Stroke Analysis and Prediction Mini project 3

Agenda

Introduction

Objective

Exploratory Data Analysis

Model

Model Evaluation

Conclusion

Future Work

Introduction

What is Stroke?

Stroke is a sudden change in the blood supply to a part of the brain, sometimes causing a loss of the ability to move a particular part of the body.

How To Spot A Stroke?

FACE ONE SIDE OF THE FACE IS DROOPING

ARMS
ARM OR LEG
WEAKNESS

SPEECH DIFFICULTY

TIME TO CALL FOR AMBULANCE IMMEDIATELY

Objective

Objective

Gain insights on what are the external factors that cause stroke

Build a Machine Learning Model to Predict whether a person had a stroke or not

Exploratory Data Analysis

Features

```
Gender
age
Hypertension
heart_disease
ever_married
work_type
Residence_type
avg_glucose_level
bmi
smoking_status
```

How big is the dataset?

Total **5110** data for analysis

Gender

Female 2994 Male 2115 Other 1

Name: gender, dtype: int64

Gender

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
3116	56156	Other	26.0	0	0	No	Private	Rural	143.33	22.4	formerly smoked	0

Feature Engineering

Stroke

df.stroke.value_counts()

0 4861

1 249

Name: stroke, dtype: int64

stroke1 = df.loc[(df['stroke'] == 1)]

stroke1.sample(5)

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
164	3512	Female	70.0	1	0	Yes	Self-employed	Urban	89.13	34.2	formerly smoked	1
73	50784	Male	63.0	0	0	Yes	Private	Rural	228.56	27.4	never smoked	1
177	36841	Male	78.0	1	0	Yes	Self-employed	Rural	56.11	25.5	formerly smoked	1
123	44033	Male	56.0	1	0	Yes	Private	Rural	249.31	35.8	never smoked	1
52	59190	Female	79.0	0	1	Yes	Private	Rural	127.29	27.7	never smoked	1

Gender(Stroke)

Female 141

Male 108

Name: gender, dtype: int64

Age with Stroke

Hypertension with Stroke

0 183

1 6

Name: hypertension, dtype: int64

Heart Disease with Stroke

0 202

1 4

Name: heart_disease, dtype: int64

Married with Stroke

Yes 220

lo 29

Name: ever_married, dtype: int64

Smoking Status With Stroke

never smoked 90 formerly smoked 70 Unknown 47 smokes 42

Name: smoking_status, dtype: int64

Work Type with Stroke

Private 149
Self-employed 65
Govt_job 33
children 2

Name: work_type, dtype: int64

Residence Type With Stroke

Urban 135

Rural 114

Name: Residence_type, dtype: int64

Average Glucose Level With Stroke

```
print('Total Non Diabeties Patients with stroke :' , blood140less['avg_glucose_level'].count())

Total Non Diabeties Patients with stroke : 156

print('Total Prediabetes Patients with stroke : ', blood140199['avg_glucose_level'].count())

Total Prediabetes Patients with stroke : ', blood200over['avg_glucose_level'].count())

Total Diabetes Patients with stroke : ', blood200over['avg_glucose_level'].count())

Total Diabetes Patients with stroke : 59
```

Average Glucose Level With Stroke

BMI with Stroke

```
print('Total Underweight Patients with stroke : ', underweight['bmi'].count())
Total Underweight Patients with stroke: 59
print('Total healthy Patients with stroke : ', healthy['bmi'].count())
Total healthy Patients with stroke : 35
print('Total overweight Patients with stroke : ', overweight['bmi'].count())
Total overweight Patients with stroke: 75
print('Total obese Patients with stroke : ', obese['bmi'].count())
Total obese Patients with stroke: 96
```

BMI with Stroke

Data cleaning

	Total	Percent
bmi	201	0.039335
id	0	0.000000
gender	0	0.000000
age	0	0.000000
hypertension	0	0.000000
heart_disease	0	0.000000
ever_married	0	0.000000
work_type	0	0.000000
Residence_type	0	0.000000
avg_glucose_level	0	0.000000
smoking_status	0	0.000000
stroke	0	0.000000

Data Preprocessing

 5 features: GENDER, EVER_MARRIED, WORK_TYPE, RESIDENCE_TYPE, SMOKING_STATUS (Convert from categorical to numeric data)

```
from sklearn.preprocessing import LabelEncoder
enc=LabelEncoder()

gender=enc.fit_transform(df['gender'])
smoking_status=enc.fit_transform(df['smoking_status'])
work_type=enc.fit_transform(df['work_type'])
Residence_type=enc.fit_transform(df['Residence_type'])
ever_married=enc.fit_transform(df['ever_married'])

df['ever_married']=ever_married
df['Residence_type']=Residence_type
df['smoking_status']=smoking_status
df['gender']=gender
df['work_type']=work_type
```

Model

Decision Tree

Decision Tree with Bagging

Random Forest

Random Forest With Adaboost

XG Boost

Model

Solving imbalance problem

```
Before OverSampling, the shape of train_x: (4088, 10)
Before OverSampling, the shape of train_y: (4088,)
Before OverSampling, counts of label 1: 199
Before OverSampling, counts of label 0: 3889

After OverSampling, the shape of train_x: (7778, 10)
After OverSampling, the shape of train_y: (7778,)
After OverSampling, counts of label 1: 3889

After OverSampling, counts of label 0: 3889
```

Model Evaluation

Model Evaluation

	Model	Accuracy	Precision	Recall	ROC_AUC
0	Decision Tree	1.000000	1.000000	1.000000	1.000000
1	Decision Tree With Bagging	1.000000	1.000000	1.000000	1.000000
2	Random Forest	1.000000	1.000000	1.000000	1.000000
3	Random Forest With AdaBoost	1.000000	1.000000	1.000000	1.000000
4	XG Boost	0.989843	0.982278	0.997686	0.989843

Conclusion

Older patients are more likely to suffer a stroke than younger ones

Unmarried reduces the risk of stroke

Working as private has the highest number of stroke cases

Healthy BMI decrease the risk of stroke

Future Work

GET MORE DATA

DEPLOYMENT

Thank you!

• https://www.kaggle.com/fedesoriano/stroke-prediction-dataset