3. Funções Reais de Várias Variáveis Reais: Limites, Continuidade, Derivação parcial e Diferenciabilidade

baseado em slides de edições anteriores de Cálculo II

Isabel Brás

UA, 2/4/2019

Cálculo II – Agrup. IV 18/19

Resumo dos Conteúdos

- $lue{1}$ Noções Topológicas em \mathbb{R}^n
- Domínio, contradomínio, gráfico e conjuntos de nível
- 3 Limites e continuidade
- Oerivação Parcial e Derivadas Direcionais
- 5 Diferenciabilidade e Planos Tangentes

Distância; bola aberta; bola fechada

Consideramos em $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i = 1, 2, \dots, n\}$ a distância euclidiana (usual):

$$d(X,Y) = ||\overrightarrow{XY}|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}$$

para
$$X = (x_1, x_2, \dots, x_n)$$
 e $Y = (y_1, y_2, \dots, y_n)$.

Definições:

Sejam $P \in \mathbb{R}^n$ e $r \in \mathbb{R}^+$,

- bola aberta de centro P e raio r: $B_r(P) = \{X \in \mathbb{R}^n : d(X,P) < r\}$.
- bola fechada de centro P e raio r: $\overline{B}_r(P) = \{X \in \mathbb{R}^n : d(X, P) \le r\}$.

Conjunto aberto/ fechado/ limitado

Definições:

Seja $\mathcal{D} \subseteq \mathbb{R}^n$.

- ① $P \in \mathcal{D}$ é um ponto interior de \mathcal{D} se, para algum r > 0, $B_r(P) \subset \mathcal{D}$. O interior de \mathcal{D} é o conjunto formado por todos os pontos interiores de \mathcal{D} . Notação: $int(\mathcal{D})$.
- ② $P \in \mathbb{R}^n$ é um ponto fronteiro de \mathcal{D} se, para todo r > 0, $B_r(P) \cap \mathcal{D} \neq \emptyset$ e $B_r(P) \cap (\mathbb{R}^n \setminus \mathcal{D}) \neq \emptyset$. A fronteira de \mathcal{D} é o conjunto formado por todos os pontos fronteiros de \mathcal{D} . Notação: fr (\mathcal{D}) .

Definições: Seja $\mathcal{D} \subseteq \mathbb{R}^n$.

- ① \mathcal{D} é aberto se $int(\mathcal{D}) = \mathcal{D}$.
- ② \mathcal{D} é fechado se $fr(\mathcal{D}) \subseteq \mathcal{D}$.
- **3** \mathcal{D} é limitado se existe $r \in \mathbb{R}^+$ e $C \in \mathbb{R}^n$ tal que $\mathcal{D} \subseteq \overline{B}_r(C)$.

Exemplo:

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : (x > 0 \land x + y < 1) \lor (1 < x < 3 \land 0 < y < 2)\}$$

- $fr(\mathcal{D}) = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ onde $\mathcal{F}_1 = \{(x,y) \in \mathbb{R}^2 \colon (x=0 \land y < 1) \lor (x>0 \land x+y=1)\}$ $\mathcal{F}_2 = \{(x,y) \in \mathbb{R}^2 \colon (x=1 \lor x=3) \land 0 \leq y \leq 2\}$ $\mathcal{F}_3 = \{(x,y) \in \mathbb{R}^2 \colon (y=0 \lor y=2) \land 1 \leq x \leq 3\}.$ $fr(\mathcal{D}) \not\subseteq \mathcal{D}$, logo \mathcal{D} não é fechado.
- D não é limitado.
- $int(\mathcal{D}) = \mathcal{D}$, logo \mathcal{D} é aberto.

llustração:

Ponto de acumulação/ isolado

Definições:

Seja $\mathcal{D} \subseteq \mathbb{R}^n$.

- **1** $P \in \mathbb{R}^n$ é um ponto de acumulação de \mathcal{D} se, para todo r > 0, $B_r(P) \cap (\mathcal{D} \setminus \{P\}) \neq \emptyset$.
- ② $P \in \mathcal{D}$ é um ponto isolado de \mathcal{D} se não é ponto de acumulação de \mathcal{D} .

Exercício: Mostre que:

todo o ponto interior de $\mathcal D$ é um ponto de acumulação de $\mathcal D.$

Exemplo:

$$\mathcal{L} = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \colon x^2 + y^2 \le 1 \lor (y = 0 \land -2 \le x \le -1)\} \cup \{(2,0)\}$$
 (0,0) e (-2,0) são pontos de acumulação de \mathcal{L} , indique outros! (2,0) é um ponto isolado de \mathcal{D} , existem outros? ilustração gráfica

Este conjunto é limitado e não é aberto, justifique. Será fechado?

