Algorithms Chapter 7 Quicksort

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Description of Quicksort
- Performance of Quicksort
- ▶ A Randomized Version of Quicksort
- Analysis of Quicksort

Quicksort

- ▶ Worst-case running time: $\Theta(n^2)$.
- Best practical choice:
 - Expected running time: $\Theta(n \lg n)$.
 - ▶ Constants hidden in $\Theta(n \lg n)$ are small.
- Sorts in place.

Description of quicksort

- Quicksort is based on the three-step process of divide-andconquer.
 p q r
- ▶ To sort the subarray A[p...r]:
 - ▶ **Divide:** Partition A[p...r], into two (possibly empty) subarrays A[p...q-1] and A[q+1...r], such that each element in the first subarray A[p...q-1] is $\leq A[q]$ and A[q] is \leq each element in the second subarray A[q+1...r].

 $< \chi$

>*x*

- ▶ Conquer: Sort the two subarrays by recursive calls to quicksort.
- ▶ Combine: No work is needed to combine the subarrays, because they are sorted in place.

The Quicksort procedure

```
QUICKSORT(A, p, r)

1. if p < r

2. then q \leftarrow PARTITION(A, p, r)

3. QUICKSORT(A, p, q-1)

4. QUICKSORT(A, q+1, r)
```

- Initial call is QUICKSORT(A, 1, n).
- Perform the divide step by a procedure PARTITION, which returns the index q.

Partitioning the array

 \blacktriangleright Partition subarray A[p...r] by the following procedure:

```
PARTITION(A, p, r)

1. x \leftarrow A[r]
2. i \leftarrow p - 1 \Theta(1)

3. \mathbf{for} \ j \leftarrow p \ \mathbf{to} \ r - 1
4. \mathbf{if} \ A[j] \le x
5. i \leftarrow i + 1
6. \mathbf{exchange} \ A[i] \leftrightarrow A[j]
7. \mathbf{exchange} \ A[i + 1] \leftrightarrow A[r]
8. \mathbf{return} \ i + 1 \Theta(1)
```

- PARTITION always selects the last element A[r] in the subarray A[p...r] as the pivot.
- \blacktriangleright Time: $\Theta(n)$.

Outline

- Description of Quicksort
- Performance of Quicksort
- ▶ A Randomized Version of Quicksort
- Analysis of Quicksort

Performance of quicksort

- The running time of quicksort depends on the partitioning of the subarrays:
 - If the subarrays are balanced, then quicksort can run asymptotically as fast as mergesort.
 - If they are unbalanced, then quicksort can run asymptotically as slowly as insertion sort.

Performance of quicksort

Worst-case partitioning:

- ▶ Have 0 elements in one subarray and n-1 elements in the other subarray.
- The recurrence is $T(n) = T(n-1) + T(0) + \Theta(n)$ = $T(n-1) + \Theta(n) = \Theta(1) + \Theta(2) + ... + \Theta(n)$ = $\Theta(n^2)$.
- Occurs when the input array is sorted.

Best-case partitioning:

- Occurs when the subarrays are completely balanced every time.
- ▶ Each subarray has $\leq n/2$ elements.
- The recurrence is $T(n) \le 2T(n/2) + \Theta(n)$ = $\Theta(n | gn)$.

Balanced partitioning_{1/2}

Balanced partitioning

- Quicksort's average running time is much closer to the best case than to the worst case.
- Imagine that PARTITION always produces a 9-to-1 split, then the running time is

$$T(n) \le T(9n/10) + T(n/10) + cn$$

= $\Theta(n \lg n)$.

Balanced partitioning_{2/2}

- Intuition: look at the recursion tree.
 - It's like the one for T(n) = T(n/3) + T(2n/3) + O(n) in Section 4.2.
 - Except that here the constants are different; we get $\log_{10} n$ full levels and $\log_{10/9} n$ levels that are nonempty.
 - As long as it's a constant, the base of the log doesn't matter in asymptotic notation.
 - Any split of constant proportionality will yield a recursion tree of depth $\Theta(\lg n)$.

Intuition for the average case

- ▶ There will usually be a mix of good and bad splits throughout the recursion tree.
- Assume that levels alternate between best-case and worst-case splits.

- The extra level in the left-hand figure only adds to the constant hidden in the Θ-notation.
 - Only twice as much work was done to get to that point.
 - ▶ Both figures result in $O(n \lg n)$ time.

Outline

- Description of Quicksort
- Performance of Quicksort
- **▶** A Randomized Version of Quicksort
- Analysis of Quicksort

Randomized version of quicksort_{1/2}

- In exploring the average-case behavior of quicksort, we have assumed that all input permutations are equally likely.
- This is not always true.
- We use random sampling, or picking one element at random.
- \blacktriangleright Don't always use A[r] as the pivot.

