

СИСТЕМНЫЙ АНАЛИЗ ПРОЦЕССОВ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

ПРОЦЕСС КОМПАУНДИРОВАНИЯ ТОВАРНЫХ БЕНЗИНОВ

Выполнил доцент ОХИ ИШПР ТПУ, к.т.н. Чузлов Вячеслав Алексеевич

Компаундирование товарных бензинов

Октановое число — это условная величина, характеризующая детонационную стойкость и численно равная процентному содержанию изооктана в эталонной смеси с н-гептаном, которая по детонационной стойкости эквивалентна испытуемому бензину в условиях стандартного одноцилиндрового двигателя.

Эталонные углеводороды:

2,2,4-триметилпентан (изооктан) ОЧ = 100

Октановые числа индивидуальных углеводородов

- Наименьшим ОЧ обладают алканы нормального строения, наивысшим – ароматические УВ.
- ОЧ нормальных алканов резко снижается с увеличением их молекулярной массы.
- ОЧ изопарафинов значительно выше, чем у алканов нормального строения.
- Олефиновые УВ обладают более высокими ОЧ в сравнении с алканами с тем же числом атомов углерода.
- ОЧ аренов повышается с увеличением числа углеродных атомов.

Исходные данные

Углеводород	04	Поток 1	Поток 2	Поток 3	Поток 4	Поток 5	Поток 6
Пропан	100,00	1,75	0,00	0,71	0,00	0,09	0,01
Бутан	93,60	5,58	0,19	2,51	0,00	1,32	0,51
Пентан	61,70	20,46	2,34	20,97	8,98	5,20	1,38
Н-гексан	24,80	7,30	20,78	11,39	5,37	3,35	1,77
Н-гептан	0,00	0,01	4,52	2,89	3,06	2,73	2,89
Н-октан	-19,00	0,00	0,11	1,08	7,68	0,63	0,44
Н-нонан	-39,00	0,00	0,00	0,20	0,00	0,21	0,29
изобутан	101,00	0,76	0,04	0,56	6,64	0,52	0,14
2,2-диметилбутан	92,00	0,00	3,55	2,26	0,94	0,54	0,21
2,3-диметилбутан	101,70	2,81	3,68	2,48	1,27	0,52	0,30
2,2,3-триметилбутан	105,80	2,48	0,08	0,06	0,05	0,08	0,05
Изопентан	92,30	0,00	2,88	21,65	15,94	6,63	3,98
2-метилпентан	73,40	21,81	22,48	13,92	0,00	3,57	1,66
3-метилпентан	74,50	14,26	16,65	9,87	5,08	2,48	1,29
3,3-демитилпентан	80,80	10,24	0,56	0,39	0,38	0,43	0,33
2,3-деметилпентан	91,10	0,00	2,00	1,23	1,35	1,13	1,04
2,4-деметилпентан	83,10	0,20	0,94	0,56	0,56	0,49	0,44
2,2,3-триметилпентан	38,00	0,01	0,00	0,00	0,13	0,00	0,00
2-метил, 3-этилпентан	87,30	0,00	0,00	0,00	3,26	0,00	0,00
2,3,4-триметилпентан	101,30	0,00	0,00	0,03	0,08	0,02	0,00
2-метилгексан	42,40	0,00	5,13	3,11	3,49	2,91	2,78
3-метилгексан	52,00	0,04	5,31	3,82	4,25	3,58	3,46
2,5-диметилгексан	55,50	0,04	0,04	0,31	2,37	0,18	0,12
2,4-диметилгексан	65,20	0,00	0,07	0,00	2,90	0,17	0,12
2,3-диметилгексан	71,30	0,00	0,05	0,00	0,25	0,21	0,15
3,4-диметилгексан	76,30	0,00	0,03	0,00	1,37	0,10	0,07
2,3,5-TMΓ	90,00	0,00	0,00	0,00	0,08	0,02	0,04
2,2,3-триметилгексан	92,00	0,00	0,00	0,00	0,00	0,00	0,00
2-метил,4-этилгексан	30,00	0,00	0,00	0,00	0,00	0,02	0,03

Исходные данные (продолжение)

