T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling

Nasy

Sep 16, 2022

Outline

- 1 Introduction
- 2 T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling
- 3 Conclusion
- 4 References

TCR Peptide Interaction Prediction

TCR Peptide Interaction

- The T-cell receptors (TCR) lies on the surface of the T-cell for recognition of foreign peptides.
- Peptides are presented by major histocompatibility complex (MHC) found on the surface of tumor cells or virus-infected cells.
- Common datasets for studying TCR-peptide interactions contain sequences of peptides and sequences of chain of CDR3 of TCRs.

Illustration of T-cell receptors (TCR) and peptide binding

Methods

- Nearest neighbor (SwarmTCR¹)
- Distance-based minimization (TCRdist²)
- PCA with decision tree³
- Random Forest⁴
- Deep Learning⁵

¹Ryan Ehrlich, et al., "SwarmTCR: A Computational Approach to Predict the Specificity of T Cell Receptors". BMC Bioinformatics, vol. 22, no. 1, 7 Sept. 2021, p. 422. https://doi.org/10.1186/s12859-021-04335-w.

²Pradyot Dash, et al., "Quantifiable Predictive Features Define Epitope-Specific T Cell Receptor Repertoires". Nature, vol. 547, no. 7661, 7661 July 2017, pp. 89–93. https://doi.org/10.1038/nature22383.

³Yao Tong, et al., "SETE: Sequence-based Ensemble Learning Approach for TCR Epitope Binding Prediction". Computational Biology and Chemistry, vol. 87, 1 Aug. 2020, p. 107281. https://doi.org/10.1016/j.compbiolchem.2020.107281.

⁴Sofie Gielis, et al., "Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence Repertoires". Frontiers in Immunology, vol. 10, 2019. https://doi.org/10.3389/fimmu.2019.02820; Nicolas De Neuter, et al., "On the Feasibility of Mining CD8+T Cell Receptor Patterns Underlying Immunogenic Peptide Recognition". Immunogenetics, vol. 70, no. 3, 1 Mar. 2018, pp. 159–68. https://doi.org/10.1007/s00251-017-1023-5.

⁵Tianshi Lu, et al., "Deep Learning-Based Prediction of the T Cell Receptor-Antigen Binding Specificity". Nat Mach Intell, vol. 3, no. 10, 10 Oct. 2021, pp. 864–75. https://doi.org/10.1038/s42256-021-00383-2; Yiren Jian, et al., "T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling". Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD '22, Association for Computing Machinery, 14 Aug. 2022, pp. 3090–97, https://doi.org/10.1145/3534678.3539075.

Datasets

- Format
 - Positive (TCR, Peptide, MHC)
 - And lots of TCRs
- Dataset
 - VDJdb⁶
 - McPAS-TCR⁷

⁶Dmitry V. Bagaev, et al., "VDJdb in 2019: Database Extension, New Analysis Infrastructure and a T-cell Receptor Motif Compendium", Nucleic Acids Res. vol. 48, no. D1, 8 Jan. 2020, pp. D1057-D1062, 31588507, https://doi.org/10.1093/nar/gkz874.

⁷Nili Tickotsky, et al., "McPAS-TCR: A Manually Curated Catalogue of Pathology-Associated T Cell Receptor Sequences". Bioinformatics, vol. 33, no. 18, 15 Sept. 2017, pp. 2924–29. https://doi.org/10.1093/bioinformatics/btx286 → ← E → ← E

Paper

T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling⁸

⁸ Yiren Jian, et al., "T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling". Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD '22, Association for Computing Machinery, 14 Aug. 2022, pp. 3090-97, https://doi.org/10.1145/3534678.3539075.

Problem

Current datasets for training deep learning models of this purpose remain constrained without diverse TCRs and peptides.

