ÁLGEBRA II

1. Se considera el espacio euclídeo $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ con el producto interno definido por

$$\langle x, y \rangle = y^T \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} x.$$

Hallar la matriz con respecto a la base canónica de la proyección ortogonal de \mathbb{R}^3 sobre el subespacio $\mathbb{S} = \{x \in \mathbb{R}^3 : 2x_1 + x_2 + 2x_3 = 0\}$ y calcular la distancia del vector $\begin{bmatrix} 3 & 3 & 1 \end{bmatrix}^T$ al subespacio \mathbb{S} .

2. Hallar la solución de la ecuación diferencial $y'' - 5y' + 6y = 2xe^{3x}$ tal que y(0) = 1, y'(0) = -1.

3. Sean \mathbb{S}_1 y \mathbb{S}_2 los subespacios de \mathbb{R}^4 definidos por $\mathbb{S}_1 = \text{gen} \left\{ \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix}^T \right\}$ y $\mathbb{S}_2 = \text{gen} \left\{ \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^T \right\}$. Construir un subespacio \mathbb{T} de \mathbb{R}^4 tal que $\mathbb{S}_1 \oplus \mathbb{T} = \mathbb{S}_2 \oplus \mathbb{T} = \{x \in \mathbb{R}_4 : x_1 - x_2 + x_3 - x_4 = 0\}$. ¿Es único? Si no, construir otro.

4. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

donde \mathcal{B} y \mathcal{C} son las bases de $\mathbb{R}_2[x]$ y \mathbb{R}^3 , respectivamente, definidas por $\mathcal{B} = \{x^2 + x + 1, x + 1, 1\}$ y $\mathcal{C} = \{\begin{bmatrix} -1 & 2 & 2 \end{bmatrix}^T, \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T, \begin{bmatrix} 2 & 2 & -1 \end{bmatrix}^T \}$. Hallar $T^{-1}(\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T)$.

1

ÁLGEBRA II

1. Sea $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ el \mathbb{R} -espacio euclídeo respecto del cual el triángulo de vértices

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} y \begin{bmatrix} -6 \\ 8 \end{bmatrix}$$

es un triángulo equilátero de área $2\sqrt{3}$

Calcular la distancia del vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ al subespacio $\{x \in \mathbb{R}^2 : x_1 = 0\}$.

2. Sea $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ el \mathbb{R} -espacio euclídeo canónico. Hallar el conjunto de todos los $x \in \mathbb{R}^3$ equidistantes a los subespacios

$$\mathbb{S}_1 = \operatorname{gen} \left\{ \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} \right\}$$
 y $\mathbb{S}_2 = \{ x \in \mathbb{R}^3 : 2x_1 - 2x_2 + x_3 = 0 \}$

y describirlo geométricamente.

3. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz de rango 1 tal que $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \in \operatorname{col}(A^T)$ y $A \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$. Hallar todos

los vectores $b \in \mathbb{R}^3$ para los cuales $\hat{x} = \begin{bmatrix} -2 \\ 4 \\ -2 \end{bmatrix}$ sea una solución por cuadrados mínimos de la ecuación Ax = b.

4. Resolver la ecuación diferencial y'' + 2y' - 3y = 0 y hallar las condiciones iniciales para que $\lim_{t \to \infty} y(t) = 0$.

Primer parcial (Diferida) Duración: 3 horas.

Segundo cuatrimestre -202116/11/21 - 9:00 hs.

Apellido y Nombres:

Legajo:

1. Sean \mathbb{S}_1 y \mathbb{S}_2 los subespacios de $\mathbb{R}_2[x]$ definidos por

$$\mathbb{S}_1 = \operatorname{gen} \{ 2 + x, 2 - 2x + x^2 \}$$
 y $\mathbb{S}_2 = \operatorname{gen} \{ 3 + 2x + 2x^2, 1 + 2x^2 \}$.

Hallar una base de $\mathbb{S}_1 \cap \mathbb{S}_2$.

2. Sea $T:\mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{E}} = \begin{bmatrix} 2 & 4 & 3 \\ -3 & 15 & 6 \\ 6 & -2 & 2 \end{bmatrix},$$

donde \mathcal{B} y \mathcal{E} son las bases de \mathbb{R}^3 definidas por

$$\begin{split} \mathcal{B} &= \left\{ \begin{bmatrix} 1 & -2 & 2 \end{bmatrix}^T, \begin{bmatrix} -2 & 1 & 2 \end{bmatrix}^T, \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}^T \right\}, \\ \mathcal{E} &= \left\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \right\}. \end{split}$$

Hallar el conjunto solución de la ecuación $T(x) = \begin{bmatrix} 13 & 12 & 18 \end{bmatrix}^T$.

