Efficient Underwater Sensor Network Data Collection Employing Unmanned Ships

Jie Wang Fourth Year Undergraduate Student The Chinese University of Hong Kong, Shenzhen Network Coding Lab

October 23, 2019

Table of Content

- Introduction to Data Collection Using Unmanned Ships
- Problem Formulation

Numerical Results

2/14

Jie Wang CUHK(SZ) October 23, 2019

Table of Contents

- 1 Introduction to Data Collection Using Unmanned Ships
- Problem Formulation
- Numerical Results

Jie Wang CUHK(SZ) October 23, 2019 3 / 14

Conventional Underwater Data Collection Methods

Techniques	Limitations
Cable Communication	High costDistance-limited
Satellite Communication with sea surface buoys	High costHigh latency
Multi-hop Communication	Deployment cost Maintenance cost

Data Collection by Unmanned Ships

Two Crucial Facts

- Limited power of underwater sensor networks (USNs)
- Loss for communication is exponentially increasing!

Jie Wang CUHK(SZ) October 23, 2019 6 / 14

Two Crucial Facts

- Limited power of underwater sensor networks (USNs)
- Loss for communication is exponentially increasing!

Jie Wang CUHK(SZ) October 23, 2019 6 / 14

Proposed Schemes

- The path of the ship is designed.
- Wake-up policy and transmission power for USNs are also optimized.

 Jie Wang
 CUHK(SZ)
 October 23, 2019
 7 / 14

Proposed Schemes

- The path of the ship is designed.
- Wake-up policy and transmission power for USNs are also optimized.

Jie Wang CUHK(SZ) October 23, 2019 7 / 14

Table of Contents

- Introduction to Data Collection Using Unmanned Ships
- Problem Formulation
- Numerical Results

Underwater Acoustic Channel Model

Key assmptions¹:

- Gaussian Noise;
- ② The k-th node transmits with power p_k ;
- **③** Channel is separated into sub-channels, each with bandwith Δf and frequency f_i .

Transmission Rate Approximation

The transmission rate for the k-th node over distance d is approximated as

$$C(d,k) = \sum_{i} \log_2 \left[1 + \frac{p_k/\Delta f}{N(f_i) \cdot A(d, f_i)} \right] \Delta f$$

where A(d, f) denotes the attenuation factor; N(f) denotes noise p.s.d.

1. Milica Stojanovic. 2007. On the relationship between capacity and distance in an underwater acoustic communication channel.

Jie Wang CUHK(SZ) October 23, 2019 9 / 14

System Model

- An unmanned ship is to collect data from K USNs;
- Total time horizon is discretized into M time slots equally;
- Decision variable:

$\boldsymbol{q} := \{\boldsymbol{q}[m], 0 \leq m \leq M\}$	Path of unmanned ship
$x := \{x_k[m], 0 \le m \le M, 1 \le k \le K\}$	Wake-up schedule
$\boldsymbol{p} := \{p_k, 1 \le k \le K\}$	Transmission power of USNs

Objective: minimize the maximum energy consumption for all USNs

$$\min_{\boldsymbol{p},\boldsymbol{q},\boldsymbol{x}} \ \max_{k} \sum_{m=0}^{M} x_{k}[m] p_{k}$$

System Constraints

• The path of the ship satisfies initial and final location constraints:

$$q[0] = q_0, \quad q[M] = q_f.$$

• The maximum speed constraints of the unmanned ship:

$$\|\boldsymbol{q}[m] - \boldsymbol{q}[m-1]\| \le V_{\text{max}}$$

Wake-up mechanism:

$$\begin{cases} \sum_{k=1}^{K} x_k[m] \le 1, & \forall m \\ x_k[m] \in \{0, 1\}, & \forall m, \forall k \end{cases}$$

Data Load Constraint:

$$\sum_{m=1}^{M} x_k[m] R(p_k, \boldsymbol{q}[m]) \ge b_k, \quad \forall k$$

Formulated Optimization Problem

The data collection scheme is formulated as the optimization problem¹:

$$\begin{aligned} & \underset{\boldsymbol{p},\boldsymbol{q},\boldsymbol{x},\boldsymbol{\theta}}{\min} & \boldsymbol{\theta} \\ & \text{s.t.} & & \sum_{m=1}^{M} x_k[m] p_k \boldsymbol{\delta} \leq \boldsymbol{\theta}, \quad \forall k=1,\dots,K \\ & \boldsymbol{q}[0] = \boldsymbol{q}_0, \quad \boldsymbol{q}[M] = \boldsymbol{q}_f \\ & \|\boldsymbol{q}[m] - \boldsymbol{q}[m-1]\| \leq V_{\max} \\ & & \sum_{k=1}^{K} x_k[m] \leq 1, \quad \forall m \\ & & \sum_{m=1}^{M} x_k[m] R(p_k,\boldsymbol{q}[m]) \geq b_k, \quad \forall k \\ & & x_k[m] \in \{0,1\}, \quad \forall m, \forall k \end{aligned}$$

1. Cheng Zhan, Yong Zeng, and Rui Zhang. 2018. Energy-efficient data collection in UAV enabled wireless sensor network

Jie Wang CUHK(SZ) October 23, 2019 12 / 14

Table of Contents

- Introduction to Data Collection Using Unmanned Ships
- Problem Formulation
- Numerical Results

Numerical Results

(a) The unmanned ship's path;

(b) Wake-up schedule of USNs;