Chapter 1

Fuzzy Mapping

Definition 1 (Fuzzy Mapping). Let X and Y be two non-empty set and let $f: X \to Y$ be an ordinary mapping. A fuzzy mapping $f^{\to}: \langle \mathcal{F}(X), \delta \rangle \to \langle \mathcal{F}(Y), \mu \rangle$ is defined by $f^{\to}(A)(y) = \bigvee \{A(x) | x \in X, f(x) = y\} \forall y \in Y$, and a fuzzy reverse mapping $f^{\leftarrow}: \langle \mathcal{F}(Y), \mu \rangle \to \langle \mathcal{F}(X), \delta \rangle$ is defined by $f^{\leftarrow}(B)(x) = B(f(x)) \forall x \in X$.

Definition 2 (Continuous Fuzzy Mapping). Let $\langle \mathcal{F}(X), \delta \rangle$ and $\langle \mathcal{F}(Y), \mu \rangle$ be two fuzzy topological space. A fuzzy mapping $f^{\rightarrow} : \langle \mathcal{F}(X), \delta \rangle \rightarrow \langle \mathcal{F}(Y), \mu \rangle$ is called continuous if for each $v \in \mu$, $f^{\rightarrow}(v) \in \delta$.

Definition 3 (Open Fuzzy Mapping). Let $\langle \mathcal{F}(X), \delta \rangle$ and $\langle \mathcal{F}(Y), \mu \rangle$ be two fuzzy topological space. A fuzzy mapping f^{\rightarrow} is called open if for each $u \in \delta$, $f^{\rightarrow}(u) \in \mu$.

Definition 4 (Closed Fuzzy Mapping). Let $\langle \mathcal{F}(X), \delta \rangle$ and $\langle \mathcal{F}(Y), \mu \rangle$ be two fuzzy topological space. A fuzzy mapping f^{\rightarrow} is called closed if for each closed set $F \in \delta$, $f^{\rightarrow}(F)$ is closed in μ .

Theorem 1.0.1. Let $\langle \mathcal{F}(X), \delta \rangle$ and $\langle \mathcal{F}(Y), \mu \rangle$ be two fuzzy topological spaces and $f: X \to Y$ be an ordinary mapping. Then for each $a \in [0, 1]$ and every $A \in \mathcal{F}(X)$, $f^{\to}(aA) = af^{\to}(A)$.

Proof. For all $a \in [0,1]$, $\forall A \in \mathcal{F}(X)$ and $\forall y \in Y$ we have,

$$f^{\to}(aA)(y) = \bigvee \{ (aA)(x) | x \in X, \ f(x) = y \}$$

$$= \bigvee \{ a \wedge (A)(x) | x \in X, \ f(x) = y \}$$

$$= a \wedge (\bigvee \{ (A)(x) | x \in X, \ f(x) = y \})$$

$$= a \wedge f^{\to}(A)(y)$$

$$= (af^{\to}(A))(y)$$

Thus, $f^{\rightarrow}(aA) = af^{\rightarrow}(A)$.