Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

23 de noviembre de 2020

Transformaciones Lineales

Definición

Sean V,W espacios vectoriales sobre el cuerpo $\mathbb{K},\ T:V\longrightarrow W$ una función tal que para todo $u,v\in V$ y todo $\lambda\in\mathbb{K}$ se tiene

- 1. T(u + v) = T(u) + T(v).
- 2. $T(\lambda u) = \lambda T(u)$.

Esta función T es llamada transformación lineal.

Ejemplo

- 1. La función $0: V \longrightarrow W$ nula, es una transformación lineal.
- 2. La función $I:V\longrightarrow W$ identidad, es una transformación lineal.
- 3. Sean $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial con producto interno, $u \in V$ fijo y $T: V \longrightarrow V$ una función definida por

$$(para\ cada\ v\in V)(T(u,v)=\langle u,v\rangle)$$

es una transformación lineal.

4. La función $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ definida

$$T(x) = y$$

donde
$$x = (x_1, x_2, \dots, x_n)$$
, $y = (y_1, y_2, \dots, y_n)$, y para $k = 1, 2, \dots, n$, $y_k = \sum_{i=1}^n a_{jk} x_k$; los a_{jk} son constantes.

Ejemplo (continuación)

5. **Proyección sobre un subespacio** Sean V un espacio vectorial, $S \subset V$ un subespacio y consideremos otro subespacio $W \subset V$, tal que $V = S \oplus W$. la proyección de V sobre S a lo largo de W, $P: V \longrightarrow S$ está definida

$$P(v) = s$$
, donde $v = s + w \in S \oplus W$.

También es una transformación lineal.

6. Rotación en el plano Sea $\theta \in \mathbb{R}$ un ángulo, una rotación (en el sentido antihorario), de magnitud θ , alrededor del origen del sistema de coordenadas, es decir, por ejemplo en \mathbb{R}^2 , lleva un vector v, a un nuevo vector v' la cual es denotada por $R_{\theta}(v) = v'$.

Consideremos $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \ \mathbf{y} \ \mathbf{v}' = (\mathbf{v}_1', \mathbf{v}_2')$, formando los ángulos $\varphi \ \mathbf{y} \ \theta + \varphi$ con el eje X respectivamente, entonces tenemos $\|\mathbf{v}'\| = \|\mathbf{v}\| \ \mathbf{y}$

$$\begin{aligned} v_1 &= \|v\| cos(\varphi), & v_2 &= \|v\| sen(\varphi), \\ v_1^{'} &= \|v^{'}\| cos(\theta + \varphi) &= \|v\| (cos(\theta)(cos(\varphi) - sin(\theta)(sin(\varphi))) \\ &= v_1 cos(\theta) - v_2 sen(\theta), \\ v_2^{'} &= \|v^{'}\| sen(\theta + \varphi) &= \|v\| (sen(\theta)(cos(\varphi) + cos(\theta)(sin(\varphi))) \\ &= v_1 sen(\theta) + v_2 cos(\theta). \end{aligned}$$

Luego se obtiene

$$R_{\theta}(v) = (v_1 cos(\theta) - v_2 sen(\theta), v_1 sen(\theta) + v_2 cos(\theta)),$$

y en su forma matricial se titene

$$R_{\theta}(v_1, v_2) = \begin{bmatrix} cos(\theta) & -sen(\theta) \\ sen(\theta) & cos(\theta) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Sean V, W espacios vectoriales, entonces en toda transformación lineal $T: V \longrightarrow W$ se satisfacen las siguientes propiedades:

- 1. T(0) = 0.
- 2. $(\forall v \in V) (T(-v) = -T(v))$.
- 3. $(\forall v, w \in V) (T(v-w) = T(v) T(w))$.
- 4. $(\forall v^j \in V, \alpha_j \in \mathbb{K}, j = 1, \cdots, n, y \in \mathbb{N})$

$$\left(T\left(\sum_{j=1}^n \alpha_j v^j\right) = \sum_{j=1}^n \alpha_j T(v^j)\right).$$

Prueba:

- 1. $T(\mathbf{0}) = T(0\mathbf{0}) = 0 T(\mathbf{0}) = \mathbf{0}$.
- Lo demás queda como ejercicio.

