

Europäisches Patentamt
European Patent Office
Office européen des brevets

US

15018-101

(19)

Publication number:

0088601
A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 83301163.8

(51) Int. Cl.: G 01 N 35/04

(22) Date of filing: 04.03.83

(30) Priority: 04.03.82 US 354859

(71) Applicant: EASTMAN KODAK COMPANY, Patent Department 343 State Street, Rochester, New York 14650 (US)

DOC

(43) Date of publication of application: 14.09.83
Bulletin 83/37

(72) Inventor: Jakubowicz, Raymond Francis, 256 Fishell Road, Rush New York 14543 (US)

(84) Designated Contracting States: DE FR GB

(74) Representative: Pepper, John Herbert et al, KODAK LIMITED Patent Department P.O. Box 114 190 High Holborn, London WC1V 7EA (GB)

(54) Analyzer for chemical analysis of a liquid.

(57) An analyzer (10) is disclosed which comprises an incubator (50) which is adapted to receive a stack (S) of test elements (E). A loading member (60) is adapted to move test elements (E) onto the stack (S) in incubator (50), and an unloading member (80) is adapted to remove test elements (E) from stack (S) and deliver them to a detector (110). In order to provide a linear path for the test elements (E) as they are moved through analyzer (10), a common drive means (100) is coupled to members (60) and (80). The drive means (100) is continuously coupled to members (60) and (80) in a manner such that the members (60) and (80) are operable one at a time to sequentially load and unload incubator (50).

CIS//G6IN 35/00C1, 35/00CS, 35/00E1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
331100
331101
331102
331103
331104
331105
331106
331107
331108
331109
331110
331111
331112
331113
331114
331115
331116
331117
331118
331119
3311100
3311101
3311102
3311103
3311104
3311105
3311106
3311107
3311108
3311109
3311110
3311111
3311112
3311113
3311114
3311115
3311116
3311117
3311118
3311119
33111100
33111101
33111102
33111103
33111104
33111105
33111106
33111107
33111108
33111109
33111110
33111111
33111112
33111113
33111114
33111115
33111116
33111117
33111118
33111119
331111100
331111101
331111102
331111103
331111104
331111105
331111106
331111107
331111108
331111109
331111110
331111111
331111112
331111113
331111114
331111115
331111116
331111117
331111118
331111119
3311111100
3311111101
3311111102
3311111103
3311111104
3311111105
3311111106
3311111107
3311111108
3311111109
3311111110
3311111111
3311111112
3311111113
3311111114
3311111115
3311111116
3311111117
3311111118
3311111119
33111111100
33111111101
33111111102
33111111103
33111111104
33111111105
33111111106
33111111107
33111111108
33111111109
33111111110
33111111111
33111111112
33111111113
33111111114
33111111115
33111111116
33111111117
33111111118
33111111119
331111111100
331111111101
331111111102
331111111103
331111111104
331111111105
331111111106
331111111107
331111111108
331111111109
331111111110
331111111111
331111111112
331111111113
331111111114
331111111115
331111111116
331111111117
331111111118
331111111119
3311111111100
3311111111101
3311111111102
3311111111103
3311111111104
3311111111105
3311111111106
3311111111107
3311111111108
3311111111109
3311111111110
3311111111111
3311111111112
3311111111113
3311111111114
3311111111115
3311111111116
3311111111117
3311111111118
3311111111119
33111111111100
33111111111101
33111111111102
33111111111103
33111111111104
33111111111105
33111111111106
33111111111107
33111111111108
33111111111109
33111111111110
33111111111111
33111111111112
33111111111113
33111111111114
33111111111115
33111111111116
33111111111117
33111111111118
33111111111119
331111111111100
331111111111101
331111111111102
331111111111103
331111111111104
331111111111105
331111111111106
331111111111107
331111111111108
331111111111109
331111111111110
331111111111111
331111111111112
331111111111113
331111111111114
331111111111115
331111111111116
331111111111117
331111111111118
331111111111119
3311111111111100
3311111111111101
3311111111111102
3311111111111103
3311111111111104
3311111111111105
3311111111111106
3311111111111107
3311111111111108
3311111111111109
3311111111111110
3311111111111111
3311111111111112
3311111111111113
3311111111111114
3311111111111115
3311111111111116
3311111111111117
3311111111111118
3311111111111119
33111111111111100
33111111111111101
33111111111111102
33111111111111103
33111111111111104
33111111111111105
33111111111111106
33111111111111107
33111111111111108
33111111111111109
33111111111111110
33111111111111111
33111111111111112
33111111111111113
33111111111111114
33111111111111115
33111111111111116
33111111111111117
33111111111111118
33111111111111119
331111111111111100
331111111111111101
331111111111111102
331111111111111103
331111111111111104
331111111111111105
331111111111111106
331111111111111107
331111111111111108
331111111111111109
331111111111111110
331111111111111111
331111111111111112
331111111111111113
331111111111111114
331111111111111115
331111111111111116
331111111111111117
331111111111111118
331111111111111119
3311111111111111100
3311111111111111101
3311111111111111102
3311111111111111103
3311111111111111104
3311111111111111105
3311111111111111106
3311111111111111107
3311111111111111108
3311111111111111109
3311111111111111110
3311111111111111111
3311111111111111112
3311111111111111113
3311111111111111114
3311111111111111115
3311111111111111116
3311111111111111117
3311111111111111118
3311111111111111119
33111111111111111100
33111111111111111101
33111111111111111102
33111111111111111103
33111111111111111104
33111111111111111105
33111111111111111106
33111111111111111107
33111111111111111108
33111111111111111109
33111111111111111110
33111111111111111111
33111111111111111112
33111111111111111113
33111111111111111114
33111111111111111115
33111111111111111116
33111111111111111117
33111111111111111118
33111111111111111119
331111111111111111100
331111111111111111101
331111111111111111102
331111111111111111103
331111111

