Telas planas

Características LCD

- comparação com CRT
 - telas completamente planas
 - menor consumo de energia
 - 5 Watts (LCD) vs 100 Watts (CRT)
 - qualidade de cor compatível com CRT
 - matriz ativa
- desvantagens
 - uma única resolução
 - maior preço
 - menor brilho

Tipos de LCD

- tipos básicos atuais para PC
 - matriz passiva colorida dual scan (DSTN)
 - matriz ativa colorida analógica

varredura dupla

- matriz ativa digital
- para Palm e painéis industriais
 - obsoletos para PC
 - LCD monocromático
 - matriz passiva single scan

varredura simples

Princípio de funcionamento

- matriz passiva
 - supertwist numatic (STN)
- matriz ativa
 - thin-film transistor (TFT)

LCD - Twisted Numatic (TN)

luz polarizada segue a torção

aplicando filtros

Resolução

- número de células na horizontal (H) vs vertical (V)
- matriz passiva
 - transistores na horizontal e transistores na vertical
 - cada célula é controlada pela carga de um transistor na horizontal e outro na vertical
 - número total de transistor = N + V
- matriz ativa
 - cada célula tem seu próprio transistor dedicado
 - número total de transistor = N x V

Brilho

- matriz passiva
 - não é tão brilhante como CRT
 - carga pulsada (varredura)
 - double scan vs simple scan
 - double scan varredura dupla
 - divide a tela em duas (parte superior e inferior)
 - além de aumentar o brilho, aumenta a velocidade
- matriz ativa
 - não usa carga pulsada mas carga contínua
 - consome maior quantidade de energia

Tecnologias Atuais

- LCD (liquid crystal display)
 - monitores e TVs
- LCOS (liquid crystal on silicon)
 - capacetes de realidade virtual
 - alta densidade de pixels
- OLED (organic light-emitting diodes)
 - máquinas fotográficas e filmadoras digitais
- DLP (Digital Light Processing)
 - projetores
- Bistable (mantém imagem mesmo sem energia)
 - tinta eletrônica (e-ink)

LCD (liquid crystal display)

Liquid

No light

A: filtro polarizador

B: cristal líquido

C: filtro polarizador

Tempo de resposta: entre 8 ms a 25 ms

Problema: luz polarizada (restringe o ângulo de visão)

LCOS (liquid crystal on silicon)

A: luz externa

B: cristal líquido

C: camada reflexiva

D: polarizador externo

Vantagem: alta densidade (não requer luz interna)

OLED (organic light-emitting diodes)

A: Anodo

B: Catodo

C: Corrente elétrica

D: Camada emissora de luz

DLP (Digital Light Processing)

A: Fonte de luz

B: Roda giratória

C: Espelhos móveis (refletindo a luz para fora da lente)

D: Lente de projeção

E: Espelhos móveis (refletindo a luz para a lente)

F: imagem

Espelhos em sincronismo com a roda giratória

Bistable

A: Esferas eletroforéticas

B: Partículas carregadas negativamente afastam-se do eletrodo traseiro

C: Partículas carregadas positivamente aproximam-se do eletrodo traseiro

D: Eletrodo traseiro

E: Eletrodo dianteiro

Esferas são rotacionadas pela aplicação de energia

Esferas permanecem estáveis após a retirada da energia

Tela de plasma

- Aplicação de corrente entre os eletrodos
- Corrente energiza o fósforo
- Energia extra é liberada na forma de luz

Padrões (!!?!) de vídeo

Padrão	Resolução	Pixels	Relação de	Relação de aspecto
			aspecto	
CGA	320x200	64000	1,60	16:10
EGA	640x350	224000	1,83	11:6
VGA	640x480	307200	1,33	4:3
WVGA	854x480	409920	1,78	16:9
SVGA	800x600	480000	1,33	4:3
XGA	1024x768	786432	1,33	4:3
XGA+	1152x864	995328	1,33	4:3
WXGA	1280x800	1024000	1,60	16:10
WXGA+	1440x900	1296000	1,60	16:10
SXGA	1280x1024	1310720	1,25	5:4
SXGA+	1400x1050	1470000	1,33	4:3
WSGA	1600x1024	1638000	1,56	25:16
WSXGA+	1680x1050	1764000	1,60	16:10
UXGA	1600x1200	1920000	1,33	4:3
HDTV	1920x1080	2073600	1,78	16:9
WUXGA	1920x1200	2304000	1,60	16:10
QXGA	2048x1536	3145728	1,33	4:3
QSXGA	2560x2048	5242880	1,25	5:4
QUXGA-W	3840x2400	9216000	1,60	16:10

Placas aceleradoras e placas 3D

INF01112 2007

Placas gráficas

Placas VGA

- O mínimo indispensável
- Suportam somente os modos IBM
- Possuem 256K ou 512K de memória

