОТЧЕТ

по учебной практике

Тема задания: Анализ текстов песен группы "Король и шут"

Обучающийся: Козлов Всеволод Денисович, группа К33421

Руководитель практики от университета: Валитова Юлия Олеговна

Практика пройдена с оценкой	
Пата	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	. 3
1.1 Сбор информации об альбомах и текстах песен группы	. 4
1.2 Сбор информации об эмоциональной окраске слов	. 5
2 Обработка данных	. 6
2.1 Предобработка	. 6
2.2 Разметка частей речи.	. 7
2.3 Векторизация	. 7
2.4 Результат	. 7
3 Анализ	. 9
3.1 Соотнесение слов из датасетов со словами из текстов песен	. 9
3.2 Пробная визуализация облака слов	. 9
3.3 Применение библиотеки "dostoevsky" [7] для сентимент-анализа	10
3.4 Написание алгоритма для поиска песен по целевому запросу	11
4 Написание бэкенд части приложения	12
4.1 Точки входа приложения	12
5 Написание фронтенд части приложения	14
5.1 Используемые инструменты	14
5.2 Демонстрация результатов работы	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20

ВВЕДЕНИЕ

Сложность анализа текстовой информации заключается в том, что нет универсального алгоритма преобразования текстовой информации в данные, над которыми можно производить вычисления. Алгоритм преобразования во многом зависит от специфики данных и анализа, который будет проводиться над данным в дальнейшем.

Когда же мы преобразовали текст в данные, с которыми будем работать, это может быть таблица частотности, TF-IDF или же любой другой метод векторизации текст, возникает трудность с интерпретацией полученных векторов. Векторы имеют слишком большую размерность для визуализации и представления в виде понятным человеку.

После интерпретации полученных векторов при помощи алгоритмов необходимо получить визуальное представление результатов, чтобы можно было сделать выводы на основе имеющихся данных. Этим я хочу сказать, что недостаточно просто предоставить набор метрик. Метрики необходимо грамотно представить. Здесь мы уже переходим в область визуализации, которая находится на стыке вычислений и дизайна

Целью проекта я поставил пройти через все этапы обработки текстовых данных, собранных из текстов песен группы «Король и Шут». Результатом проекта будет веб-сервис с интерактивными визуализациями. Интерактивность визуализации проявляется в возможности выбора промежутка годов и конкретных альбомов, по которым будут строиться графики

1 Сбор данных

Для задачи мне необходимы все тексты песен группы «Король и Шут», разбитые по альбомам. Также для сентимент-анализа мне необходим наборы данных, в которых слову будет соотноситься его эмоциональная окраска. Насколько позитивно слово? Насколько негативно слово?

1.1 Сбор информации об альбомах и текстах песен группы

Так как мне не удалось найти открытый набор данных с этой информацией. Я решил написать парсер. В качестве сайта для парсинга я выбрал сайт korol-i-shut.su [1]. Результаты работы парсера я положил в сѕу файлы. У меня получился файл с альбомами(таблица 1.1) и текстами песен(таблица 1.2)

Таблица 1.1 – фрагмент таблицы с информацией об альбомах

title	year	album_id
Камнем по Голове	1996	0
Король и Шут	1996	1
Акустический альбом	1999	2

Таблица 1.2 – фрагмент таблицы с информацией об альбомах

title	lyrics	album_id
Смельчак и Ветер	Припев:	0
	Я ведь не из робких,	
	Все мне по плечу	
Проказник Скоморох	На свадьбе скоморох,	0
	Был прытким как горох.	
	Он бегал по столам	
Верная Жена	Дождливой ночью парень,	0
	выбравшись из леса	
	Вдруг одинокую избушку	
	увидал	

1.2 Сбор информации об эмоциональной окраске слов

С наборами данных по эмоциональной окраске слов задача обстояла лучше. Мне удалось найти 3 набора данных по этой теме:

- 1. Rusentilex [2]
- 2. Linis 2015 [3]
- 3. Linis 2016 [3]

Датасеты имели различную разметку. Пришлось обработать их, чтобы привести к единому формату. В итоге у меня получился набор начальных форм слов с оценками в диапазоне от -2 до 2. Где -2 означает максимальную негативную коннотацию. 2 Означает максимальную позитивную коннотацию. 0 — нейтральная коннотация

2 Обработка данных

Теперь мы имеем все необходимые исходные данные для начала работы. Превратим данные в векторизованное представление для дальнейшего анализа

2.1 Токенизация, фильтрация, лемматизация

В предобработке я выделил 3 основных этапа:

