Assigment3: LTSM project

Duration 3 days.

RA: name:

TASK2.4: EF2.2.1-EF. 2.4.12

TASK 2.4.1 ทำการรันโปรแกรม LTSM กับ file excel เหมือนการรันในวิธี SVM เพื่อทำการพยากรณ์
drawdown ในโปรแกรมเดียวกันและทำการคำนวณหาค่า MSE และ Hit Ratio ของการรันในแต่ละขนาด window
m=1,m=2,m=3 ที่ได้นิยามไว้ใน file xxxx_alarm9.m ใช้ความยาวของการพยากรณ์ 100 periods ย้อนหลังขึ้นมาเหมือนกัน
หมดยกเว้นข้อมูลรายวันทำที่สามบริเวณของ market crash, Ukrain, Chinese coved ที่ตำแหน่งเดียวกับทีเคยทำใน svm แต่
เป็นการพยายการณ์ค่า drawdown ล่วงหน้าหนึ่ง periods การพยากรณ์จะเป็น value forecast ซึ่งมีค่า error ส่งออกมาทาง
ตัวแปร cc ให้เรานิยาม cell ขึ้นมาใหม่ช่องหนึ่งเขียนหัวข้อมูลว่าเป็นค่า error แบะท้าย cell เราจะ sum และหาเป็นค่า MSE
โดย m=1 จะใช้ window size ซนาดเล็กสุดแค่ 200 periods ย้อนหลังและใช้จำนวน hidden neuron 50 ตัว
m=2 จะใช้ window size ซนาดเล็กสุดแค่ 400 periods ย้อนหลังและใช้จำนวน hidden neuron 200 ตัว

TASK2.4.2 ทำการพยาการณ์ค่า market crash duration และ market crash size ข้อมูลถัดไป โดยการพยายการณ์ ค่าตำแหน่ง max ถัดไปและ min ถัดไปในอนาคนด้วย พร้อมทั้งแสดง column ของ exel ของ ค่าที่เกิดจากการทำการพยากรณ์ล่วงหน้าและค่า error เรื่องต่อไปในตารางใหม่ที่เราคำนวณได้จาก ค่า Weibul module.

ใช้ความยาวของการพยากรณ์ 100 periods ย้อนหลังขึ้นมาเหมือนกันหมดยกเว้นข้อมูลรายวันทำที่สามบริเวณของ market crash, Ukrain, Chinese covedไม่สามารถระบุได้ดังนั้นทำที่ย้อนหลังเช่นกัน โดยทำนายค่าเหล่านั้นล่วงหน้าหนึ่ง periods การพยากรณ์จะเป็น value forecast ซึ่งมีค่า error ส่งออกมาทางตัวแปร cc ให้เรานิยาม cell ขึ่นมาใหม่ช่องหนึ่งเขียนหัว ข้อมูลว่าเป็นค่า error แบะท้าย cell เราจะ sum และหาเป็นค่า MSE

โดย m=1 จะใช้ window size ชนาดเล็กสุดแค่ 200 periods ย้อนหลังและใช้จำนวน hidden neuron 50 ตัว m=2 จะใช้ window size ชนาดเล็กสุดแค่ 400 periods ย้อนหลังและใช้จำนวน hidden neuron 100 ตัว m=3 จะใช้ window size ชนาดเล็กสุดแค่ 1000 periods ย้อนหลังและใช้จำนวน hidden neuron 200 ตัว

no.	peak	peak day	peak price	crash end row		crash end price	crash duration	crash size		
1	5	25620102	10517.71	7		10517.21		2	0.004753887	
2	9	25620102	10512.21	10		10471.21		1	0.39002265	
3	14	25620102	10533.71	15		10432.71		1	0.958826472	
4	20	25620102	10638.21	21		10481.09		1	1.4769402	
5	23	25620102	10635.61	24		10619.91		1	0.147617297	
6	26	25620103	10542.41	27	25620103	10511.11		1	0.296896061	
7	28	25620103	10533.41	32	25620103	10515.21		4	0.172783553	
8	33	25620103	10484.91	36	25620103	10476.21		3	0.082976392	
9	39	25620103	10495.41	40	25620103	10428.41		1	0.638374299	
10	41	25620103	10461.41	45	25620103	10432.41		4	0.277209286	
11	47	25620103	10424.61	48	25620104	10420.91		1	0.035492935	
12	57	25620104	10577.21	58	25620104	10403.41		1	1.643155426	
13	66	25620104	10797.41	67	25620104	10574.41		1	2.065310107	
14	68	25620104	10804.91	69	25620104	10788.91		1	0.148080826	
15	71	25620107	10854.41	73	25620107	10800.71		2	0.494729792	
16	75	25620107	10822.41	76	25620107	10816.91		1	0.050820473	
17	78	25620107	10836.21	80	25620107	10816.91		2	0.178106552	
18	81	25620107	10728.91	82	25620107	10717.41		1	0.10718703	
19	83	25620107	10721.41	84	25620107	10713.91		1	0.069953486	

ตารางที่ได้จาก module EF.2.1.1 ยังไม่มีค่า ตำแหน่งของ max และ min ให้เขียน โปรแกรมเติมเพิ่มเข้าไปอีกสอง column และพยาการณ์สองค่านี้ด้วย วันที่เราจะไม่พ ยายการณ์

