This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(54) HOLLOW MOLDED MATERIAL AND ITS MOLDING METHOD

(11) 3-121820 (A) (43) 23.5.1991 (19) JP

(21) Appl. No. 64-258690 (22) 5.10.1989

(71) ASAHI CHEM IND CO LTD(1) (72) TAKEHIRO SHIBUYA(2)

(51) Int. Cl5. B29C45/00, B29C49/06

PURPOSE: To make the state of a surface good and save the work such as finish processing by filling molten synthetic resin in a cavity, and then force fitting hollow section forming fluid into said cavity and extruding the molten synthetic resin in the cavity into an auxiliary chamber to form a hollow section.

synthetic resin in the cavity into an auxiliary chamber to form a hollow section. CONSTITUTION: An injection nozzle 7 is brought into contact with a sprue 6 of a closed mold 5 and molten synthetic resin is filled in a cavity 1. Hollow section forming liquid is force fitted into the cavity 1 after the molten synthetic resin 2 is filled in the cavity 1 and a hollow section 3 is formed while the molten synthetic resin 2 in the cavity 1 is extruded into an auxiliary chamber 4. At that time, the communication between the cavity 1 and the auxiliary chamber 4 is set to be on and off, and it is preferable to shut off the communication between the two when the molten synthetic resin is injected into the cavity 1, and to open the communication between the two when hollow section forming fluid is force fitted into the cavity 1.

⑩ 公開 特 許 公報 (A) 平3-121820

®Int.CI.5

識別記号

庁内整理番号

❸公開 平成3年(1991)5月23日

からまってもできる新春園園園中

Fr. Jan Capagor of Sp. 2002. Against

Little to 1984 the total of the transfer of the total

than the programme and a second

B 29 C 45/00 49/06

2111-4F 2126-4F

②発明の名称 中空型物及びその成形方法

②特 願 平1-258690

❷出 願 平1(1989)10月5日

発明 者 渋谷 武弘 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株

式会社内 ⑫発 明 者 石 原 靖 介 神奈川県

神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株

式会社内

⑩発 明 者 飯 田 勇 夫 ⑪出 願 人 旭化成工業株式会社

群馬県太田市竜舞535番地 アアルビィ東プラ株式会社内 大阪府大阪市北区営島浜1丁目2番6号

①出 願 人 アアルビイ東ビラ株式

十版序学十十二月十十二月7年07日

会社

砂代 理 人 弁理士 豊田 善雄

外1名

明 細 書

1. 発明の名称

中空型物及びその成形方法

2.特許請求の範囲

- 1)キャピティ内への連続した溶融合成樹脂の往 入によって形成されかつ引き伸ばし及び折り畳み を受けていない表面を有し、溶融樹脂の熱収縮量 を越える容積率の中空部を有することを特徴とす る中空恐物。
- 2) 非結晶性機脂製で、中空部の容積率が 1 0 % を越えることを特徴とする請求項第 1 項配載の中空型物。
- 3) 結晶性 樹脂製で、中空部の容積率が 1 5 % を 越えることを特徴とする請求 項第1 項記載の中空 型物。
- 4) キャビティ内を溶融合成樹脂で満たしてから このキャビティ内に中空部形成液体を圧入することによって、キャビティ内の溶融合成樹脂を、 キャビティに進通された補助室に押し出しつつ中

空部を形成する工程を有することを特徴とする中 空型物の成形方法。 (第200年) (2018年) (2018年)

- 5) キャビティ内への溶融合成樹脂の射出時には キャビティと補助室間を遮断し、キャビティ内へ の中空部形成液体の圧入時にはキャビティと補助 室間を開放することを特徴とする請求項第4項記 載の中空型物の成形方法。
- 6)キャビティ内への溶融合成樹脂往入位置付近から補助窓付近へ延び、かつ得られる湿物の厚さの0・7倍を継える幅の補強リブを成形するための講部を有するキャビティを用いることを特徴とする請求項第4項記載の中空型物の成形方法。

3 . 発明の詳細な説明

[産業上の利用分野]

本発明は、必要な位置に中空部が形成され、中空部の容積が大きくかつ表面状態が良好な中空型物及びその成形方法に関する。

[従来の技術]

従来、キャビティ内に、キャビティ内を満たす 量より少ない量の溶融合成樹脂を注入した後加圧 ガスを圧入したり、溶融合成機脂と共に加圧ガス を圧入することによって中空型物を成形すること が知られている(特公昭57-14968号)。

また、上記公報には、加圧ガスの圧入時にキャビティを拡大することによって、より表層の薄い中空型物を成形できることも記載されている。 【発明が解決しようとする觀閲】

しかしながら、上記従来の中空型物及びその成形方法には次のような課題が残されている。

- (1) キャビティ内に、キャビティを機たすに足りない量の溶融合成樹脂を射出した検加圧ガスを 近入したのでは、得られる中空型物の表面に散細な凹凸の環状帯(以下「ヘジテーションマーク」 という)が発生する。
- (2) また、キャビティ内を溶融合成樹脂で満たしてからキャビティ内にガス圧をかけ、溶融合成 樹脂の冷却固化に伴なう熱収縮量に相当する分だけの加圧ガス往入による中空部を形成すればヘジテーションマークは生じないが、熱収縮量に相当 する中空部が形成されるに過ぎない。これによっ

て得られる中空部の容積率は、使用する合成機能の種類(非結晶性機能と結晶性機能、非強化機能と充質材による強化機能)、成形時の温度条件、成形品の厚さ及び形状等によって変わるが、非結晶性機能では3~10%、結晶性機能でも6~15%程度で、15%を越える大きな容積率の中空部を形成することはできない。

- (3) 更に、加圧ガスの圧入位置から離れるに 使って、加圧ガスが溶融合成樹脂を押し広げにく くなるので、形成される中空部の厚みが、末端に 行くに従って小さくなり、設計通りの中空部が得 にくい。
- (4) 溶融合成樹脂の射出と共に加圧ガスを圧入することは、通常500kg/cm² 以上の圧力で射出される溶融合成樹脂の射出圧に抗して加圧ガスを圧入しなければならず、このような高圧ガスを用意する設備上の負担がはなはだ大きべなるので、行われていないのが現状である。
 - (5) 加圧ガスの圧入時にキャピティを拡大した。 場合、比較的均一で大きな容積率の中空部を形成

できる利点はあるものの、 やはり母られる中空 型物の表面の一部に欠陥を生じやすい 問題がある。

[課題を解決するための手段】 -

一方、加圧ガスの圧入と共にキャビティを拡大する場合は、このキャビティの拡大に伴なって、一旦キャビティ内態と接触して冷却固化を開始した溶融合成樹脂の表面部が引き伸ばされたり、折り畳まれてしまうことを生じ、これが表面欠陥の原因となる。

