Giải tích số

Các phương pháp tìm gần đúng ma trận nghịch đảo

Nhóm 1

Vũ Thị Thu Hoài Nguyễn Thị Kim Hoa Nguyễn Hoa Phương Thảo Phạm Việt Hà Vũ Thị Ánh Nguyệt

Thứ sáu 21.05.2021

Mục lục

- Giới thiệu chung
- Phương pháp Newton
 - Ý tưởng
 - Công thức lặp và điều kiện hội tụ
 - Công thức sai số
 - Thuật toán và chương trình
- Các phương pháp tìm gần đúng nghịch đảo của ma trận chéo trội
- Phương pháp lặp Jacobi
 - Công thức lặp và điều kiện hội tụ
 - Công thức sai số
 - Thuật toán và chương trình
- Phương pháp lặp Gauss Seidel
 - Công thức lặp và điều kiện hội tụ
 - Công thức sai số
 - Thuật toán và chương trình
- Tổng kết

Giới thiệu chung

Cho ma trận A vuông cấp n khả nghịch. Tìm ma trận nghịch đảo của A.

$$A \in M_{n \times n}(R)$$

$$det(A) \neq 0$$

Cho ma trận A vuông cấp n khả nghịch. Tìm ma trận nghịch đảo của A.

$$A \in M_{n \times n}(R)$$

$$det(A) \neq 0$$

Cho ma trận A vuông cấp n khả nghịch. Tìm ma trận nghịch đảo của A.

$$A \in M_{n \times n}(R)$$

$$det(A) \neq 0$$

Tại sao phải giải gần đúng?

- 1. Khi giải đúng, thời gian tính toán lớn.
- 2. Sai số trong tính toán.

Các phương pháp giải gần đúng

- 1. Phương pháp Newton
- 2. Phương pháp lặp Jacobi
- 3. Phương pháp lặp Gauss Seidel

Các phương pháp giải gần đúng

- 1. Phương pháp Newton
- 2. Phương pháp lặp Jacobi
- 3. Phương pháp lặp Gauss Seidel

Các phương pháp giải gần đúng

- 1. Phương pháp Newton
- 2. Phương pháp lặp Jacobi
- 3. Phương pháp lặp Gauss Seidel

Phương pháp Newton Ý tưởng

 $\operatorname{Giả}$ sử cho số thực a khác 0, tìm x để $a \times x = 1$

$$\Rightarrow a = \frac{1}{x}, \quad a \neq 0.$$

$$f(x) = a - \frac{1}{x} = 0$$

 $\operatorname{Giả}$ sử cho số thực a khác 0, tìm x để $a \times x = 1$

$$\Rightarrow a = \frac{1}{x}, \quad a \neq 0.$$

$$f(x) = a - \frac{1}{x} = 0$$

 $\operatorname{Giả}$ sử cho số thực a khác 0, tìm x để $a \times x = 1$

$$\Rightarrow a = \frac{1}{x}, \quad a \neq 0.$$

Ta đăt:

$$f(x) = a - \frac{1}{x} = 0$$

 $\operatorname{Giả}$ sử cho số thực a khác 0, tìm x để $a \times x = 1$

$$\Rightarrow a = \frac{1}{x}, \quad a \neq 0.$$

Ta đăt:

$$f(x) = a - \frac{1}{x} = 0$$

Theo công thức Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{a - \frac{1}{x_k}}{\frac{1}{(x_k)^2}}$$

hay

$$x_{k+1} = x_k + x_k \times (1 - a \times x_k), \quad k \in N$$

Theo công thức Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{a - \frac{1}{x_k}}{\frac{1}{(x_k)^2}}$$

hay

$$x_{k+1} = x_k + x_k \times (1 - a \times x_k), \quad k \in N$$

Theo công thức Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{a - \frac{1}{x_k}}{\frac{1}{(x_k)^2}}$$

hay

$$x_{k+1} = x_k + x_k \times (1 - a \times x_k), \quad k \in N$$

Công thức lặp

Áp dụng với ma trận

$$X_{k+1} = X_k + X_k \times (E - A \times X_k), \quad k \in \mathbb{N}$$

Chủ đề 14 (Nhóm 1) Giải tích số Thứ sáu 21.05.2021

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}{}^2 = ... = G_0{}^{2^k}$

4日 → 4周 → 4 差 → 4 差 → 9 への

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}{}^2 = ... = G_0{}^2$

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = {G_{k-1}}^2 = ... = {G_0}^2$

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}^{\ \ 2} = \dots = G_0^{\ 2^k}$

◆ロト ◆個ト ◆差ト ◆差ト を めるの

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}{}^2 = ... = G_0{}^{2^k}$

<ロト < 回 ト < 亘 ト < 亘 ト へ 亘 ・ り へ ⊙

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}{}^2 = ... = G_0{}^{2^l}$

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ 9 Q ()

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}{}^2 = ... = G_0{}^{2^k}$

<ロト < 回 > < 回 > < 巨 > < 巨 > 三 9 < 0

Ta cần tìm điều kiện để:

$$\lim_{k \to \infty} X_k = A^{-1}$$

Ta đặt $G_k = E - A \times X_k$. Theo công thức lặp:

$$G_k = E - A(X_{k-1} + X_{k-1}(E - AX_{k-1}))$$

$$G_k = E - 2AX_{k-1} + (AX_{k-1})^2$$

$$G_k = (E - AX_{k-1})^2 = G_{k-1}^2$$

Theo công thức truy hồi, ta có: $G_k = G_{k-1}^2 = \dots = G_0^{2^k}$

Chủ đề 14 (Nhóm 1) Giải tích số Thứ sáu 21.05.2021

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên

$$|A^{-1} - X_k| \le ||A^{-1}|| . ||G_0||^{2^k}$$
 (1)

