Zadanie 2 – rozwiązanie równania Ax = e metodami Gaussa-Seidela i gradientów sprzężonych.

A ma wymiary 128x128, natomiast e jest wektorem o wszystkich składowych równych 1.

W metodzie Gaussa-Seidela wartości wyliczam jako:

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{N} a_{ij} x_j^{(k)}\right) / a_{ii}$$

Natomiast metoda gradientów sprzężonych przebiega zgodnie z następującym algorytmem:

$$\begin{split} \mathbf{r}_0 &:= \mathbf{b} - \mathbf{A} \mathbf{x}_0 \\ &\text{if } \mathbf{r}_0 \text{ is sufficiently small, then return } \mathbf{x}_0 \text{ as the result} \\ \mathbf{p}_0 &:= \mathbf{r}_0 \\ k &:= 0 \\ &\text{repeat} \\ & \alpha_k := \frac{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k}{\mathbf{p}_k^\mathsf{T} \mathbf{A} \mathbf{p}_k} \\ & \mathbf{x}_{k+1} := \mathbf{x}_k + \alpha_k \mathbf{p}_k \\ & \mathbf{r}_{k+1} := \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k \\ & \text{if } \mathbf{r}_{k+1} \text{ is sufficiently small, then exit loop} \\ & \beta_k := \frac{\mathbf{r}_{k+1}^\mathsf{T} \mathbf{r}_{k+1}}{\mathbf{r}_k^\mathsf{T} \mathbf{r}_k} \\ & \mathbf{p}_{k+1} := \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k \end{split}$$

end repeat

return \mathbf{x}_{k+1} as the result

k := k + 1

W celu wykonania tego zadania napisałam dwa programy w języku C++. W lewej kolumnie tabeli przedstawiam wyniki dla metody Gaussa-Seidela, natomiast w prawej kolumnie dla metody gradientów sprzężonych.

Metoda Gaussa-Seidela	Metoda gradientów sprzężonych
x1 = 0.198291	x1 = 0.19986
x2 = 0.123737	x2 = 0.121552
x3 = 0.160337	x3 = 0.162844
x4 = 0.132176	x4 = 0.129411
x5 = 0.171622	x5 = 0.174738
x6 = 0.0828655	x6 = 0.0790087
x7 = 0.146687	x7 = 0.15109
x8 = 0.102453	x8 = 0.0976596
x9 = 0.139647	x9 = 0.144773
x10 = 0.09812	x10 = 0.0926282
x11 = 0.152323	x11 = 0.158277
x12 = 0.103786	x12 = 0.0974205
x13 = 0.143951	x13 = 0.150655
x14 = 0.108208	x14 = 0.101208
x15 = 0.144405	x15 = 0.151699
x16 = 0.105436	x16 = 0.0978345
x17 = 0.142412	x17 = 0.150295
x18 = 0.109216	x18 = 0.101092
x19 = 0.139707	x19 = 0.14804
x20 = 0.110059	x20 = 0.101533
x21 = 0.139681	x21 = 0.148389
x22 = 0.111337	x22 = 0.102471
x23 = 0.137644	x23 = 0.146641
x24 = 0.113105	x24 = 0.104005
x25 = 0.136558	x25 = 0.145741
x26 = 0.113855	x26 = 0.104607
x27 = 0.135501	x27 = 0.144791
x28 = 0.115177	x28 = 0.105868
x29 = 0.134252	x29 = 0.143557
x30 = 0.116171	x30 = 0.106891
x31 = 0.133414	x31 = 0.142651
x32 = 0.117062	x32 = 0.107889
x33 = 0.132452	x33 = 0.141539
x34 = 0.117989	x34 = 0.109007
x35 = 0.131631	x35 = 0.140489
x36 = 0.118729	x36 = 0.110012
x37 = 0.130904	x37 = 0.139462
x38 = 0.119459	x38 = 0.111078
x39 = 0.130202	x39 = 0.138387
x40 = 0.120107	x40 = 0.112133
x41 = 0.129602	x40 = 0.112133 x41 = 0.137351
x42 = 0.123662 x42 = 0.120681	x42 = 0.137331 x42 = 0.113174
x43 = 0.120001 x43 = 0.129046	x43 = 0.136296
x44 = 0.121212	x44 = 0.114233
x45 = 0.121212 x45 = 0.128548	x45 = 0.135243
x46 = 0.121677	x46 = 0.115279
A+U = 0.1210//	A40 - 0.1132/J

