Lecture Notes 4 Convergence (Chapter 5)

1 Random Samples

Let $X_1, \ldots, X_n \sim F$. A **statistic** is any function $T_n = g(X_1, \ldots, X_n)$. Recall that the sample mean is

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

and sample variance is

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Let $\mu = \mathbb{E}(X_i)$ and $\sigma^2 = \mathsf{Var}(X_i)$. Recall that

$$\mathbb{E}(\overline{X}_n) = \mu, \quad \operatorname{Var}(\overline{X}_n) = \frac{\sigma^2}{n}, \quad \mathbb{E}(S_n^2) = \sigma^2.$$

Theorem 1 If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ then $\overline{X}_n \sim N(\mu, \sigma^2/n)$.

Proof. We know that $M_{X_i}(s) = e^{\mu s + \sigma^2 s^2/2}$. So,

$$M_{\overline{X}_n}(t) = \mathbb{E}(e^{t\overline{X}_n}) = \mathbb{E}(e^{\frac{t}{n}\sum_{i=1}^n X_i})$$

$$= (\mathbb{E}e^{tX_i/n})^n = (M_{X_i}(t/n))^n = \left(e^{(\mu t/n) + \sigma^2 t^2/(2n^2)}\right)^n = \exp\left\{\mu t + \frac{\sigma^2}{n}t^2\right\}$$

which is the mgf of a $N(\mu, \sigma^2/n)$.

Example 2 Let $X_{(1)}, \ldots, X_{(n)}$ denoted the ordered values:

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}.$$

Then $X_{(1)}, \ldots, X_{(n)}$ are called the order statistics. And $T_n = (X_{(1)}, \ldots, X_{(n)})$ is a statistic.

2 Convergence

Let $X_1, X_2, ...$ be a sequence of random variables and let X be another random variable. Let F_n denote the cdf of X_n and let F denote the cdf of X. We are going to study different types of convergence.

Example: A good example to keep in mind is the following. Let Y_1, Y_2, \ldots , be a sequence of iid random variables. Let

$$X_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

be the average of the first n of the Y_i 's. This defines a new sequence X_1, X_2, \ldots . In other words, the sequence of interest X_1, X_2, \ldots , might be a sequence of statistics based on some other sequence of iid random variables. Note that the original sequence Y_1, Y_2, \ldots , is iid but the sequence X_1, X_2, \ldots , is not iid.

1. X_n converges almost surely to X, written $X_n \stackrel{a.s.}{\to} X$, if, for every $\epsilon > 0$,

$$\mathbb{P}\left(\lim_{n\to\infty}|X_n - X| < \epsilon\right) = 1. \tag{1}$$

 X_n converges almost surely to a constant c, written $X_n \stackrel{a.s.}{\rightarrow} c$, if, for every $\epsilon > 0$,

$$\mathbb{P}\left(\lim_{n\to\infty} X_n = c\right) = 1. \tag{2}$$

2. X_n converges to X in probability, written $X_n \stackrel{P}{\to} X$, if, for every $\epsilon > 0$,

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0 \tag{3}$$

as $n \to \infty$. In other words, $X_n - X = o_P(1)$.

 X_n converges to c in probability, written $X_n \stackrel{P}{\to} c$, if, for every $\epsilon > 0$,

$$\mathbb{P}(|X_n - c| > \epsilon) \to 0 \tag{4}$$

as $n \to \infty$. In other words, $X_n - c = o_P(1)$.

3. X_n converges to X in quadratic mean (also called convergence in L_2), written $X_n \stackrel{qm}{\to} X$, if

$$\mathbb{E}(X_n - X)^2 \to 0 \tag{5}$$

as $n \to \infty$.

 X_n converges to c in quadratic mean, written $X_n \stackrel{qm}{\rightarrow} c$, if

$$\mathbb{E}(X_n - c)^2 \to 0 \tag{6}$$

as $n \to \infty$.

