



|     | Matrizes e Sistemas Lineares                 |     |
|-----|----------------------------------------------|-----|
| 1   | Matrizes                                     | . 7 |
| 1.1 | Definição de Matrizes                        | 7   |
| 1.2 | Operações com Matrizes                       | 8   |
| 1.3 | Matrizes Simétricas e Matrizes Ortogonais    | 9   |
| 1.4 | Matrizes Hermitianas e Matrizes Normais      | 10  |
| 1.5 | Determinante                                 | 10  |
| 1.6 | Matriz Inversa                               | 11  |
| 1.7 | Miscelânea                                   | 13  |
| 1.8 | Matriz na Forma Escalonada e na Forma Escada | 14  |
| 2   | Sistemas de Equações Lineares                | 15  |
| 2.1 | Forma Matricial de um Sistema Linear         | 15  |
| 2.2 | Classificação e Solução de Sistemas Lineares | 15  |
| 2.3 | Teorema do Posto                             | 16  |
| 2.4 | Resolução de Sistemas Lineares               | 18  |
| 2.5 | Método da Matriz Inversa                     | 19  |
| 2.6 | Regra de Cramer                              | 20  |
| 2.7 | Miscelânea                                   | 20  |
| 2.8 | Anlicações de Sistemas Lineares              | 21  |

| Ш   | Espaços Vetoriais                                |    |
|-----|--------------------------------------------------|----|
| 3   | Espaços Vetoriais                                | 27 |
| 3.1 | Espaços Vetoriais                                | 27 |
| 3.2 | Subespaços Vetoriais                             | 28 |
| 3.3 | Soma e Intersecção de Subespaços Vetoriais       | 29 |
| 3.4 | Combinação Linear                                | 30 |
| 3.5 | Subespaço Gerado                                 | 31 |
| 3.6 | Dependência e Independência Linear               | 33 |
| 3.7 | Base e Dimensão                                  | 34 |
| 3.8 | Coordenadas de um Vetor e Mudança de Base        | 37 |
|     |                                                  |    |
| Ш   | Transformações Lineares e Diagonalização         |    |
| 4   | Transformações Lineares                          | 43 |
| 4.1 | Transformações Lineares                          | 43 |
| 4.2 | Matriz de uma Transformação Linear               | 45 |
| 4.3 | Núcleo e Imagem de uma Transformação Linear      | 47 |
| 4.4 | Transformações Lineares Injetoras e Sobrejetoras | 48 |
| 4.5 | Inversa de uma Transformação Linear              | 50 |
| 5   | Diagonalização de Operadores                     | 53 |
| 5.1 | Autovalor, Autovetor e Polinômio Característico  | 53 |
| 5.2 | Diagonalização de Operadores Lineares            | 54 |

# Matrizes e Sistemas Lineares

| 1   | Matrizes 7                                   |
|-----|----------------------------------------------|
| 1.1 | Definição de Matrizes                        |
| 1.2 | Operações com Matrizes                       |
| 1.3 | Matrizes Simétricas e Matrizes Ortogonais    |
| 1.4 | Matrizes Hermitianas e Matrizes Normais      |
| 1.5 | Determinante                                 |
| 1.6 | Matriz Inversa                               |
| 1.7 | Miscelânea                                   |
| 1.8 | Matriz na Forma Escalonada e na Forma Escada |
|     |                                              |
| 2   | Sistemas de Equações Lineares 15             |
| 2.1 | Forma Matricial de um Sistema Linear         |
| 2.2 | Classificação e Solução de Sistemas Lineares |
| 2.3 | Teorema do Posto                             |
| 2.4 | Resolução de Sistemas Lineares               |
| 2.5 | Método da Matriz Inversa                     |
| 2.6 | Regra de Cramer                              |
| 2.7 | Miscelânea                                   |
| 2.8 | Aplicações de Sistemas Lineares              |
|     |                                              |



# 1.1 Definição de Matrizes

1. As matrizes A, B, C, D e E tem ordens  $4 \times 3$ ,  $4 \times 5$ ,  $3 \times 5$ ,  $2 \times 5$  e  $3 \times 5$ , respectivamente. Determine quais das seguintes expressões matriciais são possíveis e a ordem de cada uma:

(a) 
$$AE + B^T$$
;

(b) 
$$C(D^T + B)$$
;

(c) 
$$AC + B$$
;

(d) 
$$E^T(CB)$$
.

2. Sejam A, B, C e D matrizes tais que  $AB^T$  de ordem  $5 \times 3$  e que  $(C^T + D)B$  de ordem  $4 \times 6$ . Determine a ordem de cada uma destas matrizes.

3. Seja a matriz 
$$A = \begin{bmatrix} 1 & -3 & 7 & 8 & 2 \\ -4 & 0 & 11 & 3 & -6 \\ 2 & -1 & 5 & 1 & 3 \\ 3 & 1 & -4 & 0 & 7 \end{bmatrix}$$
, determine:

4. Determine a matriz quadrada,  $A = (a_{ij})$ , de ordem 4 cujos elementos são dados por:

$$a_{ij} = \begin{cases} 2i - 3j, & \text{se } i < j \\ i^2 + 2j, & \text{se } i = j \\ -3i + 4j, & \text{se } i > j \end{cases}$$

5. Determine números reais x, y, z e t tais que  $\begin{bmatrix} 2x+y & t \\ z-t & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & y+2z \end{bmatrix}$ .

6. (a) A **matriz de Hilbert** em  $M_n(\mathbb{R})$  é a matriz  $H_n = [h_{ij}]$  definida por:  $h_{ij} = \frac{1}{i+j-1}$ , determine a matriz de Hilbert para n = 4.

(b) A **matriz de Pascal** em  $M_n(\mathbb{R})$  é a matriz  $P_n = [p_{ij}]$  definida por:  $p_{ij} = \frac{(i+j-2)!}{(i-1)!(j-1)!}$ , determine a matriz de Pascal para n = 5.

# Operações com Matrizes

- 1. Determine números reais x e y tais que  $\begin{bmatrix} x^3 & y^2 \\ y^2 & x^2 \end{bmatrix} + \begin{bmatrix} -x & 3y \\ 4y & 2x \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 5 & -1 \end{bmatrix}$ .
- 2. Sejam as matrizes  $A = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & -3 \\ 1 & 2 & -1 & 5 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 & 3 & 2 \\ -2 & 1 & 4 \\ -1 & 2 & 1 \\ 4 & 3 & 1 \end{bmatrix}$ ,  $C = A \cdot B \in D = B \cdot A$ , determine os elementos  $c_{32}$  e  $d_{43}$

- 3. Seja a matriz  $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$ , determine  $A^2$ ;  $A^3$ ;  $A^{31}$ ;  $A^{42}$ .
- 4. Considere as matrizes:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}.$$

Determine, se possível:

(a) 
$$4E - 2D$$
:

(b) 
$$2A^{T} + C$$
:

(a) 
$$4E - 2D$$
; (b)  $2A^T + C$ ; (c)  $(2E^T - 3D^T)^T$ ; (d)  $(BA^T - 2C)^T$ ;

(d) 
$$(BA^T - 2C)^T$$
;

$$(e) \left(-AC\right)^T + 5D^T$$

(e) 
$$(-AC)^T + 5D^T$$
; (f)  $B^T (CC^T - A^T A)$ ; (g)  $D^T E^T - (ED)^T$ .

(g) 
$$D^T E^T - (ED)^T$$
.

- 5. Uma matriz A em  $M_n(\mathbb{K})$  é chamada idempotente se  $A^2 = A$ , mostre que:
  - (a) Se A,  $B \in M_n(\mathbb{K})$  são tais que  $A \cdot B = A$  e  $B \cdot A = B$ , então A e B são idempotentes.
  - (b) A matriz  $\begin{vmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 2 & 2 \end{vmatrix}$  é idempotente.
- 6. Determine, se possível:
  - (a) Números reais x e y tais que  $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$  e  $B = \begin{bmatrix} 0 & 1 \\ x & y \end{bmatrix}$  comutam.
  - (b) Todas as matrizes em  $M_2(\mathbb{R})$  que comutam com a matriz  $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ .
- 7. Dada a matriz  $A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ , calcule  $A + A^{T} e A \cdot A^{T}$ .
- 8. Sejam  $A \in B$  matrizes em  $M_n(\mathbb{R})$ , se  $A \cdot B = B \cdot A$ , mostre que:

(a) 
$$(A \pm B)^2 = A^2 \pm 2AB + B^2$$
;

(b) 
$$(A-B)(A+B) = A^2 - B^2$$
;

(c) 
$$(A-B)(A^2+AB+B^2) = A^3-B^3$$
.

# 1.3 Matrizes Simétricas e Matrizes Ortogonais

1. Determine, em cada um dos casos abaixo, números reais x, y e z tais que a matriz A seja simétrica.

(a) 
$$A = \begin{bmatrix} -2 & x \\ 4 & 1 \end{bmatrix}$$
, (b)  $A = \begin{bmatrix} 8 & x+3 & -10 \\ 15 & -5 & -8 \\ y-2 & 2z & 9 \end{bmatrix}$ , (c)  $A = \begin{bmatrix} 8 & x^2+3 & -5 \\ 7 & -9 & 4 \\ y+x & z+3x & 11 \end{bmatrix}$ .

2. Classifique, se possível, as matrizes abaixo em simétrica e anti-simétrica:

$$A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 10 & 5i \\ 2 & -5i & 8 \end{bmatrix},$$

$$C = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 5 & 8 \\ 4 & 8 & 8 \end{bmatrix},$$

$$E = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}, \qquad F = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ 3+6i & -1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}.$$

- 3. Sejam A e B matrizes em  $M_n(\mathbb{K})$ , com n > 1 e  $\alpha$  e  $\beta$  escalares em  $\mathbb{K}$ , mostre que:
  - (a)  $A + A^T$  é simétrica e  $A A^T$  é anti-simétrica.
  - (b) Se A e B são simétricas, então  $\alpha A + \beta B$  também o é.
  - (c) Se A e B são anti-simétricas, então  $\alpha A + \beta B$  também o é.
  - (d) Se A e B são simétricas, então  $A \cdot B$  é simétrica se, e somente se, A e B comutam.
- 4. Determine, se possível, números reais *x* e *y* de modo que a matriz *A* seja ortogonal, nos seguintes casos:

(a) 
$$A = \begin{bmatrix} -1 & 0 \\ 0 & x \end{bmatrix}$$
; (b)  $A = \begin{bmatrix} \sqrt{2} & x \\ y & \sqrt{2} \end{bmatrix}$ .

5. Verifique quais das matrizes abaixo é ortogonal.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} \frac{1}{3} & \frac{2\sqrt{2}}{3} \\ \frac{2\sqrt{2}}{3} & -\frac{1}{3} \end{bmatrix}, \qquad D = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

- 6. Sejam  $A \in B \text{ em } M_n(\mathbb{R})$ , mostre que se  $A \in B$  são ortogonais, então  $A \cdot B$  também o é.
- 7. Dado  $\theta$  número real considere a matriz  $T_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ .
  - (a) Dados  $\theta$  e  $\phi$  em  $\mathbb{R}$ , mostre que  $T_{\theta} \cdot T_{\phi} = T_{\theta + \phi}$ .
  - (b) Calcule  $T_{(-\theta)}$ .
  - (c) Mostre que para todo número  $\theta$  a matriz  $T_{\theta}$  é ortogonal.
- 8. Em  $M_2(\mathbb{R})$  determine todas as matrizes que são simultaneamente:
  - (a) Simétricas e ortogonais.
  - (b) Anti-simétricas e ortogonais.

# 1.4 Matrizes Hermitianas e Matrizes Normais

1. Classifique, se possível, as matrizes abaixo em hermitiana e anti-hermitiana:

$$A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 10 & 5i \\ 2 & -5i & 8 \end{bmatrix},$$

$$C = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 5 & 8 \\ 4 & 8 & 8 \end{bmatrix},$$

$$E = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}, \qquad F = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ 3+6i & -1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}.$$

- 2. Sejam  $A \in M_n(\mathbb{C})$ , mostre que:
  - (a) Se A é matriz real e simétrica (ou anti-simétrica), então A é matriz normal.
  - (b) Se A é matriz hermitiana (ou anti-hermitiana), então A é matriz normal.
  - (c) As matrizes  $A + \overline{A}^T$  e  $A \cdot \overline{A}^T$  são matrizes hermitianas.
- 3. Classifique, se possível, as matrizes abaixo em normais e unitárias:

$$A = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 5-i & -1+i \\ -1-i & 3-i \end{bmatrix}, \qquad C = \begin{bmatrix} i & i \\ 2 & 3 \end{bmatrix}.$$

# 1.5 Determinante

- 1. Seja A uma matriz quadrada de ordem 5, cujo determinante é igual a -3.
  - (a) Calcule o determinante da matriz P dada por  $P = 4A^{-1}A^{T}$ , P é invertível?
  - (b) Calcule o determinante da matriz B obtida de A após serem realizadas as seguintes operações:  $L_3 \leftrightarrow L_2$ ;  $L_1 \rightarrow L_1 + 2L_5$ ;  $L_4 \rightarrow -3L_4$ .
- 2. Calcule o determinante da matriz  $A = \begin{bmatrix} 4 & -5 & 3 & 2 \\ -1 & 0 & 3 & 0 \\ 1 & 2 & -1 & 3 \\ 2 & 1 & 0 & 4 \end{bmatrix}$ .
  - (a) Teorema de Laplace (usando cofatores de uma linha ou de uma coluna de *A*).
  - (b) Usando operações elementares sobre as linhas de A.
- 3. Dada a matriz  $A = \begin{bmatrix} 1 & 5 & -1 & 3 \\ -1 & 2 & -2 & 4 \\ 6 & 7 & 3 & -1 \\ 5 & 3 & 0 & 4 \end{bmatrix}$ , determine:
  - (a) det A utilizando as operações elementares sobre as linhas de A;
  - (b)  $\det A^T$ ; (c)  $\det A^2$ ; (d)  $\det A^{-1}$ ; (e)  $\det (-A)$ ; (f)  $\det (3AA^T)$ .

1.6 Matriz Inversa

4. Calcule os seguintes determinantes:

(a) 
$$\begin{vmatrix} 2 & -1 & 5 \\ 1 & 9 & -4 \\ 3 & 0 & 0 \end{vmatrix}$$
; (b)  $\begin{vmatrix} 1+a & b & c \\ a & 1+b & c \\ a & b & 1+c \end{vmatrix}$ ; (c)  $\begin{vmatrix} c & -4 & 3 \\ 2 & 1 & c^2 \\ 4 & c-1 & 2 \end{vmatrix}$ ; (d)  $\begin{vmatrix} 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 & 0 \end{vmatrix}$ .

11

5. Resolva as seguintes equações:

(a) 
$$\begin{vmatrix} x & 5 & 7 \\ 0 & x+1 & 6 \\ 0 & 0 & 2x-1 \end{vmatrix} = 0;$$
 (b)  $\begin{vmatrix} 2 & x-2 & 3 \\ 2x+3 & x-1 & 4 \\ 5 & 1 & 0 \end{vmatrix} = 16;$  (c)  $\begin{vmatrix} x & -1 \\ 3 & 1-x \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{vmatrix}.$ 

6. Seja 
$$A = \begin{bmatrix} -2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5 \end{bmatrix}$$
, determine  $x \in \mathbb{R}$  tal que  $\det(xI - A) = 0$ .

- 7. Calcule o determinante da matriz  $A = \begin{bmatrix} 0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$ . Generalize o resultado para uma matriz  $A = [a_{ij}]_{n \times n}$  na qual  $a_{ij} = 0$  sempre que  $i + j \le n$ .
- 8. Diz-se que uma matriz A é semelhante à matriz B quando existe uma matriz invertível P tal que  $B = P \cdot A \cdot P^{-1}$ .
  - (a) Mostre que se A é uma matriz semelhante a B, então B é semelhante a A.
  - (b) Mostre que se A é semelhante a B e B é semelhante a C, então A é semelhante a C.
  - (c) Prove que matrizes semelhantes têm o mesmo determinante.

## 1.6 Matriz Inversa

1. Verifique se as matrizes abaixo são invertíveis, em caso afirmativo determine as inversas.

$$A = \begin{bmatrix} 5 & 3 \\ 8 & 6 \end{bmatrix}; \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 6 & 4 & 1 \end{bmatrix}.$$

2. Determine os valores de a para que a matriz seja invertível em cada um dos seguintes casos:

(a) 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & a \end{bmatrix}$$
; (b)  $A = \begin{bmatrix} a+3 & 7 & 6 \\ -1 & a-5 & -6 \\ 1 & 1 & a+2 \end{bmatrix}$ .

- 3. Sejam A, B e C matrizes invertíveis em  $M_n(\mathbb{K})$ , encontre a expressão da matriz X, nos seguintes casos:
  - (a)  $AB^{T}X = C$ ; (b)  $AB + CX = I_n$ ; (c)  $(CB)^{-1}AX = I_n$ ; (d)  $(AB)^{T}XC = I_n$ .
- 4. Seja  $A = [a_{ij}]$  uma matriz diagonal com  $a_{11}, a_{22}, \dots, a_{nn}$  todos não nulos, determine  $A^{-1}$ , a inversa de A, se existir.
- 5. Em cada caso verifique se A é invertível; determine cof A, a matriz co-fatora de A, e  $A^{-1}$ , a matriz inversa de A, se esta existir.

(a) 
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{bmatrix}$$
; (b)  $A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ ;  
(c)  $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}$ ; (d)  $A = \begin{bmatrix} 3 & 5 & 6 & 0 \\ 2 & -1 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 5 & 2 & -4 & 3 \end{bmatrix}$ .

- 6. Mostre que se A é invertível e  $A \cdot B = A \cdot C$ , então B = C.
- 7. Dadas as matrizes  $A = \begin{bmatrix} 1 & -5 & -1 & 2 \\ 0 & 2 & -3 & 4 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$  e  $B = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 3 & -4 & 0 & 0 \\ 2 & 2 & -1 & 0 \\ 2 & 1 & 1 & -2 \end{bmatrix}$ , determine:
  - (a)  $\det(AB)$ ; (b)  $A^{-1}$ ; (c)  $B^{-1}$ ; (d)  $(AB)^{-1}$ .
- 8. Seja *A* uma matriz quadrada de ordem *n*, mostre que:
  - (a) Se A satisfaz a igualdade  $A^2 3A + I = 0$ , então  $A^{-1} = 3I A$ .
  - (b) Se A é tal que  $A^{n+1}=0$  para  $n \in \mathbb{N}$ , então  $(I-A)^{-1}=I+A+A^2+\cdots+A^n$ .
- 9. Supondo que A e B são matrizes quadradas de ordem n invertíveis, prove as seguintes igualdades:
  - (a)  $(A^{-1} + B^{-1})^{-1} = A(A+B)^{-1}B$ .
  - (b)  $(I+AB)^{-1}A = A(I+BA)^{-1}$ .
  - (c)  $(A+BB^T)^{-1}B = A^{-1}B(I+B^TA^{-1}B)^{-1}$ .
- 10. Mostre que:
  - (a) Uma matriz quadrada A é invertível se, e somente se,  $A^TA$  é invertível.
  - (b) Se A é invertível, então adjA é invertível e  $(adjA)^{-1} = \frac{1}{\det A} A = adj(A^{-1})$ .
  - (c) Se A é uma matriz quadrada de ordem n invertível, então  $\det(\operatorname{adj} A) = (\det A)^{n-1}$ .
- 11. Determine  $A^{-1}$ , se existir, utilizando operações elementares sobre as linhas da matriz, em cada um dos seguintes casos:

(a) 
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$$
; (b)  $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix}$ ; (c)  $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ ;

(d) 
$$A = \begin{bmatrix} 2 & 1 & -4 \\ -4 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$$
; (e)  $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}$ .

