Architecture des ordinateurs 1

 ${\sf Jean-Luc\ Scharbarg\ -\ ENSEEIHT\ -\ Dpt.\ SN}$

Octobre 2020

Organisation de l'enseignement

- Semestre 1 (de l'algorithme au circuit configurable)
 - ▶ 4 Cours, 3 TD, 4 TP, 1 examen écrit + 1 note de TP (présence + travail réalisé)
 - ► Introduction à la représentation des données
 - Circuits logiques
 - ★ Logique combinatoire
 - ★ Logique séquentielle
 - ★ Circuits séquentiels remarquables
 - ★ Construction de circuits séquentiels complexes
- Semestre 2 (de l'algorithme au processeur)
 - → 3 Cours, 3 TD, 6 TP, 1 examen écrit + 1 note de TP (présence + travail réalisé)
 - ► Introduction à l'exécution d'un programme écrit dans un langage de haut niveau sur une architecture matérielle
 - Introduction à l'échange d'informations entre un processeur et son environnement
 - Introduction aux caractéristiques des processeurs actuels
 - ▶ Mise en œuvre d'un processeur simple

Un ordinateur, c'est quoi ?

- Un ou plusieurs processeurs qui exécutent des programmes,
- Des moyens pour envoyer des ordres (clavier, souris, ...),
- Des moyens pour récupérer des résultats (écran, ...),
- Des moyens pour stocker de l'information (mémoire, disques, ...)
- Des moyens pour dialoguer avec d'autres dispositifs (interface réseau, ports, ...)

Organisation générale d'un ordinateur

- Exécution de programmes par l'unité centrale
 - Lecture et écriture de données en mémoire centrale
 - Interactions avec l'extérieur
- Programmes et données stockées et véhiculées logiquement sous la forme de chiffres binaires ou bits (binary digits), physiquement sous la forme de signaux électroniques
- Développement d'un programme
 - ▶ Ecriture du programme dans un langage de "haut niveau" (e.g. Pascal)
 - Traduction du programme en langage machine (instructions plus rudimentaires)
 - Exécution du programme en langage machine

Modèle de Von Neuman

• Une mémoire commune aux données et aux programmes

Modèle de Harvard

• Deux mémoires séparées pour les données et les programmes

Représentation de l'information

- Calculateur : traitement automatisé des données ⇒ représentation de ces données en machine :
 - Nombres entiers signés ou non (toutes les variables entires)
 - Nombres réels (toutes les variables réelles)
 - Caractères (les variables caractères ou chaînes de caractères, le code source d'un programme, *Idots*)
 - Structures de données (assemblage des autres types de données)
 - Instructions (le code exécutable du programme)
- Représentation numérique en binaire (suites de 0 et de 1)
- Un chiffre binaire : un binary digit (bit)
- Dans cette partie du cours :
 - Représentation des entiers non signés en binaire pur
 - Représentation des entiers signés en complément à deux
 - Représentation des réels en virgule fixe
 - Représentation des réels en virgule flottante
 - ► Représentation des caractères

- Vaieur de l'entier naturel en base deux sur n bits \Rightarrow représentation des entiers naturels α tels que $0 \le \alpha \le 2^n 1$
- Le nombre de valeurs représentables est fini
- $A^n = (a_{n-1}^n, \dots, a_0^n)$: représentation de α : $\alpha = \sum_{i=0}^{n-1} (a_i^n \times 2^i)$
- Exemple :

$$\alpha_2 = 10110011$$

$$\alpha_{10} = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$
$$\alpha_{10} = 128 + 32 + 16 + 2 + 1 = 179$$

- Passage décimal \rightarrow binaire pur :
 - ▶ Divisions successives par 2

	Quotient	Reste
37/2	18	1
18/2	9	0
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

$$\Rightarrow 37_{10} = 100101_2$$

Justification

$$lpha = a_{n-1} \times 2^{n-1} + a_{n-2} \times 2^{n-2} + \ldots + a_1 \times 2^1 + a_0 \times 2^0$$

$$\alpha = 2 \times (a_{n-1} \times 2^{n-2} + a_{n-2} \times 2^{n-3} + \ldots + a_1 \times 2^0) + a_0$$

