উৎপাদকে বিশ্লেষণ (Factorization)

কোনো রাশি দুই বা ততোধিক রাশির গুণফলের সমান হলে, শেষোক্ত রাশিগুলোর প্রত্যেকটিকে প্রথমোক্ত রাশির উৎপাদক বা গুণনীয়ক বলা হয়। কোনো বীজগাণিতিক রাশির উৎপাদকগুলো নির্ণয় করার পর রাশিটিকে লব্দ উৎপাদকগুলোর গুণফলরূপে প্রকাশ করাকে উৎপাদকে বিশ্লেষণ বলা হয়। বীজগাণিতিক রাশিগুলো এক বা একাধিক পদবিশিষ্ট (বহুপদী) হতে পারে। সেজন্য উক্ত রাশির উৎপাদকগুলোও এক বা একাধিক পদবিশিষ্ট হতে পারে। এখানে উৎপাদক নির্ণয়ের কতিপয় কৌশল আলোচনা করা হবে।

সাধারণ উৎপাদক: কোনো বহুপদীর প্রত্যেক পদে কোনো সাধারণ উৎপাদক থাকলে তা বের করে নিতে হয়। যেমন:

উদাহরণ ১৮. $3a^2b + 6ab^2 + 12a^2b^2 = 3ab(a + 2b + 4ab)$

উদাহরণ ১৯.
$$2ab(x-y) + 2bc(x-y) + 3ca(x-y) = (x-y)(2ab+2bc+3ca)$$

পূর্ণবর্গ: একটি রাশিকে পূর্ণবর্গ আকারে প্রকাশ করেও উৎপাদকে বিশ্লেষণ করা যায়।

উদাহরণ ২০. $4x^2 + 12x + 9$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$4x^2 + 12x + 9 = (2x)^2 + 2 \times 2x \times 3 + (3)^2$$

= $(2x+3)^2 = (2x+3)(2x+3)$

উদাহরণ ২১. $9x^2-30xy+25y^2$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$9x^2 - 30xy + 25y^2$$

= $(3x)^2 - 2 \times 3x \times 5y + (5y)^2$
= $(3x - 5y)^2 = (3x - 5y)(3x - 5y)$

দুইটি বর্গের অন্তর: একটি রাশিকে দুইটি বর্গের অন্তররূপে প্রকাশ করে এবং $a^2-b^2=(a+b)(a-b)$ সূত্র প্রয়োগ করেও উৎপাদকে বিশ্লেষণ করা যায়।

উদাহরণ ২২. $a^2-1+2b-b^2$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$a^2 - 1 + 2b - b^2 = a^2 - (b^2 - 2b + 1)$$

= $a^2 - (b - 1)^2 = \{a + (b - 1)\}\{a - (b - 1)\}$
= $(a + b - 1)(a - b + 1)$

উদাহরণ ২৩. a^4+64b^4 কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$a^4 + 64b^4 = (a^2)^2 + (8b^2)^2$$

= $(a^2)^2 + 2 \times a^2 \times 8b^2 + (8b^2)^2 - 16a^2b^2$

৫৬ গণিত

$$= (a^{2} + 8b^{2})^{2} - (4ab)^{2}$$

$$= (a^{2} + 8b^{2} + 4ab)(a^{2} + 8b^{2} - 4ab)$$

$$= (a^{2} + 4ab + 8b^{2})(a^{2} - 4ab + 8b^{2})$$

কাজ: উৎপাদকে বিশ্লেষণ কর:

ক)
$$abx^2 + acx^3 + adx^4$$
 খ) $xa^2 - 144xb^2$ গ) $x^2 - 2xy - 4y - 4$

সরল মধ্যপদ বিভক্তিকরণ: $x^2+(a+b)x+ab=(x+a)(x+b)$ সূত্রটি ব্যবহার করে উৎপাদক নির্ণয় করা যায়। এ পদ্ধতিতে x^2+px+q আকারের বহুপদীর উৎপাদক নির্ণয় করা সম্ভব হয় যদি দুইটি সংখ্যা a ও b নির্ণয় করা যায় যেন, a+b=p এবং ab=q হয়। এজন্য q এর দুইটি সচিহ্ন উৎপাদক নিতে হয় যাদের বীজগাণিতিক সমষ্টি p হয়। q>0 হলে, a ও b একই চিহ্নযুক্ত হবে এবং q<0 হলে, a ও b বিপরীত চিহ্নযুক্ত হবে। উল্লেখ্য p এবং q পূর্ণসংখ্যা না ও হতে পারে।

উদাহরণ ২8. $x^2 + 12x + 35$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$x^2 + 12x + 35 = x^2 + (5+7)x + 5 \times 7 = (x+5)(x+7)$$

উদাহরণ ২৫. $x^2 + x - 20$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$x^2 + x - 20 = x^2 + (5-4)x + (5)(-4) = (x+5)(x-4)$$

