## Minimum Spanning Tree (MST)

Hengfeng Wei

hfwei@nju.edu.cn

June 19, 2018



1 / 29

# **Cut Property**

$$G = (V, E, w)$$

### Cut Property (I)

X: A part of some MST T of G

 $(S,V\setminus S):$  A  ${\it cut}$  such that X does  ${\it not}$  cross  $(S,V\setminus S)$  Âŋ

e : A lightest edge across  $(S, V \setminus S)$ 

### Cut Property (I)

 $X: \mathsf{A} \ \mathsf{part} \ \mathsf{of} \ \mathsf{some} \ \mathsf{MST} \ T \ \mathsf{of} \ G$ 

 $(S,V\setminus S):$  A  ${\it cut}$  such that X does  ${\it not}$  cross  $(S,V\setminus S)$  Âŋ

 $e: \textit{A} \text{ lightest edge across } (S, V \setminus S)$ 

Then  $X \cup \{e\}$  is a part of some MST T' of G.

### Cut Property (I)

X: A part of some MST T of G

 $(S,V\setminus S):$  A  ${\it cut}$  such that X does  ${\it not}$  cross  $(S,V\setminus S)$  Âŋ

e :  $\mbox{\it A}$  lightest edge across  $(S, V \setminus S)$ 

Then  $X \cup \{e\}$  is a part of some MST T' of G.

Correctness of Prim's and Kruskal's algorithms.





$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$



$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$
 "a"  $\rightarrow$  "the"  $\Longrightarrow$  "some"  $\rightarrow$  "all"

### Cut Property (II)

A cut 
$$(S, V \setminus S)$$

Let e = (u, v) be a lightest edge across  $(S, V \setminus S)$ 

 $\exists$  MST T of  $G: e \in T$ 



#### Cut Property (II)

A cut 
$$(S, V \setminus S)$$

Let e = (u, v) be a lightest edge across  $(S, V \setminus S)$ 

 $\exists$  MST T of  $G: e \in T$ 



$$T' = \underbrace{T + \{e\}}_{\text{if } e \not\in T} - \{e'\}$$



#### Cut Property (II)

A cut 
$$(S, V \setminus S)$$

Let e = (u, v) be a lightest edge across  $(S, V \setminus S)$ 

 $\exists$  MST T of  $G: e \in T$ 



$$T' = \underbrace{T + \{e\}}_{\text{if } e \not\in T} - \{e'\}$$

"a"  $\rightarrow$  "the"  $\Longrightarrow$  " $\exists$ "  $\rightarrow$  " $\forall$ "

Application of Cut Property [Problem: 10.15 (3)]

$$e = (u, v) \in G$$
 is a lightest edge  $\implies e \in \exists$  MST of  $G$ 

Application of Cut Property [Problem: 10.15 (4)]

$$e = (u, v) \in G$$
 is the unique lightest edge  $\implies e \in \forall$  MST

Application of Cut Property [Problem: 10.15 (3)]

$$e = (u,v) \in G$$
 is a lightest edge  $\implies e \in \exists$  MST of  $G$ 

$$\left(S = \{u\}, V \setminus S\right)$$

Application of Cut Property [Problem: 10.15 (4)]

$$e=(u,v)\in G$$
 is the unique lightest edge  $\implies e\in \forall$  MST

Wrong Divide&Conquer Algorithm for MST [Problem: 10.21]

$$(V_1, V_2) : ||V_1| - |V_2|| \le 1$$

 $T_1 + T_2 + \{e\}$ : e is a lightest edge across  $(V_1, V_2)$ 

Wrong Divide&Conquer Algorithm for MST [Problem: 10.21]

$$(V_1, V_2) : ||V_1| - |V_2|| \le 1$$

 $T_1 + T_2 + \{e\}$ : e is a lightest edge across  $(V_1, V_2)$ 



7 / 29

Cycle Property

#### Cycle Property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then  $\exists$  MST T of  $G: e \notin T$ .



#### Cycle Property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- Let e=(u,v) be a maximum-weight edge in C

Then  $\exists$  MST T of  $G: e \notin T$ .



$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

#### Cycle Property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- Let e = (u, v) be a maximum-weight edge in C

Then  $\exists$  MST T of  $G: e \notin T$ .



$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

"a"  $\rightarrow$  "the"  $\Longrightarrow$  " $\exists$ "  $\rightarrow$  " $\forall$ "



Reverse-delete algorithm (wiki; clickable)

Reverse-delete algorithm (wiki; clickable)

$$O(m \log n ((\log \log n)^3))$$

Reverse-delete algorithm (wiki; clickable)

$$O(m \log n (\log \log n)^3)$$

Proof.

Cycle Property

Reverse-delete algorithm (wiki; clickable)

$$O(m \log n ((\log \log n)^3))$$

Proof.

