

Application of Satellite Image Segmentation for Urban Planning Optimization

ICDPA 2019, May 11-13, 2019 | Shanghai, China

Vladimir Khryashchev, Leonid Ivanovsky, Anna Ostrovskaya, Alexander Semenov

Introduction

Goal of investigation: development of effective algorithm for building detection on satellite images based on deep learning methods

Examples of images from the Pleiades-1B database (spatial resolution of 0.5 m / pixel)

Algorithm requirements

Take into account the small size of objects

Be invariant to rotation

Have enough training examples

Have an ability to handle huge pictures

Cope with noise

Approaches

Traditional machine learning methods

(k-means clustering, EM-algorithm)

Convolutional neural networks

(SegNet, LinkNet, TernausNet, Fully convolutional networks)

U-Net

Trainable parameters: 7.8 mil

O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. *Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS*, vol. 9351, 2015, pp. 234–341.

Planet database

- 14 samples in JPG format
- Manual image markup (https://supervise.ly)
- Resolution: 8192x8192 px, 0.5 m/pixel
- 3 Russian cities: Moscow, Yaroslavl, Rybinsk

Dataset preparation

- Cropped image resolution: 512x512 px
- Augmentation: mirror reflection + rotation (+90, +180, -90)
- Training set: 20888 images
- Test set: 5224 photos

Training process

Metrics: Jaccard index (J)

Loss function: binary cross-entropy

Optimizer: Adam

Batch size: 36 cropped samples

Epochs (E): 100

Time: 4 hours

Dependency of Jaccard index on training epochs

$$J = 0.65$$

Examples of detection

Examples of detection

Application

 Search best locations for outlets

Urban planning

Building control

Conclusions

 CNNs can be effectively used for building detection on aerial photos

 U-Net was developed to cope with satellite images segmentation

 The training of CNN was carried out on supercomputer NVIDIA DGX-1

• The value of Jaccard index is equal to 0.65

Future plans

Try more complicated loss functions

Detect building corners

• Try mask search algorithms (Mask R-CNN, Faster-CNN)

Shift color channels

Acknowledgment

The work was prepared with the financial support of the Ministry of Education of the Russian Federation as part of the research project No. 14.575.21.0167 connected with the implementation of applied scientific research id. RFMEFI57517X0167

