ICMMAS'2017, July 24-28, 2017. SPbPU-St. Petersburg-Russia

Approximate Controllability of Fractional Delay Dynamic Inclusions with Nonlocal Control Conditions

Amar Debbouche¹

Delfim F. M. Torres²

¹Guelma University, Algeria ²University of Aveiro, Portugal

¹amar_debbouche@yahoo.fr; ²delfim@ua.pt

Abstract: We introduce a nonlocal control condition and the notion of approximate controllability for fractional order quasilinear control inclusions. Approximate controllability of a fractional control nonlocal delay quasilinear functional differential inclusion in a Hilbert space is studied. The results are obtained by using the fractional power of operators, multi-valued analysis, and Sadovskii's fixed point theorem. Main result gives an appropriate set of sufficient conditions for the considered system to be approximately controllable. As an example, a fractional partial nonlocal control functional differential inclusion is considered.

Keywords: approximate controllability; control theory; multivalued maps; fractional dynamic inclusions; fractional power; fixed points; semigroup theory.

MSC 2010: 26A33; 34A60; 34G25; 93B05.

1 Introduction

We are concerned with the fractional delay quasilinear control inclusion

$$D_{t}^{\alpha}[u(t) - g(t, u(\sigma(t)))] \in Au(t) + \int_{0}^{t} f(t, s, B_{1}\mu_{1}(\delta(s))) ds$$
 (1)

subject to the nonlocal control condition

$$u(0) + h(u(t)) = B_2 \mu_2(t) + u_0, \tag{2}$$

where the unknown $u(\cdot)$ takes its values in a Hilbert space H with norm $\|\cdot\|$, D_t^{α} is the Caputo fractional derivative with $0 < \alpha \le 1$ and $t \in J = [0,a]$. Let A be a closed linear operator defined on a dense domain D(A) in H into H that generates an analytic semigroup Q(t), $t \ge 0$, of bounded linear operators on H and $u_0 \in D(A)$. We assume that $\{B_i : U \to H, \ i = 1,2\}$ is a family of bounded linear operators, the control functions μ_i , i = 1,2, belong to the space $L^2(J,U)$, a Hilbert space of admissible control functions with U as Hilbert space, and $\sigma, \delta : J \to J'$ are delay arguments, J' = [0,t]. It is also assumed that $g: J \times H \to H$ and $h: C(J':H) \to H$ are given abstract functions and $f: \Delta \times H \to H$ is a multi-valued map, $\Delta = \{(t,s): 0 \le s \le t \le a\}$.

2 Main results

We obtain existence and approximate controllability results for the fractional nonlocal control inclusion (1)–(2). We consider the following hypotheses:

(H₁) There exists a constant $p \in (0,1)$ such that the function $g(\cdot,\cdot)$ maps $[0,a] \times H_q$ into H_{p+q} and $A^pg:[0,a] \times H_q \to H_q$ satisfies a Lipschitz condition, that is, there exists a constant $L_1 > 0$ such that

$$||A^{p}g(t_{1}, u_{1}) - A^{p}g(t_{2}, u_{2})||_{q} \le L_{1}(|t_{1} - t_{2}| + ||u_{1} - u_{2}||_{q})$$
(3)

for any $0 \le t_1, t_2 \le a, u_1, u_2 \in H_q$.

(H₂) For any $u(\cdot) \in \Omega$, $u_a \in H$, we take the controls

$$\mu_1 = B_1^* T_{\alpha}^*(a - t) \mathcal{R}(\lambda, \Gamma_{0,1}^a) P(u(\cdot)), \quad \mu_2 = B_2^* S_{\alpha}^*(a) \mathcal{R}(\lambda, \Gamma_{0,2}^a) P(u(\cdot)). \tag{4}$$

Theorem 1 If (H_1) – (H_2) are satisfied and $\lambda \mathcal{R}(\lambda, \Gamma_{0,i}^a) \to 0$ in the strong operator topology as $\lambda \to 0^+$, i=1,2, then the nonlocal-control fractional delay system (1)–(2) is approximately controllable on J.

Proof. We use the existence result of mild solutions, it is easy to see that F^{λ} has a fixed point in Ω_r for any $\lambda \in (0,1)$. This implies that there exists $\overline{u}^{\lambda} \in F^{\lambda}(\overline{u}^{\lambda})$, that is, there is $\overline{v}^{\lambda} \in S_{f,\overline{\mu_1}^{\lambda}}$ such that

$$\begin{split} \overline{u}^{\lambda}(t) &= S_{\alpha}(t) \left[B_{2} \overline{\mu_{2}}^{\lambda}(t) + u_{0} - h\left(\overline{u}^{\lambda}\right) - g\left(0, \overline{u}^{\lambda}(\sigma(0))\right) \right] + g\left(t, \overline{u}^{\lambda}(\sigma(t))\right) \\ &+ \int_{0}^{t} (t-s)^{\alpha-1} \left\{ A T_{\alpha}(t-s) g\left(s, \overline{u}^{\lambda}(\sigma(s))\right) + T_{\alpha}(t-s) \left[\overline{v}^{\lambda}(\delta(s)) + B_{1} \overline{\mu_{1}}^{\lambda}(s) \right] \right\} ds. \end{split}$$

Moreover, by the assumption that we have $\lambda \mathcal{R}(\lambda, \Gamma_{0,i}^a) \to 0$ in the strong operator topology as $\lambda \to 0^+$, i=1,2, we ensure that $\|u_a - \overline{u}^{\lambda}(a)\| \to 0$ as $\lambda \to 0^+$. Therefore, the fractional dynamic inclusion (1)–(2) is approximately controllable on J.

Acknowledgments

This work was supported by Portuguese funds through the *Center for Research and Development in Mathematics and Applications* (CIDMA), *The Portuguese Foundation for Science and Technology* (FCT), University of Aveiro, Portugal and Department of Mathematics, Guelma University, Algeria.

References

- [1] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and applications of fractional differential equations*, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.
- [2] A. Debbouche and D. F. M. Torres, Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions, Appl. Math. Comput. **243** (2014), 161–175.