

RADICI DI EQUAZIONI NON LINEARI (Esercizi di fine nucleo: parte 2)

Esercizio 1 – Iterazioni di Punto Fisso

Considerando la funzione $f(x) = x^2 - 2$, riscrivere l'equazione come x = g(x), con $g(x) = \frac{x^2 + 2}{2}$. Eseguire tre iterazioni del metodo del punto fisso con valore iniziale $x_0 = 1.5$ e tre cifre decimali. Calcolare il test di arresto sull'incremento all'ultima iterazione.

• Esercizio 2 – Iterazioni di Punto Fisso

Data la funzione $f(x) = \cos(x) - x$, riscrivere l'equazione f(x) = 0 nella forma x = g(x) con $g(x) = \cos(x)$. Eseguire quattro iterazioni del metodo del punto fisso utilizzando come valore iniziale $x_0 = 0.5$, arrotondando ciascun risultato a quattro cifre decimali.

Esercizio 3 – Metodo di Newton

Data la seguente funzione $f(x) = x^3 - 2x^2 - x + 1$ (ovvero f = [1, -2, -1, 1]), eseguire due iterazioni con il metodo di Newton utilizzando come valore iniziale $x_0 = 1.5$, e approssimando a quattro cifre decimali. Calcolare l'errore relativo ed assoluto ad ogni iterazione.

• Esercizio 4 – Metodo di Newton

Determinare una radice della seguente funzione $f(x) = x^2 + 3^x - 4$ (ossia f = [1,3,-4]) con il metodo di Newton, utilizzando come valore iniziale $x_0 = 0$ ed eseguire tre iterazioni, approssimando a tre cifre decimali. Calcolare ad ogni iterazione il criterio di arresto basato sul residuo.