Optimization of an Acoustic Communication Protocol for Underwater Wireless Communication Final Presentation

Tyler Chen, Xinzhi Fan, Jianhui Li, Roy Rinberg Dr. Avery Ching (Academic Mentor) Andreas Widy (Industry Mentor)

RIPS-HK 2016 eProuplsion Ltd.

Underwater communication between Divers + Submarines

Small Diving Group [1]

Presentation Outline

The Problem

Physical Environment

Modulation

Multiple Access

Real Implementation

Model of Communication^[2]

- Doppler Shifting
 - Acoustic waves in water, $\frac{f}{f_0} = \frac{(c + v_r)}{(c + v_s)} \approx 0.5\%$
 - Negligible with EM waves
- Multipath
 - More important as distance increases
- Noise
 - ▶ White noise
 - Constant power waves across all frequencies
 - Random noises
 - Unavoidable
 - Error correction
- Attenuation
 - ► High frequency EM waves attenuate quickly
 - Microwaves!
 - ▶ Low frequency radio antenna are not practical

- Doppler Shifting
 - Acoustic waves in water, $\frac{f}{f_0} = \frac{(c + v_r)}{(c + v_s)} \approx 0.5\%$
 - Negligible with EM waves
- Multipath
 - ▶ More important as distance increases
- ► Noise
 - ▶ White noise
 - Constant power waves across all frequencies
 - Random noises
 - Unavoidable
 - Error correction
- Attenuation
 - ► High frequency EM waves attenuate quickly
 - Microwaves!
 - ▶ Low frequency radio antenna are not practical

- Doppler Shifting
 - Acoustic waves in water, $\frac{f}{f_0} = \frac{(c + v_r)}{(c + v_s)} \approx 0.5\%$
 - Negligible with EM waves
- Multipath
 - More important as distance increases
- Noise
 - White noise
 - Constant power waves across all frequencies
 - Random noises
 - Unavoidable
 - Error correction
- Attenuation
 - High frequency EM waves attenuate quickly
 - Microwaves!
 - ▶ Low frequency radio antenna are not practical

- Doppler Shifting
 - Acoustic waves in water, $\frac{f}{f_0} = \frac{(c + v_r)}{(c + v_s)} \approx 0.5\%$
 - Negligible with EM waves
- Multipath
 - ► More important as distance increases
- Noise
 - ▶ White noise
 - Constant power waves across all frequencies
 - Random noises
 - Unavoidable
 - Error correction
- Attenuation
 - High frequency EM waves attenuate quickly
 - Microwaves!
 - Low frequency radio antenna are not practical

Acoustic Attenuation

Inverse Square Law

$$I = d_0^2/d^2$$

$$V = V_0 - \alpha d$$

▶
$$3 < \alpha < 40$$
 in air

$$\sim \alpha \approx 0.05$$
 in water

$$I = 10^{(V_0 - \alpha d)/10} \cdot \frac{(d_0)^2}{d^2}$$

$$V = V_0 - \alpha d + 20 \log_{10} \left(\frac{d_0}{d} \right)$$

Acoustic Attenuation

Inverse Square Law

$$I = d_0^2/d^2$$

$$V = V_0 - \alpha d$$

▶
$$3 < \alpha < 40$$
 in air

•
$$\alpha \approx$$
 0.05 in water

$$I = 10^{(V_0 - \alpha d)/10} \cdot \frac{(d_0)^2}{d^2}$$

$$V = V_0 - \alpha d + 20 \log_{10} \left(\frac{d_0}{d} \right)$$

Acoustic Attenuation

Inverse Square Law

$$I = d_0^2/d^2$$

$$V = V_0 - \alpha d$$

- ▶ $3 < \alpha < 40$ in air
- $\alpha \approx$ 0.05 in water

$$I = 10^{(V_0 - \alpha d)/10} \cdot \frac{(d_0)^2}{d^2}$$

$$V = V_0 - \alpha d + 20 \log_{10} \left(\frac{d_0}{d} \right)$$

Attenuation - Equivalent Distances in Air and Water

Distance Traveled with Equivalent Attenuation in Water and Air

Modulation

- Modulation: the process of converting information into a form that can be conveyed across a physical channel [4]
 - Style of Information
 - Analog Modulation
 - Digital Modulation/Keying
 - Domains
 - Frequency
 - Amplitude
 - Phase

Digital Amplitude Modulation

Digital Frequency Modulation

Orthogonality

- Over interval of length T the following are orthogonal:
 - $ightharpoonup \cos(2\pi \frac{m}{T}t)$
 - $\triangleright \sin(2\pi \frac{m}{T}t)$
 - $ightharpoonup \cos(2\pi \frac{n}{T}t)$
 - $ightharpoonup \sin(2\pi\frac{\dot{n}}{T}t)$
- ▶ Vector space of signals sampled over some interval (\mathbb{R}^N)
- Discrete Fourier Transform
- Orthogonal Frequency Division Multiplexing (OFDM)