Placas SVGA

- Modos acima do VGA padrão
- Suportam os modos VESA para maior definição
- Utilizam somente as funções básicas do BIOS
- Possuem 1 MByte de memória

suporte apenas a operações com um pixel

Placas aceleradoras

- modos gráficos de alta resolução
- hardware adicional e rotinas de BIOS extras
 - permitem acelerar desenhos em duas dimensões (2D)
- exemplos de funções 2D:
 - Bit Block Transfers (BitBLT) mover áreas na memória de vídeo (janelas, por exemplo)
 - Sprites mover pequenas imagens na tela (cursor do mouse, por exemplo)
 - Windowing tratamento, movimentação, superposição e demais operações com janelas
 - Panning trabalhar com uma área gráfica maior que a visível na tela

- funções específicas para tratamento de modelos tridimensionais
 - Tesselização imagem é modelada em polígonos elementares (triângulos ou retângulos)
 - Remoção de objetos ocultos
 - Mapeamento de texturas adicionar textura bidimensional a cada um dos polígonos
 - Adição de sombras e outros efeitos (flat shading, Gourad shading, Phong shading)
 - Adição de efeitos atmosféricos neblina (fogging) e objetos distantes (depth cueing)

- Adição de transparência funções para tornar objetos transparentes, translúcidos e opacos (alpha channel)
- Tratamento de arestas correção de distorções (aliasing) com técnicas de anti-aliasing
- Tratamento de texturas correção de texturas por bilinear filtering, tri-linear filtering e MIP mapping
- Tratamento de múltiplas texturas mapas de luz (lightmap) e texturas comuns
 - textura
 - mapa de luz estático
 - reflexão
 - "bump maping" (relevo)

- Transformação e iluminação (Transform & Lightning) tratar mudanças de um quadro para o seguinte, assim, como alterações na iluminação
- Shaders programáveis rotinas para determinar o aspecto final da superfície de um objeto ou imagem
 - Absorção de luz
 - Difusão de luz
 - Mapeamento de texturas
 - Reflexão
 - Refração
 - Sombreamentp
 - Deslocamento da superfície

- Vertex: junção de duas arestas de um triângulo
- Vertex Shader funções (programáveis) que realizam transformações no espaço tridimensional
 - Deformações de superfície
 - Junções flexíveis
 - Efeitos ópticos (lentes)
 - Deslocamentos
 - Orientações espaciais
- Um vertex shader não cria ou destrói vertexs; apenas transforma vertexs
- A saída de um vertex shader é processada por um pixel shader

- Pixel Shader funções (programáveis)que calculam efeitos sobre pixels individuais
 - iluminação
 - Sombra
 - Transparência
- Resultado final é a cor do pixel
- Funções altamente paralelizáveis
- Processamento necessário depende da resolução
 - Exemplo: 1024x768, a 60 fps = 124.760.60=47 Mpixels/s

Evolução de placas aceleradoras

Geração	Data	Technologia	API	Exemplos
primeira	1996-97	Placa PCI exclusiva para 3D	PowerVR Glide OpenGL	3dfx Voodoo
segunda	1997-98	Placa PCI 2D/3D	Glide Open GL Direct3D	ATI Rage NVIDIA Riva
terceira	1999	Placa AGP 2D/3D 1x/2x	Glide Open GL Direct3D	3dfx Voodoo 3 ATI Rage Pro NVIDIA TnT2
quarta	1999-2000	Placa AGP 2D/3D 4x	OpenGL Direct3D	NVIDIA GeForce 256 ATI Radeon
quinta	2001	Shaders Programáveis	OpenGL Direct3D	NVIDIA GeForce3 NVIDIA GeForce4
sexta	2001-2002	Direct X 8.1	OpenGL Direct3D	ATI Radeon 8500 ATI Radeon 9000
sétima	2002-2003	AGP 8x DirectX 9	OpenGL Direct3D	ATI Radeon 9700 NVIDIA GeForce FX 5900
oitava	2004-2005	PCI Express Directx 9.c	OpenGL Direct3D	ATI X800 NVIDIA GeForce 6800
nona	2004-2006	Dual GPU	OpenGL Direct3D	ATI Crossfire NVIDIA SJA

Evolução do DirectX

Característica	DirectX 6	DirectX 7	DirectX 8	DirectX 9
Aparência da água	Pobre	Razoável	Boa	Excelente
Efeitos 3D no céu	Não	Sim	Sim	Sim
Refração dinâmica	Não	Não	Limitada	Sim
Efeitos volumétricos (fumaça, neblina)	Não	Limitada	Sim	Sim
Bump maping	Não	Não	Sim	Sim
Transformação e iluminação	Não (Software)	Sim (Fixa)	Pixel Shader 1.0 Vertex Shader 1.0	Pixel Shader 2.0 e 3.0 (9.0c) Vertex Shader 2.0 e 3.0 (9.0c)
Resolução das texturas	128x128 256x256	256x256	512x512	521x512
Resoluções do mapa de deslocamentos	Baixa	Média	Média a Alta, c/bump maping	Alta, c/bump maping