Groundwater

Prof. Kate Heal School of GeoSciences

Soil, Water & Atmospheric Processes

Ward & Robinson – Groundwater chapter

Rose – Chapter 10

(Ward & Robinson, 2000)

Introduction

- Groundwater part of the catchment hydrological cycle, but often overlooked
- Definition: "subsurface water beneath the water table in rocks and soils"

Lecture structure:

- Why interested in groundwater?
- Nature of groundwater store
- Groundwater movement
- Groundwater balance
- Groundwater management and development

Why interested in groundwater?

1) Catchment runoff

- Maintains river flows and wetlands when no precipitation
- Can be an important source of storm runoff

2) Water resources

- Accounts for 94% of global freshwater
- Good quality drinking water
- 35% of public water supply in England & Wales from groundwater

Nature of the groundwater store

Water storage in aquifers (1)

- Water-holding capacity depends on rock characteristics and geological setting
- Three important measures of suitability of rock as an aquifer:
- Porosity: availability of spaces between rock grains to hold water

Porosity (%) =
$$\frac{V_v}{V_t} \times 100$$

 V_V = volume of void space

V_t = total volume of rock

Material	Porosity (%)
Fine sandy alluvium	45-52
Gravel	25-40
Shale rock	5-15
Crystalline limestone	1-10
Chalk and oolitic limestone	5-30
Slate	<1-5
Granite	<1-10

Water storage in aquifers (2)

Permeability: measure of interconnectivity of pore spaces

Water storage in aquifers (3)

3. In confined aquifers the compressibility and elasticity of the aquifer as measured by the Coefficient of storage/storativity: volume of water released or taken into storage, per unit surface area of aquifer per unit change in pressure head

Undisturbed

Intergranular pressures from points of contact of rock grains

Porewater
pressures due
to weight of
contained
pore water

Total stress =

Intergranular pressures + Porewater pressures

Water withdrawn

- Water expands => decrease porewater pressure
- Conservation of fluid mass => total stress unchanged so intergranular pressures increase
- Result = compression of aquifer rock

Subsidence of ground surface

- E.g. <u>Bangkok</u>: subsidence, buildings & roads sinking, salinisation of aquifer
- <u>Solution</u> = increase groundwater abstraction charges

UK groundwater areas and usage

Groundwater movement

Darcy's Law: Q = KIA

Flow from areas of high pressure head to

areas of low pressure head

- Slow flow rates
 - Typically < 1 m day⁻¹
 - < 1 mm to 5.5 km day⁻¹

Calculation

(Ward & Trimble, 2004)

What is rate of water flow (in m³ day-¹) through a fine sandstone aquifer of cross-sectional dimensions 50 m x 1000 m and with a hydraulic gradient of 0.001 m m-¹?

- Darcy's Law, Q = KIA
- $K = 1 \text{ m day}^{-1}$, $I = 0.001 \text{ m m}^{-1}$, $A = 50 \text{ m x } 1000 \text{ m} = 50,000 \text{ m}^2$
- $Q = 1 \times 0.001 \times 50000 = 50 \text{ m}^3 \text{ day}^{-1}$

Groundwater balance: discharge and recharge

Discharge

Evapotranspiration
Seepage to surface water
Seepage to adjacent aquifers
Abstraction

Recharge

Precipitation

Seepage from surface water

Seepage from adjacent aquifers

Human recharge (artificial recharge, accidental - mains water pipes, irrigation leakage)

Problems of groundwater overabstraction (1)

Groundwater rebound in urban areas

Abstraction increased from chalk aquifer by 50 million litres day⁻¹ to relieve groundwater flooding in London

Subsidence

Problems of groundwater overabstraction (2)

Saline intrusion

Groundwater management in the UK

England & Wales

- 1963 Water Act: abstraction licensing introduced
- BUT over-generous licences => low flows
- 2003 Water Act: licences can be removed/varied without compensation

Scotland

 Abstraction licensing introduced as part of EU Water Framework Directive for abstractions > 50 m³ day⁻¹

Effects of groundwater overabstraction on river flows

Low flow case-study: Misbourne, Buckinghamshire

- From 1962, 65% of available water abstracted for public supply
- By 1997, 22.5/27 km dry and inadequate flow to dilute sewage effluent
- Flow alleviation: reduce groundwater abstraction by 15 million litres per day
- Flow returned to river in 1998 and recovery of aquatic life started

Groundwater Protection Policy for Scotland v3

November 2009

Environmental Policy Number 19

