

ig N. _____

Cond. from 3884 NB

MINI PREP DNA

2/18/95 wed

- Cfg 500 μ l of cells for 1 minute in an eppendorf (cfg centrifuge)
- removed supernatant and resuspended pellet in 100 μ l of 1 X PEGI (SI) (saved)
- added 200 μ l of alkaline - SDS mix
- placed the tubes on ice for few minutes (3-5 min)
- added 150 μ l of 7.5 M Ammonium Acetate
- Mixed the tubes by inverting
- cfg the tubes for ~ 7-10 min.
- transferred 400 μ l supernatant to the new eppendorf tube
- added 800 μ l of ethanol to supernatant. Mixed tubes
- incubated the tubes for ~ 2 min. Spin
- dissolved pellet in 50 μ l of TE + RNase A
- applied 5 μ l to a 1% agarose gel.

SI = 0.9% glucose

25 mM Tris HCl (pH 8.00)

10 mM EDTA

alkaline - SDS mix = 1% SDS

0.1 N NaOH

To Page No. _____

ssed & Understood by me,

Date

Invent d by

Dat

Recorded by

4/12/95

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

2/9/95 The

Purification of m13 ssDNA

1. Cfg 1.0 ml of *infected cell culture for 2 min. (1 to 5 min)
2. Transferred 800.0 μ l to the new tubes
(pellet was saved for isolation of RF DNA)
3. Cfg supernatant again to remove any residual cells
4. added 200.0 μ l of 20% PEG + 1.5 M NaCl. vortexed
5. Incubated tubes at room temperature for 5 min.
6. Cfg tubes for 5 min. & discarded supernatant (sup.)
7. added 200 μ l of *TE & vortexed really good.
8. Cfg for ~ 1-2 min. (to remove any residual cell debris)
9. transferred sup. to the new tubes. (RNaseA can be added here)
10. added equal vol. of phenol / chloroform / isoamyl alcohol (25:24:1) Mixed well.
11. Cfg 5 min.
12. removed the aq. (upper) layer to a new tube (be very careful)
13. added 1/10 vol. of 3M NaAc + 2 1/2-3 vol. of 95% EtOH
14. Incubated @ -70°C till 2/14/95.

$$\left\{ \begin{array}{l} 20.0 \mu\text{l NaAc} \\ 600.0 \mu\text{l EtOH} \end{array} \right.$$

$$TE (T_{10}E_1) = 10 \text{ mM Tris-HCl pH 8.0} + 1 \text{ mM EDTA pH 8.0}$$

infected cell culture = ① Grew an e. coli F' strain to an OD of 0.4 in 2xYT
neat pag

F' = Fertility factor: codes for tra genes & pili to allow injection of the
m13 Phage. (transfer of DNA)

(cont'd) To Pag No

Witnessed & Understood by me,

Date

Invented by

Date

Deborah S. Sorenson

4/12/95

R c rd d by

swan

4/12/95

ig N. _____

Contd. _____

2/9/95.

(2) Inoculated 1.0 ml of the cells ~~at~~ with the phage.

(3) Incubated the phage infected cells at 37°C for 5 hours. Now supernatant ^{was} can be processed for isolation of ssDNA & cells (pellet) were ready for isolation of RF (Replicating Form) dsDNA.

2/14/95 7ucs.

1. Poured 0.8% Agarose gel (250 ml Volumes) in 1X TAE Buffer

2 g Agarose

250.0 ml 1X TAE Buffer

- weight the flask
- boiled for 4-20 min. (brought up the)
- weight the flask & adjusted volume to before boiling with distilled water
- poured it on the plate.

2. 2X YT

added: 19.3 g Tryptone } brought total volume (TV)
 12 g Yeast Extract } to 1200 ml with water
 12 g NaCl

- made 5 aliquots (1) 500.0 ml (2) 250 ml (3) 100.0 ml
 (4) 100.0 ml
 (5) 100.0 ml

- autoclaved at low pressure for 20 min.

3. 2X YT Top (soft) Agar

added: 0.35 g Agar } made 3 different
 50.00 ml 2X YT } aliquots.

