

	٠.	37	
- 6		10	N
1	•	W	7
	w	N	и

Joré (b)	Alejandro	Samper Permutation 1 2 3 4
(b)	Region	Permutation 1234
	Ĭ	3 1 2 4
	2	3 2 1 4
	3	3 2 4 1
	4	3 4 2 1
	5	3 4 1 2
	6	3 1 4 2.
	7	1 3 4 2
	8	1 4 3 2
	9	1 4 2 3
	- 10	1243
	11	1 2 3 4
	12	1 3 2 4

X3 < X1 < X2 < X4 X3 < X2 < X1 < X4 X3 < X2 < X4 < XL X3 < X4 < X2 < X1 x 3 < X4 < X1 < X2 X3 < X1 < X4 < X2 X1 < X3 < X4 < X2 X1 4 X4 6 X3 6 X2 X 2 < X 4 < X 2 < X3. X1 < X2 < X4 < X3

© For itje {1,2,3,43 we put Xi> Xj to be the positive side of Xi= Xj if i>j Sien vector

	Sign vector
Face	
_, a	(+,+,+,+,+++)
6	(0,-,+,-,+,+)
c	(+,0,+,-,+,+)
d	(+,0,+,-,0,+)
ее	(0, -, 0, -, 0, +)
f	(0,=,-,-,0)
g	(t,t,t,0,0,0)
h	(+,+,+,+,-,-)
h	(0,+,0,+,0,-)
i	(-,0,0,0)
j	(0,-1-,-,+)
4	
	1

José Alejandro Samper. 2007 2177. Assume that A is a hyperplane arrangement with signs defined for each hyperplane of A. Then there is a face that corresponds to a given sign vector if and only if there is one vector in the groundspace that satisfies the inequalites-equalities implied by the vector. With this in mind we can the inequalities.

forces of Ani very easy, Alle the inequalities.

equalities are of the form Xi > Xj or Xi = Xj, thus what we get is a coherent ordering of the variables. This induces our ordered partien in the tollowing way: 1) inj if X:= X;
(2) [i] < [j] if X: < X; This injets the faces of An-1 in the ordered partitions and the surjectivity is the Surjectivity tollows also from the first fact. I for [i] < [i] < [i] [i] = [i] Impathion the define Xu=Xi if enjum unj and Xu < Xi if [m] < [i]. Example: We use (a) with the force d.

the sign vector gives: XxxX. X27X1, X3=X1, X47X1, X27X3, X2=X4, X47X3.

that is: $X_1 = X_2 + X_1$, $X_2 = X_4$, $X_3 = X_4$, $X_4 > X_1$, $X_2 = X_4$, thus we get the ordered partition: $X_1 = X_3 < X_2 = X_4$, thus we get the ordered