TSUNAMI

EXECUTIVE SUMMARY:

The objective is to analyze the historic data about Tsunami and if climatic change caused by global warming has impacted the tsunami intensity or tsunami validity before and after 1900.

DATASET SOURCE:

The NCEI/WDS Global Historical Tsunami Database contains tsunami source information. The tsunami source data is related to tsunami runup data which contains information on locations where tsunami effects were observed.

NCEI archives and assimilates tsunami, earthquake, and volcano data to support research, planning, response, and mitigation. Long-term data can be used to establish the history of natural hazard occurrences and help mitigate future events. The natural hazards datasets are available through the HazEL (Hazardous Event Lookup) interface, developed by NCEI.

It has the following columns: Year, Month, Tsunami Event Validity, Tsunami Cause Code, Deposits, Country, Location Name, Number of Runups, Earthquake Magnitude, Latitude, Longitude, Maximum Water Height, Tsunami Intensity, Total Damage Description and After 1990.

Citation: National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. doi:10.7289/V5PN93H7

COLUMN EXPLANATION:

- 1. Year The year Tsunami occurred.
- 2. Month The month Tsunami occurred.
- 3. Tsunami Event Validity Valid values: -1 to 4, Validity of the actual tsunami occurrence is indicated by a numerical rating of the reports of that event:
 - a. -1 erroneous entry (removed)
 - b. 0 event that only caused a seiche or disturbance in an inland river/lake
 - c. 1 very doubtful tsunami
 - d. 2 questionable tsunami
 - e. 3 probable tsunami
 - f. 4 definite tsunami
- 4. Tsunami Cause Code: Valid values: 0 to 11, The source of the tsunami:
 - a. 0 Unknown
 - b. 1 Earthquake
 - c. 2 Questionable Earthquake
 - d. 3 Earthquake and Landslide

- e. 4 Volcano and Earthquake
- f. 5 Volcano, Earthquake, and Landslide
- g. 6 Volcano
- h. 7 Volcano and Landslide
- i. 8 Landslide
- j. 9 Meteorological
- k. 10 Explosion
- l. 11 Astronomical Tide
- 5. Deposits: Criteria commonly used to identify tsunami deposits includes sharp, erosive contact with underlying material, one or more layers of material that fine upward (grain size gets smaller toward the top of the layer), layers that thin landward and The Deposit is numbered based on the above information by geologists.
- 6. Country: Country name where the Tsunami occurred.
- 7. Location Name: The area along the coastline.
- 8. Number of Runups: Total Number of locations along the coastline where the tsunami wave reached a maximum height above the normal sea level.
- 9. Earthquake Magnitude: Size or Strength of the Earthquake (Using Richter Scale)
- 10. Latitude and Longitude: The location where the Tsunami originated.
- 11. Maximum Water Height: Maximum Elevation above the normal sea level that a tsunami wave reached at a specific location.
- 12. Tsunami Intensity: Potential impact of a tsunami event obtained from maximum water height," "runup height," and "inundation area". Defined by Soloviev and Go (1974) as, I = log (SQRT (2) * h) where h is the average runups height.
- 13. Total Damage Description:
 - a. 0 None
 - b. 1 Limited (<\$1 million)
 - c. 2 Moderate (~\$1 to \$5 million)
 - d. 3 Severe (~>\$5 to \$24 million)
 - e. 4 Extreme (~\$25 million or more)
- 14. After 1900: (Created this to compare the Tsunami intensity before and after 1900.
 - a. 0 Any year before 1900
 - b. 1 Any year after 1900

DATA CLEANING:

The dataset has 1433 rows x 47 columns. It had a lot of NaN values which needed to be removed. We used Python to remove the NaN.

