Numerical Simulation Methods in Geophysics, Part 4: The heat equation

1. MGPY+MGIN

thomas.guenther@geophysik.tu-freiberg.de

Recap last lessons & exercises

Poisson equation

$$\mathbf{\nabla \cdot }(a\mathbf{\nabla }u)=f$$

(stationary) potential field, e.g., temperature, flux, current

compute each value (red) with the help of its neighbors (blue)

Boundary conditions (Dirichlet, Neumann)

- remove outside value and move to RHS
- adjust self-coupling coefficient

Tasks (1) - done

- 1. Create a stiffness matrix for unit quantities
- 2. Implement Dirichlet BC on one and Neumann on other side
- 3. Solve system for different right-hand sides:
 - no source at all
 - single source in the middle or at the boundary
 - several sources with different strengths (& signs)
 - source on part of the domain
- 4. Alwas plot the solution and its Laplacian

The general case

$$\Delta x
eq 1$$
 & $a
eq 1 \Rightarrow a rac{\partial u}{\partial x} pprox a_i rac{u_{i+1} - u_i}{x_{i+1} - x_i}$

$$rac{\mathrm{d}}{\mathrm{d}x}ig(arac{\partial u}{\partial x}ig)pprox (a_irac{u_{i+1}-u_i}{x_{i+1}-x_i}-a_{i-1}rac{u_i-u_{i-1}}{x_i-x_{i-1}})/(x_{i+1}-x_{i-1})\cdot 2$$

$$A_{i,i-1} = a_{i-1}/(x_i - x_{i-1})/(x_{i+1} - x_{i-1}) \cdot 2$$

The coupling coefficients

$$egin{aligned} C_{left} &= a_{i-1}/(x_i-x_{i-1})/(x_{i+1}-x_{i-1})\cdot 2 \ \\ C_{right} &= a_{i+1}/(x_{i+1}-x_i)/(x_{i+1}-x_{i-1})\cdot 2 \end{aligned}$$

$$egin{bmatrix} +1 & 0 & 0 & \dots & & & & & \ C_1^L & -(C_1^L+C_1^R) & C_1^R & 0 & \dots & & & \ dots & dots & \ddots & dots & & & & \ \dots & & 0 & C_N^L & -(C_N^L+C_N^R) & C_N^R \ \dots & \dots & 0 & -1 & +1 \end{bmatrix} \cdot \mathbf{u} = egin{bmatrix} u_B \ f_1 \ dots \ f_N \ g_B \end{bmatrix}$$

Tasks (2)

- 1. Derive the coefficients for the general case
- 2. Write a function implementing the general case
- 3. Divide the "subsurface" in regions with different a
- 4. Compute the solution for different source fields
- 5. Use a non-equidistant discretisation
- 6. Always plot solution along with source and Laplacian

Next spatial dimension

Simple 2D conductivity grid with FD stencil

Parabolic PDEs

Heat flow in 1D

Heat sources

E.g. radioactive elements, heat elements or sinks

$$oldsymbol{
abla} oldsymbol{\cdot} (\mathbf{q} + \mathbf{q}_s) = 0$$
 $oldsymbol{
abla} oldsymbol{\cdot} \mathbf{q} = -oldsymbol{
abla} oldsymbol{\cdot} a oldsymbol{
abla} T = -oldsymbol{
abla} oldsymbol{\cdot} \mathbf{q}_s$

Heat conduction equation

$$\frac{\mathrm{d}Q_z}{\mathrm{d}z}\mathrm{d}z = \frac{\mathrm{d}Q_z}{\mathrm{d}z}\mathrm{d}z\mathrm{d}x\mathrm{d}y\mathrm{d}t = k\frac{\mathrm{d}^2T}{\mathrm{d}z^2}\mathrm{d}V\mathrm{d}t$$

with the heat capacity c_p [W/kg/K]

$$c_p m \mathrm{d}T = c_p
ho \mathrm{d}V \mathrm{d}T$$

⇒ heat conduction equation

$$rac{\mathrm{d}T}{\mathrm{d}t} - rac{k}{
ho c_p} rac{\mathrm{d}^2 T}{\mathrm{d}z^2} = -Q_s$$

z + dz

Instationary heat flow in 3D

$$rac{\partial T}{\partial t} - oldsymbol{
abla} \cdot a oldsymbol{
abla} T = oldsymbol{
abla} \cdot q_s$$

- $a=rac{k}{
 ho c_p}$ [m²/s] thermal diffusivity measure of heat transfer
- k [W/m/K] thermal conductivity measure of temperature transfer
- c_p [J/kg/K] heat capacity measure of heat storage per mass
- ρ (kg/m³) density

