Національний технічний університет України «Київський Політехнічний Інститут» Факультет інформатики і обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №7 3 предмету «Надійність комп'ютерних систем»

Виконав:

Студент IV курсу ФІОТ групи IO-12 Бута С. О.

Залікова книжка №1205

Завдання

Використовуючи результати лабораторних робіт 7 і 8, визначити обсяг R ремонтних робіт, напрацювання на відмову і ЕІО безизбиточной WAN, що складається з N в Інтернет, однією WLAN і сховища даних з М магнітними дисками, об'єднаними в RAID0. При розрахунку зазначених величин вважати, що всі LAN корпоративної мережі розміщені в шести триповерхових будинках (висота поверху 5 метрів) з не більше однієї локальної мережі на кожному поверсі, а відстані між будівлями 120 метрів.

Z=1205	C(11) = 6		
C(9)=8	M=10		
Num = 18			

Загальна структура WLAN для заданного варіанта.

Нехай серверна розташовується в локальній мережі 2.

Розглянемо два основних і відрізняються способу проведення кабелів до серверної. Вартість розрахуємо за формулою Вартість = A * L + B * N * L.

Первый вариант схемы соединений

Второй вариант схемы соединений.

$$\begin{aligned} \text{Le} &:= 5 \quad \text{Lzd} := 120 \\ \text{C1} &:= 4 \cdot (\text{A} + \text{B}) \cdot \text{Lzd} + (\text{A} + \text{B}) \cdot \text{Le} + (\text{A} + 2\text{B}) \cdot \text{Le} + (\text{A} + 3\text{B}) \cdot \text{Lzd} \rightarrow 610 \cdot \text{A} + 855 \cdot \text{B} \\ \text{C2} &:= 3(\text{A} + \text{B}) \cdot \text{Lzd} + (\text{A} + \text{B}) \cdot \text{Le} + 1.41 \cdot \text{Lzd} \cdot (\text{A} + \text{B}) \cdot 2 + (\text{A} + 2 \cdot \text{B}) \cdot \text{Le} \rightarrow 370 \cdot \text{A} + 375 \cdot \text{B} + 338.4 \cdot \text{A} + 338.4 \cdot \text{B} \end{aligned}$$

Решая С1-С2>0 второй вариант лучше при: А/В<0.1

Расчет ИО

ЭИО LAN без сети питания (сеть питания не учитывается, т.к. она общая для всех WAN).

ЭИО LAN

 $\lambda = 93110 - 830 = 92280 \text{ KF}.$

ЭИО WLAN будем рассчитывать, исходя из предположения, что WLAN состоит из 15 ноутбуков. ЭИО каждого ноутбука $\lambda = \lambda 0 * A$, где A – максимальный коэффициент при заданных условиях эксплуатации (A = 3,53).

ЭИО WLAN $\lambda = 38,1 * 3,53 * 15 = 2017,4 KF.$

Расчёт ЭИО WMUX, VPN, MDDM производится аналогично с коэффициентом пересчета A = 3,53.

ЭИО WMUX $\lambda = 5.8 * 3.53 = 20.47 \text{ KF};$ **ЭИО VPN** $\lambda = 2.1 * 3.53 = 7.41 \text{ KF};$ **ЭИО MDDM** $\lambda = 2.78 * 3.53 = 9.81 \text{ KF}.$

При расчёте ЭИО серверного CP будем считать, что SCP имеет два CPU, а остальные узлы по составу и режимам работы идентичны CP. Данные из 7 ЛР.

ЭИО SCP $\lambda = 1928 - 830 = 1098 \text{ KF}.$

Расчёт ЭИО ADFC, RAID-контроллера и FCSW будем производить в предположении, что основными компонентами являются ИС, конденсаторы, платы, резисторы, разъёмы.

A = 2,62 (провода снаружи CP при температуре среды $40 \, ^{\circ}$ C)

ЭИО ADFC $\lambda = 2,03 * 2,62 = 5,31$ KF;ЭИО RAID $\lambda = 3,36 * 2,62 = 8,8$ KF;ЭИО FCSW $\lambda = 3,36 * 2,62 = 8,8$ KF.

В дисковом хранилище 9 HDD, объединённых в безызбыточный RAID0, т.е. $\lambda 0 = 65,4$ KF.

Расчёт ЭИО **электрошнуров** произведём при помощи найденной в ЛР8 формулы для одного кабеля: $\lambda = 25,56 + 17,92$ L KF, где L — длина кабеля.

Пусть шнуры B1, B3-B6, B15-B16, B14-B22 имеют длину 2м, длина шнура B7 = 7м, B8 = 7м.

ЭИО В1, В3-В6, В14-В22 $\lambda = 25,56 + 17,92 * 2 = 61,4 \text{ KF};$

ЭИО В7 $\lambda = 25,56 + 17,92 * 7 = 151 \text{ KF};$ ЭИО В8 $\lambda = 25,56 + 17,92 * 7 = 151 \text{ KF}.$

ЭИО оптических кабелей будем рассчитывать в предположении, что их ЭИО оптического шнура отличается от ЭИО кабелей электрических только надёжностью оптоволокна. Тогда ЭИО одного оптического кабеля:

ЭИО В9-В13, В23-В24

 $\lambda = 15 * 25,56 + 2,5 * 874,26 = 2569 \text{ KF}.$

ЭИО WAN для 1 компонента сети $\lambda 0 = 0.04$ KF.

Рассчитанное сводим в таблицу.

NN	Наименование	Ni	λ, KF	λNi, KF	Тв
1	LAN	8	92280	738240	0,14
2	WLAN	1	2017,4	2017,4	1,7
3	WMUX	1	20,47	20,47	2,1
4	VPN 12 PORT	1	7,41	7,41	2,3
5	MDDM ADSL2++	1	9,81	9,81	0,4
6	серверный СР	1	1098	1098	0,88
7	ADFC	12	5,31	63,72	1,7
8	10GB FC SW	1	8,8	8,8	0,8
9	RAID-CONTROLER	1	8,8	8,8	0,8
10	HDD	9	65,4	588,6	0,8
11	шнуры В1, В3-В6, В14-В22	14	61,4	859,6	1
12	шнуры В7, В8	2	151	302	1
13	кабель оптический В9-В13, В23-В24	7		2569	105
14	сеть питания общая	1	830	830	0,3
15	сеть питания WAN	36	0,04	1,44	4,5
	ONC WAN			746625,1	

Надёжность по экспоненциальному распределению

$$\lambda := 746625 \cdot 10^{-6}$$

$$\mathbf{P(t)} := \mathbf{e}^{-\lambda \cdot \mathbf{t}} \to \mathbf{e}^{-\frac{5973 \cdot \mathbf{t}}{8000}}$$

$$To:=\frac{1}{\lambda}=1.339$$

Обьём ремонтных работ

$$R := \sum_{i=1}^{n} \frac{T \cdot Tbi}{Toi}$$

Время восстановления

$$Tb := \sum_{i \, = \, 1}^{n} \ \frac{\lambda ni \cdot Tbi}{Toi}$$

To 1,339360366 Тв 0,508379324 R 3,83