CS 207: Discrete Structures

Instructor: S. Akshay

July 20, 2015

Lecture 01 – Introduction

Logistics

Course hours: Slot 3;

Mon 10:35-11:35, Tue 11:35-12:30, Thu 8:30-9:25

Office hours: By email appointment

Tutorial hours: One hour per week (to be decided)

Evaluation

▶ Quizzes: 30%

► Midsem: 25%

► Endsem: 40%

► max{tutorial participation, home assignments}: 5%

Logistics

Course hours: Slot 3;

Mon 10:35-11:35, Tue 11:35-12:30, Thu 8:30-9:25

Office hours: By email appointment

Tutorial hours: One hour per week (to be decided)

Evaluation

Quizzes: 30%Midsem: 25%

► Endsem: 40%

► max{tutorial participation, home assignments}: 5%

Course material, references will be posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ piazza (will be set up by TAs soon)

Goal

First things first...

- ▶ What are discrete structures?
- ▶ Why are we interested in them?

Course Outline

What we will broadly cover in this course

- 1. Mathematical reasoning: proofs and structures
- 2. Counting and combinatorics
- 3. Elements of graph theory
- 4. Introduction to abstract algebra and number theory

Course Outline

What we will broadly cover in this course

- 1. Mathematical reasoning: proofs and structures
- 2. Counting and combinatorics
- 3. Elements of graph theory
- 4. Introduction to abstract algebra and number theory

What we don't cover

- 1. Logic : predicate, first-order logic- CS228
- 2. Discrete probability IC102
- 3. Algorithms CS218
- 4. Finite automata CS310
- 5. Details and applications of everything above rest of your (academic) life!

Course Outline

What we will cover in this course

- 1. Mathematical reasoning: proofs and structures
- 2. Counting and combinatorics
- 3. Elements of graph theory
- 4. Introduction to abstract algebra and number theory

Textbooks

- ▶ Discrete Mathematics and its Applications with Combinatorics and Graph Theory, by Kenneth H Rosen.
- ▶ Discrete Mathematics by Norman Biggs.
- ▶ Introduction to Graph theory by Douglas B West.
- ▶ More will be listed on webpage as we go along.

More lofty aims of the course

- 1. Introduce mathematical background needed in various branches of computer science.
- 2. (New and old) techniques for problem solving: how to attack problems that you have never seen before.
- 3. To write proofs and convey your ideas formally.
- 4. To develop skills to read/understand/solve new material in the future.

Chapter 1: Proofs and Structures

Outline of next few classes

- ▶ Propositions, statements
- ▶ What/why of proofs and some generic proof strategies
- ▶ Mathematical induction
- ▶ Notions and properties of sets, functions, relations

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- ▶ $2^{67} 1$ is a prime
- ▶ $(n+1)(n-1) = (n^2 1)$ for any integer n

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- ▶ $2^{67} 1$ is a prime
- ▶ $(n+1)(n-1) = (n^2-1)$ for any integer n

What is common between these statements?

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- ▶ $2^{67} 1$ is a prime
- ▶ $(n+1)(n-1) = (n^2-1)$ for any integer n

A proposition is a statement that is either true or false (but not both).

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- ▶ $2^{67} 1$ is a prime
- ▶ $(n+1)(n-1) = (n^2-1)$ for any integer n

A proposition is a statement that is either true or false (but not both).

Give an example of a statement that is not a proposition.

What is a proposition?

- ▶ It is raining
- 1+1=2
- every odd number is a prime
- ▶ $2^{67} 1$ is a prime
- ▶ $(n+1)(n-1) = (n^2 1)$ for any integer n

A proposition is a statement that is either true or false (but not both).

Give an example of a statement that is not a proposition.

x + 1 = 8

Propositional calculus

Figure: Aristotle (384 – 322 BCE)

- propositions are statements that are either true or false.
- ▶ Just as we use variables x, y, ... for numbers, we will use variables p, q, ... for propositions.
- "if it rains, it will be wet" : $p \to q$
- ▶ combining propositions: $\neg p, p \lor q, p \land q, p \rightarrow q, p$ iff q.
- ▶ Can all mathematical statements be written this way?

)

Predicates and quantifiers

Consider again...

$$(n+1)(n-1) = (n^2 - 1)$$

 $x = y + 8$

Predicates and quantifiers

Consider again...

- $\forall n$ $(n+1)(n-1) = (n^2-1)$
- \triangleright $\forall n$ stands for all values of n in a given domain
- $ightharpoonup \exists n \text{ stands for exists } n$

Predicates and quantifiers

Consider again...

- $\forall n \in \mathbb{N} \ (n+1)(n-1) = (n^2 1)$
- $\lor \forall x, \exists y, x, y \in \mathbb{Z} \ x = y + 8$
- \triangleright $\forall n$ stands for all values of n in a given domain
- ightharpoonup stands for exists n
- \triangleright \in is the element of symbol
- ▶ N stands for all natural numbers
- \triangleright Z stands for all integers
- ▶ ℝ, ℚ, ...

Some propositions are not so easy to "determine"... - e.g., $2^{67} - 1$ is not a prime.

Theorems and proofs

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

- 1. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$
- 2. If 6 is prime, then $6^2 = 30$.
- 3. x is an even integer iff $x + x^2 x^3$ is even.
- 4. There are infinitely many prime numbers.
- 5. There exist irrational numbers x, y such that x^y is rational.
- 6. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 7. There does not exist a (input-free) C-program which will always determine whether an arbitrary (input-free) C-program will halt.