ASSINGMENT #3 COMP-1805 B Robert Collier 7th March

1) We need to find the all integers that lie in the interval 23,522 and are divisible by 4.

The numbers are: {24,28,32.....520}

Number of terms that are divisible by 4, we can find them by using sequence and series.

$$a = 24$$
, $a_n=520$
 $d = 4$
 $a_n = a + (n-1) d$
 $520 = 24 + (n-1)4$
 $520 = 24 + 4n - 4$
 $520 = 20 + 4n$
 $4n = 500$
 $n = 125$

So, there are 125 integers that are divisible by 4.

First number that is divisible by 4 between 23 and 522 is 24 and the last number is 520.

So, the sum is:

Sum=
$$\sum_{6}^{130} 4i$$

= $\sum_{6}^{130} 4i$
= $4\sum_{6}^{130} i$
= $4(125) (6+130)/2$
= 34000

2) The sum of all the integers from 16 to 611. We can find the sum by finding the sum from 1 to 611 and subtracting the sum from 1 to 15 from that.

$$= \sum_{1}^{611} i - \sum_{1}^{15} i$$

= 611(612)/2 - 15(16)/2
= 186846

The sum of all the integers between 16 to 611 is 186846.

For finding sum from 16 to 611 that are not divisible by either 6 or 21, we need to find the sum of integers from 16 to 611 that is divisible by 6 or by 21. Then subtract the sum from the total sum of integer from 16 to 611. We also have to add back the common integers that are common multiples of 6 or 21.

Find the total number of integers between 16 to 611 that are divisible by 6. The numbers are {18,24, 30......606}.

```
a = 18, a_n = 606

d = 6

a_n = a + (n-1) d

606 = 18 + (n-1)6

606 = 18 + 6n - 6

600 = 12 + 6n

6n = 594

n = 99

So, there are 99 integers that are divisible by 6.
```

The sum of numbers between 16 and 611 that are divisible by 6 is:

$$= \sum_{1}^{101} 6i - \sum_{1}^{2} 6i$$

= 6(101(102)/2) - 6(2(3)/2)
= 30888

Find the total number of integers between 16 to 611 that are divisible by 21. The numbers are {21, 42.......609}.

$$a = 21$$
, $a_n = 609$

$$d = 21$$

$$a_n = a + (n-1) d$$

$$609 = 21 + (n-1)21$$

$$606 = 21 + 21n - 21$$

$$606 = 21n$$

$$n = 29$$

So, there are 29 integers that are divisible by 21.

The sum of numbers between 16 and 611 that are divisible by 21 is:

$$= \sum_{1}^{29} 21i$$

= 21(29(30)/2)
= 9135

Find the total number of integers that are common in division of 6 and 21 that lies in the range of 16, 611:

The total numbers are {42, 84......588)

$$a = 42$$
, $a_n = 588$
 $d = 42$
 $a_n = a + (n-1) d$
 $588 = 42 + (n-1)42$
 $588 = 42 + 42n-42$
 $n = 14$
So, the total number of integers are 14.

The sum of numbers is:

=
$$(\sum_{1}^{14} 42i)$$

= $42(14(15)/2)$
= 4410

The required Sum according to the question is:

3) Construct membership tables for each of the following expressions:

(a) $p - (\overline{q \cap r})$

р	q	r	$q \cap r$	$(\overline{q \cap r})$	p - $(\overline{q} \cap r)$
1	1	1	1	0	1
1	1	0	0	1	0
1	0	1	0	1	0
1	0	0	0	1	0
0	1	1	1	0	0
0	1	0	0	1	0
0	0	1	0	1	0
0	0	0	0	1	0

(b) $(\overline{p \cup \overline{r}}) \cup (q-r)$

р	q	r	\bar{r}	q-r	p∪ $ar{r}$	$(\overline{p} \cup \overline{r})$	$(\overline{p \cup \overline{r}}) \cup (q-r)$
1	1	1	0	0	1	0	0
1	1	0	1	1	1	0	1
1	0	1	0	0	1	0	0
1	0	0	1	0	1	0	0
0	1	1	0	0	0	1	1
0	1	0	1	1	1	0	1
0	0	1	0	0	0	1	1
0	0	0	1	0	1	0	0

(c) $((\bar{q} \cup r) - p) \cup (\bar{p} \cap r)$

P	q	r	\bar{p}	$ar{q}$	$ar{q}$ U r	$(\bar{q} \cup r) - p$	$ar{p} \cap r$	$((\bar{q} \cup r) - p) \cup (\bar{p} \cap r)$
1	1	1	0	0	1	0	0	0
1	1	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0
1	0	0	0	1	1	0	0	0
0	1	1	1	0	1	1	1	1
0	1	0	1	0	0	0	0	0
0	0	1	1	1	1	1	1	1
0	0	0	1	1	1	1	0	1

(d) $((p \cup r) - ((p \cap \bar{r}) - (q \cap r)))$

p	q	r	\bar{r}	$p \cup r$	$p\cap \bar{r}$	$q \cap r$	$((p \cap \bar{r}) - (q \cap r))$	$((p \cup r) - ((p \cap \bar{r}) - (q \cap r)))$
1	1	1	0	1	0	1	0	1
1	1	0	1	1	1	0	1	0
1	0	1	0	1	0	0	0	1
1	0	0	1	1	1	0	1	0
0	1	1	0	1	0	1	0	1
0	1	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0

4) The membership table for $((Y \cup Z) \cap (\bar{X} \cup Z)) - (Y \cap Z)$.