Definição:

Dado $\mathcal{D} \subseteq \mathbb{R}^n$, chamamos função real a n variáveis reais^a de domínio \mathcal{D} a toda a correspondência que associa de forma única a cada elemento de \mathcal{D} um número real. Notação:

$$f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$$

 $(x_1, x_2, \dots, x_n) \mapsto z = f(x_1, x_2, \dots, x_n)$

Definição: Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$CD_f = \{f(x_1, x_2, \dots, x_n) : (x_1, x_2, \dots, x_n) \in \mathcal{D}\}$$

chamamos o contradomínio de f.

Definição: Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$. Ao conjunto

$$\mathcal{G}_f = \{(x_1, \dots, x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, \dots, x_n), \text{ com } (x_1, \dots, x_n) \in \mathcal{D}\}$$

chamamos o gráfico de f.

^aou campo escalar a *n* variáveis

Exemplos

- $f: \mathbb{R}^2 \to \mathbb{R}$ tal que f(x,y) = 2x y. • esboço gráfico $D_f = \mathbb{R}^2 \text{ e } CD_f = \mathbb{R}; \text{ O gráfico de } f \text{ é o plano de equação } z = 2x - y.$
- $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = x^2 + y^2$. • esboço gráfico $D_f = \mathbb{R}^2$ e $CD_f = \mathbb{R}^+_0$; O gráfico de f, • $\mathcal{G}_f = \{(x,y,z) \in \mathbb{R}^3 : z = x^2 + y^2\}$, é um parabolóide circular.
- $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x,y) = 4 y^2$. • esboço gráfico $D_g = \mathbb{R}^2$ e $CD_g =]-\infty, 4];$ • $\mathcal{G}_g = \{(x,y,z) \in \mathbb{R}^3 \colon z = 4 - y^2\}$ (cilindro parabólico).
- $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x,y) = x^2 y^2$. • $D_h = \mathbb{R}^2$ e $CD_h = \mathbb{R}$; • $G_h = \{(x,y,z) \in \mathbb{R}^3 : z = x^2 - y^2\}$ (parabolóide hiperbólico).
- $s: \mathbb{R}^2 \to \mathbb{R}$ tal que $s(x,y) = \sin(x^2 + y^2)$. • $D_s = \mathbb{R}^2$ e $CD_s = [-1,1]$; • $C_s = \{(x,y,z) \in \mathbb{R}^3 : z = \sin(x^2 + y^2)\}$.

Curvas de Nível/ Superfícies de Nível

Definições:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $k \in CD_f$. Ao conjunto

$$\mathcal{N}_k = \{(x_1, x_2, \dots, x_n) \in \mathcal{D} : f(x_1, x_2, \dots, x_n) = k\}$$

chamamos conjunto de nível k de f.

Para n=2, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{C}_k e a designar-se por curva de nível k de f.

Para n=3, o conjunto \mathcal{N}_k passa a denotar-se por \mathcal{S}_k e a designar-se por superfície de nível k de f.

Nota:

Iremos considerar, quase exclusivamente, funções com duas ou três variáveis.

Exemplos

① $g: \mathbb{R}^2 \to \mathbb{R}$ tal que $g(x,y) = 4 - y^2$. $CD_g =]-\infty, 4]$. Para $k \le 4$, a curva de nível k de g é

$$C_k = \{(x,y) \in \mathbb{R}^2 \colon k = 4 - y^2\}.$$

Trata-se da união de duas retas de equações $y = \sqrt{4 - k}$ e $y = -\sqrt{4 - k}$.

applet

 $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x,y) = x^2 - y^2$. $CD_h = \mathbb{R}$;

$$C_k = \{(x, y) \in \mathbb{R}^2 \colon k = x^2 - y^2\}, \text{com } k \in \mathbb{R}$$
 papelet

A a curva de nível k é, para $k \in \mathbb{R} \setminus \{0\}$, a hipérbole de equação $x^2 - y^2 = k$ e, para k = 0, a reunião as duas retas de equações y = x e y = -x.

Limite de uma sucessão de pontos em \mathbb{R}^p

Definições:

- Uma sucessão $(X_n)_{n\in\mathbb{N}}$ de pontos em \mathbb{R}^p é uma aplicação de \mathbb{N} em \mathbb{R}^p , que a cada n faz corresponder $X_n = (x_{n1}, x_{n2}, \dots, x_{np})$.
- Seja $L \in \mathbb{R}^p$. Dizemos que a sucessão $(X_n)_{n \in \mathbb{N}}$ converge para L, se para todo o r > 0, existe $m \in \mathbb{N}$ tal que $X_n \in B_r(L)$, para todo o $n \ge m$. Escreve-se $\lim_{n \to +\infty} X_n = L$.

