For each of exercises 1–4, write the formula a_n that models each sequence, starting at n = 1.

1. $\{1, 3, 5, 7, \ldots\}$

3. $\{2, 6, 18, 54, \ldots\}$

2. $\left\{\frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \ldots\right\}$

4. $\left\{\frac{2}{3}, -\frac{4}{4}, \frac{8}{5}, -\frac{16}{6}, \ldots\right\}$

For each of exercises 5-10, find the value to which the sequence converges or show that it diverges.

 $5. \quad a_n = \frac{n-2}{n+5}$

8. $\{-2, 2, -2, 2, \ldots\}$

6. $b_n = \frac{n^2 + 4n - 8}{3n^4 + 5}$

9. $\left\{\frac{3}{4}, \frac{9}{16}, \frac{27}{64}, \frac{81}{256}, \ldots\right\}$

7. $a_n = \frac{n^3 - 8n^2 + 12n - 5}{9n^2 + 5n - 12}$

10. $\{0, -3, -6, -9, \ldots\}$

For each of exercises 11–16, determine whether or not the divergence test establishes divergence for the series.

11. $\sum_{n=2}^{\infty} \frac{2n^2}{5n^2 + 11n - 7}$

14. $2 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \cdots$

12. $\sum_{n=0}^{\infty} \cos(n)$

15. $3-3+3-3+3+\cdots$

13. $\sum_{n=1}^{\infty} e^n \cdot 3^{-n}$

16. $\sum_{n=10}^{\infty} \frac{n!}{n^{170870} - 2}$

- 17. Consider the family of sums $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.
 - a. Find formulas for a_n and b_n such that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both diverge and $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ diverges.
 - b. Find formulas for a_n and b_n such that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both diverge and $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ converges.

- 18. Determine whether the following statement is true or false: If $\{a_n\}$ converges, then so does $\sum a_n$.
- 19. Determine whether the following statement is true or false: If $\{a_n\}$ diverges, then so does $\sum a_n$.