第三章 度量与投影

第7讲正交性与投影

黄定江

DaSE @ ECNU djhuang@dase.ecnu.edu.cn

1 7.1 四个基本子空间

2 7.2 四个子空间的正交关系

③ 7.3 正交投影

4 7.4 正交基与 Gram-Schmit

1 7.1 四个基本子空间

② 7.2 四个子空间的正交关系

③ 7.3 正交投影

4 7.4 正交基与 Gram-Schmit

引入

在数据科学的许多工程应用(如信号降噪滤波、数据降维、主成分分析、时间序列分析)中,许多问题的最优求解都可归结为数据在某个子空间的投影问题。本讲我们讲解投影这一在数据分析中极为重要的数学工具。

7.1.1 四个基本子空间

为了更好的理解子空间与投影,我们先讨论四个基本子空间:

- 1. 列空间:Col(A)
- 2. 行空间: $\mathsf{Row}\left(oldsymbol{A}\right) = \mathsf{Col}\left(oldsymbol{A}^{\mathrm{T}}\right)$
- 3. 零空间:Null(A)
- 4. 左零空间: $\mathsf{Null}\left(oldsymbol{A}^{\mathrm{T}}\right)$

四个基本子空间也是线性代数中非常重要的概念。

7.1.1 四个基本子空间

约定

为方便叙述,对于矩阵 $\mathbf{A} \in \mathbb{R}^{m \times n}$,其 m 个行向量、n 个列向量分别记作

$$egin{aligned} oldsymbol{r}_1 &= [a_{11}, a_{12}, \cdots, a_{1n}]^{\mathrm{T}} \ oldsymbol{r}_2 &= [a_{21}, a_{22}, \cdots, a_{2n}]^{\mathrm{T}} \ & \dots & oldsymbol{a}_1 &= egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{m1} \end{pmatrix}, oldsymbol{a}_2 &= egin{pmatrix} a_{12} \ a_{22} \ dots \ a_{m2} \end{pmatrix}, \cdots, oldsymbol{a}_n &= egin{pmatrix} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{pmatrix} & oldsymbol{r}_m &= [a_{m1}, a_{m2}, \cdots, a_{mn}]^{\mathrm{T}} & oldsymbol{r}_m &= egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{m1} \end{pmatrix}, oldsymbol{a}_2 &= egin{pmatrix} a_{12} \ a_{22} \ dots \ a_{m2} \end{pmatrix}, \cdots, oldsymbol{a}_n &= egin{pmatrix} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{pmatrix} & oldsymbol{r}_n &= egin{pmatrix} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{pmatrix} & oldsymbol{r}_n &= oldsym$$

$$\mathbb{H} \ m{A} = (m{r}_1, m{r}_2, ..., m{r}_m)^{\mathrm{T}} = (m{a}_1, m{a}_2, ..., m{a}_n)$$

设矩阵 $A \in \mathbb{R}^{m \times n}$, 则它引出下面四个基本子空间:

定义 1

列空间是其列向量 $\{a_1, a_2, \cdots, a_n\}$ 的所有线性组合的集合,它是 \mathbb{R}^m 的一个子空间,用符 号 Col(A) 表示, 即有

$$extit{Col}(m{A}) = \left\{ m{y} \in \mathbb{R}^m | m{y} = \sum_{j=1}^n lpha_j m{a}_j, lpha_j \in \mathbb{R}
ight\} = ext{span} \{m{a}_1, m{a}_2 \cdots m{a}_n \}$$
 (1)

定义 2

行空间是其行向量 $\{r_1, r_2, \cdots, r_m\}$ 的所有线性组合的集合, 它是 \mathbb{R}^n 的一个子空间, 用符 号 Row(A) 表示, 也可以用 $Col(A^{T})$ 表示, 有

$$\mathit{Row}(oldsymbol{A}) = \mathit{Col}\left(oldsymbol{A}^{\mathrm{T}}\right) = \left\{oldsymbol{y} \in \mathbb{R}^{n} | oldsymbol{y} = \sum_{i=1}^{m} eta_{i} oldsymbol{r}_{i}, eta_{i} \in \mathbb{R}
ight\} = \operatorname{\mathbf{span}}\{oldsymbol{r}_{1}, oldsymbol{r}_{2} \cdots oldsymbol{r}_{m}\}$$
 (2)

定义 3

零空间是所有满足齐次线性方程组 Ax=0 的解向量集合,它是 \mathbb{R}^n 的一个子空间,用符号 Null(A) 表示,即有

$$Null(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0} \}$$
(3)

定义 4

左零空间是所有满足齐次线性方程组 $m{A}^{\mathrm{T}}m{y}=m{0}$ 的解向量集合,它是 \mathbb{R}^m 的一个子空间,用符号 $Null\left(m{A}^{\mathrm{T}}\right)$ 表示,即有

$$Null(\mathbf{A}^{\mathrm{T}}) = \{ \mathbf{y} \in \mathbb{R}^n | \mathbf{A}^{\mathrm{T}} \mathbf{y} = \mathbf{0} \}$$
(4)

给定一个矩阵,为了获得其四个基本子空间,我们需要用到以下结论:

定理1

- 1. 一系列初等行变换不改变矩阵的行空间。
- 2. 一系列初等行变换不改变矩阵的零空间。
- 3. 一系列初等列变换不改变矩阵的列空间。
- 4. 一系列初等列变换不改变矩阵的左零空间。

证明.

[2] 令 E_i 是对应于矩阵 A 的第 i 次初等行变换的初等矩阵。由初等行变换可逆。于是,

$$Bx = (E_k E_{k-1} \cdots E_1 A)x = 0 \Leftrightarrow Ax = 0$$

即齐次线性方程 Bx = 0 与 Ax = 0 具有相同的解向量,从而 A 经过若干次初等行变换后得到的矩阵 B 与 A 具有相同的零空间。

例 1

求3×3矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & 1 \\ 1 & 4 & 5 \end{pmatrix}$$

的行空间、列空间、零空间和左零空间。

解

依次进行初等列变换,得到列简约阶梯型矩阵:

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & 1 \\ 1 & 4 & 5 \end{pmatrix} \xrightarrow{C_2 - 2C_1} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \xrightarrow{C_1 + C_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 0 \end{pmatrix}$$

最后的变换结果为:

$$m{A}_C = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 3 & 2 & 0 \end{pmatrix}$$

