ANIMATH OLYMPIADE FRANÇAISE DE MATHÉMATIQUES

TEST DE RENTRÉE

MERCREDI 5 OCTOBRE 2016

Corrigé

EXERCICES COLLÈGE

Exercice 1. Alice, Bernard, Cédric et Diane jouaient au tennis dans la cour. Soudain, la balle brisa la fenêtre du voisin. Furieux, celui-ci s'approcha des quatre enfants.

Alice dit : "Ce n'est pas moi!". Bernard dit : "C'était Diane". Cédric dit : "Non, c'était Bernard". Diane dit : "Bernard a menti".

En supposant qu'exactement un des quatre enfants a dit la vérité, lequel d'entre eux a-t-il cassé la vitre du voisin?

<u>Solution de l'exercice 1</u> Si D ment alors B dit la vérité donc Diane est coupable. Comme exactement un des enfants a dit la vérité, A a menti donc elle est coupable, ce qui est contradictoire.

On en déduit que D a dit la vérité et que A, B, C sont des menteurs. Comme A a menti, on en déduit que c'est Alice qui a cassé la vitre.

Exercice 2. Dans la figure ci-dessous, les triangles ABO, BCO, CDO, DEO et FEO sont rectangles isocèles. On suppose que OA = 8 cm. Déterminer l'aire de AOF en cm².

<u>Solution de l'exercice 2</u> Ce triangle a pour base [OF] et hauteur [AB]. En utilisant le théorème de Pythagore dans le triangle OAB isocèle en B, on trouve que OB = AB = OA/ $\sqrt{2}$ = 8/ $\sqrt{2}$. De même, OC = 4, OD = 4/ $\sqrt{2}$, OE = 2, OF = $\sqrt{2}$ donc l'aire de AOF est $\frac{1}{2} \times \sqrt{2} \times \frac{8}{\sqrt{2}} = 4 \text{ cm}^2$.

Exercice 3. 2016 points sont alignés sur une droite. De combien de manières peut-on les colorier en rouge, vert ou bleu, de sorte que deux points voisins quelconques soient de couleur différente, et que chaque couleur soit utilisée au moins une fois?

<u>Solution de l'exercice 3</u> Cherchons d'abord le nombre de manières de colorier de sorte que deux voisins soient de couleur différente.

Pour le premier point, on a 3 choix. Pour les 2015 suivants, on a 2 choix (puisqu'il faut éviter d'utiliser la couleur du point précédent). Cela donne en tout 3×2^{2015} choix.

Il faut ensuite retrancher les coloriages utilisant moins de 3 couleurs tels que deux voisins soient de couleur différente. Ces coloriages alternent entre deux couleurs, et sont donc déterminés par les couleurs des deux premiers points. Il y en a six en tout.

Le nombre recherché est $3 \times 2^{2015} - 6$.

EXERCICES COMMUNS

Exercice 4. Deux cercles C_1 et C_2 sont tangents extérieurement en un point X. Une tangente commune aux deux cercles rencontre C_1 en Y et C_2 en Z (avec $Y \neq Z$). Soit T tel que [YT] est un diamètre de C_1 . Montrer que T, X, Z sont alignés.

Solution de l'exercice 4

Notons O_1 et O_2 les centres des deux cercles. Soit A l'intersection entre (YZ) et (O_1O_2) . Notons $\alpha = \widehat{O_1AY}$.

Les triangles AYO₁ et AZO₂ sont rectangles en Y et Z, donc $\widehat{YO_1A} = \widehat{ZO_2A} = 90^\circ - \alpha$. On a donc $\widehat{TO_1X} = 90^\circ - \alpha$.

Comme O_1XT est isocèle en O_1 , on en déduit que $180^\circ = \widehat{TO_1X} + \widehat{O_1XT} + \widehat{XTO_1} = 90^\circ - \alpha + 2\widehat{O_1XT}$, donc $2\widehat{O_1XT} = 90^\circ + \alpha$. On a de même $2\widehat{O_2XZ} = 90^\circ + \alpha$, donc $\widehat{O_1XT} = \widehat{O_2XZ}$, ce qui prouve que T, X, Z sont alignés.

Exercice 5. Un palindrome est un nombre dont l'écriture décimale ne change pas si on inverse l'ordre des chiffres. Par exemple, 3773 est un palindrome. Un nombre à quatre chiffres abcd est dit *équilibré* si a + b = c + d (par exemple, 2736 est équilibré). Déterminer tous les nombres équilibrés à quatre chiffres qui sont somme de deux palindromes à quatre chiffres.

Note : un palindrome ne peut pas commencer par un zéro. Par exemple, 0770 n'est pas un palindrome.

Solution de l'exercice 5 Un palindrome à quatre chiffres s'écrit sous la forme abba = 1001a + 110b. Comme 1001 et 110 sont des multiples de 11, une somme de deux tels palindromes est un multiple de 11. Donc nécessairement, a + c - (b + d) est un mutiple de 11. Comme par ailleurs c'est la différence de deux entiers inférieurs à 18, on a a+c-(b+d)=0 ou $a+c-(b+d)=\pm 11$.

Si $a+c-(b+d)=\pm 11$, en additionnant l'égalité a+b-c-d=0 on trouve $2(a-d)=\pm 11$, ce qui est impossible car 11 est impair. Donc a+c-(b+d)=0. En additionnant l'égalité a+b-c-d=0, on en déduit que 2(a-d)=0, donc a=d. Il vient alors b=c.

Les nombres recherchés sont donc de la forme abba. Comme ils sont somme de deux palindromes, on a $2 \le a \le 9$ et $0 \le b \le 9$.

