Equivalence of term

May 23, 2021

CwF and SpITC Definition

Category with familly

Definition

A Category with familly :

- 1. C, a category
- 2. Ty, Tm : $\mathcal{C}^{\mathrm{op}} \to \mathsf{Set}$
- 3. $p: Tm \rightarrow Ty$
- 4. for each $\Gamma : \mathcal{C}$ and $A : \mathsf{Ty}(\Gamma)$
 - 4.1 $\Gamma.A:\mathcal{C}$ and $\pi_A:\Gamma.A\to\Gamma$,
 - 4.2 an element te A: Tm(Γ .A), such that p(te A) = Ty π_A A: Ty(Γ .A),
 - 4.3 and the following pullback $y(\Gamma.A) \xrightarrow{yy(te_A)} Tm$ $\downarrow p$ $y(\Gamma) \xrightarrow{y(A)} Ty$

Split-Type Cateogry

Definition

A **Split-type-category structure** on $\mathcal C$ consists of:

- 1. for each object $\Gamma : \mathcal{C}$, a set $\mathsf{Ty}(\Gamma)$,
- 2. for each $\Gamma : \mathcal{C}$ and $A : \mathsf{Ty}(\Gamma)$, an object $\Gamma A : \mathcal{C}$ and a morphism $\pi_A : \Gamma A \to \Gamma$,
- 3. for each map $f: \Gamma' \to \Gamma$, a function $_^*: \mathsf{Ty}(\Gamma) \to \mathsf{Ty}(\Gamma')$ and axiom for indenty and composition, denoted $A \mapsto f^*A$,
- 4. for each Γ , A: Ty(Γ), and f: $\Gamma' \to \Gamma$, a morphism q(f, A): $\Gamma'.f^*A \to \Gamma.A$ with

axiom for indentiy and composition, such that

$$\Gamma'.f^*A \xrightarrow{q(f,A)} \Gamma.A$$

$$\downarrow^{\pi_{f^*A}} \qquad \downarrow^{\pi_A}$$

$$\Gamma' \xrightarrow{f} \qquad \Gamma$$

3

Term in CwF and SpITC

Term definitions

Display Term type

for each
$$\Gamma : \mathcal{C}, A : \mathsf{Ty} \ \Gamma$$
,

$$tm A = \sum_{(a:Tm \ \Gamma)} (p \ a = A)$$

Category with familly

Term type

for each
$$\Gamma : \mathcal{C}, A : \mathsf{Ty} \Gamma$$
,

$$tm \ A = \sum_{(s: \mathcal{C}[\![\Gamma, \Gamma. A]\!])} (s \circ \pi_A = identity \ \Gamma)$$

Split-Type Category

Equivalence

Equivalence

Object Extension structure

Definition

A **Object extension structure** on $\mathcal C$ consists of:

- 1. a functor Ty : $\mathcal{C}^{op} \to \mathsf{Set}$
- 2. for each $\Gamma : \mathcal{C}$ and $A : \mathsf{Ty}(\Gamma)$, an object $\Gamma.A : \mathcal{C}$ and a morphism $\pi_A : \Gamma.A \to \Gamma$,
- \Rightarrow Only reordering form both definitions.

qq-morphism structure

Definition

A **qq-morphism structure** on $\mathcal C$ and O an object extension structure consists of: for each Γ , A: Ty(Γ), and f: $\Gamma' \to \Gamma$, a morphism q(f, A): $\Gamma'.f^*A \to \Gamma.A$ with axiom for indentity and composition, such that

$$\Gamma'.f^*A \xrightarrow{\mathbf{q}(f,A)} \Gamma.A$$

$$\downarrow_{\pi_{f^*A}} \qquad \downarrow_{\pi_A}$$

$$\Gamma' \xrightarrow{f} \Gamma$$

$$\Rightarrow$$
 spltype $C \approx \sum_{O: \text{objext } C} \text{qmor } O$

7

Term structure

Definition

A **term structure** on C and O an object extension structure consists of:

