Ajuste de Curvas e Interpolación Aplicación de Métodos Numéricos al Ambiente Construido (CV1012)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

- Continuo y diferenciable
- 2 Discreto y aproximable
- 3 Estadística descriptiva básica
- 4 Ajuste de curvas

Continuo y diferenciable

- Métodos numéricos para encontrar raíces de ecuaciones no lineales:
 - Métodos de intervalos: bisección, falsa posición
 - ▶ Métodos abiertos: punto fijo, Newton-Raphson, secante
- Matrices:
 - Operaciones algebraicas con matrices y vectores
 - ► Solución de sistemas de ecuaciones lineales usando eliminación

Continuo y diferenciable

- Métodos numéricos para encontrar raíces de ecuaciones no lineales:
 - Métodos de intervalos: bisección, falsa posición
 - ▶ Métodos abiertos: punto fijo, Newton-Raphson, secante
- Matrices:
 - Operaciones algebraicas con matrices y vectores
 - ► Solución de sistemas de ecuaciones lineales usando eliminación

Continuo y diferenciable

- Métodos numéricos para encontrar raíces de ecuaciones no lineales:
 - Métodos de intervalos: bisección, falsa posición
 - ▶ Métodos abiertos: punto fijo, Newton-Raphson, secante
- Matrices:
 - Operaciones algebraicas con matrices y vectores
 - ► Solución de sistemas de ecuaciones lineales usando eliminación

Continuo y diferenciable

- Métodos numéricos para encontrar raíces de ecuaciones no lineales:
 - Métodos de intervalos: bisección, falsa posición
 - ▶ Métodos abiertos: punto fijo, Newton-Raphson, secante
- Matrices:
 - Operaciones algebraicas con matrices y vectores
 - ► Solución de sistemas de ecuaciones lineales usando eliminación

Continuo y diferenciable

- Métodos numéricos para encontrar raíces de ecuaciones no lineales:
 - Métodos de intervalos: bisección, falsa posición
 - ▶ Métodos abiertos: punto fijo, Newton-Raphson, secante
- Matrices:
 - Operaciones algebraicas con matrices y vectores
 - Solución de sistemas de ecuaciones lineales usando eliminación

Continuo y diferenciable

- Métodos numéricos para encontrar raíces de ecuaciones no lineales:
 - Métodos de intervalos: bisección, falsa posición
 - ▶ Métodos abiertos: punto fijo, Newton-Raphson, secante
- Matrices:
 - Operaciones algebraicas con matrices y vectores
 - ► Solución de sistemas de ecuaciones lineales usando eliminación

¿Cómo ha sido el proceso?

Continuo y diferenciable

Hasta ahora, nos dan una ecuación *bonita* y nos dicen qué hacer o qué debemos encontrar en ella. Sin embargo, la vida no es así de fácil...

La realidad es distinta

Discreto y aproximable

En ingeniería usualmente tomamos mediciones, y a partir de ello tratamos de hacer generalizaciones.

Para ello, tenemos herramientas como el ajuste de curvas, en donde tratamos de encontrar una función que describa el comportamiento de nuestras observaciones.

La realidad es distinta

Discreto y aproximable

En ingeniería usualmente tomamos mediciones, y a partir de ello tratamos de hacer generalizaciones.

Para ello, tenemos herramientas como el ajuste de curvas, en donde tratamos de encontrar una función que *describa* el comportamiento de nuestras observaciones.

Generalizando

Discreto y aproximable

A partir de datos...

Generalizando

Discreto y aproximable

... generalizamos.

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¡ Qué tan separados están los datos?
- ¿Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común!

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¡Qué tan separados están los datos?
- ¡ Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común?

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¿Qué tan separados están los datos?
- ¿Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común?

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¿Qué tan separados están los datos?
- ¿Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común?

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¿Qué tan separados están los datos?
- ¿Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común?

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¿Qué tan separados están los datos?
- ¿Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común?

