Våglära och optik

Svängningar

Enkel harmonisk svängning beskrivs av differentialekvationen

$$\frac{d^2y}{dt^2} + \omega^2 y = 0$$

som har realla lösningar på formen

$$y = A\sin(\omega t + \alpha)$$

Vinkelfrekvens

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Energi för elastisk pendel

$$W_{pot} = \frac{ky^2}{2}$$

$$W_{tot} = \frac{m}{2}A^2\omega^2$$

$$\omega = \sqrt{\frac{k}{m}}$$

Vinkelfrekvens

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Vågtal

$$k = \frac{2\pi}{\lambda}$$

Vågekvationen

Fortskridande planvåg

$$s = s_o \sin[2\pi(\frac{t}{T} \pm \frac{x}{\lambda}) + \alpha]$$

Stående vågens ekvation

$$s = A\cos\left(2\pi\frac{x}{\lambda} + \frac{\phi}{2}\right)\sin\left(2\pi\frac{t}{T} + \frac{\phi}{2}\right)$$

där ϕ är fasförskjutningen i origo. Nodavståndet är $\frac{\lambda}{2}$

Allmänna vågekvationen

$$\frac{\partial^2 s}{\partial t^2} = v^2 \frac{\partial^2 s}{\partial x^2}$$

Svängningsfrekvens

$$f_{\text{sv"angning}} = |f_1 - f_2|$$

Ljud och Dopplereffekten

Dopplereffekten

$$f_m = f_s \frac{v - v_m}{v - v_s}$$

Överljudshastighet

$$\sin \theta = \frac{v_{ljud}}{v_{[planar/[plan]]}} = \frac{1}{M\alpha}$$

Kompressibilitetskoefficienten

$$\kappa = -\frac{1}{\Delta P} \cdot \frac{\Delta V}{V}$$

Ljudtryck

$$p = -\frac{1}{\kappa} \cdot \frac{\partial s}{\partial x}$$
$$p = \mp p_0 \cos \left[2\pi \left(\frac{t}{T} \pm \frac{x}{\lambda} \right) \right]$$

Tryckamplitud

$$p_0 = \frac{2\pi s_0}{\kappa \lambda} = Z s_0 \omega$$

Akustisk impedans

$$Z = \rho v$$

Ljudhastighet (vätska och gas)

$$v = \frac{1}{\sqrt{\kappa \rho}}$$

$$\sqrt{c_p RT}$$

Ljudhastighet (Sträng resp. stav)

$$v=\sqrt{\frac{F}{\mu}}$$

$$v = \sqrt{\frac{E}{\rho}}$$

Intensitet hos ljud

$$I = \frac{Z}{2}s_0^2\omega^2$$

$$I = \frac{p_0^2}{2Z}$$

Ljudintensitetsnivå

$$L_I = 10lg \frac{I}{I_0}$$

$$\text{med } I_0 = 1, 0 \cdot 10^{-12} \, W/m^2$$

Reflektans och transmittans för ljud

$$R \equiv \frac{I_r e f}{I_i n} = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

$$T \equiv \frac{I_t r}{I_i n} = 1 - R$$

Övertoner (Strängar och öppna cylindrar)

$$f_m = m \cdot f_1 \quad m = 2, 3, 4, \dots$$

Övertoner (halvslutna cylindrar)

$$f_m = (2m-1) \cdot f_1 \quad m = 2, 3, 4, \dots$$

Ljus

Ljusets fart

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$v = \frac{c}{\sqrt{\mu_r \epsilon_r}}$$

Intensitet EM-våg

$$I = \frac{1}{2} \sqrt{\frac{\epsilon_0 \epsilon_r}{\mu_0 \mu_r}} E_0^2 , \quad B_z = \frac{E_y}{v}$$

Intensitet då två ljusvågor adderas

$$I_{tot} = I_1 + I_2 + 2\sqrt{I_1 I_2} < \cos \delta >$$

där δ är fasförskjutningen mellan vågorna.

