

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

B.Tech., Computer Science and Engineering

Course Title	Data Science			Course Type			INTEGRATED					
Course Code				Class			IV SEMESTER					
	Activity	Credits	Credit Hours	Total Number of Classes				Assessment				
	Lecture	3	45	per Sem	ester				Weightage			
Instruction	Tutorial							Self- study				
delivery	Practical	1	15	Theory	Tuto	rial	Practical		CIE	SEE		
	Self-study				45 0							
	Total	4	60	45			15	0	50%	50%		
	Course Lead	urse Lead Mr. Soumalya Ghosh										
Names	Course Coordinator	Mr. Hariprasath K										
Course Instructors	Theory						Practical	ıl				
Histructors	Mr. S.Prakash	Mr. S.Prakash			Mr. S.Prakash							
	Mr. A.Booblan	Mr. A.Booblan										
	Mr. Soumalya		Mr. Soumalya Ghosh									
	Mr. Vikash Ku	ımar Mish	ıra			Mr. Vikash Kumar Mishra						
	Mr. Hariprasa	Mr. Hariprasath k				Mr. Hariprasath k						
	Mr. Soumalya			Mr. Soumalya Ghosh								
Mr. Vishwa Pratap Singh			Mr. Vishwa Pratap Singh									

COURSE OVERVIEW

Statistical experiment design and analytics are at the heart of data science. Data Science is a branch that deals with the extraction of information from data. It is a relatively new field that combines aspects of statistics, machine learning, and computer science. In this course you will design statistical experiments and analyze the results using modern methods. This course is intended to provide a thorough and sound understanding of the essential theoretical base, an introduction into the important and useful techniques of modelling and also an understanding of the broad applications of Data Science, and apply them to solve some real-world problems.

COURSE OBJECTIVE

- To understand concepts of data science.
- To understand popular tools of data analysis.
- To learn data science in python.
- To apply different visualization Techniques on datasets.
- To implement learning techniques in data science.

COURSE OUTCOME

CO1	Understand introductory knowledge in the essentials of Data Analysis and Data science
CO2	Apply and Implement concepts of data analysis in google sheets and excel; algorithmic principles and Programming knowledge using Python language
CO3	Demonstrate different data virtualization and optimization techniques.
CO4	Apply and Implement ML processing principles using Probability and Statistics.

	Bloom's Taxonomy Level (BTL)									
CO No.	Remember (L1)	Understand (L2)	Apply (L3)	Analyze (L4)	Evaluate (L5)	Create (L6)				
CO1	×									
CO2	×	×	×	×		×				
CO3			×	×						
CO4			×	×	×	×				

PROGRAM OUTCOMES

	Engineering Knowledge: Apply the knowledge of mathematics, science, Engineering					
PO1	fundamentals, and an engineering specialization to the solution of complex engineering					
	problems					
	Problem Analysis: Identify, formulate, review research literature, and analyze complex					
PO2	engineering problems reaching substantiated conclusions using first principles of					
	mathematics, natural sciences, and engineering sciences.					
PO3	Design/development of solutions: Design solutions for complex engineering problems and					
103	design system components or processes that meet the specified needs with appropriate					

	'1 ' C 4 11' 1 14 1 C 14 14 1 ' 4 1 1 ' 4 1				
	consideration for the public health and safety, and the cultural, societal, and environmental				
	considerations.				
	Conduct investigations of complex problems: Use research-based knowledge and research				
PO4	methods including design of experiments, analysis and interpretation of data, and synthesis				
	of the information to provide valid conclusions				
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern				
PO5	engineering and IT tools including prediction and modeling to complex engineering activities				
	with an understanding of the limitations.				
	The Engineer and society: Apply reasoning informed by the contextual knowledge to assess				
PO6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant				
	to the professional engineering practice.				
	Environment and sustainability: Understand the impact of the professional engineering				
PO7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need				
	for sustainable development				
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and				
100	norms of the engineering practice.				
DO0	Individual and team work: Function effectively as an individual, and as a member or leader				
PO9	in diverse teams, and in multidisciplinary settings.				
	Communication: Communicate effectively on complex engineering activities with the				
DO10	engineering community and with society at large, such as, being able to comprehend and write				
PO10	effective reports and design documentation, make effective presentations, and give and				
	receive clear instructions.				
	Project management and finance: Demonstrate knowledge and understanding of the				
PO11	engineering and management principles and apply these to one's own work, as a member and				
	leader in a team, to manage projects and in multidisciplinary environments.				
7011	Life-long learning: Recognize the need for, and have the preparation and ability to engage				
PO12	in independent and life-long learning in the broadest context of technological change.				

