材料物理

Kars

2019年6月5日

目录

目	录			6			
Ι	晶体	本缺陷		9			
1	点缺	陷		11			
${f 2}$	·····································						
	2.1	位错概	无念的引入	. 13			
		2.1.1	实际晶体的滑移特征	. 13			
		2.1.2	理想晶体的滑移	. 13			
	2.2	位错的	的结构	. 14			
		2.2.1	刃型位错	. 14			
		2.2.2	螺型位错	. 15			
		2.2.3	混合型位错	. 16			
		2.2.4	小结	. 18			
	2.3	位错的	的普遍定义与伯格斯矢量	. 18			
		2.3.1	位错的普遍定义	. 18			
		2.3.2	柏式矢量的定义	. 19			
		2.3.3	柏式矢量守恒定律	. 20			
	2.4	位错应	7.力场	. 20			
		2.4.1	刃型位错的应力场	. 22			
		2.4.2	螺型位错的应力场	. 23			
		2.4.3	混合位错的应力场	. 24			
	2.5	位错的	的应变能	. 24			
		2.5.1	刃型位错的应变能	. 24			
		2.5.2	螺型位错的应变能	. 25			
		2.5.3	混合型位错的应变能	. 25			
	26	位错的	5线张力	26			

	2.7	位错核	孙	. 27
		2.7.1	点阵模型	. 27
		2.7.2	位错引起的晶体错排能	. 29
		2.7.3	点阵阻力	. 30
		2.7.4	小结	. 32
	2.8	位错的	J受力与运动	. 32
		2.8.1	位错的运动方式	. 32
		2.8.2	位错运动与晶体变形	. 32
		2.8.3	作用在位错上的力	. 32
	2.9	位错与	5晶体缺陷间的相互作用	. 32
	2.10	位错的	」增殖	. 32
	2.11	实际晶	h体中的位错	. 32
3	晶粒	边界		33
	3.1	晶界结	· 构	. 33
		3.1.1	小角度晶界	. 33
		3.1.2	大角度晶界	. 34
	3.2	晶界能	建量	. 35
		3.2.1	小角度晶界的能量	. 35
		3.2.2	大角度晶界的能量	. 35
	3.3	晶界的]运动	. 35
		3.3.1	小角晶界的移动	. 35
	Let	ムレコロ ハ		
II	性	能强化	<u>C</u>	37
4	晶体	的范性的	变形	39
	4.1	单晶体	的滑移变形	. 39
		4.1.1	滑移晶体学特征	. 39
		4.1.2	影响滑移系统的因素	. 39
		4.1.3	滑移方式与滑移带	. 39
	4.2	单晶体	屈服与晶体的转动及碎化	. 39
		4.2.1	临界分切应力定律	. 39
		4.2.2	临界切应力的位错理论	. 39
		4.2.3	拉伸过程中集体的转动和碎化	. 40
		4.2.4	孪生	. 41
		4.2.5	总结	. 41

目录 5

	4.3	多晶体范性变形的特点及晶界的作用	 	 	41
		4.3.1 多晶体塑性变形的特点	 	 	41
		4.3.2 多晶体的屈服应力	 	 	41
_	4				
5		L硬化与退火			43
	5.1	单晶体加工硬化特征			
		5.1.1 面心立方应力应变曲线			
		5.1.2 体心和六方应力应变曲线			
	5.2	加工硬化的位错理论			
		5.2.1 第一阶段的位错理论			
		5.2.2 加工硬化的第二阶段的理论	 	 	45
		5.2.3 第三阶段的位错理论	 	 	46
		5.2.4 包辛格效应	 	 	46
	5.3	多晶体的加工硬化	 	 	46
	5.4	形变金属的加热	 	 	46
		5.4.1 性能变化	 	 	46
		5.4.2 回复动力学	 	 	47
		5.4.3 再结晶	 	 	48
		5.4.4 晶粒长大	 	 	49
6	合金	全强化			51
	6.1	强化金属的途径	 	 	51
		6.1.1 金属的极限强度	 	 	51
		6.1.2 人为增加位错的阻力	 	 	51
	6.2	人为强化机制	 	 	52
		6.2.1 固溶强化	 	 	52
		6.2.2 固溶强化机制	 	 	52
		6.2.3 屈服现象与应变时效	 	 	53
		6.2.4 分散强化	 	 	53
	6.3	补充	 	 	53
тт	T [可添 存。护护上担查			
II	T [固溶体、扩散与相变			55
7	固溶	· 容体			57
0	扩散	tr			50
~	41 PN	v			าง

9	相变		61
	9.1	相变概念	61
		9.1.1 动力学相变分类	61
		9.1.2 热力学的相变分类	62
		9.1.3 固溶体自由能的计算	63
		9.1.4 混合过程的自由能改变量以及成分与自由能关系	65
	9.2	均匀形核	66
	9.3	形核速率及均匀形核在固态转变中的推广	68
		9.3.1 形核引起的晶格畸变	68
		9.3.2 相界面性质的影响	70
		9.3.3 非均匀形核(界面形核)	70
	9.4	新相的长大	72
		9.4.1 界面控制的长大过程	72
		9.4.2 扩散控制的长大过程	73
	9.5	过饱和固溶体的脱溶沉淀	73
	9.6	调幅分解	73
	9.7	马氏体相变	73
IV	7 考	新试内容	75
10	晶体	缺陷	77
	10 1		77

前言

本笔记内容来自材料物理课程材料整理。

8 目录

Part I

晶体缺陷

Chapter 1

点缺陷

本部分的内容来自于其他文档,请参考:空位与缺陷.pdf 文件。

Chapter 2

线缺陷

2.1 位错概念的引入

2.1.1 实际晶体的滑移特征

在早期对金属材料的范性形变的研究中发现:

- 1 单晶体发生范性形变时表面出现小台阶滑移线;
- 2 晶体滑移总是沿着一定的密排晶面和密排方向,而且只有沿着这些面和方向的切应力达到一个临界值时,滑移才开始进行。

对与金属单晶来说,这个临界值在1 MPa-10 MPa。在这种情况下,人们引入晶体的理想模型来解决这个问题。

2.1.2 理想晶体的滑移

为了解释晶体的变形现象,人们提出了刚性滑移假设。假设滑移时滑移面两端的晶体为刚体,原子同步平移,设T为加载在晶体上的切应力,在缓慢变形中,该应力与变形相平衡。应力大小随滑移面两侧晶体相对位移量变化。

由于晶体排列具有周期性,点阵对滑移的阻力也是周期性的,变形过程如图 2.1所示,假定变形所受到的阻力为

$$\tau = \tau_m \sin\left(\frac{2\pi x}{b}\right) \tag{2.1.1}$$

当发生的变形很小时, 可以近似为

$$\tau = \tau_m \left(\frac{2\pi x}{b} \right), \tag{2.1.2}$$

而且开始变形时, 晶体处于弹性阶段, 应当满足虎克定律, 也就是

$$\tau = \mu \gamma = \mu \frac{x}{a},\tag{2.1.3}$$

图 2.1: 理想晶体变形示意图。

其中 μ 为切变模量, γ 为切应变,因此可以得到最大切应力为

$$\tau_m = \frac{\mu b}{2\pi a},\tag{2.1.4}$$

由于本课程讨论的晶体绝大多数情况为简单立方晶系,可以认为 a = b,所以最大切应变为

$$\tau_m = \frac{\mu}{2\pi}.\tag{2.1.5}$$

然而理论切变强度 $\frac{\mu}{2\pi}$ 与实际强度相比,实在太大。在使用更为合适的原子间作用力模型后,改变了正弦近似,最大切应变数值上降低为原来的 1/60,但是这仍然比实际值高出了 3 到 4 个数量级。

然而无论如何都提高应力模型的精确程度,最终结果的偏差仍然很大,因此是假设出现了问题。最终人们提出了位错模型,并且在实验中观察到了这一现象。

2.2 位错的结构

晶体中存在三种不同的位错类型,下面将分别描述。

2.2.1 刃型位错

考虑一个简单立方晶体,它在 (010) 面上沿 [100] 方向发生滑移,但是这个滑移是不均匀的。也就是从晶体的右侧向左传播。在某一时刻,滑移停止在晶体内部。于是在这个 (010) 面左右就可以划分出已滑移区域和未滑移区域,该面也就是两个区域的边界。晶体滑移的元过程是在一定的晶体学面上,沿一定的晶体学方向,晶体的上下两部分相对滑移一个或着多个点阵常数的距离。

由此显然可见,已滑移的地区与未滑移的地区是一样的,上述滑移平面上下原子列是恢复对齐的,也就是说,这些地方恢复了理想晶体的长程有序性。所以除去图 2.2中 山 的位置外,晶体的其他部分都是完整的。在这一区域内,晶体的完整周期性显然被破坏,所以这就是一个晶体缺陷,称为位错。

2.2. 位错的结构 15

图 2.2: 刃型位错形成示意图。

关于位错最为简单的定义就是: 位错是近完整晶体中的一个缺陷,是晶体中已滑移区和 未滑移区的边界。

这个边界更为严格的说,是分界区域的中心轴线,是平行于 [011] 方向的一条直线,其与滑移矢量 [100] 垂直,那么这个位错就称为刃型位错。

上述中心轴线称为位错线,原理位错线的区域保持理想晶体的完整性;只有极为接近位错线的区域,也就是上述分界区域或过渡区域,晶体的点阵结构,或者原子的规则排列被破坏这一区域称为位错核心。位错核心的半径与位错线的长度相比非常小,所以说,位错是晶体中的线性缺陷。

对于刃型位错,其与滑移矢量垂直,而图 2.2中, 上 符号代表多余的一个半原子面,这个半原子面的边缘就是刃型位错的位错线,形状类似刀刃,因此称为刃位错。因此刃型位错的形成也可以认为是一个半原子面中断与晶体内部,该边缘也就是一个刃型位错。

在规定分割面的上下后,半原子面在割面上方的位错称为正刃型位错,反之则为负刃型位错,但是两者并没有本质上的区别。

刃型位错有以下结构特点

- 1 位错周围有弹性畸变或非弹性畸变,上半部分晶体受压力,下部分受张力,中心为最大畸变,畸变局限在 2 或 3 个原子间距的管道内,总体为线缺陷;
- 2 位错线与滑移方向垂直:
- 3 上下晶体有一个相对位移 \vec{b} ,称为伯格斯矢量或简称柏式矢量。

2.2.2 螺型位错

仍然假定滑移面为 (010) 面, 位错线仍然是沿 [001] 方向的直线, 但是滑移方向变为 [001] 方向, 即为与位错线平行的方向, 仍然将晶体分为已滑移区、未滑移区以及中间的过渡地带。同样, 整个晶体是近完整的, 只有在位错核心区, 晶体的点阵结构才遭到破坏。

也就是说,这也是一个二维缺陷,但是原子排列方式与刃型位错却不相同,不难得出,对与位错线垂直的原子面在位错不存在时,是一组彼此平行分立的平面,当此位错存在时,他们则变成一个连续的螺旋面。若绕此位错线以左手螺旋正向环行一周,即从一个面上升到相邻的另一个原子面,由于这个形质,这种位错称为螺型位错。

图 2.3: 右螺型位错示意图, (a) 螺型位错的右手螺旋回路, (b) 为相同回路在理想晶体中的绕行状况。

在规定位错线正方向后,若绕位错线以右手螺旋方向绕行一周后,可以上升一个原子面的位错为右螺型位错,如图 2.3 若绕位错线以左手螺旋方向绕行一周后,可以上升一个原子面的位错为左螺型位错。左螺型位错和右螺型位错的滑移矢量方向也是相反的。

在含有螺型位错的晶体中,原子面排布如图 2.4所示。晶体不再是刃型位错的附加半原子面,而是变成了螺旋式的曲面。

图 2.4: 右螺型位错原子面排布。

2.2.3 混合型位错

然而一根直线位错可能既不与滑移矢量 \vec{b} 垂直,也不平行,而是成一个角度 θ ,则这个位错既不是纯刃型位错也不是纯螺型位错,它可以看作是两个直线位错的叠加,分别为纯刃

2.2. 位错的结构 17

型和纯螺型的位错,两者的滑移矢量大小为

$$\vec{b}_1 = \vec{b}\sin\theta,\tag{2.2.1}$$

$$\vec{b}_2 = \vec{b}\cos\theta. \tag{2.2.2}$$

这个直线位错称为混合位错。组成混合位错的两个分量为刃型分量和螺型分量。

对上述情况加以推广,假设滑移矢量为 \vec{b} ,已滑移区域为图 2.5中的阴影部分,而位错线为图中红色线,从垂直与滑移面的方向看去,上下两个原子面之间的原子排布应该为图 2.6所示。

图 2.5: 混合型位错的滑移示意。

图 2.6: 混合型位错的原子排列示意图。

从图 2.6可以看出,这个位错有一段是纯螺型位错,另一端是纯刃型位错,由于位错线

是连续的¹ 从晶体的一个表面延伸到另一个表面,中间弯曲的一端既不是螺型位错也不是刃型位错,而是同时具有螺型和刃型位错的特征。这一小段也可以看作是许多方向近连续变化的小直线段所组成,每一小段都是混合型位错,各有一个螺型分量和刃型分量。

