

Outer integral $\int_{X=-\infty}^{\infty} \pi(\alpha^2-x^2) dx$ = Z [x2x - 1/3] ~ x = \(\pi \left[(\alpha^3 - \frac{1}{3} \alpha^3) - (-\alpha^3 + \frac{1}{3} \alpha^3) \right] = 1 [20 - 30] = 3/L x NB: That was computationally complicated If we use polar coordinates for integral, the region and height function are much simplier Roller = { (Y.0), 0 < Y < a, 0 < 0 < 12 } h(x/y) = 2 \(\a' - x' - y' \) h (rcos0, rsin0) = $2\sqrt{\alpha'} - (r'\cos^2\theta + r'\sin^2\theta) = 2\sqrt{\alpha'} - r'$ To consider the differential, consider a small rancongle. In the cartesian plane corresponds to a circular plane

Vol(5) =
$$\iint_{R_{cont}} h(x,y) dA_{cont}$$

= $\iint_{R_{polar}} h(y_{00}\theta, y_{5}n\theta) \cdot y dA_{polar}$
= $\int_{p=0}^{2\pi} f \alpha = 2\sqrt{\alpha^2 - r^2} \cdot r dr d\theta$
Inner Integral:
 $\int_{r=0}^{r=0} u^{\frac{1}{2}} du$
= $\int_{r=0}^{2\pi} u^{\frac{1}{2}} \int_{0}^{2\pi} du$
= $\left[-\frac{1}{3}(\alpha^2 - r^2)^{\frac{1}{2}}\right]_{0}^{2\pi}$
= $\frac{1}{3}(\alpha^2 - \alpha^2)^{\frac{3}{2}} - \left(-\frac{1}{3}(\alpha^2 - 0)^{\frac{1}{2}}\right)$
: $\frac{1}{3}\alpha^3$
Outer Integral:
 $\int_{0}^{2\pi} \frac{1}{3} d^3 d\theta$
= $\frac{1}{3}\alpha^3 \int_{0}^{2\pi} d\theta$
= $\frac{1}{3}\alpha^3 \int_{0}^{2\pi} d\theta$
= $\frac{1}{3}\alpha^3 \int_{0}^{2\pi} d\theta$
= $\frac{1}{3}\alpha^3 \int_{0}^{2\pi} d\theta$

Ex. comput					the	region
bourded	by x't	y*=1 ,	x7+1/= 9			
Sol: Turn	the integ	ral int	o polar	form		
Rodar =	{(Y.0);	15153	, 05052	7 }		
\$(x.y) =	sin (Vx	+1/2)	has polo	a for	h	
Across B. Y	6in 8) =	sin (Vi	icos'B trisi	10) =	Sin (r)
: STRONG Si	n (Vx24y) dA	urt			
= Sk polar	sin(r).	r dA goli	8L			
= \ \ \theta = 0 \ \ \tau \ \ \tau \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 V-Sin	ir) drd	Ð	u= r du= dr		= sin(r)
= 10 L- 200				au-ar		= - 605(V)
for I - vco.						
12n (-300	15(3) + 5in	(3)] - (-cos(1) t	sin(1)	de	
= (sin(3) -	534(1) -3	'ws[3]7	(as(1)).	ĽΘJ.	27.	
= 27t. (sink						
xercise: Co	impute.	Ma x	exp(-xt-yt)	1 dA	on l	2 the
disk	col ra	dius 3	about -	the D	gin.	