Nếu $||G_0|| < 1$ thì:

$$|A^{-1} - X_k| \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Kết luân

 $\mid G_0 \mid \mid < 1$ là điều kiện để quá trình lặp hội tụ

Măt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên

$$||A^{-1} - X_k|| \le ||A^{-1}|| . ||G_0||^{2^k}$$
 (1)

Nếu $||G_0|| < 1$ thì:

$$A^{-1} - X_k \parallel \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Kết luân

 $\mid G_0 \mid < 1$ là điều kiện để quá trình lặp hội tụ.

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| . ||G_0||^{2^k}$$
 (1)

Nếu $||G_0|| < 1$ thì:

$$A^{-1} - X_k \parallel \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Kết luân

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| . ||G_0||^{2^k}$$
 (1)

Nếu $||G_0|| < 1$ thì:

$$|A^{-1} - X_k| \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Kết luận

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| \cdot ||G_0||^{2^k}$$
 (1)

Nếu $||G_0|| < 1$ thì:

$$|A^{-1} - X_k| \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| \cdot ||G_0||^{2^k}$$
 (1)

Nếu $\parallel G_0 \parallel < 1$ thì:

$$\parallel A^{-1} - X_k \parallel \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| \cdot ||G_0||^{2^k}$$
 (1)

Nếu $\parallel G_0 \parallel < 1$ thì:

$$\parallel A^{-1} - X_k \parallel \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Kết luân

 $\mid G_0 \mid \mid < 1$ là điều kiện đế quá trình lặp hội tụ

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| \cdot ||G_0||^{2^k}$$
 (1)

Nếu $\parallel G_0 \parallel < 1$ thì:

$$\parallel A^{-1} - X_k \parallel \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

Kết luận

 $\mid G_0 \mid < 1$ là điều kiện để quá trình lặp hội tụ

Mặt khác

$$A^{-1} - X_k = A^{-1}(E - AX_k) = A^{-1}G_k = A^{-1}(G_0^{2^k})$$

nên:

$$||A^{-1} - X_k|| \le ||A^{-1}|| \cdot ||G_0||^{2^k}$$
 (1)

Nếu $||G_0|| < 1$ thì:

$$\parallel A^{-1} - X_k \parallel \longrightarrow 0, \quad k \to \infty$$
 (2)

hay

$$\lim_{k \to \infty} X_k = A^{-1}$$

 $\parallel G_0 \parallel < 1$ là điều kiện để quá trình lặp hội tụ.

Chủ đề 14 (Nhóm 1)

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0 (E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

$$|| A^{-1} || \le || X_0 || (1 + q + q^2 + ...) = \frac{|| X_0 ||}{1 - q}$$

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Rightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0 (E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra

$$|| A^{-1} || \le || X_0 || (1 + q + q^2 + ...) = \frac{|| X_0 ||}{1 - a}$$

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0 (E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra

$$||A^{-1}|| \le ||X_0|| (1+q+q^2+...) = \frac{||X_0||}{1-q}$$

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0 (E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra:

$$||A^{-1}|| \le ||X_0|| (1+q+q^2+...) = \frac{||X_0||}{1-q}$$

< ロ > < 部 > < 差 > < 差 > 差 → りへご

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0(E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra:

$$||A^{-1}|| \le ||X_0|| (1+q+q^2+...) = \frac{||X_0||}{1-q}$$

<ロ > < 個 > < 重 > < 重 > 重 > のQで

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0(E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra

$$||A^{-1}|| \le ||X_0|| (1+q+q^2+...) = \frac{||X_0||}{1-q}$$

←□▶ ←□▶ ← □▶ ← □ ▶ ← □ ♥ へ○

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0(E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra:

$$||A^{-1}|| \le ||X_0|| (1+q+q^2+...) = \frac{||X_0||}{1-q}$$

Giả sử $||G_0|| < q < 1$. Ta có:

$$G_0 = E - AX_0$$

$$\Leftrightarrow X_0 = A^{-1}(E - G_0)$$

$$\Leftrightarrow A^{-1} = X_0(E - G_0)^{-1}$$

$$\Leftrightarrow A^{-1} = X_0(E + G_0 + G_0^2 + ...)$$

Suy ra:

$$|| A^{-1} || \le || X_0 || (1 + q + q^2 + ...) = \frac{|| X_0 ||}{1 - q}$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 → りへ()

Thay vào công thức trên:

$$||A^{-1} - X_k|| \le \frac{||X_0||}{1 - q} \cdot ||G_0||^{2^k}$$

Công thức đánh giá sai số:

$$||A^{-1} - X_k|| \le \frac{||X_0||}{1 - q} \cdot q^{2^k}$$

Thay vào công thức trên:

$$|| A^{-1} - X_k || \le \frac{|| X_0 ||}{1 - q} . || G_0 ||^{2^k}$$

Công thức đánh giá sai số:

$$||A^{-1} - X_k|| \le \frac{||X_0||}{1 - q} \cdot q^{2^l}$$

Thay vào công thức trên:

$$|| A^{-1} - X_k || \le \frac{|| X_0 ||}{1 - q} . || G_0 ||^{2^k}$$

Công thức đánh giá sai số:

$$||A^{-1} - X_k|| \le \frac{||X_0||}{1 - q} \cdot q^{2^k}$$

Input, Output

Input: Ma trận A, xấp xỉ đầu X_0 sai số ε . Giả thiết coi như các điều kiện hội tụ thỏa mãn

