▮ AI 고급과정(시각지능) 상세 커리큘럼(안) ▮

■ AL 고립적 8(기주기 0 / 8개 기념 클립(记 / ■					
주제	강의명	교육 시간	교육 일수	교육내용	산업특화
딥러닝 심화	CNN과 강화학습	20	5	- CNN 소개와 활용방안 - 인공신경망의 개요 - 딥러닝 프레임워크: Caffe, tensorflow, digits, cudnn - DIGITS Image Classification실습 - 대표적인 CNN 모델들: Lenet, Alexnet, VGGnet, GoogleLenet	
영상처리 딥러닝	컴퓨터 비전 입문	40	10	- Object detection (물체 탐지) - Semantic segmentation(의미론적 분할) - Optical flow&stereo matching - Image captioning(영상 묘사) - Visualquestionanswering(질의 응답) - Super-resolution(영상 복원) - 시각 인지 유망 기술 (GAN) - OpenCV 활용 영상처리	스마트IT 제조테이터 활용 실습
영상처리 딥러닝	제조업 데이터 기반 컴퓨터 비전 활용	40	10	- 3D Vision introduction - 3D reconstruction with structure—from—motion 알고리즘 - Point triangulation 측량 및 추정 알고리즘 - 비선형 최적화 알고리즘 - Ceres—solver 비선형 최적화 라이브러리 - 스테레오 매칭을 통한 조밀도 추정 - Optical flow estimation algorithms - Deep learning—based stereo matching and optical flow estimation algorithms - Stereo matching/optical flow estimation 실습	스마트IT 제조데이터 활용 실습
프로젝트	시각지능 프로젝트	60	15	 컴퓨터 비전 및 인공지능 기반 머신비전을 이용한 제조업 무인검사 시스템 개발 프로젝트 머신비전을 이용한 AI팩토리 솔루션 개발 프로젝트 	스마트IT 제조데이터 활용 실습
합계		160	40		