2.2.4 小结

依照以上定义,位错是晶体中滑移面上两个区域(即已滑移区域和未滑移区域)之间的分界,那么它就应该具有两个重要的性质:

- 1 因为晶体的滑移矢量是一个恒定矢量,等于一个或多个最小点阵平移矢量,所以对于一条位错线的各个部分,滑移矢量均相等;
- 2 无论位错线形状如何,总之位错线绝不可能终止于晶体的内部,位错线只能从晶体的一个表面延伸到另一个表面,或是在晶体中形成一个封闭的环。

2.3 位错的普遍定义与伯格斯矢量

2.3.1 位错的普遍定义

在直观的基础上对位错的几何性质有一定的了解以后,我们这里可以对位错作出更为普遍的定义。

假设晶体沿任意面 S 剖开,将 S 面的两边 S_1 以及 S_2 作一刚性的相对位移 \vec{b} , \vec{b} 可以是晶体中任意的电子平移矢量²,经过这样的操作以后,如果 \vec{b} 与 S 面不平行,有些地方将产生原子位置重叠或者是空隙。去掉重叠的原子,空隙按照晶格排列填补,这样 S 面不会有任何改变,但是晶体中出现相对位移和未相对位移区域的分界线,也就是 S 面的周界。在分界线上原子错排的情况就是位错线, \vec{b} 为伯格斯矢量或柏式矢量,其为位错特征的标志,数值大小为 b,称为位错的强度。

晶体中任意的位错都可以按照上面操作来形成,但是汽油有一些需要注意的地方:

- 1 上述的想象操作不仅是用来说明位错的特征,也模拟了晶体产生位错的实际过程,关于位错生成的过程将以后讨论;
- 2 对于同一根位错线,可以有不同的 S 面,只要柏式矢量相图,形成的就是相同的位错,因此决定位错特征的是伯格斯矢量,而不是 S 面的具体位置,可以选以位错为边界的任意面作为上述操作的 S 面,比如沿 z 轴的刃型位错,选取 xoz 面和 yoz 面的结果是一致的;

¹这一点需要会证明。

²⁶ 不是点阵矢量的情形将在以后做出讨论。

3 实际上,从已经做过相对位移的区域到未作相对位移的区域间的过渡不可能是突变的,否则将产生无法填补的裂缝,因此 S 面两侧的刚性位移在边界是不再适用的,准确到说,位错不是一根线,而是有一定宽度 w 的区域,在这个区域内,b 从中心的最大值下降到边界的零,只是由于宽度比长度小得多,所以可以近似为一根线。

2.3.2 柏式矢量的定义

 \vec{b} 矢量称为柏式矢量,它是位错线特征的标志,位错的强度为 b,而方向的确定常使用伯格斯回路法和 Frank 惯例法。

伯格斯回路法

实现选取有位错的实际晶体,从好区中任意原子出发,微扰位错作一个闭合回路,回路每一步都连接相邻的同类原子,并且始终走在晶体的好区,这个回路称为伯格斯回路。然后在完整晶体中作一个对应的回路,即在相同方向走相同步数,结果发现这个回路无法闭合。终点到起点的矢量 \vec{b} 为柏式矢量,回路的方向与位错线方向成右手螺旋的方向为正方向。

假设晶体中三个基矢量 \vec{a}_0 , \vec{b}_0 , \vec{c}_0 ,整个晶体的矢量都可以使用这三个矢量表示。在理想晶体中,绕行晶体一周后必然有

$$\sum_{a} n_a \vec{a}_0 + \sum_{c} n_b \vec{b}_0 + \sum_{c} n_c \vec{c}_0 = 0, \qquad (2.3.1)$$

其中n为整数。

假如晶体不是完善的而是含有点缺陷,式 2.3.1仍然成立,但是基矢量在不同地方的长度有弹性范围内的差异,这是因为点缺陷附近有弹性畸变,离开点缺陷稍远的地方,弹性畸变相应减少。

加入这个封闭回路本身经过的地方都是良好的,但是回路包围的区域中含有一个位错 \vec{b} ,回路的方向与位错的方向构成右手螺旋关系,对这个回路,式 2.3.1变为

$$\sum_{a} n_a \vec{a}_0 + \sum_{c} n_b \vec{b}_0 + \sum_{c} n_c \vec{c}_0 = -\vec{b}, \qquad (2.3.2)$$

Frank 惯例法

Frank 惯例法需要线确定位错线的正向,割面及割面法线的正向,按照右手螺旋定则,四个手指顺位错线垂直防御割面上,大拇指指向正半晶体也就是法线方向,规定 \vec{b} 为负半晶体相对与正半晶体的移动方向。

在确定 \vec{b} 后,如果位错线与 \vec{b} 平行,则为螺旋位错,方向相同为正,反向为负;如果 \vec{b} 与位错线垂直,则为刃型位错,对于刃型位错的方向,需要使用半原子面右手法,如图 2.7所示。

图 2.7: 刃型位错的半原子面右手法则。

2.3.3 柏式矢量守恒定律

利用柏式回路的概念即可论证伯格斯矢量的守恒定律:

- 1 一个位错线不可能中止于晶体内部,它必然构成闭合 1 的圈或终止于晶体表面,沿一根不分岔的位错线的伯格斯矢量是守恒的,具有相图的大小和方向。
- 2 如果数根位错线相较于一点,此点称为位错的节点,朝向节点的各位错线柏式矢量的总和等于流出各节点位错线伯格斯矢量矢量的总和,如果所有的位错线方向都是从节点出发,则上述关系可以写作各分支柏式矢量的总和为零,即 $\sum b = 0$;
- 3 柏式回路有如下特点:
 - 1) 一根位错线只有一个柏式矢量;
 - 2) 位错线不能在晶体内部中断,因而它们只能或者终止在晶体表面,或者形成封闭 环,或者与其它位错相联;
 - 3) 当位错与其它位错相联时,指向结点的位错柏氏矢量和与离开节点位错的柏氏矢量和相等,若均指向一个节点,有 $\sum b = 0$ 。

2.4 位错应力场

根据section 2.3,位错是一个线缺陷,其最大畸变分布在以位错线为轴心的管道区域内,管道的直径为 2 到 3 个原子间距。同时位错的畸变与距离位错线的距离成反比,距离越远的区域,畸变也越小。但是由于位错造成的畸变遍布整个晶体,所以伴随这些畸变也造成了晶体各原子之间的位置发生变化,偏离了原来的平衡位置,相互之间产生了内应力的作用,应力和应变的乘积即是造成系统能量上升的原因,因此需要定量地分析位错在晶体中所引起的畸变和能量。

为了方便研究,一般把晶体分成两个区域

2.4. 位错应力场 21

1 位错中心,由于这个区域畸变严重,必须要考虑晶体结构和原子间相互作用,才能分析应力场和相应的能量;

2 远离位错中心的区域,这一部分畸变相对较小,因此可以使用线弹性理论处理。

如图 2.8所示,沿 z 方向位错线取一个圆柱体,由于中心位置畸变能过大,将其中心挖去,挖掉的区域半径为 r_0 。圆柱体沿 z 方向错开一个原子间距 b,也就是晶体中出现了一个螺位错。假设所研究的点距离中心为 r,则在绕行一周后,弹性畸变为 b,平均单位周长变形为

$$\varepsilon = \frac{b}{2\pi r}.\tag{2.4.1}$$

图 2.8: 螺型位错的连续介质模型。

在柱坐标系中, 平均单位周长变形为

$$\gamma_{z\theta} = \frac{b}{2\pi r},\tag{2.4.2}$$

由于是弹性变形,代入到胡克定律中,有

$$\tau_{z\theta} = \mu \gamma = \frac{\mu b}{2\pi r}, r > r_0. \tag{2.4.3}$$

其中 μ 为切变模量。

在直角坐标系中,可以得出

$$\tau_{xz} = -\frac{\mu b}{2\pi} \frac{y}{x^2 + y^2},\tag{2.4.4}$$

$$\tau_{yz} = \frac{\mu b}{2\pi} \frac{x}{x^2 + y^2},\tag{2.4.5}$$

由此可以看出,

- 1 在晶体中,只要有位错就有应力场,而不管此晶体是否有外加应力,外加应力与位错产 生的应力场无关:
- 2 不同 r 都有应力场,也就是说,位错应力是一个长程应力场,遍布于整个晶体的应力 场;
- 3 伴随 r 增大, τ 减小, 因此距离位错中心越远的地方, 应力也就越小;
- 4 根据公式的结果, r 趋于 0, τ 为无限大, 因此上述公式不再适用于这种情况, 这与挖 掉位错核心这一方法相符。

关于位错的应力场的分布则主要是弹性力学的内容,这里不再关注。

刃型位错的应力场 2.4.1

假设晶体没有边界,体积无限大,刃位错的位错线沿z方向,符号为正,如图 2.9所示, 则 应力场的主应力及分量为:

图 2.9: 刃型位错的连续介质模型。

$$\sigma_{xx} = -\frac{\mu b}{2\pi (1 - v)} \frac{y (3x^2 + y^2)}{(x^2 + y^2)^2},$$

$$\sigma_{yy} = \frac{\mu b}{2\pi (1 - v)} \frac{y (x^2 + y^2)}{(x^2 + y^2)^2},$$

$$\tau_{xy} = \frac{\mu b}{2\pi (1 - v)} \frac{x (x^2 - y^2)}{(x^2 + y^2)^2},$$
(2.4.6)
$$(2.4.7)$$

$$\sigma_{yy} = \frac{\mu b}{2\pi (1 - v)} \frac{y (x^2 + y^2)}{(x^2 + y^2)^2},$$
(2.4.7)

$$\tau_{xy} = \frac{\mu b}{2\pi (1-v)} \frac{x(x^2 - y^2)}{(x^2 + y^2)^2},$$
(2.4.8)

$$\sigma_{zz} = v \left(\sigma_{xx} + \sigma_{yy} \right), \tag{2.4.9}$$

$$\tau_{xz} = \tau_{yz} = 0. (2.4.10)$$

2.4. 位错应力场 23

其中 v 为泊松比,改用柱坐标系后上述关系变为

$$\sigma_{rr} = \sigma_{\theta\theta} = -\frac{\mu b}{2\pi (1 - v)} \frac{\sin \theta}{r},\tag{2.4.11}$$

$$\sigma_{r\theta} = \frac{\mu b}{2\pi (1 - v)} \frac{\cos \theta}{r},\tag{2.4.12}$$

$$\sigma_{zz} = v \left(\sigma_{rr} + \sigma_{\theta\theta} \right). \tag{2.4.13}$$

从刃型位错应力场的表达式可以发现, 刃型位错有以下特点

- 1 应力场与 z 方向无关,是平面型的;
- 2 正应力场关于 yoz 面和 y 轴对称,而且 $|\sigma_{xx}| > |\sigma_{yy}|$,
 - a 当 y > 0 也就是上半晶体, $\sigma_{xx} < 0$,受压应力,
 - b 当 y < 0 也就是下半晶体, $\sigma_{xx} > 0$, 受张应力;
- 3 应力大小与 b 大小有关,而且当 r 增大,应力下降,这与简化分析得到的结果一致;
- 4 y = 0 时, xoz 面也就是位错的滑移面上有

$$\sigma_{xx} = \sigma_{yy} = 0, \tag{2.4.14}$$

$$\tau_{xy} = \tau_{yx}.\tag{2.4.15}$$

也就是切应力在滑移面上有最大值。

2.4.2 螺型位错的应力场

在直角坐标系下,图 2.8的应力场表达形式为

$$\tau_{xz} = -\frac{\mu b}{2\pi} \frac{y}{x^2 + y^2},\tag{2.4.16}$$

$$\tau_{yz} = \frac{\mu b}{2\pi} \frac{x}{x^2 + y^2}. (2.4.17)$$

在柱坐标系下,有

$$\tau_{\theta z} = \tau_{z\theta} = \frac{\mu b}{2\pi r},\tag{2.4.18}$$

而其他的应力分量均为 0。而螺型位错的应力场的特点为

- 1 螺型位错的应力场只有切应力分量,没有正应力分量,所有的正应力分量均等于 0。
- 2 应力大小和 b 有关,并且随着 r 越大、应力越小;
- 3 应力是轴对称的,与 无关。

2.4.3 混合位错的应力场

混合型位错可以采用将柏氏矢量分解的办法进行求解,我们可以发现,位错线平行的螺型位错由于没有正应力分量,因此其正应力分量只要采用刃型位错的正应力分量即可。

同时刃型位错的切应力分量只有 τ_{xy} 分量,而螺型位错的切应力分量为 τ_{xz} 和 τ_{yz} ,因此没有相互重叠的应力分量,可以进行叠加。因此可以总结为如下的特点:

- 1 螺型和刃型没有重叠分量;
- 2 应力场互不影响;
- 3 因此混合型可以分解为螺型与刃型分量分别计算并叠加。

2.5 位错的应变能

前一章已经求出位错的应力场和畸变分布,可以得到,晶体中弹性能量密度为

$$\frac{1}{2}\sigma_{ij}\varepsilon - ij, \qquad (2.5.1)$$

由于位错的应力场分为两部分来求解,因此对于位错能量也分为两部分,一部分为位错的核心能量,一部分为周围应力场的能量,也就是应变能,利用弹性能量密度,可以得到单位立方体总的应变能

$$w = \frac{1}{2} \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_z \varepsilon_z + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{zx} \gamma_{zx} \right), \tag{2.5.2}$$

