EXPONENTIAL TECHNOLOGY IMPACT REPORT

DRAFT

version 0.foobar Saturday 31st July, 2010 19:34

SPACE

Contents

1	Scope of this Report			3
	1.1	Struct	ure of this Report	. 3
		1.1.1	Digraph	. 3
2	State of the Problem Space			5
	2.1	Overv	iew	. 5
	2.2	Aspects		. 5
		2.2.1	Getting There	
		2.2.2	Staying There	. 5
		2.2.3	Human Exploration	. 5
		2.2.4	Robotic Exploration	. 5
		2.2.5	Space Resources	. 5
		2.2.6	Space Science	. 5
		2.2.7	Space Education/Evangelism	. 5
		2.2.8	Insuring Humanity	. 6
	2.3 Exponential Technology Areas		nential Technology Areas	. 6
		2.3.1	AI and Robotics	. 6
		2.3.2	Biotechnology	. 6
		2.3.3	Nanotechnology and Materials Science	. 6
		2.3.4	Information Technology and Networking	. 6
		2.3.5	Neurotechnology and Medicine	. 6
		2.3.6	Policy, Law, and Ethics	. 6
		2.3.7	Entrepreneurship	. 7
	2.4	Classification of opportunities		. 7
3	Exp	onentia	l Technology Opportunities	7
Re	eferen	ices		8
Glossary				14
Index				15

1 Scope of this Report

The surface of the Earth
is the shore of the cosmic ocean
Recently we've waded a little way up
and the water seems inviting

- Carl Sagan, "A Glorious Dawn"

Humanity is presently a one-planet species. Although we have sent humans into space, and even to the moon, they have only visited and then returned home to Earth. There are two ways in which this fundamentally limits us: First, it limits the resources available to us, in terms of both matter and energy. Second, it makes us vulnerable to total destruction as a species, should a catastrophe of planetary scale occur.

This report focuses on applications of exponential technologies that may facilitate the eventual establishment of a permanent human presence in space. These steps include the development of technologies to reduce the barriers to entry into space, technologies that may be needed to remain in space indefinitely (while also being useful on Earth), practical strategies to use resources which are off Earth, transformative changes in the business of space science and exploration, and means to educate, excite, and inspire the general public about the possibilities and importance of human space exploration.

1.1 Structure of this Report

«TODO: Graphical diagram explaining structure of final report»

«This part of the document is under heavy construction. This is the temporary home of the digraph.»

1.1.1 Digraph

«This is incomplete, represents scope»

«Example about how to parse this graph—narrative threads run bottom-to-top»

2 State of the Problem Space

2.1 Overview

Doing business in space should be easy, but it isn't. It's hard to get into space, even sending robots rather than humans. It's hard to stay in space for very long-again, even if you send robots. It's hard to make use of the resources available in space. And it's hard to convince many people that going to space is even a good idea.

2.2 Aspects

We have chosen to focus on the following aspects of the problem space:

- 2.2.1 Getting There
- 2.2.2 Staying There
- 2.2.3 Human Exploration
- 2.2.4 Robotic Exploration
- 2.2.5 Space Resources
- 2.2.6 Space Science

2.2.7 Space Education/Evangelism

A key underlying problem to the limit of humanity's progress in space is that the majority of the human species is uninterested in space. Activities in space today do not inspire the awe that they once did: instead of watching astronauts walk upon the surface of a celestial body for the first time, today, if we're lucky, we get to watch them repair the toilet on the International Space Station. Educational outreach is a good start, but we need to connect humanity to space in a more natural way. Global warming is now perceived as a threat so compelling that most people believe we need to do something about it. But this threat is dwarfed by that of remaining on this planet indefinitely.

NASA's education program attempts to make space and the STEM (Science Technology Engineering and Math) curriculum exciting for students, but they do it without an understanding of the progress exponential technologies will have on the space industry. Students today rarely realize that when they grow older they will have a completely different tool set with which to tackle space. We should teach them what the world will be like in a decade or two and excite them on the possibilities they can create.

In all instances of educating the public on the importance of space, from youth to the elderly, opening the space frontier is never presented as an explicit need—which it is. Space is often considered to be primarily beneficial as an engine for creating technological spin-offs, but even if space exploration paid no technological dividends, it would still be crucially important. People don't appreciate the voyage of Christopher Columbus to the Americas primarily because of the new sextant developed for the journey that was eventually spun off to the private sector and used in merchant shipping.

