Exercise: Tutoring Sessions

In an effort to improve the statistics skills of 10 students, a teacher provides a weekly 1-hour tutoring session for the students. A pre-test is given before the sessions, and a post-test is given after. The results are shown in the table below. At $\alpha = 0.01$, can it be concluded that the sessions help to improve the students' statistical skills?

Student	1	2	3	4	5	6	7	8	9	10
Pre-test	82	76	91	62	81	67	71	69	80	85
Post-test	88	80	98	80	80	73	74	78	85	93

Dependent Samples

Since we are comparing paired data values that correspond to specific students these samples are dependent.

Step 1

If the sessions were effective, we would expect the post-test scores to be greater than the pre-test scores.

We will calculate the differences with the orientation pre-test score minus post-test score. We would expect that difference to be negative.

We will use the notation μ_D for the mean of the differences in pre-test and post-test scores.

Step 1...

Step 1

State the hypotheses and identify the claim

We will first need to assign one of the samples as Group 1 and the other as Group 2.

Assign Group 1 as the pretest values and Group 2 as the post-test values.

$$H_0$$
: $\mu_D = 0$

$$H_1$$
: $\mu_D < 0$ (claim)

Step 2

Step 2

Compute the test value.

There are three calculations we need to make.

 \overline{D} = Mean of the differences in matched data values for the sample

 μ_D = Hypothesized population mean of the differences

 s_D = Standard deviation of he differences for the matched pairs

n = Sample size

$$t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}}$$

$$\overline{D} = \frac{\sum D}{n}$$

$$s_D = \sqrt{\frac{n\sum D^2 - (\sum D)^2}{n(n-1)}}$$

Step 2...

The first pre-test value is 82. The first post-test value is 88.

82 - 88 = -6 You will find this difference for each student. You will also square each of these differences and find the sum of each of these

columns.

Pre-test	Post-test	Difference (D)	D ²	
82	88		$(-6)^2 = 36$	
76	80	-4	16	
91	98	-7	49	
62	80	-18	324	
81	80	1	1	
67	73	-6	36	
71	74	-3	9	
69	78	-9	81	
80	85	-5	25	
85	93	<u>-8</u>	<u>64</u>	
Sum		-65	641	

Step 2...

$$\sum D = -65$$
 $\sum D^2 = 641$ $n = 10$

$$\overline{D} = \frac{\sum D}{n} = \frac{-65}{10} = -6.5$$

$$s_D = \sqrt{\frac{n\sum D^2 - (\sum D)^2}{n(n-1)}} = \sqrt{\frac{10(641) - (65)^2}{10(10-1)}} = 4.927$$

$$t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = \frac{-6.5 - 0}{\frac{4.927}{\sqrt{10}}} = -4.172$$

Step 3: P-value

	а						
V	0.40	0.25	0.10	0.05	0.025	0.01	0.005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169

$$t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = \frac{-6.5 - 0}{\frac{4.927}{\sqrt{10}}} = -4.172$$

P-value < $0.005 < \alpha = 0.01$

Step 4: Decision

Recall that if the P-value is less than α we should reject the null hypothesis. In this case $\alpha=0.01$.

P-value < $0.005 < \alpha = 0.01$

Reject the null hypothesis.

TI Calculator...

The P-value is given to us as 0.0012 when we round to 4 decimal places.

TI Calculator provides us with the *t*-test value of -4.172.

The P-value is 0.0012.

Reject the Null Hypothesis

Recall that if the P-value is less than α we should reject the null hypothesis. In this case $\alpha=0.01$.

$$P = 0.0012 < \alpha = 0.01$$

Reject the null hypothesis.

Conclusion

Our conclusion should be at 0.01 level of significance, there is enough evidence to support the claim that the sessions help improve the students' statistical skills.