Redes Neuronales

Perceptrón

Entrenar: Grafos de cómputo

Ejercicios

h. En una red neuronal al aumentar el número de neuronas de la capa oculta disminuye la posibilidad de sufrir problemas de sobreajuste.

k.	Dada cierta estructura con capa oculta y cierto set de entrenamiento, el algoritmo de backpropagation permite siempre encontrar el mejor valor posible para los pesos de la red neuronal resultante.

k. Dada cierta estructura con capa oculta y cierto set de entrenamiento, el algoritmo de backpropaga-
tion permite siempre encontrar el mejor valor posible para los pesos de la red neuronal resultante.
f. De existir, el algoritmo de backpropagation visto en clases para entrenar una red neuronal con capa oculta garantiza encontrar una hipótesis óptima (medida por error en set de entrenamiento)?.

¿Necesitamos activaciones?

c. (4 pts) Considere la siguiente red neuronal cuyas unidades tienen una función de activación lineal, o sea la salida de cada neurona es una combinación lineal de sus entradas.

4. (16 puntos) Redes Neuronales

Considere las estructuras de red neuronal en el lado izquierdo (NL) y en el lado derecho (ND) de la siguiente figura.

Ambas redes son del tipo feed-forward con una capa oculta. NL consiste de n unidades en la capa de entrada, m en la capa oculta y L en la capa de salida; mientras que NR contiene n unidades en la capa de entrada, m en la capa oculta y sólo 1 unidad en la capa de salida.

Suponga que se requiere modelar un problema con n variables de entrada y L variables de salida. Dos posibles alternativas para modelar este problema son: i) Usar directamente NL, ii) Utilizar L redes del tipo NR, donde cada una de estas redes es entrenada para modelar una de las posibles L variables de salida.

a. (4 pts) Compare la complejidad computacional de entrenar i) e ii) para el caso de un set de entramiento de D registros y p épocas de entrenamiento. ¿Cuál solución tiene menor complejidad?. Fundamente su respuesta.

4. (16 puntos) Redes Neuronales

Considere las estructuras de red neuronal en el lado izquierdo (NL) y en el lado derecho (ND) de la siguiente figura.

Ambas redes son del tipo feed-forward con una capa oculta. NL consiste de n unidades en la capa de entrada, m en la capa oculta y L en la capa de salida; mientras que NR contiene n unidades en la capa de entrada, m en la capa oculta y sólo 1 unidad en la capa de salida.

Suponga que se requiere modelar un problema con n variables de entrada y L variables de salida. Dos posibles alternativas para modelar este problema son: i) Usar directamente NL, ii) Utilizar L redes del tipo NR, donde cada una de estas redes es entrenada para modelar una de las posibles L variables de salida.

b. (4 pts) Compare la solución i) e ii) en términos de su poder representacional, ¿Cuál es mayor?. Fundamente su respuesta.

Submitted to ICLR 2018