Углеводород	ОЧ	Поток 1	Поток 2	Поток 3	Поток 4	Поток 5	Поток 6
2-метилгептан	21,70	0,00	0,14	0,00	0,00	0,69	0,47
4-метилгептан	26,70	0,00	0,07	0,00	4,38	0,34	0,24
3-метилгептан	26,80	0,00	0,22	0,00	3,41	1,04	0,71
2,2-диметилгептан	66,00	0,00	0,00	0,00	0,00	0,04	0,05
2,4-диметилгептан	62,00	0,00	0,00	0,00	0,32	0,07	0,10
2,6-диметилгептан	33,00	0,00	0,00	0,00	0,00	0,05	0,09
2,5-диметилгептан	50,00	0,00	0,00	0,00	0,08	0,12	0,19
3,3-диметилгептан	33,70	0,00	0,00	0,00	0,08	0,00	0,00
изононаны	40,00	0,00	0,02	0,00	0,00	0,59	2,36
непредельные	0,00	0,10	0,00	0,00	0,40	0,16	0,30
циклопентан	87,00	3,34	0,44	0,00	0,13	0,62	0,08
циклогексан	83,00	0,72	0,46	0,00	0,00	0,12	0,05
Метилциклопентан	91,30	6,19	0,08	0,00	0,83	1,87	0,81
1,3-диметилциклопентан (цис)	40,00	0,00	0,14	0,00	0,19	0,09	0,10
1,3-диметилциклопентан (транс)	40,00	0,00	0,75	0,00	0,62	0,44	0,44
1,2-диметилциклопентан (транс)	40,00	0,00	0,18	0,00	0,27	0,11	0,06
1,2-диметилциклопентан (цис)	40,00	0,00	0,10	0,00	1,37	0,14	0,10
1,1,3-триметилциклопентан	38,00	0,00	0,60	0,00	0,19	0,07	0,02
1-2-4-триметилциклопентан	38,00	0,00	0,00	0,00	0,29	0,08	0,02
1,2,3-триметилциклопентан	38,00	0,00	0,00	0,00	0,21	0,06	0,02
1,1,2-триметилциклопентан	38,80	0,00	0,00	0,00	0,11	0,02	0,01
этилциклопентан	67,20	0,00	0,09	0,00	1,23	0,18	0,14
Метилциклогексан	74,80	0,00	0,00	0,00	0,25	0,11	0,09
1,2-диметилциклогексан (транс)	80,90	0,00	0,03	0,00	0,00	0,01	0,00
1,3-диметилциклогексан (транс)	66,90	0,00	0,00	0,00	0,00	0,02	0,00
Нафтеновые до С8	50,00	0,00	0,04	0,00	1,20	0,20	0,08
Нафтеновые до С9	45,00	0,00	0,00	0,00	0,00	0,00	0,01
бензол	115,00	1,79	0,05	0,00	8,96	3,69	3,00
толуол	114,00	0,05	0,36	0,00	0,00	22,13	18,30
п-ксилол	120,00	0,01	0,06	0,00	0,00	1,53	2,38
м-ксилол	120,00	0,03	0,13	0,00	0,00	3,68	5,68
о-ксилол	120,00	0,02	4,39	0,00	0,00	2,45	2,45
ЭЦГ+этилбензол	114,00	0,00	0,03	0,00	0,00	2,37	2,97
Тяжелые С9+	110,00	0,00	0,19	0,00	0,00	19,11	20,96
MT ₆ 3	130,00	0,00	0,00	0,00	0,00	0,67	14,22

Задача

Необходимо определить долю каждого потока в смеси при заданном октановом числе смешения.

Исходные данные:

- 1. Углеводородные составы потоков, направляемых на смешение.
- 2. ОЧ индивидуальных углеводородов.

Требуемый результат:

- 1. Доля каждого потока, направляемого на смешение (в %).
- 2. ОЧ смесевого потока.

