Московский государственный технический университет им. Н.Э. Баумана

Исследование производительности постреляционных баз данных с применением технологий тестирования

Постановка задачи

- Проблема:
- Цель исследования:
- Объекты исследования:
- Предмет исследования:

- Лавинообразный рост объемов данных: Ежедневно генерируются огромные массивы информации (к 2025 г. 175 зеттабайт).
- Критичность выбора СУБД: От выбора системы управления базами данных напрямую зависят производительность, масштабируемость и общая эффективность приложений.
- **Многообразие СУБД:** Наряду с традиционными реляционными СУБД (как PostgreSQL), широкое распространение получили NoSQL решения (документо-ориентированные как MongoDB, колоночные как Cassandra), каждое со своими архитектурными особенностями.
- Высокая цена ошибки: Неправильный выбор СУБД ведет к проблемам производительности, масштабирования и высоким эксплуатационным расходам.
 - YCSB.
- Провести комплексное сравнительное исследование производительности и масштабируемости постреляционных СУБД (MongoDB, Cassandra) и реляционной СУБД PostgreSQL.
- Оценить поведение СУБД при **обработке больших объемов данных** (~12 ГБ).
- Использовать **стандартизированные методы тестирования** (бенчмарк YCSB).
- Выявить **сильные и слабые стороны** каждой СУБД в различных сценариях использования (типах нагрузок).
- PostgreSQL (реляционная СУБД)
- MongoDB (документо-ориентированная NoSQL СУБД)
- Cassandra (колоночная NoSQL СУБД)
- Показатели **производительности** (пропускная способность, время отклика) и масштабируемости при различных рабочих нагрузках (CRUD, сканирование), генерируемых YCSB.

ПОСТАНОВКА ЗАДАЧИ

ПРОБЛЕМА, ЦЕЛЬ И ОБЪЕКТЫ ИССЛЕДОВАНИЯ

ПЕРЕЧЕНЬ РЕШЁННЫХ ЗАДАЧ

ЭТАПЫ ИССЛЕДОВАНИЯ И РЕАЛИЗАЦИИ

АРХИТЕКТУРНЫЕ РЕШЕНИЯ СУБД

Тезис

Архитектура СУБД определяет системные возможности

ВАЖНО

Реляционные СУБД дают консистентност ь, NoSQL — масштабируем ость и гибкость

Анализ архитектурных особенностей

PostgreSQL (реляционная СУБД)

- Реляционная модель данных с определенной схемой
- MVCC (Multiversion Concurrency Control) для изоляции транзакций
- Полная поддержка ACID-свойств (Atomicity, Consistency, Isolation, Durability)
- JSON-поддержка для работы с полуструктурированными данными
- Расширяемость через пользовательские типы данных и функции

Cassandra (колоночная СУБД)

- Колоночная модель данных для эффективности определенных типов запросов
- Распределенная архитектура без единой точки отказа
- Линейная масштабируемость при добавлении узлов
- Настраиваемая консистентность для каждой операции
- Оптимизация для записи архитектура, ориентированная на высокую производительность операций записи
- Сравнение подходов к обработке данных:
- Реляционный подход (PostgreSQL): строгая схема, нормализация, SQL, транзакционность
- Документоориентированный подход (MongoDB): гибкая схема, вложенные документы, горизонтальное масштабирование
- Колоночный подход (Cassandra): денормализация, широкие строки, распределение данных

MongoDB (документноориентированная СУБД)

- Колоночная модель данных для эффективности определенных типов запросов
- Распределенная архитектура без единой точки отказа
- Линейная масштабируемость при добавлении узлов
- Настраиваемая консистентность для каждой операции
- Оптимизация для записи архитектура, ориентированная на высокую производительность операций записи
- Сравнение подходов к обработке данных:
- Реляционный подход (PostgreSQL): строгая схема, нормализация, SQL, транзакционность
- Документоориентированный подход (MongoDB): гибкая схема, вложенные документы, горизонтальное масштабирование
- Колоночный подход (Cassandra): денормализация, широкие строки, распределение данных

3

ТЕХНОЛОГИИ ТЕСТИРОВАНИЯ СУБД

Обзор инструментов бенчмаркинга

СПЕЦИАЛИЗИРОВАННЫЕ БЕНЧМАРКИ

pgBench

только для PostgreSQL

Cassandra-stress

специально для Cassandra, CQL операции

MongoDB Benchmarking Tools

mongoperf для тестирования дисковой подсистемы

Apache JMeter

универсальный, но с ограничениями для NoSQL

УНИВЕРСАЛЬНЫЕ БЕНЧМАРКИ

TPC Benchmarks (TPC-C, TPC-H)

