Exploratory Data Analysis

Dr. Sandareka Wickramanayake sandarekaw@cse.mrt.ac.lk

Data Science Process

Recommended Reading

Chapter 3 - Art of Data Science Chapter 15 - Head First Statistics

Data Analysis

- Ask good questions.
- Seek answers to those questions.

Descriptive

Seek to summarize characteristics of a set of data.

Exploratory

Seek for patterns, trends, or relationships between variables.

Predictive

Make predictions about future or otherwise unknown events based on data.

Data Analysis

- Ask good questions.
- Seek answers to those questions.

Descriptive

Seek to summarize a characteristic of a set of data.

Exploratory

Seek for patterns, trends, or relationships between variables.

Predictive

Make predictions about future or otherwise unknown events based on data.

Data Types (Recap)

Four fundamental data types.

Descriptive Analysis

- Summarizes the properties of the dataset.
- Questions can be answered descriptive analysis:
 - Determine the proportion of males.
 - What is the mean age of the participants?
 - What percentage of participants "rarely" uses the seatbelt?
 - Etc ...
- An important consideration is the type of data!
 - Step 1: Use data type classification tree.
 - Step 2: Apply appropriate descriptive methods.

Descriptive Analysis

• Two main approaches: Numeric and Visual descriptions.

Descriptive Analysis: Numeric

Attribute Type	Categ	orical	Metric	
	Nominal	Ordinal	Discrete	Continuous
Frequency	Yes	Yes	Yes	Under grouped representation
Normalized Frequency	Yes	Yes	Yes	Under grouped representation
Cumulative Frequency	No	Yes	Yes	Under grouped representation
Normalized Cumulative Frequency	No	Yes	Yes	Under grouped representation
Mode	Yes	Yes	Yes	No
Mean	No	No	Yes	Yes
Median	No	Yes	Yes	Yes
Range	No	No	Yes	Yes
Spread	No	No	Yes	Yes
Five Number Summary	No	No	Yes	Yes

Descriptive Analysis: Visual

Attribute Type	Categorical		Metric	
	Nominal	Ordinal	Discrete	Continuous
Pie Chart	Yes	Yes	No	No
Tag Cloud	Yes	Yes	Possible	No
Bar Chart	Yes	Yes	Yes	No
Clustered/Stacked Bar Chart	Yes	Yes	Yes	No
Step Chart	No	Yes	Yes	No
Box Plot	No	No	Yes	Yes
Histogram	No	No	Yes	Yes
Cumulative Histogram	No	No	Yes	Yes

Data Analysis

- Ask good questions.
- Seek answers to those questions.

Descriptive

Seek to summarize a characteristic of a set of data.

Exploratory

Seek for patterns, trends, or relationships between variables.

Predictive

Make predictions about future or otherwise unknown events based on data.

Exploratory Data Analysis

- Association
- Correlation
- Agreement

- Do changes in X (seem to) coincide with changes in Y?
- This does not mean changes in X <u>cause</u> changes in Y!

- Metric Scatter plots
- Categorical Contingency Table

- Do changes in X (seem to) coincide with changes in Y?
- Example question *Lighter car seems to run longer?*

1974 Motor Trend Data

	Miles per gallon	Cylinder number	Engine displacement	Horsepower	Weight (ton)
Mazda RX4	21	6	160	110	2.62
Mazda RX4 Wag	21	6	160	110	2.875
Datsun 710	22.8	4	108	93	2.32
Hornet 4 Drive	21.4	6	258	110	3.215
Hornet Sportabout	18.7	8	360	175	3.44
Valiant	18.1	6	225	105	3.46
Duster 360	14.3	8	360	245	3.57
Merc 240D	24.4	4	146.7	62	3.19
Merc 230	22.8	4	140.8	95	3.15
Merc 280	19.2	6	167.6	123	3.44
Merc 280C	17.8	6	167.6	123	3.44
Merc 450SE	16.4	8	275.8	180	4.07
Merc 450SL	17.3	8	275.8	180	3.73
Merc 450SLC	15.2	8	275.8	180	3.78
Cadillac Fleetwood	10.4	8	472	205	5.25
Lincoln Continental	10.4	8	460	215	5.424
Chrysler Imperial	14.7	8	440	230	5.345
Fiat 128	32.4	4	78.7	66	2.2

- Do changes in X (seem to) coincide with changes in Y?
- Example question *Lighter car seems to run longer?*
- Scatter plots

- Do changes in X (seem to) coincide with changes in Y?
- Example question *Lighter car seems to run longer?*
- Scatter plots
 - Enables the visual inspection of association between variables.
 - Attribute values determine the position.
 - Two dimensional scatter plots are useful to understand the relationship between two (or more) continuous variables.
 - We can create three-dimensional scatter plots.
 - First step in examining relationships among continuous variables.

