הוכחות בתחשיב היחסים

כללי הגזירה בתחשיב היחסים

- כללי הגזירה של תחשיב הפסוקים עדין תקפים בתחשיב היחסים.
 - מכיוון שבתחשיב היחסים נוספו לנו שני הכמתים ∀ ו ∃ וסימן השוויון "=", נוסיף כללי גזירה שעוסקים בסימנים אלה.
 - כמו בתחשיב הפסוקים יש שני סוגי כללים: הוספה ואלימינציה (מחיקה).
 - $M = (\mathcal{P}, \mathcal{F})$ בכל הכללים אנו מניחים קיומו של מילון •

(= introduction) = כללי הוספת

t לכל עצם

$$\frac{}{t=t}=\mathrm{i}$$

- המשמעות: כל עצם שווה לעצמו
- מכיוון שאין כאן הנחות, הכלל i= הוא אקסיומה.
 - הכלל תופס רק עבור עצמים, לא נוסחאות
- הכלל i= לא שימושי לכשעצמו. אנו צריכים כלל שמאפשר להציב עצם אחד במקום עצם אחר ששווה לו

תזכורת: הצבה מותרת

הגדרה:

בהינתן מילון M, נניח ש ϕ נוסחה, x משתנה ן t עצם. נאמר ש t חופשי עבור x ב ϕ אם אם t לא מכיל משתנים שהם קשורים במקום שבו x חופשי. במקרה כזה ההצבה [t/x] ¢ נקראת הצבה מותרת.

$$f^{(2)} \in \mathcal{F}$$
 $P^{(1)}, Q^{(1)}, S^{(2)} \in \mathcal{P}$ $M = \left(\mathcal{P}, \mathcal{F}\right)$ בוגמה: $\phi \coloneqq S(x,y) \wedge \forall y (P(x) \to Q(y))$ הצבה מותרת $\phi[f(x,x),x]$ הצבה לא מותרת $\phi[f(x,y),x]$

(= elimination) = כלל הסרת

 φ ונוסחה t_2 ו t_1 ונוסחה

$$\frac{t_1 = t_2 \quad \phi[t_1 / x]}{\phi[t_2 / x]} = e$$

 φ בתנאי ש t_2 וופשיים עבור t_2 ן t_1

$$t_1=t_2 \vdash t_2=t_1$$
 לכל שני עצמים $\mathbf{t_1}$ ו $\mathbf{t_2}$ מתקיים $\phi \coloneqq (x=t_1)$ ניקח

1
$$t_1 = t_2$$
 [In]
2 $t_1 = t_1$ $\phi[t_1 / x]$ =i
3 $t_2 = t_1$ =e 1,2

לכל שלושה עצמים t_3 ו t_2 , מתקיים

$$t_1=t_2, t_2=t_3 \vdash t_1=t_3$$
ניקח $\phi\coloneqq (t_1=x)$ ניקח

נתון
$$t_2 = t_3$$
 נתון $t_1 = t_2$ $\phi[t_2 / x]$ וחז $t_1 = t_3$ =e 1,2

הערה: קיבלנו שהסימן = הוא רפלקסיבי, סימטרי וטרנזיטיבי

infix notation

 לפעמים, המשמעות של פונקציה או יחס היא אופרטור שמוכר לנו מאריתמטיקה או מתכנות ומסומן ע"י סימן הממוקם בין שני הארגומנטים.

• דוגמאות:

- הפונקציה (r(x,y), בתחום המספרים השלמים, המשמעות: x+y
 - $\mathsf{x} \cap \mathsf{y}$ בתחום תורת הקבוצות, המשמעות: $\mathsf{f}(\mathsf{x},\mathsf{y})$
 - x<y בתחום המספרים השלמים, משמעות, R(x,y)
 - $x \subseteq y$ בתחום תורת הקבוצות, המשמעות: R(x,y) •
 - במקרים כאלה נוח יהיה לרשום בנוסחה את האופרטור המוכר במקום הרישום הסתמי f(x,y) או (R(x,y)
 - $R(x,y) \rightarrow R(f(x,z),f(y,z))$ למשל, במקום (x < y) \rightarrow (x + z < y + z)

נניח ש 1 ן 0 הם קבועים, + היא פונקציה בינארית ן > הוא יחס בינארי. נוכיח

$$y+1=1+y, (y+1>1) \rightarrow (y+1>0) \vdash (1+y>1) \rightarrow (1+y>0)$$

1
$$(y+1)=(1+y)$$

2
$$(y+1>1) \rightarrow (y+1>0)$$
 נתון

3
$$(1+y>1) \rightarrow (1+y>0)$$
 =e 1,2

 \uparrow ן t_1,t_2 שאלה: מיהם

$$t_2 := 1 + y$$
 $t_1 := y + 1$ $\phi := (x > 1) \rightarrow (x > 0)$:תשובה

כלל הסרת ∀ (∀x elimination)

