NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVU I. a II. STUPNĚ

CASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXVI (LXV) 1987 • ČÍSLO 11

V TOMTO SEŠITĚ

화목 나는 아이들은 사람들이 되었다.	- A 17
Năš interview	401
Dálkový interaktivní kurs	402
AR svazarmovským ZO	404
AR mládeži	. 406
R15 (Integrovaná štafeta 2)	
AR seznamuje (Automatický reg	ulátor
napětí ARN 400 F)	409
Zkušenosti s novým videomagnetol	
Super VHS	
Jak na to?	410
Vf milivoltmetr	. 411
Videomagnetofony	416
Mikroelektronika	
Vf tranzistory 3	
Digitalní pH-meter (dokončení)	. 427
Elektronika pomáhá zajišťovat	bez-
pečnost silničniho provozu	. 429
KV transceivery tovární výroby (dok	onče-
ni)	430
AR branné výchově	433
Z radioamatérského světa	435
Z oprevářského sejtu	
Inzero	
Četli isme	430
WE ESP PERSON adagaspabataanuntaturburgataturparangaturbu	. 439

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu, Opletalova 29, 116 31
Práha 1, tel. 22 25 49, ve Vydavatelství NAŠE
VOJSKO, Vladislavova 26, 113 66 Práha 1. tel.
26 06 51-7. Šehřeaktor ing. Jan Klabal, OK1 UKA,
zástupce Luboš Kalousek, OK1FAC. Redakční rada.
Předsedá ing. J. T. Hyan, členové: RNDV.
V. Brunnhofer, CSc., OK1HAO, V. Brzák, OK1DDK,
K. Donát, OK1DY, ing. O. Filippi, V. Gazda,
A. Glanc, OK1GW, ing. J. Hodík, P. Horák,
Z. Hradisky, J. Hudec, OK1RE, ing. J. Jaroš,
ing. J. Kroupa, V. Němec, ing. O. Petráček,
OK1NB, ing. Z. Prosek, ing. F. Smolík, OK1ASF,
ing. E. Smutny, plk. ing. F. Smolík, OK1AMY,
Ikabál, 354, Kalousek, OK1FAC, ing. Engel, Hofhans I. 353, ing. Myslík, OK1AMY, Havliš,
OK1PFM, I. 348, sekretariát I. 355. Ročně vyjde
12 čísel. Čena vytišku 5 Kčs, pololetní předplatném
30 Kčs. Rozširuje PNS. Informace o předp

NÁŠ INTERVIEW

Rozhovor s ing. Miloslavem Pražanem, ředitelem podniku ÚV Svazarmu ELEKTRONIKA

> Podnik ÚV Svazarmu Elektronika zajišťuje od 1. 4. 1987 služby pro obě svazarmovské odbornosti - elektroniku i radioamatérství. To ie zásadní změna v organizaci podniku. Proto jsme se zeptali ředitele podniku Elektronika soudruha ing. Miloslava Pražana na její důvodv:

Od svého vzniku podnik Elektronika hledá způsoby, jak rozšířit materiálně technickou základnu organizace pro polytechnickou výchovu a odborně technickou činnost mládeže i dospělých. A to nejen mezi členy a organizacemi Svazarmu, který je zřizovatelem podniku, ale také v resortu školství, mezi zařízeními kultury a ROH, i v organizacích SSM a ČSTV. Po celou dobu své činnosti se zabýváme elektroakustikou a postupně rozšiřujeme své působení na další obory elektroniky. Podnikat v součas-ných podmínkách a vztazích, a přitom vytvářet v podstatě kusový nebo malosériový program, o který je zájem a pomáhá podněcovat zájmovou čin-nost, přináší řadu problémů. K 1. dubnu 1987 jsme převzali také podnik ÚV Svazarmu Radiotechnika, jehož činnost byla zaměřena na radioamatérství. Začlenění bývalé Radiotechniky do našeho podniku je samo o sobě složitý proces. Jeho cílem je vytvořit větší hospodářský celek s lepšími možnostmi uplatňovat plný chozrazčot i s přihlédnutím k novým hospodářským podmínkám. Přínosem by dále měla být racionalizace technického rozvoje, unifikace výrobních postupů a používaných materiálů a účelnější využívání výrobních postupů a používaných materiálů a účelnější využívání výrobních kapacit i zkvalitnění služeb. Chceme tedy docilit lepšího uspokojování potřeb členů a dalších zájemců.

> Ale vraťme se k důvodům integrace svazarmovských podniků Elektronika a Radiotechnika. Můžete o nịch našim čtenářům něco říci?

I když rozhodnutí o začlenění Radiotechniky do našeho podniku proběhlo poměrně rychle, celý tento záměr má podstatně hlubší důvody a déletrvající historii. Konečně o tom svědčí právě rozhodnutí orgánů ÚV Svazarmu. Za hlavní podnět realizace tohoto integračního záměru považuji, že podnik Radiotechnika se postupně od r. 1984 dostal do extenzívního ekonomického rozvoje, který nebyl ve své realizaci v možnostech vedení podniku bývalé Radiotechniky. Radiotechnika se dostala do takové situace, kdy neplnila základní hospodářské ukazatele, nedařilo se jí plnit plán technického rozvoje i plán výroby sortimentu. To samozřejmě vedlo ke kritice její činnosti, zejména z řad členů a organizací Svazarmu.

ing. Miloslav Pražan

Neřešily se tyto problémy až příliš dlouho?

Na tuto otázku je těžko jednoznačně odpovědět. Nadřízené orgány vyčerpaly všechny možnosti, jak překonat obtíže bývalé Radiotechniky. Začlenění tohoto podniku do Elektroniky bylo poslední možností. Záměr integrace byl předložen počátkem prosince 1986 a definitivně odsouhlasen v únoru 1987, a to se stanovaným termínem začlenění k 1. 4. 1987 a s úkolem ukončit tento reorganizační proces do 31. 12. 1987. Za tímto rozhodnutím musíme vidět obrovské množství činnosti, jednání, přípravy dokumentů, norem a opatření, jejichž konečným cílem je vytvoření nového podniku. Přitom tento podnik musí lépe uspokojovat požadavky odborností elektronika a radioamatérství. K naplnění takového úkolu musíme využít možnosti racionalizace řídící a organizační složky tak. aby bylo možno dosáhnout úspor a ty pak využít pro zlepšení kvality sortimentu a služeb.

> Budou požadavky radioamatérské odbornosti zajišťovány v budoucnu podnikem Elektronika tak jako v minulosti?

Určitě bude naší snahou co nejlépe a nejšíře podporovat radioamatérské hnutí. Přitom však musíme společně zvažovat, co je ekonomicky a výrobně reálné. Abych to upřesnil. Podnik v mnoha směrech není technologicky tak vybaven, aby mohl ve výrobě realizovat všechny výsledky vývoje. Stejně tak není možné výsledky dřívějšího vývoje v plné míře aplikovat do výroby. Podařilo se nám dokončit ověřovací sérii transceiveru pro VKV Sněžka a jeho výroba v podniku po-kračuje. Podstatně složitější je situace ve výrobě transceiveru pro KV. Chceme však plně zužitkovat získané poznatky i zkušenosti a využít je v dalším technickém rozvoji při přípravě per-spektivního výrobního programu. Pokud jde o výrobní program integrovaného podniku Elektronika, hodláme zachovat všechny přístroje, sta-vebnice a díly, které jsou z hlediska potřeb zřizovatele žádoucí a které podnik může výrobně zabezpečit, a to

DÁLKOVÝ INTERAKTIVNÍ KURS číslicové a výpočetní techniky ÚV Svazarmu

Škola už je plná, ale maturanti uvolní místo novému prvnímu ročníku...

Ano, v příštím roce, se zpožděním, jehož důvody jsme v rozhovorech s organizátory kursu a v redakčních článcích už publikovali, se uzavírá první úplný cyklus náročného studia. Ve čtvrtém běhu kursu na téma "Mikropočítače" vnikne 3000 účastníků do obvodových a konstrukčních tajů osobních počítačů na úrovni standardu IBM PC. Kdo začal od začátku, bude mít za sebou více než čtyři roky studia a bude připraven v denním pracovním i osobním životě využívat výpočetní techniku s pochopením jejích možností, efektivně a účelně.

Že o tento přístup k prostředkům výpočetní techniky frekventantům kursu šlo, ize dokumentovat na věkovém složení účastníků dnešního čtvrtého ročníku: Nejpočetněji je zastoupena skupina ve věku v okolí 32 let (začátek studia kursu ve věku kolem 28 let) a až do věku 44 let vykazuje graf věkového složení jen povlovný pokles. Z toho lze usuzovat, že většina účastníků vzala kurs jako výhodnou a často jedinou

možnost zachytit v rámci své profese nástup mikroelektroniky do výrobní i řídicí sféry.

Když bychom zrekapitulovali, co za uplynulé čtyři roky od prvního vyhlášení kursu udělaly pro výchovu k elektronizaci národního hospodářství na úseku mimoškolního vzdělávání jiné instituce, můžeme kurs ÚV Svazarmu pro jeho kvalitu, náročnost i formu studia ocenit jako výjimečný počin naší branné orga-

nizace. A to vůbec nehovoříme o počtech účastníků! Přes deset tisíc studujících je číslo, nad kterým se tají dech a ruka sahá po klobouku.

Zásluhou prozíravosti autorů a s vydatnou podporou pomalého rozvoje naší součástkové základny kurs za čtyři roky nijak znatelně nezestárnul. Integrované obvody, diody (zejména LED), tranzistory a dokonce i odpory a kondenzátory ve stavebnicích Kyber Universal jsou po čtyřech letech ještě více nedostatkovým zbožím na trhu, inovace směrem k obvodům CMOS by byla jen teoretickým výletem do světa něčeho modernějšího než TTL. A pokud jde o nepájivá kontaktní pole, zůstala 602. ZO Svazarmu jejich jediným výrobcem. Nikdo jiný v ČSSR se o něco podobného nepokusil, nikomu jinému dodnes nevadí, že tyto výrobky jsou dostupné jen omezenému okruhu uživatelů (účastníkům kursu a tomu, komu DOSS prodal dalších pár tisíc kusů, vyrobených s vypětím sil nad potřeby stavebnic pro kurs).

Nicméně, inovace si našla cestu do kursu tam, kde jí autoři nechali pootevřené dveře. Když "pamětníci" porovnají sled témat jednotlivých ročníků (viz níže), zaregistrují záměnu ročníků 3. 4. V novém pojetí budou "Základy programování" kurs uzavírat, jejich učební texty se zcela přepracovávají.

materiálně, technologicky i personálně. S ohledem na potřeby unifikace a racionalizace výroby chceme zaměřit plánovaný vývoj i inovaci na tuto oblast a současně s tím také zlepšovat užitné hodnoty a design naších výrobků.

Naše čtenáře dále zajímá výroba a distribuce desek s plošnými spoji. Jejich dodací lhůty, ceny, ale i některé právní aspekty jsou předmětem kritiky zájemců o tyto desky a někdy i jejich autorů, Co

Tuto službu budeme dále prohlubovat. Spojové desky dodáváme, a to stejně jako dříve, z Hradce Králové. Objednávky zasílejte na adresu Elektronika, zásilková služba, Žižkovo nám. 32, 500 21 Hradec Králové. Je třeba vysvětlit, že v expedici byla přestávka způsobená nejen změnami v organizaci expedice, ale především v nesprávné tvorbě cen bývalé Radiotechniky. Větší zodpovědnost za návrhy spojů musí nést autoři, i redakce Amatérského radia musí vzít svůj díl odpovědnosti. Prakticky bez přestávky prodáváme plošné spoje ve středisku v Budečské ulici. Předpokládáme přímý prodej desek s plošnými spoji rozšířit i do dalších našich středisek.

Jaká je vlastně současná prodejní síť Elektroniky?

Náš podnik nabízí služby členům Svazarmu i dalším zájemcům o radioamatérství a elektroniku v těchto střediscích:

— Praha 1, Ve Smečkách 22, tel. 236 18 08,

- Praha 2, Budečská 7, tel. 250 733

— Bratislava 5, Mehringova 18, tel. 817 147.

Vedle zásilkové služby, určené výhradně pro spojové desky z Hradce Králové, o které jsme již hovořili, chceme pro elektroniky a radioamatéry vybudovat další střediska členských služeb, a to již v 1. pololetí 1988, na Marxově třídě v Hradci Králové a v Dubské ulici v Teplicích, a tím vytvořit lepší podmínky pro uspokojování zájmů o naše služby. Máme ještě další záměry v Praze a v Brně, ale o těch by bylo zatím předčasné hovořit. Specializaci a sortiment jednotlivých středisek vytváříme postupně podle zájmu zákazníků. Objednávky organizací se zásadně zasílají přímo na adresu Elektronika, Ve Smečkách 22, 110 00 Praha 1. Příslušné středisko pak zákazníka, a to s předností pro Svazarm, vyzve k odběru. Nadále budeme uspokojovat zájemce o vybranou část našeho sortimentu také prostřednictvím Domu obchodních služeb Svazarmu, Pospíšilova 12, 757 00 Valašské Meziříčí a všech jeho zařízení v ČSSR.

Předpokládají se nějaké změny v QSL-službě?

Některé práce chceme postupně racionalizovat. To je potřebné a radioamatéři to poznají ve zkvalitnění služeb. Pro styk s ústředím se nic nemění.

Změní se sortiment dosavadní produkce Elektroniky?

Výrobní program se inovuje a obměňuje podle zájmů a potřeb členů a organizací Svazarmu. Zůstávají zachovány reprodukční soupravy v řadách Pionýr, Junior a Studio. Vlastní výrobní program je doplňován o některé další díly, stavebnice a přístroje. Trvá nabídka stavebnic počítačů EMS se zdroji, přídavných zařízení k telefonním přístrojům TM 40, záznamového materiálu a dalšího vybraného zboží.

Celý sortiment zde nelze vyjmenovat. Budeme rádi, navštívíte-li naše obchodně-servisní střediska.

Jednou z významných otázek je servis elektronických zařízení. Jaká je situace v této oblasti?

Ve svém programu považujeme za jednu z nejdůležitějších věcí poskytovat služby komplexně. To znamená, že kromě kvalifikovaného prodeje nabízíme sami i trvalou péči o naše i některé nakupované výrobky po celou dobu jejich životnosti. Vedle toho je náš podnik již po léta gestorem celostátního servisu některých zahraničních výrobků, které byly do Československa dovezeny prostřednictvím příslušných obchodních organizací. Střediska servisních služeb máme zatím v Praze 4. ul. M. Pujmanové 1221, tel. 421698, v Brně, Krkoškově 40, tel. 625 983 a v Bratislavě 5, Mehringova 18, tel. 817 147. V průběhu příštího roku je zřídíme také v Teplicích a Hradci Králové.

Jako obvykle — co byste chtěl vzkázat čtenářům na závěr?

Myslím, že v rozhovoru jsme se dotkli většiny hlavních problémů, které v současné době řešíme. Chtěl bych ujistit čtenáře Amatérského radia, že celý kolektiv podniku Elektrorlika se upřímně a cílevědomně snaží zabezpečovat plánované úkoly a celkově zlepšovat úroveň, strukturu a objem služeb. Přijďte se o tom právě teď do našich středisek přesvědčit. Pokud jsme v některých obdobích letošního roku měli v našich službách výpadky, chtěl bych se touto cestou omluvit a věřím, že v roce 1988 se pozitivně projeví uskutečněné organizační změny.

Děkuji za rozhovor. Připravil: ing. Jan Klabal

Tato změna se dotkne už těch účastníků, kteří letos absolvují druhý ročník kursu - v roce 1988 budou studovat téma "Mikropočítače" a teprve v roce 1989 se pustí do strukturovaného programování.

Dálkový interaktivní kurs číslicové a výpočetní techniky ÚV Svazarmu tedy i perspektivně je komplexním programem mimoškolního vzdělávání mládeže i dospělých v moderních oborech elektroniky a jako jediný u nás nabízí možnost masové účasti. V roce 1988 se otevře znovu první ročník s plánovanou kapacitou 3000 účastníků. Ale to už redakce předává symbolicky pero organizátorům kursu:

Znovu první část kursu pro nové zájemce

Ústřední výbor Svazarmu, ve spolupráci s redakcemi Amatérského radia, Technického magazínu a Vědy a techniky mládeži, organizuje v 602. ZO Svazarmu znovu kurs od začátku pro nové zájemce s tímto zpřesněným obsahem jednotlivých ročníků:

Číslicová technika

Aplikovaná kybernetika

Mikropočítače

4. Základy programování Každý ročník kursu probíhá v daném kalendářním roce a tvoří samostatný obsahový celek. V průběhu každého ročníku kursu dostávají účastníci postupně osm obsáhlých studijních materiálů a studijní pomůcky. V prvním a druhém ročníku to jsou stavebnice Kyber Universal (celkem tři části) s nepájivými kontaktními poli, integrovanými obvody, tranzistory a dalšími polovodičovými součástkami, motorkem a převody pro sestavení polohového servomechanismu apod. V třetím a čtvrtém ročníku jsou učební texty doplněny speciálními pomůckami pro návrhy obvodů a programování.

Do kursu se mohou přihlásit všichni zájemci o obor, o využití mikropočítačů a výpočetní techniky ve své profesi i podle svých zálib, kteří si kursovné (500 až 600 Kčs za každý ročník) budou hradit individuálně nebo z příslušných fondů svých zaměstnavatelů. (Ústřední výbor Svazarmu se rozhodl v nově zahájeném čtyřletém cyklu uhradit kursovné dalším svým aktivistům podle výběru na stupní okresních výborů. Pokud aktivně pracujete v některé základní organizaci Svazarmu s odborností elektronika, informujte se na tuto možnost úhrady studia z prostředků ÚV

Svazarmu na svém OV, popřípadě KV Svazarmu.)

Nové formy studia, nové formy práce

Rozvoj elektroniky a její vstup do výrobků, výrobních procesů i ostatního užívání v nejrůznějších sférách národního hospodářství je procesem, který stupňuje nároky na všechny potenciální uživatele výpočetní techniky, lhostejno zda o ni projevují profesní nebo osobní zájem. Znalost mikropočítačové techniky a jejích aplikací má už dnes rozhodující vliv na přístupy k řešení problémů ve všech oborech.

Moderní dálková forma s interakcí vychází vstříc požadavkům na hospodárnost a efektivnost, aniž by oslabovala roli učitele ve smyslu jeho individuálního možností přístupu k žákům. Každá z osmi lekcí každého ročníku kursu, doručovaná účastníkům přibližně ve čtyřtýdenních intervalech, obsahuje testovací kartu, na které se vyznačují vystřižením předtištěných zářezů odpovědi na kontrolní otázky. Karty se v přiložených vratných obál-kách zasílají ve stanovených termínech na sekretariát kursu. Individuální informaci o správnosti svých odpovědí dostane každý ještě před odesláním testovací karty další lekce, takže má možnost odpovědí korigovat. Tato interakce staví kurs do roviny dálkového studia oboru v rozsahu daném osnova-

Zdá se vám číslicová technika krajinou příliš neznámou? Možná tím lépe. Kurs z vás neudělá odborníky na mikroelektroniku, ale nadšené propagátory jejího využívání ve vašem profesním nebo zájmovém oboru. Kurs je svou formou přístupný každému zájemci. Pro první ročník kursu stačí minimální vstupní znalosti — vědět, co to je elektrické napětí, proud, odpor, mít ponětí o tom, jak pracuje spínač, přepínač, baterie.

Maturitní vysvědčení nedostanete

Dálkový interaktivní kurs ÚV Svazarmu nenahrazuje žádné odborné vzdělání. Čtyřleté zkušenosti však ukazují, že socialistické organizace, které velmi ochotně hradí svým pracovníkům kursovné, to nečiní ze sociálních aspektů, ale s cílem využít svazarmovský kurs pro přípravu a přeškolení svých vlastních kádrů. Doklady o absolvování jednotlivých ročníků kursů mají proto už svou osobní i společenskou cenu, a to i v případě, když si kursovné budete hradit sami.

Nemusí se začínat prvním ročníkem

Pro přímý vstup, například do dru-hého ročníku, je už třeba znát základy číslicové techniky, tj. základní logické obvody, jejich funkci, využití a praktickou práci s nimi (to vše jinak naučí první ročník). Přímý vstup do třetího ročníku ("Mikropočítače") lze doporučit těm, kteří buď už mají odbornou průpravu na úrovní základního studia v prvním a druhém ročníku, nebo chtějí získat přehled o funkci a aplikacích osobních počítačů, 1 když některým odbornějším částem textu plně neporozumí. Přímý vstup do čtvrtého ročníku bude vzhledem k jeho inovaci, o které byla řeč v redakčním úvodu tohoto článku, možný až od roku 1989. To využijí ti zájemci, kteří se chtějí orientovat v moderním programování, aniž by se blíže zajímali o technickou stránku počítačů.

Počet volných míst pro přímé vstupy do vyšších ročníků je omezen, přednost k zařazení mají postupující absolventi předchozích ročníků.

Kursovné

 ročník.598 Kčs Z toho přibližně 300 Kčs jsou náklady na stavebnici Kyber Universal I, zbytek tvoří výroba studijních materiálu, poštovné a organizace průběhu kursu.

2. ročník, přímý vstup......796 Kčs K absolvování výuky druhého ročníku je zapotřebí i stavebnice z první části kursu. Proto je kursovné přímého vstupu o její cenu vyšší. Pro pokusy při výkladu látky druhého ročníku je k dispozici mechanicko elektrická, dvoudílná stavebnice Kyber Universal

3. ročník, přímý vstup......492 Kčs Pomůcky z 1. a 2. ročníku nejsou ke studiu nezbytné, kursovné pro přímý vstup je tu shodné s kursovným postupujícího ročníku.

Jak se přihlásit?

Také letos se předpokládá o účast v kursu velký zájem. Proto se přihlašte co nejdříve korespondenčním lístkem na adresu:

602. ZO Svazarmu Wintrova 8 160 41 Praha 6

Je nezbytné uvést, do kterého ročníku (1., 2. nebo 3.) se přihlašujete. Zájemci podle pořadí došlých požadavků dostanou až do vyčerpání kapacit jednotlivých ročníků informační materiály se závaznou přihláškou, složenkou a pokyny k dalšímu postupu.

Částečně sestavený mechanismus. Spolu s elektrickými obvody realizovanými na nepájivých kontaktních polích je účastníkům kursu k dispozici úplný systém polytechnické stavebnice pro pokusy s různými druhy servomechanismů, s řízením otáček a polohy

Mechanická část stavebnice Kyber Universal II s díly pro sestavení polohového mechanismu

AMATÉRSKÉ RADIO SVAZARMOVSKÝM ZO

Jednotná branná sportovní klasifikace v elektronice

Již téměř tři roky (od. 1. 1. 1985) platí nová JBSK; málokdo je však seznámen s tím, že lze výkonnostní třídy získat i v disciplíně:

konstruktérská činnost v elektronice.

audiovizuální tvorba,

programování výpočetní techniky,

technické soutěže mládeže v elekt-

Tituly zasloužilý mistr sportu a mistr sportu se neudělují. Získání výkonnostních tříd v odbornosti elektroníky není časově omezeno, pro jejich udělení je rozhodující součet získaných bodů nebo výsledků. Bližší viz směrnice ÚV Svazarmu č. 13/84.

Konstruktérská činnost v elektronice

Předpokladem pro udělení výkonnostní třídy je přihlášení a s vlastním výrobkem na přehlídkách technické tvořivosti Svazarmu v elektronice (ERA). Věková kategorie je jedna, a sice nad 18 let. III. výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní práce obdrží na okresních přehlídkách technické tvořivosti tři jakékoliv visačky, nebo na krajských přehlídkách dvě jakékoliv visačky. II. výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní práce obdrží na krajských přehlídkách technické tvořivosti čtyři jakékoliv visačky, nebo na celostátních přehlídkách dvě.

I. výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní práce obdrží na celostátních přehlídkách technické tvořivosti dvě jakékoliv visačky, z toho nejméně jednu zlatou.

Mistrovská výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní práce splní na celostátních přehlídkách technické tvořivosti podmínky pro udělení dvou I. výkonnostních tříd.

Audiovizuální tvorba

Předpokladem pro udělení výkonnostní třídy je přihlášení a účast vlastní soutěžní práce na festivalech audiovizuální tvorby.

Výkonnostní třída dorostu

Zařazují se do ní soutěžící ve věku do 18 let, jejichž soutěžní programy obdrží na krajských, republikových nebo celostátních festivalech audiovizuální tvorby (FAT) jednu jakoukoliv cenu. III. výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní programy obdrží na okresních festivalech audiovizuální tvorby dvě jakékoliv ceny, nebo na krajských festivalech jednu jakoukoliv cenu. II. výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní programy obdrží na krajských festivalech audiovizuální tvorby tři jakékoliv ceny, nebo na republikových či celostátních festivalech jakoukoliv ce-

výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní programy obdrží na republikových nebo celostátních festivalech audiovizuální tvorby dvě jakékoliv ceny. Mistrovská výkonnostní třída

Zařazují se do ní soutěžící, jejichž soutěžní programy obdrží na republikových nebo celostátních festivalech audiovizuální tvorby čtyři jakékoliv ce-

Programování výpočetní techniky

Předpokladem k udělení výkonnostní třídy je přihlášení a účast na soutěžích v programování.

III. výkonnostní třída

Zařazují se do ní programátoři, kteří se na krajských soutěžích v programování umístí na 4. až 6. místě, nebo jsou klasifikování v celostátním finále.

II. výkonnostní třída

Zařazují se do ní programátoři, kteří se na krajských soutěžích v programování umístí mezi prvními třemi nejlepšími řešiteli, nebo na celostátních soutěžích se umístí na čtvrtém až šestém místě.

I. výkonnostní třída

Zařazují se do ní programátoři, kteří se na celostátních soutěžích v programování umístí mezi prvními třemi nejlepšími řešiteli.

Mistrovská výkonnostní třída

Zařazují se do ní programátoři, kteří na celostátních soutěžích v programování splní podmínky pro udělení dvou I. výkonnostních tříd.

Technické soutěže mládeže v elektronice

Předpokladem pro udělení výkonnostní třídy je přihlášení a účast na technických soutěžích mládeže nebo na konferencích mladých elektroniků. Výkonnostní třídy se udělují v kategoriích 10 až 12 let, 13 až 15 let, 16 až 18 let.

III. výkonnostní třída

Zařazují se do ní soutěžící, kteří v technických soutěžích mládeže získají na stupni okresu minimálně 4000 bodů, nebo na stupni kraje 3000 bodů. Dále soutěžící, kteří na konferencích mladých elektroniků získají na stupni kraje minimálně 70 bodů nebo celostátním či republikovém stupni minimálně 60 bo-

II. výkonnostní třída

Zařazují se do ní soutěžící, kteří v technických soutěžích mládeže získají

na stupni kraje minimálně 4000 bodů, nebo na celostátním či republikovém stupni minimálně 3000 bodů. Dále soutěžící, kteří na konferencích mladých elektroniků získají na stupni kraje minimálně 80 bodů, nebo na republikovém či celostátním stupni minimálně 70 bodů.

l. výkonnostní třída

Zařazují se do ní soutěžící, kteří v technických soutěžích mládeže získají na republikovém (celostátním) stupni nejméně 5500 bodů. Dále soutěžící, kteří na celostátním nebo republikovém stupni získají na konferencích mladých elektroniků minimálně 100 bodů. OK2QX

Z galerie našich nejlepších radioamatérů

Dnes vám představíme dalšího člena velké rodiny radioamatérů, kterému se podařilo popostrčit jednu z příček žebříčku radioamatérských dovedností směrem nahoru. Je to ing. Karel Karmasin, kterého znají radioamatéři zajímající se o závodní provoz všude na světě, ať již pod původní značkou OK2BLG, nebo OK2FD či OK6RA. Ve výsledkových listinách světových závodů od 70. let jej naleznete vždy mezi prvními - alespoň v Československu. O radioamatérský sport se začal za-jímat již jako 14letý v roce 1962 a do Svazarmu jej přivedl zájem o orientační závody. Morseovku zvládnul rychle, stal sa aktivním RP a RO v kolektivní stanici OK2KBH v Břeclavi a jakmile se začala vydávat zvlástní povolení pro mládež, získal svou první koncesi jako OL6ACY. Již tehdy se začalo projevovat jeho nadání uplatňovat provozní zručnost získanou po dobu praxe jako RP a RO v kolektivní stanici a hlavně zájem o závodní činnost, a tak již v roce 1965 vyhrává závody OL, OL ligu i jednotlivé tehdejší "Telegrafní pondělky". V roce 1966 získává koncesi OK2BLG a jeho prvním závodem byl TOPS contest na 80 m — 4 dny po získání koncese a s výkonem 5 W se umisťuje mezi prvními 20 stanicemi na světě!

Pak následuje dlouhá řada závodů s postupným vylepšováním jak zařízení, tak i antén. Jakmile získal transcei-FT101B a vyrobil pořádnou směrovku, konkurence se jen nevěřícdívala na dosahované prakticky ve všech závodech získává 1. místo v OK a po zvýšení výkonu na 500 W se umisťuje i mezi prvními deseti stanicemi na světě - např. v závodech WAE, OK - DX, IARU Championship v CQ DX contestu fone 1984. Kvanta spojení (asi 10 až 12 tisíc ročně) přinášejí i diplomy, kterých má dnes přes 300, stejně jako potvrzených zemí DXCC, čestný titul mistra sportu (1979) a v letech 1980-85 každoročně titul mistra ČSSR v práci v pásmech KV.

Množství navazovaných spojení pak donutilo Karla přemýšlet, jak racionál-ně všechna tato spojení, QSL agendu

MS ing. Karel Karmasin, OK2FD, u svého zařízení

Pohľad do učebne STZM v Prakovciach

apod. evidovat, aby administrativa s tím spojená nezabírala více času, než navazování vlastních spojení. Měl štěstí, neboť současně probíhala i u nás expanze počítačové techniky. Kupuje počítač SORD, záhy vystřídaný typem Commodore C64, se kterým nyní dělá od spojení, přes vyhodnocení a tisk deníku ze závodu, i vyhodnocování OK-DX contestu, jehož manaže-rem se stal v roce 1984. Začíná pracovat provozem RTTY s použitím počítače a v roce 1986 získává např. 1. místo na světě ve VK/ZL RTTY závodě. Navíc se nikdy nevyhýbal práci v kolektivce — OK2UAS, OK2KHD, OK2KOO a dnes OK2KMI jsou značky, k jejichž popula-rizaci přispíval vždy, když k tomu měl příležitost. Připočteme-li k tomu ještě jeho aktivitu v KV komisi ČÚV Svazarmu a vedení sekce výpočetní techniky pro uživatele počítačů Commodore při ZO Svazarmu, pak se nelze divit povzdechu v jednom z jeho dopisů žel čas je jen jeden a víc už se do něj nevleze. OK2QX

Zahájená činnosť STZM v okrese Spišská Nová Ves

Podľa plánu činnosti rady rádioamatérstva pri krajskom výbore Zväzarmu v Košiciach sa na prvom zasadnutí rady v tomto roku okrem iného prejednávalo i zriaďovanie staníc tréningových základní mládeže (STZM) pre odbornosti rádiový orientačný beh (ROB), športovú telegrafiu (TLG) a moderný viacboj telegrafistov (MVT). Ulohou STZM je v uvedených branných športoch vychovať talentovanú mládež, s ktorou sa cez postupové súťaže miestneho, okresného či krajského charakteru bude počítať pre národné a celoštátne prebory. Úlohou trenérov bude okrem športových dovedností pestovať u mládeže odvahu, húževnatosť, iniciatívu a morálku. Je to úloha ťažká, ktorá si vyžiada nemálo času a trpezlivosti zo strany mladých sportovcov aj trénerov. Okresu Spišská Nová Ves bola zverená úloha vychovávať v STZM chlapcov

a dievčatá pre brannú disciplínu MVT. Činnosť STZM bola zahájená vo februári tohto roku. Do činnosti STZM boli zapojení žiaci ZŠ v Prakovciach, kde sú pre tento druh športu vytvorené veľmi dobré podmienky. Pod vedením trenérov Jozefa Komoru, OK3ZCL, a Jozefa Križeka, OK3ZKQ, sa talentovaní športovci pravidelne tri krát v týždni zdokonaľujú v topografii, orientačnom behu, príjme a vysielaní telegrafie a práci s rádiovou stanicou. Trinásť športovcov je rozdelených do dvoch skupín. Prvá skupina sa venuje etape základnej prípravy. V druhej skupine sú zaradení športovci pre etapy špeciálnej prípravy. Určite bude snahou nových adeptov pre tento šport dosiahnúť čo najlepšie výsledky, a tak robiť dobre meno okresu Spišská Nová Ves. Už po prvých tohoročných súťažiach sa ukázalo, že väčšina zo športovcov zaradených do STZM patrí medzi veľké nádeje vďaka zodpovednému prístupu k plneniu tréningových dávok. **OK3ZCL**

POZOR! Celostátní výstava ERA začíná 23. 11. 1987!

100 let Eiffelovy věže

Možná, že se někomu nebude zdát, že je to zrovna letos. Těch kulatých výročí by se našlo více: kdy se zrodil nápad něco takového postavit, nebo začátek stavby (1886), či zahájení výstavy, pro kterou byla postavena (1889). Před sto léty byla dohotovena a nelze si ji z obrazu Paříže odmyslet. Stojí na Martově poli blízko náměstí Svornosti. Její zrod byl doprovázen zuřivou a nenávistnou kampaní dogmatiků, kteří ji považovali za nehoráznost v blízkosti Louvru a Bourbonského paláce. Měla na mále v roce 1909, kdy vypršela doba, na kterou byla schválena, a na pořad dne se dostala její demolice.

Zachránila ji armáda. Mladého důstojníka kapitána Ferrié napadlo, že by se hodila na anténu. V roce 1902 svůj záměr realizoval, navázal spojení s pozemními i námořními vojenskými útvary a Eiffelova věž se stala se svou šestidrátovou, 425 m dlouhou anténou a vysílačem, umístěným v suterénu, významným radiokomunikačním centrem.

I naši amatéři Motyčka, Ing. Bísek, Ing. Štěpánek a další, kteří začínali po první světové válce, poslouchali její radiotelegrafické výsílání, časové signály a povětrnostní a jiné zprávy na velmi dlouhých vlnách. Byla důležitým part-

nerem petřínské stanice, která s ní navázala první spojení 10. prosince 1918 a pak s ní denně udržovala pravidelné relace. Začátkem dvacátých let zkoušela — jak se tehdy říkalo — radiofonii na vlně 2600 m (nikoliv kHz) mezi 19. a 20. hod. V roce 1925 vysílala již pravidelný rozhlas výkonem 4 až 8 kW s 5000 až 6000 V na anodě. Protože Francouzi vyslovují jméno jejího tvůrce "Efel", dostala radiostanice volací značku FL. Když mezistátní dohody stanovily, že pozemní stanice musí mít značku třípísmenovou, pracovala jako FLJ, FLE a další a ve třicátých létech vysílala na vlně 7100 m souborné meteorologické zprávy ze západní Evropy a Atlantiku. Ferrié se stal generálem a 23. dubna 1922 přednesl významnou přednášku o radiotelegrafii a radiotelefonii v zasedací síni Staroměstské radnice v Praze.

