import pandas as pd import numpy as np import matplotlib.pyplot as plt In [2]: #### import data data = pd.read_csv(r"C:\Users\shubham lokare\Downloads\perrin-freres-monthly-champagne-.csv") In [3]: data Month Perrin Freres monthly champagne sales millions ?64-?72 Out[3]: 0 1964-01 2815.0 1 1964-02 2672.0 2 1964-03 2755.0 3 1964-04 2721.0 1964-05 2946.0 4298.0 102 1972-07 103 1972-08 1413.0 104 1972-09 5877.0 105 NaN NaN 106 Perrin Freres monthly champagne sales millions... NaN 107 rows × 2 columns In [4]: data.head(10) Out[4]: Month Perrin Freres monthly champagne sales millions ?64-?72 **0** 1964-01 2815.0 **1** 1964-02 2672.0 **2** 1964-03 2755.0 **3** 1964-04 2721.0 **4** 1964-05 2946.0 **5** 1964-06 3036.0 6 1964-07 2282.0 **7** 1964-08 2212 0 8 1964-09 2922.0 9 1964-10 4301.0 In [5]: ### change the column name data.columns=['Month' ,'Sales'] Out[5]: Month Sales 0 1964-01 2815.0 1964-02 2672.0 2 1964-03 2755.0 3 1964-04 2721.0 4 1964-05 2946.0 102 1972-07 4298.0 103 1972-08 1413.0 104 1972-09 5877.0 105 NaN NaN 106 Perrin Freres monthly champagne sales millions...

In [1]: #### ARIMA MODEL OR SEASONAL ARIMA MODEL

107 rows × 2 columns

```
In [6]: ### check any missing values in data
         data.isna().sum() #### there are some missing values in the data
 Out[6]: Month
                  1
          Sales 2
          dtype: int64
 In [7]: data.drop(105 , axis =0 ,inplace = True)
 In [8]: data.drop(106 , axis =0 , inplace = True)
 In [9]: ### then we need to chane the month data in the date and time
         data['Month']=pd.to_datetime(data['Month'])
In [10]: data
Out[10]:
               Month Sales
           0 1964-01-01 2815.0
           1 1964-02-01 2672.0
           2 1964-03-01 2755.0
           3 1964-04-01 2721.0
           4 1964-05-01 2946.0
         100 1972-05-01 4618.0
         101 1972-06-01 5312.0
         102 1972-07-01 4298.0
         103 1972-08-01 1413.0
         104 1972-09-01 5877.0
         105 rows × 2 columns
In [11]: #### set month as indesx
         data.set_index('Month' , inplace =True)
In [12]: data.describe()
Out[12]:
                      Sales
         count 105.000000
          mean 4761.152381
           std
                2553.502601
           min 1413.000000
           25%
                3113.000000
           50%
                4217.000000
           75% 5221.000000
           max 13916.000000
In [13]: ### the we need to visualize the data
         data.plot()
Out[13]: <Axes: xlabel='Month'>
```



```
In [14]: ### then we need to check weather the data is stationary or not
         from statsmodels.tsa.stattools import adfuller
In [15]: test data = adfuller(data['Sales'])
In [16]: #Ho: It is non stationary
         #H1: It is stationary
         def adfuller_test(sales):
             result=adfuller(sales)
             labels = ['ADF Test Statistic','p-value','#Lags Used','Number of Observations Used']
             for value, label in zip(result, labels):
                 print(label+' : '+str(value) )
             if result[1] <= 0.05:</pre>
                 print("strong evidence against the null hypothesis(Ho), reject the null hypothesis. Data has no unit ro
                 print("weak evidence against null hypothesis, time series has a unit root, indicating it is non-station
In [17]: adfuller_test(data['Sales'])
        ADF Test Statistic : -1.833593056327623
        p-value: 0.363915771660245
        #Lags Used: 11
        Number of Observations Used: 93
        weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary
In [18]: #### based on that the data is not stationary
         ### we need to find out the difference
         data['Sales Frist defference'] = data['Sales'] - data['Sales'].shift(1)
In [19]: ### add your data having the seasonality we need to do another shift based on seasonality
         data['Sales Based on Seasonality'] = data['Sales'] - data['Sales'].shift(12)
In [21]: data.head(10)
```

