Introduction to Machine Learning - Summer 2018 Final Exam

Instructions

- 1. There are 10 questions (each question is 10% of the total grade).
- 2. You can keep the questions form with you (so don't write your solution on it).
- 3. You can use a draft notebook (you don't need to submit it).
- 4. Write your student ID on the notebook you are submitting.
- 5. Good Luck!

$(10\%) \ ML$ 1

The MLE $\hat{\theta}_{ML}$ of the parameter θ is defined by:

$$\hat{\theta}_{ML} \triangleq \arg \max_{\theta} p\left(\left\{x_i\right\}; \theta\right)$$

Consider a Gaussian random variable $Y \sim \mathcal{N}(\mu, \sigma^2)$ where μ and σ^2 are unknowns.

We define a new random variable as $X = e^Y$.

The probability density function of X is given by:

$$p_X(x; \mu, \sigma^2) = \begin{cases} \frac{1}{x} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\left(\log(x) - \mu\right)^2}{2\sigma^2}\right) & x > 0\\ 0 & x \le 0 \end{cases}$$

A set $\mathcal{D} = \{x_i\}_{i=1}^N$ of i.i.d samples of X is given.

- Write the log-likelihood function $\ell(\mu, \sigma^2)$ and compute the maximum likelihood estimator for exp (μ) .
- Write the value of your estimation given two observations $\{x_1 = 3, x_2 = 2\}$.

(10%) MAP $\mathbf{2}$

The MAP estimator $\hat{\theta}_{MAP}$ of the random variable θ is defined by:

$$\hat{\theta}_{MAP} \triangleq \arg \max_{\theta} p\left(\theta | \left\{x_i\right\}\right)$$

Reminder

- $X \sim \text{Poisson}(\lambda)$ \Rightarrow $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \text{ where } \lambda > 0 \text{ and } k = 0, 1, 2, ...$
- $Y \sim \operatorname{Gamma}(\alpha, \beta)$ \Rightarrow $p_Y(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha 1} e^{-\beta y}$ where $y, \alpha, \beta > 0$.

It is known that $\lambda \sim \operatorname{Gamma}(\alpha, \beta)$ and given λ we have: $X|\lambda \sim \operatorname{Possion}(\lambda)$. Consider a set of i.i.d samples $\mathcal{D} = \{x_i\}_{i=1}^N$ drawn from X.

- Find the MAP estimator $\hat{\lambda}_{MAP}$ for λ and write it as a function of α, β and $\{x_i\}$.
- Write an expression for $\hat{\lambda}_{MAP}$ as $N \to \infty$.

3 (10%) Bayes Classifier

Remainder

Distributions Table					
Distribution	Notation	Support	PDF	Mean	Variance
Uniform	$x \sim U[a,b]$	$x \in [a,b]$	$f(x) = \frac{1}{b-a}$	$\frac{b+a}{2}$	$\frac{1}{12}(b-a)^2$
Normal	$x \sim N(\mu, \sigma^2)$	R	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential	$x \sim \operatorname{Exp}(\lambda)$	$0 \le x \in \Re$	$f(x) = \frac{1}{\lambda} e^{-x/\lambda}$	λ	λ^2

A decision problem is given, in which the input space is the real numbers, $X = \mathbb{R}$.

Input examples belong to one of three classes: $\Omega = \{e, g, u\}$. The conditional distributions for the three classes are:

- Class u: $x \sim U[0,3]$.
- Class $g: x \sim \mathcal{N}(2,4)$.
- Class $e: x \sim \text{Exp}(2)$.

The prior distributions are given by

- p(u) = 0.3.
- p(g) = 0.3.
- p(e) = 0.4.

What is the optimal Bayes classifier of the state, given a single input x?

• Write a function from the real numbers to Ω :

$$\hat{\omega}(x) = \begin{cases} A & x < a \\ B & a \le x < b \\ C & b \le x < c \\ D & c \le x < d \\ E & x \ge d \end{cases}$$

Determine $a, b, c, d \in \mathbb{R}$ and $A, B, C, D, E \in \Omega$.

Hint: Sketch the conditional distributions and use the following facts:

- $\frac{1}{\sqrt{8\pi}} \approx 0.1995$.
- $2 \ln(2) \approx 1.38$.
- $x^2 8x + 4 8\left(\ln(1.5) \frac{1}{2}\ln(8\pi)\right) \ge 0 \implies x \le 2.468 \text{ or } x \ge 5.532.$

4 (10%) Histogram

Given N i.i.d realizations of the random variable $X \in \mathcal{X}$: $\mathcal{D} = \{x_i\}_{i=1}^N$.

