Universiteit van Stellenbosch

Toegepaste Wiskunde 314

Tutoriaaltoets 1b: Donderdag 19 Februarie 2004

US nommer: _____ Voorletters: ____ Van: ____

	Die Gebruik van Klasnotas word Verbied							
(1)	Dekripteer, $met\ die\ hand$, die kriptoteks NQCHJYUEM, wat met behulp van die addi substitusie—stelsel \Im_{26}^{20} gevorm is. Wys u werking volledig.	tiewe [2]						
(2)	Die kriptoteks KAEGFKTWJY is met behulp van die additiewe substitusie-stelsel gevorm. rafel die sleutel en dekripteer dan die kriptoteks. Wys u werking.	Ont- [3]						

(3) Gebruik die Gewysigde Euklidiese Algoritme om die inverse $a \equiv (19)^{-1} \pmod{36}$ te bepaal. Wys u werking volledig deur die onderstaande tabel in te vul. Toets die korrektheid van u antwoord deur die produk $19a \pmod{36}$ te evalueer.

Algorithm 2-2: Revised Euclidean Algorithm

To calculate a number z that satisfies $az \equiv 1 \pmod{m}$.

- 1. Let $p_0 = m$, $q_0 = a$, $x_0 = 0$, $y_0 = 1$ and set i = 0.
- 2. Let r_i be the remainder when p_i is divided by q_i , i.e.

$$\frac{p_i}{q_i} = s_i + \frac{r_i}{q_i},$$

for some integer $s_i \geq 0$.

- 3. Let p_{i+1} = q_i, q_{i+1} = r_i, x_{i+1} = y_i and y_{i+1} = x_i s_iy_i.
 4. If q_{i+1} > 0, increment the value of i by 1. Return to Step 2.
- 5. Let $z = y_i$. Stop.

i	p_i	q_i	r_i	s_i	x_i	y_1
1						
2						
3						
4						
5						
6						
7						
8						