Taylorpolynomier

SSO - Matematik A Februar 2022

Resume

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Ind holds for tegnelse

1	Indledning	2
2	Taylorrækkens historie	2
	2.1 Newton, Gregory og Bernoulli	3
3	Analyse	4
	3.1 Pædagogisk gennemgang (arbejdstitel)	4
	3.2 Bevis for Taylorpolynomiet	5
	3.2.1 Sætning 1	6
	3.2.2 Bevis	6
4	Diskussion/Vurdering	7
5	Konklusion	7
6	Litteraturliste	8
	6.1 Referenceliste	8
	6.2 Litteraturliste	8

1 Indledning

Matematik kan til tider synes firkantet og rigidt, hvor abstrakte forhold opskrives i eksakte formler, og hvor der ikke er plads til kreativitet. Dykker man dybere ind i faget vil man dog opdage, at dette ikke er tilfældet, og at der er mange situationer, hvor man gør kreativt brug af relativt ueksakte værktøjer. Et af disse er såkaldte Taylorpolynomier.

I matematikkens verden findes der alverdens slags funktioner, hvor nogle er mere medgørlige end andre. Nutidens computerteknik kræver desuden hurtig og praktisk behandling af alle disse formler, og i den forbindelse indtræder Taylorpolynomier ofte.

Taylorpolynomier er ingen ny opfindelse. De dukkede for første gang op i 17-18. århundrede, men hvordan blev de opdaget? Der er ingen tvivl om at de har haft stor indflydelse på måden som matematik bliver behandlet i dag, men hvordan ved man om de er korrekte, i hvilken grad ved man det, og hvorfor er det i det hele taget relevant i dag?

Denne opgave vil beskrive den historiske baggrund for Taylorrækken, bevise formlen for Taylorrækken, undersøge dens restled, samt undersøge hvilke praktiske anvendelser Taylorpolynomier har i dag.

2 Taylorrækkens historie

Matematikeren Brook Taylor (1685 - 1731) er navnefader til hvad vi i dag kalder Taylorpolynomier, efter at han i 1715 offentliggjorde en generel formel, der for samtidens matematikere var kendt som Proposition 7, Corollary 2 fra hans *Methodus*. Taylors formel ser således ud i sin moderne form:^{1,2}

$$f(x) = f(a) + f(x-a)\frac{f'(a)}{1!} + (x-a)^2 \frac{f''(a)}{2!} + \cdots$$

Dette kan naturligvis også skrives som:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

¹Roy 2021, s. 247.

²Feigenbaum 1985, s. 72.

Men Taylor var dog ikke den første der tænkte disse tanker. Man ved i dag, at der var mindst fem andre forløbere: James Gregory, Newton, Leibniz, Johann I. Bernoulli, og Abraham De Movre.³

2.1 Newton, Gregory og Bernoulli

Taylorpolynomier bygger på en indseelse, at der er en forbindelse mellem en funktions koefficienter og dens afledte. Denne indseelse viser Isaac Newton (1643 - 1727) for første gang i hans *Principia* (1687), og få år senere giver han et egentligt eksempel af Taylors formel i sin *De Quadratura Curvarum* (1691 - 92), som han aldrig færdiggjorde. Dele af denne tekst blev udgivet med titlen *Tractatus de Quadratura Curvarum*, men Taylors formel blev desværre udladt.⁴ Newton havde altså opdaget disse samme principper femogtyve år tidligere end Taylor, uden at de blev udgivet.

Newton havde i det hele taget svært ved at udgive sine findelser før han blev kendt i videre kredse, hvilket til tider voldte ham problemer i at blive anerkendt for sine opdageser.⁵

En af konsekvenserne af dette var den kendte kontroversi imellem Newton og Gottfried Wilhelb Leibniz (1646 - 1716), da de ifølge Mejlbo: "blev indviklede i en ulykkelig strid om ophavsretten til differential- og integralregningen. Den gik værst ud over Leibniz. Royal Society dømte ham - ganske uberettiget - for plagiat".⁶ En af Leibnitz' største fortalere i denne prioritetsstrid var Johann Bernoulli (1667 - 1748), som i slutningen af 1690'erne også havde udgivet en formel der lignede Taylors formel. Mejlbo skriver om Bernoulli at: "...han havde et voldsomt temperament, så han overfusede Taylor med beskyldninger for plagiat." mere om Bernoulli og Taylors rivalisering

Den tidligste opdager af Taylors formel var dog nok den Skotske matematiker James Gregory (1638 - 1675).

Mere om Gregory

³Feigenbaum 1985.

⁴Roy 2021, s. 248.

⁵Mejlbo 1983, s. 116.

⁶Ibid., s. 103.

⁷Ibid., s. 111.

3 Analyse

3.1 Pædagogisk gennemgang (arbejdstitel)

Man kan opnå en simpel intuitiv forståelse for Taylorpolynomier med følgende fremgangsmåde:

Man ønsker at approksimere en given funktion f(x) fra x-værdien x_0 . I dette eksempel bruges funktionen $f(x) = e^x$, og $x_0 = 1$.

