IPEIO - Módulo de Investigação Operacional – junho 2021 – A

Cur	so:			_ nº aluno: _						
			<u>Esta</u> j	prova é compos	sta por 5 grupos.					
				Grupo I – 1.8	3 valores					
Cor	nsidere o pr	oblema P de l	Programação Li	near:	: v :	: :	: :			
Max	x Z = x + 3 y	y			<u> </u>		<u> </u>			
s. a	- x + y	≤ 1	(restrição 1)		1					
	5 x + 4	y ≤ 40	(restrição 2)			A				
	5 x + 6	y ≥ 30	(restrição 3)							
	$x, y \ge 0$)								
-	•	•	e ser identifica	_	2 C	$+$ \times $+$	В			
_		_	am numerados		E					
•	_	•	esentam as varia	aveis de folga	1 5 4	D				
aas	restrições	1, 2 e 3 respe	tivamente.		1					
Fm	cada nerd	unta assinala	e a opção corre	ıta	1		1 1 1:			
1)	A região ad	missível do pr	oblema P é a re	egião assinalada	a na figura com a	letra:				
	_				-					
	□A	□В	□С	□D	□Е	□F				
2)	A solução ó	tima do proble	ema P correspo	nde ao vértice:						
	□1	□2	□3	□4	□5	□6	□7			
3) .	As variáveis	s básicas ótim	as corresponde	ntes ao vértice	ótimo são:					
	□(x,y)	\Box (x,y,f1)	□(x,y,f2)	□(x,y,f3)	□(f1,f2,f3)	□(x,f1,f2)	□(x,f1,f3)			
4)	4) Admita que a primeira restrição de P passou a ser - x + y ≤ β com β número real e β<1.									
	□ existe pe	elo menos um	valor de β para	o qual o proble	ma tem soluções	ótimas múltiplas				
	□ existe pe	elo menos um	valor de β para	o qual o proble	ma fica sem soluç	ções admissíveis	3			
	□ existe pe	elo menos um	valor de β para	o qual a região	admissível fica ili	mitada				
	□ nenhuma das outras três afirmações está correta									

Grupo II - 2.4 valores

Considere o problema de Programação Linear **Q** com variáveis x₁, x₂ e x₃ e uma função objetivo de tipo máximo. O problema tem duas restrições. As variáveis de folga associadas à primeira e segunda restrições são respetivamente f₁ e f₂. Considere o seguinte quadro do Simplex relativo ao problema **Q**.

Z	X1	X2	Х3	f ₁	f ₂	Mdir	sba
1	0	Α	В	1	0	20	z = 20
0	1	2	С	2	0	12	x ₁ = 12
0	0	-1	1	1	1	10	f ₂ = 10

Apresentam-se em seguida algumas afirmações sobre o quadro anterior. Para cada afirmação, indique se se trata de uma afirmação Verdadeira (V) ou Falsa (F) marcando um X no quadrado da coluna respetiva.

V	F	
		1 – No quadro, a variável f ₁ é não básica.
		2 – No quadro, a variável f1 tem valor 1.
		3 – Considere A=B=C=2. Nesta situação o quadro é ótimo.
		4 – Quaisquer que sejam os valores de A, B e C, o problema Q tem sempre pelo
Ш		menos uma solução básica admissível.
		5 – Considere A= - 2 e B = C = 4. Nesta situação o quadro não é ótimo. Na
		próxima iteração do Método do Simplex, x2 deve passar a variável básica e f2 a
		não básica.
		6 - Considere A= - 2 e B = C = 4. Nesta situação o quadro não é ótimo. Na
		próxima iteração do Método do Simplex, x3 deve passar a variável básica e x1 a
		não básica.
		7 - Considere A= - 2, B= - 3 e C = 2. Nesta situação o quadro não é ótimo.
		Prosseguindo com o Método do Simplex, no próximo quadro do Simplex tem-se
		z=38.
\Box		8 – Considere A= 0 e B = C = 5. Nesta situação, o problema Q tem infinitas
		soluções básicas admissíveis ótimas.

