## **Graphing Rational Functions**

Let's put all these ideas together, and do a few problems from start to finish:

Find all asymptotes and graph the function:

$$h(x) = \frac{2x - 1}{x + 2}$$

First, find any vertical asymptotes:

The vertical asymptotes happen where the function is undefined . . .

. . . which happens with the denominator is zero.

$$x + 2 = 0$$

$$x = -2$$

Next, find any horizontal asymptotes:

The horizontal asymptotes happen at

$$y = \lim_{x \to \infty} \frac{2x - 1}{x + 2} = \lim_{x \to \infty} \frac{2x + 0}{x + 0} = \lim_{x \to \infty} \frac{2x}{x} = \lim_{x \to \infty} 2 = 2$$

So we have a horizontal asymptote at y = 2.

Let's graph these asymptotes (while choosing an appropriate scale for our graph). Choosing an appropriate scale means we should think about how many points we need to plot.

To graph a rational function you must plot at least two points on either side of all vertical asymptotes.

And we should *leave some more room* on either side . . .

... to draw our graph!

So let's make sure that our graph goes all the way from x = -10 to x = 10:



Now we need to plot some points. I will do three x-values on either side of the vertical asymptote:

| x         | h(x)  |
|-----------|-------|
| -3        | 7     |
| <b>-4</b> | 4.5   |
| <b>-5</b> | 2.67  |
| -1        | -3    |
| 0         | -0.5  |
| 1         | -0.33 |
|           |       |

## And then plot these points:



Now, with the help of the asymptotes, we can draw the graph:





Let's do another problem:

Find all asymptotes and graph:

$$q(x) = \frac{x}{x^2 - 9}$$

## Vertical asymptotes:

The vertical asymptotes to q(x) occur where q(x) is undefined:

$$x^{2} - 9 = 0$$

$$x^{2} = 9$$

$$x = \pm \sqrt{9}$$

$$x = \pm 3$$

## **Horizontal asymptote:**

The horizontal asymptote can be obtained by finding

$$y = \lim_{x \to \infty} q(x)$$

$$y = \lim_{x \to \infty} \frac{x}{x^2 - 9} = \lim_{x \to \infty} \frac{x}{x^2 - 0} = \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$$

There is a horizontal asymptote at y = 0

We need to plot at least two points to either side of each vertical asymptote.

Adding some more room, let's graph q(x) between x = -10 and x = 10:



Now we will generate a table of values:

| x             | q(x)         |
|---------------|--------------|
| -5            | -0.31        |
| -4            | -0.57        |
| -2            | 0.4          |
| -1            | 0.13         |
| 0             | 0            |
| 1             | -0.13        |
| 2             | -0.4         |
|               |              |
| 4             | 0.57         |
| <b>4</b><br>5 | 0.57<br>0.31 |

And plot them:

$$q(x) = \frac{x}{x^2 - 9}$$

This graph is not well-scaled! All of the points are very close to the x-axis.

We need to shrink the scale for the y-values. After all, all of those y-values that we found are between y=-1 and y=1. So that we have some room to graph to the asymptotes, let's choose a scale between y=-2 and y=2



Now we can connect the points with a smooth curve:



Now that's a good-looking graph!