MAthesis

Table 1: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	MeanBins	nIndividuals	nSpecies	nGenera
(0,1e-06]	Modern	0.0000005	240	58	17
(1e-06,0.0117]	Holocene	0.0058500	12	6	4
(0.0117, 0.126]	Upper Pleistocene	0.0688500	46	15	7
(0.126, 0.781]	Middle Pleistocene	0.4535000	46	9	6
(0.781, 2.59]	Lower Pleistocene	1.6845000	68	24	11
(2.59, 3.6]	Upper Pliocene	3.0940000	19	12	8
(3.6, 5.33]	Lower Pliocene	4.4660000	23	13	8
(5.33,11.6]	Upper Miocene	8.4700000	41	21	9

Figure 1: Map displaying all fossil occurrences of testudinids, with color indicating whether relevant literature was available (black if not) and if it was, whether body size data was available or not (yes and no, respectively).

Figure 2: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

Figure 3: Distribution of body site data per time bin

Fossil species, CL, per Locality

Fossil species, CL, per Reference

Fossil genera, CL, per Locality

Fossil genera, CL, per Reference

- ## Warning: Removed 16 rows containing missing values (geom_pointrange).
- ## Warning: Removed 16 rows containing missing values (geom_pointrange).

Figure 4: Boxplots of each genus per time bin, for colors see Fig. 4.

Figure 5: Mean body size and standard deviation per genus in each time bin

1 including Island species (n=2215)

Table 2: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	2.126636e + 09	1968	246.8335
0.0058500	1.245041e + 05	11	688.5455
0.0688500	8.098707e+04	45	447.6480
0.4535000	3.704545e + 04	45	333.8707
1.6845000	1.967096e + 05	66	434.1848
3.0940000	2.812598e + 05	18	642.0167
4.4660000	5.319102e+05	22	1004.9909
8.4700000	3.097159e + 05	40	582.7750

Table 3: Model-fitting results for testudinidae, individuals, including island species

	$\log L$	K	AICc	Akaike.wt
GRW	-49.84924	2	106.6985	0.044
URW	-50.76566	1	104.3313	0.145
Stasis	-46.94604	2	100.8921	0.810

Figure 6: individuals, including island species

2 paleoTS plot with species mean, including island species

EpochBins	meanSpeciesCL	nSpecies	MeanBins
Holocene	671.4667	5	0.00585
Upper Pleistocene	521.4533	17	0.06885
Middle Pleistocene	384.8626	10	0.45350
Lower Pleistocene	626.2039	28	1.68450
Upper Pliocene	610.4591	11	3.09400
Lower Pliocene	953.9089	15	4.46600
Upper Miocene	680.7708	24	8.47000

tt	mm	VV	nn
0.0000005	400.5972	104321.19	50
0.0058500	671.4667	195810.92	5
0.0688500	521.4533	67149.55	17
0.4535000	384.8626	99603.12	10
1.6845000	626.2039	335519.43	28
3.0940000	610.4591	260640.34	11
4.4660000	953.9089	452469.61	15
8.4700000	680.7708	349806.99	24

	$\log L$	K	AICc	Akaike.wt
GRW	-47.67834	2	102.35667	0.048
URW	-47.74028	1	98.28056	0.371

	$\log L$	K	AICc	Akaike.wt
Stasis	-45.19334	2	97.38669	0.580

Figure 7: paleoTS plot with species mean, including island species $\frac{1}{2}$

3 paleoTS plot with genus mean

Table 7: Overview over body size means per time bin on genus level.

CL	n	var	tt	Genus
853.3667	120	168501582	5e-07	Aldabrachelys
238.6918	664	372641839	5e-07	Gopherus
361.0260	204	412645499	5e-07	Chelonoidis
140.0327	849	2949618378	5e-07	Testudo
366.2143	14	26286129	5e-07	Astrochelys
493.3333	3	2190400	5e-07	Centrochelys
176.2667	15	6990736	5e-07	Chersina
724.0000	5	13104400	5e-07	Cylindraspis
252.1250	8	4068289	5e-07	Geochelone
139.2857	7	950625	5e-07	Homopus
242.9875	16	15114989	5e-07	Indotestudo
209.1429	14	8573184	5e-07	Kinixys
166.5000	2	110889	5e-07	Malacochersus
372.1250	8	8862529	5e-07	Manouria
113.4118	17	3717184	5e-07	Psammobates
124.1875	16	3948169	5e-07	Pyxis
405.3333	6	5914624	5e-07	Stigmochelys

tt mm	vv	nn
0000005 316.3547	44441.20	17
0058500 568.9167	182078.62	4
0688500 524.0911	68449.15	7
4535000 510.6329	170442.90	5
6845000 615.9960	254795.78	10
0940000 751.0250	288801.06	8
4660000 791.7563	187777.18	8

tt	mm	vv	nn
8.4700000	883.5611	256846.90	9

Figure 8: paleoTS plot with genus mean, including island species

```
##
## Comparing 3 models [n = 7, method = AD]
##
##
## logL K AICc Akaike.wt
## GRW -45.37058 2 97.74116 0.107
## URW -45.58571 1 93.97143 0.702
## Stasis -44.78886 2 96.57771 0.191
```

