- 2.1 પ્રસ્તાવના
- 2.2 ભૌતિક રાશિનો એકમ કેવો હોવો જોઈએ ?
- 2.3 ભૌતિક રાશિના એકમો અને એકમ-પદ્ધતિઓ
- 2.4 SI એકમપદ્ધતિ
- 2.5 લંબાઈનું માપન
- 2.6 દળનું માપન
- 2.7 સમયનું માપન
- 2.8 માપનમાં ચોકસાઈ અને સચોટતા
- 2.9 માપનમાં ઉદ્દ્ભવતી ત્રુટિઓ
- 2.10 સાર્થકઅંકો
- 2.11 પરિમાણો અને પારિમાણિક સૂત્રો
 - સારાંશ
 - સ્વાધ્યાય

2.1 પ્રસ્તાવના (Introduction)

આપણે આપણી આસપાસ ઘણી ઘટનાઓ જોઈએ છીએ. આમાંની કેટલીક ઘટનાઓ કુદરતી તથા કેટલીક માનવસર્જિત હોય છે. તેનું સચોટ વર્શન કરવા તેની સાથે સંકળાયેલ જુદી-જુદી ભૌતિક રાશિઓનું માપન ચોકસાઈપૂર્વક કરવું પડે છે. દા.ત., ઝાડ પરથી ફળ નીચે પડે છે. આ કુદરતી ઘટના સમજવા માટે આપણે જાણવું જરૂરી છે કે ફળ કેટલી ઊંચાઈએથી પડે છે ? ફળને જમીન પર પડતાં કેટલો સમય લાગે છે ? ફળ કેટલી ઝડપથી પડે છે ? આવા અનેક પ્રશ્નોના જવાબ આપવા માટે આપણે અંતર, સમય, દળ વિગેરે જેવી ભૌતિક રાશિઓનું ચોકસાઈપૂર્વક માપન કરવું પડે. આ ભૌતિક રાશિઓનું સ્પષ્ટ સંખ્યાત્મક નિરૂપણ કરવા માટે તેમને અનુરૂપ એકમો નક્કી કરવા જરૂરી છે. તો, રાશિઓનાં માપન કેવી રીતે થતાં હશે અને રાશિઓને અનુરૂપ વિવિધ એકમો કઈ રીતે નક્કી થતાં હશે ? આ રાશિઓના માપનમાં ઉદ્ભવતી જુદા-જુદા પ્રકારની ત્રુટિઓ વગેરે અંગેની વિગતો પ્રસ્તુત પ્રકરણમાં જોઈશું.

2.2 ભૌતિક રાશિનો એકમ કેવો હોવો જોઈએ ? (How a Unit of a Physical Quality should be ?)

કોઈ રાશિના પ્રમાણિત માપને તે ભૌતિક રાશિનો એકમ (Unit) કહે છે.

- (1) એકમનું માપ નિશ્ચિત અને સ્પષ્ટ હોવું જોઈએ.
- (2) એકમ તેના માપમાં ફેરફાર ન થાય તેવો હોવો જોઈએ તેમજ તેને વ્યાખ્યાયિત કરતી ઘટના (જો હોય તો) કાયમી હોવી જોઈએ.
- (3) એકમની પ્રતિકૃતિ (Replica) સહેલાઈથી થઈ શકે અને સહજ રીતે પ્રાપ્ત થઈ શકે તેવી હોવી જોઈએ.

2.3 ભૌતિક રાશિના એકમો અને એકમપદ્ધતિઓ (Units of Physical Quantities and Systems of Units)

વ્યવહારમાં જોવા મળતી અનેક ભૌતિક રાશિઓ પૈકી, અમુક ઓછામાં ઓછી સંખ્યાની ભૌતિક રાશિઓના એકમો નક્કી કરવાથી, બાકીની બધી જ ભૌતિક રાશિઓના એકમો નક્કી કરી શકાય છે. આ ભૌતિક રાશિઓને, મૂળભૂત ભૌતિક રાશિઓ (Fundamental Physical Quantities) અને તેમના એકમોને મૂળભૂત એકમો કહે છે. તેમના ઉપરથી મેળવેલ બાકીની ભૌતિક રાશિઓને સાથિત ભૌતિક રાશિઓ (Derived Physical Quantities) અને

12 ભૌતિક વિજ્ઞાન

તેમના એકમોને સાધિત એકમો (Derived Units) કહે છે. આ મૂળભૂત ભૌતિક એકમોનાં માપ અને તેમની જરૂર મુજબની લઘુતમ સંખ્યાના સંદર્ભમાં જુદી જુદી એકમપદ્ધતિઓ સમયાંતરે અમલમાં આવી છે. જેમ કે,

- (1) બ્રિટિશ પદ્ધતિ (FPS) (ફટ, પાઉન્ડ, સેકન્ડ પદ્ધતિ)
- (2) CGS પદ્ધતિ (સેન્ટિમીટર, ગ્રામ, સેકન્ડ પદ્ધતિ)
- (3) MKS પદ્ધતિ (મીટર, કિલોગ્રામ, સેકન્ડ પદ્ધતિ)
- (4) MKSA પદ્ધતિ (મીટર, કિલોગ્રામ, સેકન્ડ, એમ્પિયર પદ્ધતિ)
- (5) SI પદ્ધતિ (સાત મૂળભૂત એકમો)

2.4 SI એકમપદ્ધતિ (Systeme International)

ફ્રાન્સમાં પૅરિસ ખાતેની સંસ્થા 'International Bureau of Weights and Measures'ના નેજા હેઠળ ઈ.સ. 1971 માં બોલાવાયેલ 14મી બેઠક 'General Conference on Weights and Measures'માં આંતરરાષ્ટ્રીય એકમપદ્ધતિ સ્વીકારવામાં આવી, જેને SI એકમપદ્ધતિ તરીકે ઓળખવામાં આવે છે. SI એકમપદ્ધતિમાં સાત રાશિઓને મૂળભૂત રાશિ તરીકે સ્વીકારવામાં આવેલ છે. SI એકમપદ્ધતિની મૂળભૂત રાશિઓ, તેના મૂળભૂત એકમો, સંજ્ઞાઓ તથા વ્યાખ્યાઓ નીચે મુજબ છે:

ટેબલ 2.1 : SI એકમો

મૂળભૂત ભૌતિક રાશિ	એકમનું નામ	સંજ્ઞા	વ્યાખ્યા
લંબાઈ	મીટર	m	શૂન્યાવકાશમાં પ્રકાશે 1/299,792,458 સેકન્ડમાં કાપેલા અંતરને 1 મીટર કહે છે. (1983થી માન્ય)
દળ	કિલોગ્રામ	kg	International Bureau of Weights and Measuresમાં રાખેલ પ્લેટિનમ-ઇરિડિયમ મિશ્રધાતુમાંથી બનાવેલ નળાકારના દળને 1 kg કહે છે. (1889થી માન્ય)
સમય	સેકન્ડ	S	સિઝિયમ-133 પરમાશુની ધરાસ્થિતિના બે અતિસૂક્ષ્મ ઊર્જાના સ્તરો વચ્ચેની ઇલેક્ટ્રૉનની સંક્રાંતિને અનુલક્ષીને ઉત્સર્જિત વિકિરણનાં 9,192,631,770 દોલનો માટેના સમયગાળાને એક સેકન્ડ કહે છે. (1967થી માન્ય)
વિદ્યુતપ્રવાહ	ઍમ્પિયર	A	અનંત લંબાઈ ધરાવતા તેમજ અવગણ્ય આડછેદવાળા બે સરેખ પુરસ્પર સમાંતર તારને શૂન્યાવકાશમાં એકબીજાથી 1 m અંતરે રાખી દરેક તારમાંથી સમાન વિદ્યુતપ્રવાહ પસાર કરતાં તેમની 1 m લંબાઈદીઠ તેમની વચ્ચે પરસ્પર 2 × 10 ⁻⁷ N બળ લાગે, તો દરેક તારમાં વહેતા વિદ્યુતપ્રવાહના મૂલ્યને એક એમ્પિયર કહે છે. (1948થી માન્ય)
થર્મોડાઇનેમિક તાપમાન	કેલ્વિન	K	પાણીના દ્રીપલ પોઇન્ટના તાપમાનના 1/273.16માં ભાગને થર્મોડાઇનેમિક માપક્રમ પર એક કૅલ્વિન કહેવામાં આવે છે. (1967થી માન્ય)
જ્યોતિ તીવ્રતા	કેન્ડેલા	cd	આપેલ દિશામાં 540 × 10 ¹² Hz આવૃત્તિ ધરાવતા ઉત્સર્જિત એક રંગી વિકિરણ અને તે જ દિશામાં 1/683 W/sr જેટલી વિકિરણતીવ્રતા ધરાવતાં ઉદ્દગમની જયોતિ તીવ્રતાને કેન્ડેલા કહે છે. (1979થી માન્ય)
દ્રવ્યનો જથ્થો	મોલ	mol	0.012 kg દળ ધરાવતા કાર્બન (C ¹²)માં જેટલા પરમાણુ છે, તેટલા જ ઘટકકણ ધરાવતા દ્રવ્યના જથ્થાને મોલ કહે છે. (1971થી માન્ય)

- નોંધ : (1) ઉપર્યુક્ત ટેબલમાં આપેલી વ્યાખ્યાઓ માત્ર જાણકારી પૂરતી છે.
 - (2) મોલએકમ સાથે કયા કણોની વાત કરીએ છીએ, તે સ્પષ્ટ કરવું જોઈએ. દા.ત., પરમાણુનો મોલ કે અશુનો મોલ કે આયનોનો મોલ કે ઇલેક્ટ્રૉનનો મોલ.

2.4.1 સાધિત એકમો (Derived Units)

સાત મૂળભૂત SI એકમો પરથી જુદી-જુદી ભૌતિક રાશિઓ માટે ઉપજાવેલા એકમોને મૂળભૂત એકમોના રૂપમાં દર્શાવી શકાય છે. તેમને સાધિત એકમો કહે છે.

દા.ત., પ્રવેગનો SI પદ્ધતિમાં એકમ

$$= \frac{$$
 અંતરનો એકમ $}{($ સમયનો એકમ $)^2} = \frac{m}{s^2} = m s^{-2}$

કાર્યનો એકમ= (બળનો એકમ) × (સ્થાનાંતરનો એકમ)

$$= \frac{\text{kg m}}{\text{s}^2} \times (\text{m}) = \text{kg m}^2 \text{ s}^{-2}$$

2.4.2 પૂરક એકમો (Supplementary Units)

એકમપદ્ધતિની પૂરક ભૌતિક રાશિઓ, એકમો અને સંજ્ઞા ટેબલ 2.2 માં દર્શાવેલ છે.

ટેબલ 2.2 : પૂરક એકમો

કુમ	પૂરક ભૌતિક રાશિ	SI એકમ	સંજ્ઞા	સમજૂતી
1.	સમતલકોણ (θ) (Plane angle)	રેડિયન	rad	વર્તુળ પરના ચાપ અને ત્રિજ્યાના ગુણોત્તરને સમતલકોણ (θ) કહે છે. (θ) = $\frac{\text{ચાપ}}{\text{ત્રિજ્યા}}$ = $\frac{AB}{r}$ (જુઓ આકૃતિ 2.1 (a). ત્રિજ્યા જેટલી લંબાઈના વર્તુળના ચાપે કેન્દ્ર સાથે આંતરેલા સમતલકોણને 1 રેડિયન કહે છે. ($1^\circ = \frac{\pi}{180}$ rad)
2.	ઘનકોણ (Ω) (Solid angle)	સ્ટીરેડિયન	sr	ગોળાના પૃષ્ઠ પરના ક્ષેત્રફળ (ΔA) એ ગોળાના કેન્દ્ર સાથે આંતરેલ કોણને ઘનકોણ (Ω) કહે છે. (જુઓ આકૃતિ 2.1 (b)). વ્યાખ્યા અનુસાર, $\Omega = \frac{{rak k} \pi + \sigma(\Delta A)}{([\pi r]^2)^2} = \frac{\Delta A}{r^2}$ જયારે $\Delta A = 1 m^2, \ r = 1 m$, હોય તો $\Omega = 1$ સ્ટીરેડિયન

આકૃતિ 2.1

2.4.3 SI પદ્ધતિના ઉપયોગ માટેના વ્યાવહારિક નિયમો (Practical norms for the use of SI system)

(1) દરેક ભૌતિક રાશિનો એકમ તેના સંકેત મુજબ જ દર્શાવવો જોઈએ.

(2) એકમના સંકેતાક્ષરોની વચ્ચે કે અંતે પૂર્ણવિરામ મૂકવું નહિ. દા.ત., કિલોગ્રામ માટે k.g. કે kg. લખી શકાય નહિ, પણ kg લખાય. (3) જ્યારે બહુવચનમાં એકમનો ઉપયોગ કરવાનો થાય ત્યારે સંજ્ઞામાં ફેરફાર થવો જોઈએ નહિ, દા.ત., અનેક મીટર દર્શાવવા માટેની સંજ્ઞા પણ m જ છે.

- (4) અંશ અને છેદમાં રહેલી ભૌતિક રાશિઓને એક જ ગુણોત્તર વડે દર્શાવવી જોઈએ. દા.ત., પ્રવેગનો એકમ SI પદ્ધતિમાં m/s^2 અથવા $m\ s^{-2}$; લખવો પરંતુ m/s/s ન લખવો.
- (5) જો કોઈ એકમ વિજ્ઞાનીના નામે હોય અને તે એકમ આખો લખવો હોય તો પ્રથમ અક્ષર કૅપિટલ લખવો નહિ, પરંતુ તે એકમને સંકેત રૂપે લખવો હોય, તો પ્રથમ અક્ષર કેપિટલ જ રાખવો. જેમકે બળ માટે આખો એકમ લખવો હોય તો newton લખવું પરંતુ સંકેત રૂપે લખવો હોય તો માત્ર N લખવું. દબાણના એકમને pascal અને સંકેતમાં Pa લખાય.

2.5 લંબાઈનું માપન (Measurement of Length)

લંબાઈના સીધા (પ્રત્યક્ષ) માપનની અમુક રીતથી તો તમે સૌ માહિતગાર છો જ અને અમુક રીતો તમે પ્રયોગશાળામાં શીખશો. જેમકે 10^{-3} m થી 10^2 m ક્રમના માપન માટે મીટરપટ્ટીનો ઉપયોગ થાય છે. જ્યારે 10^{-4} m ના ક્રમનું ચોકસાઈપૂર્વકનું માપન કરવા માટે વર્નિયર કેલિપર્સનો ઉપયોગ થાય છે. જ્યારે 10^{-5} m ના ક્રમના માપન માટે સ્ક્ર્–ગેજ અને સ્ફેરોમીટરનો ઉપયોગ થાય છે.

