ECE C247

Homework 01

Chih-En Lin

1. (a)

$$\Rightarrow AA^{T} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a^{2}+b^{2} & actbd \\ actbd & c^{2}+d^{2} \end{bmatrix}$$

$$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ c^2 + d^2 = 1 \\ ac + bd = 0 \end{array}$$

Assume $\alpha = \frac{1}{2}$, $\delta = \frac{-1}{2}$

$$\Rightarrow \begin{cases} b = \frac{\sqrt{3}}{2} \\ c = \frac{\sqrt{3}}{2} \end{cases} \Rightarrow A = \begin{cases} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{cases}$$

=)
$$det\left(\begin{bmatrix} \frac{1}{2} - \lambda & \frac{1}{2} \\ \frac{1}{2} - \lambda \end{bmatrix}\right) = 0$$

eigenvalues: 1, -1

Deigenvector with
$$\lambda_1=1$$
:

$$(A-I)X=0$$

$$\Rightarrow \begin{bmatrix} \frac{7}{2} & \frac{7}{4} - 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_1 \end{bmatrix} = 0$$

$$= \begin{pmatrix} \frac{-1}{2} & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & \frac{-3}{2} \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0$$

Normalize
$$\frac{\sqrt{3}}{2}$$
, $\lambda_1 = 1$

eigenvector with
$$\lambda z = -1$$

$$(A+I)x = 0$$

$$\Rightarrow \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} + 1 \end{array}\right] \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0$$

$$=) \left[\begin{array}{cc} \frac{3}{2} & \frac{\sqrt{5}}{2} \\ \frac{\sqrt{5}}{2} & \frac{1}{2} \end{array}\right] \left[\begin{array}{c} \chi_1 \\ \chi_2 \end{array}\right] = 0$$

Normalize
$$\left(\frac{1}{2}\right)$$
 $= \left(\frac{1}{2}\right)$ $= -1$

We can notice that eigenvalues $|\lambda| = 1$, eigenvectors are orthogonal. #

```
(ii) AAT = I
             => ATA = I
                Ax = \lambda x
             => (Ax)^T (Ax) = (\lambda x)^T (\lambda x)
             => xTATAX = [] xTX
              => \chi^T \chi = |\chi|^2 \chi^T \chi : eigenvectors are normalized

=> \chi^T \chi = |\chi|^2 \chi^T \chi : eigenvectors are normalized
               (izi) Assume \lambda_1, \lambda_2 are the eigenvalues of A
                         X1, X2 are the eigenvectors of A
               \lambda_1 \neq \lambda_2
                Ax1 = NX1, Axz = NXX
                      (AX_1)^H(AX_2) = (\lambda_1 X_1)^H(\lambda_2 X_2)
\Rightarrow \chi_1^H A^H A \chi_1 = \overline{\lambda_1} \chi_1 \chi_1^H \chi_1
(:A^H A = I)
                   => X1 H X2 = 71 72 X1 X2
                   => ( \(\bar{\chi}_1 \chi_2 - 1 \) \(\chi_1 \chi_2 = 0 \)
  From (ii), Ti Ti = 1 only if Ti = Ti
                  \Rightarrow \chi_1^H \chi_2 = 0
                 it means the eigenvectors are orthogonal.
      (i\vee)
             Vector X will be rotated or reflected,
              but the length will not be changed. *
```

```
(b)
    (ì)
          The left singular vectors of A are the
           eigenvectors of AAT.
          The right singular vectors of A are the
           eigenvectors of ATA.
           Singular Value Decomposition:
                    A= UZVT
              AA^{T} = (UZV^{T})(UZV^{T})^{T}
                     = U \Sigma V^{\mathsf{T}} V \Sigma^{\mathsf{T}} U^{\mathsf{T}} \left( :: V^{\mathsf{T}} V = I \right)
= U \Sigma^{\mathsf{T}} U^{\mathsf{T}} \left( :: \nabla^{\mathsf{T}} V = I \right)
               ATA = (UZVT) (UZVT)
                       = V \Xi^{T} U^{T} U \Xi V^{T} \left( : U^{T} U = I \right)
= V \Xi^{L} V^{T} \left( : Z^{T} = \Xi \right)
   (ii) The singular values of A are the
           square root of the eigenvalues of
            AAT and ATA.
(C)
    (2) False, ex: [100] deigenvalues are all 1.
    (ii) False, ex: the eigenvectors of [ 0 27
                              are [1], [0],
                              but their sum [] is not
                                an eigenvector.
```

