Chapitre 1

Introduction à la théorie du signal

Magalie THOMASSIN

magalie.thomassin@univ-lorraine.fr

TELECOM Nancy 1^{re} année

SICA1

1/24

Classifications signaux

•0000000

Plan

- Classifications des signaux
- Signaux élémentaires
- Convolution
- 4 Produit scalaire
- 5 Complément sur l'impulsion de Dirac

Classification dimensionnelle

- Signal scalaire (ou monodimensionnel 1D)
 Fonction d'1 seul paramètre (pas forcément le temps) $\Rightarrow s(x)$
- Signal vectoriel (ou multidimensionnel nD)
 Signal à plusieurs dimensions
 - ► Signal bidimensionnel 2D Fonction de 2 paramètres. Ex : une image $\Rightarrow I(x, y)$
 - ► Signal tridimensionnel 3D Fonction de 3 paramètres. Ex : un film $\Rightarrow F(x, y, t)$

Continu/Discret

Classifications signaux

00000000

Signal déterministe ou aléatoire

Classifications signaux

00000000

■ Signaux déterministes

Signaux dont l'évolution peut être parfaitement décrite par une description mathématique ou graphique

Classification phénoménologique (suite)

Signal déterministe ou aléatoire

Classifications signaux

00000000

■ Signaux aléatoires (ou stochastiques)

Signaux dont l'évolution est imprévisible : on ne peut pas prédire la valeur à un temps t. La description est fondée sur les propriétés statistiques des signaux (moyenne, variance, etc.)

Stationnarité : ses propriétés statistiques sont indépendantes du temps

Un signal aléatoire particulier : le bruit

- Définition : perturbation pouvant gêner la perception ou l'interprétation d'un signal.
 En général, il s'agit d'une fluctuation imprévisible due à l'environnement.
- La notion de bruit est relative. Elle dépend du contexte. exemple du technicien en télécom et de l'astronome :
 - pour le technicien télécom :
 - signal = ondes d'un satellite
 - bruit = signaux d'une source astrophysique
 - pour l'astronome :
 - signal = signaux d'une source astrophysique
 - bruit = ondes d'un satellite
- Tout signal physique comporte du bruit!!

 Signal = composante déterministe + composante aléatoire (le bruit)
- Rapport Signal sur Bruit (RSB) : détermine la qualité du signal déterministe ou aléatoire / quantifie l'effet du bruit

$$\label{eq:RSB} \begin{split} \text{RSB} &= \frac{P_s}{P_b} \qquad \text{RSB}_{\text{dB}} = 10 \log_{10} \left(\frac{P_s}{P_b} \right) \end{split}$$

où P_s et P_b sont les puissances respectives du signal et du bruit

Un signal aléatoire particulier : le bruit (suite)

Signal : sinusoïde pure $(P_s = rac{A^2}{2})$

Bruit : bruit blanc gaussien de moyenne nulle et de variance σ^2 ($P_b = \sigma^2$)

8 / 24

Classifications signaux

00000000

Classification - récapitulatif

- \blacksquare Cas d'un signal continu x(t)
 - ► Energie totale

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

- \blacksquare Cas d'un signal discret x(k)
 - ► Energie totale

$$E_x = \sum_{k=-\infty}^{+\infty} |x(k)|^2$$

► Puissance movenne totale

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

▶ Puissance moyenne totale

$$P_x = \lim_{K \to \infty} \frac{1}{K} \sum_{k=-K/2}^{K/2} |x(k)|^2$$

Remarques

Classifications signaux

0000000

- $\blacksquare E_x < \infty \quad \Rightarrow \quad P_x = 0$
- la puissance moyenne totale d'un signal périodique est égale à celle sur une période

Classification énergétique

On distingue alors :

- les signaux à énergie finie ($\Rightarrow P_x = 0$): tous les transitoires, déterministes ou aléatoire : cas de tous les signaux physiques
- les signaux à puissance moyenne finie non-nulle ($\Rightarrow E_x = \infty$): tous les signaux permanents, déterministes (périodiques ou quasi-périodiques) ou aléatoires

■ Certains signaux théoriques n'appartiennent à aucune de ces catégories Ex. $:x(t) = \exp(at)$ pour $-\infty < t < \infty$, iimpulsion de Dirac, peigne de Dirac, etc.

