บทที่ 8 การบริหารโครงการด้วย BURN DOWN CHART

โดย

ผู้ช่วยศาสตราจารย์ ดร.วรารัตน์ สงฆ์แป้น สาขาวิชาวิทยาการคอมพิวเตอร์ วิทยาลัยการคอมพิวเตอร์ มหาวิทยาลัยขอนแก่น

342371 Software Engineering

จุดประสงค์ของการทำ Burn down chart

- ต้องการวางแผนว่าจะเสร็จเมื่อใหร่
- ต้องการติดตามว่าจะเสร็จเมื่อใหร่
- สมาชิกแต่ละคนสามารถติดตามได้
- ถ้าฟังก์ชันนั้นในสัปดาห์นั้นไม่สำเร็จก็สามารถที่วางแผนใหม่ได้

ข้อมูที่ต้องการใช้สำหรับ Burn down chart

List of person, product backlog / task, planned effort days

project	Product backlog	task	person	days
SE_342371	Add user	Create db	wararat	1
SE 342371	Add user	connect db and show data	Wararat	1
OL_3+237 1	Add d3Cl	Session	valalat	<u> </u>
SE_342371	Login		choticha	1
SE_342371		Separate menu type	Choticha	1
		Connect db and show		
SE_342371	Add Meeting	calendar	jane	2
	•••	•••	•••	••••
Ideal – effort				6
Ideal – actual effort				10
Ideal – remaining effort				4

Sample of Burn down chart

Function(Product backlog)	Size	Points
Login	M	5
Add Room	S	3
Add Meeting	M	5
Search Meeting	L	7
Search Head of Meeting	L	7
Show Status	S	3
Total		30

Size s = 3, size M = 5, size L = 7, size xL = 11 size xxL = 20 points

Velocity = จำนวนค่าคะแนน/จำนวนวันที่ใช้ใน 1 sprint สมมติ = 5 /7 = 0.71 เฉลี่ยประสิทธิภาพของทีมในแต่ละ sprint

Burn down chart

Velocity = จำนวนค่าคะแนน/จำนวนวันที่ใช้ใน 1 sprint

Concepts

- อัตราการใช้จำนวนชั่วโมงต่อ 1 คน (Man hours)
- การวางแผนเปรียบเทียบการใช้งานจริง (Planned vs Actual)
- การติดตามคนในแต่ละกลุ่มแต่ละฟังก์ชัน (Track at person / task level with groupings up to story level)
- ซึ่งสามารถปรับปรุงการทำงานได้ (Adjustments)
 - Drop tasks/change task
- Waterfall
 - Gantt chart
 - Critical Path

Gantt chart

- PERT ย่อมาจาก (Project Evaluation Review Technique)
- CPM ย่อมาจาก (Critical Path Method)
 - เป็นเทคนิคการบริหารโครงการด้วยการวางแผน ควบคุม โดยใช้เทคนิค PERT และ CPM เป็นวิธีการวิเคราะห์ ข่ายงานที่มักนำมาใช้ในการบริหารโครงการ ที่มีจุดเริ่มต้นของโครงการจนถึงปิดโครงการ มีส่วนงานย่อยต่างๆ ที่มี การกระจายโดยมีความสัมพันธ์ซึ่งกันและกัน
- โดยที่มีข้อแตกต่าง ดังต่อไปนี้
 - PERT จะเน้น<u>ด้านเวลา</u>ในการดำเนินการโครงการ
 - CPM จะเน้น<u>ด้านค่าใช้จ่าย</u>ของโครงการ
- ดังนั้นในปัจจุบันมีการนำมาใช้งานร่วมกัน โดยใช้คำว่า PERT เพียงคำเดียว อาจจะรวมถึงการใช้ เทคนิคของ CPM ร่วมเข้าด้วยกัน

วัตถุประสงค์ของ PERT

• PERT เป็นแผนงานที่สามารถแสดงภาพรวม ของโครงการด้วยข่ายงาน (Network) โดย แสดงกิจกรรมต่างๆในโครงการ ลำดับการทำงาน และความสัมพันธ์ระหว่างกิจกรรมต่างๆ โดยมี วัตถุประสงค์ดังนี้

•การวางแผนโครงการ (Project Planning)

โดยจะทำการคำนวณระยะเวลาการทำงาน และแสดงถึงกิจกรรมแต่ละกิจกรรม ว่าควรเริ่มเมื่อใด เสร็จเมื่อใด และสามารถกำหนดได้ว่ากิจกรรมใดเป็นกิจกรรมสำคัญ ทำงานล่าช้าไม่ได้ หรือล่าช้าได้ ไม่เกินเท่าใด

