Table of Contents

% Summary:	
% Preprocessing required:]
% Brief Overview of pre-processing:	2
% ADDITIONAL processing/files:	. 2
% Reference:	
% Standard figure parameters	3
% Flags and initializations	3
% Load/Read twin/sibling pair info.	3
% Load subject proximity graph:	
% Create Modality combinations (Hard coded for illustration purpose)	5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	5
% Example 1: Compact fingerprint generation	5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	6
% Example 2: Compact fingerprint analysis: d-prime and -log10 p-value MZ vs DZ plots (Fig	
2.)	. (
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	6
% Plot absolute d-prime and p-val for increasing fingerprint length/size	7
% Plot -log10 p-value (ttest2): MZ vs DZ for increasing number of eig vecs	8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	9
% Example 3: Compact fingerprint comparison plots: MZ, DZ, FS pairs (Fig 3.)	9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	13
% Example 4: Rank Reterival Analysis: Mean Average Precision Table (Table 2, partial)	13
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	13
% Display mean average precision (MAP) values	15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	15
% Example 5: Mean Recall@10 values (Supplement material Fig Table 8, partial)	15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	16
% Example 6: Mean Recall@k Plots (Supplement material Fig 1.)	16
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	19
% Example 7: Relative informativeness Table: MZ, DZ, FS (Table 3)	19
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
% Display realtive identification percentages: MZ, DZ, FS tables	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
	21

% Summary:

1. MATLAB demo functiongenerate sample plots reported in paper

% Preprocessing required:

* REQUIREMENTS:

- report.txt files for each modality (see below)
- 2. twin/sibling pair ids (numeric id's between 1 to number of subjects/images based on the subject ordering/reading list) for example: MZ sub id set and MZ pair id set etc..
- 3. Note: The randomized sample includes pairs of MZ; DZ; Full-Siblings (FS); Maternal Half Siblings (MHS) and Paternal Half Siblings (PHS)

NOTE: a sample set of report files and twin/sibling pair ids (randomized) have been included in data folder for illustration purposes

% Brief Overview of pre-processing:

- 1. We assume that Bag-of-features (BoF) have been generated and approximate matching has been performed using the code available at http://www.matthewtoews.com/ THE PRE-PROCESSING involves running:
 - i. featExtract.exe for each image (.nii files): output will be
 .key files containing 3D SIFT features
 - ii. featMatchMultiple -t 2 -r- -n 20 *.key (for all .key files of a given modality): output will be multiple files including report.txt
- 2. report.txt generated for each modality will act as a input for the following analysis
- 4. Note: cross check the file order read in featMatchMultiple.exe and the sibling/twin pair IDs

% ADDITIONAL processing/files:

- 1. feature match visualization requires 3D SIFT feature files (not included here)
- 2. Significance values (-log10 pvalues) in paper are based on sample size matches using bipartite matching (age-based); However, sample illustration uses random sample size matching 3. Similarly hemisphere asymmetry analysis and pairwise feature correspondence analysis requires restricted data and thus have been excluded here

% Reference:

Multi-modal brain fingerprinting: a manifold approximation based Authors:

Kuldeep Kumar (kkumar@livia.etsmtl.ca),
Laurent Chauvin
Matthew Toews (Matthew.Toews@etsmtl.ca)
Olivier Colliot and
Christian Desrosiers (christian.desrosiers@etsmtl.ca)

LIVIA, ETS Montreal, Canada January 2018

% Standard figure parameters

```
Line width = 3;
Marker_size= 14;
leg_FontSize=13;
gca_FontSize = 32;
color_option{1} = 'r' ;
color_option{2} = 'g';
color_option{3} = 'b' ;
color_option{4} = 'c' ;
color_option{5} = 'm' ;
color_option{6} = 'y' ;
color_option{7} = 'k' ;
marker_option{1} = '*';
marker_option{2} = 'o' ;
marker_option{3} = 'd' ;
marker_option{4} = 's';
marker\_option{5} = 'x' ;
marker_option{6} =  ^{\circ} ;
marker_option{7} = '+' ;
```

% Flags and initializations

% Load/Read twin/sibling pair info.

```
% 1. MZ; 2. DZ; 3. FS; 4. MHS; and 5. PHS
% dim 2: corresponds to sub ids and pair ids
% 1. sub_id_set 2. pair_id_set
% NOTE: the SAMPLE info is randomized before sharing
```