- autoclaved at low pressure for 20 min. (same as 2X YT)

To Page No. _____

Signed & Understood by me,

D. O. Arora

Date

4/12/95

Invented by

Recorded by

Date

4/12/95

Project No. _____

Book No. _____

TITLE _____

From Pag No. _____

4. Started 2, 10 ml cultures

#1 CJ236 in 2XYT + Cm 5 μg/ml + l- phage from T. nea /m13 cloning at 37°C air-shaker

10 ml CJ236 in 2XYT

50 μl Cm 5 μg/ml $1000 \mu\text{g} = \text{mg/ml} = 1000 \mu\text{l}$

#2 10 ml culture of T. nea /PTTC and T. nea /PTTg 11B in 4B + 100 μg/ml Ampicillin at 30°C air-shaker

added: 10 mL
5 μl.

5. centrifuged (cfg) ssDNA from DH5α F' IQ (tubes left at -70°C, 2/9/95) for 10 min. at room temperature.

• discarded supernate

(a) Rinsed the precipitate (ppt.) with 70% EtOH. Removed any residual EtOH with another quick spin.

(b) Dried the DNA pellet at 55°C heat block

(c) Dissolved the DNA in 50.0 μl of TE

(d) applied 5.0 μl on a 0.8% Agarose gel (made today). m13 ssDNA was used as a control

T Pag N

Witnessed & Understood by me,

Date

4/12/95

Inv nted by

R c rd d by

Dat

4/12/95

Project No. _____

B kN . _____

5

ig N . _____

Run 1404 ~ 2 hrs.

To Pag N . _____

sed & Understood by me,

John Polcyn

Date

4/12/95

Invented by

Recorded by

Date

4/12/95

6

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

2/15/95 wed.

(+) Strand (ssDNA) lot # ED5702 260 μg/ml
 RF strand (dsDNA) lot # CC3111 5 μg/18.4 μl

calculation: ssDNA = 260 μg/ml = ng/μl

$$\frac{260 \text{ } \mu\text{g/ml}}{1000 \text{ } \mu\text{g}} \cdot 1000 \text{ } \text{ng}/\mu\text{g} \cdot \text{ml} \cdot 1000 \text{ } \mu\text{l} = 0.260 \text{ } \mu\text{g}/\mu\text{l}$$

$$\frac{1000 \text{ } \text{ng}/\mu\text{g} \cdot (0.260 \text{ } \mu\text{g})}{260 \text{ } \mu\text{g}/\text{lit}} = 100 \text{ } \text{ng}$$

$$\left\{ \begin{array}{l} 260 \left(\frac{1}{2.6} \right) = 100 \text{ } \text{ng} \\ \text{or} \\ \frac{260}{2.6} = 100 \text{ } \text{ng}. \end{array} \right. \text{ for 2.6 total on final volume you need 1.0 } \mu\text{l DNA}$$

$$\therefore 1 \mu\text{l DNA} \left(260 \text{ } \text{ng}/\mu\text{l} \right) \frac{1.6 \mu\text{l TE}}{2.6 \mu\text{l}}$$

$$\text{for } 100 \text{ } \text{ng}/\mu\text{l, } \left\{ \begin{array}{l} 2.0 \mu\text{l DNA} \left(260 \text{ } \text{ng}/\mu\text{l} \right) \\ \text{multiply by 2 } 3.2 \mu\text{l TE} \end{array} \right.$$

$$\text{dsDNA} = 5 \text{ } \mu\text{g}/18.4 \mu\text{l}.$$

$$1000 \text{ } \text{ng}/\mu\text{g} \times 5 \text{ } \mu\text{g} = \frac{1000 \text{ } \text{ng} (5 \text{ } \mu\text{g})}{\mu\text{g}} = 5000 \text{ } \text{ng}/18.4 \mu\text{l}$$

$$\frac{5000 \text{ } \text{ng}}{18.4 \mu\text{l}} = \frac{272 \text{ } \text{ng}/\mu\text{l}}{\mu\text{l}} = 2.72 \text{ } \text{ng}.$$

for 2.7 total volume you need 1.0 μl DNA

Total Volume (TV)

T Pag N

Witnessed & Understood by me,

Date

4/12/95

Invent d by

Recorded by

Dat

4/12/95

Lab No. _____

RF (ds) Tube #1

DNA	1.0 μl	× 3	= 3.0 μl
TE	1.7 μl	× 3	= 5.1 μl
TV	2.7 μl	× 3	= 8.1 μl

Tube #2 \oplus ssDNA

DNA	= 1.0 μl	× 3	= 3.0 μl
TE	= 1.6 μl	× 3	= $\frac{4.8}{5.4}$ μl
TV	= 2.6 μl	× 3	= 4.78 μl

