

Nilson Peres, 27 years old, Batatais-SP BSc - Electrical Engineer - EESC/USP - 2019 MSc - Data Science - ICMC/USP - 2024

Undergraduate Experience

Research GPS, posicionamento e relógios precisos (2015-2017)

Warthog Robotics - Extracurricular
Firmware and Control Systems (2015 1918)

Final Work
A cybersecurity approach for power systems

Aluno: Nilson Tinassi Peres Nº USP: 9150088

Relatório Final de Iniciação Científica: GPS, posicionamento e relógios precisos

Relatório parcial dos estudos e trabalhos realizados a respeito do Sistema de Posicionamento Global (GPS) com o objetivo de desenvolver um relógio de precisão.

Universidade de São Paulo - USP
Instituto de Ciências Matemáticas e de Computação - ICMC
Departamento de Matemática Aplicada e Estatística
Prof. Dr. Miguel V. S. Frasson

Brasil Julho de 2017

Figura 1 – Interseção de 3 esferas – Resolução geométrica da posição P

- Ordem de incerteza do relógio do satélite Relógio Atômico: 10⁻⁹s.
- Ordem de incerteza do relógio do receptor Relógio de Quartzo: 10⁻³s.
- Velocidade da luz (aproximada): 3.10⁸m/s.

$$S_1: (x - a_1)^2 + (y - b_1)^2 + (z - c_1)^2 = c^2(T_1 - \tau)^2$$
 (1.12)

$$S_2: (x - a_2)^2 + (y - b_2)^2 + (z - c_2)^2 = c^2(T_2 - \tau)^2$$
 (1.13)

$$S_3: (x-a_3)^2 + (y-b_3)^2 + (z-c_3)^2 = c^2(T_3-\tau)^2$$
(1.14)

$$S_4: (x - a_4)^2 + (y - b_4)^2 + (z - c_4)^2 = c^2(T_4 - \tau)^2$$
 (1.15)

Figura 2 - Modelo didático de LFSR

Tabela 1 – Algumas propriedades da Sequência de Ouro referente ao sinal

LFSR	10
Tamanho da Sequência - M	1023
Número de Sequências Possíveis	60
Correlação Máxima Normalizada	0.37
Correlação da Sequência de Ouro	65
Correlação da Sequência de Ouro Normalizada	0.06

Os códigos PRN são ortogonais entre si, o que possibilita que o receptor encontre a correlação com cada satélite separadamente.

Além dos códigos citados o receptor precisa de informações de cada satélite, como a posição e a rede em que eles trabalham. Essas informações são moduladas em cima de códigos C/A e P(Y)[5] descritos anteriormente.

4.2.2.1 Data, Hora e Estado do satélite

As informações a respeito da data e hora e a respeito do estado e condições de funcionamento do satélite são dadas logo no primeiro pacote.

4.2.2.2 Efemérides

A informação orbital que permite determinar posição do satélite é dada nos pacotes 2 e 3. Essa informação precisa ser atualizada constantemente dado que tanto o satélite quanto a Terra estão em órbita.

(1.13) 4.2.2.3 Dados de Almanaque

Os dados de almanaque são informações que um satélite transmite que informam a respeito de outros satélites. Essa informação não necessita de atualização constante.

Aluno: Nilson Tinassi Peres Nº USP: 9150088

Relatório Final de Iniciação Científica: GPS, posicionamento e relógios precisos

Relatório parcial dos estudos e trabalhos realizados a respeito do Sistema de Posicionamento Global (GPS) com o objetivo de desenvolver um relógio de precisão.

Universidade de São Paulo - USP Instituto de Ciências Matemáticas e de Computação - ICMC Departamento de Matemática Aplicada e Estatística Prof. Dr. Miguel V. S. Frasson

> Brasil Julho de 2017

Os códigos PRN são ortogonais entre si, o que possibilita que o receptor encontre a correlação com cada satélite separadamente.

Além dos códigos citados o receptor precisa de informações de cada satélite, como a posição e a rede em que eles trabalham. Essas informações são moduladas em cima de códigos C/A e P(Y)[5] descritos anteriormente.

4.2.2.1 Data, Hora e Estado do satélite

As informações a respeito da data e hora e a respeito do estado e condições de funcionamento do satélite são dadas logo no primeiro pacote.

4.2.2.2 Efemérides

A informação orbital que permite determinar posição do satélite é dada nos pacotes 2 e 3. Essa informação precisa ser atualizada constantemente dado que tanto o satélite quanto a Terra estão em órbita.

4.2.2.3 Dados de Almanaque

Os dados de almanaque são informações que um satélite transmite que informam a respeito de outros satélites. Essa informação não necessita de atualização constante.

