Visualisation — TP nº 3 Interpolation de données éparses

1 Introduction

Objectif

Ce TP a pour but l'implémentation de deux algorithmes d'interpolation de données éparses, les algorithmes de Shepard et Multi Quadric décrits dans le polycopié de cours. Le but de ces algorithmes est d'obtenir une évaluation d'une fonction F en tout point d'un domaine, à partir de certains valeurs connues (les f_i). Pour plus de précisions, référez-vous au polycopié de cours, page 42. Il est conseillé (mais non obligatoire) de réaliser ce TP en C/C++ ou Python afin d'utiliser une bibliothèque de résolution de systèmes linéaires pour l'implémentation du second algorithme.

Données et résultats

Appliquez vos algorithmes sur des points dont les positions sont comprises entre 0 et 1. Ainsi pour tester vos algorithmes, utilisez une grille de n sur n points entre 0 et 1 représentant votre domaine. Dans ce domaine, les points sont définis par leur position x et y ainsi que par leur valeur, par exemple le point (0.2, 0.4, 5) indique que le point dont l'abscisse est 0.2 et l'ordonnée est 0.4 a pour valeur 5.

FIGURE 1 – Exemple de grille 10x10 points représentant le domaine.

Commencez par utiliser quelques points fixés (par exemple (0.2, 0.5, 2) et (0.4, 0.2, 5)) que vous définissez à la main pour tester vos algorithmes. Puis utilisez une fonction plus complexe (par exemple sin(y/2) + cos(x/2)) et générez des points aléatoirement dans le domaine (les f_i).

Pour visualiser le resultat, vous pouvez utiliser gnuplot avec la fonction splot qui permet d'afficher une surface en 3D. Le fichier décrivant la surface se compose d'un point (2 coordonnées et une valeur) par ligne, par exemple :

 $0.25 \ 0.50 \ 2.45$

 $0.30\ 0.75\ 4.2$

 $0.50\ 0.25\ 10.2$

 $0.75\ 0.25\ 6.89$

Pour obtenir une surface correspondant à votre fonction d'interpolation, définissez une grille échantillonée sur votre domaine (par exemple 1000 points par 1000). Appliquez ensuite vos algorithmes sur chacun des points de cette grille et redirigez le résultat vers la sortie standard pour l'afficher avec gnuplot. Par exemple :

```
./interpolation > res.txt
gnuplot
splot "res.txt"
```


FIGURE 2 – Affichage de sin(y/2) + cos(x/2) avec gnuplot

2 Méthode de Shepard

Implémentation

Implémentez l'algorithme de Shepard (page 44 du polycopié de cours). Dans un premier temps, utilisez une valeur de 2 pour μ_i comme conseillé dans le polycopié.

Influence de μ_i

Testez le résultat de votre algorithme pour des valeurs différentes de μ_i et commentez l'influence de μ_i sur le résultat.

3 Méthode de Hardy

Implémentation

Implémentez l'algorithme de Hardy, aussi appelé méthode des Multi-Quadric (page 56 du polycopié de cours). Cet algorithme nécessite de résoudre un système d'équations linéaires. Inutile de réimplémenter un solveur linéaire, vous devez utiliser une bibliothèque disponible.

Par exemple, Eigen (Documentation de Eigen) est facile à installer et utiliser en C/C++. Plusieurs classes de Eigen permettent de résoudre un système d'équations linéaires (lien). Vous pouvez par exemple utiliser la classe LDLT comme montré dans l'exemple situé sur la page d'Eigen citée précédemment. Il existe également une adaptation de Eigen pour Java : Jeigen, mais son utilisation est à vos risques et périls!

En Python, la fonction *numpy.lnalg.solver* (Lien vers la documentation) permet également de résoudre facilement des sytèmes d'équations linéaires.

Influence de R

Testez et comparez les résultats de votre algorithme avec les trois suggestions du polycopié pour la valeur de R (Hardy, Franke et Stead).

4 Rendu

Votre rendu sera composé d'un compte rendu et du code source de vos deux algorithmes. Le compte rendu devra contenir vos images de résulats commentées, calculées à partir de différentes fonctions de génération (par exemple sin(y/2) + cos(x/2) mais également d'autres fonctions que vous aurez défini). Il contiendra également les images de résultats montrant l'impact de μ_i pour l'algorithme de Shepard et l'impact de R pour l'algorithme de Hardy.