אינטגרציה ע"י <u>הצבה: החלפת משתנים</u>

בסעיף הזה נוח לציין את שם משתנה $\int_a^b f(x)$ נכתוב $\int_a^b f(x)$ נכתוב $\int_a^b f(x) dx$ ואפילו $\int_a^b f(x) dx$ כאן הביטוי $\int_a^b f(x) dx$ ושריד היסטורי ל $\int_a^b f(x) dx$ בביטוי $\int_{i=1}^n f(\xi_i) \Delta x_i$ השם הספציפי של המשתנה הוא חסר כל חשיבות:

$$\int_a^b f = \int_a^b f(x)dx = \int_a^b f(y)dy$$

פונקציה רציפה בקטע f(x) משפט. תהי f(x) פונקציה רציפה בקטע $\varphi(t)$,[a,b] בעלת נגזרת רציפה ב $\varphi(t)$,[a,b] הטווח של $\varphi(t)$ הוא $\varphi(t)$ ומתקיים

$$.\varphi(\alpha) = a, \ \varphi(\beta) = b$$

(3)
$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$

ו: $x=\varphi(t)$ באופן פורמלי באופן $\frac{dx}{dt}=\varphi'(t)$ מזכיר את מזכיר את $dx=\varphi'(t)dt$ זו מקלה על זכירת התוצאה, אך בודאי אינה מהווה הוכתה.)

f קיים כי $\int_a^b f$ קיים כי $\int_a^b f$ קיים כי $f(\varphi(t))$ הוכחת גם $f(\varphi(t))$ וו $f(\varphi(t))$ הן רציפות, ולכן האינטגרל באגף ימין של (3) קים. לפונקציה

ב: F(x) יש פונקציה קדומה f(x) ב: f(x) ברציפה f(x) כך שf(x) בקטע הזה. נסמן [a,b]

$$G(t) = F(\varphi(t))$$

G(t) כאשר יש ל: F ו: φ נגזרות רציפות, ולכן כאבית בעלת נגזרת רציפה

$$G'(t) = F'(\varphi(t)) \cdot \varphi'(t)$$
$$= f(\varphi(t)) \cdot \varphi'(t)$$

כלומר לפונקציה $f(\varphi(t))\cdot \varphi'(t)$ יש פונקציה כלומר לפונקציה $[\alpha,\beta]$ ב: G(t) לפי המשפט היסודי

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) = G(\beta) - G(\alpha)$$

$$= F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$= F(b) - F(a)$$

$$= \int_{a}^{b} f$$

arphi(t) אינה בהכרח מונוטונית, וערכי arphi מכסים את [a,b] לאו דוקא באופן 1-1.

דוגמא קיצונית. נתיחס לאינטגרל , $x=\cos t$ נבצע הצבה $\int_{-1}^1 \sqrt{1-x^2}$ נבצ $\pi \le t \le 20$. אז מקבלים את האינטגרל:

$$\int_{\pi}^{20\pi} \sqrt{1 - \cos^2 t} \cdot (-\sin t) dt =$$

$$\int_{\pi}^{20\pi} |\sin t| \cdot (-\sin t) dt =$$

$$\int_{19\pi}^{20\pi} |\sin t| \cdot (-\sin t) dt = \frac{\pi}{2}$$

 $x=\cos t$ בחירה סבירה של הצבה תהיה $\pi \leq t \leq 2\pi$ בתחום

ומקבלים,
$$\sqrt{1-\cos^2 t}=-\sin t$$
 .
$$\int_{\pi}^{2\pi}(-\sin t)\cdot(-\sin t)dt=\frac{\pi}{2}$$

אינטגרלים מוכללים

עד כאן הגדרנו אינטגרל מסוים של פונקציה חסומה (אינטגרנד) על קטע חסום. מה קורה אם אחד מתנאי החסימות אינו מתקיים! נתיחס תחילה לקטע אינסופי $[a,\infty)$.