3. Hallar la solución de la ecuación diferencial y'' - 6y' + 25y = 0 tal que y(0) = 2, y'(0) = 3.

4. Sea $(\mathbb{V},\langle\cdot,\cdot\rangle)$ un $\mathbb{R}\text{-espacio}$ euclídeo de dimensión 3 y sea

$$\mathcal{B} = \{u_i : i \in \mathbb{I}_3\} \subset \{u \in \mathbb{V} : ||u|| = 1\}$$

una base de \mathbb{V} tal que $||u_i + u_j||^2 = 2$ y $||u_i - u_j||^2 = 2$ para cada $i \neq j$. Calcular la distancia del vector $2u_1 + u_2 + 2u_3$ al subespacio gen $\{u_1 - u_3, 2u_1 + 2u_2 - u_3\}$.

5. Hallar las soluciones por mínimos cuadrados de la ecuación

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}.$$

Primer parcial Duración: 3 horas.

Primer cuatrimestre – 2022 28/V/22 – 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

Sean S₁ y S₂ los subespacios de R⁴ definidos por

$$\begin{split} \mathbb{S}_1 &= \text{gen} \left\{ \begin{bmatrix} 1 & 0 & 2 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \right\}, \\ \mathbb{S}_2 &= \text{gen} \left\{ \begin{bmatrix} 2 & 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T \right\}. \end{split}$$

Construir un subespacio \mathbb{T} de \mathbb{R}^4 tal que $\mathbb{S}_1 \oplus \mathbb{T} = \mathbb{S}_2 \oplus \mathbb{T} = \mathbb{S}_1 + \mathbb{S}_2$. ¿Es único? Si la respuesta es negativa, construir otro.

2. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathfrak{C}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

donde \mathcal{B} y \mathcal{C} son las bases de $\mathbb{R}_2[x]$ y \mathbb{R}^3 , respectivamente, definidas por

$$\begin{split} \mathcal{B} &= \left\{1+x, 1-x, 1-x+x^2\right\}, \\ \mathcal{C} &= \left\{\begin{bmatrix}1 & 0 & 2\end{bmatrix}^T, \begin{bmatrix}0 & 1 & -1\end{bmatrix}^T, \begin{bmatrix}1 & 0 & 1\end{bmatrix}^T\right\}. \end{split}$$

Hallar el conjunto solución de la ecuación $T(p) = \begin{bmatrix} 6 & 6 & 6 \end{bmatrix}^T$.

- 3. Sea Σ la simetría de \mathbb{R}^3 con respecto al plano $\{x \in \mathbb{R}^3 : 2x_1 + x_2 2x_3 = 0\}$ en la dirección de la recta generada por $\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$. Hallar la imagen por Σ del subespacio $\{x \in \mathbb{R}^3 : x_3 = 0\}$.
- 4. Se considera el espacio euclídeo $(\mathbb{R}^3,\langle\cdot,\cdot\rangle)$ con el producto interno definido por

$$\langle x, y \rangle = y^T \begin{bmatrix} 3 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix} x.$$

Calcular la distancia del vector $\begin{bmatrix} 3 & 3 & 1 \end{bmatrix}^T$ al subespacio $\mathbb{S} = \left\{ x \in \mathbb{R}^3 : x_1 + x_2 - x_3 = 0 \right\}$

5. Usando la técnica de mínimos cuadrados, ajustar los siguientes datos

mediante una recta y = mx + b.

Segundo recuperatorio Duración: 3 horas.

Primer cuatrimestre – 2022 13/VII/22 – 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Sean S_1 y S_2 los subespacios de \mathbb{R}^4 definidos por

$$\begin{split} \mathbb{S}_1 &= \operatorname{gen} \left\{ \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \right\}, \\ \mathbb{S}_2 &= \operatorname{gen} \left\{ \begin{bmatrix} 2 & 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T \right\}. \end{split}$$

Construir un subespacio \mathbb{T} de \mathbb{R}^4 tal que $\mathbb{S}_1 \oplus \mathbb{T} = \mathbb{S}_2 \oplus \mathbb{T} = \mathbb{R}^4$. ¿Es único? Si la respuesta es negativa, construir otro.

2. Sea $\mathbb{V} = \{A \in \mathbb{R}^{2 \times 2} : A^T = A\}$ el \mathbb{R} -espacio vectorial de la matrices simétricas de $\mathbb{R}^{2 \times 2}$ y sea $T : \mathbb{V} \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathfrak{C}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

donde \mathcal{B} y \mathcal{C} son las bases de \mathbb{V} y \mathbb{R}^3 , respectivamente, definidas por

$$\begin{split} \mathcal{B} &= \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \\ \mathcal{C} &= \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T \right\}. \end{split}$$

Hallar el conjunto solución de la ecuación $T(A) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.

