ОГЛАВЛЕНИЕ

Тлава	1. Визуальная арифметика	3
1.1	Сложение	3
1.2	Вычитание	3
1.3	Умножение	4
1.4	Натуральные числа	4
1.5	Теорема Пифагора графически	6
1.6	Бином Ньютона и другие формулы визуально	6
1.7	Соизмеримость отрезков, алгоритм Евклида	6
Глава	2. Движения на прямой	8
2.1	Сдвиг, композиция сдвигов	8
2.2	Отражение	9
2.3	Таблица Кэли движений прямой	10
2.4	Теоема о гвоздях, аналог теоремы Шаля	11
Глава	3. Вокруг окружности	12
3.1	Симметрии окружности	12
3.2	Таблица Кэли для окружности	13
3.3	Наматывание прямой на окружность	14
Глава	4. Целые числа и ОТА	18
4.1	Целые числа. Кольцо	18
4.2	Кузнечик НОД и алгоритм Евклида	19
4.3	Простые числа и ОТА	21
Глава	5. Симметрии фигур	23
5.1	Симметрии правильного треугольника	23
5.2	Симметрии правильного многоугольника	24
5.3	Подгруппы вращения окружности	24
5.4	Симметрии ромба, группа Клейна	25
Глава	6. Движения плоскости	26
6.1	Виды движений плоскости	26
6.2	Теорема Шаля	26
6.3	Таблица движений	27

Глава	7. Исчисление остатков	28
7.1	Таблица сложения остатков	28
7.2	Умножение остатков. Поле	28
7.3	Малая теорема Ферма	29
7.4	Многочлены	29
Глава	8. Основная теорема арифметики и ее следствия	31
8.1	Корни и разрешимость уравнений	31
8.2	Рациональные дроби	31
8.3	Цепные дроби	32
8.4	Расширение поля рациональных чисел	32
Глава	9. Комплексные числа и Гаусс	34
9.1	Комплексные числа	34
9.2	Реализация движений с помощью комплексных чисел	34
9.3	Гомотетии прямой и плоскости	35
9.4		35
9.5	Числа Гаусса	36

Визуальная арифметика

1.1 Сложение и вычитание

1.1.1 Конспект

- 1. Берем произвольную прямую, и на ней будем откладывать отрезки вправо и влево.
- 2. Откладывание вправо есть прибавление длины, а откладывание влево вычитание (уменьшение) длины.
- 3. Можно откладывать ноль, т.е. ничего не делать. В этом случае все равно прибавляем или вычитаем ноль.
- 4. Мы можем комбинировать откладывание отрезков вправо и влево, т.е. производить серию последовательных откладываний отрезков (они могут быть разными по длине), на каждом шаге от текущей точки положения.
- 5. Результат *серии откладываний* равносилен одному откладыванию отрезка, соединяющего стартовую и финишную точки, причем финишная точка:
 - может быть справа от стартовой (результатом является одно откладывание вправо, т.е. прибавление длины),
 - \bullet может совпадать с ней (результатом оказалось нулевое откладывание)
 - или быть слева от стартовой точки (результатом является одно откладывание влево, т.е. вычитание).
- 6. Откладывание *изотропно*, т.е. одинаковые серии откладываний, приложенные к разным стартовым точкам, приводят к одинаковым результирующим отрезкам, отложенным от этих стартовых точек. Иначе говоря, величина и направление откладывания не зависит от начального местоположения!

7. Серии откладываний можно проиллюстрировать складным метром. Раскладывание колена на 180° означает прибавление его длины к общей серии откладываний, а складывание — вычитание его длины из общей серии откладываний. При этом от стартовой точки можно уйти как вправо, так и влево, или остаться на месте.

- 8. С помощью этой же линейки нетрудно продемонстрировать, что композиция откладываний *ассоциативна* и *коммутативна*: можно сначала сложить/разложить одну линейку, затем вторую, затем приложить вторую к первой или первую ко второй результат будет один и тот же!
- 9. Кроме того, очевидно, что у каждого откладывания существует обратное, приводящее в результате к нулевому откладыванию. Для этого нужно произвести ровно ту же самую серию откладываний, только поменять ось направления. Или, что то же самое. пройтиь по линейке в обратную сторону.
- 10. Далее любое откладывание будем записывать буквами a,b,c,\ldots , имея ввиду под ними как прибавления, так и вычитания.
- 11. Откладывание, противоположное a, будем обозначать -a. При этом комбинация откладываний соединяется знаком '+', а если встречается комбинация a + (-b), то пишем проще: a b.
- 12. Обратные откладывания это просто перевернутые в обратную сторону «линейки»!
- 13. Результат откладывания (конфигурацию линейки с учтом ее направления) будем называть **вектором**. Если вектор смотрит влево (финишная точка левее стартовой), то вектор называется *отрицательным*, а если вправо *положительным*. Нулевой вектор когда финиш и старт совпадают.
- 14. Композицию откладываний будем называть *суммой векторов* или просто суммой, а процедуру откладывания *сложением*.

Свойства сложения:

SUM1
$$(a+b)+c=a+(b+c)$$
 (ассоциативность);
SUM2 $a+b=b+a$ (коммутативность);
SUM3 $a+0=0+a=a$ (аддитивное свойство нуля);

SUM4 a + (-a) = 0 (обратный элемент);

SUM5 если a + x = b + x, то a = b (правило сокращения);

SUM6 верно одно и только одно: либо a = b, либо a = b + x, либо a = b - x, где x — откладывание вправо (трихотомия)

1.1.2 Задачи

1.2 Сравнение

1.2.1 Конспект

- 1. Понятие отрицательного и положительного векторов позволяют ввести сравнение на векторах.
- 2. Для начала скажем, что положительный вектор больше нуля: x > 0.
- 3. Далее, если b = a + x, где x > 0, то пишем a < b.

Свойства сравнения (можно вывести из определения):

Ord1 не верно, что x < x (антирефлексивность);

Ord2 если a < b и b < c, то a < c (транзитивность);

Ord3 верно одно и только одно: либо a=b, либо a< b, либо b< a (трихотомия);

Ord4 $a < b \Leftrightarrow a + x < b + x$, где x > 0 (изотропность сравнения)

1.2.2 Задачи

1.3 Умножение

1.3.1 Конспект

- 1. Строим две перпендикулярно направленные оси Ox и Oy. На каждой оси свой собственный мир векторов и линеек.
- 2. Умножение это площадь, построенная на перпендикулярных векторах. Картинка $2 \times 2 = 4$.
- 3. Поскольку векторы у нас двух знаков, умножение также бывает двух знаков. Знак умножения определяется знаком (направлением) векторов и таблицей перемножения знаков:

	+	_
+	+	_
_	-	+

- 4. Понятие группы на данном примере. Элемент '+' является нейтральным элементом группы знаков. Многократные умножения знаков не выводят за пределы группы.
- 5. Умножение коммутативно и ассоциативно можно продемонстрировать на картинках с квадратами и кубами.
- 6. Умножение на нулевой отрезок (мультипликативное свойство нуля) очевидно из равенства и свойств сложения:

$$0 + a \times 0 = a \times 0 = a \times (0 + 0) = (a \times 0) + (a \times 0) \Rightarrow 0 = (a \times 0)$$

- 7. Дистрибутивный закон, в том числе при разнонаправленных векторах проверяется непосредственно на картинке: $a \times (b+c) = a \times b + a \times c$.
- 8. **Единичный отрезок** способ свести многократное сложение одного вектора к умножению на сумму единичных отрезков! Прямоугольник единичной высоты и длины an перекладывается в прямоугольник $a \times n$, тем самым сложение превращается в умножение.
- 9. Умножение на единичный отрезок: $a \times 1 = a$.
- 10. Сложение отрезков это также сложение прямоугольников единичной высоты.
- 11. Умножение отрезков это не только площадь, но также и объем, который заметает вертикальный единичный отрезок на площади $a \times b$, поэтому $ab = a \times b \times 1$.
- 12. *Степень*: многократное умножение отрезка самого на себя. Иллюстрация отрезок, квадрат, куб.
- 13. В дальнейшем умножение векторов в смысле нахождения площади/объема, т.е. $a \times b$, и умножение чисел как таковых, т.е. ab, будем считать одним и тем же понятием, так что $a \times b = ab$.

Свойства умножения:

Prod1
$$(a \times b) \times c = a \times (b \times c)$$
 (ассоциативность);

Prod2
$$a \times b = b \times a$$
 (коммутативность);

Prod3
$$a \times 0 = 0 \times a = 0$$
 (мультипликативное свойство нуля);

Prod4 $a \times 1 = 1 \times a = a$ (нейтральный элемент по умножению);

Prod5 $a \times (b+c) = a \times b + a \times c$ (дистрибутивный закон);

Prod6 если $a \times b = 0$, то a = 0 или b = 0 (отсутствие делителей нуля);

Prod7 если $a \times c = b \times c$ и $c \neq 0$, то a = b (правило сокращения);

Prod8 если $a \times c < b \times c$, то a < b (монотонность);

Prod9 если a < b и c > 0, то $a \times c < b \times c$.

1.3.2 Задачи

1.4 Натуральные числа

1.4.1 Конспект

- 1. Кратность операций сложения и умножения: $a+a+a+a+a+\dots$, $aaa\dots$ Натуральное число вводится для обозначения кратности одинаковых операций!
- 2. Нулевая кратность: в случае сложения ничего не складываем, остаемся на месте в начальной точке, поэтому

$$\underbrace{a + \dots + a}_{0 \text{ pa3}} = 0.$$

3. Нулевая степень: в случае умножения ничего не умножаем, от умножения остается только кратность 1, наследуемая от сложения, т.е. в произведении $1 \times a \times a \times \dots$ выбрасываем все, остается только 1. Поэтому

$$\underbrace{a \times \cdots \times a}_{0 \text{ pa3}} = 1,$$

кроме того, это согласуется с законом ассоциативности умножения. Многие правила в математике для крайних значений определяются с целью сохранить общий вид формул, если это не приводит к противоречию!

- 4. **Натуральные числа** это показатели кратности операций (сложения и умножения).
- 5. С другой стороны, натуральные числа можно рассматривать как суммы единичных отрезков.

$$n = \underbrace{1 + 1 + \dots + 1}_{n \text{ pa3}}$$

- 6. Чудо, но это вполне согласуется с операциями сложения и умножения, сохраняет все законы арифметики: ассоциативность, коммутативность, дистрибутивность.
- 7. Поэтому натуральные числа, привязанные к единичным отрезкам, можно также считать мерой длины, площади, объема и т.д.
- 8. Ноль натуральное число, поскольку мы рассматриваем нулевую кратность для однородности законов арифметики.

NotaBene Натуральные числа — это и кратности операций, и единицы измерения, т.е. числа.

- 9. Натуральные числа отвечают за соизмеримость и арифметическую кратность: a **кратно** b (a:b), если a = bn или a = (-b)n при некотором натуральном n. Ноль кратен любому числу! Нулю кратен только ноль!
- 10. Если a кратно b, то говорят также, что b делит a, или что b является делителем a (b|a).
- 11. Если a>0 кратно b>0, то a=kb=b+(k-1)b, где k>0. Здесь x=(k-1)b. Поэтому $a\geqslant b$. Так что для положительных векторов кратность означает превосходство в смысле сравнения. И наоборот, если b делит a, то $b\leqslant a$. Аналогичные неравенства можно получить и для отрицательных векторов.

