Алгебра. 1 семестр, Куликова

Ким Никита, 211 группа

5 сентября 2024 г.

Содержание

1	Системы линейных уравнений		
	1.1	Матрица. Освноные понятия	3
	1.2	Система линейных (алгебраических) уравнений	4
	1.3	Элементарные преобразования над СЛУ	5
	1.4	Элементарное преобразование над матрицами	5

1 Системы линейных уравнений

1.1 Матрица. Освноные понятия

Определение. Матрица A размера $m \times n$ – прямоугольная таблица с m строками и n столбцами

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & & a_{nn} \end{pmatrix}$$

 a_{ij} – элемент матрицы и индексы:

i – номер строки

j – номер столбца

 $M_{m \times n}(\mathbb{R})$ – множество всех матриц размера $m \times n$ с элементами из \mathbb{R} .

Матрица размера $m \times 1$ называется столбцом

$$A = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}$$

Если $A=(a_{ij})$ – квадратная, $a_{ij}=0 \ \forall i\neq j$, то A называется диагональной.

$$A = \begin{pmatrix} a_{11} & & & & 0 \\ & a_{22} & & & \\ & & \ddots & & \\ 0 & & & a_{nn} \end{pmatrix}$$

Если A – диагональная и $a_{ii}=1$, то A называется единичной.

$$A = \begin{pmatrix} 1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix}$$

Если A – квадратная, то

$$A = \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix}$$

главная диагональ, а

$$A = \begin{pmatrix} & & & & a_{1n} \\ & & & a_{2,n-1} \\ & & \ddots & & \\ a_{n1} & & & \end{pmatrix}$$

побочной диагональю.

Определение. Если A – размера $m \times n, \, a_{ij} = 0 \,\, \forall i,j, \, {
m To} \,\, A$ называется нулевой.

1.2 Система линейных (алгебраических) уравнений

$$(*) \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

 $a_{ij}, b \in \mathbb{R}, x_1, ..., x_n$ – неизвестные.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

A – матрица коэффициентов, a_{ij} называется коэфициентом СЛУ.

B – столбец свободных членов, b_j – свободный член.

Определение. Расширенная матрица (A|B). Набор чисел $x_1^0,...,x_n^0 \in \mathbb{R}$ называется решением системы (*), если подстановка этих чисел вместо неизвестных в (*) дает тождество в каждом уравении. $(x_i^0 \longleftrightarrow x)$

Решить систему – это найти все решения системы. Любое конткретное решение называется частным.

Определение. Если СЛУ имеет решение, то она называется совместной, иначе несовместной.

Определение. Совместная система, имеющая одно решение называется определенной, иначе неопределенной (решений более одного).

1.3 Элементарные преобразования над СЛУ

- 1. Прибавить к одному уравнению другое уравнение умноженное на число $\lambda \in \mathbb{R}$
- 2. Поменять местами два уравнения
- 3. Можем умножить уравненние на ненуленое число $\mu \in \mathbb{R}$

Утверждение. Эти преобразования обратимы.

Определение. Две системы линейных уравнений называюся эквивалентными, если их множество решений совпадают.

Утверждение. Если одна СЛУ получена из другой СЛУ с помощью конечного числа элементарных преобразований, то эти системы эквивалентны.

Доказательство. Достаточно доказать, что если AX = B и $\widetilde{A}X = \widetilde{B}$ получены с помощью одного элементарного преобразования, то они эквивалентны.

Пусть $x_1^0, ..., x_n^0$ – произвольное решение AX = B.

Докажем, что $x_1^0,...,x_n^0$ является решением системы $\widetilde{A}X=\widetilde{B}.$

Для 2 пункта очевидно. Для 3: предположим, что

$$a_{i1}x_1 + \dots + a_{in}x_n = b_i$$
 в $AX = B$
 $(\mu a_{i1})x_1 + \dots + (\mu a_{in})x_1 n = \mu b_i$ в $\widetilde{A}X = \widetilde{B}$

Если $a_{i1}x_1 + ... + a_{in}x_n = b_i$, то $(\mu a_{i1})x_1 + ... + (\mu a_{in})x_1n = \mu b_i$.

Остальные уравнения такие же $\mu(a_{i1}x_1 + ... + a_{in}x_n) = (\mu)b_i$

1 пункт: д/з.

Т.о. множество решений AX=B включено в множество решений $\widetilde{A}B=\widetilde{B}.$

В обратную сторону аналогично (для доказательства эквивалентности), используя обратимость элементарных преобразований.

Мораль в том, что мы можем работать с расширенной матрицей (A|B).

1.4 Элементарное преобразование над матрицами

Элементраные преобразования над строкаим матрицы:

$$A = \begin{pmatrix} \overline{a_1} \\ \vdots \\ \overline{a_n} \end{pmatrix}$$
, где $\overline{a_i}$ — строка

• $\ni \Pi 1: \overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}$

• $\ni \Pi 2: \overline{a_i} \longleftrightarrow \overline{a_i}$

• $\ni \Pi 3: \overline{a_i} \to \mu \overline{a_i}, \ \mu \neq 0$

Определение. Лидер строки (ведущий элемент) — это 1-й ненулевой элемент слева.

Пример: (0, 0, 3, 4, 5, 0, 0, 7)

Определение. Матрица A размера $m \times n$ называется ступенчатой, если

- 1. Номера лидеров ненулевых строк строго возврастают с увеличением номера строки.
- 2. Все нулевые строки стоят внизу (в конце).

Теорема. Любую матрицу A размера $m \times n$ за конечное число элементарных преобразований над строками можно привести к ступенчатому виду.

Доказательство. Индукция по n:

Если A — нулевая, то A — ступенчатого вида.ёё Если $A \neq 0$: найдем первый ненулевой столбец (начиная слева). Пусть j — номер первого ненулевого столбца. Пусть $a_{ij} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 \\ \vdots & \vdots \\ & & a_{ij} \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

Меняем 1-ю и і-ю строки местами и получаем, что a_{ij} стал лидером первой строки. Считаем, что сразу $a_{1j} \neq 0$:

$$A = \begin{pmatrix} 0 & 0 & a_{1j} & * \\ \vdots & \vdots & * & * \\ & & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots \end{pmatrix}$$

Вычитаем из каждой к-й строки, начиная со 2-й 1-ю строку, умноженную на

6

число $\frac{a_{kj}}{a_{1j}}$. Получаем вид:

$$\widetilde{A} = \begin{pmatrix} 0 & 0 & & * & \\ \vdots & \vdots & & * & * \\ & & & \vdots & \\ \vdots & \vdots & & \vdots & \\ 0 & 0 & & \vdots & \end{pmatrix}$$

К правой части матрицы применяем и ндукцию и приводим матрицу к ступенчатому виду.

Замечание. Этот метод называется методом Гаусса.