Polaroid, optical film and liquid crystal display using polaroid

Patent number:

CN1380576

JP20023

Also published

Publication date:

2002-11-20

Inventor:

IKKI TSUCHIMOTO (JP); TAKAMORI SHIDA (JP); YOICHIRO SUGINO

(JP)

Applicant:

NITTON DENKO CORP (JP)

Classification:

- international:

G02F1/1335; G02B5/30

- european:

Application number: CN20020106183 20020408 Priority number(s): JP20010108409 20010406

Abstract not available for CN1380576 Abstract of correspondent: JP2002303725

PROBLEM TO BE SOLVED: To provide a polarizing film solving a problem brought about by use of an adhesive. SOLUTION: The polarizing film is characterized by having a protective film (B) tightly stuck to a polarizer arranged on at least one side of the polarizer (A) without any intermediary adhesive.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-303725 (P2002-303725A)

(43)公開日 平成14年10月18日(2002.10.18)

(51) Int.CL'		識別記号	FΙ		テーマコート*(参考)
G02B	5/30		G 0 2 B 5/30		2H049
G02F	1/1995	F 1 0			211049
GUZI	1/1000	510	G 0 2 F 1/1335	5 1 0	2H091

審査請求 未請求 請求項の数11 OL (全 9 頁)

(21)出腹番号	特顧2001-108409(P2001-108409)	(71)出顧人	000003964
(22)出顧日	平成13年4月6日(2001.4.6)	(72)発明者	日東電工株式会社 大阪府茨木市下穂積1丁目1番2号 杉野 洋一郎
			大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内
	·	(72) 発明者	土本 一喜 大阪府淡木市下穂積1丁目1番2号 日東 電工株式会社内
		(74)代理人	100092266 弁理士 鈴木 崇生 (外4名)
•			

(54) 【発明の名称】 偏光フィルム、偏光フィルムを用いた光学フィルムおよび液晶表示装置

(57)【要約】

【課題】 接着剤を使用することによる問題を解消した 偏光フィルムを提供すること。

【解決手段】 偏光子(A)の少なくとも一方の面に、接着剤を介することなく偏光子に密着した保護フィルム(B)が設けられていることを特徴とする偏光フィルム。

最終頁に続く

【特許請求の範囲】

【請求項1】 偏光子(A)の少なくとも一方の面に、接着剤を介することなく、保護フィルム(B)が密着して設けられていることを特徴とする偏光フィルム。

【請求項2】 偏光子(A)と保護フィルム(B)の接着力が、10N/25mm以上であることを特徴とする請求項1記載の偏光フィルム。

【請求項3】 保護フィルム(B)の面内位相差が、1 0nm以下であることを特徴とする請求項1または2記載の偏光フィルム。

【請求項4】 保護フィルム(B)の厚みが、50μm 以下であることを特徴とする請求項1~3のいずれかに 記載の偏光フィルム。

【請求項5】 保護フィルム (B) の透湿度が、60g $/m^2 \cdot 24h \cdot atm以下であることを特徴とする請求項<math>1\sim 4$ のいずれかに記載の偏光フィルム。

【請求項6】 保護フィルム (B) の弾性率が、200 ON/mm² 以上であることを特徴とする請求項1~5 のいずれかに記載の偏光フィルム。

【請求項7】 保護フィルム(B)の偏光子(A)に密着していない側の表面自由エネルギーが、40mN/m以上であることを特徴とする請求項1~6のいずれかに記載の偏光フィルム。

【請求項8】 保護フィルム(B)の光透過率が、86%以上であることを特徴とする請求項1~7のいずれかに記載の偏光フィルム。

【請求項9】 透過率が42%以上、偏光度95%以上 であることを特徴とする請求項1~8のいずれかに記載 の偏光フィルム。

【請求項10】 請求項 $1\sim9$ のいずれかに記載の偏光フィルムが、少なくとも1枚積層されている光学フィルム。

【請求項11】 請求項1~9のいずれかに記載の偏光 フィルムまたは請求項10記載の光学フィルムが用いら れていることを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、偏光フィルムに関する。本発明の偏光フィルムはこれ単独でまたはこれを 積層した光学フィルムとして液晶表示装置を形成しう る。