由此得到两个线性无关的列向量 $c_1 = (1,0,3)^{\mathrm{T}}, c_2 = (0,1,2)^{\mathrm{T}}$,它们是列空间 $\mathrm{Col}(A)$ 的基

$$Col(\mathbf{A}) = span\{(1, 0, 3)^{T}, (0, 1, 2)^{T}\}$$

由于一系列初等列变换不改变左零空间,根据 A_C ,知 $-3r_1-2r_2+r_3=0$ 。

那么我们就可以根据 A_C 的主元位置,矩阵 A 的主元行是第 1 行和第 2 行,即行空间 $\operatorname{Col}\left(A^{\mathrm{T}}\right)$ 可以写作

$$\mathsf{Col}\left(\boldsymbol{A}^{\mathrm{T}}\right) = \mathbf{span}\{(1,2,1)^{\mathrm{T}}, (-1,-1,1)^{\mathrm{T}}\}$$

对 A 进行行初等变换

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & 1 \\ 1 & 4 & 5 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix} \xrightarrow{R_3 - 2R_2} \mathbf{A}_R = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

A 的秩为 2。解方程组 $A_R x = 0$ 得到 $x = k(3, -2, 1)^T$

$$\mathsf{Null}\,(\boldsymbol{A}) = \mathbf{span}\{(3, -2, 1)\}^{\mathsf{T}}$$

所以零空间维数为1。

类似地,我们求解 $\mathbf{A}_{C}^{T}\mathbf{x} = \mathbf{0}$ 得到 $\mathbf{x} = k(3, 2, -1)^{\mathrm{T}}$ 所以

$$\mathsf{Null}\left(\boldsymbol{A}^{\mathrm{T}}\right) = \mathbf{span}\{(3,2,-1)^{\mathrm{T}}\}$$

左零空间的维数也是 1。

7.1.2 四个基本子空间的基

我们接下来的目标是: 求四个基本子空间的基和维数。 线性代数的课程中我们学习过矩阵的行秩等于列秩。因此

定理 2

设
$$A \in \mathbb{R}^{m \times n}$$
, 则 $\dim(Col(A)) = \dim(Row(A)) = \operatorname{rank}(A)$

定理3

设 $\mathbf{A} \in \mathbb{R}^{m \times n}$ 则

$$\dim(Null(\mathbf{A})) = n - \operatorname{rank}(\mathbf{A})$$

我们令 $r = \operatorname{rank}(\mathbf{A})$, 根据定义 $\operatorname{Null}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0}\}$ 我们对 \mathbf{A} 做行初等变换和列 变换,将A可以变换为

$$A' = \begin{pmatrix} I & B \\ O & O \end{pmatrix} = \begin{pmatrix} 1 & & & b_{11} & b_{12} & \dots & b_{1,n-r} \\ & 1 & & b_{21} & b_{22} & \dots & b_{2,n-r} \\ & & \ddots & & \vdots & \vdots & & \vdots \\ & & 1 & b_{r1} & b_{r2} & \dots & b_{r,n-r} \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

显然 A'x = 0 有以下 n - r 个解

$$m{x}^{(1)} = egin{pmatrix} b_{11} \\ \vdots \\ b_{r1} \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} m{x}^{(2)} = egin{pmatrix} b_{12} \\ \vdots \\ b_{r2} \\ 0 \\ -1 \\ \vdots \\ 0 \end{pmatrix} \dots m{x}^{(n-r)} = egin{pmatrix} b_{1,n-r} \\ \vdots \\ b_{r,n-r} \\ 0 \\ 0 \\ \vdots \\ -1 \end{pmatrix}$$

并且容易看出向量组 $(\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(n-r)})$ 是一个极大线性无关组。

再注意到,如果 x 是方程 A'x = 0 的解,那么当 $x_{r+1}, x_{r+2}, \ldots, x_n$ 取定时,可以唯一确定 x。换句话说 $\{x \in \mathbb{R}^n | A'x = 0\}$ 的维数最大为 n - r。

综上 A'x=0 解空间的维数为 n-r, 即 Ax=0 解空间的维数为 n-r, 即

$$\dim(\mathsf{Null}(\mathbf{A})) = n - r$$

上述的证明过程实际上也就是我们刚刚求解矩阵 A 零空间 Null(A) 基底和维数的过程。由此得到秩定理,描述了矩阵的秩与其零空间维数之间的关系。

定理 4

矩阵 $A_{m\times n}$ 的列空间和行空间的维数相等。这个共同的维数就是矩阵 A 的秩 rank(A), 它与零空间维数之间有下列关系:

$$\dim(\operatorname{Col}(\mathbf{A})) + \dim[\operatorname{Null}(\mathbf{A})] = n \tag{5}$$

利用上述定理我们立刻可以得到以下推论

推论 1

设 $\mathbf{A} \in \mathbb{R}^{m \times n}$ 则

$$\dim(\textit{Null}\left(\boldsymbol{A}^{\mathrm{T}}\right)) = m - \mathrm{rank}(\boldsymbol{A})$$

1 7.1 四个基本子空间

2 7.2 四个子空间的正交关系

③ 7.3 正交投影

4 7.4 正交基与 Gram-Schmit

7.2 四个子空间的正交关系

我们将继续讨论四个基本子空间之间的关系。

设 $A \in \mathbb{R}^{m \times n}$, A 的四个基本子空间中,Col(A), $Null(A^{T})$ 都是 \mathbb{R}^{m} 的子空间,它们是否有交集? $Col(A^{T})$, Null(A) 都是 \mathbb{R}^{n} 的子空间,它们是否有交集?

定理5

设 $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$\mathit{Col}\left(oldsymbol{A}
ight)\cap\mathit{Null}\left(oldsymbol{A}^{\mathrm{T}}
ight)=\left\{ oldsymbol{0}
ight\}$$

$$\mathit{Col}\left(oldsymbol{A}^{\mathrm{T}}
ight)\cap\mathit{Null}\left(oldsymbol{A}
ight)=\left\{ oldsymbol{0}\right\}$$

证明.