本発明は、上記本発明者の知見に基づいて完成されたもので、本発明を第1回で説明すると、請求項第1項の発明では、キャビティ1内への連続した溶融合成樹脂2の往入によって形成されかつ引き伸ばし及び折り畳みを受けていない安面を有し、溶融合成樹脂の熱収縮量をを越える容積率の中空部3を有する中空型物とするという手段を講じているものである。

また、請求項第4項の発明においては、キャビティ1内を溶融合成制脂2で満たしてからこのキャビティ1内に中空部形成液体を圧入することによって、キャビティ内1の溶融合成樹脂2を、キャビティ1に遠通された補助室4に押し出しつつ中空部3を形成する工程を有する中空型物の成形方法とするという手段を講じているものである。

以下、本発明を更に説明する。

本発明の中空型物において、連続した溶融合成 樹脂の往入とは、溶融合成樹脂が、途切れること なくほぼ一定の速度で全キャピティ1内壁に接触 される柱入をいう。

本発明の中空型物における引き伸ばしとは、例 えば、当初第2図(a)の形状のキャピティーを 拡大して同(b)の形状とした場合に、(a). における A 部分の溶融合成樹脂 2 (冷えたキャ ピティ1の内壁に接して固化が進んだ表層)が. (b) におけるA′部分のものとして引き伸ばさ いれてしまうように、キャピティ1の拡大によって 生するキャビティ1内溶融合成樹脂2表面部の引 き伸ばしをいう。また、折り畳みとは、例えば、 当初第3図(a)の形状のキャピティ1を拡大し て同 (b) の形状とした場合に、 (a) における A部分の溶融合成樹脂 2 (冷えたキャビティ1の 内壁に接して固化が進んだ表層)が余って(b) におけるA'として折り畳まれてしまうように、 キャビティ1の拡大によって生ずるキャビティ 1内溶融合成樹脂2裏面部の折り畳みをいう。

中空部3の容積率とは、中空部3を含む中空型 物の全体積において中空部3の容積が占める割合をいう。

7

あるいは従来サンドイッチ成形法として公知の多成分関
脂(非発泡性のみ、発泡性のみ又は非発泡性と発泡性あるいは同種、異種樹脂の組み合わせ)の複合射出のいずれでもよい。

発剤性樹脂を射出する場合、公知の方法でキャビティ 1 内を加圧しておき、射出充填中は発泡しないように押えるようにすればよい。

キャビティ1内を溶融合成樹脂2で満たした 後、第1図(b)に示されるように、中空部形成 流体をキャビティ1内に圧入し、キャビティ1内 の溶融合成樹脂2を補助窓4内に押し出しつつ中 空部3を形成する。

中空部形成液体の圧入は、第1図(b)に示されるように、射出ノズル7に内蔵された液体ノズル8によって行うと容易に行うことができる。また、この中空部成形液体の圧入は、上記射出ノズル7から行う他、渇道に対して行ったり、キャビティ1内に直接行ってもよい。

中空部形成液体としては、例えば窒素、炭酸ガス、空気等のように、無害で成形温度及び射出圧

2 溶融合成樹脂の熱収縮量を魅える具体的複雑率 は、非結晶性樹脂については 1,0,%を終える。容積 率であり、結晶性樹脂については 1,5%を終える。 容積率である。

次に本発明の成形方法を説明する。

本発明の成形方法において。は、まず、第1図 (a)に示されるように、閉鎖した金型5のスプルー6に射出ノズル7を圧接し、溶脱合成機能を 射出して、キャビティ1内を溶験合成機能で構た

溶融合成樹脂 2 としては、射出成形できる熱可 盟性樹脂、熱可塑性エラストマー、熱硬化性樹脂、これらと従来公知の稀加剤やフィラーとの配 合物のいずれでもよいが、熱可塑性樹脂、熱可塑性エラストマー及びこれらと従来公知の稀加剤、 安定剤、フィラー、ガラス線線等の強化材との配 合物が好ましい。

上記海融合成樹脂 2 の射出 条件は一般の射出成 形の場合と同様である。この海融合成樹脂 2 の射 出は、単一樹脂 (非発泡性又は発泡性) の射出。

8

カ下で液化しないガスが一般的であるが、溶融合 成樹脂と相容性のない液体やオリゴマーを用いる。 こともできる。

補助室4は、上記中空部形成競争の圧入によって押されたキャビティ1内の溶融合成樹脂が流入できるよう、キャビティ1と適適されている。このキャビティ1と補助室4間の連通は、前記部融合成樹脂2でキャビティ1内を発立って補助室4内も溶融合成樹脂2で満たされてしまわないよう、溶融合成樹脂2の流動抵抗が大きくなるよう調整された連絡通路9を介して行われていることが好ましい。

上記のように溶融合成制脂の焼動抵抗を大きくしておく拠点から、連絡通路9は、キャビティ1の厚さの1~1/20程度の厚さ、具体的には、通常1・5~10mm、最適には3~5mm程度であることが好ましい。また、連絡通路の断面が円形の場合は、キャビティ1の厚さの1~1/20程度の直径に設定することが好ましい。連絡通路9の厚さや怪が大き過ぎると、初めに行うキャビ

.....

ティ21のみへの優先的溶融合成樹脂2の充満を達成しにくくする。逆に、連結通路9の厚さや径が小さ過ぎると、その枝に行う中空部形成液体の圧入による溶融合成樹脂2の補助窒4への移動がしにくくなる。

キャピティ1と補助室4間の連通は、開閉可能とし、キャピティ1内に溶融合成樹脂を射出する時に図者間の連通を遮断し、キャピティ1内に中空部形成液体を圧入する時に図者間の連通を開放することが好ましい。この場合、連絡通路9の厚さを上記範囲より大きくすることも可能である。

補助室4は、連絡通路9より大きな厚みを有し、形成すべき中空部3の体積にほぼ見合う体積、あるいは中空部3の体積から溶融合成樹脂2の熱収縮量を減じた体積に形成されたもので、単数であっても、複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。複数であってもよい。

8 mm程度の場合、全型容積(キャピティ1と補助 室 4 の合計容積)の 2 ~ 2 0 %程度、キャピティ 1 の厚さが 8 mmを越える場合、全型容積の 1 0 ~ 5 0 %程度であることが好ましい。

補助室4の断面形状は、円形、半円形、三角、形、台形、矩形、楕円形及びこれらの形状の組合わせのいずれでも良い。特に、補助室4の断面形状を円形にすると、中空部形成液体がキャビディー1内及び補助室4内の溶験樹脂の流動先端より先に流出してしまうのを抑止する効果が得られるので好ましい。

中空部3は、中空部形成液体の圧入時に、キャビティ1内の溶融合成樹脂が流れる方向に形成さ! れるので、キャビティ1のどこに補助室4を連通させるかによって、中空部3の形成位置及び形状を調整することができる。

例えば、第4図(a)に示されるように、中心 部から溶融合成樹脂2及び中空部形成流体が往入 される円形のキャビティ1の側部に1つの補助室 4を連過させた場合、図示されるように、中心無

