AIFA A* Analysis

11/01/2024

Koustav Rudra

Algorithm A*: Benefit

• Reduces number of expanded nodes

• Performs the lookahead and tells us promising paths

• What about optimality?

Uniform Cost Search

- Claim: If $C(n) < C^*$ (optimal cost) then n must be expanded
- Let algorithm A does not expand n
- For the class of algorithms without any heuristics
 - All states that have $cost < C^*$ will have to be expanded

Algorithm A*: Benefit

- Claim: $f(n) < C^*$ then n must be expanded
- The heuristic function underestimates
 - $h(n) \leq h^*(n)$
 - Cost of reaching goal from n
 - All costs are +ve
- If we do not expand n, we can't find the goal
- If we have a state whose cost is less than C*
 - Then every algorithm which guarantees finding optimal solution have to expand it

Algorithm A*

- Initialize: Set OPEN= $\{s\}$, CLOSED = $\{\}$, g(s)=0, f(s)=h(s)
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select the minimum cost state, n, from OPEN and save in CLOSED
- Terminate:
 - If n∈G, terminate with success

How to break the tie?

- What is an admissible heuristic?
 - If it always underestimates
 - We always have $h(n) \le h^*(n)$, where $h^*(n)$ denotes minimum distance to a goal state from n

- At any time before A* terminates, there exists in OPEN a state **n**
 - That is on an optimal path from s to a goal state, with

• $f(n) \leq f^*(s)$

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED	
[3(25),5(11)]	5(11)	N	[3(25),6(28)]	[1(5),2(7),4(9),5(11)]	
[3(25),6(28)]	3(25)	N	[6(28),4(7)]	[1(5),2(7), 4(9) ,5(11),3(2 5)]	
[6(28),4(7)]	4(7)	N	[6(28),5(9)]	[1(5),2(7), 4(9),5(11) ,3(2 5),4(7)]	
[6(28),5(9)]	5(9)	N	[6(26)]	[1(5),2(7), 4(9),5(11) ,3(2 5),4(7),5(9)]	
[6(26)]	6(26)	Y			

- At any time before A* terminates, there exists in OPEN a state **n**
 - That is on an optimal path from s to a goal state, with

• $f(n) \leq f^*(s)$

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
[3(25),5(11)]	5(11)	N	[3(25),6(28)]	[1(5),2(7),4(9),5(11)]
[3(25),6(28)]	3(25)	N	[6(28),4(7)]	[1(5),2(7), 4(9) ,5(11),3(2 5)]
[6(28),4(7)]	4(7)	N	[6(28),5(9)]	[1(5),2(7), 4(9) , 5(11) ,3(2 5),4(7)]
[6(28),5(9)]	5(9)	N	[6(26)]	[1(5),2(7), 4(9),5(11) ,3(2 5),4(7),5(9)]
[6(26)]	6(26)	Y		

• If there is a path from s to a goal state, A* terminates

• What is the worst case scenario?

• Approximation algorithm

- Algorithm A* is admissible
 - If there is a path from s to a goal state,
 - A* terminates by finding an optimal path

A* Optimality

- Suppose some suboptimal goal path G2 has been generated and is in OPEN
- Let n be an unexpanded node in OPEN such that n is on a shortest path to an optimal goal G

$$h(G_2) = h(G) = 0$$

$$f(G_2) = g(G_2) \qquad f(G) = g(G)$$

$$g(G_2) > g(G)$$
 G_2 is suboptimal

$$f(G_2) > f(G)$$

$$h(n) \le h^*(n)$$
 h is admissible, h^* is minimal distance

$$g(n) + h(n) \le g(n) + h^*(n)$$

$$f(n) < f^*(G)$$

$$f(G_2) > \mathrm{f}(n)$$

- Algorithm A* is admissible
 - If there is a path from s to a goal state,
 - A* terminates by finding an optimal path
- If A1 and A2 are two versions of A* such that A2 is more informed than A1
 - A1 expands at least as many states as does A2

• We have two good heuristic functions h1 and h2 but do not know which one is more informed

• How much effort should we put in computing heuristics?

Thank You