Notas de Clase Sobre Regresión Lineal Regresión Lineal Simple (RLS): Parte III

Nelfi González Alvarez

Profesora Asociada Escuela de Estadística e-mail: ngonzale@unal.edu.co

Isabel Cristina Ramírez Guevara

Profesora Asociada Escuela de Estadística e-mail: iscramirezgu@unal.edu.co

Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín

Escuela de Estadística 2021

Contenido I

Tipos de diagnósticos

Contenido

- Tipos de diagnósticos
 - Test de carencia de ajuste: No linealidad de la función de regresión
 - Tests de homocedasticidad
 - Evaluación de la independencia
 - Evaluación de normalidad y outliers

Test de carencia de ajuste: No linealidad de la función de regresión Tests de homocedasticidad Evaluación de la independencia Evaluación de normalidad y outliers

Tipos de diagnósticos

Para la variable predictora

fluenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.

Patrones temporales en los valores x? Gráfico de x ys. tiempo o algún indice

ara el modelo

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x? Gráfico de x vs. tiempo o algún índice de ordenación

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

- La función de regresión es lineal? Test de carencia de ajuste (si hay réplicas), gráficos de residuos.
- Los errores tienen varianza constante?
 Tests de homocedasticidad, gráficos de residuos.
- Los errores son independientes? Tests de incorrelación y gráfico residuos vs tiempo (si se conoce orden temporal).
- Los errores son normales? Gráfico de probabilidad normal y tests para normalidad, con residuos.
- Hay observaciones outliers? Análisis residuos estandarizados, residuos estudentizados
- No hace falta una o más variables predictoras? Gráficos residuos vs. otras variables no consideradas.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x? Gráfico de x vs. tiempo o algún índice de ordenación

- · La función de regresión es lineal? Test de carencia de ajuste (si hay réplicas), gráficos de residuos.
- Los errores tienen varianza constante? Tests de homocedasticidad, gráficos de residuos.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

- La función de regresión es lineal? Test de carencia de ajuste (si hay réplicas), gráficos de residuos.
- Los errores tienen varianza constante?
 Tests de homocedasticidad, gráficos de residuos.
- Los errores son independientes? Tests de incorrelación y gráfico residuos vs. tiempo (si se conoce orden temporal).
- Los errores son normales? Gráfico de probabilidad normal y tests para normalidad, con residuos.
- Hay observaciones outliers? Análisis residuos estandarizados, residuos estudentizados.
- No hace falta una o más variables predictoras? Gráficos residuos vs. otras variables no consideradas.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

- La función de regresión es lineal? Test de carencia de ajuste (si hay réplicas), gráficos de residuos.
- Los errores tienen varianza constante?
 Tests de homocedasticidad, gráficos de residuos.
- Los errores son independientes? Tests de incorrelación y gráfico residuos vs. tiempo (si se conoce orden temporal).
- Los errores son normales? Gráfico de probabilidad normal y tests para normalidad, con residuos.
- Hay observaciones outliers? Análisis residuos estandarizados, residuos estudentizados.
- No hace falta una o más variables predictoras? Gráficos residuos vs. otras variables no consideradas.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

- La función de regresión es lineal? Test de carencia de ajuste (si hay réplicas), gráficos de residuos.
- Los errores tienen varianza constante?
 Tests de homocedasticidad, gráficos de residuos.
- Los errores son independientes? Tests de incorrelación y gráfico residuos vs. tiempo (si se conoce orden temporal).
- Los errores son normales? Gráfico de probabilidad normal y tests para normalidad, con residuos.
- Hay observaciones outliers? Análisis residuos estandarizados, residuos estudentizados.
- No hace falta una o más variables predictoras? Gráficos residuos vs. otras variables no consideradas.

Para la variable predictora

- Observaciones x extremas que puedan influenciar el ajuste de regresión? Un análisis descriptivo: box plots, diagramas de puntos.
- Patrones temporales en los valores x?
 Gráfico de x vs. tiempo o algún índice de ordenación.

- La función de regresión es lineal? Test de carencia de ajuste (si hay réplicas), gráficos de residuos.
- Los errores tienen varianza constante?
 Tests de homocedasticidad, gráficos de residuos.
- Los errores son independientes? Tests de incorrelación y gráfico residuos vs. tiempo (si se conoce orden temporal).
- Los errores son normales? Gráfico de probabilidad normal y tests para normalidad, con residuos.
- Hay observaciones outliers? Análisis residuos estandarizados, residuos estudentizados.
- No hace falta una o más variables predictoras? Gráficos residuos vs. otras variables no consideradas.

Comportamientos esperados

Figura 1: Ilustración de un modelo lineal adecuado con varianza constante y supuesto de normalidad válido. (a) gráfico de dispersión; (b) gráfico de probabilidad normal con residuos; (c) gráfico de residuos vs. \widehat{v} .

Por qué se espera un patrón rectangular en la dispersión de residuos?

Figura 2: En (a) \widehat{E}_i vs. \widehat{y} y (b) \widehat{E}_i vs. x, con n grande, en cada nivel de \widehat{y} y de x, se espera que los \widehat{E}_i se comporten como v.a normales, independientes, de media cero y con misma varianza, como consecuencia de que los verdaderos errores satisfacen E_i $\stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. También se espera que no más de un 5 % de los residuos estén por fuera de las bandas $\pm 2\widehat{\sigma}$.

Nota 1.

No se grafican E_i vs. y_i , desde que $Cov(E_i, Y_i) = (1 - h_{ii})\sigma^2 \rightarrow \sigma^2$, con $n \rightarrow \infty$, de modo que a mayor σ^2 , veriamos en esa gráfica una tendencia lineal con pendiente positiva, y no un gráfico como los ilustrados previamente.

Por qué se espera un patrón rectangular en la dispersión de residuos?

Figura 2: En (a) \widehat{E}_i vs. \widehat{y} y (b) \widehat{E}_i vs. x, con n grande, en cada nivel de \widehat{y} y de x, se espera que los \widehat{E}_i se comporten como v.a normales, independientes, de media cero y con misma varianza, como consecuencia de que los verdaderos errores satisfacen E_i $\stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. También se espera que no más de un 5 % de los residuos estén por fuera de las bandas $\pm 2\widehat{\sigma}$.

Nota 1.1

No se grafican E_i vs. y_i , desde que $Cov(E_i, Y_i) = (1 - h_{ii})\sigma^2 \to \sigma^2$, con $n \to \infty$, de modo que a mayor σ^2 , veriamos en esa gráfica una tendencia lineal con pendiente positiva, y no un gráfico como los ilustrados previamente.

Ejemplo patrones que indican varianza no constante

Figura 3: Patrón de embudo: (a) gráfico de dispersión con recta ajustada; (c) residuos vs. x. Patrón de balón de fútbol americano: (b) gráfico de dispersión con recta ajustada; (d) residuos vs. x.

Ejemplo patrón que indica carencia de ajuste

Figura 4: Ejemplo del caso donde el modelo lineal entre y y x no es adecuado, pero la varianza es constante: (a) gráfico de dispersión con recta ajustada, (b) residuos vs. x y (c) residuos vs. \widehat{y} .

Ejemplo patrón carencia de ajuste junto con varianza no constante

Figura 5: Ejemplo del caso donde el modelo lineal entre y y x no es adecuado, ni la varianza es constante: (a) gráfico de dispersión con recta ajustada (b) residuos vs. x y (c) residuos vs. \hat{y} .

Ejemplo patrón cuando hay una variable explicatoria omitida

Figura 6: Modelo considerado: $Y_i = \beta_0 + \beta_1 x_1 + E_i$, $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. (a) Ajuste de y vs. x_1 ; (b) gráf. de y vs. x_2 , muestra que también hay relación lineal con x_2 (predictor omitido); (c) \widehat{E} vs. x_1 ; (d) \widehat{E} vs. x_2 , muestra que es necesario incluir a x_2 en el modelo.

Test de carencia de ajuste: No linealidad de la función de regresión

- El test asume que los valores de Y dado X son:
 - independientes
 - se distribuyen en forma normal
 - tienen varianza constante
- Se requiere que en uno o más valores de X haya más de una observación de Y ó réplicas.
 Usaremos la siguiente notación:

 n_i, número de observaciones de Y tomadas en el i-ésimo nivel de X. Por tanto el total de observaciones n corresponde a

$$n = \sum_{i=1}^{K} n_i. \tag{1}$$

El test define el modelo lineal general que corresponde a

$$Y_{ij} = \mu_i + E_{ij}, \text{ con } E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \forall i, j, i = 1, \dots, k, j = 1, \dots, n_i,$$
 (2)

donde
$$\mu_i = \mathbb{E}[Y_{ij}]$$
,

Test de carencia de ajuste: No linealidad de la función de regresión

El test asume que los valores de Y dado X son:

independientesse distribuyen en forma normal

- Se requiere que en uno o más valores de X haya más de una observación de Y ó réplicas.
 Usaremos la siguiente notación:
 - *Y_{ij}*, la respuesta *j*-ésima en el *i*-ésimo nivel de *X*;
 - x_i , i-ésimo nivel de X; supondremos i = 1, 2, ..., k;
 - n_i , número de observaciones de Y tomadas en el i-ésimo nivel de X. Por tanto, el total de observaciones n corresponde a

$$n = \sum_{i=1}^{k} n_i. \tag{1}$$

• El test define el modelo lineal general que corresponde a

$$Y_{ij} = \mu_i + E_{ij}, \text{ con } E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \forall i, j, i = 1, \dots, k, j = 1, \dots, n_i,$$
 (2)

donde $\mu_i = \mathbb{E}[Y_{ij}]$,

Test de carencia de ajuste: No linealidad de la función de regresión

- El test asume que los valores de Y dado X son
 - independientes
 - se distribuyen en forma normal
- tienen varianza constante
- Se requiere que en uno o mas vaiores ae x naya mas ae una observación ae y o replicas Usaremos la siguiente notación:
 - Y_{ij} , la respuesta j-esima en el i-esimo nivel de X;
 - x_i , *i*-ésimo nivel de X; supondremos i = 1, 2, ..., k
 - n_{ij}, número de observaciones de Y tomadas en el i-ésimo nivel de X. Por tanto

$$n = \sum_{i=1}^{k} n_i$$
.

