Machine Learning

TSIA-SD 210 - P3

Lecture 2 - 1. A First Linear Classifier: the optimal margin hyperplane

Florence d'Alché-Buc

Contact: florence.dalche@telecom-paristech.fr, 2A Filière SD, Télécom ParisTech,Université of Paris-Saclay, France

Table of contents

- 1. Introduction
- 2. Linear SVM
- 3. References

Outline

Introduction

Linear SVM

References

Statistical learning: a methodology

- Three main problems to be solved :
 - Representation problem: determine in which representation space the data will be encoded and determine which family of mathematical functions will be used
 - Optimization problem (focus of the course): formulate the learning problem as an optimization problem, develop an optimization algorithm
 - Evaluation problem: provide a performance estimate

Statistical learning for supervised classification

Two main family of approaches:

- 1. Discriminant approaches : just find a classifier which does not estimate the Bayes classifier
- 2. Generative probabilistic approaches that are built to model $h(x) = \hat{P}(Y=1|x)$ using $\hat{p}(x|Y=1)$, $\hat{p}(x|Y=-1)$ and prior probabilities.

Outline

Introduction

Linear SVM

References

Séparateur linéaire

Définition

Soit $\mathbf{x} \in \mathbb{R}^p$

$$h(\mathbf{x}) = \operatorname{signe}(\mathbf{w}^T \mathbf{x} + b)$$

L'équation : $\mathbf{w}^T\mathbf{x} + b = 0$ définit un hyperplan dans l'espace euclidien \mathbb{R}^p

Example in 3D

Data linearly separables

What to choose ?

Margin criterion

Margin Criterion

Geometrical margin

- To separate data, let us consider a triplet of hyperplanes:
 - H: $\mathbf{w}^T \mathbf{x} + b = 0$, $H_1 : \mathbf{w}^T \mathbf{x} + b = 1$, $H_{-1} : \mathbf{w}^T \mathbf{x} + b = -1$
- We call géométrical margin, $\rho(\mathbf{w})$ the smallest distance between the data and Hyperplane H thus, here half of the distance between H_1 and H_{-1}
- A simple calculation gives : $\rho(\mathbf{w}) = \frac{1}{||\mathbf{w}||}$.

9

New objective function to optimize

How to find w and b?

- Maximmize the margin $\rho(\mathbf{w})$ while separating the data using H_1 and H_{-1}
- Classify the blue data $(y_i = 1)$: $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
- Classify the red data $(y_i = -1)$: $\mathbf{w}^T \mathbf{x}_i + b \leq -1$

Linear SVM: separable case

Optimization in the primal

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 under constraints $y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1, \ i = 1, ..., n.$

Référence

Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). "A training algorithm for optimal margin classifiers". Proceedings of the fifth annual workshop on Computational learning theory - COLT '92. p. 144.

Programming under inequality constraints

Problem of the following kind:

$$\min_{x} f(x)$$

s.c.
$$g(x) \le 0$$

- Here: g(x): linear constraints
- f is strictly convex
- 1. Lagrangian: $J(x, \lambda) = f(x) + \lambda g(x)$, $\lambda \ge 0$

Programming under inequality constraints

minimize
$$\frac{1}{\mathbf{w},b} \|\mathbf{w}\|^2$$
 under constraints
$$1-y_i(\mathbf{w}^T\mathbf{x}_i+\mathbf{b}) \leq 0, \ i=1,\dots,n.$$

Lagrangian

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i} \alpha_i (1 - y_i (\mathbf{w}^T \mathbf{x}_i + \mathbf{b}))$$
$$\forall i, \alpha_i \ge 0$$

Karush-Kunh-Tucker conditions

In the extremum, we have:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\nabla_{b} \mathcal{L}(b) = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\forall i, \alpha_{i} \geq 0$$

$$\forall i, \alpha_{i} [1 - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)] = 0$$

Obtaining the α_i 's : solution the dual

space

$$\mathcal{L}(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})$$

- Maximize \mathcal{L} under the constraints $\alpha_i \geq 0$ et $\sum_i \alpha_i y_i = 0, \forall i = 1, \dots, n$
- Call for a quadratic solver

Optimal Margin Hyperplan (linear SVM)

Assume the Lagrangian coefficients α_i have been found :

Linear SVM equation

$$f(\mathbf{x}) = \operatorname{signe}(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b)$$

To classify a novel \mathbf{x} , this classifier makes all the support data vote with an importance weight equal to $\alpha_i \mathbf{x}_i^T \mathbf{x}$ that measures how much \mathbf{x} is close to the support data.

