Clasificación Lineal y Evaluación del Desempeño

Inteligencia Artificial

Marco Teran

Contenido

- 1 Cuantificación de las pérdidas
- 2 Entrenamiento
- 3 Optimización
- 4 Mini-lotes
- **5** Sobreajuste (overfitting)
- 6 Regularización

Cuantificación de las pérdidas

Cuantificación de las pérdidas

La pérdida (loss) de nuestra red mide el costo incurrido por las predicciones incorrectas

Pérdidas empíricas

La pérdida empírica mide la pérdida total en todo nuestro conjunto de datos

También conocida:

- Función objetivo
- Función de costo
- Riesgo empírico

Entropía cruzada binaria

Binary Cross Entropy Loss La pérdida de entropía cruzada puede utilizarse con modelos que arrojan una probabilidad entre 0 y 1

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{y^{(i)} \log \left(f\left(x^{(i)}; \mathbf{W}\right)\right) + (1 - y^{(i)}) \log \left(1 - \underbrace{f\left(x^{(i)}; \mathbf{W}\right)}\right)}_{\text{Real}} + \underbrace{\text{Real}}_{\text{Predicción}} + \underbrace{\text{Real}}_{\text{Real}} + \underbrace{\text{Predicción}}_{\text{Predicción}}$$

Perdida del Error cuadrático medio

Mean Squared Error Loss La pérdida media de error al cuadrado se puede usar con modelos de regresión que producen números reales continuos

Entrenamiento

Queremos encontrar los pesos de la red que logren la menor pérdida

$$\begin{split} \mathbf{W}^* &= \operatorname*{argmin}_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}\left(f(x^{(i)}; \mathbf{W}), y^{(i)}\right) \\ \mathbf{W}^* &= \operatorname*{argmin}_{\mathbf{W}} J(\mathbf{W}) \end{split}$$

Queremos encontrar los pesos de la red que logren la menor pérdida

$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}\left(f(x^{(i)}; \mathbf{W}), y^{(i)}\right)$$
$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} J(\mathbf{W})$$

Recuerda:

$$\mathbf{W} = \{\mathbf{W}^{(0)}, \, \mathbf{W}^{(1)}, \ldots \}$$

Escoge al azar una inicial (w_0, w_1)

Calculo del gradiente,
$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$

De un pequeño paso en dirección opuesta al gradiente

Gradiente descendente

Repita hasta la convergencia

Gradiente descendente

Algoritmo:

- Iniciar los pesos al azar $\sim \mathcal{N}(0, \sigma^2)$
- Bucle hasta la convergencia:
 - \blacksquare Calcular el gradiente $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
 - $\blacksquare \ \, \text{Actualizar los pesos} \ \, \mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- Devuelve los pesos

Optimización

El entrenamiento es complejo

"Visualizando el paisaje de pérdida de las redes neuronales". Diciembre de 2017.

Las funciones de pérdida pueden ser difíciles de optimizar

Recuerde: Optimización a través del descenso del gradiente

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$

Las funciones de pérdida pueden ser difíciles de optimizar

Recuerde: Optimización a través del descenso del gradiente

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$$

¿Cómo podemos establecer la tasa de aprendizaje? (learning rate)

Ajuste de la tasa de aprendizaje

Recuerde: Una pequeña tasa de aprendizaje converge lentamente y se atasca en falsos mínimos locales

Ajuste de la tasa de aprendizaje

Recuerde: Las grandes tasas de aprendizaje se sobrepasan, se vuelven inestables y divergen

Ajuste de la tasa de aprendizaje

Recuerde: Las tasas de aprendizaje estables convergen sin problemas y evitan los mínimos locales

¿Cómo se puede hacer frente a esto?

- Idea 1: Intentar muchas tasas de aprendizaje diferentes y ver cuál funciona "bien".
- Idea 2: ¡Haz algo más inteligente! Diseñar una tasa de aprendizaje adaptativo que se "adapte" al paisaje

Tasas de aprendizaje adaptativas

- Las tasas de aprendizaje ya no son fijas
- Pueden hacerse más grandes o más pequeñas dependiendo de:
 - de cuán grande sea el gradiente
 - lo rápido que se está aprendiendo
 - tamaño de pesos particulares
 - etc...

Algoritmos de tasas de aprendizaje adaptativas

- Momentum
- Adagrad
- Adadelta
- RMSProp

Detaller adicionales: http://ruder.io/optimizing-gradient-descent/

Mini-lotes

Gradiente descendente

Algoritmo:

- Iniciar los pesos al azar $\sim \mathcal{N}(0, \sigma^2)$
- Bucle hasta la convergencia:
 - \blacksquare Calcular el gradiente $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
 - lacksquare Actualizar los pesos $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- Devuelve los pesos

Difícil de calcular $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$

Gradiente descendente estocástico

Algoritmo:

- Iniciar los pesos al azar $\sim \mathcal{N}(0, \sigma^2)$
- Bucle hasta la convergencia:
 - lacktriangle Tomar un solo punto i
 - \blacksquare Calcular el gradiente $\dfrac{\partial J_i(\mathbf{W})}{\partial \mathbf{W}}$
 - $\qquad \qquad \textbf{Actualizar los pesos } \mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- Devuelve los pesos

Fácil de calcular $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$ pero muy ruidoso (estocástico)

Gradiente descendente estocástico

Algoritmo:

- Iniciar los pesos al azar $\sim \mathcal{N}(0, \sigma^2)$
- Bucle hasta la convergencia:
 - \blacksquare Tomar un lote de puntos B

$$\qquad \text{Calcular el gradiente } \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(\mathbf{W})}{\partial \mathbf{W}}$$

Devuelve los pesos

Rápido de calcular y una estimación mucho mejor del verdadero gradiente

Mini-batches durante el entrenamiento

- Estimación más precisa del gradiente:
 - Una convergencia más suave
 - Permite mayores tasas de aprendizaje
- Los mini lotes conducen a un rápido entrenamiento
 - Puede paralelizar la computación + lograr aumentos significativos de velocidad en las GPU

Sobreajuste (overfitting)

El problema del sobreajuste

Regularización

Regularización

- **Qué es?** Técnica que limita nuestro problema de optimización para no incentivar la generación de modelos complejos
- ¿Por qué lo necesitamos? Mejorar la generalización de nuestro modelo sobre datos no vistos

Early Stopping

Detener el entrenamiento antes de empezar a sobreajustar...

42 / 51

Muchas gracias por su atención

¿Preguntas?

Contacto: Marco Teran

webpage: marcoteran.github.io/