Output: Ma trận xấp xỉ A^{-1}

Input, Output

Input: Ma trận A, xấp xỉ đầu X_0 sai số ε . Giả thiết coi như các điều kiện

hội tụ thỏa mãn

Output: Ma trận xấp xỉ A^{-1}

Mã giả

Thuật toán 1: Tìm xấp xỉ đầu X_0 bằng Gauss

Thuật toán 2: Phương pháp Newton tìm ma trận nghịch đảo

Mã giả

Thuật toán 1: Tìm xấp xỉ đầu X_0 bằng Gauss

Thuật toán 2: Phương pháp Newton tìm ma trận nghịch đảo

Input: A, X_0 , ε .

Output: Ma trận A^{-1} là ma trận nghịch đảo begin

$$\begin{split} &Nh\hat{q}p\ A,\ X_0,\ \varepsilon\ ;\\ &q\longleftarrow \parallel E-AX_0\parallel;\\ &k\longleftarrow 0;\\ &X\longleftarrow X_0;\\ &\text{while }\frac{\parallel X_0\parallel q^{2^k}}{1-q}>\varepsilon\ \text{do}\\ &X\longleftarrow X+X(E-AX);\\ &k\longleftarrow k\!+\!1;\\ &\text{end} \end{split}$$

Dưa ra X chính là ma trận nghịch đảo; end

Input: A, X_0 , ε .

Output: Ma trận A^{-1} là ma trận nghịch đảo

begin

$$\begin{split} &N h \hat{p} \; A, \; X_0, \; \varepsilon \; ; \\ &q \longleftarrow \parallel E - A X_0 \; \parallel; \\ &k \longleftarrow 0; \\ &X \longleftarrow X_0; \\ &\text{while} \; \frac{\parallel X_0 \parallel q^{2^k}}{1-q} > \varepsilon \; \mathbf{do} \\ &X \longleftarrow X + X(E-AX); \\ &k \longleftarrow k+1; \\ &\text{end} \end{split}$$

Dưa ra X chính là ma trận nghịch đảo; e**nd**

◆ロト ◆個ト ◆重ト ◆重ト ■ からの

Input: A, X_0 , ε .

Output: Ma trận A^{-1} là ma trận nghịch đảo

begin

$$\begin{split} &N h \hat{p} \; A, \; X_0, \; \varepsilon \; ; \\ &q \longleftarrow \parallel E - A X_0 \; \parallel; \\ &k \longleftarrow 0; \\ &X \longleftarrow X_0; \\ &\text{while} \; \frac{\parallel X_0 \parallel q^{2^k}}{1-q} > \varepsilon \; \text{do} \\ &X \longleftarrow X + X(E-AX); \\ &k \longleftarrow k+1; \\ &\text{end} \end{split}$$

Dưa ra X chính là ma trận nghịch đảo; end

4□ > 4圖 > 4 = > 4 = > = 900

Input: A, X_0 , ε .

Output: Ma trận A^{-1} là ma trận nghịch đảo

begin

$$\begin{split} &\textit{Nhập } A, \ X_0, \ \varepsilon \ ; \\ &q \longleftarrow \parallel E - AX_0 \ \parallel; \\ &k \longleftarrow 0; \\ &X \longleftarrow X_0; \\ & \text{while } \frac{\parallel X_0 \parallel q^{2^k}}{1-q} > \varepsilon \ \text{do} \\ &X \longleftarrow X + X(E-AX); \\ &k \longleftarrow k+1; \\ &\text{end} \end{split}$$

Dưa ra X chính là ma trận nghịch đảo; end


```
Input: A, X_0, \varepsilon.
```

Output: Ma trận A^{-1} là ma trận nghịch đảo

begin

$$\begin{split} &\textit{Nhập } A, \ X_0, \ \varepsilon \ ; \\ &q \longleftarrow \parallel E - AX_0 \ \parallel; \\ &k \longleftarrow 0; \\ &X \longleftarrow X_0; \\ & \text{while } \frac{\parallel X_0 \parallel q^{2^k}}{1-q} > \varepsilon \ \text{do} \\ &X \longleftarrow X + X(E-AX); \\ &k \longleftarrow k+1; \\ &\text{end} \end{split}$$

Đưa ra X chính là ma trận nghịch đảo; end

Sơ đồ khối

Các phương pháp tìm gần đúng nghịch đảo của ma trận chéo trội

Giải phương trình AX=b với A là ma trận chéo trội

Ý tưởng

Đưa phương trình về dạng

$$AX = b \Leftrightarrow X = BX + d$$

$$X_n = BX_{n-1} + d, \quad x_0 \in \mathbb{R}^m$$

Giải phương trình AX=b với A là ma trận chéo trội

Ý tưởng:

Đưa phương trình về dạng

$$AX = b \Leftrightarrow X = BX + d$$

$$X_n = BX_{n-1} + d, \quad x_0 \in \mathbb{R}^m$$

Giải phương trình AX=b với A là ma trận chéo trội

Ý tưởng:

