Week 6: Feedback Linearization of Nonlinear Systems I

Past and Current Homework

HW 1 Stats – out of 120 pts

Average	97.38461
Median	104.00
Standard Deviation	30.33692

HW 2 Stats – out of 100 pts

Average	78.85714
Median	83.00
Standard Deviation	15.06584

HW 4 – Problem 1 – take Lie brackets k times

HW 4 – Problem 4 – the Jacobi-Lee identity

$$\left[X,\left[Y,Z\right]\right]+\left[Z,\left[X,Y\right]\right]+\left[Y,\left[X,Z\right]\right]=0$$
 - the Jacobi-Lie identity

Outline

- Finishing up Controllability:
 - Distributions
 - Rank
 - Accessibility

State Feedback for Linear Systems

- Feedback Linearization of Nonlinear Systems:
 - Relative Degree
 - Nonlinear Coordinate Transformation
 - Affine Form to Canonical Form

Outline

- Finishing up Controllability:
 - Distributions
 - Rank
 - Accessibility

State Feedback for Linear Systems

- Feedback Linearization of Nonlinear Systems:
 - Relative Degree
 - Nonlinear Coordinate Transformation
 - Affine Form to Canonical Form

Recap: Local Accessibility of Affine Nonlinear Systems. What is an accessibility distribution?

$$\dot{x}(t) = f(x) + g(x)u = f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

Recap: Local Accessibility of Affine Nonlinear Systems. What is an accessibility distribution?

$$\dot{x}(t) = f(x) + g(x)u = f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

<u>Theorem</u>: The Affine Nonlinear System is locally accessible at a point $x_0 \in \mathbb{R}^n$ if the accessibility distribution Q spans \mathbb{R}^n , where

$$Q = [g_1, ..., g_m, ..., [g_i, g_j] ..., [ad_{g_i}^k, g_j] ..., [f, g_i], ..., [ad_f^k, g_i], ...]$$

The Accessibility Distribution: Local

Accessibility of Affine Nonlinear Systems

$$\dot{x}(t) = f(x) + g(x)u = f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

<u>Theorem</u>: The Affine Nonlinear System is locally accessible at a point $x_0 \in \mathbb{R}^n$ if the accessibility distribution Q spans \mathbb{R}^n , where

$$Q_{m=1} = \begin{cases} f, g, [f, g], \\ [f, [f, g]], [g, [f, g]], \dots \end{cases}$$

 \rightarrow any Lie bracket combination of f and g you can think of

The Accessibility Distribution: Local

Accessibility of Affine Nonlinear Systems

$$\dot{x}(t) = f(x) + g(x)u = f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

<u>Theorem</u>: The Affine Nonlinear System is locally accessible at a point $x_0 \in \mathbb{R}^n$ if the accessibility distribution Q spans \mathbb{R}^n , where

$$Q_{m=2} = \begin{cases} f, g_1, g_2, [g_1, g_2], [f, g_1], [f, g_2], \\ [f, [f, g_1]], [f, [f, g_2]], [[f, g_1], g_2], [[f, g_1], g_1], \\ [[f, g_2], g_2], [[g_1, g_2], g_2], [[g_2, g_1], g_1], \dots \dots \end{cases}$$

 \rightarrow any Lie bracket combination of f, g_1 , g_2 you can think of

For the purpose of our class, accessibility at every point is equivalent to controllability

$$\dot{x}(t) = f(x) + g(x)u = f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

<u>Theorem</u>: The Affine Nonlinear System is locally accessible at a point $x_0 \in \mathbb{R}^n$ if the accessibility distribution Q spans \mathbb{R}^n , where

$$Q = [g_1, ..., g_m, ..., [g_i, g_j] ..., [ad_{g_i}^k, g_j] ..., [f, g_i], ..., [ad_f^k, g_i], ...]$$

If you find n independent columns, then you have local accessibility!

If you want to be controllable, you should prove local accessibility everywhere.

Local accessibility example

$$\dot{x}_1 = u \quad \dot{x}_2 = x_1^2$$

Examine accessibility at (0,0).

$$\dot{x}(t) = f(x) + g(x)u =$$

$$f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

The system is locally accessible at (0, 0) if the accessibility distribution spans \mathbb{R}^2

$$Q = \{g_1, \dots, g_m, \dots, \left[g_i, g_j\right] \dots, \left[ad_{g_i}^k, g_j\right] \dots, \left[f, g_i\right], \dots, \left[ad_f^k, g_i\right], \dots\}$$

What is m?

