#### **LUCRAREA DE LABORATOR NR.1**

# REZOLVAREA NUMERICĂ A ECUAȚIILOR ALGEBRICE ȘI TRANSCENDENTE

# 1.Scopul lucrărilor

- 1) Să se separe toate rădăcinile reale ale ecuației f(x)=0 unde y=f(x) este o funcție reală de variabilă reală.
- 2) Să se determine o rădăcină reală a ecuației date cu ajutorul metodei înjumătățirii intervalului cu o eroare mai mică decât  $\varepsilon=10^{-2}$ .
- 3) Să se precizeze rădăcina obținută cu exactitatea  $\varepsilon$ =10<sup>-6</sup> utilizând
- metoda aproximațiilor succesive
- metoda tangentelor (Newton)
- metoda secantelor.
- 4) Să se compare rezultatele luând în considerație numărul de iterații, evaluările pentru funcția și derivată.

#### 2.Probleme date spre rezolvare

| Nr. | f(x)                          | Nr. | f(x)                      |
|-----|-------------------------------|-----|---------------------------|
| 1   | a) $cos(x)+x-1$               | 5   | a) 2-x-ln(x)              |
|     | b) x <sup>3</sup> -30x-41     |     | b) x <sup>3</sup> +29x+34 |
| 2   | a) $ln(x+1)-4x$               | 6   | a) 2x-e <sup>-x</sup>     |
|     | b) x <sup>3</sup> -25x+19     |     | b) x <sup>3</sup> -26x+43 |
| 3   | a) $e^x+3x$                   | 7   | a) lg(1+x)+x-1,5          |
|     | b) x <sup>3</sup> -23x-42     |     | b) x <sup>3</sup> +25x-37 |
| 4   | a) $\sqrt{x+1} - \frac{1}{x}$ | 8   | a) $(2-x)*e^x-0.5$        |
|     | X                             |     | b) $x^3-12x+3$            |
|     | b) x <sup>3</sup> +34x+23     |     |                           |
| Nr. | f(x)                          | Nr. | f(x)                      |
| 9   | a) $(x+3)^3 - \cos(x)$        | 18  | a) $2^{x}+3x-0.5$         |

|    | b) x <sup>3</sup> +13x-1  |    | b) x <sup>3</sup> -37x-52 |
|----|---------------------------|----|---------------------------|
| 10 | a) $e^{-x} \sin(x) + 1$   | 19 | a) $\cos(x)+2x-0.5$       |
|    | b) $x^3+9x-3$             |    | b) $x^3-26x+43$           |
| 11 | a) $x^2-\ln(x+1)$         | 20 | a) 2 <sup>x</sup> -1      |
|    | b) $x^3+12x+4$            |    | b) x <sup>3</sup> -14x-31 |
| 12 | a) $x^3$ - $\cos(x)$      | 21 | a) $\lg(x+2x)+x-2$        |
|    | b) $x^3+14x-6$            |    | b) $x^3-25x+2$            |
| 13 | a) $(x+1)^3 + \ln(x)$     | 22 | a) 2 <sup>x</sup> -2x     |
|    | b) $x^3+23x+1$            |    | b) $x^3-15x+14$           |
| 14 | a) $2(x-1)^2-e^x$         | 23 | a) $\lg(2x+3)+2x-1$       |
|    | b) $x^3+20x-41$           |    | b) $x^3+7x-2$             |
| 15 | a) $x^2$ -sin(x)          | 24 | a) $1-x^2-2e^x$           |
|    | b) x <sup>3</sup> -25x+47 |    | b) $x^3-25x+11$           |
| 16 | a) $2^{x}-(x+1)^{2}$      | 25 | a) $\sqrt{\lg(x+2)}$ -x   |
|    | b) $x^3-21x-37$           |    | b) $x^3-25x+11$           |
| 17 | a) $x^2+4*\sin(x)$        | 26 | a) $\cos(x)+3x+1$         |
|    | b) $x^3-18x+43$           |    | b) $x^3-20x+14$           |

#### 3.Descrierea metodelor

Rezolvarea ecuației f(x)=0 implică parcurgerea a două etape importante:

- *separarea rădăcinilor*, care constă în determinarea unui interval [a, b] în care este situată o rădăcină reală a ecuației;
- *calculul aproximativ* ai fiecărei rădăcini și evaluarea erorii care s-a comis considerând că separarea deja s-a efectuat.

