Opće stvari:

Zbrajanje točaka na eliptičkoj krivulii:

$$E: y^2 = x^3 + ax + b$$

Neka je $P=(x_1,x_2), Q=(y_1,y_2)$ onda je:

$$-\mathcal{O} = \mathcal{O}$$

$$-P = (x_1, -y_1)$$

$$\mathcal{O} + P = P$$

$$P + (-P) = \mathcal{O}$$

Za $Q \neq -P$, onda je $P + Q = (x_3, y_3)$ gdje je:

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = -y_1 + \lambda(x_1 - x_3)$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } x_2 \neq x_1\\ \frac{3x_1 + a}{2y_1} & \text{if } x_2 = x_1 \end{cases}$$

Formula za računanje reda grupe $E(\mathbb{F}_p)$ gdje je $E: y^2 = x^3 + ax + b$:

$$|E(\mathbb{F}_p)| = p + 1 +$$

$$\sum_{x \in F_p} \left(\frac{x^3 + ax + b}{p} \right)$$

Legendreov simbol: $\left(\frac{x^3+ax+b}{p}\right)$ se računa prema:

Neka je p neparan prost broj, $\left(\frac{a}{p}\right)$ je jednak 1 ako je a kvadratni ostatak modulo p, -1 ako je a kvadratni neostatak modulo p, a 0 ako p|a.

Prema Eulerovom kriteriju vrijedi:

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

Ako kongruencija $x^2 \equiv a \pmod m$ ima rješenja, kažemo da je a kvadratni ostatak modulo m, u protivnom kažemo

Odredivanje reda i generatora grupe $E(\mathbb{F}_p)$ gdje je $E: y^2 = f(x)$. Pogledamo za koje $x_0 \in \mathbb{F}_p$ dana jdba ima rješenja i koja su to (za y možemo dobiti više riješenja jer riješavamo $y^2 \equiv \alpha \, (mod \, p)$) Označimo ih s $(x_1, y_1), (x_2, y_2), ..., (x_l, y_l)$ gdje se može dogoditi $x_i = x_j$, za $i \neq j$. Red grupe $|E(\mathbb{F}_p)| = |\{(x_1, y_1), ..., (x_l, y_l), \mathcal{O}\}| = l + 1$. Uzmemo neku točku Q iz $E(\mathbb{F}_p)$, i pogledamo vrijedi li da je ta točka generator grupe, odnosno, vrijedi li da je $\forall P \in E(\mathbb{F}_p)$ postoji $l \in 1, ..., l$ takav da je

$$[l]Q = \underbrace{Q + Q + \dots + Q}_{l} = P$$

da je a kvadratni neostatak modulo m. Kažemo da je a kvadratno slobodan ako je 1 najveći kvadrat koji dijei a.

Prva DZ: 1) Neka je $E: y^2 = x^3 + ax + b$ eliptička krivulja kojoj trebamo odrediti sve proste brojeve u kojima ima lošu redukciju te njen minimalni model. Najprije izračunamo diskriminantu te rastavimo ju na proste faktore:

$$\Delta = -16(4a^3 + 27b^2) \tag{1}$$

$$= p_0^{\alpha_0} \dots p_k^{\alpha_k} \tag{2}$$

E ima dobru redukciju svugdje osim u $p_0,...,p_k$, ta se redukcija da popraviti ako postoji $j \in \{0,...,k\}$ takvi da $12|\alpha_j$. Ukoliko ne postoji takav j loša redukcija se neće moći ukloniti, ipak ako postoji l td $\alpha_l \geq 12$ i $p_l \neq 2,3$ možemo doći do minimalnog modela $E': y'^2 = x'^3 + a'x' + b'$ uvodeći supstituciju: $x = p_l^2 x'$ i $y = p_l^3 y'$. Za određivanje tipa redukcije tražimo $x_1, x_2, x_3 \in \mathbb{F}_{p_l}$ takav da je

