Give Me Some Credit

葛浩 3180103494

朱祉盈 3180103536

Problem Statement

 Improve on the state of the art in credit scoring by predicting the probability that somebody will experience financial distress in the next two years.

Our Goal

 On a given test set, predict the possibility of future financial distress(Y/N)

Problem Statement

 Improve on the state of the art in credit scoring by predicting the probability that somebody will experience financial distress in the next two years.

Our Goal

 On a given test set, predict the possibility of future financial distress(Y/N)

- Details about the dataset
 - 13 inputs: features indicating costumer's financial condition
 - 1 output : whether meet over 90 days past due (Y/N)
 - Specific data dictionary

Variable Name	Description				
SeriousDlqin2yrs	Person experienced 90 days past due delinquency or worse	Y/N			
RevolvingUtilizationOfUnsecuredLines	Total balance on credit cards and personal lines of credit except real	percentage			
	estate and no installment debt like car loans divided by the sum of credit				
age	Age of borrower in years	integer			
NumberOfTime30-59DaysPastDueNotWorse	Number of times borrower has been 30-59 days past due but no worse in	integer			
DebtRatio	Monthly debt payments, alimony,living costs divided by monthy gross	percentage			
	income				
MonthlyIncome	Monthly income	real			
NumberOfOpenCreditLinesAndLoans	Number of Open loans (installment like car loan or mortgage) and Lines of	integer			
	credit (e.g. credit cards)				
NumberOfTimes90DaysLate	Number of times borrower has been 90 days or more past due.	integer			
NumberRealEstateLoansOrLines	Number of mortgage and real estate loans including home equity lines of	integer			
	credit				
NumberOfTime60-89DaysPastDueNotWorse	Number of times borrower has been 60-89 days past due but no worse in	integer			
	the last 2 years.				
NumberOfDependents	Number of dependents in family excluding themselves (spouse, children	integer			
	etc.)				

Data Cleaning

Data Cleaning

- Data Preprocessing
- Feature Engineering

 drop unnamed columns & rename remaining columns

	Isdlq	Revol	age	Num30-59late	DebtRatio	MonthlyIncome	Numopen	Num90late	Numestate	Num60-89late	Numdepend
0	1	0.766127	45	2	0.802982	9120.0	13	0	6	0	2.0
1	0	0.957151	40	0	0.121876	2600.0	4	0	0	0	1.0
2	0	0.658180	38	1	0.085113	3042.0	2	1	0	0	0.0
3	0	0.233810	30	0	0.036050	3300.0	5	0	0	0	0.0
4	0	0.907239	49	1	0.024926	63588.0	7	0	1	0	0.0

- Y/N ratio in training set
- Missing Values
- Correlation Matrix

Isdlq	0
Revol	0
age	0
Num30-591ate	0
DebtRatio	0
MonthlyIncome	29731
Vumopen	0
Num901ate	0
Numestate	0
Num60-891ate	0
Numdepend	3924
dtype: int64	

	Isdlq	Revol	age	Num30-59late	DebtRatio	MonthlyIncome	Numopen	Num90late	Numestate	Num60-89late	Numdepend
Isdlq	1.000000	-0.001802	-0.115386	0.125587	-0.007602	-0.019746	-0.029669	0.117175	-0.007038	0.102261	0.046048
Revol	-0.001802	1.000000	-0.005898	-0.001314	0.003961	0.007124	-0.011281	-0.001061	0.006235	-0.001048	0.001557
age	-0.115386	-0.005898	1.000000	-0.062995	0.024188	0.037717	0.147705	-0.061005	0.033150	-0.057159	-0.213303
Num30-59late	0.125587	-0.001314	-0.062995	1.000000	-0.006542	-0.010217	-0.055312	0.983603	-0.030565	0.987005	-0.002680
DebtRatio	-0.007602	0.003961	0.024188	-0.006542	1.000000	-0.028712	0.049565	-0.008320	0.120046	-0.007533	-0.040673
MonthlyIncome	-0.019746	0.007124	0.037717	-0.010217	-0.028712	1.000000	0.091455	-0.012743	0.124959	-0.011116	0.062647
Numopen	-0.029669	-0.011281	0.147705	-0.055312	0.049565	0.091455	1.000000	-0.079984	0.433959	-0.071077	0.065322
Num90late	0.117175	-0.001061	-0.061005	0.983603	-0.008320	-0.012743	-0.079984	1.000000	-0.045205	0.992796	-0.010176
Numestate	-0.007038	0.006235	0.033150	-0.030565	0.120046	0.124959	0.433959	-0.045205	1.000000	-0.039722	0.124684
Num60-89late	0.102261	-0.001048	-0.057159	0.987005	-0.007533	-0.011116	-0.071077	0.992796	-0.039722	1.000000	-0.010922
Numdepend	0.046048	0.001557	-0.213303	-0.002680	-0.040673	0.062647	0.065322	-0.010176	0.124684	-0.010922	1.000000

