Apache MXNet Cheat Sheet

Sunil Mallya: smallya@amazon.com

Multilayer Perceptron (MLP)

```
net = mx.sym.Variable('data')
net = mx.sym.FullyConnected(net, name='fc1', num_hidden=64)
net = mx.sym.Activation(net, name='relu1', act_type="relu")
net = mx.sym.FullyConnected(net, name='fc2', num_hidden=10)
mlp = mx.sym.SoftmaxOutput(net, name='softmax')
```

NDArray Iterator

CSV Iterator

Linear Regression

Logistic Regression

Save, Checkpoint, Load and Predict

```
# save
prefix = 'mymodel'
iteration = 100
model.save(prefix, iteration)
# periodic checkpoint
mod.fit(X, Y, eval_metric="acc", ...
        epoch_end_callback=mx.callback.save.checkpoint("mymodel")
# load model
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch_num)
mod = mx.mod.Module(symbol=sym, context=mx.gpu())
mod.bind([('data', (BATCH_SIZE, NDARRAY_SHAPE))], for_training=False)
mod.set_params(arg_params=arg_params, aux_params=aux_params)
# Prediction
Batch = collections.namedtuple('Batch', ['data'])
mod.forward(Batch(batch), is_train=False)
out = mod.get_outputs()[0].asnumpy()
```

Lenet (CNN example)

```
data = mx.symbol.Variable('data')
conv1 = mx.sym.Convolution(data=data, kernel=(5,5),
 num_filter=20)
tanh1 = mx.sym.Activation(data=conv1, act_type="tanh")
pool1 = mx.sym.Pooling(data=tanh1, pool_type="max", kernel
 =(2,2), stride=(2,2))
conv2 = mx.sym.Convolution(data=pool1, kernel=(5,5),
 num_filter=50)
tanh2 = mx.sym.Activation(data=conv2, act_type="tanh")
pool2 = mx.sym.Pooling(data=tanh2, pool_type="max", kernel
 =(2,2), stride=(2,2))
flatten = mx.sym.Flatten(data=pool2)
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 = mx.sym.Activation(data=fc1, act_type="tanh")
fc2 = mx.sym.FullyConnected(data=tanh3, num_hidden=10)
lenet = mx.sym.SoftmaxOutput(data=fc2, name='softmax')
mx.viz.plot_network(symbol=lenet, shape=shape)
```

Image Iterator

S3 Image Iterator

#Append USE_S3=1 to config.mk before building MXNet
s3_data_iter = mx.io.ImageRecordIter(
 path_imgrec="s3://bucketname/train/data.rec",
 data_shape=(3, 227, 227), batch_size=4, resize=256)

Scoring

mod.score(data.get_iter(batch_size), ['mse', 'acc'])

Convolution Factory

Multiple GPUs (one-liner)

devices = [mx.gpu(i) for i in range(num_device)]
mod = mx.module.Module(context=devices, ...)

Module

Fine-Tuning

sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) all_layers = sym.get_internals() net = all_layers[layer_name+'_output'] net = mx.symbol.FullyConnected(data=net, num_hidden=num_classes, name='fc') net = mx.symbol.SoftmaxOutput(data=net, name='softmax') new_args = dict({k:arg_params[k] for k in arg_params if 'fc' not in k})

Learing rate scheduler

RNN: LSTM

Module Low Level API