CHAPTER 2

GALOIS EXTENSIONS

2.1 Field Extensions

Definition 2.1.1. Let K and F be fields such that $K \subseteq F$ is a subring. We say that K is a *subfield* of F, and that F is a *field extension* of K, denoted F|K. If $K \subseteq E \subseteq F$ are fields, we call E an *intermediate field* of the field extension F|K.

Definition 2.1.2. Let F|K be a field extension and let $S \subseteq F$. We denote by $K(S) \subseteq F$ the intermediate field of F|K generated by S. In particular, K(S) is the intersection of all intermediate fields $K \subseteq E \subseteq F$ such that $S \subseteq E$. If $S = \{\alpha\}$, then we write $K(\alpha)$ instead of K(S).

Definition 2.1.3. Let F|K be a field extension. We define the *degree of the field extension* [F:K] by the dimension of the K-vector space F, i.e.

$$[F:K] = \dim_K(F).$$

We say that the field extension F|K is finite if the degree [F:K] is finite. Otherwise, F|K is infinite.

Proposition 2.1.4 (The Tower Law). Let $K \subseteq E \subseteq F$ be field extensions. If F|E and E|K are finite, then F|K is finite, with

$$[F:K] = [F:E][E:K].$$

Moreover, [F:K] is infinite if and only if [F:E] or [E:K] is infinite.

Proof. Assume that F|E and E|K are finite. Then, we can find a finite K-basis for E and a finite E-basis F respectively:

$$\{e_1, e_2, \dots, e_n\}, \{f_1, f_2, \dots, f_m\}.$$

We claim that the following is a K-basis for F:

$$\{e_1 f_1, e_1 f_2, \dots, e_n f_m\}.$$

So, let $\alpha \in F$. Using the *E*-basis for *F*, we can find $\alpha_1, \alpha_2, \ldots, \alpha_m \in E$ such that

$$\alpha = \alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_m f_m.$$

Now, using the K-basis for E, we can find $\beta_{i,j} \in K$ for $1 \le i \le m$ and $1 \le j \le n$ such that

$$\alpha = \alpha_1 f_1 + \dots + \alpha_m f_m$$

= $(\beta_{1,1} e_1 + \dots + \beta_{1,n} e_n) f_1 + \dots + (\beta_{m,1} e_1 + \dots + \beta_{m,n} e_n) f_m$
= $\beta_{1,1} e_1 f_1 + \dots + \beta_{1,n} e_n f_1 + \dots + \beta_{m,n} e_n f_m$.

Hence, the set

$$\{e_1f_1, e_1f_2, \dots, e_nf_m\}.$$

spans F. Now, let $\alpha_{i,j} \in K$ for $1 \le i \le m$ and $1 \le j \le n$ such that

$$0 = \alpha_{1,1}e_1f_1 + \dots + \alpha_{m,n}e_nf_m$$

= $(\alpha_{1,1}e_1 + \dots + \alpha_{1,n}e_n)f_1 + \dots + (\alpha_{m,1}e_1 + \dots + \alpha_{m,n}f_m).$

In that case, since $\{f_1, f_2, \dots, f_m\}$ forms a basis for F, we find that

$$\alpha_{i,1}e_1 + \dots + \alpha_{i,n}e_n = 0$$

for all $1 \le i \le m$. Moreover, since $\{e_1, e_2, \dots, e_n\}$ forms a basis for E, we find that $\alpha_{i,j} = 0$ for all $1 \le i \le m$ and $1 \le j \le n$. Hence, the set

$$\{e_1f_1, e_1f_2, \dots, e_nf_m\}.$$

forms a basis for F. In particular,

$$[F:K] = m \cdot n = [F:E][E:K].$$

Definition 2.1.5. Let F|K be a field extension, and let $\alpha \in F$. We say that α is algebraic over K if there exists a non-zero polynomial $f \in K[x]$ such that $f(\alpha) = 0$. Otherwise, α is transcendental over K. We say that the extension F|K is algebraic if for all $\alpha \in F$, α is algebraic over K.

Proposition 2.1.6. Let F|K be a finite extension. Then, F|K is an algebraic extension.

