Příprava na cvičení: Báze a dimenze lineárního prostoru

Cíle Cvičení:

- Studenti by měli pochopit, co je to báze a dimenze, a umět tyto pojmy prakticky použít.
- Měli by se naučit, jak znalost dimenze dramaticky zjednodušuje ověřování, zda je daný seznam vektorů bází.
- Studenti by měli být schopni aplikovat větu o dimenzi spojení a průniku jak na konkrétních, tak na abstraktních příkladech.
- Měli by porozumět důsledkům věty o dimenzi, například jak zaručuje existenci netriviálního průniku podprostorů.

Problém 4.2.1 – Ověřování báze v \mathbb{R}^3

Zadání:

O následujících seznamech rozhodněte, zda jsou uspořádanými bázemi lineárního prostoru \mathbb{R}^3 nad \mathbb{R} . Smíte využít faktu, že $\dim(\mathbb{R}^3)=3$.

$$\begin{array}{l} \text{1. Seznam } B_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}. \\ \text{2. Seznam } B_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 2 \\ 0 \end{pmatrix}. \\ \text{3. Seznam } B_3 = \begin{pmatrix} 1 \\ 4 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix}. \end{array}$$

Klíčové Koncepty:

Báze, dimenze, lineární nezávislost, lineární obal (množina generátorů), kanonická báze.

Cíl Problému:

Ukázat studentům, jak znalost dimenze prostoru radikálně zjednodušuje ověření, zda je daný seznam vektorů bází. Porovnat výpočetně náročný postup s elegantnějším teoretickým přístupem.

Postup Řešení na Tabuli:

- 1. **Úvodní otázka:** "Co víme o prostoru \mathbb{R}^3 ? Jaká je jeho dimenze a proč?"
 - Očekávaná odpověď: $\dim(\mathbb{R}^3)=3$. Důvod: kanonická báze $K_3=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ má 3 prvky.
 - Ponaučení: Jakákoli jiná báze prostoru \mathbb{R}^3 musí mít také přesně 3 prvky.
- 2. Řešení části (2): Seznam B_2
 - Seznam B_2 má pouze 2 vektory, ale $\dim(\mathbb{R}^3) = 3$.
 - **Závěr:** B_2 není bází \mathbb{R}^3 .
- 3. Řešení části (1): Seznam B_1
 - Seznam má 3 vektory, což je správný počet. Stačí ověřit lineární nezávislost.
 - · Porovnání metod:
 - Generování: Vede na soustavu s parametry na pravé straně. Náročné.
 - Lineární nezávislost: Vede na homogenní soustavu bez parametrů. Jednodušší.
 - Výpočet lineární nezávislosti (standardní):

$$\begin{pmatrix} a_1 + a_2 + a_3 = 0 \\ 2a_1 + 3a_2 = 0 \\ 3a_1 + 2a_2 = 0 \end{pmatrix}$$

Z posledních dvou rovnic plyne $a_1=0$ a $a_2=0$. Dosazením do první dostaneme $a_3=0$. Řešení je pouze triviální, vektory jsou LN.

- · Výpočet lineární nezávislost (elegantní):

 - Jsou $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix}$ a $\vec{v}_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ lineárně nezávislé? Ano, nejsou násobky. Leží $\vec{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ v jejich obalu? Tj. $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$?
 - Z rovnic $0=2\alpha+3\beta$ a $0=3\alpha+2\beta$ plyne $\alpha=0,\beta=0$. Dosazením do první rovnice souřadnic $1 = \alpha + \beta$ dostáváme 1 = 0, což je spor.
 - Vektor \vec{v}_3 neleží ve span (\vec{v}_1, \vec{v}_2) .
- Konečný Závěr: B_1 je seznam 3 LN vektorů v prostoru dimenze 3, je to tedy báze.

Poznámky pro Vyučujícího:

- Zdůrazněte, že ověření počtu prvků seznamu je první a nejrychlejší krok.
- Ukažte, že teoretická znalost (věta o dimenzi) šetří polovinu práce. Heslo: "Buďme chytře líní."

Problém 4.2.2 – Transformace báze

Zadání:

Ať $(\vec{b}_1, \vec{b}_2, ..., \vec{b}_n)$ je uspořádaná báze lineárního prostoru L nad \mathbb{F} . Rozhodněte, pro která $n \geq 2$ je seznam $B'=\left(\vec{b}_1+\vec{b}_2,\vec{b}_2+\vec{b}_3,...,\vec{b}_n-1+\vec{b}_n,\vec{b}_n+\vec{b}_1\right)$ opět bází prostoru L.

