END-SEMESTER EXAMINATION, JULY-2022 CALCULUS-II (MTH 2001)

Programme: B.Tech

Semester: 2nd Time: 3 Hours

Full Marks: 60	1	Time: 3 Hours	
Subject/Course Learning Outcome	*Taxonomy Level	Ques. Nos.	Marks
Use the knowledge of three dimensions and vectors to describe the region,	L1,L1,L1 L1,L1,L3	1(a),(b),(c) 2(a),(b), (c)	2×6
lines, planes and surfaces. Compute the length of the curve, curvature, tangent normal vector,	L1,L1,L1 L1,L1,L1	3(a),(b), (c) 4(a),(b),(c)	2×6
Apply the concept of function of several variables to find the limit, derivative, directional derivative, linearization and	L1,L1,L3 L1,L1,L3 L1,L3	5(a),(b), (c) 6(a),b), (c) 7(a),(b)	2×8
maxima minima. Apply the concept of double and triple integration to evaluate the integral, to find moment of inertia of lamina and	L3 L1,L5,L5 L1	7(c) 8(a,(b), (c) 9(a)	2 × 5
Apply the concept of line integral to evaluate it, in conservative vector field	L5,L5 L1	9(b),(c) 10(a)	2 ×3
and in Green's theorem. Apply the concept of curl, divergence in Stokes theorem and the divergence	L1,L3	10(b),(c)	2 x 2

*Bloom's taxonomy levels: Knowledge (L1), Comprehension (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer all questions. Each question carries equal mark.

- the volume of the parallelepiped with adjacent edges PQ, PR, PS, where P(3,0,1), Q(-1,2,5), R(5,1-1), S(0,4,2). (a) 2
 - (b) Find the center and radius of sphere
 - $x^{2} + y^{2} + z^{2} 2x 4y + 8z = 15$. 2 Find the angle between the vector $\langle 4, 0, 2 \rangle$ and $\langle 2, -1, 0 \rangle$. (c)
- Find the equation of plane passing through the point (6, 3, 2) and (a)

	perpendicular to the vector $\langle -2, 1, 5 \rangle$.	
(Find whether the planes $x+y+z=1$, $x-y+z=1$ are parallel, perpendicular or neither. If neither, then find the angle between them.	2
		N. Comments
(0	Find $\lim_{t \to 1} \left\langle \frac{t^2 - t}{t - 1}, \sqrt{t + 8}, \frac{\sin \pi t}{\ln t} \right\rangle$	2
3. (a	the state of the state of the section of the	2
	two surfaces, the cone $z = \sqrt{x^2 + y^2}$ and the plane $z = 1 + y$.	
(b)	Find the curvature of the curve $\vec{r}(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$.	2
(c)	A gun is fired with angle of elevation 30°. What is the muzzle speed if the maximum height of the shell is 500m?	2
4. (a)	Find the equation of the tangent line of the curve	2
	$x = 1 + 2\sqrt{t}$, $y = t^3 - t$, $z = t^3 + t$ at the point $(3, 0, 2)$.	(
(b)	Find the tangent and normal vector of the vector	2
	$r(t) = \langle \cos t, \sin t, \ln \cos t \rangle \ at \ (1, 0, 0).$	
(c)	Find the tangential and normal components of acceleration	2
5 ()	vector for $\vec{r}(t) = \langle t, \cos^2 t, \sin^2 t \rangle$.	
5. (a)	Find $\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$ if it exists, or show that the limit does not	2
(la)	exist.	
(b)	Find and sketch the domain of the function $f(x,y) = \ln(0, x^2, 0, x^2)$	2
(c)	$f(x,y) = \ln(9 - x^2 - 9y^2).$	2
	Find $\frac{\partial^3 u}{\partial r^2 \partial \theta}$ of the function $u = e^{i\theta} \sin \theta$	2

- (a) Determine whether $u = x^2 y^2$ is a solution of Laplace's equation 6. $u_{xx} + u_{yy} = 0$
 - (b) Find the directional derivative of the function $f(x,y) = ye^{-x}$ in the direction of $\theta = \frac{2\pi}{3}$ at the point $(0,\frac{3}{4})$.
 - Use the chain rule to find $\frac{\partial z}{\partial s}$ if $z = e^r \cos \theta, r = st$ and $\theta = \sqrt{s^2 + t^2}$.
- 7. (a) Find the maximum rate of change of f = (x+y)/z at (1,1,-1) and the direction in which it occurs.
 - (b) Use Lagrange multipliers to find the maximum and minimum values 2 of the function $f(x, y) = x^2 + y^2$ subject to the given constraint xy = 1.
 - (c) Find the local maximum and minimum values and saddle points of 2 the function $f(x, y) = \sin x, \sin y, -\pi < x < \pi, -\pi < y < \pi$.
- 8. (a) Evaluate the double integral $\iint x^3 dA, \ D = \{(x, y) | \ 1 | \le x \le e, 0 \le y \le \ln x \}$
 - (b) Use polar coordinates to find the volume of the solid that lies below 2 the paraboloid $z = 18 2x^2 2y^2$ and above the xy plane.
 - (c) Evaluate the iterated integral $\int_{0}^{1} \int_{0}^{1-z^{2}} \frac{z}{y+1} dxdzdy$.
- 9. (a) Find the volume of the tetrahedron enclosed by the coordinate planes 2 and the plane 2x+y+z=4.

Page 3 of 4

- (b) Find spherical coordinates of the point with rectangular 2 coordinates $(\sqrt{3}, -1, 2\sqrt{3})$.
- (c) Find the area of the surface, that is a part of plane 3x + 2y + z = 6 2 which lies in the first octant.
- 10. (a) Assuming the appropriate partial derivatives exist and are continuous, show that $div(\vec{F} \times \vec{G}) = \vec{G}.curl\vec{F} \vec{F}.curl\vec{G}$
 - (b) Use Green's theorem to evaluate the line integral $\int_{C} y^{3} dx x^{3} dy \text{ along the positively oriented curve } C, \text{ a circle}$ $x^{2} + y^{2} = 4.$
 - (c) Use the Divergence theorem to calculate the flux of $\vec{F} = \langle x^3 + y^3, y^3 + z^3, z^3 + x^3 \rangle$, across the surface S, a sphere with center the origin and radius 2.

End of Questions