

EPREUVE SPECIFIQUE – FILIERE MP

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont interdites.

* * *

NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Fonctions de matrices

Notations:

- 1. Les |-algèbres suivantes sont considérées au cours de ce texte :
 - \triangleright L'algèbre $M_n(\)$ des matrices carrées réelles d'ordre n.
 - \triangleright Si I est un intervalle de \mid , d'intérieur non vide, on note C_I^{∞} l'algèbre commutative des fonctions de classe C^{∞} de I dans \mid .
 - \triangleright L'algèbre des fonctions polynomiales de I dans | est usuellement identifiée à l'algèbre |[X].
- 2. On y rencontre aussi les |-espaces vectoriels suivants :
 - \triangleright L'espace des colonnes réelles à *n* lignes noté $M_{n,1}(\)$.
 - ightharpoonup L'espace $|_{N}[X] = \{P \in |[X]/\deg P \le N\}$, où $N \in \mathbb{R}$.
- 3. Les notions de convergence dans $M_{n,1}(\cdot)$ et $M_n(\cdot)$ sont relatives aux normes respectives :

$$\|X\|_{\infty} = \max_{1 \le k \le n} |x_k|$$
, si $X = {}^t[x_1, ..., x_n]$.

$$||M|| = n \max_{1 \le i, j \le n} |m_{ij}|, \text{ si } M = [m_{ij}]_{1 \le i \le n}.$$

Objectifs du problème

Lorsque $P \in [X]$ et $A \in M_n(]$, on sait donner un sens à la matrice P(A) et l'on maîtrise bien le calcul polynomial sur A qui en résulte. En particulier, si M est une matrice de $M_n(]$, on appelle POLYNÔME MINIMAL de M le polynôme unitaire P de plus bas degré tel que P(M) = 0; il est immédiat (et on l'admettra) qu'il s'agit du polynôme minimal de l'endomorphisme u de \mathbb{R}^n dont M est la matrice dans la base canonique de \mathbb{R}^n .

Dans un premier temps, ce texte propose de donner un sens à la matrice f(A) POUR TOUTE FONCTION f DE CLASSE C^{∞} , et cela moyennant des hypothèses convenables sur la matrice A. Autrement dit, on apprend à maîtriser un certain calcul fonctionnel sur A.

Dans un second temps, on exploite ces résultats pour résoudre un système différentiel linéaire.

Notations fixées pour tout le problème :

- On considère une matrice A de M_n(|) et l'on SUPPOSE que son polynôme minimal Π_A peut être écrit sous la forme : Π_A(X) = (X − λ₁)^{m₁} ...(X − λ_r)^{m_r} avec : r ≥ 1 ; les λ_j sont des RÉELS distincts ; les m_j sont dans |* On note alors m = ∑_{1≤j≤r} m_j le degré de Π_A.
- \triangleright On considère aussi un intervalle *I* de |, d'intérieur non vide et contenant tous les λ_i .

La matrice A et l'intervalle I sont particularisés dans les divers exemples traités au cours du problème.

Préliminaires :

- **1.** Établir que pour X dans $M_{n,1}(\cdot)$ et M dans $M_n(\cdot)$, on a : $\|MX\|_{\infty} \le \|M\| \|X\|_{\infty}$.
- **2.** Soit \mathcal{M} un sous-espace vectoriel de dimension $d \ge 1$ de $M_n(|)$, et soit $\beta = (B_1, ..., B_d)$ une base de \mathcal{M} .
 - a) Montrer que l'on définit une norme $\mathcal N$ sur $\mathcal M$ en posant $\mathcal N(M) = \max_{1 \le k \le d} |x_k|$, si $M = \sum_{1 \le k \le d} x_k B_k$ est la décomposition de l'élément M de $\mathcal M$ sur la base β .
 - **b)** Justifier l'existence de constantes réelles strictement positives a et b vérifiant : $\forall M \in \mathcal{M}, \quad a \|M\| \leq \mathcal{N}(M) \leq b \|M\|$.
 - c) Soit $(M_p)_{p\in \mathbb{T}}$ une suite d'éléments de \mathcal{M} ; on note $M_p = \sum_{1 \le k \le d} x_p(k) B_k$ la décomposition de M_p sur β . Montrer que la suite $(M_p)_{p\in \mathbb{T}}$ converge vers 0 dans $(M_n(\cdot), \|\cdot\|)$ si et seulement si Chaque suite Réelle $(x_p(k))_{p\in \mathbb{T}}$ (k=1,...,d) converge vers 0.