Tube # 1, 2, 3, 4 of RF (dsDNA)

①	②	③	④
Alu I	Hind III	Sau 3A I	Bam HI
H ₂ O	16.0 μl	→	
10x Buffer	2.0 μl	→	
→ DNA	1.0 μl	→	

(React 1; React 2; React 4; React 3) (all 4 tubes w/ 16.0 μl)

Alu I	+	-	-	-
Hind III	-	+	-	-
Sau 3A I	-	-	+	-
Bam HI	-	-	-	+

Tube # 1, 2, 3, 4 of + (ssDNA) same order as RF

2 tubes were set-up for uncut, 1 with RF & 1 with \oplus

- each tube added 16.0 μl H₂O
- 2.0 μl React 2 10x buffer
- 1.0 μl DNA

- Put all 10 tubes in
- Run the sample (all 10) on a gel next morning.
(0.8% agarose gel, 147 Volts)
- Picture of the gel is on the next pg (pg # 8)

To Page No. _____

Assessed & Understood by me,

Dolores

Date

4/12/95

Invented by

Recorded by

Date

4/12/95

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

Tube #1 T-nea 1 pTTc

1.0 ml

Tube #2 T-nea 1 pTT8

1.0 ml

- Cfg. for 1 min. at room temperature
- discarded supernate and added: 100 μ l SI to the pellet. mixed
- 200 μ l S2 lysis put both tube ice.
- Cfg for 5 min. at 4°C
- transferred 400 μ l of supernatant to the new tubes.
- added 800.0 μ l ETOH to the supernatant
- put both tubes in the fridge till tomorrow (2/16/95)

(+) Sall3A1 - gel shift (did not cut but binded)

To Pag No

Witnessed & Understo d by m ,

Dolores

Dat

4/12/95

Inv nt d by

Recorded by

Date

4/12/95

Ag N. _____

2/21/95 TUE

DIGEST T.nea/pSPORT with SstI E1 SphIDIGEST M13 mp 18 E1 M13 mp 18 w/ SstI E1 SphI

M13 mp 18 RF (0.44 ug/ml) } cut 500.0 ng
M13 mp 19 RF (350.0 ug/ml) }

$$\rightarrow 1000 \text{ ng/ml} \times 0.44 \text{ ug} = 440 \text{ ng}$$

$$\frac{500 \text{ ng}}{440 \text{ ng}} = 1.14 \text{ ml}$$

$$\rightarrow 1000 \times 0.350 \text{ ug/ml} = 350 \text{ ng}$$

$$\frac{500 \text{ ng}}{350} = 1.4 \text{ ml}$$

mp 18

H₂O - 35.0 ml
10X buffer - 2.0 ml ← REact 2 → 10X buffer
500ng RNA - 1.1 ml
(ml) SstI - 2.0 ml
40.0 ml

mp 19

H₂O - 35.0 ml
2.0 ml
RNA - 1.4 ml
SstI - 2.0 ml
40.0 ml

T.nea/pSPORT

H₂O - 81.0 ml
10X buffer - 10.0 ml
ng/ml RNA - 4.0 ml
SstI - 5.0 ml
100.0 ml

- Incubated all 3 tubes @ 37°C for 1/2 hour

- Made 0.8% agarose gel

2.50.0 ml TE buffer

2.0 g Agarose

- boiled for 4.0 min.

- added 12.0 ml E. Bromide

- poured the gel.

To Pag. No. _____

s d & Understood by me,

Date

Invented by

Dat

4/12/95 Recorded by _____

4/12/95

Dokup

Project No. _____

Book No. _____

TITLE _____

From Page N _____

added: 2.0 μ l of 1M KCl $2 \mu\text{g} = 2000 \text{ ng}$
 to 100.0 μg (mp 18 E 19)

5.0 μ l of 1M KCl
 to 100.0 μg (pSPORT)

added ~~SP6~~ Sph I - 2.0 μ l mp 18
 2.0 μ l mp 19
 5.0 μ l pSPORT

- Incubated @ 37°C for 1/2 hour
- put the tubes in the fridge till
- ran samples on the gel ~~to~~ on 2/22/95

arp 2/22/95 (1)

M13 mp 18 E 1 mp 19 RF D
 are ds, supercoiled forms
 the DNAs of phages M13
 E 19. Using this vector
 foreign DNA can be
 inserted into the multi
 cloning site in an
 oriented fashion.