[0002]

【従来の技術】液晶表示装置には、その画像形成方式から液晶パネルの最表面を形成するガラス基板の両側に偏光子を配置することが必要不可欠であり、一般的には、ポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子に保護フィルムを貼り合わせた偏光フィルムが用いられている。

【0003】従来、前記偏光フィルムは、偏光子と保護フィルムを接着剤により貼り合わせることにより製造さ

れている。接着剤は、結合成分を有する化合物または組成物であり、これらは水または有機溶剤等に溶解した溶液としても用いられ、加熱や光照射、化学反応等により硬化するものである。かかる接着剤は、偏光子と保護フィルムを貼り合せる直前にこれら層間に流し込んだり、偏光子または保護フィルムのいずれかに予め塗布されている。

【0004】しかし、接着剤を用いると、その塗布工程、積層工程、乾燥工程を経なければならず製造プロセスとして多数の工程が必要であり、生産設備に多額の費用を要する。その他に保護フィルムには、偏光子との接着性を上げるためにケン化処理や、コロナ処理、プラズマ処理、低圧UV処理、さらには下塗り処理等を施さなければいけない。その結果、得られる偏光フィルムの生産コストも高価になる。また製造プロセスが多数工程となると、その各工程で欠陥が生じる要因も多くなってしまう。

【0005】また、前記接着剤としては、ポリビニルアルコール水溶液等の水溶性接着剤が多く用いられているため、作製した偏光フィルムは加熱・加湿条件下での耐久性が十分でない。そのため、接着剤の部分に水分の影響を受けやすく、これが偏光フィルムの早期劣化の原因の一つとなっている。

[0006]

【発明が解決しようとする課題】本発明は、接着剤を使用することによる問題を解消した偏光フィルムを提供することを目的とする。さらには、前記偏光フィルムを積層した光学フィルム、液晶表示装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す偏光フィルム等により前記目的に達成できることを見出し、本発明を完成するに至った。

【0008】すなわち本発明は、偏光子(A)の少なくとも一方の面に、接着剤を介することなく、保護フィルム(B)が密着して設けられていることを特徴とする偏光フィルム、に関する。

【0009】本発明の偏光フィルムは、接着剤を用いることなく偏光子(A)と保護フィルム(B)を密着させているため、接着剤を使用することによる製造上の問題や、接着剤に係わる偏光フィルムの耐久性の問題がない

【0010】前記偏光フィルムにおいて、偏光子(A)と保護フィルム(B)の接着力が、10N/25mm以上であることが好ましい。前記接着力を有するものは密着性が良好であり、耐久性の上でも好適である。さらには、接着力は12N/25mm以上であるのが好ましい。

【0011】前記偏光フィルムにおいて、保護フィルム

(B)の面内位相差が、10nm以下であることが好ましい。偏光フィルムに用いる保護フィルム(B)の面内位相差は7nm以下であるのがより好ましい。

【0012】前記偏光フィルムにおいて、保護フィルム(B)の厚みが、50μm以下であることが好ましい。保護フィルム(B)の厚みは特に制限されないが、偏光フィルムの薄型化に伴い40μm以下であることがより好ましい。

【0013】前記偏光フィルムにおいて、保護フィルム(B)の透湿度が、 $60g/m^2 \cdot 24h \cdot atm$ 以下であることが好ましい。前記透湿度を有する保護フィルム(B)は、偏光フィルムの加湿条件下での防湿性が良好であり、水分の影響による偏光フィルムの劣化防止性がよい。前記透湿度は、 $40g/m^2 \cdot 24h \cdot atm$ 以下であるのがより好ましい。

【0014】前記偏光フィルムにおいて、保護フィルム(B)の弾性率が、2000N/mm²以上であることが好ましい。前記弾性率の機械的強度を有する保護フィルム(B)は、偏光フィルムの製造工程上でのハンドリング性が良好である。前記弾性率は、2500N/mm²以上であるのがより好ましい。

