Linear algebra review

Original author: Sanjoy Dasgupta Modified by: Daniel Hsu

September 5, 2013

1 Eigenvalues and eigenvectors

Definition 1. A $d \times d$ matrix **M** has *eigenvalue* λ if there is a d-dimensional vector $\mathbf{u} \neq \mathbf{0}$ for which $\mathbf{M}\mathbf{u} = \lambda \mathbf{u}$. This **u** is the *eigenvector* corresponding to λ .

In other words, the linear transformation M maps vector \mathbf{u} into the same direction. It is interesting that any linear transformation necessarily has directional fixed points of this kind. The following chain of implications helps in understanding this:

 λ is an eigenvalue of **M**

- \Leftrightarrow there exists $\mathbf{u} \neq \mathbf{0}$ with $\mathbf{M}\mathbf{u} = \lambda \mathbf{u}$
- \Leftrightarrow there exists $\mathbf{u} \neq \mathbf{0}$ with $(\mathbf{M} \lambda \mathbf{I})\mathbf{u} = \mathbf{0}$
- \Leftrightarrow (**M** λ **I**) is singular (that is, not invertible)
- $\Leftrightarrow \det(\mathbf{M} \lambda \mathbf{I}) = 0.$

Now, $\det(\mathbf{M} - \lambda \mathbf{I})$ is a polynomial of degree d in λ . As such it has d roots (although some of them might be complex). This explains the existence of eigenvalues.

A case of great interest is when M is real-valued and symmetric, because then the eigenvalues are real.

Theorem 2. Let M be any real symmetric $d \times d$ matrix. Then:

- 1. **M** has d real eigenvalues $\lambda_1, \ldots, \lambda_d$ (not necessarily distinct).
- 2. There is a set of d corresponding eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_d$ that constitute an orthonormal basis of \mathbb{R}^d , that is, $\mathbf{u}_i \cdot \mathbf{u}_j = \delta_{ij}$ for all i, j.

2 Spectral decomposition

The spectral decomposition recasts a matrix in terms of its eigenvalues and eigenvectors. This representation turns out to be enormously useful.

Theorem 3. Let \mathbf{M} be a real symmetric $d \times d$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_d$ and corresponding orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_d$. Then:

1.
$$\mathbf{M} = \underbrace{\begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_d \\ \downarrow & \downarrow & & \downarrow \end{pmatrix}}_{\text{call this } \mathbf{Q}} \underbrace{\begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_d \end{pmatrix}}_{\mathbf{\Lambda}} \underbrace{\begin{pmatrix} \leftarrow & \mathbf{u}_1 & \longrightarrow \\ \leftarrow & \mathbf{u}_2 & \longrightarrow \\ \vdots & & \vdots \\ \leftarrow & \mathbf{u}_d & \longrightarrow \end{pmatrix}}_{\mathbf{Q}^T}.$$

2.
$$\mathbf{M} = \sum_{i=1}^{d} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$$
.

Proof. A general proof strategy is to observe that \mathbf{M} represents a linear transformation $\mathbf{x} \mapsto \mathbf{M}\mathbf{x}$ on \mathbb{R}^d , and as such, is completely determined by its behavior on *any* set of d linearly independent vectors. For instance, $\{\mathbf{u}_1, \ldots, \mathbf{u}_d\}$ are linearly independent, so any $d \times d$ matrix \mathbf{N} that satisfies $\mathbf{N}\mathbf{u}_i = \mathbf{M}\mathbf{u}_i$ (for all i) is necessarily identical to \mathbf{M} .

Let's start by verifying (1). For practice, we'll do this two different ways.

Method One: For any i, we have

$$\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{u}_i = \mathbf{Q} \mathbf{\Lambda} \mathbf{e}_i = \mathbf{Q} \lambda_i \mathbf{e}_i = \lambda_i \mathbf{Q} \mathbf{e}_i = \lambda_i \mathbf{u}_i = \mathbf{M} \mathbf{u}_i.$$

Thus $\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T = \mathbf{M}$.

