Calcul intégral

QCOP CINT.1

- E Énoncer le théorème fondamental de l'analyse. Que nous apprend-il sur les fonctions continues?
- Soit I un intervalle de \mathbb{R} . Soient $a, b \in I$. Soient $u, v \in \mathscr{C}^1(I, \mathbb{R})$. Montrer que

$$\int_a^b u(t)v'(t)\,\mathrm{d}t = \left[u(t)v(t)\right]_a^b - \int_a^b u'(t)v(t)\,\mathrm{d}t.$$

 \aleph Déterminer les primitives de la fonction In sur \mathbb{R}_+^* .

QCOP CINT.2

- Enoncer le théorème fondamental de l'analyse.
- Énoncer la formule donnant la dérivée d'une composée.
- Soient I, J deux intervalles de \mathbb{R} . Soit $\varphi \in \mathscr{C}^1(J,I)$. Soit $f \in \mathscr{C}^0(I,\mathbb{R})$. Montrer que

$$\forall a, b \in J, \quad \int_a^b f(\varphi(x))\varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(t) dt.$$

1

QCOP CINT.3

- Donner la dérivée de la fonction arctan.
- Soit a > 0. À l'aide d'un changement de variable, déterminer une primitive de

$$x \longmapsto \frac{1}{x^2 + a^2}.$$

En déduire une méthode pour calculer une primitive d'une fonction

$$x \longmapsto \frac{1}{ax^2 + bx + c}$$
,

où $a, b, c \in \mathbb{R}$, $a \neq 0$.

QCOP CINT.4

- Soit u une fonction définie et dérivable sur un intervalle I de \mathbb{R} . Soit $a \in \mathbb{R}$. Donner l'expression de la dérivée de la fonction u^a sur I.
- Soit $\alpha \in \mathbb{R}$. Déterminer une primitive de $t \longmapsto \frac{1}{t^{\alpha}} \sup [1, +\infty[$.
- **%** Soit $\beta \in \mathbb{R}$. Soit $x \in [e, +\infty[$. Calculer

$$\int_{\rm e}^{x} \frac{1}{t \ln(t)^{\beta}} \, \mathrm{d}t.$$