Badanie podstawowych parametrów sygnałów

Autor: Tymon Tobolski (181037) Jacek Wieczorek (181043)

Prowadzący: Dr inż. Paweł Biernacki

Wydział Elektroniki II rok WT/TN 13:15–15:00

1. Cel ćwiczenia

Celem ćwiczenia jest sprawdzenie podstawowych parametrów sygnałów deterministycznych.

2. Parametry sygnałów

Na początku wygenerowaliśmy dwa sygnały o nastepujących parametrach:

- prostokątny $(A = 10, f = 2, fpr = 100, faza = 0, T = 2, \omega = 0.5)$
- trójkątny ($A=10, f=2, fpr=100, faza=0, T=2, \omega=0.5$)

Rysunek 1. Badane sygnały.

3. Algorytm przetwarzający

Wykorzystuje dostarczone funkcje:

- generujące sygnał (**prostokat**, **trojkat**)
- obliczające wartość średnią (wart_srednia, chwil_wart_sred, biez_wart_sred)
- obliczające wariancje (wariancja, chwil_wariancja, biez_wariancja)

```
1 \quad \# \ \textit{setenv GNUTERM} \ \ \textit{`x11'}
      f = 2;
     fpr = 100;
     N = f * fpr;
     FAZY = 0:10:100;
     WYPS = 0:0.1:1;
      figc = 0;
     # Wykorzystane sygnaly
 \begin{array}{lll} [\,\mathrm{tp}\,,\;\;\mathrm{yp}\,] \;=\; \mathrm{prostokat}\,(\,10\,,\;\;\mathrm{f}\,,\;\;\mathrm{fpr}\,,\;\;0\,,\;\;2\,,\;\;0.5\,)\,; \\ 11 & [\,\mathrm{tt}\,,\;\;\mathrm{yt}\,] \;=\; \mathrm{trojkat}\,(\,10\,,\;\;\mathrm{f}\,,\;\;\mathrm{fpr}\,,\;\;0\,,\;\;2\,,\;\;0.5\,)\,; \end{array} 
      figure(figc+=1);
      subplot(2,1,1);
      plot(tp,yp);
title("Sygnal prostokatny");
     xlabel("czas")
ylabel("wartosc sygnalu")
subplot(2,1,2);
      plot(tt,yt);
21 title ("Sygnal trojkatny"); xlabel ("czas")
      ylabel ("wartosc sygnalu")
      print(["out/Figure", num2str(figc), ".png"], "-dpng", "-landscape")
     disp("Punkt 1. Wartosc srednia")
disp(" 1.1 Sygnal prostokatny")
      figure(figc+=1);
31
      disp("
                      a) Wplyw zmiany fazy:")
      s = zeros(size(FAZY));
      i = 0;
      for faza=FAZY
          \begin{array}{l} [\,t\;,\;y\,] \,=\, prostokat\,(10\;,\;f,\;fpr\;,\;faza\;,\;2\;,\;0.5\,)\;;\\ s\,(\,i\,+\!=\!1) \,=\, wart\_srednia\,(\,y\;,\;N\;,\;0\;,\;N\,)\;; \end{array} 
     end:
     \mathbf{subplot}(2,2,1);
41 plot (FAZY, s);
      xlabel("faza")
      ylabel ("wartosc srednia")
      title ("Sygnal prostokatny. Wartosc srednia w zaleznosc od zmiany fazy");
     disp("")
disp("
                     b) Wplyw zmiany wypelnienia:")
      s = zeros(size(WYPS));
      i = 0:
      for wyp=WYPS
        [t, y] = prostokat(10, f, fpr, 0, 2, wyp);
         s(i+=1) = wart\_srednia(y, N, 0, N);
     end;
      \mathbf{subplot}(2,2,2);
      plot(WYPS, s);
      xlabel("wypelnienie")
      ylabel ("wartosc srednia")
      title ("Sygnal prostokatny. Wartosc srednia w zaleznosc od zmiany wypelnienia");
61
      disp("")
     disp("")
disp("
                 1.2 Sygnal trojkatny")
      disp ("
                     a) Wplyw zmiany fazy:")
      s = zeros(size(FAZY));
      for faza=FAZY
          \begin{array}{l} [\,t\;,\;y\,] \;=\; t\,ro\,j\,k\,a\,t\,(\,10\;,\;\;f\;,\;\;f\,p\,r\;,\;\;50\;,\;\;2\;,\;\;0.\,5\,)\;;\\ s\,(\,i\,+=1) \;=\; w\,a\,r\,t\,\_s\,re\,d\,n\,i\,a\,(\,y\;,\;\;N\;,\;\;0\;,\;\;N\,)\;; \end{array} 
