Ecuaciones Diferenciales – 2° cuatrimestre 2015

2° Parcial

Demostración 1. Punto a

Primero como $f \in L^1$ sabemos que \hat{f} esta bien definida, y estamos suponiendo que es impar. Notemos que esto implica que $0 = \hat{f}(\xi) + \hat{f}(-\xi) = ctes * \int_{\mathbb{R}} f(x)(e^{(-i\xi x)} + e^{(ix\xi)})dx = ctes * \int_{\mathbb{R}} (f(x)cos(\xi x)dx)$. Por ende $\hat{f} = iC \int_{\mathbb{R}} f(x) \sin(x\xi)dx$.

Ahora si nos daban b>0 y nos pedían probar que $|\int_1^b \frac{\hat{f}(\xi)}{\xi} d\xi| \leq A$ con A que no dependa de b. Para eso debíamos escribir lo que ya sabemos!! Tenemos que $\int_1^b \frac{\hat{f}(\xi)}{\xi} d\xi = \int_1^b \int_{\mathbb{R}} \frac{f(x) \operatorname{sen}(x\xi)}{\xi} dx d\xi$ y como $f \in L^1(\mathbb{R})$ y $\frac{\sin(x\xi)}{\xi} \in L^1([1,b])$ $\forall b \in \mathbb{R}_{\geq 0}$ (Pues por ejemplo esta acotada es continua y el soporte es de medida finita), esto dice que $f \frac{\sin(x\xi)}{\xi} \in L^1([1,b] \otimes \mathbb{R})$ CTP B entonces por Fubini tenemos que $\int_1^b \int_{\mathbb{R}} \frac{f(x) \operatorname{sen}(x\xi)}{\xi} dx d\xi = \int_{\mathbb{R}} \int_1^b \frac{f(x) \operatorname{sen}(x\xi)}{\xi} d\xi dx$. Este es un punto crucial, porque $\frac{\operatorname{sen}(x)}{x} \not\in L^1(\mathbb{R}_{\geq 0})$!!

Reescribiendo tenemos que $\int_1^b \frac{\hat{f}(\xi)}{\xi} d\xi = \int_{\mathbb{R}} f(x) \int_1^b \frac{\sin(x\xi)}{\xi} d\xi dx$.

Pasemos a acotar $\int_1^b \frac{\sin(x\xi)}{\xi} d\xi$, para eso notemos que si $b \ge 1$ entonces $\int_1^b \frac{\sin(x\xi)}{\xi} d\xi = \int_x^{xb} \frac{\sin(x)}{x} dx$:

b ≤ 1

Entonces tenemos $\int_b^1 \frac{\sin(x\xi)}{\xi} d\xi$, donde $\frac{\sin(x\xi)}{\xi}$ es continua en un compacto y esta acotada, por ende $\int_b^1 \frac{\sin(x\xi)}{\xi} d\xi \le \|\sin c(x)\|_{L^1([0,1])}.$

■ *b* ≥ 1

Aca una forma era simplemente llamar $s_{2n} = \int_{2n\pi}^{(2n+1)\pi} g dx$ con g = sinc(x), y llamar $s_{2n+1} = \int_{(2n+1)\pi}^{(2(n+1)\pi)} g dx$ entonces tenemos que $s_{2n} - s_{sn+1} \to 0$. Pero simplemente $\int_{\mathbb{R}_{\geq 0}} sinc(x) dx = \sum_{n} (-1)^n s_n < \infty$ por el criterio de Liebniz.

- \blacksquare De yapa veamos como calcular $\int_{\mathbb{R}_{>0}} sinc(x) dx!!$ donde $sinc(x) = \frac{\sin(x)}{x}$
 - a) My personal favorite

Sea $I_1(t) = \int_t^\infty \frac{\sin(x-t)}{x} dx$ y $I_2(t) = \int_{\mathbb{R}_{\geq 0}} \frac{e^{-tx}}{1+x^2} dx$, entonces I_1 y I_2 son soluciones de $y'' + y = \frac{1}{t}$ t > 0. Por ende $I_1 - I_2$ satisface y'' + y = 0, pero la solución de eso es $I(t) = A \sin(t+B)!$ Ahora como (ej) $I_1, I_2 \to 0$ tenemos que A = 0 por lo que $I_1(t) = B = I_2(t)$ $t \geq 0$. O sea que $\int_{\mathbb{R}_{>0}} \sin c(x) dx = \int_{\mathbb{R}_{>0}} \frac{1}{1+x^2} dx = \lim_n \arctan(n) - \arctan(0) = \frac{\pi}{2}$

b) A trickyy

Del último ejercicio de la práctica de Fourier tenemos que $\mathcal{L}(1) = \int_{\mathbb{R}_{\geq 0}} e^{-tx} dx = \frac{1}{t}$ donde \mathcal{L} es el operador transformada de Laplace. Entonces $\int_{\mathbb{R}^{\geq 0}} sinc(x) dx = \int_{\mathbb{R}_{\geq 0}} \int_{\mathbb{R}_{\geq 0}} e^{-xt} \sin(x) dt dx = \int_{\mathbb{R}^{\geq 0}} sinc(x) dx = \int_{\mathbb{R}^{\geq 0}} \int_{\mathbb{R}_{\geq 0}} e^{-xt} \sin(x) dx dt$ (Por Fubini) Y como $\mathcal{L}(\sin(x)) = \frac{1}{1+t^2}$ tenemos que $\int_{\mathbb{R}^{\geq 0}} sinc(x) dx = \int_{\mathbb{R}^{\geq 0}} \frac{1}{1+t^2} dt = \frac{\pi}{2}$

Por ende por h o por v tenemos que $|\int_1^b \frac{\hat{f}(\xi)}{\xi} d\xi| \leq \int_{\mathbb{R}} |f(x)| |\int_1^b \frac{\sin(x\xi)}{\xi} d\xi| dx \leq C \|f\|_{L^1} := A y A$ no depende de b.

2. Punto b

Aquí simplemente era hallar una $g \in C_0$ impar tal que la cota anterior no ande, y era notar que una función que tienda a 0 muy lentamente va a funcionar pues esa integral va a diverger! Por ejemplo si $f(x) = \frac{1}{ln(x)}$ andaría, pero hay que definirla bien. Buen entonces hacemos $\tilde{f}(x) = \frac{1}{ln(x)} \chi_{x \geq 2} + \alpha \chi_{0 \leq x \leq 2}$ donde α es lineal entre $\frac{1}{ln(2)}$ y 0. Entonces sea g la extensión impar de \tilde{f} , es claro que $g \in C_0$ y es impar. Además $\int_1^b \frac{g}{x} dx = A + \int_2^b \frac{1}{ln(x)x} dx = A + ln(ln(x))|_2^b \to \infty$ $(b \to \infty)$ y por ende $\not\exists f \in L^1 / \hat{f} = g$

3. Punto c

Tenemos que $C_c^{\infty} \subset S = \mathcal{F}(S) \subset \mathcal{F}(L^1) \subset C_0$ por ende como $\overline{C_c^{\infty}} = C_0$ entonces $\overline{\mathcal{F}(L^1)} = C_0$