<u>Trees</u>

- -collection of nodes, where one of the node is the root node.
- -siblings children of same parent
- -descendants the children and the children of the children
- -degree of a node- number of children (direct)
- -lever (pochvat ot 1) we count nodes(number of nodes)
- -height (we count edges) -pochvame on 0
- -forest a collection of trees is called a forest

Binary Tree

- -tree of degree two (every node can have maximum 2 children) (deg(T) =2)
- -we have left and right child
- -every node can have {0, 1,2} children

Number of binary trees for given set of nodes

If suppose some number of nodes are given like 3 nodes. Then, using 3 nodes how many different binary trees can we generate?

1. Unlabelled nodes(n = 3) If we have 3 nodes, we can generate 5 trees (T(3) = 5)

Catalan' Formula: $T(n) = 2nC_n/n + 1$ (gives how many different trees)

 $T(5)=2*5C5/6=10C_5/6=42$

Maximum height possible is height

Number of threes with maximum height with 3 nodes are 4= 2²

 $N=4 -> 8= 2^3$

 $N = n -> 2^{n-1}$

One more formula for Catalan:

N	0	1	2	3	4	5	6
T(n)= 2nCn/n+1	1	1	2	5	14	42	132

$$T(6)=T(0)*T(5)+T(1)*T(4)+T(2)*T(3)+T(3)*T(2)+T(4)*T(1)+T(5)*T(0)$$

$$T(n) = \sum_{i=1}^{n} T(i-1)^{n} * T(n-i)$$

2. Labelled nodes

If we have labelled nodes, how many binary trees can we generate?

Again we have five trees, but for each tree we can have 3! different trees.

Aà Bà C Bà Cà A

Aà Cà B Cà Aà B T(n)=2nCn/n+1*n!

Bà Aà C Cà Bà A shapes filling

Height vs Nodes in Binary Tree

If we know the height of a binary tree, what the minimum and maximum number of nodes could be?

If nodes are given what could be minimum height and what could be maximum height?

Minimum nodes formula=height + 1 (n=h+1)

Maximum node: 1+2+ 2²+2³=15 (this is for a tree with height 3)

The given formula is GP series: a+ar+ar²+.....+ar^k=a(r^{k+1}-1)/r-1

 $1+2+2^2+...2^h=2^{h+1}$ -1 à formula for maximum number of nodes a=1,r=2

If nodes are given and we want to calculate the height:

maxHeight h=n-1;

minHeight $h=log_2(n+1)-1$

Relationship between leaf nodes and non-leaf nodes

There is a relationship between nodes with degree 2 and degree 0.

(deg(2)-number of nodes with degree 2)

deg(0)=deg(2)+1 B always true for binary trees

Strict(Complete) Binary Tree

In a strict binary tree a node can have either 0 or 2 children

In a complete bin tree a node can have either 0 or 2 children , and when represented as array there should not be any blank space between elements.

Height in Strict Binary Tree

If height is given:

Min nodes: n=2h+1 (we start from the bottom of the tree and we count , + 1 because of the root)

Formula form max node is the same: $n=2^{h+1}$ -1

n-ary Trees

3-ary trees à {0,1,2,3}

4-ary trees à (0,1,2,3,4), degrees of nodes

Representation of Binary Trees

1.Array representation

ABCDEFG

Τ

Α	В	С	D	E	F	G
1	2	3	4	5	6	7

element	index	Left child	Right child
Α	1	2	3
В	2	4	5
С	3	6	7
	i	2*i	2*i+1

Parent->i/2(floor)

2.Linked representation

```
Struct Node
{

Node *left;

T data;

Node *right;
}
```

If there are n nodes, we always have n+1 null pointers in the leafs.

Full vs Complete Binary

<u>Full</u>-a binary tree of height h having maximum number of nodes

If represented in an array all cells are filled with values.

Complete- no blank spaces in between the array, but at the end we can have free cells.

A complete binary tree of height h will be a full binary tree up to height h-1 and in the last level elements will be completed form left to right without having blank space. We say complete if is suitable for array representation. full binary à complete tree.