$$\alpha = 2 \times Quotient + Reste$$

- Passage binaire pur ⇒ décimal :
 - schéma de Horner : $\alpha = \sum_{i=0}^{n-1} (a_i^n \times 2^i)$
 - $\star S_0 = 0$
 - ★ $S_i = 2 \times S_{i-1} + a_{n-1}^n$ pour $1 \le i \le n$
 - ★ S_n : valeur de α en décimal
 - Exemple : $\alpha = 111001_2$
 - ★ $S_0 = 0$
 - ★ $S_1 = 2 \times S_0 + a_5 = 2 \times 0 + 1 = 1$
 - * $S_2 = 2 \times S_1 + a_4 = 2 \times 1 + 1 = 3$
 - ★ $S_3 = 2 \times S_2 + a_3 = 2 \times 3 + 1 = 7$
 - ★ $S_4 = 2 \times S_3 + a_2 = 2 \times 7 + 0 = 14$
 - ★ $S_5 = 2 \times S_4 + a_1 = 2 \times 14 + 0 = 28$
 - ★ $S_6 = 2 \times S_5 + a_0 = 2 \times 28 + 1 = 57$

 Opérations arithmétiques similaires aux opérations arithmétiques en décimal

- Ecriture plus compacte :
 - ▶ Représentation en octal (base huit ⇒ chiffres de 0 à 7)

Base 10: 8607

Base 2: 10 000 110 011 111 Base 8: 2 0 6 3 7

▶ Représentation en hexadécimal (base 16 \Rightarrow chiffres 0, ..., 9, A, ..., F)

Base 10: 8607

Base 2: 10 0001 1001 1111 Base 16: 2 1 9 F

Entiers signés

- Représentation d'un entier (positif, nul ou négatif) α par un nombre binaire sur n bits $A^n = (a_{n-1}^n, \dots, a_0^n) \in [0, 2^n 1]$
- Solution la plus immédiate : un bit pour le signe et n-1 bits pour la valeur absolue
 - ▶ a_{n-1}^n : bit de signe : 0 si $\alpha \ge 0$, 1 sinon
 - $(a_{n-2}^n, \ldots, a_0^n)$: représentation de $|\alpha|$ en binaire pur
 - exemples sur 8 bits :

$$\alpha = 11$$
 \Rightarrow $A^n = 00001011$
 $\alpha = -13$ \Rightarrow $A^n = 10001101$

- ▶ Nombres représentables sur n bits : $-(2^{n-1}-1) \le \alpha \le 2^{n-1}-1$
- ▶ Deux représentations pour $\alpha = 0:00...0$ et 10...0
- Intervalle des nombres représentables symétrique
- Passage d'une représentation sur n bits à une représentation sur r bits avec r > n: $A^n = (a^n_{n-1}, \dots, a^n_0) \Rightarrow A^r = (a^n_{n-1}, 0, \dots, 0, a^n_{n-2}, \dots, a^n_0)$
- ▶ Pas de bonnes propriétés arithmétiques ⇒ opérations de base complexes
- Représentation avec de bonnes propriétés arithmétiques : le complément à deux

Entiers signés en complément à deux

- Objectif: rendre le signe des opérandes transparents pour les opérations arithmétiques (addition, soustraction, . . .)
- $A^n = (a_{n-1}^n, \dots, a_0^n)$: représentation en complément à deux sur n bits de l'entier signé α $\alpha \geq 0 \implies A^n$: représentation de α en binaire pur

$$\alpha \geq 0 \quad \Rightarrow \quad A^n$$
: representation de α en binaire pur $\alpha < 0 \quad \Rightarrow \quad A^n$: représentation de $\alpha + 2^n$ en binaire pur

- Nombres signés représentables sur n bits : $-(2^{n-1}) \le \alpha \le 2^{n-1} 1$
- Exemple pour n = 3: $-4 \le \alpha \le 3$

$\alpha = -4$	$A^n = 100$
$\alpha = -3$	$A^n = 101$
$\alpha = -2$	$A^n = 110$
$\alpha = -1$	$A^{n} = 111$

$$\alpha = 0 \quad A^{n} = 000$$
 $\alpha = 1 \quad A^{n} = 001$
 $\alpha = 2 \quad A^{n} = 010$
 $\alpha = 3 \quad A^{n} = 011$

• Passage d'une représentation sur n bits à une représentation sur r bits avec r > n:

$$A^n = (a_{n-1}^n, \dots, a_0^n) \Rightarrow A^r = (a_{n-1}^n, \dots, a_{n-1}^n, a_{n-2}^n, \dots, a_0^n)$$

Entiers signés en complément à deux

• Passage de la représentation de α à la représentation de $-\alpha$: Compémentation bit à bit et ajout de 1 modulo 2^n

$$lpha = 6 \Rightarrow A^8 = 00000110$$
 $-lpha = -6 \Rightarrow M_A^8 = 11111001$
 11111010

