

BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics

ARTIFICIAL INTELLIGENCE

Intelligent systems

Machine learning
Support Vector Machines
K-means

Useful information

- Chapter 15 of C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Chapter 9 of T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- Documents from svm folder

Intelligent systems – Machine Learning

Typology

Experience criteria:

- Supervised learning
- Unsupervised learning
- Active learning
- Reinforcement learning

Algorithm criteria

- Decision trees
- Artificial Neural Networks
- Evolutionary Algorithms
- Support Vector Machines
- Hidden Markov Models
- K-means

- Support Vector Machines (SVMs)
 - Definition
 - Solved problems
 - Advantages
 - Difficulties
 - Tools

Definition

- Developed by Vapnik in 1970
- Popularised after 1992
- Linear classifiers that identify the hyper-plane that separates the positive and negative classes
- Have a theoretical foundation
- Work very well for large data (text mining, image analysis)

Remember

- Supervised learning problem a data set:
 - (x^d, t^d), with:
 - $X^d \in \mathbb{R}^m \to X^d = (X^d_1, X^d_2, ..., X^d_m)$
 - $t^d \in \mathbb{R}$ → $t^d \in \{1, -1\}, 1$ → positive class, -1 → negative class
 - where d = 1,2,...,n,n+1,n+2,...,N
- First n data (x^d and t^d are known) are used as training data
- Last N-n data (x^d is known, t^d is unknown) are used as testing data

Inteligentă artificială - sisteme inteligente (SVM, k-means)

Definition

■ SVM finds a linear function $f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$, (**w** –weight vector) such as

$$y_i = 0 \quad \text{if } \langle w \cdot x_i \rangle = b \ge 0$$

$$-1 \quad \text{if } \langle w \cdot x_i \rangle = b = 0$$

■ $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$ \rightarrow decision hyper-plane that separates the two classes

Definition

- There are more hyper-planes
 - Which is the best hyper-plane?
- SVM searches the hyper-plane with the largest margin (that minimises the generalisation error)
 - □ SMO (Sequential minimal optimization) algorithm

- Solved problems
 - Classification problems → more cases (based on the data type):
 - Linear separable
 - Separable
 - Error = 0

- Constrains are relaxed → some error are allowed
- C penalisation coefficient

- □ Solved problems \rightarrow classification problems \rightarrow data cases:
 - Non-linear separable
 - Input space is transformed (mapped) into a space of more dimensions (feature space) by using kernel function – in this new space the data becomes linear separable
 - In SVMs the kernel function computes the distance among 2 points
 - → kernel ~ similarity function

- □ Solved problems → classification problems → data cases:
 - Non-linear separable → possible kernels
 - Classic kernels
 - Polynomial kernel: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = (\mathbf{x}^{d1}, \mathbf{x}^{d2} + 1)^p$
 - RBF kernel: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$
 - Multiple Kernels
 - Linear : $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \sum w_i K_i (\mathbf{x}^{d1}, \mathbf{x}^{d2})$
 - Non-linear
 - Without coefficients: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = K_1(\mathbf{x}^{d1}, \mathbf{x}^{d2}) + K_2(\mathbf{x}^{d1}, \mathbf{x}^{d2}) * \exp(K_3(\mathbf{x}^{d1}, \mathbf{x}^{d2}))$
 - With coefficients: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = K_1(\mathbf{x}^{d1}, \mathbf{x}^{d2}) + c_1 * K_2 * (\mathbf{x}^{d1}, \mathbf{x}^{d2}) \exp(c_2 + K_3(\mathbf{x}^{d1}, \mathbf{x}^{d2}))$
 - Kernels for strings
 - Kernels for images
 - Kernels for graphs

SVM setting

- SVM's parameters
 - Penalisation coefficient C
 - C- small → slowly convergence
 - C − large → fast convergence
 - Kernel parameters (what kernel and what parameters)
 - If m (# of attributes) is larger than n (# of data)
 - SVM by a linear kernel (SVM without kernel) \rightarrow $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \mathbf{x}^{d1} \cdot \mathbf{x}^{d2}$
 - If m (# of attributes) is large and n (# of data) is medium
 - SVM with Gaussian kernel $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$
 - σ dispersion of training data
 - Attributes must be normalised (scalled to (0,1))
 - If m (# of attributes) is small and n (# of data) is large
 - Ad new attributes and than SVM with linear kernel

- SVM for multi-class classification problems (more than 2 classes)
 - one vs. all

- Structured SVMs
 - Machine Learning
 - □ Simple SVM $f: X \rightarrow R$
 - Any type of inputs
 - Numerical outputs (natural numbers, integers, real numbers)
 - □ Structured SVM: X → Y
 - Any type of inputs
 - Any type of outputs (numerical or structured outputs)

- Structured information
 - Texts and hyper-texts
 - Molecules and molecular structures
 - Images