-1-

ANALYZER FOR CHEMICAL ANALYSIS OF A LIQUID

The present invention relates to an analyzer for the chemical analysis of substances, known as analytes, in liquids. More specifically, 5 the invention relates to an analyzer having apparatus for automatically advancing a test element through such an analyzer.

U.S.-A- 4,303,611, describes an analyzer 10 having an incubator for generally flat test elements in which the test elements are supported in the incubator in a vertical stack with adjacent test elements resting against each other. Such an arrangement has produced a greatly simplified 15 analyzer in which the loss of gases from the test elements during incubation is substantially reduced.

Although significant advantages are obtained by the disclosed arrangement, there is a problem in that one mechanism is required to load 20 test elements onto the top of the stack in the incubator and a separately-driven mechanism is needed to unload test elements from the bottom of the stack upon completion of the incubation cycle. To accommodate the separate mechanisms in the 25 analyzer, the mechanism for unloading test elements is disposed at an angle to the loading mechanism; such an arrangement makes it necessary to also locate the detection station at an angle to the path of test-element movement into the incubator. Thus, 30 the loading and unloading mechanisms are relatively complex and require a substantial amount of room in the analyzer.

The present invention overcomes the problems noted above. The loading and unloading 35 mechanisms are arranged such that a test element is

-2-

moved through the analyzer in a generally linear path, and both the mechanisms are continuously coupled to a single drive means. The continuous coupling is achieved by providing for one member to move to an idle position when the other member is operative to advance a test element.

In accordance with the present invention, there is provided an analyzer for the chemical analysis of a liquid contained in a test element, said analyzer comprising a plurality of stations through which said test element is moved during the analysis of said liquid and transport means for sequentially advancing said test element through said stations, said transport means comprising a first member operative to advance a test element between selected stations and a second member operative to advance a test element between selected stations characterized in that a drive means is operatively connected to said members for moving said members in such a manner that only one of said members at a time is operative to advance a test element in said analyzer.

It is an advantage of the present invention that the analyzer has a single drive means simultaneously driving both the loading and unloading mechanisms in a manner such that the loading and unloading functions occur independently. Such an arrangement provides for a greatly simplified device in which test elements can be advanced through the analyzer along a generally linear path.

Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings in which:

-3-

Fig. 1 is a perspective view of an analyzer constructed in accordance with the present invention.

