Solutions for Pacific Northwest Region Programming Contest Division 2

中国人民大学 ACM 队

2020年2月21日

目录

1	Alp	habet	5
	1.1	Description	5
	1.2	Solution	5
2	Bar	bells	6
	2.1	Description	6
	2.2	Solution	6
3	Bug	ggy Robot	7
	3.1	Description	7
	3.2	Solution	7
4	Can	neras	8
	4.1	Description	8
	4.2	Solution	8
5	Con	atest Score	9
	5.1	Description	9
	5.2	Solution	9
6	Equ	iality 1	10
	6.1	Description	10
	6.2	Solution	10

7	Gravity	11		
	7.1 Description	11		
	7.2 Solution	11		
8	Islands	12		
	8.1 Description	12		
	8.2 Solution	12		
9	Mismatched Socks	13		
	9.1 Description	13		
	9.2 Solution	13		
10 Postman				
	10.1 Description	14		
	10.2 Solution	14		
11	Six Sides	15		
	11.1 Description	15		
	11.2 Solution	15		
12	Three Square	16		
	12.1 Description	16		
	12.2 Solution	16		
13	Zigzag	17		
	13.1 Description	17		

13.2 Solution

1 Alphabet

1.1 Description

我们定义一个小写字符串是"按字母表的",当且仅当它删除掉一些字符后,可以变为"abcdefghijklmnopqrstuvwxyz"的字母表。

给定一个长度为 n 的小写字母字符串,询问至少插入多少个字符才能使其变成"按字母表的"。

 $n \leq 50$.

1.2 Solution

不难看出后来添加的字母一定不会在变成 "abcdefghijklmnopqrstuvwxyz" (以下简写为 $a \sim z$) 被删去,不然没有加入的必要。

所以为了将原字符串变成 a~z, 我们考虑先删除再添加。

不难看出删除后的字符串字典序一定严格递增,不然不能仅通过添加得到 a ~ z。

而严格递增的序列一定是 $a \sim z$ 的子序列,可以经过添加变成 $a \sim z$ 。

所以任务变成寻找输入串的最长上升子序列, 答案就是 (a~z-最长上升子序列长度)。

设以第 i 位为结尾的最长上升子序列长度为 f_i ,得到转移方程:

 $f_i = \max\{f_i + 1\}$ (i > j 且第 i 位字典序大于第 j 位)

2 Barbells

2.1 Description

给定 n 个空杆, m 个圆盘, 当杆左右重量相等时对答案有贡献, 求出所有可能重量。

重量 w = 杆重 $b_i + \sum$ 圆盘重 p_i

 $1 \le n, m \le 14$

 $1 \le b_i, p_i \le 10^8$

2.2 Solution

m 和 n 范围很小,可以接受指数级别算法,直接暴力枚举即可。

考虑三进制,某一位为 0 即把这个圆盘放到左边,为 1 就放到右边,为 2 则不选。

最后统计即可。因为答案需要从小到大输出且相同重量只计一次,所以可以用set统计答案。

3 Buggy Robot

3.1 Description

一个机器人要走出一个 $n \times m$ 的矩形网格迷宫,迷宫中的每个格子为障碍物或者为空。已知迷宫的布局、机器人的起始位置和迷宫的唯一出口位置。保证存在从起始位置到出口的路径。

已知一串给机器人的指令,指令由若干 U、D、L或R组成,分别表示上、下、左、右四个方向。机器人会按照指令的顺序依次向对应方向移动一格,若碰到障碍物或迷宫边界则在原地不动。一旦机器人到达终点,后续指令都将被忽略。

给出的这串指令并不一定能使机器人到达终点,现在要求修改该指令使得机器人能走出迷宫,修改方法是每次可以花费单位代价来删除某一条指令、或者在指令串的任意位置插入一条指令。求最少花费多少代价可以使机器人按照指令能够到达迷宫出口。

 $n, m \leq 50$, 给出的指令串长度范围为 $l \in [1, 50]$

3.2 Solution

可以发现,机器人的状态由其所在位置和已经执行了多少条原指令串中的指令(包括删除的指令)所确定,这样的状态数为 O(nml)。而状态的转移只需枚举不进行指令的修改、删除下一条指令、插入一条指令这些决策即可。

