DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

14766256

Basic Patent (No, Kind, Date): JP 10268250 A2 981009 < No. of Patents: 001>

· LIQUID CRYSTAL PANEL, LIQUID CRYSTAL DISPLAY DEVICE, AND ELECTRONIC

EQUIPMENT (English)

Patent Assignee: SEIKO EPSON CORP

Author (Inventor): MATSUSHIMA TOSHIHARU

IPC: *G02F-001/133; G02F-001/1335; G09G-003/18; G09G-003/36

Derwent WPI Acc No: *G 98-598665; G 98-598665

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 10268250 A2 981009 JP 9774201 A 970326 (BASIC)

Priority Data (No,Kind,Date): JP 9774201 A 970326 DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

05985150 **Image available**

LIQUID CRYSTAL PANEL, LIQUID CRYSTAL DISPLAY DEVICE, AND

ELECTRONIC EQUIPMENT

PUB. NO.: **10-268250** [JP 10268250 A] PUBLISHED: October 09, 1998 (19981009)

PUBLISHED: October 09, 1998 (19981009)
INVENTOR(s): MATSUSHIMA TOSHIHARU

APPLICANT(s): SEIKO EPSON CORP [000236] (A Japanese Company or Corporation)

, JP (Japan)

APPL. NO.: 09-074201 [JP 9774201]

FILED: March 26, 1997 (19970326)

INTL CLASS: [6] G02F-001/133; G02F-001/133; G02F-001/1335; G09G-003/18;

G09G-003/36

JAPIO CLASS: 29.2 (PRECISION INSTRUMENTS -- Optical Equipment); 14.2

(ORGANIC CHEMISTRY -- High Polymer Molecular Compounds); 29.4

(PRECISION INSTRUMENTS -- Business Machines); 30.2 (MISCELLANEOUS GOODS -- Sports & Recreation); 44.2

(COMMUNICATION -- Transmission Systems); 44.4 (COMMUNICATION

-- Telephone); 44.9 (COMMUNICATION -- Other)

JAPIO KEYWORD:R011 (LIQUID CRYSTALS); R130 (ELECTRIC COMMUNICATIONS --

Pocket Bell Paging Devices); R139 (INFORMATION PROCESSING --

Word Processors)

ABSTRACT

PROBLEM TO BE SOLVED: To obtain a simple and inexpensive color liquid crystal display device which is suitable for portable equipment by holding the product of the birefringent index of liquid crystal and the thickness of a liquid crystal layer within a specific range and setting the orienting direction of the liquid crystal, the axis of polarization of a polarizing plate, the drawing axis of a phase difference film in specific relation. SOLUTION: A liquid crystal cell 15 has STN(super twisted nematic) liquid crystal 15c, having a 120 deg. twist angle, sandwiched between a couple of transparent glass substrates 15a and 15b and also has the circumference sealed with a seal material 15. The body formed by joining the phase difference film 14 on the incidence side of the liquid crystal cell 15 and laminating a couple of polarizing plates 12 and 13 from above and below them is joined with a reflecting substrate 11. This liquid crystal cell 15 is so designed that the product .delta.nd of its refractive index anisotropy .delta.n and the thickness (d) of the liquid crystal is 1.2 to 1.8, preferably 1.5 to 1.6 and further preferably 1.45 to 1.55. The liquid crystal panel consists of a display part which is driven statically to make a color display and a display part which is driven by multiplexing with a voltage with an arbitrary duty ratio to make a monochromatic display.

