Matematica Discreta Laurea in Informatica

Andrea Favero

Luglio 2016

Indice

	2
1.1 Grafi non orientati	2
1.2 Grafi orientati	6
1.3 Prime proprietà dei grafi non orientati	9
1.4 Prime proprietà dei grafi orientati	11
1.5 Sottografi	13
1.6 Grafi bipartiti	13
1.7 Connettività e tagli	14
1.8 Grafi isomorfi	17
Principio di Induzione	18
	Grafi 1.1 Grafi non orientati 1.2 Grafi orientati 1.3 Prime proprietà dei grafi non orientati 1.4 Prime proprietà dei grafi orientati 1.5 Sottografi 1.6 Grafi bipartiti 1.7 Connettività e tagli 1.8 Grafi isomorfi Principio di Induzione

Capitolo 1

Grafi

1.1 Grafi non orientati

Definizione 1.1 (grafo non orientato semplice). Un grafo non orientato semplice G è una coppia ordinata (V, E) dove: $V = \{v_1, \dots, v_n\}$ è un insieme finito di vertici (o nodi) ed E è un insieme di coppie non ordinate di vertici dette $spigoli^1$ o lati. Il grafo è detto semplice perché non può avere né cappi né spigoli paralleli.

Esempio 1.1.1. In Figura 1.1 è rappresentato il seguente grafo non orientato semplice:

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$$

$$E = \{(\nu_1, \nu_3), (\nu_1, \nu_7), (\nu_2, \nu_3), (\nu_4, \nu_7), (\nu_6, \nu_5), (\nu_4, \nu_2), (\nu_3, \nu_5), (\nu_5, \nu_7)\}$$

Si dice che lo spigolo (v_1, v_3) ha come *estremi* i vertici v_1 e v_3 .

Figura 1.1: un grafo semplice non orientato

In molti libri di testo E viene rappresentato come $E = \{\{v_i, v_j\}, \ldots, \{v_k, v_m\}\}$ perché non c'è alcun ordine tra gli spigoli.

 $^{^{1}}$ In inglese gli spigoli sono denominati edges, per questo motivo l'insieme che li contiene è chiamato E.

3

Figura 1.2: un grafo non orientato che non è semplice

Esempio 1.1.2. Il grafo non orientato in Figura 1.2 non è semplice poiché presenta un cappio sul vertice v_1 e ci sono due spigoli paralleli tra i vertici v_1 e v_2 .

Definizione 1.2. Uno spigolo è detto *incidente* nei suoi estremi. I vertici di uno spigolo sono detti adiacenti.

Definizione 1.3 (percorso). Un percorso è una sequenza di vertici non necessariamente distinti in cui ogni coppia di vertici consecutivi forma uno spigolo.

Definizione 1.4 (cammino). Un *cammino* è una sequenza di vertici *distinti* in cui ogni coppia di vertici consecutivi forma uno spigolo. Alternativamente si può dire che un cammino è un percorso i cui vertici sono tutti distinti.

Esempio 1.1.3. Nel grafo in Figura 1.3 è presente il cammino ν_4 - ν_7 - ν_5 - ν_3 - ν_2 . Un'altra notazione per indicare il cammino è: $(\nu_4, \nu_7, \nu_5, \nu_3, \nu_2)$. Lo stesso tipo di notazione è valido anche per i percorsi.

Figura 1.3: un cammino v_4 - v_7 - v_5 - v_3 - v_2

Teorema 1.1.1. Se un grafo contiene un percorso che ha come estremità i vertici v_1 e v_n allora dal percorso è possibile estrarre un cammino che ha come estremità v_1 e v_n .

Dimostrazione. Sia P un percorso che ha come estremità i vertici ν_1 e ν_n . Se un vertice ν_i (con $i \in \{1, \dots, n\}$) si ripetesse nel percorso, allora esisterebbe un sottopercorso $\nu_i - \nu_{k_1} - \dots - \nu_{k_h} - \nu_i$ contenuto in P. Togliendo il sottopercorso $\nu_i - \nu_{k_1} - \dots - \nu_{k_h}$ da P si potrebbe costruire un percorso più corto. Una volta tolti da P tutti i sottopercorsi che contengono nodi ripetuti, P è un cammino di estremità ν_1 e ν_n .

Definizione 1.5 (circuito). Cammino nel quale il primo e l'ultimo vertice sono adiacenti.