Prova-se que:

- L é único, quando existe.
- $\lim_{n\to+\infty}(x_{n1},x_{n2},\ldots,x_{np})=(\ell_1,\ell_2,\ldots,\ell_p)$ sse $\lim_{n\to+\infty}x_{ni}=\ell_i$, para todo o $i=1,2,\ldots,p$.

Exemplos de sucessões vetoriais convergentes/ não convergentes

- A sucessão de \mathbb{R}^2 tal que $X_n = (\frac{1}{n}, 2)$ converge para L = (0, 2).
- A sucessão de \mathbb{R}^2 tal que $X_n = \left(3 + \left(\frac{1}{2}\right)^n, n \sin\left(\frac{1}{n}\right)\right)$ converge para L = (3, 1).
- A sucessão de \mathbb{R}^3 tal que $X_n = (n, (\frac{1}{2})^n, \frac{1}{n})$ não é convergente.

Conceito de Limite

Seja $f: \mathcal{D} \subseteq \mathbb{R}^p \to \mathbb{R}$, A um ponto de acumulação de \mathcal{D} e $\ell \in \mathbb{R}$. Dizemos que o limite de f quando X tende para A é ℓ se para qualquer sucessão $(X_n)_{n \in \mathbb{N}}$ de pontos em $\mathcal{D} \setminus \{A\}$ convergente para A, a correspondente sucessão das imagens $(f(X_n))_{n \in \mathbb{N}}$ converge para ℓ .

Nesse caso, escreve-se $\lim_{X \to A} f(X) = \ell$.

Prova-se que, quando existe, ℓ é único.

Exemplo:
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$$
, porque dada uma qualquer sucessão

 (x_n,y_n) de pontos de $\mathbb{R}^2\setminus\{(0,0)\}$ tal que $\lim_{n o +\infty}(x_n,y_n)=(0,0)$,

$$\lim_{n\to+\infty} f(x_n, y_n) = \lim_{n\to+\infty} y_n \frac{x_n^2}{x_n^2 + y_n^2}$$

$$= 0, \text{ porque } \lim_{n \to +\infty} y_n = 0 \text{ e } \left| \frac{x_n^2}{x^2 + v^2} \right| \leq 1, \forall n \in \mathbb{N}.$$

Propriedades algébricas dos limites

Proposição:

Sejam $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$, A um ponto de acumulação de \mathcal{D} . Se $\ell_1=\lim_{X\to A}f(X)$ e $\ell_2=\lim_{X\to A}g(X)$, então

- $\lim_{X\to A} (f+g)(X) = \ell_1 + \ell_2;$
- $\lim_{X\to A}(\lambda f)(X)=\lambda\ell_1$, onde $\lambda\in\mathbb{R}$;
- $\lim_{X\to A} (fg)(X) = \ell_1\ell_2;$
- $\lim_{X\to A} \left(\frac{f}{g}\right)(X) = \frac{\ell_1}{\ell_2}, \text{ caso } \ell_2 \neq 0.$

Limite segundo um conjunto

Definição:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, \mathcal{R} um subconjunto de \mathcal{D} para o qual A é ponto de acumulação. Chama-se limite de f quando X tende para A, segundo o conjunto \mathcal{R} , ao limite quando X tende para A da restrição de f a \mathcal{R} , i.e.,

$$\lim_{\substack{X \to A \\ X \in \mathcal{R}}} f(X) = \lim_{\substack{X \to A}} f_{|\mathcal{R}}(X)$$

Exemplo:

Sendo $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 \colon x = 0\} \setminus \{(0,0)\}$,

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{R}}} \frac{y^2}{x^2+y^2} = \lim_{y\to 0} \frac{y^2}{y^2} = 1.$$

Do limite calculado <u>não</u> se pode concluir que $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$ existe.

Averiguação da não existência de um limite, usando limites segundo conjuntos:

Proposição:

- Se existe algum $\mathcal{R} \subset \mathcal{D}$, nas condições da definição, tal que $\lim_{\substack{X \to A \\ X \in \mathcal{R}}} f(X)$ não existe, então não existe $\lim_{\substack{X \to A \\ X \in \mathcal{R}}} f(X)$.
- Se existem \mathcal{R}_1 , $\mathcal{R}_2 \subset \mathcal{D}$, nas condições da definição, tais que $\lim_{\substack{X \to A \\ X \in \mathcal{R}_1}} f(X) \neq \lim_{\substack{X \to A \\ X \in \mathcal{R}_2}} f(X)$, então não existe $\lim_{\substack{X \to A \\ X \in \mathcal{R}_2}} f(X)$.

