Lecture Notes on Linear Algebra

CARAPAERO

1. Linear Transformation

1.1. Linear Operator.

<u>Definition</u> (Linear Transformation). Let V and W be vector spaces (over F). We call a function $T: V \to W$ a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have

- (a) T(x+y) = T(x) + T(y)
- (b) T(cx) = cT(x)

Definition. Let $T, U : V \to W$ be arbitrary functions, where V and W are vector spaces over F, and let $a \in F$. We define $T + U : V \to W$ by (T + U)(x) = T(x) + U(x) for all $x \in V$, and $aT : V \to W$ by (aT)(x) = aT(x) for all $x \in V$.

Remark. If F = Q then $(a) \Rightarrow (b)$.

Remark. If $T: C \to C$ be function defined by $T(\delta) = \delta$. T is additive but not linear.

Propersition 1.1.

- 1. If T is linear, then T(0) = 0.
- 2. T is linear if and only if T(cx + y) = cT(x) + T(y) for all $x, y \in V$ and $c \in F$.
- 3. If T is linear, then T(x y) = T(x) T(y) for all $x, y \in V$

4. T is linear if and only if, for $x_1, x_2, \dots, x_n \in V$ and $a_1, a_2, \dots, a_n \in F$, we have

$$T(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i T(x_i).$$

- 5. For all $a \in F$, aT + U is linear.
- 6. Using the operations of addition and scalar multiplication in the preceding definition, the collection of all linear transformations from V to W is a vector space over F.

<u>Definition</u> (Null Space, Range). Let V and W be vector spaces and let T: $V \to W$ be linear. We define the null space(or kernel) N(T) of T to be the set of all vectors x in V such that T(x) = 0; that is, $N(T) = \{x \in V : T(x) = 0\}$.

We define the range(or image) R(T) of T to be the subset of W consisting of all images (under T) of vectors in V; that is, $R(T) = \{T(x) : x \in V\}$

Remark. Let V and W be vector spaces, and let $I: V \to V$ and $T_0: V \to W$ be the identity and zero transformations, respectively. Then $N(I) = \{0\}$, R(I) = V, $N(T_0) = V$, and $R(T_0) = \{0\}$.

Theorem 1.2. Let V and W be vector spaces and $T : V \to W$ be linear. Then N(T) and R(T) are subspaces of V and W, respectively.

Remark. Give an example of distinct linear transformations T and U such that N(T) = N(U) and R(T) = R(U)

Theorem 1.3. Let V and W be vector spaces, and let $T : V \to W$ be linear. If $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V, then

$$R(T) = span(T(\beta)) = span(\{T(v_1), T(v_2), ..., T(v_n)\})$$

Example. Prove Theorem 2.2 for the case that β is infinite, that is, $R(T) = span(\{T(v) : v \in \beta\})$.

<u>Definition</u> (Nullity and Rank). Let V and W be vector spaces and let T: $V \to W$ be linear. If N(T) and R(T) are finite-dimensional, then we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be the dimensions of N(T) and R(T), respectively.

Theorem 1.4 (Dimension Theorem). Let V and W be vector spaces, and let $T: V \to W$ be linear.

If V is finite-dimensional, then

$$nullity(T) + rank(T) = dim(V).$$

Theorem 1.5. Let V and W be vector spaces, and let $T: V \to W$ be linear. Then T is one-to-one if and only if $N(T) = \{0\}$.

Propersition 1.6. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear.

- (a) Prove that if $\dim(V) < \dim(W)$, then T cannot be onto.
- (b) Prove that if $\dim(V) > \dim(W)$, then T cannot be one-to-one.

<u>Definition</u> (Invertible). Let V and W be vector spaces, and let $T: V \to W$ be linear. A function $U: W \to V$ is said to be an inverse of T if $TU = I_W$ and $UT = I_V$. If T has an inverse, then T is said to be invertible. As noted in Appendix B, if T is invertible, then the inverse of T is unique and is denoted by T^{-1} .

Propersition 1.7.

- 1. $(TU)^{-1} = U^{-1}T^{-1}$.
- 2. $(T^{-1})^{-1} = T$; in particular, T^{-1} is invertible.

<u>Definition</u>. Let A be an $n \times n$ matrix. Then A is invertible if there exists an $n \times n$ matrix B such that AB = BA = I.

If A is invertible, then the matrix B such that AB = BA = I is unique. (If C were another such matrix, then C = CI = C(AB) = (CA)B = IB = B.) The matrix B is called the inverse of A and is denoted by A^{-1} .

<u>Definition</u> (Isomorphism). Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation $T:V\to W$ that is invertible. Such a linear transformation is called an isomorphism from V onto W.

