Machine Learning - Exercise 2

Regression

Esra Ceylan, Daniel Fangl, Christian Hatschka

TU Wien

Table of contents

- 1. Data Sets
- 2. Data Preparation
- 3. Gradient Descent Algorithm
- 4. k-NN Algorithm
- 5. Comparison with other algorithms
- 6. Conclusion

Data Sets

Diamonds Data Set

Several attributes of diamonds, e.g. carat, clarity or measurements has been collected.

- #samples = 53 940
- #attributes = 9
- 6 numeric and 3 categorical attributes
- No missing values
- To predict: price in US Dollars

Concrete Data Set

Data set contains information about the composition as well as the age of cement in days and it's compressive strength.

- #samples = 1030
- #attributes = 8
- Only numeric attribute
- Has no missing values
- To predict: concrete compressive strength measured in MPa

Life Expectancy Data Set

Data set contains health factors of 193 countries between the years 2000 to 2015.

- #samples = 2938
- #attributes = 20
- 19 numeric attributes and 1 categorical feature
- Has missing values
- To predict: life expectancy in years

Data Preparation

Data Preparation

- 1. Categorical data:
 - One-hot encoding
- 2. Missing values:
 - Most common value
 - Median
- 3. Scaling:
 - Without
 - Standard-Scaler
 - Min-Max-Scaler

Gradient Descent

Gradient Descent

- n = #attributes
- Weight vector $\vec{\mathbf{w}} = (w_0, ..., w_n)'$
- Minimize error by computing impact of all w_i :

$$\begin{aligned} \min \textit{MSE}(\vec{\mathbf{w}}) &= \min \frac{1}{\#\textit{samples}} \textit{RSS}(\vec{\mathbf{w}}) \\ &= \min \frac{1}{\#\textit{samples}} \sum_{i=1}^{\#\textit{samples}} (y_i - (w_0 + \sum_{j=1}^n w_j x_{ij}))^2 \end{aligned}$$

Use MSE instead of RSS as cost function because even for different values for α the weights do not converge for data set with big sample size

Gradient Descent: Pseudocode

Algorithm 1 GD-Regressor(α , max_iterations, X_t , Y_t)

```
1: for j = 0 to n do
                                                                         ▷ Initialize weights
    w_i = 1
 3 end for
 4: for k = 1 to max iterations do

    Calculate derivative

         for j = 0 to n do
 5.
              Calculate \frac{\partial MSE}{\partial w_i}(\vec{\mathbf{w}})
 6.
    end for
 7:
 8: for j = 0 to n do

    □ Update weights

              w_j = w_j - \alpha \frac{\partial MSE}{\partial w_i}(\vec{\mathbf{w}})
         end for
10:
11: end for
12: return w
```

Calculating Partial Derivative

1. Manually calculated:

$$\frac{\partial \textit{MSE}}{\partial \textit{W}_j}(\vec{\mathbf{w}}) = \left\{ \begin{array}{l} \frac{-2}{\# \textit{samples}} \sum_{i=1}^{\# \textit{samples}} (y_i - (w_0 + \sum_{j=1}^n w_j x_{ij})), & j = 0, \\ \frac{-2}{\# \textit{samples}} \sum_{i=1}^{\# \textit{samples}} (y_i - (w_0 + \sum_{j=1}^n w_j x_{ij})) \cdot x_{ik}, & j \geq 1. \end{array} \right.$$

- \rightarrow too slow because of huge number of arithmetic operations $\sim 2 \textit{n} \cdot \# \textit{samples}.$
- 2. In terms of vector-operations:

 $ilde{X_t} \in \mathbb{R}^{\# \textit{samples} \times (n+1)}...$ insert first column with 1 to training set X_t

$$\left(\frac{\partial \textit{MSE}}{\partial \textit{w}_j}(\vec{\mathbf{w}})\right)_{j=0,\dots,n} = \frac{-2}{\#\textit{samples}} \tilde{X}_t^{\;\prime} \cdot \left(Y_t - \tilde{X}_t \cdot \vec{\mathbf{w}}\right)$$

 \rightarrow much faster

Gradient Descent: Pseudocode Prediction

Algorithm 2 GD-Prediction($\vec{\mathbf{w}}$, X_p)

- 1: $ilde{X_p} := ext{insert first column with 1 to } X_p$
- 2: $Y = \tilde{X}_p \cdot \vec{\mathbf{w}}$
- 3: **return** *Y*

Again, using vector operations made the prediction much faster.

Results

- Vector operations way faster than simply summing up
- Although very fast takes more iterations to reach similar results as in sklearn
- Weight initialization has an impact on iterations needed till convergence → done differently in sklearn
- For all our data sets best results using Standard-Scaling
- Min-Max-Scaler was not bad, but also not really good
- ullet Without scaling weights get too big o do not converge
- In the following plots we used $\alpha=10^{-2}$ for our implementation of Gradient Descent (best α in our tests) and $\alpha=10^{-5}$ for the scikitlearn implementation