Exemplo: Mostre que $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ não existe, verificando que os limites segundo $\mathcal{R}_m = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}: y = mx\}, m \in \mathbb{R}$, existem, mas variam com m.

<u>Nota</u>: Os limites segundo retas (ou semirretas) são usualmente designados por limites direcionais.

Exemplos/Exercícios:

- Mostre que não existe $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.
- 2 Averigue da existência de $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$.

Averiguação da existência de limite usando limites segundo conjuntos

Proposição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_k$, com $k \in \mathbb{N}$, subconjuntos de \mathcal{D} tais que A é um seu ponto de acumulação e $\mathcal{D} = \mathcal{R}_1 \cup \mathcal{R}_2 \cup \dots \cup \mathcal{R}_k$. Se $\lim_{\substack{X \to A \\ X \in \mathcal{R}_i}} f(X) = \ell$, para todo o $i = 1, 2, \dots, k$, então $\lim_{\substack{X \to A \\ X \in \mathcal{R}_i}} f(X) = \ell$.

Nota:

Os subconjuntos \mathcal{R}_i são em número finito. Esta proposição, na prática, é de difícil utilização genérica. Aplica-se com êxito em algumas situações, como a seguinte.

Exercício: Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, tal que $f(x,y) = \begin{cases} -5x^2y + 1 \ , & \text{se } y < 0 \\ 1 + x^2 + y^2 \ , & \text{se } y \ge 0 \end{cases}$ calcule $\lim_{(x,y)\to(0,0)} f(x,y)$.

Duas proposições — cálculo de alguns limites

Proposição: [Infinitésimo por limitada]

Sejam $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$, A um ponto de acumulação de \mathcal{D} . Se $\lim_{X\to A}f(X)=0$ e se g é uma função limitada em $\mathcal{D}\cap B_r(A)$, para algum r>0, então $\lim_{X\to A}f(X)g(X)=0$.

Proposição: [Mudança de variável]

Sejam $f, u \colon \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e g uma função real de variável real tal que f(X) = g(u(X)). Se $\lim_{X \to A} u(X) = c$ e $\lim_{z \to c} g(z) = \ell$, então

$$\lim_{X\to A} f(X) = \lim_{z\to c} g(z) = \ell$$

Exercícios:

Usando as proposições do slide anterior (escolhendo a que se adequa), calcule os seguintes limites:

$$\lim_{(x,y)\to(1,1)} \frac{e^{x-y}-1}{y-x}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^3 - 4xy^2}{x^2 + y^2}$$

Continuidade

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \mathcal{D}$. Se P é um ponto de acumulação de \mathcal{D} , f diz-se contínua em P, se $\lim_{X \to P} f(X) = f(P)$.

Caso P seja ponto isolado de \mathcal{D} , consideramos que f é contínua em P. Ao conjunto de pontos onde f é contínua chamamos domínio de continuidade de f.

Proposição:

Se $f,g:\mathcal{D}\subseteq\mathbb{R}^n\to\mathbb{R}$ são funções contínuas em $P\in\mathcal{D}$ e $\alpha\colon I\subseteq\mathbb{R}\to\mathbb{R}$, tal que $f(\mathcal{D})\subseteq I$, é contínua em f(P), então

- f + g, $fg \in \lambda f$, $\lambda \in \mathbb{R}$, são contínuas em P.
- ② $\frac{f}{g}$ é contínua em P, desde que $g(P) \neq 0$.
- **3** $\alpha \circ f$ é contínua em P.

Exemplos/Exercícios:

- ① Determine o domínio de continuidade da função de domínio em \mathbb{R}^2 tal que $f(x,y) = \frac{3xy 5x^3}{y^3 xy}$.
- Mostre que $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$ é descontínua em (0,0).

Derivada parcial em ordem a x

Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(a,b) \in int(\mathcal{D})$. Fixando y=b, fica definida uma função, g_b , real de uma variável, x, tal que

$$g_b: \{x \in \mathbb{R}: (x,b) \in \mathcal{D}\} \rightarrow \mathbb{R}$$

 $x \mapsto g_b(x) = f(x,b)$

Å derivada de g_b em x=a, caso exista, chama-se derivada parcial de f em ordem a x em (a,b), denota-se por, $\frac{\partial f}{\partial x}(a,b)$, *i.e.*,

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

caso este limite exista e seja um número real^a. Notação alternativa: $f'_{v}(a, b)$.