(19) 日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-268250

(43)公開日 平成10年(1998)10月9日

(51) Int. Cl	6	識別記号	FI
	1/133	500	G02F 1/133 500
		505	505
	1/1335	510	1/1335 510
G09G	3/18		G09G 3/18
	3/36		3/36
			審査請求 未請求 請求項の数10 OL (全6頁)
(21)出願番号		特願平9-74201	(71)出願人 000002369
			セイコーエプソン株式会社
(22)出願日		平成9年(1997)3月26日	東京都新宿区西新宿2丁目4番1号
			(72)発明者 松島 寿治
			長野県諏訪市大和3丁目3番5号 セイコ
			ーエプソン株式会社内
			(74)代理人 弁理士 鈴木 喜三郎 (外2名)

(54) 【発明の名称】液晶パネルおよび液晶表示装置並びに電子機器

(57)【要約】

【課題】 携帯電話やページャ等の携帯用電子機器に適した簡易なカラー液晶表示装置が望まれていた。

【解決手段】 一対の透明基板(15a, 15b)間に STN液晶を挟持した液晶セル(15)と、この液晶セルの外側に配置された一対の偏光板(12, 13)と、いずれか一方の偏光板と液晶セルとの間に配置された位相差フィルム(14)とを備え、前記液晶セルの屈折率 異方性 Δ nと液晶の厚み dとの積 Δ n dが 1. $2\sim1$. 8 の範囲にあり、前記液晶セルの配向方向と偏光板の偏光軸と位相差フィルムの延伸軸とが所定の関係にされるとともに、駆動方式の異なる第 1 表示部(2A)と第 2 表示部(2B)と設け、第 1 表示部はスタティック駆動するとともに第 2 表示部は任意のデューティ比の電圧でマルチプレックス駆動するようにした。

1

【特許請求の範囲】

【請求項1】 対向する内面に電極を有する一対の基板 間に120度以上のねじれ角を有する液晶を挟持した液 晶セルと、少なくとも1層の位相差フィルムとを、一対 の偏光板の間に配置してなり、前記液晶の複屈折率(△ n) と液晶層の厚み(d) との積(Δnd) が1.2 ~ 2. 5の範囲にあり、前記液晶セルの基板に隣接する液 晶の配向方向と、前記偏光板の偏光軸と、前記位相差フ ィルムの延伸軸とが所定の関係に設定されているととも に、駆動方式の異なる第1表示部と第2表示部とが形成 10 されてなることを特徴とする液晶パネル。

【請求項2】 前記第1表示部は電圧の印加状態に応じ てカラー表示を行ない、前記第2表示部はモノクロ表示 を行なうことを特徴とする請求項1に記載の液晶パネ IV.

【請求項3】 スタティック駆動される前記第1表示部 と、マルチプレックス駆動される第2表示部とが形成さ れていることを特徴とする請求項1に記載の液晶パネ

【請求項4】 前記△nが1.4~1.6の範囲にある 20 ことを特徴とする請求項1に記載の液晶パネル。

【請求項5】 前記第1表示部には第2表示部に印加さ れる電圧波形のうち実効電圧よりも高い電圧が印加され るように構成されてなることを特徴とする請求項1、 2、3または4に記載の液晶パネル。

【請求項6】 前記一対の基板間に挟持された液晶はそ のねじれ角がほぼ240度に設定されており、前記一対 の偏光板の偏光軸は前記液晶の配向方向の狭角側の中心 線に対してそれぞれほぼ75度とほぼ10度に設定され ているとともに、前記位相差フィルムの延伸軸は前記液 30 晶の配向方向の狭角側の中心線に対して60度となるよ うに設定されてなることを特徴とする請求項1、2、 3、4または5に記載の液晶パネル。

【請求項7】 前記一対の基板として、プラスチック製 基板を使用してなることを特徴とする請求項1、2、 3、4、5または6のいずれかに記載の液晶パネル。

【請求項8】 前記一対の偏光板のうち一方には半透過 反射板が接合されていることを特徴とする請求項1、 2、3、4、5、6または7に記載の液晶パネル。

【請求項9】 請求項1~8に記載の液晶パネルと、表 40 示データに基づいて前記液晶パネルの第1表示部および 第2表示部を駆動する信号を形成する駆動回路と、前記 液晶パネルを駆動するのに必要な複数の電圧を発生する 電圧発生回路とを備えていることを特徴とする液晶表示 装置。

