

Electric Circuits (Spring 2018)

Lecture 5

Lecture 5 - RC/RL First-Order Circuits

Temporal Behavior of Circuit Responses

- Till now we discussed static analysis of a circuit
 - Responses at a given time depend only on inputs at that time.
 - Circuit responds to input changes infinitely fast.

Temporal Behavior of Circuit Responses

- From now on we start to discuss <u>dynamic</u> circuit
 - Time-varying sources and responses

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits

Capacitors

Passive element that stores energy in electric field

Parallel plate capacitor

8

Fulid-Flow Analogy

 (a) As current flows through a capacitor, charges of opposite signs collect on the respective plates

(b) Fluid-flow analogy for capacitance

Does DC voltage generate current flow through a capacitor?

Does AC voltage generate current <u>flow through</u> a capacitor?

Lecture 5

Example

V-I Relationship of Capacitors

Stored Energy

· The instantaneous power delivered to the capacitor is

The energy stored in a capacitor is:

Capacitor Response

[Source: Berkeley] Lecture 5

Important Property of Capacitors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Practical (Imperfect) Capacitors

 A real capacitor has parasitic effects, leading to a slow loss of the stored energy internally.

Capacitors in Series

Combining In-Series Capacitors

Capacitors in Parallel

Lecture 5 17

Voltage Division

(a)
$$v_1 = \left(\frac{R_1}{R_1 + R_2}\right) v_s$$

$$v_2 = \left(\frac{R_2}{R_1 + R_2}\right) v_s$$

(b)
$$v_1 = \left(\frac{C_2}{C_1 + C_2}\right) v_s$$

$$v_2 = \left(\frac{C_1}{C_1 + C_2}\right) v_s$$

Inductors

- A passive element that stores energy in magnetic field.
 - They have applications in power supplies, transformers, radios, TVs, radars, and electric motors.
- Any conductor has inductance, but the effect is typically enhanced by coiling the wire up.

(a) Toroidal inductor

(b) Coil with an iron-oxide slug that can be screwed in or out to adjust the inductance

(c) Inductor with a laminated iron core

V-I Relationship of Inductors

$$L = \frac{N^2 \mu S}{I}$$

Energy Stored in an Inductor

The power delivered to the inductor is:

The energy stored is:

Inductor Response

Important Property of Inductors

Practical (Imperfect) Inductors

- Like the ideal capacitor, the ideal inductor does not dissipate energy stored in it.
- In reality, inductors do have internal resistance due to the wiring used to make them.
 - A winding resistance in series with it.
 - A small winding capacitance due to the closeness of the windings
 - These two characteristics are typically small, though at high frequencies, the capacitance may matter.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Inductors in Series

Lecture 5 25

Inductors in Parallel

Combining In-Parallel Inductors

Lecture 5 26

Example

Summary of Capacitors and Inductors

Property	R	L	<i>C</i>
i – υ relation	$i = \frac{v}{R}$	$i = \frac{1}{L} \int_{t_0}^t v dt' + i(t_0)$	$i = C \frac{dv}{dt}$
υ-i relation	v = iR	$v = L \frac{di}{dt}$	$v = \frac{1}{C} \int_{t_0}^{t} i dt' + v(t_0)$ $p = Cv \frac{dv}{dt}$
p (power transfer in)	$p = i^2 R$	$p = Li \frac{di}{dt}$	$p = C \upsilon \frac{d\upsilon}{dt}$
w (stored energy)	0	$w = \frac{1}{2}Li^2$	$w = \frac{1}{2}Cv^2$
Series combination	$R_{\rm eq} = R_1 + R_2$	$L_{\rm eq} = L_1 + L_2$	$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2}$
Parallel combination	$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$	$\frac{1}{L_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2}$	$C_{\text{eq}} = C_1 + C_2$
dc behavior	no change	short circuit	open circuit
Can υ change instantaneously?	yes	yes	no
Can i change instantaneously?	yes	no	yes

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits

RC and RL Circuits

- A circuit that contains only sources, resistors and <u>a</u> <u>capacitor</u> is called firstorder *RC circuit*.
- A circuit that contains only sources, resistors and <u>an</u> <u>inductor</u> is called firstorder *RL circuit*.

RC and RL Circuits

- Capacitor voltage cannot change instantaneously
- In steady state, a capacitor behaves like an open circuit

- Inductor current cannot change instantaneously
- In steady state, an inductor behaves like a short circuit.

[Source: Berkeley]

Natural Response of a Charged Capacitor

Behavior (*i.e.*, current and voltage) when stored energy in the inductor or capacitor is released to the resistive part of the network (containing <u>no independent sources</u>).

(a) $t = 0^-$ is the instant just before the switch is moved from terminal 1 to terminal 2;

(b) t = 0 is the instant just after it was moved, t = 0 is synonymous with $t = 0^+$.