индустриальные стандарты, сложны в настройке Sysbench

скриптуемый, ограниченная поддержка NoSQL

Обоснование выбора YCSB

КРОСС-ПЛАТФОРМЕННОСТЬ

- Поддержка всех трех исследуемых СУБД
- Единый инструмент и единые метрики для сопоставимости результатов

СТАНДАРТИЗИРОВАННЫЕ РАБОЧИЕ НАГРУЗКИ

2

- Workload A: 50% чтение / 50% обновление (Update heavy)
- Workload B: 95% чтение / 5% обновление (Read heavy)
- Workload C: 100% чтение (Read only)
- Workload D: 95% чтение / 5% вставка (Read latest)
- Workload E: 95% сканирование / 5% вставка (Short ranges scan)
- Workload F: 50% чтение / 50% чтение-модификация-запись

РЕЛЕВАНТНЫЕ МЕТРИКИ

3

- Пропускная способность (ops/sec)
- Задержки операций (среднее, перцентили Р95, Р99)
- Конфигурируемость параметров тестирования

АНАЛИЗ РЫНКА ИНСТРУМЕНТОВ БЕНЧМАРКИНГА

ГЛОБАЛЬНЫЕ ТЕНДЕНЦИИ И СТРУКТУРНЫЕ ИЗМЕНЕНИЯ РЫНКА СУБД

АНАЛИЗ РЫНКА ИНСТРУМЕНТОВ БЕНЧМАРКИНГА

Глобальные тенденции и структурные изменения рынка СУБД

ВЫБОР И АНАЛИЗ ДАТАСЕТА

Характеристики и преимущества

Выбранный датасет

- Источник: Метаданные научных публикаций в JSON-формате
- Объём: ~12 ГБ
- Количество записей: 4,894,081
- Структура: Сложные вложенные JSON-документы с метаданными публикаций

Преимущества выбранного датасета

- Реалистичность: отражает типичную структуру данных современных приложений
- Сложность структуры: содержит вложенные объекты, массивы, различные типы данных
- масштаб: достаточный объем для выявления характеристик производительности
- Универсальность: подходит для тестирования различных моделей данных

ВЫБОР И АНАЛИЗ ДАТАСЕТА

Детальное изучение данных позволяет выявить оптимальные архитектурные решения и избежать проблем производительности

Структура и особенности данных

Структура JSON-документов:

- Основные поля: title, year, authors, abstract, references
- Вложенные объекты: venue (место публикации), fos (области знаний)
- Массивы: authors, references, indexed_abstract
- Метаданные: идентификаторы, индексы, временные метки

Вызовы для различных СУБД

- MongoDB: прямая совместимость с JSON, сохранение структуры
- PostgreSQL: необходимость трансформации в реляционную структуру или использование JSONB
- Cassandra: требование денормализации и выравнивания вложенных структур

Значение для тестирования

- Проверка эффективности обработки реальных полуструктурированных данных
- Оценка производительности при различных паттернах доступа
- Выявление ограничений каждой архитектурной модели

СТРАТЕГИИ ПОДГОТОВКИ ДАННЫХ

Анализ архитектурных особенностей

PostgreSQL (реляционная СУБД)

- Реляционная модель данных с определенной схемой
- MVCC (Multiversion Concurrency Control) для изоляции транзакций
- Полная поддержка ACID-свойств (Atomicity, Consistency, Isolation, Durability)
- JSON-поддержка для работы с полуструктурированными данными
- Расширяемость через пользовательские типы данных и функции

Cassandra (колоночная СУБД)

- Колоночная модель данных для эффективности определенных типов запросов
- Распределенная архитектура без единой точки отказа
- Линейная масштабируемость при добавлении узлов
- Настраиваемая консистентность для каждой операции
- Оптимизация для записи архитектура, ориентированная на высокую производительность операций записи
- Сравнение подходов к обработке данных:
- Реляционный подход (PostgreSQL): строгая схема, нормализация, SQL, транзакционность
- Документоориентированный подход (MongoDB): гибкая схема, вложенные документы, горизонтальное масштабирование
- Колоночный подход (Cassandra): денормализация, широкие строки, распределение данных

MongoDB (документноориентированная СУБД)

