定理 2.16 < G , * > を群とする。S がG の空でない部分集合であるとき , 任意の要素 $a,b \in S$ に対して , $a*b^{-1} \in S$ が成り立つならば , < S , * > は < G , * > の部分群である。

【証明】

- (1) * の結合性は S 上でも保有される。
- (2) e を < G , * > の単位元とする。S の任意の要素 a に対して, $e = a * a^{-1} \in S$,かつ a * e = e * a = a ,すなわち,e も < S ,* > の単位元である。
- (3) S の任意の要素 a に対して , $e*a^{-1} \in S$, すなわち , a の逆元 $a^{-1} \in S$ 。
- (4) S の任意の要素 a と b に対して , (3)により , $b^{-1} \in S$ 。よって , $a*b=a*(b^{-1})^{-1} \in S$ 。すなわち , * はS 上の閉じた演算である。

ゆえに, $\langle S, * \rangle$ は群で, $\langle G, * \rangle$ の部分群である。