```
In [14]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import statsmodels.api as sm
          import seaborn as sns
          sns.set()
In [15]: raw_data = pd.read_csv('1.03. Dummies.csv')
 In [3]: raw_data
 Out[3]:
               SAT GPA Attendance
              1714
                    2.40
                                No
              1664
                    2.52
                                No
              1760
                    2.54
                                No
              1685
                    2.74
            3
                                No
              1693
                    2.83
                                No
                 ...
                     ...
                                 ...
           79
              1936
                    3.71
                                Yes
              1810
           80
                    3.71
                                Yes
              1987
           81
                    3.73
                                No
           82
              1962
                    3.76
                                Yes
           83
              2050
                    3.81
                                Yes
          84 rows × 3 columns
 In [4]: data = raw_data.copy()
 In [5]: data['Attendance'] = data['Attendance'].map({'Yes':1, 'No':0})
```

In [6]: data

Out[6]:

	SAT	GPA	Attendance
0	1714	2.40	0
1	1664	2.52	0
2	1760	2.54	0
3	1685	2.74	0
4	1693	2.83	0
79	1936	3.71	1
80	1810	3.71	1
81	1987	3.73	0
82	1962	3.76	1
83	2050	3.81	1

84 rows × 3 columns

```
In [7]: data.describe()
```

Out[7]:

	SAT	GPA	Attendance
count	84.000000	84.000000	84.000000
mean	1845.273810	3.330238	0.464286
std	104.530661	0.271617	0.501718
min	1634.000000	2.400000	0.000000
25%	1772.000000	3.190000	0.000000
50%	1846.000000	3.380000	0.000000
75%	1934.000000	3.502500	1.000000
max	2050.000000	3.810000	1.000000

```
In [8]: ## Regression
```

```
In [9]: y = data['GPA']
x1 = data[['SAT', 'Attendance']]
```

```
In [10]: x = sm.add_constant(x1)
    results = sm.OLS(y,x).fit()
    results.summary()
```

Out[10]:

OLS Regression Results

Dep. Variable:	GPA	R-squared:	0.565
Model:	OLS	Adj. R-squared:	0.555
Method:	Least Squares	F-statistic:	52.70
Date:	Thu, 26 Aug 2021	Prob (F-statistic):	2.19e - 15
Time:	14:52:22	Log-Likelihood:	25.798
No. Observations:	84	AIC:	-45.60
Df Residuals:	81	BIC:	-38.30
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.6439	0.358	1.797	0.076	-0.069	1.357
SAT	0.0014	0.000	7.141	0.000	0.001	0.002
Attendance	0.2226	0.041	5.451	0.000	0.141	0.304

 Omnibus:
 19.560
 Durbin-Watson:
 1.009

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 27.189

 Skew:
 -1.028
 Prob(JB):
 1.25e-06

 Kurtosis:
 4.881
 Cond. No.
 3.35e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.35e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [11]: plt.scatter(data['SAT'],y, c=data['Attendance'], cmap='RdYlGn_r')
    yhat_no = 0.6439 + 0.0014 * data['SAT']
    yhat_yes = 0.6439 + 0.2226 + 0.0014 * data['SAT']
    yhat = 0.0017 * data['SAT'] + 0.275
    fig = plt.plot(data['SAT'], yhat_no, lw=2, c='red', label='regression line 1')
    fig = plt.plot(data['SAT'], yhat_yes, lw=2, c='orange', label ='regression line 2
    fig = plt.plot(data['SAT'], yhat, lw=3, c='blue', label ='regressionline')
    plt.xlabel('SAT', fontsize=20)
    plt.ylabel('GPA', fontsize=20)
    plt.show()
```



```
In [17]: x
```

Out[17]:

	const	SAT	Attendance
0	1.0	1714	0
1	1.0	1664	0
2	1.0	1760	0
3	1.0	1685	0
4	1.0	1693	0
79	1.0	1936	1
80	1.0	1810	1
81	1.0	1987	0
82	1.0	1962	1
83	1.0	2050	1
	1 2 3 4 79 80 81 82	0 1.0 1 1.0 2 1.0 3 1.0 4 1.0 79 1.0 80 1.0 81 1.0	 1.0 1714 1.0 1664 1.0 1760 3 1.0 1685 4 1.0 1693 79 1.0 1936 80 1.0 1810 81 1.0 1987 82 1.0 1962

84 rows × 3 columns

```
In [20]: new_data = pd.DataFrame({'const':1, 'SAT':[1700,1670], 'Attendance':[0,1]})
    new_data = new_data[['const', 'SAT', 'Attendance']]
    new_data
```

Out[20]:

	const	SAI	Attendance
0	1	1700	0
1	1	1670	1

In [22]: new_data.rename(index={0:'Bob', 1:'Alice'})

Out[22]:

	const	SAT	Attendance
Bob	1	1700	0
Alice	1	1670	1

In [24]: predictions = results.predict(new_data)
predictions

Out[24]: 0 3.023513 1 3.204163

dtype: float64

```
In [25]: predictionsdf = pd.DataFrame({'Predictions':predictions})
joined = new_data.join(predictionsdf)
joined.rename(index={0:'Bob', 1:'Alice'})
```

Out[25]:

	const	SAT	Attendance	Predictions
Bob	1	1700	0	3.023513
Alice	1	1670	1	3.204163

|--|