Fig. 2 is a fragmentary elevational view, in section, taken generally along the line II-II of Fig. 1;

Fig. 3 is a section view taken generally along the line III-III of Fig. 2;

Fig. 4 is a plan view of the face of the fiber optics reflectometer; and

Figs. 5a and 5b are enlarged section views, similar to a portion of Fig. 2, illustrating the steps in the operation of the analyzer.

The specific embodiments hereinafter described refer to an analyzer having an incubator in which test elements contained therein are arranged in a stack, and the detector is a fiber optics reflectometer. The invention is also applicable to an analyzer using any kind of storage chamber adapted to contain more than one test element. Further, it is applicable to an analyzer using any detector means for detecting properties of the test element, whether it be a reflectometer for measuring an optical density change, a fluorimeter for measuring fluorescence or phosphorescence in a test element, or some other kind of detector.

The invention hereinafter described refers to blood serum as the preferred liquid under analysis. In addition, other analyte-containing liquids can be analyzed, including industrial liquids containing nonbiological analytes.

In Figs. 1 and 2, there is shown an analyzer 10 which comprises a load station 19, a metering station 20, a storage station 49 at which a storage chamber or incubator 50 is located, a pusher mechanism 40 for moving a test element E from the

-4-

load station 19 to the station 20, and a detection station 109 at which a detector 110 is located. A transport means 57 includes a loading member 60 for loading a test element E into incubator 50, an
5 unloading member 80 for unloading an element from the incubator 50, and drive means 100 for driving the members 60 and 80 in a reciprocating motion. A pivotable cover 120 is hinged at 122 to a bracket 124.

10 Analyzer 10 is capable of measuring a variety of analytes of liquids, particularly those of biological liquids. This is accomplished preferably through the use of test elements E which are generally flat (Fig. 2) and have one or more
15 liquid-containing portions (not shown) mounted in a plastic frame member 15; the liquid-containing portions (not shown) are mounted on a transparent, liquid-impervious support (not shown). The liquid is applied by depositing a quantity, for example in
20 the form of a drop, onto the test element E. Edges 16 and 17 of test element E define the leading and trailing edges, respectively, of the elements E as they are moved through the analyzer.

25 The test elements E preferably are constructed in the manner described in, for example, U.S.-A- 3,992, 158 and U.S.-A- Re30,267. Deposited sample liquid spreads into the layers (not shown) of element E where a reaction takes place that generates a detectable change.

30 As shown in Fig. 2, a molded portion 22 of cover 120 is shaped to accommodate a conventional pipette (not shown). Portion 22 projects inwardly from the exterior surface 24 of cover 120 to form a shoulder 21 and terminates in a truncated cone 26
35 which includes an aperture 28. Cone 26 and aperture 28 are sized to align and support a pipette tip 29

-5-

(shown in dashed lines) such that a quantity of liquid can be dispensed therefrom onto a test element E.

Cover 120 includes, at front portion 30 thereof, a slot 32 sized to permit passage of the test element E. The test element E is moved through the slot 32 by means of mechanism 40 which is mounted for manual actuation between a cover plate 41 and a support plate 42 (Fig. 3). Edge surfaces 43 of plate 41 are spaced at a distance sufficient to allow mechanism 40 to reciprocate between them. Support plate 42 is mounted between two linear and parallel shoulders 44. The portion of plate 42 that extends under front portion 30 of cover 120 10 comprises a slot 46 extending generally parallel to shoulders 44. Slot 46 permits loading member 60, discussed hereinafter, to engage test elements E located at metering station 20.

Incubator 50 is preferably collinear with the path traveled by mechanism 40 between edge surfaces 43 and is preferably constructed in the manner described in the aforesaid U.S.-A-4,303,611. Incubator 50 comprises a first pair of walls 52 which are joined to a second pair of walls 25 54, a weighted cover 56, and camming means 58 adapted to raise cover 56 when a test element E is advanced into incubator 50. The wall 52 adjacent station 20 is provided with a slot 59 which receives a finger 70 of loading member 60 when member 60 reaches its most advanced position (shown in solid lines in Fig. 2). The walls 52 and 54 are dimensioned to receive test elements E in a stack S such that each element E, except for the uppermost element E, is covered and contacted by the test element E above it; the uppermost element E is covered by

cover 56. Conventional heating elements (not shown) are preferably included in walls 52 and 54 to maintain the temperature of the incubator 50 at a desired level.