Solution

Extend training dataset

Solution

- Data-augmented psudo-label of TCR-peptide pairs
 - \bullet Use teacher model to generate pseudo-labels and retrain the model with them
- Physical modeling of TCR-peptide interaction
 - Molecular dynamic (MD)
 - Docking energy

What is Docking energy

Docking is a computational method for predicting the structures of protein complex (e.g., dimer of two molecules) given the structure of each monomer. It searches the configuration of the complex by minimizing an energy scoring function.

In this work, they use the final docking energy (of the optimal structure of the complex) between a TCR and peptide as the surrogate binding label for the TCR-peptide pair.

Dataset

- Dataset D
 - VDJdb⁹
 - McPAS-TCR¹⁰
- Labeled (Training dataset, \mathcal{D}_{train})
 - TCR-peptide pairs with known binding affinity (1 positive, 0 negative)
- Unlabeled
 - TCRdb (no peptide) with peptide from \mathcal{D} .
 - $\mathcal{D}_{auxiliary}$

⁹Dmitry V. Bagaev, et al., "VDJdb in 2019: Database Extension, New Analysis Infrastructure and a T-cell Receptor Motif Compendium". Nucleic Acids Res. vol. 48, no. D1, 8 Jan. 2020, pp. D1057-D1062, 31588507, https://doi.org/10.1093/nar/gkz874.

¹⁰Nili Tickotsky, et al., "McPAS-TCR: A Manually Curated Catalogue of Pathology-Associated T Cell Receptor Sequences". Bioinformatics, vol. 33, no. 18, 15 Sept. 2017, pp. 2924–29. https://doi.org/10.1093/bioinformatics/btx286♥ → ← ≣ → ← ≣ →

Method

There are four steps in a single training step:

- Learning from labeled dataset \mathcal{L}_{label}
- Learning from physical modeling \mathcal{L}_{phy}
- Learning from data-augmented pseudo-labeling $\mathcal{L}_{pseudo-label}$
- Look ahead meta-update

Overview

ERGO

Learning from labeled dataset \mathcal{L}_{label}

- $pred = f_{\theta}(t, p)$
 - t is the TCR
 - \bullet p is the peptide
 - The embedding of TCR and peptide from ERGO¹¹.
 - TCRs use LSTM or AE
 - Peptides use LSTM
 - f_{θ} is the model
 - $f_{\theta} = MLP(concat(t, p))$
- $\mathcal{L}_{label} = BCE(pred, y)$

¹¹Ido Springer, et al., "Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs". Frontiers in Immunology, vol. 11, 2020. https://doi.org/10.3389/fimmu.2020.01803.

Learning from physical modeling \mathcal{L}_{phy}

- Molecular dynamic (MD): accurate but slow
- Docking energy: HDOCK¹²
- TCR/Peptide -> BLAST+ -> MSA -> MODELLER -> Structure -> Docking energy
 - Top 25% Negative
 - Bottom 25% Positive
- $pred' = f_{\theta}(t', p')$
 - (t', p') become tuples in $\mathcal{D}_{auxiliary}$
- $\mathcal{L}_{phy} = BCE(pred', y)$

¹² Yumeng Yan, et al., "The HDOCK Server for Integrated Protein–Protein Docking". Nat Protoc, vol. 15, no. 5, 5 May 2020, pp. 1829–52. https://doi.org/10.1038/s41596-020-0312-x.

Learning from data-augmented pseudo-labeling $\mathcal{L}_{pseudo-label}$

- $prob = f_{teacher}(t', p')$
- $pred' = f_{\theta}(t', p')$
- $\mathcal{L}_{pseudo-label} = \mathtt{KL} \mathtt{divergence}(pred', prob)$

Look Ahead Meta-Update I

- Learning from labeled dataset
 - out = model(t, p)
 - $\mathcal{L}_{label} = BCE(out)$
 - $model.update(\mathcal{L}_{label})$
- Learning from data-augmented pseudo-labeling
 - out = model(t', p')
 - $out' = model_{teacher}(t', p')$
 - $\mathcal{L}_{pseudo-label} = KL(out, out')$
 - $model.update(\mathcal{L}_{pseudo-label})$
 - param = model.param
- Learning from physical modeling
 - out = model(t', p')
 - $\mathcal{L}_{phy} = BCE(out)$
 - $model.update(\mathcal{L}_{nhu})$
- Look ahead meta-update
 - Learning Rate * 2
 - $\mathcal{L} = BCE(model(t, p))$

