Complex Economic Dynamics

Lecture 2 – 03 November 2021

1-Dimensional dynamical systems

1-D systems dynamics are fairly simple. For monotonic functions in particular we have the following results:

Theorem

if $f:\mathbb{R} \to \mathbb{R}$ is a monotonic and continous function, then an orbit $\{x_t\}$ either:

Diverges

Convergese to a Steady State

Convergese to a 2-cycle (only if decreasing)

Bifurcations

Bifurcations are qualitative changes in dynamics as a prameter varies. For the 1-state, 1-parameter family $f_{\lambda}\mathbb{R} \to \mathbb{R}$ $\lambda \in \mathbb{R}$ we will analyze 4 types of bifurcations

Period-doubling bifurcations:

- Before: Steady-state (stable / unstable);
- At: Stability change and creation of a 2-cycle;
- After: unstable / stable Steady-state and stable / unstable 2-cycle (n.b. order matters);

Note, everywhere for "ss" one can read k-cycle and for 2-cycle one reads 2k-cycle

Necessary condition: at $\lambda=\lambda^*:f_\lambda'(x^*)=-1$

Example: $f_a(x_t)$, where $f_a(x)=1-ax^2, \quad a>0, \quad ext{and with} \quad x_0\in [-1,+1].$

We have a period doubling bifurcation for a=3/4

Tangent (saddle-node)

- Before: No Steady-state;
- At: New Staesy-state is created;
- After: There are 2 Steady-state (one stable and one unstable);

Necessary condition: at $\lambda=\lambda^*:f_\lambda'(x^*)=1$

Example: $f_a(x) = x^2 - a$ for a = -.25

Transcritical bifurcation

- Before: 1 stable and 1 unstable steady state;
- At: Steady states coincide and they exchange stability;
- After: 1 unstable and 1 stable steady state;

Only occurs in system with special structure

Example: $f_a(x) = ax(1-x)$ for a=1

Pitchfork bifurcation

- Before: 1 stable/unstable steady state;
- At: Stability change and two added s.s;
- After: 1 unstable/stable steady state and two added stable/unstable s.s.;

Typically occurs in systems with a reflection symmetry: $f_{\lambda}(-x) = -f_{\lambda}(x)$

Example: $f_a(x) = tanh(ax)$ for a=1

Topological chaos

The dynamics $x_{t+1} = f(x_t)$ is called (topologically) chaotic if the following three properties are satisfied:

- There is an infinite set P of (unstable) periodic orbits with different periods
- There is an uncountable set S of aperiodic points
- ullet f has dependence on inital conditions wrt $\Lambda=P\cup S$

Definition:

A map: $f:\Lambda\to\Lambda$ $\Lambda\in\mathbb{R}$ has sensitive dependence on inital conditions if there is c>0 s.t. $\forall x_0\in\Lambda$, and all $\mathscr{U}=(x_0-\epsilon,x_0+\epsilon), \quad \epsilon>0$, there is $y_0\in\Lambda\cap\mathscr{U}$ and T>0, such that the distance $(x_T,y_T)>c$

Li & York Theorem (period 3 implies chaos)

Given a continous map $f:\mathbb{R} o \mathbb{R}$, if there is a point x_0 s.t.

$$f^3(x_0) \leq x_0 < f^(x_0) < f^2(x_0)$$

then, the dynamics are topologically chaotic.

Appendix

generateinstance (generic function with 1 method)

computeorbit (generic function with 1 method)