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1:	Able to analyze, design and implement sustainable and ethical solutions in the field of computer science.
PSO2:	Able to use problem solving skills to develop efficient algorithmic solutions.

COURSE ARTICULATION MATRIX

СО/РО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O 2
CO1	3	3	1											
CO2	2	3	3	1	2									
CO3				2	3				2				2	3
CO4				3	3				3				3	3

COURSE ASSESSMENT

		CIE								
SN o	Assessment Tools	QUIZ1 /AAT	CAT 1	QUIZ2 /AAT	CAT 2	LAB	LAB EXAM	Course -based Project	Total CIE marks	SEE
			A1		A2	A3	A4			
1	Integrated	0	30	0	30	20	20	0	100	100

COURSE CONTENT

THEORY

What is Data science? Data analysis. Statistics fundamentals for data science. Different popular software tools for data science and data analysis: Installation and usage - Use of formulae to calculate the values in excel, statistical operations in excel sheets (Descriptive Statistic, histogram, correlation, moving average, exponential smoothing), Filter and VLOOKUP in excel. Other operations to manipulate and summarize information present in the data -Introduction about NumPy, Different NumPy Operations, Broadcasting with NumPy, Introduction about Pandas, Reading or Loading data into Data frame, Pandas Data Frame Manipulations, Data Loading /Reading in different formats (CSV, Excel, Json, HTML) -Introduction to data Visualizations, Principles Behind Data Visualizations, Histograms-Visualize, Box Plots-Visualize, the Distribution of Continuous Numerical Variables (Bar Plots, Pie Chart, Line Chart). Data Visualization using R- Line Plots and Regression - Supervised machine learning Fundamentals- Regression and Classification. Unsupervised Learning in Python: K- Means Theory/ Implementation, Quantifying K-Means Clustering Performance, Hierarchical Clustering Theory, Principal Component Analysis (PCA) theory / Implementation. Selection criteria for number of clusters choosing - Recent articles on Research journals of Data science and AI. Scopus and SCI indexed resources can be considered.

PRACTICAL

Working with excel, Statistical analysis with excel, Python revision and introduction to NumPy - Implementing Array operations using NumPy -Implementing NumPy Broadcasting - Implementing NumPy string functions - Implementing Data Frames using PANDAS Library - Implement Pandas Library for working with missing values - Implement Matplotlib Library for data visualization - Implement K-means Clustering algorithm - Implement Principal Component Analysis for Dimensionality Reduction - Implementing Regression models.

LESSON PLAN FOR THEORY

Session	Topics	Skills to be Learned				
1.	What is Data science? Preparing and gathering data and knowledge, Philosophies of data science					
2.	Data Science Process and Data analysis -					
3.	Statistics fundamentals for data science	Students gets the knowledge on				
4.	Data all around us: the virtual wilderness, Data wrangling: from capture to domestication, Data science in a big data world	Students gets the knowledge on Overview of the Data Science Process				
5.	Different popular software tools for data science					
6.	Different popular software tools for data science					
7.	data analysis: Installation and usage					
8.	data analysis: Installation and usage					
9.	Use of formulae to calculate the values					
10.	Use of formulae to calculate the values					
11.	statistical operations in sheets (Descriptive Statistic, histogram, correlation, moving average, exponential smoothing)					
12.	statistical operations in sheets (Descriptive Statistic, histogram, correlation, moving average, exponential smoothing)	Students gets the knowledge on Data Analysis with Excel and				
13.	Filter and VLOOKUP	Google sheets				
14.	Other operations to manipulate and summarize information present in the data					
15.	Other operations to manipulate and summarize information present in the data					
16.	Other operations to manipulate and summarize information present in the data					
17.	Introduction about NumPy					