设
$$v \in \text{Col}\left(\boldsymbol{A}^{\mathrm{T}}\right) \cap \text{Null}\left(\boldsymbol{A}\right)$$
, 即 \boldsymbol{v} 在 $\boldsymbol{A} = (\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_m)^{\mathrm{T}}$ 的行空间中且 $\boldsymbol{A}\boldsymbol{v} = \boldsymbol{0}$ 。 设 $\boldsymbol{v} = a_1\boldsymbol{r}_1 + a_2\boldsymbol{r}_2 + \dots + a_m\boldsymbol{r}_m$,则
$$\boldsymbol{A}\boldsymbol{v} = \boldsymbol{0} \implies \boldsymbol{r}_1^{\mathrm{T}}\boldsymbol{v} = 0, \dots, \boldsymbol{r}_m^{\mathrm{T}}\boldsymbol{v} = 0 \implies \boldsymbol{v}^{\mathrm{T}}\boldsymbol{v} = 0 \implies \boldsymbol{v} = 0$$

即

$$\mathsf{Col}\left(oldsymbol{A}^{\mathrm{T}}
ight)\cap\mathsf{Null}\left(oldsymbol{A}
ight)=\{oldsymbol{0}\}.$$

同理
$$\mathsf{Col}\left(oldsymbol{A}\right)\cap\mathsf{Null}\left(oldsymbol{A}^{\mathrm{T}}\right)=\{oldsymbol{0}\}$$
。

定义 5

设S和T是 \mathbb{R}^n 的两个子空间。如果

$$\mathbb{S} \cap \mathbb{T} = \{\mathbf{0}\}$$

我们称 S 和 T 无交连。

列空间和左零空间是无交连的, 行空间和零空间是无交连的。

定义 6

设S和T是 \mathbb{R}^n 的两个子空间。如果对于 $\forall v \in S, \forall w \in T$,均有

$$\boldsymbol{v}^{\mathrm{T}}\boldsymbol{w}=0$$

我们说 S 垂直于 T, T 垂直于 S, 记做 $S \perp T$, $T \perp S$ 。 或者说, 子空间 S 和子空间 T 是正交的。

定理 6

正交的两个子空间必定是无交连的。

证明.

假设 \mathbb{R}^n 中的两个子空间 \mathbb{S} , \mathbb{T} 不是无交连的则

$$\exists \boldsymbol{v} \neq \boldsymbol{0}, \boldsymbol{v} \in \mathbb{S} \cap \mathbb{T}$$

而

$$\mathbf{v}^{\mathrm{T}}\mathbf{v} \neq 0$$

因而 S 和 T 不正交。从而正交的两个子空间必是无交连的。

显然,无交连的子空间不一定是正交的。如 $\mathbf{span}\{(1,1)^{\mathrm{T}}\}$ 和 $\mathbf{span}\{(1,0)^{\mathrm{T}}\}$ 。那么列空间和左零空间,行空间和零空间是正交的么?

例 2

设
$$A$$
 是 $m \times n$ 阶阵,则 $Col(A)$ 和 $Null(A^{\mathrm{T}})$ 正交, $Col(A^{\mathrm{T}})$ 和 $Null(A)$ 正交。

证明.

对
$$orall oldsymbol{v} \in \mathsf{Null}\left(oldsymbol{A}^{\mathrm{T}}
ight)$$
,则 $oldsymbol{v}^{\mathrm{T}}oldsymbol{A} = oldsymbol{0} \implies oldsymbol{v}^{\mathrm{T}}oldsymbol{a}_1 = 0, oldsymbol{v}^{\mathrm{T}}oldsymbol{a}_2 = 0, \cdots, oldsymbol{v}^{\mathrm{T}}oldsymbol{a}_n = 0$

对
$$\forall w \in \mathsf{Col}(A)$$
,有 $w = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$:

$$\boldsymbol{v}^{\mathrm{T}}\boldsymbol{w} = \alpha_1 \boldsymbol{v}^{\mathrm{T}}\boldsymbol{a}_1 + \alpha_2 \boldsymbol{v}^{\mathrm{T}}\boldsymbol{a}_2 + \dots + \alpha_n \boldsymbol{v}^{\mathrm{T}}\boldsymbol{a}_n = 0$$

因此,Null
$$\left(oldsymbol{A}^{\mathrm{T}} \right) \perp \mathsf{Col}\left(oldsymbol{A} \right)$$
, $\mathsf{Col}\left(oldsymbol{A} \right)$ 和 Null $\left(oldsymbol{A}^{\mathrm{T}} \right)$ 正交。

将
$$\boldsymbol{A}$$
 换成 $\boldsymbol{A}^{\mathrm{T}}$,我们得到 $\operatorname{Col}\left(\boldsymbol{A}^{\mathrm{T}}\right) \perp \operatorname{Null}\left(\boldsymbol{A}\right)$, $\operatorname{Col}\left(\boldsymbol{A}^{\mathrm{T}}\right)$ 和 $\operatorname{Null}\left(\boldsymbol{A}\right)$ 正交。

相对于正交,正交补是两个子空间更强的一种关系。

定义 7

设 $V \subset \mathbb{R}^n$ 是一个子空间,V 在 \mathbb{R}^n 中的正交补定义为集合

$$\{\boldsymbol{w} \in \mathbb{R}^n | \boldsymbol{v}^{\mathrm{T}} \boldsymbol{w} = 0, \forall \boldsymbol{v} \in \mathbb{V}\}$$

记作 ♥┴。

也就是说 \mathbb{V} 的正交补空间是 \mathbb{R}^n 中所有和 \mathbb{V} 正交的向量构成的集合。 显然一个空间和它的正交补空间是正交的,即 $\mathbb{V} \perp \mathbb{V}^\perp$ 。

显然 \mathbb{V} 与 \mathbb{V}^{\perp} 的和是直和,因此,对于 \mathbb{R}^n 中的任意向量 x 可以唯一的分解成如下形式:

$$x = x_1 + x_2$$

其中 $x_1 \in \mathbb{V}, x_2 \in \mathbb{V}^{\perp}$ 并且 $x_1^{\mathrm{T}}x_2 = 0$ 。这种分解形式叫做向量的**正交分解**。

例 3

证明:
$$Col(oldsymbol{A}^{\mathrm{T}})^{\perp} = Null(oldsymbol{A}), \ \ Col(oldsymbol{A})^{\perp} = Null(oldsymbol{A}^{\mathrm{T}}).$$

我们已经知道, $\operatorname{Col}\left(\boldsymbol{A}^{\mathrm{T}}\right)$ 和 $\operatorname{Null}\left(\boldsymbol{A}\right)$ 是正交的,也就是说

$$\mathsf{Null}\left(oldsymbol{A}
ight)\subseteq\mathsf{Col}\left(oldsymbol{A}^{\mathrm{T}}
ight)^{\perp}$$