Local accessibility example

$$\dot{x}_1 = u \quad \dot{x}_2 = x_1^2$$

Examine accessibility at (0,0).

$$\dot{x}(t) = f(x) + g(x)u =$$

$$f(x) + \sum_{i=1}^{m} g_i(x)u_i$$

The system is locally accessible at (0, 0) if the accessibility distribution spans \mathbb{R}^2

$$Q = \{g_1, \dots, g_m, \dots, \left[g_i, g_j\right] \dots, \left[ad_{g_i}^k, g_j\right] \dots, \left[f, g_i\right], \dots, \left[ad_f^k, g_i\right], \dots\}$$

$$m = number\ of\ columns\ in\ g(x) = 1$$

$$f(x) = (0, x_1)^T, g(x) = (1, 0)^T, [f, g](x) = (0, -1)^T$$

$$f(0,0) = (0,0)^T, g(0,0) = (1,0)^T, [f,g](0,0) = (0,-1)^T$$

$$Q = \{g(0\ 0), [f,g](0,0)\} = \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}$$

Rank 2! No need to compute higher order Lie brackets

Recap: Let's learn about the distributions and their rank

If g_1, g_2, \dots, g_m are a set of vector fields on a manifold M

Their distribution $\Delta_x = span\{g_1(x), g_2(x), \dots, g_m(x)\}$ is a subspace on TM_x

The span consists of all possible linear combinations

The rank of a distribution is the number of independent vector fields

Let's compute the rank of a distribution

$$D = R^3, \Delta = span\{f_1, f_2, f_3\}$$

$$f_1 = \begin{pmatrix} x_1 \\ 1 + x_3 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} x_1 x_2 \\ (1 + x_3) x_2 \\ x_2 \end{pmatrix}, f_3 = \begin{pmatrix} x_1 \\ x_1 \\ 0 \end{pmatrix}$$

Be careful because the rank of a distribution may not be the same at all points!!

$$D = R^3, \Delta = span\{f_1, f_2, f_3\}$$

$$f_1 = \begin{pmatrix} x_1 \\ 1 + x_3 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} x_1 x_2 \\ (1 + x_3) x_2 \\ x_2 \end{pmatrix}, f_3 = \begin{pmatrix} x_1 \\ x_1 \\ 0 \end{pmatrix}$$

When $x_1 = x_2 = 0$, the rank is

When $x_1 = 0$, $x_2 \neq 0$, the rank is

When $x_1 \neq 0$, $x_2 = 0$, the rank is

When $x_1 \neq 0$, $x_2 \neq 0$, the rank is

Be careful because the rank of a distribution may not be the same at all points!!

$$D = R^3, \Delta = span\{f_1, f_2, f_3\}$$

$$f_1 = \begin{pmatrix} x_1 \\ 1 + x_3 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} x_1 x_2 \\ (1 + x_3) x_2 \\ x_2 \end{pmatrix}, f_3 = \begin{pmatrix} x_1 \\ x_1 \\ 0 \end{pmatrix}$$

When $x_1 = x_2 = 0$, the rank is one.

When $x_1 = 0$, $x_2 \neq 0$, the rank is one.

When $x_1 \neq 0$, $x_2 = 0$, the rank is two.

When $x_1 \neq 0$, $x_2 \neq 0$, the rank is two.

The rank is **two** everywhere except when $x_1 = 0$ when the rank is **one**.

Involutive distributions

A distribution $\Delta_x = span\{g_1(x), g_2(x), ..., g_m(x)\}$ is involutive if and only if $[g_i(x), g_j(x)] \in \Delta_x$ for all i and j between 1 and m.

Quick problem: Is this distribution an involution?

$$D = R^3, \Delta = span\{f_1, f_2, f_3\}$$

$$f_1 = \begin{pmatrix} x_1 \\ 1 + x_3 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} x_1 x_2 \\ (1 + x_3) x_2 \\ x_2 \end{pmatrix}, f_3 = \begin{pmatrix} x_1 \\ x_1 \\ 0 \end{pmatrix}$$

To be an involution, we need $[f_i, f_j] \in \Delta$ for all i, j pairs between 1 and 3

Let's practice distributions more!

Compute the rank of this distribution and decide if it's involutive:

Example: $D=R^3$; $\Delta=\mathrm{span}\{f_1,f_2\}$

$$f_1 = \left[egin{array}{c} 2x_2 \ 1 \ 0 \end{array}
ight], \,\, f_2 = \left[egin{array}{c} 1 \ 0 \ x_2 \end{array}
ight]$$

$$[f_1,f_2]=$$

Involutive distribution example

Compute the rank of this distribution and decide if it's involutive:

Example: $D=R^3$; $\Delta=\mathrm{span}\{f_1,f_2\}$

$$f_1=\left[egin{array}{c} 2x_2 \ 1 \ 0 \end{array}
ight], \;\; f_2=\left[egin{array}{c} 1 \ 0 \ x_2 \end{array}
ight], \;\; \dim(\Delta(x))=2, \; orall \, x\in D$$

$$[f_1,f_2]=rac{\partial f_2}{\partial x}f_1-rac{\partial f_1}{\partial x}f_2=\left[egin{array}{c} 0\ 0\ 1 \end{array}
ight]$$

rank $[f_1(x), f_2(x), [f_1, f_2](x)] =$

$$ext{rank} \left[egin{array}{ccc} 2x_2 & 1 & 0 \ 1 & 0 & 0 \ 0 & x_2 & 1 \end{array}
ight] = 3, \ \ orall \ x \in D$$

 Δ is not involutive

Involutive distribution example 2

Compute the rank of this distribution and decide if it's involutive:

Example:
$$D = \{x \in R^3 \mid x_1^2 + x_3^2 \neq 0\}; \Delta = \mathrm{span}\{f_1, f_2\}$$

$$f_1=\left[egin{array}{c} 2x_3 \ -1 \ 0 \end{array}
ight],\ f_2=\left[egin{array}{c} -x_1 \ -2x_2 \ x_3 \end{array}
ight]$$

$$[f_1,f_2]=rac{\partial f_2}{\partial x}f_1-rac{\partial f_1}{\partial x}f_2=$$

Involutive distribution example 2

Compute the rank of this distribution and decide if it's involutive:

Example:
$$D = \{x \in R^3 \mid x_1^2 + x_3^2 \neq 0\}; \Delta = \mathrm{span}\{f_1, f_2\}$$

$$f_1=\left[egin{array}{c} 2x_3 \ -1 \ 0 \end{array}
ight],\ f_2=\left[egin{array}{c} -x_1 \ -2x_2 \ x_3 \end{array}
ight],\ \dim(\Delta(x))=2,\ orall\ x\in D$$

$$[f_1,f_2]=rac{\partial f_2}{\partial x}f_1-rac{\partial f_1}{\partial x}f_2=\left[egin{array}{c} -4x_3\ 2\ 0 \end{array}
ight]$$

$$\operatorname{rank} \left[egin{array}{cccc} 2x_3 & -x_1 & -4x_3 \ -1 & -2x_2 & 2 \ 0 & x_3 & 0 \end{array}
ight] = 2, \ \ orall \ x \in D$$

 Δ is involutive

Special controllability case: no drift

$$\dot{x}(t) = g(x)u = \sum_{i=1}^{m} g_i(x)u_i$$

<u>Theorem</u>: If the drift term f(x) = 0, then the system is controllable if the matrix Q has full rank.

$$Q = \{g_1, \dots, g_m, \dots, [g_i, g_j] \dots, [ad_{g_i}^k, g_j] \dots, \}$$

If you find n independent columns, then you have controllability!

Controllability Example: Parking

Cars are just carts with fixed rear axis

First things to check to determine controllability: Is the dynamical system in affine form? Are we in the special case f(x) = 0? Who is g(x)?

Cars are just carts with fixed rear axis

Parking, Controllability Distribution

$$\mathbf{Q} = \left\langle f, g_1, \dots, g_m \middle| \operatorname{span} \left\{ f, g_1, \dots, g_m \right\} \right\rangle$$

$$Q = \begin{pmatrix} \begin{bmatrix} \cos(\phi + \theta) \\ \sin(\phi + \theta) \\ \sin(\theta) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \text{span} \begin{cases} \begin{bmatrix} \cos(\phi + \theta) \\ \sin(\phi + \theta) \\ \sin(\theta) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

Parking, new directions from Lie bracket

$$wriggle = [steer, drive] = \begin{bmatrix} -\sin(\theta + \phi) \\ \cos(\theta + \phi) \\ \cos \theta \\ 0 \end{bmatrix}$$

$$space frame$$

$$slide = [wriggle, drive] = \begin{bmatrix} -\sin \phi \\ \cos \phi \\ 0 \\ 0 \end{bmatrix}$$

Parking, Span of Controllability Distribution

$$\operatorname{span} \left\{ \begin{bmatrix} \cos(\phi + \theta) \\ \sin(\phi + \theta) \\ \sin(\theta) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -\sin(\theta + \phi) \\ \cos(\theta + \phi) \\ \cos(\theta + \phi) \\ \cos(\theta) \end{bmatrix}, \begin{bmatrix} -\sin\phi \\ \cos\phi \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0$$

This shows that you can manoeuver your car into any parking lot by applying controls corresponding to the 'Slide' direction, i.e., by applying the control sequence {Wriggle, Drive, –Wriggle, –Drive}.

Outline

- Finishing up Controllability:
 - Distributions
 - Rank

State Feedback for Linear Systems

- Feedback Linearization of Nonlinear Systems:
 - Relative Degree
 - Nonlinear Coordinate Transformation
 - Affine Form to Canonical Form

Block Diagram Open Loop: Linear System

Block Diagram Closed Loop: Controller for Linear Systems

Feedback allows engineered and biological systems to adapt to their changing environment

Engineering Feedback

Biological Feedback

One role of engineered and biological feedback is reference tracking

Block Diagram Closed Loop: Controller for Linear Systems

Process

$$\frac{dx}{dt} = Ax + Bu, y = Cx + Du$$

Controller?

$$u = ?$$

Block Diagram Closed Loop: A Controller Option: State Feedback for Linear Systems

A feedback control system with state feedback. The controller uses the system state x and the reference input r to command the process through its input u. We model disturbances via the additive input v.

