Practical No. 01 - Applications of Logic

- 1. Let p: Switch S_1 be closed
 - q: Switch S_2 be closed

 $r: Switch S_3$ be closed

... The switches $\,S_1\,=\,\sim\,p$, $\,S_2\,=\,\sim\,q$

and $S_3 = r$ are open

and
$$S_3 = \sim r$$
 are open
Now, $\sim p \wedge q = \longrightarrow_{S_1^{\bullet}} \longrightarrow_{S_2^{\bullet}} \longrightarrow_{S_3^{\bullet}} \longrightarrow_{S_3^{\bullet}}$

The switching circuit for the given statement is

- Let p: Switch S_1 be closed, q: Switch S_2 be closed, r: Switch S_3 be closed. The switches $S'_1=\sim p$, $S'_2=\sim q$ and $S'_3=\sim r$ are open

Now,
$$g_1 = (p \land q) \lor r$$

$$g_2 = (p \land q) \lor r$$

$$g_3 = p \lor (q \land \sim r)$$

... The given circuit can be expressed as a logical statement as follows

$$[(p \land q) \lor r] \land [\sim p \lor (q \land \sim r)] \land [\sim p \land \sim q]$$

The switching table for the above logical statement is

1	2	3	4	5	6	7	8	9	10	11	12	13
p	q	r	~ p	~ q	~ r	$p \wedge q$	$D \lor r$	q ^ C	$A \vee F$	$A \wedge B$	$\mathbf{E} \vee \mathbf{G}$	H v I
			A	В	С	D	Е	F	G	Н	I	I
1	1	1	0	0	0	1	1	О	О	О	1	1
1	1	О	0	0	1	1	1	1	1	О	1	1
1	О	1	О	1	О	О	1	О	О	О	1	1
1	О	0	0	1	1	О	0	О	О	О	О	О
О	1	1	1	0	0	О	1	0	1	О	1	1
О	1	О	1	0	1	О	0	1	1	О	1	1
О	0	1	1	1	0	О	1	0	1	1	1	1
О	О	0	1	1	1	О	0	О	1	1	1	1

Practical No. 02 - Inverse of a Matrix by Adjoint Method

Let the given matrix be $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$ We have $M_{11} = \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = -2 \ , \ A_{11} = (-1)^2 (-2) = -2$ 1.

$$M_{11} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} = -2$$
, $A_{11} = (-1)^2(-2) = -2$

$$M_{12} = \begin{vmatrix} 3 & 1 \\ 0 & 1 \end{vmatrix} = 3$$
, $A_{12} = (-1)^3(3) = -3$

$$M_{13} = \begin{vmatrix} 3 & 0 \\ 0 & 2 \end{vmatrix} = 6$$
, $A_{13} = (-1)^4(6) = 6$

$$M_{21} = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = 0$$
, $A_{21} = (-1)^2(-2) = -2$

$$M_{22} = \left| \begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right| \ = \ 1 \ \ , \ \ A_{22} = (-1)^4(1) = -1$$

$$M_{23} = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2$$
, $A_{23} = (-1)^5(2) = -2$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$
, $A_{31} = (-1)^4(2) = 2$

$$\mathbf{M}_{32} = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} = -2 , \ \mathbf{A}_{32} = (-1)^5(-2) = 2$$

$$M_{33} = \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} = -2 , A_{33} = (-1)^6 (-6) = -6$$

Now det A = -2

$$\therefore A^{-1} = \frac{1}{|A|} (Adj A) = -\frac{1}{2} \begin{bmatrix} -2 & 0 & 2 \\ -3 & 1 & 2 \\ 6 & -2 & -6 \end{bmatrix}$$

Solving the system:

Writing given system in matrix form...

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ 9 \end{bmatrix}$$

i.e AX = B

Pre-multiplying by A⁻¹,

$$X = A^{-1}B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \begin{bmatrix} -2 & 0 & 2 \\ -3 & 1 & 2 \\ 6 & -2 & -6 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 9 \end{bmatrix}$$
$$\begin{bmatrix} x \\ \end{bmatrix} \begin{bmatrix} -2 \\ \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix}$$

$$x = -2, y = 4, z = 1$$

2. Let the given matrix be
$$A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & -4 \end{bmatrix}$$

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 3 \\ 1 & -4 \end{vmatrix} = -11$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 3 & -4 \end{vmatrix} = 13$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = -5$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} -1 & 1 \\ 1 & -4 \end{vmatrix} = -3$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 3 & -4 \end{vmatrix} = -11$$

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} = -5$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 1 \\ 2 & 3 \end{vmatrix} = -11$$

$$A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = -5$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 5$$

Now det A = -40

$$\therefore A^{-1} = \frac{1}{|A|} (Adj A) = -\frac{1}{40} \begin{bmatrix} -11 & -3 & -5 \\ 13 & -11 & -5 \\ -5 & -5 & 5 \end{bmatrix}$$

Solving the system:

Writing given system in matrix form...

