

Estadística III para In

Jose Daniel Ramirez Soto 2023 jdr2162@columbia.edu

Agenda

RandomForest

G B M


```
anuncios varios

Tarea 2 entrega lunes 8 de Mayo 2023(Preguntas modelos de analitica (machine learning-ML) Super Árboles

Árboles simples

Matemática de los árboles
```

Supervisado, Árboles

Árbolesson modelos que se par a liplizando datos históri basados en la capacidad de una variable de di los datos. Funcionan muy bi $_{X[0] <= 2.702}$ datos categóricos. Si la variable $\begin{vmatrix} gini = 0.5 \\ samples = 80 \end{vmatrix}$ vo es: cont: i nlúa predicción es el $X[1] \le 0.957$ gini = 0.219 samples = 40 value = [35, 5] $X[1] \le 0.957$ gini = 0.18 samples = 40 value = [4, 36] vecinos. value = [4, 36] b j e t i v o categó niacapredicción est gini = 0.32 gini = 0.0 samples = 5 samples = 35 más común Los parámetros a definir so |value = [4, 1]| o |value = [0, 35] ad d árbol, numero mínimo de samples entre otros.

* A Course of Machine Learning http://ciml.info/

Entropía , Como funcionan

Information Entropy

• For a Bernoulli trial (X = {0,1}) the graph of entropy vs. Pr(X = 1). The highest H(X) = 1 = log(2)

$$H_{(S)} = \sum_{i=1}^{C} -p_i \log_2 p_i$$

$$H_{(T,X)} = \sum_{c \in X} p_{(c)} H_{(c)}$$

$$Gain_{(T,X)} = H_{(T)} - H_{(T,X)}$$

Calcular el árbol a mano

Туре	DriveTrain	Cylinders	EnvFriendly
Sedan	All	6.0	0
SUV	All	6.0	0
Wagon	Front	4.0	1
Sedan	Rear	8.0	0
Sedan	Front	4.0	1
SUV	Front	4.0	1
SUV	All	6.0	0
Sedan	All	6.0	0
Sedan	All	6.0	0
Sedan	Front	4.0	1
Sports	Rear	6.0	0
Wagon	Rear	6.0	0
Wagon	All	6.0	0
Sedan	Front	6.0	1
Sedan	Rear	8.0	0
SUV	All	6.0	0
Wagon	All	4.0	1
Sports	Rear	4.0	1
SUV	All	8.0	0
Sedan	Front	6.0	0

$$H_{(S)} = \sum_{i=1}^{C} -p_i \log_2 p_i$$

$$H_{(T,X)} = \sum_{c \in X} p_{(c)} H_{(c)}$$

$$Gain_{(T,X)} = H_{(T)} - H_{(T,X)}$$


```
H(EnvFriendly, DriveTrain) = p(Train=All)H(Tr
           p(Train=Front) H(Train=Front) +
```

p (Train=Rear) 10 (. T6r4a5i6n8=8R9:5a29 =

Gain (Env Frind IOy., 90 8 i4 v0 e6 T 8r. Oa 45 45 5, 6 8 8 9 . 5 22 89 8 3= 7 9 1 0 2 5

GaidmiveTrain es mayor que la ganancia de la variable Type

se of Machine Learning http://ciml.info/

Algoritmo árboles simples

Algorithm 8.1 Building a Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Bootstrap y Árboles

"The bootstrap is a widely applicable and extremely powe the uncertainty associated with a g'' interpolation of the learning

Consiste en crear muchos experimentos tomando pequeñas reducir la varianza.

Bagging y Árboles

"Bootstrap aggregation, or bagging, is a general-purpose learning method; we introduce it here because it is partree because it is partree because it is partree because it is partree.

Uso: Entrenar muchos árboles y crear un promedio ponde

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

Random Forest (Árboles)

"Random forests provide an improvement over bagged decorrelates the trees. As in bagging, we build a nu But when building these decision trees, each time a predictors is chosen as split candiackanters on frame in the declaration.

Entrenar muchos árboles en paralelo utilizando diferentes muestras

Boosting GBM(Árboles)

"Boosting works in a similar way, except that the tinformation from previously grown trees. Boosting do on a modified version TaOkfentshreem OATnilgnit na aductia otnatos esta tistica

Boosting

GBM(Árboles)

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)