中山大学数据科学与计算机学院本科生实验报告

(2017 学年秋季学期)

课程名称:数字电路与逻辑设计实验 任课教师:保延翔

助教:岳锐

年级&班级	2016 级(1)班	专业(方向)	软件工程
学号	16340041	姓名	陈亚楠
电话	15989010314	Emai1	chenyn0201@gmail.com
开始日期	2017. 10. 14	完成日期	2017. 10. 17

实验三 组合逻辑电路分析与设计

一. 实验目的:

- 1. 掌握组合逻辑电路的分析方法,并验证其逻辑功能。
- 2. 掌握组合逻辑电路的设计方法,并能用最少的逻辑门实现之。
- 3. 熟悉示波器与逻辑分析仪的使用。

二. 实验仪器及器件:

- 1. 数字电路实验箱、杜邦线、示波器
- 2. 虑拟器件: 74LS86, 74LS197

三. 实验原理:

- 1. 组合逻辑电路的分析:对已给定的组合逻辑电路分析其逻辑功能。
 - 步骤: (1) 由给定的组合逻辑电路写函数式:
 - (2) 对函数式进行化简或变换;
 - (3) 根据最简式列真值表;
 - (4) 确认逻辑功能。
- 2. 组合逻辑电路的设计:
 - 步骤: (1) 根据给定事件的因果关系列出真值表;
 - (2) 由真值表写函数式:
 - (3) 对函数式进行化简或变换;
 - (4) 画出逻辑图,并测试逻辑功能。

四. 实验内容:

- 1. 实现输入为4位8421码输出为4位循环码的代码转换电路的设计。
 - (1) 实验步骤:
 - ①列出真值表:

0/1-/1-/							
输入				输出			
Q_3	Q_2	Q_1	Q_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1

0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

②根据真值表写出函数式(红色表示非):

③利用卡诺图对函数式进行化简或变换:

G_{o}								
Q_1Q_0	00	01	11	10				
Q_3Q_2								
00	0	1	0	1				
01	0	1	0	1				
11	0	1	0	1				
10	0	1	0	1				

$$G_0 = \mathbf{Q_1} \mathbf{Q_0} + \mathbf{Q_1} \mathbf{Q_0} = \mathbf{Q_0} \oplus \mathbf{Q_1};$$

$G_{\scriptscriptstyle 1}$								
Q_1Q_0 Q_3Q_2	00	01	11	10				
00	0	0	1	1				
01	1	1	0	0				
11	1	1	0	0				
10	0	0	1	1				

 $G_1 = Q_2 Q_1 + Q_2 Q_1 = Q_1 \oplus Q_2;$

 G_2

Q_1Q_0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

 $G_2 = Q_3Q_2 + Q_3Q_2 = Q_2 \oplus Q_3;$

G_3								
Q_1Q_0	00	01	11	10				
Q_3Q_2								
00	0	0	0	0				
01	0	0	0	0				
11	1	1	1	1				
10	1	1	1	1				

 $G_3 = Q_3;$

- ④画出逻辑图,设计组合逻辑电路;
 - (2) Protues电路设计与仿真结果:

(3) 测试电路实验步骤:

①选择拨码开关至芯片 74LS86,标注四位模拟开关与四位"0-1"显示器自左向右 依次为 Q_3 、 Q_2 、 Q_1 、 Q_0 、 Q_3 、 Q_2 、 Q_1 、 Q_0 、 Q_2 、 Q_1 、 Q_0 、 Q_2 、 Q_1 、 Q_2 、 Q_2 、 Q_3 、 Q_2 、 Q_3 、 Q_2 、 Q_3 Q_3 、 $Q_$

②按照以下线路连接方式进行连接:

 Q_0 —A1, Q_1 —B;

 Q_1 —A2, Q_2 —B2;

 Q_2 —A3, Q_3 —B3;

 Q_3 — G_3 ;

 G_0 —Y1, G_1 —Y2, G_2 —Y3;

③按照真值表输入部分改变模拟开关高低电平,并记录"0-1"显示器结果;

(4) 实验结果:

输入 (模拟开关)				输出("0-1"显示器)			
Q_3	Q_2	Q_1	Q_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

(5) 结果分析:

电路测试真值表输出与预期真值表相符,组合逻辑电路设计正确。

(6) 备注:

注意输入与输出部分高低有效位顺序一致。

2. 用集成异步下降沿触发的异步计数器 74LS197 构成十六进制计数器作为代码转换的输入信号源。74LS197 的 CP0 作为时钟输入,Q0 与 CP1 连接,将 MR、PL 接 HIGH,则 Q3、Q2、Q1 和 Q0 就是十六进制计数器的输出。将 Q3、Q2、Q1 和 Q0 接 "0-1"显示器,CP0 接手动单步脉冲。十六进制计数器工作正常后,将 Q3、Q2、Q1 和 Q0 连接到代码转换器的输入端作为8421 码输入。

(1) 实验步骤:

- ①完成十六进制计数器的线路连接,并检测十六进制计数器能否正常工作;
- ②检测十六进制计数器能够正常工作后,断开原来作为 8421 码输入的模拟开关,将 Q0 与 A1, Q1 与 B1、A2, Q2 与 B2、A3, Q3 与 B3、"0–1"显示器第四位依次连接;
- ③连接示波器,观察CPO、QO、Q1、Q2、Q3、G0、G1、G2、G3的波形,并记录。
 - (2) protues 电路设计与仿真结果:

(3) 实验结果:

(4) 结果分析:

十六进制计数器与循环码代码转换正确,组合逻辑电路设计正确。

五. 实验感想:

初步感受了组合电路的设计过程,在实验室进行实际操作之前,一定要用 protues 进行仿真试验,线路连接之前心中要明确基本步骤,避免可能出现的不必要的重复操作,切忌马马虎虎、粗心大意。