(111)	True.	Ax = xx
		$\Rightarrow \chi^{T} A \chi = \chi^{T} (\lambda \chi) = \chi^{T} \chi \lambda \geq 0$
		·: xTx is definitely non-negative
		⇒ 7 is also non-negative.
(iv)	True.	ex: [100] >> rank: 2
		distinct eigenvalue 1
(\strice)	True.	ex: the eigenvectors of [0]
		are [], []] corresponding to
		the same eigenvalue 1.
		Their sum [1] is also an
		eigenvector.

2. (a) H denotes Hend, T denotes Toil

(2)

$$P(H50|T) = \frac{P(T|H50) \cdot P(H50)}{P(H50,T) + P(H60,T)}$$

$$= \frac{P(T|H50) \cdot P(H50) + P(T|H60) \cdot P(H60)}{P(T|H50) \cdot P(H50) + P(T|H60) \cdot P(H60)}$$

$$= \frac{0.5 \cdot 0.5}{0.5 \cdot 0.5 + 0.4 \cdot 0.5}$$

$$= \frac{25}{45}$$

$$= \frac{5}{4} \approx 0.5556$$

$$= \frac{25}{45}$$

$$= \frac{9(THHH | H50) \cdot P(H50)}{P(H50, THHH) + P(H60, THHH)}$$

$$= \frac{P(THHH | H50) \cdot P(H50)}{P(THHH | H50) \cdot P(H50)}$$

$$= \frac{(0.5)^{4} \cdot 0.5}{(0.5)^{4} \cdot 0.5 + (0.4 \cdot (0.6)^{3}) \cdot 0.5}$$

$$= \frac{3125}{3125 + 4320} \approx 0.4197$$

$$= \frac{625}{1489} \approx 0.4197$$

```
(221) Let A denotes 9 Heads and 1 Tail in 10 flips,
            regardless the order.
    P(H50|A) = P(A|H50).P(H50)
P(H50, A)+P(H55, A)+P(H60, A)
                         P(A|H50). P(H50)
   P(A1H50). P(H50)+P(A|H55).P(H55)+P(A(H60).P(H60)
                            ((0.5), 0.5).
    \frac{1}{((0.5)^{9} \cdot 0.5) \cdot \frac{1}{3} + ((0.55)^{9} \cdot 0.45) \cdot \frac{1}{3} + ((0.6)^{9} \cdot 0.4) \cdot \frac{1}{3}}
 ≈ 0.1379 #
    P(HSS|A) = \frac{P(A|HSS) \cdot P(HSS)}{P(HSO, A) + P(HSS, A) + P(HOO, A)}
                         P(A | H55) . P(H55)
   P(A1H50). P(H50)+P(A1H55). P(H55)+P(A(H60).P(H60)
                            ((0.55) · 0.45) · =
    ((0.5)^{9} \cdot 0.5) \cdot \frac{1}{3} + ((0.55)^{9} \cdot 0.45) \cdot \frac{1}{3} + ((0.6)^{9} \cdot 0.4) \cdot \frac{1}{3}
 ≈ 0.2927 #
```

$$P(H60|A) = \frac{P(A|H60) \cdot P(H60)}{P(H50, A) + P(H55, A) + P(H60, A)}$$

$$= \frac{P(A|H60) \cdot P(H60)}{P(A|H50) \cdot P(H50) + P(A|H55) \cdot P(H55) + P(A|H60) \cdot P(H60)}$$

$$= \frac{((0.6)^{7} \cdot 0.4) \cdot \frac{1}{3}}{((0.5)^{7} \cdot 0.5) \cdot \frac{1}{3} + ((0.55)^{7} \cdot 0.45) \cdot \frac{1}{3} + ((0.6)^{7} \cdot 0.4) \cdot \frac{1}{3}}$$

