# Movie Recommendation System

•••

14BIT029- Kishan Mistri Guided by: Prof. Sapan Mankad

### Flow of presentation

- Problem statement
- Solutions
- Implementation details
  - Technological overview
  - o Problem's solution code snippets
- Timeline
- Previous milestones

# **Project objective:**

Estimate a 'utility function' that 'automatically predicts' efficiently how user will 'like' an item(i.e Movie in this context)

#### Based on:

- Past behavior
- Item similarity
- Context
- Many more...

## **Solutions**

### Content based Filtering

Filter based on features of Item or User to get relatable recommendations

### Collaborative Filtering

Recommend based on similarities between users or items



## Probabilistic Approach

This type of models yields a single solution describing the outcome of problem from appropriate inputs given.



# <u>Implementation</u>

# Django web framework

#### Positives:

- Swift Deployment
- Admin Panel
- Backend handling support
- Lightning fast
- Convenient Scalable

### Negatives:

• Real-time web apps

# **PostgreSQL**

#### **Positives:**

- Open Source
- Production type database handling
- GUI based design tool is also available
- Backend hashing
- Impressive database specifications\*

### Negatives:

• Learning curve

# Datasets specification

#### 1: MovieLens:

- → It is a data set that provides 1,00,00,054 user ratings on movies.
- → 95,580 tags applied to 10,681 movies by 71,567 users.
- → Users of MovieLens were selected randomly.
- → All users rated at least 20 movies.
- → Each user represented by a unique id.

#### 2. Netflix:

- → 4,80,189 users
- → 17,770 movies
- → 100 M+ ratings

# Code-Snippets - 1

SVD: MovieLens dataset had sufficient amount of rating for each movie.

- GridSearch
- Holdout Cross-Validation
- fit
- RMSE

```
In [28]: print('Grid Search...')
    ...: param grid = {'n epochs': [5, 10], 'lr all': [0.002, 0.005]}
    ...: grid search = GridSearchCV(SVD, param grid, measures=['rmse'], cv=3)
    ...: grid search.fit(data)
Grid Search...
In [29]: algo = grid search.best estimator['rmse']
In [30]: trainset = data.build full trainset()
    ...: algo.fit(trainset)
Out[30]: <surprise.prediction algorithms.matrix factorization.SVD at 0x2ac2e869320>
In [31]: predictions = algo.test(trainset.build testset())
    print('Biased accuracy on A,', end=' ')
    ...: accuracy.rmse(predictions)
Biased accuracy on A, RMSE: 0.8355
Out[31]: 0.83547819579582971
In [32]: testset = data.construct testset(B raw ratings) # testset is now the set B
    ...: predictions = algo.test(testset)
    ...: print('Unbiased accuracy on B,', end=' ')
    ...: accuracy.rmse(predictions)
Unbiased accuracy on B, RMSE: 0.9546
Out[32]: 0.95455967117350726
```

# Code-Snippets - 2

### SVDpp:

- Difference between SVD& SVD++ (SVDpp)
- Surprise library exploration

```
In [7]: print('Grid Search...')
   param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005]}
   ...: grid search = GridSearchCV(SVDpp, param grid, measures=['rmse'], cv=3)
Grid Search...
In [8]: grid search.fit(data)
In [9]: algo = grid search.best estimator['rmse']
In [10]: trainset = data.build full trainset()
    ...: algo.fit(trainset)
Out[10]: <surprise.prediction algorithms.matrix factorization.SVDpp at 0x1c44ca884e0>
In [11]: predictions = algo.test(trainset.build testset())
    ...: print('Biased accuracy on A,', end=' ')
    ...: accuracy.rmse(predictions)
Biased accuracy on A, RMSE: 0.8900
Out[11]: 0.8899890939119427
In [12]: testset = data.construct testset(B raw ratings) # testset is now the set B
  ...: predictions = algo.test(testset)
    ...: print('Unbiased accuracy on B,', end=' ')
    ...: accuracy.rmse(predictions)
Unbiased accuracy on B, RMSE: 0.9356
Out[12]: 0.93557971041504473
```