Method Two: Since the \mathbf{u}_i are orthonormal, we have $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$. Thus \mathbf{Q} is invertible, with $\mathbf{Q}^{-1} = \mathbf{Q}^T$; whereupon $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$. For any i,

$$\mathbf{Q}^T \mathbf{M} \mathbf{Q} \mathbf{e}_i = \mathbf{Q}^T \mathbf{M} \mathbf{u}_i = \mathbf{Q}^T \lambda_i \mathbf{u}_i = \lambda_i \mathbf{Q}^T \mathbf{u}_i = \lambda_i \mathbf{e}_i = \mathbf{\Lambda} \mathbf{e}_i.$$

Thus $\Lambda = \mathbf{Q}^T \mathbf{M} \mathbf{Q}$, which implies $\mathbf{M} = \mathbf{Q} \Lambda \mathbf{Q}^T$.

Now for (2). Again we use the same proof strategy. For any j,

$$\left(\sum_{i} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}\right) \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j} = \mathbf{M} \mathbf{u}_{j}.$$

Hence $\mathbf{M} = \sum_{i} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$.

3 Positive semidefinite matrices

We now introduce an important subclass of real symmetric matrices.

Definition 4. A real symmetric $d \times d$ matrix \mathbf{M} is positive semidefinite (denoted $\mathbf{M} \succcurlyeq 0$) if $\mathbf{z}^T \mathbf{M} \mathbf{z} \ge 0$ for all $\mathbf{z} \in \mathbb{R}^d$. It is positive definite (denoted $\mathbf{M} \succ 0$) if $\mathbf{z}^T \mathbf{M} \mathbf{z} > 0$ for all nonzero $\mathbf{z} \in \mathbb{R}^d$.

Example 5. Consider any random vector $X \in \mathbb{R}^d$, and let $\mu = \mathbb{E}X$ and $\mathbf{S} = \mathbb{E}[(X - \mu)(X - \mu)^T]$ denote its mean and covariance, respectively. Then $\mathbf{S} \geq 0$ because for any $\mathbf{z} \in \mathbb{R}^d$,

$$\mathbf{z}^T\mathbf{S}\mathbf{z} \ = \ \mathbf{z}^T\mathbb{E}[(X-\mu)(X-\mu)^T]\mathbf{z} \ = \ \mathbb{E}[(\mathbf{z}^T(X-\mu))((X-\mu)^T\mathbf{z})] \ = \ \mathbb{E}[(\mathbf{z}\cdot(X-\mu))^2] \ \geq \ 0.$$

Positive (semi)definiteness is easily characterized in terms of eigenvalues.

Theorem 6. Let M be a real symmetric $d \times d$ matrix. Then:

- 1. M is positive semidefinite iff all its eigenvalues $\lambda_i \geq 0$.
- 2. M is positive definite iff all its eigenvalues $\lambda_i > 0$.

Proof. Let's prove (1) (the second is similar). Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of \mathbf{M} , with corresponding eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_d$.

First, suppose $\mathbf{M} \geq 0$. Then for all i, $\lambda_i = \mathbf{u}_i^T \mathbf{M} \mathbf{u}_i \geq 0$.

Conversely, suppose that all the $\lambda_i \geq 0$. Then for any $\mathbf{z} \in \mathbb{R}^d$, we have

$$\mathbf{z}^T \mathbf{M} \mathbf{z} = \mathbf{z}^T \left(\sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T \right) \mathbf{z} = \sum_{i=1}^d \lambda_i (\mathbf{z} \cdot \mathbf{u})^2 \ge 0.$$

4 The Rayleigh quotient

One of the reasons why eigenvalues are so useful is that they constitute the optimal solution of a very basic quadratic optimization problem.