Đưa phương trình về dạng

$$AX = b \Leftrightarrow X = BX + d$$

$$X_n = BX_{n-1} + d, \quad x_0 \in R^m$$

Giải phương trình AX=b với A là ma trận chéo trội

Ý tưởng:

Đưa phương trình về dạng

$$AX = b \Leftrightarrow X = BX + d$$

$$X_n = BX_{n-1} + d, \quad x_0 \in R^m$$

Giải phương trình AX=b với A là ma trận chéo trội

Ý tưởng:

Đưa phương trình về dạng

$$AX = b \Leftrightarrow X = BX + d$$

$$X_n = BX_{n-1} + d, \quad x_0 \in \mathbb{R}^m$$

Giải phương trình AX=b với A là ma trận chéo trội

Ý tưởng:

Đưa phương trình về dạng

$$AX = b \Leftrightarrow X = BX + d$$

$$X_n = BX_{n-1} + d, \quad x_0 \in R^m$$

Cho ma trận vuông $B \in R^{m \times m}$

Định lý

Với mỗi $\varepsilon>0$ tồn tại một chuẩn trên $R^{m\times m}$ sao cho $\rho(B)\leq \parallel B\parallel \leq \rho(B)+\varepsilon$

Hệ quả

Nếu $\parallel B \parallel < 1$ với một chuẩn nào đó thì dãy lặp x_n sẽ hội tụ về nghiệm x của hệ phương trình.

Vậy làm thế nào để chứng minh ho(B) < 1 ?

Cho ma trận vuông $B \in R^{m \times m}$

Định lý

Với mỗi $\varepsilon>0$ tồn tại một chuẩn trên $R^{m\times m}$ sao cho $\rho(B)\leq \parallel B\parallel \leq \rho(B)+\varepsilon$

Hệ quả

Nếu $\parallel B \parallel < 1$ với một chuẩn nào đó thì dãy lặp x_n sẽ hội tụ về nghiệm x của hệ phương trình.

Vậy làm thế nào để chứng minh ho(B) < 1 ?

Cho ma trận vuông $B \in R^{m \times m}$

Định lý

Với mỗi $\varepsilon>0$ tồn tại một chuẩn trên $R^{m\times m}$ sao cho $\rho(B)\leq \parallel B\parallel \leq \rho(B)+\varepsilon$

Hệ quả

Nếu $\parallel B \parallel < 1$ với một chuẩn nào đó thì dãy lặp x_n sẽ hội tụ về nghiệm x của hệ phương trình.

Vậy làm thế nào để chứng minh ho(B) < 1 ?

 Chủ đề 14 (Nhóm 1)
 Giải tích số
 Thứ sáu 21.05.2021

Cho ma trận vuông $B \in R^{m \times m}$

Định lý

Với mỗi $\varepsilon>0$ tồn tại một chuẩn trên $R^{m\times m}$ sao cho $\rho(B)\leq \parallel B\parallel \leq \rho(B)+\varepsilon$

Hệ quả

Nếu $\parallel B \parallel < 1$ với một chuẩn nào đó thì dãy lặp x_n sẽ hội tụ về nghiệm x của hệ phương trình.

Vậy làm thế nào để chứng minh $\rho(B) < 1$?

Các phương pháp

- 1. Phương pháp Jacobi
- 2. Phương pháp Gauss Seidel

Các phương pháp

- 1. Phương pháp Jacobi
- 2. Phương pháp Gauss Seidel

Phương pháp lặp Jacobi Công thức lặp và điều kiện hội tụ

Công thức lặp và điều kiện hội tụ

Như trong phần lặp Jacobi đã được trình bày trong tuần trước, với $D=diag\frac{1}{A_{ii}}, i=1,2,...,n$ là ma trận đường chéo cấp n

Phương pháp lặp Jacobi

$$X_{k+1} = (E - DA)X_k + D$$

Điều kiện hội tụ của phương pháp: $\parallel E-DA\parallel < 1$, hay ma trận A phải chéo trội.

∢□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶

Công thức lặp và điều kiện hội tụ

Như trong phần lặp Jacobi đã được trình bày trong tuần trước, với $D=diag\frac{1}{A_{ii}}, i=1,2,...,n$ là ma trận đường chéo cấp n

Phương pháp lặp Jacobi

$$X_{k+1} = (E - DA)X_k + D \tag{4}$$

Điều kiện hội tụ của phương pháp: $\parallel E - DA \parallel < 1$, hay ma trận A phải chéo trội.

< ロト < /p>
◆ ロト
◆ 日 ト
◆ 日 ト
◆ 日 ト
◆ の < ()</p>

Công thức lặp và điều kiện hội tụ

Như trong phần lặp Jacobi đã được trình bày trong tuần trước, với $D=diag\frac{1}{A_{ii}}, i=1,2,...,n$ là ma trận đường chéo cấp n

Phương pháp lặp Jacobi

$$X_{k+1} = (E - DA)X_k + D \tag{4}$$

Điều kiện hội tụ của phương pháp: $\parallel E - DA \parallel < 1$, hay ma trận A phải chéo trội.