Proof. Let [F:K]=n, and let $\alpha \in F$. We know that the set

$$\{1, \alpha, \alpha^2, \dots, \alpha^n\}$$

has n+1 elements, so it cannot be linearly independent in K. Hence, there exist $k_0, k_1, \ldots, k_n \in K$, not all zero, such that

$$k_n\alpha^n + \dots + k_1\alpha + k_0 = 0.$$

So, define the polynomial $f \in K[x]$ by

$$f(x) = k_n x^n + \dots + k_1 x + k_0.$$

Since not all of k_i 's are zero for $0 \le i \le n$, we find that f is a non-zero polynomial. Moreover, $f(\alpha) = 0$ by construction. Hence, α is algebraic over K, meaning that F|K is an algebraic extension.

Lemma 2.1.7. Let F|K be a field extension and let $\alpha \in F$. Then, α is algebraic over K if and only if the evaluation map $ev_{\alpha} \colon K[x] \to K$ is not injective.

2 Pete Gautam

Proof. Assume first that α is algebraic over K. In that case, there exists a non-zero polynomial $f \in K[x]$ such that $f(\alpha) = 0$. Hence, the evaluation map ev_{α} cannot be injective- there are 2 polynomials mapping to 0.

Now, assume that the evaluation map ev_{α} is not injective. In that case, the kernel $\ker ev_{\alpha}=(f)$ is non-zero, i.e. f is non-zero. Moreover, $f(\alpha)=0$, meaning that α is algebraic over K.

Proposition 2.1.8. Let F|K be a field extension and let $\alpha \in F$ be algebraic over K. Then, there exists a unique monic polynomial $m_{\alpha,K} \in K[x]$, of smallest degree, such that

- $m_{\alpha,K} = 0;$
- $m_{\alpha,K}$ divides any $g \in K[x]$ with $g(\alpha) = 0$.

Proof. Since α is algebraic, the evaluation map $ev_{\alpha} \colon K[x] \to K$ is not injective. Moreover, since K[x] is a principal ideal domain, we find that $\ker ev_{\alpha} = (f)$. Without loss of generality, assume that f is monic. In that case, we can set $m_{\alpha,K} = f$, so that it satisfies both the properties.

Definition 2.1.9. Let F|K be a field extension and let $\alpha \in F$ be algebraic over K. The unique monic polynomial of smallest degree $m_{\alpha,K} \in K[x]$ is called the *minimal polynomial* of α over K.

Lemma 2.1.10. Let F|K be a field extension and let $\alpha \in F$ be algebraic over K. The minimal polynomial $m_{\alpha,K}$ is irreducible. Moreover, it is the unique monic polynomial that is irreducible over K such that α has a root.

Proof. Let $m_{\alpha,K} = fg$, for $f,g \in K[x]$. In that case, $f(\alpha)g(\alpha) = 0$, meaning that either $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss of generality, assume that $f(\alpha) = 0$, meaning that $f \in \ker ev_{\alpha} = (m_{\alpha,K})$. Hence, g is a unit in K[x], so $m_{\alpha,K}$ is irreducible.

Lemma 2.1.11. Let F|K be a field extension and let $\alpha \in F$ be algebraic over K. Then,

$$K[x]/(m_{\alpha,K}) \cong \operatorname{Im} ev_{\alpha} = K(\alpha) \subseteq F.$$

Proof. By the First isomorphism theorem, we know that

$$K[x]/(m_{\alpha,K}) \cong \operatorname{Im} ev_{\alpha}.$$

Since $m_{\alpha,K}$ is irreducible, we know that $\operatorname{Im} ev_{\alpha}$ is a field. Since the image $\operatorname{Im} ev_{\alpha}$ is a field containing K (constant functions) and α (the image of f(x) = x), i.e. $K(\alpha) \subseteq \operatorname{Im} ev_{\alpha}$. Moreover, a field containing K and α contains expressions in α with coefficients in K, so $K(\alpha) \supseteq \operatorname{Im} ev_{\alpha}$.

Lemma 2.1.12. Let K be a field and let $f \in K[x]$. Then, $\dim_K(K[x]/(f)) = \deg(f)$.

