

Développer une application métier avec Python, QGis, Qt et Postgis Retours première expérience Opensource Geospatial

Sylvain PIERRE Conseil Général du Bas-Rhin

Contexte

- Conseil Général du Bas-Rhin
- Direction Agriculture, Espace Rural, Environnement
- Service Administration Générale
- Cellule administration de données (3 ETP)

Missions

- Développement et maintenance applications métier (≈10)
- Conception et administration bases de données
- Thématiques : eau, assainissement, rivières, espaces naturels, travaux ruraux, déchets...
- Périmètre spécifique, complémentaire DSI

Environnement système d'information

- Environnement Open Source
 - 2009 : besoins traitement raster
 - Données LIDAR
 - Adoption progressive GRASS QGIS
 - Mise en évidence potentialités de QGIS
 - Evaluation sur la durée (1.5 → 1.8)
 - Fiabilité + pérennité
 - Environnement de développement (Σ plugins)

Contexte du projet

- 2008 transfert du canal de la Bruche
 - Domaine public de l'Etat → domaine public de la collectivité
- De nouveaux besoins...
 - Maîtrise d'ouvrage gestion de patrimoine
 - Thématique hydraulique
 - Connaissance exhaustive du patrimoine et de son suivi
 - Nécessité d'acquérir et de gérer un volume significatif de données géographiques et techniques
 - Périmètre géographique limité
- ...dans un contexte d'usure des utilisateurs / solutions existantes
 - Limite des outils
 - Maîtrise incomplète des outils de développement et de maintenance

- Objectif du projet
 - « Etudier et concevoir un système d'information (géographique) dédié à la gestion du canal de la Bruche »
- Objectif annexe
 - Constat :
 - Insatisfactions des utilisateurs / outils utilisés
 - + périmètre géographique limité
 - + potentialités des outils open source
 - = évaluer la faisabilité d'une solution open source
- Préalable
 - Charge de travail déjà conséquente
 - Difficulté de démarrer un nouveau projet
 - Disposer d'une ressource dédiée opportunité

- Phase initiale du projet
 - Lancement début 2012
 - Etat des lieux / étude des besoins
 - Etude de différents scénarios techniques :

Scénario 1	Scénario 2	Scénario 3	Scénario 4	Scénario 5
Mapinfo /Access	Geomap (Oracle/ Mapinfo)	QGIS / Spatialite	MapX / Access	Mapinfo
2	5	1	4	3

Maquettes pour les deux premiers scénarios

- Solution retenue : QGIS / Spatialite
 - Un choix à assumer...
 - Accepter de partir d'une page blanche
 Python, Qt, PyQGis = développement OO
 - Envisager des remises en cause dans le déroulement du projet
 - ...et à assurer
 - Disposer du soutien des utilisateurs
 - Informer et communiquer
 - Avant d'avoir à faire d'autres choix...

- Environnement de développement
 - Choix d'un IDE
 - Interface graphique : Qt designer
 - Code : Pyscripter
 - Simple et ergonomique
 - Facilement configurable
 - Uniquement sous Windows

- Conversion interfaces et ressources Qt → Python
 - .ui to .py → pyuic4
 - .qrc to .py → pyrcc4
 - Gestion par .bat

"C:\PROGRA~1\QUANTU~1\bin\pyrcc4.exe" -o "C:\APPLI_PDT\CANAL_DEV\applicationPG\resources\resources_rc.py"
"C:\APPLI_PDT\CANAL_DEV\applicationPG\resources\resources.qrc"
"C:\PROGRA~1\QUANTU~1\bin\python.exe" "C:\PROGRA~1\QUANTU~1\apps\Python27\Lib\sitepackages\PyQt4\uic\pyuic.py" -o C:\APPLI_PDT\CANAL_DEV\applicationPG\aot\dlgAot_ui.py
C:\APPLI_PDT\CANAL_DEV\applicationPG\aot\dlgAot.ui

- Plugin or not plugin ?
 - Constat : projet très spécifique
 - Nombreuses données techniques & alphanumériques
 - Dimension « outil de gestion » très marquée
 - Géolocalisation = une composante parmi d'autres
 - Encadrer les processus « métiers »
 - « Page blanche » de l'environnement de développement
 - Privilégier la découverte progressive
 - Plugin : fonctionnalités QGis + fonctionnalités métier
 - Standalone : uniquement fonctionnalités métiers
- Choix: standalone
 - Séparation claire entre processus « métiers » / « SIG »
 - Processus « SIG » gérés par QGIS

- Plongée dans Python, Qt, API QGIS...
 - Vous n'êtes pas seul dans le noir
 - De nombreuses ressources Web
 - Applications (PyQGis) complètes
 - Modules (légende)
 - Documentation officielle
 - Qt
 - API QGIS
 - PyQgis cookbook
 - Version
 - Démarrage 1.7.2 Wroclaw
 - Actuellement 1.8 Lisboa (Python 2.7.2, Qt 4.7.1)
 - Attention à la cohabitation de plusieurs versions !
 - Migration vers 2.0 ?