ખૂબ જ મોટાં અંતરોના તથા અવકાશીય અંતરોના માપન માટે અમુક પરોક્ષ રીતોનો ઉપયોગ થાય છે. તેમાંની અમુક રીતો આપણે અભ્યાસ કરીશું.

2.5.1 મોટા અંતરના માપન માટેની દેષ્ટિસ્થાનભેદની રીત (Parallax Method)

મોટા અંતરના માપન માટે દેષ્ટિસ્થાનભેદ (Parallax) ની રીતનો ઉપયોગ કરી શકાય છે.

આ રીતમાં પૃથ્વી પરનાં કોઈ બે સ્થળો A અને B પરથી એકસાથે, પૃથ્વીથી D જેટલા અંતરે આવેલ ગ્રહનું નિરીક્ષણ કરી, અતિ દૂરના તારાઓના સંદર્ભમાં નિરીક્ષણ-દિશાઓ નક્કી કરવામાં આવે છે.

આકૃતિ 2.2

ઉદાહરણ તરીકે, ધારો કે આકૃતિ (2.2)માં દર્શાવ્યા પ્રમાણે કોઈ ગ્રહ Pનું પૃથ્વીના કોઈ વ્યાસાંતે આવેલાં સ્થળો A અને B પરથી એકસાથે અવલોકનો કરતાં અવલોકન-દિશાઓ AP અને BP મળે છે. હવે પૃથ્વીથી ગ્રહનું અંતર પૃથ્વીના વ્યાસ કે પૃથ્વી પરનાં કોઈ બે અવલોકનસ્થાનો વચ્ચેના અંતરની સરખામણીમાં ઘણું જ મોટું હોવાથી ખૂણો θ અત્યંત નાનો હોય છે. (ખૂણો θએ દષ્ટિસ્થાનભેદકોશ કહેવાય છે.) તેથી, ખૂણાની રેડિયનમાં વ્યાખ્યા અનુસાર,

$$\theta = \frac{\text{ચાપ}}{\text{ત્રિજયા}} = \frac{AB}{AP}$$

$$= \frac{\text{બે અવલોકન સ્થાન વચ્ચેનું અંતર } b}{\text{પૃથ્વીથી પ્રહનું અંતર } D}$$

$$\therefore D = \frac{b}{\theta} \tag{2.5.1}$$

ઉદાહરણ 1: પૃથ્વીના વ્યાસાંતે આવેલાં A અને B પરથી એકસાથે ચંદ્રનું અવલોકન કરવામાં આવે છે. બે અવલોકનદિશાઓ વચ્ચેનો કોણ $1^{\circ}54'$ મળે છે. જો પૃથ્વીનો વ્યાસ 1.276×10^{7} m, લઈએ, તો પૃથ્વી અને ચંદ્ર વચ્ચેનું અંતર શોધો.

General D =
$$\frac{b}{\theta}$$
 $\theta = 1^{\circ}54' = 60' + 54' = 114'$
 $= \frac{114'}{60} \text{ sol}$
 $= \frac{114}{60} \times \frac{\pi}{180} \text{ rad}$
 $\therefore \theta = 3.32 \times 10^{-2} \text{ rad}$
 $b = 1.276 \times 10^{7} \text{m}$
 $\therefore D = \frac{1.276 \times 10^{7}}{3.32 \times 10^{-2}}$
 $= 3.84 \times 10^{8} \text{m}$

2.5.2 ગ્રહ કે તારાના પરિમાણનું માપન (Measurement of the Size of a Planet or a Star)

જો ગ્રહનો વ્યાસ d હોય અને આ વ્યાસ વડે પૃથ્વી પરના કોઈ અવલોકનસ્થળે આંતરાતો કોણ α હોય, તો α ને ગ્રહનો કોણીય વ્યાસ (angular diameter) કહે છે. આપેલા અવલોકનસ્થળે ટેલિસ્કોપને વારાફરતી ગ્રહના વ્યાસાંતે ગોઠવવાથી α નું માપન થઈ શકે છે.

$$\alpha = \frac{d}{D}$$
 (in rad) (2.5.2)

*ફૂટનોટ : 1° (અંશ-ડિગ્રી) = 60' (મિનિટ) = 3600" (સેકન્ડ)

જો પૃથ્વીથી ગ્રહનું અંતર D જાણીતું હોય તો, સમીકરણ (2.5.2) નો ઉપયોગ કરીને d શોધી શકાય છે. વ્યવહારમાં ખૂણો α ઘણો નાનો હોય છે.

ઉદાહરણ 2 : સૂર્યના કોશીય વ્યાસનું માપન 1920" છે. જો પૃથ્વીનું સૂર્યથી અંતર 1.496×10^{11} m હોય, તો સૂર્યનો વ્યાસ શોધો. (1" = 4.85×10^{-6} rad)

ઉકેલ :
$$\alpha = 1920$$
", $D = 1.496 \times 10^{11}$ m
$$\alpha = \frac{d}{D}$$
 પરથી,
$$d = \alpha D$$

$$= (1920) (4.85) (10^{-6}) (1.496 \times 10^{11})$$

$$= 1.393 \times 10^{9} \text{ m}$$

2.5.3 ખૂબ જ સૂક્ષ્મઅંતરોનું માપન, અશુનું કદ (Measurement of Very Small Distances, Size of Molecule)

ખૂબ જ સૂક્ષ્મ અંતરો, જેમકે અશુનું કદ $(10^{-8} \mathrm{m} \ \text{@M})$ 10^{-10} m), ના માપન માટે આપણે વર્નિયર કેલિપર્સ અથવા માઇક્રોમીટર સ્કૂ-ગેજ કે તેના જેવા માપનના બીજા સાધનનો ઉપયોગ કરી શકીએ નહિ. આ માટે આપણે કોઈ ખાસ રીતને અપનાવવી પડે. ઑપ્ટિકલ માઇક્રોસ્કોપ એ દશ્યપ્રકાશના તરંગોનો ઉપયોગ કરે છે. દશ્યપ્રકાશની તરંગલંબાઈ 4000 \mathring{A} થી 8000 \mathring{A} (1 $\mathring{A} = 10^{-10}$ m) જેટલી છે. આથી. તેની મદદથી આ અંતર કરતાં નાના ક્શોનાં કદ જોઈ કે માપી શકાતાં નથી. ત્યારબાદ વિકસાવવામાં આવેલ ઇલેકટ્રૉન માઇક્રોસ્ક્રોપમાં દશ્યપ્રકાશને બદલે ઇલેકટ્રૉન બીમનો ઉપયોગ કરવામાં આવે છે. આ માઇક્રોસ્કોપનું વિભેદન 0.6 Å જેટલું હોય છે. આથી તેની મદદથી દ્રવ્યમાં રહેલા અણુ-પરમાણુઓને જોઈ શકાય છે. (તમને આશ્ચર્ય થશે કે આવા માઇક્રોસ્કોપમાં ઇલેક્ટ્રૉન ક્શ તરીકે નહિ પરંતુ તરંગ તરીકે વર્તે છે !) હાલમાં નેનોટેક્નોલૉજીના અભ્યાસ માટે વિકસાવવામાં આવેલ સ્કેનિંગ ટનલિંગ માઇક્રોસ્કોપની (STM) વિભેદનશક્તિ એટલી ઊંચી છે કે જેની મદદથી પરમાણુંની સાઇઝનો અંદાજ મેળવવો શક્ય બન્યો છે.

અણુનો વિસ્તાર માપવાની એક રીતમાં આષ્ટ્વિક સ્તર (Monomolecular Layer)ની રીત જાણીતી છે. આ રીતમાં આષ્ટ્વિક સ્તરની જાડાઈ શોધવામાં આવે છે. તેના પરથી અણુવિસ્તાર જાણી શકાય છે. જેમકે, સ્ટિયરિક એસિડનું સ્તર અમુક જાડાઈ કરતાં વધુ પાતળું બની શકતું નથી. આ સ્થિતિમાં સ્ટિયરિક એસિડના અણુઓનો વ્યાસ સ્તરની જાડાઈ બરાબર હોય છે.

ભૌતિકશાસ્ત્રમાં આપણે ખૂબ જ સૂક્ષ્મ અંતર અને ખૂબ જ મોટા અંતરો સાથે કામ લેવાનું હોય છે. દા.ત., ન્યુકિલયસની સાઈઝ 10⁻¹⁴m ના ક્રમની છે જ્યારે ગેલેક્સીની સાઈઝ 10²¹m છે. આથી, સૂક્ષ્મ તેમજ મોટા અંતરો માટે અંતરના કેટલાક ખાસ એકમો વ્યાખ્યાયિત કરવામાં આવ્યા છે જે નીચે મુજબ છે.

$$1 \text{ sell } = 1 \text{fm} = 10^{-15} \text{m}$$

$$1 એંગ્સ્ટ્રોમ = 1 Å = 10^{-10} m$$

1 એસ્ટ્રોનોમિકલ યુનિટ = $1 \text{ AU} = 1.496 \times 10^{11} \text{m}$ (સૂર્ય અને પૃથ્વી વચ્ચેના સરેરાશ અંતરને 1 AU કહે છે.)

1 มรเ
$$a\sqrt{1} = 1$$
 ly = 9.46×10^{15} m

1 นเส็ร =
$$3.08 \times 10^{16}$$
m

1 AU જેટલી લંબાઈ વડે જે અંતરે 1"જેટલો કોણ આંતરાતો હોય તે અંતરને 1 પાર્સેક (pc) કહે છે

$$r = \frac{l}{\theta} = \frac{1 \text{ AU}}{1"}$$
$$= \frac{1.496 \times 10^{11}}{\frac{1}{60} \times \frac{1}{60} \times \frac{\pi}{180}} = 3.08 \times 10^{16} \text{m}$$

$$\therefore$$
 1pc = 3.08 × 10¹⁶m

2.6 દળનું માપન (Measurement of Mass)

પદાર્થમાં રહેલા દ્રવ્યના જથ્થાને દળ (Mass) કહે છે. દળ એ દ્રવ્યનો આંતરિક ગુશધર્મ હોઈ તેનું મૂલ્ય સામાન્ય સંજોગોમાં કોઈ બાહ્ય પરિબળો જેવાં કે તાપમાન, દબાશ પર આધાર રાખતું નથી.

કોઈ પણ પદાર્થના દળનું માપન સામાન્ય રીતે સાદી તુલા વડે કરવામાં આવે છે. આ રીતમાં આપણે પદાર્થ પર લાગતા ગુરુત્વીય બળ (mg)ને કોઈ પ્રમાણભૂત પદાર્થ પર લાગતા ગુરુત્વીય બળ સાથે સરખાવવામાં આવે છે. યાદ રાખો કે ગુરુત્વીય બળ mgમાં જે દળ ભાગ ભજવે છે, તેને ગુરુત્વીય દળ કહે છે. આ જ તુલા વડે મપાતું દળ ગુરુત્વીય દળ બધાં જ સ્થળોએ સમાન હોય છે.

પદાર્થ પર લાગતા પૃથ્વીના ગુરુત્વાકર્ષણ બળ (mg)ને પદાર્થનું વજન (Weight) કહે છે. આ પરથી કહી શકાય કે પદાર્થનું વજન એ તે સ્થળના ગુરુત્વપ્રવેગ પર આધારિત હોય છે. જેમકે કોઈ પદાર્થને પૃથ્વી પરથી ચંદ્ર પર લઈ જવામાં આવે, તો પૃથ્વી પરના તેના વજન કરતાં ચંદ્ર પર તેનું વજન જુદું હશે.

વળી, જ્યારે અશુ કે પરમાશુના દળની વાત કરીએ,

16 ભૌતિકવિશાન

તો તે કિલોગ્રામમાં માપવું સગવડભર્યું ન ગણાય. આથી, તે atomic mass unit માં નક્કી થાય છે.

અનુત્તેજિત C^{12} ના પરમાશુદળના બારમા ભાગને 1 amu દળ કહે છે. 1 amu $= 1.66 \times 10^{-27}$ kg. તેને 1u વડે પણ દર્શાવવામાં આવે છે. ભૌતિકવિજ્ઞાનમાં આપણે 10^{-30} kg થી 10^{55} kg ક્રમના દ્રવ્યમાન સાથે કામ લેવાનું આવે છે.

ત્રહો, તારાઓ જેવા મોટા પદાર્થોનાં દળ ન્યૂટનના ગુરુત્વાકર્ષણના નિયમ પરથી નક્કી કરી શકાય છે. સૂક્ષ્મ કણોના દળ Mass Spectrographની રીતથી શોધી શકાય છે. (આ રીતમાં વિદ્યુતક્ષેત્ર અથવા ચુંબકીય ક્ષેત્રમાં ગતિ કરતાં કણના ગતિપથની ત્રિજ્યા તેના દળના સમપ્રમાણમાં હોય છે.)

2.7 समयनुं भापन (Measurement of Time)

પ્રાચીન સમયમાં સૂર્યના પ્રકાશમાં પડતા પડછાયાના માપ પરથી સમયનું અનુમાન કરવામાં આવતું. ત્યાર બાદ લોલકની શોધ પછી ઉત્તરોત્તર સમયમાપનમાં ઘણો જ વિકાસ થયો છે. હવે તો આપણે સમયગાળાનું માપન કરવા ઘડિયાળનો ઉપયોગ કરીએ છીએ. આજે તો વધારે ચોકસાઈપૂર્વક અને સૂક્ષ્મ સમયમાપન માટે ઍટોમિક ક્લોક પણ શોધાઈ ચૂકી છે. આ ઉપરાંત સૂક્ષ્મ સમયના માપન માટે કૅમેરા, મલ્ટીક્લેશ ફોટોગ્રાફી વગેરેનો પણ ઉપયોગ થાય છે.

