# UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS.

Longitud de un arco de curva. Diferencial de arco. Curvaturas de curvas planas.

**Objetivos Instructivos.** Con esta clase pretendemos que los alumnos conozcan cómo calcular la longitud de un arco de curva y la curvatura de curvas planas mediante la Integral Definida.





Si las fuerza son todas gravitatorias

torque = 
$$\sum mgx$$



Si el torque es cero, entonces el sistema está balanceado.

Puesto que la ggravedad es la misma para todo el sistema, podemos sacar el factor *g* fuera de la ecuación.

$$M_O = \sum m_k x_k$$

Esto es llamado el Momento respecto al origen. Si dividimos  $M_o$  por la masa total, encontramos el <u>centro</u> de masa (punto de balance).

$$M_O = \sum m_k x_k$$

$$\overline{x} = \frac{M_O}{M} = \frac{\sum x_k m_k}{\sum m_k}$$

$$\bar{x} = \frac{M_O}{M} = \frac{\sum x_k m_k}{\sum m_k}$$

Para una banda:

 $\delta$  = density per unit length

( $\delta$  es delta.)

$$M_O = \int_a^b x \cdot \delta(x) dx$$

masa: 
$$M = \int_a^b \delta(x) dx$$

centro de masa: 
$$\overline{x} = \frac{M_O}{M}$$

O sea, si la banda tiene densidad uniforme y espesor, el centro de masa est{a a la mitad.

En el caso de una figura, necesitamos dos distancias para localizar el centro de masa.



Faja de masa dm

$$\tilde{x}$$
 = Distancia del eje  $y$  al centro del intervalo

 $\tilde{y} = Distancia del eje x al centro$ del intervalo

Momento eje x:

$$M_{x} = \int \tilde{y} dm$$

Center of mass:

Momento eje y:

$$M_{y} = \int \tilde{x} dm$$

$$M_{y} = \int \tilde{x} dm$$
  $\overline{x} = \frac{M_{y}}{M}$   $\overline{y} = \frac{M_{x}}{M}$ 

Masa:  $M = \int dm$ 

En el caso de una figura, necesitamos dos distancias para localizar el centro de masa.



Para un plato de espesor uniforme y densidad, esta puede salir fuera de la ecuación cuando buscamos el centro de masa.

Vocabulario

centro de masa = centro de gravedad = centroide

Densidad constante  $\delta$  = homogéneo = uniforme

$$M_{x} = \int_{0}^{3} \frac{1}{2} x^{2} \cdot x^{2} dx$$
$$M_{x} = \int_{0}^{3} \frac{1}{2} x^{4} dx$$

$$M_{x} = \int_{0}^{3} \frac{1}{2} x^{4} dx$$

$$M_x = \frac{1}{10} x^5 \begin{vmatrix} 3 \\ 0 \end{vmatrix}$$

$$M_x = \frac{243}{10}$$

$$M_{y} = \int_{0}^{3} x \cdot x^{2} dx$$

$$M_{y} = \int_{0}^{3} x^{3} dx$$

$$M_y = \frac{1}{4} x^4 \begin{vmatrix} 3 \\ 0 \end{vmatrix}$$

$$M_{y} = \frac{81}{4}$$

$$M = \int_0^3 x^2 dx = \frac{1}{3} x^3 \Big|_0^3 = 9$$

coordenadas del

$$\overline{x} = \frac{M_y}{M} = \frac{\frac{81}{4}}{9} = \frac{9}{4}$$

coordenadas del centroide=(2.25, 2.7) 
$$\overline{x} = \frac{M_y}{M} = \frac{81}{9} = \frac{9}{4}$$
  $\overline{y} = \frac{M_x}{M} = \frac{243}{10} = \frac{27}{10}$ 

Nota. El centroide no siempre pertenece al objeto.



Si el centro de masa es obvio, no es necesario lo anterior:



# Theorema de Pappus.

Cuando una figura bidimensional rota sobre un eje:

Volumen = area · Distancia recorrida por el centroido.

Area superficie=

= perímetro · distancia recorrida por el centroide <u>del arco</u>.

Considere una rosquilla de 8 cm diámetro y de 3 cm de diámetro sección transversal:

$$V = 2\pi r \cdot \text{area}$$

$$V = 2\pi \left(2.5\right) \cdot \pi \left(1.5\right)^2$$

$$V = 11.25\pi^2$$
  $V \approx 111 \text{cm}^3$ 

$$V \approx 111 \mathrm{cm}^3$$



# Podemos encontrar el centroide de una superficie semicircular usando el Teorema de Pappus.



$$A = \frac{1}{2}\pi r^{2} \qquad V = \frac{4}{3}\pi r^{3}$$

$$2\pi \overline{y} \cdot \frac{1}{2}\pi r^{2} = \frac{4}{3}\pi r^{3}$$

$$\overline{y} = \frac{4r}{3\pi}$$

#### Longitud de una Curva



Por el Teo de Pitágoras:

$$ds^2 = dx^2 + dy^2$$

$$ds = \sqrt{dx^2 + dy^2}$$

$$\int ds = \int \sqrt{dx^2 + dy^2}$$

$$S = \int \sqrt{\left(\frac{dx^2}{dx^2} + \frac{dy^2}{dx^2}\right)} dx^2$$

Si deseamos aproximar la longitud de una curva, sobre una pequeña distancia podemos medir una línea recta.

$$L = \int \sqrt{1 + \frac{dy^2}{dx^2}} \, dx$$

Longitud de una Curva

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

# Ejemplo 1.

$$y = -x^2 + 9$$

$$0 \le x \le 3$$

$$y = -x^2 + 9$$

$$\frac{dy}{dx} = -2x$$

$$L = \int_0^3 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$L = \int_0^3 \sqrt{1 + \left(-2x\right)^2} \ dx$$

$$L = \int_0^3 \sqrt{1 + 4x^2} \ dx$$

$$L = \frac{\ln\left(\sqrt{37} + 6\right)}{4} + \frac{3\sqrt{37}}{2} \approx 9.74708875861$$

# La longitud de un segmento:

$$9^{2} + 3^{2} = C^{2}$$
$$81 + 9 = C^{2}$$
$$90 = C^{2}$$
$$C \approx 9.49$$



$$L = \frac{\ln\left(\sqrt{37} + 6\right)}{4} + \frac{3\sqrt{37}}{2} \approx 9.74708875861$$

# Ejemplo 2.



$$x^2 + y^2 = 1$$

$$y^2 = 1 - x^2$$

$$y = \sqrt{1 - x^2}$$

$$L = \int_{-1}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx$$

$$\approx \pi$$

Si en la ecuación no se puede despejar y, o es más fácil trabajar con x, la longitud de la curva puede encontrarse de la misma forma.

$$x = y^2 \qquad 0 \le y \le 3$$

$$L = \int_0^3 \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \frac{1}{dy} = \frac{1}{1 + \left(\frac{dx}{dy}\right)^2} \frac{1}{1 + \left(\frac{dx}{dy}\right)^2$$

$$\int (\sqrt{1 + d(x, y)}) (3) \approx 9.74708875861$$