11 / 24

Plan

- Classifications des signaux
- Signaux élémentaires
- Convolution
- 4 Produit scalaire
- 5 Complément sur l'impulsion de Dirac

$$s(t) = A\sin(\omega_0 t + \phi_0) = A\sin(\omega_0 (t + \tau))$$

avec :

- \blacksquare A: amplitude du signal
- ullet $\omega_0=rac{2\pi}{T_0}=2\pi f_0$: pulsation (en rad/s)
- $\blacksquare T_0$: période du signal (en s)
- f_0 fréquence fondamentale (en Hz)
- $\phi(t) = \omega_0 t + \phi_0$: phase instantanée
- $ullet \phi_0 = \omega_0 au$: phase à l'origine (pour t=0) (en rad)
- τ : décalage (en s) de s(t) par rapport à 0 (retard si $\tau < 0$; avance si $\tau > 0$)

Remarque : lien avec exponentielle complexe $e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$

les signaux échelon et rampe

La rampe unitaire

Classifications signaux

Signaux élémentaires

000000

$$r(k) = \begin{cases} 0 & \text{pour } k < 0 \\ k & \text{pour } k \ge 0 \end{cases}$$

L'échelon unitaire

$$1(t) = \begin{cases} 0 & \text{pour } t < 0 \\ 1 & \text{pour } t \ge 0 \end{cases}$$

$$1(t) = \begin{cases} 0 & \text{pour } t < 0 \\ 1 & \text{pour } t \ge 0 \end{cases}$$

$$1(k) = \begin{cases} 0 & \text{pour } k < 0 \\ 1 & \text{pour } k \ge 0 \end{cases}$$

- L'échelon 1(t) est la dérivée (discontinue à l'origine) de r(t). Il n'est pas défini en t=0.
- ▶ Signal causal : signal qui est nul pour t < 0 (origine des temps). L'échelon permet d'écrire ceci de façon compacte :

$$x(t) = \begin{cases} 0 & \text{pour } t < 0 \\ Ce^{at} & \text{pour } t \leqslant 0 \end{cases} = Ce^{at}.\mathbf{1}(t)$$

Impulsion de Dirac

Classifications signaux

Définition pratique

- Représentation par un flèche verticale en t=0 d'amplitude égale à l'aire (ici 1)
- Ce n'est pas une fonction, mais se définit rigoureusement grâce à la théorie des distributions
- Propriétés de l'impulsion de Dirac :

Produit d'un signal par une impulsion de Dirac

$$s(t)\delta(t-t_0) = s(t_0)\delta(t-t_0) \qquad \qquad s(t)\delta(t) = s(0)\delta(t) \text{ (pour } t_0=0)$$

- $\delta(at) = \frac{1}{|a|}\delta(t)$ ► Changement de variable
- Autres propriétés :

$$\delta(t) = \frac{d1(t)}{dt}$$

$$\qquad \qquad \mathbf{1}(t) = \int_{-\infty}^t \delta(\tau) d\tau = \int_0^\infty \delta(t-\tau) d\tau \qquad \qquad \mathbf{TELECOM}$$

Impulsion unitaire discrète

L'impulsion unitaire discrète

$$\delta(k) = \begin{cases} 0 & \text{pour } k \neq 0 \\ 1 & \text{pour } k = 0 \end{cases}$$

■ Propriétés :

$$\delta(k) = \Delta 1(k) = 1(k) - 1(k-1)$$

▶
$$1(k) = \sum_{n=0}^{k} \delta(n) = \sum_{n=-\infty}^{k} \delta(n) = \sum_{n=0}^{\infty} \delta(k-n)$$

Classifications signaux

Le peigne de Dirac et Signal échantillonné (échantillonnage idéal)

Signal échantillonné (échantillonnage idéal)

Un signal échantillonné résulte du produit d'un signal continu par un peigne de Dirac. La période du peigne est appelée période d'échantillonnage et notée T_e . On obtient alors un train d'impulsions modulées en amplitude par les valeurs du signal continu aux instants kT_e , dits "instants d'échantillonnage". Dans la réalité, les impulsions sont de durée petite par rapport à T_e .