Undergraduate Experience

Research
GPS. posicionamento elógios precisos (2015-2017)

Warthog Robotics - Extracurricular Firmware and Control Systems (2015-2018)

→ Final Work

A cybersecurity approach for power systems (2019)

Undergraduate Experience

Warthog Robotics - Extracurricular
Firmware and Control Systems (2015, 1918)

Final Work
A cybersecurity approach for power systems (2019)

Uma abordagem de segurança cibernética em sistemas elétricos de potência

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da Universidade de São Paulo Curso: Engenharia Elétrica Orientador: Ivan Nunes da Silva

São Carlos

2019

BlackEnergy	Industroyer	GreyEnergy			
	Local				
Ucrânia	Ucrânia	Ucrânia Polônia			
	Consequências				
- Tipo: Apagão 🕴 - Alcance: 230 mil pessoas 🚻 - Duração: 6 horas 🖔	- Tipo: Apagão ∮ - Alcance: ~2,5 millhões de pessoas ∰ - Duração: 1 hora ∰	- Tipo: Espionagem ◆◆ - Alcance: Não se aplica ∰ - Duração: Não se aplica ∰			
	Características				
 Spearphishing (email) usado para infecção, arquivos de Excel infectavam computadores através das macros Roubo de senhas, screenshots, roubo de privilégios de acesso 	rede através da exploração de um relé de proteção	Spearphishing para infecção; Web Servers contaminados para disseminar na rede local Uso de técnicas de espionagem Uso de técnicas de camuflagem			
- Controle remoto e destruição de discos de armazenamento.	- Foco em DJ e relés, com comunicação IEC 104, IEC 61850 e OPC DA (protocolos especificos)	- Roubo de senhas, informações, screenshots, entre outros			

FIGURA 1 - Comparação entre ataques BlackEnergy, Industroyer e GreyEnergy

Uma abordagem de segurança cibernética em sistemas elétricos de potência

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da Universidade de São Paulo Curso: Engenharia Elétrica Orientador: Ivan Nunes da Silva

São Carlos

2019

Equipamento	Endereço de Rede	Descrição
SC	172.16.21.11	Estação de Controle
IHM	172.16.21.12	Interface Homem Máquina
IED SIP4	172.16.21.71	Relé de Proteção SIPROTEC 4
IED SIP5	172.16.21.72	Relé de Proteção SIPROTEC 5
AK3	172.16.21.13 (IEC 104) 172.16.21.14 (IEC 61850)	Equipamento para comunicação em protocolos de sistemas de energia
Switch	172.16.21.31	Equipamento de Rede
GPS	172.16.21.10	Servidor NTP
Roteador	172.16.21.1 172.16.11.1 10.10.10.1	Equipamento de Rede responsável por intermediar a comunicação entre as zonas
EWS	172.16.11.6	Computador de Serviço

Uma abordagem de segurança cibernética em sistemas elétricos de potência

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da Universidade de São Paulo Curso: Engenharia Elétrica Orientador: Ivan Nunes da Silva

São Carlos

2019

	SC	172.16.21.11	Estação de Controle
	IHM	172.16.21.12	Interface Homem Máquina
	IED SIP4	172.16.21.71	Relé de Proteção SIPROTEC 4
	IED SIP5	172.16.21.72	Relé de Proteção SIPROTEC 5
Į	AK3	172.16.21.13 (IEC 104) // 172.16.21.14 (IEC 61850)	Comunicação em protocolos de sistemas de energia
	Switch	172.16.21.31	Equipamento de Rede
	GPS	172.16.21.10	Servidor NTP
	Roteador	172.16.21.1// 172.16.11.1// 10.10.10.1	Ccomunicação entre as zonas
	EWS	172.16.11.6	Computador de Servico

LEGENDA

Blacklisting: Recomendado para o computador de serviço, devido à atualizações constantes.

Whitelisting: Recomendado para usar na IHM (SICAM SCC), pois recebe poucas atualizações/alterações.

Ambas: Recomendado para a estação de controle, devido ao nível crítico de operação deve ter maior proteção.

Outras recomendações: Aplicar técnicas de hardening e restrição de dados quando técnicas anteriores não se aplicam.

Uma abordagem de segurança cibernética em sistemas elétricos de potência

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da Universidade de São Paulo Curso: Engenharia Elétrica Orientador: Ivan Nunes da Silva

São Carlos

2019

Uma abordagem de segurança cibernética em sistemas elétricos de potência

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da Universidade de São Paulo Curso: Engenharia Elétrica Orientador: Ivan Nunes da Silva

São Carlos

2019

Uma abordagem de segurança cibernética em sistemas elétricos de potência

Trabalho de Conclusão de Curso apresentado à Escola de Engenharia de São Carlos, da Universidade de São Paulo Curso: Engenharia Elétrica Orientador: Ivan Nunes da Silva