El test define el modelo lineal general que corresponde a

$$Y_{ij} = \mu_i + E_{ij}$$
, con $E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, $\forall i, j, i = 1, ..., k, j = 1, ..., n_i$, (2)

donde
$$\mu_i = E[Y_{ij}]$$
,

Tabla 1: Comparación entre el MRLS y el modelo lineal general

Características	MRLS	Modelo lineal general				
Ecuación	$Y_{ij} = \beta_0 + \beta_1 x_i + E_{ij}$	$Y_{ij} = \mu_i + E_{ij}$				
	$E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2) \ \forall \ i = 1, \dots, k, \ j = 1, \dots, n_i$	$E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2) \ \forall \ i = 1, \dots, k, \ j = 1, \dots, n_i$				
Respuesta media	$E[Y_{ij}] = \beta_0 + \beta_1 x_i$	$\mathbb{E}[Y_{ij}] = \mu_i$				
Respuesta estimada	$\widehat{Y}_{ij} = \widehat{Y}_{i\bullet} = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$	$\widehat{\mathbf{Y}}_{ij} = \bar{\mathbf{Y}}_{i\bullet} = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{Y}_{ij}$				
1	Todas las obs. en mismo nivel x_i	Todas las obs. en mismo nivel x_i				
	tienen misma respuesta estimada: \widehat{Y}_{iullet}	tienen misma respuesta estimada: \bar{Y}_{iullet}				
Residuos de ajuste	$\widehat{E}_{ij} = Y_{ij} - \widehat{Y}_{i\bullet}$	$\widehat{E}_{ij} = Y_{ij} - \bar{Y}_{i\bullet}$				
Suma cuad. residuos	$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(\mathbf{Y}_{ij} - \widehat{\mathbf{Y}}_{i\bullet} \right)^2$	$SSPE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\bullet})^2$				
		Conocido como suma de cuadrados de error puro				
	g.1(SSE) = n - 2	g.l(SSPE) = n - k				

Tenemos la siguiente descomposición bajo supuestos $E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2) \ \forall \ i=1,...,k \ j=1,...,n_i$:

S.C error puro

S.C carencia de ajusto

Tabla 1: Comparación entre el MRLS y el modelo lineal general

Características	MRLS	Modelo lineal general		
Ecuación	$Y_{ij} = \beta_0 + \beta_1 x_i + E_{ij}$	$Y_{ij} = \mu_i + E_{ij}$		
	$E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2) \ \forall \ i = 1, \dots, k, \ j = 1, \dots, n_i$	$E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2) \ \forall \ i = 1,, k, j = 1,, n_i$		
Respuesta media	$E[Y_{ij}] = \beta_0 + \beta_1 x_i$	$\mathbb{E}[Y_{ij}] = \mu_i$		
Respuesta estimada	$\widehat{Y}_{ij} = \widehat{Y}_{i\bullet} = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$	$\widehat{Y}_{ij} = \bar{Y}_{i\bullet} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$		
	Todas las obs. en mismo nivel x_i	Todas las obs. en mismo nivel x_i		
	tienen misma respuesta estimada: \widehat{Y}_{iullet}	tienen misma respuesta estimada: Y_{iullet}		
Residuos de ajuste	$\widehat{E}_{ij} = Y_{ij} - \widehat{Y}_{i\bullet}$	$\widehat{E}_{ij} = Y_{ij} - \bar{Y}_{i\bullet}$		
	$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(\mathbf{Y}_{ij} - \widehat{\mathbf{Y}}_{i\bullet} \right)^2$	$SSPE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\bullet})^2$		
Suma cuad. residuos		Conocido como suma de cuadrados de error puro		
	g.1(SSE) = n - 2	g.1(SSPE) = n - k		

Tenemos la siguiente descomposición bajo supuestos $E_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2) \ \forall \ i=1,\dots, k \ j=1,\dots, n_i$:

(3)

Despejando tenemos para la suma de cuadrados de carencia de ajuste:

$$SSLOF = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\widehat{Y}_{i\bullet} - \widehat{Y}_{i\bullet})^2 = \sum_{i=1}^{k} n_i (\widehat{Y}_{i\bullet} - \widehat{Y}_{i\bullet})^2, \text{ con g.l}(SSLOF) = k - 2.$$
 (4)

Note que en SSLOF se comparan las estimaciones de la respuesta media de los modelos lineal general y MRLS, mediante las diferencias $\bar{Y}_{i\bullet} - \widehat{Y}_{i\bullet}$

bajo H_0 y validez supuestos sobre E_{ij} , Estadístico de prueba en test LOF cumple que $F_{0,\mathrm{LOF}} \sim f_{k-2,n-k}$

Evaluación de la independencia
Evaluación de normalidad y outliers

Despejando tenemos para la suma de cuadrados de carencia de ajuste:

$$SSLOF = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\widehat{Y}_{i\bullet} - \widehat{Y}_{i\bullet})^2 = \sum_{i=1}^{k} n_i (\widehat{Y}_{i\bullet} - \widehat{Y}_{i\bullet})^2, \text{ con g.l.}(SSLOF) = k - 2.$$

$$(4)$$

Note que en SSLOF se comparan las estimaciones de la respuesta media de los modelos lineal general y MRLS, mediante las diferencias $\bar{Y}_{i\bullet} - \widehat{Y}_{i\bullet}$

Tabla 2: ANOVA para modelo de regresión y carencia de ajuste

Fuente	SC	gl	CM	ECM	F calculada	Valor P
Regresión	SSR	1	$MSR = \frac{SSR}{1}$	$\sigma^2 + \beta_1^2 S_{xx}$	F _{0,reg}	$P(f_{1,n-2} > F_{0,\text{reg}})$
LOF	SSLOF	k-2	$MSLOF = \frac{SSLOF}{k-2}$	$\sigma^2 + \frac{\sum\limits_{i=1}^k n_i Q_i^2}{k-2}$	F _{0,LOF}	$P(f_{k-2,n-k} > F_{0,LOF})$
Error Puro	SSPE	n-k	$MSPE = \frac{SSPE}{n-k}$	σ^2	Test LOF: con F _{0,LOF} probar que	
Error	SSE	n – 2	$MSE = \frac{SSE}{n-2}$	σ^2	$H_0: \mu_i = \beta_0 + \beta_1 x_i \text{ vs.}$	
Total	SST	n-1	$MST = \frac{SST}{n-1}$		$\mathrm{H}_1: \mu_i \neq \beta_0 + \beta_1 x_i$	

SC: Suma de cuadrados, CM: cuadrado medio y ECM cuadrado medio esperado es decir E [CM], gl: grados de libertad.

 $F_{0,\text{reg}} = \frac{\text{MSR}}{\text{MSE}}$ para test de significancia del modelo de regresión lineal simple. LOF: Carencia de ajuste, $Q_i = \mu_i - (\beta_0 + \beta_1 x_i)$, $F_{0,\text{LOF}} = \frac{\text{MSLOF}}{\text{MAPF}}$

bajo H_0 y validez supuestos sobre E_{ij} , Estadístico de prueba en test LOF cumple que $F_{0,\mathrm{LOF}} \sim f_{k-2,n-k}$

Algunas consideraciones en test LOF

- Cálculo del SSPE sólo usa aquellos niveles x_i de X en los cuales n_i > 1, entonces k es el número de niveles de X donde n_i > 1.
- Test LOF aplica con cualquier función de regresión lineal, g.l (SSLOF) = k p, cor
 p el número de parámetros en la función de regresión propuesta y con k > p.
- Como estimador de σ² cuando no hay carencia de ajuste, se usa el MSE de la regresión 3 no el MSPE como un estimador de la varianza, debido a que el primero tiene más grados de libertad.
- Cualquier inferencia sobre los parámetros del modelo lineal sólo debe llevarse a cabo luego de haber probado que el modelo de regresión lineal es apropiado.

Nota 1.1

Ver Código R 3.1 Capítulo 3 de notas de clase, para implementación del test de carencia de ajuste con función anova () combinada con aov () y con función summary () combinada con función rsm () de la librería del mismo nombre.