Structured SVMs

- Applications
 - Natural Language Processing
 - Automatic translation (outputs → sentences)
 - Syntactic and/or morphologic analysis of sentences (outputs
 → syntactic and/or morphologic tree)
 - Bioinformatic
 - Prediction of secondary structures (outputs → bi=partite graphs)
 - Prediction of enzyme function (outputs → paths in trees)
 - Speech processing
 - Automatic transcriptions (outputs → sentences)
 - Transformation of texts in voice (outputs → audio signal)
 - Robotics
 - Planning (outputs → sequences of actions)

Advantages

- Can work with any type of data (linear or non-linear separable, uniform distributed or not, with known or unknown distribution)
 - □ Kernel function that creates new attributes (features) → hidden layers of an ANN
- If the problem is convex SVM finds a unique solution → global optima
 - ANNs can associates more solutions → local optima
- Automatic selection of the learnt model (by support vectors)
 - In ANNs hidden layers have to be configured a priori
- Avoid over fitting
 - ANNs have over fitting problems even the cross-validation is involved

Difficulties

- Real attributes only
- Binary classification problems only
- Difficult mathematical background

Tools

- LibSVM → http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka → SMO
- SVMLight → http://svmlight.joachims.org/
- SVMTorch → http://www.torch.ch/
- http://www.support-vector-machines.org/

Intelligent systems – Machine Learning

Typology

Experience criteria:

- Supervised learning
- Unsupervised learning
- Active learning
- Reinforcement learning

Algorithm criteria

- Decision trees
- Artificial Neural Networks
- Evolutionary Algorithms
- Support Vector Machines
- Hidden Markov Models
- K-means

Unsupervised learning

- Aim
 - Finds a model or a structure of data
- Solved problems
 - Identification of groups (clusters)
 - Analysis of genes
 - Image processing
 - Analysis of social networks
 - Market segmentation
 - Analysis of astronomic data
 - Clusters of computers
 - Dimension reduction
 - Identification of causes (explanations) for data
 - Modelling the data densities
- Specific
 - Data are not annotated (labelled)

Separates the un-labeled examples in disjoint sub-sets (clusters) such as:

- Examples of the same cluster are similar
- Examples of different clusters are different

Definition

- Given
 - A set of data (examples, instances, cases)
 - Training data
 - As atribute_data, where
 - i = 1, N (N = # of training data)
 - $atribute_data_i$ = $(atr_{i1}, atr_{i2}, ..., atr_{im}), m \# of attributes (characteristics, properties) of data$
 - Testing data
 - As $(atribute_data_i)$, i = 1, n (n = # of testing data)
- Determine
 - An unknown function that groups the training data in more classes
 - # of classes can be pre-defined (k) or un-known
 - Data of the same class are similar
 - The class of a new testing data by using the learnt grouping (on training data)

Other names

Clustering

Supervised vs. un-supervised

- Distance between 2 elements \boldsymbol{p} and $\boldsymbol{q} \in R^m$
 - Euclid distance

Manhattan distance

- Mahalanobis distance
 - $d(\mathbf{p},\mathbf{q}) = sqrt(\mathbf{p}-\mathbf{q})S^{-1}(\mathbf{p}-\mathbf{q}),$ $\text{Where S is the covariance matrix } (S = E[(\mathbf{p}-E[\mathbf{p}])(\mathbf{q}-E[\mathbf{q}])])$
- Internal product

Cosine distance

$$d(\mathbf{p},\mathbf{q}) = \sum_{i=1,2,...,m} p_i q_i / (sqrt(\sum_{i=1,2,...,m} p_i^2) * sqrt(\sum_{i=1,2,...,m} q_i^2))$$

- Hamming distance
 - # of differences between p and q
- Levenshtein distance
 - Minimal # of operations required for transforming p in q
- Distance vs. similarity
 - Distance → minimisation
 - Similarity → maximisation

Application

Gene clustering

Market segmentation (for client clustering)

news.google.com

Unsupervised learning – process

Process

- 2 steps:
 - Learning
 - Determine (learn), by using an algorithm, the existing clusters
 - Testing
 - Include a new data in one of the identified (during training) clusters

Learning quality (clustering validation)

- Internal criteria
 - Large similarity inside the cluster and reduce similarity between clusters
- External criteria
 - Using benchmarks composed of apriori grouped data

Unsupervised learning – evaluation

Performance measures

- Internal criteria
 - Distance inside the cluster
 - Distance between clusters
 - Davies-Bouldin index
 - Dunn index
- External criteria
 - Comparison with known data impossible in real-world applications
 - Precision
 - Recall
 - F-measure

- How the clusters are forming
 - Hierarchic clustering
 - Non-hierarchic (partitioned) clustering
 - Clustering based on data density
 - Clustering based on a grid

- How the clusters are forming
 - Hierarchic clustering
 - Creates a dendogram (taxonomic tree)
 - Creates the clusters (recursively)
 - k (# of clusters) is un-known
 - □ Aglomerativ clustering (bottom-up) → small clusters to large clusters
 - □ Divisiv clustering (top-down) → large clusters to small clusters
 - □ Eg.
 - Clustering ierarhic aglomerativ

- How the clusters are formed
 - Non-hierarchic
 - □ Partition → determine a data separation → all the clusters in the same time
 - Optimises an objective function defined
 - Locally by using some features only
 - Globally by using all attributes

that can be:

- squared error sum of squared distances between data and the cluster's centroid → min
 - Ex. K-means
- Graph-based
 - Ex. Clustering based in minimum spanning tree
- Based on probabilistic models
 - Ex. Identify the data distribution → expectation maximisation
- Based on the nearest neighbour
- Required to fix k apriori → fix the initial clusters
 - Algorithm is run more times with different parameters and the most efficient version is selected
- Ex. K-means, ACO

- How the clusters are forming
 - Based on data densities
 - Data density and data connectivity
 - Cluster formation is based on data density from a given region
 - Cluster formation is based on data connectivity from a given region
 - Function of data density
 - Tries to model the data distribution
 - Advantage:
 - Modeling of clusters of any shape

- How the cluster are forming
 - Based on a grid
 - Is not a distinct approach
 - Can be hierarchic, partitional or density-based
 - Involves data space segmentation in regular areas
 - Objects are placed on a multi-dimensional grid
 - □ Eg. ACO

- How the algorithms work
 - Agglomerative clustering
 - 1. Initially, each instance form a cluster
 - 2. Compute the distance between any 2 clusters
 - Reunion the closest 2 clusters
 - Repeat steps 3 and 4 until a single cluster is obtained or other stop criterion is satisfied
 - Divisive clustering
 - Establish the number of clusters (k)
 - Initialise the centre of each cluster
 - 3. Determine a data separation
 - 4. Re-compute the center of each cluster
 - Repeat steps 3 and 4 until the partition is unchanged (algorithm converges)
- How the algorithm takes into account the attributes (features)
 - Monotonic attributes are taken into account one-by-one
 - Poly-tonic attributes are simultaneous taken into

- How the data belong to clusters
 - Exact clustering (hard clustering)
 - \square Each instance x_i has associated a label (class) c_j
 - Fuzzy clustering
 - □ Each instance has associated a membership degree (probability) f_{ij} to a given class c_j → an instance xi can belongs to more clusters
 - □ Asociază fiecarei intrări \mathbf{x}_i un grad (probabilitate) de apartenență f_{ij} la o anumită clasă $c_j \rightarrow$ o instanță \mathbf{x}_i poate aparține mai multor clusteri

- Agglomerative hierarchical clustering
- K-means
- AMA
- Probabilistic models
- Nearest neighbor
- Fuzzy
- Artificial Neural Network
- Evolutionary algorithms
- ACO

- Agglomerate hierarchical clustering
- □ Consider a distance between 2 instances $d(x_{i1}, x_{i2})$
- Form N clusters, each of them containing an instance
- Repeat
 - Determine the closest 2 clusters
 - Reunion the 2 clusters → a cluster
- Until a single cluster is obtained (that contains all the instances)

Agglomerate hierarchical clustering

- \square Distance between 2 clusters c_i and c_j :
 - Simple link → minimal distance between the objects of 2 clusters
 - Complete link → maximal distance between the objects of 2 clusters
 - Average link → mean of distances between the objects of 2 clusters
 - Average link over group → distance between the means (centroids) of 2 clusters

- K-means (Lloyd algorithm / Voronoi iteration)
- Suppose that k clusters will form
- □ Initialize k centroids $\mu_1, \mu_2, ..., \mu_k$
 - A centroid μ_j (i=1,2,...,k) is a vector of m values (m-# of features)
- Repeat until convergence
 - Associated to each instance the nearest centroid \rightarrow for each instance \mathbf{x}_i , i = 1, 2, ..., N
 - $c_i = arg min_{j=1, 2, ..., k} || \mathbf{x}_i \mathbf{\mu}_j ||^2$
 - Re-compute the centroids by moving them in the mean of instances associated to it \rightarrow for each cluster c_j , $j=1,2,\ldots,k$

$$\mathbf{\mu}_{j} = \sum_{i=1,2,...N} \mathbf{1}_{ci=j} \mathbf{x}_{i} / \sum_{i=1,2,...N} \mathbf{1}_{ci=j}$$
Inteligență artificială - sisteme inteligente (SVM, k-means)

K-means

K-means

- \blacksquare Initialisation of k centroids $\mu_1, \mu_2, ..., \mu_k$
 - With random values (in the definition domain of the problem)
 - With k instances of N (randomly selected)
- Does algorithm converge always?
 - Yes, because of distortion function J

$$\Box J(c, \mu) = \sum_{i=1,2,...,N} || \mathbf{x}_i - \boldsymbol{\mu}_{cj}||^2$$

which is decreasing

- Converges in a local optima
- Finding the global optima → NP-difficult problem

Unsupervised learning – algorithms Clusterizare bazată pe arborele minim de acoperire (AMA)

Clustering based on minimum spanning tree

- Construct the minimum spanning tree of data
- Eliminate from the tree the longest edges and form clusters

Învățare ne-supervizată – algoritmi Modele probabilistice

- http://www.gatsby.ucl.ac.uk/~zoubin/course04/ul.pdf
- http://learning.eng.cam.ac.uk/zoubin/nipstu t.pdf