Esempio 1.1.4. Il grafo in Figura 1.4 contiene il circuito: $v_4 - v_7 - v_5 - v_3 - v_2 - v_4$.

Figura 1.4: un circuito v_4 - v_7 - v_5 - v_3 - v_2 - v_4

Definizione 1.6 (lunghezza di un circuito/cammino). La lunghezza di un circuito o di un cammino è il numero degli spigoli formati dai nodi del cammino/circuito.

Definizione 1.7 (grafo connesso). Un grafo si dice *connesso* se per ogni coppia di vertici esiste un cammino che li collega, altrimenti si dice *disconnesso* o *sconnesso*.

Definizione 1.8 (grafo completo). Un grafo è *completo* se ogni sua coppia di vertici è collegata da uno spigolo. Se un grafo completo ha $\mathfrak n$ vertici allora si dice che è un grafo $k_{\mathfrak n}$.

Esempio 1.1.5. In Figura 1.5 sono rappresentati 3 grafi completi.

Figura 1.5: un k_3 , k_4 e k_5

Nell'ordine:

- un $\operatorname{grafo} k_3$
- un $\operatorname{grafo} k_4$
- un grafo k_5

Definizione 1.9 (grafo bipartito). Un grafo G = (V, E) è bipartito se i suoi vertici sono partizionati in due sottoinsiemi di V, rispettivamente U e W, ed ogni suo spigolo è incidente in un vertice di U ed in uno di W (notare che $U \cap W = \emptyset$ e $U \cup W = V$).

Esempio 1.1.6. Due grafi bipartiti sono rappresentati in Figura 1.6.

Figura 1.6: 2 grafi bipartiti

Definizione 1.10 (grafo bipartito completo k_{n_1,n_2}). Un grafo bipartito è *completo* se tutti i suoi vertici partizionati in un sottoinsieme sono adiacenti a tutti i vertici dell'altro sottoinsieme.

Esempio 1.1.7. Due grafi bipartiti completi sono rappresentati in Figura 1.7.

Figura 1.7: 2 grafi bipartiti completi

Definizione 1.11 (foresta). Una foresta è un grafo senza cicli (aciclico).

Esempio 1.1.8. In Figura 1.8 è rappresentata una foresta.

Nell'ordine:

- un grafo $k_{1,3}$
- un grafo k_{2,4}

Figura 1.8: Una foresta

Definizione 1.12 (albero). Un albero è una foresta connessa.

SPOSTARE FORESTA E GRAFO (AGGIUNGENDO ESEMPIO PER QUEST'ULTIMO) DOPO AVER CREATO UN CAPITOLO SUGLI ALBERI

aggiungere una sezione per i multigrafi

1.2 Grafi orientati

Definizione 1.13 (grafo orientato semplice). Un grafo orientato semplice G è una coppia ordinata (V,A) dove: $V = \{v_1, \ldots, v_n\}$ è un insieme finito di vertici (o nodi) ed A è un insieme di coppie ordinate di vertici dette archi.

Esempio 1.2.1.

$$\begin{split} G = (V,A) \ \mathrm{con} \ V = & \{\nu_1,\nu_2,\nu_3,\nu_4,\nu_5\} \ \mathrm{e} \\ A = & \{(\nu_1,\nu_3),(\nu_2,\nu_1),(\nu_2,\nu_5),(\nu_3,\nu_5),(\nu_4,\nu_1),(\nu_4,\nu_3),(\nu_5,\nu_2)\} \end{split}$$

Figura 1.9: un grafo orientato semplice

Il grafo è semplice perché non ha né cappi né archi paralleli. Il nodo iniziale di un arco è detto testa e quello finale è detto coda.

Esempio 1.2.2.

$$G = (V, A)$$
 $V = \{v_1, v_2\}$ $A = \{(v_1, v_2), (v_2, v_1)\}$

G è un grafo orientato. L'arco $(v_1,v_2)\in A$ ha v_1 come nodo iniziale e v_2 come finale.

Figura 1.10: un grafo orientato semplice

Esempio 1.2.3. L'immagine in Figura 1.11 non rappresenta un grafo orientato semplice perché i vertici v_1 e v_2 sono collegati da due archi paralleli (ovvero due archi che hanno lo stesso nodo iniziale ed anche quello finale), inoltre c'è un cappio su v_1 .

Figura 1.11: grafo orientato che non è semplice (un multigrafo orientato)

Definizione 1.14 (cammino orientato). Un cammino orientato è una sequenza di nodi distinti dove, ogni coppia di nodi consecutivi nel cammino è collegata da un arco.

