Fun Problems

2080

- 1. Let A and B be four-digit palindromes and let C be a five-digit palindrome. If A+B=C, determine all possible values of C.
- 2. Suppose that A, B, and C are positive integers in arithmetic progression with A < B < C < 180. If $sin A^{\circ} + sin B^{\circ} = sin C^{\circ}$ and $cos A^{\circ} = cos B^{\circ} + cos C^{\circ}$, determine the triplet (A, B, C).
- 3. In $\triangle ABC$, AB=JC, BC=Ja, and CA=Jb, where a,b,C are positive integers. If the area of the triangle IJ, show that ab-4, ac-4, and bc-4 are all perfect squares.
- 4. In DABC with area T, we inscribe a rectangle DEFG so that F and G are on the line BC.

 Let R be the area of the triangle.

Prove that T≥2R. When does T=2R?

5. For each integer n, we let \(\bar{n}\) be the integer n written backward. (For example, if N=1234, then \(\bar{n}=4321\)). We say that a four digit integer n is magical if both n+\(\bar{n}\) and n-\(\bar{n}\) are palindromes. For example, 2001 is magical.

If n is magical, determine all possible values of n-n.

6. a,b,c are three consecutive terms of a geometric sequence, where a,b, and c are all integers. If a+b+c=7, determine all possible values of b.

Let $\triangle ABC$ be a right-angled triangle with $\angle C = 90^{\circ}$. Let CD be the altitude from C to AB.

Prove that ri+rz ≤ 反下. When does equality occur?

There are 14 cubes, arranged in a pyramid, as shown. 8. A number is assigned to each cube.

The nine cubes on the bottom layer are each assigned a unique digit (1 to 9 inclusive). Each cube on the middle and top layers is assigned the number that is the average of the four cubes directly below it. Suppose our pyramid is numbered as follows:

1	1	5	Ρ.			1	
	-1	3	- 11	 a	b		0
	P ₂	P3_	P4	0	d		
	Ps	P ₆	P7.	(mi	adle)	i i	(tap)
	16	otto	m)	•			

Given that a, b, c, d, and e are distinct integers, determine the values of P1, P2, ..., P7.