Task-agnostic Continual Learning with Hybrid Probabilistic Models

Polina Kirichenko ¹ Mehrdad Farajtabar ² Dushyant Rao ² Balaji Lakshminarayanan ³ Nir Levine ² Ang Li ² Huivi Hu² Andrew Gordon Wilson ¹ Razvan Pascanu ²

¹New York University

²DeepMind

³Google Brain

August 16, 2021

Outline

Outline

- 1 Introduction
- 2 Background and Notation
- 3 HCL
- 4 Experiments
- 5 Discussion

Existing Approaches

- re-sample the data or design specific loss functions that better facilitate learning with imbalanced data
- enhance recognition performance of the tail classes by transferring knowledge from the head classes

Our Contribution

- Hybrid Continual Learning (HCL) a normalizing flow-based approach.
- Generative replay and a novel functional regularization are employed to alleviate forgetting. The functional regularization is shown to be better than generative replay.
- HCL achieves strong performance on split MNIST, split CIFAR. SVHN-MNIST and MNIST-SVHN datasets.
- HCL can detect task boundaries and identify new as well as recurring tasks.

Continual Learning (CL)

- \blacksquare A CL model $g_{\theta}: \mathcal{X} \to \mathcal{Y}$.
- A sequence of τ supervised tasks: $T_{t_1}, T_{t_2}, \ldots, T_{t_{\tau}}$. τ is not known in advance.
- Each task $T_i = \{(x_i^i, y_i^i)\}_{i=1}^{N_i}$, where $x_i^i \in \mathcal{X}^i$ and $y_i^i \in \mathcal{Y}^i$.
- The corresponding data distribution of task T_i is $p_i(x, y)$.
- Constraint: While training on a task T_i the model cannot access to the data from previous T_1, \ldots, T_{i-1} or future tasks T_{i+1},\ldots,T_{τ}
- **Objective**: Minimize $\sum_{i=1}^{M} \mathbb{E}_{x,y \sim p_i(\cdot,\cdot)} l(g_{\theta}(x), y)$ for some risk function $l(\cdot, \cdot)$ and generalize well on all tasks after training.

Modeling the Data Distribution

■ $p_t(x, y)$: the joint distribution of the data x and the class label y conditioned on a task t.

$$p_t(x, y) \approx \hat{p}(x, y|t) = \hat{p}_X(x|y, t)\hat{p}(y|t)$$

HCL ●0000

• $\hat{p}_X(x|y,t)$ is modeled by a normalizing flow f_{θ} with a base distribution $\hat{p}_Z = \mathcal{N}(\mu_{y,t},I)$.

$$\hat{p}_X(x|y,t) = f_{\theta}^{-1} \left(\mathcal{N}(\mu_{y,t}, I) \right)$$

- $\mu_{y,t}$ is the mean of the latent distribution corresponding to the class y and task t.
- $\hat{p}(y|t)$ is assumed to be a uniform distribution over the classes for each task: $\hat{p}(y|t) = 1/K$.

Task Identification

■ log-likelihood

$$S_1(B, t) = \sum_{(x_j, y_j) \in B} \hat{p}_X(x_j | y_j, t)$$

log-likelihood of the latent variable

$$S_2(B, t) = \sum_{(x_j, y_j) \in B} \hat{p}_Z(f_{\theta}(x_j)|y_j, t)$$

log-determinant of the Jacobian

$$S_3(B, t) = S_1(B, t) - S_2(B, t)$$

Generative Replay (HCL-GR)

- Store a single snapshot of the HCL model $\hat{p}_{Y}^{(k)}(x|y,t)$ with weights $\theta^{(k)}$.
- Generate and replay data from old tasks using the snapshot: $x_{GR} \sim \hat{p}_{V}^{(k)}(x|y,t)$, where $y \sim U\{1,\ldots,K\}$ and $t \sim U\{t_1,\ldots,t_k\}.$
- Maximize the likelihood $\mathcal{L}_{GR} = \log \hat{p}_X(x_{GR}|y,t)$ under the current model $\hat{p}_X(\cdot)$.
- The resulting loss in generative replay training is $\mathcal{L}_{ll} + \mathcal{L}_{GR}$, where \mathcal{L}_{II} is the log-likelihood of the data on the current task.
- Update the snapshot with new weights $\theta^{(k+1)}$ after detecting the task change $T_{t_{k+1}} \to T_{t_{k+2}}$.

Functional Regularization (HCL-FR)

Enforce the flow to map samples from previous tasks to the same latent representations as a snapshot model.

- Store a single snapshot of the model $\hat{p}_X^{(k)}(\cdot)$ and produce samples $x_{FR} \sim \hat{p}_X^{(k)}(x|y,t)$ for $y \sim U\{1,\ldots,K\}$, $t \sim U\{t_1,\ldots,t_k\}$.
- $\mathcal{L}_{FR} = \|f_{\theta}(x_{FR}) f_{\theta^{(k)}}(x_{FR})\|^2$, where f_{θ} is the current flow mapping and $f_{\theta^{(k)}}$ is the snapshot model.
- The resulting loss in functional regularization is $\mathcal{L}_{ll} + \alpha \mathcal{L}_{FR}$.

Compared Methods

- Adam: Train the model with Adam optimizer without any extra steps for preventing forgetting.
- Multi-Task Learning (MTL): When training on T_{t_i} , it has access to all previous tasks $T_{t_1}, \ldots, T_{t_{i-1}}$.
- Experience Replay (ER):
- CURL:

Datasets

- Split MNIST: Split the dataset into 5 binary classification tasks.
- MNIST-SVHN and SVHN-MNIST:
- Split CIFAR:

Experiments 0000

Experiment Results

Experiment Results on Split CIFAR

Discussion