1.7 Miscelânea 13

12. Considere as seguintes matrizes invertíveis:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad e \qquad C = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}.$$

- (a) Encontre a expressão de X tal que BAX = C.
- (b) Determine, caso exista, a inversa da matriz X do item acima.

# 1.7 Miscelânea

Decida se a afirmação dada é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.

- 1. ( ) Se a soma de matrizes  $A \cdot B + B \cdot A$  está definida, então as matrizes  $A \in B$  têm a mesma ordem.
- 2. ( ) Se  $A \cdot A^T$  é uma matriz não invertível, então A não é invertível.
- 3. ( ) Se A é invertível de ordem n e  $A \cdot B_{n \times m} = 0_{n \times m}$ , então B é a matriz nula de ordem  $n \times m$ .
- 4. ( ) A soma de duas matrizes invertíveis é sempre uma matriz invertível.
- 5. ( ) Se A é uma matriz quadrada de ordem n tal que  $A^4 = 0$ , então  $(I_n A)^{-1} = I_n + A + A^2 + A^3$ .
- 6. ( ) Se A é matriz quadrada de ordem n, com  $n \ge 2$ , então  $\det(2A) = 2 \det A$ .
- 7. ( ) Se A é matriz quadrada de ordem n, com  $n \ge 2$ , então  $\det(I_n + A) = 1 + \det A$ .
- 8. ( ) Não existe matriz quadrada real A para a qual  $\det(A \cdot A^T) = -1$ .
- 9. ( ) Se  $det(A^T \cdot A) = 4$ , então det A = 2.
- 10. ( )  $\det(A + B) = \det A + \det B$ .
- 11. ( ) Se A é uma matriz quadrada de ordem 4 com det $A = -\frac{1}{2}$ , então det  $\left(-2A^2A^T \cdot A^{-1}\right) = -4$ .
- 12. ( ) Se A é uma matriz quadrada de ordem n, com n > 1, então  $\det(-A) = -\det A$ .
- 13. ( ) Toda matriz diagonal é invertível.
- 14. ( ) Dadas  $A \in B \text{ em } G_n(\mathbb{K}), \text{ então } (I + A^{-1} \cdot B^T)^{-1} \cdot A^{-1} = (A + B^T)^{-1}.$
- 15. ( ) Se  $A^{100}$  é invertível, então 3A também o é.
- 16. ( ) Se A é uma matriz anti-simétrica, então a matriz  $A^k$  é anti-simétrica para todo  $k \in \mathbb{N}^*$ .
- 17. ( ) Se  $A \in M_n(\mathbb{K})$ , então A é a soma de uma matriz simétrica e uma matriz anti-simétrica.
- 18. ( ) Toda matriz complexa simétrica é uma matriz normal.
- 19. ( ) Se A é uma matriz real simétrica, então A é matriz normal.
- 20. ( ) O conjugado da soma de duas matrizes simétricas é uma matriz normal.
- 21. ( ) O produto de duas matrizes simétricas é uma matriz simétrica.
- 22. ( ) A soma de matrizes reais hermitianas é uma matriz simétrica.
- 23. ( ) A transposta do produto de matrizes ortogonais é o produto de suas inversas.
- 24. ( ) A soma de matrizes idempotentes é uma matriz idempotente.
- 25. ( ) Se A e B matrizes quadradas de mesma ordem tais que AB = A e BA = B, então A e B são matrizes idempotentes.

- 26. ( ) A soma de duas matrizes hermitianas é uma matriz normal.
- 27. ( ) O traço de uma matriz quadrada é igual ao traço de sua transposta.
- 28. ( ) O traço de uma matriz ortogonal é igual ao traço de sua inversa.
- 29. ( ) O traço de uma matriz quadrada complexa é igual ao traço de sua conjugada transposta.
- 30. ( ) O conjugado do traço de uma matriz hermitiana é igual ao traço da matriz.

# 1.8 Matriz na Forma Escalonada e na Forma Escada

**Observação:** Nesta seção, dada uma matriz A vamos indicar por p(A) o posto de A e n(A) a nulidade de A.

1. Encontre a forma escalonada reduzida (forma escada) das seguintes matrizes:

$$A = \begin{bmatrix} 1 & 4 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \qquad B = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}; \qquad C = \begin{bmatrix} 3 & 0 \\ 0 & 0 \\ 0 & 2 \end{bmatrix};$$
$$D = \begin{bmatrix} 1 & -3 & 2 & -1 \\ 2 & -1 & 2 & -2 \end{bmatrix}; \qquad E = \begin{bmatrix} 0 & 1 & 3 \\ 2 & 1 & -4 \\ 2 & 3 & 3 \end{bmatrix}.$$

2. Verifique, se possível, para quais valores de  $m \in \mathbb{R}$  as matrizes abaixo são linhas equivalentes à matriz identidade  $I_3$ 

$$A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & m \end{bmatrix}; \qquad B = \begin{bmatrix} m & 2 & m \\ 2 & 1 & 1 \\ 2 & m & 2 \end{bmatrix}.$$

3. Determine o posto e a nulidade de cada uma das seguintes matrizes:

$$A = \begin{bmatrix} 1 & 4 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \qquad B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \qquad C = \begin{bmatrix} 1 & -4 \\ 0 & 2 \end{bmatrix};$$

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}; \qquad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

- 4. Dê exemplos, se possível, de matrizes satisfazendo as condições em cada um dos seguintes casos:
  - (a)  $A \in M_{2\times 3}(\mathbb{R})$  com p(A) = 2; (b)  $A \in M_{3\times 2}(\mathbb{R})$  com p(A) = 3;
  - (c)  $A \in M_{2\times 4}(\mathbb{R})$  com p(A) = 3; (d)  $A \in M_{2\times 3}(\mathbb{R})$  com n(A) = 2;
  - (e)  $A \in M_{4\times 3}(\mathbb{R})$  com n(A) = 0; (f)  $A \in M_3(\mathbb{R})$  com n(A) = 0;
  - (g)  $A \in M_3(\mathbb{R})$  com p(A) = 2.
- 5. Dada a matriz  $B_{m \times n}$ , determine a matriz N, linha forma reduzida de B (forma escada) e a matriz invertível M, de ordem m, tal que  $N = M \cdot B$ , em cada um dos seguintes casos:

(a) 
$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & -3 \\ 1 & 2 & -1 & 0 \end{bmatrix}_{3\times4}$$
; (b)  $A = \begin{bmatrix} 2 & 2-i & 0 \\ 1+i & \frac{3+i}{2} & -5-i \end{bmatrix}_{2\times3}$ .

# 2. Sistemas de Equações Lineares

### 2.1 Forma Matricial de um Sistema Linear

1. Escreva os seguintes sistemas na forma matricial:

(a) 
$$S: \left\{ \begin{array}{rcl} 3x & + & y & = & 5 \\ x & - & 2y & = & 4 \end{array} \right.$$

(a) 
$$S: \begin{cases} 3x + y = 5 \\ x - 2y = 4 \end{cases}$$
, (b)  $S: \begin{cases} x + y - z = 2 \\ 2x + 3y = -7 \\ 2x - y + 3z = 1 \end{cases}$ 

(c) 
$$S: \begin{cases} x + 3y = 1 \\ 2x + 2y = 4 \\ 4x - 7y = 2 \end{cases}$$

(c) 
$$S: \begin{cases} x + 3y = 1 \\ 2x + 2y = 4 \\ 4x - 7y = 2 \end{cases}$$
 (d)  $S: \begin{cases} x + 2y - z + 3t = 3 \\ 2x + 4y + 4z + 3t = 9 \\ 3x + 6y - z + 8t = 10 \end{cases}$ 

# Classificação e Solução de Sistemas Lineares

1. Determine os valores reais de k, em cada um dos casos, para que o sistema linear dado seja compatível.

(a) 
$$S: \begin{cases} -4x + 3y = 2 \\ 5x - 4y = 0 \\ 2x - y = k \end{cases}$$
 (b)  $S: \begin{cases} a_1 + 2a_2 = -1 \\ -3a_1 + 4a_2 = k \\ 2a_1 - a_2 = -7 \end{cases}$ 

2. Determine os valores de a e b que tornam o sistema linear S:  $\begin{cases} 3x - 7y = a \\ x + y = b \\ 5x + 3y = 5a + 2b \\ x + 2y = a + b - 1 \end{cases}$ compatível e determinado.

- 3. Considere o sistema linear  $S: \left\{ \begin{array}{ll} ax + by = e \\ cx + dy = f \end{array} \right.$  Mostre que:
  - (a) se  $ad bc \neq 0$ , então o sistema tem uma única solução, dada por

$$x = \frac{de - bf}{ad - bc}$$
 e  $y = \frac{af - ce}{ad - bc}$ ;

- (b) se ad bc = 0 e  $\frac{a}{c} = \frac{b}{d} \neq \frac{e}{f}$ , então o sistema não tem solução.
- (c) se ad bc = 0 e  $\frac{a}{c} = \frac{b}{d} = \frac{e}{f}$ , então o sistema tem infinitas soluções.
- 4. Dado o sistema linear  $S: \left\{ \begin{array}{cccc} 2x & + & 3y & & z = & 0 \\ x & & 4y & + & 5z = & 0 \end{array} \right.$ 
  - (a) Verifique que  $x_1 = 1$ ,  $y_1 = -1$  e  $z_1 = -1$  é uma solução de S;
  - (b) Verifique que  $x_2 = -2$ ,  $y_1 = 2$  e  $z_1 = 2$  também é uma solução de S;
  - (c) É verdade que  $x = x_1 + x_2$ ,  $y = y_1 + y_2$  e  $z = z_1 + z_2$  é uma solução de *S*?
  - (d) É verdade que 3x, 3y e 3z, onde x, y e z são como no item (c), é uma solução de S?
  - (e) Se as respostas de (c) e (d) forem afirmativas, então responda: Por que isso ocorre?

# 2.3 Teorema do Posto

1. Considere os sistemas lineares abaixo, determine o posto e a nulidade das matrizes: **matriz dos coeficientes** e **matriz ampliada**, para os diferentes valores de  $m \in \mathbb{R}$ .

(a) 
$$S: \begin{cases} mx + 2y + mz = 0 \\ 2x + y + z = 0 \\ 2x + my + 2z = 0 \end{cases}$$
 (b)  $S: \begin{cases} 2x - 5y + z = 0 \\ x + y + z = 0 \\ 2x + mz = 0 \end{cases}$ 

- 2. Seja o sistema de equações linear S:  $\begin{cases} mx + 2y + mz = 0 \\ mx + y + z = 0 \\ 2x + my + 2z = 0 \end{cases}$ 
  - (a) Estude o conjunto solução do sistema S utilizando o posto e a nulidade das matrizes relacionadas para os diferentes valores de  $m \in \mathbb{R}$ .
  - (b) Para m = 1, determine o conjunto solução deste sistema utilizando, se possível, a inversa da matriz dos coeficientes.
- 3. Determine os valores reais de *k*, em cada um dos casos, para que o sistema linear dado admita solução não-trivial:

(a) 
$$S: \begin{cases} x - y - z = 0 \\ x - 2y - 2z = 0 \\ 2x + ky + z = 0 \end{cases}$$
 (b)  $S: \begin{cases} 2x - 5y + 2z = 0 \\ x + y + z = 0 \\ 2x + kz = 0 \end{cases}$ 

4. Determine k de modo que o sistema linear  $\begin{cases}
-4x_1 + 3x_2 = 2 \\
5x_1 - 4x_2 = 0 \\
2x_1 - x_2 = k
\end{cases}$  admita solução.

- 5. Determine os valores reais de a e b para que o sistema linear S:  $\begin{cases} x + y 2z = 0 \\ 2x + y + z = b \\ x + ay + z = 0 \end{cases}$ tenha: (a) uma única solução; (b) infinitas soluções; (c) nenhuma solução.
- 6. Determine os valores reais de k, em cada um dos casos, tais que o sistema linear S dado tenha:
  - (i) uma única solução; (ii) infinitas soluções; (iii) nenhuma solução:

(a) 
$$S: \begin{cases} -4x + 3y = 2 \\ 5x - 4y = 0 \\ 22x - y = k \end{cases}$$
 (b)  $S: \begin{cases} x + y - kz = 0 \\ kx + y - z = 2 \end{cases}$ 

$$(22x - y = k)$$

$$(c) S: \begin{cases} 2x - 2y + kz = 2\\ 2x - y + kz = 3\\ x - ky + z = 0 \end{cases}$$

$$(d) S: \begin{cases} x + kz = -2\\ x - y - 2z = k\\ x + ky + 4z = -5 \end{cases}$$

(e) 
$$S: \begin{cases} x + y - z = 1 \\ 2x + 3y + kz = 3 \\ x + ky + 3z = 2 \end{cases}$$
 (f)  $S: \begin{cases} kx + y + z = 1 \\ x + ky + z = 1 \\ x + y + kz = 1 \end{cases}$ 

(g) 
$$S: \begin{cases} x + 2y + kz = 1 \\ 2x + ky + 8z = 3 \end{cases}$$
, (h)  $S: \begin{cases} x + y + kz = 2 \\ 3x + 4y + 2z = k \\ 2x + 3y - z = 1 \end{cases}$ 

7. Determine a condição que os números reais *a*, *b* e *c* devem satisfazer para que, em cada um dos casos abaixo, o sistema dado tenha solução.

(a) 
$$\begin{cases} x + 2y - 3z = a \\ 2x + 6y - 11z = b, \\ x - 2y + 7z = c \end{cases}$$
 (b) 
$$\begin{cases} x + 2y - 3z = a \\ 3x - y + 2z = b, \\ x - 5y + 8z = c \end{cases}$$

(c) 
$$\begin{cases} x - 2y + 4z = a \\ 2x + 3y - z = b \\ 3x + y + 2z = b \end{cases}$$
 (d) 
$$\begin{cases} 3x - 7y = a \\ x + y = b \\ 5x + 3y = 5a + 2b \\ x + 2y = a + b - 1 \end{cases}$$

(e) 
$$\begin{cases} x + 2y = a \\ -3x + 4y = b \\ 2x - y = c \end{cases}$$
 (f) 
$$\begin{cases} -a + 3b = x \\ 2a - b = y \\ -2a + b = z \\ 3a + b = t \end{cases}$$

8. Seja o sistema de equações lineares S:  $\begin{cases} x + 2y - z = 1 \\ 2x + 2y + kz = 4 \cdot \cos k \in \mathbb{R}. \\ x + 3y + kz = 3 \end{cases}$ 

Efetue operações elementares sobre as linhas das matrizes para responder os seguintes itens. Justifique suas respostas!

- (a) Determine o posto e a nulidade da matriz dos coeficientes e da matriz ampliada do sistema S para os diferentes valores de  $k \in \mathbb{R}$ .
- (b) Para k = -1, determine, se possível, a inversa da matriz dos coeficientes e o conjunto solução do sistema S utilizando esta matriz.
- (c) Para k = 0, determine o conjunto solução do sistema S utilizando o método de eliminação de Gauss.

- (d) Para k = -2, determine o conjunto solução do sistema S utilizando o método de eliminação de Gauss-Jordan.
- 9. Seja o sistema de equações lineares

$$\begin{cases} 3x_1 + 5x_2 + 12x_3 - x_4 = -3 \\ x_1 + x_2 + 4x_3 - x_4 = -6 \\ 2x_2 + 2x_3 + x_4 = 5 \end{cases}$$

 $com k \in \mathbb{R}$ .

Efetue operações elementares sobre as linhas das matrizes para responder os seguintes itens. Justifique suas respostas!

- (a) Determine o posto e a nulidade da matriz dos coeficientes e da matriz ampliada do sistema S para os diferentes valores de  $k \in \mathbb{R}$ .
- (b) Para k = 2, determine, se possível, a inversa da matriz dos coeficientes e o conjunto solução do sistema S utilizando esta matriz.
- (c) Para k = 1, determine o conjunto solução do sistema S utilizando o método de eliminação de Gauss.
- (d) Para k = 0, determine o conjunto solução do sistema S utilizando o método de eliminação de Gauss-Jordan.

# 2.4 Resolução de Sistemas Lineares

- 1. Determine a solução do sistema linear S:  $\begin{cases} 2x (1-i)y + w = 0 \\ 3y 2iz + 5w = 0 \end{cases}$ , no conjunto dos números complexos.
- 2. Resolva os seguintes sistemas utilizando o **Método de Gauss** ou o **Método de Gauss-Jordan**. Classifique-os.

