

Mi	IdTerm(05-Mar): CSC-2259: Discrete Structures, Sp 2020 Your answers must be to the point. Total = 20; marks for each question is shown in [].
1.	Complete the sentance below. [2+2+2] We study Discrete Structure so that:
	(a) we can determine efficiency of a program by
	(b) we can write better, i.e., clean and MORCE efficient programs.
2.	Put a circle around the best (most efficient and most logical) code among the ones below. [2]
	$\max = x; \qquad \max = x;$ if $(x < y)$ max = y; if $(x <= y)$ max = y; if $(\max < y)$ max = y;
	Give the best code to compute max of x and y . [2]
	if (X <y) wox="X);</td"></y)>
	6/24 max = x; .
3.	Give the details to show $S = 1 + 2x + 3x^2 + \dots + nx^{n-1} = (1 - x^n)/(1 - x)^2 - nx^n/(1 - x)$, when $x \ne 1$. [8] $\times S = x + 7x^2 + 3x^3 + \dots + nx^n$
	2-x2= 11 x 1 x 5 x x 3+ + x n-1 - Nxn
	S(1-x)= 1-xn - nxn
	$S = \frac{1 - x^n}{1 - x} - \frac{1 - x}{1 - x}$
4.	Consider the code below to test $H = W$, where H and W are binary arrays of length n .
	<pre>for (int i = 0; i < n; i++) if (H[i] != W[i]) return(false); return(true);</pre>
	Complete the following sentences. [2+2+2+2]
	(a) #((H, W)-pairs giving true-return) =
	(a) #((H, W)-pairs giving true-return) =
	(c) #((H, W)-pairs that give false-return value in mth iteration, 1 ≤ m ≤ n) =
	(d) The average #(iterations for all (H, W)-pairs) in simplified form =
5.	Complete the following sentences. [(2+2)+2+2+2]
	Complete the following sentences. $[(2+2)+2+2+2]$ (a) $\#((H, W))$ -pairs such that $H \subseteq W$) = $\sum_{m=0}^{n} C(n, m) \cdot * \cdot 2 \cdot$ by Binomial Theorem. (b) $\#((H, W))$ -pairs such that $H \cap W = \emptyset$) = 5
	(b) #((H, W)-pairs such that $H \cap W = \emptyset$) =
	 (c) For a fixed H of size m, 0 ≤ m ≤ n, #(W disjoint from H) = ∫. (M, M) × 2^{n-M} (d) #((H, W)-pairs such that H∩W = Ø and H = m) = . (M, M) × 2^{n-M}
	(d) W(H W) pairs such that HoW = 21 and H = m) = ((N, N)) *2"
	(a) with a blum over man in a - so and hall - and - 1 a consister a factor.

In the Verm-diagram below, shade the relevant area for the set of all items that belong to A and not to any of B and C. On the rightside, give the size of that subset in terms of |A|, ···, |A∩B|, ···, and |A∩B∩C|. [2+4]

Now give the formula for the size of the set of all items that belong to exactly one of A, B, and C. [4]

10. Show clearly one line with each positive slope that contains exactly 2 of the grid points in the 3×4 grid below. Also, show the number of such lines for each slope. (We are not talking here about line segments, but about the whole straight-lines extending to infinity.) [5+5]

11. Given integer $n \ge 0$, the code below efficiently computes c(m) = C(n, m), $0 \le m \le n$ using a recursive formula for C(n, m).

4.
$$c(m) = c(m-1)*(n-m+1)/m$$

(a) Give #(arithmetic and assignment operation in all iterations of line 4). [5]

(b) Explain why rewriting line 4 as c[m] = (n-m+1)/m*c[m-1] does not work. [5]

If (n-vn+1) is not divable by w, (n-1+1)/w will round
to an integer, causing con I to equal an incorrect value.

- BONUS. Assume we have n straight lines L₁, L₂, ..., L_n which give the maximum number of points of intersections. Complete the following sentences/equations. [2+2+2+2+2]
 - (a) Then any three of those lines form a triangle because exactly . 2... lines go through a point of intersection and there are no . Paya. 16.1. lines.

(b) The #(ways choosing 3 lines out of L_1, L_2, \dots, L_n) = .(.) (3)

(c) Thus, #(triangles formed by
$$L_1, L_2, \dots, L_n$$
) = $(1, 1, 2, \dots, L_n)$.

(e) If the lines L_i do not give the maximum number of intersection points, then #(triangles formed by L_1, L_2, \dots, L_n) is . indetermining the content of the lines L_i do not give the maximum number of intersection points, then #(triangles formed by L_1, L_2, \dots, L_n) is