整个弹性题的应变能为

$$W = \frac{1}{2} \iiint \sigma \varepsilon \, \mathrm{d}v, \qquad (2.5.3)$$

但是这一过程非常复杂,求解难度很大。然而采用做功法,利用位错的形成过程,计算这个过程中所做的功,也就是系统能量的增加。

2.5.1 刃型位错的应变能

刃型位错形成时可以看作上下半晶体相互推移 αb ,其中 α 在 0 和 1 之间,在 θ = 0 处的切应力为

$$\sigma_{\theta r} = \sigma_{r\theta} = \frac{\mu \alpha b}{2\pi (1 - v)} \cdot \frac{1}{r},\tag{2.5.4}$$

形成单位长度的位错, 做功为

$$dw = \frac{\mu \alpha b}{2\pi (1 - v)} \cdot \frac{1}{r} dr \cdot d(\alpha b),$$

$$= \frac{\alpha \mu b^2}{2\pi (1 - v)r} dr d\alpha,$$
(2.5.5)

2.5. 位错的应变能 25

对体积元积分,可以得到整个晶体的位错做功

$$w_{\mathcal{I}} = \int_{r_0}^{r_1} \int_0^1 \frac{\alpha \mu b^2}{2\pi (1 - v)r} \, dr \, d\alpha$$

$$= \frac{1}{2} \alpha^2 \Big|_0^1 \cdot \int_{r_0}^{r_1} \frac{\mu b^2}{2\pi (1 - v)r} \, dr$$

$$= \frac{1}{2} \cdot \frac{\mu b^2}{2\pi (1 - v)} \ln \left(\frac{r_1}{r_0}\right).$$
(2.5.6)

由于圆柱体内外表面均为自由面条件,因此应该进行修正,修正公式为

$$w_{\mathcal{I}} \simeq \frac{\mu b^2}{2\pi (1-v)} \left[\ln \left(\frac{r_1}{r_0} \right) - 1 \right], \qquad (2.5.7)$$

当远离位错核心时,即 $r_1 \gg r_0$ 时,这种修正就不重要了。

2.5.2 螺型位错的应变能

对于螺型位错的处理与刃型位错的处理接近,晶体之间相互移动 αb ,晶体之间切应力为

$$\sigma_{\theta z} = \frac{\mu \alpha b}{2\pi r},\tag{2.5.8}$$

切应力做功为

$$w_{\sharp\sharp} = \int_{r_0}^{r_1} \int_0^1 \sigma_{\theta z} b \, \mathrm{d}r \, \mathrm{d}\alpha$$

$$= \int_{r_0}^{r_1} \int_0^1 \frac{\mu b^2}{2\pi r} \, \mathrm{d}r\alpha \, \mathrm{d}\alpha$$

$$= \frac{\mu b^2}{2\pi r} \ln\left(\frac{r_1}{r_0}\right).$$
(2.5.9)

修正后为

$$w_{\text{gg}} = \frac{\mu b^2}{2\pi r} \left[\ln \left(\frac{r_1}{r_0} \right) - 1 \right]. \tag{2.5.10}$$

2.5.3 混合型位错的应变能

由于混合型位错的应力场可以将混合型位错分解为螺型分量和刃型分量再求出各自的应力场分量后进行叠加,从而应变能也可以先分解,再进行叠加即可。

假设柏式矢量 \vec{b} 与位错线夹角等于 ψ ,则刃型位错和螺型位错的分量为

刃型位错:
$$b_{\perp} = \vec{b}\sin\psi$$
, (2.5.11)

螺型位错:
$$b_{\parallel} = \vec{b}\cos\psi$$
. (2.5.12)

(2.5.13)

由于同向刃型位错与螺型位错无相互作用,两者可以叠加

$$w_{\mathbb{R}} = \frac{\mu b^2 \sin^2 \psi}{4\pi (1 - v)} \ln \left(\frac{r_1}{r_0}\right) + \frac{\mu b^2 \cos^2 \psi}{4\pi} \ln \left(\frac{r_1}{r_0}\right), \tag{2.5.14}$$

或者写为:

$$w_{\mathbb{R}} = \frac{\mu b^2}{4\pi K} \ln \left(\frac{r_1}{r_0}\right),\tag{2.5.15}$$

$$\frac{1}{K} = \cos^2 \psi + \frac{\sin^2 \psi}{1 - v}.\tag{2.5.16}$$

从应变能的表达式可以看出:

- 1 应变能和 b^2 成正比,刃型比螺型差一个因子,由于一般金属材料泊松比在 0.3 左右,也就是说,相同位错强度的刃型位错比螺型位错的应变能大 50% 左右;
- 2 接近位错核心时,公式不再适用,通常情况下,位错核心能是应变能的十分之一;
- 3 对于一般金属,位错应力场范围受到亚晶界的限制,所以 $r_1 \simeq 1 \times 10^{-4}$ cm,而 $r_0 \simeq 1 \times 10^{-8}$ cm,因此在原理位错核心区有

$$w_{\mathbb{R}} \simeq \mu b^2 = \alpha \mu b^2, \tag{2.5.17}$$

其中 α 在0.5–1之间,因为位错的应变能相当大,在位错的自由能的表达式中,应变能是主要的项,所以位错不是热平衡自由能最低的产物,这一点和空位不同。

2.6 位错的线张力

已知位错的能量与它的长度成正比,若要增加位错的长度,必须做功,因此,围殴错总是有收缩其长度的趋势,这表明在能量的意义上将,位错线表现有线张力。可以定义位错线张力等于位错线伸长一个单位长度所做的功,用 T 表示。一个直位错的张力等于

$$T = \frac{\partial W}{\partial l}$$

$$= \frac{\mu b^2 \sin^2 \psi}{4\pi (1 - v)} \ln \left(\frac{r_1}{r_0}\right) \left(1 - v \cos^2 \psi\right)$$

$$\simeq \frac{1}{2} \mu b^2.$$
(2.6.1)

但是,位错的张力多少和位错的形状有关,上式所指的是直的位错。对于一般波浪形的位错,其张力基本上也可以用式,证明从略。故在以后的应用中均用此公式表示位错的线张力。

2.7. 位错核心 27

2.7 位错核心

在讨论应力场和应变能的时候,都提到由于位错核心区域的畸变太大,不能用线弹性理 论来求解,必须引入点阵的周期性,并结合连续介质的结果处理一系列问题:位错核中心的 宽度,位错在点阵中运动的阻力和位错中心能量的问题。

但是点阵模型不是彻底的,仍然要采纳某些观点和结果,所以只使用一个半点阵模型。 这一节的点阵模型最早由 Peiels 提出,后来 Nabarro 对这一模型进行了修正,因此称为 Peiels-Nabarro 模型,简称派-纳模型。

2.7.1 点阵模型

以简单立方晶体的刃型位错为例,位错可以视为由两个完成的半晶体拼接而成。

图 2.10: 刃型位错模型。

设原子间距为 Φ , 在拼合之前, 横轴方向的原子间距为

$$\Phi = \frac{1}{2}b, x > 0,
\Phi = -\frac{1}{2}b, x < 0.$$
(2.7.1)

在拼合后,上下两层分别受到压力和张力,使得原子尽量对齐,在这一过程中,假设上半晶体中位错核心层的原子发生了位移 u(x),则有

$$x > 0, u(x) < 0,$$

 $x > 0, u(x) > 0.$ (2.7.2)

而原子间距则变为

$$\Phi(x) = 2u(x) + \frac{b}{2}, x > 0, \tag{2.7.3}$$

$$\Phi(x) = 2u(x) - \frac{b}{2}, x < 0. \tag{2.7.4}$$

距离位错核心无穷远时,位错的影响忽略不计,也就是 $\Phi(\pm \infty) = 0$,所以有

$$u(\infty) = -u(-\infty) = -\frac{b}{4}.$$
 (2.7.5)

图 2.11: 原子平衡位置的偏离与位错核心距离的关系。

为求出相应的位移,以及各个原子之间的畸变,Peierls 假定上下两层之间的作用力为周期性,位错管道外为连续介质,这样,两层原子之间的吸引产生了切应力 σ_{yx} ,

$$\sigma_{yx} = \frac{\mu}{2\pi} \left(\frac{b}{a} \right) \sin \left(\frac{2\pi\Phi}{b} \right), x > 0, \tag{2.7.6}$$

代入式 2.7.3, 可得

$$\sigma_{yx} = -\frac{\mu}{2\pi} \left(\frac{b}{a} \right) \sin \left(\frac{4\pi u(x)}{b} \right), x > 0, \tag{2.7.7}$$

当 Φ 很小时,没有发生塑性形变,因此可以使用虎克定律

$$\sigma_{yx} = \frac{\mu}{2\pi} \left(\frac{b}{a} \right) \sin \left(\frac{2\pi\Phi}{b} \right) = \mu \left(\frac{\Phi}{a} \right).$$
 (2.7.8)

同时为了求出上半部材料的切应力,EShelby 提出柏式矢量为 \vec{b} 的位错可以看作是无穷小位错分布在滑移面上,柏式矢量之和等于 \vec{b} ,且分布不均匀。设分布在 $x'\to x'+\mathrm{d}x'$ 之间的柏式矢量为 f(x') 因此总的柏式矢量为

$$\int_{-\infty}^{\infty} f(x') \, \mathrm{d}x' = \vec{b},\tag{2.7.9}$$

分布在 $x' \to x' + \mathrm{d}x'$ 之间的切应力为 $\frac{\mu f(x')}{2\pi(1-v)} \cdot \frac{(x-x')^3}{(x-x')^4} \, \mathrm{d}x' = \frac{\mu f(x')}{2\pi(1-v)} \frac{\mathrm{d}x'}{x-x'}$ 在两层原子之间的切应力为

$$\sigma_{yx} = \frac{\mu}{2\pi(1-v)} \int_{-\infty}^{\infty} \frac{f(x') dx'}{x - x'}, x' > 0, \tag{2.7.10}$$

2.7. 位错核心 29

当 x = x' 时,有

$$du(x') = f(x') dx', \qquad (2.7.11)$$

式 2.7.10可以写作

$$\sigma_{yx} = -\frac{\mu}{\pi(1-v)} \int_{-\infty}^{\infty} \frac{\frac{du(x')}{dx'} dx'}{x-x'}, x > 0, \qquad (2.7.12)$$

联立式 2.7.8和式 2.7.12, 解得

$$u(x) = -\frac{b}{2\pi}\arctan\left(\frac{x}{\xi}\right), \xi = \frac{a}{2(1-v)},\tag{2.7.13}$$

当 x = 0,u(x) = 0,而 $\Phi = \frac{b}{2}$,在无穷远处, $u(x) = \frac{b}{4}$,此时 $\Phi = 0$,这与之前的结果一致。 位错管道附近的错排值分布如图 2.12所示。

图 2.12: 错排值沿滑移面的分布。

从图中把畸变的半高宽定义为位错的宽度, 因此位错的宽度为

$$\omega = 2\xi = \frac{a}{1 - v},\tag{2.7.14}$$

对于泊松比为 0.3 的材料, 位错的宽度约为 1.5a。

2.7.2 位错引起的晶体错排能

前面已经提到,用连续介质中位错的模型可以求出弹性畸变区的能量,但不能求出位错中心的能量。现在我们可以根据上述点阵模型对这部分能量做一个估计。位错总的应变能包括两部分,即 ω_0 就是以前求过的弹性区的能量, ω_{AB} 是由于位错中心附近滑移面上下两层原子没能对齐的能量——错排能。

由于错排实际只在位错附近,所以这部分能量属于位错中心区的能量。先求解弹性区的 应变能 *W*₀,根据点阵模型得到的应力表达式,代入后可以求得

$$W_0 = \frac{1}{2} \int_{\xi}^{r_1} \sigma_{y_x} b \, dx$$

$$= -\frac{\mu b^2}{4\pi a} \int_{\xi}^{r_1} \sin \frac{4\pi u(x)}{b} \, dx$$

$$= \frac{\mu b^2}{4\pi a} \int_{\xi}^{r_1} \sin \left[2 \arctan \left(\frac{x}{\xi} \right) \right] dx$$

$$(2.7.15)$$

由于位错是长程应力场, $r_1 \gg \xi$,因此有

$$W_0 \simeq \frac{\mu b^2}{4\pi (1-v)} \ln \frac{r_1}{\xi}.$$
 (2.7.16)

然后求解错排能,在计算应变能时,假定位错宽度以外滑移面两侧的晶体发生刚性滑移,然 而这在位错核心区不再适用,在上节计算错排能的时候,为了强调点阵模型.所以用代数的 加法,这是为了要显示出位错偏离出对称位置以后能量的变化。做为近似,假如如不需要求 点阵阻力,我们仍然可用积分代替相加两层的对应原子的错排能已知等于

$$\frac{\mu b^3}{4\pi^2 a} \left(1 + \cos \frac{4\pi u(x)}{b} \right) = \frac{\mu b^3}{2\pi^2 a} \cos^2 \left(\frac{2\pi u(x)}{b} \right) = \frac{\mu b^3}{2\pi^2 a} \cos^2 \left(\arctan \frac{x}{\xi} \right), \tag{2.7.17}$$

