CS208: Mathematical Foundations of CS

Fall 2018

Lecture 23: October 4

Lecturer: Samar Scribes: Yash Khanna(B17070), Saurbh(B17060)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

23.1 Perturbation Methods

Perturbation theory comprises mathematical methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbation" parts.

$$S = 1 + x + x^{2} + \dots x^{n} = \frac{1 - x^{n+1}}{1 - x}$$
$$Sx = x + x^{2} + \dots x^{n+1}$$

Subtracting:-

$$S = \frac{1 - x^{n+1}}{1 - x}$$

23.1.1 A few items of note

$$\sum_{1}^{n} i = \frac{n(n+1)}{2}$$

Proof:-

$$S = 1 + 2 + 3 + \dots + n - 1 + n$$

$$S = n + n - 1 + n - 2 + \dots + 2 + 1$$

$$2S = n + 1 + \dots + (nterms)$$

$$2S = n(n + 1)$$

$$S = \frac{n(n+1)}{2}$$

$$\sum_{1}^{n} i^{2}$$

$$S = 1^{2} + 2^{2} + \dots n^{2}$$

Lecture 23: October 4 23-2

There are n terms so, roughly polynomial of n^3 .

$$\sum_{1}^{n} i^{2} = ax^{3} + bx^{2} + cx + d$$
 For general summation

$$\sum_{1}^{n} i^{k} = a_{0}n^{k+1} + a_{1}n^{k} + \dots + a_{k}$$

$$f: R^{+} \to R^{+}$$

-Weakly increasing

Here is an equation:

$$S = \sum_{1}^{n} f(i)$$
$$I = \int_{1}^{n} f(x)dx$$

then
$$I + f(1) \le S \le I + f(n)$$

Here is an example:

Example:

Find the upper and lower bound of $\sum_{i=1}^{n} \sqrt{i}$

$$\frac{2x^{\frac{3}{2}}}{3} + \frac{1}{3} \le \sum_{1}^{n} \sqrt{i} \le \frac{2x^{\frac{3}{2}}}{3} + \sqrt{n} - n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$$

Products and Factorials 23.2

$$p = \prod_{1}^{n} f(i)$$

$$\ln p = \sum_{1}^{n} \ln f(i)$$

$$\ln n! = \sum_{1}^{n} \ln i$$

$$n \ln n - n + 1 \le \sum_{1}^{n} \ln i \le n \ln n - n + 1 + \ln n$$

Striling's approximation 23.3

Comparison of Stirling's approximation with the factorial In mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of n

$$\ln n! = n \ln n - n + O(\ln n)$$

Lecture 23: October 4 23-3

Specifying the constant in the $O(\ln n)$ error term gives $\frac{1}{2} ln(2n)$, yielding the more precise formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
,

Simple bounds valid for all positive integers n

$$\sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n} \le n! \le e n^{n+\frac{1}{2}} e^{-n}$$

References

- 1. https://en.wikipedia.org/wiki/Perturbation-theory
- 2. https://en.wikipedia.org/wiki/Stirling