פתרון תרגיל מספר 9־ חישוביות וסיבוכיות

שם: מיכאל גרינבאום, **ת.ז:** 211747639

6 ביוני 2020

שאלה 1

סעיף 1

 $\overline{L} \in P$:צ"ל

הוכחה:

מהיות $L \in P$ קיימת מ"ט \mathcal{M} דטרמינסטית שמכריעה את בזמן פולינומי. $O\left(t\left(n
ight)$ מהיות $\mathcal M$ רצה בזמן פולינומי קיים פולינום $t\left(n
ight)$ כך שזמן הריצה של נבנה M דטרמינסטית באופן הבא:

- x נקבל קלט.
- x על \mathcal{M} על 2.
- x ענה על על ש־ ממה ש־ .3

תחילה נשים לב ש־ M מכריעה כי \mathcal{M} מכריעה וגם מתקיים

$$x \in \overline{L} \iff x \notin L \iff x \notin L(\mathcal{M}) \iff x \in L(M)$$

 $\overline{\overline{L}}=L\left(M
ight)$ ולכן מתקיים , $\left|x
ight|=n$ נסמן

נשים לב ששלב 1 לוקח $O\left(1\right)$, שלב 2 לוקח $O\left(t\left(n\right)\right)$ ושלב 3 לוקח לוקח $O\left(1\right)$ ולכן זמן הריצה של

$$O\left(1\right) + O\left(t\left(n\right)\right) + O\left(1\right) = O\left(t\left(n\right)\right)$$

. כלומר זמן הריצה של M חסום על ידי $O\left(t\left(n
ight)
ight)$ ו־ $O\left(t\left(n
ight)
ight)$ פולינומי ולכן M רצה בזמן פולינומי . כלומר הראנו שקיימת M דטרמניסטית שמכריעה את \overline{L} וגם M רצה בזמן פולינומי ולכן $\overline{L} \in P$ מההגדרה, כנדרש

מ.ש.ל.א.©

2 סעיף

(שיניתי שמות כדי שיהיה יותר קל) $L_1 \cap L_2 \in \mathrm{NP}$ צ"ל:

. מהיות מ"ט L_1 את שמכריעה שמכריעה לא מ"ט מ"ט \mathcal{M}_1 לא דטרמינסטית מהיות מהיות לו קיימת מ $O\left(t_{1}\left(n
ight)$ על ידי חסום על ידי פולינום הריצה של הריצה של חסום על ידי פולינומי פולינום מהיות \mathcal{M}_{1} בישומן הריצה של פולינומי פולינומי פולינום היים פולינום מו . בזמן פולינומי בימן מ"ט \mathcal{M}_2 לא דטרמינסטית מ"ט בימן פולינומי מהיות לבימת מ"ט \mathcal{M}_2 לא דטרמינסטית מהיות $O\left(t_{2}\left(n
ight)
ight)$ ידי חסום על אד הריצה של בך לבך כך שזמן פולינומי קיים פולינומי פולינום לב $t_{2}\left(n
ight)$ נבנה M דטרמינסטית באופן הבא:

x נקבל קלט.1

- נשמור את x בסרט שני .2
 - x על \mathcal{M}_1 על 3.
- ל,x אם דוחה את \mathcal{M}_1 אם 4.
- \mathcal{M}_2 ננקה את תוכן הסרט שנכתב על ידי.
 - אנ הסרט הראשון x על הסרט הראשון 6.
 - על הסרט הראשון \mathcal{M}_2 את נריץ. \mathcal{M}_2
 - x על \mathcal{M}_2 גענה כמו .8

תחילה נשים לב ש־ M מכריעה כי $\mathcal{M}_1, \mathcal{M}_2$ מכריעות (עוצרות בכל ריצה). וגם נשים לב ש־ M מקבל אם"ם $\mathcal{M}_1, \mathcal{M}_2$ קיבלו את M ולכן

 $x \in L_1 \land L_2 \iff x \in L_1 \land x \in L_2 \iff x \in L(\mathcal{M}_1) \land x \in L(\mathcal{M}_2)$

 \iff exists an accepting run of \mathcal{M}_1 on $x \land$ exists an accepting run of \mathcal{M}_2 on x

 \iff exists an accepting run of M on $x \iff x \in L(M)$

$$oxedsymbol{L_1\cap L_2=L\left(M
ight)}$$
 ולכן מתקיים ולכן מתקיים ולכן מתקיים ולכן מתקיים

$$O(1) + O(|x|) + O(t_1(n)) + O(t_1(n)) + O(1) + O(|x|) + O(t_2(n)) + O(1)$$

= $O(|x| + t_1(n) + t_2(n))$

כלומי זמן הריצה של M חסום על ידי $O\left(|x|+t_1\left(n\right)+t_2\left(n\right)\right)$ ולכן מהיות ולכן פולינומיים, סכומם פולינומי.

