

	this is pythagorean theorem, is right angle triangle.
	this is pythagorean treorem.
	trièngle.
	hence: $\theta + \phi = \frac{1}{2}$
	hence: 0 + 0 = 2
	The state of the second Market (1)
	Example: Elastic Collision of Oregons 110000
	Example: Elastic Collision Of Unequal Masses w. One itsially stationary.
	« U, V, V₂ no longer form a vector triangle « P, ≥ m, U, q, ≥ m, V₁ q₂ ≥ m, V₂ form a triangle as
	\circ 0 , $\stackrel{\wedge}{=}$ m , v , q , $\stackrel{\wedge}{=}$ m , v , q , $\stackrel{\wedge}{=}$ m , v , q
	rianole as
100	Triunga des
	P1 = 91 + 92
i,	but the triongle is not right-angled. $0+0/2$?
	When facing tough scattering problem, it is easier to work in the centre of mass frame.
1 1	posice to work in the center of mass frame.
L)	COOL O SSECTION .
-9-19	Centre of Mass Frame
	. In the absence of external forces, the
	Com moves at a constant velocity:
	6
	$S = \frac{df_{5}}{ds} \left(\frac{W^{1} + W^{2}}{W^{1} + W^{2} + W^{2}} \right) = \frac{W^{1} + W^{2}}{W^{1} + W^{2} + W^{2}} = 0$
-	
A	from Newton3.
	The moving frame with its origin on the
	COM is therefore thereal.
	- D Newton's laws hold
	-D monen tim is conserved
	- Dif collision elastic, energy is conserved

$$= \frac{1}{2} m_1 \frac{r_1^2}{r_1^2} + \frac{1}{2} m_2 \frac{r_2^2}{r_2^2} + \frac{1}{2} m_2 \frac{r_1^2}{r_2^2} + \frac{1}{2} m_2 \frac{r_2^2}{r_2^2} + \frac{$$

$$k^* = \frac{1}{2}m_1(\dot{r}_1^*)^2 + \frac{1}{2}m_2(\dot{r}_2^*)^2$$

$$= \frac{(\dot{\rho}_1^*)^2}{2m_1} + \frac{(\dot{\rho}_2^*)^2}{2m_2} \qquad (\dot{\rho}_2^* = -\dot{\rho}_1^* = \dot{\rho}_1^*)$$

$$= \frac{1}{2}(\dot{m}_1 + \dot{m}_2)(\dot{\rho}_1^*)^2 \qquad (\dot{m}_1 + \dot{m}_2 = \dot{\rho}_1^*)$$

$$= \frac{1}{2}\dot{\rho}_1^*$$

KE in CoM Frame = 2 x recluxed mass x reviolity velocity 2