Gaussian Processes For Global Optimization

Ludwig Winkler

Methods of Artificial Intelligence and Machine Learning
TU Berlin

March 25, 2018

Outline

Gaussian Processes

Intuition

Observation

Derivative Observations

Optimization

Optimization with Gaussian Processes

Acquisition Function

Example

2 / 41

Problem Setting

- Optimization of a function
- Function is computationally expensive
- Trying to find optimum with few evaluations
- Do so with the help of Gaussian Processes

"A GP is defined as a distribution over the infinite number of possible outputs of our function, such that the distribution over any finite number of them is a multivariate Gaussian."

- Michael A. Osborne

Random variable with distribution we can sample from

ullet Distributions at different locations X_i

- Sample simultaneously from all distributions
- Each distribution is independent from all other distributions

- Similar sample points should have similar values
- Introduce covariance between distributions
- Covariance determined by kernel

Condition joint distribution over all sample points on observations

Covariance Matrix

Variance is reduced as observations are approached

Gaussian Process in a Nutshell

- o Observations $\mathcal{D} = \{(x_n,y_n)_{n=0}^N\} = (\mathbf{X},\mathbf{y})$ for regression task
- ullet Predicted y_* should be similar to y_i if x_* is similar to x_i
- ${\color{gray} \circ}$ Uncertainty for y_* if x_* is far away from any x_i

Gaussian Process (GP)

- Multivariate Gaussian over observations and predictions
- Kernel $k(x_i, x_i)$ measures similarity between x_i and x_i
- Kernel matrix $K_{ij} = k(x_i, x_j)$ as covariance matrix of GP

$$\begin{bmatrix} \mathbf{y} \\ y_* \end{bmatrix} \sim \mathcal{N} \left(\cdot \mid \mathbf{0}, \mathbf{K} \right)$$

Kernel matrix K from observations X and predictions x_*

$$\mathbf{K} = \begin{bmatrix} k_{\mathbf{y},\mathbf{y}}(\mathbf{X},\mathbf{X}) & k_{\mathbf{y},y^*}(\mathbf{X},x_*) \\ k_{y^*,\mathbf{y}}(x_*,\mathbf{X}) & k_{y^*,y^*}(x_*,x_*) \end{bmatrix} = \begin{bmatrix} K_{XX} & K_{Xx_*} \\ K_{x_*X} & K_{x_*x_*} \end{bmatrix}$$

GP's compute predictive distributions

$$p(y_*|x_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}\left(\underbrace{K_{x_*X}K_{XX}^{-1}\mathbf{y}}_{\mu}, \underbrace{K_{x_*x_*} - K_{x_*X}K_{XX}^{-1}K_{Xx_*}}_{\Sigma}\right)$$

 \circ Bayesian inference for $y_*|x_*$ based on observations (\mathbf{X},\mathbf{y})

$$\begin{split} \mu(x_*) &= K_{x_*X} K_{XX}^{-1} \mathbf{y} \\ \sigma^2(x_*) &= \text{diag} \left[K_{x_*x_*} - K_{x_*X} K_{XX}^{-1} K_{Xx_*} \right] \end{split}$$

Observations

GP with Observations

- Points close to observations should have similar derivative
- Inclusion of derivative observations
- Better predictive distributions with lower variance

GP with Observations

GP with Derivative Observations

GP over observations and derivative observations

$$egin{bmatrix} \mathbf{y} \
abla \mathbf{y} \ y_* \end{bmatrix} \sim \mathcal{N} \left(egin{array}{c} \cdot | \mathbf{0}, \mathbf{K}^{
abla}
ight) \end{array}$$

Expanded covariance matrix with derivative observations

$$\mathbf{K}^{\nabla} = \begin{bmatrix} K_{XX}^{\nabla,\nabla\nabla} & K_{Xx_*}^{\nabla} \\ K_{x_*X}^{\nabla} & K_{x_*x_*} \end{bmatrix}$$