 $[^]a$ Podem considera-se derivadas iguais a $+\infty$ (ou $-\infty$) mas, neste contexto, não irão ser relevantes

Considerações geométricas sobre o conceito de derivada parcial em ordem a x

• A derivada parcial de f em ordem a x no ponto (a, b) é o declive da reta, \mathcal{R}_1 , tangente à curva de interseção do gráfico de f com o plano y = b, no ponto (a, b, f(a, b)).

applet

outra applet

② A reta \mathcal{R}_1 tem equações cartesianas:

$$\begin{cases} y = b \\ z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) \end{cases}$$

 $(1,0,\frac{\partial f}{\partial x}(a,b))$ é vetor diretor de \mathcal{R}_1 .

Derivada parcial em ordem a y

Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $(a,b) \in \text{int}(\mathcal{D})$. Fixando x=a, fica definida uma função, g_a , real de uma variável, y, tal que

$$g_a: \{y \in \mathbb{R}: (a,y) \in \mathcal{D}\} \rightarrow \mathbb{R}$$

 $y \mapsto g_a(y) = f(a,y)$

À derivada de g_a em y=b, caso exista, chama-se derivada parcial de f em ordem a y em (a,b), denota-se por, $\frac{\partial f}{\partial y}(a,b)$, *i.e.*,

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

caso este limite exista e seja um número real.

Notação alternativa: $f_{\nu}'(a, b)$.

Considerações geométricas sobre o conceito de derivada parcial em ordem a y

• A derivada parcial de f em ordem a y no ponto (a,b) é o declive da reta, \mathcal{R}_2 , tangente à curva de interseção do gráfico de f com o plano x=a, no ponto (a,b,f(a,b)).

Ilustração gráfica:

② A reta \mathcal{R}_2 tem equações cartesianas:

$$\begin{cases} x = a \\ z = f(a, b) + \frac{\partial f}{\partial y}(a, b)(y - b) \end{cases}$$

3 $(0,1,\frac{\partial f}{\partial v}(a,b))$ é vetor diretor dessa reta.

Derivação parcial: exemplos

Na prática, se a função f estiver definida numa vizinhança de um ponto por uma única expressão derivável (usando regras de derivação) em relação a uma das variáveis, por exemplo x, considerando as restantes constantes, a derivada de f em ordem a x, nessa vizinhança, é a expressão obtida dessa derivação.

Exemplos:

- $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = x^2 + xy + \ln(1+y^2)$. Para todo o $(x,y) \in \mathbb{R}^2$, existem as derivadas parciais de f em ordem a x (a y) e $\frac{\partial f}{\partial x}(x,y) = 2x + y \text{ e } \frac{\partial f}{\partial y}(x,y) = x + \frac{2y}{1+y^2}.$
- ② $f: \mathcal{D} \subseteq \mathbb{R}^3 \to \mathbb{R}$ tal que $f(x, y, z) = \cos(xy^2) + \ln(zy^3)$. Para todo o $(x, y, z) \in \mathcal{D}$, $\frac{\partial f}{\partial x}(x, y, z) = -y^2 \sin(xy^2)$, $\frac{\partial f}{\partial y}(x, y, z) = -2xy \sin(xy^2) + \frac{3}{y}$ e $\frac{\partial f}{\partial z}(x, y, z) = \frac{1}{z}$.

Derivação parcial: exemplos

Em alguns casos, apenas a definição é utilizável. Tal como nas funções a uma variável, deve usar-se as definições para determinar as derivadas parciais num ponto P, se na vizinhança do ponto P a função não está definida por uma expressão analítica única.

Exemplos:

- ② Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \begin{cases} xy, & \text{se } x \neq y \\ x^3, & \text{se } x = y \end{cases}$. Mostre que $\frac{\partial f}{\partial x}(1,1) = 1$, $\frac{\partial f}{\partial y}(3,4) = 3$ e que $\frac{\partial f}{\partial y}(2,2)$ não existe.

Derivadas parciais de ordem superior

Definições e notação:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função com derivadas parciais em ordem a x e a y, em algum conjunto de pontos no interior de \mathcal{D} . As funções

$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial y}$

com domínio nos conjuntos de pontos onde cada uma existe, terão, ou não, derivadas em ordem a x e a y nesse conjunto. As derivadas parciais de ordem 2 de f são as funções (definidas nos pontos onde existem):

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right),$$

$$\frac{\partial^2 f}{\partial v^2} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial v} \right) e \frac{\partial^2 f}{\partial v \partial x} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) .$$

Teorema de Schwarz

Exemplo:

Seja f a função real de domínio \mathbb{R}^2 tal que $f(x,y)=x^3y+5xy+\sin(y^2)$. Verifique que, para todo o $(x,y)\in\mathbb{R}^2$:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2y + 5y \quad \frac{\partial f}{\partial y}(x,y) = x^3 + 5x + 2y\cos(y^2)$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 6xy \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = 2\cos(y^2) - 4y^2\sin(y^2)$$

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = 3x^2 + 5 \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = 3x^2 + 5$$

Teorema de Schwarz: Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P \in \text{int}(\mathcal{D})$.

