Příklad 1: Vrcholové pokrytí a aproximace

V problému vrcholového pokrytí hledáme minimální množinu C vrcholů t.ž. je incidentní se všemi hranami (alespoň jeden konec každé hranu patří do C.

- Ukažte, že vrcholové pokrytí patří do NP (poznámka: je NP-úplný)
- Navrhněte polynomiální dynamický algoritmus pro stromy (poznámka: problém je polynomiální pro všechny bipartitní grafy)

Chceme aproximovat vrcholové pokrytí pro obecné grafy. Spustíme DFS prohledávání a jako pokrytí vezmeme všechny vrcholy, které nejsou listy v DFS-stromě.

Jak dobrá je tato aproximace? Pro odhad kvality použijeme velikost vhodného párování.

Příklad 2: Monte-Carlo integrace

Máme dánu "spojitou hladkou" funkci $[0,1] \to [0,1]$. Chceme aproximovat určitý integrál této funkce.

Máme dán nepravidelný útvar (třeba mnohoúhelník) uvnitř jednotkového čtverce. Pro každý bod umíme rozhodnout zda je uvnitř tvaru nebo ne. Cheme aproximovat obsah útvaru.

Příklad 3: Pravděpodobnostní počet různých vzorů

Máme velkou databázi obsahující masivní množství záznamů. Každý záznam má určitý typ, který umíme určit. Chceme zhruba spočítat kolik **různých** typů se v databázi vyskytuje. Typů je ale velké množství, nedokážeme je všechny uložit do paměti.

Mějme následující algoritmus:

Zvolíme hashovací funkci h mapující typy do dostatečně velkého univerza $0, \ldots, 2^i$ (i je zhruba log(velikost databáze)). Projdeme celou databází, typ každého prvku zahashujeme a udržujeme si k - nejvyšší počet koncových nul hashe, který jsme viděli. Nakonec odpovíme, že prvků je zhruba 2^k .

Porovnějte časovou a prostorovou složitost algoritmu s přímočarým přístupem. Dokažte, že pro hashovací algoritmus existuje konstanta p t.ž. s pravděpodobností p je 2^k jedna ze dvou mocnin 2 neblíže ke skutečnému počtu vzorů v databázi.

Pro danou pravděpodobnost \bar{p} navrhněte algoritmus se stejnými asymptotickými vlastnostmi, který najde nejbližší mocninu 2 s pravděpodobností alespoň \bar{p} .

Domácí úkol 6: hladová aproximace MaxSAT

MaxSAT je optimalizační problém. Na vstupu máme formuli Φ s n proměnnými, m klauzulemi a celkem $|\Phi|$ literály. Ptáme kolik nejvíce klauzulí je možné současně splnit (tedy pokud Φ je splnitelná, odpověď je m; v opačném případě je správnou odpovědí nižší hodnota). Protože se jedná o NP-těžkou úlohu, chceme ji aproximovat. Pro maximalizační úlohu je algoritmus c-aproximace (pro $c \leq 1$) pokud nalezne řešení hodnoty apespoň c-násobek optima.

Zadání: Navrhněte hladový algoritmus běžící v čase $O(n|\Phi|)$, který zkonstruuje $\frac{1}{2}$ -aproximaci řešení pro obecnou Φ ; a navíc pokud každá klauzule Φ obsahuje alespoň 3 různé literály, nalezne $\frac{3}{4}$ -aproximaci. Zadání vyhovuje algoritmus, který v libovolném pořadí hladově fixuje hodnoty jednotlivých proměnných.

Analyzujte časovou a prostorovou složitost algoritmu. Dokažte, že algoritmus má příslušné aproximační vlastnosti a ukažte příklad klauzulí, kde algoritmus vydá právě $\frac{1}{2}$ - resp. $\frac{3}{4}$ -násobek optima.

Pro bonusové body můžete zkusit dosáhnout lepší časové složistosti než $O(n|\Phi|)$. Je možné dosáhnout složitosti $O(|\Phi|)$. Hint: jeden z možných přístupů je si na základě Φ vybudovat propletený systém spojových seznamů který nám umožní rychle procházet pouze klauzule obsahující danou proměnnou, a rychle mazat klauzule ze systému při částečném dosazování.

Poznámky: Protože maximalizueme počet splněných klauzulí, nemůžeme si formuli Φ na vstupu vhodně upravit, nemůžeme tak o Φ nic předpokládat (vyjma předpokladů v druhé části). Nemáme omezení na velikosti klauzulí, Φ může obsahovat několik stejných klauzulí, a klauzule mohou obsahovat několik stejných literálů nebo opačné literály od stejné proměnné. Se všemi těmito problémy je třeba se buď explicitně poprat, nebo navrhnout řešení tak, že se neprojeví.

Terminologie:

- Literál je výskyt proměnné, buď samotné nebo v negaci
- Klauzule je disjunkce několika literálů, formule je pak konjunkce klauzulí
- Cástečné dosazení je proces resp. formule vzniklá fixováním hodnoty jedné (nebo více) proměnných. Z nové formule se smažou všechny výskyty (literály) dosazených proměnných, a všechny splněné klauzule.