Problem 1:

Tell how many roots of the following polynomial are in the right half-plane, in the left half-plane, and on the $j\omega$ -axis:

$$P(s) = s^5 + 6s^3 + 5s^2 + 8s + 20$$

Use Routh-Hurwitz criterion.

Solution:

Assignment 7 (ELEC 341 L7_RouthHurwitzEx)

Problem 2:

In the system of Figure, let

$$G(s) = \frac{K(s+2)}{s(s-1)(s+3)}$$

Find the range of K for closed-loop stability.

Use Routh-Hurwitz criterion.

Solution:

Assignment 7 (ELEC 341 L7_RouthHurwitzEx)

The characteristic equation is:

$$1 + K \frac{(s+2)}{s(s-1)(s+3)} = 0$$
 or

$$s(s-1)(s+3) + K(s+2) = 0$$
 or

$$s^3 + 2s^2 + (K-3)s + 2K = 0$$

The Routh array is:

s ³	1	K-3
s ²	2	2 <i>K</i>
S	-3	
1	2 <i>K</i>	

The first column will always have a sign change regardless of the value of K. There is no value of K that will stabilize this system.

Problem 3:

For the system shown in Figure, find the value of gain, K, that will make the system oscillate. Also, find the frequency of oscillation.

Use Routh-Hurwitz criterion.

Solution:

Applying the feedback formula on the inner loop and multiplying by K yields

$$G_e = \frac{K}{s(s^2 + 10s + 25)}$$

Thus,

$$T = \frac{K}{s^3 + 10s^2 + 25s + K}$$

Making a Routh table:

Assignment 7 (ELEC 341 L7_RouthHurwitzEx)

3 s	1	25
s ²	10	K
s ¹	$\frac{250-K}{10}$	0
0 s	K	0

For oscillation, the s^1 row must be a row of zeros. Thus, K = 250 will make the system oscillate. The previous row now becomes: $10s^2 + 250$. Thus, $s^2 + 25 = 0$, or $s = \pm \sqrt{-25} = \pm j5$. Hence, the frequency of oscillation is 5 rad/s.