GATE - PH - 2015 - 53 - 65

ai24btech11030 - Shiven Bajpai

- 1) A particle of mass 0.01 kg falls freely in the earth's gravitational field with an initial velocity $v(0) = 10 \,\mathrm{ms}^{-1}$. If the air exerts a frictional force of the form, f = -kv, then for $k = 0.05 \,\mathrm{Nm^{-1}} \cdot \mathrm{s}$, the velocity (in ms⁻¹) at time $t = 0.2 \,\mathrm{s}$ is(up to two decimal places). (use $g = 10 \,\mathrm{ms}^{-2}$ and e = 2.72) (GATE PH 2015)
- 2) In the nuclear shell model, the potential is modeled as $V(r) = \frac{1}{2}m\omega^2 r^2 \lambda \mathbf{L} \cdot \mathbf{S}, \lambda > 0$. The correct spin-parity and isospin assignments for the ground state of ¹³C is (GATE PH 2015)
- a) $\frac{1}{2}$; $-\frac{1}{2}$ b) $\frac{1}{2}$; $-\frac{1}{2}$ c) $\frac{3}{2}$; $-\frac{1}{2}$ d) $\frac{3}{2}$; $-\frac{1}{2}$

1

3) A particle is confined in a box of length L as shown below.

If the potential V_0 is treated as a perturbation, including the first order correction, the ground state energy is (GATE PH 2015)

a)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} + V_0$$

$$E = \frac{\hbar^2 \pi^2}{2mL^2} - \frac{V_0}{2}$$

$$E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V}{4}$$

a)
$$E = \frac{\hbar^2 \pi^2}{2mL^2} + V_0$$
 b) $E = \frac{\hbar^2 \pi^2}{2mL^2} - \frac{V_0}{2}$ c) $E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{4}$ d) $E = \frac{\hbar^2 \pi^2}{2mL^2} + \frac{V_0}{2}$

4) Suppose a linear harmonic oscillator of frequency ω and mass m is in the state

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\psi_0\rangle + e^{\frac{\pi}{2}} |\psi_1\rangle \right)$$
 at $t = 0$

where $|\psi_0\rangle$ and $|\psi_1\rangle$ are the ground and the first excited states, respectively. The value of $\langle \psi | x | \psi \rangle$ in the units of $\sqrt{\frac{\hbar}{m\omega}}$ at t = 0 is (GATE PH 2015)

- 5) A particle with rest mass M is at rest and decays into two particles of equal rest masses $\frac{3}{10}M$ which move along the z axis. Their velocities are given by (GATE PH 2015)
 - a) $\mathbf{v}_1 = \mathbf{v}_2 = (0.8c)\hat{z}$

c)
$$\mathbf{v}_1 = -\mathbf{v}_2 = (0.6c)\hat{z}$$

b) $\mathbf{v}_1 = -\mathbf{v}_2 = (0.8c)\hat{z}$

d)
$$\mathbf{v}_1 = (0.6c)\hat{z}$$
; $\mathbf{v}_2 = (-0.8c)\hat{z}$

6) In the given circuit, if the open loop gain $A = 10^5$, the feedback configuration and the closed loop gain A_f are

(GATE PH 2015)

a) series-shunt, $A_f = 9$

c) series-shunt, $A_f = 10$

b) series-series, $A_f = 10$

- d) shunt-shunt, $A_f = 10$
- 7) A function y(z) satisfies the ordinary differential equation

$$y'' + \frac{1}{z}y' - \frac{m^2}{z^2}y = 0,$$

where $m = 0, 1, 2, 3, \dots$ Consider the four statements P, Q, R, S as given below.

