PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-124785

(43) Date of publication of application: 17.05.1996

(51)Int.CI.

H01G 4/12 H01G 4/12

(21) Application number: 06-279868

(71)Applicant: TDK CORP

(22)Date of filing:

19.10.1994

(72)Inventor: KAWANO NAOKI

NOMURA TAKESHI NAKANO YUKIE SATO AKIRA

ARASHI TOMOHIRO YAMAMATSU JUNKO

(54) MULTILAYERED CERAMIC CHIP CAPACITOR

(57) Abstract:

PURPOSE: To satisfy the temperature characteristics of a capacitor, by a method wherein a dielectric layer contains BaTiO3 as the main component, and at least one kind selected out of MgO, Y2O3, V2O5 and CaO and at least one kind selected out of SiO2, MnO, V2O5 and MoO2 are contained as the subcomponent, whose amounts are individually specified.

CONSTITUTION: The main component of a dielectric layer 2 is BaTiO3. The subcomponent is composed of at least one kind selected out of MgO, Y2O3, BaO and CaO, and at least one kind selected out of SiO2, MnO, V2O5 and MoO3. The ratio to BaTiO3 of 100 mole is as follows; MgO:0.1-3 mole, Y2O3:0 mole or higher and 5 mole or lower, BaO+CaO:2-12 mole, SiO2:2-12 mole, MnO:0 mole or higher and 0.5 mole or lower, V2O5:0-0.3 mole, MoO3:0-0.3 mole and V2O5+MoO3:0 mole or higher. A multilayered ceramic chip capactior 1 is provided with the above dielectric layers 2, so that the change with time of the capacitance under a DC electric field can be reduced.

LEGAL STATUS

[Date of request for examination] 06.12.1999
[Date of sending the examiner's decision of 20.11.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3326513
[Date of registration] 12.07.2002
[Number of appeal against examiner's decision of 2001-22768

rejection]

[Date of requesting appeal against examiner's decision of rejection]

20.12.2001

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-124785

(43)公開日 平成8年(1996)5月17日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H01G 4/12

3 5 8

349

審査請求 未請求 請求項の数4 FD (全 12 頁)

(21)出願番号	特願平6-279868	(71)出願人 000003067
		ティーディーケイ株式会社
(22)出顧日	平成6年(1994)10月19日	東京都中央区日本橋1丁目13番1号
		(72)発明者 川野 直樹
		東京都中央区日本橋一丁目13番1号 ティ
		ーディーケイ株式会社内
		(72)発明者 野村 武史
		東京都中央区日本橋一丁目13番1号 ティ
		ーディーケイ株式会社内
		(72)発明者 中野 幸恵
		東京都中央区日本橋一丁目13番1号 ティ
		ーディーケイ株式会社内
		(74)代理人 弁理士 石井 陽一
		最終頁に続く
		AXTRA SKICANA N

(54) 【発明の名称】 積層型セラミックチップコンデンサ

(57)【要約】

【目的】 容量の温度特性である×7 R特性を満足することができ、かつ、直流電界下での容量の経時変化が小さく、絶縁抵抗 I Rの加速寿命が長く、直流バイアス特性が良好であり、絶縁破壊が生じにくい積層型セラミックチップコンデンサを提供する。

【構成】 誘電体層が、主成分としてBaTiO3 を、副成分としてMgOと、Y2O3 と、BaOおよびCaOO1種以上と、SiO2 と、MnOと、V2O5 およびMoO3 の1種以上とを含有し、BaTiO310O モルに対する副成分の比率が、 $MgO:O.1\sim3$ モル、Y2O3:5 モル以下、 $BaO+CaO:2\sim12$ モル、 $SiO2:2\sim12$ モル、MnO:O.5 モル以下、 $V2O5:0\sim0.3$ モル、 $V2O5:0\sim0.3$ モル、V2O5+MoO3:0 モル超である積層型セラミックチップコンデンサ。

【特許請求の範囲】

【請求項1】 誘電体層と内部電極層とが交互に積層された構成のコンデンサチップ体を有する積層型セラミックチップコンデンサであって、

誘電体層が、主成分としてチタン酸バリウムを、副成分として酸化マグネシウムと、酸化イットリウムと、酸化パリウムおよび酸化カルシウムから選択される少なくとも1種と、酸化ケイ素と、酸化マンガンと、酸化バナジウムおよび酸化モリブデンから選択される少なくとも1種とを含有し、チタン酸バリウムをBaTiO3に、酸化マグネシウムをMgOに、酸化イットリウムをY2O3に、酸化パリウムをBaOに、酸化カルシウムをCaOに、酸化ゲイ素をSiO2に、酸化マンガンをMnOに、酸化バナジウムをV2O5に、酸化モリブデンをMoO3にそれぞれ換算したとき、BaTiO3100モルに対する比率が

MgO: 0. 1~3モル、

Y2 O3 : Oモル超5モル以下、

BaO+CaO: 2~12モル、

SiO2:2~12モル、

MnO: 0モル超0. 5モル以下、

V2 O5:0~0.3モル、

MoO3:0~0.3モル、

V₂ O₅ +M₀O₃ : Oモル超

である積層型セラミックチップコンデンサ。

【請求項2】 誘電体層の平均結晶粒径が 0. 45 μm 以下であり、誘電体層の X 線回折チャートにおいて、

(200) 面の回折線と(002) 面の回折線とが互い に少なくとも一部が重なって幅広の回折線が形成されて おり、この幅広の回折線の半値幅が0.35°以下であ る請求項1の積層型セラミックチップコンデンサ。

【請求項3】 誘電体層断面において、ドメインウォールの存在が確認できる結晶粒の比率が35~85%である請求項1または2の積層型セラミックチップコンデンサ。

【請求項4】 前記内部電極層に含まれる導電材が、Ni またはNi 合金である請求項1~3のいずれかの積層型セラミックチップコンデンサ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、積層型セラミックチップコンデンサに関する。

