Lecture 2 – Negative Number Representation

CMSC 130

Real Numbers and Integers

Signed Magnitude

- Simplest method of representing negative numbers in binary format
- Uses an extra bit (the most significant bit) to represent the sign
 - "1" indicates a negative number
 - "o" indicates a positive number
 - remaining bits are for the magnitude of the number

Signed Magnitude

- Examples,
 - **-**7 = **1**111
 - -1 = **1**001
- Use of signed magnitude is complicated when performing arithmetic operations
- 2 values for zero
 - 0000 = 0
 - **1**000 = -0

Complements

- Used in digital computers for simplifying the subtraction operation and for logical manipulations
- For base r numbers,
 - Radix Complement (r's complement)
 - Diminished Radix Complement ((r-1)'s complement)

Complements

- For binary numbers (r=2),
 - Radix Complement (2's complement)
 - Diminished Radix Complement (1's complement)
- For decimal numbers (r=10),
 - Radix Complement (10's complement)
 - Diminished Radix Complement (9's complement)

Diminished Radix Complement

- Number representation
 - Positive same way as in signed magnitude
 - Negative represented using (r-1)'s complement (for base r numbers)
- (r-1)'s complement: a positive number N in base r with n digits of integer part and m digits of fraction part,
 - $r^{n} r^{-m} N$

Diminished Radix Complement

- Examples, $(\mathbf{r}^n \mathbf{r}^{-m} \mathbf{N})$
 - 9's complement for (24)₁₀
 - 9's complement for (3257)₁₀
 - 9's complement for (7.636)₁₀
 - 1's complement for (100110)₂
 - 1's complement for (0.1010)₂

- Number representation
 - Positive same way as in signed magnitude
 - Negative represented using r's complement (for base r numbers)
- r's complement: a positive number N in base r with n digits integer part,
 - $N \neq 0$, $r^n N$
 - N = 0, o

- Examples, $(\mathbf{r}^n \mathbf{N})$
 - 10's complement for (012372)₁₀
 - 10's complement for (131200)₁₀

■ Answers, (**r**ⁿ – **N**)

$$(10^{6})_{10} - (012372)_{10}$$

$$= (1000000)_{10} - (012372)_{10}$$

$$= (987628)_{10}$$

- More examples, $(\mathbf{r}^n \mathbf{N})$
 - 10's complement for $(24)_{10}$
 - 10's complement for (3257)₁₀
 - 10's complement for (7.636)₁₀
 - 2's complement for (100110)₂
 - 2's complement for (0.0110)₂

- Answers, (**r**ⁿ **N**)
 - $(76)_{10}$ 10's complement for $(24)_{10}$
 - $(6743)_{10}$ 10's complement for $(3257)_{10}$
 - $(2.364)_{10}$ 10's complement for $(7.636)_{10}$
 - (011010)₂ 2's complement for (100110)₂
 - $(0.1010)_2$ 2's complement for $(0.0110)_2$

- Using r's complement to M N :
 - Add minuend M to r's complement of subtrahend N:

$$M + (r^n - N) = M - N + r^n$$

- Check result for an end carry
 - If an end carry occurs, discard it
 - If no end carry, take r's complement of result and place a negative sign in front

- r's complement: examples,
 - $(72533 3250)_{10}$
 - $(3250 72533)_{10}$
 - (1110100 1001100)₂
 - (1000100 1010100)₂

- (r-1)'s complement
 - Add minuend M to (r-1)'s complement of subtrahend N: $M + (r^n - 1 - N) = M - N + r^n - 1$
 - Check result for an end carry
 - If end carry occurs, add 1 to the least significant bit (endaround carry) and ignore the end carry
 - If no end carry, take (r-1)'s complement of result and place a negative sign in front

- (r-1)'s complement: examples,
 - $(72533 3250)_{10}$
 - $(3250 72533)_{10}$
 - (1110100 1001100)₂
 - (1000100 1010100)₂

...done...

Prepare for a quiz next meeting (before lecture starts)

Reference

 Mano, M. M. and M. D. Ciletti. Digital design, fourth edition. Prentice Hall.