\blacktriangleleft Очевидно, $f(x) = \lim_{x \to 0} f_n(x) = 0$ при $0 \le x \le 1$ Поскольку,

$$\sup_{0 \leqslant x \leqslant 1} |f_n(x) - f(x)| = \frac{1}{n+1} \left(1 + \frac{1}{n} \right), \lim_{x \to \inf} \left(\frac{1}{1+n} \left(1 + \frac{1}{n} \right)^{-n} \right) = \frac{1}{\epsilon} \lim_{n \to \infty} \frac{1}{n+1} = 0$$

то по критерию, доказанному в примере 103, $f_n(x) \neq 0$

105. $f_n(x) = x^n - x^{2n}, \ 0 \le x \le 1.$

◄ Имеем $f(x) = \lim_{\substack{n \to \infty \\ 1}} f_n(x) = 0, x \in [0,1]$. Функция f(n) достигает абсолютного максимума во внутренней точке сегмента: $x_n = \frac{1}{\sqrt[n]{2}}, x_n \in [0, 1]$. Таким образом, имеем

$$\sup_{x \in [0,1]} r_n(x) = f_n(x_n) = \frac{1}{4} \quad , \quad \lim_{n \to \infty} \left(\sup_{x \in [0,1]} r_n(x) \right) = \frac{1}{4} \neq 0$$

Отсюда следует, что последовательность стремится к 0 неравномерно. $\mathbf{106}.f_n(x)=\frac{nx}{1+n+x}=x,\,0\leqslant x\leqslant 1.$

106.
$$f_n(x) = \frac{nx}{1+n+x} = x, \ 0 \le x \le 1.$$

◄ Нетрудно увидеть, что $f(x) = \lim_{n \to \infty} \frac{nx}{1 + n + x} = x$ и справедлива оценка $\sup_{x \in [0,1]} \left| \frac{nx}{1 + n + x} - x \right| \leqslant \frac{2}{n+1}$. Поэтому

$$\lim_{n \to \infty} \left(\sup_{x \in [0,1]} |f_n(x) - f(x)| \right) = 0 \quad , \quad f_n(x) = x$$

107
$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, -\infty < x < +\infty.$$

 \blacksquare При $n \to \infty$ $f_n(x) \to |x|$ на интервале $[-\infty, +\infty]$, причем

$$\sup_{x \in -\infty} \left| \sqrt{x^2 + \frac{1}{n^2}} - |x| \right| = \sup_{x \in [-\infty, +\infty]} \frac{1}{n^2 \left(\sqrt{x^2 + \frac{1}{n^2}} + |x| \right)} = \frac{1}{n},$$

поэтому $f_n(x) \rightrightarrows |x|$ на всей числовой прямой.

108
$$f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right), 0 < x < +\infty.$$

⋖ Очевидно

$$f(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right) = \frac{1}{2\sqrt{x}}, \quad 0 < x < +\infty.$$

Поскольку

$$\sup_{0 < x < +\infty} \left| \frac{1}{2\sqrt{x}} - \frac{1}{\sqrt{x + \frac{1}{n}} + \sqrt{x}} \right| = \sup_{0 < x < +\infty} \frac{1}{2n\sqrt{x} \left(\sqrt{x + \frac{1}{n}} + \sqrt{x}\right)^2} = +\infty,$$

по утверждению примера 103 последовательность сходится неравномерно.▶

109a)
$$f_n(x) = \sin(x), -\infty < x < +\infty;$$

$$\mathbf{G})f(x) = \lim_{n \to \infty} \sin \frac{x}{n}, -\infty < x < +\infty;$$

◀ Имеем:

$$a)f(x) = \lim_{n \to 0} \sin x = 0$$

$$\mathbf{G})f(x) = \lim_{n \to 0} \sin x = 0$$

Поскольку в случае а)

$$\sup_{-\infty < x < +\infty} f_n(x) = \frac{1}{n} \to 0 \text{ при } n \to +\infty,$$

