```
* ADDAC SYSTEM 2012
* Voltage Controlled Computer C++ LIBRARY

* Version 0.22 November, 2012

* Copyright 2012 André Gonçalves

* For details, see http://
* AD5668 programming based on
* DAC V11 by Robin Price 2009
* shiftIn Example 2.1 by Carlyn Maw
```

ADDAC LIBRARY INDEX

ADDAC Library	Code Reference	VS.0004
ADDAC.h & ADDAC.cpp	Main Class	
ADDAC_Adsr.h & ADDAC_Adsr.cpp	ADSR Class	
ADDAC_Clock.h & ADDAC_Clock.cpp	Clock Class	
ADDAC_CvBuffer.h & ADDAC_CvBuffer.cpp	CV Buffer Class	
ADDAC_CvLooper.h & ADDAC_CvLooper.cpp	CV Looper Class	
ADDAC_Empty.h & ADDAC_Empty.cpp	Basic Class Construction Example	
ADDAC_LFO.h & ADDAC_LFO.cpp	LFO Class	
ADDAC_Liss.h & ADDAC_Liss.cpp	Liss Class	
ADDAC_Logic.h & ADDAC_Logic.cpp	Logic Class	
ADDAC_MIDI.h & ADDAC_MIDI.cpp	MIDI Class	
ADDAC_Physics.h & ADDAC_Physics.cpp	Marble Physics Class	
ADDAC_Quad.h & ADDAC_Quad.cpp	Quadraphonic Spatializer Class	
ADDAC_Quantizer.h & ADDAC_ Quantizer.cpp	Quantizer Class	
Main Class		
ADDAC.h & ADDAC.cpp		
Main Class	This Class configures all MCU pin def	initions for ADDAC 00X Series
	Provides control for the CV Outputs	
	Provides control for the ALL Expansion	ns I/O
	Features a Mixer Function	
Implemented Functions:		
setup();	ADDAC001 Setup	
update();	Update MODE & SUBMODE Readings	
<pre>readMODEswitch();</pre>	Updates MODE & SUBMODE Readings	
readMODE();	Returns MODE Value	
readSUBMODE();	Returns SUBMODE Value	
<pre>WriteChannel(int _channel, unsigned int _voltage);</pre>	Writes to CV Outputs	
<pre>ReadCvs(int _socket);</pre>	Reads from ADDAC002 in Socket A, B	or C
<pre>ReadCv(int _socket, int _channel);</pre>	Reads from ADDAC002 in Socket A, B	or C in defined Channel
<pre>ReadManuals(int _socket, int _channel);</pre>	Reads from ADDAC003 in Socket A, B	or C
<pre>ReadManual(int _socket, int _channel);</pre>	Reads from ADDAC003 in Socket A	
<pre>ReadGates(int _socket, bool _invert);</pre>	Reads from ADDAC004 in Socket A, B	or C
<pre>ReadGate(int _socket, bool _invert, int _channel);</pre>	Reads from ADDAC004 in Socket A, B	or C in defined Channel
<pre>WriteGatesA(int _channel, int _data)</pre>	Writes to ADDAC005 in Socket A	
<pre>WriteGatesB(int _channel, int _data)</pre>	Writes to ADDAC005 in Socket B	
mixerMode()	Channel Mixer	
ADSR Class		
ADDAC_Adsr.h & ADDAC_Adsr.cpp		
Complex ADSR Class	This Class features a fully controlla	ble ADSR or AD CV Generator
	Independent Time and Amplitude for ea	ch stage
	Independent Log/Exp curves for each s	tage
	Free Mode or Sustain Mode for Note On	commands
	Trigger and Reset	
Implemented Functions:		T 1 AD M 1
AD_trigger();		Triggers AD Mode

	Trigger and Reset	
	Trigger and Reserv	
Implemented Functions:		
AD_trigger();		Triggers AD Mode
<pre>AD_trigger(float _A);</pre>		Triggers AD Mode at a certain amplitu
AD_release();		Release AD
<pre>AD_update(float _Atime, float _Dtime);</pre>		Updates AD
ADSR_update(Updates ADSR
float _A, float _Atime,		Attack amplitude and time
<pre>float _D, float _Dtime,</pre>		Decay amplitude and time
<pre>float _S,float _Stime,</pre>		Sustain amplitude and time
<pre>float _Rtime);</pre>		Release time
adsrMode(Standard Free Mode ADSR
<pre>int _channel, bool _trigger, bool _inverted,</pre>		
float _A, float _Atime,		Attack amplitude and time
<pre>float _D, float _Dtime,</pre>		Decay amplitude and time
<pre>float _S,float _Stime,</pre>		Sustain amplitude and time
<pre>float _Rtime);</pre>		Release time
adsrLogExpMode(Standard Free Mode Log/Exp ADSR
<pre>int _channel, bool _trigger, bool _inverted,</pre>		
<pre>float _A, float _Atime, float _Ashape,</pre>		Attack amplitude, time and Log/Exp Shape
<pre>float _D, float _Dtime, float _Dshape,</pre>		Decay amplitude, time and Log/Exp Shape
<pre>float _S, float _Stime, float _Sshape,</pre>		Sustain amplitude, time and Log/Exp Shape
<pre>float _Rtime, float _Rshape);</pre>		Release time and Log/Exp Shape
Operational variables:		
bool ADSRtrigger;	range: 0, 1	Triggers ADSR Mode