<ロト < 個ト < 置ト < 重ト < 重 とり Q C

Với $D=diag\frac{1}{A_{ii}}, i=1,2,...,n.$ Ta xét 2 trường hợp:

1. Ma trận chéo trội hàng

$$\sum_{i=1, j \neq i}^{n} |A_{ij}| < |A_{ii}|, \quad \forall i = 1, 2, ..., n$$
 (5)

Đặt C=E-DA, tồn tại một số q để $\parallel C\parallel_{\infty} \leq q < 1$

Công thức sai số

$$\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$$
 (6)

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1 - q} \|X_1 - X_0\|_{\infty}$$
 (7)

Với $D = diag \frac{1}{A...}, i = 1, 2, ..., n$. Ta xét 2 trường hợp:

1. Ma trân chéo trội hàng

$$\sum_{j=1, j \neq i}^{n} |A_{ij}| < |A_{ii}|, \quad \forall i = 1, 2, ..., n$$
 (5)

$$\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$$
 (6)

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1 - q} \|X_1 - X_0\|_{\infty}$$
 (7)

Với $D = diag \frac{1}{A...}, i = 1, 2, ..., n$. Ta xét 2 trường hợp:

1. Ma trân chéo trội hàng

$$\sum_{i=1, j \neq i}^{n} |A_{ij}| < |A_{ii}|, \quad \forall i = 1, 2, ..., n$$
 (5)

$$\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$$
 (6)

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1-q} \|X_1 - X_0\|_{\infty}$$
 (7)

Với $D = diag \frac{1}{A...}, i = 1, 2, ..., n$. Ta xét 2 trường hợp:

1. Ma trân chéo trội hàng

$$\sum_{i=1, j\neq i}^{n} |A_{ij}| < |A_{ii}|, \quad \forall i = 1, 2, ..., n$$
 (5)

Đặt C=E-DA, tồn tại một số q để $\parallel C\parallel_{\infty} \leq q < 1$

$$\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$$
 (6)

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1 - q} \|X_1 - X_0\|_{\infty}$$
 (7)

Với $D = diag \frac{1}{A...}, i = 1, 2, ..., n$. Ta xét 2 trường hợp:

1. Ma trận chéo trội hàng

$$\sum_{i=1, j \neq i}^{n} |A_{ij}| < |A_{ii}|, \quad \forall i = 1, 2, ..., n$$
(5)

Đặt C=E-DA, tồn tại một số q để $\parallel C\parallel_{\infty} \leq q < 1$

Công thức sai số

$$\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$$
 (6)

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1 - q} \|X_1 - X_0\|_{\infty}$$
 (7)

2. Ma trân chéo trôi côt

$$\sum_{i=1, i \neq j}^{n} |A_{ij}| < |A_{jj}|, \quad \forall j = 1, 2, ..., n$$
(8)

Đặt $C_1=E-AD$ và $\lambda=\frac{max|A_{ii}|}{min|A_{ii}|}$, khi đó tồn tại một số q để $\mid C_1\mid_1\leq q<1$

Công thức sai số

$$\|X_k - X^*\|_1 \le \lambda \frac{q}{1-q} \|X_k - X_{k-1}\|_1$$
 (9)

$$X_k - X^* \parallel_1 \le \lambda \frac{q^k}{1 - q} \parallel X_1 - X_0 \parallel_1$$
 (10)

2. Ma trân chéo trôi côt

$$\sum_{i=1, i \neq j}^{n} |A_{ij}| < |A_{jj}|, \quad \forall j = 1, 2, ..., n$$
(8)

Đặt $C_1=E-AD$ và $\lambda=\frac{max|A_{ii}|}{min|A_{ii}|}$, khi đó tồn tại một số q để $\mid C_1\mid_1\leq q<1$

Công thức sai số

$$\|X_k - X^*\|_1 \le \lambda \frac{q}{1-q} \|X_k - X_{k-1}\|_1$$
 (9)

$$\|X_k - X^*\|_1 \le \lambda \frac{q^k}{1-q} \|X_1 - X_0\|_1$$
 (10)

2. Ma trân chéo trôi côt

$$\sum_{i=1, i \neq j}^{n} |A_{ij}| < |A_{jj}|, \quad \forall j = 1, 2, ..., n$$
(8)

Đặt $C_1=E-AD$ và $\lambda=\frac{\max|A_{ii}|}{\min|A_{ii}|}$, khi đó tồn tại một số q để $\parallel C_1\parallel_1\leq q<1$

Công thức sai số

$$\|X_k - X^*\|_1 \le \lambda \frac{q}{1-q} \|X_k - X_{k-1}\|_1$$
 (9)

$$\|X_k - X^*\|_1 \le \lambda \frac{q^k}{1 - q} \|X_1 - X_0\|_1$$
 (10)

2. Ma trân chéo trôi côt

$$\sum_{i=1, i\neq j}^{n} |A_{ij}| < |A_{jj}|, \quad \forall j = 1, 2, ..., n$$
(8)

Đặt $C_1=E-AD$ và $\lambda=\frac{\max|A_{ii}|}{\min|A_{ii}|}$, khi đó tồn tại một số q để $\parallel C_1\parallel_1\leq q<1$

Công thức sai số

$$|| X_k - X^* ||_1 \le \lambda \frac{q}{1 - q} || X_k - X_{k-1} ||_1$$
 (9)

$$\|X_k - X^*\|_1 \le \lambda \frac{q^k}{1 - q} \|X_1 - X_0\|_1$$
 (10)

Sơ đồ khối

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^*=A^{-1}$ begin

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ...; 1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Jacobi(A, B, A1);
```

Dưa ra X^st chính là ma trận nghịch đảo; end

Dưa ra X^st chính là ma trận nghịch đảo; end