Proof. For any $g \in K[x]$, the division algorithm tells us that g = fq + r, for $q, r \in K[x]$ with deg $r < \deg f = d$. Hence,

$$K[x] = (f) \oplus K[x]_{\leq d},$$

where $K[x]_{\leq d}$ is the space of polynomials of degree less than d. Hence, $K[x]/(f) \cong K[x]_{\leq d}$ as vector spaces, meaning that

$$\dim_K(K[x]/(f)) = \dim_K K[x]_{< d} = d = \deg(f).$$

Theorem 2.1.13. Let F|K be a field extension and let $\alpha \in F$ be algebraic over K, with monic polynomial $m_{\alpha,K} \in K[x]$. Then, there is an isomorphism of fields and K-vector spaces

$$K[x]/(m_{\alpha,K}) \to K(\alpha)$$

given by $f + (m_{\alpha,K}) \mapsto f(\alpha)$. In particular, $[K(\alpha) : K] = \deg(m_{\alpha,K})$. In particular, $K(\alpha)|K$ is an algebraic extension.

Definition 2.1.14. Let F|K be a field extension. We say that F|K is *simple* if $F = K(\alpha)$ for some $\alpha \in F$.

Proposition 2.1.15. Let F|K be a field extension and let $\alpha, \beta \in F$ be algebraic over K, with $K(\alpha)|K$ and $K(\beta)|K$ simple algebraic extensions. Then, there exists a field isomorphism $\theta \colon K(\alpha) \to K(\beta)$ fixing all elements of K such that $\theta(\alpha) = \beta$ if and only if α and β have the same minimal polynomial over K.

Proof. Assume first that there exists a field isomorphism $\theta \colon K(\alpha) \to K(\beta)$. In that case, let

$$m_{\alpha,K} = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in K[x].$$

We know that $m_{\alpha,K}(\alpha) = 0$, meaning that

$$m_{\alpha,K}(\beta) = \beta^{n} + a_{n-1}\beta^{n-1} + \dots + a_{1}\beta + a_{0}$$

$$= \theta(\alpha)^{n} + a_{n-1}\theta(\alpha)^{n-1} + \dots + a_{1}\theta(\alpha) + a_{0}$$

$$= \theta(\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0})$$

$$= \theta(f(\alpha)) = \theta(0) = 0.$$

Since $m_{\alpha,K}$ is irreducible over K, we find that $m_{\alpha,K} = m_{\beta,K}$. That is, α and β have the same minimal polynomial over K.

Now, assume that α and β have the same minimal polynomial f over K. We know that

$$K(\alpha) \cong K[x]/(f) \cong K(\beta).$$

We have isomorphisms $\varphi_{\alpha} \colon K[x]/(f) \to K(\alpha)$ and $\varphi_{\beta} \colon K[x]/(f) \to K(\beta)$. Define $\theta = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$. Then, for all $k \in K$,

$$\theta(k) = \varphi_{\beta}(\varphi_{\alpha}^{-1}(k)) = \varphi_{\beta}(k+(f)) = k.$$

So, θ is a field isomorphism fixing K.

4 Pete Gautam

Theorem 2.1.16 (Kronecker's Theorem). Let K be a field and let $f \in K[x]$ be a polynomial. Then, there exists a field extension F|K and an $\alpha \in F$ such that $f(\alpha) = 0$.

Proof. Without loss of generality, assume that f is irreducible. In that case, F = K[x]/(f) is a field, with F|K is a field extension. Now, let $\alpha \in F$ by $\alpha = x + (f)$. Then,

$$f(\alpha) = f(x) + (f) = 0.$$

Definition 2.1.17. Let $\overline{K}|K$ be a field extension. We say that $\overline{K}|K$ is algebraic field extension if \overline{K} is algebraically closed.

Theorem 2.1.18. Every field has an algebraic closure.