% Load subject proximity graph:

```
max_modality_combinations= 9;
     % hard coded for illustration
cell_NxN_data_matrix = cell(max_modality_combinations,1);
% Set of modalities used for illustration
cell modality{1} = 'FA';
cell_modality{2} = 'T1w 125mm';
cell_modality{3} = 'T2w 125mm';
cell_modality{4} = 'rfMRI';
cell_modality{5} = 'T1w+FA';
cell_modality{6} = 'T1w+rfMRI';
cell_modality{7} = 'FA+rfMRI';
cell_modality{8} = 'T1w+T2w+FA';
cell_modality{9} = 'T1w+T2w+FA+rfMRI';
%DATA: load SAMPLE report files (feature match count) for each
 cell_report_filename = { 'SAMPLE_report_FA.mat';
                          'SAMPLE_report_T1w_125mm';
                          'SAMPLE_report_T2w_125mm';
  'SAMPLE_rfMRI_pairwise_pearson_corr_ICA100'; };
% For report.txt files:
% 1. read feature match count files (report.txt)
% 2. Obtain Normalized Jaccard Similarity
cell_report_files = cell(3,1);
for loop_i=1:(length(cell_report_filename)-1)
    load(['../data/'
                     cell_report_filename{loop_i}]);
    cell_report_files{loop_i,1} = SAMPLE_report_mat ;
    cell_NxN_data_matrix{loop_i} =
 compute_normalized_jaccard_similarity_matrix(cell_report_files(loop_i,1));
end
% read rfMRI NxN_data_matrix
load(['../data/'
 cell_report_filename{length(cell_report_filename)}]);
cell_NxN_data_matrix{length(cell_report_filename)} =
 SAMPLE_rfMRI_pairwise_pearson_corr_ICA100 ;
```

% Create Modality combinations (Hard coded for illustration purpose)

```
% 1. T1w + FA
 loop_i = 5;
 cell_NxN_data_matrix{loop_i} =
 compute_normalized_jaccard_similarity_matrix(cell_report_files(1:2));
 % 2. Tlw +rfMRI: (linear combination, with combination weights
 computed using a grid
 % search, to optimize MAP values )
loop_i = 6;
lambda = 0.2;
cell_NxN_data_matrix{loop_i} = lambda*cell_NxN_data_matrix{4}+(1-
lambda)*cell_NxN_data_matrix{2};
 % 3. FA + rfMRI (linear combination, with combination weights
computed using a grid
 % search, to optimize MAP values )
loop i = 7;
lambda = 0.4;
 cell_NxN_data_matrix{loop_i} = lambda*cell_NxN_data_matrix{4}+(1-
lambda)*cell_NxN_data_matrix{2} ;
 % 4. T1w + T2w + FA (1.25mm)
loop_i=8;
cell_NxN_data_matrix{loop_i} =
compute_normalized_jaccard_similarity_matrix(cell_report_files(1:3));
 % 5. Tlw + T2w + FA + rfMRI
loop i = 9;
lambda = 0.2;
cell_NxN_data_matrix{loop_i} = lambda*cell_NxN_data_matrix{4}+(1-
lambda)*cell_NxN_data_matrix{8} ;
```

% Example 1: Compact fingerprint generation

```
array_modality_set = [ 1; 2; 5;];
    % FA, T1w and T1w + FA
num_spect_component = 150;
    % number of eigen vectors in fingerprint
cell_compact_fingerprint = cell(length(array_modality_set),1);
```

% Example 2: Compact fingerprint analysis: dprime and -log10 p-value MZ vs DZ plots (Fig 2.)

```
% compute d-prime and -log10 p-value for pairwise fingerprint
distance: MZ vs DZ
array_num_spect_component = (5:5:500)';
array modality set = [ 1; 2; 5;];
    % FA, Tlw and Tlw + FA (all at 1.25mm resolution)
num_sibtype_comparisons = (max_sib_type*(max_sib_type-1))/2;
     % 1. MZ vs DZ, 2: MZ vs FS, 3: DZ vs FS
cell d prime =
cell(length(array_num_spect_component),num_sibtype_comparisons,length(array_modal
cell_pval_ttest2 =
cell(length(array_num_spect_component),num_sibtype_comparisons,length(array_modal
cell_pval_ranksum =
cell(length(array num spect component), num sibtype comparisons, length(array modal
for loop_i=1:length(array_modality_set)
    % compact fingerprint generation
   NxN_data_matrix =
 cell NxN data matrix{array modality set(loop i),1};
    temp_cell_compact_fingerprint =
 compute_compact_fingerprint_size_impact(NxN_data_matrix,array_num_spect_component
```

```
for loop num spect = 1:length(array num spect component)
       % compute Euclidean Distance between fingerprint pairs for MZ,
DZ, FS
       mat_compact_fingerprint =
 temp_cell_compact_fingerprint{loop_num_spect,1};
       cell pairwise distance = cell(max sib type,1);
       for loop_sib_type=1:max_sib_type
           sub_id_set =
 SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
           pair id set =
 SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
           [cell_pairwise_distance{loop_sib_type,1}] =
 compute_pairwise_fingerprint_distance_sibling_pairs(sub_id_set,pair_id_set,mat_co
       \mbox{\$} compute d-prime and pval for MZ vs DZ, MZ vs FS, and DZ vs FS
       temp_count_loop_comparison =1;
       for loop_sib_type_1 = 1:(max_sib_type-1)
           array_pairwise_distance_1 =
 cell_pairwise_distance{loop_sib_type_1,1} ;
           for loop_sib_type_2 = (loop_sib_type_1 + 1):max_sib_type
               array pairwise distance 2 =
 cell_pairwise_distance{loop_sib_type_2,1} ;
 cell_d_prime{loop_num_spect,temp_count_loop_comparison,loop_i} =
 compute_d_prime(array_pairwise_distance_1,array_pairwise_distance_2);
 [cell_pval_ttest2{loop_num_spect,temp_count_loop_comparison,loop_i},cell_pval_ran
compute pval ttest2 ranksum(array pairwise distance 1, array pairwise distance 2);
               temp_count_loop_comparison = temp_count_loop_comparison
 + 1;
           end
      end
    end
end
```