- Колоночная модель данных для эффективности определенных типов запросов
- Распределенная архитектура без единой точки отказа
- Линейная масштабируемость при добавлении узлов
- Настраиваемая консистентность для каждой операции
- Оптимизация для записи архитектура, ориентированная на высокую производительность операций записи
- Сравнение подходов к обработке данных:
- Реляционный подход (PostgreSQL): строгая схема, нормализация, SQL, транзакционность
- Документоориентированный подход (MongoDB): гибкая схема, вложенные документы, горизонтальное масштабирование
- Колоночный подход (Cassandra): денормализация, широкие строки, распределение данных

3

СТРАТЕГИИ ПОДГОТОВКИ ДАННЫХ

mongoDB, прямой ипорт JSON

PostgreSQL, многоэтапный процесс

СТРАТЕГИИ ПОДГОТОВКИ ДАННЫХ

Cassandra, многоэтапный процесс

КЛЮЧЕВЫЕ РАЗЛИЧИЯ

MongoDB:

естественная совместимость

PostgreSQL:

баланс между структурированностью и гибкостью

Cassandra:

требование полной денормализации

АППАРАТНАЯ И ПРОГРАММНАЯ КОНФИГУРАЦИЯ

Intel Core i9-12900H (16 виртуальных ядер, 2.9 ГГц)

24 ГБ DDR5 RAM, 4800Mhz

NVMe SSD Western Digital S850NX (1512 ГБ)

ВИРТУАЛИЗАЦИЯ

mware VMWare Workstation Pro 17

ПРОГРАММНОЕ ОКРУЖЕНИЕ

Kubuntu 24.04 LTS

MongoDB 8.0.6

PostgreSQL 17.4

Cassandra 4.1.8

ИНСТРУМЕНТЫ

YCSB 0.17.0

Python 3.9.21

JDK 11.0.26

ТЕСТОВОЕ ОКРУЖЕНИЕ

ПРИНЦИПЫ ОБЕСПЕЧЕНИЯ ОБЪЕКТИВНОСТИ:

- Идентичное окружение для всех тестов
- "Холодный" старт перед каждым тестом
- Контролируемые условия и изоляция процессов

ОБЕСПЕЧЕНИЕ НАДЁЖНОСТИ **РЕЗУЛЬТАТОВ**

- Трехкратное повторение каждого теста
- Статистическая обработка результатов
- Контроль внешних факторов и системных ресурсов
- Документирование условий проведения тестов

СТАНДАРТИЗАЦИЯ ПРОЦЕДУР

- Одинаковая последовательность тестирования
- Фиксированные интервалы между тестами
- Автоматизация сбора метрик и результатов

Техническая реализация загрузки

Основные технические вызовы:

- Различия в форматах данных между СУБД
- Совместимость драйверов и API
- Оптимизация процесса загрузки для больших объемов
- Обеспечение целостности данных при трансформации

•Прямое использование mongoimport для JSON

- •Настройка параметров импорта для оптимизации скорости
- •Создание индексов после загрузки для минимизации времени

•Пакетная загрузка с использованием psycopg2-binary

- •Оптимизация SQL-запросов для трансформации JSON в реляционную структуру
- •Использование СОРҮ для быстрой загрузки больших объемов

Результаты технической реализации:

- •Успешная загрузка 4,894,081 записей во все три СУБД
- •Сохранение целостности данных при всех трансформациях
- •Подготовка единообразных тестовых таблиц

Cassandra

- •Предобработка данных (JSON → NDJSON, выравнивание, валидация данных)
- •Конфигурация DSBulk (создание конфигурационных файлов, настройка маппинга полей м/уисточником и целевой схемой, оптимизация параметров загрузки)

MongoDB

PostgreSQL

ОПТИМИЗАЦИЯ КОНФИГУРАЦИЙ СУБД

РЕЗУЛЬТАТ ОПТИМИЗАЦИИ

КОНФИГУРАЦИЯ ҮСЅВ

Параметры тестирования производительности

ПРОЦЕДУРА ТЕСТИРОВАНИЯ

- Трехкратное повторение каждой комбинации
- Перезапуск систем между тестами
- Продолжительность: ≥120 минут
- Идентичные параметры для всех СУБД
- Единая методология измерения
- Стандартизированная отчетность

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Zipfian распределение имитирует "горячие" точки
- Минимизация влияния кэширования
- Обеспечение сопоставимости результатов
- Полный спектр нагрузок