```
Input: Ma trận A chéo trội và sai số \varepsilon . Output: Ma trận nghịch đảo X^*=A^{-1} begin
```

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ...; 1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Jacobi(A, B, A1);
```

Đưa ra X^st chính là ma trận nghịch đảo; ${f end}$


```
Input: Ma trận A chéo trội và sai số \varepsilon . Output: Ma trận nghịch đảo X^*=A^{-1} begin Nhập\ A,m,n,\ \varepsilon\ ;
```

```
B \longleftarrow diag(1;1;...;1);
A1 \longleftarrow A;
check(A,B,eps);
X^* \longleftarrow Jacobi(A,B,A1);
```

Dưa ra X^st chính là ma trận nghịch đảo; end


```
Input: Ma trận A chéo trội và sai số \varepsilon . Output: Ma trận nghịch đảo X^*=A^{-1} begin
```

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ...; 1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Jacobi(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo; end

- 1. Gói chọn chuẩn: function norm(A)
- 2. Gói kiểm tra ma trận chéo trội hàng: function checkrow(A)
- 3. Gói kiếm tra ma trận chéo trội: function normalize(A)
- 4. Gói lặp Đánh giá hậu nghiệm: function singleloop1(A,A1,Alpha,Beta,D)
- 5. Gói lặp Đánh giá tiên nghiệm: function singleloop2(A, A1, Alpha, Beta, D)
- 6. Gói lặp Lặp Jacobi: function Jacobi(A,A1,B)

- 1. Gói chọn chuẩn: function norm(A)
- 2. Gói kiếm tra ma trận chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra ma trận chéo trội: function normalize(A)
- 4. Gói lặp Đánh giá hậu nghiệm: function singleloop1(A,A1,Alpha,Beta,D)
- 5. Gói lặp Đánh giá tiên nghiệm: function singleloop2(A, A1, Alpha, Beta, D)
- 6. Gói lặp Lặp Jacobi: function Jacobi(A,A1,B)

- 1. Gói chọn chuẩn: function norm(A)
- 2. Gói kiếm tra ma trận chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiểm tra ma trận chéo trội: function normalize(A)
- 4. Gói lặp Đánh giá hậu nghiệm: function singleloop1(A,A1,Alpha,Beta,D)
- 5. Gói lặp Đánh giá tiên nghiệm: function singleloop2(A,A1,Alpha,Beta,D)
- 6. Gói lặp Lặp Jacobi: function Jacobi(A,A1,B)

- 1. Gói chọn chuẩn: function norm(A)
- 2. Gói kiếm tra ma trận chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra ma trận chéo trội: function normalize(A)
- 4. Gói lặp Đánh giá hậu nghiệm: function singleloop1(A,A1,Alpha,Beta,D)
- 5. Gói lặp Đánh giá tiên nghiệm: function singleloop2(A,A1,Alpha,Beta,D)
- 6. Gói lặp Lặp Jacobi: function Jacobi(A,A1,B)

- 1. Gói chọn chuẩn: function norm(A)
- 2. Gói kiếm tra ma trận chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra ma trận chéo trội: function normalize(A)
- 4. Gói lặp Đánh giá hậu nghiệm: function singleloop1(A,A1,Alpha,Beta,D)
- 5. Gói lặp Đánh giá tiên nghiệm: function singleloop2(A,A1,Alpha,Beta,D)
- 6. Gói lặp Lặp Jacobi: function Jacobi(A, A1, B)

- 1. Gói chọn chuẩn: function norm(A)
- 2. Gói kiếm tra ma trận chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra ma trận chéo trội: function normalize(A)
- 4. Gói lặp Đánh giá hậu nghiệm: function singleloop1(A,A1,Alpha,Beta,D)
- 5. Gói lặp Đánh giá tiên nghiệm: function singleloop2(A,A1,Alpha,Beta,D)
- 6. Gói lặp Lặp Jacobi: function Jacobi(A,A1,B)

Phương pháp lặp Gauss - Seidel Công thức lặp và điều kiện hội tụ

Công thức lặp và điều kiện hội tụ

Như trong phần lặp Jacobi với $T=diag\frac{1}{A_{nn}}, n=1,2,...,n$ và đặt B=E-TA

Phương pháp lặp Gauss - Seidel

$$X_i^{(k+1)} = \sum_{j=1}^{i-1} B_{ij} X_j^{(k+1)} + \sum_{j=i+1}^n B_{ij} X_j^{(k)} + T_i, \quad i = 1, 2, ..., n \quad (11)$$

Điều kiện hội tụ của phương pháp: Ma trận A phải chéo trội

<ロ > < 個 > < 重 > < 重 > 重 > の Q で

Công thức lặp và điều kiến hội tu

Như trong phần lặp Jacobi với $T = diag \frac{1}{4}, n = 1, 2, ..., n$ và đặt B = E - TA

Phương pháp lặp Gauss - Seidel

$$X_i^{(k+1)} = \sum_{j=1}^{i-1} B_{ij} X_j^{(k+1)} + \sum_{j=i+1}^n B_{ij} X_j^{(k)} + T_i, \quad i = 1, 2, ..., n \quad (11)$$

Công thức lặp và điều kiện hội tu

Như trong phần lặp Jacobi với $T = diag \frac{1}{4}, n = 1, 2, ..., n$ và đặt B = E - TA

Phương pháp lặp Gauss - Seidel

$$X_i^{(k+1)} = \sum_{j=1}^{i-1} B_{ij} X_j^{(k+1)} + \sum_{j=i+1}^n B_{ij} X_j^{(k)} + T_i, \quad i = 1, 2, ..., n \quad (11)$$

Điểu kiên hội tu của phương pháp: Ma trân A phải chéo trôi.

