Machine Learning

Neural Networks

Felix Bießmann

Beuth University & Einstein Center for Digital Future

June 25, 2019

Linear Classification

Perceptron Limitations

$$\phi(\mathbf{w}^{\top}\mathbf{x} - \beta) = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ is from class } o \\ < 0 & \text{if } \mathbf{x} \text{ is from class } \Delta \end{cases}$$

Problems with Perceptrons

Perceptrons can only learn linearly separable problems.

Perceptron Limitations

Deep Neural Networks

Combinations of Perceptrons (Multi Layer Perceptrons):

Hidden Units

Input Units

Output Units

Neurons (Units), that are neither output nor input are called Hidden Units.

A Short History of Deep Learning

- 1943 First mathematical Neuron Model (Mcculloch and Pitts, 1943)
- 1957 Perceptron Algorithm (Rosenblatt, 1958)
- 1969 Perceptrons cannot solve non-linearen Problems (Minsky and Papert, 1969)
- 1970 Backpropagation: Efficient gradient computations (Linnainmaa, 1970)
- 1980 Computer Hardware $\approx 10,000$ faster compared to 1960/1970 Automatic Differentiation (Speelpenning, 1980)
- 1986 Backpropagation learns meaningful representations (Rumelhart et al., 1986), NETtalk (Sejnowski and Rosenberg, 1986)
- 1992 Support-Vector Machines (SVMs) (Boser et al., 1992)
- 2000 Computer Hardware (GPUs) \approx 10,000 faster compared to 1980/1990, Bigger datasets render kernel SVMs computationally infeasible
- 2012 Deep Convolutional Networks wins ImageNet (Krizhevsky et al., 2012)
- 2014 Neural Machine Translation surpasses traditional methods
- 2017 Neural Networks for Reinforcement Learning excell at Go (AlphaGo Zero)
- 2018 ImageNet Moment for Neural Language Models (BERT / ELMO)

Sources: Juergen Schmidhuber's page and others

Universal Approximation Theorem

[Cybenko, 1989]

Multilayer Perceptrons with one hidden layer and a finite number of hidden units can approximate any function.

Training of Deep Neural Networks

- Training: Gradient Descent
- Problem: Gradient Computations
 - Mathematically challenging for complex models
 - Computationally challenging
- → Solution: **Backpropagation**
 - Elegant formulation
 - Efficient implementation

Backpropagation Algorithm

Algorithm 1 Backpropagation Algorithm - Pseudocode

Require: Data $\mathbf{X} \in \mathbb{R}^{D \times N}$, labels $\mathbf{Y} \in \mathbb{R}^{K \times N}$, untrained network **Ensure:** Network parameters $\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(V)}$

1: while Not converged do

2: # Compute network predictions

3: # Evaluate error function

Propagate error from output layer back to input layer

Take gradient descent step

6: end while

Learning with Backpropagation in Neural Networks

Computation of network predictions is called Forward Propagation.

Learning with Backpropagation in Neural Networks

Backpropagation refers to efficient computation of error function gradients for all connections.

Error Backpropagation

Learning with Backpropagation in Neural Networks

After a forward and backward pass a gradient step is performed.

Forward Pass

Each neuron computes a weighted sum a_i of its inputs

Backpropagation 0000000

$$a_j = \sum_i w_{ji}^{(v)} z_i \tag{1}$$

and transforms a_i with some non-linear function $\phi(.)$

$$z_j = \phi(a_j). \tag{2}$$

Forward Pass

Each neuron computes a weighted sum a_i of its inputs

Backpropagation 0000000

$$a_j = \sum_i w_{ji}^{(v)} z_i \tag{1}$$

and transforms a_i with some non-linear function $\phi(.)$

$$z_j = \phi(a_j). \tag{2}$$

Input Layer: $z_i \equiv x_i$ Output Layer: $z_i \equiv \hat{y}_i$

Forward Pass

Forward Pass

Each neuron computes a weighted sum a_i of its inputs

$$a_j = \sum_i w_{ji}^{(v)} z_i \tag{1}$$

and transforms a_i with some non-linear function $\phi(.)$

$$z_j = \phi(a_j). \tag{2}$$

After a forward pass the error function is evaluated:

$$J(\mathbf{\hat{y}}, \mathbf{y}) = \frac{1}{2}(\mathbf{\hat{y}} - \mathbf{y})^2$$
 (3)

