

SEL330 – LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA

PRÁTICA #2 – TRANSFORMADORES – PARTE 1

CIRCUITO EQUIVALENTE, RENDIMENTO E REGULAÇÃO DE TENSÃO

Professores: Eduardo Nobuhiro Asada, Elmer Pablo Tito Cari, José Carlos de Melo Vieira Junior, Luís Fernando Costa Alberto.

OBJETIVOS:

O principal objetivo desta prática é o levantamento dos parâmetros do circuito equivalente de um transformador de dois enrolamentos e seu emprego no cálculo da regulação e rendimento do transformador suprindo determinada carga. Espera-se que o estudante compreenda os ensaios necessários para a obtenção dos parâmetros do circuito equivalente do transformador e identifique os componentes de perdas em transformadores, relacionando-os com a regulação e o rendimento do equipamento.

PROBLEMA

O rendimento e a regulação de tensão são dois fatores importantes para avaliar o desempenho de um transformador operando em carga. Ambos os valores podem ser determinados analiticamente conhecendo-se o modelo do circuito equivalente do transformador, bem como os seus parâmetros. Sendo assim, propõem-se os seguintes problemas:

- (1) Obter experimentalmente os parâmetros do circuito equivalente completo de um transformador de dois enrolamentos;
- (2) De posse dos parâmetros obtidos em laboratório, calcular o rendimento e a regulação do transformador, admitindo-o alimentando uma carga de 540 W com fator de potência unitário e tensão nominal de 220V;

(3) Validar os cálculos realizando um ensaio de carregamento, empregando um conjunto de 9 lâmpadas incandescentes de 60 W disponível na bancada. Discutir as diferenças observadas entre os resultados teóricos e experimentais.

DISPOSITIVO EM ESTUDO

Para o transformador didático a ser ensaiado, configurá-lo para 110V no primário e 220V no secundário. Preencher os dados abaixo:

•	Potência nominal:	
•	Corrente nominal no primário:	
•	Corrente nominal no secundário:	_
•	Relação de transformação teórica:	_
•	Relação de transformação real:	_(caracterizar a relação de
	transformação por meio de um ensaio. Discuta	com o professor sobre a
	realização deste ensajo)	

ORIENTAÇÕES

- 1) O levantamento experimental dos parâmetros de um transformador pode ser feito executando-se os seguintes ensaios:
 - Ensaio em circuito aberto
 - Ensaio em curto-circuito
 - Ensaio em corrente contínua (para determinar as resistências de cada enrolamento)

Estude os procedimentos para a realização desses ensaios, esboce as montagens e discuta com o professor durante a aula.

- 2) Depois de realizados os ensaios para o levantamento dos parâmetros, proceda ao ensaio de carregamento.
- 3) Sobre o ensaio de carregamento, tenham em mente quais são as grandezas importantes para obter o rendimento e a regulação. Isto é essencial para verificar quais são os instrumentos de medida necessários na montagem do experimento. Esboce um esquema e discuta com o professor como realizar este ensaio. Recomenda-se ainda, inserir as lâmpadas gradativamente (uma a uma) e realizar as medições necessárias após cada inserção.

PREPARAÇÃO DA AULA

- 1) Esquematize os diagramas de ligação dos ensaios em circuito aberto, em curtocircuito e em corrente contínua e discuta com o professor no início da aula;
- 2) Esquematize o diagrama de ligação do ensaio de carregamento do transformador e discuta com o professor no início da aula.
- 3) Nos esquemas, não se esqueçam de indicar a ligação de todos os instrumentos de medição.

PRECAUÇÕES

Precaução 1) Não exceda as correntes máximas nominais dos enrolamentos.

Precaução 2) Cuidado ao manusear as lâmpadas no ensaio de carregamento, devido ao aquecimento das mesmas.

Precaução 3) Atentem-se à seleção das escalas nos instrumentos de medição. Uma escolha inadequada pode provocar danos ao instrumento.

OBSERVAÇÕES IMPORTANTES

Observação 1) O cálculo do rendimento e da regulação deve ser feito empregando o **modelo completo** do circuito equivalente do transformador.

Observação 2) Para prover uma análise mais abrangente dos resultados do ensaio de carregamento, construa as seguintes curvas a partir dos dados coletados nesse ensaio:

- Curva de carga: V₂xI₂ (tensão do secundário x corrente do secundário)
- Curva de regulação em função de I₂
- Curva do fator de potência do transformador em função de I₂
- Curva de rendimento em função de I₂

Observação 3) Nos gráficos obtidos anteriormente, indique o ponto de operação referente ao problema proposto (carga = 540W). Além disso, nos mesmos gráficos indique o ponto de operação referente a uma carga correspondente a 10% da carga em estudo. Compare e discuta as diferenças entre as duas situações em termos de V₂, regulação, fator de potência e rendimento.

BIBLIOGRAFIA

- [1] P. C. Sen, Principles of Electric Machine and Power Electronics, Wiley, 2013
- [2] G. McPersonn and R. D. Laramore, *Electrical Machines and Transformers*, John Wiley & Sons, 1981
- [3] A. E. Fitzgerald, C. Kingsley Jr., S. D. Umans, *Electric Machinery*, McGraw-Hill, 2003.