Esempio 1.2.4. Nel grafo in Figura 1.12 è presente il cammino orientato:

$$v_1 - v_3 - v_5 - v_2$$

Figura 1.12: cammino orientato

Definizione 1.15 (circuito orientato). Cammino orientato nel quale esiste un arco dal primo all'ultimo nodo.

Esempio 1.2.5. In Figura 1.13 è rappresentato il circuito orientato

$$v_1 - v_3 - v_5 - v_2 - v_1$$

Figura 1.13: circuito orientato

Definizione 1.16 (grafo fortemente connesso). Per ogni coppia di nodi esiste un cammino orientato che li collega.

Esempio 1.2.6.

$$G(V = \{v_1, v_2, v_3\}, A = \{(v_2, v_1), (v_1, v_3), (v_3, v_1), (v_3, v_2)\})$$

è un grafo fortemente connesso ed è in Figura $1.14\,$

Figura 1.14: grafo fortemente connesso

Definizione 1.17 (torneo). Un torneo è un grafo orientato semplice in cui ogni coppia di vertici distinti è collegata da un arco (che può avere qualsiasi direzione ovvero, dati $u, v \in V$ può essere (u, v) oppure (v, u)). È chiamato torneo perché, un tale grafo di $\mathfrak n$ nodi corrisponde a un torneo in cui ogni membro di un gruppo di $\mathfrak n$ giocatori gioca contro tutti gli altri $\mathfrak n-1$ giocatori e ad ogni partita un giocatore vince e l'altro perde.

Esempio 1.2.7. In Figura 1.15 è rappresentato un torneo.

Figura 1.15: Un torneo

1.3 Prime proprietà dei grafi non orientati

Sia G = (V, E) un grafo non orientato semplice. Non è difficile notare che il minimo numero di spigoli che un grafo può avere è 0 (ogni vertice è isolato) mentre il massimo è:

$$\frac{|V| (|V| - 1)}{2}$$

(|V| indica la cardinalità di V. La cardinalità di un insieme finito è un numero naturale che rappresenta la quantità di elementi che costituiscono l'insieme.)

Esempio 1.3.1. In Figura 1.16 sono rappresentati dei grafi che hanno il massimo numero di spigoli che è possibile avere rispetto al numero dei loro vertici |V| = 3 e |V| = 4.

Figura 1.16: due grafi rispettivamente con |V| = 3 e |V| = 4

Definizione 1.18 (grado di un vertice). Si chiama grado di un vertice ν e si indica con $gr(\nu)$ il numero di spigoli incidenti in ν .

Esempio 1.3.2.
$$gr(v_1) = 1$$
, $gr(v_2) = 3$, $gr(v_3) = gr(v_4) = gr(v_5) = 2$.

$$\sum_{\nu \in V} gr(\nu) = 1 + 3 + 2 + 2 + 2 = 10 = 2|E| = 2 \times 5$$

Il grafo relativo all'esempio è in $1.17\,$

Figura 1.17

Teorema 1.3.1. In ogni grafo semplice non orientato G = (V, E), la somma dei gradi di tutti i vertici è uguale al doppio del numero degli spigoli.

$$\sum_{\nu \in V} gr(\nu) = 2|E| \tag{1.1}$$

Dimostrazione. Per induzione su m = |E|:

 ${\it caso base:}\ m=0$

$$\begin{split} gr(\nu) &= 0 \quad \forall \nu \in V, \quad |E| = 0. \\ \textit{passo induttivo:} \ P(m-1) \implies P(m) \end{split}$$

sia G = (V, E) un grafo con \mathfrak{m} spigoli. Si suppone che 1.1 sia valida \forall grafo con $\mathfrak{m} - 1$ spigoli. Siano $(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \in \mathsf{E} \ \mathrm{e} \ \mathsf{G}' = (\mathsf{V}, \mathsf{E}' = \mathsf{E} \setminus \{(\bar{\mathbf{u}}, \bar{\mathbf{v}})\})$ ottenuto da G togliendo $(\bar{\mathbf{u}}, \bar{\mathbf{v}})$.

