Introduction to cryptography 3. Hashing

Gilles VAN ASSCHE Olivier MARKOWITCH

INFO-F-405 Université Libre de Bruxelles 2020-2021

© 2019-2020 Gilles Van Assche and Olivier Markowitch. All rights reserved.

- Signatures: $sign_{RSA}(h(M))$ instead of $sign_{RSA}(M)$
- Key derivation: master key K to derived keys $(K_i = h(K||i))$
- Bit commitment, predictions: h(what I know)
- Message authentication: h(K||M)
- ...

- Signatures: $sign_{RSA}(h(M))$ instead of $sign_{RSA}(M)$
- Key derivation: master key K to derived keys $(K_i = h(K||i|))$
- Bit commitment, predictions: h(what I know)
- Message authentication: h(K||M)
- ...

- Signatures: $sign_{RSA}(h(M))$ instead of $sign_{RSA}(M)$
- Key derivation: master key K to derived keys $(K_i = h(K||i|))$
- Bit commitment, predictions: h(what I know)
- Message authentication: h(K||M|
- ...

- Signatures: $sign_{RSA}(h(M))$ instead of $sign_{RSA}(M)$
- Key derivation: master key K to derived keys $(K_i = h(K||i|))$
- Bit commitment, predictions: h(what I know)
- Message authentication: h(K||M)
- ...

Generalized: extendable output function (XOF)

$$h: \{0,1\}^* \to \{0,1\}^{\infty}$$

"XOF: a function in which the output can be extended to any length."

[Ray Perlner, SHA 3 workshop 2014]

- Applications
 - Signatures: full-domain hashing, mask generating function
 - Key derivation: as many/long derived keys as needed
 - Stream cipher: $C = P \oplus h(K || nonce)$

Preimage resistance

■ Given $y \in \mathbf{Z}_2^n$, find $x \in \mathbf{Z}_2^*$ such that h(x) = y

- If h is a random function, about 2^n attempts are needed
- **Example**: given derived key $K_1 = h(K||1)$, find master key K

Second preimage resistance

■ Given $x \in \mathbf{Z}_2^*$, find $x' \neq x$ such that h(x') = h(x)

- If h is a random function, about 2^n attempts are needed
- Example: signature forging
 - Given M and sign(h(M)), find $M' \neq M$ with equal signature

Collision resistance

■ Find $x_1 \neq x_2$ such that $h(x_1) = h(x_2)$

- If h is a random function, about $2^{n/2}$ attempts are needed
 - Birthday paradox: among 23 people, probably two have same birthday
 - Scales as $\sqrt{|range|} = 2^{n/2}$

Collision resistance (continued)

- **Example**: "secretary" signature forging
 - Set of good messages $\{M_i^{good}\}$
 - Set of bad messages $\{M_i^{\text{bad}}\}$
 - Find $h(M_i^{good}) = h(M_i^{bad})$
 - Boss signs M_i^{good} , but valid also for M_j^{bad}

[Yuval, 1979]

Other requirements

- Security claims by listing desired properties
 - Collision resistant
 - (Second-) preimage resistant
 - Multi-target preimage resistance
 - Chosen-target forced-prefix preimage resistance
 - Correlation-free
 - Resistant against length-extension attacks
 - **...**
- But ever-growing list of desired properties
- A good hash function should behave like a random mapping...

Security requirements summarized

- Hash or XOF h with n-bit output
- Modern security requirements
 - h behaves like a random mapping
 - ... up to security strength s
- Classical security requirements, derived from it

Preimage resistance	2 ^{min(n,s)}
Second-preimage resistance	
Collision resistance	$2^{\min(n/2,s)}$

Iterated functions

- All practical hash functions are iterated
 - Message M cut into blocks $M_1, ..., M_l$
 - q-bit chaining value
- Output is function of final chaining value

Internal collisions!

- Different inputs M and M* giving the same chaining value
- Messages M||X and M*||X always collide for any string X

Does not occur in a random mapping!

