Dimensionality Reduction

UV Decomposition
Singular-Value Decomposition
CUR Decomposition

Jeffrey D. Ullman Stanford University

Reducing Matrix Dimension

- Often, our data can be represented by an m-by-n matrix.
- And this matrix can be closely approximated by the product of two matrices that share a small common dimension r.

Why Is That Even Possible?

- There are hidden, or latent factors that to a close approximation – explain why the values are as they appear in the matrix.
- Two kinds of data may exhibit this behavior:
 - 1. Matrices representing a many-many-relationship.
 - Matrices that are really a relation (as in a relational database).

Matrices as Relationships

- Our data can be a many-many relationship in the form of a matrix.
 - Example: people vs. movies; matrix entries are the ratings given to the movies by the people.
 - Example: students vs. courses; entries are the grades.
 Column for

Matrices as Relationships — (2)

- Often, the relationship can be explained closely by latent factors.
 - Example: genre of movies or books.
 - I.e., Joe liked Star Wars because Joe likes science-fiction, and Star Wars is a science-fiction movie.
 - Example: good at math?

Matrices as Relational Data

- Another closely related form of data is a collection of rows (tuples), each representing one entity.
- Columns represent attributes of these entities.
- Example: Stars can be represented by their mass, brightness in various color bands, diameter, and several other properties.
- But it turns out that there are only two independent variables (latent factors): mass and age.

Example: Stars

Star	Mass	Luminosity	Color	Age
Sun	1.0	1.0	Yellow	4.6B
Alpha Centauri	1.1	1.5	Yellow	5.8B
Sirius A	2.0	25	White	0.25B

The matrix

D-Dimensional Data Lying Close to a d-Dimensional Subspace

Intuition

- The axes of the subspace can be chosen by:
 - The first dimension is the direction in which the points exhibit the greatest variance.
 - The second dimension is the direction, orthogonal to the first, in which points show the greatest variance.
 - And so on..., until you have "enough" dimensions.

UV Decomposition

The simplest form of matrix decomposition is to find a pair of matrixes, the first (U) with few columns and the second (V) with few rows, whose product is close to the given matrix M.

Latent Factors

- This decomposition works well if r is the number of "hidden factors" that explain the matrix M.
- Example: m_{ij} is the rating person i gives to movie j; u_{ik} measures how much person i likes genre k; v_{kj} measures the extent to which movie j belongs to genre k.

Measuring the Error

- Common way to evaluate how well P = UV approximates M is by RMSE (root-mean-square error).
- Average $(m_{ij} p_{ij})^2$ over all i and j.
- Take the square root.
 - Square-rooting changes the scale of error, but doesn't really effect which choice of U and V is best.

Example: RMSE

Optimizing U and V

- Pick r, the number of latent factors.
- Think of U and V as composed of variables, u_{ik} and v_{ki} .
- Express the RMSE as (the square root of) $E = \sum_{ij} (m_{ij} - \sum_{k} u_{ik} v_{kj})^{2}.$
- Gradient descent: repeatedly find the derivative of E with respect to each variable and move each a small amount in the direction that lowers the value of E.
 - Many options more later in the course.

Local Versus Global Minima

- Expressions like this usually have many minima.
- Seeking the nearest minimum from a starting point can trap you in a local minimum, from which no small improvement is possible.

Avoiding Local Minima

- Use many different starting points, chosen at random, in the hope that one will be close enough to the global minimum.
- Simulated annealing: occasionally try a leap to someplace further away in the hope of getting out of the local trap.
 - Intuition: the global minimum might have many nearby local minima.
 - As Mt. Everest has most of the world's tallest mountains in its vicinity.

Application: Recommendations

- UV decomposition can be used even when the entire matrix M is not known.
- Example: recommendation systems, where M represents known ratings of movies (e.g.) by people.
- Jure will cover recommendation systems next week.

Singular-Value Decomposition

Rank of a Matrix
Orthonormal Bases
Eigenvalues/Eigenvectors
Computing the Decomposition
Eliminating Dimensions

Why SVD?

- Gives a decomposition of any matrix into a product of three matrices.
- There are strong constraints on the form of each of these matrices.
 - Results in a decomposition that is essentially unique.
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the RMSE error given that value of r.

Rank of a Matrix

- The rank of a matrix is the maximum number of rows (or equivalently columns) that are linearly independent.
 - I.e., no nontrivial sum is the all-zero vector.
- Example: No two rows dependent.
 - One would have to be a multiple of the other.
- But any 3 rows are dependent.
 - Example: First + third twice the second = [0,0,0].
- Similarly, the 3 columns are dependent.
- Therefore, rank = 2.

Important Fact About Rank

- If a matrix has rank r, then it can be decomposed exactly into matrices whose shared dimension is r.
- Example, in Sect. 11.3 of MMDS, of a 7-by-5 matrix with rank 2 and an exact decomposition into a 7-by-2 and a 2-by-5 matrix.