Si può notare che $gr_G(\bar{u}) = gr_{G'}(\bar{u}) + 1$, $gr_G(\bar{v}) = gr_{G'}(\bar{v}) + 1$ mentre, $\forall x \in V$ tale che $x \neq \bar{u}, x \neq \bar{v} \text{ si ha } gr_G(x) = gr_{G'}(x).$

 $|E'| = |E| - 1 = \mathfrak{m} - 1 \implies \text{in } G' \text{ vale l'ipotesi induttiva} \implies \textstyle \sum_{\nu \in V} gr_{G'}(\nu) = 2|E'|.$ In G:

$$\begin{split} \sum_{\nu \in V} gr(\nu) &= \sum_{\substack{\nu \in V \\ \nu \neq \bar{u} \\ \nu \neq \bar{\nu}}} gr_G = (\nu) + gr_G(\bar{u}) + gr_G(\bar{\nu}) \\ &= \sum_{\substack{\nu \in V \\ \nu \neq \bar{u} \\ \nu \neq \bar{\nu}}} gr_{G'}(\nu) + gr_{G'}(\bar{u}) + 1 + gr_{G'}(\bar{\nu}) + 1 \\ &= \sum_{\substack{\nu \in V \\ \nu \neq \bar{\nu}}} gr_{G'}(\nu) + 2 \underbrace{\qquad}_{\mathrm{ipotesi\ induttiva}} 2|E'| + 2 \\ &= 2(m-1) + 2 \\ &= 2m \\ &= 2|E| \end{split}$$

Corollario 1.3.2. In ogni grafo non orientato, il numero dei vertici di grado dispari è pari.

 $\begin{array}{l} \textit{Dimostrazione.} \ \ \text{Siano} \ \ G = (V,E) \ \ \text{un grafo non orientato semplice}, \ \ V_d = \{ v \in V \mid gr(v) \ \ \text{è dispari} \} \\ \text{e} \ \ V_p = \{ v \in V \mid gr(v) \ \ \text{è pari} \}; \ \ \text{quindi} \ \ V_d \cap V_p = \emptyset \ \ \text{e} \ \ V_d \cup V_p = V. \end{array}$

$$\begin{split} \sum_{\nu \in V} gr(\nu) &= 2|E| \\ &= \underbrace{\sum_{\nu \in V_p} gr(\nu)}_{\mathrm{pari}} + \underbrace{\sum_{\nu \in V_d} gr(\nu)}_{\in \mathrm{Pari}} = \underbrace{2|E|}_{\mathrm{pari}} \end{split}$$

Poichè la somma dei gradi dei vertici che hanno grado pari è un numero pari, allora anche la somma dei gradi dei vertici che hanno grado dispari è un numero pari perché:

$$\sum_{\nu \in V_d} gr(\nu) = \underbrace{2|E|}_{\mathrm{pari}} - \underbrace{\sum_{\nu \in V_p} gr(\nu)}_{\mathrm{pari}}$$

e la differenza tra due numeri pari è un numero pari. Essendo quindi la somma dei gradi dei vertici di grado dispari un numero pari, allora anche il numero dei vertici di grado dispari è un numero pari. Questo perchè se si sommano $\mathfrak n$ numeri dispari, la loro somma è un numero pari se e solo se $\mathfrak n$ è pari.

Esercizio 1.3.1. Trovare G = (V, E) con |V| = 7 e $gr(v) = 5 \ \forall v \in V$.

Svolgimento: non esiste alcun grafo di questo tipo, per il corollario di cui sopra. Infatti ho 7 vertici di grado dispari ma, il numero dei vertici di grado dispari deve essere un numero pari, assurdo.

1.4 Prime proprietà dei grafi orientati

Sia G = (V, A) un grafo orientato semplice. Allora il minimo numero di archi che questo può avere è 0 (ogni vertice è isolato) mentre il massimo è $|V| \cdot (|V| - 1)$.

Esempio 1.4.1. Due grafi orientati con il loro massimo numero di archi possibili sono rappresentati in Figura 1.18 $\hfill \blacksquare$

Figura 1.18: Due grafi orientati con il loro massimo numero di archi possibile

Definizione 1.19 (grado entrante di un vertice). Si chiama grado entrante di un vertice ν e si indica con In-deg(ν) il numero di archi entranti nel vertice ν .

Definizione 1.20 (grado uscente di un vertice). Si chiama grado uscente di un vertice ν e si indica con Out-deg(v) il numero di archi uscenti dal vertice v.