(a) 
$$S: \begin{cases} x + 2y + z = 0 \\ 2x + y - z = 0 \\ 3x - y - 2z = 0 \end{cases}$$
 (b)  $S: \begin{cases} x + 2y - z = 2 \\ 2x - y + z = 5 \\ x + 3y + 2z = 9 \\ 3x - y + 4z = 13 \end{cases}$ 

(c) 
$$S: \begin{cases} x + 3y + 2z = 2 \\ 3x + 5y + 4z = 4 \\ 5x + 3y + 4z = -10 \end{cases}$$
 (d)  $S: \begin{cases} x + 6y - 8z = 1 \\ 2x + 6y - 4z = 0 \end{cases}$ 

(e) 
$$S: \begin{cases} x + 2y - z & + w = 0 \\ -x - y + 2z - 3t + w = 0 \\ x + y - 2z & - w = 0 \end{cases}$$
, (f)  $S: \begin{cases} x + y - 3z + t = 1 \\ 3x + 3y + z + 2t = 0 \\ 2x + y + z - 2t = 4 \end{cases}$ 

(g) 
$$S: \begin{cases} 3x + 5y = 1 \\ 2x + z = 3 \\ 5x + y - z = 0 \end{cases}$$
 (h)  $S: \begin{cases} x + y + z = 4 \\ 2x + 5y - 2z = 3 \\ x + 7y - 7z = 5 \end{cases}$ 

(i) 
$$S: \begin{cases} x + 2y + 3z = 0 \\ 2x + y + 3z = 0 \\ 3x + 2y + z = 0 \end{cases}$$
 (j)  $S: \begin{cases} 2x - y + 3z = 11 \\ 4x - 3y + 2z = 6 \\ x + y + z = 0 \end{cases}$  (k)  $S: \begin{cases} x + y + z + t = 0 \\ x + 3y + z - t = 4 \\ x - 2y + z + t = 2 \end{cases}$  (l)  $S: \begin{cases} 3x + 2y - 4z = 1 \\ x - y - 3z = -3 \\ 3x + 3y - 5z = 0 \\ -x + y + z = 1 \end{cases}$  (m)  $S: \begin{cases} x + 2y + 3z = -6 \\ 2x - 3y - 4z = 15 \\ 3x + 4y + 5z = -8 \end{cases}$  (n)  $S: \begin{cases} 3x + 2y + z = 2 \\ 4x + 2y + 2z = 8 \\ x - y + z = 1 \end{cases}$  (o)  $S: \begin{cases} 2x + 3y = 13 \\ x - 2y = 3 \\ 5x + 2y = 27 \end{cases}$  (p)  $S: \begin{cases} x + 4y - z = 12 \\ 3x + 8y - 2z = 4 \end{cases}$  (r)  $S: \begin{cases} 3x + 2y + z = 2 \\ 4x + 2y + 2z = 8 \\ x - y + z = 4 \end{cases}$  (1)  $S: \begin{cases} 3x + 2y + z = 2 \\ 4x + 2y + 2z = 8 \\ x - y + z = 4 \end{cases}$  (2)  $S: \begin{cases} 3x + 2y + z = 2 \\ 4x + 2y + 2z = 8 \\ x - y + z = 4 \end{cases}$  (2)  $S: \begin{cases} 3x + 3y - 2z - t = 2 \\ 2x + 5y = -8 \\ x + 3y = -5 \end{cases}$  (2)  $S: \begin{cases} 3x + 4y - z = 12 \\ 3x + 8y - 2z = 4 \end{cases}$  (3)  $S: \begin{cases} 3x + 2y + z = 2 \\ 4x + 2y + 2z = 8 \\ 3x + 2y - z + 2t = 1 \end{cases}$  (3)  $S: \begin{cases} 3x + 2y + z = 2 \\ 4x + 2y + 2z = 8 \\ 3x + 2y - 2z = 4 \end{cases}$  (3)  $S: \begin{cases} 3x + 3y - 2z - t = 2 \\ 2x - y - z - t = 0 \\ 3x + 2y - z + 2t = 1 \end{cases}$  (3)  $S: \begin{cases} 3x + 3y - 2z - t = 2 \\ 2x - y - z - t = 0 \\ 2x - 3y + 2z + 3t = 0 \end{cases}$  (3)  $S: \begin{cases} 3x + 2y + z - 2t = 1 \\ 3x + 2y - z + 2t = 1 \end{cases}$  (2)  $S: \begin{cases} 3x + 2y - 3z + 2t = 2 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (3)  $S: \begin{cases} 3x + 2y + z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (4)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (5)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (7)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (8)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (9)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (10)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (11)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (12)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 3x + 2y - 2z - 2t = 1 \end{cases}$  (22)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \\ 2x - 2y - 2z - 2t = 1 \end{cases}$  (3)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \end{cases}$  (4)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \end{cases}$  (5)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \end{cases}$  (7)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \end{cases}$  (8)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \end{cases}$  (9)  $S: \begin{cases} 3x + 2y - 2z - 2t = 1 \end{cases}$  (11)

Método da Matriz Inversa

(x) S:  $\begin{cases} x + 3y + 2z + 3t - 7w = 14 \\ 2x + 6y + z - 2t + 5w = -2 \\ x + 3y - 7 + 2w = -1 \end{cases}$ 

1. Resolva os seguintes sistemas lineares utilizando o **Método da Matriz Inversa**:

(a) 
$$S: \begin{cases} 5x - 2y = 4 \\ 3x - y = 3 \end{cases}$$
, (b)  $S: \begin{cases} 2x - y - 3z = 5 \\ 3x - 2y + 2z = 5 \\ 5x - 3y + z = 16 \end{cases}$ .

- 2. Considere a matriz  $A = \begin{bmatrix} \lambda & 0 & 1 \\ 1 & \lambda 1 & 0 \\ 0 & 0 & \lambda + 1 \end{bmatrix}$ , encontre os valores reais de  $\lambda$  para os quais o sistema homogêneo  $A \cdot X_{3 \times 1} = 0_{3 \times 1}$  admite apenas a solução trivial.
- 3. Sejam

2.5

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}, \quad B_3 = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}.$$

- (a) Determine, se possível, a inversa de A.
- (b) Utilize o item (a) para resolver a equação matricial  $AX = B_k$  para k = 1, 2, 3.

# 2.6 Regra de Cramer

1. Resolva os seguintes sistemas utilizando a Regra de Cramer:

(a) 
$$S: \begin{cases} 2x - 3y = 7 \\ 3x + 5y = 1 \end{cases}$$
, (b)  $S: \begin{cases} 2x + 3y - z = 1 \\ 3x + 5y + 2z = 8 \\ x - 2y - 3z = -1 \end{cases}$ ,  
(c)  $S: \begin{cases} 2x + 3y - z = 1 \\ 3x + 5y + 2z = 8 \\ x - 2y - 3z = -1 \end{cases}$ ,  
 $(c) S: \begin{cases} 2x + 3y - z = 1 \\ 3x + 5y + 2z = 8 \\ x - 2y - 3z = -1 \end{cases}$ 

2. Considere o sistema de equações lineares:  $S: \begin{cases} x + 2y + z = 1 \\ y + 2z = -4 \end{cases}$ , verifique se é um sistema de Cramer. Em caso afirmativo, determine o conjunto solução do sistema utilizando a regra de Cramer.

# 2.7 Miscelânea

Decida se a afirmação dada é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.

- 1. ( ) Se o sistema de equações lineares  $S: A_n \cdot X_{n \times 1} = 0_{n \times 1}$  possui apenas a solução trivial,  $X_{n \times 1} = 0_{n \times 1}$ , então S é também um sistema de Cramer.
- 2. ( ) Um sistema de equações lineares homogêneo é sempre compatível.
- 3. ( ) Um sistema de equações lineares  $S: A_n \cdot X_{n \times 1} = B_{n \times 1}$  possui uma única solução se, e somente se, o posto de A é igual a n.
- 4. ( ) Se *S* é sistema de equações lineares homogêneo que possui solução diferente da solução trivial, então *S* é um sistema incompatível (impossível).
- 5. ( ) Se o sistema linear  $A_n \cdot X_{n \times 1} = 0_{n \times 1}$  admite as soluções  $X_1$  e  $X_2$ , então também admite  $k_1 X_1 + k_2 X_2$  como solução, quaisquer que sejam os números reais  $k_1$  e  $k_2$ .
- 6. ( ) Uma condição necessária e suficiente para que o sistema linear  $A_n \cdot X_{n \times 1} = 0_{n \times 1}$  tenha somente a solução trivial é que det $A \neq 0$ .
- 7. ( ) Se  $X_1$  e  $X_2$  são soluções do sistema linear  $A_n \cdot X_{n \times 1} = 0_{n \times 1}$ , então  $X_1 X_2$  também é solução de  $A_n \cdot X_{n \times 1} = 0_{n \times 1}$ .
- 8. ( ) Se um sistema de equações lineares  $A_n \cdot X_{n \times 1} = 0_{n \times 1}$  tem apenas a solução trivial, então todo sistema de equações lineares  $A_n \cdot X_{n \times 1} = B_{n \times 1}$ , com  $B \neq 0$ , tem uma única solução.
- 9. ( ) Se um sistema de equações lineares *S* é compatível indeterminado, então toda forma linha-reduzida da matriz ampliada de *S* contém alguma linha nula.
- 10. ( ) Existem números reais a, b e c tais que o sistema de equações lineares:

S: 
$$\begin{cases} x - y - 3z = a \\ 2x + 6y + z = b \\ x + 15y + 11z = c \end{cases}$$
 é compatível determinado.

# 2.8 Aplicações de Sistemas Lineares

Resolva os seguintes problemas utilizando sistemas de equações lineares e seus métodos de resolução. Em cada caso construa o sistema linear correspondente ao problema e estude o seu conjunto solução utilizando posto e nulidade das matrizes relacionadas ao sistema.

- 1. Uma refinaria de petróleo processa dois tipos de petróleo: com alto teor de enxofre e com baixo teor de enxofre. Cada tonelada de petróleo de baixo teor necessita de 5 minutos no setor de mistura e 4 minutos no setor de refinaria; já o petróleo com alto teor são necessários 4 minutos no setor de mistura e 2 minutos no setor de refinaria. Se o setor de mistura está disponível por 3 horas, e o setor de refinaria por 2 horas, quantas toneladas de cada tipo de combustível devem ser processadas de modo que os dois setores não fiquem ociosos?
- 2. Um fabricante de plástico produz dois tipos de plástico: o normal e o especial. Para produzir uma tonelada de plástico normal são necessárias duas horas na fábrica *A* e 5 horas na fábrica *B*; já na produção de uma tonelada de plástico especial são necessárias 2 horas na fábrica *A* e 3 horas na fábrica *B*. Se a fábrica *A* funciona 8 horas por dia e a fábrica *B* funciona 15 horas por dia, quantas toneladas de cada tipo de plástico devem ser produzidas diariamente para que as duas fábricas se mantenham totalmente ocupadas?
- 3. Um nutricionista está elaborando uma refeição que contenha os alimentos *A*, *B* e *C*. Cada grama do alimento *A* contém 2 unidades de proteína, 3 unidades de gordura e 4 unidades de carboidrato. Cada grama do alimento *B* contém 3 unidades de proteína, 2 unidades de gordura e 1 unidade de carboidrato. Já o alimento no alimento *C* encontramos 3 unidades de proteína, 3 unidades de gordura e 2 unidades de carboidrato. Se a refeição deve fornecer exatamente 25 unidades de proteína, 24 unidades de gordura e 21 unidades de carboidrato, quantos gramas de cada tipo de alimento devem ser utilizados?
- 4. Um cooperativa produz três tipos de ração: *X*, *Y* e *Z*, utilizando farelo de soja, gordura animal e milho. Cada quilograma da ração *A* contém 100 *g* de farelo de soja e 200 *g* de milho e não contém gordura animal; cada quilograma da ração *B* contém 300 *g* de farelo de soja, 100 *g* de gordura animal e 400 *g* de milho; cada quilograma da ração *C* contém 200 *g* de farelo de soja, 200 *g* de gordura animal e 100 *g* de milho.

Sabendo que a disponibilidade destes produtos na cooperativa nos meses de abril, maio e junho foi dada como na tabela abaixo. Pede-se para determinar qual a quantidade de cada tipo de ração foi produzido em cada um destes meses.

| Quant./ Mês<br>(em tonelada) | Farelo de Soja | Gordura Animal | Milho |
|------------------------------|----------------|----------------|-------|
| Abril                        | 1              | 1,5            | 2     |
| Maio                         | 1,3            | 2              | 1,6   |
| Junho                        | 1              | 1,4            | 1,8   |

5. Um biólogo colocou três espécies de bactéria (denotadas por I, II e III) em um tubo de ensaio, onde elas serão alimentadas por três fontes diferentes de alimentos (*A*, *B* e *C*). A cada dia serão colocadas no tubo de ensaio 2.300 unidades de *A*, 800 unidades de *B* e 1.500 unidades de *C*. Cada bactéria consome um certo número de unidades de cada alimento por dia, como mostra a tabela abaixo.

| Alimento | o | Bactéria I | Bactéria II | Bactéria III |
|----------|---|------------|-------------|--------------|
| A        |   | 2          | 2           | 4            |
| В        |   | 1          | 2           | 0            |
| С        |   | 1          | 3           | 1            |

Determine quantas bactérias de cada espécie podem coexistir no tubo de ensaio de modo a consumir todo o alimento.

6. Num torneio de triatlon as competições: nado, corrida e ciclismo foram pontuadas com pesos *x*, *y* e *z*, respectivamente. A tabela abaixo apresenta a pontuação dos quatro primeiros colocados em cada categoria e sua respectiva classificação final.

| Nado           | Corrida | Ciclismo | Classificação<br>Geral |
|----------------|---------|----------|------------------------|
| Atleta 1   7,5 | 9       | 9        | 8,4                    |
| Atleta 2   8   | 7       | 9        | 8                      |
| Atleta 3   9   | 7,5     | 8,5      | 7,9                    |
| Atleta 4   7,5 | 8       | 8        | 7,8                    |

O terceiro atleta alegou que se as classificações dos 1, 2 e 4 atletas estivessem corretas, então sua classificação estaria incorreta. Sabendo que a classificação geral foi obtida pela média ponderada da pontuação de cada uma das competições e supondo que o terceiro atleta está correto determine:

- (a) o peso de cada competição;
- (b) a classificação do terceiro candidato.
- 7. No meu bairro há três cadeias de supermercados: *A*, *B* e *C*. A tabela abaixo apresenta os preços (em reais por quilo) do produto *X*, do produto *Y* e do produto *Z*, nessas cadeias.

|   | Produto X | Produto Y | Produto Z |
|---|-----------|-----------|-----------|
| A | 3         | 4         | 2         |
| В | 1         | 6         | 4         |
| С | 1         | 4         | 7         |

Comprando-se x quilos do produto X, y quilos do produto Y e z quilos do produto Z em qualquer dos supermercados pagarei R\$31,00. Determine x, y e z.

- 8. Uma firma fabrica dois produtos: *A* e *B*. Cada um deles passa por duas máquinas: *I* e *II*. Para se fabricar uma unidade de *A* gasta-se 1*h* da máquina *I* e 1,5*h* da máquina *II*. Cada unidade de B gasta 3*h* de *I* e 2*h* de *II*. Quantas unidades de cada produto poderão ser fabricadas em um mês se, por motivos técnicos, *I* só funciona 300 horas e *II* só 250 horas por mês?
- 9. Dois metais x e y são obtidos de dois tipos de minérios I e II. De 100Kg de I se obtém 3 gramas de x e 5 gramas de y e de 100Kg de II obtém-se 4 gramas de x e 2,5 gramas de y. Quantos quilos de minério de cada tipo serão necessários para se obter 72 gramas de x e 95 gramas de y, usando-se simultaneamente os dois minérios?

- 10. Três pessoas jogam juntas. Na primeira rodada a primeira perde para cada um dos outros dois a mesma quantia que cada um deles tinha no início do jogo. Na segunda rodada, a segunda pessoa perde para cada um dos outros a mesma quantia que eles tinham no final da 1a rodada. Na terceira rodada, o 1 e o 2 jogadores ganham do 3 a mesma quantia que cada um tinha no final da segunda rodada. Neste momento, os jogadores verificaram que cada um deles possui *R*\$24,00. Quanto cada jogador tinha ao começar o jogo?
- 11. Uma indústria produz três produtos, *A*, *B* e *C*, utilizando dois tipos de insumos, *X* e *Y*. Para a manufatura de cada quilo de *A* são utilizados 1 grama do insumo *X* e 2 gramas do insumo *Y*; para cada quilo de *B*, 1 grama do insumo *X* e 1 grama do insumo *Y* e, para cada quilo de *C*, 1 grama do insumo *X* e 4 gramas do insumo *Y*. O preço da venda do quilo de cada um dos produtos *A*, *B* e *C* é de *R*\$2,00, *R*\$3,00 e *R*\$5,00, respectivamente. Com a venda de toda a produção de *A*, *B* e *C* manufaturada com 1 quilo de *X* e 2 quilos de *Y*, essa indústria arrecadou *R*\$2500,00. Determine quantos quilos de cada um dos produtos *A*, *B* e *C* foram vendidos.
- 12. Cada ração contém as seguintes unidades de proteínas (P), carboidratos (C) e gorduras (G).

|     | $\parallel P$ | C | G |
|-----|---------------|---|---|
| (1) | 1             | 0 | 2 |
| (2) | 3             | 1 | 4 |
| (3) | 2             | 2 | 1 |

Se as quantidades de proteínas (P), carboidratos (C) e gorduras (G) que a cooperativa tem disponível, nos meses de dezembro e janeiro, são mostradas na tabela abaixo, qual a quantidade de cada tipo de ração é produzido em cada mês?

| Quant./mês | P  | C  | G  |
|------------|----|----|----|
| Dezembro   | 15 | 10 | 14 |
| Janeiro    | 13 | 5  | 17 |

- 13. Necessita-se adubar um terreno acrescentando a cada  $10m^2$  140g de nitrato, 190g de fosfato e 205g de potássio. Dispõe-se de quatro qualidades de adubo com as seguintes características:
  - (i) Cada quilograma do adubo I custa R\$5,00 e contém 10g de nitrato, 10g de fosfato e 100g de potássio.
  - (ii) Cada quilograma do adubo II custa *R*\$6,00 e contém 10*g* de nitrato, 100*g* de fosfato e 30*g* de potássio.
  - (iii) Cada quilograma do adubo III custa R\$5,00 e contém 50g de nitrato, 20g de fosfato e 20g de potássio.
  - (iv) Cada quilograma do adubo IV custa R\$15,00 e contém 20g de nitrato, 40g de fosfato e 35g de potássio.

Quanto de cada adubo devemos misturar para conseguir o efeito desejado se estamos dispostos a gastar R\$54,00 a cada  $10m^2$  com a adubação?

- 14. Uma florista oferece três tamanhos de arranjos de flores com rosas, margaridas e crisântemos. Dispõe-se de quatro qualidades de adubo com as seguintes características:
  - (i) Cada arranjo pequeno contém uma rosa, três margaridas e três crisântemos.
  - (ii) Cada arranjo médio contém duas rosas, quatro margaridas e seis crisântemos.

- (iii) Cada arranjo grande contém quatro rosas, oito margaridas e seis crisântemos. Um dia a florista notou que havia usado um total de 24 rosas, 50 margaridas e 48 crisântemos ao preparar as encomendas desses três tipos de arranjos. Quantos arranjos de cada tipo ela fez?
- 15. Um comerciante vende três tipos distintos de caixas com chocolates. A caixa tipo-I contém 2 unidades do chocolate branco, 2 unidades do chocolate ao leite e 4 unidades do chocolate amargo. A caixa tipo-II contém 1 unidade do chocolate branco, 2 unidades do chocolate ao leite e não contém chocolate amargo. A caixa tipo-III contém 1 unidade do chocolate branco, 3 unidades do chocolate ao leite e a unidades do chocolate amargo;  $a \in \mathbb{R}$ . Sabe-se que o comerciante dispõe de 50 unidades do chocolate branco, 100 unidades do chocolate ao leite e 60 unidades do chocolate amargo. Quantas caixas de cada tipo o comerciante consegue preparar utilizando todos os chocolates?