Se existem $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, e $\frac{\partial^2 f}{\partial x \partial y}$ numa bola aberta centrada em P e se $\frac{\partial^2 f}{\partial x \partial y}$ é contínua em P, então existe $\frac{\partial^2 f}{\partial y \partial x}(P)$ e $\frac{\partial^2 f}{\partial y \partial x}(P) = \frac{\partial^2 f}{\partial x \partial y}(P)$.

Função de classe C^k ; Corolário do Teorema de Schwarz

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n$, com \mathcal{D} aberto, e $k \in \mathbb{N}_0$. Dizemos que f é de classe C^k em \mathcal{D} se f possuir todas derivadas parciais até à ordem k contínuas em todo o ponto de \mathcal{D} .

Notação: $f \in C^k(\mathcal{D})$.

Corolário do Teorema de Schwarz:

Se
$$f \in C^2(\mathcal{D})$$
, então $\frac{\partial^2 f}{\partial x_j \partial x_i}(P) = \frac{\partial^2 f}{\partial x_i \partial x_j}(P)$, para todo o $P \in \mathcal{D}$, com $i, j = 1, 2, \dots, n$

Derivadas Direcionais

As derivadas parciais de $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ são casos particulares de derivadas chamadas derivadas direcionais, no caso segundo os vetores U=(1,0) ou U=(0,1), consoante o caso.

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, $P \in int(\mathcal{D})$ e U um vetor unitário de \mathbb{R}^n . A derivada direcional de f segundo U no ponto P é o seguinte limite, caso exista e seja finito,

$$D_U f(P) = \lim_{h \to 0} \frac{f(P + hU) - f(P)}{h}$$

Interpretação geométrica (caso n=2):

applet

 $D_U f(P)$, com P=(a,b), dá informação sobre a variação da cota dos pontos no gráfico de f, ao passar por (a,b,f(a,b)), quando é colocado um ponto X no domínio da função a deslocar-se na direção e sentido de U.

Exemplo de função com todas as derivadas direcionais num ponto e descontínua nesse ponto

Exemplo:

Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$

Se
$$U=(u_1,u_2)$$
, com $\|U\|=1$, ent $\hat{\tilde{\mathsf{a}}}$ o

$$D_U f(0,0) = \lim_{h \to 0} \frac{f(hU) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3 u_1 u_2^2}{h^2 u_1^2 + h^4 u_2^4}}{h} = \lim_{h \to 0} \frac{u_1 u_2^2}{u_1^2 + h^2 u_2^4}$$

logo

$$D_U f(0,0) = \left\{ egin{array}{ll} rac{u_2^2}{u_1}, & ext{se } u_1
eq 0 \ 0, & ext{se } u_1 = 0 \ . \end{array}
ight.$$

f não é contínua no ponto (0,0), pois não existe limite de f nesse ponto.

Diferenciabilidade:

O que será para mais do que uma variável?

Como pode constatar com o exemplo do slide anterior a existência das derivadas parciais (ou mesmo de todas as direcionais) de f num ponto P, não garante a continuidade de f em P. Recorde que para n=1, a existência de derivada finita (diferenciabilidade) num ponto é garantia da continuidade nesse ponto.

Em \mathbb{R}^n , para $n \geq 2$, qual será a noção de função diferenciável num ponto?

Vamos responder a essa questão para n=2, recordando o caso n=1. Para dimensões superiores é só fazer a adaptação devida.

Caso n = 1: diferenciabilidade/reta tangente

Seja $f: \mathcal{D} \subseteq \mathbb{R} \to \mathbb{R}$ diferenciável em $a \in \operatorname{int}(\mathcal{D})$, *i.e.*, existe e é finito o seguinte limite:

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

logo, tomando $\epsilon(\Delta x) = -f'(a) + \frac{f(a + \Delta x) - f(a)}{\Delta x}$, obtemos

$$f(a + \Delta x) = f(a) + \Delta x f'(a) + \Delta x \epsilon(\Delta x), \text{ com } \lim_{\Delta x \to 0} \epsilon(\Delta x) = 0.$$

Deste modo, na vizinhança de a, f fica "bem aproximada" pela reta tangente ao gráfico de f no ponto (a, f(a)), a que corresponde a chamada linearização de f em torno de a:

$$L(x) = f(a) + f'(a)(x - a)$$

Caso n=2: diferenciabilidade/plano tangente (I)

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P = (a, b) \in \text{int}(\mathcal{D})$. Considere que existem $\frac{\partial f}{\partial x}(P)$ e $\frac{\partial f}{\partial y}(P)$. Recorde-se que

$$U_1 = (1, 0, \frac{\partial f}{\partial x}(P)) \in U_2 = (0, 1, \frac{\partial f}{\partial y}(P))$$

são vetores tangentes às curvas de interseção do gráfico de f com y = b e x = a, no ponto P, respetivamente.

