Relational Algebra

Presented By

Vedprakash Sahu

BSc IT(4th Sem)

Contents...

- Relational Algebra
- Fundamental Operations in Relational Algebra
 - > Selection Operator (σ)
 - ➤ Projection Operator ([])
 - ➤ Union Operator (U)
 - ➤ Intersection Operator (∩)
 - ➤ Cartesian Product(X)
 - ➤ Join Operator (⋈)
- Objective Questions

Relational Algebra

- Relational algebra is a widely used procedural query language.
- It collects instances of relations as input and gives occurrences of relations as output.
- It uses various operation to perform this action.
- Relational algebra operations are performed recursively on a relation.
- The output of these operations is a new relation, which might be formed from one or more input relations.

Fundamental Operations in Relational Algebra

- \triangleright Selection Operator (σ)
- ➤ Projection Operator (∏)
- ➤ Union Operator (U)
- ➤Intersection Operator (∩)
- Cartesian Product (X)
- ➤ Join Operator (⋈)

Selection Operator (σ)

- ☐ The SELECT operation is used for selecting a subset of the tuples according to a given selection condition.
- \square Sigma(σ)Symbol denotes it.
- ☐ It is used as an expression to choose tuples which meet the selection condition.
- Select operation selects tuples that satisfy a given predicate.

Projection Operator ([])

- ☐ The projection eliminates all attributes of the input relation but those mentioned in the projection list.
- ☐ The projection method defines a relation that contains a vertical subset of Relation.
- ☐ This helps to extract the values of specified attributes to eliminates duplicate values.
- \square (\square) The symbol used to choose attributes from a relation.
- ☐ This operation helps you to keep specific columns from a relation and discards the other columns.

SELECTION & PROJECTION Example

Person

ID	Name	Address	Hobby
1123	John	123 Main	Stamps
1123	John	123 Main	Coins
5556	Mary	7 Lake Dr	Hiking
9876	Bart	5 Pine St	Stamps

σ Hobby = 'stamps' (Person)

ID	Name	Address	Hobby
1123	John	123 Main	Stamps
9876	Bart	5 Pine St	Stamps

∏ Name, Hobby(Person)

Name	Hobby	
John	Stamps	
John	Coins	
Mary	Hiking	
Bart	Stamps	

UNION Operator (U)

- □ UNION is symbolized by ∪ symbol.
- ☐ It includes all tuples that are in tables A or in B.
- ☐ It also eliminates duplicate tuples.
- ☐ So, set A UNION set B would be expressed as:

The result \leftarrow A \cup B

- ☐ For a union operation to be valid, the following conditions must hold -R and S must be the same number of attributes.
- ☐ Attribute domains need to be compatible.
- ☐ Duplicate tuples should be automatically removed.

UNION Example

Α

1 1		
A	1	
В	2	
D	3	
F	4	
Е	5	

В

A	1
С	2
D	3
Е	4

AUB

A	1
В	2
С	2
D	3
Е	5
F	4
Е	4

Intersection Operator (∩)

- \square An intersection is defined by the symbol \cap
- \square For Ex. A \cap B
- ☐ It defines a relation consisting of a set of all tuple that are in both A and B. However, A and B must be union-compatible.

Intersection Example

A			
A	1		
В	2		
D	3		
F	4		
Е	5		

В			
A	1		
С	2		
D	3		
Е	4		

$A \cap B$		
A 1		
D	3	

Cartesian Product(X)

- ☐ This type of operation is helpful to merge columns from two relations.
- Generally, a Cartesian product is never a meaningful operation when it performs alone.
- However, it becomes meaningful when it is followed by other operations.
- Cartesian Product operation denoted by X.

Cartesian Product Example

Α

A	1		
В	2		
D	3		
F	4		
Е	5		

В

A	1
C	2
D	3
Е	4

AXB

Α	1	Α	1
Α	1	С	2
Α	1	D	3
Α	1	E	4
В	2	Α	1
В	2	С	2
В	2	D	3
В	2	Е	4
D	3	Α	1
D	3	С	2
D	3	D	3
D	3	Е	4

F	4	Α	1
F	4	С	2
F	4	D	3
F F E	4	E	4
Е	5	Α	1
Е	5	С	2
E E	5	D	3
Е	5	E	4

Join Operation

- ☐ Join operation is essentially a Cartesian product followed by a selection criterion.
- \square Join operation denoted by \bowtie .
- JOIN operation also allows joining variously related tuples from different relations.
- ☐ Types of JOIN:

Various forms of join operation are:

- Inner Joins:
 - Theta join
 - EQUI join
 - Natural join
- Outer join:
 - Left Outer Join
 - Right Outer Join
 - Full Outer Join

JOIN Operation Example

Α

Col a	Col b	
A	1	
В	2	
D	3	
F	4	
Е	5	

В

Col a	Col b
A	1
С	2
D	3
Е	4

A M B

A.Col a = B.Col a

Α	1	Α	1
D	3	D	3
E	5	E	4

 $A \bowtie B$

A.Col b = B.Col b

Α	1	Α	1
В	2	С	2
D	3	D	3
F	4	E	4

Objective Questions

- 1. Who is the father of DBMS?
- Ans :- Edgar. F. Codd.
- 2. Which is used to denote the selection operation in relational algebra?
- Ans :- Sigma (Greek)
- 3. How is the left outer join symbol represented in relational algebra?
- a) ™
- b) ⋈
- c) >
- d) ⋈
- Ans :- (a) \bowtie .

Thank You!