Développement 41. Un exemple d'anneau principal non euclidien

On souhaite montrer que l'anneau $\mathbf{Z}[\alpha]$ avec $a \coloneqq \frac{1}{2}(1+i\sqrt{19})$ n'est pas euclidien bien qu'il soit principal. On introduit la norme $N \colon \mathbf{Z}[\alpha] \longrightarrow \mathbf{N}$ définie par l'égalité

$$N(z) = z\overline{z} = a^2 + ab + 5b^2, \qquad z = a + b\alpha \in \mathbf{Z}[\alpha].$$

Cette application est multiplicative. Remarquons également que le nombre complexe α est annulé par le polynôme $X^2-X+5\in {\bf Z}[X].$

Lemme 1. Soit A un anneau euclidien. Alors il existe un élément $x \in A \setminus A^{\times}$ tel que la restriction $A^{\times} \cup \{0\} \longrightarrow A/\langle x \rangle$ de la projection canonique soit surjective.

Preuve Lorsque l'anneau A est un corps, le neutre x=0 convient. On suppose désormais que l'anneau A n'est pas un corps. Soit $x \in A \setminus (A^{\times} \cup \{0\})$ un élément de valuation $\nu(x)$ minimale parmi les éléments non inversibles et non nuls. Montrons alors la surjectivité souhaitée. Soit $\overline{a} \in A/\langle x \rangle$. On écrit a=xq+r la division euclidienne de l'élément a par l'élément x. Alors l'élément r est envoyé sur la classe \overline{a} par la projection. Par ailleurs, comme $\nu(r) < \nu(x)$, le choix de l'élément x impose que $r \in A^{\times} \cup \{0\}$. \triangleleft

Proposition 2. L'anneau $\mathbf{Z}[\alpha]$ n'est pas euclidien.

Preuve Calculons le groupe $\mathbf{Z}[\alpha]^{\times}$ des inversibles. Soit $z=a+b\alpha\in\mathbf{Z}[\alpha]^{\times}$ un élément. Le multiplicativité de la norme permet d'écrire $1=N(z)N(z^{-1})$, donc $N(z)\in\mathbf{Z}^{\times}$, c'est-à-dire N(z)=1. Par ailleurs, une identité remarquable donne

$$a^{2} + ab + b^{2} \geqslant a^{2} - |ab| + b^{2} > a^{2} - 2|ab| + b^{2} = (|a| - |b|)^{2} \geqslant 0,$$

ce qui donne

$$a^2 + ab + 5b^2 \geqslant 4b^2.$$

Avec ce qui précède, on en déduit que $1 \ge 4b^2$, donc b = 0. Ainsi il ne reste plus que l'égalité $a^2 = 1$ ce qui fournit $a = \pm 1$. On obtient alors $\mathbf{Z}[\alpha]^{\times} = \{\pm 1\}$.

Concluons. On raisonne par l'absurde et on suppose donc que l'anneau $\mathbf{Z}[\alpha]$ est euclidien. Par le lemme 1, on peut trouver un élément $x \in \mathbf{Z}[\alpha] \setminus \{\pm 1\}$ tel que la projection $\{0,\pm 1\} \longrightarrow \mathbf{Z}[\alpha]/\langle x \rangle$ soit surjective. Le quotient $\mathbf{Z}[\alpha]/\langle x \rangle$ est donc un corps K à deux ou trois éléments. En considérant le morphisme composé surjectif

$$\varphi \colon \mathbf{Z}[\alpha] \longrightarrow \mathbf{Z}[\alpha]/\langle x \rangle \xrightarrow{\sim} K,$$

L'élément $\beta := \varphi(\alpha) \in K$ vérifie alors $\beta^2 - \beta + 5 = \varphi(\alpha^2 - \alpha + 5) = 0$.

- Lorsque $K = \mathbf{F}_2$, le polynôme $X^2 + X + 1$ n'a pas de racines dans \mathbf{F}_2 .
- Lorsque $K = \mathbf{F}_3$, le polynôme $X^2 X 1$ n'a pas de racines dans \mathbf{F}_3 .

Ceci conduit donc à une absurdité dans les deux cas.

Lemme 3. Soient $a, b \in \mathbf{Z}[\alpha] \setminus \{0\}$ deux éléments non nuls. Alors il existe deux éléments $q, r \in \mathbf{Z}[\alpha]$ vérifiant les points suivants :

- r = 0 ou N(r) < N(b):
- -a = bq + r ou 2a = bq + r.

