Private and Communication-Efficient Federated Learning via Sketches

Farzin Haddadpour

Ping Li

Outline:

- 1. Federated learning review
- 2. Approaches to deal with communication cost
- 3. Sketches
- 4. Ongoing research

1. Federated learning review

- 2. Approaches to deal with communication cost
- 3. Sketches
- 4. Ongoing research

Federated Learning

Federated Learning

Goal:
$$\bar{\boldsymbol{w}} = \arg\min_{\bar{\boldsymbol{w}} \in \mathbb{R}^d} \left[\frac{1}{p} \sum_{j=1}^p f_j(\boldsymbol{w}) \right]$$

Three bottlenecks for federated learning:

- 1. Communication cost/complexity
- 2. Privacy
- 3. Robustness against data

heterogeneity

Three bottlenecks for federated learning:

- 1. Communication cost/complexity
- 2. Privacy
- 3. Robustness against data heterogeneity

Goal: Improving all aspects

Goal: Solving $\min f(\mathbf{x}) \triangleq \sum_{i} f_i(\mathbf{x})$

Goal: Solving min
$$f(\mathbf{x}) \triangleq \sum_{i} f_i(\mathbf{x})$$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \frac{1}{|\xi^{(t)}|} \nabla f(\mathbf{x}^{(t)}; \xi^{(t)})$$

$$\mathbf{SGD} = \mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \frac{1}{|\xi^{(t)}|} \nabla f(\mathbf{x}^{(t)}; \xi^{(t)})$$

Parallelization due to computational cost

Distributed SGD
$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{\eta}{p} \sum_{j=1}^{p} \frac{1}{|\xi_j^{(t)}|} \nabla f(\mathbf{x}^{(t)}; \xi_j^{(t)})$$

Outline:

- 1. Federated learning review
- 2. Approaches to deal with communication cost
- 3. Sketches
- 4. Ongoing research

Total communication cost = Rc

Model

Sync SGD

Device j computes: $\nabla f_j(\mathbf{x}^{(t)}, \xi_j^{(t)}) \in \mathbb{R}^d$

Sync SGD

Device j computes: $\nabla f_j(\mathbf{x}^{(t)}, \xi_j^{(t)}) \in \mathbb{R}^d$

$$\mathbf{x}^{(t+1)} = \frac{1}{p} \sum_{j=1}^{p} \left(\mathbf{x}^{(t+1)} - \eta \nabla f_j(\mathbf{x}^{(t)}, \xi_j^{(t)}) \right) - \mathbf{A} \text{Veraging step} - \mathbf{A} \text{Veraging step}$$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \frac{1}{p} \sum_{j=1}^{p} \nabla f_j(\mathbf{x}^{(t)}, \xi_j^{(t)})$$

Sync SGD

Device j computes: $\nabla f_j(\mathbf{x}^{(t)}, \xi_j^{(t)}) \in \mathbb{R}^d$

$$\mathbf{x}^{(t+1)} = \frac{1}{p} \sum_{j=1}^{p} \left(\mathbf{x}^{(t+1)} - \eta \nabla f_j(\mathbf{x}^{(t)}, \xi_j^{(t)}) \right) - \mathbf{A} \text{Veraging step} - \mathbf{A} \text{Veraging step}$$

Output: $\mathbf{x}^{(T)}$

$$\left[\tilde{\mathbf{g}}_{j}^{(t)} = \nabla f(\mathbf{x}_{j}^{(t)}, \xi_{j})\right]$$

$$\mathbf{x}_{j}^{(t+1)} = \frac{1}{p} \sum_{j=1}^{p} \left[\mathbf{x}_{j}^{(t)} - \eta \ \tilde{\mathbf{g}}_{j}^{(t)} \right] \text{ if } t | \tau$$

$$\mathbf{x}_{j}^{(t+1)} = \mathbf{x}_{j}^{(t)} - \eta \ \tilde{\mathbf{g}}_{j}^{(t)} \text{ otherwise,}$$

$$\mathbf{W}_{j}$$
Averaging step (a)
$$\mathbf{W}_{j}$$

$$\mathbf{W}_{j}$$

$$\widetilde{\mathbf{g}}_{j}^{(t)} = \nabla f(\mathbf{x}_{j}^{(t)}, \xi_{j})$$
if $t|\tau: \overline{\mathbf{x}}^{(t)} = \mathbf{x}_{j}^{(t)}$ for $1 \le j \le p$

