Structure Tool in Freecad: how to use by Kay Tran

1 Intro info:

FreeCAD is open-source software that can integrate with Python packages. Structure Tool is a FreeCAD extension for structural analysis, utilizing the Pynite kernel to perform calculations and display results

Figure 1:

2 How to use:

From Freecad select Structure Tool WB

Figure 2:

- * Click New button to create empty model
- * Click Line on toolbar to create line for beam/ column structure

Figure 3:

* Select endpoint of line then click support button

Figure 4:

- in tab of support select restraint required

Figure 5:

 $[\]ast$ Create & assign section

⁻ Click sketch button to make a sketch. Sketch will be in plane XY (important note) and try to make sketch in center of (0,0,0)

Figure 6:

- Convert sketch to wire

Figure 7:

- from wire created, select make face

Figure 8:

- put pointer on created face then click section button (important note)

Figure 9:

- section will create with parameter for moment inertia info

Figure 10:

* Create material

Figure 11:

* Select line & define section, material

Figure 12:

— in line tab properties will appear Structure info

Figure 13:

- click "..." then select material, section already defined in list

Figure 14:

* select line structure and apply load

Figure 15:

* select whole model by box selection (important note)

Figure 16:

— click Calc button to run analysis

Figure 17:

- Calc will appear in tab properties with values moment, shear, deflection

Figure 18:

* click diagram to see BD or SD

Figure 19:

- on tab properties of diagram, select "true" to show value on beam

Figure 20:

3 New add-ins:

Figure 21:

- Load copy use for copy value load from selected distribute line to other ones

Figure 22: Before copy load

select source distribution load then select other ones to overwrite value

Figure 23: After copy load

- Copy support assignment use for copy assignment from selected support to other ones

Figure 24: Before copy

Figure 25: After copy

- Deflection show deflection results: similar like diagram command, select 'Calc' then click deflection in menu \rightarrow will appear 'deflection' tab then key in some parameters like font size, scale

Figure 26:

- Import section to load section properties from txt file to model without define section from sketch. By this way also can create a library section properties using for calculation model.

Figure 27:

Format section properties in txt file see photo above. This way will not show member bar in 3D view since no define section from sketch. But for calculation bending, shear .. etc will not affect.

4 Summary:

We gratefully acknowledge Maykow Menezes for his development of Structure Tools.

This extension provides a user-friendly way to visualize and interpret Pynite results within FreeCAD, significantly reducing the need for direct Pynite coding expertise. You can explore the project and its source code at: https://github.com/maykowsm/StructureTools.

We extend special thanks to Yorik Van Havre for developing Freecad Platform

5 Appendix: Testing result

5.1 Example 1:

* Simple beam under uniform load & bending diagram

Figure 28:

 \ast Result by a natruct - Python package

Figure 29:

5.2 Example 2:

 \ast Simple beam under uniform load, point load & bending diagram

Figure 30:

 \ast Result by a natruct - Python package

Figure 31:

* Result by Ftool

Figure 32:

5.3 Example 3:

 \ast Frame structure uniform load & bending diagram

Figure 33:

- \ast Result by Structure Tool
- * 2D Frame structure uniform load & bending diagram

Figure 34:

 \ast Result by Anastruct

5.4 Example 4:

 \ast RC frame structure section 300x300 under uniform load & bending diagram

Figure 35:

* Result by Structure Tool

Figure 36:

* Result by Ftool, point load equal value distribute load segment spreads into frame

Figure 37:

 \ast Result by Anastruct, point load equal value distribute load segment spreads into frame

5.5 Example **5**:

 \ast Steel frame structure section W4x4x24 (H107x100x8x12) under point load 20 kN

Figure 38:

* Result by Structure Tool - self weight of members imposed direct on frame

Figure 39:

* Result by Ftool - moment value included self weight of frames

Figure 40:

* Result by anastruct

Figure 41:

* Result by Mastan2

5.6 Example 6:

* Rafters for cone roof diameter 12m, section rafter C150x75x6x10 -18 nos, crown ring section C200x75x6x13

Case	DL	${ m LL}$
Value	0.4	1.5
Factor	1	1.2
Sum	2.2	kN/m2

DL is self weight of roof sheet 5mm thick

LL live load on roof

The load on each rafter is distributed over a trapezoidal area with a large side of 1.9 m and a small side of 0.4 m

Figure 42:

* Result by Structure Tools

Figure 43:

* Result by Ftools

Figure 44:

 \ast Result by Mastan2 (self-weight of rafter auto calculated in Mastan2)

Figure 45:

* Result by Fem22

Figure 46:

* Result by SAP2000

Figure 47:

* Result by Stadpro

5.7 Example 7:

* Pylon base 2x2m, top tier 1x1m, 12m height, using section L120x10, bracing L75x8 under lateral point load X=120~kN, in this example will not count for self- weight of structure

Figure 48:

 \ast Result by Structure Tool

Figure 49:

* Result by Ftool

Figure 50:

 \ast Result by Mastan

Figure 51:

* Result by SAP2000

Figure 52:

* Result by Stadpro

6 Notes & Troubleshooting

In here, listing down some troubleshooting need to avoid:

+ Take note for unit use for calculation:

Figure 53:

FreeCAD's default unit system is mm,kg. Figures 10 and 11 illustrate section properties in mm, material densities in kg, and stress in Pa. While Structure Tools internally converts these values for display and certain calculations, the Pynite kernel requires consistent units for all input parameters (member lengths, section properties, and material strengths). Inconsistencies in units lead to inaccurate results in Pynite. Eg: member length in m then section properties also be in m

+ Do not make linked group lines (members)

Figure 54:

+ With model have many frames or member structures, may need to 'Calc' one frame first before replicate + Section properties can copy from other file to current working file

Figure 55:

- + Enable 'false' truss member even when model for truss
- + Lines (members), supports, distribute loads, nodal load must not be turned off

Figure 56:

+ View section assign full 3D to review which one not assign section or wrong assignment

Figure 57:

Take note if delete wire that defined section so may not view members in 3D anymore

Figure 58:

Or put pointer on declared section then it will highlighted which one assigned for. This is a drawback because re-rendering in FreeCAD can be slow with large models

+ With above feature of section, can draft calculate weight of members assigned section Do same thing, put point on declared section, at draw section \rightarrow view full section: true then using Center of Mass macro to get weight for those selected

Figure 59:

+ Due to the reasons mentioned earlier, the resulting calculation model can have a large file size – even for models with a moderate level of complexity. This can result in files several megabytes in size

Figure 60:

+ In the resultant dialog box, the Y-axis denotes the vertical direction of the model, whereas the Z-axis corresponds to the lateral or horizontal direction (defining a section in the XY plane)

Figure 61:

+ An issue have identified in the current version where enabling the self-weight option within the 'Calc' module leads to inaccurate results. This was discovered during verification testing on example case 5

Figure 62:

+ Line (member) in model do not do sub-division, it is reason may cause wrong result