Theorem 2.1.19. Let K be a subfield of \mathbb{C} . Then,

$$\overline{K} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraic over } K \}.$$

Proof. Let

$$L = \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraic over } K \}.$$

We first claim that L is a field. So, let $\alpha_1, \alpha_2 \in L$. Then, α_1, α_2 are algebraic over K. In that case, we know that $[K(\alpha, \beta) : K]$ is finite, and hence algebraic. In particular, we find that $\alpha - \beta \in K(\alpha, \beta)$ is algebraic over K, and $\alpha\beta^{-1} \in K(\alpha, \beta)$ is algebraic over K if β is non-zero. Hence, L is a field.

By definition, L is algebraic over K, i.e. $L \subseteq \overline{K}$. Now, we show that $\overline{K} = L$. So, let $f \in K[x]$ be a non-constant polynomial. We know that f has roots in \mathbb{C} - $\alpha_1, \ldots, \alpha_n$. Define the field $M = L(\alpha_1, \ldots, \alpha_n)$. Since M|L is finite, it is algebraic. Now, since M|L and L|K are both algebraic, M|K is algebraic. In particular, $\alpha_1, \ldots, \alpha_n$ are algebraic over K, meaning that they lie in L. Hence, L is algebraically closed. Hence, $L = \overline{K}$.

Pete Gautam 5

2.2 Normal and Separable Extensions

Definition 2.2.1. An algebra over a ring K is a ring homomorphism $\eta: K \to F$, for some field K. A homomorphism between two K-algebras $\eta: K \to F$ and $\eta': K \to F'$ is a ring homomorphism $f: F \to F'$ such that $f \circ \eta = \eta'$.

Definition 2.2.2. Let F|K be a field extension. We denote by $\operatorname{Aut}(F|K)$ the set of all K-algebra isomorphism $F \to F$, considered as a group under composition.

Definition 2.2.3. Let K be a field and let $f \in K[x]$. An extension field F of K is called a *splitting field* for f if it factorises into linear factors over F, and if there is no intermediate field $K \subseteq E \subseteq F$ with this property.

Theorem 2.2.4. Let K be a field. For every $f \in K[x]$, there exists a splitting field F|K.

Proof. If f factorises into linear factors over K, then K is the splitting field of f. Otherwise, f has an irreducible factor g. In that case, let F = K[x]/(g). Since g is irreducible, (g) is a maximal ideal, and so F a field. Now, let $\alpha = x + (g) \in F$. We have

$$g(\alpha) = g(x) + (g) = 0 + (g),$$

so g has a root in K. Hence, $g(x) = (x - \alpha)h(x)$, where deg $h = \deg g - 1$. We can continue this process to fully factorise f- it will take at most deg f steps.

The resulting field F must be the splitting field for f- by construction, f splits into linear factors in F. Moreover, for an intermediate subfield $K \subseteq L \subsetneq F$, we know that L does not contain one of the roots of f (by construction), and so f cannot split into linear factors in L.

This field can be taken as the algebraic closure \overline{K} of K.

Theorem 2.2.5. Let $\phi \colon K_1 \to K_2$ be a field isomorphism. Moreover, let $F_1|K_1$ be a splitting field for $f \in K_1[x]$ and let $F_2|K_2$ be a splitting field $\phi(f) \in K_2[x]$. Then, there exists an isomorphism $\Phi \colon F_1 \to F_2$ such that $\iota_1 \circ \Phi = \phi \circ \iota_2$, where $\iota_1 \circ K_1 \to F_1$ and $\iota_2 \colon K_2 \to F_2$ be inclusion maps.

Proof.

Corollary 2.2.6. Let K be a field and let $f \in K[x]$. If F_1 and F_2 are splitting fields for f, then there exists an isomorphism $F_1 \cong F_2$ of K-algebras.

Proof.

Definition 2.2.7. Let F|K be a field extension. We say that the extension F|K is normal if for all polynomial $f \in K[x]$ irreducible with a root in F, f splits into linear factors in F[x].

Theorem 2.2.8. Let E|K be a field extension. Then, E|K is a finite, normal extension if and only if E|K is the splitting field of some $f \in K[x]$.

Proof. First, assume that E|K is a finite, normal extension. In that case, $E = K(\alpha_1, \ldots, \alpha_n)$, for $\alpha_1, \ldots, \alpha_n \in E$. Since α_i are algebraic over K, we can find minimal polynomial $f_i \in K[x]$ of α_i . Since E|K is normal, we know that f_i split over E. Hence, $f = f_1 \ldots f_n$ splits over E. Since E is generated by the roots of f, E must be the splitting field of f.