Step I:

	= pd.read_tab	le('tsur																	Python
df																			Python
	Search Parameters	Year	Мо	Dy	Hr	Mn	Sec	Tsunami Event Validity	Tsunami Cause Code	Earthquake Magnitude	Total Missing	Total Missing Description	Total Injuries	Total Injuries Description	Total Damage (\$Mil)	Total Damage Description	Total Houses Destroyed	Total Houses Destroyed Description	Tota House Damage
	["0 <= Year >= 2023","Probable Tsunami <= Vali	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	NaN	46.0	NaN	NaN	NaN	NaN	NaN	4.0	6.0	6.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	NaN	79.0	8.0	24.0		NaN	NaN		4.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	NaN	103.0	NaN	NaN	NaN	NaN	NaN	3.0			NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
	NaN	142.0	NaN	NaN	NaN	NaN	NaN	3.0	1.0		NaN	NaN	NaN	NaN	NaN		NaN		Nal
1428	NaN	2022.0	11.0	22.0		3.0		4.0			NaN	NaN	3.0		NaN		NaN		Nal
1429	NaN	2022.0			NaN	NaN	NaN	4.0	6.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
1430	NaN	2023.0	1.0	9.0		47.0	35.0	4.0	1.0		NaN	NaN	NaN	NaN	NaN	2.0		1.0	
1431	NaN	2023.0					35.0	4.0			NaN	NaN	119200.0	4.0	39300.0	4.0	166581.0		Nal
1432	NaN	2023.0	3.0	16.0	0.0	56.0	2.0	4.0			NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
1433 ro	ws × 46 columns																		

Step II:

Step III: Adding a column 'After 1900' and values are 0 – if before 1900, 1 – if after 1900.

Cleaned Dataset: Now the dataset has 280 rows x 15 columns.

Obs	Year	Month	Tsunami Event Validity	Tsunami Cause Code	Deposits	Country	Location Name	Number of Runups	Earthquake Magnitude	Latitude	Longitude	Maximum Water Height (m)	Tsunami Intensity	Total Damage Description	After 1900
1	684	11	4	1	2	JAPAN	NANKAIDO	2	8.4	32.5	134	3	1	3	0
2	1026	6	3	1	1	JAPAN	OFF MASUDA, SHIMANE PREFECTURE	2	7.5	34.8	131.8	10	3	3	0
3	1096	12	4	1	3	JAPAN	ENSHUNADA	5	8.4	34	137.5	7	2	2	0
4	1433	11	4	1	0	JAPAN	OFF IZU-OSHIMA	1	7.1	34.9	139.5	2	1	3	(
5	1481	5	4	1	0	GREECE	ISLAND OF RHODES	1	7.1	36	28	3	3	3	
6	1495	9	4	1	0	JAPAN	KAMAKURA, SAGAMI BAY, TOKAIDO	2	7.1	35.1	139.5	5	2	1	(
7	1498	9	4	1	5	JAPAN	ENSHUNADA SEA	6	8.3	34	138.1	10	4	3	
8	1509	9	3	1	0	TURKEY	MARMARA SEA	1	7.7	40.8	28.1	6	3	4	(
9	1510	9	4	1	0	JAPAN	OSAKA BAY	1	6.7	34.6	135.4	2	1	1	(
10	1520	4	4	1	0	JAPAN	KII, KUMANANONADA	1	7	33.6	136.3	2	1	1	(
11	1586	7	4	1	0	PERU	CENTRAL PERU	6	8.5	-12.3	-77.7	26	3.5	3	
12	1596	9	4	3	0	JAPAN	BEPPU BAY, KYUSHU	2	6.9	33.3	131.7	5	2	3	(
13	1604	11	4	1	0	PERU	S. PERU	6	8.5	-17.88	-70.94	5	3.5	3	(
14	1605	2	4	1	4	JAPAN	NANKAIDO	10	7.9	33	134.9	10	3	3	(
15	1611	12	4	1	4	JAPAN	SANRIKU	11	8.1	39	144.5	25	4	3	-
16	1615	6	4	1	0	UKRAINE	BLACK SEA	1	5.7	44.9	35.5	1	2	1	-
17	1640	7	4	7	3	JAPAN	SE. HOKKAIDO ISLAND	3	6.5	42.07	140.68	8	1	1	(
18	1650	9	4	7	5	GREECE	THERA ISLAND (SANTORINI)	7	6.3	36.404	25.396	30	6	1	(
19	1662	10	4	1	0	JAPAN	HIUGANADA	3	7.6	31.7	132	1	2.5	2	
20	1670	12	4	1	0	JAPAN	BOSO, JAPAN	1	6.4	35.5	141	2	1	1	
21	1674	2	4	3	0	INDONES	BANDA SEA	33	6.8	-3.75	127.75	100	1.5	3	-
22	1677	4	4	1	0	JAPAN	SANRIKU	4	8.1	40	144	6	2	1	4
23	1677	11	4	1	2	JAPAN	OFF SE. BOSO PENINSULA	27	7.4	35	141.5	8	3	3	'
24	1693	1	4	1	3	ITALY	ISLAND OF SICILY	11	7.4	37.133	15.017	12	4	4	(
25	1703	12	4	1	2	JAPAN	OFF SW BOSO PENINSULA	48	8.2	34.7	139.8	11.7	3	4	•
26	1707	10	4	1	5	JAPAN	NANKAIDO	31	8.4	33.2	134.8	25.7	4	4	-
27	1711	9	4	1	0	INDONES	BANDA SEA	2	7	-4	129	1.2	1.5	1	
28	1711	12	4	1	0	JAPAN	SEIONAIKAI, JAPAN	1	6.7	34.3	134	2	1	3	(