а в случае б)

$$\sup_{-\infty < x < +\infty} |\sin \frac{x}{n}| = 1$$

Достигается при $x=\frac{\pi n}{2}(2k+1), k\in Z$, то, в силу примера 103, заключаем, что в случае а) $f_n(x)\neq 0$. а в случае б) последовательность сходится неравномерно \blacktriangleleft

110 а) $f(x) = \arctan nx, 0 < x < \infty, 6)$ $f(x) = x \arctan nx, 0 < x < \infty.$ **4** а) Имеем $f(x) = \lim_{n \to \infty} arctg(nx) = \frac{\pi}{2}$. Поскольку

$$\sup_{0 < x < +\infty} \left| \frac{\pi}{2} - \arctan nx \right| = \lim_{x \to +0} \left| \frac{\pi}{2} - \arctan nx \right| = \frac{\pi}{2},$$

то последовательность сходится неравномерно ◀

б) Здесь $f(x) = \frac{\pi x}{2}$, $r_n(x) = x\left(\frac{\pi}{2} - \arctan nx\right)$ Используя равенство $\frac{\pi}{2} - \arctan nx = \arctan \frac{1}{nx}$, и неравен-

$$\left| x \left(\frac{\pi}{2} - \arctan nx \right) \right| = \left| x \arctan \frac{1}{nx} \right| < x \frac{1}{nx} = \frac{1}{n} \to 0, n \to \infty,$$

независимо от $x \in [0, +\infty]$ **«**. Следовательно, по определению 2, п.4.1 $f_n(x) \Rightarrow \frac{\pi x}{2}$

111. $f_n(x) = \left(1 + \frac{x}{n}\right)^n$: a) на конечном интервале [a,b]; б) на интервале [0,1]

lacktriangle B обоих случаях легко находим предельную функцию $f:x o\epsilon^x$. Далее, в случае Φ) преставляем последователность в виде

$$f_n(x) = \exp\left(n\ln\left(1 + \frac{x}{n}\right)\right).$$

Здесь n>N, где N выбирается из очевидного условия $1+\frac{x}{N}>0$ при $x\in[a,b]$. Применяя к функции $x \to \ln\left(1 + \frac{x}{n}\right)$, формулу Тейлора с остаточным членом в форме Лагранжа, из (1) получаем

$$f_n(x) = \exp\left(x - \frac{x^2 \varepsilon_n^2}{2n}\right), n \in N.$$

Поскольку

$$\epsilon^x \left(1 - \exp\left\{ -\frac{x^2 \varepsilon_n^2}{2n} \right\} \right) < \epsilon^b \left(1 - \exp\left\{ -\frac{M^2}{2n} \left(1 - \frac{M}{n} \right)^{-2} \right\} \right),$$

где $M=\max$, стремится к нулю при $n\to\infty$ независимо от $\in [a,b]$, то по опредлению $2\,f_n(x) \rightrightarrows \epsilon^x$ на [a,b]. В случае б) получаем

$$\lim_{x \to \infty} \left| e^x - \left(1 + \frac{x}{n} \right)^n \right| = +\infty,$$

Поэтому $\sup_{0 < x < 1} r_n(x) = +\infty$ Таким образо, последовательность на всей прямой сходится неравномерно \blacktriangleright

112.
$$f(x) = n\left(x\frac{1}{n} - 1\right), 1 \leqslant x \leqslant a.$$
 \blacktriangleleft Легко найти, что $f_n(x) \to \ln x$ на $[1, a]$ при $n \to \infty$. Далее, применяя формулу Тейлора, находим $r_n(x) = \left| n(x\frac{1}{n} - 1) - \ln x \right| = \left| n(\epsilon n) - 10 - \ln x \right| = \left| (1 + \frac{1}{n} \ln x - \frac{\ln^2 x}{2n^2} \epsilon^{\varepsilon} - 1) - \ln x \right| = \frac{\ln^2 x}{2n^2} \epsilon^{\varepsilon m} < \frac{\ln^2 x}{2n^2} \epsilon^{\varepsilon} \to 0$