WHAT IS CLAIMED IS:

1. A compound having a formula I,

$$\begin{array}{c|c} & & & & \\ \hline A & D_b - X - D_a & & & \\ \hline & I & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \hline \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ \end{array} \qquad \begin{array}{c} & & & \\ & & & \\ \end{array} \qquad \begin{array}{c} & & \\$$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

A is:

5

10

15

20

- a) aryl,
- b) a 5- to 10-membered heteroaryl wherein the heteroaryl containing at least one heteroatom selected from N, O or S,
- c) C₃-C₈ cycloalkyl,
- d) aliphatic group, or
- e) heterocyclyl,

wherein aryl, heteroaryl, cycloalkyl, heterocyclyl and aliphatic group being optionally substituted with one or more groups independently selected from R⁸;

Da and Db are each independently:

a bond or

- $[C(R^c)(R^d)]_n$, wherein R^c and R^d are each independently hydrogen, C_1 - C_6 alky 1 or aryl;

Q is: $-C(O)OR^5$ or R^{5A} ;

X is: NR⁶C[O]_p,

25 NR⁶S(O)₂,

C[O]_p,NR⁶,

S(O)₂NR⁶ or

NR⁷;

Y is: a bond, CH₂, S or O;

$$A - D_b - X \stackrel{\downarrow}{\longrightarrow} is:$$

$$(R^8)_q$$
 $N-D_a$
or $(R^8)_q$
 O

n and r are each independently: 1, 2, 3 or 4;

5 q is: 1, 2, 3, 4 or 5;

p is: 1 or 2;

R¹ and R² are each independently: hydrogen, C₁-C₆ alkyl, halo or haloalkyl;

10 R³ and R⁴ are each independently:

hydrogen,

halo,

C₁-C₆ alkyl,

C₁-C₆ alkoxy or

15 aryloxy;

 R^3 and R^4 are together a 3- to 6- membered carbocyclyl or heterocyclyl;

R⁵ is: hydrogen, C₁-C₆ alkyl or aminoalkyl;

20 R^{5A} is: carboxamide, sulfonamide, acylsulfonamide, tetrazole,

R⁶ is each independently:

hydrogen,

5 C_1 - C_{12} alkyl,

arylalkyl,

C₃-C₈ cycloalkyl, or

 $(CH_2)_nC(O)$ aryl,

wherein alkyl, arylalkyl and cycloalkyl group being optionally substituted with one or more groups independently selected from R⁸;

R⁷ is: hydrogen,

10

acyl, or

sulfonyl;

15 R⁸ and R^{8a} are each independently:

hydrogen,

C₁-C₆ alkyl,

C₁-C₆ alkoxy,

nitro,

20 cyano,

halo,

haloalkyl,

haloalkyloxy,

aryl,
heteroaryl,
benzyl,
aryloxy, SR^9 , $S[O]_pR^9$ or $C[O]_pR^9$; and

R⁹ is: hydrogen, C₁-C₆ alkyl, or C₃-C₈ cycloalkyl.

10

25

- 2. The compound of Claim 1, wherein aryl or heteroaryl are selected from the group consisting of phenyl, naphthyl, indolyl, isoindolyl, benzoimidazolyl, quinolinyl, isoquinolinyl, pyridyl, benzothiophenyl and benzofuranyl.
- 15 3. The compound of Claim 2, wherein the compound having a structural formula II,

$$(R^8)_q$$
 D_b
 X
 D_a
 $(R^1)_r$
 $(R^2)_r$
 $(R^2)_r$
 $(R^3)_r$
 $(R^3)_r$
 $(R^3)_r$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

- 20 q is 1, 2, 3, 4, or 5.
 - 4. The compound of Claim 3, wherein \mathbb{R}^8 is disubtituted in 2 and 4 positions, or trisubstituted in 2, 4, and 6 positions of phenyl ring relative to $-D_b$ -.

