ECS 170 Homework 2

Hardy Jones 999397426 Professor Davidson Winter 2014

1. Given a set of admissible heuristics $\mathcal{H} = \{h_1, h_2, ..., h_n\}$ one can define a new heuristic h_{max} such that for any node n:

$$h_{max}(n) = \max_{i} h_i(n)$$

(a) Show that h_{max} is an admissible heuristic.

Proof. Assume h_{max} is not an admissible heuristic.

We know h_{max} is some heuristic from the set $h_1, h_2, ..., h_n$. This means some heuristic in \mathcal{H} is not admissible.

This is a contradiction since \mathcal{H} contains only admissible heuristics, thus our assumption was incorrect.

Therefore, h_{max} is an admissible heuristic.

(b) Show that h_{max} dominates all other h_i

Proof. Assume h_{max} does not dominate all other h_i .

Then there must be some heuristic h_j in \mathcal{H} such that $h_{max}(n) < h_j(n)$. But we know that $\forall i, 1 \leq i \leq n, h_{max}(n) \geq h_i(n)$.

This is a contradiction, thus our assumption was incorrect.

Therefore, h_{max} dominates all other h_i .