Projekt Coq

Jakub Dmitruk, Jakub Szcześniak

11 czerwca 2024

Projekt miał na celu zbadanie podstawowych własności dotyczących pojęcia największego wspólnego dzielnika, w szczególności implementację na dwa sposoby algorytmu Euklidesa służącego do obliczania tegoż oraz dowód poprawności tych implementacji. Na projekt składają się dwa pliki typu .v. Jeden z nich zawiera definicje, twierdzenia i algorytmy dotyczące liczb naturalnych, drugi dotyczące liczb całkowitych.

1 Definicja NWD

Definicja 1 Dla dowolnych liczb naturalnych a oraz b ich NWD nazywamy liczbę naturalną c taką, że c jest dzielnikiem a oraz c jest dzielnikiem b oraz dla każdy inny wspólny dzielnik liczb a i b również jest dzielnikiem c.

W naszym projekcie użyliśmy funkcji pomocniczej "divides" zdefiniowanej jako relację dwóch liczb, jeśli jedna jest dzielnikiem drugiej. Dzięki temu mogliśmy zastosować powyższą definicję do wprowadzenia funkcji "gcd_rel" jako relację trzech liczb a, b oraz d, kiedy d jest największym wspólnym dzielnikiem dwóch pozostałych.

2 Twierdzenie o kombinacji liniowej

Twierdzenie 1 Niech d będzie największym wspólnym dzielnikiem liczb a i b. Wówczas dla każdej pary liczb naturalnych x i y liczba d jest dzielnikiem liczby x*a+y*b.

Dowód 1 Skoro d jest dzielnikiem a, to istnieje k_1 takie, że $a = d*k_1$. Podobnie istnieje k_2 takie, że $b = d*k_2$. Teraz łatwo zauważyć, że d jest dzielnikiem liczby $x*a+y*b = x*k_1*d+y*k_2*d$.

Dowód w Coq sprowadza się do rozbicia naszej wiedzy na czynniki pierwsze, w celu uzyskania bezpośredniego dostępu do liczb k_1 oraz k_2 . Po podstawieniu ich w liczbie x*a+y*b do końca dowodu potrzebujemy już tylko taktyki "ring", która wykorzystuje własność pierścienia do uproszczenia wyrażenia.

3 Algorytm Euklidesa

Algorithm 1: Algorytm Euklidesa

Data: Liczby naturalne a oraz b.

Result: Największy wspólny dzielnik liczb a oraz b.

- 1. Jeśli a = 0, to **return** b;
- 2. W przeciwnym wypadku wywołaj rekurencyjnie algorytm dla argumentów $b \pmod{a}$ oraz a;

Istnieje również drugie sformułowanie algorytmu Euklidesa.

Algorithm 2: Algorytm Euklidesa 2

Data: Liczby naturalne a oraz b.

Result: Największy wspólny dzielnik liczb a oraz b.

- 1. Jeśli a = b, to **return** b;
- 2. Jeśli a > b wywołaj rekurencyjnie algorytm dla argumentów a b oraz b;
- 3. Jeśli b > a wywołaj rekurencyjnie algorytm dla argumentów b a oraz a;

W języku Coq możliwe jest tylko użycie pierwszego sformułowania. Coq dopuszcza te rekurencje, dla których ma pewność, że nie będą nieskończone. Pierwsze sformułowanie jest poprawne jest poprawne, gdyż w każdym kroku zmniejsza się wartość zmiennej a. I tak też zapisany algorytm Euklidesa znalazł się w naszym projekcie. Algorytm 2 chociaż wymaga więcej iteracji, wydaje się być prostszy w obsłudze i implementacji. Jednak w tym przypadku nie da się przewidzieć, która zmienna będzie maleć w kolejnych krokach. Dlatego implementacja tego algorytmu w języku Coq nie jest możliwa.

4 Dowód poprawności algorytmu

Twierdzenie 2 $NWD(a,b) = NWD(b \mod a, a)$

Dowód 2 Niech d := NWD(a, b). Wówczas wiemy, że d jest dzielnikiem a oraz d jest dzielnikiem b, czyli istnieją takie s oraz t, że a = s * d, a b = t * d. Ponadto niech $r := b \mod a$, czyli dla pewnego p mamy b = a * p + r. Zatem

$$r = b - a * p = t * d - s * d * p = (t - s * p) * d.$$

Wobec tego d jest również dzielnikiem r. \square

Twierdzenie 3 Algorytm Euklidesa poprawnie oblicza największy wspólny dzielnik i zawsze się zakończy.

