## NASA Technical Memorandum 86324

NASA-TM-86324 1985000924

# Computer Subroutines for Estimation of Human Exposure to Radiation in Low Earth Orbit

Francis A. Cucinotta and John W. Wilson

FEBRUARY 1985

LIBRARY COPY

1005

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA



### NASA Technical Memorandum 86324

# Computer Subroutines for Estimation of Human Exposure to Radiation in Low Earth Orbit

Francis A. Cucinotta

Old Dominion University

Norfolk, Virginia

John W. Wilson

Langley Research Center

Hampton, Virginia



Scientific and Technical Information Branch

| · |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

#### **Summary**

Computer subroutines to calculate human exposure to trapped radiations in low Earth orbit (LEO) on the basis of a simple approximation of the human geometry by spherical shell shields of varying thickness are presented and detailed. The subroutines calculate the dose to critical body organs and the fraction of exposure limit reached as a function of altitude of orbit, degree of inclination, shield thickness, and days in mission. Exposure rates are compared with current exposure limits.

#### Introduction

With the advent of the Space Transportation System, there is rapid advancement in utilization of space in low Earth orbit (LEO). Principal interests in LEO are observation satellites, large space antennas, and a permanently manned space station. Increasing power requirements to promote manned capability and space industrialization are demanding large area solar arrays in addition to large components of living and working quarters. The net effect is increased atmospheric drag requiring higher orbital altitudes and greater radiation exposure. Furthermore, greater demands are being placed on human performance as a result of the high levels of extravehicular activity (EVA) associated with erectable structures and a manned space station.

In planning such missions, it is necessary to consider the impact of radiation exposure on mission activity. This report describes computer subroutines to calculate radiation exposure rates to various organs of the human body and to compare these rates with exposure limits. (See appendix A.) The computer code uses simple geometrical models of the human body and of the spacecraft to provide first-order estimates of limits for planning purposes. The models are based on time-averaged exposure rates without regard to important time variations in exposure.

#### **Symbols**

| a, b, d | coefficients used in calculations   |
|---------|-------------------------------------|
| B.F.O.  | blood forming organ                 |
| EVA     | extravehicular activity             |
| h       | altitude, km                        |
| r       | dosimeter radius, g/cm <sup>2</sup> |
| z       | thickness, g/cm <sup>2</sup>        |

## Spacecraft Shielding and Environmental Data

The complex geometric structure of all spacecraft makes specific exposure relations within their interior difficult to define. Various approximate methods have been developed over the years, which have resulted in great simplification (refs. 1 to 4). It is assumed that a large habitat can be approximated by a spherical shell with the astronaut at the center. This is a maximum exposure for such a spherical configuration.

In the present calculations, only radiations trapped in the Earth's magnetic field are considered. The effect of ignoring other sources of radiation is discussed in reference 5. The trapped particle fluence is taken from a compilation of data (ref. 6) derived from the AE4 electron model for inner-zone electrons, AE5 outer-zone electron models which intersect low altitudes at high latitudes, and AP5, AP6, and AP7 proton models which are combined as low-, medium-, and high-energy protons for solar maximum. More recent data are obtainable from the National Space Science Data Center (NSSDC) but were not available for this study. The new data set is within the factor 2 of uncertainty of the inner-zone model.

The computer code SHIELDOSE of Seltzer from the National Bureau of Standards (ref. 7) is used to convert the trapped radiation fluence data to one-half dose at the center of a solid aluminum sphere. The data are for 42 shield thicknesses ranging from 0.03 g/cm² to 30.0 g/cm² for altitudes of 200 km at 30°, 60°, and 90° inclination and 400, 600, 800, and 1000 km at 0°, 30°, 60°, and 90° inclination. The data calculated by SHIELDOSE are converted to full dose in rads per day by the computer subroutine READTPE.

An interpolation procedure is performed by the computer subroutine DOSECLC to calculate doses as a function of altitude. To interpolate in altitude, it is assumed that the dose is proportional to a power of the altitude

$$D = bh^a \tag{1}$$

where D is the dose to be calculated at the altitude h, and a and b are defined as follows:

$$a = \frac{\log(D_1/D_2)}{\log(h_1/h_2)} \tag{2}$$

$$b = \frac{D_1}{h_1^a} \tag{3}$$

In equations (2) and (3),  $h_1$  and  $h_2$  are the first altitudes existing in the data base below and above the point of interpolation, respectively, and  $D_1$  and  $D_2$  are the corresponding doses.

No data existed in the data base for an altitude of 200 km at 0° inclination. To extrapolate into the region between 200 km and 400 km at this inclination, the following approximation is used:

$$D = 100^P \ D(h = 400) \tag{4}$$

where

$$P = \frac{h - 400}{100} \tag{5}$$

In equation (4), D(h = 400) is the dose at 400 km at 0° inclination, and D is the dose to be calculated at the altitude h.

To interpolate as a function of shield thickness, the subroutine IUNI of the mathematical subroutine library of the Langley Central Scientific Computer Complex is used. Subroutine IUNI uses a first-order Lagrangian interpolation. Also, because the data base contained only four values of degree of inclination, no interpolation was attempted over this variable.

#### **Astronaut Self-Shielding**

The human body is a complicated geometric arrangement, and the specific organs of interest are likewise distributed in complex geometric patterns. Detailed man models have been derived (ref. 4) and substantially improved (ref. 8). To approximate the dose to various body organs, the work of Billings and Langley (ref. 9), which uses a simple spherical shell model of critical body organs, is utilized. This model is represented by spherical shell thickness equivalent to the depth of the organ and a coefficient representing the amount of radiation incident on the organ in question. The present model used the minimum-number proton dosimeters parameters (table 3 of ref. 9) except for the skin dose, which used the minimum-error parameters (table 2 of ref. 9). The skin dose is approximated by a dosimeter radius

$$r = \begin{cases} z/4 & (z \le 8 \text{ g/cm}^2) \\ 2 & (z > 8 \text{ g/cm}^2) \end{cases}$$
 (6)

with coefficient

$$C(z) = a + be^{-\alpha z} \tag{7}$$

where z is the vehicle shield thickness. The remaining organs are correspondingly approximated for a constant r shown in table 1 along with the coefficients a, b, and  $\alpha$ , used in the present calculations.

#### Method of Calculation

In calculating the dose to specific body organs, the human body geometry and spacecraft geometry are combined according to the joint probability distribution (ref. 9), which for our simplified geometry becomes

$$D_{\text{organ}} = C_{\text{organ}}(z) D_{\text{sphere}}(r_{\text{organ}} + Z)$$
 (8)

where  $C_{\text{organ}}(z)$  is the coefficient calculated by equation (7) for the specific body organ,  $D_{\text{sphere}}(x)$  is the dose in the center of an aluminum sphere of radius x;  $r_{\text{organ}}$  is the corresponding organ radius (table 1), and z

is the spacecraft shield thickness assumed to be a spherical shell with the dose point at the center. An example of a specific shield is associated with each thickness shown in table 2 as noted.

The calculations are made as a function of altitude of orbit, degree of inclination, thickness of spacecraft, and days in mission. These variables are specified by the user and must be passed to the subroutine DOSECLC from the user's main program. Limitations on the values of these user-specified variables are a minimum of 200 km and a maximum of 1000 km for the altitude of orbit, values of 0°, 30°, 60°, and 90° for degree of inclination, and a minimum of 0.03 g/cm² and a maximum of 24.5 g/cm² for thickness of spacecraft.

