CSE 3000 - Predictive Crime Modeling

Objective

Develop a crime prediction model using historical crime data, conduct back-testing to evaluate its accuracy, and analyze for potential racial and/or socioeconomic bias in its predictions.

Assignment Details

Part 1: Data Preparation and Algorithm Development

• Data Collection:

- Use publicly available crime data from platforms like:
 - * LAPD Open Data
 - * Chicago Data Portal
 - * NYPD datasets
- Focus on data with attributes like:
 - * Time: Date, hour, day of the week.
 - * Location: Latitude, longitude, precinct/neighborhood.
 - * Crime Type: Categories like theft, assault, or drug possession.
 - * **Demographics:** If available, include race/ethnicity data for offenders/victims.

• Feature Engineering:

- Extract meaningful features (e.g., crime density, time of day, or weather conditions if available).
- Aggregate spatial data (e.g., divide into grid cells or precincts).

• Algorithm Training:

- Split data into training and test sets (e.g., 80/20).
- Train a predictive model (e.g., Random Forest, Logistic Regression) to predict:
 - * Crime occurrence in a location (binary classification).
 - * Crime type in a given area (multiclass classification).
- Evaluate accuracy using metrics like precision, recall, F1 score, or confusion matrices.

• Back-testing:

- Use a sliding window or similar technique to test predictions on historical data.
- Compare predictions to actual crime rates.

Part 2: Bias Analysis

• Identify Demographic Trends:

- Use demographic data of neighborhoods (e.g., census data).
- Overlay predicted high-crime zones with racial or socioeconomic information.

• Analyze Prediction Bias:

- Evaluate if certain racial or economic groups are disproportionately targeted by high-crime predictions.
- Quantify bias using statistical methods:
 - * False Positive Rate Disparity: Measure false positives across demographic groups.
 - * Disparate Impact Analysis: Calculate if predictions disproportionately affect certain groups.

• Visualize Results:

- Use mapping tools to display predicted hotspots alongside demographic data.
- Create charts showing differences in error rates or risk scores by demographic group.

Deliverables

• Code Submission:

- Provide a Python script or Jupyter Notebook that implements the tests and analysis.
- Include well-documented code and instructions.

• Presentation (5-10 minutes):

- Summarize findings using visualizations like maps, charts, and confusion matrices.
- Propose solutions to mitigate identified biases (e.g., fairer data collection or weighting).

• Technical Report:

- Data Summary: Describe the dataset and preprocessing steps.
- Algorithm Performance: Provide back-testing metrics and evaluate model accuracy.
- Bias Analysis: Quantify and discuss any racial and/or socioeconomic disparities.

Example Workflow

- **Predictive Modeling:** Train and evaluate a predictive model using the prepared data.
- Bias Metrics:
 - False Positive Rate Disparity.
 - Disparate Impact.
- Visualization: Use Folium for mapping hotspots and demographics.

Ethical Reflection Prompts

- What are the potential risks of using such models in real-world policing?
- How might biased data (e.g., historical over-policing in minority neighborhoods) skew predictions?
- How could you adjust your algorithm or data collection process to mitigate bias?

Grading Criteria

- Presentation and Report (40%): Clarity, visualizations, and technical rigor.
- Bias Analysis (30%): Depth of analysis and quality of insights.
- Algorithm Design (20%): Data preprocessing, feature engineering, and model accuracy.
- \bullet Ethical Reflection (10%): Discussion of implications of using this model, and proposed improvements.