วัตถุประสงค์ของ PERT/ CPM

• ควบคุมโครงการ (Project Control)

สามารถควบคุมการทำงานตามแผนที่ได้วางไว้ และควบคุมการทำงานไม่ให้ล่าช้ากว่ากำหนด

• บริหารทรัพยากร (Resource)

สามารถใช้ทรัพยากรต่าง ๆ เช่นเงินทุน บุคลากร เครื่องมือ อุปกรณ์ และอื่น ๆ ได้อย่างมีประสิทธิภาพ และประโยชน์ เต็มที่

• บริหารโครงการ (Project Management)

งานที่ดำเนินการอยู่อาจจำเป็นต้องเร่ง เพื่อแล้วเสร็จกว่ากำหนด ก็สามารถทำได้ด้วยการเร่งกิจกรรมใดบ้าง เพื่อให้ งานแล้วเสร็จในระยะเวลาที่เร็วขึ้น

PERT

• สัญลักษณ์ต่าง ๆ และความหมายที่ใช้ใน PERT

คือจุดเชื่อม **node** ที่แสดงถึงเหตุการณ์ ตั้งแต่เริ่มแรกโครงการจนจบโครงการ

เส้นตรงที่เชื่อมระหว่างโหนด แสดงถึงกิจกรรม หรืองานที่ทำ หัวลูกศรคือจุดเสร็จสิ้นของ กิจกรรมหรืองานนั้น

เส้นประที่เชื่อมระหว่างโหนด แสดงถึงกิจกรรม หรืองานสมมุติ () เป็นกิจกรรมที่ไม่มีตัวตนใน โครงการ แต่จำเป็นต้องใส่ไว้เพื่อให้ถูกต้องกับ ความเป็นจริง

วัตถุประสงค์ของ PERT แบบที่ 1

งาน	งานที่ต้องเสร็จก่อน		
Α	-		
В	Α		
С	Α		
D	B,C		

วัตถุประสงค์ของ PERT แบบที่ 2

งาน	งานที่ต้องเสร็จก่อน	
Α	-	
В	-	
C	Α	
D	В	
Е	C,D	

ตัวอย่าง PERT แบบที่ 3

• จงวาด PERTมีลักษณะเช่นไร

งาน	งานที่ต้องเสร็จก่อน
А	-
В	-
С	Α
D	A,B

ตัวอย่าง PERT แบบที่ 4 ที่แสดงระยะเวลาของแต่ละงาน

งาน	งานที่ต้องเสร็จก่อน	ระยะเวลา (สัปดาห์)
Α	-	2
В	-	1
С	-	1
D	A	3
E	В	3
F	С	2
G	D	3
Н	F	2

ตัวอย่าง PERT แบบที่ 4 ที่แสดงระยะเวลาของแต่ละงาน

คำนวนระยะเวลาของแต่ละสายงาน

สายงานที่ 2 เท่ากับ **B-E** = **1+3** = **4**

สายงานวิกฤต (Critical Path)

- จะพิจารณาจากสายงานที่มีเวลานาน หรือยาวที่สุด เช่น ตัวอย่างที่ผ่านมา สายงานวิกฤตคือ
- A-D-G รวมระยะเวลาทั้งสิ้น 8 สัปดาห์ หมายถึง การดำเนินงานทุกอย่างในแต่ละขั้นตอนจะแล้ว เสร็จภายใน 8 สัปดาห์ โดยในโครงการอาจมีสายงานวิกฤตมากกว่า 1 สายงานก็เป็นได้
- ดังนั้น สายงานวิกฤต คือ สายงานที่มีระยะเวลานาน ซึ่งถือเป็นสายงานที่มีความสำคัญ หากงานหรือ กิจกรรมภายในสายงานวิกฤตช้ากว่าที่กำหนดไว้ในโครงการ นั่นหมายถึง โครงการก็จะเสร็จล่าช้าไป ด้วย
- การควบคุมโครงการจึงมีความจำเป็นต้องควบคุมกิจกรรมในสายงานวิกฤตให้เป็นไปตามที่ได้วางแผน ไว้ด้วย