对 $\forall x \in \mathsf{Col}\left(A^{\mathsf{T}}\right)^{\perp}$, x 和 $\mathsf{Col}\left(A^{\mathsf{T}}\right)$ 中的任意向量正交, 那么:

$$\boldsymbol{x}^{\mathrm{T}}\boldsymbol{r}_{1}=0, \boldsymbol{x}^{\mathrm{T}}\boldsymbol{r}_{2}=0,\cdots, \boldsymbol{x}^{\mathrm{T}}\boldsymbol{r}_{m}=0$$

即 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 。说明 $\mathbf{x} \in \text{Null}(\mathbf{A})$ 。也即

$$\mathsf{Col}\left(oldsymbol{A}^{\mathrm{T}}
ight)^{\perp}\subseteq\mathsf{Null}\left(oldsymbol{A}
ight)$$

因此 $\mathsf{Col}\left(oldsymbol{A}^{\mathrm{T}}\right)^{\perp} = \mathsf{Null}\left(oldsymbol{A}\right)$ 。同样可以证明 $\mathsf{Col}\left(oldsymbol{A}\right)^{\perp} = \mathsf{Null}\left(oldsymbol{A}^{\mathrm{T}}\right)$ 。

顾名思义,子空间 \mathbb{V} 在向量空间 \mathbb{R}^n 的正交补空间 \mathbb{V}^\perp 含有正交和补充双重含义:

- 1. 子空间 ♥ 与 ♥ 正交:
- 2. 向量空间 \mathbb{R}^n 是子空间 \mathbb{V} 与 \mathbb{V}^\perp 的直和,即 $\mathbb{R}^n = \mathbb{V} \oplus \mathbb{V}^\perp$ 。这表明,向量空间 \mathbb{R}^n 是由子空间 \mathbb{V} 补充 \mathbb{V}^\perp 而成。

正交补空间是一个比正交子空间更严格的概念: 当向量空间 \mathbb{R}^n 和子空间 \mathbb{V} 给定之后,和 \mathbb{V} 正交的空间不一定是唯一的,但是 \mathbb{V} 的正交补 \mathbb{V}^\perp 是唯一的。

线性代数基本定理

我们将本节内容总结成线性代数基本定理:

定理7

(线性代数基本定理) 若 A 是 $m \times n$ 矩阵,

- 1 [正交角度] $Col(\mathbf{A}^{\mathrm{T}}) \perp Null(\mathbf{A})$, $Col(\mathbf{A}) \perp Null(\mathbf{A}^{\mathrm{T}})$,
- 2 [扩张角度] $\mathsf{Col}\left(oldsymbol{A}^{\mathrm{T}}\right) \oplus \mathsf{Null}(oldsymbol{A}) = \mathbb{R}^n$, $\mathsf{Col}(oldsymbol{A}) \oplus \mathsf{Null}\left(oldsymbol{A}^{\mathrm{T}}\right) = \mathbb{R}^m$,
- 3 [维数角度] $\dim \mathit{Col}\left(oldsymbol{A}^{\mathrm{T}}\right) + \dim \mathit{Null}\left(oldsymbol{A}\right) = n$, $\dim \mathit{Col}\left(oldsymbol{A}\right) + \dim \mathit{Null}\left(oldsymbol{A}^{\mathrm{T}}\right) = m$ 。

线性代数基本定理

$$\mathsf{Col}\left(\boldsymbol{A}^{\mathrm{T}}\right)^{\perp}=\mathsf{Null}\left(\boldsymbol{A}\right)$$

$$\mathsf{Col}\left(oldsymbol{A}
ight)^{\perp} = \mathsf{Null}\left(oldsymbol{A}^{\mathrm{T}}
ight)$$

图 1: 四个子空间

1 7.1 四个基本子空间

② 7.2 四个子空间的正交关系

③ 7.3 正交投影

4 7.4 正交基与 Gram-Schmit

7.3.1 引言

- 投影是一类重要的线性变换。
- 投影在图形学,编码理论,统计和机器学习中起着重要作用。
- 在机器学习中,我们经常处理高维数据。高维数据通常很难分析或可视化。
- 但是,高维数据通常具有以下属性:只有少数维包含大多数信息,而其它大多数维对 于描述数据的关键属性也不是必需的。当我们压缩或可视化高维数据时,我们将丢失 信息。
- 为了最大程度地减少这种压缩损失,我们理想地希望在数据中找到最有用的信息维度。然后,我们可以将原始的高维数据投影到低维特征空间上,并在此低维空间中进行操作,以了解有关数据集的更多信息并提取模式。
- 例如机器学习中主成分分析(PCA)、深度学习中深度自动编码器大量采用了降维的想法。
- 下面, 我们将专注于正交投影。

定义 8

设 \mathbb{V} 是一向量空间, \mathbb{W} ⊆ \mathbb{V} 是 \mathbb{V} 的一个子空间。如果线性映射 $\pi: \mathbb{V} \to \mathbb{W}$ 满足

$$\pi^2=\pi\circ\pi=\pi$$

则称 π 为投影。

设 π 对应的矩阵 P_{π} ,显然 P_{π} 满足 $P_{\pi}^{2}=P_{\pi}$,称 P_{π} 为投影矩阵。

正交投影

本节所讲的投影指正交投影,即给定定义了标准内积和欧氏距离的向量空间 \mathbb{R}^m 中的向量 x, S 是 \mathbb{R}^m 的子空间, 求 $u \in \mathbb{S}$, 使得 ||u - x|| 最小, 即

$$\pi_{\mathbb{S}}(\boldsymbol{x}) = \arg\min_{\boldsymbol{y} \in \mathbb{S}} \|\boldsymbol{y} - \boldsymbol{x}\|,$$

称向量 u 为向量 x 在子空间 S 的正交投影。

因为可以对 x 进行分解, $x = x_1 + x_2$, 其中 $x_1 \in \mathbb{S}$, $x_2 \in \mathbb{S}^{\perp}$ 。所以

$$\|y - x\|^2 = \|y - (x_1 + x_2)\|^2 = \|(x_1 - y) + x_2\|^2$$
.