Expanded kernel matrices with derivative observations

$$K_{XX}^{\nabla,\nabla\nabla} = \begin{bmatrix} k_{\mathbf{y},\mathbf{y}}(\mathbf{X},\mathbf{X}) & k_{\mathbf{y},\nabla\mathbf{y}}(\mathbf{X},\mathbf{X}) \\ k_{\nabla\mathbf{y},\mathbf{y}}(\mathbf{X},\mathbf{X}) & k_{\nabla\mathbf{y},\nabla\mathbf{y}}(\mathbf{X},\mathbf{X}) \end{bmatrix}$$
$$K_{Xx_*}^{\nabla} = \begin{bmatrix} k_{\mathbf{y},y_*}(\mathbf{X},x_*) \\ k_{\nabla\mathbf{y},y_*}(\mathbf{X},x_*) \end{bmatrix}$$
$$K_{x_*X}^{\nabla} = \begin{bmatrix} k_{y_*,\mathbf{y}}(x_*,\mathbf{X}) & k_{y_*,\nabla\mathbf{y}}(x_*,\mathbf{X}) \end{bmatrix}$$

Modified kernels for kernel matrix

$$\begin{split} & \operatorname{cov}[y, \nabla_{x'} y'] = k_{y, \nabla y'}(x, x') \\ & \operatorname{cov}[\nabla_x y, y'] = k_{\nabla y, y'}(x, x') \\ & \operatorname{cov}[\nabla_x y, \nabla y'] = k_{\nabla_x y, \nabla y'}(x, x') \end{split}$$

Modified kernels for covariance with derivative observations

$$\begin{split} \operatorname{cov}[y,y'] &= \frac{1}{N} \sum_{i=0}^N y_i \cdot y_i' = k(x,x') \\ \operatorname{cov}[y,\nabla_{x'}y'] &= \frac{1}{N} \sum_{i=0}^N y_i \cdot \nabla_{x'}y_i' = \nabla_{x'} \frac{1}{N} \sum_{i=0}^N y_i \cdot y_i' \\ &= \nabla_{x'} \mathrm{cov}[y,y'] = \nabla_{x'}k(x,x') \\ \operatorname{cov}[\nabla_x y,\nabla_{x'}y'] &= \frac{1}{N} \sum_{i=0}^N \nabla_x y_i \cdot \nabla_{x'}y_i' = \nabla_x \nabla_{x'} \frac{1}{N} \sum_{i=0}^N y_i \cdot y_i' \\ &= \nabla_x \nabla_{x'} \mathrm{cov}[y,y'] = \nabla_x \nabla_{x'}k(x,x') \end{split}$$

 \circ Expanded kernel matrix $\mathbf{K}_
abla$

$$\begin{split} \mathbf{K}^{\nabla} &= \begin{bmatrix} \begin{bmatrix} k_{\mathbf{y},\mathbf{y}}(\mathbf{X},\mathbf{X}) & k_{\mathbf{y},\nabla\mathbf{y}}(\mathbf{X},\mathbf{X}) \\ k_{\nabla\mathbf{y},\mathbf{y}}(\mathbf{X},\mathbf{X}) & k_{\nabla\mathbf{y},\nabla\mathbf{y}}(\mathbf{X},\mathbf{X}) \end{bmatrix} & \begin{bmatrix} k_{\mathbf{y},y_*}(\mathbf{X},x_*) \\ k_{\nabla\mathbf{y},y_*}(\mathbf{X},x_*) \end{bmatrix} \\ \begin{bmatrix} k_{y_*,\mathbf{y}}(\mathbf{X},x_*) & k_{y_*,\nabla\mathbf{y}}(\mathbf{X},\mathbf{X}) \end{bmatrix} & k_{y_*,y_*}(x_*,x_*) \end{bmatrix} \\ &= \begin{bmatrix} K_{XX}^{\nabla,\nabla\nabla} & K_{Xx_*}^{\nabla} \\ K_{X_*}^{\nabla} & K_{X_*x_*}^{\nabla} \end{bmatrix} \end{split}$$