Out [21]: Sales Sales Frist_defference Sales Based on Seasonality

Month			
1964-01-01	2815.0	NaN	NaN
1964-02-01	2672.0	-143.0	NaN
1964-03-01	2755.0	83.0	NaN
1964-04-01	2721.0	-34.0	NaN
1964-05-01	2946.0	225.0	NaN
1964-06-01	3036.0	90.0	NaN
1964-07-01	2282.0	-754.0	NaN
1964-08-01	2212.0	-70.0	NaN
1964-09-01	2922.0	710.0	NaN
1964-10-01	4301.0	1379.0	NaN

In [22]: #### the we need to remove nan value
Again test dickey fuller test
adfuller_test(data['Sales Based on Seasonality'].dropna())

ADF Test Statistic : -7.626619157213163

p-value : 2.060579696813685e-11

#Lags Used : 0

Number of Observations Used : 92

strong evidence against the null hypothesis(Ho), reject the null hypothesis. Data has no unit root and is statio nary

In [23]: #### plot the graph to check the data is stationary or not
here p values > 0.05
data['Sales Frist_defference'].plot() #### based on this the data is stationary

Out[23]: <Axes: xlabel='Month'>

In [25]: #### then we plot autocorreletion plot
 from pandas.plotting import autocorrelation_plot
 autocorrelation_plot(data['Sales'])
 plt.show()


```
In [26]: ### the we plot ACF and PACF plot
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
```

```
In [35]: #### auto correlation plot
  plt.figure(figsize=(12,6))
  plot1 =plot_acf(data['Sales Frist_defference'].iloc[13:] , lags=40)
  plt.show()
```

<Figure size 1200x600 with 0 Axes>


```
In [36]: #### partial auto correlation plot
PACF_pot = plot_pacf(data['Sales Frist_defference'].iloc[13:] ,lags=40)
```



```
In [37]: ##For non-seasonal data
#p=1, d=1, q=0 or 1
from statsmodels.tsa.arima_model import ARIMA
```

```
In [39]: from statsmodels.tsa.arima.model import ARIMA

# Fit the ARIMA model
model = ARIMA(data['Sales'], order=(1, 1, 1))
model_fit = model.fit()

# Summary of the model
print(model_fit.summary())
```

C:\anaconda\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used. self._init_dates(dates, freq)
C:\anaconda\Lib\site-packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: No frequency information was

provided, so inferred frequency MS will be used. self._init_dates(dates, freq)

C:\anaconda\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

self._init_dates(dates, freq)

SARIMAX Results

Dep. Variable:	Sales	No. Observations:	105
Model:	ARIMA(1, 1, 1)	Log Likelihood	-952.814
Date:	Tue, 08 Oct 2024	AIC	1911.627
Time:	15:20:10	BIC	1919.560
Sample:	01-01-1964	HQIC	1914.841
	- 09-01-1972		

Covariance Type: opg

ar.L1 0.4545 0.114 3.999 0.000 0.232 0.677 ma.L1 -0.9666 0.056 -17.316 0.000 -1.076 -0.857 sigma2 5.226e+06 6.17e+05 8.473 0.000 4.02e+06 6.43e+06		coef	std err	z	P> z	[0.025	0.975]
	ma.L1	-0.9666	0.056	-17.316	0.000	-1.076	-0.857

Ljung-Box (L1) (Q): Prob(Q):		<pre>Jarque-Bera (JB): Prob(JB):</pre>	2.59 0.27
<pre>Heteroskedasticity (H): Prob(H) (two-sided):</pre>	3.40	Skew:	0.05
	0.00	Kurtosis:	3.77