- Classifications des signaux
- Signaux élémentaires
- Convolution
- 4 Produit scalaire
- 5 Complément sur l'impulsion de Dirac

Définition

Classifications signaux

On appelle produit de convolution de deux signaux x et g:
temps continu

temps discret

$$y(t) = [x * g](t) = \int_{-\infty}^{+\infty} x(\tau)g(t - \tau)d\tau$$

$$y(k) = [x * g](k) = \sum_{k=0}^{+\infty} x(n)g(k-n)$$

Propriétés

- Commutativité : g * x = x * g
- **Associativité** : $(x * q_1) * q_2 = x * (q_1 * q_2)$
- **Distributivité** : $(q_1 + q_2) * x = (q_1 * x) + (q_2 * x)$

Produit de convolution avec impulsion de Dirac

Par abus de notation, on peut écrire le produit de convolution : x(t) * g(t).

Propriétés

Classifications signaux

- $x(t) * \delta(t) = x(t)$
- $\mathbf{x}(t) * \delta(t \tau) = x(t \tau)$
- **a** $x(t-t_1)*\delta(t-t_2) = x(t-t_1-t_2)$ cas particulier : $\delta(t-t_1)*\delta(t-t_2) = \delta(t-t_1-t_2)$

Périodisation du signal x(t)

$$x(t) * \delta_T(t) = x(t) * \sum_{t=0}^{+\infty} \delta(t - nT) = \sum_{t=0}^{+\infty} x(t - nT) = x_T(t)$$

 $n = -\infty$

Plan

Classifications signaux

- Classifications des signaux
- Signaux élémentaires
- Convolution
- 4 Produit scalaire
- 5 Complément sur l'impulsion de Dirac

Définition

Cas de signaux complexes :

$$\langle x_1, x_2 \rangle = \int_{-\infty}^{+\infty} x_1(t) \cdot x_2^*(t) dt$$

- où * représente la conjugaison complexe
- Cas de signaux réels :

$$\langle x_1, x_2 \rangle = \int_{-\infty}^{+\infty} x_1(t) \cdot x_2(t) dt$$

Dans le cas complexe, on remarque que $< x,y> \neq < y,x>$.

En revanche, cette définition possède la symétrie hermitienne : < x, y > = < y, x > *

Propriétés de l'impulsion de Dirac

$$\langle f, \delta \rangle = \int_{-\infty}^{+\infty} f(t) \cdot \delta(t) dt = f(0)$$

$$\langle g\delta, f \rangle = \langle \delta, gf \rangle$$

Plan

Classifications signaux

- Classifications des signaux
- Signaux élémentaires
- Convolution
- 4 Produit scalaire
- 5 Complément sur l'impulsion de Dirac

■ Changement de variable : $\delta(at) = |a|^{-1}\delta(t)$

En particulier :
$$\delta(\omega) = \frac{1}{2\pi}\delta(f)$$

Dérivation

Classifications signaux

$$(\dot{\delta f}) = \dot{\delta f} + \dot{f}\delta$$

$$<\dot{\delta}, f> = -<\delta, \dot{f}> = -\dot{f}(0)$$

$$<\delta^{(n)}, f> = (-1)^n <\delta, f^{(n)}>$$

$$(\dot{\delta * f}) = \dot{\delta * f} = \delta * \dot{f}$$

■ De plus, on verra, dans la suite, que la transformée de Fourier peut être étendue au cas des distributions