STATISTICAL ANALYSIS:

1. First, we wanted to see the relationship between all the variables (except After 1900, Latitude, Longitude, Month and Year) and Tsunami Intensity. For this we decided to run a multiple linear regression model and see if we have significant model, find which variable is causing more impact and find how much variation in Tsunami Intensity is explained by all variables.

			A	Analysis of							
:	Source		DF	Sum of Squares		/lean uare	F V	alue	Pr > F		
I	Model		7	184.94564	26.4	2081	10.14		<.0001		
1	Error		272	708.73129	2.6	0563					
•	orrec	ted Total	279	893.67694							
						_					
		Root MS		1.614				0.2069	-		
	-	Depender Coeff Var		n 1.522		dj R-S	q).1865	-		
		Coen var		100.037	01						
			Р	arameter E	stimat	s					
Variable		Paran	neter								
variable	DF	Esti	mate	Standard Error	t Valu	e Pr	> t		dardized Estimate	Tolerance	
	1				t Valu		> t			Tolerance	Variance Inflation
Intercept		-1.3	mate	Error		4 0.	- ' '		Estimate	Tolerance 0.90729	Inflatio
Intercept Tsunami Event Validity	1	-1.3 -0.2	mate 2685	Error 1.40893	-0.9	4 0. 5 0.	3472		Estimate 0		Inflatio
Intercept Tsunami Event Validity Tsunami Cause Code Deposits	1	-1.3 -0.2 0.1	2685 9146	1.40893 0.27828	-0.9 -1.0	4 0.5 5 0.5 0 0.5	3472 2959		0 -0.05937	0.90729	1.1021 1.2010
Intercept Tsunami Event Validity Tsunami Cause Code	1 1	-1.3 -0.2 0.1	mate 2685 9146 3041 1936	1.40893 0.27828 0.11864	-0.9 -1.0 1.1	4 0.5 5 0.5 0 0.6 6 0.6	3472 2959 2727		0 -0.05937 0.06505	0.90729 0.83260	1.1021
Intercept Tsunami Event Validity Tsunami Cause Code Deposits Number of Runups	1 1 1	-1.3 -0.2 0.1 0.1 -0.0006	mate 2685 9146 3041 1936	1.40893 0.27828 0.11864 0.05518	-0.9 -1.0 1.1 2.1	4 0.5 5 0.5 0 0.6 6 0.4	3472 2959 2727 0314		0 -0.05937 0.06505 0.18333	0.90729 0.83260 0.40591	1.1021 1.2010 2.4636 2.4389
Intercept Tsunami Event Validity Tsunami Cause Code Deposits	1 1 1 1 1	-1.3 -0.2 0.1 0.1 -0.0006 0.3	mate 2685 9146 3041 1936 5208	1.40893 0.27828 0.11864 0.05518 0.00150	-0.9 -1.0 1.1 2.1 -0.4	4 0.5 5 0.5 0 0.6 6 0.6 4 0.6 1 0.6	3472 2959 2727 0314 6634		0 -0.05937 0.06505 0.18333 -0.03674	0.90729 0.83260 0.40591 0.41001	1.1021 1.2010 2.4636

- 2. The p value < 0.05, The regression model is significant. About $R^2 = 18.65 \%$ of variation in Tsunami Intensity is explained by the variables.
- 3. The Deposits, Earthquake Magnitude, Maximum Water Height, and Total Damage Description are having significant impact on the Tsunami intensity.
- 4. After this we decided to reduce the data using Factor Analysis.

