Journal Club

"Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam"

João Pela

Article Topic and Structure

Topic

- Experimental Particle Physics
- Neutrino Particle Properties

Structure

- 20 Pages
 - 5 Authors, 1 Abstract, 11 Content, 3 Bibliography;
- Divided by paragraphs no sectioning.

Importance

- Submitted to PRL;
- First time measurement of relevant Physics Quantity

Paragraph Topics

- Search Context
- Beam Characteristics
- Accelerator Description
- Near Detector Description
- Far Detector Description
- Analyzed Data
- Background and Selection Criteria
- Neutrino Flux Modulation and Simulation
- Neutrino Beam Profile and Errors
- Neutrino Event Simulation and Errors

- Neutrino Event Simulation and Errors
- FD constrains by ND v_µ measurements
- FD measurements and selection cuts
- Properties of events passing selection
- Event Expectations and Associated Errors
- Oscillations predictions study
- Results and conclusions Imperial College
- Acknowledgements_ondon

T2K Experiment

- Uses J-PARC beam oriented 2.5° off axis to SK (L=295km) of v_u tuned at first oscillation maximum.
- Aimed at measuring neutrino properties like oscillations $v_{\mu} \rightarrow v_{e}$ (with previous most stringent limit $\sin^2 2\theta_{13} < 0.15$ (90%C.L.)
- Near Detector complex located at 280m:
 - On-axis Interactive Neutrino GRID (beam characteristics)
 - Off-axis detector (neutrino properties corresponding to expected FD)
- Far Detector located at 295km
 - Fiducial Volume 22kton of water with 2m outer detector. College
 Timing by CDS with <150pg precision
 - Timing by GPS with <150ns precision

Data, Backgrounds & Flux Modulation

Data

- Run 1 (Jan-Jun 2010) & Run 2 (Nov 2010-Mar 2011).
- Target efficiency +99%.
- 2.474.419 spills with a total of 1.43e20 p.o.t.

Main backgrounds

- Intrinsic v_e contamination in the beam (from kaos).
- And NC interactions with a misidentified π°.

Neutrino Flux Modulation

- Pion production tunned NA61 (5-10% uncertainty).
- Pions (50% uncertainty) and Kaons (15-100% uncertainty) with FLUKA.
- GEANT3 with GCALOR for hadronic interactions and particle propagation.
- Additional errors associated with beam quantities.

Beam Properties and Event Simulation

Neutrino Beam Properties

- @INGRID rate 1.5 events/10¹⁴ p.o.t. was stable stable and consistent.
- Beam steering better then ±1mrad (error ±0.33(0.37) h(v))
- Error alignment SK-Beam calculated via GPS survey and is negligible.
- Errors on intrinsic v_e flux under 1GeV estimated around 14% while above 1GeV are dominated by uncertainty on Kaon production rate (20-50%)

Event Simulation

- Used NEUT MC event generator which was tuned with SciBoone and MiniBooNE Data
 Imperial College
- GENIE event generator used for cross checks.

London

Beam Properties and Event Simulation

Neutrino Beam Properties

- @INGRID rate 1.5 events/10¹⁴ p.o.t. was stable stable and consistent.
- Beam steering better then ±1mrad (error ±0.33(0.37) hor(ver))
- Error alignment SK-Beam calculated via GPS survey and is negligible.
- Errors on intrinsic v_e flux under 1GeV estimated around 14% while above 1GeV are dominated by uncertainty on Kaon production rate (20-50%)

Event Simulation

- Used NEUT MC event generator which was tuned with SciBoone and MiniBooNE Data
 Imperial College
- GENIE event generator used for cross checks.

London

Event Simulation Uncertainties

Summary of systematic uncertainties for the relative rate of different CC and NC reactions to the rate of CCQE

Process	Systematic error		
CCQE	energy-dependent (7% at 500 MeV)		
CC 1π	$30\%~(E_{\nu} < 2~{\rm GeV}) - 20\%~(E_{\nu} > 2~{\rm GeV})$		
CC coherent π^{\pm}	± 100% (upper limit from [27])		
CC other	$30\% \ (E_{\nu} < 2 \ {\rm GeV}) - 25\% \ (E_{\nu} > 2 \ {\rm GeV})$		
NC $1\pi^0$	$30\%~(E_{\nu} < 1~{\rm GeV}) - 20\%~(E_{\nu} > 1~{\rm GeV})$		
NC coherent π	30%		
NC other π	30%		
FSI	energy-dependent (10% at 500 MeV)		

Using ND inclusive v_µ CC measurment to contrain FD predictions

Data & Selection

- Data from Run 1 corresponding to 2.88e10²⁸p.o.t. After quality cuts.
- Selection of events compatible with v_u→µ
- This analysis selects 1529 events (38% CC efficiency for 90% purity, estimated from MC).
- Which can be used to validate MC and then extrapolate to FD.