# 3.1 Separarea rădăcinilor

Separarea rădăcinilor se poate face prin diferite metode. Cele mai des utilizate în practică sunt următoarele două metode de separare:

a) *Metoda grafică*. Adeseori ecuația f(x)=0 poate fi pusă sub forma echivalentă  $\varphi(x)=g(x)$ . Rădăcinile ultimei ecuației sunt abscisele punctelor de intersecție ale curbelor  $y=\varphi(x)$  și y=g(x).

De exemplu ecuația

$$2^{x}$$
- $cos(x)$ -0.5=0

se poate pune sub forma echivalenta

$$2^{x}-0.5=\cos(x)$$
.

Atunci rădăcinile ei sunt abscisele punctelor de intersecție ale curbelor

$$y=2^{x}-0.5$$
 se  $y=cos(x)$  (vezi fig.1)



#### FIGURA 1

Astfel ecuația dată are două rădăcini reale  $r_1 \in (-\pi/2, 0)$  și  $r_2 \in (0, \pi/2)$ .

b) *Metoda șirului lui Rolle*. Se știe din cursul de analiză matematică că între două rădăcini reale consecutive ale derivatei funcției y=f(x) există cel mult o rădăcină reală a ecuației f(x) = 0. De asemenea între două rădăcini consecutive ale ecuației f(x)=0 există cel puțin o rădăcină a ecuației f'(x)=0.

Fie  $a < x_1 < x_2 < ... < x_k < b$  rădăcinile ecuației f'(x) = 0, așezate în ordine crescătoare. Şirul f(a),  $f(x_1)$ ,... $f(x_k)$ , f(b) se numește șirul lui Rolle. Ecuația f(x) = 0 are atâtea rădăcini reale câte alternanțe de semn prezintă șirul lui Rolle.

### Exemplu:

Fie ecuația

$$F(x) = x^4 - x^3 - 2x^2 + 3x - 3 = 0$$

Derivata

$$F(x) = 4x^3 - 3x^2 - 4x + 3 = 4x(x^2 - 1) - 3(x^2 - 1) = (x^2 - 1)(4x - 3)$$

se anulează pentru x=-1,  $x=\frac{3}{4}$ , x=1.

Şirul lui Rolle este următorul:

| X | -2 | -1 | 3/4   | 1  | 2 |
|---|----|----|-------|----|---|
| y | 7  | -6 | -1,98 | -2 | 3 |

Prin urmare avem două alternanții de semn, deci ecuația dată are pe intervalul (-2,2) două rădăcini reale  $r \in (-2,-1)$  și  $r \in (1,2)$ .

### 3.2Calculul rădăcinii reale prin metoda înjumătățirii intervalului

Fie ecuația f(x)=0 unde funcția f(x) este continuă pe [a, b], are o singură rădăcină reală în acest interval și f(a)\*f(b)<0. Calculăm  $c=\frac{(a+b)}{2}$  jumătatea intervalului [a, b]. Dacă f(c)=0, atunci c este chiar rădăcina căutată. Dacă nu, atunci rădăcina reală se găsește într-unul din intervalele [a, c] sau [c, b], acolo unde funcția ia valori de semne contrare la capetele intervalului. Fie acesta notat din nou cu [a, b], unde:

$$A = \begin{cases} c, signf(a) = signf(c) \\ c, signf(a) \neq signf(c) \end{cases}$$

$$B = \begin{cases} c, signf(b) = signf(c) \\ b, signf(b) \neq signf(c) \end{cases}$$

Fie  $\varepsilon > 0$  marginea superioară a erorii absolute, care se admite. Dacă  $|b-a| < 2\varepsilon$ , atunci c aproximează rădăcina r cu eroarea dorită deoarece  $|c-r| < \varepsilon$ .

