19.
$$\int \frac{2x^2}{\sqrt{1-4x^3}} dx$$

$$20. \int \frac{(\sqrt{x}+1)^4}{2\sqrt{x}} dx$$

21.
$$\int (x^2 + x)^{10} (2x + 1) dx$$
 22. $\int \frac{1}{10x - 3} dx$

22.
$$\int \frac{1}{10x-3} dx$$

23.
$$\int x^3(x^4+16)^6 dx$$

24.
$$\int \sin^{10}\theta \cos\theta \,d\theta$$

$$25. \int \frac{dx}{\sqrt{36-4x^2}}$$

$$26. \int \frac{dx}{\sqrt{1-9x^2}}$$

27.
$$\int 6x^2 4^{x^3} dx$$

28.
$$\int x^9 \sin x^{10} dx$$

29.
$$\int (x^6 - 3x^2)^4 (x^5 - x) dx$$
 30. $\int \frac{dx}{1 + 4x^2}$

30.
$$\int \frac{dx}{1+4x^2}$$

31.
$$\int \frac{3}{\sqrt{1-25x^2}} dx$$

32.
$$\int \frac{2}{x\sqrt{4x^2-1}} dx, x > \frac{1}{2}$$

33.
$$\int \frac{e^w}{36 + e^{2w}} dw$$

34.
$$\int \frac{8x+6}{x^2+x^2} dx$$

$$35. \quad \int x \csc x^2 \cot x^2 dx$$

36.
$$\int \sec 4w \tan 4w dw$$

37.
$$\int \sec^2(10x + 7) dx$$

38.
$$\int \frac{\tan^{-1} w}{w^2 + 1} dw$$

39.
$$\int 10^{4t+1} dt$$

40.
$$\int (\sin^5 x + 3\sin^3 x - \sin^3 x) \cos x \, dx$$

41.
$$\int \frac{\csc^2 x}{\cot^3 x} dx$$

42.
$$\int (x^{3/2} + 8)^5 \sqrt{x} \, dx$$

43.
$$\int \sin x \sec^8 x \, dx$$

$$44. \int \frac{e^{2x}}{e^{2x} + 1} dx$$

45-74. Definite integrals Use a change of variables or Table 5.6 to evaluate the following definite integals.

45.
$$\int_0^{\pi/8} \cos 2x \, dx$$

$$46. \begin{cases} 1 \\ 2e^{2x}dx \end{cases}$$

47.
$$\int_{0}^{1} 2x(4-x^{2}) dx$$

48.
$$\int_{0}^{2} \frac{2\sqrt{VA}}{(x^{2}+1)^{2}} dt = USE O$$

49.
$$\int_{1}^{3} \frac{2^{x}}{2^{x} + 4} dx$$

$$50. \int_{-2\pi}^{2\pi} \cos\frac{\theta}{8} \, d\theta$$

$$51. \int_0^{\pi/2} \sin^2\theta \cos\theta \, d\theta$$

$$52. \quad \int_0^{\pi/4} \frac{\sin x}{\cos^2 x} \, dx$$

$$53. \int_{\ln \frac{\pi}{4}}^{\ln \frac{\pi}{2}} e^w \cos e^w dw$$

$$54. \int_{\pi/16}^{\pi/8} 8 \csc^2 4x \, dx$$

$$55. \int_{-1}^{2} x^2 e^{x^3 + 1} \, dx$$

56.
$$\int_0^4 \frac{p}{\sqrt{9+p^2}} dp$$

$$57. \int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin^2 x} \, dx$$

$$58. \int_0^{\pi/4} \frac{\sin \theta}{\cos^3 \theta} d\theta$$

$$59. \int_{2/(5\sqrt{3})}^{2/5} \frac{dx}{x\sqrt{25x^2 - 1}}$$

60.
$$\int_0^1 \frac{v^3 + 1}{\sqrt{v^4 + 4v + 4}} \, dv$$

61.
$$\int_0^4 \frac{x}{x^2 + 1} dx$$

$$62. \quad \int_0^{1/8} \frac{x}{\sqrt{1 - 16x^2}} dx$$

63.
$$\int_{1/3}^{1/\sqrt{3}} \frac{4}{9x^2 + 1} dx$$

64.
$$\int_0^{\ln 4} \frac{e^x}{3 + 2e^x} dx$$

65.
$$\int_{0}^{1} x \sqrt{1 - x^{2}} dx$$
 66.
$$\int_{1}^{e^{2}} \frac{\ln p}{p} dp$$

