Série 9

L'exercise 1 sera discuté pendant le cours le lundi 21 novembre. L'exercice 3 (*) peut être rendu le jeudi 24 novembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

a)

Exercice 2

b)

- a) Considérons l'espace vectoriel $M_{n\times n}(\mathbb{R})$, où $n\geq 1$ est un entier positif.
 - i) Calculer $\dim(M_{n\times n}(\mathbb{R}))$.

- ii) Soit $S_1 \subseteq M_{n \times n}(\mathbb{R})$ l'ensemble des matrices symétriques. Calculer dim (S_1) .
- iii) Soit $S_2 \subseteq M_{n \times n}(\mathbb{R})$ l'ensemble des matrices anti-symétriques. Calculer dim (S_2) .
- iv) Soit $T = \{A \in M_{n \times n}(\mathbb{R}) : \text{Tr}(A) = 0\}$. Calculer dim(T).

Rappel : Soit K un corps. L'application trace $\operatorname{Tr}: M_{n \times n}(K) \to K$ est définie par $\operatorname{Tr}(A) = \sum_{i=1}^n A_{ii}$ pour toute $A \in M_{n \times n}(K)$.

- b) Soit $n \geq 1$ un entier positif. Considérons $M_{n \times n}(\mathbb{C})$ comme l'espace vectoriel sur le corps \mathbb{R} et notons-le V.
 - i) Calculer $\dim(V)$.
 - ii) Soit $H_1 \subseteq M_{n \times n}(\mathbb{C})$ l'ensemble des matrices hermitiennes. Est-ce que H_1 est un \mathbb{R} -sous-espace vectoriel de V? Si oui, calculer $\dim(H_1)$.
 - iii) Soit $H_2 \subseteq M_{n \times n}(\mathbb{C})$ l'ensemble des matrices anti-hermitiennes. Est-ce que H_2 est un \mathbb{R} -sous-espace vectoriel de V? Si oui, calculer $\dim(H_2)$.

Exercice 3 (*)

Soient U_1, \ldots, U_s des sous-espaces vectoriels d'un K-espace vectoriel V. Alors

- (i) $U_1 + \cdots + U_s$ est encore un sous-espace vectoriel de V,
- (ii) $U_1 + \cdots + U_s = \operatorname{span}(U_1 \cup \cdots \cup U_s),$
- (iii) $\dim(U_1 + \cdots + U_s) \leq \dim(U_1) + \cdots + \dim(U_s)$.

Exercice 4

Soit V un espace vectoriel de dimension finie. L'application linéaire $P:V\to V$ est une Projection, si $P^2=P$. Montrer que :

- i) $V = \text{Ker}(P) \oplus \text{Im}(P)$.
- ii) Pour deux sous espaces vectoriels $W_1, W_2 \subset V$ tels que $V = W_1 \oplus W_2$, il existe exactement une projection $P: V \to V$ telle que $\operatorname{Ker}(P) = W_1$ et $\operatorname{Im}(P) = W_2$.

Exercice 5

Lequelles des applications suivantes sont linéaires? Sauf indication contraire, montrer la linéarité sur le corps \mathbb{R} .

1.
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \overline{z}$.

2.
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \overline{z}$, (sur le corps \mathbb{C}).

3.
$$C^0((-2,2)) \to \mathbb{R}$$
, $f \mapsto f(0) + \int_{-1}^1 f(x) e^{x^2} dx$.

4.
$$C^0((0,\infty)) \to C^0((0,\infty)), \qquad f \mapsto \Big(x \mapsto x f(1/x)\Big).$$

5.
$$C^0(\mathbb{R}/2\pi\mathbb{Z}) \to \mathbb{R},$$

$$f \mapsto \int_{f(0)-\frac{\pi}{2}}^{f(0)+\frac{\pi}{2}} f(2x) dx.$$

6.
$$(\star\star)$$
 $\mathbb{R}_{4}[x] \to \mathbb{R}_{4}[x]$, $p \mapsto p'$.
7. $(\star\star)$ $\mathbb{R}_{3}[x] \to \mathbb{R}_{5}[x]$, $p \mapsto (2 - 3x + x^{2})p$.
8. $\mathbb{F}_{2}^{2} \to \mathbb{F}_{2}^{2}$, $(x,y) \mapsto (x + y, x^{2} + y^{2})$.
9. $C^{0}([0,3]) \to \mathbb{R}$, $f \mapsto 37f(1) + 58\int_{2}^{3} f(x) dx$.

 $(\star\star)$ Pour les points 6. et 7. calculer une base de l'image et du noyau, et dire si les applications sont injectives ou surjectives.

Notation : Pour $I \subseteq \mathbb{R}$, on denote l'espace vectoriel des fonctions réelles continues sur I par $C^0(I)$. De plus $C^0(\mathbb{R}/2\pi\mathbb{Z})$ désigne l'espace vectoriel des fonctions sur \mathbb{R} qui sont 2π -périodiques.

Exercice 6

On considére les trois applications linéaires $F_A, F_B, F_C: X \to Y$ que l'on décrit par les matrices

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 3 & 2 \\ 4 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 2 & 4 \\ 4 & 2 & 5 \\ 6 & 3 & 3 \end{pmatrix}.$$

On obtient $F_A: x \mapsto Ax$. Les espaces vectoriels X et Y sont toujours soit \mathbb{R}^2 soit \mathbb{R}^3 .

- i) Déterminer pour les applications linéaires F_A , F_B , F_C si elles sont surjectives, injectives ou bijectives.
- ii) Calculer pour les applications linéaires F_A , F_B , F_C une base de le noyau et de l'image.

Exercice 7

Soit la transformation $T: \mathbb{R}_2[t] \to \mathbb{R}^2$ définie par $T(p) = \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix}$.

- i) Vérifier que T est linéaire.
- ii) Trouver une base de Ker(T).
- iii) Trouver une base de Im(T).

Exercice 8

Soient K un corps et $n \geq 1$ un entier positif. Soit $Tr: M_{n \times n}(K) \to K$ l'application trace.

- i) Montrer que Tr est une application linéaire.
- ii) Montrer que Tr(AB) = Tr(BA) pour toutes $A, B \in M_{n \times n}(K)$.
- iii) Montrer que $\text{Tr}(S^{-1}AS) = \text{Tr}(A)$ pour $A, S \in M_{n \times n}(K)$ et S une matrice inversible.

Exercice 9

Calculer pour

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix} \in M_{n \times n}(\mathbb{R}),$$

le noyau de l'application linéaire $F:M_{n\times n}(\mathbb{R})\to M_{n\times n}(\mathbb{R})$ définie comme

$$F: X \mapsto AX - XA$$
.