Лабораторная работа 17

Задания для самостоятельной работы

Игнатенкова Варвара Николаевна

Содержание

 Цель работы Задание 									
	3.2 Модель работы аэропорта	9							
	3.3 Моделирование работы морского порта	-							
4	Выводы	21							

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Отчёт по модели работы вычислительного центра	8
3.4	Модель работы аэропорта	10
3.5	Отчёт по модели работы аэропорта	11
3.6	Отчёт по модели работы аэропорта	12
3.7	Модель работы морского порта	13
3.8	Отчет по модели работы морского порта	14
3.9	Модель работы морского порта с оптимальным количеством при-	
	чалов	15
3.10	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	16
3.11	Модель работы морского порта	17
	Отчет по модели работы морского порта	18
3.13	Модель работы морского порта с оптимальным количеством при-	
	чалов	19
3.14	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	20

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. [3.1]).

```
ram STORAGE 2
;класс А
GENERATE 20,5
QUEUE class A
ENTER ram, 1
DEPART class A
ADVANCE 20,5
LEAVE ram, 1
TERMINATE 0
;класс В
GENERATE 20,10
QUEUE class A
ENTER ram, 1
DEPART class A
ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
;класс С
GENERATE 28,5
QUEUE class A
ENTER ram, 2
DEPART class A
ADVANCE 28,5
LEAVE ram, 2
TERMINATE 0
; таймер
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок

времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [3.2], [3.3]).

G	PSS World Simulatio	n Report - Untitle	d Model 1.2.1		
		-			
		0005 00.00.00			
	суббота, мая 17	, 2025 22:20:32			
	T TIME EN	D TIME BLOCKS FA	CILITIES STO	RAGES	
	0.000 48	00.000 23	0	1	
N.	AME	VALUE			
CLASS	_A	10001.000			
RAM		10000.000			
LABEL	LOC BLOCK TYP	E ENTRY COUNT	CURRENT COUNT	RETRY	
	1 GENERATE	240	0	0	
	2 QUEUE	240	4	0	
	3 ENTER 4 DEPART	236	0	U	
	5 ADVANCE				
	6 LEAVE	235	1 0	0	
		235	0		
		236	0	0	
	9 QUEUE	236	5	0	
	10 ENTER	231	0		
	11 DEPART		0	0	
	12 ADVANCE		1 0	0	
	13 LEAVE	230	0	0	
	14 TERMINATE 15 GENERATE	230 172	0	0	
	16 QUEUE		172		
	17 ENTER	0	0	0	
	18 DEPART	0	0	ō	
	19 ADVANCE		0		
	20 LEAVE	0	0	0	
	21 TERMINATE		0	0	
	22 GENERATE		0	0	
	23 TERMINATE	1	0	0	
DUEUE	MAX CONT. ENTRY	ENTRY (O) NUE CONT	BUT TIME	NUE / ON DETRU	

Рис. 3.2: Отчёт по модели работы вычислительного центра

QUEUE CLASS_A	MAX CONT 183 181					AVE.(-0) RETRY 688.354 0
STORAGE RAM	CAP. REM			ES AVL.		IL. RETRY DELAY 994 0 181
FEC XN PR 650 0 636 0 651 0 637 0 652 0 653 0	4803.512 4805.704 4807.869 4810.369 4813.506	636 651 637 652	0 5 0	NEXT 1 6 15 13 8 22	PARAMETER	VALUE

Рис. 3.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. [3.4]).

```
GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE arrival
landing GATE NU runway, wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE 0
;посадка
wait TEST L pl,5,goaway
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE 0
;взлет
GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE 0
;таймер
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 3.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась — переход в блок обработки, если нет — самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах — 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [3.5], [3.6]).

GPSS World Simulation Report - Untitled Model 1.5.1

суббота, мая 17, 2025 22:36:45

		суоро	та, мая	17, 2	2025	22:36:45			
	START TI						FACILITIE:		
	0.0	00		1440.	000	26	1		0
	NAME					VALUE			
	ARRIVAL					02.000			
	GOAWAY					14.000			
	LANDING					4.000			
	RESERVE				UNS	PECIFIED			
	RUNWAY					01.000			
	TAKEOFF					00.000			
	WAIT					10.000			
	HALL					10.000			
LABEL		TOC	BIOCK .	TVDF	<u> </u>	NTDV COIN	T CURRENT	COUNT	DETDV
LADEL			GENERA'		_	146	I CORRENI	0	0
		_	ASSIGN			146		0	0
			QUEUE			146		0	0
LANDING			GATE			184		0	0
2111121110		5	SEIZE			146		0	0
			DEPART			146		0	0
			ADVANC			146		0	0
		8	RELEASI	E		146		0	0
		9	TERMIN	ATE		146		0	0
WAIT		10	TEST			38		0	0
		11	ADVANC	Ε		38		0	0
		12	ASSIGN			38		0	0
		13	TRANSF	ER		38		0	0
GOAWAY		14	SEIZE			0		0	0
		15	DEPART			0		0	0
		16	RELEASI	Ε		0		0	0
		17	TERMIN	ATE		0		0	0
		18	GENERA'	ΓE		142		0	0
		19	QUEUE			142		0	0
		20	SEIZE			142		0	0
		21	DEPART			142		0	0
		22	ADVANC	Ε		142		0	0
		23	RELEASI	Ε		142		0	0
		24	TERMIN	ATE	,	142		0	0
			GENERA'	ΓE		1		0	0
		26	TERMIN	ATE		1		0	0