To Pag N

Witnessed & Understood by me,

Date

Inv nt d by

Date

Project No. _____
Book No. _____

Pg N. _____

2/22/95

1. grow cells overnight (0/N) 10.0 mL

= 9.0 mL (1.0 mL in ea. nine tubes). Each tubes labelled
 • Quick freeze all nine tubes in a powdered
 • Dry ice.

AM 10B
 pTrc1T-nea
 2/22/95 BJS
 LB + AP100

GENE CLEAN

2) Did electrophoresis of yesterday's DNA (2/21/95)
 M13 mp 18 and M13 mp 19 and pSPORT
 b) Took the picture of the gel
 c) cut off mp18 fragment, mp19 fragment & pSPORT fragment from
 the gel & transformed the gel into DNA into the separate
 eppendorf tubes.
 d) added 700.0 μ l NaI to each tubes. vortexed mp18 & mp19 tubes.
 e) incubated both tubes @ 55°C to melt agarose. mixed after after incubation.
 f) added 5.0 μ l Glass Milk to both tubes.
 g) incubated both tubes on ice for 5 min.
 h) centrifuged both tubes (quick spin)
 i) discarded supernate
 j) added 500.0 μ l New Wash buffer
 k) discarded supernate & again added 500.0 μ l New Wash buffer.
 washed both tubes 3 times.
 l) added 10.0 μ l dH₂O to the tubes. mixed well by vortexing. 55°C for 2-5 min
 m) set up ligation

Ligation

$H_2O = 12.0 \mu$ l
 ligase 5x buffer = 4.0 μ l
 mp 18 DNA = 2.0 μ l
 (1 μ l) Ligase = 2.0 μ l
 TV = 20.0 μ l

$H_2O = 12.0 \mu$ l
 5x buffer = 4.0 μ l
 mp 19 DNA = 2.0 μ l
 Ligase = 2.0 μ l
 TV = 20.0 μ l

n) incubated both tubes overnight @ room temperature (cont)

T Pag No.

Read & Understood by me,

Date

Inventoried by

Date

Signature

4/12/95

Recorded by

4/12/95

From Page No. _____

(con'd)

T_{nef}/P_{trc} E₁ pttc

- 1.0 mL of ea.
- (fg.)
- discarded supernate
- added 100.0 μ l SI, mixed well
- incubated on ice for few min.
- added 200.0 μ l S2 lysis
- incubated on ice for few min.
- added 150.0 μ l S3 w/ RNase A
- (fg.) for 7.0 min. @ 4°C

Witnessed & Understood by me,

Date

4/12/95

Invented by

R c rd d by

Date

4/12/95

D. Polcino

Swan

T Pag

20

Project No. _____

Book No. _____

TITLE _____

From Page N. _____

2/28/95 TUE

I set up digest DNA ppt.

① M13 mp 18, ② mp 19 and ③ T. nea/pSPORT

1. - To ca. 3 added 100.0 μ l TE }
" " 10.00 μ l NaAc } to ppt.
- " 300.00 μ l EtOH } DNA

2. Incubated on dry ice for ~5 min.

3. Cfg. for 10 min. @ room temp (no ppt) &

4. no ppt., added 2.0 μ l (carrier molecule) Yeast tRNA. Vortexed

5. incubated on dry ice for ~5 min.

6. Cfg for 10 min. @ room temp. (Supernate saved) ^(supernate saved) _{(pellet was stored on mp 18 &}

7. added 200.0 μ l 10% EtOH to the pellet

8. Cfg. discarded supernate, air dried by putting tubes on the heat block.

II DIGEST set-up (to map Bam HI site)

- cut T. nea/pSPORT with Hind III, Bam HI, Xba, NOT I, Sst, EcoR separate

H_2O - 13.0 μ l enzymes - Hind III, Xba, Sst had REact 2
buffer - 2.0 μ l buffer.

T. nea/pSPORT DNA - 3.0 μ l - Bam HI, NOT I, EcoRI had REact -
enzyme - 2.0 μ l - buffer

Control: H_2O - 13.0 μ l
(REact 2) buffer - 2.0 μ l
DNA - 3.0 μ l

- Incubated @ 37°C
- ran on the gel on 3/1/95 (wed) Picture shown pg 21 - T Pag N

Witnessed & Understood by me,

Date

4/12/95

Invent d by

R cord d by

Date

4/12/95

ag N .