- 1. Разбиение на токены
- 2. Удаление служебных символов и пунктуации
- 3. Фильтрация по стоп-словам
- 4. Лемматизация

Этапы стандартны для обработки текстов. Единственным отличием является то, что я выделил стоп-слова специфические для набора данных. Например, в них вошло слово "припев". Также присутствие этапа лемматизации обусловлено тем, что в дальнейшем мне необходимо было минимизировать количество уникальных слов в тексте. Это поможет при дальнейшей обработке. На рисунке 2.1 приведена функция, которая выполняет обработку.

```
from razdel import tokenize
       from nltk.corpus import stopwords
       import pymorphy2
       def tokenize_and_base(text):
          morph = pymorphy2.MorphAnalyzer()
7
8
           russian_stopwords = set(stopwords.words('russian'))
           additional_stopwords = {'u', 'npuneB', 'ho', 'g', 'B', 'ho', 'yTo',
9
                                  'мой', 'свой', 'весь', 'всё', 'на', 'мы', 'с', 'а', 'вест', 'это', 'сам'}
          russian_stopwords.update(additional_stopwords)
          words = [i.text for i in tokenize(text)]
           processed_words = []
           for word in words:
              # Remove punctuation
16
              if not word.isalpha():
                  continue
18
               # Remove stopwords
19
              if word in russian_stopwords:
20
                  continue
              parsed_word = morph.parse(word)[0]
              normal_form = parsed_word.normal_form
              if normal_form in russian_stopwords:
25
              processed_words.append(normal_form)
           return processed_words
```

Рисунок 2.1 – Функция для обработки текстовой информации

2.2 Разметка частей речи

После обработки все слова были поделены на 3 категории: существительные, глаголы и прилагательные. Для разметки по частям речи использовалась библиотека PyMorphy2 [4]

2.3 Векторизация

Для векторизации был выбран алгоритм TF-IDF [5]. Этот алгоритм был выбран так как большинство алгоритмов сентимент-анализа показывают на нем метрики лучше по сравнению с "мешком слов" [6].

Также был написан простой алгоритм для подсчета слов в списке документов. Это пригодится нам в этапе анализа

2.4 Результат

В результаты мы получаем 2 файла: "songs_tagged.pkl" и "corpus.npz". В первом хранится хранятся токены, разбитые на части речи, фрагмент можно увидеть в таблице 2.1 Во втором векторы tf-idf для каждого текста, фрагмент можно увидеть в таблице 2.2.

Таблица 2.1 – фрагмент содержания файла "songs_tagged.pkl"

title	album_id	tokens	adjectives	verbs	nouns
смельчак и	0	[робкий,	[робкий,	[проучить,	[плечо,
ветер		плечо,	сильный,	дуть, рвать,	ветер,
		сильный,	ловкий,	спасть,	ветер,
		ловкий, ветер,	сильный,	разойтись	крыша,
		проучить	поздний,		час,
			сумасшедший,		округ
			храбрый,		
			спокойный]		
проказник	0	[свадьба,	[прыткий,	"[бегать,	[свадьба,
скоморох		скоморох,	старый,	кидаться,	скоморох,
		прыткий,	весёлый,	нести, ржать,	горох,
		горох, бегать,	хмельный,	смеяться,	стол,
		стол,	женский	плясать	пудинг
		кидаться			
верная	0	[дождливый,	[дождливый,	[выбраться,	[парень,
жена		ночью,	одинокий,	увидать,	лес,
		парень,	голодный,	надеяться,	избушка,
		выбраться,	дряхлый,	найтись,	утро,
		лес, пустить	покойный	устать	место

Таблица 2.2 – фрагмент содержания файла "corpus.pkl"

	0	1	2	3	4	5	6
0	0.5023	0.2300	0.4123	0.0239	0.0013	0.0123	0.00
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3 Анализ

3.1 Соотнесение слов из датасетов со словами из текстов песен

Возьмем уникальные слова из всех песен, приведенные к начальной форме, и уникальные слова из наборов данных с эмоциональной окраской слов. Объединим их в единый набор данных, где каждому слову, встречавшемуся хотя бы раз в одной из песен, будет соответствовать число от -2 до 2, отражающее его эмоциональную окраску. Для всех слов, которые присутствуют в песнях, но отсутствуют в наборах данных с эмоциональной окраской слов, поставим 0. Фрагмент результата можно увидеть в таблице 3.1

Таблица 3.1 – фрагмент таблицы с эмоциональной оценкой слов

word	rating
неподвижный	0.0
былина	0.0
безголовый	-0.666666666
закрыть	0.0
страшно	-1
ладный	0.333333333

3.2 Пробная визуализация облака слов

Теперь мы имеем все, чтобы преобразовать данные в облако слов, где размер слова обозначает частоту употребления, а цвет — эмоциональную окраску слова. Результат представлен на рисунке 3.1.