Definición (Núcleo e Imagen)

Sean V,W espacios vectoriales, y $T:V\longrightarrow W$ una transformación lineal, entonces definimos los conjuntos

- 1. $\mathcal{N}(T) = \{ v \in V/T(v) = \mathbf{0} \}.$
- 2. $Im(T) = \{w \in W/w = T(v), \text{ para algún } v \in V\},$

que son llamados núcleo de T e imagen de T respectivamente.

Nota

Observamos que $\mathcal{N}(T) \subset V$ e $Im(T) \subset W$ son subespacios.

Definición

Sean V,W espacios vectoriales, y $T:V\longrightarrow W$ una transformación lineal, entonces se tiene

- 1. T es un sobreyectiva (también llamado epimorfismo) si T(V) = W.
- 2. T es un **inyectiva** (también llamado **monomorfismo**) si T es una función inyectiva.
- 3. T es un isomorfismo si es inyectiva y sobreyectiva.

Sean V,W espacios vectoriales, $y : V \longrightarrow W$ una transformación lineal, entonces T es inyectiva si, y solo si $\mathcal{N}(T) = \{\mathbf{0}\}$.

Prueba:

- \Longrightarrow) Sea $v \in \mathcal{N}(T)$, entonces $T(v) = \mathbf{0} = T(\mathbf{0})$, como T es inyectiva, entonces se tiene que $v = \mathbf{0}$. Luego $\mathcal{N}(T) = \{\mathbf{0}\}$.
- \longleftarrow) Sean $v, w \in V$ tales que T(v) = T(w), como T es lineal tenemos $T(v w) = \mathbf{0}$, entonces $v w \in \mathcal{N}(T) = \{\mathbf{0}\}$. De donde v = w, por tanto T es inyectiva.

Sean V, W espacios vectoriales, $\{v^1, v^2, \dots, v^k\} \subset V$ y $\{w^1, w^2, \cdots, w^k\} \subset W$ bases de V y W respectivamente, entonces existe una única transformación lineal $T:V\longrightarrow W$ tal que $(para\ cada\ i = 1, 2, \cdots, k)(T(v^{j}) = w^{j}).$

Prueba:

Como $\{w^1, w^2, \dots, w^k\} \subset W$ es una base, entonces cada $w \in W$ puede ser expresado de manera única

$$w = \sum_{j=1}^k \alpha_j w^j,$$

donde (para cada $j=1,2,\cdots,k$)($\alpha_i \in \mathcal{K}$). Definamos la aplicación $T:V\longrightarrow W$ mediante

$$T(v) = w = \sum_{j=1}^{k} \alpha_j w^j,$$

Sean V,W espacios vectoriales, $\{v^1,v^2,\cdots,v^k\}\subset V$ generadores de V (no necesariamente una base) y $\{w^1,w^2,\cdots,w^k\}\subset W$ una colección, entonces existe una única transformación lineal $T:V\longrightarrow W$ tal que (para cada $j=1,2,\cdots,k$) $(T(v^j)=w^j)$ si, y solo si

$$\sum_{j=1}^k \alpha_j v^j = \mathbf{0} \text{ implica } \sum_{j=1}^k \alpha_j w^j = \mathbf{0},$$

donde $\alpha_j \in \mathbb{K}$ para cada $j = 1, \dots, k$.

