

Ensayo N°14

Laboratorio de Máquinas: "Cavitación"

Felipe Andres Olivares Acevedo Escuela de Ingeniería Mecánica

Profesor: Cristóbal Galleguillos Ketterer Pontificia Universidad Católica de Valparaíso

14 de diciembre del 2020

1. Introducción

EL objtetivo de este informe es determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga

2. Desarrollo

2.1. Formulas

Velocidad:

$$V = \frac{4 * Q}{3600 * \pi * D^2} \tag{1}$$

 $\mathrm{con}\ \mathrm{DA} = 0{,}1023[\mathrm{m}]$

Columna neta de succión positiva disponible [mca]:

$$CNSDP = pax + \frac{13,54 * patm}{1000} + \frac{V^2}{2g} - Pv$$
 (2)

Pv = presión de vapor del líquido bombeado en [mca]

Columna neta de succión positiva requerida:

$$CNSPR = CNSPD_{critica} \tag{3}$$

2.2. Valores Medidos

A continuación podemos observar en la figura 1. Una tabla con valores medidos en el ensayo:

			VAL	ORES MED	DIDOS 2900	(curva H	vs Q)			
						1				
	n	cpax	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2899	91,8	5,6	140	1,19	18	757,1
2	2900	0,115	0,165	2899	93,8	10,2	128	1,27	18	757,1
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,1
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,1
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,1
6	2900	0,115	0,165	2897	103,2	28,5	74	1,53	18	757,1
7	2900	0,115	0,165	2899	104,8	32,2	63	1,53	18	757,1
8	2900	0,115	0,165	2896	107,3	37,7	50	1,57	18	757,1
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,1
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,1
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,1
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,1

Figura 1: Datos medidos en el ensayo.

					PUNTO 1					
	0									
	n	cpax	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1

Figura 2: datos medidos en el punto 1.

	PUNTO 2											
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}		
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]		
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1		
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1		
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1		
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1		
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1		
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1		
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1		

Figura 3: Datos medidos en el punto 2.

5													
	PUNTO 3												
66 66	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}			
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1			
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1			
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1			
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1			
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1			

Figura 4: Datos medidos en el punto 3.

2.3. Valores calculados

[h] Por medio de las formulas entregadas en el ensayo mostradas anteriormente se obtuvo la siguiente tabla.

	1° medida n = 2900 [RPM]												
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR	
[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]	
77,76	78,88	-0,37	7,21	7,58	7,80	2,99	3,13	1,71	54,68	2,67	9,96	4,20	
77,76	78,77	-2,17	5,29	7,45	7,65	3,00	3,12	1,67	53,67	2,66	8,17	4,20	
77,76	78,77	-3,82	3,61	7,42	7,61	3,00	3,12	1,67	53,45	2,66	6,52	4,20	
77,76	78,75	-4,77	2,25	7,01	7,19	2,96	3,07	1,57	51,21	2,66	5,57	5,57	
77,76	78,67	-5,08	2,17	7,24	7,41	2,90	3,00	1,62	54,01	2,66	5,25	4,20	
75,24	76,09	-6,18	2,13	8,3	8,49	3,00	3,11	1,79	57,75	2,57	4,12	4,20	
74,16	75,02	-6,50	2,05	8,54	8,74	3,00	3,11	1,82	58,59	2,54	3,79	4,20	

Figura 5: datos calculados en el punto 1.

	2° medida n = 2900 [RPM]													
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR		
[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]		
54	54,6109	0,115	11,285	11,17	11,42	3,26	3,37	1,73	51,38	1,85	10,24	6,88		
54	54,6109	-2,715	8,365	11,08	11,33	3,26	3,37	1,72	50,96	1,85	7,41	7,41		
54	54,6109	-5,275	4,405	9,68	9,90	3,18	3,28	1,50	45,73	1,85	4,85	6,88		
52,92	53,51868	-6,345	2,045	8,39	8,58	3,03	3,13	1,28	40,77	1,81	3,77	6,88		
51,48	52,09811	-6,525	2,005	8,53	8,74	3,00	3,11	1,26	40,64	1,76	3,59	6,88		
47,52	48,05759	-6,535	2,045	8,58	8,78	2,96	3,06	1,17	38,25	1,62	3,55	6,88		
46,08	46,61728	-6,505	1,925	8,43	8,63	2,90	3,00	1,12	37,27	1,58	3,57	7,88		

Figura 6: datos calculados en el punto 2.

	3° medida n = 2900 [RPM]											
$\mathbf{Q}_{\mathbf{x}}$	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR
[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
54	54,62963	0,865	17,685	16,82	17,21	3,20	3,31	2,61	78,95	1,85	10,99	6,88
54	54,6109	-1,505	14,885	16,39	16,76	3,33	3,44	2,54	73,93	1,85	8,62	8,62
54	54,59219	-7,435	1,765	9,2	9,40	2,75	2,84	1,43	50,23	1,84	2,69	6,88
52,92	53,50034	-7,335	1,645	8,98	9,18	2,68	2,77	1,36	49,21	1,81	2,78	6,88
51,48	52,06239	-7,185	1,605	8,79	8,99	2,57	2,66	1,30	48,82	1,76	2,93	6,88

Figura 7: datos calculados en el punto 3.

3. Resultados y Gráficas

¿Qué significan las desviaciones que se producen?

Se puede observar en la figura 8 en la siguiente sección de gráficos que la curva obtenida a través de los puntos medidos presenta un comportamiento anormal, que debería ser como la linea amarilla. esto se debe a que se produjo el efecto de cavitación

En los siguientes gráficos se encuentra en la ordenada H, Ne en porcentaje respecto al valor sin cavitación y ngl, y en la abscisa la CNSPD.

¿Cómo determina la CNSPD crítica y qué representa?

La CNSPD crítica se determina en el grafico H, Ne, gl vs caudal observando el punto inflexión en la altura representa el momento en donde comienza la cavitación de la bomba y se logra determinar la CNSPD crítica de esta. Por ende, representa la presión mínima que se necesita en la aspiración para que la bomba no presente cavitación.

¿La curva obtenida tiene la forma característica? ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Observando el grafico de la figura 12.Si se ajusta a su forma característica, ya que a mayores caudales aumenta la CNSPR. A partir del ensayo anterior el caudal nominal y calculando la velocidad especifica se puede considerar que los valores de CNSPR son aceptables y que no habría problemas de cavitación siendo su CNSPD; CNSPR.

3.1. Gráficas.

Carga [mca] / Caudal [m3/h] 25,00 20,00 15,00 10,00 5,00 0,00 40,00 50,00 70,00 30,00 60,00 80,00 90,00 100,00 110,00 ----- 1º medida n = 2900 [RPM] ------ 2º medida n = 2900 [RPM] ---- 3º medida n = 2900 [RPM] ---- medida n = 2900 [RPM]

Figura 8: Gráfica de la capacidad en función del caudal

Medicion en el punto 1

Figura 9: H, Ne y rendimiento global en el punto 1

Figura 10: H, Ne y rendimiento en el punto $2\,$

Medicion en el punto 3

Figura 11: H, Ne y rendimiento en el punto 3

Figura 12: CNSPR vs Caudal

4. Conclusiones

En el ensayo se logró cumplir el objetivo propuesto definiendo la curva de columna neta de succión requerida. Además las curvas obtenidas concuerdan con los parámetros y valores esperados.