LECTURE 1 INTRODUCTION TO CUDA C

CUDA C vs. Thrust vs. CUDA Libraries

Introduction to Heterogeneous Parallel Computing

CUDA C vs. CUDA Libs vs. OpenACC

Memory Allocation and Data Movement API Functions

Data Parallelism and Threads

OBJECTIVES

- To learn the major differences between latency devices (CPU cores) and throughput devices (GPU cores)
- To understand why winning applications increasingly use both types of devices

CPU AND GPU ARE DESIGNED VERY DIFFERENTLY

CPU Latency Oriented Cores

GPU
Throughput Oriented Cores

CPUS: LATENCY ORIENTED DESIGN

GPUS: THROUGHPUT ORIENTED DESIGN

- Small caches
 - To boost memory throughput
- Simple control
 - No branch prediction
 - No data forwarding
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies
 - Threading logic
 - Thread state

WINNING APPLICATIONS USE BOTH CPU AND GPU

- GPUs for parallel parts where throughput wins
 - GPUs can be 10X+ faster than CPUs for parallel code

- CPUs for sequential parts where latency matters
 - CPUs can be 10X+ faster than GPUs for sequential code

Introduction to Heterogeneous Parallel Computing

CUDA C vs. CUDA Libs vs. OpenACC

Memory Allocation and Data Movement API Functions

Data Parallelism and Threads

OBJECTIVE

- To learn the main venues and developer resources for GPU computing
- Where CUDA C fits in the big picture

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Easy to use Most Performance Compiler Directives

Easy to use Portable code

Programming Languages

Most Performance Most Flexibility

GPU ACCELERATED LIBRARIES

Linear Algebra FFT, BLAS, SPARSE, Matrix

Numerical & Math RAND, Statistics

Data Struct. & Al Sort, Scan, Zero Sum

Visual Processing Image & Video

VECTOR ADDITION IN THRUST

```
thrust::device_vector<float> deviceInputl(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device vector<float> deviceOutput(inputLength);
thrust::transform(deviceInputl.begin(), deviceInputl.end(),
                                  deviceInput2.begin(),
deviceOutput.begin(),
   thrust::plus<float>());
```


OPENACC

Compiler directives for C, C++, and FORTRAN

GPU PROGRAMMING LANGUAGES

Introduction to Heterogeneous Parallel Computing

CUDA C vs. CUDA Libs vs. OpenACC

CUDA Programming Model

Memory Allocation and Data Movement API Functions

Data Parallelism and Threads

PROGRAMMING MODEL

- A programming model is an abstraction of the underlying computer system that allows for the expression of both algorithms and data structures.
- Languages and APIs provide implementations of these abstractions and allow the algorithms and data structures to be put into practice - a programming model exists independently of the choice of both the programming language and the supporting APIs.

Programming mode, Patrick McCormick (LANL) et.al., https://asc.llnl.gov/content/assets/docs/exascale-pmWG.pdf

SOME DESIGN GOALS

- Scale to 100s of cores, 1000s of parallel threads
- Let programmers focus on parallel algorithms
 - not mechanics of a parallel programming language.
- Enable heterogeneous systems (i.e., CPU+GPU)
 - CPU & GPU are separate devices with separate DRAMs

KEY PARALLEL ABSTRACTIONS

 Hierarchy of concurrent threads

- Lightweight synchronization primitives
- Shared memory model for cooperating threads

THREAD HIERARCHY

Thread – Distributed by the CUDA runtime (identified by threadIdx)

Warp – A scheduling unit of up to 32 threads

Block – A user defined group of 1 to 512 threads. (identified by blockIdx)

Grid – A group of one or more blocks. A grid is created for each CUDA kernel function

CUDA MEMORY HIERARCHY

 The CUDA platform has three primary memory types

Register – per thread memory for automatic variables and register spilling.

Shared Memory – per <u>block</u> low-latency memory to allow for intra-block data sharing and synchronization. Threads can safely share data through this memory and can perform barrier synchronization through __syncthreads()

Global Memory – <u>device level</u> memory that may be shared between blocks or grids

CUDA HARDWARE

- The primary components of the Tesla architecture are:
 - Streaming Multiprocessor (The 8800 has 16)
 - Scalar Processor
 - Memory hierarchy
 - Interconnection network
 - Host interface

STREAMING MULTIPROCESSOR (SM)

- Each SM has 8 Scalar Processors (SP)
- IEEE 754 32-bit floating point support (incomplete support)
- Each SP is a 1.35 GHz processor (32 GFLOPS peak)
- Supports 32 and 64 bit integers
- 8,192 dynamically partitioned 32-bit registers
- Supports 768 threads in hardware (24 SIMT warps of 32 threads)
- Thread scheduling done in hardware
- 16KB of low-latency shared memory
- 2 Special Function Units (reciprocal square root, trig functions, etc)