Po druhé světové válce bylo radiotelegrafní zařízení na Eiffelovce zlikvidováno. Eiffelova věž je ve dne tmavě šedá, večer a v noci se třpytí jako z ryzího zlata. Je důkazem, že život nakonec nedává za pravdu suchopárům, dogmatikům a bázlivcům, ale těm, kdo přinášejí nové a pokrokové myšlenky.

OK1YG

A/11 Amaterske AD 10

AMATÉRSKÉ RADIO MLÁDEŽI

Soutěž mládeže

na počest 70. výročí VŘSR

Po celý měsíc březen letošního roku probíhala ve všech KV i VKV pásmech Soutěž mládeže na počest 70. výročí Velké říjnové socialistické revoluce, vyhlášená na návrh komise mládeže radou radioamatérství UV Svazarmu ČSSR. Soutěže se zúčastnil velký počet mladých radioamatérů, kteří soutěžili v kategoriích kolektivních stanic, posluchačů a OL. Zásluhu na tak velké účasti měly především radiokluby z okresu Pardubice, ze kterých přišel značný počet hlášení hlavně pro kategorii posluchačů a YL.

Deníky do Soutěže mládeže zaslalo celkem 287 účastníků. Víme však, že se Soutěže zúčastnily desítky dalších mladých operátorů v kolektivních stanicích, kteří však bohužel hlášení nezaslali.

Slavnostního vyhodnocení Soutěže mládeže na počest 70. výročí Velké říjnové socialistické revoluce, které se uskutečnilo v červnu v budově ÚV Svazarmu ČSSR v Praze, se zúčastnili nejúspěšnější závodníci ze všech kategorií. Účastníci vyhodnocení Soutěže mládeže se rovněž zúčastnili exkurze do budovy Čs. televize na Kavčích horách a během třídenního pobytu v Praze také navštívili některé kulturní a historické památky.

Uvádím 10 nejúspěšnějších účastníků jednotlivých kategorií:

Kategorie kolektivních stanic

<i>Nategorie kolekti</i>	vnich stanic
1. OK1KFB 1040 b.	radioklub Vodňany
2. OK3KPM 998	- radioklub Krompachy
3. OK1KLX 742	- radioklub Náchod
4. OK1KSZ 687	- radioklub Litvínov
5. OK1KYP 668	- radioklub Praha 4
6. OK1KDZ 623	- radioklub Trutnov
7. OK1KZD 539	- radioklub Praha 6
8. OK1KFQ 521	- radioklub Liberec
9. OK1OVP 516	- radioklub Pardubice
10. OK1KPA 497	- radioklub Pardubice
Celkem bylo hodno	ceno 35 kolektivních stanic.

Kategorie posluchačů do 19 roků

1. OK3-27707	6960 b.	- Ladislav Vegh,
		Dunajská Streda
2. OK2-30826	4815	- Radek Hochman
		Vranovice
3. OK3-27463	4082	- Ľubomír Martiška
		Partizánske
4. OK1-30295	3127	- Milan Opat,
		Pardubice
5. OK1-32423	2485	- Roman Liška
		Vodňany
6. OK1-30823	2186	- Karel Krtička,
		Pardubice
7. OK1-31830	1866	 Vladimír Lehký,
		Liberec
8. OK1-30597	1298	- Martin Holeček
		Vodňany
9. OK1-30784	755	 Martin Mareš,
		Pardubice
10. OK1-31479	751	- Jiří Fröde, Broumov
Celkem bylo	hodnocen	o 152 posluchačů.
		**

Vedoucí oddělení elektroniky ÚV Svazarmu plk. ing. F. Šimek, OK1FSi, blahopřeje Milanu Opatovi, OK1-30295, (1-30295, z Pardubic kategorii posluchačů vítězství Soutěži mládeže, kterou v minulém roce uspo-řádala rada radioamatérství ÚV Svazarmu na počest 35. výročí založení Svazarmu

Kategorie OL 1. OL4BNJ 1866 b. Vladimír Lehký. Liberec 2. OL5BPH 1748 Jana Lohynská, Trutnov 3. OL2VIF 1293 Martin Holeček, Vodňany 4. OL5VGP 751 – Jiří Fröde, Broumov 5. OL4BOR 739 - Roman Krch, Lovosice 6. OL5VKG 633 Pavel Jánský, Pardubice 7. OL1BNH 629 - František Mrázek. Praha 4 8. OL5VIU 600 - Radek Sádovský, Pardubice 9. OL6BQN 578 Martin Kolomazník, Kroměříž 10. OL1BPJ 575 - Petr Kukia.

Praha 8-Bohnice Celkem bylo hodnoceno 48 stanic OL.

Katagoria VI

Kategorie YL	
1. OK1-30298 2816 b.	
	Pardubice
2. OK2-31623 2753	 Magda Zapietalová,
	Gottwaldov
3. OK1-23429 1748	 Jana Lohynská,
	Trutnov
4. OK1-31297 664	 Lenka Rybnikárová,
	Pardubice
5. OK3-28062 660	- Ingrid Schreiterová,
	Kysucké Nové Mesto
6. OK2-31044 520	 Hana Havlíková.
0. 01(2-01044 020	
= 0144 000=4 =4=	Morávka
7. OK1-32074 517	 Miroslava Dědičová,
	Vrchlabí
8. OK3-28174 444	 Ingrid Širgelová,
•	Dolný Kubín
9. OK1-31223 306	 Martina Kalendová.
0. 011. 01220 000	Pardubice
10. OK1-32551 284	
10. UK 1-32331 264	- Romana Štamba-
	ská, Pardubice
Bylo hodnoceno 52 d	ívek.

Z vašich dopisů

Dostal jsem zajímavý dopis od poslu-chače OK1-22172, ing. Pavla Stejskala z Hory svatého Šebestiána, ze kterého uvádím:

.V letošním třetím čísle Radioamatérského zpravodaje mne velice zaujal článek, týkající se celoroční soutěže OK -

maratón. Je dobré připustit polemiku, a proto bych se také rád připojil i já se svými zkušenostmi a názory na tuto soutěž. Současné upravené podmínky a hodnocení v OK - maratónu se mi docela zamlouvají. Když jsem totiž soutěžil před pěti roky a dříve, bylo zapotřebí odposlouchat velké množství běžných spojení, aby soutěžící dosáhl za celý rok solidní umístění v soutěži. Já jsem tohoto množství odposlouchaných spojení využíval především ke zdokonalování v příjmu telegrafie. Stačilo mi k tomu večerní poslouchání v pásmech 80 a 160 m. Tehdy jsem dosahoval kolem 20 tisíc bodů pro celoroční hodnocení. V pozdějších létech jsem poslouchání věnoval stejnou dobu, ale bodů jsem již tolik nezískal, protože jsem svoji pozornost zaměřil na poslech vzácných stanic z nových zemí a odposlouchaných spojení mi proto již tolik nepřibývalo. Je to logické a k tomuto rozhodnutí musí po delší době poslouchání dospět každý posluchač.

Proto většina posluchačů uvítala změ-, nu v hodnocení OK - maratónu v podobě přídavných bodů za prefixy a země DXCC. Dnes již pro posluchače, který se věnuje DX provozu, nehraje tak velkou roli měsíční hlášení, ale rozhodující jsou přídavné body za prefixy a země pro celoroční hlášení. Vede to každého posluchače k většímu zájmu o DX provoz, vyhledávání různých expedic a vzácných stanic a to je přece na posluchačské činnosti to nejza-

jímavější a nejdůležitější.

Sám mám v současné době omezené možnosti v poslouchání. Denně si mohu jen na krátkou dobu proladit všechna krátkovlnná radioamatérská pásma. abych mohl posoudit, jaké jsou podmínky a případně získal přehled o práci různých expedic. To vše slouží k růstu znalostí jak v oblasti šíření elektromagnetických vln, tak k přehledu o praktickém provozu v DX pásmech a v neposlední řadě i ke zvyšování znalostí cizích jazyků a zeměpisu. Jistě velmi mnoho radioamatérů neodolá, aby si v zeměpisném atlasu nevyhledali alespoň přibližné QTH vzácné stanice, kterou právě zaslechli nebo s ní navázali spojení.

Navíc se domnívám, že ten, kdo má možnost zúčastnit se alespoň poslechem provozu stanic z různých zemí celého světa, nemůže dopustit, aby došlo k jakémukoliv válečnému konfliktu. Jsem si jist, že radioamatérský provoz a třeba jen jeho pouhé odposlouchávání, přispívá k upevňování přátelství ke všem lidem na celém světě, bez ohledu na barvu pleti, náboženství a politické přesvědčení, a to je jistě v dnešní složité mezinárodní situ-

aci to nejdůležitější.

A na závěr bych chtěl vyjádřit osobní názor, že se mi soutěž OK - maraton líbí. Děkují KV komisi rady radioamatérství ÚV Svazarmu za upevnění podmínek OK – maratónu a kolektivu OK2KMB za pečlivé a rychlé vyhodnocování a organizování soutěže, protože i to v nemalé míře přispívá k popularitě této oblíbené celoroční

V poslední době se mi podařilo odposlouchat několik vzácných stanic, ze kterých jsem měl velikou radost: C53FS, TL8TU, KX6AZ, 3C1MB, V85HG, 7Q7LW, 5T5NU, 6Y5JH, FH4EC/FR/G, 3Y3UT, HH7PV, FT8ZA, 5H3ZR, FY4EE, HV3SJ, 8P9HC, J74A a další. Josef, OK2-4857

406

Integrovaná štafeta Ing. Petr Řezáč

2. díl Logická nula a jednička

Jak jste si přečetli v předchozím dílu seriálu, pracují číslicové obvody, se kterými se zabýváme, s pouhými dvěma úrovněmi signálu: logickou nulou a logickou jedničkou. Určitě víte nebo alespoň tušíte, že číslicové obvody jsou základem každého obvodu, který počítá s čísly. Tedy také číslicových počítačů, včetně osobních mikropočítačů, které již možná znáte (např. IQ-151, PMD 85 nebo Sinclair ZX Spectrum). Pokud by však takový počítač uměl pouze sečíst 0 + 1 = 1 a třeba 1 + 1 = 2 by už nedokázal, byl by to opravdu slabý počtář. Naštěstí existuje způsob, jak se dá i s většími čísly počítat za pomoci pouhých nul a jedniček.

Dvojková soustava

V desítkové soustavě je deset číslic (0, 1, 2, 3, 4, 5, 6, 7, 8, 9,), podobně ve dvojkové soustavě jsou číslice dvě (0, 1). V desítkové soustavě je největším iednociferným číslem devítka, ve dvojkové soustavě jednička. A jako je v desítkové soustavě desítka zapsána jako jednička ve vyšším řádu (totiž v desítkách), je ve dvojkové soustavě dvojka zapsána jako jednička ve vyš-ším řádu. Všimněte si, že základ číselné soustavy je vždy prvním číslem, k jehož zapsání už nestačí jedna cifra, jedna číslice. Jednotlivé řády v desítkové soustavě jsou vždy mocninami deseti, totiž 1, 10, 100, 1000, 10 000 atd. Ve dvojkové podobě 1, 2, 4, 8, 16, 32, 64, 128, 256 atd. - tedy mocniny dvou.

Asi si teď říkáte, že je to zmatek a vůbec tomu nerozumíte. Nevadí. Přečtěte si předchozí odstavec nyní ještě jednou a pak až v okamžiku, kdy budete potřebovat převádět čísla z desítkové soustavy do dvojkové či naopak.

Podle uvedených zákonitostí se číslo dvě napíše ve dvojkové soustavě takto: 10. Aby se nám však tento zápis nepletl se zápisem čísla deset v desítkové soustavě, je třeba vyznačit vždy, že dané číslo je ve dvojkové soustavě. Vyznačovat desítkovou soustavu můžeme, ale budeme to dělat pouze ve sporných případech. Tedy:

2 = (2)₁₀ = (10)₂. Jak by se dalo zapsat větší číslo ve dvojkové soustavě? Víte-li to sami, můžete následující odstavce přeskočit. Ostatní čtou dál:

Podobně jako lze v desítkové soustavě číslo (258)₁₀ zapsat jako $2.\underline{100} + 5.\underline{10} + 8:\underline{1}$, lze číslo $(101101)_2$ zapsat takto: $1.\underline{32} + 0.\underline{16} + 1.\underline{8} + 1.\underline{4} + 0.\underline{2} + 1.\underline{1}$, z čehož přímo vyjde hodnota tohoto čísla v desítkové soustavě: $(101101)_2 = (45)_{10}$.

Dobře si všimněte podtržených čísel. Jsou to mocniny základu číselné soustavy. Pokud ještě netušíte (a ve škole jste to neprobírali), co je to mocnina, nezoufejte, je to jednoduché. Podívejte se na tohle:

$$\label{eq:desitkova} \begin{tabular}{lll} $1 = 10^{\circ}$ \\ 10 = 10^{1} = 10 \\ 100 = 10^{2} = 10 \cdot 10 \\ 1000 = 10^{3} = 10 \cdot 10 \cdot 10 \\ 10 \ 000 = 10^{4} = \\ & = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \\ & \text{atd.} \\ \end{tabular}$$

$$\begin{tabular}{lll} $1 = 2^{0}$ \\ 4 = 2^{2} = 2 \cdot 2 \\ 8 = 2^{3} = 2 \cdot 2 \cdot 2 \cdot 2 \\ 16 = 2^{4} = 2 \cdot 2 \cdot 2 \cdot 2 \\ & \text{atd.} \\ \end{tabular}$$

Malé číslo, které píšeme o půl řádku výš, nad základ, je mocnitel (exponent) a označuje počet činitelů:

např. $2^3 = 2 \cdot 2 \cdot 2 = 8$, čteme to "dvě na třetí je osm". Nebo "dvě umocněno na třetí", "třetí mocnina dvou" apod. A teď sami, kolik je dvě na čtvrtou? Dopočítejte další mocniny čísla dvě. Pokud si povšimnete skutečnosti, že $2 \cdot 2^3 = 2^4$, $2 \cdot 2^4 = 2^5$, $2 \cdot 2^5 = 2^6$ atd., bude vše docela snadné — stačí umět násobit dvěma. Jediné trochu zarážející na tom všem je vztah $2^0 = 1$, že tedy dvě na nultou je jedna. S tím se nedá nic dělat, musíte si pamatovat, že každé číslo (s výjimkou nuly) na nultou je jedna. A hotovo.

V zápalu boje s dvojkovou soustavou jsme dočista zapoměli, proč jsme se do něj vlastně pustili. Chtěli jsme vědět, jak mohou být s využitím samých nul a jedniček v počítačí uložena i jiná čísla. Nyní je tedy všem zřejmé, že využitím dvojkové soustavy lze např. číslo (45)₁₀ vyjádřit šesti dvojkovými ciframi (číslicemi): (101101)₂. Zápis čísla ve dvojkové soustavě je tedy, co se týče počtu cifer, delší, ale je velmi vhodný pro číslicové obvody a počítače. Používané číslice 0 a 1 se převedou na dvě napěťové úrovně (např. nula voltů a pět voltů). Číslicové obvody v počítači umí takto zapsané číslo bleskurychle zpracovat, zapamatovat si jej, sečíst nebo odečíst od jiného čísla a výsledek pak po převedení zpět do desítkové soustavy vydat opět člověku. Podobně jako lidé nejraději počítají v desítkové soustavě (protože mají deset prstů), počítače počítají nejraději ve dvojkové soustavě, neboť mají pouze dvě napěťové úrovně.

Tuším, že počítání máte prozatím dost. Budeme se teď zabývat přípravou na vlastní práci s integrovanými obvo-

K tomu budete potřebovat kromě jiných věcí znát i způsob zadávání logických úrovní na vstupy integrovaných obvodů. V klidové (rozpojené) poloze spínače S (obr. 5) je na vstupu je přes rezistor R připojen ke kladnému pólu napájecího napětí), zatímco při sepnutém spínači S je vstup integrovaného obvodu uzemněn a je tedy na něm úroveň log. 0. Odpor rezistoru R je v mezích 1 až 10 kiloohmů (kΩ). Pozor! Vstup obvodu TTL, který není nikam

Obr. 5. Zadávání logických úrovní spínačem

připojen, se chová, jako by na něm byla úroveň log. 1. Avšak nedoporučují této možnosti využívat, neboť takový volný vstup "chytá" rušivé impulsy od jiných obvodů i třeba ze sítě (stačí jiskření od spínače transformátorové páječky). Vždy je třeba připojit volný (nepoužitý) vstup obvodu TTL přes rezistor na kladný pól napájecího napětí a zajistit tak spolehlivou činnost obvodu. Prostě je dobré si zvyknout na pravidlo, že každý vstup obvodu musí být někam připojen.

Víme tedy už, jak se na vstup přivádí určitá logická úroveň a také již umíme zjišťovat logickou úroveň na výstupu číslicového obvodu. Vezměme si nyní k pokusům první integrovaný obvod a vyzkoušejme si jeho činnost. Jak integrovaný obvod použijeme? V prvním dílu jste si v obrázku schematických značek možná všimli, že existuje několik druhů hradel, což jsou nejjednodušší logické integrované obvody. Nejběžnějším druhem (a tedy také nejpoužívanějším pro první pokusy s integrovanými obvody) je stále obvod MH7400, v jehož jednom pouzdru je čtveřice dvouvstupových hradel NAND. katalogu polovodičových součástek byste našli kromě jiného i zapojení vývodů tohoto obvodu (obr. 6).

Obr. 6. Zapojení vývodů integrovaného obvodu (čtveřice hradel NAND) MH7400

Každé hradlo má tedy dva vstupy, označené A a B, a jeden výstup. Čtyři hradla po třech vývodech je celkem dvanáct vývodů, a do celkem čtrnácti vývodů obvodu zbývají právě dva—jeden pro přívod napájecího napětí +5 V a jeden pro 0 V. Vývody pro připojení napájecího napětí u příbuzných obvodů bývají na stejných mistech — vývody 7 a 14. Pozor, jsou i výjimky!

Opět pozor! Přepólováním napájecího napětí můžete obvod během kratičkého okamžiku zcela zničit! Zvláště vhodné je zkontrolovat správné připojení zdroje napájecího napětí u složitějších zapojení s větším počtem integrovaných obvodů, neboť případný omyl pak přijde velmi draho — jak pokud jde o čas, tak pokud jde o peníze.

Zapojte tedy teď (když máte v hlavě čerstvé předchozí varování) obvod podle schématu na obr. 7.

Pokud jste začátečníci, asi hned nevíte, jak se dá takový obvod zapojit. Nejlépe jsou na tom ti, kteří mají k dispozici některou ze stavebnic pro práci s číslicovými obvody. Jedná se např. o LOGITRONIK—02, KYBER-1, nebo o stavebnici ADAM ELÉV. Posledně jmenovaná stavebnice je pro vaši práci nejvhodnější, jejím výrobcem a zatím jediným prodávajícím je OPS

Obr. 7. Zapojení k ověření činnosti hradla NAND ($R_A=1$ až 10 k $\Omega=R_B$, R=180 až 370 Ω , LED= jakákoli svítivá dioda, S_A , $S_B=$ dva jednopólové spínače nebo tlačítka, místo MH7400 lze použít i MH5400 nebo MH8400)

Praha-západ. Při jejím použití se obejdete bez nutnosti pájet, rodiče vás nebudou plísnit pro neustálý zápach po kalafuně v bytě a pro kapičky cínu, zatavené do linolea a drahých koberců na podlaze. Z uvedeného důvodu doporučuji stavebnici KYBER-1 pokročilejším, kteří se již naučili základům práce s pistolovou páječkou. Bez této základní dovednosti byste si stejně stavebnici asi brzy zničili — není totiž vhodná pro trénink v zacházení s páječkou a cínem.

Co tedy budete po zhotovení zapojení z obr. 7 zkoumat? Činnost hradla NAND, které je použito, lze popsat tabulkou. V jednom řádku tabulky vždy najdete logické úrovně na vstupech A, B hradla a ve třetím sloupci pak logickou úroveň, kterou musí mít obvod na výstupu. Prostudujte tabulku a ověřte ji. Dejte přitom pozor na to, že LED v tomto zapojení svítí, je-li na výstupu hradla logická nula; pro log. 1 nesvítí:

hradio NAND

Α	В	Υ	LED
0	0	1	nesvítí
Ю	1	1	nesvítí
1	0	1	nesvítí
1	1	0	svítí

Tato a podobné kombinační tabulky jsou výborná věc. Podle údajů v nich uvedených lze totiž zjistit činnost obvodu, aniž by jej bylo nutno sestavit. Hradlo NAND se dá popsat i vztahem

$$Y = \overline{A \cdot B}$$
;

který říká, že stav výstupu obvodu Y se dá určit jako negace (to je ta čára nad A a B) součinu (tečka jako v matematice) vstupních veličin A, B.

Negace znamená opak — tedy $\overline{0} = 1$ (log. $\overline{0} = \log$. 1) a taky $1 = \overline{0}$. Součin pro logické hodnoty je definován kupodivu stejně jako v běžné matematice (pozor, o logickém součtu to již neplatí!)

0.0 = 0,

0.1 = 0

1.0 = 0

1.1 = 1.

tedy je-li jedním z činitelů součinu nula, je výsledek nula. Takto bychom dostali logický součin, česky A, anglicky AND. Pamatujte si: výsledek operace je jedna, je-li:

A – log. 1 a <u>zároveň</u> B = log. 1. Hradlo NAND se od hradla AND liší ve schématu kroužkem, "navlečeným" na výstupním vývodu. Tento kroužek značí negaci, kterou se obě hradla liší ve funkci: všimněte si, že hradlo NAND vykonává operaci "negované AND", což však anglicky je NAND (neboli NOT — AND, česky NE — A).

Otázky

- 4. Napište, kolik je: $(1101)_2 = (?)_{10}$ a kolik je: $(7)_{10} = (?)_{2}$?
- a kolik je (7)₁₀ = (?)₂?

 5. Jaká logická úroveň je na výstupu invertoru (bod Y) v naznačené poloze spínače S (obr. 8)?

 Obvod MH7400 obsahuje 4 hradla NAND. Nakreslete, jak vytvoříte ze dvou hradel NAND jedno hradlo AND!

Elektronika byla úplně nahoře...

Ačkoli nebylo moc vedro, myslel jsem, že se na tu Sklennou horu nevyškrábu. Chata ONV Cheb je hned nad nemocnici, informovali mě dva důvěryhodní důchodci. O tom, že cesta vede skoro kolmo vzhůru a "hned" bude trvat čtyřicet minut, se nezmínili. Zato nahoře jsem poznal, že jsem na správném místě. Od vrat chaty vybíhali v pravidelných intervalech závodníci s papírem v ruce. Technická olympiáda, samozřejmě. Pro jistotu jsem se jednoho zeptal: Ty jsi ze Sušice? No, ti jsou tu taky, ale já jsem z Chebu předunělo kolem mne s Dopplerovým efektem. Nebyl čas.

Osm elektroniků z Městského domu pionýrů a mládeže Sušice a sedmnáct leteckých modelářů z Okresního domu pionýrů a mládeže Cheb si vybralo tohle téměř nepřístupné místo pro svůj letní táborový pobyt. Přes rozdílnost

Obr. 1. ROB na Sklenné hoře

foto: R. Rebstöck

zájmů uplatnili mnoho společných nápadů při soutěžích, kvízech, rádiovém orientačním běhu (viz obr. 1), besedách a výletech. Jako "staří" táborníci se ke mně hlásili Rosťa Mach a David Rebstöck ze Sušice, kteří s námi byli na loňském soustředění Amatérského radia ve Slavkově. A také proto, že jsem jim přivezl diplomy a jejich práce ze soutěže o zadaný radiotechnický výrobek spolu s informací, že jejich kamarád Radim Sýkora získal druhou cenu.

Vedoucí oddělení techniky ODPM Cheb a MěDPM Sušice, Vladimír Florián a Radovan Rebstöck nepřipravovali technický tábor spolu poprvé. Podobné akce jsou tradiční a oba si libují, že přinášejí oboustranné výhody. Což jsme si ostatně ověřili již na mnoha místech: společné akce, připravené s přesným určením kdo, co a jak zajistí, jsou výhodné jak pro organizátory, tak pro děti na táboře.

A přinášejí také pohodu — tu jsem zde cítil od toho prvního okamžiku, kdy skončilo moje putování z Kraslic na Sklennou horu. A tak jsem ještě projednal s vedoucím tábora nějaké důležitosti (Radek totiž autorsky připravuje osnovy pro kroužky sdělovací techniky) a po ránu spěchal na zdejší minivláček. A nevím, jestli to nebylo třeba tím, že jsem klukům předal ty diplomy: dolů do Kraslic se mi šlo o poznání lépe...

Byl jsem ve Žloukovicích

O letošních prázdninách jsem se vydal do LPT Městského radioklubu Praha ve Žloukovicích, abych tam strávil poslední tři týdny prázdnin.

Hned po příjezdu nás vedoucí Láďa Kolín zavedl do chatiček. Chata byla prostorná, s verandou, lavičkou, kde se při pěkném počasí dalo slunit. Celý tábor 100 x 60 m, s 16 chatičkami je obklopený hlubokým lesem nedaleko od řeky. Uprostřed se tyčil stožár s vlajkou a pod ním dvě hřiště. Spal jsem se šesti kluky, taky radioamatéry. Ráno se probouzím trochu dřív před budíčkem - a venku mlha, že by se dala krájet. Po rozcvičce nás vedoucí Kolín, Pokorný, Nečas a Štemberk rozdělili do dvou skupin. Jedna bude u počítačů, druhá bude stavět výrobek blikač, později rádio a multimetr. Skupiny se střídaly, když se zlepšilo počasí, zbyl čas i na koupání v řece a výlety do Berouna, Nižboru, Rakovníka, pod Křivoklát. Zažil jsem různé zážitky, vyhrál ROB, pěkné byly dva táborové ohně. Měl jsem radost z fungujících výrobků i odměn za úspěchy - většinou cenných součás-

Snažil jsem se pracovat čistě a bez chyb, protože neoživitelné výrobky se válcovaly válcem na ruční pohon na betonové ploše, ale takové výrobky, zašpiněné a plné "studeňáků", byly výjimkou.

Měl jsem něco navíc proti ostatním kamarádům. Mám již operátorské zkoušky a proto jsem mohl vysílat z táborové stanice OK1OAZ/p. Měl jsem spojení i s rodiči a bratrem.

Když jsem odjížděl, měl jsem hlavu plnou nových plánů a zkušeností. Škoda, rád bych dál místo školy prožíval nová radioamatérská dobrodružství. Co dělat, musím počkat na příští prázdniny.

Jiří Smítka, OK1-31432, 13 let

AMATÉRSKÉ RADIO SEZNAMUJE...

Automatický regulátor napětí ARN 400 F

Celkový popis

Budu citovat výrobce: "jde o automatický regulátor určený pro úpravu síťového napětí pro napájení barevných nebo černobílých televizorů s maximální spotřebou 400 W. Pracuje v rozmezí vstupních napětí 180 až 250 V a pokles či vzestup vstupního napětí musí mít plynulý průběh." Výrobcem je Zlatokov Trenčín a zařízení se prodává za 860 Kčs.

Na přístroji jsou dvě tlačítka z nichž prvým se zapíná síť a druhým se volí rozsah vstupního napětí. V nestlačené poloze je to 195 až 250 V, ve stlačené poloze pak 185 až 220 V. (Zde je nesrovnalost dvou údajů: v návodu 180 V a na přístroji 185 V!) Na krabičce, v níž je přístroj umístěn, je ještě zásuvka pro připojení spotřebiče, pojistkový držák a kontrolní doutnavka.

Funkce přístroje

Nejprve si musíme ujasnit základní funkci přistroje. V žádném případě nejde o stabilizátor napětí, jak by se snad zájemce mohl domnívat a čemu by nasvědčovala i cena. Zařízení obsahuje transformátor u něhož jsou pomocí dvou relé přepínány odbočky. Je to tedy dvoustupňový regulátor napětí řízený klopnými obvody podle napětí na vstupu. Ve druhém rozsahu (185 až 220 V) je regulace dokonce jen jednostupňová, protože druhé relé spíná až při 222 V a to je již mimo výrobcem stanovenou mez.

Abychom si o funkci zařízení učinili názornou představu, naznačíme si závislost výstupního napětí na napětí vstupním tak, jak jsem ji naměřil přesnými přístroji při zatížení standardním černobílým televizorem.

Napětí		Napětí na	a výstupu	
sitě	Rozs	ah l	Rozs	ah II
	Vzestup	Sestup	Vzestup	Sestup
185 V	T -	-	210 V	210 V
190 V	-	-	215 V	215 V
195 V	205 V	205 V	220 V	220 V
200 V	210 V	210 V	225 V	211 V
205 V	215 V	215 V	230 V	216 V
210 V	220 V	220 V	222 V	222 V
215 V	225 V	211 V	227 V	227 V
220 V	231 V	216 V	232 V	232 V
225 V	237 V	220 V	-	-
230 V	227 V	227 V	_	-
235 V	232 V	215 V	-	-
240 V	220 V	220 V	-	
245 V	223 V	223 V	-	-
250 V	226 V	226 V	l -	-

Úrovně při nichž relé přepínají

Rozsah I		Roz	sah II	
Vzestup	Sestup	Vzestup	Sestup	
226 V	214 V	209 V	199 V	
238 V	232 V	222 V	214 V	

Z toho vyplývá, že v rozsahu l umí přístroj zpracovat vstupní napětí ze změnami přibližně ±12 %, přičemž se napětí na výstupu bude měnit v mezích 205 až 237 V., tedy přibližně ±7 %. V rozsahu ll umí přístroj zpracovat vstupní napětí se změnami přibližně ±9 % a napětí na výstupu se v tomto případě bude měnit v mezích 210 až 232 V, tedy přibližně ±5 %.

Z tohoto zjištění vyplývá, že činnost přístroje není příliš dobrá, protože změny napájecího napětí nezmenší ani o polovinu – i když by to v praxi pro funkci televizních přijímačů postačovalo. Je však třeba si uvědomit, že normou předepsaný pracovní rozsah je u elektronických zařízení (a tedy i u televizorů) ±10 % napájecího napětí. Každý televizor musí tedy bezpodmínečně pracovat v rozmezí 197 až 242 V napětí sítě. Jak jsem se informoval, napětí v síti úroveň 240 V prakticky nepřekračuje a jako nejnižší hranice je uvažováno přibližně 190 V. Odchylky mimo tuto toleranci lze považovat za zcela mimořádný stav, který sice výjimečně nastat může, je však urychleně odstraněn.

Domnívám se také, že je zcela nevhodné dělit pracovní rozsah regulátoru do dvou stupňů, kdy musí uživatel sám příslušný rozsah zvolit. K tomu si patrně bude muset za další peníze pořídit voltmetr aby zjistil, v jakém rozmezí se mu napětí v síti vlastně mění.

Dále je třeba si uvědomit, že normované rozmezí napájecího napětí (197 až 242 V) dnes plně vyhovuje pro naprostou většinu rozvodných sítí a že televizory s moderním spínaným zdrojem dovolují ještě podstatně větší odchylky napájecího napětí při bezchybné funkci příyroje. Pak se regulátor stává zcela zbytečným doplňkem a výjimečné případy (například trvalé podpětí v síti) lze řešit daleko jednodušeji a především levněji obyčejným transformátorkem s přepínatelnými odbočkami na sekundáru.

Také pracovní postupy, uvedené v návodu k obsluze, budou uživatelům nutně komplikovat život. Je zde totiž napsáno, že se například regulátor nemá vypínat dříve než televizor, zapínat se zase musí dříve než televizor, televizor se ale nemá zapnout dříve než za deset sekund po zapnutí regulátoru . . . ale, jak dále píše výrobce, pak se již můžete soustředit na sledování televizního programu.

Vnější provedení přístroje

Zařízení je vestavěno do standardní krabice z umělé hmoty. Vnější provedení je sice pečlivé, připomíná však dobře provedený amatérský výrobek. Připomínku mám k výměně pojistky na transformátoru, což je v návodu popsáno tak, že je třeba odšroubovat čtyři šroubky krytu a kryt odejmout. Přístupné jsou však pouze tři šroubky, protože se konstruktérovi podařilo umístit síťovou zásuvku tak, že čtvrtý šroubek do poloviny kryje. Musíme tedy rozebrat i síťovou zásuvku.

Vnitřní provedení a opravitelnost

Vnitřní provedení je jednoduché a přehledné. Případné opravy proto nebudou činit větší potíže. Horší je však to, že se začíná skutečně nepříjemně rozmáhat zvyk výrobců opravovat všechno pouze ve výrobním podniku, což jsem kritizoval již v předešlých testech. Jediným opravním střediskem je i v tomto případě výrobce, tedy podnik v Trenčíně, kam je třeba zasílat přístroje jak k záručním tak i pozáručním opravám. Nevím jaký druh pohodlnosti či organizační neschopnosti

vede výrobní podniky k tomuto řešení, ale znovu důrazně upozorňuji, že podobná servisní organizovanost je pro zákazníky nepřijatelná a nadřízené složky by ji neměly trpět. Obzvláště v otázce servisu tak jednoduchých zařízení, jakým je tento přístroj.

Závěr

Prodejní ceně 860 Kčs by odpovídal stabilizátor, který by automaticky udržoval výstupní napětí s odchylkou řekněme ±5 % při změnách napětí vstupního asi ±15 %. Pochopitelně v jediném funkčním rozsahu bez nutnosti jakéhokoli kontrolování a přepínání. To zkoušený přístroj ani zdaleka neumí.

Vzhledem k již čečeným mezním změnám napětí v síti a vzhledem k tomu, že normou stanovenou toleranci pro napájecí napětí televizorů (±10 %) běžné televizory s rezervou splňují a novější podstatně překračují, jeví se existence popisovaného zařízení jako problematická. Zvláště proto, že v extrémních případech se změny síťového napětí pohybují buď v oblasti nad imenovitou úrovní nebo pod ní. Případy, že by napětí v jediném místě odběru vykazovalo změnu od 190 do 250 V nepřichází v úvahu. A pak skutečně stačí již zmíněný transformátorek s odbočkami a zájemce ušetří podstatnou část takto vynaložených peněz.

PLYNULE OMEZENÍ PROUDU STABILIZOVANÉHO ZDROJE

V AR B3/78 bylo uveřejněno zapojení stabilizovaného zdroje 0 až 38 V s proudovým omezením na 2 A. Při oživování elektronických zařízení však velmi často potřebujeme různá omezení výstupního proudu. Popisovaný zdroj jsem proto doplnil zapojením podle obr. 1.

Obr. 1. Schéma zapojení

Zvětší-li se proud tekoucí tranzistorem T3 natolik, že součet napětí na rezistoru R8 a potenciometru P dosáhne asi 0,7 V, začne se otevírat tranzistor T1 a přes T2 je výkonový tranzistor T3 uzavírán. Nastavením potenciometru P tedy můžeme měnit napětí na rezistoru R8, při kterém začne být výstupní proud omezován. Přidáním jedné diody a jednoho potenciometru Ize tedy z původního pevného omezení získat omezení plynulé. Diodu volíme podle maximálního proudu.

