# **Autor:** Iker de la Iglesia Martínez



#### Introducción

### OBJETIVO (TASK)

Dado un fragmento de texto de ámbito médico clasificarlo en una de las secciones permitidas obteniendo el **F-Score** más alto posible.

## ASPECTOS A INVESTIGAR

- Q1 Mejor representación vectorial.
- Q2 Análisis del rendimiento de los MLP.
- Q3 Análisis del rendimiento de redes GRU.

## Dataset

- Dataset [1]: Conjunto de textos de ámbito médico formal en castellano. Cada texto forma parte de una sección y se refiere a una enfermedad.
   Instancias: 8 083.
- Clases: Se tienen 8 clases indicando la sección de cada texto. La distribución de las clases en las instancias está bastante balanceada . [Ver Figura 1]



**Figura 1:** Distribución de las instancias en las clases.

# Preproceso

Al texto se le ha aplicando *tokenización* y *lematización*, además de eliminación de *stopwords*, signos de puntuación y acentos.

Se ha logrado una reducción considerable en el número de tokens, especialmente en los textos cuya longitud superaba la media [Ver Figura 2].



Figura 2: Distribución de las longitudes de las instancias según la clase (pre y post preproceso)

# Representación Vectorial

En los experimentos se emplean 2 algoritmos de vectorización: LDA y Doc2Vec.

En el caso del **Doc2Vec** se ofrecen 2 variantes con el fin de analizar si los embeddings mejoran con mayor cantidad de corpus.

La dimensión se ha seleccionada arbitrariamente para no ser excesiva y ser lo suficientemente grande para poder extraer varias características de los textos.

| Nombre         | Corpus                     | Iteraciones | Parámetros                     | Dimensión<br>del Vector |
|----------------|----------------------------|-------------|--------------------------------|-------------------------|
| LDA            | Pubmed + CodiEsp 2020      | 1000        | $\alpha$ , $\beta$ : default ; | 200                     |
| Doc2Vec_Little | Dataset                    | 200         | PV-DM; min_count: 50           | 200                     |
| Doc2Vec_Big    | Dataset + Pubmed + WikiMed | 100         | PV-DM; min_count: 50           | 200                     |

 Tabla 1: Especificaciones de los 3 vectorizadores empleados en los experimentos.

## División del Dataset - Empleando Stratified Hold-Out: Train (70%); Dev (20%); Test (10%)

NOTA: Algunos gráficos se han recortado para ofrecer una mejor comparativa de los datos relevantes (Todos datos se han tenido en cuenta al calcular métricas: mediana, varianza...).

#### Q1 – Representación Vectorial



**Figura 3:** Comparación de los resultados de las distintas representaciones vectoriales en 1300 experimentos.

Como se aprecia en la **Figura 3**, la representación empleando LDA es la que peor resultados da con una **mediana** de 0,5564 ; la **mediana** de ambos Doc2Vec supera el 0,845.

Por otro lado, al comparar de cerca los dos Doc2Vec, se aprecia que el entrenado con mayor corpus ofrece mejores resultados y con una varianza menor : 0,00331 (Big) ; 0,00832 (Little).

### Q2 – Análisis del rendimiento de los MLP [Sólo Doc2Vec ; 1000 pruebas]

#### ANÁLISIS EMPLEANDO DISTINTAS TOPOLOGÍAS

En la **Figura 4** se observa, como modelos con **una sola capa** y con un **dropout alto** ofrecen mejores resultados, debido a que estas características reducen el overfitting. El **número de unidades por capa** no ofrece una mejora considerable a partir de las ~50 neuronas.



**Figura 4:** Comparativa de las distintas topologías probadas y de distintos valores dropout para reducir el overfitting.

## ANÁLISIS CON DISTINTAS FUNCIONES DE ACTIVACIÓN Y BATCH SIZE

La **función de activación** y el **batch size** no tienen un impacto relevante en las métricas, aunque influyen principalmente en el tiempo requerido para entrenar el modelo. **[Figura 5]** 



Figura 5: Comparativa del tiempo de entrenamiento y de los resultados en relación a la función de activación y batch size.

## ANÁLISIS DEL WEIGHTED F-SCORE Y F-SCORE POR CLASE



Figura 6: Comparativa de los distintos F-Score (weighted y por clase). Destacado en rojo el mejor resultado (weighted).

## Q3 – Análisis del rendimiento de redes GRU

Embeddings: Para estos experimentos se han extraído los Word-Embeddings de los Doc2Vec.

### REDUCCIÓN DE LOS TEXTOS PARA ACELERAR EL TIEMPO DE ENTRENAMIENTO

Los textos contienen al principio características suficientes para definir la sección a la que pertenecen, por tanto, según la **mediana** de la longitud de los textos (177), se han tenido en cuenta únicamente los primeros 175 tokens de cada texto. Ejemplo (tokenizado):

**respuesta** alergico cacahuate soler **desencadenar** alguno minuto despues exposicion **signo sintoma** alergia cacahuate poder ser **reacciones** piel urticaria enrojecimiento hinchazón ... [ Clase Síntomas ]

#### ANÁLISIS DE DISTINTAS VARIACIONES DE REDES GRU

Se han ejecutado 500 experimentos con un batch size de 32 y función de activación ReLU en los MLP. En las figuras 7 y 8 se observa el impacto del resto de hiperparámetros.



