#### Лабораторная работа 1.08

#### ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ ПОДВЕСНОГО МАЯТНИКА

А.М. Попов.

*Цель работы:* проверка выводов теории математического маятника с помощью его модели.

Задание: изучить зависимость периода колебаний подвесного маятника от длины подвеса и от массы груза и рассчитать значение ускорения свободного падения g.

Подготовка к выполнению лабораторной работы: прочитать данное описание лабораторной работы; изучить материал, изложенный в рекомендованных параграфах учебников из библиографического списка; ознакомиться с измерительной аппаратурой и ответить на контрольные вопросы.

### Библиографический список

- 1. Савельев И.В. Курс общей физики. В 3-х томах. Том 1. Механика. Молекулярная физика. СПб.: Издательство «Лань», 2018, гл. 5, §§ 38, 39; гл. 7, §§ 49, 50, 52-54.
- 2. Трофимова Т.И. Курс физики. М.: Издательский центр «Академия», 2019, гл. 4, §§ 16-18.

### Контрольные вопросы

- 1. Что в физике понимают под маятником?
- 2. Что такое колебательное движение?
- 3. Что называется периодом колебаний?
- 4. Что такое математический маятник?
- 5. Что такое физический маятник?
- 6. Дайте определение момента силы.
- 7. Запишите основной закон динамики вращательного движения.
- 8. Что такое момент инерции и чему он равен для математического маятника?
- 9. Что называется гармоническим осциллятором?
- 10. Как связаны между собой частота, круговая частота и период гармонического колебания?
- 11. От чего зависит период колебаний математического маятника?
- 12. Запишите дифференциальное уравнение гармонического колебания.

#### Теоретическое введение

В физике под *маятником* понимают твёрдое тело, которое может совершать под действием приложенной к нему силы *колебательное движение*. Колебательные движения это процессы, точно или приблизительно повторяющиеся через одинаковые промежутки времени. Наименьший из этих промежутков времени называется *периодом колебаний*.

В механике принято различать математический и физический маят-



Рис. 1

ники. Математическим маятником называют идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешено тело точечной массы. Очевидно, что такая система может совершать колебательное движение под действием силы тяжести. Запишем основной закон динамики вращательного движения в проекции на ось вращения

$$M = I\varepsilon$$
,

где M — момент силы тяжести относительно оси вращения, I — момент инерции маятника относительно оси вращения,  $\varepsilon$  — проекция углового ускорения на ось вращения.

Отклонение маятника от положения равновесия будем характеризовать углом  $\varphi$ , образованным нитью с вертикалью (рис. 1). При отклонении маятника от положения равновесия возникает вращающий момент, равный по величине  $M = mgl\sin\varphi$ , где m — масса подвешенного тела, g — ускорение свободного падения, l — длина нити. Таким образом, основной закон динамики вращательного движения имеет вид

$$mgl\sin\varphi = ml^2\varepsilon$$
,

где  $ml^2$  - момент инерции маятника,  $\varepsilon = -d^2 \phi/dt^2$  - проекция углового ускорения маятника на ось вращения. Знак минус указывает на то, что с ростом величины угла  $\phi$  угловая скорость вращения маятника уменьшается (и наоборот). В результате, уравнение можно преобразовать к виду

$$\frac{d^2\varphi}{dt^2} + \frac{g}{l}\sin\varphi = 0\tag{1}$$

Ограничимся рассмотрением малых колебаний, когда можно положить  $\sin \varphi \approx \varphi$ , и введём обозначение

$$\frac{g}{I} = \omega^2. \tag{2}$$

Тогда из (1) для малых колебаний получим дифференциальное уравнение гармонических колебаний

$$\frac{d^2\varphi}{dt^2} + \omega^2 \varphi = 0. ag{3}$$

Известно, что его решение имеет вид

$$\varphi = A\cos(\omega t + \alpha)$$

где A - амплитуда колебаний,  $\omega$  - круговая частота ( $\omega = 2\pi v$ , v - частота колебаний маятника),  $\alpha$  - начальная фаза. Следовательно, при малых колебаниях, угловое отклонение математического маятника изменяется со временем по гармоническому закону.

Как следует из (2), круговая частота колебаний математического маятника зависит только от длины маятника и от ускорения силы тяжести и не зависит от массы маятника. Учитывая связь между круговой частотой и периодом колебаний,  $T = 2\pi/\omega$ , из (2) получим

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{4}$$

## Описание аппаратуры и методики измерений

В настоящей работе в качестве модели математического маятника используется подвесной маятник - небольшой тяжёлый шарик, подвешенный на длинной тонкой нити.