Označení ve schématu odpovídá označení v citovaném článku. Upozorňuji, že tuto úpravu lze použít zcela obecně i u jiných stabilizovaných zdrojů.

Íng. Pavel Kříž

ZKUŠENOSTI S NOVÝM VIDEOMAGNETOFONEM SUPER VHS

Jak jsem se již před časem zmínil o existenci nového záznamového systému S-VHS, první přístroje již nejen spatřily světlo světa, ale bylo možno se s nimi blíže seznámit. Je to především videomagnetofon firmy JVC Victor HR-S 7000, který začal být v Japonsku prodáván koncem dubna tohoto roku. Jeho prodejní cena je 220 000 jenů, což přibližně odpovídá 2500 DM. Jeden z prvních přístrojů tohoto typu se dostal i do Evropy a stal se předmětem testu časopisu Video. O výsledku bych rád naše čtenáře informoval. Předem je však třeba upozornit na to, že tento první přístroj umí dosud zpracovat barevné signály pouze v soustavě NTSC.

Navenek, jak píše časopis, se tento přístroj vzhledově nikterak neliší od běžných modelů až na to, že po odklopení předního podélného víčka vidíme neobvyklé množství knoflíků a regulátorů. V redakční laboratoři vyzkoušeli nejdříve (na přijímači s více normami) přiloženou demonstrační kazetu, která již na první pohled prokázala co přístroj dovede. Jejich první dojmy byly: vynikající ostrost detailů a stejně kvalitní podání barev. Je to logické, protože zatímco dosud běžné videomagnetofony zajišťovaly rozlišovací schopnost nejvýše 250 řádků, rozliší tento přístroj bezpečně 400 řádků.

Z ryze technického hlediska však tento přístroj nic zcela nového nepředstavuje. Hlavní podíl dosahovaných výsledků závisí jednak na novém typu záznamového materiálu, jednak na změněné šířce pásma zaznamenávaného jasového signálu. Nový záznamový materiál, s nímž jsou tyto výsledky dosahovány, má aktivní vrstvu kysličníku železa dotovaného kobaltem s mimořádně jemným zrněním. Šířka pásma jasového signálu, která byla u běžných videomagnetofonů VHS 3,4 až 4,4 MHz, je u tohoto stroje rozšířena od 5,4 do 7,0 MHz.

Nový záznamový materiál již dodává několik japonských firem a cena těchto pásků je prozatím přibližně dvojnásobná oproti páskům dosavadním. Kazety s novým druhem pásku mají na spodní straně identifikační otvor, který umožňuje, aby přístroj automaticky zjistil vložený materiál.

Nové záznamové materiály lze samozřejmě používat i ve spojení s běžnými videomagnetofony VHS, avšak v takovém případě žádný podstatnější rozdíl v kvalitě nahrávky nezjistíme. Naopak, pokud bychom materiál, nahraný přístrojem S-VHS reprodukovali na běžném videomagnetofonu, dostaneme nevyhovující kvalitu obrazu, který bude nejasný až rozmazaný. Videomagnetofon HR-S 7000 má však automatickou identifikaci, pomocí níž se sám při reprodukci přepne buď na provoz VHS nebo S-VHS podle toho, jaký materiál je do stroje vložen.

Spolu s vynikajícím obrazem lze také pochválit i vynikající zvuk. Odstup, který přístroj dosahuje, je 90 dB a je zcela srovnatelný s odstupem běžných kompaktních desek. Také rušivý zvuk, vznikající přepínáním hlav, se u tohoto videomagnetofonu prakticky vůbec rušivě nepřojevuje. Toto přepínání u některých předešlých modelů bylo rušivé například při reprodukci dlouhých táhlých tónů.

Jak již byla v úvodu zmínka, byl posuzovaný přístroj schopen funkce pouze v soustavě NTSC. Úprava pro soustavu PAL se očekává nejdříve začátkem přištího roku a úprava pro SECAM buď současně s PAL nebo ještě o něco později. Proto zatím zůstává otázkou, kdy se tyto přístroje dostanou na evropské trhy.

Princip nového záznamového systému byl v první fázi dohodnut s nejznámějšími japonskými výrobci, jakými jsou Matsushita (obchodní značka Panasonic), Hitachi, Mitsubishi a Sharp. Evropští výrobci, jako Philips, Grundig, Thomson-Brand (obchodní značky Dual, Saba, Telefunken, Nordmende), dosud spíše hledali zlepšení kvality obrazu v jeho digitálním zpracování. Budou se proto muset rychle přeorientovat. Proto také bylo již letos uskutečněno setkání zástupců všech uvedených firem v Montreaux.

Předmětem technických diskusí není jen výroba nových přístrojů a záznamových materiálů, ale také otázky propojení těchto strojů s televizními příjímači. Výrobci tvrdí, že dosud užívané způsoby propojení nemohou v plné míře využít kvality S-VHS. Vyžadovalo by to prý vést do televizoru oddělený jasový a barevný kanál a využít televizoru pouze jako monitoru. Pak se, jak uvádí zmíněný časopis, naskýtá otázka, zda bude možno k podobnému účelu využít dosud běžně používaný 21pólový konektor SCART. Praktické zkoušky však prokázaly, že se tato péče zdá být téměř přehnaná, protože i při běžném dosud používaném způsobu propojení je zlepšená jakost obrazu zcela zřetelně patrná.

Výrobce předpokládá velký prodejní úspěch nového přístroje a jsou již připraveny i vzorky tzv. camcorderů. Právě v této oblasti, kde dosud měly slušný prodejní úspěch přístroje VIDEO 8, očekává výrobce S-VHS, žè se většina zájemců o prvotřídní obraz přikloní k jeho systému. S tímto názorem lze plně souhlasit, protože S-VHS umožňuje pořídit několik kopií za sebou, aniž by byla patrná ztráta kvality obrazu, což žádný jiný dosud používaný komerční přístroj neumožňuje. Očekává se dále, že kvalita nového systému se projeví obzvláště ve spojení s novými typy televizorů s obrazovkou o úhlopříčce 82 a 95 cm, protože právě zde budou přednosti S-VHS plně využity.

Nejasná zůstává zatím otázka prodejních a půjčovních kazet. Protože, jak již bylo řečeno, nahrávky systémem S-VHS nemohou poskytovat na běžných přístrojích VHS uspokojivý obraz, budou, vzhledem k prozatím zcela převažujícímu počtu majitelů běžných přístrojů, nabízeny především kazety nahrané dosavadním způsobem.

-Hs-

Vf milivoltmetr

Ing. Petr Zeman

Měření napětí patří k základním úkonům při práci s vř technikou. V podvědomí elektroniků amatérů bývá pojem vř voltmetr spojován s náročným měřicím přístrojem, jehož výroba je možná výhradně v průmyslových podmínkách, nebo naopak s jednoduchými přípravky, umožňujícími pouze orientační měření.

V článku je popsána konstrukce ví milivoltmetru, který lze postavit bez zvláštních nároků na strojní a přístrojové vybavení, a který splňuje většinu požadavků, s nimiž se setkáváme v zájmové technické činnosti.

Koncepce přístroje Základní metody měření vf napětí

můžeme rozdělit na selektivní a širokopásmové. Selektivními měřiči jsou např. měřicí přijímače a vzorkovací (sampling) voltmetry. Oba typy přístrojů vycházejí z principu lineární konverze měřeného signálu na signál o kmitočtu mezifrekvence. MF obvody mají stupňovitě proměnné (kalibrované) zesílení či útlum, které určují rozsahy. Za nimi následuje lineární detektor a indikátor. Pro aplikaci v amatérských podmínkách . přístroje jde O neúměrně náročné. Jejich použití (popř. realizace) je omezeno na specifické potřeby, souvisící např. s analýzou kmitočtového spektra signálu.

Nejrozšířenějšími měřiči jsou širokopásmové voltmetry. V profesionální praxi se již často určuje napětí z výkonu, měřeného s použitím termických měřičů, které díky technologickému pokroku v realizaci monolitických součástek dosahují rozlišení menšího než 1 µW. Z principu je zřejmé, že zjišťujeme efektivní hodnotu napětí.

Předmětem našeho zájmu je však měření s použitím diodových detektorů.

Provedení měřičů a oblast jejich využití

Měření vf napětí diodovými hrotovými sondami se používá v obvodech se soustředěnými parametry převážně v kmitočtovém pásmu do 100, nejvýše 200 MHz.

Na vyšších kmitočtech se používají sondy jen ve spojení s průchozími adaptéry pro měření v koaxiálních (souosých) vedeních. Jinak měření ztrácí smysl vlivem neúměrného zvětšení chyby, vznikající nejednoznačností připojení sondy, ovlivněním měřeného objektu zmenšující se vstupní impedanci sondy, nebo i přímým narušením rozložení elektromagnetického pole v místě připojení sondy.

Diodová sonda je nejčastěji osazena germaniovými (nebo speciálními křemíkovými) diodami v zapojení půlvlnného nebo celovlnného detektoru. Základní zapojení je na obr. 1. Přednostně je využívána varianta b) — díky kondenzátoru C se neuplatní ss složka na měřeném objektu.

Obr. 1. Půlvlnný diodový detektor a) sériový, b) paralelní

Pro velká napětí a nižší kmitočty je "efektivní" vstupní odpor voltmetru roven $R_z/2$; je silně napěťově i kmitočtově závislý — zmenšuje se např. ze 100 k Ω na 10 k Ω při snížení $U_{\rm vst}$ z jednotek voltů na desítky milivoltů; podobný účinek má zvýšení kmitočtu signálu z jednotek na stovky megahertzů.

Zvyšuje-li se kmitočet, zmenšuje se detekční účinnost a uplatňuje se vliv vlastní rezonance. Typická kmitočtová závislost je uvedena na obr. 2.

Obr. 2 Typická kmitočtová závislost chyby diodového voltmetru

Reálný průběh charakteristik A—V detekčních diod způsobuje, že stupnice voltmetru pro nižší napětí není lineární a to při konstrukci vf milivoltmetru vede na samostatné nelineární stupnice jednotlivých rozsahů.

Pozn.: Platí, že pro napětí větší než asi 0,7 V je výchylka měřidla úměrná špičkové hodnotě měřeného signálu, pro úrovně menší než asi 30 mV efektivní hodnotě měřeného signálu. Mezi těmito napětími se plynule mění od špičkové k efektivní.

Základní technické údaje

děřicí

rozsahy:

0,03; 0,1; 0,3; 1; 3; 10 V.

Průběh

lineární.

stupnice: Kmitočtové

micai III.

pásmo:

typ. 10 kHz až 200 MHz

(viz text).

Vstupní impedance: typ. $C \sim 3$ pF (viz text), $R \geq 40$ k Ω /1 MHz; 13 k Ω /50 MHz;

5,5 kΩ/100 MHz; 1,3 kΩ/200 MHz.

1,5 Ks

Chyba měření: typ. $\pm 10 \%$ (viz text).

Referenční

23 °C.

teplota: Pracovní

Pracovni teplota okolí: +10 až +35 °C.

Napájení: a) ze sítě 220 V, 50 Hz;

b) z vnějšího zdroje střídavého napětí 9 až 13 V/50 mA nebo ss napětí ±18 až

28 V/15 mA.

Příkon: typ. menší než 1 VA. Osazení: integrované obvody

integrované obvody 3 ks, tranzistory 3 ks, diody 8 ks.

Rozměry,

hmotnost: $175 \times 60 \times 190$, asi 1 kg.

Dalším rušivým jevem je teplotní závislost parametrů diody; jejím důsledkem mohou být chyby asi desetin procenta na stupeň Celsia a ustalování údaje v rozmezí až 2 % při přechodu z měření napětí řádu voltů na desítky milivoltů.

S jednoducnými diodovými hrotovými sondami se můžeme setkat jako s doplňky univerzálních měřicích přístrojů, které jsou např. v prodeji v NDR. U nás je diodová sonda SU20 součástí měřicího kompletu QU 160 z k. p. METRA Blansko. (Je dodávána i samostatně jako doplňkové příslušenstv PU160). Potlačit nežádoucí vlastnosti jednoduchých sond (nelinearitu, teplotní závislost) umožňuje metoda, vycházející z použití kompenzačního nf detektoru.

Obr. 3 Blokové schéma vf voltmetru s kompenzací a linearizací nf detektorem

Voltmetr s nf kompenzací a linearizací

Princip je zřejmý z obr. 3. Stejnosměrná napětí z vf detektoru D1 a kompenzačního detektoru D2 se odčítají v bodě S. Smyčka zpětné vazby, která se uzavírá přes zesilovač Z, řízený oscilátor ŘO a dělič B, reguluje výstupní amplitudu ŘO tak, aby se v bodě S udržoval nulový potenciál. Zeslabení v děliči B určuje rozsah voltmetru. Kompenzační signál na výstupu ŘO je usměrněn detektorem D3 a jeho úroveň zobrazena indikátorem I s lineární stupnicí.

Obvodové řešení ví milivoltmetru

je uvedeno na obr. 4. Zapojení lze rozdělit na pět funkčních bloků, které budou podrobně popsány.

Sonda voltmetru

sestává ze součástek C1 až C4, D1, D2, R1, R2.

Pro dosažení předností kompenzační metody je nezbytná dobrá shoda parametrů diod D1 a D2, zeiména voltampérové charakteristiky; dalšími kritérii isou schopnost detekce i malých signálů, vyhovující účinnost detekce na vyšších kmitočtech a závěrné napětí alespoň několik desítek voltů. Uvedené nároky splňuje nejlépe dvojice germaniových diod 2-GA206. Přestože isou germaniové diody označovány výrobcem za neperspektivní součástky, pro daný účel nejsou za dané typy ještě dostupné náhrady. Uvedené typy lze v amatérských podmínkách získat i rozebráním poměrových detektorů vyřazených rozhlasových a přijímačů; iejich použitím si ušetříme zklamání při experimentování s jinými součástkami. Kapacita kondenzátoru: C1 ovlivňuje chybu přístroje na nižších kmitočtech měřeného signálu, parazitní, indukčnost spolu s konstrukčními kapacitami zase měření na vysokých kmitočtech.

Povolené provozní napětí kondenzátoru spolu s dovoleným závěrným napětím diod je určující pro maximální přípustné napětí na vstupu voltmetru.

Použitý typ byl zvolen z běžně dostupného sortimentu a za předpokladu běžného použití přístroje, tj. měření v tranzistorových obvodech s napájecím napětím jednotek až desítek voltů.

Žkušenější konstruktéři mohou ověřit použití starších typů trubičkových kondenzátorů na vyšší provozní napětí; je to vhodné zejména pro měření v obvodech, v nichž se vyskytuje i vyšší ss napětí. Nežádoucí je přitom zvětšovat kapacitu C1, aby nebyla dioda neúměrně namáhána nabíjecím proudem. Dovolené střídavé napětí na vstupu je dáno především vlastnostmi diod. U typu GA206 doporučujeme nepřekračovat 100% přetížení vzhledem k nejvyššímu rozsahu, tj. 20 V.

Kondenzátory C2, C3 mají co nejlépe blokovat pronikající vstupní i kompenzační signál; s ohledem na to volíme jejich typ a způsob montáže (délku přívodů).

Vf vlastnosti přístroje ovlivňuje i konstrukční provedení sondy.

Zesilovač

Kromě základní funkce v regulační smyčce přístroje se hlavní měrou podílí na dosažení dostatečné stability "nuly" voltmetru.

Při velkých zesíleních (tj. při nejnižších rozsazích) se projevuje teplotní drift ofestového napětí a proudu operačního zesilovače. U profesionálních zařízení se používá "čoprovaných" zesilovačů (chopper), v nichž se vstupní ss napětí převede na střídavé řízenými spínači, zesílí se ve střídavém zesilovači a synchronní demodulací převede zpět na stejnosměrné. Vliv ofsetu vlastního zesilovače je oddělením střídavé a stejnosměrné cesty výrazně potlačen.

Pro amatérskou aplikaci je uvedený způsob náročný a proto bylo ověřováno použití "klasického" zapojení s OZ MAA725. Přístupná cena tohoto obvodu umožňuje amatérům i určitý výběr obvodů a při menších nárocích na dobu měření lze zvolit nejnižší rozsah milivoltmetru 30 mV, tj. dosáhnout rozlišitelnosti pod 1 mV.

Při nejnižších měřených napětích jsou požadavky na zesílení obvodu a jeho stabilitu značné: přechodem do oblasií dejekce v "kvadratické" části charakteristicky klesá účinnost detekce, přitom plné výcny ce měřidla na rozsahu 30 mV odpovídá změna výstupního napětí OZ o 10 V. Proto je třeba kompenzovat nesymetrii vstupního diferenciálního obvodu OZ trimrem R8 a vysloveně nevhodný kus je třeba vytřídit.

V konstrukci se proto počítá s umístěním OZ do objímky; v popisu montáže a nastavení jsou popsány metody nastavení i výběru. Při změně rozsahů voltmetru jsou současně přepínány kondenzátory C11 až C15 tak, aby časová konstanta regulační smyčky zůstávala na všech rozsazích přibližně konstantní. Na stabilitě nastavení "nuly" se podílí i vlastnosti obvodu R4 až R7; předepsané typy součástek však plně vyhoví.

Generátor a indikátor

Generátor kompenzačního nf signálu je řešen jako oscilátor *LC* s indukční zpětnou vazbou. Použité řešení splňuje i při poměrné jednoduchosti požadavek na generaci signálu od nízkých úrovní až po úroveň, odpovídající největšímu měřenému napětí (10 V), a to v závislosti na napájecím napětí, tj. na výstupním napětí IO1.

Odebíraný proud je přitom velmi malý a tím, že není zatěžován OZ, nezhoršuje se stabilita nuly voltmetru. Výstupní signál je harmonický a oscilátor "měkce" nasazuje.

Předpětí emitoru T1 je odvozeno z referenčního zdroje IO3 pomocí tranzistoru T2, takže U_{ref} není ovlivňováno proudem I_{ET1} .

Kmitočet generovaného signálu není kritický — typ. 100 kHz.

Indikátor je tvořen půlvlnným paralelním detektorem s C20, D3; předřadnými odpory R38, R39 a měřidlem M. Dioda typu GAZ51 zajišťuje, že díky příznivému průběhu voltampérové charakteristiky bude průběh stupnice měřidla lineární.

Blok děličů

určuje měřicí rozsahy a slouží ke kalibraci přístroje. Velkou bolestí některých konstrukcí je buď předepisování běžně nedostupných součástek (rezistory s malými dovolenými úchylkami odporu, tj. méně než ±5 %, a s malou teplotní závislostí odporu — např. z řady TR 160), nebo velké množství nastavovacích prvků, případně jejich nevhodně volené rozmezí nastavení. Velkým dělicím poměrům musí odpovídat i volba typu (dostupnost) a zapojení přepínače rozsahů.

Použité řešení vychází ze skutečnosti, že rezistory řady TR 213 mají vyhovující stabilitu i teplotní závislost odporu. Jsou použity běžné hodnoty z řady E 12 v toleranci ±10 %, popř. lépe ±5 %), přičemž rozsah nastavení trimrů je přiměřený a vhodně "jemný". Přepínač typu WK 533 41 má první sekci použitou pro přepínání kondenzátorů C11 až C15, druid sekce není obsazena (spojeno se zemi), i c'í a čtvrtá sekce jsou využity pro přepinaní rozsahů. K nastavení děličů byl navržen postup s využitím bračního indukčního d umožňující nastavit dělicí poměry i v podmínkách minimálního přístrojového vybavení.

Napájecí zdroj

Řešení napájecího zdroje má vliv na užitné a bezpečnostní vlastnosti

Abychom se vyhnuli opatřením k zajištění bezpečnosti, která jsou dostupná pouze profesionálním výrobcům a přitom zvětšují pracnost a cenu výrobku, je přístroj konstruován v bezpečnostní třídě l (podle ČSN 35 6501) — skříň přístroje je spojena s ochranným vodičem sítě a současně je tento potenciál i "přístrojovou zemí".

V praxi se můžeme setkat s případy, kdy je žádoucí, aby přístroj byl "plovoucí" — např. při měření na zařízení, u něhož je "vf zem" na jiném ss potenciálu, než kostra přístroje a došlo by tak ke zkratu.

V konstrukci voltmetru by to však znamenalo použít transformátor, zkoušený na vysoká napětí; při izolaci "přístrojové země" vůči kostře by musely být použity součástky (konektory, přepínače, vstupní kondenzátor) s povoleným

izolačním napětím přes 500 V (2 kV).

Pro tato měření lze použít externí zdroj střídavého nebo symetrického stejnosměrného napětí, přivedeného na konektor K2.

Při síťovém napájení je využit běžný zvonkový transformátor typu 0156 výrobce Jesan Jeseník, z něhož se získavá napětí kladné a záporné polarity ve zdvojovačích napětí (D4 až D7, C22 až C25). Stabilizátory jsou osazeny obvody MAA723CN, které umožňují dosáhnout velmi dobrých parametrů, realizovat zápornou větev stabilizátoru (využívající vyvedenou Zenerovu diodu) a od referenčního výstupu 6 lO3 odvodit předpětí pro emitor T1. Nezanedbatelným přinosem je i příznivá cena integrovaného obvodu (9 Kčs).

V kladné větvi je obvod v doporučeném zapojení (včetně obvodu ochrany proudovým omezením), v záporné je částečná ochrana tvořena odporem R44. Stabilizovaná napětí lze přemostěním, popř. změnou R47 (R52) nastavit v rozmezí 13 až 14 V. Tím je zajištěna činnost přístroje v celém rozsahu dovolené úchylky síťového napětí 220 V ±10 %. V síťovém přívodu je zařazena tavná pojistka (T 100 mA).

Při externím napájení zůstává ve funkci indikace provozního stavu diodou D8. Přivedená napětí nesmí vést k překročení povolených napětí na filtračních kondenzátorech C23, C24 a vstupu MAA723CN, tj. 35 V. Při napájení symetrickým ss napětím působí usměrňovací diody a R40, R41 jako ochrana před přepólováním.

Konstrukční řešení

Vf milivoltmetr je vestavěn do přístrojové skříně, sestávající z čelního panelu, subpanelu (vzájemný odstup 10 mm), zadního panelu (odstup od subpanelu 150 mm); 2 ks bočnic a 2 ks krytů tvaru U. Rozměrově je skříň shodná s generátorem RC typu BK 124 (výrobce k. p. TESLA Brno) a s konstrukcemi měřiče LC a tříhladinového stabilizovaného zdroje, popsanými v AR B1/85.

Výhodou tohoto řešení je sjednocování rozměrů amatérských a profesionálních výrobků při budování měřicích pracovišť, velká "dědičnost" mechanických dílů i sjednocování vzhledu přístrojů. Vzhled vf milivoltmetru ukazuje obr. na obálce a v záhlaví článku. V základním přístroji jsou součástky umístěny převážně na desce s plošnými spoji (obr. 5). Deska je oboustranně plátovaná — horní

1

Seznam součástek

Rezistory (TR	213, tol.	. K, tj. ± 10 %)
R1, R2	220 kΩ	R19	8,2 kΩ
R3	1 kΩ	R25, R48	2,7 kΩ
R5, R7, R38	100 kΩ	R26, R47	470 Ω
R6, R9	10 Ω	R28	820 Ω
R10, R35,	39 Ω	R29, R32	120 Ω
R46		R31	270 Ω
R11	330 Ω	R34, R37	4,7 kΩ
R12, R13	1 ΜΩ	R40, R41	68 Ω
R14	270 Ω	R42, R49,	3,3 kΩ
R15, R23, R4	32,2 kΩ	R51, R53,	
R16	4,7 kΩ	R54	
R17, R20		R44	47 Ω
až R22, R50	10 kΩ	R45	1,5 kΩ
R18	6,8 kΩ	R52 ,	390 Ω

Odporové trimry TP 012 (TP 112)

100 kΩ **R8** R24 R27

R33. R36 22 kg **P39** 33 kΩ

Potenciometr

10 kN (25 k/N, 50 k/N)

TP 160

Kondenzátory C1, C4 4,7 nF (viz text), TK 744 C2 180 pF, TK 925 (TK 774, TK 794), s min. vývody 15 nF, TK 783 C5, C8, C15, 100 nF, TK 783 C16 C18, C19, 100 nF, TK 783 C21 47 nF, TK 783 22 nF, TK 783 C6 **C7** C10 C11 C12

220 pF, TK 794 820 pF, TK 794 3,3 nF, TK 724 10 nF, TK 724 C13 33 nF, TK 783 1,5 nF, TGL 5155/25/75 C14 C17

C20 2,2 nF, TK 744, TK 724 C22, C24 $500~\mu\text{F}/35~\text{V},~\text{TE}~986,~\text{PVC}$ C23, C25 200 μ /35 V, TE 986,PVC 10 μF/15 V, TE 984 C26, C29 C27, C28 100 pF, TK 774, TK 794

Polovodičové součástky

101 MAA725, MAA725 H (viz text)

102, 103 MAA723CN KC237, KC507

KC308 T2 KC636, KF517 B **T3** D1. D2 dvojice 2-GA206 D3 GAZ51 D4 až D7 KY132/150 **D8** LQ1732

Ostatní transformátor Tr - zvonkový, typ 0156, výrobce Jesan Jeseník; cívka L1, L2 — hrníček o ø 18; H22; A_L = 400; kostra "Trafokostra ø 18" - Modela; vinuti 65/12 záv.. CuP o ø 0.2 mm měřidlo panelové MP 40; μA; 2,5 %; R = 1800 Ω ± 25 % Po — pojistková vložka T 100 mA objímka pro IO; 8pólová kruhová K1, K2 - nf konektory, 5pól. (zdířky) konektor nf, 5pól. zásuvka Př1 – otočný přepínač WK 53341, 4 segmenty, aretovat 6 poloh S. Př2 — tlač. souprava ISOSTAT - segment N2 + síťový segment, hmatníky 5 x 10 mm přívodovka síťová 2,5 A/250 V

pouzdro pojistkové REMOS přístrojový knotlik WF 243 91, šipka, na hřídel o ø 4 mm

Obr. 7. Čelní a zadní panel 🕨

Obr. 6. Výkresy čelního panelu, u a zadního panelu

fólie je u otvorů odstraněna odvrtáním (kromě otvorů vyznačených křížkem). Výkresy čelního panelu, subpanelu a zadního panelu ukazuje obr. 6, upravený a osazený čelní a zadní panel obr. 7. Podrobný popis ostatních dílů skříně a technologii jejich výroby včetně povrchových úprav najdou zájemci v uvedeném čísle AR-B.

Sonda přístroje je vestavěna do pouzdra značkovače Centrofix 1886, který se upraví takto: Lak s potiskem na povrchu pouzdra se odstraní potíráním toluenem. Vytáhne se zadní plastová "zátká" (pozor - vyztužuje tenkostěnné hliníkové pouzdro po celé délce) a vyjme vnitřní obsah. Do "zátky" se ose vyvrtá otvor o průměru 2,5 mm a vloží se deska s plošnými spoji sondy - viz obr. 8.

(Dokončení příště)

Obr. 8. Deska V68a, b s plošnými spoji sondy a rozmístění součástek

VIDEOMAGNETOFONY

V poslední době nedošlo v základní konstrukci videomagnetofonů komerčního použití (kromě nyní připravovaného nového systému Super VHS) k podstatnějším změnám. Proto se pozornost výrobců soustředila spíše na otázku snadné a jednoduché obsluhy a to také v otázce programování automatického záznamu v naší nepřítomnosti.

V tomto směru jsou mezi jednotlivými typy videomagnetofonů značné rozdíly. Jednodušší a levnější přístroje umožňují většinou jen tzv. krokovou volbu, to znamená, že se postupným stisknutím jediného tlačítka (případně jeho podržením) skokově nastavují požadované údaje. Některé přístroje umožňují pouze skokový postup vpřed, což je nepříjemné v případě že zvolaný údaj "přejedeme"; jiné, chytřejší, i skokový postup vzad. Tak je také vyřešen i u nás prodávaný typ VM 6465. Komfortnější přístroje bývají opatřeny číslicovou klávesnicí, na níž lze požadovaná data "naťukat" daleko pohodlněji a hlavně rychleji.

Ale žádný způsob programování nemohl nic změnit na skutečnosti, že v případě, kdy došlo z jakéhokoli důvodu k posunu programu oproti plánované vysílací době, byl automatikou nahrán pořad jiný, anebo alespoň část jiného pořadu. To se stává nejen u nás, ale i v zahraničí, že se například z nejrůznějších příčin protáhne předešlý plánovaný pořad (například sportovní utkání) a pokud automatický záznam začne přesně v naprogramovanou dobu, máme na pásku nahrán zbytek programu předešlého a na konec programu požadovaného nám pak bohužel často nezůstane potřebné místo. Těm, kteří například filmové nahrávky z televize archivují, také často vadí i to, mají-li před začátkem požadovaného filmu nahrán kus předešlého programu, čemuž se v případě, kdy nastavujeme automatický záznam podle času, nemůžeme téměř nikdy vyhnout.

To bylo v zahraničí eliminováno zavedením systému VPS (Video Programm System), který zajišťuje, aby zvolený a naprogramovaný záznam byl uskutečněn přesně v okamžiku kdy skutečně začne a to i tehdy, posunulo-li se jeho vysílání na odlišnou dobu.

Systém spočívá v tom, že těsně před začátkem pořadu (například filmu) vyšle vysílač příslušnou kódovou informaci a tou je videomagnetofon spouštěn bez ohledu na to, zda začátek odpovídá přesně naprogramovanému času. Jestliže z jakýchkoli důvodů programovaný pořad například odpadne, záznam se neuskuteční vůbec.

Programování ve spojení s VPS je v principu shodné jako bez jeho využití, protože kód VPS je automaticky obsažen v hodině a datu programovaného pořadu. Uživatel tedy musí přístroji zadat pouze základní údaje jako dříve a pak vhodným způsobem (podle typu přístroje) potvrdit, že chce VPS využít.

Systémem VPS jsou již delší dobu v zahraničí vybavovány standardně téměř všechny videomagnetofony. Ale ani tento způsob neodstranil skutečnost, že uživatel videomagnetofonu musel vstát z pohodlného křesla, dojít ke svému přístroji a tam ho naprogramovat. Proto někteří výrobci upravili vysílač i přijímač dálkového ovládání tak, aby bylo možno automaticky záznam programovat dálkově. To sice znamenalo další krok k podporování pohodlnosti, ale určitá komplikovanost zadávání potřebných údajů zde zůstala.

Byl tedy vymyšlen další způsob zadávání dat pro automatický záznam a to pomocí čárového kódu. Jeho základem je optický přijímač kombinovaný s vysílačem infračervených paprsků v podobě tlustétužky (obr. 1). Některé zahraniční časopisy uveřejňují na svých stránkách příslušné čárové kódy (obr. 2), z nichž každý představuje programovací data určitého pořadu. Tyto čárové kódy bývají otiskovány až na měsíc dopředu.

Pokud chceme naprogramovat automatický záznam určitého pořadu, přejedeme "hrotem" snímače čárový kód, který tomuto pořadu odpovídá. Pak snímač obráceným koncem nasměrujeme k videomagnetofonu a stiskneme na snímači příslušné tlačítko. Veškeré informace, které z čárového kódu snímač podržel v paměti, se ve zlomku sekundy přenesou do videomagnetofonu a tím je celé programování skončeno. Správnost údajů lze obvykle zkontrolovat na displeji videomagnetofonu.

Zdálo by se, že to již jednodušeji nejde. Omyl. Firma GRUNDIG uvádí nyní na trh nový videomagnetofon s typovým označením VS 540. Je obdobou dosavadního typu VS 340, tedy přístroje se záznamem zvuku rotujícími hlavami (Hi-Fi), který žádnou dodatečnou tištěnou informaci k zadání automatického záznamu nepotřebuje. Vychází z existující videotextové služby a využívá vestavěného dekodéru videotextu tak, že se po stisknutí příslušného tlačítka na dálkovém ovládači objeví na obrazovce připojeného televizoru stránka s televizními programy. Posuvnou značkou (cursorem) zvolíme požadovaný program a pouhým stisknutím dalšího tlačítka ho vložíme do paměti videomagnetofonu (obr. 3) - tím je celá operace skončena. Shodným způsobem lze programovat nejen pozemní vysílače, ale i vysílače družicové, které jsou začleněny do kabelové sítě televizního rozvodu. Pokud má majitel videomagnetofonu individuální (anebo společnou) anténu pro satelitní příjem a satelitní přijímač GRUNDIG, pak může programovat i přímá vysílání z družice. Volbu musí jen doplnit údajem SAT a na satelitním přijímač se pak automaticky nastaví požadovaný kanál.

Přesný začátek (a tím také i konec) naprogramovaného záznamu zajišťuje již zmíněný obvod VPS, který i v pohotovostním stavu stále cyklicky kontroluje naprogramovaná data a porovnává je se skutečným stavem v příslušných televizních kanálech a spolehlivě zapojí zvolené pořady přesně v okamžiku jejich začátku.

Ze všech popsaných principů vyplývá stálá snaha výrobců zjednodušit uživateli obsluhu a zajistit, aby požadovaný automatický záznam byl za všech okolností správně nahrán.

—Hs—

Obr. 3. Automatické programování VS 540

Obr. 1. Přijímač a vysílač čárového kódu

Obr. 2. Čárový kód 🕨

mikroelektronika

JZD AGROKOMBINÁT SLUŠOVICE

Slušovice prý budou vyrábět školní počítače pro celou republiku . . . A taky "písíčka", XT a AT . . . A z čeho by to prosímtě vyráběli, když u nás žádné součástky nejsou . . . Vždyť to bylo v televizi . . . Ministr elektrotechniky prý řekl, že do konce pětiletky dodají na trh 300 000 mikropočítačů, z toho polovinu z JZD Slušovice . . . To jsou fámy, kdoví co je na tom pravdy .

Leč "na každém šprochu je pravdy trochu", dohady jsou dohady a není nad vlastní zkušenost. A tak jsem se rozhodl — už i pro ukojení vlastní zvědavosti – vypravit se do Slušovic a zjstiť na místě, jak to je. Zde je tedy moje mikroreportáž.

* První cesta vedla k přátelům z jednotlivých závodů mikrostruktury mikroelektroniky. Téměř první, co jsem viděl, ještě než jsem stačil otevřít ústa, byl počítač, podezřele připomínající IBM PC. Označení TNS-AT však tuto domněnku vy-vracelo. Že by výrobek JZD Slušovice? Petr Novotný, ředitel závodu OTS JZD AK Slušovice, ji-

votny, reditel zavodu OTS JZD AK Siusovice, jinak úspěšný ředitel organizačního výboru posledního finále Mikroprogu, mi to objasnil:
"JZD AK Slušovice dodává na objednávku
počítače kompatibilní s IBM PC XT i AT. Část
úhrady musí být v devizových prostředcích (model XT např. 100 000 Kčs + 60 000 devizových
korun). Základní díly počítače, jako je monitor,
listospina diskouk industruje jako je monitor, klávesnice, diskové jednotky ap. jsou zahraniční výroby. Do konce července bylo dodáno 30 kusů, do konce roku dalších 80. Dodací lhůta 4 měsíce. platí se předem."

