Page. |

(a)
$$(a \stackrel{?}{e}; = \uparrow, \stackrel{?}{e}; = f \stackrel{1}{0}; \stackrel{?}{o}; = f \stackrel{1}{0}; = f \stackrel{1$$

age. Z (b) No, it's not. if Tis an orthonormal transformation, its column vectors should all be normal. but $\frac{1}{\sqrt{2}}$ obviously, let $T = [V_1, V_2V_3]$. $V_1 = \begin{bmatrix} \sqrt{3} \\ 0 \end{bmatrix} \Rightarrow ||V_1|| = 2$, not normal, that is to say, for êi' = T.êi = [1], ||êi'||= 2 + ||êi||.

So some vector changes norm after transformation,
So T is not on orthonormal transformation.

Page. Z (a) let { be some point on the material filament at t=0. so {x = (a,0,0), a ∈ [0,1]. given. $Xa = \begin{cases} \frac{1}{2}a_1 \\ \frac{1}{2}a_2 + \sin(\pi t)(\sin \pi t) \\ \frac{1}{2}a_3 \end{cases}$ we have $Xa = \begin{cases} \frac{1}{2}a_1 \\ \frac{1}{2}a_2 + \sin(\pi t)(\sin \pi t) \\ \frac{1}{2}a_3 + \frac{1}{2}a_4 + \frac{1}{$ $Xa|t=1=\begin{pmatrix} 0\\0\\0\end{pmatrix}$ |A|t=1=0 |A|t=1=0 $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ $|A|t=3=-(-\sin(a\pi))$ Note that we have 1= \(\frac{5}{5} \) in spatial $\vec{\varphi}(\vec{x},t) = [0,Tsn(TX)sas(ttb),c)$

t=== 1/2 (a) (es sign beauto on the instant film (0,0,1) (c) (0,0,1) ((0,0,1)) (0,0,1) (

To conclude, at t== and t===, the filament defoms to be trigonometric-like shape. And at t=1, the defined shape tomic coincides with the initial shape.

Page.4

(b) For velocity V, In material description, ne have $\vec{V}(\vec{z},t) = \left| \frac{\partial \vec{X}}{\partial t} \right|_{\vec{z}} = (0, Tr \sin(tr \vec{z}_i) \cos(tr t), 0)$ Note that we have $X_i = \Sigma_1$, so in spatial description:

 $\nabla(x,t) = (0, TTSin(TTXI)cos(TTt), 0)$

For acceleration a in material description?

$$\frac{\partial (\vec{\xi},t)}{\partial t^2} = (0,-T^2 \sin(T\xi_1) \sin(T\xi_1),0)$$

and still we have X1= \(\xi_1\), so in spatial description

to further comment on E, suppose me have our

we have:

we have:
$$\overrightarrow{\alpha}(X,t) = (0,-T\sin(TX)\sin(TX))\sin(TTX)$$

(3)
(a) Displacement field.

$$u_1 = k(X_1 + X_3^2), \ u_2 = kX_1X_3, \ u_3 = k(X_1^2 - X_3).$$

 $u_1 = k(X_1 + X_3^2), \ u_2 = kX_1X_3, \ u_3 = k(X_1^2 - X_3).$

$$U_{1} = K(X_{1} + X_{3}^{2}), \quad U_{2} = KX_{1}X_{3}, \quad U_{3} = K(X_{1} - X_{3}).$$

$$Compute \quad \nabla U = \begin{bmatrix} \frac{\partial U_{1}}{\partial X_{1}} & \frac{\partial U_{1}}{\partial X_{2}} & \frac{\partial U_{2}}{\partial X_{3}} \\ \frac{\partial U_{3}}{\partial X_{1}} & \frac{\partial U_{3}}{\partial X_{2}} & \frac{\partial U_{3}}{\partial X_{3}} \end{bmatrix} = \begin{bmatrix} K & 0 & 2KX_{3} \\ KX_{3} & 0 & KX_{1} \\ KX_{3} & 0 & KX_{1} \\ \frac{\partial U_{3}}{\partial X_{1}} & \frac{\partial U_{3}}{\partial X_{2}} & \frac{\partial U_{3}}{\partial X_{3}} \end{bmatrix} = \begin{bmatrix} K & 0 & 2KX_{3} \\ KX_{3} & 0 & KX_{1} \\ 2KX_{1} & 0 & -K \end{bmatrix}$$
and the stress is given by