It is human nature that we need to "see it to believe it," and maybe this is what is holding back humanity from understanding why space exploration is a necessity for survival. Until ordinary people can experience space through their own eyes, the possibilities that it holds will not be fully understood. What will happen when the first child can see our home from space, or when the first ballet dancer experiences weightlessness, or when a paraplegic is given mobility again? Let's not just tell humanity about space, let's give them access to space.

2.2.8 Insuring Humanity

2.3 Exponential Technology Areas

In this report, we will illustrate a number of opportunities to address the above problems with exponential technologies. This section serves as a brief overview to each of the exponential technology areas.

2.3.1 AI and Robotics

In the broadest sense, the fields of AI and robotics strive to make non-human systems able to perform human tasks, or other difficult tasks that are helpful to humans. Robotics focuses on the necessary physical capabilities, while AI focuses on the necessary mental capabilities. At present, AI systems are capable of solving a plethora of individual problems, each of them far more swiftly and accurately than a human could; but no robot is capable of loading a dishwasher yet. This phenomenon is represented by the term "narrow AI": each AI system today is typically helpless outside the situation it was designed for. These systems solve problems such as searching the Internet, routing FedEx packages, military logistics, or playing chess. However, it has been predicted that in the future, we wil develop what is known as "strong AI": an AI system that nears human levels of tolerating uncertainty, and can generate original solutions to problems hitherto unseen and unanticipated by the designers of the AI.

2.3.2 Biotechnology

- 2.3.3 Nanotechnology and Materials Science
- 2.3.4 Information Technology and Networking
- 2.3.5 Neurotechnology and Medicine

2.3.6 Policy, Law, and Ethics

We are not in a position to fully analyze the far-reaching consequences of near-term steps by space agencies and private space entrepreneurs, however we can set about to establish a context for critical evaluation of our motivations and hesitations at the Singularity University during the 2010 GSP. This is a time to develop a culture of intense questioning and reflexivity, weighing up the pros and cons of social and education value, economic and political drivers, scientific benefits, risks, the battle for sovereignty between nation states; time readiness, and the lessons learnt from past human endeavors at each stage of mission planning and undertaking. Particular attention must be paid to our obligations and restrictions, the differences of moral standing and the agents behind them; the intrinsic and instrumental values of global peoples and the core truths of our calling, in order to plan effectively and to garner new insights and knowledge for wider reaching solutions to terrestrial concerns so that we can leverage exponentially advancing technologies for the benefit of humanity, the planet and the future of our activities in space. We have a responsibility to boldly stay to serve legitimate interests as a peaceful, well-meaning people and the opportunity to explore new ways of seeing life, and space, from a whole new perspective.

It is posited that if we are to actually improve standards of living on Earth through space by generating economic opportunity; providing access to new resources (material, intellectual and so on) then we need to bring about the prospect of rapid technological development, the cross-fertilization of ideas, new visions and shared dreams for the benefit of all human-kind and this begins with the power of the questions we ask ourselves, and the declarations we make for our future generations.

2.3.7 Entrepreneurship

2.4 Classification of opportunities

We offer a brief taxonomy of the problems that exponential technologies need to help overcome during the next three decades in order to facilitate the exploration and colonization of space. For each area in this taxonomy, we explore the role that each exponential technology might play.

- 1. AI and Robotics
- 2. Biotechnology
- 3. Nanotechnology and Material Sciences
- 4. Information Technology and Networking
- 5. Neurotechnology and Medicine
- 6. Policy, Law and Ethics
- 7. Entrepreneurship

The goal of these definitions is twofold: to map for future reference our current understanding of the relative role of each of the exponential technologies and solution domains, and to help us focus our in-depth analysis of conceptual solutions to those areas that appear more fruitful.

3 Exponential Technology Opportunities

...For each of the sections below, we discuss the current state of the art, related exponential technologies, potential benefits, convergences with other technologies, and potential barriers to adoption.