【請求項10】 請求項9に記載の液晶表示装置を備え ていることを特徴とする電子機器。

【発明の詳細な説明】

[0001]

置さらには液晶の複屈折効果を利用したカラー液晶表示 技術に関し、例えば携帯電話やページャ等の携帯用電子 機器の表示装置に利用して好適な技術に関する。

[0002]

【従来の技術】従来、パーソナルコンピュータなどのO A機器に使用されるカラー表示装置は、カラーフィルタ で色表示を行なうものが主流であった。ところが、カラ ーフィルタは光利用効率が著しく低いという欠点を有し ている。また、画素数が白黒表示のものの3倍になるの で、髙精細な液晶表示装置を作成するためには、髙度な 製造技術が要求される。そのため、装置の製造コストが 髙くなるという欠点がある。

【0003】一方、カラーフィルタを使用しないカラー 液晶表示装置として、液晶の複屈折効果を利用したもの も提案されている(特開平6-175125号公報 等)。この種の液晶表示装置は、画素電極に階調電圧を 印加すると、印加された実効電圧に応じて液晶分子の配 向が変化し、これに伴って液晶セルの有効な Andが変 化して色がつくというものであり、カラーフィルタを有 しないため、明るくしかも安価であるという利点を有し ており、教育用ゲーム機等の表示装置として実用化され ている。

[0004]

【発明が解決しようとする課題】前記液晶の複屈折効果 を利用した従来のカラー液晶表示装置は、カラーフィル 夕を使用したパソコン用カラー液晶表示装置に比べて安 価であるという利点を有しているものの、赤、青、緑な どいろんな色を表示しようとしていたため複雑な電圧波 形で画素電極を階調駆動する必要があり、駆動装置内部 で多数の電圧を形成する必要があるとともに、駆動波形 が複雑であるため駆動回路が大規模になってその設計も 面倒であるという不具合を有している。そのため、携帯 電話やページャ等の携帯用電子機器の表示装置のような 小型の表示装置にはその必要が望まれているにもかかわ らず、前記簡易カラー液晶表示装置を応用したものはな く、モノクロのものが一般的であった。

【0005】そのため、携帯電話やページャ等の携帯用 電子機器に適した簡易かつ安価なカラー液晶表示装置が 望まれていた。

【0006】この発明の目的は、特に携帯電話やページ ャ等の携帯用電子機器に適した簡易かつ安価なカラー液 晶表示装置を提供することにある。

[0007]

【課題を解決するための手段】この発明は、前記目的を 達成するため、対向する内面に電極を有する一対の基板 間に120度以上のねじれ角を有する液晶を挟持した液 晶セルと、少なくとも1層の位相差フィルムとを、一対 の偏光板の間に配置してなり、前記液晶の複屈折率 (△ n) と液晶層の厚み (d) との積 (Δnd) が1.2~ 【発明の属する技術分野】本発明は、カラー液晶表示装 50 2.5の範囲にあり、前記液晶セルの基板に隣接する液 晶の配向方向と、前記偏光板の偏光軸と、前記位相差フィルムの延伸軸とが所定の関係に設定されているとともに、駆動方式の異なる第1表示部と第2表示部と設け、第1表示部はスタティック駆動するとともに第2表示部は任意のデューティ比の電圧でマルチプレックス駆動するようにした。

【0008】携帯電話やページャ等の携帯電子機器で表示容量も少ない液晶表示装置にあっては、カラー表示といっても白黒以外に赤などの他の一色が表示できれば充分であり、前記した手段によればそのような簡易なカラ 10一表示が容易に行なえ、しかも表示色が従来の複屈折効果を利用した液晶表示装置に比べて少ないので、駆動波形が単純な波形でよいため、発生する電圧の数が少なくて済み電圧発生回路および駆動回路の規模が小さくなりその設計も容易となる。

