

http://al9ahira.com/

Itinéraire d'accès à Al9ahira (point B sur la carte) en partant de la Place Ibéria

Corrigé CNM 2011 Maths 1 Option PSI

Mr A.CHABCHI¹

Exercice: Résolution d'une équation différentielle

1. Notons $y_{\alpha}(t) = t^{\alpha}$, alors y_{α} est solution de (H) sur I si et seulement si

$$\forall t \in I, \ t^{2}y_{\alpha}''(t) + 3ty_{\alpha}'(t) + y_{\alpha}(t) = 0 \Longleftrightarrow \forall t \in I, \ t^{\alpha}\left(\alpha^{2} + 2\alpha + 1\right) = 0 \Longleftrightarrow \alpha = -1$$

Ainsi $t \longmapsto \frac{1}{t}$ est la seule solution sur I de (H) qui soit de la forme $t \longmapsto t^{\alpha}$.

2. Un calcul simple donne : $\forall t \in I$, $t\lambda''(t) + \lambda'(t) = (t\lambda'(t))' = 0$, càd : il existe $A \in \mathbb{R}$, $\forall t \in I$, $t\lambda'(t) = A$, en intégrant une seconde fois :

$$\exists A, B \in \mathbb{R}, \ \lambda(t) = A \ln|t| + B$$

Ainsi les solutions de (H) sur I de la forme $\frac{\lambda(t)}{t}$ sont

$$y(t) = \frac{A \ln |t|}{t} + \frac{B}{t}$$
, où $A, B \in \mathbb{R}$

3. (H) est une équation différentielle linéaire d'ordre 2 homogène dont les coefficients sont continues sur I avec celui de $y'': x \longmapsto x^2$ ne s'annule jamais sur I, ainsi l'ensemble $S_H(I)$ des solutions de (H) sur I est \mathbb{R} -espace vectoriel de dimension 2, contenant la famille libre $\left(\frac{\ln |t|}{t}, \frac{1}{t}\right)$ des deux fonctions trouvées à la question (2). D'où $S_H(I) = vect\left(\frac{\ln |t|}{t}, \frac{1}{t}\right)$.

Ainsi les solutions de (H) sur I sont

$$y(t) = \frac{A \ln |t|}{t} + \frac{B}{t}$$
, où $A, B \in \mathbb{R}$

- 4. Il s'agit ici de prolonger les solutions obtenues en 0. Or on a $\lim_{t \to 0} \frac{A \ln |t|}{t} + \frac{B}{t}$ existe si et seulement si A = B = 0 puisque $\frac{1}{t} = o\left(\frac{\ln |t|}{t}\right)$ en 0. La seule solution sur \mathbb{R} de (H) est la solution nulle.
- 5. Ce calcul est déjà fait à la question (2), $t \mapsto \frac{\lambda(t)}{t}$ est solution de (L) si et seulement si

$$\forall t \in I, \ t\lambda''(t) + \lambda'(t) = (t\lambda'(t))' = \frac{1}{1+t^2}$$

Une première intégration donne : $\exists A \in \mathbb{R}, \ \forall \ t \in I, \ t\lambda'(t) = \arctan(t) + A.$ (1)

¹a_chabchi@yahoo.fr

La fonction $t \mapsto \frac{\arctan(t)}{t}$ est continue sur I et admet une limite finie en 0, donc admet des primitives sur \mathbb{R}^+ ou \mathbb{R}^- , soit

$$\phi\left(t\right) = \int_{0}^{t} \frac{\arctan\left(u\right)}{u} du$$
, la primitive s'annulant en 0

Une deuxième intégration de (1) donne :

$$\exists A \in \mathbb{R}, \ \exists B \in \mathbb{R}, \ \forall \ t \in I, \ \lambda(t) = \phi(t) + A \ln|t| + B$$

- 6. L'espace $S_L(I)$ des solutions de (L) sur I est plan affine de direction $S_H(I): S_L(I) = y_p + S_H(I)$, où $y_p(t) = \frac{\phi(t)}{t} = \frac{1}{t} \int_0^t \frac{\arctan(u)}{u} du$ une solution particulière de (L) et $S_H(I) = vect\left(\frac{\ln|t|}{t}, \frac{1}{t}\right)$.
- 7. **Méthode 1 :** La solution générale de (L) sur I est :

$$y(t) = \frac{1}{t} \int_0^t \frac{\arctan(u)}{u} du + \frac{A \ln|t|}{t} + \frac{B}{t}, \text{ où } A, B \in \mathbb{R}$$

On a $\forall u \in]-1,1[$, $\frac{\arctan(u)}{u} = \sum_{n=0}^{+\infty} (-1)^n \frac{u^{2n}}{2n+1}$ est la somme d'une série entière de rayon 1, donc s'intégre terme à terme sur]-1,1[, donc

$$\forall t \in]-1, 1[, y(t) = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n}}{(2n+1)^2} + \frac{A \ln|t|}{t} + \frac{B}{t}, \text{ où } A, B \in \mathbb{R}$$

Ainsi la seule solution DSE à l'origine est :

$$y(t) = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n}}{(2n+1)^2}$$
, $R = 1$ selon D'Alembert et $a_{2n} = \frac{(-1)^n}{(2n+1)^2}$, $a_{2n+1} = 0$

Méthode 2 : Soit $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ la somme d'une série entière de rayon R > 0, alors y est solution de (L) sur]-R, R[si et seulement si

$$\forall x \in]-R, R[, \sum_{n=0}^{+\infty} (n+1)^2 a_n x^n = \sum_{n=0}^{+\infty} (-1)^n x^{2n}$$

Par unicité d'un développement en série entière ceci est réalisé si et seulement si

$$\forall n \in \mathbb{N}, \ a_{2n+1} = 0 \text{ et } a_{2n} = \frac{(-1)^n}{(2n+1)^2}$$

on retrouve la solution $y(t) = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n}}{(2n+1)^2}$, définie sur]-1,1[.

8. On a:

$$\lim_{t \to 0} \frac{1}{t} \int_0^t \frac{\arctan(u)}{u} du = \lim_{t \to 0} \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n}}{(2n+1)^2} = 1$$

Donc $\lim_{t \to 0} \frac{1}{t} \int_0^t \frac{\arctan(u)}{u} du + \frac{A \ln |t|}{t} + \frac{B}{t}$ existe si et seulement si A = B = 0.

Ainsi $y(t) = \begin{cases} \frac{1}{t} \int_0^t \frac{\arctan(u)}{u} du & \text{si } t \neq 0 \\ 1 & \text{si } t = 0 \end{cases}$ est C^{∞} sur \mathbb{R} (coïncident avec la somme d'une série

enitère sur]-1,1[et produit de fonctions C^{∞} sur \mathbb{R}^{*}), elle est donc la seule solution de (L) sur \mathbb{R} tout entier.

Problème: Formule sommation de Poisson - Applications

Partie I

1. Les fonctions $t \mapsto t^2 g(t)$ et $t \mapsto t^2 g'(t)$ sont continues sur \mathbb{R} et bornées aux $\mathcal{V}(\pm \infty)$, donc bornées sur \mathbb{R} tout entier, donc :

$$\exists M > 0, \forall t \neq 0, |g(t)| \leq \frac{M}{t^2} \text{ et } |g'(t)| \leq \frac{M}{t^2}$$

- **1.1.** La fonction $t \mapsto g(t) e^{-ixt}$ est continue sur \mathbb{R} et $\left| g(t) e^{-ixt} \right| = \left| g(t) \right| \leq \frac{M}{t^2}$ avec $t \longmapsto \frac{M}{t^2}$ intégrable aux $\mathcal{V}(\pm \infty)$: Riemann $\alpha = 2 > 1$. Ainsi $t \longmapsto g(t) e^{-ixt}$ est intégrable sur \mathbb{R} .
- **1.2.** Soit [a,b] un segment de \mathbb{R} , on prend $n \ge \max\left(-\frac{a}{2\pi}, \frac{b}{2\pi}\right)$ de façon que :

$$\forall\ t\in\left[a,b\right],\left\{\begin{array}{c}2n\pi+t\geq2n\pi+a\geq0\\2n\pi-t\geq2n\pi-b\geq0\end{array}\right.,\,\mathrm{donc}\;\forall\ t\in\left[a,b\right]:$$

