

ARRMO: new tools and approaches for Operational Excellence in Refining

Steve Hall – Director of Engineering Solutions

OUTLINE

- Refining challenges and operational excellence
- Why APM and why now ?
- ARRMO project recap
- New gPROMS model library: Refining
- Modelling systems : Reactors, Distillation, HEN
- Modelling objectives: On-line applications, closed loop/advisory, focus
- Application example fouling manager
- Conclusions

Refining challenges

- Increasing crude and feedstock variability
 - Evolving production techniques, new supply areas, enhanced oil recovery, transportation logistics
- Tightening environmental and product quality regulations
 - Air quality, CO2 emissions, VOCs
 - US EPA addressing refinery flaring directly from 2018
- Maintaining high equipment reliability
 - Minimising fouling, corrosion, integrity, risk

We thought it was bad – it was actually worse!

Introduction to operational excellence

What is operational excellence?

Why APM and why now?

- Success and observations with ARRMO & others
- The state of the 'State of the Art'
 - Computational complexity has pushed others to look at, for example

But now, APM capabilities are accelerating

ARRMO project recap

Objective: develop an online application which will maximise profit during the switch from one crude to another – real-time dynamic optimisation

ARRMO project recap

Advanced Real-time Refinery Monitoring & Optimisation

Integration within refinery infrastructure

ARRMO project recap

- Product revenues
 - Economics very much favour HN and HK v LK and HGO
- Costs
 - Steam increased, fuel gas decreased
- Overall increase in profit of \$79.5K / day identified

ARRMO's PSE Team: Charles Brand Maria Viseu

Overall	
	% change
Product revenue	1.29
Utility costs	0.07
Crude costs	0.00

Product revenue - CDU

Revenue	% change	% total
OHV	3.47	17.22
HN	20.00	3.90
LK	-20.00	3.18
HK	19.72	11.72
LGO	-6.00	17.07
HGO	-40.00	1.80

Product revenue – VDU

Revenue	% change	% total
VAP-EJ	-30.04	0.23
VD	18.05	5.04
VGO	12.71	24.64
Slops	-71.43	0.05
VR	-12.32	15.15

Costs

Cost	% change
Steam	17.05
Fuel gas	-2.48

New gPROMS model library: Refining

NB. Most units required for CDU/VDU modelling already covered by existing ProcessBuilder libraries

- Crude feed source
- Fired heater
- Product analyser
 - Distillation curves
 - TBP, ASTM D86-D1160
 - Properties
 - Watson characterisation factor
 - Flash point, Freeze point
 - Pour point, Aniline point
 - Smoke point, Cloud point
 - Cetane index, RVP

Modelling systems – reactors

Start with reactors:

- Fluid catalytic cracking (FCC)
- Hydrotreating
- Hydrocracking
- Catalytic reforming
- Alkylation

Design priority

Modelling systems - reactors

Catalyst bed 1

New/improved models in gPROMS ProcessBuilder 1.2.0

New trickle bed reactor AML:TBR - hydrotreating

■ Fixed-bed catalytic reactor AML:FBCR — reforming

Modelling systems—reactors: R2R FCC unit for VGO cracking

Other models in development: Fluidised bed reactor

Flowsheet configuration from Nonlinear Modelling of Industrial Fluid Catalytic Cracking Processes for Model-Based

Control and Optimization Studies

ADVANCED PROCESS MODELLING FORUM 2017

Modelling systems – distillation – back to ARRMO

Modelling systems – distillation, dynamic simulation & Validation against plant data

Time (s)

Modelling systems – heat exchanger networks

Application: Heat exchanger fouling

Basic Chemical Reaction Fouling Model – Ebert and Panchal:

$$\frac{\mathrm{d}R_f}{\mathrm{d}t} = \alpha Re^{\beta} P r^{-0.33} \exp\left(\frac{-E}{RT_f}\right) - \gamma \tau_w$$
 Fouling rate Chemical Reaction Wall Shear (Deposition) (Anti-deposition) Promotes fouling Mitigates fouling

- Use parameter estimation for α , β , E, γ (modified E&P equation)
- Use several years plant data
- Recent project: CDU HEN temperatures average deviation 0.15%, Standard deviation 1%

Modelling systems – heat exchanger networks

Heat exchanger fouling management

Determine: HEN state at any point in future

What HXs to clean and when

Modelling objectives – online applications

■ OPC client – gOPC within gPROMS ProcessBuilder

Modelling objectives – closed loop/advisory

Closed loop (nothing to see) to advisory (visualisation needed))

Plant measurements

DCS & Historian

Dashboard

Modelling objectives : focus

Application example - fouling management

Application example – fouling manager

Application example – fouling manager

■ FM communicates with a Data Access (DA) Client via OPC

FM on or off-line always has the latest plant data

Application example – fouling manager - scope

Video of Fouling Manager application

Let's recap on the refining challenges

- Increasing crue and feedstock variability
 - Evolve or action techniques, new supply areas, enhanced oil recovery, transportation logistics
- Tightening environmental and product quality regulations
 - Air quality
 2 ssions, VOCs
 - US EPA addressing refinery flaring directly from 2018.
- Maintaining high equipment reliability
 - Minimising fouling, corrosi integrity, risk

Conclusions

- APM is addressing refining challenges with next-generation technologies
- Moving towards on-line models
- gPROMS ProcessBuilder environment provides a very flexible and powerful solution framework
- With new capabilities in problem formulation, solvers and hardware are making it easier
- Operational Excellence requires a closer link between APM and Dashboard technologies