Схема экспериментальной установки представлена на рис. 2.



Рис. 2

Пояснение к рисунку: 1 — винт, с помощью которого можно закрепить кронштейн с подвесом на необходимой высоте; 2 — уровень отсчёта по линейке 3; 4 - петельки, с помощью которых можно менять длину подвеса; 5 — риска, нанесённая на фотоэлектрический датчик 6, по которой устанавливают положение центра масс шарика; 7 — цифровой счётчик для измерения периода колебаний маятника, показанный на рис. 3.

В комплект установки входят четыре шарика разной массы, которые могут поочерёдно подвешиваться на нити. Диаметры и массы этих шариков указаны на установке. На установке также указаны размеры зазоров a и b, которые необходимо учитывать при определении длины подвеса. Длина подвеса l— это расстояние от точки подвеса до центра масс шарика. Для расчета этого расстояния надо к длине, отсчитанной по уровню 2 прибавить b и отнять a.



## Порядок выполнения работы

- 1. Подвесить шарик на кронштейн за одну из петель 4, и отрегулировать высоту подвеса с помощью винта 1 так, чтобы центр масс шарика совпадал по уровню с риской 5. Записать в таблицу 1 значение длины подвеса, рассчитанное по схеме:  $l=l_0+b-a$ , где  $l_0$  отсчёт по линейке 3.
- 2. Включить цифровой счётчик 7 (рис. 3). Счетчик не имеет отдельного сетевого выключателя. Питание включается простым подключением источника питания к сети. В случае сбоя отключите оборудование на несколько секунд от сети.
- 3. Для измерения периода колебаний маятника установите переключатель 15 в положение Та Ф и подключите фотоэлектрический датчик к гнезду А 12. Измерить время в миллисекундах между тремя прерываниями фотоэлектрического датчика на выводе А 12.

- 4. С помощью цифрового счётчика измерить период малых колебаний маятника. Результат занести в таблицу 1.
- 5. Повторить измерения ещё для четырёх длин подвеса.
- 6. Произвести весь комплекс измерений для каждого из остальных трёх шариков.

Таблица 1.

|       | $m_1 =$     |             | $m_2 =$     |             | $m_3 =$      |             | $m_4$ =     |             |
|-------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|
| N     | $l_{1,}$ cm | $T_{1, MC}$ | $l_{2,}$ cm | $T_{2,}$ MC | $l_{3}$ , cm | $T_{3, MC}$ | $l_{4,}$ cm | $T_{4,}$ MC |
| 1     |             |             |             |             |              |             |             |             |
| 2     |             |             |             |             |              |             |             |             |
| 3     |             |             |             |             |              |             |             |             |
| 4     |             |             |             |             |              |             |             |             |
| • • • |             |             |             |             |              |             |             |             |

# Обработка результатов измерений

1. По данным таблицы 1 заполнить таблицу 2.

Таблица 2.

|   | $m_1$ =      |                 | $m_2=$      |                 | $m_3=$       |                 | $m_4=$      |                          |
|---|--------------|-----------------|-------------|-----------------|--------------|-----------------|-------------|--------------------------|
| N | $l_{1}$ , cm | $T_1^2$ , $c^2$ | $l_{2,}$ cm | $T_2^2$ , $c^2$ | $l_{3}$ , cm | $T_3^2$ , $c^2$ | $l_{4,}$ cm | $T_4^2$ , c <sup>2</sup> |
| 1 |              |                 |             |                 |              |                 |             |                          |
| 2 |              |                 |             |                 |              |                 |             |                          |
| 3 |              |                 |             |                 |              |                 |             |                          |
| 4 |              |                 |             |                 |              |                 |             |                          |
|   |              |                 |             |                 |              |                 |             |                          |

- 2. На миллиметровой бумаге, в достаточно крупном масштабе, построить графики зависимостей  $l = f(T^2)$
- 3. Рассчитать угловые коэффициенты  $\Delta l/\Delta(T^2)$  для этих линейных зависимостей .
- 4. Рассчитать ускорение свободного падения g по формуле

$$g = 4\pi^2 \frac{\Delta l}{\Delta (T^2)} ,$$

которая следует из формулы (4).

5. Оценить погрешности измерений. Для оценки можно воспользоваться формулой

$$\frac{\Delta g}{g} = \frac{2\Delta \pi}{\pi} + \frac{\Delta l}{l} + \frac{2\Delta T}{T} \,. \label{eq:deltag}$$