- -> potential noises and unbalance in data
- -> For missing values, no need to delete the whole row

Look at Each Attribute

Age distribution

- -> approximately fit normal distribution
- -> calculate abnormal bound accordingly

```
In [17]: 州
#异常值情况
age_mean=train_set['age'].mean()
age_std=train_set['age'].std()
age_lowlimit=age_mean=3*age_std
age_uplimit=age_mean+3*age_std
print('异常值下限: ',age_lowlimit,'异常值上限: ',age_uplimit)
```

异常值下限: 7.979609077364238 异常值上限: 96.6108042559691

```
In [20]: N #筛选异常值
age_lowlimitd=train_set.loc[train_set['age'] < age_lowlimit,:]
age_uplimitd=train_set.loc[train_set['age'] > age_uplimit,:]
print('异常值下限比例: {0}%'.format(age_lowlimitd.shape[0]*100/train_set.shape[0]),
'异常值上限比例: {0}%'.format(age_uplimitd.shape[0]*100/train_set.shape[0]))
```

use histogram to reveal the relation between age and result

- -> default rates decrease with age
- -> 18-40 is the age stage with highest default rate

Apply similar techniques to other attributes

• Rovel (€(0,1)) distribution

Apply similar techniques to other attributes

Rovel (∈(0,1))

Find potential unnormalized data

0-1违约率为: 5.989963317014633% 1-10违约率为: 39.52211817888279% 10-20违约率为: 57.142857142857146% 20-100违约率为: 18.181818181818183% 1 00-1000违约率为: 1.9607843137254901% 1000-10000违约率为: 6.410256410256411% 10000-51000违约率为: 0.0%

->threshold for abnormal values is about 20

Apply similar techniques to other attributes

Num30-59late Num60-89late Num90late

Apply similar techniques to other attributes

numstate Distribution

Data Cleaning | Feature Engineering Preprocessing

abnormal values

```
#age异常值处理
train_set=train_set[train_set['age']>0]
#Num30-591ate Num60-891ate Num901ate异常值处理
train set=train set[train set['Num30-59late']<90]
train_set=train_set[train_set['Num60-89late']<90]</pre>
train set=train set[train set['Num90late']<90]
#Numestate异常值处理
train set=train set[train set['Numestate']<50]
```

missing values

```
#Numdepend缺失值处理
train set['Numdepend']=train set['Numdepend'].fillna('0')
#MonthlyIncome缺失值处理
#随机森林预测缺失值
data Forest=train set.iloc[:, [5, 1, 2, 3, 4, 6, 7, 8, 9]]
MonthlyIncome isnull=data Forest.loc[train set['MonthlyIncome'].isnull(),:]
MonthlyIncome notnull=data Forest.loc[train set['MonthlyIncome'].notnull(),:]
from sklearn.ensemble import RandomForestRegressor
X=MonthlyIncome notnull.iloc[:,1:].values
y=MonthlyIncome notnull.iloc[:,0].values
regr=RandomForestRegressor(max depth=3, random state=0, n estimators=200, n jobs=-1)
MonthlyIncome fillvalue=regr.predict(MonthlyIncome isnull.iloc[:,1:].values).round(0)
#填充MonthlyIncome缺失值
train set.loc[train set['MonthlyIncome'].isnull(),'MonthlyIncome']=MonthlyIncome fillvalue
```

