Draw the 2-bit branch prediction FSM. Then, given the 2-bit branch prediction method, with the initial state of N^* , and the following set of branches, Describe the set of branch predictions

N, N, T, T, N, N, T, N, N

Draw the 2-bit branch prediction FSM*. Then, given the following branch addresses and branches, show the final state of a k=3 correlating prediction model

10001101	Т
10001101	Т
10001000	Τ
10001111	N
10001000	N
10001101	Τ
10001000	Τ
10001000	Τ
10001000	T