Theorem 7. Let \mathbf{M} be a real symmetric $d \times d$ matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$, and corresponding eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_d$. Then:

$$\max_{\|\mathbf{z}\|_2=1} \mathbf{z}^T \mathbf{M} \mathbf{z} = \max_{\mathbf{z} \neq \mathbf{0}} \frac{\mathbf{z}^T \mathbf{M} \mathbf{z}}{\mathbf{z}^T \mathbf{z}} = \lambda_1$$
$$\min_{\|\mathbf{z}\|_2=1} \mathbf{z}^T \mathbf{M} \mathbf{z} = \min_{\mathbf{z} \neq \mathbf{0}} \frac{\mathbf{z}^T \mathbf{M} \mathbf{z}}{\mathbf{z}^T \mathbf{z}} = \lambda_d$$

and these are realized at $\mathbf{z} = \mathbf{u}_1$ and $\mathbf{z} = \mathbf{u}_d$, respectively.

Proof. Denote the spectral decomposition by $\mathbf{M} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$. Then:

$$\max_{\mathbf{z} \neq \mathbf{0}} \frac{\mathbf{z}^T \mathbf{M} \mathbf{z}}{\mathbf{z}^T \mathbf{z}} = \max_{\mathbf{z} \neq \mathbf{0}} \frac{\mathbf{z}^T \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{z}}{\mathbf{z}^T \mathbf{Q} \mathbf{Q}^T \mathbf{z}} \quad \text{(since } \mathbf{Q} \mathbf{Q}^T = \mathbf{I}\text{)}$$

$$= \max_{\mathbf{y} \neq \mathbf{0}} \frac{\mathbf{y}^T \mathbf{\Lambda} \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \quad \text{(writing } \mathbf{y} = \mathbf{Q}^T \mathbf{z}\text{)}$$

$$= \max_{\mathbf{y} \neq \mathbf{0}} \frac{\lambda_1 y_1^2 + \dots + \lambda_d y_d^2}{y_1^2 + \dots + y_d^2} \leq \lambda_1,$$

where equality is attained in the last step when $\mathbf{y} = \mathbf{e}_1$, that is, $\mathbf{z} = \mathbf{Q}\mathbf{e}_1 = \mathbf{u}_1$. The argument for the minimum is identical.

Example 8. Suppose random vector $X \in \mathbb{R}^d$ has mean μ and covariance matrix \mathbf{M} . Then $\mathbf{z}^T \mathbf{M} \mathbf{z}$ represents the variance of X in direction \mathbf{z} :

$$\operatorname{var}(\mathbf{z}^T X) = \mathbb{E}[(\mathbf{z}^T (X - \mu))^2] = \mathbb{E}[\mathbf{z}^T (X - \mu)(X - \mu)^T \mathbf{z}] = \mathbf{z}^T \mathbf{M} \mathbf{z}.$$

Theorem 7 tells us that the direction of maximum variance is \mathbf{u}_1 , and that of minimum variance is \mathbf{u}_d .

Continuing with this example, suppose that we are interested in the k-dimensional subspace (of \mathbb{R}^d) that has the most variance. How can this be formalized?

To start with, we will think of a linear projection from \mathbb{R}^d to \mathbb{R}^k as a function $\mathbf{x} \mapsto \mathbf{P}^T \mathbf{x}$, where \mathbf{P}^T is a $k \times d$ matrix with $\mathbf{P}^T \mathbf{P} = \mathbf{I}_k$. The last condition simply says that the rows of the projection matrix are orthonormal

When a random vector $X \in \mathbb{R}^d$ is subjected to such a projection, the resulting k-dimensional vector has covariance matrix

$$\operatorname{cov}(\mathbf{P}^T X) = \mathbb{E}[\mathbf{P}^T (X - \mu)(X - \mu)^T \mathbf{P}] = \mathbf{P}^T \mathbf{M} \mathbf{P}.$$

Often we want to summarize the variance by just a single number rather than an entire matrix; in such cases, we typically use the *trace* of this matrix, and we write $\operatorname{var}(\mathbf{P}^TX) = \operatorname{tr}(\mathbf{P}^T\mathbf{M}\mathbf{P})$. This is also equal to $\mathbb{E}\|\mathbf{P}^TX - \mathbf{P}^T\mu\|_2^2$. With this terminology established, we can now determine the projection \mathbf{P}^T that maximizes this variance.

Theorem 9. Let M be a real symmetric $d \times d$ matrix as in Theorem 7. Pick any $k \leq d$.

$$\max_{\mathbf{P} \in \mathbb{R}^{d \times k}, \mathbf{P}^T \mathbf{P} = \mathbf{I}} \operatorname{tr}(\mathbf{P}^T \mathbf{M} \mathbf{P}) = \lambda_1 + \dots + \lambda_k$$
$$\min_{\mathbf{P} \in \mathbb{R}^{d \times k}, \mathbf{P}^T \mathbf{P} = \mathbf{I}} \operatorname{tr}(\mathbf{P}^T \mathbf{M} \mathbf{P}) = \lambda_{d-k+1} + \dots + \lambda_d.$$

These are realized when the columns of **P** span the k-dimensional subspace spanned by $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ and $\{\mathbf{u}_{d-k+1}, \ldots, \mathbf{u}_d\}$, respectively.

Proof. We will prove the result for the maximum; the other case is symmetric. Let $\mathbf{p}_1, \dots, \mathbf{p}_k$ denote the columns of \mathbf{P} . Then

$$\operatorname{tr}\left(\mathbf{P}^{T}\mathbf{M}\mathbf{P}\right) = \sum_{i=1}^{k} \mathbf{p}_{i}^{T}\mathbf{M}\mathbf{p}_{i} = \sum_{i=1}^{k} \mathbf{p}_{i}^{T} \left(\sum_{j=1}^{d} \lambda_{j} \mathbf{u}_{j} \mathbf{u}_{j}^{T}\right) \mathbf{p}_{i} = \sum_{j=1}^{d} \lambda_{j} \sum_{i=1}^{k} (\mathbf{p}_{i} \cdot \mathbf{u}_{j})^{2}.$$

We will show that this quantity is at most $\lambda_1 + \cdots + \lambda_k$. To this end, let z_j denote $\sum_{i=1}^k (\mathbf{p}_i \cdot \mathbf{u}_j)^2$; clearly it is nonnegative. We will show that $\sum_j z_j = k$ and that each $z_j \leq 1$; the desired bound is then immediate. First.

$$\sum_{i=1}^{d} z_{j} = \sum_{i=1}^{k} \sum_{j=1}^{d} (\mathbf{p}_{i} \cdot \mathbf{u}_{j})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{d} \mathbf{p}_{i}^{T} \mathbf{u}_{j} \mathbf{u}_{j}^{T} \mathbf{p}_{i} = \sum_{i=1}^{k} \mathbf{p}_{i}^{T} \mathbf{Q} \mathbf{Q}^{T} \mathbf{p}_{i} = \sum_{i=1}^{k} \|\mathbf{p}_{i}\|_{2}^{2} = k.$$

To upper-bound an individual z_j , start by extending the k orthonormal vectors $\mathbf{p}_1, \dots, \mathbf{p}_k$ to a full orthonormal basis $\mathbf{p}_1, \dots, \mathbf{p}_d$ of \mathbb{R}^d . Then

$$z_j = \sum_{i=1}^k (\mathbf{p}_i \cdot \mathbf{u}_j)^2 \le \sum_{i=1}^d (\mathbf{p}_i \cdot \mathbf{u}_j)^2 = \sum_{i=1}^d \mathbf{u}_j^T \mathbf{p}_i \mathbf{p}_i^T \mathbf{u}_j = \|\mathbf{u}_j^T\|_2^2 = 1.$$

It then follows that

$$\operatorname{tr}\left(\mathbf{P}^{T}\mathbf{M}\mathbf{P}\right) = \sum_{j=1}^{d} \lambda_{j} z_{j} \leq \lambda_{1} + \dots + \lambda_{k},$$

and equality holds when $\mathbf{p}_1, \dots, \mathbf{p}_k$ span the same space as $\mathbf{u}_1, \dots, \mathbf{u}_k$.