φ ונוסחה t לכל עצם

$$\frac{\forall x \phi}{\phi [t/x]} \ \forall x e$$

 ϕ בתנאי ש t חופשי עבור

<u>המשמעות:</u>

אם φ נכון עבור x כללי, אז הוא בטח נכון עבור ערך t ספציפי

נניח ש $P^{(1)}$ ו $Q^{(1)}$ הם יחסים וְ $P^{(1)}$ הוא עצם במילון נתון. $P^{(1)}$ נוכיח: $P(t), \forall x (P(x) \to \neg Q(x)) \vdash \neg Q(t)$

נתון
$$P(t)$$
 נתון $P(t)$ נתון $P(t)$ נתון $P(t)$ $P(t)$

$(\forall x introduction) \forall x introduction)$

♦ ונוסחה t לכל עצם

<u>הסבר:</u>

אם כאשר מתחילים עם משתנה חדש x_0 כלשהו ניתן להוכיח את הנוסחה $\phi[x_0/x]$, אז, מכיוון ש x_0 הוא "חדש", כלומר, לא מופיע בשום מקום אחר, ניתן להסיק ש ϕ נכון לכל x_0 .

:נניח ש $P^{(1)}$ ו מון. נוכיח במילון $P^{(1)}$ הם יחסים במילון נתון. נוכיח

$$\forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$$

1	$\forall x (P(x) \to Q(x))$	נתון
2	$\forall x P(x)$	נתון
3	$x_0 P(x_0) \to Q(x_0)$	∀x e 1
4	$P(x_0)$	∀x e 2
5	$Q(x_0)$	MP 3,4
6	$\forall x Q(x)$	∀x i 3-5

כלל הוספת E (ax introduction) כלל הוספת

φ ונוסחה t לכל עצם

$$\frac{\phi[t/x]}{\exists x\phi} \exists x i$$

 ϕ בתנאי ש t חופשי עבור

<u>המשמעות:</u>

.אם ϕ נכון עבור עצם t, זה אומר שקיים ערך שעבורו

נניח ש ϕ נוסחה המוגדרת במילון מסויים, אז

$$\forall x \phi \vdash \exists x \phi$$

1	$\forall x \phi$	נתון
2	$\phi[x/x]$	∀x e 1
3	$\exists x \phi$	∃x i 2

כלל הסרת E (ar elimination) כלל הסרת

יהיו $x_0 \neq y$ משתנים, $\phi \neq \psi$ נוסחאות, כך ש $x_0 \neq x_0 \neq x_0$ אינו מופיע ב

נכון $\phi[x_0/x]$ שעבורו $\phi[x_0/x]$ נכון $\phi[x_0/x]$ שעבורו $\phi[x_0/x]$ נכון. ושאינו מופיע ב $\phi[x_0/x]$ מקבלים את $\phi[x_0/x]$ אז נובע ש $\phi[x_0/x]$ נכון. $\phi[x_0/x]$ (אפשר לראות זאת כהכללה של הכלל $\phi[x_0/x]$)

:נניח ש $P^{(1)}$ ו מון. נוכיח במילון $P^{(1)}$ הם יחסים במילון נתון. נוכיח

$$\forall x (P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

	1	$\forall x (P(x) \to Q(x))$	נתון
	2	$\exists x P(x)$	נתון
זה חלק מ ψ. לא קשור לכלל ∃E	3	$X_0 P(X_0)$	הנחה
יושוו זכיז שב	4	$P(x_0) \rightarrow Q(x_0)$	∀x e 1
	5	$Q(x_0)$	MP 3,4
	6	$\exists x Q(x)$	∃x i 5
	7	$\exists x Q(x)$	∃x e 2,3-6

מה לא בסדר בהוכחה?

