Curso: Engenharia de Produção

Desafios de Engenharia

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Os modelos

modelos qualitativos

modelos quantitativos matemáticos e estatísticos

modelos computacionais

modelos físicos

Modelos matemáticos e estatísticos

Modelos quantitativos:
expressam grandezas e as
unidades de medida
relacionadas com o problema

Contexto

Avaliação de desempenho: o sistema estará ou está funcionando de acordo com o esperado?

Controle de processos: operações de realimentação nas quais uma medida é usada para manter o processo dentro de condições específicas

Contagem: manter um registro do uso ou fluxo de uma determinada quantidade

Pesquisa: experimentos e realizadas medições pra sustentar hipóteses teóricas.

Projeto: testar novos produtos e processos.

Dimensão

Variável física usada para descrever ou especificar a natureza de uma quantidade mensurável.

Contém: o valor **numérico** e a **unidade** de comparação.

dimensões de base X dimensões derivadas

Grandezas de base

Grandeza de base	Símbolo	Unidade de base	Símbolo
comprimento	l, h, r, x	metro	m
massa	m	quilograma	kg
tempo, duração	t	segundo	S
corrente elétrica	I, i	ampere	Α
temperatura termodinâmica	T	kelvin	K
quantidade de substância	n	mol	mol
intensidade luminosa	$I_{ m v}$	candela	cd

Unidades de base

metro, m

Quilograma, kg

segundo, s

ampere, A

kelvin, K

mol, mol

candela, cd

Grandezas derivadas

Grandeza derivada	Símbolo	Símbolo Unidade derivada	
área	A	metro quadrado	m ²
volume	V	metro cúbico	m ³
velocidade	υ	metro por segundo	m/s
aceleração	а	metro por segundo ao quadrado	m/s ²
número de ondas	σ, ῦ	inverso do metro	m ⁻¹
massa específica	ρ	quilograma por metro cúbico	kg/m³
densidade superficial	$\rho_{\scriptscriptstyle A}$	quilograma por metro quadrado	kg/m ²
volume específico	υ	metro cúbico por quilograma	m³/kg
densidade de corrente	j	ampere por metro quadrado	A/m ²
campo magnético	Н	ampere por metro	A/m
concentração	c	mol por metro cúbico	mol/m ³
concentração de massa	ρ, γ	quilograma por metro cúbico	kg/m³
luminância	$L_{ m v}$	candela por metro quadrado	cd/m ²
índice de refração	n	um	1
permeabilidade relativa	μ_r	um	1

Grandeza derivada	Nome da unidade derivada	Símbolo da unidade	Expressão em termos de outras unidades
angulo plano	radiano	rad	m/m = 1
angulo sólido	esterradiano	sr	$m^2/m^2 = 1$
frequência	hertz	Hz	S ⁻¹
força	newton	N	m kg s ⁻²
pressão, tensão	pascal	Pa	$N/m^2 = m^{-1} kg s^{-2}$
energia, trabalho, quantidade de calor	joule	J	$N m = m^2 kg s^{-2}$
potência, fluxo de energia	watt	W	$J/s = m^2 kg s^{-3}$
carga elétrica, quantidade de eletricidade	coulomb	C	s A
diferença de potencial elétrico	volt	V	$W/A = m^2 kg s^{-3} A^{-1}$
capacitância	farad	F	$C/V = m^{-2} kg^{-1} s^4 A^2$
resistência elétrica	ohm	Ω	$V/A = m^2 kg s^{-3} A^{-2}$
condutância elétrica	siemens	S	$A/V = m^{-2} kg^{-1} s^3 A^2$
fluxo de indução magnética	weber	Wb	$V_S = m^2 kg s^{-2} A^{-1}$
indução magnética	tesla	T	$Wb/m^2 = kg s^{-2} A^{-1}$
indutância	henry	H	$Wb/A = m^2 kg s^{-2} A^{-2}$
temperatura Celsius	grau Celsius	°C	K
fluxo luminoso	lumen	lm	cd sr = cd
iluminância	lux	lx	$lm/m^2 = m^{-2} cd$
atividade de um radionuclídio	becquerel	Bq	s ⁻¹
dose absorvida, energia específica (comunicada), kerma	gray	Gy	$J/kg = m^2 s^{-2}$
equivalente de dose, equivalente de dose ambiente	sievert	Sv	$J/kg = m^2 s^{-2}$
atividade catalítica	katal	kat	s ⁻¹ mol

Grandezas derivadas com nomes especiais

Consistência dimensional

Os modelos matemáticos dos sistemas físicos são usualmente representados matematicamente por uma equação do tipo

alguma dimensão = relação de outras dimensões

a consistência dimensional requer que ambos os lados da equação possuam a mesma dimensão

Unidades SI

- O SI é o único sistema de unidades que é reconhecido universalmente, de modo que proporciona uma vantagem distinta quando se estabelece um diálogo internacional.
- BIPM: https://www.bipm.org/en/about-us/

Unidades não-SI

Grandeza	Unidade	Símbolo	Relação com o SI
tempo	minuto	min	$1 \min = 60 s$
	hora	h	1 h = 3600 s
	dia	d	1 d = 86400 s
volume	litro	L ou 1	$1 L = 1 dm^3$
massa	tonelada	t	1 t = 1000 kg
energia	elétronvolt	eV	$1 \text{ eV} \approx 1,602 \text{ x } 10^{-19} \text{ J}$
pressão	bar	bar	1 bar = 100 kPa
	milímetro de mercúrio	mmHg	1 mmHg ≈133,3 Pa
comprimento	angstrom ²	Å	$1 \text{ Å} = 10^{-10} \text{ m}$
	milha náutica	M	1 M = 1852 m
força	dina	dyn	$1 \text{ dyn} = 10^{-5} \text{ N}$
energia	erg	erg	$1 \text{ erg} = 10^{-7} \text{ J}$

Múltiplos e submúltiplos

Fator	Nome	Símbolo	Fator	Nome	Símbolo
10 ¹	deca	da	10-1	deci	d
10^{2}	hecto	h	10-2	centi	c
10^{3}	quilo	k	10-3	mili	m
10^{6}	mega	M	10-6	micro	μ
10 ⁹	giga	G	10-9	nano	n
1012	tera	T	10-12	pico	p
1015	peta	P	10-15	femto	f
10 ¹⁸	exa	Е	10-18	atto	a
10^{21}	zetta	Z	10-21	zepto	Z
10^{24}	yotta	Y	10-24	yocto	у

Aplicações de dimensões e unidades a problemas de engenharia

- Tratam de várias dimensões. Algumas delas utilizam unidades de base e unidades derivadas, além de outras unidades especiais.
- Atenção especial à verificação da consistência dimensional
- Modelagem computacional dos problemas
- Algumas poucas outras unidades não SI são utilizadas em alguns problemas.

Aplicações de dimensões e unidades a problemas de engenharia

- Os problemas precisam ser preliminarmente formulados: o modelo quantitativo.
- Variável: representação simbólica de informações, que pode assumir um valor numérico pertencente a um conjunto definido.

Aplicações de dimensões e unidades a problemas de engenharia

Problema 5: Formulação da Lei de Hooke. Dada uma certa mola, uma vez que lhe seja aplicada uma força ela sofre uma compressão ou alongamento de acordo uma constante, chamada constante da mola. A expressão matemática da Lei de Hooke é dada por F = kx, onde F é a força aplicada à mola, k é a constante da mola e x é o comprimento da compressão ou alongamento. Admitindo que seja conhecida a constante da mola e o deslocamento a ser produzido, determinar a força a ser aplicada. Resolva o problema utilizando o Octave e Excel.

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

