Homework5 卷积神经网络

3220104685 赵一锟

1 实验要求

经过课堂上的学习和课后的阅读,相信大家对卷积神经网络的构建和训练有了一定的了解。在本次作业中,我们将尝试使用 PyTorch 构建和训练两个经典的卷积神经网络 AlexNet 和 VGGNet。

2 实验原理

2.1 券积神经网络

2.1.1 AlexNet

AlexNet 是一个深度卷积神经网络,包含 8 个学习层: 5 个卷积层 和 3 个全连接层。它能够自动学习图像从低级特征(边缘、纹理)到高级语义特征(物体部件、整体对象)的层次化表示,最终用于图像分类。

AlexNet 采用 ReLU。ReLU 计算简单 (f(x) = max(0, x)),在正区间梯度恒为 1,有效缓解了梯度消失问题,显著加快了训练速度(比使用 tanh 快数倍),并允许训练更深的网络。

2.1.2 VGGNet

VGGNet 是一个深度卷积神经网络,包含 9 个学习层: 6 个卷积层 和 3 个全连接层。 其核心设计理念是:使用堆叠的小型 3x3 卷积核构建深度网络。它证明了深度(即使是相 对适度的增加)对提升 CNN 性能的有效性,其简洁、规则、模块化的结构使其成为理解 VGGNet 思想和卷积神经网络基础架构的绝佳范例。

2.2 损失函数

2.1.1 均方误差损失 (MSE)

均方误差是机器学习和统计建模中常用的损失函数,特别适用于回归问题。它通过计算预测值与真实值之间差异的平方平均值,来衡量模型的预测性能。MSE 的计算公式为:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

由于平方操作, MSE 对较大的误差更加敏感, 有助于模型重点优化这些误差, 与此同时, 它还是一个连续且可导的函数, 适合使用梯度下降等优化算法进行模型训练, 但其对离群点(异常值)非常敏感, 可能导致模型过于关注这些点, 影响整体性能。

2.1.2 交叉熵损失(cross entropy)

交叉熵损失是深度学习中分类问题常用的损失函数,特别适用于多分类问题。它通过度 量预测分布与真实分布之间的差异,来衡量模型输出的准确性。交叉熵损失的计算公式为:

$$ext{Loss} = -\sum_{i=1}^N y_i \log(\hat{y}_i)$$

相对于均方误差损失主要用于回归问题,对异常值敏感,不适合分类任务;交叉熵损失函数可以通过度量预测分布与真实分布之间的差异,有效指导模型在分类任务中学习更准确的概率分布。

3 模型参数调整与比较

在完成 VGG 神经网络搭建代码补全及测试过程代码补全后,我们进入训练参数选取及模型比较的部分。本实验使用 3080Ti 进行模型训练,单个 epoch 训练时长在 11s 左右。以下为全部的实验训练参数及训练结果,下面我将逐个参数进行分析,并对最终的训练模型进行比较。(注: 所有序号均按照 log 的时间顺序排列)