【0009】前記の場合、スタティック駆動される表示部に印加する電圧はマルチプレックス駆動される表示部に印加される電圧波形のうち実効電圧よりも高いいずれかの電圧(例えば最も高い電圧)を選択して印加させるようにすると良い。これによって、スタティック駆動表 20示部専用の駆動電圧を発生する必要がなく、発生する電圧の数を減らすことができる。

【0010】また、前記一対の偏光板のうち一方には半 透明の反射板を接合する。これによって、透過型と反射 型の表示装置として兼用することができる。

【0011】さらに、前記液晶セルを支持する基板として、プラスチック製基板を使用するようにしても良い。 プラスチック性とすることで軽量化および抵コスト化を 図ることができる。

[0012]

【発明の実施の形態】以下、本発明の好適な実施例を図面に基づいて説明する。

【0013】図1は、本発明を適用したカラー液晶パネ ルの一実施例の表示部の構成を示す。 図1に示されてい るように、この実施例の液晶パネル1は、特に限定され ないが、表示部のうち上半分がセグメント形表示方式の カラー表示部2Aとされ、下半分がマトリックス形表示 方式のモノクロ表示部2Bとされている。このうち前記 表示部2Aには所定の形状のセングメント電極が設けら れ、製品名等の固有情報を表示する固定表示3aやアン 40 テナマーク3b、レベル表示用マーク3c、時刻表示3 d、電池残量表示マーク3e等の記号を表示できるよう に構成され、表示部2Bには入射側基板と反射側基板と で互いに直行する方向にそれぞれ平行電極が形成された ドットマトリックス形表示用の格子状電極が設けられ数 字やアルファベット、単純な符号等がドット方式で表示 できるように構成されている。また、4は外部から前記 各電極に駆動電圧を入力するための端子である。

【0014】この実施例の液晶パネルは、前記表示部2 Aはスタティック駆動されてカラー表示するとともに、50 前記表示部2Bは任意のデューティ比の電圧でマルチプレックス駆動されてモノクロ表示するように構成されている。

【0015】図2は前記液晶パネルの断面構造を示す。図2において、11は反射基板、12および13は偏光板、14は位相差フィルム、15は一対の透明ガラス基板15a、15b間にSTN(Super Twisted Nematic)液晶15cが挟持され周囲をシール材15dで封止された液晶セルである。図2に示されているように、この実施例の液晶パネルは、液晶セル15の入射側に位相差フィルム14が接合されこれらを上下から挟み込むように一対の偏光板12、13が積層されたものが反射基板11上に接合されることによって構成されている。前記液晶セル15は、その屈折率異方性 Δ nと液晶の厚みdとの積 Δ ndが1、2 \sim 1、8望ましくは1、4 \sim 1、6さらに望ましくは1、4 \sim 1、55の範囲となるように設計されている。このような値にすることで、電圧の調整による所望の単色カラー表示が可能になる。

【0016】なお、図2の実施例では、一対の偏光板1 2、13で挟持された液晶セルを反射基板11に接合した反射型の液晶パネルについて説明したが、前記反射基板の代わりに半透過反射基板を接合したり、一対の透明ガラス基板15a、15bをガラス基板の代わりにプラスチック基板を用いるようにしても良い。

【0017】図3には、前記液晶セル15の配向方向R UBと偏光板12,13の偏光軸POLと位相差フィルム14の延伸軸EXTとの望ましい相対関係の一例が示されている。

【0018】図3に示されているように、この実施例で30 は、液晶セル15の一対の透明ガラス基板15a, 15 b間に挟持されたSTN液晶15cのねじれ角がほぼ240°に設定されており、下偏光板12の偏光軸POL dと上偏光板13の偏光軸POL uは前記液晶の配向方向RUBd, RUBuの狭角側の中心線に対してそれぞれほぼ75°とほぼ10°に設定されている。さらに、前記位相差フィルム14の延伸軸EXTは前記液晶の配向方向RUBd, RUBuの狭角側の中心線に対してほぼ60°となるように設定されている。

