Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Inhaltsangabe:

- Einleitung, Motivation
- Turing-Maschinen
- Arbeitstechniken
- Unentscheidbare Probleme
- Das Halteproblem
- Reduktionen
- Zeitkomplexität
- Die Klassen Pund NP
- NP-vollständigkeit
- NP-vollständige Probleme

Inhaltsangabe:

- Einleitung, Motivation
- Turing-Maschinen
- Arbeitstechniken
- Unentscheidbare Probleme
- Das Halteproblem
- Reduktionen
- Zeitkomplexität
- · Die Klassen P und NP
- NP-vollständigkeit
- NP-vollständige Probleme

Wiederholung

Gibt es einen Algorithmus Halte, der

- als Eingabe einen beliebigen Algorithmus Alg und eine Eingabe w für Alg erhält und
- entscheidet, ob Alg bei Eingabe w hält?

Satz von Turing: Einen solchen Algorithmus kann es nicht geben.

Wiederholung

Alle sinnvollen Rechenmodelle liefen aus unserer Sicht die gleichen Ergebnisse (Churchsche These).

Es gibt Probleme, die algorithmisch nicht gelöst werden können (z.B. das Halteproblem) -> Berechenbarkeit

Manche Problem können zwar algorithmisch gelöst werden, aber sie können nicht effizient gelöst werden (z.B. das Problem des Handlungsreisenden) -> Komplexität

Von Berechenbarkeit zu Komplexität

- Berechenbarkeit in Bezug auf Entscheidbarkeit und Aufzählbarkeit betrachtet nur prinzipielle Lösbarkeit von Problemen mit Hilfe von Computern
- Prinzipiell lösbare Probleme können praktisch nicht lösbar sein, weil jeder Algorithmus zur Lösung des Problems zu viel Zeit (und/oder Platz) benötigt.
- Komplexitätstheorie versucht Probleme gemäß des Zeit- und Platzbedarfs des besten Algorithmus zu ihrer Lösung zu klassifizieren.
- Konzentrieren uns auf Zeitbedarf und die Klassen P und NP

Beispielprobleme:

Minimum-Suche:

- Eingabearray A[1..n].
- Ausgabe: Minimum in A[1..n].

Sortierproblem:

- Eingabe: Folge von n Zahlen (a₁, ..., a_n)
- Ausgabe: Umordnung der Zahlen in (b₁, ..., b_n) so dass b₁ ≤ ... ≤ b_n

1. Einführung

Das Problem des Handlungsreisenden: Wien, Krems, St. Pölten, Wiener Neustadt, Mürzzuschlag, Graz, Wolfsberg, Klagenfurt, Villach, Spital, Lienz, Brenner, Innsbruck, Kitzbühel, Bischofshofen, Hallein, Salzburg, Braunau, Ried, Wels, Linz, Enns, Amstetten, Zwettl, Stockerau

O-Notation

Definition: Sei $g: \mathbb{N} \to \mathbb{R}^+$ eine Funktion. Dann bezeichnen wir mit O(g(n)) die folgende Menge von Funktionen

$$O(g(n)) := \begin{cases} Es \text{ existieren Konstanten } c > 0, n_0, \\ f(n) : \text{ so dass für alle } n \ge n_0 \text{ gilt} \\ 0 \le f(n) \le c g(n). \end{cases}$$

- \triangleright O(g(n)) formalisiert: Die Funktion f(n) wächst asymptotisch nicht schneller als g(n).
- \triangleright Statt f(n) in O(g(n)) in der Regel f(n) = O(g(n))

Ω-Notation

Definition: Sei $g: \mathbb{N} \to \mathbb{R}^+$ eine Funktion. Dann bezeichnen wir mit $\Omega(g(n))$ die folgende Menge von Funktionen

$$\Omega(g(n)) := \begin{cases} \text{Es existieren Konstanten } c > 0, n_0, \\ f(n) : \text{ so dass für alle } n \ge n_0 \text{ gilt} \\ 0 \le c \ g(n) \le f(n). \end{cases}$$

- $\triangleright \Omega(g(n))$ formalisiert: Die Funktion f(n) wächst asymptotisch mindestens so schnell wie g(n).
- \triangleright Statt f(n) in $\Omega(g(n))$ in der Regel $f(n) = \Omega(g(n))$

Θ-Notation

Definition: $g: \mathbb{N} \to \mathbb{R}^+$ eine Funktion. Dann bezeichnen wir mit $\Theta(g(n))$ die folgende Menge von Funktionen

$$\Theta(g(n)) := \begin{cases} \text{Es existieren Konstanten } c_1 > 0, c_2, n_0, \\ f(n) : \text{so dass für alle } n \ge n_0 \text{ gilt} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n). \end{cases}$$

- $\triangleright \Theta(g(n))$ formalisiert: Die Funktion f(n) wächst asymptotisch genau so schnell g(n).
- \triangleright Statt f(n) in $\Theta(g(n))$ in der Regel $f(n) = \Theta(g(n))$

Illustration von $\Theta(g(n))$

Effekt guter Algorithmen - Sortieren

Insertion - Sort:

Sortiert n Zahlen mit c₁n² Vergleichen.

Computer A:

10⁹ Vergleiche/Sek.

$$c_1 = 2, n = 10^6$$
.

Dann benötigt A

$$\frac{2 \cdot (10^6)^2}{10^9} = 2000 \text{ Sek.}$$

Merge - Sort :

Sortiert n Zahlen mit c₂nlog(n) Vergleichen.