					Net交叉熵损失				
实验次数\参数	batch_size	epochs	learning_rate	optimizer	dropout_prob	学习率调节器	准确率	loss	训练集与验证集准确率差
1	128	20	0.01	sgd	0.5	FALSE	91.66%	0.279	4. 73%
2	128	20	0.01	sgd	0.5	TRUE	91.69%	0. 2617	4.76%
3	128	20	0.01	adam	0.5	FALSE	10.00%	2.303	85. 34%
4	128	20	1.00E-03	adam	0.5	FALSE	90.52%	0.3845	5. 90%
5	128	20	8.00E-04	adam	0.5	FALSE	90.99%	0.3409	6. 67%
6	128	20	1.00E-04	adam	0.5	FALSE	91.60%	0.3041	6. 21%
7	128	20	8.00E-05	adam	0.5	FALSE	91.48%	0. 2651	5. 83%
8	128	15	1.00E-04	adam	0.5	TRUE	91.24%	0. 2555	4.01%
9	128	20	1.00E-04	adam	0.5	TRUE	91.56%	0. 2928	6. 12%
10	64	20	1.00E-04	adam	0.5	TRUE	91.82%	0.4437	7.71%
11	256	20	1.00E-04	adam	0.5	TRUE	91.41%	0. 2545	3.95%
12	192	20	1.00E-04	adam	0.5	TRUE	91.49%	0.2639	4.66%
13	128	20	1.00E-04	adam	0.4	TRUE	91.74%	0.3031	6. 32%
14	128	20	1.00E-04	adam	0.6	TRUE	91.72%	0.2807	5. 77%
15	128	20	1.00E-04	adam	0.7	TRUE	91.78%	0.2709	5. 35%
16	128	20	1.00E-04	adam	0.8	TRUE	91.51%	0. 2623	4. 54%
17	128	20	0.05	sgd	0.5	TRUE	92.04%	0.4741	7. 50%
18	128	20	0.008	sgd	0.5	TRUE	91.29%	0.2561	3.88%
19	128	25	0.008	sgd	0.5	TRUE	91.45%	0.2719	5. 70%
20	256	20	0.01	sgd	0.5	TRUE	90.38%	0.2750	2. 17%
21	256	25	0.01	sgd	0.5	TRUE	90.42%	0.2683	3. 24%
22	256	30	0.01	sgd	0.5	TRUE	91.12%	0.2682	4. 22%
23	256	40	0.01	sgd	0.5	TRUE	91.00%	0.3097	6.74%
24	64	20	0.008	sgd	0.5	TRUE	91.64%	0.2884	6. 62%
25	128	20	0.01	sgd	0.7	TRUE	91.52%	0.2598	5. 02%
26	128	20	0.01	sgd	0.6	TRUE	91.36%	0.2623	4.74%
27	128	20	0.01	sgd	0.4	TRUE	91.63%	0. 2586	4. 73%
核	型与损失函数	比较分析	(batch_size =	128, epoc	hs = 20, 1r =	= 1e-4, adam,	prob =	0.7, use_s	scheduler)
实验次数\参数		模型			损失函数		准确率	loss	训练集与验证集准确率差
28		VGG			cross_entrop	ру	91.75%	0. 2576	4.87%
29		VGG		mse		92.61%	0.0124	6. 47%	
30		alex			mse		92.56%	0.0120	6. 41%
	更换数	据: (batc	h_size = 128,	epochs =	20, 1r = 0.01	l, sgd, prob	= 0.5, u	se_schedu]	er)
实验次数\参数		模型			损失函数		准确率	loss	训练集与验证集准确率差
31		alex			mse		79.71%	0.0310	0.17%
32		VGG			mse		77. 48%	0.0335	0.23%
33		VGG			cross_entrop	ру	91.80%	0. 2471	3. 73%

图 1 训练结果总表

3.1 使用 AlexNet 在交叉熵损失函数的条件下进行参数调整

3.1.1 learning rate 学习率

•控制变量: batch size = 128, epochs = 20, optimizer = adam, dropout prob = 0.5, use scheduler

序号\指标	learning rate	准确率	loss	训/验准确率差
3	0.01	10.00%	2.303	85. 34%
4	0.001	90. 52%	0.3845	5. 90%
5	0.0008	90. 99%	0.3409	6. 67%
6	0.0001	91.60%	0.3041	6. 21%
7	0.00008	91. 48%	0. 2651	5. 83%

图 2 learning_rate adam

通过以上数据,我们可以首先观察到使用 adam 优化器,所需要的学习率相对较低;因此序号 3(lr = 0.01)学习率较大,训练时会跳出最优区域,结果出现了严重的欠拟合现象。

观察与比较验证集中序号 4—7 的 tensorboard,我们可以发现当 lr=1e-4 时,训练的得分最高,相比于序号 4、5,序号 6、7 的 loss 的收敛性相对较好,在 20 epochs 内没有出现明显的上升,但整体呈上升趋势,说明可能有过拟合现象,其他参数仍需要调整。因此 adam 优化器的学习率选在 lr=1e-4 比较合适。

• 控制变量: batch_size = 128, epochs = 20, optimizer = sgd, dropout_prob = 0.5, use_scheduler

序号\指标	learning rate	准确率	loss	训/验准确率差
2	0.01	91.69%	0. 2617	4. 76%
17	0.05	92.04%	0. 4741	7. 50%
18	0.008	91. 29%	0. 2561	3. 88%
19 (epoch = 25)	0.008	91. 45%	0. 2719	5. 70%

图 3 learning_rate sgd

根据以上表格,我们可以看到在 lr=0.05 时,loss 曲线明显不收敛,这是由于学习率过高而导致的发散震荡现象严重。而将 lr 减小至 0.01 或 0.008 时,loss 都是收敛的,而 0.01 的学习率最终准确率比 lr=0.008 高(包含 epoch = 25 的情况),因此充分训练的前提下,lr=0.01 是最佳选择。

3.1.2 batch size 批量大小

• 控制变量: epochs = 20, learning_rate = 1e-4, optimizer = adam, prob = 0.5, use_scheduler\

	, 0_	, <u>1</u>	, <u>, , , , , , , , , , , , , , , , , , </u>	
序号\指标	batch size	准确率	loss	训/验准确率差
9	128	91. 56%	0. 2928	6. 12%
10	64	91.82%	0.4437	7. 71%
11	256	91.41%	0. 2545	3. 95%
12	192	91. 49%	0. 2639	4. 66%