$$\frac{dx}{dt} = Ax + Bu, y = Cx + Du$$

$$u = -Kx + k_{\rm f}r$$

State Feedback
Controller

Block Diagram Closed Loop: A Controller Option: State Feedback for Linear Systems

A feedback control system with state feedback. The controller uses the system state x and the reference input r to command the process through its input u. We model disturbances via the additive input v.

$$\frac{dx}{dt} = (A - BK)x + Bk_{\rm f}r$$

$$u = -Kx + k_{\mathrm{f}}r$$

State Feedback
Controller

A Controller Option: State Feedback for Linear Systems

$$\frac{dx}{dt} = (A - BK)x + Bk_{\rm f}r$$

$$y = Cx + Du$$

$$u=-Kx+k_{
m f}r$$

State Feedback Controller

Who should K the gain of state feedback be?

$$\frac{dx}{dt} = (A - BK)x + Bk_{\rm f}r$$

$$y = Cx + Du$$

$$u = -Kx + k_{\mathrm{f}}r$$

State Feedback Controller

Gain K should at least be chosen to achieve stability; other considerations may be important too

$$\frac{dx}{dt} = (A - BK)x + Bk_{\rm f}r.$$

$$y = Cx + Du$$

$$u = -Kx + k_{\mathrm{f}}r$$

State Feedback

Controller

Pole placement: We choose K such that the roots of the characteristic polynomial λ have real part < 0

$$\lambda(s) = \det(sI - A + BK)$$

Lastly, to successfully track the reference, we should choose gain $k_{\rm f}$

$$\frac{dx}{dt} = (A - BK)x + Bk_{\rm f}r$$

$$y = Cx + Du$$

$$u = -Kx + k_{\mathrm{f}}r$$

State Feedback Controller

When D = 0, we choose k_f as follows to obtain <u>tracking</u>:

$$k_{\rm f} = -1/(C(A - BK)^{-1}B)$$

Example 1: Controlling the number of lynxes to equal 30 through the food supply for hares in the predator-prey model

$$\begin{split} \frac{dH}{dt} &= (r+u)H\left(1 - \frac{H}{k}\right) - \frac{aHL}{c+H}, \qquad H \ge 0, \\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL, \qquad L \ge 0. \end{split}$$

u = ? such that $L_{eq} = 30$ lynxes

$$a = 3.2,$$
 $b = 0.6,$ $c = 50,$ $d = 0.56,$ $k = 125$ $r = 1.6.$

Example 1: Recall that the open loop predator-prey model (u = 0) produces limit cycle oscillations of hares and lynxes

$$\begin{split} \frac{dH}{dt} &= (r+z)H\left(1 - \frac{H}{k}\right) - \frac{aHL}{c+H}, \qquad H \ge 0, \\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL, \qquad L \ge 0. \end{split}$$

u = ? such that $L_{eq} = 30$ lynxes

$$a = 3.2,$$
 $b = 0.6,$ $c = 50,$ $d = 0.56,$ $k = 125$ $r = 1.6.$

Example 1: Step 1) linearize and find the equilibrium of the dynamical system

At equilibrium: set $\frac{dH}{dt} = \frac{dL}{dt} = 0$.

We get H_{eq} = 20.6 hares, L_{eq} = 29.5 lynxes

Hmmm... not (0 hares, 0 lynxes). What to do?

Example 1: Step 2) use linear transformation to shift the equilibrium to (0 hares, 0 lynxes)

$$\frac{d}{dt} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.13 & -0.93 \\ 0.57 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 17.2 \\ 0 \end{pmatrix} v_1$$

Define new variables $z_1 = H - H_{eq}$, $z_2 = L - L_{eq}$.

•
$$H_{eq} = 20.6$$
, $L_{eq} = 29.5$

Example 1: Step 2) use linear transformation to shift the equilibrium to (0 hares, 0 lynxes)

$$\frac{d}{dt} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.13 & -0.93 \\ 0.57 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 17.2 \\ 0 \end{pmatrix} v_1$$

Define new variables $z_1 = H - H_{eq}$, $z_2 = L - L_{eq}$

•
$$H_{eq} = 20.6$$
, $L_{eq} = 29.5$

$$\frac{dz_1}{dt} = \frac{dH}{dt}$$

$$\frac{dz_2}{dt} = \frac{dL}{dt}$$

$$v = u$$

Example 1: Step 3) check that the linearly shifted system is controllable to (0 hares, 0 lynxes). How can we do that?

$$\frac{d}{dt} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.13 & -0.93 \\ 0.57 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 17.2 \\ 0 \end{pmatrix} v_1$$

$$Q = \begin{bmatrix} 17.2 & 2.23 \\ 0 & 9.8 \end{bmatrix} \longrightarrow \text{Controllable}$$

Example 1: Step 4) assign the eigenvalues of the characteristic polynomial of the system using state feedback

$$\frac{d}{dt} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.13 & -0.93 \\ 0.57 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 17.2 \\ 0 \end{pmatrix} v_1$$

