Lecture 5 - Normed spaces, Orthogonality

1 Short computations

Question 1 Show that for any $u, v \in \mathbb{R}^n$:

$$||u+v||_2^2 = ||u||_2^2 + 2\langle u,v\rangle + ||v||_2^2$$

where $\|\cdot\|_2$ is the Euclidean norm and $\langle\cdot,\cdot\rangle$ is the dot product.

Question 2 Show that for any $u, v \in \mathbb{R}^n$ and any matrix $A \in \mathbb{R}^{m \times n}$:

$$\langle u, Av \rangle = \langle A^T u, v \rangle.$$

Question 3 Let $V = \text{span}\{v\} \subset \mathbb{R}^2$ with $v = (1,1)^T$. Find the orthogonal complement V^{\perp} .

Question 1 — Solution.

$$||u+v||_2^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle.$$

In \mathbb{R}^n the dot product is symmetric, so $\langle u, v \rangle = \langle v, u \rangle$. Hence

$$||u+v||_2^2 = ||u||_2^2 + 2\langle u,v\rangle + ||v||_2^2.$$

Question 2 — Solution. Using matrix-vector notation for the Euclidean inner product,

$$\langle u, Av \rangle = u^{\top}(Av) = (u^{\top}A) v = (A^{\top}u)^{\top}v = \langle A^{\top}u, v \rangle.$$

Question 3 — Solution. By definition,

$$V^{\perp} = \{ w \in \mathbb{R}^2 : \langle w, v \rangle = 0 \} = \{ (x, y)^{\top} \in \mathbb{R}^2 : x + y = 0 \}.$$

Thus y = -x and every such vector is of the form $x(1,-1)^{\top}$. Therefore

$$V^{\perp} = \operatorname{span}\{(1, -1)^{\top}\}.$$

2 Short proofs

Question 4 Show that the dot product in \mathbb{R}^n satisfies the following properties:

- 1. Symmetry: $\langle x, y \rangle = \langle y, x \rangle$.
- 2. Homogeneity: $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$.
- 3. Linearity in the first argument: $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$
- 4. Linearity in the second argument: $\langle x, y+z \rangle = \langle x, y \rangle + \langle x, z \rangle$.

Solution.

For
$$x = (x_1, \ldots, x_n)$$
, $y = (y_1, \ldots, y_n)$, $z = (z_1, \ldots, z_n) \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$, define $\langle x, y \rangle := \sum_{i=1}^n x_i y_i$.

1. Symmetry.

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \langle y, x \rangle,$$

by commutativity of multiplication in \mathbb{R} .

2. Homogeneity (in the first argument).

$$\langle \lambda x, y \rangle = \sum_{i=1}^{n} (\lambda x_i) y_i = \sum_{i=1}^{n} \lambda(x_i y_i) = \lambda \sum_{i=1}^{n} x_i y_i = \lambda \langle x, y \rangle.$$

3. Linearity in the first argument.

$$\langle x+y, z\rangle = \sum_{i=1}^{n} (x_i + y_i)z_i = \sum_{i=1}^{n} x_i z_i + \sum_{i=1}^{n} y_i z_i = \langle x, z\rangle + \langle y, z\rangle.$$

4. Linearity in the second argument.

$$\langle x, y + z \rangle = \sum_{i=1}^{n} x_i (y_i + z_i) = \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} x_i z_i = \langle x, y \rangle + \langle x, z \rangle.$$

Question 5 Let F be a subspace of a finite-dimensional inner product space E. Show the following properties of the orthogonal complement on F:

- (i) F^{\perp} is a subspace of E.
- (ii) $F \cap F^{\perp} = {\vec{0}_E}.$
- (iii) $\dim(F) + \dim(F^{\perp}) = \dim(E)$.
- (iv) $(F^{\perp})^{\perp} = F$.

Question 5 – Solution.

We use the standard properties of the inner product shown in Question 4: linearity in the first argument, symmetry, and positive-definiteness.

(i) F^{\perp} is a subspace. By definition,

$$F^{\perp} := \{ x \in E : \ \langle x, f \rangle = 0 \ \forall f \in F \}.$$

First, $0 \in F^{\perp}$ since $\langle 0, f \rangle = 0$ for all $z \in F$.

If $x, y \in F^{\perp}$ and $\lambda \in \mathbb{K}$, then for all $z \in F$,

$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle = 0 + 0 = 0$$

and

$$\langle \lambda x, z \rangle = \lambda \langle x, z \rangle = \lambda \cdot 0 = 0.$$

Hence $x + y \in F^{\perp}$ and $\lambda x \in F^{\perp}$. Thus F^{\perp} is a subspace.

