intel®

DATASHEE1 ADDENDUM

82371AB (PIIX4) PCI ISA IDE Xcelerator Timing Specifications

September 1997

Order Number: 290548-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The 82371AB (PIIX4) may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 5937 Denver, CO 80217-4725

or call 1-800-548-4725

82371AB (PIIX4) PCI ISA IDE XCELERATOR FEATURES

- Supported Kits for both Pentium[®] and Pentium[®] Pro Microprocessors
 - 82430TX ISA Kit
 - 82440LX ISA/DP Kit
- Multifunction PCI to ISA Bridge
 - Supports PCI at 30 MHz and 33 MHz
 - Supports PCI Rev 2.1 Specification
 - Supports Full ISA or Extended I/O (EIO) Bus
 - Supports full Positive Decode or Subtractive Decode of PCI
 - Supports ISA/EIO at 1/4 of PCI Frequency
- Supports Both Mobile and Desktop Deep Green Environments
 - 3.3V Operation With 5V Tolerant Buffers
 - Ultra-Low Power for Mobile Environments
 - Power-On Suspend and Soft-OFF for Desktop Environment
 - All Registers Readable/Restorable for Proper Resume From 0V Suspend
- Power Management Logic
 - Global and Local Device Management
 - Suspend/Resume Logic
 - Supports Thermal Alarm
 - Support for External Microcontroller
 - Full Support for Advanced Configuration and Power Interface (ACPI) Specification and OS Directed Power Management
- Integrated IDE Controller
 - Independent Timing of Up to 4 Drives
 - PIO Mode 4 Transfers Up to 14 Mbytes/sec

- Supports "Ultra DMA/33"
 Synchronous DMA Mode Transfers
 Up to 33 Mbytes/sec
- Integrated 8 x 32-Bit Buffer for IDE PCI Burst Transfers
- Supports Glue-Less "Swap-Bay"
 Option With Full Electrical Isolation
- Enhanced DMA Controller
 - Two 82C37 DMA Controllers
 - Supports PCI DMA With 3 PC/PCI Channels and Distributed DMA Protocols (Simultaneously)
 - Fast Type-F DMA for Reduced PCI Bus Usage
- Interrupt Controller Based on Two 82C59
 - 15 interrupt support
 - Independently Programmable for Edge/Level Sensitivity
 - Supports Optional I/O APIC
 - Serial Interrupt Input
- Timers based on 82C54
 - System Timer, Refresh Request,
 Speaker Tone Output
- USB
 - Two USB 1.0 Ports for Serial Transfers at 12 or 1.5 Mbit/sec
 - Supports Legacy Keyboard and Mouse Software With USB-Based Keyboard and Mouse
 - Supports UHCI Design Guide Revision 1.1 Interface
- SMBus
 - Host interface Allows CPU to Communicate via SMBus
 - Slave Interface Allows External SMBus Master to Control Resume Events
- Real-Time Clock
 - 256-Byte Battery-Back CMOS SRAM
 - Includes Date Alarm
 - Two 8-Byte Lockout Ranges

■ Microsoft Windows* 95 Compliant

■ 324 mBGA Package

REFERENCE INFORMATION: The information in this document is provided as a supplement to the standard package datasheets published for the Intel 82371AB (PIIX4) PCI ISA IDE Xcelerator. Please refer to the standard package datasheet (order number 290562 for the PIIX4) for product information and specifications not found in this document.

NOTICE: This document contains information on products in the sampling and initial production phases of development. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest datasheet before finalizing a design.

The 82371AB (PIIX4) may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

CONTENTS

	PAGE
1.0. INTRODUCTION	5
2.0. ELECTRICAL CHARACTERISTICS	5
2.1. Absolute Maximum Ratings	5
2.2. D.C. Characteristics	6
2.3. A.C. Characteristics	10
2.4. Clock, Reset, ISA Bus, X-Bus and Host Timing Diagrams	29
2.5. PCI Timing Diagrams	48
2.6. IDE Timing Diagrams	51
2.7. USB Timing Diagrams	53
2.8. IOAPIC Timing Diagrams	54
2.9. SMBus Timing Diagrams	55
2.10. Ultra DMA/33 Timing Diagrams	56
FIGURES	
Figure 1. Test Load	
Figure 2. Clock Timing	29
Figure 3. Reset Inactive Timing	30
Figure 4. Reset Active Pulse Width	30
Figure 5. SMI#, EXTSMI# and STPCLK# Timing	31
Figure 6. Input to PCICLK Setup/Hold Times	31
Figure 7. HCLKIN to Output Valid Delay	32
Figure 8. 8-Bit ISA Memory Slave Timing (PIIX4 as Master)	32
Figure 9. 16-Bit ISA Memory Slave Timing (PIIX4 as Master)	33
Figure 10. 8-Bit ISA I/O Slave Timing (PIIX4 as Master)	34
Figure 11. 16-Bit I/O Slave Timing (PIIX4 as Master)	35
Figure 12. ISA Master Accessing PCI Memory Timing	36
Figure 13. ISA Master Accessing PIIX4 Register Timing	37
Figure 14. NMI Timing	37
Figure 15. Interrupt Timing	38
Figure 16. ISA Master Miscellaneous Timing	38
Figure 17. ISA Master Data Swap Timing	39
Figure 18. DMA Compatible Timing (Memory Read)	40
Figure 19. DMA Compatible Timing (Memory Write)	41
Figure 20. DMA Compatible Timing (Data Swap)	42
Figure 21. DMA Type F Timing	43
Figure 22. PIIX4-Initiated Refresh Timing	44
Figure 23. ISA Master-Initiated Refresh Timing	45
Figure 24. PIIX4 and ISA Master Access to X-Bus Timing	46

Figure 25. Coprocessor Error and Mouse Support Timing	47
Figure 26. Real Time Clock Timing (RTCALE Generation)	47
Figure 27. Speaker Timing	48
Figure 28. Propagation Delay	48
Figure 29. Valid Delay From Rising Clock Edge	49
Figure 30. Setup and Hold Times	49
Figure 31. Float Delay	50
Figure 32. Pulse Width	50
Figure 33. Output Enable Delay	50
Figure 34. IDE PIO Mode	51
Figure 35. IDE Multiword DMA Mode	52
Figure 36. Data Signal Rise and Fall Time	53
Figure 37. Data Jitter	53
Figure 38. EOP Width Timing	54
Figure 39. PIIX4 to IOAPIC Timing	54
Figure 40. SMBus Timing	55
Figure 41. SMBus Timeout Timing	55
Figure 42. Ultra DMA/33 Drive Initiating a DMA Burst for a Read Command	56
Figure 43. Ultra DMA/33 Sustained Synchronous DMA Burst	57
Figure 44. Ultra DMA/33 Sustained Synchronous DMA Burst	
Figure 45. Ultra DMA/33 Host Terminating a DMA Burst During a Write Command	58
TABLES	_
Table 1. Package Thermal Resistance	
Table 2. DC Characteristics	
Table 3. DC Characteristic Signal Association	
Table 4. DC Current Characteristics	
Table 5. Clock/Reset Timings	
Table 6. ISA Bus and X-Bus Timings	
Table 7. PCI Interface Timing	
Table 8. PCI Bus IDE Timing	
Table 9. Universal Serial Bus Timing	
Table 10. IOAPIC Bus Timing	
Table 11. SMBUS Timing	
Table 12. Serial IRQ Timing	
Table 13. Ultra DMA/33 Timing	
Table 14. A.C. Test Loads	29

int_{el®}

82371AB (PIIX4) PCI ISA IDE XCELERATOR TIMING SPECIFICATIONS

1.0. INTRODUCTION

This document contains the Electrical and the Thermal Specification (ETS) for the 82371AB (PIIX4). PIIX4 is a multi-function PCI device implementing a PCI-to-ISA bridge function, a PCI IDE function, a Universal Serial Bus Host/Hub function, and a Power Management function.

The contents of this document are based on simulation and parametric data. This information may be modified as more data is available.