Feature Extraction and Binning

feature crossing

```
#衍生变量
train set['AllNumlate']=train set['Num30-59late']+train set['Num60-89late']+train set['Num90late']
train set['Monthlypayment']=train set['DebtRatio']*train set['MonthlyIncome']
train set['Withdepend']=train set['Numdepend']
```

adjust data type

```
#数据类型转换
train set['Numdepend']=train set['Numdepend'].astvpe('int64')
train set['Withdepend']=train set['Withdepend'].astype('int64')
train set['MonthlyIncome']=train set['MonthlyIncome'].astype('int64')
train_set['Monthlypayment']=train_set['Monthlypayment'].astype('int64')
```

Binning

```
#Revol分箱
train set. loc[(train set['Revol']<1), 'Revol']=0
train_set.loc[(train_set['Revol']>1)&(train_set['Revol']<=20), 'Revol']=1
train set.loc[(train set['Revol']>20), 'Revol']=0#根据前文EDA分析, 将大于20的数据与0-1的数据合并
#DebtRatio分箱
train set. loc[(train set['DebtRatio']<1), 'DebtRatio']=0
train_set.loc[(train_set['DebtRatio']>1)&(train_set['DebtRatio']<2), 'DebtRatio']=1
train set. loc[(train set['DebtRatio']>=2), 'DebtRatio']=0
#Num30-591ate/Num60-891ate/Num901ate/Numestate/Numdepend
train set. loc[(train set['Num30-59late']>=8), 'Num30-59late'] = 8
train_set.loc[(train_set['Num60-89late']>=7), 'Num60-89late'] = 7
train_set.loc[(train_set['Num90late']>=10), 'Num90late'] = 10
train_set.loc[(train_set['Numestate']>=8), 'Numestate'] = 8
train set.loc[(train set['Numdepend']>=7), 'Numdepend'] = 7
#AllNumlate分箱
train set.loc[(train set['AllNumlate']>1), 'AllNumlate']=1#分为逾期和未逾期两种情况
#Withdepend分箱
train_set.loc[(train_set['Withdepend']>1),'Withdepend']=1#分为独生子女和非独生子女
```

Use heatmap to visualize the new correlation

matrix

Calculate WOE, IV

- WOE(weight of evidence)
 - 1.Binning
 - 2.Calculate WOE for each bin

$$WOE_i = \ln \frac{py_i}{pn_i} = \ln \frac{\#y_i/n_i}{\#y_T/n_T}$$

3. WOE_i indicates the predictivity for Bin_i

Calculate WOE, IV

- IV (Information Value)
 - 1. IV = $\sum_{i=1}^{n} IV_{i}$
 - 2. Calculate IV_i for each attribute

$$IV_i = (py_i - pn_i) * WOE_i$$

3. IV_i indicates the predictivity for $Attribute_i$

Visualize IV of every attribute

- Filter out variables with IV values greater than 0.1: 'Num30-59late', 'Num60-89late', 'Num90late', 'AllNumlate', 'Revol', 'age';
- There is a strong correlation between 'Num30-59 late' and 'AllNumlate' (0.7). Choose the one with higher IV ('AllNumlate')
- Final choice:

```
['Num60-
89late','Num90late','AllNumlate','
Revol','age']
```

Model and Idea Introduction

from Logistic Regression to Deep Learning

Logistic Regression

Step 1: Function Set

Function set: Including all different w and b

$$\begin{cases} z \geq 0 & \text{class 1} \\ z < 0 & \text{class 2} \end{cases}$$

$$P_{w,b}(C_1|x) = \sigma(z)$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

$$\sigma(z) = \frac{1}{1 + exp(-z)}$$

Step 1: Function Set

Step 2: Goodness of a Function

Training
$$x^1$$
 x^2 x^3 x^N
Data C_1 C_2 C_1

Assume the data is generated based on $f_{w,b}(x) = P_{w,b}(C_1|x)$

Given a set of w and b, what is its probability of generating the data?