Radiation exposure constraints are discussed in reference 5. Exposure limits were available for 30-, 60-, 365-, and 3650-day periods (table 3). Exposure limits have been revised for the blood forming organs (B.F.O.), skin, and lens, and these values are used in the present calculations. For the testes, we use the values of reference 10. The fraction of exposure limit reached for a mission is calculated by the subroutines for the first exposure period above the number of days specified by the user. An exception is for missions longer than 365 days. In these cases, multiples of the 365-day limit are used.

#### Sample Calculations

Sample calculations using the computer subroutines for a 90-day mission are shown in tables 4 and 5. For a given shield thickness, exposure limits are approached and in some cases exceeded for the higher altitudes, depending on the body organ and degree of inclination.

A main program utilizing the computer subroutines for a 90-day mission with 8 hours of EVA every 10 days is shown in appendix B. The results generated are shown in table 6. The shielding values for time in EVA are given in table 2. The shielding for the lens is taken as a space helmet, and shielding for the B.F.O., skin, and testes is taken as a space suit. The increase in the fraction of exposure limit caused by the time in EVA can be seen by comparing these results with the corresponding values for a mission without EVA in table 4(a). The EVA causes less than a 3-percent increase in the exposure limit for the B.F.O., lens, and testes, and an increase of approximately 20 percent for the skin.

#### **Concluding Remarks**

A set of computer subroutines have been developed to estimate long-term time-averaged human exposure in low Earth orbit (LEO), and the use of these subroutines has been explained. Users of the subroutines should be mindful of the limitations of the simple geometric models of the human body and of the spacecraft, as well as the inherent uncertainties of the environmental models (approximately a factor of 2). Results of these subroutines should be interpreted in the context of current radiation constraints. Time variations in exposure rates have not been taken into account and are expected to

be of vital importance during extravehicular activity operations as a means of reducing exposure.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 November 14, 1984

#### Appendix A

#### **Program Listing**

The computer subroutines given in this appendix were developed for the present calculations, except for IUNI, which is taken from the mathematical subroutine library of the Langley Central Scientific Computer Complex.

```
THIS SUBROUTINE READS DATA GENERATED BY THE PROGRAM SHIELDOSE FOR 1/2 DOSE
       AT THE CENTER OF A SOLID ALUMINUM SPHERE THE DATA IS FOR SHIELD DEPTHS OF .03 TO 30. (GM/CM2),
      FOR 200 KM AT 30, 60, AND 90 DEGREES INCLINATION AND FOR 400, 600, 800, AND 1000 KM AT 0, 30, 60, AND 90 DERGREES INCLINATION THE DATA IS CONVERTED BY THE SUBROUTINE TO FULLDOSE
       FOR RAD/DAY
          SUBROUTINE READTPE(DOSEF, Z)
          DIMENSION Z(42), DOST(42), DOSEF(42,4,5)
          INC=1
          IORB=1
          INC=INC+1
          IF(INC.LT.5) GO TO 20
          INC=1
         IORB=IORB+1
READ(20,100)IMAX
   20
          FORMAT(IS)
  100
          IF(EOF(20).NE.0; GO TO 90
         DO 30 I=1,42
READ(20,200) Z(1),DOST(I)
         FORMAT(22X,F11.3,66X,E11.3)
DOST(I)=2.*DOST(I)
DOST(I)=DOST(I)/365.
  200
         DOSEF(I, INC, IORB) = DOST(I)
   30
         CONTINUE
         GO TO 10
   90
         RETURN
         END
THIS SUBROUTINE CALCULATES EXPOSURE RATES TO THE HUMAN BODY FOR VARIOUS BODY ORGANS AND COMPARES
    THESE RATES TO EXPOSURE LIMITS. THE DOSE RATES ARE CALCULATED AS A FUNCTION OF THE FOLLOWING VARIABLES
    PASSED TO THE SUBROUTINE:
          NDEG
           DEGREE OF INCLINATION OF ORBIT
           MUST BE EITHER 0,30,60, OR 90
      2. DIST
           ALTITUDE OF ORBIT
           BETWEEN 200. AND 1000. KM
```

```
3. DAYS
      NUMBER OF DAYS IN MISSION
  4. ZINPUT
      THICKNESS OF SPACECRAFT
      BETWEEN .03 AND 24.5 GM/CM2
    SUBROUTINE DOSECLC(NDEG, DIST, DAYS, ZINPUT, DRATIO, DTOT)
    DIMENSION DOSEF (42,4,5), Z(42), R(4), C(4), DOST (42)
   1 ,TIME(4),DOSLMT(4,4),DRATIO(4),DTOT(4),ALT(5)
   2 ,DOST1(42),DOST2(42)
    CALL READTPE (DOSEF, Z)
    CALL DOSELMT(DOSLMT, TIME)
     IPT=-1
     INC=NDEG/30+1
    NF = 1
    D0 20 I=1,4
     IF(DAYS.GT.TIME(I)) NF=I+1
     IF(NF.EQ.4) NF=3
20
     CONTINUE
     ALT(1) = 200.
    D0 30 I=2.5
     ALT(I) = ALT(I-1) - 200.
30
     DO 50 I=1,5
     IF(DIST.NÉ.ALT(I)) GO TO 57
     IORB2=I
     IORB1=IORB2
    GO TO GO
IF(DIST.GT.ALT(1)) IORB1=I
57
     IORB2=IORB1+1
50
     CONTINUE
60
     IF(INC.NE.1.AND.DIST.GE.400.) GO TO 65
     IORB2=IORB1
     P = (DIST - 400.) / 100.
     DO 40 I=1,42
     DOST1(I) = (10.**P)*DOSEF(I,1,2)
     DOST1(I)=ALOG(DOST1(I))
     DOST2(I)=DOST1(I)
40
     CONTINUE
     GO TO 75
DO 70 I=1,42
65
     DOST1(I)=DOSEF(I,INC,IORB1)
DOST2(I)=DOSEF(I,INC,IORB2)
     DOST1(I)=ALOG(DOST1(I))
     DOST2(I)=ALOG(DOST2(I))
     CONTINUE
70
75
     CALL COEFF(ZINPUT,R,C)
    DO 80 J=1,4
IF(J.NE.2) GO TO 99
     IF(ZINPUT.LE.8.0) R(J)=ZINPUT/4.
99
     X = ZINPUT + R(J)
    CALL IUNI(42,42,Z,1,DOST1,1,X,DOSTX1,IPT,IRR1)
CALL IUNI(42,42,Z,1,DOST2,1,X,DOSTX2,IPT,IRR2)
DOSTX1=EXP(DOSTX1)
     DOSTX2=EXP(DOSTX2)
     DOSTX1=C(J)*DOSTX1
```

```
DOSTX2=C(J)*DOSTX2
     ANUM=ALOG(DOSTX1/DOSTX2)
     ADEN=ALOG(ALT(IORB1)/ALT(IORB2))
     IF(IORB1.NE.IORB2) A=ANUM/ADEN
     IF(IORB1.EQ.IORB2) A=1.
     ALT1=ALT(IORB1)
     IF(INC.EQ.1.AND.DIST.LT.400.) ALT1=DIST
     B=DOSTX1/(ALT1**A)
     D=B*(DIST**A)
     DTOT(J)=D*DAYS
     IYRS=DAYS/365
     IF(IYRS.EQ.0) IYRS=1
     DRATIO(J)=DTOT(J)/(IYRS*DOSLMT(J,NF))
 80
     CONTINUE
     WRITE(5,100) ZINPUT
     WRITE(5,110) DAYS
     WRITE(5,120) DIST, NDEG
     WRITE(5,130)
100
     FORMAT(///,2X,* SHIELD THICKNESS= *,F10.3,* (GM/CM2)*)
110
     FORMAT(/,2X,* DAYS IN THE MISSION *.F9.4)
     FORMAT(3X,F6.2,* KM*,I4,* DEGREES*)
120
     FORMAT(/,3X,* DOSE IN RADS *)
130
     WRITE(5,140)
     FORMAT(/,6X,*
140
                     B.F.O.
                                    SKIN
                                                 LENS
                                                               TESTES*)
     WRITE(5,150) (DTOT(I).I=1.4)
     FORMAT(/,2X,4E13.5)
WRITE(5,160)
150
160
     FORMAT(//,*
                   FRACTION OF EXPOSURE LIMIT *)
     NNF=TIME(NF)
     WRITE(5,170) NNF
     FORMAT(* FOR*, 14, * DAY MISSION*)
170
     WRITE(5,140)
     WRITE(5,150) (DRATIO(I), I=1,4)
     RETURN
     END
   THIS SUBROUTINE USING THE SPHERICAL
   SHELL MODEL OF CRITICAL BODY ORGANS OF BILLINGS AND LANGLEY, GENERATES
   THE COEFFICIENT C(Z) USED IN THE
   CALCULATION OF THE DOSE TO BODY
   ORGANS,
      C(Z) = ATAB + BTAB \times EXP(-AL \times T)
   WHERE T IS THE SHIELD DEPTH
```

