Problem 2.1 - Uncertainty Analysis

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$\frac{\mathbf{v}_1}{\mathcal{N}} \left(\frac{\mathbf{d}_1}{\mathbf{d}_2}\right)^2 \; \mapsto \; \begin{pmatrix} \mathbf{d}_1 & 1.80 \pm 0.005 & \text{Uniform}\mathcal{D} \\ \mathbf{d}_2 & 1.0 \pm 0.05 & \text{Uniform}\mathcal{D} \\ \mathbf{v}_1 & 0.33 \pm 0.005 & \text{Uniform}\mathcal{D} \\ \mathcal{N} & 30 \pm 0.5 & \text{Uniform}\mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = \frac{x_1^2 x_3}{x_2^2 x_4}$$

Variable		Uncertainty Interval	Distribution	$ \partial f/\partial x_i $
\mathbf{x}_1	d_1	$(1.800 \pm 0.005) \times 10^{0}$	Uniform	3.96×10^{-2}
x ₂	\mathbf{d}_2	$(1.00 \pm 0.05) \times 10^{\circ}$	Uniform	7.128×10^{-2}
x 3	\mathbf{v}_1	$(3.30 \pm 0.05) \times 10^{-1}$	Uniform	$\textbf{1.08}\times\textbf{10}^{-1}$
X4	N	$(3.00 \pm 0.05) \times 10^{1}$	Uniform	1.188×10^{-3}

У	0.03564	
Ymin	0.0311410914092413	= y - 0.00449891
Ymax	0.0409949152542373	= y + 0.00535492
ε_{max} $y \pm \varepsilon_{\text{max}}$	0.004896 (3.6±0.5) × 10 ⁻²	= 13.7% = $3.6(5) \times 10^{-2}$
u _c	0.00211232383880881	= 5.93%
y ± u _c	$(3.6 \pm 0.2) \times 10^{-2}$	= $3.6(2) \times 10^{-2}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{x_i} f[x]| \varepsilon_i; f[x] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
0.03564 \pm 0.004896
\in [0.030744; 0.040536]
\approx (3.6 \pm 0.5) \times 10^{-2} = 3.6(5) \times 10^{-2}
```

Combined Standard Uncertainty

$$u_c = \left(\sum_{i=1}^{n} (\partial_{x_i} f[x])^2 u_i^2\right)^{1/2}; f[x] \pm u_c // QUCA$$

```
0.03564 ± 0.00211232

\in [0.033528; 0.037752]

\simeq (3.6 \pm 0.2) \times 10^{-2} = 3.6(2) \times 10^{-2}
```

Monte Carlo Simulation

```
Block[{data, trials = 10<sup>6</sup>},
data = f@@Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
Mean[data] ± StandardDeviation[data]] // QUCA

0.0357317792753673 ± 0.00212036

\[ \inc [0.033611; 0.037852] \]
\[ \alpha \quad (3.6 ± 0.2) \times 10<sup>-2</sup> = 3.6(2) \times 10<sup>-2</sup>
```