PLD Plasma Propagation Model

Based on a model by Tom Wijnands Adapted by Sam Borkent

Introduction

- Model description
- Approximations and assumptions
 - What did I do and why?
 - Results
 - Conclusions
 - Suggestions
 - Let's discuss

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

$$N_{p,tot} = N_{p,uc} \frac{V_{spot}}{V_{uc}} \frac{\rho_{target}}{\rho_{sc}}$$

 $N_{p,uc}$: number of particles per unit cell

 V_{spot} : volume of the ablation spot

 V_{uc} : volume of a unit cell

 ho_{target} : density of the target

 ρ_{sc} : density of a perfect material

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

$$E_{laser} = E_{reflected} + E_{absorbed}$$

$$aE_{laser} = Q + N_{uc} \left(E_b + \sum_{x=1}^{N_p, uc} \left(E_{kin,x} + \Delta E_{exc,x} \right) \right)$$

$$\bar{E}_{kin,x} = \frac{1}{N_{p,uc}} \left(\frac{aE_{laser} - Q}{N_{uc}} - E_b \right) - \Delta E_{exc,x}$$

 α : ratio of laser energy absorbed by target

Q: heat dissipation into the target

 N_{uc} : number of particles per unit cell

 E_b : atomization energy (not formation energy)

 $\bar{E}_{kin,x}$: average kinetic energy of atom of type x

 $\Delta E_{exc,x}$: average excitation energy of atom of type x

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Normal distribution

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Log-normal distribution

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Maxwell-Boltzmann distribution

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Ideal gas law

$$\rho_{bg} = \frac{P_{bg}}{k_B T}$$

Equipartition theorem
$$\bar{E}_{kin,bg}(t_0) = \frac{1}{2} m_{bg} \bar{v}_{bg}^2(t_0) = \frac{3}{2} k_B T_{bg}$$

Computational bin volume

$$\Delta V(r_j, \theta_k) = \frac{4}{3}\pi(r_{j+1}^3 - r_j^3)(\cos(\theta_k) - \cos(\theta_{k+1}))$$

Number of background gas particles

$$N_{bg}(r_j, \theta_k, t_0) = \rho_{bg} \Delta V(r_j, \theta_k)$$

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bins
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Angular distribution of plasma particles

$$f(\theta) = \frac{\cos^n \theta}{A_\theta}$$

Number of plasma particles

$$N_x(n=0,v_i,r_0,\theta_k,t_0) = N_{p,tot} \frac{N_{p,uc,x}}{N_{p,uc}} f_x(v_i) f(\theta_k)$$

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Collision categories

- Elastic collisions between particle of the same type
- Elastic collisions between the plasma and background
- Reactive collisions between the plasma and background
 - Elastic collisions between metals in the plasma
 - Collisions between metals and oxygen in the plasma

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Number of collisions in per bin

$$N_{col} = N_p \rho_{bg} \Delta r \sigma_{x-bg} P_v(v_i, v_{i\prime})$$

 N_p : number of plasma particles ρ_{bg} : background gas particle density Δr : length of one radial bin σ_{x-bg} : collision cross-section $P_v(v_i,v_i)$: relative velocity term

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Collision calculation steps

- 1. Loop through all radial bins
- 2. Loop through all velocity bins
- 3. Store the number of plasma particles in this bin
- 4. Calculate the projected traveled path of the particles in one time step in case of no collisions
- 5. Loop through all radial bins within the projected path
- Loop through all velocity bins that are filled with background particles, that move slower than the plasma particles
- 7. Calculate the number of collided particles
- 8. Calculate the new velocity and position of particles after collision
- 9. Remove the collided particles from their velocity and radial bins prior to collision
- 10. Update the position of non-collided particles
- 11. Add back the collided particles to their new velocity and position

- Divide space into computational bins
- Determine the number of ablated particles per laser pulse
- Calculate the initial velocity of particles immediately after ablation
- Determine the number of background gas particles based on the deposition pressure
- Collect the plasma and background particles into their designated computational bin
- Perform a 1D collision calculation problem for every angle
- Combine 1D results to achieve a 2D propagation model

Approximations and assumptions

- There is no net exchange of particles between angular bins
- All particles move along a straight line following their initial angle
- Background gas particles initially have a constant temperature (no heat gradient)
- Background gas particles initially have no preferential propagation direction, so a net zero velocity
 - Square laser ablation spot, resulting in an axially symmetric plasma expansion
- Heat dissipation into the target and excitation energy of atoms during ablation can be neglected
 - All collisions are head-on and fully elastic
 - Collisions only occur between plasma particles and background gas particles

What did I do?

Redesigned the code from the ground up

• Reimplemented the initial velocity distribution

• Implemented support for any target composition

- Fully model background gas particle kinematics
- Ensured conservation of number of particles, kinetic energy, and momentum

Why did I do it?