$$\begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 1 \end{bmatrix}$$

i.e AX = B

Pre-multiplying by A⁻¹,

$$X = A^{-1} B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = -\frac{1}{40} \begin{bmatrix} -11 & -3 & -5 \\ 13 & -11 & -5 \\ -5 & -5 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

x = 1, y = 2, z = 1

Practical No. 03 - Inverse of a Matrix by Elementary Transformation

1. We have
$$AA^{-1} = I$$

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_2 + R_1, R_3 - 2R_1$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & -3 & -5 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{2}R_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3/2 \\ 0 & -3 & -5 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1/2 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$R_3 + 3R_2, R_1 - 2R_2$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3/2 \\ 0 & 0 & -1/2 \end{bmatrix} A^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 1/2 & 1/2 & 0 \\ -1/2 & 3/2 & 1 \end{bmatrix}$$

$$-2R_3$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 1/2 & 1/2 & 0 \\ 1 & -3 & -2 \end{bmatrix}$$

$$R_1 + 2R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 2 & -7 & -4 \\ 1/2 & 1/2 & 0 \\ 1 & -3 & -2 \end{bmatrix}$$

We have
$$AA^{-1} = I$$

$$\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{7}R_1$$

$$\begin{bmatrix} 1 & -3/7 & -3/7 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1/7 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_2 + R_1, \quad R_3 + R_1$$

$$\begin{bmatrix} 1 & -3/7 & -3/7 \\ 0 & 4/7 & -3/7 \\ 0 & -3/7 & 4/7 \end{bmatrix} A^{-1} = \begin{bmatrix} 1/7 & 0 & 0 \\ 1/7 & 0 & 0 \\ 1/7 & 0 & 0 \end{bmatrix}$$

$$\frac{7}{4}R_2$$

$$\begin{bmatrix} 1 & -3/7 & -3/7 \\ 0 & 1 & -3/4 \\ 0 & -3/7 & 4/7 \end{bmatrix} A^{-1} = \begin{bmatrix} 1/7 & 0 & 0 \\ 1/4 & 7/4 & 0 \\ 1/7 & 0 & 0 \end{bmatrix}$$

$$R_3 + \frac{3}{7}R_2, \quad R_1 + \frac{3}{7}R_2$$

$$\begin{bmatrix} 1 & 0 & -3/4 \\ 0 & 1 & -3/4 \\ 0 & 0 & 1/4 \end{bmatrix} A^{-1} = \begin{bmatrix} 1/4 & 3/4 & 0 \\ 1/4 & 7/4 & 0 \\ 1/4 & 3/4 & 1 \end{bmatrix}$$

$$4R_3$$

$$\begin{bmatrix} 1 & 0 & -3/4 \\ 0 & 1 & -3/4 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1/4 & 3/4 & 0 \\ 1/4 & 7/4 & 0 \\ 1/4 & 7/4 & 0 \\ 1 & 3 & 1 \end{bmatrix}$$

Practical No. 04 - Solutions of Triangle.

$$\begin{array}{c} R_2 - \frac{3}{2}R_3 \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 2 & -7 & -4 \\ -1 & 5 & 3 \\ 1 & -3 & -2 \end{bmatrix} \\ & \therefore \quad A^{-1} = \begin{bmatrix} 2 & -7 & -4 \\ -1 & 5 & 3 \\ 1 & -3 & -2 \end{bmatrix} \end{array}$$

Solving the system:

Writing given system in matrix form...

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$$

i.e AX = B

Pre-multiplying by A⁻¹,

$$X = A^{-1} B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 & -7 & -4 \\ -1 & 5 & 3 \\ 1 & -3 & -2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$R_{1} + \frac{3}{4}R_{2}, \quad R_{2} + \frac{3}{4}R_{3}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

The given system is

7x - 3y - 3z = 7, -x + y = -2, -x + z = 0.

Writing given system in matrix form...

$$\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 0 \end{bmatrix}$$

 $i.e \quad AX = B$

Pre-multiplying by A⁻¹,

$$X = A^{-1} B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$x = 1, \quad y = -1, \quad z = 1$$

1. Given that
$$b = 10$$
, and $c = 12$ and $\sin\left(\frac{A}{2}\right) = \frac{1}{2\sqrt{10}}$

We know that, $\sin\left(\frac{A}{2}\right) = \sqrt{\frac{(s-b)(s-c)}{bc}}$

$$\therefore \frac{1}{2\sqrt{10}} = \sqrt{\frac{(s-10)(s-12)}{(10)(12)}}$$

squaring both sides we get,

$$\frac{1}{40} = \frac{(s-10)(s-12)}{\cancel{120}}$$
$$3 = s^2 - 22s + 120$$

2. Given that,
$$b: c = 2: \sqrt{3}$$
 and $\angle A = 30^{\circ}$
$$\therefore \quad \frac{b}{c} = \frac{2}{\sqrt{3}}$$

Let b = 2k and c =
$$\sqrt{3}k$$
 where $k \in \mathbb{R}$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
 $\cos 30^\circ = \frac{4k^2 + 3k^2 - a^2}{2(2k)\sqrt{3}k}$
 $\frac{\sqrt{3}}{2} = \frac{7k^2 - a^2}{4\sqrt{3}k^2}$
 $6k^2 = 7k^2 - a^2$

Practical No. 05 - Inverse Trigonometric Functions.