REFERENCES

The ETS assumes that the reader is familiar with the following documents:

- 82371AB PIIX4 External Design Specification
- Universal Serial Bus Specification
- Universal Host Controller Interface (UHCI) Design Guide
- System Management Bus Specification
- Serialized IRQ Support for PCI Systems Specification
- Distributed DMA Support for PCI Systems Specification

2.0. ELECTRICAL CHARACTERISTICS

2.1. Absolute Maximum Ratings

Case Temperature under Bias	0°C to +85°C
Storage Temperature	55°C to +150°C
Voltage on Any Pin with Respect to Ground	
3.3V Supply Voltage with Respect to Vss	0.3 to +4.6V
5.0V Supply Voltage with Respect to Vss (VREF)	0.3 to +5.5V
Maximum Power Dissipation	1.0W

WARNING:

Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operating beyond the "Operating Conditions" is not recommended and extended exposure beyond "Operating Conditions" may affect reliability.

The 82371AB PIIX4 (BGA) is designed for operation at case temperatures between 0°C and 85°C. The thermal resistances of the package are given in Table 1.

Table 1. Package Thermal Resistance

Parameter	Air Flow Meters/Second (Linear Feet per Minute)					
	0 (0)	1.0 (196.9)				
Theta _{ja} (ºC/Watt)	29	24.5				

Theta _{jc} (^O C/Watt)	9.0

2.2. D.C. Characteristics

Table 2. DC Characteristics

Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)							
Symbol	Parameter	Min	Max	Unit	Notes		
Vcc(RTC)	Battery Voltage	2.0	3.6	V			
Vcc(SUS)	Standby Voltage	3.0	3.6	V			
VIL1	Input Low Voltage	-0.5	0.3 Vcc	V	1		
VIH1	Input High Voltage	0.5 Vcc	Vcc + 0.5	V	1		
VIL2	Input Low Voltage	-0.3	0.6	V	1		
VIH2	Input High Voltage	1.4	Vcc + 0.3	V	1		
VIL3	Input Low Voltage	-0.5	0.8	V	1		
VIH3	Input High Voltage	2.0	Vcc5 + 0.5	V	1		
VOL1	Output Low Voltage		0.4	V	1		
VOH1	Output High Voltage	Vcc - 0.5		V	1		
VOL2	Output Low Voltage		0.3	V	1, 2		
VOH2	Output High Voltage	2.8	3.6	V	1, 2		
VOL3	Output Low Voltage		0.5	V	1		
Vонз	Output High Voltage	Vcc - 0.5		V	1		
VOL4	Output Low Voltage		0.45	V	1		
VOH4	Output High Voltage	Vcc - 0.5		V	1		
VDI	Differential Input Sensitivity	0.2		V	(USBPx+, USBPx-)		
Vсм	Differential Common Mode Range	0.8	2.5	V	Includes VDI		
VSE	Single Ended Rcvr Threshold	0.8	2.0	V			
IOL1	Output Low Current		4	mA	1, @ VOL1		
Іон1	Output High Current	-1		mA	1, @ VOH1		
IOL2	Output Low Current		10	mA	1, @ VOL4		
ЮН2	Output High Current	-3		mA	1, @ VOH4		
IOL3	Output Low Current		3	mA	1, @ VOL1		
Іонз	Output High Current	-2		mA	1, @ VOH1		
IOL4	Output Low Current		6	mA	1, @ VOL1		
Іон4	Output High Current	-2		mA	1, @ VOH1		
IOL5	Output Low Current		2	mA	1, @ VOL2		
Іон5	Output High Current	-0.25		mA	1, @ VOH2		

Table 2. DC Characteristics

Functional	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)					
Symbol	Parameter	Min	Max	Unit	Notes	
IOL6	Output Low Current		6	mA	1, @ VOL1	
ІОН6	Output High Current	-2		mA	1, @ VOH1	
IOL7	Output Low Current		7	mA	1, @ VOL1	
ІОН7	Output High Current	-2		mA	1, @ VOH1	
IOL8	Output Low Current		11	mA	1, @ VOL3	
ІОН8	Output High Current	-2		mA	1, @ VOH3	
ILI1	Input Leakage Current		±1	μΑ		
ILI2	Hi-Z State Data Line Leakage	-10	+10	μΑ	(0V< VIN< 3.3V)	
CIN	Input Capacitance		12	pF	FC=1 MHz	
Соит	Output Capacitance		12	pF	FC=1 MHz	
CI/O	I/O Capacitance		12	pF	FC=1 MHz	
CL	Crystal Load Capacitance	7.5	15	pF		

- 1. Refer to Table 3. for the signals associated with this specification.
- 2. VOL2 assumes RL of 1.5 kohms to 3.6V and VOH2 assumes RL of 15 kohms to GND.

Table 3. DC Characteristic Signal Association

Symbol	Associated Signals
VIL1/VIH1	VREF=5.0V: (all 3.3V only inputs except SMBCLK & SMBDATA)
	PWROK, RSMRST#, RTCX1, TEST, BATLOW#, CONFIG[1:2], EXTSMI#, GPI[1], IRQ8#, LID, RI#, SMBALERT#, PWRBTN#, USBP[1:0]+, USBP[1:0]-, FERR#
	VREF=3.3V: (all inputs except SMBCLK & SMBDATA)
	PWROK, RSMRST#, RTCX1, TEST, BATLOW#, CONFIG[1:2], EXTSMI#, GPI[1], IRQ8#, LID, RI#, SMBALERT#, PWRBTN#, USBP[1:0]+, USBP[1:0]-, FERR#, AD[31:0], C/BE[3:0]#, CLKRUN#, DEVSEL#, FRAME#, IDSEL, IRDY#, PHLDA#, SERR#, STOP#, TRDY#, IOCHK#, IOCHRDY, IOCS16#, IOR#, IOW#, LA[23:17], MEMCS16#, MEMR#, MEMW#, REFRESH#, SA[19:0], SBHE#, SD[15:0], ZEROWS#, A20GATE, RCIN#, DREQ[0:3, 5:7], REQ[A:C]#, APICREQ#, IRQ[1, 3:7, 9:12, 14:15], PIRQ[A:D], SERIRQ, CLK48, PCICLK, OSC, PDD[15:0], PDDREQ, PIORDY, SDD[15:0], SDDREQ, SIORDY, OC[1:0]#, PCIREQ[A:D],THRM#
VIL2/VIH2	SMBCLK, SMBDATA
VIL3/VIH3	VREF=5.0V: (all 5V tolerant inputs)
	AD[31:0], C/BE[3:0]#, CLKRUN#, DEVSEL#, FRAME#, IDSEL, IRDY#, PHLDA#, SERR#, STOP#, TRDY#, IOCHK#, IOCHRDY, IOCS16#, IOR#, IOW#, LA[23:17], MEMCS16#, MEMR#, MEMW#, REFRESH#, SA[19:0], SBHE#, SD[15:0], ZEROWS#, A20GATE, RCIN#, DREQ[0:3, 5:7], REQ[A:C]#, APICREQ#, IRQ[1, 3:7, 9:12, 14:15], PIRQ[A:D], SERIRQ, CLK48, PCICLK, OSC, PDD[15:0], PDDREQ, PIORDY, SDD[15:0], SDDREQ, SIORDY, OC[1:0]#, PCIREQ[A:D],THRM#
VOL1/VOH1	PDA[2:0], PDCS1#, PDCS3#, PDD[15:0], PDDACK#, PDIOR#, PDIOW#, SDA[2:0], SDCS1#, SDCS3#, SDD[15:0], SDDACK#, SDIOR#, SDIOW#, CPU_STP#, EXTSMI#, ZZ, GPO8, PCL_STP#, SMBCLK, SMBDATA, SUS[A:C]#, SUS_STAT[1:2]#, A20M#, CPURST, IGNNE#, INIT, INTR, NMI, SMI#, STPCLK#, BIOSCS#, KBCCS#, MCCS#, PCS0#, PCS1#, RTCALE, RTCCS#, XDIR#, XOE#, SUSCLK, RTCX2, SMBCLK, SMBDATA, APICACK#, APICCS#, IRQ[0, 8], SPKR, GNT[A:C], GPO[0, 8, 27, 28, 30], IRQ9OUT#, AD[31:0], C/BE[3:0]#, CLKRUN#, DEVSEL#, FRAME#, IRDY#, PAR, PCIRST#, PHOLD#, SERR#, STOP#, TRDY#, SERIRQ
VOL2/VOH2	USBP[1:0]+, USBP[1:0]-
VOL3/VOH3	SLP#
VOL4/VOH4	ISA/EIO Output Signals: AEN, BALE, IOCHRDY, IOR#, IOW#, LA[23:17], MEMCS16#, MEMR#, MEMW#, REFRESH#, RSTDRV, SA[19:0], SBHE#, SD[15:0], SMEMR#, SMEMW#, SYSCLK, DACK[0:3, 5:7]#, TC
IOL1/IOH1	IDE Output Signals: PDA[2:0], PDCS1#, PDCS3#, PDD[15:0], PDDACK#, PDIOR#, PDIOW#, SDA[2:0], SDCS1#, SDCS3#, SDD[15:0], SDDACK#, SDIOR#, SDIOW#
IOL2/IOH2	ISA/EIO Output Signals: AEN, BALE, IOCHRDY, IOR#, IOW#, LA[23:17], MEMCS16#, MEMR#, MEMW#, REFRESH#, RSTDRV, SA[19:0], SBHE#, SD[15:0], SMEMR#, SMEMW#, SYSCLK, DACK[0:3, 5:7]#, TC

