## Particle spectrograph

## Wave operator and propagator

| SO(3) irreps                                                               | Fundamental fields                                                                                                                                                                                                                  | Multiplicities |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\sigma_{0^+}^{\#1} == 0$                                                  | $\partial_{\beta}\sigma^{\alpha\beta}_{ \alpha} == 0$                                                                                                                                                                               | 1              |
| $\tau_{0}^{\#1} == 0$                                                      | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$                                                                                                                   | 1              |
| $\tau_{0+}^{\#2} == 0$                                                     | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$                                                                                                                                                                          | 1              |
| $\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$                 | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$ | 3              |
| $\tau_{1}^{\#1}{}^{\alpha} == 0$                                           | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$                                                                                              | 3              |
| $\frac{\tau_{1+}^{\#1}\alpha\beta + i k \sigma_{1+}^{\#2}\alpha\beta = 0}$ | $\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$                                                                          | 3              |
|                                                                            | $2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$                                                           |                |
|                                                                            | $\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$                                                                                                                             |                |
|                                                                            | $\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$                                                                                                     |                |
| $\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$        | $-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$                        | 5              |
|                                                                            | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$                                           |                |
|                                                                            | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$                                           |                |
|                                                                            | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$                                             |                |
|                                                                            | $4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$                                                                                                           |                |
|                                                                            | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$                                                                                                             |                |
|                                                                            | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$                                                                                                             |                |
|                                                                            | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$                                                                                                                |                |
|                                                                            | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$                                                                                                             |                |
|                                                                            | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$                                                                                                             |                |
|                                                                            | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$                                                                                                               |                |
|                                                                            | $4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta} ) == 0$                                                                                 |                |
| Total constraints/gau                                                      | ge generators:                                                                                                                                                                                                                      | 17             |

|                                  | $\sigma_1^{\#1}{}_+\alpha\beta$    | $\sigma_{1}^{\#2}{}_{\alpha\beta}$              | ${\tau_1^{\#1}}_{+}$                            | $\sigma_{1^{-}\alpha}^{\#1}$               | $\sigma_{1^{+}\alpha}^{\#2}$                                      | $\tau_{1^{-}}^{\#1}\alpha$ | $	au_1^{\#2}$                                                   |
|----------------------------------|------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|
| $\sigma_1^{\#1} + \alpha^{eta}$  | 0                                  |                                                 | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$                | 0                                          | 0                                                                 | 0                          | 0                                                               |
| $\sigma_1^{\#_2} + \alpha \beta$ | $-\frac{\sqrt{2}}{t_1+k^2t_1}$     | $\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$    | $\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$ | 0                                          | 0                                                                 | 0                          | 0                                                               |
| $\tau_{1}^{\#1} + \alpha \beta$  | $\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$ | $\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$ | $\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$ | 0                                          | 0                                                                 | 0                          | 0                                                               |
| $\sigma_{1}^{\#1} +^{lpha}$      | 0                                  | 0                                               | 0                                               | $\frac{1}{k^2 \left( r_1 + r_5 \right)}$   | $-\frac{1}{\sqrt{2}(k^2+2k^4)(r_1+r_5)}$                          | 0                          | $-\frac{i}{k(1+2k^2)(r_1+r_5)}$                                 |
| $\sigma_{1}^{\#2} +^{\alpha}$    | 0                                  | 0                                               | 0                                               | $-\frac{1}{\sqrt{2}\;(k^2+2k^4)(r_1+r_5)}$ | $\frac{6 k^2 (r_1 + r_5) + t_1}{2 (k + 2 k^3)^2 (r_1 + r_5) t_1}$ | 0                          | $\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$  |
| $\tau_{1}^{\#1} + ^{\alpha}$     | 0                                  | 0                                               | 0                                               | 0                                          | 0                                                                 | 0                          | 0                                                               |
| $\tau_{1}^{\#2} + \alpha$        | 0                                  | 0                                               | 0                                               | $\frac{i}{k(1+2k^2)(r_1+r_5)}$             | $-\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$   | 0                          | $\frac{6 k^2 (r_1 + r_5) + t_1}{(1 + 2 k^2)^2 (r_1 + r_5) t_1}$ |