Verifique também se é possível, para quais valores de  $a \in \mathbb{R}$ , que o sistema correspondente ao problema do comerciante seja um sistema de Cramer.

- 16. Um comerciante de café vende três misturas de grãos.
  - (i) Um pacote com a mistura da casa contém 300g de café colombiano e 200g de café tostado tipo francês.
  - (ii) Um pacote com a mistura especial contém 200g de café colombiano, 200g de café queniano e 100g de café tostado tipo francês.
  - (iii) Um pacote com a mistura gourmet contém 100g de café colombiano, 200g de café queniano e 200g de café tostado tipo francês.

O comerciante tem 30kg de café colombiano, 15kg de café queniano e 25kg de café tostado tipo francês. Se ele deseja utilizar todos os grãos de café, quantos pacotes de cada mistura ele deve preparar?

17. Faça o balanceamento da equação química para a seguinte reação:

$$C_4H_{10} + O_2 \longrightarrow CO_2 + H_2O$$

"Queima do gás butano na presença de oxigênio para formar diéxido de carbono e água."

18. Um aluno de *Álgebra Linear A* precisa distribuir o seu tempo no mês a fim de revisar os seguintes assuntos: matrizes, sistemas de equações lineares e funções. Para revisar matrizes ele necessita na semana de 1h na segunda-feira, 3h na quarta-feira e 3h na sexta-feira. Para revisar sistemas de equações lineares ele necessita na semana de 2h na segunda-feira, 4h na quarta-feira e 6h na sexta-feira; e, para revisar métodos de solução ele necessita na semana de 4h na segunda-feira, 8h na quarta-feira e 6h na sexta-feira. Organizando o seu tempo de estudo, ele constatou que tem disponível no mês: 24 horas/mês na segunda-feira, 50 horas/mês na quarta-feira e 48 horas/mês na sexta-feira. Agora ele deseja saber quantas vezes no mês ele conseguirá revisar cada assunto.

# Espaços Vetoriais

| 3   | Espaços Vetoriais                          | <b>27</b> |
|-----|--------------------------------------------|-----------|
| 3.1 | Espaços Vetoriais                          |           |
| 3.2 | Subespaços Vetoriais                       |           |
| 3.3 | Soma e Intersecção de Subespaços Vetoriais |           |
| 3.4 | Combinação Linear                          |           |
| 3.5 | Subespaço Gerado                           |           |
| 3.6 | Dependência e Independência Linear         |           |
| 3.7 | Base e Dimensão                            |           |
| 3.8 | Coordenadas de um Vetor e Mudança de Base  |           |
|     |                                            |           |



# 3.1 Espaços Vetoriais

- 1. Considere em  $V = \{(x, y) \in \mathbb{R}^2; x > 0\}$  com as operações:
  - Adição:  $(x_1, y_1) \oplus (x_2, y_2) = (x_1 \cdot x_2, y_1 + y_2)$  para quaisquer  $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ .
  - Multiplicação por escalar:  $\lambda \odot (x,y) = (x^{\lambda}, \ \lambda \cdot y)$  para todo  $(x,y) \in \mathbb{R}^2$  e todo  $\lambda \in \mathbb{R}$ .
  - (a) Exiba o elemento neutro da adição ⊕.
  - (b) Exiba o simétrico aditivo de (x, y).
  - (c) Exiba a unidade da operação  $\odot$ .
  - (d) Mostre que V é um espaço vetorial real.
- 2. Verifique se  $M_2(\mathbb{R})$ , com as operações: soma usual e a multiplicação por escalar dada por

$$\lambda \odot \left[ \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] = \left[ \begin{array}{cc} \lambda \cdot a_{11} & a_{12} \\ a_{21} & \lambda \cdot a_{22} \end{array} \right],$$

é um espaço vetorial sobre  $\mathbb{R}$ .

3. Verifique se  $\mathbb{C}^2$  com a multiplicação por escalar usual e a adição dada por:

$$(a_1+b_1i, c_1+d_1i) \oplus (a_2+b_2i, c_2+d_2i) = (a_1+a_2+(b_1+2b_2)i, (c_1-c_2)+(d_1+d_2)i)$$
  
para quaisquer  $(a_1+b_1i, c_1+d_1i), (a_2+b_2i, c_2+d_2i)$  em  $\mathbb{C}^2$  é:

- (a) Sobre  $\mathbb{R}$ .
- (b) Sobre C.
- 4. Considere a e b números reais com a < b, o conjunto das funções reais contínuas com domínio [a,b] é indicado por:

$$\mathscr{C}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R}; f \text{ \'e uma função contínua}\}.$$

Mostre que com  $\mathscr{C}([a,b])$ , com as operações adição  $\big((f+g)(x)=f(x)=g(x)\big)$  e multiplicação por um escalar  $\big((\alpha\cdot f)(x)=\alpha\cdot f(x)\big)$  definidas em  $\mathscr{F}(\mathbb{R})$ , é um espaço vetorial sobre  $\mathbb{R}$ .

# 3.2 Subespaços Vetoriais

- 1. Verifique em cada um dos casos se W é um subespaço de  $\mathbb{R}^3$  espaço vetorial sobre  $\mathbb{R}$ .
  - (a)  $W = \{(x, y, z) \in \mathbb{R}^3; y \le 0\};$  (b)  $W = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 \le 1\};$
  - (c)  $W = \{(x, y, z) \in \mathbb{R}^3; z = 0\};$  (d)  $W = \mathbb{Q}^3;$  com  $\mathbb{Q}$  conjunto dos números racionais;
  - (e)  $W = \{(x, y, z) \in \mathbb{R}^3; x \cdot y = 1\};$  (f)  $W = \{(x, y, z) \in \mathbb{R}^3; y = x^2\}.$
- 2. Verifique em cada um dos casos se W é um subespaço de  $M_n(\mathbb{R})$  espaço vetorial sobre  $\mathbb{R}$ , com  $n \geq 2$ .
  - (a)  $W = \{A \in M_n(\mathbb{R}); A \text{ \'e sim\'etrica}\};$  (b)  $W = \{A \in M_n(\mathbb{R}); A \text{ \'e invert\'evel}\};$
  - (c)  $W = \{A \in M_n(\mathbb{R}); A \text{ não \'e invertível}\};$  (d)  $W = \{A \in M_n(\mathbb{R}); A^2 = A\};$
  - (e)  $W_B=\left\{A\in M_n(\mathbb{R});\,A\cdot B=0_{n\times n}\right\}$ , com  $B\in M_n(\mathbb{R})$  matriz não nula e fixa;
  - (f)  $W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} = a_{22} \ e \ a_{21} = -a_{12} \right\}.$
- 3. Verifique em cada um dos casos se W é um subespaço de  $\mathbb{R}^4$  espaço vetorial sobre  $\mathbb{R}$ .
  - (a)  $W = \{(x, y, z, t) \in \mathbb{R}^4; x + t \ge 0\};$  (b)  $W = \{(x, y, z, t) \in \mathbb{R}^4; x = z \text{ e } t = 3z\};$
  - (c)  $W = \{(x, y, z, t) \in \mathbb{R}^4; x + y z + 2t = 0\};$  (d)  $W = \{(x, y, z, t) \in \mathbb{R}^4; t \notin \mathbb{Q}\}.$
- 4. Considere  $\mathscr{P}_n(\mathbb{R})$ , com  $n \geq 2$ , conjunto dos polinômios de grau  $\leq n$  reunido com o polinômio nulo. Verifique em cada um dos casos se W é um subespaço de  $(\mathscr{P}_n(\mathbb{R}), +, \cdot)$  é espaço vetorial sobre  $\mathbb{R}$ .
  - (a)  $W = \{ p(t) \in \mathscr{P}_n(\mathbb{R}); 0 \text{ \'e ra\'iz de } p(t) \};$
  - (b)  $W = \{p(t) \in \mathscr{P}_n(\mathbb{R}); \ p(t) \ \text{\'e} \ \text{o} \ \text{polinômio} \ \text{nulo} \ \text{ou} \ p(t) \ \text{tem grau \'impar}\};$
  - (c)  $W = \{p(t) \in \mathcal{P}_n(\mathbb{R}); \ p(t) \text{ \'e divis\'ivel por } 1 t\};$  (d)  $W = \{p(t) \in \mathcal{P}_n(\mathbb{R}); \ p(0) = p(1)\};$
  - (e)  $W = \{p(t) \in \mathscr{P}_n(\mathbb{R}); p(t) \text{ tem todos os coeficientes iguais}\};$
  - (f)  $W = \{p(t) \in \mathscr{P}_n(\mathbb{R}); \text{ a soma dos coeficientes de } p(t) \text{ \'e igual a zero}\}.$
- 5. Verifique em cada um dos casos se W é um subespaço de  $\mathscr{F}(\mathbb{R})$  espaço vetorial sobre  $\mathbb{R}$ .
  - $\text{(a) } W = \big\{ f \in \mathscr{F}(\mathbb{R}); \ f \text{ \'e funç\~ao \'impar} \big\}; \quad \text{(b) } W = \big\{ f \in \mathscr{F}(\mathbb{R}); \ f(0) = 1 \big\};$
  - (c)  $W = \{ f \in \mathscr{F}(\mathbb{R}); f(0) = f(1) \};$  (d)  $W = \{ f \in \mathscr{F}(\mathbb{R}); f(x) > 0 \text{ para todo } x \in \mathbb{R} \};$
  - (e)  $W_{a,b} = \{ f \in \mathscr{F}(\mathbb{R}); f(x) = ae^x + be^{-x}, \text{ com } a, b \in \mathbb{R} \}.$
- 6. Verifique em cada um dos casos se W é um subespaço de  $\mathscr{C}([0,1])$  espaço vetorial sobre  $\mathbb{R}$ , com  $\mathscr{C}([0,1]) = \{f : [0,1] \longrightarrow \mathbb{R}; f \text{ é uma função contínua}\}.$ 
  - $\text{(a) } W = \big\{ f \in \mathscr{C}([0,1]); \ f \ \text{ \'e crescente} \big\}; \qquad \text{(b) } W = \big\{ f \in \mathscr{C}([0,1]); \ f'(0) = f'(1) = 0 \big\}.$
- 7. Verifique em cada um dos casos se W é um subespaço do espaço vetorial  $M_n(\mathbb{C})$ , com  $n \geq 2$ .
  - (a)  $W = \{A \in M_n(\mathbb{C}); A \text{ \'e hermitiana}\}$ , sobre o corpo  $\mathbb{R}$ .
  - (b)  $W = \{A \in M_n(\mathbb{C}); A \text{ \'e hermitiana}\}$ , sobre o corpo  $\mathbb{C}$ .
  - (c)  $W = \{A \in M_n(\mathbb{C}); A \text{ \'e anti-hermitiana}\}$ , sobre o corpo  $\mathbb{R}$ .
  - (d)  $W = \{A \in M_n(\mathbb{C}); A \text{ \'e anti-hermitiana}\}$ , sobre o corpo  $\mathbb{C}$ .

- 8. Verifique em cada um dos casos se W é um subespaço do espaço vetorial  $\mathbb{C}^2$ .
  - (a)  $W = \{(a_1 + ib_1, a_2 + ib_2) \in \mathbb{C}^2; a_1 a_2 = 1 \text{ e } b_1 + b_2 = 0\}, \text{ sobre o corpo } \mathbb{C}.$
  - (b)  $W = \{(a_1 + ib_1, a_2 + ib_2) \in \mathbb{C}^2; a_1 + b_1 i = 3(a_2 + b_2 i)\}$ , sobre o corpo  $\mathbb{C}$ .
  - (c)  $W = \{(a_1 + ib_1, a_2 + ib_2) \in \mathbb{C}^2; a_1 2a_2 = 0 \text{ e } b_1 + b_2 = 0\}, \text{ sobre o corpo } \mathbb{R}.$
  - (d)  $W = \{(a_1 + ib_1, a_2 + ib_2) \in \mathbb{C}^2; a_1 2a_2 = 0 \text{ e } b_1 + b_2 = 0\}$ , sobre o corpo  $\mathbb{C}$ .

# 3.3 Soma e Intersecção de Subespaços Vetoriais

- 1. Determine, em cada um dos casos, os subespaços U+W e  $U\cap W$  de  $\mathbb{R}^3$  e verifique se o subespaço U+W é uma soma direta.
  - (a)  $U = \{(x, y, z) \in \mathbb{R}^3; \ x 2y + 3z = 0\}$  e  $W = \{(x, y, z) \in \mathbb{R}^3; \ x + y + z = 0\}.$
  - (b)  $U = \{(x, y, z) \in \mathbb{R}^3; \ x = y = z\}$  e  $W = \{(x, y, z) \in \mathbb{R}^3; \ x = y z\}.$
- 2. Determine, em cada um dos casos, os subespaços U+W e  $U\cap W$  de  $\mathbb{R}^4$  e verifique se o subespaço U+W é uma soma direta.
  - (a)  $U = \{(x, y, z, t) \in \mathbb{R}^4; x = t \text{ e } y = 2z\}$   $\mathbf{e}$   $W = \{(x, y, z, t) \in \mathbb{R}^4; y z + t = 0\}.$
  - (b)  $U = \{(x, y, z, t) \in \mathbb{R}^4; x + y + z t = 0\}$  e  $W = \{(x, y, z, t) \in \mathbb{R}^4; x y + z + t = 0\}.$
  - (c)  $U = \{(x, y, z, t) \in \mathbb{R}^4; x + y = 0\}$  e  $W = \{(x, y, z, t) \in \mathbb{R}^4; z + t = 0\}.$
- 3. Determine, em cada um dos casos, os subespaços U+W e  $U\cap W$  de  $\mathscr{P}_2(\mathbb{R})$  e verifique se o subespaço U+W é uma soma direta.
  - (a)  $U = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathcal{P}_2(\mathbb{R}); a_0 a_2 = 0\}$

$$W = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); \ a_0 = 0\}.$$

(b)  $U = \{ p(t) = a_0 + a_1 t + a_2 t^2 \in \mathscr{P}_2(\mathbb{R}); a_0 = a_1 = a_2 \}$  e

$$W = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); \ a_0 + a_1 + a_2 = 0\}.$$

- 4. Determine, em cada um dos casos, os subespaços U+W e  $U\cap W$  de  $M_2(\mathbb{R})$  e verifique se o subespaço U+W é uma soma direta.
  - (a)  $U = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} = -a_{12} \ \text{e} \ a_{21} = a_{22} \right\}$  e

$$W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} - a_{12} - a_{21} + a_{22} = 0 \right\}.$$

(b)  $U = \{A \in M_2(\mathbb{R}); A = \lambda \cdot I_2, \text{ com } \lambda \in \mathbb{R}\}$  e

$$W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} + a_{12} + a_{22} = 0 \right\}.$$

- 5. Seja V um espaço vetorial sobre um corpo  $\mathbb{K}$ , dados U e W subespaços próprios de V, ou seja,  $U \subsetneq V$  e  $W \subsetneq V$ . Mostre que a reunião  $U \cup W$  é um subespaço de V se, e somente se,  $U \subset W$  ou  $W \subset U$ .
- 6. Dê exemplos de subespaços próprios U e W em V tais que U+W=V e  $U\cap W\neq \{0_V\}$ , nos seguintes casos:
  - (a)  $V = \mathbb{R}^4$ ; (b)  $V = M_2(\mathbb{R})$ ; (b)  $V = \mathscr{P}_3(\mathbb{R})$ .

- 7. Dados os subespaços vetoriais  $U_1 = \{(x, y, z) \in \mathbb{R}^3; \ x = z\}; U_2 = \{(x, y, z) \in \mathbb{R}^3; \ x + y + z = 0\}$  e  $U_3 = \{(x, y, z) \in \mathbb{R}^3; \ x = y = 0\}$  do espaço vetorial  $\mathbb{R}^3$ .
  - (a) Verifique que  $U_1 + U_2 = \mathbb{R}^3$ ,  $U_1 + U_3 = \mathbb{R}^3$  e  $U_2 + U_3 = \mathbb{R}^3$ .
  - (b) Em algum dos casos a soma é direta? Quais?
- 8. Determine, em cada um dos casos, um subespaço W de V tal que  $V = U \oplus W$ .
  - (a)  $U = \{(x, y, z, t) \in \mathbb{R}^4; x + y = 0 \text{ e } z + t = 0\}$  em  $V = \mathbb{R}^4$ .
  - (b)  $U = \{A \in M_2(\mathbb{C}); A \text{ \'e diagonal}\}\ \text{em } V = M_2(\mathbb{C})\ \text{como espaço vetorial complexo}.$
  - (c)  $U = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{C}); a_1 + a_2 = 0\}$  em  $V = \mathscr{P}_2(\mathbb{C})$  como espaço vetorial complexo.
- 9. Verifique, em cada um dos casos, se a soma dos subespaços do espaço vetorial complexo é direta.
  - (a) Em  $\mathbb{C}^3$  a soma U + W, com  $U = \{(z_1, z_2, z_3) \in \mathbb{C}^3; z_1 + z_3 = 0\}$  e  $W = \{(z_1, z_2, z_3) \in \mathbb{C}^3; z_1 + z_2 = 0 \text{ e } z_3 = 0\}.$
  - (b) Em  $M_2(\mathbb{C})$  as somas  $U_1 + U_2$ ,  $U_1 + U_3$  e  $U_2 + U_3$  com  $U_1 = \{A \in M_2(\mathbb{C}); A \text{ \'e diagonal}\}$ ,  $U_2 = \{A \in M_2(\mathbb{C}); A^T = A\}$  e  $U_3 = \{A \in M_2(\mathbb{C}); A^T = -A\}$ .
  - (c) Em  $\mathscr{P}_2(\mathbb{C})$  a soma U+W, com  $U=\left\{p(t)=a_0+a_1t+a_2t^2\in\mathscr{P}_2(\mathbb{C});\ a_2=0\right\}$  e  $W=\left\{p(t)=a_0+a_1t+a_2t^2\in\mathscr{P}_2(\mathbb{C});\ a_0=0\ \text{e }a_1+a_2=0\right\}.$
- 10. Seja V um espaço vetorial qualquer sobre um corpo  $\mathbb{K}$  e sejam U e W subespaços vetoriais de V. Verifique se as afirmações abaixo são verdadeiras ou falsas.
  - (a) ( )  $U \cap W$  é subespaço vetorial de V se, e somente se,  $U \cap W = U$  ou  $U \cap W = W$ .
  - (b) ( ) U+W é subespaço vetorial de V se, e somente se,  $U\subset W$  ou  $W\subset U$ .
  - (c) ( ) V é um espaço vetorial, então está definida em V a soma e a multiplicação entre seus vetores, satisfazendo as propriedades: comutatividade, associatividade, elemento neutro e elemento simétrico.
  - (d) ( ) O próprio espaço vetorial V e o subespaço  $\{\emptyset\}$  são os chamados subespaços vetoriais triviais de V.