5 Member 60 is mounted for reciprocative movement under support plate 42 and within a passage defined by opposed surfaces 66 and supporting shoulders 68 (Fig. 3). Member 60 comprises a notch 62 (Fig. 3) which receives a rack 64 along its length thereof. As shown in Fig. 5a, member 60 is moved through positions A, B, and C, as will be explained in more detail hereinafter.

10 Finger 70 (Fig. 2) on member 60 is flexible and projects upwardly into the path of test elements E moved through metering station 20. Slots 46 and 59 are disposed to accommodate finger 70. Tip 72 of finger 70 is curved to provide a camming surface that engages support plate 42 when member 60 is retracted to its most rearward, or idle, position C (shown in dashed lines in Fig. 5a). The flexibility of finger 70 permits finger 70 to bend back under plate 42 and also permits a test element E to override the finger 70 and enter metering station 20, when member 60 occupies position A.

15 25 Member 80 is provided to unload test elements E from the stack S on a first-in, first-out basis. Member 80 is mounted under member 60 (Fig. 2) for reciprocative movement through positions A', B', and C' as shown in Fig. 5b. Member 80 comprises a notch 82 which receives a rack 84. Rack 84 is located opposite to rack 64 such that the members 60 and 80 are driven in opposite directions by a pinion 106. Member 80 is supported on shoulders 86, and members 60 and 80 are constrained to move along parallel paths which are spaced one above the other.

and are generally parallel to the path of movement of test elements E through analyzer 10.

Member 80 comprises an end portion 88 (Fig. 2) that is adapted to remove the bottommost element 5 E from stack S in incubator 50. End portion 88 comprises arms 90 and a raised shoulder 92 which are adapted to engage the bottommost element E, in the manner described in U.S.-A- 4,302,420. A slot 93 is provided in the wall 52 adjacent station 20 to allow 10 arms 90 and shoulder 92, but not a test element E, to pass therethrough. (See Fig. 5b.) The opposite wall 52 has a slot 95 which is sufficiently large to allow passage of arms 90 and the test elements E. A surface 97 on member 80, extending under the 15 position occupied by test elements E carried by member 80, is preferably provided with white and dark reference coatings for detector 110.

Forward movement of shoulder 92 toward detector 110 serves to move the test element E under 20 a weight 119 at detector 110. During retraction of shoulder 92 to the position B' (Fig. 5b), retaining springs (not shown) prevent rearward movement of the test element E at the detector 110. Arms 90 include 25 ends 94 having camming surfaces 96 thereon which are adapted to raise test elements E off detector 110 before sliding elements E relative to the detector 110, as described in the aforesaid U.S.-A- 4,302,402. This action by camming surface 96 prevents unnecessary wear on detector 110.

30 Members 60 and 80 are continuously coupled to the drive means 100 (Fig. 2). As used herein, a "continuous coupling" refers to a coupling that produces movement in both members 60 and 80 whenever drive means 100 is operative. In the disclosed 35 arrangement, there is no necessity for means for

-8-

disengaging the coupling when one of the members 60, 80, is not actively moving a test element E along its path. Drive means 100 comprises a motor 102, a rotatable drive shaft 104, and pinion 106 mounted on shaft 104 (Fig. 2). Pinion 106 is continuously coupled to, or engaged with, both rack 64 and rack 84 (Fig. 3). Any reversible motor 102 is useful, for example, a stepper motor such as the motor manufactured by Airpex Co.