**Figura 7:** Análisis del impacto de las siguientes características: Embeddings empleados; capacidad de actualizar los embeddings; Conectar un MLP encima de la red GRU; Red GRU unidireccional o bidireccional. (309 experimentos)



**Figura 8:** Comparativa de los resultados de **2 redes GRU apiladas** empleando los embeddings Doc2Vec\_Big y variando las siguientes características: Capacidad de actualizar los embeddings; Conectar un MLP encima de la red GRU; Redes GRU unidireccionales o bidireccionales (cada una configurada independientemente). **(191 experimentos)** 

Los embeddings entrenados con mayor corpus y no actualizables ofrecen mejor resultado, especialmente al añadir un MLP encima de GRU y concatenar 2 redes GRU. Las redes bidireccionales mejoran considerablemente las métricas en todos los casos. [Figuras 7 y 8]

## ANÁLISIS DE LOS DISTINTOS TAMAÑOS DE LA RED GRU Y DEL DROPOUT



**Figura 9:** Comparativa de las distintas topologías probadas y de distintos valores dropout para reducir el overfitting. Se observa claramente que las redes GRU con tamaño 64 son

## ANÁLISIS DEL WEIGHTED F-SCORE Y F-SCORE POR CLASE



Figura 10: Comparativa de los distintos F-Score (weighted y por clase). Destacado en rojo el mejor resultado (weighted).

## Análisis de los Resultados

#### **MEJOR MLP**

En la **sección Q2** podemos ver que el mejor MLP ofrece un **weighted F-Score** de **0,8661** con los siguientes hiperparámetros:

Función de activación: ReLU; Optimizador: Adamax; Batch Size: 8; Dropout: 0,5 Nº Hidden Layers: 1; Nº Neuronas por capa: 156; Vectorización: Doc2Vec\_Big.

#### MEJOR RED GRU ( MEJOR RESULTADO GLOBAL )

En la **sección Q3** podemos ver que la mejor red GRU ofrece un **weighted F-Score** de **0,9240** con los siguientes hiperparámetros:

Función de activación: ReLU; Optimizador: Adamax; Batch Size: 32; Dropout: 0,25; Nº Hidden Layers: 3; Nº Neuronas por capa (GRU y MLP): 64 GRUs apiladas: sí; GRUs bidireccionales: sí, ambas; Embeddings: Doc2Vec\_Big Actualización de embeddings: embeddings no actualizables (locked).

#### EVALUACIÓN DEL MEJOR MODELO RESPECTO AL CONJUNTO TEST

Mean Weighted F-Score

0.91911

Con el objetivo de evaluar la sensibilidad del modelo, se han juntado los conjuntos train y dev y se ha hecho un 10-fold CV. A la hora de evaluar la parte de validación de cada split se le ha añadido el conjunto test original generado por Hold-Out:

| Modelo    | (Split Val. + Hold-Out Test)             | Desviación Típica | Mín     | Máx     |
|-----------|------------------------------------------|-------------------|---------|---------|
| Mejor MLP | 0,86294                                  | 0.00753           | 0.85334 | 0.88044 |
| Mejor GRU | 0.91872                                  | 0.00968           | 0.90166 | 0.93677 |
|           |                                          |                   |         |         |
| Modelo    | Mean Weighted F-Score<br>(Hold-Out Test) | Desviación Típica | Mín     | Máx     |

#### Conclusiones

Mejor MLP

Mejor GRU

La vectorización con Doc2Vec ha sido la mejor, y mejora y es más consistente cuanto más corpus se emplee en su generación. Esto se aprecia en la Figura 7 donde la versión Big obtiene mejores resultados sin ser actualizada, mientras que la Little mejora si se permite su actualización.

0.01098

0.89933

0.93306

- Ambos tipos de modelo muestran la misma relación entre las métricas por clase, siendo *Description*, *Causas* y *Complicaciones* las que peor se predicen. Esto puede ser debido a que su contenido puede ser más variado léxicamente que en el resto de las clases. Por otro lado, pese a que *Prevención* es la clase con menos instancias, es una de las que mejor se predicen. [ Figuras 6 y 10]
- En el caso de los MLP los modelos son capaces de memorizar el training set y por ello las herramientas para evitar overfitting (modelos pequeños, dropout y early-stopping) son eficaces. En las redes GRU no tienen tanto impacto.
- Las redes GRU bidireccionales son muchos más eficaces.
- Apilar redes GRU mejora las métricas, pero el aumento es desdeñable.

## Trabajo Futuro

- Probar embeddings entrenados con mayor corpus.
- Aplicar otras técnicas de regularización: L1 y L2
- Mejorar los experimentos en redes GRU: mayor tamaño de las capas GRU, tamaños independientes, comparación respecto a LSTM ...
- Generar ensembles con distintos modelos para mejorar el resultado. Como se aprecia en las Figuras 6 y 10, el mejor en general no es el mejor en ninguna de las clases, esto da pie a una posible mejora combinando distintos modelos.

## Referencias

- 1. Spanish Mayo Clinic Diseases (Kaggle), Jesús Utrera
- 2. WikiMed, Wikimedia Foundation
- 3. Pubmed Spanish, Courtesy of the U.S. National Library of Medicine
- 4. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
- Machine Translation, Cho, Kyunghyun; van Merrienboer, Bart & others (2014)
- 5. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
- 6. Tune: A Research Platform for Distributed Model Selection and Training, Liaw, Richard and Liang, Eric and Nishihara, Robert and others (2018)
- 7. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. Bergstra, J., Yamins, D., Cox, D. D. (2013)
- 8. Research Poster Template, University at Buffalo