- For simplicity, we choose them to be $\lambda_1 = -0.1$, $\lambda_2 = -0.2$ and we solve for the feedback gain.
- We obtain K = (0.025 -0.052)

Example 1: Step 5) solve for the gain k_f to obtain tracking

$$\frac{d}{dt} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.13 & -0.93 \\ 0.57 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 17.2 \\ 0 \end{pmatrix} v_1$$

$$k_{\rm f} = -1/(C(A - BK)^{-1}B)$$
 $k_f = 0.002$

$$u = u_{\rm e} - K(x - x_{\rm e}) + k_{\rm f}(L_{\rm d} - y_{\rm e})$$

$$= -\left(0.025 - 0.052\right) \begin{pmatrix} H - 20.6 \\ L - 29.5 \end{pmatrix} + 0.002 (L_{\rm d} - 29.5)$$

Example 1: Step 6) write down the state feedback

$$u = -K(x - x_{\rm e}) + k_{\rm f}(L_{
m d} - y_{
m e})$$
 $= -\left(0.025 - 0.052\right) \left(\frac{H - 20.6}{L - 29.5}\right) + 0.002(L_{
m d} - 29.5)$
 $L_{
m d} = 30$

Example 1: Did we control the number of lynxes to 30 using state feedback?

Simulation results for the controlled predator–prey system. The population of lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled system is shown in (b). Feedback is used to make the population stable at $H_{\rm e}=20.6$ and $L_{\rm e}=30$.

Example 1: Is this state feedback controller unique?

Simulation results for the controlled predator–prey system. The population of lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled system is shown in (b). Feedback is used to make the population stable at $H_{\rm e}=20.6$ and $L_{\rm e}=30$.

Example 1: Is this state feedback controller unique? NO!!

Simulation results for the controlled predator–prey system. The population of lynxes and hares as a function of time is shown in (a), and a phase portrait for the controlled system is shown in (b). Feedback is used to make the population stable at $H_{\rm e}=20.6$ and $L_{\rm e}=30$.

Summary Slide

- A useful controller for linear dynamical system is state feedback
- There are many types of controllers for linear systems that achieve different objectives
- State feedback can be used in the tracking problem i.e.
 I want to control the food supply of the hares to keep a population of 30 lynxes

Summary State Feedback Steps:

- 1) Find the equilibrium of the dynamical system
- 2) Use linear transformation to shift the equilibrium to (0, 0, .., 0)
- 3) Check that the linearly shifted system is controllable to the desired reference
- 4) Assign the eigenvalues of the characteristic polynomial of the system with state feedback
- 5) Solve for the gain k_f to ensure tracking
- 6) Write down the state feedback

Outline

- Finishing up Controllability:
 - Distributions
 - Rank

State Feedback for Linear Systems

- Feedback Linearization of Nonlinear Systems:
 - Relative Degree
 - Nonlinear Coordinate Transformation
 - Affine Form to Canonical Form

What are some Controllers for Nonlinear Affine Systems?

Recap: We study Affine Nonlinear Systems because they have clear criteria for controllability and we can formulate Lie Derivatives and brackets associated to their vector fields

General Form of a Nonlinear System

$$\dot{x}(t) = f(x, u)$$
$$y = h(x, u)$$

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Lie Derivative of Affine Nonlinear System

$$L_f h(x) = \frac{dh}{dx} f(x)$$

A useful controller for Nonlinear Affine Systems performs Feedback Linearization

The main idea is that the controller gets rid of the nonlinearity in the system

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + cu$$

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

Choose the Controller:

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Linear Dynamical System

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -bx_2 + \mathbf{v}$$

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

Choose the Controller:

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Linear Dynamical System

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -bx_2 + \mathbf{v}$$

• For the linear dynamical system, we can choose v to be one of many controllers. In this example, we can choose v to be a state feedback controller from before.

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

Choose the Controller:

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Linear Dynamical System

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -bx_2 + \mathbf{v}$$

$$\mathbf{v} = -Kx = -k_1x_1 - k_2x_2$$

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

Choose the Controller:

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Linear Dynamical System

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -bx_2 + \mathbf{v}$$

$$\mathbf{v} = -Kx = -k_1 x_1 - k_2 x_2$$

We can choose the gain K as before to guarantee stability

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

Choose the Controller:

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Feedback Linearization

$$u = -\frac{a}{c}\sin x_1 + \frac{1}{c}(-k_1x_1 - k_2x_2)$$

We found a controller for a nonlinear system. Can we always do feedback linearization?

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

Choose the Controller:

$$\boldsymbol{u} = \frac{a}{c} \sin x_1 + \frac{1}{c} \boldsymbol{v}$$

Feedback Linearization

$$u = -\frac{a}{c}\sin x_1 + \frac{1}{c}(-k_1x_1 - k_2x_2)$$

Can we always do feedback linearization for nonlinear affine systems?

Yes if the relative degree is n

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Let's learn about the relative degree of an affine nonlinear system

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

The Affine Nonlinear System has relative degree ρ if u does not appear in the equation of $y, \dot{y}, \ddot{y}, y^{\rho-1}$, but it appears in the equation of y^{ρ} .