- Opérations arithmétiques : A^n : représentation de α , B^n : représentation de β
 - ▶ S^n : représentation de $\alpha + \beta$ si pas de débordement ($\alpha + \beta$ représentatble en complément à deux sur n bits) alors

$$S^n = (A^n + B^n) \bmod 2^n$$

▶ D^n : représentation de $\alpha - \beta = \alpha + (-\beta)$ ⇒ on se ramène à une addition

Représentation des nombres réels

- Représentation par une séquence de longueur finie de bits ⇒ nombre fini de valeurs représentables ⇒ pas de représentation des nombres réels au sens mathématique du terme
- Critères d'évaluation d'une représentation des nombres réels
 - Intervalle des nombres représentables
 - Précision (pourcentage d'erreur)
 - Complexité de mise en œuvre
- Deux grandes classes de représentations
 - Représentations en virgule fixe
 - Les plus simples
 - Pas très bonnes en terme de précision et d'intervalles de nombre représentables
 - Représentations en virgule flottante
 - ★ Plus complexes à mettre en œuvre
 - * bonnes en terme de précision et d'intervalle de nombres représentables
 - ★ Norme: format IEEE 754

Nombres réels en virgule fixe

- Utilisation de la représentation des nombres entiers, avec une virgule implicite toujours au même endroit dans la représentation du nombre
- Nombre réel α non signé : représentation $A^n = (a_{n-1}^n, \dots, a_0^n)$ sur n bits, dont d après la virgule

$$\alpha = \sum_{i=0}^{n-1} (a_i^n \times 2^{i-d})$$

• Exemple avec n = 16 et d = 8

$$A^{n} = 00100001 \ 10010000 \implies \alpha = 2^{5} + 2^{0} + 2^{-1} + 2^{-4}$$

 $\alpha = 32 + 1 + \frac{1}{2} + \frac{1}{16}$
 $\alpha = 33.5625$

• Calcule de la représentation en virgule fixe

	Quotient	Reste
6/2	3	0
3/2	1	1
1/2	0	1
/		

	Produit	Partie entière
0.375×2	0.75	0
0.75×2	1.5	1
0.5×2	1.0	1

 \Rightarrow 6.375₁₀ = 110.011₂

Nombres réels en virgule fixe

- Représentation non exacte de la plupart des nombres réels Exemple avec n=16 et $d=8:11.8_{10}=00001011.11001100_2$
- Opérations arithmétiques en virgule fixe similaires aux opérations arithmétiques sur les entiers non signés

 Nombres réels signés en virgule fixe : utilisation du complément à deux en faisant abstraction de la virgule

Exemple pour
$$n = 7$$
 et $d = 3$

$$\alpha = 2.75 \Rightarrow \text{Repr\'esentation}: 0010.110$$
 $-\alpha = -2.75 \Rightarrow \text{Repr\'esentation}: 1101.010$

• Opérations arithmétiques comme sur les entiers signés

Nombres réels en virgule fixe

• Différence entre deux valeurs consécutives représentables exactement : 2^{-d} , constante sur tout l'intervalle de représentation Exemple pour n=7 et d=3 0000.000 $\Rightarrow \alpha = 0$ 0000.001 $\Rightarrow \alpha = 2^{-3}$ 0000.010 $\Rightarrow \alpha = 2 \times 2^{-3}$

...

- Pourcentage d'erreur potentielle d'autant plus fort que la valeur absolue du nombre réel représenté est petite
- Intervalle des valeurs représentable relativement réduit : $[-2^{n-d-1}, 2^{n-d-1} 2^{-d}]$ Pour n=32 et d=16 : $[-2^{15}, 2^{15} - 2^{-16}]$
- Représentation en virgule fixe de moins en moins utilisée de nos jours

Nombres réels en virgule flottante : principe

S'inspire de la notation scientifique des nombres réels :

$$\alpha = f \times 10^e$$
 (en base 10)

- f: mantisse, e: exposant
- Notation non unique : $3.14 \times 10^0 = 0.314 \times 10^1 = 314 \times 10^{-2}$
- Virgule flottante : notation scientifique en base 2 α représenté par $\mu_2 \times 2^{\epsilon_2}$
- Deux possibilités pour la normalisation de l'écriture :

$$\mu \in [0.5, 1[\Rightarrow \mu = 0.1...]$$

 $\mu \in [1, 2[\Rightarrow \mu = 1....]$

Représentation en machine avec trois champs

S	Ε	М	
		4 1 1.	