Corollary 1.7.1. Let \sim mean "is isomorphic to." Prove that \sim is an equivalence relation on the class of vector spaces over F.

Theorem 1.8. Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if $\dim(V) = \dim(W)$.

Corollary 1.8.1. Let V be a vector space over F. Then V is isomorphic to F^n if and only if $\dim(V) = n$.

Remark. The Linearity and Finite-dimensional is essential argument.

Example. Recall the definition of P(R) on page 10. Define

$$T: P(R) \to P(R)$$
 by $T(f(x)) = \int_0^x f(t)dt$.

Prove that T linear and one-to-one, but not onto.

Example. Let $T: P(R) \to P(R)$ be defined by T(f(x)) = f'(x). Recall that T is linear. Prove that T is onto, but not one-to-one.

Example. Let V be the vector space of sequences described in Example 5 of Section 1.2. Define the functions $T, U: V \to V$ by

$$T(a_1, a_2, \cdots) = (a_2, a_3, \cdots)$$
 and $U(a_1, a_2, \cdots) = (0, a_1, a_2, \cdots)$.

T and U are called the left shift and right shift operators on V, respectively.

- (a) Prove that T and U are linear.
- (b) Prove that T is onto, but not one-to-one.
- (c) Prove that U is one-to-one, but not onto.

Theorem 1.9. Let V and W be vector spaces, and suppose that V has a finite basis $\{v_1, v_2, \dots, v_n\}$. If $U, T : V \to W$ are linear and $U(v_i) = T(v_i)$ for $i = 1, 2, \dots, n$ then U = T.

Propersition 1.10. Let V and W be vector spaces and $T: V \to W$ be linear.

- (a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.
- (b) Suppose that T is one-to-one and that S is a subset of V. Prove that S is linearly independent if and only if T(S) is linearly independent.
- (c) Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta) = \{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for W.

§ Matrix Representation

<u>Definition</u>. Let V be a finite-dimensional vector space. An ordered basis for V is a basis for V endowed with a specific order; that is, an ordered basis for V is a finite sequence of linearly independent vectors in V that generates V.

<u>Definition.</u> Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for a finite- dimensional vector space V. For $x \in V$, let a_1, a_2, \dots, a_n , be the unique scalars such that

$$x = \sum_{i=1}^{n} a_i u_i$$

We define the coordinate vector of x relative to β , denoted $[x]_{\beta}$, by

$$[x]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Remark. Let V be an n-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

Definition. Using the notation above, we call the $m \times n$ matrix A defined by $A_{ij} = a_{ij}$ the matrix representation of T in the ordered bases β and γ and write $A = [T]_{\beta}^{\gamma}$. If V = W and $\beta = \gamma$, then we write $A = [T]_{\beta}$. Notice that the jth column of A is simply $[T(v_j)]_{\gamma}$. Also observe that if $U : V \to W$ is a linear transformation such that $[U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma}$, then U = T by the corollary to Theorem 2.6 (p. 73).

Theorem 1.11. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively, and let $T, U : V \to W$ be linear transformations. Then

- (a) $[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$ and
- (b) $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for all scalars a.

Proof. Proof. Let $\beta = \{v_j \mid 1 \leq j \leq n\}$ and $\gamma = \{w_i \mid 1 \leq i \leq m\} \implies \exists! a_{ij}, b_{ij} \in F \text{ for } 1 \leq j \leq n, 1 \leq i \leq m \text{ s.t.}$

1.
$$T(v_j) = \sum_{i=1}^{m} a_{ij}w_i$$
 and $U(v_j) = \sum_{i=1}^{m} b_{ij}w_i$, hence

$$(T+U)(v_j) = \sum_{i=1}^{m} (a_{ij} + b_{ij})wi$$

Thus
$$([T+U]_{\beta}^{\gamma})_{ij} = a_{ij} + b_{ij} = ([T]_{\beta}^{\gamma})_{ij} + ([U]_{\beta}^{\gamma})_{ij} = ([T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma})_{ij}$$

 $\Longrightarrow [T+U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma}$

2.
$$T(V_j) = \sum_{i=1}^m a_{ij} w_i$$
 for $j = 1, \dots, n$ and $a \in F$ then $aT(v_j) = a \sum_{i=1}^m a_{ij} w_i = \sum_{i=1}^m a a_{ij} w_i = T(av_j)$ thus $([aT]_{\beta}^{\gamma})_{jj} = a a_{ij} = (a[T]_{\beta}^{\gamma})_{ij} \Longrightarrow [aT]_{\beta}^{\gamma} = a[T]_{\beta}^{\gamma}$

Theorem 1.12. Let V, W, and Z be vector spaces over the same field F, and let $T: V \to W$ and $U: W \to Z$ be linear. Then $UT: V \to Z$ is linear.