10 Preferably, detector 110 is aligned with incubator 50 and metering station 20 and is a fiber optics reflectometer, constructed, for example, in the manner described in the aforesaid U.S.-A-4,302,420. In detector 110, a fiber optics head 112 is provided with at least one conventional light-emitting fiber 114. A plurality of conventional light-collecting fibers 116 are bonded together as a coparallel bundle forming a face 118 at which the light is emitted and collected. Face 20 118 is flat, as shown in Fig. 2, or slightly convexly curved. Weight 119 forces a properly positioned test element E into contact with face 118. Detector 110 preferably includes at least one light-emitting diode (not shown) connected to fiber 114 and a photodetector (not shown) connected to fibers 116.

30 The advancement of the test elements E through stations 20, 49, and 109, is preferably done automatically, following the metering of the liquid at station 20. The devices (not shown) useful for such automatic control include sensors, switches, and a microprocessor all of which are conventional devices. Display of the analyte concentration is achieved by conventional display devices, for

example, a liquid crystal display 160 and/or a thermal printer 170 (Fig. 1).

The operation of analyzer 10 will be readily apparent from the preceding description. A test element E is placed in load station 19 on plate 42, as shown in Fig. 2. Manual operation of mechanism 40 serves to push the test element E under pipette 29 which is positioned at metering station 20. The analyte for which that test element E is constructed is either keyed into the microprocessor (not shown) by using a command key 155 of a keyboard 150 (Fig. 1) or, preferably, appropriate code markings (not shown) on test element E are automatically sensed and recorded in the microprocessor (not shown). The liquid sample is metered onto the test element E at station 20, and either an additional command is keyed into the microprocessor (not shown) when metering is complete, or a sensor (not shown) automatically generates that command. The subsequent sequence of movement of members 60 and 80 is best illustrated in Figs. 5a and 5b. To move a test element E out of metering station 20, motor 102 is automatically actuated to move member 60 and finger 70 to position A (Fig. 5a). When member 60 and finger 70 are in the A position, finger 70 engages trailing edge 17 of the test element E. When member 60 is moved in this fashion, motor 102 also moves member 80 so that shoulder 92 is in the position A' (Fig. 5b). Motor 102 is then actuated to advance member 60 and finger 70 to position B (shown in dashed lines in Fig. 5a). Camming means 58 raises cover 56 during this movement so that a test element E can be loaded into incubator 50. Simultaneously, member 80 is moved rearwardly by motor 102 to position B' (Fig. 5b).

-10-

The microprocessor (not shown) times the residence of all test elements E in incubator 50. When the timing sequence dictates that the bottommost element E in incubator 50 is to be

5 unloaded, motor 102 is reversed, causing member 60 and finger 70 to be withdrawn from position B (Fig. 5a). Finger 70 passes through position A and retreats to position C shown in dashed lines (Fig. 5a). During the same time, member 80 advances from
10 position B' (Fig. 5b) passes through position A' where it engages and unloads test element E from incubator 50, and moves to position C' (shown in dashed lines in Fig. 5b). In position C', shoulder 92 is effective to transfer the test element E into
15 detector 110. The test element E in detector 110 is pushed out by the advancing test element E. After the last test element E is detected, it remains in detector 110 until a new test element E ejects it.

After member 80 is withdrawn to position
20 A', the test element E in detector 110 is read. The withdrawal of member 80 to position A' also acts to advance finger 70 from position C to position A, where it is in position to engage the next test element E that is moved into metering station 20.

25 It will be apparent, therefore, that as member 60 is advancing to load elements E into incubator 50, member 80 is withdrawing in a manner that leaves undisturbed the elements in stack S. When member 80 advances to unload an element E in stack S, member 60 withdraws without disturbing test elements E being prepared for loading on stack S. Only one of the members 60, 80, at a time moves through the positions at which it engages a test element E to load it into, or unload it from, the
30 incubator 50.
35

-11-

The density reading obtained by detector 110 is converted by suitable, conventional programming of the microprocessor (not shown) into a concentration reading. The concentration is
5 displayed, for example, by display 160 and printer 170.

The materials used to make the parts described above are not critical, metals and plastics being the preferred choices. Parts that
10 are to convey heat, such as walls 52, 54, and cover 56, are preferably formed from metals.

