10 décembre 2021 CIR 1 et CNB 1

Quiz de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

т	, •		, ,		1 .	,	4
 Les	questions	penvent	presenter	line oi	ı plusieurs	reponses	correctes.
	questions	Pourion	Proportion	CLIEC O	r process	I OP OILDOD	COLLCCCO.

- Noircir les cases, ne pas faire des croix sur les cases.
- En cas d'erreur, utilisez du « blanco ».
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

BON COURAGE!

1. Soit $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 1}$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?

$$\lim_{x\to +\infty} f(x) = -1 \qquad \text{(2)} \blacksquare \quad \lim_{x\to +\infty} f(x) = 1 \qquad \text{(3)} \blacksquare \quad \lim_{x\to -\infty} f(x) = 1$$

$$\lim_{x\to -\infty} f(x) = -1 \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

2. Soit $f(x) = \frac{1}{x+1} + \frac{3x}{(x+1)(x^2-x+1)}$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?

$$\begin{array}{lll} \hbox{$_{(1)}\square$} & \lim_{x\to -1^+} f(x) = +\infty & \hbox{$_{(2)}\square$} & \lim_{x\to -1^-} f(x) = -\infty & \hbox{$_{(3)}\blacksquare$} & \lim_{x\to -1} f(x) = 0 \\ \\ \hbox{$_{(4)}\square$} & \lim_{x\to -1} f(x) = -2 & \hbox{$_{(5)}\square$} & \text{aucune des réponses précédentes n'est correcte.} \end{array}$$

3. Soit $f(x) = \sqrt{x^2 + x + 1} + x$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?

$$\lim_{x\to -\infty} f(x) = +\infty \qquad \text{(2)} \qquad \lim_{x\to -\infty} f(x) = -\infty \qquad \text{(3)} \blacksquare \quad \lim_{x\to -\infty} f(x) = -\frac{1}{2}$$

$$\text{(4)} \square \quad f \text{ n'admet pas de limite en } -\infty \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

4. Cocher les formes indéterminées.

$${}_{(1)}\blacksquare \quad +\infty-\infty \qquad {}_{(2)}\square \quad 0+\infty \qquad {}_{(3)}\blacksquare \quad 1^\infty \qquad {}_{(4)}\square \quad \frac{0}{\infty} \qquad {}_{(5)}\blacksquare \quad \infty^0$$

5. Soit $f(x) = (x^5 - x^3 + 1)e^{-x}$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?

$$\lim_{x\to +\infty} f(x) = 0 \qquad \text{(2)} \square \quad \lim_{x\to +\infty} f(x) = +\infty \qquad \text{(3)} \square \quad \lim_{x\to -\infty} f(x) = 0$$

$$\lim_{(4)} \square \quad \lim_{x\to +\infty} f(x) = 1 \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

- 6. Parmi les limites suivantes lesquelles sont vraies?
 - $\lim_{x \to 0^+} x^{\alpha} \ln x = 0 \text{ avec } \alpha > 0$ (1)
 - $\lim_{x \to +\infty} \lim \frac{x^{\alpha}}{e^{\beta x}} = +\infty \text{ avec } \alpha, \beta > 0$ $\lim_{x \to +\infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0 \text{ avec } \alpha, \beta > 0$ $\lim_{x \to +\infty} \frac{x^{m}}{x^{m}} = 0 \text{ avec } \alpha, \beta > 0$

 - $\sum_{n=\infty}^{\infty} \frac{1}{x^n} = 1 \text{ si } m > n$ (4)
 - aucune des réponses précédentes n'est correcte. (5)
- 7. Soit $f(x) = e^{-x}\cos(e^{2x})$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?
 - $\lim_{x\to +\infty} f(x) = 0 \qquad \text{(2)} \quad \text{f n'admet pas de limite en } +\infty \qquad \text{(3)} \quad \text{f n'admet pas de limite en } -\infty$ $\lim_{x \to +\infty} f(x) = +\infty$ (5) aucune des réponses précédentes n'est correcte.
- 8. Soit f une fonction de I dans \mathbb{R} telle que $\forall \varepsilon > 0 \ \exists A \in \mathbb{R} \ \forall x \in I \ x \geqslant A \Rightarrow |f(x) l| \leqslant \varepsilon$. Alors on a :

$$\lim_{x\to A} f(x) = l \qquad \text{(2)} \qquad \lim_{x\to l} f(x) = +\infty \qquad \text{(3)} \blacksquare \quad \lim_{x\to +\infty} f(x) = l$$

$$\lim_{x\to +\infty} f(x) = +\infty \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

