2013~2014学年第一学期 《复变函数与积分变换》课程考试试卷(A卷)(闭卷)

院(系)	专业班级	学号	姓名	
------	------	----	----	--

考试日期: 2013年11月25日

考试时间: 晚上7:00~9:30

题号	_	_	Ξ	四	五	六	七	八	总分
得分									

得 分	
评卷人	

一、填空题(每题3分,共 24分).

$$(1) \, \, \stackrel{\sim}{\boxtimes} \, z = \frac{(1 + \sqrt{2} + i) \left(\cos\sqrt{3} - i\right)}{(1 + \sqrt{2} - i) \left(\cos\sqrt{3} + i\right)} \, \, , \quad \text{for } |\bar{z}| = \underline{\hspace{1cm}} \, .$$

- (2)复数 $(1-i)^i$ 的值为_____.
- (3)设 $f(z) = x^2 + iy^2$,则f'(1+i) =_____.
- (4)设 f(z) 在 $3 \le |z| \le 8$ 上解析,且 $\oint_{|z|=3} f(z) dz = 3$,

则
$$\oint_{|z|=8} f(z) dz =$$
____.

- (5)函数 $\frac{e^z}{\cos(\pi z)}$ 在 $z_0 = 0$ 点的泰勒(Taylor)展开式的收敛半径是____.
- (6)设 $f(z) = e^{\sin z}$,则 $Res[f(z), 0] = ____$.
- (7)在映射 $w=1-z^2$ 下, $z_0=1+i$ 处的伸缩率为____,旋转角为____.
- (8) 函数 $f(t) = 2\cos^2 t$ 的傅氏变换 $F(\omega)$ 为_____.

得 分	
评卷人	

二、((v, y)) 设 $u(x, y) = y^3 + y + ax^2y$, 求 a 及函数 v(x, y), 使得 f(z) = u + iv 为解析函数且满足 f(1) = 2i.

得 分	
评卷人	

三、(z) 将函数 $f(z) = z^2 - 1 + \frac{1}{z^2 - 1}$ 在 $z_0 = 1$ 点展开为 洛朗(Laurent)级数.

得 分	
评卷人	

四、计算下列积分(*类 20* **s**).

(其中第1、2小题各5分,第3小题10分)

1.
$$\oint_{|z|=1} \frac{2z+1}{\cos(\pi z)} dz$$
.

2.
$$\oint_{|z|=1} \frac{(1+z)^2}{z} e^{\frac{1-2z}{z}} dz$$
.

3.
$$\int_{-\infty}^{+\infty} \frac{1 + \cos(2x)}{x^2 + 4x + 5} \, \mathrm{d}x.$$

得分	
评卷人	

五、(w \star) 已知区域 $D = \{z: |z| < 1, |z - (1+i)| > 1\}$,求一 共形映射 w = f(z) 将 D 映射到单位圆内部.

得 分	
评卷人	

六、(6 分) 求区域 $D = \{z: |z| < 1, |z - (1+i)| > 1, \text{Im } z > 0\}$ 在映射 $w = e^{\pi \frac{1+z}{1-z}}$ 下的像.

得分	
评卷人	

七、(12 分)利用 Laplace 变换求解常微分方程:

$$x''(t) + 4x'(t) + 5x(t) = 2e^{-t} - 5$$
, $x(0) = x'(0) = 0$.

得 分	
评卷人	

八、(6 **%**)设在
$$|z| \le 1 \perp f(z)$$
 解析, $f'(z) \ne 0$, $f(0) = 0$,
且函数 $f(z)$ 无其它零点,证明:
$$\frac{1}{2\pi i} \oint_{|z|=1} \frac{f(z)}{z^2 f'(z)} dz = \frac{1}{2\pi i} \oint_{|z|=1} \frac{z f'(z)}{f(z^2)} dz .$$