GOVT.POLYTECHNIC - PLPT UNIT TEST - I

Scheme and Subject code: C-20(2020-21)ENGG.MATHEMATICS-102

Subject Name: ENGINEERING MATHEMATICS - I
PIN:
DATE:
TIME:

Total Marks: 40 MARKS

PART - A

I. Answer **ALL** questions.

First question carries 4 marks and remaining questions carry 3 marks each.

S.no	Questions	Marks	Marks	Blooms	Course
3.110	Questions	IVIAINS			
			obtained	Taxonomy	Out
				Level	comes
1	a) Find the additive inverse of 4+5i	1			CO2
	$\begin{bmatrix} 1 & -2 \end{bmatrix}$				
	b) If $A = \begin{bmatrix} 1 & -2 \\ 5 & 1 \end{bmatrix}$ then find A^T	1			601
	c) Tan 300 ⁰ =				CO1
	,	1			CO2
	d) Write the formula of cot (A+B)	1			CO2
2	4+2i	3			CO2
	Find the real and imaginary parts of $\overline{1-2i}$				
	[1 0]				
3	$\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$	3			CO1
	If $A = \begin{bmatrix} 1 & 0 \\ -1 & 9 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 3 \end{bmatrix}$ then find $B - 2A$				
4	Prove that(45° + A)tan(45°-A)=1	3			CO2
_					602
5	110VC that = cot A	3			CO2
	1-cos2A				

Part-B

II Answer **ALL** questions.Each question carries **EIGHT** marks

S.no	Questions	Mark	Marks	Blooms	Course
		S	obtained	Taxonomy	Out
				Level	comes
6	a)Find adjoint of the matrix	8			CO1
	$\begin{bmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{bmatrix} = 2(a+b+c)^3$				
	(or)				
	b)Find the adjoint of the matrix of				CO1
	$\begin{bmatrix} cos\theta & sin\theta & 0 \end{bmatrix}$				
	$\begin{bmatrix} -sin heta & cos heta & 0 \end{bmatrix}$				
7	a) Solve the equation using Matrix Inversion	8			CO1
	Method x+y+z=6,x-y+z=2,2x+y-z=1				
	(or)				
	b) Solve the system of equation using				CO1
	Crammers rule x-y+z=2,2x+3y-4z=-4,3x+y+z=8				
8	a) Show that $\frac{sin5A - sin3A}{cos3A - cos5A}$ = cot4A	8		1	CO2
	(or)				
	b)Prove that cos20 ⁰ -cos40 ⁰ -cos80 ⁰ =0				CO2