Data Visualiza

Kylie A. Bem

Northeastern Uni Khoury College of Compu

Learning go

- What are common stat
- How to look at data
- Key ingredients of usefu
- A grammar of graphics

STATISTICAL G HOWTO LOOK

Why do we look

Dataset #1:

How similar are the other 12 datasets?

Why we look a

Datasets #2-13:

"The Datasaurus Dozen": https://www.autodeskrese

Looking at data is

- Summary statistics don'
- Easily find patterns
- Identify potential outlier
- Check model assumption
- Intuitively display results

What are some common ways

Some common statis

- Scatter plot
- Line plot
- Box-and-whisker plot
- Histogram
- Bar plot

Roles of statistical

One variable

- Histogram
- Bar plot
- Box plot
- Pie chart

Roles of statistical

Distributions

- Histogram
- Bar plot
- Box plot
- Pie chart

SINGLE-VARIABLE

Example data: Ga

Life expectancy, GDP per capita, an

```
gapminder
## # tibble: 1,704 x 6
    country continent
##
                       year lif
    <fct>
              <fct>
##
                      <int>
## 1 fghanistan sia
                       1952
## 2 fghanistan sia 1957
   3 fghanistan sia
                       1962
##
   4 fghanistan sia
##
                       1967
```

http://www.gapminder.or

Example data: Fuel

Fuel economy on 38 popular models of

mpg	5						
##	#	tibble:	234 x 11				
##	••		rer model	displ	year	cyl	tran
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<ch:< td=""></ch:<>
##	1	audi	a4	1.8	1999	4	auto
##	2	audi	a4	1.8	1999	4	manı
##	3	audi	a4	2	2008	4	manı
##	4	audi	a4	2	2008	4	auto
##	5	audi	a4	2.8	1999	6	auto
##	6	audi	a4	2.8	1999	6	manı

http://fueleconomy.g

Looking at a single

- What is the distribution
 - Location e.g., mean, median, r
 - Spread e.g., variance
 - Shape symmetric vs. skewed
- Are there outliers?
- What is notable about

Histogran

Histogran

Histogran

simulated date with different distr

Density plans

simulated dated with different distr

Box plot

Box plot

simulated date with different distr

Bar plot

Bar plot

Manufacturer representation

Q-Q plo

sample quantiles versus theoretical quantile

simulated dated with different distr

MULTI-VARIABLE

Looking at multiple

- How are the variables r
 - Is there a relationship?
 - Type of relationship (e.g., linear
 - Direction (positive vs. negative
- Are there outliers?
- Does the relationship c

Scatter pla

Scatter pla

Scatter pla

2D density p

Box plot

Box plots

Fuel economoy for different manufac

Histogram

Density pla

Bar plots

FACETIN

What is face

- Based on idea of "small
- Condition on levels of s
- Split data into subsets b
- Create sub-plots for ea
 - Sub-plots share same scales an
 - Easily compare between sub-p

Faceting by one

Fuel efficiency vs Engine size by Year

Faceting by one

Life expectancy increases with GDP per cap

Faceting by two v

Life expectancy increases with GDP per ca

1e+030405+030405+030405+030405+030405+030405+030405

GDP per capita (log10

A GRAMMAR OF

How do we plo

- By using the "name" of
 - Scatter plot
 - Box plot
 - Histogram
- Using "base" R (and sim
 - plot() scatter plot
 - boxplot() box plot
 - hist() histogram

What are some common ingredier

Recipes for common sta

- Scatter plot
 - Maps variables to x- and y- axes
 - Uses points to represent observations
- Line plot
 - Maps variables to x- and y- axes
 - Uses lines to connect observations
- Box plot
 - Maps 5-number summary to x- or y-axis
 - Uses boxes and whispers to show this

- Hist
 - Ma
 - Use
- Bar
 - Ma
 - Use
- Pie
 - Ma
 - Use

Key ingredients for stat

- Some kind of data
- Encodings from data to
 - Marks ("geometric objects", e.
 - Channels ("aesthetics", e.g., co
- Statistical transformatio
- Coordinate system
- Scales and annotations

Consider a simple dataset:

\boldsymbol{A}	В	C
2	3	4
1	2	1
4	5	15
9	10	80

http://vita.had.co.nz/papers/layere

How do we create a scatter plot of A versus C

Wh

We map the x-axis to A, the y-axis to C, and shape to

x	y	S
2	4	ci
1	1	ci
4	15	sq
9	80	sq

http://vita.had.co.nz/papers/layere

We have (I) marks or geometric objects, (2) scales and a

http://vita.had.co.nz/papers/layere

Putting the ingredients together, we have a plot:

http://vita.had.co.nz/papers/layere

If we want to compare the relationship between A and

http://vita.had.co.nz/papers/layere

Faceting splits the data into subsets and crea

Building a voca

We can build more complicated plots by adding to

- Layers to overlay plots on to
- Multiple datasets on the sam
- Apply statistical transformation
- Apply position adjustments (
- A way to build such plots prog

A layered grammar

- Default dataset
- Default set of mappings from varial
- One or more layers, each having:
 - Mark, or geometric object
 - Statistical transformation
 - Position adjustment
 - (Optionally) new dataset
 - (Optionally) new set of aesthetic r
- Scale for each mapped aesthetic
- Facet specification

Visual encodings

Marks, or **geometric objects**, c

Courtesy of Steven Braun, CAME

Visual encodings:

Channels, or aesthetics + scale

Courtesy of Steven Braun, CAME

Choosing visual e

Your choice of geometria aesthetic mappings, and scales

Marks: points

Channels: position

Marks: lines

Channels: length, po

Courtesy of Steven Braun, CAME

Statistical transfor

Many statistical graphics utilize stat

- Box plot
 - Five-number summary + outlie
- Histogram
 - Binning
- Bar plot
 - Counting

Position adjust

Many statistical graphics require

- Scatter plot
 - Jitter
- Bar plot
 - Dodge
 - Stack

Coordinate sy

Some graphics may require differe

- Cartesian
- Polar
- Map

Implementing a gramm

A version of the "layered grammar of grammar

or, more simply

Recipes for common sta

- Scatter plot
 - Geom = "point"
 - Stat = "identity"
- Line plot
 - Geom = "line"
 - Stat = "identity"
- Box plot
 - Geom = "boxplot"
 - Stat = "boxplot"

GPLO