SEB task for AML Quantitative Analyst Warsaw, Poland

Chukwuma Franklin, Ofoegbu

6 March 2022

Contents

1	Data Manipulation Task				
	1.1	Importing the Datasets	2		
	1.2	Cleaning the Datasets	2		
		Merging the Datasets			
	1.4	Additional Data cleaning - Date and Time; Renaming Categorical Variables	3		
		1.4.1 Date and Time	3		
		1.4.2 Renaming Categorical Variables	4		
	1.5	Results - summary tables	5		
2	Dat	ta Visualisation Task	7		
3	\mathbf{Add}	ditional Analysis	11		

Chapter 1

Data Manipulation Task

1.1 Importing the Datasets

The Datasets were be imported, into the software to be used. In this task, R was used. The necessary libraries were also called, after they had been installed. The second sheet is chosen when importing the additional_info.xlsx dataset.

```
# loading the required libraries
library("readxl")
library(dplyr)
library(ggplot2)
library(VIM)
library(psych)
library(lubridate)
library(ggplot2)
library(ggplot2)
library(plyr)
```

loading the libraries

```
# importing the data sets
alerts <- read_excel("alerts.xlsx")
additional_info <- read_excel("additional_info.xlsx", sheet = 2)
View(alerts)
View(additional_info)</pre>
```

viewing and importing the data

1.2 Cleaning the Datasets

The first column of the alerts dataset was dropped, since it is nameless. Then for the additional_info dataset, the column names were renamed properly.

```
"``{r}
# Data Cleaning and Manipulation for alerts
alerts1 <- alerts[,-1]</pre>
```

dropping the first column

The columns dataset additional_info is renamed, due to the spacing in the name and also to match alerts

```
""{r}
#renaming columns in additional_info
colnames(additional_info) <- c('IndustryCode','RiskScore','Segment')</pre>
```

Renaming the columns in additional_info data

1.3 Merging the Datasets

The datasets alerts and additional_info are joined (left join). They are joined by the IndustryCode.

```
"``{r}
# merging alerts1 with additional_info on Industry Code
alerts2 <- left_join(alerts1, additional_info) %>% #merge the preliminary data frame with selected regions
select(Alertstate, Aleftrype, CaseClosed, CaseOpen, CaseReported, CaseState, CusRiskCategory, DateClosed, DateCreated, IndustryCode, intID, PE
RiskScore, Segment)
alerts2
```

Datasets alerts and additional_info are joined by IndustryCode

1.4 Additional Data cleaning - Date and Time; Renaming Categorical Variables

1.4.1 Date and Time

The dates and time columns namely: CaseClosed, CaseOpen, CaseReported, DateClosed, DateCreated will be split into separate time and date columns; and the original columns will be dropped.

```
# Splitting the CaseClosed, CaseOpen, DateClosed, DateCreated, CaseR
alerts3 <- alerts2
#CaseClosed
alerts3$dCaseClosed <- as.Date(alerts3$CaseClosed)
alerts3$tCaseClosed <- hms(substr(alerts3$CaseClosed, 12, 19))</pre>
#CaseOpen
alerts3$dCaseOpen <- as.Date(alerts3$CaseOpen)
alerts3$tCaseOpen <- hms(substr(alerts3$CaseOpen, 12, 19))
#DateClosed
alerts3$dDateClosed <- ymd(substr(alerts3$DateClosed, 1,10))</pre>
alerts3$tDateClosed <- hms(substr(alerts3$DateClosed, 12, 19))
#DateCreated
alerts3$dDateCreated <- as.Date(alerts3$DateCreated)
alerts3$tDateCreated <- hms(substr(alerts3$DateCreated, 12, 19))
#CaseReported
alerts3$dCaseReported <- ymd(substr(alerts3$CaseReported, 1,10))
alerts3$tCaseReported <- hms(substr(alerts3$CaseReported, 12, 19))
```

new dates and time

columns created

The new columns created for dates will be dCaseClosed, dCaseOpen, dCaseReported, dDateClosed, dDateCreated; while the new columns for the time will be tCaseClosed, tCaseOpen, tCaseReported, tDateClosed, tDateCreated.

These columns are now dropped: CaseClosed, CaseOpen, CaseReported, DateClosed, DateCreated.

1.4.2 Renaming Categorical Variables

The Categorical Variables are now renamed. They are renamed as follows: CusRiskCategory "Lower Risk" = low, "Medium Risk" = medium, "Higher Risk" = high , "Not Specified" = ns, "NULL" = null

AlertState "Data Created" = created , "Closed - Not Suspicious" = closed_ns , "Closed - Not Investigated" = closed_ni , "Closed - Processed externally" = closed_pe, "Closed - Not Investigated Data Quality" = closed_dq , "Level 2 escalation" = esc_l2 , "Unassigned" = unasgn, "Under Investigation" = u_inv , "Assigned to Investigate" = a_inv

AlertType "New Destinations with high turnover" = new_dest, "Existing Accounts" = exg_a,

"Unusual behaviour" = unu_b , "Check Countries List" = ccl , "Awakening Account" = awak_a , "Credit Cards" = cc, "repayement of funds" = rpyt_f , "Cash" = cash, "Listed High Risk Banks" = hr_banks, "Close Monitoring" = close_m, "Recurring In-Out scenario" = recur, "International Transfers" = intl_x , "Unusual Cash Behaviour" = uncash_b, "PEP Monitoring" = pep_m