% Plot absolute d-prime and p-val for increasing fingerprint length/size

```
temp_count_loop_comparison=1;
    % 1: MZ vs DZ, 2: MZ vs FS, ....
temp_data = cell_d_prime(:,temp_count_loop_comparison,1:
(length(array_modality_set)));
```

Absolute d-prime: MZ vs DZ

plot_compact_fingerprint_analysis(data_mat,x_tick_array,figure_title,cell_legend,l

% Plot -log10 p-value (ttest2): MZ vs DZ for increasing number of eig vecs

plot_compact_fingerprint_analysis(data_mat,x_tick_array,figure_title,cell_legend,l

% Example 3: Compact fingerprint comparison plots: MZ, DZ, FS pairs (Fig 3.)

```
NxN_data_matrix =
 cell_NxN_data_matrix{array_modality_set(loop_i),1};
   mat_compact_fingerprint =
 compute_compact_fingerprint(NxN_data_matrix,num_spect_component);
    for loop_sib_type=1:max_sib_type
        sub_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
        pair id set =
 SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
        [cell_pairwise_distance{loop_sib_type,loop_i}] =
 compute_pairwise_fingerprint_distance_sibling_pairs(sub_id_set,pair_id_set,mat_co
   end
    % get data for MZ, DZ, FS for a given modality
    cell_data = cell_pairwise_distance(:,loop_i);
   save_plot_name = [];
   modality = cell_modality(array_modality_set(loop_i));
    %count density histogram
plot_compact_fingerprint_analysis_countdensity_histogram(cell_data,modality,save_
    %Plot probability normalized curves (gamma histogram fitting)
plot_compact_fingerprint_analysis_probability_normalized_curves(cell_data,modalit
end
```


% Example 4: Rank Reterival Analysis: Mean Average Precision Table (Table 2, partial)

```
flag_option_map = 1;
     % 1: subject proximity graphs 0: distance
array_modality_set = (1:9)';
num spect component = 150;
     % number of eigen vectors in fingerprint
cell_compact_fingerprint = cell(length(array_modality_set),1);
% rank reterival measures
mat_mean_avg_precision = zeros(length(array_modality_set),
 max_sib_type);
mat_mean_recall_at_10 = zeros(length(array_modality_set),
 max_sib_type);
% additional detailed measures
cell array avg precision = cell(length(array modality set),
 max_sib_type);
cell_mat_recall_at_k = cell(length(array_modality_set), max_sib_type);
cell_mat_precision_at_k = cell(length(array_modality_set),
max_sib_type);
 for loop_i=1:length(array_modality_set)
        if(flag_option_map==1)
            % subject proximity graphs: Normalized Jaccard Similarity
 measures
            NxN data matrix =
 cell_NxN_data_matrix{array_modality_set(loop_i),1};
            flag_distance_or_similarity = 1;
     %: 0-distance; 1-similarity
        else
            % compact fingerprint generation
            NxN_data_matrix =
 compute_compact_fingerprint(cell_NxN_data_matrix{array_modality_set(loop_i),1},nu
            flag_distance_or_similarity = 0;
     %: 0-distance; 1-similarity
        end
        knn_value = size(NxN_data_matrix,2)-1;
     % consider all subjects except self
        [nearest_neighbor_matrix] =
 compute_nearest_neighbor_matrix(NxN_data_matrix,knn_value,flag_distance_or_simila
        for loop_sib_type=1:max_sib_type
           sub_id_set =
 SAMPLE_cell_subID_and_sibpairID{loop_sib_type,1};
           pair id set =
 SAMPLE_cell_subID_and_sibpairID{loop_sib_type,2};
 [mat_mean_avg_precision(loop_i,loop_sib_type),mat_mean_recall_at_10(loop_i,loop_s
 compute_rank_reterival_measures(sub_id_set,pair_id_set,nearest_neighbor_matrix);
        end
 end
```

