DERIVATE DI UNA FUNZIONE

Abbiamo introdotto le derivate come limite del *rapporto incrementale*:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Qui di seguito un *formulario* per il calcolo delle derivate di funzioni.

DERIVATE FONDAMENTALI		
FUNZIONE COSTANTE		
$y = k con \ k \in \mathbb{R}$	y'=0	
FUNZIONE IDENTITÀ		
y = x	y' = 1	
FUNZIONE POTENZA		
$y = x^{\alpha} con \ \alpha \in \mathbb{R}$	$y' = \alpha x^{\alpha - 1}$	
FUNZIONE RADICE QUADRATA		
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	
FUNZIONE RADICE		
$y = \sqrt[n]{x}$	$y' = \frac{1}{n\sqrt[n]{x^{n-1}}}$	
FUNZIONI GONIOMETRICHE		
$y = \sin x$	$y' = \cos x$	
$y = \cos x$	$y' = -\sin x$	
FUNZIONI ESPONENZIALI		
$y = a^x$	$y' = a^x \ln a$	
$y = e^x$	$y'=e^x$	
FUNZIONI LOGARITMICHE		
$y = \log_a x$	$y' = \frac{1}{x} \log_a e$	
$y = \ln x$	$y' = \frac{1}{x}$	
FUNZIONE VALORE ASSOLUTO		
y = x	$y' = \frac{ x }{x}$	

OPERAZIONI CON LE DERIVATE

REGOLE DI DERIVAZIONE		
PRODOTTO DI UNA CONSTANTE PER UNA FUNZIONE		
$y = k \cdot f(x)$	$y' = k \cdot f'(x)$	Esempio: $y = -2 \ln x \Rightarrow y' = -2 \cdot \frac{1}{x} = -\frac{2}{x}$
SOMMA ALGEBRICA DI FUNZIONI		
$y = f(x) \pm g(x)$	$y' = f'(x) \pm g'(x)$	Esempio: $y = x^2 + \cos x \Rightarrow$ $y' = 2x + (-\sin x) = 2x - \sin x$
PRODOTTO DI FUNZIONI		
$y = f(x) \cdot g(x)$	$y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$	Esempio: $y = xe^x \implies y' = 1 \cdot e^x + x \cdot e^x$
QUOZIENTE DI FUNZIONI		
$y = \frac{f(x)}{g(x)}$	$y' = \frac{f'(x) \cdot g(x)y - f(x) \cdot g'(x)}{g^2(x)}$	Esempio: $y = \tan x = \frac{\sin x}{\cos x}$ \Rightarrow $y' = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x}$ $= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ $= 1 + \tan^2 x$

 $y' = f'(g(x)) \cdot g'(x)$

Esempio: $y = \ln(x^2) \Longrightarrow y' = \frac{1}{x^2} \cdot 2x = \frac{2}{x}$

FUNZIONE COMPOSTA

y = f(g(x))