2-确定有限自动机的化简/寻找等价的状态

原理

- ▶ 状态的等价性
 - 假设s和t为M的两个状态,称s和t等价:如果从状态s出发能读出某个字α而停止于终态,那么同样,从t出发也能读出α而停止于终态;反之亦然。

测试:状态的可区分别

- ▶ 两个状态s和t是可区分别的,是指()
- A. 对于任意字α, 要么s读出α停止于终态而t读 出α停止于非终态, 要么t读出α停止于终态而s 读出α停止于非终态
- B. **存在一个字**α, 要么s读出α停止于终态而t读出 α停止于非终态, 要么t读出α停止于终态而s读 出α停止于非终态。

确定有限自动机的化简

▶ 基本思想

▶ 把M的状态集划分为一些不相交的子集,使得任何 两个不同子集的状态是可区别的,而同一子集的任何两个状态是等价的。

▶ 最后,让每个子集选出一个代表,同时消去其他状

态。

算法

先标出各状态的不同边的上游状态

从终态开始,同一上游的状态为等价状态,

递归这些等价的状态,把这些等价状态的上游相同状态做并集,生成更多的等价状态

如果这个并集个数大于1且不是之前算出的等价状态集,则继续递归

否则停止

最后统计这些等价状态集

练习题

2.6 在下面这个自动机中找出两个等价的状态,并合并它们产生一个识别相同语言且较小的自动机。重复这个过程直到没有等价状态。

第2章 词法分析 25

答案

先标出各状态的不同边的上游状态

对于x状态	1的上游状态	0的上游状态
1 1	张明哲 1536	3
2 ※明哲 3	-	1 张明斯 1536
3	2,8	4,6
4 4 368年1	-	- 张明恒 1530 -
5	7	- 3(5)
6 6	1,5	- 36時間 1536
7	4,6	2,8
8 8 ※明報 1536	- 张明煌 1536	5

从终态开始,同一上游的状态为等价状态,

递归这些等价的状态,把这些等价状态的上游相同状态做并集,生成更多的等价状态

如果这个并集个数大于1且不是之前算出的等价状态集,则继续递归 否则停止

最后统计这些等价状态集

对于x节点为 终点	1等价的	0等价的
3 ^{9KBBB T}	2,8	4,6
2,8	- 张明恒 1536	1,5
4,6	1,5	_ 张明哲 1536
1,5	7 张明哲 1536	3

等价的状态为 1 和 5, 2 和 8, 4 和 6 转化好的图为

个人认为7不是最终态,相关路线可以化简掉