- MD5: n = 128
 - Published by Ron Rivest in 1992
 - Successor of MD4 (1990)
- SHA-1: *n* = 160
 - Designed by NSA, standardized by NIST in 1995
 - Successor of SHA-0 (1993)
- SHA-2: family supporting multiple lengths
 - Designed by NSA, standardized by NIST in 2001
 - SHA-224, SHA-256, SHA-384 and SHA-512
- SHA-3: based on Keccak
 - Designed by Bertoni, Daemen, Peeters and VA in 2008
 - Standardized by NIST in 2015
 - SHA3-{224, 256, 384, 512}, SHAKE{128, 256}, ParallelHash{128, 256}, ...
- Other SHA-3 finalists
 - Blake (Aumasson et al.), Grøstl (Gauravaram et al.), JH (Wu), Skein (Ferguson et al.)

- MD5: n = 128
 - Published by Ron Rivest in 1992
 - Successor of MD4 (1990)
- SHA-1: *n* = 160
 - Designed by NSA, standardized by NIST in 1995
 - Successor of SHA-0 (1993)
- SHA-2: family supporting multiple lengths
 - Designed by NSA, standardized by NIST in 2001
 - SHA-224, SHA-256, SHA-384 and SHA-512
- SHA-3: based on Keccak
 - Designed by Bertoni, Daemen, Peeters and VA in 2008
 - Standardized by NIST in 2015
 - SHA3-{224, 256, 384, 512}, SHAKE{128, 256}, ParallelHash{128, 256}, ...
- Other SHA-3 finalists
 - Blake (Aumasson et al.), Grøstl (Gauravaram et al.), JH (Wu), Skein (Ferguson et al.)

- MD5: n = 128
 - Published by Ron Rivest in 1992
 - Successor of MD4 (1990)
- SHA-1: *n* = 160
 - Designed by NSA, standardized by NIST in 1995
 - Successor of SHA-0 (1993)
- SHA-2: family supporting multiple lengths
 - Designed by NSA, standardized by NIST in 2001
 - SHA-224, SHA-256, SHA-384 and SHA-512
- SHA-3: based on Keccak
 - Designed by Bertoni, Daemen, Peeters and VA in 2008
 - Standardized by NIST in 2015
 - SHA3-{224, 256, 384, 512}, SHAKE{128, 256}, ParallelHash{128, 256}, ...
- Other SHA-3 finalists
 - Blake (Aumasson et al.), Grøstl (Gauravaram et al.), JH (Wu), Skein (Ferguson et al.)

- MD5: n = 128
 - Published by Ron Rivest in 1992
 - Successor of MD4 (1990)
- SHA-1: *n* = 160
 - Designed by NSA, standardized by NIST in 1995
 - Successor of SHA-0 (1993)
- SHA-2: family supporting multiple lengths
 - Designed by NSA, standardized by NIST in 2001
 - SHA-224, SHA-256, SHA-384 and SHA-512
- SHA-3: based on Keccak
 - Designed by Bertoni, Daemen, Peeters and VA in 2008
 - Standardized by NIST in 2015
 - SHA3-{224, 256, 384, 512}, SHAKE{128, 256}, ParallelHash{128, 256}, ...
- Other SHA-3 finalists
 - Blake (Aumasson et al.), Grøstl (Gauravaram et al.), JH (Wu), Skein (Ferguson et al.)

- MD5: n = 128
 - Published by Ron Rivest in 1992
 - Successor of MD4 (1990)
- SHA-1: *n* = 160
 - Designed by NSA, standardized by NIST in 1995
 - Successor of SHA-0 (1993)
- SHA-2: family supporting multiple lengths
 - Designed by NSA, standardized by NIST in 2001
 - SHA-224, SHA-256, SHA-384 and SHA-512
- SHA-3: based on Keccak
 - Designed by Bertoni, Daemen, Peeters and VA in 2008
 - Standardized by NIST in 2015
 - SHA3-{224, 256, 384, 512}, SHAKE{128, 256}, ParallelHash{128, 256}, ...
- Other SHA-3 finalists
 - Blake (Aumasson et al.), Grøstl (Gauravaram et al.), JH (Wu), Skein (Ferguson et al.)

