Database Management Systems

Sumayyea Salahuddin (Lecturer)
Dept. of Computer Systems Eng.
UET Peshawar

Overview

- Case Study: SoftCo
- Normalization
 - What is Normalization?
 - Why it is needed?
 - Normal Forms
 - 1. Conversion to first normal form
 - 2. Conversion to second normal form
 - 3. Conversion to third normal form

Case Study: SoftCo

- Example: A company that manages building projects
 - Charges its clients by billing hours spent on each contract
 - Hourly billing rate is dependent on employee's position
 - Periodically, a report is generated that contains information displayed in Table 5.1

SoftCo – Report Layout

TABLE 5.1 A SAMPLE REPORT LAYOUT

PROJ. NUM.	PROJECT NAME	EMPLOYEE NUMBER	EMPLOYEE NAME	JOB CLASS.	CHG/HOUR	HOURS BILLED	TOTAL CHARGE	
15	Evergreen	103 101 105 106 102	June E. Arbough John G. News Alice K. Johnson * William Smithfield David H. Senior	Elec. Engineer Database Designer Database Designer Programmer Systems Analyst	\$84.50 \$105.00 \$105.00 \$35.75 \$96.75	23.8 19.4 35.7 12.6 23.8	\$2,011.10 \$2,037.00 \$3,748.50 \$450.45 \$2,302.65	
Subtotal \$								
18	Amber Wave	114 118 104 112	Annelise Jones James J. Frommer Anne K. Ramoras * Darlene M. Smithson	Applications Designer General Support Systems Analyst DSS Analyst	\$48.10 \$18.36 \$96.75 \$45.95	24.6 45.3 32.4 44.0	\$1,183.26 \$831.71 \$3,135.70 \$2,021.80	
				Subtotal			\$7,171.47	
22	Rolling Tide	105 104 113 111 106	Alice K. Johnson Anne K. Ramoras Delbert K. Joenbrood * Geoff B. Wabash William Smithfield	Database Designer Systems Analyst Applications Designer Clerical Support Programmer	\$105.00 \$96.75 \$48.10 \$26.87 \$35.75	64.7 48.4 23.6 22.0 12.8	\$6,793.50 \$4,682.70 \$1,135.16 \$591.14 \$457.60	
				Subtotal			\$13,660.10	
25	Starflight	107 115 101 114 108 118 112	Maria D. Alonzo Travis B. Bawangi John G. News * Annelise Jones Ralph B. Washington James J. Frommer Darlene M. Smithson	Programmer Systems Analyst Database Designer Applications Designer Systems Analyst General Support DSS Analyst	\$35.75 \$96.75 \$105.00 \$48.10 \$96.75 \$18.36 \$45.95	24.6 45.8 56.3 33.1 23.6 30.5 41.4	\$879.45 \$4,431.15 \$5,911.50 \$1,592.11 \$2,283.30 \$559.98 \$1,902.33	
				Subtotal			\$17,559.82	
				Total			\$48,941.09	
* Indicates	project leader							

SoftCo - Table Representation

FIGURE 5.1 A TABLE IN THE REPORT FORMAT

	PROJ_NUM	PROJ_NAME	EMP_NUM	EMD NIGHE	JOB_CLASS	CHG_HOUR	HOURS
	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23
			101	John G. News	Database Designer	\$105.00	19
			105	Alice K. Johnson *	Database Designer	\$105.00	35
			106	√villiam Smithfield	Programmer	\$35.75	12
			102	David H. Senior	Systems Analyst	\$96.75	23
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24
			118	James J. Frommer	General Support	\$18.36	45
			104	Anne K. Ramoras *	Systems Analyst	\$96.75	32
			112	Darlene M. Smithson	DSS Analyst	\$45.95	44
	22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64
			104	Anne K. Ramoras	Systems Analyst	\$96.75	48
			113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23
			111	Geoff B. Wabash	Clerical Support	\$26.87	22
			106	William Smithfield	Programmer	\$35.75	12
	25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24
			115	Travis B. Bawangi	Systems Analyst	\$96.75	45
			101	John G. News *	Database Designer	\$105.00	56
			114	Annelise Jones	Applications Designer	\$48.10	33
			108	Ralph B. Washington	Systems Analyst	\$96.75	23
			118	James J. Frommer	General Support	\$18.36	30
			112	Darlene M. Smithson	DSS Analyst	\$45.95	41