Error Backpropagation

Goal:

Computation of gradient of error function J

$$\frac{\partial J(\mathbf{y}, \mathbf{x}, \mathbf{W}^{(1)}, \mathbf{W}^{(2)})}{\partial w_{ji}^{(v)}} \tag{4}$$

Error Backpropagation

Backpropagation Idea

 $w_{ii}^{(v)}$ changes J**only** through summed up inputs a_i

Gradient of error function (chain rule):

$$\frac{\partial J}{\partial w_{ii}^{(v)}} = \frac{\partial J}{\partial a_j} \frac{\partial a_j}{\partial w_j}$$

Error function gradient:

Backpropagation 00000000

$$\frac{\partial J}{\partial w_{ii}^{(v)}} = \frac{\partial J}{\partial a_j} \frac{\partial a_j}{\partial w_{ii}^{(v)}} \tag{4}$$

From 1:

$$a_j = \sum_i w_{ji}^{(v)} z_i$$

$$\frac{\partial a_{j}}{\partial w_{ji}^{(v)}} = \frac{\partial \sum_{i} w_{ji}^{(v)} z_{i}}{\partial w_{ji}^{(v)}}$$

$$=Z_i$$

(5)

Error function gradient:

at output units $(z \equiv a \equiv \hat{y})$:

Outer derivative of J, e.g.

$$J = \frac{1}{2}(\hat{\mathbf{y}} - \mathbf{y})^2 \tag{4}$$

$$J = \frac{1}{2}(\hat{\mathbf{y}} - \mathbf{y})^{2}$$

$$\frac{\partial J}{\partial a_{j}} = (\hat{\mathbf{y}} - \mathbf{y}) \equiv \delta_{j}$$
(5)

Error Backpropagation

Error function gradient:

$$\frac{\partial J}{\partial w_{ji}^{(v)}} = \underbrace{\frac{\partial J}{\partial a_j}}_{\delta_i} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}_{z_i}$$

Backpropagation 00000000

 δ_i is the error signal of the **receiving** neurons *j*

 z_i is the activation of the **sending** neuron i

Error function gradient:

Error Backpropagation

 $w_{10}^{(1)}$

Backpropagation 00000000

at hidden units:

Backpropagation Idea

 a_i changes J only via outputs to a_k

$$\delta_{j} \equiv \frac{\partial J}{\partial a_{i}} = \sum_{k} \frac{\partial J}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{i}} \tag{4}$$

Error function gradient:

Backpropagation 00000000

 δ_i at hidden units:

$$\delta_{j} \equiv \frac{\partial J}{\partial a_{j}} = \sum_{k} \frac{\partial J}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}$$
 (4)

$$\frac{\partial a_k}{\partial a_j} = \frac{\partial w_{kj}^{(v)} \phi(a_j)}{\partial a_j}$$
$$= w_{ki}^{(v)} \phi'(a_j)$$

(5)

Error function gradient:

$$\frac{\partial J}{\partial w_{ji}^{(v)}} = \underbrace{\frac{\partial J}{\partial a_j}}_{\delta_{i}} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}_{z_i}$$

00000000

 δ_i at hidden units:

$$\delta_{j} \equiv \frac{\partial J}{\partial a_{j}} = \sum_{k} \frac{\partial J}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}$$

$$\frac{\partial a_{k}}{\partial a_{j}} = w_{kj}^{(v)} \phi'(a_{j})$$

$$\frac{\partial J}{\partial a_{k}} = \delta_{k}$$

$$(4)$$

Error function gradient:

$$\frac{\partial J}{\partial w_{ji}^{(v)}} = \underbrace{\frac{\partial J}{\partial a_j}}_{\delta_i} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}_{z_i}$$

Backpropagation 00000000

 δ_i at hidden units:

$$\delta_{j} \equiv \frac{\partial J}{\partial \mathsf{a}_{j}} = \phi'(\mathsf{a}_{j}) \sum_{\mathsf{k}} w_{\mathsf{k}j}^{(\mathsf{v})} \delta_{\mathsf{k}} \qquad (4)$$

Network with one hidden layer and linear output function

 $\phi(z)$ is the logistic function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

