Обработка результатов измерений

Кто-то, откуда-то

11 декабря 2020 г.

1 Измерения и погрешности

1.1 Результат измерения

Очевидно, что когда мы измеряем некоторую величину, имеет место быть некоторая неточность измерений. Например, измеряя длину тела линейкой, мы можем столкнуться с тем, что линейка может быть неточно положена, иметь неточные деления. Даже если добиться точности расположения линейки, все равно имеет место быть округление, так как деления линейки имеют некоторую цену. У устройств без шкалы на дисплее все равно может быть отображено только конечное число цифр после запятой. Таким образом, то, что мы называем измерением - это некоторое идеализированное значение, только приближенное к реальному.

Назовем погрешностью измерения разницу между измеренным и «истинным» значениями

$$\delta x = x_{\text{\tiny MBM}} - x_{\text{\tiny MCT}}$$

Однако величину δx невозможно точно определить ввиду невозможности узнать истинное значения некоторой величины.

О каких-либо величинах принято говорить не как о точных значениях, а скорее как о некотором промежутке

$$x = x_{\text{\tiny MSM}} \pm \delta x$$

Кроме этого часто для наглядности используют относительную погрешность

$$\varepsilon_x = \frac{\delta x}{x_{\text{\tiny MSM}}}$$

1.2 Многократные измерения

Если мы несколько раз измерим одну и ту же величину, вероятно мы получим расходящиеся по значению результаты.

$$\mathbf{X} = \{x_1, x_2, ..., x_n\}$$

В таком случае результат измерений является случайной величиной, которую можно будет описать некоторым веротностным законом - распределением. Вычислим среднее значение величины по набору ${\bf X}$

$$\langle x \rangle = \frac{x_1 + x_2 + \dots + x_n}{n} \equiv \frac{1}{n} \sum_{i=1}^n x_i \tag{1}$$

Так же мы будем орудовать понятием отклонения. Так, отклонение каждого значения от среднего это

$$\Delta x_i = x_i - \langle x \rangle, \qquad i = 1...n$$

Разброс совокупности данных x_i относительно среднего принято характеризовать *средне-* $\kappa в a d p a m u u u u m k n o m k$

$$s = \sqrt{\frac{\Delta x_1^2 + \Delta x_2^2 + \dots + \Delta x_n^2}{n}} \equiv \sqrt{\frac{1}{n} \sum_{i=1}^n \Delta x_i^2}$$
 (2)

или кратко

$$s = \sqrt{\langle \Delta x^2 \rangle} \equiv \sqrt{\langle (x - \langle x \rangle)^2 \rangle} \tag{3}$$

При устремлении n к бесконечности и достаточном качестве метода измерений почти все отлонения δx_i скомпенсируются и можно ожидать что среднее значение устремится к некоторому пределу

$$\overline{x} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i$$

Тогда полученное значение \overline{x} можно считать «истиным» средним для исследуемой величины Предельную величину среднеквадратичного отклонения обозначим как

$$\sigma = \lim_{n \to \infty} \sqrt{\frac{1}{n} \sum_{i=1}^{n} \Delta x_i^2}$$

Итак, если набор значений имеет не слишком большой разброс, то можно с некоторой натяжкой считать, что $\langle x \rangle \approx \overline{x}$

1.3 Классификация погрешностей

Всегда нужно проводить несколько замеров величины в одинаковых условиях, чтобы убедиться в стабильности величины и правильности выбранного метода измерений. Иногда во время измерений возникают грубые ошибки - «промахи». Естественно, промахи не нужно учитывать при обработке данных. Однако, это может привести к потере данных или помешать открытию некоторого нового явления. Поэтому необходимо тщательно анализировать причины появления аномалий в данных.

Погрешности можно разделить на *систематические*, которые одинаково проявляются при множественных проведениях опыта и на *случайные*, которые хаотичны как по величине так и по знаку.

Так же можно разделить погрешности на

• *инструментальные погрешности*, связанные с насовершенством конструкции или ошибками калибровки измерительных приборов;

- *методические погрешности*, связанные с несовершенством теоретической модели явления или неточностью метода измерения;
- *естественные погрешности*, которые связаны со случайным характером изменения физической величины. Зачастую они показывают природу некоторого явления, поэтому ими нельзя пренебрегать.

1.3.1 Случайные погрешности

Большинству физических явлений присущ случайный характер. Случайную погрешность можно обнаружить при многократном повторении некоторого опыта. Если случайные отклонения с разными знаками прибилизительно равновероятны, то можно считать, что погрешность среднего значение $\langle x \rangle$ будет меньше, чем погрешность одного измерения.

Случайные погрешности могут быть связаны с особенностями приборов, особенностями или несовершенством методики измерения, несовершенством объекта измерений или случайным характером явления.