RANDOMIZED-PARTITION(A, p, r)

- 1. $i \leftarrow \text{RANDOM}(p, r)$
- 2. exchange $A[r] \leftrightarrow A[i]$
- 3. **return** Partition(A, p, r)

Randomized version of quicksort_{2/2}

- ▶ Randomly selecting the pivot element will, on average, cause the split of the input array to be reasonably well balanced.
 - 1. RANDOMIZED-QUICKSORT(A, p, r)
 2. if p < r3. then $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$ 4. RANDOMIZED-QUICKSORT(A, p, q-1)
 5. RANDOMIZED-QUICKSORT(A, q + 1, r)

Outline

- Description of Quicksort
- Performance of Quicksort
- ▶ A Randomized Version of Quicksort
- Analysis of Quicksort

Analysis of quicksort

We will analyze

- ▶ the worst-case running time of QUICKSORT and RANDOMIZED-QUICKSORT (the same), and
- ▶ the expected (average-case) running time of RANDOMIZED-QUICKSORT.
- **Worst-case analysis:** $T(n) = O(n^2)$.
 - Recurrence for the worst-case:

$$T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n).$$

▶ Because Partition produces two subproblems, totaling size n-1, q ranges from 0 to n-1.

Worst-case analysis

- ▶ **Guess:** $T(n) \le cn^2$, for some c.
 - Substituting our guess into the recurrence:

$$T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$$

$$\leq \max_{0 \le q \le n-1} (cq^2 + c(n-q-1)^2) + \Theta(n)$$

$$= c \cdot \max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) + \Theta(n)$$

- ▶ The maximum value of $(q^2+(n-q-1)^2)$ occurs when q is either 0 or n-1. (second derivative)
- ▶ This means that $\max_{0 \le q \le n-1} (q^2 + (n-q-1)^2) \le (n-1)^2 = n^2 2n + 1$.
- Therefore, $T(n) \le cn^2 c(2n-1) + \Theta(n)$ $\le cn^2$ $= O(n^2)$ choose c so that $c(2n-1) \ge \theta(n)$

Average-case Analysis_{1/5}

- ▶ Average-case analysis: $T(n) = O(n \log n)$.
 - ▶ The dominant cost of the algorithm is partitioning.
 - ▶ PARTITION is called at most *n* times.
 - ▶ The amount of work that each call to PARTITION does is a constant plus the number of comparisons that are performed in its for loop.
 - Let X = the total number of comparisons performed in all calls to Partition.
 - ▶ Therefore, the **total work** is O(n + X).

Average-case Analysis_{2/5}

- We will now compute a bound on the overall number of comparisons.
- For ease of analysis:
 - Rename the elements of A as $z_1, z_2, ..., z_n$, with z_i being the ith smallest element.
 - Define the set $Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$ to be the set of elements between z_i and z_i , inclusive.
- ▶ Each pair of elements is compared at most once:
 - Elements are compared only to the pivot element, and
 - ▶ The pivot element is never in any later call to PARTITION.
- The expectation of total number of comparisons performed by the algorithm is $E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr\{z_i \text{ is compared to } z_j\}.$

Average-case Analysis_{3/5}

- Consider the input: 2, 8, 7, 1, 3, 5, 6, 4 and the pivot is 4,
 - None of the set {2, 1, 3} will ever be compared to any of the set {5, 6, 7,8}.
- ▶ Once a pivot x is chosen such that $z_i < x < z_j$, then z_i and z_j will never be compared at any later time.
- If either z_i or z_j is chosen before any other element of Z_{ij} , then it will be compared to all the elements of Z_{ij} , except itself.

Average-case Analysis_{4/5}

Therefore,

 $\Pr\{z_i \text{ is compared to } z_j\} = \Pr\{z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}\}$ $= \Pr\{z_i \text{ is the first pivot chosen from } Z_{ij}\}$ $+ \Pr\{z_j \text{ is the first pivot chosen from } Z_{ij}\}$ $= \frac{1}{j-i+1} + \frac{1}{j-i+1}$ $= \frac{2}{j-i+1}.$

 \blacktriangleright Substituting into the equation for E[X]:

▶
$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr\{z_i \text{ is compared to } z_j\} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}.$$

Average-case Analysis_{5/5}

Let
$$k = j - i$$
, then $E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n)$$

$$= O(n \lg n).$$

So the expected running time of quicksort, using RANDOMIZED-PARTITION, is $O(n \lg n)$.