$$\approx 0.5694 \#$$
(b)
$$P(Preg|Pos) = \frac{P(Pos|Preg) \cdot P(Preg)}{P(Preg,Pos) + P(NotPreg,Pos)}$$

$$= \frac{P(Pos|Preg) \cdot P(Preg)}{P(Pos|Preg) \cdot P(Preg) + P(Pos|NotPreg)} \cdot P(NotPreg)$$

$$= \frac{0.99 \cdot 0.01}{0.99 \cdot 0.01 + 0.1 \cdot 0.99}$$

$$= \frac{1}{11} \approx 0.0909 \#$$
If a woman received a positive test, only 9% probability that she is pregnant. It is a bad test. Because a large proportion (99%) of the female population is not pregnant, but the test returns "positive" 10%, it will cause many incorrect tests. #

(c)
$$E(x; +b) = E(x; +b)$$

$$E(Ax;) = E(\frac{2}{5}A; x; x_{j})$$

$$= \frac{2}{5}A; E(x_{j})$$

$$= \frac{2}{5}A; E(x_{j})$$

$$= \frac{2}{5}A; E(x);$$

$$= [A \cdot E(x)];$$

$$\Rightarrow E(Ax) = A \cdot E(x)$$

$$\therefore E(Ax + b) = E(Ax) + b$$

$$= AE(x) + b$$

$$= AE(x) + b$$

$$(d)$$

$$cov(x) = E((x - E(x))(x - E(x))^{T})$$

$$cov(Ax + b) = E((Ax + b - E(Ax + b))(Ax + b - E(Ax + b))^{T})$$

$$From (c) = E((Ax + b - AE(x) - b)(Ax + b - AE(x) - b)^{T})$$

$$= E((Ax - AE(x))(Ax - AE(x))^{T})$$

$$= E(A(x - E(x))(x - E(x))^{T}A^{T})$$

$$= A E((x - E(x))(x - E(x))^{T}A^{T})$$

$$= A Cov(x) A^{T}$$

$$\nabla_{y} x^{\mathsf{T}} A y = A^{\mathsf{T}} x \not$$

$$\nabla_{A} \chi^{T} A \gamma = \begin{bmatrix} \frac{\partial \chi^{T} A \gamma}{\partial \alpha_{1,1}} & \frac{\partial \chi^{T} A \gamma}{\partial \alpha_{1,m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial \chi^{T} A \gamma}{\partial \alpha_{n,1}} & \frac{\partial \chi^{T} A \gamma}{\partial \alpha_{n,m}} \end{bmatrix}$$

$$\nabla_{x} f = \nabla_{x} (x^{T} A x + b^{T} x)$$

$$= \nabla_X (X^T A_X) + \nabla_X (b^T X)$$

$$= Ax + A^{T}x + b \#$$

$$tr(AB) = \sum_{i=1}^{m} \sum_{i=1}^{n} a_{i,j} b_{j,i}$$

$$\frac{\partial \operatorname{tr}(AB)}{\partial \alpha_{i,j}} = b_{j,i}$$

$$\nabla_A f = \nabla_A \operatorname{tr}(AB) = B^T \#$$

$$= \frac{1}{2} \sum_{i=1}^{n} (\gamma^{(i)} - W \chi^{(i)})^{\mathsf{T}} (\gamma^{(i)} - W \chi^{(i)})$$

$$= \pm \sum_{i=1}^{n} \left(\gamma^{(i)T} \gamma^{(i)} - \gamma^{(i)T} W \chi^{(i)} - (W \chi^{(i)})^{T} \gamma^{(i)} + (W \chi^{(i)})^{T} (W \chi^{(i)}) \right)$$

$$= \pm \sum_{i=1}^{n} (\gamma^{(i)^{T}} \gamma^{(i)} - \gamma^{(i)^{T}} W x^{(i)} - \gamma^{(i)^{T}} (W x^{(i)}) + (W x^{(i)})^{T} (W x^{(i)}))$$

$$=\frac{1}{2}\sum_{i=1}^{n}\left(\gamma^{(i)T}\gamma^{(i)}-2\gamma^{(i)T}W\chi^{(i)}+\chi^{(i)T}W^{T}W\chi^{(i)}\right)$$

