Бинарная классификация движения цен по новостному потоку

Борисов Александр

9 декабря 2018 г.

0.1 Сравнение классификаторов на разных признаках

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.7811	0.7181		
	Unigrams	2	0.8061	0.4973	0.8093	0.5565
	Unigrams	3	0.8408	0.4541		
	NMF 50	1	0.7397	0.6080		
	NMF 50	2	0.8087	0.5000	0.7647	0.5394
	NMF 50	3	0.7458	0.5102		
	NMF 100	1	0.7602	0.5841		
RF	NMF 100	2	0.8061	0.4973	0.7984	0.5487
	NMF 100	3	0.8288	0.5648		
	NMF 200	1	0.7720	0.7235		
	NMF 200	2	0.8087	0.5000	0.7996	0.5838
	NMF 200	3	0.8180	0.5278		
	Ensemble	1	0.7907	0.7198		
	Ensemble	2	0.8018	0.5006	0.8045	0.5617
	Ensemble	3	0.821	0.4648		

Таблица 1: RandomForestClassifier on 3 data sets

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.8371	0.7623		
	Unigrams	2	0.8035	0.4946	0.835	0.5805
	Unigrams	3	0.8643	0.4846		
	NMF 50	1	0.8239	0.7508		
	NMF 50	2	0.8035	0.4946	0.8284	0.5716
	NMF 50	3	0.8577	0.4693		
	NMF 100	1	0.7989	0.7054		
XGB	NMF 100	2	0.8035	0.4946	0.8257	0.5586
	NMF 100	3	0.8747	0.4759		
	NMF 200	1	0.7923	0.6815		
	NMF 200	2	0.8061	0.4973	0.8221	0.5617
	NMF 200	3	0.8679	0.5063		
	Ensemble	1	0.8046	0.7314		
	Ensemble	2	0.8035	0.4946	0.8217	0.5680
	Ensemble	3	0.8571	0.4780		
	Unigrams	1	0.8217	0.6873		
	Unigrams	2	0.8087	0.5000	0.8464	$\boldsymbol{0.5624}$
	Unigrams	3	0.9087	0.5000		
	NMF 50	1	0.8235	0.6831		
	NMF 50	2	0.8087	0.5000	0.8470	0.5610
	NMF 50	3	0.9087	0.5000		
	NMF 100	1	0.8154	0.6724		
LR	NMF 100	2	0.8087	0.5000	0.8443	0.5575
	NMF 100	3	0.9087	0.5000		
	NMF 200	1	0.8244	0.6811		
	NMF 200	2	0.8087	0.5000	0.8473	0.5604
	NMF 200	3	0.9087	0.5000		
	Ensemble	1	0.8214	0.6782		
	Ensemble	2	0.8087	0.5000	0.8463	0.5594
	Ensemble	3	0.9087	0.5000		

Таблица 2: XGBClassifier & Logistic Regression on 3 data sets

					Av	erage
Classifier	Features	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
	Unigrams	1	0.7952	0.5957		
	Unigrams	2	0.8087	0.5000	0.8309	0.5406
	Unigrams	3	0.8889	0.5260		
	NMF 50	1	0.8049	0.6204		
	NMF 50	2	0.8087	0.5000	0.8349	0.5495
	NMF 50	3	0.8912	0.5281		
	NMF 100	1	0.7933	0.5907		
LSVC	NMF 100	2	0.8087	0.5000	0.8310	0.5396
	NMF 100	3	0.8912	0.5281		
	NMF 200	1	0.7962	0.5936		
	NMF 200	2	0.8087	0.5000	0.8312	0.5399
	NMF 200	3	0.8889	0.5260		
	Ensemble	1	0.8029	0.6155		
	Ensemble	2	0.8087	0.5000	0.8343	0.5479
	Ensemble	3	0.8912	0.5281		

Таблица 3: LinearSVC on 3 data sets

Будем обозначать модели Random Forest Classifier, XGB Classifier, Logistic Regression и Linear SVC как RF, XGB, LR и LSVC, соответственно. Сравнив модели (RF, XGB, LR, LSVC) на разных признаках (Unigrams, NMF 50, NMF 100, NMF 200, Ensemble) выберем признаки, на которых модели давали лучший результат по F1 Score. Такими оказались: Unigrams (для моделей RF и XGB), NMF 50 (для модели LSVC) и NMF 200 (для модели LR). Далее будем оптимизировать модели с этими признаками (RF с Unigrams, XGB с Unigrams, LSVC с NMF 50 и LR с NMF 200) по гиперпараметрам.

0.2 RandomForestClassifier c Unigrams

							Ave	Average
\max_depth	max_depth min_samples_leaf	min_samples_split	n_estimators	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
None	ಣ	ಣ	2000	1 2 3 3 3	0.8087 0.9080	0.7710 0.5000 0.5174	0.8615	0.5961
None	ಣ	23	2000	1 2 8	0.8663 0.8087 0.9084	0.7751 0.5000 0.5087	0.8611	0.5946
10	က	73	1000	3 2 1	0.8661 0.8087 0.9084	0.7640 0.5000 0.5087	0.8611	0.5909
None	က	2	1000	1 2 8	0.8647 0.8087 0.9080	0.7681 0.5000 0.5174	0.8605	0.5952
20	ಣ	ည	2000	3 2 3	0.8640 0.8087 0.9084	0.7702 0.5000 0.5087	0.8604	0.5930
10	က	ည	2000	3 2 3	0.8639 0.8087 0.9084	0.7591 0.5000 0.5087	0.8603	0.5892
20	3	2	2000	3 2 3	0.8647 0.8087 0.9062	0.7681 0.5000 0.5065	0.8599	0.5915
20	33	2	1000	3 3 3	0.8624 0.8087 0.9080	0.7632 0.5000 0.5174	0.8597	0.5935
None	3	ശ	1000	1 2 3	0.8624 0.8087 0.9080	0.7632 0.5000 0.5174	0.8597	0.5935

Таблица 4: RandomForestClassifier with Unigrams

0.3 XGBClassifier c Unigrams

							Av	Average
gamma	learning_rate	$\max_{-} depth$	n_estimators Data Set	Data Set	F1 Score	F1 Score AUC ROC	F1 Score	AUC ROC
				П				
None				2				
				က				
None				2				
				3				
				-				
None				2				
				3				
				1				
None				2				
				က				
				1				
None				2				
				က				
				1				
None				2				
				3				
None				2				
				3				
				.				
None				2				
				ಣ				
				1				
None				2				
				3				

0.4 SVC c NMF

							Av	Average
gamma	learning_rate	max_depth	n_estimators	Data Set	F1 Score	AUC ROC	F1 Score	AUC ROC
0	0.1	က	50	1 2 8	0.8291	0.7495	0.8419	0.5824
0.2	0.1	6	50	1 2 8	0.8391 0.8087 0.8742	0.7269 0.5000 0.4846	0.8407	0.5705
0.2	0.1	6	100	1 2 8	0.8457 0.8087 0.8649	0.7417 0.5000 0.4759	0.8398	0.5725
0.2	0.01	6	1000	3 2 3	0.8387 0.8087 0.8714	0.7380 0.5000 0.4911	0.8396	0.5764
0	0.1	6	200	7 2 6	0.8415 0.8061 0.8690	0.7520 0.4973 0.4889	0.8389	0.5794
0	0.1	6	1000	3 2 1	0.8343 0.8061 0.8760	0.7483 0.4973 0.4955	0.8388	0.5804
None				3 2 1				
None				1 2 8				
None				3 2 1				