Computer B:

10⁷ Vergleiche/Sek.

$$c_2 = 50, n = 10^6.$$

Dann benötigt B

$$\frac{50 \cdot (10^6) \log(10^6)}{10^7} \approx 100 \text{ Sek.}$$

Regeln für Kalküle - Transitivität

O-, Ω - und Θ -Kalkül sind transitiv, d.h.:

$$\triangleright$$
 Aus $f(n)$ = $O(g(n))$ und $g(n)$ = $O(h(n))$ folgt $f(n)$ = $O(h(n))$.

$$ightharpoonup$$
 Aus $f(n) = \Omega(g(n))$ und $g(n) = \Omega(h(n))$ folgt $f(n) = \Omega(h(n))$.

$$\triangleright$$
 Aus $f(n) = \Theta(g(n))$ und $g(n) = \Theta(h(n))$ folgt $f(n) = \Theta(h(n))$.

Regeln für Kalküle - Reflexivität

O-, Ω - und Θ -Kalkül sind reflexiv, d.h.:

$$f(n) = \mathbf{O}(f(n))$$

$$f(n) = \mathbf{\Omega}(f(n))$$

$$f(n) = \mathbf{\Theta}(f(n))$$

Θ-Kalkül ist symmetrisch, d.h.

 $f(n) = \Theta(g(n))$ genau dann, wenn $g(n) = \Theta(f(n))$.

Regeln für Kalküle

Satz: Sei $f: \mathbb{N} \to \mathbb{R}^+$ mit $f(n) \ge 1$ für alle n. Weiter sei $k,l \ge 0$ mit $k \ge l$. Dann gilt

1.
$$f(n)' = O(f(n)^k).$$

2.
$$f(n)^k = \Omega(f(n)^l)$$
.

Satz: Seien $\varepsilon, k > 0$ beliebig. Dann gilt

1.
$$\log(n)^k = O(n^{\varepsilon})$$
.

2.
$$n^{\epsilon} = \Omega(\log(n)^{k})$$
.

Laufzeit einer DTM:

Definition: DTM M = (Q, Σ , Γ , δ , q_0 , q_{n-1} , q_n) halte bei jeder Eingabe.

- Für w aus Σ* ist T_M(w) die Anzahl der Rechenschritte von M bei Eingabe w.
- Für eine natürliche Zahl n ist T_M(n) := max {T_M(w) | w aus Σ^{≤n}}.
- Die Funktion T_M heißt Zeitkomplexität oder Laufzeit der DTM M.
- M hat Laufzeit O(f(n)), wenn T_M(n) = O(f(n)).

Satz: Sei t eine monoton wachsende Funktion mit $t(n) \ge n$. Jede Mehrband DTM mit Laufzeit t(n) kann durch eine 1-Band DTM mit Laufzeit t(n)0 simuliert werden.

Die Klasse P:

Definition: Die Klasse P ist definiert als

 U_k DTIME(n^k).

P ist die Klasse der Sprachen, die durch die DTM mit polynomieller Laufzeit entschieden werden können.

Beispiel: $\{0^n1^n \mid n \ge 1\}$ ist in P.

Warum P?:

- 1. P ist eine mathematisch robuste Klasse.
- 2. Probleme in P lassen sich in der Praxis verhältnismäßig gut lösen, für Probleme außerhalb von P trifft dieses in der Regel nicht zu.
- 3. P liefert eine interessante Theorie.

Warum P?:

- 1. P ist eine mathematisch robuste Klasse.
- 2. Probleme in P lassen sich in der Praxis verhältnismäßig gut lösen, für Probleme außerhalb von P trifft dieses in der Regel nicht zu.
- 3. P liefert eine interessante Theorie.

Darstellung von Zahlen und Graphen:

- 1. Repräsentieren Zahlen in der Regel in Binärdarstellung.
 - Dastellung bezüglich anderer Basen ist zulässig, da die Eingabegröße sich dadurch nur um einen konstanten Faktor ändert. Ist die Laufzeit für die Binärdarstellung in P, so trifft dies auch für jede andere Basis zu.
- 2. Repräsentiere Graphen durch
 - 1. Adjazenzmatrizen oder
 - 2. Adjazenzlisten

Diese Darstellungen unterscheiden sich nur um einen quadratischen Faktor, so dass eine polynomielle Laufzeit bzgl. der einen Eingabeform auch polynomiell bzgl. der anderen ist.

Pfade in Graphen

Definition: Das Problem Pfad ist definiert wie folgt:

Pfad := {<G,s,t> | G=(V,E) ist ein gerichteter Graph mit s,t in V und einem gerichteten Pfad von s nach t.}

Satz: Pfad liegt in P.

Pfade in Graphen

M bei Eingabe <G,s,t>:

- 1. Markiere den Knoten s.
- 2. Wiederhole den folgenden Schritt bis keine zusätzlichen Knoten markiert werden.
- 3. Durchlaufe alle Kanten (a,b) von G. Ist a markiert und b nicht markiert, so markiere b.
- 4. Ist t markiert, akzeptiere, sonst lehne ab.

Teilerfremde Zahlen

Definition: Zwei natürliche Zahlen a,b heißen teilerfremd, wenn ihr größter gemeinsame Teiler (ggT) 1 ist.

RelPrim := $\{\langle x,y \rangle \mid x \text{ und } y \text{ sind teilerfremd.}\}$

Satz: RelPrim liegt in P.

Teilerfremde Zahlen

E bei Eingabe <x,y>:

- 1. Wiederhole die folgenden Schritte bis y=0
 - 1. $x \leftarrow x \mod y$
 - 2. Vertausche x und y.
- 2. Ausgabe x

R bei Eingabe <x,y>:

- Simuliere E bei Eingabe <x,y>
- 2. Ist die Ausgabe von E 1, so akzeptiere, ansonsten lehne ab.