【0015】前記偏光フィルムにおいて、保護フィルム(B)の偏光子(A)に密着していない側の表面自由エネルギーが、40mN/m以上であることが好ましい。 偏光フィルムを液晶ディスプレイのガラスセルに貼り合わすため、偏光フィルムには粘着剤を塗布して粘着層を形成するが、その粘着層を形成する面に前記表面自由エネルギーを有する保護フィルム(B)は、粘着剤との良好な密着性を得ることができる。前記表面自由エネルギーは、50mN/m以上であるのがより好ましい。

【0016】前記偏光フィルムにおいて、保護フィルム(B)の光透過率が、86%以上であることが好ましい。前記光透過率を有する保護フィルム(B)は光学特性としての高い透明性を有する。前記光透過率は88%以上であるのがより好ましい。

【0017】また、偏光フィルムは、その光透過率が42%以上、偏光度95%以上であるものが好適である。前記透過率と偏光度を有する偏光フィルムは、液晶ディスプレイのパネル特性を十分に満足しうる光学特性を有する。偏光フィルムの光透過率は42.5%以上、偏光度は98%以上であるのがより好ましい。

【0018】また本発明は、前記偏光フィルムが、少なくとも1枚積層されている光学フィルム、さらには前記 偏光フィルムまたは前記光学フィルムが用いられている ことを特徴とする液晶表示装置、に関する。

[0019]

【発明の実施の形態】本発明の偏光フィルムは、図1に示すように、偏光子(A)の少なくとも一方の面に、保護フィルム(B)が直接設けられているものである。図1では、偏光子(A)の両側に保護フィルム(B)が設

けられている。保護フィルム(B)は偏光子(A)の片側にのみ設けられていてもよい。

【0020】偏光子(A)は、特に制限されず、各種のものを使用できる。偏光子(A)としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5~80μm程度である。

【0021】ポリビニルアルコール系フィルムをヨウ素 で染色し一軸延伸した偏光子は、たとえば、ポリビニル アルコールをヨウ素の水溶液に浸漬することによって染 色し、元長の3~7倍に延伸することで作製することが できる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を 含んでいてもよいヨウ化カリウムなどの水溶液に浸清す ることもできる。さらに必要に応じて染色の前にポリビ ニルアルコール系フィルムを水に浸漬して水洗してもよ い。ポリビニルアルコール系フィルムを水洗することで ポリビニルアルコール系フィルム表面の汚れやブロッキ ング防止剤を洗浄することができるほかに、ポリビニル アルコール系フィルムを膨潤させることで染色のムラな どの不均一を防止する効果もある。延伸はヨウ素で染色 した後に行っても良いし、染色しながら延伸してもよい し、また延伸してからヨウ素で染色してもよい。ホウ酸 やヨウ化カリウムなどの水溶液中や水浴中でも延伸する ことができる。

【0022】前記偏光子(A)の片側または両側に設け られている保護フィルム(B)を形成する材料として は、透明性、機械的強度、熱安定性、水分遮蔽性、等方 性などに優れるものが好ましい。例えば、ポリエチレン テレフタレートやポリエチレンナフタレート等のポリエ ステル系ポリマー、ジアセチルセルロースやトリアセチ ルセルロース等のセルロース系ポリマー、ポリメチルメ タクリレート等のアクリル系ポリマー、ポリスチレンや アクリロニトリル・スチレン共重合体 (AS樹脂)等の スチレン系ポリマー、ポリカーボネート系ポリマーなど があげられる。また、ポリエチレン、ポリプロピレン、 シクロ系ないしはノルボルネン構造を有するポリオレフ ィン、エチレン・プロピレン共重合体の如きポリオレフ ィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳 香族ポリアミド等のアミド系ポリマー、イミド系ポリマ ー、スルホン系ポリマー、ポリエーテルスルホン系ポリ マー、ポリエーテルエーテルケトン系ポリマー、ポリフ ェニレンスルフィド系ポリマー、ビニルアルコール系ポ リマー、塩化ビニリデン系ポリマー、ビニルブチラール

