Arranjos Sistólicos

SCE 200 Arquiteturas Avançadas de Computadores

Regina Helena Carlucci Santana

ICMC – USP 2005

Arranjos Sistólicos - Definição

- Classe especial de arquitetura de computadores que possui como características:
 - Conjunto de elementos ou células que executam uma função simples
 - Elementos conectados formando uma estrutura em grade. Conexão: malha, linear, hexagonal, etc.
 - Dados fluem sincronamente da memória para os elementos e entre os elementos, de forma síncrona
- Assíncronos Arranjos de Frente de Onda

Arranjos Sistólicos - Definição

- Origem: melhor desempenho em sistemas de propósito específico
- Nome: analogia com sistema vascular humano:
- O coração mantém o fluxo sangüíneo bombeando o sangue de forma freqüente e ritmada:
 - Sangue dados
 - Coração memória ou sub sistema que fornece os dados
 - Corpo (células) Elementos de processamento
 - Artérias e veias Comunicação
- Coração recebe e bombeia o sangue pelo corpo
- Memória recebe dados e os envia para processamento

Arranjos Sistólicos – Funcionamento

- Cada elemento de processamento, a cada pulso de clock:
 - Pega dados de um ou mais vizinhos
 - Processa o dado
 - Envia resultados para vizinhos em posição oposta aos recebidos
- Dados fluem sincronamente através do arranjo entre os vizinhos
 - Normalmente dados diferentes fluem em direções diferentes
 - Não tem comunicação global. Comunicação apenas entre vizinhos

Arranjos Sistólicos – Funcionamento

Arranjo sistólico X Pipeline

Pipeline

- Unidimensional
- Em cada estágio, dados de entrada são modificados e novos resultados enviados para próximo estágio
- Dados fluem em um único sentido

Arranjos Sistólicos

- Multidimensional
- Dados e Resultados fluem pelo arranjo
- Dados e Resultados podem fluir em diferentes sentidos

Arranjos Sistólicos - Tipos

- Propósito Específico
 - Arranjo sistólico projetado para uma aplicação específica e implementado usando tecnologia VLSI
 - Aplicação específica
 - Centenas de células em chip
 - Quanto mais especializado o hardware, melhor seu desempenho
 - Não é flexível
 - Custo por aplicação é muito alto

Arranjos Sistólicos - Tipos

- Propósito Geral:
 - Pode ser adaptado para alguns tipos de aplicação
 - Maior flexibilidade
 - Custo mais baixo
 - Desempenho inferior
 - Pode ser:
 - Programável
 - Reconfigurável
 - Híbridos

Arranjos Sistólicos - Tipos

- Propósito Geral:
 - Programável
 - Hardware fixo
 - Maior flexibilidade e maior complexidade
 - Software controla
 - Operações dentro de cada célula
 - Comunicação entre as células
 - Reconfigurável
 - Hardware e Software podem ser configuráveis
 - Maior complexidade para a programação inicial
 - Flexibilidade intermediaria
 - Desempenho intermediário
 - Normalmente utiliza-se tecnologia FPGA
 - Híbridos
 - Parte do arranjo é fixo e parte reconfigurável
 - Parte fixa com tecnologia VLSI e reconfigurável com FPGA

Arranjos Sistólicos - Projeto

- Utilizado em equipamentos dedicados ou partes específicas de arquiteturas de computadores
- Fases para o desenvolvimento de AS
 - Identificação de gargalos
 - Definição das tarefas realizadas
 - Projeto
 - Implementação

Arranjos Sistólicos - Projeto

- Projetista deve conhecer:
 - Computação Sistólica
 - Aplicação
 - Algoritmos a ser empregado
 - Tecnologia a ser utilizada
- Projeto de um AS envolve:
 - Definição do tamanho da topologia
 - Processamento a ser realizado por cada célula
 - Como os dados, entradas e saídas devem fluir através do arranjo
 - Fatores tecnológicos
 - Relacionamento do AS com o resto do sistemas

Arranjos Sistólicos - Projeto Técnicas

- Técnicas Heurísticas
 - Baseada na experiência do projetista
 - Processo lento
 - Requer muitos testes para garantir que não possui erros
 - Não tem se mostrado eficiente
- Avaliação do Balanceamento das Operações
 - Levantamento estatístico das operações
 - Cada célula possui as operações necessárias para a execução do algoritmo

Arranjos Sistólicos - Projeto Técnicas

- Regras de Projeto Pré Definidas
 - Técnica baseia-se em:
 - Linguagem para descrever o algoritmo
 - Conjunto de regras para a transformação
 - Sistema automático que aplica regras no algoritmo e gera o hardware
- Métodos Semi-automáticos
 - Automatizar a transformação do algoritmo em hardware, eliminando dependências
 - Utilização de grafos de dependência

Arranjos Sistólicos - Projeto

- Principais itens a serem definidos
 - Organização dos elementos de processamento
 - Topologia do arranjo sistólico
 - Interconexão e Dimensão

Arranjos Sistólicos – Projeto Organização

 Granulosidade – pode variar de operação sobre um bit a um programa completo

- Depende do tipo de arranjo sistólico:
 - Se for programável: SIMD ou MIMD
 - Se for híbrida: depende da organização
 - Caso contrário: VFIMD Very Few Instructions stream Multiple Data stream

Arranjos Sistólicos – Projeto Organização

- Se for programável: SIMD ou MIMD
 - SIMD:
 - Similar ao processador vetorial
 - Host possui a unidade de controle e memória
 - Células são simples e não armazenam programa ou instrução
 - Todas as células executam a mesma instrução em dados diferentes
 - Como são simples pode-se ter diversas (dezenas ou centenas) em um único chip
 - MIMD:
 - Similar à máquinas com multi-processadores
 - Cada célula possui unidade de controle, memória, ULA, etc.
 - Células podem executar programas diferentes
 - Caso contrário, VFIMD Very Few Instruction stream Multiple Data stream
 - Poucas em um chip devido a complexidade

Arranjos Sistólicos – Projeto Topologia e Interconexão

Seguem os padrões tradicionais

- Dimensão:
 - Lineares
 - Bidimensionais
 - Dimensão n

Reconfiguráveis – no máximo dimensão 2

arranjo triangular

arranjo retangular

arranjo hexagonal

Arranjos Sistólicos – Projeto Topologia e Interconexão

- Fixa
 - Limita o tipo de algoritmo possível
 - Pode limitar o desempenho obtido
- Programável
 - Comunicação através de chaves permite obtenção de diferentes topologias
 - Podem ser:
 - Estáticas: alterada entre as aplicações
 - Dinâmicas: alterada durante as aplicações
- Reconfigurável
 - Através de chaves implementadas por FPGA
 - Estáticas

Arranjos Sistólicos

Tipos Característica	Específico	Geral- Programável	Geral- Reconfigurável	Geral-Hibrido
Organização	VFIMD	SIMD MIMD	VFIMS	Pode ser qq tipo
Topologia	Fixa	 Fixa Programável 	1.Fixa 2.Reconfigurável	1. Fixa 2. Híbrida
Interconexão	Fixa	1. Fixa 2. Estática/ Dinâmica	1. Fixa 2. Estática/ Dinâmica	1. Fixa 2. Estática/ Dinâmica
Dimensão	N-dimen- sional	N-dimensional Normalmente N<3		

VFIMD – Very few instructions multiple data

Arranjos Sistólicos - Aplicação

- Aplicação
 - Implementação de algoritmos especializados
 - Estrutura de dados homogênea
 - Necessitam co-processador de alto desempenho
- Exemplos
 - Processamento de Imagens
 - Processamento de sinais
 - Reconhecimento de linguagem
 - Manipulação de caracteres
 - Cálculos com matrizes

Avaliação - 14/10/2005

Compare as características gerais de arranjos sistólicos com:

- Pipelines,
- Máquinas SIMD
- Processadores vetoriais.

Indique as vantagens e desvantagens de cada um deles.