- 3. Sea Σ la simetría de \mathbb{R}^3 con respecto al plano $\{x \in \mathbb{R}^3 : 2x_1 x_2 + 2x_3 = 0\}$ en la dirección de la recta generada por $\begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T$. Hallar la imagen por Σ del subespacio $\{x \in \mathbb{R}^3 : x_1 x_2 = 0\}$.
- 4. Se considera el espacio euclídeo $(\mathbb{R}^3,\langle\cdot,\cdot\rangle)$ con el producto interno definido por

$$\langle x, y \rangle = y^T \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} x.$$

Calcular la distancia del vector $\begin{bmatrix} 2 & 3 & 5 \end{bmatrix}^T$ al subespacio $\mathbb{S} = \{x \in \mathbb{R}^3 : x_1 - x_2 = 0\}$.

5. Usando la técnica de mínimos cuadrados, ajustar los siguientes datos

mediante una recta y = mx + b.

Primer parcial Duración: 3 horas. Segundo cuatrimestre -202229/X/22 - 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Sean S, T y U los subespacios de $\mathbb{R}_4[x]$ definidos por

$$S = \{ p \in \mathbb{R}_4[x] : p(3) = p(2) = p(1) = 0 \},$$

$$\mathbb{T} = \{ p \in \mathbb{R}_4[x] : p(6) = p(3) = p(1) = 0 \},$$

$$\mathbb{U} = \left\{ p \in \mathbb{R}_4[x] : p(0) + p'(0) + \frac{1}{2!}p''(0) + \frac{1}{3!}p'''(0) + \frac{1}{4!}p''''(0) = 0 \right\}.$$

Construir un base de $\mathbb U$ que contenga a una base de $\mathbb T$ y a una base de $\mathbb S$. ¿Es única? Si la respuesta es negativa, construir otra.

2. Sea $T: \mathbb{R}^3 \to \mathbb{R}_2[x]$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix},$$

donde ${\mathcal B}$ y ${\mathcal C}$ son las bases de ${\mathbb R}^3$ y ${\mathbb R}_2[x],$ respectivamente, definidas por

$$\mathcal{B} = \left\{ \begin{bmatrix} 6 & 3 & 2 \end{bmatrix}^T, \begin{bmatrix} -3 & 2 & 6 \end{bmatrix}^T, \begin{bmatrix} 2 & -6 & 3 \end{bmatrix}^T \right\},$$

$$\mathcal{C} = \left\{ \frac{1}{2}x(x-1), -(x+1)(x-1), \frac{1}{2}(x+1)x \right\}.$$

Comprobar que el polinomio 6 + 3x pertenece a la imagen de T y determinar la preimagen por T del subespacio gen $\{6 + 3x\}$.

3. Sea Π la proyección de \mathbb{R}^3 sobre el plano $\{x \in \mathbb{R}^3 : x_3 = 0\}$ en la dirección de la recta generada por $\begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T$. Hallar la imagen por Π del subespacio $\{x \in \mathbb{R}^3 : 2x_1 - 2x_2 - 3x_3 = 0\}$.

4. En \mathbb{R}^3 con el producto interno canónico se considera la matriz $A \in \mathbb{R}^{3 \times 4}$ definida por

$$A = \begin{bmatrix} 2 & 5 & 3 & 1 \\ 3 & -3 & -6 & 0 \\ 6 & 8 & 2 & 2 \end{bmatrix}.$$

Calcular la distancia del vector $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$ al subespacio $\operatorname{col}(A)$.

5. Usando la técnica de mínimos cuadrados, ajustar los siguientes datos

mediante una parábola $y = ax^2 + bx + c$.

Segundo recuperatorio Duración: 3 horas.

Segundo cuatrimestre – 2022 14/XII/22 – 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Sean $\mathbb{S} = \{x \in \mathbb{R}^4 : x_1 - x_2 + x_3 - x_4 = 0\}$ y $\mathbb{T} = \text{gen}\{\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T\}$. Hallar, si es posible, una base de \mathbb{R}^4 que contenga, a la vez, a una base de \mathbb{S} y a una base de \mathbb{T} .

2. Sea Π la proyección de \mathbb{R}^3 sobre el plano $\{x \in \mathbb{R}^3 : x_1 = 0\}$ en la dirección de la recta generada por $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$. Hallar la imagen por Π del subespacio $\{x \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0\}$.

3. Hallar la solución de la ecuación diferencial $y'' + 9y = 5\cos(3x)$ tal que y(0) = 1, y'(0) = 0.

4. En \mathbb{R}^2 con el producto interno $\langle \cdot, \cdot \rangle$ definido por

$$\langle x,y\rangle = y^T \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} x$$

se considera Π la proyección ortogonal de \mathbb{R}^2 sobre el subespacio $\mathbb{S} = \{x \in \mathbb{R}^2 : 3x_1 + 5x_2 = 0\}$. Hallar todos los $x \in \mathbb{R}^2$ tales que $\Pi(x) = \begin{bmatrix} -5 & 3 \end{bmatrix}^T$ cuya distancia al subespacio \mathbb{S} sea igual a 1.

5. Se considera la matriz

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}.$$

Hallar todas las soluciones por cuadrados mínimos de la ecuación $Ax = \begin{bmatrix} 2 & 2 \end{bmatrix}^T$ y determinar la de norma mínima.