系ポリマー、アリレート系ポリマー、ボリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。

【0023】保護フィルム(B)は、偏光子(A)に接着剤を用いることなく密着させるため、たとえば、軟化点の異なる前記材料を適宜に選択して、二層以上のフィルム層を形成したものが用いられる。図2に示すように、保護フィルム(B)の低軟化点側のフィルム層を偏光子(A)の少なくとも一方の面に貼り合わせ、加熱圧着して積層することにより、保護フィルム(B)と偏光子(A)を接着剤を用いることなく密着させることができる。図2は偏光子(A)の片側にのみ保護フィルム(B)を設けている。

【0024】前記二層以上の各フィルム層を形成する材料は同質材料であってもよく、異種材料であってもよいが、同質材料であるのが好ましい。ただし、偏光子

(A) に密着させる側の低軟化点層を形成する樹脂は、加熱圧着により溶融する熱可塑性樹脂が用いられる。偏光子(A) に密着させる側の低軟化点層を形成する樹脂の軟化点は80℃以上、さらには90℃以上、二層以上のフィルム層を形成する樹脂の軟化点差は5℃以上、さらには10℃以上であるのが好ましい。なお、軟化点はJIS K7206のビカット軟化温度試験方法により測定した値である。

【0025】保護フィルム (B) の厚さは、一般には5 00μ m以下であり、 $1\sim300\mu$ mが好ましい。特に $5\sim200\mu$ mとするのが好ましい。前述の通り、保護フィルム (B) の厚さは特に 50μ m以下が好ましい。なお、保護フィルム (B) を二層以上とする場合には、偏光子 (A) に密着させる側の低軟化点層は $1\sim100\mu$ m程度が好適である。

【0026】前記保護フィルム(B)は、偏光子(A)に密着させない面が、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、保護フィルム(B)そのものに設けることができるほか、別途光学層として保護フィルム(B)とは別体のものとして設けることもできる。

【0027】本発明の偏光フィルムは、たとえば、前記偏光子(A)の少なくとも一方の面に、前記二層以上のフィルム層を有する保護フィルム(B)の低軟化点層を貼り合わせ、低軟化点層のみが溶融するが、高軟化点層は溶融しない温度、すなわち、二層以上のフィルム層を形成する各樹脂の軟化点の中間の温度範囲で加熱圧着することにより製造することができる。

【0028】偏光子(A)と保護フィルム(B)を加熱 圧着する方法は特に制限されず、加熱と同時または逐次 に加圧する方法を採用できる。加熱方法としては、たと えば、IRヒーター、熱風、高周波、超音波等を用いた 非接触加熱方法または熱板、熱ロールを用いた熱伝導に よる接触加熱方法等があげられる。加圧方法は、ピンチ ロール等により加圧する方法等があげられる。加圧を真 空中で行うこともできる。加熱と同時に加圧を行う場合 には、加熱状態のピンチロールを通過させ加熱とともに 加圧する方法等を採用できる。加熱圧着後に、冷却する ことにより保護フィルム(B)の溶融フィルム層(低軟 化点層)が硬化して、偏光子(A)と保護フィルム (B)が密着する。

【0029】本発明の偏光フィルムは、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1 /2 や1 /4 等の波長板を含む)、視角補償フィルムなどの液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、偏光フィルムに更に視角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが好ましい。

【0030】反射型偏光フィルムは、偏光フィルムに反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光フィルムの形成は、必要に応じ透明保護層等を介して偏光フィルムの片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。

【0031】反射型偏光フィルムの具体例としては、必 要に応じマット処理した透明保護フィルムの片面に、ア ルミニウム等の反射性金属からなる箔や蒸着膜を付設し て反射層を形成したものなどがあげられる。また前記透 明保護フィルムに微粒子を含有させて表面微細凹凸構造 とし、その上に微細凹凸構造の反射層を有するものなど もあげられる。前記した微細凹凸構造の反射層は、入射 光を乱反射により拡散させて指向性やギラギラした見栄 えを防止し、明暗のムラを抑制しうる利点などを有す る。また微粒子含有の透明保護フィルムは、入射光及び その反射光がそれを透過する際に拡散されて明暗ムラを より抑制しうる利点なども有している。透明保護フィル ムの表面微細凹凸構造を反映させた微細凹凸構造の反射 層の形成は、例えば真空蒸着方式、イオンプレーティン グ方式、スパッタリング方式等の蒸着方式やメッキ方式 などの適宜な方式で金属を透明保護層の表面に直接付設 する方法などにより行うことができる。