$$|g_n(t)| \le M\left(\frac{1}{(2n\pi+t)^2} + \frac{1}{(2n\pi-t)^2}\right) \le M\left(\frac{1}{(2n\pi+a)^2} + \frac{1}{(2n\pi-b)^2}\right) \sim \frac{M}{2\pi^2n^2} \text{ avec } \sum \frac{M}{2\pi^2n^2} \text{ convergente (Riemann } \alpha = 2 > 1)$$
. Ainsi $\sum g_n$ converge uniformément sur tout segment $[a,b]$ de \mathbb{R} .

1.3.

1.3.1. On a :

- Pour tout $n \in \mathbb{N}$, g_n est de classe C^1 sur \mathbb{R}
- La série $\sum g_n$ converge uniformément sur tout segment [a,b] de \mathbb{R} , converge simplement sur \mathbb{R} .
- Le même raisonnement du 1.2. appliqué à g'_n , prouve que la série des dérivées $\sum g'_n$ converge uniformément sur tout segment [a,b] de \mathbb{R}

Ainsi la somme $\tilde{g}(t) = \sum_{n=0}^{+\infty} g_n(t)$ est de classe C^1 sur \mathbb{R} et se dérive terme à terme.

1.3.2. Comme indiqué, on a : $\tilde{g}(t+2\pi) = \lim_{n \to +\infty} \sum_{p=-n}^{n} g(t+2\pi) + 2p\pi$, dans cette sommation on effectue le changement d'indice q = p+1, on obtient :

$$\tilde{g}(t+2\pi) = \lim_{n \to +\infty} \sum_{q=-n+1}^{n+1} g(t+2q\pi) = \lim_{n \to +\infty} \left(-g(-n) - g(-n-1) + \sum_{q=-(n+1)}^{n+1} g(t+2q\pi) \right)$$

Or
$$\lim_{n \to +\infty} -g(-n) = \lim_{n \to +\infty} -g(-n-1) = 0$$
 car $g(t) = O\left(\frac{1}{t^2}\right)$ au $\mathcal{V}(-\infty)$. D'où

$$\tilde{g}\left(t+2\pi\right) = \lim_{n \to +\infty} \sum_{q=-(n+1)}^{n+1} g\left(t+2q\pi\right) = \tilde{g}\left(t\right)$$

Ainsi \tilde{g} est une fonction 2π -périodique.

Par ailleurs, on a :
$$c_k(\tilde{g}) = \frac{1}{2\pi} \int_0^{2\pi} \tilde{g}(t) e^{-ikt} dt = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^{+\infty} g_n(t) e^{-ikt} dt$$
.

La série $\sum g_n$ converge uniformément sur le segment $[0,2\pi]$ selon **1.2.** et pour tout $t \in [0,2\pi]$, $\left|g_n\left(t\right)e^{-ikt}\right| = \left|g_n\left(t\right)\right|$, donc la série $\sum_{n\geq 0}g_n\left(t\right)e^{-ikt}$ converge aussi uniformément sur **le segment**

3

 $[0,2\pi]$, on peut alors intégrer terme à terme :

$$c_{k}\left(\tilde{g}\right) = \frac{1}{2\pi} \sum_{n=0}^{+\infty} \int_{0}^{2\pi} g_{n}\left(t\right) e^{-ikt} dt$$

Mais $\int_0^{2\pi} g_n(t) e^{-ikt} dt = \int_0^{2\pi} g(t+2n\pi) e^{-ikt} dt + \int_0^{2\pi} g(t-2n\pi) e^{-ikt} dt$, en faisant respectivement les changements $u=t+2n\pi$ et $u=t-2n\pi$ et sachant que $e^{2in\pi}=e^{-2in\pi}=1$, on obtient :

$$\forall n \geq 1, \ \int_{0}^{2\pi} g_{n}\left(t\right) e^{-ikt} dt = \int_{2n\pi}^{2(n+1)\pi} g\left(t\right) e^{-ikt} dt + \int_{-2n\pi}^{-2(n-1)\pi} g_{n}\left(t\right) e^{-ikt} dt$$