. כלומר הראנו שקיימת Mלא דטרמניסטית שמכריעה את בזמן לא דטרמניסטית לא דטרמניסטית את את Mוגם שקיימת לא כלומר כלומר הראנו

ולכן $L_1 \cap L_2 \in \mathrm{NP}$ מההגדרה, כנדרש

מ.ש.ל.ב.☺

3 סעיף

 $L_1\cdot L_2\in P$ צ"ל:

הוכחה

. מהיות L_1 קיימת מ"ט \mathcal{M}_1 דטרמינסטית שמכריעה את בזמן פולינומי מהיות לוימת מ

 $O\left(t_{1}\left(n
ight)
ight)$ אידי חסום על שזמן הריצה של בך לו $t_{1}\left(n
ight)$ פולינומי פולינומי פולינומי מהיות \mathcal{M}_{1}

. בזמן בזמן בזמן את שמכריעה שמכריעה דטרמינסטית מ"ט \mathcal{M}_2 קיימת מ"ט בזמן מהיות מהיות ל $L_2 \in P$

 $O\left(t_{2}\left(n
ight)
ight)$ אידי חסום על שזמן הריצה של כך שזמן בולינום פולינום פולינום פולינום לבנה \mathcal{M}_{2} החסום על אידי פולינום מהייות באופן הבא:

x נקבל קלט.1

 $:i \in [|x|]$ לכל.

נחשב את $u \cdot v$ בסרט שני ,|u| = i כאשר $x = u \cdot v$ אני

על u בסרט השני (ב) נריץ את \mathcal{M}_1 את

ג) נכתוב את v בסרט השלישי

- על v בסרט השלישי (ד) על את \mathcal{M}_2 את (ד)
- נקבל את v קיבל את וגם \mathcal{M}_2 קיבל את קיבל את (ה)
 - 3. נדחה

. מכריעות שים לב שיM מכריעות מכריעות מכריעות שים לב שי

וגם \mathcal{M}_2 מקבל את עבורו u מקבל את עבורו i מקבל קיים את מקבל את מקבל את מקבל את מקבל את אונם נשים את מקבל את את מקבל א

$$x \in L_1 \cdot L_2 \iff x = u \cdot v \text{ s.t. } u \in L_1 \land v \in L_2 \iff x = u \cdot v \text{ s.t. } u \in L(\mathcal{M}_1) \land v \in L(\mathcal{M}_2)$$

 $\iff x = u \cdot v \text{ s.t. } \mathcal{M}_1 \text{ accepts } u \wedge \mathcal{M}_2 \text{ accepts } v$

 $\iff \exists i \in [|x|] \text{ s.t. } x = u \cdot v \wedge |u| = i \text{ s.t. } \mathcal{M}_1 \text{ accepts } u \wedge \mathcal{M}_2 \text{ accepts } v$

 $\iff M \text{ accepts } x = u \cdot v \iff u \cdot v \in L(M) \iff x \in L(M)$

$$L\left(M
ight)=L_{1}\cdot L_{2}$$
 כלומר קיבלנו כי , $\left|x
ight|=n$ נסמן לב

- O(1), ששלב 1 לוקח
- בים: מחשבים מחשבים: $O\left(|x|\right)$ פעמים ובכל פעם מחשבים:
- (x בי האותיות הראשונות בי i הוא פשוט ה־ i האותיות (א) $O\left(|x|\right)$ לוקח (א)
 - $O\left(|x|\right)$ על הסרט לוקח על u,v של כתיבה (ב)
 - $O\left(t_{1}\left(|u|
 ight)
 ight)=O\left(t_{1}\left(i
 ight)
 ight)$ על על \mathcal{M}_{1} על אוקח \mathcal{M}_{1}
 - $O\left(t_{2}\left(|v|\right)\right)=O\left(t_{2}\left(n-i\right)\right)$ על על על \mathcal{M}_{1} לוקח (ד)
 - O(1) החלטה לוקחת (ה
 - O(1) שלב 1 לוקח 3.

ולכן זמן הריצה של M הוא

$$O(1) + \sum_{i=0}^{|x|} (O(|x|) + O(t_1(i)) + O(t_2(n-i)) + O(1))$$

$$=O(|x|^2) + \sum_{i=0}^{|x|} O(t_1(i) + t_2(n-i)) = O(n^2) + \sum_{i=0}^{|x|} O(t_1(i) + t_2(i))$$

סכומם סכומם $n,t_1\left(n\right),t_2\left(n\right)$ זולכן מהיות $O\left(n^2\right)+\sum_{i=0}^nO\left(t_1\left(i\right)+t_2\left(i\right)\right)$ פולינומיים, פולינומי של פעמים הינו פולינומי ולכן M רץ בזמן פולינומי.

. כלומר הראנו שקיימת M דטרמניסטית שמכריעה את בו $L_1 \cdot L_2$ וגם M רצה בזמן פולינומי.