2.8 માપનમાં ચોકસાઈ અને સચોટતા (Accuracy and Precision in Measurement)

સૌપ્રથમ આપશે ચોકસાઈ (Accuracy) અને સચોટતા (Precision) વચ્ચેનો ભેદ સમજીએ. કોઈ રાશિના માપનનું મૂલ્ય તે રાશિના સાચા મૂલ્યની કેટલી નજીક છે, તેને ચોકસાઈ (Accuracy) કહે છે. આ માપન કેટલાં વિભેદન (Resolution) અથવા સીમા (Limit) સુધી કરવામાં આવ્યું છે. તેને સચોટતા (Precision) કહે છે. દા.ત., તમારી ડિજિટલ ઘડિયાળ 10:11:12 AMનો સમય દર્શાવે છે. ઘડિયાળનું લઘુતમ માપ 1 સેકન્ડ છે. એટલે કે સમયના આ માપનમાં સચોટતા વધુ છે. ધારો કે તમારા દાદાની ઘડિયાળમાં સેકન્ડ કાંટો નથી. તે 10:13 AM સમય દર્શાવે છે. આ ઘડિયાળનું લઘુતમ માપ 1 min હોવાથી તેના માપનમાં સચોટતા ઓછી છે. તેમ કહેવાય. પરંતુ જો ડિજિટલ ઘડિયાળ ધીમી ચાલતી હોય અને દાદાની ઘડિયાળ સમયસર ચાલતી હોય તો ડિજિટલ ઘડિયાળથી માપેલ સમયમાં ચોકસાઈ ઓછી અને દાદાની ઘડિયાળ વધુ ચોક્ક્સ છે. તેમ કહેવાય.

ભૌતિક રાશિના માપનમાં વધુમાં વધુ ચોકસાઈ અને વધુમાં વધુ સચોટતા હોવી જરૂરી છે. સચોટતા સાધનની લઘુતમ માપશક્તિ પર આધાર રાખે છે. વર્નિયર કેલિપર્સ કરતાં માઈક્રોમીટર સ્ક્રૂ-ગેજથી માપેલ ગોળાની ત્રિજ્યાના માપનમાં સચોટતા વધુ હોય છે.

ભૌતિકવિજ્ઞાનમાં ભૌતિક રાશિનું મૂલ્ય પ્રાયોગિક રીતે ચોકસાઈપૂર્વક માપવા માટે કેટલીક બાબતો ધ્યાનમાં લેવી જરૂરી છે. જેમકે,

- (1) પ્રયોગકર્તાની કુશળતા
- (2) પ્રયોગના સાધનની ગુણવત્તા
- (3) પ્રયોગમાં ઉપયોગમાં લેવાયેલી પદ્ધતિ
- (4) પ્રયોગના પરિણામ પર અસર કરતાં બાહ્ય અને આંતરિક પરિબળો

2.9 માપનમાં ઉદ્ભવતી ગુટિઓ (Errors in Measurement)

પ્રયોગશાળામાં જુદાં-જુદાં ઉપકરણોની મદદથી જુદી-જુદી ભૌતિક રાશિઓનું માપન કરવામાં આવે ત્યારે ભૌતિક રાશિના માપનના પરિણામમાં કેટલી અચોકસાઈ રહેલી છે તે પણ દર્શાવવું જોઈએ. આવી અચોકસાઈના માપને આપણે સૃટિ તરીકે ઓળખીએ છીએ.

ભૌતિકવિજ્ઞાનમાં માપનમાં ઉદ્ભવતી ત્રુટિઓને બે પ્રકારમાં વહેંચી શકાય :

- (1) વ્યવસ્થિત ત્રુટિ (Systematic Error)
- (2) અવ્યવસ્થિત ત્રુટિ (Random Error)
- (1) વ્યવસ્થિત ત્રુટિ: વ્યવસ્થિત ત્રુટિઓ આપેલા પ્રયોગ દરમિયાન એક જ દિશામાં એટલે કે ધન અથવા ઋણ જ હોય છે. આવી ત્રુટિઓ ધન અને ઋણ એમ એકીસાથે ન હોઈ શકે. આ ત્રુટિના અમુક ઉદ્દગમો નીચે મુજબ છે:
- (a) સાધનની ત્રુટિ (Instrumental Error): આ પ્રકારની ત્રુટિ સાધનમાં રહેલી કોઈ ક્ષતિ કે સાધનમાં સ્કેલના ખામીયુક્ત કેલિબ્રેશન (અંકન)ને કારણે ઉદ્દ્ભવે છે. દા.ત., સ્પ્રિંગકાંટા પર પદાર્થ લટકાવ્યો ન હોય ત્યારે દર્શક શૂન્ય પર રહેવાને બદલે 0.1 ગ્રામ પર રહેતો હોય તો દરેક અવલોકનમાં નિયમિત રીતે 0.1 ગ્રામ જેટલી ત્રુટિ ઉદ્દ્ભવે છે.
- (b) પ્રયોગપદ્ધતિને કારણે ઉદ્ભવતી ત્રુટિ (Error due to Imperfection in Experimental Technique or Procedure): ઉદાહરણ તરીકે થર્મોમીટરની મદદથી શરીરનું તાપમાન માપવામાં આવે છે. ત્યારે થર્મોમીટરના શક્યતઃ અપૂર્ણ સંપર્કને કારણે શરીરનું સંપૂર્ણ સાચું તાપમાન મપાતું નથી. પ્રયોગ દરમિયાન બાહ્ય પરિબળો જેમકે તાપમાન, દબાણ, હવામાં રહેલો ભેજ વિગેરે પણ માપનમાં વ્યવસ્થિત ત્રુટિ ઉત્પન્ન કરી શકે છે.
- (c) વ્યક્તિગત તુટિ (Personal Error): પ્રયોગ દરમિયાન અવલોકન લેનાર વ્યક્તિની અવલોકન લેવાની ખાસિયત, પદ્ધતિ, અવલોકન લેવામાં બેકાળજી અથવા સાધનોની અયોગ્ય ગોઠવણીને કારણે આ પ્રકારની ત્રુટિ ઉદ્દ્ભવે છે.

પ્રયોગપદ્ધતિમાં સુધારો કરી, સારી ગુણવત્તાવાળાં સાધનો વાપરી તેમજ વ્યક્તિગત નબળાઈઓ દૂર કરી માપનમાં ઉદ્ભવતી વ્યવસ્થિત ત્રુટિ ઓછી કરી શકાય છે.

(2) અવ્યવસ્થિત ત્રુટિ (Random Error): પ્રયોગ દરમિયાનનાં અસરકર્તા પરિબળોમાં અનિયમિત ફેરફારોના કારણે અને આગાહી ન કરી શકાય તેવાં પરિબળોને કારણે અવલોકનમાં જે ત્રુટિ ઉદ્દ્ભવે છે, તેને અવ્યવસ્થિત ત્રુટિ કહે છે. પ્રયોગ દરમિયાન કોઈ વ્યક્તિ કોઈ ભૌતિક રાશિનું વારંવાર માપન (અવલોકન) કરશે તો તે દરેક વખતે અવલોકન સમાન મળશે નહિ.

આ ત્રુટિઓ ધન અને ઋણ બંને પ્રકારની હોઈ શકે છે. ઘણાં બધાં અવલોકનોની સરેરાશ લઈ (સાર્થકઅંકો ધ્યાનમાં રાખી) આ પ્રકારની ત્રુટિનો અંદાજ કાઢી શકાય છે.

2.9.1 ત્રુટિઓનો અંદાજ (Estimation of Errors)

(1) નિરપેક્ષ ત્રુટિ અને સરેરાશ નિરપેક્ષ ત્રુટિ (Absolute Error and Average Absolute Error): કોઈ ભૌતિકરાશિના સાચા મૂલ્ય (સરેરાશ મૂલ્ય) અવલોકન (પ્રાયોગિક મૂલ્ય)ના ધન તફાવતને તે અવલોકનની નિરપેક્ષ ત્રુટિ કહે છે.

આપણે સાચું મૂલ્ય જાણતાં ન હોઈએ ત્યારે સરેરાશ માપનના સાચા મૂલ્ય તરીકે લેવામાં આવે છે.

ધારો કે કોઈ ભૌતિક રાશિ a ના અવલોકનો a_1 , a_2 , a_3 ,..., a_n છે. તેનું સરેરાશ મૂલ્ય \overline{a} હોય, તો

$$\overline{a} = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$$

$$\overline{a} = \frac{1}{n} \sum_{i=1}^{n} a_i$$

તેથી પ્રત્યેક અવલોકન માટે મળતી નિરપેક્ષ ત્રુટિ,

$$\Delta a_1 = |\overline{a} - a_1|$$

$$\Delta a_2 = |\overline{a} - a_2|$$

$$\Delta a_n = |\overline{a} - a_n|$$

 Δa_1 , Δa_2 Δa_n ને દરેક અવલોકનની નિરપેક્ષ ત્રુટિ કહે છે, જે ધન અને તેમની સરેરાશને **સરેરાશ** નિરપેક્ષ ત્રુટિ કહે છે.

સરેરાશ નિરપેક્ષ ત્રુટિ,

$$\Delta \overline{a} = \frac{\Delta a_1 + \Delta a_2 + \dots + \Delta a_n}{n}$$
 અથવા

$$\Delta \overline{a} = \frac{1}{n} \sum_{i=1}^{n} \Delta a_i$$

આમ, કોઈ ભૌતિક રાશિ a નું માપન નીચે મુજબ ϵ શ્રાંવી શકાય :

$$a = \overline{a} \pm \Delta \overline{a}$$

આનો અર્થ એવો થાય કે ભૌતિક રાશિ 'a' નું મૂલ્ય ($\overline{a} + \Delta \overline{a}$) અને ($\overline{a} - \Delta \overline{a}$) ની વચ્ચે હોવાની મહત્તમ સંભાવના છે.

(2) સાપેક્ષ કે આંશિક ત્રુટિ (Relative or Fractional Error) : પ્રયોગ દરમિયાન મળેલ સરેરાશ નિરપેક્ષ ત્રુટિ $\Delta \overline{a}$ અને \overline{a} ના ગુણોત્તરને સાપેક્ષ ત્રુટિ (δa) કહે છે.

$$\therefore \delta a = \frac{\Delta \overline{a}}{\overline{a}}$$

(3) પ્રતિશત ત્રુટિ (Percentage Error) : સાપેક્ષ ત્રુટિને ટકામાં દર્શાવવામાં આવે, તો તેને પ્રતિશત ત્રુટિ કહે છે.

પ્રતિશત ત્રુટિ =
$$\delta a \times 100$$
 %
$$= \frac{\Delta \overline{a}}{\overline{a}} \times 100 \%$$

ઉદાહરણ 3 : કાચનો વકીભવનાંક શોધવાના પ્રયોગમાં વકીભવનાંકનાં મૂલ્યો 1.54, 1.53, 1.44, 1.54, 1.56 અને 1.45 મળે છે. તો (1) સરેરાશ નિરપેક્ષ ત્રુટિ (2) સાપેક્ષ ત્રુટિ તથા (3) પ્રતિશત ત્રુટિ શોધો. કાચના વકીભવનાંકનું મૂલ્ય નિરપેક્ષ ત્રુટિ સહિત અને પ્રતિશત ત્રુટિ સહિત દર્શાવો.

ઉકેલ :

(1) સરેરાશ વક્રીભવનાંક,

$$\overline{n} = \frac{1.54 + 1.53 + 1.44 + 1.54 + 1.56 + 1.45}{6}$$
= 1.51

આ સરેરાશ વકીભવનાંકના આધારે દરેક અવલોકનની નિરપેક્ષ ત્રુટિ નીચે મુજબ મળશે.

નિરપેક્ષ ત્રુટિની સરેરાશ કિંમત મેળવવા માત્ર મૂલ્યોને ધ્યાનમાં લેતાં,

$$\Delta \overline{n} = \frac{\Delta n_1 + \Delta n_2 + \dots + \Delta n_6}{6}$$

 $= \frac{\left|-0.03\right| + \left|-0.02\right| + \left|+0.07\right| + \left|-0.03\right| + \left|-0.05\right| + \left|+0.06\right|}{6}$

$$\Delta \overline{n} = \frac{0.26}{6} = 0.043 \approx 0.04$$

18

અહીં કાચના વક્કીભવનાંકનું મૂલ્ય નિરપેક્ષ ત્રુટિ સહિત દર્શાવતાં, $n=1.51\pm0.04$ એટલે કે વક્કીભવનાંકનું મૂલ્ય 1.55 અને 1.47ની વચ્ચે હશે.

(2) સાપેક્ષ ઝુટિ =
$$\frac{\Delta \overline{n}}{\overline{n}} = \frac{0.04}{1.51}$$

= $0.02649 = 0.03$

(3) પ્રતિશત
$$32 = 0.03 \times 100 = 3\%$$

વક્રીભવનાંકનું મૂલ્ય પ્રતિશત ત્રુટિ સહિત દર્શાવતાં $n=1.51\,\pm\,3\%$

2.9.2 ત્રુટિઓનું સંયોજન (Combination of Errors)

પ્રયોગમાં જ્યારે ઘણાં બધાં અવલોકનો લેવામાં આવે, ત્યારે આ ત્રુટિઓનું સંયોજન કઈ રીતે થાય છે તે જાણવું જરૂરી છે. દા.ત., ઘનતા નક્કી કરવાના પ્રયોગમાં પદાર્થનાં દળ અને કદ બંને માપવા પડે અને તે બંનેમાં કંઈક ત્રુટિ ઉદ્ભવશે. આ ત્રુટિઓની અસર ઘનતાના મૂલ્યમાં કેટલી હશે તે જાણવું જરૂરી બને છે.

(1) સરવાળા અને બાદબાકીમાં ત્રુટિ (Errors in Sum and in Difference) : ધારો કે બે ભૌતિક રાશિ A અને B નું માપન કર્યું છે અને તેમનાં પ્રાયોગિક મૂલ્યો $A \pm \Delta A$ અને $B \pm \Delta B$ છે, જ્યાં ΔA અને ΔB તે ભૌતિક રાશિની સરેરાશ નિરપેક્ષ ત્રુટિ છે, તો આ ભૌતિક રાશિઓના સરવાળામાં મળતી નિરપેક્ષ ત્રુટિ ΔZ હોય તો,

$$Z = A + B$$
 (સરવાળા માટે)

$$\therefore Z \pm \Delta Z = (A \pm \Delta A) + (B \pm \Delta B)$$

$$= (A + B) + (\Delta A + \Delta B)$$

 \therefore Zમાં ઉત્પન્ન થતી મહત્તમ નિરપેક્ષ ત્રુટિ $\Delta Z = \Delta A + \Delta B$

જ્યારે બાદબાકી માટે,

$$Z = A - B$$

$$\therefore Z \pm \Delta Z = (A \pm \Delta A) - (B \pm \Delta B)$$
$$= (A - B) \pm \Delta A \mp \Delta B$$

$$\therefore \pm \Delta Z = \pm \Delta A \mp \Delta B$$

એટલે કે ΔZ નાં ચાર સંભવિત મૂલ્યો (+ ΔA - ΔB), (+ ΔA + ΔB), (- ΔA - ΔB), (- ΔA + ΔB) થશે, જેમાં (+ ΔA + ΔB) એ મહત્તમ મૂલ્ય છે. આ રીતે, Zમાં મળતી મહત્તમ નિરપેક્ષ ત્રુટિ પણ (ΔA + ΔB) છે.