1. Let
$$\alpha = \cos^{-1}\left(\frac{4}{5}\right)$$
 and $\beta = \cos^{-1}\left(\frac{12}{13}\right)$(1)
 $\therefore \cos \alpha = \frac{4}{5}$ and $\cos \beta = \frac{12}{13}$
where, $0 < \alpha < \pi/2$, $0 < \beta < \pi/2$
 $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$
 $\sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$
 $\cos (\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$
 $= \frac{4}{5} \times \frac{12}{13} - \frac{3}{5} \times \frac{5}{13}$

2. We know that,
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

L.H.S. $= \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right)$
 $= \tan^{-1}\left[\frac{\frac{1}{3} + \frac{1}{8}}{1 - \left(\frac{1}{3}\right)\left(\frac{1}{8}\right)}\right]$
 $= \tan^{-1}\left[\frac{\frac{8+3}{3.8}}{\frac{3.8-1}{3.8}}\right]$

10, and c = 12 and sin
$$\left(\frac{A}{2}\right) = \frac{1}{2\sqrt{10}}$$
 | $s^2 - 22s + 117 = 0$
 $s = 2 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 117 = 0$
 $s = 3 - 13s - 9s + 110 + 12$
 $s = 3 - 13s - 9s + 110 + 12$
 $s = 3 - 13s - 9s + 13s - 12$
 $s = 3 - 13s - 9s + 13s - 12$
 $s = 3 - 13s - 12s - 12s - 12s - 12$
 $s = 3 - 13s - 12s - 12s$

$$k^2 = a^2 \Rightarrow k = a$$

 $\therefore b = 2k = 2a \text{ and } c = \sqrt{3}k = \sqrt{3}a$
By sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{a}{\sin 30^{\circ}} = \frac{2a}{\sin B}$$

$$\sin B = 2 \cdot \sin 30^{\circ}$$

$$\sin B = 2\left(\frac{1}{2}\right) = 1$$

$$B = 90^{\circ} = \frac{\pi}{2}$$

$$\cos (\alpha + \beta) = \frac{48}{65} - \frac{15}{65}$$

$$= \frac{48 - 15}{65}$$

$$\cos (\alpha + \beta) = \frac{33}{65}$$

$$\alpha + \beta = \cos^{-1}\left(\frac{33}{65}\right)$$

$$\therefore \text{ From (1) we get}$$

$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$

$$= \tan^{-1}\left(\frac{11}{24-1}\right)$$

$$= \tan^{-1}\left(\frac{11}{23}\right)$$

$$= \tan^{-1}\left(\frac{11}{23}\right)$$

$$= R.H.S.$$

$$\therefore \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \tan^{-1}\left(\frac{11}{23}\right)$$

Practical No. 06 - Geometrical Applications Of Vectors.

Let ABC be a triangle. Let P, Q, R be mid-points of the sides BC, CA and AB. Let \bot bisectors of the sides AB and AC intersect at O. Take O as the origin.

It is enough to show that $OP \perp BC$ or $\overline{OP} \cdot \overline{BC} = 0$ Let \bar{a} , \bar{b} , \bar{c} , \bar{p} , \bar{q} , \bar{r} be the p.v.'s of A, B, C, P, Q, R resp.

$$\begin{array}{cccc} \ddots & 2\overline{q}\cdot (\overline{c}-\overline{a}) &=& 0 \\ \ddots & (\overline{c}+\overline{a})\cdot (\overline{c}-\overline{a}) &=& 0 \end{array}$$

$$(\overline{c} + \overline{a}) \cdot (\overline{c} - \overline{a}) = 0$$

$$c^2 - a^2 = 0$$
 --- (1)

Also
$$\overline{OR} \cdot \overline{BA} = 0$$
 (since $OR \perp BA$)
$$\overrightarrow{r} \cdot (\overline{a} - \overline{b}) = 0$$
R is mid-pt of

$$\begin{array}{ccc}
\cdot & 2\overline{r} \cdot (\overline{a} - \overline{b}) = 0 \\
\cdot & (\overline{a} + \overline{b}) \cdot (\overline{a} - \overline{b}) = 0
\end{array}$$

$$a^2 - b^2 = 0$$
 --- (2)

$$a^2 - b^2 = 0$$

Adding (1) and (2),

OR
$$\perp$$
 BA)

R is mid-pt of AB

 $\overline{a} + \overline{b}$

OR
$$\perp$$
 BA)
R is mid-pt of AB
$$\overline{r} = \frac{\overline{a} + \overline{b}}{2}$$

$$\frac{\overline{p} \cdot (\overline{b} - \overline{c})}{OP} \cdot \overline{BC} = 0$$

 $c^2 - b^2 = 0$

 $b^2 - c^2 = 0$

 $(\overline{b} + \overline{c}) \cdot (\overline{b} - \overline{c}) = 0$

 $2\overline{p}\cdot(\overline{b}-\overline{c})~=~0$

P is mid-pt of BC
$$\overline{p} = \frac{\overline{b} + \overline{c}}{2}$$

Let ABC be a triangle and P and Q are the mid-points of the sides AB and AC respectively.
 Let a, b, c, p & q are position vectors of the points A, B, C, D, P, & Q respectively.

