DISCONTINUOUS ODES

DAVID LI

1. A DISCONTINUOUS DIFFERENTIAL EQUATION

Before jumping right into SDEs, we consider a way to numerically evaluate the differential equation,

$$x(t+dt) = \begin{cases} x(t) + dt & |x(t)| < 1\\ 0 & |x(t)| = 1, \end{cases}$$
 (1)

with initial condition $x(0) = x_0 \in [0,1]$. A solution to this differential equation is

$$x(t) = t + x_0 \pmod{1}.$$

Proof. Let $t + x_0 \pmod{1} \neq 0$, then dx = dt. Let $t + x_0 \pmod{1} = 0$, then there exists $\delta t > 0$ such that

$$|x(t+\delta t)|<\epsilon,$$

for all $\epsilon > 0$, therefore $t + x_0 \pmod{1}$ is a solution (in the limit).

2. Adaptive Timesteps

A numerical approach with default timestep h > 0 to (1) could be achieved by Euler's method,

$$x_{k+1} = \begin{cases} x_k + h & |x_k + h| < 1\\ 0 & |x_k + h| \ge 1, \end{cases}$$
 (2)

where $t_k = \sum_{i=1}^k \delta t_i$ and $\delta t_k > 0$ is an adaptive timestep $\delta t_{k+1} = \min(h, 1 - x_k)$. By using an adaptive timestep, the solution attempts to correct itself at the boundaries. Then, $x_k = x(t_k)$ for all k.

Proof. