Q1: Find two unit vectors that are orthogonal to both $\bar{j} + 2\bar{k}$ and $\bar{i} - \bar{2}j + \bar{3}k$.

$$\vec{U} = \langle 0, 1, 2 \rangle$$
 $\vec{V} = \langle 1, -2, 3 \rangle$

(1) Cross Product
$$\vec{n} = \frac{\vec{u} \times \vec{v}}{||\vec{u} \times \vec{v}||} = \frac{1}{3\sqrt{6}} \langle 7, 2, -1 \rangle$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 0 & 1 & 2 \end{vmatrix} = \vec{i} (1.3 - 2(-2)) - \vec{j} (0.3 - 2.1) + \vec{k} (0.-2 - 1(1))$$

$$\begin{vmatrix} 0 & 1 & 2 \\ 1 & -2 & 3 \end{vmatrix} = \vec{i} (3 + 4) - \vec{j} (-2) + \vec{k} (-1)$$

2 Normalize

$$||\vec{u} \times \vec{v}|| = \sqrt{(7)^2 + (2)^2 + (6)^2} = \sqrt{54} = 3\sqrt{6}$$

3) The unit vector orthogonal to both \vec{u} and \vec{r} are $\vec{n}_i = \frac{1}{3\sqrt{4}} \langle 7, 2, -1 \rangle$

Q3: Determine if the statement is true or false. Justify your answers.

(a) For any vectors
$$\overline{u}$$
 and \overline{v} in V^3 , $|\overline{u} \cdot \overline{v}| = |\overline{u}| |\overline{v}|$

(b) For any vectors
$$\overline{u}$$
 and \overline{v} in V^3 , $|\overline{u} \times \overline{v}| = |\overline{v} \times \overline{u}|$

(c) For any vectors
$$\overline{u}$$
 and \overline{v} in V^3 , $(\overline{u} \times \overline{v}) \cdot \overline{u} = 0$

(d) If
$$\overline{u} \times \overline{v} = \overline{0}$$
, then $\overline{u} = \overline{0}$ or $\overline{v} = \overline{0}$

a) FALSE

 $|\vec{u} \cdot \vec{v}| = |\vec{u}||\vec{v}||\cos\theta|$ in general.

Since $|\cos\theta| \le |$, $|\vec{u} \cdot \vec{\tau}| = |\vec{u}||\vec{\tau}||\cos\theta| \le |\vec{u}||\vec{\tau}||$ only when $\theta = 0$ or π

6) TRUE

Since $\ddot{u} \times \ddot{v} = -(\ddot{v} \times \ddot{u})$, vectors are opposite with magnitudes same.

C) TRUE

 $\vec{n} \times \vec{v} = \vec{n} \perp to both \vec{u}$ and \vec{v} .

$$S_0: (\vec{u} \times \vec{v}) \cdot \vec{u} = (\vec{u} \times \vec{v}) \cdot \vec{v} = 0$$

d) FALSE

Take
$$\vec{u} = \langle 1,2,3 \rangle$$
 $V = 2\vec{u} = \langle 2,4,6 \rangle$
 $\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 2 & 46 & l = 3 \end{vmatrix}$

Q5: Determine whether the two lines: intersect at a point, parallel, or skew.

(a) Line 1:
$$x=2+t$$
, $y=2+3t$, $z=3+t$
Line 2: $x=2+t$, $y=3+4t$, $z=4+2t$

(b) Line 1:
$$x=1+7t$$
, $y=3+t$, $z=5-3t$
Line 2: $x=4-t$, $y=6$, $z=7+2t$

(c) Line 1:
$$x=3-2t$$
, $y=4+t$, $z=6-t$
Line 2: $x=5-4t$, $y=-2+2t$, $z=7-2t$

a)
$$\vec{l}_1(t) = (2+t, 2+3t, 3+t)$$
 $\vec{l}_2(t) = (2+s, 3+4s, 4+2s)$
 $\vec{d}_1 = (1,3,1)$ $\vec{d}_2 = (1,4,2)$

$$\times$$
 Intersect - 2ft=2fs \ 2+3t=3+4s \} 3t=1+4s \cdots \bad\ 3+t=4+2s \}

: Skew

b)
$$\vec{d}_1 = 27,1,-3$$
 $\vec{d}_2 = (-1,0,2)$

X Parallel

Intersect -
$$1+7t=4-5$$
 -> $5+7t=3$ } $5=-18$

$$3+t=6$$
 -> $t=3$ } $5=-18$

$$(5-3t=7+25)$$

$$7$$

$$5-3(3)=7+2(-18)$$

c)
$$\vec{d}_1 = (-2, 1, -1)$$
 $\vec{d}_2 = (-4, 7, -2)$
 $2\vec{d}_1 = \vec{d}_2$ $\vec{d}_2 = \vec{d}_1 = \vec{d}_2$

- Q7: Determine whether the lines and the plane are parallel, perpendicular, or neither.
 - (a) line: x=3-t, y=2+t, z=1-3tplane: 2x+2y-5=0
 - (b) line: x = 1 2t, y = t, z = -tplane: 6x - 3y + 3z = 1
- a) line: d= (-1,1,-3) <- directional vector

Plane: n = (2,2,0> - normal vector (1 to plane)

d. n = -1.2 + 1.2 + -3.0 =0 :. Parallel

b) line: d = 2 - 7, 1, -1

Plane: n = <6,-3,3)

- \times Parallel: $\vec{d} \cdot \vec{n} = -2(6) + 1(-3) + (-1)(3) \neq 0$
- × Perpendicular: d≠kñ where ICE/R

ie not scalar multiples of eachother

.. Neither