000000000000000

```
SUBROUTINE COEFF(T,R,C)
DIMENSION R(4),C(4),RTAB(4),ATAB(4),BTAB(4),AL(4)
DATA RTAB/5.5,2.,.5,5.5/
DATA ATAB/5.5,2.,.5,5.5/
DATA ATAB/5.5,2.,.5,5.5/
DATA BTAB/0.,-.356,-.206,.428/
DATA AL/1.0,.493,.25,.57/
DO 20 I=1,4
R(I)=RTAB(I)

20 C(I)=ATAB(I)+BTAB(I)*EXP(-AL(I)*T)
RETURN
END

C
C
C
THIS SUBROUTINE CONTAINS EXPOSURE LIMITS FOR
THE B.F.O., SKIN. LENS, AND TESTES FOR 30,90,365,
AND 3650 DAY PERIODS

C
C
SUBROUTINE DOSELMT(DOSE,TIME)
REAL DOSLMT(4,4),DOSE(4,4),TLMT(4),TIME(4)
DATA TLMT.DOSLMT/30.,90.,365.,3650.,
1 25.,75.,37.,13.,30.,80.0,40.,18.,
2 60.,170.,35.0,38.,200.,600.0,300.,200./
DO 1 J=1,4
DO 1 I=1,4
TIME(J)=TLMT(J)
DOSE(I,J)=DOSLMT(I,J)
1 CONTINUE
RETURN
END
```

|       | SUBROUTINE | IUNI(NMAX,N,X,NTAB,Y,IORDER,X0,Y0,IPT,IERR)          | FTN412 | 236 |
|-------|------------|------------------------------------------------------|--------|-----|
| С     | E1.1       |                                                      | IUNI   | 3   |
| C**** | *********  | <b>埃米斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯</b>        | *IUNI  | 4   |
| C*    |            |                                                      | *IUNI  | 5   |
| C*    | PURPOSE:   |                                                      | *IUNI  | 6   |
| C*    |            | SUBROUTINE IUNI USES FIRST OR SECOND ORDER           | *IUNI  | 7   |
| C*    |            | LAGRANGIAN INTERPOLATION TO ESTIMATE THE VALUES      | *IUNI  | 8   |
| C*    |            | OF A SET OF A SET OF FUNCTIONS AT A POINT XO. IUNI   | *IUNI  | 9   |
| C*    |            | USES ONE INDEPENDENT VARIABLE TABLE AND A DEPENDENT  | *IUNI  | 10  |
| C*    |            | VARIABLE TABLE FOR EACH FUNCTION TO BE EVALUATED.    | *IUNI  | 11  |
| C∗    |            | THE ROUTINE ACCEPTS THE INDEPENDENT VARIABLES SPACED | *IUNI  | 12  |
| C*    |            | AT EQUAL OR UNEQUAL INTERVALS. EACH DEPENDENT        | *IUNI  | 13  |

| C* |             | VARIABLE TABLE MUST CONTAIN FUNCTION VALUES CORRES- | *IUNI | 14 |
|----|-------------|-----------------------------------------------------|-------|----|
| C* |             | PONDING TO EACH X(I) IN THE INDEPENDENT VARIABLE    | *IUNI | 15 |
| C* |             | TABLE. THE ESTIMATED VALUES ARE RETURNED IN THE YO  | *IUNI | 16 |
| C* |             | ARRAY WITH THE N-TH VALUE OF THE ARRAY HOLDING THE  | *IUNI | 17 |
| C* |             | VALUE OF THE N-TH FUNCTION VALUE EVALUATED AT XO.   | *IUNI | 18 |
| C* |             |                                                     | *IUNI | 19 |
| C≯ | USE:        |                                                     | *IUNI | 20 |
| C* |             | CALL IUNI(NMAX.N.X.NTAB,Y.IORDER,X0,Y0,IPT,IERR)    | *IUNI | 21 |
| €. |             |                                                     | *IUNI | 22 |
| C* | PARAMETERS: |                                                     | *IUNI | 23 |
| €* |             |                                                     | *IUNI | 24 |
| C* | NMAX        | THE MAXIMUM NUMBER OF POINTS IN THE INDEPENDENT     | *IUNI | 25 |
| С× |             | VARIABLE ARRAY.                                     | *IUNI | 26 |
| C* |             |                                                     | *IUNI | 27 |
| C* | N           | THE ACTUAL NUMBER OF POINTS IN THE INDEPENDENT      | *IUNI | 28 |
| C* |             | ARRAY, WHERE N .LE. NMAX.                           | *IUNI | 29 |
| C* |             |                                                     | *IUNI | 30 |
| C* | Х           | A GNE-DIMENSIONAL ARRAY, DIMENSIONED (NMAX) IN THE  | *IUNI | 31 |
| C* |             | CALLING PROGRAM, WHICH CONTAINS THE INDEPENDENT     | *IUNI | 32 |
| C* |             | VARIABLES. THESE VALUES MUST BE STRICTLY MONOTONIC. | *IUNI | 33 |
| C* |             |                                                     | *IUNI | 34 |
| C* | NTAB        | THE NUMBER OF DEPENDENT VARIABLE TABLES             | *IUNI | 35 |
| C* |             |                                                     | *IUNI | 36 |
| C* | Y           | A TWO-DIMENSIONAL ARRAY DIMENSIONED (NMAX,NTAB) IN  | *IUNI | 37 |
| C* |             | THE CALLING PROGRAM. EACH COLUMN OF THE ARRAY       | *IUNI | 38 |
| C¥ |             | CONTAINS A DEPENDENT VARIABLE TABLE                 | *IUNI | 39 |
| C* |             |                                                     | *IUNI | 40 |
| C* | IORDER      | INTERPOLATION PARAMETER SUPPLIED BY THE USER.       | *IUNI | 41 |
| C* |             |                                                     | *IUNI | 42 |

