Problem 1

- (a) How many different sets of quantum numbers (n, l, m_l, m_s) are possible for an electron in the 4f level of an atom? Explain your answer.
- (b) Suppose that an atom has four electrons in the 4f level. What is the maximum possible value for the total m_s of the four electrons?
- (c) What is the maximum possible total m_l of four 4f electrons?
- (d) Suppose an atom instead has ten electrons in the 4f level. What is the maximum possible value for the total m_s of the ten 4f electrons?
- (e) What is the maximum possible total m_l of the ten 4f electrons?
- a.) The n value is set. For n=4, 4 values of l are possible. For each value of l, l*2+1 values of m_l are possible. And for all those, we multiply by two for the two possible values of spin. Thinking only of l and m_l , There are 16 possible combinations of l and m_l . We can multiply this by two for spin and get a total of 32.

l	$\mid m_l \mid$	total
0	0	1
1	-1, 0, 1	3
2	-2, -1, 0, 1, 2	5
3	-1, 0, 1 -2, -1, 0, 1, 2 -3, -2, -1, 0, 1, 2, 3	7

- **b.)** If all the electrons are +1/2, the total will be 2.
- **c.**) The highest m_l is 3, which two electrons can have. 3+3+2+2=10.
- d.) After 7 electrons fill the available + spin spots, they will have to be negative. So the total is the same, 2.
- e.) We'll have to fill all the l=3 m_l s before hitting the higher ones a second time for a higher value. So 7 go 1 each, then 3 give 3,2,1 for a total of 6.

Problem 2

- (a) What is the electronic configuration of Fe (Z=26)? (b) In its ground state, what is the maximum possible total m_s of its electrons? (c) When the electrons have their maximum possible total m_s , what is the maximum total m_l ? (d) Suppose one of the d electrons is excited to the next highest level. What is the maximum possible total m_s , and when m_s has its maximum total what is the maximum total m_l ?
- **a.**) $[Ar]4s^23d^6$
- **b.)** All the full groups will have a total of zero. There must be one pair of electrons in the 3d layer, so there will be 4 upaired ones. If they're all positive, that gives +2.
- **c.)** If the +2 l is the full one, we get +2.
- **d.)** We get the maximum total m_s if the paired electron is the one that's excited, adding 1 for +3. In this situation all the 3d electrons are unpaired which means the total m_l for them is zero. To get the highest possible m_l the excited electron must be in the $4s^1 + 2$.

- 1

Problem 3

The ground state of singly ionized lithium (Z=3) is $1s^2$. Use the electron screening model to predict the energies of the $1s^12p^1$ and $1s^13d^1$ excited states for singly ionized lithium? Compare your predictions with the measured energies (13.4 eV and 6.0 eV, respectively).

 $1s^{1}2p^{1}$:

The excited electron is screened by the one remaining 1s electron.

$$Z_{eff} = 3 - 1 = 2$$

$$E_n = (-13.6) \frac{Z_{eff}^2}{n^2}$$

$$E_n = (-13.6) \frac{2^2}{2^2} = -13.6eV$$

There is pretty good agreement with the measured value, implying there is some penetration of the 2p electron into the 1s layer.

 $1s^{1}2d^{1}$:

$$E_n = (-13.6) \frac{2^2}{3^2} = -6.0 eV$$

There is exact agreement here, implying that there is no penetration of the exited electron into the screened layer.

Problem 4

The molecular vibrational energy of CO is $0.2691 \, \text{eV}$, when the constituents of the molecule are the most abundant isotopes of carbon $(m = 12.00 \, \text{u})$ and oxygen $(m = 16.00 \, \text{u})$. (a) What would be the vibrational energy if the oxygen were replaced by the less abundant isotope with mass $18.00 \, \text{u}$? (b) What would be the vibrational energy if the carbon in the original CO were instead replaced with radioactive carbon (used in radiocarbon dating) with mass $14.00 \, \text{u}$?

0