આથી કહી શકાય કે, 'જ્યારે બે ભૌતિક રાશિઓનો સરવાળો કે બાદબાકી કરવામાં આવે, ત્યારે તેના અંતિમ પરિણામમાં મળતી મહત્તમ નિરપેક્ષ ત્રુટિ દરેક ભૌતિક રાશિમાં મળતી નિરપેક્ષ ત્રુટિના સરવાળા બરાબર હોય છે.'

ઉદાહરણ 4: અવરોધ $R_1=100\pm 3\Omega$ અને અવરોધ $R_2=200\pm 4\Omega$ ને શ્રેણીમાં જોડવામાં આવે, તો સમતુલ્ય અવરોધમાં રહેલી મહત્તમ નિરપેક્ષ ઝુટિ શોધો. આ સમતુલ્ય અવરોધને પ્રતિશત ઝુટિ સાથે દર્શાવો.

ઉકેલ :

R
$$\pm \Delta R$$
 = R₁ + R₂
= $(100 \pm 3) + (200 \pm 4)$
= $300 \pm 7\Omega$
∴ મહત્તમ નિરપેક્ષ ત્રુટિ = 7Ω
હવે, પ્રતિશત ત્રુટિ = $\frac{\Delta R}{R} \times 100$
= $\frac{7}{300} \times 100$
= 2.3%

 \therefore સમતુલ્ય અવરોધને પ્રતિશત ત્રુટિ સાથે દર્શાવતાં $R = 300 \, \pm \, 2.3 \, \%$

(2) ગુણાકાર અને ભાગાકારમાં ત્રુટિ (Errors in Product and in Division) :

જો Z=AB હોય A અને B નાં પ્રાયોગિક મૂલ્યો અનુક્રમે $A \pm \Delta A$ તથા $B \pm \Delta B$ હોય તો,

$$Z \pm \Delta Z = (A \pm \Delta A) (B \pm \Delta B)$$

= $AB \pm A\Delta B \pm B\Delta A \pm \Delta A\Delta B$

સમીકરણની ડાબી બાજુ Z વડે તથા જમણી બાજુ AB વડે ભાગતાં,

$$1 \pm \frac{\Delta Z}{Z} = 1 \pm \frac{\Delta A}{A} \pm \frac{\Delta B}{B} \pm \frac{\Delta A}{A} \cdot \frac{\Delta B}{B}$$

અહીં $\frac{\Delta A}{A}$ અને $\frac{\Delta B}{B}$ ખૂબ જ નાના હોવાથી

તેમનો ગુણાકાર અવગણતાં Z માં આંશિક ત્રુટિ,

$$\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

આ જ રીતે ભાગાકાર માટે આ જ પરિણામ મેળવી શકાય છે.

આથી કહી શકાય કે, 'જ્યારે બે ભૌતિક રાશિઓનો ગુણાકાર કે ભાગાકાર કરવામાં આવે ત્યારે અંતિમ પરિણામમાં મળતી મહત્તમ સાપેક્ષ ત્રુટિ (અથવા આંશિક ત્રુટિ) પ્રત્યેક ભૌતિક રાશિમાં મળતી સાપેક્ષ ત્રુટિ (આંશિક ત્રુટિ)ના સરવાળા બરાબર હોય છે. ઉદાહરણ 5: પદાર્થની ઘનતા માપવાના પ્રયોગમાં પદાર્થનું દળ, $m=(3\pm0.12) kg$ અને $V=(10\pm1) m^3$ નોંધવામાં આવ્યું છે. તો ઘનતા $(\rho=\frac{m}{V})$ ના માપનમાં આંશિક ત્રુટિ તથા પ્રતિશત ત્રુટિ શોધો.

ઉકેલ :
$$\rho = \frac{m}{V}$$

$$\therefore$$
 ધનતાના માપનમાં આંશિક ઝુટિ $\dfrac{\Delta \rho}{\rho}\!=\!\dfrac{\Delta m}{m}\!+\!\dfrac{\Delta V}{V}$
$$=\dfrac{0.12}{3}\;+\;\dfrac{1}{10}$$

$$=0.14$$

પ્રતિશત ત્રુટિ = 0.14 × 100 = 14 %

(3) ઘાતાંકવાળાં પદોના કિસ્સામાં ત્રુટિ (Error Due to the Power (Index) of a Measure Quantity):

ધારો કે
$$Z = A^2 = A \cdot A$$

જયારે, $\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta A}{A}$
$$= 2\frac{\Delta A}{A}$$

આથી $Z = A^2$ માં ઉદ્ભવતી ત્રુટિ, Aમાં મળતી આંશિક ત્રુટિથી બે ગણી થાય છે.

આ જ રીતે, જો, $Z=A^n$ હોય, તો $\frac{\Delta Z}{Z}=n\,\frac{\Delta A}{A}$ થાય.

વ્યાપક રીતે લખતાં, જો
$$Z=\frac{A^{p}B^{q}}{C^{r}}$$
 હોય તો
$$\frac{\Delta Z}{Z}=p\frac{\Delta A}{\Delta}+q\frac{\Delta B}{B}+r\frac{\Delta C}{C}$$

નોંધ : ભૌતિક રાશિની ઘાત જેમ મોટી તેમ તેની ત્રુટિ મોટી બને છે, તેથી તેનું મૂલ્ય ખૂબ જ ચોકસાઈપૂર્વક માપવું જોઈએ.

ઉદાહરણ 6 : ગોળાના દ્રવ્યમાનની ઘનતા શોધવાના પ્રયોગમાં *m*ના માપન પ્રતિશત ત્રુટિ 0.26 % છે. અને *r*ના માપનમાં પ્રતિશત ત્રુટિ 0.38 % છે. તો ઘનતામાં પ્રતિશત ત્રુટિ કેટલી ?

Geq:
$$\frac{\Delta m}{m} \times 100 = 0.26 \%;$$

$$\frac{\Delta r}{r} \times 100 = 0.38 \%$$

ગોળાના દ્રવ્યમાનની ધનતા $ho = rac{m}{V} = rac{m}{rac{4}{3}\pi r^3}$

19

$$\therefore$$
 ધનતામાં ત્રુટિ $\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + 3\frac{\Delta r}{r}$

ઘનતામાં પ્રતિશત ત્રુટિ = 0.26 % + 3 (0.38 %) = 1.40 %

ઉદાહરણ 7 : ભૌતિક રાશિનું સૂત્ર

 $W = \frac{a^4b^3}{c^{\frac{1}{3}}\sqrt{d}}$ હોય તથા, a, b, c અને d ના માપનમાં પ્રતિશત ત્રુટિ 1%, 3%, 3% અને 4%

ઉકેલ : W =
$$\frac{a^4b^3}{c^{\frac{1}{3}}\sqrt{d}}$$

હોય, તો Wમાં પ્રતિશત ત્રુટિ શોધો.

∴ Wમાં પ્રતિશત ત્રુટિ

$$\frac{\Delta W}{W} \times 100 = \left(4\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + \frac{1}{3}\frac{\Delta c}{c} + \frac{1}{2}\frac{\Delta d}{d}\right) \times 100$$

$$= 4 (1\%) + 3(3\%)$$

$$+ \frac{1}{3}(3\%) + \frac{1}{2} (4\%)$$

$$= 16 \%$$

ઉદાહરણ 8: સાદા લોલકના આવર્તકાળનું સૂત્ર $T=2\pi\sqrt{\frac{l}{g}}$ છે. લોલકની લંબાઈ 1mm ની ચોકસાઈથી માપતાં તે 10 cm મળે છે. લોલકનો આવર્તકાળ 0.5 s છે. 1 s નું વિભેદન (Resolution) ધરાવતી ઘડિયાળથી નો સમય આ લોલકનાં 100 દોલનો માપવામાં આવે છે. g ના માપનમાં પ્રતિશત ત્રુટિ શોધો.

ઉકેલ :
$$T = 2\pi \sqrt{\frac{l}{g}}$$
 $\therefore T^2 = \frac{4\pi^2 l}{g}$

અથવા,
$$g = \frac{4\pi^2 l}{T^2}$$

20 ભૌતિકવિજ્ઞાન

$$\therefore \frac{\Delta g}{g} = \frac{\Delta l}{l} + 2\frac{\Delta T}{T}$$

હવે, $\Delta l = 1$ mm = 0.1cm, l = 10cm,

કુલ સમય $t = nT = 0.5 \times 100 = 50$ s થશે $\Delta t = 1$ s છે.

હવે,
$$T = \frac{t}{n}$$
 અને $\Delta T = \frac{\Delta t}{n}$ હોવાથી $\frac{\Delta T}{T}$

$$=\frac{\Delta t}{t}$$
 થશે.

$$\therefore \frac{\Delta g}{g} = \frac{\Delta l}{l} + 2 \frac{\Delta t}{t}$$

$$\therefore \frac{\Delta g}{g} = \frac{0.1}{10} + 2 \times \frac{1}{50} = 0.05$$

 \therefore gના માપનમાં પ્રતિશત ત્રુટિ = 0.05×100 = 5%.

2.10 સાથકઅંકો (Significant Figures)

દરેક માપનની ચોકસાઈને કેટલીક મર્યાદા હોય છે. આ મર્યાદા, માપન માટે ઉપયોગમાં લીધેલા સાધનના લઘુતમ માપ પર આધાર રાખે છે. દા.ત., સેકન્ડ-કાંટો ધરાવતી ઘડિયાળથી એક સેકન્ડ સુધી ચોકસાઈપૂર્વક સમયનું માપન થઈ શકે છે.

ધારો કે મીટરપટ્ટીની મદદથી તમે પેન્સિલની લંબાઈ માપી રહ્યા છો. પેન્સિલનો એક છેડો મીટરપટ્ટીના શૂન્ય પર રાખતાં તેનો બીજો છેડો 12.3 cm અને 12.4 cmની વચ્ચે માલૂમ પડે છે. મીટરપટ્ટીનું લઘુતમ માપ 0.1cm હોવાથી 12.3 cm અને 12.4 cm વચ્ચે કોઈ અંકન હોતું નથી, આથી આપણે અનુમાન લગાવીએ છીએ કે તેની લંબાઈ 12.38 cm છે. અહીં આપણે અંકો 1, 2 અને 3 માટે ચોક્કસ છીએ, પરંતુ છેલ્લા અંક 8 માટે આપણે અચોક્કસ છીએ.

માપ દર્શાવતી કોઈ એક સંખ્યામાં ચોકસાઈપૂર્વકના અંકો ઉપરાંત એક અચોક્કસ છતાં અર્થપૂર્શ એવા છેલ્લા અંક સાથે લખાતી સંખ્યાને સાર્થક સંખ્યા કહે છે અને તેના અંકોને સાર્થક અંક કહે છે. ઉપરના ઉદાહરણમાં 1, 2, 3 અને 8 એમ ચાર સાર્થક અંકો છે.

માપનમાં જેમ સાર્થક અંકોની સંખ્યા વધારે તેમ તે વધુ ચોકસાઈપૂર્વકનું માપન કહેવાય. સાર્થક અંકોની સંખ્યા, માપન માટે ઉપયોગમાં લેવાયેલા સાધનના લઘુતમ માપ પર આધાર રાખે છે. દા.ત., વર્નિયર કેલિપર્સથી માપેલ કોઈ સળિયાની ત્રિજ્યા r=0.25 cm છે. આ જ સળિયાની ત્રિજ્યા માઇકોમીટર સ્કૂ

ગેજ વડે માપતાં તે 0.254 cm છે. પહેલા કિસ્સામાં સાર્થકઅંકો બે (2 અને 5) છે, જ્યારે બીજા કિસ્સામાં સાર્થક અંકો ત્રણ (2, 5 અને 4) છે. જે વધુ સચોટતાપૂર્વક (Precise)નું માપન દર્શાવે છે.

ગિણતમાં તો બધી જ સંખ્યાઓ નિશ્રિત સંખ્યાઓ જ કહેવાય. પરંતુ જ્યારે કોઈ સંખ્યા ભૌતિક રાશિના માપનને રજૂ કરતી હોય ત્યારે જ તેની સાર્થકતાનો પ્રશ્ન ઉદ્દભવે છે.

2.10.1 સાર્થક અંકોની સંખ્યા નક્કી કરવાના નિયમો (Rules for Determining Number of Significant Digits)

- (1) બધા જ શૂન્યેતર (શૂન્ય સિવાયના) અંકો સાર્થક એક છે. દા.ત., 125.63 g નું માપ દર્શાવતા અવલોકનમાં 1, 2, 5, 6 અને 3 એમ પાંચ સાર્થક અંકો છે.
- (2) બે શૂન્યેતર અંકોની વચ્ચેના બધા શૂન્યાંકો પણ સાર્થક અંકો છે. (દશાંશચિક્ષવાળી અને દશાંશચિક્ષ સિવાયની બંને પ્રકારની સંખ્યા માટે આ નિયમ છે.)

દા.ત., 125.004cm સાર્થક સંખ્યામાં 6 સાર્થક અંકો છે.

- (3) જો સંખ્યા 1 કરતાં નાની હોય, તો દશાંશચિદ્ધની જમણી તરફના, પરંતુ પ્રથમ શૂન્યેતર અંકની ડાબી તરફના અંકો સાર્થક અંકો નથી. દા.ત., 0.001507, સંખ્યામાં લીટી દોરેલાં શૂન્યો સાર્થક અંકો નથી. અહીં સાર્થક અંકોની સંખ્યા 4 છે.
- (4) દશાંશચિદ્ધ સિવાયની સંખ્યામાં અંતિમ શૂન્યેતર અંકની જમણી તરફના શૂન્યાંકો સાર્થક અંક નથી.