Natural Response of a Charged Capacitor

Natural Response of RC

Time constant: $\tau = RC$

Time Constant τ (= RC)

 A circuit with a small time constant has a fast response and vice versa.

Example

• In the circuit below, let $v_C(0) = 15$ V. Find v_C , v_χ , and i_χ for t > 0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Example

• The switch in the circuit below has been closed for a long time. At t=0, the switch is opened. Calculate i(t) for t>0.

Natural Response Summary

Capacitor voltage cannot change instantaneously

$$v(0^-) = v(0^+)$$

$$v(t) = v(0)e^{-t/\tau}$$

• time constant $\tau = RC$

Inductor current cannot change instantaneously

$$i(0^-) = i(0^+)$$

$$i(t) = i(0)e^{-t/\tau}$$

• time constant
$$\tau = \frac{L}{R}$$

[Source: Berkeley]

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits

Step Response of RC Circuit

- When a DC source is suddenly applied to a RC circuit, the source can be modeled as a step function.
 - The circuit response is known as the <u>step response</u>.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The Unit Step *u(t)*

 A step function is one that maintains a constant value before a certain time and then changes to another constant afterwards.

switching time may be shifted to $t = t_0$ by

$$u(t - t_0) = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases}$$

Example

• Express the voltage pulse below in terms of the unit step.

Step Response of the RC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Lecture 5 49

Step Response of the RC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

This is known as the <u>complete response</u>, or total response.

Forced Response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The complete response

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

can be written as:

$$v = v_n + v_f$$

Complete response = natural response + forced response independent source

or

$$v = v_n + v_f$$

where

$$v_n = V_o e^{-t/\tau}$$

and

$$v_f = V_s(1 - e^{-t/\tau})$$

Another Perspective

 Another way to look at the response is to break it up into the <u>transient response</u> and the <u>steady state response</u>:

$$v(t) = \underbrace{v(\infty)}_{\text{steady } v_{SS}} + \underbrace{[v(0) - v(\infty)]e^{-t/\tau}}_{\text{transient } v_t}$$

Example

• The switch has been in position A for a long time. At t=0, the switch moves to B. Find v(t).

Lecture 5 54

Step Response of the RL Circuit

- We will use the transient and steady state response approach.
- We know that the <u>transient response will</u> be an exponential:

$$i_{t} = Ae^{-t/\tau}$$

 After a sufficiently long time, the current will reach the steady state:

$$i_{ss} = \frac{V_s}{R}$$

Step Response of RL Circuit

This yields an overall response of:

$$i = Ae^{-t/\tau} + \frac{V_s}{R}$$

$$i(0^+) = i(0^-) = I_0 \qquad A = I_0 - \frac{V_s}{R}$$

$$i(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-t/\tau}$$

Example

• Find i(t) in the circuit for t > 0. Assume that the switch has been closed for a long time.

General Procedure for Finding RC/RL Response

1. Identify the variable of interest

- For RL circuits, it is usually the inductor current $i_L(t)$.
- For RC circuits, it is usually the capacitor voltage $v_c(t)$.

2. Determine the initial value (at $t = t_0^-$ and t_0^+) of the variable

• Recall that $i_L(t)$ and $v_c(t)$ are continuous variables:

$$i_L(t_0^+) = i_L(t_0^-)$$
 and $v_c(t_0^+) = v_c(t_0^-)$

• Assuming that the circuit reached steady state before t_0 , use the fact that an inductor behaves like a short circuit in steady state or that a capacitor behaves like an open circuit in steady state.

Procedure (cont'd)

- Calculate the final value of the variable (its value as t → ∞)
 - Again, make use of the fact that an inductor behaves like a short circuit in steady state (t→∞) or that a capacitor behaves like an open circuit in steady state (t→∞).

4. Calculate the time constant for the circuit

- $\tau = L/R$ for an RL circuit, where R is the Thévenin equivalent resistance "seen" by the inductor.
- $\tau = RC$ for an RC circuit where R is the Thévenin equivalent resistance "seen" by the capacitor.

Response Form of Basic First-Order Circuits

Sequential switch

At t = 0, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later. Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s.

We need to consider the three time intervals $t \le 0$, $0 \le t \le 4$, and $t \ge 4$ separately. For t < 0, switches S_1 and S_2 are open so that i = 0. Since the inductor current cannot change instantly,

$$i(0^{-}) = i(0) = i(0^{+}) = 0$$

Lecture 5 62

First-order circuit with op-amp

For the op amp circuit in Fig. 7.55(a), find v_o for t > 0, given that v(0) = 3 V. Let $R_f = 80$ k Ω , $R_1 = 20$ k Ω , and C = 5 μ F.

For the op amp circuit in Fig. 7.55(a), find v_o for t > 0, given that v(0) = 3 V. Let $R_f = 80$ k Ω , $R_1 = 20$ k Ω , and C = 5 μ F.

Lecture 5 64

Lecture 5 65

How about V_s = 5t, RC=2s?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Lecture 5