References

- [1] Neuritogenesis: A model for space radiation effects on the central nervous system. *Advances in Space Research*, 14:467–474, 1994. (Not cited.)
- [2] Spinoff. Transportation, 2006. (Not cited.)
- [3] Gyrotrons, 2010. URL http://www.cpii.com/product.cfm/1/18. (Not cited.)
- [4] Synchronized Position Hold Engage and Reorient Experimental Satellites, 2010. URL http://ssl.mit.edu/spheres/. (Not cited.)
- [5] Techsat 21 Project Pages, 2010. URL http://ssl.mit.edu/overview/OpenHouse2001/DSS/OpenHouse2001_DSS.pdf. (Not cited.)
- [6] Long Duration Psychology, 2010. URL http://history.nasa.gov/SP-4225/long-duration/long.htm. (Not cited.)
- [7] NASA's Science Mission Directorate (SMD) Education and Public Outreach program, 2010. URL http://teachspacescience.org/cgi-bin/ssrtop.plex. (Not cited.)
- [8] Outreach to Space, 2010. URL http://www.outreachtospace.org/. (Not cited.)
- [9] SEi Announcements, 2010. URL http://www.spaceed.org/. (Not cited.)
- [10] New Nanotech Discovery Could Lead To Breakthrough In Infrared Satellite Imaging, 2010. URL http://www.spacemart.com/reports/New_Nanotech_Discovery_Could_Lead%_To_Breakthrough_In_Infrared_Satellite_Imaging_999.html. (Not cited.)
- [11] M. Avnet. The space elevator in the context of current space exploration policy. Space Policy, 22(2):133–139, May 2006. ISSN 02659646. doi: 10.1016/j.spacepol.2006.02.005. URL http://linkinghub.elsevier.com/retrieve/pii/S026596460600021X. (Not cited.)
- [12] S. D. Baum. Cost-benefit analysis of space exploration: Some ethical considerations. Space Policy, 25(2):75–80, May 2009. ISSN 02659646. doi: 10.1016/j.spacepol.2009.02.008. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964609000198. (Not cited.)
- [13] I. Bekey. Extremely Large Swarm Array of Picosats for Microwave/RF Earth Sensing, Radiometry and Mapping, 2005. (Not cited.)
- [14] Benguría A, Grande E, de Juan E, Ugalde C, Miquel J, Garesse R, and Marco R. Microgravity effects on Drosophila melanogaster behavior and aging: Implications of the IML-2 experiment. *Journal of Biotechnology*, 47 (2-3):191–201, 1996. URL http://www.ncbi.nlm.nih.gov/pubmed/8987567. (Not cited.)
- [15] L. Billings. Exploration for the masses? Or joyrides for the ultra-rich? Prospects for space tourism. Space Policy, 22(3):162–164, Aug. 2006. ISSN 02659646. doi: 10.1016/j.spacepol.2006.05.001. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964606000440. (Not cited.)
- [16] R. Birk. Government programs for research and operational uses of commercial remote sensing data. *Remote Sensing of Environment*, 88(1-2):3–16, Nov. 2003. ISSN 00344257. doi: 10.1016/j.rse.2003.07.007. URL http://linkinghub.elsevier.com/retrieve/pii/S003442570300227X. (Not cited.)
- [17] J. Blamont. International space exploration: Cooperative or competitive? *Space Policy*, 21(2):89–92, May 2005. ISSN 02659646. doi: 10.1016/j.spacepol.2005.03.003. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964605000238. (Not cited.)
- [18] D. Broniatowski and A. Weigel. Articulating the space exploration policy-technology feedback cycle. Acta

