Quantal response equilibrium

Elżbieta Kukla

9 maja 2012

Gra w orła i reszkę ("Matching pennies")

$$\begin{array}{c|cccc} & L & R \\ \hline T & -1, 1 & 1, -1 \\ B & 1, -1 & -1, 1 \end{array}$$

Oczekiwane wypłaty gracza wierszowego:

$$U_T = -1 \cdot (1 - p_R) + 1 \cdot p_R = 2p_R - 1$$

$$U_B = 1 \cdot (1 - p_R) + (-1) \cdot p_R = 1 - 2p_R$$

Zatem $U_T > U_B \Leftrightarrow p_R > \frac{1}{2}$.

Podobnie gracz kolumnowy $(U_R > U_L \Leftrightarrow p_T < \frac{1}{2})$.

Gra w orła i reszkę

Figure 1 Players' best responses and quantal responses for a generalized matching pennies game

Gra w orła i reszkę

$$\begin{array}{c|cccc} & L & R \\ \hline T & -1, 1 & 9, -1 \\ B & 1, -1 & -1, 1 \end{array}$$

Oczekiwane wypłaty gracza wierszowego:

$$U_T = -1 \cdot (1 - p_R) + 9 \cdot p_R = 10p_R - 1$$

$$U_B = 1 \cdot (1 - p_R) + (-1) \cdot p_R = 1 - 2p_R$$

Zatem $U_T > U_B \Leftrightarrow p_R > \frac{1}{6}$.

Gracz kolumnowy – tak jak poprzednio: $U_R > U_L \Leftrightarrow p_T < \frac{1}{2}$.

Gra w orła i reszkę

Figure 1 Players' best responses and quantal responses for a generalized matching pennies game

Quantal response function

Funkcja powinna być

- rosnąca
 (im większa oczekiwana wypłata, tym większe prawdopodobieństwo wyboru strategii)
- gładka

Przykładowo dla i = 2:

$$\mathbb{P}(T) = \frac{f(U_T)}{f(U_T) + f(U_B)}$$

$$\mathbb{P}(B) = \frac{f(U_B)}{f(U_T) + f(U_B)}$$

Np.
$$f(U_i) = \exp(\lambda U_i)$$
, $i = T, B$.

QRE

Quantal response equilibrium

Richard McKelvey, Thomas Palfrey – "Quantal Response Equilbrium in Normal Form Games", 1995

- doskonała racjonalność graczy zastąpiona jest ograniczoną racjonalnością
- każda strategia jest grana z dodatnim prawdopodobieństwem
- strategia z wyższą oczekiwaną wypłatą jest grana częściej
- uogólnienie równowagi Nasha:
 - lacksquare $\lambda o \infty$ zbiega do równowagi Nasha
 - $\lambda \rightarrow 0$ losowo
- wyniki pokrywają się z danymi z eksperymentów

Definicje

- $G = (N, S_1, \dots, S_n, \pi_1, \dots, \pi_n)$ gra o postaci normalnej
- $N = \{1, \dots, n\}$ zbiór graczy
- $S_i = \{s_{i1}, \dots, s_{iJ(i)}\}$ zbiór strategii i-tego gracza
- $S = S_1 \times \ldots \times S_N$ zbiór profilów strategii
- \blacksquare $\pi_i: S_i \to R$ funkcja wypłat i-tego gracza

Oznaczenia

- ullet $\Sigma_i = \Delta^{J(i)}$ zbiór rozkładów prawdodpodobieństw nad S_i
- $\sigma_i \in \Sigma_i$ strategia mieszana, która jest przekształceniem z S_i do Σ_i , gdzie $\sigma(s_i)$ prawdopodobieństwo, że gracz i wybierze strategie czystą s_i
- lacksquare $\Sigma = \Sigma_1 imes \ldots imes \Sigma_N$ zbiór profilów strategii mieszanych
- $\pi_i(\sigma) = \sum_{s \in S} p(s) \pi_i(s)$ oczekiwana wypłata *i*-tego gracza, jeśli profil strategii mieszanych to $\sigma \in \Sigma$, gdzie $p(s) = \prod_{i \in N} \sigma_i(s_i)$ rozkład prawodpodobieństwa nad profilami czystych strategii indukowany przez σ .
- P_{ii} prawdopodobieństwo, że *i*-ty gracz wybiera *j*-tą strategię

Własności

Regularna "quantal response"

 $P_i:R^{J(i)} o \Delta^{J(i)}$ jest regularną funkcją "quantal response", jeśli spełnia ona nastepujące cztery warunki

- **1 wewnętrzność** (interiority) tzn. $P_{ij}(\pi_i) > 0 \ \forall j = 1, ..., J(i) \text{ oraz } \forall \pi_i \in R^{J(i)}$ (model ma pełna dziedzinę)
- ciągłość (continuity)
 tzn. P_{ij}(π_i) jest różniczkowalną w sposób ciągły funkcją dla wszystkich ∀π_i ∈ R^{J(i)}
 (P_i jest niepusty i jednowartościowy; dowolnie małe zmiany oczekiwanych wypłat nie powinny prowadzić do skoków w prawdopodbieństwach wyboru)

Własności

- wewnętrzność (interiority)
- ciągłość (continuity)
- **3 reakcyjność** (responsiveness) $\partial P_{ij}(\pi_i)/\partial \pi_{ij} > 0 \ \forall j = 1 \dots, J(i) \ \text{and} \ \forall \pi_i \in R^{J(i)}$ (jeśli oczekiwana wypłata ze strategii rośnie, prawdopodobieństwo wyboru musi również wzrosnąć)
- **4 monotoniczność** (monotonicity) $\pi_{ij} > \pi_{ik}$ implikuje, że $P_{ij}(\pi_i) > P_{ik}(\pi_i) \ \forall j, k = 1, \ldots, J(i)$ (strategia z wyższymi wypłatami jest wybierana częściej niż strategia z niższymi wypłatami)

Definicja 2

Zdefiniujmy $P(\pi) = (P_1(\pi_1), \dots, P_n(\pi_n))$. P jest regularna, jeśli każde P_i spełnia aksjomaty regularności.

Ponieważ $P(\pi) \in \Sigma$ i $\pi = \pi(\sigma)$ jest zdefiniowane dla każdego $\sigma \in \Sigma$, $P \circ \sigma$ definiuje przekształcenie z Σ na siebie (z warunku drugiego $P \circ \sigma$ jest przekształceniem ciągłym).

Regular QRE

Niech P będzie regularna. Regularna QRE gry G w postaci normalnej jest mieszanym profilem strategii σ^* takim że $\sigma^* = P(\sigma^*)$.

Twierdzenie

Istnieje regularne QRE gry G dla dowolnego regularnego P. (wynika to bezpośrednio z twierdzenia Brouwera o punkcie stałym)

Podsumowanie

Równowaga Nasha a QRE

- QRE ma zwykle inną wartości niż NE (wyjątkiem jest symetryczna NE)
- aby znaleźć równowagę trzeba rozwiązać:
 - NE dwa równania liniowe, mieszana strategia gracza 2 determinowana jest tylko przez wypłaty gracza 1
 - QRE dwa nieliniowe równania, oba zależą od wypłat obu graczy
- Zmiana wypłat gracza 1 nie ma wpływu na jego mieszaną NE, ale wpływa na QRE.