★ Na chodbě vidím velký barevný plakát — neoblečená žena tiskne k ňadrům jakýsi počítač. "To je náš nový školní počítač TNS-HC," vysvětluje Petr Novotný. "Začne se sériové vyrábět v dubnu příštího roku, do 1. září jím vybavíme všechny školy Jihomoravského kraje, do konce roku 1988 bude vyrobeno celkem 30 000 kusů." Nenacházím slov. Z čeho? Na čem? "Koupíme výrobní linky ze zahraničí, i určité součástky budeme muset dovážet." "Za co?", táži se. V tu chvíli potkáváme ing. J. Pochylého, zástupce ředitele nového závodu na . . . (to je součástí odpo-vědi na vyřčenou otázku). Petr Novotný mne předává do jeho péče.

★ "Pro předpokládaný počet vyráběných škol-ních mikropočítačů (v dalších letech má jit do statisiců) nelze počítat s tím, že by bylo možné krýt potřebu součástek výhradně z tu-zemské výroby (pokud jde o množství). Navíc součástky z dovozu jsou výrazně lacinější. Abychom mohli dovážet, musíme mít za co. Pří-slušné devizové prostředky si musí vydělat přímo naše mikrostruktura mikroelektroniky. Ve snaze najít atraktivní artikl s možností úspěšného exportu do devizové oblasti padla volba na záznamové a čtecí hlavičky pro diskové jednotky počítačů. V současné době se jedná o nákupu licencí z výrobních technologii. Zároveň stavíme výrobní závod.

★ Chtěl bych školní počítač vidět. Není. Existuje zatím jediný kus a ten se někde fotografuje. Hlav-ně že už jsou barevné plakáty . . . Předpokládaná cena je zpočátku okolo 25 000 Kčs, později pod 20 000 Kčs, Mikroprocesor Z80, 256 kilobajtů paměti RAM jako RAM-disk, připojitelná disková jednotka, vestavěný modem, lze použít mimo jiné i operační systém CP/M. Vyrostl jsem v ČSSR a proto zatím nemohou věřit tomu, že by za rok z jednoho vzorku a dobrého úmyslu mohlo být 30 000 mikropočítačů . . . A chci to slyšet oficiál-ně. Zvedám "horký telefon" a během chvíle mluvím s předsedou družstva ing. F. Čubou, CSc. "Ano, přijďte kdykoli, třeba hned." Je 18 hodit. ★ Po chvíli rozhovoru nad záměry a plány JZD AK Slušovice v oblasti výpočetní techniky mi po otázce, zda mám čas, ing. Čuba nabízí praktickou prohlídku míst, kde se plány začínají realizovat. Čas samozřejmě mám

Zastavujeme u rozsáhlého staveniště za benzi-novou pumpou směrem na Všeminu. Plocha asi 100 x 80 metrů, čerstvě bagrovaná, srovnaná, občas nějaká roura, trčící ze země. Dost lidí. "Tady se budou lisovat pouzdra z plastických hmot na školní počítač TNS-HC," říká s. předseda. "K lisování používáme ve vlastních provozech vyráběný regranulát z polyetylénových py-

tlů od umělých hnojiv, kterých máme velké množství." Pohled na rozblácené staveniště si množstvi." Pohled na rozblácené staveniště si neumím dát dohromady s počtem vyrobených počítačů ode dneška za rok. "To sebou budete muset hodin," říkám, "chcete-li tu vyrábět přiští rok tolik počítačů, to aby to bylo do konce roku hotové." Žádná odpověď, sjíždí okénko předsedova Audi a ing. Čuba volá křestním jménem na člověka ze stavby. Představuje mi ho jako svého náměstka stavební mikrostruktury (v 18.30 na stavbě...). "Jardo, řekni soudruhu redaktorovi, kdy to bude hotové." "Tak začali jsme minulou sobotu a bude to hotové čtrnáctého." Prosím? Čtrnáctého čeho? "No přece srpna!" Je 31. čer-

(Třináctého srpna večer jsem se tam byl podívat. Stála tam zasklená zastřešená výrobní budova o rozměrech snad 70 x 40 metrů. Hotová.) ★ K zajištění výroby v předpokládaném rozsahu bude zapotřebí asi 1200 nových zaměstnanců.

Kde budou bydlet?

"Část potřebných bytových jednotek bude ho-tova již do zahájení sériové výroby v dubnu pří-štího roku. Asi 3 km od Slušovic jame postavili osadu s ubytovací kapacitou 400 osob. Jsou to přízemní montované chatky s dvěma dvoulůžkovými pokoji a společnou kuchyňkou, koupelnou a příslušenstvím. S topením, samozřejmě. Po-slouží k dočasnému ubytování zaměstnanců, než postavime potřebný počet bytových jednotek. Letos je již využíváme k ubytování studentů při letní prázdninové brigádě."

Mám možnost vidět je na vlastní oči, prohlédnout si pokoje i příslušenství. Pěkné

★ Postupně projíždíme ještě několik dalších míst, kde se staví další výrobní prostory k zajiš-tění celého projektu. Všechno stejně rychle a stejně velkoryse. "Mámte tři stavební závody a nejsme proto při stavbách odkázáni na vnější kooperace," dodává ing. Čuba.

★ Opět sedíme v kanceláři předsedy JZD AK Slušovice. "Zatím není přece možné obchodovat se zahraničím přímo. Jak tedy realizujete své exportní záměry?", ptám se. "Obchodujeme prostřednictvím Koospolu. V rámci schváleného experimentu máme v Koospolu zástupce výhradně pro JZD Slušovice, který je zároveň řízen i předsedou družstva. Je to postupný přechod na tzv. přímé vztahy. Osvědčí-li se experiment, budou mít tuto možnost i další československé podniky."

"Takové množství počítačů do škol sebo nese i otázku programového vybavení. Je na to pamatováno?" "V současné době zaměstnáváme 70 stálých programátorů a 700 externích. Do roka chceme uvedené počty zečtyřnásobit."

★ Bylo již skoro 8 hodin večer. Poděkoval jsem ing. Čubovi za věnovaný čas a poskytnuté informace a rozloučil se. Předtím jsme se ještě dohodli na společném pořádání příštího ročníku soutěže MIKROPROG, s tím, že její finále bude na podzim 1988 na nových mikropočítačích TNS-HC ve Slušovicích, na zapůjčení jednoho z prvních počítačů k testování a na další spolupráci.

O několik dní později se vrátil z cesty ing. M. Kubík, náměstek předsedy pro mikrostruktu-ru mikroelektroniky. Chtěl jsem se se dozvědět o výsledcích jeho jednání a informovat ho o svém jednání s předsedou družstva. "Na novináře jsem alergický," řekl mi mezi dveřmi," pokud jde o MIKROPROG, domluvte se s Petrem Novotným. Nashledanou." Tak jsem se nic nedozvěděl a musel jsem shánět informace mezi lidmi. Dozvěděl jsem se, že jednání byla vcelku úspěs-ná. S Petrem Novotným jsem se hladce dohodí na základních věcech okolo MIKROPROG 88. ★ Vše co jsem viděl a slyšel se mi postupně

skládalo v poměrně ucelený obrázek. Pokud jde o počítače kompatibilní s IBM PC, jsou dodávány v kvalitním provedení převážně zahraniční výroby. Ceny jsou velmi vysoké, ale na jejich nákup není potřeba žádná výjimka, na rozdíl od přímého dovozu. Pokud jde o výrobu hlaviček k diskovým jednotkám, viděl jsem vzorky a viděl jsem i výrobní budovu, která během týdne povyrostla o jedno patro. A školní počítače, pokud budou dovezeny výrobní linky a potřebné součástky — vypadá to reálně, i když fantasticky. A tak jsem se rozhodl k poslednímu kroku této mikrorepor-

* Asi o měsíc později sedím v pracovně vedoucího tajemníka KV KSČ Jihomoravského kraje, člena předsednictva ÚV KSČ RSDr. Vladimíra Hermana. Po několika úvodních větách a informacích mu říkám o svých dojmech a pocitech ze Slušovic a ptám se - "Vidíš do a pocitech ze Slusovic a ptam se — "Vidis do toho jistě víc a lépe než já — co tomu říkáš?" Odpověď: "Je to dost, že se konečně našel někdo, kdo bude v dostatečném množství vyrábět cenově dostupné mikropočítače pro školy i pro podniky."
"Považuješ to tedy za reálné, můžu o tom

psát?"

"Je to reálné, nebude to poprvé co Slušovice dokáží realizovat něco neobvyklého v neobvykle krátké době. Ovšem chce to úzkou spolupráci s celou řadou podniků, hlavně z resortu FMEP. Soudruh Kubát, ministr elektrotechnického průmyslu vlády ČSSR, řekl před několika dny na tiskové konferenci při brněnském veletrhu, že resort dodá do konce pětiletky na trh 200 až 300 000 mikropočítačů, z toho část již šestnáctibitových. (Ukazuje mi tuto informaci v Brněnském večerníku.) Řekl i, že jsou podniky i mimo resort — a jmenoval JZD AK Slušovice — které mu v tom pomohou. A tak věřím, že to bude v jejich dobré spolupráci."

★ Tečku za touto reportáží udělám za rok. Za rok se totiž všichni sejdeme ve Slušovicích, i RSDr. V Herman, který opět převzal patronát a přislíbil účast, na finále naší soutěže v pogramování MIKROPROG 88. A tak uvidíme na vlastní oči, jak to všechno dopadne. Já osobně držím palce nám všem, aby to dopadlo dobře a aby bylo hodně počítačů! Ing. Alek Myslík

HD-64180 — NÁSLEDNÍK MIKROPROCESORU Z 80

Mezi osmibitovými mikroprocesory zaujímá Z 80 fy Zilog čelní místo, a proto se s ním setkáváme velmi často u osmibitových osobních počítačů. Tento procesor byl známým japonským výrobcem polovodičů Hitachi značně vylepšen a uveden na trh pod označením HD-64180. Je nejen schopen vykonávat úplný soubor instrukcí procesoru Z80, ale byl obohacen ještě o dalších dvanáct instrukcí, takže jich má k dispozici celkem 170. V instrukčním rozšíření jsou zahrnuty instrukce pro násobení 8 × 8 bitů, instrukce pro nedestruktivní testování, instrukce blokového přenosu v/v. dvě instrukce v/v s bezprostředním adresováním registru a konečně instrukce SLP (sleep), jež uvádí procesor do "spánku", v němž je podstatně menší spotřeba elektrické energie. Procesor je vyráběn technologií CMOŠ, umožňující i bezproblémové bateriové napájení.

Na obr. 1 je vnitřní struktura mikroprocesoru HD-64180. Jak patrno, v pouzdru je zaintegrována i jednotka přidělování paměti MMU (memory managment unit), jež dovoluje přímo adresovat paměťový prostor 512 kB (A0 až A18). Současně byla výrazně zvětšena rychlosť CPU použitím hodinového kmitočtu 6 MHz s novou zřetězenou architekturou (pipelined architecture), jež spolu s použitím mikrokódu - snížila počet cyklů potřebných pro vykonání mnoha standardních instrukcí Z80.

V pouzdru procesoru jsou dále integrovány některé další podpůrné obvody, jako je dvojitý šestnáctibitový časovač a gene-rátor hodinových impulsů, dále pro sério-

Obr. 2.

1

vou komunikaci sloužící dvě oddělená asynchronní rozhraní (ASCI) spolu s generátorem přenosové rychlosti, dovolující připojení CPU k terminálům či sériově pracujícím tiskárnám apod. Pro místní sítě či multimikroprocesorové systémy je k dispozici synchronní sériové rozhraní, jež dovoluje komunikaci s přenosovou rychlostí až 300 Kbitů/s. Řadič přerušení dovoluje připojit čtyři vnější a osm vnitřních zdrojů požadavku na přerušení. Mimoto je v pouzdru ještě dvoukanálový řadič přímého přístupu do paměti DMA, umožňující rychlou manipulaci s daty při přenosu dat z paměti do paměti či z paměti do portů a naopak.

Skutečnost, že bylo do pouzdra zaintegrováno maximum z nejužitečnějších podpůrných obvodů, se projevila na potřebném počtu jeho vývodů; je jich 64. Na **obr. 2.** je jejich rozmístění spolu s označením funkcí. Velikost pouzdra zůstala stejná jako u jeho čtyřicetivývodového předchůdce v pouzdru DIL. Proto byla vzdálenost mezi sousedícími vývody značně redukována. Mikroprocesor vyžaduje tedy netypickou objímku s 2 × 32 vývody

Ing. J. T. Hyan

Literatura

[1] Ciarcia, St.: Built the SB 180 Singel-Board Computer, part 1: the hardware, BYTE sept. 1985, str. 87 až 101.

[2] Coles, R.: The imitation Game, Practical Computing 8/1985, str. 41.

[3] PROF-180X — Prozessor RAM Floppy Karte, nabídka fy Conitec Datensysteme, 6100 Darmstadt, POB 110622 v mc 9/86, str. 29 KSY62, KSY21, KSY81 apod. V tomto uspořádání je možné zpracovávat úrovně až \pm 100 V.

Obr. 6.

Zapojení podle **obr. 6** slouží pro převod vstupních signálů záporné polarity. Dioda D kompenzuje úbytek na přechodu bázemitor u tranzistoru, což usnadní výpočet odporového děliče R1 a R2. Nahradíme-li v zapojeních podle obr. 5 a 6 diodu D Zenerovou diodou (opačně pólovanou), zvětší se šumová odolnost celého zapojení. Pokud obsahuje vstupní signál ss předpětí, je třeba zapojit před R1 oddělovací kondenzátor, který potom tvoří s odpory časovou konstantu, jež omezuje šířku přenášeného impulsu.

Obr. 7.

Jestliže použijeme pro přenos impulsů transformátor, nestačí impulsy na sekundární straně pouze omezit, ale musíme použít tvarovací obvod s hysterezí, jak ukazuje **obr. 7.** Velikost hystereze přibližně určuje poměr odporů rezistoru v bázi a rezistoru ve zpětné vazbě. Dané zapojení můžeme využít např. pro galvanické oddělení jednotlivých částí zařízení. Pro tyto účely je však výhodnější použít oddělení logických signálů pomocí optoelektronického členu v zapojení podle **obr. 8.**

Na závěr uvádím jednoduché zapojení detektoru pro fotodiodu s výstupem TTL (obr. 9). Je zde využit přesný analogový komparátor MAC111.

ÚPRAVA AMPLITUDY SIGNÁLU PRO TTL

Milan Sigmund

V mnoha praktických aplikacích číslicových obvodů zpracováváme signály získané ze snímače některé fyzikální veličiny (např. optické, akustické, fyziologické...) převedené v konečné fázi na elektrické napětí impulsního průběhu. U těchto zapojení vzniká nutnost úpravy parametrů impulsů před vstupem do prvního logického obvodu. Jedná se především o úpravu amplitudy, neboť překročení povolené hodnoty zapřičiní zničení integrovaného obvodu. Nedodržení ostatních požadovaných parametrů vstupních signálů (např. strmost hran) má za následek většinou "jen" chybnou činnost zařízení.

Uvádím několik příkladů zapojení vstupních obvodů pro úpravu napěťové úrovně impulsů. Vstupní impulsy mohou mít obecně libovolnou velikost a polaritu. Nejjednodušším řešením je přímo omezení vstupní amplitudy na vstupu integrovaného obvodu. Toto zapojení však nelze použít všude, neboť je třeba vždy myslet na to, že integrované obvody jsou dosti citlivé na jakékoli překročení mezních napětí na vstupech.

Zapojení na **obr. 1** omezuje pouze kladné impulsy a při výpadku napětí +5 V se může stát, že vstup není chráněn. Odpor rezistoru se volí s ohledem na velikost vstupního napětí a proud diodou.

Zenerova dioda na **obr. 2** omezuje kladné i záporné napětí vstupů. Podle účelu je třeba volit dostatečně rychlou Zenerovu diodu.

Na **obr. 3** je Zenerova dioda použita jako zdroj referenčního napětí, což je výhodné, protože tyto diody nebývají dostatečně rychlá

Zapojení na **obr. 4** slouží k přenosu a omezení záporných impulsů.

Přivádíme-li vstupní signály ze vzdálenějších míst, je vhodné použít vstupní obvody s tranzistory. Tranzistory jsou odolnější na překročení mezních podmínek, vhodným zapojením lze zvětšit šumovou imunitu a mezní kmitočet vstupního tranzistoru rovněž omezuje kmitočtové spektrum rušivých signálů.

Na **obr. 5** je obvod na převod kladných úrovní pomocí spínacího tranzistoru. Dioda D slouží k ochraně emitorového přechodu tranzistoru před větším vstupním záporným napětím. Rezistor R1 omezuje proud báze a jeho odpor se volí podle velikosti vstupního napětí a proudového zesilovacího činitele tranzistoru tak, aby byl tranzistor spolehlivě v nasyceném stavu. Je-li žádána větší spínací rychlost, je třeba zmenšit odpor kolektorového rezistoru a zařadit rezistor R2 (asi 1 kΩ) pro svod vypínacího proudu báze. Vhodnými tranzistory jsou

١

PMD-85 A JEHO STYKOVÁ ROZHRANÍ

Ing. Jaroslav Vlach

Mikropočítač PMD-85 patří k nevelké skupině československých osobních mikropomikropocitac PMD-85 patri k nevelké skupine československých osobních mikropo-čítačů. Proto celou řadu profesionálních uživatelů (a nejen ty) bude jistě zajímat možnost realizace styku mikropočítače s okolím. Podle [7] je zřejmé, že PMD-85 obsahuje rozhraní pro sériový styk (magnetofon a V.24), pro paralelní styk (GPIO) a přístrojovou sběrnici IMS-2 (GPIB), jak je naznačeno na obr. 1. Velmi příjemným zjištěním je i skutečnost, že interpreter jazyka BASIC-G (základní programové vybavení) umožňuje pracovat s těmito rozhraními. To velice rozšiřuje okruh možných uživatelů, neboť odpadá nutnost znalosti systému z hlediska technického. Následující řádky mají za cíl vyplnit mezeru v základní firemní dokumentaci a seznámit s možnostmi a aplikačními příklady styku přes rozhraní.

Všeobecný popis

Pro obsluhu všech periferních obvodů jsou v interpreteru BASIC-G vyhraženy příkazy OUTPUT, LIST#, ENTER, CONTROL a funkce STATUS. Jejich popisy lze nalézt v [7]. Zde jen shrneme syntaxi nříkazů:

OUTPUT kaa; <výraz> [, <výraz> . . .] LIST# kaa; [<výraz>]

ENTER kaa; <proměnná> [, <proměn-

CONTROL k, b; <výraz> [, <výraz> . . .] proměnná = STATUS k, b

kde k je číslo kanálu (viz tab. 1),

aa je adresa určení (viz tab. 2), v příp. kanálu 1 odpadá, b je adresa brány, resp. registru (viz tab. 1).

Sériové rozhraní

Sériové rozhraní je realizováno po stránce obvodové programovatelným obvodem MHB8251 (USARŤ), který je společný i pro komunikaci s magnetofonem. Srovnáním sériového rozhraní PMD-85 s definicí V.24 (např. [4]), zjistíme, že ve skutečnosti jde o pasivní proudovou smyčku. Této skutečnosti lze samozřejmě výhodně využívat, je však nutno doplnit zdroj napájecího napětí. Příklad takové realizace sériové proudové smyčky je uveden na obr. 2, kde je jako zdroj napájecího napětí použit napáječ ke kalkulátoru. Sériová linka umožňuje propojení dvou mikropočítačů PMD-85. Linka může být dlouhá až několik metrů. Zapojení výstupního obvodu zaručuje maximální

proud smyčky 30 mA.
Pro realizaci sériového rozhraní podle doporučení CCITT V.24 musíme rozhraní PMD-85 doplnit např. podle obr. 3 pro vstup, popř. podle obr. 4 pro výstup. Budeme-li požadovat jinou komunikační rychlost nežli 1200 Bd (baud = bit/s), musíme přepojit vnitřní propojku a zavést tak do obvodu MHB8251 hodinový kmitočet z programovatelného časovacího obvodu 8253. Jeho časovač T1 je použit pro generování příslušné komunikační rychlosti. Protože základním vstupním kmitočtem je 2,048 MHz (ϕ 2 TTL), nevznikne po vydělení celým číslem základní řada doporučených komunikačních rychlostí zcela přesně, nýbrž s chybou menší než 0,5 % (pro asynchronní provoz zcela přijatelné). V **tab. 3** jsou uvedena čísla, kterými je nutno dělit základní kmitočet, abychom obdrželi doporučenou komunikační rychlost.

Obvod MHB8251 vyžaduje před zahájením komunikace naprogramování instrukcí o druhu provozu a dále řídicí instrukcí. Obě instrukce programujeme v BASICu příkazy

Obr. 1. Zadní stěna PMD-85

Obr. 2. Realizace proudové sériové smyčky

Obr. 3. Úprava sériového vstupu pro linku V.24

Obr. 4. Úprava sériového výstupu pro linku V.24

CONTROL 1,1; <výraz>, kde <výraz> nabývá hodnoty dané požadovanými vlast-nostmi komunikace. Vstup, popř. výstup dat se uskutečňuje pomocí příkazů ENTER 1; cproměnná> popř. OUTPUT 1; <výraz>. V tomto případě cproměnná> nabývá hodnoty přečtené ze sériové linky (pozor! počet znaků musí být maximálně 80 a musí být ukončeny znakem LF (=ØAH)), hodnota <výrazu> je vyslána do sériové linky. V tab. 4 je uveden krátký program výstupu znakového řetězce do sériové linky.

Paralelní rozhraní

Pro účely paralelního styku je v mikropočítači PMD-85 využit paralelní programovatelný stykový obvod MHB8255A. Systém plně využívá jeho vľastností, neboť brána PB a čtyři dolní bity brány PC jsou vyvedeny na společný konektor, brána PA a zbylé bity brány PC na další. Kromě toho jsou na tyto konektory vyvedeny vstupy a výstupy invertorů integrovaného obvodu MH7405 (šestice invertorů s otevřeným kolektorem). Tato skutečnost umožňuje logické přizpůsobení

Tab. 1. Přiřazení čísel kanálů

Číslo kanálu	druh kanálu	obvod	brána (registr)	b adresa brány
Ø	nepoužit			
1	sériový	MHB8251	datový řídicí	Ø 1
2	nepoužit			
3	nepoužit			
4	paralelní (GPIO)	MHB8255A	brána A brána B brána C řídicí	Ø 1 2 3
5	časovač	8253	čítač Ø čítač 1 čítač 2 řídicí	Ø 1 2 3
6	nepoužit			
7	IMS-2 (GPIB)	MHB8255A	brána A brána B brána C řídicí	Ø 1 2 3

Tab. 2. Přiřazení adres určení

Číslo kanálu	<i>aa</i> (adresa určení)	Poznámka
1	_	
4	Ø0	brána A režim 🛭
	Ø1	brána B režim 🛭
	Ø2	brána C režim 🛭
	Ø3	brána A režim 1
	Ø4	brána B režim 1
	Ø5	brána A režim 2
	Ø6	není obsazeno
	Ø7	
5	nelze použít v	základní verzi
7	adresa zařízení	MS-2 (99 až 15)

Tab. 3. Dělitelé základního kmitočtu pro získání standardních přenosových rychlostí sériového přenosu

Komunikační	dělitel
rychlost (Bd)	
19 200	107
9600	213
4800	427
2400	853
1200	1707
600	3413
300	6827
150	13 653
110	18 618
100	20 480
75	27 307
50	40 960

Tab. 4. Příklad použití sériového kanálu V.24

- 1 REM PROGRAM PRO SERIOVOU KOMUNI-
- KACI 2 REM
- 10 REM Interni nulovani obvodu 8251
- 20 CONTROL 1, 1;64 30 REM REZIM: 8 datovych, 1 STOP bit, 16 ×

- 30 REM REZIM: 8 datovych, 1 510P bi 40 CONTROL 1, 1;78 50 REM RTS=1 T×EN=1 60 CONTROL 1, 1;33 70 OUTPUT 1; "Mikropocitac PMD-85"

Tab. 5. Příklad použití paralelního kanálu (GPIO)

ì

- 1 REM PROGRAM PRO NASTAVENI PARALELNIHO KANALU GPIO/a
- 2 REM 10 REM Rezim: Port B out, mod 1
- 20 CONTROL 4, 3;132
- 30 REM Nastavení klopneho obvodu INTEb 40 CONTROL 4, 3;5 50 OUTPUT404; "Vypis programu"
- 60 LIST#404:

Obr. 5. Připojení tiskárny Consul C 2111

komunikačních signálů (např. inverzi některých signálů). Jako příklad paralelního rozhraní uvedeme přípojení tiskárny Consul C2111 (obr. 5). Program pro obsluhu tiskárny s příkladem tisku je uveden v tab. 5. Tiskárna je připojena k mikropočítači na konektor s bránou PB (konektor K4 na obr. 1).

Sběrnice IMS-2

Popis vlastností přístrojové sběrnice IMS-2 by vydal na samostatnou publikaci, zájemce odkazujeme např. na [2], [3], resp. [5], kde jsou uvedeny základní informace. Zde jen shrneme základní vlastnosti.

Sběrnice IMS-2 (informačně-měřicí systém 2. generace) vznikla jako varianta mezinárodní normy IEC 625-1 v zemích RVHP. Je to obdoba normy HPIB (firma Hewlett-Packard), popř. IEEE 488/78 (USA) příp. GPIB. Všechny tyto normy definují přistrojovou sběrnici jako soubor osmi datových a osmi komunikačních nebo řídicích vodičů. Největším rozdílem mezi normami samotnými a implementací sběrnice na mikropočítači PMD-85 je typ použitého konektor U mikropočítače je použit konektor FRB, který není uveden v žádné z norem sběrnice IMS-2 (na obrázku 1 jde o konektor K3).

V definici sběrnice IMS-2 se rozlišují tři druhy funkčních jednotek (přístrojů): řidič (controller), mluvčí (talker) a posluchač (listener). Mluvčí posílá posluchači data v kódu ISO7 (ASCII) po sběrnici, kterou řídí řidič. Tři signály z množiny řídících signálů (DAV, NRFD a NDAC) jsou vyhrazeny tzv. přejímání (angl. handshake) informací mezi funkčními jednotkami. Tento pojem si vysvětlíme na **obr. 6.** Jde o komunikaci mezi mluvčím T a posluchačem L.

Zbylých pět řídicích signálů je vyhraženo předávání jednovodičových zpráv mezi přístroji. Velmi důležité jsou zejména signály ATN (attention — pozor) a REN (remote enable — povoleno dálkové ovládání). Při ATN = H se po datové sběrnici posílají všem perifériím stykové zprávy (bez adresace) nebo adresy komunikujících periferií. Rozlišení je zajištěno dvěma bity (tvar informačního bajtu je 00X XXXX). Při ATN = L se na datové sběrnici přenáší jen data. Signál REN odpojuje místní řízení funkční jednotky a předává je na řízení signály sběrnicí IMS-2.

Mikropočítač PMD-85 vystupuje v hierarchii funkčních jednotek vždy jako aktivní řidič s adresami 35H = 57 pro funkci

Obr. 6. a) Sběrnice IMS-2, b) princip přejímání dat na sběrnici IMS-2.

Obr. 7. Propojení konektoru IMS-2 (PMD-85) na standardní konektor IMS-2 podle ČSN 35 6522

posluchače (MLA) a 55H = 85 pro funkci mluvčího (MTA). Pro vstup údajů ze sběrnice IMS-2 do mikropočítače slouží příkaz ENTER 7aa; <proměnná>, kde aa je adresa přístroje (aa = 00 až 15). Pro výstup slouží příkaz **OUTPUT** 7aa; <výraz>. V prvním případě <proměnná> nabývá hodnoty přečtené ze sběrnice (množina znaků musí být dlouhá maximálně 80 znaků a musí být ukončena znakem LF = 0AH), ve druhém případě se hodnota <výrazu> vyšle na sběrnici IMS-2, přičemž předtím se náležitě sběrnice obslouží (nejprve se odadresují dosud naadresovaní posluchači povelem = '?' = 3FH, poté se vyšle adresa PMD-85 a dále specifikovaná adresa, popř. adresy periferií). Pro dokreslení způsobu komunikace na sběrnici IMS-2 je v tab. 6 uvedena posloupnost údajů na datové sběrnici DIO 1 až 8 při vykonávání příkazu ENTER 710; A\$. Adresa mikropočítače je 35H (MLA), adresa periférie ve funkci mluvčího je 4AH. Posloupnost údajů

Tab. 6. Posloupnost údajů na datové sběrnici IMS-2 při vykonávání příkazu ENTER7

příkaz ENTER 710; A \$			
ATN	DIO 1-8	poznámka	
1		UNL (neposlouchej)	
1	35H	MLA (vlastní adresa posluchače,	
	ĺ	tedy PMD-85)	
1		adresa mluvčího (=10)	
0	data	uloží se do A≸	

Tab. 7. Posloupnost údajů na datové sběrnici IMS-2 při vykonávání příkazu OUTPUT7

příkaz	OUTPU	T706; ,,A"
ATN	DIO 1-	8 poznámka
, 1	3FH	UNL (neposlouchej)
1	55H	MTA (vlastní adresa mluvčího, tedy PMD-85)
1	26H	adresa posluchače (=6)
0	41H	znak "A"

Tab. 8. Příklad řízení sběrnice IMS-2 (připojení číslicového voltmetru M1T330)

1 REM PRIPOJENI VOLTMETRU M1T330
2 REM (address 96)
10 REM Yolba rozsahu a rezimu
20 OUTPUT700; "R4DøK1"
30 REM spusteni mereni
40 OUTPUT700; "E"
50 REM Vstup udaje (ASCII znaky)
60 ENTER700; A\$
70 PRINT "NAPETI="; A\$
80 REM precteni chyby
90 OUTPUT700; "G"
110 ENTER700; QS
110 PRINT "CHYBA="; Q\$

na sběrnici DIO 1 až 8 při vykonávání příkazu **OUTPUT** 706; "A" je uvedena v tab. 7. Zde je vyslána adresa PMD-85 ve funkci mluvčího 55H (MTA) a adresa periférie ve funkci posluchače 26H. V obou případech je vyslána jako první z PMD-85 (řidič) staková zpráva UNL (neposlouchej) 3FH (viz výše).

Jako příklad aplikace přístrojové sběrnice IMS-2 je na obr. 7 uvedeno připojení číslicového voltmetru M1T330 (Metra Blansko). V tabulce 8 je uveden program pro obsluhu sběrnice mikropočítače PMD-85.

Závěr

Pro řadu uživatelů bude jistě tento příspěvek úvodem do problematiky, pro jiné zase nedostatečným popisem. Autor však doufá, že zejména příklady obsažené v tomto článku přinesou pro uživatele podněty jejich vlastní práci.

Literatura

[1] Artwick, B., A.: Microcomputer Interfacing, Prentice-Hall 1980 (ruský překlad Moskva 1983).

[2] Dlabola, F., Starý, J.: Systémy s mikroprocesory a přenos dat, Nadas 1984. [3] Holas, M.: Úvod do problematiky IMS-2.

Sdělovací technika č. 9/1978. [4] Hyan, J., T.: RS232C — V.24. Amatérské

radio č. 10/1984. [5] Rybák, V.: IMS-2 — Sběrnice a přenos

zpráv. Sdělovací technika č. 9/1983. [6] Firemní literatura voltmetru M1T330,

Metra Blansko.
[7] Firemní dokumentace osobního mikropočítače PMD-85, TESLA ES.

A/11/87 Amatérske AD

AKUSTICKÝ VÝSTUP BEZ POMOCNÝCH OBVODOV ZO ŠKOLSKÉHO MIKROPOČÍTAČA PMI-80

Ing. Dušan Boháčik, CSc.

Školský mikropočítač PMI-80 má v zá-Skolský mikropocitac Pmi-ov IIIa v Za-kladnej verzii jeden paralelný programovateľný stykový obvod (PPI) MHB8255, ktorého kanále PA a PC sú použité pre služobné účely a kanál PB je k dispozícii uživateľovi [1], [2], [3]. Monitor PMI-80 za podpory jednoduchých obvodov umožnie pakrávane údalov na magnetofón ňuje nahrávanie údajov na magnetofón a ich spätné prehrávanie (použité prívody kanála PA). Spojenie magnetofónu s mikropočítačom je cez päřpólovú konekto-rovú zásuvku (DIN). Výstupný signál zo zásuvky má dostatočnú úroveň (100 mV) na pripojenie k nízkofrekvenčnému zosilňovaču. Pomocou programu sa dá vytvoriť signál striedavého charakteru, ktorého výstup bude v zásuvke DIN, umiestnenej na doske PMI-80. Pripojením tohto signálu na vstup nízkofrekvenčného zosilňovača počujeme v reproduktore tón s frekvenciou a časom trvania, ktorých hodnoty sú udané v programe.

Podprogramy SIGNÁL 1 a SIGNÁL 2 vo forme symbolického kódu splňujú požiadavky vytvorenia akustického signálu s nastaviteľnou frekvenciou a časom trvania. Podprogramy sú založené na vytvorení časových intervalov medzi zmenami logických úrovní liniek PA6 a PA7 obvodu MHB8255. PA6 a PA7 v PMI-80 sú pripojené na vstupy dvojvstupového logického členu NAND (obr. 1). Zmeny logických úrovní na výstupe NAND sa dajú splniť jednou z dvoch možností: Jednak udržiavaním PA6 na rovnakej logickej úrovni zmenou úrovne PA7 alebo naopak, úroveň PA7 je konštantná a periodicky sa mení úroveň PA6. Samozrejme, ak chceme mať akustické signály, každá logická úroveň musí trvať určitý čas.

SIGNÁL 1:	MVI A, 8A	; uloženie riadiaceho slo- va do riadiaceho regis- tra PPI pre režim 0
	OUT FB	(PA – výstup, PB – vstup, PC _L – výstup, PC _H – vstup)
	LXI B, XXXX	: nastavenie trvania signálu
TRVANIE:	DCX B MVI A, C0	: nastavenie logických úrovní na vstup NAND (PA7=1, PA6=0, MG IN=0)
	OUT F8 LXI D, YYYY	; nastavenie frekvencie signálu
EŠ:	DCX D	: trvanie log. 0 na vstupe zosilňovača, oneskorova- cia čast podprogramu
	MOV A, D Gra e Jnz eš	·
	MVI A, 00	: nastavenie logických úrovní na vstup NAND (PA7=0, PA6=0, MG IN=1)
	OUT F8 LXI D, YYYY	: nastavenie frekvencie signálu
EŠTE:	DCX D	trvanie log. 1 na vstupe zosilňovača, oneskorova-

Obr. 1. Akustický výstup PMI-80

MOV A, D ORA E JNZ EŠTE MOV A, B ; trvanie signálu ORA C JNZ TRVANIE

Podprogram SIGNÁL 1 sa skráti, ak oneskorovacia časť bude uvedená ako samostatný podprogram. Prázdnymi operáciami dosiahneme rovnakú striedu signálu.