图 4 batch size adam

batch_size 是深度学习训练过程中的一个关键超参数,它定义了每次迭代(iteration)中用于更新模型参数的样本数量。根据图标分析可知,使用 adam 优化器,较小的 batch_size(如 64)容易出现过拟合现象(训练集与验证集准确率相差太大,loss 在多次迭代后变为增大);中等的 batch_size(如 128)拥有相对最高的准确率,但泛化能力有待进一步优化;较大的 batch_size(如 192、256)拥有着更好的泛化能力。

序号\指标	batch size	准确率	loss	训/验准确率差
2	128	91.69%	0. 2617	4. 76%
22(epoch = 30)	256	91. 12%	0. 2682	4. 22%
24(lr = 0.008)	64	91.64%	0. 2884	6. 62%

图 5 batch size sgd

根据图表信息分析可知,在 sgd 优化器训练的条件下,batch size 的表现与 adam 大体相似:中高的 batch size(如 128,256)的准确率与泛化能力俱佳,但高 batch size 需要更高的迭代次数;而较低的 batch size(如 64),虽然准确率较高,但即使在更低的学习率下(lr=0.008),泛化能力仍较差,过拟合现象较为严重。

3.1.3 dropout_prob 舍弃概率

•控制变量: batch size=128, epochs=20, learning rate = 0.0001, optimizer = adam, use scheduler

	/ I	, 0_	/ I	' -
序号\指标	dropout_prob	准确率	loss	训/验准确率差
9	0.5	91. 56%	0. 2928	6. 12%
13	0.4	91.74%	0.3031	6. 32%
14	0.6	91.72%	0. 2807	5. 77%
15	0.7	91. 78%	0. 2709	5. 35%
16	0.8	91.51%	0. 2623	4. 54%

图 6 drop prob adam

dropout_prob 这个参数定义了在训练过程中,随机"舍弃"(暂时从网络中移除)某个神经元(节点)的概率。根据图表数据,我们可以发现除 prob = 0.4 外,其他概率的 loss 都基本收敛。整体而言随着舍弃概率增大准确率变化不大,在 prob = 0.7 时达到最佳,泛化能力逐渐提升。综合来看在使用 adam 优化器时,使用 prob = 0.7 为最佳的选择。

• 控制变量: batch size=128, epochs=20, learning rate = 0.01, optimizer = sgd, use scheduler

序号\指标	dropout_prob	准确率	loss	训/验准确率差
2	0.5	91.69%	0. 2617	4. 76%
25	0. 7	91. 52%	0. 2598	5. 02%
26	0.6	91. 36%	0. 2623	4. 74%
27	0.4	91.63%	0. 2586	4. 73%

图 7 drop prob adam

根据图表数据,在 sgd 优化器下,我们可以分析得到:不同的 prob 对模型的训练结果影响不大,模型均可以有较好的表现,loss 也均收敛。对测试集而言,prob = 0.5 时,准确率最高,因此选定 prob = 0.5 作为最佳结果。

3.1.4 epoch 训练轮次

• 控制变量: batch size=256, prob = 0.5, learning rate = 0.01, optimizer = sgd, use scheduler

4— 1 42 4 — 1	/ 1	- /	-) 1	<u> </u>
序号\指标	epoch	准确率	loss	训/验准确率差
20	20	90. 38%	0. 275	2. 17%
21	25	90. 42%	0. 2683	3. 24%
22	30	91.12%	0. 2682	4. 22%
23	40	91.00%	0.3097	6. 74%

图 8 epoch

epoch 代表训练的轮次,它的设定对模型性能、训练时间和过拟合风险有显著影响。当 epoch 不足时,模型未充分训练;当 epoch 过多时,可能导致模型陷入过拟合,导致 loss 有 震荡或回升。因此,在调节其他参数时实时跟进调节 epoch 有助于我们对不同参数的最佳训练状态进行合理比较。

由上图表可知,在探索 sgd 优化器下,合适的 batch_size 时,我们使用 epoch 的调节寻找相同 batch_size 条件下的最优解。在低 epoch(20、25)状态下,模型未进行充分训练;而在高 epoch(40)状态下,模型的 loss 出现回升,有明显的过拟合现象;中等训练轮次(30)则拥有最佳的准确率以及较好的泛化能力。因此针对 batch size = 256,我们可以知道最佳的训练轮次是 epoch = 30。

除上表示例之外,实际调参过程中还多次进行微调 epoch 来探索当前参数下的最佳训练结果(如序号 8、19)。

3.1.5 学习率调节器的引入

• 控制变量: batch size=128, epoch = 20, prob = 0.5, learning rate = 0.01, optimizer = sgd

序号\指标	use_scheduler	准确率	loss	训/验准确率差
1	False	91.66%	0. 279	4. 73%
2	True	91.69%	0. 2617	4. 76%