[0002]

【従来の技術】積層型セラミックチップコンデンサは、小型、大容量、高信頼性の電子部品として広く利用されており、1台の電子機器の中で使用される個数も多数にのぼる。近年、機器の小型・高性能化にともない、積層型セラミックチップコンデンサに対する更なる小型、大容量、低価格、高信頼性化への要求はますます厳しくなっている。

【0003】積層型セラミックチップコンデンサは通常、内部電極層用のペーストと誘電体層用のペーストと をシート法や印刷法等により積層し、一体同時焼成して 製造される。

【〇〇〇4】内部電極層の導電材には、一般にPdやPd合金が用いられているが、Pdは高価であるため、比較的安価なNiやNi合金等の卑金属が使用されつつある。内部電極層の導電材として卑金属を用いる場合、大気中で焼成を行なうと内部電極層が酸化してしまうため、誘電体層と内部電極層との同時焼成を、還元性雰囲気中で行なう必要がある。しかし、還元性雰囲気中で焼成すると、誘電体層が還元され、比抵抗が低くなってしまうため、非還元性の誘電体材料が提案されている。

【0005】しかし、非還元性の誘電体材料を用いた積層型セラミックチップコンデンサは、絶縁抵抗IRの寿命が短くなり、信頼性が低いという問題がある。

【0006】また、誘電体を直流電界にさらすと、比誘電率 ϵ_s が経時的に低下するという問題が生じる。チップコンデンサを小型、大容量化するために誘電体層を薄くすると、直流電圧を印加したときに誘電体層にかかる電界が強くなるため、比誘電率 ϵ_s の経時変化、すなわち容量の経時変化が著しく大きくなってしまう。また、誘電体層を薄くすると、絶縁破壊が起こりやすくなる。

【0007】さらに、コンデンサには直流バイアス特性が良好であることも要求される。直流バイアス特性とは、チップコンデンサに交流電界とこれに重畳する直流成分とが印加されたときの容量の変化率を表わすもので、印加される直流電界が大きくなると、一般に容量の低下がみられる。この特性が不十分であると、通常の使用時に直流電界が印加されたとき、容量が著しく低下して規格の容量に満たなくなってしまう、という問題が生じる。

【0008】ところで、EIA規格に定められたX7R特性と呼ばれる規格では、容量の変化率が、-55 $^{\circ}$ から 125 $^{\circ}$ $^{\circ}$ の間で ± 15 %以内(基準温度 25 $^{\circ}$ $^{\circ}$ と定められている。

【0009】X7R特性を満足する誘電体材料としては、例えば特開昭61-36170号公報に示されるBaTiO3+SrTiO3+MnO系の組成が知られている。しかし、このものは、直流電界下における容量の経時変化が大きく、例えば40℃で50Vの直流電界を1000時間印加すると、容量の変化率が-10~-30%程度となってしまい、X7R特性を満足することができなくなる。

【0010】また、この他、非還元性の誘電体磁器組成物としては、特開昭57-71866号公報に開示されているBaTiO3+MnO+MgO、特開昭61-250905号公報に開示されている(Ba $_{1-X}Sr_{X}$ O)a Ti $_{1-y}Zr_{y}O_{2}+\alpha$ ((1-z)MnO+ $_{z}CoO$)+ β ((1-t)A2 O5+ $_{t}L_{2}O_{3}$)+w

SiO2 (ただし、A=Nb、Ta、V、L=Yまたは 希土類元素)、特開平2-83256号公報に開示され ているチタン酸バリウムにガラス状態のBa α Ca_{1- α}SiO3 を添加したものなどが挙げられる。しかし、これらのいずれの誘電体磁器組成物も、容量の温度特性が 良好であること、直流でイアス特性が良好であること、絶縁抵抗の加速寿命が長いこと、という要求特性の全てを満足することはできなかった。例えば、特開昭61-250905号公報および特開平2-83256号公報にそれぞれ開示されているものでは、絶縁抵抗の加速寿命が短い。

【0011】このような事情から、本発明者らは特願平5-85705号および特願平5-154355号において、主成分としてチタン酸バリウムを含有し、副成分として酸化マグネシウムと、酸化イットリウムと、酸化バリウムおよび酸化カルシウムから選択される少なくとも1種と、酸化ケイ素とを所定量含有する誘電体層を有する積層型セラミックチップコンデンサを提案している。

[0012]

【発明が解決しようとする課題】本発明の目的は、容量の温度特性であるX7R特性を満足することができ、かつ、直流電界下での容量の経時変化が小さく、絶縁抵抗IRの加速寿命が長く、直流バイアス特性が良好であり、絶縁破壊が生じにくい積層型セラミックチップコンデンサを提供することである。

[0013]

【課題を解決するための手段】このような目的は、下記 (1)~(4)のいずれかの構成により達成される。

(1)誘電体層と内部電極層とが交互に積層された構成 のコンデンサチップ体を有する積層型セラミックチップ コンデンサであって、誘電体層が、主成分としてチタン 酸バリウムを、副成分として酸化マグネシウムと、酸化 イットリウムと、酸化パリウムおよび酸化カルシウムか ら選択される少なくとも1種と、酸化ケイ素と、酸化マ ンガンと、酸化バナジウムおよび酸化モリブデンから選 択される少なくとも1種とを含有し、チタン酸バリウム をBaTiO3に、酸化マグネシウムをMgOに、酸化 イットリウムをY2 O3 に、酸化パリウムをBaOに、 酸化カルシウムをCaOに、酸化ケイ素をSiO2に、 酸化マンガンをMnOに、酸化バナジウムをV2 O5 に、酸化モリブデンをMoO3にそれぞれ換算したと き、BaTiO3 100モルに対する比率がMgO: O. 1~3モル、Y2 O3 : Oモル超5モル以下、Ba O+CaO: 2~12モル、SiO2: 2~12モル、 MnO:0モル超0.5モル以下、V2O5:0~0. 3モル、MoO3:0~0.3モル、V2O5+MoO 3:0モル超である積層型セラミックチップコンデン サ。