5 Singular value decomposition

For any real symmetric $d \times d$ matrix \mathbf{M} , we can find its eigenvalues $\lambda_1, \dots, \lambda_d$ and corresponding orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_d$, and write

$$\mathbf{M} = \sum_{i=1}^{d} \lambda_i \mathbf{u}_i \mathbf{u}_i^T.$$

Assuming $|\lambda_1| \geq |\lambda_2| \geq \dots |\lambda_d|$, the best rank-k approximation to **M** is

$$\mathbf{M}_k = \sum_{i=1}^k \lambda_i \mathbf{u}_i \mathbf{u}_i^T,$$

in the sense that this minimizes $\|\mathbf{M} - \mathbf{M}_k\|_F^2$ over all rank-k matrices. (Here $\|\cdot\|_F$ denotes Frobenius norm; it is the same as l_2 norm if you imagine the matrix rearranged into a very long vector.)

In many applications, \mathbf{M}_k is an adequate approximation of \mathbf{M} even for fairly small values of k. And it is conveniently compact, of size O(kd).

But what if we are dealing with a matrix M that is not square; say it is $m \times n$ with $m \le n$:

To find a compact approximation in such cases, we look at $\mathbf{M}^T\mathbf{M}$ or $\mathbf{M}\mathbf{M}^T$, which are square. Eigendecompositions of these matrices lead to a good representation of \mathbf{M} .

5.1 The relationship between MM^T and M^TM

Lemma 10. $\mathbf{M}^T\mathbf{M}$ and $\mathbf{M}\mathbf{M}^T$ are symmetric positive semidefinite matrices.

Proof. We'll do $\mathbf{M}^T\mathbf{M}$; the other is similar. First off, it is symmetric:

$$(\mathbf{M}^T\mathbf{M})_{ij} = \sum_k (\mathbf{M}^T)_{ik} \mathbf{M}_{kj} = \sum_k \mathbf{M}_{ki} \mathbf{M}_{kj} = \sum_k (\mathbf{M}^T)_{jk} \mathbf{M}_{ki} = (\mathbf{M}^T\mathbf{M})_{ji}.$$

Next, $\mathbf{M}^T \mathbf{M} \succeq 0$ since for any $\mathbf{z} \in \mathbb{R}^n$, we have $\mathbf{z}^T \mathbf{M}^T \mathbf{M} \mathbf{z} = ||\mathbf{M} \mathbf{z}||_2^2 \geq 0$.

Which one should we use, $\mathbf{M}^T \mathbf{M}$ or $\mathbf{M} \mathbf{M}^T$? Well, they are of different sizes, $n \times n$ and $m \times m$ respectively.

Ideally, we'd prefer to deal with the smaller of two, $\mathbf{M}\mathbf{M}^T$, especially since eigenvalue computations are expensive. Fortunately, it turns out the two matrices have the same (non-zero) eigenvalues!

Lemma 11. If λ is an eigenvalue of $\mathbf{M}^T\mathbf{M}$ with eigenvector \mathbf{u} , then

- either: (i) λ is an eigenvalue of $\mathbf{M}\mathbf{M}^T$ with eigenvector $\mathbf{M}\mathbf{u}$,
- or (ii) $\lambda = 0$ and $\mathbf{M}\mathbf{u} = \mathbf{0}$.

Proof. Say $\lambda \neq 0$; we'll prove that condition (i) holds. First of all, $\mathbf{M}^T \mathbf{M} \mathbf{u} = \lambda \mathbf{u} \neq \mathbf{0}$, so certainly $\mathbf{M} \mathbf{u} \neq \mathbf{0}$. It is an eigenvector of $\mathbf{M} \mathbf{M}^T$ with eigenvalue λ , since

$$\mathbf{M}\mathbf{M}^{T}(\mathbf{M}\mathbf{u}) = \mathbf{M}(\mathbf{M}^{T}\mathbf{M}\mathbf{u}) = \mathbf{M}(\lambda\mathbf{u}) = \lambda(\mathbf{M}\mathbf{u}).$$

Next, suppose $\lambda = 0$; we'll establish condition (ii). Notice that

$$\|\mathbf{M}\mathbf{u}\|_{2}^{2} = \mathbf{u}^{T}\mathbf{M}^{T}\mathbf{M}\mathbf{u} = \mathbf{u}^{T}(\mathbf{M}^{T}\mathbf{M}\mathbf{u}) = \mathbf{u}^{T}(\lambda\mathbf{u}) = 0.$$

Thus it must be the case that $\mathbf{M}\mathbf{u} = \mathbf{0}$.