Proof. Proof. Let
$$x, y \in V$$
, $a \in F$ $UT(ax+y) = U(T(ax+y)) = U(aT(x) + T(y)) = aUT(x) + UT(y) \Rightarrow UT$ is linear.

Theorem 1.13. Let V be a vector space. Let T, U_1 , $U_2 \in L(V)$. Then

(a)
$$T(U_1 + U_2) = TU_1 + TU_2$$
 and $(U_1 + U_2)T = U_1T + U_2T$

- (b) $T(U_1U_2) = (TU_1)U_2$
- (c) TI = IT = T
- (d) $a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$ for all scalars a.

Proof. Proof. Let $x \in V$

1.
$$T(U_1 + U_2)(x) = T(U_1(x) + U_2(x)) = TU_2(x) + TU_2(x) \Rightarrow T(U_1 + U_2) = TU_1 + TU_2(U_1 + U_2)T(x) = U_1T(x) + U_2T(x) \Rightarrow (U_1 + U_2)T = U_1T + U_2T$$

2.
$$T(U_1U_2)(x) = T(U_1(U_2(x))) = (TU_1)(U_2(x)) \Rightarrow T(U_1U_2) = (TU_1)U_2$$

3.
$$TI(x) = T(x) = IT(x) \Rightarrow TI = T = IT$$

4.
$$a(U_1U_2)(x) = a(U_1(U_2(x))) = (aU_3)(U_2(x)) = U_1(aU_2(x)) \Rightarrow a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$$

<u>Definition</u> (The Product Of Two Matrices). Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. We define the product of A and B, denoted AB, to be the $m \times p$ matrix such that

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$
 for $1 \le i \le m$, $1 \le j \le p$.

Theorem 1.14. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α, β , and γ , respectively. Let $T : V \to w$ and $U : W \to Z$ be linear transformations. Then

$$[\mathrm{UT}]_{\alpha}^{\gamma} = [\mathrm{U}]_{\beta}^{\gamma} [\mathrm{T}]_{\alpha}^{\beta}$$

Proof. Proof. Let $\alpha = \{v_i \mid i = 1 \cdots n\}, \beta = \{w_j \mid j = 1 \cdots m\}, \gamma = \{z_k \mid k = 1 \cdots p\}$ $\implies \exists! a_{ij}, b_{ki} \in F \text{ for } j = 1, \cdots, m \quad i = 1, \cdots n \quad \text{and } k = 1, \cdots, p \text{ such that}$

$$T(v_i) = \sum_{i=1}^m a_{ij}w_j \quad U(w_j) = \sum_{k=1}^p b_{kj}z_k$$

$$UT(v_i) = U(T(v_i)) = U\left(\sum_{j=1}^m a_{ij}w_j\right) = \sum_{j=1}^m a_{ij}U(w_j) = \sum_{j=1}^m a_{ji}\left(\sum_{k=1}^p b_{kj}z_k\right)$$

$$= \sum_{k=1}^p \sum_{j=1}^m b_{kj}a_{ji}z_k \quad \text{for} \quad i = 1, \dots n$$

$$\implies ([UT]^{\alpha}_{\alpha})_{ij} = \sum_{k=1}^p \sum_{j=1}^m b_{kj}a_{ji} = \left([U]^{\alpha}_{\beta}[T]^{\beta}_{\alpha}\right)_{ij} \implies [UT]^{\alpha}_{\alpha} = [U]^{\alpha}_{\beta}[T]^{\beta}_{\alpha}$$

Corollary 1.14.1. Let V be a finite-dimensional vector space with an ordered basis β . Let $T, U \in L(V)$. Then $[UT]_{\beta} = [U]_{\beta}[T]_{\beta}$.