- 1. a presheaf $\mathsf{Tm}:\mathcal{C}^{op}\to\mathsf{Set},$ a natural transformation $p:\mathsf{Tm}\to\mathsf{Ty}$
- 2. for each $\Gamma : \mathcal{C}$ and $A : \mathsf{Ty}(\Gamma)$
 - 2.1 $\Gamma.A: \mathcal{C}$ and $\pi_A: \Gamma.A \to \Gamma$,
 - 2.2 an element te $A : Tm(\Gamma.A)$, such that $p(te A) = Ty \pi_A A : Ty(\Gamma.A)$,
 - 2.3 and the following pullback $y(\Gamma.A) \xrightarrow{yy(\text{te}_A)} \text{Tm}$ $y(\pi_A) \downarrow \xrightarrow{J} \downarrow p$ $y(\Gamma) \xrightarrow{yy(A)} \text{Ty}$

$$\Rightarrow \text{cwf } C \approx \sum_{O: \text{objext } C} \text{termstruc } O$$

Equivalence

Compatibility

Compatibility

a qq-morphism structure ${\it Q}$ and a term structre ${\it T}$ over ${\it O}$ are compatible if

$$te(f^* A) = q(f, A)^* te(A)$$

term-compatibility

for each qq-morphism structure ${\it Q}$ over ${\it O}$, We can define

$$T^{C} := \sum_{(T:term_structure\ O)}, compatible\ T\ Q.$$

qq-compatibility

for each term structure T over O, We can define

$$Q^{C} := \sum_{(Q:qq_morphism_structure\ O)}, compatible\ T\ Q.$$

Compatibility

weq_term_qq

 $qq_morphism_structureO \simeq term_structureO$

suffle

$$\sum_{(T: term_structure\ O)}, Q^C \simeq \sum_{(Q: qq_morphism_structure\ O)}, T^C$$

forget_compat_qq

$$\sum_{(T:term_structure\ O)}, Q^C \simeq term_structure\ O$$

forget_compat_qq

$$\sum_{(Q:qq_morphism_structure\ O)}, T^{C} \simeq qq_morphism_structure\ O$$

Proof : By showing that $\mathcal{T}^{\mathcal{C}}$, $\mathcal{Q}^{\mathcal{C}}$ are contractible

Canonical term_stucture form a qq_structure

- Same object structure so same Ty, _ . _ ,π _
- For all $\Gamma: \mathcal{C}$, $Tm = \prod_{\Gamma: \mathcal{C}} \sum_{A: Ty} \prod_{\Gamma} \sum_{s: \mathcal{C}[\![\Gamma, \Gamma. A]\!]} s \circ \pi_A = identity \Gamma$
- For all $\Gamma, \Delta : C$, $f : C[\Gamma, \Delta]$, $Tm \ f := (fun \ A => A, fun(s, ids) => pb_of_section(qq_{\pi}_Pb \ Q) \ ids)$
- So with that, $Tm: \mathcal{C}^{op} \to \mathsf{Set}$
- For all Γ : C, a : Tm Γ , p a=pr1 a, natural transformation.
- te $A = (\pi_A^* \ A, q(\pi_A, A)\pi_A)$

Term and Type equivalence

With a split type structure as Context

Context

- ullet a Category ${\cal C}$
- A Split Type Structure over C, SC
- The asssociate object extension structure O
- the associate qq structure Q
- the associate term structre *T*
- the associate Category with familly structure CWF

Type Equivalence

reind type

$$reind_type \{ \Gamma \Delta : \mathcal{C} \} \ (f : \mathcal{C}[\![\Delta, \Gamma]\!]) : \mathit{Ty} \ \Gamma \to \mathit{Ty} \ \Delta$$

- Almost everything work
- even the reindextion just by reflexivity
- and just by reflexivity
- Since Ty := Ty

Type Equivalence

What doesn't work (for now)

- Context extension doesn't work
- $\Gamma.A$ can be interpreted as a element of type pr1 CWF but not clear that $\Gamma.A = \Gamma.A$
- So, Type familly suffer for the same problem
- Ty $\Gamma.A = Ty \Gamma.A$ but not Ty $\Gamma.A = Ty \Gamma.A$
- So, Dependants Types also doesn't work (same problem)