Attacks on MD5, SHA-0 and SHA-1

- 2004: SHA-0 broken (loux et al.)
- 2004: MD5 broken (Wang et al.)
- 2005: practical attack on MD5 (Lenstra et al., and Klima)
- 2005: SHA-1 theoretically broken (Wang et al.)
- 2006: SHA-1 broken further (De Cannière and Rechberger)
- 2016: freestart collision on SHA-1 (Stevens, Karpman and Peyrin)
- 2017: actual collision on SHA-1 (Stevens, Bursztein, Karpman, Albertini and Markov)

Merkle-Damgård

- Uses a compression function from n + m bits to n bits
- Instances: MD5, SHA-1, SHA-2 ...
- Merkle-Damgård strengthening

[Merkle, CRYPTO'89], [Damgård, CRYPTO'89]

Merkle-Damgård

- Uses a compression function from n + m bits to n bits
- Instances: MD5, SHA-1, SHA-2 ...
- Merkle-Damgård strengthening

[Merkle, CRYPTO'89], [Damgård, CRYPTO'89]

Merkle-Damgård: preserving collision resistance

Merkle-Damgård: length extension

Recurrence (modulo the padding):

$$h(M_1) = f(IV, M_1) = CV_1$$

■
$$h(M_1 || ... || M_i) = f(CV_{i-1}, M_i) = CV_i$$

Forgery on naïve message authentication code (MAC):

■
$$MAC(M) = h(Key||M) = CV$$

■ MAC(
$$M$$
||suffix) = f (CV||suffix)

Solution: HMAC

$$\mathsf{HMAC}(\mathsf{M}) = h(\mathsf{Key}_\mathsf{out} \| h(\mathsf{Key}_\mathsf{in} \| \mathsf{M}))$$

Merkle-Damgård: length extension

Recurrence (modulo the padding):

$$h(M_1) = f(IV, M_1) = CV_1$$

■
$$h(M_1 || ... || M_i) = f(CV_{i-1}, M_i) = CV_i$$

Forgery on naïve message authentication code (MAC):

■
$$MAC(M) = h(Key||M) = CV$$

■
$$MAC(M||suffix) = f(CV||suffix)$$

Solution: HMAC

$$\mathsf{HMAC}(\mathsf{M}) = h(\mathsf{Key}_\mathsf{out} \| h(\mathsf{Key}_\mathsf{in} \| \mathsf{M}))$$

Merkle-Damgård: length extension

Recurrence (modulo the padding):

$$h(M_1) = f(IV, M_1) = CV_1$$

■
$$h(M_1 || ... || M_i) = f(CV_{i-1}, M_i) = CV_i$$

Forgery on naïve message authentication code (MAC):

■
$$MAC(M) = h(Key||M) = CV$$

■
$$MAC(M||suffix) = f(CV||suffix)$$

Solution: HMAC

$$\mathsf{HMAC}(\mathsf{M}) = h(\mathsf{Key}_\mathsf{out} \| h(\mathsf{Key}_\mathsf{in} \| \mathsf{M}))$$

Davies-Meyer

Davies-Meyer

Other constructions using block ciphers

Davies-Meyer

[Matyas et al., IBM Tech. D. B., 1985], [Quisquater et al., Eurocrypt'89]

Other constructions using block ciphers

Matyas-Meyer-Oseas

[Matyas et al., IBM Tech. D. B., 1985]

Other constructions using block ciphers

Miyaguchi-Preneel

[Miyaguchi et al., NTT Rev., 1990], [Preneel, PhD th., 1993]

- Uses Davies-Meyer with
 - data path $n = 160 = 5 \times 32$
 - message expansion $m = 512 = 16 \times 32$
- State initialized with (A, B, C, D, E) = (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0)
- Message block $(w_0, ..., w_{15})$ expanded as

$$w_t = (w_{t-3} \oplus w_{t-8} \oplus w_{t-14} \oplus w_{t-16}) \lll 1 \quad (16 \le t \le 79)$$

■ Data path with 80 steps...