ПРОВЕДЕНИЕ ТЕСТОВ

Методология и контроль качества

АВТОМАТИЗАЦИЯ СБОРА РЕЗУЛЬТАТ ОВ

РҮТНОМ-СКРИПТ ДЛЯ ОБРАБОТКИ ДАННЫХ

parse_ycsb.py Автоматизированный парсинг результатов YCSB тестирования Функциональность скрипта: • Автоматическое извлечение метрик из отчетов YCSB • Парсинг различных форматов выходных данных • **Агрегация результатов** по СУБД, workload'ам и потокам • Расчет статистических показателей (среднее, медиана, стандартное отклонение) Структура выходных данных: CSV-файлы Агрегированные результаты для каждой СУБД Сводные таблицы Данные для сравнительного анализа JSON-файлы Интеграция с системами визуализации

Извлекаемые метрики:

ОБЩИЕ МЕТРИКИ

- Время выполнения (RunTime)
- Пропускная способность (Throughput, ops/sec)

МЕТРИКИ СБОРКИ МУСОРА

- G1 Young Generation (количество, время, %)
- G1 Old Generation (количество, время, %)

ОПЕРАЦИИ YCSB

- READ, UPDATE, INSERT, SCAN
- READ-MODIFY-WRITE, CLEANUP

ЗАДЕРЖКИ ОПЕРАЦИЙ

- Среднее значение (AverageLatency)
- Минимум и максимум
- Перцентили: Р95, Р99

ВСЕГО МЕТРИК

60+

параметров

ФОРМАТ ВЫВОДА

CSV

структура

АВТОМАТИЗАЦИЯ

100% процесса Микросекунды (µs)

точность

АБТОМАТИЗАЦИ

визуализация и рекомендации

APACHE SUPERSET ДАШБОРДЫ

РЕКОМЕНДАЦИИ ПО ВЫБОРУ СУБД: MongoDB ОПТИМАЛЬНЫЕ СЦЕНАРИИ: • Приложения с гибкой схемой данных • Системы с преобладанием операций чтения • Сложные вложенные документы WORKLOAD D WORKLOAD E 47.7k ops/sec 23.9k ops/sec Cassandra СИЛЬНЫЕ СТОРОНЫ: • Системы с высокой интенсивностью записи • Лидер по пропускной способности Workload A-C • Низкие задержки операций обновления WORKLOAD A-C WORKLOAD E 24.2-29.2k ops/sec 1.81k ops/sec ОГРАНИЧЕНИЯ: Низкая эффективность сканирования **PostgreSQL УНИВЕРСАЛЬНОСТЬ:** • Исключительная производительность Workload D Полноценная АСІD-совместимость • Нелинейная масштабируемость с пиком при 128 потоков WORKLOAD D WORKLOAD E 55.8k ops/sec 9.62k ops/sec

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИ Я

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОИЗВОДИТЕЛЬНОСТИ

A, B, C WORKLOAD D Cassandra PostgreSQL WORKLOAD E WORKLOAD F MongoDB Cassandra

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИ Я

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОИЗВОДИТЕЛЬНОСТИ

РАДАРНЫЕ ДИАГРАММЫ СТОЛБЧАТАЯ ДИАГРАММА PostgreSQL MongoDB Cassandra PostgreSQL MongoDB Cassandra

ЛИДЕРЫ ПО WORKLOAD'AM A, B, C Cassandra WORKLOAD D PostgreSQL WORKLOAD E MongoDB WORKLOAD F Cassandra

МАСШТАБИРУЕМОСТЬ И ЗАДЕРЖКИ

ПОВЕДЕНИЕ ПРИ УВЕЛИЧЕНИИ ПАРАЛЛЕЛИЗМА

ПИКОВЫЕ ЗНАЧЕНИЯ POSTGRESQL 32.8k @ 128 потоков MONGODB 27.0k @ 64-128 потоков CASSANDRA 23.2k @ 32 потока

ХАРАКТЕРИСТИКИ МАСШТАБИРУЕМОСТИ

- → MongoDB: плавный рост до 27.0k ops/sec при 64-128 потоках
- → Cassandra: пик 23.2k ops/sec при 32 потоках, затем снижение
- → PostgreSQL: нелинейное поведение с максимумом 32.8k ops/sec при 128 потоков

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ

- → Не существует универсального решения для всех типов нагрузок
- → Выбор СУБД должен основываться на конкретных требованиях приложения
- → Важность предварительного тестирования на реальных данных

заключение

ВКЛАД ИССЛЕДОВАНИЯ И ПЕРСПЕКТИВЫ

заключение

ВКЛАД ИССЛЕДОВАНИЯ И ПЕРСПЕКТИВЫ

Спасибо!