- Do changes in X (seem to) coincide with changes in Y?
- Example question *Lighter car seems to run longer?*
- Scatter plots
 - Roughly three types of associations.
 - · No association, Positively associated, Negatively associated

Do changes in X (seem to) coincide with changes in Y?

8.0

- Scatter plots
 - Additional attributes can be displayed by using the size, shape, and colour of the markers that represent objects.

https://www.researchgate.net/publication/265877256_How_ plants_grow_and_move

ovary

sepal

https://stackoverflow.com/questions/42754458/scatter-plots-inseaborn-matplotlib-with-point-size-and-color-given-by-continuou

Scatter plots

 Arrays of scatter plots are useful when we want to compactly summarize the relationships of several pairs of attributes.

https://www.researchgate.net/publication/265877256_How_plants_grow_and_move

Contingency Table

Gender

		Male	Female
ō	Black	4	1
Color	Red	1	2
Hair	Brown	0	2
_			

No association between Male with Brown hair

Exploratory Data Analysis

- Association
- Correlation
- Agreement

- How to quantity the association between X and Y?
 - Measure the degree to which X and Y co-behave.

- There are many metrics to measure correlation
 - Check the types of the attributes you want to consider
 - Check the distribution of each attribute
 - Check the association of the attributes
 - Check the assumptions of each correlation metric

Comparison	Test
Relationship between 2 continuous variables	Pearson correlation (When the relationship is linear) Spearman's Correlation Coefficient
Relationship between 2 discrete variables	Pearson correlation (When the relationship is linear) Spearman's Correlation Coefficient
Influence of one or more categorical variables on a continuous variable	ANOVA test
Relationship between a continuous variable and binary categorical variable	Point-biserial correlation (A special case of Pearson correlation)
Relationship between 2 ordinal variables	Spearman's Correlation Coefficient Kendall's rank-order correlation coefficient
Relationship between 2 categorical variables	Chi-squared test

- Pearson correlation
 - Quantify the association with a numeric measure of strength.
 - Given data $(X_i, Y_i), i = 1, 2, ..., n$
 - Step 1: compute the means for X and Y

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$

Step 2: compute the standard deviation for X and Y

$$\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} \quad \sigma_Y = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

• Step 3: compute the covariance of *X* and *Y*

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

• Step 4: compute the Pearson correlation:

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

- Pearson correlation
 - Quantify the association with a numeric measure of strength.

$$\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_V} = \frac{\mathbb{E}(X - \mu_X)(Y - \mu_Y)}{\sigma_X \sigma_Y}$$

$$-1 \le \rho \le 1$$

 $\rho = 1$: perfect positive (linear) correlatio
 $\rho = -1$ perfect negative correlation

$$\rho = 0$$
 no correlation

- Pearson correlation
 - Scatter plots for variable pairs of different Pearson correlations.
 - Correlation reflects the strength and direction of a linear relationship but not the slop of that relationship, nor many aspects of nonlinear relationships.

Pearson correlation

- The <u>heavier the car</u> is, the <u>lower fuel</u> efficiency.
- Negatively associated.
- How much they are associated? Pearson correlation coefficient $\rho = -0.87$

- The <u>heavier the car</u> is, the <u>more horsepower</u> the car has.
- Positively associated.
- How much they are associated? Pearson correlation coefficient $\rho = +0.66$

Pearson correlation

- When does it fail?
 - Non-linear relationships
 - *Y* can perfectly explained by *X*.
 - But, $\rho = -0.09$

- Presence of outliers
 - *Y* can almost perfectly explained by *X*.