Hence \overline{BC} is a scalar multiple of \overline{AB} \overline{BC} is parallel to \overline{AB} seg PQ is parallel to seg BC

Also
$$|\overline{PQ}| = \frac{1}{2} |\overline{BC}|$$

 $l(PQ) = \frac{1}{2} l(BC)$

Practical No. 07 - Three Dimensional Geometry (dr's ans dc's)

 $a_1 = 1$, $b_1 = 2$, $c_1 = 3$ and $a_2 = 2$, $b_2 = -2$, $c_2 = k - 1$.

//repeated in PQR for searching

1. $A \equiv (5, 6, 4), B \equiv (4, 4, 1), C \equiv (8, 2, k)$ d.r.'s of lines AB and BC are 4 - 5, 4 - 6, 1 - 4 and 4 - 2, 2 - 4, k - 1i.e -1, -2, -3 and 2, -2, k - 1i.e 1, 2, 3 and 2, -2, k - 1Let a_1, b_1, c_1 and a_2, b_2, c_2 be the d.rs of AB and BC respectively

2. Let a_1 , b_1 , c_1 be the d.rs of the first line and a_2 , b_2 , c_2 be the d.rs of the second line. Given that ,

$$a_1 = 2$$
, $b_1 = 3$, $c_1 = 6$ & $a_2 = 1$, $b_2 = -2$, $c_2 = 2$
Let θ be the acute angle between the lines

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$
$$= \left| \frac{(2)(1) + (3)(-2) + (6)(2)}{\sqrt{(2)^2 + (3)^2 + (6)^2} \sqrt{(1)^2 + (-2)^2 + (2)^2}} \right|$$

$$= \left| \frac{2 - 6 + 12}{\sqrt{4 + 9 + 36\sqrt{1 + 4 + 4}}} \right|$$

$$= \left| \frac{8}{(7)(3)} \right|$$

$$= \left| \frac{8}{21} \right|$$

$$\cos \theta = \frac{8}{21}$$

$$\therefore \theta = \cos^{1}\left(\frac{8}{21}\right)$$

Practical No. 08 - Applications of scalar triple product of vectors.

1. Let A = (3, 2, -1), B = (5, 4, 2) C = (6, 3, 5), D(1, 0, x) $\overline{AB} = (5 - 3)\overline{i} + (4 - 2)\overline{j} + (2 + 1)\overline{k}$ $= 2\overline{i} + 2\overline{j} + 3\overline{k}$ $\overline{AC} = (6 - 3)\overline{i} + (3 - 2)\overline{j} + (5 + 1)\overline{k}$ $= 3\overline{i} + 6\overline{j} + \overline{k}$ $\overline{AD} = (1 - 3)\overline{i} + (0 - 2)\overline{j} + (x + 1)\overline{k}$ $= -2\overline{j} - 2\overline{j} + (x + 1)\overline{k}$

$$\overline{AB}$$
, \overline{AC} , \overline{AD} are coplanar.
 $[\overline{AB}, \overline{AC}, \overline{AD}] = 0$

$$\begin{vmatrix} AB, AC, AD \end{bmatrix} = 0$$

$$\begin{vmatrix} 2 & 2 & 3 \\ 3 & 6 & 1 \\ -2 & -2 & x+1 \end{vmatrix} = 0$$

Since A, B, C, D are coplanar,

2(6x+6+2) - 2(3x+3+2) + 3(-6+12) = 0

$$12x + 16 - 6x - 10 + 18 = 0$$

$$6x + 24 = 0$$

$$\cdot \cdot \cdot \mathbf{x} = -4$$

2, Given : $\overline{a} = \overline{i} - 2\overline{j} - \overline{k}$, $\overline{b} = 3\overline{i} + 2\overline{j} + \overline{k}$, and $\overline{c} = \overline{i} + \overline{j} + 5\overline{k}$ $\therefore [\overline{a}\overline{b}\overline{c}] = \begin{vmatrix} 1 & -2 & -1 \\ 3 & 2 & 1 \\ 1 & 1 & 5 \end{vmatrix}$

$$= (1)[9] - (-2)[14] + (-1)[1]$$

$$= 9 + 28 - 1$$

$$= 36$$

The required volume is 36 cu. units

Practical No. 09 - Three Dimentional Geometry - Line.