:נניח ש $P^{(1)}$ נניח ש $Q^{(1)}$ ו ווער הם יחסים במילון נתון. נוכיח שוב

$$\forall x (P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

1
$$\forall x (P(x) \to Q(x))$$
 נתון $\exists x P(x)$ ותון $X_0 = \exists x P(x)$ ותון $X_0 = X_0 = X_0$

דוגמה נוספת

$$\forall x(Q(x) \rightarrow R(x)), \ \exists x(P(x) \land Q(x)) \vdash \exists x(P(x) \land R(x))$$

ועוד דוגמה

נניח ש $P^{(1)}$ ו $Q^{(1)}$ הם יחסים במילון נתון. נוכיח: $\exists x P(x), \ \forall x \forall y (P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$

1
$$\exists x P(x)$$
 $| Inn$
2 $\forall x \forall y (P(x) \rightarrow Q(y))$ $| Inn$
3 y_0
4 $x_0 P(x_0)$ $| Inn$
5 $\forall y (P(x_0) \rightarrow Q(y))$ $| Inn$
6 $\forall y (P(x_0) \rightarrow Q(y))$ $| Inn$
7 $| Inn$
8 $| Inn$
9 $| Inn$
1 $| Inn$
2 $| Inn$
3 $| Inn$
4 $| Inn$
2 $| Inn$
3 $| Inn$
4 $| Inn$
4 $| Inn$
6 $| Inn$
6 $| Inn$
6 $| Inn$
8 $| Inn$
9 $| Inn$
1 $| Inn$
2 $| Inn$
2 $| Inn$
2 $| Inn$
3 $| Inn$
4 $| Inn$
3 $| Inn$
4 $| Inn$
4 $| Inn$
6 $| Inn$
6 $| Inn$
6 $| Inn$
7 $| Inn$
8 $| Inn$
8 $| Inn$
9 $| Inn$
1 $| Inn$
2 $| Inn$
3 $| Inn$
2 $| Inn$
3 $| Inn$
3 $| Inn$
3 $| Inn$
3 $| Inn$
4 $| Inn$
3 $| Inn$
4 $| Inn$
4 $| Inn$
6 $| Inn$
6 $| Inn$
8 $| Inn$

מה לא נכון בהוכחה?

:נניח ש $P^{(1)}$ ו $Q^{(1)}$ הם יחסים במילון נתון. נוכיח

$$\exists x P(x), \ \forall x (P(x) \rightarrow Q(x)) \vdash \ \forall x Q(x)$$

1	$\exists x P(x)$	נתון
2	$\forall x (P(x) \to Q(x))$	נתון
3	\mathcal{X}_0	
4	$X_0 P(x_0)$	הנחה
5	$P(x_0) \to Q(x_0)$	∀x e 2
6	$Q(x_0)$	MP 4,5
7	$Q(x_0)$	∃x e 1, 4-6
8	$\forall x Q(x)$	∀x i 3-7

7 את להסיק את יולכן לא ניתן להסיק את את מופיע בנוסחה אופיע בנוסחה ע $\psi\coloneqq Q(x_0)$

תרגיל

הראו שאם הטענה

$$\exists x P(x), \ \forall x (P(x) \to Q(x)) \vdash \ \forall x Q(x)$$

הייתה נכונה, אז היינו יכולים להוכיח את

$$\exists x P(x) \vdash \forall x P(x)$$

שקילויות עם כמתים

ψ נוסחאות במילון מסויים. אז... משפט: יהיו ψ ו ע

$$\forall x \phi \land \forall x \psi \dashv \vdash \forall x (\phi \land \psi)$$
 (3)

$$\exists x \phi \lor \exists x \psi \dashv \vdash \exists x (\phi \lor \psi) \ (\mathbf{a})$$

$$\forall x \forall y \phi \dashv \vdash \forall y \forall x \phi$$
 (4)

$$\exists x \exists y \phi \dashv \vdash \exists y \exists x \phi \quad (\mathbf{a})$$

$$\neg \forall x \phi \dashv \vdash \exists x \neg \phi \ (x) \ (1)$$

$$\neg \exists x \phi \dashv \vdash \forall x \neg \phi \ (2)$$

 ψ בהנחה ש x לא חופשי ב χ

$$\forall x \phi \land \psi \dashv \vdash \forall x (\phi \land \psi) \ (\kappa)$$

$$\forall x \phi \lor \psi \dashv \vdash \forall x (\phi \lor \psi) \ (a)$$

$$\exists x \phi \land \psi \dashv \vdash \exists x (\phi \land \psi) \quad (\lambda)$$

$$\exists x \phi \lor \psi \dashv \vdash \exists x (\phi \lor \psi)$$
 (T)

$$|\psi \to \forall x \phi \dashv \vdash \forall x (\psi \to \phi)$$
 (ה)

$$\forall x(\phi \to \psi) \dashv \vdash \exists x\phi \to \psi \quad (\mathbf{I})$$

$$\exists x(\phi \to \psi) \dashv \vdash \forall x\phi \to \psi \quad (7)$$

$$\exists x(\psi \to \phi) \dashv \vdash \psi \to \exists x\phi \ (n)$$