Estadística descriptiva básica

Para poder generalizar a partir de una muestra de datos, necesitamos saber *más o menos* cómo se comportan.

- ¿Cuántos datos tenemos?
- ¿Cuál es el máximo valor? ¿Cuál es el mínimo?
- ¿Qué tan separados están los datos?
- ¿Alrededor de qué valor se concentra la mayoría de los datos?
- ¿Cuál es el dato más común?

Media aritmética

Estadística descriptiva básica

La media aritmética (mejor conocida como **promedio**) es una excelente manera de obtener información inmediata sobre el comportamiento *promedio* (duh) de nuestra muestra:

Media

$$\bar{y} = \frac{\sum y_i}{n}$$

donde n es el tamaño de la muestra (o sea, cuántos datos tenemos), y y_i es el i-ésimo elemento en nuestra muestra.

Estadística descriptiva básica

Otra medida de centralidad importante es la mediana, que es el valor de en medio de los datos cuando están ordenados.

- El sueldo promedio del mexicano hace referencia a la media de los sueldos: sumas todos los sueldos y los divides entre los entrevistados para saber lo que esperas que gane un mexicano comúnmente.
- El sueldo del mexicano promedio hace referencia a la mediana de los sueldos: ordenas todos los sueldos, y tomas el de en medio para saber lo que esperas que gane un mexicano de clase media.

Estadística descriptiva básica

Otra medida de centralidad importante es la mediana, que es el valor de en medio de los datos cuando están ordenados.

- El sueldo promedio del mexicano hace referencia a la media de los sueldos: sumas todos los sueldos y los divides entre los entrevistados para saber lo que esperas que gane un mexicano comúnmente.
- El sueldo del mexicano promedio hace referencia a la mediana de los sueldos: ordenas todos los sueldos, y tomas el de en medio para sabel lo que esperas que gane un mexicano de clase media.

Estadística descriptiva básica

Otra medida de centralidad importante es la mediana, que es el valor de en medio de los datos cuando están ordenados.

- El sueldo promedio del mexicano hace referencia a la media de los sueldos: sumas todos los sueldos y los divides entre los entrevistados para saber lo que esperas que gane un mexicano comúnmente.
- El sueldo del mexicano promedio hace referencia a la mediana de los sueldos: ordenas todos los sueldos, y tomas el de en medio para saber lo que esperas que gane un mexicano de clase media.

Estadística descriptiva básica

Otra medida de centralidad importante es la mediana, que es el valor de en medio de los datos cuando están ordenados.

- El sueldo promedio del mexicano hace referencia a la media de los sueldos: sumas todos los sueldos y los divides entre los entrevistados para saber lo que esperas que gane un mexicano comúnmente.
- El sueldo del mexicano promedio hace referencia a la mediana de los sueldos: ordenas todos los sueldos, y tomas el de en medio para saber lo que esperas que gane un mexicano de clase media.

Moda Estadística descriptiva básica

Otra medida comúnmente empleada es la moda, que viene a ser el dato que más se repite en la muestra.

Siguiendo con nuestro ejemplo anterior, la **moda** vendría a representar *lo* que gana la mayoría de los mexicanos.

Moda Estadística descriptiva básica

Otra medida comúnmente empleada es la moda, que viene a ser el dato que más se repite en la muestra.

Siguiendo con nuestro ejemplo anterior, la **moda** vendría a representar *lo que gana la mayoría de los mexicanos*.

Midiendo la dispersión

Estadística descriptiva básica

La desviación estándar es la medida de dispersión más común:

Desviación estándar

$$S_y = \sqrt{\frac{S_t}{n-1}}$$

donde S_t es la suma total de los cuadrados de los residuales entre cada dato y la media:

$$S_t = \sum (y_i - \bar{y})^2$$

Otra medida de dispersión muy utilizada es la varianza, que es igual al cuadrado de la desviación estándar.