| C* |     | =0 ZERO ORDER INTERPOLATION: THE FIRST FUNCTION     | *IUNI | 43 |
|----|-----|-----------------------------------------------------|-------|----|
| C* |     | VALUE IN EACH DEPENDENT VARIABLE TABLE IS           | *IUNI | 44 |
| C* |     | ASSIGNED TO THE CORRESPONDING MEMBER OF THE YO      | *IUNI | 45 |
| C* |     | ARRAY. THE FUNCTIONAL VALUE IS ESTIMATED TO         | *IUNI | 46 |
| C* |     | REMAIN CONSTANT AND EQUAL TO THE NEAREST KNOWN      | *IUNI | 47 |
| C* |     | FUNCTION VALUE.                                     | *IUNI | 48 |
| C* |     |                                                     | *IUNI | 49 |
| C* | Х0  | THE INPUT POINT AT WHICH INTERPOLATION WILL BE      | *IUNI | 50 |
| C* |     | PERFORMED.                                          | *IUNI | 51 |
| C* |     |                                                     | *IUNI | 52 |
| C⊁ | Υ0  | A ONE-DIMENSIONAL ARRAY DIMENSIONED (NTAB) IN THE   | *IUNI | 53 |
| C* |     | CALLING PEOGRAM. UPON RETURN THE ARRAY CONTAINS THE | *IUNI | 54 |
| C* |     | ESTIMATED VALUE OF EACH FUNCTION AT XO.             | *IUNI | 55 |
| C* |     |                                                     | *IUNI | 56 |
| C* | IPT | ON THE FIRST CALL IPT MUST BE INITIALIZED TO -1 SO  | *IUNI | 57 |
| C* |     | THAT MONOTONICITY WILL BE CHECKED. UPON LEAVING THE | *IUNI | 58 |
| C* |     | ROUTINE IPT EQUALS THE VALUE OF THE INDEX OF THE X  | *IUNI | 59 |
| C* |     | VALUE PRECEDING XO UNLESS EXTRAPOLATION WAS         | *IUNI | 60 |
| C* |     | PERFORMED. IN THAT CASE THE VALUE OF IPT IS         | *TUNI | 61 |
| C* |     | RETURNED AS:                                        | *IUNI | 62 |
| C* |     | =0 DENOTES XO .LT. X(1) IF THE X ARRAY IS IN        | *IUNI | 63 |
| C* |     | INCREASING ORDER AND X(1) .GT. XO IF THE X ARRAY    | *IUNI | 64 |
| €* |     | IS IN DECREASING ORDER.                             | *IUNI | 65 |
| C* |     | =N DENOTES XO .GT. X(N) IF THE X ARRAY IS IN        | *IUNI | 66 |
| C* |     | INCREASING ORDER AND XO .LT. X(N) IF THE X ARRAY    | *IUNI | 67 |
| C* |     | IS IN DECREASING ORDER.                             | *IUNI | 68 |
| C* |     |                                                     | *IUNI | 69 |
| C* |     | ON SUBSEQUENT CALLS, IPT IS USED AS A POINTER TO    | *IUNI | 70 |
| C* |     | BEGIN THE SEARCH FOR X0.                            | *IUNI | 71 |

| C*   |              |                               |                                                  | *IUNI  | 72  |
|------|--------------|-------------------------------|--------------------------------------------------|--------|-----|
| C*   | IERR         | ERROR PARAMETER GENI          | ERATED BY THE ROUTINE                            | *IUNI  | 73  |
| C*   |              | ≠0 NORMAL RETURN              |                                                  | *IUNI  | 74  |
| C*   |              | =J THE J-TH ELEMEN            | T OF THE X ARRAY IS OUT OF ORDER                 | *IUNI  | 75  |
| C*   |              | =-1 ZERO ORDER INTER          | RPOLÀTION PERFORMED BECAUSE                      | *IUNI  | 76  |
| C*   |              | IORDER =0.                    |                                                  | *IUNI  | 77  |
| €*   |              | *-2 ZERO ORDER INTER          | RPOLATION PERFORMED BECAUSE ONLY                 | *IUNI  | 78  |
| C*   |              | ONE POINT WAS IN              | X X ARRAY.                                       | *IUNI  | 79  |
| C*   |              | =-3 NO INTERPOLATION          | N WAS PERFORMED BECAUSE                          | *IUNI  | 80  |
| C*   |              | INSUFFICIENT PO               | INTS WERE SUPPLIED FOR SECOND                    | *IUNI  | 81  |
| C*   |              | ORDER INTERPOLAT              | TION.                                            | *IUNI  | 82  |
| C*   |              | =-4 EXTRAPOLATION WA          | AS PERFORMED                                     | *IUNI  | 83  |
| C*   |              |                               |                                                  | *IUNI  | 84  |
| C*   |              | UPON RETURN THE PARA          | METER IERR SHOULD BE TESTED IN                   | *IUNI  | 85  |
| C*   |              | THE CALLING PROGRAM.          |                                                  | *IUNI  | 86  |
| C⊁   |              |                               |                                                  | *IUNI  | 87  |
| С*   | REQUIRED RO  | UTINES                        | NONE                                             | *IUNI  | 88  |
| C*   |              |                               |                                                  | *IUNI  | 89  |
| C*   | SOURCE       |                               | CMPB ROUTINE MTLUP MODIFIED                      | *IUNI  | 90  |
| C*   |              |                               | BY COMPUTER SCIENCES CORPORATION                 | N*IUNI | 91  |
| C*   |              |                               |                                                  | *IUNI  | 92  |
| C*   | LANGUAGE     |                               | FORTRAN                                          | *IUNI  | 93  |
| €*   |              |                               |                                                  | *IUNI  | 94  |
| C*   |              |                               |                                                  | *IUNI  | 95  |
| C.*  | DATE RELEASE | ED                            | AUGUST 1,1973                                    | *IUNI  | 96  |
| C*   |              |                               |                                                  | *IUNI  | 97  |
| C*   | LATEST REVIS | SION                          | AUGUST 1,1973                                    | *IUNI  | 98  |
| C*   |              |                               |                                                  | *IUNI  | 99  |
| C*** | ********     | <del>******************</del> | <del>*************************************</del> | **IUNI | 100 |

|            | DIMENSION X(*),Y(NMAX,*),YO(*)                          | FTN41237 |
|------------|---------------------------------------------------------|----------|
|            | NM1=N-1                                                 | IUNI 105 |
|            | IERR=0                                                  | IUNI 106 |
|            | J=1                                                     | IUNI 107 |
|            | DELX=X(2)-X(1)                                          | FTN41239 |
| С          |                                                         | IUNI 109 |
| С          | TEST FOR ZERO ORDER INTERPOLATION                       | IUNI 110 |
| С          |                                                         | IUNI 111 |
|            | IF (IORDER .EQ. 0) GO TO 10                             | IUNI 112 |
|            | IF (N.LT. 2) GO TO 20                                   | IUNI 113 |
|            | GO TO 50                                                | IUNI 114 |
| 10         | IERR=-1                                                 | IUNI 115 |
|            | GO TO 30                                                | IUNI 116 |
| 20         | IERR=-2                                                 | IUNI 117 |
| 30         | DO 40 NT=1,NTAB                                         | IUNI 118 |
|            | YO(NT)=Y(1,NT)                                          | IUNI 119 |
| 40         | CONTINUE                                                | IUNI 120 |
|            | RETURN                                                  | IUNI 121 |
| 5 <b>0</b> | IF (IPT .GT1) GO TO 65                                  | IUNI 122 |
| С          |                                                         | IUNI 123 |
| C          | CHECK FOR TABLE OF NODE POINTS BEING STRICTLY MONOTONIC | IUNI 124 |
| С          | THE SIGN OF DELX SIGNIFIES WHETHER TABLE IS IN          | IUNI 125 |
| c          | INCREASING OR DECREASING ORDER.                         | IUNI 126 |
| С          |                                                         | IUNI 127 |
|            | IF (DELX .EQ. 0) GO TO 190                              | IUNI 128 |
|            | IF (N .EQ. 2) 00 TO 65                                  | IUNI 129 |
| С          |                                                         | IUNI 130 |
| C          | CHECK FOR SIGN CONSISTENCY IN THE DIFFERENCES OF        | IUNI 131 |
| С          | SUBSEQUENT PAIRS                                        | IUNI 132 |

