Trapping and imaging of single atoms in the presence of light shift

Yichao Yu May 26, 2016 Ni Group/Harvard

Group members

Nicholas Hutzler Lee Liu Jessie Zhang

PΙ

Kang-Kuen Ni

1/6

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

Tweezer

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Cs single atom loading

$\lambda_{trap}(nm)$	922	935	970	
Loading (%)	0	≈ 50	≈ 50	

Alternate between trap and resonant (cooling and imaging) light at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz

Alternate between trap and resonant (cooling and imaging) light at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz

Cs single atom loading

		<i>U</i>	
$\lambda_{trap}(nm)$	922	935	970
Loading (%)	≈ 50	≈ 50	≈ 50

Alternate between trap and resonant (cooling and imaging) light at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz

Cs single atom loading

$\lambda_{trap}(nm)$	922	935	970
Loading (%)	≈ 50	≈ 50	≈ 50

Cs single atom imaging

Alternate between trap and resonant (cooling and imaging) light at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz

Cs single atom loading

$\lambda_{trap}(nm)$	922	935	970
Loading (%)	≈ 50	≈ 50	≈ 50

Cs single atom imaging

Alternate between trap and resonant (cooling and imaging) light at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz

Na Single Atom Loaded!!

Alternate between trap and resonant (cooling and imaging) light at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz

Na Single Atom Loaded!!

Conclusion

- Measured the effect of light shift on loading and imaging of single atom
- Overcome the light shift by alternating trapping and resonant light to achieve loading of single Na atom.
- Generalizable to other species