Esempio 1.4.2. La Figura 1.19 rappresenta un grafo con $In-deg(v_1) = 1$ e $Out-deg(v_1) = 3$

Figura 1.19: esempio con In-deg $(v_1) = 1$ e Out-deg $(v_1) = 3$

Teorema 1.4.1. In ogni grafo orientato semplice G = (V, A) sono uguali tra loro: la somma dei gradi uscenti dei nodi, la somma dei gradi entranti dei nodi, il numero di archi del grafo.

$$\sum_{\nu \in V} In\text{-deg}(\nu) = \sum_{\nu \in V} Out\text{-deg}(\nu) = |A| \tag{1.2}$$

Dimostrazione. Per induzione su $\mathfrak{m} = |A|$:

caso base: m = 0

 $\begin{array}{l} \sum_{\nu \in V} \text{In-deg}(\nu) = \sum_{\nu \in V} \text{Out-deg}(\nu) = \mathfrak{m} = |A| = 0. \\ \textit{passo induttivo: } P(\mathfrak{m}-1) \Longrightarrow P(\mathfrak{m}) \end{array}$

sia G = (V, E) un grafo orientato con m archi. Si suppone che 1.2 sia valida \forall grafo orientato con m - 1 archi.

Sia $(\bar{u}, \bar{v}) \in A$ e sia $G' = (V, A' = A \setminus \{ (\bar{u}, \bar{v}) \})$ ottenuto da G togliendo (\bar{u}, \bar{v}) . Allora:²

$$\sum_{v \in V} \text{In-deg}_{G}(v) = \sum_{v \in V} \text{In-deg}_{G'}(v) + 1$$

$$\sum_{v \in V} \text{Out-deg}_{G}(v) = \sum_{v \in V} \text{Out-deg}_{G'}(v) + 1$$

$$|A'| = |A| - 1 = m - 1 e$$

$$\sum_{\nu \in V} \text{In-deg}_{G^{\,\prime}}(\nu) = \sum_{\nu \in V} \text{Out-deg}_{G^{\,\prime}}(\nu) = m-1 = |A^{\,\prime}|$$

Quindi in G' vale l'ipotesi induttiva.

Ora in G:

$$\begin{split} |A| &= \sum_{\nu \in V} In\text{-deg}_G(\nu) = \sum_{\nu \in V} Out\text{-deg}_G(\nu) \\ &= \underbrace{\sum_{\nu \in V} In\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 \\ &\underbrace{\sum_{\nu \in V} In\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 \\ &\underbrace{\sum_{\nu \in V} In\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| =$$

² Si somma 1 perché in G ci sono un arco entrante in più su $\bar{\nu}$ ed uno uscente in più da $\bar{\nu}$ dato che $(\bar{\nu}, \bar{\nu}) \in A$.

1.5 Sottografi

Definizione 1.21 (sottografo). Dato G = (V, E) grafo non orientato semplice, un suo sottografo è un grafo G' = (V', E') con $V' \subseteq V$ e $E' \subseteq E$.

Definizione 1.22 (sottografo indotto). Dato G = (V, E) grafo non orientato semplice, un suo sottografo indotto è un suo sottografo G' = (V', E') tale che $\forall (u, v) \in E$, se $u, v \in V' \implies (u, v) \in E'$.

Esempio 1.5.1. In Figura 1.20 sono rappresentati un grafo G = (V, E), un suo sottografo $G' = (V' = \{a, d, f, e\}, E' = \{(a, d), (a, f)\})$ ed un suo sottografo indotto (da V') $G'' = (V', E'' = \{(a, d), (a, f), (d, f), (f, e)\})$.

Figura 1.20: Rispettivamente: un grafo G = (V, E), un suo sottografo ed un suo sottografo indotto.

1.6 Grafi bipartiti

Riprendiamo ora la discussione sui grafi bipartiti che sono stati definiti a pagina 4. Un grafo è bipartito se i suoi vertici sono partizionati in due sottoinsiemi, V_1 e V_2 ed ogni spigolo è incidente in un vertice di V_1 e uno di V_2 . Il minimo numero di spigoli che un grafo bipartito può avere è 0, mentre il massimo é $|V_1| \cdot |V_2|$.

Proposizione 1.6.1 (condizione necessaria e sufficiente per grafi bipartiti). Se G = (V, E) è un grafo bipartito e G' = (V', E') è un suo sottografo allora G' = (V', E') è bipartito. Questo equivale a dire che G' non è bipartito \iff G non è bipartito.

Teorema 1.6.2. Un grafo G = (V, E) è bipartito \iff ogni circuito di G ha lunghezza pari (la lunghezza di un circuito è il numero degli spigoli).