66.
$$\int_{1}^{e^{2}} \frac{\ln p}{p} dp$$

67.
$$\int_{2}^{3} \frac{x}{\sqrt[3]{x^2 - 1}} dx$$

68.
$$\int_0^{6/5} \frac{dx}{25x^2 + 36}$$

69.
$$\int_0^2 x^3 \sqrt{16 - x^4} \, dx$$

70.
$$\int_{-1}^{1} (x-1)(x^2-1)^2 dx$$

$$71. \int_{-\pi}^{0} \frac{\sin x}{2 + \cos x} dx$$

72.
$$\int_0^1 \frac{(v+1)(v+1)}{2v^3+9v^2+1}$$

73.
$$\int_{1}^{2} \frac{4}{9x^{2} + 6x + 1} dx$$
 74.
$$\int_{0}^{\pi/4} e^{\sin^{2} x} \sin 2x dx$$

74.
$$\int_{0}^{\pi/4} e^{\sin^2 x} \sin 2x \, dx$$

75. Average velocity An object moves in one dimension v velocity in m/s given by $v(t) = 8 \sin \pi t + 2t$. Find i velocity over the time interval from t = 0 to t = 10, measured in seconds.

34. $\int \frac{8x+6}{2x^2+3x} dx$ 36. $\int \sec 4v \tan 4w dw$ $\int \frac{8x+6}{2x^2+3x} dx$ $\int \frac{8x+6}{6x^2+3x} dx$ $\int \frac{8x+6}{6x^2+3x} dx$ $\int \frac{8x+6}{6x^2+3x} dx$ $\int \frac{8x+6}{6x^2+3x} dx$ $\int \frac{8x+6}{6x^2+3x^2+3x} dx$ \int by $s(t) = \int_0^t v(y) dy$, for $t \ge 0$. Find the position

> c. What is the period of the motion—that is, starting how long does it take the object to return to that po

Population models The population of a culture of bac growth rate given by $p'(t) = \frac{200}{(t+1)^r}$ bacteria per h $t \ge 0$, where > 1 is a real number. In Chapter 6 it is that the increase in the population over the time interv given by $\int_0^\infty (s) ds$. (Note that the growth rate decrea reflecting competition for space and food.)

a. Using the population model with r = 2, what is th 46. $\int_{0}^{1} 2e^{2x} dx$ 48. $\int_{0}^{2} \frac{2t}{(x^2+1)^2} dt$ USE OF the population over the time interval $0 \le t \le 4$?

48. Let ΔP be the increase in the population over a fix.

- interval [0, T]. For fixed T, does ΔP increase or de the parameter r? Explain.
- d. A lab technician measures an increase in the popul bacteria over the 10-hr period [0, 10]. Estimate the that best fits this data point.
- e. Looking ahead: Use the population model in part (the increase in population over the time interval [0 T > 0. If the culture is allowed to grow indefinitel does the bacteria population increase without boun it approach a finite limit?

78-86. Variations on the substitution method Evaluate th

$$78. \int \frac{x}{x-2} dx$$

$$79. \quad \int \frac{x}{\sqrt{x-4}} \, dx$$

80.
$$\int \frac{y^2}{(y+1)^4} \, dy$$

$$81. \int \frac{x}{\sqrt[3]{x+4}} dx$$

82.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

83.
$$\int x \sqrt[3]{2x+1} \, dx$$

84.
$$\int (z+1)\sqrt{3z+2}\,dz$$
 85. $\int x(x+10)^9dx$

85.
$$\int x(x+10)^9 dx$$

86.
$$\int_0^{\sqrt{3}} \frac{3 \, dx}{9 + x^2}$$

87–94. Integrals with $\sin^2 x$ and $\cos^2 x$ Evaluate the following integrals.