	$\log L$	K	AICc	Akaike.wt
GRW	-45.37058	2	97.74116	0.107
URW	-45.58571	1	93.97143	0.702

	$\log L$	K	AICc	Akaike.wt
Stasis	-44.78886	2	96.57771	0.191

4 excluding island species

Table 10: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	vv	nn	mm
0.0000005	1.710776e + 09	1771	199.7807
0.0058500	1.620000e+02	2	259.0000
0.0688500	7.471306e+04	35	380.0617
0.4535000	3.342617e + 03	40	274.8795
1.6845000	6.826984e+04	48	262.7958
3.0940000	4.261398e+05	11	766.3909
4.4660000	5.811355e+05	20	1029.0400
8.4700000	2.745233e+05	39	550.2821

```
##
## Comparing 3 models [n = 7, method = AD]
##
## logL K AICc Akaike.wt
## GRW -50.91308 2 108.8262 0.054
## URW -50.33951 1 103.4790 0.784
## Stasis -49.81453 2 106.6291 0.162
```

Table 11: Model-fitting results for testudinidae, individuals, including island species

	$\log L$	K	AICc	Akaike.wt
GRW	-50.91308	2	108.8262	0.054

	$\log L$	K	AICc	Akaike.wt
URW	-50.33951	1	103.4790	0.784
Stasis	-49 81453	2	106 6291	0.162

 $\log L$ K AICc Akaike.wt

5 paleoTS plot with species mean, excluding island species

EpochBins	${\rm mean Species CL}$	nSpecies	MeanBins
Holocene	259.0000	2	0.00585
Upper Pleistocene	447.7325	12	0.06885
Middle Pleistocene	248.3908	8	0.45350
Lower Pleistocene	368.7943	16	1.68450
Upper Pliocene	702.4714	7	3.09400
Lower Pliocene	983.0487	13	4.46600
Upper Miocene	629.9348	23	8.47000

tt	mm	vv	nn
0.0000005	215.4494	9193.970	32
0.0058500	259.0000	162.000	2
0.0688500	447.7325	71037.951	12
0.4535000	248.3908	9244.191	8
1.6845000	368.7943	192142.503	16
3.0940000	702.4714	393708.572	7
4.4660000	983.0487	520873.653	13
8.4700000	629.9348	300864.767	23

```
##
## Comparing 3 models [n = 7, method = AD]
##
## logL K AICc Akaike.wt
## GRW -48.11009 2 103.2202  0.155
## URW -48.73586 1 100.2717  0.678
```


Figure 9: individuals, excluding island species

Figure 10: paleoTS plot with species mean, excluding island species

Stasis -48.03479 2 103.0696

0.167

	$\log L$	K	AICc	Akaike.wt
GRW	-48.11009	2	103.2202	0.155
URW	-48.73586	1	100.2717	0.678
Stasis	-48.03479	2	103.0696	0.167

6 paleoTS plot with genus mean

Table 15: Overview over body size means per time bin on genus level, excluding island species.

CL	n	var	tt	Genus
238.4562	661	373850751	5e-07	Gopherus
321.4059	188	368044537	5e-07	Chelonoidis
139.1260	835	2997045249	5e-07	Testudo
493.3333	3	2190400	5e-07	Centrochelys
161.6545	11	3161995	5e-07	Chersina
256.7143	7	3229209	5e-07	Geochelone
139.2857	7	950625	5e-07	Homopus
248.1083	12	8864315	5e-07	Indotestudo
209.1429	14	8573184	5e-07	Kinixys
166.5000	2	110889	5e-07	Malacochersus
372.1250	8	8862529	5e-07	Manouria
113.2500	16	3283344	5e-07	Psammobates
108.0000	1	11664	5e-07	Pyxis
405.3333	6	5914624	5e-07	Stigmochelys

nn	VV	mm	tt
14	14018.014	240.8882	0.0000005
2	162.000	259.0000	0.0058500
5	57540.323	426.8276	0.0688500
3	3353.731	230.5548	0.4535000
6	257838.017	395.5642	1.6845000
5	439366.116	887.5900	3.0940000
6	262231.740	800.8417	4.4660000
9	319006.887	787.1722	8.4700000

Figure 11: paleoTS plot with genus mean, excluding island species

```
##
```

Comparing 3 models [n = 7, method = AD]

##

logL K AICc Akaike.wt

GRW -46.23366 2 99.46732 0.110

URW -46.25371 1 95.30742 0.880

Stasis -48.57439 2 104.14878 0.011

	$\log L$	K	AICc	Akaike.wt
GRW	-46.23366	2	99.46732	0.110
URW	-46.25371	1	95.30742	0.880
Stasis	-48.57439	2	104.14878	0.011

7 Boxplots (continental (n) vs. Island (y) species)

Figure 12: Boxplot continental vs. insular, individuals

Figure 13: Boxplots continental vs. insular, genera summarised

Figure 14: Boxplot continental vs. insular, species summarised