I – Une relation d'équivalence sur C_I^{∞}

On convient de dire que des fonctions f et g de C_I^{∞} « coïncident sur le spectre de A » lorsque : $\forall j \in \{1,...,r\}, \ \forall k \in \{0,...,m_j-1\}, \ f^{(k)}(\lambda_j) = g^{(k)}(\lambda_j).$ Ce que l'on résume par la notation $f \equiv g$. Un exemple : si $\Pi_A(X) = X^2(X+1)$ la notation $f \equiv g$ signifie : $f(0) = g(0), \ f'(0) = g'(0)$ et f(-1) = g(-1).

- **3.** Soient ℓ dans I et f dans C_I^{∞} vérifiant : $f^{(k)}(\lambda) = 0$ pour $k = 0, 1, 2, ..., \ell 1$.
 - a) Établir l'identité : $\forall x \in I$, $f(x) = \int_{\lambda}^{x} \frac{(x-u)^{\ell-1}}{(\ell-1)!} f^{(\ell)}(u) du$.
 - **b)** En déduire à l'aide d'un changement de variable, l'existence d'une fonction h vérifiant :
 - (1) $\forall x \in I, f(x) = (x \lambda)^{\ell} h(x)$
 - (2) $h \in C_I^{\infty}$
- **4.** Soient f et g dans C_I^{∞} .
 - a) On suppose : $\exists h \in C_I^{\infty}$, $f = g + h \Pi_A$. En considérant les dérivées successives de f - g, établir que $f \equiv_A g$.
 - **b)** On suppose f = g; en exploitant le **3.** justifier l'existence de h dans C_I^{∞} vérifiant : $f = g + h \prod_A$.
- **5.** Soient P et Q dans |[X]; prouver que les conditions suivantes sont équivalentes :
 - (1) $P \equiv Q$
 - (2) $\exists H \in [X], P = Q + H \Pi_A$

II – Définition de la matrice f(A)

- **A.** On considère l'application φ de $|_{m-1}[X]$ vers $|^m$ qui associe à un polynôme P le m-uplet : $\varphi(P) = \Big(\Big(P^{(k_1)}(\lambda_1) \Big)_{0 \le k_1 \le m_1 1}, \dots, \Big(P^{(k_r)}(\lambda_r) \Big)_{0 \le k_r \le m_r 1} \Big).$
- **6.** Établir le caractère bijectif de φ .
- 7. Soit f dans C_I^{∞} ; justifier l'existence d'un et d'un seul polynôme P_f de [X], de degré inférieur ou égal à (m-1) et tel que : $f = P_f$. On convient alors de DÉFINIR la matrice f(A) en posant : $f(A) = P_f(A)$.

B. Quelques exemples

8. On suppose ici que f est polynomiale et l'on écrit : $\forall x \in I$, $f(x) = \sum_{k=0}^{N} a_k x^k$.

En effectuant une division euclidienne, montrer qu'avec la définition de la question 7, on obtient le résultat naturel : $f(A) = \sum_{k=0}^{N} a_k A^k$.

- **9.** ICI: $A = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix} \in M_2(1)$ et I = 1.
 - a) Calculer $\Pi_A(X)$.
 - **b)** Calculer la matrice f(A) dans chacun des cas suivants :
 - (1) f(x) = ax + b, les réels a et b étant donnés.
 - (2) $f(x) = \sin(\pi x)$
 - (3) $f(x) = (x-1)^2 g(x)$, où la fonction g est donnée dans C_I^{∞} .

III – Le calcul systématique de f(A)

A. Une formule générale

10. En exploitant l'isomorphisme linéaire φ du **II.A**, justifier l'existence et l'unicité de polynômes $Q_{j,k}$ $(1 \le j \le r, 0 \le k \le m_j - 1)$ vérifiant :

pour TOUTE fonction
$$f$$
 de C_I^{∞} , on a : $P_f = \sum_{1 \leq j \leq r} \sum_{0 \leq k \leq m_j - 1} f^{(k)}(\lambda_j) Q_{j,k}$

On considère alors les matrices dites « associées » à A :

$$Z_{j,k} = Q_{j,k}(A)$$
 $(1 \le j \le r, \ 0 \le k \le m_j - 1).$

 ${f 11.}$ Montrer que les diverses matrices $Z_{j,k}$ sont linéairement indépendantes et que :

$$\forall \, f \in C^{\infty}_{I} \, , \, \, f(A) = \sum_{1 \leq j \leq r} \, \sum_{0 \leq k \leq m_{i}-1} f^{(k)} \left(\lambda_{j}\right) Z_{j,k}$$

B. Deux exemples

12. ICI:
$$A = \begin{bmatrix} 5 & -4 \\ 4 & -3 \end{bmatrix}$$
 et $I = \begin{vmatrix} * \\ + \end{vmatrix}$.

a) Justifier l'existence de matrices Z_1 et Z_2 de $M_2(\)$ telles que :

$$\forall f \in C_I^{\infty}, \ f(A) = f(1)Z_1 + f'(1)Z_2.$$

- **b)** En déduire le calcul de Z_1 et Z_2 .
- c) Calculer les matrices A^{2004} , \sqrt{A} et plus généralement A^{α} pour α dans $|_{+}^{*}$.

