

Arquitetura de computadores Unidade de Controle

ARQUITETURA DE COMPUTADORES

PROF. Alex Lima

Introdução

Processador

- Unidade de controle
 - Conceito
 - Micro-operações
 - Ciclo de micro-operações
 - Controle do processador
 - Implementação por hardware

Introdução

- Unidade de controle
 - Conceito
 - Micro-operações
 - Ciclo de micro-operações
 - Controle do processador
 - Implementação por hardware

Função

A função da unidade de controle é gerar os sinais de controle que para comandar a <u>execução</u> de uma série de <u>microoperações</u> na sequencia correta.

Introdução

Funcionamento de um processador

- 1. Operações (*opcode*)
- 2. Modos de endereçamento
- 3. Registradores
- 4. Interface com módulos de E/S
- 5. Interface com módulo de memória
- 6. Interrupções

Conjunto de instruções

Barramento do sistema

Barramento do sistema /Suporte ao sistema operacional

Instruções

- Operações e Operandos
 - Estágios sequenciais
 - Sub estágios

Instruções

Estágios

Instruções

• Para cada instrução a ser executada existem sequencias de passos, uma sequencia de microoperações.

Uma instrução pode ser dividida em estágios.

Cada estágio pode ser dividido em microoperações.

Microoperações

• Uma microoperação é uma etapa na execução de um estágio de uma instrução de máquina.

•Exemplos de microoperações

- Ativar um sinal de controle
- Mover dados entre dois registradores
- Realizar uma operação da ULA

Microoperações

Microoperações

- Da mesma forma como a execução de uma instrução é realizada por meio de um ciclo de instrução:
 - Busca
 - Decodificação
 - Execução
 - Interrupção
- Cada estágio possui um ciclo de microoperação.

Ciclo de Microoperações

- Ciclo de busca
- Ciclo indireto
- Ciclo de interrupção
- Ciclo de execução
- Ciclo de instrução

Ciclo de busca

Ciclo de busca

- Esta é a sequencia de microoperações para buscar uma instrução na memória:
 - 1. O endereço do PC é copiado para o registrador MAR.
 - 2. O endereço do MAR é copiado para o barramento de endereços.
 - 3. A UC envia um sinal READ para o barramento de controle.
 - 4. A memória envia o conteúdo do endereço para o barramento de dados para o registrador MBR.
 - 5. O conteúdo do MBR é copiado para o IR.

Unidade de Controle Ciclo de busca

Ciclo de busca

• O ciclo de busca pode ser resumido em 3 passos de 4 micro operações.

- 1. T1: MAR \leftarrow (PC)
- 2. T2: MBR ← Memória

$$PC \leftarrow PC + 1$$

1. T3: IR \leftarrow MBR

Ciclo indireto

 O ciclo de busca de operandos poder ser realizado de diversas formas.

 Cada modo de endereçamento é uma forma de buscar/encontrar os dados.

•O ciclo indireto é a busca por pelo endereço de memória que contém o endereço do operando.

Ciclo indireto

Unidade de Controle Ciclo indireto

- 1. A UC envia um sinal para o que o campo de endereços seja copiado do MBR/IR para o MAR.
- 2. O endereço no MAR é copiado para o barramento de endereços.
- 3. A UC envia um sinal READ para o barramento de controle.
- 4. A memória envia pelo barramento de dados o conteúdo do endereço enviado pelo barramento de endereços.
- 5. O MBR recebe os dados enviados pelo barramento de dados.

Ciclo indireto

- O ciclo indireto pode ser resumido em 3 micro operações.
 - 1. T1: MAR \leftarrow (MBR/IR (endereço))
 - 2. T2: MBR ← Memória
 - **3. T3: IR**(endereço) ← MBR (endereço)

Ciclo de execução

- Devido a conjunto de instruções que uma máquina pode realizar existe uma grade variedade de microoperações possíveis.
- Para ilustrar com pode ser realizado o ciclo de execução, considere
 - **ADD** R1, X
 - ISZ X

Ciclo de execução

- **ADD** R1, X
 - T1: MAR ← IR(Endereço)
 - T2: MBR ← Memória
 - T3: R1 \leftarrow R1 + MBR(X)

Ciclo de execução

ISZ X

- T1: MAR ← endereço
- T2: MBR ← memória
- **T3: MBR** ← MBR + 1
- Memória ← MBR
 se ((MBR) == 0) então ((PC) ← PC + 1)

Unidade de Controle Ciclo de interrupção

- 1. O endereço armazenado no PC é copiado para o MBR.
- 2. O endereço de onde o PC será salvo é copiado para o MAR e enviado pelo barramento de endereços.
- 3. A UC envia um sinal WRITE para o barramento de controle.
- 4. O endereço da rotina de tratamento de interrupção é copiado para o PC.
- 5. O MBR envia os dados para a memória pelo barramento de dados.

