Jumping on the Clouds

Emma is playing a new mobile game involving $n\$ clouds numbered from $0\$ to $n-1\$. A player initially starts out on cloud $c_0\$, and they must jump to cloud $c_{n-1}\$. In each step, she can jump from any cloud $i+1\$ or cloud $i+2\$.

There are two types of clouds, *ordinary clouds* and *thunderclouds*. The game ends if Emma jumps onto a thundercloud, but if she reaches the last cloud (i.e., c_{n-1}), she wins the game!

Can you find the minimum number of jumps Emma must make to win the game? It is guaranteed that clouds c_0 and c_1 are ordinary-clouds and it is *always possible* to win the game.

Input Format

The first line contains an integer, \$n\$ (the total number of clouds).

The second line contains $n\$ space-separated binary integers describing clouds $c_0, c_1, \ldots, c_{n-1}\$.

- If $c_i=0$, the i^{t_i} cloud is an ordinary cloud.
- If $c_i=1$, the i^{t_i} cloud is a thundercloud.

Constraints

- \$2 \le n \le 100\$
- \$ c_i \in \{0,1\}\$
- $c_0 = c_{n-1} = 0$

Output Format

Print the minimum number of jumps needed to win the game.

Sample Input 0

7 0010010

Sample Output 0

Sample Input 1

6 0 0 0 0 1 0

Sample Output 1

3

Explanation

Sample Case 0:

Because \$c_2\$ and \$c_5\$ in our input are both \$1\$, Emma must avoid \$c_2\$ and \$c_5\$. Bearing this in mind, she can win the game with a minimum of \$4\$ jumps:

Sample Case 1:

The only thundercloud to avoid is \$c_4\$. Emma can win the game in \$3\$ jumps:

