ASDS Statistics, YSU, Fall 2020 Lecture 25

Michael Poghosyan

28 Nov 2020

Contents

▶ The Method of Maximum Likelihood Estimation

The Maximum Likelihood Method

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0, 1]$.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0, 1]$. We toss that 7 times.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0,1]$. We toss that 7 times. Let the outcome be

ННННННН.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0,1]$. We toss that 7 times. Let the outcome be

ННННННН.

What is your best guess for p?

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0,1]$. We toss that 7 times. Let the outcome be

ННННННН.

What is your best guess for p?

Well, of course, you are correct, best guess is p = 1.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0,1]$. We toss that 7 times. Let the outcome be

ННННННН.

What is your best guess for p?

Well, of course, you are correct, best guess is p = 1. But it is possible also that this outcome is obtained from a coin with p = 0.9.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0, 1]$. We toss that 7 times. Let the outcome be

ННННННН.

What is your best guess for p?

Well, of course, you are correct, best guess is p=1. But it is possible also that this outcome is obtained from a coin with p=0.9. Or with p=0.8.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0, 1]$. We toss that 7 times. Let the outcome be

ННННННН.

What is your best guess for p?

Well, of course, you are correct, best guess is p=1. But it is possible also that this outcome is obtained from a coin with p=0.9. Or with p=0.8. Even with p=0.2.

Example: Assume we have a coin. The Probability of *Heads* is $p \in [0, 1]$. We toss that 7 times. Let the outcome be

ННННННН.

What is your best guess for p?

Well, of course, you are correct, best guess is p=1. But it is possible also that this outcome is obtained from a coin with p=0.9. Or with p=0.8. Even with p=0.2.

Ok, let's do some calculations.

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

If
$$p = 0.9$$
, then $\mathbb{P}(HHHHHHHHH) = (0.9)^7 \approx 0.48$

And what if p = 0.8?

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

If
$$p = 0.9$$
, then $\mathbb{P}(HHHHHHHHH) = (0.9)^7 \approx 0.48$

And what if p = 0.8?

If
$$p = 0.8$$
, then $\mathbb{P}(HHHHHHHHH) = (0.8)^7 \approx 0.21$

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

And what if p = 0.8?

If
$$p = 0.8$$
, then $\mathbb{P}(HHHHHHHHH) = (0.8)^7 \approx 0.21$

Of course, we could have also the above outcome if p = 0.2?

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

If
$$p = 0.9$$
, then $\mathbb{P}(HHHHHHHHH) = (0.9)^7 \approx 0.48$

And what if p = 0.8?

If
$$p = 0.8$$
, then $\mathbb{P}(HHHHHHHHH) = (0.8)^7 \approx 0.21$

Of course, we could have also the above outcome if p=0.2? But the chances are

If
$$p = 0.2$$
, then $\mathbb{P}(HHHHHHHHH) = (0.2)^7 \approx 1.28e - 05 = 1.28 \cdot 10^{-5}$

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

And what if p = 0.8?

If
$$p = 0.8$$
, then $\mathbb{P}(HHHHHHHHH) = (0.8)^7 \approx 0.21$

Of course, we could have also the above outcome if p=0.2? But the chances are

If
$$p = 0.2$$
, then $\mathbb{P}(HHHHHHHHH) = (0.2)^7 \approx 1.28e - 05 = 1.28 \cdot 10^{-5}$

And, of course, if p = 1, then

If
$$p = 1$$
, then $\mathbb{P}(HHHHHHHHH) = 1^7 = 1$.

Assume p = 0.9. What is the Probabilty to obtain the above outcome?

If
$$p = 0.9$$
, then $\mathbb{P}(HHHHHHHHH) = (0.9)^7 \approx 0.48$

And what if p = 0.8?

If
$$p = 0.8$$
, then $\mathbb{P}(HHHHHHHHH) = (0.8)^7 \approx 0.21$

Of course, we could have also the above outcome if p=0.2? But the chances are

And, of course, if p = 1, then

So our guess was to select the value of *p* giving the highest likelihood to our outcome.

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$.

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. We take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

and want to use it to construct a good Estimator for θ .

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. We take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

and want to use it to construct a good Estimator for θ .

Idea of Maximum Likelihood Estimation: We choose that value of our parameter, under which **our Observation is the most Probable**.

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$.