错排能的表达式为

$$W_{AB} \simeq \frac{\mu b^2}{2\pi (1-v)},$$
 (2.7.18)

这一数值与应变能相比,差了一个系数 $\ln\left(\frac{r}{\xi}\right)$,如果 $r=1\times10^{-4}\,\mathrm{cm}$, ξ 为 $1\times10^{-8}\,\mathrm{cm}$,则可以计算处错排能大约为应变能的 0.1。

2.7.3 点阵阻力

平衡的条件下,位错处于平衡位置,如果位错中心发生了 αb 的滑移,系统的能量也会发生变化,这一变化的梯度造就了位错移动的阻力。这样,计算的关键在于求出位于位错偏离出对称位置时,由于滑移面上下两层原子没有对齐而引起的能量。假设图 2.10中 AB 两层原子对齐时作用能为零。考虑 A 层任意一行与纸面垂直的原子,这一行原子与位错平行,并且为单位长度,它所受的力 F 若按照连续介质的观点是分布在面积 b 上面的,这一行原子所受的力为

$$F = \sigma_{xy}b, (2.7.19)$$

因此可以说这一行原子和 B 层对应原子因为没有对齐而具有能量,也就是错排能,其等于

$$\frac{1}{2} \int_0^{\Phi} \sigma_{yx} b \, \mathrm{d}\Phi, \tag{2.7.20}$$

2.7. 位错核心 31

其中的系数 1/2 是因为原子之间的势能分配在 A 和 B 两部分的值将取自 3 。因此在 A 层与 z 轴平行的单位长度的一行原子具有的错排能为

$$V_{u(x)} = -\frac{1}{2} \left(\frac{\mu b^2}{2\pi a}\right) \int \sin\frac{4\pi u(x)}{b} d(2u)$$

$$= -\frac{\mu b^3}{8\pi^2 a} \int \sin\frac{4\pi u}{b} d\left(\frac{4\pi u}{b}\right)$$

$$= \frac{\mu b^3}{8\pi^2 a} \left(\cos\frac{4\pi u}{b}\right) + C.$$
(2.7.21)

C 为积分常数,已知当 $u=\pm \frac{b}{4}$ 时,错排能为零,可以求出 C:

$$C = -\frac{\mu b^3}{8\pi^2 a} \cos\left(\frac{4\pi}{b} \cdot \frac{b}{4}\right) = \frac{\mu b^3}{8\pi^2 a},\tag{2.7.22}$$

回代得到

$$V_{u(x)} = \frac{\mu b^3}{8\pi^2 a} \left[1 + \cos\frac{4\pi u(x)}{b} \right]. \tag{2.7.23}$$

若位错正好位于对称位置,则 A 和 B 两层全部原则为位置可以写作

$$x = \frac{1}{2}nb, n = 0, \pm 1, \pm 2 \cdots$$
 (2.7.24)

当位错中心发生 αb 的位移后,原子位置近似可以表示为

$$x = \left(\alpha + \frac{1}{2}n\right)b,\tag{2.7.25}$$

这样错排能变为

$$V = \frac{\mu b^3}{8\pi^2 a} \sum_{-\infty}^{+\infty} \left[1 + \cos\frac{4\pi}{b} \left\{ -\frac{b}{2\pi} \arctan\frac{\left(a + \frac{1}{2}n\right)}{\xi} b \right\} \right]$$
$$= \frac{\mu b^3}{8\pi^2 a} \sum_{-\infty}^{+\infty} \left[1 + \cos 2 \left\{ \arctan\frac{\left(a + \frac{1}{2}n\right)}{\zeta} b \right\} \right]. \tag{2.7.26}$$

单个原子的势能可以写作

$$V_{\alpha} = \frac{\mu b^2 \xi}{\pi a} \sum_{s=1}^{\infty} e^{-4x\xi_s/b} \cos 4\pi as, \qquad (2.7.27)$$

将 $\xi = \frac{a}{2(1-v)}$ 代入得到

$$V_a = \frac{\mu b^2}{2\pi (1 - v)} e^{-4\pi \xi/b} \cos 4\pi \alpha, \qquad (2.7.28)$$

位错运动受到的力为

$$F = \frac{-\partial V_{\alpha}}{\partial(\alpha b)} = \frac{-1}{b} \frac{\partial V_{a}}{\partial \alpha} = \frac{2\mu b}{1 - v} e^{-\frac{4\pi\xi}{b}} \sin 4\pi\alpha, \qquad (2.7.29)$$

³这里有缺漏,希望有人补完。

其最大值为 $F_{\text{max}} = \frac{2\mu b}{1-\nu} e^{-4\pi\xi/b}$ 。根据式 2.7.19,刃位错运动受到的切应力为

$$\sigma_e = \frac{2\mu}{1 - v} e^{-i\pi\xi/b} = \frac{2\mu}{1 - v} \exp\left[-\frac{2\pi a}{b(1 - v)}\right],$$
(2.7.30)

称为点阵阻力,也称作派-纳力。

2.7.4 小结

- 位错的核心能约为 $\frac{1}{10}\mu b^2$, 也就是应变能的 1/10;
- 位错的宽度认为是 $\omega = 1.5a$, a 为晶格常数;
- 点阵阻力 τ 取决于点阵阻力 a 和柏式矢量 b,当点阵常数增大时,阻力减小。

2.8 位错的受力与运动

- 2.8.1 位错的运动方式
- 2.8.2 位错运动与晶体变形
- 2.8.3 作用在位错上的力
- 2.9 位错与晶体缺陷间的相互作用
- 2.10 位错的增殖
- 2.11 实际晶体中的位错

Chapter 3

晶粒边界

多晶体材料中,多个晶粒在凝固时的方向不同,因此在边界处的排列方式需要研究,将 两个晶粒之间的边界称为晶界。它是把结构相同但相位不同的两个晶粒分隔开的面状晶格缺 陷,是本课程中除了层错以外的另一种面缺陷。

如果吧晶界看作两个晶粒由于取向差的不同造成了晶界,可以发现,界面在空间的方程有2个自由度,而取向差可以认为是有一个晶粒相对与另一个晶粒进行了旋转,这样,可以说旋转轴这条直线的方程中有2个自由度,最后旋转角度为第5个自由度;

- 1 位相差 θ ;
- 2 发生位相差 θ 的转动轴的方向余弦,其中仅有两个是独立的量;
- 3 晶界面法线的方向余弦 (其中任意二个),这个方向是用来表示晶界在空间取向的。

概括起来,就是产生位相差的转动角 θ ,表示转动轴上单位矢量 \vec{U} 方位的两个参数以及表示晶界发现单位矢量 n 的两个参数。假如直到了这些参变量和晶型,就可以确定晶界的位错模型。

3.1 晶界结构

一组平行排列的直的刃型位错的稳定平衡位置是沿 y 轴成了一条直线排列,形成位错墙,而形成这一位错墙的原因是墙的两侧有着较大的取向差。

3.1.1 小角度晶界

简单晶界有两种类型:倾斜晶界和扭转晶界。设U是发生位相差的相对旋转轴上的单位矢量,n是晶界面法线上的单位矢量,则纯粹倾转晶界的条件是

$$U \cdot n = 0, \tag{3.1.1}$$

如果晶界面与产生取向差的旋转轴垂直,即 $U \parallel n$,就构成了简单的扭转晶界。

倾转晶界

假设两个简单立方晶体具有相同的 [001] 轴,它们之间的位向差是绕着共同轴相对转动 θ 角而产生的,两个晶粒的截面是一个对称面,都和 (100) 面平行。两个晶体以这种方式连接必然导致连接区域的畸变,而且弹性变形区将扩展到足以松弛晶界的应力集中。除了弹性形变还需要一些竖直的原子面终止在晶界上,形成刃型位错,其柏式矢量基本都是 [100] 平移矢量,而柏式矢量 \vec{b} 、位错间距 D 和位相差 θ 的关系为:

$$\frac{b}{D} = \theta, \tag{3.1.2}$$

当 θ 小于15°时,为小角晶界,大于15°时,为大角晶界。

扭转晶界

3.1.2 大角度晶界

对于大角晶界仍然没有得到完美的研究结果,此处主要介绍当前的研究进展。

过冷液体模型认为大叫晶界是几层原子排雷而成,与过冷液体类似,呈非晶态。但是过 冷液体在热力学上不稳定,而晶界存在符合平衡条件。另外这一模型认为晶界层上将有两个 固液界面,这是不能实现的。

之后又提出了小岛模型等,都不能解释晶界结构。目前较为有效的模型有重合位置电子模型 (CSL),假设一下特殊位向的晶界中,有一些原子同属于两边晶粒的格点,并自身形成超格点点阵。模型认为大角晶界由约两原子直径厚的对拍和错排区后才,重合位置点阵和大角晶界的关系:

- 1 重合关系只出现在某些特定的晶界上,晶界总处于重合点阵的最密排面上,而且能量最低厚度很小,长程应变场可以忽略不计;
- 2 晶界与重合电子的最密排面间有一个小角度时,为了使晶界在重合点阵的最密排面上 有最大的面积起见,便会产生阶。阶也不具有长程应变场,但如果在晶界上加一适当 的应力,它可能成为位错的增殖源;
- 3 与理想重合位置位向稍有偏离的晶界,可以用一个重合位置晶界同一与它在同一平面上的晶界位错网络叠加在一起来描述。一般这种晶界位错的柏氏矢量较晶格位错的为小,故有次位错之称。

后来又提出了 O 点阵的概念, O 点阵的结点是指在点上看各自晶格近邻关系是相同的, 只差一个转角的点,不一定是原子占据的点。 3.2. 晶界能量 35

3.2 晶界能量

晶界能量来源于两个晶粒边界上很多原子从晶格的正常位置移动出来,并且在附近晶体中引起畸变。我们定义单位面积所对应的能量增加量为晶界能量。

3.2.1 小角度晶界的能量

在晶界的各种性质中,晶界能是很重要的物理量,目前关于小角晶界能的计算有很多方法。下面介绍一种简明近似的方法,以对称倾斜晶界为例。单位长度位错的能量为:

$$W = \frac{\mu b^2}{4\pi (1 - v)} \ln \left(\frac{r_1}{r_0}\right) + W_{AB},\tag{3.2.1}$$

其中, W_{AB} 为刃型位错中心能, r_1 为位错弹性应力场所及的距离,大小为亚晶尺寸, r_0 为位错核心区。

在单位长度内的位错数量为 1/D, D 为位错间距,根据

$$\frac{1}{D} = \frac{\theta}{b},\tag{3.2.2}$$

另 $b = r_0$, $r_1 = D$, 位错的能量可以写作

$$W = \frac{\theta}{b} \left[\frac{\mu b^2}{4\pi (1 - v)} \ln \left(\frac{1}{\theta} \right) + W_{AB} \right]$$

$$= \frac{\mu b \theta}{4\pi (1 - v)} \ln \left(\frac{1}{\theta} \right) + \frac{\theta}{b} W_{AB}$$

$$= E_0 \theta [A - \ln \theta],$$
(3.2.3)

3.2.2 大角度晶界的能量

由于大角晶界结构未知,可以使用测量的方法,假设三个晶界相较于一个公共的交线, 平衡的条件为

$$E_1/\sin\psi_1 = E_2/\sin\psi_2 = E_3/\sin\psi_3;$$
 (3.2.4)

一般测量时习惯将两大角晶界能当作不变的参值,而改变第三晶界的旋转角。也可用表面沟槽法,表面张力为

3.3 晶界的运动

3.3.1 小角晶界的移动

晶界的应力感生迁移, 晶界受到的力为

$$P = \tau \cdot b = \theta \cdot \tau, \tag{3.3.1}$$

晶界的迁移率为B,驱动力F,则迁移速度为

$$v = F \cdot B, \tag{3.3.2}$$

驱动力

$$F = \frac{\mathrm{d}\mu}{\mathrm{d}x},\tag{3.3.3}$$

也就是反化学位梯度的方向1。

¹扩散中原子的运动的方向为化学位的梯度方向

Part II

性能强化

晶体的范性变形

- 4.1 单晶体的滑移变形
- 4.1.1 滑移晶体学特征
- 4.1.2 影响滑移系统的因素
- 4.1.3 滑移方式与滑移带
- 4.2 单晶体屈服与晶体的转动及碎化
- 4.2.1 临界分切应力定律
- 4.2.2 临界切应力的位错理论

晶体收到外应力作用,取向因子最大的滑移系位错开始滑移,其他位错或晶体缺陷要对 它的运动产生阻碍或交互作用,主要考虑以下几种

- 1 位错增殖;
- 2 点阵阻力;
- 3 与其他位错的交互作用:
 - 1 弹性应力场的交互作用。为了简便起见,设有二个位错排列在垂直的方向,相距为 l。位错要从 B、C 中间穿过去,就要克服 B、C 的长程弹性作用力。假设平行于可动位错的那些位错均匀分布,这些位错之间的间距用 l_1 表示,可以推导得出:位错克服的应力为 $\tau = \alpha \mu b \sqrt{\rho}$ 。