THE GPU

Introduction to Heterogeneous Parallel Computing

CUDA C vs. CUDA Libs vs. OpenACC

CUDA Programming Model

Memory Allocation and Data Movement API Functions

Data Parallelism and Threads

OBJECTIVE

- To learn the basic API functions in CUDA host code
 - Device Memory Allocation
 - Host-Device Data Transfer

DATA PARALLELISM - VECTOR ADDITION EXAMPLE

VECTOR ADDITION — TRADITIONAL C CODE

```
// Compute vector sum C = A + B
void vecAdd(float *h A, float *h B, float *h C, int n)
{
    int i;
    for (i = 0; i < n; i++) h C[i] = h A[i] + h B[i];
}
int main()
{
    // Memory allocation for h A, h B, and h C
   // I/O to read h A and h B, N elements
          (h A, h B, h C, N);
```


HETEROGENEOUS COMPUTING VECADD CUDA HOST CODE


```
#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
 int size = n* sizeof(float);
 float *d_A, *d_B, *d_C;
 // Part 1
 // Allocate device memory for A, B, and C
 // copy A and B to device memory
 // Part 2
 // Kernel launch code - the device performs the actual
vector addition
 // Part 3
 // copy C from the device memory
```


PARTIAL OVERVIEW OF CUDA MEMORIES

Device code can:

- R/W per-thread registers
- R/W all-shared global memory

Host code can

Transfer data to/from per grid global memory

We will cover more memory types and more sophisticated memory models later.

CUDA DEVICE MEMORY MANAGEMENT API FUNCTIONS

cudaMalloc()

- Allocates an object in the device global memory
- Two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object in terms of bytes
- cudaFree()
 - Frees object from device global memory
 - One parameter
 - Pointer to freed object

HOST-DEVICE DATA TRANSFER API FUNCTIONS

cudaMemcpy()

- memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
- Transfer to device is asynchronous

VECTOR ADDITION HOST CODE

```
void vecAdd(float *h A, float *h B, float *h C, int n)
  int size = n * sizeof(float): float *d A. *d B. *d C:
  cudaMalloc((void **) &d_A, size);
  cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
  cudaMalloc((void **) &d_B, size);
  cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);
  cudaMalloc((void **) &d C, size);
  // Kernel invocation code – to be shown later
  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
  cudaFree(d A); cudaFree(d B); cudaFree (d C);
```


IN PRACTICE, CHECK FOR API ERRORS IN HOST CODE

```
cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {
   printf("%s in %s at line %d\n", cudaGetErrorString(err),
   __FILE__,
   __LINE__);
   exit(EXIT_FAILURE);
}
```


Introduction to Heterogeneous Parallel Computing

CUDA C vs. CUDA Libs vs. OpenACC

Memory Allocation and Data Movement API Functions

Data Parallelism and Threads

OBJECTIVE

- To learn about CUDA threads, the main mechanism for exploiting of data parallelism
 - Hierarchical thread organization
 - Launching parallel execution
 - Thread index to data index mapping

DATA PARALLELISM - VECTOR ADDITION EXAMPLE

CUDA EXECUTION MODEL

- Heterogeneous host (CPU) + device (GPU) application C program
 - Serial parts in host C code
 - Parallel parts in device SPMD kernel code Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

A PROGRAM AT THE ISA LEVEL

- A program is a set of instructions stored in memory that can be read, interpreted, and executed by the hardware.
 - Both CPUs and GPUs are designed based on (different) instruction sets

 Program instructions operate on data stored in memory and/or registers.

A THREAD AS A VON-NEUMANN PROCESSOR

A thread is a "virtualized" or

"abstracted"

Von-Neumann Processor

ARRAYS OF PARALLEL THREADS

- A CUDA kernel is executed by a grid (array) of threads
 - All threads in a grid run the same kernel code (SPMD, Single Program Multiple Data)
 - Each thread has indexes that it uses to compute memory addresses and make control decisions

THREAD BLOCKS: SCALABLE COOPERATION

- Divide thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks do not interact

BLOCKIDX AND THREADIDX

 Each thread uses indices to decide what data to work on

blockIdx: 1D, 2D, or 3D (CUDA 4.0)

threadIdx: 1D, 2D, or 3D

Simplifies memory

addressing when processing

multidimensional data

- Image processing
- Solving PDEs on volumes
- ...

NVCC COMPILER

- NVIDIA provides a CUDA-C compiler
 - nvcc
- NVCC compiles device code then forwards code on to the host compiler (e.g. g++)
- Can be used to compile & link host only applications