- Astronautica, 63(5-6):649-656, Sept. 2008. ISSN 00945765. doi: 10.1016/j.actaastro.2008.04.006. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576508001495. (Not cited.)
- [19] W. Carter. Significant results from using earth observation satellites for mineral and energy resource exploration. *Advances in Space Research*, 1(10):261–269, 1981. ISSN 02731177. doi: 10.1016/0273-1177(81)90402-6. URL http://linkinghub.elsevier.com/retrieve/pii/0273117781904026. (Not cited.)
- [20] C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin. A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots. *Nano Letters*, 10(5):1704–1709, 2010. URL http://pubs.acs.org/doi/abs/10.1021/nl100081j. (Not cited.)
- [21] S. Chung, P. Ehrenfreund, J. Rummel, and N. Peter. Synergies of Earth science and space exploration. *Advances in Space Research*, 45(1):155–168, Jan. 2010. ISSN 02731177. doi: 10.1016/j.asr.2009.10.025. URL http://linkinghub.elsevier.com/retrieve/pii/S0273117709006887. (Not cited.)
- [22] C. Cockell. Fostering links between environmental and space exploration: the Earth and Space Foundation. *Space Policy*, 18(4):301–306, Nov. 2002. ISSN 02659646. doi: 10.1016/S0265-9646(02)00043-7. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964602000437. (Not cited.)
- [23] D. Cohen. Earth's natural wealth: an audit, 2007. URL http://environment.newscientist.com/channel/earth/mg19426051.200-earths-natural-wealth-an-audit.html. (Not cited.)
- [24] L. Cooper. Encouraging space exploration through a new application of space property rights. *Space Policy*, 19(2):111–118, May 2003. ISSN 02659646. doi: 10.1016/S0265-9646(03)00016-X. URL http://linkinghub.elsevier.com/retrieve/pii/S026596460300016X. (Not cited.)
- [25] I. Crawford. The scientific case for human space exploration. *Space Policy*, 17(3):155–159, Aug. 2001. ISSN 02659646. doi: 10.1016/S0265-9646(01)00020-0. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964601000200. (Not cited.)
- [26] F. A. Cucinotta. Space radiation cancer risk projections for exploration missions: uncertainty reduction and mitigation, 2001. URL http://spaceflight.nasa.gov/shuttle/support/researching/radiation/marsrisk.pdf. (Not cited.)
- [27] J. Curtis, L. Harra, J. Zarnecki, and M. Grady. Reviewing UK space exploration. *Space Policy*, 26(2):113–116, May 2010. ISSN 02659646. doi: 10.1016/j.spacepol.2010.03.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964610000366. (Not cited.)
- [28] R. C. DeCharms. Applications of real-time fMRI. Nature Reviews Neuroscience, 9:720-729, 2008. (Not cited.)
- [29] S. J. Dick and R. D. Launius, editors. Societal Impact of Spaceflight. NASA, Washington, D.C., 2007. (Not cited.)
- [30] A. Dupas and J. Logsdon. Creating a productive international partnership in the Vision for Space Exploration. *Space Policy*, 23(1):24–28, Feb. 2007. ISSN 02659646. doi: 10.1016/j.spacepol.2006.11.003. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964606001056. (Not cited.)
- [31] P. Ehrenfreund, N. Peter, and L. Billings. Building long-term constituencies for space exploration: The challenge of raising public awareness and engagement in the United States and in Europe. *Acta Astronautica*, 67(3-4):502–512, Aug. 2010. ISSN 00945765. doi: 10.1016/j.actaastro.2010.03.002. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576510000822. (Not cited.)
- [32] A. Ellery. Humans versus robots for space exploration and development. *Space Policy*, 19(2):87–91, May 2003. ISSN 02659646. doi: 10.1016/S0265-9646(03)00014-6. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964603000146. (Not cited.)
- [33] P. Ferguson and J. P. How. Formation Flying Experiments on the Orion-Emerald Mission. In *Proceedings of AIAA Space 2001 Conference*, 2001. (Not cited.)