4. X_n converges to X in distribution, written $X_n \rightsquigarrow X$, if

$$\lim_{n \to \infty} F_n(t) = F(t) \tag{7}$$

at all t for which F is continuous.

 X_n converges to c in distribution, written $X_n \leadsto c$, if

$$\lim_{n \to \infty} F_n(t) = \delta_c(t) \tag{8}$$

at all $t \neq c$ where $\delta_c(t) = 0$ if t < c and $\delta_c(t) = 1$ if $t \geq c$.

Theorem 3 Convergence in probability does not imply almost sure convergence.

Proof. Let $\Omega = [0,1]$. Let P be uniform on [0,1]. We draw $S \sim P$. Let X(s) = s and let

$$X_1 = s + I_{[0,1]}(s),$$
 $X_2 = s + I_{[0,1/2]}(s),$ $X_3 = s + I_{[1/2,1]}(s)$
 $X_4 = s + I_{[0,1/3]}(s),$ $X_5 = s + I_{[1/3,2/3]}(s),$ $X_6 = s + I_{[2/3,1]}(s)$

etc. Then $X_n \stackrel{P}{\to} X$. But, for each $s, X_n(s)$ does **not** converge to X(s). Hence, X_n does not converge almost surely to X. In fact, $P(\{s \in \Omega : \lim_n X_n(s) = X(s)\}) = 0$.

Example 4 Let $X_n \sim N(0, 1/n)$. Intuitively, X_n is concentrating at 0 so we would like to say that X_n converges to 0. Let's see if this is true. Let F be the distribution function for a point mass at 0. Note that $\sqrt{n}X_n \sim N(0, 1)$. Let Z denote a standard normal random variable. For t < 0,

$$F_n(t) = \mathbb{P}(X_n < t) = \mathbb{P}(\sqrt{n}X_n < \sqrt{n}t) = \mathbb{P}(Z < \sqrt{n}t) \to 0$$

since $\sqrt{n}t \to -\infty$. For t > 0,

$$F_n(t) = \mathbb{P}(X_n < t) = \mathbb{P}(\sqrt{n}X_n < \sqrt{n}t) = \mathbb{P}(Z < \sqrt{n}t) \to 1$$

since $\sqrt{n}t \to \infty$. Hence, $F_n(t) \to F(t)$ for all $t \neq 0$ and so $X_n \leadsto 0$. Notice that $F_n(0) = 1/2 \neq F(1/2) = 1$ so convergence fails at t = 0. That doesn't matter because t = 0 is not a continuity point of F and the definition of convergence in distribution only requires convergence at continuity points.

Now consider convergence in probability. For any $\epsilon > 0$, using Markov's inequality,

$$\mathbb{P}(|X_n| > \epsilon) = \mathbb{P}(|X_n|^2 > \epsilon^2) \le \frac{\mathbb{E}(X_n^2)}{\epsilon^2} = \frac{\frac{1}{n}}{\epsilon^2} \to 0$$

as $n \to \infty$. Hence, $X_n \stackrel{P}{\to} 0$.

The next theorem gives the relationship between the types of convergence.

Theorem 5 The following relationships hold:

- (a) $X_n \stackrel{qm}{\to} X$ implies that $X_n \stackrel{P}{\to} X$.
- (b) $X_n \xrightarrow{P} X$ implies that $X_n \rightsquigarrow X$.
- (c) If $X_n \rightsquigarrow X$ and if $\mathbb{P}(X = c) = 1$ for some real number c, then $X_n \stackrel{P}{\to} X$.
- (d) $X_n \stackrel{as}{\to} X$ implies $X_n \stackrel{P}{\to} X$.

In general, none of the reverse implications hold except the special case in (c).