# 3.4 Combinação Linear

- 1. Determine, em cada um dos casos, números reais a e b ou a, b, e c tais que v se escreva como combinação linear dos vetores de S, subconjunto do espaço vetorial V.
  - (a)  $V = \mathbb{R}^3$ ,  $S = \{(1, -3, 2), (2, -1, 1)\}$  e v = (1, 2, -1).
  - (b)  $V = M_2(\mathbb{R})$   $S = \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix} \right\}$  e  $v = \begin{bmatrix} 3 & 4 \\ -7 & 13 \end{bmatrix}$ .
  - (c)  $V = \mathcal{P}_3(\mathbb{R})$   $S = \{1 + t + t^3, t^2 5t^3, 2t + t^2 + t^3\}$  e  $v = 5 + t 2t^2 + 3t^3$ .
- 2. Seja  $S = \{(1,2,1,0), (4,1,-2,3), (1,2,6,-5), (-2,3,-1,2)\}$  subconjunto de  $\mathbb{R}^4$ , verifique se v se escreve como combinação linear dos vetores de S nos seguintes casos:
  - (a) v = (3,6,3,0); (b) v = (1,0,-1,0); (c) v = (3,6,-2,5).

- 3. Sejam  $u_1 = (1,2,1)$  e  $u_2 = (0,1,-1)$  vetores em  $\mathbb{R}^3$ , determine:
  - (a) Uma combinação linear de  $u_1$  e  $u_2$ .
  - (b) O conjunto de todas as combinações lineares de  $u_1$  e  $u_2$ .
- 4. Sejam  $p_1(t) = t^2 1$  e  $p_2(t) = 2t t^2$  vetores em  $\mathscr{P}_2(\mathbb{R})$ , determine:
  - (a) Uma combinação linear de  $p_1(t)$  e  $p_2(t)$ .
  - (b) O conjunto de todas as combinações lineares de  $p_1(t)$  e  $p_2(t)$ .
  - (c) Se  $v = t^2 + 2t 2$  é combinação linear de  $p_1(t)$  e  $p_2(t)$ .
- 5. Sejam  $A_1 = I_2, A_2 = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$  e  $A_3 = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$  vetores em  $M_2(\mathbb{R})$ .
  - (a) Verifique se  $A = \begin{bmatrix} 3 & 7 \\ 0 & -4 \end{bmatrix}$  se escreve como combinação linear de  $A_1$ ,  $A_2$  e  $A_3$ , em caso afirmativo verifique se a combinação linear é única.
  - (b) Determine o conjunto de todas as combinações lineares de  $A_1$ ,  $A_2$  e  $A_3$ .
  - (c) Escreva  $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$  como combinação linear de  $A_1, A_2$  e  $A_3$ , se possível.

# 3.5 Subespaço Gerado

- 1. Determine, em cada um dos casos, um sistema de geradores para o subespaço U de  $\mathbb{R}^3$ :
  - (a)  $U = \{(x, y, z) \in \mathbb{R}^3; x + z = 0 \text{ e } x 2y = 0\}.$
  - (b)  $U = \{(x, y, z) \in \mathbb{R}^3; x + 2y 3z = 0\}.$
- 2. Determine, em cada um dos casos, um sistema de geradores para o subespaço U de  $\mathbb{R}^4$ :
  - (a)  $U = \{(x, y, z, t) \in \mathbb{R}^4; x + 3y 2t = 0 \text{ e } y z = 0\}.$
  - (b)  $U = \{(x, y, z, t) \in \mathbb{R}^4; x t = 0, y + 5t = 0 \text{ e } y + z 2t = 0\}.$
- 3. Determine, em cada um dos casos, um sistema de geradores para o subespaço U de  $M_{3\times 2}(\mathbb{R})$ :

(a) 
$$U = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}; a_{11} = a_{21} + a_{31} \text{ e } a_{22} = 0 \right\}.$$

(b) 
$$U = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}; a_{11} + 2a_{22} = 0, a_{12} - a_{21} + 3a_{31} + 4a_{22} = 0 \right\}.$$

- 4. Determine, em cada um dos casos, um sistema de geradores para o subespaço U de  $\mathscr{P}_3(\mathbb{R})$ :
  - (a)  $U = \{p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \in \mathcal{P}_3(\mathbb{R}); a_1 = a_2 \text{ e } a_3 = 0\}.$
  - (b)  $U = \{ p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \in \mathcal{P}_3(\mathbb{R}); a_0 + 3a_2 = 0 \}.$
  - (c)  $U = \{p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \in \mathcal{P}_3(\mathbb{R}); a_0 + 2a_1 + a_2 2a_3 = 0 \}$ .

5. Em  $M_2(\mathbb{C})$  determine um sistema de geradores para o subespaço

$$U = \left\{ \begin{bmatrix} a_{11} + b_{11}i & a_{12} + b_{12}i \\ a_{21} + b_{21}i & a_{22} + b_{22}i \end{bmatrix}, a_{12} + b_{12}i = 0 \text{ e } a_{21} + b_{21}i = -2(a_{22} + b_{22}i) \right\}.$$

- (a)  $M_2(\mathbb{C})$  como espaço vetorial real.
- (b)  $M_2(\mathbb{C})$  como espaço vetorial complexo.
- 6. Em cada um dos casos, determine analiticamente o subespaço U do espaço vetorial V, verifique se U é subespaço próprio de V e exiba um elemento de U.

(a) 
$$U = [(2, -2), (-1, 1)]$$
 em  $V = \mathbb{R}^2$ .

(b) 
$$U = [(1, -1, 0), (0, 1, 0), (0, 0, 1)]$$
 em  $V = \mathbb{R}^3$ .

(c) U é o subespaço gerado pelas colunas da matriz:  $A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \\ 0 & 5 \end{bmatrix}$  em  $V = \mathbb{R}^3$ .

(d) 
$$U = [(1,0,0,1), (1,2,1,0)]$$
 em  $V = \mathbb{R}^4$ .

(e) 
$$U = [1 - 2t^2 + t^3, 3 + t - 5t^2, t + t^2 - 3t^3]$$
 em  $V = \mathcal{P}_3(\mathbb{R})$ .

(f) 
$$U = \begin{bmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \end{bmatrix}$$
 em  $V = M_2(\mathbb{R})$ .

(g) 
$$U = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix}$$
 em  $V = M_{3 \times 2}(\mathbb{R})$ .

(h) 
$$U = \begin{bmatrix} \begin{pmatrix} 1+i & 0 \\ 0 & i \end{pmatrix}, \begin{pmatrix} 0 & 1-i \\ 0 & 0 \end{bmatrix} \end{bmatrix}$$
 em  $V = M_2(\mathbb{C})$  como espaço vetorial sobre  $\mathbb{C}$  e como espaço vetorial sobre  $\mathbb{R}$ .

7. Em cada um dos casos, determine o subespaço gerado pelo subconjunto S do espaço vetorial V.

(a) 
$$S = \{(1,1,1), (1,1,0), (0,1,1)\}$$
 em  $V = \mathbb{R}^3$ .

(b) 
$$S = \{(1,2,3,-2), (0,1,-3,1), (1,4,-3,0)\}$$
 em  $V = \mathbb{R}^4$ .

(c) 
$$S = \{1, 1-t, (1-t)^2, (1-t)^3\}$$
 em  $V = \mathcal{P}_3(\mathbb{R})$ .

(d) 
$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 0 & -1 \end{bmatrix} \right\} \text{ em } V = M_2(\mathbb{R}).$$

(e) 
$$S = \{ \operatorname{sen} x, \cos x \}$$
 em  $V = \mathscr{F}(\mathbb{R})$ .

8. Em cada um dos casos, determine o menor número de geradores para subespaço U = [S].

(a) 
$$S = \{(1,2), (-1,-2), (3,6)\}$$
 em  $\mathbb{R}^2$ .

(b) 
$$S = \{(1,0,0), (0,1,0), (0,0,1), (1,2,3)\}$$
 em  $\mathbb{R}^3$ .

(c) 
$$S = \{1+t^2, 1+t, 1+2t^2, 2\}$$
 em  $\mathscr{P}_2(\mathbb{R})$ .

(d) 
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \right\}$$
 em  $M_2(\mathbb{R})$ .

9. Em cada um dos casos, determine um sistema de geradores para os subespaços U+W e  $U\cap W$  de V e verifique se o subespaço U+W é uma soma direta:

(a) 
$$U = \{(x, y, z) \in \mathbb{R}^3; x - 2y + 3z = 0\}$$
 e  $W = [(1, -3, 2), (2, 5, -7)]$  em  $V = \mathbb{R}^3$ .

(b) 
$$U = \{(x, y, z, t) \in \mathbb{R}^4; x + y = 0 \text{ e } t - z = 0\} \text{ e } W = \{(x, y, z, t) \in \mathbb{R}^4; z = t = 0\} \text{ em } V = \mathbb{R}^4.$$

(c) 
$$U = \{(x, y, z, t) \in \mathbb{R}^4; x + y - z + t = 0\}$$
 e  $W = \{(x, y, z, t) \in \mathbb{R}^4; x + y + z = 0\}$  em  $V = \mathbb{R}^4$ .

(d) 
$$U = [1 + 2t + t^2, 1 - t + t^2]$$
 e  $W = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_0 = a_1\}$  em  $V = \mathscr{P}_2(\mathbb{R}).$ 

(e) 
$$U = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$
,  $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$  e  $W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ ;  $a_{11} - a_{12} - a_{21} + a_{22} = 0 \right\}$  em  $V = M_2(\mathbb{R})$ .

(f) 
$$U = \{A \in M_3(\mathbb{R}); A \text{ \'e sim\'etrica}\}\ e\ W = \{A \in M_3(\mathbb{R}); tr(A) = 0\}\ em\ V = M_3(\mathbb{R}).$$

10. Considere os subespaços U e W de um espaço vetorial V sobre  $\mathbb{K}$ , tais que:

$$U = [u_1, u_2]$$
 e  $W = [w_1, w_2, w_3].$ 

- (a) Mostre que  $U + W \subset [u_1, u_2, w_1, w_2, w_3]$  e que  $[u_1, u_2, w_1, w_2, w_3] \subset U + W$ .
- (b) O que você pode concluir do item (a)?

# 3.6 Dependência e Independência Linear

1. Verifique, em cada um dos casos, se conjunto *S* é linearmente independente (L.I.) ou linearmente dependentes (L.D.). Justifique sua resposta (faça cálculos somente quando for realmente necessário!)

(a) 
$$S = \{1 - 2t + t^2, 2 + t, -1 - 3t + t^2\}$$
 em  $\mathcal{P}_2(\mathbb{R})$ .

(b) 
$$S = \{(1, -2, 1, 0), (2, 1, -1, 3), (7, -4, 1, 3)\}$$
 em  $\mathbb{R}^4$ .

(c) 
$$S = \{x, x^2, e^x\} \text{ em } \mathscr{F}(\mathbb{R}).$$

(d) 
$$S = \{ \cosh x, e^x, e^{-x} \} \text{ em } \mathscr{F}(\mathbb{R}).$$

(e) 
$$S = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \pi & \sqrt{2} \\ \sqrt{3} & 0 \end{bmatrix}, \begin{bmatrix} 1 & 332 \\ 41 & 90 \end{bmatrix} \right\} \operatorname{em} M_2(\mathbb{R}).$$

(f) 
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix} \right\}$$
 em  $M_2(\mathbb{C})$ , como espaço vetorial real e como espaço vetorial complexo.

(g) 
$$S = \{(7, -4, 8, 0), (11, -1, 5, 2), (7, 3, 8, -1), (2, -6, 5, 7), (9, 4, 3, -3)\}$$
 em  $\mathbb{R}^4$ .

(h) 
$$S = \left\{ (1, 3, 2, 5, 7), \left( \frac{1}{2}, \frac{3}{2}, 0, \frac{5}{2}, \frac{7}{2} \right) \right\} \text{ em } \mathbb{R}^5.$$

(i) 
$$S = \{(1-i,i), (2,-1+i)\}$$
 em  $\mathbb{C}^2$  espaço vetorial real.

(j) 
$$S = \{(1-i,i), (2,-1+i)\}$$
 em  $\mathbb{C}^2$  espaço vetorial complexo.

2. Complete, em cada um dos casos, o subconjunto *S* de modo a formar um conjunto L.I. maximal no espaço vetorial correspondente.

(a) 
$$S = \{(1,1,0,0), (0,0,-1,1)\}$$
 em  $\mathbb{R}^4$ .

(b) 
$$S = \{1 - 2t + t^2, 2 + t\} \text{ em } \mathscr{P}_2(\mathbb{R}).$$

(c) 
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \operatorname{em} M_2(\mathbb{R}).$$

(d) 
$$S = \left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} \right\} \text{ em } M_{3\times 1}(\mathbb{R}).$$

(e) 
$$S = \left\{ (1, 3, 2, 5, 7), \left( \frac{1}{2}, \frac{3}{2}, 0, \frac{5}{2}, \frac{7}{2} \right) \right\} \text{ em } \mathbb{R}^5.$$

- (f)  $S = \{(1-i, i, 2-i), (0, 1+i, -1+i)\}$  em  $\mathbb{C}^3$  espaço vetorial complexo.
- 3. Decida se a afirmação dada é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
  - (a) ( ) Se dim W = 3 e  $\mathscr{B}$  é um subconjunto de W com 4 vetores então  $\mathscr{B}$  é L.D.
  - (b) ( ) Se dim W = 3 e  $\mathscr{B}$  é um subconjunto de W com 2 vetores então  $\mathscr{B}$  é L.I.
  - (c) ( ) Todo subconjunto de um espaço vetorial contendo o vetor nulo é L.D.
  - (d) ( ) Se dim W = 3 e  $v_1, v_2 \in W$ , então  $[v_1, v_2] \neq W$ .
  - (e) ( ) Se dim W = 3 e  $v_1, v_2, v_3 \in W$ , então  $[v_1, v_2, v_3] = W$ .
- 4. Se  $S = \{u, v, w\}$  é um subconjunto L.I. de um espaço vetorial V sobre um corpo  $\mathbb{K}$ , o que podemos dizer sobre o subconjunto  $S' = \{u + v, u v, u 2v + w\}$ ? É L.I. ou L.D.?
- 5. Se u, v, w são vetores linearmente independentes em um espaço vetorial V, mostre que o conjunto  $\{u+v, u+w, v+w\}$  é um subconjunto linearmente independente de V.

# 3.7 Base e Dimensão

- 1. Determine, em cada um dos casos, uma base e a dimensão do subespaço W:
  - (a)  $W = \{ p(t) \in \mathcal{P}_3(\mathbb{R}); \ p'(-1) = 0 \ \text{e} \ p(1) = 0 \}$  em  $\mathcal{P}_3(\mathbb{R})$ .
  - (b) Em  $\mathbb{R}^5$ , W conjunto solução do sistema homogêneo:

$$S: \begin{cases} x + 2y + 2z - t + 3w = 0 \\ x + 2y + 3z + t + w = 0 \\ 3x + 6y + 8z + t + 5w = 0 \end{cases}.$$

(c)  $W = \{A \in M_3(\mathbb{R}); A \text{ \'e matriz triangular inferior}\}$  em  $M_3(\mathbb{R})$ .

(d) 
$$W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} - a_{12} - a_{21} = 0 \right\} \quad \text{em} \quad M_2(\mathbb{R}).$$

- (e)  $W = \{(z_1, z_2, z_3) \in \mathbb{C}^3; z_3 = z_2 2z_1\}$  em  $V = \mathbb{C}^3$  como espaço vetorial real e como espaço vetorial complexo.
- 2. Determine, em cada um dos casos, uma base e a dimensão dos subespaços U, W,  $U \cap W$  e U + W, e verifique se a soma é direta.

(a) 
$$U = [(1,0,1), (1,1,3)]$$
 e  $W = \{(x,y,z) \in \mathbb{R}^3; x-2y+3z=0\}$  em  $\mathbb{R}^3$ .

3.7 Base e Dimensão 35

(b) 
$$U = [(-1,1,-1), (1,2,1)]$$
 e  $W = [(2,1,1), (1,1,-1)]$  em  $\mathbb{R}^3$ .

- (c) U é conjunto solução do sistema homogêneo S:  $\begin{cases} 2x + 4y + z = 0 \\ x + y + 2z = 0 \\ x + 3y z = 0 \end{cases}$  e  $W = \{(x, y, z) \in \mathbb{R}^3; x y + z = 0\}$  em  $\mathbb{R}^3$ .
- (d) U = [(1,2,1)] e  $W = \{(z_1,z_2,z_3) \in \mathbb{C}^3; z_1 z_2 z_3 = 0\}$  em  $\mathbb{C}^3$  sobre  $\mathbb{C}$ .

(e) 
$$U = [(1,2,1,3), (3,1,-1,4)]$$
 e  $W = \{(x,y,z,t) \in \mathbb{R}^4; x-y=z \text{ e } x-3y+t=0\}$  em  $\mathbb{R}^4$ .

(f) 
$$U = \{(x, y, z, t) \in \mathbb{R}^4; x + y - z + t = 0\} \text{ e } W = \{(x, y, z, t) \in \mathbb{R}^4; x + y + z = 0\} \text{ em } \mathbb{R}^4.$$

(g) 
$$U = \{A \in M_3(\mathbb{R}); tr(A) = 0\} \text{ e } W = \{A \in M_3(\mathbb{R}); A^T = A\} \text{ em } M_3(\mathbb{R}).$$

(h) 
$$U = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_0 - 2a_2 = 0\}$$
 e  $W = [1 - t, t - t^2]$  em  $\mathscr{P}_2(\mathbb{R})$ .

(i) 
$$U = [1 + t + t^2]$$
 e  $W = [1, t - t^2]$  em  $\mathcal{P}_2(\mathbb{R})$ .

(j) 
$$U = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{C}); a_0 = a_1\}$$
 e  $W = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{C}); a_2 = 0\}$  em  $\mathscr{P}_2(\mathbb{C})$  sobre  $\mathbb{C}$ .

(k) 
$$U = \{p(t) \in \mathscr{P}_3(\mathbb{R}); \ p(0) = p(1) = 0\} \ \text{e } W = \{p(t) \in \mathscr{P}_3(\mathbb{R}); \ p(-1) = 0\} \ \text{em } \mathscr{P}_3(\mathbb{R}).$$

(1) 
$$U = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix}$$
 e  $W = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix}$  em  $M_2(\mathbb{R})$ .

(m) 
$$U = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{21} = a_{12} \right\} e \ W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{22} = -a_{11} \right\} e m \ M_2(\mathbb{R}).$$

3. Considere, em cada um dos casos, o espaço vetorial *V* e o subconjunto *S* de *V*. Determine uma base de *V* obtida pelo completamento de *S*.