- [34] P. Finarelli and I. Pryke. Implementing international co-operation in space exploration. *Space Policy*, 22(1):23–28, Feb. 2006. ISSN 02659646. doi: 10.1016/j.spacepol.2005.11.012. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964605001153. (Not cited.)
- [35] P. Finarelli and I. Pryke. Building and maintaining the constituency for long-term space explorationâŸĘ. *Space Policy*, 23(1):13–19, Feb. 2007. ISSN 02659646. doi: 10.1016/j.spacepol.2006.11.001. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964606001111. (Not cited.)
- [36] R. Fisackerly, C. Reimers, and a. Pradier. Exploration system technology aspects in the exploration programme of the European Space Agency. *Acta Astronautica*, 59(1-5):3–12, July 2006. ISSN 00945765. doi: 10.1016/j.actaastro. 2006.02.017. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576506001196. (Not cited.)
- [37] B. Foing and P. Ehrenfreund. Journey to the Moon: Recent results, science, future robotic and human exploration. *Advances in Space Research*, 42(2):235–237, July 2008. ISSN 02731177. doi: 10.1016/j.asr.2008.03.011. URL http://linkinghub.elsevier.com/retrieve/pii/S0273117708001646. (Not cited.)
- [38] A. Forrest, B. Laval, D. Lim, D. Williams, A. Trembanis, M. Marinova, R. Shepard, A. Brady, G. Slater, and M. Gernhardt. Performance evaluation of underwater platforms in the context of space exploration. *Planetary and Space Science*, 58(4):706–716, Mar. 2010. ISSN 00320633. doi: 10.1016/j.pss.2009.08.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0032063309002475. (Not cited.)
- [39] G. E. Gaugerb, C. A. Tobiasb, T. Yangb, and M. Whitneyb. The effect of space radiation on the nervous system. Advances in Space Research, 6(11):243-249, 1986. URL http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V3S-472BJ54-3F&_user=141903&_coverDate=12/31/1986&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1410022796&_rerunOrigin=google&_acct=C000011778&_version=1&_urlVersion=0&_userid=141903&md5=5829460965049b158942dadc85c3382d. (Not cited.)
- [40] R. B. Gordon, M. Bertram, and T. E. Graedel. Metal stocks and sustainability. *Proceedings of the National Academy of Sciences of the United States of America*, 103(5):1209–1214, 2006. URL http://www.ncbi.nlm.nih.gov/pubmed/16432205. (Not cited.)
- [41] M. Gruntman. Instrumentation for interstellar exploration. *Advances in Space Research*, 34(1):204–212, 2004. ISSN 02731177. doi: 10.1016/j.asr.2003.04.064. URL http://linkinghub.elsevier.com/retrieve/pii/S0273117704002716. (Not cited.)
- [42] T. Hammond, F. Lewis, T. Goodwin, R. Linnehan, D. Wolf, K. Hire, W. Campbell, E. Benes, K. O'Reilly, R. Globus, and J. Kaysen. Gene expression in space. *Nature*, 5(359), 1999. (Not cited.)
- [43] G. Horneck, A. Coradini, G. Haerendel, M.-B. Kallenrode, P. Kamoun, J. P. Swings, A. Tobias, and J.-J. Tortora. Towards a European vision for space exploration: Recommendations of the Space Advisory Group of the European Commission. *Space Policy*, 26(2):109–112, May 2010. ISSN 02659646. doi: 10.1016/j.spacepol.2010.02.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964610000238. (Not cited.)
- [44] J. How. Orion Flight Model Hardware, 2010. URL http://www.mit.edu/people/jhow/orion/. (Not cited.)
- [45] J. P. How. GPS Sensing for Formation Flying, 2010. URL http://www.mit.edu/people/jhow/ff_leo.html. (Not cited.)
- [46] J. P. How. Relative Navigation for Formation Flying Spacecraft Using Carrier-Phase Differential GPS, 2010. URL http://www.mit.edu/people/jhow/gps1.htm. (Not cited.)
- [47] J. Huntington. Improving Satellite Protection with Nanotechnology, 2007. URL http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA474825&Location=U2&doc=GetTRDoc.pdf. (Not cited.)
- [48] S. Jähnichen, K. Brieß, and R. Burmeister. Flying Sensors Swarms in Space. In B. Mahr and H. Sheng, editors,

