Συνάρτηση sort

Η παρεχόμενη συνάρτηση ταξινόμησης υλοποιεί μια παραλλαγή του αλγορίθμου ταξινόμησης εισαγωγής.

```
Αρχικός βρόχος σύγκρισης: 
για (int i = l+1; i <= r; i++) { 
 αν (a[i] < a[l]) { 
    Στοιχείο t = a[i]; 
    a[i] = a[l]; 
    a[l] = t; 
 }
```

Αυτός ο βρόχος εκτείνεται από το 1+1 έως το r και συγκρίνει κάθε στοιχείο με το πρώτο στοιχείο (a[1]). Εάν κάποιο στοιχείο είναι μικρότερο από το πρώτο στοιχείο, ανταλλάσσονται. Αυτός ο βρόχος διασφαλίζει ότι το μικρότερο στοιχείο στο τμήμα πίνακα [1, r] μετακινείται στη θέση 1. Ο βρόχος εκτελείται για επαναλήψεις r-1, που είναι O(n) όπου n είναι ο αριθμός των στοιχείων στο τμήμα.

```
Βρόχος ταξινόμησης εισαγωγής: 
για (int i = 1+2; i <= r; i++) { int j = i; 
 Στοιχείο v = a[i]; 
 ενώ (v < a[j-1]) { 
 a[j] = a[j-1]; 
 j--; 
 } 
 a[j] = v; }
```

Αυτός είναι ο κύριος βρόχος της ταξινόμησης εισαγωγής, ξεκινώντας από το 1+2. Για κάθε στοιχείο, βρίσκει τη σωστή θέση συγκρίνοντάς το προς τα πίσω μέχρι να φτάσει στην αρχή του πίνακα ή να βρει ένα στοιχείο μικρότερο από το ίδιο. Το χειρότερο σενάριο συμβαίνει όταν ο πίνακας βρίσκεται σε αντίστροφη σειρά, με αποτέλεσμα κάθε στοιχείο να συγκρίνεται δυνητικά με όλα τα προηγούμενα στοιχεία. Ο αριθμός των συγκρίσεων και των μετατοπίσεων στη χειρότερη περίπτωση είναι περίπου n(n-1)/2 (όπου n είναι ο συνολικός αριθμός των στοιχείων), κάνοντας αυτόν τον βρόχο $O(n^2)$ στη χειρότερη περίπτωση.

Συνάρτηση υπολογιστικής πολυπλοκότητας ταξινόμησης: Δεδομένων των παραπάνω βρόχων, ο πρώτος βρόχος εκτελείται σε χρόνο O(n), αλλά ο δεύτερος βρόχος, ο οποίος κυριαρχεί, εκτελείται σε χρόνο O(n^2) στη χειρότερη περίπτωση. Επομένως, η χρονική πολυπλοκότητα στη χειρότερη περίπτωση της συνάρτησης ταξινόμησης είναι O(n^2).

Συνάρτηση main

Η πολυπλοκότητα της συνάρτησης main περιλαμβάνει:

Δημιουργία τυχαίων αριθμών και συμπλήρωση του πίνακα:

```
y \in \alpha (int i = 0; i < N; i++)
```

a[i] = 1000*(1,0*rand()/RAND MAX); // [0, 1000]

Αυτός ο βρόχος εκτελείται N φορές, και κάθε λειτουργία μέσα σε αυτόν (δημιουργώντας έναν τυχαίο αριθμό και εκχωρώντας τον) είναι O(1). Επομένως, αυτό το τμήμα είναι O(N).

Ταξινόμηση:

Η συνάρτηση ταξινόμησης καλείται μία φορά, και όπως αναλύθηκε παραπάνω, εκτελείται σε Ο(n^2) στη χειρότερη περίπτωση.

Εκτύπωση του πίνακα (δύο φορές):

Κάθε λειτουργία εκτύπωσης εκτελείται N φορές (μία πριν από την ταξινόμηση και μία μετά), κάθε εκτύπωση είναι μια λειτουργία O(1). Έτσι, κάθε βρόχος για εκτύπωση είναι O(N), και αν το κάνετε δύο φορές το κάνει 2*O(N) = O(N).

Υπολογιστική πολυπλοκότητα της συνάρτησης main: Συνδυάζοντας τις πολυπλοκότητες, παίρνουμε:

Αρχικός πληθυσμός: Ο(N) Ταξινόμηση: Ο(n^2)

Εκτύπωση: Ο(Ν)

Ο κυρίαρχος παράγοντας εδώ είναι η λειτουργία ταξινόμησης, η οποία είναι $O(n^2)$. Έτσι, η συνολική χρονική πολυπλοκότητα στη χειρότερη περίπτωση της κύριας συνάρτησης είναι $O(n^2)$, που υπαγορεύεται κυρίως από τη λειτουργία ταξινόμησης.

Τόσο η συνάρτηση ταξινόμησης όσο και η κύρια συνάρτηση παρουσιάζουν μια χρονική πολυπλοκότητα στη χειρότερη περίπτωση Ο(n^2), όπου η είναι ο αριθμός των στοιχείων που ταξινομούνται. Η πολυπλοκότητα της κύριας συνάρτησης επηρεάζεται ιδιαίτερα από τη λειτουργία ταξινόμησης, παρόλο που άλλες λειτουργίες (όπως η δημιουργία αριθμών και η εκτύπωση) έχουν γραμμική πολυπλοκότητα.