§2. Простейшие свойства несобственных интегралов с бесконечными пределами

Теорема 2.1 (свойство аддитивности). Пусть a < A. Если сходится интеграл $\int\limits_a^{+\infty} f(x) dx$, то сходится и интеграл $\int\limits_A^{+\infty} f(x) dx$, и наоборот. При этом выполняется равенство

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{+\infty} f(x)dx.$$
 (2.1)

ightharpoonup Пусть a < A < b. Тогда по свойству аддитивности для собственного интеграла имеем

$$\int_{a}^{b} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{b} f(x)dx.$$

Если при $b \to +\infty$ существует предел справа, то существует предел слева, и наоборот. В пределе получаем равенство (2.1). \triangleleft

Теорема 2.2 (свойство линейности). Если сходятся интегралы $\int_{a}^{+\infty} f_1(x) dx$,

 $\int\limits_a^{+\infty} f_2(x) dx$, то сходится и интеграл $\int\limits_a^{+\infty} [C_1 f_1(x) + C_2 f_2(x)] dx$, и имеет место равенство

$$\int_{a}^{+\infty} \left[C_{1} f_{1}(x) + C_{2} f_{2}(x) \right] dx = C_{1} \int_{a}^{+\infty} f_{1}(x) dx + C_{2} \int_{a}^{+\infty} f_{2}(x) dx.$$
 (2.2)

▶ По свойству аддитивности для собственного интеграла имеем:

$$\int_{a}^{b} \left[C_{1} f_{1}(x) + C_{2} f_{2}(x) \right] dx = C_{1} \int_{a}^{b} f_{1}(x) dx + C_{2} \int_{a}^{b} f_{2}(x) dx.$$

Переходя к пределу при $b \to +\infty$, получим формулу (2.2). \blacktriangleleft

Теорема 2.3. Если интеграл $\int_{a}^{+\infty} f(x)dx$ сходится, то

$$\lim_{A \to +\infty} \int_{A}^{+\infty} f(x)dx = 0. \tag{2.3}$$

Из формулы (2.1) получаем:

$$\int_{A}^{+\infty} f(x)dx = \int_{a}^{+\infty} f(x)dx - \int_{a}^{A} f(x)dx \xrightarrow{A \to +\infty} \int_{a}^{+\infty} f(x)dx - \int_{a}^{+\infty} f(x)dx = 0. \blacktriangleleft$$

Аналогичные теоремы имеют место и для других интегралов с бесконечными пределами.

Формула Ньютона – Лейбница для интегралов с бесконечными пределами. Подынтегральная функция f(x) предполагается непрерывной в

промежутке интегрирования, а потому для нее существует первообразная F(x). Если существуют пределы

$$\lim_{x \to +\infty} F(x) = F(+\infty), \lim_{x \to -\infty} F(x) = F(-\infty), \tag{2.4}$$

то имеют место формулы

$$\int_{a}^{+\infty} f(x)dx = F(x)\Big|_{a}^{+\infty} = F(+\infty) - F(a), \qquad (2.5)$$

$$\int_{-\infty}^{b} f(x)dx = F(x)\Big|_{-\infty}^{b} = F(b) - F(-\infty),$$
 (2.6)

$$\int_{-\infty}^{+\infty} f(x)dx = F(x)\Big|_{-\infty}^{+\infty} = F(+\infty) - F(-\infty). \tag{2.7}$$

Они распространяют формулу Ньютона – Лейбница, известную для собственных интегралов, на случай интегралов несобственных.

▶ Проведём, например, обоснование формулы (2.5):

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx = \lim_{b \to +\infty} F(x)\Big|_{a}^{b} = \lim_{b \to +\infty} F(b) - F(a) = F(+\infty) - F(a). \blacktriangleleft$$

Пример 2.1. Вычислить интеграл $\int_{1}^{+\infty} \frac{dx}{x^2(1+x^2)}$.

Пример 2.2. Вычислить интеграл $\int_{-\infty}^{+\infty} \frac{dx}{(1+|x|)^2}$.

На сходящиеся несобственные интегралы распространяются формулы интегрирования по частям и замены переменной.