Figur 1: Nulte- første- og andengrads Taylorpolynomium for e^x

Den simpleste approksimation kunne være en konstant funktion, som deler værdi med f(x) på x_0 (Figur 1, $gr \not o n$).

$$f(1) = e$$
.

Dette er funktionens nultegrads Taylorpolynomium, som er en meget grov approksimation, da den er konstant. Den kan dog forbedres ved at tilføje den korrekte hældning på punktet. Dette genkendes som ligningen for tangenten til grafen for f

i
$$P(x_0, f(x_0)).^8$$

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

$$\updownarrow = f(x_0) + f'(x_0) \cdot (x - x_0)$$

Den gældende funktion indsættes, og hermed findes funktionens førstegrads Taylor-polynomium ($Figur\ 1,\ blå$).

$$y = e + e \cdot (x - 1) \quad .$$

Nu er værdien samt hældningen på x_0 korrekt. For at forbedre approksimationen kan man tilføje den korrekte krumning.

3.2 Bevis for Taylorpolynomiet

Vi har indtil videre set, hvordan en tangent og en parabel blev brugt som en polynomisk approksimation for en funktion f(x). Vi kan generalisere denne approksimationsmetode tæt på $x = x_0$ med et n-tegrads polynomium.

$$P_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

således at polynomiets værdi på x_0 stemmer overens med $f(x_0)$. Det samme skal gælde for alle afledte, op til n gange afledte funktioner, dvs:

$$P_{n}(x_{0}) = f(x_{0}),$$

$$P'_{n}(x_{0}) = f'(x_{0}),$$

$$P''_{n}(x_{0}) = f'(x_{0}),$$

$$\vdots$$

$$P_{n}^{(n)}(x_{0}) = f^{(n)}(x_{0}).$$
(1)

Eftersom det er x_0 vi har interesse i, giver det mening at udtrykke P_n på formen:

$$P_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + \dots + c_n(x - x_0)^n$$
 (2)

For at finde konstanterne $c_0, c_1 \cdots c_n$ på punktet x_0 , kan vi ganske enkelt indsætte $x = x_0$ i $P_n(x), P'_n(x) \cdots P_n^{(n)}(x)$. Vi bruger desuden ligning (1) at forbinde konstanterne med $f(x_0)$

Den første konstant er åbenlys, når vi indsætter $x = x_0$ i ligning (2)

$$c_0 = P_n(x_0) = f(x_0)$$

⁸Schomacker et al. 2018, s. 24, frml. 130.

Derefter observerer vi den afledte funktion:

$$P'_n(x) = c_1 + 2c_2(x - x_0) + 3c_3(x - x_0)^2 + \dots + nc_n(x - x_0)^{n-1}$$
(3)

Vi kan nu på samme måde indsætte $x = x_0$ i ligning (3), og igen jævnføre med ligning (1), for at konkludere at:

$$c_1 = P'_n(x_0) = f'(x_0)$$

Vi fortsætter samme fremgangsmåde, og observerer nu $P''_n(x)$.

$$P_n''(x) = 2c_2 + 3 \cdot 2c_3(x - x_0) + \dots + n(n-1)c_n(x - x_0)^{n-2}$$
(4)

Når vi indsætter $x=x_0$ i ligning (4) sær vi at $2c_2=P_n''(x_0)=f''(x_0)$, hvilket betyder at:

$$c_2 = \frac{1}{2}f''(x_0).$$

Nu begynder et mønster at vise sig.

3.2.1 Sætning 1

Vi skal bevise at det n'te Taylorpolynomium P_n med udviklingspunkt a er givet ved:

$$P_n = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \frac{1}{3}f'''(a)(x - a)^3 + \dots + \frac{1}{n!}f^{(n)}(a)(x - a)^n$$

3.2.2 Bevis.

Ethvert polynomium P_n af højst n-te grad kan skrives således:

$$P_n(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + a_3(x - a)^3 + \dots + a_n(x - a)^n$$
 (5)

Hvis man indsætter x = a i ligning (5)

Der findes mange beviser for Taylors formel, men ingen af dem er helt ligefrem. De benytter altid et trick for at begynde beviset⁹. I dette bevis begynder man med at introducere en hjælpefunktion F(x) således at:

$$F(x) = f(b) - f(x) - f(x)(b - x) - \frac{f''(x)}{2!}(b - x)^{2} - \dots - \frac{f^{(n)}(x)}{n!}(b - x)^{n} - K(b - x)^{n-1}.$$
(6)

⁹Edwards and Penney 1998, A-44.

Konstanten K vælges således at f(a) = 0. Dette kan gøres eksplicit, ved at indsætte x = a på højre side, og F(x) = F(a) = 0 på venstre side af ligning (6), siden løse for K, men dette er ikke nødvendigt. Når man indsætter x = b i ligning (6), er det tydeligt at F(b) = 0.

