$$-$$
, 1. $\frac{7}{3}$. 2. 4.

3. a = -5, b = -7 (注: 若 a, b 中只写对了一个,则仅给一分)

4.
$$y = \frac{C}{x} + \frac{1}{3}x^2 \ln x - \frac{1}{9}x^2$$
. **5.** $\int_0^{\frac{\pi}{4}} d\theta \int_{\frac{\sin\theta}{\cos^2\theta}}^{\frac{\sin\theta}{\cos^2\theta}} f(\rho\cos\theta, \rho\sin\theta)\rho d\rho$.

 \equiv 1D 2B 3B 4C 5A

三、1. 方程两端对 x 求导得:

$$e^{x^2} + y' \sin y^2 - \sin(x+y) \cdot (1+y') = 0.$$
 (4 $\frac{1}{2}$)

整理得: $e^{x^2} - \sin(x + y) + (\sin y^2 - \sin(x + y))y' = 0$. 于是

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin(x+y) - \mathrm{e}^{x^2}}{\sin y^2 - \sin(x+y)}.$$
 (4 \(\frac{\psi}{x}\))

2. 首先求一阶偏导数: $\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = e^y f_1' + y \cos x f_2'$, (2 分) $\frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} = x e^y f_1' + \sin x f_2'$. (2 分) 其次求二阶偏导数:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(e^y f_1' + y \cos x f_2' \right) = e^y f_1' + e^y \cdot \frac{\partial f_1'}{\partial y} + \cos x f_2' + y \cos x \cdot \frac{\partial f_2'}{\partial y}
= e^y f_1' + \cos x f_2' + e^y (x e^y f_{11}'' + \sin x f_{12}'') + y \cos x (x e^y f_{21}'' + \sin x f_{22}'')
= e^y f_1' + \cos x f_2' + x e^{2y} f_{11}'' + e^y (\sin x + xy \cos x) f_{12}'' + y \sin x \cos x f_{22}''.$$
(4 \(\frac{1}{2}\))

3. 齐次方程 y'' - 3y' + 2y = 0 的特征方程为 $r^2 - 3r + 2 = 0$; 它有两个不相等的实根: $r_1 = 1$, $r_2 = 2$. 又因 2 是特征方程的单根,0 不是特征方程的根。于是可设非齐次方程的一个特解为:

$$y = x(ax^2 + bx + c)e^{2x} + mx + n$$
.

代入原方程比较系数得:

$$3a = 3$$
, $6a + 2b = 0$, $2b + c = 0$, $2m = 2$, $2n - 3m = -1$.

即 a = 1, b = -3, c = 6, m = 1, n = 1. 于是原方程的通解为

$$y = C_1 e^x + C_2 e^{2x} + x(x^2 - 3x + 6)e^{2x} + x + 1$$
.

评分标准: 齐次方程通解 $y = C_1 e^x + C_2 e^{2x}$ 算对给 3 分; 非齐次特解 $y_1^* = x(x^2 - 3x + 6)e^{2x}$ 算对给 3 分; 非齐次特解 $y_2^* = x + 1$ 算对给 2 分。

4. 用直线 y = 2x 把 D 分成两块; 上面一块记为 D_1 ,下面的记为 D_2 . (1分) 因 D_1 关于 y 轴对称,而 $xyf(\cos x + \cos y)$ 是 x 的奇函数; 所以 $\iint_{D_1} xyf(\cos x + \cos y)$

 $\cos y$) $d\sigma = 0$. (2分) 因 D_2 关于 x 轴对称,而 $xyf(\cos x + \cos y)$ 是 y 的奇函数;所以 $\iint_D xyf(\cos x + \cos y) d\sigma = 0$. (2分) 即 $\iint_D xyf(\cos x + \cos y) d\sigma = 0$. 于是

$$I = \iint_{D} x \, d\sigma + \iint_{D} xyf(\cos x + \cos y) \, d\sigma = \iint_{D} x \, d\sigma$$
$$= \int_{-1}^{1} dx \int_{-2x}^{2} x \, dy = \int_{-1}^{1} x(2+2x) \, dx$$
$$= \left[x^{2} + \frac{2}{3}x^{3}\right]_{-1}^{1} = \frac{4}{3}. \quad (3 \, \%)$$

