Unit 2 - Intelligent Agents

An Intelligent Agent (IA) is an autonomous entity — either a software program or a robotic system — that perceives its environment through sensors, processes the information using reasoning and decision-making mechanisms, and takes actions through actuators in order to achieve specific goals or optimize performance.

In simpler terms:

An intelligent agent is like a "digital or mechanical assistant" that can **observe**, **think**, and **act** to solve problems, adapt to changes, and work toward objectives — often without human intervention.

Key Characteristics

- 1. **Autonomy** Can operate without continuous human control.
- 2. **Perception** Uses sensors (physical or virtual) to gather information about the environment.
- 3. **Reasoning** Processes information to make informed decisions.
- 4. **Adaptability** Can modify its actions based on changes in the environment.
- 5. **Goal-Driven Behavior** Works toward achieving specific objectives.
- 6. **Learning Capability** (in advanced agents) Improves performance over time.

Examples of Intelligent Agents

- 1. Google Search Engine (Software Agent)
 - Sensors: Web crawlers collecting data from the internet.
 - **Reasoning:** Ranking algorithms deciding which results are most relevant.
 - Actuators: Displaying the search results to the user.

2. Self-Driving Car (Robotic Agent)

- **Sensors:** Cameras, LiDAR, GPS.
- **Reasoning:** AI algorithms decide when to accelerate, brake, or turn.

o Actuators: Steering, throttle, and brake control systems.

3. Smart Thermostat (Simple AI Agent)

- Sensors: Temperature and motion detectors.
- o **Reasoning:** Decides whether to turn heating or cooling on.
- Actuators: HVAC control systems.

4. Siri or Alexa (Conversational Agent)

- Sensors: Microphone input for voice commands.
- Reasoning: Natural Language Processing (NLP) to understand requests.
- Actuators: Voice responses, triggering apps, controlling smart devices.

Agents and Environments

An **agent** is anything that can **perceive its environment** using sensors and **act upon it** using actuators, with the aim of achieving a goal.

The **environment** is the external context in which the agent functions.

Definition:

An agent = Perception \rightarrow Decision-making \rightarrow Action

An **environment** = The surroundings where the agent operates.

Examples:

- **Human Agent:** Eyes, ears (sensors), brain (decision-making), hands, legs, mouth (actuators).
- **Robotic Agent:** Camera, ultrasonic sensor (sensors), CPU/microcontroller (decision-making), motors (actuators).

Rationality

Rationality means the agent chooses the **best possible action** to maximize performance, given:

- 1. The percept sequence so far.
- 2. The agent's built-in knowledge.
- 3. Available actions and expected outcomes.

Important:

- Rationality ≠ Perfection
- A rational agent acts **optimally with the information it has** at the time.

Example:

A **self-driving car** in traffic chooses the safest and fastest route **based on current traffic updates**, not on unknown future conditions.

Four Approaches to AI

Artificial Intelligence can be classified into **four main approaches**, depending on whether we focus on **thinking or acting**, and whether we aim to **mimic humans** or **act rationally**.

This classification is represented in a 2×2 matrix:

Use the diagram shown below to illustrate applications of Al.			
Thought	Systems that think like humans	Systems that think rationally	
Behavior	Systems that act like humans	Systems that act rationally	
	Human	Rational	

1. Systems that Think Like Humans

Goal: Make machines think like humans by simulating human thought processes.

Basis: Cognitive Science & Psychology.

Focus: Understanding how the human brain processes information, then replicating this in a machine.

Example:

- Cognitive modeling (e.g., ACT-R cognitive architecture).
- AI in brain-computer interfaces that imitate human memory recall.

Analogy: Teaching a computer to solve math problems the way you would do them in your head, step by step.

2. Systems that Think Rationally

Goal: Make machines think logically and make correct inferences.

Basis: Laws of Logic (Aristotelian logic).

Focus: Representing knowledge in logical form and deriving conclusions through reasoning.

Example:

- Expert systems (like MYCIN in medicine).
- Prolog-based AI systems for theorem proving.

Analogy: Like a mathematician who never makes calculation mistakes — always following logic perfectly.

3. Systems that Act Like Humans

Goal: Make machines behave like humans, regardless of whether they "think" the same way.