Now, assume that E|K is the splitting field of $f \in K[x]$. In that case, $E = K(\alpha_1, \ldots, \alpha_n)$, for $\alpha_1, \ldots, \alpha_n \in \overline{K}$. So, E|K is a finite extension. Now, let $g \in K[x]$ be an irreducible polynomial with a root in E. Define F to be the splitting field of fg. Since all roots of f are roots of fg, we find that $E \subseteq F$. Let $\beta_1, \beta_2 \in F$ be roots of g. We claim that

$$[E(\beta_1) : E] = [E(\beta_2) : E].$$

Consider the field towers

$$K \subseteq K(\beta_1) \subseteq E(\beta_1) \subseteq F$$
 $K \subseteq K(\beta_2) \subseteq E(\beta_2) \subseteq F$.

Hence,

$$[E(\beta_1):K(\beta_1)] \cdot [K(\beta_1):K] = [E(\beta_1):K] = [E(\beta_1):E] \cdot [E:K]$$
$$[E(\beta_2):K(\beta_2)] \cdot [K(\beta_2):K] = [E(\beta_2):K] = [E(\beta_2):E] \cdot [E:K].$$

Since g is irreducible over K, we find that $K(\beta_1) \cong K(\beta_2)$, meaning that $[K(\beta_1) : K] = [K(\beta_2) : K]$. Moreover, since $E(\beta_j)$ is the splitting field of f over $K(\beta_j)$ for j = 1, 2, we have $E(\beta_1) \cong E(\beta_2)$. So,

$$[E(\beta_1):K(\beta_1)] = [E(\beta_2):K(\beta_2)].$$

So,

$$[E(\beta_1):E] = \frac{[E(\beta_1):K(\beta_1)] \cdot [K(\beta_1):K]}{[E:K]}$$
$$\frac{[E(\beta_2):K(\beta_2)] \cdot [K(\beta_2):K]}{[E:K]} = [E(\beta_2):K].$$

We know that $\beta \in E$ if and only if $[E(\beta_1) : E] = 1$. Since g has a root in E, all the roots of g are contained in E. Hence, E|K is normal.

Theorem 2.2.9. Let F|K be a finite normal extension. If $K \subseteq E \subseteq F$ is an intermediate field, then any K-algebra homomorphism $\sigma \colon E \to F$ extends to a K-algebra homomorphism $F \to F$.

Proof. Note that σ is injective, so $E \cong \sigma(E)$. We know that F is the splitting field of some polynomial $f \in K[x]$. So, $F = K(\alpha_1, \ldots, \alpha_n)$, where α_i are roots of f not in K. Now, let $f_1 \in E[x]$ be the minimal polynomial of α_1 . In that case, $\sigma(f_1)$ is irreducible. Moreover, f_1 divides f, meaning that $\sigma(f_1)$ divides $\sigma(f) = f$. Since α_1 and β_1 have the same minimal polynomial, we can extend σ to $E(\alpha_1) \to \sigma(E)(\beta_1)$. We can continue this inductively to extend the homomorphism to F.

Theorem 2.2.10. Let E|K be a finite extension. Then, E|K is normal if and only if there exists a finite normal extension F|K such that $K \subseteq E \subseteq F$, and for every K-homomorphism $\sigma \colon E \to F$, we have $\sigma(E) = E$.

Proof. If E|K is normal, we can take F=E- for a K-homomorphism $\sigma\colon E\to F$, we have $\sigma(E)=F=E$. Now, assume that there exists a finite normal extension F|K such that $K\subseteq E\subseteq F$, and for every K-homomorphism $\sigma\colon E\to F$, we have $\sigma(E)=E$. Let $f\in K[x]$ have a root $\alpha\in E$. Without loss of generality, assume that f is irreducible over K. In that case, since F|K is normal, f splits over F. Now, let $\beta\in F$ be another root of f. We know that we can extend σ to $K(\alpha)\to K(\beta)\subseteq F$. Hence, we can further extend σ to $F\to F$. In that case, we have $\beta=\sigma(\alpha)\in E$, meaning that E|K is normal. \square