13. ICI:
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \in M_3(||) \text{ et } I = ||.$$

- a) Présenter sous forme factorisée le polynôme $\Pi_A(X)$. La matrice A est-elle diagonalisable dans $M_3(|)$?
- **b)** Calculer les matrices $Z_{j,k}$ « associées » à A.

IV – Un calcul fonctionnel sur la matrice A

A. Quelques identités bien naturelles

- **14.** Soient f et g dans C_I^{∞} et α dans |.
 - a) Que valent $P_{\alpha f}$ et P_{f+g} ?
 - **b)** Justifier l'existence d'un polynôme H de |[X] tel que : $P_{fg} = P_f P_g + H \Pi_A$.
- **15. a)** Montrer que l'application $S: f \mapsto f(A)$ de C_I^{∞} dans $M_n(\mathbf{R})$ est un morphisme de l-algèbres.
 - **b)** Quel est son noyau?
- **16.** On considère les fonctions cosinus et sinus de | dans |, puis les fonctions $f_1: x \mapsto \sqrt{x}$ et $f_2: x \mapsto \frac{1}{x}$ de $|^*_+$ dans |. On peut ainsi DÉFINIR les matrices $\cos A$, $\sin A$, et même \sqrt{A} et $\frac{1}{A}$ si les λ_j sont dans $|^*_+$.
 - a) En exploitant le morphisme S, calculer $(\cos A)^2 + (\sin A)^2$.
 - **b)** On suppose ici que les λ_j sont strictement positifs. Reconnaître : $(\sqrt{A})^2$ et $\frac{1}{A}$.

B. Le spectre de f(A)

- 17. Montrer que l'ensemble noté $\mathcal{M}_A = \{f(A)/f \in C_I^\infty\}$ est une sous-algèbre COMMUTATIVE de $M_n(\ |\)$ et préciser sa dimension.
- **18.** Montrer que si un élément de \mathcal{M}_A est inversible dans $M_n(\cdot)$ alors son inverse est aussi dans \mathcal{M}_A .
- **19.** Soit f dans C_I^{∞} ; établir l'équivalence des énoncés suivants :
 - (1) f(A) est inversible dans $M_n(\)$.

(2)
$$\forall j \in \{1,...,r\} \ f(\lambda_i) \neq 0$$

20. Si M est une matrice de $M_n(\cdot)$, on note Λ_M l'ensemble de ses valeurs propres RÉELLES. En exploitant la question **19** comparer les ensembles : Λ_A et $\Lambda_{f(A)}$ où f est donnée dans C_I^{∞} .

V – Application à la résolution d'un système différentiel

- **21.** Soient $(f_p)_{p\in \mathbb{T}}$ une suite de fonctions de C_I^{∞} et f dans C_I^{∞} . Établir l'équivalence des énoncés suivants :
 - (1) La suite de matrices $(f_p(A))_{p\in \mathbb{T}}$ converge dans $M_n(\mathbb{T})$ vers f(A).
 - (2) Pour chaque j $(1 \le j \le r)$ et chaque k $(0 \le k \le m_j 1)$, la suite réelle $(f_p^{(k)}(\lambda_j))_{p \in \mathbb{N}}$ converge vers $f^{(k)}(\lambda_j)$.

Lorsque la condition (2) est réalisée, on convient de dire que la suite de fonctions $(f_p)_{p\in \mathbb{T}}$ « converge vers f sur le spectre de A ».

- **22.** Pour t réel, on considère la fonction $f_t: x \mapsto e^{tx}$ de | dans |. Montrer que $: f_t(A) = \sum_{\ell=0}^{+\infty} \frac{t^{\ell}}{\ell!} A^{\ell}$. Il s'agit donc précisément de la matrice usuellement notée $\exp(tA)$.
- 23. En exploitant les résultats acquis à ce stade du problème, résoudre le système différentiel :

$$\begin{cases} \frac{dx}{dt} = x - y + z \\ \frac{dy}{dt} = 2x - 2y + z \\ \frac{dz}{dt} = x - y \end{cases}$$

Fin de l'énoncé.