Rotated Factor Pattern (Standardized Regression Coefficients)									
	Factor1	Factor2	Factor3	Factor4	Factor5				
Number of Runups	0.84312	0.22566	0.07598	0.00243	0.02335				
Deposits	0.81212	0.06340	0.24191	-0.02067	0.05805				
Total Damage Description	0.57139	-0.14426	-0.08910	-0.01601	-0.03549				
Earthquake Magnitude	0.55140	-0.10992	-0.36356	0.36790	-0.24463				
After 1900	0.06933	0.88084	0.00695	0.07960	-0.01405				
Year	0.06646	0.84532	0.00727	-0.03632	-0.13589				
Tsunami Intensity	0.43215	-0.48219	0.23430	0.06349	-0.07191				
Tsunami Cause Code	-0.04721	-0.03139	0.76837	-0.08528	0.01241				
Maximum Water Height (m)	0.15956	-0.04001	0.58782	0.15213	-0.04483				
Tsunami Event Validity	0.11045	0.17320	-0.06857	0.79821	0.29540				
Month	-0.28198	-0.13115	0.14235	0.66821	-0.22289				
Longitude	0.01680	-0.15016	-0.33960	0.01239	0.71923				
Latitude	-0.02231	-0.01503	0.39932	0.04937	0.70281				

5. Factor 1 – Effects of Tsunami (Deposits, Number of Runups), Factor 2 – Timeline (Year, After 1900), Factor 3 – Tsunami Cause Code, Factor 4 – (Month, Tsunami Event Validity) and Factor 5 – Location (Latitude and Longitude).

- 6. We saved the output of the factor analysis dataset as Tsunami_Factors with the factors as columns with the existing columns. (280 rows x 20 columns)
- 7. For the Tsunami_Factors dataset, we ran multiple linear regression between the new factors, Total Damage Description, Earthquake Magnitude and Maximum Water Height(m).

8. The p value < 0.05, The regression model is significant. About $R^2 = 55.42$ % of variation in Tsunami Intensity is explained by the variables.

0.08635

-1.42

0.1573

-0.07314

0.60074

1.66460

Total Damage Description

1

-0.12246

- All the factors are having significant impact on Tsunami Intensity except Maximum Water Height and Earthquake Magnitude. Factor 1 (Effects of Tsunami - Deposits, Number of Runups) is having the highest impact on Tsunami Intensity.
- 10. Now we use this dataset to run a Independent Sample t test to compare the average Tsunami Intensity before and after the year 1900.

Independent Two Sample	T Test Ca	se III (Left Tail)					
Sample 1 Mean,	\overline{x}_{1}	2.219					
Sample Standard Deviation	, S ₁	1.398					
Sample 1 Size,	n_1	105					
Sample 2 Mean,	\overline{X}_2	1.1025					
Sample 2 Standard Deviation	on, s ₂	1.8695					
Sample 2 Size,	n ₂	175					
Degree of Freedom, MIN(n	1 ₁ -1,n ₂ -1)	104					
Significance level,	α	0.05					
Finding t Score	t	5.684					
Using p Value Approach							
Finding p value		1.000					
Using Critical V	alue Appro	oach					
Finding t _{critical}		-1.660					

11. The p value > 0.05 implying that the mean of Tsunami intensity before 1900 was greater than the mean of Tsunami intensity after 1900.

CONCLUSION

We were able to conclude that climate change has no Impact on Tsunami across the globe based on the Data available in NCEI.

Done By:

Sharath Muruganandam Sathya Keshav Arigela Varun Mohankumar Jayasree