В последних двух случаях мы сами заменяем отдельные измерения средним значением. Таким образом мы можем потерять много иформации о объекте исследования и прежде чем отбрасывать случайную погрешность, необходимо убедиться, что погрешность вызвана приборами, а не характером объекта.

1.3.2 Систематические погрешности

Систематические погрешности в отличие от случайных парктически невозможно обнаружить и исключить многократным повторением эксперимента. Примерами систематических погрешностей может быть, например, износ деталей устройства или неточность метода исследования.

Систематичские погрешности можно условно разделить на

- известные погрешности;
- погрешности известной природы, но неизвестной величины. Такие погрешности необходимо свести к минимуму, совершенствуя методы исследований;
- погрешности известной природы, которые достаточно сложно оценить;
- неизвестные погрешности. Такие погрешности можно исключить только повторением эксперимента с использованием другой методики и/или другого оборудования.

2 Элементы теории ошибок

Для описания результатов необходимо каким-то образом описывать случайную составляющую результата. Для этого используется язык вероятностей.

2.1 Случаная величина

Для любой случайной величины можно сказать, что она принимает некоторые значения с некоторой вероятностью P_x .

$$P_x = \lim_{n \to \infty} \frac{n_x}{n},$$

где n - полное число измерений, n_x - количество измерений, дающих результат x. Большинство величин при измерении принимают n непрерывный набор значений. Пусть $P_{[x_0,x_0+\delta x]}$ - вероятность того, что результат измерения окажется в окрестности точки x_0 в пределах интервала $\delta x: x \in [x_0, x_0 + \delta x]$.

Отношение $\omega(x_0) = \frac{P_{[x_0,x_0+\delta x]}}{\delta x}$ будет оставаться конечным. Такую функцию $\omega(x)$ называют плотностью распределения вероятности или кратко распределением непрерывной случайной величины x

Свойства распределений

Из определения функции $\omega(x)$ следует, что вероятность попадания результата эксперимента в диапазон [a,b] можно вычислить

$$P_{x \in [a,b]} = \int_{a}^{b} \omega(x) dx \tag{4}$$

Очевидно, что сумма всех вероятностей равна единице, иначе

$$\int_{-\infty}^{+\infty} \omega(x) dx = 1$$

Соотношение выше называют условием нормировки.

Среднее и дисперсия

Также с помощью распределения можно вычислить среднее арифмитическое всех результатов

$$\langle x \rangle \approx \frac{1}{n} \sum_{i} n_i x_i = \sum_{i} \omega_i x_i$$

Переходя к пределу, получим определение среднего значения случайной величины

$$\overline{x} = \int x\omega dx \tag{5}$$

где интегрирование ведется по всей области значений x. В теории вероятностей \overline{x} называется mame mamu ческим ожиданием распределения.

$$\sigma^2 = \overline{(x - \overline{x})^2} = \int (x - \overline{x})^2 \omega dx \tag{6}$$

называют дисперсией распределения.

Доверительный интеграл

Обозначим вероятность того, что отклонение $\Delta x = x - \overline{x}$ не превосходит по модулю δ за $P_{|\Delta x| < \delta}$:

$$P_{|\Delta x| < \delta} = \int_{\overline{x} - \delta}^{\overline{x} + \delta} \omega(x) dx \tag{7}$$

Такую величину называют доверительной вероятностью для доверительного интервала $|x-\overline{x}| \leqslant \delta$

2.2 Нормальное рапределение

Теория вероятностей гласит, что сумма большого количества независимых случайных слагаемых, каждое из которых вносит в эту сумму относительно малый вклад, подчиняется универсальному закону. Такое распределение называют нормальным или распределением Гаусса

$$\omega(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\overline{x})^2}{2\sigma^2}} \tag{8}$$

В случае нормального распределения можно вычислить доверительные вероятности

$$P_{|\Delta x| \leqslant \sigma} = \int_{\overline{x} - \sigma}^{\overline{x} + \sigma} \omega dx \approx 0.68$$

$$P_{|\Delta x| \leqslant 2\sigma} \approx 0.95$$

$$P_{|\Delta x|\leqslant 3\sigma}\approx 0.9973$$

Иными словами, при достаточно большом числе измерений нормально распределенной величины можно ожидать, что лишь треть измерений выпадут за пределы интервала $[\overline{x}-\sigma,\overline{x}+\sigma]$, 5% выпадут за пределы $[\overline{x}-2\sigma,\overline{x}+2\sigma]$ и лишь 0.27% окажутся за пределами $[\overline{x}-3\sigma,\overline{x}+3\sigma]$

2.3 Независимые величины

Величины x и y называют nesaeucumымu, если результат измерения одной из них не влияет на результат измерения другой.

