INTRODUCTION TO MACHINE LEARNING

NEURAL NETWORKS I

Mingon Kang, Ph.D.

Department of Computer Science @ UNLV

Begin with a single Perceptron

$$a_i = g(\sum_j W_{j,i} a_j)$$

Threshold Functions

Boolean Functions and Perceptron

Discussion in Perceptrons

- A single perceptron works well to classify a linearly separable set of inputs
- Multi-layer perceptrons
 - found as a "solution" to represent nonlineaerly separable functions (1950s)
- Many local minima non-convex
- Research in neural networks stopped until the 70s

XOR?

 $\mathbf{W}_1 = [1, 1; 1, 1], \mathbf{W}_2 = [1, -2], \mathbf{c} = [0, -1, 0]$

Neural Network

- Feedforward Networks or Multilayer Perceptrons (MLPs)
 - E.g., for a classifier

 $y = f^*(x; \theta)$ maps an input x to a category y

A feedforward network defines a mapping $y = f(x; \theta)$ and learns the optimal parameters θ .

Neural Network

- Called Networks
 - Involve many various functions
 - Associated with a directed acyclic graph that represent how the functions are composed together
 - Mostly, chain structures

$$f(x) = f^{(3)} \left(f^{(2)} \left(f^{(1)}(x) \right) \right)$$

 $f^{(i)}$: the i-th layer in the network

Neural Network

Design of a NN model

- Architecture of the network
 - How many layers
 - How these layers are connected to each other
 - How many units are in each layer
- Activation function: to compute the hidden layer values
- Cost function: to optimize the model
- Optimizer: how to optimize the model

Weights and Bias

Weighted Input and Activation of a Neuron

□ Weighted Input of the j^{th} neuron of the l^{th} layer is z_j^l :

$$z_j^l = \sum_{k} \left(\left(w_{jk}^l \ a_k^{l-1} \right) + b_j^l \right)$$

- \square Activation from the j^{th} neuron of the l^{th} layer is a_i^l :
 - $\mathbf{a}_{i}^{l} = f(z_{i}^{l})$, where f is the activation function

$$a_j^l = f\left(\sum_{k} \left(\left(w_{jk}^l \ a_k^{l-1} \right) + b_j^l \right) \right)$$

In matrix notation, the activation becomes:

$$a^l = f(w^l a^{l-1} + b^l)$$

Example

Activation Functions

- Sigmoid Activation: $a_j^l = \sigma(z_j^l) = \frac{1}{1 + e^{-z_j^l}}$
- Softmax Activation: $a_j^l = \frac{e^{z_j^l}}{\sum_k e^{z_k^l}}$
- Tanh Activation: $tanh(z_j^l) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Rectified Linear Activation: $max(0, z_j^l)$, maximum of $0 \ or \ z_j^l$

Activation Functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation Functions

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Universal Approximator Theorem

- One hidden layer may be enough to represent (not learn) an approximation of any function to an arbitrary degree of accuracy
- □ So why deeper?
 - Shallow net may need (exponentially) more width
 - Shallow net may overfit more

Cost Functions

- Quadratic Cost: $C = \frac{1}{2n} \sum_{x} ||y(x) a^{L}(x)||^{2}$
- Binary Cross-Entropy Cost: $C = -\frac{1}{n} \sum_{x} (y(x) \times \log_e(a^L(x)) + (1 y) \times \log_e(1 a^L(x)))$
- Negative Log-likelihood Cost: $C = -\log_e(a_y^L)$
- A Cost function must satisfy the following two conditions (for backpropagation):
 - The Cost function C should be calculated as an average over the cost functions C_x for individual training examples.
 - The cost functions for the individual training examples C_x and consequently the Cost C function must be a function of the outputs of the neural network.

Examples of Neg Log-likelihood Cost

- Given the posterior probability and the ground truth:
 - A set of output probabilities: e.g. [0.1, 0.3, 0.5, 0.1]
 - Ground truth: e.g., [0, 0, 0, 1]
- Likelihood

 - \square NLL: $-\ln(0.1) = 2.3$
- □ If ground truth is [0, 0, 1, 0]

 - \square NLL: $-\ln(0.5) = 0.69$

Output Types

Output Type	Output Distribution	Output Layer	$egin{array}{c} \mathbf{Cost} \\ \mathbf{Function} \end{array}$
Binary	Bernoulli	Sigmoid	Binary cross- entropy
Discrete	Multinoulli	Softmax	Discrete cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)
Continuous	Mixture of Gaussian	Mixture Density	Cross-entropy
Continuous	Arbitrary	See part III: GAN, VAE, FVBN	Various

Discussion

- Construct a neural network for MNIST data
 - 28*28 pixel images and 10 labels
- Construct a neural network for a binary classification problem
 - 10 features and 2 labels
- Construct a neural network for predicting tomorrow's temperature in degree
 - 10 variables