

RODANDO MODELOS DO TENSORFLOW NO ANDROID

Ricardo Vitor Costa Neto. Github: https://github.com/Ricardovcn

Passo a Passo

- X Entendendo mais sobre Redes Neurais.
- Treinando seu próprio modelo de Rede Neural..
- X Exportando seu modelo modelo.
- X Usando o modelo pré-treinando no android.

Introdução

TensorFlow

TensorFlow é uma biblioteca de código aberto para aprendizado de máquina aplicável a uma ampla variedade de tarefas.

Redes Neurais

Redes neurais são sistemas de computação com nós interconectados que funcionam como os neurônios do cérebro humano.

Mais informações sobre o TensorFlow: https://www.tensorflow.org.

EXEMPLO DE REDE NEURAL

6

Camadas Ocultas

NEURÔNIO ARTIFICIAL

E = ENTRADA;

W = PESOS DAS ARESTAS;

 Σ = Somatório / Bias;

F = FUNÇÃO DE ATIVAÇÃO.

BACK PROPAGATION

DUAS FASES:

PROPAGAÇÃO

RETROPROPAGAÇÃO

São usadas especificamente para a área de visão computacional. Essa área se preocupa em colocar dentro do computador a capacidade de visão.

1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1 1 1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0

0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0,9

A imagem tem 16 pixels de altura e 16 pixel de largura.

$$16 \times 16 = 256 \times 3 = 768$$

Para representar as cores, usando RGB são necessárias 3 entradas para cada pixel.

Para que a rede não fique lenta, a solução foi não usar todas as entradas ou todos os pixels. Uma rede neural convolucional seleciona, automaticamente, e utiliza apenas as partes relevantes da imagem (as melhores características).

Ela utiliza a rede neural tradicional (densa), porém existe um pré-processamento feito na imagem antes dela entrar na rede densa.

IMPLEMENTAÇÃO

IMPLEMENTAÇÃO

- X Operador de convolução.
- X Pooling.
- Flattering.
- x Rede Neural Densa.

Operador de Convolução

Pooling FLattening Neural Densa

OPERADOR DE CONVOLUÇÃO

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

	1	0	0
<	1	0	1
	0	1	1

Detector de características (feature detector)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

Mapa de características (feature map)

Mais sobre operador de convolução: https://en.wikipedia.org/wiki/Kernel_(image_processing))

Exemplo prático: http://setosa.io/ev/image-kernels/

POOLING

Reduz overfitting e Ruídos desnecessários.

(feature map)

POOLING

FLATTENING

Exemplo prático: https://scs.ryerson.ca/~aharley/vis/conv/

Criando e exportando um modelo: https://github.com/Ricardovcn

Utilizando o modelo em um App android: https://github.com/Ricardovcn

Any questions?

You can find me at @Ricardovcn ricardovitorcn@gmail.com