যৌগিক মধ্যপদ বিশ্লেষণ: ax^2+bx+c আকারের বহুপদীর মধ্যপদ বিভক্তিকরণ পদ্দতিতে $ax^2+bx+c=(rx+p)(sx+q)$ হবে যদি $ax^2+bx+c=rsx^2+(rq+sp)x+pq$ হয়। অর্থাৎ, $a=rs,\ b=rq+sp$ এবং c=pq হয়। সুতরাং, ac=rspq=(rq)(sp) এবং b=rq+sp। অতএব, ax^2+bx+c আকারের বহুপদীর উৎপাদক নির্ণয় করতে হলে ac, অর্থাৎ, x^2 এর সহগ এবং x বর্জিত পদের গুণফলকে এমন দুইটি উৎপাদকে প্রকাশ করতে হবে, যাদের বীজগাণিতিক সমষ্টি x এর সহগ b এর সমান হয়।

উদাহরণ ২৬. $3x^2-x-14$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$3x^2 - x - 14 = 3x^2 - 7x + 6x - 14$$

= $x(3x - 7) + 2(3x - 7) = (3x - 7)(x + 2)$

কাজ: উৎপাদকে বিশ্লেষণ কর:

ず)
$$x^2 + x - 56$$
 ず) $16x^3 - 46x^2 + 15x$
 が) $12x^2 + 17x + 6$

ঘন আকার: একটি রাশিকে পূর্ণঘন আকারে প্রকাশ করেও উৎপাদক নির্ণয় করা যায়। উদাহরণ ২৭. $8x^3+36x^2y+54xy^2+27y^3$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$8x^3 + 36x^2y + 54xy^2 + 27y^3$$

= $(2x)^3 + 3 \times (2x)^2 \times 3y + 3 \times 2x \times (3y)^2 + (3y)^3$
= $(2x + 3y)^3 = (2x + 3y)(2x + 3y)(2x + 3y)$

দুইটি ঘন এর যোগফল বা বিয়োগফলের সূত্র দিয়ে: $a^3+b^3=(a+b)(a^2-ab+b^2)$ এবং $a^3-b^3=(a-b)(a^2+ab+b^2)$ সূত্র দুইটি ব্যবহার করে উৎপাদক নির্ণয় করা যায়।

উদাহরণ ২৮. উৎপাদকে বিশ্লেষণ কর: ক) $8a^3+27b^3$ খ) a^6-64

সমাধান:

ক)
$$8a^3 + 27b^3 = (2a)^3 + (3b)^3$$
 $= (2a + 3b)\{(2a)^2 - 2a \times 3b + (3b)^2\}$
 $= (2a + 3b)(4a^2 - 6ab + 9b^2)$
 $a^6 - 64 = (a^2)^3 - (4)^3 = (a^2 - 4)\{(a^2)^2 + a^2 \times 4 + (4)^2\}$
 $= (a^2 - 4)(a^4 + 4a^2 + 16)$
কিন্দু $a^2 - 4 = a^2 - 2^2 = (a + 2)(a - 2)$
এবং $a^4 + 4a^2 + 16 = (a^2)^2 + (4)^2 + 4a^2$
 $= (a^2 + 4)^2 - 2(a^2)(4) + 4a^2$
 $= (a^2 + 4)^2 - 4a^2$
 $= (a^2 + 4)^2 - (2a)^2$
 $= (a^2 + 4 + 2a)(a^2 + 4 - 2a)$
 $= (a^2 + 2a + 4)(a^2 - 2a + 4)$
ে $a^6 - 64 = (a + 2)(a - 2)(a^2 + 2a + 4)(a^2 - 2a + 4)$
বিকল্প নিয়ম: $a^6 - 64 = (a^3)^2 - 8^2$
 $= (a^3 + 8)(a^3 - 8)$
 $= (a^3 + 2^3)(a^3 - 2^3)$
 $= (a + 2)(a - 2)(a^2 + 2a + 4)(a^2 - 2a + 4)$
 $= (a + 2)(a - 2)(a^2 + 2a + 4)(a^2 - 2a + 4)$

কাজ: উৎপাদকে বিশ্লেষণ কর:

季)
$$2x^4 + 16x$$
 ****)** $8 - a^3 + 3a^2b - 3ab^2 + b^3$ ****)** $(a+b)^3 + (a-b)^3$

৫৮

ভগ্নাংশসহগযুম্ভ রাশির উৎপাদক: ভগ্নাংশসহগযুম্ভ রাশির উৎপাদকগুলোকে বিভিন্নভাবে প্রকাশ করা যায়। যেমন, $a^3+rac{1}{27}=a^3+rac{1}{3^3}=\left(a+rac{1}{3}
ight)\left(a^2-rac{a}{3}+rac{1}{9}
ight)$

আবার,
$$a^3+\frac{1}{27}=\frac{1}{27}(27a^3+1)=\frac{1}{27}\{(3a)^3+(1)^3\}=\frac{1}{27}(3a+1)(9a^2-3a+1)$$

দ্বিতীয় সমাধানে চলক-সংবলিত উৎপাদকগুলোর সহগগুলো পূর্ণসংখ্যা কিন্তু সমাধান দুইটি অভিন্ন।

$$\frac{1}{27}(3a+1)(9a^2-3a+1) = \frac{1}{3}(3a+1) \times \frac{1}{9}(9a^2-3a+1)$$
$$= \left(a+\frac{1}{3}\right)\left(a^2-\frac{a}{3}+\frac{1}{9}\right)$$

