

CAP 254

Otimização Combinatória

Professor: Dr. L.A.N. Lorena

Assunto: Metaheurísticas

Antonio Augusto Chaves

Conteúdo

C01 – Simulated Annealing (20/11/07).

C02 – Busca Tabu (22/11/07).

C03 – Colônia de Formigas (27/11/07).

C04 - GRASP e VNS (29/11/07).

C05 – Metaheurísticas Híbridas – CS (04/12/07).

Colônia de Formigas (Ant Colony)

O que é Otimização por Colônia de Formigas?

 Colônia de formigas é uma metaheurística baseada em população e inspirada no comportamento forrageiro das formigas.

- Muitas espécies de formigas são quase cegas.
- A comunicação entre as formigas é realizada através de uma substância química denominada de feromônio.
- Em algumas espécies, o feromônio é usado para criar caminhos (trilhas de formigas).

- Ao caminhar, as formigas depositam no chão o feromônio, formando, deste modo, uma trilha de feromônios.
- As formigas sentem o cheiro do feromônio, e quando elas têm que escolher um caminho, escolhem, com maior probabilidade, o caminho com maior quantidade de feromônio (cheiro mais forte).
- A trilha ajuda a formiga a achar o caminho de volta e as outras formigas a encontrar a fonte de alimentos.

 Experimento realizado por Deneubourg et al., 1990, para estudar o comportamento forrageiro das formigas.

No Início:

- As formigas são deixadas livres para escolher o caminho.
- Não há feromônio ainda.

 As formigas convergem para um dos caminhos com igual probabilidade. No Fim:

 Devido a flutuações aleatórias, uma das pontes terá mais feromônio e atrairá as formigas com maior probabilidade.

ou

- Usando pontes de tamanhos diferentes, as formigas convergem para a ponte mais curta:
- A ponte curta é percorrida em menos tempo, fazendo com que mais formigas atravessem ela. Logo, mais feromônio é depositado.
- As formigam escolhem, com maior probabilidade, a ponte curta (com mais feromônio).

Formigas Artificiais

- Formigas artificiais são heurísticas construtivas.
- Elas constroem soluções de forma probabilística utilizando duas informações:
 - 1. A **trilha de feromônio** (artificial) que muda dinamicamente durante a execução do programa de modo a refletir a experiência já adquirida durante a busca.
 - 2. A informação heurística especifica do problema a ser resolvido.

Ant System

- Proposto por Marco Dorigo e colaboradores (DORIGO et al., 1991)
- O Ant System é o primeiro algoritmo que surgiu inspirado em colônia de formigas.

- Peculiaridades do ambiente das formigas utilizadas:
 - Ao tomar um caminho a formiga deixa no mesmo uma certa quantidade de feromônio;
 - Uma formiga escolhe determinado caminho de acordo com uma função probabilística envolvendo a distância deste caminho e a quantidade de feromônio presente neste;
 - As formigas lembram os pontos por onde já passaram e não retornam a estes pontos até que tenham chegado à fonte de alimento;

Aplicação do Ant System ao PCV

Matriz Distância do PCV

	1	2	3	4	5
1	0,0	1,0	2,2	2,0	4,1
2	1,0	0,0	1,4	2,2	4,0
3	2,2	1,4	0,0	2,2	3,2
4	2,0	2,2	2,2	0,0	2,2
5	4,1	4,0	3,2	2,2	0,0

cidades do PCV

Aplicação do Ant System ao PCV

 Cada formiga irá construir uma solução movendo-se de uma cidade para outra.

 No ínicio, cada formiga é colocada em uma cidade diferente (ou colocada aleatoriamente).

Aplicação do Ant System ao PCV

A Construção da Solução pela Formiga

 Começando de uma cidade i, a formiga move-se escolhendo probabilisticamente a cidade vizinha j (entre os vizinhos factíveis).

Probabilidade de Transição

A probabilidade da formiga k que está na cidade i de escolher a cidade j é dada pela regra:

$$p_{ij}^{k}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in N_{i}^{k}} \left[\tau_{ij}(t)\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}, \text{ se } j \in N_{i}^{k} \\ 0, \text{ caso contrário} \end{cases}$$

onde,

 $\tau_{ij}(t)$: quantidade de feromônio presente no caminho (i,j)

$$\eta_{ij} = \frac{1}{d_{ij}}$$
: visibilidade da cidade j com relação a cidade i

 α e β são parâmetros para determinar a influência do feromônio e da informação heurística,

 N_i^k é a vizinhança factível da formiga k (i.e., o conjunto das cidades ainda não visitadas pela formiga k).

A Informação Heurística do PCV

• Associada a aresta (i,j) existe um valor heurístico η_{ij} dado por

$$\eta_{ij} = \frac{1}{d_{ij}}$$

que representa a atratividade da formiga visitar a cidade j depois de visitar a cidade i.

• O valor $oldsymbol{\eta}_{ij}$ é inversamente proporcional a distância d_{ij} entre as cidades i e j.

	Candidatos / prob.	solução
formiga	de transição	parcial
1	2(45%), 3(21%), 4(23%), 5(11%)	1-2
2	1(41%), 3(30%), 4(19%), 5(10%)	2-1
3	1(23%), 2(37%), 4(23%), 5(16%)	3-4
4	1(27%), 2(24%), 3(24%), 5(24%)	4-5
5	1(19%), 2(20%), 3(25%), 4(36%)	5-2

 A escolha do candidato é de acordo com a probabilidade de transição. É feita de forma similar ao algoritmo da roleta dos algoritmos genéticos.

	Candidatos / prob.	solução
formiga	de transição	parcial
1	3(50%), 4(32%), 5(18%)	1-2-3
2	3(38%), 4(42%), 5(20%)	2-1-4
3	1(35%), 2(32%), 5(32%)	3-4-5
4	1(30%), 2(31%), 3(39%)	4-5-2
5	1(46%), 3(33%), 4(21%)	5-2-1

	Candidatos / prob.	solução
formiga	de transição	parcial
1	4(59%), 5(41%)	1-2-3-5
2	3(50%), 5(50%)	2-1-4-5
3	1(49%), 2(51%)	3-4-5-1
4	1(58%), 3(42%)	4-5-2-1
5	3(48%), 4(52%)	5-2-1-4

	Candidatos / prob.	solução
formiga	de transição	parcial
1	4(100%)	1-2-3-5-4
2	3(100%)	2-1-4-5-3
3	2(100%)	3-4-5-1-2
4	3(100%)	4-5-2-1-3
5	3(100%)	5-2-1-4-3

Término da Primeira Iteração

formiga	solução	comprimento
(k)	completa	da viajem (L_k)
1	1-2-3-5-4-1	9,8
2	2-1-4-5-3-2	9,8
3	3-4-5-1-2-3	10,9
4	4-5-2-1-3-4	11,6
5	5-2-1-4-3-5	12,4

Atualização do Feromônio

- No feromônio τ_{ij} associado a aresta (i, j) ocorre dois eventos:
 - 1. A evaporação;
 - Evita que o feromônio acumulado cresça indefinidamente;
 - Permite esquecer decisões ruins do passado da busca.
 - 2. O depósito de feromônio de todas as formigas que passaram sobre (*i*, *j*).

Atualização do Feromônio

- Depois que todas as formigas construíram suas rotas, o feromônio é atualizado.
- $\Delta \tau_{ij}^k$ é a quantidade de feromônio que a formiga k deposita sobre a aresta (i, j). É dado por:

$$\Delta \tau_{ij}^{k} = \begin{cases} Q/L_{k}, \text{ se a aresta } (i,j) \text{ pertence a rota } S_{k} \\ 0, \text{ caso contrário} \end{cases}$$

onde

Q: quantidade de ferômonio excretada por uma formiga a cada iteração

Atualização do Feromônio

• O feromônio τ_{ij} associado a aresta (i, j) é atualizado pelo fórmula:

$$\tau_{ij}(t+1) = \underbrace{(1-\rho)\tau_{ij}(t)}_{\text{evaporação}} + \underbrace{\sum_{k=1}^{m} \Delta \tau_{ij}^{k}(t)}_{\text{depósito}}$$

onde

 $\rho \in [0,1]$ é a taxa de evaporação de feromônio

Exemplo de Atualização do Feromônio

Atualização do Feromônio da aresta (3,5)

 Apenas as formigas 1, 2 e 5 depositam feromônio nesta aresta. Suponha
 Q = 1, 0. A contribuição de cada formiga:

$$\Delta \tau_{3,5}^{(1)} = 1/L_1 = 0,102$$

 $\Delta \tau_{3,5}^{(2)} = 1/L_2 = 0,102$
 $\Delta \tau_{3,5}^{(5)} = 1/L_5 = 0,081$

k	viagem	L_k
1	1-2-3-5-4-1	9,8
2	2-1-4-5-3-2	9,8
3	3-4-5-1-2-3	10,9
4	4-5-2-1-3-4	11,6
5	5-2-1-4-3-5	12,4

Suponha $\rho = 0.5$

$$\tau_{3,5} = (1 - \rho)\tau_{ij} + \Delta \tau_{3,5}^{(1)} + \Delta \tau_{3,5}^{(2)} + \Delta \tau_{3,5}^{(5)}$$

$$= (1 - 0,5)1,0 + 0,102 + 0,102 + 0,081$$

$$= 0,785$$

Critérios de Parada

• Número máximo de iterações;

Estagnação.

Estagnação

- Estagnação é a situação na qual todas as formigas seguem sempre o mesmo percurso.
- A Estagnação é causado pelo excessivo crescimento de feromônio nas arestas de uma rota sub-ótima.

Estagnação

 Apesar da natureza estocástica do algoritmo, a forte concentração de feromônio nas arestas força a formiga a fazer sempre o mesmo percurso.

Distribuição de feromônio no inicio da busca.

Distribuição de feromônio após 100 iterações.

Procedimento Ant System

Algoritmo AntSystem

- 1: Seja Q e τ_0 constantes; Faça $f(s^*) \leftarrow \infty$;
- 2: Faça $\Delta \tau_{ij} \leftarrow 0$ e $\tau_{ij} \leftarrow \tau_0$ para todo arco (i, j);
- 3: **Para** (cada formiga k = 1,...,m) **faça**
 - (a) Selecione a cidade inicial para a *k*-ésima formiga;
 - (b) Obtenha uma rota R^k para cada formiga k de acordo com o procedimento seguido por cada formiga;
 - (c) Seja L^k o comprimento da rota R^k ;
 - (d) Se ($L^k < f(s^*)$) então $s^* \leftarrow R^k$;
 - (e) Calcule a quantidade de rastro deixado pela formiga *k*:

```
se ( arco (i, j) pertence à rota \mathbb{R}^k )
então \Delta \tau_{ij} \leftarrow \mathbb{Q} / \mathbb{L}^k;
senão \Delta \tau_{ij} \leftarrow 0;
```

(f) Faça $\Delta \tau_{ii} \leftarrow \Delta \tau_{ij} + \Delta \tau_{ij}(k)$;

- 4: Faça $\tau_{ij} \leftarrow (1-\rho) \times \tau_{ij} + \Delta \tau_{ij}$;
- 5: **se** (a melhor rota s* não foi alterada nas últimas k_{max} iterações) **então** PARE: s* é a melhor solução; **senão** retorne ao Passo 3;

Ant Colony Optimization (ACO)

- Proposta por Dorigo e Gambardella (1997)
- Objetivo: Transformar a heurística Ant System em uma metaheurística.
- Através de elitismo, faz uso de mais intensificação do que o AS;
- Apenas a formiga "best-so-far" deposita feromônio;
- As formigas removem feromônio para aumentar a diversificação.

Semelhanças entre formigas reais e artificiais

- Ambos os sistemas são constituídos por múltiplos agentes cooperando entre si;
- Ambos os sistemas utilizam um fator de cooperação, através do qual acontece a sinergia entre os agentes (feromônio). O feromônio representa a informação coletiva, e é essencial no desenvolvimento de ambos os sistemas. Ocorre também a evaporação do feromônio, o que permite às formigas a possibilidade de explorarem novos horizontes;
- Os agentes dividem a mesma função em ambos os sistemas: buscar o menor caminho entre uma origem (ninho) e um destino (alimento);
- O comportamento estocástico e local dos agentes na busca por soluções. Não há, em ambos agentes, a visão supra adjacente.

Diferenças entre formigas reais e artificiais

- As formigas artificiais possuem movimentação discreta, sendo que seus movimentos consistem em origens e destinos discretos;
- Existe, nas formigas artificiais, um estado interno ou memória, para que não haja sobreposição de movimentos;
- O depósito de feromônio no mundo artificial ocorre com base na qualidade da solução encontrada;
- Diferentemente do mundo real, onde formigas depositam feromônio sob demanda.
- Aproximação para o modelo computacional: formigas deixam o feromônio em cada arco visitado após chegar ao destino (na vida real as formigas deixam o feromônio durante o movimento e não após chegar ao seu destino)

(Otimização de Nuvem de Partículas)

(Bando de Pássaros)

- Otimização de Nuvem de Partículas: desenvolvida por James Kennedy (psicólogo) e Russell Eberhart (engenheiro elétrico) em 1995.
 - J. Kennedy, and R. Eberhart, *Particle swarm optimization*, in Procedures of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948, 1995.
- Inspirado no comportamento e na dinâmica dos movimentos dos pássaros, insetos e peixes;
- Originalmente desenvolvido para problemas de otimização com variáveis contínuas;
- Desempenho similar ao dos Algoritmos Genéticos;

• Estudos apontam que um bando de pássaros encontra alimento por meio de esforço conjunto. Isto sugere que eles compartilham informações.

- A coreografia estética de um bando de pássaros em vôo chamou a atenção de zoologistas e cientistas da computação.
- Dúvida: Quais as regras empregadas pelos pássaros para estarem voando sincronamente e, mudarem de direção repentinamente, espalhando-se e reagrupando-se em seguida?
- Solução: Modelos baseados em manipulação de distâncias entre indivíduos têm sido criados, acreditando que o comportamento do bando é um esforço dos pássaros para manter uma distância ótima entre todos os elementos desse bando.

- Um bando de pássaros otimiza certa função objetivo.
- Consideremos uma função objetivo com duas variáveis (x e y).
- Cada agente conhece seu melhor valor até o momento (pbest) e sua posição XY. Essa informação é a experiência pessoal.
- Além disso, cada agente conhece o melhor valor do grupo até o momento (gbest) entre todos os pbest. Essa informação o é a experiência do grupo.

- Cada agente tenta modificar sua posição considerando as seguintes informações:
 - a posição corrente (x, y)
 - a velocidade corrente (v_x, v_y)
 - a distância entre a sua posição corrente e pbest
 - a distância entre a sua posição corrente e gbest
- Uma nova posição é definida pela aplicação do operador velocidade.
 A velocidade de cada agente é calculada pela seguinte equação:

$$v_i^{k+1} = c1.v_i^k + c2.rand_1 * (pbest_i - s_i^k) + c3.rand2 * (gbest - s_i^k)$$

- Os parâmetros c1, c2, c3 podem representar coeficientes cognitivo-sociais refletindo:
 - c1: o quanto a partícula confia em si mesma;
 - c2: o quanto a partícula confia em sua experiência;
 - c3: o quanto a partícula confia em seus vizinhos.

No início as partículas "voam" aleatoriamente pelo espaço de busca.

Vantagens

- Insensível a mudança de escala das variáveis;
- Implementação simples;
- Adaptável a computadores paralelos;
- Não requer cálculo de derivadas;
- Poucos parâmetros para serem definidos pelo usuário;
- Bom para encontrar o mínimo global;

Desvantagens

 Rápido para localizar a bacia de atração das boas soluções, mas lento no ajuste fino da solução (como nos algoritmos genéticos).

Referências

- Página sobre Ant Colony Optimization, desenvolvida por Marco Dorigo: http://iridia.ulb.ac.be/~mdorigo/ACO/index.html
- Página sobre Particle Swarm Optimization (PSO): http://www.swarmintelligence.org/

Conteúdo

C01 – Simulated Annealing (20/11/07).

C02 – Busca Tabu (22/11/07).

C03 – Colônia de Formigas (27/11/07).

C04 - GRASP e VNS (29/11/07).

C05 – Metaheurísticas Híbridas – CS (04/12/07).