Only take out the terms with W

=)
$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (-2 \gamma^{(i)T} W \chi^{(i)} + \chi^{(i)T} W^{T} W \chi^{(i)})$$

$$= \sum_{i=1}^{n} \left(-\gamma^{(i)}^{T} W \chi^{(i)} + \frac{1}{2} \chi^{(i)}^{T} W^{T} W \chi^{(i)} \right)$$

$$=\sum_{i=1}^{n}\left(-\operatorname{tr}(\boldsymbol{\gamma}^{(i)^{T}}\boldsymbol{W}\,\boldsymbol{\chi}^{(i)})+\frac{1}{2}\operatorname{tr}(\boldsymbol{\chi}^{(i)^{T}}\boldsymbol{W}^{T}\boldsymbol{W}\,\boldsymbol{\chi}^{(i)})\right)$$

$$= \sum_{i=1}^{n} \left(-tr(WX^{(i)}Y^{(i)T}) + \frac{1}{2} tr(WX^{(i)}X^{(i)T}W^{T}) \right)$$

= - tr
$$\left(W \stackrel{n}{\underset{i=1}{\sum}} \chi^{(i)} \gamma^{(i)T}\right) + \frac{1}{2} tr \left(W \stackrel{n}{\underset{i=1}{\sum}} \left(\chi^{(i)} \chi^{(i)T}\right) W^{T}\right)$$

From Hint, $\frac{\partial f(W)}{\partial W}$

$$= - Y X^{T} + \frac{1}{2} (W X X^{T} + W X X^{T})$$

$$= - Y X^{T} + W X X^{T} = 0$$

$$\Rightarrow W X X^{T} = Y X^{T}$$

$$\Rightarrow W = Y X^{T} (X X^{T})^{-1}$$

$$= Y X^{-1}$$

$$\Rightarrow Y X^{-1}$$

Linear regression workbook

This workbook will walk you through a linear regression example. It will provide familiarity with Jupyter Notebook and Python. Please print (to pdf) a completed version of this workbook for submission with HW #1.

ECE C147/C247 Winter Quarter 2022, Prof. J.C. Kao, TAs Y. Li, P. Lu, T. Monsoor, T. wang

```
import numpy as np
import matplotlib.pyplot as plt

#allows matlab plots to be generated in line
%matplotlib inline
```

Data generation

For any example, we first have to generate some appropriate data to use. The following cell generates data according to the model: $y=x-2x^2+x^3+\epsilon$

Out[2]: Text(0, 0.5, '\$y\$')

QUESTIONS:

Write your answers in the markdown cell below this one:

- (1) What is the generating distribution of x?
- (2) What is the distribution of the additive noise ϵ ?

ANSWERS:

- (1) It is the Uniform Distribution from 0 to 1.
- (2) It is the Normal Distribution (mean=0 and standard deviation=0.03).

Fitting data to the model (5 points)

Here, we'll do linear regression to fit the parameters of a model y = ax + b.

[-0.10599633 0.13315817]

```
In [4]:
    # Plot the data and your model fit.
    f = plt.figure()
    ax = f.gca()
    ax.plot(x, y, '.')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')

# Plot the regression line
    xs = np.linspace(min(x), max(x),50)
    xs = np.vstack((xs, np.ones_like(xs)))
    plt.plot(xs[0,:], theta.dot(xs))
```

Out[4]: [<matplotlib.lines.Line2D at 0x7fd28a2547f0>]

- (1) Does the linear model under- or overfit the data?
- (2) How to change the model to improve the fitting?

ANSWERS

- (1) It underfits the data.
- (2) Increase the order of polynomial models.