注:对于 $xyf(\cos x + \cos y)$ 的积分计算,必须说明具体的对称性和奇偶性才能给分,直接写等于零(没有过程)不给分。

四、1.
$$y' = e^x$$
. 于是长度为 $s = \int_{\frac{1}{2}\ln 3}^{\frac{3}{2}\ln 2} \sqrt{1 + e^{2x}} \, dx$. $(3 分) \diamondsuit t = \sqrt{1 + e^{2x}}$, 则 $x = \frac{1}{2}\ln(t^2 - 1)$, $dx = \frac{1}{2} \cdot \frac{1}{t^2 - 1} \cdot 2t dt = \frac{t dt}{t^2 - 1}$. 代入得:
$$s = \int_2^3 t \cdot \frac{t dt}{t^2 - 1} = \int_2^3 \frac{t^2}{t^2 - 1} \, dt = \int_2^3 \left(1 + \frac{1}{2} \left(\frac{1}{t - 1} - \frac{1}{t + 1}\right)\right) dt$$
$$= \left[t + \frac{1}{2} \left(\ln(t - 1) - \ln(t + 1)\right)\right]_2^3 = 1 + \frac{1}{2}\ln 3 - \frac{1}{2}\ln 2 \,. \tag{5 分}$$

2. 令
$$u = x^2 + xy + \frac{13}{2}y^2$$
,则 $f = (x+3y)e^{-u}$.于是
$$f'_x = e^{-u} - (x+3y)(2x+y)e^{-u} , \qquad f'_y = 3e^{-u} - (x+3y)(x+13y)e^{-u} . \qquad (1)$$
令 $\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases}$ 得: $\begin{cases} (x+3y)(2x+y) = 1, \\ (x+3y)(x+13y) = 3. \end{cases}$ 两式相除得: $\frac{2x+y}{x+13y} = \frac{1}{3}$,即 $x = 2y$. 代入第一个等式得: $25y^2 = 1$. 于是 $(x,y) = (\pm \frac{2}{5}, \pm \frac{1}{5})$. 而 $u(\pm \frac{2}{5}, \pm \frac{1}{5}) = \frac{1}{2}$, $f(\pm \frac{2}{5}, \pm \frac{1}{5}) = \pm e^{-\frac{1}{2}}$. $(4 分)$

另一方面,由 (1) 得:
$$f'_x = e^{-u} - (2x + y)f$$
, $f'_y = 3e^{-u} - (x + 13y)f$. 于是
$$f''_{xx} = -(2x + y)e^{-u} - 2f - (2x + y)f'_x,$$

$$f''_{xy} = -(x + 13y)e^{-u} - f - (2x + y)f'_y,$$

$$f''_{yy} = -3(x + 13y)e^{-u} - 13f - (x + 13y)f'_y.$$

于是 $A := f_{xx}''(\pm \frac{2}{5}, \pm \frac{1}{5}) = \mp 3e^{-\frac{1}{2}}$, $B := f_{xy}''(\pm \frac{2}{5}, \pm \frac{1}{5}) = \mp 4e^{-\frac{1}{2}}$, $C := f_{yy}''(\pm \frac{2}{5}, \pm \frac{1}{5}) = \mp 22e^{-\frac{1}{2}}$. 即 $AC - B^2 = 62e^{-1} > 0$. 由此可知 f 在 $(\frac{2}{5}, \frac{1}{5})$ 处取极大值 $e^{-\frac{1}{2}}$; 在 $(-\frac{2}{5}, -\frac{1}{5})$ 处取极小值 $-e^{-\frac{1}{2}}$. (4分)