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

The most likely w* and b* is the one with the largest L(w,b).

$$w^*, b^* = \arg\max_{w,b} L(w,b)$$

Step 2: Goodness of a Function

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

$$-lnL(w,b) = ln f_{w,b}(x^1) + ln f_{w,b}(x^2) + ln \left(1 - f_{w,b}(x^3)\right) \cdots$$

$$\hat{y}^n : \mathbf{1} \text{ for class 1, 0 for class 2}$$

$$= \sum_{n} -\left[\hat{y}^{n} ln f_{w,b}(x^{n}) + (1 - \hat{y}^{n}) ln \left(1 - f_{w,b}(x^{n})\right)\right]$$

Cross entropy between two Bernoulli distribution

Step 3: Find the best function

Gradient:

$$\frac{-lnL(w,b)}{\partial w_i} = \sum_{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Gradient Descent:

$$w_i \leftarrow w_i - \eta \sum_n -\left(\widehat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Larger difference, larger update

Cross Entropy v.s. Square Error

Logistic Regression

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$
 Output: between 0 and 1

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$
 Training data: (x^n, \hat{y}^n)
$$\hat{y}^n : 1 \text{ for class 1, 0 for class 2}$$

Logistic regression:
$$w_i \leftarrow w_i - \eta \sum_n -(\hat{y}^n - f_{w,b}(x^n)) x_i^n$$

Step 3:

Cross entropy:
$$l(f(x^n), \hat{y}^n) = -[\hat{y}^n lnf(x^n) + (1 - \hat{y}^n) ln(1 - f(x^n))]$$

Limitation of Logistic Regression

Input F	Label			
x_{1}	\mathbf{x}_{2}	Label		
0	0	Class 2		
0	1	Class 1		
1	0	Class 1		
1	1	Class 2		

Limitation of Logistic Regression

• Feature transformation x_1' : distance to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ x_2' : distance to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ Not always easy domain knowledge

Limitation of Logistic Regression

Cascading logistic regression models

Deep Learning!

All the parameters of the logistic regressions are jointly learned.

Neural Network

Deep Learning

Fully Connect Feedforward Network

神经网络可以看做是激活函 数为sigmoid的逻辑回归

Fully Connect Feedforward Network

神经网络的隐藏层本质上就是特征提取器

Output Layer as Multi-Class Classifier

Feature extractor replacing feature engineering

神经网络的隐藏层本质上就是特征提取器

Auto-Encoder for feature engineer

创新点:尝试利用autoencoder实现特征工程

利用神经网络提取特征

Auto-encoder

Experiment Result Analysis

Lightgbm

model:

```
import lightgbm as lgb
lgb train = lgb.Dataset(X train, Y train)
lgb val = lgb.Dataset(X validation, Y validation)
params = {
    'boosting type': 'gbdt',
    'objective': 'binary',
    'metric': {'auc'},
    'num leaves': 15,
    'max depth': -1,
    'min data in leaf': 64,
    'learning rate': 0.1,
    'feature fraction': 0.8,
    'bagging fraction': 0.8,
    'bagging freq': 1,
      'lambda l1': 1,
      'lambda l2': 0.001, # 越小l2正则程度越高
      'min gain to split': 0.2,
    'verbose': -1,
    'is unbalance': False,
    'num boost round': 200
lgbm = lgb.train(params=params, train set=lgb train, valid sets=lgb val)
```

result:

```
Validation set:
auc by sklearn: 0.8175
.....
Training set:
auc by sklearn: 0.8193
```

Random Forest

model:

```
from sklearn.ensemble import RandomForestClassifier
for i in range(5, 10):
    for j in range(10, 20):
        rfc = RandomForestClassifier(n estimators=j, max depth=i, random state=0)
        rfc.fit(X train, Y train)
        auc train rfc = roc auc score(Y train, rfc.predict proba(X train)[:,1])
        auc val rfc = roc auc score(Y validation, rfc.predict proba(X validation)[:,1])
        print("estimators: %d depth: %d\t auc train: %.4f\t auc validation: %.4f" % \
              (i, i, auc train rfc, auc val rfc))
```

