- #paper ~ Computer Vision
 - https://arxiv.org/abs/1704.04861
 - Section 2 contains a great #list of prior works.
 - Sequel papers:
 - MobileNetV2
 - Searching for MobileNetV3
 - Mentioned papers:
 - Going Deeper with Convolutions
 - Flattened Convolutional Neural Networks
 - Mentioned topics:
 - Side heads?
 - Label Smoothing
 - Knowledge Distillation

Summary

- The model uses Depthwise Separable Convolutions to reduce the number of parameters and multiply-accumulate operations.
- There are also 2 model-specific hyperparameters:
 - Width multiplier α where $\alpha \in (0,1]$.
 - The number of both input and output channels scales by α .
 - **Resolution** multiplier ρ where $\rho \in (0,1]$.
 - The input image and the internal representation of every layer is reduced by ρ .

Usage

- Object Detection
 - Under both Faster-RCNN and Single Shot MultiBox Detector, SSD.
- Fine-grained Image Classification
- Photo Geolocation Estimation
- Facial Attribute Classification
 - Using Triplet Loss.

Face Recognition (Embeddings)

• Implementation details

• General Matrix Multiply, GEMM

Training Process

- MobileNets were trained using RMSprop Optimization with Asynchronous Stochastic Gradient Descent.
- Very little or no weight decay on the depthwise kernels.
 - Because there are too few parameters in them.

Ideas

- What if we used 3×3 depthwise convolutions instead of 1×1 ?
 - Or probably $k \times k$ with a stride of k for small k?