- 2 位错塞积; 塞积导致应力集中¹。位错受到的阻力为 $\tau_0^2 = \alpha \frac{\mu b}{b}$
- 3 位错绕过位错林;与增殖过程相似,在林位错周围形成位错环,然后继续滑移,阻碍切应力为 $\tau_0^3 = \alpha \frac{\mu b}{l_0}$;
- 4 以上的三个 α 并非同一常数,仅仅为方便使用同一符号,而且以上的阻力与位错的温度没有关系,
- 5 切过林位错产生交割,这一部分是短程相互作用,与热激活有关,这是温度升高,屈服强度降低的原因。外力为 τ ,长程应力为 τ 0,外力完成完全切割做功为 $W = (\tau \tau_0)bld$,产生割阶的能量为 ΔH_0 ,热激活提供的能量为 $\Delta H = \Delta H_0 (\tau \tau_0)bld$,当温度高于一定值,形成割阶的能量完全由热激活提供,不需要外力。

提高屈服强度也就是提高位错运动的长程和短程阻力,主要有以下途径:

- 1 位错密度上升,比如通过拉拔进行加工硬化,桥梁钢在处理后屈服强度可提升 50%;
- 2 障碍物尺寸增加;
- 3 障碍物间距缩小,也就是增加障碍物密度,比如弥散强化;
- 4 障碍物的稳定性增加。

影响临界分切应力 70 的因素

- 1 高温段不发生变化,温度降低,应力上升,对韧性产生影响;
- 2 合金元素的存在,一般会使临界切应力 τ_0 增加;
- 3 应变使位错密度增加,进而也会使切应力增加;

4.2.3 拉伸过程中集体的转动和碎化

滑移面与拉伸轴不平行,切变方向沿滑移方向,无法沿拉伸轴方向,因此,试样两端会产生位移。在拉伸实验中,两端被限制,晶面会受到转动力矩的作用,从而发生转动。

在不能整体发生倾转的时候,表面出现 S 状的滑移线,同号的位错堆积起来,然后产生晶体弯曲,变形过程中晶体的碎化,在取向差小于15°时 2 ,将会出现亚晶。产生畸变后,在衍射斑上会出现星芒。

 $^{^1}$ 如果塞积群与所求位错之间距离较远,可以视塞积群为一个扩大 N 倍的柏式矢量,其中 N 为塞积群位错数量。

²小角晶界处。

4.2.4 孪生

孪生是晶体塑性变形的另一种方式,比如,体心立方的金属的六个偏位错滑移产生孪晶, 当晶体的一部分相对另一部分呈镜面对称时,两者互为孪晶。

其与滑移的差异

- 1 原子到孪生面的移动距离不是常数;
- 2 抛光之后仍然可见; 而滑移是表面现象, 内部不产生畸变, 而孪生不会因为抛光改变晶体排列, 仍然可见:
- 3 形状通常为薄透镜状:
- 4 发生速度可以很快;
- 5 一般是滑移受阻时产生的。

4.2.5 总结

单晶体塑性变形的三个过程: 1. 切变, 2. 转动, 3. 碎化。

4.3 多晶体范性变形的特点及晶界的作用

4.3.1 多晶体塑性变形的特点

一般情况下,多晶材料屈服应力大于单晶材料,因为晶界会产生强化效应。在若干晶系中,选择 ω 最大的取向最先发生开动,晶粒中发生多滑移,使其发生变形的方向一致。二这需要至少五个滑移系同时运动。这也是多晶变形的特点之一:多滑移。

在晶界附近,为位错滑移受到阻碍,发生位错塞积。

在变形过程中,会出现择优取向,也就是织构。

4.3.2 多晶体的屈服应力

假设在 A 晶粒中的某个滑移系处于有利的取向,其取向因子最大,也最先开始滑移,滑移后位错遇到晶界,位错塞积,之后在 B 晶粒的晶界处产生应力集中,当应力集中过大时, B 中的滑移系达到了临界应力,也会发生滑移,变形也就从 A 传递到了 B。这是变形的传递过程。

假设 A 晶粒中的变形可以表示为

$$\gamma = \frac{nb}{L},\tag{4.3.1}$$

其中 L 为 A 晶粒的滑移方向的长度,此时 B 晶粒没有发生位错滑移,仍然处于弹性变形阶段,所以 B 中的切应力为

$$\gamma' = \frac{\tau}{\mu},\tag{4.3.2}$$

两个晶粒的应变应当相同,也就是 $\gamma = \gamma'$,也就是

$$\frac{nb}{L} = \frac{\tau}{\mu},\tag{4.3.3}$$

所以有

加工硬化与退火

根据霍尔佩奇公式可知,对于多晶材料,当晶粒极端细化时,屈服强度会达到无限大, 然而这是不可能的。后来根据一些经验,人们认为该公式中应当分段。

从拉伸曲线上看,当应力大于屈服应力时,应变增加,应力也会增加,这一现象称为加工硬化。加工硬化是结构材料的必备性质,使材料的强度得到提高,其益处在于:

- 1 防止材料被进一步破坏;
- 2 同时保证了材料的均匀变形能力。

同样也有着一定的坏处

- 1 加工过程需要退火,变形逐渐困难:
- 2 加工硬化后,材料的韧性降低;
- 3 由于加工硬化能力不足,材料可能会出现缩颈;

在描述这一性质时有一些参数需要先介绍:

- 1 n: 加工硬化指数,其数值与最大力对应的型变量相等;
- 2 r: 方形材料的横向变形与纵向变形之比,与内部的织构有关,即滑移面与板面的平行 关系;
- $3 \stackrel{d\sigma}{d\varepsilon}$:加工硬化率,其与应力应变曲线的交点即为颈缩开始点。

5.1 单晶体加工硬化特征

5.1.1 面心立方应力应变曲线

面心立方晶体的形变效果较好,因此方便研究,也就是不选择体心立方和密排六方的原因。实验采用**单晶面心立方晶体**的加工硬化曲线可以分为三个阶段

- 1 I 区: $d\tau/d\varepsilon$ 加工硬化率较小,容易滑移,数值大约为 $2^{-4}\mu$;
- 2 II 区: $d\tau/d\varepsilon$ 数值基本为常数, 大小为 $3 \times 10^{-2}\mu$, 称为线性硬化区;
- 3 III \boxtimes : $d\tau/d\varepsilon$ 逐渐变小趋于 0,称为抛物线硬化区。

在多晶中难以观察到第一阶段。

研究发现,有以下因素

- 温度上升使临界分切应力 τ_c 下降,第一阶段和第二阶段分界点以及第二第三阶段分界 点 γ_2 和 γ_3 显著下降,从而第二第三阶段的切应力都会显著下降;
- 层错的影响: 拓展位错的宽 d^1 与拓展位错的交滑移,层错能下降,第 2 第 3 阶段影响 大;
- 取向对影响第二阶段分界点和第一部分的斜率;
- 合金元素可能是第一阶段增长。

从滑移线分析,

- 1 第一阶段滑移线较细,在光学显微镜一般观察不到,而且都是相同的指数;
- 2 第二阶段的滑移线有交叉,开始双滑移,线长度随型变量的增加而逐步变短;
- 3 第三阶段的滑移带不再连续,位错呈现胞状结构2。

5.1.2 体心和六方应力应变曲线

高纯度的体心立方和六方晶体也是三个阶段,第三阶段与拓展位错交滑移有关,由于体心立方的层错能大,因此不容易观察到第三阶段。而观察六方的三阶段更是要求取向合适,因而观察困难。

5.2 加工硬化的位错理论

加工硬化的理论主要有两种类型:

- 1 平行位错硬化理论: 与临界分切应力位错理论相似,认为主滑移线的平行位错阻力的 长程应力增加;
- 2 交截位错硬化理论:认为林位错对主滑移系产生阻碍,是短程的硬化理论:

¹拓展位错宽度增加,层错能下降,交滑移难度增加。

²与回复阶段有关

5.2.1 第一阶段的位错理论

第一阶段位错沿滑移面运动,基本不与其他位错发生交互作用。这一阶段主要是位错发 生单滑移,

$$\tau = \alpha \mu b \rho^{-\frac{1}{2}},\tag{5.2.1}$$

位错源开动,在 L-C 位错锁³附近发生塞积,位错的密度有少量增加,切应力增加。假设不动位错的数量为 N'',单位面积不动位错前塞积的位错数目是有上限的,用 n 表示塞积的总位错数为 N''*n,所以切应力为

$$\tau = \alpha \mu n b \sqrt{N''},\tag{5.2.2}$$

此时的变形为

$$\gamma = \rho Sb = N''L(nb), \tag{5.2.3}$$

其中 L 为位错长度。

此时的加工硬化率为

$$\theta = \frac{\mathrm{d}\sigma}{\mathrm{d}\varepsilon} = \alpha\mu \frac{1}{L} \cdot N'' \tag{5.2.4}$$

5.2.2 加工硬化的第二阶段的理论

位错开始发生双滑移和多滑移,位错塞积在 L-C 位错锁前形成新的位错环。由于仍然是塞积在位错锁,所以塞积的上限一定 n 不变,而位错锁前形成新的位错锁,所以 N 增加,也可以说是被激活。此时产生的形变的增加为

$$d\gamma = L(nb) dN, (5.2.5)$$

位错的长度为

$$L = \frac{\Lambda}{\gamma - \gamma_2},\tag{5.2.6}$$

 γ_2 为第二阶段切应变分界点,将 L 带回后积分

$$\int (\gamma - \gamma_2) \, d\gamma = \int \Lambda(nb) \, dN, \qquad (5.2.7)$$

所以形变变化量为

$$\gamma - \gamma_2 = \sqrt{2knb\Lambda N},\tag{5.2.8}$$

此时的切应力为

$$\tau = \alpha \mu(nb)\sqrt{N},\tag{5.2.9}$$

此时的加工硬化率为:

$$\theta_2 = \frac{\tau}{\gamma - \gamma_2} = \alpha \mu \sqrt{\frac{nb}{2\Lambda}},\tag{5.2.10}$$

这只是理论中的一种,第二阶段的理论仍然有较大争议。

³L-C 位错锁与双滑移有关,第一阶段为单滑移,L-C 位错锁数量不会增加。

5.2.3 第三阶段的位错理论

塞积在不动位错前的螺位错发生交滑移,由于正号和负号的位错相互抵消,使得加工硬 化减弱,这一过程与温度的关系很大。

5.2.4 包辛格效应

金属在正向加载后然后反向加载,会导致屈服应力降低,在单晶体中不容易观察到,由于这一现象与晶界的位错塞积和残余应力有关,因此在多晶体中较为明显。

比如金属处在高周疲劳情况,屈服应力会不断降低,最后断裂。

5.3 多晶体的加工硬化

对于多晶体来说,其加工硬化特征也可以分为三个阶段,但是与单晶体的三阶段区别在 于一开始就会发生多滑移。

多晶比单晶多了晶界,而且从滑移一开始就是多滑移。屈服过程是逐步的,没有明确的 屈服点。(第一阶段和第二阶段的转折点标志着所有晶粒同时变形)而且晶界是位错运动的 重要障碍,所以屈服强度高于单晶的。

二、三阶段位错机制与单晶体相似, 所以加大应力后多晶与单晶的加工硬化率逐步接近。

5.4 形变金属的加热

残余应力有三类,原子层面、单晶层面以及多晶层面。残余应力的大部分能量都来自位错。对其加热可以释放应变能,其中会发生三种现象: 残余应力消除,发生多边形化,晶粒重新改组,。

在加热过程中,残余应力消除,发生多边形化是回复的现象,晶粒重新改组为再结晶对应的现象。

通常情况下,所有境界迁移速度相图,晶粒尺寸均匀。异常情况下,只有少数晶界可以 迁移,导致个别晶体形态巨大,比如对 Al 单晶长时间退火,可以形成单晶。

回复过程中,显微组织组织的变化几乎不可见,再结晶阶段,变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒,然后等轴晶粒开始长大吸收其它晶粒。

5.4.1 性能变化

回复阶段,强度和硬度略有下降,塑性略有提高;再结晶阶段,强度和硬度明显下降,塑性明显提高。晶粒长大时,强度硬度继续下降,塑性进一步提高,粗化严重时下降,

密度会逐渐提高,在再结晶阶段快速提高,电阻在回复阶段可明显下降。

5.4. 形变金属的加热 47

形变处储存能主要来自弹性应变能、点缺陷和**位错**,在回复阶段开始释放,在再结晶阶段大量释放。形变储存能也是回复和再结晶的驱动力。

回复阶段第一种内应力可以消除,再结晶阶段全部消除。

5.4.2 回复动力学

部分材料可以在室温阶段发生回复过程,但是大部分材料都要在较高温度下发生。

回复过程是动态过程,可以在形变过程中发生,速度较快,时间较短可以发生部分回复,加载间隔时间较长可以发生完全回复。

回复动力学曲线特点

- 1 没有孕育期;
- 2 开始变化快,逐渐变慢;
- 3 长时间处理后,趋于一个平衡值。

回复分为根据温度分为低温回复、中温回复和高温回复,以下用 T_m 代表熔点。低温恢复发生在 $0.3T_m$ 以下,主要由点缺陷产生

- 1 空位移到缺陷、位错的地方;
- 2 空位和自间隙原子消失;
- 3 空位发生聚集,

最后导致缺陷的密度降低,减少弹性畸变能。

中温回复在 $0.3-0.5T_m$ 发生,异号位错相遇而抵消或者是位错缠结发生重排,因此中温回复的特点为位错密度明显降低。

高温回复发生在 $0.5T_m$ 以上,位错攀移导致位错垂直排列,产生亚晶界,多晶化产生亚晶粒,弹性畸变能降低。

回复的影响因素主要有

- 1 温度;
- 2 层错能: 层错能较低时,攀移位错受阻,难以形成亚晶,或形成不完整亚晶;
- 3 变形量: 受到变形越大,
- 4 纯度: 纯度越高, 再结晶越难发生, 回复越易发生。

