2017/9/17 Mac's and serial TTY's

Mike's PBX Cookbook

Mac's and serial TTY's

Mac's are excellent tools for accessing serial device TTY ports (to console into PBX's, switches, and routers). You just need a serial to USB adapter, the right driver, and some Terminal <u>software</u>. You can use <u>screen</u>, although <u>Minicom</u> (or a <u>GUI program</u>) offer more features and functionality.

Drivers:

Most Serial-to-USB adapters will work on a Mac with one of the following OS X drivers... **UPDATE:** Mavericks (10.9) includes a driver for FTDI-based Serial-to-USB adapters.

➤ Prolific PL2303: PL2303 MacOSX 1 6 0.zip
➤ FTDI USB Serial: FTDIUSBSerialDriver v2 3.zip

NOTE: It may be necessary to remove any previous driver before installing a newer one, eg: \$ sudo rm -rf /System/Library/Extensions/ProlificUsbSerial.kext

If your adapter doesn't work with either of these, try the following sources:

- Silicon Labs CP210x USB to UART Bridge Virtual COM Port (VCP) drivers.
- Belkin USB Serial Adapters: F5U257, F5U103, F5U003 (poor OS X support).
- Keyspan serial-USB adapter drivers can be found in their Support Section.

After installing the correct driver, plug in your USB-Serial adapter, and open a **Terminal** session (Applications/Utilities). Enter the command ls /dev/cu.*, and look for something like usbserial (or similar):

\$ ls /dev/cu.*
/dev/cu.Bluetooth-Modem /dev/cu.iPhone-WirelessiAP
/dev/cu.Bluetooth-PDA-Sync /dev/cu.usbserial

This indicates the USB-Serial driver is working. Select this port name in a terminal program.

Note: Check your adapter works after an OS Update, as you may have to re-install the driver.

You might notice that each serial device shows up twice in /dev, once as a tty.* and once as a cu.*. So, what's the difference? Well, TTY devices are for <u>calling into</u> UNIX systems, whereas CU (Call-Up) devices are for <u>calling out</u> from them (eg, modems). We want to call-out from our Mac, so /dev/cu.* is the correct device to use.

The technical difference is that /dev/tty.* devices will wait (or listen) for DCD (data-carrier-detect), eg, someone calling in, before responding. /dev/cu.* devices do not assert DCD, so they will always connect (respond or succeed) immediately.

Software:

Having installed the right driver, our USB-Serial adapter will show up in **/dev/cu.*** (shown above). We now need to install some terminal emulation software before we can connect to anything.

- Two terminal methods are **Screen** and **Minicom**
- For a GUI solution, see OS X Serial Port Apps

Note: If you can't find a driver for your adapter (eg, Belkin), try <u>Serial</u> which has built-in support for many USB-Serial devices.

Screen

It's not actually necessary to download an install extra software, as you can use the Mac OS X built in Terminal and **screen**. Screen lacks some features, but it does include VT100/ANSI terminal emulation, and can be extremely useful.

- 1. Open an OS X terminal session (window)
- 2. Find the right TTY device. Type: ls /dev/cu.*

With the USB-Serial adapter plugged in, you'll get a list, including something like this:

\$ 1s /dev/cu.*
/dev/cu.Bluetooth-Modem /dev/cu.iPhone-WirelessiAP
/dev/cu.Bluetooth-PDA-Sync /dev/cu.usbserial

This website makes use of cookies to enhance browsing experience and provide additional functionality. Details

Allow cookies

2017/9/17 Mac's and serial TTY's

The 9600 at the end is the baud rate. You can use any standard rate, eg, 9600, or 19200 for a Sig Server!

4. To quit the screen app, type CTRL-A, then CTRL-\.

Type man screen in Terminal for further information on **screen**. (use 'enter' or 'space' to scroll, and 'q' to quit).

CATION CONTROL OF THE ACTION O

Minicom

- 1. Download and run the minicom 2.2 package installer.
- 2. Then manually edit your \$PATH with sudo nano /private/etc/paths.
- 3. Add the following line to the bottom of the file: /opt/minicom/2.2/bin, save and exit then relaunch the terminal.

Run minicom -s first to configure your serial interface device name, and other options. Then, **Save setup as dfl** (default) and **Exit**. Your serial interface device name is found with ls /dev/cu.* (as shown above). Always launch **minicom**, with your selected serial adapter plugged in and available to avoid an error. In the example below, the serial device is /dev/cu.usbserial:

Configuration Options

Connected to Port

Command Summary

In **minicom**, commands can be called by **CTRL-A <key>**, for example, change your serial port settings with **CTRL-A P** Press **CTRL-A Z** for a Command Summary, and help on special keys. Enter **CTRL-A X** to quit.

HINT: Change your OS X terminal window size to 80x25 (1 line more) so you can see the bottom **Minicom** status bar. **(Terminal Preferences ▶ Settings ▶ Window)**. Open a new window for this change to take effect.

Note, the minicom installer creates /opt, and its not hidden in the OS X finder. Rectify this with: sudo chflags hidden /opt

Connecting

With handshaking set to software (xon/xoff) or none, which covers most devices, serial data communication needs just 3 wires: RXD (2), TXD (3), and GND (5). Generally, hitting <enter> should cause a response, or <ctrl-r> should 're-draw' the screen. If you don't get any characters, try adding a Null-Modem cable or adapter, which swaps RXD and TXD (pins 2 and 3). Signal ground is Pin 5 in a DB-9, or Pin 7 in a DB-25.

Pin Functions for RS-232

Handshake		
RTS	(7)	Request to Send
CTS	(8)	Clear to Send
DSR	(6)	Data Set Ready
DCD	(1)	Data Carrier Detect
DTR	(4)	Data Terminal Ready

This website makes use of cookies to enhance browsing experience and provide additional functionality. Details

2017/9/17 Mac's and serial TTY's