Proof. We start by proving (a). Suppose that $X_n \stackrel{qm}{\to} X$. Fix $\epsilon > 0$. Then, using Markov's inequality,

$$\mathbb{P}(|X_n - X| > \epsilon) = \mathbb{P}(|X_n - X|^2 > \epsilon^2) \le \frac{\mathbb{E}|X_n - X|^2}{\epsilon^2} \to 0.$$

Proof of (b). Fix $\epsilon > 0$ and let x be a continuity point of F. Then

$$F_n(x) = \mathbb{P}(X_n \le x) = \mathbb{P}(X_n \le x, X \le x + \epsilon) + \mathbb{P}(X_n \le x, X > x + \epsilon)$$

$$\le \mathbb{P}(X \le x + \epsilon) + \mathbb{P}(|X_n - X| > \epsilon)$$

$$= F(x + \epsilon) + \mathbb{P}(|X_n - X| > \epsilon).$$

Also,

$$F(x - \epsilon) = \mathbb{P}(X \le x - \epsilon) = \mathbb{P}(X \le x - \epsilon, X_n \le x) + \mathbb{P}(X \le x - \epsilon, X_n > x)$$

$$< F_n(x) + \mathbb{P}(|X_n - X| > \epsilon).$$

Hence,

$$F(x-\epsilon) - \mathbb{P}(|X_n - X| > \epsilon) \le F_n(x) \le F(x+\epsilon) + \mathbb{P}(|X_n - X| > \epsilon).$$

Take the limit as $n \to \infty$ to conclude that

$$F(x - \epsilon) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(x + \epsilon).$$

This holds for all $\epsilon > 0$. Take the limit as $\epsilon \to 0$ and use the fact that F is continuous at x and conclude that $\lim_n F_n(x) = F(x)$.

Proof of (c). Fix $\epsilon > 0$. Then,

$$\mathbb{P}(|X_n - c| > \epsilon) = \mathbb{P}(X_n < c - \epsilon) + \mathbb{P}(X_n > c + \epsilon)$$

$$\leq \mathbb{P}(X_n \leq c - \epsilon) + \mathbb{P}(X_n > c + \epsilon)$$

$$= F_n(c - \epsilon) + 1 - F_n(c + \epsilon)$$

$$\to F(c - \epsilon) + 1 - F(c + \epsilon)$$

$$= 0 + 1 - 1 = 0.$$

Proof of (d). Omitted.

Let us now show that the reverse implications do not hold.

Convergence in probability does not imply convergence in quadratic mean. Let $U \sim \text{Unif}(0,1)$ and let $X_n = \sqrt{n} I_{(0,1/n)}(U)$. Then $\mathbb{P}(|X_n| > \epsilon) = \mathbb{P}(\sqrt{n} I_{(0,1/n)}(U) > \epsilon) = \mathbb{P}(0 \le U < 1/n) = 0$ $1/n \to 0$. Hence, $X_n \stackrel{P}{\to} 0$. But $\mathbb{E}(X_n^2) = n \int_0^{1/n} du = 1$ for all n so X_n does not converge in quadratic mean.

Convergence in distribution does not imply convergence in probability. Let $X \sim N(0,1)$. Let $X_n = -X$ for $n = 1, 2, 3, \ldots$; hence $X_n \sim N(0, 1)$. X_n has the same distribution function as X for all n so, trivially, $\lim_n F_n(x) = F(x)$ for all x. Therefore, $X_n \rightsquigarrow X$. But $\mathbb{P}(|X_n - X| > \epsilon) = \mathbb{P}(|2X| > \epsilon) = \mathbb{P}(|X| > \epsilon/2) \neq 0$. So X_n does not converge to X in probability.

The relationships between the types of convergence can be summarized as follows:

q.m.
$$\downarrow$$
 a.s. \rightarrow prob \rightarrow distribution

Example 6 One might conjecture that if $X_n \stackrel{P}{\to} b$, then $\mathbb{E}(X_n) \to b$. This is not true. Let X_n be a random variable defined by $\mathbb{P}(X_n = n^2) = 1/n$ and $\mathbb{P}(X_n = 0) = 1 - (1/n)$. Now, $\mathbb{P}(|X_n| < \epsilon) = \mathbb{P}(X_n = 0) = 1 - (1/n) \to 1$. Hence, $X_n \stackrel{P}{\to} 0$. However, $\mathbb{E}(X_n) = 0$ $[n^2 \times (1/n)] + [0 \times (1 - (1/n))] = n.$ Thus, $\mathbb{E}(X_n) \to \infty$.