1 DIGEST set-up

- Cut p_T lac / T. nea 201 Sst I enzyme

ct 2) buffer - 2.0 ml
-Tnca) DNA - 2.0 ml
Sst I - 5.0 ml
T4 = 20.0 ml

Control = H_2O - 11.0 ml
buffer - 2.0 ml.
DNA - 2.0 ml

- Incubate @ 37°C
- Run DNA on a gel on 3/1/95 (wed). Picture shown below

16 22 30

30 m HI
 $\Sigma 210 \text{ kb} / 4100$
 $\Sigma 2.5 \text{ kb} \cdot (2)$
 $\therefore 100 \text{ bp}$

E R O R I
5.0 Kb.)
1.5 kb.
6.0 bp (10)
= 7.5 bp)

Hind III
100

Bamboo

10

Diagram of a bacterial plasmid with restriction sites and a transposon insertion. The plasmid is circular with various restriction sites marked: **EcoRI** (top left), **XbaI** (top right), **SmaI** (top center), **KpnI** (top center), **PstI** (top center), **BamHI** (top left), and **HindIII** (bottom left). A **lacZ** gene is located on the plasmid, indicated by a bracket and labeled **lacZ** (bottom right). A **Amr** gene is indicated by an arrow pointing to the right. A **IS441** insertion is shown as a bracket spanning the region between **HindIII** and **KpnI**, with the label **IS441** above it. The **IS441** bracket is labeled **loci** (top right). The **lacZ** gene is labeled **loci** (bottom right).

GRAPH 2: pg 23 of this book.

To Page No.

signed & Understood by me,

Date _____

Date

Invented by

Recorded by

Date

4/12/95

Project No. _____

Book No. _____

TITLE _____

22

From Pag No. _____

3/1/95

- ① 1 kb ladder ② T-neal/SPORT uncut, ③ Sst, ④ Sst/Sph, ⑤ Sph, ⑥ 1 kb ladder. (from 263 added loading dye, electrophoreses @ 190 V

- digested double digested Bam HI / Sph I (to map the Bam site T-neal)

H₂O - 14.0 μ l

control: - H₂O - 14.0 μ l

(React 6) buffer - 2.0 μ l

(pools)(T-neal/Sph) DNA - 2.0 μ l

(uncut) buffer - 2.0 μ l

DNA - 2.0 μ l

(Bam/Sph) enzyme - 1.0 μ l ea.

TV = 20.0 μ l.

Incubated @ 37°C for 300 min. (15 min.)

T Page 1

Witnessed & Understo d by m ,

Date

Inv nt d by

Dat

Bob Staub

4/11/95

R c rd d by

4/12/95

Page N. (8 from pg. 21)

GRAPH 2:

BamISphI

(A)

4.0 kb

700 bp

1 kb

1.5 kb

3.2
1.1
1.5

BamISphI

4.0 kb

2.2 kb

300 bp

700 bp

3/2/95

Cloning mp 18 w/ T-neal/pSPORT E1 mp 19 w/
T-neal/pSPORT

3/2/95

Thurs.

Picture before
cutting the
DNA fragment.

DNA GENE CLEAN

To Page No. _____

ssed & Understood by me,

Date

4/14/95

Invented by

Recorded by

Date

4/12/95

Proj ct No. _____

B K N . _____

ag N. (from pg. 22)

RAPH 2:

(A)

1.5 kb

3.2 kb

2.2 kb

(?) Bam

100 bp

Bam ISatt

100 bp

SPH I

1 kb

From Page No. _____

STENE CLEAN

- Mixed mp 18 with T.nea pSPORT cut w/ Sst Ispk $\frac{1}{2}$ tube (cut)
- " mp 19 with " " " " $\frac{1}{2}$ tube
- added 700.0 μ l Na I to each 2 tubes. vortexed
- put the tubes in 55°C heat block to melt agarose
- after agarose melted, added 5.0 μ l glass milk to both tubes
- incubated both tubes on ice for 5.0 min.
- centrifuged both tubes (quick spin)
- discarded supernatant & washed pellet 3 x with New Wash b
- added 14.0 μ l dH₂O to each tube
- quick spinned, discarded pellet & saved supernatant

Set-up Ligation

\rightarrow (mp 18)(mp 19)
 DNA - 14.0 μ l
 (ligase) 5x buffer - 4.0 μ l
 ligation - 2.0 μ l.
 TV - 20.0 μ l.

