OLIST:

linear regression models and customer lifetime value

VADIM ACOSTA

The setup

olist

- Olist integrates sellers and marketplaces to create a commercial platform across multiple channels
- Goal create a Customer Lifetime Value model to predict and understand customer spending

The Tools

- Excel
- Tableau
- Python, Jupyter Notebook, Pandas et al.

The Plan

- Consolidate relevant data
- ► Remove nulls
- ▶ Remove irrelevant columns
- Group data by UniqueCustomer ID
- Run Regressions to model CLV

The Linear Regression Blues

	coef	std err	t	P> t	[0.025	0.975]
Intercept	83.9834	1.635	51.370	0.000	80.779	87.188
payment_installments	26.0526	0.238	109.326	0.000	25.586	26.520
customer_zip_code_prefix	0.0003	2.14e-05	12.913	0.000	0.000	0.000
payment_sequential	-13.7137	0.979	-14.011	0.000	-15.632	-11.795

- P-values are low (0.000), implying that each of the independent variables exert meaningful influence on the dependent variable (payment value)
- R² values are also low (0.113), implying that the model doesn't fit the data very well

Return Customers Spend Less Money Per Purchase

The New Plan

- Separate customers that made only one order from those that made multiple orders
- Use "payments made" as an independent variable to model lifetime value

Using Payment Value to predict total value

Modeling lifetime value based on payments made is meaningless when the customer only makes **one** purchase

Dep. Variable:	total_value	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	6.253e+27
Date:	Mon, 09 Dec 2019	Prob (F-statistic):	0.00
Time:	09:29:44	Log-Likelihood:	1.8661e+06
No. Observations:	88058	AIC:	-3.732e+06
Df Residuals:	88027	BIC:	-3.732e+06
Df Model:	30		
Covariance Type:	nonrobust		

If the customer **only** makes **one** payment in his lifetime then his lifetime value will have a **100% match** with his one payment

We can use linear regression to make fairly accurate predictions about people who make multiple payments

Dep. Variable:	total_value	R-squared:	0.707
Model:	OLS	Adj. R-squared:	0.706
Method:	Least Squares	F-statistic:	573.5
Date:	Mon, 09 Dec 2019	Prob (F-statistic):	0.00
Time:	09:28:40	Log-Likelihood:	-79174.
No. Observations:	12901	AIC:	1.585e+05
Df Residuals:	12846	BIC:	1.589e+05
Df Model:	54		
Covariance Type:	nonrobust		

Conclusion

▶ We can't use linear regression to predict anything about people who only made one purchase, which is more than 80% of our customers

We can use linear regression to make fairly accurate predictions about our best customers

Recommendations

- Encourage customers to use installments and vouchers to pay less money but more frequently
- Send marketing materials to customers that are approaching their final installments to get them on a new round of payments

Thank you!