Basis: Turing Test (Alan Turing).

Focus: Human-like interaction, communication, and behavior.

Example:

- Chatbots like ELIZA or Siri that interact naturally.
- Humanoid robots like Sophia that can talk, make facial expressions, and respond like humans.

Analogy: An actor who perfectly imitates another person's behavior, so you can't tell the difference.

4. Systems that Act Rationally

Goal: Make machines act to achieve the best possible outcome (or the best expected outcome).

Basis: Rational Agent Theory.

Focus: Acting in a way that maximizes performance based on available information.

Example:

- Self-driving cars deciding the safest and fastest route.
- AI in finance making optimal investment decisions.

Analogy: A chess-playing AI like AlphaZero, which always makes the best move given the situation.

PEAS Framework

The **PEAS** model helps define the **task environment** of an intelligent agent.

P – Performance Measure

- Defines success criteria for the agent.
- Performance measure is the unit to define the success of an agent. Performance varies with agents based on their different precepts.
- Example: For a vacuum cleaner amount of dirt cleaned, time taken, energy efficiency.

E – Environment

- The setting in which the agent operates.
- Environment is the surrounding of an agent at every instant. It keeps changing with time if the agent is set in motion.
- Example: Different floor types, room sizes, obstacles.

A – Actuators

- The mechanisms through which the agent takes actions.
- An actuator is a part of the agent that delivers the output of action to the environment
- Example: Wheels, brushes, suction mechanism.

S – Sensors

- Devices that detect environmental conditions.
- Sensors are the receptive parts of an agent that takes in the input for the agent.
- Example: Dirt sensors, bump sensors, cameras.

Example: Self-Driving Taxi (PEAS Table)

Component	Description	
P	Safety, legality, comfort, speed, fuel efficiency	
E	Roads, traffic, pedestrians, weather	
A	Steering wheel, brakes, accelerator	
S	GPS, cameras, lidar, radar	

Types of Environments in Artificial Intelligence

In AI, an **environment** refers to everything that lies outside the agent and with which the agent interacts.

The environment provides **inputs** (**percepts**) to the agent, and the agent responds with **outputs** (**actions**) using its sensors and actuators.

The type of environment greatly influences how an AI agent is designed and how it functions.

Let's go through each type in detail:

1. Fully Observable vs. Partially Observable

• Fully Observable Environment:

The agent's sensors can access **complete and accurate information** about the environment at any given time.

There is no hidden or unknown state.

Example: Playing chess — all pieces and their positions are visible to both players at all times.

• Partially Observable Environment:

The agent only has **limited or incomplete information** about the environment.

Some parts of the state are hidden or uncertain.

Example: Driving a car in fog — the driver (agent) can only see part of the road and must make decisions with incomplete visibility.

2. Deterministic vs. Stochastic

• Deterministic Environment:

The outcome of an action is **completely predictable** and determined by the current state.

Example: Solving a math equation — the result is fixed if the same steps are followed.

• Stochastic Environment:

The outcome of an action is **not fully predictable** because there's randomness or uncertainty involved.

Example: Playing poker — even if you play perfectly, the next card you draw is uncertain.

3. Episodic vs. Sequential

• Episodic Environment:

The agent's actions are divided into independent episodes.

Each episode is separate, and the agent does not need to remember past actions.

Example: Image classification — each image is processed independently without referring to past images.

• Sequential Environment:

Current actions affect future states and decisions.

The agent must consider the history of past actions.

Example: Playing a video game — each move affects the future outcome.

4. Static vs. Dynamic

• Static Environment:

The environment does not change while the agent is deciding what to do. Example: A crossword puzzle — the puzzle remains the same while you are solving it.

• Dynamic Environment:

The environment **changes over time**, possibly while the agent is thinking.

Example: Stock market — prices change continuously, even while an investor is deciding to buy or sell.

5. Discrete vs. Continuous

• Discrete Environment:

Has a **finite set** of states, actions, and percepts.

Example: Chess — limited number of moves at any turn.

• Continuous Environment:

Has an **infinite number** of possible states, actions, and percepts.

Example: Driving a car — steering angle, speed, and road conditions can vary continuously.

6. Single-Agent vs. Multi-Agent

• Single-Agent Environment:

Only one agent is operating in the environment.