Performance on Diamonds Data Set

Figure 1: Mean squared error of Gradient Descent on Diamonds Data Set

Performance on Diamonds Data Set

Figure 2: Max. error of Gradient Descent on Diamonds Data Set

Performance on Concrete Data Set

Figure 3: Mean squared error of Gradient Descent on Concrete Set

Performance on Concrete Data Set

Figure 4: Max. error of Gradient Descent on Concrete Set

Performance on Life Expectancy Data Set

Figure 5: MSE of Gradient Descent on Life Expectancy Data Set

Performance on Life Expectancy Data Set

Figure 6: Max. error of Gradient Descent on Life Expectancy Data Set

Runtime on Diamonds Data Set

Figure 7: Runtime of Gradient Descent on Diamonds Data Set

Runtime on Concrete Data Set

Figure 8: Runtime of Gradient Descent on Concrete Data Set

Runtime on Life Expectancy Data Set

Figure 9: Runtime of Gradient Descent on Life expectancy Data Set

k-NN

k-NN

n = #attributes

Distance functions (using numpy.linalg.norm in Python):

- 1. Manhattan distance: $d_1(x_1, x_2) = \sum_{i=1}^{n} |x_{1i} x_{2i}|$
- 2. Euclidean distance: $d_2(x_1, x_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} x_{2i})^2}$
- 3. Chebyshev distance: $d_{\infty}(x_1, x_2) = \max_{i \in \{1, ..., n\}} |x_{1i} x_{2i}|$

Weight:

- 1. Uniform \rightarrow mean of predicted class of k nearest neighbours
- 2. Distance based: $\frac{1}{d(x_1,x_2)+\varepsilon}$ (very small $\varepsilon>0$ to prevent division by 0) \rightarrow weighted mean of predicted class of k nearest neighbours

k-NN: Pseudocode

Algorithm 3 k-NN-Regressor(k, distance-fct d, weight, X_t , Y_t , X_p)

```
1: neighbors = []
                                                                ▷ Initialize min-heap
 2: for each row (x,y) in (X_t, Y_t) do
                                              \triangleright Find k nearest neighbors
        distance_tuple = (-d(x, x_n), x, y)
 3:
        if |queue| < k then
 4:
             push(neighbors, distance_tuple)
 5.
 6:
     else
             pushpop(neighbors, distance_tuple)
 7.
        end if
 8.
 9: end for
10: if weight='uniform' then
                                                                          Prediction
        prediction = \frac{1}{L} \sum_{i=1}^{k} \text{neighbors}[i][2]
11:
12: else if weight='distance' then
        prediction = \frac{\sum_{i=1}^{k} neighbors[i][0] \cdot neighbors[i][2]}{\sum_{i=1}^{k} neighbors[i][0]}
13.
14: end if
15: return prediction
```

Results

- Distance function:
 - For Diamonds and Life Expectancy data set: Manhattan distance best results, but Euclidean distance also pretty good
 - For Concrete data set: Euclidean distance best, but Manhattan also good
 - 3. Chebyshev distance generally not optimal for our data sets
- *k* value:
 - 1. Not the same optimal k value for all our data sets
- Scaling:
 - 1. Best results for all data sets obtained with standard-Scaling
 - 2. Min-Max-Scaler resp. without scaling not really good

Performance on Diamonds Data Set

Figure 10: Mean squared error of k-NN on Diamonds Data Set

Performance on Diamonds Data Set

Figure 11: Max. error of k-NN on Diamonds Data Set

Performance on Concrete Data Set

Figure 12: Mean squared error of k-NN on Concrete Data Set

Performance on Concrete Data Set

Figure 13: Max. error of k-NN on Concrete Data Set

Performance on Life Expectancy Data Set

Figure 14: MSE of k-NN on Life Expectancy Data Set

Performance on Life Expectancy Data Set

Figure 15: Max. error of k-NN on Life Expectancy Data Set

Performance on Diamonds Data Set

Figure 16: Prediction time of k-NN on Diamonds Data Set

Runtime on Concrete Data Set

Figure 17: Prediction time of k-NN on Concrete Data Set

Runtime on Life Expectancy Data Set

Figure 18: Prediction time of k-NN on Life Expectancy Data Set

Comparison with other algorithms

Comparison with other algorithms

	Diamonds		Concrete		Life Expectancy	
	MSE	Max. err.	MSE	Max. err.	MSE	Max. err.
k-NN	$4.4 \cdot 10^{6}$	$9.5 \cdot 10^3$	65	27	16	15
GD	$9.9 \cdot 10^{6}$	$7.5 \cdot 10^3$	109	31	21	20
DT	$3.9 \cdot 10^{6}$	$8.0 \cdot 10^{3}$	42	31	14	15
RF	$3.5 \cdot 10^{6}$	$6.5 \cdot 10^3$	25	23	8	12

k-NN...implemented k-NN

GD...implemented Gradient Descent

DT...Decision tree of sklearn (with default parameters)

RF... Random forest of sklearn (with default parameters)

Conclusion

Conclusion Gradient Descent

- Our implementation was worse than the sklearn implementation regarding the performance metrics, but behaved similar
- Additionally, the runtime of our implementation was higher compared to the sklearn version
- To achieve similar results as in sklearn, a higher number of iterations was needed
- ullet Our algorithm worked the best for $lpha=10^{-2}$ in our tests, across all data sets
- Standard-Scaling improved the results

Conclusion k-NN

- Our *k*-NN implementation achieved the same results as in sklearn, also with an similar runtime
- Different optimal k values for different data sets
- Manhattan distance performed best resp. always really good
- Using the inverse distance as weights yielded better scores than uniform weights
- Standard-Scaling improved the results

References i

Diamonds Data Set: www.openml.org/d/42225

Concrete Data Set: www.kaggle.com/prokaggler/concrete-data

Life Expectancy Data Set:

www.kaggle.com/kumarajarshi/life-expectancy-who