Postup Řešení na Tabuli:

1. **Analýza problému:** Máme n vektorů v prostoru dimenze n. Stačí ověřit LN. $a_1(\vec{b}_1+\vec{b}_2)+a_2(\vec{b}_2+\vec{b}_2)$ $\vec{b}_3 \Big) + ... + a_{n \left(\vec{b}_n + \vec{b}_1\right)} = (\mathbf{0}). \ \ \text{Přeskupením:} \ \ (a_n + a_1) \vec{b}_1 + (a_1 + a_2) \vec{b}_2 + ... + (a_{n-1} + a_n) \vec{b}_n = (\mathbf{\hat{0}}). \ \ \mathbf{Z} = (\mathbf{\hat{0}}). \ \ \mathbf{Z} = (\mathbf{\hat{0}})$ LN původní báze dostáváme soustavu:

$$\begin{pmatrix} a_1 + a_2 = 0 \\ a_2 + a_3 = 0 \\ \dots \\ a_n + a_1 = 0 \end{pmatrix}$$

- 2. Zobecnění: Z řetězce rovnic plyne $a_k=(-1)^{k-1}a_1$. Dosazením do poslední rovnice $a_n+a_1=0$ dostaneme $(-1)^{n-1}a_1 + a_1 = 0$.
- 3. Závěr:
 - n liché: n-1 je sudé. Rovnice je $a_1+a_1=2a_1=0$. Nad $\mathbb R$ je řešení jen $a_1=0$, tedy všechny $a_k=0$ 0. Vektory jsou LN. **B' je báze.**
 - n sudé: n-1 je liché. Rovnice je $-a_1+a_1=0$, což platí vždy. Můžeme zvolit $a_1=1$ a najít netriviální řešení. Vektory jsou LZ. B' není báze.

Problém 4.2.4 a 4.3.1 – Věta o dimenzi spojení a průniku

Zadání (A):

V,W jsou podprostory \mathbb{R}^5 , $\dim(V)=3$, $\dim(W)=3$. Co lze říci o $\dim(V\cap W)$ a $\dim(V\bigcup W)$?

Zadání (B):

Ať $\dim(L)=n$ a V,W jsou podprostory L takové, že $\dim(V)+\dim(W)>n$. Dokažte, že $\dim(V\cap W)\geq 1$.

Postup Řešení na Tabuli:

- 1. Zopakování věty: $\dim(V) + \dim(W) = \dim(V \cup W) + \dim(V \cap W)$.
- 2. Řešení (A):
 - $3 + 3 = 6 = \dim(V \cup W) + \dim(V \cap W)$.
 - Omezení: $3 \leq \dim(V \bigcup W) \leq 5$ a $0 \leq \dim(V \cap W) \leq 3$.
 - Možnosti:
 - $\dim(V \cap W) = 1 \Rightarrow \dim(V \cup W) = 5$.
 - $\rightarrow \dim(V \cap W) = 2 \Rightarrow \dim(V \mid JW) = 4.$
 - $\dim(V \cap W) = 3 \Rightarrow \dim(V \cup W) = 3 \text{ (pak } V = W).$
- 3. Řešení (B):
 - $\dim(V \cap W) = \dim(V) + \dim(W) \dim(V \cup W)$.
 - Víme, že $\dim(V) + \dim(W) > n$ a $\dim(V \cup W) \le n$.
 - $\dim(V \cap W) > n \dim(V \cup W) \ge n n = 0.$
 - Jelikož $\dim(V \cap W)$ je celé číslo a je větší než 0, musí platit $\dim(V \cap W) \geq 1$.

Poznámky pro Vyučujícího:

• Ukažte geometrickou intuici v \mathbb{R}^3 : dvě roviny (dim = 2) se musí protnout, protože 2+2>3.

Problém 4.3.3 (3) – Výhled na Frobeniovu větu

Zadání:

Dokažte ekvivalenci: (a) $\vec{b} \in \operatorname{span}(\vec{a}_1,...,\vec{a}_s)$ (b) $\dim(\operatorname{span}(\vec{a}_1,...,\vec{a}_s)) = \dim(\operatorname{span}(\vec{a}_1,...,\vec{a}_s,\vec{b}))$.

