Practica 1

Para la practica hemos elegido el conjunto de datos sobre la diabetes. Con este conjunto iremos variando varias variables para ver como afecta esto al rendimiento de una red neuronal. Antes de nada, el tipo básico de red neuronal que tenemos en weka es ZeroR con el que conseguimos los siguientes valores:

	ZeroR
Acierto	65,1042%
Error	34,8958%
TP Rate positive	0
FP Rate positive	0
Precision positive	0
Recall positive	0
F-Measure positive	0
MCC positive	0
ROC Area positive	0,497
PRC Area positive	0,348
TP Rate negative	1
FP Rate negative	1
Precision negative	0,651
Recall negative	1
F-Measure negative	0,789
MCC negative	0
ROC Area negative	0,497
PRC Area negative	0,65

Que, como podemos ver, tiene un porcentaje de error bastante alto, por lo que tenemos una precisión bastante baja.

Ahora usaremos un una red neuronal usando la función perceptrón multicapa donde podremos variar varias cosas para modificar el rendimiento de la red neuronal.

Empezaremos el número de hidden layers y de neuronas en cada capa que tendrá nuestra red neuronal:

	hiddenLayers						
	а	3,1	3,4,2	3,4,2,6	3,4,2,6,5	3,4,2,6,5,8	3,4,2,6,5,8,2
Acierto	75,3906%	76,3021%	75,5208%	65,1042%	65,1042%	65,1042%	65,1042%
Error	24,6094%	23,6979%	24,4792%	34,8958%	34,8958%	34,8958%	34,8958%
TP Rate positive	0,608	0,608	0,586	0	0	0	0
FP Rate positive	0,168	0,154	0,154	0	0	0	0
Precision positive	0,66	0,679	0,671	0	0	0	0
Recall positive	0,608	0,608	0,586	0	0	0	0
F-Measure positive	0,633	0,642	0,625	0	0	0	0
MCC positive	0,449	0,467	0,447	0	0	0	0
ROC Area positive	0,793	0,81	0,794	0,531	0,488	0,514	0,489
PRC Area positive	0,667	0,693	0,679	0,397	0,339	0,392	0,344
TP Rate negative	0,832	0,846	0,846	1.000	1.000	1.000	1.000
FP Rate negative	0,392	0,392	0,414	1.000	1.000	1.000	1.000
Precision negative	0,798	0,801	0,792	0,651	0,651	0,651	0,651
Recall negative	0,832	0,846	0,846	1.000	1.000	1.000	1.000
F-Measure negative	0,815	0,823	0,818	0,789	0,789	0,789	0,789
MCC negative	0,449	0,467	0,447	0	0	0	0
ROC Area negative	0,793	0,81	0,794	0,531	0,488	0,514	0,489
PRC Area negative	0,85	0,877	0,852	0,683	0,636	0,66	0,635

Podemos ver, que simplemente con un numero de neuronas automáticos ya aumenta bastante el porcentaje de acierto con respecto a ZeroR.

En los primeros casos no varia mucho, aunque vemos que con dos capas conseguimos el mejor resultado, pero a partir del 4 caso tenemos que empeora mucho los resultados, no solo en el porcentaje de acierto, sino también TP Rate, FP Rate y todas esas variables.

Con estos gráficos, se puede ver de mejor manera como empeora el resultado cuantas más capas ocultas hay.

La siguiente variable que vamos a modificar es learning rate, donde podremos modificar como de rápido aprende nuestra red neuronal.