Let's learn about the relative degree of an affine nonlinear system

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

The Affine Nonlinear System has relative degree ρ if u does not appear in the equation of $y, \dot{y}, \ddot{y}, y^{\rho-1}$, but it appears in the equation of y^{ρ} .

If u does not appear in any of the equations $y, \dot{y}, \ddot{y}, \dots, y^n$, then the system has infinite relative degree.

Quick problem 1: Compute the relative degree ρ of the pendulum

Mathematical Model

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -a\sin x_1 - bx_2 + c\mathbf{u}$$

$$y = x_1$$

relative degree ρ if u does not appear in the equation of $y, \dot{y}, \ddot{y}, y^{\rho-1}$, but it appears in the equation of y^{ρ} .

Quick problem 2: Compute the relative degree ρ

Mathematical Model

$$\dot{x_1} = x_1
\dot{x_2} = 2x_2 + \mathbf{u}
y = x_1$$

relative degree ρ if u does not appear in the equation of $y, \dot{y}, \ddot{y}, y^{\rho-1}$, but it appears in the equation of y^{ρ} .

The relative degree can be expressed using Lie derivatives

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

The relative degree is ρ on domain D if and only if

- $L_g L_f^{i-1} h(x) = 0$ for i between 0 and $\rho 1$ and
- $L_g L_f^{\rho-1} h(x) \neq 0$

for all $x \in D$.

To construct feedback linearization for an affine nonlinear system of relative degree n, we need to first perform a Nonlinear Coordinate Transformation

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

We performed a Linear Coordinate Transformation for the hares and the lynxes earlier to push the equilibrium point to (0, 0)

At equilibrium: set
$$\frac{dH}{dt} = \frac{dL}{dt} = 0$$
.

We get H_{eq} = 20.6 hares, L_{eq} = 29.5 lynxes

Hmmm... not (0 hares, 0 lynxes). What to do?

Define new variables $z_1 = H - H_{eq}$, $z_2 = L - L_{eq}$.

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Nonlinear Coordinate Transformation

$$z = T(x)$$

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Nonlinear Coordinate Transformation

$$z = T(x)$$

• T(x) is invertible if there exists a function $T^{-1}(z)$ such that $T^{-1}(T(x)) = x$ for all $x \in \text{domain D}$

Affine Nonlinear System

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Nonlinear Coordinate Transformation

$$z = T(x)$$

This definition is equivalent to T being a diffeomorphism

Quick examples of nonlinear coordinate transformations

$$T_1(x) = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$$
 is a diffeomorphism everywhere

$$T_2(x) = \begin{bmatrix} x_1 \\ \sin x_2 \end{bmatrix}$$
 is a local diffeomorphism on the set $D = \left\{ x \in \mathbb{R}^2, |x_2 < \frac{\pi}{2}| \right\}$

Affine Nonlinear System with relative degree $\rho = n$

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Nonlinear Coordinate
Transformation for
Feedback Linearization

$$z = T(x) = \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{n-1} h(x) \end{bmatrix}$$

What is the result of the Nonlinear Coordinate Transformation?

Affine Nonlinear System with relative degree $\rho = n$

$$\dot{x}(t) = f(x) + g(x)u$$
$$y = h(x)$$

Normal Canonical Form

$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$
$$y = cz$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & & \ddots & \ddots \\ & & & \ddots & 1 \\ 0 & & & 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$
 Chain of Integrators
Ania Baetica MEM Drexel

When can we perform the nonlinear transformation to the Normal Canonical Form?

When the Affine Nonlinear System has relative degree $\rho = n$:

• $L_g L_f^{i-1} h(x) = 0$ for i between 0 and n-1 and $L_g L_f^{n-1} h(x) \neq 0$ for all $x \in D_0$.

When can we perform the nonlinear transformation to the Normal Canonical Form?

When the Affine Nonlinear System has relative degree $\rho = n$:

• $L_g L_f^{i-1} h(x) = 0$ for i between 0 and n-1 and $L_g L_f^{n-1} h(x) \neq 0$ for all $x \in D_0$.

Theorem:

$$\dot{x} = f(x) + g(x)u$$

is transformable into the canonical form if and only if there is a domain D_0 such that

$$\operatorname{rank}[g(x), ad_fg(x), \dots, ad_f^{n-1}g(x)] = n, \ \ orall \ x \in D_0$$

and

$$\operatorname{span}\ \{g,ad_fg,\ldots,ad_f^{n-2}g\}$$
 is involutive in D_0

The relative degree is $\rho = n$ if and only if

- $L_g L_f^{i-1} h(x) = 0$ for i between 0 and n-1 and
- $L_g L_f^{n-1} h(x) \neq 0$

$$z_1 = h(x)$$

$$\dot{z_1} = \frac{dh(x)}{dx}\dot{x} = \frac{dh(x)}{dx}(f(x) + g(x)u) = L_f h(x) + L_g h(x)u = L_f h(x) = \mathbf{z_2}$$

