

CONTENTS 1. 類神經網路介紹

- 2. 常用框架
- 3. Keras簡單類神經網路實作Demo
- 4. 補充(10月搞炸的BERT Model)

類神經網路介紹

1.1神經元架構

Dendrite/樹突(input) Axon/軸突(output) Nucleus/神經元(activate, compute)

1.2定義

- 類神經網路是一種模仿生物神經系統的數學模型。
- 神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型。这些神经元(也叫激活单元, activation unit) 采纳一些特征作为输出,并且根据本身的模型提供一个输出。

Sigmoid (logistic) activation function.

1.2定義

• 類神經網路是一種模仿生物神經系統的數學模型。

1.3 簡單的神經網路架構

其中,x1,x2,x3 是输入单元 (input units) , 我们将原始数据输入给它们。 a1,a2,a3 是中间单元, 它们负责将数据进行处理,然后呈递到下一层。 最后是输出单元,它负责计算h(x)。

1.3 簡單的神經網路架構

$$\begin{array}{l} a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}) \ a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}) \\ a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}) \ h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}) \end{array}$$

1.4 前向傳播

- 上面进行的讨论中只是将特征矩阵中的一行(一个训练实例)喂给了神经网络,我们需要将整个训练集都喂给我们的神经网络算法来学习模型。
- 我们可以知道:每一个a都是由上一层所有的x和每一个x所对应的w决定的。
- 我们把这样从左到右的算法称为前向传播算法(FORWARD PROPAGATION)

1.4 前向傳播

• 寫成向量格式如下:

$$g\begin{pmatrix}\begin{bmatrix}\theta_{10}^{(1)} & \theta_{11}^{(1)} & \theta_{12}^{(1)} & \theta_{13}^{(1)} \\ \theta_{20}^{(1)} & \theta_{21}^{(1)} & \theta_{22}^{(1)} & \theta_{23}^{(1)} \\ \theta_{30}^{(1)} & \theta_{31}^{(1)} & \theta_{32}^{(1)} & \theta_{33}^{(1)}\end{bmatrix} \times \begin{bmatrix}x_0 \\ x_1 \\ x_2 \\ x_3\end{bmatrix} = g\begin{pmatrix}\begin{bmatrix}\theta_{10}^{(1)} x_0 + \theta_{11}^{(1)} x_1 + \theta_{12}^{(1)} x_2 + \theta_{13}^{(1)} x_3 \\ \theta_{20}^{(1)} x_0 + \theta_{21}^{(1)} x_1 + \theta_{22}^{(1)} x_2 + \theta_{23}^{(1)} x_3 \\ \theta_{30}^{(1)} x_0 + \theta_{31}^{(1)} x_1 + \theta_{32}^{(1)} x_2 + \theta_{33}^{(1)} x_3\end{bmatrix} = \begin{bmatrix}a_1^{(2)} \\ a_2^{(2)} \\ a_3^{(2)}\end{bmatrix}$$

• 輸出的值則為:

$$g\left(\begin{bmatrix}\theta_{10}^{(2)} & \theta_{11}^{(2)} & \theta_{12}^{(2)} & \theta_{13}^{(2)}\end{bmatrix} \times \begin{vmatrix}a_0\\a_1^{(2)}\\a_2^{(2)}\\a_3^{(2)}\end{bmatrix}\right) = g\left(\theta_{10}^{(2)}a_0^{(2)} + \theta_{11}^{(2)}a_1^{(2)} + \theta_{12}^{(2)}a_2^{(2)} + \theta_{13}^{(2)}a_3^{(2)}\right) = h_{\theta}(x)$$

• g(x) 圖像: sigmoid

1.5 反向傳播

• 定義: 損失函數求導更新之前的係數 (ex: ½(y' - y)^2)

1.5 反向傳播

• 反向传播是根据链式求导法则对参数w,b更新)

1.5 反向傳播

• 整體架構:

Python常用框架

- 頂級深度學習框架四大陣營:
- 1.TensorFlow, 前端框架Keras, 背後巨頭Google
- 2.PyTorch, 前端框架FastAI, 背後巨頭Facebook
- 3.MXNet, 前端框架Gluon, 背後巨頭Amazon
- 4.CognitiveToolkit(CNTK), 前端框架Keras或Gluon, 背後巨頭Microsoft。

框架	机构	支持语言	Stars	Forks	Contributors
TensorFlow	Google	Python/C++/Go/	41628	19339	568
Caffe	BVLC	C++/Python	14956	9282	221
Keras	fchollet	Python	10727	3575	322
CNTK	Microsoft	C++	9063	2144	100
MXNet	DMLC	Python/C++/R/	7393	2745	241
Torch7	Facebook	Lua	6111	1784	113
Theano	U. Montreal	Python	5352	1868	271
Deeplearning4J	DeepLearning4J	Java/Scala	5053	1927	101
Leaf	AutumnAI	Rust	4562	216	14
Lasagne	Lasagne	Python	2749	761	55
Neon	NervanaSystems	Python	2633	573	52

- TensorflowTensorFlow是一個采用數據流圖 (dataflowgraphs) , 用於數值計算的開源軟件庫。
- 節點 (Nodes) 在圖中表示數學操作, 圖中的線 (edges) 則表示在節點間相互聯系的多維數據數組, 即 張量 (tensor)。

• 它靈活的架構可以在多種平台上展開計算,例如台式計算機中的一個或多個CPU (或GPU) ,服務器,

移動設備等等

- tensorflow
- 1.x, 2.x 版本 (新版跟舊版的接口差異大, 相容性問題多)
- keras 框架
- 高階的 api 框架, 撰寫容易
- 建立簡單的線性執行的模型

```
# 建立簡單的線性執行的模型

model = Sequential()

# Add Input layer, 隱藏層(hidden layer) 有 256個輸出變數

model.add(Dense(units=256, input_dim=784, kernel_initializer='normal', activation='relu'))

# Add output layer

model.add(Dense(units=10, kernel_initializer='normal', activation='softmax'))

python
```


簡單類神經網路實作 Demo

簡單類神經網路實作 Demo

• http://www.gunniliang.com/notebooks/Delete/git_r/two_month_report/202011_2021_1/11_2_to_11_6_f irst/code/minst_ex1.ipynb

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 128)	100480
dense_1 (Dense)	(None, 10)	1290

Total params: 101,770 Trainable params: 101,770 Non-trainable params: 0

補充(10月搞炸的BERT)

BERT Bidirectional Encoder Represetations from Transformers

Ref https://leemeng.tw/attack_on_bert_transfer_learning_in_nlp.html

BERT Bidirectional Encoder Represetations from Transformers

- Transformers
- https://leemeng.tw/neural-machine-translation-with-transformer-and-tensorflow2.html

