FIBER CABLE WITH GAS DAM

Patent number:

JP60221714

Publication date:

1985-11-06

Inventor:

FUSE KENICHI; KAWASE MASAAKI; TACHIBANA

HIDETO

Applicant:

FURUKAWA ELECTRIC CO LTD;; NIPPON

TELEGRAPH & TELEPHONE

Classification:

- international:

G02B6/44; H01B11/00

- european:

G02B6/44C2; G02B6/44C6

Application number: JP19840071330 19840410 Priority number(s): JP19840071330 19840410

Abstract not available for JP60221714

Data supplied from the esp@cenet database - Worldwide

⑩日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A) | 昭601-2217141

Mint Cl.4

識別記号

庁内整理番号

❷公開 昭和60年(1985)11月6日

G 02 B 6/44 # H 01 B 11/00

Q-7036-2H 7364-5E

審査請求 有 発明の数 1 (全6頁)

69発明の名称 ガスダム付光フアイバケーブル

> 创特 顧 昭59-71330

22出 願 昭59(1984)4月10日

砂発 明 者 旒 震 布

市原市八幡海岸通6 古河電気工業株式会社千葉電線製造

所内

明 " 瀬 明。 茨城県那珂郡東海村大字白方字白根162番地 日本電信電 73発 老 正

話公社茨城電気通信研究所内

秀 市原市八幡海岸通6 古河電気工業株式会社千葉電線製造 明 花 の発 者 人 Δ

所内

古河電気工業株式会社 砂出 額 人

東京都千代田区丸の内2丁目6番1号

⑪出 願 人 日本電信電話株式会社 東京都千代田区内幸町1丁目1番6号

- 発明の名称 ガスダム付光ファイバケーブル
- 特許請求の範囲.
 - (1) 光ファイバ素線を複数本平面状に並列に並 べ、そのまわりに被覆を設けてなる光ファイ バテープ心線を有する光ファイバケーブルに あつて、該光ファイバケーブルの外被をダム 形成部分にて必要長剝取り、前記光ファイバ テープ心線を露出し、この光ファイバテーブ 心線のまわりにダム部形成用充填材を気密に 充填してガスダム部を形成するガスダム付光 ファイバケーブルにおいて、前記ガスダム部 内にある前記光ファイバテーブ心線にはその 被覆を必要長剝取られて光ファイバ素線を露 出された露出部が形成されており、かつ眩露 出部は前記剝取られた被覆の長さより長いス リープの中に収納されており、また設スリー プの内側の隙間にはガス気密用充填材が注入 固化され、さらに前記ダム部形成用充填材が 前記スリーブの内側の隙間に入り込まれない
- ように前記スリープと前記光ファイバテープ 心線の被覆とに跨つてシール材が設けられて いることを特徴とするガスダム付光ファイバ ケープル。
- (2) 前記スリープ1個の中に複数本の光ファイ パテーブ心線の露出部が収納されていること_ を特徴とする特許請求の範囲第1項記載のガ スダム付光ファイバケーブル。
- (3) 前記ガス気密用充填材は熱硬化型シリコー ン樹脂または室温硬化型シリコーン樹脂であ ることを特徴とする特許請求の範囲第1項記 戦のガスダム付光ファイバケーブル。
- (4) 前記ガス気密用充填材は付加型の熱硬化型 シリコーン樹脂または付加型の室温硬化型シ リコーン樹脂であることを特徴とする特許請 求の範囲第1項、または第3項記載のガスダ 4付光ファイバケーブル。
- 3 発明の詳細な説明

