TEMP 101 Circuits and Signals Tutorial on RC Low Pass Filter

 \mathcal{E}

RC High Pass Filter

Ву

Tony Aby Varkey M

Assistant Professor

Dept. of ECE

Presidency University

Low Pass RC Filter

The cut off frequency is given as

$$f_c = \frac{1}{2\pi RC}$$

The magnitude response is given as

$$M = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}}$$

The phase response is

$$\phi = -\tan^{-1}\left(\frac{f}{f_c}\right)$$

Design a first order low pass filter RC filter for a cut off frequency of 1000 Hz. Evaluate the gain in dB and phase at the following frequencies

	f	$0.01f_c$	$0.1f_c$	$0.2f_c$	$0.5 f_{c}$	$0.7f_c$	f_c	$2f_c$	5 <i>f</i> _c	7 <i>f</i> _c	$10f_c$	$20f_c$	$100f_c$
- 1													

<u>Answer:</u>

The circuit diagram is shown

The cut off frequency is given as

$$f_c = \frac{1}{2\pi RC}$$

The required cut off frequency is

$$f_c = 1000 Hz$$

So

$$\frac{1}{2\pi RC} = 1000$$

Design a first order low pass filter RC filter for a cut off frequency of 1000 Hz. Evaluate the gain in dB and phase at the following frequencies

		f	$0.01f_c$	$0.1f_c$	$0.2 f_{c}$	$0.5f_{c}$	$0.7f_c$	f_c	$2f_c$	5 <i>f</i> _c	$7f_c$	$10f_c$	$20f_c$	$100f_c$
--	--	---	-----------	----------	-------------	------------	----------	-------	--------	-------------------------	--------	---------	---------	----------

$$\frac{1}{2\pi RC} = 1000$$

Let $C = 0.01 \, \mu F$

$$R = \frac{1}{2\pi f_c C}$$

$$R = \frac{1}{2\pi \times 1000 \times 0.01 \times 10^{-6}}$$

$$R = 15915.49\Omega$$

$$R = 15.915 k\Omega$$

Design a first order low pass filter RC filter for a cut off frequency of 1000 Hz. Evaluate the gain in dB and phase at the following frequencies

f	$0.01f_c$	$0.1f_c$	$0.2f_c$	$0.5 f_{c}$	$0.7f_c$	f_c	$2f_c$	$5f_c$	$7f_c$	$10f_c$	$20f_c$	100f _c

Gain is given as

$$M = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}}$$

f	$0.01f_c$	$0.1f_c$	$0.2f_c$	$0.5f_{c}$	$0.7f_{c}$	f_c	$2f_c$	5 <i>f</i> _c	7 <i>f</i> _c	$10f_c$	$20f_c$	$100f_c$
М	1	0.995	0.9806	0.8944	0.8192	0.7071	0.4472	0.1961	0.1414	0.0995	0.0499	0.01

Design a first order low pass filter RC filter for a cut off frequency of 1000 Hz. Evaluate the gain in dB and phase at the following frequencies

f	$0.01f_c$	$0.1f_c$	$0.2f_c$	$0.5f_c$	$0.7f_c$	f_c	$2f_c$	5 <i>f</i> _c	$7f_c$	$10f_c$	$20f_c$	$100f_c$

Gain is dB is given as

$$M_{dB} = 20.\log_{10}(M)$$

f	$0.01f_{c}$	$0.1f_c$	$0.2f_c$	$0.5f_{c}$	$0.7f_{c}$	f_c	$2f_c$	$5f_c$	$7f_c$	$10f_c$	$20f_c$	$100f_c$
М	1	0.995	0.9806	0.8944	0.8192	0.7071	0.4472	0.1961	0.1414	0.0995	0.0499	0.01
M_{dB}	0	-0.04	-0.17	-0.97	-1.73	-3.01	-6.99	-14.15	-16.99	-20.04	-26.04	-40

Magnitude Response

Magnitude Response

The circuit diagram is shown

The circuit diagram of a RC high pass filter is shown

Let i(t) be the current flowing through the circuit

Impedance of the capacitor is

$$Z_{\mathcal{C}}(j\omega) = \frac{1}{j\omega\mathcal{C}}$$

We can draw the circuit diagram in the frequency domain as follows

According to Voltage division rule, the voltage across the capacitor or the output voltage will be

$$V_o(j\omega) = \frac{R}{R + Z_C(j\omega)} \times V_{in}(j\omega)$$

$$V_o(j\omega) = \frac{R}{R + Z_C(j\omega)} \times V_{in}(j\omega)$$

$$\frac{V_o(j\omega)}{V_{in}(j\omega)} = \frac{R}{R + Z_C(j\omega)}$$

Substituting for $Z_C(j\omega)$, we get

$$\frac{V_o(j\omega)}{V_{in}(j\omega)} = \frac{R}{R + \frac{1}{j\omega C}}$$

$$\frac{V_o(j\omega)}{V_{in}(j\omega)} = \frac{j\omega RC}{j\omega RC + 1}$$

What is $\frac{V_0(j\omega)}{V_{in}(j\omega)}$?

It is the frequency response. So

$$H(j\omega) = \frac{j\omega RC}{j\omega RC + 1}$$

Where $H(j\omega)$ is the frequency response

$$H(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

What is ω ?

$$\omega = 2\pi f$$

So

$$H(f) = \frac{j2\pi fRC}{1 + j2\pi fRC}$$

$$H(f) = \frac{1}{\frac{1}{j2\pi fRC} + 1}$$

$$H(f) = \frac{1}{1 - j\frac{1}{2\pi fRC}}$$

Let

$$f_c = \frac{1}{2\pi RC}$$

Then

$$H(f) = \frac{1}{1 - j\frac{f_c}{f}}$$

$$H(f) = \frac{1}{1 - j\frac{f_c}{f}}$$

The magnitude response is

$$M = |H(f)| = \left| \frac{1}{1 - j\frac{f_c}{f}} \right|$$

$$M = \frac{1}{\sqrt{1 + \left(\frac{f_c}{f}\right)^2}}$$

The phase response is

$$\phi = \angle H(f)$$

$$\phi = 0 - -\tan^{-1}\left(\frac{\underline{f_c}}{\underline{f}}\right)$$

$$\phi = \tan^{-1}\left(\frac{f_c}{f}\right)$$

Thank You