Proof. not yet

<u>Definition.</u> We define the Kronecker delta δ_{ij} by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. The $n \times n$ identity matrix In is defined by $(I_n)_{ij} = \delta_{ij}$. Thus, for example,

$$I_1 = \begin{bmatrix} 1 \end{bmatrix} I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} and \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Theorem 1.15. Let A be an $m \times n$ matrix, B and C be $n \times p$ matrices, and D and E be $q \times m$ matrices. Then

- (a) A(B+C) = AB + AC and (D+E)A = DA + EA.
- (b) a(AB) = (aA)B = A(aB) for any scalar a.
- (c) $I_m A = A = A I_n$.
- (d) If V is an n-dimensional vector space with an ordered basis β , then $[I_V]_{\beta} = I_n$.

not input now

Corollary 1.15.1. Let A be an $m \times n$ matrix, B_1, B_2, \dots, B_k be $n \times p$ matrices, C_1, C_2, \dots, C_k be $q \times m$ matrices, and a_1, a_2, \dots, a_k be scalars. Then

$$A(\sum_{i=1}^{k} a_i B_i) = \sum_{i=1}^{k} a_i A B_i$$

and

$$(\sum_{i=1}^{k} a_i C_i) A = \sum_{i=1}^{k} a_i C_i A.$$

not input now

With this notation, we see that if

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

then $A^2 = O$ (the zero matrix) even though $A \neq O$. Thus the cancellation property for multiplication in fields is not valid for matrices. To see why, assume that the cancellation law is valid. Then, from $A \cdot A = A^2 = O = A \cdot O$, we would conclude that A = O, which is false.

Theorem 1.16. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. For each $j(1 \le j \le p)$ let u_j and v_j denote the jth columns of AB and B, respectively. Then

- (a) $u_j = Av_j$
- (b) $v_i = Be_i$, where e_i is the jth standard vector of \mathbf{F}^p .

Theorem 1.17. Assume the notation in Theorem 2.13.

(a) Suppose that z is a (column) vector in F^p . Use Theorem 2.13(b) to prove that B_z is a linear combination of the columns of B. In particular, if $z = (a_1, a_2, \dots, a_p)^t$, then show that

$$Bz = \sum_{j=1}^{p} a_j v_j.$$

- (b) Extend (a) to prove that column j of AB is a linear combination of the columns of A with the coefficients in the linear combination being the entries of column j of B.
- (c) For any row vector $w \in F^m$, prove that wA is a linear combination of the rows of A with the coefficients in the linear combination being the coordinates of w. Hint: Use properties of the transpose operation applied to (a).
- (d) Prove the analogous result to (b) about rows: Row i of AB is a linear combination of the rows of B with the coefficients in the linear combination being the entries of row i of A.

Theorem 1.18. Let V and W be finite-dimensional vector spaces having ordered bases β and γ , respectively, and let $T: V \to W$ be linear. Then, for each $u \in V$, we have

$$[\mathbf{T}(u)]_{\gamma} = [\mathbf{T}]_{\beta}^{\gamma}[u]_{\beta}$$

.

<u>Definition.</u> Let A be an $m \times n$ matrix with entries from a field F. We denote by L_A the mapping $L_A : F^n \to F^m$ defined by $L_A(x) = Ax$ (the matrix product of A and x) for each column vector $x \in F^n$. We call L_A a left-multiplication transformation.

Theorem 1.19. The characteristics of Left-Multiplication Transformation Let A be an $m \times n$ matrix with entries from F. Then the left-multiplication transformation $L_A : F^n \to F^m$ is linear. Furthermore, if B is any other $m \times n$ matrix (with entries from F) and β and γ are the standard ordered bases for F^n and F^m , respectively, then we have the following properties.

- (a) $[L_A]^{\gamma}_{\beta} = A$.
- (b) $L_A = L_B$ if and only if A = B.
- (c) $L_{A+B} = L_A + L_B$ and $L_{aA} = aL_A$ for all $a \in F$.
- (d) If $T: F^n \to F^m$ is linear, then there exists a unique $m \times n$ matrix C such that $T = L_C$. In fact, $C = [T]_{\beta}^{\gamma}$.
- (e) If E is an $n \times p$ matrix, then $L_{AE} = L_A L_E$.
- (f) If m = nL, then $L_{I_n} = I_{F^n}$.

Corollary 1.19.1. Let V be a finite-dimensional vector space with an ordered basis β , and let $T : V \to V$ be linear. Then T is invertible if and only if $[T]_{\beta}$ is invertible. Furthermore, $[T^{-1}]_{\beta} = ([T]_{\beta})^{-1}$

Corollary 1.19.2. Let A be an $n \times n$ matrix. Then A is invertible if and only if L_A is invertible. Furthermore, $(L_A)^{-1} = L_{A^{-1}}$

Theorem 1.20. Let A,B, and C be matrices such that A(BC) is defined. Then (AB)C is also defined and A(BC) = (AB)C; that is, matrix multiplication is associative.

Lemma. Let T be an invertible linear transformation from V to W. Then V is finite-dimensional if and only if W is finite-dimensional. In this case, $\dim(v) = \dim(W)$.

Theorem 1.21. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Furthermore, $[T^{-1}]^{\beta}_{\gamma} = ([T^{\gamma}_{\beta}])^{-1}$.

