ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 09 gennaio 2015

Esercizio A

$R_1 = 100 \Omega$ $R_2 = 10 k\Omega$ $R_4 = 1 k\Omega$ $R_5 = 1 k\Omega$ $R_6 = 10 k\Omega$ $R_7 = 465 k\Omega$ $R_8 = 20 k\Omega$ $R_9 = 2.5 k\Omega$	$R_{10} = 200 \Omega$ $R_{11} = 3.8 \text{ k}\Omega$ $R_{12} = 10 \text{ k}\Omega$ $C_1 = 10 \text{ n}F$ $C_2 = 47 \text{ n}F$ $C_3 = 1 \mu F$ $V_{CC} = 18 V$	V _i	V_{cc} R_2 R_1 C_1 R_3	V_{cc} R_4 Q_1	R _e	V _{cc} • R ₇	R_9 C_3 R_{10} R_{10} R_{11} C_2	V ₀
---	--	----------------	----------------------------------	----------------------	----------------	----------------------------------	--	-----------------------

 Q_1 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=1 mA/V² e $V_T=-1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul collettore di Q_2 sia 13 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_3 = 11847 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -4.359$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 2881.79$ Hz; $f_{z2} = 891.12$ Hz; $f_{p2} = 15116.15$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 12.73$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{\overline{A} + C}\right)\left(\overline{C}D + \overline{D}E\right) + \left(\overline{D + \overline{E}}\right)\left(A + B\overline{C}\right) + B\overline{C} + \overline{D}E$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 50 \Omega$	$R_5 = 1 \text{ k}\Omega$
$R_2 = 100 \Omega$	C = 1 μF
$R_3 = 2 k\Omega$	$V_{CC} = 6 V$
$R_4 = 1 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a V_{CC} = **6V**, Q_1 ha una R_{on} = 0 e V_T =1V. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 7720 Hz)