1. Since the required line is perpendicular to the line with d.r.'s 1, -2, -4 & 3, 2, 5.

Hence the req. line is \perp^r to the vectors $\bar{a} = \bar{i} - 2\bar{j} - 4\bar{k} & \bar{b} = 3\bar{i} + 2\bar{j} + \bar{5}$ $\bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ 1 & -2 & -4 \\ 3 & 2 & 5 \end{vmatrix}$ $= \bar{i}(-10 + 8) - \bar{j}(5 + 12) + \bar{k}(2 + 6)$ $= -2\bar{i} - 17\bar{j} + 8\bar{k}$

Given that the line is parallel to $2\overline{i} - \overline{j} + 5\overline{k}$. Direction ratios of the line are 2, -1, 5.

... The d.r.'s of the line are -2, -17, 8. i.e. -2, -17, 8

Given that the line passes through (0, 1, 2). Hence using symmetrical form the req. eqn is

$$\frac{x-0}{-2} = \frac{y-1}{-17} = \frac{z-2}{8}$$

$$\frac{x}{-2} = \frac{y-1}{-17} = \frac{z-2}{8}$$

Practical No, 10 - Three Dimentional Geometry - Plane.

1. Eqn of the plane passing through the points (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) is $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$

The line passes through (2, 2, 3)

Eqn of the plane passing through the points (0, -1, 0), (2, 1, -1), (1, 1, 1) is

Using symmetrical form, the reqd. eqn is $\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-3}{5}$

$$\left| \begin{array}{cccc} x - 0 & y + 1 & z - 0 \\ 2 & 2 & -1 \\ 1 & 2 & 1 \end{array} \right| = 0$$

$$(x - 0)(4) - (y + 1)(3) + (z - 0)(2) = 0$$

$$4x - 3y + 2z - 3 = 0$$
 --- Ans

Let $\overline{a} = 4\overline{i} + 5\overline{j} + 3\overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} + 2\overline{k}$ 2. Since \overline{a} and \overline{b} are both parallel to the the plane, $\overline{a} \times \overline{b}$ is \perp^r to the plane.

$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 4 & 5 & 3 \\ 2 & 3 & 2 \end{vmatrix}
= \overline{i}(10 - 9) - \overline{j}(8 - 6) + \overline{k}(12 - 10)$$

Practical No. 11 - Formations and Solutions of LPP

1.

Let x packets of A and y packets of B and be purchased. Cost of 1 packet of food A is Rs.15 and that of B is Rs.10. So the cost of x packets of food A is Rs.15x cost of x packets of food B is Rs.10y :. Total cost Z = 15x + 10y(1M)

Vitamin	Food A	Food B	Required
Vitamin A1	2 x	у	4
Vitamin B1	4 x	4 y	12

Let x be the no. of chairs and y be the no. of tables. Then we have the following Formation: Maximize z = 20x + 30y, s.t.

$$3x + 3y \le 36$$
, $5x + 2y \le 50$,

$$2x + 6y \le 60, \quad x \ge 0, \quad y \ge 0$$

Solution: Draw the lines -
$$3x + 3y = 36$$

$$5x + 2y = 50$$
 and $2x + 6y = 60$

The vertices of the convex region are O(0, 0), A(10, 0), B(26/3, 10/3), C(3, 9) and D(0,10). Profits at these points are

$$Z_{O} = 20(0) + 30(0) = 0$$

$$Z_A = 20(10) + 30(0) = 200$$

$$Z_{\rm B} = 20(26/3) + 30(10/3) = 820/3$$

$$Z_C = 20(3) + 30(9) = 330$$

$$= \overline{i} - 2\overline{j} + 2\overline{k}$$

- \overline{i} $2\overline{j}$ + $2\overline{k}$ is normal to the plane with the direction ratios 1, -2, 2
 - Also, the plane passes through (3, 4, 2),
- its equation is

$$1(x-3) + (-2)(y-4) + 2(z-2) = 0$$

$$x-3-2y+8+2z-4 = 0$$

$$x-2y+2z+1=0$$

$$(x-3) + (-2)(y-4) + 2(z-2) = x-3-2y+8+2z-4 = 0 x-2y+2z+1=0$$

:. The given problem can be formulated as an LPP as follows

Minimize
$$Z = 15 x + 10 y$$

Subjected to $2 x + y$

$$2x + y \ge 4$$

$$4x + 4y \ge 12$$
$$x \ge 0, y \ge 0$$

Draw, graphs of lines
$$2 x + y = 4$$
(1)
 $4 x + 4 y = 12$

$$4 x + 4 y = 12$$

ersection of (1) and (2)

P is the point of intersection of (1) qnd (2) Solving (1) and (2), we get
$$P = (1, 2)$$

Vertex	Obj.Function	Value of Z
B = (0, 4)	Z=15(0)+10(4)	40
P = (1, 2)	15(1) + 10(2)	35
C = (3, 0)	15(3) + 10(0)	45

- :. Minimum value of Z is 35 at P (1, 2)
- :. 1 packet of food type A and 2 packets of food type Bto be purchased

- $Z_D = 20(0) + 30(10) = 300$
- $Z_{max} = 330$ at C(3, 9). Hence 3 chairs and 9 tables should be produced.