Segment high risk = high, "staff intensive small company" = sisc

CaseState "Closed" = closed, "Report Confirmed" = reported, "NULL" = null

PEP "N" = no, "Y" = yes, "NULL" = NA

1.5 Results - summary tables

The results gotten from the tables will be shown be below:

_							
AlertState	AlertType	CaseState	CusRiskCategory	IndustryCode	intID	PEP	RiskScore
Length:10177	Length:10177	Length:10177	Length:10177	Length:10177		Length:10177	Min. : 20.0
Class :character	Class :character	Class :character	Class :character	Class :character	1st Qu.: 2784	Class :character	1st Qu.: 20.0
Mode :character	Mode :character	Mode :character	Mode :character	Mode :character	Median : 14320	Mode :character	Median :100.0
					Mean : 31246		Mean : 77.6
					3rd Qu.: 19287		3rd Qu.:100.0
					Max. :203767		Max. :100.0
					110X1 1203707		NA's :10097
5	-	dee1d	***************************************		de	***********	NA 3 .1009/
Segment	Туре	dCaseClosed	tCaseClosed	_	dCaseOpen	tCaseOpen_	
Length:10177	Length:10177	Min. :2010-12-07			Min. :2010-12-0		
Class :character	Class :character	1st Qu.:2013-12-04	1st Qu.:10H 0M :	595	1st Qu.:2014-05-1		
Mode :character	Mode :character	Median :2020-01-27	' Median :12H 47M	15	Median :2017-10-2	0 Median :12H 20	OM 1.55
		Mean :2017-05-27	Mean :12H 25M	26.62234042552885	Mean :2017-05-1	3 Mean :12H 3	8M 55.714843755
		3rd Ou.:2021-03-16	3rd Ou.:14H 45M	565	3rd Qu.:2020-10-2	3 3rd Ou.:15H 2	3M 53.5S
		Max. :2021-09-02	•		Max. :2021-09-0		
		NA's :9989	NA's :9989	433	NA's :9921	NA's :9921	Jii 45
dp.e.sld	**************************************	NA 3 .9909		**************			
dDateClosed	tDateClosed		dDateCreated	tDateCreated o	•	tCaseReported	_
Min. :2008-04-29			Min. :2008-04-17		мin. :2017-10-20	Min. :7H 40M 3	
1st Qu.:2015-03-02	1st Qu.:8H 59M	355	1st Qu.:2015-01-01	l 1st Qu.:05 1	1st Qu.:2017-12-12	1st Qu.:11H 35M	355
Median :2017-05-08	Median :11H 2M 4	175	Median :2017-02-04	4 Median:OS N	Median :2018-09-19	Median :14H 46M	255
Mean :2016-12-28	Mean :11H 21M	26.71631706332855	Mean :2016-12-02	2 Mean :05 N	Mean :2019-01-02	Mean :14H 38M	36.191176470587
3rd Qu.:2019-10-18	3rd Qu.:13H 44M	54.55	3rd Qu.:2019-10-23	3 3rd Qu.:05	3rd Qu.:2019-07-24	3rd Qu.:16H 39M	33.755
Max. :2021-10-13			Max. :2021-10-1		Max. :2021-09-06	Max. :22H 17M :	
NA'S :261	NA's :261	133	2021 10 1.		NA's :10109	NA's :10109	
NA 5 .201	NA 5 :201			P	NA 2 .IUIU9	NA 5 .10109	

new dates and time columns created

CusRiskCategory <chr></chr>	freq <int></int>
medium	6986
low	1326
high	1183
ns	628
NA	54

5 rows

AlertState <chr></chr>	freq <int></int>
closed_ns	9078
closed_ni	509
closed_pe	302
created	260
unasgn	12
closed_dq	6
u_inv	6
a_inv	3
esc_l2	1

9 rows

PEP <chr></chr>	freq <int></int>
NA	7275
no	2784
yes	118

3 rows

Type <chr></chr>	freq <int></int>
lcfi	6337
pb	3840

2 rows

Segment <chr></chr>	freq <int></int>
NA	10097
high	58
sisc	22

3 rows

Chapter 2

Data Visualisation Task

PEP are not involved in cash, unusual cash behaviour, credit cards and repayment funds

Chapter 3

Additional Analysis

"All models are wrong, some models are useful".

The analysis that should be included in the qualitative validation part of a Transaction Monitoring Models are:

- Various Scenario Testing: Testing of various scenarios like HRGs, Structuring, MIs etc. should be part of the qualitative validation
- Statistiscal Testing: This can help ensure that the model is properly validated by detecting outliers and using appropriate models.
- Model Should be compared with Standards/Benchmarks/effective models to see its performance.
- Using the opinion of experts/regulators in the AML field
- Outcome analysis and back-testing
- Applying the historical data in the validation analysis.

The areas of Transaction Monitoring models that are essential to analyse are as follows:

- Performance of the Model: ROC, Recall, F1 Score, Precisioon, Accuracy these could be effective
- Quality of the Data: one must enusre that the data used in the TM models must be of the highest quality and missing/inconsistent data should be dealt with accurately.
- Models should be chosen based on its performance against different metrics .
- Models should strictly adhere to Regulations/Regulatory compliance
- Periodic Validation/Testing
- Trend Review and Defect Analysis: Data is reviewed to identify potential patterns of behaviour/trends
- Hyperparameter Tuning: tuning the hyperparameters of a models can help optimise its performance against benchmarks/starndards.