Et par la relation de Charles, on aura:

$$\sum_{n=0}^{+\infty} \int_{0}^{2\pi} g_{n}\left(t\right) e^{-ikt} dt = \sum_{n=0}^{+\infty} \int_{2n\pi}^{2(n+1)\pi} g\left(t\right) e^{-ikt} dt + \sum_{n=1}^{+\infty} \int_{-2n\pi}^{-2(n-1)\pi} g\left(t\right) e^{-ikt} dt$$

Ainsi:

$$c_{k}\left(\tilde{g}\right) = \frac{1}{2\pi} \sum_{n=0}^{+\infty} \int_{0}^{2\pi} g_{n}\left(t\right) e^{-ikt} dt = \frac{1}{2\pi} \left(\int_{0}^{+\infty} g\left(t\right) e^{-ikt} dt + \int_{-\infty}^{0} g\left(t\right) e^{-ikt} dt \right) = \frac{1}{2\pi} \hat{\mathbf{g}}\left(k\right)$$

1.3.3.

- \tilde{g} est un signal de classe C^1 et 2π -périodique, donc sa suite des coefficients de Fourier $(c_n(\tilde{g}))_{n\in\mathbb{Z}}$ est sommable (Notion peut-être hors programme PSI !!); or on vient de montrer que $c_n(\tilde{g}) = \frac{1}{2\pi}\hat{\mathbf{g}}(n)$, d'où la famille $(\hat{\mathbf{g}}(n))_{n\in\mathbb{Z}}$ est aussi sommable.
- \tilde{g} est un signal de classe C^1 et 2π -périodique, donc la série de Fourier de \tilde{g} converge normalement sur \mathbb{R} vers \tilde{g} , en particulier

$$\tilde{g}\left(0\right) = \sum_{n=-\infty}^{+\infty} g\left(2n\pi\right) = \sum_{n=-\infty}^{+\infty} c_n\left(\tilde{g}\right) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} \hat{\mathbf{g}}\left(n\right)$$

D'où la formule sommatoire de Poisson.

PARTIE II

- 2. Soit $\lambda > 0$ et $h_{\lambda}(t) = e^{-\lambda^2 t^2}$
 - **2.1.** On a h_{λ} est de classe C^1 sur \mathbb{R} avec $t^2h_{\lambda}(t)=t^2e^{-\lambda^2t^2}$ et $t^2h'_{\lambda}(t)=-2\lambda^2t^3e^{-\lambda^2t^2}$ sont de limites nulles en $\pm\infty$ puisque les exponentielles l'emportent sur les puissances, donc en particulier bornées aux $\mathcal{V}(\pm\infty)$. Les hypothèses sont alors satisfaites.
 - **2.2.** La fonction \hat{h}_1 est définie par :

$$\hat{h}_1(x) = \int_{-\infty}^{+\infty} e^{-t^2} e^{-ixt} dt$$

On note $f(x,t) = e^{-t^2}e^{-ixt}$, il s'agit d'une dérivation sous l'intégrale², on a alors

• f est continue sur \mathbb{R}^2 intégrable sur \mathbb{R} pour tout x fixé dans \mathbb{R}

²On peut aussi utiliser les hypothèses du programme français

• $\frac{\partial f}{\partial x}(x,t) = -ite^{-t^2}e^{-ixt}$ continue sur \mathbb{R}^2 et vérifie la domination : $\forall t \in \mathbb{R}, \ \forall x \in [a,b],$ $\left|\frac{\partial f}{\partial x}(x,t)\right| \leq |t|e^{-t^2} = \phi(t)$ avec ϕ C⁰ et intégrable sur \mathbb{R} car négligeable devant $\frac{1}{t^2}$ en $\pm \infty$.