Для таких величин вероятность, что x примет значения из некоторого множества \mathbf{X} , а y из множества \mathbf{Y} равна произведению следующих вероятностей

$$P_{x \in X, y \in Y} = P_{x \in X} \cdot P_{y \in Y}$$

$$\overline{\Delta x \cdot \Delta y} = \overline{\Delta x} \cdot \overline{\Delta y} \tag{9}$$

В случае если измеряемая величина z=x+y складывается из двух независимых случайных слагаемых x и y, для которых известны средние значения \overline{x} и \overline{y} и их среднеквадратичные погрешности σ_x и σ_y . Непосредственно из определения (1) следует, что

$$\overline{z} = \overline{x} + \overline{y}$$

Найдем дисперсию σ_z^2 . В силу независимости имеем

$$\overline{\Delta z^2} = \overline{\Delta x^2} + \overline{\Delta y^2} + 2\overline{\Delta x \cdot \Delta y} = \overline{\Delta x^2} + \overline{\Delta y^2}$$

то есть:

$$\sigma_z^2 = \sigma_x^2 + \sigma_y^2 \tag{10}$$

2.4 Погрешность среднего

Выборочное среднее арифмитическое значение $\langle x \rangle$, найденное по результатам n измерений, само по себе является случайной величиной. Вычислим среднеквадратичную погрешность среднего арифмитического $\sigma_{\langle x \rangle}$

$$Z = x_1 + x_2 + \dots + x_n$$

Тогда

$$\sigma_Z = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2} = \sqrt{n}\sigma_x$$

поскольку под корнем находится n одинаковых слагаемых. Отсюда с учётом $\langle x \rangle = \frac{Z}{n}$ получим соотношение:

$$\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{n}} \tag{11}$$

2.5 Результирующая погрешность опыта

Пусть для некоторого результата измерения известна оценка его максимальной систематической погрешности $\Delta_{\text{сист}}$ и случайная среднеквадратичная погрешность $\sigma_{\text{случ}}$. Найдем полную погрешность измерения.

$$\sigma_{\text{полн}}^2 = \langle (x - x_{\text{ист}})^2 \rangle$$

Отклонение $x-x_{\text{ист}}$ можно представить как сумму случайного отклонения от среднего и постоянной систематической составляющей

$$x - x_{\text{ист}} = \delta x_{\text{сист}} + \delta x_{\text{случ}}$$

$$\sigma_{\text{полн}}^2 = \langle \delta x_{\text{сист}}^2 \rangle + \langle \delta x_{\text{случ}}^2 \rangle \leqslant \Delta_{\text{сист}}^2 + \sigma_{\text{случ}}^2$$
 (12)

При многочисленных повторениях опыта случайная составляющая погрешности может быть уменьшена, однако систематическая останется неизменной:

$$\sigma_{\text{полн}}^2 \leqslant \Delta_{\text{сист}}^2 + \frac{\sigma_x^2}{n}$$

Отсюда следует важное правило: если случайная погрешность измерений в 2-3 раза меньше предполагаемой систематической, нет смысла проводить многократные измерения в попытке уменьшить погрешность эксперимента. В противном случае следует повторять попытки до тех пор, пока погрешность среднего $\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{n}}$ не станет меньше систематической.

2.6 Обработка косвенных измерений

Косвенными называют измерения, полученные в результате рассчётов, использующих пря-мых измерений физической величины.

2.6.1 Случай одной переменной

Пусть в некотором эксперименте была получена некоторая величина x, а её «наилучшее» значение x^* известно с некоторой погрешностью σ_x . Величина y вычисляется как f(x).

$$y^* = f(x^*)$$

Обозначая отклонение измеряемой величины $\Delta x = x - x^*$ и пользуясь определением производной, при условии, что y(x) - гладкая вблизи $x \approx x^*$, запишем

$$\Delta y \equiv y(x) - y(x^*) \approx f' \cdot \Delta x$$

где $f'\equiv\frac{dy}{dx}$ - производная функции f(x), взятая в точке x^* . Тогда, используя усреднение $(\sigma_y^2=\langle\Delta y^2\rangle,\sigma_x^2=\langle\Delta x^2\rangle),$ и затем снова извлечём корень. В результате получим

$$\sigma_y = \left| \frac{dy}{dx} \right| \sigma_x \tag{13}$$

2.6.2 Случай многих переменных

В случае, когда величина вычисляется по нескольким независимым переменным

$$u^* = f(x^*, y^*, ...)$$

$$\Delta u \approx f_x' \cdot \Delta x + f_y' \cdot \Delta y + ...,$$

Тогда, пользуясь формулой для нахождения дисперсии суммы независимых переменных, получим соотношение, позволяющее вычислять погрешности косвенных измерений для произвольной функции u = f(x, y, ...):

$$\sigma_u^2 = f_x'^2 \sigma_x^2 + f_y'^2 \sigma_y^2 + \dots$$
 (14)

Также отметим, что формулы (13) и (14) применимы только в случае, когда относительные отклонения всех величин малы ($\varepsilon_x, \varepsilon_y, ... \ll 1$), а измерения проводятся вдали от особых точек функции f. Также все полученные формулы справедливы тогда и только тогда, когда переменные x, y, ... независимы.