1 1

1 2

特に、上記第4図(c)の方法を利用することによって、 従来困難であった広幅の補強リブを有する型物を成形することが可能となる。

即ち、第4図(c)に示される講部10を補強リブ形成のための講とすると、型物の厚さの0.7倍を越える幅の補強リブを設けても、補強リブ裏面に、一般の射出成形では防止することなできない熱収縮によるヒケを発生させることな

く、 当該補強リブを形成することができるのである。 これは、 補部 1 0 に沿って中空部形成液体が流れ、 補強リブ内に中空部 3 が形成されるためである。

上記補強リブの幅は、得られる型物の厚さの3倍、更には4倍を越える幅であることが好ましい。この幅を広くとると、よい強固な補強が可能になるだけでなく、より低い圧力で中空部形成流体を調部10に注入することができるようになる。

上記のようにして中空部4を形成した後は、中空部形成後体の圧力を維持したままキャピティ1 内の溶融合成樹脂2を治却固化させ、その後中空部4内の中空部形成液体を排出してから金型物を取り出せばよい。中空型物を取り出せばよい。中空型物を取り出せばよい。中空型物を取り出されるが、この余剰部1 図(c)の状態で取り出される位置で切り離せばよい。

尚、補助室4を中実型物のキャピティとし、中

alteration of the second of the second

空部成形流体の圧入時に、中空型物成形用のキャビティ 1 から押し出される溶融合成樹脂でこれが満たされるようにすれば、中空型物と共に、忠実型物をも成形することができる。しかし、本発明においては、補助室 4 はキャビティである必要はなく、成形時に溶融合成樹脂で満たされない大きさのものや、成形品に応じた形状ではないものでよい。

[作用]

請求項第1項の発明において、表面が、キャンピティ1内への連続した。溶融合成樹脂の往入にキャンでであることは、溶融合成樹脂とキャンディ1内壁の接触が断止する働けによるながある。そしながある。そして、このである。そして、このである。そして、このである。そのである。を変数していてももたらされるものである。

15

[実施例]

実施例 1

キャピティ 1 の両側に各々連絡通路 9 を介して補助室 4 が連結された容積 3 ccのダイレクト・スプルー方式の金型 5 を用いて中空型物の成形を行なった。キャピティ 1 の大きさは、幅 5 cm、 及さ 6 cm、 段さ 6 cm、 月 2 cm、 月 2

合成樹脂としては、ゴム強化ポリスチレン(風化成工業株式会社製「スタイロン 494」)を用い、下記の条件で射出してキャビティ1を満たした。

射出シリンダー温度

2 2 0 10

射出压力

5 0 0 kg/cm² G

計量值

9 0 cc

射出充填時間

4 🕏

金型温度

5 0 °C

上記審融合成樹脂の射出後、窒素ガスを中空部

請求項第4項の発明において、まずキャンティ 1 内を溶融合成樹脂2 で満たしているのは、溶験 合成樹脂2を連続してキャビティ1 内壁面に接触 させることにより、ヘジテーションマニクの発生 を防止する働きをなす。また、中空部形成液体の 圧入により溶融合成樹脂2を補助室4に押し出す。 のは、中空部3に相当する量の余剰溶融合成樹脂 2をキャビティ1外へ出して、中空部形成液体を キャビティ1内へ導き入れ、中空部3の形成を可 能にする働きをなす。

更に請求項第5項の発明のようにキャピティ 1と補助室4間の進通を開閉すると、連絡通路 9の厚さを大きくしても、キャピティ1内のみへ 溶融合成制脂を優先的に充満させることができ、 また連絡通路9の厚さを大きくすることで、中空 部形成液体圧入時の溶融合成樹脂の補助室4への 流入をスムーズにすることができる。

また、請求項第6項の発明における課品1-0. は、中空部形成液体を案内し、補強リプ内に中空 部を形成させる働きをなす。

1 6

形成競体として、下記の条件でキャピティ1に往 入し、保持時間満了後、窒素ガスを回収してから 金型5を開いて中空型物を取出した。

潜圧 タンク (10)

1 2 0 kg/cm²G ...

平衡压

1 0 9 kg/cm2G

保持時間

. 90#.

樹脂は補助室4まで満たされており、補助室4内で固化した樹脂の表面にはヘジテーションマークが生じていたが、キャビティ1内の成形品には、ヒケやヘジテーションマークがなく、外装品に使用できる水準の表面状態であった。

キャビティ1内の成形品は中空型物となっており、その中空部3の容積率は23%であった。 比較例1

金型 5 の連絡通路 9 を閉鎖し、計量値を 8 4 cc にした以外は実施例 1 と同じ装置、機脂及び条件 で成形を行った。

得られた成形品は、 ヘジテーションマークのない 装面を 有していたが、 流動末端部にはヒケが発生した。 成形品の中空部 3 は、スプルー 6 の周囲

に局部的に形成され、末端部には中空部3は形成されておらず、中空部3の容積率は約4%であった。

窒素ガスの保持が間を 9 0 かから 1 8 0 かに延 長したところ、ヒケは少し減少したが、やはり良 好な外観とはいえず、また成形品を取り出した枝 1 時間放置したところ、ヒケがやや増加した。 東集倫 2

中心部に長さ36cm、半径0・3 cmの半円断面の構部10を加工したキャビティ1の四端に、各々連絡通路9を介して補助室4が連結されたダイーレクト・スプルー方式の金型5を用いて、第5図に示されるような中空型物の成形を行なった。キャビティ1の大きさは、幅5cm、長さ40cm、厚さ0・3 cm、補助第4の大きさは、各々長さ4cm、幅0・9 cm、厚さ1・cm、連絡通路9の大きさは、各々幅3 cm、层さ0・7 cm、厚さ0・2 5 cmとした。

合成樹脂としては、コポリマータイプポリプロ ピレン (旭化成工業株式会社製「M.8619

1 9

円断面のリブの中心が末端まで中空の中空型物となっており、その中空部3の容積率は約19%であった。

比較例 2

金型 5 の 連結通路 9 を閉鎖した 以外 仕実施例 2 と同じ装置、樹脂及び条件で成形を行った。

得られた成形品は、ヘジテーションマークのない表面を有していたが、 焼動末端部のリブ裏面にはヒケが発生した。中空部3の容積率は7%で、中空部3は、中央のスプルー6から約13cmまで半円断面のリブに沿って形成されていたが、中央部から13~20cm(焼動末端)の部分には中空部3は形成されていなかった。

窒素ガスの保持時間を 8 0 秒に増加すると、中空部 3 が、中央のスプルー 6 から約 1 5 cmまで伸びたが、 焼動末端のヒケがわずかに被った程度で、中空部 3 の形状は第 6 図のように補強リブ部からはみ出し、鋭角部が形成された。