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$



Reverse-delete algorithm (wiki; clickable)

$$O(m \log n (\log \log n)^3)$$

Proof.

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem"

— Kruskal, 1956.

Application of Cycle Property [Problem: 10.15 (1)]

$$G = (V, E), \quad |E| > |V| - 1$$

 $\boldsymbol{e}$  : the unique maximum-weighted edge of  $\boldsymbol{G}$ 

$$\Longrightarrow$$

$$e \not\in \text{ any MST}$$

Application of Cycle Property [Problem: 10.15 (1)]

$$G = (V, E), \quad |E| > |V| - 1$$

 $\boldsymbol{e}$  : the unique maximum-weighted edge of  $\boldsymbol{G}$ 

$$\Longrightarrow$$

$$e \not\in \text{ any MST}$$

Bridge

Application of Cycle Property [Problem: 10.15 (2)]

$$C \subseteq G$$
,  $e \in C$ 

e : the unique maximum-weighted edge of  ${\it G}$ 



 $e \not\in \text{ any MST}$ 

Application of Cycle Property [Problem: 10.15(2)]

$$C \subseteq G$$
,  $e \in C$ 

e : the unique maximum-weighted edge of  ${\it G}$ 

 $\Longrightarrow$ 

 $e \notin \mathsf{any} \mathsf{MST}$ 

Cycle Property

Application of Cycle Property [Problem: 10.15 (5)]

$$C \subseteq G, e \in C$$

e: the unique lightest edge of C

$$\Longrightarrow$$

$$e \in \forall \mathsf{MST}$$

### Application of Cycle Property [Problem: 10.15 (5)]

$$C \subseteq G, e \in C$$

e: the unique lightest edge of C

$$\implies$$

$$e \in \forall \mathsf{MST}$$



# Uniqueness of MST

Distinct weights  $\implies$  Unique MST.

Distinct weights  $\implies$  Unique MST.

By Contradiction.

Distinct weights  $\implies$  Unique MST.

By Contradiction.

$$\exists$$
 MSTs  $T_1 \neq T_2$ 

Distinct weights  $\implies$  Unique MST.

By Contradiction.

$$\exists$$
 MSTs  $T_1 \neq T_2$ 

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

## Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights  $\implies$  Unique MST.

# By Contradiction.

$$\exists$$
 MSTs  $T_1 \neq T_2$ 

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

## Uniqueness of MST [Problem: 10.18 (1)]

Distinct weights  $\implies$  Unique MST.

## By Contradiction.

$$\exists$$
 MSTs  $T_1 \neq T_2$ 

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

$$e \in T_1 \setminus T_2$$
 (w.l.o.g)



$$e \in T_1 \setminus T_2$$



$$e \in T_1 \setminus T_2$$



$$T_2 + \{e\} \implies C$$

$$e \in T_1 \setminus T_2$$



$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1$$

$$e \in T_1 \setminus T_2$$



$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E$$



$$e \in T_1 \setminus T_2$$



$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$e \in T_1 \setminus T_2$$



$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T' = T_2 + \{e\} - \{e'\} \implies w(T') < w(T_2)$$



Condition for Uniqueness of MST [Problem: 10.18 (2)]

Unique MST  $\implies$  Equal weights.

# Condition for Uniqueness of MST [Problem: 10.18 (2)] Unique MST $\implies$ Equal weights.



Unique MST  $\implies$  Minimum-weight edge across any cut is unique.

Unique MST  $\implies$  Minimum-weight edge across any cut is unique.



Unique MST  $\implies$  Minimum-weight edge across any cut is unique.



# Theorem (After-class Exercise)

Minimum-weight edge across any cut is unique ⇒ Unique MST.

Unique MST  $\implies$  Maximum-weight edge in any cycle is unique.

Unique MST  $\implies$  Maximum-weight edge in any cycle is unique.



Unique MST  $\implies$  Maximum-weight edge in any cycle is unique.



# Theorem (After-class Exercise)

Maximum-weight edge in any cycle is unique ⇒ Unique MST.







To decide whether a graph has a unique MST.

To decide whether a graph has a unique MST.

Ties in Prim's and Kruskal's algorithms

To decide whether a graph has a unique MST.

# Ties in Prim's and Kruskal's algorithms



To decide whether a graph has a unique MST.

