

Requerimientos de Diseño Mecánico: Robot DuqueXII

Proyecto Especial I

Leffer Andrés Trochez Chate, l.trochez@uniandes.edu.co

Introducción

Este documento especifica los requerimientos de diseño del Robot Duque XII, incluyendo detalles sobre los subsistemas mecánicos, materiales, especificaciones de torque y ensamblaje, así como los planos mecánicos necesarios para su fabricación y patente.

1 Requerimientos generales de diseño

1.1 Dimensiones generales

Se especifican las dimensiones máximas del robot, incluyendo altura, ancho y profundidad, con el objetivo de optimizar el espacio y la funcionalidad. Estas dimensiones rondan los 28x18x21 cm respectivamente.

1.2 Peso

Aunque los requerimientos de peso no son fundamentales, se considera el peso aproximado de cada componente para asegurar balance y estabilidad en el diseño.

1.3 Materiales

Se especifican materiales recomendados para la estructura y para las piezas impresas en 3D, detallando la resistencia, peso y durabilidad necesarios.

2 Subsistemas de movimiento

2.1 Primer subsistema: Movimiento horizontal de 360 grados

Este subsistema permite girar el robot en el eje horizontal. Utiliza dos servomotores MG996R con engranajes y un engranaje cónico como pieza principal. La sujeción y acople entre las partes estática y giratoria también se describen para asegurar un movimiento estable y eficiente.

2.1.1 Torque de los servomotores

Se especifica el torque necesario y se verifica si los motores MG996R seleccionados son adecuados para soportar la carga en este subsistema.

2.1.2 Engranaje cónico

Se evalúa si el engranaje cónico es la mejor opción para este sistema de rotación, considerando la eficiencia de transmisión y desgaste.

Proyecto Especial I Página 1 de 2

2.2 Segundo subsistema: Movimiento de la cabeza

Este subsistema permite mover la cabeza del robot en los ejes vertical y lateral, mediante dos servos MG90S acoplados con "manijas" y un pivote que sujeta la cabeza.

2.2.1 Rango de movimiento

Se analiza el rango de movimiento en grados para garantizar que los servos MG90S proporcionen la movilidad deseada.

3 Mecanismo de sujeción y ensamblaje

3.1 Sujeción con tornillos

Se evalúa si la sujeción con tornillos es la opción más adecuada para la estabilidad y durabilidad del robot en ambas partes, estática y giratoria.

3.2 Revisión de la sujeción general

Se realiza una revisión general para verificar que el ensamblaje mantenga la estructura sólida y soportada durante el uso del robot.

4 Impresión 3D y materiales

4.1 Evaluación de imprimibilidad

Se evalúan todas las piezas para verificar si son imprimibles en 3D, y se determina si el filamento seleccionado (PETG) es el adecuado para las exigencias del diseño.

4.2 Parámetros de impresión

Se definen los parámetros de impresión: resolución, altura de capa, porcentaje de relleno, velocidades de impresión y cualquier necesidad de soporte adicional para la impresión de cada pieza.

5 Análisis adicionales

5.1 Protección contra desgaste y lubricación

Se evalúa si alguna pieza requiere lubricación o recubrimiento anti-desgaste, en particular en los engranajes y ejes que estarán sometidos a movimiento constante.

6 Planos mecánicos y ensamblaje

6.1 Planos detallados

Incluye los planos mecánicos de cada componente con las dimensiones precisas para garantizar un ajuste óptimo y un ensamblaje preciso.

7 Revisión final para patente

La idea es patentar el diseño del Robot Duque XII. Por tanto, la documentación detallada y los planos mecánicos son fundamentales para cumplir con los requisitos de registro de patente.

Anexos

Se adjunta el borrador del diseño en Fusion 360 del Robot DuqueXII para facilitar la visualización y revisión detallada de los componentes y su ensamblaje.

Proyecto Especial I Página 2 de 2