

Course Name:	Operations Research	Course Code:	MT 4031 Spring 2024		
Degree Program:	BCS	Semester:			
Exam Duration:	60 min.	Total Marks:	30		
Paper Date:	27.02.2024	Weight	15 %		
Sections:	All	Page(s):			
Exam Type:	Sessional-I				

Instruction/ Notes:

- i. Clearly write your name, roll no and section on the first page of answer book.
- ii. Attempt all questions neatly.
- iii. Exchange of calculators is not allowed.
- iv. Read the questions carefully for clarity of context and understanding of meaning and make assumptions wherever required, for neither the invigilator will address your queries, nor the teacher/examiner will come to the examination hall for any assistance.

Question 1: (marks: 8+4)

a. Solve the following linear programming model graphically.

subject to
$$\begin{aligned}
\text{Max} \quad z &= 5x + 4y \\
-6x + 4y &\leq 24 \\
6x + 3y &\leq 22.5
\end{aligned}$$

$$\begin{aligned}
x + y &\leq 5 \\
x + 2y &\leq 6 \\
-x + y &\leq 1 \\
y &\leq 2 \\
x, y &\geq 0
\end{aligned}$$

b. Identify the redundant constraints and show that their removal does not affect the solution space or the optimal solution.

Question 2: (marks: 3+7)

A compony produces 3 types of toys. The maximum production limit of the three types per month is 7 toys in total. Production time of a type 1, type 2 and type 3 toy is 2 hours, 5 hours and 3 hours respectively. The minimum work hours available in a month are 10 hours. The profit of a type 1, type 2 and type 3 toy is \$1, \$2 and \$3 respectively.

- i. formulate a linear programming model for the given scenario.
- ii. Use any appropriate technique to find the number of each type of toys to be produced to maximize the profit.

Question 3: (marks: 8)

Determine dual price (the value of objective function) and the feasibility range of the variables from the given optimal tableau:

		x_1 x_2		<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6	Solution			
8	Basic		x_2					RHS	D_1	D_2	D_3
7	z	4	0	0	1 1	2	0	1350	1	2	0
1		$-\frac{1}{4}$	1	0	1 2	$-\frac{1}{4}$	0	100	1 2	$-\frac{1}{4}$	0
0	<i>x</i> ₃	3 2	0	1	0	1/2	0	230	0	$\frac{1}{2}$	0
0.	<i>x</i> ₆	2	0	0	-2	1	1	20	-2	1	1

$$-200-10$$
 $-20-400$
 -20