Формула интегрирования по частям для несобственного интеграла первого рода. Пусть функции u(x) и v(x) имеют непрерывные производные в промежутке $[a,+\infty)$. Тогда справедлива формула интегрирования по частям

$$\int_{a}^{+\infty} u dv = uv \Big|_{a}^{+\infty} - \int_{a}^{+\infty} v du$$
 (2.8)

в случае, когда любые два слагаемых из трех в формуле (2.8) существуют и конечны, что означает существование конечных пределов

$$\lim_{b \to +\infty} \int_{a}^{b} u dv, \lim_{b \to +\infty} \left(uv \Big|_{a}^{b} \right) \lim_{b \to +\infty} \int_{a}^{b} v du. \tag{2.9}$$

► Применим формулу интегрирования по частям к собственному интегралу

 $\int_{a}^{b} u dv$: $\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$. Перейдем в это равенстве к пределу при $b \to +\infty$. Существование двух из трех пределов (2.9) обеспечивает существование третьего. В пределе получаем равенство (2.8). ◀

Пример 2.3.
$$\int_{a}^{+\infty} x e^{-x} dx = \begin{bmatrix} u = x \\ dv = e^{-x} dx \end{bmatrix} du = dx \\ v = -e^{-x} \end{bmatrix} = -xe^{-x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x} dx = 0 - e^{-x} \Big|_{0}^{+\infty} = 0 + 1 = 1.$$

Формулы, аналогичные (2.8), имеют место и для двух других типов интегралов с бесконечными пределами.

Формула замены переменной интегрирования для несобственного интеграла первого рода. Рассмотрим эту формулу для случая интеграла с бесконечным верхним пределом. Аналогичные формулы имеют место и для других несобственных интегралов первого рода.

Теорема 2.4. Пусть функция f(x) непрерывна на промежутке $[a,+\infty)$. Пусть, далее, функция $x = \varphi(t)$

- 1) имеет непрерывную производную $\varphi'(t)$ в промежутке $[\alpha, \beta)$ (случай $\beta = \infty$ не исключается),
 - 2) строго монотонна в $[\alpha, \beta)$,
 - 3) удовлетворяет условию $\varphi(\alpha) = a$; $\lim_{t \to \beta 0} \varphi(t) = +\infty$.

Тогда справедлива формула замены переменной

$$\int_{\alpha}^{+\infty} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt$$
 (2.10)

в случае, когда интеграл справа (или слева) в формуле (2.10) существует и конечен.

▶ Возьмем любое число γ , удовлетворяющее условию: $\alpha < \gamma < \beta$. По теореме о замене переменной в собственном определенном интеграле справедлива формула

$$\int_{\alpha}^{\gamma} f[\varphi(t)]\varphi'(t)dt = \int_{\alpha}^{\varphi(\gamma)} f(x)dx.$$
 (2.11)

В этом равенстве перейдем к пределу при $\gamma \to \beta - 0$ и учтем, что $\lim_{\gamma \to \beta - 0} \varphi(\gamma) = +\infty$. Если существует конечный предел одной из частей равенства (2.11), то существует и другой. В пределе получим равенство (2.10).

Пример 2.4. Вычислить интеграл
$$J = \int_{4}^{+\infty} \frac{dx}{(1+\sqrt{x})^3}$$
.

► Сделаем подстановку: $\sqrt{x}=z$; $x=z^2$; dx=2zdz; $x=4\Rightarrow z=2$; $x\to +\infty\Rightarrow z\to +\infty$. Имеем

$$J = 2 \int_{2}^{+\infty} \frac{zdz}{(1+z)^3} = 2 \int_{2}^{+\infty} \frac{(z+1)-1}{(z+1)^3} dz = 2 \int_{2}^{+\infty} \frac{dz}{(z+1)^2} - 2 \int_{2}^{+\infty} \frac{dz}{(z+1)^3} = -2 \frac{1}{z+1} \Big|_{2}^{+\infty} - \frac{1}{-2(z+1)^2} \Big|_{2}^{+\infty} = \frac{2}{3} - \frac{1}{9} = \frac{5}{9}.$$