Декомпозиция задачи

Для решения поставленной задачи необходимо разбить ее на более простые подзадачи и последовательно решить их:

1. Расчет ОЧ каждого потока:

$$\mathrm{OY}_{\mathrm{потока}} = \sum_{i=1}^k C_i \cdot \mathrm{OY}_i$$
 где $OY_{\mathrm{потока}}$ — октановое число потока смешения; C_{i} — доля i -го углеводорода в составе потока смешения; OY_{i} — октановое число i -го углеводорода; K — количество компонентов.

2. Расчет ОЧ смеси потоков:

$$\mathrm{OY_{CM}} = \sum_{i=1}^{n} x_i \cdot \mathrm{OY_{\Pi O T O K A}}, i$$
 где $\mathrm{OY_{cM}}$ – октановое число смеси; x_i – доля i -го потока смешения; $\mathrm{OY_{nomoka}}$ – октановое число потока смешения; n – количество потоков смешения.

3. Расчет долей каждого из потоков, при которых достигается заданное ОЧ смешения.

Алгоритм нахождения долей потоков смешения

- 1. Поиск потока с ОЧ, максимально близким к заданному.
 - Доля этого потока принимается за 1, доли остальных потоков за ноль (обозначим его поток N).
- 2. Выполняется проверка условия:

|Расчетное ОЧ - Заданное ОЧ | <= eps (заранее выбранная точность)

- Если условие выполнилось, то расчет прекращается, если нет, то переходим к следующему этапу.
- 3. Выполняется проверка условия:

Расчетное ОЧ > Заданное ОЧ

Условие выполняется

- Доля потока N уменьшается;
- Если ОЧ потока < ОЧ потока N, его доля увеличивается, если >, то уменьшается.

<u>Условие не выполняется</u>

- Доля *потока N* увеличивается;
- Если ОЧ потока > ОЧ *потока N*, его доля увеличивается, если <, то уменьшается.

Программная реализация

Исходные данные

- Массив ОЧ индивидуальных УВ;
- Массив УВ составов потоков.

Основная программа

- Считывание исходных данных;
- Обращение к процедуре расчета долей компонентов и ОЧ смешения;
- Вывод результатов.

- Доли компонентов смешения;
- Расчетное ОЧ смеси.

Модуль

• Подпрограммы, выполняющие расчеты.

Расчет ОЧ потоков смешения:

```
Необходимо описать следующий тип:
type
  TArrOfDouble = array of double;
function get flow RON (comp count:integer; RON: TArrOfDouble;
  flow composition: TArrOfDouble): double;
var
  i: integer;
  s: double;
begin
  s := 0;
  for i := 0 to comp count-1 do
    s := s + RON[i] * flow composition[i];
  Result := s;
end;
```


Расчет ОЧ смеси:

```
function get_mix_RON(flow_count: integer; RON: TArrOfDouble;
    mix_composition: TArrOfDouble): double;

var
    i: integer;
    s: double;

begin
    s := 0;
    for i := 0 to flow_count-1 do
        s := s + RON[i] * mix_composition[i];
    Result := s;
end;
```


Функция поиска потока, ОЧ которого максимально близко к заданному ОЧ:

```
function get min(flow count: integer; flows RON: TArrOfDouble;
  treb RON: double): integer;
var
  i: integer;
  d: double;
begin
  d := abs(flows RON[0] - treb RON);
  Result := 0;
  for i := 1 to flow count-1 do
    if abs(flows RON[i] - treb RON) < d then</pre>
      begin
        d := abs(flows RON[i] - treb RON);
        Result := i;
      end:
end;
```


Функция нормировки состава смеси:

```
function normalization(flow count: integer;
  mix composition: TArrOfDouble): TArrOfDouble;
var
  i: integer;
  s: double;
begin
  SetLength (Result, flow count);
  s := 0;
  for i := 0 to flow count-1 do
    s := s + abs(mix composition[i]);
  for i := 0 to flow count-1 do
    Result[i] := abs(mix composition[i]) / s;
end;
```


