L2-informatique Combinatoire&Graphes

CM2: Relations: synthèse

Une relation (binaire) R entre les ensembles A et B est un ensemble de couples ordonnés (a,b) : A × B.

Donc R \subseteq A \times B, c'est-à-dire R ϵ P(A \times B). On peut écrire aRb à la place de (a,b) ϵ R.

Une relation (binaire) R dans l'ensembles A est un ensemble de couples ordonnés (a,a') : A × A.

On peut dessiner R comme un graphe ordonné où les éléments de A sont les sommets et les couples sont les arcs : (a,a') dessiné comme $a \rightarrow a'$. Une relation peut être vide, finie ou infinie.

On peut définir une relation en énumérant ses couples, par exemple { (2, -4), (4, 2), (0, 5) }

ou en donnant sa définition en compréhension, par exemple $\{(n, n') \mid n' = n + 1\}.$

Soit R une relation dans l'ensemble A:

R est	signifie que :	c'est-à-dire
Réflexive	∀a. (a, a) ε R	∀a. a R a
Symétrique	$\forall a \forall b. (a, b) \in R \Rightarrow (b, a) \in R$	∀a∀b. a R b => b R a
Antisymétrique	$\forall a \forall b. (a, b) \in R \& (b,a) \in R \Rightarrow a = b$	∀a ∀b. aRb & bRa => a=b
Transitive	$\forall a \forall b \forall c. (a, b) \in R \& (b,c) \in R => (a,c) \in R$	$\forall a \forall b \forall c. aRb \& bRc => aRc$

Si R1 et R2 sont des relations dans A alors leur union/intersection/soustraction est naturellement l'union/intersection/soustraction de leurs couples (arcs).

Si R1 est une relation de A à B et R2 une relation de A à C, alors leur composition est :

R2 o R1 = $\{(a,c) \mid \exists b. (a R1 b) \& (b R2 c) \}.$

Il s'agit des chemins de longueur 2 constitués d'abord d'un arc de R1 puis un arc de R2.

Remarque: La notation est de droite à gauche comme pour celle des fonctions (f o g).

Si R est une relation dans A, alors on peut définir R^2 = R o R, R^3 = R o R o R ...

 $R^n = \{(x,y) : A \times A \mid x, y \text{ reliés dans le graphe de } R \text{ par un chemin de longueur exactement } n\}$.

Soient $A = \{a_1, ..., a_m\}$, $B = \{b_1, ..., b_n\}$ et R une relation entre A et B.

La matrice (d'adjacence) de R est la matrice booléenne M de dimensions $m \times n$ et dont l'élement M[i,j] vaut 1 si $(a_i R b_j)$, et vaut 0 sinon.

Lorsque A=B et m=n, la matrice est carrée $n \times n$ et sa diagonale représente les boucles (x,x).

L2-informatique Combinatoire&Graphes

Une relation d'équivalence R sur A est une relation réflexive, symétrique et transitive.

Dans R, tout élément a ε A appartient à sa classe d'équivalence [a]_R = { x : A | aRx }.

Les classes d'équivalence de R forment une partition de A : elles sont disjointes et couvrent A.

Il peut y en avoir |A| de taille 1 chacune si chaque élément n'est équivalent qu'à lui-même, ou une seule de taille |A| si tous les éléments sont équivalents.

Le graphe d'une relation d'équivalence est une partition des sommets où les classes d'équivalence sont des « cliques », des blocs à l'intérieur desquels tout est relié à tout.

-

Une relation d'ordre R sur A est une relation réflexive, antisymétrique et transitive.

Dans le graphe d'une relation d'ordre il n'y a pas de cycles autres que des boucles (antisymétrie), et pour tout chemin il y a aussi un raccourci direct (transitivité).

Une relation d'ordre R est totale (elle est un **ordre total**) si $\forall a \forall a'$. (a R a') ou (a' R a). Dans ce cas le graphe est une chaîne où tout est comparable. Par exemple, la relation \leq sur Nat est un ordre total.

Sinon on dit que R est un **ordre partiel**, il existe de paires de sommets incomparables. Par exemple la relation « n divise n' » sur Nat est un ordre partiel, certains nombres ne se divisent pas entre eux.

Dans une relation d'ordre

- un **majorant** de E ⊆ A est un élément « plus grand ou égal » à tous les éléments de E. Il n'est pas nécessairement dans E lui-même,
- un **minorant** de E ⊆ A est un élément « plus petit ou égal » à tous les éléments de E. Il n'est pas nécessairement dans E lui-même
- un **plus grand élément** de E ⊆ A est un majorant qui fait partie de E, s'il existe il est unique et on l'écrit (max E).
- un **plus petit élément** de E ⊆ A est un minorant qui fait partie de E, s'il existe il est unique et on l'écrit (min E).

Le **diagramme de Hasse** d'une relation d'ordre est un schéma incomplet de son graphe où on ne garde que le minimum d'arcs pour conserver les chemins (on oublie la transitivité qui est sous-entendue) et on dessine les arcs vers le haut (on dessine des arètes sans flèches qui sont implicites).

}

Par exemple ce schéma est le diagramme de Hasse de la relation d'ordre