Example 7 Let $X_1, \ldots, X_n \sim \text{Uniform}(0,1)$. Let $X_{(n)} = \max_i X_i$. First we claim that $X_{(n)} \stackrel{P}{\to} 1$. This follows since

$$\mathbb{P}(|X_{(n)} - 1| > \epsilon) = \mathbb{P}(X_{(n)} \le 1 - \epsilon) = \prod_{i} \mathbb{P}(X_i \le 1 - \epsilon) = (1 - \epsilon)^n \to 0.$$

Also

$$\mathbb{P}(n(1-X_{(n)}) \le t) = \mathbb{P}(X_{(n)} \ge 1 - (t/n)) = 1 - (1-t/n)^n \to 1 - e^{-t}.$$
So $n(1-X_{(n)}) \leadsto \text{Exp}(1)$.

Some convergence properties are preserved under transformations.

Theorem 8 Let X_n, X, Y_n, Y be random variables.

- (a) If $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$, then $X_n + Y_n \stackrel{P}{\to} X + Y$.
- (b) If $X_n \xrightarrow{qm} X$ and $Y_n \xrightarrow{qm} Y$, then $X_n + Y_n \xrightarrow{qm} X + Y$. (c) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n Y_n \xrightarrow{P} XY$.

In general, $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y$ does not imply that $X_n + Y_n \rightsquigarrow X + Y$. But there are cases when it does:

Theorem 9 (Slutzky's Theorem) If $X_n \leadsto X$ and $Y_n \leadsto c$, then $X_n + Y_n \leadsto X + c$. Also, If $X_n \leadsto X$ and $Y_n \leadsto c$, then $X_n Y_n \leadsto c X$.

Theorem 10 (The Continuous Mapping Theorem) Let X_n, X, Y_n, Y be random variables. Let g be a continuous function.

- (a) If $X_n \stackrel{P}{\to} X$, then $g(X_n) \stackrel{P}{\to} g(X)$.
- (b) If $X_n \leadsto X$, then $g(X_n) \leadsto g(X)$.

Exercise: Prove the continuous mapping theorem.

3 The Law of Large Numbers

The law of large numbers (LLN) says that the mean of a large sample is close to the mean of the distribution. For example, the proportion of heads of a large number of tosses of a fair coin is expected to be close to 1/2. We now make this more precise.

Let X_1, X_2, \ldots be an iid sample, let $\mu = \mathbb{E}(X_1)$ and $\sigma^2 = \mathsf{Var}(X_1)$. Recall that the sample mean is defined as $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ and that $\mathbb{E}(\overline{X}_n) = \mu$ and $\mathsf{Var}(\overline{X}_n) = \sigma^2/n$.

Theorem 11 (The Weak Law of Large Numbers (WLLN))

If X_1, \ldots, X_n are iid, then $\overline{X}_n \stackrel{P}{\to} \mu$. Thus, $\overline{X}_n - \mu = o_P(1)$.

Interpretation of the WLLN: The distribution of \overline{X}_n becomes more concentrated around μ as n gets large.

Proof. Assume that $\sigma < \infty$. This is not necessary but it simplifies the proof. Using Chebyshev's inequality,

$$\mathbb{P}\left(|\overline{X}_n - \mu| > \epsilon\right) \le \frac{\mathsf{Var}(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

which tends to 0 as $n \to \infty$.

Theorem 12 The Strong Law of Large Numbers. Let X_1, \ldots, X_n be iid with mean μ . Then $\overline{X}_n \stackrel{as}{\to} \mu$.

The proof is beyond the scope of this course.

4 The Central Limit Theorem

The law of large numbers says that the distribution of \overline{X}_n piles up near μ . This isn't enough to help us approximate probability statements about \overline{X}_n . For this we need the central limit theorem.