(a) 
$$S = \{(1,0,-2,2), (1,2,-2,1)\}$$
 em  $V = \mathbb{R}^4$ .

(b) 
$$S = \{(1, -2, 5, 3), (2, 3, 1, -4), (3, 8, -3, -5)\}$$
 em  $V = \mathbb{R}^4$ .

(c) 
$$S = \{1 + 4t - 2t^2 + t^3, -1 + 9t - 3t^2 + 2t^3, -5 + 6t + t^3, 5 + 7t - 5t^2 + 2t^3\}$$
 em  $V = \mathcal{P}_3(\mathbb{R})$ .

(d) 
$$S = \{1+t+t^2+3t^3+2t^4, 1+2t+t^2+2t^3+t^4, 1+3t+2t^2+t^3+2t^4\} \text{ em } V = \mathcal{P}_4(\mathbb{R}).$$

(e) 
$$S = \{(1,0,-2), (1,2,1)\}$$
 em  $V = \mathbb{C}^3$  sobre  $\mathbb{C}$ .

(f) 
$$S = \{(1,0,-2), (1,2,1), (0,0,i)\}$$
 em  $V = \mathbb{C}^3$  sobre  $\mathbb{R}$ .

(g) 
$$S$$
 é uma base de  $U = \{A \in M_2(\mathbb{R}); A$  é simétrica $\}$  em  $V = M_2(\mathbb{R})$ .

(h) 
$$S = \left\{ \begin{bmatrix} 1 & 1 \\ -1 & 3 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} -1 & -3 \\ 4 & -2 \\ -3 & -2 \end{bmatrix} \right\}$$
 em  $V = M_{3 \times 2}(\mathbb{R})$ 

- 4. Sejam  $S = \{u, v, w, r, s, t\}$  um subconjunto L.I. de um espaço vetorial V e R um subconjunto de S tal que R tem 3 elementos. Determine:
  - (a) dim [S], (b) dim [R], (c) dim  $([S] \cap [R])$ , (d) dim ([S] + [R]).
- 5. Sejam U e W subespaços vetoriais de um espaço vetorial V, tais que dim U=4, dim W=5 e dim V=7. Determine quais as possíveis dimensões para  $U \cap W$ .

- 6. Dado o subespaço  $U = \{(x, y, z) \in \mathbb{R}^3; x + 3y + 2z = 0\}$ , encontre um subespaço W de  $\mathbb{R}^3$  tal que  $U \oplus W = \mathbb{R}^3$ .
- 7. Seja U o subespaço de  $\mathbb{R}^4$  gerado por  $u_1=(1,-1,0,0),\ u_2=(0,0,1,1),\ u_3=(-2,2,1,1)$  e  $u_4=(1,0,0,0).$ 
  - (a) Verifique se o subconjunto  $S = \{u_1, u_2, u_3, u_4\} \notin L$ . I. ou L.D.
  - (b) Existe um subconjunto próprio de  $\{u_1, u_2, u_3, u_4\}$  formado por vetores L.I.'s e que ainda gera U?
  - (c) O vetor  $v = (2, -3, 2, 2) \in U$ ?
  - (d) Para o subespaço  $W = \{(x, y, z, t) \in \mathbb{R}^4; y = z = 0\}$  de  $\mathbb{R}^4$ , determine o subespaço  $U \cap W$ .
  - (e) Determine dim U e responda justificadamente: o subespaço U coincide com  $\mathbb{R}^4$ ?
  - (f) É possível exibir um vetor  $u \in \mathbb{R}^4$ , tal que u seja L.I. com uma base de U?
- 8. Sejam  $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$  e  $B = \begin{bmatrix} 3 & 6 \\ 0 & 3 \end{bmatrix}$  em  $M_2(\mathbb{R})$ .
  - (a) Verifique se  $C = \begin{bmatrix} 4 & 8 \\ 0 & 6 \end{bmatrix}$  é combinação linear de A e B.
  - (b) Verifique se o subconjunto  $\{A, B, C\}$  é L. I. ou L.D.
  - (c) Determine o subespaço U = [A, B] e dim U.
  - (d) Determine o subespaço W = [A, B, C] e dim W.
- 9. Sejam  $U = \{(x, y, z, t) \in \mathbb{R}^4; x + z = y \text{ e } t = 0\} \text{ e } W = [e_1, 3e_3 + e_4] \text{ subespaços de } \mathbb{R}^4.$ 
  - (a) Determine uma base e a dimensão para  $U \cap W$ , U + W.
  - (b) Verifique se  $\mathbb{R}^4 = U \oplus W$ .
- 10. Sejam U = [(1,1,0,-1), (1,2,3,0), (2,3,3,-1)] e W = [(1,2,2,-2), (2,3,2,-3), (1,3,4,-3)] subespaços de  $\mathbb{R}^4$ , determine uma base e a dimensão de U + W e a dimensão de  $U \cap W$  em  $\mathbb{R}^4$ .
- 11. Encontre uma base e a dimensão de W subespaço de  $\mathscr{F}(\mathbb{R})$  gerado pelas funções f(x)=1, função constante igual a 1,  $g(x)=\sin x$  e  $h(x)=\cos x$ .
- 12. Sejam U e W subespaços de V, espaço vetorial sobre  $\mathbb{K}$ , com dim V=5. Se dim U=1, dim W=4 e  $U\not\subset W$ , mostre que  $U\oplus W=V$ .
- 13. Dê exemplos de dois subespaços U e W de  $\mathbb{R}^4$ , ambos de dimensão 3, tais que  $U+W=\mathbb{R}^4$ . Esta soma é direta?
- 14. Sejam  $U = \{(z_1, z_2, z_3) \in \mathbb{C}^3; z_1 + z_3 = 0\}$  e  $W = \{(z_1, z_2, z_3) \in \mathbb{C}^3; z_1 + z_2 = 0 \text{ e } z_3 = 0\}$  subespaços de  $\mathbb{C}^3$ .
  - (a) Determine uma base para U, W,  $U \cap W$ , U + W como espaço vetorial sobre  $\mathbb{C}$ .
  - (b) Determine uma base para  $U, W, U \cap W, U + W$  como espaço vetorial sobre  $\mathbb{R}$ .
  - (c) Verifique se a soma U + W é direta em ambos os casos.
- 15. Determine os possíveis valores para  $a \in \mathbb{R}$  tal que  $\mathscr{B} = \{(a,1,0), (1,a,1), (0,1,a)\}$  seja uma base de  $\mathbb{R}^3$ .

- 16. Verifique se  $\mathscr{B} = \{(1-i, i), (2, -1+i)\}$  é uma base de  $\mathbb{C}^2$ , sobre  $\mathbb{R}$  e sobre  $\mathbb{C}$ .
- 17. Seja V um espaço vetorial de dimensão de finita sobre um corpo  $\mathbb{K}$  e sejam U e W subespaços vetoriais de V, então  $U \cup W$  é subespaço de V se, e somente se,
  - (a) ( )  $U \cup W = U \cap W$ .
  - (b) ( )  $U \cup W = U + W$ .
  - (c) ( ) dim  $U + \dim W = \dim V$ .
  - (d) ( )  $U \cup W = V$ .
  - (e) ( ) Nenhuma das alternativas anteriores.
- 18. Seja V um espaço vetorial de dimensão de finita sobre um corpo  $\mathbb{K}$  e sejam U e W subespaços vetoriais de V tais que  $U \oplus W = V$ , então:
  - (a) ( )  $\mathscr{B}_{U\cap W} = \emptyset$  e U+W=V.
  - (b) ( )  $U \cap W = \emptyset$  e U + W = V.
  - (c) () dim (U+W) = dim V.
  - (d) ( )  $U \cap W = \emptyset$  e dim  $U + \dim W = \dim V$ .
  - (e) ( ) Nenhuma das alternativas anteriores.
- 19. Seja V um espaço vetorial de dimensão de finita sobre um corpo  $\mathbb{K}$  e sejam U e W subespaços vetoriais de V tais que dim U=2 e dim W=3, então:
  - (a) ( )  $\dim(U \cup W) = 5$ .
  - (b) ( )  $0 \le \dim(U \cup W) \le 2$ .
  - (c) ( )  $U \subset W$ .
  - (d) ( )  $5 \le \dim(U+W) \le \dim V$ .
  - (e) ( ) Nenhuma das alternativas anteriores.

# 3.8 Coordenadas de um Vetor e Mudança de Base

- 1. Em cada um dos casos, encontre as coordenadas do vetor dado em relação à base  $\mathscr{B}$  de V.
  - (a) u = (3, -2, 7),  $\mathscr{B} = \{(1, 1, 1), (1, 0, 1), (1, 0, -1)\}$  base de  $\mathbb{R}^3$ .
  - (b)  $p(t) = 5 + 4t + t^2$ ,  $\mathscr{B} = \{1, 1+t, 1-t^2\}$  base de  $\mathscr{P}_2(\mathbb{R})$ .

(c) 
$$A = \begin{bmatrix} 4 & 6 \\ 5 & 6 \end{bmatrix}$$
,  $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$  base de  $M_2(\mathbb{R})$ .

- 2. Em cada um dos casos, encontre as coordenadas de  $v_1$  e  $v_2$  em relação à base  $\mathscr{B}$ .
  - (a)  $v_1 = (3,2,3)$ ,  $v_2 = (0,-2,0)$ ,  $\mathscr{B} = \{(1,1,1), (0,1,0)\}$  base de um subespaço de  $\mathbb{R}^3$ .
  - (b)  $v_1 = -2t^2$ ,  $v_2 = -1 + 2t + 3t^2$ ,  $\mathscr{B} = \{t + t^2, t + 1\}$  base de um subespaço de  $\mathscr{P}_2(\mathbb{R})$ .
  - (c)  $v_1 = \begin{bmatrix} -1 & 0 \\ -2 & 0 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix}$ ,  $\mathscr{B} = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \right\}$  base de um subespaço de  $M_2(\mathbb{R})$ .

- 3. Seja  $\mathscr{B}' = \{(1,0,2), (0,1,-1), (1,0,1)\}$  base de  $\mathbb{R}^3$ . Determine:
  - (a) A matriz mudança da base  $\mathcal{B}'$  para a base canônica  $\mathcal{B}$ .
  - (b) As coordenadas do vetor u = (1, 1, 1) em relação à base  $\mathcal{B}'$ .
- 4. Em  $M_2(\mathbb{R})$  consideremos os subespaços um  $U = [e_1 + e_4, 3e_2]$  e  $W = [2e_1 e_3]$ , determine:
  - (a) Uma base ordenada  $\mathscr{B}'$  para  $M_2(\mathbb{R})$  a partir de uma base do subespaço U+W.
  - (b) A matriz mudança de base de  $\mathscr{B}$ , da base canônica de  $M_2(\mathbb{R})$ , para  $\mathscr{B}'$ , encontrada no item (a).
  - (c) As coordenadas do vetor  $u = e_1 + 3e_2 e_3 + 4e_4 = \begin{bmatrix} 1 & 3 \\ -1 & 4 \end{bmatrix} \in M_2(\mathbb{R})$  em relação à base  $\mathscr{B}'$  utilizando a matriz do item (b).
- 5. Em  $\mathbb{R}^4$  considere as bases  $\mathscr{B}' = \{e_1 + 2e_2, -e_4, e_1, 2e_3\}$  e  $\mathscr{B}$  a base canônica, determine:
  - (a)  $M_{\mathscr{B}}^{\mathscr{B}'}$ , a matriz mudança de base de  $\mathscr{B}'$  para a base  $\mathscr{B}$ .
  - (b) As coordenadas do vetor  $u = 3e_1 + e_2 4e_4$  em relação à base  $\mathcal{B}$  utilizando a matriz do item (a).
- 6. Em  $\mathscr{P}_2(\mathbb{R})$  considere as bases  $\mathscr{B}$  a base canônica e  $\mathscr{B}' = \{1, 1+t, 1-t^2\}$ , para  $p(t) = 2+4t+t^2$  determine

$$[p(t)]_{\mathscr{B}}$$
 e  $[p(t)]_{\mathscr{B}'}$ 

utilizando  $M_{\mathscr{B}'}^{\mathscr{B}}$  e  $M_{\mathscr{B}}^{\mathscr{B}'}$ , matrizes mudança de base, de  $\mathscr{B}$  para  $\mathscr{B}'$  e de  $\mathscr{B}'$  para  $\mathscr{B}$ , respectivamente.

- 7. Em  $\mathscr{P}_3(\mathbb{R})$  considere as bases  $\mathscr{B}' = \{1-t, t-t^2, t^2-t^3, t^3\}$  e  $\mathscr{B}$  a base canônica, determine:
  - (a)  $M_{\mathscr{B}}^{\mathscr{B}'}$ , a matriz mudança de base de  $\mathscr{B}'$  para a base  $\mathscr{B}$ .
  - (b) As coordenadas do vetor  $p(t) = 3 + t 4t^3$  em relação à base  $\mathscr{B}$  utilizando a matriz do item (a).
- 8. Sejam V um espaço vetorial real e  $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$  uma base ordenada de V.
  - (a) Mostre que  $\mathscr{B}' = \{v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4\}$  também é uma base de V.
  - (b) Determine  $[v]_{\mathscr{B}'}$ , sabendo  $[v]_{\mathscr{B}} = \begin{bmatrix} 4 \\ 3 \\ 1 \\ 2 \end{bmatrix}$ .

- 9. Sejam  $M_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$  e  $\mathscr{B}$  é a base canônica ordenada de  $\mathbb{R}^3$ . Determine:
  - (a) A base  $\mathscr{B}'$ .
  - (b)  $[v]_{\mathscr{B}'}$  sabendo que  $[v]_{\mathscr{B}} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ .
  - (c)  $[u]_{\mathscr{B}}$  sabendo que  $[u]_{\mathscr{B}'} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ .
- 10. Sejam  $\mathcal{B} = \{(1,0), (0,2)\}, \mathcal{B}_1 = \{(-1,0), (11)\}, e \mathcal{B}_2 = \{(-1,-1), (0,-1)\}$  bases ordenadas de  $\mathbb{R}^2$ .
  - (a) Determine:  $M_{\mathcal{B}}^{\mathcal{B}_1}$ ,  $M_{\mathcal{B}_1}^{\mathcal{B}_2}$ ,  $M_{\mathcal{B}}^{\mathcal{B}_2}$ ,  $M_{\mathcal{B}}^{\mathcal{B}_1} \cdot M_{\mathcal{B}_1}^{\mathcal{B}_2}$
  - (b) Se for possível, estabeleça uma relação entre estas matrizes de mudança de base.
- 11. No itens abaixo determine a matriz  $M_{\mathscr{A}'}^{\mathscr{B}}$  mudança de base  $\mathscr{B}$  para a base  $\mathscr{B}'$ .
  - (a)  $V = \mathbb{R}^3$ ,  $\mathscr{B} = \{(1,0,0), (0,1,0), (0,0,1)\}\ e\ \mathscr{B}' = \{(1,1,1), (1,0,1), (1,0,-1)\}.$
  - (b)  $V = \mathcal{P}_2(\mathbb{R}), \mathcal{B} = \{1, t, t^2\} \in \mathcal{B}' = \{2, 1-t, 1-t^2\}.$
- 12. Sejam  $\mathscr{P}_2(\mathbb{C})$  espaço vetorial de dimensão finita sobre o corpo  $\mathbb{C}$  e os subespaços vetoriais  $U = \begin{bmatrix} 1+it, \ (1-3i)t \end{bmatrix}$  e  $W = \begin{bmatrix} 2t+(1-i)t^2 \end{bmatrix}$ .
  - (a) Mostre que  $\mathscr{P}_2(\mathbb{C}) = U \oplus W$ .
  - (b) Encontre uma base  $\mathscr{B}'$  de  $U \oplus W$ , distinta de  $\mathscr{B}$  base canônica de  $\mathscr{P}_2(\mathbb{C})$ .
  - (c) Determine a matriz  $M_{\mathscr{B}'}^{\mathscr{B}}$  mudança de base  $\mathscr{B}$  para a base  $\mathscr{B}'$ .
  - (d) Encontre as coordenadas de  $p(t) = a_0 + a_1 t + a_2 t^2$  em relação à base  $\mathscr{B}'$  utilizando a matriz do item (c).
- 13. Em  $\mathbb{R}^3$  considere as bases ordenadas  $\mathscr{B} = \{(1,1,1), (0,2,3), (0,2,-1)\}$  e  $\mathscr{B}' = \{(1,1,0), (1,-1,0), (0,0,1)\}.$ 
  - (a) Encontre as coordenadas  $[u]_{\mathscr{B}}$  e  $[u]_{\mathscr{B}'}$  para u=(3,5,-2).
  - (b) Construa a matriz M cujas colunas são, respectivamente, as componentes dos respectivos vetores da base  $\mathscr{B}$  em relação à base  $\mathscr{B}'$  e verifique que  $M \cdot [u]_{\mathscr{B}} = [u]_{\mathscr{B}'}$ .
- 14. Encontre a matriz M definida no exercício 13 no caso em que  $\mathscr{B} = \{(1,2,3), (0,1,2), (0,0,1)\}$  e  $\mathscr{B}'$  é a base canônica de  $\mathbb{R}^3$ . Verifique a validade da relação  $M \cdot [u]_{\mathscr{B}} = [u]_{\mathscr{B}'}$ , com u = (3,5,-2).
- 15. Encontre a matriz M definida no exercício 13 para  $V = \mathscr{P}_2(\mathbb{R}), \mathscr{B} = \{2, 1-t, 1-t^2\}$  e  $\mathscr{B}'$  é a base canônica de  $\mathscr{P}_2(\mathbb{R})$ . Verifique a validade da relação  $M \cdot [u]_{\mathscr{B}} = [u]_{\mathscr{B}'}$ , para  $u = 2 + t^2$ .