result:

```
auc validation: 0.8177
estimators: 10 depth: 8
estimators: 11 depth: 8
                         auc train: 0.8195
                                                 auc validation: 0.8178
estimators: 12 depth: 8
                         auc train: 0.8195
                                                 auc validation: 0.8178
estimators: 13 depth: 8
                         auc train: 0.8195
                                                 auc validation: 0.8178
estimators: 14 depth: 8
                                                 auc validation: 0.8178
                         auc train: 0.8195
estimators: 15 depth: 8
                         auc train: 0.8195
                                                 auc validation: 0.8178
estimators: 16 depth: 8
                         auc train: 0.8194
                                                 auc validation: 0.8178
estimators: 17 depth: 8
                         auc train: 0.8194
                                                 auc validation: 0.8178
                                                 auc validation: 0.8178
estimators: 18 depth: 8
                        auc train: 0.8194
estimators: 19 depth: 8
                         auc train: 0.8195
                                                 auc validation: 0.8178
```

auc train: 0.8195

Logistic Regression

model:

result:

```
Validation set:
auc by sklearn: 0.8177
.....
Training set:
```

auc by sklearn: 0.8182

Make Score Cards

Take logistic regression as an example

制作评分卡

以Logic Regression模型为例,制作评分卡,更好地量化用户信用

```
intercept=LR.intercept_
coef=LR.coef_
coe=coef[0].tolist()
coe_df=pd.DataFrame({'feature':IV_info,'coe':coe})

import math
B=20/math.log(2)
A=600+B*math.log(1/20)
#基础分
score=round(A-B*intercept[0],0)
```

Result

	feature	cut	woe	score
0	Revol	0.0	0.119231	2.0
1	Revol	1.0	-2.226411	-38.0
2	age	21.0	-0.487183	-11.0
3	age	39.0	-0.252557	-6.0
4	age	48.0	-0.078292	-2.0
5	age	56.0	0.430123	10.0
6	age	65.0	1.054168	25.0
7	Num90late	0.0	0.375825	5.0
8	Num90late	1.0	-1.971860	-28.0
9	Num90late	2.0	-2.646308	-37.0
10	Num90late	3.0	-2.961503	-42.0
11	Num90late	4.0	-3.358818	-47.0
12	Num90late	5.0	-3.197806	-45.0
13	Num90late	6.0	-3.055631	-43.0
14	Num90late	7.0	-4.138243	-58.0
15	Num90late	8.0	-3.566457	-50.0
16	Num90late	9.0	-3.679786	-52.0
17	Num90late	10.0	-2.817220	-40.0
18	Num60-89late	0.0	0.274309	3.0
19	Num60-89late	1.0	-1.850365	-20.0
20	Num60-89late	2.0	-2.657322	-29.0
21	Num60-89late	3.0	-2.915869	-32.0
22	Num60-89late	4.0	-3.135674	-35.0
23	Num60-89late	5.0	-3.129739	-35.0

Performance

with common feature engineering

model: lightgbm < LR < random forest

result: 81.75 < 81.77 < 81.78

the performance is nearly the same, but it's not the end!

we'll try WOE+Auto-Encoder to make new feature extractor!

we'll try WOE+Auto-Encoder to make new feature extractor!

初步特征工程+WOE编 ____ 码后得到的13个特征

神经网络自编码进一 步提取为3个特征

创新点:WOE编码+Autoencoder=New Feature

we'll try WOE+Auto-Encoder to make new feature extractor!

WOE编码+Auto-encoder 三维特征空间可视化 13-dimension -> 3-dimension 最终提取到的新特征 $\hat{\chi}$ -2 0 2 13 4 6 0 -1 -2 -3 创新点:WOE编码+Autoencoder=New Feature

we'll try WOE+Auto-Encoder to make new feature extractor!

WOE编码+Auto-encoder 三维特征空间可视化 13-dimension -> 3-dimension 最终提取到的新特征 13 1 0 -1 -2 创新点:WOE编码+Autoencoder=New Feature

we'll try WOE+Auto-Encoder to make new feature extractor!

WOE编码+Auto-encoder 13-dimension -> 3-dimension

———— 三维特征空间<mark>可视化</mark>

分类效果较为**明显!**

创新点:WOE编码+Autoencoder=New Feature

we'll try WOE+Auto-Encoder to make new feature extractor!

