Présentation du cours

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professeur : Christian Gagné

Semaine 1

Introduction à l'apprentissage automatique

- GIF-4101 : cours optionnel, bacc. en génie informatique, informatique, statistique, mathématique-informatique, génie logiciel, génie mécanique, génie géomatique, etc.
 - Préablables
 - STT-2920 Probabilités pour ingénieurs (ou équivalent)
 - MAT-2930 Algèbre linéaire appliqué (ou équivalent)
- GIF-7005 : cours de 2e-3e cycles, maîtrise professionnelle en informatique intelligence artificielle, maîtrise et doctorat en génie électrique, informatique
 - Accessible aux étudiants d'autres programmes de maîtrise et doctorat (sciences et génie)
 - Aucun préalable officiel, mais exige des connaissances de base en :
 - Algèbre linéaire
 - Probabilité et statistique
 - Calcul différentiel
 - Programmation et algorithmique

Introduction to Machine Learning

- GIF-7015 : official English version of GIF-7005 (new this year)
 - Slides and video capsules available in English
 - Howeworks, quizzes and exam provided in English
 - Bilingual text in monPortail (when possible)
 - Discussions on PAX forum in both languages
- In-class discussions (Wednesday morning) can be in English
 - By default, explanations will be given in French, but I will answer in the language the questions are asked
 - Do not hesitate to ask for repeating an answer in English when you do not get the French explanations
- Everything else is the same than GIF-7005

Organisation

- Matière théorique présentées en capsules vidéo
 - Présentations détaillées de la matière dans diapositives
 - Capsules vidéos présentant la matière à chaque semaine
- Période de présence hybride synchrone, mercredi de 8h30 à 9h45
 - En présentiel au VCH-3820 (106 places disponibles)
 - Diffusion simultanée sur Zoom avec enregistrement des séances pour écoute ultérieure
 - Explications, présentations techniques, questions et réponses

Évaluations

- Cinq quiz à la fin des séances du mercredi (9h45-10h30), sur matière des 2-3 dernières semaines
- Un examen écrit sur matière théorique et développements mathématiques (9 novembre au soir)

	Date	Heure	Pond.	Format	
Quiz 1	28 septembre 2022	9h45 à 10h30	4 %	Questionnaire objectif en-ligne	
Quiz 2	12 octobre 2022	9h45 à 10h30	4 %	Questionnaire objectif en-ligne	
Quiz 3	26 octobre 2022	9h45 à 10h30	4 %	Questionnaire objectif en-ligne	
Quiz 4	16 novembre 2022	9h45 à 10h30	4 %	Questionnaire objectif en-ligne	
Quiz 5	30 novembre 2022	9h45 à 10h30	4 %	Questionnaire objectif en-ligne	
Examen	9 novembre 2022	18h30 à 20h20	20 %	Questionnaire papier avec réponses à	
				développement	

Travaux pratiques

- Cinq devoirs réalisés dans l'environnement PAX (notebook Jupyter)
 - Premier cycle : devoirs en équipe de 2 étudiants
 - Étudiants gradués : devoirs individuels
- Un projet libre en équipe
 - En équipe de 3 à 5 étudiants (mixité des groupes permise)
 - Présentation lors de séance d'affiches, 21 et 22 décembre en matinée
- Programmation en Python avec scikit-learn et PyTorch

Travail	Date	Heure	Pondération	
Devoir 1	Devoir 1 7 octobre 2022		8 %	
Devoir 2	21 octobre 2022	12h00	8 %	
Devoir 3	11 novembre 2022	12h00	8 %	
Devoir 4	25 novembre 2022	12h00	8 %	
Devoir 5	9 décembre 2022	12h00	8 %	
Projet	21-22 décembre 2022	matinée	20 %	

Échelles de cotes

• GIF-4101 (1er cycle) : note de passage à 50 %

```
      A+:
      [100,90]
      A:
      ]90,85]
      A-:
      ]85,80]

      B+:
      ]80,76]
      B:
      ]76,72]
      B-:
      ]72,68]

      C+:
      ]68,64]
      C:
      ]64,60]
      C-:
      ]60,56]

      D+:
      ]56,53]
      D:
      ]53,50]
      E:
      ]50,0]
```