Support Vectors

Training data x_i such that

 $\alpha_i \neq 0$ belong to either H_1 or H_{-1} . Only those data, called **support vectors**, are taking into account in $\mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$ NB: b is obtained by choosing one (or all) support data such that $(\alpha_i \neq 0)$

Realistic case: linear SVM in the case of nonlinearly separable data

For each training data, introduce a slack variable ξ_i :

New problem in the primal space

$$\begin{aligned} \min_{\mathbf{w},b,\xi} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{sous les contraintes} & y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \geq 1 - \xi_i \ i = 1, \dots, n. \\ \xi_i \geq 0 \ i = 1, \dots, n. \end{aligned}$$

Realistic case: linear SVM in the case of nonlinearly separable data

Realistic case: linear SVM in the case of nonlinearly separable data

Dual problem

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$
 under the constraints
$$0 \leq \alpha_{i} \leq C \ i = 1, \dots, n.$$

$$\sum_{i} \alpha_{i} y_{i} \ i = 1, \dots, n.$$

Karush-Kuhn-Tucker Conditions (KKT)

Let α^* be the solution of the Idual problem:

$$\forall i, [y_i f_{w^*, b^*}(x_i) - 1 + \xi_i^*] \le 0 \tag{1}$$

$$\forall i, \alpha_i^* \ge 0 \tag{2}$$

$$\forall i, \alpha_i^* [y_i f_{w^*, b^*}(x_i) - 1 + \xi_i^*] = 0 \tag{3}$$

$$\forall i, \mu_i^* \ge 0 \tag{4}$$

$$\forall i, \mu_i^* \xi_i^* = 0 \tag{5}$$

$$\forall i, \alpha_i^* + \mu_i^* = C \tag{6}$$

$$\forall i, \xi_i^* \ge 0 \tag{7}$$

$$\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i \tag{8}$$

$$\sum_{i} \alpha_i^* y_i = 0 \tag{9}$$

(10)

Vairous cases

- if $\alpha_i^* = 0$, then $\mu_i^* = C > 0$ and thus, $\xi_i^* = 0$: x_i is well classified
- if $0<\alpha_i^*< C$ then $\mu_i^*>0$ and thus, $\xi_i^*=0:x_i$ is such that: $y_if(x_i)=1$
- if $\alpha_i^* = C$, then $\mu_i^* = 0$, $\xi_i^* = 1 y_i f_{w^*,b^*}(x_i)$

 ${\rm NB}$: we compute b^* by using i such that 0 $<\alpha_i^* < {\it C}$

Realistic case: linear SVM with soft margin

A few remarks

- some of the support are in the wrong side
- C is a hyperparameter that controls the compromise between the model complexity and the training classification error

SVM as a penalized regression problem

Optimisation dans l'espace primal

$$\min_{\mathbf{w},b} \quad \sum_{i=1}^{n} (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda \frac{1}{2} \|\mathbf{w}\|^2$$

Avec:
$$(z)_{+} = max(0, z)$$

$$f(\mathbf{x}) = signe(h(\mathbf{x}))$$

Loss function:
$$L(\mathbf{x}, y, h(\mathbf{x})) = (1 - yh(\mathbf{x}))_+$$

yh(x) is called the classifier margin

Outline

Introduction

Linear SVM

References

References

- BOSER, Bernhard E., Isabelle M. GUYON, and Vladimir N.
 VAPNIK, 1992. A training algorithm for optimal margin classifiers.
 In: COLT 92: Proceedings of the Fifth Annual Workshop on
 Computational Learning Theory. New York, NY, USA: ACM Press, pp. 144-152.
- CORTES, Corinna, and Vladimir VAPNIK, 1995. Support-vector networks. Machine Learning, 20(3), 273297.
- Article vraiment sympa, complet (un peu de maths): A tutorial review of RKHS methods in Machine Learning, Hofman, Schoelkopf, Smola, 2005

(https://www.researchgate.net/publication/228827159_A_ Tutorial_Review_of_RKHS_Methods_in_Machine_Learning)