Distribuciones Estadísticas

Mario Calvarro Marines

Índice general

1.	Dist	iones Discretas	1	
	1.1.	Degen	erada	2
		1.1.1.	Función de masa	2
		1.1.2.	Función de distribución	2
		1.1.3.	Momentos	2
		1.1.4.	Función característica	2
	1.2.	Degen	erada	3
		1.2.1.	Función de masa	3
		1.2.2.	Función de distribución	3
		1.2.3.	Momentos	3
		1.2.4.	Función característica	3
	1.3.	Degen	erada	4
		1.3.1.	Función de masa	4
		1.3.2.	Función de distribución	4
		1.3.3.	Momentos	4
		1.3.4.	Función característica	4
	1.4.	Degen	erada	5
		1.4.1.	Función de masa	5
		1.4.2.	Función de distribución	5
		1.4.3.	Momentos	5
		1.4.4.	Función característica	5
2	Dist	ribuai	iones Continuas	7
4.				0
	2.1.		nerada	8
		2.1.1.	Función de masa	8

	2.1.2.	Función de distribución	8
	2.1.3.	Momentos	8
	2.1.4.	Función característica	8
2.2.	Degen	erada	9
	2.2.1.	Función de masa	9
	2.2.2.	Función de distribución	9
	2.2.3.	Momentos	9
	2.2.4.	Función característica	9
2.3.	Degen	erada	10
	2.3.1.	Función de masa	10
	2.3.2.	Función de distribución	10
	2.3.3.	Momentos	10
	2.3.4.	Función característica	10
2.4.	Degen	erada	11
	2.4.1.	Función de masa	11
	2.4.2.	Función de distribución	11
	2.4.3.	Momentos	11
	2.4.4.	Función característica	11
2.5.	Degen	erada	12
	2.5.1.	Función de masa	12
	2.5.2.	Función de distribución	12
	2.5.3.	Momentos	12
	2.5.4.	Función característica	12

13

3. Distribuciones Normales

DISTRIBUCIONES DISCRETAS

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right)=\exp\left\{ ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

DISTRIBUCIONES CONTINUAS

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right) = \exp\left\{ith\right\}$$

Distribución que vale 1 en un solo punto h.

Función de masa

La función de masa de la distribución es:

$$p_X(x) = \begin{cases} 1, & x = h \\ 0, & x \neq h \end{cases}$$

Función de distribución

La función de distribución es:

$$F_X(x) = \begin{cases} 0, & x < h \\ 1, & x \ge h \end{cases}$$

Momentos

Respecto del origen

La **esperanza** será:

$$E[X] = h$$

y un momento genérico:

$$E\left[X^k\right] = h^k$$

Respecto del centro

La **varianza** es:

$$V[X] = 0$$

Función característica

$$\varphi\left(t\right)=\exp\left\{ ith\right\}$$

DISTRIBUCIONES NORMALES