OPERATIONAL AMPLIFIER (OP-AMP)

CLOSED-LOOP CONFIGURATIONS

- Open-loop voltage gain of OPAMP is very high; such high gain is not required in most applications
- In order to reduce gain, a part of output signal is fed back to the inverting input terminal (called negative feedback)
- Many other OPAMP characteristics are improvised with this

- Input is applied to inverting terminal
- Non-inverting is grounded
- Feedback is given to inverting terminal through resistor R_F
- Assuming v_o is less than V_{CC} since A_d is very high, v_{id} should be very small; v_{id} taken as almost zero
- Current entering OPAMP input terminal is almost zero

$$i_1 = \frac{v_{in} - 0}{R_1} = \frac{v_{in}}{R_1}$$

$$i_2 = \frac{0 - v_o}{R_F} = \frac{-v_o}{R_F}$$

$$i_1 = i_2$$

$$\frac{v_{in}}{R_1} = \frac{-v_o}{R_F}$$

$$v_o = -v_{in} \frac{R_F}{R_1}$$

$$v_o = -v_{in} \frac{R_F}{R_1} \qquad A_V = \frac{v_o}{v_{in}} = -\frac{R_F}{R_1}$$

PROBLEMS

- 1. For an inverting amplifier using OPAMP, R_1 =1K, R_F =100K, v_{in} =0.1sin(ωt). Find v_o .
- 2. For an inverting amplifier, R_1 =10K, R_F =100K. Calculate v_o if v_i = 25 mV dc.
- 3. An ac signal of rms value 2 mV needs to be amplified to 1.024 V rms, 180 degree phase shifted. Design a suitable amplifier choosing R_1 =1.2K
- 4. Design an amplifier to get an output amplified by 25 times of the input signal.

Find the output voltage Vo for the following circuit, where Vin is the input voltage .

Find the range of output voltage gain adjustment for the following circuit, where Vi is the input voltage.

What input voltage will result if an output voltage Vo = 2V for the following circuit, where Vi is the input voltage .

EXAMPLE 7. Calculate the output voltage Vo for the following circuit, where Vi is the input voltage

Solution:

The output of Op-Amp A1 is (say)

$$v_{o1} = -\frac{100}{20}v_i = -5v_i$$

The output of Op-Amp A2 is

$$= -\frac{200}{25}v_{o1}$$

$$= -8(-5v_i)$$

$$= 40v_i)$$

Find an expression for the output voltage Vo for the following circuit, where Vin is the input voltage .

Find the expression for output voltage V_0 of the following circuit.

Soln. Apply KCL.

-Thank you