

# O que é Data Science?

A ciência que tem o objetivo de extrair valor dos dados.



#### **Processo de Data Science**

Coleta de Dados



Limpeza e Transformação



Análise e Exploração



Criação de Modelos



Interpretação de Resultados



Preços dos imóveis na cidade de Boston EUA



Baseado nas características do imóvel o objetivo é estimar o preço do imóvel.



#### Diagrama Entidade Relacionamento

elipe Santana | May 6, 2020







# Imoveis PropHectaresNaoComerciais PropPessoasDescAfro OxidoNitrico PropTerrenosResidenciais IndiceAcessibilidade Valor TempoImovel LimiteRio QtdQuartos Imposto

# Arquitetura da Solução



# Arquitetura da Solução



## Python e suas bibliotecas

















# Análise Exploratória de dados

#### Distribuição Normal

- É simétrica em torno da média.
- A média, a mediana e a moda são todas iguais.
- Todos os dados estão em até 3 desvios padrões.



# Análise Exploratória de dados

#### Distribuições enviesadas

Assimétrica positiva / à direita.

Média > Mediana > Moda

Assimétrica negativa / à esquerda.

Média < Mediana < Moda



#### Erro Médio Quadrático

- Erro médio quadrático Somatório da diferença entre
   os valores preditos e os
   valores reais.
- Utiliza a mesma unidade dependente.

$$RMSE = \sqrt{\sum \frac{(y_{pred} - y_{ref})^2}{N}}$$

#### Tipos de Aprendizado

#### Machine Learning

- Aprendizado Supervisionado.
- Aprendizado Não Supervisionado.
- Aprendizado por reforço.



## **Tarefas de Machine Learning**

#### **Machine Learning**

- Classificação.
- Regressão.
- Agrupamento.



## Algoritmos de Machine Learning

## Regressão Linear

#### Regressão linear

- Algoritmo supervisionado.
- Utiliza equação linear que usa os valores de entrada para predizer as saídas.
- Trabalha apenas com dados numéricos.
- Os pesos são atualizados conforme a função que minimiza erros.



## **Árvores de Decisão**

#### Árvores de Decisão

- Algoritmo supervisionado.
- Pode ser usado para classificação ou regressão.
- Consiste na representação em forma de árvore.
- Ao percorrer cada nó o algoritmo toma decisões.



## **Árvores de Decisão**

#### Árvores de Decisão

- As árvores são construídas a partir da indução de regras.
- Para cada regra são feitas decisões que ditam a estrutura da árvore.
- Veja no exemplo as raízes, ramos e folhas da árvore a seguir.
- Perceba que os valores dos atributos são decisões a serem tomadas.



## **Árvores de Decisão**

#### Algumas vantagens

- Fácil entendimento.
- Viabiliza a exploração dos dados.
- Lidam bem com dados não lineares.



- Algoritmo supervisionado.
- Pode ser utilizado para classificação ou regressão.
- Dezenas de árvores combinadas para predizer o melhor resultado.
- Aleatoriedade na seleção de atributos ao invés da seleção a partir do cálculo de impureza.
- Resolve o problema de overfitting da árvore de decisão.



#### Random Forest

Primeiro passo, criação do bootstrap dataset.

| Dor no peito | Boa<br>Circulação<br>Sanguínea | Arterias<br>Bloqueada<br>s | Peso | Doença<br>Cardiaca |
|--------------|--------------------------------|----------------------------|------|--------------------|
| Sim          | Não                            | Sim                        | 125  | Sim                |
| Não          | Sim                            | Não                        | 180  | Não                |
| Não          | Não                            | Sim                        | 210  | Não                |
| Sim          | Não                            | Sim                        | 130  | Sim                |

 A partir do conjunto original .. selecione um número N de features aleatoriamente

| Dor no<br>peito | Boa<br>Circulação<br>Sanguínea | Arterias<br>Bloqueadas | Peso | Doença<br>Cardiaca |
|-----------------|--------------------------------|------------------------|------|--------------------|
| Sim             | Não                            | Sim                    | 125  | Sim                |
| Não             | Sim                            | Não                    | 180  | Não                |
| Não             | Não                            | Sim                    | 210  | Não                |
| Sim             | Não                            | Sim                    | 130  | Sim                |

| Dor no<br>peito | Boa circ<br>Sanguínea | Arterias<br>Bloq. | Peso | Doença<br>Cardiaca |
|-----------------|-----------------------|-------------------|------|--------------------|
| Não             | Sim                   | Não               | 180  | Não                |
| Sim             | Não                   | Sim               | 130  | Sim                |
| Sim             | Não                   | Sim               | 130  | Sim                |

A partir do conjunto original .. Selecione um número N de features aleatoriamente

| Boa circ<br>Sanguínea | Arterias<br>Bloq. |
|-----------------------|-------------------|
| Sim                   | Não               |
| Não                   | Sim               |
| Não                   | Sim               |



**Bootstrap Dataset** 

A partir do subconjunto selecionado é feita a verificação do atributo que melhor separa os dados..



| Dor no peito | Boa circ<br>Sanguínea | Arterias<br>Bloq. | Peso | Doença<br>Cardiaca |
|--------------|-----------------------|-------------------|------|--------------------|
| Não          | Sim                   | Não               | 180  | Não                |
| Sin          | Não                   | Sim               | 130  | Sim                |
| Sim          | Não                   | Sim               | 130  | Sim                |

Agora é preciso separar mais 2 atributos a partir dos três resultantes para separar os dados



As árvores são construídas considerando apenas os **subconjuntos de atributos** selecionados. Boa circ Sanguinea





| Dor no | Boa circ  | Arterias | Peso | Doença   |
|--------|-----------|----------|------|----------|
| peito  | Sanguínea | Bloq.    |      | Cardiaca |
| Não    | Sim       | Não      | 180  |          |

| Doença Cardiaca |     |  |
|-----------------|-----|--|
| SIM             | NÃO |  |
| 0               | 1   |  |



| Dor no | Boa circ  | Arterias | Peso | Doença   |
|--------|-----------|----------|------|----------|
| peito  | Sanguínea | Bloq.    |      | Cardiaca |
| Não    | Sim       | Não      | 180  |          |

| Doença Cardiaca |     |  |
|-----------------|-----|--|
| SIM             | NÃO |  |
| 0               | 1   |  |



| Dor no | Boa circ  | Arterias | Peso | Doença   |
|--------|-----------|----------|------|----------|
| peito  | Sanguínea | Bloq.    |      | Cardiaca |
| Não    | Sim       | Não      | 180  |          |

| Doença Cardiaca |   |  |
|-----------------|---|--|
| SIM NÃO         |   |  |
| 1               | 3 |  |

- Algumas vantagens
  - Maior robustez
  - Menos propenso a sofrer Overfitting em comparação com uma única Árvore de Decisão
  - Permite a descoberta de conhecimento.
  - Poucos parametros para ajustes.



- Algumas desvantagens
  - Exige um maior poder de processamento
  - Pode ser lento o processo de classificação de novas amostras.



Hands on!