P: z^m and z^{-m} are linearly independent solutions for all values of m

Q: z^m and z^{-m} are linearly independent solutions for all values of m > 0

R: $\ln z$ and 1 are linearly independent solutions for m=0

S: z^m and $\ln z$ are linearly independent solutions for all values of m

The correct option for the combination of valid statements is (GATE PH 2015)

- a) P, R and S only b) P and R only
- c) Q and R only
- d) R and S only
- 8) The entropy of a gas containing N particles enclosed in a volume V is given by $S = Nk_B \ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{5}{2}}}\right)$, where E is the total energy, a is a constant, and k_B is the Boltzmann constant. The chemical potential μ of the system at a temperature T is given by (GATE PH 2015)

a)
$$\mu = -k_B T \left[\ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{5}{2}}} \right) - \frac{5}{2} \right]$$

b) $\mu = -k_B T \left[\ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{5}{2}}} \right) - \frac{3}{2} \right]$

c)
$$\mu = -k_B T \left[\ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{3}{2}}} \right) - \frac{5}{2} \right]$$

d) $\mu = -k_B T \left[\ln \left(\frac{aVE^{\frac{3}{2}}}{N^{\frac{3}{2}}} \right) - \frac{3}{2} \right]$

9) Let the Hamiltonian for two spin- $\frac{1}{2}$ particles of equal masses m, momenta p_1 and p_2 , and positions r_1 and r_2 be

$$H = \frac{1}{2m}p_1^2 + \frac{1}{2m}p_2^2 + \frac{1}{2}m\omega^2(r_1^2 + r_2^2) + k\sigma_1 \cdot \sigma_2,$$

where σ_1 and σ_2 denote the corresponding Pauli matrices, $\hbar\omega = 0.1 \,\mathrm{eV}$ and $k = 0.1 \,\mathrm{eV}$ 0.2 eV. If the ground state has net spin zero, then the energy (in eV) is (GATE PH 2015)

10) The average energy U of a one dimensional quantum oscillator of frequency ω and in contact with a heat bath at temperature T is given by (GATE PH 2015)

a)
$$U = \frac{1}{2}\hbar\omega \coth\left(\frac{1}{2}\beta\hbar\omega\right)$$

 b) $U = \frac{1}{2}\hbar\omega \sinh\left(\frac{1}{2}\beta\hbar\omega\right)$
 c) $U = \frac{1}{2}\hbar\omega \tanh\left(\frac{1}{2}\beta\hbar\omega\right)$
 d) $U = \frac{1}{2}\hbar\omega \cosh\left(\frac{1}{2}\beta\hbar\omega\right)$

- 11) A monochromatic plane wave (wavelength = $600 \, \mathrm{nm}$) $E_0 \, \mathrm{exp}[i(kz \omega t)]$ is incident normally on a diffraction grating giving rise to a plane wave $E_1 \, \mathrm{exp} \, [i(k_1 \cdot r \omega t)]$ in the first order of diffraction. Here $E_1 < E_0$ and $k_1 = |k_1| \left[\frac{1}{2}\hat{x} + \frac{\sqrt{3}}{2}\hat{z}\right]$. The period (in μ m) of the diffraction grating is (upto one decimal place) (GATE PH 2015)
- 12) The Heaviside function is defined as $H(t) = \begin{cases} +1 & \text{for } t > 0 \\ -1 & \text{for } t < 0 \end{cases}$ and its Fourier transform is given by $-\frac{2i}{\omega}$. The Fourier transform of $\frac{1}{2} [H(t+1/2) H(t-1/2)]$ is (GATE PH 2015)
 - a) $\frac{\sin(\frac{\omega}{2})}{\frac{\omega}{2}}$ b) $\frac{\cos(\frac{\omega}{2})}{\frac{\omega}{2}}$ c) $\sin(\frac{\omega}{2})$ d) 0
- 13) The atomic masses of $^{152}_{63}$ Eu, $^{152}_{62}$ Sm, $^{1}_{1}$ H and neutron are 151.921749, 151.919756, 1.007825 and 1.008665 in atomic mass units (amu), respectively. Using the above information, the Q-value of the reaction $^{152}_{63}$ Eu + $n \rightarrow ^{152}_{62}$ Sm + p is×10⁻³ amu (up to three decimal places) (GATE PH 2015)