5. The compound of Claim 3, wherein the compound having a structural formula III,

$$(R^8)_1 \qquad (R^8)_2 \qquad R^6 \qquad R^1 \qquad Y \qquad OH$$

$$O \qquad R^3 \qquad R^4 \qquad III$$

5 or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

Y is: O or CH2;

10

R¹ is: hydrogen, halo or C₁-C₄ alkyl;

 R^2 , R^3 and R^4 , R^6 , R^c and R^d are each independently: hydrogen or C_1 - C_4 alkyl;

 $(R^8)_1$ and $(R^8)_2$ are each independently: hydrogen, halo, haloalkyl or haloalkyloxy, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy or SR^9 ;

R⁶ is: hydrogen or C₁-C₄ alkyl; and

R⁹ is: hydrogen or C₁-C₄ alkyl or C₃-C₆ cycloalkyl

6. The compound of Claim 5, wherein the compound having a

15 structural formula IV,

$$(R^8)_1 \qquad (R^8)_2 \qquad R^6 \qquad R^1 \qquad R^2 \qquad H_3C \qquad O \\ R^6 \qquad R^6 \qquad N \qquad R^2 \qquad CH_3 \qquad OH$$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

 R^1 and R^2 are each independently: hydrogen, halo or C_1 - C_4 alkyl;

20 R^c, R^d and R⁶ are each independently: hydrogen or methyl; and

 $(R^8)_1$ and $(R^8)_2$ are each independently:

hydrogen, F, Cl, Br, OMe, CF₃, OCF₃, SCH₃, NO₂, cyano, methyl, ethyl, isobutyl, isopropyl or *tert*-butyl.

10

15

7. The compound of Claim 6, wherein the compound having a structural formula V,

$$(R^8)_1 \qquad (R^8)_2 \qquad R^1 \qquad R^2 \qquad H_3C \qquad O \\ H \qquad \qquad O \qquad CH_3 \qquad V$$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

 R^1 and R^2 are each independently: hydrogen, methyl, ethyl or fluoro; and $(R^8)_1$ and $(R^8)_2$ are each independently:

hydrogen, F, Cl, Br, OMe, CF₃, OCF₃, SCH₃, NO₂, cyano, methyl, ethyl, isobutyl, isopropyl or *tert*-butyl.

8. The compound of Claim 7, wherein the compound having a structural formula VI,

or a pharmaceutically acceptable salt or stereoisomer thereof.

9. The compound of Claim 3, wherein the compound having a structural formula VII,

VII

5 or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

R¹ and R² are each independently: hydrogen, halo or C₁-C₄ alkyl;

R⁶ is: hydrogen or C₁-C₄ alkyl;

 R^8 is: hydrogen, halo, haloalkyl or haloalkyloxy, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy or SR^9 ; and

10 R^9 is: hydrogen or C_1 - C_4 alkyl or C_3 - C_6 cycloalkyl.

10. The compound of Claim 9, wherein R¹, R² and R⁶ are each independently hydrogen or methyl; and R⁸ is hydrogen, F, Cl, Br, OMe, CF₃, OCF₃, SCH₃, NO₂, methyl, ethyl, isobutyl, isopropyl or *tert*-butyl.

15

11. The compound of Claim 1, wherein the compound having a structural formula VIII,

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

q is 1, 2, 3 or 4; and

E is S, O or NR^{10} wherein R^{10} is hydrogen or C_1 - C_4 alkyl.

12. The compound of Claim 11, wherein the compound having a structural formula IX,

$$(R^8)_1$$

$$R^8$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^3$$

$$R^4$$

$$R^3$$

$$R^4$$

5 or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

Y is: O or CH₂;

E is: S, O, NH or NCH₃, NCH₂CH₃;

R¹ is: hydrogen, C₁-C₄ alkyl, halo or haloalkyl;

 R^2 , R^3 and R^4 , R^6 , R^c and R^d are each independently: hydrogen or C_1 - C_4 alkyl;

10 (R⁸)₁ and (R⁸)₂ are each independently: hydrogen, halo, haloalkyl, haloalkyloxy, cyano, nitro, C₁-C₆ alkyl or C₁-C₆ alkoxy; and

 R^8 is: hydrogen or C_1 - C_4 alkyl.

13. The compound of Claim 12, wherein the compound having a

15 structural formula X,

$$(R^8)_1$$

$$R^8$$

$$R^1$$

$$R^2$$

$$O$$

$$OH$$

$$X$$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

 R^1 and R^2 are each independently: hydrogen, halo or $C_1\text{-}C_4$ alkyl;

20 (R⁸)₁ is: hydrogen, F, Cl, Br, OMe, CF₃, OCF₃, SCH₃, NO₂, cyano, nitro, methyl, ethyl, isobutyl, isopropyl or *tert*-butyl;

R⁸ is: hydrogen, methyl, ethyl or propyl; and

'5

10

20

R¹⁰ is: hydrogen, methyl or ethyl.