# Transformações Lineares e Diagonalização

| 4   | Transformações Lineares                          | 43 |
|-----|--------------------------------------------------|----|
| 4.1 | Transformações Lineares                          |    |
| 4.2 | Matriz de uma Transformação Linear               |    |
| 4.3 | Núcleo e Imagem de uma Transformação Linear      |    |
| 4.4 | Transformações Lineares Injetoras e Sobrejetoras |    |
| 4.5 | Inversa de uma Transformação Linear              |    |
| 5   | Diagonalização de Operadores                     | 53 |
| 5.1 | Autovalor, Autovetor e Polinômio Característico  |    |
| 5.2 | Diagonalização de Operadores Lineares            |    |
|     |                                                  |    |

# 4. Transformações Lineares

# 4.1 Transformações Lineares

1. Verifique, em cada um dos casos, se a transformação T é uma transformação linear.

(a) 
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
  
 $(x,y,z) \longmapsto T(x,y,z) = (x^2, y+z).$ 

(b) 
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
  
 $(x,y) \longmapsto T(x,y) = (x+y, y, 0).$ 

(c) 
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
  
 $(x,y) \longmapsto T(x,y) = (|x|, y, x+y).$ 

(d) 
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
  
 $(x,y,z) \longmapsto T(x,y,z) = 2x - 3y + 4z.$ 

(e) 
$$T:V\longrightarrow V \ u\longmapsto T(u)=-u$$
 , com  $V$  espaço vetorial sobre um corpo  $\mathbb{K}.$ 

(f) 
$$T: \mathbb{R}^2 \longrightarrow M_2(\mathbb{R})$$

$$(x,y) \longmapsto T(x,y) = \begin{bmatrix} x+2y & 0 \\ 1 & y \end{bmatrix}.$$

(g) 
$$T: \mathscr{P}_3(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$$
  
 $a_0 + a_1t + a_2t^2 + a_3t^3 \longmapsto T(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_3 + a_2 & a_2 \\ -a_1 & a_1 + a_0 \end{bmatrix}.$ 

(h) 
$$T: M_{3\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}^2$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \longmapsto T \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \end{pmatrix} = (-a_{11} + a_{22} - a_{31}, a_{12} - a_{21} + a_{32}).$$

$$\begin{array}{cccc} (\mathsf{j}) & T : & \mathscr{P}_n(\mathbb{R}) & \longrightarrow & \mathscr{P}_{n+1}(\mathbb{R}) \\ & & p(t) & \longmapsto & T\big(p(t)\big) = 1 + tp(t) \end{array}, \, \mathsf{com} \, \, n \in \mathbb{N}^*.$$

(1) 
$$T: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R}) \\ X \longmapsto T(X) = (X+A)^2 - (X+2A) \cdot (X-3A), \operatorname{com} A \in M_n(\mathbb{R}) \operatorname{e} A \neq 0_{n \times n}.$$

- 2. Determine, em cada um dos casos, a expressão da transformação linear T.
  - (a)  $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$  é tal que: T(1,2) = (3, -1, 5) e T(0,1) = (2, 1, -4).
  - (b)  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$  é tal que: T(1,0,0) = (2,0), T(0,1,0) = (1,1) e T(0,0,1) = (0,-1).
  - (c)  $T: \mathscr{P}_3(\mathbb{R}) \longrightarrow \mathbb{R}^2$  é tal que:

$$T(1) = (0, 1), T(t) = (0, 5), T(t^2) = (5, 7)$$
 e  $T(t^3) = (-4, 1).$ 

(d) 
$$T: \mathscr{P}_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$$
 é tal que:  $T(-2) = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$ ,  $T(t) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$  e  $T(t^2-1) = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$ .

(e) 
$$T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$$
 é tal que:  $T\left( \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \right) = (1, -1, 0),$ 

$$T\left(\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]\right) = (0,0,-1), \ T\left(\left[\begin{array}{cc} 0 & 0 \\ 2 & 1 \end{array}\right]\right) = (-1,2,0), \ T\left(\left[\begin{array}{cc} 0 & -1 \\ 0 & 3 \end{array}\right]\right) = (0,1,-3).$$

(f) 
$$T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$$
 é tal que:  $T(p(t)) = (p(0), p(1), p(-1))$ .

(g) 
$$T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_3(\mathbb{R})$$
 é tal que:  $T\left( \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) = 1 + 2t - t^3$ ,

$$T\left(\left[\begin{array}{cc}0&1\\0&0\end{array}\right]\right)=-3-5t+t^2,\ T\left(\left[\begin{array}{cc}0&0\\1&0\end{array}\right]\right)=3t+t^2+2t^3,\ T\left(\left[\begin{array}{cc}0&0\\0&1\end{array}\right]\right)=1-2t^2-t^3.$$

(h) 
$$T: \mathscr{P}_3(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R})$$
 é tal que:  $T(p(t)) = 2p'(t) + p(0)(t-1)$ .

- 3. Sejam T e S operadores lineares de  $\mathbb{R}^2$ , definidos por T(x,y)=(x, x-y) e S(x,y)=(x+y, 2x), determine as transformações T+S,  $T\circ S$ ,  $S\circ T$ ,  $T^2$  e  $S^2$ , se existirem.
- 4. Sejam  $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  o operador linear, dado por T(x,y) = (x, -y), e K é o triângulo de vértices (1,4), (3,1) e (2,6).
  - (a) Determine a imagem de K pela transformação T e represente graficamente.
  - (b) Qual é a interpretação geométrica de T?
- 5. Considere as transformações lineares  $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$  e  $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ , definidas por T(x,y,z,t) = (x,2x+y,3x+2y+z,4x+3y+2z+t) e S(x,y,z) = (x+y,y+z,x+z,x+y+z).
  - (a) Determine, se possível,  $T \circ S$ ,  $S \circ T$ .
  - (b) A transformação T + S está definida? Justifique sua resposta!

# 4.2 Matriz de uma Transformação Linear

- 1. Determine, em cada um dos casos, a matriz da transformação linear T em relação às bases  $\mathscr{B}$  e  $\mathscr{B}'$ 
  - (a)  $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$   $(x,y) \longmapsto T(x,y) = (x+3y, x, x-y)$ ,  $\mathscr{B}$  base canônica de  $\mathbb{R}^2$  e  $\mathscr{B}' = \{(1,0,-1), (0,0,1), (0,2,4)\}$  base de  $\mathbb{R}^3$ .

(b) 
$$T: M_{2}(\mathbb{R}) \longrightarrow \mathbb{R}^{3}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \longmapsto T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = (a_{11}, a_{11} - 3a_{12} + a_{22}, a_{21} - a_{22}),$$

$$\mathscr{B} = \left\{\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right\} \text{ base de } M_{2}(\mathbb{R}) \text{ e}$$

$$\mathscr{B}' = \left\{ (1,1,0), \ (0,1,0), \ (0,0,-2) \right\}$$
 base de  $\mathbb{R}^3$ .

(c) 
$$T: \mathscr{P}_{2}(\mathbb{R}) \longrightarrow M_{2}(\mathbb{R})$$

$$a_{0} + a_{1}t + a_{2}t^{2} \longmapsto T(a_{0} + a_{1}t + a_{2}t^{2}) = \begin{bmatrix} a_{2} & a_{1} \\ a_{0} & a_{2} + a_{1} - a_{0} \end{bmatrix},$$

$$\mathscr{B} = \{t + 1 \ t + 2, \ t^{2}\} \text{ base de } \mathscr{P}_{2}(\mathbb{R}) \text{ e } \mathscr{B}' \text{ base canônica de } M_{2}(\mathbb{R}).$$

(d) 
$$T: V \longrightarrow V \ e \ \mathscr{B} = \mathscr{B}' = \{v_1, v_2, v_3\} \ com \ T(v_1) = 2v_1, \ T(v_2) = -3v_2 \ e \ T(v_3) = v_3.$$

(e) 
$$\begin{array}{ccc} T: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & (x,y,z) & \longmapsto & T(x,y,z) = (x,\,y,\,z) \end{array} , \, \mathscr{B} = \left\{ (1,2,0),\,(2,1,0),\,(0,0,1) \right\} \text{ base de } \mathbb{R}^3 \\ & \text{e } \mathscr{B}' \text{ base canônica de } \mathbb{R}^3. \end{array}$$

(f) 
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
  
 $(x,y,z) \longmapsto T(x,y,z) = (x-2y-3z, -x+2y)$ ,  $\mathscr{B} = \{(1,0,2), (0,1,2), (1,2,0)\}$   
base de  $\mathbb{R}^3$  e  $\mathscr{B}' = \{(1,1), (0,1)\}$  base canônica de  $\mathbb{R}^2$ .

2. Determine, em cada um dos casos, a expressão da transformação linear T.

(a) 
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
,  $[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \end{bmatrix}$ , com  $\mathscr{B} = \{(1,1,0), (0,0,1), (1,2,3)\}$  base de  $\mathbb{R}^3$  e  $\mathscr{B}' = \{(2,1), (-1,1)\}$  base de  $\mathbb{R}^2$ .

(b) 
$$T: \mathscr{P}_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R}), \begin{bmatrix} T \end{bmatrix}_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \operatorname{com} \mathscr{B} = \{t, t+2, t^2\} \text{ base de } \mathscr{P}_2(\mathbb{R})$$

$$e \, \mathscr{B}' = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \right\} \text{ base de } M_2(\mathbb{R}).$$

$$\text{(c)} \ \ T \ : \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R}), \ \left[T\right]_{\mathscr{B}} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right], \ \text{com} \ \mathscr{B} = \left\{t, \ t+2, \ t^2\right\} \ \text{base de} \ \mathscr{P}_2(\mathbb{R}).$$

$$\begin{array}{l} \text{(d)} \ \ T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ \left[T\right]_{\mathscr{B}'}^{\mathscr{B}} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right], \ \text{com} \ \mathscr{B} = \left\{(1,1,0), \ (0,0,1), \ (1,2,3)\right\} \ \text{base de} \ \mathbb{R}^3 \\ \text{e} \ \mathscr{B}' \ \text{base canônica de} \ \mathbb{R}^3. \end{array}$$

(e) 
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
,  $[T]_{\mathscr{B}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ ,  $\operatorname{com} \mathscr{B} = \{(1,0,0), (1,1,0), (1,1,1)\}$  base de

- (f)  $T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R}), \ [T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & -3 & 0 & 1 \\ 2 & -5 & 3 & 0 \\ 0 & 1 & 3 & -2 \end{bmatrix}, \text{ com } \mathscr{B} \in \mathscr{B}' \text{ bases canônicas de } M_2(\mathbb{R}) \text{ e de } \mathscr{P}_2(\mathbb{R}), \text{ respectivamente.}$
- (g)  $T: \mathbb{R}^3 \longrightarrow M_2(\mathbb{R}), \begin{bmatrix} T \end{bmatrix}_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} -1 & 6 & 15 \\ 0 & 1 & 3 \\ 2 & 0 & 6 \\ 1 & -1 & 0 \end{bmatrix}, \text{ com } \mathscr{B} \in \mathscr{B}' \text{ bases canônicas de } \mathbb{R}^3 \text{ e de}$   $M_2(\mathbb{R}), \text{ respectivamente.}$
- 3. Seja T operador linear de  $\mathbb{R}^3$  tal que:

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix},$$

com  $\mathscr{B} = \{(1,0,1), (0,1,1), (0,0,2)\}$  e  $\mathscr{B}' = \{(1,0,0), (0,-1,1), (1,0,2)\}$  bases de  $\mathbb{R}^3$ . Determine as coordenadas dos seguintes vetores de  $\mathbb{R}^3$  em relação à base  $\mathscr{B}'$ :

(a) 
$$v_1 = (1, 0, 1)$$

(b) 
$$v_2 = (1, 7, 11)$$

(c) 
$$u = (x, y, z)$$
.

- 4. Seja T operador linear de  $\mathbb{R}^2$ , definido por  $T(x,y) = A \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ , com  $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ . Determine a matriz  $T \mid_{\mathscr{B}}$ , nos seguintes casos:
  - (a)  $\mathscr{B}$  é a base canônica de  $\mathbb{R}^2$ .
  - (b)  $\mathscr{B} = \{(1,3), (2,5)\}.$
- 5. Sejam  $T:M_2(\mathbb{R})\longrightarrow \mathscr{P}_2(\mathbb{R})$  e  $S:\mathscr{P}_2(\mathbb{R})\longrightarrow \mathbb{R}^2$  transformações lineares definidas por:

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/3 & 1/3 \end{bmatrix} \qquad e \qquad [S]_{\mathscr{B}''}^{\mathscr{B}'} = \begin{bmatrix} 1 & -2 & -3 \\ 0 & -2 & -3 \end{bmatrix},$$

com  $\mathcal{B}$  base canônica de  $M_2(\mathbb{R})$ ,  $\mathcal{B}' = \{3, t+1, t^2\}$  base de  $\mathcal{P}_2(\mathbb{R})$  e  $\mathcal{B}'' = \{(1,0), (-1,-1)\}$  base de  $\mathbb{R}^2$ .

Determine:

(a) 
$$\left[S \circ T\right]_{\mathscr{B}''}^{\mathscr{B}}$$
 (b)  $S \circ T \left(\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\right)$  (c)  $S(a_0 + a_1t + a_2t^2)$  (d)  $T \left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right)$  (e)  $S \circ T \left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right)$ .

6. Sejam  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$  e  $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$  transformações lineares definidas por:

$$T(x,y,z) = (x-2y, 3x-y+z)$$
 e  $S(x,y) = (x+y, x+2y, 3y)$ .

Determine:

- (a) As matrizes [T] e [S] em relação às bases canônicas de  $\mathbb{R}^2$  e  $\mathbb{R}^3$ .
- (b) As matrizes  $[S \circ T]$  e  $[T \circ S]$  em relação às bases canônicas de  $\mathbb{R}^2$  e  $\mathbb{R}^3$ .
- (c) A expressão de cada um dos operadores lineares  $S \circ T$  e  $T \circ S$ , utilizando o item (b).
- 7. Sejam  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$  e  $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$  transformações lineares tais que:

$$[T] = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} \qquad e \qquad [S] = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 0 & 1 \\ 0 & -3 \end{bmatrix}.$$

Determine:

- (a) A expressão de cada uma das transformação linear T e S.
- (b) A matriz  $[S \circ T]$  em relação às bases canônicas de  $\mathbb{R}^3$  e  $\mathbb{R}^4$ .

# 4.3 Núcleo e Imagem de uma Transformação Linear

- 1. Determine o núcleo de todas as transformações do exercício 2 da seção 4.1 e do 4.1 da seção 4.2.
- 2. Seja T operador linear de  $\mathbb{R}^3$  tal que:

$$T(1,1,0) = (0,1,1),$$
  $T(1,0.1) = (1,1,1)$  e  $T(0,1,1) = (2,1,-1).$ 

Determine:

- (a) T(1,1.1) e T(1,2.1).
- (b) ker(T).
- (c) A dimensão de ker(T) e Im(T).
- 3. Seja  $T: \mathscr{P}_3(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R})$  transformação linear definida T(p(t)) = 2p'(t) + p(0)(t-1), determine:
  - (a) Im(T), a imagem de T.
  - (b) A expressão de *T*.
  - (c) ker(T), o núcleo de T.
- 4. Em cada um dos casos abaixo, exemplifique a afirmação, se for verdadeira, caso contrário refute apresentando um argumento baseado na teoria ou um contra-exemplo.
  - (a)  $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_2(\mathbb{R})$  e Im(T) = [(1,2,3), (4,5,6)].
  - (b)  $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ ,  $\ker(T) = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$  e  $\operatorname{Im}(T) = \begin{bmatrix} (3,1,0), (0,-1,0) \end{bmatrix}$ .
  - (c)  $T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R}), \ker(T) = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix} \operatorname{e} \operatorname{Im}(T) = \begin{bmatrix} 1, t+2, t^2 \end{bmatrix}.$

(d) 
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
,  $\ker(T) = \lceil (1,2) \rceil$  e  $\operatorname{Im}(T) = \lceil (1,1,0) \rceil$ .

(e) 
$$T: \mathbb{R}^3 \longrightarrow M_2(\mathbb{R})$$
,  $\ker(T) = [(1,1,1)]$ .

- 5. Seja T um operador linear de um espaço vetorial V, com dim V = 5. Sabendo que dim  $\left(\ker(T) \cap \operatorname{Im}(T)\right) = 2$ , determine dim  $\left(\ker(T) + \operatorname{Im}(T)\right)$ , justificando.
- 6. Seja T um operador linear de  $M_2(\mathbb{R})$ , definido por  $T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = \begin{bmatrix} 2a_{11} & 0 \\ -a_{21} & a_{12} + a_{22} \end{bmatrix}$ . Determine:
  - (a)  $\ker(T)$  (b)  $\operatorname{Im}(T)$  (c)  $\ker(T) \cap \operatorname{Im}(T)$  (d)  $\dim(\ker(T) + \operatorname{Im}(T))$
  - (e) Verifique se:  $M_2(\mathbb{R}) = \dim (\ker(T) \oplus \operatorname{Im}(T))$ .

### 7. Determine:

- (a) T um operador linear de  $M_2(\mathbb{R})$  tal que dim  $(\operatorname{Im}(T)) = 2$ .
- (b) T um operador linear de  $\mathbb{R}^3$  tal que  $\ker(T) = \{(x, y, z) \in \mathbb{R}^3; y + z = 0\}.$
- (c)  $T: V \longrightarrow W$  uma transformação linear tal que  $Im(T)\{0_W\}$ .
- (d) T um operador linear de  $\mathbb{R}^4$  tal que dim  $(\ker(T)) = \dim(\operatorname{Im}(T))$ .
- (e) T um operador linear de  $\mathscr{P}_3(\mathbb{R})$  tal que dim  $(\ker(T)) = 1$ .
- (f)  $T: \mathscr{P}_3(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R})$  uma transformação linear tal que  $\ker(T) = [1 t^2, t t^3]$ .
- (g)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$  uma transformação linear tal que  $\operatorname{Im}(T) = \left[ \begin{pmatrix} 1 & -2 \\ 3 & -3 \end{pmatrix}, \begin{pmatrix} 3 & -5 \\ 0 & 1 \end{pmatrix} \right].$
- (h)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$  uma transformação linear tal que  $\operatorname{Im}(T) = \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} \end{bmatrix}$  e  $\ker(T) = \begin{bmatrix} 1+t \end{bmatrix}$ .
- (i)  $T: M_{3\times 2}(\mathbb{R}) \longrightarrow \mathscr{P}_3(\mathbb{R})$  tal que

$$\ker(T) = \left[ \begin{array}{ccc} 1 & -1 & 2 \\ -2 & 3 & -3 \end{array} \right], \ \left[ \begin{array}{ccc} 0 & 1 & -1 \\ 1 & -2 & 3 \end{array} \right], \ \left[ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 1 \end{array} \right] \ \right].$$

(j) 
$$T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_4(\mathbb{R})$$
 tal que  $Im(T) = \left[1 - t + t^2, t - t^3 + t^4, t^2 - t^4\right]$ .

- 8. Sejam V um espaço vetorial de dimensão finita n e T um operador linear de V linear tal que  $Im(T) = \ker(T)$ .
  - (a) Mostre que n é par.
  - (b) Dê o exemplo de um operador linear com estas características.

# 4.4 Transformações Lineares Injetoras e Sobrejetoras

1. Seja  $T: V \longrightarrow W$  transformação linear dada por:

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 2 & 4 & -4 \\ 1 & 0 & 1 & -1 \end{bmatrix},$$

com  $\mathcal{B}$  base de V e  $\mathcal{B}'$  base de W.