【0032】反射板は前記の偏光フィルムの透明保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が透明保護フィルムや偏光フィルム等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。

【0033】なお、半透過型偏光フィルムは、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光フィルムは、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光フィルムのバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光フィルムは、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的明るい雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。

【0034】偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルムについて説明する。直線偏光を楕円偏光または円偏光に変えたり、精円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板(入/4板とも言う)が用いられる。1/2波長板(入/2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。

【0035】楕円偏光フィルムはスパーツイストネマチ ック(STN)型液晶表示装置の液晶層の複屈折により 生じた着色(青又は黄)を補償(防止)して、前記着色 のない白黒表示する場合などに有効に用いられる。更 に、三次元の屈折率を制御したものは、液晶表示装置の 画面を斜め方向から見た際に生じる着色も補償 (防止) することができて好ましい。円偏光フィルムは、例えば 画像がカラー表示になる反射型液晶表示装置の画像の色 調を整える場合などに有効に用いられ、また、反射防止 の機能も有する。上記した位相差板の具体例としては、 ポリカーボネート、ポリビニルアルコール、ポリスチレ ン、ポリメチルメタクリレート、ポリプロピレンやその 他のポリオレフィン、ポリアリレート、ポリアミドの如 き適宜なポリマーからなるフィルムを延伸処理してなる 複屈折性フィルムや液晶ポリマーの配向フィルム、液晶 ポリマーの配向層をフィルムにて支持したものなどがあ げられる。位相差板は、例えば各種波長板や液晶層の複

屈折による着色や視角等の補償を目的としたものなどの 使用目的に応じた適宜な位相差を有するものであってよ く、2種以上の位相差板を積層して位相差等の光学特性 を制御したものなどであってもよい。

【0036】また上記の楕円偏光フィルムや反射型楕円 偏光フィルムは、偏光フィルム又は反射型偏光フィルム と位相差板を適宜な組合せで積層したものである。かか る楕円偏光フィルム等は、(反射型)偏光フィルムと位 相差板の組合せとなるようにそれらを液晶表示装置の製 造過程で順次別個に積層することによっても形成しうる が、前記の如く予め楕円偏光フィルム等の光学フィルム としたものは、品質の安定性や積層作業性等に優れて液 晶表示装置などの製造効率を向上させうる利点がある。 【0037】視角補償フィルムは、液晶表示装置の画面 を、画面に垂直でなくやや斜めの方向から見た場合で も、画像が比較的鮮明にみえるように視野角を広げるた めのフィルムである。このような視角補償位相差板とし ては、例えば位相差フィルム、液晶ポリマー等の配向フ ィルムや透明基材上に液晶ポリマー等の配向層を支持し たものなどからなる。通常の位相差板は、その面方向に 一軸に延伸された複屈折を有するポリマーフィルムが用 いられるのに対し、視角補償フィルムとして用いられる 位相差板には、面方向に二軸に延伸された複屈折を有す るポリマーフィルムとか、面方向に一軸に延伸され厚さ 方向にも延伸された厚さ方向の屈折率を制御した複屈折 を有するポリマーや傾斜配向フィルムのような二方向延 伸フィルムなどが用いられる。傾斜配向フィルムとして は、例えばポリマーフィルムに熱収縮フィルムを接着し て加熱によるその収縮力の作用下にポリマーフィルムを 延伸処理又は/及び収縮処理したものや、液晶ポリマー を斜め配向させたものなどが挙げられる。位相差板の素 材原料ポリマーは、先の位相差板で説明したポリマーと 同様のものが用いられ、液晶セルによる位相差に基づく 視認角の変化による着色等の防止や良視認の視野角の拡 大などを目的とした適宜なものを用いうる。