Output:
$$\bar{\mathbf{x}}^{(T)} = \frac{1}{p} \sum_{j=1}^{p} \mathbf{x}_{j}^{(T)}$$

Sync SGD

$$\mathbf{x}_{j}^{(t+1)} = \frac{1}{p} \sum_{j=1}^{p} \left[\mathbf{x}_{j}^{(t)} - \eta \ \tilde{\mathbf{g}}_{j}^{(t)} \right] \text{ if } \tau | T$$

$$\mathbf{x}_{j}^{(t+1)} = \mathbf{x}_{j}^{(t)} - \eta \ \tilde{\mathbf{g}}_{j}^{(t)} \text{ otherwise,}$$

$$\mathbf{A} \text{ Veraging step (a)}$$

$$\mathbf{Local update (b)}$$

Sync SGD

$$p = 3, \tau = 3$$

Sync SGD

$$p = 3, \tau = 3$$
 W_1
 W_2
 W_3
 W_1
 W_2
 W_3
 W_4
 W_1
 W_2
 W_3
 W_4
 W_4

$$R = \frac{T}{\tau}$$

Convergence error
$$O\left(\frac{1}{pT}\right) = O\left(\frac{1}{3T}\right)$$
 $O\left(\frac{1}{pT}\right) = O\left(\frac{1}{3T}\right)$ Communication round $\frac{T}{\tau} = T$ $\frac{T}{\tau} = \frac{T}{3}$

State-of-the-art for R

$$\frac{1}{R} \sum_{r=1}^{R} \|\nabla f(\bar{\boldsymbol{w}}^{(r)})\|_{2}^{2} \leq \epsilon$$

Number of communication rounds to achieve a stationary point with ϵ error.

State-of-the-art for R

$$\frac{1}{R} \sum_{r=1}^{R} \|\nabla f(\bar{\boldsymbol{w}}^{(r)})\|_{2}^{2} \leq \epsilon$$

Number of communication rounds to achieve a stationary point with ϵ error.

SCAFFOLD [Karimireddy et al, 2019]

$$R(\epsilon) = O\left(\frac{1}{\epsilon}\right)$$

State-of-the-art for R

$$\frac{1}{R} \sum_{r=1}^{R} \|\nabla f(\bar{\boldsymbol{w}}^{(r)})\|_{2}^{2} \leq \epsilon$$

Number of communication rounds to achieve a stationary point with ϵ error.

SCAFFOLD [Karimireddy et al, 2019]

$$R(\epsilon) = O\left(\frac{1}{\epsilon}\right) \stackrel{\mathbf{g}_i \in \mathbb{R}^d}{\Longrightarrow} Rc = O\left(\frac{d}{\epsilon}\right)$$

- 1. Federated learning review
- 2. Approaches to deal with communication cost
- 3. Sketches
- 4. Ongoing research

Sparsification and quantization

Sparsification and quantization

This work: Sketches

Sparsification or quantization

State-of-the-art

[Ivkin, Nikita, et al., 2019] "Communication-efficient distributed sgd with sketching"

$$\mathbf{g} \in \mathbb{R}^d \to \tilde{\mathbf{g}} \in \mathbb{R}^{\dim(S)}$$

State-of-the-art

[Ivkin, Nikita, et al., 2019] "Communication-efficient distributed sgd with sketching"

$$\mathbf{g} \in \mathbb{R}^d \to \tilde{\mathbf{g}} \in \mathbb{R}^{\dim(S)}$$

with probability at least $1 - \delta$,

$$c = O\left(k\log\left(\frac{d}{\epsilon\delta}\right)\right)$$

State-of-the-art

[Ivkin, Nikita, et al., 2019] "Communication-efficient distributed sgd with sketching"

$$\mathbf{g} \in \mathbb{R}^d \to \tilde{\mathbf{g}} \in \mathbb{R}^{\dim(S)}$$

with probability at least $1 - \delta$, $R = O(\frac{1}{\epsilon^2})$

$$c = O\left(k\log\left(\frac{d}{2\delta}\right)\right)$$
, and $Rc = O\left(\frac{k}{\epsilon^2}\log\left(\frac{d}{2\delta}\right)\right)$

Short-comings

[Ivkin, Nikita, et al., 2019]
"Communication-efficient distributed SGD with sketching"

- Higher communication rounds
- Not private
- One machine analysis
- Strong assumptions
- Only for homogenous setting

Short-comings

[Ivkin, Nikita, et al., 2019]
"Communication-efficient distributed
SGD with sketching"

- Higher communication rounds
- Not private
- One machine analysis
- Strong assumptions
- Only for homogenous setting

How to improve? This paper!

