Heun's Method(Modified Euler Method) Report

The ODE used

$$rac{dv}{dt} = k(v-v_r)(v-v_t) - w + In$$

$$\frac{dw}{dt} = a[b(v-v_r)-w]$$

Variables and Parameters

- C: Membrane capacitance (value: C=100, units: typically pF or scaled).
- v: Neuron membrane potential (in millivolts, mV).
- w: Recovery current (in picoamperes, pA, or scaled units).
- t: **Time** (in milliseconds, ms).
- vr: Resting membrane potential (value: vr = -60mV)
- k: Scaling factor for the quadratic term (value: k = 0.7).
- vt: Threshold membrane potential (value: vt = -40mV)
- In: Input current (values: In = 0, for, t < 101ms, In = 70, $for, t \ge 101ms$, units: pA)
- a: Time scale of recovery (value:a = 0.03, units: ms^-1)
- b: Sensitivity of recovery to membrane potential (value: b = -2, dimensionless or scaled).

Initial conditions

$$v(t=0)=v0$$

$$w(t = 0) = w0$$

Where v0 and w0 are constants chosen based on the desired initial state of the neuron (e.g., resting potential).

Reset mechanism

when the membrane potentials reaches a threshold $v_{
m peak}=35mV$ we

- set v(t) = -50mV
- set w(t) = w(t) + 100

Heun's Method

- · its a second-order numerical method
- it incorporates a predictor-corrector approach which gives higher accuracy with an error of order $O(h^2)$
- less complex than RK4

How to Use

Heun's Method is designed to solve a first-order ODE of the form:

$$\frac{dy}{dt}=f(t,y),\quad y(t_0)=y_0$$

the flow of the method is to

- Compute an initial estimate using the Euler method (predictor step)
- Refine the estimate by averaging the derivatives at the current and predicated points

Formula of Heun's Method

$$y_{n+1} = y_n + rac{h}{2}[f(t_n,y_n) + f(t_{n+1}, ilde{y}_{n+1})]$$
 where :

- y_n is the solution at time t_n
- h is the step size
- $f(t_n, y_n)$ is the derivative at the current point
- $ilde{y}_{n+1}$ is the predicted solution at t_{n+1} which is calculated by $ilde{y}_{n+1} = y_n + h \cdot f(t_n,y_n)$
- $f(t_{n+1}, \tilde{y}_{n+1})$ is the derivative at the predicted point.

So basically you first apply the Euler Method to predict where the next y_b will be then you use the (y_b, t_{n+1}) and the (y, t_n) to make get the slope for both of them and then we use those two slopes $f(t_n, y_n)$, $f(t_{n+1}, \tilde{y}_{n+1})$ to get an average estimation of where would the next y really be(y_{n+1}).

FIGURE 22.4 Graphical depiction of Heun's method. (a) Predictor and (b) corrector.

Solving Systems of ODE

 Apply the method to each dependent variable simultaneously so the system will look like this

$$\frac{d}{dt} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} \frac{k(v-v_r)(v-v_t)-w+\ln}{C} \\ a \left[b(v-v_r) - w \right] \end{bmatrix} = f(t, \begin{bmatrix} v \\ w \end{bmatrix})$$

we will use initial condition of

- v(0) = vr = -60
- w(0) = 0.

the Flow of the solution

first we will initialize the parameters and variables then for each step (In is an array where In = 0, for, i < 101, and, In = 70, for, i > = 101) there will be a function that calculates the derivative for both dependent variables

$$ullet f_1(t,v,w) = rac{k(v-v_r)(v-v_t)-w+{
m In}[i]}{C}$$

•
$$f_2(t,v,w)=a\left[b(v-v_r)-w\right]$$

and after computing the derivative we will calculate the predictor for each dependent variable

- $\bullet \ \ \tilde{v}[i+1] = v[i] + h \cdot f_1(t_i,v[i],w[i])$
- $\bullet \ \ \tilde{w}[i+1] = w[i] + h \cdot f_2(t_i,v[i],w[i])$

then calculate the corrector for each dependent variable (which corresponds to the solution at the next time step)

```
\begin{array}{l} \bullet \ \ v[i+1] = v[i] + \frac{h}{2}[f_1(t_i,v[i],w[i]) + f_1(t_{i+1},\tilde{v}[i+1],\tilde{w}[i+1])] \\ \bullet \ \ w[i+1] = w[i] + \frac{h}{2}[f_2(t_i,v[i],w[i]) + f_2(t_{i+1},\tilde{v}[i+1],\tilde{w}[i+1])] \\ \text{and at the end check for spike and reset if needed} \end{array}
```

The Python Code

```
import numpy as np
import matplotlib.pyplot as plt
Here we intialize the parameters
C = 100
k = 0.7
vr = -60
vt = -40
a = 0.03
b = -2
c = -50
d = 100
vpeak = 35
h = 1
In = np.zeros(1001)
In[101:]=70
print(In)
v= np.zeros(1001)
w = np.zeros(1001)
##Initial Conditions
v[0] = vr
w[0] = 0
def f(i, y):
    this method is used to calculate the derivative of dependent variable
```

```
the methods gets an array of values for v, and w as an inputs and returns an array of the
calculated derivatives for each variable(numpy array)
   v = y[0]
   w = y[1]
   dvbydt = (k*(v - vr) * (v - vt) - w + In[i]) / C
   dwbydt = a * (b * (v - vr) - w)
   return np.array([dvbydt, dwbydt])
### Heun's Method Implementation
for i in range(0, 1000):
   y = np.array([v[i],w[i]])
   derivatives = np.zeros(2)
   derivatives = f(i,y)
   y_predicted = y + h*derivatives
   y\_corrected = y + (h/2)*(f(i,y)+f(i+1,y\_predicted))
   v[i+1] = y\_corrected[0]
   w[i+1] = y\_corrected[1]
   if (v[i + 1] >= vpeak):
       v[i] = vpeak
       v[i + 1] = c
       w[i + 1] = w[i + 1] + d
t = np.arange(0, 1001, h)
plt.figure(figsize=(10, 6))
plt.plot(t, v, 'b-', label='Membrane Potential v(t)')
plt.xlabel('Time (ms)')
plt.ylabel('Membrane Potential (mV)')
plt.title('Dynamic Neuron Model: Membrane Potential vs. Time')
plt.grid(True)
plt.legend()
plt.show()
```

Output of the Code

Disadvantages of Heun's method

- because Heun's method is an explicit method it does not fare well with stiff ode's like with the model we are using
- because the Hodgkin Huxley model is stiff with sharp changes, As a second-order method $O(h^2)$, it is less accurate than higher-order methods like RK4 and other adaptive methods