- (ii) $F \cap F^{\perp} = \{\vec{0}_E\}$. If $x \in F \cap F^{\perp}$, then $x \in F$ and $\langle x, z \rangle = 0$ for all $z \in F$. In particular, taking z = x (since $x \in F$) gives $\langle x, x \rangle = 0$. By positive-definiteness, this implies $x = \vec{0}_E$.
- (iii) $\dim(F) + \dim(F^{\perp}) = \dim(E)$. Let (e_1, \ldots, e_k) be an orthonormal basis of F. It can be extend it to an orthonormal basis $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ of E.

For j > k and any $f \in F$ we have $\langle e_j, f \rangle = 0$, so span $\{e_{k+1}, \dots, e_n\} \subseteq F^{\perp}$.

Conversely, if $x \in F^{\perp}$, for $1 \le i \le k$, we have : $\langle x, e_i \rangle = 0$

And writing $x = \sum_{i=1}^{n} \alpha_i e_i$ we get, for $1 \leq i \leq k$,

$$\langle x, e_i \rangle = \sum_{j=1}^n \alpha_j \langle e_j, e_i \rangle = \alpha_i,$$

so $\alpha_1 = \cdots = \alpha_k = 0$ and $x \in \operatorname{span}\{e_{k+1}, \ldots, e_n\}$. Hence $F^{\perp} = \operatorname{span}\{e_{k+1}, \ldots, e_n\}$ and $\dim(F^{\perp}) = n - k$. Therefore $\dim(F) + \dim(F^{\perp}) = k + (n - k) = n = \dim(E)$.

(iv) $(F^{\perp})^{\perp} = F$. We always have $F \subseteq (F^{\perp})^{\perp}$ by definition of orthogonal complement. By (iii),

$$\dim ((F^{\perp})^{\perp}) = \dim(E) - \dim(F^{\perp}) = \dim(F).$$

Thus a subspace $(F^{\perp})^{\perp}$ containing F has the same dimension as F, forcing equality: $(F^{\perp})^{\perp} = F$.

Question 6 Let F be a subspace of a finite-dimensional inner product space E. Let p_F be the orthogonal projection onto F. We remind Bessel inequality: for all $x \in E$,

$$||p_F(x)|| \le ||x||$$

with equality if and only if $x \in F$. Prove it.

Question 6 – Solution. Let $x \in E$. We can write

$$x = p_F(x) + (x - p_F(x))$$

with $p_F(x) \in F$ and $x - p_F(x) \in F^{\perp}$.

By the Pythagorean theorem, we have

$$||x||^2 = ||p_F(x)||^2 + ||x - p_F(x)||^2 \ge ||p_F(x)||^2$$

with equality if and only if $x - p_F(x) = 0$, i.e. $x \in F$.

Question 7. Let $p \in \mathcal{L}(E)$ a projector (i.e. $p \circ p = p$). Prove that the following propositions are equivalent:

- (i) p is an orthogonal projector onto F = range(p)
- (ii) For all $x, y \in E$, $\langle p(x), y p(y) \rangle = 0$
- (iii) For all $x, y \in E$, $\langle p(x), y \rangle = \langle x, p(y) \rangle$

Hint: from (i), prove first that $Ker(p) = F^{\perp}$

Question 7 – Solution.

Preliminaries. Since $p^2 = p$, we have for every $y \in E$

$$p(y - p(y)) = p(y) - p^{2}(y) = 0,$$

so $y - p(y) \in \text{Ker}(p)$. So in fact $\text{Ker}(p) = \{y - p(y), y \in E\}$, meaning that if p is a projector onto F = range(p), then $F \perp = \text{Ker}(p)$. And every $y \in E$ decomposes as

$$y = p(y) + (y - p(y)) \in \text{range}(p) \oplus \text{Ker}(p).$$

(i) \Rightarrow (ii). If p is the orthogonal projector onto F and Ker(p) = F^{\perp} , then for every $x, y \in E$ we have $p(x) \in F$ and $y - p(y) \in \text{Ker}(p) = F^{\perp}$, hence

$$\langle p(x), y - p(y) \rangle = 0.$$

(ii) \Rightarrow (i). First, we show $\operatorname{Ker}(p) \subset F^{\perp}$. If $z \in \operatorname{Ker}(p)$, then p(z) = 0, and by (ii),

$$\langle p(x), z \rangle = \langle p(x), z - p(z) \rangle = 0$$
 for all $x \in E$

Thus z is orthogonal to every element of $F = \operatorname{range}(p)$, hence $z \in F^{\perp}$ and $\operatorname{Ker}(p) \subset F^{\perp}$ Conversely, let $u \in F^{\perp}$. Using (ii) with y = u gives, for all $x \in E$,

$$\langle p(x), u \rangle = \langle p(x), p(u) \rangle.$$

Since $u \in F^{\perp}$, the left-hand side is 0 for all x, hence $\langle p(x), p(u) \rangle = 0$ for all x. Choosing x = p(u) yields

$$\langle p(u), p(u) \rangle = 0 \quad \Rightarrow \quad p(u) = 0,$$

so $u \in \text{Ker}(p)$. Therefore $F^{\perp} \subset \text{Ker}(p)$, and we conclude $\text{Ker}(p) = F^{\perp}$. Finally, for any $y \in E$ we have the decomposition

$$y = p(y) + (y - p(y)) \in F \oplus \operatorname{Ker}(p) = F \oplus F^{\perp},$$

and by (ii) with x = y we get orthogonality of y and y - p(y): $\langle p(y), y - p(y) \rangle = 0$. Thus p is the orthogonal projector onto F.