Ainsi \hat{h}_1 est de classe C^1 sur \mathbb{R} et se dérive sous l'intégrale (Formule de Leibniz):

$$\hat{h}_{1}'(x) = \int_{-\infty}^{+\infty} -ite^{-t^{2}}e^{-ixt}dt$$

A l'aide d'une intégration par parties³, on a :

 $\hat{h}_1'(x) = \int_{-\infty}^{+\infty} -ite^{-t^2}e^{-ixt}dt = \frac{1}{2}\left(\left[e^{-t^2}ie^{-ixt}\right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty}xe^{-t^2}e^{-ixt}\right), \text{ vu le comportement de } e^{-t^2} \text{ et le caractère borné du terme } e^{-ixt}, \text{ le crochet est nul, d'où :}$

$$\hat{h}_{1}'(x) = -\frac{x}{2}\hat{h}_{1}(x)$$
 Càd \hat{h}_{1} vérifie $y' + \frac{x}{2}y = 0$

- **2.3.** Les solutions de (1) sont les $y(x) = Ae^{-x^2/4}$; où A une constante réelle. tenant compte de $\hat{h}_1(0) = \sqrt{\pi}$, on obtient $\hat{h}_1(x) = \sqrt{\pi}e^{-x^2/4}$.
- **2.4.** Sachant que $t \mapsto \lambda t$ est C^1 de \mathbb{R} sur lui même, on effectue le changement de variable $u = \lambda t$, dans l'intégrale $\hat{h}_{\lambda}(x) = \int_{-\infty}^{+\infty} e^{-\lambda^2 t^2} e^{-ixt} dt$, on aura

$$\hat{h}_{\lambda}\left(x\right) = \int_{-\infty}^{+\infty} e^{-\lambda^{2}t^{2}} e^{-ixt} dt = \int_{-\infty}^{+\infty} e^{-u^{2}} e^{-ixu/\lambda} \frac{du}{\lambda} = \frac{1}{\lambda} \hat{h}_{1}\left(\frac{x}{\lambda}\right) = \frac{\sqrt{\pi}}{\lambda} e^{-\frac{x^{2}}{4\lambda^{2}}}$$

2.5. Notons d'abord que la fonction h_{λ} est paire, donc $\forall n \in \mathbb{Z}, c_{-n}(h_{\lambda}) = c_n(h_{\lambda})$, donc la formule sommatoire de Poisson appliqué à $h_{\lambda}(x) = e^{-\frac{ax^2}{4\pi}}$ obtenue pour $\lambda = \frac{\sqrt{a}}{2\sqrt{\pi}}$, donne :

$$2\pi \left(h_{\lambda} \left(0 \right) + 2 \sum_{n=1}^{+\infty} h_{\lambda} \left(2n\pi \right) \right) = \left(\hat{h}_{\lambda} \left(0 \right) + 2 \sum_{n=1}^{+\infty} \hat{h}_{\lambda} \left(n \right) \right)$$

ou encore

$$2\pi \left(1 + 2\sum_{n=1}^{+\infty} e^{-\pi n^2 a} \right) = \frac{2\pi}{\sqrt{a}} \left(1 + 2\sum_{n=1}^{+\infty} e^{\frac{-\pi n^2}{a}} \right)$$

D'où la formule demandée.

PARTIE III

- 3. On considére $u_n(z) = \exp(i\pi n^2 z)$
 - **3.1.** L'application $f: \mathbb{C} \longrightarrow \mathbb{R}$ définie par $f(z) = \operatorname{Im}(z)$ est continue (linéaire en dimension finie lorsque \mathbb{C} est considéré comme \mathbb{R} -espace vectoriel) et $\Omega = f^{-1}(]0, +\infty[)$ avec $]0, +\infty[$ ouvert de \mathbb{R} , donc Ω ouvert de l'espace de départ qui est \mathbb{C} .

Par ailleurs Ω est demi-plan donc convexe puisque :

$$\operatorname{Im}((1-t)z_1 + tz_2) = (1-t)\operatorname{Im}(z_1) + t\operatorname{Im}(z_2) > 0 \text{ pour } t \in [0,1] \text{ et } z_1, z_2 \in \Omega.$$

3.2. On a $|u_n(z)| = e^{-\pi n^2 \operatorname{Im}^2(z)}$, donc :

³Pour être propre, il faut se ramener à un segment et conclure par passage à la limite

- Si Im $(z) \le 0$, le terme général $u_n(z)$ ne tend pas vers 0 quand n tend vers l'infini, donc la série $\sum u_n(z)$ diverge grossièrement.
- Si Im (z) > 0, alors $|u_n(z)| = e^{-\pi n^2 \operatorname{Im}^2(z)} = o\left(\frac{1}{n^2}\right)$, donc la série $\sum u_n(z)$ converge absolument donc converge.