Look Ahead Meta-Update II

- If $\mathcal{L} > \mathcal{L}_{label}$
 - model.param = param

Look Ahead Meta-Update

Figure: Overview of learning from data-augmented pseudolabeling. An ERGO model is first learned with TCRs and peptides sample from Dtrain, and this model is used as the teacher model. Then, this teacher model is used for pseudolabeling TCR-peptide pairs from auxiliary dataset. Finally, we re-train an ERGO model with the original dataset and the extended pseudo-labeled dataset.

20K

Results McPAS

LSTM

Data size

experimental runs.

ERGO	54.4 ± 0.5	56.3 ± 0.5	71.2 ± 0.3					
+ Pseudo	58.5 ± 0.5	62.7 ± 0.4	72.7 ± 0.3					
+ Docking	61.4 ± 0.4	64.8 ± 0.4	72.4 ± 0.4					
ours (3 losses)	62.1 ± 0.4	66.0 ± 0.4	73.2 ± 0.3					
ours + meta-update	63.4 ± 0.4	$66.5 \!\pm 0.4$	74.2 ± 0.3					
Table 1: Experimental results on McPAS using base model of ERGO-AE. ERGO: Baseline method, ERGO + Pseudo: ERGO with data-augmented pseudo-labeling, ERGO + Dock-								
				ing: ERGO with physical modeling, ours (3 losses): ERGO				
				with data-augmented pseudo-labeling and physical model-				
ing, ours+ meta-update: ours (3 losses) with meta-update								
described in Section 3.4. Data size denotes the different sizes								

of \mathcal{D}_{train} . Results are collected from 5 different independent

6K

10K

AE

Data size	6K	10K	20K
ERGO	67.6 ± 0.4	71.9 ± 0.4	76.6 ± 0.3
+ Pseudo	69.3 ± 0.4	73.6 ± 0.3	77.6 ± 0.3
+ Docking	69.4 ± 0.4	73.3 ± 0.3	77.9 ± 0.2
ours (3 losses)	70.4 ± 0.3	73.7 ± 0.3	77.6 ± 0.2
ours + meta-update	71.5 ± 0.3	74.7 ± 0.3	78.4 ± 0.2

Table 2: Experimental results on McPAS using base model of ERGO-LSTM. Results are collected from 5 different independent experimental runs. In these experiments, ERGO+Psudo and ERGO+Docking perform roughly equally well.

Results VDJdb

LSTM

Data size	6K	10K	20K
ERGO	60.7 ± 0.5	61.0 ± 0.5	66.8 ± 0.4
+ Pseudo	61.0 ± 0.5	63.9 ± 0.4	69.8 ± 0.3
+ Docking	62.2 ± 0.5	64.6 ± 0.5	71.5 ± 0.3
ours (3 losses)	63.4 ± 0.5	66.4 ± 0.4	72.2 ± 0.3
ours + meta-update	64.6 ± 0.5	67.6 ± 0.4	72.9 ± 0.3

Table 3: Experimental results on VDJdb using base model of ERGO-AE. Results are collected from 5 different independent experimental runs.

AE

Data size	6K	10K	20K
ERGO	68.1± 0.4	72.0 ± 0.3	73.6 ± 0.4
+ Pseudo	68.4 ± 0.3	72.4 ± 0.3	73.9 ± 0.3
+ Docking	69.5 ± 0.4	73.4 ± 0.3	74.6 ± 0.3
ours (3 losses)	70.4 ± 0.3	72.9 ± 0.3	74.6 ± 0.3
ours + meta-update	$\textbf{71.5} \pm \textbf{0.3}$	$73.8 \!\pm 0.3$	75.2 ± 0.3

Table 4: Experimental results on VDJdb using base model of ERGO-LSTM. Results are collected from 5 different independent experimental runs. In these experiments, ERGO-Pseudo only improves over the baseline marginally, while physical modeling by docking still increase the AUC by significant margins.

