Problem 1.

Derive the equation giving C_{out} as a function of Co, q_m , q_p , τ_m , τ_p , and k, assuming an zero order reaction occurs in the ideal reactors of this steady state system.

Assume outlet concentrations of each reactor are C_m and C_p , respectively.

The performance equations for each reactor are:

$$\begin{split} \tau_m &= (C_o\text{-}C_m)/k & \tau_p &= (C_o\text{-}C_p)/k \\ C_m &= C_o\text{-} \ k\tau_m & C_p &= C_o\text{-} \ k\tau_p \end{split}$$

The mass balance around the mixing point gives

$$(q_m C_m + q_p C_p)/(q_m + q_p) = C_{out}$$

Re-arranging and substituting for C_m amd C_p gives

$$C_{\text{out}} = [q_{\text{m}}(C_{\text{o}} - k\tau_{\text{m}}) + q_{\text{p}}(C_{\text{o}} - k\tau_{\text{p}})]/(q_{\text{m}} + q_{\text{p}})$$

Problem 2.

An enzymatic reaction is conducted in 2 ideal reactors in series (1 mfr, 1 pfr).

Data:

$$Km = 10 \text{ mol/L}$$
 $Vm = 5 \text{ mol/L-min}$ $Co = 100 \text{ mol/L}$ $q = 15 \text{ L/min}$ $MFR \text{ volume} = 300 \text{ L}$ $PFR \text{ volume} = 150 \text{ L}$

- a. Calculate the overall conversion if the MFR is first.
- b. Calculate the overall conversion if the PFR is first.

Mixed reactor
$$-V_R = \frac{VmC_R}{km+C_R}$$

$$V_m = \frac{CA_0 - CA}{-Va} = \frac{CA_0 - CA}{VmC_A}$$

$$= \frac{(CA_0 - CA_0)(Km+C_A)}{VmC_A}$$

$$= \frac{(CA_0 - CA_0)(Km+C_A)}{VmC_A} = \frac{(CA_0 - Km)(CA_0 - Km)(CA_0 - Km)}{VmC_A_0} = \frac{(CA_0 - Km)(CA_0 - Km)(CA_0 - Km)}{VmC_A_0} = \frac{(CA_0 - Km)(CA_0 - Km)(CA_0 - Km)}{Vm} = \frac{(CA_0 - Km)(I - Km)}{Vm} + \frac{(CA_0 - Km)(CA_0 - Km)}{Vm} = \frac{(CA_0 - Km)(I - Km)}{Vm}$$

PFR
$$Z_p = \int \frac{dCA}{rA} = \int \frac{dCA}{Vm} (Km + CA)$$

$$= -\frac{Km}{Vm} ln (\frac{CA}{CA0}) - \frac{1}{Vm} (CA - CA0)$$

$$= \frac{Km}{Vm} ln (\frac{1}{1-XA}) + \frac{1}{Vm} CA0 XA$$

Part 2 a, MFR first

$$C1m = 27.016$$

$$C2p = 2.181$$

$$X1 := \frac{\text{Co} - \text{C2p}}{\text{Co}}$$

$$X1 = 0.978$$

Part 2 b. PFR first

$$C1p = 55.829$$

$$C2m = 8.858$$

$$X2 := \frac{\text{Co} - \text{C2m}}{\text{Co}}$$

X2 = 0.911

Problem 3.

A pulse tracer of dye is injected into the product stream of a reactor. The color of the output stream is recorded at five second intervals. Plot the E(t) curve for this system.

Please refer to the example 11.1 in text.

t :=
$$\begin{bmatrix} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \end{bmatrix}$$
 pHout :=
$$\begin{bmatrix} 0 \\ 3 \\ 4 \\ 5 \\ 5 \\ 4 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$
 Area =
$$\sum C \Delta t$$

$$\mathbf{E} = \frac{C}{\text{area}}$$

Find area under curve= 120

Normalize to get the E(t) curve to area = 1.

E curve