10-701: Introduction to Machine Learning

Lecture 9 – Neural Networks

Hoda Heidari

* Slides adopted from F24 offering of 10701 by Henry Chai.

Biological Neural Network

Biological Neurons

A neuron has dendrites (**inputs**), a cell body (**processing unit**), and an axon (**output**).

- Dendrites receive signals from other neurons.
- These signals are **combined** in the cell body through synapses.
- If the total signal is **strong enough**, the nucleus "fires" an electrical impulse down its axon to pass the message on to other neurons.

Source: https://en.wikipedia.org/wiki/Biological_neuron_model

Artificial Neurons/ Perceptrons

- Inputs come into the neuron, each multiplied by a weight (importance).
- The neuron adds these up and often adds a bias.
- It then passes the sum through an **activation function** (a mathematical rule that decides if the neuron "fires" and how strongly).
- The **output** is then sent to the next layer of neurons.

https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc/

Recall: Linear Models

logistic regression: logistic(wx)
= p(y=1 | x,w)

Where do linear decision boundaries come from? if &(x) ≥ 0.5 0.4

The equation of a line is

$$\mathbf{w}^T \mathbf{x} = 0$$

(bias term prepended to w)

The line defines two halfspaces in \mathbb{R}^D :

•
$$S_+ = \{x: \mathbf{w}^T \mathbf{x} > 0\}$$

$$\underbrace{\mathcal{S}_{+}}_{=} = \{ \mathbf{x} : \mathbf{w}^{T} \mathbf{x} > 0 \}$$

$$\underbrace{\mathcal{S}_{-}}_{=} = \{ \mathbf{x} : \mathbf{w}^{T} \mathbf{x} < 0 \}$$

So the model

$$h(x) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

gives rise to linear decision boundaries!

Perceptrons $\cdot h(x) = sign(w^T x)$

- Linear model for classification
- Predictions are +1 or -1

Combining Perceptrons

$$h(x) = OR\left(AND(h_1(x), \neg h_2(x)), AND(\neg h_1(x), h_2(x))\right) \begin{cases} \omega_0 = ? -1.5 \\ \omega_1 = ? +1 \end{cases}$$

$$AND(b_1, b_2) \longrightarrow Sign(\omega_0 + \omega_1 b_1 + \omega_2 b_2) \longrightarrow \begin{cases} \omega_0 = ? -1.5 \\ \omega_1 = ? +1 \end{cases}$$

$$OR(b_1, b_2) \longrightarrow Sign(\omega_0 + \omega_1 b_1 + \omega_2 b_2) \longrightarrow \begin{cases} \omega_0 = ? -1.5 \\ \omega_1 = ? +1 \end{cases}$$
Henry Chai - 2/14/24

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And:
$$AND(z_1, z_2) = \begin{cases} +1 \text{ if both } z_1 \text{ and } z_2 \text{ equal} + 1 \\ -1 \text{ otherwise} \end{cases}$$

• Or:
$$OR(z_1, z_2) = \begin{cases} +1 \text{ if either } z_1 \text{ or } z_2 \text{ equals } +1 \\ -1 \text{ otherwise} \end{cases}$$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And: $AND(z_1, z_2) = sign(z_1 + z_2 - 1.5)$

• Or: $OR(z_1, z_2) = sign(z_1 + z_2 + 1.5)$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And:
$$AND(z_1, z_2) = \text{sign}\left([-1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

• Or:
$$OR(z_1, z_2) = sign\left(\begin{bmatrix} 1.5, 1, 1 \end{bmatrix} \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

Henry Chai - 2/14/24 / 21

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$sign(-sign(\mathbf{w}_{1}^{T}\mathbf{x}) + sign(\mathbf{w}_{2}^{T}\mathbf{x}) - 1.5) + 1.5)$$

Multi-Layer Perceptron (MLP)

(Fully-Connected) Feed Forward Neural Network

$$\theta(\cdot)$$

Hyperbolic tangent:

$$\tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

•
$$\frac{\partial \tanh(z)}{\partial z} = 1 - \tanh(z)^2$$

Multiclass dassification -> softmax activation output Binary output

Other Activation Functions

Logistic, sigmoid, or soft step	$\sigma(x) = rac{1}{1+e^{-x}}$
Hyperbolic tangent (tanh)	$ anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$
Rectified linear unit (ReLU) ^[7]	$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & \max\{0,x\} = x 1_{x > 0} \end{cases}$
Gaussian Error Linear Unit (GELU) ^[4]	 $rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$
Softplus ^[8]	$\ln(1+e^x)$
Exponential linear unit (ELU) ^[9]	$\left\{egin{array}{ll} lpha \left(e^x-1 ight) & ext{if } x \leq 0 \ x & ext{if } x > 0 \end{array} ight.$ with parameter $lpha$
Leaky rectified linear unit (Leaky ReLU) ^[11]	$\left\{egin{array}{ll} 0.01x & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array} ight.$
Parametric rectified linear unit (PReLU) ^[12]	$\left\{egin{array}{ll} lpha x & ext{if } x < 0 \ x & ext{if } x \geq 0 \ \end{array} ight.$ with parameter $lpha$

Source: https://en.wikipedia.org/wiki/Activation function

(Fully-Connected) Feed Forward Neural Network

(Fully-Connected) Feed Forward Neural Network

The weights between layer l-1 and layer l are a matrix:

In-class Poll

 How many hidden layers are necessary to simulate logistic regression using a NN?

