Lecture 12

MATH 0200

Exponentia functions

Logarithms

Lecture 12 Exponential functions and logarithms

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 12

MATH 0200

Exponentia functions

Logarithm

1 Exponential functions

Exponential functions

Lecture 12

MATH 0200

Exponentia functions

Logarithms

Definition

Let b > 0 be a positive number, with $b \neq 1$. Then the **exponential function with base** b is the function $f(x) = b^x$.

Exponential functions

Lecture 12

MATH 0200

Exponentia functions

Logarithms

Definition

Let b > 0 be a positive number, with $b \neq 1$. Then the **exponential function with base** b is the function $f(x) = b^x$.

Lecture 12

MATH 0200

Exponentia functions

Logarithms

Definition

Logarithm is the inverse function to exponentiation. That means the logarithm $log_b(a)$ of a given number a is the exponent to which another fixed number, the base b, must be raised, to produce a: $b^{log_b(a)} = a$.

Lecture 12

MATH 0200

Exponentia functions

Logarithms

Definition

Logarithm is the inverse function to exponentiation. That means the logarithm $log_b(a)$ of a given number a is the exponent to which another fixed number, the base b, must be raised, to produce a: $b^{log_b(a)} = a$.

Domain: $(0, \infty)$ Range: $(-\infty, \infty)$

Lecture 12

MATH 0200

Exponentia functions

Logarithms

Example

• Let's find $log_2(8)$.

Example

• Let's find $log_2(8)$. We see that $log_2(8) = log_2(2^3) = 3$.

- Let's find $log_2(8)$. We see that $log_2(8) = log_2(2^3) = 3$.
- Let's find $log_3\left(\frac{1}{81}\right)$.

- Let's find $log_2(8)$. We see that $log_2(8) = log_2(2^3) = 3$.
- Let's find $log_3\left(\frac{1}{81}\right)$. We compute $log_3\left(\frac{1}{81}\right) = log_3(3^{-4}) = -4$.

- Let's find $log_2(8)$. We see that $log_2(8) = log_2(2^3) = 3$.
- Let's find $log_3\left(\frac{1}{81}\right)$. We compute $log_3\left(\frac{1}{81}\right) = log_3(3^{-4}) = -4$.
- Find a number t with $7^{5-t} = 3$.

- Let's find $log_2(8)$. We see that $log_2(8) = log_2(2^3) = 3$.
- Let's find $log_3\left(\frac{1}{81}\right)$. We compute $log_3\left(\frac{1}{81}\right) = log_3(3^{-4}) = -4$.
- Find a number t with $7^{5-t} = 3$. $7^{5-t} = 3 \Leftrightarrow 5 - t = log_7(3) \Leftrightarrow t = 5 - log_7(3)$.

Question

Find the value of t such that $5^{t+4} = \frac{1}{25}$.

Question

Find the value of t such that $5^{t+4} = \frac{1}{25}$.

Answer:
$$5^{t+4} = \frac{1}{25} \Leftrightarrow t+4 = log_5\left(\frac{1}{25}\right) = log_5(5^{-2}) \Leftrightarrow t+4 = -2 \Leftrightarrow t = -2 - 4 = -6.$$

Basic properties of logarithm

Lecture 12

MATH 0200

Exponentia functions

•
$$log_b(1) = 0$$
 for any $b > 0, b \neq 1$;

Basic properties of logarithm

Lecture 12

MATH 0200

Exponentia functions

- $log_b(1) = 0$ for any $b > 0, b \neq 1$;
- **2** $log_b(b) = 1$ for any $b > 0, b \neq 1$;

Basic properties of logarithm

Lecture 12

MATH 0200

Exponentia functions

- **1** $log_b(1) = 0$ for any $b > 0, b \neq 1$;
- **2** $log_b(b) = 1$ for any $b > 0, b \neq 1$;
- **3** The logarithmic and exponential functions are inverse:

$$\ell o g_b(b^x) = b^{\ell o g_b(x)} = x.$$