〔技術分野〕

本発明は複数の光ファイバを平面状に並べ被

度を施してなる光ファイバテープ心線を有する ガスダム付光ファイバケーブルに関するもので ある。

〔従来技術〕

迫り来る高度情報化社会に備え、近年、従来 の銅導体ケーブルから、伝送容量が大きい、細 径かつ軽量である等々の多くの特長を有する光 ファイバケーブルに急ピッチで切替が行なわれ ている。ところで、この光ファイバケーブルに おいても、従来の銅導体ケープル同様にガス保 守型のガスダム付光ファイバケープルが開発さ れている。これは第1図に示すように、まずケ ープル1の外被2をダム形成部分にて必要長剝 取り複数の光ファイバ心線3を露出させ、続い て、このケーブル1の引張り特性向上のために 設けられている抗張力体4を、ダム形成部内で 一度切断した後、再び抗張力体用スリープ5で 接続する。この理由は、抗張力体4沿いに発生 するガスパスを防止するためである。次に、ダ ム形成部内の線膨張係数を光ファイバのそれと 同じくして熱膨張によるガス洩れ、及び光ファ イパに発生するマイクロベンドによる伝送損失 増加を防止するため、ダム形成部にかご状に設 けるガラス繊維強化プラスチック(以下FRP と称す)製の棒6を支持する目板?をダム形成 部のA端に装着し、他端のB端にはダム形成部 に続く接続箱に該ダム形成部を一体化させるた めに用いるフランジ8を装着する。しかる後、 目板プとフランジ8に跨つて前記FRP製の棒 6 をダム形成部内の光ファイバ心線 3 を包むよ うにかご状に配置して両端を目板でとフランジ 8 に固定する。さらに前記抗張力体 4 もその一 端をフランジ8に固定し、ケーブル1のA端側 外被2上に接着、粘着性テーブ10を巻き、ダ ム形成部を覆うようにウレタン樹脂等からなる タム部形成用充填材1」を充填してガスタム部 12を形成する。このようなガスダム付光ファ イバケーブルにあつて、光ファイバ心線3が単 に 1 心の光ファイバに何層かの被覆を施してな る単心型の光ファイバ心線の場合は、その気密

性になんら問題は生じなかつた。ところが近年、 光ファイバケーブルが急速に普及し、高密度型 光ファイバケープルと称する、いわゆる、加入 者用光ファイバケーブルまで出現するに及び、 この高密度型光ファイバケープルに対して、第 1 図に示した従来のダム形成方法を用いたとこ ろ、ガス気密性に問題があることがわかつてき た。ところで、この加入者用の高密度型光ファ イバケーブルというのは、第2図のように、光 ファイバのまわりにシリコーン等からなる緩衝 層等を被覆した光ファイバ素線15を複数本平 面状に並列に並べて光ファイバ素線 1 5 の集合 体を形成し、該集合体にナイロン等の熱可塑性 樹脂、あるいはアクリルコンパウンド等の紫外 線硬化件樹脂を被覆16として押出被覆して形 成した光ファイバテーブ心線17を複数本集合 した後外被を設けたものである。この種のケー プルは同一外径のケーブルにおいて単心の光フ アイバ心線を集合したものより、その内部に収 納される光ファイバ数が多いことから高密度型

光ファイバケーブルともいわれ、それ故、多心 の光ファイバが収納される加入者用の光ファイ バケーブルに適している。さて、このように光 ファイバテープ心線17を有してなる光ファイ パケープル1に対して第1図のようなガスダム 部12を設け、ケーブルにガスを封入したとこ ろ、第2図における光ファイバ素線15と被覆 1.6とにより構成される隙間1.8、あるいはま . た、光ファイバ素線15同志が接している界面 1 9 や光ファイバ素線 1 5 と被覆 1 6 が接して いる界面20を伝つてガスが洩れてしまい、従 来の単心型の光ファイバ心線では問題とならな かつた光ファイバ心線内に対してガス洩れ防止 のための対策が必要となつてきた。この問題に ,対して、これまでとられてきた対策は、第2図 における光ファイバ索線15の集合体にシリコ ーン樹脂等をまず一体的に被覆し、しかる後被 覆16を施して、光ファイバテーブ心線17の 長手方向全長に亘つて前記隙間18や界面19、 20からのガス強れを防止しようというもので

ある。しかし、この方法は、およそダム形成部 にしか必要のない処理をケープル全長に亘つて 施すといつた大きな無駄に加えて、前述のごと く、光ファイバ索線15の集合体にシリコーン 樹脂等を一体的に被覆することにより、例えば、 被覆厚の不均一等に帰因するマイクロペンド等 による伝送損失の増加も見られ、その製造方法 に問題が多い。また、別の対策として、前記第 2 図に示す光ファイバテーブ心線 1 7 を外部か ち圧迫して、内部のガスパスを消滅させようと の試みもあるが、この方法では局部的にかなり 大きな圧迫力を必要とし、この圧迫力による光 ファイバの伝送損失増加は免れず、この方法で も解決は望めない。以上のように光ファイパテ ープ心線を有するガスダム付光ファイバケープ ルにあつては、光ファイバテーブ心線内を伝つ てガスが洩れるため従来の方法では、ガス気密 性に優れたガスダム付光ファイバケーブルを得 ることができない。