18.	Different NumPy Operations				
19.	Broadcasting with NumPy				
20.	Introduction about Pandas				
21.	Different Built-in Pandas Function Reading or Loading data into Data frame	Students gets the knowledge on Data science in python with			
22.	Pandas Data Frame Manipulations Data Loading /Reading in different formats (CSV,Excel,Json,HTML)	NumPy and PANDAS			
23.	Data Loading /Reading in different formats (CSV,Excel,Json,HTML) Cont				
24.	Introduction to data Visualizations				
25.	Principles Behind Data Visualizations				
26.	Histograms-Visualize				
27.	Box Plots-Visualize	Ct-d-utd-t-			
28.	the Distribution of Continuous Numerical Variables (Bar Plots,	Students aware on various data visualization tools			
29.	Pie Chart, Line Chart).				
30.	Data Visualization using R- Line Plots and Regression				
31.	Data Visualization using R- Line Plots and Regression				
32.	Supervised machine learning				
33.	Fundamentals- Regression and				
34.	Classification.				
35.	Supervised/Unsupervised Learning in Python:				
36.	K- Means Theory	Student gets introduced to			
37.	Implementation, Quantifying K-Means.	Machine Learning with Data models			
38.	Clustering Performance Hierarchical Clustering Theory	1110 0010			
39.	Principal Component Analysis (PCA) theory				
40.	PCA - Implementation				
41.	Selection criteria for number of clusters choosing				
42.	Latest papers published				
43.	Patents filed	Students gets introduced to recent			
44.	Latest products	trends in Data science and tools			
45.	SCI / Scopus Paper discussion				

LESSON PLAN FOR PRACTICAL

S.No	Topics	Skills				
1	Working with Formulas and Functions in Excel					
2	Working with Filtering Operations, Pivot tables					
3	Charts using Excel – bar chart, pie chart, scatter plot	Students gets the knowledge on Data Analysis with Excel and Google sheets				
4	Demonstrate the Histogram and Descriptive Statistics using Excel					
5	Implement Moving Average and Exponential Smoothing using Excel					
6	Python revision and introduction to NumPy					
7	Implementing Array operations using NumPy					
8	Implementing NumPy Broadcasting	Student get introduced to NumPy				
9	Implementing NumPy string functions -add, multiply, center, split, join	and able to build models using NumPy				
10	Implementing NumPy string functions - capitalize, lower,					
11	Implementing Data Frames using PANDAS Library	Students gets the knowledge on				
12	Implement Pandas Library for working with missing values	Data science in python with PANDAS				
13	Implement bar chart using Matplotlib Library for data visualization					
14	Implement scatter plot using Matplotlib Library for data visualization					
15	Implement sub plot using Matplotlib Library for data visualization	Student gets introduced to Machine Learning with Data				
16	Implement K-means Clustering algorithm					
17	Implement Principal Component Analysis for Dimensionality Reduction					
18	Implementing Regression models.					

Text Books:

- 1. Data Science from Scratch: First Principles with Python 1st Edition, by Joel Grus, O'Reilly Publication, 2020.
- 2. James, G., Witten, D., Hastie, T., Tibshirani, R. An introduction to statistical learning with applications in R. Springer, 2013.
- 3. Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan Kaufmann, 2011.

Reference Books:

- 1. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e, 2008.
- 2. Christopher Bishop. Pattern Recognition and Machine Learning. 2e.

List of NPTEL/MOOCS/SWAYAM/Courses/Video:

- 1. https://nptel.ac.in/courses/110106072/
- 2. https://nptel.ac.in/courses/110106073
- 3. https://www.youtube.com/watch?v=j3lgxdylktxv

Webliography:

- 1. https://www.w3schools.com/datascience/
- 2. https://www.w3schools.com/python/pandas/default.asp
- 3. https://www.w3schools.com/excel/index.php
- 4. https://www.w3schools.com/googlesheets/index.php
- 5. https://www.geeksforgeeks.org/data-science-tutorial