DEVOIR MAISON 2 - RÉSOLUTION D'INÉQUATIONS

Résoudre les inéquations suivantes dans \mathbb{R} , en discutant suivant les valeurs du paramètre réel m:

1.
$$\frac{x - m + 1}{m + 2} < 1 + x$$

Il faut $m \neq -2$

$$\frac{x - m + 1}{m + 2} < 1 + x \Leftrightarrow \frac{x(m + 1) + 2m + 1}{m + 2} > 0: \begin{cases} S = \emptyset & \text{si } m = -1 \\ S = \left] -\infty, -\frac{2m + 1}{m + 1} \right[& \text{si } -2 < m < -1 \\ S = \left[-\frac{2m + 1}{m + 1}, +\infty \right] & \text{si } m < -2 \text{ ou } -1 < m \end{cases}$$

2.
$$\sqrt{2x+m} \ge x+1$$

Il faut $x \ge -\frac{m}{2}$

 \rightarrow Si $-\frac{m}{2} \le -1$, ce qui équivaut à $m \ge 2$:

- Pour $x + 1 \le 0$, ce qui équivaut à $x \le -1$, l'inégalité est toujours vérifiée;
- Pour $x+1 \ge 0$ ce qui équivaut à $x \ge -1$ l'inégalité est équivalente à $m-1 \ge x^2$. Comme $m \ge 2$ c'est équivalent à $x \in \left[-\sqrt{m-1}, \sqrt{m-1}\right]$. De plus, $m \ge 2 \Rightarrow -\sqrt{m-1} \le -1$. Ainsi, si $m \ge 2, x \in \left[-\frac{m}{2}, \sqrt{m-1}\right]$.
- \leadsto Si $m \leq 2,$ on ne peut pas avoir x < -1 car il faut $x \geq -$

L'inégalité est alors équivalente à $m-1 \ge x^2$. Comme $m \le 2$ deux cas se présentent :

- Si m < 1, il n'y a pas de solution;
- Si $m \ge 1$, alors $x \in \left[-\sqrt{m-1}, \sqrt{m-1}\right]$ et on a bien $-\frac{m}{2} \le -\sqrt{m-1}$ dans ce cas car

$$m > 0 \text{ donc } -\frac{m}{2} \le -\sqrt{m-1} \Leftrightarrow m^2 \ge 4m - 4 \Leftrightarrow (m-2)^2 \ge 0.$$
 Finalement,
$$\begin{cases} S = \varnothing & \text{si } m < 1 \\ S = \left[-\sqrt{m-1}, \sqrt{m-1}\right] & \text{si } 1 \le m \le 2 \\ S = \left[-\frac{m}{2}, \sqrt{m-1}\right] & \text{si } m \ge 2 \end{cases}$$

3.
$$\frac{m}{x-3} > \frac{2}{x+1} \iff \frac{x(m-2)+m+6}{(x-3)(x+1)} > 0$$

- $\leadsto \text{ Si } m=2, x \in]-\infty, -1[\cup]3, +\infty[.$
- ightharpoonup Si $m \neq 2$, toute la difficulté réside dans le positionnement de $\frac{m+6}{2-m}$ par rapport à -1 et 3.

 Si $\frac{m+6}{2-m} < -1$ ce qui équivaut à $\frac{8}{2-m} < 0$ donc à m > 2:

х	-00 -	n+6 !-m	-1 1	3	+00
(x-3)(x+1)	+	+	_	+	
(m-2)x + m + 6	_	+	+	+	
$\frac{x(m-2)+m+6}{(x-3)(x+1)}$	_	+	_	+	

• Si $\frac{m+6}{2-m}>3$ ce qui équivaut à $\frac{4m}{2-m}>0$ donc à $m\in]0,2[$:

x	-00	-1		<u>m+6</u> 2−m +∞
(x-3)(x+1)	+	_	+	+
(m-2)x + m + 6	+	+	+	_
$\frac{x(m-2)+m+6}{(x-3)(x+1)}$	+	_	+	-

• Si $m \leq 0$:

x		-1	$\frac{m+6}{2-m}$ 3	+∞
(x-3)(x+1)	+	_	_	+
(m-2)x + m + 6	+	+	_	_
$\frac{x(m-2)+m+6}{(x-3)(x+1)}$	+	_	+	_

Finalement,
$$\begin{cases} S =]-\infty, -1[\cup] \frac{m+6}{2-m}, 3 \\ S =]-\infty, -1[\cup] 3, \frac{m+6}{2-m} \end{cases} & \text{si } m \le 0 \\ S =]-\infty, -1[\cup] 3, +\infty[& \text{si } m = 2 \\ S =] \frac{m+6}{2-m}, -1[\cup] 3, +\infty[& \text{si } m > 2 \end{cases}$$