Dimostrazione. Consideriamo solamente i grafi connessi dato che ogni circuito è contenuto in una componente connessa e se le componenti connesse sono bipartite allora anche il grafo è bipartito. \Longrightarrow) Sia G un grafo bipartito e $c = x_1 - \ldots - x_k - x_1$ un suo circuito di lunghezza k (in Figura 1.21). Per la definizione di grafo bipartito i nodi del circuito devono essere del tipo: $x_1 \in V_1, x_2 \in V_2, x_3 \in V_1, \ldots$

Più precisamente: $x_j \in V_1$ se j è dispari e $x_j \in V_2$ se j è pari, con $j = 1, \dots, k$.

Poiché $(x_1,x_k) \in E$, $x_1 \in V_1 \implies x_k \in V_2 \implies k$ è pari e, per come è stato definito il circuito, questo ha lunghezza k.

 \iff) Sia G un grafo con tutti i circuiti di lunghezza pari. Sia $\nu \in V$, lo "mettiamo" in V_1 , tutti i suoi adiacenti li "mettiamo" in V_2 , poi prendiamo tutti i vertici distanti 2 da ν e li mettiamo in $V_1 \dots$ e così via. In generale se esiste un cammino di lunghezza pari che parte da ν ed arriva fino

ad un certo nodo $\mathfrak n$, allora mettiamo $\mathfrak n$ in V_1 , se invece il cammino ha lunghezza dispari allora mettiamo $\mathfrak n$ in V_2 . Non possono esistere spigoli che collegano due nodi che si trovano entrambi in V_1 o in V_2 . Supponiamo che $\exists \mathfrak u, \mathfrak w$ tali che entrambi appartengono a V_1 , che $\exists (\mathfrak u, \mathfrak w) \in \mathsf E$; deve esistere un cammino $\mathfrak c = \mathfrak u - \dots - \mathfrak z - \mathfrak w$ di lunghezza pari (quindi con $\mathfrak z \in V_2$), se alla fine del cammino si aggiunge lo spigolo $(\mathfrak u, \mathfrak w)$ allora si ottiene un circuito formato da due cammini, il primo è $\mathfrak c$ che ha lungheza pari ed il secondo è $(\mathfrak u, \mathfrak v)$ che ha lunghezza dispari. Il circuito allora ha lunghezza dispari, ma è assurdo perchè la nostra ipotesi assume che $\mathfrak G$ sia un grafo che ha solo circuiti di lunghezza pari. Un ragionamento analogo lo si può fare se $\mathfrak u$ e $\mathfrak w$ appartengono a V_2 .

Figura 1.21: circuito parte \Longrightarrow) della dimostrazione

Algorithm 1 Algoritmo per verifica bipartizione di un grafo

```
Da ripetere \forall componente connessa di G = (V, E): V_1 = V_2 = \emptyset prendo un qualsiasi v \in V e lo metto in V_1 for each u \in V_1 \cup V_2 do {La prima volta entro per forza nell'if perché u può essere solo uguale a v} if u \in V_1 then aggiungo a V_2 tutti i vertici adiacenti a u che non sono in V_1 \cup V_2 else aggiungo a V_1 tutti i vertici adiacenti a u che non sono in V_1 \cup V_2 end if end for G è bipartito \iff ogni spigolo ha una estremità in V_1 ed una in V_2
```

1.7 Connettività e tagli

Definizione 1.23 (Connessione di 2 vertici). Sia G = (V, E) un grafo non orientato e siano $u, v \in V$. $u \in v$ sono *connessi* se esiste un cammino che ha come estremità $u \in v$.

La connessione è una relazione di equivalenza nell'insieme V dei vertici:

• u è connesso a se stesso (riflessività)

- \bullet u è connesso a $\nu \implies \nu$ è connesso a u (simmetria)
- \mathfrak{u} è connesso a \mathfrak{v} e \mathfrak{v} è connesso a \mathfrak{t} \Longrightarrow \mathfrak{u} è connesso a \mathfrak{t} (transitività)

u e v sono connessi solo se, partizionato V in V_1, V_2, \ldots, V_k insiemi, sia u che v appartengono allo stesso insieme V_i (con $1 \le i \le k$). I k insiemi rappresentano le *componenti connesse* del grafo G. Tale grafo G è *connesso* se esiste una unica partizione³ (quindi k = 1), altrimenti si dice sconnesso ($k \ge 1$). Le componenti connesse di un grafo sono i suoi sottografi connessi massimali.

