	iii Question	
	What is the solution of the following least norm problem $\min_{{m x}\in\mathbb{R}^3}\ {m x}\ _2$	
	subject to $m{Ax} = m{b}$ where $m{A} = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $m{b} = m{a} \\ 2 \end{bmatrix}$?	
Correct Answe	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	
	$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$	
	$egin{pmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$	
Ø Ø	$egin{pmatrix} 1\\1\\1 \end{pmatrix}$	
Ø	□ Question	
	Let $f'_f(x_0)$ denote the two point forward difference approximation of $f'(x_0)$ with step size h . Let $f'_b(x_0)$ denote the two point backward difference approximation of $f'(x_0)$ with the same step size. Then the three point central difference approximation of $f''(x_0)$ with the same step size h can be written as	
	$ \frac{f_f'(x_0) - f_b'(x_0)}{h^2} $	
Correct Answer	$ \frac{f_b'(x_0) - f_f'(x_0)}{h} $	
	$\frac{f_{f}^{'}(x_{0}) - f_{b}^{'}(x_{0})}{h}$ $\frac{f_{b}^{'}(x_{0}) - f_{f}^{'}(x_{0})}{h^{2}}$	
Ø	$\frac{1}{h^2}$	
	ii Question	×
	For the function $f(x)=x\ln x$, the two point central difference approximation for $f'(1)$ with step size h is	
Correct Answe	$\sim rac{1}{2h} { m ln} rac{(1+h)^{1+h}}{(1-h)^{1-h}}$	
	$=\frac{1}{h}\ln\frac{(1+h)^{1+h}}{(1-h)^{1-h}}$	
	$h = (1-h)^{1-h}$ $= \frac{1}{2} \ln \frac{(1+h)^{1+h}}{(1-h)^{1-h}}$	
Ø Ø	$\log \ln \frac{(1+h)^{1+h}}{(1-h)^{1-h}}$	
	Question	
	The ${f central\ difference\ approximation\ for\ }f''ig(x_0ig)$ with step size $0< h<<1,$ is	
Correct Ansv	wer $\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}.$	
	$ \qquad \qquad \frac{f(x_0+h)-f(x_0-h)}{2h}.$	
	$ \bigcirc \frac{f(x_0+h)-f(x_0-h)}{h^2}.$	
	ii Question	
	Consider the function $f(x) = \cos(x)$. The two point central difference approximation of $f'\left(\frac{\pi}{2}\right)$ with step size h satisfying $0 < h << 1$, is	
Correct Answ	$-\frac{\sin(h)}{h}$	
	○ zero	
	$\bigcirc \frac{\cos(h)}{h}$	
	$-\frac{\cos(h)}{2h}$	
	ii Question	
	What is the solution of the following least norm problem	
	$\min_{oldsymbol{x} \in \mathbb{R}^3} \ oldsymbol{x}\ _2$ subject to $oldsymbol{A}oldsymbol{x} = oldsymbol{b}$	
	where $m{A} = \begin{bmatrix} 3 & 6 & 9 \\ 2 & 4 & 6 \end{bmatrix}$ and $m{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$?	
	[1]	
	$ \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} $	
	$egin{pmatrix} 2\\3\\6 \end{bmatrix}$	
Correct Answ		
Ø	ii Question	
	Consider the definite integral	
	$\int_0^1 x^x \mathrm{d}x = 0.7834305107$ (up to 10 significant digits).	
	The midpoint method approximation for this integral with x axis partition $[0,1/2],[1/2,1],$ equals	
Correct Ans	$\bigcirc \ \frac{1}{2} \left(\left(\frac{1}{4} \right)^{1/4} + \left(\frac{3}{4} \right)^{3/4} \right).$	
	$\bigcirc \ \ \frac{1}{2} \Biggl(\Bigl(rac{1}{4} \Bigr)^{3/4} + \Bigl(rac{3}{4} \Bigr)^{1/4} \Bigr) .$	
	$\left(\frac{1}{4}\right)^{1/4} + \left(\frac{3}{4}\right)^{3/4}$.	
Ø	:: Question	
	Suppose we want to compute the integral	≥×
	$I=\int_{-1}^1rac{1}{1+x^2}\mathrm{d}x$ using the trapezoid method and the midpoint method , both by partitioning $[-1,1]$ into two subintervals $[-1,0]$ and $[0,1]$. Then	
Correct Ans		
	$O(I_{ m trapezoid} = rac{3}{2}, I_{ m midpoint} = rac{8}{5}.$	
	$I_{ m trapezoid} = rac{1}{2}, I_{ m midpoint} = rac{8}{5}.$	
	$egin{aligned} I_{ m trapezoid} = rac{5}{2}, I_{ m midpoint} = rac{9}{5}. \end{aligned}$	
	iii Question	
	Suppose we want to approximate $\int_a^b f(x) dx$ using trapezoid method by partitioning $[a,b]$ into two sub-intervals $[a,(a+b)/2]$ $[(a+b)/2]$	
	$[a,(a+b)/2],\ [(a+b)/2,b].$ If $f(a)=f(b)=0,$ then the trapezoidal approximation of the integral reduces to computing the area of	
Correct Answe	er an isosceles triangle.	
	a circle. a rectangle.	
	ii Question	
	The Simpson's three point method to approximate a one dimensional definite integral with uniform discretization Δx , has error	
	$\bigcirc O\left((\Delta x)^3\right)$	
Carrie	wer .	
Correct Ans	over $O\left((\Delta x)^3\right)$ $O\left((\Delta x)^4\right)$ $O\left((\Delta x)^2\right)$	