

SAT Race 2015

Tomáš Balyo, Markus Iser, Carsten Sinz | September 22, 2015

SAT 2015 - 18TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATIONS OF SATISFIABILITY TESTING

What is a SAT Race?

- Competition of Boolean Satisfiability (SAT) solvers
- Purpose: "The purpose of the competition is to identify new challenging benchmarks and to promote new solvers for the propositional satisfiability problem (SAT) as well as to compare them with state-of-the-art solvers."
- Long tradition
 - First Sat Competition in 2002
 - 9 Sat Competitions
 - 3 Sat Races
 - 1 Sat Challenge

Tracks

- Main (Sequential) Track (28 solvers)
 - 300 "application" benchmarks
 (133 from the 2014 SAT Competition, 167 new)
 - 1h time limit, 5 runs
- Parallel Track (11 solvers)
 - 100 benchmarks (the hardest 100 from the Main Track)
 - 1h time limit
 - 64 CPU cores, 512GB Ram
- Introducing Incremental Library Track (8+1 solvers)
 - solvers implement a "C" language API (IPASIR)
 - benchmarks are SAT solving based applications

Tracks

- Main (Sequential) Track (28 solvers)
 - 300 "application" benchmarks
 (133 from the 2014 SAT Competition, 167 new)
 - 1h time limit, 5 runs
- Parallel Track (11 solvers)
 - 100 benchmarks (the hardest 100 from the Main Track)
 - 1h time limit
 - 64 CPU cores, 512GB Ram
- Introducing Incremental Library Track (8+1 solvers)
 - solvers implement a "C" language API (IPASIR)
 - benchmarks are SAT solving based applications

Tracks

- Main (Sequential) Track (28 solvers)
 - 300 "application" benchmarks
 (133 from the 2014 SAT Competition, 167 new)
 - 1h time limit, 5 runs
- Parallel Track (11 solvers)
 - 100 benchmarks (the hardest 100 from the Main Track)
 - 1h time limit
 - 64 CPU cores, 512GB Ram
- Introducing Incremental Library Track (8+1 solvers)
 - solvers implement a "C" language API (IPASIR)
 - benchmarks are SAT solving based applications

Incremental Library Track - IPASIR

- IPASIR = Re-entrant Incremental Satisfiability Application Program Interface (acronym reversed)
- IPASIR has 6 methods for SAT solving:
 - add clauses and assumptions (2 methods)
 - set callback for abort
 - solve
 - get model and failed assumptions (2 methods)

Incremental Library Track – Benchmarks

- Partial MaxSat Solving (linear strengthening of a cardinality constraint on soft clauses), 568 pMaxSat problems (industrial track, MaxSat 2014)
- Trivial parallel portfolio SAT solver (clause order diversification), the 100 problems of the parallel track
- Finding all essential (has to be assigned in each satisfying assignment) variables, 50 easiest instances of the main track
- Incremental SAT file interpreter, 50 files generated from HWMCC 2014 instances, 3979 SAT calls in total
 - submitted by Florian Lonsing, Johannes Oetsch, and Uwe Egly

Incremental Library Track – Results

solver name	essent.	pmax	is-file	pfolio	total
#instances	50	568	3979	100	4697
CryptoMiniSat4	48	266	1454	0	1768
CryptoMiniSat4autotune	47	271	1452	0	1770
CoMiniSatPs1Earth	45	244	1406	12	1707
CoMiniSatPs1Sun	45	250	1434	5	1734
Glucose4	48	259	1407	1	1715
Riss505	44	234	1372	4	1654
Riss504	44	244	1370	2	1660
PicoSat961	44	165	1285	5	1499
SatUZK	43	204	842	5	1094

Incremental Library Track – Results

solver name	essent.	pmax	is-file	pfolio	total
CryptoMiniSat4	48	266	1454	0	1768
CryptoMiniSat4autotune	47	271	1452	0	1770
CoMiniSatPs1Earth	45	244	1406	12	1707
CoMiniSatPs1Sun	45	250	1434	5	1734
Glucose4	48	259	1407	1	1715

Incremental Library Track - Results

solver name	essent.	pmax	is-file	pfolio	total
CryptoMiniSat4	48	266	1454	0	1768
CryptoMiniSat4autotune	47	271	1452	0	1770
CoMiniSatPs1Earth	45	244	1406	12	1707
CoMiniSatPs1Sun	45	250	1434	5	1734
Glucose4	48	259	1407	1	1715

3rd Prize: Glucose4 by Gilles Audemard and Laurent Simon

Incremental Library Track - Results

solver name	essent.	pmax	is-file	pfolio	total
CryptoMiniSat4	48	266	1454	0	1768
CryptoMiniSat4autotune	47	271	1452	0	1770
CoMiniSatPs1Earth	45	244	1406	12	1707
CoMiniSatPs1Sun	45	250	1434	5	1734
Glucose4	48	259	1407	1	1715

1st Prize: CryptoMiniSat4 by Máté Soós

1st Prize: CoMiniSatPs1 by Chanseok Oh

3rd Prize: Glucose4 by Gilles Audemard and Laurent Simon

- 1st Prize:
- 2nd Prize:
- 3rd Prize:

- 1st Prize:
- 2nd Prize:
- 3rd Prize: Treengeling sr15bal by Armin Biere (73 solved)

- 1st Prize:
- 2nd Prize: Plingeling sr15bal by Armin Biere (73 solved)
- 3rd Prize: Treengeling sr15bal by Armin Biere (73 solved)

- 1st Prize: Glucose Syrup Adapt 4 by Gilles Audemard and Laurent Simon (78 solved)
- 2nd Prize: Plingeling sr15bal by Armin Biere (73 solved)
- 3rd Prize: Treengeling sr15bal by Armin Biere (73 solved)

- 1st Prize:
- 2nd Prize:
- 3rd Prize:

- 1st Prize:
- 2nd Prize:
- 3rd Prize: Riss v5.05 (blackbox) by Lucas Kahlert, Franziska Krüger, Norbert Manthey and Aaron Stephan (249.4 solved)

- 1st Prize:
- 2nd Prize: MiniSatBCD by Jingchao Chen (256.4 solved)
- 3rd Prize: Riss v5.05 (blackbox) by Lucas Kahlert, Franziska Krüger, Norbert Manthey and Aaron Stephan (249.4 solved)

- 1st Prize: abcdSAT by Jingchao Chen (261 solved)
- 2nd Prize: MiniSatBCD by Jingchao Chen (256.4 solved)
- 3rd Prize: Riss v5.05 (blackbox) by Lucas Kahlert, Franziska Krüger, Norbert Manthey and Aaron Stephan (249.4 solved)

Main Track - Special Prize

- Special Prize Most "Innovative" Solver
 - Based on instances not solved by the 1st, 2nd, and 3rd solver
 - 4 points for each benchmark not solved by any of the winners
 - 2 points for each benchmark solved by only one of the winners
 - 1 point for each benchmark solved by only two of the winners
- Winner is:

Main Track - Special Prize

- Special Prize Most "Innovative" Solver
 - Based on instances not solved by the 1st, 2nd, and 3rd solver
 - 4 points for each benchmark not solved by any of the winners
 - 2 points for each benchmark solved by only one of the winners
 - 1 point for each benchmark solved by only two of the winners
- Winner is: Lingeling sr15bal by Armin Biere (38 points)

Acknowledgments

- Thanks to all the participants
- Thanks for all the benchmarks
- Thanks to Aaron Stump and StarExec
- Thank You for Your attention