উদাহরণ ২৯. $x^3+6x^2y+11xy^2+6y^3$ কে উৎপাদকে বিশ্লেষণ কর।

সমাধান:
$$x^3 + 6x^2y + 11xy^2 + 6y^3$$

$$= \{x^3 + 3 \cdot x^2 \cdot 2y + 3 \cdot x \cdot (2y)^2 + (2y)^3\} - xy^2 - 2y^3$$

$$= (x + 2y)^3 - y^2(x + 2y) = (x + 2y)\{(x + 2y)^2 - y^2\}$$

$$= (x + 2y)(x + 2y + y)(x + 2y - y)$$

$$= (x + 2y)(x + 3y)(x + y) = (x + y)(x + 2y)(x + 3y)$$

কাজ: উৎপাদকে বিশ্লেষণ কর:

季)
$$\frac{1}{2}x^2 + \frac{7}{6}x + \frac{1}{3}$$
 ず) $a^3 + \frac{1}{8}$ **ず**) $16x^2 - 25y^2 - 8xz + 10yz$

অনুশীলনী ৩.৩

উৎপাদকে বিশ্লেষণ কর (১ - ৩০):

$$3. ab(x-y) - bc(x-y)$$

$$a^4 - 27a^2 + 1$$

$$(a^2-b^2)(x^2-y^2)+4abxy$$

9.
$$a^2 + 6a + 8 - y^2 + 2y$$

b.
$$x^2 + 13x + 36$$

33.
$$a^2 - 30a + 216$$

১৩.
$$x^2 - 37x - 650$$

$$9x^2 + 24x + 16$$

8.
$$x^4 - 6x^2y^2 + y^4$$

$$4a^2-12ab+9b^2-4c^2$$

$$b. \quad 16x^2 - 25y^2 - 8xz + 10yz$$

So.
$$x^4 + x^2 - 20$$

$$a^8 - a^4 - 2$$

38.
$$9x^2y^2 - 5xy^2 - 14y^2$$

অধ্যায় ৩. বীজগাণিতিক রাশি ৫৯

56.
$$4x^4 - 27x^2 - 81$$
56. $ax^2 + (a^2 + 1)x + a$ **59.** $3(a^2 + 2a)^2 - 22(a^2 + 2a) + 40$ **56.** $(a - 1)x^2 + a^2xy + (a + 1)y^2$ **58.** $x^3 + 3x^2 + 3x + 2$ **59.** $a^3 - 6a^2 + 12a - 9$ **53.** $a^3 - 9b^3 + (a + b)^3$ **54.** $8x^3 + 12x^2 + 6x - 63$

20.
$$8a^3 + \frac{b^3}{27}$$
 28. $\frac{a^6}{27} - b^6$ **29.** $4a^2 + \frac{1}{4a^2} - 2 + 4a - \frac{1}{a}$ **29.** $(3a+1)$

২৫.
$$4a^2 + \frac{1}{4a^2} - 2 + 4a - \frac{1}{a}$$
 ২৬. $(3a+1)^3 - (2a-3)^3$ **২9.** $(x+2)(x+3)(x+4)(x+5) - 48$ **২৮.** $(x-1)(x-3)(x-5)(x-7) - 65$

38.
$$2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4$$

90.
$$14(x+z)^2 - 29(x+z)(x+1) - 15(x+1)^2$$

৩১. দেখাও যে,
$$(x+1)(x+2)(3x-1)(3x-4)=(3x^2+2x-1)(3x^2+2x-8)$$

ভাগশেষ উপপাদ্য (Remainder Theorem)

নিচের উদাহরণটিতে $6x^2-7x+5$ কে x-1 দ্বারা ভাগ করলে ভাগফল ও ভাগশেষ কত?

এখানে, ভাজক x-1, ভাজ্য $6x^2-7x+5$, ভাগফল 6x-1 এবং ভাগশেষ 4।

আমরা জানি, ভাজ্য = ভাজক × ভাগফল + ভাগশেষ

এখন যদি আমরা ভাজ্যকে f(x), ভাগফলকে h(x), ভাগশেষকে r ও ভাজককে (x-a) দ্বারা সূচিত করি, তাহলে উপরের সূত্র থেকে পাই,

 $f(x) = (x-a) \cdot h(x) + r$, এই সূত্রটি a এর সকল মানের জন্য সত্য।

উভয়পক্ষে x=a বসিয়ে পাই,

$$f(a) = (a-a) \cdot h(a) + r = 0 \cdot h(a) + r = r$$

সুতরাং, r = f(a)

অতএব, f(x) কে (x-a) দ্বারা ভাগ করলে ভাগশেষ হয় f(a)। এই সূত্র ভাগশেষ উপপাদ্য (Remainder theorem) নামে পরিচিত। অর্থাৎ, ধনাত্মক মাত্রার কোনো বহুপদী f(x) কে (x-a)