主要应用于去应力退火,降低应力,保持加工硬化效果,防止工件变形、开裂,提高耐蚀性。

5.4.3 再结晶

形变金属**加热到一定温度**后,新的无畸变晶粒**消耗掉冷加工的畸变晶粒**的**形核与长大过** 程。

新旧晶粒结构相同,因此再结晶不是相变,但是取向完全不同,性能恢复到形变之前。 发生再结晶的条件是变形量大于临界变形量,这样才能储存足够的应变能。而影响再结 晶最终的晶粒尺寸与变形量、退火温度以及原始晶粒度有关。

再结晶温度: 经严重冷变形(变形量 >70%)的金属或合金,在 1h 内能够完成再结晶的(再结晶体积分数 >95%)最低温度。

在工业中,都是确定变形量和完成再结晶时间固定后才能确定再结晶温度,也就是条件 再结晶温度,或称为再结晶停止温度。

根据经验公式,纯度越高,越难以发生再结晶,应用时再结晶退火温度比再结晶温度高100°。

再结晶的形核过程与相变中的形核过程不同,有两个机制:

- 1 变形量较大时, 在回复过程中由亚晶合并形核, 靠亚晶移动形核;
- 2 变形量较小时,大角晶界凸出形核,完全靠晶界迁移,晶核伸向畸变能较高的区域。

再结晶过程存在孕育期,温度越高,变形量越大孕育期越短;在体积分数为 0.5 时速率最大,然后减慢。

再结晶温度的影响因素有:

- 1 变形量越大,驱动力越大,再结晶温度越低;
- 2 纯度越高, 再结晶温度越低;
- 3 加热速度太低或太高,条件再结晶温度提高。

对再结晶的影响因素有

- 1 退火温度。温度越高,再结晶速度越大;
- 2 变形量越大,再结晶温度越低;随变形量增大,再结晶温度趋于稳定;变形量低于一定值,再结晶不能进行;
- 3 原始晶粒尺寸。晶粒越小,驱动力越大;晶界越多,有利于形核。
- 4 微量溶质元素阻碍位错和晶界的运动,不利于再结晶;
- 5 分散第二相,间距和直径都较大时,提高畸变能,并可作为形核核心,促进再结晶;直径和间距很小时,提高畸变能,但阻碍晶界迁移,阻碍再结晶。

再结晶应用于恢复变形能力、改善显微组织、消除各向异性以及提高组织稳定性。

5.4. 形变金属的加热 49

5.4.4 晶粒长大

正常长大

晶粒长大的驱动力为界面能变化,长大方式有两种,分别为

- 1 正常长大: 再结晶后的晶粒均匀连续的长大,驱动力为界面能差,曲率半径越小,驱动力越大,长大方向指向曲率中心;
- 2 异常长大,也称为二次再结晶。

晶粒正常长大方向是指向曲率的中心,曲率半径越小,驱动力越大,再结晶晶核的长大 方向相反。

晶粒稳定条件是晶界夹角为120°,边界趋于平直,二维坐标的晶粒边数趋于 6。 影响因素有

- 1 温度: 温度越高,晶界易迁移,晶粒易粗化;
- 2 分散相粒子: 阻碍晶界迁移, 降低晶粒长大速率;
- 3 杂志和合金元素: 气团钉扎晶界, 不利于晶界移动;
- 4 晶粒的取向差: 小角度晶界能小于大角度晶界, 前者的移动速率低于后者。

晶粒异常长大

异常长大是指:少数再结晶晶粒的急剧长大现象。正常的晶粒长大过程被第二相或织构限制。驱动力主要是界面能的变化。

有三种机制: 1. 钉扎晶界的第二相溶于基体; 2. 再结晶织构中位向一致晶粒的合并; 3. 大晶粒吞并小晶粒。

对组织和性能的影响是

- 1 织构明显, 出现各向异性, 磁导率强化;
- 2 晶粒大小不均匀,整个材料的性能不均匀;
- 3 晶粒粗大,降低了材料的强度和塑性,提高了表面的粗糙度。

在金属的轧制过程中,远高于再结晶温度的轧制以及远低于再结晶温度不会产生混晶⁴, 否则会对材料的韧性产生较大危害,尤其在断裂问题中,一个较大晶粒非常容易传导裂纹。

⁴个别晶粒的大小远大于周围晶粒的尺寸。

再结晶退火的组织

首先要参考再结晶图了解退火温度、变形量与晶粒大小的关系图,可能会产生再结晶织构,也就是退火过程中形成的新织构;也有可能形成退火孪晶,在面心立方中常见,由于晶界迁移出现层错引起的。

动态回复与动态再结晶

动态回复是指在塑性形变中发生的回复,拉伸曲线会波动向上;动态再结晶是指在变形过程中发生动态再结晶,拉伸曲线在某一值附近波动。

组织有两个特点:

- 反复形核,有限长大,最后的晶粒非常细小;
- 包含亚晶粒,位错密度较高,强度和硬度都很高。

在生产中采用低的变形终止温度、较大的最终变形量(平均一道次变形量一般要大于 70%),快的冷却速度可获得细小晶粒。

合金强化

决定材料强度的关键因素是原子之间的结合力以及位错。原子的结合力与材料的原子有 关,这非常难控制,但是位错是人类可以控制的重要因素,因此位错是近代金属领域的最大 成果。

6.1 强化金属的途径

根据位错运动出发,强化的方式主要有两种。

6.1.1 金属的极限强度

金属的极限强度约为6000 MPa, 然而实际的材料仅仅为极限的 ½, 想要达到这样的强度就必须实现理想晶体,使晶体满足刚性滑移假设。在实际上通常是把位错滑移出晶体,但是一旦晶体中出现位错,性能就急剧下降。

6.1.2 人为增加位错的阻力

提升晶格阻力和源动作应力是提升强度的重要方法:通过对金属中各种微结构与位错的相互作用提升强度的方法主要有四种

- 1 点缺陷: 固溶强化;
- 2 线缺陷: 加工硬化, 写出切应力公式 $\gamma = \rho sb$;
- 3 面缺陷: 晶粒细化强化, 写出霍尔佩奇公式 $\sigma_s = \sigma_0 + k \cdot d^{-1/2}$;
- 4 体缺陷:分散强化。

在工业中,都是使用综合强化。比如同一个奥氏体中的马氏体片条组,可以视为将奥氏体细化实现强化。

6.2 人为强化机制

6.2.1 固溶强化

溶质原子与气团的相互作用有两种,直接作用和间接作用。 基本规律是

- 固溶体强度大于纯金属,细固溶体的强度与间隙原子的浓度成线性关系,间隙原子半 径越小,强化效果越大;
- 溶解度小的元素强化作用较大;
- 稀固溶体的强化作用可以叠加;
- 间隙原子作用大于置换原子:
- 相同的电子浓度,强化效果接近;
- 模量相应,加入物质的模量越大,强化效果越大。

6.2.2 固溶强化机制

- 1. 弹性相互作用:气团,
 - (a) 是明显屈服点产生的原因,对位错的启动有作用:
 - (b) 溶质原子是间隙原子可以使间隙现象更为明显,在体心立方中比面心立方中更明显:
 - (c) 对温度敏感,温度升高,扩散加快;
 - (d) 只要有少量溶质就可以起作用。
- 2. 溶质原子分布的摩擦阻力;
- 3. 电学交互作用: 较弱,位错两侧的溶质原子的库仑力产生拉应力或压应力;
- 4. 化学交互作用: 较弱;
- 5. 有序化: 主要在有序化的材料中才会出现,分为长程序和短程序,在有序晶体内产生 反向畴界。

其中第一点、第四点第五点对位错启动有作用,2、3、5 总是对位错运动有作用。温度升高,第一类作用下降。

6.3. 补充 53

6.2.3 屈服现象与应变时效

有两种屈服现象,分为有明显屈服平台和无平台(均匀屈服)两种。

第一种的产生原因是科垂耳气团,在超过上屈服点后应力下降,发生动态再结晶,这一 阶段称为屈服齿,也叫做吕德斯应变,是形变传播过程中的必然现象。

均匀屈服没有屈服平台,而是呈凹陷区域。在 α Fe 经过除H 处理后,可以发现。一般认为是可动位错的密度的提高,导致屈服凹陷的出现

$$\gamma = \rho s b, \tag{6.2.1}$$

$$\varepsilon = \phi \rho s b \tag{6.2.2}$$

$$\dot{\varepsilon} = \phi \rho \dot{s} b. \tag{6.2.3}$$

拉伸时,速度一定,所以只能是位错速度下降,出现凹陷。

6.2.4 分散强化

如果材料中出现第二相,形成两相合金。在这两种相之间的界面上的原子排列不再具有 晶格完整性。在金属等塑性材料中,这些相界面会阻碍位错的滑移,从而使材料得到强化。 这就是分散强化的由来。分成弥散强化、时效(沉淀)强化两类。

当位错经过第二相时,会出现绕过机制,形成位错环。或是根据切过机制,位错切过第 二相。

6.3 补充

- 1. 兰脆现象: 当钢铁加热到200°-300°, 钢铁的脆性增加, 表面变成兰色, 原因是钢铁的动态应变时效。
- 2. 预应变: 提前拉伸钢铁, 使其脱开溶质原子的束缚。

Part III 固溶体、扩散与相变

固溶体

扩散

相变

9.1 相变概念

关于相变,有一些最为基础的概念,

- 1. 相:成分相同、结构相同,有界面同其他部分分隔的物质均匀组成部分;
- 2. 相变: 当外界条件(如温度、压力等)连续变化时,物质自身发生突变的现象。或物相的某个(阶)热力学势跃变,伴随物相的某个(些)要素跃变;
- 3. 固态相变: 固体材料的结构在温度、压力、成分改变时所发生的转变。

在分类上,有很多种分类方法,比如从动力学上,或者是从热力学上分类

9.1.1 动力学相变分类

相变分为两类:扩散性和无扩散型,如图 9.1所示。无扩散型相变较为简单,分为连续型相变,比如 ω 相比,和形核长大型相变,比如马氏体相变。

而扩散性相变则相对复杂,也分为连续型相变和形核长大型相变,更为具体的分类将在 后面的章节进行讲解,在这里不再进行过多叙述。

图 9.1: 金属及合金中的一级相变。

9.1.2 热力学的相变分类

在热力学的分类比较简单,分为一级相变和二级相变。一级相变是指化学位相等,但是 化学位的一阶导数不等,也就是熵不等或者是体积不等,

$$\mu_1 = \mu_2, \tag{9.1.1}$$

$$\left(\frac{\partial \mu_1}{\partial T}\right)_p = -S_1 \neq -S_2 = \left(\frac{\partial \mu_2}{\partial T}\right)_p, \tag{9.1.2}$$

$$\left(\frac{\partial \mu_1}{\partial p}\right)_T = V_1 \neq V_2 = \left(\frac{\partial \mu_2}{\partial p}\right)_T. \tag{9.1.3}$$

在一级相变中伴有能量变化,或者吸热或者放热,或者体积发生变化。比如晶体的熔化、升 华、液体的凝固、汽化、气体的凝聚以及晶体中大多数晶型转变都属于一级相变,这是最普 遍的相变类型。

二级相变是指化学位的二阶导数发生突变,而化学位和一阶导数不发生突变,

$$-\frac{C_p}{T} = \left(\frac{\partial^2 \mu_1}{\partial T^2}\right)_p \neq \left(\frac{\partial^2 \mu_2}{\partial T^2}\right)_p,\tag{9.1.4}$$

$$kV = \left(\frac{\partial^2 \mu_1}{\partial p^2}\right)_T \neq \left(\frac{\partial^2 \mu_2}{\partial p^2}\right)_T, \tag{9.1.5}$$

$$\alpha V = \frac{\partial^2 \mu_1}{\partial T \partial p} \neq \frac{\partial^2 \mu_2}{\partial T \partial p}.$$
 (9.1.6)

其中 C_p 为等压比热,k 为等温等压系数, α 为等压膨胀系数 1 。在二级相变中,两相的化学 势、熵和体积相等,但热容、膨胀系数和压缩系数不相等,即无相变潜热,无体积的突变,只

¹熔化、马氏体转变属一级相变,有序化可能是一级也可能是二级相变。

9.1. 相变概念 63

有热容、膨胀系数和压缩系数的不连续变化,

$$\Delta C_p \neq 0$$
,

 $\Delta \beta \neq 0$,

 $\Delta \alpha \neq 0$.

