LOGISTIC REGRESSION (HEART)

In [36]:

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="white")#white background for seaborn plots
sns.set(style="whitegrid",color_codes=True)
import warnings
warnings.simplefilter(action="ignore")
```

In [2]:

```
df=pd.read_csv(r"C:\Users\prajapath Arjun\Downloads\heart disease (1).csv")
print(df)
```

0 1 2 3 4 4233 4234 4235	male 1 0 1 0 1 1 0	age 39 46 48 61 46 50 51 48	2 1 3 1 3	on currents .0 .0 .0 .0 .0 .0 .0 .0	Smoker 0 0 1 1 1 1	cig	sPerDay 0.0 0.0 20.0 30.0 23.0 1.0 43.0 20.0	BPMeds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NaN	\	
4236 4237	0 0	44 52		.0 .0	1 0		15.0 0.0	0.0 0.0		
I				revalentHyp		tes			diaBP	ВМ
0 7 \			0	0		0	195.0	106.0	70.0	26.9
1			0	0		0	250.0	121.0	81.0	28.7
3 2			0	0		0	245.0	127.5	80.0	25.3
4			0	1		0	225.0	150.0	95.0	28.5
8 4 0			0	0		0	285.0	130.0	84.0	23.1
• • •			• • •	• • •		• • •	• • •		• • •	
4233 7			0	1		0	313.0	179.0	92.0	25.9
4234			0	0		0	207.0	126.5	80.0	19.7
1 4235			0	0		0	248.0	131.0	72.0	22.0
0 4236			0	0		0	210.0	126.5	87.0	19.1
6 4237 7			0	0		0	269.0	133.5	83.0	21.4
0 1 2 3 4 4233 4234 4235 4236 4237		Rate 80.0 95.0 75.0 65.0 85.0 66.0 84.0 86.0 80.0	glucose 77.0 76.0 70.0 103.0 85.0 86.0 68.0 NaN 107.0	6 1 6 	3) 3) 1. 3) 1. 3)					

[4238 rows x 16 columns]

In [3]:

df.head()

Out[3]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4								

In [4]:

df.shape

Out[4]:

(4238, 16)

In [5]:

df.describe()

Out[5]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	pre
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000	
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630	
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584	
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	
4							

In [6]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
dtyp	es: float64(9), i	nt64(7)	

memory usage: 529.9 KB

In [7]:

```
df.isnull().sum()
```

Out[7]:

male	0
age	0
education	105
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	50
sysBP	0
diaBP	0
BMI	19
heartRate	1
glucose	388
TenYearCHD	0
dtype: int64	

In [8]:

```
ax = df["education"].hist(bins=15, density=True, stacked=True, color='cyan', alpha=0.6)
df["education"].plot(kind='density', color='teal')
ax.set(xlabel='education')
plt.xlim(-0,15)
plt.show()
```


In [9]:

```
print(df["education"].mean(skipna=True))
print(df["education"].median(skipna=True))
```

1.9789499153157513

2.0

In [11]:

```
print((df['glucose'].isnull().sum()/df.shape[0])*100)
print((df['totChol'].isnull().sum()/df.shape[0])*100)
```

9.155261915998112

In [12]:

```
print(df['totChol'].value_counts())
sns.countplot(x='totChol', data=df, palette='Set2')
plt.show()
```

totChol 240.0 85 220.0 70 260.0 62 210.0 61 232.0 59 392.0 1 405.0 1 359.0 1 398.0 1 119.0 1

Name: count, Length: 248, dtype: int64

In [13]:

```
print(df['totChol'].value_counts().idxmax())
```

In [14]:

```
data = df.copy()
data["education"].fillna(df["education"].median(skipna=True), inplace=True)
data["totChol"].fillna(df['totChol'].value_counts().idxmax(), inplace=True)
data.drop('glucose', axis=1, inplace=True)
```

In [15]:

```
data.isnull().sum()
```

Out[15]:

male	0
age	0
education	0
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	0
sysBP	0
diaBP	0
BMI	19
heartRate	1
TenYearCHD	0
dtype: int64	

localhost:8888/notebooks/LOGISTICREGRESSION(HEART).ipynb

In [16]:

```
ax = df["cigsPerDay"].hist(bins=15, density=True, stacked=True, color='cyan', alpha=0.6)
df["cigsPerDay"].plot(kind='density', color='teal')
ax.set(xlabel='cigsPerDay')
plt.xlim(-10,85)
plt.show()
```


In [17]:

```
print(df["cigsPerDay"].mean(skipna=True))
print(df["cigsPerDay"].median(skipna=True))
```

9.003088619624615

0.0

In [18]:

```
print((df['BPMeds'].isnull().sum()/df.shape[0])*100)
```

1.2505899008966492

In [19]:

```
print((df['BMI'].isnull().sum()/df.shape[0])*100)
```

In [20]:

```
print((df['heartRate'].isnull().sum()/df.shape[0])*100)
```

0.023596035865974516

In [21]:

```
print(df['BPMeds'].value_counts())
sns.countplot(x='BPMeds', data=df, palette='Set2')
plt.show()
```

BPMeds

0.0 40611.0 124

Name: count, dtype: int64

In [22]:

```
print(df['heartRate'].value_counts().idxmax())
```

In [23]:

```
data = df.copy()
data["cigsPerDay"].fillna(df["cigsPerDay"].median(skipna=True), inplace=True)
data["BPMeds"].fillna(df['BPMeds'].value_counts().idxmax(), inplace=True)
data["education"].fillna(df["education"].median(skipna=True), inplace=True)
data["totChol"].fillna(df['totChol'].value_counts().idxmax(), inplace=True)
data.drop('glucose', axis=1, inplace=True)
data.drop('BMI', axis=1, inplace=True)
data.drop('heartRate', axis=1, inplace=True)
```

In [24]:

```
data.isnull().sum()
```

Out[24]:

male	0
age	0
education	0
currentSmoker	0
cigsPerDay	0
BPMeds	0
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	0
sysBP	0
diaBP	0
TenYearCHD	0
dtype: int64	

In [25]:

```
data.head()
```

Out[25]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4								

In [27]:

```
plt.figure(figsize=(15,8))
ax = df["education"].hist(bins=15, density=True, stacked=True, color='teal', alpha=0.6)
df["education"].plot(kind='density', color='teal')
ax = data["education"].hist(bins=15, density=True, stacked=True, color='orange', alpha=0
data["education"].plot(kind='density', color='orange')
ax.legend(['education', 'age'])
ax.set(xlabel='education')
plt.xlim(-0,10)
plt.show()
```


In [28]:

```
data['Disease']=np.where((data["prevalentHyp"]+data["prevalentStroke"])>0, 0, 1)
data.drop('prevalentHyp', axis=1, inplace=True)
data.drop('prevalentStroke', axis=1, inplace=True)
```

In [29]:

```
training=pd.get_dummies(data, columns=["currentSmoker","totChol","sysBP"])
training.drop('TenYearCHD', axis=1, inplace=True)
training.drop('male', axis=1, inplace=True)
training.drop('diaBP', axis=1, inplace=True)
final_train = training
final_train.head()
```

Out[29]:

	age	education	cigsPerDay	BPMeds	diabetes	Disease	currentSmoker_0	currentSmoker
0	39	4.0	0.0	0.0	0	1	True	Fal
1	46	2.0	0.0	0.0	0	1	True	Fal
2	48	1.0	20.0	0.0	0	1	False	Tr
3	61	3.0	30.0	0.0	0	0	False	Tr
4	46	3.0	23.0	0.0	0	1	False	Tr

5 rows × 490 columns

```
In [31]:
```

```
#EDA
plt.figure(figsize=(15,8))
ax = sns.kdeplot(final_train["age"][final_train.Disease == 1], color="darkturquoise")
sns.kdeplot(final_train["age"][final_train.Disease == 0], color="lightcoral", shade=True
plt.legend(['Disease', 'Died'])
ax.set(xlabel='Age')
plt.xlim(10,100)
plt.show()
```


In [32]:

```
plt.figure(figsize=(20,8))
avg_survival_byage = final_train[["age", "Disease"]].groupby(['age'], as_index=False).me
g = sns.barplot(x='age', y='Disease', data=avg_survival_byage, color="LightSeaGreen")
plt.show()
```


In [33]:

```
final_train['IsMinor']=np.where(final_train['age']<=16, 1, 0)</pre>
print(final_train['IsMinor'])
```

```
0
0
1
         0
2
         0
3
         0
4
         0
4233
         0
4234
         0
4235
         0
4236
         0
4237
```

Name: IsMinor, Length: 4238, dtype: int32

In [34]:

sns.barplot(x='Disease', y='education', data=final_train, color="mediumturquoise")
plt.show()

In [35]:

```
import seaborn as sns
import matplotlib.pyplot as plt
# Assuming 'train_df' is your DataFrame containing the data
sns.barplot(x='diabetes', y='age', data=df, color='aquamarine')
plt.show()
```


In []: