Optimization in Machine Learning

Univariate optimization: Brent's method

Learning goals

- Quadratic interpolation
- Brent's procedure

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

QUADRATIC INTERPOLATION COMMENTS

- Quadratic interpolation not robust. The following may happen:
 - Algorithm suggests the same x^{new} in each step,
 - x^{new} outside of search interval,
 - Parabola degenerates to line and no real minimum exists
- Algorithm must then abort, finding a global minimum is not guaranteed.

BRENT'S METHOD

- Brent proposed an algorithm (1973) that alternates between golden ratio search and quadratic interpolation as follows:
 - Quadratic interpolation step acceptable if: (i) x^{new} falls within [x^{left}, x^{right}] (ii) x^{new} sufficiently far away from x^{best} (Heuristic: Less than half of movement of step before last)
 - Otherwise: Proposal via golden ratio
- Benefit: Fast convergence (quadratic interpolation), unstable steps (e.g. parabola degenerated) stabilized by golden ratio search
- Convergence guaranteed if the function f has a local minimum
- Used in R-function optimize()

EXAMPLE: MLE POISSON

- Poisson density: $f(k \mid \lambda) := \mathbb{P}(x = k) = \frac{\lambda^k \cdot \exp(-\lambda)}{k!}$
- Negative log-likelihood for n observations:

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^n \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\log \prod_{i=1}^n f\left(x^{(i)} \mid \lambda\right)$$

$$-\log$$

GR and Brent converge to minimum at $x^* \approx 1$.

But: GR needs \approx 45 it., Brent only needs \approx 15 it. for same tolerance.