87.
$$\int_{-\pi}^{\pi} \cos^2 x \, dx$$

88.
$$\int \sin^2 x \, dx$$

89.
$$\int \sin^2\left(\theta + \frac{\pi}{6}\right) d\theta$$
 90.
$$\int_0^{\pi/4} \cos^2 8\theta \ d\theta$$

90.
$$\int_0^{\pi/4} \cos^2 8\theta \ d\theta$$

91.
$$\int_{-\pi/4}^{\pi/4} \sin^2 2\theta \ d\theta$$
 92. $\int x \cos^2 x^2 dx$

$$92. \int x \cos^2 x^2 dx$$

93.
$$\int_0^{\pi/6} \frac{\sin 2y}{\sin^2 y + 2} \, dy \, (Hint: \sin 2y = 2 \sin y \cos y.)$$

$$94. \quad \int_0^{\pi/2} \sin^4 \theta \ d\theta$$

95. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. Assume f, f', and f'' are continuous functions for all real

numbers.
a.
$$\int f(x)f'(x) dx = \frac{1}{2}(f(x))^2 + \frac{1}{2}(f(x))^$$

b.
$$\int (f(x))^n f'(x) dx = \frac{1}{n+1} (f(x))^{n+1} + C, n \neq -1.$$

$$\mathbf{c.} \quad \int \sin 2x \, dx = \boxed{2} \sin x \, dx.$$

d.
$$\int (x^2+1)^9 dx = \frac{(x^2+1)^{10}}{10} + C.$$

e.
$$\int_{a}^{b} f'(x)f''(x) dx$$
 $f'(b) - f'(a)$.

- 97. The region bounded by the graph of $f(x) = x \sin x^2$ and the x-axis between x = 0 and $x = \sqrt{\pi}$
- **98.** The region bounded by the graph of $f(x) = (x 4)^4$ and the x-axis between x = 2 and x = 6

Explorations and Challenges

- **99.** Morphing parabolas The family of parabolas $y = \frac{1}{a} \frac{x^2}{a^3}$, where a > 0, has the property that for $x \ge 0$, the x-intercept is (a, 0) and the y-intercept is (0, 1/a). Let A(a) be the area of the region in the first quadrant bounded by the parabola and the x-axis. Find A(a) and determine whether it is an increasing, decreasing, or constant function of a.
- **100. Substitutions** Suppose f is an even function with $\int_0^8 f(x) dx = 9$. Evaluate each integral.

a.
$$\int_{-1}^{1} x f(x^2) dx$$
. **b.** $\int_{-2}^{2} x^2 f(x^3) dx$.

b.
$$\int_{-2}^{2} x^2 f(x^3) dx$$

101. Substitutions Suppose p is a nonzero real num function with $\int_0^1 f(x) dx = \pi$. Evaluate each in

a.
$$\int_{0}^{\pi/(2p)} (\cos px) f(\sin px) dx$$
 b. $\int_{-\pi/2}^{\pi/2} (\cos px) f(\sin px) dx$

- 102. Average distance on a triangle Consider the ri vertices (0,0), (0,b), and (a,0), where a > 0that the average vertical distance from points or hypotenuse is b/2, for all a > 0.
- 103. Average value of sine functions Use a graphin that the functions $f(x) = \sin kx$ have a period of $k = 1, 2, 3, \dots$ Equivalently, the first "hump" occurs on the interval $[0, \pi/k]$. Verify that the a the first hump of $f(x) = \sin kx$ is independent average value?
 - 104. Equal areas The area of the shaded region und $y = 2 \sin 2x$ in part (a) of the figure equals the region under the curve $y = \sin x$ in part (b) of t why this is true without computing areas.

105. Equal areas The area of the shaded region und $y = \frac{(5\sqrt{x} - 1)^2}{2\sqrt{x}}$ on the interval [4, 9] in part (4)

figure equals the area of the shaded region under on the interval [1, 2] in part (b) of the figure. W

106-108. General results Evaluate the following in the function f is unspecified. Note that $f^{(p)}$ is the pth and fp is the pth power of f. Assume f and its derive ous for all real numbers.

106.
$$\int (5f^3(x) + 7f^2(x) + f(x))f'(x)dx$$

107.
$$\int_{1}^{2} (5f^{3}(x) + 7f^{2}(x) + f(x))f'(x) dx$$
, where $f(2) = 5$

108.
$$\int (f^{(p)}(x))^n f^{(p+1)}(x) dx$$
, where p is a positive in