Ajuste de Curvas

Como vimos anteriormente, queremos obtener información a partir de nuestras mediciones, para poder **generar** un modelo matemático (o sea una función).

¿Cuál es la manera más sencilla de unir dos puntos?

Ajuste de Curvas

¿Cómo se ve una línea recta si usamos dos puntos?

Ajuste de Curvas

¿Y si agregamos otra medición?

Ajuste de Curvas

¿Y si agregamos otra más?

Ajuste de curvas

- Podemos contar a cuántos puntos le atinamos y cuántos no
- Podemos revisar por cuánto fallamos en cada punto y sumarlo
- Podemos revisar por cuánto fallamos en cada punto y sacarle valor absoluto
- Podemos revisar por cuánto fallamos en cada punto, elevarlo al cuadrado, y sacar un promedio

Ajuste de curvas

- Podemos contar a cuántos puntos le atinamos y cuántos no
- Podemos revisar por cuánto fallamos en cada punto y sumarlo
- Podemos revisar por cuánto fallamos en cada punto y sacarle valor absoluto
- Podemos revisar por cuánto fallamos en cada punto, elevarlo al cuadrado, y sacar un promedio

Ajuste de curvas

- Podemos contar a cuántos puntos le atinamos y cuántos no
- Podemos revisar por cuánto fallamos en cada punto y sumarlo
- Podemos revisar por cuánto fallamos en cada punto y sacarle valor absoluto
- Podemos revisar por cuánto fallamos en cada punto, elevarlo al cuadrado, y sacar un promedio

Ajuste de curvas

- Podemos contar a cuántos puntos le atinamos y cuántos no
- Podemos revisar por cuánto fallamos en cada punto y sumarlo
- Podemos revisar por cuánto fallamos en cada punto y sacarle valor absoluto
- Podemos revisar por cuánto fallamos en cada punto, elevarlo al cuadrado, y sacar un promedio

Mínimos cuadrados

Ajuste de curvas

¿Cómo sabemos si la línea que hicimos es la *mejor* aproximación que tenemos para la tendencia?

- Podemos contar a cuántos puntos le atinamos y cuántos no
- Podemos revisar por cuánto fallamos en cada punto y sumarlo
- Podemos revisar por cuánto fallamos en cada punto y sacarle valor absoluto
- Podemos revisar por cuánto fallamos en cada punto, elevarlo al cuadrado, y sacar un promedio

Mínimos cuadrados

Ajuste de curvas

¿Cómo sabemos si la línea que hicimos es la *mejor* aproximación que tenemos para la tendencia?

- Podemos contar a cuántos puntos le atinamos y cuántos no
- Podemos revisar por cuánto fallamos en cada punto y sumarlo
- Podemos revisar por cuánto fallamos en cada punto y sacarle valor absoluto
- Podemos revisar por cuánto fallamos en cada punto, elevarlo al cuadrado, y sacar un promedio

Mínimos cuadrados

Ajuste de curvas

Para obtener la ecuación de una recta necesitamos dos elementos:

$$y = a_1 x + a_0$$

Pendiente

$$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

Ordenada al origen

$$a_0 = \bar{y} - a_1 \bar{x}$$

Calidad de la regresión

Ajuste de Curvas

Para revisar la calidad de nuestra regresión, podemos usar una estadística llamada r^2 .

Calculando r^2

$$r^2 = \frac{S_t - S_r}{S_t}$$

Donde S_t es la suma de todos los cuadrados de los residuales con la media:

$$S_t = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

y S_r es la suma de todos los cuadrados de los residuales con nuestra regresión:

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Pendientes

Interpolación

¿Cuántas pendientes tiene la siguiente función?

Pendientes

Interpolación

¿Cuántas pendientes tiene la siguiente función?

Pendientes

Interpolación

¿Cuántas pendientes tiene la siguiente función?

Ajuste polinomial Interpolación

Como ya vimos, se puede ajustar una función que *aproxime* los puntos. Sin embargo, también se pueden usar métodos para encontrar una función que pase **exactamente** por cada uno de ellos.