71 end;
     \mathbf{s}
```

```
subplot(2,2,3);
     plot(FAZY, s);
     xlabel("faza")
     ylabel("wartosc srednia")
     title ("Sygnal trojkatny. Wartosc srednia w zaleznosc od zmiany fazy");
     disp("")
     disp("
                 b) Wplyw zmiany wypelnienia:")
81 s = zeros(size(WYPS));
     i = 0;
     for wyp=WYPS
        [t, y] = trojkat(10, f, fpr, 50, 2, 0.5);
        s(i+=1) = wart\_srednia(y, N, 0, N);
     end;
     \mathbf{subplot}(2,2,4);
     plot (WYPS, s);
     xlabel("wypelnienie")
   ylabel ("wartosc srednia")
     title ("Sygnal trojkatny. Wartosc srednia w zaleznosc od zmiany wypelnienia");
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
     disp ("Punkt 2. Chwilowa wartosc srednia")
     disp(" 2.1 Sygnal prostokatny")
disp(" a) Wplyw zmiany dlumos
               a) Wplyw zmiany dlugosc 'okna' k:")
101 figure (figc+=1);
     i = 1:
     for k=1:N/10:N
       s = chwil_wart_srednia(yp, N, k);
       \mathbf{subplot} \left( 5 \,,\ 2 \,,\ i \,\right);
        plot(s);
       \mathbf{title}^{\hat{\boldsymbol{n}}}(\hat{\boldsymbol{n}}_{k}=",\ \mathbf{num2str}(k)))
        i += 1;
     end:
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
111
     disp(" 2.2 Sygnal trojkatny")
disp(" a) Wplyw zmiany dlug
               a) Wplyw zmiany długosc 'okna' k:")
     figure(figc+=1);
     i = 1:
     for k=1:N/10:N
       s = chwil_wart_srednia(yt, N, k);
        \mathbf{subplot} \left( 5 \,, \ 2 \,, \ i \, \right);
        plot(s);
        \mathbf{title}\left(\left[\,\text{"k="}\,\,,\,\,\mathbf{num2str}\left(\,\text{k}\,\right)\,\right]\,\right)
121
        i+=1;
     end;
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
     disp("Punkt 3. Biezaca wartosc srednia")
     disp(" 3.1 Sygnal prostokatny")
disp(" a) Wplyw zmiany alfa:"
                 a) Wplyw zmiany alfa:")
     \mathbf{figure} \, (\, \operatorname{figc} += 1) \, ;
131 A = [0.1, 0.3, 0.5, 0.7, 0.9, 0.92, 0.95, 0.99, 0.999, 1.0];
     \mathbf{for} \ i = 1 \colon \mathbf{length}(A)
        s = biez_wart_srednia(yp, N, A(i));
       \mathbf{subplot}(5, 2, i);
        plot(s);
        \mathbf{title}\,(["a=",\;\mathbf{num2str}(A(\;i\;)\;)\;])
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
     disp(" 3.2 Sygnal trojkatny")
     disp("
                 a) Wplyw zmiany alfa:")
     figure(figc+=1);
     i = 1;
     for i=1:length(A)
```

```
s = biez_wart_srednia(yt, N, A(i));
        subplot (5, 2, i);
       plot(s);
        \mathbf{title}\;(\,[\,"\,a="\;,\;\;\mathbf{num2str}\,(A(\;i\;)\,)\,]\,)
     end;
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
151
     disp("Punkt 4. Wariancja")
     disp(" 4.1 Sygnal prostokatny")
     disp ("
               a) Wplyw zmiany fazy:")
     figure(figc+=1);
     s = zeros(size(FAZY));
     i = 0:
     for faza=FAZY
161
        [\,t\,,\ y\,]\ =\ prostokat\,(\,10\,,\ f\,,\ fpr\,,\ faza\,,\ 2\,,\ 0.5\,)\,;
        s(i+=1) = wariancja(y, N, 0, N);
     end:
     \mathbf{subplot}(2,2,1);
     plot (FAZY, s);
     xlabel("faza")
     ylabel ("wariancja")
     title ("Sygnal prostokatny. Wariancja w zaleznosc od zmiany fazy");