Proposition 2.2.11. Let $K(\alpha)|K$ is finite, then

$$[\operatorname{Aut}(K(\alpha)|K)] \le [K(\alpha):K].$$

Proof. Let $f \in K[x]$ be the minimal polynomial of α . We know that $[K(\alpha) : K] = \deg f$. Now, let $\alpha_1, \ldots, \alpha_m$ be the roots of α . Since f has at most $\deg f$ distinct roots, we have $m \leq \deg f$. A K-homomorphism $K(\alpha) \to K(\alpha)$ permutes the roots of α . Moreover, it is determined by where it sends α . Hence,

$$[\operatorname{Aut}(K(\alpha)|K)] \le m \le [K(\alpha):K].$$

Definition 2.2.12. Let K be a field, and F|K an algebraic extension.

- 1. An irreducible polynomial $f \in K[x]$ is *separable* if every root of f is a splitting field F of f is simple (i.e. appears with multiplicity 1).
- 2. An element $\alpha \in F$ is called separable if its minimal polynomial is separable.
- 3. F|K is called *separable* if every element of F is separable.

Proposition 2.2.13. Let E|K be a finite, normal, separable, simple extension. Then, $[E:K] = |\operatorname{Aut}(E|K)|$.

Proof. Let $E = K(\alpha)$, for some $\alpha \in E$, and let $\alpha_1, \ldots, \alpha_m$ be the roots of the minimal polynomial f of α . Without loss of generality, assume that $\alpha_1 = \alpha$. Since E|K is separable, we have $m = \deg f$. We know that there exists a K-homomorphism $K(\alpha) \to K(\alpha_i)$ that maps α to α_i , for each $1 \leq i \leq m$. Hence,

$$[E:K] = [K(\alpha):K] = [K(\alpha_i):K].$$

Since $K(\alpha_i) \subseteq E$, this implies that $K(\alpha_i) = E$. So, there are deg f distinct K-automorphisms of E, i.e. $[E:K] = |\operatorname{Aut}(E|K)|$.

Theorem 2.2.14 (Primitive Element Theorem). Let E|K be a finite, separable extension. Then, there exists an $\alpha \in E$ such that $E = K(\alpha)$.

Proof. First, assume that F has infinitely many elements. Since E|K is finite, we know that $E = K(\alpha_1, \ldots, \alpha_n)$, for $\alpha_1, \ldots, \alpha_n \in E$. So, inductively, we show that $K(\beta, \gamma) = K(\alpha)$ for all $\beta, \gamma \in E$. Let f, g be the minimal polynomials of β and γ over K respectively. Next, let F be the splitting field of $fg \in E[x]$. Let $\beta_1 = \beta, \beta_2, \ldots, \beta_m$ and $\gamma_1 = \gamma, \gamma_2, \ldots, \gamma_n$ be the roots of f and g respectively.

8 Pete Gautam

Since E|K is separable, β_1, \ldots, β_m are distinct, and so are $\gamma_1, \ldots, \gamma_n$. Now, since K is infinite, there exists a non-zero $\alpha \in K$ such that

$$\alpha \neq \frac{\beta_i - \beta}{\gamma_j - \gamma}$$

for $1 \leq i \leq m$ and $2 \leq j \leq n$. Now, let $\alpha = \beta + a\gamma$. We find that $\alpha - a\gamma_j \neq \beta_i$ for $1 \leq i \leq m$ and $2 \leq j \leq n$. We know that f is the minimal polynomial of β , so $f(\beta) = 0$. Now, consider the polynomial $h(x) = f(\alpha - ax) \in K(\alpha)[x]$. We find that

$$h(\gamma) = f(\alpha - a\gamma) = f(\beta) = 0.$$

Moreover, $h(\gamma_j) \neq 0$ for all $2 \leq j \leq n$, meaning that γ is the only common root of h and g. That is, $m_{\gamma,K(\alpha)}$ divides both h and g, we find that $m_{\gamma,K(\alpha)}$ is linear, i.e. $m_{\gamma,K(\alpha)} = x - \gamma \in K(\alpha)[x]$. So, $\gamma \in K(\alpha)$, meaning that $\beta = \alpha - a\gamma \in K(\alpha)$. Hence, $K(\alpha) = K(\beta,\gamma)$.