Рис. 3.5: Отчёт по модели работы аэропорта

FACILITY	ENTRIES U	IIL. AVE	. TIME	AVAIL.	OWNER PE	ND INTER	RETRY	DELAY
RUNWAY	288	0.400	2.000	1	0	0 0	0	0
QUEUE	MAX CONT	. ENTRY ENT	TRY(0)	AVE.CON	T. AVE.I	IME AVI	E.(-0)	RETRY
TAKEOFF	1 0	142	114	0.017	0.	173	0.880	0
ARRIVAL	2 0	146	114	0.132	1.	301	5.937	0
FEC XN PRI	BDT	ASSEM (CURRENT	NEXT	PARAMET	ER VAI	LUE	
290 2	1440.749	290	0	18				
291 1	1445.367	291	0	1				
292 0	2880.000	292	0	25				

Рис. 3.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a=20\,{\rm y}, \delta=5\,{\rm y}, b=10\,{\rm y}, \varepsilon=3\,{\rm y}, N=10, M=3;$$

2)
$$a=30$$
 ч, $\delta=10$ ч, $b=8$ ч, $\varepsilon=4$ ч, $N=6$, $M=2$.

Первый вариант модели

Построим модель для первого варианта (рис. [3.7]).

```
pier STORAGE 10
GENERATE 20,5

QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

; таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [3.8]).

GPSS World Simulation Report - Untitled Model 1.6.1											
суббота, мая 17, 2025 22:43:34											
	START T	IME	END TIM	E BLOCKS	FACILITIES S	TORAGES					
	0.	000	4320.00	0 9	0	1					
	NAME ARRIVE PIER			VALUE 0001.000 0000.000							
LABEL		1 GENE 2 QUEU 3 ENTE 4 DEPA 5 ADVA	RATE E R RT NCE	215 215 215 215 215 215	0	0 0 0 0					
		7 TERM	E INATE RATE INATE	214 214 180 180		0					
QUEUE ARRIVE		MAX CONT. 1 0	ENTRY ENTR 215 2	Y(0) AVE.CC	ONT. AVE.TIME	AVE.(-0) RETRY 0.000 0					
STORAGE PIER						TIL. RETRY DELAY					
395 396	0	BDT 4324.260 4335.233 4344.000	395 396	5 6 0 1	I PARAMETER	VALUE					

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. [3.9]), получаем оптимальный результат, что видно на отчете (рис. [3.10]).

```
pier STORAGE 3
GENERATE 20,5

QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

; taŭmep
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

GPSS World Simulation Report - Untitled Model 1.8.1

		IME 000			FACILITIES 0		
	NAME ARRIVE PIER		100				
LABEL		1 GENE 2 QUEU 3 ENTE 4 DEPA 5 ADVA 6 LEAV 7 TERM 8 GENE	RATE E R RT NCE E INATE	215 215 215 215 215 214 214 180	NT CURRENT CG 0 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0	
QUEUE ARRIVE						E AVE.(-0) R	
STORAGE PIER						UTIL. RETRY DE 0.495 0	
FEC XN 395 396 397	0	4324.260 4335.233	ASSEM CURE 395 5 396 (397 (5 6 0 1	I PARAMETER	VALUE	