Table 3. DC Characteristic Signal Association

Symbol	Associated Signals
Іог3/Іонз	Power Management Signals: CPU_STP#, EXTSMI#, ZZ, GPO8, PCI_STP#, SMBCLK, SMBDATA, SUS[A:C]#, SUS_STAT[1:2]#
	CPU Interface Signals: A20M#, CPURST, IGNNE#, INTR, NMI
	X-Bus Interface Signals: BIOSCS#, KBCCS#, MCCS#, PCS0#, PCS1#, RTCALE, RTCCS#, XDIR#, XOE#, SUSCLK, RTCX2
	Other Signals: SMBCLK, SMBDATA, APICACK#, APICCS#, IRQ[0, 8], SPKR, GNT[A:C], GPO[0, 8, 27, 28, 30], IRQ9OUT#
IOL4/IOH4	PCI Bus Signals: AD[31:0], C/BE[3:0]#, CLKRUN#, DEVSEL#, FRAME#, IRDY#, PAR, PCIRST#, PHOLD#, SERR#, STOP#, TRDY#, SERIRQ
IOL5/IOH5	USB Signals: USBP[1:0]+, USBP[1:0]-
IOL6/IOH6	SMI#, STPCLK#
IOL7/IOH7	INIT#
IOL8/IOH8	SLP#

Table 4. DC Current Characteristics

F	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)					
Symbol	Parameter	Тур	Max	Unit	Notes	
Icc(3V)	VCC Supply Current	110	155	mA		
ICC(SUS) ON	Suspend Well Supply Current—Full On	3	5	mA		
ICC(SUS) POS/STR	Suspend Well Supply Current—Power On Suspend or Suspend to RAM	30	150	μА		
Icc(SUS) STD/Soff	Suspend Well Supply Current—Suspend to Disk or Soft Off	9	150	μА		
Icc(RTC)	Battery Standby Current	6	8	μА	Vcc(RTC)=3.0V Mech Off State	

2.3. A.C. Characteristics

Table 5. Clock/Reset Timings

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)							
Sym	Parameter	Min	Max	Units	Notes	Figure		
	PCI Clock Timings							
	PCICLK							
t1a	Period	30	33.3	ns		2		
t1b	High Time	12.0		ns		2		
t1c	Low Time	12.0		ns		2		
t1c	Rise Time		3.0	ns		2		
t1d	Fall Time		3.0	ns		2		
	ISA Clock Timings							
	SYSCLK							
t1f	Period	120	133.3	ns		2		
t1g	High Time	49		ns		2		
t1h	Low Time	49		ns		2		
t1i	Rise Time		4	ns		2		
t1j	Fall Time		4	ns		2		
	Oscillator Clock Timings							
	osc							
t1I	OSC Period	67	70	ns		2		
t1m	High Time	20				2		
t1n	Low Time	20		ns		2		
	USB Clock Timings							
fclk48	Operating Frequency		48	MHz				
t1p	Frequency Tolerance		±2500	ppm	1	2		
t1q	High Time	7		ns		2		
t1r	Low Time	7		ns		2		
t1s	Rise Time		1.2	ns		2		
t1t	Fall Time		1.2	ns		2		
	Suspend Clock Timings							
f _{susclk}	SUSCLK Operating Frequency	;	32	KHz				
t1v	High Time	10		μs				
t1w	Low Time	10		μs				

Table 5. Clock/Reset Timings

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)							
Sym	Parameter	Min	Max	Units	Notes	Figure		
	SMBus Clock							
f _{smb}	SMCLK Operating Frequency	10	16	KHz				
t2b	High Time	4.0	50	μs		40		
t2c	Low Time	4.7		μs		40		
t2d	Clock/Data Rise Time		1000	ns		40		
t2e	Clock/Data Fall Time		300	ns		40		
	RESET TIMINGS							
t2f	PCIRST#, RSTDRV Driven Inactive After SUS_STATx# is Driven Inactive.		1	RTCCLK		3		
t2g	CPURST, PCIRST#, RSTDRV Active Pulse Width. Initiated via the RC Register.	1		ms		4		
t2h	CPURST Driven Inactive After PCIRST# is Driven Inactive.		1	RTCCLK		3		
t2i	CPURST Valid Delay from PCICLK Rising	2	25	ns		29		
t2j	PWROK, RSMRST# Rise Time		10	ns	3			
	SMI#							
t3a	Valid Delay from PCICLK	2	25	ns		7		
t3b	Active Pulse Width	3		PCICLK		5		
t3c	Inactive Pulse Width	4		PCICLK		5		
	EXTSMI#							
t3d	Active Pulse Width	2		PCICLK		5		
t3e	Inactive Pulse Width	4		PCICLK		5		
t3f	Valid Setup to PCICLK	10		ns		6		
t3g	Valid Hold from PCICLK	4		ns		6		
	STPCLK#							
t3h	Valid Delay from PCICLK	2	25	ns		7		
t3i	STPCLK# Inactive Pulse Width	5		PCICLK		5		

- 1. The USBCLK is a 48 MHz that expects a 40/60% duty cycle.
- The maximum high time (t2b Max) provide a simple guaranteed method for devices to detect bus idle conditions.
- 3. t2j is measured as a transition time through the threshold region Vol=0.8V and Voh=2.0V.

