AMENDMENTS TO THE SPECIFICATION

On the pages following the abstract, delete Tables 1-4.

On page 44, after line 15, add Tables 1-4 as follows:

[Table 1]

Steel No.	၁	Şį	ΙΨ	Si+Al	Mn	d	S	ر. در	Mo	Others	Aeı	Aea
	0.003	1.5	0.03	1.53	1.5	0.02	0.005	•	•		751	921
2	0.11.	1,5	0.03	1.53	1.5	0.02	0.008	•			751	865
3	0.20	1.5	0.03	1.53	1.5	0.01	0.005	•	•		751	841
4	0.41	1.5	0.03	1.53	1.5	10.0	0.004	-	•		751	802
5	09'0	1.5	0.03	1.53	1.5	0.02	900.0	•	•		751	775
9	0.20	1.5	0.03	1.53	1.5	10.0	0.004	0.3	0.1		758	841
	0.21	1.5	O.03	1.53	1.5	-0.02	6 00.0	-	٠	Nijo.30, Cu:0.30	751	828
&	0.20	1.5	0.03	1.53	1.5	0.01	0.005	•	•	Ti;0.03	751	841
6	0.19	1.5	න.0	1.53	1.5	10.0	900'0	-	•	REM:0.02	751	844
10	0.20	1.5	0.03	1.53	1.5	0.02	900'0	•	•	B:0.008	751	841
11	0.20	6.0	0.03	0.33	1.5	0.02	900'0	•	-		716	788
12 .	14.0	0.2	0.80	1.00	1.5	0.01	900'0	•	•		713	744

[Table 2]

																								_			_
istics	TS*RA	33040	14640	21770	36423	12450	21924	42140	37080	36608	37800	38475	39606	42630	20768	27.762	56816	7495	21854	56721	40831	44436	47940	41895	41738	21538	40084
Mechanical Characteristics	RA	70	24	35	22	15	27	49	45	44	45	45	46	49	16	21	42	15	14	37	41	\$	51	49	47	32	. 44
nanical C	日	33	. 21	31	33	18	28	58	27	28	87	28	28	23	10	23	25	9	19	21	24	22	27	22	24	22	24
Mec	TS	472	610	622	639	830	812	860	824	832	840	855	861	870	1298	1322	1348	1499	1561	1533	991	986	8	855	888	673	93
	٧*	-	•	31	0	0	27	O	ന	0	4	.	0	~	0	8 2	0	0	33	2	0	0	0	0	4	0	0
eg E				4.3	2.2	15.0	4.8	1.6	22	23.	2.0	1.9	1.6	1.7	18.3	9.1	1.9	14.5	4.5	1.7	22	2.0	2.3	2.1	1.8	2.0	2.1
ase Struct	Others	0	22	18	14	28	22	17	30	প্ত	15	8	75	17	2	24	18	61	92	5 6	24	କ୍ଷ	28	8	28	43	23
Second Phase Structure	[J] / [ul]	0	0	9	109	0	. 65	75	8	怒	22	72	72	75	0	S	88	~	55	58	0.2	83	2	74	93	10	61
	¥.	0	0	9	12	0	13	15	12	13	15	15	15	5	0	52	27	4	33	35	14	13	14	14	₽	2	25
Base Phase Structure	ш.	100	78	72	74	72	65	89	28	62	70	20		89	95	સ	55	35	4	39	62	58	58	8	29	१५	52
Manufacturing Conditions	Working Ratio	52	20	8	20	22	8	50	10	8	30	\$	8	22	25	20	25	25	옶	20	SS	8	20	20	22	20	20
Manufe	Method	ပ	A	m	ပ	A	, mà	Ü	ပ	ပ	ပ	ပ	ပ	ပ	A	ш	S	¥	80	ပ ·	Q	Ç	ပ	ပ	O	ပ	၁
Steel	o Z	-	2	7	2	3	6	60	6	60	n	60	3	ю	4	4	4	5	ĸ	5	6	_	∞	6	Q	Ŧ	12
5		-	2	ا به ا	4	5	ഇ	7	. «	, ,	9	=	12	13	14	15	16	17	18	19	8	72	22	23	24	25	26