# Own Collaborative Model Code- Snippet - 3





Pearson Correlation Similarity

## Code- Snippet - 4

43.9 s ± 7.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

```
In [15]: def get recs(movie name,m,num):
             import numpy as np
    . . . .
             reviews=[]
             for title in m.columns:
                 if title == movie name:
                      continue
                 cor=pearson(m[movie name],m[title])
                  if np.isnan(cor):
                      continue
                 else:
                      reviews.append((title,cor))
             reviews.sort(key=lambda tup:tup[1],reverse= True)
    . . . .
             return reviews[:num]
    . . . .
```

```
In [17]: print(pearson(m['Money Train (1995)'],m['Taxi Driver (1976)']))
-0.0566821657822

In [18]: print( get_recs('Taxi Driver (1976)' ,m, 10))
__main__:4: RuntimeWarning: invalid value encountered in double_scalars
[('Show Me Love (Fucking Amål) (1998)', 0.37986794529603091), ('We Bought a Zoo (2011)', 0.35644896714848273), ('Children of Paradise (Les enfants du paradis) (1945)',
0.34401050606613581), ('Everything Is Illuminated (2005)', 0.33489136001624376), ('Full Metal Jacket (1987)', 0.33305467566773672), ('Control (Kontroll) (2003)',
0.32799160772726799), ('24: Redemption (2008)', 0.32341688427604121), ('Saw V (2008)', 0.29977949808031873), ('Keeping Mum (2005)', 0.29977949808031851), ('Moneyball (2011)',
0.28722215417774705)]

In [19]: %timeit get_recs('Taxi Driver (1976)' ,m, 10)
main_:4: RuntimeWarning: invalid value encountered in double scalars
```

## Observation of limitation

```
In [6]: print(get_recs(15 ,mat, 10))
[(49, 0.10965594579868189), (10, 0.07863596934848649), (2, 0.066052768778205151), (27, 0.063176682771133127), (31, 0.060732948051034172), (50, 0.059022527619310934), (1, 0.050947689174661873), (21, 0.048280304916188177), (29, 0.046333659296885404), (37, 0.045864393456715419)]

In [7]: df_m1=pd.read_sql_query('Select * from rating where movieid <= 100;',conn)

In [8]: mat=df_m1.pivot_table(index=['custid'],columns=['movieid'],values='rating')

In [9]: print(get_recs(15 ,mat, 10))
[(94, 0.12582686399534174), (49, 0.10965594579868189), (62, 0.093562601214470117), (10, 0.07863596934848649), (61, 0.073127773471731536), (2, 0.066052768778205151), (27, 0.063176682771133127), (87, 0.062872052998006897), (31, 0.060732948051034172), (50, 0.059022527619310934)]</pre>
```

- Computationally inefficient (slow)
- More logical mapping for recommendation (Item-Item CF)
- Precomputation is slow
- But Prediction is lot faster than most of them [O(k)]

## **Timeline**

### Review: 1



## Review: 2



# **Previous Milestones - 1**

Web structure

&

Flow diagram



# Previous Milestones - 2



**Home Page framework** 

### User specific login/SignUp module



## References

- 1. Knowledge based system 46 (2013) 109-132
- 2. Comparison of collaborative filtering algorithms: Limitations of Current techniques and proposals for scalable, high performance recommender systems
- 3. Evaluating recommender systems –Guy shani & Asela Gunawardana
- 4. MovieLens dataset: <a href="https://grouplens.org/datasets/movielens/">https://grouplens.org/datasets/movielens/</a>
- 5. Netflix dataset: <a href="https://www.kaggle.com/netflix-inc/netflix-prize-data/data">https://www.kaggle.com/netflix-inc/netflix-prize-data/data</a>
- 6. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model- Yehuda Koren
- 7. Tendencies-based collaborative filtering algorithm Dilip Raj Baral
- 8. <a href="https://www.guora.com/Whats-the-difference-between-SVD-and-SVD++">https://www.guora.com/Whats-the-difference-between-SVD-and-SVD++</a>
- 9. Basic approach of CF: <a href="https://github.com/fastai/fastai/blob/master/courses/dl1/lesson5-movielens.ipynb">https://github.com/fastai/fastai/blob/master/courses/dl1/lesson5-movielens.ipynb</a>
- 10. Pandas connection with PostgreSQL: <a href="https://www.youtube.com/watch?v=qC-0CaRzR48">https://www.youtube.com/watch?v=qC-0CaRzR48</a>
- 11. Definition of recommendation system:

  <a href="https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu">https://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu</a>
  <a href="mailto:?qid=d81546be-e78c-4180-9437-cb5186197cd5&v=&b=&from\_search=8">qid=d81546be-e78c-4180-9437-cb5186197cd5&v=&b=&from\_search=8</a>

# Extra Slides

#### **Netflix Scale**





- > 48M members
- > 40 countries
- > 1000 device types
- > 5B hours in Q3 2013
- Plays: > 50M/day
- Searches: > 3M/day
- Ratings: > 5M/day
- Log 100B events/day
- 34.2% of peak US downstream traffic

# Extra slide - 2

- For algorithm detailed explanation visit extra slides of review 1
- 17770 x 4,40,189 = 8,532,958,530 Given rating = 0,100,000,000
- CF final matrix = 17770 x 17770 = 0,315,772,900