WOE编码+Auto-encoder 13-dimension -> 3-dimension

三维特征空间可视化

implement with PyTorch

Auto-encoder神经网络实现示意图:

```
class AutoEncoder(nn.Module):
   def init (self):
        super(AutoEncoder, self). init ()
        self.encoder = nn.Sequential(
            nn.Linear(13, 64),
            nn.Tanh(),
            nn.Linear(64, 32),
            nn.Tanh(),
            nn.Linear(32, 3)
        self.decoder = nn.Sequential(
            nn.Linear(3, 32),
            nn.Tanh(),
            nn.Linear(32, 64),
            nn.Tanh(),
            nn.Linear(64, 13)
   def forward(self, x):
        encode = self.encoder(x)
        decode = self.decoder(encode)
        return encode, decode
```

创新点:WOE编码+Autoencoder=New Feature

相同参数的模型 old new 不同的特征工程 Validation set: Validation set: auc by sklearn: 0.8175 auc by sklearn: 0.8269 1%~3% 个 Lightgbm: Training set: Training set: auc by sklearn: 0.8193 auc by sklearn: 0.8517 Random estimators: 19 depth: 9 estimators: 19 depth: 9 auc train: 0.8195 auc train: 0.8420 1%~3% 个 auc validation: 0.8177 auc validation: 0.8227 Forest: Logistic Validation set: Validation set: auc by sklearn: 0.7752 auc by sklearn: 0.8177 3%~4% ↓ Regression: Training set: Training set: auc by sklearn: 0.7730 auc by sklearn: 0.8182

相同参数的模型 + 不同的特征工程

Lightgbm: 1%~3% ↑

Random

Forest:

1%~3% ↑

Logistic

Regression: 3%~4% ↓

WOE编码+Auto-encoder 的特征工程对树模型的 性能改进贡献了一定的 作用!

DNN Classifier

(simple implement)

```
class CreditClassifier(nn.Module):
    def __init__(self):
        super(CreditClassifier, self).__init__()
        self.layer1 = nn.Linear(3, 32)
        self.layer2 = nn.Linear(32, 16)
        self.layer3 = nn.Linear(16, 1)

def forward(self, x):
        x = torch.relu(self.layer1(x))
        x = torch.relu(self.layer2(x))
        x = torch.sigmoid(self.layer3(x))
        return x
```

神经网络分类器

Mean Square Error

Adam (lr=0.01)

```
classifier = CreditClassifier()

optim = torch.optim.Adam(classifier.parameters(), lr=0.01)

mse_loss = nn.MSELoss()

EPOCH = 100

for epoch in range(EPOCH):
    for batch, (x, y) in enumerate(train_loader):
        y_hat = classifier(x)
        loss = mse_loss(y_hat, y.type(torch.FloatTensor).view(-1,1))
        optim.zero_grad()
        loss.backward()
        optim.step()

    if batch % 100 == 0:
        print('epoch_%d batch_%d loss: %.4f' % (epoch, batch, loss.data.item()))
```

DNN Classifier (simple implement)

```
class CreditClassifier(nn.Module):
    def __init__(self):
        super(CreditClassifier, self).__init__()
        self.layer1 = nn.Linear(3, 32)
        self.layer2 = nn.Linear(32, 16)
        self.layer3 = nn.Linear(16, 1)

def forward(self, x):
        x = torch.relu(self.layer1(x))
        x = torch.relu(self.layer2(x))
        x = torch.sigmoid(self.layer3(x))
        return x
```

神经网络分类器

Mean Square Error

Adam (lr=0.01)

result:

```
auc_train: 0.8307
auc validation: 0.8242
```

Performance Compare

WOE + Auto-encoder

DNN classifier:

auc_train: 0.8307
auc validation: 0.8242

Lightgbm:

Validation set: auc by sklearn: 0.8269

1%~3% ↑

Training set:

auc by sklearn: 0.8517

Random Forest:

estimators: 19 depth: 9 auc train: 0.8420

auc validation: 0.8227

1%~3% 个

Logistic Regression:

Validation set:

auc by sklearn: 0.7752

.....

Training set:

auc by sklearn: 0.7730

3%~4% ↓

Final Choice

WOE + Auto-encoder

+

LightGBM

Leaf-wise tree growth

Thanks