Seminární úlohy 09

1. Kovový vzorek má tvar disku. Měřením bylo zjištěno: průměr vzorku $d = (10.15 \pm 0.05)$ mm, tloušťka vzorku $t = (0.481 \pm 0.002)$ mm a hmotnost $m = (440 \pm 1)$ mg. Určete hustotu vzorku a její absolutní a relativní chybu. Odhadněte o jaký materiál by se mohlo jednat.

Řešení:

$$[\rho = (11.3 \pm 0.1) \text{ g cm}^{-3}$$
, relativní chyba $\eta_{\rho} = 1 \%$, jedná se o Pb]

2. Index lomu skla se měří pomocí Abbeova polokulového refraktometru užitím monochromatického světla sodíkové výbojky o vlnové délce $\lambda=589.6$ nm. Princip měření je znázorněn na obrázku. Nejdříve se změří index lomu N_0 skleněné polokoule (obr. A) změřením maximálního úhlu lomu α_0 (tj. úhlu lomu paprsku s úhlem dopadu 90°). Následně se na polokouli umístí měřený vzorek, jehož index lomu N chceme zjistit a provede se opět měření maximálního úhlu lomu α (obr. B). Byly naměřeny následující hodnoty $\alpha_0=36^\circ 10^\circ$ a $\alpha=59^\circ 50^\circ$. Chyba měření úhlu činila 10° . Určete index lomu N_0 polokoule a index lomu N měřeného vzorku pro použitou vlnovou délku. V obou případech vypočítejte absolutní a relativní chybu indexu lomu. Odhadněte z jakého druhu skla byl vyroben měřený vzorek.

Řešení:

 $[N_0 = (1.695 \pm 0.007)$, relativní chyba $\eta_{N0} = 0.4$ %, $N = (1.465 \pm 0.006)$, relativní chyba $\eta_N = 0.4$ %, sklo SIMAX N = 1.472 ($\lambda = 589.6$ nm)