 How many hidden layers are necessary to simulate linear regression using a NN?

Signal and Outputs

Every node has an incoming signal and outgoing output

Signal and Outputs

Every node has an incoming signal and outgoing output

$$\mathbf{s}^{(l)} = \mathbf{W}^{(l)} \mathbf{o}^{(l-1)}$$
 and $\mathbf{o}^{(l)} = [1, \theta(\mathbf{s}^{(l)})]^T$

Forward Propagation for Making Predictions

• Input: weights $W^{(1)}$, ..., $W^{(L)}$ and a query data point \boldsymbol{x}

• Initialize
$$o^{(0)} = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

• For l = 1, ..., L

$$\mathbf{s}^{(l)} = W^{(l)} \mathbf{o}^{(l-1)}$$

$$\bullet \, \boldsymbol{o}^{(l)} = \begin{bmatrix} 1 \\ \boldsymbol{\theta}(\boldsymbol{s}^{(l)}) \end{bmatrix}$$

• Output: $h_{W^{(1)},...,W^{(L)}}(x) = o^{(L)}$

Stochastic Gradient Descent for Learning

- Input: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N, \eta^{(0)}$
- Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta^{(0)}G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Two questions:

1. What is this loss function $\ell^{(i)}$?

2. How on earth do we take these gradients?

- Input: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, \eta^{(0)}$
- Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set t=0 (???)
- While TERMINATION CRITERION is not satisfied (???)
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$ (???)
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta^{(0)}G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Regression - squared error (same as linear regression!)

$$\ell^{(i)}\left(W_{(t)}^{(1)},\ldots,W_{(t)}^{(L)}\right) = \left(h_{W^{(1)},\ldots,W^{(L)}}(\mathbf{x}^{(i)}) - y^{(i)}\right)^2$$

- Binary classification cross-entropy loss
 - measures the difference between two probability distributions:
 - The true distribution (the labels, usually one-hot encoded).
 - The predicted distribution (the model's output probabilities)
 - penalizes the model more when it assigns low probability to the correct class.
 - Example: Binary classification, one instance with true label y and predicted probability p

Oross-entropy loss=
$$- \left[y \log(p) + (i-y) \log(i-p) \right]$$

 $y = 0.9/0.1 - \log(0.9)$ $y = 0.1/0.9 - \log(0.1)$
 $y = 0 - \log(0.1)$

Binary classification - cross-entropy loss

$$D_{z} \{(x_{i}, y_{i})\}_{iz_{i}}^{N}$$

$$\hat{y}_{i} = h(x_{i})$$

$$\text{Whithoul of data} = \prod_{i=1}^{N} P(y_{i}|x_{i}, w) = \sum_{i=1}^{N} \log P(y_{i}|x_{i}, w)$$

Binary classification - cross-entropy loss

• Assume
$$P(Y = 1 | \mathbf{x}, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x})$$

$$\ell^{(i)}\left(W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}\right) = -\log P(y^{(i)} | \mathbf{x}^{(i)}, W^{(1)}, ..., W^{(L)})$$

$$= -\log \left(h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x}^{(i)})^{y^{(i)}} \left(1 - h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x}^{(i)})\right)^{1 - y^{(i)}}\right)$$

$$= -y^{(i)} \log \left(h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x}^{(i)})\right)$$

$$-(1 - y^{(i)}) \log \left(1 - h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x}^{(i)})\right)$$

- Multi-class classification also the cross-entropy loss!
 - Express the label as a one-hot or one-of-C vector e.g.,

$$y = \begin{bmatrix} 1 & 2 & 3 & & & & \\ 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$P(y[c] = 1 | x, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)}, ..., W^{(L)}}(x)[c]$$

Then the cross-entropy loss is

$$\ell^{(i)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = -\log P(y^{(i)}|\mathbf{x}^{(i)}, W^{(1)}, \dots, W^{(L)})$$
$$= -\sum_{c=1}^{C} y[c] \log h_{W^{(1)}, \dots, W^{(L)}}(\mathbf{x}^{(n)})[c]$$

Multidimensional Outputs

Key Takeaways

- Many common machine learning models can be represented as neural networks.
- Perceptrons can be combined to achieve non-linear decision boundaries
- Feed-forward neural network model:
 - Activation function
 - Layers: input, hidden & output
 - Weight matrices
 - Signals & outputs
- Forward propagation for making predictions
- Neural networks can use the same loss functions as other machine learning models