【0019】前記のような設定により、電圧を印加しない状態でSTN液晶15cの有する複屈折効果による着色を位相差フィルム14で補正して背景色として良好な白表示が得られる。

【0020】また、実施例の液晶パネルの液晶に印加される電圧と透過率および色の変化の様子を図示すると図4のようになる。従って、カラー表示部2Aに設けられたセグメント電極(入射側基板の電極)とコモン電極間(反射側基板の電極)に例えば2.9Vのような電圧を印加してスタティク駆動することで良好な赤色表示が得られることが図4から分かる。

【0021】さらに、カラー表示部2Aに設けられたセ

6

グメント電極とコモン電極間に印加される電圧として、例えば2.51V、2.56Vのような電圧を選択することで青色表示、緑色表示を行なわせることができる。しかも、セグメント電極すなわち表示記号ごとに異なる電圧を印加して異なる色で表示を行なわせることも可能である。

【0022】図5に前記実施例の液晶パネル1とこれを 駆動する駆動回路と表示制御を行なう液晶コントローラ とからなる液晶表示装置のシステム構成例を示す。図5 において、21は電源電圧Vccを分圧したり昇圧して 10 マトリックス方式の表示部2Bをデューティ駆動する階 段波形の駆動信号を形成するのに必要な複数の電圧V 0, V1, V2, V3, V4, V5を発生する電圧発生 回路、22はセグメント形表示方式の表示部2Aとマト リックス方式の表示部2Bのそれぞれの表示データDT a, DTbやクロックCKを形成して出力する制御部、 23は前記制御部22から供給される表示データDTb に応じてセグメント電極駆動信号およびコモン電極駆動 信号を形成してセグメント形表示方式の表示部2Aへ出 力するセグメント形表示部駆動回路、24は前記電圧発 20 生回路21から供給される電圧V0, V1, V2, V 3, V4, V5を用い前記制御部22から供給される表 示データDTaに応じてX電極駆動信号およびY電極駆 動信号(階段波形)を形成してマトリックス方式の表示 部2Bへ出力するマトリックス形表示部駆動回路であ る。なお、前記2つの表示部駆動回路23、24は、こ れらを一つの半導体チップ上にのせて液晶ドライバIC として構成することができる。

【0023】この実施例においては、前記電圧発生回路 21で発生され前記マトリックス形表示部駆動回路24 30 に供給される電圧V0~V5のうち最も高い電圧V0がセグメント形表示部駆動回路23に供給されており、この電圧V0を用いて前記表示部2Aをスタティック駆動するための波形を形成するように構成されている。これによって、前記表示部2Aの駆動用電圧をわざわざ発生する必要がなく電圧発生回路の構成を簡略化することができる。

【0024】前記電圧発生回路21からセグメント形表示部駆動回路23に供給する電圧は、最も高い電圧V0に限定されるものでなく、実効電圧よりも高いいずれか 40の電圧であればよい。実効電圧よりも高い複数の電圧の中からいずれか一つを選択して供給できるように構成しても良い。これによって、セグメント形表示方式のカラー表示部2Aにおける表示色を可変にすることができる。

【0025】図6には本発明に係る液晶パネルの他の実施例を示す。図6において、2Aはスタティック駆動される表示部、2Bはマルチプレックス駆動される表示部である。前記実施例(図1)では固定表示3aやアンテナマーク3b、レベル表示用マーク3c、時刻表示3

d、電池残量表示マーク3eがスタティック駆動でカラー表示されるように構成されているのに対し、この実施例の液晶パネルでは、前記表示部2Aの固定表示3aとアンテナマーク3bとレベル表示用マーク3cを構成する電極がスタティック駆動されてカラー表示を行なうとともに、前記表示部2Bの時刻表示3dと電池残量表示マーク3eを構成する電極はドットマトリックス表示3fを構成する電極とともにマルチプレックス駆動されてモノクロ表示するように構成されている。