Orthonormal Bases

- Vectors are orthogonal if their dot product is 0.
- Example: [1,2,3].[1,-2,1] = 0, so these two vectors are orthogonal.
- A unit vector is one whose length is 1.
 - Length = square root of sum of squares of components.
 - No need to take square root if we are looking for length = 1.
- Example: [0.8, -0.1, 0.5, -0.3, 0.1] is a unit vector, since 0.64 + 0.01 + 0.25 + 0.09 + 0.01 = 1.
- An orthonormal basis is a set of unit vectors any two of which are orthogonal.

Example: Columns Are Orthonormal

3/√116	1/2	$7/\sqrt{116}$	1/2
3/√116	-1/2	7/√ 11 6	-1/2
7/√ 116	1/2	-3/√ 11 6	-1/2
7/√ 116	-1/2	-3/\(\sqrt{116}\)	1/2

Form of SVD

Special conditions:

U and V are column-orthonormal (so V^T has orthonormal rows)

 Σ is a diagonal matrix

Facts About SVD

- The values of Σ along the diagonal are called the *singular values*.
- It is always possible to decompose M exactly, if r is the rank of M.
- But usually, we want to make r much smaller, and we do so by setting to 0 the smallest singular values.
 - Which has the effect of making the corresponding columns of U and V useless, so they may as well not be there.

Linkage Among Components of U, V, Σ

Each Singular Value Affects One Column of U and V

$$\mathbf{A} pprox \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^{\mathsf{T}}$$

If we set $\sigma_2 = 0$, then the green columns may as well not exist.

 σ_i ... scalar u_i ... vector v_i ... vector

Jure's Example Decomposition

- The following is Example 11.9 from MMDS.
- It modifies the simpler Example 11.8, where a rank-2 matrix can be decomposed exactly into a 7-by-2 U and a 5-by-2 V.

■ A = U Σ V^T - example: Users to Movies

	Matrix	Alien	Sereni	Casabl	Ameli				
	1	1	1	0	0		0.13	0.02	-0.0
l SciFi	3	3	3	0	0		0.41	0.02 0.07	-0.0
↓	4	4	4	0	0		0.55	0.09	-0.0
V	5	5	5	0	0	=	0.68	0.11 -0.59	-0.0
	0	2	0	4	4				
ा Romnce	0	0	0	5	5		0.07	-0.73	-0.6
\downarrow	0	1	0	2	2		0.07	-0.29	0.3

- $A = U \Sigma V^T$ - example: Users to Movies

12 -0.02 0.12 **-0.69 -0.69** 40 **-0.80** 0.40 0.09 0.09

• $A = U \Sigma V^T$ - example:

U is "user-to-concept" similarity matrix

• $A = U \Sigma V^T$ - example:

**strength" of the SciFi-concept

(12.4) 0 0 0 0 0 9.5 0 0 0 1.3

• $A = U \Sigma V^T$ - example:

V is "movie-to-concept" similarity matrix

$$\begin{array}{c|cccc}
\mathbf{12.4} & 0 & 0 \\
0 & \mathbf{9.5} & 0 \\
0 & 0 & \mathbf{1.3}
\end{array}$$

0.56) **0.59 0.56** 0.09 0.09 0.12 -0.02 0.12 **-0.69 -0.69** 0.40 **-0.80** 0.40 0.09 0.09

3

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero

```
      1
      1
      1
      0
      0

      3
      3
      3
      0
      0

      4
      4
      4
      0
      0

      5
      5
      5
      0
      0

      0
      2
      0
      4
      4

      0
      0
      0
      5
      5

      0
      1
      0
      2
      2
```

 \approx

```
      0.92
      0.95
      0.92
      0.01
      0.01

      2.91
      3.01
      2.91
      -0.01
      -0.01

      3.90
      4.04
      3.90
      0.01
      0.01

      4.82
      5.00
      4.82
      0.03
      0.03

      0.70
      0.53
      0.70
      4.11
      4.11

      -0.69
      1.34
      -0.69
      4.78
      4.78

      0.32
      0.23
      0.32
      2.01
      2.01
```

Frobenius Norm and Approximation Error

- The Frobenius norm of a matrix is the square root of the sum of the squares of its elements.
- The error in an approximation of one matrix by another is the Frobenius norm of the difference.
 - Same as the RMSE.
- Important fact: The error in the approximation of a matrix by SVD, subject to picking r singular values, is minimized by zeroing all but the largest r singular values.

Energy

- So what's a good value for r?
- Let the energy of a set of singular values be the sum of their squares.
- Pick r so the retained singular values have at least 90% of the total energy.
- Example: With singular values 12.4, 9.5, and 1.3, total energy = 245.7.
- If we drop 1.3, whose square is only 1.7, we are left with energy 244, or over 99% of the total.
- But also dropping 9.5 leaves us with too little.

