FMI, Info, 2018/2019, Anul I Logică matematică și computațională

Seminar 5

(S5.1) Fie următoarele propoziții exprimate în limbaj natural:

- (i) Merg în parc dacă îmi termin treaba și nu apare altceva.
- (ii) Este necesar să nu plouă ca să putem observa stelele.
- (iii) Treci examenul la logică dacă faci o prezentare de calitate.
- (iv) Treci examenul la logică numai dacă înțelegi subiectul.

Transpuneți-le în formule ale limbajului formal al logicii propoziționale.

Demonstrație:

(i) Fie $\varphi=$ Merg în parc dacă îmi termin treaba și nu apare altceva. Considerăm propozițiile atomice:

p = Merg în parc. $q = \hat{I}\text{mi termin treaba.}$ r = Apare altceva.

Atunci $\varphi = (q \wedge (\neg r)) \to p$.

(ii) Fie ψ = Este necesar să nu plouă ca să putem observa stelele. Considerăm propozițiile atomice:

s = Ploua. t = Putem observa stelele.

Atunci $\psi = t \to \neg s$.

(iii) Fie χ = Treci examenul la logică dacă faci o prezentare de calitate. Considerăm propozițiile atomice:

u = Treci examenul la logică. v = Faci o prezentare de calitate.

Atunci $\chi = v \to u$.

(iv) Fie θ = Treci examenul la logică numai dacă înțelegi subiectul. Considerăm propozițiile atomice:

w = Treci examenul la logică. $z = \hat{I}$ nțelegi subjectul.

Atunci $\theta = w \to z$.

(S5.2) Să se arate că mulțimea Form, a formulelor logicii propoziționale, este numărabilă.

Demonstrație: Avem că $Expr = \bigcup_{n \in \mathbb{N}} Sim^n = \{\lambda\} \cup \bigcup_{n \in \mathbb{N}^*} Sim^n$. Deoarece $Sim = V \cup \{\neg, \rightarrow, (,)\}$ şi V este numărabilă, obținem, din (S4.2).(i), că Sim este numărabilă. Conform (S2.5).(ii), Sim^n este numărabilă pentru orice $n \in \mathbb{N}^*$. Aplicând (S4.2), rezultă că Expr este numărabilă. Deoarece $V \subseteq Form$, rezultă că Form este infinită (vezi Exerciții suplimentare, S.1). Însă $Form \subseteq Expr$, deci Form este o submulțime infinită a unei mulțimi numărabile. Conchidem că Form este numărabilă (vezi Exerciții suplimentare, S.1).

(S5.3) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

Demonstrație: Notăm, pentru orice $\varphi \in Form$, cu $l(\varphi)$ numărul parantezelor deschise și cu $r(\varphi)$ numărul parantezelor închise care apar în φ . Definim următoarea proprietate \boldsymbol{P} : pentru orice formulă φ ,

$$\varphi$$
are proprietate
a \boldsymbol{P} dacă și numai dacă $l(\varphi)=r(\varphi).$

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

- Formula φ este în V, deci există $n \in \mathbb{N}$ cu $\varphi = v_n$. Atunci $l(\varphi) = l(v_n) = 0 = r(v_n) = r(\varphi)$.
- Există $\psi \in Form$ cu $\varphi = (\neg \psi)$. Presupunem că ψ satisface \boldsymbol{P} . Obținem

$$l(\varphi) = l(\psi) + 1 = r(\psi) + 1 = r(\varphi).$$

• Există $\psi, \chi \in Form$ cu $\varphi = (\psi \to \chi)$. Presupunem că ψ, χ satisfac \boldsymbol{P} . Obținem

$$l(\varphi) = l(\psi) + l(\chi) + 1 = r(\psi) + r(\chi) + 1 = r(\varphi).$$

(S5.4) Să se dea o definiție recursivă a mulțimii variabilelor unei formule. **Demonstrație:** Se observă că $Var: Form \rightarrow 2^V$ satisface următoarele condiții:

$$\begin{array}{lll} (R0) & Var(v) & = \{v\} \\ (R1) & Var(\neg \varphi) & = Var(\varphi) \\ (R2) & Var(\varphi \rightarrow \psi) & = Var(\varphi) \cup V(\psi). \end{array}$$