| С  |           |                                                           | IUNI | 133 |
|----|-----------|-----------------------------------------------------------|------|-----|
|    |           | DO 60 J=2,NM1                                             | IUNI | 134 |
|    |           | IF (DELX * (X(J+1)-X(J))) 190,190,60                      | IUNI | 135 |
| ŧ  | <b>60</b> | CONTINUE                                                  | IUNI | 136 |
| С  |           |                                                           | IUNI | 137 |
| С  |           | IPT IS INITIALIZED TO BE WITHIN THE INTERVAL              | IUNI | 138 |
| С  |           |                                                           | IUNI | 139 |
| Ę  | 65        | IF (IPT .LT. 1) IPT=1                                     | IUNI | 140 |
|    |           | IF (IPT .GT. NM;) IPT=NM1                                 | IUNI | 141 |
|    |           | <pre>IN= SIGN (1.0,DELX *( X0-X(IPT)))</pre>              | IUNI | 142 |
| 7  | 70        | P= X(IPT) - X0                                            | IUNI | 143 |
|    |           | IF (P* (X(IPT +1)- X0)) 90,180,80                         | IUNI | 144 |
| 8  | 80        | IPT = IPT + IN                                            | IUNI | 145 |
| С  |           |                                                           | IUNI | 146 |
| С  |           | TEST TO SEE IF IT IS NECCESARY TO EXTRAPOLATE             | IUNI | 147 |
| С  |           |                                                           | IUNI | 148 |
|    |           | IF (IPT.GT.0 .AND. IPT .LT. N) GO TO 70                   | IUNI | 149 |
|    |           | IERR=-4                                                   | IUNI | 150 |
|    |           | IPT=IPT- IN                                               | IUNI | 151 |
| С  |           |                                                           | IUNI | 152 |
| С  |           | TEST FOR ORDER OF INTERPOLATION                           | IUNI | 153 |
| С  |           |                                                           | IUNI | 154 |
| С  |           |                                                           | IUNI | 155 |
| Ş  | 90        | IF (IORDER .GT. 1) GO TO 120                              | IUNI | 156 |
| C  |           |                                                           | IUNI | 157 |
| С  |           | FIRST ORDER INTERPOLATION                                 | IUNI | 158 |
| C. |           |                                                           | IUNI | 159 |
|    |           | DO 100 NT=1,NTAB                                          | IUNI | 160 |
|    |           | YO(NT)=Y(IFT,NT)+((Y(IFT+1,NT)- Y(IFT,NT))*(XO-X(IFT))))/ | IUNI | 161 |

|     | 1 (X(IPT+1)-X(IPT))                                               | IUNI | 162 |
|-----|-------------------------------------------------------------------|------|-----|
| 100 | CONTINUE                                                          | IUNI | 163 |
|     | IF (IERR .EQ4) IPT=IPT+IN                                         | IUNI | 164 |
|     | RETURN                                                            | IUNI | 165 |
| С   |                                                                   | IUNI | 166 |
| С   | SECOND ORDER INTERPOLATION                                        | IUNI | 167 |
| С   |                                                                   | IUNI | 168 |
| 120 | IF (N .EQ. 2) GO TO 200                                           | IUNI | 169 |
| С   |                                                                   | IUNI | 170 |
| С   | CHOOSING A THIRD POINT SO AS TO MINIMIZE THE DISTANCE             | IUNI | 171 |
| С   | BETWEEN THE THREE POINTS USED TO INTERPOLATE                      | IUNI | 172 |
| С   |                                                                   | IUNI | 173 |
|     | IF (IPT .EQ. NM1) GO TO 140                                       | IUNI | 174 |
|     | IF (IPT .EQ. 1) GO TO 130                                         | IUNI | 175 |
|     | IF (DELX *(X0-X(IPT-1)).LT.DELX* (X(IPT+2)-X0)) GO TO 140         | IUNI | 176 |
| 130 | L=IPT                                                             | IUNI | 177 |
|     | GO TO 150                                                         | IUNI | 178 |
| 140 | L=IPT -1                                                          | IUNI | 179 |
| 150 | V1 = X(L) - X0                                                    | IUNI | 180 |
|     | V2=X(L+1)-X0                                                      | IUNI | 181 |
|     | V3=X(L+2)-X0                                                      | IUNI | 182 |
|     | DO 160 NT=1,NTAB                                                  | IUNI | 183 |
|     | $YY1=(Y(L,NT) * \sqrt{2} - Y(L+1,NT) * \sqrt{1})/(X(L+1) - X(L))$ | IUNI | 184 |
|     | YY2=(Y(L+1.NT)*V3-Y(L+2,NT) *V2)/(X(L+2)-X(L+1))                  | IUNI | 185 |
| 160 | YO(NT) = (YY1*V3 - YY2*V1)/(X(L+2)-X(L))                          | IUNI | 186 |
|     | IF (IERR .EQ4) IPT=IPT + IN                                       | IUNI | 187 |
|     | RETURN                                                            | IUNI | 188 |
| 180 | IF(P .NE. 0) IPT=IPT +!                                           | IUNI | 189 |
|     | DO 185 NT=1.NTAR                                                  | THNT | 190 |

|     | YO(NT) = Y(IPT,NT)                                      | IUNI   | 191 |
|-----|---------------------------------------------------------|--------|-----|
| 185 | CONTINUE                                                | IUNI   | 192 |
|     | RETURN                                                  | IUNI   | 193 |
| С   |                                                         | IUNI   | 194 |
| С   | IERR IS SET TO THE SUBSCRIPT OF THE MEMBER OF THE TABLE | IUNI   | 195 |
| С   | WHICH IS OUT OF ORDER                                   | IUNI   | 196 |
| C   |                                                         | IUNI   | 197 |
| 190 | IERR=J +1                                               | IUNI   | 198 |
|     | RETURN                                                  | IUNI   | 199 |
| 200 | IERR=-3                                                 | IUNI   | 200 |
|     | RETURN                                                  | IUNI   | 201 |
|     | END .                                                   | IUNI : | 202 |

#### Appendix B

Example of Main Program for a Mission of 90 Days With EVA Occurring 8 Hours Every 10 Days

```
DIMENSION Z(42), DOST(42), DOSE(4), R(4), C(4), RTAB(4), AL(4)
       ,ATAB(4),BTAB(4),TLMT(4),TIME(4),DOSLMT(4,4),DOSET(4,4)
       ,DOSEF(42,4,5),ALT(5),DOST1(42),DOST2(42),DRATIO(4),DTOT(4)
    3 ,DTAB(4,6,4),DT(6,4),D1(4),D2(4),D3(4),DR1(4)
     4 .DR2(4).DR3(4).DRT0T(4)
      NDEG=30
      DIST=500.
      DAYS=90.
      DEVA=8./24.
      FEVA=10.
      TEVA=DEVA*DAYS/FEVA
      DMT=DAYS-TEVA
      Z1 = 1.0
      Z2=0.2
      Z3 = 1.0
      CALL DOSECLC(NDCG, DIST, DMT, Z1, D1, DR1)
      CALL DOSECLC(NDEG, DIST, TEVA, Z2, D2, DR2)
      CALL DOSECLC(NDEG, DIST, TEVA, Z3, D3, DR3)
      DO 10 I=1.4
      DTOT(I) = D1(I) + D2(I)
      IF(I.Eq.3) DTOT(I)=D1(I)+D3(I)
      DRTOT(I) = DR1(I) + DR2(I)
      IF(I.EQ.3) DRTOT(I)=DR1(I)+DR3(I)
 10
     CONTINUE
     WRITE(5,100)
     WRITE(5,110)
     WRITE(5,115) Z1
     WRITE(5,120) NDEG.DIST
     FORMAT(//,2X,* RADIATION DOSES AND FRACTION OF EXPOSURE*)
FORMAT(2X,* LIMIT FOR 90 DAY MISSION WITH EVA*)
100
110
115
     FORMAT(/,3X,* SHIELD THICKNESS = *,F5.2,*,GM/CM2*)
120
     FORMAT(3X,13,* DEG INC*,2X,F6.2,*,KM*)
     WRITE(5,130)
     FORMAT(//,2X,* DOSE, RADS*)
WRITE(5,140)
130
     FORMAT(/,5X,* B.F.O. SKIN WRITE(5,150) (DTOT(I),I=1,4) FORMAT(/,2X,4F9.3) WRITE(5,160)
140
                                  SKIN
                                             LENS
                                                      TESTES*)
150
160
     FORMAT(//,2X,* FRACTION OF EXPOSURE LIMIT*)
     WRITE(5,140)
     WRITE(5,150) (DRTOT(I), I=1,4)
     STOP
     END
```

#### References

- Alsmiller, R. G., Jr.; Irving, D. C.; Kinney, W. E.; and Moran, H. S.: The Validity of the Straightahead Approximation in Space Vehicle Shielding Studies. Second Symposium on Protection Against Radiations in Space, Arthur Reetz, Jr., ed., NASA SP-71, 1965, pp. 177-181.
- Jordan, T. M.; Koprowski, E. F.; and Langley, R. W.: Shielding Requirements for Manned Orbiting Space Stations. Second Symposium on Protection Against Radiations in Space, Arthur Reetz, Jr., ed., NASA SP-71, 1965, pp. 415-427.
- Jordan, T. M.: Electron Dose Attenuation Kernels for Slab and Spherical Geometries. AFWL-TR-81-43, U.S. Air Force, Nov. 1981. (Available from DTIC as AD A115 232.)
- Kase, Paul G.: Influence of a Detailed Model of Man on Proton Depth/Dose Calculations. Proceedings of National Symposium on Natural and Manmade Radiation

- in Space, E. A. Warman, ed., NASA TM X-2440, 1972, pp. 773-780.
- 5. Wilson, John W.; and Cucinotta, Frank: Human Exposure in Low Earth Orbit. NASA TP-2344, 1984.
- Stassinopoulos, E. G.: Space Radiation Incident on SATS Missions. NASA TM X-70544, 1973.
- Seltzer, Stephen: SHIELDOSE: A Computer Code for Space-Shielding Radiation Dose Calculations. NBS Tech. Note 1116, U.S. Dep. Commer., May 1980.
- Billings, M. P.; and Yucker, W. R.: The Computerized Anatomical Man (CAM) Model. NASA CR-134043, 1973
- Billings, M. P.; and Langley, R. W.: Monitoring of Space Proton Dose to Body Organs. MDAC Paper WD 2355, McDonnell Douglas Astronautics Co., July 1974.
- Space Science Board: Radiation Protection Guides and Constraints for Space-Mission and Vehicle-Design Studies Involving Nuclear Systems. Nat. Acad. Sci.—Nat. Res. Counc., 1970.

TABLE 1. HUMAN BODY GEOMETRY PARAMETERS USED IN PRESENT CALCULATIONS

| Organ  | r, g/cm <sup>2</sup> | a     | b     | α    |
|--------|----------------------|-------|-------|------|
| B.F.O. | 5.5                  | 0.502 | 0.000 | 1.0  |
| Testes | 5.5                  | .641  | .428  | .57  |
| Lens   | .5                   | .599  | 206   | .25  |
| Skin*  | z/4                  | .720  | 356   | .493 |

 $<sup>*</sup>r \le 2 \text{ g/cm}^2$ .

TABLE 2. RELEVANT VALUES OF SHIELD THICKNESS

| z, g/cm <sup>2</sup> of Al | Place of occurrence                                |
|----------------------------|----------------------------------------------------|
| 0.2                        | Space suit                                         |
| 1.0                        | Space helmet, Skylab wall                          |
| 2.0                        | Heavily shielded habitat                           |
| 5.0                        | Heavily shielded vehicle, solar cosmic ray shelter |

TABLE 3. SUGGESTED EXPOSURE LIMITS AND EXPOSURE ACCUMULATION RATE CONSTRAINTS FOR UNIT REFERENCE RISK CONDITIONS

|                           | Ancillary reference risks                               |                              |                         |                              |                                      |  |
|---------------------------|---------------------------------------------------------|------------------------------|-------------------------|------------------------------|--------------------------------------|--|
| Constraint                | Primary<br>reference risk,<br>rems <sup>1</sup> at 5 cm | Bone marrow,<br>rems at 5 cm | Skin,<br>rems at 0.1 mm | Ocular lens,<br>rems at 3 mm | Testes, <sup>2</sup><br>rems at 3 cm |  |
| 1-year average daily rate |                                                         | 0.2                          | 0.6                     | 0.3                          | 0.1                                  |  |
| 30-day minimum            |                                                         | 25.0                         | 75.0                    | 37.0                         | 13.0                                 |  |
| Quarterly maximum         |                                                         | 30.0                         | 80.0                    | 40.0                         | 18.0                                 |  |
| Yearly maximum            |                                                         | 60.0                         | 170.0                   | 85.0                         | 38.0                                 |  |
| Career limit              | 400                                                     | 200.0                        | 600.0                   | 300.0                        | 200.0                                |  |

 $<sup>^{1}</sup>$ Rem = Radiation absorbed dose in rads times a quality factor q to account for the different relative biological effectiveness (RBE) of different radiations (q = 1.2).  $^{2}$ Values taken from reference 10:

TABLE 4. SAMPLE CALCULATIONS FOR FRACTION OF EXPOSURE LIMIT FOR 90-DAY MISSION

| hield thickness,        |              | Fraction  | n of exposure limit | for 90-day mission | for—   |
|-------------------------|--------------|-----------|---------------------|--------------------|--------|
| g/cm <sup>2</sup> of Al | Altitude, km | B.F.O.    | Skin                | Lens               | Testes |
|                         |              | 0° incli  | ned orbits          |                    |        |
| 1.00                    | 425          | 0.015     | 0.005               | 0.009              | 0.043  |
|                         | 450          | .028      | .010                | .017               | .081   |
|                         | 475          | .052      | .018                | .032               | .152   |
|                         | 500          | .097      | .035                | .061               | .285   |
|                         | 525          | .182      | .065                | .113               | .533   |
|                         | 550          | .338      | .120                | .211               | .992   |
| 1.50                    | 425          | .015      | .006                | .009               | .041   |
|                         | 450          | .028      | .011                | .018               | .076   |
|                         | 475          | .053      | .020                | .033               | .144   |
|                         | 500          | .098      | .037                | .062               | .269   |
|                         | 525          | .184      | .070                | .116               | .502   |
|                         | 550          | .342      | .130                | .216               | .935   |
| 2.00                    | 425          | .015      | .006                | .010               | .039   |
|                         | 450          | .028      | .011                | .018               | .073   |
|                         | 475          | .053      | .021                | .035               | .137   |
|                         | 500          | .099      | .040                | .065               | .256   |
|                         | 525          | .185      | .075                | .121               | .479   |
|                         | 550          | .345      | .139                | .225               | .892   |
|                         |              | 30° incli | ned orbits          |                    |        |
| 1.00                    | 425          | 0.232     | 0.312               | 0.476              | 0.681  |
|                         | 450          | .285      | .384                | .586               | .836   |
|                         | 475          | .346      | .468                | .713               | 1.015  |
|                         | 500          | .416      | .564                | .858               | 1.221  |
|                         | 525          | .496      | .675                | 1.024              | 1.454  |
|                         | 550          | .586      | .800                | 1.211              | 1.718  |
| 1.50                    | 425          | .220      | .224                | .356               | .601   |
|                         | 450          | .271      | .272                | .431               | .739   |
|                         | 475          | .329      | .327                | .517               | .899   |
|                         | 500          | .396      | .388                | .614               | 1.082  |
|                         | 525          | .473      | .457                | .722               | 1.291  |
|                         | 550          | .559      | .535                | .844               | 1.528  |
| 2.00                    | 425          | .203      | .200                | .323               | .525   |
|                         | 450          | .250      | .242                | .391               | .647   |
|                         | 475          | .305      | .290                | .468               | .788   |
|                         | 500          | .368      | .344                | .555               | .950   |
|                         | 525          | .440      | .404                | .653               | 1.136  |
|                         | 550          | .521      | .472                | .762               | 1.346  |

