B-Suffix Series CMOS Gates

MC14001B, MC14011B, MC14023B, MC14025B, MC14071B, MC14073B, MC14081B, MC14082B

The B Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range.
- Double Diode Protection on All Inputs Except: Triple Diode Protection on MC14011B and MC14081B
- Pin-for-Pin Replacements for Corresponding CD4000 Series B Suffix Devices

MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 1)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
PD	Power Dissipation, per Package (Note 2)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

- Maximum Ratings are those values beyond which damage to the device may occur.
- 2. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

PDIP-14 P SUFFIX CASE 646

MARKING

DIAGRAMS

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

SOEIAJ-14 F SUFFIX CASE 965

xx = Specific Device Code A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

DEVICE INFORMATION

Device	Description			
MC14001B	Quad 2-Input NOR Gate			
MC14011B	Quad 2-Input NAND Gate			
MC14023B	Triple 3-Input NAND Gate			
MC14025B	Triple 3-Input NOR Gate			
MC14071B	Quad 2-Input OR Gate			
MC14073B	Triple 3-Input AND Gate			
MC14081B	Quad 2-Input AND Gate			
MC14082B	Dual 4-Input AND Gate			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 19 of this data sheet.

LOGIC DIAGRAMS

PIN ASSIGNMENTS

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 55	5°C		25°C		125	i°C	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур (3)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	VOL	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15	_ _ _	1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _ _	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	ІОН	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2		- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	lOL	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	_ _ _	0.25 0.5 1.0	_ _ _	0.0005 0.0010 0.0015	0.25 0.5 1.0	_ _ _	7.5 15 30	μAdc
Total Supply Current (4) (5) (Dynamic plus Quiesco Per Gate, C _L = 50 pF)	ent,	lΤ	5.0 10 15			$I_{T} = (0.$	- 3 μΑ/kHz) f + 6 μΑ/kHz) f + 9 μΑ/kHz) f +	+ I _{DD} /N	•	•	μAdc

^{3.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
4. The formulas given are for the typical characteristics only at 25°C.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: IT is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised gates per package.

^{5.} To calculate total supply current at loads other than 50 pF:

B-SERIES GATE SWITCHING TIMES

SWITCHING CHARACTERISTICS (6) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (7)	Max	Unit
Output Rise Time, All B-Series Gates	^t TLH					ns
$t_{TLH} = (1.35 \text{ ns/pF}) C_L + 33 \text{ ns}$		5.0	_	100	200	
$t_{TLH} = (0.60 \text{ ns/pF}) C_L + 20 \text{ ns}$		10	_	50	100	
$t_{TLH} = (0.40 \text{ ns/PF}) C_L + 20 \text{ ns}$		15	_	40	80	
Output Fall Time, All B-Series Gates	t _{THL}					ns
$t_{THL} = (1.35 \text{ ns/pF}) C_L + 33 \text{ ns}$		5.0	_	100	200	
$t_{THL} = (0.60 \text{ ns/pF}) C_L + 20 \text{ ns}$		10	_	50	100	
$t_{THL} = (0.40 \text{ ns/pF}) C_L + 20 \text{ ns}$		15	_	40	80	
Propagation Delay Time	tPLH, tPHL					ns
MC14001B, MC14011B only						
t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) C_L + 80 \text{ ns}$		5.0	_	125	250	
t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) C_L + 32 \text{ ns}$		10	_	50	100	
t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) C_L + 27 \text{ ns}$		15	_	40	80	
All Other 2, 3, and 4 Input Gates						
t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) C_L + 115 \text{ ns}$		5.0	_	160	300	
t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) C_L + 47 \text{ ns}$		10	_	65	130	
t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) C_L + 37 \text{ ns}$		15	_	50	100	
8-Input Gates (MC14068B, MC14078B)						
t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) C_L + 155 \text{ ns}$		5.0	_	200	350	
t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) C_L + 62 \text{ ns}$		10	_	80	150	
t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) C_L + 47 \text{ ns}$		15	_	60	110	

^{6.} The formulas given are for the typical characteristics only at 25°C.

^{7.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

 $^{^{\}star}\text{All}$ unused inputs of AND, NAND gates must be connected to VDD. All unused inputs of OR, NOR gates must be connected to VSS.

