Contents

1	Doc	tor's program	1
	1.1	Numerical problems	1
		1.1.1 ODE	1
		1.1.2 Integral	1
	1.2	Consequences of choice in method	1
		1.2.1 Using Taylor's series	1
2	\mathbf{Eul}	er Implicit	2

1 Doctor's program

https://www.youtube.com/playlist?list=PLo4jXE-LdDTQbSErI2ftYD4PLJjVMaiox

1.1 Numerical problems

1.1.1 ODE

$$\begin{cases} \frac{dy}{dt} = f(y(t), t) \\ y(1) = y_0 \end{cases}$$
 (1)

1.1.2 Integral

$$y(t) = y(t_0) + \int_{t_0}^{t} f(y(s), s) ds$$

1.2 Consequences of choice in method

- $\overline{Y(t_n)}$ EDO solution in $t=t_n$ (function)
- y_n discrate solution (numerical method) (vector)

1.2.1 Using Taylor's series

$$\overline{Y}(t_n+1) = \overline{Y_n} + \Delta t.\overline{Y}'(t_n) + O(\Delta t^2)$$

$$\Longrightarrow \overline{Y}(t_n+1) = \overline{Y_n} + \Delta t.f(\overline{Y}(t_n), t_n) + \Big|_{\text{cut}} O(\Delta t^2)$$
(2)

$$y_{n+1} = y_n + \Delta t. f(y_n, t_n)$$

= $y_n + \Delta t. \Delta f_n$ (3)

1. Euler Explicit method

2 Euler Implicit

Use $y_{n+1} = y_n - \Delta t. f(y_{n+1}, t_{n+1})$ [frame=lines,fontsize=,linenos]julia using Pkg; Pkg.add("")