Лабораторная работа №2. Вычисление метрических характеристик реализаций алгоритмов

Задание

1. Написать подпрограммы на двух языках программирования для решения следующих задач:

ЗАДАЧА

- 1. Отыскать минимальный элемент одномерного массива целых, его значение и значение его индекса.
- 2. Сортировка одномерного массива в порядке возрастания методом пузырька.
- 3. Бинарный поиск элемента в упорядоченном одномерном массиве.
- 4. Отыскать минимальный элемент двумерного массива целых, его значение и значение его индексов.
- 5. Осуществить перестановку значений элементов одномерного массива в обратном порядке.
- 6. Осуществлять циклический сдвиг элементов одномерного массива на заданное число позиций влево.
- 7. Заменить все вхождения целочисленного значения в целочисленный массив.
- 2. Для каждой подпрограммы вычислить следующие метрические характеристики:
- \bullet η^*_2 число единых по смыслу входных и выходных параметров, представленных в сжатой без избыточной форме;
- ♦ η_1 число отдельных операторов;
- η_2 число отдельных операндов;
- η длина словаря реализации;
- lacktriangle N₁ общее число вхождений всех операторов в реализацию;
- ◆ N₂ общее число вхождений всех операндов в реализацию;
- № N длина реализации;
- № 1 предсказанная длина реализации по соотношению Холстеда;
- \bullet V* потенциальный объем реализации:

$$V^* = (2 + \eta_2^*) * \log_2(2 + \eta_2^*).$$

♦ V - объем реализации:

$$V = N * \log_2 \eta$$
.

◆ L - уровень программы через потенциальный объем:

$$L = V^* / V$$
.

◆ L^ˆ - уровень программы по реализации:

$$L^{\hat{}} = (2/\eta_1) * (\eta_2/N_2).$$

◆ I - интеллектуальное содержание программы:

$$I = (2/\eta_1) * (\eta_2/N_2) * (N_1 + N_2) * \log_2(\eta_1 + \eta_2).$$

◆ T[^]1 - прогнозируемое время написания программы, выраженное через потенциальный объем:

$$\widehat{T} = \frac{V^2}{S * V^*}.$$

◆ T[^]2 - прогнозируемое время написания программы, выраженное через длину реализации, найденную по Холстеду (т.е. в предположении, что программа совершенна):

$$\widehat{T} = \frac{\eta_1 \times N_2 \times (\eta_1 \log_2 \eta_1 + \eta_2 \log_2 \eta_2) \times \log_2 \eta}{2 \times S \times \eta_2}.$$

◆ T[^]₃ - прогнозируемое время написания программы, выраженное через метрические характеристики реализации:

$$\widehat{T} = \frac{\eta_1 \times N_2 \times N \times \log_2 \eta}{2 \times S \times \eta_2}.$$

3. По всем реализациям алгоритмов определить средние значения уровней языков программирования λ:

$$\lambda_1 = \stackrel{\circ}{L}^2 \times V,$$

$$\lambda_2 = \frac{V^{*2}}{V}.$$

Содержание отчета

Для каждой подпрограммы отчет должен содержать:

- текст подпрограммы,
- метрические характеристики реализации и алгоритма, оформленные в виде следующей таблицы:

η^*_2	η_1	η_2	η	N_1	N_2	N	N [^]	V^*	V	L	L	I	$T^{^{\prime}}$	$T^{^{\prime}}$	$T^{^{\prime}}$	λ_1	λ_2
			·													·	

• анализ полученных результатов.

Контрольные вопросы

Знать и уметь объяснить смысл формул, которые использовались для вычисления метрических характеристик при выполнении лабораторной работы.

Литература

- 1. Холстед М.Х. Начала науки о программах. М.: Финансы и статистика, 1981.
- 2. Кайгородцев Г.И. Введение в курс метрической теории и метрологии программ. Новосибирск: НГТУ, 2009.