実施例3

中心部に幅と高さが等しい講部10を形成し

- MII 14月)を用いい下記の条件で射出び完美な - ビティ1を構たした政治院があるのは第40回に変なる政治

射出シリンダー温度 220℃

射出压力 7 57 6 0 0 kg/batg 6 6

計量值 7:0°cc':

射出充 時間 3秒

コー**金型温度** 写 冷さ がたその 41 0mg でかままか

上記部融合成制脂の射出後、窒素ガスを中空部 形成液体として、下記の条件でキャピティ1に住 入し、保持時間満了後、窒素ガスを回収じてから 金型5を開いて中空型物を取出した。

器圧タンク (12) 14 0 kg/cm² G

平衡圧 1.3 2 kg/cm² G

保持時間 4.0.8

樹脂は補助室4まで満たされており、補助室4内で固化した樹脂の裏面にはヘジテーションマークが生じていたが、ギャビティ1内の成形品には、ピケやソリがなくヘジテーションマークもない良好な外観であった。

キャビティ1内の成形品は、半径0.3cmの半

2 0

た、幅20cm、長さ50cmのキャピティ1の网络に、各々幅5cm、長さ0.7cm、厚さ0.225cmの連結通路9を介して、幅10cm、厚さ1cmの補助室4を連結した金型5を用い、キャピティ1の厚さ及び講部10の幅(高さ)を変え、それに合わせて補助室4の長さを変えて各々成形を行った。

合成樹脂としては、PPE/PAフロイ(旭化・成工業株式会社製「X9601」)を用い、下記の条件で射出してキャビティ1を構たした。

射出シリンダー温度

2800

射出压力

1 8 0 0 kg/cm2 G

射出充 時間

10#

金型温度

必要な射出圧と、胸部10の幅(W)の成形品の厚さ(t)に対する比との関係を第7図に示す。

成形品の厚さ(t)に対する補強リブの幅 (W)の比が、3以上、舒ましくは4以上で、充 に必要な射出圧力が急激に低下することを示

2 1

し、 両嫡 部の連絡通路 9 、 補助室 4 を設けたことにより、 補強リブには末端まで中空部が形成された。

[発明の効果]

・ 本発明は、以上説明した通りのものであり、次の効果を変するものである。

- (1) 請求明第1 刊及び第4 項の発明によれば、 衷面状態が良好な中空型物が得られるので、仕上 加工等の手間を省くことができ、外観を重視する 成形品を容易に得ることができる。
- (2) 請求項第2項及び第3項の発明によれば、 大きな中空部3を有し、しかも表面状態の良好な 中空型物とすることができる。
- (3) 請求項第4項の発明によれば、中空部形成 液体によって押し出された溶融合成樹脂の量に相 応して中空部3が形成されるので、中空部3はほ ぼ一定の厚みで形成される。従って、設計通りの 中空部3が得やすい。
- (4) 請求 項第 5 項の 発明によれば、 溶融合成制 脂の射出 から中空部形成 流体の圧入への切り替え

時期が制御しやすくなる。

(5) 請求項第6項の発明によれば、幅広の補強リブで確実な補強を行うことが、ヒケによる外観低下を生じることなく行うことができる。また、不必要な範囲にまで中空部3を形成できるので、余剰の中空部3が形成されることによる成形品の構造強度の欠陥発生を防止できる。

4. 図面の簡単な説明

第1図(a)~(c)は各々本処明による中空型物の成形手順の説明図、第2図(a)及び(b)は各々表面の引き伸ばしの説明図、第3図(a)及び(b)は各々表面折り畳みの説明図、第4図(a)~(c)は各々形成される中空部の位置及び形状の説明図、第5図は実施例2で成形した中空型物の斜视図、第6図は比較例2で成形した中空型物の断面図、第7図は実施例3の結果を示すグラフである。

1: キャピティ 2:溶融合成樹脂

2 3

2 4

3 : 中空部

4:補助室

第2図

第3図

·第5図

第6図

-144-

(19) Japanese Patent Office (JP) (12) Official Gazette of Unexamined Patent Applications (A)

(11) Patent Application Publication No: 3-121820

(43) Patent Application Publication Date: May 23, 1991

(51) Int. Cl.5

Identification Code

Internal File Nos.

B 29 C 45/00

49/06

2111-4F

2126-4F

Request for Examination: Not yet received

Number of Inventions: 6

(Total of 10 Pages)

(54) Title of the Invention:

Hollow Molded Object and Molding Method Therefor

(21) Patent Application No:

1-258690

(22) Patent Application Date: October 5, 1989

(72) Inventor:

Takehiro Shibuya

Asahi Chemical Industry Co., Ltd. 1-3-1, Yako, Kawasaki-ku, Kawasaki

(72) Inventor:

Seisuke ISHIHARA

Asahi Chemical Industry Co., Ltd. 1-3-1, Yako, Kawasaki-ku, Kawasaki

(72) Inventor:

Isao IIDA

RP Topla Co., Ltd.

535, Ryumai, Ota-shi, Gumma-ken

(71) Applicant:

Asahi Chemical Industry Co., Ltd.

1-2-6, Dojimahama, Kita-ku, Osaka

(71) Applicant:

RP Topla Co., Ltd.

1-7-27, Itsukaichi, Ibaraki-shi, Osaka

(74) Agent:

Yoshio TOYODA, Patent Attorney (and 1 other)

Specification

1. Title of the Invention

Hollow Molded Object and Molding Method Therefor

2. Claims

- (1) A hollow molded object, wherein the hollow molded object is formed by continuously injecting a melted synthetic resin into a mold cavity, wherein the hollow molded object has a surface that is not overstretched or overlapping, and wherein the hollow molded object has a hollow section with a volumetric capacity exceeding the amount of thermal contraction in the melted resin.
- (2) The hollow molded object described in claim 1, wherein the hollow molded object is made of an amorphous resin, and wherein the hollow section has a volumetric capacity exceeding 10%.
- (3) The hollow molded object described in claim 1, wherein the hollow molded object is made of a crystalline resin, and wherein the hollow section has a volumetric capacity exceeding 15%.
- (4) A molding method for a hollow molded object, wherein the molding method has a step in which the hollow section forming fluid is injected into the cavity after the cavity

has been filled with a melted synthetic resin, forcing some of the melted synthetic resin inside the cavity into a spare chamber connected to the cavity and forming the hollow section.

(5) The molding method for a hollow molded object described in claim 4, wherein the space between the cavity and the spare chamber is blocked when the melted synthetic resin is injected into the cavity, and wherein the space between the cavity and the spare chamber is opened when the hollow space forming fluid is injected into the cavity.

(6) The molding method for a hollow molded object described in claim 4, wherein the interior of the cavity contains a groove extending inside the cavity from the vicinity of the melted synthetic resin injecting position to the vicinity of the spare chamber so as to form a reinforcing rib with a width exceeding 0.7 times the thickness of the mold.

3. Detailed Description of the Invention

[Industrial Field of Application]

The present invention relates to a hollow molded product and a molding method for a hollow molded product in which the hollow section is formed in the required position, the volumetric capacity of the hollow section is increased, and the surface of the molded product is superior.

