COSC 3340

Examination 3 Wednesday, April 9, 2008, 1 – 2:30 pm

Open Book and Notes

	nat the following lar $\{0^k 1^j 2^i i > i > k > 0 \}$		t contextfree:			
2. Constru	ct a pda \mathbb{P} for the for $\{0^{i}1^{3i} i \geq 0\}$ whe	ollowing langua	age:	final state).		
State of Hint: Put three	n which side you wr e markers on the stack t	rite the top of to	he stack, left:	or right		
	ct a pda \mathbb{P} that accept $L = L(G)$ where $G = N = \{S,A\}$, and	= (T, N, P, S) v	with $T = \{ \leq > \}$		 ε }.	
	n which side you wr st use the construction "c					
Constru P =	et a grammar for L($ \{p,q\}, \{a,b\}, \{Z,X\} \} $ $ \delta(p,a,Z) = \{(p,XZ)\} $ $ \delta(q,a,Z) = \{(q,\varepsilon)\} $ the top of the stack is	(G) for the lange $\{0, \delta, p, Z, \emptyset\}$ of $\{0, \epsilon, Z\}$ on the left.	guage $N(P)$: ℓ where the mo $0 = \{(p, \epsilon)\}$ $0 = \{(q, X)\}$	ve function δ is δ $\delta(p,a,X) = \{(p,\delta(q,b,Z) = \{(p,b,Z) = \{(p,b,Z) = \{(p,b,Z) = \{(p,b,Z) = $	given by XX)} Z)}.	i regl
5. Constru L =	ct a Turing machine { 0 ^k 1 ^j 2 ⁱ i>j>k≥0 }, e first in words what y	e for the langua	age in Questio	on 1,		
Point	s: 1: 20	2: 12	3: 18	4: 30	5: 20	

Name: Hlex Metry L= {0 x 1 2 2 1 2 > 0 > K > 0 } assume LisefL = then I G(N,T,P,S) in CNF s.t./ L=L(G) assue t= no. ofwards, assure award Z = 02t 12t+1 22t+2 by pumping Lemma Z=UVWXY where IVX >1 20 12 & untwily & LCG) 18 For allizo 30 case 11. V&X areall 0's => for i=2 noofzero can be equil 20 no of 1 & L(6), &L 100 cose 22 V&x are all is -> for i=2 LG, #L cose 32 Vaxare all i's => for i'=0 & L(G), & L casely. No 2's in vorx => for i'=2 (= L(6), &L because No at 1's can be equal to no. of 2's Cose 5: No 1's in Vorx ⇒ for i'=2 € L(G), & L Cose 6: No O's in Vork = for i=0 EL(6), & L because No of \$'s decrise to be equal No of zeros Cose 7: at less one 0, me 1, The 2 in Vorx for if >1 the pattern will change IRL zous can follow 25 which is not acceptable by L Here is contradiction in each cash the largage Lis not Content free

*
$$(p,\epsilon) \in \delta(p,\epsilon,z)$$

$$[p,z,p] \rightarrow \epsilon \qquad \rightarrow \emptyset$$

* $(q,x) \in \delta(p,b,x)$

$$[p,x,q] \rightarrow b[q,x,q] \qquad \rightarrow \emptyset$$

$$[p,x,q] \rightarrow b[q,x,q] \qquad \rightarrow \emptyset$$

* $(q,\epsilon) \in \delta(q,a,z)$

* $(p,z) \in \delta(q,a,z)$

* $(p,z) \in \delta(q,b,z)$

$$[q,z,q] \rightarrow b[p,z,q] \qquad \rightarrow \emptyset$$

* $(p,z) \in \delta(q,b,z)$

$$[q,z,q] \rightarrow b[p,z,q] \qquad \rightarrow \emptyset$$

* $[q,z,p] \rightarrow b[p,z,q] \qquad \rightarrow \emptyset$

* $[q,z,q] \rightarrow b[p,z,q] \qquad \rightarrow \emptyset$

first I'll construct a pola lat accepts by exptystack the charge it to one that accepts by find state

L= \{0\; 1\}; \{90,9\; \}, \{20,2\}, \8,90,\phi,20\}.

The topofthe stack ison the left) Z ((q0, ZZZZ)) ((q, E)) $\begin{array}{c|c} 2 & & \\ 2 & & \\ \end{array}$ $\begin{array}{c|c} \{(q_i, \in)\} \end{array}$ # [= ({0,1} , {9,19,19,}, {2,2,2}, 8,9,9,9,2) Zo (q, ZZZZ) $\{(q,\epsilon)\}$ q, Pinal state

S-> <S>A|[A]A A -> [A]5 (<5>51 E) eliminte E S-><s>A/<s>/EA]A/EA]/[]A/E] A -> [A]S/[]S/<5>S S-> < S X, A | < S X, | [AX, A | [AX] [X, A | [X, A | [X, $A \rightarrow [AX_{3}S|CX_{3}S|<SX_{5}S]$ $X_{3} \rightarrow Z$ $X_{1} \rightarrow Z$ $P_{N} = (\{\langle, \rangle, [,]\}, \{q_{0}\}, \{S, A, X_{>}, X_{1}\}, S, q_{0}, \emptyset, S)$ S (q., AX, A) (q., AX,) (q., X,A), (q., X,) of stack on the left

Alex Metry 0' (q,,0,R) 64,2,R) (qp, 16, R) (9,0,2',R) The turning Machine for the language L= {012 | 1707 Kg/0}