Aplicăm Principiul recursiei pe formule pentru $A=2^V$ și pentru

$$G_0: V \to A, \qquad G_0(v) = \{v\},$$

 $G_{\neg}: A \to A, \qquad G_{\neg}(\Gamma) = \Gamma,$
 $G_{\rightarrow}: A \times A \to A, \quad G_{\rightarrow}(\Gamma, \Delta) = \Gamma \cup \Delta.$

pentru a concluziona că Var este unica funcție care satisface (R0), (R1) și (R2).

(S5.5) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

(i)
$$((x_0 \to x_1) \to x_0) \to x_0 = 1$$
;

(ii)
$$(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1.$$

Demonstrație:

(ii) Notăm
$$f(x_1, x_3, x_4) := (x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)).$$

x_1	x_3	x_4	$x_3 \rightarrow x_4$	$x_4 \rightarrow x_1$	$x_3 \rightarrow x_1$	$(x_4 \to x_1) \to (x_3 \to x_1)$	$f(x_1, x_3, x_4)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1
0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1
0	0	0	1	1	1	1	1

(S5.6) Să se arate că pentru orice $e:V \to \{0,1\}$ și pentru orice formule φ,ψ avem:

(i) $e^+(\varphi \vee \psi) = e^+(\varphi) \vee e^+(\psi);$

(ii)
$$e^+(\varphi \wedge \psi) = e^+(\varphi) \wedge e^+(\psi);$$

(iii)
$$e^+(\varphi \leftrightarrow \psi) = e^+(\varphi) \leftrightarrow e^+(\psi)$$
.

Demonstrație:

(i)

$$e^+(\varphi \vee \psi) = e^+(\neg \varphi \to \psi) = e^+(\neg \varphi) \to e^+(\psi) = \neg e^+(\varphi) \to e^+(\psi) \stackrel{(*)}{=} e^+(\varphi) \vee e^+(\psi).$$

Pentru (*), demonstrăm că pentru orice $x,y\in\{0,1\},$ avem $\neg x \rightarrow y=x \vee y$:

(ii)

$$e^{+}(\varphi \wedge \psi) = e^{+}(\neg(\varphi \rightarrow \neg \psi))$$

$$= \neg e^{+}(\varphi \rightarrow \neg \psi)$$

$$= \neg(e^{+}(\varphi) \rightarrow e^{+}(\neg \psi))$$

$$= \neg(e^{+}(\varphi) \rightarrow \neg e^{+}(\psi))$$

$$\stackrel{(*)}{=} e^{+}(\varphi) \wedge e^{+}(\psi).$$

Pentru (*), demonstrăm că pentru orice $x, y \in \{0, 1\}$, avem $\neg(x \to \neg y) = x \land y$:

\boldsymbol{x}	y	$\neg y$	$x \to \neg y$	$\neg(x \to \neg y)$	$x \wedge y$
1	1	0	0	1	1
1	0	1	1	0	0
0	1	0	1	0	0
0	0	1	1	0	0
				•	

$$\begin{split} e^+(\varphi \leftrightarrow \psi) &= e^+((\varphi \to \psi) \land (\psi \to \varphi)) \\ &\stackrel{\text{(ii)}}{=} e^+(\varphi \to \psi) \land e^+(\psi \to \varphi) \\ &= (e^+(\varphi) \to e^+(\psi)) \land (e^+(\psi) \to e^+(\varphi)) \\ &\stackrel{\text{(*)}}{=} e^+(\varphi) \leftrightarrow e^+(\psi). \end{split}$$

Pentru (*), demonstrăm că pentru orice $x,y\in\{0,1\},$ avem $(x\to y)\land(y\to x)=x \leftrightarrow y$:

\boldsymbol{x}	y	$x \rightarrow y$	$y \rightarrow x$	$(x \to y) \land (y \to x)$	$x \leftrightarrow y$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1