Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 20

The Knapsack Problem

The 0-1 knapsack problem

- A thief robbing a store finds n items: the i-th item is worth v_i dollars and weights w_i pounds (v_i, w_i integers)
- The thief can only carry W pounds in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?

The fractional knapsack problem

- Similar to above
- The thief can take fractions of items

- Knapsack capacity: W
- There are n items: the i-th item has value v_i and weight w_i
- Goal:
 - Find fractions x_i so that for all $0 \le x_i \le 1$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

- Greedy strategy 1:
 - Pick the item with the maximum value
- E.g.:
 - W = 1
 - $w_1 = 100, v_1 = 2$
 - $W_2 = 1, V_2 = 1$
 - Taking from the item with the maximum value:

Total value (choose item 1) =
$$v_1W/w_1$$
 =

- 2/100
- Smaller than what the thief can take if choosing the other item

Total value (choose item 2) =
$$v_2$$
W/ w_2 = 1
CS 477/677 - Lecture 20

Greedy strategy 2:

- Pick the item with the maximum value per pound v_i/w_i
- If the supply of that element is exhausted and the thief can carry more: take as much as possible from the item with the next greatest value per pound
- It is good to order items based on their value per pound

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \dots \ge \frac{v_n}{w_n}$$

Alg.: Fractional-Knapsack (W, v[n], w[n])

- $1. \quad w = W$
- 2. While w > 0 and there are items remaining
- 3. pick item i with maximum v_i/w_i
- 4. $x_i \leftarrow \min(1, w/w_i)$
- 5. remove item i from list
- 6. $W \leftarrow W X_i W_i$
- w the amount of space remaining in the knapsack
- Running time: Θ(n) if items already ordered; else Θ(nlgn)

Fractional Knapsack - Example

• E.g.:

\$6/pound \$5/pound \$4/pound

Greedy Choice

Items: Optimal solution: X_2 X_3 X_1 X_n $X_1' \qquad X_2' \qquad X_3'$ Greedy solution: X_n'

- We know that: $x_1' \ge x_1$
 - greedy choice takes as much as possible from item 1
- Modify the optimal solution to take x₁ of item 1

 We have to decrease the quantity taken from some item j: the new x_j is decrease the y.X₁) W₁ V_j/W_j
- Increase in $Q_1^{r_0}Q_1^{t_1}V_1 \ge (X_1' X_1) W_1 V_1/W_1$
- Decrease in profit: $V_1 \ge W_1 V_i / W_i \Rightarrow V_1 / W_1 \ge V_i / W_i$

True, since x₁ had the best value/pound ratio

The 0-1 Knapsack Problem

- Thief has a knapsack of capacity W
- There are n items: for i-th item value v_i and weight w_i
- Goal:
 - Find coefficients x_i so that for all $x_i = \{0, 1\}$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

0-1 Knapsack - Greedy Strategy

\$6/pound \$5/pound \$4/pound

- None of the solutions involving the greedy choice (item 1) leads to an optimal solution
 - The greedy choice property does not hold

0-1 Knapsack - Dynamic Programming

- P(i, w) the maximum profit that can be obtained from items 1 to i, if the knapsack has size w
- Case 1: thief takes item i

$$P(i, w) \Rightarrow_i + P(i - 1, w - w_i)$$

Case 2: thief does not take item i

$$P(i, w) \neq (i - 1, w)$$

0-1 Knapsack - Dynamic Programming

Example:

W = 5

•				
P(i, w) = ma	x {v _i + P(i - '	1, w-w _i),	, P(i -	1, w) }

Item	Weigh t	Value
1	2	12
2	1	10
3	3	20
Δ	2	15

	0		1	2	3	4	5
0	0	•	0	0	√ 0/	0/	0
1	0		0	12 ×	/ 12 _v /	12	12
2	0		10 ←	12 +	22	22	22
3	0	•	10•	12	22.	/30 /	32
4	0		10	15	25	30	[_] 37

$$P(1, 1) = P(0, 1) = 0$$

$$P(1, 3) = max\{12+0, 0\} = 12$$

$$P(1, 4) = max\{12+0, 0\} = 12$$

$$P(1, 5) = max\{12+0, 0\} = 12$$

$$P(2, 1) = max\{10+0, 0\} = 10$$

$$P(4, 1) = P(3, 1) = 10$$

$$P(2, 2) = max\{10+0, 12\} = 12$$

$$P(3, 2) = P(2,2) = 12$$

$$P(4, 2) = max\{15+0, 12\} = 15$$

$$P(2, 3) = max\{10+12, 12\} = 22$$
 $P(3, 3) = max\{20+0, 22\} = 22$ $P(4, 3) = max\{15+10, 22\} = 25$

