

蛤爾濱工業大學 (深圳)

Harbin Institute of Technology, Shenzhen

实验报告

课程名称:	直动控制理论A
学生姓名:	<u> </u>
学生学号:	190410102
学生专业:	自立加火类
开课学期:	2021年秋季冷期
报告时间:	2021年12月8日
指导教师:	

哈尔滨工业大学(深圳)

实验3 线性系统的根轨迹分析 —— NI 平台实验报告

- 一、实验目的
- 小根据对象的开环传函、估划根较选图
- 2. 掌握用根轨迹分析系统的:"稳定性.
- 3. 通片实际实验,来验证根轨迹方法。
- 二、实验设备
 - 1. PC 机一台
 - 2. NI ELVIS II-8
 - 3 "Circuits control Board -1"伯动控制原理课程实验套件1)
- 三、实验原理 4. 子戌 6 根

(简述实验原理,按步骤画出系统根轨迹,并根据根轨迹分析系统稳定性,参照实验指导书

2.肝环传函 G(S)= 下 (开环增益为 k=500 k2/R

3. 绘剧根较流

重轴鼓。DIS)=0.553+1.553+5+k

Routh 判据 5° 0.5 1 将k=3, R=166.17k 进入右半平面 k>3 , R<166.67kn.

S° 1.5 K. S., z=±j√z. 田有一对他的类轭复根最长<3,16667kx R26A

4. 分析系统稳定性 物点、d= $\frac{13}{3}$ -1 对应 k= $\frac{13}{9}$, R=2.6MQ. 0均绝域 $\propto k < \frac{13}{9}$, R>2.6MQ. $2 \approx -2 = 6 \approx 10$ ②有-对藓椒 k=3, R=166.67 kQ

四、实验数据与结果分析

1. 判断系统处于不同状态时闭环极点在 s 平面上的位置, 并计算 K 和 R 的取值范围。

系统响应	闭环极点在根轨迹上的位置	К	R
非周期过程	左半突车由	0< k < 3	R> 2.6M
等幅振荡	版车由	k=3	166.67F
系统发散	右半平面	k>3	R<166671
系统衰减振荡	左半平面(水梁车鱼)	g< k<3	16667K <r<2.6< td=""></r<2.6<>

2. 截取系统处于不同状态时的响应曲线,并画出此时闭环极点在 s 平面上的示意图。

实验3 线性系统的根轨迹分析 —— 直流伺服系统平台实验报告

- 一、实验目的
- 1. 等握二阶系统的性的目标同系统闭环根点位置的关系
- 2. 掌握由开环零报点的位置矿能闭环零根点的位置的方法
- 3. 全用 Routh 半1据半1断闭环系统的稳定性。
- 二、实验设备
 - 1.GSMT2014型直流伺服系统控制平台
 - 2. PC. Matlab平台

三、实验原理

根知迹是当根轨迹增益由0—>>>。变似时,闭环特征根在5平面上移动的对果轨迹曲段。和路位验给出了长变似时闭环特征根的变化,还给出了参数对闭环特征根的分布量少向。

闭环系流的稳定性 在于, 根轨监过虚轴进入对平面, 与虚轴交点为临界稳定增益。根据原点根的/数, 可确定系统型别, 进而确定新核、误差系数、

直流伺服电机系统三阶开环传函为
$$G(S)H(S)=\frac{k}{S(T_1S+1)(T_2S+1)}$$
 若 $T_2=0.12$, $T_3=0.052$, $G(S)H(S)=\frac{k}{S(v_112S+1)(0.052S+1)}$

D(S)= S(a12S+1)(a,052S+1)+大二0 列罗劳斯制据

得到流移庭 k 取值范围为 0< K < 29.17 实轴分离点 d=-3.626, 对拉 k=1.662

四、实验数据与结果分析

模型仿真

快坐切具							
К	$C(t_p)$	$C(\infty)$	σ(%)	$t_p(s)$	$t_s(s)$	阻尼类型	极点位置
2	1.002	1000	0.2%	1.713	1.196	欠阳尼	S左华面(作实轴)
5	1,205	1000	20.5%	0.623	0.956	 	5左杆面(非废轴)
15	1.727	1000	72.7%		4.842	加姆尼	(李华面(神堂节)
25	_	Ø	0	_	1	无阳	虚轴上
35	_	00	Ø	_	-	TO PERE	5右半平面

实时控制

1.改变 K 值从图中读值。

К	$C(t_p)$	$C(\infty)$	<i>σ</i> (%)	$t_p(s)$	$t_s(s)$	阻尼类型	极点位置
	x/0 ⁵					14000	ch 244
1	_	2000	-	~	3.205	过阻尼	S使实种
			_			1 .20/2	- LIVITZ (-16)
5	2,390	2000	19.5%	0.639	1.430	欠阻尼	s左半平面(非一类中)
					> 4.00	h 1370	C+ XITTINKETTA
15	2,696	2000	34.8%	0.631	3.480	欠晚	(注 年 面) 排 安 种)
						7 000	المديمة
25	2,522		_	0.431	~	无阻尼	虚轴上
		The second					

2. 寻找无阻尼、临界阻尼时 K 值

阻尼类型	K
无阻尼	25
临界阻尼	1.8

五、思考

- 1、实验中阶跃输入信号的幅值范围应该如何考虑?
- 2、高阶系统的稳定性与哪些参数有关?
- 1. 应考虑电机所能被触发的最小信号增值,以及过分使信唤比降低、输收清楚; 过去点使给能的感谢性的非判性因素增长,而且努觉到流需考虑电机的最大 转速,需信即配等情况的超调部分一個示范围,故取最大转速了一个多为宜
- 2. 高阶系统的稳定性与开环地道、开环定极点的布, 系统的阶次,各阶参数 都有关系。高阶系统的稳定性可用推验证法和Routh 判据分析判断。