

Revolutionizing Cotton Wool Management: MIS Portal for Woolboard, Ministry of Textiles

Devansh Kaushik, Vishal Shyam Dasani, Abhilekh Talukdar Dept of Computer Science and Engineering, Indian Institute of Technology

Jodhpur, Rajasthan, India.

ABSTRACT

In today's rapid technological advancements, incorporating modern Information Systems has become essential for boosting the efficiency and transparency of governmental operations. This thesis focuses on implementing a Management Information System (MIS) customized for the Wool Board under the Ministry of Textiles, Government of India. The main goal is to move beyond traditional document-based methods, introducing a digital transformation for project proposal submission, scheme approval, and fund releases. This bold initiative takes the form of a web application designed to revolutionize the ministry's workflow, simplifying bureaucratic processes and enabling better-informed decision-making.

INTRODUCTION

- Focused on modernizing project management practices through the introduction of a specialized Management Information System (MIS).
- This web application aims to revolutionize key project processes, enhancing efficiency and transparency.
- MIS undergoes rigorous testing for reliability, incorporates scalability, and features a robust backup architecture, ensuring adaptability to evolving demands.

METHODOLOGY

- Explored dynamic website development across various stacks, including Django, MERN, and Drupal.
- Strategically chose Django for the MIS Portal and Drupal for the dynamic website, prioritizing efficiency and scalability.
- Development phase focused on designing systems for schemes' progress reports, fund management, release mechanisms, and implementing a multi-role authentication framework.

CMS	Page Load time	Page size	No. of Requests	CSS Files Requested	JS Files Requested	Load Time with Cache
Drupal	545 ms	58 KB	20	7	0	353 ms
Joomla	891 ms	$521~\mathrm{KB}$	28	9	7	704 ms
WordPress	2961 ms	98 KB	13	3	4	441 ms
		Table	e 5.2: Results of text	only page		
CMS	Page Load time	Table Page size	e 5.2: Results of text No. of Requests	only page CSS Files Requested	JS Files Requested	Load Time with Cache
CMS	and the second	Page		CSS Files		AND ALL OF THE PARTY OF THE PARTY.
100.500.00000	time	Page size	No. of Requests	CSS Files Requested		Cache

- Backup architecture was proposed for the same, which involved taking differential backups after segregating the backup into 3 regions minimum.
- Apache Testing and production level feasibility was checked for all 3 stacks.

RESULTS

FUTURE SCOPE

- 1. Implementation of the given backup architecture is in progress.
- 2. Scalability and stress testing is to be done.
- 3. Another module called "inspections" module is already under works, which involves inspection of gpals completed and data submitted by IAs (Implementing Agencies.)

REFERENCES

- 1. M. Shon, H. Kim, K. Park, J. W. Park, K. Won, and J. Hong, "A robust and secure backup system for protecting malware," in 34th ACM/SIGAPP Symposium on Applied Computing, 2018.
- 2. L. Luo, D. Yu, Y. Lv, and L. Shiuchi, "Critical data backup with hybrid flash-based consumer devices," in ACM Transactions on Architecture and Code Optimization, 2023