% Display mean average precision (MAP) values

```
data_matrix = round(mat_mean_avg_precision,3);
cell column
           = cell_sibling_type(1:max_sib_type);
cell_row_label = cell_modality ;
display table values(data matrix, cell column, cell row label);
sTable =
                       MZ
                               DZ
                                        FS
                      0.964
                              0.219
                                        0.16
   FA
   T1w 125mm
                              0.136
                      0.831
                                       0.121
   T2w 125mm
                      0.879
                              0.173
                                       0.132
   rfMRI
                              0.352
                      0.968
                                       0.205
   T1w+FA
                      0.977
                              0.279
                                        0.21
   T1w+rfMRI
                      0.984
                              0.352
                                       0.229
                              0.439
   FA+rfMRT
                       0.99
                                      0.276
   T1w+T2w+FA
                      0.991
                              0.354
                                      0.247
   T1w+T2w+FA+rfMRI 0.997 0.546
                                       0.371
```

% Example 5: Mean Recall@10 values (Supplement material Fig Table 8, partial)

```
% Display mean recall @ 10 values
data_matrix = round(mat_mean_recall_at_10,3);
cell_column = cell_sibling_type(1:max_sib_type);
cell_row_label = cell_modality;
display_table_values(data_matrix, cell_column, cell_row_label);
sTable =
MZ DZ FS
```

FA	0.992	0.421	0.307
T1w 125mm	0.903	0.317	0.22
T2w 125mm	0.954	0.349	0.249
rfMRI	0.975	0.524	0.369
T1w+FA	0.996	0.508	0.372
T1w+rfMRI	0.996	0.635	0.438
FA+rfMRI	0.996	0.69	0.47
T1w+T2w+FA	1	0.579	0.429
T1w+T2w+FA+rfMRI	1	0.817	0.603

% Example 6: Mean Recall@k Plots (Supplement material Fig 1.)

```
temp knn value =50;
     % number of nearest neighbors or k value
% get mean recall@k for k=1,2....,temp_knn_value
array modality set = [ 1; 2; 4; 5; 9;];
     % see cell_modality for index reference
mat_mean_recall_at_k =
 zeros(length(array modality set), temp knn value, max sib type);
% compute mean recall@k values using recal@k matrix
for loop_i=1:length(array_modality_set)
    for loop_sib_type =1:max_sib_type
        temp_mat =
cell mat recall at k{array modality set(loop i),loop sib type}
(:,1:50);
        mat_mean_recall_at_k(loop_i,:,loop_sib_type) = mean(temp_mat);
    end
end
%plot for each twin/sibling type
for loop sib type =1:max sib type
    data_mat = mat_mean_recall_at_k(:,:,loop_sib_type);
    x_{array} = (1:50)';
    figure title = ['mean recall@k plot: ',
 cell_sibling_type{loop_sib_type}];
```

plot_mean_recall_at_k(data_mat,x_array,figure_title,cell_legend,leg_location,cell
end