- Make the model dynamic and suitable for any material
- Increase usability and readability of the code
- Improve performance
- Normal distribution is not the proper distribution to use for values that span $[0, \infty]$
- Velocity distribution width determined for the propagation of Ti, not applicable for other atoms
- Switch between materials by changing one line of code
- Easily add new materials
- Gain insight into how much oxygen gas is propelled onto the substrate surface
- No particles get destroyed or created

GitHub (private)

Results Initial velocity distribution

Results Initial velocity distribution

Results Initial velocity distribution

Results Plasma propagation – TiO2 at 0.02 mbar 6 # 10¹² **5e-07 s** # 10¹² **1.5e-06 s** Ti 0.02 # 10¹² **1.5e-06 s** 5e-07 s 3e-06 s Uncollided Collided 0 0.04 0.02 2.5 _Γ # 10¹² **7e-06 s** Collided Bg O₂

0.02

1.5

Results

Plasma propagation – TiO2 at 0.1 mbar

Results Plasma propagation – TiO2 at 0.1 mbar (no neg. velo.) ₃# 10¹²le-06 s # 10¹**2e-06 s** _{3r} ₁₀1**3e-06 s** _{3r} ₁₀16e-06 s 3° 10¹**9e-06 s** # 10**%.5e-05** s # 10¹f.2e-05 s ₂# 10¹4².8e-05 s Uncollided 2.5 2.5 Ti 0.5 0.5 0.5 0.5 0.5 0.02 0.04 0.02 0.04 1.0 12.0 15.0 # 10¹**3e-06 s** # 10¹²le-06 s # 10¹**2e-06 s** # 10¹**6e-06 s** # 10¹**9e-06 s** # 10¹P.2e-05 s # 10¹4.5e-05 s # 10¹/2.8e-05 s Uncollided Collided Total 0.02 0.02 0.02 0.02 0.02 0.04 0.02

Results Plasma propagation – SrTiO3 at 0.02 mbar 3.5 # 10¹² **5e-07 s** 3.5 f 10¹² 1.5e-06 s # 10¹² **5e-06 s** 3.5 f # 10¹² 7e-06 s Uncollided Collided Total Sr Initial velocity distribution of SrTiO, # 10¹³ 0.5 0.5 0.5 0.02 0.04 0.02 0.02 # 10¹² **1.5e-06 s** 3 f 10¹² 5e-07 s 3e-06 s 5e-06 s 7e-06 s Number of particles Uncollided Collided Total Ti 1.5 0.5 0.5 0.5 0.5 0.02 0.04 0.02 0.02 0.02 0.5 1.5 # 10¹² **1.5e-06 s** 2.5 6 # 10¹² . # 10¹² 7e-06 s 5e-07 s 4 10¹² 3e-06 s 5e-06 s Velocity [m/s] Uncollided Collided Total 0.02 0.04 0.02 0.04

Results

Plasma propagation – Li4Ti5O12 at 0.02 mbar

Conclusions

- The model does not exactly match measurement, but results are in a similar range.
 - The model delivers consistent results for different type of materials.
- There seems to be an error for particle moving with a negative velocity, visible at higher pressures

Improvements

- Fully modeled background gas particle kinematics
- Support of any target composition, even mixture targets
 - Conservation of number of particles is ensured
- Code is dynamic, self-documenting, and contains no 'magic' variables

Features missing

- Oxidation of plasma species (although data structure supports it)
 - 2D plume expansion plots

Suggestions

- Introduce a temperature gradient in the background gas based on the substrate temperature
 - Find approximations for the heat dissipation into target and excitation energy of atoms
- Include relation between laser fluence and spot dimensions and the angular distribution of particles
 - Allow highly kinetic particles to reflect of substrate surface and change direction
 - Implement MaterialsProject API to get material properties straight from their database
 - Add as material property which oxides a specific atom can form
 - Implement collisions between plasma species!

Proposal for collisions between all particles model

- Loop through particle speeds
 - Loop through particle directions (towards substrate or towards target)
 - Loop through plasma species (and additional oxidized species)
 - Loop through filled radial bins
 - Calculate projected path the particle would travel without collisions
 - Calculate the number of collisions with every species and for all radial bins in the projected path (for all slower moving particles) simultaneously using matrix calculations
 - Calculate new velocities and positions after collision
 - Limit number of collisions by the total number of particles available
 - Remove particles from velocity and position before collision
- Update all non-collided particle positions
- Add back the collided particles to their new velocity and position after collision

Results Plasma propagation – TiO2 at 0.02 mbar (log) 1.5e-06 s 10¹⁴ 10¹² 10¹² 10¹² Ti 10¹⁰ 0.04 0.02 0.02 0.02 0.02 0.02 5e-07 s 1.5e-06 s 3e-06 s 5e-06 s 7e-06 s 10¹² 10¹² 10¹² 10¹² 0 10¹⁰ 10¹⁰ 0.04 0.02 0.04 0.02 0.02 0.02 5e-07 s 1.5e-06 s 5e-06 s 10¹² 10¹⁰ 10¹⁰ 10¹⁰ Bg O₂

No negative velocities allowed

Results

Plasma propagation – Li4Ti5O12 at 0.1 mbar

No negative velocities allowed