		Y	Ž	(Y∪ Z)∩(<i>X</i> ∪Z	($((Y \cup Z) \cap (X \cup Z)) - (Y \cup Z)$
		ι	ι	<i>Z</i>)∩(Y	$\bar{X} \cup Z)) - (Y$
		2	2	$ar{X} \cup Z$	\cap	∩ <i>Z</i>)
)	Z	
)	
		-	1 1	1	1	0
		-	(0	0	0
		,]	1	0	1
		((0	0	0
		,]	1	1	0
] 1	1	0	1
	·	-	1	1	0	1
		(1	0	0	0

The membership table for $(Z \cup (Y \cap \overline{X})) \cap ((\overline{(Y \cap Z) \cup X}) \cup ((\overline{Y \cap Z}) \cap X))$.

Let a =
$$\overline{(Y \cap Z) \cup X}$$
)

Let b =
$$((\overline{(Y \cap Z) \cup X}) \cup (\overline{(Y \cap Z)} \cap X))$$

Let c = $(Z \cup (Y \cap \overline{X})) \cap ((\overline{(Y \cap Z) \cup X}) \cup (\overline{(Y \cap Z)} \cap X))$

X	Y	Z	\bar{X}	$Y \cap \bar{X}$	$Z \cup (Y \cap \bar{X})$	$(Y\cap Z)$	$(\overline{Y \cap Z})$	$(\overline{Y} \cap \overline{Z}) \cap X)$	$(Y \cap Z) \cup X$	a	b	С
1	1	1	0	0	1	1	0	0	1	0	0	0
1	1	0	0	0	0	0	1	1	1	0	1	0
1	0	1	0	0	1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	1	1	1	0	1	0
0	1	1	1	1	1	1	0	0	1	0	0	0
0	1	0	1	1	1	0	1	0	0	1	1	1
0	0	1	1	0	1	0	1	0	0	1	1	1
0	0	0	1	0	0	0	1	0	0	1	1	0

So, membership table for both expressions are equal. Hence proved.

5) 1) $((Y \cup Z) \cap (\bar{X} \cup Z)) - (Y \cap Z)$ 2) $\overline{Z} \cup (Y \cap \overline{X}) - (Y \cap Z)$ (By Distributive,1) 3) $((Z \cup (Y \cap \overline{X})) \cap (\overline{Y} \cap \overline{Z})$ (By Difference Equivalence,2) Let $p = ((Z \cup (Y \cap \overline{X})) \cap (\overline{Y \cap Z})$ 1) $(Z \cup (Y \cap \overline{X})) \cap ((\overline{(Y \cap Z)} \cup \overline{X}) \cup ((\overline{Y \cap Z}) \cap X))$ 2) $(Z \cup (Y \cap \overline{X})) \cap ((\overline{Y \cap Z}) \cap \overline{X}) \cup ((\overline{Y \cap Z}) \cap X))$ (By De Morgan's law,1) 3) $(Z \cup (Y \cap \overline{X})) \cap (\overline{Y} \cap \overline{Z}) \cap (\overline{X} \cup X)$ (By Distributive,2) 4) $(Z \cup (Y \cap \overline{X})) \cap (\overline{Y \cap Z}) \cap U$ (By Complement,3) 5) $(Z \cup (Y \cap \overline{X})) \cap (\overline{Y \cap Z})$ (By Identity, 4) Let $q = (Z \cup (Y \cap \overline{X})) \cap (\overline{Y \cap Z})$ $p = ((Z \cup (Y \cap \overline{X})) \cap (\overline{Y \cap Z})$ (Proved above)

Hence, p and q are equivalent expressions. Hence proved

6) To Prove: $(r \cap (r \cup p)) \cap (\overline{r \cup (p \cup q)})$ represents empty set.

a.
$$(r \cap (r \cup p)) \cap (\overline{r} \cup (\overline{p} \cup \overline{q}))$$

b. $r \cap (\overline{r} \cup (\overline{p} \cup \overline{q}))$ (By Absorption of a)
c. $r \cap (\overline{r} \cap (\overline{p} \cup \overline{q}))$ (By De Morgan's law of b)
d. $r \cap (\overline{r} \cap (p \cup q))$ (By Complementation of c)
e. $(r \cap \overline{r}) \cap (p \cup q)$ (By Associative of d)
f. $\emptyset \cap (p \cup q)$ (By Complement of e)
g. \emptyset (By Domination of f)

Hence, the given expression represents the empty set.