[Prior Art]

In the prior art method, a hollow molded object is formed by injecting a melted synthetic resin into a cavity in an amount insufficient to fill the cavity and then injecting pressurized gas, or injecting both the melted synthetic resin and pressurized gas simultaneously (Japanese Examined Patent Application Disclosure No. 57-14968).

In this method, the injection of the pressurized gas expands the cavity and forms a hollow molded object with a thinner surface layer.

[Problem Solved by the Invention]

Unfortunately, the hollow molded objects and method for manufacturing hollow molded objects in the prior art experience the following problems.

- (1) When a hollow molded object is formed by injecting a melted synthetic resin into a cavity in an amount insufficient to fill the cavity and then injecting pressurized gas, the surface of the hollow molded object tends to contain uneven ring-shaped bands (called "hesitation marks").
- (2) When a hollow molded object is formed by injecting a melted synthetic resin into a cavity in an amount insufficient to fill the cavity and then injecting pressurized gas in an amount corresponding to the thermal contraction during the cooling and hardening of the melted synthetic resin, hesitation marks are not formed. However, the hollow section formed is only equivalent to the amount of thermal contraction. The volumetric capacity of a hollow section formed in this manner depends on the type of synthetic resin used (amorphous resin or crystalline resin, unreinforced or reinforced with a filler), the temperature conditions during the molding process, the thickness of the molded object,

and the shape of the molded object. However, the volumetric capacity is generally 3~10% in the case of an amorphous resin and 6~15% in the case of a crystalline resin. A hollow section with a volumetric capacity exceeding 15% cannot be obtained.

- (3) Because the pressurized gas has difficulty expanding the melted synthetic resin farther away from the injection point of the pressurized gas, the thickness of the molded hollow section is thinner at the end. As a result, it is difficult to obtain a hollow section as designed.
- (4) If the pressurized gas is injected with the melted synthetic resin, the gas has to be pressurized enough to resist the injection pressure of the melted synthetic resin, which usually exceeds 500 kg/cm². High-pressure injection places a great burden on production equipment, so is seldom practical.
- (5) When a cavity is enlarged using pressurized gas, a relatively uniform hollow section with a large volumetric capacity can be formed. However, the surface of the hollow molded product is inevitably blemished.

[Means of Solving the Problem]

The present inventors discovered that hesitation marks are created when the injection of melted synthetic resin is suspended after switching from the injection of the melted synthetic resin to the injection of pressurized gas. In other words, melted synthetic resin begins to cool and harden as soon as it comes into contact with the inside of the cavity. When the injection of melted synthetic resin is suspended under these circumstances.

contact of the melted synthetic resin with the cavity wall is also suspended. This is the cause of hesitation marks.

When the cavity is expanded by the injection of pressurized gas, the expansion of the cavity causes the surface of the melted synthetic resin that has made contact with the cavity wall and already started to cool and harden to overstretch or overlap. This causes surface blemishes.

The present invention is the product of this discovery. The following is an explanation of the present invention with reference to FIG 1. In claim 1, the present invention is a hollow molded object, wherein the hollow molded object is formed by continuously injecting a melted synthetic resin 2 into a mold cavity 1, wherein the hollow molded object has a surface that is not overstretched or overlapping, and wherein the hollow molded object has a hollow section 3 with a volumetric capacity exceeding the amount of thermal contraction in the melted resin.

In claim 4, the present invention is a molding method for a hollow molded object, wherein the molding method has a step in which the hollow section forming fluid is injected into the cavity 1 after the cavity 1 has been filled with a melted synthetic resin 2, forcing some of the melted synthetic resin 2 inside the cavity 1 into a spare chamber connected 4 to the cavity and forming the hollow section 3.

The following is an explanation of the present invention.

In a hollow molded object of the present invention, the melted synthetic resin is continuously injected. As a result, the melted synthetic resin makes contact with the wall inside the cavity 1 at a constant rate without being cut off.

When a cavity 1 with an initial shape shown in FIG 2 (a) is expanded to the shape shown in FIG 2 (b), the melted synthetic resin 2 (the layer hardened in direct contact with the cool inner wall of the cavity 1) in section A of (a) is overstretched to resemble section A' in (b). In other words, the cavity 1 is expanded and the surface of the melted synthetic resin 2 in contact with the inner wall of the cavity 1 is overstretched. This is called overstretching for the purposes of the present invention. When a cavity 1 with an initial shape shown in FIG 3 (a) is expanded to the shape shown in FIG 3 (b), the melted synthetic resin 2 (the layer hardened in direct contact with the cool inner wall of the cavity 1) in section A of (a) is overlapped and resembles section A' in (b). In other words, the cavity 1 is expanded and the surface of the melted synthetic resin 2 in contact with the inner wall of the cavity 1 is overlapped. This is called overlapping for the purposes of the present invention.

The volumetric capacity of the hollow section 3 is the ratio of the volume of the hollow section 3 to the volume of the entire hollow molded object including the hollow section 3 for the purposes of the present invention.

A volumetric capacity exceeding the amount of thermal contraction in the synthetic resin is a volumetric capacity exceeding 10% in the case of an amorphous resin and a volumetric capacity exceeding 15% in the case of a crystalline resin.

The following is an explanation of the molding method of the present invention.

In the molding method of the present invention, as shown in FIG 1 (a), the injection nozzle 7 is brought into contact with the sprue 6 of a closed mold 5, a melted synthetic resin is injected, and the cavity 1 is filled with the melted synthetic resin.

The melted synthetic resin 2 used in the present invention can be any thermoplastic resin, thermoplastic elastomer or heat-cured resin ordinarily used in the injection molding process. Thermoplastic resins, thermoplastic elastomers or combinations of these are recommended. Additives, fillers, stabilizers, and reinforcing materials such as glass fibers commonly known in the art are also recommended.

The injection conditions for the melted synthetic resin 2 are similar to those for general injection molding. In the injection process for the melted synthetic resin 2, a single resin (foaming or non-foaming) can be injected or multiple resins can be used as in the sandwich molding process (these can be the same or different resins of both the foaming and non-foaming variety).

If a foaming resin is used, the interior of the cavity 1 is pressurized as commonly known in the art. The resin is then injected into the cavity under pressure so as to fill the cavity while not foaming.

After the cavity 1 has been filled with melted synthetic resin 2, as shown in FIG 1 (b), the hollow section forming fluid is injected into the cavity 1. When this is done, some of the melted synthetic resin 2 in the cavity 1 flows into the spare chambers 4 and a hollow section 3 is formed.

The injection of the hollow section forming fluid is performed from a fluid nozzle 8 built into the injection nozzle 7 as shown in FIG 1 (b). The hollow section forming fluid does not have to be performed from a fluid nozzle 7. It can also be injected directly into the cavity 1 via a different passage.

