Problem Set 1

Instructions: Write up your solutions using LaTeX and submit them on HuskyCT by September 11, 2022.

Problem 1: Let $\sigma = (13)(1235)(4567)$ and $\tau = (24)(35)(245)$.

- 1. Find $\sigma \tau$.
- 2. Find disjoint cycle decompositions of both σ and τ .
- 3. Write each of σ and τ as products of transpositions.
- 4. Find the sign of σ and τ .

Problem 2: Define an ordering \lesssim on the positive integers greater than one by saying that $n \leq m$ if there is an injective homomorphism from $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$.

- 1. Show that this relation is reflexive $(n \lesssim n \text{ for all } n)$, antisymmetric $(n \lesssim m \text{ } n \text{ } n)$ and $m \lesssim n$ implies n = m), and transitive $(n \lesssim m \text{ and } m \lesssim k \text{ implies})$ $n \lesssim k$.) These axioms mean that the positive integers are a partially ordered set under this order relation.
- 2. An element n of this set is minimal if $m \leq n$ implies m = n. What are the minimal elements of this partial order?
- 3. The meet g of two elements a and b in a partially ordered set is an element that satisfies these two conditions:

 - $g \lesssim a$ and $g \lesssim b$. If h is any element satisfying $h \lesssim a$ and $h \lesssim b$, then $h \lesssim g$.

Prove that any two elements m and n have a meet. 4. Describe all of this fancy stuff in a simpler way. 5. (Extra) What happens if, instead of considering injective homomorphisms from $\mathbb{Z}/n\mathbb{Z}$ to $\mathbb{Z}/m\mathbb{Z}$, we consider surjective ones?

Problem 3: If H is a subgroup of G, then the normalizer $N_G(H) = \{g \in G : g \in G : g \in G : g \in G \}$ $gHg^{-1} = H$ } and the centralizer $C_G(H) = \{g \in G : gh = hg \quad \forall h \in H\}.$

- 1. Let $G = \mathrm{GL}_2(\mathbb{R})$ and let $H = \mathrm{Aff}(\mathbb{R})$ be the affine group consisting of two by two matrices of the form $\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}$ where $x \neq 0$. Show that the centralizer of H in G consists of matrices a I where $a \neq 0$ and I is the identity matrix. and the normalizer consists of the upper triangular matrices with nonzero diagonal entries. What about the same question for $GL_2(\mathbb{Q})$? Does the field matter for this?
- 2. Let $G = GL_2(\mathbb{R})$ and H be the subgroup of diagonal matrices. Show that H is its own centralizer, and its normalizer consists of diagonal matrices and "anti-diagonal" matrices $\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$ in G.
- 3. View S_n as $\text{Sym}(\mathbb{Z}/n\mathbb{Z})$. Given integers a and b, with $\gcd(a,n)=1$, let $\sigma_{a,b}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the map $\sigma_{a,b}(x) = ax + b \pmod{n}$. Show that $\sigma_{a,b}$ is in the normalizer of the cyclic subgroup H generated by (123...n)and, conversely, any element of the normalizer of this subroup is $\sigma_{a,b}$ for

some a and b. Conclude that the normalizer in S_n of H is the affine group of $\mathbb{Z}/n\mathbb{Z}$.

Problem 4: Let M be the group with two generators u and v satisfying $u^2 = v^8$ and $vu = uv^5$. This group has order 16 (can you verify this?). M has three subgroups of order 8: $\langle u, v^2 \rangle$, $\langle v \rangle$, and $\langle uv \rangle$. Every proper subgroup is contained in one of these three groups.

- 1. Draw the lattice of subgroups of M.
- 2. Prove that the group generated by v^4 is normal in M.
- 3. Find the lattice of subgroups of $M/\langle v^4 \rangle$ inside that of M using the lattice isomorphism theorem.