Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
ХАФЕЛРА «Пі	оограммное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №2 по курсу "Анализ алгоритмов"

Тема Алгоритм Копперсмита-Винограда
Студент Якуба Д. В.
Группа <u>ИУ7-53Б</u>
Оценка (баллы)
Преподаватели Волкова Л.Л., Строганов Ю.В.

Оглавление

Bı	Введение 2				
1	Ана	алитическая часть	4		
	1.1	Классический алгоритм умножения матриц	4		
	1.2	Алгоритм Копперсмита-Винограда умножения матриц	5		
2	Koı	нструкторская часть	6		
	2.1	Блок-схема классического алгоритма умножения матриц.	6		
	2.2	Блок-схема алгоритма Копперсмита-Винограда	6		
	2.3	Блок-схема улучшенного алгоритма Копперсмита-Винограда	6		
	2.4	Модель вычислений	16		
3	Tex	нологическая часть	17		
	3.1	Требования к программному обеспечению	17		
	3.2	Средства реализации программного обеспечения	17		
	3.3	Листинг кода	17		
	3.4	Тестирование программного продукта	18		
4	Исс	следовательская часть	20		
	4.1	Пример работы программного обеспечения	20		
	4.2	Технические характеристики	20		
	4.3	Время выполнения алгоритмов	20		
	4.4	Оценка затрат памяти	22		
Зғ	клю	очение	24		
Лı	итер	атура	25		

Введение

Цели лабораторной работы

- 1. изучение алгоритмов умножения матриц: классического, Копперсмита-Винограда и модифицированного Копперсмита-Винограда;
- 2. реализация алгоритмов умножения матриц: классического, Копперсмита-Винограда и модифицированного Копперсмита-Винограда;
- 3. проведение сравнительного анализа трудоёмкости алгоритмов на основе теоретических расчетов и выбранной модели вычислений;
- 4. сравнительный анализ алгоритмов на основе экспериментальных данных;
- 5. подготовка отчёта по лабораторной работе.

Определение

Алгоритм Копперсмита-Винограда = это алгоритм умножения квадратных матриц, предложенный в 1987 году Д. Копперсмитом и Ш. Виноградом [1]. В исходной весрии асимптотическая сложность алгоритма составляла $O(n^{2.3755})$, где n - это размер стороны матрицы. Алгоритм Копперсмита-Винограда с учётом усерии улучшений и доработок в последующие годы, обладает лучшей асимптотикой среди известных алгоритмов умножения матриц.

На практике алгоритм Копперсмита — Винограда не используется, так как он имеет очень большую константу пропорциональности и начинает выигрывать в быстродействии у других известных алгоритмов

только для матриц, размер которых превышает память современных компьютеров [2]. Поэтому пользуются алгоритмом Штрассена по причинам простоты реализации и меньшей константе в оценке трудоемкости.

1 Аналитическая часть

1.1 Классический алгоритм умножения матриц

Пусть даны две прямоугольные матрицы

$$A_{lm} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{lm} \end{pmatrix}, \quad B_{mn} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}, \quad (1.1)$$

тогда матрица C

$$C_{ln} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \dots & c_{ln} \end{pmatrix}, \tag{1.2}$$

где

$$c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \quad (i = \overline{1, l}; j = \overline{1, n})$$

$$(1.3)$$

будет называться произведением матриц A и B.

Реализация классического алгоритма умножения двух матриц заключается в реализации вычисления элементов итоговой матрицы по формуле 1.3

1.2 Алгоритм Копперсмита-Винограда умножения матриц

Если посмотреть на результат умножения двух матриц, то видно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Можно заметить также, что такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее.

Рассмотрим два вектора $V=(v_1,v_2,v_3,v_4)$ и $W=(w_1,w_2,w_3,w_4)$. Их скалярное произведение равно: $V\cdot W=v_1w_1+v_2w_2+v_3w_3+v_4w_4$, что эквивалентно (1.4):

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1 v_2 - v_3 v_4 - w_1 w_2 - w_3 w_4.$$
 (1.4)

Несмотря на то, что второе выражение требует вычисления большего количества операций, чем стандартный алгоритм: вместо четырех умножений - шесть, а вместо трех сложений - десять, выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй, что позволит для каждого элемента выполнять лишь два умножения и пять сложений, складывая затем только лишь с 2 предварительно посчитанными суммами соседних элементов текущих строк и столбцов. Из-за того, что операция сложения быстрее операции умножения в ЭВМ, на практике алгоритм должен работать быстрее стандартного [3].

Вывод

Были рассмотрены классический алгоритм множения матриц и алгоритм Копперсмита-Винограда умножения матриц. Основное отличие данных алгоритмов заключается в наличии предварительной обработки данных и количестве проводящихся операций умножения.