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to -	+85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
	PIIX4 AS MASTER TIMINGS							
	BALE							
t4a	BALE Pulse Width	50		ns	M,I/O	8,16		8,9,10, 11
t4b	BALE Driven Active from MEMx#, lox# Inactive	44		ns	M,I/O	8,16		8,9,10, 11
	LA[23:17]							
t5a	LA[23:17] Valid Setup to BALE Inactive	150		ns	М	8,16	7	8,9
t5b	LA[23:17] Valid Hold from BALE Inactive	26		ns	М	8,16		8,9
t5c	LA[23:17] Valid Setup to MEMx# Active	150		ns	М	16		9
t5d	LA[23:17] Valid Setup to MEMx# Active	173		ns	М	8		8
t5e	LA[23:17] Invalid from MEMx# Active	39		ns	М	16		9
t5f	LA[23:17] Invalid from MEMx# Active	39		ns	М	8		8
	SA[19:0], SBHE#							
t6a	SA[19:0], SBHE# Valid Setup to MEMx# Active	34		ns	М	16	13,15	9
t6b	SA[19:0], SBHE# Valid Setup to lox# Active	100		ns	I/O	16		11
t6c	SA[19:0], SBHE# Setup to MEMx#, lox# Active	100		ns	M,I/O	8		9
t6d	SA[19:0], SBHE# Valid Setup to BALE Inactive	37		ns	M,I/O	8,16	13,15	8,9,10, 11
t6e	SA[19:0], SBHE# Valid Hold from MEMx#, lox# Inactive	41		ns	M,I/O	8,16		8,9,10, 11
	MEMR#, MEMW#, IOR# AND IOW#							
t7a	MEMx# Active Pulse Width (std)	225		ns	М	16		9
t7b	lox# Active Pulse Width (std)	160		ns	I/O	16		11
t7c	MEMx# Active Pulse Width (nws)	105		ns	М	16	1	9
t7d	MEMx# or lox# Active Pulse Width (std)	520		ns	M,I/O	8		8,10
t7e	MEMx# or lox# Active Pulse Width (nws)	160		ns	M,I/O	8	1	8,10
t7f	MEMx# Inactive Pulse Width	103		ns	М	16		9

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to +	-85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t7g	MEMx# Inactive Pulse Width	163		ns	М	8		8
t7h	lox# Inactive Pulse Width	163		ns	I/O	8,16		10,11
t7i	MEMx#, lox# Driven Inactive from IOCHRDY Active	120		ns	M,I/O	8,16		8,9,10, 11
	SMEMR# and SMEMW#							
t8a	SMEMR# & SMEMW# Propagation Delay from MEMR# and MEMW#		16	ns	М	8,16		8,9
	Read Data							
t9a	Read Data Driven from MEMR#, IOR# Active	0		ns	M,I/O	8,16		8,9,10, 11
t9b	Read Data Valid Setup to MEMR#, IOR#	24		ns	M,I/O	8,16		8,9,10, 11
t9c	Read Data Valid Hold from MEMR#, IOR# Inactive	0		ns	M,I/O	8,16		8,9,10, 11
t9d	Read Data Tri-Stated from MEMR# and IOR# Inactive		41	ns	M,I/O	8,16		8,9,10, 11
	Write Data							
t10a	Write Data Valid Setup to MEMW# Active	-40		ns	M,I/O	8,16		8,9,10, 11
	Write Data Valid Setup to IOW# Active	-40		ns	M,I/O	8		
	Write Data Valid Setup to IOW# Active	+23		ns	M,I/O	16		
t10b	Write Data Valid Hold from MEMW#, IOW# Inactive	45		ns	M,I/O	8,16		8,9,10, 11
t10c	Write Data Tri-Stated from MEMW#, IOW# Inactive		105	ns	M,I/O	8,16		8,9,10, 11
t10d	Write Data Driven Valid after Read MEMR#, IOR# Inactive	41		ns	M,I/O	8,16		8,9,10, 11
	MEMCS16#							
t11a	MEMCS16# Driven Active from LA[23:17] Valid		94	ns	М	16		9
t11b	MEMCS16# Inactive from LA[23:17] Valid		91	ns	М	8		8
t11c	MEMCS16# Valid Hold from LA[23:17] Invalid	0		ns	М	16		9

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to +	-85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t11d	MEMCS16# Driven Active from SA[19:2] Valid		35	ns	М	16		9
	IOCS16#							
t12a	IOCS16# Driven Active from Valid SA[19:0]		123	ns	I/O	16		11
t12b	IOCS16# Inactive from Valid SA[19:0]		91	ns	I/O	8		10
t12c	IOCS16# Valid Hold from SA[19:0] Invalid	0		ns	I/O	16		11
t12d	IOCS16# Driven Active from lox Active		80	ns	I/O	16		11
	ZEROWS#							
t13a	ZEROWS# Driven Active from MEMx# Active		16	ns	М	16		9
t13b	ZEROWS# Driven Active from MEMx#, lox# Active		80	ns	M,I/O	8		8
t13c	ZEROWS# Driven Active from LA[23:17] Valid		180	ns	М	16		9
t13d	ZEROWS# Driven Active from LA[23:17] Valid		300	ns	М	8		8
	ZEROWS#							
t13e	ZEROWS# Driven Active from SA[19:0], SBHE# Valid		80	ns	М	16		9
t13f	ZEROWS# Driven Active from SA[19:0], SBHE# Valid		200	ns	M,I/O	8		8,10
	AEN							
t14a	AEN Valid Setup to lox# Driven Active	111		ns	I/O	8,16		10,11
t14b	AEN Valid Setup to BALE Driven Inactive	111		ns	I/O	8,16		10,11
t14c	AEN Valid Hold from lox# Driven Inactive	41		ns	I/O	8,16		10,11
	IOCHRDY							
t15a	IOCHRDY Driven Valid from MEMx#, lox# Active		78	ns	M,I/O	16		9,11
t15b	IOCHRDY Driven Valid from MEMx#, lox# Active		366	ns	M,I/O	8		8,10

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to	+85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t15e	IOCHRDY Inactive Pulse Width	0.12	15.6	μs	M,I/O	8,16		8,9,10, 11
	PIIX4 AS SLAVE TIMINGS							
	LA[23:17]							
t16a	LA[23:17] Valid Setup to MEMx# Active	23		ns	М	16		12
	SA[19:0],SBHE#							
t17a	SA[19:0],SBHE# Setup to MEMx# Active	23		ns	М	16		12
t17b	SA[19:0],SBHE# Setup to lox# Active	89		ns	I/O	8		13
t17c	SA[19:0],SBHE# Valid Hold from MEMx#, lox# Inactive	30		ns	M,I/O	8,16		12,13
	MEMR#, MEMW#, IOR#, IOW#							
t18a	MEMx# Active Pulse Width	214		ns	М	16		12
t18b	lox# Active Pulse Width	509		ns	I/O	8		13
t18c	MEMx# Inactive Pulse Width	92		ns	М	16		12
t18d	lox# Inactive Pulse Width	152		ns	I/O	8		13
	Read Data							
t19a	Read Data Valid from IOCHRDY Active		69	ns	M,I/O	8,16		12,13
t19b	Read Data Valid from IOR# Active		69	ns	I/O	8	11	13
t19c	Read Data Valid Hold from MEMR#, IOR# Inactive	0		ns	M,I/O	8,16		12,13
t19d	Read Data Tri-State from MEMR#, IOR# Inactive		55	ns	M,I/O	8,16		12,13
	Write Data							
t20a	Write Data Valid Setup to MEMW#, IOW# Active	-54		ns	M,I/O	8,16		12,13
t20b	Write Data Valid Hold from MEMW#, IOW# Inactive	14		ns	M,I/O	8,16		12,13
	MEMCS16#							
t21a	MEMCS16# Driven Active from Valid LA[23:17]		65	ns	М	16		12
t21b	MEMCS16# Float from Valid LA[23:17]		31	ns	М	16		12

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to -	+85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t21c	MEMCS16# Valid Hold from LA[23:17] Invalid	0		ns	М	16		12
	IOCHRDY							
t22a	IOCHRDY Inactive from MEMx#, lox# Active		50	ns	M,I/O	8,16		12,13
t22b	IOCHRDY Float from IOCHRDY Rising		85	ns	M,I/O	8,16	4	12,13
t22c	IOCHRDY Inactive Pulse Width	0.12	2.5	μs	M,I/O	8,16		12,13
	INTERRUPT AND NMI TIMINGS							
	NMI Timing							
t23a	SERR#, IOCHK# Active to NMI Driven Active		200	ns				14
	Interrupt Timing							
t24a	IRQx Inactive Pulse Width	100		ns				15
	ISA BUS MASTER TIMINGS							
	DACK#							
t26a	DACK#, Inactive from DREQ Inactive	240		ns				16
	Tri-Stating and Driving the Bus							
t27a	PIIX4 Tri-States Address, Data, and Control Signals from DACK#, Active		30	ns				16
t27b	PIIX4 Drives Address, Data, and Control Signals from DACK#, Inactive	71		ns				16
	SMEMR# and SMEMW#							
t28a	SMEMR# and SMEMW# Active (falling edge) from MEMR# and MEMW# Active (falling edge)		25	ns				16
t28b	SMEMR# and SMEMW# Inactive (rising edge) from MEMR# and MEMW# Inactive (rising edge)		35	ns				16
	DATA SWAP LOGIC TIMING (ISA MASTER TO ISA SLAVE)							
t29a	SD[7:0] to SD[15:8] Propagation Delay		26	ns				17
t29b	SD[15:8] to SD[7:0] Propagation Delay		26	ns				17