દા.ત., 132m = 13200cm = 132000mm. અહીં ત્રણેય કિસ્સામાં સાર્થક અંકો (1, 3 અને 2) છે. અહીં સંખ્યામાં શૂન્યો ફક્ત સ્થાનમૂલ્યો જ દર્શાવે છે. એટલે કે જો એકમો બદલી શૂન્યો વધારવામાં આવે, તો સાર્થક અંકોની સંખ્યા બદલાતી નથી.

(5) દશાંશ ચિદ્ધવાળી સંખ્યામાં અંતિમ શૂન્યેતર અંક પછીના બધા જ શૂન્યાંકો સાર્થક અંકો છે.

દા.ત., <u>7</u>.<u>900</u> અને 0.0<u>7</u> <u>9</u> <u>0</u> <u>0</u> બંને સંખ્યામાં 7, 9, 0, 0 એમ ચાર સાર્થક અંકો છે.

ઉદાહરણ 9 : નીચે આપેલ સંખ્યામાં સાર્થક અંકોની સંખ્યા જણાવો :

- (1) 0.003 m²
- $(2) 0.1570 \text{ g cm}^{-2}$
- (3) $2.64 \times 10^{24} \text{ kg}$
- (4) 7.590 J
- (5) 6.032 Nm⁻²
- (6) $3.012 \times 10^{-4} \text{ m}^2$

ઉકેલ :

- (1) 0.003 m^2 માં સાર્થક અંકો ફક્ત એક (3) છે.
- (2) 0.1570 g cm^{-2} માં સાર્થક અંકો ચાર (1, 5, 7 અને 0) છે.
- (3) 2.64×10^{24} kgમાં સાર્થક અંકો ત્રણ (2, 6 અને 4) છે.
 - (4) 7.590 Jમાં સાર્થક અંકો (7, 5, 9 અને 0) છે.
- (5) 6.032 Nm^{-2} માં સાર્થક અંકો ચાર (6, 0, 3 અને 2) છે.
- (6) $3.012 \times 10^{-4} \text{ m}^2$ માં સાર્થક અંકો ચાર (3, 0, 1 અને 2) છે.

2.10.2 સરવાળા, બાદબાકી, ગુણાકાર અને ભાગાકારમાં સાર્થક અંકો (Significant Figures in Addition, Subtraction, Multiplication and Division)

પ્રયોગશાળામાં પ્રયોગ કરવા માટે આપણે ઘણાં બધાં માપન કરતાં હોઈએ છીએ. દરેક માપનને ચોકસાઈની મર્યાદા હોય છે. દરેક માપનમાં રહેલા સાર્થક અંકોની સંખ્યા સાધનના લઘુતમ માપ પર આધારિત હોય છે. ધારો કે જુદા-જુદા લઘુતમ માપ ધરાવતાં મીટરો (ઓહમ મીટર)ની મદદથી માપેલા જુદા-જુદા અવરોધોનાં મૂલ્યો $\mathbf{R}_1=5.67\,\Omega$, $\mathbf{R}_2=12.345\,\Omega$ અને $\mathbf{R}_3=0.7\,\Omega$ છે. હવે તમારે કુલ અવરોધ ગણવો છે. આથી,

$$R = 5.67 \Omega + 12.345 \Omega + 0.7 \Omega = 18.715 \Omega$$

હવે પ્રશ્ન એ થાય કે શું સરવાળો આ રીતે દર્શાવી શકાય ? R_1 (= 5.67 Ω)માં દશાંશસ્થાન પછીના ત્રીજા અંક વિશે માહિતી નથી અને R_3 ના મૂલ્યમાં દશાંશસ્થાન પછીના બીજા અને ત્રીજા અંક વિશે માહિતી નથી. અહીં R_3 નું મૂલ્ય દશાંશસ્થાન પછી એક જ અંક ધરાવે છે, જે દર્શાવે છે કે તેના માપનમાં સચોટતા (Precision) બીજા બે અવરોધોનાં માપન કરતાં ઓછી છે. આથી, આવા સરવાળામાં (એટલે કે 18.715 Ω) દશાંશસ્થાન પછીના બીજા અને ત્રીજા અંકો (1 અને 5) અચોક્કસ અને અર્થવિહીન બને છે. આથી અંતિમ પરિણામને દશાંશસ્થાન પછીના એક અંક સુધી દર્શાવવું જોઈએ.

આ રીતે પરિણામમાં મળતાં એક કરતાં વધુ અચોક્કસ અંકોને યોગ્ય સાર્થક અંકો સુધી 'Round off' કરવાં જોઈએ. આ માટે નીચેના મુદ્દાઓ ધ્યાનમાં લો :

(1) આપેલ સંખ્યામાંથી જે અંક કાઢી નાખવાનો હોય તે 5 કરતાં ઓછો હોય તો તેની પહેલાના અંકમાં કોઈ ફેરફાર કરવો નહિ. દા.ત., $l=10.743~\mathrm{cm}$ ને ત્રણ સાર્થક અંકો સુધી 'round off' કરતાં $10.7~\mathrm{cm}$ લખાય.

(2) સંખ્યામાંથી જે અંક કાઢી નાખવાનો હોય તે 5 કરતાં વધુ હોય, તો તેની આગળના અંકમાં 1 ઉમેરવો. દા.ત., l=10.68 cm =10.7 cm (ત્રણ સાર્થક અંક સુધી 'round off' કરતાં)

(3) સંખ્યામાંથી જે અંક કાઢી નાખવાનો હોય તે અંક 5 હોય તો તેની પહેલાનો અંક એકી હોય, તો તેમાં 1 ઉમેરવો અને જો બેકી હોય, તો તેમાં કંઈ ઉમેરવું નહિ.

> Fi.d., l = 10.45cm = 10.4cm l = 10.55cm = 10.6cm

સરવાળા-બાદબાકી : સાર્થક સંખ્યાનાં સરવાળા-બાકબાકી માટે નીચેના મુદ્દાઓ ધ્યાનમાં રાખવા :

- (1) આપેલ સાર્થક સંખ્યાઓ પૂર્શાંક સંખ્યાઓ હોય તો તેમનાં સરવાળા-બાકબાકી, સામાન્ય રીતે સરવાળા-બાદબાકી કરવાં જોઈએ.
- (2) આપેલ સાર્થક સંખ્યાઓમાંથી જે સંખ્યામાં દશાંશસ્થાન પછી જેટલા લઘુતમ સાર્થક અંકો હોય તેટલા જ સાર્થક અંકો સરવાળા-બાકબાકીથી મળતાં પરિણામમાં દશાંશસ્થાન પછી દર્શાવવા. દા.ત., ઉપરના ઉદાહરણમાં આપેલ અવરોધો પૈકી $R_3=0.7\,\Omega$ માં દશાંશસ્થાન પછી એક જ સાર્થક સંખ્યા છે. આથી કુલ અવરોધ $R=18.715\,\Omega$ ને બદલે તેને round off કરી $R=18.7\,\Omega$ વડે દર્શાવવું જોઈએ.

ગુણાકાર-ભાગાકર : અવલોકનોમાં દર્શાવેલ સૌથી છેલ્લો સાર્થક અંક અચોક્કસ હોય છે. કોઈ સંખ્યાનો અચોક્કસ સંખ્યા સાથેનો ગુણાકાર અચોક્કસ હોય છે, પરંતુ પરિણામમાં ફક્ત એક જ અચોક્કસ અંક રાખવામાં આવે છે, આથી સાર્થક સંખ્યાના ગુણાકાર-ભાગાકાર કરતી વખતે નીચેના મુદ્દાઓ ધ્યાનમાં લેવા :

(1) આપેલ સંખ્યાઓમાંથી જે સંખ્યામાં લઘુતમ સાર્થક અંકો હોય તેટલા જ સાર્થક અંકો આ સંખ્યાઓના ગુણાકાર-ભાગાકારથી મળતા પરિણામમાં હોવા જોઈએ. દા.ત., (i) કોઈ તકતીની પહોળાઈ 2.613 cm અને લંબાઈ 1.2 cm છે. આથી આ તકતીનું ક્ષેત્રફળ = 2.613 cm × 1.2 cm = 3.1356 cm²

પરંતુ આપેલ સંખ્યાઓમાં લઘુતમ સાર્થક અંકો ધરાવતી સંખ્યા 1.2 cm છે. જેને બે સાર્થક અંકો છે. 22

આથી ક્ષેત્રફળ (= 3.1356 cm²)ને બે અંકો સુધી round off કરી દર્શાવવું જોઈએ.

આથી, 2.613 cm \times 1.2 cm = 3.1 cm² (ii) ધારો કે કોઈ પદાર્થનું દળ m = 3.523 g અને

(ii) ધારા ક કાઇ પદાથનુ દળ m = 3.523 g અન કદ V = 1.47 cm³ છે. આ પદાર્થની ઘનતા

$$\rho = \frac{3.523_g}{1.47 \text{cm}^3} = 2.4296552 = 2.43g \text{ cm}^{-3} \text{ qs}$$

દર્શાવવી જોઈએ, કારણ કે, કદના માપનમાં ફક્ત ત્રણ સાર્થક અંકો છે.

(2) જે સંખ્યાઓને ગુણવાની-ભાગવાની હોય તેમાંની જે સંખ્યા માપન દર્શાવતી ન હોય, તો તે સંખ્યા ચોક્કસ હોય છે. ભૌતિક સમીકરણમાં આવતી પૂર્ણાંક અથવા અપૂર્ણાંક સંખ્યા પણ ચોક્કસ હોય છે. દા.ત., $v^2 - v_0^2 = 2ad$ સમીકરણમાં અંક 2 ચોક્કસ છે. તેને અનંત સાર્થક અંકો (2.000......) છે. આવા કિસ્સાઓમાં ગુણાકાર-ભાગાકાર કરતી વખતે ચોક્કસ સંખ્યાના સાર્થક અંકો ધ્યાનમાં લેવા નહિ.

ઉદાહરણ 10 : એક ગોળાનો વ્યાસ 4.24 cm છે. સાર્થક અંકોને ધ્યાનમાં રાખી તેના પૃષ્ઠનું ક્ષેત્રફળ ગણો.

ઉકેલ : વ્યાસ D = 4.24 cm

ગોળાના પૃષ્ઠનું =
$$4\pi R^2 = 4\pi \left(\frac{D}{2}\right)^2$$

= $4 \times 3.14 \times \left(\frac{4.24}{2}\right)^2$
= 56.478 cm^2
= 56.5 cm^2

(ઉપરના સમીકરણમાં 4 અને 2 ચોક્ક્સ સંખ્યાઓ છે, જ્યારે Dના માપનમાં ત્રણ સાર્થક અંકો છે. આથી, જવાબને ત્રણ સાર્થક અંકો સુધી round off કરેલ છે.) 2.11 પરિમાણો અને પારિમાણિક સૂત્રો (Dimensions and Dimensional Formulae)

કોઈ પણ ભૌતિક રાશિને (સાધિત ભૌતિક રાશિ) જ્ઞાત મૂળભૂત ભૌતિક રાશિનાં સંયોજનો વડે દર્શાવી શકાય છે. સરળતા ખાતર આ મૂળભૂત ભૌતિક રાશિઓને કોઈ સંજ્ઞા વડે દર્શાવી શકાય. સામાન્ય રીતે દળ માટે 'M', લંબાઈ માટે 'L', સમય માટે 'T' અને વિદ્યુતપ્રવાહ માટે 'A' સંજ્ઞા વપરાય છે. થર્મોડાઇનેમિક તાપમાન, જયોતિ તીવ્રતા અને દ્રવ્યના જથ્થાને અનુક્રમે 'K', 'cd' અને 'mol' જેવી સંજ્ઞા વડે દર્શાવવામાં આવે છે.

જ્યારે કોઈ ભૌતિક રાશિને M, L, T, K, A ... ના યોગ્ય ઘાતાંકો સાથે લખવામાં આવે, ત્યારે M, L, T, ... ના સ્વરૂપમાં તૈયાર થતાં સૂત્રને આપેલ ભૌતિક રાશિનું પારિમાણિક સૂત્ર કહે છે. આ સૂત્રમાં આવતાં M, L, T, ... નાં ઘાતાંકોને આ રાશિનાં પરિમાણ કહે છે. જે ભૌતિકરાશિ માટે પારિમાણિક સૂત્ર લખવામાં આવ્યું હોય, તે રાશિની સંજ્ઞાને []માં મૂકી દર્શાવવામાં આવે છે.

દા.ત., (i) વેગનું પારિમાણિક સૂત્ર નીચે મુજબ મળે છે :

વેગ =
$$\frac{\text{સ્થાનાંતર}}{\text{સમય}}$$

$$\therefore [v] = rac{$$
લંબાઈનું પરિમાણ $}{ ext{સમયનું પરિમાણ}}$ $= rac{L^1}{T^1}$

$$= \frac{1}{T^{1}}$$

$$= L^{1} T^{-1}$$

$$= M^{0} L^{1} T^{-1}$$

 $M^0L^1T^{-1}$ ને વેગનું પારિમાણિક સૂત્ર કહે છે. અહીં વેગના પરિમાણમાં દળનું પરિમાણ 0, લંબાઈનું પરિમાણ 1 અને સમયનું પરિમાણ -1 છે.

(ii) ગતિ-ઊર્જાનું પારિમાણિક સૂત્ર નીચે મુજબ મળશે :

$$K = \frac{1}{2} m v^2$$

 $[K] = [m] [v]^2$ (અહીં $\frac{1}{2}$ અંક હોવાથી તેને કોઈ

પરિમાશ હોતા નથી.)

$$= (M^1) (M^0 L^1 T^{-1})^2$$

$$[K] = M^1 L^2 T^{-2}$$

કેટલીક ભૌતિકરાશિઓના પારિમાણિક સૂત્રો ટેબલ 2.3 માં આપેલ છે.

2.11.1 પારિમાણિક વિશ્લેષણ(Dimensional Analysis)

પારિમાણિક સૂત્રોનો ઉપયોગ કરીને ભૌતિકવિજ્ઞાનના અમુક પ્રશ્નોનો ઉકેલ મેળવવાની પદ્ધતિને પારિમાણિક વિશ્લેષણ કહે છે.

પારિમાણિક વિશ્લેષણના ઉપયોગો :

(a) બે જુદીજુદી એકમપદ્ધતિના કોઈ ભૌતિક રાશિના એકમો વચ્ચેનો સંખ્યાત્મક સંબંધ મેળવવો.