- Pearson correlation
 - Limitations
 - Only capture <u>linear</u> correlation!
 - Sensitive to outliers.
 - Assume data is normally distributed
- What to use if we have a monotonic trend?

Monotonic trend

Monotonic trend example

Y never decreases as X increases but the trend may or may not be linear.

Positively correlated

Or, *Y* never increases as *X* increases the trend may or may not be linear.

Negatively correlated

- Spearman's rank correlation $\rho_{\scriptscriptstyle S}$
 - To analyse two ordinal or discrete variables.
 - Detect monotonic trends.
 - $-1 \le \rho_s \le 1$
 - How to calculate Spearman's rank correlation?

National IQ estimate	Average TV viewing (hrs/week)
106	7
86	0
100	27
101	50
99	28
103	29
97	20
113	12
112	6
110	17

Pearson correlation $\rho(X,Y) = -0.038$

- Spearman's rank correlation ρ_s
 - How to calculate Spearman's rank correlation?
 - Step 1: Calculate the rank for IQ.
 - Step 2: Calculate the rank for TV.
 - Step 3: Calculate the rank differences.
 - Step 4: Calculate the square of the rank differences.

IQ194	TV	Rank IQ	Rank TV	d_i	d_i^2
86	0	1	1	0	0
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36
					194

$$\rho_s = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

$$\rho_s = 1 - \frac{6 \times 194}{10(100 - 1)} = -0.176$$

$$\rho = -0.038$$

- Spearman's rank correlation $\rho_{\scriptscriptstyle S}$
- Higher number of cylinders seems to increase horsepower?

1974 Motor Trend Data

	Miles per gallen	Cylinder	Engine	Horcopowor	Weight (ton)
	Miles per gallon	number	displacement	norsepower	
Mazda RX4	21	6	160	110	2.62
Mazda RX4 Wag	21	6	160	110	2.875
Datsun 710	22.8	4	108	93	2.32
Hornet 4 Drive	21.4	6	258	110	3.215
Hornet Sportabout	18.7	8	360	175	3.44
Valiant	18.1	6	225	105	3.46
Duster 360	14.3	8	360	245	3.57
Merc 240D	24.4	4	146.7	62	3.19
Merc 230	22.8	4	140.8	95	3.15
Merc 280	19.2	6	167.6	123	3.44
Merc 280C	17.8	6	167.6	123	3.44
Merc 450SE	16.4	8	275.8	180	4.07
Merc 450SL	17.3	8	275.8	180	3.73
Merc 450SLC	15.2	8	275.8	180	3.78
Cadillac Fleetwood	10.4	8	472	205	5.25
Lincoln Continental	10.4	8	460	215	5.424
Chrysler Imperial	14.7	8	440	230	5.345
Fiat 128	32.4	4	78.7	66	2.2

- Spearman's rank correlation $\rho_{\scriptscriptstyle S}$
- Higher number of cylinders seems to increase horsepower?

Pearson: $\rho = 0.83$

Spearman: $\rho_s = 0.9$

- Spearman's rank correlation $\rho_{\scriptscriptstyle S}$
- Summary
 - Pearson correlation is suitable for <u>continuous data</u> (with normality assumption on the distribution of the data)
 - Spearman correlation is suitable for <u>ordinal/discrete data</u> (but also continuous).
 - It is nonparametric and distribution-assumption free.
 - Pearson correlation detects <u>linear trends</u>.
 - Spearman correlation detects monotonic trends.

Exploratory Data Analysis

- Association
- Correlation
- Agreement

Measure if X and Y agree - Nominal data

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

	Patient	1	2	3	4	5	6	7	8	9	10
<i>X</i> —	Psychiatrist	Υ	Υ	N	Υ	N	N	N	Υ	Υ	Υ
<i>Y</i> —	PSW	Υ	N	N	Υ	N	N	Υ	Υ	Υ	N

- X and Y are perfectly agree if every pair of values are the same.
 - Rarely happens in real-world data.