Brytningsindex

$$n \equiv \frac{c}{v} = \sqrt{\mu_r \epsilon_r}$$

Brytningslagen (plan yta)

$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

Gränsvinkel totalreflektion

$$\alpha_g = \arcsin\left(\frac{n_2}{n_1}\right)$$

Prisma

$$\sin\left(\frac{A+\delta}{2}\right) = n \cdot \sin\left(\frac{A}{2}\right)$$

Där A är prismats topvinkel och δ är avlänkningsvinkeln.

Fiberoptik, numerisk appertur

$$N.A. \equiv n_0 \sin \theta_m$$

$$N.A. = \sqrt{n_1^2 - n_2^2}$$

Materialegenskaper för ljud och ljus

Materialegenskaper för ljud och ljus

Ljudhastighet vid 1 atm och 20 °C:

Järn	5950 m/s
Glas (typvärde)	5600 m/s
Koppar	4760 m/s
Bly	2160 m/s
Gummi	1550 m/s
Vatten	1461 m/s
Kvicksilver	1407 m/s
Metanol	1143 m/s
Eter	1032 m/s
Väte	1286 m/s
Helium	1008 m/s
Luft	343 m/s
Syre	$326 \mathrm{m/s}$
Koldioxid	$269 \mathrm{m/s}$

Akustisk impedans vid 1 atm och 20 °C:

Vätgas	$111 \; \mathrm{Ns/m^3}$
Luft	412 Ns/m^3
Vatten	$1,46 \cdot 10^6 \text{ Ns/m}^3$
Gummi	$1,47 \cdot 10^6 \text{ Ns/m}^3$
Glycerin	$2,42 \cdot 10^6 \text{ Ns/m}^3$
Kvarts	$13, 1 \cdot 10^6 \text{ Ns/m}^3$
Glas (typvärde)	$14 \cdot 10^6 \text{ Ns/m}^3$
	$17, 3 \cdot 10^6 \text{ Ns/m}^3$
Kvicksilver	$19,1 \cdot 10^6 \text{ Ns/m}^3$
Koppar	$33,9 \cdot 10^6 \text{ Ns/m}^3$
Stål	$46,4 \text{ Ns/m}^3$
Volfram	$101 \cdot 10^6 \text{ Ns/m}^3$

Vakuumvåglängder och frekvenser för ljus:

Färg	Våglängd	Frekvens
Violett	400 – 440 nm	749 - 681 THz
Blått	440 - 480 nm	681 - 625 THz
Grönt	480 - 560 nm	625 - 535 THz
Gult	560 - 590 nm	535 - 508 THz
Orange	590 - 620 nm	508 - 484 THz
Rött	620 - 700 nm	484 - 428 THz

Geometrisk optik

Brytning i sfärisk yta

$$\frac{n_1}{a} + \frac{n_2}{b} = \frac{n_2 - n_1}{R}$$

Gauss formel (lins och spegel)

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

Lateralförstoring (lins och spegel)

$$M \equiv \frac{y_b}{y_a} \qquad M = -\frac{b}{a}$$

Brännvidd buktig spegel

$$f = -\frac{R}{2}$$

Brytningsstyrka (lins)

$$B \equiv \frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Lins

Lins med brytningsindex n_1 i medium med brytningsindex n_2 :

$$B \equiv \frac{1}{f} = \left[\frac{n_1}{n_2} - 1 \right] \cdot \left[\frac{R_2 - R_1}{R_1 \cdot R_2} \right]$$

Bländartal

$$b_t \equiv \frac{f}{D}$$

Skärpedjup

$$s \approx \frac{a^2}{1000f} b_t$$

Luppens vinkelförstoring

$$G = \frac{d_0}{f}$$
 där, $d_0 = 25 \,\mathrm{cm}$

Mikroskopets vinkelförstoring

$$G = |M_{ob}| \cdot G_{ok} = \frac{L}{f_{ob}} \frac{d_0}{f_{ok}}$$

där tublängden $L=16\,\mathrm{cm}$

Kepler- och Galileikikarens vinkelförstoring

$$G = \left| \frac{f_{ob}}{f_{ok}} \right|$$

Brytning i en sfärisk yta

Positiv om: C ligger till höger om O

Positiv om: A ligger till vänster om O Positiv om: B ligger till höger om O Positiv om: F_A ligger till vänster om O Positiv om: F_B ligger till höger om O