1.4.2 Задачи

1.5 Теорема Пифагора графически

1.5.1 Конспект

- 1. Строим квадрат $a+b\times a+b$ и внутри квадраты $a\times a$ и $b\times b$
- 2. Строим квдарат $a+b\times a+b$ и внутри квадрат $c\times c$
- 3. Делаем вывод, перекладывая треугольники
- 4. *Построение $\sqrt{2}, \sqrt{7}$ (используются признаки подобия треугольников, отношения строн)
- 5. Примеры пифагоровых троек (анонс теоремы!)

1.5.2 Задачи

1.6 Бином Ньютона и другие формулы визуально

1.6.1 Конспект

- 1. визуализация $(a b)(a + b) = a^2 b^2$
- 2. сумма подряд идущих чисел $1,2,\ldots,n$ с помощью сложения прямоугольников
- 3. сумма подряд идущих нечетных чисел
- 4. Вывод формулы $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
- 5. Разрезание сырного кубика на 8 частей тремя плоскостями

1.6.2 Задачи

1.7 Соизмеримость отрезков, алгоритм Евклида

1.7.1 Конспект

- 1. Два отрезка a и b, кузнечики прыгают, один на a и -a сколько угодно раз, второй на b и -b сколько угодно раз
- 2. Кузнечики стартуют в одной и той же точке (назовем ее O). Могут ли они попасть в одну точку, отличную от O, когда-нибудь?
- 3. Ответ да, если есть такая точка A, что отрезок OA кратен и a, и b одновременно, т.е. при некотрых натуральных n, m, не равных нулю, будет верно равенство an = bm:

$$\underbrace{a+a+\cdots+a}_{n \text{ pa3}} = \underbrace{b+b+\cdots+b}_{m \text{ pa3}}$$

- 4. Отрезки, которые имеют общий кратный отрезок, называются *соизмеримыми*
- 5. Иллюстрация: строим прямоугольник $a \times b$ (a < b), начинаем отсекать в нем квадраты: сначала отсекаем квадраты $a \times a$, пока можем, останется кусок $a \times b_1$ ($b_1 < a$), затем отсекаем квадраты $b_1 \times b_1$, пока можем, останется кусок $a_1 \times b_1$ ($a_1 < b_1$), и т.д.
- 6. Если исходные отрезки соизмеримы, то процесс остановится: исходный прямоугольник будет разбит на конечное число квадратиков.
- 7. Финальный квадратик будет иллюстрировать НОД отрезков a и b, т.к. это максимальный квадрат, которым можно замостить прямоугольник $a \times b$
- 8. Такой процесс называется **алгоритмом Евклида**, к нему мы еще вернемся с более формальной точки зрения

- 9. Заметим, что числа a и b при этом вовсе не обязан быть натуральными
- 10. Несоизмеримость стороны квадрата и его диагонали: 1 и $\sqrt{2}$
- 11. Алгоритм Евклида никогда не остановится. НОДом будет бесконечно малое число

1.7.2 Задачи

Движения на прямой

2.1 Сдвиг, композиция сдвигов

2.1.1 Конспект

- 1. Рассмотрим аффинную прямую, т.е. набор точек и векторов на прямой
- 2. Сумма точки и вектора есть точка, сумма векторов есть вектор, разность точек есть вектор
- 3. Команда «прибавить ко всем точкам вектор a» называется **сдвигом** прямой на вектор a
- 4. Сдвиг на a это операция сложения с вектором без указания конкретной точки приложения, она применяется сразу ко всем точкам! В итоге вся прямая смещается как единое целое
- 5. Сдвиг является движением (не случайно это однокоренные слова!)
- 6. Вообще, движение это преобразование, сохраняющее расстояния (размеры и форму): если между точками A и B было расстояние x, то после преобразования движения расстояние между точками A' и B', в которые перешли исходные точки, тоже будет x, и так для любой пары точек!
- 7. Математическое движение это результат физического движения (есть только начальное и конечное состояние системы)
- 8. Сдвиг на вектор a будем обозначать T_a : $T_a(A)$ это точка B такая, что AB есть вектор a (совпадает по направлению и длине)
- 9. Композиция сдвигов это их последовательное применение:

$$(T_b \circ T_a)(A) = T_b(T_a(A))$$

- 10. Композиция сдвигов соответствует сумме векторов: $T_b \circ T_a = T_{a+b}$
- 11. Композиция сдвигов перестановочна в силу коммутативности сложения:

$$T_b \circ T_a = T_a \circ T_b$$

12. Кратность сдвига обозначается как степень

$$\underbrace{T_a \circ \cdots \circ T_a}_{n \text{ pa3}} = T_a^n$$

и соответствует кратности сложения или умножению на степень кратности: $T_a^n = T_{an}$

- 13. Нулевой сдвиг $T_0 = \mathrm{id} \mathrm{это}$ **тождественное преобразование**, которое ничего не меняет
- 14. Обратный сдвиг T_a^{-1} это сдвиг на вектор -a, т.е. сдвиг в обратном направлении на ту же величину
- 15. Вообще, если есть какие-то два преобразования u и v и операция композиции \circ , то эти преобразования **взаимно обратны**, если $u \circ v = \mathrm{id}$ и $v \circ u = \mathrm{id}$, т.е. последовательное применение этих преобразований является тождественным преобразованием
- 16. Очевидно, что всякий сдвиг имеет обратный, причем $T_a \circ T_a^{-1} = T_a^{-1} \circ T_a = \mathrm{id}$
- 17. Нулевой сдвиг сам себе обратен
- 18. Все сдвиги с операцией композиции образуют группу (композиция сдвигов есть сдвиг, ассоциативность выполняется, обратимость имеется)
- 19. Мало того, группа сдвигов коммутативна (абелева)
- 20. Кратность обратного сдвига: $T_a^{-n} \rightleftharpoons (T_a^{-1})^n = T_{-a}^n = T_{-an}$
- 21. На основе только одного сдвига T_a можно построить подгруппу сдвигов

$$\{T_a^n, T_a^{-n} \mid n = 0, 1, 2, \dots\}$$

22. Эта подгруппа — реализация целых чисел \mathbb{Z} , к которым мы еще вернемся позже

