Parallel Lines

Definition 1 (Parallel). Let ℓ_1 and ℓ_2 be lines in an incidence geometry. We say that ℓ_1 and ℓ_2 are parallel, denoted $\ell_1 \parallel \ell_2$, if either $\ell_1 \cap \ell_2 = \emptyset$ or $\ell_1 = \ell_2$.

Question: Suppose we have a line ℓ and a point x in an incidence geometry. What are the lines which pass through p and are parallel to ℓ ?

Examples

 \mathbb{R}^2 Last time we gave a nice way to detect whether two lines intersect in a single point in terms of determinants. This criterion can be rephrased as follows: If $A = (a_1, b_1)$, $B = (b_1, b_2)$, $C = (c_1, c_2)$, and $D = (d_1, d_2)$ are points in \mathbb{R}^2 with $A \neq B$ and $C \neq D$, then $\overrightarrow{AB} \parallel \overrightarrow{CD}$ if and only if

$$\det \begin{bmatrix} b_1 - a_1 & d_1 - c_1 \\ b_2 - a_2 & d_2 - c_2 \end{bmatrix} = 0.$$

With this, we can show the following.

Proposition 1. If $\ell = \overleftrightarrow{AB}$ is a line and $C \notin \ell$ a point in \mathbb{R}^2 , then there is exactly one line passing through C which is parallel to ℓ .

Proof. To see existence, note that $\overleftarrow{C(C+B-A)} \parallel \overleftarrow{AB}$ since

$$\det \begin{bmatrix} b_1 - a_1 & c_1 + b_1 - a_1 - c_1 \\ b_2 - a_2 & c_2 + b_2 - a_2 - c_2 \end{bmatrix} = \det \begin{bmatrix} b_1 - a_1 & b_1 - a_1 \\ b_2 - a_2 & b_2 - a_2 \end{bmatrix}$$

$$= \det \begin{bmatrix} b_1 - a_1 & 0 \\ b_2 - a_2 & 0 \end{bmatrix}$$

$$= 0.$$

To see uniqueness, suppose $X = (x_1, x_2)$ is a point (different from C) such that $\overrightarrow{CX} \parallel \overrightarrow{AB}$. Then

$$0 = \det \begin{bmatrix} x_1 - c_1 & b_1 - a_1 \\ x_2 - c_2 & b_2 - c_2 \end{bmatrix} = \det \begin{bmatrix} x_1 - c_1 & c_1 + b_1 - a_1 - c_1 \\ x_2 - c_2 & c_2 + b_2 - a_2 - c_2 \end{bmatrix}.$$

So X, C, and C+B-A are collinear, and thus $\overleftrightarrow{CX}=\overleftarrow{C(C+B-A)}$.

- \mathbb{Q}^2 Similar to the Cartesian Plane, the Rational Plane has unique parallel lines through a given point.
- \mathbb{R}^3 If ℓ is a line and $x \notin \ell$ a point in Three Space, then there are *infinitely many* lines through x which are parallel to ℓ . (Why?)
- \mathbb{D} Suppose ℓ is a line and x a point in the Unit Disk. There are infinitely many lines passing through x which are parallel to ℓ . To see why, remember that ℓ is contained in a line $\ell_{A,B}$ in the Cartesian Plane. Choose any point y on this Cartesian line which is not in the unit disk. Now $\ell' = \ell_{x,y} \cap \mathbb{D}$ is parallel to ℓ .

 $\mathcal F$ In the Fano Plane, no two lines are parallel. In particular, if ℓ is a line and $x \notin \ell$ a point, there are no lines passing through x which are parallel to ℓ .

Considering these examples, there seem to be three qualitatively different possibilities for the answer to our Question about parallel lines. This observation is what motivates the following definition.

Definition 2 (The Parallel Postulates). We say that an incidence geometry \mathcal{P} is

- **Elliptic** if there are no lines passing through x and parallel to ℓ , for all lines ℓ and points $x \notin \ell$.
- **Euclidean** if there is exactly one line passing through x and parallel to ℓ , for all lines ℓ and points $x \notin \ell$.
- Hyperbolic if there are infinitely many lines passing through x and parallel to ℓ , for all lines ℓ and points $x \notin \ell$.

With this definition, \mathbb{R}^2 and \mathbb{Q}^2 are Euclidean, \mathcal{F} is Elliptic, and \mathbb{D} and \mathbb{R}^3 are Hyperbolic. It is important to note that a given incidence geometry need not satisfy any of these properties!

Transitivity of Parallelism

The kinds of "geometries" that arise from our three different Parallel Postulates will be different - perhaps drastically so - as illustrated by the following result.

Proposition 2. Suppose \mathcal{P} is a Euclidean incidence geometry, with lines ℓ_1 , ℓ_2 , and ℓ_3 . If $\ell_1 \parallel \ell_2$ and $\ell_2 \parallel \ell_3$, then $\ell_1 \parallel \ell_3$. That is, the relation "is parallel to" is transitive.

Proof. If $\ell_1 \cap \ell_2 = \emptyset$, then $\ell_1 \parallel \ell_3$ by definition. Suppose instead that ℓ_1 and ℓ_3 have at least one point in common, say p. Since ℓ_1 is parallel to ℓ_2 , note that $p \notin \ell_2$. Since \mathcal{P} is Euclidean, there is exactly one line passing through p which is parallel to ℓ_2 ; call this line ℓ . But now ℓ_1 is a line parallel to ℓ_2 which passes through p, so that $\ell_1 = \ell$. Likewise, $\ell_3 = \ell$. Hence $\ell_1 = \ell_3$, and so $\ell_1 \parallel \ell_3$ as claimed.

Note that in a Hyperbolic incidence geometry, this need not be the case. If we have two lines ℓ_1 and ℓ_3 which pass through a point p and are parallel to a given line ℓ_2 , then ℓ_1 and ℓ_3 are *not* parallel. And in an Elliptic incidence geometry the transitivity of parallelism is irrelevant: there are no pairs of parallel lines to begin with.

A Strange Example

To demonstrate that an incidence geometry need not be either Elliptic, Euclidean, or Hyperbolic, consider the following example, which we will call the Two-Pointed Line. Let $P = \mathbb{R} \cup \{A, B\}$. We define lines of four types:

- \mathbb{R} is a line of Type 1;
- $\{x, A\}$, where $x \in \mathbb{R}$, is a line of Type 2;
- $\{x, B\}$, where $x \in \mathbb{R}$, is a line of Type 3; and
- $\{A, B\}$ is a line of Type 4.

Now consider the following.

- 1. Show that the Two-Pointed Line is an incidence geometry.
- 2. Find a line ℓ and a point x in the Two-Pointed Line such that there is exactly one line passing through x and parallel to ℓ .
- 3. Find a line ℓ and a point x in the Two-Pointed Line such that there are infinitely many lines passing through x and parallel to ℓ .

From these facts we can conclude that the Two-Pointed Line is an incidence geometry which is neither Elliptic, Euclidean, nor Hyperbolic. Can you think of a reason why this example is different from those we've seen so far?