Rare category exploitation

Harel Lustiger

Dept. of Statistics and Operations Research, Tel-Aviv University

January 16, 2017

Goals

Quickly find the minority cases within an unlabeled data set given that:

- The process can be carried out in a sequential fashion.
- 2 The sequence has a finite time horizon.

Method 1: Random Instances Policy

Method 1: Random Instances Policy

Method 3: Informativness Policy

Model Assessment and Selection

"The generalization performance of a learning method relates to its prediction capability on independent test data." 1

While this is typically true, under our settings it is not the case:

- We have no test set since our objective is to discover the minority cases within the unlabeled set.
- When the experiment is terminated, the model becomes obsolete, such that no more unseen data is predicted.

¹Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning.

Evaluation Metrics: attributes

In the case of rare category exploitation, an adequate performance measure should be accountable for four properties of the scenario:

- binary classification task
- unbalanced data set
- sequential experiment, and
- finite horizon

Evaluation Metrics: Temporal-Minority space

- In the continuum of the experiment, rare category exploitation is expressed in a confined subspace.
 - Its right boundary, here depicted by a dashed line at x=1200 or $x\approx 0.3$ is driven by the problem constraints and expresses the finite horizon of the sequential experiment.

Evaluation Metrics: ROC space vs. TM space

Evaluation Metrics: Comparing different policies

Results expressed in graphical measures can be more difficult to interpret than those reported in a single measure.

- the total number of minority cases found at the end of the experiment.
 - Because of its conciseness, summarizing only the endpoint into a scalar metric, it lacks informativeness.
 - It does not reflect the quickness property of the objective behind rare category exploitation.
- Instead, we propose to integrate the area under the curve in temporal-minority space AUC-TM.
 - Since the TM space is confined by a closed shape, we know the maximum achievable AUC-TM and therefore we can scale it such that ${\sf AUC-TM} \in [0,1]$

Evaluation Metrics: AUC-TM

- If a policy has near Optimal Performance, it quickly detects most if not all the minority cases in the unlabeled set and the AUC-TM will be close to 1.
- Note: AUC-TM is not necessarily $\frac{1}{2}$ for Random Performance.

Evaluation Metrics: AUC-TM

- AUC-TM assigns a value to finding minority cases sooner rather than later.
- AUC-TM allows us to conclude that a policy is superior to a second policy if it dominates the other for most or all of the points along their TM curves.

Experiments: Setup

Datasets

- ABALONE
- 2 LETTER
- SETIMAGE

Algorithms

- Random Instances policy
- @ Greedy policy
- Informativeness policy
- Semi Uniform policy
- **o** ϵ -Greedy policy

Classifiers

- SVM
- 2 Logistic regression

Experiments: Analysis of the experimental results

A policy is most useful if it exhibits robust performance across multiple settings, and does not perform poorly in any setting.

The ideal outcome of the experiment then, is a policy which satisfies two criteria:

- better than the benchmark of non-data-driven policy, and
- ont substantially worse than other data-driven policies

To check these two assumptions, we perform Wilcoxon signed-rank test for the differences between policies' AUC-TM across 100 repetitions for one year of ongoing sequential experimentation (12 epochs).

With 4+12 tests, 3 data sets and 2 classifiers families, the p-value threshold placed at 5e-4 (0.05/96).

Experiments: Empirical Evaluation

Experiments: Results summary

	SEMIUNIFORM	INFORMATIVENESS	GREEDY	ε-GREEDY
# of rejections	9	11	3	4
Mean percentage difference	89.3	65.1	46.5	92.6

²out of 18 possible rejections