Homework 2 - FALL 2024 MATH 2250

kipngeno koech - bkoech

September 26, 2024

1. Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space \mathbb{R}^2 , where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

The action of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by

$$T(\mathbf{v}_1) = \begin{bmatrix} 2\\4\\6 \end{bmatrix}$$
 and $T(\mathbf{v}_2) = \begin{bmatrix} 0\\8\\10 \end{bmatrix}$.

Find the formula for $T(\mathbf{x})$, where $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$.

2. Solution:

Given $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, we can express \mathbf{x} as a linear combination of the basis vectors \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{x} = a\mathbf{v}_1 + b\mathbf{v}_2$$

where a and b are scalars. To find a and b, we solve the system:

$$\begin{bmatrix} x \\ y \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

This gives us the equations:

$$x = a + b$$
 and $y = a - b$

Solving for a and b:

$$a = \frac{x+y}{2}$$
 and $b = \frac{x-y}{2}$

Now, we can find $T(\mathbf{x})$:

$$T(\mathbf{x}) = T(a\mathbf{v}_1 + b\mathbf{v}_2) = aT(\mathbf{v}_1) + bT(\mathbf{v}_2)$$

Substitute a and b into the equation:

$$T(\mathbf{x}) = \frac{x+y}{2} \begin{bmatrix} 2\\4\\6 \end{bmatrix} + \frac{x-y}{2} \begin{bmatrix} 0\\8\\10 \end{bmatrix}$$

Simplify the expression:

$$T(\mathbf{x}) = \begin{bmatrix} (x+y) \\ 2(x+y) + 4(x-y) \\ 3(x+y) + 5(x-y) \end{bmatrix}$$

Therefore, the formula for $T(\mathbf{x})$ is:

$$T(\mathbf{x}) = \begin{bmatrix} x+y\\6x-2y\\8x-2y \end{bmatrix}$$