

3º Grado en Ingeniería Informática

Transmisión de Datos y Redes de Computadores

TEMA 2. PROTOCOLOS Y SERVICIOS DE RED

(2019-2020)

TEMA 2. Índice

- 2.1. Enrutamiento estático y dinámico. (2h)
- ② 2.2. Protocolos de enrutamiento. (2h)
- 2.3. El problema del direccionamiento en IPv4. (4h)

APLICACIÓN PRESENTACIÓN SESIÓN TRANSPORTE RED ENLACE FÍSICO

TDRC Tema 2.3.

El problema del direccionamiento en IPv4

Antonio M. Mora García

- IPv4 usa un esquema de direccionamiento de 32 bits:
 - Originalmente configurado en **estructuras rígidas de clases** (*Classful*).

- IPv4 usa un esquema de direccionamiento de 32 bits:
 - Posteriormente flexibilizado con **CIDR** (*Classless Inter-Domain Routing*).
 - Se apoya en redes de **longitud de máscara de subred variable** (*variable-length subnet masking, VLSM*).

Imagen:Wikipedia

- 4.200 millones de hosts son en la actualidad ;; INSUFICIENTES!!

- La IANA (Internet Assigned Numbers Authority) gestiona la asignación de IPs, además de:
 - Zonas de DNS raíz (https://www.iana.org/domains/root/db)
 - Asignación de IPs (https://www.iana.org/numbers)
 - y número de SAs (https://www.iana.org/assignments/as-numbers/as-numbers.xhtml)
 - Repositorios de protocolos, nombres y números en relación con Internet.

IANA (Internet Assigned Numbers Authority):

- Las asignaciones IP se realizan de forma jerárquica (bloques contiguos de direcciones IP).
- IANA asigna bloques a los *Regional Internet Registry* (RIR). Ejemplo: RIPE NCC, en Europa.
- A su vez los RIR asignan bajo demanda a los *Local Internet Registry* (LIR). Ejemplo ISPs grandes (Movistar).
- Un particular/institución obtiene la IP de un LIR. Ejemplo: grandes empresas (Indra).

Busque un LIR en Granada: https://www.ripe.net/participate/member-support

Registry	Area Covered
AFRINIC	Africa Region
APNIC	Asia/Pacific Region
ARIN	North America Region
LACNIC	Latin America and some Caribbean Islands
RIPE NCC	Europe, the Middle East, and Central Asia

Problema real

Los bloques de direcciones IPv4 se han agotado ya (Nov. 2019):

Problema real

Los bloques de direcciones IPv4 se han agotado ya (Nov. 2019):

Centro de Coordinación de Redes IP Europeas

https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses

- Sólo quedan disponibles bloques /24 (256 direcciones) a /32 (1 dirección).
- Se van recopilando direcciones de sitios obsoletos, empresas que hayan desaparecido, proyectos terminados, hosting que ya no está en uso...
- Hay una lista de espera en RIPE NCC (https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-waiting-list).
- IP Brokers: han comprado miles de direcciones para venderlas en subastas.

Soluciones

- CIDR (Classless Inter-Domain Routing)
- Direccionamiento privado
- DHCP (Dynamic Host Configuration Protocol)
- NAT (Network Address Translation)

IPv6

Direccionamiento con clases (Classful):

- Se divide todo el espacio de direcciones IP en distintas partes disjuntas.
 - . Clase A \rightarrow Más de 16 millones de direcciones disponibles.
 - . Clase B → Más de 65000 direcciones.
 - . Clase C \rightarrow 256 directiones.

	Primer byte	Segundo byte	Tercer byte	Cuarto byte	
CLASE A	0-126				Unicast
CLASE B	128-191				Unicast
CLASE C	192-223				Unicast
CLASE D	224-239				Multicast
CLASE E	240-255				Reservado

Direccionamiento con clases (Classful):

. Clase A → 16M IPs

. Clase B → 65K IPs

. Clase C \rightarrow 256 IPs

Ejemplo:

Una empresa con solicita direcciones IP para 10000 equipos.