5.2 A spectral decomposition for rectangular matrices

Let's summarize the consequences of Lemma 11. We have two square matrices, a large one $(\mathbf{M}^T\mathbf{M})$ of size $n \times n$ and a smaller one $(\mathbf{M}\mathbf{M}^T)$ of size $m \times m$. Let the eigenvalues of the large matrix be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, with corresponding orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. From the lemma, we know that at most m of the eigenvalues are nonzero.

The smaller matrix $\mathbf{M}\mathbf{M}^T$ has eigenvalues $\lambda_1, \ldots, \lambda_m$, and corresponding orthonormal eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$. The lemma suggests that $\mathbf{v}_i = \mathbf{M}\mathbf{u}_i$; this is certainly a valid set of eigenvectors, but they are not necessarily normalized to unit length. So instead we set

$$\mathbf{v}_i \; = \; \frac{\mathbf{M}\mathbf{u}_i}{\|\mathbf{M}\mathbf{u}_i\|_2} \; = \; \frac{\mathbf{M}\mathbf{u}_i}{\sqrt{\mathbf{u}_i^T\mathbf{M}^T\mathbf{M}\mathbf{u}_i}} \; = \; \frac{\mathbf{M}\mathbf{u}_i}{\sqrt{\lambda_i}}.$$

This finally gives us the *singular value decomposition*, a spectral decomposition for general matrices.

Theorem 12. Let M be a rectangular $m \times n$ matrix with $m \le n$. Define $\lambda_i, \mathbf{u}_i, \mathbf{v}_i$ as above. Then

$$\mathbf{M} = \underbrace{\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_m \\ \downarrow & \downarrow & \downarrow \end{pmatrix}}_{\mathbf{Q}_1, \text{ size } m \times m} \underbrace{\begin{pmatrix} \sqrt{\lambda_1} & 0 & 0 \\ \sqrt{\lambda_2} & 0 & 0 \\ 0 & \sqrt{\lambda_m} & 0 \end{pmatrix}}_{\mathbf{D}_1, \text{ size } m \times n} \underbrace{\begin{pmatrix} \leftarrow & \mathbf{u}_1 & \longrightarrow \\ \leftarrow & \mathbf{u}_2 & \longrightarrow \\ 0 & \sqrt{\lambda_m} & 0 \end{pmatrix}}_{\mathbf{D}_2^T, \text{ size } n \times n}.$$

Proof. We will check that $\Sigma = \mathbf{Q}_1^T \mathbf{M} \mathbf{Q}_2$. By our proof strategy from Theorem 3, it is enough to verify that both sides have the same effect on \mathbf{e}_i for all $1 \le i \le n$. For any such i,

$$\mathbf{Q}_1^T \mathbf{M} \mathbf{Q}_2 \mathbf{e}_i \ = \ \mathbf{Q}_1^T \mathbf{M} \mathbf{u}_i \ = \ \left\{ \begin{array}{l} \mathbf{Q}_1^T \sqrt{\lambda_i} \mathbf{v}_i & \text{if } i \leq m \\ \mathbf{0} & \text{if } i > m \end{array} \right\} \ = \ \left\{ \begin{array}{l} \sqrt{\lambda_i} \mathbf{e}_i & \text{if } i \leq m \\ \mathbf{0} & \text{if } i > m \end{array} \right\} \ = \ \mathbf{\Sigma} \mathbf{e}_i.$$

The alternative form of the singular value decomposition is

$$\mathbf{M} = \sum_{i=1}^{m} \sqrt{\lambda_i} \mathbf{v}_i \mathbf{u}_i^T,$$

which immediately yields a rank-k approximation

$$\mathbf{M}_k = \sum_{i=1}^k \sqrt{\lambda_i} \mathbf{v}_i \mathbf{u}_i^T.$$

As in the square case, \mathbf{M}_k is the rank-k matrix that minimizes $\|\mathbf{M} - \mathbf{M}_k\|_F^2$.