(iii) \Rightarrow (ii). For all $x, y \in E$,

$$\langle p(x), y - p(y) \rangle = \langle x, p(y - p(y)) \rangle = \langle x, p(y) - p^2(y) \rangle = \langle x, p(y) - p(y) \rangle = 0.$$

(ii) \Rightarrow (iii). From (ii) we get, for all $x, y \in E$,

$$\langle p(x), y \rangle = \langle p(x), p(y) \rangle.$$

Interchanging x and y in (ii) gives $\langle p(y), x-p(x)\rangle = 0$, hence (by symmetry of the inner product) $\langle x-p(x), p(y)\rangle = 0$, i.e.

$$\langle x, p(y) \rangle = \langle p(x), p(y) \rangle.$$

Combining the last two equalities yields $\langle p(x), y \rangle = \langle x, p(y) \rangle$.

Conclusion: We have shown $(i)\Leftrightarrow(ii)\Leftrightarrow(iii)$.

3 Exercises

Exercise 1. We denote $E = C([-1;1], \mathbb{R})$.

Show that the mapping $\varphi: E^2 \to \mathbb{R}$ defined, for every $(f,g) \in E^2$, by

$$\varphi(f,g) = \int_{-1}^{1} \sqrt{1-x^2} f(x) g(x) dx$$

is an inner product on E.

Exercise 1 – Solution.

First, for every $(f,g) \in E^2$, the function $x \mapsto \sqrt{1-x^2} f(x)g(x)$ is continuous on the segment [-1;1], hence the integral defining $\varphi(f,g)$ exists.

- Symmetry and linearity with respect to the first slot are immediate.
- For every $f \in E$:

$$\varphi(f, f) = \int_{-1}^{1} \sqrt{1 - x^2} \underbrace{(f(x))^2}_{>0} dx \ge 0.$$

• Let $f \in E$ such that $\varphi(f, f) = 0$, that is,

$$\int_{-1}^{1} \sqrt{1 - x^2} (f(x))^2 dx = 0.$$

Since the function $x \mapsto \sqrt{1-x^2} (f(x))^2$ is ≥ 0 and continuous on [-1;1], we deduce:

$$\forall x \in [-1; 1], \quad \sqrt{1 - x^2} (f(x))^2 = 0,$$

hence

$$\forall x \in]-1;1[, \quad f(x) = 0.$$

Because f is continuous at -1 and at 1, we get f(-1) = 0 and f(1) = 0, and therefore f = 0.

We conclude that φ is an inner product on E.

Exercise 2 – Use of the Cauchy–Schwarz Inequality.

Let $(E, \|\cdot\|)$ be a real normed vector space, $n \in \mathbb{N}^*$, $(x_1, \dots, x_n) \in E^n$, $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$. Show that

$$\left\| \sum_{i=1}^n \alpha_i x_i \right\|^2 \le \left(\sum_{i=1}^n \alpha_i^2 \right) \left(\sum_{i=1}^n \|x_i\|^2 \right).$$

Exercise 2 – Solution. Let $(E, \|\cdot\|)$ be a real normed vector space, $n \in \mathbb{N}^*$, $(x_1, \dots, x_n) \in E^n$, and $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$. By the triangle inequality and absolute homogeneity of the norm,

$$\left\| \sum_{i=1}^{n} \alpha_{i} x_{i} \right\| \leq \sum_{i=1}^{n} \|\alpha_{i} x_{i}\| = \sum_{i=1}^{n} |\alpha_{i}| \|x_{i}\|.$$

Now apply the Cauchy–Schwarz inequality in \mathbb{R}^n to the vectors $(|\alpha_1|, \ldots, |\alpha_n|)$ and $(||x_1||, \ldots, ||x_n||)$:

$$\sum_{i=1}^{n} |\alpha_i| \|x_i\| \leq \left(\sum_{i=1}^{n} \alpha_i^2\right)^{1/2} \left(\sum_{i=1}^{n} \|x_i\|^2\right)^{1/2}.$$

Combining the two displays and squaring both sides yields the desired inequality:

$$\left\| \sum_{i=1}^{n} \alpha_i x_i \right\|^2 \le \left(\sum_{i=1}^{n} \alpha_i^2 \right) \left(\sum_{i=1}^{n} \|x_i\|^2 \right),$$

.