- Se le asigna una subred de Clase B → Se desaprovecharían 55000 direcciones.
- Se le asignan 40 subredes de Clase C (10240 IPs) → Las **tablas de enrutamiento** a las distintas partes de la red de la empresa **serían muy complejas**.

Máscara de red:

- Número de 32 bits compuesto por secuencias de '1' o '0' contiguos.
- La secuencia de '1' indica qué parte de una dirección IP corresponde con el **netid** (identificación de la red o subred).
- El resto de la máscara, que será una secuencia de '0', indicará los bits de la dirección IP correspondientes al **hostid** (identificación del equipo dentro de la subred).

Sabemos que en realidad cada dirección IP se asocia con una interfaz (o tarjeta de red), ya que un equipo/host puede disponer de varios interfaces

Ejemplo:

- Existe la notación en binario, en punto decimal o compacta (CIDR)
- Las máscaras por defecto de las clases serían:

	Binario	Punto decimal	CIDR
CLASE A	11111111.00000000.00000000.00000000	255.0.0.0	/8
CLASE B	111111111111111111000000000.00000000	255.255.0.0	/16
CLASE C	11111111.111111111.11111111.00000000	255.255.255.0	/24

- Con las máscaras podremos definir cualquier subred:
 - **Subnetting** → definir subredes dentro de un conjunto de direcciones. Ej: dentro Clase A
 - **Supernetting** → definir superredes agrupando rangos de direcciones. Ej: varias Clases C

Direccionamiento sin clases (Classless):

- Desaparece el concepto de clases.
- **Sólo** se tienen **direcciones** (o prefijos) **de red y direcciones de hosts** (interfaces).
- La máscara determina qué bits de la dirección IP corresponden a cada parte.
- Permite la **optimización de las tablas de enrutamiento**, reduciendo el número de entradas mediante su agrupación y el uso de una máscara menos restrictiva.

Imagen:Wikipedia

- CIDR especificado en RFC 4632.
- VLSM (Variable Length Subnet Mask) :
 - Se podrá asignar una máscara diferente a cada subred.
 - Los routers almacenarán las máscaras de red para las entradas de su tabla de enrutamiento.
 - Los protocolos de enrutamiento transmitirán también la máscara.

Ejemplo (Supernetting)

Las siguientes redes clase C pueden agruparse en superredes:

192.168.100.0/24

192.168.101.0/24

192.168.102.0/24

192.168.103.0/24

Hacer un agrupamiento en dos superredes y en una sola.

Ejercicio (Subnetting)

En nuestra empresa tenemos una red para la que se nos ha asignado un rango de direcciones **140.16.0.0** (Clase B).

Hacer una división de las direcciones disponibles para direccionar **3 subredes de 10000 equipos** cada una.

Tener en cuenta el posible crecimiento de dichas subredes en el futuro.

Direccionamiento privado

- Se definen rangos de IPs de uso sólo dentro de nuestra red.
- Se usan en oficinas, empresas o redes domésticas (LAN y WAN).
- No son IPs directamente accesibles desde fuera de nuestra red.
- Se pueden utilizar las mismas direcciones en distintas redes privadas.

Bloque CIDR	Rango de direcciones	Número de direcciones	
10.0.0.0/8	10.0.0.0 – 10.255.255.255	16777216	
172.16.0.0/12	172.16.0.0 – 172.31.255.255	1048576	
192.168.0.0/16	192.168.0.0 – 192.168.255.255	65536	

- Protocolo de red de tipo Cliente/Servidor.
- El cliente es un host de una red privada.
- El **servidor DHCP asigna dinámicamente** una dirección **IP** (y otros parámetros de configuración de red) a cada host que lo solicite.
- Se encarga de realizar el reparto de las direcciones disponibles conforme se le van solicitando.
- Especificado en RFC 2131.

