SIN 251 – Organização de Computadores (2023)

Aula 12 – Aritmética do Computador

Prof. João Fernando Mari joaofmari.github.io

Roteiro

- Unidade Aritmética e Lógica
- Representação de inteiros
 - Sinal-magnitude
 - Complemento de dois
 - Negação especial caso 1
 - Negação especial caso 2
 - Intervalo de números
 - Conversão entre tamanhos
- Adição e subtração
 - Hardware para adição e subtração
- Multiplicação
 - Exemplo de multiplicação
 - Multiplicação binária sem sinal
 - Execução do exemplo
 - Fluxograma Multiplicação Binária Sem Sinal
 - Multiplicando números negativos
 - Algoritmo de Booth
 - Exemplo do algoritmo de Booth
- Divisão
 - Divisão de inteiros binários sem sinal
 - Fluxograma para divisão binária sem sinal
 - Tratando números negativos
 - EXEMPLO: 7/3; (-7)/3; 7/(-3) e (-7)/(-3)

Unidade Aritmética e Lógica

- Responsável por realizar os cálculos.
- Tudo mais no computador existe para atender a essa unidade.
- Trata números inteiros.
- Pode tratar números de ponto flutuante (reais).

Representação de inteiros

- Somente 0's e 1's para representar tudo.
 - Números positivos armazenados em binário.
 - Ex: 41 = 00101001
 - Sem sinal de menos.
 - Sem ponto.
- Representações de números inteiros
 - Sinal-magnitude.
 - Complemento a dois.

Sinal-magnitude

- Bit mais à esquerda é bit de sinal.
 - 0 significa positivo.
 - 1 significa negativo.
 - +18 = 00010010.
 - -18 = **1**0010010.

- Problemas:
 - Precisa considerar sinal e magnitude na aritmética.
 - Possui duas representações de zero (+0 e -0).
 - +0 = 00000000
 - -1 = **1**0000000

Complemento de dois

- +3 = 00000011
- +2 = 00000010
- +1 = 00000001
- +0 = 00000000
- -1 = 11111111
- -2 = 11111110
- -3 = 11111101

Complemento de dois

- Uma representação única do zero.
- Aritmética funciona com facilidade
 - Veremos mais adiante.
- A negação é muito fácil.
 - Ex.: 3 = 00000011
 - Complemento booleano gera
 - 11111100
 - Somar 1 ao LSB (bit menos significativo)
 - 11111101
 - Ex.: -3 = 11111101
 - Complemento booleano gera
 - -00000010
 - Somar 1 ao LSB
 - -00000011

Representação geométrica dos inteiros de complemento a dois

Complemento de dois – Negação especial – caso 1

- 0 = 00000000
 - Not bit a bit:
 - 11111111
 - Some 1 ao LSB:
 - +1
 - Resultado:
 - 1 00000000
 - O estouro (overflow) é ignorado, portanto:
 - $-0 = +0 \to CERTO!$

Complemento de dois – Negação especial – caso 2

- · 128 = 10000000
 - Not bit-a-bit:
 - 01111111
 - Some 1 ao LSB:
 - +1
 - Resultado:
 - 10000000
 - Portanto:
 - -(-128) = -128 → ERRADO!
 - Monitorar o MSB (bit de sinal).
 - Ele deve mudar durante a negação.
- Quando somamos um valor negativo com um valor positivo é impossível ocorrer overflow.
 - O resultado tende a se aproximar de 0.
- Quando somamos dois valores com o mesmo sinal, devemos verificar se o bit de sinal muda:
 - EX: Somar dois números positivos (MSB=0) DEVE resultar em um número positivo (MSB=0).
 - EX: Somar dois números negativos (MSB=1) DEVE resultar em um número negativo (MSB=1).

Complemento de dois - Intervalo de números

- -2^{n-1} até $+2^{n-1}-1$
- Complemento a 2 com 8 bits:

$$- +127 = 011111111 = 2^7 -1$$

$$-$$
 -128 = 10000000 = -2⁷

- Complemento a 2 com 16 bits:

 - -32768 = 100000000 00000000 = -2¹⁵

Complemento de dois - Conversão entre tamanhos

- Pacote de número positivo com zeros iniciais.
 - 8 bits

00010010

- 16 bits
 - +18 = 00000000 00010010
- Pacote de números negativos com uns iniciais.
 - 8 bits

10010010

- 16 bits
 - -18 = 11111111 10010010
- Ou seja, pacote com o MSB (bit de sinal).
 - MSB bit mais significativo.

ADIÇÃO E SUBTRAÇÃO

Adição e subtração

- Adição binária normal.
 - Monitore estouro no bit de sinal.
- Subtração
 - Pegue o complemento a dois do subtraendo e some ao minuendo.
 - Ou seja, a b = a + (-b).
 - Assim, só precisamos de circuitos de adição e complemento.

Hardware para adição e subtração

add \$A, \$B

OF = bit de overflow (do inglés overflow bit)

SW = seletor – multiplexador (seleciona adição ou subtração)

Hardware para adição e subtração

- add \$A, \$B
- 4 bits
- ADIÇÃO:

$$0010 + 0011 = 0101$$

•
$$(-2) + 3 = 1$$

$$2 + (-3) = -1$$

•
$$2 + (-3) = -1$$
 $0010 + 1101 = 1111$

•
$$(-2) + (-3) = -5$$

OF = bit de overflow (do inglês overflow bit)

SW = seletor - multiplexador (seleciona adição ou subtração)

Hardware para adição e subtração

add \$A, \$B

4 bits

SUBTRAÇÃO:

OF = bit de overflow (do inglês overflow bit)

SW = seletor - multiplexador (seleciona adição ou subtração)

MULTIPLICAÇÃO

Multiplicação

- Complexa.
- Calcule produto parcial para cada dígito.
- Cuidado com o valor da casa (coluna).
- Some produtos parciais.

