Hands on Introduction to Deep Learning

Raúl Benítez, PhD raul.Benitez@upc.edu

Mathematics

Computer Science

$$p(\mathcal{D}|\theta) = p(x_1, x_2, \dots, x_n | \mu, \sigma^2)$$

$$= \prod_{i=1}^n p(x_i | \theta)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{n}{2}} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2 + n(\frac{1}{n}\sum_{i=1}^n x_i - \mu)^2}{2\sigma^2}\right)$$

```
import numpy as np
from sklearn import decomposition
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data
y = iris.target

pca = decomposition.PCA(n_components=2)
pca.fit(X)
Xproj = pca.transform(X)
```

Text
Images
Multivariate numerical data
Genetics
Audio, video
HETEROGENEOUS

Statistics
Geometry
Optimization
Stochastic processes

Algorithms
Computational complexity
Information theory
Network analysis

An affair between computer science and biology

Back-propagation Applied to Handwritten Zip Code Recognition (1989)

Convolutional Networks For Images, Speech, And Time Series (1995)

Gradient-based Learning Applied To Document Recognition (1998)

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-95a.pdf http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf

Cajal & Golgi Nobel Prize 1906
Hebbian learning 1949
Hodkin & Huxley 1952 Nobel Prize 1963
Hubel & Wiesel 1959 Visual Cortex Nobel Prize 1981

CHANGE IN PARADIGM

Machine Learning

Tailored features
(shape, size, texture...)
meaningful

Deep features useful

Deep Learning

Deep Learning

Convolutional Neural Networks (CNNs) Generative Adversarial Networks (GANs)

Recurrent Neural Networks (RNNs)

Image Classification
Image Segmentation

Image generation

Time series analysis
Anomaly detection
Video analysis

Convolutional Neural Networks – Image Classification

Learns:

- Which features are more relevant
- How to classify the images

Convolutional layers

Bank of convolutiuonal filters

Pooling layers:

Sub-sampling by grouping, reduce overfitting

Activation layers: Connection between layers

Fully connected layers: Feature classification

Transfer learning: Pre-trained models

Documentation for individual models

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88
DenseNet121	33 MB	0.745	0.918	8,062,504	121
DenseNet169	57 MB	0.759	0.928	14,307,880	169
DenseNet201	80 MB	0.770	0.933	20,242,984	201

Deep Learning Interpretability

Hands-on tutorial

MNIST

Labelled Faces in the Wild (LFW)

CIFAR-10