1. Ma trận chéo trội hàng

Đặt
$$B = E - TA$$
. Ta có: $q = \max_{1 \le i \le n} \frac{\sum\limits_{j=i}^{n} |B_{ij}|}{1 - \sum\limits_{j=1}^{n} |B_{ij}|} < \parallel B \parallel_{\infty} < 1$, $S = 0$

Công thức hậu nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q}{(1-q)(1-S)} \|X_k - X_{k-1}\|_{\infty}$$
 (12)

Công thức tiên nghiệm

$$||X_k - X^*||_{\infty} \le \frac{q^k}{(1-q)(1-S)} |||X_{(1)} - X_{(0)}||_{\infty}$$
 (13)

 ✓ □ ▷ ✓ ⓓ ▷ ✓ 菎 ▷ ☒ ♡ ℚ ℂ

 Chủ đề 14 (Nhóm 1)
 Giải tích số
 Thứ sáu 21.05.2021

1. Ma trận chéo trội hàng

Đặt
$$B=E-TA$$
. Ta có: $q=\max_{1\leq i\leq n}\frac{\sum\limits_{j=i}^{n}|B_{ij}|}{1-\sum\limits_{j=1}^{i-1}|B_{ij}|}<\parallel B\parallel_{\infty}<1,~~S=0$

Công thức hậu nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q}{(1-q)(1-S)} \|X_k - X_{k-1}\|_{\infty}$$
 (12)

Công thức tiên nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{(1-q)(1-S)} \|X_{(1)} - X_{(0)}\|_{\infty}$$
 (13)

1. Ma trận chéo trội hàng

Đặt
$$B=E-TA$$
. Ta có: $q=\max_{1\leq i\leq n}\frac{\sum\limits_{j=i}^{n}|B_{ij}|}{1-\sum\limits_{j=1}^{i-1}|B_{ij}|}<\parallel B\parallel_{\infty}<1$, $S=0$

Công thức hậu nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q}{(1-q)(1-S)} \|X_k - X_{k-1}\|_{\infty}$$
 (12)

Công thức tiên nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{(1-q)(1-S)} \|X_{(1)} - X_{(0)}\|_{\infty}$$

<ロト < /p>

 Chủ đề 14 (Nhóm 1)
 Giải tích số
 Thứ sáu 21.05.2021

1. Ma trận chéo trội hàng

Đặt
$$B=E-TA$$
. Ta có: $q=\max_{1\leq i\leq n}\frac{\sum\limits_{j=i}^{n}|B_{ij}|}{1-\sum\limits_{j=1}^{i-1}|B_{ij}|}<\parallel B\parallel_{\infty}<1,~~S=0$

Công thức hậu nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q}{(1-q)(1-S)} \|X_k - X_{k-1}\|_{\infty}$$
 (12)

Công thức tiên nghiệm

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{(1-q)(1-S)} \|X_{(1)} - X_{(0)}\|_{\infty}$$
 (13)

2. Ma trận chéo trội cột

Đặt $B_1 = E - AT$. Ta có:

$$q = \max_{1 \le i \le n} \frac{\sum_{j=1}^{i} |B_{1_{ji}}|}{1 - \sum_{j=i+1}^{n} |B_{1_{ji}}|} < ||B_{1}||_{1} < 1$$
(14)

$$S = \max_{1 \le i \le n} \sum_{j=i+1}^{n} |B_{1_{ji}}|$$

◆□▶ ◆御▶ ◆陰▶ ◆陰▶ ○ 陰 ○ 釣९(

 Chủ đề 14 (Nhóm 1)
 Giải tích số
 Thứ sáu 21.05.2021

2. Ma trận chéo trội cột

Đặt $B_1 = E - AT$. Ta có:

$$q = \max_{1 \le i \le n} \frac{\sum_{j=1}^{i} |B_{1_{ji}}|}{1 - \sum_{j=i+1}^{n} |B_{1_{ji}}|} < ||B_{1}||_{1} < 1$$
(14)

$$S = \max_{1 \le i \le n} \sum_{j=i+1}^{n} |B_{1_{ji}}|$$

< □ > < ₫ > < 를 > < 를 > < € <) < ()

2. Ma trận chéo trội cột

Đặt $B_1 = E - AT$. Ta có:

$$q = \max_{1 \le i \le n} \frac{\sum_{j=1}^{i} |B_{1_{ji}}|}{1 - \sum_{j=i+1}^{n} |B_{1_{ji}}|} < ||B_{1}||_{1} < 1$$
(14)

$$S = \max_{1 \le i \le n} \sum_{j=i+1}^{n} |B_{1_{ji}}|$$

∢□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶
√□▶

2. Ma trận chéo trội cột

Đặt $B_1 = E - AT$. Ta có:

$$q = \max_{1 \le i \le n} \frac{\sum_{j=1}^{i} |B_{1_{ji}}|}{1 - \sum_{j=i+1}^{n} |B_{1_{ji}}|} < ||B_{1}||_{1} < 1$$
(14)

$$S = \max_{1 \le i \le n} \sum_{j=i+1}^{n} |B_{1_{ji}}|$$

< ロト < /p>
◆ ロト
◆ 日 ト
◆ 日 ト
◆ 日 ト
◆ の < ()</p>

2. Ma trân chéo trôi côt

Công thức hâu nghiêm

$$\|X_k - X^*\|_1 \le \frac{q}{(1-S)(1-q)} \|X_k - X_{k-1}\|_1$$
 (16)