# Ties in Prim's and Kruskal's algorithms



$$\underbrace{\frac{\mathbf{T}}{\mathsf{Any\ MST}}}_{\mathsf{Any\ MST}} + \underbrace{\underbrace{\{e\}}_{\mathsf{Cycle}}}_{\mathsf{Cycle}}$$

# Variants of MST

$$G' = (V', E'): V' = V + \{v\}, E' = E + E_v$$
 To find an MST  $T'$  of  $G'.$ 

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST  $T'$  of  $G'$ .

$$O\Big((m+n)\log n\Big)$$
 (recompute on  $G'$ )

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST  $T'$  of  $G'$ .

$$O\Big((m+n)\log n\Big)$$
 (recompute on  $G'$ )

#### **Theorem**

There exists an MST of G' that includes no edges in  $G \setminus T$ .

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST  $T'$  of  $G'$ .

$$O\Big((m+n)\log n\Big)$$
 (recompute on  $G'$ )

#### Theorem

There exists an MST of G' that includes no edges in  $G \setminus T$ .

$$O(n \log n)$$
 (recompute on  $G'' = (V + \{v\}, T + E_v)$ )

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST  $T'$  of  $G'$ .

$$O\Big((m+n)\log n\Big)$$
 (recompute on  $G'$ )

#### **Theorem**

There exists an MST of G' that includes no edges in  $G \setminus T$ .

$$O(n\log n)$$
 (recompute on  $G''=(V+\{v\},T+E_v)$ ) 
$$O(n)$$

$$G' = (V', E') : V' = V + \{v\}, E' = E + E_v$$
To find an MST  $T'$  of  $G'$ .

$$O\Big((m+n)\log n\Big)$$
 (recompute on  $G'$ )

#### Theorem

There exists an MST of G' that includes no edges in  $G \setminus T$ .

$$O(n\log n)$$
 (recompute on  $G''=(V+\{v\},T+E_v)$ )

"On Finding and Updating Spanning Tress and Shortest Paths", 1975 "Algorithms for Updating Minimum Spanning Trees", 1978

Feedback Edge Set (FES): [Problem: 10.8]

$$\mathsf{FES} \subseteq E : G' = (V, E \setminus \mathsf{FES})$$
 is acyclic

To find a minimum FES.

Feedback Edge Set (FES): [Problem: 10.8]

$$\mathsf{FES} \subseteq E : G' = (V, E \setminus \mathsf{FES}) \text{ is acyclic}$$

To find a minimum FES.

G is connected  $\implies G'$  is connected

G' is connected + acyclic  $\implies G'$  is an ST

## Feedback Edge Set (FES): [Problem: 10.8]

$$\mathsf{FES} \subseteq E : G' = (V, E \setminus \mathsf{FES}) \text{ is acyclic}$$

To find a minimum FES.

$$G$$
 is connected  $\implies G'$  is connected

$$G'$$
 is connected  $+$  acyclic  $\implies G'$  is an ST

$$\mathsf{FES} \iff G \setminus \mathsf{Max}\mathsf{-ST}$$



$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.

$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.



$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.



 $\mathsf{MST}\ T'\ \mathsf{of}\ G' = G \setminus U$ 

$$G = (V, E), \quad U \subset V$$

To find an MST with U as leaves.



$$\mathsf{MST}\ T'\ \mathsf{of}\ G' = G \setminus U$$

Attach  $\forall u \in U$  to T' (with lightest edge)



# MST with Specified Edges: [Problem: 10.13]

$$G = (V, E), \quad S \subset E \text{ (no cycle in } S)$$

To find an MST with  ${\cal S}$  as edges.

# MST with Specified Edges: [Problem: 10.13]

$$G = (V, E), \quad S \subset E \text{ (no cycle in } S)$$

To find an MST with S as edges.

 $G \rightarrow G'$  : contract each component of S to a vertex

## MST with Specified Edges: [Problem: 10.13]

$$G = (V, E), \quad S \subset E \text{ (no cycle in } S)$$

To find an MST with S as edges.

MST v.s. Shortest Path

MST vs. Shortest Paths [Problem: 10.15 (6)]

X The shortest path between s and t is necessarily part of some MST.



$$G = (V, E, w), \quad w(e) > 0, \quad s \in V$$

All sssp trees from s must share some edge with all (some) MSTs of G.

$$G = (V, E, w), \quad w(e) > 0, \quad s \in V$$

All sssp trees from s must share some edge with all (some) MSTs of G.

 $E' \subseteq E$ : lightest edges leaving s

$$G = (V, E, w), \quad w(e) > 0, \quad s \in V$$

All sssp trees from s must share some edge with all (some) MSTs of G.

 $E' \subseteq E$ : lightest edges leaving s

 $E' \subseteq \forall$  sssp tree from s

$$G = (V, E, w), \quad w(e) > 0, \quad s \in V$$

All sssp trees from s must share some edge with all (some) MSTs of G.

 $E' \subseteq E$ : lightest edges leaving s

 $E' \subseteq \forall$  sssp tree from s

 $\forall$  MST T of  $G: T \cap E' \neq \emptyset$ 