Avbildning med tunn lins i luft

Positiv om: linsen är konvex (samlar ljuset) Positiv om: föremålet är till vänster om linsen

Positiv om: bilden är till höger om linsen

Positiv om: föremålet är ovanför den optiska axeln

Positiv om: bilden är ovanför den optiska axeln

Positiv om: avbildningen är rättvänd

Avbildning med en buktig spegel

Positiv om: C är till höger om O (konvex)

Positiv om: F är till vänster om O (konkav) Positiv om: A ligger till vänster om O Positiv om: B ligger till vänster om O Positiv om: avbildningen är rättvänd

Brytningsindex för några material

Brytningsindex uppmätt med $\lambda = 589\,\mathrm{nm}$ vid 20 °C:

Vatten	1,333
Dietyleter	1,353
Etanol	1,361
Glycerin	1,455
Bensen	1,501
Kolsvavla	1,628
Is (0 °C)	1,31
NaCl	1,544
Polystyren	1,59
Kronglas (FK5)	1,487
Kronglas (BK7)	1,517
	1,542
Flintglas (F2)	1,620
Flintglas (SF10)	1,728
Flintglas (SFS1)	1,922
Kvarts	1,458
Plexiglas	1,49-1,52
Diamant	2,417

Diffraktion och interferens

Intensitet vid böjning

$$I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2 \quad \text{med} \quad \beta = \frac{\pi}{\lambda} b \sin \theta$$

Böjningsmin för en spalt

$$b\sin\theta = m\lambda$$
 där $m = \pm 1, \pm 2, \pm 3, ...$

Böjningsmin för en rund öppning

$$D\sin\theta = k\lambda$$

$$d\ddot{a}rk = 1,22$$
 2,23 3,24 4,25 5,25...

Rayleighs upplösningskriterium

Centraltopp för den ena punkten över första min för den andra

Interferens om böjning försummas

$$I = I_0 \left(\frac{\sin N\gamma}{\sin \gamma} \right)$$
 där $\gamma = \frac{\pi}{\lambda} d \sin \theta$

Interferens ger huvudmax om

$$d\sin\theta = m\lambda$$
 där $m = \pm 1, \pm 2, \pm 3, ...$

Visibilitet

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Gitter, transmission resp reflektion

$$d(\sin \alpha_2 + \sin \alpha_1) = m\lambda$$
$$d(\sin \alpha_2 - \sin \alpha_1) = m\lambda$$

Max eller min vid interferens i tunna skikt

$$2n_2d\cos\alpha_2 = m\lambda$$
 där $m = 0, \pm 1, \pm 2, \dots$

Finess i Fabry-Perot interferometer

$$F = \frac{\Delta f}{\delta f}$$
 där $\Delta f = \frac{c}{2d}$

Airy funktionen

$$T = \frac{1}{1 + \left[\frac{4r^2}{(1-r^2)^2}\right] \sin^2\left(\frac{\delta}{2}\right)}$$

Fresneldiffraction

Fresnel-Kirchhoff

$$E_p = \frac{-ik}{2\pi} E_s e^{-i\omega t} \iint_{Hinder} F(\theta) \frac{e^{ik(r+r')}}{rr'} \, dA$$

Skevhetsfaktorn

$$F(\theta) = \frac{1 + \cos \theta}{2}$$

Radien på Fresnelzoner

$$R_n \approx \sqrt{nL\lambda}$$
 där $\frac{1}{L} = \frac{1}{p} + \frac{1}{q}$

Polarisation

Malus lag

$$I = I_0 \cos^2 \theta$$

Fasskillnad i dubbelbrytande material

$$\phi = \frac{2\pi}{\lambda} d|n_e - n_o|$$

Reflektans vid normalt infall

$$R \equiv \frac{I_{ref}}{I_{in}} = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

Brewstervinkel i luft

$$\theta_{luft} = \arctan n$$

Wiens förskjutningslag

$$\lambda_{max}T = 2,898 \cdot 10^3 \,\mu m \cdot K$$