Algunas consideraciones en test LOF

- Cálculo del SSPE sólo usa aquellos niveles x_i de X en los cuales n_i > 1, entonces k es el número de niveles de X donde n_i > 1.
- Test LOF aplica con cualquier función de regresión lineal, g.l(SSLOF) = k p, con p el número de parámetros en la función de regresión propuesta y con k > p.
- Como estimador de σ² cuando no hay carencia de ajuste, se usa el MSE de la regresión y no el MSPE como un estimador de la varianza, debido a que el primero tiene más grados de libertad.
- Cualquier inferencia sobre los parámetros del modelo lineal sólo debe llevarse a cabo luego de haber probado que el modelo de regresión lineal es apropiado.

Nota 1.2

Ver Código R 3.1 Capítulo 3 de notas de clase, para implementación del test de carencia de ajuste con función anova () combinada con aov () y con función summary () combinada con función rsm() de la librería del mismo nombre.

Algunas consideraciones en test LOF

- Cálculo del SSPE sólo usa aquellos niveles x_i de X en los cuales n_i > 1, entonces k es el número de niveles de X donde n_i > 1.
- Test LOF aplica con cualquier función de regresión lineal, g.l(SSLOF) = k p, con p el número de parámetros en la función de regresión propuesta y con k > p.
- Como estimador de σ^2 cuando no hay carencia de ajuste, se usa el MSE de la regresión y no el MSPE como un estimador de la varianza, debido a que el primero tiene más grados de libertad.
- Cualquier inferencia sobre los parámetros del modelo lineal sólo debe llevarse a cabo luego de haber probado que el modelo de regresión lineal es apropiado.

Nota 1.2

Ver Código R 3.1 Capítulo 3 de notas de clase, para implementación del test de carencia de ajuste con función anova () combinada con aov () y con función summary () combinada con función rsm() de la librería del mismo nombre.

Algunas consideraciones en test LOF

- Cálculo del SSPE sólo usa aquellos niveles x_i de X en los cuales n_i > 1, entonces k es el número de niveles de X donde n_i > 1.
- Test LOF aplica con cualquier función de regresión lineal, g.l(SSLOF) = k p, con p el número de parámetros en la función de regresión propuesta y con k > p.
- Como estimador de σ^2 cuando no hay carencia de ajuste, se usa el MSE de la regresión y no el MSPE como un estimador de la varianza, debido a que el primero tiene más grados de libertad.
- Cualquier inferencia sobre los parámetros del modelo lineal sólo debe llevarse a cabo luego de haber probado que el modelo de regresión lineal es apropiado.

Nota 1.2

Ver Código R 3.1 Capítulo 3 de notas de clase, para implementación del test de carencia de ajuste con función anova () combinada con aov () y con función summary () combinada con función rsm () de la librería del mismo nombre.

Algunas consideraciones en test LOF

- Cálculo del SSPE sólo usa aquellos niveles x_i de X en los cuales n_i > 1, entonces k es el número de niveles de X donde n_i > 1.
- Test LOF aplica con cualquier función de regresión lineal, g.l(SSLOF) = k p, con p el número de parámetros en la función de regresión propuesta y con k > p.
- Como estimador de σ^2 cuando no hay carencia de ajuste, se usa el MSE de la regresión y no el MSPE como un estimador de la varianza, debido a que el primero tiene más grados de libertad.
- Cualquier inferencia sobre los parámetros del modelo lineal sólo debe llevarse a cabo luego de haber probado que el modelo de regresión lineal es apropiado.

Nota 1.2

Ver Código R 3.1 Capítulo 3 de notas de clase, para implementación del test de carencia de ajuste con función anova () combinada con aov () y con función summary () combinada con función rsm () de la librería del mismo nombre.

Algunas consideraciones en test LOF

- Cálculo del SSPE sólo usa aquellos niveles x_i de X en los cuales n_i > 1, entonces k es el número de niveles de X donde n_i > 1.
- Test LOF aplica con cualquier función de regresión lineal, g.l(SSLOF) = k p, con p el número de parámetros en la función de regresión propuesta y con k > p.
- Como estimador de σ^2 cuando no hay carencia de ajuste, se usa el MSE de la regresión y no el MSPE como un estimador de la varianza, debido a que el primero tiene más grados de libertad.
- Cualquier inferencia sobre los parámetros del modelo lineal sólo debe llevarse a cabo luego de haber probado que el modelo de regresión lineal es apropiado.

Nota 1.2

Ver Código R 3.1 Capítulo 3 de notas de clase, para implementación del test de carencia de ajuste con función anova () combinada con aov () y con función summary () combinada con función rsm () de la librería del mismo nombre.

Qué hacer si hay carencia de ajuste significativa?

- Desarrollar un modelo más apropiado (tal vez un modelo de regresión no lineal).
- Transformar las variables X y/o Y para tener un MRLS en los datos transformados.
- Regresión no paramétrica, para explorar y/o confirmar la forma de la función de regresión.

Qué hacer si hay carencia de ajuste significativa?

- Desarrollar un modelo más apropiado (tal vez un modelo de regresión no lineal).
- Transformar las variables X y/o Y para tener un MRLS en los datos transformados.
- Regresión no paramétrica, para explorar y/o confirmar la forma de la función de regresión.

Qué hacer si hay carencia de ajuste significativa?

- Desarrollar un modelo más apropiado (tal vez un modelo de regresión no lineal).
- Transformar las variables X y/o Y para tener un MRLS en los datos transformados.
- Regresión no paramétrica, para explorar y/o confirmar la forma de la función de regresión.

Tests de homocedasticidad

Considerando el modelo: $Y_i = \beta_0 + \beta_1 x_i + E_i$, con

$$E_i \stackrel{\text{ind.}}{\sim} N\left(0, \sigma_i^2\right), \quad i = 1, 2, \dots, n,$$
 (5)

donde $Var[E_i] = \sigma_i^2$, probaremos que,

$$H_0: \sigma_i^2 = \sigma^2 \ \forall \ i$$

$$H_1: \sigma_i^2 \neq \sigma^2 \text{ para algún } i.$$
(6)

Tests.

- Levene modificado o test Brown-Forsythe
- · Breusch-Pagan
- Breusch-Pagan estudentizado

Tests de homocedasticidad

Considerando el modelo: $Y_i = \beta_0 + \beta_1 x_i + E_i$, con

$$E_i \stackrel{\text{ind.}}{\sim} N\left(0, \sigma_i^2\right), \quad i = 1, 2, \dots, n,$$
 (5)

donde $Var[E_i] = \sigma_i^2$, probaremos que,

$$H_0: \sigma_i^2 = \sigma^2 \ \forall i$$

 $H_1: \sigma_i^2 \neq \sigma^2 \text{ para algún } i.$ (6)

Tests:

- Levene modificado o test Brown-Forsythe
- · Breusch-Pagan
- Breusch-Pagan estudentizado

Levene modificado o test Brown-Forsythe (BF)

Divide en tres o cuatro grupos los residuos de acuerdo a niveles observados o valores de la variable x, cuando son muchos los niveles y toma grupos de los extremos:

Grupo 1: Niveles de
$$X$$
 bajos con n_1 casos $x(k)$ $x(l)$ $x(l$

Evaluación de normalidad y outliers

Levene modificado o test Brown-Forsythe (BF)

Divide en tres o cuatro grupos los residuos de acuerdo a niveles observados o valores de la variable x, cuando son muchos los niveles y toma grupos de los extremos:

Si no son muchos los niveles o valores distintos en x, divide en sólo dos grupos

$$con n_1$$
 casos $con n_2$ casos

◆ロト ◆団 ▶ ◆ 豆 ▶ ◆ 豆 ● のQ ○

Levene modificado o test Brown-Forsythe (BF)

Divide en tres o cuatro grupos los residuos de acuerdo a niveles observados o valores de la variable x, cuando son muchos los niveles y toma grupos de los extremos:

Grupo 1: Niveles de
$$X$$
 bajos con n_1 casos Grupo 2: Niveles de X altos con n_2 casos
$$x(1) \qquad x(k) \qquad x(l) \qquad x(l) \qquad x(n-1) = x(n-1)$$

Si no son muchos los niveles o valores distintos en x, divide en sólo dos grupos,

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales
- n₁+n₂ = n cuando se dividen residuos sólo en dos grupos; n₁+n₂ < n cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- \mathcal{Q} . Separar residuos de acuardo a grupos 1 y 2
c s_{ij} i ésimo residuo en grupo j
,j=1,2
- Calcular medianas en los grupos: $\vec{e}_j = \text{mediana} \{e_1, \dots, e_{g_j}\}, j = 1, 2$
- Calcular en cada grupo desv. absolutas respecto a las medianas: $d_{ij} = [a_j x_j], j = [a_j x_j], j = [a_j x_j]$
- \otimes Calcular en cada grupo la media de las desv. absolutas respecto a la mediana d_j -
 - $\frac{1}{4}$, Σ_{i}^{22} , d_{ii} , i=1,2

- Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- Separar residuos de acuerdo a grupos 1 y 2
r e_j i-ésimo residuo en grupo $j,j=1,\lambda$ es
- Q. Calcular medianas en los grupos: $\tilde{e}_i = \text{mediana} \left(e_{11}, \dots, e_{j-1} \right), j = 1, 2$
- Calcular en cada grupo desv. absolutas respecto a las medianas: $d_0 = [s_0 \overline{s}]_{1,2} + ...$
- G. Calcular en cada grupo la media de las desv. absolutas respectiva la mediana θ_{j} :

