```
In [9]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import plotly.express as px
        try:
            df = pd.read_csv("owid-covid-data.csv")
            print("Data loaded successfully.\n")
        except FileNotFoundError:
            print("File not found. Please check the file path.")
            df = None
        if df is not None:
            print("Dataset columns:")
            print(df.columns)
            print("\nPreview of data:")
            print(df.head())
            countries = ['Tanzania', 'China', 'India']
            df = df[df['Country/Region'].isin(countries)]
            df['date'] = pd.to datetime(df['Date'])
            df.fillna(0, inplace=True)
            if 'Deaths' in df.columns and 'Confirmed' in df.columns:
                df['death_rate'] = df['Deaths'] / df['Confirmed']
                df['death_rate'] = df['death_rate'].replace([np.inf, -np.inf], 0)
            print("\nSummary Statistics:")
            numeric_columns = ['Confirmed', 'Deaths', 'Recovered', 'Active']
            existing_numeric_columns = [col for col in numeric_columns if col in df.columns
            if existing numeric columns:
                print(df[existing_numeric_columns].describe())
            print("\nMean values grouped by country:")
            existing_group_columns = [col for col in ['Confirmed', 'Deaths', 'Recovered'] i
            if existing_group_columns:
                print(df.groupby('Country/Region')[existing group columns].mean())
            if 'Confirmed' in df.columns:
                plt.figure(figsize=(12, 6))
                for country in countries:
                    country_data = df[df['Country/Region'] == country]
                    plt.title('Total COVID-19 Cases Over Time')
                plt.xlabel('Date')
                plt.ylabel('Total Cases')
                plt.legend()
                plt.tight_layout()
                plt.show()
            if 'Confirmed' in df.columns:
```

127.0.0.1:5500/output.html 1/8

```
plt.figure(figsize=(8, 6))
    total_cases_by_country = df.groupby('Country/Region')['Confirmed'].max()
    total_cases_by_country.plot(kind='bar', color=['skyblue', 'salmon', 'limegr
    plt.title('Max Total Cases by Country')
    plt.xlabel('Country')
    plt.ylabel('Total Cases')
    plt.tight layout()
    plt.show()
if 'Deaths' in df.columns:
    plt.figure(figsize=(12, 6))
    for country in countries:
        country_data = df[df['Country/Region'] == country]
        plt.title('Total COVID-19 Deaths Over Time')
    plt.xlabel('Date')
    plt.ylabel('Total Deaths')
    plt.legend()
    plt.tight_layout()
    plt.show()
if 'Confirmed' in df.columns:
    plt.figure(figsize=(12, 6))
    for country in countries:
        country_data = df[df['Country/Region'] == country]
        new_cases = country_data['Confirmed'].diff().fillna(0)
        plt.plot(country_data['date'], new_cases, label=country)
    plt.title('Daily New Cases Comparison')
    plt.xlabel('Date')
    plt.ylabel('New Cases')
    plt.legend()
    plt.tight_layout()
    plt.show()
if 'total_vaccinations' in df.columns:
    plt.figure(figsize=(12, 6))
    for country in countries:
        country_data = df[df['Country/Region'] == country]
        plt.plot(country_data['date'], country_data['total_vaccinations'], labe
    plt.title('Total Vaccinations Over Time')
    plt.xlabel('Date')
    plt.ylabel('Total Vaccinations')
    plt.legend()
    plt.tight layout()
    plt.show()
    if 'Population' in df.columns:
       latest = df.groupby('Country/Region').last()
       latest['vaccination_coverage'] = (latest['total_vaccinations'] / latest
        print("\nVaccination Coverage by Country:")
        print(latest[['total vaccinations', 'Population', 'vaccination coverage
available_columns = ['Confirmed', 'Deaths', 'Recovered', 'Active']
if 'total vaccinations' in df.columns:
    available_columns.append('total_vaccinations')
```