| $T_2(C_i, T_i)$ $T_2(C_i, T_i)$ $T_3(C_i, T_i)$ | $\sigma_{2}^{#1}$ † $\tau_{2}^{#1}$ † $\sigma_{2}^{#1}$ † $\sigma_{2}^{#1}$ † $\sigma_{2}^{#1}$ | .αβ<br>.αβ<br>.αβ                                                                                                                                                                                                                                           | $\sigma_{2}^{\#1}$ $\frac{2}{(1+2k^4)}$ $\frac{2i\sqrt{(1+2k^4)}}{(1+2k^4)}$                                                                                                                                        | $\frac{(2)^2 t_1}{(2)^2 t_1}$                                                                                                                                                                                                  | - <u>2</u>                                                                                                                                                                                                                                  | $ \begin{array}{c}                                     $                                                                                             | $\frac{k}{2}$                                                                                                                                | $\sigma_2^{\#1}$ $0$ $\frac{2}{2 k^2 r}$                                                                                                                                                                  | )                                                                                                                                                                                                      | $\sigma_0^{\#1}$ $t_0^{\#1}$ $t_0^{\#2}$ $\sigma_0^{\#1}$                                                                                                                                                 | $\sigma_{0}^{#1}$ † 0 0 0 0                                                                                                                                                                                              | $t_0^{\# +} + \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$                                                                 | $t_{0}^{#2} + 0 0 0 0 0$ | $\sigma_{0}^{\#1} + \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $f_{0}^{*2}$ $\omega_{0+}^{*1} f_{0+}^{*1} f_{0+}^{*2} \omega_{0-}^{*1}$                                                                                          |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | Quadratic (free) action                                                                         | $S == \iiint (\frac{1}{6} (2t_1 \ \omega^{\alpha_l} \ \omega^{\theta}_{\beta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 4t_1 \ \omega^{\theta}_{\alpha} \ \partial_{\beta} f^{\alpha\prime} +$ | $4t_1\;\omega_{'\;\theta}^{\;\theta}\;\partial'f^{\alpha}_{\;\;\alpha}-2t_1\partial_if^{\;\theta}_{\;\;\theta}\partial'f^{\alpha}_{\;\;\alpha}-2t_1\partial_if^{\alpha i}\partial_{\theta}f_{\alpha}^{\;\;\theta}+$ | $4t_1\partial' f^\alpha_{\ \alpha}\partial_\theta f^{\ \theta}_{\ \prime} - 6t_1\partial_\alpha f_{\ \prime\theta}\partial^\theta f^{\alpha\prime} - 3t_1\partial_\alpha f_{\ \theta\prime}\partial^\theta f^{\alpha\prime} +$ | $3t_1\partial_{\scriptscriptstyle{j}}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} + 3t_1\partial_{\theta}f_{\prime\alpha}\partial^{\theta}f^{\alpha\prime} +$ | $6t_1\omega_{lphaeta_I}(\omega^{lpha_Ieta}+2\partial^{	heta}f^{lpha_I})$ - $8r_1\partial_{eta}\omega_{lpha_Ieta}\partial^{	heta}\omega^{lphaeta_I}+$ | $4r_1\partial_eta\omega_{lpha	heta_1}\partial^eta\omega^{lphaeta_1}$ - $16r_1\partial_eta\omega_{_Ietalpha}\partial^eta\omega^{lphaeta_I}$ - | $4r_1\partial_{\scriptscriptstyle 1}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta\prime} + 4r_1\partial_{\theta}\omega_{\alpha\beta\prime}\partial^{\theta}\omega^{\alpha\beta\prime} +$ | $4 r_1 \partial_{\theta} \omega_{\alpha \iota \beta} \partial^{\theta} \omega^{\alpha \beta \iota} + 6 r_5 \partial_{\iota} \omega_{\theta}^{\kappa} \partial^{\theta} \omega_{\alpha}^{\alpha \iota}$ | $6r_{5}\partial_{\theta}\omega_{'\ \kappa}^{\ \kappa}\partial^{\theta}\omega^{\alpha\prime}_{\ \alpha}-6r_{5}\partial_{\alpha}\omega^{\alpha\prime\theta}\partial_{\kappa}\omega_{'\ \theta}^{\ \kappa}+$ | $12 r_5  \partial^{\theta} \omega^{\alpha \prime}_{\ \alpha}  \partial_{\kappa} \omega^{\ \kappa}_{\ \prime} + 6  r_5  \partial_{\alpha} \omega^{\alpha \prime \theta}  \partial_{\kappa} \omega^{\ \kappa}_{\ \rho}  -$ | $12r_5\partial^{	heta}\omega^{lpha_I}_{}\partial_{\kappa}\omega^{}_{}))[t,\kappa,y,z]d\!\!/\!zd\!\!/\!yd\!\!/\!xd\!\!/\!t$ |                          |                                                                          | $\omega_{1}^{#1}$ $\omega_{1}^{#2}$ $\omega_{1}^{#2}$ $\omega_{1}^{#2}$ $\omega_{1}^{#2}$ $\omega_{1}^{#2}$ $\omega_{1}^{#2}$ $\omega_{1}^{#2}$ $\omega_{1}^{*2}$ |

