24.11.19 Merkle Tree Opening Benchmark

Xun Zhang Wuyun Siqin Bingsheng Zhang Zhejiang University, CHN 22221024@zju.edu.cn 3210101763@zju.edu.cn bingsheng@zju.edu.cn

November 19 2024

1 Merkle Tree Root Benchmark

We implemented the whole Merkle tree root circuit, that is, given a vector of members, proving the Merkle tree root is correctly computed by all the leaf nodes(members).

degree	num	${f proof_time}$	proof_size	$\mathbf{verify_time}$
19	32	5.9280s	704	5.8417 ms
19	64	7.8385s	1056	4.8113ms
19	128	9.7901s	1408	10.0684 ms
19	256	13.9924s	2112	7.8568 ms
19	512	22.4310s	3520	9.3348 ms
19	1024	40.6768s	6688	8.6423 ms
19	2048	77.2907s	13024	11.2679 ms
19	4096	147.1965s	25344	17.7845 ms

Table 1: Merkle Tree Root Benchmark

We also list the benchmark results of the normal opening method of Merkle tree(by providing Merkle tree path).

degree	num_aggregation	num_origin	${f proof_time}$	proof_size	$\mathbf{verify_time}$
19	16	32	5.6890s	704	$6.5756 \mathrm{ms}$
19	32	64	7.6071s	1056	4.4714 ms
19	64	128	13.4401s	2112	7.6402 ms
19	128	256	23.2960s	3872	8.1395 ms
19	256	512	48.6304s	8448	11.6570 ms
19	512	1024	100.0534s	17600	13.6171 ms
19	1024	2048	213.2567s	38016	20.3142 ms

Table 2: Merkle Tree Path Benchmark with stake

2 Shuffle Argument in Halo2

We also benchmark the shuffle argument in the halo2, this circuit is the official imlpementation of shuffling.

degree	vector_length	$tuple_length$	${f proof_time}$	proof_size	$\mathbf{verify_time}$
14	1024	2	0.3576s	608	4.7292 ms
15	1024	2	0.6210s	608	4.7848 ms
14	2048	2	1.1507s	608	5.0151 ms
15	2048	2	1.9449s	608	$6.9806 \mathrm{ms}$
14	4096	2	1.1578s	608	$6.3846 \mathrm{ms}$
15	2048	2	2.1004s	608	$5.5532 \mathrm{ms}$
14	1024	3	1.3217s	736	4.9721 ms
15	1024	3	2.1634s	736	5.0851 ms
14	2048	3	1.3509s	736	10.3736 ms
15	2048	3	2.3449s	736	$6.6278 \mathrm{ms}$
14	4096	3	1.3925s	736	$6.6628 \mathrm{ms}$
15	4096	3	2.4891s	736	7.0279 ms

Table 3: Shuffle Benchmark

Where vector_length is the length of the set we want to prove the relations, and the tuple_length is the length of a tuple in the set.

For example, the length of tuple (pk_i, stake_i) is 2.

Note that when the vector_length is biggner than 1024, the program will meet a stack overflow in the layouter.assign_region function. Add RUST_MIN_STACK=16777216 before your command to solve it.