1

Assignment 3

Suraj - CS20BTECH11050

Download all python codes from

https://github.com/Suraj11050/Assignments— AI1103/blob/main/Assignment%203/ Assignment3.py

Download Latex-tikz codes from

https://github.com/Suraj11050/Assignments-AI1103/blob/main/Assignment%203/ Assignment3.tex

1 GATE 2009 (MA) PROBLEM 16

Let F, G and H be pair wise independent events such that $\Pr(F) = \Pr(G) = \Pr(H) = \frac{1}{3}$ and $\Pr(F \cap G \cap H) = \frac{1}{4}$ Then the probability that at least one event among F, G and H occurs is

(A)
$$\frac{11}{12}$$
 (B) $\frac{7}{12}$ (C) $\frac{5}{12}$ (D) $\frac{3}{4}$

2 SOLUTION

Let f, g, h be three random variables taking values 0 or 1 (Bernoulli random variable) Which represent the occurrence of event F, G, H respectively such that

$$Pr(f = 0) = \frac{2}{3} \quad Pr(f = 1) = \frac{1}{3}$$

$$Pr(g = 0) = \frac{2}{3} \quad Pr(g = 1) = \frac{1}{3}$$

$$Pr(h = 0) = \frac{2}{3} \quad Pr(h = 1) = \frac{1}{3}$$

If two Random variables X_1 and X_2 are independent then

$$Pr(X_1X_2) = Pr(X_1) \times Pr(X_2)$$
 (2.0.1)

Using equation (2.0.1) we get the following results

$$Pr(f = 1, g = 1) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$

$$Pr(g = 1, h = 1) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$

$$Pr(f = 1, g = 1) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$$

At least one event among F, G, H should occur is Pr(F + G + H) from Principal of inclusion and exclusion it is calculated using random variable as

$$Pr(f = 1 + g = 1 + h = 1) =$$

$$(Pr(f = 1) + Pr(g = 1) + Pr(h = 1))$$

$$-Pr(f = 1, g = 1) - Pr(g = 1, h = 1)$$

$$-Pr(h = 1, f = 1) + Pr(f = 1, g = 1, h = 1)$$

Pr (f = 1 + g = 1 + h = 1) =
$$3\left(\frac{1}{3}\right)$$
 - $3\left(\frac{1}{9}\right)$ + $\frac{1}{4}$
∴ Pr (f = 1 + g = 1 + h = 1) = $\frac{11}{12}$

Hence Probability that at least one event among F, G, H occurs is $Pr(F + G + H) = \frac{11}{12}$ and correct answer is **Option (A)** But we know that

$$(F \cap G \cap H) \subseteq (F \cap G)$$

 $\therefore \Pr(FGH) \le \Pr(FG)$

In the given question

$$Pr(FGH) = \frac{1}{4}$$

$$Pr(FG) = \frac{1}{9}$$

$$Pr(FGH) > Pr(FG)$$

Which is not possible

Some of the probabilities turnout to be negative like

$$\Pr(f = 1, g = 1, h = 0) = \frac{1}{9} - \frac{1}{4} = -\frac{5}{36}$$

$$\Pr(f = 1, g = 0, h = 1) = \frac{1}{9} - \frac{1}{4} = -\frac{5}{36}$$

$$\Pr(f = 0, g = 1, h = 1) = \frac{1}{9} - \frac{1}{4} = -\frac{5}{36}$$

$$\Pr(F^{c}GH) = -\frac{5}{36}$$

$$\Pr(FG^{c}H) = -\frac{5}{36}$$

$$\Pr(F^{c}GH) = -\frac{5}{36}$$

Probability $P \in [0, 1]$ but the data in the question some of the probabilities turn out to be negative Similar case with Pr(GH) and Pr(HF)

Therefore Question is incorrect