Considérons un triangle ABC rectangle en A et tels que $AB=8\,\mathrm{cm}$ et $AC=6\,\mathrm{cm}$. M est un point mobile sur le segment $[B\;;A]$. On note x=BM. N est le point d'intersection de (BC) avec la perpendicalaire à (AB) et passant par M. I est le milieu de [AC].

a. Montrez en utilisant le théorème de Thalès que $MN=rac{3}{4}x.$

b. Que vaut x si AMNI est un rectangle ? Justifiez.

c. Montrez que l'aire du triangle AMC est $\mathcal{A}_{AMC}=3(8-x).$

d. La formule du calcul de l'aire d'un trapèze est $\mathcal{A}=\dfrac{h(a+b)}{2}$ où h est la hauteur du trapèze, et a et b sont les longueurs des deux bases. Montrez que l'aire du trapèze AMNI est $\mathcal{A}_{AMNI}=\dfrac{3}{8}(x+4)(8-x).$

On cherche à déterminer pour quelles valeurs de x, l'aire de AMNI vaut $12\,\mathrm{cm}^2$.

e. Montrez que cela revient à résoudre l'équation $x^2-4x=0$.

f. Factorisez x^2-4x puis résoudre l'équation $x^2-4x=0.$

g. En déduire la nature de AMNI lorsque $\mathcal{A}_{AMNI}=12\,\mathrm{cm}^2$ (deux réponses).

L'accélération de la pesanteur g est donnée par la formule :

$$g=g_0 imes\left(rac{R}{R+z}
ight)^2$$

où g_0 est exprimé en $\mathrm{m/s}^2$, R est le rayon de la Terre en m et z l'altitude en m.

a. Approximons $g_0 \approx 10\,m/s^2$ et $R \approx 6.4 \times 10^6\,\mathrm{m}$ Montrez que $g \approx 6.4\,m/s^2$ pour une station située à une altitude de $z=1\,600\,\mathrm{km}$ (on montrera les étapes de calculs.)

b. Montrez que $z=R\left(rac{\sqrt{g_0}-\sqrt{g}}{\sqrt{g}}
ight)$ c. Approximons $g_0pprox 9\,m/s^2$ et $Rpprox 6,4 imes 10^6~{
m m}$

c. Approximons $g_0 \approx 9\,m/s^2$ et $R \approx 6.4 \times 10^6\,\mathrm{m}$ Calculez l'altitude z à laquelle se trouve une station dont l'accélération de la pesanteur vaut $4\,m/s^2$.

d. Reprendre les questions a. et c. en utilisant $g_0=9.8\,m/s^2$ et $R=6.37\times 10^6~{
m m}$ et effectuer les calculs à la calculatrice.