The high-pressure fluid used in the present invention can be nitrogen gas, carbon dioxide gas or air. Generally speaking, it should not be harmful or liquefy at molding temperatures and injection pressures. However, a fluid or oligomer that is incompatible with the molten synthetic resin can also be used.

The spare chambers 4 communicate with the cavity 1 so some of the melted synthetic resin inside the cavity 1 can flow into the chambers when the hollow section forming fluid is injected. The communication between the spare chambers 4 and the cavity 1 is such that the melted synthetic resin 2 fills the spare chambers 4 only after the melted synthetic resin 2 fills the cavity 1. This should be accomplished by making the flow resistance to the melted synthetic resin 2 greater in the connecting passages 9.

In order to make the flow resistance to the melted synthetic resin greater, the height of the connecting passages 9 should be 1 to 1/20th of the thickness of the cavity 1. Preferably, it should range between 1.5 and 10 mm, and ideally it should range between 3 and 5 mm. If the connecting passages have a round cross section, the diameter should be 1 to 1/20th of the thickness of the cavity 1. If the thickness and diameter of the connecting passage 9 are too great, the melted synthetic resin 2 does not flow initially only into the cavity 1. If the thickness and diameter of the connecting passage 9 are too small, the melted synthetic resin 2 does not flow into the spare chambers 4 easily when the hollow section forming fluid is injected.

Communication between the cavity 1 and the spare chambers 4 can be opened and closed. When the melted synthetic resin is injected into the cavity 1, for example, both passages can be blocked. When the hollow section forming fluid is injected into the cavity 1, both passages are opened. Here, the thickness of the connecting passages 9 can exceed the range described above.

The spare chambers 4 have a thickness greater than that of the connecting passages 9. The volume can be the rough equivalent of the hollow section 3 to be molded or can be the rough equivalent of the hollow section 3 to be molded minus the amount of thermal contraction in the melted synthetic resin 2. One or more spare chambers can be formed. In the case of the former, the total volume equals the volume of the hollow section 3 to be molded. The size of the spare chambers 4 is usually 2 to 20% of the total volume of the mold (i.e., the cavity 1 plus the spare chambers 4) when the thickness of the cavity 1 ranges between 1.5 and 8 mm, and 10 to 50% of the total volume of the mold when the thickness of the cavity 1 exceeds 8 mm.

The shape of the spare chambers 4 in cross section can be circular, semi-circular, triangular, square, rectangular, oval-shaped or any other shape. If the shape of the spare chambers 4 is round, they should still have the effect of causing the melted synthetic resin 2 to fill the chamber 1 before flowing into the spare chambers 4 when the hollow shape forming fluid is injected.

When the hollow section forming fluid is injected, the hollow section 3 is formed in the direction that the melted synthetic resin flowed into the cavity 1. The shape and position

of the hollow section 3 can be determined by where the spare chambers 4 connect to the cavity 1.

If, for example, a single spare chamber 4 is connected to the side of a cylindrical cavity 1 into which the melted synthetic resin 2 and the hollow section forming fluid are injected from the center, as shown in FIG 4 (a), a hollow section 4 (sic) can be formed eccentrically from the center towards the spare chamber 4. When the chamber 1 shown in FIG 4 (a) has three spare chambers 4 arranged around it at equal intervals as shown in FIG 4 (b), a hollow section 4 (sic) can be formed with three sides an equal distance from the center as shown in the drawing. When a groove 10 is formed at the desired position inside the cavity 1 to widen the space in the desired position inside the cavity 1 as shown in FIG 4 (c), a hollow section 3 can be formed along the groove 10. The groove 10 can extend from the injection position for the melted synthetic resin 2 towards the spare chambers 4 inside the cavity 1.

By using the method shown in FIG 4 (c), a molded object with a wide reinforcing rib can be formed. This is difficult to achieve using a method of the prior art.

If the groove 10 shown in FIG 4 (c) is used to form a reinforcing rib, the width of the reinforcing rib should exceed 0.7 times the thickness of the molded object. In this way, the thermal contraction on the underside of the reinforcing rib does not cause flaws when the reinforcing rib forms. This cannot be prevented using a molding method of the prior art. When the hollow section forming fluid flows along the groove 10, a hollow section 3 is formed inside the reinforcing rib.

The width of the reinforcing rib should be three times, and ideally four times, the thickness of the molded object. If wider, stronger reinforcement is not obtained but it requires more pressure to get the hollow section forming fluid to flow along the groove 10.

After the hollow section 4 (sic) has been formed, the pressure from the hollow section forming fluid is maintained as the melted synthetic resin 2 cools and hardens inside the cavity 1. The hollow section forming fluid is then discharged from the hollow section 4 (sic), the mold 5 is opened, and the hollow molded object is removed. When the hollow molded object is removed, the resin that flowed into and hardened in the spare chambers 4 is still attached as shown in FIG 1 (c). The excess resin is then cut off along the dotted lines shown in the same drawing.

Here, solid molded objects are formed in the cavity of the spare chambers 4. However, when the hollow section forming fluid is injected into the cavity for the hollow molded object and the spare chambers are filled with melted synthetic resin from the cavity 1, the hollow molded object formed in the main cavity is good. However, the spare chambers 4 in the present invention do not have to become completely filled. This has no effect on the hollow molded object.

[Operation]

The invention described in claim 1 prevents the hesitation marks from forming in the surface because melted synthetic resin is continuously injected into the cavity 1 and contact between the melted synthetic resin and the inner wall of the cavity 1 is not intermittent. Flaws also do not develop in the surface due to overstretching and

overlapping. A hollow molded object having a hollow section 3 with the volume capacity described in claim 2 and claim 3 is formed without any surface defects.

The invention described in claim 4 prevents the hesitation marks from forming in the surface because the cavity 1 is filled with melted synthetic resin 2 so the melted synthetic resin 2 makes continuous contact with the inner wall of the cavity 1. The injection of a hollow section forming fluid pushes some of the melted synthetic resin 2 into spare chambers 4. An amount of melted synthetic resin 2 equivalent to the hollow section 3 is removed from the cavity 1, the hollow section forming fluid is drawn into the cavity 1, and a hollow section 3 is formed.

In the invention described in claim 5, the passages between the cavity 1 and the spare chambers 4 are opened and closed. As a result, the melted synthetic resin fills the cavity 1 first even when the connecting passages 9 are thicker. The thicker connecting passages 9 allow for smoother flow of the melted synthetic resin into the spare chambers 4 when the hollow section forming fluid is injected.

In the invention described in claim 6, a groove 10 guides the hollow section forming fluid to form a hollow section inside a reinforcing rib.

[Working Examples]

Working Example 1

A hollow molded object was molded using a direct sprue mold 5 with a capacity of 3 cc connected to a spare chamber 4 via a connecting passage 9 on both sides of the cavity

1. The dimensions of the cavity 1 were width 5 cm, length 40 cm and thickness 0.4 cm. The dimensions of both spare chambers 4 were width 5 cm, length 5 cm and thickness 0.4 cm. The dimensions of the connecting passages 9 were width 3 cm, length 1 cm, thickness 0.4 cm.

