

Tato prezentace je určená pouze pro studijní účely studentům Fakulty elektrotechnické Západočeské univerzity v Plzni předmětu KEE/JE a její jakékoliv jiné použití a šíření je nepřípustné!!!

Provoz JE VVER 1000

VÁCLAV RŮŽIČKA ČEZ, a.s. Jaderná elektrárna Temelín FEL ZČU v Plzni 27. 10. 2011

DIAGRAM ZATÍŽENÍ 26. 10. 2011 7:00

Průběh zatížení za posledních 32 hodin

Zdroj:ČEPS

ELEKTRÁRNY SKUPINY ČEZ

VÝVOJ SPOTŘEBY ELEKTŘINY V ČR

ČEHO CHCEME VE VÝROBĚ DOSÁHNOUT?

- Vyrovnaná bilance mezi výrobou a spotřebou
- Konstantní frekvence 50 Hz
- Stabilní napětí sítě
- Ekonomičnost provozu Celkové náklady na dodávku elektrické energie = výroba silové energie + náklady na přenos + náklady na rezervní výkon + poplatek OTE + OZE

Měrná cena energie

(€ - cent/kWh)

Bezpečný

Ekonomicky efektivní

Spolehlivý

ÚLOHA JE V ELEKTRIZAČNÍ SOUSTAVĚ

- **Primární regulace** regulace frekvence
 - » změna o \pm 2% N_{nom}
 - » zapojení provádí obsluha BD na příkaz VRB
 - » využití při N > 50% N_{nom}
 - » nastavená regulace TG → R
 - » počet regulačních cyklů není omezen → nesnižuje se životnost

Œ

ÚLOHA JE V ELEKTRIZAČNÍ SOUSTAVĚ

- Sekundární regulace = dispečerské řízení regulace P
 - » předpokládá se pro změnu ± 10% N_{nom}
 - » pro ETE ± 5% N_{nom} omezení šířkou pásma regulace (poloha klastrů a vodovýměna)
 - » možné od 30% N_{nom} , prakticky se využívá od 70% N_{nom}
 - » nastavení regulátorů stejné jako u primární regulace, ale zapojení na terminálu elektrárny TELETE na příkaz VRB
 - » trend změny ± 1%/min
 - » změna P dálkově z energetického dispečinku při dodržení všech omezení
 - » počet regulačních cyklů není omezen → nesnižuje se životnost

ÚLOHA JE V ELEKTRIZAČNÍ SOUSTAVĚ

• Terciální regulace výkonu (zálohové snížení)

- změny iniciované operativním personálem nejčastěji víkendové snížení výkonu
- » provádí se na základě požadavků energetického dispečinku na pokyn VRB
- » upřednostňuje se regulace R → TG
- » navolí se požadovaný výkon R, trend změny, turbína mění výkon dle tlaku v HPK
- » při větší změně výkonu dochází ke změně koncentrace H₃BO₃ stanovuje provozní fyzik

Provozní režimy JE

Režim	Název	Tepelný výkon	Střední teplota v I. O.	k _{ef}
1	Výkonový režim	≥2% N _{nom}	> 260℃	≥0,99
2	Nevýkonový stav	<2% N _{nom}	> 260℃	≥0,99
3	Horký stav	zbytkový	≥260℃	<0,99
4	Polohorký stav	zbytkový	260℃>t _{stř} >150℃	<0,99
5	Studený stav	zbytkový	150℃>t _{stř} >60℃	<0,99
6	Odstávka	zbytkový	~60℃	≤0,98

Œ

CHARAKTERISTIKA BLOKU V REŽIMU 1

•
$$N_R = 3000MW_t$$

•
$$P_{KO} = 15,6MPa$$

•
$$L_{KO} = 877$$
cm

•
$$t_{HS} = 314$$
°C

•
$$t_{ss} = 289$$
°C

•
$$p_{HPK} = 6,0MPa$$

•
$$p_{PG} = 6,25MPa$$

•
$$t_{PG} = 278$$
°C

•
$$N_{VS} = 40 - 80MW_e$$

•
$$L_{NN} = 255$$
cm

•
$$p_{NN} = 1MPa$$

PŘÍPRAVNÉ PRÁCE K ODSTAVENÍ BLOKU

- blok v režimu 1 výkonový stav
- na konci kampaně výkonový efekt
- kontrola polohy klastrů všechny reg. skupiny v HKP
- vytvoření dostatečných kapacit provozních médií pro vodovýměnu
- zajištění provozu PPK
- odstavení TAPROGE

