Java容器2

What?Why?How?

公众号: 马士兵

本章概述

- 容器的概念
- 容器 API
- Collection 接口
- Iterator 接口
- Set 接口
- Comparable 接口
- List 接口
- Map 接口

上机练习

- 创建Cat类,包含如下属性,昵称(name),年龄(age)
- 创建测试类,使用HashSet泛型集合存储Cat对象,
- 要求:一、不能添加重复的对象,提示(Cat类重写equals,和hashCode方法)
- 二、实现comparable接口定义内部比较器按昵称比较
- 三、实现comparator接口定义外部比较器按昵称的长度比较,长度相同,再接照昵称的内容比较

```
hs.add(new Cat("美美",3));
hs.add(new Cat("丽丽",2));
hs.add(new Cat("亚亚",4));
hs.add(new Cat("美美",3));
```

昵称	年龄	
亚亚	4	
<u> 88 88 88 88 88 88 88 88 88 88 88 88 88</u>	2	
美美	3	

Map

- Map
 - 特点key-value映射
- HashMap
 - Key无序 唯一 (Set)
 - Value无序 不唯一(Collection)
- LinkedHashMap
 - 有序的HashMap 速度快
- TreeMap
 - 有序 速度没有hash快
- 问题: Set与Map有关系吗?
 - 采用了相同的数据结构,只用于map的key存储数据,以上是Set

Map接口

序号	方法	作用
1(添加)	put(key,value)	添加元素
2(删除)	clear() remove(key)	清除所有 根据key 去 移除
3(判断)	containsKey(key) containsValue(value) isEmpty()	是否包含指定的key 是否包含指定的值 判断集合中元素是否为 空
4(遍历)	get(key)	

size()

values()

entrySet()

keySet()

Collections工具类

Collections和Collection不同,前者是集合的操作类,后者是集合 接口

Collections提供的静态方法

addAll():批量添加

sort():排序

binarySearch(): 二分查找

fill(): 替换

shuffle():随机排序

reverse():逆序

上机练习

1、使用List,map容器存放如下数据,并从map中取出"李四"

姓名: 张三 年龄: 18 体重: 90 地址: 北京

姓名: 李四 年龄: 28 体重: 50 地址: 上海

2、假如有以下email数据

"aa@sohu.com, bb@163.com, cc@sina.com,.." 现需要把email中的用户部分和邮件地址部分分离,分离后以键值对应的方式放入HashMap?

上机练习

- 3、**定义一个**Worker类, 属性:
- name:String, age:int, salary:double
- a). 把若干Worker对象放在List中,排序并遍历输出,按照age 升序排列
- ▶ b). 把若干Worker对象放在Set中并遍历, 要求没有重复元素
- c). 把若干Worker对象放在Map中并按照三种方式分别遍历,要求以Worker的姓名作为key。

集合总结

名称	存储结 构	顺序	唯一性	查询效率	添加/删除效率
ArrayList	顺序表	有序(添加) 不唯一 索引查询 效率高		低	
LinkedList	链表	有序(添加)	不唯一	低	最高
HashSet	哈希表	无序	唯一	最高	最高
HashMap	哈希表	Key无序	Key唯一	最高	最高
LinkedHashSet	哈+链	有序(添加)	唯一	最高	最高
LinkedHashMap	哈+链	Key有序(添加)	Key唯一	最高	最高
TreeSet	二叉树	有序(升序)	唯一	中等	中等
TreeMap	二叉树	有序(升序)	Key唯一	中等	中等

公众号: 马士兵

集合总结

特性	Collection		Мар	
无序 不唯一	Collection		Map.values()	
有序 不唯一	ArrayList	LinkedList		
无序 唯一	HashSet		HashMap keySet	
有序 唯一	LinkedHashSet	TreeSet	LinkedHashMap keySet	TreeMap keySet

面试题

- 集合与数组的比较
- Collection和Collections的区别
- ArrayList和LinkedList的联系和区别
- Vector和ArrayList的联系和区别
- HashMap和Hashtable的联系和区别

集合与数组的比较

- 集合和数组的比较
 - 数组不是面向对象的,存在明显的缺陷,集合弥补了数组的一些缺点,比数组更灵活更实用,可大大提高软件的开发效率,而且不同的集合框架类可适用不同场合。具体如下:
 - 1: 数组能存放基本数据类型和对象,而集合类中只能存放对象。
 - 2: 数组容易固定无法动态改变,集合类容量动态改变。
 - 3:数组无法判断其中实际存有多少元素,length只告诉了数组的容量,而集合的size()可以确切知道元素的个数
 - 4:集合有多种实现方式和不同适用场合,不像数组仅采用顺序 表方式
 - 5:集合以类的形式存在,具有封装、继承、多态等类的特性,通过简单的方法和属性即可实现各种复杂操作,大大提高了软件的开发效率

公众号: 马士兵

Collection和Collections的区别

- Collection是Java提供的集合接口,存储一组不唯 一,无序的 对象。它有两个子接口List和Set。
- Java还有一个Collections类,专门用来操作集合类,它提供了一系列的静态方法实现对各种集合的搜索、排序、线程安全化等操作。

ArrayList和LinkedList的联系和区别

- ArrayList实现了长度可变的数组,在内存中分配连续空间。遍 历元素和随机访问元素效率比较高。

0	1	2	3	4	5	
aaaa	dddd	cccc	aaaa	eeee	dddd	

- LinkedList采用链表存储方式。插入、删除元素效率比较高

Vector和ArrayList的联系和区别

- 实现原理相同,功能相同,都是长度可变的数组结构,很多时候可以互用
- 两者的主要区别如下
 - Vector是早期的JDK接口, ArrayList是替代Vector的新接口
 - Vector线程安全, ArrayList重速度轻安全, 线程非安全
 - 长度需要增长时, Vector默认增长一倍, ArrayList增长50% (1.5+1)

HashMap和Hashtable的联系和区别

- 实现原理相同,功能相同,底层都是哈希表结构,查询速度快, 在很多情况下可以互用
- 两者的主要区别如下
 - Hashtable是早期的JDK提供的接口, HashMap是新版的 JDK提供的接口
 - Hashtable继承Dictionary类,HashMap实现Map接口
 - Hashtable是线程安全,HashMap线程非安全
 - Hashtable不允许null值,HashMap允许null值