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [40]: #### forecasting sales
data['forecast']=model_fit.predict(start=90,end=103,dynamic=True)
data[['Sales','forecast']].plot(figsize=(12,8))
```

Out[40]: <Axes: xlabel='Month'>


```
In [41]: ##### due to data having sasonality the arima model is not working it can not give proper result so we used SAR.
import statsmodels.api as sm
model=sm.tsa.statespace.SARIMAX(data['Sales'],order=(1, 1, 1),seasonal_order=(1,1,1,12))
results=model.fit()

C:\anaconda\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.
    self._init_dates(dates, freq)

C:\anaconda\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.
    self._init_dates(dates, freq)
```

```
In [44]: #### after that forecsating sales
data['forecast']=results.predict(start=90,end=103,dynamic=True)
data[['Sales','forecast']].plot(figsize=(12,8))
```

Out[44]: <Axes: xlabel='Month'>


```
In [45]: ### to find out the next year sales
    from pandas.tseries.offsets import DateOffset
    future_dates=[data.index[-1]+ DateOffset(months=x)for x in range(0,24)]
In [46]: future_sales = pd.DataFrame(index =future_dates[1:] ,columns=data.columns)
In [47]: future_sales
```

Out[47]:		Sales	Sales Frist_defference	Sales Based on Seasonality	forecast
	1972-10-01	NaN	NaN	NaN	NaN
	1972-11-01	NaN	NaN	NaN	NaN
	1972-12-01	NaN	NaN	NaN	NaN
	1973-01-01	NaN	NaN	NaN	NaN
	1973-02-01	NaN	NaN	NaN	NaN
	1973-03-01	NaN	NaN	NaN	NaN
	1973-04-01	NaN	NaN	NaN	NaN
	1973-05-01	NaN	NaN	NaN	NaN
	1973-06-01	NaN	NaN	NaN	NaN
	1973-07-01	NaN	NaN	NaN	NaN
	1973-08-01	NaN	NaN	NaN	NaN
	1973-09-01	NaN	NaN	NaN	NaN
	1973-10-01	NaN	NaN	NaN	NaN
	1973-11-01	NaN	NaN	NaN	NaN
	1973-12-01	NaN	NaN	NaN	NaN
	1974-01-01	NaN	NaN	NaN	NaN
	1974-02-01	NaN	NaN	NaN	NaN

NaN

NaN

NaN

NaN

NaN

NaN

```
In [49]: ### concat the orignal sales and future sales
sales = pd.concat([data , future_sales])
```

C:\Users\shubham lokare\AppData\Local\Temp\ipykernel_20928\1689533271.py:2: FutureWarning: The behavior of DataF rame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.

NaN

sales = pd.concat([data , future_sales])

In [50]: sales

1974-03-01

1974-04-01

1974-05-01

1974-06-01

1974-07-01

1974-08-01

NaN

NaN

NaN

NaN

NaN

NaN

Out[50]:		Sales	Sales Frist_defference	Sales Based on Seasonality	forecast
	1964-01-01	2815.0	NaN	NaN	NaN
	1964-02-01	2672.0	-143.0	NaN	NaN
	1964-03-01	2755.0	83.0	NaN	NaN
	1964-04-01	2721.0	-34.0	NaN	NaN
	1964-05-01	2946.0	225.0	NaN	NaN
	1974-04-01	NaN	NaN	NaN	NaN
	1974-05-01	NaN	NaN	NaN	NaN
	1974-06-01	NaN	NaN	NaN	NaN
	1974-07-01	NaN	NaN	NaN	NaN
	1974-08-01	NaN	NaN	NaN	NaN

128 rows × 4 columns

```
In [56]: #### plot the graph of future sales
sales['forecast'] = results.predict(start = 104, end = 150, dynamic= True)
sales[['Sales', 'forecast']].plot(figsize=(12, 8))
```

```
Out[56]: <Axes: >
```


Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js