- Uses Davies-Meyer with
 - data path $n = 160 = 5 \times 32$
 - message expansion $m = 512 = 16 \times 32$
- State initialized with (A, B, C, D, E) = (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0)
- Message block (w_0, \dots, w_{15}) expanded as $w_t = (w_{t-3} \oplus w_{t-8} \oplus w_{t-14} \oplus w_{t-16}) \lll 1 \quad (16 \le t \le 79)$
- Data path with 80 steps...

- Uses Davies-Meyer with
 - data path $n = 160 = 5 \times 32$
 - message expansion $m = 512 = 16 \times 32$
- State initialized with (A, B, C, D, E) = (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0)
- Message block $(w_0, ..., w_{15})$ expanded as

$$w_t = (w_{t-3} \oplus w_{t-8} \oplus w_{t-14} \oplus w_{t-16}) \lll 1 \quad (16 \le t \le 79)$$

■ Data path with 80 steps...

- Uses Davies-Meyer with
 - data path $n = 160 = 5 \times 32$
 - message expansion $m = 512 = 16 \times 32$
- State initialized with (A, B, C, D, E) = (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0)
- Message block $(w_0, ..., w_{15})$ expanded as

$$w_t = (w_{t-3} \oplus w_{t-8} \oplus w_{t-14} \oplus w_{t-16}) \lll 1 \quad (16 \le t \le 79)$$

■ Data path with 80 steps...

Inside SHA-1: data path

Inside SHA-1: data path details

$0 \leq t \leq 19$	$f(B,C,D) = (B \odot C) \oplus (\bar{B} \odot D)$	$K_t = 5A827999$
20 ≤ t ≤ 39	$f(B,C,D)=B\oplus C\oplus D$	$K_t = 6ED9EBA1$
$40 \le t \le 59$	$f(B,C,D) = (B \odot C) \oplus (B \odot D) \oplus (C \odot D)$	$K_t = 8F1BBCDC$
$60 \le t \le 79$	$f(B, C, D) = B \oplus C \oplus D$	$K_t = CA62C1D6$

Collision in SHA-1

- February 23, 2017: first collision on SHA-1 published
- Estimated complexity: $2^{63} \ll 2^{80}$

[Stevens, Bursztein, Karpman, Albertini and Markov]

Collision in SHA-1

$$\mathsf{SHA-1}(P\|M_1^{(1)}\|M_2^{(1)}\|\mathsf{S}) = \mathsf{SHA-1}(P\|M_1^{(2)}\|M_2^{(2)}\|\mathsf{S})$$

