- **1.** The choices of C and k are not unique. **a**) C = 1, k = 10 **b**) C = 4, k = 7 **c**) No **d**) C = 5, k = 1 **e**) C = 1, k = 0 **f**) C = 1, k = 2 **3.** $x^4 + 9x^3 + 4x + 7 \le 4x^4$ for all x > 9;
- f) C = 1, k = 2 3. $x^4 + 9x^3 + 4x + 7 \le 4x^4$ for all x > 9; witnesses C = 4, k = 9 5. $(x^2+1)/(x+1) = x-1+2/(x+1) < x < 1$

witnesses C = 4, k = 9 5. $(x^2+1)/(x+1) = x-1+2/(x+1) < x$ for all x > 1; witnesses C = 1, k = 1 7. The choices of

x for all x > 1; witnesses C = 1, k = 1 7. The choices of C and k are not unique. a) n = 3, C = 3, k = 1 b) n = 3, C = 4, k = 1 c) n = 1, C = 2, k = 1 d) n = 0, C = 2, k = 1

9. $x^2 + 4x + 17 \le 3x^3$ for all x > 17, so $x^2 + 4x + 17$ is $O(x^3)$, with witnesses C = 3, k = 17. However, if x^3 were $O(x^2 + 4x + 17)$, then $x^3 \le C(x^2 + 4x + 17) \le 3Cx^2$ for some C, for all sufficiently large x, which implies that $x \le 3C$ for all sufficiently large x, which is impossible. Hence, x^3 is not $O(x^2 + 4x + 17)$. 11. $3x^4 + 1 \le 4x^4 = 8(x^4/2)$ for

not $O(x^2 + 4x + 17)$. 11. $3x^4 + 1 \le 4x^4 = 8(x^4/2)$ for all x > 1, so $3x^4 + 1$ is $O(x^4/2)$, with witnesses C = 8, k = 1. Also $x^4/2 \le 3x^4 + 1$ for all x > 0, so $x^4/2$ is $O(3x^4 + 1)$, with witnesses C = 1, k = 0. 13. Because

 $O(3x^4 + 1)$, with witnesses C = 1, k = 0. 13. Because $2^n \le 3^n$ for all n > 0, it follows that 2^n is $O(3^n)$, with witnesses C = 1, k = 0. However, if 3^n were $O(2^n)$, then for some C, $3^n \le C \cdot 2^n$ for all sufficiently large n. This says that $C \ge (3/2)^n$ for all sufficiently large n, which is impossible. Hence, 3^n is not $O(2^n)$. 15. All functions for which

sible. Hence, 3^n is not $O(2^n)$. 15. All functions for which there exist real numbers k and C with $|f(x)| \le C$ for x > k. These are the functions f(x) that are bounded for all sufficiently large x. 17. There are constants C_1 , C_2 , k_1 , and k_2

ciently large x. 17. There are constants C_1 , C_2 , k_1 , and k_2 such that $|f(x)| \le C_1 |g(x)|$ for all $x > k_1$ and $|g(x)| \le C_2 |h(x)|$ for all $x > k_2$. Hence, for $x > \max(k_1, k_2)$ it follows that $|f(x)| \le C_1 |g(x)| \le C_1 C_2 |h(x)|$. This shows that f(x) is O(h(x)). 19. 2^{n+1} is $O(2^n)$; 2^{2n} is not. 21. 1000 log n;

19.
$$2^{n+1}$$
 is $O(2^n)$; 2^{2n} is not.

O(h(x)). 19. 2^{n+1} is $O(2^n)$; 2^{2n} is not. 21. 1000 log n; \sqrt{n} ; $n \log n$; $n^2/1,000,000$; 2^n ; 3^n ; 2n! 23. The algo-

 \sqrt{n} ; $n \log n$; $n^2/1,000,000$; 2^n ; 3^n ; 2n! **23.** The algorithm that uses $n \log n$ operations **25. a**) $O(n^3)$ **b**) $O(n^5)$

rithm that uses $n \log n$ operations **25. a**) $O(n^3)$ **b**) $O(n^5)$ **c**) $O(n^3 \cdot n!)$ **27. a**) $O(n^2 \log n)$ **b**) $O(n^2 (\log n)^2)$ **c**) $O(n^{2^n})$

c)
$$O(n^3 \cdot n!)$$
 27. a) $O(n^2 \log n)$ **b)** $O(n^2 (\log n)^2)$ **c)** $O(n^{2^n})$

29. a) Neither $\Theta(x^2)$ nor $\Omega(x^2)$ b) $\Theta(x^2)$ and $\Omega(x^2)$ c) Neither $\Theta(x^2)$ nor $\Omega(x^2)$ d) $\Omega(x^2)$, but not $\Theta(x^2)$ e) $\Omega(x^2)$, but not $\Omega(x^2)$ f) $\Omega(x^2)$ and $\Omega(x^2)$ 31. If $\Omega(x^2)$ is $\Omega(x^2)$, then there

37. If f(x) is $\Theta(1)$, then |f(x)| is bounded between positive constants C_1 and C_2 . In other words, f(x) cannot grow larger than a fixed bound or smaller than the negative of this bound and must not get closer to 0 than some fixed bound.

41. Because f(x) and g(x) are increasing and unbounded, we can assume $f(x) \ge 1$ and $g(x) \ge 1$ for sufficiently large x. There are constants C and k with $f(x) \le Cg(x)$ for x > k. This implies that $\log f(x) \le \log C + \log g(x) < 2 \log g(x)$ for sufficiently large x. Hence, $\log f(x)$ is $O(\log g(x))$.