Exp. fam. joint. Said: $f_{\rho}(\chi) = h(\chi) c(\theta) exp(t(\chi) w(\theta))$

then this is an exp. fam.

Also said! marginal

 $f_0(x_n) = h_0(x_n)c_0(0) \exp(t_0(x_n)w(0))$ then the joint is an exp.

This is true:

 $f_0(\chi) = \prod_n f_0(\chi_n) = \prod_n h_0(\chi_n) f_0(0) \exp(t_0(\chi_n) \psi(0))$

 $= \left(\frac{1}{n} h_0(x_n) \right) \left(\frac{1}{0} (\theta) exp((x_n)) w(0) \right)$ $N(X) \quad {(0)} \quad = e^{\sum_{n} a_{n}}$

 $h(x) = \prod_{n} h_n(x_n)$

 $\mathcal{C}(\Theta) = \mathcal{C}_0(\Theta)^N$

W(0) same

do:

$$f_{\lambda}(x_{n}) = \frac{\lambda e}{x_{n}!} = \frac{1}{x_{n}!} (e^{-\lambda}) (f_{0}(\lambda))$$

$$h_{0}(x_{n}) (f_{0}(\lambda))$$

$$\pm(\chi) = \sum_{n} \chi_{n}$$
.

Notation:

dual life rondom and number
$$\overline{\chi} = \frac{1}{N} \chi_n \qquad \overline{\chi} = \frac{1}{N} \chi_n$$

$$\overline{\chi} = \frac{1}{N} \chi_n \qquad \overline{\chi} = \frac{1}{N} \chi_n$$

$$\overline{\chi} = \frac{1}{N} \chi_n \qquad \overline{\chi} = \frac{1}{N} \chi_n$$

	generically T. t									
	Exp. fams Examples: Poisson, Exp, Normal, Gama, Beta,									
	$\frac{\xi_{\chi}}{\chi_n} = \frac{1}{\zeta_n} \frac{1}{\zeta_n$									
	Exp fam? $\frac{1}{2} \left(\frac{1}{2} \left($									
	$f_0(\chi) = 0$ $f(0) = 0$									
separate into (fn x)(fn 0)										
	So U(0,0) isvil av exp. fam.									
	Geveral fact: If the support of my dist depend, on o,									
	ther it isn't an exp-fam.									
	Setup! Xn iid fo, OE -									
	Definis Sufficiency A statistic T = T(X) is sufficient for									
	A slatistic T=T(X) is sufficient for									

Lecture Notes Page 3

A statistic
$$T = T(X)$$
 is sufficient for a parameter θ if

$$\frac{\xi_{X}}{\chi}$$
, $\chi \in \mathbb{R}^{N}$, $A \subset \mathbb{R}^{N}$

$$P(\chi = \chi \text{ and } \chi \in A)$$

two options: XEA

$$P(X = X \text{ and } X \in A)$$

$$= P(X = X)$$

$$P(X = X \text{ ad } X \in A) = 0$$

Clever!
$$P(X=X)$$
 and Statement about X)
$$= P(X=X) I (Statement a bool X)$$

$$\underline{\text{Joint dist:}} \ f_{X,T}(X,t) = f_X(X) \, \underline{\text{I}(T(X)=t)}$$

$$\frac{e_{X_{1}} \text{ Lif } X_{1}, X_{2}, X_{3} \stackrel{iid}{\sim} Bernalli(0)}{0 \in [0,1]}$$

$$\text{Lef } T = X_{1} + X_{2} + X_{3} \sim Bin(3,0)$$

$$\text{Is } T \text{ sufficient fer } 0,$$

$$f(X|T=t) = \frac{f_{X,T}(X,t)}{f_{T}(t)}$$

$$T \sim Bin(3,0) = P(X=X,T=t)$$

$$P(X=X) = P(X=X)I(T(X)=t)$$

$$To^{X_{1}}(1-0)I(X=0)I(X=1)$$

$$P(X=X)I(T(X)=t)$$

$$= O(1-0)I(X=1)I(X=1)$$

$$= O(1-0)I(X=1)I(X=1)I(X=1)$$

$$= O(1-0)I(X=1)I(X=1)I(X=1)I(X=1)$$

$$= O(1-0)I(X=1$$

So T is sufficient for O.

Ex, let Xn i'd fo

 $T = (X_1, X_2, \dots, X_N)$

Q: is this sufficient for 0?

 $f(\chi/T=t) = \frac{f(\chi,t)}{f(t)}$

 $= f_{X,X}(X,X)$ $f_{X}(X)$

 $= f_{X}(\chi)/f_{X}(\chi) = 1$ of O,

Factorization Theorem

T is sufficient for O iff

Lecture Notes Page 6

There is a fing
$$g(0,t)$$
 and $h(x)$

So that

$$f(x) = g(0,t) h(x).$$

$$\begin{cases} \text{only has } x \text{ s. through } t \end{cases}$$
 $\begin{cases} \text{Ex.} \quad x_n \text{ iid Bern(0)} \end{cases}$
 $T = \sum_{n=1}^{\infty} x_n \quad t = \sum_{n=1}^{\infty} x_n \end{cases}$

Is $T \text{ sufficient } f_n \theta$?

$$f_0(x) = T \theta^{x_n}(1-\theta)^{1-x_n} 1(x_n = 0 \text{ or } 1)$$

$$= \theta^{\left(\frac{x_n}{x_n}\right)^{\frac{1}{2}}} T 1(x_n = 0 \text{ or } 1)$$

$$g(0,t) \quad h(x)$$

$$\theta^{t}(1-\theta)^{N-t}$$

Then $f_0(x) = g(0,t) h(x)$ so T is suff. $f_0(x) = g(0,t) h(x)$

Can I find a suff. Stat. for O: f(x) = T/ + I (0 < xn < 0) = 0 - N III (0 < X_1 < 0) all X_1 btm. 0 and 0 min > 0 and max < O $= 0 1(\chi_{(1)} > 0) 1(\chi_{(N)} < 0)$ $= \frac{1}{9}(0,t) h(x)$ $(et t = \chi_{(N)}) = \frac{50 \chi_{(N)}}{50 \chi_{(N)}}$ sufficient for 0 for 0 for 0 $N(X) = I(X_{(1)} > 0)$ Theorem: Exp. and Sufficiency let Xn ~ for and $f_0(x) = h(x)c(0) \exp(t(x) w(0))$ So that it is an exp. fam. Then £(X) is sufficient for O. let X iid N(u, 1) ath q b

Lecture Notes Page

Let
$$X_n \stackrel{\text{I.d}}{=} N(\mu, 1)$$

$$f(\pi_n) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\pi_n - \mu)^2\right) \stackrel{\text{def}}{=} e^{\frac{1}{2}b}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\pi_n - \mu)^2\right) \stackrel{\text{def}}{=} e^{\frac{1}{2}b}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\pi_n - \mu)^2\right)$$

$$= \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}x} \times \frac{1}{x_n} + \frac{1}{x_n} \frac{1}{x_n} - \frac{1}{2}\mu^2$$

$$= \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}x} \times \frac{1}{x_n} + \frac{1}{x_n} - \frac{1}{2}\mu^2$$

$$= \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}x} \times \frac{1}{x_n} + \frac{1}{x_n} - \frac{1}{2}\mu^2$$

$$= \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}x} \times \frac{1}{x_n} + \frac{1}{x_n} +$$

	So	by	006	theorem	2	Xh	, Z	suff.	for	λ,
_									-/-	