CV_0	4e	a9	62	69	7с	87	6e	26	74	d1	07	f0	fe	с6	79	84	14	f5	bf	45
$M_1^{(1)}$			7f	46	dc	93	a6	b6	7e	01	3b	02	9a	aa	1d	b2	56	0b		
1			45	ca	67	d6	88	с7	f8	4b	8c	4c	79	1f	e0	2b	3d	f6		
			14	f8	6d	b1	69	09	01	c5	6b	45	c1	53	0a	fе	df	b7		
			60				_		e7	_	_			_	_			_		
$\frac{CV_1^{(1)}}{M_2^{(1)}}$	8d	64	<u>d6</u>	17	ff	ed	53	52	eb	с8	59	15	5e	с7	eb	34	<u>f3</u>	8a	5a	7b
$M_{2}^{(1)}$			30	57	Of	e9	d4	13	98	ab	e1	2e	f5	bc	94	2b	еЗ	35		
-			42	a4	80	2d	98	b5	d7	Of	2a	33	2e	c3	7f	ac	35	14		
			e7	4d	dc	0f	2c	c1	a8	74	cd	0с	78	30	5a	21	56	64		
			61	30	97	89	60	6b	d0	bf	3f	98	cd	a8	04	46	29	a1		
CV_2	1e	ac	b2	5e	d5	97	0d	10	f1	73	69	63	57	71	bc	3a	17	b4	8a	с5
CV_0	4e	a9	62	69	7c	87	6e	26	74	d1	07	fO	fe	с6	79	84	14	f5	bf	45
	4e	a9		69 46															bf	45
$CV_0 \over M_1^{(2)}$	4e	a9	73	46	dc	91	66	b6	7e	11	<u>8f</u>	02	9a	<u>b6</u>	21	b2	56	<u>0f</u>	bf	45
	4e	a9	73	46 ca	dc 67	91 cc	66 a8	b6 c7	7e f8	11 5b	8f a8	02 4c	9a 79	<u>b6</u>	21 0c	b2 2b	56 3d	0f e2	bf	45
$M_1^{(2)}$	4e	a9	73 f9 18	46 ca	dc 67 6d	91 cc b3	66 a8 a9	b6 c7 09	7e f8 01	11 5b d5	8f a8 df	02 4c 45	9a 79 c1	<u>b6</u> 03 4f	21 0c 26	b2 2b fe	56 3d df	0f e2 b3	bf	45
$M_1^{(2)}$			73 f9 18	46 ca f8 38	dc 67 6d e9	91 cc b3 6a	66 a8 a9 c2	b6 c7 09 2f	7e f8 01 e7	11 5b d5 bd	8f a8 df 72	02 4c 45 8f	9a 79 c1 0e	<u>b6</u> <u>03</u> <u>4f</u> <u>45</u>	21 0c 26 bc	b2 2b fe e0	56 3d df 46	0f e2 b3 d2		
$M_1^{(2)}$			73 f9 18 dc	46 ca f8 38	dc 67 6d e9	91 cc b3 6a ed	66 a8 a9 c2 52	b6 c7 09 2f <u>e2</u>	7e f8 01 e7	11 5b d5 bd c8	8f a8 df 72 59	02 4c 45 8f 15	9a 79 c1 0e 5e	b6 03 4f 45 c7	21 0c 26 bc eb	b2 2b fe e0 <u>36</u>	56 3d df 46 <u>73</u>	0f e2 b3 d2		
			73 f9 18 dc c8	46 ca f8 38	dc 67 6d e9 ff	91 cc b3 6a ed	66 a8 a9 c2 52	b6 c7 09 2f e2	7e f8 01 e7 eb	11 5b d5 bd c8	8f a8 df 72 59	02 4c 45 8f 15 2e	9a 79 c1 0e 5e f5	b6 03 4f 45 c7	21 0c 26 bc eb	b2 2b fe e0 36 2b	56 3d df 46 <u>73</u> e3	0f e2 b3 d2 8a 31		
$M_1^{(2)}$			73 f9 18 dc c8 3c fe	46 ca f8 38 21	dc 67 6d e9 ff 0f 80	91 cc b3 6a ed eb 37	66 a8 a9 c2 52 14 b8	b6 c7 09 2f e2 13 b5	7e f8 01 e7 eb 98 d7	11 5b d5 bd c8	8f a8 df 72 59 55 0e	02 4c 45 8f 15 2e 33	9a 79 c1 0e 5e f5 2e	b6 03 4f 45 c7 a0 df	21 0c 26 bc eb a8 93	b2 2b fe e0 36 2b ac	56 3d df 46 <u>73</u> e3 35	0f e2 b3 d2 8a 31 00		
$M_1^{(2)}$			73 f9 18 dc c8 3c fe	46 ca f8 38 21 57 a4 4d	dc 67 6d e9 ff 0f 80 dc	91 cc b3 6a ed eb 37 0d	66 a8 a9 c2 52 14 b8 ec	b6 c7 09 2f e2 13 b5 c1	7e f8 01 e7 eb 98 d7	11 5b d5 bd c8 bb 1f 64	8f a8 df 72 59 55 0e 79	02 4c 45 8f 15 2e 33 0c	9a 79 c1 0e 5e f5 2e 78	b6 03 4f 45 c7 a0 df 2c	21 0c 26 bc eb a8 93 76	b2 2b fe e0 36 2b ac 21	56 3d df 46 73 e3 35 56	0f e2 b3 d2 8a 31 00 60		

