1. Линейное пространство. Свойства.

Определение

Пусть K — поле, V — множество, и определены операции $+: V \times V \to V$ и $\cdot: K \times V \to V$, удовлетворяющие следующим условиям.

- 1) Ассоциативность сложения. $\forall a, b, c \in V \quad (a+b)+c=a+(b+c).$
- 2) Коммутативность сложения. $\forall a,b \in V \quad a+b=b+a$.
- 3) *Ноль.* $\exists 0 \in V$ такой, что $\forall a \in V \quad a+0=a$.
- 4) Обратный элемент. $\forall a \in V \; \exists -a \in V \; \text{такой, что} \\ a + (-a) = 0.$
- 5) Дистрибутивность. $\forall \alpha, \beta \in K$ и $\forall a \in V$ выполнено $(\alpha + \beta)a = \alpha a + \beta a$.
- 6) Дистрибутивность. $\forall \alpha \in K$ и $\forall a, b \in V$ выполнено $\alpha(a+b) = \alpha a + \alpha b$.
- 7) Ассоциативность умножения. $\forall \alpha, \beta \in K$ и $\forall a \in V$ выполнено $\alpha(\beta a) = (\alpha \cdot \beta)a$.
- 8) Умножение на $1. \ \forall a \in V$ выполнено $1 \cdot a = a.$

Тогда мы будем говорить, что V — линейное пространство над полем K, а элементы V называть векторами.

- Как правило, мы будем обозначать векторы строчными латинскими буквами, а числа из поля греческими.
- 0-вектор $(0 \in V)$ и $0 \in K$ разные нули, хоть мы и обозначаем их одинаково.

Свойство 1

Ноль-вектор единственен

Доказательство. Пусть есть два ноль-вектора: 0_1 и 0_2 . Тогда $0_1=0_1+0_2=0_2$.

Свойство 2

Обратный вектор — а всегда единственен.

Доказательство. Пусть a_1 и a_2 — два обратных вектора к $a \in V$. Тогда $a_1 + a = a + a_2 = 0$, откуда $a_1 = a_1 + (a + a_2) = (a_1 + a) + a_2 = a_2$.

Определение

Для $a,b\in V$ определим a-b:=a+(-b).

Свойство 3

Для любого $a \in V$ выполнено $0 \cdot a = 0$ (слева 0-число, справа 0-вектор).

Доказательство. $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. Вычтем из левой и правой части $0 \cdot a$ и получим то, что нужно. \square

Свойство 4

Для любого $a \in V$ выполнено $-a = (-1) \cdot a$.

Доказательство.

- $a + (-1) \cdot a = 1 \cdot a + (-1) \cdot a = (1-1) \cdot a = 0 \cdot a = 0$.
- По Свойству 2, обратный вектор единственен. Значит, $-a = (-1) \cdot a$.

2. Линейное подпространство.

Линейное подпространство

Определение

Если U, V — линейные пространства над полем K, $U \subset V$, причем операции сложения и умножения в U и V одинаковы. Тогда U — линейное подпространство V, а V — линейное надпространство U.

Лемма 1

Пусть V — линейное пространство над полем K, $U \subset V$, причем U замкнуто по сложению векторов и умножению на число (то есть, $\forall \alpha \in K$, $\forall a, b \in U$ выполнено $a+b \in U$ и $\alpha a \in U$). Тогда U — линейное подпространство V (со сложением и умножением из V).

Доказательство. • При выполнении этих условий, $+: U \times U \to U$ и $\cdot: K \times U \to U$.

- ullet Отметим, что для любого $a\in U$ выполнено $-a\in U$ и $0=a-a\in U$.
- Теперь несложно понять, U линейное пространство над K со сложением и умножением из V (6 свойств из определения наследуются из V, существование 0-вектора и обратного элемента обосновано выше).

(из V наследуются ассоциативность сложения, коммутативность сложения, обе дистрибутивности, ассоциативность умножения, умножение на 1, про 0 и обратный элемент упомянуто выше)