3 Оценка параметров

В общем случае для построения оценки необходимы следующие компоненты:

- 1. данные результаты измерений и их погрешности;
- 2. модель $y = f(x|\theta_1, \theta_2, ...)$ параметрическое описание исследуемой зависимости.

3.1 Метод минимума хи-квадрат

Обозначим отклонения результатов некоторой серии измерений от теоретической модели $y=f(x|\theta)$ как

$$\Delta y_i = y_i - f(x_i|\theta), \qquad i = 1...n,$$

где θ - некоторый параметр (или набор параметров). Нормируем Δy_i на стандартные отклонения σ_i и построим сумму

$$\chi^2 = \sum_i \left(\frac{\Delta y_i}{\sigma_i}\right)^2 \tag{15}$$

которую принято называть суммой хи-квадрат

Метод минимума xu- $\kappa вадрата$ (метод Пирсона) заключается в подборе такого θ , при котором сумма квадратов отклонений от теор. модели, нормированных на ошибки измерений, достигает минимума:

$$\chi^2(\theta) \to \min$$

3.2 Метод максимального правдоподобия

Сделаем два ключевых предположения:

- зависимость между измеряемыми величинами действительно может быть описана функцией $y = f(x|\theta)$ при некотором θ ;
- все отклонения Δy_i результатов измерений от теоретической модели являются независимыми и имеют случайный характер.

Пусть $P(\Delta y_i)$ - вероятность обнаружить отклонение Δy_i при фиксированных x_i , погрешностях σ_i и параметрах модели θ . Построим функцию, равную вероятности обнаружить весь набор отклонений $\Delta y_1, ..., \Delta y_n$.

$$L = \prod_{i=1}^{n} P(\Delta y_i) \tag{16}$$

Функцию L называют функцией правдоподобия.

Метод максимума правдоподобия заключается в поиске такого θ , при котором наблюдаемое отклонение от модели будет иметь *наименьшую вероятность*, то есть

$$L(\theta) \to \max$$
.

$$P(\Delta y_i) \propto e^{-\frac{\Delta y_i^2}{2\sigma_i^2}},$$

$$\ln L = -\sum_{i} \frac{\Delta y_i^2}{2\sigma_i^2} = -\frac{1}{2}\chi^2.$$

3.3 Метод наименьших квадратов

Рассмотрим случай, когда все погрешности измерений одинаковы, $\sigma_i = const.$ Тогда множитель $1/\sigma^2$ в сумме хи-квадрат выносится за скобки, и оценка параметра сводится к нахождению минимума суммы квадратов отклонений.

$$S(\theta) = \sum_{i=1}^{n} \Delta y_i^2 \equiv \sum_{i=1}^{n} (y_i = f(x_i|\theta))^2 \to \min$$
 (17)

3.4 Проверка качества аппроксимации

Значение суммы χ^2 позволяет оценить, насколько хорошо данные описываются предлагаемой моделью $y=f(x|\theta)$. Тогда можно ожидать, что $\Delta y_i \sim \sigma_i$. Тогда $\chi^2 \sim n$.

Согласно теории вероятностей матожидание суммы χ^2 в точности равно числу степеней свободы:

$$\overline{\chi^2} = n - p$$

Таким образом, при хорошем соответствии модели и данных, величина $\chi^2/(n-p)$ должна в среднем быть равна единице.

3.5 Оценка погрешности параметров

Пусть функция $L(\theta)$ имеет максимум при $\theta = \hat{\theta}$. Тогда

$$L(\theta) \sim \exp\left(-\frac{(\theta - \hat{\theta})^2}{2\sigma_{\theta}^2}\right)$$

Тогда в окрестностях $\hat{\theta}$ функция $\chi^2(\theta) = -2\ln(L(\theta))$

$$\chi^2(\theta) = \frac{(\theta - \hat{\theta})^2}{\sigma_{\theta}^2} + const$$

Легко убедиться, что

$$\chi^2(\hat{\theta} \pm \sigma_{\theta}) - \chi^2(\hat{\theta}) = 1$$

Иными словами, при отклонении параметра θ на одну ошибку σ_{θ} от значения $\hat{\theta}$, функция $\chi^2(\theta)$ изменится на единицу. Таким образом для нахождения *интервальной* оценки для искомого параметра достаточно графическим или численным образом решить уравнение

$$\Delta \chi^2(\theta) = 1$$