MT:

a)

1.Definitions

Relational database: Refers to a database that uses a relational model to organize data.

NoSQL database: The full name is Not Only SQL, which refers to non-relational databases. It's a way to span multiple database types

2. Benefits

Relational database:

Data structuring, data integrity, clear tabular relationships, support SQL language, efficient data query, support ACID transaction management, multi-level security mechanism, more flexible data operation, easy to maintain and expand, widely used and compatible NoSQL database:

It supports a variety of data models, high scalability, high performance, high concurrency, distributed architecture, low latency, easy to process big data, adapts to dynamic data, establishes an active developer community and rich ecosystem, and provides diversified tools and support

3.Limitations

Relational database:

Lack of flexibility, limited scalability, performance bottlenecks, insufficient high-concurrency processing capacity, and complex management and maintenance

NoSQL database:

There are consistency issues, limited query capabilities, low standardization, insufficient transaction support, and data redundancy and complexity

4.Example:

Relationship database:

MySQL, PostgreSQL, Microsoft SQL Server, Oracle Database, SQLite

NoSQL database;

Mongo DB, Cassandra, Redis, Couchbase, Neo4j, DynamoDB

5.Use Cases

Relational database:

Financial Applications, Enterprise Resource Planning, Customer Relationship Management, Content Management Systems, E-commerce Platforms

NoSQL database;

Big Data Applications, Real-time Analytics, Content Delivery Networks, Gaming Applications, Social Networks, IoT Applications

b):

Feature	Relational Databases	NoSQL Databases
Examples	MySQL, Microsoft SQL	Redis, Memcached
	Server	

Data Structured	Structured Data	Unstructured Data
Data Storage	Small	Large
ACID transactions	Support	Not support or limited.
		Some support consistency.
Normalisation	Support	Not support
supported		
Integrity	Support	Limited
constraints		
Scalability	Vertical	Horizontal
Simplicity	Complex. Support large	Easy. Support small available
	available	
Complexity Cost	Higher	Lower
Reliability	High	Low
Schema Flexibility	Low	High
Performance	Optimized for complex	High performance, especially for
	queries; may struggle with	large datasets
	large datasets	
Storage	Requires more storage for	More efficient storage, can
Requirements	metadata and indexes	store large amounts of
		unstructured data