实验二: t 检验 单因素方差分析 多因素方差分析

实验目的: 掌握用 SPSS 做 t 检验、方差分析的基本步骤, 练习快速准确的输入实验数据的方法, 能正确解读分析结果, 规范书写检验报告。

关键: 选用合适的检验方法, 正确解读分析结果

- 1. 利用 SPSS 做 t 检验/u 检验
- 1.1 单样本的 t 检验

习题 5.9. 已知我国 14 岁的女学生,平均体重为 43.38kg。从该年龄的女学生中抽取 10 名运动员,其体重(kg)分别为 39,36,43,43,40,46,45,45,42,41。问这些运动员的平均体重与 14 岁的女学生平均体重差异是否显著?

- 1) 将习题的数据输入到 SPSS, 变量名称为"weight", 数据类型为"数值", 小数点位数设置为 0, 标签为"体重(kg)",
- 2) 单样本 t 检验步骤: 分析→比较平均值→单样本 t 检验: 检验变量为体重, 观测值 为 43.38→确定
- 3) 结果解读
- 4) 书写检验报告

H0: $\mu_1 = \mu_0$ H1: $\mu_1 \neq \mu_0$ $\alpha = 0.05$

选择检验方法:单样本 t 检验

输出结果:

单样本统计							
	个案数	平均值	标准 偏差	标准 误差平均 值			
体重 (kg)	10	42.00	3.091	.978			

单样本检验								
检验值 = 43.38								
				差值 95%	置信区间			
t	自由度	Sig. (双尾)	平均值差值	下限	上限			
-1.412	9	.192	-1.380	-3.59	.83			
	t -1.412		检验值: t 自由度 Sig. (双尾)	检验值 = 43.38 t 自由度 Sig. (双尾) 平均值差值	检验值 = 43.38			

检验结论:由于 p=0.192>0.05,接受 H0,拒绝 H1,不能认为这些运动员的体重与 14 岁女学生有显著差异。

1.2 两个独立样本的 t 检验

习题 5.26 盆栽试验中,对菌肥采用灭菌和不灭菌两种处理,每一个处理各种植 50 株小麦,测量小麦的株高,结果如下表:

灭菌	7.5	4.6	5.2	5.4	7.2	6.8	5.8	5.0	4.6	7.9
火困	7.0	4.4	5.7	5.2	6.6	7.1	6.5	5.0	7.0	4.0

	7.5	5.1	7.2	6.7	4.6	5.1	5.6	4.7	4.5	8.0
	7.5	7.7	5.1	5.5	1.7	7.2	7.2	7.5	7.5	4.8
	5.5	6.0	6.3	6.1	3.4	5.6	5.6	6.6	8.3	6.3
	10.0	9.3	7.2	9.1	8.5	8.0	10.5	10.6	9.6	10.1
	7.0	6.7	9.5	7.8	10.5	7.9	8.1	9.6	7.6	9.4
不灭菌	10.0	7.5	7.2	5.0	7.3	8.7	7.1	6.1	5.2	6.8
	10.0	9.9	7.5	4.5	7.6	7.0	9.7	6.2	8.0	6.9
	8.3	8.6	10.0	4.8	4.9	7.0	8.3	8.4	7.8	7.5

先分别检验数据的正态性,然后检验两种处理之间小麦平均株高的差异显著性。

- 1) 将习题数据输入 SPSS, 需要思考两个问题: 一是如何快速准确的输入? 二是数据格式是变量组结构(横向结构)还是 观测组结构(纵向结构)? 独立样本 t 检验的最终数据格式为观测组纵向结构。
- 2) 变量名称: treatment; 类型: 数值; 小数: 0; 标签: 对菌肥的处理; 值: 1-sterilize, 2-None sterilize; 测量: 名义

变量名称: height; 类型: 数值; 小数: 1; 标签: 小麦的株高(cm); 测量: 度量

- 3) 正态性检验的步骤:分析→描述性统计→探索: 因变量列表: Height; 因子列表: treatment →绘图: 箱图: 按因子级别分组; 勾选: 带检验的正态图
- 4) 两个样本 t 检验步骤: 分析→比较平均值→独立样本 t 检验: 检验变量为: height; 分组变量为: treatment → 定义组: 组 1: 1, 组 2: 2 (注意: 独立样本 t 检验中的 组别数据类型必须是数值型)
- 5) 结果解读: a) 方差齐性 2) t 检验显著性
- 6) 书写检验报告

对于方差齐性检验:

H0: $\sigma_1 = \sigma_2$ H1: $\sigma_1 \neq \sigma_2$ $\alpha = 0.05$

对于 t 检验:

H0: $\mu_1 = \mu_2$ H1: $\mu_1 \neq \mu_2$ $\alpha = 0.05$

输出结果:

		组统计			
	对菌肥的处理, 1=sterilize, 2=none_sterilize	个案数	平均值	标准 偏差	标准 误差平均 值
小麦的株高(cm)	1	50	5.9780	1.34412	.19009
	2	50	8.0160	1.60806	.22741
	·		, i	, and the second	

独立样本检验										
莱文方差等同性检验 平均值等同性 t 检验										
									差值 95%	置信区间
		F	显著性	t	自由度	Sig. (双尾)	平均值差值	标准误差差值	下限	上限
小麦的株高(cm)	假定等方差	1.176	.281	-6.876	98	.000	-2.03800	.29640	-2.62619	-1.44981
	不假定等方差			-6.876	95.010	.000	-2.03800	.29640	-2.62642	-1.44958

验,在方差齐的条件下,p=0.000<0.05,拒绝 H0,接受 H1,即认为两种处理方式下的小 麦株高有显著差异。

1.3 两个配对样本的 t 检验

习题 5.22 一项旨在研究夜间血液透析在肉毒碱代谢上短期效果的工作 给出了采用常规透析方法和夜间透析方法患者的一些生化指标。以下仅摘录了其中的白蛋白。

中 土 庁 口	白蛋白	∃/(g•L ⁻¹)
患者序号 一	CHD*	NHD**
1	41	39
2	35	40
3	41	39
4	39	37
5	38	35
6	35	37
7	36	39
8	37	37
9	42	39

注: * CHD: 常规的血透析

**NHD: 在夜间

对于白蛋白,采用不同的透析方式所得结果差异是否显著?

1) 将习题的数据输入到 SPSS, 首先需要考虑的是, 数据格式是变量组结构 (横向结构) 还是 观测组结构 (纵向结构) ? 配对样本 t 检验采用变量组横向结构

2) 变量设置:

变量名称: SeriesNumber; 小数: 0; 标签: 患者序号; 测量: 有序

变量名称: CHD; 小数: 0; 标签: 常规血透析; 测量: 度量变量名称: NHD; 小数: 0; 标签: 夜间血透析; 测量: 度量

- 2) 配对样本 t 检验步骤: 分析→比较平均值→配对样本 t 检验: variable1 为 CHD, variable2 为 NHD→确定
- 3) 结果解读
- 4) 书写检验报告

H0: $\mu_{\bar{d}} = 0$,认为不同透析方式结果一致

H1: $\mu_{\bar{d}} \neq 0$, 认为不同透析方式结果不一致

α = 0.05输出结果:

配对样本统计							
		平均值	个案数	标准 偏差	标准 误差平均 值		
配对 1	常规血透析	38.22	9	2.682	.894		
	夜间血透析	38.00	9	1.581	.527		

配对样本相关性							
		个案数	相关性	显著性			
配对 1	常规血透析 & 夜间血透析	9	.147	.705			

				配对样本检验					
				配对差值					
				标准 误差平均	差值 95%	置信区间			
		平均值	标准 偏差	值	下限	上限	t	自由度	Sig. (双尾)
配对 1	常规血透析 - 夜间血透析	.222	2.906	.969	-2.011	2.456	.229	8	.824

检验结论:由于 p=0.824>0.05,接受 H0,拒绝 H1,因此不能认为不同的透析方式对于白蛋白检测结果有显著差异。

1.4 思考: 如何用 SPSS 对给定平均值和标准差的两个样本做 t 检验? 习题 5.27 接触稀土的人群(处理组)与不接触稀土的人群(对照组),他们的肝功能指标($\bar{y}\pm s$)为:

组别	样本含量	GTP*/ (U•L ⁻¹)	GOP**/ (U•L ⁻¹)
对照	58	18.66±15.78	16.45±11.29
处理	102	19.26±18.39	20.57±15.50

对于方差齐性检验: (两项指标分别假设)

H0: $\sigma_1 = \sigma_2$ H1: $\sigma_1 \neq \sigma_2$ $\alpha = 0.05$

对于 t 检验: (两项指标分别假设)

H0: $\mu_1 = \mu_2$ H1: $\mu_1 \neq \mu_2$ $\alpha = 0.05$

操作步骤: 利用转换->计算变量的方法来随机生成数据,再进行重组以得到观测组纵向结构,使用两个独立样本的 t 检验方法。

结果输出:

			组统计		
	group	个案数	平均值	标准 偏差	标准 误差平均 值
GTP	对照组	58	17.0479	15.51848	2.03768
	实验组	102	18.8187	18.34022	1.81595
GOP	对照组	58	15.0156	12.01721	1.57794
	实验组	102	23.1271	14.51921	1.43762

	独立样本检验									
	莱文方差等同性检验 平均值等同性 t 检验									
									差值 95%	置信区间
		F	显著性	t	自由度	Sig. (双尾)	平均值差值	标准误差差值	下限	上限
GTP	假定等方差	2.063	.153	620	158	.536	-1.77082	2.85743	-7.41450	3.87286
	不假定等方差			649	135.322	.518	-1.77082	2.72943	-7.16868	3.62705
GOP	假定等方差	1.379	.242	-3.608	158	.000	-8.11151	2.24801	-12.55153	-3.67148
	不假定等方差			-3.800	137.452	.000	-8.11151	2.13462	-12.33246	-3.89056

对于 GTP 指标: 方差齐性检验, p=0.153>0.05, 认为方差相齐。此时进行 t 检验, p=0.536>0.05, 接受 H0, 拒绝 H1, 不能认为接触稀土人群的 GTP 指标与不接触稀土人群有显著性差异。

对于 GOP 指标: 方差齐性检验, p=0.242>0.05, 认为方差相齐。此时进行 t 检验,

p=0.000<0.05, 拒绝 H0, 接受 H1, 可以认为接触稀土人群的 GOP 指标与不接触稀土人群有显著性差异。

2. 方差分析 (ANOVA)

2.1 单因素方差分析

习题 8.1 黄花嵩中所含的青蒿素是当前抗疟首选药物,研究不同播期对黄花蒿种子产量的 影响,试验采用完全随机化设计,得到以下结果(kg/小区):

重复		播	种期	_
	2月19日	3月9日	3月28日	4月13日
1	0.26	0.14	0.12	0.03
2	0.49	0.24	0.11	0.02
3	0.36	0.21	0.15	0.04

对上述结果做方差分析。

- 1) 将习题数据快速准确地输入 SPSS, 调整数据格式为观测组纵向结构, 注意此处索引采用序号, 并对每个序号设定标签值 (原因是因素变量的取值必须是整数型)。
 - ** 注意: 1.3 与 2.1 中标号的区别
- 2) 单因素 ANOVA 的操作步骤: 分析→比较平均值→单因素 ANOVA: 因变量列表: 黄花 蒿种子产量; 因子列表: 不同的播种期 →选项: 勾选 方差同质性检验 →继续→确定
- 3) 结果解读: 方差齐性检验, F检验
 - ** 如果方差同质性检验不通过,可参照 Brown-Forsythe 或 Welch 的均值比较结果
- 4) 由于 p<0.05, 继续做多重检验

步骤:分析→比较平均值→单因素 ANOVA: 因变量列表: 黄花蒿种子产量; 因子列表: 不同的播种期→事后多重比较

常用: LSD 最小显著差数法; Duncan: 新复极差法; S-N-K: q-test

5) 书写检验报告

H0: $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H1: μ_i 不全部相等

α=0.05 输出结果:

	方	差齐性检验			
		莱文统计	自由度 1	自由度 2	显著性
种子产量	基于平均值	2.992	3	8	.096
	基于中位数	1.947	3	8	.201
	基于中位数并具有调整后 自由度	1.947	3	3.265	.288
	基于剪除后平均值	2.926	3	8	.100

	ANOVA								
种子产量	ŧ								
	平方和	自由度	均方	F	显著性				
组间	.185	3	.062	14.993	.001				
组内	.033	8	.004						
总计	.218	11							

多重比较 因变量: 种子产量 95% 置信区间 平均值差值 (I-下限 上限 标准 错误 显著性 (I) 日期 (J) 日期 2月19日 LSD .17333 .05239 .0525 3月9日 .011 .2941 .3641 .24333 .05239 3月28日 .002 .1225 4月13日 .34000[^] .05239 .000 .2192 .4608 3月9日 -.17333 2月19日 .05239 .011 -.2941 -.0525 .07000 -.0508 3月28日 .05239 .218 .1908 .16667 4月13日 .05239 .013 .0459 .2875 3月28日 2月19日 -.24333^{*} .05239 .002 -.3641 -.1225 3月9日 -.07000 .05239 .218 -.1908 .0508 4月13日 .09667 .05239 .102 -.0241 .2175 4月13日 2月19日 -.34000° .05239 .000 -.4608 -.2192 3月9日 -.16667[^] .05239 .013 -.2875 -.0459 3月28日 -.09667 .05239 .102 -.2175 .0241 *. 平均值差值的显著性水平为 0.05。