SoftCo - Table Issues

- PK(PROJ_NUM) contains nulls.
- Data inconsistencies: JOB_CLASS value "Elect. Engineer" might be entered as "Elect Eng" or "El. Eng." or "EE"
- Data redundancies which yield data anomalies:
 - Update Anomalies: Modifying the JOB_CLASS for employee number 105 requires (potentially) many alternations, one for each EMP_NUM = 105
 - Insertion Anomalies: Just to complete row definition, a new employee must be assigned to a project. If the employee is not yet assigned, a phantom project must be created to complete the employee data entry.
 - Deletion Anomalies: Suppose that only one employee is associated with a given project. If that employee leaves the company and the employee data are deleted, the project information will be deleted. To prevent the loss of the project information, a fictitious employee must be created just to save the project information.

Normalization

- Normalization
 - Process for evaluating and correcting table structure to minimize data redundancies
 - Helps eliminate data anomalies
 - Works through a series of stages called normal forms
 - Normal Form (1NF)
 - Second Normal Form (2NF)
 - Third Normal Form (3NF)
 - 2NF is better than 1NF; 3NF is better than 2NF
 - For most business database design purposes, 3NF is highest we need to go in the normalization process
 - Highest level of normalization is not always most desirable

Conversion to First Normal Form (1NF)

Repeating Group

- Derives its name from the fact that a group of multiple (related) entries can exist for any *single* key attribute occurrence
- Relational table must not contain repeating groups
- Normalizing the table structure will reduce these data redundancies
- Normalization is three-step procedure

Step 1: Eliminate the Repeating Groups

- Present data in a tabular format, where each cells has a single value and there are no repeating groups
- Eliminate repeating groups by eliminating null, making sure that each repeating group attributes contain an appropriate data value

Data Organization: First Normal Form (1NF)

FIGURE 5.2 DATA ORGANIZATION: FIRST NORMAL FORM

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	НО
15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	-
15	Evergreen	101	John G. News	Database Designer	\$105.00	
15	Evergreen	105	Alice K. Johnson *	Database Designer	\$105.00	
15	Evergreen	106	√Villiam Smithfield	Programmer	\$35.75	
15	Evergreen	102	David H. Senior	Systems Analyst	\$96.75	
18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	
18	Amber Wave	118	James J. Frommer	General Support	\$18.36	
18	Amber Wave	104	Anne K. Ramoras *	Systems Analyst	\$96.75	
18	Amber Wave	112	Darlene M. Smithson	DSS Analyst	\$45.95	
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	
22	Rolling Tide	104	Anne K. Ramoras	Systems Analyst	\$96.75	
22	Rolling Tide	113	Delbert K. Joenbrood *	Applications Designer	\$48.10	
22	Rolling Tide	111	Geoff B. Wabash	Clerical Support	\$26.87	
22	Rolling Tide	106	William Smithfield	Programmer	\$35.75	
25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	
25	Starflight	115	Travis B. Bawangi	Systems Analyst	\$96.75	
25	Starflight	101	John G. News *	Database Designer	\$105.00	
25	Starflight	114	Annelise Jones	Applications Designer	\$48.10	
25	Starflight	108	Ralph B. Washington	Systems Analyst	\$96.75	
25	Starflight	118	James J. Frommer	General Support	\$18.36	

Step 2: Identify the Primary Key

- Primary key must uniquely identify attribute value
- New key must be composed

Step 3: Identify All Dependencies

- Dependencies can be depicted with the help of a diagram
- Dependency diagram:
 - Depicts all dependencies found within a given table structure
 - Helpful in getting bird's eye view of all relationships among table's attributes
 - Use makes it much less likely that an important dependency will be overlooked

A Dependency Diagram: First Normal Form (1NF)