3. 幂级数 $\sum_{n=1}^{\infty} (-1)^n a_n x^{2n-1} = \frac{1}{x} \sum_{n=1}^{\infty} a_n (-x^2)^n$ 的收敛区间为: $|-x^2| < R$,即 $(-\sqrt{R}, \sqrt{R})$;于是此级数的收敛半径为 \sqrt{R} . (4分)由"逐项可积不改变收敛半径"

知,幂级数

$$\sum_{n=1}^{\infty} \int_{0}^{x} (-1)^{n} a_{n} t^{2n-1} dt = \sum_{n=1}^{\infty} \frac{(-1)^{n} a_{n}}{2n} x^{2n}$$

的收敛半径也为 \sqrt{R} . 于是幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n a_n}{n} x^{2n-1} = \frac{2}{x} \sum_{n=1}^{\infty} \frac{(-1)^n a_n}{2n} x^{2n}$ 的收敛半径为 \sqrt{R} . (4分)

注:用比值审敛或根值审敛的都算错(因对应的极限不一定存在!),但可根据情况给予 2-4 分。

五、1.(1) 沿 x 轴趋于 (0,0) 时,

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} f(x,y) = \lim_{x\to 0} f(x,0) = 0.$$

(2) 沿直线 y = x 趋于 (0,0) 时,

$$\lim_{\substack{(x,y)\to(0,0)\\y=x}} f(x,y) = \lim_{x\to 0} f(x,x) = \lim_{x\to 0} \frac{\sin x^3}{3x^3} = \frac{1}{3}.$$

两极限不相等,所以二重极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在。即函数 f(x,y) 在 (0,0) 点处不连续。

2. 将积分区域记为 D_t ,并记 $a \coloneqq f_x'(0,0)$, $b \coloneqq f_y'(0,0)$. 由 f(x,y) 在点 (0,0) 可 微知: f(x,y) = ax + by + g(x,y),其中 $g(x,y) = o(\sqrt{x^2 + y^2})$. (2分)于是

$$\frac{1}{t^3} \iint\limits_{D_t} f(x, y) d\sigma = \frac{1}{t^3} \iint\limits_{D_t} (ax + by) d\sigma + \frac{1}{t^3} \iint\limits_{D_t} g(x, y) d\sigma.$$

一方面

$$\frac{1}{t^3} \iint_{D_t} (ax + by) d\sigma = \frac{1}{t^3} \int_0^t dx \int_0^t (ax + by) dy$$

$$= \frac{1}{t^3} \int_0^t (atx + \frac{1}{2}bt^2) dx = \frac{1}{2}(a + b). \quad (2 \%)$$
(2)

另一方面,由二重积分的中值定理知: $\iint\limits_{D_t}g(x,y)\,\mathrm{d}\sigma=t^2g(\xi,\eta)$,其中 (ξ,η) 位于 D_t 内。(2分) 于是

$$\frac{1}{t^3} \iint_{D_t} g(x, y) d\sigma = \frac{1}{t} g(\xi, \eta) = \frac{g(\xi, \eta)}{\sqrt{\xi^2 + \eta^2}} \cdot \frac{\sqrt{\xi^2 + \eta^2}}{t}.$$

而
$$\left| \frac{\sqrt{\xi^2 + \eta^2}}{t} \right| \le \frac{\sqrt{2}t}{t} = \sqrt{2}$$
,即 $\frac{\sqrt{\xi^2 + \eta^2}}{t}$ 有界。又因 $g(x, y) = o(\sqrt{x^2 + y^2})$,所 以 $\frac{g(\xi, \eta)}{\sqrt{\xi^2 + \eta^2}} \to 0$.由"有界变量与无穷小的乘积仍为无穷小"知:

$$\lim_{t \to 0^+} \frac{1}{t^3} \iint_{D_t} g(x, y) \, d\sigma = 0.$$
 (3)

于是由(2)和(3)可知命题成立。(1分)