Réciproquement, un tel nombre est clairement équilibré, et il est somme des palindromes 1001 et cbbc où c = a - 1.

EXERCICES LYCÉE

Exercice 6. Déterminer tous les entiers $n \ge 3$ tels que l'on puisse placer n nombres réels deux à deux distincts sur un cercle de sorte que chacun de ces nombres soit le produit de ses deux voisins.

<u>Solution de l'exercice 6</u> Notons a_1, a_2, \ldots, a_n ces nombres, avec par convention $a_{n+1} = a_1, a_{n+2} = a_2$, etc. Par hypothèse, on a $a_i a_{i+2} = a_{i+1}$ et $a_{i+1} a_{i+3} = a_{i+2}$ pour tout i. En multipliant ces deux égalités, il vient $a_i a_{i+1} a_{i+2} a_{i+3} = a_{i+1} a_{i+2}$, donc $a_i a_{i+3} = 1$. De même, $a_{i+3} a_{i+6} = 1$, donc $a_i = a_{i+6}$. Comme les entiers sont deux à deux distincts, ceci implique que 6 est un multiple de n, donc n = 3 ou n = 6.

Si n=3, alors $a_ia_{i+3}=1$ donne que $a_i^2=1$ pour tout i, donc $a_i=\pm 1$. Donc au moins deux de ces trois nombres sont égaux, soit à 1 soit à -1. Ceci contredit le fait que les nombres sont tous distincts.

Si n = 6 alors c'est possible avec par exemple les nombres $2, 3, \frac{3}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$.

Exercice 7. Le nombre "3" est écrit sur un tableau. Alice et Bernard jouent au jeu suivant : chacun leur tour, si on désigne par n le nombre écrit au tableau, le joueur le remplace par un entier m tel que $n < m < n^2$, et tel que m n'a pas de diviseur commun avec n autre que 1. Le premier joueur qui atteint un nombre plus grand ou égal à 2016 perd la partie. Alice commence.

Déterminer quel est le joueur pour lequel il existe une stratégie lui permettant de gagner à coup sûr, et décrire cette stratégie.

<u>Solution de l'exercice 7</u> Alice possède une stratégie gagnante. Montrons d'abord que si elle reçoit un nombre n < 2016 qui n'est pas un multiple de 5, alors elle peut le remplacer par un nombre f(n) < 2016 qui est un multiple de 5.

```
Si n = 3 ou n = 4, on prend f(n) = 5.
```

Si 5 < n < 25 on prend f(n) = 25.

Si 25 < n < 125 on prend f(n) = 125.

Si 125 < n < 2005, alors n n'est ni un multiple de 13×401 , ni un multiple de 31×401 car $13 \times 401 > 2015$. Donc n n'est pas un multiple de 401, ou bien n n'a pas de diviseur commun avec 13×31 .

Or, on a les décompositions en facteurs premiers $2005 = 5 \times 401$ et $2015 = 5 \times 13 \times 31$, donc on peut soit prendre f(n) = 2005, soit f(n) = 2015.

Si 2005 < n < 2015, alors 2015 - n < 10 donc 2015 - n n'a pas de facteur premier commun avec $2015 = 5 \times 13 \times 31$, donc n n'en a pas non plus. On prend alors f(n) = 2015.

La stratégie d'Alice est gagnante, car Bernard, qui reçoit un multiple de 5, ne peut pas le remplacer par un multiple de 5, donc tant que Bernard écrit un nombre < 2016, Alice pourra toujours le remplacer par un multiple de 5 plus petit que 2016.

Exercice 8. Une liste de nombres est dite *jolie* si elle est constituée de nombres entiers strictement positifs tels que la somme de ces entiers est égale à leur produit. Déterminer le plus petit nombre d'entiers égaux à un que peut contenir une jolie liste de 100 nombres.

<u>Solution de l'exercice 8</u> La liste $1, 1, \dots, 1, 2, 2, 3, 3, 3$ est jolie et contient 95 nombres égaux à 1. Montrons qu'on ne peut pas faire mieux.

On peut supposer que les premiers nombres sont $a_1 \leqslant a_2 \leqslant \cdots \leqslant a_r$ avec $a_1 \geqslant 2$ et que les autres sont égaux à 1. On cherche à montrer que si $a_1 \cdots a_r = (100 - r) + a_1 + \cdots + a_r$ alors $r \leqslant 5$.

Pour tout j, si on diminue a_j d'une unité alors le membre de gauche diminue d'au moins une unité, tandis que le membre de droite diminue d'une unité. On en déduit que si on remplace tous les a_j par 2 alors le membre de gauche est plus petit ou égal au membre de droite. Par conséquent, $2^r \le 100 + r$. Comme $r \le 100$, on a $2^r \le 200$, donc $r \le 7$. On a alors $2^r \le 107$, donc $r \le 6$. Il reste donc à prouver que r = 6 est impossible.

Si $a_i \geqslant 3$ pour tout i, alors d'après le même raisonnement que ci-dessus on a $3^r \leqslant 100 + 2r \leqslant 112$ donc $r \leqslant 4$. Contradiction.

On en déduit que $a_1 = 2$, donc $2a_2 \cdots a_6 = 96 + a_2 + \cdots + a_6$. On montre de même que $a_2 = 2$, puis $a_3 = 2$, puis $a_4 = 2$, donc $16a_5a_6 = 102 + a_5 + a_6$.

Si $a_5 = 2$ alors $32a_6 = 104 + a_6$, donc $a_6 = \frac{104}{31}$ qui n'est pas entier.

Si $a_5 \geqslant 3$ alors le même raisonnement que plus haut donne $16 \times 9 \leqslant 102 + 3 + 3$, ce qui est faux.

* * *