The relative degree is $\rho = n$ if and only if

- $L_g L_f^{i-1} h(x) = 0$ for i between 0 and
- n-1 and
- $L_g L_f^{n-1} h(x) \neq 0$

$$z = T(x)$$

$$= \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{n-1} h(x) \end{bmatrix}$$

$$z_{1} = h(x)$$

$$z_{2} = L_{f}h(x)$$

$$\ddot{z}_{1} = \frac{dL_{f}h(x)}{dx}\dot{x} = \frac{dL_{f}h(x)}{dx}(f(x) + g(x)u) = \frac{dL_{f}h(x)}{dx}f(x) + \frac{dL_{f}h(x)}{dx}g(x)u =$$

$$= L_{f}^{2}h(x) + L_{g}L_{f}h(x)u = L_{f}^{2}h(x) = z_{3}$$
84

The relative degree is $\rho = n$ if and only if

- $L_g L_f^{i-1} h(x) = 0$ for i between 0 and n-1 and
- $L_g L_f^{n-1} h(x) \neq 0$

$$z = T(x)$$

$$= \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{n-1} h(x) \end{bmatrix}$$

$$z_{1} = h(x)$$

$$z_{2} = L_{f}h(x)$$

$$\vdots \quad 0$$

$$z_{1}^{(n-1)} = L_{f}^{n-1}h(x) + L_{g}L_{f}^{n-2}h(x)u = L_{f}^{n-1}h(x) = \mathbf{z}_{n}$$

The relative degree is $\rho = n$ if and only if

- $L_g L_f^{i-1} h(x) = 0$ for i between 0 and n-1 and
- $L_g L_f^{n-1} h(x) \neq 0$

$$z = T(x)$$

$$= \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{n-1} h(x) \end{bmatrix}$$

$$z_1 = h(x)$$

$$z_2 = L_f h(x)$$

$$\vdots$$

$$z_n = L_f^{n-1} h(x)$$

$$z_1^{(n)} = L_f^n h(x) + L_g L_f^{n-1} h(x) u$$

The transformed dynamical system is:

$$z_1 = h(x)$$

$$z_2 = L_f h(x)$$

$$\vdots$$

$$z_n = L_f^{n-1} h(x)$$

$$z_1^{(n)} = L_f^n h(x) + L_g L_f^{n-1} h(x) u$$

An alternative form of the same dynamical system is:

$$\dot{z_1} = z_2
\vdots
\dot{z_{n-1}} = z_n
\dot{z_n} = L_f^n h(x) + L_g L_f^{n-1} h(x) u$$

The transformed dynamical system is:

$$z_1 = h(x)$$

$$z_2 = L_f h(x)$$

$$\vdots$$

$$z_n = L_f^{n-1} h(x)$$

$$z_1^{(n)} = L_f^n h(x) + L_g L_f^{n-1} h(x) u$$

An alternative form of the same system is the Canonical Form:

$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$

$$y = cz$$

$$\gamma(x) = L_g L_f^{n-1} h(x),$$

$$\alpha(x) = \frac{L_f^n h(x)}{L_g L_f^{n-1} h(x)}$$

An alternative form of the same system is the Canonical Form:
$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$

$$\gamma(x) = cz$$

$$\gamma(x) = L_g L_f^{n-1} h(x),$$

$$\alpha(x) = \frac{L_f^n h(x)}{L_f^{n-1} h(x)}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & & \\ 0 & 0 & 1 & 0 & \\ \vdots & \ddots & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

For the Canonical Form of an affine nonlinear system, we can find feedback linearization as follows

Canonical Form:

$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$
$$y = cz$$

Feedback Linearization:

$$u = \alpha(x) + \gamma^{-1}(x)v$$

For the Canonical Form of an affine nonlinear system, we can find feedback linearization as follows

Canonical Form:

$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$
$$y = cz$$

Feedback Linearization:

$$u = \alpha(x) + \gamma^{-1}(x)v$$

Linearized Form:

$$\dot{z} = Az + b\mathbf{v}$$
$$y = cz$$

For the Canonical Form of an affine nonlinear system, we can find feedback linearization as follows

Canonical Form:

$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$
$$y = cz$$

Feedback Linearization:

$$u = \alpha(x) + \gamma^{-1}(x)v$$

Linearized Form:

$$\dot{z} = Az + b\mathbf{v}$$
$$y = cz$$

$$\dot{z} = (A - bK)z$$

$$y = cz$$

$$u = \alpha(x) - \gamma^{-1}(x)Kz$$

We can choose state fb v = -Kz

Summary for Feedback Linearization Control of Nonlinear Affine Systems

- 1) Start with an Affine Nonlinear System
- 2) Check whether the relative degree is ρ by showing $L_g L_f^{i-1} h(x) = 0$ for i between 1 and n-1 and $L_g L_f^{n-1} h(x) \neq 0$
- 3) Check whether your system is already in Canonical Form
- 4) If not, Perform Nonlinear Coordinate Feedback Linearization

$$z = T(x) = \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{n-1} h(x) \end{bmatrix}$$

5) Put the system in Canonical Form

$$\dot{z} = Az + b\gamma(x)[u - \alpha(x)]$$

 $y = cz$

- 6) Choose feedback linearization to linearize the affine system in Canonical Form
- 7) Choose state feedback v = -Kz to achieve stability of the dynamical system in Canonical Form
- 8) Compute the feedback linearization $u = \alpha(x) \gamma^{-1}(x)KT(x)$

What happens if the Affine Nonlinear System has relative degree $\rho < n$?