$$f(x) = x^3 + a'x + b' \equiv 0 \pmod{p_l}$$

U slučaju da se radi o trostukom korijenu radi se o aditivnoj redukciji, inače je redukcija multiplikativna i jedan je korijen dvostruki $(x_1=x_2 \text{ ili } x_2=x_3)$. Zapišemo $f_1(x)=(x-x_1)^2(x-x_3)$ te $f_2(x)=(x-x_1)(x-x_3)^2$ i pogledamo koja se od f_1 ili f_2 poklapa $x\in\mathbb{F}_{p_l}$ sa f. Pretpostavimo da je to f_1 , uvodi se supstitucija $x'=x''+x_1$ i y'=y'' te uvrstimo to u minimalan model iz čega dobivamo novu eliptičku krivulju $E'':y^2(x)=g(x)$, a za pripadnu funkciju g(x) vrijedi: $g(x)=x^2(x-x_3+x_1)$. Ako jednadžba $\alpha^2=-x_3+x_1$ ima rješenje u \mathbb{F}_{p_l} tangente u singularnoj

Traženje torzijske grupe $E(\mathbb{Q})_{tors}$. Računamo $\Delta_0 = 4a^3 + 27b^2 = p_0^{\alpha_0}...p_l^{\alpha_l}$. Sada za proste brojeve $q \notin \{p_0,...,p_l\}$ promatramo $|E(\mathbb{F}_q|$ (obično se gleda do prvog prostog broja većeg od p_l . Neka su to $q_0,...,q_k$. Promatramo

$$nzd(\{E(\mathbb{F}_q): q \in \{q_0,...,q_k\}\})$$

. Pretpostavi se da je to red grupe (to služi kao svojevrsna provjera). $y^2|\Delta_0$ pa gledamo zapravo p_j takve da $\alpha_j \geq 2$. Promatramo polinome $f(x) = x^3 + ax +$

točki $(x_1,0)$ imaju koeficijente smjera koji su riješenja jednadžbe $\alpha^2=-x_3+x_1$ pa govorimo o podijeljenoj multiplikativnoj redukciji u $p=p_l$, inaće govorimo o nepodijeljenoj multiplikativnoj redukciji. **Dvije eliptičke krivulje su ekvivalnetne** nad algebarski zatvorenim poljem akko im se j-invarijante poklapaju. $\mathbb Q$ nije algebarski zatvoreno pa je potrebno vidjeti je li za supstituciju $(x,y) \to (u^2x,u^3y)$ $u \in \mathbb Q$.

Druga DZ: Singularnost krivulje i supstitucije $E': y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$. Uvode se supstitucije: $b_2 = a_1^2 + 4a_2$, $b_4 = a_1a_3 + 2a_4$, $b_6 = a_3^2 + 4a_6$, $b_8 = \frac{1}{4}(b_2b_6 - b_4^2)$, $E': y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6$, zatim se dalje uvode supstitucije: $c_4 = b_2^2 - 24b_4$ i $c_6 = -b_2^3 + 36b_2b_4 - 216b_6$ te se dobiva krivulja: $E: y^2 = x^3 - 27c_4x - 54c_6$. Gledamo diskriminantu:

$$\Delta = \frac{c_4^3 - c_6^2}{1728}$$

Vrijedi: $\Delta = 0$ akko krivulja singularna

$$f(x,y) = x^3 + a_2x^2 + a_4x + a_6$$
$$-(y^2 + a_1xy + a_3y)$$

Točka (x_0,y_0) je singularna akko $\partial_x f(x_0,y_0) = \partial_y f(x_0,y_0) = 0$. Provjeravamo je li (x_0,y_0) zadovoljava jdbu krivulje, ako da uvodimo supstituciju $t = \frac{y-y_0}{x-x_0}$, odnosno

$$y = t(x - x_0) + y_0 \tag{3}$$

(nadajmo se da je $y_0=0$). Umjesto y u f(x,y)=0 uvrstimo $t(x-x_0)+y_0$. Iz te jednadžbe dobijemo sređivanjem izraza (gdje je x^3 mi stavimo $((x-x_0)+x_0)^3)$ $x-x_0=g(t)$ i umjesto $x-x_0$ u 3 ubacimo g(t) i dobijemo $y=tg(t)+y_0$. Pa je racionalna parametrizacija krivulje dana sa $\phi(t)=(g(t),tg(t)+y_0)$.