- Autonomous Systems Self-Organization, Management, and Control, pages 71-77, Shanghai, 2008. Springer. (Not cited.)
- [49] H. Jones, K. Yeoman, and C. Cockell. A pilot survey of attitudes to space sciences and exploration among British school children. *Space Policy*, 23(1):20–23, Feb. 2007. ISSN 02659646. doi: 10.1016/j.spacepol.2006.11.013. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964606001093. (Not cited.)
- [50] A. Y. Kalery, I. V. Sorokin, and M. V. Tyurin. Human space exploration beyond the international space station: Role of relations of human, machine and the âĂIJEarthâĂIâŸĘ. *Acta Astronautica*, June 2010. ISSN 00945765. doi: 10.1016/j.actaastro.2010.06.009. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576510002006. (Not cited.)
- [51] R. Kapfer, M. Krumme, and M. Davis. SBR sparse array performance with subarray orientation and timing errors. In *Proceedings of IEEE Radar Conference*, page 8 pp. IEEE Press, 2006. URL http://dx.doi.org/10.1109/RADAR.2006.1631838. (Not cited.)
- [52] J. T. Kare and K. L. G. Parkin. A Comparison of Laser and Microwave Approaches to CW Beamed Energy Launch. In *AIP Proceedings on the Fourth International Symposium on Beamed Energy Propulsion*, pages 388–399, 2006. (Not cited.)
- [53] L. B. King, G. G. Parker, S. Deshmukh, and J.-H. Chong. Spacecraft Formation-flying using Inter-vehicle Coulomb Forces, 2002. URL http://www.niac.usra.edu/files/studies/final_report/601King.pdf. (Not cited.)
- [54] J. M. Lafleur and J. H. Saleh. Survey of intra- and inter-mission flexibility in space exploration systems. *Acta Astronautica*, 67(1-2):97–107, July 2010. ISSN 00945765. doi: 10.1016/j.actaastro.2009.12.004. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576509005761. (Not cited.)
- [55] R. D. Launius. The historical dimension of space exploration: reflections and possibilities. *Space Policy*, 16(1): 23–38, Feb. 2000. ISSN 02659646. doi: 10.1016/S0265-9646(99)00055-7. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964699000557. (Not cited.)
- [56] D. F. Lester and M. Robinson. Visions of exploration. Space Policy, 25(4):236-243, Nov. 2009. ISSN 02659646. doi: 10.1016/j.spacepol.2009.07.001. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964609000691. (Not cited.)
- [57] G. Lockwood and F. Foster. Design of sparse array imaging systems. In *Proceedings on IEEE Ultrasound Symposium*, pages 1237–1243, 1995. (Not cited.)
- [58] J. Logsdon. Why space exploration should be a global project. *Space Policy*, 24(1):3-5, Feb. 2008. ISSN 02659646. doi: 10.1016/j.spacepol.2007.11.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964607001178. (Not cited.)
- [59] M. Y. MacLeish and W. A. Thomson. Global visions for space exploration education. *Acta Astronautica*, 66 (7-8):1285–1290, Apr. 2010. ISSN 00945765. doi: 10.1016/j.actaastro.2009.09.030. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576509004822. (Not cited.)
- [60] Marco R, González-Jurado J, Calleja M, Garesse R, Maroto M, Ramírez E, Holgado MC, de Juan E, and Miquel J. Microgravity effects on Drosophila melanogaster development and aging: Comparative analysis of the results of the fly experiment in the Biokosmos 9 biosatellite flight. *Advances in Space Research*, 12(1):157–166, 1992. URL http://www.ncbi.nlm.nih.gov/pubmed/11536953. (Not cited.)
- [61] P. Messina and D. Vennemann. The European space exploration programme: Current status of ESA's plans for Moon and Mars exploration. *Acta Astronautica*, 57(2-8):156–160, July 2005. ISSN 00945765. doi: 10.1016/j. actaastro.2005.03.020. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576505001116. (Not cited.)

- [62] M. S. Miller and T. S. Keller. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight. *Acta Astronautica*, 62(10-11):605–616, 2008. (Not cited.)
- [63] J. L. Mohammed. Mission Planning for a Formation-Flying Satellite Cluster. In I. Russell and J. F. Kolen, editors, Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, pages 58–62. AAAI Press, 2001. URL http://portal.acm.org/citation.cfm?id=646814.708008. (Not cited.)
- [64] C. Oliver. The virtual space exploration education portal. Acta Astronautica, 61(1-6):548-552, June 2007. ISSN 00945765. doi: 10.1016/j.actaastro.2007.01.062. URL http://linkinghub.elsevier.com/retrieve/pii/S0094576507000768. (Not cited.)
- [65] N. Peter and K. Stoffl. Global space exploration 2025: Europe's perspectives for partnerships. *Space Policy*, 25(1): 29–36, Feb. 2009. ISSN 02659646. doi: 10.1016/j.spacepol.2008.12.009. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964608001033. (Not cited.)
- [66] S. Pyne. The extraterrestrial Earth: Antarctica as analogue for space exploration. Space Policy, 23(3):147–149, Aug. 2007. ISSN 02659646. doi: 10.1016/j.spacepol.2007.06.006. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964607000550. (Not cited.)
- [67] M. C. Ridding and J. C. Rothwell. Is there a future for therapeutic use of transcranial magnetic stimulation? . *Nature Reviews Neuroscience*, 8:559–567, 2007. (Not cited.)
- [68] M. Ries-Kautt. Crystallogenesis studies in microgravity with the Advanced Protein Crystallization Facility on SpaceHab-01. *Journal of Crystal Growth*, 181(1):22, 1997. (Not cited.)
- [69] L. Salerno. Cryogenics and the human exploration of Mars. Cryogenics, 39(4):381-388, Apr. 1999. ISSN 00112275. doi: 10.1016/S0011-2275(99)00043-0. URL http://linkinghub.elsevier.com/retrieve/pii/S0011227599000430. (Not cited.)
- [70] I. S. U. Ssp. MiNI: From Tiny to Infinity. 2006. (Not cited.)
- [71] C. Stadd and J. Bingham. The US civil space sector: alternate futures. *Space Policy*, 20(4):241–252, Nov. 2004. ISSN 02659646. doi: 10.1016/j.spacepol.2004.08.001. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964604000542. (Not cited.)
- [72] P. Suppes, Z.-L. Lu, and B. Han. Brain wave recognition of words. *Proceedings of the National Academy of Sciences of the United States of America*, 94(26):14965–14969, 1997. (Not cited.)
- [73] M. A. Tamamoto. Active Antennas and UHF Antennas for Cubesat applications. (Not cited.)
- [74] K. M. Taminger and R. A. Hafley. Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing, 2006. URL http://ntrs.nasa.gov/search.jsp?R=540654&id=4&as=false&or=false&qs=Ns%3DHarvestDate%257c1%26N%3D4294697965. (Not cited.)
- [75] D. Tralli, R. Blom, V. Zlotnicki, A. Donnellan, and D. Evans. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. *ISPRS Journal of Photogrammetry and Remote Sensing*, 59(4):185–198, June 2005. ISSN 09242716. doi: 10.1016/j.isprsjprs.2005.02.002. URL http://linkinghub.elsevier.com/retrieve/pii/S0924271605000043. (Not cited.)
- [76] A. Vergara, B. Lorber, C. Sauter, R. Giegé, and A. Zagari. Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology. *Biophysical Chemistry*, 118 (2-3):1590–1595, 2005. (Not cited.)
- [77] M. C. Vigan, G. Toso, P. Angeletti, I. E. Lager, A. Yarovoy, and D. Caratelli. Sparse Antenna Array for Earth-coverage Satellite Applications. In 4th European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, 2010. (Not cited.)