Instead, if K is finite, then E is also finite. Since E is a field, this implies that E^* is cyclic, so let $E^* = \langle \alpha \rangle$. Then, $E = K(\alpha)$.

Definition 2.2.15. Let E|K be a finite, separable extension, and let $\alpha \in E$ such that $E = K(\alpha)$. We say that α is a *primitive element*.

Corollary 2.2.16. Let E|K be any finite, normal, separable extension. Then,

$$[E:K] = [Aut(E|K)].$$

Proof. Since E|K is finite and separable, we have $E=K(\alpha)$. Hence, E is simple, meaning that

$$[E:K] = [Aut(E|K)].$$

Proposition 2.2.17. Let F|E and E|K be finite extensions. If F|K is separable, then F|E and E|K are separable.

Proof. Let $\alpha \in E$. Since F|K is separable, we know that the minimal polynomial of $\alpha \in F$ is separable. Hence, E|K is separable. Now, let $\alpha \in F$, and let $f \in E[x]$ be the minimal polynomial of α , and $g \in K[x]$ the minimal polynomial of α . Since F|K is separable, g has distinct roots. We have $f \mid g$, so f also has distinct roots, meaning that f is separable. Hence, F|E is separable. \square

Definition 2.2.18. Let K be a field. We say that K is *perfect* if every finite extension of K is separable.

Lemma 2.2.19. Let K be a field of characteristic zero, and let $f \in K[x]$ be non-zero. Let \overline{K} be the algebraic closure of K. Then, f has multiple roots in \overline{K} if and only if f and the derivative f' have a common factor of positive degree in K[x].

Proposition 2.2.20. Let K be a field of characteristic zero. Then, every irreducible polynomial $f \in K[x]$ is separable. Hence, K is a perfect field.

Pete Gautam 9

Proposition 2.2.21. Let K be a finite field. Then, K is perfect.

Proof.

2.3 Galois Extensions

Definition 2.3.1. Let F|K is a field extension. We say that F|K is *Galois* if it is finite, normal and separable.

Corollary 2.3.2. Let $K \subseteq F \subseteq \mathbb{C}$ be fields. Then, the following are equivalent:

- 1. F|K is Galois.
- 2. F|K is finite and normal.
- 3. F is the splitting field of some $f \in K[x]$.

Proof.

Definition 2.3.3. Let F|K be a Galois extension. Then, the automorphism group Aut(F|K) is the *Galois group* of F|K.

Proposition 2.3.4. Let F|K be a Galois extension and let $K \subseteq E \subseteq F$ be an intermediate field. Then, F|E is a Galois extension and Fix(F, Aut(F|E)) = E.

Proof.

Theorem 2.3.5 (The Main Theorem of Galois Theory). Let F|K be a Galois extension, with Galois group G = Aut(F|K).

1. Let

 $M = \{E \mid K \subseteq E \subseteq F \text{ intermediate field}\}, \qquad N = \{H \mid H \subseteq G \text{ subgroup}\}.$

Then, there is a map $\alpha \colon M \to N$ defined by $\alpha(E) = \operatorname{AUt}(F|E)$, with inverse $\phi \colon N \to M$ given by $\phi(H) = \operatorname{Fix}(F,H)$, which are inverse bijections

2. The maps α and ϕ are order reversing, i.e.

$$E_1 \subseteq E_2 \iff \alpha(E_1) \supseteq \alpha(E_2) \iff \operatorname{Aut}(F|E_2) \subseteq \operatorname{Aut}(F|E_1),$$

and

$$H_1 \subseteq H_2 \iff \phi(H_1) \supseteq \phi(H_2) \iff \operatorname{Fix}(F, H_2) \subseteq \operatorname{Fix}(F, H_1).$$

3. If $K \subseteq E \subseteq F$ is an intermediate field, then F|E is Galois, with

$$[F:E] = |\operatorname{Aut}(F|E)| \ \ and \ [E:K] = \frac{|G|}{|\operatorname{Aut}(F|E|)}.$$

4. A subgroup $H \subseteq G$ is normal if and only if the corresponding field extension $\phi(H)|K$ is normal. In this case,

$$\operatorname{Aut}(\varphi(H)|K) \cong G/H.$$

Alternatively, an intermediate field extension E|K is normal if and only if $Aut(F|E) \triangleleft Aut(F|K)$, in which case

$$\operatorname{Aut}(E|K) \cong \operatorname{Aut}(F|K) / \operatorname{Aut}(F|E)$$
.

