

Part.1 Introduction

Part.2 Mathematical model

Content

Part.3 Simulation conditions

Part.4 Simulation and results

Part.5 Conclusion

Introduction

environmental deterioration

sanstorm

blown sand physics

macrostudy

microstudy

two-way coupling of sand and gas

Mathematical model

continuity equation

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \frac{\partial u^{\beta}}{\partial x^{\beta}}$$

motion equation

$$\frac{\partial u^{\alpha}}{\partial t} + u^{\alpha} \frac{\partial u^{\alpha}}{\partial x^{\alpha}} = -\frac{1}{\rho} \frac{\partial p}{\partial x^{\alpha}} + v \frac{\partial^{2} u^{\alpha}}{\partial x^{\alpha^{2}}} + f^{\alpha}$$

state equation

$$p_s = p_s^k + p_s^I$$
 $p =
ho R_{lpha} T$
 $p_s^k =
ho_s T_s$
 $p_s^I = 2
ho g (1 + e) T_s$

$$f(x) \approx \sum_{J=1}^{M} \frac{m^{J}}{\rho^{J}} f(x^{J}) W(x - x^{J}, h) + \sum_{J=M}^{N} \frac{m^{JJ}}{\rho^{JJ}} f(x^{JJ}) W(x - x^{JJ}, h)$$

$$K_{AA} = 3.0$$

$$K_{AS} = 2.5$$

$$K = \begin{bmatrix} K_{AA} & K_{AS} \\ K_{SA} & K_{SS} \end{bmatrix} = \begin{bmatrix} 3.0 & 2.5 \\ 2.5 & 1.1 \end{bmatrix}$$

$$K_{SA} = 2.5$$

$$K_{SS} = 1.1$$

Trajectory of saltaion particle

Collision model

Initial setting of simulation

- - -	Incident sand particle size (mm)	Incident velocity (m/s)	Incident angle (°)	Rebound velocity (m/s)	Rebound angle (°)	Rebound/ Incident (velocity)
	0.15-0.25	3.85	10.85	1.99	44.63	0.52
Rice et al.		3.78	10.24	2.13	38.03	0.58
		3.74	10.45	2.16	37.85	0.58
Andersion &Haff 1991	0.32 (same size)	1-8	11.5	0.6-4.9	42-48	
Li 2007	0.32 (mix size)	1-8	11.5	0.6-4.8	47	0.6-0.65
	0.25	2.24	30	1.4-1.9		
Our study		1.41	45	0.8-1.1	26-49	0.6-0.8
		2.07	15	1.2-1.7		

		Incident sand		Sputtering/						
1	Study particle size (mm)		0.425-0.6	0.3-0.355		0.15-0.25		all	incident (velocity)	
	Rice et al. 1995	0.425-0.6	0.2134	0.2	0.2537		.2335	0.243	0.09	
			0.2574	0.2	402	0.2418		0.2422	0.09	
			0.2381	0.2	0.2548		.2521	0.2522	0.09	
			0.2708	0.2	0.2878		.2398	0.2637	0.09	
		l. 0.3-0.355	0.2253 0.		2839 0		.2268	0.2544	0.08	4
			0.2051	0.2	0.2686		.2416	0.2520	0.08	
			0.2584	0.2	0.2716		.2506	0.2607	0.08	1
			0.2730		3117 (.2848	0.2950	0.09	1
		0.15-0.25	0.2011	0.2	0.2669		.2914	0.2757	0.07	j
			0.1736	0.2	0.2299		.2946	0.2566	0.07	(
			0.1956	0.2	905	0,2736		0.2773	0.07)
	Anderson& Haff 1991	0.32 (same size)		8			1-8	0.27-0.47		1
				11.5			1.0	0.27 0.47		5
	Li 2007	0.32 (mix size)	Incident	8			<3	0.18-0.26	0.1-0.2	
			angle	11.5	Incide veloc	\ 2		0.26-0.38	0.05-0.1)
	Our study	ldy 0.25	25	30	, , , ,	2.24	0.35-0.43		1	
				45	15		1.41	0.46-0.52	0.17-0.3	
							2.07	0.28-0.36		t

		Incident sand	Sputtering angle (°)							
Study		particle size (mm)	0.425-0.6		0).3-0.355	0.15-0.25		all	
	Rice et al. 1995	0.425-0.6	48.32		50.39		50.58		50.36	
			44.76		51.83		47.36		49.27	
			46.86		54.37		54.31		53.77	
			37.41		48.82		51.49		49.34	
		0.3-0.355	47.75		54.05		66.41		59.03	
			52.89		52.74		54.35		53.57	
			36.31		59.09		62.09		59.47	
			47.40		52.56		53.02		52.50	
			32.28		56.14		60.07		56.57	
		0.15-0.25	41.21			55.07	56.13		54.58	
			42.88			55.47	55.73		55.00	
	Anderson& Haff 1991 (s	0.32 (same size)		1.0	,		8	67.76		
				1-8	3		11.5		67-76	
	1:2007	0.32		1-8)		8		63-69	
	Li 2007	(mix size)	Incident	1-0)	Incident	11.5		mean=66	
Our study		0.25	velocity	2.24 1.41		angle	30	35-89		
	Our study						45			
			2.0	7		15	4			

Conclusion

- Establish the coupling between sand phase and gas phase
- Simulate the process of wind-blown sand movement based on SPH
- Help to explain the mechanism of wind-blown sand movement

THE END