

CLAIMS

What is claimed is:

Sub 1 A)

1. A method for managing data in a data storage system, the data storage system including a plurality of physical storage devices, the method comprising the steps of:
 - 3 a) providing a plurality of modules, each of the plurality of modules including at least one child;
 - 5 b) receiving an input command related to the data by one of the plurality of modules from a source, wherein the source is transparent to the one module;
 - 7 c) deciding which child of the at least one children to pass the input command; and
 - 8 d) passing the input command to the decided child for processing the data according to the input command.
- 1 2. The method of claim 1, wherein the source comprises another module.
- 1 3. The method of claim 1, wherein the one module is the child of another module.
- 1 4. The method of claim 1, wherein the source is a client computer.

1 5. The method of claim 1 further comprising the step of:
2 e) determining whether the decided child is another module of the plurality of
3 modules; and
4 f) repeating steps b) – d) if the decided child is determined to be another module.

1 6. The method of claim 5 further comprising the step of:
2 g) if the decided child is determined in step e) to be a physical storage device,
3 accessing the data stored in the physical storage device according to the input command.

1 7. The method of claim 6, wherein the accessing step g) further comprising:
2 g1) building commands in the physical storage device to process the input
3 command; and
4 g2) executing the commands in the physical storage device.

1 8. The method of claim 7, wherein the physical storage device is a disk drive.

1 9. The method of claim 8, wherein the built commands are small computer system
2 interface (SCSI) commands.

1 10. The method of claim 7, further including the step of:

2 h) returning a status message from the decided child module to the parent module;

3 and

4 i) repeating step h) until the parent module is an operating system of a host.

1 11. A computer readable medium containing programming instructions for managing
2 data in a data storage system, the data storage system including a plurality of disk drives, the
3 programming instructions for:

4 a) providing a plurality of modules, each of the plurality of modules including at
5 least one child;

6 b) one of the plurality of modules receiving an input command from a source,
7 wherein the source is transparent to the one module;

8 c) deciding which child of the at least one children to pass the input command; and

9 d) passing the input command to the decided child for processing.

1 12. The computer readable medium of claim 11, wherein the source comprises another
2 module.

1 13. The computer readable medium of claim 11, wherein the one module is the child of
2 another module.

1 14. The computer readable medium of claim 11, wherein the source is a client computer.

1 15. The computer readable medium of claim 11, further comprising the instructions for:

2 e) determining whether the decided child is another module of the plurality of
3 modules; and
4 f) repeating steps b) – d) if the decided child is determined to be another module.

1 16. The computer readable medium of claim 15 further comprising the instruction for:

2 g) if the decided child is determined in step e) to be a disk drive,
3 accessing the data stored in the disk drive according to the input command.

1 17. The computer readable medium of claim 16, wherein the accessing instruction g)
2 further comprising:

3 g1) building commands in the disk drive to process the input command; and
4 g2) executing the commands in the disk drive.

1 18. The computer readable medium of claim 17, wherein the built commands are small
2 computer system interface (SCSI) commands.

1 19. The computer readable medium of claim 17, further including the instructions for:

2 h) returning a status message from the decided child module to the parent module;
3 and
4 i) repeating step h) until the parent module is an operating system of a host.

Sub A1

1 20. A system for managing data in a data storage system, the data storage system
2 including a plurality of physical storage devices, the system comprising:
3 a host computer for allowing a user to enter an input command related to data in the data
4 storage system;
5 a controller having an input coupled to the host computer and an output coupled to the
6 plurality of physical storage devices, the controller further comprising:
7 a plurality of modules, each of the plurality of modules including at least one
8 child;
9 means for one of the plurality of modules receiving the input command from a
10 source, wherein the source is transparent to the one module;
11 means for deciding which child of the at least one children of the one module to
12 pass the input command; and
13 means for passing the input command to the decided child for processing the data
14 in accord with the input command.

1 21. The system of claim 20, wherein the source is another module.

1 22. The system of claim 20, wherein the one module is the child of another module.

1 23. The system of claim 20, wherein the source is the host computer.

1 24. The system of claim 20, wherein the decided child is one physical storage device of
2 the plurality of physical storage devices.

Sub A)
1 25. The system of claim 24, further comprising means for accessing the data stored in the
2 one physical storage device.

1 26. The system of claim 25, wherein the means for accessing the data includes a plurality
2 of control chips coupled to the controller, each control chip coupled to a corresponding physical
3 storage device of the plurality of physical storage devices, wherein each control chip includes
4 means for building commands to access the data in the corresponding physical storage device in
5 accordance with the input command.

1 27. The system of claim 26, wherein the commands are small computer system interface
2 (SCSI) commands.

1 28. A method for rebuilding a disk drive in a redundant data storage system having a
2 plurality of disk drives, wherein one of the disk drives becomes degraded, the method comprising
3 the steps of:

4 Sub A1

5 a) providing a plurality of modules, each module including a plurality of children,
6 wherein the plurality of children are disk drives and wherein a degraded module includes a
7 degraded child which is the degraded disk drive;

8 b) detecting the presence of a new disk drive replacing the degraded disk drive;

9 c) creating a spanned partition;

10 d) coupling the spanned partition to the degraded module; and

11 e) rebuilding the new disk drive by the spanned partition, such that the new disk
drive includes data stored in the degraded disk drive.

1 29. The method of claim 28, wherein the rebuilding step (e) further comprising:

2 e1) creating a nondegraded module, wherein the nondegraded module is
3 identical to the degraded module except that the degraded child is replaced by a new child
4 which is the new disk drive;

5 e2) coupling the nondegraded module to the spanned partition;

6 e3) reading data from the children of the degraded module;

7 e4) determining data in the degraded child from the data read in step (f3); and

8 e5) writing the data determined in step (e4) to the new child in the
9 nondegraded module.

1 30. The method of claim 29, further including the steps of:

2 f) decoupling the degraded module and the nondegraded module from the spanned
3 partition;

4 Sub A/

5 g) replacing the degraded module with the nondegraded module;
6 h) discarding the degraded module; and
7 i) extracting the spanned partition.

1 31. A computer readable medium containing programming instructions for rebuilding a
2 physical storage device in a redundant data storage system having a plurality of physical storage
3 devices, wherein one of the physical storage devices becomes degraded, the instructions
4 comprising:

5 a) providing a plurality of modules, each module including a plurality of children,
6 wherein the plurality of children are physical storage devices and wherein a degraded module
7 includes a degraded child which is the degraded physical storage device;

8 b) detecting the presence of a new physical storage device replacing the degraded
9 physical storage device;

10 c) creating a spanned partition;

11 d) coupling the spanned partition to the degraded module; and

12 e) rebuilding the new physical storage device by the spanned partition, such that the
13 new physical storage device includes data stored in the degraded storage device.

1 32. The computer readable medium of claim 31, wherein the rebuilding instruction (e)
2 further comprising:

3 e1) creating a nondegraded module, wherein the nondegraded module is
4 identical to the degraded module except that the degraded child is replaced by a new child
5 which is the new physical storage device;
6 e2) coupling the nondegraded module to the spanned partition;
7 e3) reading data from the children of the degraded module;
8 e4) determining data in the degraded child from the data read in step (f3); and
9 e5) writing the data determined in step (e4) to the new child in the
10 nondegraded module.

1 33. The computer readable medium of claim 32, further including the instructions for:
2 f) decoupling the degraded module and the nondegraded module from the spanned
3 partition;
4 g) replacing the degraded module with the nondegraded module;
5 h) discarding the degraded module; and
6 i) extracting the spanned partition.