

Revision of previous section...

Perfect Opamp + Current sources = model of a real opamp

$$I_B(+) \approx I_B(-)$$

For simple opamp. (Not always)

$$I_B \equiv \frac{I_B(+) + I_B(-)}{2}$$
 (i.e. the average current)

Bias Current Blues

Perfect opamp $V_{OUT} = -(V_{IN})$

Independent of the value of R

Bias current blues (2)

NB: The triangular thing is still a PERFECT OPAMP!

Bias Current Blues (3)

Bias current adds error V of $R \cdot I_B(-)$ to O/P

Bias Current Blues (4)

In the case of an inverting amplifier with gain:

Errors may be quoted as "Referred To Output" (RTO) I_BR2 or "Referred To Input" (RTI) $-I_BR1$

Bias Current Blues (5)

Circuit is equivalent to...

Also equivalent to...

A Cool Fix (If currents are Equal)

Make DC resistances equal at both inputs

(NOTE: Take care if there are inductors or capacitors about!)

