

Practical Machine Learning

Day 1: SEP23 DBDA

Kiran Waghmare

CDAC Mumbai

Forward Elimination

Univariate Selection

Feature Selection

with Decision Trees

RandomForest

Importance

Backward Elimination

Google Deud

Build End-End Projects

Flask, Docker, Kubernetes, Rest-API

CrossValidation Techniques GridSearch, RandomizedSearch, Hyperopt, Optuna

Hyper Parameter Tuning

Ensemble Learning Adaboost, Xgboost, Lgb

Machine Learning Algorithms Supervised, Unsupervised

Feature Selection

🧌 NumPy

Feature Engineering

Basic Statistics & Algebra

Programming Language Python, R

Agenda

- What is machine learning?
- Algorithm types of Machine learning
- Supervised and Unsupervised Learning
- Uses of Machine learning
- Evaluating ML techniques
- Introduction to Scikit Learn

Andreas C. Müller & Sarah Guido

Traditional Programming

Machine Learning

Why Machine Learning?

- Develop systems that can automatically adapt and customize themselves to individual users.
 - Personalized news or mail filter
- Discover new knowledge from large databases (data mining).
 - Market basket analysis (e.g. diapers and beer)
- Ability to mimic human and replace certain monotonous tasks which require some intelligence.
 - like recognizing handwritten characters
- Develop systems that are too difficult/expensive to construct manually because they require specific detailed skills or knowledge tuned to a specific task (knowledge engineering bottleneck).

Machine Learning

- Herbert Alexander Simon:
 - "Learning is any process by which a system improves performance from experience."
- "Machine Learning is concerned with computer programs that automatically improve their performance through experience."

Herbert Simon
Turing Award 1975
Nobel Prize in Economics 1978

The concept of learning in a ML system

- Learning = <u>Improving</u> with <u>experience</u> at some <u>task</u>
 - Improve over task T,
 - With respect to performance measure, P
 - Based on experience, E.

Definition

A computer program is said to learn from **experience E** with respect to some class of **tasks T** and performance **measure P**, if its performance at tasks T, as measured by P, **improves** with experience E.

What is Machine Learning?

- [Arthur Samuel, 1959]
 - Field of study that gives computers
 - the ability to learn without being explicitly programmed
- [Kevin Murphy] algorithms that
 - automatically detect patterns in data
 - use the uncovered patterns to predict future data or other outcomes of interest
- [Tom Mitchell] algorithms that
 - improve their performance (P)
 - at some task (T)
 - with experience (E)

Working of Machine Learning:

Supervised Learning

Machine Learning End Product

Learns

Types of Machine Learning

Machine Learning Algorithms can be classified into 3 types as

follows -

Supervised Learning

- Unsupervised Learning
- Reinforcement Learning

Supervised Learning

Unsupervised Learning

a) Unsupervised learning

Variable 1

Variable 2

Input

Supervised Learning

It's Grapes

Annotations

These are grapes

Prediction

Input

Unsupervised Learning

Unsorted Information

Reinforcement Learning

Typical RL scenario

Data in Supervised vs. Unsupervised Learning

Supervised Learning

Labeled Data

Unsupervised Learning

Unlabeled Data

Hybrid Model that Includes Supervised Learning **Labeled Data**

8

Unlabeled Data