Maximum profit is Rs 330.

Practical No. 12 - Applications Of Derivatives (Geometric applications)(DS)

Equation of the curve is $\sqrt{x} - \sqrt{y} = 1$ (1) Equation of the tangent is given by, Diff.(1) w.r.t.x. we get,

Equation of the curve is
$$\sqrt{x} - \sqrt{y} = 1$$
(1) Equation of the tangent is given by, Diff.(1) w.r.t.x. we get,
$$\frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \quad -\frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}}$$
 $3y - 12 = 2x - 18 \Rightarrow 2x - 3y - 6 = 0$ Normal is perpendicular to tangent is given by,
$$\frac{dy}{dx} = \sqrt{\frac{y}{x}}$$
 Slope of the normal is $m_2 = -\frac{1}{dy/d}$

 $\frac{dy}{dx} = \sqrt{\frac{y}{x}}$ Given that P (9, 4). : Slope of the tangent at P is given by $m_1 = \left(\frac{dy}{dx}\right)_{(9,4)} = \sqrt{\frac{4}{9}} = \frac{2}{3}$ Normal is perpendicular to tangent : Slope of the normal is $m_2 = -\frac{1}{dy/dx} = -\frac{3}{2}$ Equation of the tangent is given by, $y - 4 = -\frac{3}{2}(x - 9)$ i.e. 2y - 8 = -3x + 27 3x + 2y - 35 = 0

Let $P(x_1, y_1)$ be the required point on the curve

$$y = x - \frac{4}{x}$$
(1)
Diff. w.r.t.x,

$$\frac{dy}{dx} = 1 + \frac{4}{x^2}$$

$$\therefore \text{ Slope of tangent at P on (1) is}$$

$$\left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 1 + \frac{4}{x^2_1}$$

Given that the tangent is parallel to the line y = 2x

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)} = 2$$

$$y - 4 = \frac{2}{3}(x - 9)$$

$$3y - 12 = 2x - 18 \Rightarrow 2x - 3y - 6 = 0$$

y - 4 =
$$-\frac{3}{2}$$
 (x - 9) i.e. 2y - 8 = -3x + 27
3x + 2y - 35 = 0

$$1 + \frac{4}{x^{2}_{1}} = 2$$

$$\therefore x^{2}_{1} + 4 = 2.x_{1}^{2}$$

$$\therefore x^{2}_{1} = 4$$

$$\therefore x_{1} = \pm 2$$

If $x_1 = 2$, then from (1) we get y = 0

The point is (2, 0)

If $x_1 = -2$, then from (1) we get y = 0

The point is (-2, 0)

The required points are (2, 0) and (-2, 0)

Practical No. 13 - Applications of Derivatives - Rate, Measure(DS)

1. Let v be the velocity and f be the acc^n of the particle at any time t.

Since
$$s = 160t - 16t^2$$

Velocity at
$$t = 1$$
 is $v_{(t=1)}$
= 160 - 32(1)
= 128 m/s

2, Let r be the radius and V be the volume.

Now
$$V = \frac{4}{3} \pi r^3$$

$$= \frac{4}{24} \pi (2r)^3$$

$$= \frac{1}{6} \pi D^3, \text{ where D is diameter}$$

$$\frac{dV}{dt} = \frac{1}{2} \pi D^2 \frac{dD}{dt}$$

Velocity at
$$t = 9$$
 is $v_{(t=9)}$
= 160 - 32(9)
= -128 m/s

Since two velocities have opp. signs & equal magnitude, the required result Also when $v=0,\ 160$ - 32t=0

$$t = 5$$

 $s = 160(5) - 3(5)^2 = 400 \text{ m}$

When r = 5 cms i.e when D = 10 cm,

Further, f''(x) = -2

$$3 = \frac{1}{2} \pi (10)^2 \frac{dD}{dt} \frac{dV}{dt} = 3 \text{ (Given)}$$

$$\therefore \frac{dD}{dt} = \frac{3}{50\pi} \quad \text{cm/sec}$$

- Practical No. 14 Applications of Derivatives Maxima and Minima(DS)
- 1. Let the parts be x and 64 x

Let
$$f(x) = x(64 - x)$$

= $64x - x^2$

 $= 64x - x^2$ $\therefore f'(x) = 64 - 2x$

- Hence by the second derivative test f is maximum at x = 32 . Parts are 32 & 32
- 2. Let x, y be the sides of the rectangle.

Then
$$2x + 2y = 108$$
 i.e $x + y = 54$ -- [1]
Rectangle Area A = xy
= x(54 - x) by [1]
= 54x - x²
 $\frac{dA}{dx} = 54 - 2x$

Hence by the second derivative test A is Maximum at x = 27

Consequently [1] gives y = 54 - 27 = 27 .: Dimensions are 27×27 cm.

