# POSCAT Seminar 8 : Dynamic Programming 2

yougatup @ POSCAT



# Topic

- Topic today
  - Dynamic Programming
    - Longest Palindrome
    - Team Division



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

babacvabba



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

babacvabba



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

babacvabba

1. Define the Table



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

**b** a **b** a **c** v a **b** b a

#### 1. Define the Table

let T(i,j) = the length of longest palindrome on  $a_i \sim a_j$ 



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

b a b a c v a b b a

2. Find a recurrence relation



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

**b** a **b** a **c** v a **b** b a

2. Find a recurrence relation

Consider the case when  $a_i = a_i$  or not



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

### **b** a **b** a **c** v a **b** b a

2. Find a recurrence relation



### Problem

A palindrome is a word that reads the same forward or reversed Given string, find the length of longest palindrome among the subsequence.

**b** a **b** a **c** v a **b** b a

3. Calculate!

Think carefully about the filling direction



### Problem

```
For example, let m = 3
1 2 5 3 4 2 6 7 3 4
```



### Problem

```
For example, let m = 3
1 2 / 5 3 4 2 6 / 7 3 4
```



### Problem

```
For example, let m = 3
1 \ 2 / 5 \ 3 \ 4 \ 2 \ 6 / 7 \ 3 \ 4
3 \ 20 \ 14
```



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

```
For example, let m = 3
1 \ 2 / 5 \ 3 \ 4 \ 2 \ 6 / 7 \ 3 \ 4
3 \ 20 \ 14
```

∴ we get 20



### Problem

```
For example, let m = 3
1 2 5 3 / 4 2 6 / 7 3 4
```



### Problem

```
For example, let m = 3
1 \quad 2 \quad 5 \quad 3 \quad 4 \quad 2 \quad 6 \quad 7 \quad 3 \quad 4
11 \qquad 12 \qquad 14
```



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

For example, let 
$$m = 3$$

$$1 \quad 2 \quad 5 \quad 3 \quad / \quad 4 \quad 2 \quad 6 \quad / \quad 7 \quad 3 \quad 4$$

$$11 \qquad 12 \qquad 14$$

 $\therefore$  we get 14  $\rightarrow$  much better!



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

1. Define the Table



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

1. Define the Table

T(i,j) =the minimum value when we divide  $a_1 \sim a_j$  into i chunks



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

2. Find a recurrence relation



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

2. Find a recurrence relation

$$T(i,j) = \min(\max(T(i-1,k),Cost(k+1,j)))$$
 for all  $i \le k \le j$ 

After making i-1 chunks from  $a_1 \sim a_k$ , make ONE chunk as  $a_{k+1} \sim a_j$  for all possible k.



### Problem

Suppose that we can divide n numbers into m chunks. Minimize the maximum value of sum of each chunk.

3. Calculate!