Dette betyder at Rolles $sætning^{10}$ gælder, således at:

Rolles sætning:

Antag at f er kontinuert og differentiabel i [a,b]. Hvis f(a) = 0 = f(b), så findes der et tal c i (a,b)således at f'(c) = 0.

$$F'(z) = 0, (7)$$

for en værdi af z hvor (a < z < b).

Hvis man differentierer ligning (6), får man:

$$F'(x) = (0) - f'(x) + f'(x) - f''(x)(b - x)$$

$$+ f''(x)(b - x) - \frac{1}{2!}f^{(3)}(x)(b - x)^{2}$$

$$+ \frac{1}{2!}f^{(3)}(x)(b - x)^{2} - \frac{1}{3!}f^{(4)}(x)(b - x)^{3}$$

$$+ \dots + \frac{1}{(n-1)!}f^{(n)}(x)(b - x)^{n-1} - \frac{1}{n!}f^{(n+1)}(x)(b - x)^{n}$$

$$+ (n+1)K(b-x)^{n}$$

Ved tæt inspektion kan man indse, at alle led, pånær de sidste to, går ud med hinanden. Dette kollapser altså til:

$$F'(x) = (n+1)K(b-x)^n - \frac{f^{(n+1)}(x)}{n!}(b-x)^n.$$
 (8)

Derfor følger, at når man indsætter ligning (8) i ligning (7), får man: —

4 Diskussion/Vurdering

5 Konklusion

¹⁰Edwards and Penney 1998, s. 210.

6 Litteraturliste

6.1 Referenceliste

- Edwards, C. Henry and David E Penney (1998). Calculus with analytic geometry. 5. ed. Upper Saddle River, N.J: Prentice Hall. ISBN: 0137363311.
- Feigenbaum, Leonore (1985). "Brook Taylor and the Method of Increments". eng. In: Archive for history of exact sciences 34.1/2, pp. 1–140. ISSN: 0003-9519.
- Mejlbo, Lars C (1983). *Uendelige rækker : en historisk fremstilling*. dan. Elementærafdelingen ; 19. Århus Universitet. Matematisk institut. ISBN: 3527271244.
- Roy, Ranjan (2021). Series and Products in the Development of Mathematics. 2nd ed. Vol. 1. Cambridge University Press, pp. 247–272. ISBN: 9781108709453.
- Schomacker, Gert et al. (2018). *Matematisk formelsamling, stx, A-niveau.* 2. udg. Undervisningsministeriet. ISBN: 978-87-603-3166-4.

6.2 Litteraturliste

- 3Blue1Brown (2017). Taylor series / Chapter 11, Essence of calculus. URL: https://youtu.be/3d6DsjIBzJ4.
- Alsholm, Preben (2006). Approximation ved Taylorpolynomier. URL: https://alsholm.dk/people/P.K.Alsholm/01905/Noter/taylor.pdf.
- (2008). Taylorpolynomier og Taylors sætning. URL: https://alsholm.dk/people/P.K.Alsholm/01906/Beamer/Artikel/uge10article.pdf.
- Edwards, C. Henry and David E Penney (1998). Calculus with analytic geometry. 5. ed. Upper Saddle River, N.J. Prentice Hall. ISBN: 0137363311.
- Feigenbaum, Leonore (1985). "Brook Taylor and the Method of Increments". eng. In: Archive for history of exact sciences 34.1/2, pp. 1–140. ISSN: 0003-9519.
- (1981). Brook Taylor's Methodus incrementorum: a translation with mathematical and historical commentary. eng. Ann Arbor, Mich.
- *Kalkulus* (2006 2008). nor. 3. utgave. 2. opplag. Oslo: Universitetsforlaget. ISBN: 9788215009773.
- Madsen, Tage Gutmann (1991). Noter til Matematik 11, MATEMATISK ANAL-YSE. (Aarhus Universitet, Matematisk Institut).
- Mejlbo, Lars C (1983). *Uendelige rækker : en historisk fremstilling*. dan. Elementærafdelingen ; 19. Århus Universitet. Matematisk institut. ISBN: 3527271244.
- Roy, Ranjan (2021). Series and Products in the Development of Mathematics. 2nd ed. Vol. 1. Cambridge University Press, pp. 247–272. ISBN: 9781108709453.
- Schomacker, Gert et al. (2018). *Matematisk formelsamling, stx, A-niveau.* 2. udg. Undervisningsministeriet. ISBN: 978-87-603-3166-4.

- Star, Zack (2020). Dear Calculus 2 Students, This is why you're learning Taylor Series. URL: https://youtu.be/eX1hvWxmJVE.
- Undervisningsministeriet (2015). Forberedelsesmateriale til stx-A-net MATEMATIK "Følger og rækker".

Forsidebillede samt alle figurer er skabt af undertegnede.