Computer Architectures -- example

Question 1

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP arithmetic unit: pipelined 2 stages
- FP divider unit: not pipelined unit that requires 8 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable
- forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

	Total		3506
	Halt		1
	bnez r2,loop		2
	daddi r2,r2,-1	$r2 \le r2 - 1$	1
	daddui r1,r1,8	$r1 \le r1 + 8$	1
	s.d f11,v7(r1)		1
	add.d f11,f8,f10	f11 <= f8+f10	2
	div.d f10,f9,f6	f10 <= (v4[i]*v5[i])/v6[i]	8
	l.d f6,v6(r1)	f6 <= v6[i]	0
	mul.d f9,f4,f5	$f9 \le v4[i]*v5[i]$	4
	l.d f5,v5(r1)	$f5 \le v5[i]$	0
	l.d f4,v4(r1)	$f4 \le v4[i]$	0
	div.d f8,f7,f3	$f8 \le v_{3[i]}$ $f8 \le (v_{1[i]} + v_{2[i]})/v_{3[i]}$	9
	l.d f3,v3(r1)	$\frac{17 < v1[i] + v2[i]}{f3 <= v3[i]}$	1
	add.d f7,f1,f2	$\frac{12 \leftarrow v2[i]}{f7 \leftarrow v1[i] + v2[i]}$	3
ююр.	l.d f2,v2(r1)	$\frac{11 < v_1[i]}{f2 <= v_2[i]}$	1
loop:	l.d f1,v1(r1)	f1 <= v1[i]	1
main.	daddui r2,r0,100	$r2 \le 100$	1
main:	daddui r1,r0,0	r1 <= puntatore	5
	.text		
V7: .d	ouble "100 zeri"		
	ouble "100 valori"		
	ouble "100 valori"		
V1: d	ouble "100 valori"		
,	.data	Commence	Corpi di Cioca
;}		Commenti	Colpi di clock
; •1	V/[1] = (V1)	[i]+v2[i])/v3[i] + (v4[i]*v5[1])/V0[1];
, 101 (1	= 0; i < 100; i++)		:1)/-,6[:1.
. tor (1			

Computer Architectures -- example

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 8 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).
- o Complete the table reported below showing the processor behavior for the 2 initial iterations.

0

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	1.d f1,v1(r1)	1	2m	3	4	5
1	1.d f2,v2(r1)	1	3m	4	5	6
1	add.d f7,f1,f2	2	6a		8	9
1	1.d f3,v3(r1)	2	4m	5	6	9
1	div.d f8,f7,f3	3	<mark>9d</mark>		<mark>17</mark>	18
1	1.d f4,v4(r1)	3	5m	6	7	18
1	1.d f5,v5(r1)	4	6m	7	8	19
1	mul.d f9,f4,f5	4	9x		<mark>17</mark>	19
1	1.d f6,v6(r1)	5	7m	8	9	20
1	div.d f10,f9,f6	5	<mark>25d</mark>		<mark>33</mark>	<mark>34</mark>
1	add.d f11,f8,f10	6	34a		36	37
1	s.d f11,v7(r1)	6	8m			37
1	daddui r1,r1,8	7	8i		9	38
1	daddi r2,r2,-1	7	9i		10	38
1	bnez r2,loop	8	11j			<mark>39</mark>
2	1.d f1,v1(r1)	9	10m	11	12	39
2	1.d f2,v2(r1)	9	11m	12	13	40
2	add.d f7,f1,f2	10	<mark>14a</mark>		16	40
2	1.d f3,v3(r1)	10	12m	13	14	41
2	div.d f8,f7,f3	11	17d		<mark>2</mark> 5	41
2	1.d f4,v4(r1)	11	13m	14	15	42
2	1.d f5,v5(r1)	12	14m	15	16	42
2	mul.d f9,f4,f5	12	17x		25	43
2	1.d f6,v6(r1)	13	15m	16	<mark>18</mark>	43
2	div.d f10,f9,f6	13	33d		41	44
2	add.d f11,f8,f10	14	42a		44	45
2	s.d f11,v7(r1)	14	16m			45
2	daddui r1,r1,8	15	16i		18	46
2	daddi r2,r2,-1	15	18i		19	46
2	bnez r2,loop	16	20			47