而 $x_1 - y \in \mathbb{S}$, $x_2 \in \mathbb{S}^{\perp}$, 所以 $\|(x_1 - y) + x_2\|^2 = \|x_1 - y\|^2 + \|x_2\|^2$ 。 所以我们只需令 $y = x_1$ 即可,那么 $x_2 = x - y \in \mathbb{S}^{\perp}$ 。

7.3.2 投影到 1 维子空间

接下来,我们看一下如何寻找一个投影矩阵 P_{π} 使得向量投影到某个 1 维子空间上。

将 2 维空间的点投影到 1 维子空间上。

7.3.2 投影到 1 维子空间

投影到一维子空间

设基底矩阵 B = [b], 也就是这组基中仅有一个向量。

设 \mathbb{R}^n 的子空间 $\mathbb{W} = \text{Col}(B)$, 我们想寻找一个点 $\pi_{\mathbb{W}}(x) \in \mathbb{W}$ 最接近 x。

因为 $\pi_{\mathbb{W}}(\mathbf{x}) \in \mathbb{W}$,又 $\mathbb{W} = \mathsf{Col}(\mathbf{B}) = \mathbf{span}\{\mathbf{b}\}$ 。

所以 $\pi_{\mathbb{W}}(\mathbf{x}) = \lambda \mathbf{b}, \lambda \in \mathbb{R}$ 。

接下来,我们将逐步确定 λ , $\pi_{\mathbb{W}}(\mathbf{x})$ 和投影矩阵 \mathbf{P}_{π}

1. 确定 λ

因为 $\pi_{\mathbb{W}}(\boldsymbol{x}) \in \mathsf{Col}(\boldsymbol{B})$ 是 \boldsymbol{x} 的投影,所以 $\boldsymbol{x} - \pi_{\mathbb{W}}(\boldsymbol{x}) \in \mathsf{Null}(\boldsymbol{B}^{\mathrm{T}})$,有

$$\boldsymbol{b}^{\mathrm{T}}(\boldsymbol{x} - \pi_{\mathbb{W}}) = 0 \iff \boldsymbol{b}^{\mathrm{T}}\boldsymbol{x} - \lambda \boldsymbol{b}^{\mathrm{T}}\boldsymbol{b} = 0$$

从而

$$\lambda = \frac{\boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}}{\boldsymbol{b}^{\mathrm{T}} \boldsymbol{b}}$$

或者利用内积表示可得

$$\langle \boldsymbol{x}, \boldsymbol{b} \rangle - \lambda \langle \boldsymbol{b}, \boldsymbol{b} \rangle = 0 \iff \lambda = \frac{\langle \boldsymbol{x}, \boldsymbol{b} \rangle}{\langle \boldsymbol{b}, \boldsymbol{b} \rangle} = \frac{\langle \boldsymbol{x}, \boldsymbol{b} \rangle}{||\boldsymbol{b}||^2}.$$

7.3.2 投影到 1 维子空间

2. 确定 $\pi_{\mathbb{W}}(\boldsymbol{x})$

因为 $\pi_{\mathbb{W}}(\mathbf{x}) = \lambda \mathbf{b}$,由上面的结论可得:

$$\pi_{\mathbb{W}}(oldsymbol{x}) = rac{\langle oldsymbol{x}, oldsymbol{b}
angle}{||oldsymbol{b}||^2} oldsymbol{b} = rac{oldsymbol{b}^{ ext{T}} oldsymbol{x}}{||oldsymbol{b}||^2} oldsymbol{b}$$

我们可以给出 $\pi_{\mathbb{W}}(\mathbf{x})$ 的长度

$$||\pi_{\mathbb{W}}(\boldsymbol{x})|| = ||\lambda \boldsymbol{b}|| = |\lambda|||\boldsymbol{b}||$$
$$= |\cos \omega|||\boldsymbol{x}||||\boldsymbol{b}|| \frac{||\boldsymbol{b}||}{||\boldsymbol{b}||^2} = |\cos \omega|||\boldsymbol{x}||$$

其中 ω 是 \boldsymbol{x} 和 \boldsymbol{b} 之间的夹角, $\cos \omega = \frac{\boldsymbol{b}^{\mathrm{T}} \boldsymbol{x}}{\|\boldsymbol{b}\| \|\boldsymbol{x}\|}$ 。

7.3.2 投影到 1 维子空间

3. 确定投影矩阵 P_{π}

投影矩阵 P_{π} 是投影 $\pi_{\mathbb{W}}(x)$ 对应的变换矩阵, 那么就有 $\pi_{\mathbb{W}}(x) = P_{\pi}x$, 则有

$$\pi_{\mathbb{W}}(oldsymbol{x}) = \lambda oldsymbol{b} = oldsymbol{b}\lambda = oldsymbol{b}rac{oldsymbol{b}^{ ext{T}}oldsymbol{x}}{||oldsymbol{b}||^2} = rac{oldsymbol{b}oldsymbol{b}^{ ext{T}}}{||oldsymbol{b}||^2}oldsymbol{x}$$

我们立刻可以看出

$$oldsymbol{P}_{\pi} = rac{oldsymbol{b} oldsymbol{b}^{ ext{T}}}{||oldsymbol{b}||^2}$$

注:

 bb^{T} 是一个对称矩阵,而 $b^{\mathrm{T}}b$ 则是一个标量。

确定投影到 \mathbb{R}^3 的子空间 $\mathbf{span}\{b\}$ 上的投影矩阵 P_{π} 。 其中 $b=(1,2,2)^{\mathrm{T}}$ 由上面的结论可得

$$oldsymbol{P_{\pi}} = rac{oldsymbol{b}^{\mathrm{T}}}{oldsymbol{b}^{\mathrm{T}}oldsymbol{b}} = rac{1}{9}egin{pmatrix} 1 \ 2 \ 2 \end{pmatrix} egin{pmatrix} 1 & 2 & 2 \end{pmatrix} = rac{1}{9}egin{pmatrix} 1 & 2 & 2 \ 2 & 4 & 4 \ 2 & 4 & 4 \end{pmatrix}$$

给定向量 $x = (1,1,1)^{T}$ 其投影为

$$\pi_{\mathbb{W}}(oldsymbol{x}) = oldsymbol{P}_{\pi}(oldsymbol{x}) = rac{1}{9} egin{pmatrix} 1 & 2 & 2 \ 2 & 4 & 4 \ 2 & 4 & 4 \end{pmatrix} egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} = rac{1}{9} egin{pmatrix} 5 \ 10 \ 10 \end{pmatrix} \in \mathit{Col}\left(egin{pmatrix} 1 \ 2 \ 2 \end{pmatrix}
ight)$$