2.1.2 Задачи

2.2 Отражение

2.2.1 Конспект

12

- 1. Еще один вид движений прямой отражение
- 2. Отражение связано с выделенной точкой центром отражения, и все точки переводит в симметричные относительно данного центра. Взяли прямую и перевернули ее на 180° , оставляя центр отраженя на месте

- 3. Отражение с центром O будем обозначать S_O
- 4. Композиция отражений:

$$S_O \circ S_C = T_{2CO}, \quad S_C \circ S_O = T_{2OC}$$

- 5. Видим, что композиция отражений является сдвигом и при этом не коммутативна!
- 6. Композиция отражения и сдвига:

$$S_O \circ T_a = S_{O-a/2}, \quad T_a \circ S_O = S_{O+a/2}$$

- 7. Такая композиция является отражением и при этом не коммутативна!
- 8. Кратность отражения S^n_O определяется четностью числа n. В случае четного n это id, в случае нечетного исходное S_O
- 9. Отражение обратно самому себе: $S_O \circ S_O = \mathrm{id}$
- 10. Пара $\{id, S_O\}$ образует самую маленькую нетривиальную группу движений, которая к тому же является абелевой и циклической (т.е. все ее элементы есть степени какого-то одного, а именно $S_O = S_O^1$, $id = S_O^2$)

	id	S_O
id	id	S_O
S_O	S_O	id

11. Видим, что таблица полностью повторяет таблицу умножения знаков, причем id является нейтральным элементом

2.2.2 Задачи

2.3 Таблица Кэли движений прямой

2.3.1 Конспект

- 1. Еще пример группы: рассмотрим класс всех сдвигов $\mathbb T$ и класс всех отражений $\mathbb S$
- 2. Мы можем определить композицию классов $\mathbb{T} \circ \mathbb{T}$, $\mathbb{T} \circ \mathbb{S}$, $\mathbb{S} \circ \mathbb{T}$ и $\mathbb{S} \circ \mathbb{S}$ как все возможные композиции движений из этих классов в указанном порядке
- 3. Из произведенных выше вычислений легко видеть таблицу композиций этих классов:
- 4. Видим полную аналогию с таблицей знаков и таблицей для id, S_O . Здесь класс $\mathbb T$ является нейтральным элементом

	$\mid \mathbb{T}$	S
\mathbb{T}	T	S
S	S	\mathbb{T}

- 5. Если теперь собрать в одну кучу все сдвиги и отражения, то получим группу движений прямой
- 6. Наша цель доказать, что других движений нет, т.е. что мнжество $\{T_a,S_O\}_{a,O}$ полностью исчерпывает все возможные движения прямой

2.3.2 Задачи

2.4 Теоема о гвоздях, аналог теоремы Шаля

2.4.1 Конспект

- 1. Анализ движений проводится на основе наблюдений за количеством стационарных точек
- 2. Пусть движение M таково, что оно оставляет на месте две точки $A \neq B$.
- 3. M(A)=A и M(B)=B. Пусть C'=M(C). M сохраняет расстояния AC и BC, откуда AC=AC' и BC=BC', откуда C=C'. Т.е. M(C)=C для любых точек C, т.е. $M=\mathrm{id}$
- 4. Пусть движение M оставляет на месте ровно одну точку O. В этом случае A'=M(A) и $A\neq A'$ и OA=OA', тогда A' отражение A относительно O. Следовательно, $M=S_O$
- 5. Пусть движение M не оставляет на месте ни одной точки и пусть B=M(A) ($B\neq A$). Обозначим x=AB. Тогда $T_x^{-1}\circ M(A)=A$, т.е. $T_x^{-1}\circ M$ оставляет на месте хотя бы одну точку. Если оно оставляет на месте ровно одну точку A, то это некоторая симметрия S_O , но тогда $M=T_x\circ S_O=S_{O+x/2}$. Получается, что M сохраняет точку O+x/2 на месте. Противоречие. Остается вариант, что $T_x^{-1}\circ M$ оставляет на месте две точки, но тогда $T_x^{-1}\circ M=\mathrm{id}$, откуда $M=T_x\circ\mathrm{id}=T_x-\mathrm{сдвиг}$.
- 6. Таким образом, все движения прямой это либо сдвиги (в частности, id), либо отражения (теорема Шаля)
- 7. При этом, любое движение это либо одна симметрия, либо композиция двух симметрий

2.4.2 Задачи

Вокруг окружности

3.1 Симметрии окружности

3.1.1 Конспект

- 1. Берем окружность (обруч). Какие у нее есть движения, переводящие его в самого себя?
- 2. Очевидно, вращение вокруг центра окружности, а также симметрии относительно прямых, проходящих через центр
- 3. Окружность аналог прямой. Только эту прямую взяли за 2 конца и замкнули где-то на бесконечности
- 4. Поэтому вращение окружности соответствует сдвигу прямой, а симметрия окружности относительно прямой отражению на прямой относительно точки (можно считать ее симметрией относительно перпендикулярной прямой)
- 5. Если представить, что на окружности большого радиуса живут маленькие одномерные математики, то для них окружность будет практически не отличима от прямой, и движения окружности они будут воспринимать именно как движения прямой
- 6. Поворот на угол α обозначим R_{α} (положительный против часовой стрелки), симметрию относительно прямой, имеющей угол наклона φ , обозначим S_{φ} ($0 \leqslant \varphi < \pi$)
- 7. Вновь замечаем, что композиция поворотов есть поворот на суммарный угол: $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta}$
- 8. У каждого поворота есть обратный: $R_{\alpha}^{-1} = R_{-\alpha}$
- 9. Повороты коммутируют
- 10. Есть нейтральный поворот $id = R_0$
- 11. Так что все повороты образуют группу относительно операции композиции
- 12. Тем не менее, есть одна особенность: поворот на угол $2\pi k$ это тоже id

- 13. Вообще, повороты, заданные углами с шагом 2π , равны: $R_{\alpha}=R_{\alpha\pm2\pi k},$ где k натуральное число
- 14. Некоторые повороты дают id в некоторой кратности, например, $R_{90^o}^4 = \text{id}$, $R_{60^o}^6 = \text{id}$ и т.д.
- 15. Если угол, выраженный в градусах, соизмерим с величиной 360^{o} , то поворот на данный угол имеет положительную степень, в которой он обращается в id
- 16. Но есть угол, не обладающий таким свойством, это угол в 1 радиан. Если бы он был соизмерим с полным оборотом, то число π оказалось бы соеизмеримым с 1, а это не так!
- 17. Поэтому некоторые вращения образуют конечные циклические подгруппы в группе движений, а некоторые нет.

3.1.2 Задачи

3.2 Таблица Кэли для окружности

3.2.1 Конспект

1. Композиция симметрий:

$$S_{\psi} \circ S_{\varphi} = R_{2(\psi - \varphi)}, \quad S_{\varphi} \circ S_{\psi} = R_{2(\varphi - \psi)}$$

- 2. Видим, что композиция симметрий является поворотом и при этом не коммутативна!
- 3. Композиция симметрии и поворота:

$$S_{\varphi} \circ R_{\alpha} = S_{\varphi - \alpha/2}, \quad R_{\alpha} \circ S_{\varphi} = S_{\varphi + \alpha/2}$$

- 4. Такая композиция является отражением и при этом не коммутативна!
- 5. По аналогии с прямой обозначим \mathbb{R} класс всех вращений окружности, \mathbb{S} класс всех симметрий окружности
- 6. Получаем аналогичную таблицу композиций:

	\mathbb{R}	S
\mathbb{R}	\mathbb{R}	S
S	S	\mathbb{R}

где R является нейтральным элементом

7. Снова наблюдаем все ту же группу умножения знаков!

- 8. Существуют ли другие движения окружности? Ответ нет!
- 9. Если движение сохраняет на месте две точки окружности, не являющиеся диаметрально противоположными, то это id
- 10. Если движение сохраняет на месте ровно две диаметрально противоположные точки, то это симметрия
- 11. Если движение не имеет неподвижных точек. то это поворот на угол, не кратный 360^{o}
- 12. Всякое движение окружности это либо поворот, либо симметрия (теорема Шаля)
- 13. Причем всякое движение окружности можно представить как симметрию или композицию симметрий

3.2.2 Задачи

3.3 Наматывание прямой на окружность

3.3.1 Конспект

- 1. Совместим теперь окружность с прямой иным способом. Выделим на окружности точку O и начнем ее обход (вращение) в положительном направлении.
- 2. Выше мы видели, что углы поворота, кратные 360^o , т.е. полном обороту, соответствуют тождественному движению, т.е. приведут нас в точку отправления O.
- 3. Однако, если с точки зрения математического движения ничего не изменилось, физически мы проделали путь, равный длине окружности. Для удобства будем считать, что радиус окружности есть единичный вектор, так что ее длина равна 2π , и с каждым полным оборотом мы будем «наматывать» расстояние 2π .
- 4. Вообще, расстояние, пройденное по окружности единичного радиуса, когда этот радиус заметает угол α , равно $\alpha(2\pi/360^{o})$. Чтобы каждый раз не переводить единицы измерения радиуса в градусы и наоборот, углы также приняот измерять в единицах длины радианах. А именно, угол в 1 радиан соответствует повороту, при котором точка проделает по окружсности путь, равный по длине радиусу данной окружсности. Нетрудно видеть, что в градусах 1 радиан будет иметь выражение $360^{o}/(2\pi)$ или $180^{o}/\pi$.
- 5. В дальнейшем условимся все углы измерять в радианах, если не потребуется иное.

- 6. Известно, что число π не соизмеримо с целыми числами, так что поворот R_1 на 1 радиан ни в какой положительной степени не приведет нас снова в точку исхода O.
- 7. Зато поворот $R_{2\pi}$ в точности возвращает нас в точку отправления O.
- 8. При каждом таком повороте мы проделываем путь, равный углу поворота, т.е. 2π (радиус равен 1).
- 9. Следовательно степени такого поворота $R^n_{2\pi}$ дадут прохождение пути длиной $2\pi n$.
- 10. Представим эту картину не с точки зрения жителей окружности, бегающих по замкнутой траектории, а с точки зрения жителей прямой, которая наматывается на окружность. С их точки зрения все выглядит несколько иначе и больше напоминает движение оклеса по дорожному полотну: окружность катится по прямой и через равные промежутки касается точкой O данной прямой.
- 11. Если при этом два друга один из мира окружности, второй из мира прямой, двигаются с одинаковой скоростью в одном направлении, то они могут синхронизироваться в точке касания окружности и прямой и разговаривать друг с другом.
- 12. Итак, колесо катится, два друга беседуют, точка O то и дело, а именно через каждые 2π метров соприкасается с прямой. Каждый раз, когда точка O касается прямой, наш ученый друг из мира прямой ставит на прямой отметину и считает их по порядку, т.е. приравнивает к степени совершенного поворота: в начальный момент времени это был 0, затем 1 оборот, затем 2 оборота, и т.д.
- 13. Что же мы видим на прямой? Мы видим не что иное как шкалу натуральных чисел, в точности соответствующую степеням вращений окружности.
- 14. Представим теперь, что в какой-то момент касания точки O с прямой физика мира изменилась, и вращение начало осуществляться в обратную сторону!
- 15. Наши друзья-ученые при этом продолжат совместное путешествие, но только назад. Они пойдут отсчитывать уже проставленные отметки на прямой в убывающем порядке, пока не вренутся в точку 0. Но здесь состоится чудо, и движение продолжится дальше.
- 16. Как все это записать на языке вращений и сдвигов?
- 17. Предположим, что сначала окружность повернулась на n полных оборотов вперед, а затем на m полных оборотов назад.