: prázdne operácie

SIGNÁL 2: MVI A, 8A **OUT FB**

TRVANIE:

LXI B. XXXX

DCX B

MVI A, CO CALL ONES

DCX B

INX B

DCX B ONES: LXI D, YYYY INX B **OUT F8** NOP EŠ: DCX D MVI A, 00 MOV A. D CALL ONES ORA E MOV A, B JNZ EŠ ORA C RET JNZ TRVANIE

Signál vhodného trvania a frekvencie dosiahneme, ak a YYYY = 0010H. bude XXX = 0200H

Pri reprodukcii striedavého signálu môžeme výhodne použiť samotný magnemozeme vynoune pouzit samothy magni-tofon (napr. TESLA K-10), ktorý bude slúžiť ako nízkofrekvenčný zosilňovač v tom prípade, ak bude stlačené len nahrávacie tlačítko (kazeta sa nepohybuje). K tomu je potrebné vložiť do magnetofónu kazetu pretočenú na začiatok, aby sa

neznehodnotili údaje nahrané na kazete. Podprogramy SIGNÁL 1, resp. SIG-NÁL 2 môžeme použiť na indikáciu práve prebiehajúcej časti hlavného programu. Výpis programu SIGNÁL 2 v strojovom

1C00 3E 88 D3 FB 01 XX XX 0B 3E C0 CD 20 1C 0B 03 0B 1C10 03 00 3E 00 CD 20 1C 78 B1 C2 07 1C C9 00 00 00 1C20 11 YY YY D3 F8 1B 7A B3 C2 25 1C C9 00 00 00 00

Literatúra

[1] Školský mikropočítač PMI-80. Užívateľská príručka, TESLA Piešťany, k. p., 1982.

[2] AR 7, 8/1984. [3] AR 11/1984.

UNIVERZÁLNÍ MATEMATIKA 2

Ing. Pavel Janeček

c(n 1)

Program Univerzální matematika 2 je určen pro mikropočítač Sinclair Spectrum. Délka programu činí 8,43 kB.

Umožňuje stanovit koeficienty libovolného polynomu stupně n ze známých kořenů tohoto polynomu. Rozložit vlastní racionálně lomenou funkci na součet parciálních zlomků, jsou-li známy póly rozkládané funkce, tj. kořeny polynomu ve jmenovateli, a jsou-li známy koeficienty polynomu v čitateli funkce. Vlastní racionální funkcí se rozumí taková funkce, která má stupeň jmenovatele větší než stupeň čitatele. Koeficienty se zadávají od nejvyšší mocniny, tj. řádu n-1.

Tyto dva podprogramy počítají vždy komplexní proměnné, tzn. že reálná čísla se berou jako zvláštní případ čísel komplexních.

Podprogram též umožňuje stanovit hodnotu určitého integrálu z jedné nebo součinu dvou funkcí téže proměnné. Jsou-li integrovány goniometrické funk-ce, je třeba zadat v obloukové míře. Optimální počet integračních kroků N je v intervalu 10 až 20.

Všechny výsledky podprogramů jsou zaokrouhleny na tři desetinná místa.

Seznam důležitých proměnných

SUB 1500	Koeficienty polynomu:
n	 počet kořenů polynomu,
a(n)	 vektor kořenů polýnomu reálná část,
b(n)	 vektor kořenů polynomu imaginární část,

	monia.
SUB 1900	Parciální zlomky:
n	 počet pólů rozkládané
	funkce,
a(n)	 vektor pólů – reálná část,
b(n)	 vektor pólů – imaginární
` '	část.
c(n)	vektor koeficientů parciál-
	ních zlomků – reálná část.
d(n)	- vektor koeficientů parciál-
	ních zlomků – imaginární
	část
SUB 2620	Určitý počet integrál:
300 2020	
n	 počet integračních kroků,
а	 dolní integrační mez,
b	 horní integrační mez,
q \$	 1. funkce jako řetězec,
b\$	 2. funkce jako řetězec,
val	 hodnota integrálu.

nomu.

vektor koeficientů poly-

Seznam podprogramů

SUB 1500 -Výpočet koef. polynomu Podprogram provádí výpočet koeficientů polynomu z jeho kořenů. Program vznikl překladem z FOR-TRANu IV z programu

APN 3. SUB 1900 -Parciální zlomky

Podprogram provádí rozklad vlastní racionální funkce na parciální zlomky s konstantními činiteli. Čitatelé parc. zlomků jsou ve výstupních vektorech c(n)

cia časť podprogramu

a d(n) uspořádány ve stejném pořadí jako byly zadá-ny póly funkce. Při vícenásobných pólech jsou uspořádány v pořadí odpovídajícím rostoucí mocnině kořenových součinitelů ve jmenovatelích odpovídajících parc. zlomků. Vstup koeficientů čitatele rozkládané funkce je řešen ve výstupním poli c(n). Pro zvětšení přesnosti výpočtu jsou před zahájením výpočtu póly vzestupně setříděny podle absolutních hodnot. Metodou je postupné dělení racionální funkce kořenovými součiniteli. Program vznikl překladem z FORTRANu IV. Program podle [1] upravil J. Pivoňka.

SUB 2620 -Určitý integrál

vypočítává Podprogram hodnotu určitého integrálu ze součinu dvou funkcí pomocí Simpsonova pravidla podle lit. [2]. Program vznikl překladem z FORTRANu IV z lit. [3]. Mazání 18

SUB 3000 -

Mazání 18. řádku, neboť do tohoto řádku se tiskne většina příkazů a oznámení

SUB 3100 -Návrat k MENU nebo STOP SUB 3200 -Tisk záhlaví

Umístí libovolný text (max. 32 znaků), vložený do proměnné b\$, do středu obrazovky a podtrhne jej.

SUB 3500 -Stiskni cokoliv

Ve 20. řádku bliká Stiskni cokoliv a podprogram čeká na stisk nějaké klávesy.

SUB 3600 Volba proměnné

Vložení c značí komplexní proměnnou, cokoliv jiného v kódu ASCII značí reálnou

proměnnou.

SUB 3700 -Nerušit

Během výpočtu bliká Nerušit, probíhá výpočet.

SUB 3800 -Pip

Pípnutí, jako odpověď na přijetí znaku ze vstupu INPUT.

SUB 3900 -Melodie

Melodie, ohlašující tisk výsledku řešení...

FN z/y/ -Uživatelem definované funkce

Funkce provádí zaokrouhlení na tři desetinná místa.

Literatura

[1] Chin, F., Y., Steiglitz, K.: An 0/N²/ algorithm for partial fraction. IEEE Trans. CAS-24 – 1977.

[2] Boland, W., R., Duris, C. S.: Product type quadrature formulas. BIT 11 - 1977, 139-158.

[3] Boland, W., R.: Algorithm 437. Product type Simpson's integration. Comm. ACM 15 (1972), 1070-1071.

5 INK 0 30 LET b="Univerzilni matemat ika 2": GO SUB 3200: PRINT AT 2. 4; by PAVEL JANECEK & 1985" 40 PRINT AT 4,2; Program, kter ý máte právě předsebou, Vám

se vypořádats matematickými problemy. Program je or ientován na ope-race s polynomy . Umožňuje rozlo-žit vlastní rac ionalní funkci nasoučet parciáln ich zlomko. Vlast-ni rac. funkce je taková funkce,která má stupeň jmenovatele vět-ší než čitatele Rovněž je mo

žno, při použitípodprogramu POL , stanovit koefi-cienty polynomu ze zadaných ko-řeno. Tyto dva podprogramy mohoupoužívať realn ou, či komplexniproměnnou." 45 GO SUB 3500

50 CLS : PRINT AT 2,18; Podprogram SIM vyh odnocujeurčitý integrál pomoci S impsono-va pravidla. Jako

rand jemožno zadat i součin dvo u funkcítéže proměnné.

Optimální počet inte gračníchkroků je (10 - 20).": GO SUB 3500

60 CLS : PRINT AT 5,12; "PAMATU !": PRINT AT 7,18;"

Exekuci programu lze kdykol přerušit současným stlačeni

CAPS SHIFT & SPACE

Návrat k MENU stlačením

GOTO 70": GO SUB 35

70 CLEAR : DEF FN z(y)=INT (IN

T (y*1000+.5))/1000 80 PRINT : PRINT : PRINT TAB 1 1;"> M E N U <": PLOT 88,149: DR AW 88,0: PRINT : PRINT

90 PRINT " Informace.INF": PRINT : PR ...KEF": PRINT : PRINT : PRINT " Parcialní zlomky........PAR ": PRINT : PRINT : PRINT " Numer

ická integrace......SIM"

100 PAUSE 0 IF INKEY\$="P" OR INKEY\$="p" GO SUB 3800: GO TO 1900 120 IF INKEY = "K" OR INKEY = "K" THEN CO SUB 3800: GO TO 1500

130 IF INKEY\$="S" OR INKEY\$="s" THEN GO SUB 3800: GO TO 2620 140 IF INKEYS="I" OR INKEYS="!" THEN CO SUB 3800: CO TO 30

150 GO TO 160 1500 REM Výpočet koef.polynomu 1510 LET bs="Koeficienty polynomu": GO SUB 3200: LET h1=0: LET h

2=0: LET h3=0 1520 PRINT AT 18,1; "Koreny realn é nebo komplexní?

1530 INPUT "r nebo c ";c\$: GO SU B 3800

1540 GO SUB 3000: PRINT AT 18,1; "Počet kořenô ?": INPUT "n =? "; n: GO SUB 3800: GO SUB 3000 1550 DIM a(n): DIM b(n): DIM c(n

1560 FOR i=1 TO n: PRINT AT i+3.

4;i;".kořen = "; 1570 INPUT "Reálná část kořene=? ";a(i): GO SUB 3800

Vývojový informace diagram MENI iniciaLizace SUB 1500 SUB 1900 SUB 2620 koef. polynomu parciální zlomky určitý integrál 1520 -SUB 3600 2650 volba proměnné načtení dat volba proměnné 1540 2 700 1920 načtení dat zadání pátů definice funkcí 1680 2025 2 720 výpočet integrálu identifikace korenů zadání koeficientů po krocích 2040 fisk setřídění výpočet koeficientů hodnoty integrálu 1800 2180 tisk řešení dělení polynomu násobnost pólu 2 280 čitatelé parc. ziomků 2540 tisk řešení SUB 3100 MENUE RET (STOP

ÚV Svazarmu ve spolupráci s českým výborem elektrotechnické společnosti **ČSVTS** pořádá 4. a 5. prosince 1987 v Závodním klubu ROH pracujících obchodu v Praze 1, Pařížská 4 I. ročník přehlídky počítačových programů Svazarmu SOFTWARE 87

Slavnostní zahájení je v pátek 4, 12, 1987 v 10.00 hodin. Veřejnosti je přehlídka přístupná 4, 12, 1987 od 11.00 do 18.00 hodin a 5, 12, od 10.00 do 16.00 hodin. Přihlášky k účasti od socialistických organizací přijímá do konce listopadu z pověření ÚV Svazarmu 602. ZO Svazarmu, Wintrova 8, 160 41 Praha 6, tel. 32 85 63. 1580 IF c\$<>"c" THEN LET b(i)=0: GO TO 1600 1590 INPUT "Imaginární část koře ":b(i): G0 SUB 3800 1500 IF h(i)=0 THEN PRINT a(i): GO TO 1630 1610 IF b(i) (0 THEN PRINT a(i); ';ABS b(i): GO TO 1630 1620 PRINT &(i);"+j";b(i) 1630 NEXT i: GO SUB 3700 1640 LET nc=1: LET c(1)=1 1650 IF n<=0 THEN RETURN 1660 FOR i=1 TO n: LET c1=-a(i): LET h1=b(i) 1670 IF h1<0 THEN GO TO 1800 1675 IF h1=0 THEN GO TO 1710 1680 REM Komplexně sdružené 1690 LET c(n+1)=0: LET c2=2*c1: LET c1=c1*c1+h1*h1 1700 LET id=2: GO TO 1730 1710 REM Realine koreny 1720 LET c2=1: LET id=1 1730 LET nc=nc+id: LET c(nc)=0 1735 REM Výpočet koeficientó 1740 FOR j=1 TO nc: IF j>3 THEN LET c(j-3)=h3 1750 LET h3=h2: LET h2=h1: LET h 1=c1*c(j) 1760 IF j>1 THEN LET h1=h1+c2*c (j-1) 1770 IF j>2 AND id=2 THEN LET h 1=h1+c(i-2) 1225 NEXT i 1780 IF nc>2 THEN LET c(nc-2)=h 1790 LET c(nc-1)=h2: LET c(nc)=1 1800 CLS : LET b\$="Tisk koeficie nto polynomu": GO SUB 3200: GO S UB 3900: PRINT "";" a*x-n+b*x-(n-1)+....+y*x+z=0" 1810 PRINT : PRINT "Stupeň polyn omu n= ";n: PRINT : LET t=0: FOR i=nc TO 1 STEP -1: LET t=t+1: PRINT TAB 4;CHR\$ (t+96);"= ";FN z (c(i)): NEXT i 1820 GO TO 3100 1900 REM Parciální zlomky 1910 CLS : PRINT TAB 3; "Rozklad vlastní racionální funkce na součet parc. zlomko": PLOT 0,15 8: DRAW 255,0: CO SUB 3600: CO S UB 3000 1920 REM Zadání polô 1930 CLS : LET b\$="Zadání pólo r 1930 CLS: LE! D== Zadani polo r ozkládané funkce": GO SUB 3200 1940 PRINT AT 18,1;" Počet pólo ?": INPUT "n=? ";n: GO SUB 3800: GO SUB 3000: PRINT AT 3,8;"Poče t pd10 = ";n: DIM a(n): DIM b(n)
: DIM c(n): DIM d(n) 1950 FOR i=1 TO n: PRINT AT i+4, 4;;".pól = ";: INPUT "Reálná čá st pólu=? ";a(i): GO SUB 3800 1960 IF c\$<>"c" THEN LET b(i)=0 : GO TO 1975 1970 INPUT "Imaginární část pólu =? ";b(i): GO SUB 3800 1975 IF a(i)=0 AND b(i)<>0 THEN GO TO 1990 1980 PRINT FN z(a(i)); 1990 IF b(i)=0 THEN GO TO 2020 2000 IF b(i)<0 THEN PRINT "-j"; FN z(ABS b(i)): GO TO 2020 2010 PRINT "+j";FN z(b(i)) 2020 NEXT : PAUSE 50 2025 CLS : LET b\$="Koeficienty č itatele": GO SUB 3200 2030 FOR i=1 TO n: PRINT AT i+2, 0;i;".koef čitatele= ";: INPUT c (i): GO SUB 3800: PRINT c(i): NE XT i: PAUSE 50: GO SUB 3700 2040 REM Setřídění 2050 IF n=1 THEN GO TO 2150 2060 LET e=0: FOR i=2 TO n: LET 2070 LET rnmr=(a(i)*a(i)+b(i)*b(i))~(a(i1)*a(i1)+b(i1)*b(i1))

2670 PRINT AT 18,1;"Počet integr ačních kroků ?": INPUT "N= ";n: GO SUB 3800: GO SUB 3000: PRINT 2080 IF rnmr (0 THEN GO TO 2110: IF rnmr/0 THEN GO TO 2140 2090 IF ABS b(i) (>ABS b(i1) THEN GO TO 2140 2100 IF b(i) (=b(i1) THEN GO TO 2140 2110 LET h=a(i): LET a(i)=a(i1): LET a(i1)=h 2120 LET h=b(i): LET b(i)=b(i1): LET b(i1)=h 2130 LET e=1 2140 NEXT i: IF e=1 THEN GO TO 2050 2150 LET z1=1E-8 2160 FOR i=1 TO n: LET i1=n+1-i 2170 IF i1=1 THEN GO TO 2230 2180 REM Delení polynomu 2190 FOR j=2 TO i1 2200 LET c(j)=c(j)+a(i)*c(j-1)-b (i)*d(i-1) 2210 LÉT d(j)=d(j)+a(i)*d(j-1)+b (i)*c(i-1) 2220 NEXT j 2230 FOR j=1 TO i: LET j1=n-j+1 2240 REM Násobnost polu 2250 IF j=1 THEN GO TO 2300 2260 LET x=a(j)-a(j-1): LET y=b(i)-b(i-1): LET z=SQR (x*x+u*u) 2270 IF z <= z1 THEN GO TO 2350 2280 REM Citatelé parc. zlomků 2290 LET p=c(i1)-c(j1+1): LET d(i1)=d(i1)-d(j1+1): LET c(i1)=p 2300 LET x=a(j)-a(i): LET y=b(j) -b(i): LET z=x*x+y*y 2310 IF SQR z (=z1 THEN CO TO 23 90 2320 LET p=(c(j1)*x+d(j1)*y)/z 2330 LET d(j1)=(d(j1)*x-c(j1)*y) 2340 LET c(j1)=p: GO TO 2380 2350 LET p=((c(j1)-c(j1+1))*x+(d(j1)-d(j1+1))*y)/z 2360 LET d(j1)=((d(j1)-d(j1+1))* x=(c(j1)-c(j1+1))*y)/z 2370 LET c(j1)=p 2380 NEXT | 2390 NEXT | 2400 LET i=1: LET ip=1: LET ik=n 2410 IF ik<=ip THEN GO TO 2480 2420 LET i1=(ik-ip)/2+ip 2430 FOR j=ip TO i1: LET j1=ik+i 2440 LET x=c(j): LET y=d(j): LET c(j)=c(j1)2450 LET d(j)=d(j1): LET c(j1)=x : LET d(j1)=u 2460 NEXT j 2470 LET ik=1 2480 LET ip=i: IF i>=n THEN GO TO 2540 2490 LET i=i+1: LET x=a(i)-a(ip) : LET y=b(i)-b(ip): LET z=x*x+y* 2500 IF SQR z>z1 THEN GO TO 241 2510 LET ik=i 2520 IF i(n THEN GO TO 2490 2530 IF i>=n THEN GO TO 2420 2540 REM Tisk řešení 2550 CLS : LET b\$="Tisk řešení": GO SUB 3200: GO SUB 3900 2560 FOR i=1 TO n 2570 PRINT AT i+2.0;"K ";i;".pdl u patří z(c(i)); ":CHR\$ (i+64):"= ":FN 2580 IF d(i)=0 THEN CO TO 2610 2590 IF d(i) (0 THEN PRINT "-j"; ABS d(i): G0 T0 2610 2600 PRINT "+j";d(i) 2610 NEXT i: GO TO 3100 2620 REM Určitý integrál 2640 LET b\$="Výpočet určitého in tegrálu": CO SUB 3200 2650 PRÍNT AT 18,1;"Dolní integr ační mez ?": INPUT "A= ";a: GO S UB 3800: GO SUB 3000: PRINT AT 3 ,4;"Dolni mez A= ";a 2660 PRINT AT 18,1;"Horni integr ační mez ?": INPUT "B= ";b: GO S UB 3800: GO SUB 3000: PRINT AT 4 ,4; "Horni mez B= ":b

5,4; "Počet Kroko N= ";n 2680 PRINT AT 18,1; "Integrovat oučin ?(a.nebo n)": INPUŤ c\$: GO SUB 3800: CO SUB 3000: LET i1=2 2690 IF c\$()"a" THEN LET h\$="1" 2700 PRINT AT 15,3;"Zadejte funk ci jako řetězec": PRINT TAB 9;"s proměnnou x." 2710 PRINT AT 18,1; "1. funkce= " : INPUT q\$: GO SUB 3800: GO SUB 3000: IF c\$="n" THEN GO TO 2717 ?715 PRINT AT 18,1;"2.funkce* ": INPUT b\$: GO SUB 3800: GO SUB 3 2717 IF LEN q\$>LEN b\$ THEN DIM a\$(2,LEN q\$): GO TO 2719 2718 DIM a\$(2,LEN b\$) 2719 LET a\$(1)=q\$: LET a\$(2)=b\$ 2720 REM Výpočet 2730 GO SUB 3700: DIM c(3,3): DI M f(3): DIM g(3): DIM x(2) 2740 DATA 8,8,-2,8,16,8,-2,8,8 2750 RESTORE : FOR i=1 TO 3: FOR j=1 TO 3: READ c(i,j): NEXT j: NEXT i 2760 LET val=0: LET x=a: LET f(3)=VAL a\$(1): LET g(3)=VAL a\$(2) 2770 LET h=(b-a)/n 2780 LET x(1)=a+h/2: LET x(2)=a+h/22790 FOR i=1 TO n 2800 LET f(1)=f(3): LET g(1)=g(3)2810 FOR j=1 TO 2: LET x=x(j): L ET f(j+1)=VAL a\$(1): LET g(j+1)= VAL a\$(2): LET x(j)=x(j)+h: NEXT 2820 FOR j=1 TO 3: LET ag=0: FOR k=1 TO 3: LET ag=ag+c(j,k)*g(k) : NEXT k: LET val=val+f(j)*ag: N EXT | 2838 NEXT I 2840 LET val=h*val/60 2850 CLS : LET b\$="Hodnota integ rálu": GO SUB 3200: GO SUB 3900 2860 PLOT 22,110: DRAW -4,0: DRA W -8,-20: DRAW -4,0 2870 PRINT AT 7,3; "B= ";b: PRINT AT 11,1;"A= ";a 2880 IF c\$="a" THEN LET c\$=a\$(1)+"*"+a\$(2): GO TO 2900 2890 LET c\$=a\$(1) 2900 PRINT AT 9,2;c\$;" dx= ";FN z(val) 2910 GO TO 3100 3000 PRINT AT 18,1; TAB 32: RETUR 3100 REM Návrat k MENU nebo STO 3110 GO SUB 3000: PRINT AT 18,1; "Naurat k MENU nebo STOP (m-s) 3120 PAUSE 0: IF INKEY\$ <> "s" THE N FOR i=16 TO 8 STEP -2: BEEP . 05, i: NEXT i: BEEP .15,16: GO TO 3130 STOP 3200 REM Tisk záhlaví 3210 LET a1=LEN b\$: LET b1=a1: L ET a1=16-INT (a1/2) 3220 CLS : PRINT TAB a1;64: PLOT a1*8,165: DRAW b1*8,0: PRINT : 3500 FLASH 1: PRINT AT 21,7; "Sti skni cokoliv": PAUSE Ø: FLASH Ø: PRINT AT 20,7; TAB 15: RETURN 3600 PRINT AT 18,1; "Realina nebo komplex. proměnna ?": INPUT "(r nebo c) ";c\$: GO SUB 3800: GO SU B 3000: RETURN 3700 CLS : FLASH 1: PRINT AT 10, 13; "NERUSIT": PRINT AT 12,9; "Pro bíhá výpočet": FLASH Ø: RETURN 3800 BEEP .1,20: RETURN 3900 FOR i=1 TO 3: BEEP .05,24: BEEP .05,20: NEXT i: BEEP .2,16: RETURN

Тур	Druh	Použití	ð.	P _{tot}	Ucso	UCEO	UEDO	Ic	ð,	Roje	UCE	1 _c	h _{21E}	f _T	F	Pouzdro	Výrobce	Pati-
1310	Dian	rouziti	ð.	* tet	CSO	U _{CER} *	- 5 300	I _{CM} *	۷	Raje			A [dB]*	f*			•	ce
]			5003	max	max	max	max	max	max	max	~	A		[MHz]	[dB]			
	205		[°C]	[mW]	[۸]	[V]	[V]	[mA] 35	[°C]	[K/W]	[V]	[mA] 15		6500	2,6	TO-120	s	222
BFQ57	SPEn	VFu	25	450		16		35			15	25	10,5*	4000*	2,0			
BFQ58	SPEn	VFu-nš	87	450	25	16	1	30	200	250	15 15	15 15	120 9*	6500 4000*	3,8	TO-120	S	222
58						30*					15	15	15*	1500*	2,2			
BFQ59	SPEn	VFu-nš	150*	700	27	20	1,5	3,5	200	70	15 10	15 15	100 11*	4000 2000*	3,4	TO-120	S	222
59 BFQ60	SPEn	VFu-nš	25	700	27	27* 20	1,5	3,5	200	250	15	15	100	4000	3,4	TO-120	S	222
60	005			050		27*		75	200	600	10 5	15 20	11* 50—150	2000* 4500	3,4	TO-72	v	6A
BFQ63	SPEn	Vš,AZ	50	250	20	15	3	150*	200	350*	5	20	>17,5*	200*	<3	10-12	•	"
25004	005-	VE.	00	4 144		20		200			5 10	50 100	11,5* 10*	500* 80*	2,3	SOT-89	s	501
BFQ64 FC	SPEn	VFu	60	1 W		20		200			l '	100		1000				1 1
BFQ65	SPEn	Vš	60	300	20	10	2,5	50	150	300	8 8	15 15	100>6 8*	7500 2000*	3	SOT-37	V	202
BFQ66	SPEn	Vš	105	350	20	10	2,5	50	175	200	8	15	100>60	7500		SOT-173	V	221
Q6	SPEn	VFu,v	75	180	20	10		50	150		8 8	15 15	12,5* 8*	2000*	3<4 2.5	SOT-23	V	511
BFQ67 BFQ68	SPEn	Vru,v Vš	110*	4,5 W	25	18	2	300	200	20	15	240	>25	4000		SOT-122		223
					1						15 15	240 240	13° <i>U</i> 0 = 1,6 V	800° 793°				
BFQ69	SPEn	VFu	25	200		15		30			10	5	0,01	5500	1,5	SOT-37	s	202
				100		15		05	150	500	10	5	15*	800* 5000		SOT-37	h.	202
BFQ51	SPEp	Vš,AZ	60	180	20	15	2	25 35*	150	500	10 10	14	>20 19*	5000°	2,7	301-37	•	
BFQ51C	SPEp	Vš	125	250	20	15	2	30	175	200	10 10	14	17* 50>20	800* 5000	3,5	SOT-173	M	221
C1 BFQ52	SPEp	Vš,AZ	65	150	20	15	2	25	200	900	10	14	50>20	5000		TO-72	V	6A
	•			150	00			35*	200	900°	10 10	14	17* 50>25	500° 5000	2,7	TO-72		6A
BFQ53	SPEn	Vš,AZ	65	150	20	15	2	25 35*	200	600*	10	14	18*	500*	2,4		ľ	
BFQ54	SPEn	VFu-nš	87	450	25	16 30*	1	35	200	250	15 10	15 25	120 10,5*	6500 4000*	1	TO-120	s	222
57 BFQ70	SPEn	VFu	25	290		1.15	l	30			6	4	10,5	4800	1	SOT-173	s	221
BFQ71	SPEn	VFu	25	290		12		30			6	4		800° 5000	1,8	SOT-173	S	221
Bru/I	SPER	VFU	25	290		12		30			6	10	12*	800*	2	301-173		
BFQ72	SPEn	VFu	25	290		15		50			8	25	13*	5000 800*	2,8	SOT-173	s	221
BFQ73	SPEn	VFu	25	290		15		90						5000		SOT-173	s	221
BFQ74	SPEn	VFu	25	290		16		30			8	60	9.	800° 6500	3,8	SOT-173	S	221
Bruit	SELI		23								10	10	12*	2000*	2,2		1	
BFQ75	SPEp	VFu	25	290		12		35			5	10	12*	5000 800*	3	SOT-173	S	221
BFQ76	SPEp	VFu	25	290	1	15		25						4800		SOT-173	s	221
BFQ77	SPEn	VFu	25	290		12		20			10	14	15*	800* 7000	3	SOT-173	s	221
					1						10	4	12*	2000*	1,8			
BFQ81 RA	SPEn	VFu-nš	25	280	25	16	2	30	150	450	10	15	>50 >50	4200 5800	1 .	SOT-23	S	511
					l					l	10	5	15*	800° 2000°	1,5 2,8			
BFQ136	SPEn	VFv,u	110	· gw	25	18	2	600	200	10*	10 15	10 500	12,5*	800*	2,0	SOT-122	v	223
DED144	005-	Vš	127	250	20	1,2	2.5	30	200	250	15 6	500	>25 >30	4000 5000		TO-120		222
BFR14A	SPEn	VFu,Vš	137	250	20	12	2,5	30	200	250	10	15	12>10*	2000*	<5	10-120	S	
BFR14B	SPEn	VFu,Vš	137	250	20	12	2,5	30	200	250	6 10	5	>30 12,5>11*	6000 2000*	<4	TO-120	S	222
14B BFR14C	SPEn	VFu,Vš	150	700	27	20	1,5	. 35	200	70	10	15	>30	4300		TO-120	s	222
14C BFR15A	SPEn	VFu,Vš	60	200		12	2,5	30	200	700	10 6		11* !0 >25	2000° 4500	<4,5	TO-72	s	4
	SELI	AZ	00	200		'-				400*	6	10	12*	800*	3			1
BFR34A	SPEn	VFu,Vš	50	200	.	12	2,5	30	150	500	6		25 >25 │14*	5000 800*	2	TO-119	S,T	202
BFR35A	SPEn	VFu-nš	50	200		12	2,5	30	150		6	5-2	20 >25	5000		SOT-23	S,T	511
GB BFR35AF	SPEn	Vš,AZ VFu-nš	25	280		12		30		400*	6	15 15	14*	800° 5000	2	SOT-23	s	511
GE		Vš,AZ									6	15	14*	800*	2		1	
BFR35AF GZ	SPEn	VFu-nš AZ	50	200		12	2,5	30	150	500 400		5-2	20 >25 14*	5000 800*	2	SOT-23	S	511R
BFR49	SPEn	Vš	110	180	20	15	2	25	200		10	14	>25	5000		SOT-100	v	222
						-					10 10	1		1000° 4000°	2,5 6,5			
-	1		1										1		.			İ
													1			1	1	

BFR65 SBFR90 SBFR90A S	SPEn SPEn SPEn SPEn SPEn SPEn	Vš,fx Vš,AZ Vš Vš,AZ Vš,AZ	%°° [°C] 25 60° 125° 60 60	max [mW] 500 3,5 W 5 W	max [V] 40 40	Ucen* max [V] 15 40* 25	max [V] 4,5 3,5	max [mA] 500° 200 500°	max [°C] 150 150	max [K/W] 250	[V]	[mA] 10 10	### A [dB]* >40 19*	[MHz]	(dB)	SOT-54	v	ce 15
BFR65 SBFR90 SBFR90A S	SPEn SPEn SPEn SPEn	Vš,AZ Vš.AZ Vš,AZ	25 60* 125* 60	500 3,5 W	40 40	15 40* 25	4,5 3,5	500* 200	150	250	1 10	10		500	[ap]	SOT-54	٧	15
BFR65 SBFR90 SBFR90A S	SPEn SPEn SPEn SPEn	Vš,AZ Vš.AZ Vš,AZ	60* 125* 60	3,5 W 5 W	40	40* 25	3,5	200			10	-				301-34	٧	
BFR90 S	SPEn SPEn SPEn	Vš,AZ Vš,AZ	125° 60	5 W					150	25				200*				004
BFR90 S	SPEn SPEn	Vš,AZ Vš,AZ	60	-	40	25	3,5				5	50 150	>25 >25	1200 1200		SOT-48/3	V	224
BFR90 S	SPEn SPEn	Vš,AZ Vš,AZ	60	-	40	25	3,5		1		20 20	70 70	16>15*	200* 800*	6			
BFR90A	SPEn	Vš,AZ		180				400	200	15	20	200	6,5* >30	>1200		SOT-48/3	v	224
BFR90A	SPEn	Vš,AZ		180				1A*			20 20	400 200	>20 19>15*	>1000 2000*				
BFR90A	SPEn	Vš,AZ		180	امما			25	450	500	20	200	4,5*	800*				202
		,	60		20	15	2	25 35*	150	500	10 10	14 14	50>25 19,5*	5000 500*	2,4	SOT-37	V,S,T	202
BFR91	SPEn		1 1	180	20	15	2	25	150	500	10 10	14 14	90>40 U ₀ = 150 m\	5000 (800*	1,8	SOT-37	v,T	202
BFR91	SPEn										10	14	00 = 100 111	2000*	3,6			
		Vš,AZ	60*	300	15	12	2	35 50*	150	300	5 5	30 30	50>25 18*	5000 500*	1.9	SOT-37	V,S,T	202
BFR91A	SPEn	Vš,AZ	60*	300	15	12	2	35	150	300	5	30	90>40	6000	,	SOT-37	V,S,T	202
BFR92	SPEn	Vš-nš	50	200		15	2,5	30	150	500	8	30 520	14* >25	800* 5000	2,3	SOT-23	s	511
P1	CDE-	VFu	601	200	20	15	2	20	150	400* 500	6	15	14*	800* 5000	2			511
BFR92 S	SPEn	VFu	60*	200	20	15	-	30	150	50u	10 10	14 14	50>20 19,5*	5000	2,4	SOT-23	T,Th	
BFR92A	SPEn	VFu	60*	200	20	15	2	25	150	500	10 10	14 14	90>40 15,5*	5000 500*	<3,2	SOT-23	T	511
BFR92AR	SPEn	VFu	60*	200	20	15	2	25	150	500	10	14	90>40	5000		SOT-23	т	511R
P5 BFR92P	SPEn	Vš-nš	25	280		15	-	30			10	14 520	15,5* >25	500* 5000	<3,2	SOT-23	s	511
GF	CDCa	VFu VFu	60*	200	20	15	2	30	150	500	6	15 14	14* 50>20	800* 5000	2			511R
P4	SPEn		60		20	15					10 10	14	19,5*	500°	2,4	SOT-23	T,Th	
BFR93	SPEn	Vš-nš VFu	50	200		15	2,5	50	150	500 400*	5 6	50 15	>30 13*	4800 800*	2,8	SOT-23	s	511
BFR93	SPEn	VFu	60*	200	20	12	2	50	150	500	5	30	50>25	5000		SOT-23	T, Th	511
R1 BFR93A	SPEn	VFu	45*	250	20	12	2	50	150	500	5 5	30	90>40	800* 6000	1,9	SOT-23	T, Th	511
R2 BFR93AR	SPEn	VFu	45*	250	20	12	2	50	150	500	5 5	30	90>40	800* 6000	1,6	SOT-23	T, Th	511R
R5							-				5	4	00),0	800*	1,6			
GG	SPEn	VFu-nš	25	280		15		50			8 8	10 25	13*	4900 800*	2,8	SOT-23	S	511
BFR93R R4	SPEn	VFu	60*	200	20	12	2	50	150	500	5 5	30 4	50>25	5000 800*	1,9	SOT-23	T, Th	511R
T T	SPEn	Vš, AZ	160*	2,5W	30	25	3	150	200	15	20	50	>30	3500	1,3	SOT-48/3	v	224
			145*	3,5W		ļ		300*			20 20	150	>30 13,5*	3500 500*	5	'		
BFR95	SPEn	Vš, AZ	25	700 1,5W	30	25	3	150 300*	200	250 50*	20 20	50	>30 >30	3500 3500		TO-39	v	2A
			123	1,5				300		30 1	18		9>8*	40-300	<10			
BFR96	SPEn	Vš, AZ	60	500	20	15	3	75	175	230	10	50	50>25	>4000	İ	SOT-37	V. S. T	202
		,						150*	"	70*	10	75	52>25	>4400			, , ,	
BFR96S	SPEn	Vš, AZ	70	700	20	15	3	100	175	150	10 10	50 70	15,2* >25	500* 5000	3,3	SOT-37	V, S, T	202
BFS17	SPEn	VFu	50	200	25	15	2,5	25	150	50* 500	10 1	70 2	11,5* 20—150	800* 1300	4	SOT-23	S, T,	511
MA, E1	OI LII	VI U	50	200	20	'	2,3	50*	130	400*	1	25	>20			001-20	Th Th	3
			ļ								5 5	10	23* 11*	200* 800*	4			
	SPEn	VF, Vš	25	200	25	15	2,5	25	150	620	1	2	20—150	1500	2,5	SOT-23	т	511
E2 BFS17AR	SPEn	VF, Vš	25	200	25	15	2,5	50* 25	150	620	1	25 2	>20 20—150	3200 1500	2,5	SOT-23	т	511R
E5 BFS17P	SPEn	VFv	25	280		15		50° 25	Ì	<u> </u>	1 5	25 2	>20	3200 2500	3.8	SOT-23	s -	511
MC											5	10	11*	800*	0,0			
BFS17R MZ, E4	SPEn	VFu	50	200	25	15	2,5	25 50*	150	500 400*	1	2 25	20—150 >20	1300		SOT-23	S, T	511R
										1	5 5	10 10	23°	200* 800*	4			
	SPEn	VFv	65	150	30	20	5	30	125	520	10	1	35—125	200	4	SOT-23	S, Th	511
CA BFS18R	SPEn	VFv	65	150	30	20	5	30	125	410° 520	10	1	35—125	200	4	SOT-23	S, Th	511R
СВ										410*			:					
BFS19 CY, F2	SPEn	VFv	65 25	150	30	20	5	30	126 150 ²¹	520 410*	10	1	65—225	260 100*	4	SOT-23	S, T	511
-		•								1								

KONSTRUKTÉŘI SVAZARMU

DIGITÁLNY pH - METER

RNDr. Peter Spišák

(Dokončení)

formátor Tr1 je navinutý na jadre El 12 VA (stavebnica ZPA Prešov, ktorú kúpime v predajniach TESLA za 20 Kčs). Primáre vinutie má 1850 závitov drôtu CuL 0,125 mm a preklad po každej druhej vrstve. Sekundárne vinutie má 2 × 150 závitov drôtu 0,1 mm a 70 závitov drôtu 0,25 mm (všetky CuL). Na obr. 3 je doska s plošnými spojmi meracieho zosilňovača, na obr. 4 prevodníka A/D, na obr. 5 displeja. Doska zdroja je na obr. 6.