Prueba

 \Longrightarrow) Como T es lineal,y sean $\alpha_j\in\mathbb{K}$ para cada $j=1,\cdots,k$ tal que $\sum_{i=1}^k \alpha_j v^j=\mathbf{0}$ entonces

$$\mathbf{0} = T(\mathbf{0}) = T\left(\sum_{j=1}^k \alpha_j v^j\right) = \sum_{j=1}^k \alpha_j T\left(v^j\right) = \sum_{j=1}^k \alpha_j w^j.$$

 \leftarrow Como $\mathcal{L}(\{v^1, v^2, \cdots, v^k\}) = V$, entonces para cada $v \in V$, existen escalares $\alpha_i \in \mathbb{K}$, $j = 1, \cdots, k$ tales que

$$v = \sum_{j=1}^{k} \alpha_j v^j.$$

Definamos la función $T: V \longrightarrow W$ mediante

$$T(v) = \sum_{j=1}^k \alpha_j w^j.$$

Veamos que T está bien definida: supongamos que existen escalares $\beta_j \in \mathbb{K}$, $j=1,\cdots,k$ tal que

$$v = \sum_{j=1}^{k} \beta_j v^j,$$

entonces

$$\sum_{j=1}^k (\alpha_j - \beta_j) v^j = \mathbf{0} \stackrel{\mathsf{hipótesis}}{\Longrightarrow} \sum_{j=1}^k (\alpha_j - \beta_j) w^j = \mathbf{0},$$

entonces

$$\sum_{j=1}^k \alpha_j \mathbf{w}^j = \sum_{j=1}^k \beta_j \mathbf{w}^j,$$

por tanto T está bien definida.

Veamos que T es lineal:

Sean $u,v\in V$, entonces existen escalares $\alpha_j,\beta_j\in\mathbb{K}$, $j=1,\cdots,k$ tales que

$$u = \sum_{j=1}^k \alpha_j v^j$$
, $v = \sum_{j=1}^k \beta_j v^j$ entonces $u + v = \sum_{j=1}^k (\alpha_j + \beta_j) v^j$

luego

$$T(u+v) = \sum_{j=1}^{k} (\alpha_j + \beta_j) w^j$$
$$= \sum_{j=1}^{k} \alpha_j w^j + \sum_{j=1}^{k} \beta_j w^j$$
$$= T(u) + T(v).$$

Similar para $T(\lambda v) = \lambda T(v)$ (ejercicio) Por tanto T es lineal.

Corolario

Sean V un espacio vectorial, $v \in V$ no nulo, $\alpha \in \mathbb{K}$, entonces existe una transformación lineal $f: V \longrightarrow \mathbb{K}$ tal que $f(v) = \alpha$. En particular si $v \neq \mathbf{0}$, entonces existe una transformación lineal $f: V \longrightarrow \mathbb{K}$ tal que $f(v) \neq 0$.

Prueba: Ejercicio.

Sean V,W espacios vectoriales. Una transformación lineal, entonces $T:V\longrightarrow W$ es inyectiva si, y solo si, lleva vectores l.i. en vectores l.i.

Prueba:

 \Longrightarrow) Sean $v^1, v^1, \cdots, v^m \in V$ vectores I.i. $\alpha_1, \cdots, \alpha_m \in \mathbb{K}$ tales que

$$\alpha_1 T(v^1) + \cdots + \alpha_m T(v^m) = \mathbf{0},$$

como T es lineal tenemos

$$T(\alpha_1 \mathbf{v}^1 + \cdots + \alpha_m \mathbf{v}^m) = T(\mathbf{0}) = \mathbf{0},$$

dado que T es inyectiva, se tiene

$$\alpha_1 \mathbf{v}^1 + \cdots + \alpha_m \mathbf{v}^m = \mathbf{0},$$

por hipótesis los vectores v^1, \dots, v^m son l.i.,

entonces
$$\alpha_1 = \cdots = \alpha_m = 0$$
, es decir $T(v^1), \cdots, T(v^m)$ son l.i.