- Asignación estática → cada host tiene asignada una IP por defecto que decide el administrador. El protocolo la comunica al host.
- Asignación automática → se asigna una dirección IP de un pool, pero dicha dirección queda asociada al host permanentemente (hasta que la libere explícitamente dicho host).
- Asignación dinámica → un host debe solicitar una IP para cada una de sus interfaces cuando las activa. El servidor tendrá control sobre qué host/interfaz tiene cada IP y sabrá cuándo la libera, quedando disponible para asignársela a otro host/interfaz que lo solicite.

- Los parámetros de configuración de red proporcionados al host incluyen:
 - Dirección IP
 - Máscara de red
 - Router/Pasarela por defecto
 - Servidor de DNS
- Habrá un servidor en cada subred.

Funcionamiento:

- Consiste en traducir un conjunto de direcciones IPv4 en otras.
- Especificado en RFC 3022.
- Permite que una red con direccionamiento privado se pueda conectar a Internet (direccionamiento público).
 - Cambia la **dirección IP privada por una dirección pública** al reenviar un paquete hacia el exterior de la red (hacia Internet).
 - Cambia la **dirección IP pública por la correspondiente privada** al reenviar un paquete hacia el interior.
- Se puede usar para mitigar el problema de la falta de direcciones IPV4:
 - Para ello se usa un esquema de direccionamiento privado en una red.
 - En la interfaz de conexión con Internet, el rango privado es traducido mediante NAT a una única IP pública con multiplexación por puertos (*Port Address Translation*, PAT)

- Lo realiza normalmente el **router de acceso a Internet** (frontera entre la red privada y la pública).
- La traducción puede ser:
 - **Estática** → una IP privada siempre se cambia por la misma IP pública.
 - **Dinámica** → existe un pool de IPs públicas y se establece una relación entre ellas y las IPs privadas.

- Lo realiza normalmente el router de acceso a Internet (frontera entre la red privada y la pública).
- La traducción puede ser:
 - **Estática** → una IP privada siempre se cambia por la misma IP pública.
 - **Dinámica** → existe un pool de IPs públicas y se establece una relación entre ellas y las IPs privadas.

- Definiciones:
- **Inside local**: direcciones de mi red, vistas desde dentro de mi red
- **Inside Global**: direcciones de mi red vistas desde fuera de mi red
- **Outside local**: Direcciones de redes externas vistas desde dentro de mi red
- **Outside global**: Direcciones de redes externas vistas desde fuera de mi red

• Ejemplo:

PAT (overload)

- Útil cuando sólo dispongo de una única dirección IP inside global.
- En lado OUTSIDE, la conexión se distingue por el puerto
- En el lado INSIDE: Se distingue por el socket local

Socket= { IP inside local, protocolo, Puerto }

- Con solapamiento (overlapping)

Solapamiento (overlapping)

IPv6

Características

- Direcciones de 128 bits.
- Notación hexadecimal.
- 340.282.366.920.938.463.463.374.607.431.768.211.456
 (340 sextillones) direcciones diferentes.
- Compatibles con IPv4.

https://www.google.com/intl/es/ipv6/statistics.htm ab=per-country-ipv6-adoption

Disponibilidad de IPv6. Verde oscuro significa una mayor implementación. Sin problemas.

30% en el mundo – 3% en España

FUENTE: Google

Bibliografía y enlaces

- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Ed. Mc Graw Hill 2007.
- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
- Ernesto Ariganello. Redes Cisco: guía de estudio para la certificación CCNA Routing y Switching.
- García-Teodoro, P; Díaz-Verdejo, J.E.; López-Soler, J.M, Transmisión de datos y redes de computadores, Prentice-Hall, 2007.
- CIDR (RFC 4632) https://tools.ietf.org/html/rfc4632
- DHCP (RFC 2131) <u>https://tools.ietf.org/html/rfc2131</u>
- NAT (RFC 3022) https://tools.ietf.org/html/rfc3022

Entonces... ¿tenemos ya delegad@?

Para que sea el/la intermediario/a para la comunicación entre la clase y los profesores de la asignatura.

¿Alguna duda?