

ELEKTROTEHNIČKI FAKULTET UNIVERZITETA U BEOGRADU

KATEDRA ZA SIGNALE I SISTEME

http://automatika.etf.rs

Predmet: Signali i sistemi

DOMAĆI ZADATAK 2020/2021

Domaći zadatak se radi primarno u programskom jeziku *Python*, uz elemente koji se mogu raditi na papiru tamo gde je to naznačeno (oznaka *). Rešenje domaćeg zadataka podrazumeva izveštaj u elektronskoj formi sa pratećim kodovima. Naslovna strana izveštaja treba da sadrži naziv predmeta, ime i prezime studenta i broj indeksa. U izveštaju se daju tražena izvođenja, rezultati, dijagrami, objašnjenja i komentari.

U fajlu *SISSI_domaci_2_uputstvo.pdf* nalaze se smernice za izradu domaćeg zadatka u *Python*-u. Raspored grupa i termini odbrane ovog domaćeg zadatka biće naknadno objavljeni

U Beogradu,

06.12.2021. god.

Sa predmeta Signali i sistemi

Zadatak 1. Fundamentalna učestanost govornog signala

Fundamentalna učestanost (eng. *Pitch frequency*) je karakteristika govornika i nosi informaciju o frekvenciji oscilovanja glasnih žica. Za muške osobe ona je uglavnom u intervalu 90-150Hz, za ženske osobe u intervalu 150-230Hz, kod dece može iznositi i do 350Hz, a prvi vrisak novorođenčeta može imati fundamentalnu učestanost do 600Hz.

- a) Formirati signale u trajanju 2 s koji predstavljaju sinusoide učestanosti $f_{p1}=100\,\mathrm{Hz}$ i $f_{p2}=200\,\mathrm{Hz}$. Za vremensku osu usvojiti t=0: $1/f_s$: 2, gde je $f_s=8\,\mathrm{kHz}$ učestanost odabiranja. Prikazati vremenske oblike i amplitudske karakteristike ovih signala. Reprodukovati (pustiti preko zvučnika) oba signala. Uvideti efekat veće fundamentalne učestanosti.
- b) Snimiti (produženo izgovoren) samoglasnik u trajanju od 2 s sa učestanošću odabiranja $f_s=8\,\mathrm{kHz}$. Izabrati centralni deo snimljenog signala (gde sigurno ima govora) trajanja 50 ms i prikazati njegov vremenski oblik i njegovu amplitudsku karakteristiku. Uočavanjem izražene periodične komponente u signalu, odrediti fundamentalnu učestanost. Da li se ovo može uraditi iz vremenskog ili iz frekvencijskog domena ili iz oba?

Zadatak 2. Spektrogram

Spektrogram je vremensko-frekvencijska reprezentacija signala. Naime, za nestacionarne signale informacija o Furijeovoj transformaciji nije korisna. Ideja spektrograma je da se signal podeli na podintervale (prozore) u okviru kojih se može smatrati stacionarnim. Za takve stacionarne signale i Furijeova transformacija nudi relevantne informacije. Posmatranjem spektrograma se može videti kako se u vremenu menja spektar signala.

- **a)** Na osnovu broja indeksa učitati odgovarajući zvučni signal, pa prikazati njegov vremenski i frekvencijski oblik. Da li se na osnovu ove dve informacije može zaključiti nešto o prirodi signala?
- b) Prikazati spektrogram datog signala. Šta se iz njega može zaključiti?
- c) Prilikom tonskog biranja na telefonu pritisak svakog taster je okarakterisan sa dve učestanosti, kao što je to prikazano u tabeli. Posmatrajući spektrogram, odrediti koja kombinacija tastera se krije iza učitanog signala.

	1029 Hz	1336 Hz	1477 Hz
697 Hz	1	2	3
770 Hz	4	5	6
852 Hz	7	8	9
941 Hz	*	0	#

d) Snimiti zvučnu sekvencu u trajanju od 3 s sa učestanošću odabiranja $f_s=16\,\mathrm{kHz}$, na način da se nadovezuju neki od sledećih zvukova: samoglasnik, suglasnik, muzički instrument, ambijentalni zvuk. Poslušati snimljeni signal. Da li je učestanost odabiranja dobro izabrana? Ako nije, prilagoditi je. Prikazati spektrogram takvog signala. Šta se na osnovu njega može zaključiti.

Zadatak 3. FDM (eng. Frequency Division Multiplex)

Razmatra se FDM sistem za nezavisan paralelni prenos dva signala kroz zajednički kanal veze, opisan blokdijagramom na slici:

Niskopropusni filtri su označeni sa NF, propusnik opsega sa PO. Signal $y_1(t)$ prenosi se u osnovnom opsegu učestanosti, a signal $y_2(t)$ se pomera u opseg narednog frekvencijskog kanala, tj. amplitudski se moduliše nosiocem učestanosti f_c . Kanal veze se može modelovati niskopropusnim filtrom propusnog opsega f_k . Smatrati da se kanal veze ponaša kao NF filtar. Za realizaciju koristiti filtre tipa Butterworth.

- a) Ukratko opisati funkciju svih filtara datih u blok dijagramu.
- **b)** Prikazati vremenski oblik i amplitudski spektar originalnih signala $y_1(t)$ i $y_2(t)$.
- c) Predložiti izbor graničnih učestanosti NF filtara na ulazu u sistem. Prikazati vremenske oblike i amplitudske spektre signala na izlazu iz NF filtara.
- d) Predložiti i obrazložiti izbor učestanosti nosioca f_c pri amplitudskoj modulaciji drugog signala. Prikazati vremenski oblik i amplitudski spektar modulisanog signala $y_2^m(t)$.
- e) Prikazati vremenski oblik i amplitudski spektar signala na ulazu u kanal veze, tj. transmisionog signala $y_T(t)$.
- f) Predložiti izbor granične učestanosti kanala veze tako da na njegovom izlazu dobije signal koji je što verniji signalu sa ulaza. Prikazati vremenski oblik i amplitudski spektar signala na izlazu kanal veze, tj. prijemnog signala $y_R(t)$.
- g) Predložiti izbor graničnih učestanosti PO filtra, pa prikazati vremenski oblik i amplitudski spektar signala $y_2^b(t)$.
- **h)** Predložiti izbor učestanosti nosioca demodulacije, pa prikazati vremenski oblik i amplitudski spektar signala $y_2^d(t)$.
- i) Predložiti izbor graničnih učestanosti NF filtara na izlazu sistema. Prikazati vremenske oblike i amplitudske spektre signala $y_1^r(t)$ i $y_2^r(t)$, na izlazu iz NF filtara. Uporediti dobijene signale sa signalima na ulazu.
- j) Vremenski oblik svakog od signala iz prethodnih tačaka sačuvati kao .wav file i preslušati.