The synthetic resin was rubber-reinforced polystyrene (Styron 494 manufactured by Asahi Chemical). The synthetic resin was injected under the following conditions to fill the cavity 1.

Injection Cylinder Temperature	220°C
Injection Pressure	500 kg/cm ² G
Amount Used	90 cc
Injection Fill Time	4 seconds
Mold Temperature	50°C

After injection of the melted synthetic resin, nitrogen gas serving as the hollow section forming fluid was injected into the cavity 1 under the following conditions. When completed, the nitrogen gas was extracted, the mold 5 was opened, and the hollow molded object was removed.

Accumulator Tank (1 liter)	120 kg/cm ² G
Equilibrium Pressure	109 kg/cm ² G
Duration	90 seconds

The resin filled the spare chambers 4. Hesitation marks were formed in the surface of the resin hardened inside the spare chambers 4, but there were no flaws or hesitation marks on the molded object inside the cavity 1. The quality of the surface met the standards for molded products.

The molded object inside the cavity 1 was a hollow molded object, but the volumetric capacity of the hollow molded object was 23%.

Comparative Example 1

Molding was performed using the same device, resin and conditions in Working Example 1 except the connecting passages 9 in the mold 5 were closed, and the amount of resin used was 84 cc.

The molded object obtained in this manner had a surface free of hesitation marks, but there were flaws at the end of the flow. The hollow section 3 of the molded object was formed locally around the sprue 6, but the hollow section 3 was not formed at the end. The volumetric capacity of the hollow section 3 was approximately 4%.

The nitrogen gas injection period was extended from 90 seconds to 180 seconds, there were fewer flaws but the results were still unsatisfactory. When an hour elapsed before the molded object was removed, the number of flaws increased.

Working Example 2

A hollow molded object was molded using a direct sprue mold 5 connected to a spare chamber 4 via a connecting passage 9 on both sides of the cavity 1. The center of the cavity had a semi-circular groove 10 in the center with a length of 36 cm and a radius of 0.3 cm. The dimensions of the cavity 1 were width 5 cm, length 40 cm and thickness 0.3 cm. The dimensions of both spare chambers 4 were width 4 cm, length 0.9 cm and thickness 1 cm. The dimensions of the connecting passages 9 were width 3 cm, length 0.7 cm, thickness 0.25 cm.

The synthetic resin was a copolymer polypropylene (M8619 MI14 manufactured by Asahi Chemical). The synthetic resin was injected under the following conditions to fill the cavity 1.

Injection Cylinder Temperature	220°C
Injection Pressure	600 kg/cm ² G
Amount Used	70 cc
Injection Fill Time	3 seconds
Mold Temperature	40°C

After injection of the melted synthetic resin, nitrogen gas serving as the hollow section forming fluid was injected into the cavity 1 under the following conditions. When completed, the nitrogen gas was extracted, the mold 5 was opened, and the hollow molded object was removed.

Accumulator Tank (1 liter)	140 kg/cm ² G
Equilibrium Pressure	132 kg/cm ² G
Duration	40 seconds

The resin filled the spare chambers 4. Hesitation marks were formed in the surface of the resin hardened inside the spare chambers 4, but there were no flaws or hesitation marks on the molded object inside the cavity 1. The quality of the surface met the standards for molded products.

The molded object inside the cavity 1 was a hollow molded object that was hollow from the center of the rib with a 0.3 cm radius in cross section to the end. The volumetric capacity of the hollow section 3 in the hollow molded object was 19%.

Comparative Example 2

Molding was performed using the same device, resin and conditions in Working Example 2 except the connecting passages 9 in the mold 5 were closed.

The molded object obtained in this manner had a surface free of hesitation marks, but there were flaws on the back of the rib at the end of the flow. The volumetric capacity of the hollow section 3 was 7%. The hollow section 3 of the molded object extended 13 cm from the sprue 6 in the center along the rib, which is semicircular in cross section. The hollow section 3 was not formed in the portion 13~20 cm from the center (at the end of the flow).

When the nitrogen gas injection time was extended to 80 seconds, the hollow section 3 of the molded object extended 15 cm from the sprue 6 in the center, and there were very few flaws at the end of the flow. However, the shape of the hollow section 3 took the shape of the reinforcing rib and was angular as shown in FIG 6.

Working Example 3

A hollow molded object was molded using a direct sprue mold 5 connected to a spare chamber 4 (width 10 cm, thickness 1 cm) via a connecting passage 9 (width 5 cm, length 0.7 cm, thickness 0.25 cm) on both sides of the cavity 1 (width 20 cm, length 50 cm). The center of the cavity had a groove 10 with an equal width and height in the center. The height of the cavity 1 and the width (height) of the groove 10 changed. The length of the spare chambers 4 also changed in the same manner.

The synthetic resin was a PPE/PA "alloy" (X9601 manufactured by Asahi Chemical). The synthetic resin was injected under the following conditions to fill the cavity 1.

Injection Cylinder Temperature	280°C
Injection Pressure	1800 kg/cm ² G
Injection Fill Time	10 seconds
Mold Temperature	60°C

The relationship between the required injection pressure and the thickness (t) of a molded object the width (W) of the groove 10 is shown in FIG 7.

The ratio of the thickness (t) of the molded object to the width (W) of the reinforcing rib should be three or more and ideally four or more in order to significantly reduce the required injection pressure. A hollow section was formed by the reinforcing rib all the way to the end because of the connecting passages 9 and spare chambers 4 on both ends.

[Effect of the Invention]

As explained above, the present invention has the following effects.

- (1) Because a molded object with a good surface can be obtained using the inventions described in claim 1 and claim 4, the amount of time required to finish the object can be reduced, and molded objects with a good external appearance can be obtained easily.
- (2) A molded object with a large hollow section 3 and a good surface can be obtained using the inventions described in claim 2 and claim 3.
- (3) A hollow section 3 can be obtained corresponding to the amount of melted synthetic resin by injecting a hollow section forming fluid according to the invention described in

claim 4. The hollow section 3 also has a uniform thickness. As a result, a hollow section 3 can be obtained as designed.

(4) The switching time from the injection of the melted synthetic resin to the injection of the hollow section forming fluid can be easily controlled using the invention described in claim 5.

(5) Effective reinforcement is provided by the wide reinforcing ribs in the invention described in claim 6. This reduces the amount of flaws in the external surface of the molded object. Also, the hollow section 3 is not formed where it is not required and the hollow section 3 is formed where it is required. As a result, the structural strength of the molded object is not undermined by the excessive formation of the hollow section 3.