Súčiastky R1, R2, C1, R5 a R13 sú mimo dosky s plošnými spojmi. Pre zaistenie dobrých vlastností IO1 je vhodné upraviť vývody 2, 3 a 6 tak, aby sa nedotýkali dosky a spájkovať ich nad doskou. Prevodník A/D a číslicovky sú na samostat-

ných doskách, ktoré sú prepojené vodičmi. Na doske zdroja sú C4 a C5 umiestnené stojate, D11 a R20 sú mimo dosku. IO5 je bez chladiča.

Zariadenie oživujeme tak, že najskôr oživíme zdroj 5 V a prevodník A/D. Pripojime napájacie napätie pre prevodník a vstupy Hi a Lo spojíme so zemou. Trimrom R22 na displeji nastavíme 00.0. Ak by rozsah R22 nestačil, zmeníme R21 a R22, ale tak, aby súčet R21 + R22 + R23 bol aspoň 50 k Ω . Pripravíme si regulovatelný zdroj napatia 0 až 1 V (postači monočlánok s paralelným potenciometrom). Vstup Lo ponecháme spojený so zemou a zdroj pripojíme medzi zem a Hi. Nastavíme napríklad 900 mV (kontroluje-

me voltmetrom) a pomocou R25 na displeji nastavime 90.0.

Predbežne nastavíme merací zosilňovač tak, že pripojíme napájenie a potom spojíme bežec R5 s voľným koncom R7 (nepripojeným k IO1) a so zemou. Voltmeter pripojíme medzi vývod 6 IO2 a zem. Trimrom R11 nastavíme nulu. Potom spojíme vstup 3 IO1 so zemou a pomocou R3 nastavíme na výstupe 6 nulu.

Prístroj som vstaval do skrínky z plechu Al. Predný panel má rozmery 7 × 15 cm, hĺbka skrínky je 14 cm. Dno i bočné steny majú vetracie otvory. Dosky sú upevnené zvisle, v poradí zľava merací zosilňovač, prevodník A/D, zdroj a transformátor. Dosku meriaceho zosilňovača oddelíme od ostatnej časti prepážkou z kuprextitu a jeho fóliu uzemníme. Na prednom paneli sú vľavo konektor BNC pre elektródu pH, konektor pre referenčnú elektródu (zdierka alebo banánik). Pri nich sú trimry R5 a R13 (TP 195) so zárezom pre skrutkovač, vpravo je svietiaca dióda a sieťový spínač.

Rezistory R1 a R2 prispájkujeme so skrátenými prívodmi medzi konektor BNC

a vývod 3 IO1. Pod maticu konektoru umiestníme pájací očko, na ktoré prispájkujeme C1 a referenčný vstup. Očko spojíme so zemou zosilňovača vodičom. Kostru prístroja spojíme so zemniacím vodičom sieťového prívodného kábla v bfízkosti jeho vstupu do prístroja. Vodičmi uzemníme aj transformátor a veko skrínky.

Po zapnutí prístroja niekoľko minút počkáme až sa ustália teplotné pomery. Potom presne nastavíme popísaným spôsobom R3 a R11 a nakonec pripojíme R7 k IO1. Na bežci R5 nastavíme nulové napätie. Vstup pH spojíme so vstupom REF rezistorom 0,1 MΩ a na displeji by mal byť daj 00.0. Potom privedieme na vstup napätie zo zdroja 0 až 1 V (záporný pól na svorku pH, rezistor 0,1 MΩ ponecháme zapojený), nastavíme 592 mV a pomocou R13 nastavíme na displeji 10.0.

Pre ďalšie nastavovanie potrebujeme aspoň dva roztoky so známym pH. Najlepšie továrenské pufre. Keď ich nemáme, pripravíme si ich sami.

- Roztok 0,01 M Na₂B₂O₇ (tetraboritan sodný) má pH 9,18 pro 25 °C (zmena −0,0082 pH/°C).
- Roztok 0,025 M NaHCO₃ (hydrouhličitan sodný) + 0,025 M Na₂ CO₃ (uhličitan sodný) má pH 10,0 pri 25 °C.
- Roztok 0,025 M KH₂PO₄ (dihydrofosforečnan draselný) + 0,025 M Na₂HPO₄ (hydrofosforečnan sodný) má pH 6,86 pri 25 °C (zmena −0,0028 pH/°C).

Uvedené chemikálie okrem hydrouhličitanu sodného sa vo fotografii bežne používajú. Pri použití čistých a nenavlhnutých chemikálií dostaneme roztoky postačujúce na kalibráciu prístroja.

Pripojíme elektródy ošetrené podľa nasledujúceho odstavca a vložíme ich do pufru s najnižším pH. Počkáme niekoľko minút na ustálenie údaja a roztok opatrne premiesa. Potenciometrom R5 nastavíme na dispicii správny údaj pH (kom-penzujeme Ek a Eos). Po opláchnutí v destilovanej vode prenesieme elektródy do pufru s väčším pH. Po ustálení údaja opravime nepresnosť pomocou R13 (meníme tým sklon závislosti pH od Es). Postup viackrát zopakujeme. Presnosť závisí tiež na teplote a prístroj nemá vyvedený samostatný prvok na teplotnú kompenzáciu. Predpokladá sa používanie v rozmedzí 20 až 25 °C. Pokiaľ budeme pracovať pri iných teplotách, môžeme pristroj okalibrovat napriklad pre 20, 30 a 40 °C a poznačiť si polohu R13. Pri používaní pH metra už potenciometrom R13 nepohybujeme.

Postup merania je taký, že prístroj zapneme a vyčkáme aspoň 10 minút. Medzi tým pootočíme R13 na značku príslušnej teploty a elektródy ponoríme do pufru, ktorého pH je najbližšie k uvažovanej oblasti merania. Po ustálení údaja nepresnosť skorigujeme pomocou R5. Tým je prístroj pripravený k práci. Elektródy ponoríme do meraného roztoku a po ustálení údaj prečítame na displeji. U dobrej sklenenej elektródy je doba ustálenia do jednej minúty.

Elektródy ošetrujeme podľa návodu výrobcu. Všeobecne platí, že sklenenou elektródu je potrebné pred uvedením do prevádzky oživiť. Ponoríme ju asi 3 cm hlboko do 0,1 M roztoku kyseliny chlóro-

Zoznam súčiastok

Rezistory (TF	R 213, 191) 10 %
R1	100 MΩ, TR 142, 21
R2	0,1 ΜΩ
R3	22 kΩ, TP 011
R4, R6	3,3 kΩ
R5	220 Ω, TP.011
R7 až R10	15 kΩ
R11, R22	10 kΩ, TP 011
R12	6,8 kΩ
R13	1 kΩ, TP 195
R14	1 kΩ
R15	4,7 kΩ
R16	11 kΩ, 5 %
R17	10 kΩ, 5 %
R18, R19	$4,7 \text{ k}\Omega, 5 \%$
R20	270 Ω
R21, R23	27 kΩ
R22	10 kΩ, TP 011
R24	22 kΩ
R25	4,7 kΩ, TP 011
R26 až R29	10 kΩ
R30 až R37	120 Ω

Kondenzátory

nondonzaio,	
C1	1 nF, viď text
C2, C3 '	0,1 μF, TK 783
C4, C5	100 μF, TF 009
C6, C7	0,1 μF, TK 783
C8	470 μF, TF 008
C9	0,1 μF, TK 782
C10 =	ე.33 μF, TC 279
C11	100 . F. TF 007

 Polovodičové súčiastky
 IO3

 IO4
 IO5

 IO1
 MAC 155 (156)
 IO6

 IO2, IO4
 MAA741
 T1

Obr. 5. Doska V72 s plošnými spojmi displeja

MAA723	T2	KF517
MA7805	T3 až T5	BC177, KC307
C520D	D1, D2	KA261
D147C	D3 až D10	KY130/80
KF507	D11	svítivá dioda

Obr. 6. Doska V73 s plošnými spojmi zdroja

Elektronika pomáhá zajišťovat bezpečnost silničního provozu

Především v dopravě, ale i v různých provozech, kde jsou nezbytné perfektní soustředění, dobré reakční schopnosti i fyzická kondice pracovníků, je důležité, aby bylo možno ověřit, nemají-li některé osoby tyto schopnosti sníženy požitím alkoholu. Použitím známých "balónků" lze přítomnost alkoholu v krvi (dechu) pouze indikovat. Ke zjištění procenta obsahu alkoholu v krvi ie zpravidla třeba odebrat kontrolovaným osobám krev k rozboru. Komplikace, s tím spojené, lze vyloučit použitím přenosných elektronických analyzátorů dechu. Se dvěma takovými výrobky vás stručně seznámíme.

Prvním z nich (obr. 1) je Lion Alcolmeter S-D2. Jeho konstrukce je robustní a manipulace s ním jednoduchá, takže může být používán i v těžkých provozních podmínkách. Při testech je schopen okamžitého použití (po zapnutí se nemusí jeho režim ustalovat). Je malý a lehký a může být nošen pohodlně v kapse kabátu nebo uniformy.

Používá se tak, že zkoumaná osoba fouká do vyměnitelného náústku tak dlouho, dokud se na přístroji nerozsvítí obě kontrolní světla (A a B). Pak stiskne obsluha knoflík READ (tím se odebere asi 1,5 cm³ "dechu" přímo k čidlu pro analýzu) a přečte změřený obsah alkoholu na číslicovém displeji. Ten může být kalibrován v libovolných jednotkách koncentrace alkoholu, používaných ve světě.

Přístroj je napájen z vestavěné destičkové baterie 9 V, jejíž kapacita stačí asi pro 300 dechových zkoušek. Přístroj je úředně zkoušen a je v řádném policejním využití v mnoha zemích, v USA splňuje i požadavky DOT ministerstva dopravy na zařízení, sloužící k testování dechu pro soudní účely.

Některé technické údaje: Rozsah měření až do 300 mg% (nebo ekvivalentní v jiných jednotkách), lineární. Displej je třímístný (od 000 do 995 ve skocích po 005) LCD s osvětlením, výška číslice 8 mm. Je-li napětí baterie nedostatečné, indikuje se znak L. Provozní teplota je 0 až 40 °C (v zimě je přístroj ohříván v kapse obsluhujícího). Přesnost měření je lepší než ± 10 % z kalibrační hodnoty. Četnost odebírání: neobsahuje-li první vzorek alkohol, lze další odebírat ihned. V opačném případě lze odebrat další vzorek po přestávce, obvykle menší než dvě minuty. Rozměry přístroje jsou 120×64×33 mm (s pouzdrem), hmotnost 300 g (v pouzdru a s baterií).

Dodávané příslušenství: kožené pouzdro, řemínek na zápěstí, baterie a příručka pro obsluhu. Používané náústky musí být tlakového typu.

Druhý přístroj (obr. 2) je zařízení, umožňující policistovi změřit hladinu alkoholu v dechu řidiče bez jeho aktivní účasti nebo pomoci. Postačí, když kontrolovaná osoba mluví asi čtyři sekundy a přístroj odebere a analyzuje vzduch před jeho ústy. Údaj je indikován na digitálním displeji asi o dvacet sekund později.

Tento pasivní alkoholový senzor (Lion Alcolmeter PAS) je vestavěn do běžné kapesní svítilny a celé zařízení umožňuje policistovi provádět i noční kontroly rychle a efektivně, aniž přitom obtěžuje nebo zdržuje střízlivé řidiče.

Přístroj prakticky nereaguje na žádnou složku dechu kromě alkoholových par. Pracuje tak, že membránové čerpadlo odebere asi 10 cm³ dechu z okolí řidičových úst přímo k čidlu alkoholového detektoru k rozboru. Je napájen ze čtyř alkalických článků, doba nepřetržitého provozu je buď osm hodin (se svítilnou) nebo padesát hodin (samotný přístroj) při typickém průběhu služby.

Přesnost měření je \pm 5 % z kalibrační hodnoty; digitální displej ze svítivých diod indikuje údaj od 000 do 995 ve stupních po 005. Rozsah provozních teplot je 0 až 40 °C. Rozměry přístroje $37 \times 7 \times 7$ cm, zužuje se do válce o průměru 4 cm; hmotnost je 1,45 kg se

Obr. 1.

Obr. 2.

zdrojem, 0,9 kg bez. Přístroj se dodává s pouzdrem, červeným signálním nástrubkem a příručkou pro použití. Vyvinuli jej pracovníci britské firmy Lion ve spolupráci s Pojišťovacím ústavem pro bezpečnost na dálnicích v USA. Během rozsáhlých provozních zkoušek, prováděných policií ve Spojených státech, se přístroj plně osvědčil — oproti testům, při nichž se používalo konvenčních metod, bylo možno prověřit více řidičů s přesnějšími výsledky zkoušek.

JB

vodíkovej (nie technickej) a ponecháme asi 24 hodín. Potom ju dáme do destilovanej vody a tiež ponecháme aspoň 24 hodín. Tým je elektróda pripravená k práci. Elektródu už od tejto doby neustále uskladňujeme vo vode asi 3 cm hlboko. Meracia gulička nesmie oschnúť. Moderné elektródy (Radelkis) môžu byť síce pri dlhých prestávkach skladované v suchom stave s následným novým oživením, radšej však túto možnosť nevyužívame.

Kalomelová elektróda nepotrebuje oživovanie ani zvláštne zaobchádzanie. Skladujeme ju v nasýtenom roztoku KCL alebo na suchu. Má plniaci otvor zakrytý gumovou zatkou, ktorým môžeme roztok KCL doplniť alebo vymeniť. Roztok má

siahať po dolný okraj plniaceho otvoru. Vykryštalizovanie KCL nie je na závadu. O možnosti nákupu príslušných elektród sa môžeme informovať v predajnách laboratórnych potrieb.

Pri práci s pH metrom zachovávame vždy určitý zaužívaný postup, čím si zaručíme reprodukovatelné výsledky. Elektródy oplachujeme v destilovanej vode. So sklenenou elektródou zaobchádzame opatrne, meracia gulička je z elektrometrického skla hrúbky 0,01 až 0,1 mm. Pre elektródy si zhotovime stojan s držiakom. Ustálenie údaja na displeji závisí najmä od elektród, elektronika pracuje oveľa rýchlejšie. Pri bežnej práci sa údaj ustálí do 1 minúty. Dlhšiu dobu vyčkáme pri prvom

ponorení elektród do roztoku po zapnutí prístroja, pri ponorení do roztoku inej teploty alebo do roztoku s podstatne odlišným pH. Pri dlhodobých meraniach občas skontrolujeme kalibraciu ponorením elektród do pufru. Pre fotografické účely sa dobre osvedčili pufre 1 a 2, podľa predchádzajúceho textu. Roztoky sa ľahko pripravia a sú použitelné i niekoľko mesiacov. Na prípravu pufrov použijeme čo najkvalitnejšie chemikálie. Navlhnuté chemikálie spôsobia chybu pri navážení množstva a roztok bude mať iné pH.

KV transcelvery tovární výroby a jejich vlastnosti

Ing. Martin Kratoška, OK1RR

(Dokončení)

Některé transceivery používají NOTCH filtr v nf řetězci (FT-101ZD, TS-430S, TS-440S, Ten-Tec Omni). Nf filtr je ovšem velmi málo účinný, protože nežádoucí signál může nepříznivě působit prakticky na všechny obvody přijímače. Řešení tohoto filtru nf cestou tedy není rovnocenné předchozím způsobům a jeho přínos je diskutabilní.

QSK

V dnešní době je v zahraničí provoz QSK poměrně běžnou záležitostí i s použitím lineárních koncových stupňů s výkony kolem 1,5 kW. Takové koncové stupně nabízí celá řada firem, např. TEN-TEC (Titan), či ETO (Alpha 77DX). Ovšem podmínkou připojení takového koncového stupně pro využití QSK je odpovídající transceiver, který tento druh provozu umožňuje.

Úplný BK-provoz je velmi důležitý pro CW. Mnozí telegrafisté vzpomínají na svá stará (a nedokonalá) zařízení, která takovýto provoz umožňovala. Převážná většina transceiverů však provoz QSK neumožňuje, jako jejich "přednost" je inzerován tzv. semi-BK. Tento způsob, využívající VOX, je však spíše nevýhodou. První vyslaná tečka, během které proběhne přepnutí VOX, bývá zkrácena, případně není vyslána vůbec (z pásem je známé např. volání stanic JA, kdy JA při prvním volání vyzní jako OA). Jedním ze sledovaných parametrů bývá rychlost CW, při které VOX transceiveru zkrátí tečku na polovinu. Např. FT-301D zkrátí první tečku na polovinu již při rychlosti 100 zn./min. S použitím VOX nelze v žádném případě poslouchat mezi vlastními značkami, ani mezi písmeny. Pomalé přepínání umožňuje nanejvýš příjem mezi slovy, nemluvě o rušivém klapání relé a případném opalování jejich kontaktů.

Moderní transceivery naštěstí již tento problém řeší. Provoz CW s nimi tedy již nepřipomíná provoz ambiciózního záčátečnika, komunikace je daleko přirozenější, zbytečné rušení se projevuje daleko méně a provoz lze celkově zrychlit. Zásadním problémem při konstrukci QSK je přepínání antény. Přepínat výkony řádu 100 W, aniž by došlo ke vzniku nežádoucích kmitočtů, vstupní obvody přijímače byly spolehlivě chráněny před zničením. mezi anténu a vstup přijímače nebyl vložen žádný dodatečný útlum, nebylo porušeno impedanční přizpůsobení a celé přepínání probíhalo bezhlučně a dostatečně rychle, aby nebylo patrné zkreslení i při rychlostech vyšších než 200 zn/min. je vskutku problém. Kromě antény je nutno samozřejmě přepínat v rytmu klíčování všechny funkce transceiveru včetně druhého VFO. Přepínání antény je realizováno speciálními vakuovými relé (Kilovac. Jennings) nebo výkonovými diodami PIN. Obazpůsoby jsou přibližně stejně rozšířené. U přepínání relé je třeba vyřešit problém spínání kontaktů "za studena".

Transceiver tedy může být zaklíčován až tehdy, je-li přepnutí dokončeno, obráceně přepnutí antény na přijímač může proběhnout jen tehdy, není-li vysílací částransceiveru produkována žádná vf energie. Přepínání tedy probíhá za účasti časovací logiky, která má za úkol zabezpečit veškeré nutné prodlevy (řádu ms) k přepnutí, a testovací logiky, zkoumající přítomnost vf energie na výstupu a stav přepnutí. Při použití diod PÍN jsou požadavky na logiku mírnější, neboť přepínání probíhá velmi rychle (řádově us), na druhé straně je ovšem nebezpečí zničení diod (a tím i vstupních obvodů přijímače) vlivem nepřizpůsobení antény. I při provozu SSB je funkce časovací logiky velmi výhodná, neboť zabraňuje opalování kontaktů anténního relé (TCVR nebo PA) při použití VOX.

DUTY CYCLE (viz HD)

Tento parametr začínají výrobci sledovat teprve během posledních let. DUTY CYCLE je možno vyložit jako zatížitelnost. V podstatě se jedná o dimenzování zdrojů, stupně PA a jejich chladicích systémů natolik, že je možný trvalý provoz (zaklíčování s plným výkonem) teoreticky po neomezenou dobu, aniž by docházelo k přehřátí a následnému zničení, případně negativnímu ovlivnění parametrů transceiveru (snížení výkonu. apod.). DUTY CYCLE je důležitý zejména při provozu RTTY, expedicích, závodech, kde poměr mezi dobou příjmu a vysílání nebývá předpokládaných 4:1, případně provozu za ztížených klimatických podmínek. Zatímco nápř. u FT-101B výrobce upozorňoval, že zaklíčování s plným výkonem po dobu delší než 30 s může mít za následek zničení koncových elektronek, u TS-940S se teplota po hodině trvalého zaklíčování ustálí na asi 70 °C a dále se pak nemění. Přitom samozřejmě nedochází k poklesu výkonu ani jinému nepříznivému ovlivnění parametrů transceiveru. DUTY CYCLE má přímý vztah ke spolehlivosti, a proto by mu měla být věnována maximální pozornost.

Další údaje v tab. 1, jako PROC (SPE-ECH-PROCESSOR), 2. VFO, PS (POWER SUPPLY) – zdroj, ATU (ANTENNA TUNER UNIT) – anténní člen, uvádějí, zda je příslušná jednotka zabudována přímo v transceiveru. Je-li nutno používat zvláštní zdroj. 2. VFO, příp. antenní člen, je v tabulce typ transceiveru hodnocen jako touto jednotkou nevybavený. Při hodnocení je třeba věnovat pozornost údajům PROC a NOTCH. Procesor bývá někdy zaměňován za nf kompresor (TS-430S, TS-440S), jehož použití prakticky nemá vliv na dynamiku výsledného signálu SSB. O neúčinnosti nf NOTCH filtru již zmínka padla. Tabulka na nf PROC nebo NOTCH upozorňuje. Je třeba klást důraz na to, aby procesor, stejně jako NOTCH filtr byl vysokofrekvenční (označován jako RF SPEECH PROCESSOR, resp. IF NOTCH FILTER). Pokud jsou v popisu transceiveru tyto prvky uvedeny s předložkou AF. jedná se o "vymoženosti" nízkofrekvenční, které mají význam sotva větší, než hračka. V žádném případě tedy neznamená pouhá přítomnost knoflíků PROC, nebo NOTCH faktickou existenci tohoto obvodu.

Co nás dále zajímá na transceiveru? Postupující digitalizace s sebou přináší řadu výhod, jejichž využití je velmi příjemné v praktickém provozu. Jelikož zpravidla (s výjimkou digitální stupnice a 2. VFO) samy nerozhodují o tom, uskutečníli se vzácné spojení či ne, je jejich význam ve srovnání s VBT, NOTCH filtrem či intermodulační odolností nepatrný. Naopak vliv digitalizace může být někdy nepříznivý, např. postranní šum závěsů PLL. Některé údaje v tab. 1 jsou označeny NL - NOISE LIMITED (omezeno šumem, tudíž neměřitelné). Šum oscilátoru, který byl u starších zařízení vzácností takřka neznámou, se nyní stává skutečným pro-

Dalším zajímavým prvkem moderních transceiverů je umlčovač (přesněji vyklíčovač) poruch. Používá se tam, kde je nutno odstranit QRN vznikle např. zapalováním v motorových vozidlech. Vyklíčování jiných poruch impulsního charakteru vyžaduje optimalizaci nejen prahu klíčování, ale též časové konstanty NB (NOISE-BLANKER). Princip činnosti umlčovače je jednoduchý - signál včetně poruch se přijímá zvláštním přijímačem (nebo je vyveden přímo ze signálové cesty), poruchy jsou vyhodnoceny a ovládají spínač v signálové cestě, který signál během trvání poruchového impulsu přeruší. Jelikož zařazením umlčovače poruch dochází vždy ke zhoršení intermodulační odolnosti přijímače, je jeho použití přínosem jen v ojedinělých případech. Přesto se však vyplatí sledovat, je-li transceiver umlčovačem poruch vybaven.

Některé transceivery mají odpínatelný vf zesilovač. Jeho vyřazením sice citlivost poklesne, ale zvětší se odolnost přijímače vůči vlivu silných signálů. Jelikož citlivost transceiverů bývá i bez vf zesilovače dostatečná v pásmech 1,8 až 14 MHz, je přes možnost vypínání vf zesilovače naprosto nepostradatelný vstupní atenu-

AVC transceiveru by mělo mít nejen možnost vypnutí, ale i možnost volby alespoň dvou časových konstant (krátké pro CW a dlouhé pro SSB). Jakkoli je rozšířen mylný názor, že účinné AVC může zlepšiť intermodulační odolnost přijímače, je zřejmé, že AVC může nejvýše dopomoci k "vymazání" slabého signálu signálem silným, který pronikne mf filtrem a stává se příčinou vzniku napětí AVC, které sníží citlivost přijímače. Vypínání AVC při příjmu slabých signálů ČW na zarušených pásmech bývá takřka pravidlem. Naopak silný signál SSB může být někdy zkreslený a zařazení AVC s odpovídající časovou konstantou pomůže zkreslení odstranit. Přesto se vyskytuje množství transceiverů, kde AVC vypnout nelze (FT-101B, FT-101E, FT-757GX).

Další méně důležitou předností transceiveru je zvláštní anténní vstup přijímače, který je důležitý zejména při použití zvláštní přijímací antény (např. beverage na 80 m)

Ovládání přídavného lineárního PA, vývod ALC a PTT by měly být samozřejmostí.

Dynamické parametry přijímače

NF (NOISE FLOOR) - citlivost, vztažená k vlastnímu šumu - NF (též MDS MINIMUM DISCERNIBLE SIGNAL) označuje minimální úroveň signálu, kterou je schopen přijímač detekovat. Je to úroveň signálu, rovná úrovní vlastního šumu přijímače. Citlivost je tedy měřena pro poměr signál + šum/šum 0 dB. Neznamená tedy minimální úroveň, při které bude signál šitelnů

BDR (BLOCKING DYNAMIC RANGE) dynamický rozsah pro pokles citlivosti reprezentuje v podstatě bod 1 dB komprese. BDR vyjadřuje tedy úroveň rušícího signálu, který je od slabého žádaného signálu (typicky -110 dBm) kmitočtově vzdálen (zde 20 kHz) a způsobí pokles úrovně žádaného signálu na nf výstupu o 1 dB. Je-li např. úroveň signálu, způsobujícího 1 dB kompresi -20 dBm a NF či MDS, ke kterému je BDR vždy vztažen, -133 dBm, je tedy BDR 113 dB. Má-li transceiver odpojitelný vf předzesilovač. znamená jeho zapnutí zhoršení BDR v průměru o 2 dB (tj. ke kompresi 1 dB dochází vlivem signálu o úrovní menší o zisk předzesilovače +2 dB). Je-li v rubrice uvedena poznámka NL (NOISE LIMI-TED), nebyl údaj BDR měřitelný díky šumu regulační smyčky fázového závěsu. Z tabulky je zřejmé, že šum PLL je problém, značně ovlivňující dynamické para-

metry přijímače. IMD DR (INTERMODULATION DISTORTION DYNAMIC RANGE) – dynamický rozsah, daný intermodulačním zkreslením. Dva signály, přivedené současně na vstup přijímače jsou příčinou vzniku intermodulačních produktů vyšších řádů. Jejich vznik je podmíněn existencí nelineárních členů v přenosové cestě (všechny prvky, schopné zesilovat nebo směšovat). Oba signály se přivádějí na vstup přijímače s určitým kmitočtovým odstupem (zpravidla 2, 20 a 200 kHz). Jejich úroveň je stejná a je současně zvyšována až do hodnoty, kdy úroveň intermodulačních produktů 3. řádu (tj. 2f₁-f₂ nebo 2f₂-f₁) na nf výstupu dosáhne úrovně o 3 dB vyšší, než vlastní šum přijímače. Přijímač je vybaven filtrem CW 500 Hz. Údaje v tabulce platí opět pro kmitočtový odstup signálů 20 kHz, tzn. přivedeme na vstup současně signály o stejné úrovní (nízké, typicky -70 dBm) o kmitočtech např. 3540 a 3560 kHz. Intermodulační produkty 3. řádu se vyskytnou na kmitočtech 3520 a 3580 kHz. Na jeden z těchto kmitočtů přijímač naladíme a úroveň obou signálů současně zvyšujeme, až úroveň na výstupu oproti vlastnímu šumu přijímače vzroste o 3 dB.

Údaje o jednotlivých typech transceiverů tedy umožňují vzájemné srovnání jejich vlastností. Příznivé hodnoty NF, BDR i IMD, jakož i množství různých vymožeností ovšem nemusí být známkou kvality zařízení. Např. údaje KA4GSQ, který zveřejnil výsledky laboratoří ARRL (NF, BDR a IMD), jakož i statistiky servisních opraven udávají, že asi 20 % nově zakoupených zařízení vykazuje určité závady, někdy zcela znemožňující provoz, jindy ovšem zcela bezvýznamné - charakter závad bývá případ od případu různý. Příslovi praví: "Dobré věci se chválí samy". Je velmi zajímavé sledovat zkušenosti účastníků DX-expedic či vítězů velkých závodů, s jakými typy zařízení bývají největší problémy ("vypálené" zdroje či PA, citlivost vůči přehřátí, mechanická odolnost, apod.). Podobné údaje ovšem nebývají často zveřejňovány a jsou proto velmi těžko dostupné.

Další zajímavostí by bylo srovnání zařízení amatérské výroby s továrními. Lze také doufat, že bude časem zveřejněn

Transceiver firmy Kenwood typu TS-930S

Transceiver firmy Kenwood typu TS-440S

popis transceiveru, který bude vyhovovat alespoň průměrným nárokům (tj. SHIFT. BW. NOTCH, QSK, NOTCH, -130 dBm. 120 dB IMD BDR = = 90 dB, schopný trvalého zaklíčování při výkonu - s přihlédnutím k dostupnosti výkonových tranzistorů pro PA - min. 10 W), vyzkoušené a plně reprodukovatelné konstrukce a bude obsahovat pouze dostupné součástky (výroby RVHP), výkresy plošných spojů a mechaniky. Rozšíření podobného transceiveru by částečně mohlo přispět k vyřešení neutěšené situace v technickém vybavení čs. amatérů a k přiblížení celkové úrovně čs. radioamatérského sportu světového průměru.

Transceiver firmy ICOM typu IC-751A

Závěr

Při posuzování továrního transceiveru je třeba brát v úvahu široký okruh radioamatérské činnosti, tzn. transceiver by měl vyhovovat širokému okruhu uživatelů. Jiné požadavky má jistě DXman, jiné účastník závodů. Jiné požadavky bude mít radioamatér zaměřený na provoz SSB, jiné telegrafista. Článek by měl tedy posloužit pouze jako vodítko; o tom, jaký význam přikládat jednotlivým parametrům, nechť rozhodne každý sám.

Tabulka 1 se základními technickými údaji transceiverů je na následující straně (432)

Тур	NF (dBm)	BDR	(dB)	IMD	(dB)			Ī <u> </u>			·						
(výrobce)	80 m	20 m	80 m	20 m	80 m	20 m	PA	BAND	SHIFT	BW	NOTCH	QSK	2. VFO	PROC	ATU	PS	HD	Poznámka
Collins KWM-380	-131	-131	NL	NL	NL	NL	т	160,W	+	+	+	+	+	+	+	+	-	
Cubic Astro 102BXA	- 125	-129	NL	NL	90	84	т	160,W	_	+	+	+	+	+	_	_	-	
Cubic Astro 150	-127	-131	114	118	84	86	т	160,W	-	-	-	+	-	-	-	-	-	fa Cubic, též fa Swan
Drake TR7/DR7	-133	-133	120	120	84	90	т	160,W	+	+	+	-	_	+		_		a
IC-701	-133	-133	120	120	89	87	T	160	_	+	-	_	+	+		-	-	krok ladění 100 Hz
IC-720A	-132	-132	NL	NL	97	92	τ	160,W		+	_	_	+	+	_		-	100 112
IC-730	-140	-140	NL	NL	NL.	96	T	w	+	-	_		+	_	-	-	-	předzes. zapnut
IC-735	-134	-133	NL	NL	92	88	т	160,W	-	+	+	+	+	+	_	-	H	předzes. zapnut
IC-740	-141		125		94		т	160,W	+	+	NF	-	+	+	-	(+)	-	předzes. zapnut, pásma měření NF, BDR, IMD neudána
IC-745	-140	-144	115	116	92	94	Т	160,W	(+)	(+)	+	-	+	+	-	+	-	předzes. zapnut, lze zvolit buď SHIFT, nebo BW
IC-751	-142	-138	NL	NL	91	93	Т	160,W	+	-	+	+	+	+	-	(+)	-	předzes. zapnut, PS lze vestavět (stejně IC-740)
IC-761							T	160,W	+	-	+	+	+	+	+	+	+	neměřen
TS-120S	-139		108		75		T	160	+	-	-	_	-	_	_	_	H	, mamoron
TS-130S	-138	-138	109	110	79	78	Т	w	+	-		_	-	_	_	_		
TS-180S	-139	-139	112	114	82	83	Т	160,W	+	-	-	_	_	NF	_	_		
TS-430S	-138	- 137	NL	NL	95	90	Т	160,W	+	-	NF	_	+	NF	_	_		
TS-440S				 	 		т	160,W	+	_	NF	+	+	NF .	(+)	_	+	neměřen
TS-520S		-133		104		69	E	160	 	-		-	_`	+	_	+	-	
TS-530S	-135	-136	112	120	88	90	E	160,W	+	-	NF	-		+	-	+	-	
TS-820S		-136		114		85	E	160	+	-	-	-	-	+	_	+	F	
TS-830S	-136	-136	129	NL	83	82	Ε	160,W	+	+	+	-	-	+	-	+	F	
TS-930S	-139	-139	NL	NL	88.	87	T	160,W	+	+	+	+	+	+	(+)	+	-	
TS-940S	-140	-139	141	138	93,	97	T	160,W	+	+	+	+	+	+	(+)	+	+	
Ten-Tec Argosy	-133	-133	99	98	64	64	Т	10 MHz		_	NF	+	-	-	-	-	-	
Ten-Tec Century 22	-131	-128	112	109	82	81	Т	10 MHz	-		-	+	-	-	-	_	-	pouze transceiver CW, přímé směšování
Ten-Tec Omni D	-128	-139	115	125	94	90	Т	160	-	-	NF	+	_	-	_	_	-	·
FT-77	-139	-139	99	99	92	94	Т	W	-	-	-	-	-	-	-	-	-	
FT-101E		-141		108		81	E	160		-	-	-	-	+	-	+	-	,
FT-101ZD		-139		112		78	E	160	+	_	NF	ı	-	+	1	+		
FT-102	-127	-127	NL	NL	97	97	E	160,W	+	+	+ ′	-	-	+	-	+	-	předzes. vypnut
FT-107M	-133	-133	NL	NL	82	90	T	160,W		+	ŅF	-	_	+		(+)		
FT-301D		-133		100		75	Т	160	-	-	+	-	-	NF		-	-	pásma měření, BDR, IMD neudána
FT-707	-126	-127	NL	NL	76	80	T	W (160	-	+	-		-	-	_	-	-	
FT-757GX	-140	-137	NL	NL	90	89	Т	160,W	+	+	+	+	+	NF	-	-	-	předzes. zapnut
FT-767GX							T	160,W	+,	-	+	+	+	+	+	+	+	neměřen, lze vestavět moduly pro 6 m, 2 m a 70 cm
FT-901DM	-137	-137	114	118	85	90	E	160	-	+	+	-	-	+	_	+	-	
FT-980	-138	-138	NL	NL	NL	NL	τ	160,W	+	+	+	+	+	+	-	+	-	
	 	-138	NL	NL.	NL	NL	T	160,W	+	+		+	+	+	_	+	₩	

AMATÉRSKÉ RADIO BRANNÉ VÝCHOVĚ

VT:

Seminář výpočetní techniky ve Vsetíně

Dne 30. 5. 1987 byl ve Vsetíně uskutečněn seminář o využití osobních počítačů, jehož pořadatelém byl radioklub OK2KJT při ZO Svazarmu k. p. MEZ Vsetín, ve spolupráci se Spectrum klubem ZO Svazarmu Karolinka (okr. Vsetín). Zájemců o výpočetní techniku se sjelo do Vsetína ze všech koutů naší vlasti téměř 700 a tato velká účast byla překvapením nejen pro hosty, ale i pro poradatele. Zejmena potešující však byla velká účast mládeže.