Suppose that X_1, \ldots, X_n are iid with mean μ and variance σ^2 . The central limit theorem (CLT) says that $\overline{X}_n = n^{-1} \sum_i X_i$ has a distribution which is approximately Normal with mean μ and variance σ^2/n . This is remarkable since nothing is assumed about the distribution of X_i , except the existence of the mean and variance.

Theorem 13 (The Central Limit Theorem (CLT)) Let X_1, \ldots, X_n be iid with mean μ and variance σ^2 . Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then

$$Z_n \equiv \frac{\overline{X}_n - \mu}{\sqrt{\mathsf{Var}(\overline{X}_n)}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \leadsto Z$$

where $Z \sim N(0,1)$. In other words,

$$\lim_{n\to\infty} \mathbb{P}(Z_n \le z) = \Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$

Interpretation: Probability statements about \overline{X}_n can be approximated using a Normal distribution. It's the probability statements that we are approximating, not the random variable itself.

Remark: We often write

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

as short form for $\sqrt{n}(\overline{X}_n - \mu) \rightsquigarrow N(0, 1)$.

Recall that if X is a random variable, its moment generating function (mgf) is $\psi_X(t) = \mathbb{E}e^{tX}$. Assume in what follows that the mgf is finite in a neighborhood around t = 0.

Lemma 14 Let $Z_1, Z_2, ...$ be a sequence of random variables. Let ψ_n be the mgf of Z_n . Let Z be another random variable and denote its mgf by ψ . If $\psi_n(t) \to \psi(t)$ for all t in some open interval around 0, then $Z_n \leadsto Z$.

Proof of the central limit theorem. Let $Y_i = (X_i - \mu)/\sigma$. Then, $Z_n = n^{-1/2} \sum_i Y_i$. Let $\psi(t)$ be the mgf of Y_i . The mgf of $\sum_i Y_i$ is $(\psi(t))^n$ and mgf of Z_n is $[\psi(t/\sqrt{n})]^n \equiv \xi_n(t)$. Now $\psi'(0) = \mathbb{E}(Y_1) = 0$, $\psi''(0) = \mathbb{E}(Y_1^2) = \mathsf{Var}(Y_1) = 1$. So,

$$\psi(t) = \psi(0) + t\psi'(0) + \frac{t^2}{2!}\psi''(0) + \frac{t^3}{3!}\psi'''(0) + \cdots$$

$$= 1 + 0 + \frac{t^2}{2} + \frac{t^3}{3!}\psi'''(0) + \cdots$$

$$= 1 + \frac{t^2}{2} + \frac{t^3}{3!}\psi'''(0) + \cdots$$

Now,

$$\xi_n(t) = \left[\psi \left(\frac{t}{\sqrt{n}} \right) \right]^n$$

$$= \left[1 + \frac{t^2}{2n} + \frac{t^3}{3! n^{3/2}} \psi'''(0) + \cdots \right]^n$$

$$= \left[1 + \frac{\frac{t^2}{2} + \frac{t^3}{3! n^{1/2}} \psi'''(0) + \cdots}{n} \right]^n$$

$$\to e^{t^2/2}$$

which is the mgf of a N(0,1). The result follows from Lemma 14. In the last step we used the fact that if $a_n \to a$ then

$$\left(1+\frac{a_n}{n}\right)^n \to e^a$$
.

The central limit theorem tells us that $Z_n = \sqrt{n}(\overline{X}_n - \mu)/\sigma$ is approximately N(0,1). However, we rarely know σ . We can estimate σ^2 from X_1, \ldots, X_n by

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

This raises the following question: if we replace σ with S_n , is the central limit theorem still true? The answer is yes.

Theorem 15 Assume the same conditions as the CLT. Then,

$$T_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \rightsquigarrow N(0, 1).$$

Proof. Here is a brief proof. We have that

$$T_n = Z_n W_n$$

where

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$$

and

$$W_n = \frac{\sigma}{S_n}$$
.