Practical No. 15 - Applications of Derivatives - Rolle's Theorem, LMVT

Polynomial function is known to be continuous and differentiable for all x. Also $f(-2) = (-2)^2 - (-2) - 12 = -6$ and $f(3) = (3)^2 - (3) - 12 = -6$

Thus (i) f is continuous on [-2, 3] (ii) f is differentiable on (-2, 3) and (iii) f(-2) = f(3)

Hence all the condition of Rolle's Theorem are satisfied. Therefore there exists at least one $c \in (-2, 3)$ such that f'(c) = 0.

Now f '(x) = 0 gives $2x - 1 = 0 \Rightarrow x = 1/2$. Thus $c = 1/2 \in (-2, 3)$ s.t f '(c) = 0 Hence Rolle's Theorem is verified.

2. Polynomial function is known to be continuous and differentiable for all x.

Thus (i) f is continuous on [1, 4] (ii) f is differentiable on (1, 4)

.'. All the conditions of Lagrange's Mean Value Theorem are satisfied. Therefore there exists

at least one
$$c \in (1, 4)$$
 such that
$$\frac{f(4) - f(1)}{4 - 1} = f'(c) \quad \therefore \quad \frac{7 - (-4)}{4 - 1} = 4c - 7 \quad \therefore \quad \frac{11}{3} = 4c - 7$$

 $c = 8/3 \in (1, 4)$ which satisfies (1). Hence Lagranges Mean Value Theorem is verified.

Practical No. 16 - Applications of Definite Integrals - Limit of Sum(DS)

1.
$$\int_{1}^{3} (4x+5) dx$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \left[4(1+rh) + 5 \right] h$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \left[4rh^{2} + 9h \right]$$

$$= \lim_{n \to \infty} \left[4h^{2} \sum_{r=1}^{n} r + \sum_{r=1}^{n} 9h \right]$$

$$= \lim_{n \to \infty} \left[4h^2 \frac{n(n+1)}{2} + 9hn \right]$$

$$= \lim_{n \to \infty} \left[4 \frac{4}{n^2} \frac{n(n+1)}{2} + 9(2) \right], h = \frac{2}{n}$$

$$= \lim_{n \to \infty} \left[8 + \frac{8}{n} + 18 \right]$$

$$= 8 + 0 + 18$$

$$= 26$$

2.
$$\int_{1}^{2} e^{x} dx \qquad h = \frac{b-a}{n} = \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \left[e^{1+rh} \right] h$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \left[e e^{rh} h \right]$$

$$= \lim_{n \to \infty} \left[eh \sum_{r=1}^{n} e^{rh} \right]$$

$$= \lim_{h \to 0} \left[eh \frac{e^{h}(e-1)}{e^{h}-1} \right]$$

$$\sum_{r=1}^{n} e^{rh} = e^{h} + e^{2h} + e^{3h} + \dots + e^{nh}$$

$$= \frac{e^{h} [(e^{h})^{n} - 1]}{e^{h} - 1}$$

$$= \frac{e^{h} (e^{nh} - 1)}{e^{h} - 1}$$

$$= \frac{e^{h} (e - 1)}{e^{h} - 1} , nh = 1$$

 $= e(1)e^{0}(e-1)$

Practical No. 17 - Applications Of Definite Integral - Area (DS)

1. The required area (shaded part) is

$$= \int_{0}^{\pi/2} (2x + \sin x) dx$$

$$= \left[x^{2} - \cos x \right]_{0}^{\pi/2}$$

$$= \left[\frac{\pi^{2}}{4} - 0 \right] - \left[0 - 1 \right] = \frac{\pi^{2}}{4} + 1$$

lim

 $h\rightarrow 0$

= 1

 $\overline{e^h - 1}$

2. The required area (shaded part) is

required area (shaded part) is
$$= \int_{0}^{2a} \frac{1}{a} x^{2} dx$$

$$= \frac{1}{a} \left[\frac{x^{3}}{3} \right]_{0}^{2a}$$

$$= \frac{1}{a} \left[\frac{8a^{3}}{3} - 0 \right] = \frac{8a^{2}}{3} \quad \text{--- Ans}$$

Practical No. 18 - Applications of Differential Equations(DS)

Let B: No. of bacteria present at time t hrs 1.

Given B = N when t = 0--- (1) B = 2N when t = 3 $\frac{dB}{}$ \propto B Also dt dΒ dt $d\mathbf{B}$ = k dt \mathbf{B}

= kB, where k is +ve constant Integrating,

log B = kt + c --- (3
log N = k(0) + c , using (1)

$$\cdot$$
 c = log N

Thus (3) becomes log B = kt + log N

2. Let the amt of ice be Q at t minutes.

Let Q_0 be the initial amount present.

