Mathematics of Origami

Angela Kohlhaas

Loras College

February 17, 2012

Introduction

- Origami
 - *ori* + *kami*, "folding paper"
 - Tools: one uncut square of paper, mountain and valley folds
 - Goal: create art with elegance, balance, detail
- Outline
 - History
 - Applications
 - Foldability
 - Design

History of Origami

- 105 A.D.: Invention of paper in China
 - Paper-folding begins shortly after in China, Korea, Japan
- 800s: Japanese develop basic models for ceremonial folding
- 1200s: Origami globalized throughout Japan
- 1682: Earliest book to describe origami
- 1797: How to fold 1,000 cranes published
- 1954: Yoshizawa's book formalizes a notational system
- 1940s-1960s: Origami popularized in the U.S. and throughout the world

History of Origami Mathematics

- 1893: Geometric exercises in paper folding by Row
- 1936: Origami first analyzed according to axioms by Beloch
- 1989-present:
 - Huzita-Hatori axioms
 - Flat-folding theorems: Maekawa, Kawasaki, Justin, Hull
 - TreeMaker designed by Lang
 - Origami sekkei "technical origami"
 - Rigid origami
 - Applications from the large to very small

Miura-Ori

• Japanese solar sail

"Eyeglass" space telescope

• Lawrence Livermore National Laboratory

Science of the small

- Heart stents
- Titanium hydride printing

- DNA origami
- Protein-folding

Two broad categories

- Foldability (discrete, computational complexity)
 - Given a pattern of creases, when does the folded model lie flat?

- Design (geometry, optimization)
 - How much detail can added to an origami model, and how efficiently can this be done?

Flat-Foldability of Crease Patterns

• Three criteria for $\boldsymbol{\varphi}$:

Continuity, Piecewise isometry, Noncrossing

2-Colorable

• Under the mapping ϕ , some faces are flipped while others are only translated and rotated.

Maekawa-Justin Theorem

At any interior vertex, the number of mountain and valley folds differ by two.

Kawasaki-Justin Theorem

At any interior vertex,
a given crease pattern can be folded flat
if and only if
alternating angles sum to 180 degrees.

Layer ordering

- No self-intersections
 - A face cannot penetrate another face
 - A face cannot penetrate a fold
 - A fold cannot penetrate a fold

- Global flat-foldability is hard!
 - NP-complete

Map-folding Problem

Given a rectangle partitioned into an m by n grid of squares with mountain/valley crease assignments, can the map be folded flat into one square?

Origami design

• Classic origami (intuition and trial-and-error):

- Origami sekkei (intuition and algorithms): <u>examples</u>
- What changed?
 - Appendages were added efficiently
 - Paper usage was optimized

Classic bases

• Kite base

• Fish base

Bird base

• Frog base

Classic bases

• Kite base

• Fish base

Bird base

• Frog base

Adding appendages

Suppose we want to design an origami creature with *n* appendages of equal length. What is the most efficient use of paper? That is, how can we make the appendages as long as possible?

Circle-packing!

Circle-packing!

n=25 Sea Urchin

• TreeMaker <u>examples</u>

Margulis Napkin Problem

Prove that no matter how one folds a square napkin, the flattened shape can never have a perimeter that exceeds the perimeter of the original square.

Re-cap

- An ancient art modernized by mathematical methods
- Origami is like math: applications may be centuries behind
- Foldability
 - 2-coloring, local vertex conditions, noncrossing
 - Map-folding
- Design
 - Circle-packing
 - TreeMaker
- Flipside: origami methods can be useful in math, too!

References

- Barry Cipra. "In the Fold: Origami meets Mathematics." *SIAM News*, Vol. 34, No. 8.
- Erik Demaine and Joseph O'Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007.
- Thomas Hull. *Project Origami: Activities for Exploring Mathematics*. A K Peters, Ltd., 2006.
- Robert Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters, Ltd., 2003.
- Robert Lang, "Robert Lang folds way-new origami." TED conference, <u>www.ted.com</u>, 2008.
- Jonathan Schneider. "Flat-Foldability of Origami Crease Patterns." Manuscript, 2005.