Fixpunktformel von L	efschetz	08.01.2019
Der Fixpunktsatz von L stetigen Abbildungen die ist.	efschetz besagt, dass Existenz eines Fixpun	bei bestimmten lutes gesichert
Motivation aus der Analysis: (2.B. Iterierte Abb., DGLs)		
+ graph (f)	$\Delta = \{(x,x)\}$ Diagonal	e
(X-1)	$graph(f) = \{(x,f(x))\}$	
↓	FP => L(\$) = -1	
Wollen betrachten: glatt	e Abb. $f: X \rightarrow X$, X top. einer kompakten, orien	Raum, tierten HF
Def. 1: x FP von f, wenn für	$(x,t(x)) \in X \times X \partial H : (x't(x))$))∈ graph(f)∩ Δ
Def. 2: I(A, graph(f)) heißt Notation: L(f) "	globale Lefschetz-Zahl Drientierte Schnittzahl"	von f.
Beispiel: Torus T2 := S1 x	s^	
=> L(f)=-	1 Wirdurfenhier einfo weil hier nur trans	
	Schnitte auftreten	
f(x=0) = f(x=1)		
Lefschetz Fixpunkt Satz: f Abb. auf MF wie oben Es gilt: L(f) = 0 = FP		
(Die Umkehrung d	es Satzes gilt nicht!)	
Bew.: f kein FP ⇒ Dun		ransversal []
Proposition: L(f) ist hom	notopie invariant.	
D.h. die Eigenschaft einen Abb., sondern der Hornotop		enschaft der
Def. 3: f mit graph (f) 7 Eine Lefschetz-Abb. hat	ħΔ heißt Lefschetz-Abb	2.
Die "meisten" Abb. Sind Lef		
Proposition: Jede Abb. f ist	homotop tu einer lefsche	tz-Abb.
Bew: Idee:	Woller woller	n Transver-
Tow!	sali	tat erreichen
$graph(f) = im(x \mapsto (x, f(x))) = im$	s-Theorem, aber muss Vorta (F) Transv. Hom. Th. 13G: F~	
Wollen: Im(G)=graph(g) s.	0. 977	

```
Def. 4: f: x → x, f ~ ld
                                              I(\Delta, \Delta) schneiden sich nicht
    \Rightarrow (i) L(Id) =: X(X)
                                             transversal, ist nicht wohldef.
        (ii) Falls f keinen FP ⇒ X(X)=0
                                             also stören wir ein bisschen
 -> Wie prufen wir, ob eine Abb. eine Lefschetz-Abb. ist?
Def. 5: x heißt Lefschetz-FP von f, falls dxf mer FP +0 hat
    (d.h. alle EW von dxf sind ++1)
    F Lefschetz-Abb. (=> alle FP von f sind Lefschetz-FP
Def. 6: lokale Lefschetz-Zahl: L(f) = [ Lx(f)
     x Lefachetz-FP, Lx(f) Orientierung von (x,x) in Angraph(f)
     (wollen Bahl, die nur von f in x abhängt, so wie wir es bei den VF
     gernacht haben whaben summiert über NST und Indites)
Proposition:
    Lx(f) = +1, falls dxf-I die Orientierung erhalt
    Lx(f) = -1, falls dxf-I die Orientierung andert
       ⇒ Lx(f) = sign (det (dxf-I))
  Bew.: A=dxf, B={v,..., ve} pos. orient. geordn. Basis von Tx(x).
      \Rightarrow \{(v_1, v_2), ..., (v_k, v_k)\} \qquad \text{von } T_{(x,x)}(\Delta)
\{(v_1, Av_1), ..., (v_k, Av_k)\} \qquad \text{von } T_{(x,x)}(graph(f))
                                                                Subtr. von
     >> sign(L(f)) = sign({(v,v,),...,(v,v,),(v,Av,),...,(v,Av,)})
                                                                 lin. Komb.
                  = sign ({ (v, v,),...,(v, v,), (0, (A-I)v,)..., (0, (A-I)v,)})
                                                                 andert die
                  = sign ( {(v, 0), ..., (v, 10), (0, (A-I) v,), ..., (0, (A-I) v,)}) orien icrus.
                  = sign({ BXO, OX(A-I)B})
                  = sign (B) · sign ((A-I)B)
       wird +1 falls A-I Or. erhalt, wird -1 falls A-I Or. andert
Beispiel: f: \mathbb{R}^2 \to \mathbb{R}^2, A = d_0 f, f(x) = Ax + E(x) mit E(x) \to 0
     A habe zwei unabh. reelle EV, also A = (&10), d,10,>0
     => (+) = sign ((d1-1)(d2-1))
   1. Fall: d1, d2>1 ⇒ Lo(f) = +1 2. Fall: d1, d2 < 1 => Lo(f) = +1
                               Senke
              auelle
   3. Fall: d, <1 < d, => 40(f) =-1
             Sattel
Beispiel: f: 52 → 52 , f(x)= T(x+(0,0,-1)) mit T: R3/{0} → 52
       Fist Lefschetz-Abb. da f~ld via X X XIXI
          f(x) = T(x+(0,0,- =))
                                                f bewegt jeden Punkt
                N. Quelle, S Senke
                                               (außer Pole) nach Süden
                Ln(f) = Ls(f) = +1
                                            - lokal wie im Bsp. Zuvor
               => L(f)= LN(f)+Ls(f)=2
                                            (vg). Vortrag zu VF)
               => L(f) = 2 = X(S2)
⇒ Allgemein: genus k: (6) ⇒ \chi(x) = 2-2k teristik!
```