Grupo III - 2.4 valores

1 - Considere o projeto composto pelas atividades A a G que se esquematiza na figura. Junto a cada atividade é indicada a sua duração em semanas.

Apresentam-se em seguida 6 afirmações. Para cada uma delas deve indicar se se trata de uma afirmação Verdadeira (V) ou Falsa (F), colocando um X no quadrado respetivo. (cotação: 1.8)

2 – Considere o seguinte projeto onde as atividades têm duração aleatória. Junto a cada atividade indica-se o valor médio da sua duração (em dias) e sabe-se que o desvio padrão da duração de cada atividade é 10% do respetivo valor médio.

De acordo com a técnica PERT, a probabilidade da duração do projeto ser superior a 42 dias é:

Assinale com um X a opção correspondente ao valor mais próximo:

□ 0.794 □ 0.206 □ 0.309 □ 0.692 □ 0.175 □ 0.563

Nota: Tabela da Normal disponível na última página.

Grupo IV - 1.6 valores

Num armazém existem 30 objetos todos diferentes. O peso do i-ésimo objeto é p_i kg. Por exemplo, o objeto 1 tem um peso de p₁ kg, o objeto 2 tem um peso de p₂ kg e assim sucessivamente.

Existem 3 caixas, que designaremos por C1, C2 e C3, onde os objetos podem ser arrumados. O peso máximo que pode ser colocado nas caixas C1, C2 e C3 é respetivamente de 60, 90 e 110 kg.

Devido ao peso máximo que as caixas podem suportar não vai ser possível arrumar todos os 30 objetos nas caixas. Contudo, é necessário garantir que os objetos 10 e 20 sejam arrumados e numa mesma caixa.

Pretende-se determinar quais os objetos a arrumar nas caixas e em que caixa deve ficar cada um destes objetos de forma a ser maximizado o peso total dos objetos colocados nas caixas.

Formule este problema como um modelo de Programação Linear que poderá incluir variáveis inteiras e/ou binárias.

Grupo V - 1.8 valores

O problema **P** é um problema de Programação Linear Inteira com variáveis x e y. Começou a resolver-se o problema **P** através do Algoritmo *Branch and Bound* estudado tendo-se obtido a figura seguinte que poderá estar incompleta. Nos nós da árvore F_{Li} representa o valor da função objetivo do subproblema resolvido no nó PLi.

Apresentam-se em seguida algumas afirmações. Para cada uma delas deve indicar se se trata de uma afirmação Verdadeira(V) ou Falsa (F), colocando um X no quadrado respetivo.

V	F	
		1 - O problema P tem uma função objetivo de tipo máximo.
		2 - O problema P tem uma função objetivo de tipo mínimo.
		3 - O valor de k na figura deve ser igual a 4.
		4 - Com a informação apresentada na árvore sabemos qual o valor ótimo para P.
		5 - Para se determinar uma solução ótima para P, o próximo passo do algoritmo Branch and Bound estudado é a ramificação do nó PL4.
		6 - A restrição "x,y inteiros" faz parte da formulação do problema que se resolveu em PL3.
		7 - Para se determinar uma solução ótima para P, o próximo passo do algoritmo Branch and Bound estudado é a ramificação do nó PL2.
		8 - Podemos afirmar que o valor ótimo de P é um número inteiro.
		9 - Na árvore está representada apenas uma solução admissível para P.

Valores da função de distribuição Normal reduzida

$$\Phi(z) = \mathbb{P}\left(Z \leq z\right) = \int\limits_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \ e^{-\frac{1}{2}u^2} du$$

z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
ш										

ž	1.282	1.645	1.960	2.326	2.576	3.090	3.291	3.891	4.417
$\Phi(z)$	0.90	0.95	0.975	0.99	0.995	0.999	0.9995	0.99995	0.999995
$2[1 - \Phi(z)]$	0.20	0.10	0.05	0.02	0.01	0.002	0.001	0.0001	0.00001