

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»				
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»			

Отчет по лабораторной работе №15 по курсу "Функциональное и логическое программирование"

Тема Формирование эффективных программ на Prolog
Студент _ Цветков И.А.
Группа _ <u>ИУ7-63Б</u>
Оценка (баллы)
Преподаватели Толпинская Н. Б., Строганов Ю. В.

1 Практические задания

Условие: В одной программе написать правила, позволяющие найти

- 1. Максимум из двух чисел
 - (а) Без использования отсечения.
 - (b) С использованием отсечения.
- 2. Максимум из трех чисел
 - (а) Без использования отсечения.
 - (b) С использованием отсечения.

Убедиться в правильности результатов. Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов вопроса и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

Листинг программы

```
PREDICATES
2
       maxOf2(real, real, real).
3
       maxOf2WithCut(real, real, real).
 4
       maxOf3(real, real, real, real).
5
       maxOf3WithCut(real, real, real, real).
6
7
8 CLAUSES
9
       maxOf2(A, B, A) :- A >= B.
       maxOf2(A, B, B) :- A < B.
10
       maxOf2WithCut(A, B, A) :- A >= B, !.
11
12
       maxOf2WithCut(, B, B).
13
14
       \max Of3(A, B, C, A) :- A >= B, A >= C.
       \max Of3(A, B, C, B) :- B >= A, B >= C.
15
       maxOf3(A, B, C, C) :- C >= A, C >= B.
16
17
       maxOf3WithCut(A, B, C, A) :- A >= B, A >= C, !.
       maxOf3WithCut( , B, C, B) :- B >= C, !.
18
       maxOf3WithCut(\_, \_, C, C).
19
20
```

```
21 GOAL
22
      % maxOf2(10, 1, Max). % 10
      % maxOf2(1, 10, Max). % 10
23
24
      % maxOf2WithCut(10, 1, Max). % 10
25
      % maxOf2WithCut(1, 10, Max). % 10
26
27
      % maxOf3(10, 5, 1, Max). % 10
28
29
      % maxOf3(5, 10, 1, Max). % 10
30
31
      % maxOf3WithCut(10, 5, 1, Max). % 10
       maxOf3WithCut(5, 10, 1, Max). % 10
32
```

Обоснование

Максимум из 3 в случае без отсечения: условия в первом правиле необоходимы для определения, что первое переданное число больше или равно второго числа и больше или равно третьего числа (аналогично остальные два правила).

Максимум из 3 в случае с отсечением:

- условие первого правила для определения, что первое переданное число больше или равно вторму, третьему числу
 - если условие выполняется, то прохода дальше не будет, прменяется системный предикат отсечения;
 - если условие не выполняется, то первое число точно меньше второго или третьего чисел;
- условие второго правила (если не выполнилось первое) определяется только больше или равно второе число третьему
 - если условие выполняется, то прохода дальше не будет, прменяется системный предикат отсечения;
 - если условие не выполняется, то третье число наибольшее из трех чисел.

Выполнение заданий

Таблицы приложены в конце отчета

Таблица к заданию

Вопрос: *maxOf3(10, 5, 1, Max)*

№ шага	Сравнение термы, результат, подстановка, если есть	Дальнейшие действия, прямой ход или откат (к чему приводит?)
0		Состояние резольвенты: maxOf3(10, 5, 1, Max)
1	Сравнение: maxOf3(10, 5, 1, Max) == maxOf2(A, B, A). Унификация: неуспешна (несовпадение функторов)	Прямой ход Переход к следующему предложению
2-4		
5	Сравнение: $maxOf3(10, 5, 1, Max) == maxOf3(A, B, C, A)$ Унификация: успешна Подстановка: $\{A = 10, B = 5, C = 1, A = Max\}$	Образование новой резольвенты: 1. Редукция верхней подцели: замена <i>maxOf3(10, 5, 1, Max)</i> телом найденного правила Получена конъюнкция целей: <i>A</i> >= <i>B, A</i> >= <i>C</i> 2. Применение подстановки к полученной ком полученной
		конъюнкции целей. Новое состояние резольвенты: 10 >= 5, 10 >= 1
6	Сравнение: 10 >= 5 Результат: истина	Образование новой резольвенты: 1. Редукция верхней подцели: замена 10 >= 5, так как результат – истина Получена конъюнкция целей: 10 >= 1 2. Применение подстановки к полученной конъюнкции целей. Новое состояние резольвенты: 10 >= 1
7	Сравнение: 10 >= 1 Результат: истина	Образование новой резольвенты: 1. Редукция верхней подцели: замена 10 >= 1, так как результат – истина 2. Применение подстановки к полученной конъюнкции целей. Новое состояние резольвенты: пуста Решение найдено: формирование подстановки в качестве побочного эффекта: {Мах = 10}

	Система должна найти все возможные ответы
	Обратная трассировка: 1) Отмена крайней редукции (на шаге 7)
	2) Восстановление предыдущего состояния резольвенты (с шага 5): maxOf3(10, 5, 1, Max)
	3) Реконкретизация переменных с шага 7: {Max = 10}
	Переход к следующему предложению относительно шага 5
15	Конец Б3 Обратная трассировка: 1) Отмена крайней редукции (на шаге 0)
	2) Восстановление предыдущего состояния резольвенты: резольвента пуста
	Завершение работы На вопрос удалось ответить утвердительно 1 подстановка были возвращены в качестве побочного эффекта

Вопрос: maxOf3WithCut(10, 5, 1, Max)

Сравнение термы, результат, подстановка, если есть	Дальнейшие действия, прямой ход или откат (к чему приводит?)
	Состояние резольвенты: maxOf3WithCut(10, 5, 1, Max)
Сравнение: maxOf3WithCut(10, 5, 1, Max) == maxOf2(A, B, A). Унификация: неуспешна (несовпадение функторов)	Прямой ход Переход к следующему предложению
Сравнение: maxOf3WithCut(10, 5, 1, Max) == maxOf3WithCut(A, B, C, A) Унификация: успешна Подстановка: {A = 10, B = 5, C = 1, A = Max}	Образование новой резольвенты: 1. Редукция верхней подцели: замена maxOf3WithCut(10, 5, 1, Max) телом найденного правила Получена конъюнкция целей: A >= B, A >= C, ! 2. Применение подстановки к полученной конъюнкции целей.
	Сравнение:

		10 >= 5, 10 >= 1, !	
9	Сравнение: 10 >= 5 Результат: истина	Образование новой резольвенты: 1. Редукция верхней подцели: замена 10 >= 5, так как результат – истина Получена конъюнкция целей: 10 >= 1,! 2. Применение подстановки к полученной конъюнкции целей. Новое состояние резольвенты: 10 >= 1,!	
10	Сравнение: 10 >= 1 Результат: истина	Образование новой резольвенты: 1. Редукция верхней подцели: замена 10 >= 1, так как результат – истина 2. Применение подстановки к полученной конъюнкции целей. Новое состояние резольвенты: !	
11	!	Решение найдено: формирование подстановки в качестве побочного эффекта: {Мах = 10} Встречен системный предикат отсечения, завершение работы На вопрос удалось ответить утвердительно 1 подстановка были возвращены в качестве побочного эффекта	