Final de Lógica 2008

- 1. V o F, justifique.
 - (a) Sea (Σ, τ) una teoría consistente, y sea $\varphi = \forall x, y \ (x \equiv y)$. Entonces $[\varphi]$ es un átomo del álgebra de Lindenbaum $\mathcal{A}_{(\Sigma,\tau)}$.
 - (b) Sea A una τ -álgebra y sean B y C subuniversos de A. Entonces $B \cap C$ es subuniverso de A.
 - (c) El poset $(\mathcal{P}(\{a,b,c\}) \{\{a,b\}\},\subseteq)$ es un reticulado distributivo.
 - (d) Sean A una τ -álgebra, θ una congruencia de A y φ una sentencia de tipo τ . Si $A \models \varphi$ entonces $A/\theta \models \varphi$.
- 2. Sea τ el tipo de las álgebras de Boole, y sea B la τ -álgebra $(\mathcal{P}(\{a,b,c\}),\cap,\cup,^c,\emptyset,\{a,b,c\})$. Para cada elemento de B decida si es definible o no. Justifique.
- 3. Sean A y B τ -álgebras, y supongamos $b \in B$ es tal que $\{b\}$ es subuniverso de B. Sean p = p(x, y), q = q(x, y), s = s(x, y), t = t(x, y)términes de tipo τ . Pruebe que si $A \times B \models \forall x, y \ (p \equiv q \rightarrow t \equiv s)$, entonces $A \models \forall x, y \ (p \equiv q \rightarrow t \equiv s)$. ¿Es cierto esto si removemos la hipótesis de que B tiene un subuniverso de un elemento?
- 4. Sea $\tau = (\{c\}, \{+^2, f^2\}, \emptyset, a)$ y sea Σ el conjunto formado por las siguientes sentencias

$$\exists x, y \ (c \equiv x + y)$$

$$\forall x, y, z \ (f(x + y, z) \equiv f(x, z) + f(y, z))$$

$$\forall x \exists z \ (x \equiv f(c, z))$$

De una prueba formal que atestigüe que

$$(\Sigma, \tau) \vdash \forall x \exists z, w \ (x \equiv z + w).$$

1