14. The compound of Claim 12, wherein the compound having a structural formula XI,

$$(R^8)_1$$

$$R^8$$

$$R^1$$

$$R^2$$

$$H_3C$$

$$O$$

$$CH_3$$

$$O$$

XI

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

R¹ and R² are each independently: hydrogen, halo or C₁-C₄ alkyl;

(R⁸)₁ is: hydrogen, F, Cl, Br, OMe, CF₃, OCF₃, SCH₃, NO₂, cyano, nitro, methyl, ethyl, isobutyl, isopropyl or *tert*-butyl;

R⁸ is: hydrogen, methyl, ethyl or propyl; and

R¹⁰ is: hydrogen, methyl or ethyl.

The compound of Claim 12, wherein the compound having a structural formula XII,

or a pharmaceutically acceptable salt.

16. The compound of Claim 12, wherein the compound having a structural formula XIII,

$$(R^8)_1$$

$$R^8$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^6$$

$$R^3$$

$$R^4$$

$$R^3$$

ΧШ

5 or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

Y is: O or CH₂;

R¹ is: hydrogen, C₁-C₄ alkyl, halo or haloalkyl;

R², R³, R⁴, R⁶, R^c and R^d are each independently: hydrogen or C₁-C₄ alkyl;

R⁸ are each independently: hydrogen or C₁-C₄ alkyl; and

- 10 $(R^8)_1$ is: hydrogen, halo, haloalkyl or haloalkyloxy, cyano, nitro C_1 - C_6 alkyl or C_1 - C_6 alkoxy.
 - 17. The compound of Claim 16, wherein Y is O or CH₂; R¹ is hydrogen, methyl, F, Br or Cl; R² is hydrogen, methyl or ethyl; R³, R⁴, R⁶, R⁸, R^c and R^d are each independently hydrogen or methyl; and (R⁸)₁ is hydrogen, F, Cl, Br, OMe, CF₃, OCF₃, SCH₃, NO₂, cyano, nitro, methyl, ethyl, isobutyl, isopropyl or *tert*-butyl.
 - 18. The compound of Claim 15, wherein the compound having a structural formula XIV,

20

15

15

20

or a pharmaceutically acceptable salt.

19. The compound of Claim 15, wherein the compound having a structural formula XV,

$$Cl$$
 S
 CH_3
 H
 O
 CH_3
 O
 OH
 OH
 OH

or a pharmaceutically acceptable salt.

20. The compound of Claim 1, wherein the compound having a structural formula XVI,

$$(R^8)_q \qquad R^c \qquad R^6 \qquad \qquad R^1 \qquad Y \qquad OH$$

$$(C)_n \qquad N \qquad O$$

$$R^1 \qquad Y \qquad OH$$

$$R^3 \qquad R^4 \qquad OH$$

$$XVI$$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein: n is 1, 2, 3, or 4.

21. The compound of Claim 20, wherein Y is O or CH_2 ; R^1 , R^2 , R^3 , R^4 R^c and R^d are each independently hydrogen or C_1 - C_4 alkyl; n is 1 or 2; R^6 is hydrogen, C_1 - C_6 alkyl or arylalkyl; and R^8 is hydrogen, C_1 - C_6 alkoxy, halo or haloalkyl.

22. The compound of Claim 1, wherein the compound having a structural formula XVII,

$$(R^{8a})_s \qquad (R^{1})_r \qquad (R^{2})_r \qquad \qquad (R^$$

- 5 or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:
 - R^{8a} is hydrogen, C_1 - C_4 alkyl or aryl; and s is 1, 2, 3, 4, 5 or 6.
 - 23. The compound of Claim 22, wherein the compound having a structural formula XVIII,

10

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

R² is: hydrogen or C₁-C₄ alkyl,

 R^8 is: hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo, haloalkyl or haloalkyloxy;

15 R^{8a} is: hydrogen, methyl, or phenyl; and

q is: 1 or 2.

24. The compound of Claim 1, wherein the compound having a structural formula XIX,

$$(R^8)_q \qquad (R^1)_r \qquad (R^2)_r \qquad Y \qquad Q$$

$$R^c \qquad R^7 \qquad R^2 \qquad R^3 \qquad R^4$$

XIX

- 5 or a pharmaceutically acceptable salt or stereoisomer thereof.
 - 25. The compound of Claim 24, wherein Q is COOH; R^7 is hydrogen, mathanesulfonyl or acetyl; and R^c and R^d are each hydrogen.

