Mechatronics and Robotics Laboratory									
Hours/Week L-T-P:	0-0-3	Credits:	1.5						
Course Type :	Advanced Competency Course- Lab	Course Code:	MS2507						

Course Objectives:

To impart knowledge on

- 1. Fundamentals of fluid power and Mechatronics and primary actuating systems.
- 2. Programming skills in Programmable logic controllers.
- 3. Principles of pneumatics and hydraulics and apply them to real life problems.

Course Outcomes:

After completing the course, the student will be able to

- CO1 Apply Boolean algebra for logic design of pneumatic circuits.
- CO2 Apply Boolean algebra for logic design for hydraulic circuits.
- **CO3** Build logic circuits for industrial applications.
- CO4 Build cascade circuits, automation circuits with PLC for industrial problems, robot movements.

List of experiments: (Any 7)

- 1. Standard Fluid Power Symbols.
- 2. Basic Pneumatic Logic Circuits.
- 3. Pneumatic Circuit for Material Handling System.
- 4. Electro pneumatic circuit using Relay, Limit Switch and solenoid Valves.
- 5. Electro-pneumatic circuit for an Automation of Double Acting Cylinder by using proximity Sensors and Cascade System of sequence A+B+ C+ A- B- C
- 6. Electro Hydraulic circuit using proximity Sensors.
- 7. PLC controlled pneumatic Logic circuits
- 8. PLC controlled pneumatic circuit for Material Handling system
- 9. Control of Fanuc robot.
- 10. Robot programming for pick and place application.
- 11. Assembly and disassembly of PLC controlled based mobile robot.
- 12. Programming for interfacing of sensors.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	1	1	2	1	1	1	2	3	2	2
CO2	2	1	1	1	-	1	1	2	3	2	1	1	2	2	2
CO3	3	2	2	2	-	2	1	2	2	1	1	1	2	2	1
CO4	2	1	1	2	-	2	1	1	2	2	1	2	2	2	1