FIGURE 5.3 A DEPENDENCY DIAGRAM: FIRST NORMAL FORM (1NF)

First Normal Form (1NF)

- Tabular format in which:
 - All key attributes are defined
 - There are no repeating groups in the table
 - All attributes are dependent on primary key
- All relational tables satisfy 1NF requirements
- Some tables contain partial dependencies
 - Dependencies based on only part of the primary key
 - Sometimes used for performance reasons, but should be used with caution
 - Still subject to data redundancies

Task 1

- Table 4-3 contains sample data for parts and for vendors who supply those parts. In discussing these data with users, we find that part numbers (but not descriptions) uniquely identify parts and that vendor names uniquely identify vendors.
 - 1) Convert this table to a relation (named **PART SUPPLIER**) in **1NF.** Illustrate the relation with the sample data in the table.
 - List the functional dependencies in PART SUPPLIER and identify a candidate key.
 - 3) For the relation PART SUPPLIER, identify each of the following: an insert anomaly, a delete anomaly, and a modification anomaly.

TABLE 4-3 Sample Data for Parts and Vendors						
Part No	Description	Vendor Name	Address	Unit Cost		
1234	Logic chip	Fast Chips	Cupertino	10.00		
		Smart Chips	Phoenix	8.00		
5678	Memory chip	Fast Chips	Cupertino	3.00		
		Quality Chips	Austin	2.00		
		Smart Chips	Phoenix	5.00		

Conversion to Second Normal Form (2NF)

- Relational database design can be improved by converting the database into second normal form (2NF)
- Two steps

Step 1: Identify All Key Components

- Write each key component on separate line, and then write the original (composite) key on the last line
- Each component will become the key in a new table

Step 2: Identify the Dependent Attributes

- Determine which attributes are dependent on which other attributes
- At this point, most anomalies have been eliminated

Second Normal Form (2NF) Conversion Results

FIGURE 5.4 SECOND NORMAL FORM (2NF) CONVERSION RESULTS

Second Normal Form (2NF)

- Table is in second normal form (2NF) if:
 - It is in 1NF and
 - It includes no partial dependencies
 - No attribute is dependent on only a portion of the primary key

Task 2

 Develop a set of 2NF relations from dependency diagram of PART Supplier relation from Task 1.

Conversion to Third Normal Form (3NF)

 Data anomalies created are easily eliminated by completing three steps

Step 1: Identify Each New Determinant

- For every transitive dependency, write its determinant as a PK for a new table
 - Determinant
 - Any attribute whose value determines other values within a row

Step 2: Identify the Dependent Attributes

- Identify the attributes dependent on each determinant identified in Step 1 and identify the dependency
- Name the table to reflect its contents and function

Step 3: Remove the Dependent Attributes from Transitive Dependencies

- Eliminate all dependent attributes in transitive relationship(s) from each table that has such a transitive relationship
- Draw a new dependency diagram to show all tables defined in Steps 1-3
- Check new tables and modified tables from Step 3 to make sure that each has a determinant and does not contain inappropriate dependencies

Third Normal Form (3NF) Conversion Results

FIGURE 5.5 THIRD NORMAL FORM (3NF) CONVERSION RESULTS

Third Normal Form (3NF)

- A table is in third normal form (3NF) if:
 - It is in 2NF and
 - It contains no transitive dependencies

Task 3

• Given the relations in task 2, convert all the relations in 3NF.

Improving the Design

- Table structures are cleaned up to eliminate the troublesome initial partial and transitive dependencies
- Normalization cannot, by itself, be relied on to make good designs
- It is valuable because its use helps eliminate data redundancies

Improving the Design (cont...)

- The following changes were made:
 - PK assignment
 - Naming conventions
 - Attribute atomicity
 - Adding attributes
 - Adding relationships
 - Refining PKs
 - Maintaining historical accuracy
 - Using derived attributes

The Completed Database

FIGURE 5.6 THE COMPLETED DATABASE

The Completed Database (cont...)

FIGURE 5.6 THE COMPLETED DATABASE (CONTINUED)

Summary

- Discussed concept of normalization
- Discussed its three normal forms
- Covered case study and tasks