Comp 6321 - Machine Learning Using Neural Nets for playing othello

Federico O'Reilly Regueiro

Concordia University

November 30, 2016

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in Al
 - The trick is in finding ways to narrow the search
 - Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in Al
 - ▶ The trick is in finding ways to narrow the search
 - Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in Al
 - ► The trick is in finding ways to narrow the search
 - Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in Al
 - ▶ The trick is in finding ways to narrow the search
 - Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in Al
 - ▶ The trick is in finding ways to narrow the search
 - ► Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - ▶ One of the oldest questions in Al
 - ► The trick is in finding ways to narrow the search
 - ► Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in AI
 - ▶ The trick is in finding ways to narrow the search
 - Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in AI
 - ▶ The trick is in finding ways to narrow the search
 - ▶ Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - ▶ One of the oldest guestions in Al
 - ► The trick is in finding ways to narrow the search
 - ► Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

- Zero-sum, perfect-knowledge (no chance involved) competitive-game
 - A sandbox toy-representation of reality
 - bounded problem space with clear goal and set of rules
 - ▶ bounded, but can be huge (ie, GO 10⁷⁶¹ possible games!) [1]
- Can a machine learn to play
 - One of the oldest questions in Al
 - ▶ The trick is in finding ways to narrow the search
 - ► Has been well answered, requiring less expert knowledge each time
- Without expert knowledge (rules or labels)...
 - ...the feedback becomes very sparse

Classification problem

- Dual class given a game-state, what are the odds of winning
- Multi-class given a game-state, what is the best next move

- Classification problem
 - Dual class given a game-state, what are the odds of winning
 - ★ Look ahead n-moves (n-ply) then decide best path given leaf 'value'
 - Multi-class given a game-state, what is the best next move

Classification problem

- Dual class given a game-state, what are the odds of winning
 - ★ Look ahead n-moves (n-ply) then decide best path given leaf 'value
- Multi-class given a game-state, what is the best next move
 - ★ Learn a 'policy' for action given a state P(a|s)

- Classification problem
 - Dual class given a game-state, what are the odds of winning
 - ★ Look ahead n-moves (n-ply) then decide best path given leaf 'value'
 - Multi-class given a game-state, what is the best next move
 - \star Learn a 'policy' for action given a state P(a|s)

Classification problem

- Dual class given a game-state, what are the odds of winning
 - * Look ahead n-moves (n-ply) then decide best path given leaf 'value
- Multi-class given a game-state, what is the best next move
 - ★ Learn a 'policy' for action given a state P(a|s)

- Rule-based approach dependent on expert knowledge
 - ► e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ► Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ► Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - ► TD-learning
 - No like baying sparse and time delayed labels
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - ► TD-learning
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - ▶ Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - ▶ TD-learning
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - ▶ Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - ▶ Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - ▶ Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - I D-learning
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - ▶ TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - ▶ e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - ★ Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ► Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - ★ Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - ▶ Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - ★ Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ► Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - ▶ Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - ▶ e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ► Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - ► Slow to converge
 - ► Capable of finding innovative strategies [4] [2]
- Reinforcement learning
 - TD-learning
 - ★ Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

Alpha-go

- ▶ Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
- One Fully connected predict win value
- DeepMind Atari deep reinforcement learning
 - ▶ Deep neural nets meet $TD(\lambda)$

- Alpha-go
 - ▶ Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win value
- DeepMind Atari deep reinforcement learning
 - ▶ Deep neural nets meet $TD(\lambda)$

- Alpha-go
 - ▶ Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win value
- DeepMind Atari deep reinforcement learning
 - ▶ Deep neural nets meet $TD(\lambda)$

Alpha-go

- ▶ Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win value
- DeepMind Atari deep reinforcement learning
 - ▶ Deep neural nets meet $TD(\lambda)$

Alpha-go

- ▶ Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win value
- DeepMind Atari deep reinforcement learning
 - ▶ Deep neural nets meet $TD(\lambda)$

Supervised Learning

- Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax
- Rule-based
 - Heuristic Decision tree in place but focus is on nets

- Supervised Learning
 - Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax
- Rule-based
 - Heuristic Decision tree in place but focus is on nets

Supervised Learning

- Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax
- Rule-based
 - ► Heuristic Decision tree in place but focus is on nets

- Supervised Learning
 - Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax
- Rule-based
 - Heuristic Decision tree in place but focus is on nets

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- ▶ Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $\qquad \qquad \sigma_i'(j) = \sigma_i(j) \exp(\tau N_j(0,1))$
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $\sigma_i'(j) = \sigma_i(j) \exp(\tau N_j(0,1))$
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel [2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ► They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- ▶ Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- ▶ Based on Leouski and Utgoff's paper[3]
- ► They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ► They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[3]
- ▶ They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w'_i(j) = w_i(j) + \sigma_i(j)N_j(0,1)$

TD learning

- Similar to back propagation but recurses temporally
- ▶ Based on Leouski and Utgoff's paper[3]
- ► They use symmetry, rotation and weight sharing 96 h.u.
 - turn into conv net

- Based on Chelapilla and Fogel[2]
- ▶ Generation has 15 strategies, change vector $\sigma_i(j)$ for j^{th} weight of i^{th} strategy.
- $w_i'(j) = w_i(j) + \sigma_i(j) N_j(0,1)$

References

Christopher Burger.

Google deepmind's alphago: How it works, 2016.

Kumar Chellapilla and David B Fogel.

Evolution, neural networks, games, and intelligence. *Proceedings of the IEEE*, 87(9):1471–1496, 1999.

Anton V. Leouski and Paul E. Utgoff.
What a neural network can learn about othello. 1996.

David Moriarty and Risto Miikkulainen.

Evolving complex othello strategies using marker-based genetic encoding of neural networks.

Technical report, 1993.