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- n₁+n₂ = n cuando se dividen residuos sólo en dos grupos; n₁+n₂ < n cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- **③** Separar residuos de acuerdo a grupos 1 y 2: e_{ij} i-ésimo residuo en grupo $j, j = 1, 2, i = 1, ..., n_i$.
- ② Calcular medianas en los grupos: $\widetilde{e}_j = \text{mediana} \left\{ e_{1j}, \dots, e_{n_j j} \right\}, j = 1, 2$
- ③ Calcular en cada grupo desv. absolutas respecto a las medianas: $d_{ij} = |e_{ij} \overline{e_j}|, j = 1, 2, i = 1, ..., n_j$
- **①** Calcular en cada grupo la media de las desv. absolutas respecto a la mediana: $\bar{d}_j = \frac{1}{n_i} \sum_{i=1}^{n_j} d_{ij}$, j = 1, 2

- Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- Separar residuos de acuerdo a grupos 1 y 2: e_{ij} i-ésimo residuo en grupo j, j = 1, 2, $i = 1, ..., n_i$.
- **Q** Calcular medianas en los grupos: $\widetilde{e}_j = \text{mediana} \left\{ e_{1j}, \dots, e_{n_j j} \right\}, j = 1, 2$
- ③ Calcular en cada grupo desv. absolutas respecto a las medianas: $d_{ij} = |e_{ij} \overline{e_j}|, j = 1, 2, i = 1, ..., n_j$
- Calcular en cada grupo la media de las desv. absolutas respecto a la mediana: $\bar{d}_j = \frac{1}{n_i} \sum_{i=1}^{n_j} d_{ij}$, j = 1, 2

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- Separar residuos de acuerdo a grupos 1 y 2: e_{ij} i-ésimo residuo en grupo j, j = 1, 2, $i = 1, ..., n_i$.
- **Q** Calcular medianas en los grupos: $\widetilde{e}_j = \text{mediana} \left\{ e_{1j}, \dots, e_{n_j j} \right\}, j = 1, 2$
- **②** Calcular en cada grupo desv. absolutas respecto a las medianas: $d_{ij} = |e_{ij} \widetilde{e_j}|, j = 1, 2, i = 1, ..., n_j$
- **3** Calcular en cada grupo la media de las desv. absolutas respecto a la mediana: $\bar{d}_j = \frac{1}{n_i} \sum_{i=1}^{n_j} d_{ij}, j=1,2$

- · Test robusto a no normalidad
- Supone comportamiento monótono de σ_i^2 vs. x_i
- Requiere n grande para que sean despreciables correlaciones entre residuos
- Funciona como un test t para comparación de dos medias poblacionales.
- $n_1+n_2=n$ cuando se dividen residuos sólo en dos grupos; $n_1+n_2< n$ cuando se dividen residuos en 3 ó 4 grupos y se toman los grupos de los extremos de acuerdo a niveles de x.

- Separar residuos de acuerdo a grupos 1 y 2: e_{ij} i-ésimo residuo en grupo $j, j = 1, 2, i = 1, ..., n_j$.
- **Q** Calcular medianas en los grupos: $\widetilde{e}_j = \text{mediana} \{e_{1j}, \dots, e_{n_j j}\}, j = 1, 2$
- **Q** Calcular en cada grupo desv. absolutas respecto a las medianas: $d_{ij} = |e_{ij} \widetilde{e_j}|, j = 1, 2, i = 1, ..., n_j$
- Calcular en cada grupo la media de las desv. absolutas respecto a la mediana: $\bar{d}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} d_{ij}$, j=1,2

Tabla 3: Test BF: Prueba indirectamente (6), realizando el siguiente test:

(8)//				
Test	Estadístico de prueba	Criterio de rechazo		
$H_0: \mu_{d_1} = \mu_{d_2}$ $H_1: \mu_{d_1} \neq \mu_{d_2}$	$\begin{split} t_L^* &= \frac{\bar{d}_1 - \bar{d}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \stackrel{\text{a}}{=} t_{n_1 + n_2 - 2}, \text{ con,} \\ S_p^2 &= \frac{\sum_{i=1}^{n_1} \left(d_{i1} - \bar{d}_1 \right)^2 + \sum_{i=1}^{n_2} \left(d_{i2} - \bar{d}_2 \right)^2}{n - 2} \end{split}$	$\begin{aligned} & \text{si } P\Big(\Big t_{n_1+n_2-2}\Big > t_L^* \Big) \\ & \text{es pequeño,} \\ \\ & \text{o a un nivel } \alpha \text{ si :} \\ & t_L^* > t_{\alpha/2,n_1+n_2-2} \end{aligned}$		
donde:				
$\mu_{d_1} = \mathbb{E}[d_{i1}], \mu_{d_2} = \mathbb{E}[d_{i2}]$				

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0.$
- algunos modelos para la varianza son:

Construcción de la prueba: Teniendo en cuenta que
$$\sigma_i^2 = \mathbb{E} \left[E_i^2 \right]$$
,

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande

Construcción de la prueba: Teniendo en cuenta que
$$\sigma_i^2 = \mathbb{E}\left[E_i^2\right]$$

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0.$
- algunos modelos para la varianza son:

Construcción de la prueba: Teniendo en cuenta que
$$\sigma_i^2 = \mathbb{E} \left[E_i^2 \right],$$

Consideraciones del test BP:

- · Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0$.
- algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

• $\sigma_i^2 = \sigma^2 (1 + \gamma x_i)$
• $\sigma_i^2 = \sigma^2 (1 + \gamma x_i)^2$

Note que si $\gamma=0$, se tendría que $\sigma_i^2=\sigma^2$

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E}ig[E_i^2ig]$

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0$.
- · algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

• $\sigma_i^2 = \sigma^2 (1 + \gamma x_i)$
• $\sigma_i^2 = \sigma^2 (1 + \gamma x_i)^2$

Note que si $\gamma=0$, se tendría que $\sigma_i^2=\sigma^2$.

 $extit{Construcción de la prueba:}$ Teniendo en cuenta que $\sigma_i^2 = \mathbb{E}ig[E_i^2ig]$

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0$.
- algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

• $\sigma_i^2 = \sigma^2 (1 + \gamma x_i)$
• $\sigma_i^2 = \sigma^2 (1 + \gamma x_i)^2$

Note que si $\gamma = 0$, se tendría que $\sigma_i^2 = \sigma^2$.

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E} ig[E_i^2 ig]$

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i)$ con $h(\cdot)$ t.q $\sigma_i^2 > 0$.
- algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

$$\sigma_i^2 = \sigma^2 (1 + \gamma x_i)$$

$$\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i\right)^2$$

Note que si $\gamma = 0$, se tendría que $\sigma_i^2 = \sigma^2$.

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E} \left[E_i^2 \right]$

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i)$ con $h(\cdot)$ t.q $\sigma_i^2 > 0$.
- algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

$$\sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)$$

$$\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)^2$$

Note que si $\gamma = 0$, se tendría que $\sigma_i^2 = \sigma^2$.

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E} \Big[E_i^2 \Big]$

Se ajustan los E_i^2 vs. x_i .

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0$.
- algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

$$\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)$$

$$\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)^2$$

Note que si $\gamma = 0$, se tendría que $\sigma_i^2 = \sigma^2$.

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E} \Big[E_i^2 \Big]$

Se ajustan los E_i^2 vs. x_i .

Se prueba la significancia del parámetro y. El estadístico de la prueba se construye con base en SSR*: la suma de cuadrados de la regresión hecha en el paso 1, y el SSE de la regresón de y_i vs. x_i de la cual se obtuvieron inicialmente los residuos E
i.

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0.$
- algunos modelos para la varianza son:

•
$$\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$$

$$\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)$$

$$\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)^2$$

Note que si $\gamma = 0$, se tendría que $\sigma_i^2 = \sigma^2$.

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E}[E_i^2]$,

- Se ajustan los \widehat{E}_i^2 vs. x_i .
- ② Se prueba la significancia del parámetro γ . El estadístico de la prueba se construye con base en SSR*: la suma de cuadrados de la regresión hecha en el paso 1, y el SSE de la regresión de y_i vs. x_i de la cual se obtuvieron inicialmente los residuos \widehat{E}_i .

Consideraciones del test BP:

- Requiere validez de incorrelación y normalidad en los errores
- n debe ser grande
- Supone que $\sigma_i^2 = \sigma^2 h(x_i) \operatorname{con} h(\cdot) t.q \ \sigma_i^2 > 0.$
- algunos modelos para la varianza son:
 - $\sigma_i^2 = \sigma^2 \exp(\gamma x_i)$
 - $\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i \right)$
 - $\bullet \ \sigma_i^2 = \sigma^2 \left(1 + \gamma x_i\right)^2$

Note que si $\gamma = 0$, se tendría que $\sigma_i^2 = \sigma^2$.

Construcción de la prueba: Teniendo en cuenta que $\sigma_i^2 = \mathbb{E}[E_i^2]$,

- Se ajustan los \widehat{E}_i^2 vs. x_i .
- ② Se prueba la significancia del parámetro γ . El estadístico de la prueba se construye con base en SSR*: la suma de cuadrados de la regresión hecha en el paso 1, y el SSE de la regresión de y_i vs. x_i de la cual se obtuvieron inicialmente los residuos \widehat{E}_i .