Now $Z_n \rightsquigarrow N(0,1)$ and $W_n \stackrel{P}{\to} 1$. The result follows from Slutzky's theorem.

Here is an extended proof.

Step 1. We first show that $R_n^2 \stackrel{P}{\to} \sigma^2$ where

$$R_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Note that

$$R_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2.$$

Define $Y_i = X_i^2$. Then, using the LLN (law of large numbers)

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i \stackrel{P}{\to} \mathbb{E}(Y_i) = \mathbb{E}(X_i^2) = \mu^2 + \sigma^2.$$

Next, by the LLN,

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{P}{\to} \mu.$$

Since $g(t) = t^2$ is continuous, the continuous mapping theorem implies that

$$\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2} \stackrel{P}{\to} \mu^{2}.$$

Thus

$$R_n^2 \xrightarrow{P} (\mu^2 + \sigma^2) - \mu^2 = \sigma^2.$$

Step 2. Note that

$$S_n^2 = \left(\frac{n}{n-1}\right) R_n^2.$$

Since, $R_n^2 \stackrel{P}{\to} \sigma^2$ and $n/(n-1) \to 1$, we have that $S_n^2 \stackrel{P}{\to} \sigma^2$.

Step 3. Since $g(t) = \sqrt{t}$ is continuous, (for $t \ge 0$) the continuous mapping theorem implies that $S_n \stackrel{P}{\to} \sigma$.

Step 4. Since $g(t) = t/\sigma$ is continuous, the continuous mapping theorem implies that $S_n/\sigma \stackrel{P}{\to} 1$.

Step 5. Since g(t) = 1/t is continuous (for t > 0) the continuous mapping theorem implies that $\sigma/S_n \stackrel{P}{\to} 1$. Since convergence in probability implies convergence in distribution, $\sigma/S_n \leadsto 1$.

Step 5. Note that

$$T_n = \left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}\right) \left(\frac{\sigma}{S_n}\right) \equiv V_n W_n.$$

Now $V_n \rightsquigarrow Z$ where $Z \sim N(0,1)$ by the CLT. And we showed that $W_n \rightsquigarrow 1$. By Slutzky's theorem, $T_n = V_n W_n \rightsquigarrow Z \times 1 = Z$.

The next result is very important. It tells us how close the distribution of \overline{X} is to the Normal distribution.

Theorem 16 (Berry-Esseen Theorem) Let $X_1, \ldots, X_n \sim P$. Let $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \text{Var}[X_i]$. Assume that $\mu_3 = \mathbb{E}[|X_i - \mu|^3] < \infty$. Let

$$F_n(z) = \mathbb{P}\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le z\right).$$

Then

$$\sup_{z} |F_n(z) - \Phi(z)| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.$$

There is also a multivariate version of the central limit theorem. Recall that $X = (X_1, \ldots, X_k)^T$ has a multivariate Normal distribution with mean vector μ and covariance matrix Σ if

$$f(x) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

In this case we write $X \sim N(\mu, \Sigma)$.

Theorem 17 (Multivariate central limit theorem) Let X_1, \ldots, X_n be iid random vectors where $X_i = (X_{1i}, \ldots, X_{ki})^T$ with mean $\mu = (\mu_1, \ldots, \mu_k)^T$ and covariance matrix Σ . Let $\overline{X} = (\overline{X}_1, \ldots, \overline{X}_k)^T$ where $\overline{X}_j = n^{-1} \sum_{i=1}^n X_{ji}$. Then,

$$\sqrt{n}(\overline{X} - \mu) \rightsquigarrow N(0, \Sigma).$$

Remark: There is also a multivariate version of the Berry-Esseen theorem but it is more complicated than the one-dimensional version.

5 The Delta Method

If Y_n has a limiting Normal distribution then the delta method allows us to find the limiting distribution of $g(Y_n)$ where g is any smooth function.