Measure if X and Y agree - Nominal data

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

	Patient	1	2	3	4	5	6	7	8	9	10	
<i>X</i> —	Psychiatrist	Υ	Υ	N	Υ	N	N	N	Υ	Υ	Y	
<i>Y</i> —	PSW	Υ	N	N	Υ	N	N	Υ	Υ	Υ	N	

• % Observed Agreement =
$$\frac{\text{# agreement cases}}{\text{# total cases}} = \frac{7}{10} = 0.7$$

- But, random chance alone gives an agreement of 50%.
 - To be precise, it is an expected agreement due to random chance.
- Cohen's Kappa

Cohen's Kappa

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

Patient	1	2	3	4	5	6	7	8	9	10
Psychiatrist PSW	Y	Y N	N N	Y	N N	N N	N Y	Y Y	Y	Y N

Psychiatric Social Worker (PSW)

$$= \frac{row\ total \times column\ total}{overal\ total}$$

Cohen's Kappa

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

Patient	1	2	3	4	5	6	7	8	9	10
Psychiatrist PSW	Y	Y N	N N	Y	N N	N N	N Y	Y Y	Y	Y N

Psychiatric Social Worker (PSW)

expected value $row\ total \times column\ total$ overal total

Cohen's Kappa

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

Patient	1	2	3	4	5	6	7	8	9	10
Psychiatrist PSW	Y	Y N	N N	Y	N N	N N	N Y	Y	Y Y	Y N

Psychiatric Social Worker (PSW)

		Yes	No	Total
ist	Yes	4 (3)	2 (3)	6
iatı	No	1 (2)	3 (2)	4
Psychiatrist	Total	5	5	10
Δ.				

$$= \frac{row\ total \times column\ total}{overal\ total}$$

Cohen's Kappa

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

Patient	1	2	3	4	5	6	7	8	9	10
Psychiatrist PSW	Y	Y N	N N	Y	N N	N N	N Y	Y	Y Y	Y N

Psychiatric Social Worker (PSW)

		Yes	No	Total
rist	Yes	4 (3)	2 (3)	6
niatı	No	1 (2)	3 (2)	4
Psychiatrist	Total	5	5	10
<u>α</u>				

Since the number of expected agreements (both Yes, or both No) = 3 + 2 = 5

Hence, %(expected agreement) =
$$\frac{5}{10}$$
 = 0.5

 Cohen's Kappa (Chance-corrected proportional agreement statistic)

We have computed this before = 0.7

How do we compute this expected agreement?

Cohen's Kappa
$$(\kappa) = \frac{0.7 - 0.5}{1 - 0.5} = 0.4$$

- Cohen's Kappa
 - After adjusting random chance, the agreement reduces from 70% to 40%.
 - How good is the Cohen's kappa agreement?

Карра	Strength of a	greement
<.20	Poor	
0.21 - 0.40	Fair	
0.41 - 0.60	Moderate	
0.61 - 0.80	Good	\int
0.81 – 1.00	Very good	

[Source: MDSS, p.183]

- Cohen's Kappa
 - When the agreement is completely random, Cohen's Kappa value is zero.

The decision by a psychiatrist and a psychiatric social worker whether or not to section 10 individuals suffering mental ill-health. [source: MDSS, p. 182]

Patient	1	2	3	4	5	6	7	8	9	10	11	12
Psychiatrist	Y	Y	N	N	N	Y	N	Y	N	Y	Y	N
PSW	N	N	N	Y	N	Y	Y	Y	N	N	Y	Y

Psychiatric Social Worker (PSW)

		Yes	No	Total
ist	Yes	3 (3)	3 (3)	6
niatr	No	3 (3)	3 (3)	6
Psychiatrist	Total	6	6	12

$$\frac{\text{\#(agreement cases)}}{\text{\#(total)}} = \frac{6}{12} = 0.5$$

%(expected agreement) =
$$\frac{6}{12}$$
 = 0.5

$$\kappa = \frac{0.5 - 0.5}{1 - 0.5} = 0.0$$

	Level of Measurement		
	Nominal	Ordinal	Interval and Ratio
2 raters	Cohen's Kappa	Cohen's Weighted Kappa	Bland-Altman plots
	Inter Class Correlation (ICC)	ICC	ICC
> 2 raters	Fleiss' Kappa	Kendall's Coefficient of Concordance	
	ICC	ICC	ICC

Not an exhaustive list!

48

Questions?