Esempio 1.7.1. In Figura 1.22 sono rappresentati un grafo connesso ed un grafo sconnesso con 3 componenti connesse.

Figura 1.22: un grafo connesso ed un grafo sconnesso

Esempio 1.7.2. In Figura 1.23 sono rappresentati un grafo e le sue componenti connesse (ovvero i suoi sottografi connessi massimali).

Figura 1.23: un grafo e le sue componenti connesse

Definizione 1.24 (taglio). Sia G = (V, E) un grafo non orientato e sia $S \subseteq V$. Il taglio (cut) associato ad S è l'insieme degli spigoli che hanno esattamente una estremità in S e si indica con $\delta(S)$.

$$\delta(S) = \{(u, v) \in E : |S \cap \{u, v\}| = 1\}$$

Si dice che $\delta(S)$ separa u e ν se $|S\cap\{u,\nu\}|=1.$

 $^{^3{\}rm Una}~partizione$ di V è una sua scomposizione in parti disgiunte

Esempio 1.7.3. esempio: $V = \{a, b, c, d, e\}$ sono i nodi del grafo in Figura 1.24 che, ha come taglio associato ad $S = \{a, b\}$ l'insieme $\delta(S) = \{(a, d), (a, c), (b, c), (b, e)\}$.

Figura 1.24: Taglio associato ad $S = \{a, b\}$

Teorema 1.7.1. Sia $P = u - \cdots - v$ un cammino su un grafo G = (V, E) e sia $\delta(S)$ un taglio che separa u da v, allora $|P \cap \delta(S)| \ge 1$.

Dimostrazione. Per la definizione di taglio $\exists S \subset V$ in cui $u \in S$ o $v \in S$ ma, sia u che v non possono appertenere entrambi allo stesso insieme S. Supponiamo che $u \in S$ (un ragionamento analogo lo si può fare per v), allora DA TERMINARE!!! Lemma 1.3.1 pag 14 Conforti-Faenza \square

Teorema 1.7.2. Sia G = (V, E) un grafo non orientato, allora $u, v \in V$ appartengono alla stessa componente connessa di $G \iff \delta(S) \neq \emptyset \ \forall \delta(S \neq \emptyset)$ che separa $u \in V$.

Dimostrazione. Sia G = (V, E) un grafo non orientato connesso, sia $S \subseteq V$, $S \neq \emptyset$ e sia $\delta(S)$ un taglio di G che separa due nodi $\mathfrak u$ e $\mathfrak v$. Dato che G è connesso allora esiste un cammino P tra $\mathfrak u$ e $\mathfrak v$, per il Teorema 1.7.1 sappiamo che $|P \cap \delta(S)| \geqslant 1$ quindi $\delta(S) \neq \emptyset$. DA TERMINARE!!! Lemma 1.3.3 pag 14 Conforti-Faenza

Cammino-Minimo(G, v)

- 1 // G = (V, E) è un grafo e $v \in V$ è un suo vertice
- 2 // l'Igoritmo determina se \exists un cammino tra i vertici $\mathfrak u$ e $\mathfrak v$
- $3 \quad C = \emptyset$
- 4 $C \leftarrow v$ // prendere v e metterlo nell'insieme C
- 5 // Si esaminano tutti i nodi nella componente connessa
- 6 for each $\nu \in V$
- 7 Aggiungere a C tutti i vertici adiacenti ad $\mathfrak u$ che non sono già in C
- 8 // Arrivati a questo punto, C è la componente connessa che contieve ν
- 9 // se contiene anche $\mathfrak u$ allora \exists un cammino tra $\mathfrak u$ e $\mathfrak v$
- 10 // notare che $\delta(C) \neq \emptyset$

Definizione 1.25 (connettività sugli spigoli). Sia G = (V, E) un grafo connesso. Si dice connettività sugli spigoli e si indica con $\lambda(G)$ il minimo numero di spigoli la cui rimozione trasforma G in un grafo sconnesso.

 $^{^4}$ Con $P \cap \delta(S)$ facciamo riferimento all'intersezione dell'insieme formato da tutti gli spigoli che sono parte del cammino P con $\delta(S)$

1.8 Grafi isomorfi

Definizione 1.26 (grafi isomorfi). Due grafi G = (V, E) e G' = (V', E') sono *isomorfi* se esiste una corrispondenza biunivoca (*isomorfismo*) tra i vertici di V e quelli di V' tale che: due vertici di V sono adiacenti in $G \iff$ i corrispondenti vertici di V' sono adiacenti in G'.