Figure 1. Switching Time Test Circuit and Waveforms

CIRCUIT SCHEMATIC NOR, OR GATES

CIRCUIT SCHEMATIC NAND, AND GATES

TYPICAL B-SERIES GATE CHARACTERISTICS

Figure 2. $V_{GS} = 5.0 \text{ Vdc}$

Figure 4. V_{GS} = 10 Vdc

Figure 6. VGS = 15 Vdc

- 10 - 9.0 - 8.0 - 7.0 - 7.0 - 4.0 - 4.0 - 4.0 - 4.0 - 4.0 - 3.0 - 2.0 - 1.0 - 1.0

- 2.0

P-CHANNEL DRAIN CURRENT (SOURCE)

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (Vdc) Figure 3. V_{GS} = - 5.0 Vdc

- 3.0

- 5.0

Figure 5. $V_{GS} = -10 \text{ Vdc}$

Figure 7. $V_{GS} = -15 \text{ Vdc}$

These typical curves are not guarantees, but are design aids. Caution: The maximum rating for output current is 10 mA per pin.

TYPICAL B-SERIES GATE CHARACTERISTICS (cont'd)

VOLTAGE TRANSFER CHARACTERISTICS

Figure 8. $V_{DD} = 5.0 \text{ Vdc}$

Figure 9. $V_{DD} = 10 \text{ Vdc}$

Figure 10. V_{DD} = 15 Vdc

DC NOISE MARGIN

The DC noise margin is defined as the input voltage range from an ideal "1" or "0" input level which does not produce output state change(s). The typical and guaranteed limit values of the input values V_{IL} and V_{IH} for the output(s) to be at a fixed voltage V_O are given in the Electrical Characteristics table. V_{IL} and V_{IH} are presented graphically in Figure 11.

Guaranteed minimum noise margins for both the "1" and "0" levels =

1.0 V with a 5.0 V supply 2.0 V with a 10.0 V supply

2.5 V with a 15.0 V supply

(a) Inverting Function

(b) Non-Inverting Function

Figure 11. DC Noise Immunity

ORDERING & SHIPPING INFORMATION:

Device	Package	Shipping			
MC14001BCP	PDIP-14	2000 Units per Box			
MC14001BD	SOIC-14	2750 Units per Box			
MC14001BDR2	SOIC-14	2500 Units / Tape & Reel			
MC14001BDT	TSSOP-14	96 Units per Rail			
MC14001BDTR2	TSSOP-14	2500 Units / Tape & Reel			
MC14011BCP	PDIP-14	2000 Units per Box			
MC14011BD	SOIC-14	2750 Units per Box			
MC14011BDR2	SOIC-14	2500 Units / Tape & Reel			
MC14011BDT	TSSOP-14	96 Units per Rail			
MC14011BDTEL	TSSOP-14	2000 Units / Tape & Reel			
MC14011BDTR2	TSSOP-14	2500 Units / Tape & Reel			
MC14023BCP	PDIP-14	2000 Units per Box			
MC14023BD	SOIC-14	2750 Units per Box			
MC14023BDR2	SOIC-14	2500 Units / Tape & Reel			
MC14025BCP	PDIP-14	2000 Units per Box			
MC14025BD	SOIC-14	2750 Units per Box			
MC14025BDR2	SOIC-14	2500 Units / Tape & Reel			

ORDERING & SHIPPING INFORMATION:

Device	Package	Shipping		
MC14071BCP	PDIP-14	2000 Units per Box		
MC14071BD	SOIC-14	55 Units per Rail		
MC14071BDR2	SOIC-14	2500 Units / Tape & Reel		
MC14071BDT	TSSOP-14	96 Units per Rail		
MC14071BDTR2	TSSOP-14	2500 Units / Tape & Reel		
MC14073BCP	PDIP-14	2000 Units per Box		
MC14073BD	SOIC-14	55 Units per Rail		
MC14073BDR2	SOIC-14	2500 Units / Tape & Reel		
MC14081BCP	PDIP-14	2000 Units per Box		
MC14081BD	SOIC-14	55 Units per Rail		
MC14081BDR2	SOIC-14	2500 Units / Tape & Reel		
MC14081BDT	TSSOP-14	96 Units per Rail		
MC14081BDTR2	TSSOP-14	2500 Units / Tape & Reel		
MC14082BCP	PDIP-14	2000 Units per Box		
MC14082BD	SOIC-14	55 Units per Rail		
MC14082BDR2	SOIC-14	2500 Units / Tape & Reel		

For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.