J is the quadratic error

$$J = \frac{1}{2}(\mathbf{\hat{y}} - \mathbf{y})^2$$

For each datapoint \mathbf{x}_i the prediction $\hat{\mathbf{y}}$ is computed

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
$$z_{j} = \phi(a_{j})$$
$$\hat{y}_{k} = \sum_{i=0}^{M} w_{kj}^{(2)} z_{j}$$

The error signal δ is:

at the output layer

$$\delta_k = \hat{y}_k - y_k$$

at hidden units

$$\delta_{j} = \phi'(z_{j}) \sum_{k=1}^{K} w_{kj}^{(2)} \delta_{k}$$
$$= \phi(z_{j}) (1 - \phi(z_{j})) \sum_{k=1}^{K} w_{kj}^{(2)} \delta_{k}$$

Error Backpropagation

Full gradient

$$\frac{\partial J}{w_{kj}^{(2)}} = \delta_k z_j$$

$$\frac{\partial J}{w_{ii}^{(1)}} = \delta_j x_i$$

00000

Other Loss Functions

Error Function	Used in
$rac{1}{2}(y-\mathbf{w}^{ op}\mathbf{x})^2$	Adaline [Widrow and Hoff, 1960]
$max(0, -y\mathbf{w}^{\top}\mathbf{x})$	Perceptron [Rosenblatt, 1958]
$-\sum_{k=1}^{K} y_{true} \log(y_{predicted})$	Most classification neural networks

Cross-Entropy

$$-\sum_{k=1}^{K} y_{\text{true}} \log(y_{\text{predicted}})$$
 (5)

Backpropagation 00000000

Where

- K is the number of classes
- y_{true} is the one-hot encoded label
- \mathbf{z}_k is the activity of the kth neuron in the last layer and

$$y_{\text{predicted}} = \frac{e^{\mathbf{z}_k}}{\sum_{k=1}^{K} e^{\mathbf{z}_k}} \tag{6}$$

Backpropagation Algorithm

Algorithm 2 Backpropagation Algorithm

```
Require: Data \mathbf{X} \in \mathbb{R}^{D \times N}, labels \mathbf{Y} \in \mathbb{R}^{K \times N}, untrained network
Ensure: network parameters \mathbf{W}^{(1)}, \dots, \mathbf{W}^{(V)}
 1: while Not converged do
 2:
          # Forward Propagation
 3:
          # Input Layer:
 4:
        \mathbf{z}_0 = \phi(\mathbf{W}^{(0)}\mathbf{x}_i)
 5:
          for Layer v = 1, \dots, V do
               \mathbf{z}_{v} = \phi(\mathbf{W}^{(v)}\mathbf{z}_{v-1})
 6:
 7:
          end for
 8:
           # Error Computation at Output Layer (quadratic error)
 9:
           \delta_{V+1} = \mathbf{z}_V - \mathbf{y}_i
10:
           # Backpropagation
11:
           for Layer v = V, \dots, 1 do
12:
                # Error Signal in Layer v
13:
               \delta_{\mathbf{v}} = \phi'(\mathbf{z}_{\mathbf{v}})^{\top} \delta_{\mathbf{v}+1}^{\top} \mathbf{W}^{(\mathbf{v})}
14:
                # Gradient Step
                \mathbf{W}^{(v)} = \mathbf{W}^{(v)} - \eta \delta_v \mathbf{z}_{v-1}^{\top}
15:
16:
           end for
17: end while
```


Summary

- Perceptrons cannot separate linearly non-separable problems
- Using combinations and stacking of standard Perceptrons, Multi Layer Perceptrons (MLPs) can approximate any function with one hidden layer
- Gradient descent for MLPs is challenging, mathematically and computationally
- Backpropagation: Efficient Gradient computation

References

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer US, 2007.
- G. Cybenko. Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals and Systems, 2(4):303-314, 1989.
- T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. 2003.
- K. P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning. The MIT Press, 1 edition, 2012. ISBN 0262018020,9780262018029.
- F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386–408, Nov. 1958.
- B. Widrow and M. E. Hoff. Adaptive switching circuits. In 1960 IRE WESCON Convention Record, Part 4, pages 96-104, New York, 1960. IRE.

