01 Lab Software Quality and Test Driven Development (TDD)

Mirko Viroli, Roberto Casadei {mirko.viroli,roby.casadei}@unibo.it

C.D.L. Magistrale in Ingegneria e Scienze Informatiche ALMA MATER STUDIORUM—Università di Bologna, Cesena

a.a. 2020/2021

Lab 01: Outline

- Software quality, principles and refactoring
- Test Driven Development (TDD)

Lab Setup

- Clone (or fork and clone) the repo at https://github.com/unibo-pps/pps-20-21-lab01
- Open the project in IntelliJ IDEA
 - File => Open and select the repository root folder
 - You will find a project with two internal modules
- You must add JUnit 5 to the project, since it is specified as an external dependency
 - a) Open a test class, move to a JUnit 5 symbol (which will be red, i.e., not resolved), and either click on the hint by the IDE, or press ALT+ENTER and select Add JUnit '5.4' to classpath
 - b) Work in File => Project structure => Modules => Dependencies
- For any other errors
 - You may need to set the project SDK
 - Setup SDK | Configure.. ==> + ("Add new SDK") and select JDK
 - You may need to adjust the language level to enable Java features
 - File => Project structure.. => Project

Software Quality Principles (recall)

- DRY Don't Repeat Yourself
- KISS Keep it simple, stupid
- SOLID Principles
 - ► **SRP** Single Responsibility Principle
 - ► **OCP** Open/Closed Principle
 - ► LSP Liskov' Substitutability Principle
 - ► **ISP** Interface Segregation Principle
 - ▶ **DIP** Dependency Inversion Principle

On Test Driven Development (TDD) (i)

TDD

- TDD process: Red-Green-Refactor cycle
- TDD is about explicitly formalising (and enforcing) the "what" before the "how".
 - ► The term "test" is imprecise.
 - ➤ Your "JUnit code" serves different functions at different times. (Why?)

On Test Driven Development (TDD) (ii)

Guidelines

- Quality tests: quality techniques should be applied to test code too!
 - Systems of tests are software projects on their own!
- Structuring tests: Arrange-Act-Assert

```
void test() {
    // ARRANGE
    final AccountHolder holder = new AccountHolder( name: "Mario", surname: "Rossi", id: 12345);
    final BankAccount account = new SimpleBankAccount(accountHolder, balance: 0);

// ACT
    account.deposit(holder.getId(), amount: 100);

// ASSERT
    assertEquals( expected: 100, account.getBalance());
}
```

• Tests should appear as specifications or living documentation

JUnit 5+ (recall) (i)

Method Annotations (package org.junit.jupiter.api.*)

- @Test Denotes that a method is a test method
 - Note: in JUnit 5, unlike JUnit 4, this annotation does not defines any attributes
- @BeforeEach/@AfterEach Denotes that the annotated method should be executed before/after each test method
- @BeforeAll/@AfterAll Denotes that the annotated method should be executed before/after all test method
- @Disabled Used to disable a test class or test method
 - Analogous to JUnit 4's @Ignore
- @Timeout Used to fail a test if its execution exceeds a given duration

JUnit 5+ (recall) (ii)

Assertions (package org.junit.jupiter.api.Assertions.*)

- assertEqual(Object expected, Object actual)
 - Assert that *expected* and *actual* are equal (see also assertNotEqual).
- assertFalse(boolean condition)
 - Assert that the supplied condition is false.
- assertTrue(boolean condition)
 - Assert that the supplied condition is true.
- assertNull(Object actual)
 - Assert that actual is null (see also assertNotNull).
- assertSame(Object expected, Object actual)
 - Assert that *expected* and *actual* refer to the same object.
- assertThrows(Class<T> expectedType, Executable executable)
 - Assert that execution of the supplied *executable* throws an exception of the *expectedType* and return the exception.
- fail()
 - Fail the test without a failure message.

JUnit 5+ (recall) (iii)

Assertions vs. Assumptions

- Assertions are used to write testing scenarios for test methods.
 - ▶ If an assertion fails, the test fails.
- Assumptions are used to specify test-case preconditions.
 - If an assumptions fails, the test method is skipped.

Assumptions (package org.junit.jupiter.api.Assumptions.*)

- assumeFalse(boolean assumption)
 - ► Validate the given *assumption*.
- assumeTrue(boolean assumption)
 - Validate the given assumption.
- assumeThat(boolean assumption, Executable executable)
 - Execute the supplied *executable*, but only if the supplied *assumption* is valid.

Exercise 1 – IntelliJ Basics, Software Quality and Tests (1)

Steps

- 1. Analyse the proposed code to understand the application logic of the implemented model (lab01.example.model.*), then run the application.
- 2. Analyse and run the proposed test (SimpleBankAccountTest).
- 3. Implement a new version of a bank account, allowing the deposit and the withdraw using also the ATM. Each transaction done with the ATM implies paying a 1\$ fee.
 - ► The new bank account must implements the BankAccount interface and coded into a new class SimpleBankAccountWithAtm
 - It is requested to provide a new test class for the new bank account (SimpleBankAccountWithAtmTest)
- 4. Apply the DRY principle to refactor the written code, avoiding repetitions of code
 - ► This principle must be applied both to classes and tests.

Exercise 2 - TDD (2)

Step 1

- Following the TDD approach, provide an implementation for the lab01.tdd.CircularList interface.
 - see methods' documentation for details
 - for this step ignore the "next with strategy" method of the interface
- Hints
 - 1. Design a test for each method to be implemented for the CircularList, following the order suggested in the provided interface
 - In some cases, e.g. to test the next() method, more than one test may improve the test suite
 - 2. Think about a simple way to keep the internal state of the list
 - 3. Think about corner cases as well: pose questions like "what if...?"

Exercise 2 – TDD

Step 2

- Implement the "next with strategy" method using the *Strategy Design Pattern*, adding for this purpose a dedicated test method to the suite
 - Note: a select strategy allows to get the next element of the circular list that satisfies the strategy.
- Each strategy must implements the SelectStrategy interface. Real Strategies that can be injected are:
 - evenStrategy, to get the next even element;
 - multipleOfStrategy, to get the next multiple of a given number;
 - equalsStrategy, to get the next equal element of a given one.

Exercise 2 – TDD

Step 3

- Consider software quality principles can be applied to the proposed solution and/or to the test suite implementation
 - e.g. DRY or KISS

Step 4

• Refactor the strategy implementation using the *Abstract Factory Pattern* to generate strategies