- (2)誘電体層の平均結晶粒径が O. 45 μm 以下であり、誘電体層の X線回折チャートにおいて、(200)面の回折線と(002)面の回折線とが互いに少なくとも一部が重なって幅広の回折線が形成されており、この幅広の回折線の半値幅が O. 35°以下である上記
- (1) の積層型セラミックチップコンデンサ。
- (3) 誘電体層断面において、ドメインウォールの存在 が確認できる結晶粒の比率が35~85%である上記 (1) または(2) の積層型セラミックチップコンデン
- (4) 前記内部電極層に含まれる導電材が、N i または N i 合金である上記 (1) \sim (3) のいずれかの積層型 セラミックチップコンデンサ。

[0014]

サ。

【作用および効果】本発明によれば、特願平5-85705号および特願平5-154355号において報告したように、容量の温度特性に関するX7R特性を満足することができ、かつ、直流電界下での容量の経時変化が小さく、絶縁抵抗IRの加速寿命が長く、直流バイアス特性が良好な積層型セラミックチップコンデンサが実現する。しかも、本発明では誘電体層が酸化バナジウムおよび/または酸化モリブデンを所定量含むため、直流電界下での容量の経時変化がよりいっそう改善される。また、酸化バナジウムの添加により経縁破壊電圧が向上し、酸化モリブデンの添加によりIRの加速寿命が向上する。

【0015】また、誘電体層の平均結晶粒径を0.45 μm 以下とし、さらに、誘電体層のX線回折によって表 わされる特性を所定のものとすることにより、直流電界 下での容量の経時変化をさらに改良することができる。 また、このように平均結晶粒径を小さくすることによ り、IRの加速寿命が向上する。

【0016】このように本発明の積層型セラミックチップコンデンサでは、誘電体層を薄くしたために電界強度が高くなった場合でも、十分に高い信頼性が得られる。

【0017】なお、「積層セラミックコンデンサ」(学献社)の第 $33\sim38$ ページには、「低温焼結性チタン酸バリウム」についての報告が記載されている。同報告では、各種製造法を用いて微細なチタン酸バリウム粉末を製造しており、また、CuO、Bi2O3、PbO等を添加することにより液相焼結して、グレインサイズ $0.3\sim0.8~\mu m$ の焼結体を得ている。同報告には、このように本発明で限定する平均結晶粒径範囲と重なるグレインサイズの焼結体が記載されているが、誘電体層のX線回折チャートにおける(200)面の回折線と

(002) 面の回折線とについての記述は全くない。また、同報告記載のグレインサイズ $0.3\sim0.8\mu m$ のチタン酸バリウム焼結体は、本発明における誘電体層の組成と異なり、還元性雰囲気での焼成が不可能であるため、安価なNi 系電極を使用することができない。

[0018]

【具体的構成】以下、本発明の具体的構成について詳細 に説明する。

【 O O 1 9 】 [積層型セラミックチップコンデンサ] 本 発明の積層型セラミックチップコンデンサの構成例の断 面図を、図 1 に示す。

【0020】図1に示されるように、本発明の積層型セラミックチップコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサチップ体10を有し、このコンデンサチップ体10表面に、内部電極層3と導通する外部電極4を有する。コンデンサチップ体10の形状に特に制限はないが、通常、(10~5.6mm)×(0.5~5.0mm)×(0.5~1.9mm)程度である。内部電極層3は、その端面がコンデンサチップ体10の対向する2表面に交互に露出するように積層され、外部電極4は、コンデンサチップ体10の前記対向する2表面に形成され、所定のコンデンサ回路を構成する。

【0021】 <誘電体層2>誘電体層2は、主成分とし てチタン酸バリウムを、副成分として酸化マグネシウム と、酸化イットリウムと、酸化バリウムおよび酸化カル シウムから選択される少なくとも 1 種と、酸化ケイ素 と、酸化マンガンと、酸化バナジウムおよび酸化モリブ デンから選択される少なくとも1種とを含有する。チタ ン酸バリウムをBaTiO3に、酸化マグネシウムをM gOに、酸化イットリウムをY2 O3 に、酸化バリウム をBaOに、酸化カルシウムをCaOに、酸化ケイ素を SiO2に、酸化マンガンをMnOに、酸化バナジウム をV2 O5 に、酸化モリブデンをMoO3 にそれぞれ換 算したとき、誘電体層中における各化合物の比率は、B a T i O3 100モルに対しMgO: 0. 1~3モル、 好ましくはO. 5~2. Oモル、Y2 O3: Oモル超5 モル以下、好ましくは0. 1~5モル、より好ましくは 1モル超5モル以下、さらに好ましくは1.1~3.5 モル、BaO+CaO: 2~12モル、好ましくは2~ 6モル、SiO2:2~12モル、好ましくは2~6モ ル、MnO:0モル超0.5モル以下、好ましくは0. O 1~O. 4モル、V2 O5:0~O. 3モル、好まし くは0~0.25モル、MoO3:0~0.3モル、好 ましくは0~0. 25モル、V2 O5 +MoO3: Oモ ル超、好ましくは0.01~0.3モル、より好ましく は0.05~0.25モルである。

