QCM 3

Lundi 14 septembre 2015

Question 11

Soit $f: x \longmapsto \frac{1}{(x^2+2)^4}$. Alors, pour tout $x \in \mathbb{R}, f'(x)$ est égale à

a.
$$-\frac{4}{(x^2+2)^5}$$

b.
$$-\frac{8x}{(x^2+2)^3}$$

c.
$$-\frac{4x}{(x^2+2)^5}$$

$$\boxed{d.} - \frac{8x}{(x^2 + 2)^5}$$

e. rien de ce qui précède

Question 12

Une primitive sur \mathbb{R} de $t \longmapsto \frac{3t}{\sqrt{t^2+1}}$ est

a.
$$3\sqrt{t^2+1}$$

b.
$$\frac{3}{2}\sqrt{t^2+1}$$

c.
$$3t\sqrt{t^2+1}$$

d.
$$-3\sqrt{t^2+1}$$

e. rien de ce qui précède

Question 13

L'intégrale $\int_0^3 \frac{1}{x-2} \, dx$ est égale à

- a. ln(2)
- b. $-\frac{3}{4}$
- c. $\frac{3}{4}$
- d. 0

e. rien de ce qui précède

Question 14

La formule d'intégration par parties appliquée à l'intégrale $I=\int_0^{\frac{\pi}{4}}x\cos(3x)\,dx$ donne

$$I = \left[-\frac{x}{3}\sin(3x) \right]_0^{\frac{\pi}{4}} + \frac{1}{3} \int_0^{\frac{\pi}{4}} \sin(3x) \, dx$$

- a. vrai
- b. faux

Question 15

L'intégrale $\int_{1}^{e} \frac{2 \ln(t)}{t} dt$ est égale à

- a. $\frac{1}{2}$
- b. 1
- c. e 1
- d. e
- e. rien de ce qui précède

Question 16

L'intégrale $\int_0^{\frac{\pi}{4}} \frac{\tan(x)}{\cos(x)} dx$ est égale à

a.
$$\sqrt{2}$$

b.
$$1 - \sqrt{2}$$

d.
$$\sqrt{2} - 1$$

e. rien de ce qui précède

$$\frac{\sin \alpha}{\cos \alpha} = \frac{\sin \alpha}{\cos^2 \alpha} = \frac{u'}{u^2}$$

$$\int \frac{1}{\cos^2 \alpha} \int \frac{1}{\sqrt{2}} d\alpha = \frac{2}{\sqrt{2}} - 1$$

Question 17

L'intégrale $\int_{-\frac{\pi}{a}}^{\frac{\pi}{3}} x^2 \sin(x) dx$ est égale à

a.
$$\sqrt{3}$$

b.
$$1 - \sqrt{3}$$

d.
$$\frac{2\pi}{3}$$

e. rien de ce qui précède

Question 18

Soit x un réel positif. L'intégrale $\int_1^2 \left(\int_0^x 6t \, dt \right) \, dx$ est égale à 7

b. faux

Question 19

La forme exponentielle de $\frac{\cos(\frac{\pi}{3})+i\sin(\frac{\pi}{3})}{\cos(\frac{\pi}{4})-i\sin(\frac{\pi}{4})} \text{ est } e^{i\frac{\pi}{12}}$

a. vrai

b. faux

Question 20

Soit $x \in \mathbb{R}$. Alors,

a.
$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2i}$$

b.
$$\sin^2(x) = \frac{e^{2ix} - e^{-2ix}}{2i}$$

$$\sin(3x) = \frac{e^{3ix} - e^{-3ix}}{2i}$$

d.
$$\sin(x)\cos(x) = \frac{e^{2ix} - e^{-2ix}}{4i}$$

e. rien de ce qui précède