2 Конструкторская часть

2.1 Блок-схема классического алгоритма умножения матриц

Блок-схема классического алгоритма умножения матриц предоставлена на рисунке 2.1

2.2 Блок-схема алгоритма Копперсмита-Винограда

Блок-схема алгоритма Копперсмита-Винограда и алгоритмов предвычисления предоставлены на рисунках 2.2 - 2.5.

2.3 Блок-схема улучшенного алгоритма Копперсмита-Винограда

Блок-схема улучшенного алгоритма Копперсмита-Винограда и алгоритмов предвычисления предоставлены на рисунках 2.6 - 2.9.

Рис. 2.1: Блок-схема классического алгоритма умножения матрицы.

Рис. 2.2: Блок-схема алгоритма предвычисления столбцов.

Рис. 2.3: Блок-схема алгоритма предвычисления строк.

Рис. 2.4: Блок-схема алгоритма Копперсмита-Винограда.

Рис. 2.5: Продолжение блок-схемы алгоритма Копперсмита-Винограда.

Рис. 2.6: Блок-схема алгоритма предвычисления столбцов.

Рис. 2.7: Блок-схема алгоритма предвычисления строк.

Рис. 2.8: Блок-схема улучшенного алгоритма Копперсмита-Винограда.

Рис. 2.9: Продолжение блок-схемы улучшенного алгоритма Копперсмита Винограда.

2.4 Модель вычислений

Для последующего вычисления трудоемкости необходимо ввести модель вычислений:

1. операции из списка (2.1) имеют трудоемкость 1;

$$+, -, /, \%, ==, !=, <, >, <=, >=, [], ++, --, +=, -=$$
 (2.1)

2. трудоемкость оператора выбора if условие then A else B рассчитывается, как (2.2);

$$f_{if} = f_{\text{условия}} + \begin{cases} f_A, & \text{если условие выполняется,} \\ f_B, & \text{иначе.} \end{cases}$$
 (2.2)

3. трудоемкость цикла рассчитывается, как (2.3);

$$f_{for} = f_{\text{инициализации}} + f_{\text{сравнения}} + N(f_{\text{тела}} + f_{\text{инкремента}} + f_{\text{сравнения}})$$
 (2.3)

4. трудоемкость вызова функции равна 0.

3 Технологическая часть

3.1 Требования к программному обеспечению

3.2 Средства реализации программного обеспечения

При написании программного продукта был использован язык программирования Kotlin [4].

Данный выбор обусловлен следующими факторами:

• Высокая вычислительная производительность;.

Для тестирования производительности реализаций алгоритмов использовалась утилита measureNanoTime.

При написаннии программного продукта использовалась среда разработки IntelliJ IDEA.

Данный выбор обусловлен тем, что язык программирования Kotlin - это разработка компании JetBrains, поставляющей данную среду разработки;

3.3 Листинг кода

В листингах 3.1 - 3.4 предоставлены реализации рассматриваемых алгоритмов.

Листинг 3.1: Функция реализации рекурсивного алгоритма Левенштейна

1 S

Листинг 3.2: Функция реализации рекурсивного алгоритма Левенштейна с использованием матрицы расстояний

Листинг 3.3: Функция реализации итеративного алгоритма Левенштейна

Листинг 3.4: Функция реализации алгоритма Дамерау-Левенштейна

3.4 Тестирование программного продукта

В таблице 3.1 приведены тестовые данные и вывод программы для алгоритмов вычисления расстояния Левенштейна и Дамерау-Левенштейна. Тесты пройдены успешно.

Таблица 3.1: Тесты

		Ожидаемый результат		
Строка 1	Строка 2	Алг. Левенштейна	Алг. Дамерау-Левенштейна	
table	tumbler	3	3	
hell	help	1	1	
KillUsAll	KlilUsAll	2	1	
smoke	mssql	5	4	
OfMiceAndMen	OfMonstersAndMen	6	6	
roofer	killer	4	4	
orange	orangina	3	3	
prolifer	profiler	2	2	
cat	dog	3	3	

Вывод

Спроектированные алгоритмы вычисления расстояния Левенштейна рекурсивно, рекурсивно с использованием матрицы расстояний, итеративно с использованием матрицы расстояний, а также алгоритм вычисления расстояния Дамерау-Левенштейна итеративно с использованием матрицы были реализованы и протестированы.

4 Исследовательская часть

4.1 Пример работы программного обеспечения

4.2 Технические характеристики

Технические характеристики ЭВМ, на котором выполнялись исследования:

- OC: Manjaro Linux 20.1.1 Mikah
- Оперативная память: 16 Гб
- Процессор: Intel Core i7-10510U При проведении замеров времени ноутбук был подключен к сети электропитания.

4.3 Время выполнения алгоритмов

Алгоритмы тестировались на данных, сгенерированных случайным образом один раз.

