A Brief Introduction To

Dimensionality Reduction

AGENDA

O1

INTRODUCTION

Answering the What and the Why

CLASSICAL METHODS

PCA, LDA, Laplacian Eigenmaps, Locally **Linear Embedding**

O3

MODERN METHODS

Autoencoders, t-SNE,

UMAP

CONCLUSION
Comparison, Summary
and Upcoming Research

"Mere paas
Data hai, GPU hai (sharing basis), CPU hai, Numpy hai.
Tumhare paas kya hai?"

-Naïve Megh

"Mere paas Time Complexity O(n) hai"
-Smart Megh

NEED FOR DIMENSIONALITY REDUCTION

Time and Space Complexity

NEED FOR DIMENSIONALITY REDUCTION

Visualization

NEED FOR DIMENSIONALITY REDUCTION

Curse Of Dimensionality

VC Dimension - Overfitting

$$VC_{dim}(NeuralNet) = O(WL \log W)$$

$$W = #weights$$
 $L = #layers$

AGENDA

O1 INTRODUCTION

Answering the What and the Why

O2

CLASSICAL METHODS

PCA, LDA, Laplacian

Eigen Eigenmaps, Locally Linear Embedding

O3 MODERN METHODS
Autoencoders, t-SNE,
UMAP

CONCLUSION
Comparison, Summary
and Upcoming Research

CLASSICAL METHODS

Principal Component Analysis

Explain the variance in the data!

Similarity to Linear Regression?

 $\mathbb{X}: Samples \in \mathbb{R}^{N \times d}$ v: Projection Vector

$$\begin{array}{c} \text{Linear} \\ PC_1 = \mathbb{X}v \end{array}$$

 $\underset{v}{\text{Objective}}$ $arg\min_{v}||\mathbb{X}-\mathbb{X}VV^{T}||$

Constraint
$$V^T V = I$$

$$\mathbf{X}^T\mathbf{X}V = \lambda V$$

Linear Discriminant Analysis

Use class information!

Sometimes, no labels better than having labels!

Linear Discriminant Analysis

Use class information!

Sometimes, no labels better than having labels!

The solution! $w^* = S_w^{-1}(\mu_1 - \mu_2)$

LINEAR METHODS - Graph Based Algorithms

Laplacian Eigenmaps

Construct a Graph with Adjacency Matrix!

Preserving local structure over global structure

LINEAR METHODS - Graph Based Algorithms

Laplacian Eigenmaps

Construct a Graph with Adjacency Matrix!

Preserving local structure over global structure

$$\mathbb{J}(y) = \sum_{i,j} (y_i - y_j)^2 a_{ij}$$

$$\mathbb{J}(y) = \sum_{i,j} (y_i^2 + y_j^2 - 2y_i y_j) a_{ij}$$

$$\mathbb{J}(y) = \sum_{i} y_i^2 D_i + \sum_{j} y_j^2 D_j - 2 \sum_{i,j} y_i y_j a_{ij}$$

$$\mathbb{J}(y) = 2Y^T LY$$

$$\begin{array}{c} \text{Constraint} \\ Y^T D Y = 1 \\ Y^T D \mathbf{1} = 0 \end{array}$$

Eigenvalue Eigenvector everywhere!

Locally Linear Embedding

A node is known by the company he keeps!

Locally linear implies dense sampling!

$$\mathcal{E}(W) = \sum_{i}^{\text{The E-step...?}} W_{ij} x_{j}|^{2}$$

The M-step...?
$$\sum_{i} |y_i - \sum_{j} w_{ij} y_j|^2$$

AGENDA

O1 INTRODUCTION

Answering the What and the Why

CLASSICAL METHODS

PCA, LDA, Laplacian Eigenmaps, Locally **Linear Embedding**

O3

MODERNMETHODS

Autoencoders, t-SNE,

UMAP

CONCLUSION
Comparison, Summary
and Upcoming Research

MODERN METHODS

MODERN APPROACHES

t-Distributed Stochastic Neighbour Embedding

Use class information!

Sometimes, no labels better than having labels!

$$p_{j|i} = \frac{exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$

$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

KL Divergence!

MODERN APPROACHES

Uniform Manifold Approximation and Projection

Projection on a Reimannian Manifold

Interpretability...?

MODERN APPROACHES

Autoencoders

Deep Learning magic!

Overfitting ...?

Contractive Autoencoders

Denoising Autoencoders

AGENDA

O1 INTRODUCTION

Answering the What and the Why

CLASSICAL METHODS

PCA, LDA, Laplacian Eigenmaps, Locally **Linear Embedding**

O3 MODERN METHODS
Autoencoders, t-SNE,
UMAP

CONCLUSION

Comparison, Summary and Upcoming Research

IS DIMENSIONALITY REDUCTION SOLVED?

Sure the answer is No. But why?

SHORTCOMINGS

Parameterization

What if we have new data? Need more dimensions?

Curse Of Dimensionality

Euclidean distance can sometimes fail in high-dimensions

Visualization and Clustering

Are they the same problem? Or are they different?

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**Please keep this slide for attribution