127.0.0.1:5500/output.html 2/8

```
existing_columns = [col for col in available_columns if col in df.columns]
if existing_columns and len(existing_columns) > 1:
    numeric_data = df[existing_columns].select_dtypes(include=[np.number])
    if not numeric data.empty and numeric data.shape[1] > 1:
        plt.figure(figsize=(10, 8))
        correlation_matrix = numeric_data.corr()
        sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', center=0)
        plt.title('Correlation Matrix of COVID-19 Metrics')
        plt.tight_layout()
        plt.show()
if 'Confirmed' in df.columns and 'Deaths' in df.columns:
    plt.figure(figsize=(10, 6))
    latest data = df.groupby('Country/Region').last()
    if 'Confirmed' in latest_data.columns and 'Deaths' in latest_data.columns:
        latest data['death rate'] = latest data['Deaths'] / latest data['Confir
        latest_data = latest_data.replace([np.inf, -np.inf], np.nan).dropna(sub
        if not latest data.empty:
            latest_data['death_rate'].plot(kind='bar', color=['skyblue', 'salmo
            plt.title('Death Rate by Country')
            plt.xlabel('Country')
            plt.ylabel('Death Rate')
            plt.tight_layout()
            plt.show()
print("\nSummary Insights:")
if 'Confirmed' in df.columns:
    max_cases_country = df.groupby('Country/Region')['Confirmed'].max().idxmax(
    max_cases_value = df.groupby('Country/Region')['Confirmed'].max().max()
    print(f"- {max_cases_country} reported the highest number of total cases ({
if 'Deaths' in df.columns:
    max_deaths_country = df.groupby('Country/Region')['Deaths'].max().idxmax()
    max_deaths_value = df.groupby('Country/Region')['Deaths'].max().max()
    print(f"- {max_deaths_country} reported the highest number of total deaths
if 'Recovered' in df.columns:
    max recovered country = df.groupby('Country/Region')['Recovered'].max().idx
    max_recovered_value = df.groupby('Country/Region')['Recovered'].max().max()
    print(f"- {max_recovered_country} reported the highest number of recoveries
if 'Active' in df.columns:
    latest active = df.groupby('Country/Region')['Active'].last()
    highest_active_country = latest_active.idxmax()
    print(f"- {highest active country} had the highest number of active cases."
if 'death rate' in df.columns:
    latest death rates = df.groupby('Country/Region')['death rate'].last()
    highest death rate country = latest death rates.idxmax()
    print(f"- {highest_death_rate_country} had the highest death rate among the
```

127.0.0.1:5500/output.html 3/8

Data loaded successfully.

```
Dataset columns:
```

Preview of data:

	Province/State	Country/Region	Lat	Long	Date	Confirmed	\
0	NaN	Afghanistan	33.93911	67.709953	2020-01-22	0	
1	NaN	Albania	41.15330	20.168300	2020-01-22	0	
2	NaN	Algeria	28.03390	1.659600	2020-01-22	0	
3	NaN	Andorra	42.50630	1.521800	2020-01-22	0	
4	NaN	Angola	-11.20270	17.873900	2020-01-22	0	

	Deaths	Recovered	Active	WHO Region
0	0	0	0	Eastern Mediterranean
1	0	0	0	Europe
2	0	0	0	Africa
3	0	0	0	Europe
4	0	0	0	Africa

Summary Statistics:

	Confirmed	Deaths	Recovered	Active
count	6.580000e+03	6580.000000	6580.000000	6580.000000
mean	8.368510e+03	271.463374	5359.774316	2737.271884
std	7.049068e+04	1904.332182	44037.300905	25209.917774
min	0.000000e+00	0.000000	0.000000	-6.000000
25%	1.250000e+02	0.000000	43.000000	0.000000
50%	2.560000e+02	2.000000	173.000000	5.000000
75%	7.920000e+02	6.000000	619.250000	67.000000
max	1.480073e+06	33408.000000	951166.000000	495499.000000

Mean values grouped by country:

Confirmed	Deaths	Recovered
2277.885558	108.383785	1848.302063
217465.234043	5913.994681	126509.148936
262.377660	10.558511	88.984043
	2277.885558 217465.234043	2277.885558 108.383785 217465.234043 5913.994681

127.0.0.1:5500/output.html 4/8

127.0.0.1:5500/output.html 5/8

127.0.0.1:5500/output.html 6/8

Summary Insights:

- India reported the highest number of total cases (1,480,073).
- India reported the highest number of total deaths (33,408).
- India reported the highest number of recoveries (951,166).
- India had the highest number of active cases.
- Tanzania had the highest death rate among the countries analyzed.

In []:

127.0.0.1:5500/output.html 8/8