【0026】図7は、それぞれ本発明のカラー液晶パネルを使った電子機器の例を示す外観図である。

【0027】図7(a)は携帯電話を示す斜視図である。1000は携帯電話本体を示し、そのうちの100 1は本発明のカラー液晶パネルを用いた液晶表示部である。

【0028】図7(b)は、腕時計型電子機器を示す斜視図である。1100は時計本体を示し、1101は本発明のカラー液晶パネルを用いた液晶表示部である。

【0029】図7(c)は、ワープロ、パソコン等の携帯型情報処理装置を示す斜視図である。1200は情報処理装置を示し、1202はキーボード等の入力部、1206は本発明のカラー液晶パネルを用いた表示部、1204は情報処理装置本体を示す。前記各電子機器は簡易なカラー表示を行なえるので、従来の同様な装置にに比べてコストダウンを図ることができる。

[0030]

【発明の効果】以上説明したように、この発明は、対向 する内面に電極を有する一対の基板間に120度以上の ねじれ角を有する液晶を挟持した液晶セルと、少なくと も1層の位相差フィルムとを、一対の偏光板の間に配置 してなり、前記液晶の複屈折率(Δn)と液晶の厚み (d) との積 (Δnd) が1.2~2.5の範囲にあ り、前記液晶セルの基板に隣接する液晶の配向方向と、 前記偏光板の偏光軸と、前記位相差フィルムの延伸軸と が所定の関係に設定されているとともに、駆動方式の異 なる第1表示部と第2表示部と設け、第1表示部はスタ ティック駆動するとともに第2表示部は任意のデューテ ィ比の電圧でマルチプレックス駆動するようにしたの で、簡易なカラー表示が容易に行なえ、しかも表示色が 従来に比べて少ないので、駆動波形も単純な波形でよい ため駆動回路の規模が小さくなりその設計も容易となる という効果がある。

【0031】また、前記スタティック駆動される表示部に印加する電圧として、マルチプレックス駆動される表示部に印加される電圧波形のうち実効電圧よりも高いいずれかの電圧(例えば最も高い電圧)を選択して印加させるようにしたので、スタティック駆動される表示部の駆動用電圧をわざわざ発生する必要がなく電圧発生回路の構成を簡略化することができるという効果がある。

【図面の簡単な説明】

50

【図1】本発明を適用したカラー液晶パネルの一実施例 を示す正面図。

【図2】本発明を適用したカラー液晶パネルの一実施例 を示す断面図。

【図3】実施例のカラー液晶パネルにおける液晶セルの 配向方向と偏光板の偏光軸と位相差フィルムの延伸軸と の望ましい相対関係の一例を示す説明図。

【図4】実施例のカラー液晶パネルのカラー表示部の印 加電圧と透過率および表示色との関係を示す相関図。

【図5】本発明に係る液晶パネルとこれを駆動する駆動 10 11 反射基板 回路と表示制御を行なう液晶コントローラとからなる液 晶表示装置のシステム構成例を示すプロック図。

【図6】本発明に係るカラー液晶パネルの他の実施例を 示す正面図。

【図7】 (a), (b), (c) は、それぞれ本発明の

カラー液晶パネルを使った電子機器の例を示す外観図で ある。

【符号の説明】

- 液晶パネル
- 2A 第1表示部 (スタティック駆動される表示部)
- 2 B 第2表示部(マルチプレックス駆動される表示

部)

- 3 表示パターン
- 駆動電圧が印加される端子
- - 12, 13 偏光板
 - 14 位相差フィルム
 - 15 液晶セル
 - 15a, 15b 透明ガラス基板
 - 15c 液晶

[図2]

[図3]

【図4】