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations,

Again, assume we have an Observation $x: x_1,...,x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations, i.e., to construct an **Estimator** for θ .

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations, i.e., to construct an **Estimator** for θ .

And the Maximum Likelihood Method is saying: **choose that** value of θ , under which it is most likely to get $X_1, X_2, ..., X_n$.

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

¹Since X_k -s are independent

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

The Log-Likelihood Function is the function

$$\ell(\theta) = \ell(X_1, ..., X_n | \theta) = \ln \mathcal{L}(\theta) = \sum_{k=1}^n \ln f(X_k | \theta), \qquad \theta \in \Theta.$$

¹Since X_k -s are independent

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

The Log-Likelihood Function is the function

$$\ell(\theta) = \ell(X_1, ..., X_n | \theta) = \ln \mathcal{L}(\theta) = \sum_{k=1}^n \ln f(X_k | \theta), \qquad \theta \in \Theta.$$

Also we define the Negative Log-Likelihood Function to be

$$-\ell(\theta) = -\ln \mathcal{L}(\theta).$$

¹Since X_k -s are independent

Maximum Likelihood Method

Note: Likelihood is not a Probability - it can be larger than 1.

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Definition: The **Maximum Likelihood Estimator (MLE)** of the parameter θ is the value of θ that maximizes the Likelihood function for the given random sample $X_1, ..., X_n$, the global maximum point (in case it exists) of $\mathcal{L}(X_1, ..., X_n | \theta)$:

$$\hat{\theta}^{MLE} = \hat{\theta}^{MLE}_n = \mathop{argmax}_{\theta \in \Theta} \mathcal{L}(\theta).$$

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Definition: The **Maximum Likelihood Estimator (MLE)** of the parameter θ is the value of θ that maximizes the Likelihood function for the given random sample $X_1, ..., X_n$, the global maximum point (in case it exists) of $\mathcal{L}(X_1, ..., X_n | \theta)$:

$$\hat{\theta}^{MLE} = \hat{\theta}_{n}^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathcal{L}(\theta).$$

And in the case if we have an Observation $x: x_1, x_2,, x_n$ from the above Model (from one of the Distributions of that Model), the **Maximum Likelihood Estimate** (again **MLE**) of the parameter θ is the value of $\hat{\theta}^{MLE}$ on our Observation.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: Since the function $h(t) = \ln t$ is strictly increasing, we will have that

$$\operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}(\theta) = \operatorname*{argmax}_{\theta \in \Theta} \ln \mathcal{L}(\theta) = \operatorname*{argmax}_{\theta \in \Theta} \ell(\theta),$$

i.e., the points of maximum of $\mathcal{L}(\theta)$ and $\ln \mathcal{L}(\theta)$ coincide.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: Since the function $h(t) = \ln t$ is strictly increasing, we will have that

$$\underset{\theta \in \Theta}{\operatorname{argmax}} \, \mathcal{L}(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \ln \mathcal{L}(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \, \ell(\theta),$$

i.e., the points of maximum of $\mathcal{L}(\theta)$ and $\ln \mathcal{L}(\theta)$ coincide. And, in the rest, we will find the Max points of the **Log-Likelihd** function.

Example: Find the MLE for p in the Bernoulli(p) Model.

Example: Find the MLE for p in the Bernoulli(p) Model.

Solution: OTB

Example: Find the MLE Estimator for λ in the $Exp(\lambda)$ Model.

Example: Find the MLE for p in the Bernoulli(p) Model.

Solution: OTB

Example: Find the MLE Estimator for λ in the $Exp(\lambda)$ Model.

Example: Find the MLE Estimator for θ in the $Unif[0,\theta]$ Model.

Example: Find the MLE Estimator for θ in the $Unif[0,\theta]$ Model.

Solution: OTB

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$

Model.

Example: Find the MLE Estimator for θ in the $Unif[0, \theta]$ Model.

Solution: OTB

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$

Model.

Solution: OTB

Example: Assume we have an observation

from the following Model:

$$\begin{array}{c|c|c} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$.

Example: Find the MLE Estimator for θ in the $Unif[0, \theta]$ Model.

Solution: OTB

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$

Model.

Solution: OTB

Example: Assume we have an observation

from the following Model:

$$\begin{array}{c|c|c|c} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$. Find the MLE Estimator and MLE Estimate for θ .