Doppler Shifting

- How can Doppler shifting be accounted for?
 - Solve linear system of equations for shifted basis
 - basis vectors are no longer orthogonal
 - Adjust length of DFT
 - now none of our original basis vectors are in the new basis
 - but they can be pretty close

Informational Accuracy: Linear Codes

- Word-Wise
 - ▶ Bicycle ⇒ Bicycle
 - ► Hamming Codes
- Sentence-Wise
 - "I Live You" ⇒ "I Love You"
 - Reed Solomon Codes^[5]

Informational Accuracy: Effective Dictionary Creation

- Some channels are more error prone than others
 - 1. Weight each modulation by its error.
 - 2. Construct a dictionary of D words (each word of length $\log_2 D$)
 - 3. Rank dictionary by importance of message
 - 4. Linearly assign

Multiple Access

▶ Given *N* users there are N(N-1) directed pathways

- ▶ How should such pathways be allocated?
 - Where and when should users transmit
 - Medium Access Control (MAC) protocols

Orthogonality of time shifted signals

Orthogonality of time shifted signals

• Over time T sinusoidal functions with frequencies in \mathbb{N}/T are orthogonal to one another

two signals on orthogonal frequencies

value of inner product over possible intervals

What is the effect at phase and amplitude changes?

Frequency Response

► How does the difference in frequency affect how "orthogonal" two frequencies are when time shifted?

Overview of our Implementation

Multi-access of 4 users using FDMA

Main Difficulty of Multi-Access

Example of an asynchronous bit pattern

- Interference from other users
- Finding correct starting point

Our solution: Convolution

Step 1: Apply convolution on recorded sound pattern and sinusoidal wave of the start bit frequency to approximate the starting point position

Convolution Result

Our solution: Convolution

Step 1: Apply convolution on recorded sound pattern and sinusoidal wave of the start bit frequency to approximate the starting point position

Magnified Second Peak

Our solution: Convolution

Step 2: Apply convolution on standard start pattern and that in the recorded sound file to determine the exact starting point position

Experimental Results - Linear Codes

Transmission Error Rate vs. Frequency (1.7 kHz bandwidth) at 1 meter

The experiment is done using iPhone recorder and computer speaker.

Experimental Results - Distance

Transmission Error Rate vs. Frequency (1.7 kHz bandwidth) using Hamming Codes

The experiment is done using iPhone recorder and computer speaker.

Conclusion

- Muti-access protocol is developed successfully, though the starting bits are intolerant of noise.
- ▶ Hamming code outperforms Reed-Solomon code. However, both linear codes fail to correct most errors when the error rate is higher than 10%.
- ► The error rate is generally lower in higher frequency channels. Developing dictionary entropy encoding is a good choice.

References

- [1] "Lykia world diving center small diving group." Web. http://lykiaworlddivingcentre.com/.
- [2] W. W. Claude E. Shannon, "The mathematical theory of communication." Book. University of Illinois Press.
- [3] "Calculation of absorption of sound." Web. http://www.npl.co.uk/acoustics.
- [4] C. L. Henrik Schulze, "Theory and applications of ofdm and cdma." Book. John Wiley & Sons, Ltd.
- [5] O. Pretzel, "Error-correcting codes and finite fields." Book. Oxford Applied Mathematics and Computing Series.

Thank You!

Special Thanks to:

- Our Academic Mentor, Avery Ching
- Our Industrial Mentor, Andreas Widy
- People who made this program possible: Stacey Beggs, Jorge Balbas, and Albert Ku

MFSK and OFDM

► Given *M* frequency bands...

MFSK signal: 01

- ▶ log₂ *M* bits per step
- ▶ Intensity per band = I_0

OFDM signal: 1011

- M bits per step
- Intensity per band = $\frac{I_0}{M}$

Digital Modulation

- ▶ Why we choose it
 - ► Computers!
- Problems:
 - Discontinuities

1.0 0.8 0.4 0.4 0.2 1 2 3 4 5 6

Final Smoothed Signal

Constellations

Arbitrary sinusoidal signal $r\cos(2\pi ft-\phi)$ on the *I-Q* plane (the dot)

- $r\cos(2\pi ft \phi) = a\cos(2\pi ft) + b\sin(2\pi ft)$
 - $ightharpoonup a = r\cos(\phi)$
 - $b = r \sin(\phi)$

QAM

QAM 16 constellation

- ► Assign symbols to points on the *I-Q* plane
- ► How do you decode a signal?

Soft Body Packing Problem Of Dictionary Creation

QAM 16 constellation

Soft-Body Packing Problem (Wigner Crystal)

- ► The closer nodes are, the higher the error
 - $error \propto \frac{1}{\langle \Delta d \rangle}$
- The farther from the center, the higher induced error on other channels
 - error $\propto r$

