COL380

Introduction to Parallel & Distributed Programming

Parallel & Distributed

Parallel:

→ Focus on doing many things at the same time

Distributed:

→ How the multiple things interact with each other

Concurrency

→ Unordered

Threads of Execution

Sequential

Parallel

OP	operands	
OP	operands	«
OP	pperands	
OP	operands	

OP operands	OP operands	
OP operands	OP operands	
OP operands 4//	OP operands 🗸	

Threads of Execution: Instructions executed in order

Why Parallel

- Can't clock faster ⇒ Do more per clock
 - → Execute many simple instructions on many cores
- Can't continue to miniaturize
 - → Wires and dimensions are too small, Cannot integrate at instruction level
 - → External network, delay, bandwidth limitation

Software orchestration

- Not just compute more
 - → Sometimes, the focus is on parallelizing data access (Memory, IO)
 - → Multiple processors can access memory in parallel, disrupt caches

Complex Problems..

Weather/Climate simulation

→ 3D-grid, Long duration simulation

Data science

→ Filter, Join, Cross, Sort

Financial processing

market prediction, investing, Blockchain

Computational biology

drug design, gene sequencing, molecular simulation

FUGAKU

2021: "Fastest supercomputer in the world"

[HPL Rmax: 4150000000000000000]

Nodes: 158,976

Arm CPU

A64FX: 48 core CPU with 512-bit SIMD

Peak Flops: 3379G (DP) [70.4G/core]

Memory BW: 1 TB/s

Intel CPU

2.3 GHz x40 cores (~3000 GFlop)

+ 2x AVX-512 FMA units

Maximum Memory Speed: 3200 MHz

Memory Channels: 8

Memory bandwidth: ~200 GB/s

299,072

4.85 PB of total memory with

63 PB/s aggregate bandwidth

nect: 6D Torus

432

e: 21,000 SaFt

Nvidia GPU

1000+ Cores: 9.7 TF (DP)

19.5 TF with Tensor Core

GPU Memory Bandwidth: 1.6 TB/s

Network: NVLink 600 GB/s

Parallel Computer

Modern Multi-Processor

8 channels of DDR4-3200 RAM/socket

L1: 48 KB/core: 12-way assoc

L2: 512 KB/core: 8-way assoc

L3: 1.5 MB/core: 16-Way assoc

(Sliced)

GPU

NOT Sequential

Instructions • •

volatile int x;

Access x

-R1 = x R2 = y -Z = R1 + R2

State

Mem Mgmt Unit

Network Controllers

DMA Engines

10 controller

Parallel Execution

- A number of instruction threads
- A number of data of data threads


```
float *d1, *d2;
Loop: d1[I] += d2[i];
```

movss xmm0,DWORD PTR [rdi+rax*1] addss xmm0,DWORD PTR [rsi+rax*1] movss DWORD PTR [rdi+rax*1],xmm0

mov adc mov

float *d1, *d2;

vmovss xmm0,DWORD PTR [rdi+rax*1]
vaddss xmm0,xmm0,DWORD PTR [rsi+rax*1]
vmovss DWORD PTR [rdi+rax*1],xmm0

Mesh Network

Torus Network

Circuit switching vs Packet switching Diameter =?
Bisection width = ?
Blocking?

Hypercube

No. of links = ?
Diameter =?
Bisection width = ?

Tree Network

No. of links = ?
Diameter =?
Bisection width = ?

Fat Tree Network

Shuffle Exchange

Butterfly

Multi-stage Network

Pass-through or Crossover

Distributed Memory

Distributed Memory

Distributed

