1312.3824.12.

12. Let $\beta = y^0$, $\vec{\lambda} = j^0 \vec{j}$, show that Dirac eq.

can be written as $H = \vec{k} + \vec{k} + \vec{k} = \vec{k} + \vec{k} = \vec{k}$

The concentron of f'=(1), $\vec{r}=(-\frac{1}{6})$ nas adopted, define $r=(\frac{1}{2})$ the original Dirac eq. uas

wrotten as

$$\begin{pmatrix} -m & E+\vec{c}\cdot\vec{p} \end{pmatrix}$$
 $\gamma = 0$, equivalent to. $E-\vec{c}\cdot\vec{p} = -m$

This equation is purely algebraic, so we can safely apply a change of basis via a nonsingular transformation $\beta = V^{\circ} \not\Rightarrow \delta b ta m$

$$\Rightarrow E\gamma = (\vec{J} \cdot \vec{p} + m\beta)\gamma$$