$$= \begin{bmatrix} k(X_1 + X_3) & k(X_1 + X_3) \\ \frac{\xi}{\xi}X_3 & 0 & \frac{\xi}{\xi}X_1 \\ -k \end{bmatrix}$$

The components of E are the stress components.

 $2E_{12} = KX_3$

6.9亿章 Page. b. comments on the style of deformation: write DU== = (DU+DUT)+=(DU-DUT) E==(DU+DUT), W==(DU-DUT). E represents the internal deformation, also known as Wrepresents the rigid body rotation. to further comment on E, suppose we have our original vector $d\xi_1 = (d\xi_1, 0, 0)$, $d\xi_2 = (d\xi_1, 0, 0)$ at $X = (X_1, X_2, X_3)$. the change of length of $d\xi_1 = d\xi_1' - d\xi_1 = (1+\xi_1-1)d\xi_1$. So $\frac{D(d\bar{z}_1)}{Dt} = E_{11} + K_{similarly}$, change in length of $d\bar{z}_2$ is given by Ezz = 0 the change in angle between di, di is given by $2E_{12}=KX_3$ (NO+100) = = =

(b) Recall the equation of motion:

Loody + Fstress = ma.

Inthis question, sequilibrium => ==0 Tin the absence of body forces \Rightarrow Fbody =0.

Thus we have:

$$F_{\text{stress}} = \nabla \cdot 6 = 0$$
.

$$\frac{36ji}{3Xj} = 0$$
.

In Xi direction:

$$\frac{\partial 611}{\partial X_1} + \frac{\partial 621}{\partial X_2} + \frac{\partial 631}{\partial X_3} = 0 + 0 + 0 = 0$$
 [Already satisfied.)

In X2 direction!

$$\frac{3612}{3X_1} + \frac{3622}{3X_2} + \frac{3632}{3X_3} = 0 + 0 + 0 = 0 \ [Already satisfied.).$$

In X3 direction:

$$\frac{\partial 613}{\partial X_1} + \frac{\partial 623}{\partial X_2} + \frac{\partial 633}{\partial X_3} = 1 + C - B = D$$

```
lage. 8
write 6 as
 G = \begin{pmatrix} AX_3 & CX_3 & X_1 + X_2 \\ CX_3 & X_1 + X_3 & CX_2 \\ X_1 + X_2 & CX_2 & CX_1 - BX_3 \end{pmatrix}
   the plane X, tX3=0 is stress free,
  let S = (a,b,c) on place X_1 + X_3 = 0, also \overline{D} = (0,0,0) ris on the plane.
  we have \alpha + c = 0 \Rightarrow c = -\alpha.
let hibe unit normal of XI+X3=0, suppose h= (h, N2, N3)
  mehave SIMI=1
              [n\cdot S = n_1 a + n_2 b + n_3 \cdot (-a) = a(n_1 - n_3) + bn_2 = 0,
                                                                                 YaibElR.
 So we have \hat{n} = \frac{1}{2}(1,0,1)
stress on such aplane == 6.1.
So \overline{t} = \frac{1}{2} \left( AX_3 + X_1 + X_2, C(X_2 + X_3), CX_1 - BX_3 + X_1 + X_2 \right) = \overline{D}.
 also, we have X1+X3=0. on the plane.
       So we have \begin{cases} A-1=0 \\ C=0 \end{cases} \Rightarrow \begin{cases} A=1 \\ B=1 \\ C=0 \end{cases}
```