- (b) ભૌતિક રાશિઓને સાંકળતાં સમીકરણની યથાર્થતા પારિમાણિક વિશ્લેષણ વડે ચકાસવી.
- (c) કોઈ ભૌતિક રાશિનું અન્ય ભૌતિક રાશિઓ સાથે સંબંધ દર્શાવતું સમીકરણ મેળવવું.

(a) બે જુદી-જુદી એકમપદ્ધતિના કોઈ ભૌતિક રાશિના એકમો વચ્ચેનો સંખ્યાત્મક સંબંધ મેળવવો :

MKS પદ્ધતિમાં કાર્યનો એકમ જૂલ (J) છે અને CGS પદ્ધતિમાં અર્ગ (erg) છે. તેમની વચ્ચેનો સંખ્યાત્મક સંબંધ નીચે પ્રમાણે મેળવી શકાય :

કાર્યનું પારિમાણિક સૂત્ર $[W] = M^1 L^2 T^{-2}$ છે.

MKS પદ્ધતિમાં CGS પદ્ધતિમાં

$$M (kg) = 10^3 M (g)$$

$$L (m) = 10^2 L (cm)$$

$$T (s) = 10^0 T (s)$$

$$\therefore M^{1}L^{2}T^{-2} = (10^{3}M)^{1} (10^{2}L)^{2} (10^{0}T)^{-2}$$

$$= 10^{3}(M^{1}) 10^{4} (L^{2}) (T^{-2})$$

$$= 10^{7} M^{1}L^{2}T^{-2}$$

કાર્યનો MKS પદ્ધતિમાં એકમ = $10^7 imes$ કાર્યનો CGS પદ્ધતિમાં એકમ

$$\therefore$$
 1 joule = 10^7 erg

(b) પારિમાણિક સમીકરણનો ઉપયોગ કરીને ભૌતિક વિજ્ઞાનના કોઈ સમીકરણની યથાર્થતા તપાસવી.

ભૌતિક રાશિઓને સાંકળતાં કોઈ પણ સમીકરણની બંને બાજુની પદાવલિઓનાં પરિમાણો સમાન હોય, તો તે ભૌતિક સમીકરણ પારિમાણિક દૃષ્ટિએ યથાર્થ છે, તેમ કહેવાય.

ઉદાહરણ તરીકે, વર્તુળાકાર માર્ગ પર ગતિ કરતાં પદાર્થ પર લાગતાં કેન્દ્રગામી બળ માટેના સમીકરણ

અહીં, m = પદાર્થનું દળ, v = પદાર્થનો વેગ અને r = વર્તુળાકાર માર્ગની ત્રિજ્યા છે.

સમીકરણની ડાબી બાજુ માટે

$$[F] = M^1L^1T^{-2}$$

સમીકરણની જમણી બાજુ માટે,

$$\begin{bmatrix} \frac{mv^2}{r} \end{bmatrix} = \frac{[m][v]^2}{r}$$

$$= \frac{(M^1)(L^1T^{-1})^2}{(L^1)}$$

$$= \frac{(M^1)(L^2T^{-2})}{(L^1)}$$

$$= M^1L^1T^{-2}$$

આમ,
$$[F] = \left[\frac{mv^2}{r}\right]$$
 હોવાથી, આપેલ સમીકરણ

પારિમાણિક દેષ્ટિએ યથાર્થ છે.

નોંધ : સમીકરણમાં આવતાં અચળાંકો જો પરિમાણરહિત ન હોય, તો તેની ચકાસણી થઈ શકતી નથી.

(c) કોઈ ભૌતિક રાશિનું અન્ય ભૌતિક રાશિઓ સાથે સંબંધ દર્શાવતું સમીકરણ મેળવવું :

ધારો કે સાદા લોલકના આવર્તકાળનું સમીકરશ મેળવવું છે. સાદા લોલકનો આવર્તકાળ (T) એ લોલકની લંબાઈ (l) લોલકના ગોળાના દળ (m) અને ગુરુત્વપ્રવેગ (g) પર આધારિત હોઈ શકે.

લોલકનો આવર્તકાળ T
$$\propto m^a$$
 $\propto l^b$ $\propto g^c$ T $\propto m^a l^b g^c$ \therefore T = $k m^a l^b g^c$ (2.11.1)

જ્યાં, k સપ્રમાણતા-અંક છે. જે પરિમાણરહિત છે. $a, b, c \in \mathbb{R}$ છે.

આ સમીકરણની બંને બાજુઓનાં પદોનાં પારિમાણિક સૂત્ર મૂકતાં,

$$(M^{0}L^{0}T^{1}) = (M^{1})^{a} (L^{1})^{b} (M^{0}L^{1}T^{-2})^{c}$$
$$= (M^{a}) (L^{b}) (M^{0}L^{c}T^{-2c})$$
$$M^{0}L^{0}T^{1} = M^{a} L^{b+c} T^{-2c}$$

ઉપર્યુક્ત સમીકરણની બંને બાજુઓના M, L અને T માં આવતાં પરિમાણો સરખાવતાં, 24 ભૌતિકવિજ્ઞાન

$$a = 0 \qquad \qquad \therefore c = -\frac{1}{2}$$

$$b+c=0 \qquad \therefore b=\frac{1}{2}$$

$$-2c = 1$$

a, b અને cનાં મૂલ્યો સમીકરણ (2.11.1)માં મૂકતાં,

$$T = km^0 l^{\frac{1}{2}} g^{-\frac{1}{2}}$$
 અથવા $T = k\sqrt{\frac{l}{g}}$

ઉપરના સમીકરણમાં પ્રાયોગિક રીતે $k=2\pi$ મળે છે. તેથી,

$$T = 2\pi \sqrt{\frac{l}{g}}$$

જે સાદા લોલકના આવર્તકાળનું સૂત્ર છે.

2.11.2 પારિમાણિક વિશ્લેષણની મર્યાદાઓ (Limitations of Dimensional Analysis)

- (1) માત્ર M, L અને Tનો સમાવેશ કરતા પારિમાણિક સમીકરણમાં M, L અને Tના ઘાતાંકોની સરખામણી કરતાં વધુમાં વધુ ત્રણ સમીકરણો મળે છે. આથી કોઈ પણ ભૌતિક રાશિનું ત્રણ કરતાં વધારે રાશિ સાથેના સમીકરણનું નિશ્રિત સ્વરૂપ મેળવી શકાતું નથી.
- (2) ભૌતિક સમીકરણમાં આવતા પરિમાણરહિત અંક વિશે માહિતી મળતી નથી. દા.ત., $T=k\sqrt{\frac{l}{g}}$ માં $k=2\pi$ નું મૂલ્ય ફક્ત પ્રાયોગિક રીતે નક્કી કરી શકાય છે.
- (3) ચરઘાતાંકીય, ત્રિકોશમિતીય અને લોગવિધેય પર આધારિત સમીકરશો મેળવી શકાતાં નથી આવાં વિધેયો પરિમાશરહિત હોય છે. દા.ત., $\sin \omega t$ માં ωt અને e^{-kx} માં kx એ પરિમાશરહિત છે.
- (4) જો સમીકરણમાં આવતો સપ્રમાણતા અચળાંક પરિમાણરહિત ન હોય, તો આ પદ્ધતિ ઉપયોગી નથી.

દા.ત., $F = G \frac{m_1 m_2}{r^2}$ માં અચળાંક $G + N m^2 kg^{-2}$ એકમ હોવાથી આવાં સમીકરણો મેળવી શકાતાં નથી.

ઉદાહરણ 11 : પ્રકાશના વેગને વેગના એકમ તરીકે અને yearને સમયના એકમ તરીકે લેવામાં આવે, તો આ પદ્ધતિમાં અંતરનો એકમ શું થાય ? (પ્રકાશનો વેગ = 3×10^8 m s⁻¹ લો.)

ઉકેલ :

અંતર = વેગ
$$\times$$
 સમય
અંતરનો એકમ = વેગનો એકમ \times સમયનો એકમ
= $(3 \times 10^8 \text{m s}^{-1}) \times (1 \text{ year})$
= $(3 \times 10^8 \text{m s}^{-1}) \times (365.25 \times 24 \times 3600 \text{ s})$
= $9.468 \times 10^{15} \text{m}$

અંતરના આ નવા એકમને પ્રકાશવર્ષ કહે છે.

ઉદાહરણ 12: એક નવી એકમપદ્ધતિમાં અંતર, દળ અને સમયના એકમો અનુક્રમો 10 cm, 10g અને 0.1s તરીકે સ્વીકારવામાં આવે, તો આ એકમપદ્ધતિમાં બળનો નવો એકમ કેટલા newton બરાબર થાય ?

ઉકેલ :

બળનું પારિમાણિક સૂત્ર $[F]=M^1L^1T^{-2}$

નવી એકમ પદ્ધતિમાં બળનો એકમ

 $= [(10g)^1 (10cm)^1 (0.1s)^{-2}]$

= $(10^{-2}\text{kg})^1 (10^{-1}\text{m})^1 (10^2\text{s}^{-2})$

 $= 10^{-1} \text{kg m s}^{-2}$

= 0.1 newton

ઉદાહરણ 13 : ઉષ્માનું વહન કરતો કોઈ સિળયો જ્યારે સ્થાયી ઉષ્મા-અવસ્થામાં રહેલો હોય છે, ત્યારે તેમાં પસાર થતી ઉષ્મા $Q=\frac{kA(T_1-T_2)t}{L}$ હોય છે, જ્યાં k= સિળયાના દ્રવ્યની ઉષ્માવાહકતા, A= સિળયાના આડછેદનું ક્ષેત્રફળ, T_1 અને T_2 અનુક્રમે સિળયાના ગરમ અને ઠંડા છેડાનાં તાપમાન દર્શાવે છે, t= સમય તથા L= સિળયાની લંબાઈ છે. ઉષ્માવાહકતા kનું પારિમાષ્ટ્રિક સૂત્ર મેળવો.

ઉકેલ :

Q =
$$\frac{kA(T_1 - T_2)t}{L}$$

$$\therefore k = \frac{QL}{A(T_1 - T_2)t}$$
જયાં ઉખ્યા-ઊર્જા, [Q] = $M^1L^2T^{-2}$

લંબાઈ, $[L]=L^1$ ક્ષેત્રફળ, $[A]=L^2$ તાપમાનનો ફેરફાર, $(T_1-T_2)=[\Delta T]=K^1$ સમય, $[t]=T^1$

અત્રે, આપણે M, L અને Tની સાથે K (તાપમાન માટે)નો સમાવેશ કર્યો છે. ઉપર્યુક્ત પરિમાણ, સૂત્રો સમીકરણ (1)માં મુકતાં,

$$[k] = \frac{M^{1}L^{2}T^{-2}L^{1}}{L^{2}K^{1}T^{1}} = M^{1}L^{1}T^{-3}K^{-1}$$

નોંધ : ઘણાં પુસ્તકોમાં Kને બદલે θ સંજ્ઞાનો ઉપયોગ થાય છે.

ઉદાહરણ 14 : નીચેની ભૌતિક રાશિનાં પારિમાણિક સૂત્રો મેળવો :

(i) વિદ્યુતભાર (Q) (ii) વિદ્યુતસ્થિતિમાન (V)

(iii) કેપેસિટન્સ (C) (iv) અવરોધ (R)

ઉકેલ : ઉપરની ભૌતિક રાશિઓને સાંકળતાં સૂત્રો નીચે મુજબ છે :

Q = It, W = VIt, Q = CV, V = IR, જ્યાં I = વિદ્યુતપ્રવાહ, t = સમય, W = ઊર્જા છે.

(i)
$$Q = It$$

$$\therefore [Q] = M^0 L^0 A^1 T^1$$

A એ વિદ્યુતપ્રવાહના એકમનો સંકેત છે. તેનો પણ હવે M, L, T સાથે સમાવેશ કરવામાં આવ્યો છે.

(ii)
$$W = VIt$$

$$\therefore [V] = \frac{M^{1}L^{2}T^{-2}}{AT^{1}}$$
$$= M^{1}L^{2}T^{-3}A^{-1}$$

(iii)
$$Q = CV$$

$$C = \frac{Q}{V}$$

$$= \frac{It}{W/It}$$

$$\therefore \ \ C \ = \ \ \frac{\mathrm{I}^2 t^2}{\mathrm{W}} \Longrightarrow \ [\mathrm{C}] \ = \ \ \frac{\mathrm{A}^2 \mathrm{T}^2}{\mathrm{M}^1 \mathrm{L}^2 \mathrm{T}^{-2}}$$

$$:$$
 [C] = $M^{-1}L^{-2}T^4A^2$

(iv) V = IR

$$\therefore R = \frac{V}{I} = \frac{W / It}{I} = \frac{W}{I^{2}t}$$

$$[R] = \frac{M^{1}L^{2}T^{-2}}{A^{2}T^{1}}$$

$$\therefore [R] = M^1L^2T^{-3}A^{-2}$$

ઉદાહરણ 15 : જો વેગ, સમય અને બળને મૂળભૂત ભૌતિક રાશિઓ તરીકે લઈએ, તો દળનું પારિમાણિક સૂત્ર શોધો. (જ્યારે બળ, સમય અને વેગને મૂળભૂત ભૌતિક રાશિઓ તરીકે લઈએ, ત્યારે બળ માટે F, સમય માટે T અને વેગ માટે v સંજ્ઞાનો ઉપયોગ કરવો.)

ઉકેલ :

બળ = દળ
$$\times$$
 પ્રવેગ
= દળ \times $\frac{\dot{q}}{\ddot{q}}$

$$\therefore$$
 દળ $=$ $\frac{ બળ \times સમય}{ વેગ}$

$$\therefore [m] = \frac{F^1 T^1}{v^1}$$

$$\therefore [m] = F^1 T^1 v^{-1}$$

ઉદાહરણ 16 : સુવાહક તારમાંથી વિદ્યુતપ્રવાહ પસાર કરતાં ઉદ્ભવતી ઉષ્મા-ઊર્જા તારમાંથી પસાર થતા વિદ્યુપ્રવાહ I, તારના અવરોધ R અને વિદ્યુતપ્રવાહ પસાર થવાના સમય t પર આધાર રાખે છે. આ હકીકતનો ઉપયોગ કરી ઉષ્મા-ઊર્જાનું સૂત્ર મેળવો.

ઉકેલ ઃ ધારો કે ઉષ્મા-ઊર્જા $\mathbf{H} \propto \mathbf{I}^a \mathbf{R}^b t^c$

$$\therefore H = k I^a R^b t^c$$
 (1)

(જ્યાં $a,\ b,\ c\in \mathbb{R}$ તથા k પરિમાણરહિત અચળાંક છે.)