【0038】また、良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。

【0039】偏光フィルムと輝度向上フィルムを貼り合わせた偏光フィルムは、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光フィルムと積層した偏光フィルムは、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面

で反射した光を更にその後ろ側に設けられた反射層等を 介し反転させて輝度向上フィルムに再入射させ、その一 部又は全部を所定偏光状態の光として透過させて輝度向 上フィルムを透過する光の増量を図ると共に、偏光子に 吸収させにくい偏光を供給して液晶表示画像表示等に利 用しうる光量の増大を図ることにより輝度を向上させう るものである。すなわち、輝度向上フィルムを使用せず に、バックライトなどで液晶セルの裏側から偏光子を通 して光を入射した場合には、偏光子の偏光軸に一致して いない偏光方向を有する光は、ほとんど偏光子に吸収さ れてしまい、偏光子を透過してこない。すなわち、用い た偏光子の特性によっても異なるが、およそ50%の光 が偏光子に吸収されてしまい、その分、液晶画像表示当 に利用しうる光量が減少し、画像が暗くなる。輝度向上 フィルムは、偏光子に吸収されるような偏光方向を有す る光を偏光子に入射させずに 輝度向上フィルムで一旦 反射させ、更にその後ろ側に設けられた反射層等を介し て反転させて輝度向 上を板に再入射させることを繰り 返し、この両者間で反射、反転している光の偏光方向が 偏光子を通過し得るような偏光方向になった偏光のみ を. 輝度向上フィルムは透過させて偏光子に吸収するの で、バックライトなどの光を効率的に液晶表示装置の画 像の表示に使用でき、画面を明るくすることができる。 【0040】前記の輝度向上フィルムとしては、例えば 誘電体の多層薄膜や屈折率異方性が相違する薄膜フィル ムの多層積層体の如き、所定偏光軸の直線偏光を透過し て他の光は反射する特性を示すもの、コレステリック液 晶ポリマーの配向フィルムやその配向液晶層をフィルム 基材上に支持したものの如き、左回り又は右回りのいず れか一方の円偏光を反射して他の光は透過する特性を示 すものなどの適宜なものを用いうる。

【0041】従って、前記した所定偏光軸の直線偏光を 透過させるタイプの輝度向上フィルムでは、その透過光 をそのまま偏光フィルムに偏光軸を揃えて入射させるこ とにより、偏光フィルムによる吸収ロスを抑制しつつ効 率よく透過させることができる。一方、コレステリック 液晶層の如く円偏光を投下するタイプの輝度向上フィル ムでは、そのまま偏光子に入射させることもできるが、 吸収ロスを抑制する点よりその円偏光を位相差板を介し 直線偏光化して偏光フィルムに入射させることが好まし い。なお、その位相差板として1/4波長板を用いるこ とにより、円偏光を直線偏光に変換することができる。 【0042】可視光域等の広い波長範囲で1/4波長板 として機能する位相差板は、例えば波長550 nmの淡 色光に対して1/4波長板として機能する位相差層と他 の位相差特性を示す位相差層、例えば1/2波長板とし て機能する位相差層とを重畳する方式などにより得るこ とができる。従って、偏光フィルムと輝度向上フィルム の間に配置する位相差板は、1層又は2層以上の位相差 層からなるものであってよい。

【0043】なお、コレステリック液晶層についても、 反射波長が相違するものの組み合わせにして2層又は3 層以上重畳した配置構造とすることにより、可視光領域 等の広い波長範囲で円偏光を反射するものを得ることが でき、それに基づいて広い波長範囲の透過円偏光を得る ことができる。

【0044】また、偏光フィルムは、上記の偏光分離型 偏光フィルムの如く、偏光フィルムと2層又は3層以上 の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光フィルムや半透過型偏光フィルムと位相差板を組み合わせた反射型楕円偏光フィルムや半透過型楕円偏光フィルムなどであってもよい。

【0045】偏光フィルムに前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたのものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光フィルムやその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。