中に収納されており、また該スリーブの内側の 隙間にはガス気密用充填材が注入固化され、さ らに前記ダム部形成用充填材が前記スリーブの 内側の隙間に入り込まないように前記スリープ と前記光ファイバテープ心線の被覆とに跨つて シール材が設けられているものである。

(発明の実施例)

本発明の実施例を参照にして示す。第3回を参照にして示す。第3回を参照にしていません。第3回の一次ででいる。第3回の一次ででは、光ファイバテーがある。光ファイバケーがある。からには、カーのでは、

(発明の目的)

前記問題に鑑み、本発明の目的は、光ファイバテーブ心線を有する光ファイバケーブルにおいて、ガス気密性に優れたガスダム付光ファイバケーブルを得ることにある。

(発明の構成)

等のアクリル系樹脂等からなる被覆16をダム 形成部内の適切な位置で必要長剝取り、光ファ イバ素線15を露出させた露出部を形成し、剝 取つた被覆16の長さより長いスリープ22を この露出部を完全に覆うようにかぶせる。第3 図では光ファイバケープル1の端末にダム形成 部が位置しているので、このスリープ22は第 3 図の B 側よりこのスリープ 2 2 に各光ファイ パテープ心線11を通して、前記露出部までス リープ22をスライドさせ、露出部を収納させ る。続いて、このスリープ22の一端から、該 スリープ22の内側の隙間全体に熱硬化型また は付加型の熱硬化型樹脂からなるガス気密用充 填材23を注射器等で注入し、固化させる。尚、 このガス気密用充填材 2 3 としては室温硬化型 樹脂でもよく、その場合は、加熱源が不要であ り、さらには縮合型のものより付加型の樹脂で あると硬化前後の容積変化が少ないので気密充 頃がやり易く好ましい。この種の材料としては 付加型の熱硬化型及び室温硬化型シリコーンゴ

特開昭60-221714(4)

ムが代表的である。第4図はこのようにスリー プ22の内側の隙間全体にガス気密用充填材23 を気密に充填した状態を示すスリープ22装着 部の横断面である。ここで、各光ファイバ素線 15同志及び光ファイパ素線15とスリープ22 間に界面があるとガス洩れし易いので第4図の ように間隔を設け、前記ガス気密用充填材23 が入り込み易いようにした方がよい。また第 5 図のように1個のスリープ22の中に複数本の 光ファイバテーブ心線17の露出部を収納させ、 てもよいし、第6図のようにスリープ22はだ 円でもよいし、図示されていないが円形でもよ い。但し、スリープ22の内径は光ファイバテ ープ心線17の外径よりあまり大きいとガス気 密用充填材23の注入量が多くなるだけでなく、 スリープ22と光フアイパテープ心線11の間 から前記ガス気密用充填材23が流れ出す恐れ があるので、スリープ22の内径は光ファイバ テープ心線 17の外径よりわずかに大きい程度 の方がよい。さて、このようにスリープ22の

内側の隙間全体にガス気密用充填材23を気密 に注入し、固化させたら第7回のように、スリ ープ22と光ファイバテープ心線17の被覆16 に跨つて瞬間接着削等によりシール 2 4 を設け、 ダム用のダム部形成用充填材11がスリープ22 の内側に入り込まないようにする。その理由は、 グム部形成用充填材11がスリープ22の内側 に入り込むとその充填圧力でスリープ22と、 該スリープ22内へ注入し、固定させたガス気 密用充填材23との間が剝離してしまうのでと れを防止するためである。各々の光ファイバテ ープ心線17について同じように処理するが、 この際、第3図のように各光ファイバテープ心 線17毎に被覆16を剝取る位置を長手方向に 少しずつずらしてやる方が作業性がよい。また、 スリープ22、ガス気密用充填材23、そして タム部形成用充填材11の硬度は、前記ガス気 密用充填材23とスリープ22の界面及びスリ ープ22とダム部形成用充填材11との界面の ガス気密性をよくするために、ガス気密用充填