 \square

2.4 Solving the Quintic Equation

Definition 2.4.1. Let G be a group. We say that G is solvable if there is a composition series

$$\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = G$$

such that for every $0 \le j < n$,

- the group G_j is normal in G_{j+1} and
- the quotient group G_{j+1}/G_j is abelian.

Lemma 2.4.2. Let G be a group and $N \triangleleft G$. Then, G is solvable if and only if N and G/N are solvable.

Proof.

Theorem 2.4.3. Let $n \in \mathbb{Z}_{\geq 5}$. Then, A_n is not simple. In particular, S_n is not solvable.

Proof.

Proposition 2.4.4. Let $G \leq S_5$ such that G has a transposition and a 5-cycle. Then, $G = S_5$.

Proof.

Definition 2.4.5. Let F|K be a field extension and let $\alpha \in F$. We say that $\alpha \in F$ is a radical over K if there exists an $n \in \mathbb{Z}_{\geq 1}$ such that $\alpha^n \in K$.

Definition 2.4.6. Let F|K be a field extension. We say that F|K is a radical extension if

$$F = K(\alpha_1, \dots, \alpha_m)$$

such that α_1 is a radical over K, and α_j is a radical over $K(\alpha_1, \ldots, \alpha_{j-1})$ for $2 \leq j \leq m$. The elements α_j are said to form a radical sequence.

Definition 2.4.7. Let $K \subseteq \mathbb{C}$ be a field and $f \in K[x]$. If $K \subseteq E \subseteq \mathbb{C}$ is a splitting field for f, then we say that f is *solvable by radicals* if there exists $K \subseteq E \subseteq F \subseteq \mathbb{C}$ such that F|K is a radical extension.

Lemma 2.4.8. Let $K \subseteq E \subseteq \mathbb{C}$, where E|K is the splitting field of $x^n - 1 \in K[x]$ and $n \in \mathbb{Z}_{\geq 1}$. Then, $\operatorname{Aut}(E|K)$ is abelian.

Proof.

Lemma 2.4.9. Let $n \in \mathbb{Z}_{\geq 1}$ and let $E \subseteq \mathbb{C}$ be a subfield in which $x^n - 1$ splits. Moreover, let $a \in E$ and $F \subseteq \mathbb{C}$ be the splitting field for $x^n - a \in E[x]$. Then, $\operatorname{Aut}(F|E)$ is abelian.

Proof.

Proposition 2.4.10. Let $K \subseteq \mathbb{C}$ and $a \in K$. If F is the splitting field of $f(x) = x^n - a \in K[x]$, then Aut(F|K) is solvable.

Proof. **Theorem 2.4.11.** Let $K \subseteq E \subseteq F \subseteq \mathbb{C}$ be fields such that E|K is normal and F|K a radical extension. Then, the group Aut(E|K) is solvable. Proof. **Corollary 2.4.12.** Let $K \subseteq \mathbb{C}$ be a field, $f \in K[x]$ and let E|K be a splitting field of f. If f is solvable by radicals, then Aut(E|K) is solvable. Proof.**Definition 2.4.13.** Let F|K be a field extension. We say that Aut(F|K) is the Galois group of $f \in K[x]$ over K if F|K is the splitting field of f. **Lemma 2.4.14.** Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. If f has precisely three real roots in \mathbb{C} , then the Galois group of f over \mathbb{Q} is isomorphic to the symmetric group S_5 . Proof. **Example 2.4.15.** We show that the polynomial $f(x) = x^5 - 6x + 3 \in \mathbb{Q}[x]$ is not solvable by radicals.