Tabla 4: Test BP en el MRLS: Prueba indirectamente (6), realizando el siguiente test:

Test	Estadístico de prueba	Criterio de rechazo
$H_0: \gamma = 0$ $H_1: \gamma \neq 0$	$\chi_{BP}^2 = \frac{1}{2} \frac{\text{SSR}^*}{(\text{SSE/}n)^2} \stackrel{\text{aprox}}{\sim} \chi_1^2$	si $P(\chi_1^2 > \chi_{BP}^2)$ es pequeño, o a un nivel α si : $\chi_{BP}^2 > \chi_{\alpha,1}^2$
	Test BP estudentizado: $\chi_{BP}^{*2} = nR^{*2} \stackrel{\text{aprox}}{\sim} \chi_1^2$	si $P(\chi_1^2 > \chi_{BP}^{*2})$ es pequeño, o a un nivel α si : $\chi_{BP}^{*2} > \chi_{\alpha,1}^2$

 R^{*2} : Coeficiente de determinación muestral de la regresión lineal de \widehat{E}_i^2 vs. x_i SSR*: Suma de cuadrados de la regresión hecha en el paso 1

Nota 1.3

Ver Código R 3.2 en el Capítulo 3 de notas de clase, para la implementación del Test Breusch-Pagan mediante función ncvTest() de la librería car y con la función bptest() de la librería 1mtest.

Evaluación de normalidad v outliers

Tabla 4: Test BP en el MRLS: Prueba indirectamente (6), realizando el siguiente test:

Test	Estadístico de prueba	Criterio de rechazo
$H_0: \gamma = 0$ $H_1: \gamma \neq 0$	$\chi_{BP}^2 = \frac{1}{2} \frac{\text{SSR}^*}{(\text{SSE/}n)^2} \stackrel{\text{aprox}}{\sim} \chi_1^2$	si $P(\chi_1^2 > \chi_{BP}^2)$ es pequeño, o a un nivel α si : $\chi_{BP}^2 > \chi_{\alpha,1}^2$
	Test BP estudentizado: $\chi_{BP}^{*2} = nR^{*2} \stackrel{\text{aprox}}{\sim} \chi_1^2$	si $P(\chi_1^2 > \chi_{BP}^{*2})$ es pequeño, o a un nivel α si : $\chi_{BP}^{*2} > \chi_{\alpha,1}^2$

 R^{*2} : Coeficiente de determinación muestral de la regresión lineal de \widehat{E}_i^2 vs. x_i SSR*: Suma de cuadrados de la regresión hecha en el paso 1

Nota 1.3

Ver Código R 3.2 en el Capítulo 3 de notas de clase, para la implementación del Test Breusch-Pagan mediante función ncvTest() de la librería car y con la función bptest() de la librería 1mtest.

Qué hacer si hay heterocedasticidad?

• Ajustar por mínimos cuadrados ponderados: Se buscan β_0,β_1 que minimicen a

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} \omega_i E_i^2 = \sum_{i=1}^{n} \omega_i (Y_i - \beta_0 - \beta_1 x_i)^2.$$
 (7)

con w_i inversamente proporcional a Var $[Y_i]$.

- Usar transformaciones sobre Y que estabilicen la varianza: Con respuesta continua existen las transformaciones de potencia o Box-Cox.
- Modelos heterocedásticos (pero ya no son modelos lineales).

Qué hacer si hay heterocedasticidad?

• Ajustar por mínimos cuadrados ponderados: Se buscan β_0,β_1 que minimicen a

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} \omega_i E_i^2 = \sum_{i=1}^{n} \omega_i (Y_i - \beta_0 - \beta_1 x_i)^2.$$
 (7)

con w_i inversamente proporcional a Var $[Y_i]$.

- Usar transformaciones sobre Y que estabilicen la varianza: Con respuesta continua existen las transformaciones de potencia o Box-Cox.
- Modelos heterocedásticos (pero ya no son modelos lineales).

Qué hacer si hay heterocedasticidad?

• Ajustar por mínimos cuadrados ponderados: Se buscan β_0,β_1 que minimicen a

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} \omega_i E_i^2 = \sum_{i=1}^{n} \omega_i (Y_i - \beta_0 - \beta_1 x_i)^2.$$
 (7)

Evaluación de normalidad v outliers

con w_i inversamente proporcional a $Var[Y_i]$.

- Usar transformaciones sobre Y que estabilicen la varianza: Con respuesta continua existen las transformaciones de potencia o Box-Cox.
- Modelos heterocedásticos (pero ya no son modelos lineales).

Evaluación de la independencia

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables;
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no se independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas.
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

Tests: Requieren conocer orden de observación de los datos y n grande

- Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Evaluación de normalidad v outliers

Evaluación de la independencia

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables;
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no se independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas.
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

Tests: Requieren conocer orden de observación de los datos y n grande

- Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Evaluación de normalidad v outliers

Evaluación de la independencia

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables;
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas.
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

Tests: Requieren conocer orden de observación de los datos y *n* grande

- Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durhin-Watson para autocorrelación de orden 1

Evaluación de la independencia

Nota 1.4

Recuerde que

- · La correlación sólo es una medida de dependencia lineal entre dos variables;
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrelacionadas.
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y di hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

Tests: Requieren conocer orden de observación de los datos y *n* grande,

- Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

ripos de diagnosticos

Evaluación de la independencia

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables;
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrelacionadas.
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

- · Tests de la función de autocorrelación (ACF
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durhin-Watson para autocorrelación de orden 1

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables.
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas.
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

- Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables;
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no sen independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

- Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables.
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y de hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice aue no se ha hallado evidencia en contra de la independencia.

- · Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables.
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes;
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y d hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

- · Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Nota 1.4

Recuerde que

- La correlación sólo es una medida de dependencia lineal entre dos variables.
- Por lo anterior, aunque dos variables aleatorias sean incorrelacionadas, podrían no ser independientes:
- Sin embargo, si dos variables aleatorias son independientes, entonces son incorrela cionadas
- Se procederá a evaluar si hay evidencia de correlación entre los errores del MRLS, y d hallar tal evidencia, entonces se rechazaría la independencia, en caso contrario, se dice que no se ha hallado evidencia en contra de la independencia.

- · Tests de la función de autocorrelación (ACF)
- Tests Ljung-Box, Box-Pierce
- Tests de la función de autocorrelación parcial (PACF)
- Test Durbin-Watson para autocorrelación de orden 1

Algunos ejemplos de patrones en residuos vs. orden de observación

Figura 7: (a) Sin patrón claro; (b) con patrón cíclico; (c) con patrón de rachas de cambio sistemático en signos ±.

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal

$$E_{t} = \phi_{1} E_{t-1} + a_{t}, \ con \ a_{t} \stackrel{iid}{\sim} N(0, \sigma_{a}^{2}) \ y \ |\phi_{1}| < 1.$$
 (8)

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal
- Para los errores del modelo en el orden del tiempo, E_t, considera modelo autorregresivo de orden 1 (conocido en series de tiempo como AR(1)):

$$E_t = \phi_1 E_{t-1} + a_t, \text{ con } a_t \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right) y \left|\phi_1\right| < 1.$$
 (8)

Evaluación de normalidad y outliers

• Bajo este modelo se cumple que la autocorrelación de orden 1, es: $\rho(1) = Corr(E_t, E_{t-1}) = \phi_1$.

Construcción de la prueba

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal
- Para los errores del modelo en el orden del tiempo, E_t , considera modelo autorregresivo de orden 1 (conocido en series de tiempo como AR(1)):

$$E_t = \phi_1 E_{t-1} + a_t, \ con \ a_t \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right) y \ \left|\phi_1\right| < 1. \tag{8}$$

Evaluación de normalidad y outliers

• Bajo este modelo se cumple que la autocorrelación de orden 1, es: $\rho(1) = Corr(E_t, E_{t-1}) = \phi_1$.

Construcción de la prueba

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal
- Para los errores del modelo en el orden del tiempo, E_t , considera modelo autorregresivo de orden 1 (conocido en series de tiempo como AR(1)):

$$E_t = \phi_1 E_{t-1} + a_t, \text{ con } a_t \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right) y \left|\phi_1\right| < 1.$$
 (8)

• Bajo este modelo se cumple que la autocorrelación de orden 1, es: $\rho(1) = Corr(E_t, E_{t-1}) = \phi_1$.

Construcción de la prueba

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal
- Para los errores del modelo en el orden del tiempo, E_t , considera modelo autorregresivo de orden 1 (conocido en series de tiempo como AR(1)):

$$E_t = \phi_1 E_{t-1} + a_t, \text{ con } a_t \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right) y \left|\phi_1\right| < 1.$$
 (8)

Bajo este modelo se cumple que la autocorrelación de orden 1, es: $\rho(1) = Corr(E_t, E_{t-1}) =$ ϕ_1 .