São Carlos

2019

SC	172.16.21.11	Estação de Controle
IHM	172.16.21.12	Interface Homem Máquina
IED SIP4	172.16.21.71	Relé de Proteção SIPROTEC 4
IED SIP5	172.16.21.72	Relé de Proteção SIPROTEC 5
AK3	172.16.21.13 (IEC 104) // 172.16.21.14 (IEC 61850)	Comunicação em protocolos de sistemas de energia
Switch	172.16.21.31	Equipamento de Rede
GPS	172.16.21.10	Servidor NTP
Roteador	172.16.21.1// 172.16.11.1// 10.10.10.1	Ccomunicação entre as zonas
EWS	172.16.11.6	Computador de Serviço

Proteção contra malware

- Windows Defender (Windows 10 LTSB 2019)
- McAfee Application Control

Backup e Restauração

- Acronis Backup & Restore
- Paragon Hard Disk Manager

Monitoramento e Logging

- NXLog
- Windows Event Manager
- SIEM

Nilson Peres, BSc - Electrical Engineer - EESC/USP - 2019

27 years old, MSc - Data Science - ICMC/USP - 2024

Batatais-SP

Work Experience

Internship (Application Engineering) – Siemens (2019)

- ML Engineer (Computer Vision 1 3P Tecnologia (2020)
- Sales Manager (Industry) Seffer Inox (1920-2021)
- > Product Development Engineer Alliage (202)
- Software Development Engineer Amdocs (2021-2023

Work Experience

- Internship (Applies on Engineering) Siemens (2019)
- ML Engineer (Computer Vision) 3P Tecnologia (2020)
- Sales Manager (Industry) Seffer Inc., 1020-2021)
- Product Development Engineer Alliage
- Software Development Engineer Amdocs (2021-2023)

Work Experience

Batatais-SP

- Internship (Applies on Engineering) Siemens (2019)
- ML Engineer (Computer Visit 3P Tecnologia (2020)
- Sales Manager (Industry) Seffer Inox (2020-2021)
- >> Product Development Engineer Alliage
- Software Development Engineer Amdocs (2021-2023)

R\$35.000/mês

R\$47.000/mês

Work Experience

- Internship (Appl) Siemens (2019).
- ML Engineer (Computer Visit 1 3P Tecnologia (2020)
- Sales Manager (Industry) Seffer Inc., 19920-2021)
- >> Product Development Engineer Alliage (2021)
- Software Development Engineer Amdocs (2021-2023)

MC9S08SF4MTJ

Active

Fully qualified to meet NXP quality and reliability requirements. Available for production quantity orders.

Features

S08SF 8-bit MCU, S08 core, 4KB Flash, 40MHz, SOP 20.

Data Sheet **Product Summary**

Design Resources Documentation

Package

TSSOP20

TSSOP20, plastic, thin shrink small outline package; 20 terminals; 0.65 mm pitch; 4.4 mm x 6.5 mm x 1.05 mm body.

Opção 1

400 un

Original

MC9S08SF4MTG

Fully qualified to meet NXP quality and reliability requirements. Available for production quantity orders.

Features Package

S08SF 8-bit MCU, S08 core, 4KB Flash, 40MHz, SOP 16.

Data Sheet **Product Summary** Design Resources Documentation

TSSOP16

TSSOP16, plastic, thin shrink small outline package; 16 terminals; 0.65 mm pitch; 4.4 mm x 5 mm x 1.05 mm body.

Opção 2

4000 un

S9S08SG4E2MTGR

Mfr No: S9S08SG4E2MTGR

Manufacturer: NXP USA Inc.

richard No: CAH-S9S08SG4E2MTGR

Lifecycle Status:

MC9S08SG4,8 Datasheet:

4KB 4K x 8 FLASH 8-Bit Microcontroller S08 Series S9S08SG4 5V 16-TSS Description:

OP (0.173, 4.40mm Width)

MC9S08SF4MTJ MC9S08SF4MTG

S9S08SG4E2MTGR

Nilson Peres, BSc - Electrical Engineer - EESC/USP - 2019

27 years old, MSc - Data Science - ICMC/USP - 2024

Batatais-SP

Work Experience

- Sales Manager (Industry) Seffer Ino., 2020-2021)
- >> Product Development Engineer Alliage (202)
- Software Development Engineer Amdocs (2021-2023)

Undergraduate Experience

- Research GPS, posicionamento e relógios precisos (2015-2017)
- Warthog Robotics Extracurricular Firmware and Control Systems (2015-2018)
- Final Work
 A cybersecurity approach for power systems (2019)

Work Experience

- Internship (Application Engineering) Siemens (2019)
- ML Engineer (Computer Vision) 3P Tecnologia (2020)
- Sales Manager (Industry) Seffer Inox (2020-2021)
- >> Product Development Engineer Alliage (2021)
- ★ Software Development Engineer Amdocs (2021-2023)