સમીકરણ (1)માંની ભૌતિક રાશિઓનાં પારિમાણિક સૂત્રો લખતાં,

$$M^{1}L^{2}T^{-2} = (A)^{a} (M^{1}L^{2}T^{-3}A^{-2})^{b} (T)^{c}$$

= $A^{a-2b} M^{b} L^{2b} T^{c-3b}$ (2)

સમીકરણ (2)ની બંને બાજુની ઘાતો સરખાવતાં, $a-2b=0,\ b=1,\ -3b+c=-2$ તેથી, a=2 અને c=1

હવે સમીકરણ (1)માં $a,\ b$ અને cની કિંમતો મૂકતાં,

$$\therefore$$
 H = kI^2Rt
પ્રાયોગિક રીતે $k=1$ મળે છે.

$$\therefore$$
 H = I^2Rt

26

ટેબલ 2.3 : કેટલીક ભૌતિક રાશિઓનાં SI એકમો અને પારિમાણિક સૂત્રો

નં.	ભૌતિક રાશિ	બીજી ભૌતિક રાશિ સાથેનો સંબંધ	પારિમાણિક સૂત્ર	SI પદ્ધતિમાં એકમ
1.	અંતર (<i>d</i>)	_	$M^0L^1T^0$	m
2.	દળ (m)		M¹LºTº	kg
3.	સમય (T)	-	M ⁰ L ⁰ T ¹	S
4.	સમતલ કોણ (θ)	ચાપ / ત્રિજ્યા	M ⁰ L ⁰ T ⁰	rad
5.	ઘનકોણ (Ω)	ક્ષેત્રફળ / (ત્રિજ્યા) ²	M ⁰ L ⁰ T ⁰	sr
6.	ક્ષેત્રફળ (A)	લંબાઈ × પહોળાઈ	$M^0L^2T^0$	m ²
7.	5E (V)	લંબાઈ × પહોળાઈ × ઊંચાઈ	M ⁰ L ³ T ⁰	m ³
8.	ઘનતા (p)	દળ / કદ	$M^1L^{-3}T^0$	kg m ⁻³
9.	ઝડપ/વેગ (٧)	અંતર / સમય	$M^0L^1T^{-1}$	$m s^{-1}$
10.	પ્રવેગ (a)	વેગમાં ફેરફાર / સમય	$M^0L^1T^{-2}$	m s ⁻²
11.	બળ (F)	દળ × પ્રવેગ	M ¹ L ¹ T ⁻²	kg m s ⁻² (newton)
12.	કાર્ય (W)	બળ × અંતર	$M^{1}L^{2}T^{-2}$	joule, (J)
13.	પાવર (P)	કાર્ય / સમય	$M^{1}L^{2}T^{-3}$	J/s, watt
14.	ઊર્જા (ગતિ ઊર્જા, સ્થિતિ ઊર્જા, ઊષ્મા ઊર્જા)	કાર્ય	$\mathrm{M}^{1}\mathrm{L}^{2}\mathrm{T}^{-2}$	joule (J)
15.	વેગમાન (<i>p</i>)	દળ × વેગ	$M^{1}L^{1}T^{-1}$	kg ms ⁻¹
16.	દબાણ (P)	બળ / ક્ષેત્રફળ	$M^{1}L^{-1}T^{-2}$	Nm ⁻² , Pa
17.	આવર્તકાળ (T)	સમય	$M^0L^0T^1$	s
18.	આવૃત્તિ (f)	1 / આવર્તકાળ	$M^{0}L^{0}T^{-1}$	s ⁻¹ , Hz
19.	કોણીય સ્થાનાંતર (θ)	ચાપ / ત્રિજ્યા	M ₀ L ₀ T ₀	rad
20.	ક્રોણીય વેગ (ω)	કોણીય સ્થાનાંતર / સમય	$M^0L^0T^{-1}$	rad s ⁻¹
21.	કોણીય પ્રવેગ (∞)	કોણીય વેગ / સમય	$M^0L^0T^{-2}$	rad s ⁻²
22.	જડત્વની ચાકમાત્રા (I)	દળ × (અંતર)²	$M^1L^2T^0$	kg m ²
23.	ટૉર્ક (૪)	બળ × ⊥ અંતર	$M^{1}L^{2}T^{-2}$	Nm
24.	બળનો આઘાત	બળ × સમય	$M^1L^1T^{-1}$	Ns ⁻¹
25.	યૃષ્ઠતાણ (T)	બળ / અંતર	$M^{1}L^{0}T^{-2}$	Nm ⁻¹

26.	વિશિષ્ટ ઉષ્મા (C)	ઉષ્મા-ઊર્જા દળ × તાપમાન	$M^0L^2T^{-2}K^{-1}$	J kg ⁻¹ K ⁻¹
27.	ઉષ્માવાહકતા (k)	ઉષ્મા-ઊર્જા × જાડાઈ ક્ષેત્રફળ × તાપમાન × સમય	$M^{1}L^{1}T^{-3}K^{-1}$	$ m Jm^{-1}s^{-1}K^{-1}$
28.	વિદ્યુતપ્રવાહ (I)	1	$M^0L^0T^0A^1$	A
29.	વિદ્યુતભાર (Q)	વિદ્યુતપ્રવાહ × સમય	M ⁰ L ⁰ T ¹ A ¹	C (કુલંબ)
30.	વિદ્યુત સ્થિતિમાન (V)	કાર્ય / વિદ્યુતભાર	$M^{1}L^{2}T^{-3}A^{-1}$	V (વોલ્ટ)
31.	અવરોધ (R)	<u>વિદ્યુતસ્થિતિમાન</u> પ્રવાહ	M ¹ L ² T ⁻³ A ⁻²	Ω (ઑલ્મ)
32.	કેપેસિટન્સ (C)	વિદ્યુતભાર / વિદ્યુત સ્થિતિમાન	$M^{-1}L^{-2}T^4A^2$	F (ફેરાડે)
33.	બેકવેરેલ (B/q)	વિભંજન / સેકન્ડ	$M^0L^0T^{-1}$	B/q

ટેબલ 2.4 : SI એકમોના દશાંશગુણકો અને ઉપગુણકો ગુણકો ઉપગુણકો

મૂલ્ય	પૂર્વગ	સંજ્ઞા
10 ¹⁸	એક્સા	Е
10 ¹⁵	પેટા	P
10 ¹²	ટેરા	T
10 ⁹	ગીગા	G
10 ⁶	મેગા	M
10 ³	કિલો	k
10^{2}	હેક્ટો	h
10	ડેકા	da

મૂલ્ય	પૂર્વગ	સંજ્ઞા
10 ⁻¹	ડેસિ	d
10 ⁻²	સેન્ટિ	С
10 ⁻³	મિલિ	m
10 ⁻⁶	માઇક્રો	μ
10 ⁻⁹	નેનો	n
10 ⁻¹²	પીકો	p
10 ⁻¹⁵	ફેમ્ટો	f
10 ⁻¹⁸	એટો	a

સારાંશ

- 1. કોઈ રાશિના પ્રમાણિત માપને તે ભૌતિક રાશિનો એકમ કહે છે.
- 2. અનેક રાશિઓ પૈકી ઓછામાં ઓછી એવી ભૌતિક રાશિઓ પસંદ કરવામાં આવે છે કે જેમની મદદથી બીજી ભૌતિક રાશિઓ ઉપજાવી શકાય. આવી રાશિઓને મૂળભૂત રાશિઓ કહે છે. મૂળભૂત રાશિઓ પરથી મેળવેલ ભૌતિક રાશિને સાધિત ભૌતિક રાશિ કહે છે.
- 3. SI પદ્ધતિમાં સાત મૂળભૂત ભૌતિક રાશિઓ છે : લંબાઈ, દળ, સમય, વિદ્યુતપ્રવાહ, થર્મીડાઇનેમિક તાપમાન, જ્યોતિ તીવ્રતા, દ્રવ્યનો જથ્થો.
- 4. SI પદ્ધતિમાં બે પૂરક ભૌતિક રાશિઓ છે. સમતલકોશ (θ) અને ઘનકોશ (Ω) . તેમના એકમો અનુક્રમે (rad) અને સ્ટીરેડિયન (sr) છે.

28 ભૌતિકવિજ્ઞાન

5. લંબાઈના નાના માપનો મીટરપટ્ટી, વર્નિયર કૅલિપર્સ અને માઇક્રોમીટર સ્કૂ-ગેજથી થાય છે. 10^{-5} mના ક્રમના માપન માટે માઇક્રોમીટર સ્કૂ-ગેજનો ઉપયોગ થાય છે. ખૂબ જ મોટાં અંતરોના તથા અવકાશીય અંતરોના માપન માટે પરોક્ષ રીતોનો ઉપયોગ થાય છે. દા.ત., દષ્ટિસ્થાનભેદની રીત.

- 6. **દળ અને વજન :** પદાર્થમાં રહેલા દ્રવ્યના જથ્થાને દળ (m) કહે છે, તે પદાર્થનો આંતરિક ગુણધર્મ છે. પદાર્થ પર લાગતા પૃથ્વીના ગુરૂત્વાકર્ષણ બળને પદાર્થનું વજન (W) કહે છે.
- 7. કોઈ રાશિના માપનનું મૂલ્ય તે રાશિના સાચા મૂલ્યની કેટલી નજીક છે. તેને ચોકસાઈ કહે છે. આ માપન કેટલા વિભેદન અથવા સીમા સુધી માપવામાં આવ્યું છે. તેને સચોટતા કહે છે.
- 8. **ત્રુટિ :** ભૌતિક રાશિના માપનમાં રહેલી અચોકસાઈને ત્રુટિ કહે છે. ત્રુટિ બે પ્રકારની છે : (i) વ્યવસ્થિત ત્રુટિ (ii) અવ્યવસ્થિત ત્રુટિ.
- 9. કોઈ પણ ભૌતિક રાશિના સાચા મૂલ્ય અને પ્રાયોગિક મૂલ્ય વચ્ચેના તફાવતને નિરપેક્ષ ઝુટિ કહે છે.
- 10. સરેરાશ નિરપેક્ષ ત્રુટિ અને સરેરાશ મૂલ્યના ગુણોત્તરને સાપેક્ષ ત્રુટિ અથવા આંશિક ત્રુટિ કહે છે. સાપેક્ષ ત્રુટિને ટકામાં દર્શાવવામાં આવે, તો તેને પ્રતિશત ત્રુટિ કહે છે.
- 11. **ત્રુટિઓનું સંયોજન :** જયારે એક કરતાં વધુ ભૌતિક રાશિઓનું માપન કરવામાં આવે, ત્યારે પરિશામમાં ઉદ્ભવતી મહત્તમ ત્રુટિ નીચે મુજબ ગણી શકાય :

ક્રમ	ગાશિતીક સૂત્ર	ત્રુટિ	
1.	સરવાળો : $Z = A + B$	$\Delta Z = \Delta A + \Delta B$	
2.	બાદબાકી : Z = A – B	$\Delta Z = \Delta A + \Delta B$	
3.	ભાગાકાર : $Z=rac{A}{B}$	$\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$	
4.	ગુજ્ઞાકાર : Z = A·B	$\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$	
5.	ઘાતાંક : $Z = A^n$	$\frac{\Delta Z}{Z} = n \frac{\Delta A}{A}$	

- 12. માપ દર્શાવતી કોઈ એક સંખ્યામાં ચોકસાઈપૂર્વકના અંકો ઉપરાંત એક અચોક્કસ છતાં અર્થપૂર્શ એવા છેલ્લા અંક સાથે લખાતી સંખ્યાને સાર્થક સંખ્યા કહે છે અને તેના અંકોને સાર્થક અંકો કહે છે. જે માપનમાં સાર્થક અંકોની સંખ્યા વધુ તે વધુ ચોકસાઈપૂર્વકનું માપન કહેવાય છે..
- 13. જ્યારે કોઈ ભૌતિક રાશિને M, L, T, K, A....ના યોગ્ય ઘાતાંકો સાથે લખવામાં આવે ત્યારે M, L, T....ના સ્વરૂપમાં તૈયાર થતાં સૂત્રને તે ભૌતિક રાશિનું પારિમાણિક સૂત્ર કહે છે.
- 14. પારિમાણિક વિશ્લેષણની મદદથી બે જુદી-જુદી એકમપદ્ધતિ વચ્ચેના એકમો વચ્ચે સંબંધ મેળવી શકાય છે, સમીકરણની પારિમાણિક યથાર્થતા ચકાસી શકાય છે તેમજ કોઈ ભૌતિક રાશિનું અન્ય ભૌતિક રાશિઓ સાથે સંબંધ દર્શાવતું સમીકરણ મેળવી શકાય છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

1. નીચેનામાંથી કઈ ભૌતિક રાશિ સાધિત છે ?

- (A) EU
- (B) **બ**ળ
- (C) સમતલ કોણ
- (D) સમય

વીચેનામાંથી કઈ રાશિ SI પદ્ધતિમાં મૂળભૂત ભૌતિક રાશિ નથી ?

- (A) જ્યોતિ તીવ્રતા
- (B) વિદ્યુતપ્રવાહ
- (C) ધનકોશ
- (D) દ્રવ્યનો જથ્થો

3. $\frac{1\mu m}{1fm} = \dots$

- (A) 10^9
- (B) 10⁻⁹
- (C) 10^{15}
- (D) 10^6

4. SI પદ્ધતિમાં સમતલકોણનો એકમ છે.

- ાષ્ટ્રિશ (A)
- (B) રેડિયન
- (C) સ્ટીરેડિયન
- (D) કેન્ડેલા

5. 125.0 ± 0.5 cm અંતરમાં પ્રતિશત ત્રુટિ છે.

- (B) 0.04 % (C) 0.4 %
- (D) 40 %

6. કોઈ સમઘનની ઘનતા માપવાના પ્રયોગમાં દળના માપનમાં આવતી પ્રતિશત ત્રુટિ 0.26 % અને લંબાઈના માપનમાં આવતી પ્રતિશત ત્રુટિ 0.38 % હોય, તો તેની ઘનતાના માપનમાં આવતી પ્રતિશત ત્રુટિ કેટલી થાય ?