- 18. Мы получаем итоговое вращение, записываемое как $R_{2\pi n} \circ R_{2\pi m}^{-1}$.
- 19. А что мы имеем с точки зрения движения на прямой?
- 20. Сначала был произведен сдвиг $T_{2\pi n}$, затем сдвиг $T_{-2\pi m}$.
- 21. И мы видим, что индекс, определяющий итоговое вращение и итоговый сдвиг, один и тот же!
- 22. Причем, если n > m, то сдвиг будет вправо на расстояние $2\pi(n-m)$, а поворот будет положительным на угол $2\pi(n-m)$.
- 23. Если же n < m, то сдвиг будет влево на расстояние $2\pi(m-n)$, а поворот будет отрицательным (по часовой стрелке) на угол $2\pi(m-n)$.
- 24. Ранее мы уже договаривались, что перед векторами, направленными влево, будем ставить знак '-'. Так же будем поступать и с углами вращений в отрицательную сторону.
- 25. Соответственно, при n < m мы будем иметь итоговый сдвиг $T_{-2\pi(m-n)}$ и итоговый поворот $R_{-2\pi(m-n)}$, которые также можно записать в виде степеней:

$$T_{-2\pi(m-n)} = T_{2\pi}^{-(m-n)}$$
 и $R_{-2\pi(m-n)} = R_{2\pi}^{-(m-n)}.$

- 26. Осталось добавить маленький штрих к портрету, а именно: в случае n < m под разностью n m будем понимать запись -(m n).
- 27. Тогда уже независимо от того, n < m, или m < n, или n = m, композиция поворотов и сдвигов сначала на n вправо и затем на m влево будет записываться одинаково:

$$T_{2\pi(n-m)} = T_{2\pi}^{n-m}$$
 и $R_{2\pi(n-m)} = R_{2\pi}^{n-m}$.

- 28. В итоге мы приходим к тому, что называется **целыми числами**, включающими натуральные числа и отрицательные натуральные числа (при этом -0=0).
- 29. Сколько бы мы ни вращали окружность на 2π в ту или иную сторону с помощью поворота $R_{2\pi}$, мы совершаем поворот на целую степень полного оборота. При этом как бы мы ни катали окружность по прямой, точка O будет ставить отметки в точках $2\pi k$, где k целое число.
- 30. Последнее замечание про отрицательные числа:

$$T_{2\pi}^{-k} = S_0 \circ T_{2\pi}^k \text{ if } R_{2\pi}^{-k} = S_O \circ R_{2\pi}^k.$$

31. То есть отрицательные повороты и сдвиги — это всего лишь отражение положительных (в случае прямой центром отражения будет точка, помеченная как 0, а в случае окружности — прямая, проходящая через точку O и центр окружности)

3.3.2 Задачи

Целые числа и ОТА

4.1 Целые числа. Кольцо

4.1.1 Конспект

- 1. Итак, совмещение вращений со сдвигами дает нам полную свободу перемещений в положительном и отрицательном направлении. При этом, с точки зрения окружности ничего не меняется происходит итоговое движение id, а с точки зрения прямой происходит разметка точек с равным шагом. Ясно, что сам шаг при этом не имеет значения. Мы могли бы взять окружность радиуса R, и тогда шаг был бы равен $2\pi R$. В частности, можно взять радиус $R = 1/2\pi$, и тогда точки на прямой расположатся с шагом 1.
- 2. Такую же картину можно получить, если взять все точки, получаемые из выделенной точки 0 степенями сдвига на единичный вектор, используя положительные и отрицательные, т.е. целые, степени.
- 3. Как видим, целые числа, как и натуральные, можно интерпретировать и как степени движений (и вообще любых преобразований, имеющих обратные), и как векторы сдвигов на прямой, а значит, к ним применимы определенные ранее операции сложения, вычитания и умножения. При этом результат умножения получает такой знак, который определяется из таблицы умножения знаков.
- 4. Множество всех целых чисел принято обозначать \mathbb{Z} . Вместе с операциями сложения (вычитания) и умножения структура ($\mathbb{Z}, +, \cdot$) называется кольцом целых чисел. Кольцо это структура, где можно складывать, вычитать и умножать.
- 5. Понятие кольцо является расширением понятия группы, т.к. добавляется операция умножения.
- 6. Ранее мы уже видели такие группы, как группа движений прямой, группа умножения знаков, группа композиций классов сдвигов и симметрий, группа вращений окружности. Все они обладали одной операцией композицией, которая соответствовала сложению параметров сдвигов и вращений.

- 7. Кроме того, мы ввели такое понятие как кратность, заменяя тем самым многократное сложение умножением на целое число.
- 8. Кратность операций нельзя рассматривать как умножение сдвигов или вращений, поскольку это сущности разного рода. Поэтому движения в общем случае образуют только лишь группу.
- 9. Однако, уже сами кратности, как самостоятельные сущности, можно и складывать, и умножать. Например, если мы рассмотрим сдвиг T_1 и композицию его кратностей $T_1^n \circ T_1^m$, то получим тот же сдвиг но в суммарной кратности T_1^{n+m} , где $n,m \in \mathbb{Z}$. Но ничто не мешает нам рассмотреть кратность m сдвига T_1^n , т.е. сдвиг $(T_1^n)^m$, а это уже будет не что иное, как сдвиг кратности nm, т.е. T_1^{nm} .
- 10. Иначе говоря, умножение на целых числах можно представить как кратности кратностей сдвигов!
- 11. Целые числа, если их рассматривать как счетчик витков по окружности, образуют так называемую фундаментальную группу окружности, которая является важным топологическим свойством окружности и ей подобным (в топологии) фигурам. Зная фундаментальную группу, можно определить, насколько схожи фигуры в топологическим смысле можно ли из одной получить другую путем деформации без разрывов и склеиваний.