Ciclo de interrupção

- O ciclo indireto pode ser resumido em 3 micro operações.
 - 1. T1: MBR \leftarrow PC
 - 2. T2: MAR ← endereço_destino
 - 3. T3: PC ← endereço_interrupção
 - **4. T4: Memória** ← MBR

Ciclo de instrução

- O conjunto de ciclo de microoperações compõe o ciclo de instrução.
- O ICC (*Instruction Code Cicle*, ou Código de Ciclo de Instrução) é o registrador que define o estado do processador.
 - **00:** Busca
 - 01: Indireto
 - 10: Execução
 - 11: Interrupção

PRÁTICA

1) Explique a diferença entre sequencia escrita e sequencia de tempo de execução de um programa.

2) Descreva o ciclo de execução para uma instrução de multiplicação.

3) Qual a relação entre instruções e microoperações?

4) Qual a função geral da unidade de controle no processador?

Programa de computador

Fluxo de comandos

• Instruções

Ciclo de instruções

Microoperações

• Conjunto de operações que formam uma etapa do ciclo de instruções

Requisitos funcionais

- O conjunto de funções que a unidade de controle deve executar.
 - Ordenar a sequencia de microoperações
 - Controlar de sinais de execução

Projeto de uma unidade de controle

- Definir os <u>elementos básicos do processador</u>.
- Descrever as microoperações que o processador executa.
- Determinar as <u>funções</u> que a UC deve realizar para fazer com que as microoperações (μOp) sejam executadas.

Elementos básicos de um processador

- ULA
- Registradores
- Caminhos internos
- Caminhos externos
- Unidade de Controle

- Microoperações de um processador
 - Transferência de dados entre registradores
 - Transferência de dados de registradores para interface externa
 - Registrador ⇒ Barramento do sistema
 - Transferência de dados de interface externa para registradores
 - Barramento do sistema ⇒ Registrador
 - Efetuar operações aritméticas e lógicas

Funcionamento da Unidade de Controle

<u>Categorias de microoperações</u>:

- Sequenciamento
- Execução

Funcionamento da Unidade de Controle

- A unidade de controle manter, internamente, a informação sobre o estágio que está sendo executado no momento.
- A unidade de controle decide a ordem em que as microoperações devem ser realizadas.

Funcionamento da Unidade de Controle

- A decisão é tomada com base:
 - Sinais de entrada
 - Valor do ICC
- Executada por meio de sinais de controle
 - Sinais de saída

Funcionamento da Unidade de Controle

- Utilizar os elementos básico do processador para executar as microoperações.
- Os elementos básicos são ativados via sinais de controle na ordem correta.

Funcionamento da Unidade de Controle

Entrada

- Valor das entradas: clock, flags e registrador de instrução.
- · Valor do ICC: O estágio atual da instrução.

Saída

Sinais de controle

- Sinais de Controle (Entrada)
 - Clock
 - Temporizador
 - Registrador de instrução
 - Entrada
 - Flags
 - Estado do processador

- Sinais de Controle (Saída)
 - Sinais de controle do barramento de controle
 - Entrada
 - Sinais de controle dentro do processador
 - Registradores
 - ULA
 - Sinais de controle para barramento de controle
 - Memória
 - Dispositivos de E/S

Sinais de controle

Tipos de sinais de controle

Sinais de controle da ULA

Sinais de controle de dados

Sinais de controle do barramento do sistema

Ativação de sinais de controle

- O envio de um sinal de controle é a ativação de circuitos que permitem que determinada ação seja realizada.
- Ao ser ativado o circuito executa sua função:
 - Armazena um dado
 - Transfere dados
 - Executa operação

Ativação de sinais de controle

Simplificação

- Um registrador é um circuito de memória
- Um sinal de controle para um registrador é um sinal elétrico que ativa a saída do circuito.
- · A saída do registrado está conectada a entrada de outro registrador.

Ativação de sinais de controle

- Sinais de controle
- Operação: Transferência de dados entre registradores