- (B) 1.40 %
- (C) 1.04 %
- (D) 1.44 %

 ${f 7.}$ જો ${f Z}={f A}^3$ હોય, તો ${f Z}$ માં ઉદ્ભવતી સાપેક્ષ ત્રુટિ

- (A) $(\Delta A)^3$
- (B) $\frac{(\Delta A)^3}{\Delta}$ (C) $3\frac{\Delta A}{A}$ (D) $\frac{\Delta A}{A}$

 $oldsymbol{8}$. જો $x=ab^{-1}$ હોય અને Δa અને Δb અનુક્રમે a અને b ના માપનમાં રહેલ ઝુટિ દર્શાવતા હોય, તો xના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ

(A)
$$\left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times 100$$

(B)
$$\left(\frac{\Delta a}{a} - \frac{\Delta b}{b}\right) \times 100$$

(C)
$$\left(\frac{\Delta a}{a-b} + \frac{\Delta b}{a-b}\right) \times 100$$

(C)
$$\left(\frac{\Delta a}{a-b} + \frac{\Delta b}{a-b}\right) \times 100$$
 (D) $\left(\frac{\Delta a}{a-b} - \frac{\Delta b}{a-b}\right) \times 100$

 $oldsymbol{9}$. ભૌતિક રાશિ Zનું પારિમાણિક સૂત્ર $\mathbf{M}^a\mathbf{L}^b\mathbf{T}^{-c}$ છે. તેના દળ, લંબાઈ અને સમયના માપનમાં પ્રતિશત ત્રુટિ અનુક્રમે α %, β % અને γ % હોય, તો ભૌતિક રાશિ Ζ ના માનમાં પ્રતિશત ત્રુટિ હશે.

- (A) $(\alpha + \beta + \gamma)$ %
- (B) $(\alpha + \beta \gamma)$ %
- (C) $(a\alpha + b\beta + c\gamma)$ % (D) $(a\alpha + b\beta c\gamma)$ %

10. વિદ્યાર્થી ગુરુત્વપ્રવેગ $g\left(=\frac{4\pi^2l}{T^2}\right)$ માપવાનો પ્રયોગ કરે છે. લંબાઈ lમાં ત્રુટિ Δl અને

સમય T માં ત્રુટિ $\Delta\mathrm{T}$ છે. n એ અવલોકનની સંખ્યા છે. gનું માપન કયા અવલોકન માટે વધુ ચોક્કસ હશે ?

30 ભૌતિકવિજ્ઞાન

 $\Delta T n$

0.2s 10

0.2s 20

0.1s 10

0.1s 50

 Δl

(A) 5mm

(B) 5mm

(C) 5mm

(D) 1mm

11.	જ્યારે (2.5 ± 0.5) Aન્ વિદ્યુતસ્થિતિમાનનો તફાવત	-		રે (20 ± 1)Vનો
	(A) $(8 \pm 2)\Omega$		(B) $(8 \pm 1.5)\Omega$	
	(C) $(8 \pm 0.5)\Omega$		(D) $(8 \pm 3)\Omega$	
12.	સાર્થકસંખ્યા 5.055 અને	0.005055માં સાર્થક	અંકોની સંખ્યા અનુક્રમે	છે.
	(A) 4 અને 3	(B) 3 અને 3	(C) 4 અને 4	(D) 4 અને 6
13.	0.0060માં સાર્થક અંકોની	. સંખ્યા છે.		
	(A) 4	(B) 3	(C) 2	(D) 1
14.	r અંતરે રહેલાં બે $m_{_1}$ અ	ાને <i>m</i> ્રદળ વચ્ચે લા	ાગતં ગરત્વાકર્ષણ બળ F	$G = G \frac{m_1 m_2}{3} \emptyset,$
	_			,
	જયાં G એ ગુરુત્વાકર્ષી ર $(A) M^{-1}L^3T^{-2}$		•	
200				
15.	ક્વૉન્ટ્મશાસ્ત્ર મુજબ, f અ	-		જ્યા <i>h</i> અ પ્લાન્ક
	અચળાંક છે, તો પ્લાન્ક-ચ	-		(D) 2 ele 2m2
0.0	(A) $M^1L^2T^{-2}$		(C) $M^{T}L^{2}T^{T}$	(D) $M^{T}L^{2}T^{2}$
16.	'પ્રકાશવર્ષ'નું પારિમાણિક			
	(A) L^{-1}		(C) L ¹	(D) T^1
17.	ઘનકોણનું પારિમાણિક સૂત્ર	ત કયું છે ?		
	(A) M1L1T1	$(B) M^0L^0T^1$	(C) $M^1L^0T^{-2}$	(D) $M^0L^0T^0$
18.	સમય પર આધારિત ભૌતિ	તેક રાશિ P નું સમીક	$SPR P = P_0 \exp (-$	- $lpha$ t²). જ્યાં $lpha$ એ
	અચળાંક અને t એ સમય	ા દર્શાવે છે. P એ	દબાણ છે. αનું પારિમા	િશક સૂત્ર
	(A) $M^0L^0T^{-2}$		(B) $M^0L^0T^2$	
	(C) $M^0L^0T^0$		(D) $M^1L^{-1}T^{-2}$	
19.	ઊર્જા (E), વેગમાન (p) અ	ાને બળ (F)ને મૂળભૂત	ા એકમો તરીકે સ્વીકારવ	ામાં આવે, તો નવી
	એકમપદ્ધતિમાં દળનું પારિ	માશિક સૂત્ર શું થાય	?	
	(A) $E^{-1}P^2F^0$		(B) $E^1P^{-2}F^0$	
	(C) $E^{-1}P^2F^{-2}$		(D) $E^{-2}P^1F^2$	
20.	X–અક્ષને લંબ એવા એકમ	ન ક્ષેત્રફળમાંથી એકમ	સમયમાં પસાર થતાં કર	ોની સંખ્યા નીચેના
	સૂત્રથી અપાય છે.			
	$n = -D\left(\frac{n_2 - n_1}{x_2 - x_1}\right)^{\alpha}$	જ્યાં $n_{_1}^{}$ અને $n_{_2}^{}$ ર	ખનુકમે $x = x_1$ અને	$x = x_2$ આગળ
	એકમકદમાં રહેલા કણોની	. સંખ્યા છે. D એ	ડિફ્યુઝન-અચળાંક છે.	D નું પારિમાણિક
	સૂત્ર			
	(A) $M^0L^1T^{-2}$	(B) $M^0L^2T^{-4}$	(C) $M^0L^1T^{-3}$	(D) $M^0L^2T^{-1}$

21. ગુરુત્વીય તરંગો (gravity waves)નો પાણીમાં વેગ એ λ^{α} ρ^{β} g^{γ} ને સમપ્રમાણમાં છે. જ્યાં λ એ તરંગલંબાઈ ho એ પાણીની ઘનતા અને g એ ગ્ \mathfrak{z} ત્વીય પ્રવેગ છે \mathfrak{k} નીચે દર્શાવેલ કયો સંબંધ સાચો છે ?

(A) $\alpha = \beta = \gamma$

(B) $\alpha \neq \beta \neq \gamma$

(C) $\alpha \neq \gamma = \beta$

- (D) $\alpha = \gamma \neq \beta$
- **22.** બે વિદ્યુતભારો વચ્ચેનું અંતર 2a હોય, તો આ તંત્રની ડાઇપોલ-મોમેન્ટ p=(2a)qસૂત્રથી અપાય છે. q એ વિદ્યુતભારનું મૂલ્ય છે. p નું પારિમાણિક સૂત્ર
 - (A) $M^0L^{-1}T^1A^1$
- (B) $M^0L^1T^{-1}A^{-1}$ (C) $M^0L^1T^{-1}A^1$
- (D) $M^0L^1T^1A^1$
- 23. જો 1 g cm s⁻¹ = x Ns હોય તો $x = \dots$.
 - (A) 1×10^{-1}
- (B) 3.6×10^{-3} (C) 1×10^{-5} (D) 6×10^{-4}
- 24. સમીકરણ $y=2Asin\ kx\ coswt$ (મીટરમાં) છે, જ્યાં A અને x મીટરમાં છે. ω એ કોણીય આવૃત્તિ છે. A/kનું પારિમાણિક સૂત્ર થશે.
 - (A) $M^0L^0T^0$
- (B) $M^0L^{-2}T^0$ (C) $M^0L^{-1}T^1$
- (D) $M^0L^2T^0$
- 25. $\left(P + \frac{a}{V^2}\right)(V b) = RT$ સમીકરણમાં $\frac{a}{b}$ નું પારિમાણિક સૂત્ર છે. જ્યાં,

P = દબાણ, V = કદ અને T એ તાપમાન છે.

- (A) $M^{1}L^{2}T^{-2}$ (B) $M^{1}L^{2}T^{-2}K^{1}$
- - (C) $M^1L^{-2}T^2$ (D) $M^1L^2T^{-2}K^{-1}$

જવાબો

- **2.** (C) 3. (A) 4. (B) 5. (C) **1.** (B) 6. (B)
- 7. (C) 8. (A) 9. (C) 10. (D) 11. (A) **12.** (C)
- 13. (C) **14.** (A) **15.** (B) **16.** (C) **17.** (D) 18. (A)
- **19.** (A) **20.** (D) **21.** (D) **22.** (D) 23. (C) 25. (A) **24.** (D)

નીચેના પ્રશ્નોના જવાબ ટૂંકમાં આપો :

- 1 એકમ એટલે શું ? સાધિત એકમો કોને કહેવાય ?
- 🔼 SI પદ્ધતિના પૂરક એકમો કયા-કયા છે ?
- 3. પારિમાણિક સૂત્ર એટલે શું ?
- 4. amu કઈ ભૌતિક રાશિનો એકમ છે ?
- 5. $1g/cm^3 = kg/m^3$
- 6. પ્રયોગમાં મોટી ઘાત સાથે આવતી રાશિઓનાં માપ બહુ જ ચોકસાઈથી લેવાં જોઈએ. શા માટે ?
- 7. એક પદાર્થનું દળ 225 ± 0.05g છે. આ માપમાં પ્રતિશત ત્રુટિ શોધો.
- 8. કૅપેસિટન્સનું પારિમાણિક સૂત્ર લખો.
- 🦭 ચોકસાઈ અને સચોટતા વચ્ચેનો ભેદ જણાવો.
- 10. જો $\theta_1 = 25.5 \pm 0.1$ °C અને $\theta_2 = 35.3 \pm 0.1$ °C હોય, તો $\theta_1 \theta_2$ શોધો.
- 11. સાર્થક અંકોને ધ્યાનમાં રાખી બાદબાકી કરો : $3.9 imes 10^5 2.5 imes 10^4$

32

નીચેના પ્રશ્નોના જવાબ લખો :

 SI એકમપદ્ધતિની મૂળભૂત અને પૂરક ભૌતિક રાશિઓ કઈ-કઈ છે ? તેમના એકમો, સંજ્ઞાઓ સહિત જણાવો.

- 2. પૃથ્વીથી ગ્રહના અંતરમાપન માટે દષ્ટિસ્થાનભેદની રીતનું વર્ણન કરો.
- ભૌતિક રાશિના માપનમાં ઉદ્દભવતી જુદા-જુદા પ્રકારની ત્રુટિઓ સમજાવો.
- નિરપેક્ષ ત્રુટિ, સરેરાશ નિરપેક્ષ ત્રુટિ, સાપેક્ષ ત્રુટિ અને પ્રતિશત ત્રુટિ સમજાવો.
- 5. ભૌતિક સમીકરણની યથાર્થતા પારિમાણિક વિશ્લેષણથી કેવી રીતે ચકાસી શકાય ? સમજાવો.
- પારિમાણિક વિશ્લેષણની મર્યાદાઓ જણાવો.

નીચેના દાખલાઓ ગણો :

1. ઓહ્મના નિયમના પ્રયોગમાં જુદાં-જુદાં અવલોકનો દરમિયાન એક અજ્ઞાત અવરોધનું મૂલ્ય $4.12\,\Omega$, $4.08\,\Omega$, $4.22\,\Omega$ તથા $4.14\,\Omega$ મળે છે, તો આ અવલોકનોમાં નિરપેક્ષ ત્રુટિ, સાપેક્ષ ત્રુટિ અને પ્રતિશત ત્રુટિ શોધો.

[***414**: 0.04, 0.0096, 0.96 %]

2. એક નળાકારની લંબાઈ $l=(4.00\pm0.01)$ cm, ત્રિજ્યા $r=(0.250\pm0.001)$ cm છે અને દળ $m=6.25\pm0.01$ g છે. નળાકારના દ્રવ્યની ઘનતામાં પ્રતિશત ત્રુટિ શોધો.

[**%** quo : 1.21 %]

3. સાદા લોલકથી ગુરુત્વપ્રવેગ (g) માપવાના પ્રયોગમાં સાદા લોલકની લંબાઈ $l=(100\pm0.1)$ cm અને આવર્તકાળ $T=(2\pm0.01)$ s માલૂમ પડે છે. ગુરુત્વપ્રવેગ g માં મહત્તમ પ્રતિશત ત્રુટિ શોધો.

[**%વાબ** : 1.1 %]

4. ધાતુના પતરાની લંબાઈ, પહોળાઈ અને જાડાઈ અનુક્રમે 4.234m, 1.005m અને 2.01cm છે. યોગ્ય સાર્થક અંકો લઈ આ પતરાનું કુલ ક્ષેત્રફળ અને કદ ગણો.

[**%qi4**: 8.72 m², 0.086 m³]

5. બે વિદ્યુતભારો વચ્ચે લાગતું વિદ્યુતીય બળ $\mathbf{F}=rac{1}{4\pi arepsilon_0} \; rac{q_1}{r^2} \;$ સૂત્રથી અપાય છે, જ્યાં r એ બે વિદ્યુભારો q_1 અને q_2 વચ્ચેનું અંતર છે, તો \mathbf{e}_0 નો એકમ અને પારિમાણિક સૂત્ર જણાવો.

[84164 : $N^{-1}C^2$ m⁻²; $M^{-1}L^{-3}T^4A^2$]

- પારિમાણિક વિશ્લેષણની મદદથી નીચેનાં સમીકરણોની યથાર્થતા ચકાસો :

 - (2) Fs = $\frac{1}{2}mv^2 \frac{1}{2}mv_0^2$ જયાં, F = બળ, s = સ્થાનાંતર, $m = \varepsilon$ ળ, $v = અંતિમ વેગ અને <math>v_0 =$ પ્રારંભિક વેગ છે.
 - (3) $s = v_0 t + \frac{1}{2} (at)^2$ $s = સ્થાનાંતર, <math>v_0 =$ પ્રારંભિક વેગ, a = પ્રવેગ અને t =સમય