7.3.3 投影到一般子空间

接下来,我们考虑更一般的情况。

我们将 \mathbb{R}^m 中的向量 x 投影到更高维的子空间中。

投影到一般的子空间中

设 $\boldsymbol{B} = (\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$ 是子空间 \mathbb{U} 的一个有序基底。任何 \mathbb{U} 上的投影 $\pi_{\mathbb{U}}(\boldsymbol{x})$ 必须是 \mathbb{U} 中的一个元素。故有

$$\pi_{\mathbb{U}}(\pmb{x}) = \sum_{i=1}^n \lambda_i \pmb{b}_i$$

和一维情况一样,我们将逐步确定 $\lambda_1,...,\lambda_n$, $\pi_{\mathbb{W}}(\mathbf{z})$ 和投影矩阵 \mathbf{P}_{π}

1. 确定 $\lambda_1, \ldots, \lambda_n$

设

$$\pi_{\mathbb{U}}(oldsymbol{x}) = \sum_{i=1}^n \lambda_i oldsymbol{b}_i = oldsymbol{B}oldsymbol{\lambda}$$

其中
$$m{B} = [m{b}_1,...,m{b}_n] \in \mathbb{R}^{m \times n}, m{\lambda} = [\lambda_1,...,\lambda_n]^{\mathrm{T}} \in \mathbb{R}^n$$
。
因为 $\pi_{\mathbb{U}}(m{x})$ 是 $m{x}$ 的投影,所以 $m{x} - \pi_{\mathbb{U}}(m{x}) \in \mathsf{Null}(m{B}^{\mathrm{T}})$

$$m{b}_1^{\mathrm{T}}(m{x} - \pi_{\mathbb{U}}(m{x})) = \langle m{b}_1, m{x} - \pi_{\mathbb{U}}(m{x}) \rangle = 0$$

$$m{b}_2^{\mathrm{T}}(m{x} - \pi_{\mathbb{U}}(m{x})) = \langle m{b}_2, m{x} - \pi_{\mathbb{U}}(m{x}) \rangle = 0$$

$$\vdots$$

$$m{b}_{-}^{\mathrm{T}}(m{x} - \pi_{\mathbb{U}}(m{x})) = \langle m{b}_n, m{x} - \pi_{\mathbb{U}}(m{x}) \rangle = 0$$

使用矩阵可以将上式改写成

$$egin{aligned} m{b}_1^{\mathrm{T}}(m{x}-m{B}m{\lambda}) &= 0 \ &\vdots \ m{b}_n^{\mathrm{T}}(m{x}-m{B}m{\lambda}) &= 0 \end{aligned}$$

故有

$$egin{pmatrix} egin{pmatrix} oldsymbol{b}_1^{\mathrm{T}} \ dots \ oldsymbol{b}_n^{\mathrm{T}} \end{pmatrix} ig(oldsymbol{x} - oldsymbol{B}oldsymbol{\lambda}ig) = oldsymbol{0} \iff oldsymbol{B}^{\mathrm{T}}oldsymbol{B}oldsymbol{\lambda} = oldsymbol{B}^{\mathrm{T}}oldsymbol{x} = oldsymbol{B}^{\mathrm{T}}oldsymbol{x}$$

最终的方程我们称之为正规方程。因为 $b_1, ..., b_n$ 是 \mathbb{U} 的基。因此 $B^{\mathsf{T}}B$ 是可逆的

$$(\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B}\boldsymbol{y}=\boldsymbol{0} \implies \boldsymbol{y}^{\mathrm{T}}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B}\boldsymbol{y}=0 \implies \boldsymbol{B}\boldsymbol{y}=\boldsymbol{0})$$
。也就是说

$$\boldsymbol{\lambda} = (\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{x}$$

2. 确定 $\pi_{\mathbb{U}}(\boldsymbol{x})$

$$\lambda = (\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{x}$$

 λ 也就是 $\pi_{\mathbb{I}}(x)$ 在有序基底 **B** 下的坐标。

$$\pi_{\mathbb{U}}(oldsymbol{x}) = oldsymbol{B}oldsymbol{\lambda} = oldsymbol{B}(oldsymbol{B}^{\mathrm{T}}oldsymbol{B})^{-1}oldsymbol{B}^{\mathrm{T}}oldsymbol{x}$$

3. 确定 P_{π}

由上面的讨论容易看出

$$\boldsymbol{P}_{\pi} = \boldsymbol{B}(\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{T}}$$

已知
$$\mathbb{R}^3$$
 中的子空间 $\mathbb{U}=\mathbf{span}\left\{\begin{pmatrix}1\\1\\1\end{pmatrix},\begin{pmatrix}0\\1\\2\end{pmatrix}\right\}$ 和向量 $\boldsymbol{x}=\begin{pmatrix}6\\0\\0\end{pmatrix}$,确定 \boldsymbol{x} 投影到 \mathbb{U} 上的坐标 $\boldsymbol{\lambda}$ 和投影点 $\pi_{\mathbb{U}}(\boldsymbol{x})$ 和投影矩阵 \boldsymbol{P}_{π}

解

首先确定
$$\boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$

其次计算

$$\boldsymbol{B}^{\mathrm{T}}\boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}, \quad \boldsymbol{B}^{\mathrm{T}}\boldsymbol{x} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$

然后只需要解方程 $\mathbf{B}^{\mathrm{T}}\mathbf{B}\boldsymbol{\lambda} = \mathbf{B}^{\mathrm{T}}\mathbf{x}$ 得到 $\boldsymbol{\lambda}$.

$$\begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \iff \boldsymbol{\lambda} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

故投影点 $\pi_{\mathbb{W}}(\boldsymbol{x}) = \boldsymbol{B}\boldsymbol{\lambda} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$ 最后

$$m{P}_{\pi} = m{B}(m{B}^{\mathrm{T}}m{B})^{-1}m{B}^{\mathrm{T}} = rac{1}{6} egin{pmatrix} 5 & 2 & -1 \ 2 & 2 & 2 \ -1 & 2 & 5 \end{pmatrix}$$

我们还可以验证 $P_{\pi}^2 = P_{\pi}$

- 投影使我们可以研究线性系统 Ax = b 没有解的情况。
- 回想一下, 这意味着 b 不在 A 的范围内, 即向量 b 不在 A 的列张成的子空间中。
- 鉴于线性方程无法精确求解,我们可以找到一个近似解。
- 想法是在最接近 **b** 的 **A** 列张成的子空间中找到向量,即,我们计算 **b** 到 **A** 列张成的 子空间上的正交投影。
- 此问题在实践中经常出现,并且解被称为超定系统的最小二乘解。
- 这将在后面讲一步讨论。

7.3.4 投影到仿射子空间

到目前为止,我们讨论了如何将向量投影到低维子空间 U上。 下面,我们将讨论如何将向量投影到仿射子空间上。

(b) Reduce problem to projection π_U onto vector subspace.

