Раскраски графов

G=(V,E), C — множество цветов. Раскраска — это всякая функция $c:V\to C$. Раскраска правильная, если для всякого ребра (v,u) верно $c(v)\neq c(u)$.

Примеры:

- ightharpoonup Двудольный граф: если раскрашивается в два цвета. Например, $K_{3,3}$.
- ightharpoons Граф K_n не раскрашивается менее чем в n цветов.

Теорема 8 (Хивуд)

Всякий планарный граф раскрашивается в 5 цветов.

Доказательство. Индукция по числу вершин.

Базис |V|=1: раскрашивается.

Шаг индукции. По следствию $\ref{eq:condition}$, есть вершина v степени ≤ 5 .

Если $\deg(v) \leq 4$, то удаляем ее, остаток раскрашиваем по предположению индукции, а затем возвращаем и раскрашиваем в свободный цвет.

Если $\deg(v) = 5$, то рассмотрим ее соседей v_0, v_1, v_2, v_3, v_4 в порядке их укладки на плоскости. Если какого-то из ребер (v_i, v_{i+1}) нет, добавим его.

Хотя бы одной из диагоналей (v_i, v_{i+2}) нет, иначе был бы подграф K_5 .

Склеим вершины v_i , v_{i+2} и v — получим планарный граф меньшего размера, который раскрашивается в 5 цветов по предположению индукции. Тогда в исходном графе v_i и v_{i+2} покрасим тот же цвет, что и склеенную вершину, а v — в свободный пятый цвет.

Раскраски графов

Теорема 9 (Аппель, Хакен, 1977)

Всякий планарный граф раскрашивается в 4 цвета.

Доказательство — компьютерный перебор (первое в истории доказательство такого рода).