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=5	5V ±5%,			, TCASE=	0°C to -	+85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t29c	PIIX4 Drives Data Bus from IOR#, IOW#, MEMR# or MEMW# Active		26	ns			2	17
t29d	PIIX4 Tri-States Bus from IOR#, MEMR#, or SMEMR# Inactive	2	55	ns			2,3	17
t29e	PIIX4 Tri-States Bus from IOW#, MEMW#, or SMEMW# Inactive	2	60	ns			2,3	17
	DMA COMPATIBLE TIMINGS							
	DREQ							
t30a	DREQ Active Hold from IOR# Active		558	ns			5	19
t30b	DREQ Active Hold from IOW# Active		315	ns			5	18
	DACK#							
t31a	DACK# Active to IOR# Active	73		ns				19
t31b	DACK# Active to IOW# Active	312		ns				18
t31c	DACK# Active Hold from IOR# Inactive	100		ns				19
t31d	DACK# Active Hold from IOW# Inactive	155		ns				18
	AEN and BALE							
t32a	AEN Active to lox# Active	111		ns				18,19
t32b	AEN and BALE Inactive from lox# Inactive	41		ns				18,19
	LA[23:19], SA[19:0], SBHE#							
t33a	LA[23:19],SA[19:0], SBHE# Valid Setup to MEMx# Active	99		ns				18,19
t33b	LA[23:19],SA[19:0], SBHE# Valid Hold from MEMx# Inactive	51		ns				18,19
	MEMR#, MEMW#, IOR#, IOW#							
t34a	IOW# and MEMW# Active Pulse Width	465		ns				18,19
t34b	MEMR# Active Pulse Width	495		ns				18
t34c	IOR# Active Pulse Width	760		ns				19
t34d	IOW# Inactive Pulse Width (continuous)	465		ns				18
t34e	IOR# Inactive Pulse Width (continuous)	160		ns				19
t34f	IOR# Active to MEMW# Active	230		ns				19
t34g	MEMR# Active to IOW# Active	-26		ns				18

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to -	-85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t34h	MEMR# Active Hold from IOW# Inactive	40		ns				18
t34i	IOR# Active Hold from MEMW# Inactive	40		ns				19
t34j	MEMx# Active Hold from IOCHRDY Active	120		ns				18,19
	SMEMR# & SMEMW#							
t35a	SMEMR# & SMEMW# Valid from MEMR# and MEMW# Valid		15	ns				18,19
	Read Data							
t36a	Read Data Valid from IOR# Active		237	ns				19
t36b	Read Data Valid Hold from IOR# Inactive	0		ns				19
t36c	Read Data Float from IOR# Inactive		61	ns				19
	Write Data							
t37a	Write Data Valid Setup to IOW# Inactive	225		ns				18
t37b	Write Data Valid Hold from IOW# Inactive	36		ns				18
	DATA SWAP LOGIC TIMING (ISA TO ISA TRANSACTION)							
t38a	SD[7:0] to SD[15:8] Propagation Delay		26	ns				20
t38b	SD[15:8] to SD[7:0] Propagation Delay		26	ns				20
t38c	PIIX4 Drives Data Bus from IOR# or MEMR# Active		26	ns			2	20
t38d	PIIX4 Tri-States Bus from IOR# or MEMR# Inactive		55	ns			2	20
	тс							
t39a	TC Active Setup to lox# Inactive	511		ns			6	18,19
t39b	TC Active Hold from lox# Inactive	71		ns			6	18,19
t39h	TC Pulse Width	700		ns				18,19
	IOCHRDY							
t40b	IOCHRDY Valid from MEMx# Active		315	ns				18,19
t40c	IOCHRDY Inactive Pulse Width	125		ns	_			18,19

Table 6. ISA Bus and X-Bus Timings

Parameter	Min						
	141111	Max	Units	Type	Size	Notes	Figure
DMA TYPE "F" TIMINGS							
DREQ							
DREQ Active Hold from IOR# Active		82	ns			5,16	21
DREQ Active Hold from IOW# Active		82	ns			5,16	21
DACK#							
DACK# Active to IOR# Active	77		ns			16	21
DACK# Active to IOW# Active	77		ns			16	21
DACK# Active Hold from IOR# Inactive	30		ns			16	21
DACK# Active Hold from IOW# Inactive	30		ns			16	21
AEN and BALE							
AEN Active to lox# Active	111		ns				21
AEN and BALE Inactive from lox# Inactive	41		ns				21
IOR# and IOW#							
IOR# Active Pulse Width	110		ns				21
IOW# Active Pulse Width	110		ns				21
IOR# Inactive Pulse Width (Continuous)	115		ns				21
IOW# Inactive Pulse Width (Continuous)	115		ns				21
READ DATA							
Read Data Valid from IOR# Active		96	ns				21
Read Data Valid Hold from IOR# Inactive	2		ns				21
Read Data Float from IOR# Inactive		61	ns				21
WRITE DATA							
Write Data Valid Setup to IOW# Inactive	70		ns				21
Write Data Valid Hold from IOW# Inactive	31		ns				21
тс							
TC Active Setup to IOR# Inactive	40		ns			6	21
	DREQ Active Hold from IOR# Active DREQ Active Hold from IOW# Active DACK# DACK# Active to IOR# Active DACK# Active to IOW# Active DACK# Active Hold from IOR# Inactive DACK# Active Hold from IOW# Inactive AEN and BALE AEN Active to lox# Active AEN and BALE Inactive from Iox# Inactive IOR# and IOW# IOR# Active Pulse Width IOW# Active Pulse Width IOW# Active Pulse Width (Continuous) IOW# Inactive Pulse Width (Continuous) READ DATA Read Data Valid from IOR# Active Read Data Float from IOR# Inactive WRITE DATA Write Data Valid Hold from IOW# Inactive	DREQ Active Hold from IOR# Active DREQ Active Hold from IOW# Active DACK# DACK# Active to IOR# Active 77 DACK# Active to IOW# Active 77 DACK# Active Hold from IOR# Inactive 30 DACK# Active Hold from IOW# Inactive 30 AEN and BALE AEN Active to lox# Active 111 AEN and BALE Inactive from lox# Inactive IOR# and IOW# IOR# Active Pulse Width IOW# Active Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width Continuous) READ DATA Read Data Valid From IOR# Active Read Data Valid Hold from IOR# 2 Inactive WRITE DATA Write Data Valid Setup to IOW# 10 Inactive Write Data Valid Hold from IOW# 31 Inactive TC	DREQ Active Hold from IOR# Active DREQ Active Hold from IOW# Active DACK# DACK# DACK# Active to IOR# Active 77 DACK# Active to IOW# Active 77 DACK# Active Hold from IOR# Inactive DACK# Active Hold from IOW# Inactive 30 AEN and BALE AEN Active to lox# Active AEN and BALE Inactive from lox# Inactive IOR# Active Pulse Width IOW# Active Pulse Width IOW# Active Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width Continuous) IOW# Inactive Pulse Width READ DATA Read Data Valid From IOR# Active Read Data Valid Hold from IOR# Read Data Valid Hold from IOR# WRITE DATA Write Data Valid Setup to IOW# Inactive TC TC	DREQ Active Hold from IOR# Active DREQ Active Hold from IOW# Active B2 ns DACK# DACK# DACK# Active to IOR# Active DACK# Active to IOW# Active T7 ns DACK# Active Hold from IOR# Inactive DACK# Active Hold from IOW# Inactive DACK# Active Hold from IOW# Inactive DACK# Active Hold from IOW# Inactive TOW# Active to Iox# Active AEN and BALE AEN Active to Iox# Active IOR# and IOW# IOR# Active Pulse Width IOR# Active Pulse Width IOW# Active Pulse Width IOW# Active Pulse Width IOW# Inactive Pulse Viden Inactive Inactiv	DREQ Active Hold from IOR# Active DREQ Active Hold from IOW# Active DACK# DACK# Active to IOR# Active DACK# Active to IOW# Active DACK# Active Hold from IOR# Inactive DACK# Active Hold from IOW# Inactive AEN and BALE AEN Active to Iox# Active 1111 Ins AEN and BALE Inactive from Iox# Inactive IOR# and IOW# IOR# Active Pulse Width 110 IOR# Inactive Pulse Width IOR# Inactive Pulse Width IOR# Inactive Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width IOW# Inactive Pulse Width Read Data Valid From IOR# Active Read Data Valid Hold from IOR# Inactive Write Data Valid Setup to IOW# Inactive Write Data Valid Hold from IOW# Inactive Write Data Valid Hold from IOW# Inactive TC	DREQ Active Hold from IOR# Active 82 ns DREQ Active Hold from IOW# Active 82 ns DACK#	DREQ Active Hold from IOR# Active 82 ns 5,16 DREQ Active Hold from IOW# Active 82 ns 5,16 DACK# 5,16 DACK# Active to IOR# Active 77 ns