【0046】前述した偏光フィルムや、偏光フィルムを 少なくとも1層積層されている光学フィルムには、液晶 セル等の他部材と接着するための粘着層を設けることも できる。粘着層を形成する粘着剤は特に制限されない が、例えばアクリル系重合体、シリコーン系ポリマー、 ポリエステル、ポリウレタン、ポリアミド、ポリエーテ ル、フッ素系やゴム系などのポリマーをベースポリマー とするものを適宜に選択して用いることができる。特 に、アクリル系粘着剤の如く光学的透明性に優れ、適度 な濡れ性と凝集性と接着性の粘着特性を示して、耐候性 や耐熱性などに優れるものが好ましく用いうる。

【0047】また上記に加えて、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層が好ましい。

【0048】粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってもよい。

【0049】偏光フィルムや光学フィルムの片面又は両面への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光フィルム上または光学フィルム

上に直接付設する方式、あるいは前記に準じセパレータ 上に粘着層を形成してそれを偏光フィルム上または光学 フィルム上に移着する方式などがあげられる。

【0050】粘着層は、異なる組成又は種類等のものの重畳層として偏光フィルムや光学フィルムの片面又は両面に設けることもできる。また両面に設ける場合に、偏光フィルムや光学フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には $1\sim500\mu$ mであり、 $5\sim200\mu$ mが好ましく、特に $10\sim100\mu$ mが好ましい。

【0051】粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鏡アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。

【0052】なお本発明において、上記した偏光フィルムを形成する偏光子や透明保護フィルムや光学フィルム等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい。

【0053】本発明の偏光フィルムまたは光学フィルムは液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光フィルムまたは光学フィルム、及び必要に応じての照明システム等の構成部品を適宜に紬立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。

【0054】液晶セルの片側又は両側に偏光フィルムまたは光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による偏光フィルムまたは光学フィルムは液晶セルの片側又は両側に設置することができる。両側に偏光フィルムまたは光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズム

アレイ、レンズアレイシート、光拡散板、バックライト などの適宜な部品を適宜な位置に1層又は2層以上配置 することができる。

[0055]

【実施例】以下、本発明の構成と効果を具体的に示す実施例について説明する。測定値は以下の通りである。

(接着力) 偏光フィルムを引張試験機にて90度の剥離 角度、300mm/分の剥離速度で引張り、引張り強度 (N/25mm)を測定した。

【0056】(面内位相差)自動複屈折測定装置(王子 計測機器株式会社製,自動複屈折計KOBRA21AD H)により測定した。

【0057】(透湿度) JIS Z0208の透湿度試験(カップ法)に準じて、90%の相対湿度差で、厚さ0.1mm、面積1m²の試料を24時間に通過する水蒸気のg数である。

【0058】(弾性率) JIS K7127の引張り試験法に準じて弾性率 (N/mm²) を測定した。

【0059】(表面自由エネルギー)接触角測定より、拡張Forksの式を用いて(媒体として水、ヨウ化メチレン、αーブロモナフタレンを使用)行った。

【0060】(光透過率)分光光度計((株)村上色彩技術研究所製,CMS-500)を用いて、1枚の偏光フィルムまたは保護フィルムの透過率を測定した。なお、偏光フィルムまたは保護フィルムの透過率はJIS Z8701の2度視野(C光源)により視感度補整したY値である。

【0061】(偏光度)2枚の同じ偏光フィルムを偏光 軸が平行になるように重ね合わせた場合の透過率(H₀)と、直交になるように重ね合わせた場合の透過率 (H₉₀)を、上記分光光度計を用いて測定し、以下の式 から偏光度を求めた。

偏光度(%)=√{(H₀ -H₉₀)/(H₀ +H₉₀)} ×100

なお、平行の透過率(H_o)と直交の透過率(H_{oo})は 2度視野(C光源)により視感度補整したY値である。 【 O O 6 2 】実施例 1

(偏光子) 重合度2400、厚み80μmのポリビニルアルコールフィルムを、30℃の温水中にて膨潤させてから、30℃のヨウ素/ヨウ化カリウム水溶液中で3倍に延伸しながら染色した。その後、40~60℃の温水で延伸を行った後、ホウ酸水溶液中で架橋しながら延伸を行った。このとき総延伸倍率が6倍となるように延伸した。最後に、30~40℃のヨウ化カリウム水溶液中で色相の調整を行い、水分率が5~12%の範囲になるように乾燥を行った偏光フィルムを得た。