operacionat variables.		
bool ADSRtrigger;	range: 0, 1	Triggers ADSR Mode
bool SUSTAIN;	range: 0, 1	Sustain for Gate On control
Output variable:		
unsigned int CVstream;	range: 0, 65535	Variable to Acess ADSR Stream

difficultific Cv3CrCaiii,	Tarige: 0, 00000	variable to Acess Abort Stream

ADSR Class		
ADDAC_Adsr.h & ADDAC_Adsr.cpp		
Complex ADSR Class	This Class features a fully controllable ADSR or	AD CV Generator
	Independent Time and Amplitude for each stage	
	Independent Log/Exp curves for each stage	
	Free Mode or Sustain Mode for Note On commands	
	Trigger and Reset	
Implemented Functions:		
AD_trigger();		Triggers AD Mode
AD_trigger(float _A);		Triggers AD Mode at a certain amplitud
AD_release();		Release AD
<pre>AD_update(float _Atime, float _Dtime);</pre>		Updates AD
ADSR_update(Updates ADSR
<pre>float _A, float _Atime,</pre>		Attack amplitude and time
<pre>float _D, float _Dtime,</pre>		Decay amplitude and time
<pre>float _S,float _Stime,</pre>		Sustain amplitude and time
<pre>float _Rtime);</pre>		Release time
adsrMode(Standard Free Mode ADSR
<pre>bool _trigger, bool _inverted,</pre>		
<pre>float _A, float _Atime,</pre>		Attack amplitude and time
<pre>float _D, float _Dtime,</pre>		Decay amplitude and time
<pre>float _S,float _Stime,</pre>		Sustain amplitude and time
<pre>float _Rtime);</pre>		Release time
adsrLogExpMode(Standard Free Mode Log/Exp ADSR
<pre>int _channel, bool _trigger, bool _inverted,</pre>		

Operational variables:		
bool ADSRtrigger;	range: 0, 1	Triggers ADSR Mode
bool SUSTAIN;	range: 0, 1	Sustain for Gate On control
Output variable:		
unsigned int CVstream;	range: 0, 65535	Variable to Acess ADSR Stream

Attack amplitude, time and Log/Exp Shape

Decay amplitude, time and Log/Exp Shape

Release time and Log/Exp Shape

Sustain amplitude, time and Log/Exp Shape

float _A, float _Atime, float _Ashape,

float _D, float _Dtime, float _Dshape,

float _S, float _Stime, float _Sshape,

float _Rtime, float _Rshape);

```
/*
 * ADDAC SYSTEM 2012
 *
 * Necessary or Recommended External Libraries
 *
 */
```

External LIBRARIES

Library Name

StandardCplusplus

MIDI

Z_OSC

SimpleMessageSystem

lannix

MemoryFree

Reference

Needed to use ADDAC Library (important)