4.1.2 Задачи

4.2 Кузнечик НОД и алгоритм Евклида

4.2.1 Конспект

- 1. Поработаем теперь непосредственно с целыми числами. Пусть у нас есть кузнечик, стоящий в точке 0, который умеет прыгать с шагом a и с шагом b в любую сторону. Числа a, b натуральные.
- 2. Ясно, что он может попасть в любую точку вида ka+mb, где кратности k,m- целые. Как понять, в какие точки он может попасть, а в какие нет?
- 3. Пусть d наименьшее положительное число, в которое кузнечик может попасть, т.е. оно имеет вид d = ka + mb при некоторых k, m. Тогда он может попасть и в любое число вида nd, поскольку nd = (nk)a + (nm)b, где $n \in \mathbb{Z}$. Следовательно, кузнечик может попасть во все целые числа, кратные d (множество $d\mathbb{Z}$).
- 4. Но в любые другие целые числа он не сможет попасть. Действительно, если он попадает в какое-то число x, лежащее между двумя соседними

кратностями d, т.е. в число x = nd + y, где 0 < y < d, то тогда он момжет попасть в число y, т.е. остаток от деления x на d. Но y < d и притом положительное, а это противоречит выбору числа d. Таким образом, кузнечик попадает во все точки $d\mathbb{Z}$, и только в эти точки!

- 5. Что такое d на самом деле?
- 6. Для ответа на этот вопрос вспомним про алгоритм Евклида (с отсечениями квадратов). Пусть a < b. Вычтем из b столько a, сколько сможем: $b = k_0 a + r_1$, где $0 \le r_1 < a$. Далее, из a вычитаем столько r_1 , сколько сможем, если $r_1 > 0$. Получим $a = k_1 r_1 + r_2$, где $0 \le r_2 < r_1$. Снова, если $r_2 > 0$, вычитаем из r_1 столько r_2 , сколько можем: $r_1 = k_2 r_2 + r_3$, где $0 \le r_3 < r_2$. И так далее.
- 7. Видим, что всякий раз, если $r_i > 0$, то мы приходим к $r_{i+1} < r_i$. Проблема в том, что это не может продолжаться бесконечно долго, т.к. от всякого натурального числа в сторону нуля можно спуститься за конечное число шагов (а ведь остатки у нас все положительные!). Так что рано или поздно случится $r_{n+1} = 0$, и на этом алгоритм Евклида остановится! Это значит, что прямоугольник $a \times b$ можно сложить квадратами $r_n \times r_n$.
- 8. Если теперь раскрутить равенства $r_{i-1} = k_i r_i + r_{i+1}$ в обратную сторону, то мы получим, во-первых, что a и b кратны r_n , и во-вторых, что $r_n = Ka + Mb$ при некоторых целых K, M. То есть, r_n есть общий делитель исходных чисел a и b, и наш кузнечик способен попасть в точку r_n (а значит, и во все точки, ему кратные, т.е. в $r_n\mathbb{Z}$).
- 9. С другой стороны, если какое-то q является общим делителем a и b, то q делит $r_1=b-k_0a$, делит $r_2=a-k_1r_1$, делит $r_3=r_1-k_2r_2$, и т.д., и, наконец, делит r_n . Стало быть, $q\leqslant r_n$, и r_n наибольшой общий делитель a и b.
- 10. Итак, кузнечик способен попасть в HOД(a,b), следовательно, $d \leq HOД(a,b)$. С другой стороны, выбор d таков, что d = ka + mb при некоторых целых k, m, но тогда всякий делитель a и b является и делителем d, в частности HOД(a,b) делит d, откуда $HOД(a,b) \leq d$. Таким образом, минимальный шаг, на который способен сдвинуться кузнечик, это наибольший общий делитель чисел a и b. Поэтому кузнечика с ногами a и b можно назвать HOД(a,b). Он способен прыгнуть (в несколько прыжков) во ВСЕ точки, кратные HOД(a,b), и TOЛЬКО в эти точки!

4.2.2 Задачи

4.3 Простые числа и ОТА

4.3.1 Конспект

- 1. У кузнечика НОД может получиться уникальная ситуация, когда при достаточно больших числах a и b он способен прыгнуть в любое целое число! Это верно в том и только том случае, когда НОД=1. При этом говорят, что a и b взаимно просты. Например, 125 и 63 взаимно просты.
- 2. Взаимная простота также обеспечивается, если одно из чисел само по себе **простое**, т.е. не делится ни на что, кроме 1 и самого себя. Например, 101 простое, так что в паре с любым другим числом (кроме кратного 101) оно будет взаимно просто, и наш кузнечик сможет прыгнуть в любую целую точку! Например, он умеет прыгать на 101 и 62, значит, он умеет прыгать в любое целое число!
- 3. Любое число можно представить как произведение степеней простых. Действительно, 1 есть произведение нулевых степеней простых чисел, например, 2^0 . Предположим, что для всех чисел от 1 до n утверждение о разложимости справедливо (внимание! индукция!) и рассмотрим число n+1. Оно либо уже простое, либо делится на число меньше n, отличное от 1. Тогда n+1=mk, причем $m,k\leqslant n$, а они есть произведение степеней простых по предположению индукции, но тогда и n+1 есть произведение степеней простых!
- 4. Простых чисел бесконечно много. Предположим, что это не так, и выпишем все простые числа:

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11$, ..., p_n

Далее рассмотрим число $m = p_1 p_2 \dots p_n + 1$. Оно не кратно никакому простому числу из ряда p_1, \dots, p_n , иначе бы 1 также было бы кратно этому простому. Следовательно, оно простое, но не входит в данный ряд. Противоречие.

