UFCG/CCT/UNIDADE ACADÊMICA DE MATEMÁTICA PERÍODO: 2022.2 DISCIPLINA: ÁLGEBRA LINEAR TURNO: MANHÃ ALUNO(A):_______TURMA:_____

Segunda Avaliação - 11/05/2023

IMPORTANTE: Não retire o grampo a prova. Não é permitido o uso de calculadora. Desligue e guarde qualquer aparelho eletrônico.

- 1 (3,0 pontos) Classifique as afirmações abaixo como VERDADEIRAS ou FALSA. Justifique a sua resposta.
 - a) () O conjunto $W = \{(x, y, z) \in \mathbb{R}^3; y = 2x + 1\}$ é um subespaço vetorial de \mathbb{R}^3 .
 - b) () O conjunto $\beta = \{(1,0,2), (0,-1,4)\}$ é linearmente independente.
 - c) () O matriz $v = \begin{bmatrix} 2 & 2 \\ 3 & -1 \end{bmatrix}$ pertence ao subespaço vetorial de $M_2(\mathbb{R})$ gerado pelas matrizes $\left\{ \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \right\}$
 - d) () O conjunto $\beta = \{(1,1,0), (0,1,2), (2,0,1)\}$ é uma base de \mathbb{R}^3 .
- 2 (2,0 pontos) Mostre que o conjunto

$$W = \left\{ \begin{bmatrix} a & a+b \\ a-b & b \end{bmatrix}; \ a, b \in \mathbb{R} \right\}$$

é um subespaço vetorial de $M_2(\mathbb{R})$.

3 - (1,0 ponto) Determine uma base para o subespaço vetorial de \mathbb{R}^3 dada por

$$W = \{(x, y, z) \in \mathbb{R}^3; x + 2y - 3z = 0\}.$$

- 4 (2,0 pontos) Sejam $\beta = \{(2,1),(1,0)\}$ e $\beta' = \{(1,1),(0,1)\}$ bases de \mathbb{R}^2 .
 - a) Determine $[I]^{\beta'}_{\beta}$.
 - b) Encontre $[v]_{\beta'}$ onde $[v]_{\beta} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$
- 5 (2,0 pontos) Determine a transformação linear $T:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ tal que T(-1,1)=(3,2,1) e T(0,1)=(1,1,0).

Boa Prova