x47 = 0.128108	x47 = 0.134196
x48 = 0.122097	x48 = 0.116331
x49 = 0.127709	x49 = 0.133142
x50 = 0.122472	x50 = 0.117383
x51 = 0.127358	x51 = 0.132094
x52 = 0.122803	x52 = 0.118431
x53 = 0.127045	x53 = 0.131042
x54 = 0.123099	x54 = 0.119484
x55 = 0.126766	x55 = 0.129991
x56 = 0.123361	x56 = 0.120534
x57 = 0.126518	x57 = 0.12894
x58 = 0.123595	x58 = 0.121585
x59 = 0.126297	x59 = 0.127889
x60 = 0.123805	x60 = 0.122636
x61 = 0.126098	x61 = 0.126839
x62 = 0.123994	x62 = 0.123687
x63 = 0.125917	x63 = 0.125787
x64 = 0.124168	x64 = 0.124738
x65 = 0.125749	x65 = 0.124738
x66 = 0.124332	x66 = 0.125787
x67 = 0.125589	x67 = 0.123687
x68 = 0.12449	x68 = 0.126839
x69 = 0.125432	x69 = 0.122636
x70 = 0.124647	x70 = 0.127889
x71 = 0.125272	x71 = 0.121585
x72 = 0.124811	x72 = 0.12894
x73 = 0.125103	x73 = 0.120534
x74 = 0.124987	x74 = 0.129991
x75 = 0.124919	x75 = 0.119484
x76 = 0.125182	x76 = 0.131042
x77 = 0.12471	x77 = 0.118431
x78 = 0.125405	x78 = 0.132094
x79 = 0.124473	x79 = 0.117383
x80 = 0.12566	x80 = 0.133142
x81 = 0.124194	x81 = 0.116331
x82 = 0.125963	x82 = 0.134196
x83 = 0.123868	x83 = 0.115279
x84 = 0.126312	x84 = 0.135243
x85 = 0.123491	x85 = 0.114233
x86 = 0.126727	x86 = 0.136296
x87 = 0.123036	x87 = 0.113174
x88 = 0.127214	x88 = 0.137351
x89 = 0.122523	x89 = 0.112133
x90 = 0.127762	x90 = 0.138387
x91 = 0.121917	x91 = 0.111078
x92 = 0.128433	x92 = 0.139462
x93 = 0.121206	x93 = 0.110012
x94 = 0.129154	x94 = 0.140489
x95 = 0.12046	x95 = 0.109007
x96 = 0.129995	x96 = 0.141539
x97 = 0.119497	x97 = 0.107889
x98 = 0.131007	x98 = 0.142651
x99 = 0.118543	x99 = 0.106891
7.00 0.1100 10	700 0.100001

x100 = 0.131923 $x100 = 0.143557$ $x101 = 0.117456$ $x101 = 0.105868$ $x102 = 0.13328$ $x103 = 0.116011$ $x104 = 0.134472$ $x105 = 0.115115$ $x105 = 0.104005$	
x102 = 0.13328 $x102 = 0.144791$ $x103 = 0.116011$ $x104 = 0.134472$ $x104 = 0.145741$	
x103 = 0.116011 $x103 = 0.104607$ $x104 = 0.134472$ $x104 = 0.145741$	
x104 = 0.134472 $x104 = 0.145741$	
$ v_105 - 0.115115 $	
100 - 0.115115	
x106 = 0.135717 $x106 = 0.146641$	
x107 = 0.113176 $x107 = 0.102471$	
x108 = 0.137936 $x108 = 0.148389$	
x109 = 0.111707 $x109 = 0.101533$	
x110 = 0.138157 $x110 = 0.14804$	
x111 = 0.110665 $x111 = 0.101092$	
x112 = 0.14107 $x112 = 0.150295$	
x113 = 0.106669 $x113 = 0.0978345$	
x114 = 0.14328 $x114 = 0.151699$	
x115 = 0.109232 $x115 = 0.101208$	
x116 = 0.143028 $x116 = 0.150655$	
x117 = 0.104604 $x117 = 0.0974205$	
x118 = 0.151612 $x118 = 0.158277$	
x119 = 0.0987309 $x119 = 0.0926282$	
x120 = 0.139118 $x120 = 0.144773$	
x121 = 0.102904 $x121 = 0.0976596$	
x122 = 0.146319 $x122 = 0.15109$	
x123 = 0.0831468 $x123 = 0.0790087$	
x124 = 0.171417 $x124 = 0.174738$	
x125 = 0.132339 $x125 = 0.129411$	
x126 = 0.160212 $x126 = 0.162844$	
x127 = 0.123818 $x127 = 0.121552$	
x128 = 0.198259 $x128 = 0.19986$	

Wyliczone normy zapisałam w plikach a.txt i b.txt Oto wykresy na ich podstawie (odpowiednio dla metody Gaussa-Seidela i gradientów sprzężonych), narysowane w gnuplocie:

Złożoność obliczeniowa rozkładu Cholesky'ego dla tej macierzy wynosi $O(n^3)$ Złożoność metody Gaussa-Seidela wynosi O(n), natomiast gradientów sprzężonych $O(k*n^2)$ gdzie k jest szerokością pasma.

Widać zatem, że te metody są dużo wydajniejsze od metody Cholesky'ego.