

UNIVERSITÄT BERN

Einführung in die Wirtschaftsinformatik

Nutzen von Informationssystemen

Prof. Dr. Thomas Myrach Universität Bern Institut für Wirtschaftsinformatik Abteilung Informationsmanagement

Logischer Aufbau

Lernziele

- Sie wissen, dass der Nutzen von Informationssystemen in Handlungsverbesserungen besteht.
- Sie können beschreiben, wie sich Prozessverbesserungen durch Digitalisierung bestimmen lassen.
- Sie wissen, welche verschiedenen Effekte Prozessverbesserungen haben können.
- Sie k\u00f6nnen im Rahmen der Konzepte der Entscheidungstheorie den Wert von Informationen berechnen.
- Sie k\u00f6nnen die praktischen Relevanz der Bestimmung des Informationswerts benennen.
- Sie haben einen Eindruck vom Einfluss unterschiedlicher Kennziffern auf die Vorteilhaftigkeit von Informationssystemen.

Gliederung

Begriff Wirtschaftsinformatik

UNIVERSITÄ[.] BERN

- Wirtschaftsinformatik untersucht den Einsatz von Informations- und Kommunikationstechnologien
- mit dem Ziel, betriebswirtschaftliche Handlungen zu verbessern und zu ermöglichen.
- Handlungsverbesserungen erfolgen im Spannungsfeld von Mensch und Maschine

Bewertung einer Handlung

UNIVERSITÄI Bern

Nach betriebswirtschaftlichen Massstäben.

Wirkung von IS

Gliederung

Nutzen durch Prozessverbesserungen

- Betriebliche Informationssysteme unterstützen Geschäftsprozesse.
- Dadurch verursachen Prozesse unter Umständen weniger Aufwand.
- Dies kann dadurch geschehen,
 - dass bestimmte Aktivitäten entfallen.
 - Aktivitäten effizienter abgewickelt werden können.
- Dabei treten Ressourceneinsparungen auf, insbesondere auch benötigte Arbeitszeit.
- Prozesse können sich auch qualitativ verbessern, etwa weniger Zeit in Anspruch nehmen oder weniger fehleranfällig sein.

Nutzen durch Prozessverbesserungen

Zeit- und Aufwandsverbesserung

Nutzen durch Prozessverbesserungen

 u^{b}

UNIVERSITÄT BERN

Beispiel: Prozess Bestellung

Papiergestützt:

– Digitalisiert:

Zeit

Folge der Prozessveränderung

UNIVERSITÄ[.] BERN

- Ressourceneinsparung
 - Etwa Arbeitszeit. Unmittelbare Auswirkung auf Kosten.
- Zeiteinsparung
 - Mehrfache Auswirkung
 - Verkürzung von Aktivitäten führt zu weniger Ressourcen-Inanspruchnahme
 direkte Kostenfolge
 - Verkürzung von Prozessen bewirkt eine höhere Agilität
 - Indirekter Nutzen z.B. durch höhere Servicequalität
- Qualitätsverbesserung
 - Weniger Fehler haben mehrfache Auswirkungen.
 - Geringere interne Kosten wegen entfallender Korrekturprozesse.
 - Bessere Servicequalität nach aussen.

Fokus Prozesskosten

- Durch den elektronischen Geschäftsverkehr können Prozesskosten eingespart werden.
- Diese Einsparungen sind gegenüber den entstehenden IT-Kosten abzuwägen.
- Die Anzahl der Transaktionen spielt eine wichtige Rolle, ob sich der elektronische Geschäftsverkehr lohnt.
- Durch Prozesskostenrechnung können die Kosten (bewerteter Ressourcengebrauch) der jeweiligen Prozesse bestimmt werden.
- Ergeben sich durch einen neuen Prozess Kosteneinsparungen, so sind diese als Nutzen des neuen Prozesses anzusehen.

Break-Even bei kumulierten Kosten

Fazit

- Durch die Digitalisierung werden Prozesse verändert.
- Der Nutzen der Prozessveränderung ergibt sich durch Vergleich mit den vorherigen Prozessen.
- Ressourceneinsparungen lassen sich direkt über Kosten berechnen.
- Diese lassen sich in ökonomische Modelle der monetären Wirtschaftlichkeit einbringen.
- Darüber kann die Prozessveränderung auch weitere Effekte haben, die sich nicht direkt als Kosten zurechnen lassen.
- Auch diese Effekte k\u00f6nnen aber einen Nutzen darstellen, die in irgendeiner Form ber\u00fccksichtigt werden sollten.

Gliederung

Nutzen durch bessere Entscheidungen

Ergebnisverbesserung

Nutzen durch bessere Entscheidungen

- Verbesserungen von Handlungsergebnissen ergeben sich durch geänderte Entscheidungen.
 - Ohne Information wird eine bestimmte Entscheidung getroffen, die ein bestimmtes Ergebnis nach sich zieht.
 - Mit Information wird eine andere Entscheidung getroffen, die ein besseres Ergebnis nach sich zieht.
- Die Auswirkungen derartiger Verbesserungen lassen sich unter Umständen quantifizieren.
 - Differenz zwischen Ergebnis mit und ohne Information.
- Diese theoretische Betrachtung basiert jedoch auf einem Einzelfall und nicht auf die Gesamtheit verbesserter Entscheidungen.

