PROB 140

Fall 2020

WEEK 6 STUDY GUIDE

The Big Picture

We develop an algorithm that uses a Markov chain to simulate a probability distribution on an intractably large outcome space.

- Under some conditions that are pretty general, Markov chains have powerful long run properties.
- Steady state or stationarity has a physical interpretation and many uses.
- Many Markov chains, when run for a long time, exhibit different kinds of *balance*. These can be used to identify steady state properties.
- *Monte Carlo* methods use simulation to address problems that are intractable by math or by complete enumeration.
- *Markov Chain Monte Carlo* (MCMC) can be used to simulate probability distributions on intractably large outcome spaces, even when the normalizing constant of the distribution can't be calculated.

Week At a Glance

Mon 9/28	Tue 9/29	Wed 9/30	Thu 10/1	Fri 10/2
	Instructor's Session		Instructor's Session	
		GSIs' Sessions		GSIs' Sessions
Checkpoint Week 6 (Due Wed 9/30)		Checkpoint Week 6 Due		
Homework 5 (Due Mon 10/5)				HW 5 Party 6-7PM
Lab 3 (Due Mon 10/5)			Lab 3 Party 6-7PM	
Read Sec 10.1	Skim Sec 10.1-10.3	Read Ch 10, skim Sec 11.1	Read Ch 11	Read Ch 11

Reading, Practice, and Live Sessions

Sections	Topic	Live Sessions: Prof. A.	Live Sessions: GSIs	Recommended Practice
Ch 10	Markov chains - 10.1 (covered in Week 5) introduces terminology, notation, and basics, along with a computational approach to the long run - 10.2 narrows down the type of chain we'll be studying, but even the narrowed-down group is pretty large - 10.3 takes a more theoretical approach to the long run - 10.4 has examples and applications	Tuesday 9/29 - Formal discussion of long-run behavior - Balance and detailed balance Checkpoint is based on Sections 10.1-10.3	Wednesday 9/30 Ch 11: - Konstantopolous Ex 7 - Ex 3 - Idea for Ex 1	Ch 11 - Ex 1, 2, 4, 5 - Kontantopolous Ex 25, 27
Ch 11	Detailed Balance and MCMC - 11.1 is about different kinds of balance, and how one of them can make it easy to identify the other - 11.2 solves the code-breaking problem with a tiny alphabet, by complete enumeration - 11.3 develops a general Markov chain Monte Carlo method that can be used to solve the problem with a large alphabet	Thursday 10/1 - The code breaking problem, with a tiny alphabet - Using MCMC to solve the problem with a large alphabet	Friday 10/2 Lab 3. Please attend – the lab will make much more sense if you do, and it's one of our rare one-week labs.	

There are no exercises at the end of Chapter 10, because the methods of Chapter 11 make many problems easier to solve.