We can split the domain \mathcal{X} to K disjoint intervals:

$$\mathcal{X} = \bigcup_{k} R_k$$

The histogram estimation at the point $x_0 \in R_k$ is given by:

$$\hat{p}_X(x_0) = \frac{1}{N} \cdot \frac{1}{|R_k|} \sum_{i=1}^{N} I\{x_i \in R_k\}$$

where $|R_k|$ is the length of the interval R_k .

For $x_0 \in R_k = (a, b]$, compute:

$$\mathbb{E}\left[\hat{p}_X\left(x_0\right)\right] = ?$$

Write your expression as a function of the true CDF F_X , and the parameters N, a, b and $\{x_i\}$.

5 (10%) PCA I

Consider the set of points $\mathcal{D} = \left\{ oldsymbol{x}_i \in \mathbb{R}^D
ight\}_{i=1}^N$

The empirical mean is given by:

$$oldsymbol{\mu}_x = rac{1}{N} \sum_{i=1}^N oldsymbol{x}_i$$

The empirical covariance is given by:

$$oldsymbol{\Sigma}_{x} = rac{1}{N} \sum_{i=1}^{N} \left(oldsymbol{x}_{i} - oldsymbol{\mu}_{x}
ight) \left(oldsymbol{x}_{i} - oldsymbol{\mu}_{x}
ight)^{T}$$

The eigen decomposition of Σ_x is given by:

$$\Sigma_x = U \Lambda U^T$$

where $\boldsymbol{U}\boldsymbol{U}^T=\boldsymbol{I}$ and $\boldsymbol{\Lambda}$ is a diagonal matrix.

The PCA transformation is given by:

$$oldsymbol{y}_i = oldsymbol{U}^T \left(oldsymbol{x}_i - oldsymbol{\mu}_x
ight)$$

• Prove that for all $i, j \in \{1, 2, \dots, N\}$:

$$\left\| oldsymbol{y}_i - oldsymbol{y}_j
ight\|_2 = \left\| oldsymbol{x}_i - oldsymbol{x}_j
ight\|_2$$

• Prove that Σ_y , the covariance of $\{y_i\}$ is a diagonal matrix.

6 (10%) PCA II

Consider the set of points $\left\{ oldsymbol{x}_i \in \mathbb{R}^D \right\}_{i=1}^N$.

It is known that the empirical mean is $\mu_x = 0$ and their empirical convarince matrix is given by its eigen decomposition:

$$\Sigma_r = U \Lambda U^T$$

where $UU^T = I$ and Λ is a diagonal matrix.

Given the matrix $U_m \in \mathbb{R}^{D \times m}$ whose columns are the first m < D principle components, we perform dimensionality reduction by applying to each sample the following transform:

$$oldsymbol{y}_i = oldsymbol{U}_m^T oldsymbol{x}_i \in \mathbb{R}^m.$$

In this question, we create a new set of samples $\{\tilde{\boldsymbol{x}}_i \in \mathbb{R}^K\}_{i=1}^N$ for some K > D, by applying to each sample the following linear transformation:

$$ilde{oldsymbol{x}}_i = oldsymbol{V} oldsymbol{x}_i \in \mathbb{R}^K$$

where $V \in \mathbb{R}^{K \times D}$ is a matrix which satisfies $V^T V = I$ with $I \in \mathbb{R}^{D \times D}$ being the identity matrix.

Applying PCA to $\{\tilde{\boldsymbol{x}}_i \in \mathbb{R}^K\}_{i=1}^N$ using the first m principle components provides a new set of representation vectors $\{\tilde{\boldsymbol{y}}_i \in \mathbb{R}^m\}_{i=1}^N$. Write an expression for $\tilde{\boldsymbol{y}}_i$ as a function of \boldsymbol{y}_i and give a detailed mathematical explanation.

7 (10%) K-Means

The objective function of K-means is given by:

$$J\left(\left\{\boldsymbol{\mu}_{k}\right\},\left\{\mathcal{C}_{k}\right\}\right) = \sum_{k=1}^{K} \sum_{\boldsymbol{x}_{i} \in \mathcal{C}_{k}} \left\|\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k}\right\|_{2}^{2}$$

where $\left\{ oldsymbol{\mu}_{k}
ight\}_{k=1}^{K}$ are the clusters centroids and

the clusters $\{\mathcal{C}_k\}_{k=1}^K$ are disjoint subsets of the entire set $\{\boldsymbol{x}_i\}$.