 $b-y_0^2$ gdje

$$y_0 \in \left\{ d: d | \prod_{\substack{j=0 \\ \alpha_j \ge 2}}^l p_j^{\alpha_j} \right\}$$

i gledamo postoje li njegove cjelobrojne nultočke. Neka je y_0 neki fiksan iz gornjeg skupa takav da je x_0 neka cjelobrojna nultočka polinoma f(x). Tada je $P=(x_0,y_0)$ generator od $E(\mathbb{Q})_{tors}$, a red te grupe je $m\in\mathbb{N}$ takav da $[m]P=\mathcal{O}$, a $E(\mathbb{Q})_{tors}\cong\mathbb{Z}_m$ gdje je onda $m\in\{1,2,3,4,5,6,7,8,9,10,12\}$ ili $E(\mathbb{Q})_{tors}\cong\mathbb{Z}_2\times\mathbb{Z}_{\frac{m}{2}}$ gdje je onda $m\in\{4,8,12,16\}$.

Opći oblik jednadžbi krivulja sa torzijskim grupama:

 $\mathbb{Z}_2 \times \mathbb{Z}_4$:

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma),$$

 $\alpha, \beta, \gamma \in \mathbb{Q}$

 $\mathbb{Z}_2 \times \mathbb{Z}_4$:

$$y^2 = x(x+r^2)(x+s^2), r, s \in \mathbb{Q}$$

Za $\mathbb{Z}_2 \times \mathbb{Z}_8$:

$$y^2=x(x+r^2)(x+s^2),\,r,s\in\mathbb{Q}$$

gdje su rs, r(r+s), s(r+s) kvadrati racionalnih brojeva. $\mathbb{Z}_2 \times \mathbb{Z}_4$:

$$y^2=(x+r^2)(x+s^2)\left(x+\frac{r^2s^2}{(r-s)^2}\right),\quad \text{ima riješenja gdje:}$$

 $r, s \in \mathbb{Q}$

Rang krivulje

$$E: y^2 = x^3 + ax^2 + bx$$

Uvjet nesingularnosti: $\Delta = 16b^2(a^2 4b) \neq 0$. Njoj pripadna 2-izogena krivulja ima jednadžbu:

$$E': y^2 = x^3 - 2ax^2 + (a^2 - 4b)x$$
$$= x^3 + a'x^2 + b'x$$

Za računanje ranga krivulje E promatramo odgovarajuća preslikavanja α i β te određujemo $|Im(\alpha)|$ i $|Im(\beta)|$. Za $|Im(\alpha)|$ tražimo (M,e,N) takve da

$$b_1 M^4 + a M^2 e^2 + b_2 e^4 = N^2$$

•
$$b_1b_2 = b$$

•
$$(M, e) = 1$$

Pripadne jednadžbe uvijek promatramo u parovima jer je jednadžba simetrična. Dakle riješenja za (b_1, b_2) su simetrična riješenjima za (b_2, b_1) (onda riješenje (b_1, b_2) brojimo 2 puta, a ovo drugo uopće ne promatramo). Broj takvih (M, e, N) gdje pripadna jednadžba ima riješenja je $|Im(\alpha)|$. Analogan postupak je za b_1', b_2' gdje vrijede isti uvjeti, a broj rješenja pripadnih jednadžbi je $|Im(\beta)|$. U konačnici vrijedi da je

$$2^{rank(E)=\frac{|Im(\alpha)||Im(\beta)|}{4}}$$

Shanks-Mestreova metoda):

$$\begin{split} m &= \lceil 2p^{1/4} \rceil \\ P &\in E(\mathbb{F}_p), \, |P| > 4\sqrt{p} \\ Q &= [p+1+\lfloor 2\sqrt{p} \rfloor] P \\ \text{for } j &= 0 \text{ to } m-1 \\ \text{izračunaj i spremi } [j] P \\ \text{for } i &= 0 \text{ to } m-1 \\ \text{if } (Q-[i]([m]P) &= [j]P \text{ za neki } 0 \leq j \leq m-1) \text{ then } \\ t &= im+j-\lfloor 2\sqrt{p} \rfloor \end{split}$$