Results Rare Peptides

- A rare peptide KRWIILGLNK has only AUC score of 52.8,
- while this method achieves 68.1.
- Note that the average AUC for all peptides is 54.4.

rare peptides	baseline	average	ours
KRWIILGLNK	52.8	54.4	68.1
KMVAVFYTT	48.9	54.4	65.8
FPRPWLHGL	50.2	54.4	58.5

Table 5: Experiments with AE-LSTM model with McPAS dataset of 6K labeled examples (from \mathcal{D}_{train}). "average" denotes the average AUC for all peptides in this experimental setup.

• Goal: Improve the prediction of TCR-peptide interactions

• Solution:

• Docking energies as the physical properties between TCR-peptide pairs

• Data-augmented pseudo-labeling

• Look ahead meta-update

• Experiments on VDJdb and McPAS datasets

References I

- Bagaev, Dmitry V., et al., "VDJdb in 2019: Database Extension, New Analysis Infrastructure and a T-cell Receptor Motif Compendium". *Nucleic Acids Res*, vol. 48, no. D1, 8 Jan. 2020, pp. D1057–D1062. 31588507, https://doi.org/10.1093/nar/gkz874.
- Dash, Pradyot, et al., "Quantifiable Predictive Features Define Epitope-Specific T Cell Receptor Repertoires". *Nature*, vol. 547, no. 7661, 7661 July 2017, pp. 89–93. https://doi.org/10.1038/nature22383.
- De Neuter, Nicolas, et al., "On the Feasibility of Mining CD8+ T Cell Receptor Patterns Underlying Immunogenic Peptide Recognition". *Immunogenetics*, vol. 70, no. 3, 1 Mar. 2018, pp. 159–68. https://doi.org/10.1007/s00251-017-1023-5.
- Ehrlich, Ryan, et al., "SwarmTCR: A Computational Approach to Predict the Specificity of T Cell Receptors". *BMC Bioinformatics*, vol. 22, no. 1, 7 Sept. 2021, p. 422. https://doi.org/10.1186/s12859-021-04335-w.
- Gielis, Sofie, et al., "Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence Repertoires". Frontiers in Immunology, vol. 10, 2019. https://doi.org/10.3389/fimmu.2019.02820.

References II

- Jian, Yiren, et al., "T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling". *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.* KDD '22, Association for Computing Machinery, 14 Aug. 2022, pp. 3090–97, https://doi.org/10.1145/3534678.3539075.
- Lu, Tianshi, et al., "Deep Learning-Based Prediction of the T Cell Receptor-Antigen Binding Specificity". *Nat Mach Intell*, vol. 3, no. 10, 10 Oct. 2021, pp. 864–75. https://doi.org/10.1038/s42256-021-00383-2.
- Springer, Ido, et al., "Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs". Frontiers in Immunology, vol. 11, 2020. https://doi.org/10.3389/fimmu.2020.01803.
- Tickotsky, Nili, et al., "McPAS-TCR: A Manually Curated Catalogue of Pathology-Associated T Cell Receptor Sequences". *Bioinformatics*, vol. 33, no. 18, 15 Sept. 2017, pp. 2924–29. https://doi.org/10.1093/bioinformatics/btx286.
- Tong, Yao, et al., "SETE: Sequence-based Ensemble Learning Approach for TCR Epitope Binding Prediction". *Computational Biology and Chemistry*, vol. 87, 1 Aug. 2020, p. 107281. https://doi.org/10.1016/j.compbiolchem.2020.107281.

References III

Yan, Yumeng, et al., "The HDOCK Server for Integrated Protein–Protein Docking". *Nat Protoc*, vol. 15, no. 5, 5 May 2020, pp. 1829–52.

https://doi.org/10.1038/s41596-020-0312-x.