【 O O 2 2 】各酸化物の酸化状態は特に限定されず、各酸化物を構成する金属元素の比率が上記範囲内であればよい。

【0023】なお、誘電体層2には他の化合物が含まれていてもよいが、酸化コバルトは容量変化率を増大させるので実質的に含まれないことが好ましい。

【OO24】上記各副成分の含有量の限定理由は下記のとおりである。

【 O O 2 5 】酸化マグネシウムの含有量が前記範囲未満であると、容量の経時変化を小さくすることが困難となる。酸化マグネシウムの含有量が前記範囲を超えると、焼結性が急激に悪化し、緻密化が不十分となって I R加速寿命が低下し、また、高い比誘電率が得られない。

【 O O 2 6 】酸化イットリウムは、 I R加速寿命を向上させる効果を有し、直流バイアス特性も向上させる。酸化イットリウムの含有量が少ないと添加による効果が不十分となり、特に直流バイアス特性が不十分となる。酸化イットリウムの含有量が前記範囲を超えると比誘電率が低下し、また、焼結性が低下して緻密化が不十分となる。

【OO27】BaO+CaOの含有量が前記範囲未満であると、直流電界印加時の容量の経時変化が大きくなり、また、IR加速寿命が不十分となり、また、容量の温度特性を所望の範囲とすることができない。含有量が前記範囲を超えると、IR加速寿命が不十分となり、また、比誘電率の急激な低下が起こる。また、SiO2の含有量が前記範囲未満であると焼結性が低下して緻密化が不十分となり、前記範囲を超えると初期絶縁抵抗が低くなりすぎる。

【 O O 2 8 】酸化マンガンは誘電体層を緻密化する作用と I R加速寿命を向上させる作用とをもつが、含有量が 多すぎると直流電界印加時の容量の経時変化を小さくすることが困難となる。

【 O O 2 9】酸化バナジウムおよび酸化モリブデンは、 直流電界下での容量の経時変化を改善する。また、酸化 バナジウムは絶縁破壊電圧を向上させ、酸化モリブデン は I Rの加速寿命を向上させる。 V2 O5 およびM o O 3 の少なくとも一方が多すぎると、初期 I Rの極端な低 下を招く。

【0030】また、誘電体層中には、酸化アルミニウムが含有されていてもよい。酸化アルミニウムは比較的低温での焼結を可能にする作用をもつ。A 12 03 に換算したときの酸化アルミニウムの含有量は、誘電体層の1重量%以下とすることが好ましい。酸化アルミニウムの含有量が多すぎると比誘電率が著しく低下してしまい、同時にIR加速寿命も短くなってしまう。

【0031】誘電体層の平均結晶粒径は、好ましくは 0.45 μm 以下、より好ましくは 0.35 μm 以下で ある。平均結晶粒径が小さくなると結晶の異方性が小さくなるため、容量の経時変化も小さくなる。また、平均結晶粒径が小さくなると、IR加速寿命も向上する。結晶粒径の下限は特にないが、平均結晶粒径を小さくするためにはこれに対応して著しく小さい誘電体原料粉末を使う必要があり、ペースト化が難しくなる。このため、通常、誘電体層の平均結晶粒径は 0.10 μm 以上とすることが好ましい。なお、誘電体層の平均結晶粒径は、

(5)

誘電体層を研磨し、研磨面を化学エッチングや熱エッチングした後、プラニメトリック法を利用して走査型電子 顕微鏡像より算出する。

【〇〇32】誘電体層を構成する結晶は常温付近で正方 晶系である。結晶の異方性が減少するとは、立方晶系に 近づくということである。結晶の異方性の度合いは、誘 電体層のX線回折により確認することができる。結晶の 異方性が小さくなると、(200)面の回折線が低角度 側にシフトすると共に(OO2)面の回折線が高角度側 にシフトし、両回折線は互いに少なくとも一部が重なる ようになる。平均結晶粒径が Ο. 45 μm 以下である と、通常は見掛け上、両回折線は独立して観察されず、 (200) 面の回折線位置(2 θ =45.4°付近)と (002) 面の回折線位置 $(2\theta = 44.9°$ 付近) と の間に、幅広の回折線が観察されることになる。本発明 では、この幅広の回折線の半値幅が好ましくは0.35 。以下であり、より好ましくは0.30。以下である。 この半値幅が大きすぎる場合、結晶の異方性の低減が不 十分である。この半値幅の下限は特にないが、この半値 幅を0.10°未満とすることは困難であり、通常は $0.~15^{\circ}$ 以上である。なお、X線回折には、 $CuK\alpha$ 1 線を用いる。

【0033】結晶の異方性が比較的大きい場合には、(200)面の回折線のピークと(002)面の回折線のピークとが独立して観察されることもあるが、この場合には、通常、(200)面の回折線の肩部に(002)面の回折線のピークが現われた幅広の回折線となる。この場合には、最も高いピークの半分の高さの位置で幅広の回折線を切ったときの幅を、幅広の回折線の半値幅とする。

【0034】平均結晶粒径が0.45μm以下である場合、誘電体層断面の透過型電子顕微鏡写真において、ドメインウォールの存在が確認できる結晶粒の比率は、好ましくは35~85%であり、より好ましくは35~50%である。ドメインウォールが確認できる結晶粒の比率が高いと、容量の経時変化が大きくなりやすい。

【0035】誘電体層の結晶粒中では、元素が偏在していることが好ましい。この場合、通常、結晶粒中央部で濃度が高くなる元素と結晶粒周辺部で濃度が高くなる元素が存在するが、通常、電子顕微鏡の組成像で明瞭に確認することは難しい。

【0036】誘電体層のキュリー温度は、適用される規格に応じて組成を選択することにより適宜設定することができるが、一般に85℃以上、通常、120~135℃程度とする。

