2-element dependency on four pemutations

Taehyun Eom derived from joint work with Minki Kim and Eon Lee

June 20, 2025

4 permutati	ons						
7	4	6	1	5	2	3	
6	5	4	2	3	7	1	
2	5	4	6	3	1	7	
1	2	3	4	5	6	7	

Select 3,4							
7	4	6	1	5	2	3	
6	5	4	2	3	7	1	
2	5	4	6	3	1	7	
1	2	3	4	5	6	7	

Color left							
7	4	6	1	5	2	3	
6	5	4	2	3	7	1	
2	5	4	6	3	1	7	
1	2	3	4	5	6	7	

Common ele	ments						
	4				2	3	
		4	2	3	7	1	
2		4		3	1	7	
	2	3	4	5	6	7	

Select 4,5							
7	4	6	1	5	2	3	
6	5	4	2	3	7	1	
2	5	4	6	3	1	7	
1	2	3	4	5	6	7	

Color left							
7	4	6	1	5	2	3	
6	5	4	2	3	7	1	
2	5	4	6	3	1	7	
1	2	3	4	5	6	7	

Common ele	ments						
	4			5	2	3	
	5	4	2	3	7	1	
	5	4	6	3	1	7	
			4	5	6	7	

No blue ele	ements f	or any o	choice					
6	8	5	7	2	4	1	3	
7	5	8	6	3	1	4	2	
4	3	2	1	8	7	6	5	
1	2	3	4	5	6	7	8	

Geometric Motivation

Geometric Motivation

Blue elements indicate boxes which cover the intersection of selected boxes.

Question

For given $a \ge 3$ and $p \ge 2$, if n is sufficiently large, then any a permutations in S_n have a proper choice of p red elements such that there exists at least one blue element?

Answer (E., Kim and Lee)

There exists n(a, b; p) such that if $n \ge n(a, b; p)$, then any a permutations in S_n have a proper choice of p red elements to get at least p blue elements.

Answer (E., Kim and Lee)

There exists n(a, b; p) such that if $n \ge n(a, b; p)$, then any a permutations in S_n have a proper choice of p red elements to get at least b blue elements.

$$n(a, b; p) \le n(a, b + p - 2; 2)$$
, so we only need to check when $p = 2$.

23 $\sigma_0: 7 4 6 1 5 2 3$ $\sigma_1: 6 5 4 2 3 7 1$ $\sigma_2: 2 5 4 6 3 1 7$ id: 1 2 3 4 5 6 7 $23 2^0 + 2^1 + 2^2 = 7$

Pattern Graph Example

With Multicolor Ramsey Theorem

$$n(a, b; 2) \le R(\underbrace{b+2, b+2, \cdots, b+2}_{2^{a-1} \text{ copies}}) < \infty$$

With Multicolor Ramsey Theorem

$$n(a, b; 2) \le R(\underbrace{b+2, b+2, \cdots, b+2}_{2^{a-1} \text{ copies}}) < \infty$$

$$n(4,1;2) \le R(3,3,3,3,3,3,3,3) \le 2.07689535... \times 10^{33}$$

$$n(4,1;2) = 13$$

Reduce Colors

Reduce Colors

Irregular Colors

```
\sigma_0: ... b ... a ... \sigma_1: ... b ... a ... \sigma_2: ... b ... a ... b ... a ... b ...
```

- Case $b \neq n \mid a, n : \text{Red} \Rightarrow b : \text{Blue}$
- Case $b = n \mid \text{Delete } n$.

Reduce Colors

Irregular Colors

```
\sigma_0: ... b ... a ... \sigma_1: ... b ... a ... \sigma_2: ... b ... a ... b ... a ... b ...
```

- Case $b \neq n \mid a, n : \text{Red} \Rightarrow b : \text{Blue}$
- Case $b = n \mid \text{Delete } n$.

Only three colors 1, 2, 4 remains!

Transitivity

For a < b < c, if ab and bc have same color, then so is ac.

Transitivity

For a < b < c, if ab and bc have same color, then so is ac. $\rightarrow a \cdots b \cdots c$ or $c \cdots b \cdots a$ for every permutation.

Transitivity

For a < b < c, if ab and bc have same color, then so is ac.

- $\rightarrow a \cdots b \cdots c$ or $c \cdots b \cdots a$ for every permutation.
 - \rightarrow a, c : Red \Rightarrow b : Blue

Transitivity

For a < b < c, if ab and bc have same color, then so is ac.

- $\rightarrow a \cdots b \cdots c$ or $c \cdots b \cdots a$ for every permutation.
 - \rightarrow a, c : Red \Rightarrow b : Blue

No $K_{1.5}$

- If 1a, 1b, 1c, 1d, 1e have same color, then there is a monochromatic triangle.
- If an, bn, cn, dn, en have same color, then there is a monochromatic triangle.

Transitivity

For a < b < c, if ab and bc have same color, then so is ac.

- $\rightarrow a \cdots b \cdots c$ or $c \cdots b \cdots a$ for every permutation.
 - \rightarrow a, c : Red \Rightarrow b : Blue

No $K_{1.5}$

- If 1a, 1b, 1c, 1d, 1e have same color, then there is a monochromatic triangle.
- If an, bn, cn, dn, en have same color, then there is a monochromatic triangle.

n < 9

If $n \ge 9$, then one of above always happens.

Final Result

Upper Bound

$$n(4,1;2) \le 8 \text{ (Regular)} + 4 \text{ (Irregular)} + 1 = 13$$

Final Result

Upper Bound

$$n(4,1;2) \le 8 \text{ (Regular)} + 4 \text{ (Irregular)} + 1 = 13$$

Lower Bound

Final Result

Upper Bound

$$n(4,1;2) \le 8 \text{ (Regular)} + 4 \text{ (Irregular)} + 1 = 13$$

Lower Bound

12	11	10	6	8	5	7	2	4	1	3	9
12	11	9	7	5	8	6	3	1	4	2	10
12	10	9	4	3	2	1	8	7	6	5	11
11	10	9	1	2	3	4	5	6	7	8	12

The end.