Construcción de la prueba:

- Se ajusta el modelo de regresión ordinario,

$$d_1 = \frac{\sum_{t=2}^n \left(\widehat{E}_t - \widehat{E}_{t-1}\right)^2}{\sum_{t=1}^n \widehat{E}_t^2} \approx 2\left(1 - \widehat{\rho}(1)\right), \quad \text{donde} \quad \widehat{\rho}(1) = \frac{\sum_{t=2}^n \widehat{E}_t \widehat{E}_{t-1}}{\sum_{t=1}^n \widehat{E}_t^2}, \tag{9}$$

4 D > 4 D > 4 D > 4 D > 3

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal
- Para los errores del modelo en el orden del tiempo, E_t , considera modelo autorregresivo de orden 1 (conocido en series de tiempo como AR(1)):

$$E_t = \phi_1 E_{t-1} + a_t, \text{ con } a_t \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right) y \left|\phi_1\right| < 1.$$
 (8)

Evaluación de normalidad y outliers

• Bajo este modelo se cumple que la autocorrelación de orden 1, es: $\rho(1) = Corr(E_t, E_{t-1}) = \phi_1$.

Construcción de la prueba:

- Se ajusta el modelo de regresión ordinario,
- **②** Con residuos de ajuste \widehat{E}_t en orden de t, se calcula estadístico de prueba d_1 :

$$d_1 = \frac{\sum_{t=2}^n \left(\widehat{E}_t - \widehat{E}_{t-1}\right)^2}{\sum_{t=1}^n \widehat{E}_t^2} \approx 2\left(1 - \widehat{\rho}(1)\right), \quad \text{donde} \quad \widehat{\rho}(1) = \frac{\sum_{t=2}^n \widehat{E}_t \widehat{E}_{t-1}}{\sum_{t=1}^n \widehat{E}_t^2}, \tag{9}$$

ⓐ El juego de hipótesis a considerar se escoge de acuerdo a valores de d_1 : Si 0 < d_1 < 2, se prueba autocorrelación positiva de orden 1; si 2 < d_1 < 4, se prueba autocorrelación negativa de orden 1.

Consideraciones del test DW:

- Aplica sólo en modelos de regresión lineal
- Para los errores del modelo en el orden del tiempo, E_t , considera modelo autorregresivo de orden 1 (conocido en series de tiempo como AR(1)):

$$E_t = \phi_1 E_{t-1} + a_t, \text{ con } a_t \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right) y \left|\phi_1\right| < 1.$$
 (8)

• Bajo este modelo se cumple que la autocorrelación de orden 1, es: $\rho(1) = Corr(E_t, E_{t-1}) = \phi_1$.

Construcción de la prueba:

- Se ajusta el modelo de regresión ordinario,
- **②** Con residuos de ajuste \widehat{E}_t en orden de t, se calcula estadístico de prueba d_1 :

$$d_1 = \frac{\sum_{t=2}^n \left(\widehat{E}_t - \widehat{E}_{t-1}\right)^2}{\sum_{t=1}^n \widehat{E}_t^2} \approx 2\left(1 - \widehat{\rho}(1)\right), \quad \text{donde} \quad \widehat{\rho}(1) = \frac{\sum_{t=2}^n \widehat{E}_t \widehat{E}_{t-1}}{\sum_{t=1}^n \widehat{E}_t^2}, \tag{9}$$

③ El juego de hipótesis a considerar se escoge de acuerdo a valores de d_1 : Si 0 < d_1 < 2, se prueba autocorrelación positiva de orden 1; si 2 < d_1 < 4, se prueba autocorrelación negativa de orden 1.

Tabla 5: Tests de hipótesis Durbin Watson para autocorrelación de orden 1. De acuerdo a d_1 se debe elegir entre uno de los dos juegos de hipótesis que se describen en esta tabla.

Test de auto correlación de orden 1 positiva: Si $0 < d_1 < 2$		
Juego de hipótesis	Criterio de rechazo	
$H_0: \rho(1) = 0$, o equivalentemente $H_0: \phi_1 = 0$ vs. $H_1: \rho(1) > 0$, o equivalentemente $H_1: \phi_1 > 0$	Si $P(DW_1 < d_1)$ es pequeño	

Conclusiones posibles: Si no se rechaza H_0 , se concluye que no se ha encontrado evidencia de auto correlación de orden 1; si se rechaza H_0 se concluye que los errores consecutivos (o sea que distan una unidad de tiempo) están positivamente correlacionados.

Conclusiones posibles: Si no se rechaza H_0 , se concluye que no se ha encontrado evidencia de auto correlación de orden 1; si se rechaza H_0 se concluye que los errores consecutivos (o sea que distan una unidad de tiempo) están negativamente correlacionados.

Nota 1.5

Ver Código R 3.3 en el Capítulo 3 de notas de clase, para la ejecución del test Durbin-Watson con la función durbinWatsonTest() de la librería car.

Tabla 5: Tests de hipótesis Durbin Watson para autocorrelación de orden 1. De acuerdo a d_1 se debe elegir entre uno de los dos juegos de hipótesis que se describen en esta tabla.

Test de auto correlación de orden 1 positiva: Si $0 < d_1 < 2$		
Juego de hipótesis	Criterio de rechazo	
$H_0: \rho(1)=0$, o equivalentemente $H_0: \phi_1=0$ vs. $H_1: \rho(1)>0$, o equivalentemente $H_1: \phi_1>0$	Si $P(DW_1 < d_1)$ es pequeño	

Conclusiones posibles: Si no se rechaza H_0 , se concluye que no se ha encontrado evidencia de auto correlación de orden 1; si se rechaza H_0 se concluye que los errores consecutivos (o sea que distan una unidad de tiempo) están positivamente correlacionados.

Test de auto correlación de orden 1 negativa: Si $2 < d_1 < 4$		
Juego de hipótesis Criterio de rechazo		
$H_0: \rho(1)=0$, o equivalentemente $H_0: \phi_1=0$ vs. $H_1: \rho(1)<0$, o equivalentemente $H_1: \phi_1<0$	Si $P(DW_1 > d_1)$ es pequeño	

Conclusiones posibles: Si no se rechaza H_0 , se concluye que no se ha encontrado evidencia de auto correlación de orden 1; si se rechaza H_0 se concluye que los errores consecutivos (o sea que distan una unidad de tiempo) están negativamente correlacionados.

Nota 1.5

Ver Código R 3.3 en el Capítulo 3 de notas de clase, para la ejecución del test Durbin-Watson con la función durbinWatsonTest() de la librería car.

Tabla 5: Tests de hipótesis Durbin Watson para autocorrelación de orden 1. De acuerdo a d_1 se debe elegir entre uno de los dos juegos de hipótesis que se describen en esta tabla.

Test de auto correlación de orden 1 positiva: Si $0 < d_1 < 2$		
Juego de hipótesis	Criterio de rechazo	
$H_0: \rho(1)=0$, o equivalentemente $H_0: \phi_1=0$ vs. $H_1: \rho(1)>0$, o equivalentemente $H_1: \phi_1>0$	Si $P(DW_1 < d_1)$ es pequeño	

Conclusiones posibles: Si no se rechaza H_0 , se concluye que no se ha encontrado evidencia de auto correlación de orden 1; si se rechaza H_0 se concluye que los errores consecutivos (o sea que distan una unidad de tiempo) están positivamente correlacionados.

Test de auto correlación de orden 1 negativa: Si $2 < d_1 < 4$		
Juego de hipótesis Criterio de rechaz		
$H_0: \rho(1)=0$, o equivalentemente $H_0: \phi_1=0$ vs. $H_1: \rho(1)<0$, o equivalentemente $H_1: \phi_1<0$	Si $P(DW_1 > d_1)$ es pequeño	

Conclusiones posibles: Si no se rechaza H_0 , se concluye que no se ha encontrado evidencia de auto correlación de orden 1; si se rechaza H_0 se concluye que los errores consecutivos (o sea que distan una unidad de tiempo) están negativamente correlacionados.

Nota 1.5

Ver Código R 3.3 en el Capítulo 3 de notas de clase, para la ejecución del test Durbin-Watson con la función durbinWatsonTest() de la librería car.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones peri odicos o estacionales.
- Trabajar con primeras diferencias:

Nota 1.6

Detalles en Capítulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:

Nota 1.6

Detalles en Capítulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:
 - Calcular las primeras diferencias: $Y_t^* = Y_t Y_{t-1}$, $X_t^* = X_t X_{t-1}$
 - ② Ajustar Y_t^* vs. X_t^* bajo el modelo (sin intercepto)

$$r_t^* = \beta_1^* X_t^* + u_t, \quad u_t \stackrel{\text{iid}}{\sim} N\left(0, \sigma_u^2\right) \tag{10}$$

Onstruir ec. ajustada para Y_t , $\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_t$, tomando

$$\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1^* \bar{X} \tag{11}$$

$$\beta_1 = \beta_1^* \tag{12}$$

Nota 1.6

Detalles en Capitulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:
 - Calcular las primeras diferencias: $Y_t^* = Y_t Y_{t-1}$, $X_t^* = X_t X_{t-1}$
 - ② Ajustar Y_t^* vs. X_t^* bajo el modelo (sin intercepto)

$$r_t^* = \beta_1^* X_t^* + u_t, \quad u_t \stackrel{\text{iid}}{\sim} N\left(0, \sigma_u^2\right) \tag{10}$$

