UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Ny/Utsatt eksamen i: MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Fredag 18.august, 2017.

Tid for eksamen: 09:00-13:00

Oppgavesettet er på 3 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

La A være matrisen

$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

1a 10 poeng

Finn egenverdiene og egenvektorene til A.

1b 10 poeng

Definer en følge $\{(x_n, y_n)\}_{n=1}^{\infty}$ ved

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \quad n \ge 0.$$

Finn grensen

$$\lim_{n\to\infty} \begin{pmatrix} x_n \\ y_n \end{pmatrix}.$$

Oppgave 2

2a 10 poeng

Finn konvergensradien til rekka

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n}, \qquad (n! = n \cdot (n-1) \cdots 2 \cdot 1, \ 0! = 1).$$

2b 10 poeng

La

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n}.$$

Finn f(1/2).

Oppgave 3 10 poeng

Hva er den største verdien funksjonen $f(x,y,z)=xyz^2$ kan ha når (x,y,z) ligger på kuleflaten $x^2+y^2+z^2=1$?

Oppgave 4

La \mathbf{F} være vektorfeltet

$$\mathbf{F}(x,y) = \frac{y}{x^2 + y^2 + 1} \,\mathbf{i} - \frac{x}{x^2 + y^2 + 1} \,\mathbf{j}.$$

4a 10 poeng

Finn Jacobimatrisen $\mathbf{F}'(x,y)$ til \mathbf{F} , og lineariseringen til \mathbf{F} om punktet $(x_0,y_0)=(0,0).$

4b 10 poeng

Er F konservativt? (Svaret skal begrunnes)

4c 10 poeng

La C være kurven med parameterframstilling $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j}$, $t \in [0, 2\pi]$. Regn ut

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

Oppgave 5

5a 10 poeng

La A være området i planet gitt ved $A=\left\{(x,y)\mid \frac{\pi}{4}\leq \sqrt{x^2+y^2}\leq \frac{\pi}{3}\right\}$. Regn ut

$$\iint_A \frac{\tan\left(\sqrt{x^2 + y^2}\right)}{\sqrt{x^2 + y^2}} \, dx dy.$$

5b 10 poeng

La B være området i planet gitt ved $B=\left\{(x,y)\mid \frac{1}{x}\leq y\leq \frac{2}{x},\ 1\leq x\leq 7\right\}$. Regn ut

$$\iint_B xy^2 \, dx dy.$$

(Fortsettes på side 3.)

SLUTT