Observație. În programele de calculator operația de înjumătățire se recomandă de scris astfel:

$$c=a+\frac{(b-a)}{2},$$

deoarece formula  $c = \frac{(a+b)}{2}$ , ne poate scoate în afara intervalului [a, b].

### 3.3 Metoda aproximațiilor succesive

Ecuația f(x)=0 o punem sub forma echivalentă  $x=\varphi(x)$ . Plecând de la o valoare inițială arbitrară  $x_0$  generăm șirul  $x_k$  după regula:  $x_{k+1}=\varphi(x_k)$ , k=0,1,2...,adică  $x_2=\varphi(x_0)$ ,  $x_2=\varphi(x_1)$ ,..., $x_k=\varphi(x_{k-1})$ ,...



Din punct de vedere geometric, rădăcina reală r este abscisa punctului de intersecție a curbei  $y=\varphi(x)$  cu dreapta y=x. Modul cum șirul aproximațiilor succesive  $x_0, x_1, ..., x_k, ...$  conduce spre soluția exactă este ilustrat în fig.2 și fig.3 (în funcție de forma curbei  $y=\varphi(x)$ ).

O condiție suficientă de convergență este dată de următoarea:

**Teoremă**. Fie funcția  $\varphi(x)$  definită pe intervalul [a, b] și  $\varphi(x) \in [a, b]$  pentru orice  $x \in [a, b]$ . Dacă funcția  $\varphi$  e derivabilă și derivata sa  $\varphi'$  va satisface inegalitatea  $|\varphi'(x)| < a < 1$ , oricare ar fi  $x \in [a, b]$  atunci ecuația  $x = \varphi(x)$  are în [a, b] o singură rădăcină reală r, putem forma șirul de iterare  $x_0, x_1, ..., x_k, ...$  după regula  $x_{k+1} = \varphi(x_k)$ , astfel încît  $x_k \in [a, b]$  pentru k = 0, 1, 2, ... și acest șir converge către rădăcina r. În plus, eroarea este evaluată prin

$$|X_k - r| \le \frac{a}{1-a} |X_k - X_{k-1}| \le \frac{a^k}{1-a} |X_1 - X_0|, \ \forall k \ge 1.$$

Dacă 
$$-1 < \varphi'(x) < 0$$
, atunci  $|X_k - r| \le |X_k - X_{k-1}|$ ,  $\forall k \ge 1$ 

*Exemplu*: Fie dată ecuația  $x^3$ -2x-9=0. Prin metoda grafică se stabilește că ecuația admite o singură rădăcină reală în intervalul (2,3). Rescriem ecuația sub formă echivalentă

$$x = \sqrt[3]{2x+9}$$

Pentru a verifica condiția de convergență, calculăm derivata

$$\varphi'(x) = \frac{2}{3} \times \frac{1}{\sqrt[3]{(2x+9)^2}}$$

Condiția de convergență  $|\varphi'(x)|$  < 1 este îndeplinită pentru intervalul (2,3) și deci șirul de iterare

$$x_{k+1} = \sqrt[3]{2x+9}$$
,  $k=0,1,2,3...$ 

cu valoarea inițială (de start)  $x_0 \in (2,3)$  converge către rădăcina exactă  $r \in (2,3)$ . Pentru determinarea rădăcinei aproximative x cu eroarea  $\varepsilon > 0$  procesul de calcul îl vom opri cînd

$$\frac{\alpha}{1-\alpha}*|_{X_{k+1}}-X_k|<\varepsilon$$

Acest criteriu pentru determinarea calculelor necesită aprecierea parametrului subunitar a, care nu se cunoaște, în mod general. Subrutina care realizează metoda aproximațiilor succesive în limbajul Turbo Pascal este următoarea:

#### 3.4.Metoda lui Newton (tangentelor)

Fie ecuația algebrică sau transcendentă f(x)=0 care admite o singură rădăcină reală r în intervalul [a, b]. Presupunem în plus că derivatele f'(x) și f''(x) păstrează un semn constant pe intervalul [a, b].

