CS 304: Programming Languages Assignment 6

November 14th, 2012

Due: November 28th, 2012 before the beginning of the class period

1. a) (1.5 pts) Write scheme code to implement a binary search tree and the functions to operate on the tree. The tree is manipulated by the following functions :

(insert key tree) to insert a new node with the specified key in the tree and returns the resulting tree

(remove key tree) to delete a node from the tree, if that node exists in the tree. If the node does not exist in the tree, no removal should take place

(find key tree) returns #t or #f depending on whether key is in the tree

(isEmpty? tree) returns #t or #f depending on whether the tree is empty or not

(height tree) returns the height of the tree

(makeListFromTree tree) returns a list of the nodes of the tree in sorted order

- b) (0.5 pts) Write a comprehensive 'driver program' that will test and display the workings of all of your functions from part a).
- 2. (1 pts) Define a Scheme procedure flatten that takes a complex list and converts it into a simple list. For example,

```
(flatten '(1 2 (3 (4 5) 6 (7 (8) 9))))
```

yields

(1 2 3 4 5 6 7 8 9)

- 3. (1 pts) Define a Scheme procedure quicksort that takes a simple list of numbers and returns a list with the numbers in ascending order using the quicksort algorithm.
- 4. (1 pts) Define a Scheme procedure mirror-image that takes a list (either simple or non-simple) and reverses all of the elements in the list, including those in any sub-lists that the input list may have. For example

```
(mirror-image '(c o c o n u t)) yields (t u n o c o c) (mirror-image '(a b (c d (e f) n) u t)) yields (t u (n (f e) d c) b a)
```

5. (1 pts) Define a Scheme predicate palindromic that tests whether a given list is palindromic – your function must work also on complex (nested) lists by checking each internal list for palindromes as well. For example:

```
(palindromic '(a (b c) d (b c) a) yields #T (palindromic '(a (b c) d (b b) a) yields #F
```

6. (2 pts.) Write a Scheme function powerset that takes a simple list as input and returns the powerset of the list. Assume the input list as a set, and generate the powerset. A powerset is defined as a set of all subsets of a set. Assume that all of the elements of the input list are distinct. HINT: powerset of {a, b, c, d,...} is equal to union of powerset of {b, c, d,...} and 'a' appended to each element of powerset of {b, c, d,...}. The ordering of the sets in the powerset is not important. For example,

```
(powerset '(1 2 3)) \rightarrow yields (() (1) (2) (3) (1 2) (1 3) (2 3) (1 2 3))
```

7. (2 pts.) Write a Scheme function permutations that takes a list and produces a list with list elements being all permutations of the given list. Assume the input list as a set and that it contains no duplicates. For example,

```
(permutations '(1 2 3)) yields ((1 2 3) (1 3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1))
```

Turn In Procedures:

You may turn in your assignment via email (bkerkez@yahoo.com) or in person: on paper or on any computer media. If you wish to turn in your assignment via email, your file name should be in the format

lastName FirstName AssignmentX.xxx

For example, John Smith's assignment 6 turn in file would be named "Smith_John_Assignment6.xxx".

If you chose to turn in your assignment via email, please make sure that the subject of the email message reads "CS304_Assignment". Please print a paper copy of your assignment and turn it in as well.

Please make sure that I receive your assignments before the due date and time. Late assignments will be accepted for 24 hours after they are due and will be penalized by a 50% deduction. No assignments will be accepted after the 24 hour period expires.