将状态视作图上的节点,转移视作图上的边,则问题转化为了最短路问题。而图中的边权只可能为 0 或 1 ,因此只需对 bfs 算法稍加修改即可求出最短路。具体方法是使用一个双端队列,搜索过程中将通过边权为 0 的边扩展的状态加入到队首,通过边权为 1 的边扩展的状态加入到队尾。需要注意的是,这样修改之后一个元素可能在队列中出现两次,需要进行判断。具体实现时可以使用 C++ 标准库中的 std::deque 。

总时间复杂度为 O(nml)。

4 Cameras

4.1 Description

有n个房子,从1到n标号一字排开。每个房子可以选择装或不装摄像头,要求任意连续r个房子中至少有2个房子有摄像头。现在有k间房子已经安装了摄像头,问最少还需要安装几个摄像头。

 $2 \le n \le 10^5, 0 \le k \le n, 2 \le r \le n$.

4.2 Solution

不难想出如下的贪心策略:从左到右扫描每个区间,如果该区间内不足 2 个摄像头,则从右边未安装摄像头的房子开始安装起。这是因为越靠右边的摄像头越能被后面更多的区间共有。如果从右向左扫描区间,则优先安装靠左的摄像头。

下面证明该贪心策略的正确性:

1) 最优子结构

设一个最优解 S 有一个子问题 S' 表示 $1 \sim t$ 房子的摄像头安装情况。如果 S' 不是最优的,则存在一个比 S'' 更优的解,使得 S 更优。此时,S 就不是最优解,与假设不符。因此,若 S 最优,其子问题 S' 必然最优。最优子结构得证。

2) 贪心选择性质

如果一个区间不足两个摄像头时,不选择从最右(不妨记为 y)开始安装,并安装在 x 处。则右边的所有区间不会有更多的摄像头,其中某些区间 [x,x+r-1] 到 [y,y+r-1] 还会减少摄像头,显然使解更劣。贪心选择性质得证。

5 Contest Score

5.1 Description

有 n 个题,解决它们所需要的时间分别为 a_1,a_2,\ldots,a_n ,执行以下步骤:

- 1. 取出前 k 个题。
- 2. 选出这 k 个题中用时最小的一道题,解这道题并花费当前时间 + 解题所需时间的代价。
- 3. 将下一道题加入这 k 个题中。
- 4. 如果有未解决的题,回到步骤 2。

问最后的代价之和。

 $1 \le k \le n \le 300$

 $1 \le a_i \le 10^6$

5.2 Solution

使用小根堆, 先用前 k 个数建堆, 每次取出最小值并计算代价, 并将下一个数放入堆中(如果存在未入堆的数), 直到所有的题都被解决。

6 Equality

6.1 Description

给出一个形如 a+b=c 的等式,满足 a、b、c 均为一位正整数,且该等式包含空格在内共有 9 个字符,如果 a 与 b 的和等于 c,则输出YES,否则输出NO。

6.2 Solution

考虑直接按照题意模拟,读人 a、b、c 三个数字,并判断 a+b 是否等于 c,并在相等时输出YES,不相等时输出NO,即可通过此题。

7 Gravity

7.1 Description

给定一个 $n \times m$ 的二维平面图,每个格子可能是苹果'o',障碍'#'或者空地':

受到重力作用,苹果会自上而下地下落直到触底或者碰到障碍和苹果,会停在底边或者障碍和苹果上方的格子处。

求最终这个二维图的样子。

 $n, m \leq 50$

7.2 Solution

不难看出列与列之间的苹果是相互独立,不受彼此影响的。

所以我们对于一列单独考虑。

在同一列中的苹果会产生影响,但是苹果的相对位置不会发生变化,所以我们先处理低处 苹果,因为它的最终位置不会受高处苹果最终位置的影响。

然后按照这个顺序模拟自由下落的过程,一直下落直到碰到物体或底边停下即可。

8 Islands

8.1 Description

给一个 $N \times M$ 的矩阵, 矩阵由 L,W,C 组成

其中 L 表示岛屿, W 表示海洋, C 表示云朵

云朵下可能是岛屿或者海洋

本题要求确定一种方案,使得连接的岛屿数量最少。两个岛屿是否连接,当且仅当两个岛屿之间在四方向(上下左右)相邻。只需要输出最少岛屿数量。

 $1 \le N, M \le 50$

8.2 Solution

考虑一个连接的岛屿向外拓展,如果和该岛屿直接连接的为 C,将其改为 L。此方法并不会增加已连接岛屿数量。而如果直接连接的为 L,表示两个原本不连接的岛屿相互连接,会使岛屿数量 -1。迭代多次后可以发现,两个岛屿无法连接当且仅当两个岛屿被 W 阻隔。