	Learning rate							
	0,1	0,2 0		0,4	0,6	0,8	0,9	
Acierto	75,5208%	75,7813%	75,3906%	75,5208%	75%	75%	74,8698%	
Error	24,4792%	24,2187%	24,6094%	24,4792%	25%	25%	25,1302%	
TP Rate positive	0,59	0,597	0,608	0,604	0,601	0,612	0,593	
FP Rate positive	0,156	0,156	0,168	0,164	0,17	0,176	0,168	
Precision positive	0,669	0,672	0,66	0,664	0,654	0,651	0,654	
Recall positive	0,59	0,597	0,608	0,604	0,601	0,612	0,593	
F-Measure positive	0,627	0,632	0,633	0,633	0,626	0,631	0,622	
MCC positive	0,448	0,455	0,449	0,451	0,44	0,443	0,436	
ROC Area positive	0,814	0,812	0,793	0,797	0,781	0,796	0,785	
PRC Area positive	0,696	0,689	0,667	0,667	0,648	0,656	0,651	
TP Rate negative	0,844	0,844	0,832	0,836	0,83	0,824	0,832	
FP Rate negative	0,41	0,403	0,392	0,396	0,399	0,388	0,407	
Precision negative	0,793	0,796	0,798	0,798	0,795	0,798	0,792	
Recall negative	0,844	0,844	0,832	0,836	0,83	0,824	0,832	
F-Measure negative	0,818	0,819	0,815	0,816	0,812	0,811	0,812	
MCC negative	0,448	0,455	0,449	0,451	0,44	0,443	0,436	
ROC Area negative	0,814	0,812	0,793	0,797	0,781	0,796	0,785	
PRC Area negative	0,877	0,875	0,85	0,864	0,842	0,86	0,84	

Si comparamos los valores, vemos como no varía especialmente, aunque podemos apreciar que conforme va aumentando el learning rate, el porcentaje de acierto va bajando. Con los siguientes gráficos, eso se puede apreciar de mejor manera.

La última variable que tocaremos es momentum, una variable que ayuda a aumentar la velocidad de aprendizaje de la red neuronal. Esto nos deja unos valores como estos:

	Momentum						
	0,1	0,2	0,3	0,4	0,6	0,8	0,9
Acierto	75,3906%	75,3906%	74,7396%	75,3906%	76,0417%	73,9583%	74,3490%
Error	24,6094%	24,6094%	25,2604%	24,6094%	23,9583%	26,0417%	25,6510%
TP Rate positive	0,597	0,608	0,597	0,604	0,612	0,545	0,56
FP Rate positive	0,162	0,168	0,172	0,166	0,16	0,156	0,158
Precision positive	0,664	0,66	0,65	0,661	0,672	0,652	0,655
Recall positive	0,597	0,608	0,597	0,604	0,612	0,545	0,56
F-Measure positive	0,629	0,633	0,623	0,632	0,641	0,593	0,604
MCC positive	0,447	0,449	0,434	0,448	0,463	0,408	0,419
ROC Area positive	0,799	0,793	0,796	0,796	0,783	0,779	0,767
PRC Area positive	0,664	0,667	0,678	0,669	0,645	0,65	0,609
TP Rate negative	0,838	0,832	0,828	0,834	0,84	0,844	0,842
FP Rate negative	0,403	0,392	0,403	0,396	0,388	0,455	0,44
Precision negative	0,795	0,798	0,793	0,797	0,802	0,776	0,781
Recall negative	0,838	0,832	0,828	0,834	0,84	0,844	0,842
F-Measure negative	0,816	0,815	0,81	0,815	0,82	0,808	0,81
MCC negative	0,447	0,449	0,434	0,448	0,463	0,408	0,419
ROC Area negative	0,799	0,793	0,796	0,796	0,783	0,779	0,767
PRC Area negative	0,859	0,85	0,86	0,861	0,844	0,839	0,841

Con esta variable, ocurre lo mismo que en el caso anterior, los valores no varían mucho. Aunque, a diferencia del caso anterior, vemos que el mejor caso es con un momentun de 0.6, un valor bastante alto.

Conclusiones

Como hemos podido ir viendo, lo que mas afecta al rendimiento de nuestra red neuronal es la cantidad de neuronas y de capas ocultas consiguiente la mayor diferencia entre los distintos valores probados.

Aun así, learning rate y momentum siguen siendo importante, ya que con una correcta configuración de esta se puede afinar el resultado que conseguimos al entrenar la red neuronal.