(c) Add support point back in to get affine projection π_L .

图 2: 投影到仿射空间

考虑图 (a)。给定一个仿射空间 $\mathbb{L} = x_0 + \mathbb{U}$, 其中 b_1 b_2 是 II 的基向量。为了确定 x 在 L 上的正交投影 $\pi_{\mathbb{L}}(\mathbf{x})$ 。

我们将问题转化为我们知道如何解决的问题: 投影到向量子空间上。为此,我们从x和 \mathbb{L} 中减去支撑点 x_0 , 所以 $\mathbb{L}-x_0=\mathbb{U}$ 恰好是向 量子空间 Ⅲ。

现在,我们前面讨论过的在子空间上的投影, 获得投影 $\pi_{\mathbb{U}}(\boldsymbol{x}-\boldsymbol{x}_0)$, 如图 (b) 所示。 最后我们通过添加 x_0 将该投影转换回 \mathbb{L} , 这样我们就可以得出仿射空间 L 上的正交投 影为

$$\pi_{\mathbb{L}}(\boldsymbol{x}) = \boldsymbol{x}_0 + \pi_{\mathbb{U}}(\boldsymbol{x} - \boldsymbol{x}_0)$$

to get affine projection π_L .

1 7.1 四个基本子空间

② 7.2 四个子空间的正交关系

③ 7.3 正交投影

4 7.4 正交基与 Gram-Schmit

7.4.1 标准正交基

线性代数中已经学过,线性空间中的向量可以由该空间的一组基表示。

[回忆:标准正交基]

设 n 维向量 e_1, e_2, \dots, e_r 是向量空间 $\mathbb{V}(\mathbb{V} \subset \mathbb{R}^n)$ 的一个基,如果 e_1, \dots, e_r 两两正交,且都是单位向量,即对于 $\forall i, i = 1, \dots, r$,有

$$\langle oldsymbol{e}_i, oldsymbol{e}_j
angle = \left\{ egin{aligned} 0, i
eq j \ 1, i = j \end{aligned}
ight.$$

则称 e_1, \dots, e_r 是 \mathbb{V} 的一个规范 (标准) 正交基,有时也简称做正交基。

为什么需要标准正交基的概念?用标准正交基表示向量有什么好处呢?

7.4.1 标准正交基

若 e_1, \cdots, e_r 是 \mathbb{V} 的一个规范正交基,那么 \mathbb{V} 中任意向量 a 可以由 e_1, \cdots, e_r 线性表示,设表示为

$$\boldsymbol{a} = \lambda_1 \boldsymbol{e}_1 + \lambda_2 \boldsymbol{e}_2 + \dots + \lambda_r \boldsymbol{e}_r,$$

为求其中的系数 $\lambda_i(i=1,\cdots,r)$, 可以计算 e_i 与 a 的内积, 有

$$\langle \boldsymbol{e}_i, \boldsymbol{a} \rangle = \langle \boldsymbol{e}_i, \lambda_1 \boldsymbol{e}_1 + \lambda_2 \boldsymbol{e}_2 + \dots + \lambda_r \boldsymbol{e}_r \rangle = \lambda_1 \langle \boldsymbol{e}_i, \boldsymbol{e}_1 \rangle + \lambda_2 \langle \boldsymbol{e}_i, \boldsymbol{e}_2 \rangle + \dots + \lambda_r \langle \boldsymbol{e}_i, \boldsymbol{e}_r \rangle = \lambda_i$$

即

$$\lambda_i = \langle \boldsymbol{a}, \boldsymbol{e}_i \rangle$$

利用这个公式能方便地求得向量的坐标。

因此, 我们给向量空间取基时常常取标准正交基。

本讲最后一节应用投影的思想,确定 Col(A) 中的一组标准正交基。

投影与基的正交化

设 a_1, \cdots, a_r 是向量空间 \mathbb{V} 的一个基: 我们的目的是找到一组正交基 e_1, \cdots, e_r 使得

$$\operatorname{\mathbf{span}}\{oldsymbol{e}_1,\cdots,oldsymbol{e}_r\}=\operatorname{\mathbf{span}}\{oldsymbol{a}_1,\cdots,oldsymbol{a}_r\}$$

我们可以这样做,我们先取 a_1 作为一个基。那么 a_2 可以正交分解

$$a_2 = a_2^{(1)} + a_2^{(2)},$$

其中 $a_2^{(1)} \in Col((a_1)), a_2(2) \in Null((a_1)^T)$ 。利用投影公式:

$$oldsymbol{a}_2^{(1)} = rac{\langle oldsymbol{b}_1, oldsymbol{a}_2
angle}{\langle oldsymbol{b}_1, oldsymbol{b}_1
angle} oldsymbol{b}_1$$

$$oldsymbol{a}_2^{(2)} = oldsymbol{a}_2 - rac{\langle oldsymbol{b}_1, oldsymbol{a}_2
angle}{\langle oldsymbol{b}_1, oldsymbol{b}_1
angle} oldsymbol{b}_1$$

我们记 $a_2^{(2)}$ 为 b_2 。并把 b_2 添加到正交基中, $\operatorname{span}\{a_1,a_2\}=\operatorname{span}\{b_1,b_2\}$ 。注意这里 b_1,b_2 还不是标准正交基。

