DEVELOPMENT OF ASYMMETRIC BOUC-WEN MODEL WITH LINEAR STRENGTH-DEGRADATION FUNCTIONS

2019/9/21

Sung-Yong Kim, Assistant Professor, Changwon National University, Korea Cheol-Ho Lee, Professor, Seoul National University, Korea

International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei, Taiwan, Sept. 15–19, 2019

CONTENTS

Asymmetric Bouc-Wen Model with Linear Strength-Degradation Functions

- 01 Introduction
- **O2** BOUC-WEN MODEL AND ITS EXTENSIONS
- **ASYMMETRIC BOUC-WEN MODEL**
- MODEL VALIDATION
- **SUMMARY AND CONCLUSIONS**

01. INTRODUCTION

Hysteresis refers to the dependence of the state of a system on its history.

Elastic hysteresis of an idealized rubber band. The area in the center of the hysteresis loop is the energy dissipated due to internal friction.

ref)
https://en.wikipedia.org/wiki/Hys
teresis#In_mechanics

01. INTRODUCTION

Fig. 4. Rigid bus conductors fitted with flexible strap connectors: (a) PG&E 30-2021; and (b) PG&E 30-2022

Typical assemblies of an RB and two FSCs: PG&E 30–2021 and PG&E 30–2022 of Pacific Gas & Electric Company. These connectors are made of three parallel straps, each strap consisting of a pair of copper bars.

ref) Song J, Der Kiureghian A. Generalized Bouc–Wen model for highly asymmetric hysteresis. J Eng Mech. 2006;132(6):610–8.

Fig. 5. Hysteretic behavior of RB-FSC as observed by Filiatrault et al. (1999) and as predicted by fitted modified Bouc–Wen model with time varying parameters: (a) PG&E 30-2021; and (b) PG&E 30-2022

01. Introduction

The problem for the damage identification is that we do not have a model for describing asymmetric hysteresis yet.

CONTENTS

Asymmetric Bouc-Wen Model with Linear Strength-Degradation Functions

- 01 INTRODUCTION
- **O2** BOUC-WEN MODEL AND ITS EXTENSIONS
- ASYMMETRIC BOUC-WEN MODEL
- MODEL VALIDATION
- SUMMARY AND CONCLUSIONS

O2. BOUC-WEN MODEL AND ITS EXTENSIONS ORIGINAL BOUC-WEN MODEL

$$f = f^{\text{PY}} + f^{\text{H}} = \alpha k_i x + (1 - \alpha) k_i z$$

where f^{PY} and f^{H} are the post-yielding and hysteretic forces, respectively; k_i is the elastic stiffness, α is the ratio of the post-yield stiffness to the elastic stiffness k_i ; and z is an auxiliary variable introduced to simulate hysteretic behavior, which is controlled by the following nonlinear differential equation with a zero initial condition:

$$\dot{z} = \dot{x}(1 - |z|^n \psi)$$

where n is a parameter that controls the sharpness of the hysteresis loop and $\psi = \psi(x, \dot{x}, z)$ is a nonlinear function that controls the other shape characteristics of the hysteresis loop.

02. BOUC-WEN MODEL AND ITS EXTENSIONS

ORIGINAL BOUC-WEN MODEL

02. BOUC-WEN MODEL AND ITS EXTENSIONS WANG-WEN MODEL

02. BOUC-WEN MODEL AND ITS EXTENSIONS

GENERALIZED BOUC-WEN MODEL

The BW model can be characterized by using the parameters $\beta_1 = \gamma + \beta$, $\beta_2 = -\gamma$, $\beta_3 = \gamma$, and $\beta_4 = \beta_5 = \beta_6 = 0$. In a similar manner, the WW model can be obtained by taking the parameters $\beta_1 = \beta + \gamma$, $\beta_2 = -\gamma$, $\beta_3 = \gamma$, $\beta_4 = \phi$, $\beta_5 = \phi$, and $\beta_6 = 0$.

CONTENTS

Asymmetric Bouc-Wen Model with Linear Strength-Degradation Functions

- 01 INTRODUCTION
- **BOUC-WEN MODEL AND ITS EXTENSIONS**
- **OS** ASYMMETRIC BOUC-WEN MODEL
- MODEL VALIDATION
- Summary and Conclusions

03. ASYMMETRIC BOUC-WEN MODEL PROPOSED

Scheme of Proposed Model

Conventional BW Model: N+1 parameters

$$f = f^{\mathrm{PY}} + f^{\mathrm{H}} = \alpha x + (1 - \alpha)z \qquad \begin{array}{c} \text{Proposed Model:} \\ \text{N+2n+1 parameters} \end{array}$$
 Rather complex but
$$f = \begin{cases} \min(\alpha x, \ a_{pj}x + b_{pj}) + (1 - \alpha)z & x \geq 0 \\ \max(\alpha x, \ a_{nj}x + b_{nj}) + (1 - \alpha)z & x < 0 \end{cases}$$

CONTENTS

Asymmetric Bouc-Wen Model with Linear Strength-Degradation Functions

- 01 INTRODUCTION
- BOUC-WEN MODEL AND ITS EXTENSIONS
- ASYMMETRIC BOUC-WEN MODEL
- MODEL VALIDATION
- **O.5** SUMMARY AND CONCLUSIONS

Composite Beam-Column Connections

PN500C:
Composite connection

04. MODEL VALIDATION Composite Beam-Column Connections

Introducing linear functions enables the Bouc-Wen model to predict the asymmetric hysteresis more accurately.

04. MODEL VALIDATION Connection Retrofitted with Heavy Shear Tab

04. MODEL VALIDATION Connection Retrofitted with Heavy Shear Tab

Connection Retrofitted with Heavy Shear Tab

Connection Retrofitted with Straight Haunch

04. MODEL VALIDATION Connection Retrofitted with Straight Haunch

04. MODEL VALIDATION Connection Retrofitted with Straight Haunch

Connections Retrofitted with Triangular Haunch

04. MODEL VALIDATION Connections Retrofitted with Triangular Haunch

04. MODEL VALIDATION Connections Retrofitted with Triangular Haunch .546 at column centerline M/M_{pb} Normalized moment 0.80 0.80 1.118 Haunch web (SN490) t = 16Haunch flange (SN490) t = 2010 -10 Total plastic rotation, $\times 10^{-2}$ rad at column centerline M/M_{pb} Normalized moment 1.840 0.80 250 Horizontal stiffener 0.80 (SN490) t = 1645° -10 10 Total plastic rotation, ×10⁻² rad

Composite Beam-Column Connections

Introducing linear functions enables the Bouc-Wen model to predict the asymmetric hysteresis more accurately.

Composite Beam-Column Connections

Introducing linear functions enables the Bouc-Wen model to predict the asymmetric hysteresis more accurately.

Composite Beam-Column Connections

Introducing linear functions enables the Bouc-Wen model to predict the asymmetric hysteresis more accurately.

Inclusion of one or two linear functions in the original BW or Wang-Wen model is recommended for better accuracy and more optimal numerical performance.

05. SUMMARY AND CONCLUSIONS

- 1. A new hysteresis model was proposed by combining the BW class hysteresis models with a post-yielding convex function composed of piecewise linear functions.
- 2. The proposed model and its parameter identification procedure could simulate the asymmetric hysteresis well compared to the existing BW class models.
- 3. The convergence of the proposed model was also examined. Inclusion of one or two linear functions in the original BW or Wang-Wen model is recommended for better accuracy and more optimal numerical performance.

Any Questions?