图 9 use scheduler sgd

学习率调节器是一种在训练过程中动态调整学习率的策略,本模型主要采用的是多项式衰减学习率调节器。由上表可知,使用 sgd 优化器时,学习率调节器对减少震荡、促进 loss 收敛有着显著作用,并能在一定程度上提高模型的准确率。

• 控制变量: batch size=128, epoch = 20, prob = 0.5, learning rate = 0.0001, optimizer = adam

序号\指标	use_scheduler	准确率	loss	训/验准确率差
6	False	91.60%	0.3041	6. 21%
9	True	91. 56%	0. 2928	6. 12%

图 10 use scheduler adam

在使用 adam 优化器的条件下,虽然表中测试集的数据我们不能看出明显的性能提升,但是在验证集的曲线走势我们可以看到,无论是准确率还是泛化能力(loss 的收敛性),引入学习率调节器后,模型的性能都有明显的提升。因此无论对于哪一种优化器,学习率调节器均有着提升模型准确率与泛化能力的性能。

3.1.6 优化器的选择

在上述的参数比较过程中,我对两种不同的优化器均进行了分别讨论,可以发现两种优化器的最佳参数不同,一些性质也不相同,但是总体的训练结果最佳值相差不大,下面我将简要对比一下两种优化在各自最佳参数下的训练结果对比(分别为图一总表中标记的两行):

序号\指标	use_scheduler	准确率	loss	训/验准确率差
2	sgd	91.69%	0. 2617	4. 76%
15	adam	91. 78%	0. 2709	5. 35%

图 11 优化器

从图表中我们可以看到,两个模型的训练最佳情况均具有较好的性能,adam 最终优化的准确率略高于 sgd,但 sgd 在泛化能力(loss 收敛性)上略胜一筹,总体而言二者无明显的差距,都是较好的模型训练结果。

3.2 AlexNet 与 VGGNet 在不同损失函数下的模型比较

• 使用 adam 优化器的最佳训练结果参数

batch size=128, epochs=20, learning rate = 0.0001, prob = 0.7, optimizer = adam, use scheduler

序号\指标	模型	损失函数	准确率	loss	准确率差
15	Alex	cross_entropy	91.78%	0. 2709	5. 35%
28	VGG	cross_entropy	91.75%	0. 2576	4. 87%
29	VGG	mse	92.61%	0.0124	6. 47%
30	alex	mse	92. 56%	0.012	6. 41%

图 12 模型对比 adam 最优参数

根据图表结果,我们看到 Alex 与 VGG 模型的不同对实验结果的影响很小;而对比两个损失函数,我们发现均方误差损失的训练效果要好于交叉熵损失,这与我们在实验原理部分分析的两个损失函数的性能差距很大:交叉熵损失相比于均方误差更擅长处理分类问题。对此,我通过查找资料分析可能有以下两点原因:

1 实验中 shirt 标签的训练结果持续低于 80%,与其他标签的训练结果差距较大,数据集中可能存在一定的噪声导致 shirt 难以分辨。

图 13 各类别标签测试准确率

2 交叉熵损失函数的优势并不绝对,在特定合适的参数下,mse 的表现可能更优。 针对以上两点分析,我们使用 sgd 的最优参数继续进行测试与模型对比分析:

• 使用 sgd 优化器的最佳训练结果参数

batch size=128, epochs=20, learning rate = 0.01, prob = 0.5, optimizer = sgd, use scheduler

序号\指标	模型	损失函数	准确率	loss	准确率差
2	Alex	cross_entropy	91.69%	0. 2617	4. 76%
31	alex	mse	79. 71%	0.031	0. 17%
32	VGG	mse	77. 48%	0. 0335	0. 23%
33	VGG	cross_entropy	91.80%	0. 2471	3. 73%

图 14 模型对比 sgd 最优参数

根据图表分析我们可以得到: Alex 与 VGG 模型上的差距依然很小; 在损失函数上, mse 的训练结果要远远差于交叉熵损失, 训练的收敛速度也极为缓慢, 这一结果验证了我们在实验原理部分的分析, 也验证了我们对上述反常结果的原因推测 2: mse 不具有持续稳定的良好训练表现, 相比之下交叉熵损失更适合对此分类问题进行模型的训练。

4 总结与收获

通过本次实验,我全面了解了卷积神经网络的层次结构与工作原理,掌握了模型调参的重要要素以及参数对模型的重大影响。这对我在课堂上理论知识的学习有着很好的促进作用。与此同时,在模型对比时反常数据的出现,让我了解到很多理论知识的原理并不一定是绝对的,在实验结果与理论值违背时,我们应积极地探索其背后的原因并主动去验证,只有这样的不断探索的过程,我们才能对知识有更全面的了解和掌握。本次实验让我受益匪浅,希望我能够继续在人工智能领域去探索、去成长、去进步。