

Unit 2: Boundary value problems

7. Solving the PDE with inhomogeneous boundary

Course > and PDEs

> <u>5. The Heat Equation</u> > conditions

7. Solving the PDE with inhomogeneous boundary conditions Worked example: inhomogeneous boundary conditions

Boundary conditions that are not all zero are called **inhomogeneous boundary conditions**.

Steps to solve a linear PDE with inhomogeneous boundary conditions:

- 1. Find a particular solution θ_p to the PDE with the inhomogeneous boundary conditions (but without initial conditions). If the boundary conditions do not depend on t, try to find the steady-state solution $\theta_p(x)$, i.e., the solution that does not depend on t.
- 2. Then $\theta := \theta_p + \theta_h$ is the general solution to the PDE with the inhomogeneous boundary conditions, where θ_h is the general solution to the PDE with the homogeneous boundary conditions.
- 3. If initial conditions $\theta(x,0)$ are given, use the initial condition $\theta(x,0)-\theta_p$ to find the specific solution to the PDE with the inhomogeneous boundary conditions. (This often involves finding Fourier coefficients.)

Problem 7.1 Consider the same insulated uniform metal rod as before ($\nu=1$, length π , initial temperature 1° C), but now suppose that the left end is held at 0° C while the right end is held at 20° C. Now what is $\theta(x,t)$?

Solution:

- 1. Forget the initial condition for now and look for a solution $\theta_p=\theta_p\left(x\right)$ that does not depend on t. Plugging this into the Heat Equation PDE gives $0=\frac{\partial^2\theta}{\partial x^2}$. The general solution to this simplified DE is $\theta_p\left(x\right)=ax+b$ Imposing the boundary conditions $\theta_p\left(0\right)=0$ and $\theta_p\left(\pi\right)=20$ leads to b=0 and $a=20/\pi$, so $\theta_p=\frac{20}{\pi}x$.
- 2. Write $\theta\left(x,t\right)=\theta_{p}\left(x\right)+\theta_{h}\left(x,t\right)$. Because our PDE is linear, and both $\theta\left(x,t\right)$ and $\theta_{p}\left(x\right)$ satisfy the heat equation, it follows that $\theta_{h}\left(x,t\right)$ also satisfies the heat equation

$$rac{\partial}{\partial t} heta_h \left(x, t
ight) = rac{\partial^2}{\partial x^2} heta_h \left(x, t
ight) \qquad 0 < x < \pi.$$

Moreover, $\theta_h(x,t)$ has homogeneous boundary conditions

$$heta_h\left(0,t
ight)=0, \quad ext{and} \quad heta_h\left(\pi,t
ight)=0, \qquad ext{for } t>0.$$

3. The PDE with the homogeneous boundary conditions is what we solved earlier; therefore the general solution for $heta_h$ is

$$\theta_h = b_1 e^{-t} \sin x + b_2 e^{-4t} \sin 2x + b_3 e^{-9t} \sin 3x + \cdots$$

4. The general solution to the PDE with inhomogeneous boundary conditions is

$$\theta(x,t) = \theta_p + \theta_h = \frac{20}{\pi}x + b_1 e^{-t} \sin x + b_2 e^{-4t} \sin 2x + b_3 e^{-9t} \sin 3x + \cdots.$$
(3.46)

5. To find the b_n , set t=0 and use the initial condition on the left:

$$1 = \frac{20}{\pi}x + b_1\sin x + b_2\sin 2x + b_3\sin 3x + \cdots \quad \text{for all } x \in (0,\pi).$$
 (3.47)

$$1 - \frac{20}{\pi}x = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \cdots \quad \text{for all } x \in (0, \pi).$$
 (3.48)

Extend $1-\frac{20}{\pi}x$ on $(0,\pi)$ to an odd periodic function f(x) of period 2π . Then use the Fourier coefficient formulas to find the b_n such that

$$f(x) = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \cdots;$$

alternatively, find the Fourier series for the odd periodic extensions of 1 and x separately, and take a linear combination to get $1-\frac{20}{\pi}x$. Once the b_n are found, plug them back into the general solution for the heat equation with inhomogeneous boundary conditions.