μm 程度となる。誘電体層の積層数は、通常、2~30 0程度とする。

【0038】
(0038】
(内部電極層3)
内部電極層3に含有される導電材は特に限定されないが、誘電体層2構成材料が耐還元性を有するため、卑金属を用いることができる。
導電材として用いる卑金属としては、NiまたはNi合金が好ましい。Ni合金としては、Mn、Cr、CoおよびAIから選択される1種以上の元素とNiとの合金が好ましく、合金中のNi含有量は95重量%以上であることが好ましい。

【 O O 3 9 】 なお、 N i または N i 合金中には、 P 等の 各種微量成分が O. 1 重量%程度以下含まれていてもよい

【 O O 4 1 】 <外部電極 4 > 外部電極 4 に含有される導電材は特に限定されないが、本発明では安価な N i 、 C u や、これらの合金を用いることができる。

【0042】外部電極の厚さは用途等に応じて適宜決定すればよいが、通常、 $10\sim50\,\mu m$ 程度であることが好ましい。

【 O O 4 3 】 [積層型セラミックチップコンデンサの製造方法] 本発明の積層型セラミックチップコンデンサは、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を印刷ないし転写して焼成することにより製造される。

【 O O 4 4 】 <誘電体層用ペースト>誘電体層用ペーストは、誘電体原料と有機ビヒクルとを混練して製造される。

【 O O 4 5 】誘電体原料には、誘電体層の組成に応じた粉末を用いる。誘電体原料の製造方法は特に限定されず、例えば、水熱合成法等により合成したBaTiO3に、副成分原料を混合する方法を用いることができる。また、BaCO3とTiO2と副成分原料との混合物を仮焼して固相反応させる乾式合成法を用いてもよく、水熱合成法を用いてもよい。また、共沈法、ゾル・ゲル法、アルカリ加水分解法、沈殿混合法などにより得た沈殿物と副成分原料との混合物を仮焼して合成してもよい。なお、副成分原料には、酸化物や、焼成により酸化物となる各種化合物、例えば、炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等の少なくとも1種を用いることができる。

【0046】誘電体原料の平均粒子径は、目的とする誘電体層の平均結晶粒径に応じて決定すればよいが、本発明で用いる組成系では結晶粒成長がほとんど生じないので、誘電体層の平均結晶粒径を 0.45μ m以下とする場合、誘電体原料には、通常、平均粒子径 0.4μ m以下の粉末を用いればよい。なお、この場合、誘電体原料の比表面積(BET値)は、 $2.5m^2/g$ 以上であること

が好ましい。

【0047】有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース等の通常の各種バインダから適宜選択すればよい。また、用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン、トルエン等の各種有機溶剤から適宜選択すればよい。

【0048】<内部電極層用ペースト>内部電極層用ペーストは、上記した各種導電性金属や合金からなる導電材、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、上記した有機ビヒクルとを混練して調製する。

【 O O 4 9 】 <外部電極用ペースト>外部電極用ペーストは、上記した内部電極層用ペーストと同様にして調製すればよい。

【0050】<有機ビヒクル含有量>上記した各ペースト中の有機ビヒクルの含有量に特に制限はなく、通常の含有量、例えば、バインダは1~5重量%程度、溶剤は10~50重量%程度とすればよい。また、各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選択される添加物が含有されていてもよい。これらの総含有量は、10重量%以下とすることが好ましい。

【0051】 <グリーンチップ作製>印刷法を用いる場合、誘電体層用ペーストおよび内部電極層用ペースト を、PET等の基板上に積層印刷し、所定形状に切断した後、基板から剥離してグリーンチップとする。

【0052】また、シート法を用いる場合、誘電体層用ペーストを用いてグリーンシートを形成し、このグリーンシート上に内部電極層用ペーストを印刷したものを積層した後、所定形状に切断して、グリーンチップとする。

【0053】<脱バインダ処理工程>焼成前に行なう脱バインダ処理の条件は通常のものであってよいが、内部電極層の導電材にNiやNi合金等の卑金属を用いる場合、特に下記の条件で行うことが好ましい。

昇温速度:5~300℃/時間、特に10~100℃/時間

保持温度:200~400°C、特に250~300°C 温度保持時間:0.5~24時間、特に5~20時間 雰囲気:空気中

【0054】</br>

気は、内部電極層用ペースト中の導電材の種類に応じて適宜決定すればよいが、導電材としてN;

やN;

合金等の卑金属を用いる場合、焼成雰囲気中の酸素分圧は、1
 $0^{-8}\sim 10^{-12}$ 気圧とすることが好ましい。酸素分圧が前記範囲未満であると、内部電極層の導電材が異常焼結を起こし、途切れてしまうことがある。また、酸素分圧

が前記範囲を超えると、内部電極層が酸化する傾向にあ る。

【0055】焼成時の保持温度は、1100~1400℃、特に1200~1300℃とすることが好ましい。保持温度が前記範囲未満であると緻密化が不十分であり、前記範囲を超えると直流電界印加時の容量の経時変化が大きくなる。

【 O O 5 6 】上記条件以外の各種条件は、下記のように することが好ましい。

【0057】昇温速度:50~500℃/時間、特に2 00~300℃/時間

温度保持時間:0.5~8時間、特に1~3時間 冷却速度:50~500℃/時間、特に200~300 ℃/時間

焼成雰囲気は還元性雰囲気とすることが好ましく、雰囲気ガスとしては、例えば、N2とH2との混合ガスを加湿して用いることが好ましい。

【 O O 5 8 】 <アニール工程>還元性雰囲気中で焼成した場合、コンデンサチップ体にはアニールを施すことが好ましい。アニールは、誘電体層を再酸化するための処理であり、これにより I R加速寿命を著しく長くすることができる。

【0059】アニール雰囲気中の酸素分圧は、 10^{-6} 気 圧以上、特に $10^{-5} \sim 10^{-4}$ 気圧とすることが好ましい。酸素分圧が前記範囲未満であると誘電体層の再酸化が困難であり、前記範囲を超えると内部電極層が酸化する傾向にある。