אנטגרבילית בכל קטע f(x) אנטגרבילית אנטגרבילית אנטגרבילית ווחל $a < b < \infty$, [a,b]

$$.I(b) = \int_a^b f$$

 $\mathrm{Him}_{b o\infty}I(b)$ אם קים הגבול אם אם קים הגבול ' $[a,\infty)$, ונסמן "אינטגרבילית ב

$$\int_{a}^{\infty} f = \lim_{b \to \infty} \int_{a}^{b} f$$

אם הגבול אינו קיים אז נאמר ש: $\int_a^\infty f$ לא $\int_a^\infty f$ אם הגבול אינו קיים אז נאמר ש: $+\infty$ אם הגבול הוא $+\infty$, אז נאמר ש: $\int_a^\infty f$ או $\int_a^\infty f = \infty$ "

הערה. אי אפשר להגדיר את האינטגרל על $(0,\infty)$ אי אפשר להגדיר את סכומי דרבו או סכומי הקטע f(x)=c רימן. למשל, הונקציה הקבועה

. הגבול אינו קיים . $\int_0^\infty \sin x$

 $\int_1^\infty x^{-p}$ מבחינים בין שלושה $\int_1^\infty x^{-p}$ מבחינים בין שלושה מקרים: p=1 ,p>1 אם p=1 אם p=1 או מקרים: p=1 ,p>1 ולכן היא p=1 מתבדר. עבור p=1 והוא מתכנס אם $p\neq 1$ והוא מתכנס אם p>1 והוא מתכנס אם p>1 והוא מתכנס אם p>1 והוא מתכנס אם p>1

. מתכנס $\int_0^\infty e^{-x}$ מתכנס

 $\int_{-\infty}^a f$ את מגדירים את מגדירים להגדרת להגדרת להגדרת באופן באופן באופן

הערה. עובדת קיומו או אי קיומו של האינטגרל הערה. עובדת קיומו או אי קיומו של $\int_a^\infty f$ אינה תלויה ב: a, כי האינטגרל (אם הוא קים) תלוי ב: a, כי

$$\int_{a}^{\infty} f = \int_{a}^{c} f + \int_{c}^{\infty} f$$

לכן לעיתים נאמר ש: " $\int^\infty f$ " קיים בלי לציין גבול תחתון.

$$\int_{-\infty}^c f:\int_c^\infty f$$
 קיימים נגדיר $\int_c^\infty f=\int_{-\infty}^c f+\int_c^\infty f$. $\int_{-\infty}^\infty f=\int_{-\infty}^c f+\int_c^\infty f$ אינו תלוי בבחירת $\int_{-\infty}^\infty f$

הערה. ההגדרה הזו שקולה לקיום הגבול הכפול $b \to +\infty$ וו $a \to -\infty$ בצורה של $\int_a^b f$ כאשר בלתי תלויה. אך בשום אופן אינה שקולה לקיום הגבול הסימטרי

$$\lim_{R\to\infty}\int_{-R}^R f$$

לדוגמא נסתכל על האינטגרל

$$.f(x) = \frac{2x}{x^2 + 1}$$

כאן $\int_{-\infty}^{0}f$ ו: $\int_{0}^{\infty}f$ לא קיימים, אולם

$$\int_{-R}^{R} f = 0$$

Rלכל

אבל: אם ידוע שהאינטגרל $\int_{-\infty}^{\infty} f$ קים, אזי הוא אבל: אם ידוע שהאינטגרל . $\int_{-R}^{R} f$ אכן שווה ל

תכונות של האינטגרל המוכלל.

$$\int_{a}^{\infty} cf = c \int_{a}^{\infty} f . \mathbf{1}$$

$$\int_{a}^{\infty} (f_1 + f_2) = \int_{a}^{\infty} f_1 + \int_{a}^{\infty} f_2 .2$$
$$. \int_{a}^{\infty} f = \int_{a}^{c} f + \int_{c}^{\infty} f .3$$

a נקודה (Cauchy משפט. (קריטריון f נקודה קבועה, f אינטגרבילית על a,b לכל a,b אינטגרבילית על a,b לכל a,b הוא שלכל a,b קיים $a< b<\infty$ הוא שלכל a>0 קיים a>0 כך ש

$$\left| \int_{b_1}^{b_2} f \right| < \epsilon$$

 $b_2 > b_1 > B$ לכל

הוכתה:

$$\int_{b_1}^{b_2} f = \int_a^{b_2} f - \int_a^{b_1} f = I(b_2) - I(b_1)$$

ואי השיויון הוא תנאי הכרחי ומספיק לקיום ואי השיויון הוא תנאי הכרחי ומספיק לקיום הגבול $\lim_{b \to \infty} I(b)$ הידוע לקיום גבול של פונקציה.

