

رياضيات الأساسية الثانئ عشر

مراجعة الاختبار النهائي

الفصل الدراسي الأول

(سهرة في عالم الرياضيات الممتعة)

(mr.sultan_alshidi : على حساب الانستجرام)

إعداد:

أ. سلطان الشيدي أ. ساحب سلسلة كُتُب المُعلّم)

أرسلطان الشيدي: mr.sultan_alshidi ۹۲۳۲۵۲۹۳ الرياضيات الأساسية

(۱) الشكل المجاور يوضح منحني

الدالة د $(m) = a^m$ ، مستعينا بالرسم قدّر قيمة

أ) ه`

ب) ه

$$\begin{pmatrix} x \end{pmatrix}$$
 ظلل الشكل $\begin{pmatrix} x \end{pmatrix}$ المقترن بأبسط صورة للعبارة $\begin{pmatrix} x \end{pmatrix}$ ظلل الشكل $\begin{pmatrix} x \end{pmatrix}$

(ه

- ه
- $\bigcirc \ \texttt{a}^{\ulcorner}$

 \bigcap a

(٣) إذا كانت
$$a^1 = \lambda$$
، فإن قيمة $a^{1/2}$ تساوى:

٤ ()

- ٨ (
- 17 🔘

78

(٤) بين أن: ٢ لط أ + لط أ - ٣ لط أ = لط أ

$$(7)$$
 أوجد مجموعة حل المعادلة ٢ لط $(m-1) -$ لط $(6+m) = .$

(۷) استخدم اللوغاريتم الطبيعي لتحويل المعادلة
$$\omega = \frac{1}{7} e^{1-7m}$$
 إلى صيغة خطية

(۸) يمكن نمذجة أعداد فصيلة محددة من العناكب ل ، من خلال الصيغة $b = b \times a^{c+1,+}$

؛ حيث ن الأسابيع منذ تسجيل عددها الأول.

أ) إذا كان العدد الابتدائي للعناكب هو ٢٠٠٥ فبين أن ك = ٣٨٠٠ مقربا إلى أقرب عدد صحيح.

ب) أوجد باستخدام ك = ٣٨٠٠ ولأقرب عدد صحيح ، عدد الأسابيع الذي يتطلبه عدد العناكب ليصل إلى ثلاثة أرباع المليون لأول مرة.

(٩) الدالة د(س) = ۲ هر ٢س-٤

معكوس هذه الدالة هو $c^{-1}(m) = a$ لط m + e ؛ a ، e أعداد ثابتة.

أوجد قيمة م ، ج مقربا لأقرب منزلة عشرية واحدة.

(۱۰) أوجد مجموعة قيم س التي تجعل الدالة د $(m) = 7 m - m^{7}$ متناقصة

(۱۱) إذا علمت أن ق(س) = م س - 7 س متناقصة في الفترة س ~ 7 ، فأوجد قيمة م

(۱۲) من خلال الشكل المجاور الذي يمثل بيان الدالة د(س)،

موجب.

- _ ب
- ' 🔾
- 5
- **~** ()

الرباضيات الأساسية	mr.sultan alshidi

(۱۲) الشكل المجاور يمثل منحني د(س) ؛ ل مماس للمنحني

د(س) عند س =
$$\pi$$
 ، فإن ميل المنحنى عند س = π

ا عند س
$$= \frac{7}{m}$$
 عند س $= 1$

ن د (۱۵) إذا علمت أن د (۲) = -7 ، c(7) = 0 ، فأوجد معادلة المماس للمنحنى

 $\omega = c(\omega)$ عند النقطة التي إحداثها السيني يساوي ٢

التي تجعل عندها ميل المماس لمنحنى الدالة د $(m) = \frac{m^{\eta}}{m} - 0 \, m$ التي تجعل عندها ميل المماس لمنحنى الدالة د(m)

يساوي ١

لتكن د
$$(w)=1$$
 التكن د $(w)=1$ الس $^{\prime\prime}-1$ وكان د $(-1)=1$ ، فأوجد قيمة الم

المقترن \bigcirc المقترن \bigcirc المقترن \bigcirc المقترن عدد حقیقی ، ظلل الشکل \bigcirc المقترن بقیمة ن:

٤ (

- ۲٦ ()
- ١ (

🔾 صفر

(س): $\pi \pi = (m)$ الدالة د $(m) = \pi$ ، ظلل الشكل المقترن بقيمة دُ

π٣

'π ι Ο 'π ι Ο

() صفر

 $\Lambda = m^{3}$ عند نقطة تقاطعه مع المستقيم ص $= m^{3}$ عند نقطة تقاطعه مع المستقيم ص

(٢١) خاض أحد الأندية لكرة القدم مباراتين، ودل المتغير العشوائي على عدد مباريات الفوز فأوجد:

- أ. عناصر المتغير العشوائي.
 - ب. جدول التوزيع.
 - ج. الوسط الاحتمالي.

(٢٢) الجدول التالي يمثل التوزيع الاحتمالي، ادرس الجدول ثم أجب عما يليه:

٦	٥	١	س
ك	۰,۳	٠,٦	ل (س)

أ. أوجد قيمة ك

ب. أوجد القيمة المتوقعة.

(٢٣) إذا كان جدول التوزيع الاحتمالي للمتغير العشوائي س هو كما بالجدول المجاور. أوجد:

٤	٣	۲	١	س
<u>ب+۳</u>	<u>ب + ۲</u>	<u>ب + ۲</u>	<u>ب</u> ۱۸	ل (س)

أ. قيمة الثابت ب

ب. القيمة المتوقعة للمتغير العشوائي.

(٢٤) الجدول التالي يمثل التوزيع الاحتمالي للمتغير العشو ائي س.

٤	٣	۲	١	•	س
ٲ	٠,٤	٠,١	٣,٠	ب	ل (س)

إذا علمت أن القيمة المتوقعة تساوي ٢,١ ، أوجد قيمة أ، ب