4. Brief Explanation of the Drawings

FIG 1 (a) through FIG 1 (c) are drawings used to explain the molding method for the molded object of the present invention. FIG 2 (a) and FIG 2 (b) are drawings used to explain overstretching of the surface. FIG 3 (a) and FIG 3 (b) are drawings used to explain overlapping of the surface. FIG 4 (a) through FIG 4 (c) are drawings used to explain the shape and positioning of the hollow section. FIG 5 is a perspective view of the molded object in the second working example. FIG 6 is a cross-sectional view of the molded object in the second comparative example. FIG 7 is a graph showing the results from the third working example.

1: cavity

3: nollow object		
4: spare chamber		
Applicant	Asahi Chemical Industry Co., Ltd.	
Applicant	RP Topla Co., Ltd.	
Agent	Yoshio TOYODA, Patent Attorney	
Agent	Keisuke WATANABE, Patent Attorney	
FIG 1		
FIG 2		
FIG 3		
FIG 4		
FIG 5		
510.0		
FIG 6		
FIG 7		
1101		
[x-axis] w/t ratio		
[y-axis] extrusion pressure (kg/cm²G)		
y and analon prossure (ng/on a)		

2: molten synthetic resin

[Document Type] Amendment According to Section 17.2 of the Patent Law

[Department and Section] Department 2, Section 4

[Filing Date] January 7, 1997

[Disclosure Number] Kokai No. 3-121820

[Disclosure Date] May 23, 1991

[Gazette Number] Official Gazette of Patent Applications 3-1219

[Application Number] Patent Application No. 1-258690

[International Patent Classification 6th Version]

B 29 C 45/00

49/06

[FI]

B 29 C 45/00 8823-4F

49/06 7619-4F

Amendment of Proceedings

January 16, 1996

To the Honorable Yuji KIYOKAWA, Commissioner of the Japanese Patent Office

1. Application

Patent Application No. 1-258690

2. Title of the Invention

Hollow Molded Object and Molding Method Therefor

3. Party Filing the Amendment

Relation to Case

Patent Applicant

Name

Asahi Chemical Industry Co., Ltd. (003)

Address

1-2-6, Dojimahama, Kita-ku, Osaka

Representative

Reiichi YUMIKURA

Relation to Case

Patent Applicant

Name

RP Topla Co., Ltd.

Address

1-7-27, Itsukaichi, Ibaraki-shi, Osaka

Representative

Senji TAKEHISA

4. Agents

Names

Yoshio TOYODA, Patent Attorney (5941)

Keisuke WATANABE, Patent Attorney (9682)

Address

Toyoda & Watanabe Overseas and Domestic

Patent Office, Sanshin Building No. 227

1-4-1, Yurakucho, Chiyoda-ku, Tokyo

Telephone

03-3501-2138

5. Sections to be Amended

Claims and Detailed Description of the Invention in the Specification

6. Content of the Amendment

(1) The claims are amended as shown on the next page.

(2) Page 6, Line 5 of the Specification

Here, "exceed" (misspelled) has been amended to read exceed.

(3) Page 6, Lines 9-16 of the Specification

"In claim 4, the present invention ... forming the hollow section 3." has been amended to read "In claim 4, the present invention is a molding method for a hollow molded object, wherein the molding method has a step in which the hollow section forming fluid is injected into the cavity 1 after the cavity 1 has been filled with a melted synthetic resin 2, forcing some of the melted synthetic resin 2 inside the cavity 1 into a spare chamber 4 connected to the cavity 1 and forming the hollow section 3, and wherein the volume of the spare chamber 4 is equivalent to the volume of the hollow section 3, and the thickness or diameter of the connecting passage 9 to the spare chamber 4 is 1 to 1/20th the thickness of the cavity 1 so the flow resistance to the melted synthetic resin 2 is greater than inside the cavity 1.

(4) Page 9, Lines 1, 2 and 3 of the Specification

Here, "exceed" (misspelled) has been amended to read exceed.

(5) Page 10, Lines 10-12 of the Specification

Here, "such that the melted synthetic resin 2 ... in the connecting passages 9." has been amended to read "such that the flow resistance to the melted synthetic resin 2 is greater in the connecting passages 9 than inside the cavity 1."

(6) Page 10, Line 15 of the Specification

Here, " should be 1 to 1/20th of the thickness" is amended to read "has to be 1 to 1/20th of the thickness".

(7) Page 10, Line 19 of the Specification

Here, "it should range" is amended to read "it ranges".

(8) Page 11, Lines 10-12 of the Specification

"Here, the thickness ... described above." has been omitted.

(9) Page 16, Line 5 of the Specification

The following sentence is inserted between the second and third sentences: "The thickness or diameter of the connecting passage 9 is 1 to 1/20th the thickness of the cavity 1 so the flow resistance to the melted synthetic resin 2 is greater than the cavity 1 and the cavity 1 is filled with melted synthetic resin 2 before the melted synthetic resin 2 enters the spare chamber 4."

(10) Page 16, Line 10 of the Specification

The following sentence is added to the end of the paragraph: "The volume of the spare chamber 4 is equivalent to the volume of the hollow section 3 so as to control the volume of the hollow section 3."

(11) Page 16, Lines 12-17 of the Specification

"The thicker connecting passages 9 ... is injected." has been amended to read "This is better at preventing the flow of melted synthetic resin 2 into the spare chamber 4 before the cavity 1 has been filled with the melted synthetic resin 2."

Claims

- (1) A hollow molded object, wherein the hollow molded object is formed by continuously injecting a melted synthetic resin into a mold cavity, wherein the hollow molded object has a surface that is not overstretched or overlapping, and wherein the hollow molded object has a hollow section with a volumetric capacity exceeding the amount of thermal contraction in the melted resin.
- (2) The hollow molded object described in claim 1, wherein the hollow molded object is made of an amorphous resin, and wherein the hollow section has a volumetric capacity exceeding 10%.

- (3) The hollow molded object described in claim 1, wherein the hollow molded object is made of a crystalline resin, and wherein the hollow section has a volumetric capacity exceeding 15%.
- (4) A molding method for a hollow molded object, wherein the molding method has a step in which the hollow section forming fluid is injected into the cavity after the cavity has been filled with a melted synthetic resin, forcing some of the melted synthetic resin inside the cavity into a spare chamber connected to the cavity and forming the hollow section, and wherein the volume of the spare chamber is equivalent to the volume of the hollow section, and the thickness or diameter of the connecting passage to the spare chamber is 1 to 1/20th the thickness of the cavity so the flow resistance to the melted synthetic resin is greater than inside the cavity.
- (5) The molding method for a hollow molded object described in claim 4, wherein the connecting passage can be opened and closed, and wherein the connecting passage is blocked when the melted synthetic resin is injected into the cavity, and the connecting passage is opened when the hollow space forming fluid is injected into the cavity.
- (6) The molding method for a hollow molded object described in claim 4<u>or claim 5</u>, wherein the cavity has a groove extending inside the cavity from the vicinity of the melted synthetic resin injecting position to the vicinity of the spare chamber so as to form a reinforcing rib with a width <u>exceeding</u> 0.7 times the thickness of the mold