a נקודה קבועה, a (קריטריון השוואה). a נקודה קבועה, $a < b < \infty$ אינטגרביליות על a a b לכל a b a אינטגרביליות על a b לכל a b נניח שקיים קבוע חיובי a b כך ש:

$$0 \le f(x) \le Kg(x)$$

לכל $a \le x < \infty$ אזי:

קים , אז גם האינטגרל $\int_a^\infty g$ קים , אז גם האינטגרל .1 $\int_a^\infty f$ קים.

גם $+\infty$ אז גם $+\infty$ אם האינטגרל וואר אז $\int_a^\infty f$ מתבדר לי=0 מתבדר מתבדר.

 $\int_a^\infty f$ אז או שהאנטגרל $f(x) \geq 0$ במקרה בו $f(x) \geq 0$ אונטגרל הזה קים, מאחר ווa מתבדר, או שהאינטגרל הזה קים, מאחר ו $b \mapsto \int_a^b f$

הוכתה: נסמן

$$J(b) = \int_{a}^{b} f, \ J(b) = \int_{a}^{b} g$$

 $b_2 > b_1 > a$ אז פונקציה עולה, כי עבור I(b) פונקציה קים

$$I(b_2) = I(b_1) + \int_{b_1}^{b_2} f \ge I(b_1)$$

. באותו אופן מסיקים שגם J(b) פונקציה עולה

להוכחת החלק הראשון, נסמן

$$\lim_{b \to \infty} J(b) = M$$

אז בנוסף על המונוטוניות של I(b) יש חסימות של I(b), כי

$$.I(b) \le KJ(b) \le KM$$

נובע ש: I(b) פונקציה עולה וחסומה, ולכן $b o \infty$ שואפת לגבול סופי כאשר

I(b) אינה חסומה על I(b) הוכחת החלק השני: אם J(b)/K, אז גם J(b), שאינה קטנה מ $[a,\infty)$ גם היא אינה חסומה.

 $0 \leq f(x) \leq Kg(x)$ איו צורך ש: $x \geq a$ יתקיים לכל $x \geq a$ אלא מספיק שזה יתקיים על איזשהו קטע a עם a עם a כלומר עבור על איזשהו קטע a עם a ערכי a שהם גדולים מספיק.

$$\int_0^\infty e^{-x^2}$$
 קיים כי $\int_0^\infty e^{-x^2}$ האינטגרל e^{-x} קיים כי $e^{-x^2} \le e^{-x}$ עבור $e^{-x^2} \le e^{-x}$ קיים וסופי.

 $[a,\infty)$ על $f,g\geq 0$ משפט השוואה. תהיינה וקיים

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

אם $\int^\infty g$ וו $\int^\infty f$ מתכנסים סיר אם $\int^\infty g$ אז לוו מתבדרים לוו מתבדרים לווא ביחד.

 $\epsilon>0$ קטן, לפי הגדרת הגבול לכל $\epsilon>0$ קטן, למשל לפי הגדרת ה $x_0(\epsilon)$ קים $x_0(\epsilon)$ כך ש

$$0 < L - \epsilon < \frac{f(x)}{g(x)} < L + \epsilon$$

עבור $x>x_0$ לכן

$$.0 \le f(x) \le (L + \epsilon)g(x)$$

מצד שני

$$0.0 \le g(x) \le \frac{1}{L - \epsilon} f(x)$$

ומכאן שתי המסקנות נובעות לפי המשפט הקודם.

הערה. אם L=0 אז הטענה הראשונה נשארת L=0 הערה. כלומר: התכנסות עבור g גוררת

התכנסות עבור f, אך לא ההיפך. נעיר שתוצאות מדויקות יותר ניתן לקבל בשימוש ב: lim inf מדויקות יותר ניתן לקבל בשימוש ב: lim sup במקום ב: lim.