东北大学《数值分析》2016-2017 学年第一学期期末试卷甲

- 一、填空题(每小题3分,共30分)
- 1. 有3个不同节点的高斯求积公式的代数精度是 次的.

- 3. 已知 y=f(x)的均差(差商) $f[x_0,x_1,x_2]=\frac{14}{3}$, $f[x_1,x_2,x_3]=\frac{15}{3}$, $f[x_2,x_3,x_4]=\frac{91}{15}$, $f[x_0,x_2,x_3]=\frac{8}{3}$,那么均差 $f[x_4,x_2,x_3]=$ ______.
- 4. 已知 n=4 时 Newton-Cotes 求积公式的系数分别是: $C_0^{(4)} = \frac{7}{90}$, $C_1^{(4)} = \frac{16}{45}$, $C_2^{(4)} = \frac{2}{15}$, 则 $C_3^{(4)} =$ ______.
- 6. 求解线性代数方程组 $\begin{cases} 5x_1-3x_2-0.1x_3=3\\ -2x_1+6x_2+0.7x_3=2 \text{ 的高斯—塞德尔迭代公式为} \\ x_1+2x_2+3.5x_3=1 \end{cases}$

若取 $\vec{\boldsymbol{x}}^{(0)} = (1,-1,1)$,则 $\vec{\boldsymbol{x}}^{(1)} = \underline{\hspace{1cm}}$

- 7. 求方程x = f(x)根的牛顿迭代格式是______.
- 8. $\ell_0(x)$, $\ell_1(x)$,..., $\ell_n(x)$ 是以整数点 x_0 , x_1 ,..., x_n , 为节点的 Lagrange 插值基函数,则 $\sum_{k=0}^n x_k \ell_j(x_k) = \underline{\hspace{1cm}}.$
- 9. 解方程组 Ax = b 的简单迭代格式 $x^{(k+1)} = Bx^{(k)} + g$ 收敛的充要条件是______.
- 10. 设 f(-1)=1, f(0)=0, f(1)=1, f(2)=5 ,则 f(x) 的三次牛顿插值多项式为______.
- 二、综合题 (每题 10 分, 共 60 分)
- 1. 求一次数不超过 4 次的多项式 p(x) 满足: p(1) = 15, p'(1) = 20, p''(1) = 30 p(2) = 57, p'(2) = 72.

- 2. 构造代数精度最高的形式为 $\int_0^1 x f(x) dx \approx A_0 f(\frac{1}{2}) + A_1 f(1)$ 的求积公式,并求出其代数精度.
- 3. 用 Newton 法求方程 $x \ln x = 2$ 在区间 (2, ∞) 内的根,要求 $\frac{|x_k x_{k-1}|}{|x_k|} < 10^{-8}$.
- 4. 用最小二乘法求形如 $y = a + bx^2$ 的经验公式拟合以下数据:

x_i	19	25	30	38
y_i	19.0	32.3	49.0	73.3

5. 用矩阵的直接三角分解法解方程组

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 4 & 3 \\ 0 & 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 17 \\ 7 \end{bmatrix}.$$

6 试用数值积分法建立求解初值问题 $\begin{cases} y' = f(x,y) \\ y(0) = y_0 \end{cases}$ 的如下数值求解公式

$$y_{n+1} = y_{n-1} + \frac{h}{3}(f_{n+1} + 4f_n + f_{n-1}),$$

其中 $f_i = f(x_i, y_i)$, i = n-1, n, n+1.

三、证明题 (10分)

设对任意的x,函数f(x)的导数f'(x)都存在且 $0 < m \le f'(x) \le M$,对于满足 $0 < \lambda < \frac{2}{M}$ 的任意 λ ,迭代格式 $x_{k+1} = x_k - \lambda f(x_k)$ 均收敛于f(x) = 0的根 x^* .

一、填空题

1. 5; 2. 8,9; 3.
$$\frac{91}{15}$$
; 4. $\frac{16}{45}$; 5. Ξ ;
$$\begin{cases} x_1^{(k+1)} = (3+3x_2^{(k)}+0.1x_3^{(k)})/5\\ x_2^{(k+1)} = (2+2x_1^{(k+1)}-0.7x_3^{(k)})/6\\ x_3^{(k+1)} = (1-x_1^{(k+1)}-2x_2^{(k+1)})*2/7 \end{cases}$$

7.
$$x_{k+1} = x_k - \frac{x_k - f(x_k)}{1 - f'(x_k)}$$
; 8. x_j ; 9. $\rho(B) < 1$;

10.
$$\frac{1}{6}x^3 + x^2 - \frac{1}{6}x$$
, $f^{(4)}(\xi)(x+1)x(x-1)(x-2)/24$ $\xi \in (-1,2)$

- 二、综合题
- 1. 差商表:

$$p(x) = 15 + 20(x-1) + 15(x-1)^2 + 7(x-1)^3 + (x-1)^3(x-2) = 5 + 4x + 3x^2 + 2x^3 + x^4$$

其他方法:

设
$$p(x) = 15 + 20(x-1) + 15(x-1)^2 + 7(x-1)^3 + (x-1)^3(ax+b)$$

令
$$p(2) = 57$$
, $p'(2) = 72$, 求出 a 和 b.