 \bullet GIF-7005 et GIF-7015 (2e-3e cycles) : note de passage à $60\,\%$

A+ :	[100, 90]	A :]90, 85]	A- :]85, 80]
B+:]80, 76]	B :]76, 72]	B- :]72, 68]
C+:]68, 64]	C :]64, 60]	E :]60, 0]

Contenu (1/2)

- Introduction (2h) : types d'apprentissage ; optimisation ; régularisation ; généralisation ; méthodologie.
- Méthodes paramétriques (6h): fonctions discriminantes; théorème de Bayes; méthodes
 paramétriques; estimation par maximum de vraisemblance; compromis biais/variance; méthodes
 multivariées; densité mélange; régression linéaire; régression multivariée.
- Méthodes non paramétriques (3h) : fonctions de densité; estimation de densité par noyau; classement par les plus proches voisins; mesures de distance.
- **Discriminants linéaires (3h)** : descente du gradient ; séparation à plusieurs classes ; algorithme du Perceptron ; méthode des moindres carrés ; régression logistique.
- **Méthodes à noyaux (3h)** : fonctions noyaux; maximisation des marges géométriques; séparateurs à vastes marges; exemples d'autres méthodes à noyaux.
- Perceptron multicouche (3h) : modèle de réseaux de neurones; algorithme de rétropropagation des erreurs.

Contenu (2/2)

- Apprentissage profond (6h) : apprentissage de représentations; techniques pour l'apprentissage de réseaux profonds; exemples d'applications.
- Méthodes par ensembles (3h): votes à majorité; codes à correction d'erreurs; mixtures d'experts; Bagging; Boosting; arbres de décision; forêts aléatoires.
- Prétraitements et configuration de modèles (3h): analyse en composantes principales;
 sélection vorace avant/arrière de caractéristiques; données hétérogènes; variables manquantes;
 imputation; validation croisée; optimisation d'hyper-paramètres.
- Clustering (3h): algorithme K-means; algorithme espérance-maximisation; clustering hiérarchique; apprentissage de variétés; positionnement multidimensionnel.
- Conception et analyse d'expérimentation en apprentissage (3h): plans d'expériences; matrice de confusion; courbes ROC; Bootstrap; estimation de l'erreur; tests statistiques; comparaison d'algorithmes.

Références

- Plusieurs références disponibles pour approfondissement
 - Pas de livre obligatoire
 - La plupart des références sont disponibles en format numérique
- Ethem Alpaydin. Introduction to Machine Learning. 4e édition, MIT press, 2020.
- Christopher M. Bishop, *Pattern Recognition and Machine Learning*. Springer, 2006. https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
- Trevor Hastie, Robert Tibshirani et Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. 2e édition, Springer, 2009. https://web.stanford.edu/~hastie/ElemStatLearn/
- Ian Goodfellow, Yoshua Bengio et Aaron Courville. *Deep Learning*. MIT press, 2016. http://www.deeplearningbook.org/
- Andriy Burkov. The Hundred-Page Machine Learning Book en français. 2019. http://themlbook.com/wiki/doku.php

Professeur

• Nom : Christian Gagné

• Bureau: PLT-1138-F

Courriel: christian.gagne@gel.ulaval.ca

• Web: https://vision.gel.ulaval.ca/~cgagne

• Aide pour le cours :

- Questions et discussions d'intérêt général sur la matière et les évaluations : forum du cours sur PAX
- Considérations plus spécifiques ou personnelles : courriel au professeur

Sites Web

• Site monPortail:

https://sitescours.monportail.ulaval.ca/ena/site/accueil?idSite=146163

- Plans de cours
- Capsules vidéo et présentations
- Quiz en-ligne
- Notes des travaux et examens
- Site PAX: https://pax.ulaval.ca/GIF-4101-7005/A22/
 - Devoirs (notebook Jupyter)
 - Forum de discussions
- Chaîne YouTube :

https://www.youtube.com/channel/UCkMXqYnOzhIlRseUOgq8_Xw

• Capsules vidéos du cours