| $f_{0}^{\#2}$                 | 0                         | C                  |        | 0              | 0                      |  | 0                                 |       | 0                                         |   | 0                       |                   | $k^2 r_1 + \frac{t_1}{4}$   | 2      |                               |   |  |  |
|-------------------------------|---------------------------|--------------------|--------|----------------|------------------------|--|-----------------------------------|-------|-------------------------------------------|---|-------------------------|-------------------|-----------------------------|--------|-------------------------------|---|--|--|
| $f_0^{\#1}$                   | 0                         | C                  | )      | 0              | 0                      |  |                                   |       |                                           |   |                         | k <sup>2</sup> r. |                             | •      |                               |   |  |  |
| $\omega_0^{\#1}$ f            | 0                         | 0 0                |        | 0              | 0                      |  | $\frac{ikt_1}{\sqrt{2}}$          | ٧ =   | $k^2 t_1$                                 |   | $k^2 t_1$               |                   | $k^2 t_1$                   |        | 0                             | • |  |  |
|                               | $\omega_{0}^{\#1}\dagger$ | $f_{\perp}^{#1}$ + | - +0 / | $f_{0}^{#2} +$ | $\omega_{0^-}^{\#1} +$ |  | - <del>[1]</del>                  | J     | $\frac{i k t_1}{\sqrt{5}}$                |   | C                       | )                 |                             |        |                               |   |  |  |
| $f_{1}^{#2}$                  | O                         | •                  | ·      | 0              | 0                      |  | <u>i kt1</u><br>3                 | 1 - 7 | $\frac{1}{3}$ $\bar{l}$ $\sqrt{2}$ $kt_1$ | • | 0                       | 2 12 +2           | 3 3                         |        |                               |   |  |  |
| $f_{1^-}^{\#1}$               | C                         | >                  | ·      | 0              | 0                      |  | 0                                 | 0     |                                           | Ĭ | 0                       |                   | 0                           |        |                               |   |  |  |
| $\omega_{1^{-}lpha}^{\#2}$    | O                         | >                  | 0      |                | 0                      |  | $\frac{t_1}{3\sqrt{2}}$           |       | 3                                         | 0 |                         | 1 - 1             | $-\frac{2}{3}I\sqrt{2kt_1}$ |        |                               |   |  |  |
| $\omega_{1^-}^{\#1}_{\alpha}$ | 0                         | 0 0                |        | 0              | 0                      |  | $k^2 (r_1 + r_5) + \frac{t_1}{6}$ |       | $\frac{t_1}{3\sqrt{2}}$                   |   | $\frac{t_1}{3\sqrt{2}}$ |                   | 0                           | 1 -1 , | $-\frac{2}{3}$ $l \times t_1$ |   |  |  |
| αβ<br>-                       | .t1                       | 7                  |        | )              | 0                      |  | )                                 |       | )                                         |   | )                       |                   | )                           |        |                               |   |  |  |

0

0

## Massive and massless spectra



| Massive particle |                         |  |  |  |  |  |  |  |
|------------------|-------------------------|--|--|--|--|--|--|--|
| Pole residue:    | $-\frac{1}{r_1} > 0$    |  |  |  |  |  |  |  |
| Polarisations:   | 5                       |  |  |  |  |  |  |  |
| Square mass:     | $-\frac{t_1}{2r_1} > 0$ |  |  |  |  |  |  |  |
| Spin:            | 2                       |  |  |  |  |  |  |  |
| Parity:          | Odd                     |  |  |  |  |  |  |  |
|                  |                         |  |  |  |  |  |  |  |



| Quadratic pole |                                 |  |  |  |  |  |  |  |  |
|----------------|---------------------------------|--|--|--|--|--|--|--|--|
| Pole residue:  | $-\frac{1}{(r_1+r_5)t_1^2} > 0$ |  |  |  |  |  |  |  |  |
| Polarisations: | 2                               |  |  |  |  |  |  |  |  |

## Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0$