- 5. Если простое число p делит произведение чисел ab, то оно по крайней мере делит одно из них. Доказательство: допустим, что p не делит a, тогда HOД(p,a)=1, но тогда, как мы уже видели выше, 1=kp+ma при некоторых целых k,m. Умножим это равенство на b: b=kpb+mab. Справа оба слагаемых делятся на p, значит, и b делится на p.
- 6. Из этого свойства легко получить *основную теорему арифметики*: каждое натуральное число единственным образом представляется в виде произведения степеней простых чисел:

$$n=p_1^{k_1}p_2^{k_2}\dots$$

Набор степеней k_1, k_2, \ldots уникален для каждого числа n. Действительно, если бы было два разложения, то после сокращения на одинаковые сомножители мы бы получили равенство

$$p_1^{k_1} p_2^{k_2} \dots p_m^{k_m} = q_1^{s_1} q_2^{s_2} \dots q_t^{s_t}$$

Но каждое простое слве делит все число справа, значит, делит один из его множителей, а значит, совпадает с одним из q_i , что по предположению невозможно. Противоречие! Следовательно, разложение по степеням простых единственно.

7. Здесь еще нужно сделать оговорку про \mathbb{Z} . Любое целое число также единственным образом раскладывается по степеням порстых, но с точностью до знака \pm перед этим разложением.

4.3.2 Задачи

Симметрии фигур

5.1 Симметрии правильного треугольника

5.1.1 Конспект

- 1. Вернемся на окружность и рассмотрим на ней вращение $R_{2\pi/3}$, т.е. на 120^o .
- 2. Множество вращений $R^3=\{R_{2\pi/3},R_{2\pi/3}^2,R_{2\pi/3}^3\}$ образует циклическую группу. Видим, что

$$R^3 = \{ id, R_{2\pi/3}, R_{4\pi/3} \}.$$

- 3. Зафиксируем точку A на окружности и найдем ее образы при действии этой группы: $B = R_{2\pi/3}(A)$, $C = R_{4\pi/3}(A)$. Набор точек $\{A, B, C\}$ образует орбиту точки A при действии группы R^3 .
- 4. Посмотрим теперь на треугольник ABC. Какие движения переводят его в себя? Очевидно, вращения из группы R^3 , но также есть и симметрии $S^3 = \{S_A, S_B, S_C\}$ относительно осей, проходящих через центр окружности и вершины треугольника.
- 5. Можем проверить, что объединение $R^3 \cup S^3$, состоящее из трех вращений и трех симметрий, образует группу относительно операции композиции лвижений.

6. Выпишем полную таблицу Кэли для этой группы:

id	$R_{2\pi/3}$	$R_{4\pi/3}$	S_A	S_B	S_C
$R_{2\pi/3}$	$R_{4\pi/3}$	id	S_B	S_C	S_A
$R_{4\pi/3}$	id	$R_{2\pi/3}$	S_C	S_A	S_B
S_A	S_C	S_B	id	$R_{4\pi/3}$	$R_{2\pi/3}$
S_B	S_A	S_C	$R_{2\pi/3}$	id	$R_{4\pi/3}$
S_C	S_B	S_A	$R_{4\pi/3}$	$R_{2\pi/3}$	id

7. На примере этой группы мы можем заметить, во-первых, что в группе можно выделить подгруппу вращений (верхний левый квадрат 3×3),

во-вторых, что группа движений треугольника конечна и некоммутативна, поскольку ее таблица умножения несимметрична. Кроме того, в полном сооветствии с таблицей умножения классов $\mathbb R$ и $\mathbb S$ видим, что композиция вращений есть вращение, композиция вращения и симметрии есть симметрия, композиций двух симметрий есть вращение.

- 8. В группе симметрий треугольника можно выделить базовые элементы: либо пара $(R_{2\pi/3}, S_A)$, либо пара (S_A, S_C) . Понятно, что здесь можно заменить поворот и симметрии на другие.
- 9.
- 10.

5.1.2 Задачи

5.2 Симметрии правильного многоугольника

5.2.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

5.2.2 Задачи

5.3 Подгруппы вращения окружности

5.3.1 Конспект

- 1.
- 2.
- 3.

- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

5.3.2 Задачи

5.4 Симметрии ромба, группа Клейна

5.4.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

5.4.2 Задачи

Движения плоскости

6.1 Виды движений плоскости

6.1.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

6.1.2 Задачи

6.2 Теорема Шаля

6.2.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

- 8.
- 9.
- 10.

6.2.2 Задачи

6.3 Таблица движений

6.3.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

6.3.2 Задачи

Исчисление остатков

7.1 Таблица сложения остатков

7.1.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

7.1.2 Задачи

7.2 Умножение остатков. Поле

7.2.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

- 8.
- 9.
- 10.

7.2.2 Задачи

7.3 Малая теорема Ферма

7.3.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

7.3.2 Задачи

7.4 Многочлены

7.4.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.

32

7.4.2 Задачи

Основная теорема арифметики и ее следствия

8.1 Корни и разрешимость уравнений

8.1.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9
- 10.

8.1.2 Задачи

8.2 Рациональные дроби

8.2.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

7.
8.
9.
10.
8.2.2 Задачи
8.3 Цепные дроби
8.3.1 Конспект
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
8.3.2 Задачи
8.4 Расширение поля рациональных чисел
8.4.1 Конспект
1.
2.
3.

4. 5. 6. 7.

8.

- 9.
- 10.

8.4.2 Задачи

Комплексные числа и Гаусс

9.1 Комплексные числа

9.1.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

9.1.2 Задачи

9.2 Реализация движений с помощью комплексных чисел

9.2.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

- 7. 8. 9. 10.
- 9.2.2 Задачи

9.3 Гомотетии прямой и плоскости

9.3.1 Конспект

- 1.
- 2
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

9.3.2 Задачи

9.4 Основная теорема Алгебры

9.4.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.

- 9.
- 10.

9.4.2 Задачи

9.5 Числа Гаусса

9.5.1 Конспект

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

9.5.2 Задачи