Theorem 18 (The Delta Method) Suppose that

$$\frac{\sqrt{n}(Y_n - \mu)}{\sigma} \leadsto N(0, 1)$$

and that g is a differentiable function such that $g'(\mu) \neq 0$. Then

$$\frac{\sqrt{n}(g(Y_n) - g(\mu))}{|q'(\mu)|\sigma} \rightsquigarrow N(0, 1).$$

In other words,

$$Y_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 implies that $g(Y_n) \approx N\left(g(\mu), (g'(\mu))^2 \frac{\sigma^2}{n}\right)$.

Example 19 Let X_1, \ldots, X_n be iid with finite mean μ and finite variance σ^2 . By the central limit theorem, $\sqrt{n}(\overline{X}_n - \mu)/\sigma \rightsquigarrow N(0,1)$. Let $W_n = e^{\overline{X}_n}$. Thus, $W_n = g(\overline{X}_n)$ where $g(s) = e^s$. Since $g'(s) = e^s$, the delta method implies that $W_n \approx N(e^{\mu}, e^{2\mu}\sigma^2/n)$.

There is also a multivariate version of the delta method.

Theorem 20 (The Multivariate Delta Method) Suppose that $Y_n = (Y_{n1}, ..., Y_{nk})$ is a sequence of random vectors such that

$$\sqrt{n}(Y_n - \mu) \rightsquigarrow N(0, \Sigma).$$

Let $g: \mathbb{R}^k \to \mathbb{R}$ and let

$$\nabla g(y) = \begin{pmatrix} \frac{\partial g}{\partial y_1} \\ \vdots \\ \frac{\partial g}{\partial y_k} \end{pmatrix}.$$

Let ∇_{μ} denote $\nabla g(y)$ evaluated at $y = \mu$ and assume that the elements of ∇_{μ} are nonzero. Then

$$\sqrt{n}(g(Y_n) - g(\mu)) \rightsquigarrow N\left(0, \nabla_{\mu}^T \Sigma \nabla_{\mu}\right).$$

Example 21 Let

$$\begin{pmatrix} X_{11} \\ X_{21} \end{pmatrix}, \begin{pmatrix} X_{12} \\ X_{22} \end{pmatrix}, \dots, \begin{pmatrix} X_{1n} \\ X_{2n} \end{pmatrix}$$

be iid random vectors with mean $\mu = (\mu_1, \mu_2)^T$ and variance Σ . Let

$$\overline{X}_1 = \frac{1}{n} \sum_{i=1}^n X_{1i}, \quad \overline{X}_2 = \frac{1}{n} \sum_{i=1}^n X_{2i}$$

and define $Y_n = \overline{X}_1 \overline{X}_2$. Thus, $Y_n = g(\overline{X}_1, \overline{X}_2)$ where $g(s_1, s_2) = s_1 s_2$. By the central limit theorem,

$$\sqrt{n}\left(\begin{array}{c} \overline{X}_1 - \mu_1 \\ \overline{X}_2 - \mu_2 \end{array}\right) \rightsquigarrow N(0, \Sigma).$$

Now

$$\nabla g(s) = \begin{pmatrix} \frac{\partial g}{\partial s_1} \\ \frac{\partial g}{\partial s_2} \end{pmatrix} = \begin{pmatrix} s_2 \\ s_1 \end{pmatrix}$$

and so

$$\nabla_{\mu}^{T} \Sigma \nabla_{\mu} = (\mu_{2} \ \mu_{1}) \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} \begin{pmatrix} \mu_{2} \\ \mu_{1} \end{pmatrix} = \mu_{2}^{2} \sigma_{11} + 2\mu_{1} \mu_{2} \sigma_{12} + \mu_{1}^{2} \sigma_{22}.$$

Therefore,

$$\sqrt{n}(\overline{X}_1\overline{X}_2 - \mu_1\mu_2) \leadsto N\bigg(0, \mu_2^2\sigma_{11} + 2\mu_1\mu_2\sigma_{12} + \mu_1^2\sigma_{22}\bigg). \quad \blacksquare$$