Exercice 1:

On définit sur $\mathbb R$ la relation $x\mathcal Ry$ si et seulement si $x^2-y^2=x-y$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Calculer la classe d'équivalence d'un élément x de \mathbb{R} . Combien y-a-t-il d'éléments dans cette classe?

Solution:

- 1. Il suffit de remarquer que $x\mathcal{R}y\iff x^2-x=y^2-y\iff f(x)=f(y)$ avec $f:x\mapsto x^2-x$. Il est alors aisé de vérifier en appliquant la définition que \mathcal{R} est une relation d'équivalence.
- 2. Soit $x\in\mathbb{R}$. On cherche les éléments y de \mathbb{R} tels que $x\mathcal{R}y$. On doit donc résoudre l'équation $x^2-y^2=x-y$. Elle se factorise en

$$(x-y)(x+y) - (x-y) = 0 \iff (x-y) \times (x+y-1) = 0.$$

La classe de x est donc égale à $\{x,1-x\}$. Elle est constituée de deux éléments, sauf si $x=1-x\iff x=1/2$. Dans ce cas, elle est égale à $\{1/2\}$.

Exercice 2:

On définit sur \mathbb{Z} la relation $x\mathcal{R}y$ si et seulement si x+y est pair. Montrer qu'on définit ainsi une relation d'équivalence. Quelles sont les classes d'équivalence de cette relation?

Solution:

La relation est

- réflexive, car x + x = 2x est pair;
- symétrique, car x+y=y+x et donc si x+y est pair, y+x est pair;
- transitive, car si $x\mathcal{R}y$ et $y\mathcal{R}z$, alors x+y=2k et y+z=2l pour des entiers k et l. Mais alors, on effectue la somme des ces deux égalités et on trouve

$$x + 2y + z = 2k + 2l \implies x + z = 2(k + l - y)$$

et donc x+z est pair.

Pour déterminer les classes d'équivalence de \mathcal{R} , il suffit de trouver une famille (E_i) d'ensembles tels que :

- la réunion des E_i est \mathbb{Z} ;
- les E_i sont deux à deux disjoints;
- ullet si x,y sont dans le même $ar{E_i}$, alors $x\mathcal{R}y$;
- ullet si x est dans E_i et y est dans E_j avec i
 eq j, alors x n'est pas en relation avec y.

Ici, on peut constater que tous les éléments en relation avec 0 sont les entiers pairs, tandis que tous les entiers en relation avec 1 sont les entiers impairs. Puisque l'ensemble des entiers pairs et des entiers impairs forme une partition de \mathbb{Z} , on en déduit que ces deux ensembles sont exactement les deux classes d'équivalence de la relation.

Exercice 3:

Soit $E = \{1,2,3,4\}$ et \mathcal{R} la relation binaire sur E dont le graphe est $\Gamma = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}$

- 1. Vérifier que la relation \mathcal{R} est une relation d'équivalence.
- 2. Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient R/\mathcal{R} .

Solution:

1. D'après le graphe, on a :

$$1\mathcal{R}1$$
; $1\mathcal{R}2$; $2\mathcal{R}1$; $2\mathcal{R}2$; $3\mathcal{R}3$; $3\mathcal{R}4$; $4\mathcal{R}3$ et $4\mathcal{R}4$

Pour tout $n \in \{1,2,3,4\}$ on a nRn donc la relation est réflexive. On a 1R2 et 2R1 d'une part et 3R4 et 4R3 ce qui montre que la relation est symétrique et évidemment elle est transitive, donc il s'agit d'une relation d'équivalence.

2. Il y a deux classes d'équivalence $E_1 = \{1,2\}$ et $E_2 = \{3,4\}$ par conséquent $R/\mathcal{R} = \{E_1, E_2\}$

Exercice 4:

1. Montrer que la relation de congruence modulo n

$$a \equiv b \quad [n] \Leftrightarrow n \text{ divise } b - a$$

Est une relation d'équivalence sur \mathbb{Z} .

2. En vous servant de la division euclidienne, montrer qu'il y a exactement *n* classes d'équivalentes distinctes.

Solution:

1. n divise a - a = 0 car existe $k \in \mathbb{Z}$ tel que 0 = kn, il suffit de prendre k = 0, par conséquent $a \equiv a \ [n]$

 \equiv est réflexive.

Si $a \equiv b$ [n] alors n divise b - a, c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que b - a = kn, ce qui entraine que a - b = (-k)n, $-k \in \mathbb{Z}$ donc a - b divise n, autrement dit $b \equiv a$ [n]. \equiv est symétrique.

Si $\begin{cases} a \equiv b & [n] \\ b \equiv c & [n] \end{cases}$ alors il existe $k \in \mathbb{Z}$ et $l \in \mathbb{Z}$ tel que $\begin{cases} b-a=kn \\ c-b=ln \end{cases}$, en faisant la somme de ces deux égalités $b-a+c-b=kn+ln \Leftrightarrow c-a=(k+l)n$, comme $k+l \in \mathbb{Z}$, n divise c-a, autrement dit $c \equiv a \ [n]$.

 \equiv est transitive.

Finalement \equiv est une relation d'équivalence.

2. Soit $m \in \mathbb{Z}$, effectuons la division euclidienne de m par n. Il existe un unique couple $(q,r) \in \mathbb{Z} \times \{0,1,...,n-1\}$ tel que m=qn+r, donc m-r=qn autrement dit $m \equiv r$ [n]. Il y a exactement n classes d'équivalence $\{\overline{0},\overline{1},...,\overline{n-1}\}$.