- [78] A. M. Womack, B. J. M. Bohannan, and J. L. Green. Biogeography of the air. Presented by Green at the British Academy in July 2010. (Not cited.)
- [79] M. Woodell. Power from space: the policy challenge. Space Policy, 16(2):93-97, May 2000. ISSN 02659646. doi: 10.1016/S0265-9646(00)00009-6. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964600000096. (Not cited.)
- [80] D. Yang, Y. Zhou, and Y. Wang. Remote Sensing with Reflected Signals: GNSS-R Data Processing Software and Test Analysis, 2009. URL http://www.insidegnss.com/auto/sepoct09-Yang.pdf. (Not cited.)
- [81] S. Yatabe and A. Fabbri. The application of remote sensing to canadian petroleum exploration: promising and yet unexploited. *Computers & Geosciences*, 12(4):597-609, 1986. ISSN 00983004. doi: 10.1016/0098-3004(86)90070-1. URL http://linkinghub.elsevier.com/retrieve/pii/0098300486900701. (Not cited.)
- [82] Y. Zhou. Perspectives on Sino-US cooperation in civil space programs. Space Policy, 24(3):132–139, Aug. 2008. ISSN 02659646. doi: 10.1016/j.spacepol.2008.06.002. URL http://linkinghub.elsevier.com/retrieve/pii/S0265964608000404. (Not cited.)

Glossary

gyrotron a type of high-powered microwave transmitter. 16

specific impulse (I_{sp}) is a metric of rocket (or jet) efficiency; the change in momentum per unit amount of propellant used. (This works out to an SI unit of seconds.) The higher the specific impulse, the less propellant is needed to gain a given amount of momentum. For example, the Space Shuttle Main Engine has an I_{sp} of 453s. 7

Acronyms

- CLLSS Closed-Loop Life Support Systems: are life support systems which reuse 100% of their waste resources, with the exception of waste energy. 8
- COSPAR Committee on Space Research: COSPAR promotes international scientific research in space, and provides an open forum for the disucssion of problems related to space science (for instance, organizing conferences on planetary protection policy).. 9

EBFF Electron Beam Freeform Fabrication. 14

- **ISRU** In-Situ Resource Utilization: refers to the usage of local resources, especially the local usage of resources found in space, as opposed to the transport of Earth resources into space or vice versa. 7
- ITAR International Traffic in Arms Regulations: a set of United States federal regulations that restrict the international trade of items and information which is considered by the federal government to be "munitions," including encryption technology and space technology. 9

LEO Low Earth Orbit. 7

SLS Selective Laser Sintering. 14

SSTO Single Stage to Orbit: refers to a vehicle which reaches orbit without jettisoning hardware, expending only fluids. The term usually, but not exclusively, refers to reusable vehicles. 7

Index

Sagan, Carl, 3