2

Docket No. UMT-101X Serial No. 09/775,386

In the Claims

Claim 25 (currently amended) A method of operating absorbance-based chemical sensors to achieve calibration-free measurements, the method comprising the steps of:

- a) establishing wavelength accuracy to within about 2-3 nanometers;
- b) eliminating stray light at all wavelengths to about less than 0.1% incident light;
- c) preparing an analyte-selective reagent at a concentration;
- d) equilibrating the analyte-selective reagent to an analyte;
- e) taking an intensity reading of the equilibrated analyte-selective reagent and analyte at a first wavelength (I_{λ1}) with a reagent-based optical chemical sensor, wherein the sensor has been modified to allow the renewal of an analyte-selective reagent, wherein the first wavelength corresponds to an un-reacted form of the analyte-selective reagent, and taking an intensity reading of the equilibrated analyte-selective reagent and analyte at a second wavelength (I_{λ2}), wherein the second wavelength corresponds to a reacted form of the analyte-selective reagent;
- f) replacing the equilibrated analyte-selective reagent and analyte with a spectrophotometric blank solution;
- g) taking an intensity reading of the blank solution at the first wavelength $(I_{\lambda 10})$, and taking an intensity reading of the blank solution at the second wavelength $(I_{\lambda 20})$;
- h) calculating an absorbance ratio using the equation $A_R = A_{\lambda 1}/A_{\lambda 2}$, where A_R is the absorbance ratio, $A_{\lambda 1}$ is absorbance at the first wavelength and $A_{\lambda 2}$ is absorbance at the second wavelength and, wherein $A_{\lambda 1}$ and $A_{\lambda 2}$ are determined by

 $\frac{A = -\log (I_{\lambda}/I_{\lambda_0})}{A_{\lambda} = \log I_{\lambda}}$ $\frac{-I_{\lambda_0}}{I_{\lambda_0}}; \text{ and }$

BEST AVAILABLE COPY

3

Docket No. UMT-101X Serial No. 09/775,386

i) calculating the sensor response with the molar absorptivities (€) of the reacted (a) form of the analyte-selective reagent and the un-reacted form (b) of the analyte-selective reagent using the equation

$$\frac{R = -\log \left(A_R - \epsilon_{\lambda_{1a}} / \epsilon_{\lambda_{2a}} - A_R \epsilon_{\lambda_{2b}} / \epsilon_{\lambda_{2a}} \right)}{\left(\epsilon_{\lambda_{1b}} / \epsilon_{\lambda_{2a}} - A_R \epsilon_{\lambda_{2b}} / \epsilon_{\lambda_{2a}} \right)} = + pK_a - pH_a$$

$$R = \log \left(\frac{A_{R} - \epsilon_{\lambda/8} / \epsilon_{\lambda/8}}{\epsilon_{\lambda/8} / \epsilon_{\lambda/8} - A_{R} \epsilon_{\lambda/8} / \epsilon_{\lambda/8}} \right) = +pK_{a} - pH.$$

wherein when the analyte-selective reagent is prepared accurately and reproducibly at the concentration sensor readings between sensors are calibration-free.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the images include but are not limited to the items che	cked:
□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	,
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	¥
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.