- incubated both

Transformation Cells

\rightarrow (1) 100.0 μ l Competence
 3.0 μ l RNA (from ligation)

at 4/12/95

- (2) incubated on ice for 30 min.
- (3) heat shocked @ 42°C H₂O bath for 35 sec.

- melted 0.7% 2x YT top agar, added 4.0 ml to 6 different glass tubes & put the tubes @ 55°C heat block

Thank you

T Page No. _____

Witnessed & Understood by me,

Date

4/12/95

Invented by

Recorded by

Date

4/12/95

Project No. _____
Book No. _____

ag N. _____

Report

3/7/95 TUC

3/7/95

After taking picture or looking @ the gel, M₂ + M₁₃ mp 18 and M₁₃ mp 19 is @ the 7.2 kb which was cut with Sph I. ~~we decided~~ to cut we planned on cutting mp 18 and mp 19 with Sst I. The gel ^{picture} below shows mp 18 & mp 19 before & after cutting the DNA fragments. After cutting the fragments performed gene CLEAN

To Page No. _____

Used & Understood by m ,

Date

4/12/95

Invented by

Recorded by

Date

4/12/95

Bokev

From Page N. _____

Labelled 2 tubes, 1 w/ mp 18, & 1 w/ mp 19

1. To the DNA w/ agarose gel, added 700.0 μ l NaI
 2. put the tubes @ 52°C heat block to melt agarose. vortexed (constant)
 3. added 5.0 μ l glass milk to both tubes - mixed
 4. incubated on ice for 5 min.
 5. Cfg. (quick spin) @ room temp.
 6. discarded supernate, added 500.0 μ l New wash buffer
 7. discarded supernate, washed pellet 3x with New wash buffer
 8. after washing 3x, added 14.0 μ l dH_2O to the pellet (discarded)
 9. incubated @ 52°C for 5 min. (mixed)
 10. discarded pellet & saved supernate for ligation.
 (cont'd this on 3/8/95 wed.)

Purification of m13 ssDNA (T.nea 2 kb [SphI] /mp19) from pg.

To Page N

Witnessed & Understood by me,

S. Polans

Date

4/12/95

Inv. nt d by

Recorded by

Date

4/12/95

Page No. _____

Cell growth & Infection

- Grew an E. coli F' strain to an OD of 0.2-0.4 in 2X YT
- Inoculated 1-2 ml of the cells w/ the phage. (Added 10.0 μl from a liquid phage stock & added to cells)
- Incubated the phage infected cells @ 37°C for 5-7 hours.
- The supernate can now be processed for isolation of ssDNA & the cells can be processed for the isolation of Replication Form (RF) dsDNA.

Purification of m13 ssDNA

- transferred 1.0 ml culture of infected cell to 4 different eppendorf tubes
- Cfg. 4 tubes for 2 min.
- transferred supernate to the new tubes & saved pellet from 1 tube (out of 4 tubes) for isolation of RF DNA
- Spinned the supernate again & transferred the supernate to the new tubes (done to remove any residual cells remained behind)
- passed the supernate through a 0.45 μ filter as to remaining cells (done when performing site-directed mutagenesis)
- added 200.0 μl of 20% PEG + 1.5 M NaCl. Vortexed
- Incubated tubes for 15 min @ room temperature (or overnight @ 4°C)
- Cfg. for 10 min in a 4°C. @ room temp.
- discarded supernate & briefly spinned the tubes to remove the residual soln from the side of the tube. (removed as much ^{supernate} as possible)
- added 200.0 μl TE. Vortexed
- Cfg. for 2 min. to remove any residual cell debris.
- Transferred supernate to the new tube. (Added 5.0 μl RNase I to remove any residual nucleic acid from the prep. Benzonase will remove both RNA & DNA very efficiently)
- added equal volume of phenol / chloroform / isoamyl alcohol. mixed well.
- Cfg. for 5.0 min.
- transferred the upper layer to a new tube (BE CAREFUL NOT TO DISTURB WHITE INTERFACE OR REMOVE ANY PHENOL)
- added 20.0 μl NaAc & 600.0 μl EtOH
- Incubated @ -70°C for 5-15 min. (we left @ -70°C overnight)

To Page No. _____

ssed & Undrstod by me,

Date

Inventd by

Date

J. B. Polk

4/12/95

Recorded by

4/12/95

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

318/95 wed.