From SHA-1 to SHA-2

Changes from SHA-1 to SHA-2:

- Two compression functions
 - SHA-{224, 256}: $n = 256 = 8 \times 32$ and $m = 512 = 16 \times 32$
 - SHA-{384, 512}: $n = 512 = 8 \times 64$ and $m = 1024 = 16 \times 64$
- Non-linear message expansion
- Stronger data path mixing

Generic security: indifferentiability [Maurer et al. (2004)]

Applied to hash functions in [Coron et al. (2005)]

- lacktriangle distinguishing mode-of-use from ideal function (\mathcal{RO})
- lacktriangleright covers adversary with access to primitive ${\mathcal F}$ at left
- additional interface, covered by a simulator at right

Consequences of indifferentiability

Theorem 2. Let \mathcal{H} be a hash function, built on underlying primitive π , and RO be a random oracle, where \mathcal{H} and RO have the same domain and range space. Denote by $\mathbf{Adv}^{\text{pro}}_{+}(q)$ the advantage of distinguishing (\mathcal{H}, π) from (RO, S), for some simulator S, maximized over all distinguishers \mathcal{D} making at most q queries. Let atk be a security property of \mathcal{H} . Denote by $\mathbf{Adv}^{\text{atk}}_{+}(q)$ the advantage of breaking \mathcal{H} under atk, maximized over all adversaries \mathcal{A} making at most q queries. Then:

$$\mathbf{Adv}_{\mathcal{H}}^{\mathrm{atk}}(q) \leq \mathbf{Pr}_{RO}^{\mathrm{atk}}(q) + \mathbf{Adv}_{\mathcal{H}}^{\mathrm{pro}}(q),$$
 (1)

where $P_{RO}^{\text{atk}}(q)$ denotes the success probability of a generic attack against \mathcal{H} under atk, after at most q queries.

[Andreeva, Mennink, Preneel, ISC 2010]

Limitations of indifferentiability

- Only about the mode
 - No security proof with a concrete primitive
- Only about single-stage games [Ristenpart et al., Eurocrypt 2011]
 - Example: hash-based storage auditing

$$Z = h(File || C$$

Limitations of indifferentiability

- Only about the mode
 - No security proof with a concrete primitive
- Only about single-stage games [Ristenpart et al., Eurocrypt 2011]
 - Example: hash-based storage auditing

$$Z = h(File || C)$$

Making Merkle-Damgård indifferentiable

Enveloped Merkle-Damgård

[Bellare and Ristenpart, Asiacrypt 2006]

Making Merkle-Damgård suitable for XOFs

Mask generating function construction "MGF1"

The sponge construction

- Calls a *b*-bit permutation *f*, with b = r + c
 - r bits of rate
 - c bits of *capacity* (security parameter)
- Natively implements a XOF

Generic security of the sponge construction

Theorem (Bound on the \mathcal{RO} -differentiating advantage of sponge)

$$\mathsf{Adv} \leq \frac{t^2}{2^{c+1}}$$

Adv: differentiating advantage of random sponge from random oracle t: time complexity (# calls to f) c: capacity [Eurocrypt 2008]

Preimage resistance	$2^{\min(n,c/2)}$
Second-preimage resistance	$2^{\min(n,c/2)}$
Collision resistance	$2^{\min(n/2,c/2)}$
Any other attack	$2^{\min(\mathcal{RO},c/2)}$ (*)

(*) This means the minimum between $2^{c/2}$ and the complexity of the attack on a random oracle.