Water k=0.6 W/m/K, ho=1000 kg/m³, c=4180 J/kg/K \Rightarrow a=1.43e-7 m²/s

Periodic boundary conditions

Separation of variables

$$rac{\partial T}{\partial t} = a rac{\partial^2 T}{\partial z^2}$$

$$T(t,z)/\Delta T + T_0 = heta(t)Z(z)$$

$$Zrac{\partial heta}{\partial t} = a hetarac{\partial^2 Z}{\partial z^2}$$

$$rac{1}{ heta}rac{\partial heta}{\partial t}=C=arac{1}{Z}rac{\partial^2 Z}{\partial z^2}$$

Solution

regarding the BC $e^{\imath \omega t}$ leads to $C=\imath \omega$ and thus $heta= heta_0 e^{\imath \omega t}$

$$rac{\partial^2 Z}{\partial z^2} - \imath rac{\omega}{a} Z = rac{\partial^2 Z}{\partial z^2} + n^2 Z = 0$$

Helmholtz equation with solution $Z=Z_0e^{\imath nz}$ ($n^2=\imath\omega/a$)

$$Z=Z_0e^{\imath nz}=Z_0e^{\sqrt{\imath \omega/a}z}=Z_0e^{\sqrt{\omega/2a}(1+\imath)z}$$

$$T(t,z)/\Delta T + T_0 = Z(z) heta(t) = Z_0 heta_0e^{-\sqrt{\omega/2a}z}e^{i(\omega t - \sqrt{\omega/2a}z)}$$

Interpretation

replacing the term
$$\sqrt{2a/\omega}=\sqrt{at_P/\pi}=d$$
 leads to

$$T(z,t) = T_0 + \Delta T e^{-z/d} \sin(\omega t - z/d)$$

- ullet exponential damping of the temperature variation with decay depth d
- ullet phase lag z/d increases with depth, $z_\pi = \sqrt{2a/\omega}\pi = \sqrt{at_P\pi}$
- 1. Daily cycle: decay depth d=6cm, minimum depth=20cm
- 2. Yearly cycle: decay depth d=1.2m, minimum depth=4m

Depth profiles

```
a = 1.5e-7
year = day*365
d = sqrt(a*year/pi)
t = np.arange(0, 1, 0.1) * year
z = np.arange(0, 6, 0.1)
fig, ax = plt.subplots()
for ti in t:
    Tz = np.exp(-z/d)*np.sin(ti*2*pi/year-
                             z/d) * dT + T0
    ax.plot(Tz, z, label="t={:.1f}".format(
       ti/year))
ax.invert yaxis()
ax.legend()
ax.grid()
```


Temporal behaviour

```
t = np.arange(0, 1.01, 0.01) * year
z = np.arange(0, 3, 0.4)
fig, ax = plt.subplots()
for zi in z:
    Tt = np.exp(-zi/d)*np.sin(t*2*pi/year-
                              zi/d) * dT + T0
    ax.plot(t/year*12, Tt, label=f"z={zi:.1f}"
ax.set xlim(0, 12)
ax.set xlabel("t (months)")
ax.set ylabel("T (°C)")
ax.legend()
ax.grid()
```


Experimental data from North Sea beach

Explicit methods

$$\frac{\partial T}{\partial t} - a \frac{\partial^2 T}{\partial z^2} = 0$$

Finite-difference approximation

$$rac{\partial T}{\partial t}^n pprox rac{T^{n+1}-T^n}{\Delta t} = arac{\partial^2 T^n}{\partial z^2}$$

Explicit

Start T^0 with initial condition

Update field by

$$T^{n+1} = T^n + a rac{\partial^2 T^n}{\partial z^2} \cdot \Delta t$$

E.g. by using matrix A from Poisson solver

Implicit methods

$$egin{aligned} rac{\partial T}{\partial t}^{n+1} &pprox rac{T^{n+1}-T^n}{\Delta t} = arac{\partial^2 T}{\partial z^2}^{n+1} \ rac{1}{\Delta t}T^{n+1} - arac{\partial^2 T}{\partial z^2}^{n+1} = rac{1}{\Delta t}T^n \end{aligned}$$

x in m

Mixed - Crank-Nicholson method

$$rac{\partial T}{\partial t}^{n+1/2}pprox rac{T^{n+1}-T^n}{\Delta t}=rac{1}{2}arac{\partial^2 T}{\partial z^2}^n+rac{1}{2}arac{\partial^2 T}{\partial z^2}^{n+1}$$

$$rac{2}{\Delta t}T^{n+1}-arac{\partial^2 T^{n+1}}{\partial z^2}=rac{2}{\Delta t}T^n+arac{\partial^2 T^n}{\partial z^2}$$
 $(2\mathbf{M}-\mathbf{A})\mathbf{u}^{n+1}=(2\mathbf{M}+\mathbf{A})\mathbf{u}^n$

x in m