Laboratorio 5 ciberseguridad Sesión #5 Modelos OSI y TCP/IP

Jesús Rodrigo Toro Navarro

Curso de Ciberseguridad

Universidad Popular del Cesar

Laboratorio: Entendiendo los Modelos OSI y TCP/IP

Actividad Complementaria

Parte 1: Modelo OSI y su Aplicación en Redes

Capa	Nombre de la	Función Principal	Protocolos/Dispositivos
	Capa		Ejemplo
7	Capa de	Permite la interacción directa	HTTP, FTP, SMTP,
	Aplicación	con el software de usuario y	navegador web, cliente de
		servicios de red.	correo
6	6 Capa de Traduce, cifra y comprime		SSL/TLS, JPEG, GIF, MPEG
	Presentación	datos para la aplicación.	
5	Capa de Sesión	Establece, gestiona y termina	RPC, NetBIOS, PPTP
		sesiones entre aplicaciones.	
4	Capa de	Proporciona transmisión	TCP, UDP
	Transporte	confiable de datos (control de	
		errores y flujo).	
3	Capa de Red Encaminamiento de datos		IP, ICMP, Routers
		entre dispositivos en	
		diferentes redes.	
2	Capa de	Establece una conexión fiable	Ethernet, Wi-Fi, Switches
	Enlace de	dentro de una red local,	
	Datos	maneja tramas y errores.	
1	Capa Física	Transmisión de bits brutos	Cables, Hubs, Fibra óptica,
		sobre el medio físico.	señales eléctricas

2: Asociación de dispositivos con capas OSI

- Router = Capa 3 (Red)
- **Switch** = Capa 2 (Enlace de Datos)
- **Computadora/Servidor** = Principalmente Capa 7 (Aplicación) pero trabaja a través de todas las capas.
- **Hub** = Capa 1 (Física)

Parte 2: Protocolo TCP/IP y Captura de Paquetes

No. de	Protocolo	Capa OSI	Fuente	Destino	Puerto	Descripción
Paquete						
1	ICMP	Capa de	192.168.1.2	8.8.8.8	-	Paquete de "ping" a Google
		Red				(protocolo ICMP, control de
						red).
2	ICMP	Capa de	8.8.8.8	Tu IP	-	Respuesta al "ping" de Google.
		Red		Local		
3	UDP	Capa de	192.168.1.2	DNS	53	Consulta DNS (resolución de
		Transporte		Server		nombre a IP).
				IP		
4	TCP	Capa de	192.168.1.2	Servidor	80/443	Inicio de sesión HTTP/HTTPS.
		Transporte		Web IP		

Parte 3: Comparación entre OSI y TCP/IP

Capa OSI	Capa TCP/IP	Protocolos/Servicios Ejemplares		
Capa de Aplicación	Capa de Aplicación	HTTP, FTP, SMTP		
Capa de Presentación	Capa de Aplicación	SSL, TLS, JPEG (se maneja también aquí)		
Capa de Sesión	Capa de Aplicación	NetBIOS, RPC (también manejado aquí)		
Capa de Transporte	Capa de Transporte	TCP, UDP		
Capa de Red	Capa de Internet	IP, ICMP, ARP		
Capa de Enlace de	Capa de Acceso a la	Ethernet, Wi-Fi		
Datos	Red			
Capa Física	Capa de Acceso a la Red	Cables, Fibra óptica, Señales eléctricas		

Parte 4: Evaluación de Conocimientos

1. Preguntas de repaso:

¿Qué capa del modelo OSI se encarga de la entrega confiable de datos?

La Capa de Transporte (Capa 4) se encarga de la entrega confiable de datos, usando protocolos como TCP

¿Qué dispositivos de red operan en la capa 2 del modelo OSIG

En la **Capa de Enlace de Datos** (Capa 2) operan dispositivos como:

- Switches
- **Bridges** (puentes de red)
- También las tarjetas de red (NIC) manejan parte de esta capa.

¿Cómo puedes identificar la capa de transporte (capa 4) al analizar un paquete capturado en Wireshark?

- Puedes identificar la **Capa de Transporte** revisando:
 - o El protocolo (por ejemplo, TCP o UDP).
 - o Verificando los **números de puerto de origen y destino**.
 - o En Wireshark, el protocolo aparecerá claramente en la columna "Protocol", y puedes expandir el paquete para ver la sección de Transporte.

¿Cuáles son las diferencias clave entre los modelos OSI y TCP/IP?

• Algunas diferencias importantes son:

El modelo **OSI** tiene **7 capas**, mientras que el modelo **TCP/IP** tiene **4 capas**.

En **TCP/IP**, las funciones de **Aplicación**, **Presentación** y **Sesión** del OSI están combinadas en una sola capa: **Capa de Aplicación**.

El modelo **TCP/IP** fue diseñado basado en protocolos reales (Internet), mientras que el **modelo OSI** fue una guía teórica.

TCP/IP es el modelo práctico en el que se basa Internet actualmente.