171 disp("")
disp("
                 b) Wplyw zmiany wypelnienia:")
     s = zeros(size(WYPS));
     i = 0:
     \quad \textbf{for} \  \, \textbf{wyp=WYPS}
       [t, y] = prostokat(10, f, fpr, 0, 2, wyp);
        s(i+=1) = wariancja(y, N, 0, N);
     end;
     \mathbf{subplot}(2,2,2);
     plot (WYPS, s);
     xlabel ("wypelnienie")
     ylabel ("wariancja")
     title ("Sygnal prostokatny. Wariancja w zaleznosc od zmiany wypelnienia");
     disp("")
     disp("")
disp("
              4.2 Sygnal trojkatny")
     disp("
                a) Wplyw zmiany fazy:")
     s = zeros(size(FAZY));
191 i = 0;
     for faza = FAZY
         \begin{array}{l} [\,t\,,\,\,y\,] \,=\, t\,ro\,j\,k\,a\,t\,(\,10\,,\,\,f\,,\,\,f\,p\,r\,\,,\,\,50\,,\,\,2\,,\,\,0.\,5\,)\,;\\ s\,(\,i\,+=\,1) \,=\, w\,a\,ri\,a\,n\,c\,j\,a\,(\,y\,,\,\,N\,,\,\,0\,,\,\,N\,)\,; \end{array} 
     subplot (2,2,3);
     plot (FAZY, s);
     xlabel("faza")
     ylabel ("wariancja")
201 title ("Sygnal trojkatny. Wariancja w zaleznosc od zmiany fazy");
     disp("")
disp("
               b) Wplyw zmiany wypelnienia:")
     s = zeros(size(WYPS));
     i = 0;
     for wyp=WYPS
       [t, y] = trojkat(10, f, fpr, 50, 2, 0.5);
        s(i+=1) = wariancja(y, N, 0, N);
     end;
211
     \mathbf{subplot}(2,2,4);
     plot(WYPS, s);
     xlabel("wypelnienie")
     ylabel ("wariancja")
     title ("Sygnal trojkatny. Wariancja w zaleznosc od zmiany wypelnienia");
```

```
print(["out/Figure", num2str(figc), ".png"], "-dpng")
    disp("Punkt 5. Chwilowa wariancja")
disp(" 5.1 Sygnal prostokatnv")
     disp(" 5.1 Sygnal prostokatny")
disp(" a) Wolve "":
              a) Wplyw zmiany dlugosc 'okna' k:")
     figure(figc+=1);
     i = 1;
     for k=1:N/10:N
       s = chwil_wariancja(yp, N, k);
       \mathbf{subplot}(5, 2, i);
       plot(s);
       title (["k=", num2str(k)])
231
       i += 1;
     end:
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
     disp(" 5.2 Sygnal trojkatny")
                a) Wplyw zmiany dlugosc 'okna' k:")
     figure(figc+=1);
     i = 1:
     for k=1:N/10:N
       s \, = \, c\,h\,w\,i\,l\,_{\text{-}}w\,a\,r\,i\,a\,n\,c\,j\,a\,(\,y\,t\;,\;\;N,\;\;k\,)\;;
241
       subplot(5, 2, i);
       plot(s);
       title(["k=", num2str(k)])
       i += 1;
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
disp("Punkt 6. Biezaca wariancja")
251 disp(" 6.1 Sygnal prostokatny")
     disp ("
                 a) Wplyw zmiany alfa:")
     figure(figc+=1);
     A = [0.1, 0.3, 0.5, 0.7, 0.9, 0.92, 0.95, 0.99, 0.999, 1.0];
     for i=1:length(A)
       s = biez_wariancja(yp, N, A(i));
       subplot(5, 2, i);
       plot(s);
       title (["a=", num2str(A(i))])
     end;
261 print(["out/Figure", num2str(figc), ".png"], "-dpng")
     disp(" 6.2 Sygnal trojkatny")
disp(" a) Wolve grief
              a) Wplyw zmiany alfa:")
     figure(figc+=1);
     i = 1;
     for i=1:length(A)
       s = biez_wariancja(yt, N, A(i));
       subplot(5, 2, i);
       plot(s);
       title (["a=", num2str(A(i))])
271
     print(["out/Figure", num2str(figc), ".png"], "-dpng")
```

