Example. Let X and Y be two discrete random variables with joint probability function

	Y = 0	Y = 1	Y = 2	Y = 3	marginal of X
X = 0	h	2 <i>h</i>	3 <i>h</i>	4 <i>h</i>	10 <i>h</i>
X = 1	4h	6 <i>h</i>	8 <i>h</i>	2 <i>h</i>	20 <i>h</i>
X = 2	9h	12 <i>h</i>	3 <i>h</i>	6 <i>h</i>	30 <i>h</i>
marginal of Y	14 <i>h</i>	20 <i>h</i>	14 <i>h</i>	12 <i>h</i>	$\sum_{(x,y)} = 60h$

Hence, h = 1/60. We compute all moments up to order 2:

$$E[X] = \sum_{x} xp_{X}(x) = 0 \cdot 10h + 1 \cdot 20h + 2 \cdot 30h = 80h = 4/3;$$

$$E[Y] = \sum_{y} yp_{Y}(y) = 0 \cdot 14h + 1 \cdot 20h + 2 \cdot 14h + 3 \cdot 12h = 84h = 7/5;$$

$$E[X^{2}] = \sum_{x} x^{2}p_{X}(x) = 0^{2} \cdot 10h + 1^{2} \cdot 20h + 2^{2} \cdot 30h = 140h = 7/3;$$

$$E[Y^{2}] = \sum_{x} y^{2}p_{Y}(y) = 0^{2} \cdot 14h + 1^{2} \cdot 20h + 2^{2} \cdot 14h + 3^{2} \cdot 12h = 184h = 46/15;$$

$$E[XY] = \sum_{(x,y)} xyp_{(X,Y)}(x,y) = 5/3.$$

Thus E[X] = 4/3, E[Y] = 7/5, $Var(X) = 7/3 - (4/3)^2 = 5/9$, $Var(Y) = 46/15 - (7/5)^2 = 83/75$ and $Cov(X,Y) = 5/3 - 4/3 \cdot 7/5 = -1/5$, $\rho(X,Y) = \frac{-1/5}{\sqrt{(5/9)(83/75)}} = -0.255$.