- Para unir n puntos, siempre se existirá un polinomio de grado n 3
 que describa su comportamiento exacto
- Calcular este polinomio para grados muy altos es computacionalmente costoso
- Para grados muy altos, el error en los extremos tiende a ser mucho más grande

Interpolación

Como ya vimos, se puede ajustar una función que *aproxime* los puntos. Sin embargo, también se pueden usar métodos para encontrar una función que pase **exactamente** por cada uno de ellos.

- Para unir n puntos, siempre se existirá un polinomio de **grado** n-1 que describa su comportamiento exacto
- Calcular este polinomio para grados muy altos es computacionalmente costoso
- Para grados muy altos, el error en los extremos tiende a ser mucho más grande

Como ya vimos, se puede ajustar una función que *aproxime* los puntos. Sin embargo, también se pueden usar métodos para encontrar una función que pase **exactamente** por cada uno de ellos.

- Para unir n puntos, siempre se existirá un polinomio de **grado** n-1 que describa su comportamiento exacto
- Calcular este polinomio para grados muy altos es computacionalmente costoso
- Para grados muy altos, el error en los extremos tiende a ser mucho más grande

Como ya vimos, se puede ajustar una función que *aproxime* los puntos. Sin embargo, también se pueden usar métodos para encontrar una función que pase **exactamente** por cada uno de ellos.

- Para unir n puntos, siempre se existirá un polinomio de **grado** n-1 que describa su comportamiento exacto
- Calcular este polinomio para grados muy altos es computacionalmente costoso
- Para grados muy altos, el error en los extremos tiende a ser mucho más grande

Como ya vimos, se puede ajustar una función que *aproxime* los puntos. Sin embargo, también se pueden usar métodos para encontrar una función que pase **exactamente** por cada uno de ellos.

- Para unir n puntos, siempre se existirá un polinomio de **grado** n-1 que describa su comportamiento exacto
- Calcular este polinomio para grados muy altos es computacionalmente costoso
- Para grados muy altos, el error en los extremos tiende a ser mucho más grande

Como ya vimos, se puede ajustar una función que *aproxime* los puntos. Sin embargo, también se pueden usar métodos para encontrar una función que pase **exactamente** por cada uno de ellos.

- Para unir n puntos, siempre se existirá un polinomio de **grado** n-1 que describa su comportamiento exacto
- Calcular este polinomio para grados muy altos es computacionalmente costoso
- Para grados muy altos, el error en los extremos tiende a ser mucho más grande

El concepto de interpolación Interpolación

Interpolar hace referencia a obtener puntos intermedios a partir de mediciones dadas:

t (s)	v (m/s)
0	0.00
2	16.42
4	27.8
6	35.68
8	41.14
10	44.92
12	47.54
∞	53.44

¿Cuál será la velocidad a los 5 segundos?

Interpolación lineal

Interpolación

La interpolación lineal (o clásica) consiste en unir entre puntos con líneas rectas.

Interpolación con mínimos cuadrados Interpolación

También podemos interpolar por mínimos cuadrados linealmente, evaluando f(5):

$$f(x) = 3.49107143x + 8.93$$

Least squares linear regression for the Parachuter problem

Interpolación con mínimos cuadrados Interpolación

O con un polinomio de segundo grado:

$$f(x) = -0.244375x^2 + 6.91232143x + 2.0875$$

Least squares quadratic regression for the Parachuter problem

Interpolación con mínimos cuadrados Interpolación

O con un polinomio de grado 7 (que es terrible):

$$f(x) = 0.000006.23139881x^7 - 0.000261718750x^6 + 0.00439322917x^5$$
$$-0.00384635417x^4 + 0.0212750000x^3 - 1.23945833x^2$$
$$+10.0833095x - 0.0000000000003.01457752$$

Least squares 7th order regression for the Parachuter problem