เราจะพยาการค่าทั้งหมดในตารางข้างบนนี้ดังนี้

- 1) ตำแหน่งของข้อมูลที่เกิด max และ min (error คือค่าความคลาดเคลื่อนของ ตำแหน่งของวัน (ลำดับของข้อมูล) ไม่ใช่วันที่)
- 2) ค่าของข้อมูลที่เกิด max และ min (error คือค่าความคลาดเคลื่อนของราคาปิด เทียบกับราคาปิดที่เป็นค่า max หรือ min ใน peak ถัดไป
- 3) Crash size (คือค่า drawdown ที่ไม่มี 0 ขั้น ค่านี้จะติดลบ) ล่วงหน้าหนึ่ง period พร้อม field ที่เป็น error
- 4) Crash duration ล่วงหน้าหนึ่ง period พร้อม field ที่เป็น error รวมค่าทั้งหมดที่จะพยากรณ์สี่ค่า ใน task นี้เราต้องแยก m file ออกมารันไม่ปน กับการพยากรณ์ใน task 2.4.1

TASK2.5 : EF2.5.1-EF. 2.5.12 ผลลัพธ์ให้เขียนออก sheet ใหม่เป็นตาราง performance ชื่อ MSE ของแต่ละผลการรัน window size จำนวน neuron ที่แตกต่างกัน ของค่าพยากรณ์ทั้งสองตาราง

โดยเราจะใช้คำสั่งรวมค่า error ของตัวแปร cc โดยใช้สูตรของ MSE mean square error เพื่อเขียนลงตาราง performance เพื่อตรวจวัดว่า window ขนาดใหนมีประสิทธิภาพสูงสุด

โดยเราจะพยากรณ์ไปที่ค่า drawdown ในตารางของ return และเขียนผลเหมือนกับตำแหน่งเดียวกับที่เคยทำนายด้วย svm วิธีการคือให้เรา copy code มาใช้งานเลยไม่ต้องเขียนใหม่ และแต่ละช่วงแวลาที่เกิด market crash โดยราจะยังไม่ทำ backtest โดยผลลัพธ์ที่ได้ให้ save เป็นชื่อ mat file ใน matlab ให้มีหรัสตรงกับข้อมูลที่ทำการรันดังรายการรันข้างล่วงนี้ให้ครบถ้วน โดยมีการบันทึกผลลัพธ์ลงบน file excel เป็นชื่อเดียวกัน สร้างตาราง excel

EF2.2 Data analysis :forecast LSTM

Matlab module:

example_run_lstm9.m

[cc_crash_window400_u500_30min(i),pp_crash_window400_u500_30
min(i),target2_crash_window400_u500_30min(i)]=run_lstm_forec
ast_alarm9(target_eurusd(1:end_day-i+1),m)

example_run_lstm9_for_crash_size_forast.m

example_run_lstm9_for_drawdown_forecast.m

3 crash regions for daily data:

EF2.2.1 Covid crash for 100 days backward

daily data

DAX EF2.2.1.1

U30 EF2.2.1.2

U500 EF2.2.1.3

30min

DAX EF2.2.1.4

U30 EF2.2.1.5

```
U500 EF2.2.1.6

1hr

DAX EF2.2.1.7

U30 EF2.2.1.8

U500 EF2.2.1.9

4hr

DAX EF2.2.1.11

U30 EF2.2.1.12

U500 EF2.2.1.13
```

```
EF2.2.2 Ukrainian crash for 100 days backward
daily data
   DAX EF2.2.2.1
   U30
          EF2.2.2.2
   U500 EF2.2.2.3
30min
   DAX
          EF2.2.2.4
   U30
           EF2.2.2.5
   U500
           EF2.2.2.6
  DAX
          EF2.2.2.7
  U30
           EF2.2.2.8
  U500
           EF2.2.2.9
4hr
   DAX EF2.2.2.10
   U30
          EF2.2.2.11
   U500 EF2.2.2.12
```

EF2.2.3 Chinese crash for 100 days backward daily data DAX EF2.2.3.1 U30 EF2.2.3.2

U50	0 EF2.2.3.3							
30min								
DAX	EF2.2.3.4							
U30	EF2.2.3.5							
U500	EF2.2.3.6							
1hr								
DAX	EF2.2.3.7							
U30	EF2.2.3.8							
U500	EF2.2.3.9							
4hr								
DAX	C EF2.2.3.10							
U30	EF2.2.3.11							
U50	0 EF2.2.3.12							

```
EF2.3 Data analysis :performance of LSTM for 5% and 10% threshold
                            [MSE]=performance_lstm(price,result_forecast)
Matlab module:
daily data
           EF2.3.1
    DAX
    U30
           EF2.3.2
    U500 EF2.3.3
30min
   DAX
           EF2.3.4
            EF2.3.4
   U30
   U500
            EF2.3.6
 1hr
           EF2.3.7
   DAX
            EF2.3.8
   U30
   U500
            EF2.3.9
    DAX EF2.3.10
```

U30 EF2.3.11 U500 EF2.3.12

EF2.4 Data analysis :backtest LSTM

Matlab module: [ret, HR,target]=backtest_lstm(price,result_forecast)

daily data

DAX EF2.4.1

U30 EF2.4.2

U500 EF2.4.3

30min

DAX EF2.4.4

U30 EF2.4.5

U500 EF2.4.6

1hr

DAX EF2.4.7

U30 EF2.4.8

U500 EF2.4.9

4hr

DAX EF2.4.10

U30 EF2.4.11

U500 EF2.4.12