ולכן $L_1 \cdot L_2 \in P$ מההגדרה, כנדרש

מ.ש.ל.ג.©

4 סעיף

(3,4) שיניתי את מספרי השפות כדי לא להתבלבל עם מספרים (שיניתי את מספרים $L_1 \cdot L_2 \in \mathrm{NP}$

הוכחה:

מהיות $L_1\in \mathrm{NP}$ קיימת מ"ט \mathcal{M}_1 לא דטרמינסטית שמכריעה את בזמן פולינומי. $L_1\in \mathrm{NP}$ מהיות \mathcal{M}_1 רצה בזמן פולינומי קיים פולינום $t_1\left(n\right)$ כך שזמן הריצה של \mathcal{M}_1 חסום על ידי \mathcal{M}_1 מהיות \mathcal{M}_1

 L_2 איז איז פולינומי. איז ביומן פולינומי. איז ביומן פולינומי. איז ביומן פולינומי. ביומן $L_2 \in \mathrm{NP}$ איז דטרמינסטית שמכריעה את

 $O\left(t_{2}\left(n
ight)
ight)$ ידי חסום על שזמן הריצה על כך באמן כך ל $t_{2}\left(n
ight)$ פולינומי פולינומי באמן פולינומי מהיות מהיות

נבנה M דטרמינסטית באופן הבא:

- x נקבל קלט.
- $i \in [|x|]$ לכל.
- נכתוב את בסרט שני |u|=i כאשר $x=u\cdot v$ גסרט שני (א)
 - על u בסרט השני (ב) על את \mathcal{M}_1 את (ב)
 - ג) נכתוב את v בסרט השלישי
 - על v בסרט השלישי (ד) על את \mathcal{M}_2 את (ד)
 - נקבל את v קיבל את וגם \mathcal{M}_2 קיבל את קיבל את (ה)
 - 3. נדחה

. (עוצרות בכל ריצה) מכריעות מכריעה כי מכריעה M מכריעות $\mathcal{M}_1, \mathcal{M}_2$ מכריעה שי

v את מקבל את אוגם M_2 מקבל את עבורו עבורו עבורו i מקבל קיים M מקבל שי

ולכן M_2 אם קיימת ריצה מקבלת של M_1 וגם ריצה מקבלת של M_2 אם קיימת ריצה מקבלת של M_2 אם קיימת ריצה מקבלת של M_1

$$x \in L_1 \cdot L_2 \iff x = u \cdot v \text{ s.t. } u \in L_1 \wedge v \in L_2 \iff x = u \cdot v \text{ s.t. } u \in L(\mathcal{M}_1) \wedge v \in L(\mathcal{M}_2)$$

- $\iff x = u \cdot v \text{ s.t. exists accepting run of } \mathcal{M}_1 \text{ on } u \wedge \text{exists accepting run of } \mathcal{M}_2 \text{ on } v$
- $\iff \exists i \in [|x|] \text{ s.t. } x = u \cdot v \wedge |u| = i \text{ s.t. } \text{ exists accepting run of } \mathcal{M}_1 \text{ on } u \wedge \text{ exists accepting run of } \mathcal{M}_2 \text{ on } v$
- \iff exists accepting run of M on $x = u \cdot v \iff u \cdot v \in L(M) \iff x \in L(M)$

$$L\left(M
ight)=L_{1}\cdot L_{2}$$
 כלומר קיבלנו כי , $\left|x
ight|=n$ נסמן נשים לב

- O(1), ששלב 1 לוקח
- ב. שלב 2 נעשה $O\left(|x|
 ight)$ פעמים ובכל פעם מחשבים: 2
- (x בי האותיות הראשונות בי i הוא פשוט ה־ i האותיות (א) $O\left(|x|\right)$ לוקח (א)
 - $O\left(|x|\right)$ כתיבה של u,v על הסרט לוקח
 - $O\left(t_{1}\left(\left|u\right|
 ight)
 ight)=O\left(t_{1}\left(i
 ight)
 ight)$ על על u על לוקח \mathcal{M}_{1} לוקח (ג)
 - $O\left(t_{2}\left(|v|\right)\right)=O\left(t_{2}\left(n-i\right)\right)$ על על u על אל \mathcal{M}_{1} איז הרצה של \mathcal{M}_{1}
 - O(1) החלטה לוקחת (ה
 - O(1) שלב 1 לוקח

ולכן זמן הריצה של M הוא

$$O(1) + \sum_{i=0}^{|x|} (O(|x|) + O(t_1(i)) + O(t_2(n-i)) + O(1))$$

$$=O(|x|^2) + \sum_{i=0}^{|x|} O(t_1(i) + t_2(n-i)) = O(n^2) + \sum_{i=0}^{|x|} O(t_1(i) + t_2(i))$$

סכומם סכומם $n,t_1\left(n\right),t_2\left(n\right)$ חלומר הריצה של $O\left(n^2\right)+\sum_{i=0}^nO\left(t_1\left(i\right)+t_2\left(i\right)\right)$ פולינומיים, פולינומי של פעמים הינו פולינומי ולכן M רץ בזמן פולינומי.

. כלומר הראנו שקיימת Mרצה בזמן שמכריעה את שמכריעה את לא דטרמניסטית לא דטרמניסטית לא Mרצה שקיימת כלומר כלומר

ולכן $L_1 \cdot L_2 \in \mathrm{NP}$ מההגדרה, כנדרש