Two Algorithms / Applications using

Modulae disthmeties — (mod p)

Iniversal Hashing — Prime

String / Pattern Matching (smaller ?)

**Repare ?

Let ρ be prime, take $r \in [1, \rho-1]$

 $F: 3 \longrightarrow (3 ?) \mod p$ [1, p-1] [1, p-1]

 $\left(\frac{3x}{b}\right)$ \neq int

 $\frac{4\cdot 4}{8} = int$

Properties

1-1 / Govertible

4.4 ± int

• If r is sndm \Rightarrow For any 3, F(3) is sndm.

CLAIM 1: For any $3 \in [1, \rho-1]$, $3^{p-1} = 1 \pmod{p}$

Proof:

Take the set
$$S_1 = \{1, 2, ..., p-1\}$$

Also, consider the set $S_2 = \{2, 23, ..., (p-1)3\}$ [modp) (modp) (modp)

Subclaim: $S_1 = S_2$
 $\subseteq [1, p-1]$

Proof:

 $\{1, 2, ..., p-1\}$
 $\{1, 2, ..., p-1\}$

CIAIM2: $F: 3 \rightarrow 3r \pmod{p}$ is invertible, and also 1-1. Product by r^{b-2} , $r^{b-2} = 3r \pmod{p}$ Therefore Map is $F': y \rightarrow (r^{b-2}y) \mod p$

CLAIM3: 2f $r \in [1, \rho-1]$ was random \Rightarrow For a given 3, f(3) is any random value in $[1, \rho-1]$.

Prob $(F(3) = i) = Prob (3x) \mod p = i)$ $= Prob (x = 3^{b-2}(i) \mod p)$

(* Universal Hashing:

Given: Universe U = [1, M]Set $S = \{s_1, s_2 ... s_n\} \subseteq [1, M]$ of size n.

Ain: Find a data-structure for S to answer search queries:

"Does ZES?" where 1535 M

Typically, n <<< M

Eq. $n = 10^3$ $M = 10^8$

Assumption Word eize = O(log M)

Some Solutions:		Search time	Space
	Array	0(1)	O(M)
	Link-list	0(n)	O(n)
	AVL trees	O (logn)	0(n)
AIM ->	Hashing	D(1)	O(n)
			·

Link list of those elements SES for which H(8) = i

Search-Algo (3)

- 1) Compute i = H(3)2) Go to link-list at location i, and scan it. 3) $4 + (3 \in \text{Link-List-}i) = \text{Return "FOUND"}.$

Return "Not-Found."

Total Time = Time to compute
$$H(3) + man size (hink-list-i)$$
 $0 \le i \le n-1$

Ideally Should be O(1)

Ideally should be O(1)

$$CLAIMI$$
: $H_1(3) = 3 \pmod{n}$ it will good iff Swas random.

$$[CLAIM 2] H_0(3) = 37 \pmod{p}$$

 $\rho \sim M$ $\frac{H_0}{S} \longrightarrow \frac{modn}{S} \xrightarrow{Expected size of link list is <math>O(1)$.

S

make S look

like Random