11.5 요약 및 실용적인 가이드라인 (초기 설정)

■ 기본 DNN 설정

테마타피	기본값	(예전에 적용했던 설정)
커널 초기화	He 초기화	He 초기화
활성화 함수	ELU	Relu
정규화	얕은 신경일 경우 없음. 깊은 신경망이라면 배치 정규화	배치 정규화
규제	조기 종료 (필요하면 ℓ₂ 규제 추가)	조기종료, Dropout
옵티마이저	모멘텀 최적화 (또는 RMSProp이나 Nadam)	adam
학습률 스케줄	1사이클	별도 적용 안함

■ 완전 연결층 DNN을 위한 설정

기본값
르쿤 초기화
SELU 순환 신경망, 스킵연결 불가!
없음 (자기 정규화) SELU 활성화 함수가 평균 0 표준편차 1로 자동 정규화를 시켜 줌
필요하다면 알파 드롭이웃 알파 드롭아웃: Dropout인데 평균, 표준편차를 유지하는 드롭아웃
모멘텀 최적화 (또는 RMSProp이나 Nadam)
1사이클

11.5 요약 및 실용적인 가이드라인 (초기 설정)

■ 선택지

01 시작을 어떻게 할지 모를 때: 답지 참조 - 사전훈련된 신경망 일부 재사용 / 비지도 사전훈련 사용 / 보조작업 활용

02 희소모델 필요 시 (feature 개수 제한): L1 규제

03 빠른 응답 필요 시 : Relu, LeakyRelu

04 수십배 느려도 정확한 예측 필요 시 : MC Dropout

단, Input Feature는 정규화가 필요하다는 것!

■ 하이퍼파라미터 튜닝 방법 (10.3 참고!)

01 그리드 서치: 사전에 탐색값을 지정해서 실험 - 100% 내 의도대로 노가다 (Trial & Error)

02 랜덤 탐색: 사전에 범위를 지정해서 랜덤으로 실험 - 범위를 지정해주면 기계가 노가다

03 Bayesian Optimization : 지정된 범위에서 R번 탐색, B번 찾기 - 하이퍼파라미터를 학습한다!