平成27年度

大学院博士前期課程(修士)一般入学試験問題

熱力学

注意事項

- 1. 解答始めの合図があるまで、中の頁を見てはいけません.
- 2. 問題用紙が2枚、解答用紙が3枚、草案用紙が1枚あります.
- 3. 解答始めの合図があったら、全ての用紙を見て枚数を確認して下さい。また、全ての解答用紙及び草案用紙に、受験番号、氏名を記入して下さい。
- 4. 解答は、それぞれの問題の解答用紙に記入して下さい、他の問題の解答を記入しても採点の対象となりません。
- 5. 解答欄が足りないときは、同じ問題の解答用紙の裏に記入して下さい。 裏に解答を記入するときは、表の頁に裏に解答を記入していることを明記して下さい.

岡山大学大学院自然科学研究科(工学系) 機械システム工学専攻(機械系)

熱力学

【1】質量 m のある理想気体が、状態 1 から外部に熱を放出しながら等温変化し、状態 2 となる. 次に、状態 2 から状態 3 まで、外部から熱を供給されて等容変化する. その後、可逆断熱変化をして状態 1 に戻る. 以下の問いに答えよ.

ただし、比熱比 κ 、定容比熱 c_v 、ガス定数Rとする。また、状態iにおける状態量は添字iを付けて表し、例えば、状態1における圧力は P_i とする。

- (1) *P-V* (圧力-容積) 線図および *T-S* (温度-エントロピー) 線図を描け. ただし, 状態 1, 2, 3 を明示すること.
- (2) このサイクル中に,系に供給される熱量および系から放出される熱量を求めよ.
- (3) このサイクルの熱効率を、T、P、 κ を用いて表せ、
- (4) 上述のサイクルにおいて, T_1 =400K, T_3 =800K として熱効率を計算せよ. ただし, κ =1.40, $\log_e 2$ =0.69 とする.
- 【2】高温熱源(絶対温度 T_H (K)) と低温熱源(絶対温度 T_L (K)) を利用する熱機関がある. 両熱源は非常に大きく温度を一定とする. 以下の問いに答えよ.
 - (1) 高温熱源から受けた熱量を Q_H (kJ) として得られる最大仕事 W_{lmax} (kJ) を求めよ.
 - (2) 最大熱効率を求めよ.
 - (3) 温度上昇が ΔT (K) で出て行く冷却水を低温熱源とする. 最大出力が $W_{2\text{max}}$ (kW) のとき,この低温熱源の冷却水流量 M (kg/s) を求めよ. ただし、水の定圧比熱を c_{p} (kJ/(kg·K))とする.

熱力学

- 【3】圧力1MPa,0℃の圧縮水を等圧のもとで500℃まで加熱するとき,表1,2を用いて以下の値を求めよ.
 - (1) 液体熱
 - (2) 圧縮水の平均比熱
 - (3) 蒸発熱
 - (4) 加熱後の蒸気の過熱度
 - (5) 過熱熱
 - (6) 過熱蒸気の平均比熱

表1 水の圧縮液・過熱蒸気表(抜粋)

圧力 1 MPa

温度	比容積 υ	比エンタルピー h	比エントロピー s	
(℃)	(m³/kg)	(kJ/kg)	(kJ/(kg ⋅K))	
0	0.0009997	0.975	-0.000088	
500	0.3540	3478.3	7.7627	

表 2 水の圧力基準飽和蒸気表(抜粋)

	圧力	飽和温度	比容積		比エンタルピー		比エントロピー				
	(MPa)	(℃)	(m³/kg)		(kJ/kg)		(kJ/(kg·K))				
			v'×10³	υ"	h'	h"	s'	s**			
	1	179.88	1.12737	0.194293	762.605	2776.2	2.13817	6.58281			