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=5				, TCASE=	0°C to -	-85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t61b	TC Active Setup to IOW# Inactive	40		ns			6	21
t61c	TC Active Hold from lox# Inactive	0		ns			6	21
	ISA REFRESH TIMINGS							
	REFRESH#							
t62a	REFRESH# Active Setup to MEMR# Active	120		ns				22,23
t62b	REFRESH# Active Hold from MEMR# Inactive	31	260	ns				22,23
t62c	REFRESH# Driven Active to SA[15:0] Valid	11		ns				22,23
t62d	REFRESH# Active Hold from SA[15:0] Invalid	11		ns				22,23
	AEN							
t63a	AEN Driven Active to MEMR# Active	11		ns				22,23
t63b	AEN Hold from MEMR# Inactive	11		ns				22,23
	SA[15:0]							
t64a	SA[15:0] Valid Setup to MEMR# Active	72		ns				22,23
t64b	SA[15:0] Valid Hold from MEMR# Inactive	35		ns				22,23
t64c	SA[15:0] Valid Float from MEMR# Inactive	46	120	ns			8	23
	MEMR#, SMEMR#							
t65a	MEMR# Active Pulse Width	225		ns				22,23
t65b	MEMR# Tri-State from MEMR# Inactive	36	120	ns				22,23
t65c	MEMR# Driven Inactive from IOCHRDY Active	120		ns				22,23
t65d	SMEMR# Propagation Delay from MEMR#		25	ns				22,23
	IOCHRDY							
t66a	IOCHRDY Inactive from MEMR# Active		76	ns				22,23
t66b	IOCHRDY Valid from MEMR# Active		76	ns				22,23
t66c	IOCHRDY Inactive Pulse Width	120		ns		-		22,23

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=				, TCASE=	0°C to +	+85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
	PIIX4 Driving Bus From REFRESH#							
t67a	PIIX4 Drives Control and Address from REFRESH# Active	5		ns			8	23
	PIIX4 AND ISA MASTER ACCESSES TO THE X-BUS							
	BIOSCS#, KBCCS#, RTCCS#, AND PCS0#, PCS1#, MCCS#							
t68a	CS# Driven Active from SA[19:0], LA[23:17] Valid (except BIOSCS#)		35	ns				24
t68b	CS# Driven Inactive from SA[16:0], LA[23:17] Invalid (except BIOSCS#)		35	ns				24
	XDIR# and XOE#							
t69a	XDIR# Active from IOR#, MEMR# Active							24
	—PCI-Initiated Access		25	ns				
	—ISA-Initiated Access		30	ns				
t69b	BIOSCS#, XOE# Active from lox#, MEMx# Active		29	ns				24
t69c	XDIR# Active Setup to XOE# Active	2	12	ns				24
t69d	BIOSCS#, XOE# Inactive from lox#, MEMx# Inactive	35	60	ns			9	24
t69f	BIOSCS#, XOE# Setup to XDIR# Inactive	2	15	ns			9	24
t69g	XOE# Inactive from IOR#, MEMR# Inactive	2	140	ns			10	24
t69i	XOE# Inactive Setup to XDIR# Inactive	2	12	ns			10	24
	MISCELLANEOUS X-BUS TIMINGS							
	Mouse Timing Support							
t71a	IRQ12/M and IRQ1 Minimum Active Pulse Width (for Mouse Function and Keyboard)	180		ns				25
	Coprocessor Error Support							
t73a	IGNNE# Active from IOW# Active from Port F0H Access		220	ns				25

Table 6. ISA Bus and X-Bus Timings

	Functional Operating Range (VREF=	5V ±5%,	Vcc=3.3	SV ±0.3V	, TCASE=	0°C to +	-85°C)	
Sym	Parameter	Min	Max	Units	Туре	Size	Notes	Figure
t73b	IGNNE# Inactive from FERR# Inactive		230	ns				25
	Real Time Clock Timing (RTCALE)							
t75a	RTCALE Pulse Width	200	300	ns				26
t75b	RTCALE Active from IOW# Active							26
	—PCI-Initiated Access		85	ns				
	—ISA-Initiated Access		156	ns				
	Speaker Timing							
t76a	SPKR Valid Delay from OSC Rising		200	ns				27

- 1. No-wait-state (ZEROWS#) asserted.
- 2. This applies to the byte lane that the data has been swapped to.
- Data is tri-stated from the standard memory commands (SMEMR# or SMEMW#), when they are generated.
- This specification includes both the time the PIIX4 drives IOCHRDY active and the time it takes the PIIX4 to float IOCHRDY.
- 5. This applies to the last cycle of a demand mode DMA transfer.
- 6. Output from PIIX4.
- 7. 36 ns has been added to the ISA spec to meet ZEROWS# setup requirements.
- 8. This applies to ISA Master initiated refresh only.
- 9. PIIX4 as a master cycles only.
- 10. ISA master cycles only.
- 11. This applies to the PIIX4 cycles that IOCHRDY is not driven low.
- 12. This applies to all DACK# signals.
- 13. 56 ns has been added to the ISA spec to meet MEMCS16# setup requirements. ISA devices are not suppose to use the SA address as part of their MEMCS16# decode. However, some devices do use SA as part of MEMCS16# decode.
- 14. X-Bus read.
- 15. For back-to-back "sub cycles" generated as a result of byte assembly or disassembly, this spec is 34 ns.
- 16. Type F transfers are selected via the MBDMAX Register.

