창의적 통합 설계 프로젝트 제안

2017. 03. 03

삼성전자 생산기술연구소

창의적 통합 설계 프로젝트 제안

I. 반도체 공정 분석에 활용 가능한 기계학습 알고리즘 개발

II. 설비 로그 자동 수집기 제작

III. EtherCAT Master Stack 개발

반도체 공정 분석에 활용 가능한 기계학습 알고리즘 개발

□ 개발 배경

- 반도체 공정의 복잡성
 - . 센서 데이터와 품질간의 연관성 분석에 어려움 존재
 - . 센서 데이터 간의 상관관계 분석에 어려움 존재

□ 개발 내용

- 본 과제에서는 시계열 센서 데이터를 바탕으로 품질에 영향을 끼치는 센서들을 도출하고, 이를 판단할 수 있는 Machine Learning 알고리즘을 제안하는 것을 목적으로 함.
 - (ex. Decision Tree, Support Vector Machine, Deep learning: CNN/RNN 등)
 - 1) 알고리즘에 활용 가능한 반도체 센서 데이터 DB Schema 설계
 - 2) 데이터 Preprocessing 방법론 제안
 - 3) 센서 데이터와 품질간의 연관성 도출 알고리즘 개발

반도체 공정 분석에 활용 가능한 기계학습 알고리즘 개발

□ 필요 지식

- 대용량 데이터 처리, 프로그래밍 스킬(언어 무관), 인공지능 알고리즘

□ 교육/훈련 효과

- DB, 딥러닝 관련 라이브러리 활용 경험, 프로그래밍 기법 습득

☐ Test Case

- Input
 - . 센서 n개에 대한 시계열 데이터 ※ 센서 개수 및 데이터 양은 추후 공지 (ex.65개 센서, 800개 wafer에 대한 시계열 데이터)
- Output
 - . 알고리즘 코드 및 중간 산출물 (ex DB schema, Preprocessing 방법론)
 - . 개발 알고리즘 평가 결과 (기존 알고리즘 활용 가능)

□ 평가 기준

- 시간 측면
 - . 데이터 처리 속도 → Distributed Computing 방법론 활용 (기존 알고리즘과 비슷한 수준)
- 정확성 측면
 - . 기존 알고리즘 대비 Accuracy (ex. LSTM: 정합성 60%, SVM: 정합성 75% v.s 제안한 방법론: 80%)

설비 로그 자동 수집기 제작

□ 개발 배경

- ✓ 반도체 Photo 공정 내 여러 설비에서 각각의 설비 내장 PC로 각종 log (종류: 200 여가지) 작성
- ✓ 각 설비별로 log 의 저장위치(PATH)는 다를 수 있으나 폴더명은 동일함
- ✓ 각 설비/log 의 주기는 정해져 있지 않음
- ✓ Photo 공정 엔지니어는 각 log 를 한군데서 수 시간 이내의 정보를 보고자 함

설비 로그 자동 수집기 제작

□ 개발 내용

- ✓ 1. 데이터 수집 application
 - 설비 Local PC (Unix) 운영 서버 (Windows) 로의 파일 주기적 다운로드
 - 각 파일 종류에 따라 사용자가 원하는 대로 주기가 관리되어야 함
 예) 1~4번 파일: 하루 5번, 지정된 시각마다, 5~10번 파일: 매시 20분 마다
 - 설비에 접속해서
 - 1) 설비의 특정 폴더에 접근하여 download 받을 list 를 접속할 때마다 생성
 - 2) 생성된 list 를 참조하여 log download
 - 날짜/시간별 폴더 관리되어야 함
 - 특정 일 이내의 폴더는 유지 (복구 대비), 특정 일 이전의 폴더는 삭제 (용량 관리)
- ✓ 2. DB 개발
 - 설비별 접속 정보 및 식별 정보 저장
 - log 수집 관련 히스토리
 - 기타 필요 정보

EtherCAT Master Stack 개발

□ 개발 배경

- EtherCAT Interface는 반도체 설비에 빠르게 적용되는 추세임.
 - . 산업계에서 사용되고 있는 설비 제어기와 부품 間의 통신 Interface : RS232, DeviceNet, TCP/IP 等
 - . 빠른 속도로 인한 처리 단계 사이의 대기 시간 단축 가능
 - . 라인, 트리, 스타, 데이지 체인 등 거의 모든 토폴로지 지원
 - . 고정밀 동기화를 위한 분산 클럭
- EtherCAT은 Master와 Slave Module로 구성되어 있음.

EtherCAT Master Stack 개발

□ 개발 내용

- 반도체 설비에 특화된 EtherCAT Master Stack을 개발하고자 함.
 - . EtherCAT 표준 사양 확보 및 분석
 - : <u>www.ethercat.org</u> 참조
 - . EtherCAT Master Stack 개발
 - . 제공되는 Slave Module 제어를 통해 개발한 EtherCAT Master Stack 검증

□ 평가 기준

- Protocol 구현
 - . CoE, AoE Protocol 구현 및 동작 Test ※ 제공되는 Slave Module 활용 & 삼성전자 Testbed에서 검증
- IO Processing Time
 - . IO Read/Write Time ≤ 50msec