Os vetores U_1 e U_2 são não colineares e portanto, existe o plano, \mathcal{T} , que passa em (a, b, f(a, b)) e contém U_1 e U_2 . Atendendo a que, o vetor $N = (-\frac{\partial f}{\partial x}(a,b), -\frac{\partial f}{\partial y}(a,b), 1)$ é ortogonal a ambos,

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

é uma equação cartesiana do plano \mathcal{T} .

Caso n=2: diferenciabilidade/plano tangente (II)

Nas funções diferenciáveis, ver definição no slide seguinte, f fica "bem aproximada" em redor de (a,b) pelos valores assumidos no plano \mathcal{T} , ou seja, pela sua linearização em torno de (a,b):

$$L(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Ilustração Gráfica: (plano tangente)

Função Diferenciável (caso n = 2)

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P = (a, b) \in \operatorname{int}(\mathcal{D})$ tais que existem $\frac{\partial f}{\partial x}(P)$ e $\frac{\partial f}{\partial y}(P)$. Sejam Δx e Δy , reais, tais que $(a + \Delta x, b + \Delta y) \in B_r(P) \subset \mathcal{D}$, para algum r > 0.

Se existem funções $\epsilon_1(\Delta x, \Delta y)$ e $\epsilon_2(\Delta x, \Delta y)$, com $\lim_{(\Delta x, \Delta y) \to (0,0)} \epsilon_1(\Delta x, \Delta y) = \lim_{(\Delta x, \Delta y) \to (0,0)} \epsilon_2(\Delta x, \Delta y) = 0, \text{ tais que }$

$$f(a + \Delta x, b + \Delta y) = f(a, b) + \frac{\partial f}{\partial x}(a, b)\Delta x + \frac{\partial f}{\partial y}(a, b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,$$

para quaisquer Δx e Δy nas condições referidas, então f diz-se diferenciável em (a, b).

Dois exemplos (abordagem gráfica) 1:

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \sqrt{x^2 + y^2}$$

não é diferenciável em (0,0), mas é diferenciável em qualquer outro ponto.

applet

Seja $f: \mathbb{R}^2 o \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

não é diferenciável em (0,0), mas é diferenciável em qualquer outro ponto.

¹Ver à frente, as justificações das afirmações.

Condições suficientes de diferenciabilidade

Teorema:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P \in \text{int } (\mathcal{D})$. Se existem $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ numa bola aberta centrada em P e se pelo menos uma dessas derivadas é contínua em P, então f é diferenciável em P.

Corolário:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ e $P \in \text{int } (\mathcal{D})$. Se f é de classe C^1 numa bola aberta centrada em P, então f é diferenciável em qualquer ponto dessa bola (incluindo P).

Exercício:

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \sqrt{x^2 + y^2}$. Use o Teorema anterior (ou o Corolário), para concluir que f é diferenciável em (a,b), se $(a,b) \neq (0,0)$.

Condição necessária de diferenciabilidade

Teorema:

Se $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ é diferenciável em $P \in \text{int } (\mathcal{D})$, então f é contínua em P.

Nota:

O Teorema anterior tem a seguinte formulação equivalente: Se $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ não é contínua em $P \in \text{int } (\mathcal{D})$, então f não é diferenciável em P.

Exercício:

Seja
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \left\{ egin{array}{ll} rac{x^2}{x^2+y^2}, & \text{se } (x,y)
eq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{array}
ight.$

Use o Teorema anterior, para concluir que f não é diferenciável em (0,0).

Plano Tangente e Vetor Normal ao Gráfico de uma Função

Definições: Seja $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ diferenciável em $(a, b) \in \text{int}(\mathcal{D})$.

O plano de equação

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

é o plano tangente ao gráfico de f no ponto (a,b,f(a,b)). (ver slide 36) Dizemos que o vetor

$$N = \left(-\frac{\partial f}{\partial x}(a, b), -\frac{\partial f}{\partial y}(a, b), 1\right)$$

é um vetor ortogonal ao gráfico de f, no ponto (a, b, f(a, b)). A reta com vetor diretor N que passa em (a, b, f(a, b)) é chamada de reta ortogonal (ou normal) à superfície z = f(x, y) no ponto (a, b, f(a, b)).