Table 7. PCI Interface Timing

	Functional Operating Range (VREF=5V ±5%, VC	•	•	CASE=0	°C to +85°C)	
Sym	Parameter	Min	Max	Units	Notes	Figure
t77	AD[31:0] Valid Delay	2	11	ns	Min: 0 pF Max: 50 pF	29
t78	AD[31:0] Setup Time	7		ns		30
t79	AD[31:0] Hold Time	0		ns		30
t80	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, PAR, SERR#, IDSEL, DEVSEL# CLOCKRUN#, GNT[A:C]# Valid Delay from PCICLK Rising	2	11	ns	Min: 0 pF Max: 50 pF	29
t81	C/Bes[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, PAR, SERR#, IDSEL, DEVSEL# CLOCKRUN#, GNT[A:C]# Output Enable Delay from PCICLK Rising	2		ns		33
t82	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, SERR#, IDSEL, DEVSEL# CLOCKRUN#, Float Delay from PCICLK Rising	2	28	ns		31
t83	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, SERR#, IDSEL, DEVSEL# CLOCKRUN#, REQ[A:C]# Setup Time to PCICLK Rising	7		ns		30
t84	C/BE[3:0]#, FRAME#, TRDY#, IRDY#, STOP#, SERR#, IDSEL, DEVSEL# CLOCKRUN#, REQ[A:C]#, Hold Time from PCLKIN Rising	0		ns		30
t85	PHLD# Valid Delay from PCICLK Rising	2	12	ns	0 pF	29
t86	PHLDA# Setup Time to PCICLK Rising	10	_	ns		30
t87	PHLDA# Hold Time from PCICLK Rising	0		ns		30
t91	PIRQ[D:A]# Setup Time to PCICLK Rising				1	30
t92	PIRQ[D:A]# Hold Time from PCICLK Rising				1	30
t96	RST# Low Pulse Width	1		ms		32

NOTES:

1. This signal is internally synchronized.

Table 8. PCI Bus IDE Timing

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)						
Sym	Parameter	Min	Max	Units	Notes	Figure	
	Primary IDE Timing						
t102	PDIOW# Active from PCICLK Rising	2	20	ns		34,35	
t103	PDIOW# Inactive from PCICLK Rising	2	20	ns		34,35	
t104	PDIOR# Active from PCICLK Rising	2	20	ns		34,35	
t105	PDIOR# Inactive from PCICLK Rising	2	20	ns		34,35	
t106	PDA[2:0] Valid Delay from PCICLK Rising	2	30	ns		34	
t107	PDCS1#, PDCS3# Active from PCICLK Rising	2	30	ns		34	
t108	PDCS1#, PDCS3# Inactive from PCICLK Rising	2	30	ns		34	
t113	PDDACK# Active from PCICLK Rising	2	20	ns		35	
t114	PDDACK# Inactive from PCICLK Rising	2	20	ns			
t114a	PDDREQ Setup Time to PCICLK Rising	7		ns		35	
t114b	PDDREQ Hold from PCICLK Rising	7		ns		35	
t115	PDD[15:0] Valid Delay from PCICLK Rising	2	30	ns		34,35	
t115a	PDD[15:0] Setup Time to PCICLK Rising	10		ns		34,35	
t115b	PDD[15:0] Hold from PCICLK Rising	8		ns		34,35	
t116	PIORDY Setup Time to PCICLK Rising	7		ns	1	34	
t117	PIORDY Hold from PCICLK Rising	7		ns	1	34	
t117a	PIORDY Inactive Pulse Width	48		ns		34	
t118	PIORDY Sample Point from DIOx# Assertion			PCICLK	2,3	34	
t119	PDIOx# Active Pulse Width			PCICLK	2,3	34,35	
t120	PDIOx# Inactive Pulse Width			PCICLK	3,4	34,35	
	Secondary IDE Timing						
t102	SDIOW# Active from PCICLK Rising	2	20	ns		34,35	
t103	SDIOW# Inactive from PCICLK Rising	2	20	ns		34,35	
t104	SDIOR# Active from PCICLK Rising	2	20	ns		34,35	
t105	SDIOR# Inactive from PCICLK Rising	2	20	ns		34,35	
t106	SDA[2:0] Valid Delay from PCICLK Rising	2	30	ns		34	
t107	SDCS1#, PDCS3# Active from PCICLK Rising	2	30	ns		34	
t108	SDCS1#, PDCS3# Inactive from PCICLK Rising	2	30	ns		34	

Table 8. PCI Bus IDE Timing

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)						
Sym	Parameter	Min	Max	Units	Notes	Figure	
t113	SDDACK# Active from PCICLK Rising	2	20	ns		35	
t114	SDDACK# Inactive from PCICLK Rising	2	20	ns			
t114a	SDDREQ Setup Time to PCICLK Rising	7		ns		35	
t114b	SDDREQ Hold from PCICLK Rising	7		ns		35	
t115	SDD[15:0] Valid Delay from PCICLK Rising	2	30	ns		34,35	
t115a	SDD[15:0] Setup Time to PCICLK Rising	10		ns		34,35	
t115b	SDD[15:0] Hold from PCICLK Rising	8		ns		34,35	
t116	SIORDY Setup Time to PCICLK Rising	7		ns	1	34	
t117	SIORDY Hold from PCICLK Rising	7		ns	1	34	
t117a	PIORDY Inactive Pulse Width	48		ns		34	
t118	SIORDY Sample Point from DIOx# Assertion			PCICLK	2,3	34	
t119	SDIOx# Active Pulse Width			PCICLK	2,3	34,35	
t120	SDIOx# Inactive Pulse Width			PCICLK	3,4	34,35	

- 1. IORDY is internally synchronized. This timing is to guarantee recognition on the next clock.
- 2. This parameter is programmable from 2–5 PCI clocks when the drive mode is Mode 2 or greater. Refer to the ISP field in the IDE Timing Register.
- 3. The cycle time is the compatible timing when the drive mode is Mode 0/1. Refer to the TIM0/1 field in the IDE timing register.
- 4. This parameter is programmable from 1–4 PCI clocks when the drive mode is Mode 2 or greater. Refer to the RCT field in the IDE Timing Register.

Table 9. Universal Serial Bus Timing

Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V, TCASE=0°C to +85°C)							
Sym	Parameter	Min	Max	Units	Notes	Fig	
Full Speed Source (Note 7)							
t122	USBPx+, USBPx- Driver Rise Time	4	20	ns	1, CL=50 pF	36	
t123	USBPx+, USBPx- Driver Fall Time	4	20	ns	1, CL=50 pF	36	
t124	Source Differential Driver Jitter				2,3	37	
	—To Next Transition	-2	2	ns			
	—For Paired Transitions	-1	1	ns			
t125	Source EOP Width	160	175	ns	4	38	
t126	Differential to SE0 Transition Skew	-2	5	ns	5		
t127	Receiver Data Jitter Tolerance				3	37	
	—To Next Transition	-20	20	ns			
	—For Paired Transitions	-10	10	ns			
t128	EOP Width				4	38	
	—Must reject as EOP	40		ns			
	Must accept as EOP	85		ns			
t126	Differential to SE0 Transition Skew	-2	5	ns	5		
	Low Speed Source (Note 8)	•	,	,		•	
t127	USBPx+, USBPx- Driver Rise Time	75	300	ns ns	1,6=50 pF CL=350 pF	36	
t128	USBPx+, USBPx- Driver Fall Time	75	300	ns ns	1,6 CL=50 pF CL=350 pF	36	
t129	Source Differential Driver Jitter				2,3	37	
	—To Next Transition	-2	2	ns			
	—For Paired Transitions	-1	1	ns			
t130	Source EOP Width	160	175	ns	4	38	
t131	Differential to SE0 Transition Skew	-2	5	ns	5		
t132	Receiver Data Jitter Tolerance				3	37	
	—To Next Transition	-20	20	ns			
	—For Paired Transitions	-10	10	ns			
t133	EOP Width				4	38	
	—Must reject as EOP	40		ns			
	—Must accept as EOP	85		ns			
t134	Differential to SE0 Transition Skew	-2	5	ns	5		

NOTES:

- Driver output resistance under steady state drive is spec'ed at 28 ohms at minimum and 43 ohms at maximum.
- 2. Timing difference between the differential data signals.
- 3. Measured at crossover point of differential data signals.
- 4. Measured at 50% swing point of data signals.
- 5. Measured from last crossover point to 50% swing point of data line at leading edge of EOP.
- 6. Measured from 10% to 90% of the data signal.
- 7. Full Speed Data Rate has minimum of 11.97 Mbps and maximum of 12.03 Mbps.
- 8. Low Speed Data Rate has a minimum of 1.48 Mbps and a maximum of 1.52 Mbps.