Pro účastníky semináře byly připraveny tři sborníky a řada dalších technických podkladů se zaměřením na výpočetní techniku. V provozu bylo stále 32 počítačů a byly předváděny zajímavé programy. Dostatečný počet pracovišť umožnil zájemcům náhrávat nové programy.

Z programu přednášek uvádíme: Strojový kód pro ZX Spectrum (Jo-

chec):

Rozšíření ZX Spectrum na 256 kB (Pa-

- ISO ROM pro ZX Spectrum (Jordanov);

Pohled do přeplněného sálu

EPROM a její programování (ing. Klein);

Úprava a aplikace interface s 8255 (ing. Soldán, Dr. Neužil):

Kopírovací program TF COPY 06/87 (Večerka)

Při příležitosti konání tohoto semináře byla současně uspořádána okresní přehlídka technické tvořivosti ERA '87, na které mimo jiné hosté z hifiklubu Gottwaldov předváděli techniku CD. Další příležitostí pro radioamatéry byla prodejní a výměnná burza radioamatérské a výpočetní techniky a také účast prodejny druhojakostních součástek TESLA Rožnov.

Radioklub ZO Svazarmu MEZ Vsetin, který již v říjnu 1986 byl pořadatelem zdařilého krajského semináře amatérské techniky Severomoravského kraje za účasti 420 zájemců, se touto další významnou akcí, tentokrát z oboru výpočetní techniky, úspěšně zhostil pořadatelských úkolů. Pro velký zájem bylo účastníkům semináře přislíbeno uspořádání další návazné akce ve Vsetíně ještě v roce

ROB

Pionýrský tábor Orljonok

V červenci a srpnu 1987 byly v mezinárodním pionýrském táboře Orljonok v SSSR uspořádány mezinárodní závody žáků v modelářských sportech a v rádiovém orientačním běhu a ve sportovní telegrafii. Byl to již VII. ročník a Československo reprezentovali tito pionýři: Jana Luňáková a Víťa Zaoral ve sportovní telegrafii a Kateřina Jakubíčková v rádiovém orientačním běhu. Družstvo našich pionýrů skončilo celkově na třetím místě. Zklamáním pro družstvo byl výkon Víti Zaorala, který nepřijal ani nevyslal základní počet znaků.

Na snímku ing. Zbyňka Szostka je na startu soutěže v rádiovém orientačním běhu v pásmu 80 m Kateřina Jakubíčková, která v hodnocení jednotlivců obsadila 3. místo

Přebor ČSR v moderním víceboji telegrafistů

Ve dnech 19. až 21. června 1987 proběhl v Uherském Brodě — Havřicích přebor ČSR v MVT, jehož uspo-řádáním byl v letošním roce pověřen okresní výbor Svazarmu a okresní rada radioamatérství v Uherském Hradišti. Účastníci mistrovství, kterých bylo cel-kem 65 ve všech kategoriích, byli soustředění ve víceúčelové hale v Havřicích a samotné soutěže probíhaly jednak přímo v Havřicích (příjem telegrafních značek a provoz na stanici) a jednak v Míkovicích (orientační běh). Přebor ČSR, na jehož organizaci se podíleli členové RK Uherský Brod, a Uherské Hradiště, zahájil v sobotu 20. 6. předseda OV Svazarmu s. Chrástek a pak již probíhaly za řízení hlavního rozhodčího Tomáše Mikesky, OK2BFN, ZMS a ředitele závodu Miroslava Matušky jednotlivé soutěže, které měly velmi dobrou sportovní úroveň. Poprvé byla v této soutěži pořádané v našem okrese pro vyhodnocování výsledků použita výpočetní technika za spolupráce výpočetního střediska AGRODAT Veselí nad Moravou a radioklubu Nové Město na Moravě, což výrazně přispělo k rychlosti vyhlašovaných průběžných i konečných výsledků, které jsou následující:

Kategorie A. 1. Ing. Vladimír Sládek, OK1FCW (Praha), 2. Pavel Valach, OK1DWX (Praha), 3. Jiří Martínek, OL5BKB (Hradec Králové).

Kategorie B: 1. Jan Beran, OL6BMH Radek Švenda, (Gottwaldov). 2. OL6BRN (Uherský Brod), 3. Karel Kou-

kal, OL6BOH (Kunštát na Moravě).

Kategorie D: 1. Jitka Hauerlandová, OK2DĞG (Uherský Brod), 2. Radka Palatická, OK2KQO (Dolní Rožínka), 3.

Zdena Jírová, OK2BJB (Třebíč).

Kategorie C1H: 1. David Luňák,
OL4BRP (Česká Lípa), 2. Miroslav Čáp,
OK1KSL (Slaný), 3. Štěpán Horák, OK1KSL (Ślaný).

Kategorie Ć2H: Jan Kašpar. OK2KET (Blansko), 2. Vladimír Kozlík, 3. Pavel Krajtl, OK1KRJ (Mělník, OK2KLK (Bučovice).

Kategorie C1D: 1. Anna Beňovská, OK2KRK (Uherský Brod), 2. Zora Mičková, OK2KYZ (Nový Jičín), 3. Eva Hradilová, OK2KRK (Uherský Brod).

Kategorie C2D: 1. Jitka Hauerlando-vá ml., OK2KRK (Uherský Brod), 2. Pavlína Smolenická, OK2KLK (Bučovice), 3. Jana Pospíšilová, OK2KLK (Bučovice).

Ing. Pavel Hruška, OK2-17779

Kalendář KV závodů na listopad-prosinec 1987

2122. 11.	All Austria contest	18.0007.00
2122. 11.	Esperanto contest	00.0024.00
27. 11.	TEST 160 m	20.0021.00
2829. 11.	CQ WW DX contest,	CW 00.0024.00
46. 12.	ARRL 160 m contest	22.00-16.00
56. 12.	TOPS 3,5 MHz CW	18.00-18.00
12.—13. 12.	ARRL 10 m contest	00.00-24.00
1920. 12.	EA DX contest, CW	16.0016.00
25. 12.	TEST 160 m	20.00-21.00
26. 12.	Weihnachtscontest	08.3011.00
27. 12.	Canada Day	00.00-24.00
Stručné	podmínky záv	odů najdete
v jedno	tlivých číslech	AR takto:
CQ WW E	X contest AR	11/86, ARRL
	11/85, Canada	

TOPS Activity 3,5 MHz

Závod se koná obvykle 1. víkend v prosinci pouze telegrafním provozem, kmitočtovém rozmezí 3500 až 3585 kHz s tím, že na prvních 12 kHz smí být pracováno pouze se stanicemi DX. Výzva do závodu CQ TAC nebo CQ QMF. Vyměňuje se kód složený z RST a pořadového čísla spojení, členové TOPS předávají i členské číslo. Spojení s vlastní zemí se hodnotí jedním bo-dem, spojení s jinou zemí na vlastním kontinentu dvěma body, spojení s jiným kontinentem šesti body. Při spojení se členem TOPS se přičítají dva body navíc. Násobiči jsou jednotlivé prefixy (SM3, SM6, SL6, Y21, Y22, Y24 apod.). Závodí se v kategoriích: a) jednotlivci, b) kolektivní stanice, c) stanice QRP do 5 W výkonu, pouze jednotlivci. Stanice jednotlivců musí z celkové doby závodu být nejméně 7 hodin mimo provoz, tato doba musí být v deníku vyznačena. Deníky se zasílají do 31. 1. 1988 na adresu: Bertil Arting, SM3VE, Bergesvegen 26, 823 00 Kilafors, Sweden.

Esperanto contest

Cílem závodu je zvýšit aktivitu a počet radioamatérských stanic používajících esperanto. Hlavní kmitočty: 3766, 7066, 14 266, 21 266 a 28 766 kHz. Vyměňuje se RS a pořadové číslo spojení, povinností je alespoň kód předat v esperantu (0 = nulo, 1 = unu, 2 = du, 3 = tri, 4 = kvar, 5 = kvin, 6 = ses, 7 = sepen, 8 = ok, 9 = nau). Spojení s každou stanicí se hodnotí jedním bodem, násobiče nejsou. Z celkové doby závodu může být stanice aktivní maximálně 28 hodin. Deníky se zasílají vždy do 15. 12. na adresu: DJ4PG, Hans Welling, Bahnhofstr. 22, 3201 Hoheneggelsen, NSR.

Soutěž lokátorů a naši radioamatéři

V tabulce, která se pravidelně zveřejňuje ve švédském časopise SMnemáme v pásmech 1,8 až 7 — SM3CWE 141 lokátorů, 10 — W1RJ 41 lokátorů, 14 - SM3CWE 221 lokátorů, 18 — SM6ING 9 lokátorů, 21 — SM3CWE 158 lokátorů, 24 — W1JR 23 lokátorů, 28 — DFZNJ 158 lokátorů, 56 - WA1OUB 46 lokátorů. V pásmu 145 MHz je vedoucí stanicí SM7BAE — 42 lokátorů, náš OK1MS je na 17. místě s 28 lokátory. Na 432 MHz vede K2UYH — 33 lokátorů, OK1KIR s 26 lokátory je na 7. místě, na 1,3 GHz vede K2ZYH, ale OK1KIR je na 2. místě se 17 lokátory, na 2,3 GHz vede W4HHK se čtyřmi a OK1KIR je na 5. místě se dvěma lokátory. Všechna spojení musí být od 1. 1. 1982 buď přímá nebo prostřednictvím pasivních reflektorů, hlášení o stavu přijímá SM5AGM. Spojení mohou být navazována v okruhu 1000 km od stálého QTH a obě korespondující stanice musí být pozemní.

OK2QX

Počet potvrzených zemí podle seznamu DXCC československých stanic k 10. 3. 1987

(značka stanice, počet potvrzených zemí, platných v době hlášení, počet potvrzených zemí celkem)

CW + FONE		RP	
OK3MM	316/356	OK1-11861	301/316
OK1ADM	316/347	OK1-11001	297/299
OK1MP	316/347	OK3-915	245/251
OK2RZ	315/334	OK1-22309	
OK1TA			240/240
	314/334	OK1-22310	224/225
OK3JW	314/326		
OK1MG	313/340	pásmo 1,8 MF	l z
OK2JS	313/324	OK3EY	130
OK1ACT	312/330	OK3CGP	124
OK3EY	311/323	OK2BOB	111
OK3CGP	312/322	OK3DG	101
•		OK3KFO	99
CW		pásmo 3.5 Mi	·lz
OK3JW	306/310	OK3EY	262
OK1TA	300/306	OK1ADM	252
OK3EY	300/304	OK3CGP	250
OK1MP	299/302	OK1DDS	222
OK3CGP	296/301	OK1MP	222
OK1MG	296/300	pásmo 7 MHz	
OK3YX	295/300	OK3EY	
OK2BHV	288/290		277
OK1ACT	284/287	OK1ADM	275
OK2BSG	282/285	OK3CGP	-260
UNZBOG	202/200	OK1DDS	237
EONE		OK1MP	236
FONE	045 (044	pásmo 14 MH	_
OK1ADM	315/341	OK1ADM	315
OK1MP	315/341	OK3JW	312
OK2RZ	312/327	OK2RZ	312
OK1TA	311/326	OK1TA	312
OK2JS	311/321	OK3EY	309
OK1AWZ	310/321		
OK3EY	309/319	pásmo 21 MH	lz
OK3CGP	307/317	OK1ADM	308
OK3JW	305/311	OK1TA	306
OK3MM	303/315	OK1MP	295
		OK3EY	293
RTTY		OK3JW	288
OK1JKM	209/210		
OK1MP	160/162	pásmo 28 MH	lz
OK3KJF	93/ 93	OK1ADM	284
OK3KYR	64/ 64	OK1TA	283
OK1KSL	60/ 60	OK3EY	270
CHINOL	30, 00	OK3CGP	272
SSTV		OK3IQ	261
OK1DWZ	8/8		OK3IQ
OKIDITE	0/0	¥ 43	CROIM

Předpověď podmínek šíření KV na prosinec 1987

Přestože bude sluneční aktivita v průměru dlouhodobě růst, nebude to zřejmě právě nyní příliš znát. Kromě určité stagnace ve vývoji jedenáctiletého cyklu se na výsledném dojmu bude podílet i dále se zmenšující délka dne a tedy i výsledný efekt v ionosféře severní polokoule Země. S řečeným koresponduje i předpověď vyhlazeného průběhu slunečního toku, kterou jsme dostali z CCIR na listopad 1987 až červen 1988: 85, 85, 89, 82, 95, 97, 98 a 101. Vyhlazené relativní číslo R_{12} na stejné období předpovídají v NASA Boulder na 35, 39, 42, 45, 51, 54 a 59, v SIDC Brusel na 28, 29 ± 6, 30, 31, 32, 33, 35 a 36 \pm 12 — poslední řada navazuje na dřívější čísla curyšská. Křivka tedy dále evidentně stoupá.

Vzestup sluneční aktivity v červenci 1987 dokazuje průměrný sluneční tok 84,5 a relativní číslo R=33, jež můžeme použít k výpočtu lednového $R_{12}=17,5$. Sluneční tok v jednotlivých červencových dnech byl 74, 72, 71, 71,

71, 71, 72, 74, 74, 74, 73, 73, 73, 74, 76, 78, 79, 80, 82, 91, 93, 106, 112, 111, 111, 110, 102, 99, 94, 91 a 89. Po jedné středně mohutné sluneční erupci bylo zaznamenáno 24. 7. v 09.57 UTC a 27. 7. v 18.05 UTC, odpovídající náhlé ionosférické poruchy byly slabší až střední mohutnosti a trvaly mezi 09.57 až 10.52 a 18.11 až 18.45 UTC.

l aktivita magnetického pole Země byla poněkud vyšší, největší byla porucha od 28. 7. 08.49 do 29. 7. 18.00 UTC. Denní indexy A_k byly 2, 5, 10, 12, 8, 8, 6, 2, 11, 12, 10, 10, 4, 6, 26, 23, 14, 14, 10, 13, 8, 10, 8, 17, 18, 4, 6, 28, 33, 12 a 16. Podmínky šíření KV byly po většinu měsíce příznivé, nejlepší 19.—27. 7., kdy byl vliv vzestupu sluneční radiace podpořen nejprve uklidněním magnetosféry se současným vzestupem aktivity sporadické vrstvy E 19.—22. 7. a podalším uklidnění vývojem kladné fáze poruchy, jež byla dostatečně krátká, takže podmínky "vydržely" do 27. 7. Pravý opak nastal v závěru měsíce, kdy sluneční radiace klesala a příslovečným posledním hřebíkem do rakve možností globální komunikace byla silná porucha 28.—29. 7. Jinak hezkými dny (čímž je míněno počasí v ionostéře) byly 1.—7. 7. a naopak nepříznivěji bylo 8.—12. 7. a 15.—17. 7.

Podobný charakter vývoje sluneční a geomagnetické aktivity čekáme i v prosinci, výsledek se bude ale značně lišit, neboť strukturu a tím i citlivost na poruchy bude mít ionosféra dosti jinou. Proti listopadu se doby otevření do převážné většiny směrů zkrátí, zhruba o 2 hodiny na sever a po rovnoběžkách a až o 3—5 hodin do rovníkových a jižních šířek. Zmenšení útlumu v dolní ionosféře bude patrné jen pro menší vzdálenosti ve dne, o dlouhých trasách (nad 7000 km) to nelze paušálně tvrdit ani v oblasti severní polokule. Zejména ve směrech na východ bude rychleji klesat MUF než LUF, čímž právě dojde ke většímu zkrácení oken.

TOP band — bude otevřen do severní Evropy v lepších nocích nepřetržitě, na W2 okolo 05.00, na VE3 04.00—05.00 UTC.

Osmdesátka může poskytnout šanci na spojení s Pacifikem okolo 13.00 a dále s rostoucím celkovým útlumem až do 18.00 UTC. Na dálný východ půjde nejlépe mezi 19.00—21.00 UTC.

Čtyřicítka se může (případně zároveň s třicítkou) otevřít krátce okolo 15.00 na západní pobřeží USA.

Dvacítka: YJ 09.00—09.30, BY 09.00—11.00, W3 12.00 a 17.00.

Patnáctka: BY 08.00, W2-W3-VE3 13.00—15.30, UI 05.30—14.00.

Desitka: UI 07.00—12.30, J2 07.00—14.00, W2 14.00.

OK1HH

Regulátor výkonu v zátěži se spínáním v nule

Z RADIOAMATÉRSKÉHO SVĚTA

YBØWR

M.S. LUMBAN GAOL

P O. BOX 4602 JI Garuda No. 62 Jakarta 10620 p. 417530 - 413747 - 414521 - 410426 INDONESIA

Na fotografii, která je zároveň QSL lístkem, je pohled do ham shacku Lumbana Gaola, YBOWR. Lumban je velice známým radioamatérem z Indoveice znamym radioamaterem z moc-nésie. Je stále činný ve všech pásmech, má vynikající signály hlavně v pás-mech 40 a 80 metrů. Používá několik zařízení včetně zesilovačů 2 kW, nejvíce si chválí nový transceiver TS930. Jako antény používá např. 6prvkovou směrovku pro 14, 21 a 28 MHz od firmv KLM, dále jednopásmové směrovky TELREX 6EL pro 28 MHz, 8EL pro 21 MHz a 6EL pro 14 MHz. Pro pásmo 40 m má tříprvkovou a pro pásmo 80 m čtyřprvkovou směrovku. Lumban pracuje na univerzitě v Djakartě. QSL lístky posílá stoprocentně, ale jen jako odpovědi na QSL lístky, které dostane přímo na svoji adresu: YB0WR, M. S. Lumban Gaol, p. o. box 4602, Jl. Garuda No. 62, Jakarta 10620, Indonesia. Lumban zdraví všechny čs. radioamatéry a těší se na slyšenou.

OK2JS

Z Mongolska

Nejdříve mnoho pozdravů všem našim radioamatérům a čtenářům AR ze země, která je jak pro turisty, tak zejména pro radioamatéry pořád ještě dosti nepřístupná, z Mongolska.

Jelikož již přes rok udržuji styk s místní radioamatérskou organizací, chci se s váml podělit o některé poznatky.

Místní ulanbátorský radioklub (JT1KAA) v současné době změnil QTH: pro ty, kdo zavítají do Ulanbátoru, upřesňují, že nyní se nachází mezi vlakovým nádržím a mostem Míru. Jde o dvoupatrovou budovu hned u silnice, na jejíž střeše jsou zatím jen dva vertikály (do budoucna plánují anténu Yaqi). V tomto radioklubu se předkládají žádosti o udělení radioamatérských koncesí, a zde se také vyvíjí veškerá hlavní radioamatérská činnost.

V současné době federace radio-sportu MoLR a centrální radioklub MoLR započaly vydávat diplom ULAN-BATOR. Získal jsem podmínky tohoto diplomu, který bude jistě dosti atraktivní do vašich sbírek.

Diplom se vydává za oboustranně navázaná spojení (případně odposlouchaná) s různými stanicemi JT (včetně stanic /JT).

Pro jeho udělení je nutno splnit následující kritéria:

1) radioamatéři Asie musí navázat (odposlouchat) 8 spojení s různými stanicemi MoLR;

 radioamatéři ostatních kontinentů musí navázat (odposlouchat) 5 spoiení s různými stanicemi MoLR:

 do diplomu se uznávají navázaná (odposlouchaná) spojení od 1. 1. 1980.

Diplom je vydáván bezplatně na základě výpisu z deníku potvrzeného ústředním radioklubem nebo dvěma koncesionáři. Žádosti je možno zasílat na adresu: Centrální radioklub, p. o. box 639, Ulanbátor 13, Mongolsko.

V minulém roce došlo v Mongolsku ke změnám v přidělování radioamatérských prefixů. Celá MoLR je pro tyto účely rozdělena na 20 oblastí, jejichž název je podle správního střediska oblasti:

- 1. Ulanbátor JT1AA JT1ZZ
- 2. Nalajch JT1HH JT1ZZ 3. Dornod JT2AA JT2MZ
- 4. Suchbatar JT2NA JT2ZZ 5. Chentij JT3AA — JT3MZ
- 6. Dornogobi JT3NA JT3ZZ 7. Omnogobi JT4AA JT4MZ
- 8. Dungobi JT4NA JT4ZZ 9. Selenge JT5AA JT5MZ
- 10. Tow JT5NA JT5ZZ
- 11. Archangaj JT6AA JT6MZ
- 12. Oworchangaj JT6NA JT6ZZ
- 13. Chowsgol JT7AA JT7MZ 14. Bulgan JT7NA JT7ZZ

- 15. Gobi Altai JT8AA JT8MZ 16. Bayan Chongor JT8NA JT8ZZ 17. Uws JT9AA JT9MZ
- 18. Dzawchan JT9NA JT9ZZ
- 19. Bayan Olgij JT0AA JT0MZ 20. Khowd JT0NA JT0ZZ

Na závěr žádám naše radioamatéry, mi nezasílali QSL lístky přes ISL – službu, ale na naši OK QSL aby mi JT QSL siužbu.

Josef Mikšátko, OK1XC/JT

Zajímavosti

Zajímavý návrh na nový diplom, který by měl nahradit stávající DXCC, předložil W6YA. S názvem WWCC vychází z geografických koordinát — čtverců po 10°, kterých je celkem 648 — z toho 465 zahrnuje pevninu. Předpokládá vydávání diplomu za 200, 300, 400 a všech 465 čtverců.

4X9 je nový prefix pro začínající radioamatéry v Izraeli; ti dosud používali značky 4X4N.. nebo 4Z4N.. a mohou pracovat pouze v pásmu 21 MHz telegrafním provozem.

Před časem jsme přinesli zprávu, že stanice ze zemí CEPT (země společného trhu v záp. Evropě) vysílající přechodně z Holandska musí používat prefix NL. Od února letošního roku bylo toto ustanovení změněno a stanice již používají PA/vlastní značkou, jako je tomu v ostatních zemích.

V CQ-DL 4/87 byly zveřejněny křivky odolnosti některých videorekordérů proti vf rušení v rozsahu 1 až 10 MHz; nejlepší parametry měl měřený typ VC387GS (Sharp) a Grundig Video 2×8, zatímco řada dalších (Panasonic NV-850, Portabel VHS aj.) ani zdaleka nesplnily požadavky normy, platící od 1. 4. 1987. Nejlepších parametrů dosáhly přístroje, jejichž kryty jsou kovové, ne pouze z metalizovaných plastů.

V USA bylo rozšířeno pásmo 10 m pro nováčky na rozsah 28,1 až 28,5 MHz (dříve jen do 28,3 MHz)

— kde mohou vysílat s výkonem 200 W. Pro přechod do vyšší třídy jsou nyní přísnější požadavky, ale již "technická" třída smí používat zařízení o výkonu 1,5 kW(!) do antény, s výjimkou začátečnické části pásem, kde mohou všichni používat "jen" 200 W.

Ve dnech 16. až 24. června t. r. se uskutečnila expedice na ostrov Alboran, patřící Španělsku. Operátoři pracovali na

všech pásmech včetně VKV, i odrazem od meteorických stop, případně odrazem od sporadické vrstvy E. Volací znaky měly být EH9EXP a AN9EXP.

Stanice OK1DOT a OK1JDX získaly diplom DXCC v pásmu 160 m.

Západní Samoa se bojí vyzvědačů!

Známý Karl, DL1VU, byl při cestě do Pacifiku, kdy se snažil pro odjezd ze Západní Samoy použít sovětské lodě "Fedor Matissen", zadržen a obviněn z ilegálního pobytu a špionáže jen proto, že hovořil s posádkou sovětské lodi o možnosti jejího použití pro cestu z ostrova . . .

OK2QX

Z opravářského sejfu

MĚŘICÍ HROT

Měříme-li na zařízení s hustým osazením součástek, bývá značným problémem dostat se k měřenému bodu a nezpůsobit současně nežádoucí zkrat mezi sousedícími součástkami. Běžně používané měřicí hroty jsou jednak příliš tlusté, jednak příliš tupé, takže například při měření ze strany spojů, které jsou opatřeny izolačním lakem, nelze bez předchozího oškrabání příslušného místa měřit vůbec.

Proto isem si zhotovil měřicí hroty, keré mi po všech stránkách vyhovují. Jsou tenké a ostré a umožňují měřit i na přívodech, neboť jimi lze bez problémů propíchnout izolaci.

Obř. 1.

Postup zhotovení je patrný z obr. 1. Nejprve pocínujeme ouško větší jehly. Před dalším pájením vsuneme do zdířky banánek, který slouží při pájení k odvodů tepla a pak jako doraz jehly. Nakonec na zdířku našroubujeme čepičku z banánku. Na jehlu i na její konec navlečeme podle obrázku bužírky.

Ing. R. Koryčanský

ZÁVADA STEREOFÓNNEHO ZOSILŇOVAČA **TESLAZ710A**

Na tomto stereofónnom zosilňovači sa mi vyskytla zaujímavá závada. Prejavovala sa tým, že nešlo regulovať hlasitosť a vyváženie. Hlasitosť bola pevne nastavená na určitú úroveň a bolo možno ju iba zosilňovat. Vyváženie oboch kanálov bolo úplne bez funkcie. Pripomínam, že závada v regulácii hlasitosti bola v oboch kanáloch.

Všetko nasvedčovalo k tomu, že je vadný integrovaný obvod A273D, ktorý v sebe zlučuje ako reguláciu hlasitosti, tak i vyváženie oboch kanálov pomocou jednosmerných napätí. Príslušný integrovaný obvod som vymenil, ale závada mala ten istý charakter ako pred výmenou. Aj jednosmerné napätia na ovládanie hlasitosti a vyváženia boli v poriadku. Začal som skúšať pasívne prvky a napokon sa ukázal byť vadným elektrolytický kondenzátor 50 µF (C33) zapojený medzi vývod 10 IO1 a zem. Po jeho výmene pracoval zosilňovač bezchybne.

Miroslav Kubiš

NEPRACUJÍCÍ ŘÁDKOVÝ ROZKLAD **TELEVIZORU JUNOSŤ 402**

Na výše uvedeném televizoru nebyl žádný obraz a obrazovka zůstávala trvale tmavá. Měřením jsem zjistil, že na anodě obrazovky nebylo napětí, protože nepracoval řádkový rozklad. Dalším postupem jsem si ověřil, že zůstává trvale otevřený tranzistor T27 a tím také T28. Napětí na elektrodách obou tranzistorů nesouhlasila s udávanými.

Po delším hledání se ukázal být vadným kondenzátor o kapacitě 1 µF, zapojený mezi vývod 4 cívky L22 a kostru. Upozorňuji na to, že v některých schématech tento kondenzátor není zakreslen. Kondenzátor měl zkrat a tím zkratoval i napětí, které v tomto bodě má být, na kostru. Řádkový oscilátor tudíž nemohl pracovat, tím nebyl buzen ani tranzistor koncového stupně řádkového rozkladu a zničil se. Po výměně vadných součástek pracoval televizor opět normálně.

Ing. František Ducheček

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 29. 7. 1987, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

EPROM 2732, 2764 (280, 450), 6116, 6810, 5501 (350, 100), 6800, 6840, 6875, 6821, 6850 (200, 150), OZ 747, 733 (45), FET spínač IH5011 (30), Canon (pár 100), TTI relé. Kúpim priechodky. P.

Janík, 956 32 Rajčany 149. **Objímky na IO** — DIL 14, 16 (15, 17). J. Preněk, Bohumilice 95, 384 81 Čkyně.

Sharp PC-1500, mgf interf., lit., prog. (4800). J. Stehlík, H. Šianec 15, 911 01 Trenčín.

Stereo Hi-fi cívkový magnetofon Recorder Philips N4420, 3 motory, 3 hlavy Long Life, 3 rychlosti, DNL, výkon 2× 6 W (10 500), 20 pásků ø 18 cm zn. Sony, Agfa, Maxell (5000). K. Jirčík, Sofijská 1, 405 02 Děčín 6.

Sedmisegmentovku LED 4 a 5miestne, čer. - hp R442 S, R439S (200), dovoz. J. Volčko, Budovatelská 2, 080 01 Prešov.

Interface na Joystick ZX + WK46580, 2764, 27128, AY-3-8500 + obj. (650, 120, 350, 450, 390), CD 4046, 4001, 4011, A277D (65, 25, 25 50). M. Novotník, 049 19 Mur. Dlhá Lúka 198. Vežu Toshiba (22 000), J. Bublavý, 916 22 Podo-

Mgf B116A (2500). V. Kucler, Svojetická 2, 100 00 Praha 10

Sansui zes. A-900P, 2x 70 W sin, digit. tuner T-700, nové, černé (18 400). P. Brauner, Lidická 9, 789 01 Zábřeh

7106 + LCD (600), 5314 (300), AY-3-8500 (350), SFW10,7 (100), SFE10,7 (50) BF981 (70). R. Hagara, Radlinského 59, 921 01 Piešťany.

Peavey classic s automixom a zabudovanými efektami master, fazer a hall. (15 000). M. Vadkerti, Partizánska 51, 940 78 Nové Zámky, tel. do zam. 228 91 kl. 774.

Nový nepoužitý osciloskop Si-94 SSSR do 10 MHz, stejnosměrný (2800). D. Košut, Na Kodymce 39, 160 00 Praha 6, tel. 321 95 42.

Občanskou radiostanici (amer. výr.) s větším výkonem 5 W + siťový napaječ 12 V a všesměrová anténa. Frekvence 26—27 MHz, 12 kanálů (2900). Novák, Petýrkova 1997, 149 00 Praha 4.

Atari 130 XE v záruce, 128 kB RAM, 140 programů, mnoho literatury, interface pro mgf (10 500). D. Šebík, Slunečná 4560, 760 05 Gottwaldov, tel. 438 97.

Eprom 27128 (395), 27256 (495), RAM41256 (150). Ing. M. Gajdoš, Kováčska 1, 831 04 Bratislava.

Kyt. Combo Vox — AC30, nové lampy, 2x 12" repro vox., perf. zvuk i cena (12 500). J. Jetenský, SNP1350, 516 01 Rychnov nad Kněžnou.

AY-3-8610 (750), ICL7106 (600), LCD - SE6902 (550), komplet (1100), IO melod. zvonek 2862 (300), 555 (35), Eprom 2764 — 450, 27128 — 250 (400, 650), RAM4116 - 200, 4164 - 200 (280, 450), MM5316 (500), 556 (80), různé IO LS. K. Břicháček, Únor. vítězství 17, 350 02 Cheb. Výbojky IFK120 (à 70), O. Krásenský, Riegrova

498, 280 02 Kolin.

Pro ZX Spectrum úvodní (instrukční) kazetu v češtině (40 + kazeta + pošt.). Koupím IO Z80A — CPU, RAM: TI4532, MSM3732, HM4864, 4164. Ing. J. Černý, Příkopy 1209, 547 01 Náchod.

Gramo Dual 721 Elektrovic Direct Drive s prenoskou Shure HE97M + náhr. hrot (8900), kazety 15 — TDK SA90, 10 — TDK AD 90, 4 — TDK D — 90, 6 — Basf CR S II, 5 — Agfa Superchrom, 3 — Maxell UD — 90,1 — Maxell XL II s 90, 2 - Sony 90, 3 - Fuji FRII (spolu 4900, jednotlivo po 110). Špičkove nahraté. Ľ. Schmida, Bystric. cesta 20 VI/4, 034 01 Ružomberok.

Sklolaminátovou parabolickou anténu ø 1 m, ohnisková vzdálenost 70 cm, vhodná pro příjem družicového signálu SAD 12 GHz (1900). H. Křížová, Rubeška-Ruská 5, 351 01 Fr. Lázně.

Univerzální voltmetr BM388E + náhr. součástky (1900), Unimer 33 (1100). L. Sprysl, Kovařovicova 6. 140 00 Praha 4.

BTVP Šilelis 401-C, vadná obrazovka (2200). J. Vrzalová, 342 01 Sušice 863/II, tel. 0187/821 07.

Gramo JVC-L-A31, přímý náhon, vložka Shure a pův. JVC, odstup 75 dB, 20—25 000 Hz, dobrý stav (5200). R. Bednář, 739 31 Řepiště 256. Walkman Sony WM22 (2200), sov. osciloskop

OML — 2M (1500), DU10 (800) V-A mer C-20 (150) — pošk., čas. relé RTs 61 0,3 s — 60 h (300), sadzbový spínač H55D (100), gramo NC 420 Hi-fi (1200), predzos. pre mgdyn. prenosku AZG983 (500), antistat. čistič LP (200), vrak mgt. Pluto + nové hlavy, zotrvačník, skrinku a pod. (200). P. Škvára, Sov. armády 1118/B, 95131 Lipník n. Bečvou.

Mini Hi-fi vežu Hitachi (tuner, zos. mgf, boxy), 2x 30 W (14 900) aj po čiastiach. stab. zdroj 0—35 V/3 A, meranie U aj / zvlášť na MP, plynule obmedzenie prúdu (850), 3 VF ant. zosilňovače VHF, UHF možem preladiť aj na daný kanal zisk 22 dB, šum 2—3 dB (à 200). Ján Jenča, Strážnická 9, 080 06 Prešov.