材 2 3 よりスリープ 2 2 を硬くし、スリープ22 よりダム部形成用充填材11の硬度を大きくし た方がよい。その理由は、各界面を物理的に押 しながら圧着させていくためである。尚、前記 ガス 気密 用 充填 材 2 3 と ダム 部 形 成 用 充 填 材 11 の硬度は硬化後の値である。しかし、圧着力に よらず接着力により各界面を気密に保とうとす る場合はこの限りでない。例えば、光ファイバ 紫線15の最外層がアクリル系樹脂の場合、ガ ス気密用充填材 2.3 としてアクリル系樹脂を、 ダム部形成用充填材11としてウレタン樹脂を 用いたとするなら、スリープ22としてはアク リル系樹脂にも、ウレタン樹脂にも接着するエ ポキシアクリレートやウレタンアクリレート樹 脂により作られたものを用いれば、互いに接着 し易いため、各材料の界面は容易に気密性が維 持される。

以上のようにして光ファイバテーブ心線IT における前述の処理がすべて完了したらダム形 成部内の線膨張係数を光ファイバのそれと同じ

(発明の具体例)

ここで本発明の具体例を 1 つ示す。まず外径 1 2 5 μm の光ファイバにシリコーン樹脂を被覆して外径 3 0 0 μm の光ファイバ紫線 1 5 を 4 る。 この光ファイバ紫線 1 5 を 5 本第 2 図のように

特問昭60-221714(5)

並列に並べ、ナイロンよりなる被覆 1 6 を施し、幅 1.6 mm、厚み 0.4 5 mm の光ファイパテーブ心線 1 7 を形成する。このような光ファイパテープ心線 1 7 を100本含む光ファイパケーブルにガスタム部 1 2 を形成した。この時用いた各材料は以下の通りである。

。ガス気密用充填材23;

熱硬化型シリコーンゴム (8 0 ℃ ~ 9 0 ℃ にて 2 0 分加熱後の硬度ショア A 4 0 ~ 5 0)

o スリープ 2 2 ;

光ファイバテーブ心線の被覆 1 6 の剝取り 矩 長 5 0 mm に対してスリーブ長 9 0 mm、短形 スリーブの断面寸法外径/内径(縦 0.9 / 0.6 × 横 2.5 / 2.0)

酢酸ビニルテル製ェル製。

。 ダム部形成用充填材:

発泡ポリウレタン

以上の材料を用いた本発明によるガスダム付 光ファイバケーブルにおいて、-30℃~10℃ 2 サイクル/日のヒートサイクル試験を行なつた。 結果は100サイクル後20℃でガス圧1㎏/ / cd 加えてもなんら変化はなかつた。 因みに、従来方法によるものにあつては、20℃で1㎏/ / cd のガス圧を加えると、直ちに、光ファイバテーブ心線17内をガスが通過してしまう。

このように本発明にあつては、タム形成部内において、光ファイバテーブ心線の被覆を数の程制取り、露出部を形成し、その部分にスリープをかぶせた後このスリーブの内側の隙間にガス気密用充填材を注入し、固化させるため、この部分がいわば各光ファイバテーブ心線内を伝っていた光ファイバテーブ心線内を伝ってのガス洩れは防止される。

(発明の効果)

以上説明したように本発明によれば、光ファイバテーブ心線を有する光ファイバケーブルにおいて、ガス気密性に優れたガスダム付光ファイバケーブルを得ることができる。

4 図面の簡単な説明

第1図は従来のガスダム付光ファイバケーブルの縦断面図、第2図は本発明に係る光ファイバテーブ心線の横断面図、第3図は本発明の 桜筋 面図、第4図、第5図及び第6図は第3図には 3図となるスリーブをかぶせた部分の一実施例及びに他の 実施例を示す拡大横断面図、第7図は同じく スリーブをかぶせた部分のスリーブを光ファイバテーブ心線のテーブ面に 平行に 切断した 拡大図である。

1 … 光ファイバケーブル、1 ! … ダム部形成用充填材、1 2 … ガスダム部、1 5 … 光ファイバ 素線、1 6 … 被優、1 7 … 光ファイバテープ心線、2 2 … スリーブ、2 3 … ガス気密用充填材、2 4 … シール。

特許出願人 古河電気工業株式会社(ほか1名)

第2图:

特開昭60-221714(6)

第 3 図

第4 図

第6 図