การเร่งโครงการ

- หากต้องการควบคุมกิจกรรมในสายงานวิกฤตให้เป็นไปตามที่ได้วางแผนไว้ ดังนั้นหาก ต้องการเร่งโครงการให้เสร็จเร็วขึ้น ก็สามารถทำได้ด้วยการเร่งกิจกรรมในสายงาน วิกฤตนั่นเอง
- ตัวอย่างเช่น บริษัทแห่งหนึ่งต้องการให้เสร็จโครงการให้แล้วเสร็จภายใน **1** เดือน คือ วันที่ **1-31** พฤษภาคม ดังนั้น ถ้านักศึกษาเป็น **PM** แล้วต้องเสนอโครงการ นักศึกษาจะทำอย่างไรให้ค่าใช้จ่ายในแต่ละวันให้ต่ำที่สุด

ตัวอย่าง PERT/CPM

งาน	งานที่ต้องเสร็จ	ระยะเวลา (วัน)		ค่าใช้จ่ายในการเร่ง
		ปกติ	เร่ง	งาน 1 วัน
A รวบรวมความ	-	7	5	150
ต้องการ				
B ออกแบบรายงาน	-	5	4	75
C ออกแบบหน้าจอ	Α	5	4	200
D ออกแบบฐานข้อมูล	Α	9	7	125
E จัดทำเอกสาร	В	8	5	115
F เขียนโปรแกรม	C,D	10	7	100
G ทดสอบโปรแกรม	F	5	4	200
Н ติดตั้งโปรแกรม	G	6	3	60

- สายงานที่ 1 คือ A-C-F-G-H = 7+5+10+5+6 = 33
- สายงานที่ 2 คือ A-D-F-G-H = 7+9+10+5+6 = 37
- สายงานที่ 3 คือ B-E = 5+8 = 13

เพราะฉะนั้นสายงานวิกฤต คือ

- สายงานที่ 1 คือ A-C-F-G-H = 7+5+10+5+6 = 33
- สายงานที่ 2 คือ A-D-F-G-H = 7+9+10+5+6 = 37
- ดังนั้นหากต้องการเร่งโครงการให้เสร็จเร็วขึ้น และเสียค่าใช้จ่ายน้อยที่สุด

• สายงานวิกฤต

• ค่าใช้จ่ายต่ำที่สุดของสายงานในการเร่งโครงการที่สามารถเร่งได้ คือ H คือวันละ 60 บาท

- สายงานวิกฤต
- สายงานที่ 2 คือ A-D-F-G-H = 7+9+10+5+6 = 37
 ค่าใช้จ่ายต่ำที่สุดของสายงานในการเร่งโครงการที่สามารถเร่งได้ คือ H คือ วันละ 60 บาท
- สายงานที่ 2 คือ A-D-F-G-H = 7+9+10+5+3 = 34 ค่าใช้จ่ายต่ำที่สุดของสายงานในการเร่งโครงการที่สามารถเร่งได้ คือ H คือ วันละ 100 บาท
- สายงานที่ 2 คือ A-D-F-G-H = 7+9+7+5+3 = 31

- สาเหตุที่ใช้ PERT/CPM แทน Gantt Chart
 - ง่ายต่อการกำหนดขั้นตอนที่มาก่อนหน้า
 - ง่ายต่อการกำหนดเส้นทางวิกฤต
 - ง่ายต่อการกำหนดเส้นทางยืดหยุ่น

สรุป

- เนื่องจากในกระบวนการผลิตซอฟต์แวร์นั้นต้องใช้ทรัพยากรต่างๆ หลายอย่าง ดังนั้นเพื่อการ ดำเนินการราบรื่น ส่งมอบงานได้ทันตรงเวลา และได้ซอฟต์แวร์ที่มีคุณภาพนั้น จึงจำเป็นต้องอาศัย กระบวนการ "การบริหารโครงการ" (Project Management) ซึ่งเป็นการประยุกต์องค์ ความรู้ ทักษะ เครื่องมือและเทคนิค เพื่อการดำเนินกิจกรรมตามความต้องการของโครงการให้บรรลุ วัตถุประสงค์
- ดังนั้นจึงมี<mark>กิจกรรมการบริหารโครงการ</mark>อย่างละเอียด ซึ่งการจัดการตารางของโครงการมีเครื่องมือ ในการช่วยให้วางแผนการดำเนินกิจกรรมโครงการ
- ถ้าใช้ Software Process Model ของ Agile/Scrum คือ Burn Down Chart
- ถ้าใช้ Software Process Model ของ Waterfall คือ Gantt chart หรือ PERT/CRM