Needed for ADDAC009 MIDI communication

Needed for ADDAC007 OSC communication

Needed for MAX-MSP communication

Needed for interfacing with IANNIX software

Needed for debugging available memory

Direct Link

https://github.com/maniacbug/StandardCplusplus

http://arduino.cc/playground/Main/MIDILibrary

https://github.com/djiamnot/Z_OSC

http://www.arduino.cc/playground/Code/SimpleMes

http://www.iannix.org/en/download.php

http://arduino.cc/playground/Code/AvailableMemor

This document was exported from Numbers. Each table was converted to an Excel worksheet. All other objects on each Numbers sheet were placed on separate worksheets. Please be aware that formula calculations may differ in Excel. **VS.0004 ADDAC Main Class Library Code Reference** ADDAC.h & ADDAC.cpp ADDAC.h **Hard-Coded Definitions** ADDAC001 Version Uncomment correct line to define Your version // WHICH VCC VERSION? Set VS1 //#define VS1 Set VS2 //#define VS2 //#define VS3 Set VS3 ADDAC004 Version Uncomment correct line to define Your version // WHICH 004 VERSION? Set VS1 //#define ADDAC004VS1 Set VS2 //#define ADDAC004VS2 Constants: #define addacMaxResolution 65535 Maximum CV out range: 16bit ADDAC.cpp setup(); variables initialized: function type: void Initializes ADDAC001 long DACvolts[8]; range: 1 to 8 , channel number = position in array unsigned long DACtimes[8]; unsigned int RNDdelays[8]; update(); function type: void Updates MODE & SUBMODE Switches using: readMODEswitch(); described below READ MODE & SUBMODE SWITCHES readMODEswitch(); function type: void Updates MODE & SUBMODE Variables variables updated: range: 0, 15 int MODE int SUBMODE range: 0, 15 readMODE(); function type: int int MODE Reads & returns the MODE button position: range: 0, 15 readSUBMODE(); function type: int int SUBMODE Reads & returns the SUBMODE button position: range: 0, 15 readOnboardPot(); (VS.I & II only) function type: int Returns the ONBOARD pot value int onboardVal range: 0, 1023 (VS.I & II only) unsigned int onboardValMapped range: 0, 65535 GENERATE CV OUTPUT function type: void WriteChannel(int _channel, unsigned int _voltage); Send a Voltage to a channel int _channel range: 0, 7 Channel to Set unsigned int _voltage Voltage range: 0 = 0v & 65535 = 5vrange: 0, 65535 READ FROM ADDAC002 Connected to SOCKET A ReadCvsA(); function type: void Read all 6 channels at once updates variables: unsigned int cvValuesA[6] range: 0, 1023 unsigned int cvValuesAMapped[6] range: 0, 65535 ReadCvsA(int _channel); function type: int Reads & Returns the value from requested channel int _channel range: 0, 5 updates variable: unsigned int cvValuesA[6] range: 0, 1023 Connected to SOCKET B ReadCvsB(int _channel); function type: int Reads & Returns the value from requested channel range: 0, 5 int _channel updates variable: range: 0, 1023 unsigned int cvValuesB[6] **READ FROM ADDAC003** Connected to SOCKET A function type: void ReadAnalogsA(); Read all 5 channels at once updates variables: unsigned int analogValuesA[6] range: 0, 1023 unsigned int analogValuesAMapped[6] range: 0, 65535 ReadAnalogsA(int _channel); function type: int Returns the value from each channel individually int _channel range: 0, 4 updates variable: unsigned int analogValuesA[_channel] range: 0, 1023 Connected to SOCKET B function type: void ReadAnalogsB(); Read all 5 channels at once updates variables: unsigned int analogValuesB[6] range: 0, 1023 unsigned int analogValuesBMapped[6] range: 0, 65535 ReadAnalogsB(int _channel); function type: int Returns the value from each channel individually int _channel range: 0, 4 updates variable: unsigned int analogValuesB[_channel] range: 0, 1023 READ FROM ADDAC004 Connected to SOCKET A ReadGatesA(bool _invert); function type: void

Read all 8 channels at once			
	bool _invert	range: 0, 1	(0= normal readings, 1= inverted readings)
	updates variables:		
Variable that holds all channel A values	byte gateValuesA[8]	range: 0, 1	0 = below 2.5v, 1 = above 2.5v
<pre>MAXsendGatesA();</pre>		function type: void	
Sends values to MAX-MSP when communication is enable	pled		
Connected to SOCKET B			
<pre>ReadGatesB(bool _invert);</pre>			function type: void
Read all 8 channels at once			
	bool _invert	range: 0, 1	(0= normal readings, 1= inverted readings)
	updates variables:		
Variable that holds all channel B values	<pre>byte gateValuesA[8]</pre>	range: 0, 1	0 = below 2.5v, 1 = above 2.5v
<pre>MAXsendGatesA();</pre>		function type: void	
Sends values to MAX-MSP when communication is enabled	oled		

Change each channel independently			
	int _channel	range: 0, 7	Channel to Set
	int data	range: 0, 1	Set State: 0= 0v, 1= 5v
	_		
Connected to SOCKET B			
<pre>WriteGatesB(int _channel, int _data)</pre>			function type: void
Change each channel independently			
	int _channel	range: 0, 7	Channel to Set
	int data	range: 0, 1	Set State: 0= 0v, 1= 5v
MIXER FUNCTIONS			

function type: void

Calculates an average of the first 7 channels and updates channel 8 with the result. DACvolts[8]=

WRITE TO ADDAC005

Connected to SOCKET A

void ADDAC::mixerMode(){

WriteGatesA(int _channel, int _data)