- Application : « Gestion Opérationnelle du Canal de la Bruche »
 - Première version centrée sur l'acquisition de données
 - Saisie d'informations gestion quotidienne de l'ouvrage
 - Patrouilles hebdomadaire agents
 - Relevés des anomalies
 - Centralisation d'informations éparses
 - Autorisation d'Occupation Temporaires du domaine publique
 - Référentiels des ouvrages constitutifs du canal
 - Evolutions
 - Prise en compte autres thématiques
 - Qualité du milieu
 - Travaux
 - Valorisation des données

Rubrique « Ouvrages »

Rubrique « Suivi hebdomadaire »

Rubrique « Anomalies »

Rubrique « Autorisation d'Occupation Temporaire du domaine public »

- Bilan et moyens mis en oeuvre
 - Durée
 - Démarrage 02/2012
 - Base de production mise en service 06/2013
 - Application fonctionnelle
 - Moyens humains
 - CDD 4 mois (100 %) étude et lancement du projet
 - 12 mois (30 %) développement
 - Total ≈ 8 mois
 - Valorisation compétences acquises
 - Nécessité d'un transfert vers membres de l'équipe
 - Préalable : mise en place d'une formation python
 - Capitalisation → démarrer d'autres projets ?

- Aléas d'un projet: migration Spatialite / Postgis
 - Spatialite
 - Choix initial basé sur la simplicité et l'autonomie
 - A permis :
 - Mise en place modèle de données
 - Tester en vraie grandeur Python / API QGIS / SGBDR
 - Spatialite ne supporte pas l'accès concurrentiel
 - Postgis
 - Client/serveur
 - Gestion native Linear Referencing System
 - Dépendance système DSI
 - Filet de sécurité (sauvegarde)
 - Identification plus claire du projet

- Points de vigilance
 - Confirmer ou infirmer certains choix
 - Vues ou tables + trigger pour gérer données LRS
 - Pas de modélisation UML initiale
 - Exploiter toutes les possibilités des API
 - QGIS QgsVectorLayer.dataProvider → QgsAttributeTableModel
 - Documentation du code
 - Changements API QGIS 2.0 / 1.8
 - PyQt V2 (sip API) Python string <> Qstring
 - Evolutions classes et fonctions de l'API
 - …bien suivre les Mailing list [Qgis-developper]
 - …utiliser sans modération la documentation de l'API

- Enseignements techniques
 - Efficacité des API
 - Qt
 - Gestion des événements par signaux / slots
 - Design des interfaces
 - Python
 - Sobriété syntaxe de base
 - Richesse de l'approche orientée objet (héritage)
 - QGIS
 - API reflet du logiciel
 - Postgis
 - Utilisation en conjonction avec les API Open Source révèle toutes les potentialités du SGBDR
 - Fonctions spatiales

- Enseignements techniques
 - Une somme...mais cohérente
 - Individuellement chaque brique représente un domaine conséquent à appréhender
 - Maîtrise simultanée des différentes composantes
 - Meilleure intégration
 - Séparation claire rôle respectif API / SGBDR
 - Satisfaction intellectuelle
 - Nécessite une immersion progressive
 - Des potentialités indéniables
 - Contexte de contraction budgétaire
 - Réappropriation

Conclusion

- Des outils parfaitement adaptés au développement d'applications métiers
- Une solution pour voir ce qu'il y a à l'intérieur du moteur
 - Transparence : évaluation claire des possibilités
 - Maîtrise complète des différents briques logicielles
 - Choix effectués en toute connaissance de cause
- Contrepartie : endosser une plus grande responsabilité
 - Ne plus se cacher derrière la boite noire propriétaire
 - Assumer ces choix et sa responsabilité / utilisateurs

Liens

Applications PyQGis

CAPS Scenario Builder

https://github.com/EcoGIS/CAPS-Scenario-Builder/tree/master/CAPS Scenario Builder/src

Qmap https://github.com/NathanW2/qmap

Ecotrust openOceanMap https://github.com/Ecotrust/openoceanmap-desktop

GeoApt Spatial Data Browser https://github.com/g-sherman/GeoApt

Layer list widget for PyQGIS applications

http://geotux.tuxfamily.org/index.php/en/component/k2/item/270-tabla-de-contenido-leyenda-para-aplicaciones-basadas-en-pyqgis

Documentation API

QGIS API Documentation http://qgis.osgeo.org/api/index.html

Qt Project https://qt-project.org/doc/qt-4.7/