II. kolo kategorie Z7

Z7-II-1

Najdi všechny trojice přirozených čísel a, b, c tak, aby a < b < c a hodnota zlomku $\frac{1}{7}(44 - abc)$ byla přirozené číslo. ($Pt\acute{a}\check{c}kov\acute{a}$)

Řešení. Označme čitatel zlomku, tj. výraz 44-abc jako p. Má-li být daný podíl přirozené číslo, musí být p přirozené číslo dělitelné sedmi menší než 44. V úvahu tedy přicházejí čísla 42, 35, 28, 21, 14, 7. Tomu odpovídají tyto hodnoty součinu abc: 2, 9, 16, 23, 30, 37. Tato čísla napíšeme jako součin tří navzájem různých přirozených čísel: $2\ldots$ nelze, $9\ldots$ nelze, $16=1\cdot 2\cdot 8, 23\ldots$ nelze, $30=1\cdot 2\cdot 15=1\cdot 3\cdot 10=1\cdot 5\cdot 6=2\cdot 3\cdot 5, 37\ldots$ nelze. Řešením jsou tedy tyto uspořádané trojice čísel a,b,c:

$$[1, 2, 8], [1, 2, 15], [1, 2, 13], [1, 5, 6], [2, 3, 5].$$

Z7-II-2

Ve čtyřúhelníku ABCD (s vnitřními úhly α , β , γ , δ platí: $\alpha = \gamma = 90^{\circ}$, |AD| = |CD| a $\beta = \delta + 100^{\circ}$. Označme M průsečík os úhlů DAC a ACD. Jaká je velikost vnitřního úhlu při vrcholu M v trojúhelníku AMD. (Ptáčková)

ŘEŠENÍ. Nejprve si vypočítáme velikosti zbývajících úhlů. Součet vnitřních úhlů v libovolném čtyřúhelníku je roven 360°, tedy $\alpha + \beta + \gamma + \delta = 360$, po dosazení ze zadání dostáváme $90 + (\delta + 100) + 90 + \delta = 360$, odtud $\delta = 40$ ° a $\beta = 140$ °.

Nyní si budeme všímat pouze trojúhelníku ACD (obr.). Ten je rovnoramenný se základnou AC, jak vyplývá ze zadání. Zjistíme tedy velikost úhlu ω při základně. Platí: $180^{\circ} = 40^{\circ} + 2\omega$, velikost úhlu při základně tedy je 70° .

 $\triangle AMD$: vnitřní úhel při vrcholu A má velikost $70^\circ: 2=35^\circ$, vnitřní úhel při vrcholu D má velikost $40^\circ: 2=20^\circ$. Velikost vnitřního úhlu při vrcholu M je rovna $180^\circ-35^\circ-20^\circ=125^\circ$.

Z7-II-3

Dominik pozoroval sedačkovou lanovku. Nejdříve zjistil, že spodní stanicí projede každých 8 sekund jedna sedačka. Potom si jednu sedačku vyhlédl, zmáčkl stopky a chtěl změřit,

jak dlouho potrvá, než se sedačka opět vrátí do spodní stanice. Po 3 minutách a 28 sekundách pustili lanovku rychleji, takže sedačky projížděly spodní stanicí každých 5 sekund. Když pak projížděla Dominikova sedačka, stopky ukazovaly 11 minut a 13 sekund. Kolik sedaček měla lanovka?

(Dillingerová)

Řešení. Za 3 minuty a 28 sekund (což je 208 sekund) projelo kolem Dominika 208 : 8=26 sedaček. Od zrychlení do doby, než kolem Dominika projela jeho sedačka, uplynulo 11 minut 13 sekund -3 minuty 28 sekund, což je 7 minut a 45 sekund (465 sekund). Za dobu, kdy jezdila lanovka rychleji, projelo kolem Dominika 465 : 5=93 sedaček (včetně té Dominikovy). Lanovka měla celkem 26+93=119 sedaček.