

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

Wydział Matematyki, Fizyki i Informatyki

Kierunek: informatyka

Rafał Lenart

nr albumu: 307726

Pamięć podręczna jako narzędzie optymalizacji procesów obliczeniowych (jakoś tak ale może nie)

Cache memory as a tool for optimizing computational processes

Praca magisterska napisana w Katedrze Cyberbezpieczeńtwa i lingwistyki komputerowej Instytutu Informatyki UMCS pod kierunkiem dr. hab. Jarosława Byliny lub dr. hab. Beaty Byliny

Lublin 2022

Spis treści

W	f Wstep			
1	Buo	dowa i hierarchia pamięci komputera	7	
	1.1	DRAM	7	
	1.2	SRAM	7	
	1.3	Ogólna hierarchia pamięci	7	
	1.4	Poziomy pamięci podręcznej	7	
	1.5	Adresowanie	7	
2	Optymalizacje użycia pamięci podręcznej			
	2.1	Wymienić kilka typu prefetching itp. oraz je opisać	9	
	2.2	Oczywiście tylko te użyte w pracy	9	
	2.3	Cache-aware vs. Cache-oblivious	9	
3	\mathbf{BL}	AS	11	
	3.1	Czym jest BLAS oraz jego poziomy	11	
	3.2	Dlaczego ważny w pracy	11	
	3.3	Własna implementacja niektórych funkcji oraz jej opis	11	
4	Alg	corytm	13	
	4.1	LCS, algorytm Nussinova, FFT	13	
	4.2	nie wiem co wybrać	13	
	4.3	Opis algorytmu	13	
	4.4	Znane implementacje	13	
	4.5	Modyfikacja bazowego algorytmu z optymalizacjami	13	
5	Opis implementacji			
	5.1	Przegląd kodu	15	
	5.2	Omówienie wyników testów	15	
	5.3	Pokazano przycpieczonie (porównane ze znana implementacja?)	15	

4 SPIS TREŚCI

6	Czegoś tu brakuje ale nie mam pojęcia co dodać.		
	6.1	Do wybrania jest algorytm	17
	6.2	Czy coś jeszcze jest potrzebne w pracy?	17
Po	dsui	nowanie	19
\mathbf{Sp}	Spis listingów		
\mathbf{Sp}	Spis tabel		
\mathbf{Sp}	is ry	zsunków	25

Wstęp

[2][3][4][1]

Wstęp

Budowa i hierarchia pamięci komputera

- 1.1 DRAM
- 1.2 SRAM
- 1.3 Ogólna hierarchia pamięci
- 1.4 Poziomy pamięci podręcznej
- 1.5 Adresowanie

Optymalizacje użycia pamięci podręcznej

- 2.1 Wymienić kilka typu prefetching itp. oraz je opisać
- 2.2 Oczywiście tylko te użyte w pracy
- 2.3 Cache-aware vs. Cache-oblivious

BLAS

- 3.1 Czym jest BLAS oraz jego poziomy
- 3.2 Dlaczego ważny w pracy
- 3.3 Własna implementacja niektórych funkcji oraz jej opis.

12 BLAS

Algorytm

- 4.1 LCS, algorytm Nussinova, FFT
- 4.2 nie wiem co wybrać
- 4.3 Opis algorytmu
- 4.4 Znane implementacje
- 4.5 Modyfikacja bazowego algorytmu z optymalizacjami

 ${\color{red} {\bf 14}}$

Opis implementacji

- 5.1 Przegląd kodu
- 5.2 Omówienie wyników testów
- 5.3 Pokazane przyspieszenie (porównane ze znaną implementacją?)

Opis implementacji

Czegoś tu brakuje ale nie mam pojęcia co dodać.

- 6.1 Do wybrania jest algorytm
- 6.2 Czy coś jeszcze jest potrzebne w pracy?

Podsumowanie

20 Podsumowanie

Spis listingów

22 SPIS LISTINGÓW

Spis tabel

24 SPIS TABEL

Spis rysunków

26 SPIS RYSUNKÓW

Bibliografia

- [1] Ademodi Oluwatosin Abayomi, Ajayi Abayomi Olukayode i Green Oluwole Olakunle. "An Overview of Cache Memory in Memory Management". W: Automation, Control and Intelligent Systems 8.3 (2020), s. 24-28. DOI: 10.11648/j.acis. 20200803.11. eprint: https://article.sciencepublishinggroup.com/pdf/10.11648.j.acis.20200803.11. URL: https://doi.org/10.11648/j.acis.20200803.11.
- [2] Erik Demaine. Cache-Oblivious Algorithms: Medians & Matrices. Dostęp: 09-07-2025. 2015. URL: https://www.youtube.com/watch?v=CSqbjfCCLrU.
- [3] Ulrich Drepper. What Every Programmer Should Know About Memory. Dostęp: 09-07-2025. 2007. URL: https://people.freebsd.org/~lstewart/articles/cpumemory.pdf.
- [4] Steven A. Przybylski. Cache and memory hierarchy design: a performance-directed approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. ISBN: 1558601368.