26. A compound selected from the group consisting of:

No	Structure	Name
1	F CI CH ₃ H ₃ C OH	2-(4-{3-[(2-Chloro-4- trifluoromethyl- benzoylamino)-methyl]-5- fluoro-phenoxy}-2-methyl- phenoxy)-2-methyl- propionic acid
2	CI CH ₃ OH	3-[4-(3-{[(5-Chloro-1H-indole-2-carbonyl)-amino]-methyl}-5-fluoro-phenoxy)-2-methyl-phenyl]-propionic acid
3	F CH ₃ F CH ₃ OH CH ₃ OH	2-(4-{3-Fluoro-5-[1-(2-methyl-4-trifluoromethyl-benzoylamino)-ethyl]-phenoxy}-2-methyl-phenoxy)-2-methyl-propionic acid (isomer 1)
4	CI CH ₃ CH ₃ CH ₃ OH CH ₃ OH	2-[4-(3-{[(5-Chloro-3-methyl-benzo[b]thiophene-2-carbonyl)-amino]-methyl}-5-methyl-phenoxy)-2-methyl-phenoxy]-2-methyl-propionic acid

No	Structure	Name
5	CI Chiral F CH ₃ O OH	(R)-3-[4-(3-{1-[(5- Chloro-1,3-dimethyl-1H- indole-2-carbonyl)-amino]- ethyl}-5-fluoro-phenoxy)- 2-methyl-phenyl]- propionic acid
6	F F CH ₃ OH	3-(2-Ethyl-4-{3-fluoro-5- [(2-methyl-4- trifluoromethyl- benzoylamino)-methyl]- phenoxy}-phenyl)- propionic acid
7	F F CH ₃ CH ₃ H ₃ C O OH	2-(4-{3-[(2-Fluoro-4-trifluoromethyl-benzoylamino)-methyl]-5-methyl-phenoxy}-2-methyl-phenoxy)-2-methyl-propionic acid
8	CI CH ₃ CH ₃ CH ₃ H ₃ C OH CH ₃	(R)-2-[4-(3-{[(5-Chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-methyl}-5-methyl-phenoxy)-2-methyl-phenoxy]-2-methyl-propionic acid
9	CH ₃ OH	3-[4-(3-Fluoro-5-{[(5-fluoro-3-methyl-1H-indole-2-carbonyl)-amino]-methyl}-phenoxy)-2-methyl-phenyl]-propionic acid
10	F CH ₃ H ₃ C OH CH ₃ H ₃ C OH	2-[4-(3-Fluoro-5-{[(5-fluoro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-methyl}-phenoxy)-2-methyl-phenoxy]-2-methyl-propionic acid
11	Chiral CH ₃ CH ₃ OH	(R) -3-[4-(3-{1-[(5-Fluoro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-ethyl}-5-methyl-phenoxy)-2-methyl-phenyl]-propionic acid

No	Structure	Name
12	F CH ₃ H ₃ C O OH	2-Methyl-2-(2-methyl-4- {3-[(2-methyl-4- trifluoromethyl- benzoylamino)-methyl]- phenoxy}-phenoxy)- propionic acid
13	F CH ₃ H ₃ C O OH OH	2-(4-{3-Fluoro-5-[(2-methyl-4-trifluoromethyl-benzoylamino)-methyl]-phenoxy}-2-methyl-phenoxy)-2-methyl-propionic acid
14	Chiral F CH ₃ OH	(R) -3-[4-(3-Fluoro-5-{1- [(5-fluoro-1,3-dimethyl- 1H-indole-2-carbonyl)- amino]-ethyl}-phenoxy)-2- methyl-phenyl]-propionic acid
15	CI CH ₃ OH	3-[4-(3-{[(5-Chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-methyl}-5-fluoro-phenoxy)-2-methyl-phenyl]-propionic acid
16	CI CH ₃ CH ₃ OH	3-[4-(3-{[(5-Chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-methyl}-phenoxy)-2-methyl-phenyl]-propionic acid
17	F CH ₃ OH	3-[2-Ethyl-4-(3-fluoro-5- {[(5-fluoro-1,3-dimethyl- 1H-indole-2-carbonyl)- amino]-methyl}-phenoxy)- phenyl]-propionic acid
18	F F CI OH	3-(4-{3-[(2-Chloro-4-trifluoromethyl-benzoylamino)-methyl]-5-methyl-phenoxy}-2-ethyl-phenyl)-propionic acid