Evaluación de normalidad y outliers

(a) Construir ec. ajustada para Y_t , $\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_t$, tomando

$$\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1^* \bar{X} \tag{11}$$

$$\widehat{\beta}_1 = \widehat{\beta}_1^* \tag{12}$$

Nota 1.6

Detalles en Capitulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:
 - Calcular las primeras diferencias: $Y_t^* = Y_t Y_{t-1}$, $X_t^* = X_t X_{t-1}$
 - **②** Ajustar Y_t^* vs. X_t^* bajo el modelo (sin intercepto)

$$Y_t^* = \beta_1^* X_t^* + u_t, \quad u_t \stackrel{\text{iid}}{\sim} N(0, \sigma_u^2)$$
 (10)

Evaluación de normalidad y outliers

Onstruir ec. ajustada para Y_t , $\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_t$, tomando

$$\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1^* \bar{X} \tag{11}$$

$$\widehat{\beta}_1 = \widehat{\beta}_1^* \tag{12}$$

Nota 1.6

Detalles en Capitulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:
 - Calcular las primeras diferencias: $Y_t^* = Y_t Y_{t-1}$, $X_t^* = X_t X_{t-1}$
 - **3** Ajustar Y_t^* vs. X_t^* bajo el modelo (sin intercepto)

$$Y_t^* = \beta_1^* X_t^* + u_t, \quad u_t \stackrel{\text{iid}}{\sim} N\left(0, \sigma_u^2\right) \tag{10}$$

Evaluación de normalidad y outliers

Solution Construir ec. ajustada para Y_t , $\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_t$, tomando

$$\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1^* \bar{X} \tag{11}$$

$$\widehat{\beta}_1 = \widehat{\beta}_1^* \tag{12}$$

Nota 1.6

Detalles en Capítulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:
 - Calcular las primeras diferencias: $Y_t^* = Y_t Y_{t-1}$, $X_t^* = X_t X_{t-1}$
 - **3** Ajustar Y_t^* vs. X_t^* bajo el modelo (sin intercepto)

$$Y_t^* = \beta_1^* X_t^* + u_t, \quad u_t \stackrel{\text{iid}}{\sim} N\left(0, \sigma_u^2\right) \tag{10}$$

③ Construir ec. ajustada para Y_t , $\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_t$, tomando

$$\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1^* \bar{X} \tag{11}$$

$$\widehat{\beta}_1 = \widehat{\beta}_1^* \tag{12}$$

Nota 1.6

Detalles en Capitulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

- Modelar la dependencia entre los errores: Modelos de regresión con errores correlacionados.
- Incluir funciones del índice de tiempo t para modelar tendencias, patrones periodicos o estacionales.
- Trabajar con primeras diferencias:
 - Calcular las primeras diferencias: $Y_t^* = Y_t Y_{t-1}$, $X_t^* = X_t X_{t-1}$
 - **a** Ajustar Y_t^* vs. X_t^* bajo el modelo (sin intercepto)

$$Y_t^* = \beta_1^* X_t^* + u_t, \quad u_t \stackrel{\text{iid}}{\sim} N\left(0, \sigma_u^2\right) \tag{10}$$

Solution Construir ec. ajustada para Y_t , $\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_t$, tomando

$$\widehat{\beta}_0 = \bar{Y} - \widehat{\beta}_1^* \bar{X} \tag{11}$$

$$\widehat{\beta}_1 = \widehat{\beta}_1^* \tag{12}$$

Nota 1.6

Detalles en Capítulo 12 de: Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li. W. (2005). Applied Linear Statistical Models, 5th ed. McGraw-Hill Irwing, New York.

Evaluación de normalidad

Consideraciones

• Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, $W_1, W_2, ..., W_n$, constituyen una muestra aleatoria de tamaño n si v solo si

Son mutuamente independientes

- La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.
- El supuesto de independencia debería verificarse antes de la evaluación de normalidad
- La no normalidad frecuentemente va de la mano con la no homogeneidad de la varianza.
- Aunque se aplican estos tests usando los valores de los residuos de ajuste, no debe perder de vista que el supuesto y las conclusiones deben formularse para los errores del modelo

$$H_0: E_i \sim N(0, \sigma^2)$$

 $H_1: E_i \neq N(0, \sigma^2).$ (13)

Evaluación de normalidad

Consideraciones

• Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, W_1,W_2,\ldots,W_n , constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independiente.
 - Son idénticamente distribuidas
- La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.
- El supuesto de independencia debería verificarse antes de la evaluación de normalidad
- La no normalidad frecuentemente va de la mano con la no homogeneidad de la varianza.
- Aunque se aplican estos tests usando los valores de los residuos de ajuste, no debe perder de vista que el supuesto y las conclusiones deben formularse para los errores del modelo:

$$I_0: E_i \sim N\left(0, \sigma^-\right)$$

 $I_1: E_i \neq N\left(0, \sigma^2\right).$ (13)

Evaluación de normalidad

Consideraciones

 Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, $W_1, W_2, ..., W_n$, constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independientes
 - Son idénticamente distribuidas
- La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.
- El supuesto de independencia debería verificarse antes de la evaluación de normalidad
- La no normalidad frecuentemente va de la mano con la no homogeneidad de la varianza.
- Aunque se aplican estos tests usando los valores de los residuos de ajuste, no debe perder de vista que el supuesto y las conclusiones deben formularse para los errores del modelo:

$$Y_0: E_i \sim N(0, \sigma^2)$$

 $Y_1: E_i \nsim N(0, \sigma^2).$

Evaluación de normalidad

Consideraciones

 Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, W_1, W_2, \dots, W_n , constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independientes
- Son idénticamente distribuidas

$$I_1: E_i \sim N\left(0, \sigma^2\right).$$
(13)

Evaluación de normalidad

Consideraciones

 Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, W_1, W_2, \dots, W_n , constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independientes
- Son idénticamente distribuidas
 - La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.

$$H_0: E_i \sim N(0, \sigma^2)$$

 $H_1: E_i \nsim N(0, \sigma^2).$

Evaluación de normalidad

Consideraciones

• Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, W_1, W_2, \dots, W_n , constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independientes
- 2 Son idénticamente distribuidas
 - La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.
 - El supuesto de independencia debería verificarse antes de la evaluación de normalidad.
 - La no normalidad frecuentemente va de la mano con la no homogeneidad de la varianza.
 - Aunque se aplican estos tests usando los valores de los residuos de ajuste, no debe perder de vista que el supuesto y las conclusiones deben formularse para los errores del modelo:

$$H_0: E_i \sim N(0, \sigma^2)$$

$$H_1: E_i \nsim N(0, \sigma^2). \tag{13}$$

Evaluación de normalidad

Consideraciones

• Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, W_1,W_2,\ldots,W_n , constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independientes
- 2 Son idénticamente distribuidas
 - La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.
 - El supuesto de independencia debería verificarse antes de la evaluación de normalidad.
 - La no normalidad frecuentemente va de la mano con la no homogeneidad de la varianza.
 - Aunque se aplican estos tests usando los valores de los residuos de ajuste, no debe perder de vista que el supuesto y las conclusiones deben formularse para los errores del modelo:

$$H_0: E_i \sim N(0, \sigma^2)$$

 $H_1: E_i \sim N(0, \sigma^2).$ (13)

Evaluación de normalidad

Consideraciones

• Como cualquier test de bondad de ajuste, los tests de normalidad exigen que el conjunto de valores sobre los que se aplican provengan de una muestra aleatoria.

Definición 1.1

Un conjunto de variables aleatorias, W_1,W_2,\ldots,W_n , constituyen una muestra aleatoria de tamaño n si y solo si

- Son mutuamente independientes
- 2 Son idénticamente distribuidas
 - La correlación entre variables en una muestra puede afectar significativamente el desempeño de los tests de bondad de ajuste.
 - El supuesto de independencia debería verificarse antes de la evaluación de normalidad.
 - La no normalidad frecuentemente va de la mano con la no homogeneidad de la varianza.
 - Aunque se aplican estos tests usando los valores de los residuos de ajuste, no debe perder de vista que el supuesto y las conclusiones deben formularse para los errores del modelo:

$$H_0: E_i \sim N(0, \sigma^2)$$

$$H_1: E_i \nsim N(0, \sigma^2).$$
(13)

Tabla 6: Pruebas para normalidad

Pruebas especiales para normalidad			
Test	Característica	Estadístico	Valor P
Jarque-Bera:	Basada en asimetría y kurtosis	$JB = \frac{n}{6} \left[S^2 + \frac{(k-3)^2}{4} \right] \sim \chi_2^2$ S es el coef. de asimetría muestral, <i>k</i> es la kurtosis	$P(\chi_2^2 > JB)$
Shapiro-Wilk:	Compara estimador varianza basado en estadísticos de or- den muestrales vs. estimador basado en Suma de cuadrados corregidos.	$W_0 = \frac{\left(\sum\limits_{i=1}^n a_i x_{(i)}\right)^2}{\sum\limits_{i=1}^n \left(x_i - \bar{x}\right)^2}, \text{ con } 0 < W_0 < 1$ $y \text{ los } a_i \text{ funciones de las medias, varianzas y covarianzas de los estadísticos de orden de va } N(0,1).$	$P(W \le W_0)$
Pruebas generales			
Test	Característica	Estadístico	Valor P
Kolmogorov-Smirnov:	Para cualquier distribución con- tinua	$D_0 = \max_{1 \le i \le n} \left F_n(x_i) - F_0(x_i) \right $	$P(D \ge D_0)$
Anderson-Darling:	Mejora sensibilidad de K-S en las colas de la distribución, pero sólo está disponible para las dis- tribuciones normal, lognormal, weibull, exponencial, de valor extremo y logística.	$A_n^2 = n \int_{-\infty}^{\infty} \frac{(F_n(x) - F_0(x))^2}{F_0(x)(1 - F_0(x))} dF_0(x)$	$P\left(A^2 \ge A_0^2\right)$
Cramer-Von Mises:	Similar a K-S, pero más comple- jo computacionalmente.	$W_0^2 = n \int_{-\infty}^{\infty} [F_n(x) - F_0(x)]^2 dF_0(x)$	$P\big(W^2 \geq W_0^2\big)$