Công thức tiên nghiệm

$$\|X_k - X^*\|_1 \le \frac{q^k}{(1-q)(1-S)} \|X_{(1)} - X_{(0)}\|_1$$
 (17)

<ロト < 個ト < 置ト < 重ト < 重 ・ の Q (

Công thức sai số

2. Ma trân chéo trôi côt

Công thức hậu nghiệm

$$\|X_k - X^*\|_1 \le \frac{q}{(1-S)(1-q)} \|X_k - X_{k-1}\|_1$$
 (16)

Công thức tiên nghiệm

$$\|X_k - X^*\|_1 \le \frac{q^k}{(1-q)(1-S)} \|X_{(1)} - X_{(0)}\|_1$$
 (17)

(□) (□) (□) (□) (□)

Công thức sai số

2. Ma trân chéo trôi côt

Công thức hậu nghiệm

$$\|X_k - X^*\|_1 \le \frac{q}{(1-S)(1-q)} \|X_k - X_{k-1}\|_1$$
 (16)

Công thức tiên nghiệm

$$\|X_k - X^*\|_1 \le \frac{q^k}{(1-q)(1-S)} \|X_{(1)} - X_{(0)}\|_1$$
 (17)

Sơ đồ khối

₹ ୬९୯

Chủ đề 14 (Nhóm 1)

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^*=A^{-1}$, số lần lặp và ma trận nhân ngược ${f begin}$

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ...1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Gauss - Seidel(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo, số lần lặp và ma trận nhân ngược; end

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^{st}=A^{-1}$, số lần lặp và ma trận nhân ngược.

begin

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ...1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Gauss - Seidel(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo, số lần lặp và ma trận nhân ngược; end

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^*=A^{-1}$, số lần lặp và ma trận nhân ngược. **begin**

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ...1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Gauss - Seidel(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo, số lần lặp và ma trận nhân ngược; end

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^*=A^{-1}$, số lần lặp và ma trận nhân ngược.

begin

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ... 1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Gauss - Seidel(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo, số lần lặp và ma trận nhân ngược; end

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^*=A^{-1}$, số lần lặp và ma trận nhân ngược.

begin

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ... 1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Gauss - Seidel(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo, số lần lặp và ma trận nhân ngược;

DACII KIIIOA

Input: Ma trận A chéo trội và sai số ε .

Output: Ma trận nghịch đảo $X^{st}=A^{-1}$, số lần lặp và ma trận nhân ngược. **begin**

```
Nhập A, m, n, \varepsilon;

B \leftarrow diag(1; 1; ... 1);

A1 \leftarrow A;

check(A, B, eps);

X^* \leftarrow Gauss - Seidel(A, B, A1);
```

Đưa ra X^* chính là ma trận nghịch đảo, số lần lặp và ma trận nhân ngược; end

1. Gói chọn chuẩn của A: function norm(A)

- 2. Gói kiểm tra A chéo trội hàng: function checkrow(A)
- 3. Gói kiếm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function
- loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function checkrow(A)
- 3. Gói kiểm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A, B, X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function
- loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiểm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A, B, X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function
- loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A,B,X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- 6. Gói lặp Đánh giá tiên nghiệm : function
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix-lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

Chủ đề 14 (Nhóm 1)

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function checkrow(A)
- 3. Gói kiếm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A,B,X)
- 5. Gói lặp Đánh giá hậu nghiệm: function loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A,B,X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra ${\sf A}$ chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A,B,X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function
- loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
 - 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

メロトオ御トオ連トオ連ト 連 めのの

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A,B,X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function
- loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

◆ロト ◆個ト ◆園ト ◆園ト ■ りへ○

- 1. Gói chọn chuẩn của A: function norm(A)
- 2. Gói kiểm tra A chéo trội hàng: function $\operatorname{checkrow}(A)$
- 3. Gói kiếm tra A chéo trội: function normalize(A)
- 4. Gói đưa ra ma trận X1 mới từ ma trận X0 ban đầu bằng phương pháp lặp Gauss-Seidel: function calc(A,B,X)
- 5. Gói lặp Đánh giá hậu nghiệm: function
- loop1(Alpha, Beta, D, A1, q, S)
- 6. Gói lặp Đánh giá tiên nghiệm : function
- loop2(Alpha, Beta, D, A1, q, S)
- 7. Gói tính hệ số co: function hesoco(alpha)
- 8. Gói tính ma trận Lower: function matrix lower(A)
- 9. Gói lặp Lặp Gauss-Seidel: function Gauss-Seidel(A,B,A1)

Tổng kết

Nhận xét chung

- 1. Giảm thời gian tính toán so với tính đúng.
- 2. Sai số ổn định hơn vì được cải thiện sau mỗi bước lặp

Nhận xét riêng

- 1. Phương pháp Newton khó tìm được xấp xỉ đầu nhưng lại có thuật toán đơn giản hơn, tốc độ hội tụ nhanh nhất.
- 2. Phương pháp lặp Jacobi có tốc độ hội tụ chậm hơn Gauss Seidel. Tuy nhiên, cả hai phương pháp đều yêu cầu ma trận phải chéo trội.

The End