假设我们已经有了一组有序正交基底 $B_k = (b_1, b_2, \cdots, b_k)$, 那么 a_{k+1} 可以正交分解

$$a_{k+1} = a_{k+1}^{(1)} + a_{k+1}^{(2)},$$

其中 $\boldsymbol{a}_{k+1}^{(1)} \in \mathsf{Col}(\boldsymbol{B}_k), \boldsymbol{a}_{k+1}(2) \in \mathsf{Null}(\boldsymbol{B}_k^{\mathrm{T}})$ 。利用投影公式:

$$oldsymbol{a}_{k+1}^{(1)} = \pi_{\mathsf{Col}(oldsymbol{B}_k)}(oldsymbol{a}_{k+1}) = oldsymbol{B}_k(oldsymbol{B}_k^{\mathrm{T}}oldsymbol{B}_k)^{-1}oldsymbol{B}_k^{\mathrm{T}}oldsymbol{a}_{k+1}$$

$$egin{aligned} egin{aligned} egin{pmatrix} \left\langle oldsymbol{b}_1, oldsymbol{b}_1
ight
angle & \left\langle oldsymbol{b}_1, oldsymbol{b}_1
ight
angle & \cdots & \left\langle oldsymbol{b}_1, oldsymbol{b}_1
ight
angle & \cdots & \left\langle oldsymbol{b}_k, oldsymbol{b}_k
ight
angle \end{pmatrix} & \left\langle \left\langle oldsymbol{b}_1, oldsymbol{a}_{k+1}
ight
angle
ight
angle & \left\langle \left\langle oldsymbol{b}_1, oldsymbol{a}_{k+1}
ight
angle \\ \left\langle oldsymbol{b}_k, oldsymbol{a}_{k+1}
ight
angle & \left\langle \left\langle oldsymbol{b}_1, oldsymbol{a}_{k+1}
ight
angle \\ \left\langle \left\langle oldsymbol{b}_k, oldsymbol{a}_{k+1}
ight
angle & \left\langle \left\langle oldsymbol{b}_1, oldsymbol{a}_{k+1}
ight
angle \end{pmatrix} \end{aligned}$$

而 $\{b_1, \dots, b_k\}$ 是相互正交的。也就是说若 $i \neq j$, $\langle b_i, b_j \rangle = 0$ 。

所以

$$egin{aligned} oldsymbol{a}_{k+1}^{(1)} &= \left(oldsymbol{b}_1, oldsymbol{c}_k, oldsymbol{b}_k
ight) \left(egin{aligned} \left\langle oldsymbol{b}_1, oldsymbol{b}_1
ight
angle & \cdot \cdot \cdot & \left\langle oldsymbol{b}_k, oldsymbol{a}_{k+1}
ight
angle \\ & & \left\langle oldsymbol{b}_1, oldsymbol{a}_{k+1}
ight
angle & \left\langle oldsymbol{b}_2, oldsymbol{a}_{k+1}
ight
angle & oldsymbol{b}_2
ight. & \left\langle oldsymbol{b}_k, oldsymbol{a}_{k+1}
ight
angle \\ & & \left\langle oldsymbol{b}_1, oldsymbol{a}_{k+1}
ight
angle & oldsymbol{b}_2
ight. & \left\langle oldsymbol{b}_2, oldsymbol{a}_{k+1}
ight
angle & oldsymbol{b}_2
ight. \end{aligned}$$

而 $a_{k+1}^{(2)} = a_{k+1} - a_{k+1}^{(1)}$,我们记 $a_{k+1}^{(2)}$ 为 b_{k+1} ,并把 b_{k+1} 添加到正交基中, $\operatorname{span}\{a_1, a_2, \cdots, a_{k+1}\} = \operatorname{span}\{b_1, b_2, \cdots, b_{k+1}\}$ 。 以此类推,我们可以得到 $\{b_1, b_2, \cdots, b_r\}$ 使得

$$\operatorname{span}\{\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_r\}=\operatorname{span}\{\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_r\}.$$

只需要再把这组基单位化即可。

7.4.2 Gram-Schmidt 正交化

总结之前的过程,可以通过以下方法求得 \mathbb{V} 的一个规范正交基 e_1, \cdots, e_r 。这种方法称为 Gram-Schmidt 正交化。

取

$$egin{aligned} m{b}_1 &= m{a}_1; \ m{b}_2 &= m{a}_2 - rac{\langle m{b}_1, m{a}_2
angle}{\langle m{b}_1, m{b}_1
angle} m{b}_1; \end{aligned}$$

.

$$oldsymbol{b}_r = oldsymbol{a}_r - rac{\langle oldsymbol{b}_1, oldsymbol{a}_r
angle}{\langle oldsymbol{b}_1, oldsymbol{b}_1
angle} oldsymbol{b}_1 - rac{\langle oldsymbol{b}_2, oldsymbol{a}_r
angle}{\langle oldsymbol{b}_2, oldsymbol{b}_2
angle} oldsymbol{b}_2 - \dots - rac{\langle oldsymbol{b}_{r-1}, oldsymbol{a}_r
angle}{\langle oldsymbol{b}_{r-1}, oldsymbol{b}_{r-1}
angle} oldsymbol{b}_r$$

然后把它们单位化,取

$$oldsymbol{e}_1 = rac{1}{\|oldsymbol{b}_1\|}oldsymbol{b}_1, oldsymbol{e}_2 = rac{1}{\|oldsymbol{b}_2\|}oldsymbol{b}_2, \cdots, oldsymbol{e}_r = rac{1}{\|oldsymbol{b}_r\|}oldsymbol{b}_r$$

就是 ♥ 的一个规范正交基。

求向量组 $\mathbf{a}_1 = (3,1,1)^T$, $\mathbf{a}_2 = (2,2,0)^T$ 的生成子空间的标准正交基。

取

$$\begin{aligned}
\mathbf{b}_1 &= (3, 1, 1)^T \\
\mathbf{b}_2 &= \mathbf{a}_2 - \frac{\mathbf{b}_1^T \mathbf{a}_2}{\mathbf{b}_1^T \mathbf{b}_1} \mathbf{b}_1 = (2, 2, 0)^T - \frac{8}{11} (3, 1, 1)^T = \frac{-2}{11} (1, -7, 4)^T \\
\mathbf{e}_1 &= \frac{1}{\sqrt{11}} (3, 1, 1)^T \\
\mathbf{e}_2 &= \frac{1}{\sqrt{66}} (1, -7, 4)^T
\end{aligned}$$

故标准正交基为 e_1, e_2 : 即,

$$\frac{1}{\sqrt{11}}(3,1,1)^T, \frac{1}{\sqrt{66}}(1,-7,4)^T$$