Mathematical Analysis, Final Exam

January 3, 2022

- 1. Find the global maximum of the function $f(x,y) = \sin x \sin y \sin(x+y)$ on the domain $\{x \ge 0, y \ge 0, x+y \le \pi\}$.
- 2. Compute the integral

$$\int_S z dy \wedge dz + \sin y dz \wedge dx + dx \wedge dy,$$

where S is the unit sphere $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 .

3. Compute the integral

$$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^2}} \frac{1}{\sqrt{1+x^2+y^2}} dx dy.$$

4. Let $h: \mathbb{R}^{2+2} \to \mathbb{R}^2$ be given by

$$h(u_1, u_2, w_1, w_2) = (u_1^2 + u_2 + w_1^2, e^{u_1} - 1 + u_2 + w_2).$$

Show that h(0,0,0,0)=(0,0) and that one can apply the implicit function theorem in order to obtain some small neighborhood U of (0,0) in \mathbb{R}^2 and a C^1 function $f:U\to\mathbb{R}^2$, such that

$$h(f(w), w) = 0, \ \forall \ w = (w_1, w_2) \in U.$$

Find Df(0,0).

- 5. Let $f_n: [0,1] \to \mathbb{R}$ be a sequence of uniformly bounded Riemann integrable functions and let $F_n: [0,1] \to \mathbb{R}$ be a sequence defined by $F_n(x) = \int_0^x f_n(t) dt$. Prove that the sequence $\{F_n\}$ has a convergent subsequence in C([0,1]).
- 6. Compute the Legendre transformation of the following function, where α, β are positive constants,

$$f(x, y, z) = x^2 + \alpha(y + \beta z)^2 + z^2.$$

7. Prove that f(x) convergence uniformly

$$f(x) = \int_1^\infty \frac{x}{y} e^{-yx} dy, \ x \ge 0$$

- 8. Let $\mathbb{R}^n \times \mathbb{R}^n$ be given coordinates $(x_1,\dots,x_n;y_1,\dots,y_n)$. Consider the 2-form $\omega = \sum_{i=1}^n dx_i \wedge dy_i$ on $\mathbb{R}^n \times \mathbb{R}^n$. Let $\eta = \sum_{i=1}^n f_i(x) dx_i$ be a closed 1-form, where $f_i : \mathbb{R}^n \to \mathbb{R}$ is smooth and vanishes outside a bounded region, $i=1,\dots,n$. We next think $F=(f_1,\dots,f_n): \mathbb{R}^n \to \mathbb{R}^n$ as a vector-valued function. Thus the graph $\{(x,F(x))\mid x=(x_1,\dots,x_n)\in\mathbb{R}^n\}\subset\mathbb{R}^n\times\mathbb{R}^n$ is a manifold of dimension n, denoted by M_F . Prove that for any $z\in M_F$ and any $v_1,v_2\in T_zM_F$, we have $\omega(v_1,v_2)=0$.
- 9. Evaluate the indefinite integral

$$\int \frac{x \ln x}{(1+x^2)^2} dx.$$

10. Given differential form $\omega=dz+xdy-ydx$ on \mathbb{R}^3 , compute $d\omega$ and $\omega\wedge d\omega$.