15

20

25

30

35

-12-

CLAIMS

1. An analyzer for the chemical analysis of a liquid contained in a test element (E), said analyzer comprising a plurality of stations (19, 20, 49, 109) through which said test element (E) is moved during the analysis of said liquid and transport means (57) for sequentially advancing said test element (E) through said stations (19, 20, 49, 109), said transport means (57) comprising a first member (60) operative to advance a test element between selected stations and a second member (80) operative to advance a test element (E) between selected stations characterized in that a drive means (100) is operatively connected to said members (60, 80) for moving said members (60, 80) in such a manner that only one of said members at a time is operative to advance a test element (E) in said analyzer.

2. An analyzer according to claim 1, characterized in that said analyzer comprises a load station (19), a metering station (20), a storage station (49) and a detection station (109).

3. An analyzer according to claim 2, characterized in that said first member (60) is adapted to advance a test element (E) from said metering station (20) to said storage station (49) and said second member (80) is adapted to advance a test element (E) from said storage station (49) to said detection station (109).

4. An analyzer according to claim 2 or 3, characterized in that an incubator (50) is provided at said storage station (49) for receiving a plurality of said test elements (E) in a stack (S), said first member (60) is adapted to deposit a test element (E) on said stack (S) and said second

-13-

member (80) is adapted to remove an element (E) from the stack (S) after a predetermined time.

5. An analyzer according to claim 4, characterized in that means (56) is provided to move test elements (E) in said incubator (50) into contact with said second member (80).

10 6. An analyzer according to any one of claims 2-5, characterized in that a pusher mechanism (40) is provided to advance a test element (E) from said load station (19) to said metering station (20), said mechanism (40) being operable independently of said transport means (57).

15 7. An analyzer according to any one of claims 2-6, characterized in that said first member (60) is movable between an idle position (C) adjacent said load station (19), an element engaging position (A) at said metering station (20), and an element loading position (B) at said storage station (49), and said second member (80) is movable between 20 an idle position (B') adjacent said metering station (20), an element engaging position (A') at said storage station (49), and an element loading position (C') at said detection station (109).

25 8. An analyzer according to claim 7, characterized in that said drive means (100) is adapted to move said first member (60) in sequence to its idle position (C), element engaging position (A), and element loading position (B) while synchronously moving said second member (80) respectively to its 30 element loading position (C'), element engaging position (A'), and idle position (B'), and vice versa.

9. An analyzer according to any one of the preceding claims, characterized in that each of said members (60, 80) is mounted for reciprocative movement, and the members (60, 80) move in opposite directions relative to each other.

-14-

10. An analyzer according to any one of
the preceding claims, characterized in that each of
said members (60, 80) comprises a rack (64, 84), and
said drive means (100) comprises a pinion (106)
5 coupled to said racks (64, 84).

11. An analyzer according to any one of
the preceding claims, characterized in that said
stations (19, 20, 49, 109) are generally collinear.

12. An analyzer according to claim 11,
10 characterized in that said members (60, 80) are
operable along paths parallel to said stations (19,
20, 49, 109) and to each other.

15

20

25

30

35

0088601

1/4

0088601

0088601

3/4

FIG. 3

FIG. 4

0088601

4/4

European Patent
Office

EUROPEAN SEARCH REPORT

0088601

Application number

EP 83 30 1163

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. ?)
A	DE-A-1 648 934 (INSTRUMENTATION SPECIALTIES CO.) --- A DE-B-1 250 160 (STE NATIONALE DES PETROLES D'AQUITAINE) --- A,D US-A-4 303 611 (EASTMAN KODAK CO.) -----		G 01 N 35/04
			TECHNICAL FIELDS SEARCHED (Int. Cl. ?)
			G 01 N 35/00

The present search report has been drawn up for all claims

Place of search
BERLIN

Date of completion of the search
25-05-1983

Examiner
SCHWARTZ K

CATEGORY OF CITED DOCUMENTS

- X : particularly relevant if taken alone
Y : particularly relevant if combined with another document of the same category
A : technological background
O : non-written disclosure
P : intermediate document

- T : theory or principle underlying the invention
E : earlier patent document, but published on, or after the filing date
D : document cited in the application
L : document cited for other reasons
& : member of the same patent family, corresponding document

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)