因此有如下算法,遍历每一个未被标记的 L,对 L 进行四方向BFS。如果遍历到 L 或者 C 则继续(并标记),如果遍历到 W 或者边界则停止。BFS结束后答案计数 +1。最后输出的答案 为最少岛屿数量。

9 Mismatched Socks

9.1 Description

你现在有n种颜色的袜子,第i种有 k_i 只,问最多可以匹配多少双颜色不同的袜子。

9.2 Solution

事实上,如果袜子最多的那一种颜色的袜子数量没有超过总数量 s 的一半,那么一定可以两两配对到只剩下 $s \mod 2$ 只袜子。我们可以把袜子按颜色顺序排成一列,依次编号为 $1,2,3,\ldots,s$ 。然后将 1 与 $\frac{s}{2}+1$,2 与 $\frac{s}{2}+2\ldots\frac{s}{2}$ 与 s 配对,一共 $\frac{s}{2}$ 对。

如果颜色最多的袜子超过了总数量的一半,不妨设其有 m 只。则只能将剩下所有的袜子和他配对,共可配对 s-m 对。

于是最终的答案就是 $\min(\frac{s}{2}, s - m)$ 。

10 Postman

10.1 Description

有一名邮递员要在一个坐标轴上从邮局送信到 n 个地点,每个地点有 m_i 封信件。

邮局在位置 X=0 处,邮递员每移动 1 个单位长度需要 1 个单位时间。邮递员一次至多带 k 封信。求邮递员从出发到送完信返回邮局至多需要的时间。

$$n \leq 1000, k \leq 10^7\,,$$

$$|x_i|, m_i \leq 10^7$$
.

10.2 Solution

当邮递员到某一半轴送信时, 若要去另一半轴则必须返回邮局, 因而将两个半轴分开考虑。

单次送信时间只由信件中需要送达的最远距离决定,因而设计贪心策略:每次从远至近取 k 封信进行寄送,裸算法复杂度 $O(\frac{nm}{k})$,注意到可能超时,优化后变为 O(n)。

11 Six Sides

11.1 Description

给出两个六面的骰子,每面上的值在 1-6 之间,且每面向上的概率相等。现在不断投掷这两个骰子,直到两个骰子向上面的值不等,并判定值大的骰子获胜。

问第一个骰子获胜的概率是多少?

11.2 Solution

令在一轮投掷中,第一个骰子获胜的概率为 P_{win} ,平局的概率为 P_{draw} ,输的概率为 P_{lose} 。

则第一个骰子获胜的概率为

$$P = P_{win} + P_{draw} \times P_{win} + P_{draw}^2 \times P_{win} + \dots + P_{draw}^n \times P_{win}$$

$$= \frac{P_{win} \times (1 - P_{draw}^n)}{1 - P_{draw}}$$

故
$$ans = \lim_{n \to \infty} P = \frac{P_{win}}{1 - P_{draw}} = \frac{P_{win}}{P_{win} + P_{lose}}$$

12 Three Square

12.1 Description

你被给予了三个矩形的长与宽,问其是否能在不重叠的前提下拼成一个正方形。 矩形的边长为不超过 100 的正整数。

12.2 Solution

签到题,矩形的排列只有两种方式:
AAA
BBB
CCC
或者,
AAA
BCC
BCC
我们只需要枚举这三个矩形的位置与边长的相等关系,大力判断即可。

13 Zigzag

13.1 Description

定义如果一个序列相邻元素在严格递增和严格递减之间交替,则称该序列是"之字形"的。 其中第一对数字可以是严格递增的或严格递减的。对于给定序列,求其最长之字形子序列的长 度。

13.2 Solution

与最长上升子序列做法类似,定义 $f_{i,0/1}$ 表示以第 i 个元素结尾的之字形子序列长度最大值,第二维表示该子序列最后一对数字是严格递增的/严格递减的。初始值为 1。

对于第 i 个元素和第 j 个元素 (i < j),如果 i 元素 < j 元素,则 $f_{j,0} = \max(f_{j,0}, f_{i,1} + 1)$ 。

如果 i 元素 > j 元素,则 $f_{j,1} = \max(f_{j,1}, f_{i,0} + 1)$ 。

f 数组的最大值即为答案,时间复杂度 $O(n^2)$ 。