10

20

25

- 27. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of Claims 1-26 or a pharmaceutically acceptable salt.
 - 28. A pharmaceutical composition comprising:
 - (1) a compound of Claims 1-26, or a pharmaceutically acceptable salt;
- (2) a second therapeutic agent selected from the group consisting of: insulin sensitizers, sulfonylureas, biguanides, meglitinides, thiazolidinediones, α-glucosidase inhibitors, insulin secretogogues, insulin, antihyperlipidemic agents, plasma HDL-raising agents, HMG-CoA reductase inhibitors, statins, acryl CoA:cholestrol acyltransferase inhibitors, antiobesity compounds, antihypercholesterolemic agents, fibrates, vitamins and aspirin; and
 - (3) optionally a pharmaceutically acceptable carrier.
- 29. A method of modulating a peroxisome proliferator activated
 receptor (PPAR) comprising the step of contacting the receptor with a compound of Claims 1-26, or a pharmaceutically acceptable salt.
 - 30. The method of Claim 29, wherein the PPAR is an alpha (α)-receptor.
 - 31. The method of Claim 29, wherein the PPAR is a gamma (γ)-receptor.
 - 32. The method of Claim 29, wherein the PPAR is a delta (δ)-receptor.
 - 33. The method of Claim 29, wherein the PPAR is a gamma/delta (γ/δ) -receptor.
- 34. The method of Claim 29, wherein the PPAR is an alpha/gamma/delta ($\alpha/\gamma/\delta$)-receptor.

35. A method for treating a PPAR-γ mediated disease or condition in a mammal comprising the step of administering an effective amount of a compound of Claims 1-26.

5

36. A method for treating a PPAR-δ mediated disease or condition in a mammal comprising the step of administering an effective amount of a compound of Claims 1-26.

10

37. A method for treating a PPAR-γ/δ mediated disease or condition in a mammal comprising the step of administering an effective amount of a compound of Claims 1-26.

15

38. A method for treating a PPAR- $\alpha/\gamma/\delta$ mediated disease or condition in a mammal comprising the step of administering an effective amount of a compound of Claims 1-26.

20

40.

39. A method for lowering blood-glucose in a mammal comprising the step of administering an effective amount of a compound of Claims 1-26.

A method of treating disease or condition in a mammal selected

25

from the group consisting of hyperglycemia, dyslipidemia, Type II diabetes, Type I diabetes, hypertriglyceridemia, syndrome X, insulin resistance, heart failure, diabetic dyslipidemia, hyperlipidemia, hypercholesteremia, hypertension, obesity, anorexia bulimia, anorexia nervosa, cardiovascular disease and other diseases where insulin resistance is a component, comprising the step of administering an effective amount of a compound of Claims 1-26.

30

41. A method of treating diabetes mellitus in a mammal comprising the step of administering to a mammal a therapeutically effective amount of a compound of Claims 1-26.

42. A method of treating cardiovascular disease in a mammal comprising the step of administering to a mammal a therapeutically effective amount of a compound of Claims 1-26, or a pharmaceutically acceptable salt.

5

43. A method of treating syndrome X in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of a compound of Claims 1-26, or a pharmaceutically acceptable salt.

10

15

44. A method of treating disease or condition in a mammal selected from the group consisting of hyperglycemia, dyslipidemia, Type II diabetes, Type I diabetes, hypertriglyceridemia, syndrome X, insulin resistance, heart failure, diabetic dyslipidemia, hyperlipidemia, hypercholesteremia, hypertension, obesity, anorexia bulimia, anorexia nervosa, cardiovascular disease and other diseases where insulin resistance is a component, comprising the step of administering an effective amount of a compound of Claims 1-26 and an effective amount of second therapeutic agent selected from the group consisting of: insulin sensitizers, sulfonylureas, biguanides, meglitinides, thiazolidinediones, α-glucosidase inhibitors, insulin secretogogues, insulin, antihyperlipidemic agents, plasma HDL-raising agents, HMG-CoA reductase inhibitors, statins, acryl CoA:cholestrol acyltransferase inhibitors, antiobesity compounds, antihypercholesterolemic agents, fibrates, vitamins and aspirin.

20

25

45. Use of a compound of Claims 1-26 and a pharmaceutically acceptable salt, for the manufacture of a medicament for the treatment of a condition modulated by a PPAR.