Theorem 1.22. Let β and β' be two ordered bases for a finite-dimensional vector space V, and let $Q = \begin{bmatrix} I_V \end{bmatrix}_{\beta'}^{\beta}$. Then

- (a) Q is invertible.
- (b) For any $v \in V$, $[v]_{\beta} = Q[v]_{\beta'}$.

Theorem 1.23. Let T be a linear operator on a finite-dimensional vector space V, and let β and β' be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q.$$

Corollary 1.23.1. Let $A \in M_{n \times n}(F)$, and let γ be an ordered basis for F^n . Then $[L_A] = Q^{-1}AQ$, where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

<u>Definition</u>. Let A and B be matrices in $M_{n\times n}(F)$. We say that B is similar to A if there exists an invertible matrix Q such that $B = Q^{-1}AQ$.

Theorem 1.24. "is similar to" is an equivalence relation on $M_{n\times n}(F)$

Propersition 1.25. If A and B are similar $n \times n$ matrices, then tr(A) = tr(B).

<u>Definition.</u> Let V and W be vector space over F. We denote the vector space of all linear transformations from V into W by $\mathcal{L}(V,W)$. In the case that V = W, we write $\mathcal{L}(V)$ instead of $\mathcal{L}(V,W)$

Theorem 1.26. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, respectively, and let β and γ be ordered bases for V and W, respectively. Then function $\Phi : \mathcal{L}(V,W) \to M_{m \times n}(F)$, defined by $\Phi(T) = [T]_{\beta}^{\gamma}$ for $T \in \mathcal{L}(V,W)$, is an isomorphism.

Corollary 1.26.1. Let V and W be finite-dimensional vector spaces of dimensions n and m, respectively. Then $\mathcal{L}(V,W)$ is finite-dimensional of dimension mn.

Lemma 1.27. Let V and W be finite-dimensional vector spaces, and let $T: V \to W$ be a linear transformation. Suppose that β is a basis for V. Then T is an isomorphism if and only if $T(\beta)$ is a basis for W.

Theorem 1.28. Let V and W be finite-dimensional vector spaces with ordered bases $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$, respectively. By Thm 2.6, there exist linear transformations $T_{ij}: V \to W$ such that

$$T_{ij}(v_k) = \begin{cases} w_i & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

First prove that $\{T_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis for $\mathcal{L}(V,W)$. Then let M^{ij} be the $m \times n$ matrix with 1 in the ith row and jth column and 0 elsewhere, and prove that $[T_{ij}]^{\gamma}_{\beta} = M^{ij}$. Again by Thm 2.6, there exists a linear transformation $\Phi : \mathcal{L}(V,W) \to M_{m \times n}(F)$ such that $\Phi(T_{ij}) = M^{ij}$. Prove that Φ is an isomorphism.

Definition. Let β be an ordered basis for an n-dimensional vector space V over the field F. The standard representation of V with respect to β is the function $\phi_{\beta}: V \to F^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}$ for each $x \in V$.

Theorem 1.29. Let V and W be vector spaces and $T: V \to W$ be linear. Then N(T) and R(T) are subspace of V and W, respectively.

Let V and W be vector spaces of dimension n and m, respectively, and let $T:V\to W$ be a linear transformation. Define $A=[T]^{\gamma}_{\beta}$, where β and γ are arbitrary ordered bases of V and W, respectively. We are now able to use ϕ_{β} and ϕ_{γ} to study the relationship between the linear transformations T and $L_A: \mathbb{F}^n \to \mathbb{F}^m$. Let us first consider figure above. Notice that there are two composites of linear transformations that map V into \mathbb{F}^m :

1. Map V into F^n with ϕ_{β} and follow this transformation with L_A ; this yields the composite $L_A\phi_{\beta}$.

2. Map V into W with T and follow it by ϕ_{γ} to obtain the composite $\phi_{\gamma}T$.

These two composites are depicted by the dashed arrows in the diagram. By a simple reformulation of Theorem 2.14 (p. 91), we may conclude that

$$L_A \phi_\beta = \phi_\gamma T$$

that is, the diagram "commutes." Heuristically, this relationship indicates that after V and W are identified with F^n and F^m via ϕ_β and ϕ_γ , respectively, we may "identify" T with L_A . This diagram allows us to transfer operations on abstract vector spaces to ones on F^n and F^m .

Theorem 1.30. Let $T: V \to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let β and γ be ordered bases for V and W, respectively. Prove that $rank(T) = rank(L_A)$ and that $nullity(T) = nullity(L_A)$, where $A = [T]_{\beta}^{\gamma}$.