- centrifuged the samples for 10-15 min.
- discarded the supernate & rinsed the pellet w/ 70% EtOH
- dried the pellet @ 55°C heat block or @ room temperature
- dissolved the DNA in 50.0 μl TE.

SDS Rxn

318/95 wed.

Annealing Rxn.

+ Primer (2899) - Primer (2899)

H ₂ O	-	3.0 μl	4.0 μl
5X Buffer		2.0 μl	2.0 μl
99.1% SG DNA		4.0 μl	4.0 μl
(200ng/μl) Oligo (kinase)		1.0 μl	—
TV		10.0 μl	10.0 μl

Incubated @ 70°C - 75°C for 2 min. (to eliminate non-sp. bfr)
" @ 37°C - 40°C for 2 min.

Synthesis Rxn

→ Annealing Rxn - 10.0 μl.
5mM 10X buffer - 2.0 μl
H₂O - 6.0 μl
T₄ T₇ DNA poly - 1.0 μl
T₄ DNA ligation - 1.0 μl
TV - 20.0 μl.

Incubated @ 37°C for 10 min.

→ Synthesis Rxn - 2.5 μl
TE - 8.0 μl
Loading dye - 1.0 μl

- ran the sample on the gel
- the picture on the next page, # 29.

T Pag No

Witnessed & Underst d by m ,

Date

4/12/95

Invent d by

Rec rd d by

swan

Dat

4/12/95

'ag N .

(con'd from pg. 28)

+2899 (wt primed) oligo forms a ds DNA. ∴
+2899 fragment looks brighter because
Et. Bromide binds to it better. -2899
Primer binds but it does not hold strongly
∴ the DNA fragment looks fainter or
light, less Et. Bromide is able to bind.

Ligation from 3/7/95 (pg. 26)

<u>H₂O</u>	-	8.0 ml
<u>5X buffer</u>	-	4.0 ml
<u>IMP 18</u>	-	2.0 ml
<u>insert</u>	-	4.0 ml
<u>ligation</u>	-	2.0 ml
<u>TV</u>	-	20.0 ml

H ₂ O	-	8.0 ml
5x buffer	-	4.0 ml
(vector) mp 19	-	2.0 ml
insert	-	4.0 ml
<u>ligation</u>	-	<u>2.0 ml</u>
TV	-	20.0 ml

- Incubated both samples for 1 hour @ room temp. 4

- 100.0 μ l Competent cells }
3.0 μ l DNA } Xfection
cells.

ran mp 18 on 3/10
(used DNA from
3/10/95 again on
3/15/95 pg 32)

xfection

10% mp 18 / mp 19
90% mp 18 / mp 19
Control

To Page No. . .

Used & Understood by me,

Date

Inv nted by

Date

2801a

4 { 12/95

Recorded by

4/12/95

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

- 10% MP 18 / MP 19

4.0 mL 2X YT TOP Agar
added (100.0 μl X-Gal 4%)

5.0 μl IPTG 200 mM (inducer = repressor gives tighter affinity)

60.0 μl lawn cells

10.0 μl infection cells (after heat shock for 35 sec.)

- 90% MP 18 & MP 19.

Same way as 10%

- Control

100.0 μl X-Gal

5.0 μl IPTG

60.0 μl lawn cells.

10% MP 18 & MP 19.

T Pag N

Witnessed & Understood by me,

John Polansky

Dat

4/12/95

Inv nt d by

Recorded by John

Dat

4/12/95

Project No. _____
Book N. _____

ge No. _____

3/14/95 7UE

Procedure: Miniprep

1.0 ml culture of T-nea Imp 19 grown for 5 hours @ 37°C fin
 6 different glass tubes
 transferred 1 ml cell to the 6 different labelled eppendorf tubes.
 cfg all 6 tubes for 2 min. @ room temp.
 removed supernate & saved in different tubes
 added 100 μ l SI mixed well
 added 200 μ l S2. Put the tubes on ice (mixed by inverting)
 added 150 μ l 7.5 M NH₄OAc
 incubated on ice for 5 min.
 cfg for 7 min. @ room temp (4°C) ^{NOTE: cfg in 4°C room was taken away for repair. used @ RT.}
 transferred supernate (400.0 μ l) to the new 6 labelled tubes
 added 800 μ l of EtOH to the 400 μ l of supernate (mixed well)
 incubated @ -70°C for 30 min.
 cfg for 2 min. @ room temp (discarded supernate)
 rinsed w/ 70% EtOH (removed supernate)
 added 50.0 μ l TE to the pellet

$$\begin{array}{rcl}
 \text{H}_2\text{O} & - 7.0 \mu\text{l} & \times \text{ tubes} \\
 \text{buffer} & - 2.0 \mu\text{l} & \times 6 = 12.0 \mu\text{l} \\
 \text{Eco 47III} & - 1.0 \mu\text{l} & \times 6 = 6.0 \mu\text{l} \\
 & \text{TV} & 60.0 \mu\text{l}
 \end{array}$$

added 10.0 μ l DNA to each 6 tubes.

the map is on next page #32. Fragments on all 6 tubes are still present, y haven't gone into the mutant.