Рисунок 3.1 – Пробное облако слов

3.3 Применение библиотеки "dostoevsky" [7] для сентиментанализа

Если до этого мы работали с отдельным словами без контекста, то теперь мы посмотрим на текст песни целиком. И на основе текста определим к какой категории песня больше относится: негативная, позитивная, нейтральная. Результат положим в сsv файл. Фрагмент его содержание можно посмотреть в таблице 3.2.

Таблица 3.2 – Фрагмент таблицы с эмоциональной оценкой текстов песен

title	album_id	positive	negative	neutral
смельчак и	0	0.1688	0.1824	0.1561
ветер				
проказник	0	0.15204	0.2337	0.1225
скоморох				
верная жена	0	0.1097	0.3007	0.1480

3.4 Написание алгоритма для поиска песен по целевому запросу

Также в веб-сервисе я хочу реализовать поиск по текстам песен. Для этого была решена использоваться косинусная мера между векторами, полученными при помощи TF-IDF [8]. Это позволяет нам оценить соноправленность вектора текста песни и вектора запроса. В результате получаем число от 0 до 1. В таблице 3.3 приведены примеры результата для запроса "Песня о 2-х друзьях, на которых напали разбойники"

Таблица 3.3 – Лучшие совпадения по косинусной мере

Название песни	Совпадение
Два Друга и Разбойники	0.205547
Песня Мушкетёров	0.110314
Собрание	0.106530
В Париж - Домой	0.099017
Бунтарь	0.072206

4 Создание бэкенд части приложения

Для веб-приложения мы напишем API на "Django-rest-framework"[9]. API будет высылать ответы в формате JSON на HTTР запросы.

4.1 Точки входа приложения

На основе анализа проведенного в главе 3. Создадим точки входа для веб-приложения:

Точка входа для получения частот слов для облака слов. URL: word_cloud/word_frequency; принимаемые типы запросов: GET. Параметры GET-запроса:

- tag_type Часть речи, возвращаемых слов;
- year min Минимальный год текстов песен;
- year_max Максимальный год текстов песен ;
- albums_titles Список альбомов.

Точка соответствующей входа ДЛЯ получения цвета, эмоциональной окраске слова. URL: word cloud/word color; GET; принимаемые запросов: параметры GET-запроса: типы отсутствуют

Точка входа для получения списка альбомов. URL: album/list; принимаемые типы запросов: GET; параметры GET-запроса: отсутствуют

Точка входа для получения данных о сентимент-анализе текстов песен. URL: vizualization/sentiment; принимаемые типы запросов: GET; параметры GET-запроса:

- year_min Минимальный год текстов песен
- year_max Максимальный год текстов песен
- albums_titles Список альбомов

Точка входа для поиска песен по целевому запросу. URL: song/search; принимаемые типы запросов: POST; параметры POST-запроса:

• query – целевой запрос

5 Создание фронтенд части приложения

Мы имеем все данные, необходимые для создания веб-приложения с интерактивными визуализациями.

5.1 Используемые инструменты

В качестве фронтенд фреймворка используется "Vue.js" [10] В качестве UI-фреймворка используется "Vuetify" [11]. Для визуализаций используется plotly [12] и wordcloud2.js [13].

5.2 Демонстрация результатов работы

Были сделаны 4 страницы: главная страница; страница с облаком слов; страница с эмоциональным анализом; страница с поиском по песням. Все страницы доступны, либо нажатием соответствующего пункта в выпадающем меню(рисунок 5.2), либо нажатием на заголовок приложения(рисунок 5.1).

Рисунок 5.1 – заголовок приложения

Рисунок 5.2 – Выпадающее меню для навигации

Главная страница служит для ознакомления пользователя с направленностью веб-сервиса. Объясняет, как перемешаться по сайту. Ее содержание можно посмотреть на рисунке 5.3.