4. Parametry opisujące sygnał

4.1. Wartość średnia

$$m = \frac{1}{Len} \sum_{i=Skip}^{Skip+Len-1} x(i)$$

Przedział wartości fazy: $faza \in \{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}$ Przedział wartości wypełnienia: $\omega \in \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$

faza	Wartość średnia		ω	Wartość średnia	
	prostokątny	trójkątny		prostokątny	trójkątny
0	5	4.8	0.0	0	4.8
10	5	4.8	0.1	1	4.8
20	5	4.8	0.2	2	4.8
30	5	4.8	0.3	3	4.8
40	5	4.8	0.4	4	4.8
50	5	4.8	0.5	5	4.8
60	5	4.8	0.6	6	4.8
70	5	4.8	0.7	7	4.8
80	5	4.8	0.8	8	4.8
90	5	4.8	0.9	9	4.8
100	5	4.8	1.0	10	4.8

Tabela 1. Wartość średnia sygnałów w zależności od fazy i ω .

Wykresy znajdują się na stronie 8

4.2. Chwilowa wartość średnia

$$m(j) = \frac{1}{k} \sum_{i=j-k+1}^{j} x(i)$$

Przedział: $k \in (1; N)$

Wykresy znajdują się na stronie 9 oraz 10

4.3. Bieżąca wartość średnia

$$m(j) = \alpha m(j-1) + (1-\alpha)x(j)$$

Przedział: $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9, 0.92, 0.95, 0.99, 0.999, 1.0\}$ Wykresy znajdują się na stronie 11 oraz 12

4.4. Wariancja

$$v = \frac{1}{Len} \sum_{i=Skip}^{Skip+Len-1} [x(i) - m]^2$$

Przedział wartości fazy: $faza \in \{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}$ Przedział wartości wypełnienia: $\omega \in \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$

Wykresy znajdują się na stronie 13

faza	Wariancja		ω	Wariancja	
	prostokątny	trójkątny		prostokątny	trójkątny
0	25	8.32	0.0	0	8.32
10	25	8.32	0.1	9	8.32
20	25	8.32	0.2	16	8.32
30	25	8.32	0.3	21	8.32
40	25	8.32	0.4	24	8.32
50	25	8.32	0.5	25	8.32
60	25	8.32	0.6	24	8.32
70	25	8.32	0.7	21	8.32
80	25	8.32	0.8	16	8.32
90	25	8.32	0.9	9	8.32
100	25	8.32	1.0	0	8.32

Tabela 2. Wariancja sygnałów w zależności od fazy i ω .

4.5. Chwilowa wariancja

$$v(j) = \frac{1}{k} \sum_{i=j-k+1}^{j} [x(i) - m(j)]^{2}$$

Przedział: $k \in (1; N)$

Wykresy znajdują się na stronie 14 oraz 15

4.6. Bieżąca wariancja

$$m(j) = \alpha v(j-1) + (1-\alpha)[x(j) - m(j)]^2$$

Przedział: $\alpha \in \{0.1, 0.3, 0.5, 0.7, 0.9, 0.92, 0.95, 0.99, 0.999, 1.0\}$

Wykresy znajdują się na stronie 16 oraz 17

Rysunek 2. Wartość średnia sygnałów w zależności od zmiany wypełnienia i fazy.

Rysunek 3. Sygnał prostokątny, chwilowa wartość średnia. N=200

Rysunek 4. Sygnał trójkątny, chwilowa wartość średnia. $N=200\,$

Rysunek 5. Sygnał prostokątny, bieżąca wartość średnia. $N=200\,$

Rysunek 6. Sygnał trójkątny, bieżąca wartość średnia. N=200

Rysunek 7. Wariancja sygnałów w zależności od zmiany wypełnienia i fazy.

Rysunek 8. Sygnał prostokątny, chwilowa wariancja. N=200

Rysunek 9. Sygnał trójkątny, chwilowa wariancja. N=200

Rysunek 10. Sygnał prostokątny, bieżąca wariancja. N=200

Rysunek 11. Sygnał trójkątny, bieżąca wariancja. N=200

5. Wnioski

5.1. Wartość średnia

Jako pierwszą obliczaliśmy wartość średnią sygnałów w zależności od zmiany fazy i wypełnienia. Zarówno w sygnale prostokątnym, jak i trójkątnym, zmiana fazy nie powodowała zmiany wartości średniej. Natomiast zmiana wypełnienia (zwiększąło się) powodowała liniowy wzrost wartości średniej sygnału prostokątnego. Wartośc średnia sygnału trójkątnego, mimo zmiany wypełnienia nie zmieniła się.

5.2. Chwilowa wartość średnia

Wraz ze wzrostem ilości próbek k sygnałów prostokątnego i trójkątnego, wykres chwilowej średniej sygnału, coraz bardziej dążył do funkcji stałej, o amplitudzie równej wartości średniej sygnału.

5.3. Bieżąca wartość średnia

Wraz ze wzrostem stałej adpatacji $a \to 1$, wykres wartości średniej bieżącej sygnału dąży do funkcji stałej.

5.4. Wariancja

Wariancja sygnałów w zależności od zmiany fazy i wypełnienia. Zarówno w sygnale prostokątnym, jak i trójkątnym, zmiana fazy nie powodowała zmiany wartości . Natomiast zmiana wypełnienia (zwiększało się) powoduje, że wariancja sygnału prostokątnego jest funkcją kwadratową. Wartośc wariancji sygnału trójkątnego, mimo zmiany wypełnienia nie zmieniła się.

5.5. Chwilowa wariancja

Wraz ze wzrostem ilości próbek k sygnałów prostokątnego i trójkątnego, wykres chwilowej wariancji sygnału, coraz bardziej dążył do swojej wariancji.

5.6. Bieżąca wariancja

Wraz ze wzrostem stałej adpatacji $a \to 1$, wykres wartości bieżącej wariancji sygnału dąży do funkcji stałej.