Problem 1:

```
X ~ Gamma(a1, b1)
Y ~ Gamma(a2, b2)
a1, b1, a2, b2 ~ Gamma(0.001,0.001)
mean1 <- (a1/b1)
mean2 <- (a2/b2)
diff <- (mean2 -mean1)
```

Posterior distribution for difference in mean blood percentages for the 2 procedures are N(2.45, 0.7679) 95% credible set for the difference is [0.9526, 3.978], thus it does not contain 0.

```
Blood Volume in Infants

model{
    for (i in 1:n){
        x[i] ~ dgamma(a1, b1)
        y[i] ~ dgamma(a2, b2)
    }

a1 ~ dgamma(0.001, 0.001)
    a2 ~ dgamma(0.001,0.001)
    b1 ~ dgamma(0.001,0.001)
    b2~ dgamma(0.001,0.001)
    mean1 <- (a1/b1)
    mean2 <- (a2/b2)
    diff <- (mean1-mean2)
}

DATA

list(n=16, x=c(13.8, 8.0, 8.4, 8.8, 9.6, 9.8, 8.2, 8.0, 10.3, 8.5, 11.5, 8.2, 8.9, 9.4, 10.3, 12.6),
    y=c(10.4, 13.1, 11.4, 9.0, 11.9, 16.2, 14.0, 8.2, 13;0, 8.8, 14.9, 12.2, 11.2, 13.9, 13.4, 11.9)
```

list(a1 = 5, a2 = 5, b1 = 1, b2 = 1) # inits here

node	mean	sd	MC error	2.5%	median	97.5% 60.09	start 1001	sample 10000	
a1	32.66	12.26	1.014	13.63	31.18				
a2	27.93	9.164	0.6951	12.85	26.93	48.04	1001	10000	
b1	3.384	1.28	0.1058	1.411	3.223	6.216	1001	10000	
b2	2.31	0.7663	0.05821	1.038	2.225	4.004	1001	10000	
diff	-2.45	0.7679	0.007766	-3.978	-2.447	-0.9526	1001	10000	
mean1	9.671	0.454	0.004821	8.814	9.653	10.62	1001	10000	
mean2	12.12	0.6187	0.006967	10.97	12.11	13.4	1001	10000	

Problem 2:

```
Arctic \sim Bern(p[i])
Logit(p) = beta[1] + beta[2] * gender + beta[3] * x3 +beta[4] * x7
```

Beta[j] $\sim N(0, 0.01)$

Probability that a female wolf with measures x = 5.28 and x = 1.78 comes from Arctic habitat is 49.93%

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
beta[1]	0.1047	10.01	0.07112	-19.65	0.09353	19.66	1001	20000
beta[2]	0.04629	10.01	0.06725	-19.56	0.09329	19.62	1001	20000
beta[3]	-0.03984	9.93	0.06369	-19.36	0.005805	19.19	1001	20000
beta[4]	-0.109	9.991	0.07341	-19.81	-0.04389	19.71	1001	20000
pp	0.4993	0.4926	0.004775	0.0	0.4847	1.0	11001	10000
ympred	0.4973	0.5	0.003403	0.0	0.0	1.0	1001	20000

```
model{
eps <- 0.0000001
for(i in 1:n){
artic[i] ~ dbern(p[i])
logit(p[i]) < -beta[1] + beta[2] * gender[i] +
beta[3] * x3[i] + beta[4] * x7[i]

devres[i] <- 2*arctic[i]*log(arctic[i]/p[i] +eps)+

2*(1-arctic[i])*log((1-arctic[i])/(1-p[i]) +eps)
for(j in 1:4){
beta[j] ~dnorm(0,0.01)
dev <-sum(devres[])
#Prediction
ympred ~ dbern(pp)
logit(pp) <- -beta[1] + beta[2] * 1 +
beta[3] * 5.28 + beta[4] * 1.78
DATA
list(n=25)
arctic[] gender[] x3[] x7[]
0 0 5.55 2
0 0 5.94 2.07
0 0 5.98 1.94
0 0 5.55 1.9
```

```
Problem 3:
```

```
y ~ Poiss(lambda) lambda <- exp(beta[1] + beta[2] *x) beta ~ N(0, 0.001) After 1000 burn-out and 4000 simulations Beta = [-2.816, 0.6715] Average number of nuclei for 3.5G dose is mean = 0.6232 95\% credible set = [0, 2]
```

```
Sample Monitor Tool
model∤
                                           node ×
for(i in 1:n){
                                                                      chair
y[i] ~dpois(lambda[i])
                                           beg 1
                                                             1000000
lambda[i] <- exp(beta[1] + beta[2]*x[i])
                                                         end
                                                                        thi
                                             clear
                                                               trace
                                                                        hist
for(j in 1:2){
beta[j] ~dnorm(0,0.001)
                                             stats
                                                      coda
                                                              quantiles
                                                                       bgr
lambdastar <- exp(beta[1] + beta[2] * 3.5)
ystar ~dpois(lambdastar)
}
DATA
list(n=6000)
INITS
list(beta =c(1,1))
```

node	mean	sd	MC error	2.5%	median	97.5%	start	sample	
beta[1]	-2.816	0.06139	0.002911	-2.942	-2.816	-2.696	1001	5000	
beta[2]	0.6715	0.01883	8.842E-4	0.6342	0.672	0.7095	1001	5000	
ambdastar	0.6279	0.01579	2.026E-4	0.5974	0.6275	0.6591	1001	5000	
vstar	0.6232	0.778	0.01049	0.0	0.0	2.0	1001	5000	