Функция расчета состава ОЧ смеси:

```
function get mix composition(eps: double; h: double; flow count: integer;
  min: integer; flows RON: TArrOfDouble; trebRON: double): TArrOfDouble;
var
  i, n: integer;
  RONc: double;
begin
  SetLength (Result, flow count);
  n := 1;
  Result[min] := 1;
  for i := 0 to flow count-1 do
    if i <> min then
      Result[i] := 0;
  RONc := get mix RON(flow count, flows RON, Result);
  if abs(RONc - trebRON) > eps then
    repeat
      if flows RON[min] > trebRON then
        begin
          Result[min] := Result[min] - h;
          for i := 0 to flow count-1 do
            if i <> min then
              if flows RON[i] < flows RON[min] then</pre>
                Result[i] := Result[i] + h * abs(flows RON[i] - trebRON)
              else
                Result[i] := Result[i] - h * abs(flows RON[i] - trebRON)
        end
```


продолжение:

```
else
        begin
          Result[min] := Result[min] + h;
          for i := 0 to flow count-1 do
            if i <> min then
              if flows RON[i] < flows RON[min] then</pre>
                Result[i] := Result[i] - h * abs(flows RON[i] - trebRON)
              else
                Result[i] := Result[i] + h * abs(flows RON[i] - trebRON)
        end;
      Result := normalization(flow count, Result);
      RONc := get mix RON(flow count, flows RON, Result);
      if n \ge 1e5 then
        begin
          writeln('Выполнено 100 000 итераций, но решение не было найдено!');
          break:
        end;
      n := n + 1;
    until abs(RONc - trebRON) <= eps;</pre>
end:
```


«Основная» процедура:

Необходимо описать следующий тип:

SetLength (flows RON, flow count);

```
type
 TArrOfArrOfDouble = array of array of double;
procedure blending (comp count: integer; flow count: integer;
  comp RON: TArrOfDouble; flow composition: TArrOfArrOfDouble;
  treb RON: double; eps: double; h: double;
  var mix composition: TArrOfDouble; var RONc: double);
var
  min: integer;
  i, j: integer;
  flows RON: TArrOfDouble;
  flow comp: TArrOfDouble;
begin
  SetLength (comp RON, comp count);
  SetLength (flow comp, comp count);
  SetLength (flows RON, flow count);
  SetLength (mix composition, flow count);
```


продолжение:

end;

```
for i := 0 to flow count-1 do
   begin
     for j := 0 to comp count-1 do
       flow comp[j] := flow composition[j, i] / 100;
     flows RON[i] := get flow RON (comp count, comp RON, flow comp);
   end:
 min := get min(flow count, flows RON, treb RON);
 mix composition[min] := 1;
 for i := 0 to flow count-1 do
   if i <> min then
     mix composition[i] := 0;
 mix composition := get mix composition(eps, h, flow count, min,
   flows RON, treb RON);
 RONc := get mix RON(flow count, flows RON, mix composition);
```


Блок описаний:

```
program Main blending;
uses
  UBlending; // Имя модуля, содержащего описание расчетов
const
  flow count = 6;
  comp count = 64;
var
  comp RON: TArrOfDouble;
  flow composition: TArrOfArrOfDouble;
  mix composition: TArrOfDouble;
  RONc: double;
  treb RON: double;
  i: integer;
```


Процедура для считывания исходных данных:

```
procedure get data(var RON: TArrOfDouble;
                   flow composition: TArrOfArrOfDouble);
var
  f1, f2: text;
  i, j: integer;
begin
  assign(f1, 'RON.txt');
  assign(f2, 'flow comp.txt');
  reset(f1);
  reset(f2);
  for i := 0 to comp count-1 do
    begin
      readln(f1, RON[i]);
      for j := 0 to flow count-1 do
        read(f2, flow composition[i, j]);
      readln(f2);
    end;
  close(f1);
  close(f2);
end;
```


Процедура для вывода результатов:

Код основной программы:

Begin

```
SetLength(comp RON, comp count);
SetLength(flow composition, comp count);
for i := 0 to comp count-1 do
  SetLength(flow composition[i], flow count);
SetLength (mix composition, flow count);
write('Введите требуемое ОЧ: ');
readln(treb RON);
get data(comp RON, flow composition);
blending(comp count, flow count, comp RON, flow composition,
         treb RON, 5e-2, 5e-6, mix composition, RONc);
get result(mix composition, RONc);
```

end.