TABLE 4. Concluded

| Shield thickness,        |              | Fractio   | n of exposure limit | for 90-day mission | for    |
|--------------------------|--------------|-----------|---------------------|--------------------|--------|
| _g/cm <sup>2</sup> of Al | Altitude, km | B.F.O.    | Skin                | Lens               | Testes |
| •                        |              | 60° incl  | ined orbits         |                    |        |
| 1.00                     | 425          | 0.156     | 0.884               | 0.715              | 0.458  |
|                          | 450          | .185      | .968                | .796               | .544   |
|                          | 475          | .218      | 1.054               | .881               | .640   |
|                          | 500          | .255      | 1.143               | .970               | .747   |
|                          | 525          | .295      | 1.235               | 1.064              | .865   |
|                          | 550          | .339      | 1.329               | 1.161              | .995   |
| 1.50                     | 425          | .147      | .233                | .283               | .402   |
|                          | 450          | .175      | .266                | .328               | .479   |
|                          | 475          | .206      | .301                | .378               | .564   |
|                          | 500          | .241      | .339                | .433               | .659   |
|                          | 525          | .280      | .380                | .491               | .764   |
|                          | 550          | .322      | .423                | .555               | .880   |
| 2.00                     | 425          | .135      | .146                | .236               | .349   |
|                          | 450          | .161      | .170                | .275               | .416   |
|                          | 475          | .190      | .197                | .318               | .491   |
|                          | 500          | .223      | .226                | .365               | .575   |
|                          | 525          | .259      | .258                | .417               | .668   |
|                          | 550          | .299      | .293                | .473               | .771   |
|                          | •            | 90° incli | ned orbits          | <u> </u>           |        |
| 1.00                     | 425          | 0.129     | 0.771               | 0.609              | 0.378  |
|                          | 450          | .153      | .840                | .677               | .450   |
|                          | 475·         | .181      | .912                | .747               | .530   |
|                          | 500          | .211      | .985                | .821               | .619   |
|                          | 525          | .245      | 1.060               | .898               | .717   |
|                          | 550          | .282      | 1.137               | .979               | .826   |
| 1.50                     | 425          | .122      | .194                | .231               | .332   |
|                          | 450          | .145      | .221                | .269               | .396   |
|                          | 475          | .171      | .251                | .310               | .467   |
|                          | 500          | .200      | .282                | .355               | .546   |
|                          | 525          | .232      | .316                | .405               | .634   |
|                          | 550          | .268      | .352                | .458               | .731   |
| 2.00                     | 425          | .112      | .120                | .193               | .288   |
|                          | 450          | .133      | .140                | .226               | .344   |
|                          | 475          | .158      | .162                | .262               | .407   |
|                          | 500          | .185      | .187                | .301               | .477   |
|                          | 525          | .215      | .213                | .345               | .555   |
|                          | 550          | .248      | .242                | .391               | .641   |

TABLE 5. DOSE TO CRITICAL BODY ORGANS

| hield thickness,        |              |         | Dose,        | rad    |        |
|-------------------------|--------------|---------|--------------|--------|--------|
| g/cm <sup>2</sup> of Al | Altitude, km | B.F.O.  | Skin         | Lens   | Testes |
|                         |              | 0° incl | ined orbits  |        |        |
| 1.00                    | 425          | 0.441   | 0.419        | 0.366  | 0.776  |
|                         | 450          | .831    | .788         | .690   | 1.461  |
|                         | 475          | 1.559   | 1.479        | 1.295  | 2.743  |
|                         | 500          | 2.919   | 2.769        | 2.424  | 5.135  |
|                         | 525          | 5.450   | 5.170        | 4.525  | 9.588  |
|                         | 550          | 10.154  | 9.632        | 8.431  | 17.861 |
| 1.50                    | 425          | .446    | .452         | .375   | .731   |
| 2.00                    | 450          | .840    | .851         | .707   | 1.377  |
|                         | 475          | 1.576   | 1.597        | 1.327  | 2.584  |
|                         | 500          | 2.950   | 2.989        | 2.484  | 4.837  |
|                         | 525          | 5.509   | 5.581        | 4.637  | 9.032  |
|                         | 550          | 10.263  | 10.398       | 8.639  | 16.826 |
| 2.00                    | 425          | .450    | .484         | .391   | .697   |
| 2.00                    | 450          | .848    | .912         | .736   | 1.313  |
|                         | 475          | 1.591   | 1.711        | 1.381  | 2.465  |
|                         | 500          | 2.978   | 3.203        | 2.586  | 4.614  |
|                         | 525          | 5.560   | 5.981        | 4.828  | 8.616  |
|                         | 550          | 10.358  | 11.142       | 8.995  | 16.051 |
|                         | 000          |         | lined orbits | 0.330  | 10.001 |
|                         |              |         |              | 10.055 | 10.001 |
| 1.00                    | 425          | 6.970   | 24.923       | 19.057 | 12.261 |
|                         | 450          | 8.557   | 30.716       | 23.437 | 15.053 |
|                         | 475          | 10.390  | 37.429       | 28.504 | 18.276 |
|                         | 500          | 12.490  | 45.150       | 34.319 | 21.970 |
|                         | 525          | 14.880  | 53.967       | 40.948 | 26.174 |
|                         | 550          | 17.583  | 63.972       | 48.458 | 30.930 |
| 1.50                    | 425          | 6.603   | 17.959       | 14.251 | 10.825 |
|                         | 450          | 8.119   | 21.773       | 17.253 | 13.311 |
|                         | 475          | 9.872   | 26.124       | 20.673 | 16.185 |
|                         | 500          | 11.884  | 31.052       | 24.542 | 19.484 |
|                         | 525          | 14.178  | 36.600       | 28.893 | 23.244 |
|                         | 550          | 16.775  | 42.810       | 33.757 | 27.503 |
| 2.00                    | 425          | 6.098   | 16.023       | 12.936 | 9.449  |
|                         | 450          | 7.513   | 19.378       | 15.644 | 11.642 |
|                         | 475          | 9.153   | 23.195       | 18.726 | 14.183 |
| •                       | 500          | 11.039  | 27.509       | 22.209 | 17.105 |
|                         | 525          | 13.191  | 32.355       | 26.121 | 20.441 |
|                         | 550          | 15.634  | 37.769       | 30.492 | 24.226 |