KECCAK-f

- The seven permutation army:
 - 25, 50, 100, 200, 400, 800, 1600 bits
 - toy, lightweight, fastest
 - standardized in [FIPS 202]
- Repetition of a simple round function
 - that operates on a 3D state
 - **■** (5 × 5) lanes
 - up to 64-bit each

KECCAK-f in pseudo-code

```
Keccak-f[b](A) {
 forall i in 0...n<sub>r</sub>-1
    A = Round[b](A, RC[i])
 return A
Round[b](A,RC) {
  θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
                                                                 forall x in 0...4
 D[x] = C[x-1] xor rot(C[x+1],1),
 A[x,y] = A[x,y] xor D[x],
                                                                 forall (x.v) in (0...4.0...4)
 \rho and \pi steps
 B[v, 2*x+3*y] = rot(A[x,y], r[x,y]),
                                                                 forall (x.v) in (0...4.0...4)
 x step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),
                                                          forall (x,v) in (0...4,0...4)
  ι step
 A[0,0] = A[0,0] \times C RC
 return A
```

https://keccak.team/keccak specs summary.html

χ , the nonlinear mapping in Keccak-f

- "Flip bit if neighbors exhibit 01 pattern"
- Operates independently and in parallel on 5-bit rows
- Cheap: small number of operations per bit
- Algebraic degree 2, inverse has degree 3

θ , mixing bits

- Compute parity $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{\mathsf{x},\mathsf{y},\mathsf{z}} = a_{\mathsf{x},\mathsf{y},\mathsf{z}} \oplus c_{\mathsf{x}-1,\mathsf{z}} \oplus c_{\mathsf{x}+1,\mathsf{z}-1}$$

■ Cheap: two XORs per bit

θ , mixing bits

- Compute parity $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{\mathsf{x},\mathsf{y},\mathsf{z}} = a_{\mathsf{x},\mathsf{y},\mathsf{z}} \oplus c_{\mathsf{x}-1,\mathsf{z}} \oplus c_{\mathsf{x}+1,\mathsf{z}-1}$$

■ Cheap: two XORs per bit

Diffusion of θ

$$1 + \left(1 + y + y^2 + y^3 + y^4\right) \left(x + x^4 z\right)$$
$$\left(\bmod \left\langle 1 + x^5, 1 + y^5, 1 + z^w \right\rangle \right)$$

Diffusion of θ (kernel)

$$\begin{aligned} \mathbf{1} + \left(1 + y + y^2 + y^3 + y^4\right) \left(x + x^4 z\right) \\ \left(\bmod \left<\mathbf{1} + x^5, \mathbf{1} + y^5, \mathbf{1} + z^w\right>\right) \end{aligned}$$

Diffusion of θ^{-1}

$$1 + \left(1 + y + y^2 + y^3 + y^4\right) \mathbf{Q},$$
 with $\mathbf{Q} = 1 + \left(1 + x + x^4 z\right)^{-1} \bmod \left\langle 1 + x^5, 1 + z^w \right\rangle$

- **Q** is dense, so:
 - Diffusion from single-bit output to input very high
 - Increases resistance against LC/DC and algebraic attacks

ρ for inter-slice dispersion

- We need diffusion between the slices ...

$$i(i+1)/2 \mod 2^{\ell}$$
, with $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}^{i-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

lacktriangle Offsets cycle through all values below 2 $^{\ell}$

π for disturbing horizontal/vertical alignment

$$a_{\mathsf{x},\mathsf{y}} \leftarrow a_{\mathsf{x}',\mathsf{y}'} \; \mathsf{with} \; \begin{pmatrix} \mathsf{x} \\ \mathsf{y} \end{pmatrix} = \begin{pmatrix} \mathsf{0} & \mathsf{1} \\ \mathsf{2} & \mathsf{3} \end{pmatrix} \begin{pmatrix} \mathsf{x}' \\ \mathsf{y}' \end{pmatrix}$$

ι to break symmetry

- XOR of round-dependent constant to lane in origin
- \blacksquare Without ι , the round mapping would be symmetric
 - invariant to translation in the z-direction
 - susceptible to rotational cryptanalysis
- Without ι , all rounds would be the same
 - susceptibility to slide attacks
 - defective cycle structure
- Without ι , we get simple fixed points (000 and 111)

