

Multimedia SS 2021

Jonas Treumer / Ben Lorenz

- Multimedia = digitale Medien: Text, Bild, Audio, Video
- Digitale Repräsentation eines Bildes:

- Multimedia = digitale Medien: Text, Bild, Audio, Video
- Digitale Repräsentation eines Bildes:
 - Pixel/Rastergrafik vs. Vektorgrafik

Bitmap VS SVG von Yug / CC BY-SA 2.5

- Multimedia = digitale Medien: Text, Bild, Audio, Video
- Digitale Repräsentation eines Bildes:
 - Pixel/Rastergrafik
 - Raster = uniformes Gitter
 - Mgl. Störungen durch Rasterung: Aliasing oder Moiré-Effekt

- Pixel/Rastergrafik
 - S/W = 1 Bit/Pixel
 - 1920*1080*1 Bit ≈ 260 KB
 - 2 Bit/Pixel (Game Boy 1989)
 - 4 Graustufen

letris von

- Pixel/Rastergrafik
 - Graustufenbild z.B. 8 Bit 256 Werte pro Pixel
 - 1920*1080*8 Bit ≈ 2 MB

52	55	61	66	70	61	64	73
63	59	55	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

- Pixel/Rastergrafik
 - Farbbild z.B. 8 Bit pro Farbkanal
 - FullHD 24Bit Farbtiefe mit 144Hz: Datenrate?

Netzhaut mit Photorezeptoren

Wirbeltierauge von Talos / CC BY-SA 3.0

- Netzhaut mit Photorezeptoren
- Photorezeptoren:
 - Stäbchenzellen
 - Zapfenzellen

- Netzhaut mit Photorezeptoren
- Photorezeptoren:
 - Stäbchenzellen
 - Sehr Lichtempfindlich
 - Hell-Dunkel-Wahrnehmung
 - Ca. 120-130 Mio. Stk.
 - Zapfenzellen

- Netzhaut mit Photorezeptoren
- Photorezeptoren:
 - Stäbchenzellen
 - Sehr Lichtempfindlich
 - Hell-Dunkel-Wahrnehmung
 - Ca. 120-130 Mio. Stk.
 - Zapfenzellen
 - Farbwahrnehmung
 - Ca. 6 Mio. Stk.
 - S-Zapfen (blau)
 - M-Zapfen (grün)
 - L-Zapfen (rot)

- Netzhaut mit Photorezeptoren
- Photorezeptoren:
 - Stäbchenzellen
 - Sehr Lichtempfindlich
 - Hell-Dunkel-Wahrnehmung
 - Ca. 120-130 Mio. Stk.
 - Zapfenzellen
 - Farbwahrnehmung
 - Ca. 6 Mio. Stk.
 - S-Zapfen (blau)
 - M-Zapfen (grün)
 - L-Zapfen (rot)

https://www.filmscanner.info/Farbwahrnehmung.html

- Netzhaut mit Photorezeptoren
- Photorezeptoren:
 - Stäbchenzellen
 - Sehr Lichtempfindlich
 - Hell-Dunkel-Wahrnehmung
 - Ca. 120-130 Mio. Stk.
 - Zapfenzellen
 - Farbwahrnehmung
 - Ca. 6 Mio. Stk.
 - S-Zapfen (blau)
 - M-Zapfen (grün)
 - L-Zapfen (rot)

https://www.filmscanner.info/Farbwahrnehmung.html

- Metamerie
 - Unterschiedl. spektrale
 Zusammensetzungen können
 gleichen Farbeindruck ergeben
- zB gelber Farbeindruck durch:
 - Monochromatisches gelbes Licht
 - Mischen von monochr. Rot und Grün
 - Kombinationen von Farbspektren

https://www.filmscanner.info/Farbwahrnehmung

Farbe

- Mensch: 380nm 780nm
- CIE-Normvalenzsystem

TU Bergakademie Freiberg | Institut für Informatik | Jonas Treume

Erstes graßmannsches Gesetz

- Jeder Farbeindruck lässt sich mit genau drei Grundgrößen erreichen
 - Farbton Farbintensität Helligkeit
 - Rot Grün Blau

CIEL*a*b/Lab-Farbraum

- Geräteunabhängig
- Leitet sich aus CIE-XYZ-Modell her
- Umrechnung XYZ Lab
- Ziel: euklidische Abstände für gleichwertige Farbempfindungsunterschiede

RGB-Farbraum

- Geräteabhängig!
- Verschiedene Standards: sRGB, AdobeRGB...

RGB-Farbraum

- Verschiedene Standards: sRGB, AdobeRGB...
- Additiver Farbraum
- Rot, Grün, Blau

RGB-Farbraum

- Verschiedene Standards: sRGB, AdobeRGB...
- Additiver Farbraum
- Rot, Grün, Blau
- (meist) für Bildschirmdarstellung
- zB Bitmap, Farbtiefe je Pixel 1,4,8,16,24,32 Bit/Pixel
 - Unkomprimiert oder Lauflängenkodiert

CMYK

- Geräteabhängig!
- Subtraktives Farbmodell
- Cyan, Magenta, Yellow, Key (=Schwarzanteil/Farbtiefe)
- Drucktechnik (Vierfarbdruck)
- Tintenstrahl/Farblaserdrucker
- Lichttechnik

RGB - CMYK

HSV-Farbraum

- Hue Farbwert (0°-360°)
- Saturation (0-100%)
- Value Helligkeit (0-100%)

RGBA/ARGB - Farbraum mit Alphakanal

- RGBA/ARGB Farbraum mit Alphakanal
- Alpha = Maß für Transparenz/Opazität

- RGBA/ARGB Farbraum mit Alphakanal
- Alpha = Maß für Transparenz/Opazität
- zB: Alpha=0, vollkommen transparent Alpha=1, vollkommen opak

- RGBA/ARGB Farbraum mit Alphakanal
- Alpha = Maß für Transparenz/Opazität
- zB: Alpha=0, vollkommen transparent Alpha=1, vollkommen opak

 Problem: Farben überlagern?
 Halbtransparente Farbe auf Hintergrund zeichnen?

- Alpha Blending
- Farbe A über Farbe B zeichnen

 Term ist unabhängig von B, kann vorberechnet werden = Premultiplied Alpha

Windows Bitmap - .bmp

- Basisversion 3 (Version 4 und 5 selten)
- 1, 4, 8, 16, 24, 32 Bit pro Pixel
- kein "echter" Alpha-Support
- unkomprimiert oder RLE

https://en.wikipedia.org/wiki/BMP_file_format

Bitmap File Header 14 Byte

DIB Header (7 different Versions)

Optional (e.g. Color Table)

Pixel Data

Optional (ICC Color Profile)

Windows Bitmap - .bmp

- Basisversion 3 (Version 4 und 5 selten)
- 1, 4, 8, 16, 24, 32 Bit pro Pixel
- kein "echter" Alpha-Support
- unkomprimiert oder RLE

https://en.wikipedia.org/wiki/BMP_file_format

C-Bitmap-Bibliothek □

Bitmap File Header 14 Byte

DIB Header (7 different Versions)

Optional (e.g. Color Table)

Pixel Data

Optional (ICC Color Profile)

Gemeinsames Programmieren

- Freitag 14.04.2020, ab 14 Uhr bis ca. 17:30 Uhr
- BBB-Raum/Stream
- Materialien

Anforderungen:

- C-Kenntnisse
- C-Entwicklungsumgebung
 - Compiler, Editor
- Sicherer Umgang mit Terminal