Nota 1.7 (Otros tests)

• Test Lilliefors (Kolmogorov-Smirnov para normalidad):

$$D = \max \left\{ D^+, D^- \right\}$$

con

$$D^{+} = \max_{i=1,...,n} \left\{ \frac{i}{n} - p_{(i)} \right\}, \quad D^{-} = \max_{i=1,...,n} \left\{ p_{(i)} - \frac{(i-1)}{n} \right\}$$
$$p_{(i)} = \Phi\left(\frac{x_{(i)} - \overline{x}}{s}\right)$$

 \overline{x} y s son la media y desviación estándar de los valores ingresados a la prueba y $x_{(i)}$ el iésimo valor de menor a mayor. Disponible en librería nortest bajo la función:

 También en esta librería se hayan implementadas las pruebas Anderson-Darling y Shapiro-Francia, para normalidad, en las funciones ad.test() y sf.test, respectivamente.

Figura 8: Densidades poblacionales y gráficos de probabilidad normal con muestras provenientes de: (a) (b) una distribución normal de media cero; (c) y (d) con una distribución no normal y asimétrica a derecha

Figura 9: Densidades poblacionales y gráficos de probabilidad normal con muestras provenientes de: (a) (b) una distribución normal de media cero; (c) y (d) con una distribución no normal asimétrica a izquierda

Figura 10: Densidades poblacionales y gráficos de probabilidad normal con muestras provenientes de: (a) (b) una distribución normal de media cero; (c) y (d) con una distribución no normal, simétrica pero de colas pesadas.

Algunas soluciones a no normalidad

La no normalidad puede estar vinculada a no homogeneidad de varianza. En algunos casos las transformaciones sobre *Y* que estabilizan varianza también logran una variables respuesta normal en escala transformada.

- Transformaciones sobre la variable respuesta: las transformaciones de potencia Box-Cox: Y^{λ} (ver Sección 3.5, Capítulo 3 Notas de Clase).
- Regresión no paramétrica: Por ejemplo la regresión local polinomial o LOESS
- Modelos lineales (o no lineales) generalizados: Donde considera para Y|x distribuciones diferentes a la normal.

Algunas soluciones a no normalidad

La no normalidad puede estar vinculada a no homogeneidad de varianza. En algunos casos las transformaciones sobre *Y* que estabilizan varianza también logran una variables respuesta normal en escala transformada.

- Transformaciones sobre la variable respuesta: las transformaciones de potencia Box-Cox: Y^{λ} (ver Sección 3.5, Capítulo 3 Notas de Clase).
- Regresión no paramétrica: Por ejemplo la regresión local polinomial o LOESS.
- Modelos lineales (o no lineales) generalizados: Donde considera para Y|x distribuciones diferentes a la normal.

Algunas soluciones a no normalidad

La no normalidad puede estar vinculada a no homogeneidad de varianza. En algunos casos las transformaciones sobre *Y* que estabilizan varianza también logran una variables respuesta normal en escala transformada.

- Transformaciones sobre la variable respuesta: las transformaciones de potencia Box-Cox: Y^{λ} (ver Sección 3.5, Capítulo 3 Notas de Clase).
- Regresión no paramétrica: Por ejemplo la regresión local polinomial o LOESS.
- Modelos lineales (o no lineales) generalizados: Donde considera para Y|x distribuciones diferentes a la normal.

Test de carencia de ajuste: No linealidad de la función de regresión Tests de homocedasticidad Evaluación de la independencia

Evaluación de normalidad y outliers

Outliers u observaciones atípicas en la respuesta

Definición 1.2

Un outlier es aquella observación en donde la respuesta toma un valor bastante alejado o atípico con respecto al resto de valores.

Procedimientos gráficos para identificación

Outliers u observaciones atípicas en la respuesta

Definición 1.2

Un outlier es aquella observación en donde la respuesta toma un valor bastante alejado o atípico con respecto al resto de valores.

Procedimientos gráficos para identificación

- Residuos ordinarios \widehat{E}_i
- Residuos estandarizados e_i

$$e_i = \frac{\widehat{E}_i}{\sqrt{\text{MSE}}} \tag{14}$$

• Residuos estudentizados (internamente estudentizados) r_i , en R con función rstandard().

$$Y_i = \frac{\widehat{E}_i}{\sqrt{\widehat{\text{Var}}(\widehat{E}_i)}} = \frac{\widehat{E}_i}{\sqrt{(1 - h_{ii}) \text{MSE}}}, \text{ con } h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}.$$
 (15)

• Residuos externamente estudentizados t_i , en R con función restudent (

$$t_i = r_i \left[\frac{n-p-1}{n-p-r_i^2} \right]^{1/2} \sim t_{n-p-1},$$
 (16)

p número de parámetros en el modelo de regresión, sienelo 2 ক্রাফ বিইটেও ই 🕨 ছ 🔊 ৭০

Outliers u observaciones atípicas en la respuesta

Definición 1.2

Un outlier es aquella observación en donde la respuesta toma un valor bastante alejado o atípico con respecto al resto de valores.

Procedimientos gráficos para identificación

- Residuos estandarizados e_i

$$e_i = \frac{\widehat{E}_i}{\sqrt{\text{MSE}}} \tag{14}$$

• Residuos estudentizados (internamente estudentizados) r_i , en R con función restandard ().

$$r_i = \frac{\widehat{E}_i}{\sqrt{\widehat{\text{Var}}(\widehat{E}_i)}} = \frac{\widehat{E}_i}{\sqrt{(1 - h_{ii}) \,\text{MSE}}}, \, \text{con } h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}.$$
 (15)

• Residuos externamente estudentizados t_i , en R con función restudent (

$$t_i = r_i \left[\frac{n-p-1}{n-p-r_i^2} \right]^{1/2} \sim t_{n-p-1},$$
 (16)

p número de parámetros en el modelo de regresión, siendo 2 @ra la歌LS. 로 🕨 😩 🤊 오

Outliers u observaciones atípicas en la respuesta

Definición 1.2

Un outlier es aquella observación en donde la respuesta toma un valor bastante alejado o atípico con respecto al resto de valores.

Procedimientos gráficos para identificación

- Residuos ordinarios \widehat{E}_i
- Residuos estandarizados e_i

$$e_i = \frac{E_i}{\sqrt{\text{MSE}}} \tag{14}$$

• Residuos estudentizados (internamente estudentizados) r_i , en R con función restandard().

$$r_i = \frac{\widehat{E}_i}{\sqrt{\widehat{\text{Var}}(\widehat{E}_i)}} = \frac{\widehat{E}_i}{\sqrt{(1 - h_{ii})\,\text{MSE}}}, \text{ con } h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}.$$
 (15)

• Residuos externamente estudentizados t_i , en R con función rstudent (

$$t_i = r_i \left[\frac{n-p-1}{n-p-r_i^2} \right]^{1/2} \sim t_{n-p-1},$$
 (16)

p número de parámetros en el modelo de regresión, siendo 2 fora la RLS. 로 🔻 💆 🤊 오

Definición 1.2

Un outlier es aquella observación en donde la respuesta toma un valor bastante alejado o atípico con respecto al resto de valores.

Procedimientos gráficos para identificación

- Residuos ordinarios \widehat{E}_i
- Residuos estandarizados e_i

$$e_i = \frac{\widehat{E}_i}{\sqrt{\text{MSE}}} \tag{14}$$

Residuos estudentizados (internamente estudentizados) r_i, en R con función rstandard().

$$r_i = \frac{\widehat{E}_i}{\sqrt{\widehat{\text{Var}}(\widehat{E}_i)}} = \frac{\widehat{E}_i}{\sqrt{(1 - h_{ii}) \text{MSE}}}, \text{ con } h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}.$$
 (15)

Residuos externamente estudentizados t_i , en R con función rstudent ().

$$t_i = r_i \left[\frac{n-p-1}{n-p-r_i^2} \right]^{1/2} \sim t_{n-p-1},$$
 (16)

p número de parámetros en el modelo de regresión, siendo 2 para la RLS.

Figura 11: Observación outlier identificada como un valor atípico en la variable respuesta (a) Gráfico de dispersión y recta ajustada (b) gráfico de probabilidad normal con residuos de ajuste; (c) y (d) gráficos de residuos vs x y vs. \widehat{y} , respectivamente.

Figura 12: Dos bservaciones outliers identificadas como valores atípicos en la variable respuesta (a) Gráfico de dispersión y recta ajustada (b) gráfico de probabilidad normal con residuos estudentizados externamente; (c) y (d) gráficos de residuos estudentizados externamente vs x y vs. \widehat{y} , respectivamente.