Profesionální kyt. combo Ibanez GX-100, 2 vstupy, 2 kanály distortion, master, 3 pásm. vypínat. par. equaliz., hall, 2 nezávislé efekt. smyčky, vše ovládané log. šlapkou. vynikající stav a komfort obsluhy. V tvrdém kufru, pův. cena 1750 DM, nyní (18 000). Jen pro náročné. L. Moravec, Jilemnického 149, 561 51 Letohrad.

BF900, BFR90, BFR91 (89, 75, 79), relé Lun 12, 24 V (39), objímky IO 16, 24, 28, 40 (10, 17, 20, 29), AF239 (29), A277D (40), repro ARV 161 (42), Tv Javorina, Limba (480), Orava 292 (190), kalkul. TI57 (1690) ARA 10/81, 82, 1, 9, 10/85, 3, 10/86, 1/87, B 5/85, 86 (3, 5), AR KP 85, 86 (7). Koupím ARA 8/85, 11/83, 86, B 1, 2, 3/85, 6/86. Jen písemně. Ing. J. Karel, Favorského 1897, 152 00 Praha 5.

RX Lambda IV v dobrém stavu (800), malý tel. klíč (50), TESLA sledovač signálu BS 367 (500), labor. stabil. zdroj 5 V/6 A s aut. I/V pojistkou (600), chasis radia Stereo Junior hrající in a souč. (200), reklamní tranz. radio Pepsi Cola (200), amatérský impulsní gener. 0,2 Hz — 200 kHz (300), kompl. rozklad. chasis TVP Silvie v chodu (250), kompl. vf díl i s moduly tvp Silvie (300), vychyl. cívky a moduly Dukla, Silvie (à 50), elky, UCH, ECH, UBL, EBL, EF, UY asi 50 ks, přednostně vcelku (à 7). Koupím autoradio nebo vyměním. J. Gazda, 341 81 Hartmanice 24.

Přenosnou barevnou televizi SSSR C-430 na náhr. díly (1200). M. Kožišníková, Plešivec 349, 381 01 Český Krumlov, tel. 3718.

Špičkový zesilovač Technics SU-V3 new class A — synchro bias, fluorescent display, 2× 45 W, 0,007 %, 2 Hz — 100 kHz, stříbrný, 100% stav (7800). M. Chmel, Olomoucká 65, 746 01 Opava.

Videorecordér NEC B-Max + 26 nahratých a 10 originál kaziet (15 980 + 9800), spolu i jednotlive. B. Fajta, Bystrická cesta (30/2, 034 01 Ružomberok

Novou klaviaturu 4,5 okt. Vermona (750) a půltónovou děličku Mostek (550), S. Turoň, K. Svobody 130, 725 27 Ostrava 27-Plesná.

Revox B710 cosete deck, řízený mikropočítačem, plus dálkové ovládání (27 000), zesilovač Akai AM U61, 2× 130 W (15 000). Rapala, PS72/RA3, 703 72 Ostrava 3.

Na ZX Spectrum: programátor pamätí Eprom od 2 do 16 kB (2500), paralelný interf., sériový interface (400,400), tester hardwar. poruch v počítači (750), literaturu a nahrane kazety. Ing. M. Diklič, Bélu kúna 39, 851 03 Bratislava.

Atari 800XL + programmrecorder XC12 + amat. Joysticky, vše nové (8200). V. Hajda, Lidových milicí 4, 747 05 Opava.

D780 — **C** (220), D2732 4 ks (à 200), MHB4116 24 ks (à 65). Z. Száraz, Mierova 47, 924 00 Galanta.

Repro, Pioneer — CS-603 (10 500), bar. hudbu, tov. výr. Stale — 3000E 220 V (1100), gramo Technics SL-Q3 (5700). J. Šimáně, 337 01 Rokycany-Střed 37.

Sord M5, BG, BF, 4 herné moduly, 2. joypady, odbornú literaturu a 600 programov. Vše (12 000). T. Kováč, Duklianska 352, 946 34 Vojnice.

Atari 800 XL (5775), mikropájku (250), kompl. souč. na zes. AR-P85 (5438), 2× ind. vybuzení + zdroj (490). Koupím LED diody. J. Šalmik, Sklepní 234, 690 02 Strachotín.

Komunikační přijímač Yaesu FRG-7700 + aktivní ant. FRA 7700, 0,15 — 30 MHz, AM, FM, USB, LSB, CW, kompletní dokumentace, 100% stav (18 000). I. Kristen, 751 05 Kokory 278, tel. 0641 — 945 21.

PMI 80a se zdrojem (2000), zes 2 × 5 W ve dřevě (500), ant. zes. s Mosfet. CCIR (150), III. TV pásmo (200), 21.—25. kanál (200), oživené desky; mf. zes. AR A 12/83 (400), vstupní jednotka ARA 9/86 (400), stereodek, ARA 4/81 (150), nf. zes. 2×5 W s MBA (100), TC 455 4M(5). V. Damec, Na nivách 13, 704 00 Ostrava 3.

Interface Kempston Centronics pro připojení tiskárny s paralelním rozhraním k ZX Spectru, umožňuje použití příkazů LLIST, LPRIMT, COPY, provádí výpisy ze všech překladačů a textových editorů (Gens, Mons, Pascal, Tasword, Master File...) (1500). Ing. L. Venclík, A. Staška 35, 602 00 Brno.

Osciloskop BM 370 (900), VF generátor BM205 (800), akupunkturu FS03 (250), součástky, seznam proti známce, vše osobní odběr. M. Kop, Zárubova 493, 140 18 Praha 4-Lhotka.

IO Dolby B NE645N (100), MH7472 (8), MA0403A (7), MAA245 (10), KZ721, GAZ51 (5.4) vše nepoužité, vadné TVP Dajana (150), Lotos (100) TE-SLA 4106U (50). J. Kříž, Zimova 241/IV, 503 51 Chlumec n. Cidl.

Cass. deck Toshiba PC-G 33 — Dolby B, C, metal, 20 — 18 000 Hz (8000). P. Knura, Zandovská 308, 190 00 Praha 9-Prosek.

TV hry s AY-3-8610 bez IO (700). A. Staniček, 735 14 Orlová-Lutyně 690.

FTVP Color in line 110 (10 000), TV hry s AY-3-8500 (900) a kúpim zadnú skrinku na.TVP Dária. I. Čapkovič, Cukrovarská 147/7, 926 00 Sereď, tel. 4245.

2 ks kvalitních výškových repro — DTW 147 — audio desaign 500 — 20 000 Hz, cross-over 4 — 8 kHz, muting. switch 0 — 3 dB, výk. à 80 W, ital. výroby, obě repra (980). J. Šedina, Neubrandenburgská 809, 293 01 Mladá Boleslav.

denburgská 809, 293 01 Mladá Boleslav.

DC pl. Hitachi DA1000, el. regulace výstupu
16 bit D/A, 18 ks CD desek Vangelis, K Crims.,
U2 apod., sluchátka Magmát 15 — 26 000 Hz
(25 000). P. Pindora, 739 42 Chlebovice 66.

Hi-fi přijímač Sanyo DCX6000K — 2 × 35 W (6900), mgf. Sony TC 377 (6900), gramodirect drive Taya (4900), sluch. Sony (490), dvoupásm. bedny 35 I (pár 1000), mgf. pásky, nahrané. Kvalita. F. Bureš, p. p. 54, 436 01 Litvínov I.

Sharp PC-1211, program v basicu (3500), magn. interface a kazeta s programy (500). RNDr. J. Svoboda, Vaňkova 9, 750 00 Přerov.

Technics cass. deck RSM 263, dolby B, 3 hlavy 2 x SX, 18—20 000 Hz, 100% stav (10 000). Foto a parametre oproti známke. Ing. V. Volčko, Č. A. 11, 080 00 Prešov.

Stav. hlas. gener. — doplněk k dig. hod. v něm. s UAA1003 (990), díly BTVP Rubín a C430, 800 elektronek (800), 70 ks (100), R, C, D, T, TY, IO, HIO, relé, repro aj. mat. sez. za známku, koup. Color 110 i J. tel. s Pal i nehr., měř. a serv. přístr. i nefunkč. V. Kyselý, PS 20, 252 63 Roztoky.

Úplné vázané roč. čas. Elektronik 1948 — 51, Sděl. techn. 54 — 80, Slabop. obz. 54 — 67, Automat. 59 — 65 (à15 — 20) a starší odbor. knihy, levně. J. Macků, V koutech 1287, 500 02 Hradec Králové.

Širokopásmový ant. zesilovač se třemi vstupy I., II., III., IV., V. s BFR90 + 91 (450), širokopásmový se třemi vstupy s BFT66 + BFR90 + BFR96 (600), pásmový IV. + V. BTT66 + BFR90 (500). S. Šablatura, Bezručova 2903, 276 01 Mělník.

BFR 90 rakouské (95), kazety C90, nové Sony 12 ks (1200), Basf 8 ks (800), sluchátka Asahi (420). J. Zavadil, Poste Restante, Jindřišská 14, 110 00 Praha 1.

Repro nepoužité, 2 ks ARO 667 (à 25), 2 ks ART 481 (à 100), 2 ks ARO 835 (à 250) a 4 ks ARO 711 (à 120). J. Lukavský, Bítovská 1224, 140 00 Praha 4, tel. 42 84 061.

RAM 4164 (105), RAM 4256 (240) nebo vyměním. M. Novák, Zavadilova 18, 160 00 Praha 6.

Vodič Cu ø 1,6 a 3,5 mm 2x bavina (50, 30/kg), oscilo Křižík T565 (1200, KV RX, malý TVP), vf. osc. obraz 13LO101M + díly, ARA a ST 80—84

Správa dálkových kabelů Praha

přijme do Výpočetního střediska telekomunikací v Č. Budějovicích

— vedoucího technika k počítači EC 1026, tř. 13,

V-elektro, 9 r. odb. praxe

Zařazení podle ZEUMS II, osobní ohodnocení, čtvrtl. odměny a podíly. Možnost tuzemské i zahraniční rekreace, zavedení služebního telefonu do bytu.

Nabídky a dotazy u vedoucího VST Č. Budějovice, tř. Míru 2239, tel. 375 37, 376 33.

Živnostenská banka, n. p., Praha 1, Na příkopě 20 (u Air India) **Přijme**

pro vývoj a provoz systémů v novém výpočetním středisku s moderní výpočetní technikou:

technika počítačů — vzdělání VŠ - plat. zařaz. T 11—12

programátora-analytika — vzdělání ÚSO, VŠ — plat. zařaz. T 10—12

Vhodné i pro absolventy škol bez praxe, nástup možný ihned nebo podle dohody.

Měsíční prémie, podíly na hospodářském výsledku.

Dobré dopravní spojení, možnost celoroční rekreace na podnikové chatě
v Krkonoších.

ŘEDITELSTVÍ POŠTOVNÍ PŘEPRAVY PRAHA

přijme

do tříletého nově koncipovaného učebního oboru

MANIPULANT POŠTOVNÍHO PROVOZU A PŘEPRAVY

chlapce

Učební obor je určen především pro chlapce, kteří mají zájem o zeměpis a rádi cestují. Absolventi mají uplatnění ve vlakových poštách, výpravnách listovních uzávěrů a na dalších pracovištích v poštovní přepravě. Úspěšní absolventi mají možnost dalšího zvyšování kvalifikace – nástavba ukončená maturitou.

Výuka je zajištěna v Olomouci, ubytování a stravování je internátní a je zdarma. Učni dostávají zvýšené měsíční kapesné a obdrží náborový příspěvek ve výši 2000 Kčs.

Bližší informace podá

Ředitelství poštovní přepravy, Praha 1, Opletalova 40, PSC 116 70, telef. 22 20 51-5, linka 277. Náborová oblast:

Jihomoravský, Severomoravský kraj.

REDITELSTVI MEZINÁRODNÍ POŠTOVNÍ PŘEPRAVY

Gorkého nám. 13, 220 00 Praha 1

přijme do 3,5letého nově koncipovaného učebního oboru

manipulant poštovního provozu a přepravy

chlapce

absolventy 8. tříd základních škol

- Výuka je zajištěna v odborném učilišti v Olomouci, ubytování a stravování zdarma. Učni dostávají zvýšené kapesné. V průběhu učební doby obdrží náborový příspěvek 2000 Kčs.
- V období provozního výcviku je zajištěno ubytování a stravování v Praze, 2× měsíčně zdarma jízdné do trvalého bydliště. Učni obdrží 80 % časové měsíční mzdy kvalifikováného pracovníka plus 20 % max. výkonnostní odměny. Mají možnost dalšího zvyšování kvalifikace.
- Po vyučení pracoviště v Praze, ubytování v podnikové ubytovně, odměňování podle II. etapy ZEUMSu
- Úplatnění jako kvalifikovaní pracovníci v poštovní přepravě mezinárodního i tuzemského styku.

Náborová oblast: Jihomoravský a Séveromoravský kraj.

Bližší informace:

ALLER ALLE

Reditelství mezinárodní pošt. přepravy, Gorkého nám. 13, 220 00 Praha 1, telefon: 23 62 809, s. Kašparová.

(48, 36), koupím vadný Malyš. Písemně. Štillip, Slovanská 6, 301 53 Plzeň.

AY-3-8500, ICL7106, 4116. 4164, Z80A (430, 550, 150, 210, 500), PU 160, VN trafo VL 100, 11LK1B (550, 180, 280), modul s ICL7106 (1100), TV hry s AY-3-8500 (1000), Kempston interface, joystick (1100, 1100), nové šasi pre Salermo (550). Kúpim ZX Spectrum 16 aj vadný a tlačiareň na normálny papier. Ing. M. Ondráš, Bajkalská 11, 040 12 Ko-

TCA730—740 (à 110) + plán zapojení, S042P (150), TDA1200 (130), TDA1005 (200), RC4739 a TBA231 — ekvivalenty μΑ739 (à 100), RAM 4× 256 bit 5101 (100, 3× UM91611 — IO pro klávesové telefony — paměť pro 10 6místných čísel (à 100), mám plánek zapojení. Vše nové, nepoužité. Koupím nebo vyměním za výše uvedené fungující: (C-mosy 4011, 4066) po 13 ks max. nebo (SAD1024 + 3x TL084 + 4011 + 4013) nebo (3x FX 209 + 3x AM 2533 (2833) nebo 3x MM 5058. Jednotlivé sady kompletně. Spěchá. B. Lipka, Budovatelů 1137, 432 01 Kadaň,

KOUPĚ

IO SAA1058, SAA1070, LM1035, LM1040, LM13600, TL072, CA3080, CMOS obvody a tranzistory BD709/710, BD203/204, BDX77/78, BDX33/34. M. Trojanec, Divišova 2823, 733 01 Karviná-Hranice

Obrazovku DG7-132, novou. L. Kehár, Na Petři-

Orazowku DG7-132, novou. L. Kenar, Na Petrinách 294/60, 162 00 Praha 6.

Tranzistory 2× BFT66, 2× BFR90. J. Částka, Švandy Dudáka 741, 386 01 Strakonice, tel. 991 11 od 7.00—15.00 h.

Tape deck Technics RS-B48R, RS-T80R, RS-B78R, čierné prevedenie, regál Technics HS.616 alebo druhý. K. Székely, Palúdzka 555/5, 031 01 L. Mikuláš.

Tranzistory KC, KF, KU, KD, IO diody, TE a R min. E. Ignaták, 029 57 Oravská Lesná.

Sony APM 500 (700) nebo podobné repro, Sony SEH 22 - equalizer, Sony RM-44, RM-44c - remote control. V. Netík, Za radnicí 67, 517 01 Literaturu a programy na Atari 800XL, RTTY, CW a jiné. J. Šlechta, Otavská 445, 342 01 Sušice II.

operační zesilovače sovětské ýroby KR140UD1B a FET KP303D. I jednotlivě. V. Maceček, 756 57 Horní Bečva 689.

IO - SN76477 fy Ti, Ma1458, schéma zapojení rmgf. Toshiba RT-7125. F. Plášek, Bzenecká 1313, 696 42 Vracov.

Deck Technics, Aiwa, Sony nový nebo zánovní. Dolby B/C, popř. HX Pro, 19 kHz (do 10 000). P. Blažek, Kruh 58, 512 31 Roztoky u Jil.

KA503 5 ks, toroidy N05 ø 12 3 ks, N02 ø 6 6 ks, LED LQ1812 nebo jiné 20 ks. P. Lukeš, Vítězného února 61, 370 05 C. Budějovice.

IO - A225D. Udejte cenu. J. Čaník, 382 21 Kájov

Rozšíření paměti pro počítač Commodore 16. Ing. V. Mik, Leninova 26, 160 00 Praha 6. Radiolampu EBF11. F. Král, Za Pohořelcem 17, 169 00 Praha 6.

Československý rozhlas Praha

— odbor rozhlasových technologií přijme:

- absolventy elektrotechnické fakul- - absolventy průmyslových škol tv ČVUT.

specializace v oboru audio-frekvenční techniky,

s elektrotechnickým zaměřením,

informace na tel. čísle 236 08 41.

Písemné nabídky zasílejte odboru kádrové práce Čs. rozhlasu. Vinohradská 12, Praha 2, PSČ 120 99. Ubytování nelze zajistit. IO S042P. M. Feit, Jiráskova 545, 517 24 Borohrádek.

Tov. měřicí pásky na cívce i v CC, cenu respektují. P. Heczko, Na zákopech 175, 739 61 Třinec III.

Osc. obr. 7QR20, zobr. jed. LQ410 popř. VQB7 3x, C520D 1x, D147D 1x, MAC155 popř. MAB355 1x, MAC156 popř. MAB356 2x, MA1458 2x. Z. Kolář, ul. Bílkova č. 1, 680 01 Boskovice. 2 ks tranzistor 3N140 nebo jeho ekvivalent. J. Fröhlich, Schwarzova 34, 320 16 Plzeň, tel. 27 35 10.

Hry a programy i Cartridge na Atari 800-XL. V. Holas, Hutník 1479, 698 01 Veselí n. Mor.

Toshiba Cassette deck, černá, rozměr 42 cm, systém Dolby, pokud možno ještě v záruce. F. Knejfl, Starobucké Debrné 171, 544 61, Nemojov u Dvora Králové n. L.

VN transformátor Rubín 714, nutně. Cenu respektuji. A. Fulín, 257 51 Bystřice 397.

Co nejstarší rádio i krystálku z dvacátých let i vrak. A. Vyoral, Komárov 125, 763 61 Napajedla. Měř. přístroj Avomet Ii. (DU 10). Uveďte stav a cenu, M. Kovtun, Zadní Zhořec 23, 594 43 Netín.

BFT66, BFR90, 91, BF981, bezvývodové kondenzátory 1 nF, 150—330 pF. V. Horák, Marxova 1708, 509 01 Nová Paka.

Sharp MZ 800, nový v záruce. V. Stratil, Severní 774, 500 03 Hradec Králové.

ZX — Spectrum 48 kB případně interface a mag., zachovalé. V. Tauš, Husova 199, 664 01 Bílovice n. Svit.

CMOS TTL, LS TTL, RAM-1902, CMOS 2716, CMOS Z-80/CPU, 8255, LED hranaté, LED číslice a iné IO. P. Gašparik, Sokolovská 19, 040 11 Košice

Tranzistory BFR91 a BFR96. Ing. J. Ráčay, Zápotockého 3/15, 052 01 Spišská Nová Ves. MHB4001, 8255, 3205, řad. konekt. ke Spectrum. V. Špobl. Heřmanovská 361, 407 22 Renešov.

N. Šnobl, Heřmanovská 361, 407 22 Benešov n. Pl. Tranzistory BUZ 84, 54, 44, 45, páry KD607/617

Talizstofy 252 94, 94, 94, 95, paly Robottoff a KD337/338. V. Karel, 919 22 Majcichov 251.

ZX — Spectrum 48 kB nebo ZX Spectrum +, český manuál, programy. Ing. J. Chládek, Gallova 818, 517 41 Kostelec nad Orlicí

MH74LS02, WK 46580, TY 51330, tranzistor KF907, TVA 21—60 + direktory. A. Kelin, Janderova 28, 108 00 Praha 10, tel. 77 86 43.

IO A3520D, A2030V, A255D, TDA1510, TDA1670, TDA3501, LM358, NEC02136, 5121, NE592, NE564, fotodiody BPW34, SP201. Prodám Z80 CPU (350). Ing. J. Novotný, 1. máje 5, 664 12 Oslavany

RLC 10 a PU 120 v bezvadnom stave. Cenu rešpektujem. P. Čaplovič ml., 027 41 Orav. Podzámok 98.

Tiskárnu na jednotlivé listy papíru i rol. papír se stykem Centronics a větší množství methal papíru š. 100 pro ZX Printer. J. Procházka, Jánského 14, 772 00 Olomouc.

Pro Sinclair Spectrum gen. barev. SN94459N nebo LM1889 nebo vrak, pro QL Membr. do kláves. R. Pyszko, 735 34 Stonava 987.

ULA do ZX-81. Ing. P. Zahradník, Feřtekova 557, 181 00 Praha 8.

RŮZNÉ

Kdo postaví mix pult nebo alespoň dodá schéma. Blíže poštou. P. Volník, SPB 647, 708 00 Ostrava-Poruba.

Hřadám kontakty na programy pre počítač Sharp MZ800 — ponúknite, alebo adresu Sharp klubu. MUDr. D. Meško, Zvolenská 4, 036 01 Martin.

Kto opraví elektromotor typ 988 220 V∼ 5 A 12 000 ot/min. F. Kolenič, 082 53 Petrovany 369, tel. 091 978 13.

Hladám majitelov C64, C128, MVS II. Výmena programov a skúseností. M. Szépová, Marxová 28, 943 01 Štúrovo.

VÝMĚNA

Kvalitní triedr 10× 50 za malou el. svářečku do 2,5 elektrody, na 220 V~ event. doplatím. Koupím český návod k osciloskopu H313 (originál nemám) a CuS drát ø 1,7 mm, 50 m, ceny respektuji. J. Dalík, K. Čapka 104/10, 357 09 Habartov. Basreflexové třípásmové reprobedny Toshiba SS150 v záruce (4500) za třípásmové, 30 — 20 000 Hz, sinus 2× 40 W, 8 Ω v záruce. J. Sůva, Formánkova 512, 500 11 Hradec Králové. RK kabelkový 40ti kanálový TCVR FM na C1-94, popř. prod. a koup. Prodám SSB filtr 4Q — 2,1 kHz, 8150 kHz + 2Q (150). Vyřizuje D. Fifka, Spořilov II 1800, 256 01 Benešov.

Programy na ZX Spectrum a Delta za jiné, příp. koupím a prodám. J. Kniha, V ráji 1622, 274 01 Slaný.

TESLA Strašnice k. p.

závod J. Hakena U náklad. nádraží 6, 130 65 Praha 3

- pracovníky do útvaru zásobování
- samost, konstruktéra nástrojů
- technology normovače
- sam. výv. pracovníky
- konstruktéry
- do administrativy pracovnice se znalostí psaní strojem
- sam. požár. techniky
- členy závod. stráže vhodné pro důchodce

Nábor povolen na celém území ČSSR, s výjimkou vymezeného území. Ubytování pro svobodné zajistíme.

Zájemci hlaste se na osobním odd. podniku - č. tel. 77 63 40

DRUŽSTEVNÍ PODNIK VÝPOČETNÍ TECHNIKY PRAHA pracoviště V olšinách 32, Praha 10

nabízí možnost naprogramování pamětí EPROM typu MHB 2708, MHB 2716, K573RF1, K573RF2, K573RF5, případně naprogramování EPROM BIOSů pro SAPI 1A s nestandardními ovladači.

Informace na tel. 74 13 42 nebo 74 28 98.

ČETLI JSME

Rychlý, L. a kol.: AUTOMATICKÉ ŘÍZENÍ II. SNTL: Praha 1987. 200 str., 192 obr., 10 tabulek. Cena váz. 14 Kčs.

Druhý díl učebnice pro žáky středních odborných učilišť studijního oboru mechanik automatizační techniky navazuje na znalosti, získané během prvních dvou let výuky.

První část knihy, zabývající se dálkovým měřením a přenosem informací, a třetí část, vysvětlující základy teorie automatického řízení, jsou více teoretické. Zejména tato část textu může být užitečná nejen studentům nebo pracovníkům dané specializace, ale i amatérským zájemcům o samostatnou konstrukční činnost a návrhy různých elektronických regulačních zařízení.

Druhá kapitola knihy popisuje řešení řídicích center, čtvrtá hydraulické regulační systémy (jejich druhy, funkci, jednotlivé členy, využití, údržbu) a pátá pneumatické regulační systémy. Tato část knihy je zaměřena více na praxi, seznamuje např. s používanými typy zařízení, jejich spojováním do systémů apod.

Ke každé kapitole jsou v knize vypracovány kontrolní otázky a úlohy; stručný seznam doporučené literatury, uvedený v závěru a obsahující odkazy na knihy, učební texty a normy, umožňuje zájemcům prohloubit a rozšířit znalosti, získané ze samotné učebnice.

I když tématika, zpracovaná v knize, patří spíše do oblasti mechaniky než elektroniky, zmíněné dvě kapitoly mohou pomoci i mladým zájemcům o amatérskou tvůrčí činnost v elektronice či elektrotechnice při řešení úkolů, týkajících se ovládání, řízení nebo automatické regulace v nejrůznějších aplikacích.

JB

١

Radio (SSSR), č. 7/1987

Vysílací doplněk pro pásmo 160 m k přijímači Radio-87VPP - Elektronický telegrafní klíč Ještě jednou o krystalových filtrech - 33. všesvazová výstava radioamatérských konstrukcí Operační systémy osobních počítačů Redaktor a Assembler pro počítač Radio-86RK - Gramofonový přístroj Elektronika EP-060-stereo - Krátké informace o nových výrobcích - Pouzdra tranzistorů - Pokojová přijímací anténa — "Vícehlasý" imitátor zvuků - 200 přijímačů Junosť-105 (výsledek minikonkursu) - Osciloskop QML-2M pro radioamatéry - Elektronický pomocník včelaře — Proporcionální systém dálkového řízení - Jak odstranit závadu — Omezovač impulsních poruch v nf signálu — Snímací zesilovač pro magnetofon - Generátor signálu s malým obsahem harmonických — Napájecí zdroj bez síťového transfor-mátoru — Elektronický buben.

Radioelektronik (PLR), č. 6/1987

Z domova a ze zahraničí — Fyziologická regulace hlasitosti — Kurs programování v jazyku BASIC s počítačem ZX Spectrum Plus — Interfejs Centronix pro ZX Spectrum — Generátor pro časovou základnu — RTTY, amatérský dálnopis — Rozhlasový přijímač Aida AWS-103 — Integrované obvody UL1958N a UL1959N pro elektronickou volbu kanálů — Elektronické zapalování GL-100 — Výstava domácích, kancelářských a osobních počítačů ve Varšavě — Proužkový kód — Špatná spolupráce přijímače Wega 402 se stabilizovaným zdrojem ZS 0,15/9/2 — Programovatelný dělič kmitočtu.

Radioelektronik (PLR), č. 7/1987

Z domova a ze zahraničí — Způsoby, jimiž se potlačuje pronikání rušivých signálů do nf obvodů - Nové výrobky ZWG Tonsil - Jednoduché zapojení výkonového nf zesilovače - Doplněk "Tremolo" – Kurs programování v jazyku BASIC s počítačem ZX Spectrum Plus (2) - Nová řada anglických mikropočítačů ICL Quatro - Program k výpočtu lokátoru a QRB - Molekulární elektronika - Programovatelné logické obvody PAL - Přijímač BTV Elektronika C432 - Integrované obvody MC1201 a MC1204 pro hodiny s číslicovkami LED — Regulátor k alternátoru pro Wartburg 353 — Profesionálně vyráběný stmívač RS-2 — Jednoduchý expozimetr pro fotokomoru - Přijímač BTV Neptun 546 - Havarijní světla pro polský Fiat 126p - Jednoduchý obvod pro řízení impulsů

Radio, televizija, elektronika (BLR), č. 8/1987

Anténní zesilovač pro decimetrové pásmo TV — Projektování a programování s mikropočítačem s U880D a Z80 (2) — Speciální vybavení pro
mikropočítač Pravec 82 — Moderní radiotelefonní systémy pro všeobecné využití — Analogové
signály v mikroprocesorových řídicích systémech
— Kmitočtový syntezátor s automatickým fázovým doladěním kmitočtu — Časové relé
— Indikátor napětí — Tyristorový zvukový generátor — Senzorové ovládání zvonku — Zvětšení
výstupního napětí u stabilizátoru 1RN78XX
— Přijímač s přímým zesilením s IO — Koncový
stupeň pro nf zesilovač — Technické údaje relé
RES15, japonských výkonových tranzistorů řízených polem a integrovaných obvodů A283D
a A281D z NDR.

Rádiótechnika (MLR), č. 8/1987

Speciální IO, TV video (11) — Co dokáže Sharp PC-1600? — Perspektivy služeb rozhlasu — Tlačítkové telefonní přístroje — Stabilizátory napětí — Modem s AFSK pro amatérské vysílače — Amatérská zapojení: SSB generátor 500 kHz; Koncový zesilovač pro FM 145 MHz; Anténa UHF/VHF — Pozemní přijímač pro vysílání z družic — Automatický přepínač antén pro OIRT/CCIR — TV servis: přijímač Videoton TS-4320 Infra Color — Radiotechnika pro pionýry — Učme se BASIC s C-16 (20).

Radio, Fernsehen, Elektronik (NDR), č. 8/1987

Racionalizace stavebních skupin a technika SMD — Tranzistory pro techniku SMD — Kontaktování polyméry s kovovou náplní — Zdroje proudu IO B724X a B7240X v hybridních převodnících D/A — C570C a C571C, převodníky D/A — Fázový závěs V4046D a systém převodníků C540D/C500D — Inteligentní programování EPROM — Programátor pamětí pro 10 U2732 — Rozklad čísel počítačem Pokusný obvod s U882 — Analýzy obvodů jazykem BASIC (19) — Pro servis — Informace o polovodičových obvodech 237 — Mikropočítače s U880 a grafikou - Návrh schémat s KC85/2 - LC80 jako řídicí počítač pro model robota - Počítač MC80 s akumulačním převodníkem A/D - Světelné efekty s bleskovými výbojkami - Stereofonní radiorekordér SKR 700 a SKR 701 - Antény v modernizovaných domech - Synchronní jednotka s PLL pro sběr naměřených hodnot - Přesné odpory z normovaných hodnot — Preside odpory 2 hormovaných hodnot — Nf převodník f/U — Přenosný digitální měřič tepu — Rozdělovač impulsů — Přehled rozhlasových a TV vysílačů.

Radio-amater (Jug.), č. 6-7/1987

Zesilovač 200 W pro hudební soupravy (2) — Pseudostereofonní přijímač FM — Citlivý detektor kovů — Výkonná anténa pro KV — Sluneční aktivita — Indikátor vyvážení stereofonních kanálů — Účinnost regulátorů napětí — Generátor impulsů — Měření univerzálním měřicím přístrojem (2) — Označování součástek — Nf konektory — Interfejs MINI Centronics — Packet Radio — Novinky video z Japonska — Programy — Radioamatérské rubriky.

Radiótechnika (MLR), č. 7/1987

Speciální IO, TV video (10) — Digitální gramoton (2) — Senzorový spínač — Elektronický bzučák — Jednoduchý zdroj tónu — Transceiver FT-757 GX — Pro začínající: vyhlazovací filtry — Amatérská zapojení: Modulovatelný krystalový kalibrátor; Telegrafní vysílač pro pásmo 144 MHz — Intervalový stěrač — Videotechnika (44) — Širokopásmová anténa pro III. TV pásmo — TV servis: TVP Videoton TS-4320-SP — Dělič kmitotu pro 1 GHz — Zesilovač a zkreslovač pro kytaru — Učme se BASIC s C-16 (19) — Radiotechnika pro pionýry.

Elektronikschau (Rak.), č. 8/1987

Aktuality z elektroniky — Normalizované devatenáctipalcové přístrojové skříně — Typické využití 19palcových skříní — Chlazení v přístrojových skříních — Ochrana proti účinkům blesku a jaderného výbuchu (2) — Z 6. výstavy TECH-NOVA ve Štýrském Hradci — HP-28C, představitel nové generace kapesních kalkulátorů — Bipolární výkonové tranzistory s vlastnostmi MOSFET — Analyzátor rušivých napětí v sti Dranetz 656 — Nové výrobky — Nové součástky a měřicí přístroje.

Alexejev. Ju. P.: Bytovaja prijemnousiliteľnaja radiapparatura — modeli 1982—1985 — spravočnik (Domácí radiopřijímače a zesilovače — modely 1982—1985 — příručka). Vydalo nakladatelství "Radio i sviaz"

Vydalo nakladatelství "Radio i svjaz" v Moskvě roku 1987. Váz., 48 stran, cena v ČSSR 34 Kčs.

Příručka uvádí základní technické údaje radiopřijímačů, magnetofonů, přehrávačů, gramorádii, zesilovačů a dalších přístrojů spotřební elektroniky, sériově vyráběných v Sovětském svazu v letech 1982 a 1985 a určených pro bytové použití nebo k montáži do auta. Čtenář zde najde podrobná elektrická schémata zapojení, základní technické údaje, popis zapojení jednotlivých obvodů s výkladem činnosti, nákresy rozmístění součástek na deskách s plošnými spoji, kinematická schémata mechanických částí, údaje vinutí cívek a transformátorů, nastavovací předpisy a další údaje. V přílohách publikace jsou rovněž funkční schémata užitých integrovaných obvodů, zapojení konektorů pro vstupní a výstupní unifikované signály, výtah z normy GOST 5651-82, popisující parametry a zařazení přístrojů do tříd, a seznam užitých označení a zkratek. Mezi asi sedesáti přístroji a zařízeními nalezne čtenář popisy řady výrobků, které se dovážely, ať již hromadně nebo jednotlivě, i k nám.

Příručka je psána stručně a věcně; do jejího obsahu byly pojaty skutečně jen důležité a podstatné údaje tak, aby bylo možno tak

rosáhlé dílo shrnout do jednoho dílu publikace. Schémata zapojení jsou tištěna hnědou barvou: jsou kreslena podle sovětských norem. Je nutno ocenit, že se tak zásluhou dovozce — n. p. Zahraniční literatura, Praha (omezený počet výtisků je v prodeji v pražské prodejně ve Vodičkově ulici), dostává naší technické veřejnosti do rukou kniha, která umožní i amatérům kvalifikovaně opravovat přistroje sovětské výroby které jsou v knize popsány. Ve srovnání s cenou obdobných publikací naších se nezdá uvedená cena 34,— Kčs nikterak vysoká, spíše naopak.

Věřím, že přes poměrně malý počet dovozených exemplářů se tato kniha dostane do rukou čtenářů a odborných knihoven a že bude platnou a užitečnou příručkou pro pracovníky servisních oganizací, pro radioamatéry i další zájemce.

Ing. Milan Volf, CSc.