一般合金的有序-无序转变、铁磁-顺磁转变、超导转变等属于二级相变。大多数便随某种物理性能的变化。

9.1.3 固溶体自由能的计算

纯组元的自由能和温度的关系可以写作

$$G(T) = H(T) - TS(T),$$
 (9.1.7)

而两相混合的自由能,在理想条件下可以由两相的自由能叠加得到。

假设在体系中存在两种相 α 和 β ,均是由 A、B 两种原子构成,假设 A 原子的成分为 xat.%,在 α 相中,A 的原子百分比为 x_1 ,在 β 中的原子百分比为 x_2 而 α 相和 β 的占比分别为 N_1 和 N_2 ,两者的自由能分别为 G_1 和 G_2 ,混合后的自由能为

$$G = N_1 G_1 + N_2 G_2, (9.1.8)$$

利用成分关系,可以变为

$$G = G_1 + \frac{x - x_1}{x_2 - x_1} (G_2 - G_1), \tag{9.1.9}$$

所以 G_1 , G, G_2 处于同一直线, 并且服从杠杆定律。

但是在混合过程存在其他作用,导致混合后的自由能不等于理想情况下的自由能。这里 假设实际的自由能为

$$G(x) = G^0 + \Delta G^m, (9.1.10)$$

其中

$$G^0 = x_A G_A^0 + x_B G_B^0, (9.1.11)$$

其中, x_A 为 A 原子的原子百分比, x_B 为 B 原子的原子百分比,而要计算 ΔG^m ,需要先计算混合过程中的焓和熵的变化量。

混合过程中熵的改变量

固态下的系统的熵主要由混合熵(决定于原子可能排列的方式)和振动熵(决定于温度和缺陷)组成,混合熵的变化为

$$\Delta S^m = S_{AB} - (x_A S_A + x_B S_B), \tag{9.1.12}$$

根据混合熵的定义

64

$$S = k \ln \Omega, \tag{9.1.13}$$

其中 k 为玻尔兹曼常数, Ω 为微观状态数,假设 A 的原子数为 N_A ,B 的原子数为 N_B ,混合熵的变化为

$$\Delta S^{m} = S_{AB} - (x_{A}S_{A} + x_{B}S_{B})$$

$$= k \ln \frac{N!}{N_{A}!(N - N_{A})!} - x_{A}k \ln (C_{N_{A}}^{N_{A}}) - x_{B}k \ln (C_{N_{B}}^{N_{B}})$$

$$= k \ln \frac{N!}{N_{A}!N_{B}!}$$

$$= k (\ln N! - \ln N_{A}! - \ln N_{B}!).$$
(9.1.14)

根据 Stirling 公式,

$$\Delta S^{m} = -R(x_{A} \ln x_{A} + x_{B} \ln x_{B}), \qquad (9.1.15)$$

其中 R = kN。

混合过程中焓的改变量

接下来计算混合过程中焓的变化,利用溶液的准化学模型,假设

- 1. A, B 两组元尺寸接近,排列无序;
- 2. 混合过程中体积基本不变,即 $\Delta V = 0$;
- 3. 原子只与最近邻的原子之间存在相互作用,即只计算最近邻原子之间的结合能。

假设两个近邻原子之间额定结合能分别为 u_{AA} 、 u_{AB} 和 u_{BB} ,固溶体和组元的配位数均为 Z。在恒压情况下,焓的改变仅与结合能的改变有关,所以

混合前,
$$u_1 = \frac{1}{2} N_A Z u_{AA} + \frac{1}{2} N_B Z u_{BB},$$
 (9.1.16)

混合后,
$$u_2 = \frac{1}{2} N_A Z \frac{N_A}{N} u_{AA} + \frac{1}{2} N_B Z \frac{N_B}{N} u_{BB} + N_A Z \frac{N_B}{N} u_{AB}.$$
 (9.1.17)

所以焓的变化量为

$$\Delta u^{m} = ZN \left(u_{AB} - \frac{u_{AA} + u_{BB}}{2} \right) x_{A} x_{B}, \tag{9.1.18}$$

令 $\alpha' = ZN\left(u_{AB} - \frac{u_{AA} + u_{BB}}{2}\right)$, 焓变可以写作

$$\Delta H^m = \alpha' x_A x_B. \tag{9.1.19}$$

9.1. 相变概念 65

9.1.4 混合过程的自由能改变量以及成分与自由能关系

所以混合过程中自由能随成分和温度变化的关系为

$$G(x) = G_A^0 x_A + G_B^0 x_B + \alpha' x_A x_B + RT (x_A \ln x_A + x_B \ln x_B).$$
 (9.1.20)

下面将对于这一曲线进行讨论。

混合前的自由能为 $G_A^0 x_A + G_B^0 x_B$ 为一条直线,而熵的改变量则由于成分百分比均小于 1 而小于 0,但是 α' ,也就是原子结合能的改变量不是能够确定的事,需要分情况讨论。在此之前,先进一步确定曲线与成分的关系,

$$\frac{\partial G}{\partial x_B} = -G_A^0 + G_B^0 + \alpha' (x_A - x_B) + RT (\ln x_B - \ln x_A), \qquad (9.1.21)$$

$$\frac{\partial^2 G}{\partial x_B^2} = -2\alpha' + RT\left(\frac{1}{x_A} + \frac{1}{x_B}\right). \tag{9.1.22}$$

由此可见,曲线中唯有成分也就是结合能的变化不能确定,下面将针对结合能变化的三种情况进行讨论。

当原子结合能不发生改变时,也就是 $\alpha'=0$ 时,此时体系符合理想溶液模型,自由能的二阶导数

$$\frac{\partial^2 G}{\partial x_B^2} = RT\left(\frac{1}{x_A} + \frac{1}{x_B}\right) > 0, \tag{9.1.23}$$

G(x) 为下垂线,及曲线的凹向朝上,如9.2(a)所示。

(a) 混合时结合能不变的自由能曲线

(b) 混合时结合能减小的自由能曲线

图 9.2: 三种不同情况的自由能曲线

当焓变小于零时, 也就是 $\Delta H^M < 0$,

$$\frac{\partial^2 G}{\partial x_B^2} = 2\alpha' + RT\left(\frac{1}{x_A} + \frac{1}{x_B}\right) < 0, \tag{9.1.24}$$

这时异类原子的结合力大于同类原子之间的结合力。表现为在溶解时会放出热量。此时 G(x) 为下垂线,曲线的凹陷更大,如9.2(b)所示。

当焓变大于零时,焓变与熵的变化为相反的作用,曲线的形状与两者的大小有关。

图 9.3: 混合时结合能增加的在不同温度下的自由能曲线

当 $T \ge \frac{\alpha'}{2R}$ 时,混合所提高的内能全部由热温熵来补充, $\Delta G^m \le 0$,曲线仍然为下垂曲线,仅仅是下垂的程度小一点,如9.3(a)所示。

在低温情况下, $T < \frac{\alpha'}{2R}$ 时,构成的曲线有三个极值点和两个拐点,在靠近坐标轴(x 接近 0 或 1)处为上凹曲线,有两个极小值,而中部位凹向朝下的上凸曲线,会有一极大值,如9.3(b)所示。在这种情况下,存在两种必然的规律:

- 1 任何一个组元都可以少量溶解其它组元,不可能得到绝对的纯净物质;
- 2 当出现上凸时, 吉布斯自由能会提高, 自发的趋势是形成两相混合物可以降低体系的自由能, 两组元表现为有限溶解。

9.2 均匀形核

相变动力学是讨论相变的过程和速度的,新相的形核和长大是动力学的两个基本问题。即使在宏观的单相均匀系统中,也存在着微观的不均匀性,存在局部的能量、密度、成分组态的涨落。Gibbs 将这种涨落分为两类:

- 1 在**很小的体积**内存在着剧烈的原子再分布,在亚稳的母相中形成**新相胚芽**,当这种胚 芽超过临界尺寸,就变成稳定的新相核心而自发长大,金属和合金中的转变多数如此;
- 2 在大的体积内原子的少量调整,转变在整个体积范围内进行,如有序一无序转变。

以纯金属的凝固为例,假设在 L 中形成半径为 r 的晶核s,固体和液体的体积为 V_s 和 V_L ,固体和液体单位体积的自由能为 G_s^s 、 G_n^L ,A_{SL} 为两相之间面积, r_{SL} 为两相的界面能。

9.2. 均匀形核 67

假设发生相变的过程中没有体积变化,没有形核时,体系的自由能为

$$G_1 = (V_s + V_l) G_v^L, (9.2.1)$$

则体系中出现晶核的自由能为:

$$G_2 = V_s G_v^S + V_L G_v^L + A_{SL} \gamma_{SL}, (9.2.2)$$

所以形核时的自由能变化为

$$\Delta G_v = G_2 - G_1 = -V_S \cdot \Delta G_v + +A_{SL}\gamma_{SL}, \tag{9.2.3}$$

式中 $\Delta G_v = G_v^L - G_v^S$ 。

假设晶核为球形,则固液界面面积和固体体积为

$$A_{SL} = 4\pi r^2, V = \frac{4}{3}\pi r^3, \tag{9.2.4}$$

形核的自由能变化量为

$$\Delta G_r = -\frac{4}{3}\pi r^3 \Delta G_v + 4\pi r^2 \gamma_{SL},\tag{9.2.5}$$

在平衡状态下,对r求导,

$$\frac{\mathrm{d}\Delta G_r}{\mathrm{d}r} = -4\pi r^2 \Delta G_v + 8\pi r \gamma_{SL},\tag{9.2.6}$$

令导数为零,此时的晶核半径为临界晶核尺寸

$$r^* = \frac{\gamma_{SL}}{\Delta G_v}. (9.2.7)$$

自由能改变量为

$$\Delta G^* = \frac{16\pi}{3} \left(\frac{\gamma_{SL}^3}{\Delta G_v^2} \right), \tag{9.2.8}$$

根据自由能的二阶导数可知,此时的自由能为极大值。因此只有半径大于临界晶核尺寸的晶核才能继续长大,而小于该尺寸的晶核则消失。临界晶核对于的自由能变化量 ΔG^* 为形核功,即核长大到 r^* 所需克服的势垒。

形核功的量值是临界球形晶核表面能的 1/3, 也就是说, 球形晶核的表面能的 2/3 由新相的自由能下降给出, 1/3 依靠热涨落。这一过程称为**热激活过程**。

在凝固过程中,要达到临界半径,需要温度上提供足够的过冷度,假设熔点温度为 T_m ,外界温度与熔点温度差为 ΔT ,此时的自由能变化量为

$$\Delta G_v = \frac{\Delta T \cdot \Delta H_m}{T_m},\tag{9.2.9}$$

代入临界半径表达式为

$$r^* = \frac{2\gamma_{LS}T_m}{\Delta H_m \cdot \Delta T},\tag{9.2.10}$$

因此当 $\Delta T = 0$, $\Delta G^* \rightarrow 0$, 不能形核, 过冷度越大, 越易形核。

9.3 形核速率及均匀形核在固态转变中的推广

在液态的情况下,金属中也会存在一些小区域具有固态的密堆结构,本章将对这些小区域进行讨论。

假设在单位体积内,由 i 个分子组成半径为 r 的胚芽数为 n_i ,而单分子数目为 n,而单位体积中独立质点数 N 为

$$N = n + \sum_{i>2} n_i, \tag{9.3.1}$$

由于 $\sum_{i\geq 2} n_i \ll n$,所以 N 约等于单位体积中的分子数。从统计方面考虑,胚芽数 n_i 服从玻尔兹曼分布:

$$n_i = Ne^{-\frac{\Delta G_T}{kT}},\tag{9.3.2}$$

临界核心数 n_i^* 为

$$n_i^* = Ne^{-\frac{\Delta G_T^*}{kT}},$$
 (9.3.3)

其中 ΔG_r^* 为形核功。

在临界核心上痛殴分子碰撞再增加一个分子,它就可以克服势垒称为稳定的新相核心。 定义单位体积中单位时间内形成的新相稳定核心的数目为形核速率I,所以形核速率I 正比 于临近核心的分子加入核心的频率 ω ,即

$$I = \omega \cdot n_i^* = \omega N e^{-\frac{\Delta G_r^*}{kT}},\tag{9.3.4}$$

 ω 取决于原子振动频率、扩散激活能、晶核的表面积等。

9.3.1 形核引起的晶格畸变

在金属相变的过程中,由于晶核周围的体积和形状可能发生变化,或者晶核受到周围晶格的限制,使得晶核中的原子不能处在平衡位置,这两种情况都消耗弹性应变能 ε ,这种弹性应变能通过扩散和范性流变才能松弛。

假定应变能正比于晶核的体积,则形核的自由能写作

$$\Delta G_r = -\frac{4}{3}\pi \cdot r^3 (\Delta G_v + \varepsilon) + 4\pi \cdot r^2 \cdot \gamma_{SL}, \tag{9.3.5}$$