【0060】アニールの際の保持温度は、1100℃以下、特に500~1000℃とすることが好ましい。保持温度が前記範囲未満であると誘電体層の酸化が不十分となって寿命が短くなる傾向にあり、前記範囲を超えると内部電極層が酸化し、容量が低下するだけでなく、誘電体素地と反応してしまい、寿命も短くなる傾向にある。なお、アニール工程は昇温および降温だけから構成してもよい。この場合、温度保持時間は零であり、保持温度は最高温度と同義である。

【0061】上記条件以外の各種条件は下記のようにすることが好ましい。

[0062]

温度保持時間:0~20時間、特に6~10時間 冷却速度:50~500℃/時間、特に100~300 ℃/時間

雰囲気用ガスには、加湿したN2 ガス等を用いることが 好ましい。

【0063】なお、上記した脱バインダ処理、焼成およびアニールの各工程において、N2ガスや混合ガス等を加湿するには、例えばウェッター等を使用すればよい。この場合、水温は5~75℃程度が好ましい。

【 O O 6 4 】脱バインダ処理工程、焼成工程およびアニール工程は、連続して行なっても、独立に行なってもよ

い。

【0065】これらを連続して行なう場合、脱バインダ処理後、冷却せずに雰囲気を変更し、続いて焼成の保持温度まで昇温して焼成を行ない、次いで冷却し、アニール工程での保持温度に達したときに雰囲気を変更してアニール行なうことが好ましい。

【0066】また、これらを独立して行なう場合の焼成工程では、脱バインダ処理工程での保持温度まで昇温する際には脱バインダ処理と同様な雰囲気とし、そこから保持温度まで昇温して焼成を行ない、さらにアニール工程での保持温度まで降温する際には、上記した焼成雰囲気とし、続いてアニール工程での保持温度から降温する際には、上記したアニール雰囲気とすることが好ましい。また、独立して行なう場合のアニール工程では、N2ガス雰囲気下で保持温度まで昇温した後、雰囲気を変更してもよく、アニールの全工程を加湿したN2ガス雰囲気としてもよい。

【0067】<外部電極形成>上記のようにして得られたコンデンサチップ体に、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを印刷ないし転写して焼成し、外部電極4を形成する。外部電極用ペーストの焼成条件は、例えば、加湿したN2とH2との混合ガス中で600~800℃にて10分間~1時間程度とすることが好ましい。

【0068】そして、必要に応じ、外部電極4表面に、 めっき等により被覆層を形成する。

【0069】このようにして製造された本発明の積層型 セラミックチップコンデンサは、ハンダ付等によりプリ ント基板上などに実装され、各種電子機器等に使用され る。

【0070】本発明の積層型セラミックチップコンデンサの誘電体層には、使用時に、 $0.02V/\mu m$ 以上、特に $0.2V/\mu m$ 以上、さらには $0.5V/\mu m$ 以上、一般に $5V/\mu m$ 程度以下の直流電界と、通常、これに重畳する交流成分とが印加されるが、このような直流電界を印加しても、容量の経時変化は極めて少ない。

[0071]

【実施例】以下、本発明の具体的実施例を挙げ、本発明 をさらに詳細に説明する。

【 O O 7 2 】 <実施例 1 > 下記の各ペーストを調製した。

誘電体層用ペースト

水熱合成法により製造したBaTiO3に、(MgCO3)4・Mg(OH)2・5H2O、MnCO3、BaCO3、CaCO3、SiO2、Y2O3、V2O5およびMoO3から選択した化合物を下記の各表に示される組成となるように添加して、ボールミルにより16時間湿式混合し、誘電体原料とした。

【0073】各誘電体原料100重量部と、アクリル樹脂4.8重量部、塩化メチレン40重量部、トリクロロ

エタン20重量部、ミネラルスピリット6重量部および アセトン4重量部とをボールミルで混合してペースト化 した。

【〇〇74】内部電極層用ペースト

平均粒径 O. $8 \mu m$ σN i 粒子 1 O 0 重量部 e 、有機ビヒクル(エチルセルロース樹脂 8 重量部をブチルカルビトール 9 2 重量部に溶解したもの) 4 0 重量部およびブチルカルビトール 1 0 重量部 e 3 本ロールにより混練し、ペースト化した。

【〇〇75】外部電極用ペースト

平均粒径 $0.5\mu m$ の Cu 粒子 100 重量部と、有機ビヒクル(エチルセルロース樹脂 8 重量部をブチルカルビトール 92 重量部に溶解したもの) 35 重量部およびブチルカルビトール 7 重量部とを混練し、ペースト化した

【 0 0 7 6 】上記各誘電体層用ペーストおよび上記内部 電極層用ペーストを用い、図 1 に示される構成の積層型 セラミックチップコンデンサを作製した。

【 O O 7 7】まず、誘電体層用ペーストを用いてPETフィルム上に厚さ5μmのグリーンシートを形成し、この上に内部電極層用ペーストを印刷した後、PETフィルムからシートを剥離した。このようにして作製した複数枚のシートを積層し、加圧接着してグリーン積層体を得た。シートの積層数は4層とした。

【0078】次いでグリーン積層体を所定サイズに切断 してグリーンチップとし、脱バインダ処理、焼成および アニールを下記の条件にて連続的に行ない、コンデンサ チップ体を作製した。

【〇〇79】脱バインダ処理

昇温速度:15℃/時間

保持温度:280℃ 温度保持時間:8時間 雰囲気ガス:空気中

【0080】焼成

昇温速度:200℃/時間

保持温度:1300℃ 温度保持時間:2時間 冷却速度:300℃/時間

雰囲気ガス:加湿したN2とH2との混合ガス

酸素分圧: 10⁻⁹気圧 【0081】<u>アニール</u> 保持温度: 900℃

温度保持時間:9時間 冷却速度:300℃/時間 雰囲気ガス:加湿したN2ガス

酸素分圧: 10-5気圧

【 O O 8 2 】なお、それぞれの雰囲気ガスの加湿にはウェッターを用い、水温は 3 5 ℃とした。

【0083】得られたコンデンサチップ体の端面をサンドブラストにて研磨した後、上記外部電極用ペーストを

前記端面に転写し、加湿したN2 +H2 雰囲気中で80 0℃にて10分間焼成して外部電極を形成し、積層型セ ラミックチップコンデンササンプルを得た。

【0084】このようにして製造した各サンプルのサイズは、 $3.2 \text{mm} \times 1.6 \text{mm} \times 0.6 \text{mm}$ であり、誘電体層の厚さは $3 \mu \text{m}$ 、内部電極層の厚さは $2 \mu \text{m}$ であった。【0085】各サンプルの誘電体層の組成を各表に示す。組成は、前述したようにBaTiO3100モルに対する比率で表わしてある。

【 0 0 8 6】各サンプルの誘電体層の平均結晶粒径は、 0.35 μm であった。平均結晶粒径は、サンプル断面の走査型電子顕微鏡写真を用いて、前述した方法により 算出した。サンプルNo.110の誘電体層の走査型電子顕微鏡写真を図2に示す。

【0087】また、各サンプルの表面に $CuK\alpha_1$ 線を照射して誘電体層のX線回折を行なった。この結果、すべてのサンプルで(200)面の回折線と(002)面の回折線とが重なって幅広の回折線となっており、両回折線の識別は不可能であった。これら幅広の回折線の半値幅は、 $2\theta=0.30\sim0.34°$ の範囲にあった。サンプルNo.1160X線回折チャートを図3に示す。

【0088】また、各サンプルの誘電体層の透過型電子 顕微鏡写真を撮影し、ドメインウォールが観察される結 晶粒の比率を調べた。その結果、ドメインウォールが観 察される結晶粒の比率は、44~50%の範囲にあっ た。サンプルNo. 102の透過型電子顕微鏡写真を、図 4に示す。 【 O O 8 9 】各サンプルについて下記の測定を行なった。結果を各表に示す。

【0090】容量の温度特性

X 7 R特性: L C R メータにより、 $-55 \sim 125 ^{\circ}$ について測定電圧 1V で容量を測定し、容量変化率が $\pm 15 ^{\circ}$ 以内(基準温度 $25 ^{\circ}$ C) を満足するかどうかを調べた。満足する場合をO、満足しない場合を \times とした。

【0091】直流電界下での容量の経時変化

L C R メーターにより、測定電圧 1. O V (交流)で初期容量 C_0 を測定した。次いで、誘電体層の厚さ $1~\mu$ m あたり 2. 1~V の直流電界を 4~O $^{\circ}$ にて 1~O~O の時間印加した後、無負荷状態で室温にて 2~4 時間放置した。放置後に容量を測定し、初期容量 C_0 からの変化量 $A~C_1$ を求めて、変化率 $A~C_1$ $A~C_0$ を算出した。なお、放置後の容量は上記条件にて測定した。

【OO92】絶縁抵抗IRの加速寿命

140°Cにて15 V/μ m の電界下で加速試験を行ない、抵抗(IR)が2×10 5 Ω 以下になるまでの時間を寿命時間とした。

【0093】比誘電率 ϵ_s

25℃における比誘電率を測定した。

【0094】破壊電圧VR

室温において、自動昇電圧器を用いて直流電圧を印加 し、破壊試験を行なった。漏れ電流が1mA以上となった ときの電圧を、破壊電圧とした。

[0095]

【表1】

表 1

					層組成					温度	容量の	IR加速		破壞電圧
サンプル	MgO	Y202	Ba0	CaO	BaO+CaO	SiO ₂	MnO	$V_{\mathbf{z}}O_{\mathbf{z}}$	MoO _B	特性	経時変化	寿命	£ .	$V_{\mathbf{B}}$
No.	(tr)	(UF)	(t n)	(th)	(fr)	(EII)	(fa)	(£a)	(七小)	X7R	(%)	(時間)	(25℃)	(V/μm)
101 (比較) 2	2.13	1.74	1.26	3	3	0.19	0*	0*	0	-6. 2	54	2320	30
102	2	2.13	1.74	1. 26	3	3	0.19	0.01	0	Ō	-6.0	56	2323	60
103	2	2.13	1.74	1.26	3	3	0.19	0.05	0	Ō	-5.8	79	2364	110
104	2	2.13	1.74	1.26	3	3	0.19	0.1	0	0	-3.9	158	2366	125
105	2	2.13	1.74	1.26	3	ġ.	0.19	0.2	0	Ō	-2.8	162	2360	127
106 (比較) 2	2.13	1.74	1. 26	3	3	0.19	0.4*	0	0	-3.6	52	2356	124
107 (比較) 2	2.13	1. 74	1. 26	3	3	0.375				-8.0	60	2218	74
108	2	2.13	1.74	1.26	3	3	0.375	0.01	0	Ō	-7.9	71	2220	86
109	2	2.13	1.74	1. 26	3	3	0.375	0.05	0	Ō	-7.6	97	2270	94
110	2	2.13	1.74	1. 26	3	3	0.375	0.1	0	Ō	-5.7	174	2273	123
111	2	2.13	1.74	1.26	3	3	0.375	0.2	0	0	-3.4	178	2268	126
112 (比較) 2	2.13	1.74	1.26	3	3	0.375	0.4*	0	Ō	-3.0	54	2272	102
113	2	2.13	1.74	1.26	3	3	0. 375	0	0. 01		-6.8	61	2238	72
114	2	2.13	1.74	1.26	3	3	0.375	0	0.05	Ō.	-6. 2	137	2302	87
115	2	2.13	1.74	1.26	3	3	0.375	0	0.1	Ō	-2.0	232	2328	73
116	2	2.13	1.74	1.26	3	3	0.375	0	0.2	Ō	+0.4	586	2338	108
117 (比較		2.13	1.74	1.26	3	3	0.375	0	0.4*	0	+0.5	27	2382	113
118 (比較		2.13	1.74	1.26	3	3	0.375	0	0.8+	×	-3.5	_	2209	40
119 (比較) 2	2.13	1.74	1.26	3	3	0.375	0	1.0*	×	-3.1	_	2135	_

*)限定範囲を外れる値

表 2

			誘	電体	層組成					温度	容量の	IR加速		破壊電圧
サンプル	Mg0	Y ₂ O ₈	Ba0	CaO	BaO+CaO	SiO ₂	MnO	V ₂ O ₅	Mo0s	特性	経時変化	寿命	E s	V _B
No.	(モル)	(EN)	(th)	(EA)	(EN)	(fr)	(ta)	(EA)	(EN)	X7R	(%)	(時間)	(25°C)	(V/µm)
201	2	2.13	1.74	1.26	3	3	0.1	0.1	0	0	-3.2	21	2380	94
202	2	2.13	1.74	1. 26	3	3	0.15	0.1	0	0	-3.8	81	2372	112
203	2	2.13	1.74	1. 26	3	3	0. 25	0.1	0	0	-4.3	161	2330	124
204	2	2.13	1.74	1. 26	3	3	0.3	0.1	0	0		168	2291	120
205	2	2. 13	1.74	1.26	3	3	0.375	0.05	0.1		-1.6	543	2456	106
206	2	0. 53	1.74	1. 26		3	0.375	0.1	0		-7.3	39	2492	91
207 .	2	1.06	1.74	1.26	3	3	0.375	0.1	0	0	-6.0	103	2325	. 94
208	2	1.50	1.74	1.26	3	3	0.375	0.1	0	0	-5.9	112	2289	98
209	2	4.25	1.74	1.26	3	3	0.375	0.1	0	O_	-4.3	82	2072	96
210 (比較)	0.	2. 13	1.74	1. 26	3	_ 3	0.375	0.01	0-		-16.5	29	3320	83
211	0.2	2.13	1.74	1.26	3	3	0.375	0.01	0	0	-14.2	37	3160	76
212	0.5	2.13	1.74	1.26	3	3	0.375	0.01	0	0	-11.5	54	2802	80
213	1.5	2.13	1.74	1. 26	3	3	0.375	0.01	0	0_	-8.7	68	2410	82
214	2	2.13	3. 36	2. 44	5.8	5.8	0.19	0.01	0	0	-5.4	54	1851	42
215	2	2.13	4.64	3. 36	8.0	8.0	0.19	0.01	0	0	-6.8	30	1703	30

*)限定範囲を外れる値

【0097】上記各表に示される結果から、本発明の効果が明らかである。なお、IR加速寿命や破壊電圧が示されていないサンプルは、半導体化などのために測定が不可能だったサンプルである。

【0098】〈実施例2〉誘電体層の組成を表3に示されるものとし、誘電体層の平均結晶粒径を0.60μm

とした以外は実施例1と同様にしてサンプルを得た。これらのサンプルについて実施例1と同様な測定を行なった。結果を表3に示す。

[0099]

【表3】

表 3

	誘電体層組成										容量の	IR加速		破壞電圧
サンプル No.	MgO (£A)	Y202 (44)	BaO (EA)	CaO (t/l)	BaO+CaO (EN)	SiO ₂ (+N)	MnO (モル)	¥205 (£N)	MoO₃ (£N)	温度 特性 X7R	経時変化 (X)	寿命(時間)	ε. (25℃)	V _B (V/μm)
301 (比較) 2	2. 13	1.74	1.26	3	3	0.19	0*	0*	0.	-9.1	0.9	2580	37
302	2	2.13	1.74	1.26	3	3	0. 19	0.1	0	0	-6.6	2.0	2583	77
303	2	2.13	1.74	1.26	3	3	0.19	0	0. 1	0	-4.8	3.1	2636	41
304	2	2. 13	1.74	1.26	3	3	0.19	0.05	0.1	0	-3.9	16.0	2691	52

+)限定範囲を外れる値

【0100】なお、上記各表に示される本発明サンプルは、静電容量の温度特性がB特性 {-25~85℃で容量変化率±10%以内(基準温度20℃)}も満足していた。

【図面の簡単な説明】

【図1】本発明の積層型セラミックチップコンデンサの 構成例を示す断面図である。

【図2】図面代用写真であって、積層型セラミックチップコンデンサの誘電体層の断面の走査型電子顕微鏡写真である。

【図3】積層型セラミックチップコンデンサの誘電体層

のX線回折チャートである。

【図4】図面代用写真であって、積層型セラミックチップコンデンサの誘電体層の透過型電子顕微鏡写真である

【符号の説明】

- 1 積層型セラミックチップコンデンサ
- 10 コンデンサチップ体
- 2 誘電体層
- 3 内部電極層
- 4 外部電極

【図2】

福區代用写真

1 µm

【図4】 図面代用写真

⊢—⊣ 100 na

フロントページの続き

(72) 発明者 佐藤 陽 東京都中央区日本橋一丁目13番1号 ティ

果京都中央区日本橋一」目13番1号 ティーディーケイ株式会社内

(72)発明者 嵐 友宏

東京都中央区日本橋一丁目13番1号 ティ

ーディーケイ株式会社内

(72)発明者 山松 純子

東京都中央区日本橋一丁目13番1号 ティ

ーディーケイ株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.