Preuve Considérons le nombre $x := a/b \in \mathbf{Q}[\alpha]$ que l'on écrit sous la forme $x = u + v\alpha$ avec $u, v \in \mathbf{Q}$. On pose n := |v| de telle sorte que $n \le v < n + 1$.

- On suppose que $v \notin]n + 1/3, n + 2/3[$. Soient $s, t \in \mathbb{Z}$ les entiers le plus proches des rationnels u et v. On peut écrire $|s - u| \le 1/2$ et $|t - v| \le 1/3$ où la dernière inégalité est vraie en vertu de notre hypothèse. En posant

$$q := s + t\alpha \in \mathbf{Z}[\alpha]$$
 et $r := a - bq = b(x - q) \in \mathbf{Z}[\alpha]$.

Alors a = bq + r. Par ailleurs, on peut écrire

$$N(x-q) = (s-u)^2 + (s-u)(t-v) + 5(t-v)^2 \le \frac{1}{4} + \frac{1}{4}\frac{1}{3} + \frac{5}{9} = \frac{35}{36} < 1$$

de telle sorte que N(r) = N(b)N(x - q) < N(b).

– On suppose que $v\in]n+1/3, n+2/3[$. Alors $2v\in]2n+2/3, 2n+1+1/3[$. On en déduit $m:=\lfloor 2v\rfloor=2n+1.$ Mais alors, la dernière inclusion se réécrit

$$2v \in]m - 1 + 2/3, m + 1/3[=]m - 1/3, m + 1/3[,$$

donc $2v \notin]m+1/3, m+2/3[$. Comme $2x=2u+2v\alpha$ avec 2x=2a/b, il reste alors à appliquer le cas précédent aux éléments 2a et b.

Proposition 4. L'anneau $\mathbf{Z}[\alpha]$ est principal.

Preuve Montrons d'abord que l'idéal $\langle 2 \rangle$ est maximal. En vertu du théorème d'isomorphisme et comme $\mathbf{Z}[\alpha] \simeq \mathbf{Z}[X]/\langle X^2 - X + 5 \rangle$, il existe un isomorphisme

$$\frac{\mathbf{Z}[\alpha]}{\langle 2 \rangle} \simeq \frac{\mathbf{Z}[X]}{\langle 2, X^2 - X + 5 \rangle} \simeq \frac{\mathbf{F}_2[X]}{\langle X^2 + X + 1 \rangle}.$$

Sur le corps \mathbf{F}_2 , le polynôme X^2+X+1 n'admet pas de racines ce qui le fait irréductible. Ainsi l'idéal $\langle 2 \rangle$ est maximal.

Concluons. Soit $I \subset \mathbf{Z}[\alpha]$ un idéal non nul. Soit $a \in I \setminus \{0\}$ un élément de norme minimale parmi les éléments non nuls de l'idéal I. On souhaite montrer que $I = \langle a \rangle$. On raisonne par l'absurde et on suppose qu'il existe un élément $x \in I \setminus \langle a \rangle$. Avec le lemme 3, on distingue deux cas qui vont mener à une contradiction.

- On suppose la relation x = aq + r. Comme $r \in I$ et N(r) < N(a), le choix de l'élément a implique r = 0 ce qui aboutit à la contradiction $x \in \langle a \rangle$.
- On suppose maintenant le relation 2x = aq + r. De même, on trouve r = 0, c'est-à-dire 2x = aq. L'idéal $\langle 2 \rangle$ étant maximal, il est premier ce qui nous donne l'alternative $a \in \langle 2 \rangle$ ou $q \in \langle 2 \rangle$. Comme $x \notin \langle a \rangle$, le second cas ne peut se produire. On obtient donc $q \notin \langle 2 \rangle$ et $a \in \langle 2 \rangle$. On écrit alors a = 2a' avec $a' \in \mathbf{Z}[\alpha]$ de telle sorte que x = a'q. Montrons que $a' \in I$. Comme l'idéal $\langle 2 \rangle$ est maximal et ne contient pas l'élément q, l'idéal $\langle 2, q \rangle$ est l'anneau $\mathbf{Z}[\alpha]$ tout entier, donc on peut trouver deux éléments $\lambda, \mu \in \mathbf{Z}[\alpha]$ tels que $2\lambda + q\mu = 1$. En multipliant par l'élément a', on obtient alors $a' = 2\lambda a' + q\mu a' = \lambda a + \mu x \in I$. Finalement, comme N(a') < 2N(a') = N(a), donc a' = 0, donc a = 0: absurde!

◁

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.