Diskrete Mathematik

Übung 4, Funktionen und Abzählbarkeit

Aufgabe 1

(a) Gegeben ist die Funktion $F: \mathbb{N} \to \mathbb{N}$ wobei

F(n) = Die Zahl n in ihrer Dezimaldarstellungrückwärts gelesen (fürende Nullen gestrichen).

Es gilt z.B. $F(324) = 423 \ F(0) = 0 \ \text{und} \ F(10) = 1$. Ist F surjektiv? Begründen Sie Ihre Antwort.

(b) Ist die Funktion

$$G: \mathbb{N} \to \mathbb{N}$$
 mit $G(x) = \begin{cases} \frac{x}{2} & \text{falls } x \text{ gerade} \\ 2x & \text{sonst.} \end{cases}$

surjektiv? Begründen Sie Ihre Antwort.

Aufgabe 2

Wir betrachten die Mengen A und B, die wie folgt gegeben sind:

A := endliche Wörter die mit Buchstaben 'a' und 'b' gebildet werden können

B :=endliche Wörter die mit Buchstaben 'a', 'b', 'c' gebildet werden können

Geben Sie je eine surjektive Funktion $F:A\to B$ und eine surjektive Funktion $G:B\to A$ an.

Aufgabe 3

Wir betrachten die Menge Seq aller Tupel (beliebiger Länge) von natürlichen Zahlen. Es gilt beispielsweise $(2,4,55) \in Seq$, $(1,1,1,1) \in Seq$ etc... Geben Sie eine surjektive Funktion $F: \mathbb{N} \to Seq$ an. Diskutieren Sie was so eine Funktion für die Abzählbarkeit der Menge Seq bedeutet.

Aufgabe 4

Skizzieren Sie eine Abzählung von der Menge $\mathbb{Z} \times \mathbb{Z}$ (ähnlich wie wir dies für die Menge $\mathbb{N} \times \mathbb{N}$ in der Vorlesung getan haben).

Aufgabe 5

Beweisen Sie: Wenn X und Y abzählbar sind, dann ist auch $X \times Y$ abzählbar. Hinweis: Benützen Sie die Abzählbarkeit von $\mathbb{N} \times \mathbb{N}$.

Aufgabe 6 ("Bonusaufgabe")

Finden Sie eine Menge $M = \{X_i \mid i \in I\}$ von Mengen, die folgende Eigenschaften hat:

Diskrete Mathematik Übung 4

1. M ist überabzählbar (insbesondere muss also I überabzählbar sein).

- 2. Alle X_i sind unendliche Teilmengen von $\mathbb{N}.$
- 3. Für beliebige verschieden
e $i,j\in I$ gilt, dass $X_i\cap X_j$ endlich ist.