Postup Řešení na Tabuli:

- 1. Označení: $W = \operatorname{span}(\vec{a}_1,...,\vec{a}_s)$ a $V = \operatorname{span}(\vec{b})$. Chceme dokázat $V \subseteq W \Leftrightarrow \dim(W) = \dim(W \mid JV)$.
- 2. **Použití problému 4.3.3(2) ze sbírky:** Tam je dokázáno, že pro podprostory V, W platí $V \subseteq W \Leftrightarrow \dim(V \mid JW) = \dim(W)$.
- 3. **Aplikace:** Tvrzení přímo plyne z této vlastnosti, kde za V vezmeme přímku generovanou vektorem \vec{b} .

Shrnutí a Závěr:

Dnes jsme si ukázali, že dimenze je praktický nástroj.

- 1. Znalost dimenze šetří práci při ověřování báze.
- 2. **Věta o dimenzi spojení a průniku** umožňuje analyzovat vztahy mezi podprostory bez jejich explicitního výpočtu.

3. Připravili jsme půdu pro **Frobeniovu větu**: vektor leží v lineárním obalu právě tehdy, když jeho přidáním nezvětšíme dimenzi tohoto obalu. To bude brzy náš hlavní nástroj pro určení, zda má soustava lineárních rovnic řešení.

Další rozšiřující příklady

Příklad: Báze v prostoru polynomů

Zadání:

Je seznam $C=(1,x-1,(x-1)^2)$ bází prostoru polynomů stupně nejvýše 2, $\mathbb{R}_{\leq 2}[x]$?

Cíl·

Ukázat, že principy báze a dimenze fungují stejně i v prostorech, které nejsou \mathbb{R}^n .

Postup:

- 1. **Dimenze:** Připomeneme, že $\dim(\mathbb{R}_{<2}[x]) = 3$. Standardní báze je $(1, x, x^2)$.
- 2. **Počet vektorů:** Seznam C má 3 prvky, což je správný počet. Stačí ověřit lineární nezávislost.
- 3. Lineární nezávislost: Řešíme rovnici $a_1(1) + a_2(x-1) + a_3(x-1)^2 = 0$.
 - Roznásobením a přeskupením dostaneme: $a_3x^2+(a_2-2a_3)x+(a_1-a_2+a_3)=0.$
 - Aby byl polynom nulový, musí být všechny jeho koeficienty nulové:

$$a_3 = 0$$

$$a_2 - 2a_3 = 0$$

$$a_1 - a_2 + a_3 = 0$$

- Tato soustava má jediné řešení $a_1=a_2=a_3=0$. Polynomy jsou tedy lineárně nezávislé.
- 4. **Závěr:** Seznam C je bází prostoru $\mathbb{R}_{\leq 2}[x]$.

Příklad: Mimoběžné roviny v \mathbb{R}^4

Zadání:

V prostoru \mathbb{R}^4 nalezněte dva podprostory (roviny) V a W takové, že $\dim(V)=2$, $\dim(W)=2$ a jejich průnik je pouze nulový vektor, tj. $V\cap W=\{(0)\}$.

Cíl:

Konkrétně demonstrovat, že dvě roviny v \mathbb{R}^4 se mohou "minout" (protnout se jen v počátku).

Postup:

- 1. **Strategie:** Chceme najít dvě báze, jejichž spojení bude generovat celý prostor \mathbb{R}^4 . Tím pádem bude $\dim(V \mid JW) = 4$.
- 2. Volba bází: Zvolme co nejjednodušší vektory z kanonické báze.

Nechť
$$V=\operatorname{span}(\vec{e}_1),\vec{e}_2)=\operatorname{span}\left(\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\\0\\0\end{pmatrix}\right)$$
. Toto je "rovina xy". Nechť $W=\operatorname{span}(\vec{e}_3,\vec{e}_4)=\operatorname{span}\left(\begin{pmatrix}0\\0\\0\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\0\\1\\1\end{pmatrix}\right)$. Toto je "rovina zw".

3. Ověření:

- Je zřejmé, že $\dim(V)=2$ a $\dim(W)=2$.
- Spojení $V\bigcup W=\mathrm{span}(\vec{e}_1,\vec{e}_2,\vec{e}_3,\vec{e}_4)=\mathbb{R}^4$, takže $\dim(V\bigcup W)=4$.
- 4. Věta o dimenzi: $\dim(V \cap W) = \dim(V) + \dim(W) \dim(V \cup W) = 2 + 2 4 = 0$.
- 5. **Závěr:** Průnikem je pouze podprostor dimenze 0, tedy $\{(0)\}$. Našli jsme dvě roviny, které se protínají pouze v počátku.