- 9. Soit f une fonction de I dans \mathbb{R} . On dit que f tend vers $+\infty$:
 - en $-\infty$ si $\forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x \geqslant B \Rightarrow f(x) \leqslant A$ (1)
 - en $-\infty$ si $\forall A \in \mathbb{R} \ \exists B \in \mathbb{R} \ \forall x \in I \ x \leqslant B \Rightarrow f(x) \geqslant A$ (2)
 - en a si $\forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ |x a| \geqslant \delta \Rightarrow f(x) \leqslant A$ \square (3)
 - en a si $\forall A \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in I \ |x a| \leq \delta \Rightarrow f(x) \geq A$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 10. $f(x) \sim g(x)$ signifie que ...
 - (1) f et g ont la même limite au voisinage de a
 - $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ (2)
 - f et g sont égales (3)
 - (4) f et g ont la même allure au voisinage de a
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 11. Un équivalente de f(x), avec $f'(x) \neq 0$, au voisinage de 0 est ...

$$(1) \blacksquare \quad f(x) - f(0) \underset{a}{\sim} f'(0)x \qquad (2) \square \quad f(x) - f'(0) \underset{a}{\sim} f(0)x \qquad (3) \blacksquare \quad f(x) \underset{a}{\sim} f(0) + f'(0)x$$

$$(4) \square \quad f(x) - f(0) \underset{a}{\sim} f'(0) + f'(0)x \qquad (5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

- 12. Parmi les affirmations suivantes, lesquelles sont vraies?
 - (1)Au voisinage de $\pm \infty$, un polynôme est équivalent à son terme de plus bas degré.
 - Au voisinage de 0, un polynôme est équivalent à son terme de plus haut degré. (2)
 - (3)
 - Si f(x) = o(g(x)) alors $f(x) + g(x) \sim g(x)$ $f(x) \sim g(x) \Leftrightarrow f(x) g(x) = o(g(x))$ (4)
 - aucune des réponses précédentes n'est correcte. (5)

13. Parmi les équivalents suivants, le(lesquels) est(sont) valable(s)?

$$(1) \Box \quad \ln(x^3) \sim x^3 \qquad (2) \blacksquare \quad e^x \sim 1 + x \qquad (3) \Box \quad 2x^5 + x^4 - x^3 \sim 2x^5$$

$$(4) \Box \quad \ln\left(1 + \frac{1}{x}\right) \sim \frac{1}{x} \qquad (5) \blacksquare \quad \tan(3x) \sim 3x$$

14. Parmi les équivalents suivants, le(lesquels) est(sont) valable(s)?

- 15. Soit $f(x) = \frac{\sin(3x)}{\sin(4x)}$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?
 - f n'admet pas de limite en 0 $\lim_{x \to 0} f(x) = \frac{3}{4} \qquad \text{(3)} \quad \lim_{x \to 0} f(x) = \frac{4}{3}$ $\lim_{x\to 0} f(x) = 0$ aucune des réponses précédentes n'est correcte.
- 16. Soit $f(x) = \left(1 + \frac{1}{x}\right)^x$. Parmi les affirmations suivantes la(lesquelles) est(sont) vraie(s)?

$$\lim_{x \to +\infty} f(x) = +\infty$$
 $\lim_{x \to +\infty} f(x) = 1$ $\lim_{x \to +\infty} f(x) = 1$ $\lim_{x \to +\infty} f(x) = 0$

- $\lim_{x \to +\infty} f(x) = e$ (5) aucune des réponses précédentes n'est correcte.
- 17. f(x) = o(g(x)) signifie que ...
 - $_{(1)}\Box$ f et g ont la même limite au voisinage de a
 - (2) $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ (3) $\int_{a}^{b} f \text{ et } g \text{ sont égales}$

 - f est négligeable devant g au voisinage de a
 - aucune des réponses précédentes n'est correcte.
- 18. Parmi les croissances comparées suivantes, lesquelles sont vraies?

$$(1) \blacksquare \quad (\ln x)^3 \underset{+\infty}{=} o(x^4) \qquad (2) \square \quad \ln x \underset{0}{=} o(x^2) \qquad (3) \blacksquare \quad x^2 \underset{+\infty}{=} o(e^x) \qquad (4) \blacksquare \quad x \underset{0}{=} o(\ln x)$$

19. La formule de Taylor-Young à l'ordre n d'une fonction $f \in \mathcal{C}^n$ au voisinage de a avec $\lim_{x \to a} \varepsilon(x) = 0$ est ...

$$\begin{array}{ll} \text{(1)} \blacksquare & f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + (x-a)^{n} \varepsilon(x) \\ \text{(2)} \square & f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + (x-a)^{n+1} \varepsilon(x) \end{array}$$

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^{n+1} \varepsilon(x)$$

(3)
$$f(x) = \sum_{k=0}^{\infty} \frac{f(x)}{k!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + (x - a)^{n+1} \varepsilon(x)$$
(4)
$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + (x - a)^n \varepsilon(x)$$
(5)
$$aucune des réponses précédentes n'est correcte.$$

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$

- 20. Au voisinage de 0 :

$$\frac{1}{1-x} = 1 + \frac{1}{x} + \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$$

$$(2)$$
 \Box $\frac{1}{1-x} = \frac{1}{x} - \frac{1}{x^2} + o(x^2)$

$$_{(4)}\square$$
 $\frac{1}{1-x} = 1 - x + x^2 + o(x)$

aucune des réponses précédentes n'est correcte.