• tried miniprep again next day.
 (Started)

ed & Understood by m ,

Date

Invent d by

Date

Polaris

4/12/95

R corded by

4/12/95

32

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

3/15/95 Wed

Eco 47 III

parent

~ 8-9 kb

0.3 kb → (most probably won't see fragment because too small & too light)

mutant

4 kb

4.7 kb

0.3 kb

DNA from date 3/10/95

H₂O = 6.0 μl.

REact 6 buffer = 2.0 μl.

mp18① RNA = 10.0 μl

Sst I (ph) 1.0 μl ea.

TV 20.0 μl

H₂O = 6.0 μl.

buffer = 2.0 μl

mp18① RNA = 10.0 μl

Sst I (ph) = 1.0 μl ea.

TV 20.0 μl

from pg 29 Ex 100 again
on 3/15

4/12/95

3/10/95

T Pag

Witnessed & Underst od by me,

S. B. Boland

Dat

4/12/95

Inv nt d by

Rec rd d by

Dat

4/12/95

ag No. _____

- incubated both tubes @ 37°C for 30 min.
- added 2.0 μl loading dye to each tube
- ran both on a gel
- took picture

3/15/95 T.nea/ml

1.0 ml T.nea (Sph I) Imp 19 + 2899 + San 3AI grown for 5 hours @ 37°C in 10 different glass tubes
 after 5 hours transferred 1.0 ml culture to the 10 labelled eppendorf tubes
 cfg all 10 eppendorf tubes @ room temperature for 2 min.
 removed supernatant & saved
 put all 10 tubes w/ pellet & all 10 tubes w/ supernatant @ -70°C
 overnight or until 3/16/95 Thursday.

RE: Brian had to leave @ 4:30 pm & this was a point to
 Stop @.

To Page No. _____

ssed & Understood by me,

Dat

Inv nted by

Date

Dolores

4/12/95

Recorded by

Dolores

4/12/95

34

Project No. _____

Book No. _____

TITLE _____

From Page No. _____

3/16/95 Thurs

cond from page 33 3/15/95 wed MINI PREP

- took the pellet out from -70°C (10 eppendorf tubes)
- added 100 μl S1 mixed well
- added 200 μl S2 put all 10 tubes on ice. mixed
- added 150 μl 1.5 M NH₄OAc
- incubated on ice for 5 min.
- cfig all 10 tubes for 5 min. @ room temp. (4°C)
- transferred 400 μl of supernate to the new 10 labelled tubes
- added 800 μl EtOH Mixed well
- incubated all 10 tubes for 30 min. @ -70°C.
- cfig & discard for 2 min. @ room temp.
- discarded supernate & washed pellet with 70% EtOH.
- added 50 μl TE to all 10 tubes w/ pellet

		tubes
H ₂ O	- 1.0 μl	× 10 > 10.0 μl
buffer	- 2.0 μl	× 10 = 20.0 μl
EtOH	- 1.0 μl	× 10 = 10.0 μl
	TV	= 100.0 μl

- added 10.0 μl from TV to all other 9 tubes
- added 10.0 μl DNA to each 10 tubes

- incubated @ 37°C for 30 min.
- added 2 μl loading dye
- ran all 10 samples on a gel for 1 hour @ 190 v
- took a picture

Picture on pg 35

To Pag No

Witnessed & Understood by me,

Date

Invented by

Dat

S. Polans

4/2/95

Recorded by

4/12/95

ag N. _____

parent ϵ_1 mutant should look like
 (ECO 47 III)

NOTE: In this ~~we~~ we could see parent ϵ_1 some mutant mutant
 is seen on # 5, 6, 7, 8

P0

To Page No. _____

Signed & Understood by me,

Dolores

Date

4/12/95

Invented by

Recorded by

Date

4/12/95