临界半径变为

$$r^* = \frac{2\gamma_{SL}}{\Delta G_v + \varepsilon},\tag{9.3.6}$$

形核功为

$$\Delta G^* = \frac{16\pi \gamma_{SL}^3}{3(\Delta G_v + \varepsilon)^2}. (9.3.7)$$

另外,假设晶核的表面积对此时的邻近核心的分子加入核心的频率 ω 没有影响,可以写为

$$\omega = ve^{-\frac{\Delta G_m}{kT}},\tag{9.3.8}$$

其中 v 是原子振动频率, ΔG_m 是原子扩散的激活能。所以式 9.3.4可以写为

$$I = Nve^{-\frac{\Delta G^* + \Delta G_m}{kT}},\tag{9.3.9}$$

式中,Nv 对 I 的影响很小,形核速率强烈依赖指数因子,也就是形核功和原子扩散激活能。 对于固态相变,合理的数量级为

$$Nve^{-\frac{\Delta G_m}{kT}} \simeq 10^{30}, I = 10^{30}e^{-\frac{\Delta G^*}{kT}}.$$

由于 ΔG^* 因过冷度 ΔT 的增大而减小,所以**形核速率强烈依赖于温度**。当 $\Delta T \to 0$, $\Delta G^* \to \infty$, $I \to 0$, ΔT 增大,形核速率 I 存在极值,先增大后减小。

(a) 某合金的局部相图。

(b) 相图的有效推动能量与形 核功与转变温度之间的关系。

(c) 确定 I 的两个指数项与温度的关系。

(d) I 随温度的变化。

图 9.4: 均匀形核速率 I 与转变温度之间的关系。

从9.4(a)可知,成分为 x_0 的合金,其固溶温度为 T_e ,为了抵消应变能 ΔG_{ε} ,必须过冷到 T'_e 才能析出第二相 β 。形核速率随 T 的变化如9.4(d)所示,在高温下,沉淀的推动能量很小,因为 ΔG^* 很大,所以 I 很小,在低温情况下,由于扩散很慢,所以 I 也很小,在中间某一个温度,I 有极大值。

9.3.2 相界面性质的影响

界面能 γ 的来源可以分为两部分,

- 1 一部分是在母相中形成新相界面时,同类键和异类键的数量变化引起的,称为界面能中的**化学项**:
- 2 另一部分是界面结构引起的(如界面上产生的位错), 称为界面能中的结构项。

如果新相和母相的晶体结构和取向相同,电阵常数也非常接近,形成**完全共格界面**。界面能较小,只包括化学项,结构项(畸变能 ε)趋于 0,长大速度很快。

如果完全共格两相的点阵常数不同,就会在界面上引入位错,来减少界面能中的体积应 变能,结构项略有增大,形成**部分共格界面**。

若新相通过母相切变形成,某些界面点阵相似,这种界面称为**切变共格**。 如果所有界面都不共格,称为**非共格**新相。

9.3.3 非均匀形核(界面形核)

形核过程若没有择优地点而称为均匀形核。实际上在金属或合金中,总是存在着界面、位错、夹杂等缺陷,因而成为非均匀的择优形核地点。主要是因为在缺陷处存在着畸变,在 界面或缺陷处形核,可以消除缺陷,松弛部分能量,从而可以降低形核功。

以锭模内表面的钢水凝固为例,在界面上形成球冠状的晶核,则有三种界面能 γ_{LS} 、 γ_{LC} 以及 γ_{SC} ,分别为液固界面能、液体锭模内壁界面能、固体锭模内壁界面能。达到平衡时,具有接触角,在水平上有

$$\gamma_{LC} = \gamma_{SC} + \gamma_{LS} \cos \theta, \tag{9.3.10}$$

这里不考虑 γ_{LS} 的垂直分量,它与锭模及晶核内聚力平衡,与此处无关系。

假设晶核的曲率半径为r,晶核与锭模的接触面积为 A_1 ,则

$$A_1 = \pi \left(r\sin\theta\right)^2 = \pi \cdot r^2 \sin^2\theta,\tag{9.3.11}$$

晶核与液体的接触面积为 A_2 ,

$$A_2 = 2\pi \cdot r^2 (1 - \cos \theta), \tag{9.3.12}$$

晶核的体积 V 为

$$V = \pi \cdot r^3 \frac{2 - 3\cos\theta + \cos^3\theta}{3},\tag{9.3.13}$$

形核之前, 界面能为

$$\gamma_{LC} \cdot A_1 = \gamma_{LC} \pi r^2 \sin^2 \theta, \tag{9.3.14}$$

形核后,界面能为

$$\gamma_{LS} \cdot A_2 + \gamma_{SC} \cdot A_1 = \gamma_{LS} 2\pi r^2 (1 - \cos \theta) + \gamma_{SC} \pi r^2 \sin^2 \theta,$$
 (9.3.15)

形核前后的界面能变化为

$$\Delta G_s = \gamma_{LS} \cdot A_2 + \gamma_{SC} - \gamma_{LC} \cdot A_1$$

$$= 2\pi \cdot r^2 (1 - \cos \theta) + \pi r^2 \sin^2 \theta \left(\gamma_{SC} - \gamma_{LC} \right). \tag{9.3.16}$$

代入式 9.3.10得到

$$\Delta G_S = \pi \cdot r^2 \gamma_{LS} \left(2 - 3\cos\theta + \cos^3\theta \right). \tag{9.3.17}$$

晶核形成时化学自由焓变化为

$$-V \cdot \Delta G_v = -\pi \cdot r^3 \frac{2 - 3\cos\theta + \cos^3\theta}{3} \Delta G_v, \tag{9.3.18}$$

非均匀形核的自由能总改变量为上两项之和

$$\Delta G_{\parallel \mid E} = \Delta G_s + (-V \cdot \Delta G_v)$$

$$= \left(\pi \cdot r^2 \cdot \gamma_{LS} - \frac{\pi \cdot r^3}{3} \cdot \Delta G_v\right) \cdot \left(2 - 3\cos\theta + \cos^3\theta\right)$$

$$= \left(-\frac{4\pi \cdot r^3}{3} \Delta G_v + 4\pi \cdot r^2 \gamma_{LS}\right) \cdot \frac{2 - 3\cos\theta + \cos^3\theta}{4}$$
(9.3.19)

类似于前面求均匀形核功时的推导, 平衡时有

$$\frac{\mathrm{d}\left(\Delta G_{\sharp \downarrow}\right)}{\mathrm{d}r} = \left(-4\pi \cdot r^2 \cdot \Delta G_v + 8\pi \cdot r \cdot \gamma_{LS}\right) \cdot \frac{2 - 3\cos\theta + \cos^3\theta}{4} = 0,\tag{9.3.20}$$

此时临界半径为

$$r^* = \frac{2\gamma_{LS}}{\Delta G_v},\tag{9.3.21}$$

对应的非均匀形核功为

$$\Delta G_{\sharp}^* = \frac{16\pi \gamma_{LS}^3}{3\Delta G_v^2} \cdot \frac{2 - 3\cos\theta + \cos^3\theta}{4},\tag{9.3.22}$$

对于均匀形核, 形核功为

$$\Delta G_{\sharp\sharp}^* \cdot \frac{2 - 3\cos\theta + \cos^3\theta}{4},$$
 (9.3.23)

由于

$$\frac{2 - 3\cos\theta + \cos^3\theta}{4} = \frac{(2 + \cos\theta)(1 - \cos\theta)^2}{4} \le 1,\tag{9.3.24}$$

所以,有以下结论:

 $1 \theta = 0$, $\cos \theta = 1$, $\Delta G_{\sharp}^*/\Delta G_{\sharp}^* = 0$, 此时称为完全浸润;

$$2 \ \theta = \frac{\pi}{2}$$
, $\cos \theta = 0$, $\Delta G_{\sharp \sharp}^* / \Delta G_{\sharp \sharp}^* = \frac{1}{2}$;

 $3 \theta = \pi$, $\cos \theta = -1$, $\Delta G_{\pm}^*/\Delta G_{5}^* = 1$, 此时称为完全不浸润;

4 一般情况下, 非均匀形核的形核功比均匀形核小。

9.4 新相的长大

在讨论完形核过程,接下来讨论相的长大过程。相长大有两种形式,分别为扩散型和非 扩散型。其中扩散性又有两种分别为短程扩散和长程扩散,两种的扩散速度不同。

9.4.1 界面控制的长大过程

对于没有成分变化的转变,比如多形性转变、有序-无序转变等,可以吧新相长大的过程 看出纯粹是 $\alpha \to \beta$ 相界的移动过程。

相变 $\alpha \to \beta$ 的驱动力是自由能的变化 ΔG_v ,阻力是克服势垒 ΔG_m 。根据统计力学,原子发生 $\alpha \to \beta$ 转变的频率为

$$v_{\alpha\beta} = v \exp\left(-\frac{\Delta G_m}{kT}\right),\tag{9.4.1}$$

式中,v为原子振动频率。而原子反向由 $\beta \to \alpha$ 的频率为

$$v_{\beta\alpha} = v \exp\left(-\frac{\Delta G_m - \Delta G_v}{kT}\right), \Delta G_v < 0,$$
 (9.4.2)

则原子由 $\alpha \to \beta$ 的迁移频率 v' 为:

$$v' = v_{\alpha\beta} - v_{\beta\alpha} = v \exp\left(-\frac{\Delta G_m}{kT}\right) \left[1 - \exp\left(\frac{\Delta G_v}{kT}\right)\right],\tag{9.4.3}$$

假设迁移距离为 λ ,则 β 长大速度为

$$u = \lambda v' = \lambda v \exp\left(-\frac{\Delta G_m}{kT}\right) \left[1 - \exp\left(\frac{\Delta G_v}{kT}\right)\right]. \tag{9.4.4}$$

根据温度和自由能变化情况不同,可以分为以下几种情况:

1 当 ΔT 很小, $|\Delta G_v|$ 也很小,而且 $|\Delta G_v| \ll kT$,则有

$$u = \lambda v \left(-\frac{\Delta G_v}{kT} \right) \exp\left(-\frac{\Delta G_m}{kT} \right); \tag{9.4.5}$$

跨越相界的扩散系数为 $D = \lambda^2 v \exp\left(-\frac{\Delta G_m}{kT}\right)$, 所以有

$$u = \frac{D}{\lambda} \left(-\frac{\Delta G_v}{kT} \right),\tag{9.4.6}$$

也就是当 ΔT 很小, $u \propto |\Delta G_v|$,并且随温度下降而增加,虽然扩散系数下降,但是并不会产生较大影响;

2 如果 ΔT 很大, 使 $|\Delta G_v| \gg kT$, 则有

$$u = \lambda v \exp\left(-\frac{\Delta G_m}{kT}\right) = \frac{D}{\lambda},$$
 (9.4.7)

长大速度 $u \propto D$, 并且随温度下降而减小。

在某一温度,长大速率有极大值。当形核和长大速率都大时,相变最快,因而使温度一时间一转变曲线呈字母 C 的形状。在恒温转变过程中,新相恒速长大,其线度 \propto 长大时间。

9.4.2 扩散控制的长大过程

对于一些有成分变化(如连续沉淀)的转变,新相的长大依靠溶质原子的长程扩散。

- 9.5 过饱和固溶体的脱溶沉淀
- 9.6 调幅分解
- 9.7 马氏体相变

Part IV

考试内容

晶体缺陷

10.1 问题

- 1 从几何形态上说,晶体缺陷分哪几类,试举几个典型例子,位错与空位之间有何相互 作用?
- 2 为何为点缺陷的形成能和迁移能,为什么说点缺陷是一种热力学平衡缺陷?一定温度下空位平衡浓度的表达式是什么,有什么特点?
- 3 什么叫非平衡点缺陷? 试举例说明它的产生方法?
- 4 什么叫位错,位错密度的表达式是什么?
- 5 试总结与比较刃型,螺型及混合位错下列方面的异同(从结构类型,柏式矢量,应力场特点,应变能和张力方面进行描述)。
- 6 何谓柏格斯矢量,柏氏矢量的特点及确定方法。单位长位错的应变能及张力近似表达式是什么?
- 7 为何要引入位错的点阵模型,它能说明什么问题。什么叫位错线宽度,位错中心能量? 定性叙述位错的 Pelels 模型。
- 8 计算位错运动引起的变形及位错引起的晶体弯曲?
- 9 什么叫作用在位错上的力,这力的大小,方向及特点是什么(分别讨论滑移力,攀移力, 化学力),位错受力的 peach 公式及由此计算位错在应力场中受到的滑移和攀移力。
- 10 分类叙述不同类型平行位错线间相互作用力大小,方向及特点?何为位错塞积?
- 11 不同的两条位错相遇时会发生哪些现象?位错反应发生的基本条件是什么?

- 12 不同面位错相互切割后会在各位错线上造成什么后果? 什么叫割阶以及它们的运动方式?
- 13 试述位错 FR 源的动作原理及动作应力表达式?
- 14 什么叫层错?简述面心立方晶体中的不全位错 (半,偏位错),扩展位错?什么叫全位错和不动位错?试比较全位错和不全位错的异同点。
- 15 为何说晶界有 5 个自由度, 什么叫扭转晶界, 倾转晶界及亚品界?
- 16 晶界为何具有能量,近代关于晶界结构的基本看法是什么?