- (i) Determine: (a) dim V; (b) dim W; (c) dim  $(\ker(T))$ ; (d) dim  $(\operatorname{Im}(T))$ .
- (ii) Classifique em verdadeiro ou falso, justificadamente:
  - (a) T é uma transformação linear invertível.
  - (b)  $\dim (\operatorname{Im}(T)) = p([T]_{\mathscr{B}'}^{\mathscr{B}})$ , p designando o posto da matriz.
  - (c)  $Im(T) = [v_1, v_2, v_3, v_4], com$

$$[v_1]_{\mathscr{B}'} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \qquad [v_2]_{\mathscr{B}'} = \begin{bmatrix} 0\\1\\2\\0 \end{bmatrix}, \qquad [v_3]_{\mathscr{B}'} = \begin{bmatrix} 1\\2\\4\\1 \end{bmatrix}, \qquad [v_4]_{\mathscr{B}'} = \begin{bmatrix} -1\\-2\\-4\\-1 \end{bmatrix}.$$

- (d) O conjunto  $\{v_1, v_2, v_3, v_4\}$  é uma base de Im(T).
- (e)  $\operatorname{null}\left(\left[T\right]_{\mathscr{B}'}^{\mathscr{B}}\right) = 4 \operatorname{p}\left(\left[T\right]_{\mathscr{B}'}^{\mathscr{B}}\right) = \dim V \dim\left(\operatorname{Im}(T)\right).$
- (f)  $p([T]_{\mathscr{B}'}^{\mathscr{B}}) \neq p([T]_{\mathscr{B}'_1}^{\mathscr{B}_1})$ , com  $\mathscr{B}_1$  e  $\mathscr{B}'_1$  bases de V e W, respectivamente.
- (g)  $\operatorname{null}\left(\left[T\right]_{\mathscr{B}'}^{\mathscr{B}}\right) = \operatorname{null}\left(\left[T\right]_{\mathscr{B}'_1}^{\mathscr{B}_1}\right) = \dim\left(\ker(T)\right), \ \operatorname{com}\,\mathscr{B}_1 \ \operatorname{e}\,\mathscr{B}'_1 \ \operatorname{bases}\ \operatorname{de}\,V \ \operatorname{e}\,W, \ \operatorname{respective mente}.$
- 2. Seja  $T: \mathscr{P}_3(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R})$  transformação linear dada por:

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & b^2 & b \end{bmatrix},$$

com  $\mathscr{B}$  e  $\mathscr{B}'$  bases canônicas de  $\mathscr{P}_3(\mathbb{R})$  de  $\mathscr{P}_2(\mathbb{R})$ , respectivamente.

Determine se possível, os valores reais da constante b, tal que:

- (a) T é injetora;
- (b) T é sobrejetora;
- (c) dim  $(\ker(T)) = 2$ .
- 3. O operador linear determinado no exercício 5 da seção 4.3 é injetor?
- 4. Em cada um dos casos abaixo, se for possível, apresente uma transformação linear através de sua matriz associada.
  - (a)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^2$  e T é injetora.
  - (b)  $T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_4(\mathbb{R})$  e T é sobrejetora.
  - (c)  $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_1(\mathbb{R})$  e T é sobrejetora.
  - (d)  $T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_3(\mathbb{R})$  e T é injetora.
  - (e)  $T: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$  e dim  $(\ker(T)) = 2$ .
  - (f)  $T: \mathbb{R}^2 \longrightarrow \mathscr{P}_2(\mathbb{R})$  e T é sobrejetora.
- 5. Em cada um dos casos abaixo, exemplifique a afirmação, se for verdadeira, caso contrário refute apresentando um argumento baseado na teoria ou um contra-exemplo.
  - (a)  $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_1(\mathbb{R})$  e T é sobrejetora.
  - (b)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^2 \text{ e ker}(T) = \{p_0\}.$

- (c)  $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_3(\mathbb{R})$  e T é sobrejetora.
- (d)  $T: \mathbb{R}^2 \longrightarrow \mathscr{P}_1(\mathbb{R})$  e ker $(T) = \{(x, y) \in \mathbb{R}^2; x = y\}.$
- (e)  $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^4$  e  $(0,0,0,0) \notin \text{Im}(T)$ .
- (f)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3 \text{ e Im}(T) = \{(x, y, z) \in \mathbb{R}^3; x + z = 0\}.$
- (g)  $T: M_{3\times 1}(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R}) \text{ e Im}(T) = [1+t, t+t^2].$
- (h)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$  e dim  $(\ker(T)) = 1$  e  $(0,2,1) \in \operatorname{Im}(T)$ .
- (i)  $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$  e ker $(T) = \{A \in M_2(\mathbb{R}); A \notin \text{matriz diagonal}\}.$
- 6. Seja  $T_{\lambda}: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$  transformação linear, cuja matriz em relação às bases canônicas de  $\mathbb{R}^3$  e de

$$\mathbb{R}^4 \text{ \'e dada por } \begin{bmatrix} T_{\lambda} \end{bmatrix} = \begin{bmatrix} 1 & 4 & 5 \\ 4 & -3 & 1 \\ 2 & 1 & \lambda^2 + 2 \\ 4 & -1 & 3 \end{bmatrix}, \text{ com } \lambda \in \mathbb{R}. \text{ Determine:}$$

- (a) Os valores de  $\lambda$  para os quais  $T_{\lambda}$  é injetora.
- (b) O conjunto de elementos de  $\mathbb{R}^3$  cuja imagem por  $T_1$  é (6,5,5,7).
- (c) A matriz de  $T_1$  em relação às bases  $\mathscr{B} = \{(1,1,0), (-1,2,1), (0,-1,3)\}$  de  $\mathbb{R}^3$  e  $\mathscr{B}'$  base canônica de  $\mathbb{R}^4$ .
- 7. Seja  $T:V\longrightarrow W$  transformação linear, com V e W espaços vetoriais de dimensão finita, mostre que:
  - (a) T é injetora se, e somente se, T é sobrejetora.
  - (b) T é bijetora se, e somente se, T leva base de V em base de W.
- 8. Seja  $T: V \longrightarrow W$  transformação linear injetora.
  - (a) Mostre que T transforma subconjuntos L.I.'s de V em subconjuntos L.I.'s de W.
  - (b) Dê um exemplo mostrando que este resultado não é verdadeiro sem a hipótese T é injetora.
- 9. Seja  $T: V \longrightarrow W$  transformação linear com dim  $V > \dim W$ .
  - (a) Se  $\mathscr{B} = \{v_1, \dots, v_n\}$  é uma base de V então  $T(v_1), \dots, T(v_n)$  são vetores L.I.'s ou L.D.'s? Justifique!
  - (b) Prove que existe um vetor não nulo  $v \in V$  tal que  $T(v) = 0_W$ , ou seja, T não é injetora.
- 10. Seja  $T: V \longrightarrow W$  transformação linear injetora, com dim  $V = \dim W$ .
  - (a) Mostre que T transforma base de V em base de W.
  - (b) Dê contra exemplos quando pelo menos uma das hipóteses não se verifica.

# 4.5 Inversa de uma Transformação Linear

1. Seja  $T:\mathbb{R}^3\longrightarrow \mathscr{P}_2(\mathbb{R})$  transformação linear definida por:

$$T(1,0,0) = t^2 - 1$$
,  $T(0,1,0) = t$  e  $T(0,0,1) = 2$ .

Determine:

(a)  $[T]_{\mathscr{B}'}^{\mathscr{B}}$ , com  $\mathscr{B}$  e  $\mathscr{B}'$  bases quaisquer de  $\mathbb{R}^3$  e de  $\mathscr{P}_2(\mathbb{R})$ , respectivamente.

- (b)  $T^{-1}(a_0 + a_1t + a_2t^2)$ .
- (c)  $[T^{-1}]_{\mathscr{B}}^{\mathscr{B}'}$ , com  $\mathscr{B}$  e  $\mathscr{B}'$  as bases consideradas no item (a).
- (d)  $[T]_{\mathscr{B}'}^{\mathscr{B}} \cdot [T^{-1}]_{\mathscr{B}}^{\mathscr{B}'}$ .
- (e) O que podemos concluir dos itens anteriores?
- 2. Verifique, em cada um dos casos, se T é uma transformação linear invertível, em caso afirmativo determine  $T^{-1}$  a inversa de T.

(a) 
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
  
 $(x,y) \longmapsto T(x,y) = (x-2y, -3x+6y).$ 

(b) 
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
  
 $(x,y) \longmapsto T(x,y) = (2x-y, x+y).$ 

(c)  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$  tal que:

$$T(1,2,1) = (1,2,3),$$
  $T(0,1,0) = (2,1,5)$  e  $T(0,4,1) = (0,3,2).$ 

(d) 
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
  
 $(x,y,z) \longmapsto T(x,y,z) = (x-y+2z, y-z, 2y-3z).$ 

(e) 
$$T$$
 operador linear de  $\mathscr{P}_2(\mathbb{R})$  tal que  $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ .

(f) 
$$T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$$
  
 $p(t) = a_0 + a_1 t + a_2 t^2 \longmapsto T(p(t)) = (a_2, a_1, a_0).$ 

(g) 
$$T: \mathbb{R}^3 \longrightarrow \mathscr{P}_2(\mathbb{R})$$
  
 $(x,y,z) \longmapsto T(x,y,z) = (2x+3y-z)+(4x-y)t+2xt^2.$ 

(h)  $T: \mathbb{R}^4 \longrightarrow M_2(\mathbb{R})$  tal que:

$$T(e_1) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad T(e_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad T(e_3) = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \qquad \text{e } T(e_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(i) 
$$T: \mathscr{P}_3(\mathbb{R}) \longrightarrow \mathbb{R}^4 \text{ tal que } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(j) 
$$T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_3(\mathbb{R}) \text{ tal que } [T] = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$$

(k) 
$$T: \mathscr{P}_3(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$$
  
 $a_0 + a_1 t + a_2 t^2 + a_3 t^3 \longmapsto T(a_0 + a_1 t + a_2 t^2 + a_3 t^3) = \begin{bmatrix} a_3 + a_2 & a_2 \\ -a_1 & a_1 + a_0 \end{bmatrix}.$ 

- 3. Em cada um dos casos abaixo, exemplifique a afirmação, se for verdadeira, caso contrário refute apresentando um argumento baseado na teoria ou um contra-exemplo.
  - (a)  $T: V \longrightarrow W$  isomorfismo, com dimV = 5 e dim W = 3.
  - (b)  $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow U$  isomorfismo, com U um subespaço de  $M_2(\mathbb{R})$ .
  - (c)  $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_3(\mathbb{R})$  e T é isomorfismo.
  - (d)  $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^4$  tal que p([T]) < 4.
- 4. Sejam  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$  e  $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$  transformações lineares quaisquer.
  - (a) Mostre que a transformação linear  $S \circ T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$  não é um isomorfismo.
  - (b) Encontre um exemplo em que  $T\circ S$  é isomorfismo e outro exemplo em que  $T\circ S$  não é isomorfismo.
  - (c) Generalize os resultados dos itens (a) e (b) para  $T:V\longrightarrow W$  e  $S:W\longrightarrow V$  transformações lineares, com dim  $V>\dim W$ .

# 5. Diagonalização de Operadores

# 5.1 Autovalor, Autovetor e Polinômio Característico

- 1. Determine, em cada um dos casos, o polinômio característico, os autovalores e os autovetores do operador linear *T*.
  - (a) T operador linear de  $\mathbb{R}^2$  dado por T(x,y) = (y, 2x + y).
  - (b) T operador linear de  $\mathbb{R}^2$  dado por T(x,y) = (-y, x).
  - (c) T operador linear de  $\mathbb{R}^2$  dado por T(x,y) = (4x + 5y, 2x + y).
  - (d) T operador linear de  $\mathbb{R}^3$  dado por T(x,y,z) = (3x-4z, 3y+5z, -z).
  - (e) T operador linear de  $\mathbb{R}^3$  dado por  $T(x,y,z)=(3x-3y-4z,\ 3y+5z,\ -z)$ .
  - (f) T operador linear de  $\mathbb{R}^3$  dado por  $T(x,y,z) = \begin{bmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ .
  - (g) T operador linear de  $\mathbb{R}^4$  dado por T(x,y,z,t)=(x,x+y,x+y+z,x+y+z+t).
  - (h) T operador linear de  $\mathscr{P}_2(\mathbb{R})$  tal que  $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 0 & -1 \\ 0 & 0 & 2 \end{bmatrix}$ .
  - (i) T operador linear de  $\mathscr{P}_2(\mathbb{R})$  dado por T(1)=2,  $T(t)=2+t+t^2$  e  $T(0t^2)=3+2t+t^2$ .
  - (j) T operador linear de  $\mathscr{P}_2(\mathbb{R})$  dado por  $T(p(t)) = t^2 p''(t)$ .
  - (k) T operador linear de  $\mathscr{P}_3(\mathbb{R})$  dado por T(p(t)) = p'(t) + p''(t).

- 2. Encontre o operador linear de  $\mathbb{R}^2$  com autovalores  $\lambda_1 = -2$  e  $\lambda_2 = 3$ , cujos autovetores associados são (3y,y) e (-2y,y), respectivamente, com  $y \neq 0$ .
- 3. Seja T operador linear de  $\mathbb{R}^2$  dado por  $T(x,y) = (x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta)$ .
  - (a) Mostre T tem autovalores reais se, e somente se,  $\theta = 0$  ou  $\theta = \pi$ .
  - (b) Analise o caso  $\theta = \pi$ .
- 4. Seja  $A \in M_2(\mathbb{R})$ .
  - (a) Mostre que o polinômio característico de A é dado por:  $p(\lambda) = \lambda^2 \operatorname{tr}(A)\lambda + \det A$ .
  - (b) Conclua que, se A é simétrica e  $A \neq k \cdot I_2$ , com  $k \in \mathbb{R}$ , então A sempre possui dois autovalores reais e distintos.

# 5.2 Diagonalização de Operadores Lineares

- 1. Em cada um dos casos, para o operador linear T de V, determine:
  - (i) O polinômio característico de T.
  - (ii) Todos os autovalores de T.
  - (iii) Os auto-espaços associados aos autovalores de T.
  - (iv) A multiplicidade algébrica e a multiplicidade geométrica de cada autovalor de T.
  - (v) Se T é operador diagonalizável. Caso seja, encontre uma base  $\mathscr{B}$  de V constituída de autovetores de T, tal que  $[T]_{\mathscr{B}}$  é matriz diagonal.
  - (a) T operador linear de  $\mathbb{R}^2$  dado por T(x,y) = (x+y, 2x+y).
  - (b) T operador linear de  $\mathbb{R}^3$  dado por T(x, y, z) = (x + y, x y + 2z, 2x + y z).
  - (c) T operador linear de  $\mathbb{R}^3$  dado por T(x,y,z) = (3x 3y 4z, 3y + 5z, -z).
  - (d) T operador linear de  $\mathbb{R}^4$  dado por  $T(x,y,z,t)=(x,\,x+y,\,x+y+z,\,x+y+z+t)$ .
  - (e) T operador linear de  $\mathbb{R}^3$  dado por  $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ .
  - (f) T operador linear de  $\mathscr{P}_2(\mathbb{R})$  tal que  $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 1 & 3 & -3 \\ 0 & 4 & 0 \\ -3 & 3 & 1 \end{bmatrix}$ .
  - (g) T operador linear de  $\mathscr{P}_3(\mathbb{R})$  dado por  $T(1) = 1 + 2t + t^2 + t^3$ ,  $T(t) = 3t + t^2 t^3$ ,  $T(t^2) = t^2 + 5t^3$  e  $T(t^3) = 2t^3$ .
  - (h) T operador linear de  $M_2(\mathbb{R})$  dado por  $T\left(\left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]\right) = \left[\begin{array}{cc} 2a_{11} + a_{12} & 2a_{12} \\ a_{12} + a_{21} & a_{22} \end{array}\right].$
  - (i) T operador linear de  $\mathscr{P}_3(\mathbb{R})$  tal que  $[T] = \begin{bmatrix} 7 & 4 & 2 & -1 \\ 0 & -1 & -4 & 2 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & 7 \end{bmatrix}$ .

(j) T operador linear de  $\mathscr{P}_4(\mathbb{R})$  dado por:

$$T(a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4) = (a_0 - a_1 + a_2 - a_4) + (7a_1 - 2a_3 + 2a_4)t^4 + (7a_2 + a_3 - a_4)t^2 + (-2a_3 + 5a_4)t^3 + 7a_4t^4.$$

- (k) T operador linear de  $\mathbb{C}^4$  tal que  $[T] = \begin{bmatrix} 1 & i & 0 & 0 \\ -i & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$ .
- 2. Seja T operador linear de  $\mathscr{P}_2(\mathbb{R})$  dado por: T(2) = -2, T(t+1) = t+1,  $T(t^2) = -2t^2$ . Determine uma base  $\mathscr{B}$  de  $\mathscr{P}_2(\mathbb{R})$  tal que  $T_{\mathscr{B}}$  é matriz diagonal.
- 3. Em cada um dos casos abaixo, se for possível, apresente um exemplo de operador diagonalizável, através de sua matriz na forma diagonal, satisfazendo as condições dadas.
  - (a) T operador linear de  $M_2(\mathbb{R})$  tal que T não é sobrejetor e seus autovalores são  $\lambda_1=1$ ,  $\lambda_2=2$  e  $\lambda_3=3$ .
  - (b) T operador linear de  $\mathscr{P}_2(\mathbb{R})$  tal que  $V_{-2} = \left[t, t + t^2\right]$  e  $V_1 = \left[1\right]$
  - (c) *T* operador linear de *V* tal que  $p(\lambda) = (3 \lambda)(4 \lambda)(2 \lambda)$ .
  - (d) T operador linear de  $\mathscr{P}_2(\mathbb{R})$  tal que  $\ker(T) = \{1, t\}$  e  $V_2 = [2]$ .
- 4. Se  $p(\lambda) = (3 \lambda)^2 \cdot (2 + \lambda)^4 \cdot (1 \lambda)^2$  é o polinômio característico de um operador linear  $T: V \longrightarrow V$ . Determine a matriz  $[T]_{\mathscr{B}}$ , com  $\mathscr{B}$  uma base de V formada de autovetores de T.
- 5. Em cada um dos casos abaixo, para o operador linear T de V, verifique se a afirmação é verdadeira (sempre) ou falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
  - (a) ( ) Todo operador linear é diagonalizável.
  - (b) ( ) Se dim V = 3 e T possui três autovalores distintos, então T é diagonalizável.
  - (c) ( ) Se dim V = 3 e T possui dois autovalores distintos, então T é diagonalizável.
  - (d) ( ) Existem operadores lineares que possuem apenas um autovalor e são diagonalizáveis.
  - (e) ( ) Se o grau do polinômio característico de T é igual a três, então dim V=3.