Aufgabe H30

1) Die Sprache ist kontextfrei:

2) Angenommen L_2 sei kontextfrei. Dann muss das Pumpinglemma für kontextfreie Sprachen gelten: Sei $n\in\mathbb{N},\,z\in L_2$ mit $z=a^{2^n}$ und $|z|=2^n\geq n.$

Sei
$$n \in \mathbb{N}$$
, $z \in L_2$ mit $z = a^{2^n}$ und $|z| = 2^n \ge n$

Dann muss es eine Zerlegung von z in uvwxy geben mit:

- $(1) |vwx| \leq n$
- (2) |vx| > 0
- $(3) uv^iwx^iy \in L_2 \forall i \in \mathbb{N}$

Betrachte i = 2:

$$|uv^2wx^2y| = |uvwxy| + |v| + |x| = |z| + |vx| \le 2^n + n < 2^{n+1}$$

Damit ist $uv^2wx^2y \notin L_2$ also gilt das Pumpinglemma nicht und L_2 ist nicht kontextfrei.

3)

Aufgabe H31

a) Kellerautomat für L:

b)

Aufgabe H32 Für jede Kontextfreie Sprache gibt es eine Kontextfreie Grammatik. Sei L diese Kontextfreie Sprache. Falls $\epsilon \notin L$:

Wandle CFG(L) in die Greibachsche Normalform um. Sei S das Startsymbol der Grammatik. Erstelle dann einen ϵ -freien Kellerautomaten mit genau 3 Zuständen (q_0, q_1, q_2) , der akzeptiert, wenn der Keller leer ist: Füge Produktionsregeln der Form $S \to x$, wobei x ein Terminal ist, als Transition von q_0 zu q_2 hinzu, ohne den Keller zu verändern: $x, \Sigma_0 \mid \Sigma_0$. Füge Produktionsregeln der Form $S \to xM$, wobei x ein Terminal ist und M eine nichtleere Menge von Nichtterminalen ist, als Transition von q_0 zu q_1 hinzu, die wie folgt aussehen: $x, \Sigma_0 \mid M\Sigma_0$.

Alle restlichen Produktionsregeln werden wie folt eingefügt:

Sei $X \to x$, wobei x ein Terminal und $X \in N \setminus \{S\}$ ein Nichtterminal ist. Da dies also bei einem Ableitungsbaum die letzte Ableitung darstellen kann, muss es eine Transition von q_1 zu q_2 geben: $x, X\Sigma_0 \mid \Sigma_0$. Zudem muss es

Formale Systeme, Automaten, Prozesse Übungsblatt 9 Tutorium 11

Tim Luther, 410886 Til Mohr, 405959 Simon Michau, 406133

auch eine Schleife um q_1 geben: $x, XV \mid V$, wobei V eine Variable ist. Sei $X \to xM$, wobei x ein Terminal, $X \in N \setminus \{S\}$ ein Nichtterminal und M eine nichtleere Menge an Nichtterminalen ist, füge eine Schleife an q_1 ein: $x, XV \mid MV$.

Damit kann man alle kontextfreien Sprachen, die ϵ enthalten, auch mithilfe der veränderten Übergangsfunktion darstellen.