Тестовые данные:

- 5 символов: VxgtU (строка 1), jRMFA (строка 2)
- 7 символов: VxgtUsx (строка 1), jRMFAyC (строка 2)

10 символов:

VxgtUsx2u3 (строка 1), jRMFAyCfiV (строка 2)

20 символов:

VxgtUsx2u39dtX81sxy8 (строка 1), jRMFAyCfiVxyhmILtGMG (строка 2)

30 символов:

VxgtUsx2u39dtX81sxy8GInrYeVNmJ (строка 1), jRMFAyCfiVxyhmILtGMG4IVZTjPQ7l (строка 2)

50 символов:

 $\mbox{VxgtUsx2u39dtX81sxy8GInrYeVNmJvvG7WkaA7Qjs82qP6bJG}$ (строка 1),

jRMFAyCfiVxyhmILtGMG4IVZTjPQ7laMIEG6xv9zbdXq9WcJY2 (стро-ка 2)

• 100 символов:

VxgtUsx2u39dtX81sxy8GInrYeVNmJvvG7WkaA7Qjs82qP6bJG Ooryez5fYpJWcPRhm7TEjeUoD49M26XDt CJrGtjJXf3aZ9La9n (стро-ка 1), jRMFAyCfiVxyhmILtGMG4IVZTjPQ7laMIEG6xv9zbdXq9WcJY2 G4J0JV1XP8ecmHkTYdY1uzSm8WFY3KjgG ggAw3GrPISl76Mzb1 (стро-ка 2)

• 200 символов:

VxgtUsx2u39dtX81sxy8GInrYeVNmJvvG7WkaA7Qjs82qP6bJGO oryez5fYpJWcPRhm7TEjeUoD49M26XDtCJrGtjJXf3aZ9La9nsh v3cAbwuAJuKc00ndp6EWNHQcArjwXQzAtdpnHs2uOF1kfhWjzXU S44zKnHVNCaeLyzBlce3RCdGwbJx8s2SlfvYoyBZsKrN1cX (строка 1), jRMFAyCfiVxyhmILtGMG4IVZTjPQ7laMIEG6xv9zbdXq9WcJY2G 4J0JV1XP8ecmHkTYdY1uzSm8WFY3KjgGggAw3GrPISl76Mzb1f3 ElDEyOeorQGS6CxLWS3lH8sNgZta9vSDMLvnbPaXP24H5dYkBXL RruvzSlLs1T8hyezy0U3awz65ctATEclCBG4H1pC9mMusWF (строка 2)

Результаты замеров времени приведены в таблице 4.1. На рисунках 4.1, 4.2 приведены графики зависимостей времени работы алгоритмов от //.

Таблица 4.1: Замеры времени для строк различной длины

Длина строк	LevRec	LevMatRec	LevMatIter	DamLev
5	10867	-	-	-
7	258961	-	-	=
10	33589820	3146	2001	2137
20	=	12896	4686	6251
30	-	29325	10744	13631
50	-	70918	29277	38427
100	=	184238	86268	118891
200	-	642895	248651	299743

4.4 Оценка затрат памяти

Максимальная глубина стека вызовов при исполнении рекурсивного алгоритма Левенштейна определяется выражением 4.1:

$$(sizeof(s_1) + sizeof(s_2)) * (2 * sizeof(string) + sizeof(int))$$
 (4.1)

Здесь sizeof - оператор вычисления размера; $s_1,\,s_2$ - строки; string - строковый тип; int - целочисленный тип.

При исполнении интеративной реализации задействованная память будет определяться выражением 4.2:

$$(size of(s_1+1)*(size of(s_2+1)*size of(int)+size of(int)+2*size of(string)\\ (4.2)$$

Вывод

Рис. 4.1: Зависимость времени работы рекурсивных реализаций алгоритмов вычисления расстояния Левенштейна от длины строк

Рис. 4.2: Зависимость времени работы итеративных реализаций алгоритмов вычисления расстояния Левенштейна и Дамерау-Левенштейна от длины строк.

Заключение

В ходе выполнения лабораторной работы:

- •
- •
- •
- •
- •
- Были получены практические навыки реализации алгоритмов на ЯП Kotlin.

Литература

- [1] Coppersmith D., Winograd S. Matrix multiplication via arithmetic progressions // Journal of Symbolic Computation. 1990. no. 9. P. 251–280.
- [2] Robinson S. Toward an Optimal Algorithm for Matrix Multiplication // SIAM News. 2005. November. Vol. 38, no. 9.
- [3] Погорелов Дмитрий Александрович Таразанов Артемий Михайлович Волкова Лилия Леонидовна. Оптимизация классического алгоритма Винограда для перемножения матриц // Журнал №1. 2019. Т. 49.
- [4] Kotlin language specification [Электронный ресурс]. Режим доступа: https://kotlinlang.org/spec/introduction.html (дата обращения 09.10.2020.