Carter K. Cocke

cartercocke.github.io

carter.cocke@utah.edu 801-834-1258

Education

University of Utah

Expected May 2022

M.S. in Mechanical Engineering — GPA: 4.00

Salt Lake City, UT

- o Advisor: Dr. Ashley D. Spear
- Coursework: Continuum Mechanics (TA), Finite Elements, Fracture and Fatigue, Optimization,
 Parallel Computing HPC, Probability, Data Science, Advanced Finite Elements (Sp. 2022)

University of Utah

May 2021

Honors B.S. in Mechanical Engineering — GPA: 3.98

Salt Lake City, UT

o Honors Ecology and Legacy Minor

Research Experience

University of Utah Multiscale Mechanics & Materials Laboratory

Aug. 2019 - Present

Salt Lake City, UT

MS/BS Research Assistant

Funded by: Department of Energy (DOE) Nuclear Energy University Program (NEUP)

Topic: Estimating macroscale ductility using microstructure-sensitive scaling relationships

- o Incorporated continuum damage mechanics into a large strain FFT-based crystal plasticity model and validated model predictions with EBSD and DIC characterizations of microtensile tests
- Developed Python code for numerous research tasks, including a comprehensive Fortran wrapper, a
 parallelized grain boundary strengthening algorithm, a material parameter optimizer, data analysis and
 visualization, and numerical methods
- Contributed numerical Eshelby approximation code to the open-source C++ DREAM.3D project with the "Compute Eigenstrains by Feature (Grain/Inclusion)" filter to improve the accessibility of the method
- Extensively worked with several FFT-based crystal plasticity models and codes through incorporating new features, setting up and running simulations, and analyzing and visualizing results
- Leveraged high-performance computing (HPC) for running OpenMP and MPI parallelized codes on a Linux cluster environment using the Slurm workload manager

Los Alamos National Laboratory

May 2021 - Aug. 2021

Graduate Research Assistant

Remote

- Developed a method to model material indentation using a large strain EVPFFT model through formulation and code modifications
- Substantially improved EVPFFT simulation execution time through serial code optimizations, OpenMP parallelization, and external library implementations

Publications

C. K. Cocke, A. Rollett, R. Lebensohn, A. Spear, "The AFRL Additive Manufacturing Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-Based Method with Direct Input from a 3D Microstructural Image," *Integrating Materials Manufacturing and Innovation*, 2021. https://doi.org/10.1007/s40192-021-00211-w

Conference Presentations (*presenter)

- C. K. Cocke*, A. Rollett, R. Lebensohn, A. Spear, "The AFRL AM Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-Based Method with Direct Input from a 3D Microstructural Image," *USNCCM16*, Virtual, July 2021.
- C. K. Cocke*, A. Rollett, R. Lebensohn, A. Spear, "The AFRL AM Modeling Challenge: Predicting Micromechanical Fields in AM IN625 Using an FFT-based Method with Direct Input from a 3D Microstructural Image," 3DMS 2021, Virtual, June 2021.
- A. Rollett*, R. Suter, R. Lim, M. Wilkin, Y. Zhang, P. Promoppatum, C. K. Cocke, A. Spear, R. Lebensohn, J. Gordon, "Probing Microstructural Evolution in Deformation with Electrons and X-rays," *TMS* 2021, Virtual, March 2021.

Teaching Experience

o Teaching Assistant: Continuum Mechanics (ME EN 5530/6530)

Fall 2021

Professional Experience

Corning

Engineering Intern

June 2018 - June 2019

Salt Lake City, UT

- Reduced automation downtime and improved operator safety of several systems through custom designed (SolidWorks) and machined metal and plastic parts (manual/CNC milling)
- Improved cycle time and enhanced user safety of a testing fixture by redesigning the electronics system and reworking PLC ladder logic

Awards

2021: Winner: ASME/IEEE Heat Sink Design Competition 2021 (1st of 20+ submissions)

2020: Top Performer Award: AFRL Additive Manufacturing (AM) Modeling Challenge #4

2019: Larry DeVries Scholarship: awarded to outstanding mechanical engineering students

2019: Mechanical Engineering Tuition Waiver

2017-2021: Utah Flagship Scholarship

Projects

Heat Sink Design Competition: Team leader for a competition-winning natural convection heat sink designed using Ansys and COMSOL computational fluid dynamics (CFD) software

Keyboard Design: Completely designed and built a custom keyboard number pad from scratch (PCB, electronics, case, code) using KiCad, SolidWorks, Blender, and C

Skills

Programming: Python, Fortran, MATLAB, C++, C **Tools:** Git, Linux, Slurm, OpenMP, MPI, CUDA, LaTeX

Software: DREAM.3D, ParaView, ABAQUS, FRANC3D, COMSOL, SolidWorks