Local SGD with sketching

$$\mathbf{x}_{j}^{(t+1)} = \frac{1}{p} \sum_{j=1}^{p} \left[\mathbf{x}_{j}^{(t)} - \eta \, \tilde{\mathbf{g}}_{j}^{(t)} \right] \text{ if } \tau | T$$

$$\mathbf{x}_{j}^{(t+1)} = \mathbf{x}_{j}^{(t)} - \eta \, \tilde{\mathbf{g}}_{j}^{(t)} \text{ otherwise,}$$

$$\mathbf{x}_{j}^{(t+1)} = \mathbf{x}_{j}^{(t)} - \eta \, \tilde{\mathbf{g}}_{j}^{(t)} \text{ otherwise,}$$

$$\mathbf{y} = 3, \tau = 3$$

$$\mathbf{w}_{1} \quad \mathbf{w}_{2} \quad \mathbf{w}_{3}$$

$$\mathbf{w}_{3} \quad \mathbf{w}_{4}$$

$$\mathbf{w}_{3} \quad \mathbf{w}_{4}$$

$$\mathbf{w}_{3} \quad \mathbf{w}_{4}$$

$$\mathbf{w}_{4} \quad \mathbf{w}_{2} \quad \mathbf{w}_{3}$$

$$\mathbf{w}_{4} \quad \mathbf{w}_{4} \quad \mathbf{w}_{4}$$

$$\mathbf{w}_{5} \quad \mathbf{w}_{4} \quad \mathbf{w}_{4}$$

$$\mathbf{w}_{5} \quad \mathbf{w}_{4} \quad \mathbf{w}_{4}$$

Our result for homogenous setting and general non-convex

$$\mathbf{g} \in \mathbb{R}^d \to \tilde{\mathbf{g}} \in \mathbb{R}^{\dim(S)}$$

with probability at least $1 - \delta$, $R = O(\frac{1}{\epsilon})$

$$c = O\left(k\log\left(\frac{d}{\epsilon\delta}\right)\right)$$
, and $Rc = O\left(\frac{k}{\epsilon}\log\left(\frac{d}{\epsilon\delta}\right)\right)$

General non-convex

Scheme	Rc	Differentially Privacy	Hetregenous Distribution
[Ivkin, Nikita, et al., 2019]	$O\left(\frac{k}{\epsilon^2}\log\left(\frac{d}{\epsilon^2\delta}\right)\right)$		
[Li, Tian,2019]			
Scaffold [Karimireddy,19]	$O\left(\frac{d}{\epsilon}\right)$		
FedSketch	$O\left(\frac{k}{\epsilon}\log\left(\frac{d}{\epsilon\delta}\right)\right)$		

Interesting Observation: Improvement for non-convex is much better than strongly convex objectives

References

- Ivkin, N., Rothchild, D., Ullah, E., Stoica, I., & Arora, R. (2019). Communication-efficient distributed sgd with sketching. In *Advances in Neural Information Processing Systems* (pp. 13144-13154).
- Li, T., Liu, Z., Sekar, V., & Smith, V. (2019). Privacy for Free: Communication-Efficient Learning with Differential Privacy Using Sketches. *arXiv preprint arXiv:* 1911.00972.
- Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., & Suresh, A. T. (2019). SCAFFOLD: Stochastic controlled averaging for on-device federated learning. arXiv preprint arXiv:1910.06378.

- 1. Federated learning review
- 2. Approaches to deal with communication cost
- 3. Sketches
- 4. Ongoing research

Ongoing Directions:

- 1. Extension to hetregenous setting
- 2. Improving communication efficiency using different algorithms
- 3. Using different sketching

Thanks for your attention!