Fitting data to the model (10 points)

Here, we'll now do regression to polynomial models of orders 1 to 5. Note, the order 1 model is the linear model you prior fit.

```
In [5]:
        xhats = []
        thetas = []
         # ======= #
         # START YOUR CODE HERE #
         # ======= #
        # GOAL: create a variable thetas.
         # thetas is a list, where theta[i] are the model parameters for the polynomial fit of orde
           i.e., thetas[0] is equivalent to theta above.
           i.e., thetas[1] should be a length 3 np.array with the coefficients of the x^2, x, and
         # ... etc.
        for i in np.arange(N):
            if i == 0:
                xhat = np.vstack((x, np.ones like(x)))
            else:
                xhat = np.vstack(((x**(i+1)), xhat))
            xhats.append(xhat)
        for xhat in xhats:
            thetas.append(np.matmul(np.matmul(np.linalg.inv(np.matmul(xhat, xhat.T)), xhat), y))
        print(thetas)
         # ====== #
         # END YOUR CODE HERE #
         # ====== #
        [array([-0.10599633, 0.13315817]), array([-0.48023061, 0.36743967, 0.05521084]), array
        ([ 0.8843808 , -1.82077417, 0.91178032, 0.00979068]), array([ 0.14080037, 0.60466289, -
        1.64250929, 0.87250485, 0.01175321]), array([ 0.52432591, -1.164568 , 1.76052438, -2.0
        7430275, 0.93373916,
               0.009716 ])]
In [6]:
        # Plot the data
        f = plt.figure()
        ax = f.gca()
        ax.plot(x, y, '.')
        ax.set xlabel('$x$')
        ax.set ylabel('$y$')
        # Plot the regression lines
        plot xs = []
        for i in np.arange(N):
            if i == 0:
```

```
plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
else:
    plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
    plot_xs.append(plot_x)

for i in np.arange(N):
    ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))

labels = ['data']
[labels.append('n={}'.format(i+1)) for i in np.arange(N)]
bbox_to_anchor=(1.3, 1)
lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```


Calculating the training error (10 points)

Here, we'll now calculate the training error of polynomial models of orders 1 to 5:

$$L(\theta) = \frac{1}{2} \sum_{j} (\hat{y}_j - y_j)^2$$

Training errors are: [0.2379961088362701, 0.10924922209268528, 0.08169603801105374, 0.08165353735296979, 0.08161479195525295]

QUESTIONS

(1) Which polynomial model has the best training error?

(2) Why is this expected?

ANSWERS

- (1) Polynomial model with order 5.
- (2) The higher degree polynomial model will have better training error because it tries to pass through more data points.

Generating new samples and validation error (5 points)

Here, we'll now generate new samples and calculate the validation error of polynomial models of orders 1 to 5.

```
0.5 - 0.0 - 1.0 1.2 1.4 1.6 1.8 2.0 x
```

```
In [10]:  # Plot the data
    f = plt.figure()
    ax = f.gca()
    ax.plot(x, y, '.')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')
```

```
# Plot the regression lines
plot_xs = []
for i in np.arange(N):
    if i == 0:
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
        plot_xs.append(plot_x)

for i in np.arange(N):
        ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))

labels = ['data']
[labels.append('n={}'.format(i+1)) for i in np.arange(N)]
bbox_to_anchor=(1.3, 1)
lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```



```
In [11]:
    validation_errors = []

# =========== #
# START YOUR CODE HERE #
# ========= #
# GOAL: create a variable validation_errors, a list of 5 elements,
# where validation_errors[i] are the validation loss for the polynomial fit of order i+1.

for i in np.arange(N):
    validation_errors.append(1/2 * np.sum((np.matmul(thetas[i], xhats[i]) - y)**2))

# =========== #
# END YOUR CODE HERE #
# ========== #
print ('Validation errors are: \n', validation_errors)
```

Validation errors are: [80.86165184550586, 213.19192445058104, 3.1256971084103693, 1.1870765210044922, 214.91021 752914227]

QUESTIONS

- (1) Which polynomial model has the best validation error?
- (2) Why does the order-5 polynomial model not generalize well?

ANSWERS

- (1) Polynomial model with order 4.
- (2) It is a overfitting problem because we generate a new set of data. The more complex model may not generalize well if the data come from a different dataset.