

DART Tutorial Section 9: More on Dealing with Error: Inflation

©UCAR 2014

Some Error Sources in Ensemble Filters

Dealing with Ensemble Filter Errors

Fix 1, 2, 3 independently, HARD but ongoing.

Often, ensemble filters...

1-4: Variance inflation, Increase prior uncertainty to give obs more impact.

5. 'Localization': only let obs. impact a set of 'nearby' state variables.

Often smoothly decrease impact to 0 as function of distance.

1. History of observations and physical system => 'true' distribution.

- 1. History of observations and physical system => 'true' distribution.
- 2. Sampling error, some model errors lead to insufficient prior variance.
- 3. Can lead to 'filter divergence': prior is too confident, obs. Ignored.

- 1. History of observations and physical system => 'true' distribution.
- 2. Sampling error, some model errors lead to insufficient prior variance.
- 3. Can lead to 'filter divergence': prior is too confident, obs. Ignored.

Naïve solution is variance inflation: just increase spread of prior. For ensemble member i, $inflate(x_i) = \sqrt{\lambda}(x_i - \overline{x}) + \overline{x}$

1. History of observations and physical system => 'true' distribution.

- 1. History of observations and physical system => 'true' distribution.
- 2. Most model errors also lead to erroneous shift in entire distribution.
- 3. Again, prior can be viewed as being TOO CERTAIN.

- 1. History of observations and physical system => 'true' distribution.
- 2. Most model errors also lead to erroneous shift in entire distribution.
- 3. Again, prior can be viewed as being TOO CERTAIN.

Inflating can ameliorate this.

Obviously, if we knew E(error), we'd correct for it directly.

Physical Space Variance Inflation

Inflate all state variables by same amount before assimilation.

Capabilities:

- 1. Can be effective for a variety of models.
- 2. Can maintain linear balances.
- Stays on local flat manifolds.
- 4. Simple and cheap.

Liabilities:

- 1. State variables not constrained by observations can 'blow up'. For instance unobserved regions near the top of AGCMs.
- 2. Magnitude of λ normally selected by trial and error.

Observation outside prior: danger of filter divergence.

After inflating, observation is in prior cloud: filter divergence avoided.

Prior distribution is significantly 'curved'.

Inflated prior outside attractor. Posterior will also be off attractor.

Basic control of inflation in DART is in filter_nml

Before Assimilation

```
inf flavor
                            = 0,
inf_initial_from_restart
                            = .false.,
inf_sd_initial_from_restart = .false.,
inf deterministic
                            = .true.,
inf initial
                            = 1.0,
inf sd initial
                            = 0.0,
inf damping
                            = 1.0,
inf_lower_bound
                            = 1.0,
inf upper bound
                            = 1000000.0,
inf sd lower bound
                            = 0.0,
```

After Assimilation

```
0,
           Flavor:
                       1 => Deprecated
.false.,
                      2,3 => physical space
.false.,
                      0 \Rightarrow NONE
.true.,
1.0,
0.0,
1.0,
1.0,
1000000.0,
                      Inflation
0.0,
                      Value
```

Initially, we'll change *inf_flavor* and *inf_initial* in first column.

Set *inf_flavor=3*, state space inflation, in the first column.

Try some values and see what happens to L96 assimilation. Set *inf_initial* to values like 1.05, 1.08, 1.10 in the first column.

Make sure that *cutoff=1000000* and *ens_size=20* (These were settings that diverged without inflation) Also that spread restoration is set to *.false.*

Variance inflation in observation space

1. For observed variable, have estimate of prior-observed inconsistency.

Variance inflation in observation space

- 1. For observed variable, have estimate of prior-observed inconsistency.
- 2. Expected (prior_mean observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$ Assumes that prior and observation are supposed to be unbiased. Is it model error or random chance?

Variance inflation in observation space

- 1. For observed variable, have estimate of prior-observed inconsistency.
- 2. Expected (prior_mean observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$
- 3. Inflating increases expected separation. Increases 'apparent' consistency between prior and observation.

Variance inflation in observation space: Lorenz 96

Variance inflation in observation space not currently supported.

Try some values and see what happens to L96 assimilation. Set *inf_flavor=1*, observation space inflation in first column.

Try some values and see what happens to L96 assimilation. Set *inf_initial* to values like 1.05, 1.08, 1.10 in first column.

Make sure that *cutoff=10000000* and *ens_size=20*. (These were settings that diverged without inflation)

DART Tutorial Index to Sections

- 1. Filtering For a One Variable System
- 2. The DART Directory Tree
- 3. DART Runtime Control and Documentation
- 4. How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.
- 5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
- 6. Other Updates for An Observed Variable
- 7. Some Additional Low-Order Models
- 8. Dealing with Sampling Error
- 9. More on Dealing with Error; Inflation
- 10. Regression and Nonlinear Effects
- 11. Creating DART Executables
- 12. Adaptive Inflation
- 13. Hierarchical Group Filters and Localization
- 14. Quality control
- 15. DART Experiments: Control and Design
- 16. Diagnostic Output
- 17. Creating Observation Sequences
- 18. Lost in Phase Space: The Challenge of Not Knowing the Truth
- 19. DART-Compliant Models and Making Models Compliant
- 20. Model Parameter Estimation
- 21. Observation Types and Observing System Design
- 22. Parallel Algorithm Implementation
- 23. Location module design (not available)
- 24. Fixed lag smoother (not available)