Then
$$Q = Q_0$$
 when $t = 0$ --- (1)
 $Q = Q_0/2$ when $t = 20$ --- (2)
and $\frac{dQ}{dt} \propto Q$
 $\frac{dQ}{dt} = -kQ$, (where $k > 0$)
 $\frac{dQ}{dt} = -k$ dt
Integrating,

$$\log Q = -kt + c$$
 --- (3)
 $\log Q_0 = -k(0) + c$ Using (1)
 $\therefore c = \log Q_0$ --- (20)

Also $\log Q_0/2 = -k(20) + c$ By (2), (3)

 $\log Q_0/2 = -20k + \log Q_0$ By (20)

Now, (2) gives $\log 2N = k(3) + \log N$ $\log \left(\frac{2N}{N}\right) = 3k$ $k = \frac{\log 2}{3} \qquad (3) \text{ becomes}$ $\log B = \left(\frac{\log 2}{3}\right) t + \log N$ Finally, after 6 hrs, i.e when t = 6, $\log B = \left(\frac{\log 2}{3}\right) (6) + \log N$ log B = 2 log 2 + log Nlog B = log 4NB = 4N $k = \frac{\log 2}{20}$ Hence (3) becomes $\log Q = \log Q_0 - \left(\frac{\log 2}{20}\right) t$ Finally, after 1 hour, (t = 60 min), $\log Q = \log Q_0 - \left(\frac{\log 2}{20}\right)$ (60) $\log Q = \log Q_0 - 3 \log 2$ $\log Q = \log Q_0 - \log 8$ $\log Q = \log (Q_0/8)$

 $Q = Q_0/8$ at t = 60

after 1 hour.

The (1/8)th amount of ice is left

Practical No. 19 - Expected value, Variance and SD of Random Variable (DS)

Mean \overline{X} 1. = E(X)

$$= E(X)$$

$$= \sum_{X} xP(X)$$

$$= \begin{cases} \sum_{X} xP(X) \\ x \in S \end{cases}$$

$$= 1 \left(\frac{1}{8}\right) + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{8}\right) + 4\left(\frac{1}{4}\right)$$

$$= \frac{1}{8} + 2 + \frac{9}{8} + 4 - \frac{25}{4} = 1$$

$$= \frac{5}{2}$$

$$SD = \sqrt{Variance} = \sqrt{1} = 1$$

2.
$$P(x < 1) = \int_{-3}^{1} f(x) dx$$
$$= \int_{-3}^{1} \frac{x^{2}}{5} dx$$
$$= \left[\frac{x^{3}}{15} \right]_{-3}^{1}$$
$$= \left[\frac{1}{15} + \frac{27}{15} \right]$$
$$= \frac{28}{15}$$
$$= 1.8666$$

Practical No. 20 - Binomial Distribution

1. Let p: Probability of getting head
$$=\frac{1}{2}$$

q: Probability of not getting head $=\frac{1}{2}$

X: Number of heads

n: Number of trials. = 7

The Probability Mass Function of X is given by $P(X = x) = P(x) = {}^{n}C_{x} p^{x} q^{n-x}$

$$X = Exactly 5 heads i.e. x = 5.$$

$$X = \text{Exactly 5 heads i.e. } x = 5.$$

$$P(5) = {}^{7}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{7-5} = {}^{7}C_{2} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{2}$$

$$= \left(\frac{7 \times 6}{2 \times 1}\right) \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{2}$$

$$= \frac{21}{2^{7}} = \frac{21}{128}$$

2. Let p: Probability of hitting the target
$$=\frac{2}{3}$$

q: Probability of not hitting the target $=\frac{1}{3}$

X: Number of bullets hitting the target.

n: Number of bullets fired = 7

The Probability Mass Function of X is given by $P(X = X) = P(x) = {}^{n}C_{x} p^{x} q^{n-x}$

X = Exactly 3 bullets hit the target, x = 3

$$P(|x < 1|) = \int_{-1}^{1} f(x) dx$$

$$= \int_{-1}^{1} \frac{x^{2}}{5} dx$$

$$= \left[\frac{x^{3}}{15} \right]_{-1}^{1}$$

$$= \left[\frac{1}{15} + \frac{1}{15} \right]$$

$$= \frac{2}{15}$$

$$= 0.13333$$

P (Exactly 5 heads) =
$$\frac{21}{128}$$

 $X = \text{heads at least once i.e. } x \ge 1$

P (getting heads at least once) = P ($X \ge 1$)

ast once
$$f = P(X \ge 1)$$

= 1 - P(X = 0)
= 1 - P(0)
= 1 - $\frac{1}{2}$ $\left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{7-0}$
= 1 - $\left(\frac{1}{2}\right)^{7}$
= 1 - $\frac{1}{128}$

P (getting heads at least once) =

$$P(3) = {}^{7}C_{3} \left(\frac{2}{3}\right)^{3} \left(\frac{1}{3}\right)^{7-3}$$

$$= {}^{7}C_{2} \left(\frac{2}{3}\right)^{3} \left(\frac{1}{3}\right)^{4}$$

$$= {}^{7}\underbrace{\frac{3}{2}\underbrace{1}} \times \frac{2^{3}}{3^{3}} \times \frac{1}{3^{4}}$$

$$= {}^{7}\underbrace{\frac{56}{3^{7}}} = {}^{56}\underbrace{\frac{56}{3^{6}}} = {}^{56}\underbrace{\frac{56}{729}}$$