Note: F = Ferrite, η_R = Retained austenite, Others = Bainite and/or martensite, d = Average grain diameter of the second phase structure, V* = Space factor of a coarse second phase structure in the second phase structure

[Table 3]

Steel No.	ပ	22	₹	SFA	돌	ը	S	ঠ	Mo	Others	Aeı	Aes
-	0.003	1.5	0.03	1.53	1.5	0.02	0.005		-	- co •	751	. 921
2	0.11	1.5	0.03	1.53	1.5	0.02	900.0				751	865
3	0.20	1.5	0.03	1.53	1.5	0.01	0.005	'			751	841
4	0.41	1.5	0.03	1.53	1.5	0.01	0.004		•		751	802
အ	09.0	1.5	0.03	1.53	1,5	0.02	0.008	-			751	775
9	0.20	1.5	0.03	1.53	1.5	0.01	0.004	0.3	0.1		. 756	841
7	0.21	1.5	0.03	1.53	1.5	0.02	0.004		•	Ni,0.30, Cu;0.30	751	828
80	0.20	1.5	0.03	1.53	1,5	0.01	0.005		•	Tī;0.03	751	841
G	0.19	1.5	0.03	1.53	1.5	0.01	900.0	ı	•	REM;0.02	151	844
10	0.20	1.5	0.03	1.53	1.5	0.02	90000		•	B:0.008	751	841
£	0.20	0.3	0.03	0.33	1.5	0.02	900'0	•	•	·	716	788
12	0.41	0.2	0.80	1.00	4.5	0.01	9000	•			713	744

[Table 4]

											_		_					_			_							
eristics .	TS*RA	34344	14640	21770	46931	12450	21824	52765	45705	54275	53361	47850	54747	53100	20768	27762	71815	7495	21854	29374	55165	57570	52947	47468	47594	24732	45227	
Sharacte	\$2	72	24	35	11	15	27	91	. 22	65	63	55	63	9	16	21	23	2	. 14	19	55	24	53	ফ্র	ន	ဆ	\$	
Mechanical Characteristics	ᆸ	32	되	31	35	18	28	82	23	27	78	53	78	88	5	23	26	9	19	21	24	28	27	28	52	28	24	
Med	TS	477	610	622	661	830	812	885	831	835	84	870	889	882	1298	1322	1355	1499	1561	1546	1003	1010	666	879	86	687	923	
43	>	•	0	9	0	0	88	. 0	က	0	4	0	0	7	0	89	0	0	8	32	0	0	•	0	4	.82	0	
Kructun	8	0	0	12	7	0	15	ις	4	4	4O	ω	φ	φ	0	16	9	0	17	4	7	9	9	5	9	9	9	
hase S	2	0	78	9	3	72	7	m	7	4	4	က	က	က	98	8	2	92	9	4	7	છ	က	က	4	3	2	
Second Phase Structure	£ .	0	0	10	12	0	13	18	13	13	14	15	16	15	0	25	28	4	33	32.	5	14	₽ E	15	13	2	77	
S	F	18	2	72	0	28	65	0	0	0	0	0	0	0	14	51	0	· 5	41	. 0	0	0	٥	0	0	0	0	
Phase ture	· Æ	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	92	7	22	12	11	0	0	
Base Phase Structure	ME	82	0	0	82	0		76	2	62	11:	92	7.5	92	0	0	99	0	0	55	0	0	0	0	0	68	89	
cturing ions	Working Ratio	જ	50	20	50	50	50	50	우	ଛ	ଛ	40	88	2	22	50	50	22	50	50	20	20	යි	S	50	09	20	
Manufacturing Conditions	Method	ပ	¥	80	ပ	¥	В	ပ	ပ	ပ	ပ	ပ	ပ	ပ	A	B	ວ	¥	8	ပ	ပ	ပ	ပ	ပ	ပ	၁	ပ	
Steel	Š	-	2	7	2	3	3	3	က	co.	က	က	က	က	4	4	4	9	5	5	9	~	80	6	9	11	12	
S	ġ	-	2	က	4	2	6	7	∞	6	2	Ξ	12	£.	14	15	16	11	18	19	23	7	22	23	24	25	28	

Note: $TM = Tempered martensite, TB = Tempered bainite, F = Ferrite, <math>\gamma_R = Retained$ austenite, M = Martensite, M =