种子产量							
	Alpha 的子集 = 0.05						
	日期	个案数	1	2	3		
S-N-K ^a	4月13日	3	.0300				
	3月28日	3	.1267	.1267			
	3月9日	3		.1967			
	2月19日	3			.3700		
	显著性		.102	.218	1.000		
沃勒-邓肯 ^{a,b}	4月13日	3	.0300				
	3月28日	3	.1267	.1267			
	3月9日	3		.1967			
	2月19日	3			.3700		

将显示齐性子集中各个组的平均值。

a. 使用调和平均值样本大小=3.000。

b. | 类/II 类误差严重性比率 = 100。

检验结论: 方差齐性检验中, p 均大于 0.05, 认为方差相齐。ANOVA 分析中, p=0.001<0.05, 接受 H1, 拒绝 H0,则不同播种时期对于黄花蒿种子产量有显著影响。 多重比较结果如下:

播种时间	差异显著性 (α=0.05)
2月19日	a
3月9日	b
3月28日	bc
4月13日	c

2.2 随机区组方差分析

某研究者采用随机区组设计进行实验, 比较三种抗癌药物对小白鼠肉瘤的抑瘤效果, 先将 15 只染有肉瘤小白鼠按体重大小配成 5 个区组, 每个区组内 3 只小白鼠随机接受三种抗癌药物, 以肉瘤的重量为指标, 试验结果见下表:

区组	A 药	B 药	C 药	
1	0.82	0.65	0.51	
2	0.73	0.54	0.23	
3	0.43	0.34	0.28	
4	0.41	0.21	0.31	
5	0.68	0.43	0.24	

问三种不同药物的抑瘤效果有无差别?

- 1) 将习题数据快速准确地输入 SPSS, 调整数据格式为观测组纵向结构, 注意此处使用区组 为个案组标识, 索引采用序号, 并对每个序号设定标签值(原因是因素变量的取值必须 是整数型)。
 - ** 注意: 2.2 与 2.1 中标号的区别
- 2) 析因设计 ANOVA 的分析路径: 分析 → 一般线性模型 → 单变量: 因变量就是肉瘤的重量; 固定因子是区组与抗癌药物 → 点击模型 → 指定模型: 定制; 选择区组和抗癌药物的主效应 → 点击继续 → 点击确认
- 3) 结果解读
- 4) 书写检验报告

H0: $\mu_1 = \mu_2 = \mu_3$ H1: μ_i 不全部相等

α=0.05 输出结果:

主体间因子						
		值标签	个案数			
区组设计	1		3			
	2		3			
	3		3			
	4		3			
	5		3			
药物使用	1	A药	5			
	2	B药	5			
	3	C药	5			

主体间效应检验						
因变量: 肉瘤	7大小					
源	Ⅲ 类平方和	自由度	均方	F	显著性	
修正模型	.456ª	6	.076	7.964	.005	
截距	3.092	1	3.092	323.742	.000	
group	.228	4	.057	5.978	.016	
drug	.228	2	.114	11.937	.004	
误差	.076	8	.010			
总计	3.624	15				
修正后总计	.533	14				
a. R 方 = .	a. R 方 = .857(调整后 R 方 = .749)					

检验结论: p(drug)=0.004<0.05,接受 H1,拒绝 H0,即三种不同药物的抑瘤效果有显著差别。P(group)=0.016<0.05,接受 H1,拒绝 H0,即药物对于不同体重的小鼠抑瘤效果有显著差别。

2.3 单变量多因素(析因设计)的方差分析 - 主效应

习题 9.1 双菊饮具有很好的治疗上呼吸道感染的功效,为便于引用,制成泡袋剂。研究不同浸泡时间和不同的浸泡温度对浸泡效果的影响,设计了一组两因素交叉分组实验,实验结果 (浸出率)见下表:

浸泡温度/°C		浸泡时间/min	泡时间/min		
	10	15	20		
60	23.72	25.42	23.58		
80	24.84	28.32	29.55		
95	30.64	31.58	32.21		

对以上的结果做方差分析及 Duncan 检验。 该设计已经能充分说明问题了吗? 是否还有更能说明问题的设计方案?