KECCAK-f summary

■ Round function:

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

- Number of rounds: $12 + 2\ell$
 - Keccak-f[25] has 12 rounds
 - Keccak-f[1600] has 24 rounds

NIST FIPS 202 (August 2015)

- Four drop-in replacements to SHA-2
- Two extendable output functions (XOF)

XOF	SHA-2 drop-in replacements
$KECCAK[c = 256](M \ 11 \ 11)$	
	first 224 bits of $KECCAK[c=448](M\ \mathtt{01})$
$KECCAK[c = 512](M \ 11 \ 11)$	
	first 256 bits of $KECCAK[c=512](M\ \mathtt{01})$
	first 384 bits of $KECCAK[c=768](M\ \mathtt{01})$
	first 512 bits of KECCAK[$c = 1024$]($M 01$)

■ Toolbox for building other functions

Customized SHAKE (cSHAKE)

- \blacksquare H(x) = cSHAKE(x, name, customization string)
- E.g., cSHAKE128(x, N, S) = KECCAK[c = 256](encode(N, S)||x||00)
- cSHAKE128(x, N, S) \triangleq SHAKE128 when N = S = ""

KMAC: message authentication code (no need for HMAC-SHA-3!)

$$KMAC(K, x, S) = cSHAKE(encode(K)||x, "KMAC", S)$$

TupleHash: hashing a sequence of strings $\mathbf{x} = x_n \circ x_{n-1} \circ \cdots \circ x_1$

Customized SHAKE (cSHAKE)

- \blacksquare H(x) = cSHAKE(x, name, customization string)
- E.g., cSHAKE128(x, N, S) = KECCAK[c = 256](encode(N, S)||x||00)
- cSHAKE128(x, N, S) \triangleq SHAKE128 when N = S = ""

KMAC: message authentication code (no need for HMAC-SHA-3!)

$$KMAC(K, x, S) = cSHAKE(encode(K)||x, "KMAC", S)$$

TupleHash: hashing a sequence of strings $\mathbf{x} = x_n \circ x_{n-1} \circ \cdots \circ x_1$

Customized SHAKE (cSHAKE)

- H(x) = cSHAKE(x, name, customization string)
- E.g., cSHAKE128(x, N, S) = KECCAK[c = 256](encode(N, S)||x||00)
- cSHAKE128(x, N, S) \triangleq SHAKE128 when N = S = ""

KMAC: message authentication code (no need for HMAC-SHA-3!)

$$KMAC(K, x, S) = cSHAKE(encode(K)||x, "KMAC", S)$$

TupleHash: hashing a sequence of strings $\mathbf{x} = x_n \circ x_{n-1} \circ \cdots \circ x_1$

Customized SHAKE (cSHAKE)

- \blacksquare H(x) = cSHAKE(x, name, customization string)
- E.g., cSHAKE128(x, N, S) = Keccak[c = 256](encode(N, S)||x||00)
- cSHAKE128(x, N, S) \triangleq SHAKE128 when N = S = ""

KMAC: message authentication code (no need for HMAC-SHA-3!)

$$KMAC(K, x, S) = cSHAKE(encode(K)||x, "KMAC", S)$$

TupleHash: hashing a sequence of strings $\mathbf{x} = x_n \circ x_{n-1} \circ \cdots \circ x_1$

ParallelHash: faster hashing with parallelism

Status of Keccak cryptanalysis

- Collision attacks up to 5 rounds
 - Also up to 6 rounds, but for non-standard parameters (c = 160)

[Song, Liao, Guo, CRYPTO 2017]

- Distinguishers
 - 7 rounds (practical time)
 [Huang et al., EUROCRYPT 2017]
 - 8 rounds (2¹²⁸ time) [Dinur et al., EUROCRYPT 2015]
 - 9 rounds (2⁶⁴ time) [Suryawanshi et al., AFRICACRYPT 2020]
- Lots of third-party cryptanalysis available at: https://keccak.team/third party.html

KANGAROOTWELVE