S: signe du nombre sur 1 bit

E : exposant en excédent sur e bits

M: mantisse sur m bits

Nombres réels en virgule flottante : IEEE 754

- Standard défini en 1985 par l'IEEE (Institute of Electrical and Electronics Engineers)
- Utilisé par la plupart des processeurs actuels
- Deux formats principaux définis :
 - ▶ simple précision sur 32 bits : e = 8, m = 23
 - double précision sur 64 bits : e = 11, m = 52
- Nombres réels normalisés : $\alpha = 1.\mu' \times 2^{\epsilon}$

$$M = \mu'$$
 et $E = \epsilon + 2^{e-1} - 1$

Exemple :
$$\alpha = -9.5 \Rightarrow \alpha = -1.0011_2 \times 2^{11_2}$$

Simple précision : S=1

$$E = 3 + 127 = 130_{10} = 10000010_2$$

$$M = 00110...0$$

Double précision : S = 1

$$E = 3 + 1023 = 1026_{10} = 10 \dots 010_2$$

$$M = 00110...0$$

Nombres réels en virgule flottante : IEEE 754

- Nombres réels dénormalisés : représentation des nombres réels à très petite valeur absolue
 - ▶ tous les bits du champ E à $0 \Rightarrow \epsilon = -127$ (simple précision) ou $\epsilon = -1023$ (double précision)
 - ▶ la mantisse vaut 0.*M*
 - Exemple en simple précision : $S = 0, E = 0...0 M = 010...0 \Rightarrow \alpha_{10} = 0.25 \times 2^{-127}$
- Représentation de 0 : E = 0...0, M = 0...0, S indifférent
- Représentation de l'infini : $E = 1...1, M \neq 0...0$
- Représentation de NaN (Not a Number : indéfini) : E = 1...1, M = 0...0
- Intervalle des nombres représentables
 - ▶ Simple précision : de -10^{38} à 10^{38}
 - ▶ Double précision : de -10^{308} à 10^{308}
- Pourcentage d'erreur potentielle constant

Représentation des caractères

- Codage numérique d'un répertoire de caractères
- La longueur du code définit le nombre maximum de caractères du répertoire
- Le code ASCII (American Standard Code for Information Interchange)
 - Le standard sur les machines actuelles
 - Codage sur 7 bits ⇒ 128 caractères possibles
 - Code construit pour simplifier la manipulation des caractères
- Le code ISO-8859-1 (ASCII étendu)
 - Codage sur 8 bits ⇒ 256 caractères possibles
 - Langues latines (accents, . . .)
- Les codes universels sur 2 ou 4 octets

Table ASCII (1)

Table 73CH (1)								
Hexa	Carac	Hexa	Carac	Hexa	Carac	Hexa	Carac	
0	NUL	10	DLE	20		30	0	
1	SOH	11	DC1	21	!	31	1	
2	STX	12	DC2	22	"	32	2	
3	ETX	13	DC3	23	#	33	3	
4	EOT	14	DC4	24	\$	34	4	
5	ENQ	15	NAK	25	%	35	5	
6	ACK	16	SYN	26	&	36	6	
7	BEL	17	ETB	27	,	37	7	
8	BS	18	CAN	28	(38	8	
9	TAB	19	EM	29)	39	9	
Α	LF	1A	SUB	2A	*	3A	:	
В	VT	1B	ESC	2B	+	3B	;	
C	FF	1C	FS	2C	,	3C	<	
D	CR	1D	GS	2D	-	3D	=	
E	SO	1E	RS	2E	.	3E	>	
F	SI	1F	US	2F	/	3F	?	

Table ASCII (2)

Table ASCII (2)								
	Hexa	Carac	Hexa	Carac	Hexa	Carac	Hexa	Carac
	40	@	50	Р	60	4	70	р
	41	A	51	Q	61	a	71	q
	42	В	52	R	62	b	72	r
	43	C	53	S	63	С	73	s
	44	D	54	T	64	d	74	t
	45	E	55	U	65	e	75	u
	46	F	56	V	66	f	76	v
	47	G	57	W	67	g	77	w
	48	H	58	X	68	h	78	×
	49	1	59	Y	69	i	79	у
	4A	J	5A	Z	6A	j	7A	z
	4B	K	5B]	6B	k	7B	{
	4C	L	5C	\	6C	1	7C	
	4D	М	5D]	6D	m	7D	}
	4E	N	5E	^	6E	n	7E	~
	4F	0	5F	_	6F	0	7F	DEL