Towards Beneficial Hardware Acceleration in HAVEN: Evaluation of Testbed Architectures

Marcela Šimková Ondřej Lengál

Brno University of Technology

Czech Republic

Haifa Verification Conference 2012 November 7, 2012

Verification of HW

Verification of HW

- simulation & testing
- formal verification
- functional verification

Verification of HW

- simulation & testing
- formal verification
- functional verification

prototypes

Verification of HW

Testbenches in SystemVerilog:

constrained-random test vectors

- constrained-random test vectors
- coverage

- constrained-random test vectors
- coverage
- assertions

- constrained-random test vectors
- coverage
- assertions
- self-checking

Acceleration

Emulators

- Mentor Graphics' Veloce, Cadence's TBA, . . .
- observability, assertions, coverage
- proprietary & expensive \$\$\$,
 - ▶ limited frequency (1–2 MHz).

Acceleration

- Emulators
 - Mentor Graphics' Veloce, Cadence's TBA, . . .
 - observability, assertions, coverage
 - proprietary & expensive \$\$\$,
 - ▶ limited frequency (1–2 MHz).
- Testbench synthesis
 - VHDL/Verilog
- 0
- SystemVerilog
- 3

Acceleration

Emulators

- Mentor Graphics' Veloce, Cadence's TBA, . . .
- observability, assertions, coverage
- proprietary & expensive \$\$\$,
 - limited frequency (1–2 MHz).

■ Testbench synthesis

- VHDL/Verilog
- (3)
- SystemVerilog
- 3

HAVEN

- move blocks into FPGA
 - Xilinx Virtex-5
- extendable/adaptable
- cycle-accurate
- synchronous units

HAVEN Testbed Architectures

- 5 testbed architectures
- step-by-step acceleration
- trade-off: acceleration vs. observability

SW-FULL

- observability
- performance

HW-DUT

HW-DUT

- observability
- assertions
- coverage

HW-GEN

HW-GEN

- HW Mersenne Twister
 - configurable from SW

HW-GEN-DUT

HW-GEN-DUT

existing transfer function

HW-FULL

HW-FULL

HW Transfer Function

Experiments

- FrameLink protocol
 - FIFO
 - HGEN: hash generator (Bob Jenkins's Lookup2)
 - HGEN×k

Component	Slices
FIFO	420
HGEN	947
HGEN×2	2,152
HGEN×4	3,762
HGEN×8	7,448
HGEN×16	15,778

Results of Experiments

HW-DUT

FIFO	3.062
HGEN	7.089
HGEN×2	23.458
HGEN×4	33.688
HGEN×8	52.896
HGEN×16	117.708

HW-GEN

FIFO	0.743
HGEN	1.036
HGEN×2	1.023
HGEN×4	0.815
HGEN×8	0.776
HGEN×16	0.750

Results of Experiments

■ HW-GEN-DUT

HW-FULL	

FIFO	2.689
HGEN	14.500
HGEN×2	93.833
HGEN×4	134.750
HGEN×8	195.308
HGEN×16	434.615

HW	Generator Dur Monitor Scoreboard
	Driver DUT Monitor

FIFO	13,429.0
HGEN	15,564.0
HGEN×2	54,925.0
HGEN×4	67,626.0
HGEN×8	74,347.0
HGEN×16	137,875.0

Conclusion

- 5 testbed architectures
- acceleration over 100,000×
- free & open source

Future work

- automate synthesis
- reach coverage closure
- post-silicon verification