Table 10. IOAPIC Bus Timing

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V TCASE=0°C to +85°C)						
Sym	Parameter	Min Max		Units	Notes	Fig	
t136	APICCS# Setup to MEMx#	2		PCICLK	1	39	
t137	SA[19:0] Setup to APICCS#	2		PCICLK	1	39	
t138	APICACK# Valid Delay from PCICLK	2.0	12.0	ns		29	
t139	APICREQ# Valid Setup to PCICLK	10.0		ns		30	
t140	APICREQ# Valid Hold from PCICLK	0.0		ns		30	

NOTES:

 With these exceptions, the APIC configuration cycles conform to the 8-bit ISA Memory Slave Timing where PIIX4 is the master.

Table 11. SMBUS Timing

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V TCASE=0°C to +85°C)						
Sym	Sym Parameter		Max	Units	Notes	Fig	
t141	Bus free time between Stop and Start Condition	4.7		μs		40	
t142	Hold time after (repeated) Start Condition. After this period, the first clock is generated	4.0		μs		40	
t143	Repeated Start Condition setup time	4.7		μs		40	
t144	Stop Condition setup time	4.0		μs		40	
t145	Data hold time	300		ns		40	
t146	Data setup time	250		ns		40	
t147	Device time out	25	35	ms	1		
t148	Cumulative clock low extend time (slave device)		25	ms	2	41	
t149	Cumulative clock low extend time (master device)	•	10	ms	3	41	

NOTES:

- 1. A device will timeout when any clock low exceeds this value.
- t148 is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself.
- 3. t149 is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop.

Table 12. Serial IRQ Timing

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V TCASE=0°C to +85°C)							
Sym	Parameter	Min	Max	Units	Notes	Fig		
t151	SERIRQ Setup Time to PCICLK Rising	7		ns		30		
t152	SERIRQ Hold Time from PCICLK Rising	0		ns		30		

Table 13. Ultra DMA/33 Timing

	Functional Operating Range (VREF=5V ±5%, VCC=3.3V ±0.3V TCASE=0°C to +85°C)							
		Mode 0 (ns)		Mode 1 (ns)		Mode 2 (ns)		
Sym	Parameter ⁽¹⁾	Min	Max	Min	Max	Min	Max	Figure
t154	Cycle Time (Tcyc) ⁽²⁾	114		75		55		43
t155	Two Cycle Time (T2cyc)	235		156		117		43
t156	Data Setup Time (Tds)	15		10		7		43
t157	Data Hold Time (Tdh)	5		5		5		43
t158	Data Valid Setup Time (Tdvs)	70		48		34		43
t159	Data Valid Hold Time (Tdvh)	6		6		6		43
t160	Limited Interlock Time (Tli)	0	150	0	150	0	150	45
t161	Interlock Time w/Minimum (Tmli)	20		20		20		45
t162	Envelope Time (Tenv)	20	70	20	70	20	70	42
t163	Ready to pause Time (Trp)	160		125		100		44
t164	DMACK setup/hold Time (Tack)	20		20		20		42,45

- 1. The specification symbols in parenthesis correspond to the Ultra DMA/33 specification name.
- 2. These cycle timings are based on the STROBE period as indicated in Figure 44. However, Table 13 in the PIIX4 datasheet refers to cycle time strobe periods as 120 ns, 90 ns and 60 ns for mode 0, 1, and 2 respectively. The datasheet timings are different because they are based on the number of PCI clocks per cycle, not the actual period between the rise and fall of STROBE.

Table 14. A.C. Test Loads

Capacitive Load	Signals
120 pf	REFRESH#, TC, SD[15:0], SA[19:0], SBHE#, LA[23:17], I0CS16#, MEMCS16#, MEMR#, MEMW#, SMEMR#, SMEMW#, IOR#, IOW#, AEN, BALE, IOCHRDY, ZEROWS#, RSTDRV, SYSCLK
50 pf	DACK#[7:5,3:0], SPKR, INTR, NMI, BIOSCS#, KBCCS#, RTCCS#, PCS[1:0]#, MCCS#, RTCALE, XDIR#, XOE#, IGNNE#, PDD[15:0], SDD[15:0], APICCS#, DIOR#, DIOW#, PDDACK#, SDDACK#, PDCS1# PDCS3#, SDCS1#, SDCS3cc, PDA[2:0], SDA[2:0].

Figure 1. Test Load

2.4. Clock, Reset, ISA Bus, X-Bus and Host Timing Diagrams

Figure 2. Clock Timing

Figure 3. Reset Inactive Timing

Figure 4. Reset Active Pulse Width

Figure 5. SMI#, EXTSMI# and STPCLK# Timing

Figure 6. Input to PCICLK Setup/Hold Times

Figure 7. HCLKIN to Output Valid Delay

Figure 8. 8-Bit ISA Memory Slave Timing (PIIX4 as Master)

Figure 9. 16-Bit ISA Memory Slave Timing (PIIX4 as Master)

Figure 10. 8-Bit ISA I/O Slave Timing (PIIX4 as Master)

Figure 11. 16-Bit I/O Slave Timing (PIIX4 as Master)

Figure 12. ISA Master Accessing PCI Memory Timing

Figure 13. ISA Master Accessing PIIX4 Register Timing

Figure 14. NMI Timing

Figure 15. Interrupt Timing

Figure 16. ISA Master Miscellaneous Timing

Figure 17. ISA Master Data Swap Timing

Figure 18. DMA Compatible Timing (Memory Read)

Figure 19. DMA Compatible Timing (Memory Write)

Figure 20. DMA Compatible Timing (Data Swap)

Figure 21. DMA Type F Timing

Figure 22. PIIX4-Initiated Refresh Timing

Figure 23. ISA Master-Initiated Refresh Timing

Figure 24. PIIX4 and ISA Master Access to X-Bus Timing

Figure 25. Coprocessor Error and Mouse Support Timing

Figure 26. Real Time Clock Timing (RTCALE Generation)

Figure 27. Speaker Timing

2.5. PCI Timing Diagrams

Figure 28. Propagation Delay

Figure 29. Valid Delay From Rising Clock Edge

Figure 30. Setup and Hold Times

Figure 31. Float Delay

Figure 32. Pulse Width

Figure 33. Output Enable Delay

2.6. IDE Timing Diagrams

Figure 34. IDE PIO Mode

Figure 35. IDE Multiword DMA Mode

2.7. USB Timing Diagrams

Figure 36. Data Signal Rise and Fall Time

Figure 37. Data Jitter

Figure 38. EOP Width Timing

2.8. IOAPIC Timing Diagrams

Figure 39. PIIX4 to IOAPIC Timing

2.9. SMBus Timing Diagrams

Figure 40. SMBus Timing

Figure 41. SMBus Timeout Timing

2.10. Ultra DMA/33 Timing Diagrams

Figure 42. Ultra DMA/33 Drive Initiating a DMA Burst for a Read Command

Figure 43. Ultra DMA/33 Sustained Synchronous DMA Burst

Figure 44. Ultra DMA/33 Sustained Synchronous DMA Burst

Figure 45. Ultra DMA/33 Host Terminating a DMA Burst During a Write Command

UNITED STATES, Intel Corporation 2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119 Tel: +1 408 765-8080

JAPAN, Intel Japan K.K. 5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26 Tel: + 81-29847-8522

> FRANCE, Intel Corporation S.A.R.L. 1, Quai de Grenelle, 75015 Paris Tel: +33 1-45717171

UNITED KINGDOM, Intel Corporation (U.K.) Ltd. Pipers Way, Swindon, Wiltshire, England SN3 1RJ Tel: +44 1-793-641440

GERMANY, Intel GmbH Dornacher Strasse 1 85622 Feldkirchen/ Muenchen Tel: +49 89/99143-0

HONG KONG, Intel Semiconductor Ltd. 32/F Two Pacific Place, 88 Queensway, Central Tel: +852 2844-4555

CANADA, Intel Semiconductor of Canada, Ltd. 190 Attwell Drive, Suite 500 Rexdale, Ontario M9W 6H8 Tel: +416 675-2438