Conclusion : $\sum u_n(z)$ converge si et seulement si $z \in \Omega$.

3.3. On a $u(z+1)+u(z)=\sum_{n=1}^{+\infty}e^{i\pi n^2z}\left(1+e^{i\pi n^2}\right)$, en remarquant que $e^{i\pi n^2}=\left\{\begin{array}{c} 1 \text{ si } n \text{ est pair} \\ -1 \text{ si } n \text{ est impair} \end{array}\right\}$, on va séparer les pairs et les impairs dans la sommation précédante (On peut scinder les deux sommations car elles convergent), on obtient

$$u(z+1) + u(z) = \sum_{n=1}^{+\infty} e^{i\pi n^2 z} \left(1 + e^{i\pi n^2} \right) = \sum_{n=1}^{+\infty} 2e^{i\pi 4n^2 z} = 2u(4z)$$

- **3.4.** On pose $\tilde{u}_n(x,y) = u_n(x+iy)$ et $\tilde{u}(x,y) = u(x+iy)$
- **3.4.1.** Pour tout $(x,y) \in \mathbb{R} \times [a,+\infty[$, on a $\left| n^k \tilde{u}_n\left(x,y\right) \right| \leq n^k e^{-\pi n^2 a^2} = o\left(\frac{1}{n^2}\right)$, avec $\sum \frac{1}{n^2}$ convergente, donc $\sum n^k \tilde{u}_n$ converge normalement et par suite converge uniformément sur $\mathbb{R} \times [a,+\infty[$.
- **3.4.2.** Pour y > 0 fixé, on pose pour tout $x \in \mathbb{R}$, $v_n(x) = \tilde{u}_n(x,y) = e^{i\pi n^2 x} e^{-\pi n^2 y}$, on a alors
 - Pour tout $n \in \mathbb{N}^*$, v_n est de classe C^1 sur \mathbb{R} .
 - La série $\sum v_n$ converge simplement sur \mathbb{R} selon **3.4.3.**
 - La série des dérivées $\sum v'_n$ converge uniformément sur $\mathbb R$ selon 3.4.3.

Donc la somme $x \mapsto \sum_{n=1}^{+\infty} v_n(x)$ est de classe C^1 sur \mathbb{R} et se dérive terme à terme, par suite $\frac{\partial \tilde{u}}{\partial x}$ existe sur $\mathbb{R} \times]0, +\infty[$ et on a

$$\frac{\partial \tilde{u}}{\partial x}(x,y) = \sum_{n=1}^{+\infty} i\pi n^2 \tilde{u}_n(x,y)$$

3.4.3. De même pour tout $x \in \mathbb{R}$ fixé, on pose pour tout y > 0, $w_n(y) = \tilde{u}_n(x,y) = e^{i\pi n^2 x} e^{-\pi n^2 y}$, on a alors

- Pour tout $n \in \mathbb{N}^*$, w_n est de classe C^1 sur \mathbb{R} .
- La série $\sum w_n$ converge simplement sur \mathbb{R} selon 3.4.1.
- La série des dérivées $\sum w'_n$ converge uniformément sur tout $[a, +\infty[$ pour tout a > 0, selon **3.4.1.**

Donc la somme $y \mapsto \sum_{n=1}^{+\infty} w_n(y)$ est de classe C^1 sur $]0, +\infty[$ et se dérive terme à terme, par suite $\frac{\partial \tilde{u}}{\partial y}$ existe sur $\mathbb{R} \times]0, +\infty[$ et on a

$$\frac{\partial \tilde{u}}{\partial y}(x,y) = \sum_{n=1}^{+\infty} -\pi n^2 \tilde{u}_n(x,y) = i \frac{\partial \tilde{u}}{\partial x}(x,y)$$

3.4.4. On a
$$\frac{\partial \tilde{u}}{\partial x}(x,y) = \sum_{n=1}^{+\infty} i\pi n^2 \tilde{u}_n(x,y)$$
, avec

- Les $i\pi n^2 \tilde{u}_n$ continues sur $\mathbb{R} \times [0, +\infty[$
- La série $\sum_{n\geq 1} i\pi n^2 \tilde{u}_n$ converge uniformément sur $\mathbb{R}\times [a,+\infty[$ selon **3.4.1**

Donc la somme $\frac{\partial \tilde{u}}{\partial x}$ est continue sur $\mathbb{R} \times]0, +\infty[$. Il en est de même pour $\frac{\partial \tilde{u}}{\partial y}$.