% Example 7: Relative informativeness Table: MZ, DZ, FS (Table 3)

```
% Compute relative informativeness
relative_identification_knn_value = 10;
     % number of nearest neighbors for realtive identification
      % identification considered success within these many neighbors
 only
cell_compare_modality1_vs_modality2 = { 'T1w vs T2w';
                                          'T1w vs FA';
                                          'T1w vs rfMRI';
                                          'FA vs rfMRI';
                                          'T1w vs T1w+T2w+FA+rfMRI';
                                          'T2w vs T1w+T2w+FA+rfMRI';
                                          'FA vs T1w+T2w+FA+rfMRI';
                                          'rfMRI vs T1w+T2w+FA+rfMRI';
% hard code the modalities to be compared
% indices are based on cell_modality
array modality1 index = [ 2; 2; 2; 1; 2; 3; 1; 4; ];
array modality2 index = [ 3; 1; 4; 4; 9; 9; 9; 9; ];
mat_relative_identification_percent =
 zeros(length(array modality1 index),4,max sib type);
for loop i=1:length(array modality1 index)
     if(flag_option_map==1)
            % subject proximity graphs: Normalized Jaccard Similarity
 measures
            NxN_data_matrix_1 =
 cell_NxN_data_matrix{array_modality1_index(loop_i),1};
            NxN data matrix 2 =
 cell_NxN_data_matrix{array_modality2_index(loop_i),1};
            flag distance or similarity = 1;
     %: 0-distance; 1-similarity
     else
            % compact fingerprint generation
```

```
NxN_data_matrix_1 =
 compute compact fingerprint(cell NxN data matrix{array modality1 index(loop i),1}
           NxN_data_matrix_2 =
 compute_compact_fingerprint(cell_NxN_data_matrix{array_modality2_index(loop_i),1}
            flag_distance_or_similarity = 0;
     %: 0-distance; 1-similarity
    end
    nearest_neighbor_matrix_mod1=
 compute_nearest_neighbor_matrix(NxN_data_matrix_1,relative_identification_knn_val
    nearest_neighbor_matrix_mod2=
 compute_nearest_neighbor_matrix(NxN_data_matrix_2,relative_identification_knn_val
   for loop_sib=1:max_sib_type
            sub id set = SAMPLE cell subID and sibpairID{loop sib,1};
            pair_id_set = SAMPLE_cell_subID_and_sibpairID{loop_sib,2};
            [mat_relative_identification_percent(loop_i,1:4,loop_sib)]
 compute_relative_identification_percentage(sub_id_set,pair_id_set,nearest_neighbo
end
```

% Display realtive identification percentages: MZ, DZ, FS tables

```
cell_relative_comparison_order = { 'Both'; 'Mod1'; 'Mod2';
cell_column = cell_relative_comparison_order;
cell_row_label = cell_compare_modality1_vs_modality2 ;
for loop_sib=1:max_sib_type
    % display for each twin/sibling type
    disp(['Relative Identification percentage for : '
 cell_sibling_type{loop_sib}]);
    data_matrix
 =round(mat_relative_identification_percent(:,:,loop_sib),2);
    display_table_values(data_matrix, cell_column, cell_row_label);
end
Relative Identification percentage for : MZ
sTable =
                                 Both
                                          Mod1
                                                  Mod2
                                                          None
   T1w vs T2w
                                                  9.66
                                                             0
                                 85.71
                                          4.62
                                                  8.82
   Tlw vs FA
                                 90.34
                                            0
                                                          0.84
   Tlw vs rfMRI
                                 88.24
                                           2.1
                                                 9.24
                                                          0.42
   FA vs rfMRI
                                 96.64
                                          2.52
                                                 0.84
                                                             0
   T1w vs T1w+T2w+FA+rfMRI
                                                 9.66
                                                             0
                                 90.34
                                             0
   T2w vs T1w+T2w+FA+rfMRI
                                                  4.62
                                 95.38
                                             0
```

FA vs T1w+T2w+FA+rfMRI	99.16	0	0.84	0
rfMRI vs T1w+T2w+FA+rfMRI	97.48	0	2.52	0

Relative Identification percentage for : DZ

sTable =

	Both	Mod1	Mod2	None
T1w vs T2w	15.87	15.87	19.05	49.21
T1w vs FA	15.87	15.87	26.19	42.06
Tlw vs rfMRI	18.25	13.49	34.13	34.13
FA vs rfMRI	26.19	15.87	26.19	31.75
T1w vs T1w+T2w+FA+rfMRI	28.57	3.17	53.17	15.08
T2w vs T1w+T2w+FA+rfMRI	33.33	1.59	48.41	16.67
FA vs T1w+T2w+FA+rfMRI	39.68	2.38	42.06	15.87
rfMRI vs T1w+T2w+FA+rfMRI	49.21	3.17	32.54	15.08

Relative Identification percentage for : FS

sTable =

Both	Mod1	Mod2	None
10.26	11.72	14.65	63.37
10.62	11.36	20.05	57.97
9.52	12.45	27.38	50.64
12.91	17.77	23.99	45.33
18.96	3.02	41.3	36.72
21.98	2.93	38.28	36.81
25.64	5.04	34.62	34.71
34.89	2.01	25.37	37.73
	10.26 10.62 9.52 12.91 18.96 21.98 25.64	10.26 11.72 10.62 11.36 9.52 12.45 12.91 17.77 18.96 3.02 21.98 2.93 25.64 5.04	10.26 11.72 14.65 10.62 11.36 20.05 9.52 12.45 27.38 12.91 17.77 23.99 18.96 3.02 41.3 21.98 2.93 38.28 25.64 5.04 34.62

Published with MATLAB® R2015b