$E(F_p)=p+1-t$

Binarne ljestve s predznakom (aditivna verzija):

$$\begin{split} Q &= P \\ \text{for } i &= d-1 \text{ to } 0 \text{ by } -1 \\ Q &= 2Q \\ \text{if } (m_i = 1) \text{ then } Q = Q + P \\ \text{if } (m_i = -1) \text{ then } Q = Q - P \end{split}$$

Menezes-Vanstoneov kriptosustav: Neka je E eliptička krivulja nad \mathbb{F}_p (p>3 prost), te H ciklička podgrupa od E generirana s α . Neka je $\mathcal{P}=\mathbb{F}_p^*\times\mathbb{F}_p^*$, $\mathcal{C}=E\times\mathbb{F}_p^*\times\mathbb{F}_p^*$ i $\mathcal{K}=\{(E,\alpha,a,\beta):\beta=a\alpha\},$ gdje $a\alpha$ označava $\alpha+\alpha+\cdots+\alpha$ (a puta), a + je zbrajanje točaka na eliptičkoj krivulji. Vrijednosti E, α , β su javne, a vrijednost a je tajna. Za $K\in\mathcal{K}$ i tajni slučajni broj $k\in\{0,1,\ldots,|H|-1\}$, te za $x=(x_1,x_2)\in\mathbb{F}_p^*\times\mathbb{F}_p^*$ definiramo $e_K(x,k)=(y_0,y_1,y_2),$ gdje je $y_0=k\alpha$, $(c_1,c_2)=k\beta$, $y_1=c_1x_1$ mod p, $y_2=c_2x_2$ mod p. Za šifrat $y=(y_0,y_1,y_2)$ definiramo $d_K(y)=(y_1(c_1)^{-1} \bmod p,\ y_2(c_2)^{-1} \bmod p),$ gdje je $ay_0=(c_1,c_2)$. Menezes-Vanstoneov kriptosustav: Neka je E eliptička krivulja

$$\mathcal{K} = \{ (E, \alpha, a, \beta) : \beta = a\alpha \}$$

$$e_K(x,k) = (y_0, y_1, y_2),$$

$$d_K(y) = (y_1(c_1)^{-1} \bmod p, y_2(c_2)^{-1} \bmod p)$$

gdje je $ay_0 = (c_1, c_2)$.

Dakle, imamo sljedeća dva algoritma za računanje Q=mP, gdje je m= $(m_d, \ldots, m_0)_2$.

Binarne ljestve (s desna na lijevo):

$$\begin{array}{l} Q=\mathcal{O};\,R=P\\ \text{for }i=0\text{ to }d-1\\ \text{ if }(m_i=1)\text{ then }Q=Q+R\\ R=2R\\ Q=Q+R \end{array}$$

Binarne ljestve (s lijeva na desno):

$$\begin{split} Q &= P \\ \text{for } i &= d-1 \text{ to } 0 \text{ by } -1 \\ Q &= 2Q \\ \text{if } (m_i = 1) \text{ then } Q = Q + P \end{split}$$

Sljedeći algoritam iz poznatog binarnog zapisa $(n_{d-1},\dots,n_0)_2$ broja nračuna njegov NAF prikaz (s_d,\ldots,s_0) .

Algoritam za NAF prikaz

$$\begin{aligned} c_0 &= 0 \\ \text{for } i &= 0 \text{ to } d \\ c_{i+1} &= \left\lfloor (n_i + n_{i+1} + c_i)/2 \right\rfloor \\ s_i &= n_i + c_i - 2c_{i+1} \end{aligned}$$

aktor (nadamo se netrivijalni) od n. No, pitanje je kako naći višekratnik od p-1 ima samo male proste faktore. Za prirodan broj kažemo da je B-glada ako su mu svi prosti faktori $\leq B$. Pretpostavimo dodatno da su sve potencij orizacije. Njezino polazište je ponovno Mali Fermatov teorem. Neka za svaki višekratnik m od p-1. Ako nađemo m, onda nam $\operatorname{nzd}(a^m-1,n)$ -1 kad ne znamo p.To možemo efikasno napraviti u slučaju kada \pmod{p} za $\operatorname{nzd}(a,p)=1$. Štoviše, vrijedi $a^m\equiv 1$ operacija za računanje $a^m \mod n$ je $O(B \ln B \ln^2)$