VCD Package, by group Jeffrevs

VCD in R

Visualizing Categorical Data

By Group: Jeffrevs

Outline:

- > structable
- > Cotabplot
- > Fourfold
- > mosaic
- > spine
- ➤ cd_plot

Introduction of VCD:

Categorical data: consists of variables whose values comprise a set of discrete categories.

The focus of this package is on visualization techniques and graphical methods designed to reveal patterns of relationships among categorical variables.

Utility functions: structable

The structable function can also return an object that you can pass to the mosaic function (discussed next)

Data: UCBAdmissions

> structable(UCBAdmissions)

Admit	Dept	Gender	Male	Female
Admitted	A		512	89
	В		353	17
	С		120	202
	D		138	131
	Е		53	94
	F		22	24
Rejected	A		313	19
	В		207	8
	С		205	391
	D		279	244
	Е		138	299
	F		351	317

Function: cotabplot

- > GA < -margin.table(UCBAdmissions, c(2,1))
- > structable(GA)

Gende	er	Admitted	Rejected			Admit	
Male		1198	1493	3	Admitted		Rejected
Female		55	1278				
> cotab				der Male			
P(Admitted Male)>P(Admitted Female)							

Function: cotabplot

> cotabplot(UCBAdmissions)

P(Admitted | Male)?
P(Admitted | Female)

Function: fourfold

The 2-way mosaic table conveys the probability of each value of (a,b)

With shading we can see the residuals relative to a log-linear hypothesis

Example:

mosaic(~Dept + Admit, UCBAdmissions, split_vertical=TRUE, gp=shading_max)
mosaic(structable(Admit ~ Dept, UCBAdmissions), split_vertical=TRUE, gp=shading_max)

Multiway tables split the data into ever-finer cells

Test for residuals against other hypotheses.

Example:

 $mosaic(A + B + C, data = ..., split_vertical = TRUE, gp = shading_Friendly, expected = <math>\sim A:B + C$)

	Formula	Residual calculation based on:
H1: Complete independence	A + B + C	Prob (A, B, C) calculated based on: Prob {A B C}
H2: Joint independence	A:B + C	Prob (A, B, C) calculated based on: Prob {(A, B) C}
H3: Conditional independence	A:C + B:C	Prob (A, B C) calculated based on: Prob {(A, C) (B, C) A B}
H4: No 3-way interaction	A:C + B:C + A:B	Prob (A, B, C) calculated based on: Prob {(A, C) (B, C) (A, B) A B C}

These settings change the colouring, not the size and shape of the tiles themselves.

Data set intepret

Arthritis: investigating a new treatment treatment for rheumatoid arthritis

- ►ID: patient ID.
- Treatment: factor indicating treatment (Placebo, Treated).
- Sex: factor indicating sex (Female, Male).
- ➤ Age: age of patient.
- ➤ Improved: ordered factor indicating treatment outcome (None, Some, Marked)

> head(Arthritis)

	ID	Treatment	Sex	Age	Improved
1	57	Treated	Male	27	Some
2	46	Treated	Male	29	None
3	77	Treated	Male	30	None
4	17	Treated	Male	32	Marked
5	36	Treated	Male	46	Marked
6	23	Treated	Male	58	Marked

Spine: Spine Plots and Spinograms

>(spine(Improved~Treatement, data = Arthritis))

Improved

Treatment None Some Marked

Placebo 29 7 7

Treated 13 7 21

Spine: Spine Plots and Spinograms

>(spine(Improved~Age, data = Arthritis, breaks=3))

Age	None	Some	Marked	total
[20, 40]	10	3	2	15
(40, 60]	21	3	17	41
(60, 80]	11	8	9	28
total	42	14	28	84

Improved

The widths of the bars corresponds to the relative frequencies of x.

The heights of the bars correspond to the conditional relative frequencies of y in every x group

cd_plot: Conditional Density Plots

Description: Computes and plots conditional densities describing how the distribution of a categorical variable y changes over a numerical variable x.

Marked

Some

None

mproved

- > cd plot(Improved ~ Age, data = Arthritis)
- >cd plot(Improved ~ Age, data = Arthritis, bw = 3)
- > cd_plot(Improved ~ Age, data = Arthritis, bw = "SJ")

Age

Similar to spinograms, smoothing approach but not discrete
 The x axis is not a distorted x axis
 less reliable because of few observations

bandwidth prameter passed to "density"

➤ Default: "nrd0", number, rule name

reference:

- kernel density estimate
 http://en.wikipedia.org/wiki/Kernel_density_estimation
- The bandwidth of the kernel is a <u>free parameter</u> which exhibits a strong influence on the resulting estimate