Optimization

- \circ Best element x^* w.r.t. to some criterion from set of elements ${\mathcal X}$
- ullet Minimization/maximization of objective function f(x)

$$f(x^*) = \min_{x \in \mathcal{X}} f(x) = \max_{x \in \mathcal{X}} -f(x)$$

Optimization

- o Best element x^* w.r.t. to some criterion from set of elements ${\mathcal X}$
- ullet Minimization/maximization of objective function f(x)

$$f(x^*) = \min_{x \in \mathcal{X}} f(x) = \max_{x \in \mathcal{X}} -f(x)$$

- ullet Succesive queries $x_1, x_2, \ldots \in \mathcal{X}$
- ullet Leverage existing information to optimally select query x_i
- Maximization used as exemplary optimization

- \circ Optimization problem as GP over set ${\mathcal X}$
- ullet Select next query x_{n+1} from GP with previous queries x_1,\ldots,x_n

- \circ Optimization problem as GP over set ${\mathcal X}$
- Select next query x_{n+1} from GP with previous queries x_1, \ldots, x_n
- Acquisition function $\Lambda(x \mid x_1, \dots, x_n)$ as improvement criterion

$$x_{n+1} = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \Lambda(x \mid x_1, \dots, x_n)$$

- \circ Optimization problem as GP over set ${\mathcal X}$
- Select next query x_{n+1} from GP with previous queries x_1, \ldots, x_n
- Acquisition function $\Lambda(x \mid x_1, \dots, x_n)$ as improvement criterion

$$x_{n+1} = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \Lambda(x \mid x_1, \dots, x_n)$$

 \circ Improvement relativ to optimal solution x^+ from observations $x_{1:n}$

$$x^+ = \operatorname*{argmax}_{x_i \in x_{1:n}} f(x_i)$$

- \circ Optimization problem as GP over set ${\mathcal X}$
- Select next query x_{n+1} from GP with previous queries x_1, \ldots, x_n
- Acquisition function $\Lambda(x \mid x_1, \dots, x_n)$ as improvement criterion

$$x_{n+1} = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \Lambda(x \mid x_1, \dots, x_n)$$

 \circ Improvement relativ to optimal solution x^+ from observations $x_{1:n}$

$$x^+ = \operatorname*{argmax}_{x_i \in x_{1:n}} f(x_i)$$

 \circ Rescaling with respect to optimal solution x^+

$$z(x) = \frac{\mu(x) - f(x^+)}{\sigma(x)}$$

Upper confidence bound

$$\mathbb{UCB}[x] = \mu(x) + \kappa \sigma(x) - f(x^{+})$$

Upper confidence bound

$$\mathbb{UCB}[x] = \mu(x) + \kappa \sigma(x) - f(x^{+})$$

Probability of improvement

$$\mathbb{PI}[x] = P\left(f(x) \ge f(x^+)\right) = \Phi\left(\frac{\mu(x) - f(x^+)}{\sigma(x)}\right)$$

Upper confidence bound

$$\mathbb{UCB}[x] = \mu(x) + \kappa \sigma(x) - f(x^{+})$$

Probability of improvement

$$\mathbb{PI}[x] = P\left(f(x) \ge f(x^+)\right) = \Phi\left(\frac{\mu(x) - f(x^+)}{\sigma(x)}\right)$$

Expected improvement

$$\mathbb{EI}[x] = \sigma(x) \left(\frac{\mu(x) - f(x^+)}{\sigma(x)} \Phi\left(\frac{\mu(x) - f(x^+)}{\sigma(x)} \right) + \mathcal{N}_{0,1} \left(\frac{\mu(x) - f(x^+)}{\sigma(x)} \right) \right)$$

Outlook

- Multi-dimensional input feature space
- Noisy observations
- Multi-Step search
- Kernel hyperparameter optimization
- Bayesian Optimization for hyperparameter search

Thank you

Sources

- Osborne et al. Gaussian Processes for Global optimization
- Brochu et al. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
- Wu et al. Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature
- Solak et al. Derivative observations in Gaussian Process Models of Dynamic Systems