TABLE 5. Concluded

| nield thickness,        |              |         | Dose,         | rad    |              |
|-------------------------|--------------|---------|---------------|--------|--------------|
| g/cm <sup>2</sup> of Al | Altitude, km | B.F.O.  | Skin          | Lens   | Testes       |
|                         |              | 60° inc | clined orbits |        |              |
| 1.00                    | 425          | 4.685   | 70.750        | 28.583 | 8.242        |
|                         | 450          | 5.565   | 77.436        | 31.832 | 9.788        |
|                         | 475          | 6.548   | 84.340        | 35.243 | 11.518       |
|                         | 500          | 7.641   | 91.459        | 38.817 | 13.440       |
|                         | 525          | 8.849   | 98.787        | 42.553 | 15.566       |
|                         | 550          | 10.178  | 106.320       | 46.449 | 17.904       |
| 1.50                    | 425          | 4.417   | 18.614        | 11.317 | 7.241        |
|                         | 450          | 5.254   | 21.248        | 13.139 | 8.614        |
|                         | 475          | 6.192   | 24.082        | 15.133 | 10.151       |
|                         | 500          | 7.236   | 27.120        | 17.302 | 11.863       |
|                         | 525          | 8.391   | 30.364        | 19.655 | 13.757       |
|                         | 550          | 9.665   | 33.817        | 22.194 | 15.845       |
| 2.00                    | 425          | 4.056   | 11.672        | 9.423  | 6.286        |
|                         | 450          | 4.835   | 13.620        | 10.996 | 7.493        |
|                         | 475          | 5.709   | 15.762        | 12.725 | 8.847        |
|                         | 500          | 6.684   | 18.104        | 14.616 | 10.357       |
|                         | 525          | 7.765   | 20.654        | 16.675 | 12.033       |
|                         | 550          | 8.958   | 23.419        | 18.907 | 13.882       |
|                         |              | 90° in  | clined orbits |        |              |
| 1.00                    | 425          | 3.868   | 61.673        | 24.371 | 6.804        |
| 1.00                    | 450          | 4.600   | 67.225        | 27.071 | 8.092        |
|                         | 475          | 5.420   | 72.937        | 29.900 | 9.533        |
|                         | 500          | 6.332   | 78.804        | 32.856 | 11.138       |
|                         | 525          | 7.341   | 84.821        | 35.939 | 12.914       |
|                         | 550          | 8.454   | 90.986        | 39.148 | 14.871       |
| 1.50                    | 425          | 3.645   | 15.507        | 9.232  | 5.976        |
|                         | 450          | 4.342   | 17.702        | 10.746 | 7.119        |
|                         | 475          | 5.124   | 20.063        | 12.406 | 8.401        |
|                         | 500          | 5.995   | 22.594        | 14.217 | 9.829        |
|                         | 525          | 6.961   | 25.297        | 16.185 | 11.413       |
|                         | 550          | 8.027   | 28.175        | 18.314 | 13.160       |
| 2.00                    | 425          | 3.348   | 9.567         | 7.724  | 5.188        |
|                         | 450          | 3.997   | 11.190        | 9.034  | 6.193        |
|                         | 475          | 4.725   | 12.978        | 10.477 | <b>7.322</b> |
|                         | 500          | 5.539   | 14.937        | 12.059 | 8.583        |
|                         | 525          | 6.442   | 17.075        | 13.785 | 9.983        |
|                         | 550          | 7.440   | 19.397        | 15.660 | 11.530       |

## TABLE 6. RADIATION DOSES AND FRACTION OF EXPOSURE LIMIT FOR 90-DAY MISSION WITH EVA

[Shield thickness = 1.00 g/cm²;  $30^\circ$  inclined orbits;  $h=500~\mathrm{km}]$ 

|                            | B.F.O. | Skin   | Lens   | Testes |
|----------------------------|--------|--------|--------|--------|
| Dose, rad                  | 12.545 | 54.640 | 34.319 | 22.198 |
| Fraction of exposure limit | 0.421  | 0.692  | 0.860  | 1.254  |

| · |   |  |  |
|---|---|--|--|
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   | • |  |  |
|   |   |  |  |
|   |   |  |  |

| 1. Report No.<br>NASA TM-86324                                                        | 2. Governn    | nent Accession No.      | 3. Recipient's C | atalog No.             |  |
|---------------------------------------------------------------------------------------|---------------|-------------------------|------------------|------------------------|--|
| 4. Title and Subtitle                                                                 | _             |                         | 5. Report Date   |                        |  |
| COMPUTER SUBROUTINES FOR ESTIN                                                        | MATION O      | F                       | 1                | 0.5                    |  |
| HUMAN EXPOSURE TO RADIATION IN                                                        |               |                         | February 1985    |                        |  |
|                                                                                       |               |                         | 6. Performing O  | rganization Code       |  |
| 7. Author(s)                                                                          |               |                         | 506-53-23-03     |                        |  |
| Francis A. Cucinotta and John W. Wilson                                               |               |                         | 8. Performing O  | rganization Report No. |  |
|                                                                                       |               |                         | L-15865          | •                      |  |
| 9. Performing Organization Name and Address                                           |               |                         | 10. Work Unit N  |                        |  |
| NASA Langley Research Center                                                          |               |                         |                  |                        |  |
| Hampton, VA 23665                                                                     |               |                         | 11. Contract or  | Grant No.              |  |
|                                                                                       |               |                         |                  |                        |  |
| 12. Sponsoring Agency Name and Address                                                |               |                         | 13. Type of Rep  | ort and Period Covered |  |
| National Aeronautics and Space Administration                                         |               |                         | Technical Me     | emorandum              |  |
| Washington, DC 20546                                                                  |               |                         | 14. Sponsoring A | gency Code             |  |
|                                                                                       | <u> </u>      |                         |                  |                        |  |
| 15. Supplementary Notes  Francis A. Cusinotta, Old Deminion II-in-                    |               | 1 17                    |                  |                        |  |
| Francis A. Cucinotta: Old Dominion Univer<br>John W. Wilson: Langley Research Center, |               |                         |                  |                        |  |
| 16. Abstract                                                                          | mampton,      | virginia.               | <del></del>      |                        |  |
| Computer subroutines to calculate human ex                                            | xposure to t  | ranned radiations in    | low Earth orbi   | t (LEO) on the basis   |  |
| of a simple approximation of the human ge                                             | ometry by     | spherical shell shield  | s of varying thi | ckness are presented   |  |
| and detailed. The subroutines calculate the                                           | ie dose to d  | critical body organs    | and the fraction | on of exposure limit   |  |
| reached as a function of altitude of orbit, de                                        | egree of incl | ination, shield thick   | ness and days i  | n mission Evposure     |  |
| rates are compared with current exposure li                                           | mits.         |                         | acce, and days i | i mission. Exposure    |  |
| •                                                                                     |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
| 17. Key Words (Suggested by Authors(s))                                               |               | 18. Distribution Staten | nent             |                        |  |
| Space operations                                                                      |               | Unclassified—Unli       | mited            |                        |  |
| Radiation protection                                                                  |               |                         |                  |                        |  |
| Trapped radiation                                                                     |               |                         |                  |                        |  |
|                                                                                       |               |                         |                  |                        |  |
|                                                                                       |               |                         | <u> </u>         |                        |  |
|                                                                                       |               | !<br>                   | Subj             | ect Category 54        |  |
| 19. Security Classif. (of this report)                                                |               | Classif.(of this page)  | 21. No. of Pages | 22. Price              |  |
| Unclassified                                                                          | Unclassified  |                         | 24               | A02                    |  |



National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451





POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return