Petros Apostolou

5403 Friendship Avenue, Pittsburgh, PA-15232, USA • pea11@pitt.edu • (412)-708-6259

Github: https://github.com/Petros89 • Linkedin: https://github.com/Petros89 • Linkedin: https://www.linkedin.com/in/petros-apostolou-35329b19a/

EDUCATION

University of Pittsburgh | Swanson School of Engineering

(Expected graduation: 04/30/2020)

MSc Research in Mechanical Engineering – Department of Mechanical Engineering & Materials Science

<u>Program Concentration:</u> High Performance Computing (HPC) for Large-Scale Numerical Analysis Systems.

- MS Thesis: HPC Matrix-Free Linear Algebra Solver for Large-Scale Finite Element Analysis on GPUs. Achieved speed up of [82 x times] over its "-Ofast" optimized serial version. High performance achieved compared with NVIDIA's AMGX sparse solver and significantly reduced amounts of memory.
- <u>MPI Project:</u> Parallel CPU implementation for distributed memory parallelism of the heat equation using inter-node communication "SendRecv" MPICH MPI distribution.
- ➤ <u>CUDA Project:</u> CUDA implementation for the acceleration of the vibrating membrane wave problem and the optimization of cuBLAS DGEMM for matrix-matrix multiplications on GTX1080 GPU.

PROFESSIONAL EXPERIENCE

Co-op program at ANSYS Mechanical (MAPDL) – Software Testing (HPC clusters) (5/13/2019 - 12/13/2019)

- ➤ <u>Objective:</u> Used HPC scaling analysis to compute the performance and validate CPU and GPU implementations of ANSYS Mechanical HPC products.
- Cluster Management:

>>> Developed an automated parallel regression testing tool on Linux "Lustre" file system of the cluster, reducing the total execution time of 26K tests from 1 week to 6 hours.

Previous Education

National Technical University of Athens (NTUA) | School of Mechanical Engineering (Greece, 2015)

- BS Thesis: 3D Unstructured Mesh Displacement Adaptation using Torsional Springs Technique.
- <u>Description:</u> Programmed a mesh adaptation method for mesh using unstructured tetrahedral meshes for use in aerodynamic-shape optimization and aeroelasticity. <u>Parallel CFD & Optimization Unit.</u>

COMPUTER SKILLS

Programming: C/C++, CUDA, Fortran, Linux shell-bash scripting, Perl, Python, MATLAB

Parallel Programming: MPI, GPGPU, OpenMP, OpenACC

Linear Algebra: cblas, cuBLAS, cuSOLVER, Amgx, Petsc, FreeFem++

Clusters/Cloud: UGE/SGE, SLURM, MS Azure

REFERENCES

Albert To, PhD (Master Thesis Advisor): albertto@pitt.edu,

Roxana Cisloiu, PhD (ANSYS Inc – Canonsburg, Manager): roxana.cisloiu@ansys.com