Лабораторная работа 2.1.1. "Измерение удельной теплоёмкости воздуха при постоянном давленини"

Учащийся 1 курса ЛФИ Гусаров Николай

Март 2021

1. Цель лабораторной работы

измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении..

2. Оборудование

теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

3. Теория

Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT} (1).$$

Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки.

Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см. рис. 1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm = qdt, где q [кг/с] — массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q = (N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q = cdm\Delta T$, где $\Delta T = T_2 - T_1$ — приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 \approx P_2 = P_0$, где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$c_P = \frac{N - N_{\text{пот}}}{q\Delta T} (2).$$

4. Эксперементальная установка

Схема установки изображена на рис. 2. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную

цилиндрическую трубку с двойными стенками, запаянными с торцов.

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI(3).$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T (4),$$

где $\beta=40.7\frac{\text{мкB}}{^{\circ}C}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ГС. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен

 $\frac{\Delta V}{\Delta t}$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t}$$
 (5),

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона: $\rho_0 = \frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu = 29,0$ г/моль — средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{not}} = \alpha \Delta T$$
 (6),

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_P q + \alpha) \Delta T (7)$$

Следовательно, при фиксированном расходе воздуха $(q=const\)$ подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N)-$ линейная функция).

5. Эксперимент

- 1) Подготовим к работе газовый счетчик: проверим, что он заполнен водой, установим счетчик по уровню.
- 2) Охладим калориметр до комнатной температуры.
- 3) Включим вольтметр, предназначенный для измерения ЭДС термопары.
- 4) Запишем показания компнатной температуры и давления.

$$T_0 = 295 \, ^{\circ}C, P_0 = 99325 \pm 13 \, \Pi a$$

5) С помощью газового счетчика и секундомера измерим максимальный расход воздуха $\frac{\Delta V}{\Delta T}$ (в л/с). Измерения представлены в таблице 1. По найденным значениям определим среднее значение расхода и массовый расход воздуха q_{max} [г/с].

$$q = \rho_0 \frac{\Delta V}{\Delta t} = \frac{\mu P_0}{RT_0} \frac{\Delta V}{\Delta t}.$$

Относительная погрешность косвенных измерений может быть найдена по формуле

$$\frac{\sigma_{q_{max}}}{q_{max}} = \sqrt{\left(\frac{\sigma_{T_0}}{T_0}\right)^2 + \left(\frac{\sigma_{P_0}}{P_0}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2}$$

$$\frac{\overline{\Delta V}}{\Delta t} = 7, 7 \cdot 10^{-5} \frac{M^3}{C}$$

Окончательное значение:

$$q_{max} = 91,09 \pm 0,01 \frac{\text{M}\Gamma}{\text{c}}$$

Оцениваем величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T=1^{\circ}C$. Для этого определяем теоретическое значение удельной теплоёмкости воздуха при постоянном давлении $c_{p\ theor}$ [Дж/г·К], считая воздух смесью двухатомных идеальных газов; оцениваем минимальную мощность $N_0\approx (0,095\pm 0,003)$ Вт $(N\geq c_pq\Delta T)$, необходимую для нагрева газа при максимальном расходе q_{max} на $\Delta T_0=1^{\circ}C$; учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R_H\approx 35$ Ом и в процессе опыта практически не меняется, определияем искомое значение тока

$$I_0 = \sqrt{\frac{N_0}{R_H}} \approx (52 \pm 2) \ mA$$

Е, мкВ	\$\Delta T\$, K	U, B	І, мА	N, Вт
297	7,297297297	6,1	169,00	1,03
157	3,857493857	3,2	91,78	0,29
174	4,275184275	4,1	117,86	0,48
226	5,552825553	5,1	146,11	0,75
151	3,71007371	2,5	73,53	0,18
102	2,506142506	1,7	48,53	0,08
58	1,425061425	0,5	16,35	0,01

5.1. $q = 91,09 \frac{M\Gamma}{c}$

$$k = (0.189 \pm 0,006) \mathrm{Bt}/K$$

5.2.
$$q = 79,26 \frac{\text{MF}}{\text{c}}$$

Е, мкВ	\$\Delta T\$, K	U, B	І, мА	N, Вт
340	8,353808354	6,5	179,46	1,16649
320	7,862407862	5,7	155,84	0,888288
273	6,707616708	4,9	135,48	0,663852
230	5,651105651	4,1	110,64	0,453624
165	4,054054054	3,1	82,12	0,254572
120	2,948402948	2	50,47	0,10094
85	2,088452088	1,1	24,08	0,026488

$$k = (0.169 \pm 0,005) \mathrm{Bt}/K$$

5.3. c_p

$$k=1691\,\mathrm{Дж}/(K\cdot\mathrm{kr})$$
 $lpha=0.035\,\mathrm{Bt}/K$

$$c_p = 3,60 \cdot R \frac{Дж}{\text{моль} \cdot \mathbf{K}}$$

6. Заключение

$$\alpha = 0.035\,\mathrm{Bt}/K$$

$$c_p = 3,60 \cdot R \frac{Дж}{\text{моль} \cdot \mathbf{K}}$$