<=) Ejercicio

Proposición

Sean V, W espacios vectoriales, de dimensión finita, $T: V \longrightarrow W$ es una transformación lineal. Si T es un isomorfismo, entonces $\dim(V) = \dim(W)$.

Prueba: Ejercicio.

Sean V, W espacios vectoriales, con $dim(V) = n, T : V \longrightarrow W$ es una transformación lineal. Entonces

$$dim(V) = dim(\mathcal{N}(T)) + dim(Im(T)).$$

Prueba:

Sea u^1, \dots, u^r una base $\mathcal{N}(T) \subset V$, entonces por el teorema de completación, existen $v^1, \dots, v^t \in V$ tales que

$$u^1, \cdots, u^r, v^1, \cdots, v^t$$

es una base de V.

Por tanto $T(u^1), \dots, T(u^r), T(v^1), \dots, T(v^t)$ son I.i.

Ahora sea $w \in T(V) = Im(T)$, entonces existe $v \in V$ tal que w = T(v).

Luego existen escalares $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_t \in \mathbb{K}$ tal que

$$\mathbf{v} = \alpha_1 \mathbf{u}^1 + \dots + \alpha_r \mathbf{u}^r + \beta_1 \mathbf{v}^1 + \dots + \beta_t \mathbf{v}^t,$$

de donde

$$w = T(v) = T(\alpha_1 u^1 + \dots + \alpha_r u^r + \beta_1 v^1 + \dots + \beta_t v^t)$$

= $\alpha_1 T(u^1) + \dots + \alpha_r T(u^r) + \beta_1 T(v^1) + \dots + \beta_t T(v^t)$

por tanto $T(u^1), \dots, T(u^r), T(v^1), \dots, T(v^t)$ es una base de W. Por tanto

$$n = dim(V) = r + t = dim(\mathcal{N}(T)) + dim(Im(T)).$$

Sean V, W espacios vectoriales, con $\dim(V) = \dim(W) < \infty$, $T: V \longrightarrow W$ una transformación lineal. Entonces T es inyectiva si, y solo si T es sobreyectiva.

Prueba:

 \Longrightarrow) Notar que si T es inyectiva si, y solo si $\mathcal{N}(T)=\{\mathbf{0}\}$, por tanto $dim(\mathcal{N}(T))=0$.

Además tenemos

$$dim(V) = dim(\mathcal{N}(T)) + dim(T(V))$$

= $dim(T(V)) \stackrel{\text{hipótesis}}{=} dim(W) < \infty$,

como $T(V)\subset W$ y por una proposición del capítulo anterior tenemos

$$T(V) = W$$
.

Sean V,W espacios vectoriales, $T:V\longrightarrow W$ una transformación lineal, y una aplicación de paso cociente $\pi:V\longrightarrow \frac{V}{\mathcal{N}(T)}$, entonces existe una transformación lineal $\widehat{T}:\frac{V}{\mathcal{N}(T)}\longrightarrow W$ definida por

$$\widehat{T}(v + \mathcal{N}(T)) = T(v),$$

tal que

$$T = \widehat{T} \circ \pi$$

Con las notaciones anteriores tenemos

- 1 $T = \hat{T} \circ \pi$
- $2. \ \widehat{T}: \frac{V}{\mathcal{N}(T)} \longrightarrow Im(T).$

Prueba:

Veamos que \hat{T} esté bien definida:

Sean $u, v \in V$ tales que $\{u\} + \mathcal{N}(T) = \{v\} + \mathcal{N}(T)$, entonces $u-v \in \mathcal{N}(T)$, por tanto $T(u-v) = \{\mathbf{0}\}$, de donde T(u) = T(v).

Entonces

$$\widehat{T}(\lbrace u \rbrace + \mathcal{N}(T)) = T(u) = T(v) = \widehat{T}(\lbrace v \rbrace + \mathcal{N}(T)).$$

Luego \widehat{T} está bien definida.

Lo demás queda como ejercicio.

