Matemática Discreta

Clase 11: Relaciones y funciones (cont'd)

Federico Olmedo y Alejandro Hevia Departamento de Ciencias de la Computación Universidad de Chile

Relaciones

Operaciones sobre relaciones

Operaciones estándares sobre conjuntos se pueden utilizar para manipular relaciones.

- Unión: $R \cup R'$
- Intersección: $R \cap R'$
- Diferencia: $R \setminus R'$

Además tenemos las siguientes operaciones específicas:

- Inversión: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$
- Composición: $R' \circ R = \{(a,c) \mid \exists b. \ (a,b) \in R \land (b,c) \in R'\}$
- Potencia: Si R es una relación sobre A definimos

$$R^1 = R$$
 y $R^{n+1} = R^n \circ R$

Operaciones sobre relaciones

Composición

Potencia

Operaciones sobre relaciones

Ejercicio: Demuestre que una relación R sobre A es transitiva si y sólo si $R^n \subseteq R$, para cualquier $n \ge 1$.

Ejercicio: Demuestre que R es simétrica si y sólo si $R = R^{-1}$.

Ejercicio: Sea R simétrica. Demuestre que R^n es simétrica, para todo $n \ge 1$.

Clausuras

Definición (clausura de una relación)

Dada una relación R sobre un conjunto A, su clausura reflexiva/simétrica/transitiva es la menor relación que contiene a R y que es reflexiva/simétrica/transitiva.

¹ "Menor" relación en el sentido de inclusión de conjuntos.

Clausura reflexiva

Intuitivamente, la clausura reflexiva de R se obtiene extendiendo R con todos los pares (a, a) para $a \in A$.

Ejemplo: La clausura reflexiva de la relación < en los números naturales es la relación \le .

Clausura transitiva

Intuitivamente, (a, b) está en la clausura transitiva de R si y sólo si $(a, b) \in R$ o existen elementos $a_1, \ldots, a_n \in A$ tales que

$$(a, a_1) \in R \land (a_1, a_2) \in R \land \ldots \land (a_{n-1}, a_n) \in R \land (a_n, b) \in R$$

Relación R

Clausura transitiva de R

Clausura transitiva

Ejemplo: La clausura transitiva de la relación de sucesor en los números naturales es la relación de orden ">".

Ejercicio: Sea R una relación sobre A. Demuestre que si A tiene n elementos, entonces la clausura transitiva de R, notada R^+ , puede obtenerse como

$$R^+ = \bigcup_{1 \le i \le n} R^i$$

.

A la clausura reflexotransitiva de R se la suela notar R^* .

Funciones

Funciones

Definición

Una función de A a B es una relación f entre A y B tal que para todo $a \in A$ existe un único $b \in B$ tal que $(a,b) \in f$. Escribimos $f:A \to B$ para denotar que f es una función de A a B.

Dado $a \in A$ escribimos f(a) para denotar al único $b \in B$ tal que $(a,b) \in f$. En este caso decimos que b es la imagen de a (o que a es una preimagen de b).

El dominio de $f: A \rightarrow B$ es A y el rango de f es

$$range(f) = \{b \in B \mid \exists a \in A. \ f(a) = b\}$$

g

Clasificación de funciones

Definición

Una función $f: A \rightarrow B$ es:

- inyectiva o uno-a-uno sii para todo $a_1, a_2 \in A$, $a_1 \neq a_2$ implica $f(a_1) \neq f(a_2)$;
- survectiva o sobre sii para todo $b \in B$ existe $a \in A$ tal que f(a) = b;
- biyectiva sii es inyectiva y suryectiva.

Ejemplo

- La función $f: \mathbb{N}_0 \to \mathbb{N}_0$ tal que f(n) = 2n es inyectiva, pero no es suryectiva.
- La función $f: \mathbb{N}_0 \to \mathbb{N}_0$ tal que f(0) = 1 y f(n) = n 1, para todo n > 0, es suryectiva pero no inyectiva.

Operaciones sobre funciones

Las funciones son un tipo especial de relaciones. Por lo tanto admiten inversas y se pueden componer.

Pregunta: ¿Es la composición de dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$ otra función?

Pregunta: ¿Es la relación inversa de una función otra función? ¿Bajo qué condiciones?

Ejercicio*: Probar que si $f: A \to B$ y $g: B \to C$ son inyectivas (resp. suryectivas), entonces la composición $g \circ f: A \to C$ también es inyectiva (resp. suryectiva).

Pregunta: ¿Qué corolario se tiene del ejercicio anterior?

Algunas funciones importantes

La función techo asigna a cada número real x el valor $\lceil x \rceil$ del menor entero y tal que $x \leq y$.

La función piso asigna a cada número real x el valor $\lfloor x \rfloor$ del mayor entero y tal que $x \geq y$.

La función factorial asigna a cada número natural n el producto n! de los primeros n enteros positivos (asumimos que 0! = 1).

Ejercicios

Ejercicio: Demuestre que para todo número real x y entero n,

$$\lfloor x + n \rfloor = \lfloor x \rfloor + n.$$

Ejercicio: Demuestre que para todo número real x, $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Ejercicio: Demuestre que para todo número real $x \ge 0$, $\lfloor \sqrt{\lfloor x \rfloor} \rfloor = \lfloor \sqrt{x} \rfloor$.