Metoda lui Newton este definită de următoarea formulă:

$$x_{k+1} = x_k - \frac{f(X_k)'}{f'(x)}, \qquad k = 0, 1, 2, 3...$$
 (1)

unde  $x_0$  este aproximația inițială a rădăcinii din intervalul [a, b]. Punctul  $x_{k+1}$  este abscisa punctului de intersecție a tangentei dusă la curba y=f(x) în punctul  $x_k$  cu axa OX. De aceea această metodă se mai numește metoda tangentelor.

*Teoremă*. Fie funcția f(x) definită și de două ori derivabilă pe intervalul [a, b]. Presupunem că există m>0,  $M<\infty$  astfel încât

$$|f'(x)| \ge m > 0, |f''(x)| < M < \infty \quad \forall x \in [a, b]$$

și  $r \in [a, b]$  este rădăcina ecuației f(x)=0. Atunci șirul de iterare determinat de relația (1) converge către r dacă aproximația inițială  $x_0$  este aleasă într-o vecinătate a rădăcinii r. Eroarea este estimată de relația

$$|X_k - r| \le C^* |X_k - X_{k-1}|^2, C = \frac{M}{2m}, \quad k = 1, 2...$$

Metoda lui Newton este un caz particular al metodei aproximaţiilor succesive cu funcţia

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

Următoarea procedură realizează rezolvarea unei ecuații neliniare cu o singură necunoscută prin metoda lui Newton:

#### 3.5. Metoda secantelor

Metoda secantelor se deduce din metoda lui Newton înlocuind derivata

$$f'(x) \approx \frac{f(X_k) - f(X_{k-1})}{X_k - X_{k-1}}$$

Obtinem

$$x_{k+1} = x_k - f(x_k) \times \frac{X_k - X_{k-1}}{f(X_k) - f(X_{k-1})}$$
 (2)

Pentru startul iterațiilor în metoda secantelor avem nevoie de două aproximații inițiale  $x_0$  și  $x_1$ . Valoarea  $x_{k+1}$  este abscisa punctului de intersecție dintre secanta care trece prin punctele  $(x_{k-1}, f(x_{k-1}))$  și  $(x_k, f(x_k))$  și OX; de aici și denumirea metodei. La fiecare pas nou în metoda secantei se calculează o singură valoare nouă pentru funcția f. Formula (2) se mai poate pune sub forma

$$x_{k+1} = \frac{X_{k-1} f(X_k) - X_k f(X_{k-1})}{f(X_k) - f(X_{k-1})},$$

care nu se recomandă la programare deoarece, dacă  $f(x_k)*f(x_{k-1})>0$  și  $x_k \approx x_{k-1}$ , atunci poate avea loc o neutralizare a termenilor.

# 4.Indicații metodice

Rezolvarea ecuației f(x)=0 la calculatorul electronic va decurge după cum urmează:

- 1) Se vor separa rădăcinile reale ale ecuației date.
- 2) Se va defini o procedură FUNCTION F(X) pentru calculul funcției f(x).
- 3) Se va prezenta ecuația f(x) sub forma echivalentă  $x = \varphi(x)$ , alegând funcția  $\varphi(x)$  în mod special, că să se satisfacă condiția suficientă de convergență:

$$|\varphi'(x)| \le \alpha < 1$$

- 4) Se va defini o procedură FUNCTION FI(X) pentru calculul funcției  $\varphi(x)$ .
- 5) Se va defini o procedură FUNCTION F1(X) care calculează derivata f'(x).
- 6) Se va scrie un program principal care va utiliza procedurile *BISECT*, *SITER*, *NEWTON* si *SECANT*.
- 7) Se va rezolva ecuația la calculator și se va afișa soluția sau un mesaj de eroare în caz că metoda nu converge.
- 8) Se va alcătui un raport.