Exemplo: Multiplicação

				1	0	1	1	Multiplicando (11 $_{10}$) M
×				1	1	0	1	Multiplicador (13 ₁₀) Q
				1	0	1	1	Produtos parciais
			0	0	0	0		Produtos parciais
		1	0	1	1			Produtos parciais
+	1	0	1	1				Produtos parciais
1	0	0	0	1	1	1	1	Produto (143 ₁₀)

- Nota: Se o bit multiplicador for 1:
 - Copiar o multiplicando.
 - Caso contrário, zero.
- Nota: precisa de resultado com tamanho duplo.

Fluxograma - Multiplicação Binária Sem Sinal

AQ = M x Q

Execução do exemplo

				1	0	1	1	M
×				_		_		Q
1	0	0	0	1	1	1	1	A Q

С	A	Q	M	
0	0000	110 <u>1</u>	1011	Valores iniciais
0	1011	1101	1011	Adição) Primeiro
0	0101	1110	1011	Desl. ∫ ciclo
0	0010	111 <u>1</u>	1011	Desl. } Segundo Ciclo
0	1101	1111	1011	Adiçãoγ Terceiro
0	0110	111 <u>1</u>	1011	Desl. ∫ ciclo
1	0001	1111	1011	Advese 2 Overte
0	1000	1111	1011	Adição} Quarto Desl.∫ ciclo

Multiplicando números negativos

- Solução 1:
 - Converta para positivo, se for preciso.
 - Multiplique como antes.
 - Se sinais diferentes, negue a resposta.
 - Exemplo:

$$-3 \times 7 = 21;$$

 $-(-3) \times 7 = -21;$
 $-3 \times (-7) = -21;$
 $-(-3) \times (-7) = 21;$

- Menos eficiente.
- Solução 2:
 - Algoritmo de Booth.

Algoritmo de Booth

- Funciona com números inteiros em complemento a dois.
 - Deslocamento aritmético a direita.
 - O valor da posição mais a esquerda é mantido após o deslocamento.
 - Ver conversão entre tamanhos para complemento de dois.
 - Produto em A,Q

Exemplo: Algoritmo de Booth

				0	1	1	1	M
<				0	0	1	1	Q
)	0	0	1	0	1	0	1	A Q

A	Q	Q_1	M	Valores iniciais
0000	001 <u>1</u>	0	0111	
1001	0011	0	0111	A ← A - M }Primeiro
1100	100 <u>1</u>	1	0111	Deslocamento∫ ciclo
1110	0100	1	0111	Deslocamento Segundo ciclo
0101	0100	1	0111	A ← A + M }Terceiro
0010	101 <u>0</u>	0	0111	Deslocamento∫ ciclo
0001	010 <u>1</u>	0	0111	Deslocamento} Quarto ciclo

DIVISÃO

Divisão

- Mais complexa que a multiplicação.
- Baseada na divisão longa.

Divisão de inteiros binários sem sinal

- 248/11 = 13 e restam 4
 - Q/M = Q' + A(R)
 - Dividendo / Divisor = Quociente + Resto

Fluxograma para divisão binária sem sinal

• Q / M = Q' + A(R)

Fluxograma para divisão binária sem sinal

Tratando números negativos

- Q/M = Q' + A(R)
 - Dividendo / Divisor = Quociente + Resto
- Suponha todas as combinações possíveis de sinais de Q e M:

$$- Q = 7$$

$$M = 3$$

$$\rightarrow$$

$$M = 3 \rightarrow Q' = 2 A = 1$$

$$A = 1$$

$$- Q = 7 \qquad M = -3 \qquad \Rightarrow \qquad Q' = -2 \qquad A = 1$$

$$M = -3$$

$$\rightarrow$$

$$Q' = -2$$

$$A = 1$$

$$-Q=-7$$
 $M=3$ \rightarrow $Q'=-2$ $A=-1$

$$M = 3$$

$$\rightarrow$$

$$Q' = -2$$

$$A = -1$$

$$M = -3$$

$$\rightarrow$$

$$-Q=-7$$
 $M=-3$ \rightarrow $Q'=2$ $A=-1$

Exemplo: 7/3; (-7)/3; 7/(-3) e (-7)/(-3)

Algoritmo de divisão por restauração:

- Para realizar a divisão com operandos com sinal (complemento a dois):
- Converta os operandos (Q e M) em valores sem sinal.
 - Para isso tome o complemento de 2 dos números negativos.
- 2. Realize a divisão utilizando o algoritmo de divisão para números sem sinal.
- 3. Derive o sinal de Q' e de A(R) a partir dos sinais de Q e M.

$$Q/M=Q'+A(R)$$

A Q 0000 0111

0000 1110 1101

1101 0000 1110

0001 1100 1110

1100

1000

1001

0010

0010

0001 0011

0000

0001 1110

0001

(a) (7) ÷ (3)

M = 0011 Valor inicial

> Deslocar Subtrair Restaurar

> Deslocar Subtrair

Restaurar

Deslocar Subtrair

Fazer $Q_0 = 1$

Deslocar Subtrair

Restaurar

Referências

- STALLINGS, W. **Arquitetura e Organização de Computadores**, 8. Ed., Pearson, 2010.
 - Capitulo 9

FIM