

Application of Bayesian Networks for classifying Cognitive load signals

ỨNG DỤNG BAYESIAN NETWORK ĐỂ PHÂN LOẠI TÍN HIỆU NHẬN THỰC

Đỗ Minh Quân, Lê Thị Mỹ Hương, Trần Bùi Ty Ty

INTRODUCTION

Problems definition:

- **Input:** Physiological data from wearable devices
- **Output:** Bayesian network infers and classifies cognitive states **Challenge:**
- Cognitive load is a latent state it cannot be measured directly.
- Physiological signals (GSR, HR, Temp, RR) are indirect indicators.

Thesis Goal: Analyze physiological signals and model their causal relationship with cognitive load using Bayesian Networks

DATASETS

- Quantity: 825 samples from 23 participants. 632 samples (training set) and 193 samples (test set).
- Data source: UbiComp2020

https://colab.research.google.com/drive/1TcGrzhtlb6XdIE33l5cnedPeaPlyNrNE?usp=sharing

PROPOSED METHOD

Overview of Cognitive Load Classification using Bayesian Network

1 Preprocessing & Feature Extraction Raw (unsmoothed) physiological signals (blue) and smoothed physiological signals (orange) Feature groups extracted from physiological data include: A 2021 research analyzed the relationship A 2021 research analyzed and stress [1]

earning model

2 Feature Selection & Training Models

Sequential Backward Selection (SBS) algorithm

Start with the original feature set of size n=106

1 2 3 ... 104 105 106 =106

Iteration 1 Generate all possible feature subsets of size n = 1 = 105

algorithm to select the optimal feature set that yields the highest model accuracy

HRV GI, HRV AI, HRV Cd.

Using the SBS

Repeat steps 3 and 4 until the feature subset contains only a single feature.

3 Feature Grouping By Each Signals

Combine statistical and selected features, organized by signal in Bayesian Networks, to enhance structure and CL classification.

EXPERIMENTS

Experiment 1: Identify the model with the highest performance. Evaluate and compare models to find the one with the optimal feature set based on accuracy.

Experiment 2: Identify the nodes and edges. Group features by signal type and assess the impact of adding feature groups to the model.

Experiment 3: Examine the influence of observed variables on the target variable. Identify which physiological signals have the strongest effect on cognitive load

Experiment 1: Identify the model with the highest performance

Experimental results of 10 models with SMA = 0

VM 52 0.6788 0.69 are categorized based follows: GB 85 0.7098 0.71 6SR: 8 features GSR: 8 features RR: 11 features RR: 11 features RR: 11 features Temp: 2 features HR: 0 features P(SKL arn) 25 0.6943 0.71 0.50 Experiment 2: Ident P(Ker as) 11 0.5751 0.50 Experiments using physiology	using the Random Fores	ROC	Accuracy	Features	odel
• GSR: 8 features • RR: 11 features • RR: 11 features • RR: 11 features • Temp: 2 features • HR: 0 features • HR: 0 features • Temp: 2 features • HR: 0 features • Temp: 2 features • HR: 0 features	•	0.69	0.6788	52	VM
• RR: 11 features • Temp: 2 features • KR: 0.73 • RR: 11 features • Temp: 2 features • HR: 0 features • HR: 0 features • Temp: 2 features • HR: 0 features	GSR: 8 featuresRR: 11 featuresTemp: 2 features	0.71	0.7098	85	GB
• HR: 0 features • Experiment 2: Ident • Experiments using physiol		0.73	0.7098	11	LR
P(SKL 25 0.6943 0.71 orn) P(Ker 11 0.5751 0.50 org) P(GB 24 0.7306 0.75 org) Experiment 2: Ident org) Experiments using physiole		0.73	0.7565	21	RF
Experiment 2: Ident 7GB 24 0.7306 0.75 Experiments using physiol	• HR: 0 features	0.71	0.6943	25	P(SKL irn)
physiol	Experiment 2: Ident	0.50	0.5751	11	P(Ker is)
GLR 31 0.7306 0.74 physiol		0.75	0.7306	24	7GB
	pnysiol	0.74	0.7306	31	GLR

E7GB 24 0.7306 0.75 WGLR 31 0.7306 0.74 ESVM 16 0.7047 0.68 CNN 106 0.6010 0.61 RNN 106 0.6528 0.67

The Bayesian Network model uses groups of inp signals to predict Task/Rest state

total of 21 important features were selected sing the Random Forest model. The features re categorized based on signal type as ollows:

1 RR ↓

0 GSR ↑

1 Temp↓

RESULTS

xperiment 2: Identify the nodes and edges

Experiments using different combinations of physiological features

S	ignal groups (number of features)	Accuracy
•	HR(5): HR_Features RR(5): RR_Features GSR(5): GSR_Features Temp(5): Temp_Features	0.6269
:	HR(5): HR_Features RR(5): RR_Features GSR(13): GSR_Features, GSR_Selection Temp(5): Temp_Features	0.6269
:	HR(5): HR_Features RR(16): RR_Features, RR_Selection GSR(5): GSR_Features Temp(5): Temp_Features	0.6425
:	HR(5): HR_Features RR(16): RR_Features, RR_Selection GSR(13): GSR_Features, GSR_Selection Temp(5): Temp_Features	0.5907

Experiment 3: Examine the influence of observed variables on the target variable Signals Influencing The Label 0.5544 Signal impact table (exhaustive search) in Bayesian Task/Rest model HR-RR 0.6010 HR-GSR HR-Temp 0.5544 RR-GSR 0.6010 RR-Temp GSR-Temp HR-RR-GSR 0.6062 RR (HRV), GSR, and Skin Temperature all have clear physiological associations with stress HR-RR-Temp HR-GSR-Temp 0.5544 RR-GSR-Temp

HR-RR-GSR-Temp

0.6425

COGNITIVE LOAD BAYESIAN NETWORK

SOTA results of participating teams in the UBiComp 2020 challenge

Method	Proposed Classifier	Accuracy
I	Ensemble of 7 Gradient boosting decision trees	0.694
II	Support vector machine	0.679
III	Ensemble of support vector machine	0.674
IV	Logistic regression	0.663
V	Random Forest	0.653
VI	Weighted sum of individualized and global logistic regression models	0.653
VII	Multilayer perceptron	0.648
VIII	Logistic regression	0.648
IX	Support vector machine	0.627
X	XGBoost Classifier	0.580
XI	Convolutional neural network	0.560
XII	Recurrent neural network	0.554
XIII	Logistic regression	0.503
Our team	Bayesian Networks	0.658

Submitting paper "A
Multiscale Approach for
Inferring Cognitive Load
from the CogLoad
Physiological Dataset"
ICCIES2025 - International
Conference On
Computational Intelligence
In Engineering Science 2025