Example: Solving a Sudoku puzzle — you are the only decision-maker.

• Multi-Agent Environment:

Multiple agents are involved, which may cooperate or compete. Example: A football match — each player (agent) acts, and decisions depend on others' actions.

Types of Agents in Artificial Intelligence

In AI, agents differ in complexity and decision-making capability. The classification depends on how they sense, think, and act.

1. Simple Reflex Agents

Definition:

- Act **only** based on the **current percept** (what they sense right now).
- Do **not** store any past information.
- Follow **condition–action rules** ("IF condition THEN action").

How They Work:

- Sense \rightarrow Match condition \rightarrow Execute action.
- No thinking about past or future.

Example:

• Thermostat:

- \circ IF temperature < 20°C → Turn heater ON.
- \circ IF temperature ≥ 20°C \rightarrow Turn heater OFF.

• Traffic light controller:

 Changes lights based on a timer, without considering real-time traffic.

Analogy:

Like a **light switch sensor** that turns on when it detects motion, without remembering if it was on or off before.

Advantages:

- Fast decision-making.
- Simple design.

Limitations:

• Cannot deal with partial observability.

• Fails in changing environments.

Simple Reflex Agent

2. Model-Based Reflex Agents

Definition:

- Have an **internal model** of the environment to remember past states.
- Can handle partially observable environments.

How They Work:

- Store past percepts \rightarrow Update model \rightarrow Decide action.
- Model helps fill in missing information.

Example:

- Robotic Vacuum Cleaner (Roomba):
 - o Remembers where it has already cleaned.
 - Avoids going over the same spot repeatedly.
- Navigation Robot:
 - Uses stored map to move around obstacles.

Analogy:

Like a **delivery person** who remembers which houses they have already delivered to.

Advantages:

- Works even if some info is missing.
- Can adapt to more complex environments.

Limitations:

- Requires storage and processing power.
- The model can become outdated if environment changes rapidly.

3. Goal-Based Agents

Definition:

- Choose actions to achieve a specific goal.
- Use planning and search to decide actions.

How They Work:

• Set goal \rightarrow Compare possible actions \rightarrow Choose best path toward goal.

Example:

- GPS Navigation System:
 - o Goal: Reach destination in shortest time.
 - Calculates and suggests best route.
- Chess-playing program:
 - \circ Goal: Win the game \rightarrow Select moves to checkmate opponent.

Analogy:

Like a **student** deciding which subjects to study first to pass an exam — focuses on the end goal.

Advantages:

- Flexible for multiple goals.
- Can plan ahead.

Limitations:

- Planning may be slow in large environments.
- Needs a clear goal to work.

4. Utility-Based Agents

Definition:

- Make decisions based on maximizing utility (happiness, satisfaction, efficiency).
- Consider trade-offs between goals.

How They Work:

- Assign value (utility) to outcomes → Choose action with highest utility.
- Works well for environments with **conflicting goals**.

Example:

- Self-Driving Car:
 - o Balances speed and safety.
 - o May choose a slightly longer route if it's safer.
- Netflix Recommendation System:
 - \circ Shows movies based on highest probability of user liking them.

Analogy:

Like **choosing a holiday destination** — you weigh costs, weather, and enjoyment to pick the best option.

Advantages:

Handles uncertainty well.

• Can prioritize better outcomes.

Limitations:

- Requires defining an accurate utility function.
- More complex to design.

5. Learning Agents

Definition:

- Improve performance over time based on experience.
- Can adapt to new environments and situations.

How They Work:

• Learn from past actions and outcomes → Adjust future behavior.

Components of a Learning Agent:

- 1. Learning Element: Improves the agent over time.
- 2. **Performance Element:** Chooses actions.
- 3. Critic: Gives feedback.
- 4. **Problem Generator:** Suggests exploratory actions.

Example:

• AlphaGo: Learned to play Go by playing millions of games.

• Spam Filter: Learns from flagged emails to improve filtering.

Analogy:

Like a **chef** who keeps improving recipes based on customer feedback.

Advantages:

- Can handle dynamic, unknown environments.
- Becomes better with time.

Limitations:

- Requires training data and time.
- May learn bad behavior if given poor feedback.