Dowód 3 Dzięki poprzedniemu twierdzeniu prosta indukcja po a dowodzi poprawności algorytmu. Również dzięki temu, że wartość a maleje w każdym kroku, mamy gwarancję, że algorytm zawsze się zakończy. □

Ten wydawałoby się prosty dowód okazał się dla nas przeszkodą nie do przeskoczenia. Prawdopodobnie głównym problemem było rozpisanie w sposób operatywny funkcji "mod", jednak ze względu na finalne niepowodzenie trudno wskazać jednoznaczną przyczynę.

5 Bonus

Nie udało nam się udowodnić poprawności algorytmu Euklidesa, jednak w ramach własnej inwencji twórczej sformułowaliśmy i udowodniliśmy całą masę lematów dotyczących własności NWD, które potencjalnie byłyby użyteczne dla tego dowodu.

Twierdzenie 4 NWD(a,b) = NWD(b,a)

Twierdzenie 5 NWD(a,0) = a

Twierdzenie 6 NWD(a, -b) = NWD(b, a)

Twierdzenie 7 NWD(a,b) = -NWD(b,a)

Matematycznie dowody tych twierdzeń są natychmiastowymi wnioskami, natomiast w języku Coq składa się na nie ciąg oparty na wbudowanej serii twierdzeń "Z.divide" reprezentującej własności podzielności dla liczb całkowitych. Szczegóły dowodów i użycia tychże twierdzeń znajdują się w kodzie naszego projektu.

Twierdzenie 8 Dla każdej trójki liczb całkowitych a, b, d oraz q, jeśli d dzieli a oraz d dzieli b, to d dzieli również liczbę a - q * b.

Dowód 4 Skoro d dzieli a, to istnieje liczba k_1 taka, że $a = k_1 * d$. Podobnie, Skoro d dzieli b, to istnieje liczba k_2 taka, że $b = k_2 * d$. Zatem istnieje liczba $k_1 - q * k_2$, którą możemy podstawić do definicji podzielności w tezie. Zastosowanie własności rozdzielności mnożenia względem odejmowania kończy dowód. \square

Warto zauważyć, że rozdzielność mnożenia względem odejmowania jest własnością pierścieni. Zatem za zastosowanie jej w języku Coq odpowiada taktyka "ring".

6 Algorytm Euklidesa w semantyce relacyjnej

Algorytm Euklidesa można zapisać nie tylko jako funkcję rekurencyjną, ale też relację trzech liczb naturalnych. Reprezentuje go typ "euclid" postaci "nat -¿ nat -¿ nat -¿ Prop" o trzech konstruktorach:

- 1. Dla każdego a liczby a a a są w relacji "euclid". Odowiada to temu, że dla dwóch takich samych liczb, ich NWD jest im równe i taką wartość zwraca algorytm Euklidesa.
- 2. Dla każdych liczba, b, z, jeśli a < b i liczby a, (b a) oraz z są w relacji "euclid", to również liczby a, b, z są w tej relacji. Odpowiada to krokowi algorytmu Euklidesa z wersji 2 w przypadku a < b.
- 3. Dla każdych liczba, b, z, jeśli b < a i liczby (a b), b oraz z są w relacji "euclid", to również liczby a, b, z są w tej relacji. Odpowiada to krokowi algorytmu Euklidesa z wersji 2 w przypadku b < a.

7 Dowód terminancji

Twierdzenie 9 Dla każdej pary liczb naturalnych a > 0 oraz b > 0 istnieje liczba naturalna z taka, że liczby a, b oraz z są w relacji "euclid".

W języku matematyki dowód tego twierdzenia wydaje się być prostym wnioskiem. Niestety, zapisanie go w języku Coq jest już dużo większym wyzwaniem, któremu nie sprostaliśmy.

Spis treści

1	Definicja NWD	1
2	Twierdzenie o kombinacji liniowej	1
3	Algorytm Euklidesa	1
4	Dowód poprawności algorytmu	2
5	Bonus	2
6	Algorytm Euklidesa w semantyce relacyjnej	3
7	Dowód terminancji	3