The K-means algorithm is given by:

Algorithm 1 K-Means

- 1. Set initial centroids $\{\mu_k\}$
- 2. Find the clusters $\{C_k\}$ by:

$$\mathcal{C}_s = \left\{oldsymbol{x}_i \ \middle| \ \lVert oldsymbol{x}_i - oldsymbol{\mu}_s
Vert_2^2 \leq \lVert oldsymbol{x}_i - oldsymbol{\mu}_k
Vert_2^2
ight\}$$

3. Update the centroids:

$$oldsymbol{\mu}_s = rac{1}{|\mathcal{C}_s|} \sum_{oldsymbol{x}_i \in \mathcal{C}_s} oldsymbol{x}_i$$

4. Repeat 2 - 3 until convergence.

Consider some iteration t.

We denote the value of the objective function **before** step 3 by: $J_0 = J(\{\mu_k\}, \{C_k\}),$

where $\{\mu_k\}$ are the centroids before the update step.

We denote the value of the objective function **after** step 3 by: $J_1 = J(\{m_k\}, \{\mathcal{C}_k\}),$

where $\{m_k\}$ are the centroids after the update step.

Prove that:

$$J_1 \leq J_0$$

Hint: show that $J_1 - J_0 \le 0$. It is also enough to consider a single cluster $k \in \{1, 2, ..., K\}$.

8 (10%) Perceptron Algorithm

The perceptron algorithm (without bias, namely: b = 0) is given by:

Algorithm 2 The Perceptron Algorithm

Input: Training set $\mathcal{D} = \{x_i, y_i\}$

 $\overline{\text{Output}}$: The linear classifiers parameters: $\tilde{\boldsymbol{w}}$.

- 1. Set w_1 with some initial guess.
- 2. **for** $k = 1, 2, 3, \dots$
 - (a) Choose some $(x_k, y_k) \in \mathcal{D}$
 - (b) Compute:

$$\hat{y}_k = \mathrm{sign}\left(oldsymbol{w}_k^T oldsymbol{x}_k
ight)$$

(c) Update:

$$oldsymbol{w}_{k+1} = oldsymbol{w}_k + rac{1}{2} \left(y_k - \hat{y}_k
ight) oldsymbol{x}_k$$

Consider a training set containing a single example: $\mathcal{D} = \{(\boldsymbol{x}_1, y_1)\}$ such that $\|\boldsymbol{x}_1\| = 1$ and $y_1 = 1$. The algorithm is initialized with some \boldsymbol{w}_1 such that $\|\boldsymbol{w}_1\|_2 \leq 10$.

- 1. Find a tight lower bound for the number of iterations until convergence. Provide an example to prove the tightness.
- 2. Find a tight upper bound for the number of iterations until convergence. Provide an example to prove the tightness.

9 (10%) Regression

Given a training set:

$$\mathcal{D} = \left\{ \boldsymbol{x}_i, y_i \right\}_{i=1}^N$$

A linear model between the x_i and y_i is given by:

$$y_i = \boldsymbol{w}^T \boldsymbol{x}_i$$

Consider instead of the L_2 error, the weighted error which is given by:

$$L\left(\boldsymbol{w}\right)=\text{weighted-error}=\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\right)^{T}\boldsymbol{A}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\right)$$

where:

$$oldsymbol{y} riangleq egin{bmatrix} y_1 \ dots \ y_N \end{bmatrix}, \qquad oldsymbol{X} = egin{bmatrix} ert \ oldsymbol{x}_1 & \cdots & oldsymbol{x}_N \ ert & & ert \end{bmatrix}^T$$

and $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is the weight matrix.

1. Compute the gradient of $L(\boldsymbol{w})$:

$$\nabla_{\mathbf{w}} L = ?$$

2. Assuming some initial guess w_0 . Write the gradient descent update for a fixed step size μ :

$$w_1 = ?$$

10 (10%) Kernel function

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a symmetric and positive definite matrix with the following eigen decomposition:

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T$$

where $\boldsymbol{U}\boldsymbol{U}^T=\boldsymbol{I}$ and $\boldsymbol{\Lambda}$ is a diagonal matrix with positive values (on the diagonal). Consider the following kernel function:

$$k\left(\boldsymbol{x}, \boldsymbol{z}\right) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{z}$$

where $\boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^d$.

Find a transformation $\phi(x)$ such that:

$$k(\boldsymbol{x}, \boldsymbol{z}) = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{z}) \rangle$$