Finding Eigenpairs

- We want to describe how the SVD is actually computed.
- Essential is a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix.
 - M is symmetric if m_{ij} = m_{ji} for all i and j.
- Start with any "guess eigenvector" x₀.
- Construct $\mathbf{x}_{k+1} = \mathbf{M}\mathbf{x}_k / ||\mathbf{M}\mathbf{x}_k||$ for k = 0, 1,...
 - | | | ... | | denotes the Frobenius norm.
- Stop when consecutive \mathbf{x}_k 's show little change.

Example: Iterative Eigenvector

$$M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{Mx_0}{\|Mx_0\|} = \frac{3}{5} / \sqrt{34} = \frac{0.51}{0.86} = x_1$$

$$\frac{Mx_1}{\|Mx_1\|} = \frac{2.23}{3.60} / \sqrt{17.93} = \frac{0.53}{0.85} = x_2$$

Finding the Principal Eigenvalue

- Once you have the principal eigenvector \mathbf{x} , you find its eigenvalue λ by $\lambda = \mathbf{x}^T \mathbf{M} \mathbf{x}$.
- In proof: $\mathbf{x}\lambda = \mathbf{M}\mathbf{x}$ for this λ , since $\mathbf{x} \mathbf{x}^T \mathbf{M}\mathbf{x} = \mathbf{M}\mathbf{x}$.
 - Why? \mathbf{x} is a unit vector, so $\mathbf{x} \mathbf{x}^T = 1$.
- **Example:** If we take $\mathbf{x}^{T} = [0.54, 0.87]$, then $\lambda =$

$$\begin{bmatrix} 0.53 & 0.85 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} = 4.25$$

Finding More Eigenpairs

- Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and \mathbf{x} .
- $\mathbf{M}^* := \mathbf{M} \lambda \mathbf{x} \mathbf{x}^\mathsf{T}.$
- Recursively find the principal eigenpair for M*, eliminate the effect of that pair, and so on.
- Example:

$$M* = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} -4.25 \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} [0.53 \ 0.85] = \begin{bmatrix} -0.19 \ 0.09 \ 0.09 \end{bmatrix}$$

How to Compute the SVD

- Start by supposing $M = U\Sigma V^{T}$.
- $M^{\mathsf{T}} = (\mathsf{U}\Sigma\mathsf{V}^{\mathsf{T}})^{\mathsf{T}} = (\mathsf{V}^{\mathsf{T}})^{\mathsf{T}}\Sigma^{\mathsf{T}}\mathsf{U}^{\mathsf{T}} = \mathsf{V}\Sigma\mathsf{U}^{\mathsf{T}}.$
 - Why? (1) Rule for transpose of a product (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity function.
- $M^{\mathsf{T}}M = V\Sigma U^{\mathsf{T}}U\Sigma V^{\mathsf{T}} = V\Sigma^{2}V^{\mathsf{T}}.$
 - Why? U is orthonormal, so U^TU is an identity matrix.
 - Also note that Σ^2 is a diagonal matrix whose i-th element is the square of the i-th element of Σ .
- $M^{\mathsf{T}}MV = V\Sigma^{2}V^{\mathsf{T}}V = V\Sigma^{2}.$
 - Why? V is also orthonormal.

Computing the SVD –(2)

- Starting with $M^TMV = V\Sigma^2$, note that therefore the i-th column of V is an eigenvector of M^TM , and its eigenvalue is the i-th element of Σ^2 .
- Thus, we can find V and Σ by finding the eigenpairs for M^TM .
 - Once we have the eigenvalues in Σ^2 , we can find the singular values by taking the square root of these eigenvalues.
- Symmetric argument, starting with MM^T, gives us U.

CUR Decomposition

The Sparsity Issue Picking Random Rows and Columns

Sparsity

- It is common for the matrix M that we wish to decompose to be very sparse.
- But U and V from a UV or SVD decomposition will not be sparse even so.
- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of M.

Form of CUR Decomposition

r chosen as you like.

C = randomly chosen columns of M.

R = randomly chosen rows of M

U is tricky – more about this.

Construction of U

- U is r-by-r, so it is small, and it is OK if it is dense and complex to compute.
- Start with W = intersection of the r columns chosen for C and the r rows chosen for R.
- Compute the SVD of W to be $X\Sigma Y^T$.
- Compute Σ^+ , the *Moore-Penrose inverse* of Σ .
 - Definition, next slide.
- $U = Y(\Sigma^+)^2 X^T.$

Moore-Penrose Inverse

- If Σ is a diagonal matrix, its More-Penrose inverse is another diagonal matrix whose i-th entry is:
 - $1/\sigma$ if σ is not 0.
 - 0 if σ is 0.
- Example:

Which Rows and Columns?

- To decrease the expected error between M and its decomposition, we must pick rows and columns in a nonuniform manner.
- The *importance* of a row or column of M is the square of its Frobinius norm.
 - That is, the sum of the squares of its elements.
- When picking rows and columns, the probabilities must be proportional to importance.
- Example: [3,4,5] has importance 50, and [3,0,1] has importance 10, so pick the first 5 times as often as the second.