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. [3.11]).

```
pier STORAGE 6
GENERATE 30,10

QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [3.12]).

	GPSS	World Sir	nulation	Report -	- Untitl	ed Model 1	.9.1	
		суббота,	мая 17,	2025 22	:50:13			
	START I	IME	END	TIME B	LOCKS E	PACILITIES	STORAGES	
	0.	000	4320	0.000	9	0	1	
	NAME			VA				
	ARRIVE PIER			10001				
				20000				
LABEL		TOC BLO	OCK TYPE	ENT	RY COUNT	CURRENT C	OUNT RETRY	
1 2		1 GEN				0		
1		2 QUI	EUE		143	0		
1		3 EN:	TER		143	0	Ω	
1		4 DEI			143		0	
1		5 ADV			143	1		
1		6 LEA			142		0	
1		7 TEI	RMINATE		142	0	0	
1		8 GE1 9 TE	VERATE		180	0	0	
		9 TEI	RMINATE		180	0	0	
QUEUE		MAX CONT	ENTRY I	ENTRY(0)	AVE.CON	T. AVE.TIM	E AVE.(-0)	RETRY
ARRIVE		1 0	143	143	0.000	0.00	0.000	0
STORAGE		CAP. REM	MIN. M	AX. ENT	RIES AVI	AVE.C.	UTIL. RETRY D	ELAY
PIER		6 4	0	2	286 1	0.524	0.087 0	0
FEC XN	PRI	BDT	ASSEM	CURREN'	NEXT	PARAMETER	VALUE	
322	0	4325.892	322	5	6			
	0	4336.699	324	0	1			
325	0	4344.000	325	0	8			
I								

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [3.13]), получаем оптимальный результат, что видно из отчета (рис. [3.14]).

```
pier STORAGE 2
GENERATE 30,10

QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

; TAŬMEP
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

Cy66ota, Mag 17, 2025 22:51:55 START TIME END TIME BLOCKS FACILITIES STORAGES 0.000 4320.000 9 0 1 NAME VALUE ARRIVE 10001.000 PIER 10000.000 LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		GPSS	World Sin	nulation R	eport - U	ntitled	l Model 1	.11.1	
NAME VALUE ARRIVE 10001.000 PIER 10000.000 LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 143 0 0 2 QUEUE 143 0 0 3 ENTER 143 0 0 4 DEPART 143 0 0 4 DEPART 143 0 0 5 ADVANCE 143 1 0 6 LEAVE 142 0 0 7 TERMINATE 142 0 0 7 TERMINATE 142 0 0 8 GENERATE 180 0 0 9 TERMINATE 180 0 0 0 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1			суббота,	мая 17, 2	025 22:51	:55			
NAME ARRIVE 10001.000 PIER 10000.000 LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 143 0 0 0 2 QUEUE 143 0 0 0 3 ENTER 143 0 0 0 4 DEPART 143 0 0 0 5 ADVANCE 143 1 0 0 6 LEAVE 142 0 0 0 7 TERMINATE 142 0 0 0 7 TERMINATE 142 0 0 0 9 TERMINATE 180 0 0 0 9 TERMINATE 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			IME	END T	IME BLOC	KS FAC	ILITIES	STORAGES	
LABEL		0.	000	4320.	000 9		0	1	
LABEL		NAME			VALUE				
LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 143 0 0 2 QUEUE 143 0 0 3 ENTER 143 0 0 4 DEPART 143 0 0 5 ADVANCE 143 1 0 6 LEAVE 142 0 0 7 TERMINATE 142 0 0 8 GENERATE 180 0 0 9 TERMINATE 180 0 0 9 TERMINATE 180 0 0 QUEUE MAX CONT. ENTRY ENTRY (0) AVE.CONT. AVE.TIME AVE. (-0) RETRY ARRIVE 1 0 143 143 0.000 0.000 0.000 0 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1									
1 GENERATE 143 0 0 0		PIER			10000.00	0			
1 GENERATE 143 0 0 0									
2 QUEUE	LABEL								
3				NEKALE					
A DEPART									
S						_	_	_	
6									
7 TERMINATE 142 0 0 0 8 GENERATE 180 0 0 0 9 TERMINATE 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
S GENERATE 180 0 0 0			7 TE	RMINATE	14	2	0	0	
QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY ARRIVE 1 0 143 143 0.000 0.000 0.000 0 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1					18	0	0	0	
ARRIVE 1 0 143 143 0.000 0.000 0.000 0 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1			9 TE	RMINATE	18	0	0	0	
ARRIVE 1 0 143 143 0.000 0.000 0.000 0 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1									
ARRIVE 1 0 143 143 0.000 0.000 0.000 0 STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1	OUEUE		MAX CONT	. ENTRY EN	TRY(0) AV	E.CONT.	AVE.TIM	E AVE.(-0) R	ETRY
STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1									
PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1									
PIER 2 0 0 2 286 1 0.524 0.262 0 0 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1	STODACE		CAD DEM	MIN MAY	FNTDIF	S AUT	AVE C	וודוו ספדטע חד	TAV
FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 322 0 4325.892 322 5 6 324 0 4336.699 324 0 1	PIER								
322 0 4325.892 322 5 6 324 0 4336.699 324 0 1			_		200	-			-
322 0 4325.892 322 5 6 324 0 4336.699 324 0 1	FFC VN	DDT	BDT	Jeery	CHDDENT	MEVT P	ADAMETER	173.7.110	
324 0 4336.699 324 0 1							AKAMEIEK	VALUE	

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.