Ainsi \tilde{u} est différentiable sur $\mathbb{R} \times]0, +\infty[$ et vérifie les conditions de Cauchy-Riemann : $\frac{\partial \tilde{u}}{\partial x} + i \frac{\partial \tilde{u}}{\partial y} = 0,$ par suite u est holomorphe sur l'ouvert Ω .

- **3.5.** Pour z complexe non réel négatif, on pose : $z^{\alpha} = \exp(\alpha \log(z))$
- **3.5.1.** La fonction $z \mapsto z^{\alpha}$ est holomorphe sur $\mathbb{C}\backslash\mathbb{R}^-$ comme composée de deux fonctions holomorphes.
- **3.5.2.** La formule (2) peut-être écrite sous la forme

$$\forall a > 0, \left(\frac{i}{ia}\right)^{-\frac{1}{2}} (1 + 2u(ia)) = 1 + 2u\left(-\frac{1}{ia}\right)$$

Ainsi la fonction $z \mapsto \left(\frac{i}{z}\right)^{-\frac{1}{2}} (1 + 2u(z)) - \left(1 + 2u\left(-\frac{1}{z}\right)\right)$ qui est holomorphe sur l'ouvert convexe Ω s'annule sur tout le demi-axe ouvert des imaginaires purs : $i\mathbb{R}^{*+}$, donc ses zéros ne sont pas isolés et par suite elle est NULLE sur l'ouvert connexe par arcs Ω tout entier. D'où le résultat connu sous le nom du prolongement analytique.

3.5.3. En utilisant la relation ci-dessus pour 4z et pour z, on a aura :

$$\left(\frac{i}{4z}\right)^{-\frac{1}{2}} (1 + 2u(4z)) = \left(1 + 2u\left(-\frac{1}{4z}\right)\right) \text{ et } \left(\frac{i}{z}\right)^{-\frac{1}{2}} (1 + 2u(z)) = \left(1 + 2u\left(-\frac{1}{z}\right)\right) \text{ càd}$$

$$(1 + 2u(4z)) = \left(\frac{i}{4z}\right)^{\frac{1}{2}} \left(1 + 2u\left(-\frac{1}{4z}\right)\right) = \left(\frac{i}{z}\right)^{\frac{1}{2}} \left(\frac{1}{2} + u\left(-\frac{1}{4z}\right)\right) \text{ et}$$

 $\left(\frac{1}{2}+u\left(z\right)\right)=\left(\frac{i}{z}\right)^{\frac{1}{2}}\left(\frac{1}{2}+u\left(-\frac{1}{z}\right)\right), \text{ en faisant la différence membre à membre et tenant compte de } u\left(z+1\right)+u\left(z\right)=2u\left(4z\right), \text{ on obtient :}$

$$u\left(z+1\right) + \frac{1}{2} = \left(\frac{i}{z}\right)^{\frac{1}{2}} \left(u\left(-\frac{1}{4z}\right) - u\left(-\frac{1}{z}\right)\right) = \left(\frac{i}{z}\right)^{\frac{1}{2}} \left(\sum_{n=1}^{+\infty} \exp\left(-\frac{i\pi n^2}{4z}\right) - \exp\left(-\frac{i\pi n^2}{z}\right)\right)$$

CQFD.

Rien ne saurait remplacer un livre en papier

Des livres de prépas très joliment imprimés à des prix très accessibles

La qualité est notre point fort.

Vos commentaires sont importants pour nous Pour toute information, n'hésitez pas à nous contacter

mailto:al9ahira@gmail.com

http://al9ahira.com/ Tél: 0539/34 33 20

7, rue Égypte. Tanger