$$P(3, 3) = max\{20+0, 22\} = 22$$

$$P(4, 3) = max\{15+10, 22\}=25$$

$$P(2, 4) = max\{10+12, 12\} = 22$$
 $P(3, 4) = max\{20+10,22\} = 30$ $P(4, 4) = max\{15+12, 30\} = 30$

$$\Gamma(4, 4)$$
- IIIa $\chi(13, 12, 30)$ -30

$$P(2, 5) = max\{10+12, 12\} = 22$$
 $P(3, 5) = max\{20+12, 22\} = 32$ $P(4, 5) = max\{15+22, 32\} = 37$

$$P(3, 5) = max\{20+12,22\}=32$$

Reconstructing the Optimal Solution

- Item 4
- Item 2
- Item 1

- Start at P(n, W)
- When you go left-up ⇒ item i has been taken
- When you go straight up ⇒ item i has not been taken

Optimal Substructure

- Consider the most valuable load that weights at most W pounds
- If we remove item j from this load
- ⇒ The remaining load must be the most valuable load weighing at most W w_j that can be taken from the remaining n 1 items

Overlapping Subproblems

Huffman Codes

- Widely used technique for data compression
- Assume the data to be a sequence of characters
- Looking for an effective way of storing the data
- Binary character code
 - Uniquely represents a character by a binary string

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

	а	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

- 3 bits needed
- a = 000, b = 001, c = 010, d = 011, e = 100, f = 101
- Requires: $100,000 \times 3 = 300,000$ bits

Huffman Codes

• Idea:

 Use the frequencies of occurrence of characters to build a optimal way of representing each character

	а	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

Variable-Length Codes

E.g.: Data file containing 100,000 characters

	а	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

 Assign short codewords to frequent characters and long codewords to infrequent characters

$$a = 0$$
, $b = 101$, $c = 100$, $d = 111$, $e = 1101$, $f = 1100$
 $(45 \times 1 + 13 \times 3 + 12 \times 3 + 16 \times 3 + 9 \times 4 + 5 \times 4) \times 1,000$
 $= 224,000 \text{ bits}$

Prefix Codes

- Prefix codes:
 - Codes for which no codeword is also a prefix of some other codeword
 - Better name would be "prefix-free codes"
- We can achieve optimal data compression using prefix codes
 - We will restrict our attention to prefix codes

Encoding with Binary Character Codes

Encoding

 Concatenate the codewords representing each character in the file

• E.g.:

- a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
- $abc = 0 \times 101 \times 100 = 0101100$

Decoding with Binary Character Codes

Prefix codes simplify decoding

 No codeword is a prefix of another ⇒ the codeword that begins an encoded file is unambiguous

Approach

- Identify the initial codeword
- Translate it back to the original character
- Repeat the process on the remainder of the file

• E.g.:

```
- a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
```

$$-001011101 = 0 \times 0 \times 101 \times 1101 = aabe$$

Prefix Code Representation

- Binary tree whose leaves are the given characters
- Binary codeword
 - the path from the root to the character, where 0 means "go to the left child" and 1 means "go to the right child"
- Length of the codeword

Length of the path from root to the character leaf (depth of

Optimal Codes

- An optimal code is always represented by a full binary tree
 - Every non-leaf has two children
 - Fixed-length code is not optimal, variable-length is
- How many bits are required to encode a file?
 - Let C be the alphabet of characters
 - Let f(c) be the frequency of character c
 - Let d_T(c) be the depth of c's leaf in the tree T corresponding t\(\text{q}\) a prefix code

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$
 the cost of tree T

Constructing a Huffman Code

- Let's build a greedy algorithm that constructs an optimal prefix code (called a **Huffman code**)
- Assume that:
 - C is a set of n characters
 - Each character has a frequency f(c)
- Idea:

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

- The tree T is built in a bottom up manner
- Start with a set of |C| = n leaves
- At each step, merge the two least frequent objects: the
 frequency of the new node = sum of two frequencies
- Use a min-priority queue Q, keyed on f to identify the two least frequent objects

Readings

- For this lecture
 - Chapter 15
 - Coming next
 - Chapter 15