- 1) 将习题数据快速准确地输入 SPSS, 调整数据格式为观测组纵向结构, 注意此处保留个案组标识(浸泡温度), 和索引变量: 有序数
- 2) 析因设计 ANOVA 的分析路径: 分析 → 一般线性模型 → 单变量: 因变量就是浸泡效果; 固定因子是浸泡温度和浸泡时间 → 点击模型 → 指定模型: 定制; 选择浸泡时间与浸泡温度的主效应 → 点击继续 → 点击确认

思考: 为什么不选择交互作用?

- 3) 结果解读
- 4) 书写检验报告

H0: $\alpha_i = \beta_i = 0$,浸泡时间与浸泡温度对浸出率无影响。

H1: α_i 与 β_i 不都为 0。

α=0.05 输出结果:

主体间因子						
		值标签	个案数			
浸泡温度 (摄氏度)	60		3			
	80		3			
	95		3			
浸泡时间	1	10min	3			
	2	15min	3			
	3	20min	3			

主体间效应检验							
因变量 浸出	出率						
源	Ⅲ 类平方和	自由度	均方	F	显著性		
修正模型	87.071 ^a	4	21.768	12.560	.016		
截距	6936.669	1	6936.669	4002.591	.000		
temp	78.720	2	39.360	22.712	.007		
time	8.350	2	4.175	2.409	.206		
误差	6.932	4	1.733				
总计	7030.672	9					
修正后总计	94.003	8					
a. R 方 = .	a. R 方 = .926(调整后 R 方 = .853)						

检验结论: p(温度)=0.007<0.05, 拒绝 H0, 接受 H1, 认为浸泡温度对于浸出率有影响,p(时间)=0.206>0.05, 接受 H0, 拒绝 H1, 认为浸泡时间对于浸出率没有影响。

不使用交互作用的原因:这里每一项都只做了一次实验,没有平行,不能进行交互作用的析因分析。这里实验最好将每一项温度和时间多进行几次平行实验,能使结果更加具有说服力。

2.4 单变量两因素多水平(析因设计)的方差分析 -交互作用

习题 9.12 六位木香袋泡剂是一种中药新剂型。药物的浸出率与粒度的大小、浸泡时间、浸泡水温等因素有关。以下数据是不同粒度及不同水量的浸出率(%),对这些数据进行分析,推断因素的显著性。

		粒度 / 目		
		10	40	
加水量 / ml	100	41.83	34.88	
		40.14	32.66	
	200	33.85	34.27	
		35.27	31.36	

- 1) 将习题数据快速准确地输入 SPSS, 调整数据格式为观测组纵向结构, 注意此处保留个案组标识(加水量), 和索引变量: 粒度/目
- 2) 析因设计 ANOVA 的分析路径:分析 → 一般线性模型 → 单变量:因变量就是浸出率; 固定因子是加水量和粒度 → 点击模型 → 全因子 或者指定模型:定制;选择加水量与 粒度的主效应,加水量与粒度的交互作用 → 点击继续 → 点击确认
- 3) 结果解读
- 4) 书写检验报告

H0: $\alpha_i = \beta_j = \varepsilon_{ij} = 0$, 粒度、水量对浸出率无影响,且无相互作用。

H1: α_i 、 β_j 与 ε_{ij} 不都为 0。

α=0.05 输出结果:

主体间因子							
		值标签	个案数				
粒度/目	1	10目	4				
	2	40目	4				
加水量/mL	100		4				
	200		4				

主体间效应检验								
因变量: 浸出率								
源	Ⅲ 类平方和	自由度	均方	F	显著性			
修正模型	82.333ª	3	27.444	12.018	.018			
截距	10100.468	1	10100.468	4422.998	.000			
size	40.141	1	40.141	17.578	.014			
water	27.232	1	27.232	11.925	.026			
size * water	14.960	1	14.960	6.551	.063			
误差	9.135	4	2.284					
总计	10191.936	8						
修正后总计	91.468	7						
a. R 方 = .900(调整后 R 方 = .825)								

检验结论: p(加水)=0.026<0.05, 拒绝 H0, 接受 H1, 可以认为加水量对浸出率有影响, p(粒度)=0.014<0.05, 拒绝 H0, 接受 H1, 可以认为粒度对浸出率有印象。 p(交 互)=0.063>0.05, 拒绝 H1, 接受 H0,不能认为粒度与加水量有交互作用。