Measured muon momentum of v_{μ} CC candidates reconstructed in the FGD target. Only statistical error presented.

$$R_{ND}^{\mu,Data}/R_{ND}^{\mu,MC} = 1.036 \pm 0.028 (\mathrm{stat.})_{-0.037}^{+0.044} (\mathrm{det.syst.}) \pm 0.038 (\mathrm{phys.syst.}),$$
 ege

2012-01-24 J.Pela 9

FD Basic Event Selection

FD Event Selection Conditions

- Fully-Contained Fiducial Volume sample
- No activity in the outer detector on the event and 100µs before the event trigger
- At least 30MeV electron-equivalent energy deposited.
- Reconstructed vertex in the fiducial volume.

Results

- 88 events pass this requirements all within -2 to 10µs around the beam trigger.
- Expected contamination of 0.003 determined from sidebands.
- Events compatible with const. rate normalized by p.o.t via Kolmogorov-Smirnov test with (p-value=32)

Further FD event selection

Signal Selection Cuts

- Event reconstructed with single ring (41 events)
- Event being electron like (8 events)
- E_{vis}>100MeV and no delayed electron signal (6 events)
 - Suppress v_µ→µ→e events
- Force reconstruction of 2 rings and cut on M_{inv}<105MeV/c² (6 events)
 - Suppress π⁰ events
- E_v^{rec}<1260MeV assuming quasi-elastic kinematics
 - Suppress intrinsic v_e events from from kaon decays

Cut Illustration Plots

Distribution of M_{inv} when each event is force to be reconstructed into 2 rings. Error bars only statistical.

Reconstructed neutrino energy spectrum and the applied cut.

Event Characteristics and FD extrapolation

Selected event characteristics

- Consistent with CCQE events
- Events are clustered at large R, near the edge of the FV in the upstream beam direction.
- Inconsistency with contamination from penetrating particles from rock-neutrino interactions (no OD activity).

FD Extrapolation

 To extrapolate we can use ND data to normalize MC predictions for the FD:

$$N_{SK}^{exp} = \left(R_{ND}^{\mu,Data}/R_{ND}^{\mu,MC}\right) \cdot N_{SK}^{MC}, \ \ \text{Imperial College London}$$

Event Yield Table

	Data	$\nu_{\mu} CC$	$\nu_e {\rm CC}$	NC	$\nu_{\mu} \rightarrow \nu_{e} CC$
(0) interaction in FV	n/a	67.2	3.1	71.0	6.2
(1) fully-contained FV	88	52.4	2.9	18.3	6.0
(2) single ring	41	30.8	1.8	5.7	5.2
(3) e -like	8	1.0	1.8	3.7	5.2
(4) $E_{vis} > 100 \text{ MeV}$	7	0.7	1.8	3.2	5.1
(5) no delayed electron	6	0.1	1.5	2.8	4.6
(6) non- π^0 -like	6	0.04	1.1	0.8	4.2
(7) $E_{\nu}^{rec} < 1250 \text{ MeV}$	6	0.03	0.7	0.6	4.1

- Event reduction for the neutrino appearance search at the far detector.
 After each selection criterion is applied, the numbers of observed data and main backgrounds are given.
- At cut seven data seams clearly to favor osculation scenario.

Total Relative Uncertainty

Source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
(1) neutrino flux	$\pm~8.5\%$	$\pm~8.5\%$
(2) near detector	$^{+5.6}_{-5.2}$ %	$^{+5.6}_{-5.2}\%$
(3) near det. statistics	$\pm~2.7\%$	$\pm~2.7\%$
(4) cross section	$\pm~14.0\%$	$\pm~10.5\%$
(5) far detector	$\pm~14.7\%$	$\pm~9.4\%$
Total $\delta N_{SK}^{exp}/N_{SK}^{exp}$	$^{+22.8}_{-22.7}\%$	$^{+17.6}_{-17.5}\%$

• Contributions from various sources and the total relative uncertainty for $\sin^2 2\theta_{13} = 0$ and 0.1 and δ_{co}

Conclusions

- Observation of 6 single e-like events exceeds expectations of three-flavor neutrino oscillation scenario with sin²2θ₁₃=0.
 (Prob. to observe 6 or more events is 7e-3)
 - Conclude that data indicate electron neutrino appearance from a muon neutrino beam.
 - Confidence yields $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ at 90% C.L. For $\sin^2 2\theta_{23} = 1.0$, $|\Delta m^2_{23}| = 2.4e 3eV^2$, $\delta_{CP} = 0$ and for normal(inverted) neutrino mass hierarchy. The best fit points are 0.11(0.14).
- More data are required to firmly establish v_e appearance and to better determine the angle θ_{13} Imperial College London

Δm^2_{23} and δ_{cp} fit

 The 68% and 90% C.L. regions for $\sin^2 2\theta_{13}$ for each value of δ_{co} consistent with the observed number of events in the threeflavor oscillation case for normal (top) and inverted (bottom) mass hierarchy. The other oscillation parameters are fixed. Best fit values are shown with solid lines. Imperial College

London