In [1]:

```
# Import important and necessary libraries
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

In [3]:

```
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

1. Create a DataFrame birds from this dictionary data which has the index labels.

In [4]:

```
Birds = pd.DataFrame(data, index = labels)
Birds
```

Out[4]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

2. Display a summary of the basic information about birds DataFrame and its data.

In [5]:

```
Birds.shape
```

Out[5]:

(10, 4)

In [6]:

```
Birds.info()
<class 'pandas.core.frame.DataFrame'>
Index: 10 entries, a to j
Data columns (total 4 columns):
    Column
              Non-Null Count Dtype
    -----
              _____
    birds
 0
              10 non-null
                              object
              8 non-null
 1
    age
                              float64
 2
    visits
             10 non-null
                              int64
    priority 10 non-null
                              object
dtypes: float64(1), int64(1), object(2)
memory usage: 400.0+ bytes
In [7]:
Birds.describe()
```

Out[7]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000
75%	5.625000	3.750000
max	8.000000	4.000000

3. Print the first 2 rows of the birds dataframe

In [8]:

```
print(Birds[0:2])

birds age visits priority
a Cranes 3.5   2   yes
b Cranes 4.0   4  yes
```

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

In [9]:

```
print(Birds[['birds','age']])
       birds age
      Cranes 3.5
а
b
      Cranes 4.0
С
     plovers 1.5
d spoonbills NaN
e spoonbills 6.0
f
      Cranes 3.0
     plovers 5.5
g
h
      Cranes NaN
i spoonbills 8.0
j spoonbills 4.0
```

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

In [10]:

```
Birds[['birds','age','visits']].iloc[[2,3,7]]
```

Out[10]:

	birds	age	visits
С	plovers	1.5	3
d	spoonbills	NaN	4
h	Cranes	NaN	2

6. select the rows where the number of visits is less than 4

In [11]:

```
Birds[Birds.visits < 4]
```

Out[11]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

In [12]:

```
Birds[['birds','visits']][Birds.age.isnull()]
```

Out[12]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

In [13]:

```
Birds[Birds.birds == 'Cranes'][Birds.age < 4]</pre>
```

Out[13]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

In [14]:

```
# https://stackoverflow.com/questions/45228800/creating-a-dataframe-in-pandas-using-logical-and-operator Birds[(Birds.age >= 2.0) & (Birds.age <= 4.0)]
```

Out[14]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
f	Cranes	3.0	4	no
j	spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

In [15]:

```
New_df = Birds.groupby(by = 'birds')
```

```
In [16]:
```

```
New_df['visits'].sum()
Out[16]:
birds
Cranes 12
plovers 5
spoonbills 12
Name: visits, dtype: int64
```

11. Calculate the mean age for each different birds in dataframe.

```
In [17]:
```

```
New_df['age'].mean()

Out[17]:

birds
Cranes    3.5
plovers    3.5
spoonbills   6.0
Name: age, dtype: float64
```

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

```
In [18]:
```

```
new_row = pd.Series(['plovers',3.5,3,'No'], index= Birds.columns) #https://www.askpy
thon.com/python-modules/pandas/add-rows-to-dataframe
Birds.loc['k'] = new_row
Birds
```

Out[18]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no
k	plovers	3.5	3	No

```
In [19]:
```

```
Birds = Birds.drop('k')
Birds
```

Out[19]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

13. Find the number of each type of birds in dataframe (Counts)

In [20]:

```
Birds['birds'].value_counts()
```

Out[20]:

spoonbills 4 Cranes 4 plovers 2

Name: birds, dtype: int64

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

In [21]:

```
Sorted_df_1 = Birds.sort_values(by = 'age', ascending= False)
Sorted_df_1
```

Out[21]:

	birds	age	visits	priority
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
b	Cranes	4.0	4	yes
j	spoonbills	4.0	2	no
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
h	Cranes	NaN	2	yes

In [22]:

```
Sorted_df_2 = Sorted_df_1.sort_values(by = 'visits', ascending= True)
Sorted_df_2
```

Out[22]:

	birds	age	visits	priority
g	plovers	5.5	2	no
j	spoonbills	4.0	2	no
а	Cranes	3.5	2	yes
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no
С	plovers	1.5	3	no
b	Cranes	4.0	4	yes
f	Cranes	3.0	4	no
d	spoonbills	NaN	4	yes

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

In [23]:

```
# https://www.delftstack.com/howto/python-pandas/pandas-replace-values-in-column
Birds['priority'] = Birds['priority'].map({'yes': 1, 'no' : 0})
Birds
```

Out[23]:

	birds	age	visits	priority
а	Cranes	3.5	2	1
b	Cranes	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	Cranes	3.0	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

In [24]:

```
Birds['birds'] = Birds['birds'].replace('Cranes','trumpeters')
Birds
```

Out[24]:

	birds	age	visits	priority
а	trumpeters	3.5	2	1
b	trumpeters	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	trumpeters	3.0	4	0
g	plovers	5.5	2	0
h	trumpeters	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0