Stabilire se due grafi sono isomorfi è un problema difficile, per sapere se lo sono si può "cercare l'isomorfismo". Due grafi sono isomorfi se: 5

- 1. hanno lo stesso numero di vertici
- 2. hanno lo stesso numero di spigoli
- 3. hanno lo stesso numero di vertici con lo stesso grado
- 4. hanno gli stessi sottografi indotti
- 5. i loro complementari devono essere isomorfi

Esempio 1.8.1. In Figura 1.25 sono rappresentati 2 grafi isomorfi

Figura 1.25: 2 grafi isomorfi

Esempio 1.8.2. In Figura 1.26 sono rappresentati 2 grafi complementari non isomorfi

Figura 1.26: 2 grafi complementari non isomorfi

Se le prime tre condizioni della lista sono verificate, si può provare a costruire il possibile isomorfismo controllando che la condizione 4 sia verificata. Lo si può fare costruendo sottografi indotti accoppiando tra loro vertici che nel grafo di partenza hanno stesso grado e sono a loro volta collegati tra loro.

⁵sono condizioni necessarie ma non sufficienti

. . .

Appendice A

Principio di Induzione

Per prima cosa viene fornita la definizione di *induzione ordinaria*:

Definizione A.1 (Induzione ordinaria). Sia P un predicato definito sui numeri naturali. Se

- 1. P(i) è vero per un $i \in \mathbb{N}$
- 2. $P(n) \Rightarrow P(n+1) \ \forall n \in \mathbb{N} \ \mathrm{t.c.} \ n \ge i$

allora P(m) è vera $\forall m \in \mathbb{N}$ t.c. $m \ge i$.

La prima condizione è chiamata caso base, la seconda passo induttivo.

Esempio A.0.1. Provare per induzione che $\forall n \in \mathbb{N}$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
 (A.1)

Definiamo la proposizione P(n) ponendola uguale all'equazione (A.1) e verifichiamo che sia valida per tutti gli $n \in \mathbb{N}$. Si nota facilmente che P(0) è vera perché $0 = \frac{0}{2}$.

Ora dobbiamo provare che

 $P(n) \Rightarrow P(n+1) \ \forall n \in \mathbb{N}$. Per provare la validità di una implicazione bisogna assumere che la prima proposizione (quella a sinistra del simbolo \Rightarrow) sia vera e dimostrare la validità della seconda. Assumiamo quindi che P(n) sia vera e dimostriamo che lo è anche P(n+1). P(n+1) corrisponde a:

$$1 + 2 + 3 + \dots + n + n + 1 = \frac{(n+1)(n+2)}{2}$$
 (A.2)

Se si prende l'equazione (A.1) e le si somma ad entrambi i membri il valore n+1, dopo un paio di semplificazioni al secondo membro si ottierrà l'equazione (A.2). Questa argomentazione è valida per ciascuon $n \in \mathbb{N}$ e quindi il principio di induzione ci dice che P(m) è vero $\forall m \in \mathbb{N}$.

$$1+2+3+\cdots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

Scrivere dimostrazioni per induzione non è una cosa semplice, può capitare di cadere vittima di alcuni tranelli.

Esempio A.0.2. Proviamo ad usare l'induzione per dimostrare che "tutti i cavalli sono dello stesso colore".

Riformuliamo l'affermazione in modo da rendere esplicito $\mathfrak n$.

"In ogni insieme di $n \ge 1$ cavalli, tutti i cavalli hanno lo stesso colore". Dimostrare il caso base (n=1) è semplice: in un insieme con un solo cavallo è presente un solo cavallo che quindi ha lo stesso colore di se stesso. Per questo motivo P(1) è vera.

Nel passo induttivo assumiamo che P(n) sia vera $\forall n \geq 1$, ovvero che in qualsiasi insieme di n cavalli ciascuno di essi abbia lo stesso colore degli altri.

Supponiamo ora di avere un insieme di n+1 cavalli: $\{c_1, c_2, \ldots, c_n, c_{n+1}\}$. Dobbiamo provare che questi cavalli sono tutti dello stesso colore: per la nostra assunzione i primi n cavalli n_1, \ldots, n_n sono tutti dello stesso colore ma, sempre per la nostra assunzione, sono dello stesso colore anche i cavalli che appartengono all'insieme $\{c_2, \ldots, c_n, c_{n+1}\}$

Definizione A.2 (Induzione forte). ...