Term definitions - callback

Display Term type

for each
$$\Gamma : \mathcal{C}, A : \mathsf{Ty} \ \Gamma$$
,

$$tm A = \sum_{(a:Tm \ \Gamma)} (p \ a = A)$$

Category with familly

Term type

for each
$$\Gamma : \mathcal{C}, A : \mathsf{Ty} \Gamma$$
,

$$tm \ A = \sum_{(s: \mathcal{C}[\![\Gamma, \Gamma. A]\!])} (s \circ \pi_A = identity \ \Gamma)$$

Split-Type Category

Term form a qq-structure

tm_form_qq

$$extstyle Tm = \prod_{\Gamma:\mathcal{C}} \sum_{A:Ty} \sum_{\Gamma:s:\mathcal{C}[\![\Gamma,\Gamma.A]\!]} s \circ \pi_A = identity \ \Gamma$$

⇒ Create a intermediate display term type with Tm

tm_inter

$$tm_inter \{\Gamma : \mathcal{C}\}\ (A : \mathsf{Ty}\ \Gamma) = \sum_{a : \mathsf{Tm}\ \Gamma} (pr_1\ a = A)$$

first part of the equivalence

```
tm_equiv_inter  tm\_inter \; \{\Gamma:\mathcal{C}\} \; (A:\mathsf{Ty}\;\Gamma) \simeq tm \; \{\Gamma:\mathcal{C}\} \; (A:\mathsf{Ty}\;\Gamma)
```

 \Rightarrow Just by path induction \Leftarrow Just by formation rule of sigma types

second part of the equivalence

tm_equiv_interbis

$$tm_inter \{\Gamma : \mathcal{C}\} \ (A : \mathsf{Ty} \ \Gamma) \simeq tm \ \{\Gamma : \mathcal{C}\} \ (A : \mathsf{Ty} \ \Gamma)$$

So,
$$\sum_{a:Tm} (pr_1 \ a = A) = \sum_{(a:Tm} (p \ a = A)$$

Which is just reflexivity, since Tm := Tm and p on term is defined as pr1 cf

tm_equiv

$$tm \{\Gamma : \mathcal{C}\} (A : \mathsf{Ty} \ \Gamma) \simeq tm \{\Gamma : \mathcal{C}\} (A : \mathsf{Ty} \ \Gamma)$$

transport of term

$transport_tm$

$$\textit{transportf}_\textit{tm}~\{\Gamma:\mathcal{C}\}~\{\textit{A}~\textit{A}':\mathsf{Ty}~\Gamma\}~(\textit{e}:\textit{A}=\textit{A}'):\textit{tm}~\textit{A}\simeq\textit{tm}~\textit{A}'$$

Equivalence and Transport

For all
$$\Gamma : C$$
, A , A' : Ty Γ , $e : A = A'$, $a : tm A$

reindexation of term - Proof

- Complete proof
- no intermediate step with a tm inter-like
- Since tm_inter is a Sigma Type with a proposition as the second part, Only

```
pr_1 reind\_tm\_inter e (tm\_equiv a) = pr_1(tm\_equiv (reind\_tm e a))
```

• and after that just path induction on e

reindexation of term

$\begin{array}{c} \textbf{reind_tm} \\ \\ \textbf{reind_tm} \; \{ \Gamma \Delta : \mathcal{C} \} \; (A : \mathsf{Ty} \; \Gamma) \; (f : \mathcal{C} \llbracket \Delta, \Gamma \rrbracket) : \textbf{tm} \; A \rightarrow \textbf{tm} \; (\textbf{reind_type} \; f \; A) \end{array}$

Equivalence and Transport

For all
$$\Gamma$$
 , Δ : C , A : Ty Γ , f : $C[\![\Delta,\Gamma]\!]$, a : tm A

$$reind_tm \ e \ (tm_equiv \ a) = (tm_equiv \ (reind_tm \ e \ a))$$

reindexation of term - Proof

- Complete proof
- intermediate step with a reind _tm_inter just like the equivalence.
- Since tm_inter is a Sigma Type with a proposition as the second part, Only

```
pr_1 reind\_tm\_inter e (tm\_equiv a) = pr_1(tm\_equiv (reind\_tm e a))
```

• Ugly and take a bit of time but work

structure as Context

Term and Type equivalence

With a category with familly

Global

- For now only testing
- But seem harder
- no complete automatic Ty equivalence