Entscheidungsrelevante Informationen

UNIVERSITÄT BERN

Menge der entscheidungsrelevanten Informationen

Das Fehlen von Informationen führt zu Unsicherheit!

Jost (2000), S. 62

Entscheidungssituation:

u^{t}

UNIVERSITÄT BERN

Aktionen

Bei einer Entscheidung stehen mehrere Aktionen zur Wahl!

Entscheidungssituation:

UNIVERSITÄT BERN

Jede (mögliche) Aktion führt zu einem Ergebnis!

Entscheidungssituation:

u^{b}

UNIVERSITÄT BERN

Aktion und Zustand

Ergebnisse hängen von eintretenden Zuständen ab!

Informationsstand In der Theorie

UNIVERSITÄT BERN

Informationsstand des Entscheidungsträgers Unsicherheit bzw. fehlende Information

Menge der möglichen Aktionen a_i

ien

Menge der möglichen Zustände z_i

Menge der denkbaren Ergebnisse x_{ii} Eintreten eines bestimmten Zustandes z_i

Entscheidung unter Ungewissheit

- Drei Aktionen können ergriffen werden.
- Drei Zustände können eintreten.
- Für jeden Zustand ist bekannt, welches Ergebnis eine Aktion bei seinem Eintreten haben würde.
- Die Eintretenswahrscheinlichkeit der Zustände ist unbekannt.

	Z ₁	z_2	z_3
a ₁	90	50	100
a ₂	70	80	60
a_3	120	20	40

Entscheidungsregel: Laplace-Regel

UNIVERSITÄ[.] BERN

- Jeder mögliche Zustand wird als gleich wahrscheinlich angenommen.
- Für jede Aktion wird der Erwartungswert des Ergebnisses berechnet.
- Beispiel: Präferenz a₁ > a₂ > a₃

	Z ₁	Z ₂	z_3	EW
a ₁	90	50	100	80
a ₂	70	80	60	70
a ₃	120	20	40	60

Ausgangslage ohne Information

UNIVERSITÄT BERN

	Z ₁	Z ₂	z_3	EW
a_1	90	50	100	80
a ₂	70	80	60	70
a ₃	120	20	40	60

Ohne Information
muss die optimale
Aktion unter der
Annahme von
Eintretenswahrscheinlichkeiten
bestimmt werden!

Wert von Informationen

- Der Wert von Informationen kann anhand eines Vergleiches ermittelt werden:
 - Ergebnis x_{ik} der Aktion a_i, welche ohne die Information ergriffen worden wäre.
 - Ergebnis x_{il} der Aktion a_i, welche mit der Information ergriffen wird.
- Idealtypisch wird unterstellt
 - $x_{ik} \leq x_{jl}$.
- Der Wert der Information bezüglich einer Entscheidung D_n ist

$$- D_n(v) = (x_{il} - x_{ik}) \ge 0.$$

Ergebnisverbesserung durch Information

UNIVERSITÄT BERN

Die Information ermöglicht es, die für den Zustand optimale Aktion zu erkennen!

		Z ₁	Z ₂	Z ₃	EW
	a ₁	90	50	100	80
	a ₂	70	80	60	70
Ī	a_3	120	20	40	60

Wert der vollkommen Information (ex post)

- Der Wert einer Information hängt davon ab
 - welches die optimale Aktion ohne Information war;
 - welcher Zustand eintritt.
- Beispiel (Laplace-Regel: a₁ ist die beste Aktion):

$$-z_1$$
 tritt ein \Rightarrow 120 $-$ 90 = 30

$$-z_2$$
 tritt ein \Rightarrow 80 - 50 = 30

$$-z_3$$
 tritt ein \Rightarrow 100 - 100 = 0

	Z ₁	z_2	Z ₃	EW
a ₁	90	50	100	80
a_2	70	80	60	70
a_3	120	20	40	60
	120	80	100	

Informationsparadoxon

- Der Wert der Information kann erst ex post bestimmt werden.
 - Der Wert der Information ist erst dann bekannt, wenn ich die Information kenne!
- Der Einsatz eines Informationssystems ist jedoch ex ante zu entscheiden.
 - Soll ein Informationssystem eingesetzt werden um ein Entscheidungsproblem zu lösen?
- Problem:
 - Wie kann ich den Wert der Information vorher bestimmen, um eine Entscheidung über die Informationsbeschaffung zu treffen?

Wert der vollkommen Information (ex ante)

- Bestimmen der optimalen Aktion a_i für einen bestimmten Zustand z_i.
- Zusammenfassen aller Werte x_{ij} zu einer fiktiven Aktion a_0 .
- Berechnen des Wertes dieser fiktiven Aktion nach einer Entscheidungsregel:
 - Ist das Eintreffen einer Nachricht ungewiss, so kann gemäss der Laplace-Regel von einer gleichen Wahrscheinlichkeit für alle Zustände ausgegangen werden.
 - Dann lässt sich der Erwartungswert der (vollkommenen) Information bestimmen.
- Errechnen der Differenz des Wertes der fiktiven Aktion a₀ und der besten Aktion a₁ bis a_n.

Nutzenzuwachs bei der Laplace-Regel

UNIVERSITÄT BERN

- Beste Aktion ohne Information: a_1 mit E(x) = 80
- Beste Aktion mit Information: a_0 mit E(x) = 100
- Durch den Einsatz des IS kann ich den zu erwartenden Betrag von 80 auf 100 erhöhen.

Nutzenzuwachs: 100 – 80 = 20

	Z ₁	z_2	z_3	R
a_0	120	80	100	100
a ₁	90	50	100	80
a ₂	70	80	60	70
a_3	120	20	40	60

Netto-Nutzen der Information

- Bei vollkommener Information kommt es durch den Einsatz eines Informationssystems niemals zu einer Verringerung des Nutzens.
- Wenn die Informationsbereitstellung kostenlos erfolgt, so ist der Einsatz des Informationssystems immer ratsam.
 - Der Einsatz eines IS bringt im schlechtesten Fall einen Nutzenzuwachs von 0 und verschlechtert die Entscheidung damit nicht.
- Wenn die Informationsbereitstellung etwas kostet, so ist der Einsatz des Informationssystems abzuwägen.
- Der Netto-Nutzen ergibt sich als Differenz zwischen Nutzen und Kosten einer Information.

Fazit

- Die Verfügbarkeit von Informationen wirkt sich auf Entscheidungen aus.
- Dabei ist davon auszugehen, dass sich die Qualit\u00e4t einer Entscheidung mit mehr Informationen tendenziell verbessert.
- Eine Verbesserung der Entscheidung drückt sich über einen höheren Nutzen der mit der Information gewählten Alternative aus.
- Wie hoch dieser Nutzen ausfällt kann aber bestenfalls dann genau bestimmt werden, wenn die Information bekannt ist.
- Will man den Wert einer Information im vornherein einschätzen, so muss die Informationsbeschaffung als eine Vorentscheidung angesehen werden.
- Dabei kann angenommen werden, dass mit einer Information immer die beste Handlungsalternative ergriffen wird.

Gliederung

Praktische Bedeutung (1)

- Die Berechnung des Wertes von Informationen ist eine Einzelfallbetrachtung.
- Im Zentrum steht eine konkrete Entscheidung.
- Informationen betreffen die Prognose zukünftiger Zustände und die daran geknüpften Werte.
- Beispiel Markstudie:
 - Ein neues Produkt soll eingeführt werden.
 - Um den Markterfolg zu prüfen, wird in einem Testmarkt eine Markstudie durchgeführt.
 - Anhand des Erfolgs im Testmarkt soll auf den gesamten Erfolg des Produkts geschlossen werden.
 - Im positiven Fall wird das Produkt eingeführt.

Praktische Bedeutung (2)

- Der Wert eines Informationssystems ergibt sich üblicherweise aus der Summe von Entscheidungsverbesserungen.
- Diese treten über einen gewissen Zeitraum ein.
- Beispiel Lagerverwaltung:
 - Ein neues Informationssystem zur Materialwirtschaft wird eingeführt.
 - Dies erlaubt eine bessere Disposition der Bedarfe.
 - In der Folge sinkt der durchschnittliche Lagerbestand.
 - Der Nutzen ergibt sich unter anderem aus den Einsparungen aus Kapitalkosten.

Beispiel: Ausgangslage

UNIVERSITÄT BERN

Mertens (2005), S. 18, 55 f

Beispiel: Massnahme

UNIVERSITÄT BERN

Reduzierung der Kapitalbindung um 400'000 €

Zins: 5 %

Kapitalkosten alt: 2'000'000 € * 0,05 = 100'000 €

Kapitalkosten neu: 1'600'000 € * 0,05 = 80'000 €

Kapitalkosteneinsparung = 20'000 €

Beispiel: Auswirkungen

UNIVERSITÄT BERN

Mertens (2005), S. 18, 55 f

Beispiel: Gegenüberstellung

UNIVERSITÄT BERN

Gewinn alt: 160'000 €

Gewinn neu: 180'000 €

Zunahme (relativ): 20'000/160'000 = 12,5 %

Wirtschaftlichkeit alt: 104,166 %

Wirtschaftlichkeit neu: 104,712 %

Zunahme (relativ): 0,546/104,166 = 0,5242 %

Rentabilität alt: 8 %

Rentabilität neu: 11,25 %

Zunahme (relativ): 3,25/8 = 40,625 %

Fazit

- Der Nutzen von Informationssystemen lässt sich durch verschiedene Kennzahlen messen.
- Je nach gewählter Kennzahl kann der Nutzen unterschiedlich gross erscheinen.
- Produktivitätsgewinne haben in Managemententscheiden oftmals eine zweitrangige Bedeutung.
- Rentabilitätsverbesserungen werden diesbezüglich vielfach höher gewichtet.
- Die Nutzen von Informationssystemen sollten deshalb nicht allein durch Produktivitätsgewinne begründet werden.