We'll find out next class

Example 3: Feedback Linearization Example. Step 1) Affine Nonlinear System

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

Example 3: Feedback Linearization Example. Step 2) Is the relative degree equal to two?

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

$$f(x) = \begin{bmatrix} a \sin x_2 \\ -x_1^2 \end{bmatrix}, g(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = h(x) = x_1$$

1) Is
$$L_g h(x) = 0$$
?

2) Is
$$L_g L_f h(x) \neq 0$$

$$L_g h(x) = \frac{dh}{dx} g(x) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$
$$L_f h(x) = a \sin x_2$$

$$L_g L_f h(x) = \frac{dL_f h}{dx} g(x) = [0 \ a \cos x_2] \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a \cos x_2 \neq 0 \text{ for } |x_2| < \frac{\pi}{2}$$

95

Example 3: Feedback Linearization Example. Step 2) Is the relative degree equal to two? Yes in the appropriate domain

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

$$f(x) = \begin{bmatrix} a \sin x_2 \\ -x_1^2 \end{bmatrix}, g(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = h(x) = x_1$$

1) Is
$$L_g h(x) = 0$$
?

2) Is
$$L_g L_f h(x) \neq 0$$

$$L_g h(x) = \frac{dh}{dx} g(x) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$
$$L_f h(x) = a \sin x_2$$

$$L_g L_f h(x) = \frac{dL_f h}{dx} g(x) = [0 \ a \cos x_2] \begin{bmatrix} 0 \\ 1 \end{bmatrix} = a \cos x_2 \neq 0 \text{ for } |x_2| < \frac{\pi}{2}$$

96

Example 3: Feedback Linearization Example. Steps 3), 4), 5) Checked that the system was not in canonical form and did nonlinear transformation

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

Nonlinear Coordinate Transformation

$$z_1 = x_1$$

$$z_2 = a \sin x_2$$

Example 3: Feedback Linearization Example. Steps 3), 4), 5) Checked that the system was not in canonical form and did nonlinear transformation

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

Nonlinear Coordinate Transformation

$$z_1 = x_1$$

$$z_2 = a \sin x_2$$

System in Canonical Form

$$\dot{z_1} = z_2$$

 $\dot{z_2} = a \cos x_2 (u - x_1^2)$

Example 3: Feedback Linearization Example. Step 6) Choose the feedback linearization controller

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

Nonlinear Coordinate Transformation

$$z_1 = x_1$$

$$z_2 = a \sin x_2$$

System in Canonical Form

$$\dot{z_1} = z_2$$

 $\dot{z_2} = a \cos x_2 (u - x_1^2)$

Choose the Controller:

$$u = x_1^2 + \frac{1}{\cos x_2} v$$

Example 3: Feedback Linearization Example. Step 7) Choose state feedback

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

Nonlinear Coordinate Transformation

$$z_1 = x_1$$

$$z_2 = a \sin x_2$$

System in Canonical Form

$$\dot{z_1} = z_2$$

 $\dot{z_2} = a \cos x_2 (u - x_1^2)$

Choose the Controller:

$$u = x_1^2 + \frac{1}{\cos x_2} v$$

Linear Dynamical System

$$\dot{z_1} = z_2 \\ \dot{z_2} = \boldsymbol{v}$$

$$\mathbf{v} = -Kx = -k_1 z_1 - k_2 z_2$$

Example 3: Feedback Linearization Example. Step 8) Compute feedback linearization

Affine Nonlinear System

$$\dot{x_1} = a \sin x_2$$

$$\dot{x_2} = -x_1^2 + \mathbf{u}$$

$$y = x_1$$

Nonlinear Coordinate Transformation

$$z_1 = x_1$$

$$z_2 = a \sin x_2$$

System in Canonical Form

$$\dot{z_1} = z_2
\dot{z_2} = a \cos x_2 (u - x_1^2) \mathbf{u} = x_1^2 + \frac{1}{\cos x_2} \mathbf{v} (-k_1 x_1 - k_2 a \sin x_2)$$
Ania Baetica MEM Drexe $\cos x_2$

Choose the Controller:

$$u = x_1^2 + \frac{1}{\cos x_2} v$$

Linear Dynamical System

$$\dot{z_1} = z_2 \\ \dot{z_2} = \mathbf{v}$$

Summary

- Learned about State Feedback
- Learned about Feedback Linearization of Nonlinear Affine Systems