Snižování výkonu

- trend snižování 1%/min
- sledování polohy klastrů
- hlídání důležitých parametrů
 - KO
 - » tlak 15,5 15,8 MPa
 - » 350℃
 - » hladina
 - TK odpuštění, doplňování
 - » zahlcování ucpávek HCČ
 - » změna koncentrace H₃BO₃
 - napájení PG
 - » hladina 260 270 cm
 - » hlídání dostatku páry pro TNČ

- napájecí nádrž
 - » zajištění vytápění
 - » udržování hladiny
- KČ
 - » postupné odstavování
- vlastní spotřeba bloku
 - » postupné přepínání parních kolektorů

Odstavení TG

- přechod do režimu 2
- aktivace ZWO
- otevření PSK regulace tlaku v HPK
- snižování výkonu reaktoru
- odstavení separace a regenerace TG
- v provozu mazání ložisek, chlazení kondenzátorů, ucpávkový systém
- uzavření RČA
- zprovoznění natáčecího zařízení

Uvedení reaktoru do podkritického stavu

- zvyšování koncentrace H₃BO₃
- zavedení OČK
- zasunutí všech klastrů do AZ
- stisknutím tlačítka HO se rozepnou vypínače ROR → přechod do režimu 3

VYCHLAZOVÁNÍ BLOKU

- postupné vychlazování na 255℃, 145℃, 45℃
 postupný přechod z režimu 3 do režimu 6
- odzkoušení uzlu OV a PV KO
- trend vychlazování do 265℃ 10℃/hod, poté max. 30℃ /hod
- provedení testů na zařízení
- blokády a zajištění zařízení EOKO, VT TQ, UE, TB, TX
- pod 60℃ odstavení HC Č
- zajištění odvodu zbytkového tepla

Œ

Odstávka pro výměnu paliva

- řídí VGO spolu s odstávkovým týmem
- členové odstávkového týmu : VGO + zástupce, VPSO, SDi, SI, VRB, HT, TTČ, RF, JB, CI-PARP, provoz, provozní režimy
- práce probíhají 24/7
- práce se řídí dle HMG VGO a VPSO, denním plánem ETE
- denní porady v pracovní dny
 - porada SDi
 - VGO + VPSO + dodavatelé LC + další dle potřeby
 - ROP
 - VGO + vedení ETE + další dle potřeby
 - porada VGO
 - OT + další dle potřeby

- zajištění odvodu zbytkového tepla
- zavedení ZAVCIP
- demontáž reaktoru
- snížení hladiny v reaktoru 30 40 cm pod HDR, případně na MIDLOOP
- sledování ZIR
- příprava čerstvého paliva v BSČP
- příprava BSVP, zavážecího stroje

VÝMĚNA PALIVA

- vyvezení vyhořelého paliva + SIPPING (online, offline)
- kontrola tlakové nádoby reaktoru,
 vyjmutí svědečných vzorků, vnitřních vestaveb,
 LKP, HCČ,....
- přeskládání AZ a zavezení čerstvého paliva
- zpětná montáž reaktoru
- zaplombování reaktoru

Další důležité činnosti v odstávce

- revize a opravy divizí
- revize HCČ
- kontrola TS trubek PG
- revize turbíny
- revize generátoru
- realizace plánovaných investičních akcí
- úprava provozní dokumentace
- úprava displejů sytému UIS

ZPĚTNÉ NAJETÍ BLOKU

- tlaková zkouška 0,5 MPa
- proplach potrubí II. O.
- tlaková zkouška 3,33 MPa
- ohřev na 145℃ a ú řední tlakové zkoušky
- ohřev na 255℃
- dosažení MSKS
- postupné zvyšování výkonu R
- najetí TG

Děkuji za pozornost!

Zdroje:

Učební texty pro přípravu personálu JE Ing. J. Odehnal – Provoz JE VVER 1000, Brno 2008