2. 取 f(x)=1,x,令公式准确成立,得:

$$A_0 + A_1 = \frac{1}{2}$$
, $\frac{1}{2}A_0 + A_1 = \frac{1}{3}$, $A_0 = \frac{1}{3}$, $A_1 = \frac{1}{6}$.
$$f(x) = x^2 \text{ 时,公式左右} = \frac{1}{4}; \quad f(x) = x^3 \text{ 时,公式左} = \frac{1}{5}, \text{公式右} = \frac{5}{24}$$

- ∴ 公式的代数精度=2.
- 3. 此方程在区间 $(2, \infty)$ 内只有一个根 s ,而且在区间 (2, 4) 内。设 $f(x) = x \ln x 2$

则
$$f'(x) = 1 - \frac{1}{x}$$
, $f''(x) = \frac{1}{x^2}$, Newton 法迭代公式为

$$x_{k+1} = x_k - \frac{x_k - \ln x_k - 2}{1 - 1/x_k} = \frac{x_k (1 + \ln x_k)}{x_k - 1}, \quad k = 0, 1, 2, \dots$$

取
$$x_0 = 3$$
,得 $s \approx x_4 = 3.146193221$ 。

4.
$$\Phi = span\{1, x^2\}$$
, $A^T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 19^2 & 25^2 & 30^2 & 38^2 \end{bmatrix}$, $y^T = \begin{bmatrix} 19.0 & 32.3 & 49.0 & 73.3 \end{bmatrix}$.

解方程组
$$A^T A C = A^T y$$
, 其中 $A^T A = \begin{bmatrix} 4 & 3330 \\ 3330 & 3416082 \end{bmatrix}$,

解得:
$$C = \begin{bmatrix} 1.41665 \\ 0.0504305 \end{bmatrix}$$

所以 a = 0.9255577 , b = 0.0501025 .

5. 解设

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 4 & 3 \\ 0 & 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 0 \\ u_{22} & u_{23} & u_{24} \\ & & u_{33} & u_{34} \\ & & & u_{44} \end{bmatrix}$$

由矩阵乘法可求出 u_{ij} 和 l_{ij}

$$\begin{bmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 0 & 1 & & \\ 1 & 2 & 1 & \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ u_{22} & u_{23} & u_{24} \\ u_{33} & u_{34} \\ & & & u_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ & 1 & 0 & 1 \\ & & 2 & 1 \\ & & & 2 \end{bmatrix}$$

解下三角方程组
$$\begin{bmatrix} 1 & & & \\ 0 & 1 & & \\ 1 & 2 & 1 & \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 17 \\ 7 \end{bmatrix}$$

有 $y_1 = 5$, $y_2 = 3$, $y_3 = 6$, $y_4 = 4$.

再解上三角方程组
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ & 1 & 0 & 1 \\ & & 2 & 1 \\ & & & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 6 \\ 4 \end{bmatrix}$$

得原方程组的解为 $x_1 = 1$, $x_2 = 1$, $x_3 = 2$, $x_4 = 2$.

6 解 初值问题等价于如下形式 $y(x) = y(x_{n-1}) + \int_{x_{n-1}}^{x} f(x, y(x)) dx$,

取
$$x = x_{n+1}$$
,有 $y(x_{n+1}) = y(x_{n-1}) + \int_{x_{n-1}}^{x_{n+1}} f(x, y(x)) dx$,

利用辛卜森求积公式可得 $y_{n+1} \approx y_{n-1} + \frac{h}{3} (f_{n+1} + 4f_n + f_{n-1})$.

三、证明题

证明 将 f(x) = 0 写成 $x = x - \lambda f(x)$ $\varphi(x)$,

由于
$$\varphi'(x) = [x - \lambda f(x)]' = 1 - \lambda f'(x)$$
, 所以 $|\varphi'(x)| = |1 - \lambda f'(x)| < 1$

所以迭代格式 $x_{k+1} = x_k - \lambda f(x_k)$ 均收敛于 f(x) = 0 的根 x^* .