【0063】(保護フィルム) 軟化点が130℃のポリエチレンテレフタレートフィルム(32µm)と、軟化点が145℃のポリエチレンテレフタレートフィルム(8µm)の二層構造の保護フィルム(総厚40µm)

を用いた。

【0064】保護フィルムの面内位相差は3.0nm、透湿度は29.8g/m²·24h·atm、弾性率は4218.3N/mm²、偏光子に密着させない側の表面自由エネルギーは56mN/m、光透過率は92.4%であった。

【0065】(偏光フィルムの作成)偏光子の両面に、前記保護フィルムの軟化点が低い側のフィルム面が貼り合わさるように、135℃の温度にてロールラミネーターを用いて加熱圧着して積層した。得られた偏光フィルムは、偏光子と保護フィルムとが密着しており、その外

観も問題がないものであった。 偏光フィルムの偏光子と 保護フィルムの接着力は、14N/25mmであった。 透過率は43.6%、 偏光度は99.9%であった。

【図面の簡単な説明】

【図1】本発明の偏光フィルムである。

【図2】保護フィルムと偏光子を加熱圧着させる概念図 である。

【符号の説明】

A 偏光子

B 保護フィルム

【図1】

加熱圧着

【図2】

【手続補正書】

【提出日】平成14年5月29日(2002.5.29)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0033

【補正方法】変更

【補正内容】

【0033】なお、半透過型偏光フィルムは、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光フィルムは、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光フィルムのバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光フィルムは、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0039

【補正方法】変更

【補正内容】

【0039】偏光フィルムと輝度向上フィルムを貼り合わせた偏光フィルムは、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然

光が入射すると所定偏光軸の直線偏光または所定方向の 円偏光を反射し、他の光は透過する特性を示すもので、 輝度向上フィルムを偏光フィルムと積層した偏光フィル ムは、バックライト等の光源からの光を入射させて所定 偏光状態の透過光を得ると共に、前記所定偏光状態以外 の光は透過せずに反射される。この輝度向上フィルム面 で反射した光を更にその後ろ側に設けられた反射層等を 介し反転させて輝度向上フィルムに再入射させ、その一 部又は全部を所定偏光状態の光として透過させて輝度向 上フィルムを透過する光の増量を図ると共に、偏光子に 吸収させにくい偏光を供給して液晶表示画像表示等に利 用しうる光量の増大を図ることにより輝度を向上させう るものである。すなわち、輝度向上フィルムを使用せず に、バックライトなどで液晶セルの裏側から偏光子を通 して光を入射した場合には、偏光子の偏光軸に一致して いない偏光方向を有する光は、ほとんど偏光子に吸収さ れてしまい、偏光子を透過してこない。すなわち、用い た偏光子の特性によっても異なるが、およそ50%の光 が偏光子に吸収されてしまい、その分、液晶画像表示等 に利用しうる光量が減少し、画像が暗くなる。輝度向上 フィルムは、偏光子に吸収されるような偏光方向を有す る光を偏光子に入射させずに輝度向上フィルムで一旦反 射させ、更にその後ろ側に設けられた反射層等を介して 反転させて輝度向上フイルムに再入射させることを繰り 返し、この両者間で反射、反転している光の偏光方向が 偏光子を通過し得るような偏光方向になった偏光のみ を、輝度向上フィルムは透過させて偏光子に供給するの で、バックライトなどの光を効率的に液晶表示装置の画 像の表示に使用でき、画面を明るくすることができる。

フロントページの続き

(72)発明者 正田 位守

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

Fターム(参考) 2H049 BA02 BA27 BB16 BB23 BB43

BC03 BC14 BC22

2H091 FA08 FD07 FD14 LA20