Рисунок 5.3 – Внешний вид главной страницы

Страница с облаком слов. На странице есть 3 основных элемента: меню для выбора периода и альбомов(рисунок 5.4); визуализация, соотносящая размер слова и количество употребления слова в тексте(рисунок 5.5); облака слов для 4-х категорий(рисунок 5.6)

Рисунок 5.4 – Внешний вид меню для выбора периода и альбомов

Рисунок 5.5 – отношения размера слова к частоте употребления

Рисунок 5.6 – Облака слов

Страница с сентимент-анализом. На странице 3 основных элемента: меню для выбора периода и альбомов (рисунок 5.7); график распределения песен по преобладающей эмоциональной окраске(рисунок 5.8); график распределения вероятностей отнесения песни к эмоциональной окраске(рисунок 5.9)

Рисунок 5.7 – Внешний вид меню для выбора периода и альбомов

Рисунок 5.8 – Распределения песен по эмоциональной окраске

Рисунок 5.9 – График распределения вероятностей

Страница с поиском по песням. На странице 2 основных элемента: поле для поиска(рисунок 5.10); результаты поиска(рисунок 5.11). При нажатии на наименование результаты, выезжает поле с текстом песни(рисунок 5.12)

Рисунок 5.10 – Поисковое поле

Рисунок 5.11 – Результаты поиска

Рисунок 5.12 – Содержание выдачи

ЗАКЛЮЧЕНИЕ

В ходе проделанной работы мы прошли все этапы анализа текстовой информации от сбора до представления результатов анализа в виде интерактивного веб-сервиса. В результате были достигнуты все цели, поставленные в начале.

Работа над этим проектом расширило мои знания обработки естественного языка и репрезентации результатов анализа. Мало провести грамотную аналитику, необходимо, чтобы остальные могли её понять. Навыки веб-разработки очень помогают с этой задачей. Рад, что у меня получилось их расширить.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Тексты песен группы Король и Шут. Текст : электронный // Группа Король и Шут : [сайт]. URL: https://korol-i-shut.su/albums/ (дата обращения: 06.02.2024).
- 2. Лукашевич Н.В., Левчик А.В. Создание лексикона оценочных слов русского языка РуСентилекс // Труды конференции OSTIS-2016, С.377-382.
- 3. Алексеева С.В., Кольцова Е.Ю., Кольцов С.Н. Linis-crowd.org: лексический ресурс для анализа тональности социально-политических текстов на русском языке // Компьютерная лингвистика и вычислительные онтологии: сборник научных статей. Труды XVIII объединенной конференции «Интернет и современное общество» (IMS-2015), Санкт-Петербург, 23 25 июня 2015 г., СПб., 2015, С. 25-32
- 4. Analysis of Images, Social Networks and Texts / Khachay, Yu,and Mikhail, a. P. Natalia [и др.]. 1-е изд. Yekaterinburg : Springer International Publishing, 2015. 542 с. Текст : непосредственный.
- 5. Fatih, Karabiber TF-IDF Term Frequency-Inverse Document Frequency / Karabiber Fatih. Текст: электронный // LearnDataSci: [сайт]. URL: https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency/#:~:text=Using%20scikit%2Dlearn-,What%20is%20TF%2DIDF%3F,%2C%20relative%20to%20a%20corpus). (дата обращения: 09.02.2024).
- 6. Comparing Bag of Words and TF-IDF with different models for hate speech detection from live tweets / Akuma, S., Lubem [и др.]. Текст: непосредственный // Int. j. inf. tecnol. 2022. № 15. С. 3629–3635.
- 7. dostoevsky PyPI. Текст: электронный // PyPI: [сайт]. URL: https://pypi.org/project/dostoevsky/ (дата обращения: 09.02.2024).
- 8. Umadevi Document comparison based on tf-idf metric / Umadevi, M. Текст: непосредственный // International Research Journal of Engineering and Technology (IRJET). 2020. № 2. С. 1546--1550

- 9. djangorestframework PyPI. Текст : электронный // PyPI : [сайт]. URL: https://pypi.org/project/djangorestframework/ (дата обращения: 10.02.2024)..
- 10. Vue.js The Progressive Javascript Framework. Текст : электронный // vuejs : [сайт]. URL: https://vuejs.org/ (дата обращения: 14.02.2024).
- 11. Vueetify A Vue Component Framework. Текст : электронный // vuetifyjs : [сайт]. URL: https://vuetifyjs.com/en/ (дата обращения: 14.02.2024).
- 12. Plotly JavaScript Open Source Graphing Library. Текст : электронный // plotly : [сайт]. URL: https://plotly.com/javascript/ (дата обращения: 14.02.2024).
- 13. wordcloud-npm. Текст : электронный // npmjs : [сайт]. URL: https://www.npmjs.com/package/wordcloud (дата обращения: 14.02.2024).