^asuperfície de equação z = f(x, y)

Exemplo: Plano tangente e reta normal

O plano tangente ao gráfico de f, com $f(x,y)=4-x^2-y^2$, no ponto P=(1,-1,2) tem equação

$$z-2=-2(x-1)+2(y+1)$$
, ou seja, $-2x+2y-z=-6$.

O vetor N=(-2,2,-1) é vetor ortogonal (ou normal) à superfície de equação $z=4-x^2-y^2$ no ponto P.

A reta normal ao gráfico de f no ponto P tem equação:

$$(x, y, z) = (1, -1, 2) + \lambda(-2, 2, -1), \lambda \in \mathbb{R}$$

Derivadas Direcionais e Gradiente

Definição:

Seja $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ com derivadas parciais de 1.ª ordem em $P \in \text{int}(\mathcal{D})$. Ao vetor

$$\nabla f(P) = \left(\frac{\partial f}{\partial x_1}(P), \frac{\partial f}{\partial x_2}(P), \dots, \frac{\partial f}{\partial x_n}(P)\right)$$

chamamos gradiente de f em P.

Teorema:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ função diferenciável em $\mathcal{D}, P \in \operatorname{int}(\mathcal{D})$ e $U \in \mathbb{R}^n$ um vetor unitário. Existe a derivada direcional de f segundo U no ponto P e

$$D_U f(P) = \nabla f(P) \cdot U,$$

onde \cdot representa o produto interno (usual) de vetores em \mathbb{R}^n .

Interpretações Geométricas do Gradiente (caso n=2)

applet

• Sendo $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ função diferenciável em $\mathcal{D}, P \in \text{int}(\mathcal{D})$, e $U \in \mathbb{R}^2$ um vetor unitário.

$$D_U f(P) = \nabla f(P) \cdot U = ||\nabla f(P)|| \cos \theta$$
, onde $\theta = \measuredangle(\nabla f(P), U)$

Assim, a derivada direcional máxima em P ocorre na direção e sentido correspondente a $\theta=0$, ou seja, na direção e sentido do vetor gradiente de f em P.

O vetor $\nabla f(P)$ fornece a direção e sentido na qual f, em redor de P, apresenta maior crescimento.

• Nas condições anteriores, se P = (a, b) e f(a, b) = k, o vetor gradiente de f em (a, b) é ortogonal à reta tangente à curva de nível C_k , que passa em (a, b). Isto é,

 $\nabla f(a,b)$ é ortogonal à curva de nível de f que passa em (a,b).

Interpretação geométrica do gradiente (caso n = 3):

Plano tangente a uma superfície de nível

Seja $h: \mathcal{B} \subseteq \mathbb{R}^3 \to \mathbb{R}$ função diferenciável em \mathcal{B} , $\mathcal{S}_k = \{(x, y, z) \in \mathcal{B}: h(x, y, z) = k\}$ uma sua superfície de nível e $P \in \mathcal{S}_k$.

O vetor gradiente de h em P é ortogonal a S_k em P.

Assim, se $\nabla h(P) \neq 0$, então a equação do plano tangente a \mathcal{S}_k no ponto P é dada por

$$\nabla h(P) \cdot \overrightarrow{PX} = 0,$$

i.e., o plano tangente à superfície de equação h(x, y, z) = k em P = (a, b, c) tem por equação:

$$(x-a)\frac{\partial h}{\partial x}(a,b,c)+(y-b)\frac{\partial h}{\partial y}(a,b,c)+(z-c)\frac{\partial h}{\partial z}(a,b,c)=0 .$$

Exemplo de determinação de plano tangente a uma superfície de nível

Consideremos o elipsoide de equação $4x^2 + 9y^2 + z^2 = 49$ e P = (1, -2, 3) um ponto desse elipsoide. Pretendemos determinar uma equação do plano tangente ao elipsoide no ponto P.

O elipsoide pode ser encarado como a superfície de nível 49 da função h de domínio \mathbb{R}^3 tal que $h(x,y,z)=4x^2+9y^2+z^2$. Note que $h\in C^1(\mathbb{R}^3)$, uma vez que, para todo o $(x,y,z)\in\mathbb{R}^3$,

$$\frac{\partial h}{\partial x}(x, y, z) = 8x, \frac{\partial h}{\partial y}(x, y, z) = 18y \text{ e } \frac{\partial h}{\partial z}(x, y, z) = 2z.$$

Assim, $\nabla h(P) = (8, -36, 6)$ e portanto uma equação do plano tangente ao elipsoide em P é

$$8(x-1) - 36(y+2) + 6(z-3) = 0$$
.