Find the steady state solution

1/1 point (graded)

Consider the same insulated uniform metal rod as before (u=1, length π) but with initial temperature $heta(x,0)=x^2$

Suppose that the left end is held at $20^{\circ}\mathrm{C}$ while the right end is held at $20^{\circ}\mathrm{C}$.

Find the steady state solution $\Theta(x)$.

$$\Theta\left(x\right)=$$
 20 wo Answer: 20

FORMULA INPUT HELP

Solution:

The steady state solution occurs when the entire bar has temperature $20^{\circ} C$.

Submit

You have used 1 of 4 attempts

• Answers are displayed within the problem

Find the initial condition and boundary conditions

3/3 points (graded)

The solution is $\theta\left(x,t\right)=\Theta\left(x\right)+\theta_{h}\left(x,t\right)$ where $\Theta\left(x\right)$ is the steady state solution you found in the previous problem. The function $\theta_{h}\left(x,t\right)$ satisfies

$$rac{\partial}{\partial t} heta_{h}\left(x,t
ight)=rac{\partial^{2}}{\partial x} heta_{h}\left(x,t
ight) \qquad 0< x<\pi.$$

What initial conditions and boundary conditions must $\theta_h\left(x,t\right)$ satisfy?

Initial condition:

For
$$0 < x < \pi$$
, $\theta_h\left(x,0\right) = \boxed{ x^2-20 }$

Boundary conditions:

For
$$t>0$$
, $\; heta_h\left(0,t
ight)= egin{bmatrix} 0 & & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline \end{array}$ Answer: 0

For
$$t>0$$
, $\theta_h\left(\pi,t\right)=egin{bmatrix}0&&&&\\\hline0&&&&\\\end{array}$ Answer: 0

FORMULA INPUT HELP

Solution:

First we find the initial condition. We know that

$$heta\left(x,0
ight) =\Theta\left(x
ight) + heta_{h}\left(x,0
ight) ,$$

therefore

$$x^{2}=20+ heta_{h}\left(x,0
ight) , \qquad ext{or} \qquad heta_{h}\left(x,0
ight) =x^{2}-20.$$

Next we solve for the boundary conditions. Since $heta\left(0,t
ight)= heta\left(\pi,t
ight)=20$, and $\Theta\left(x
ight)=20$

$$egin{array}{lll} heta\left(0,t
ight) &=& \Theta\left(0
ight) + heta_h\left(0,t
ight) \ &=& 20 + heta_h\left(0,t
ight) \ heta_h\left(0,t
ight) &=& 0 \end{array}$$

$$egin{array}{lcl} heta\left(\pi,t
ight) &=& \Theta\left(\pi
ight) + heta_h\left(\pi,t
ight) \ &=& 20 + heta_h\left(\pi,t
ight) \ heta_h\left(\pi,t
ight) &=& 0 \end{array}$$

Thus $heta_h\left(x,t
ight)$ must satisfy the homogeneous boundary conditions, which is what we expect.

Submit

You have used 1 of 7 attempts

1 Answers are displayed within the problem

7. Solving the PDE with inhomogeneous boundary conditions

Hide Discussion

Topic: Unit 2: Boundary value problems and PDEs / 7. Solving the PDE with inhomogeneous boundary conditions

Add a Post

Sho	Show all posts 🗸 by recent activity	
Q	TYPO in last problem.	2
∀	Discontinuity at boundaries? When they say theta(x,0) =1, and that the temperature is thus 1 for all x, do they really mean all x except precisely at x = 0 and x=pi, where in the above example the temp. mu	4
∀	Why is the separation of variables method not applicable? At 0:52 of the video, we learn that the method "separation of variables" won't work because the equation has inhomogeneous boundary conditions. I don't remember seeing	2

© All Rights Reserved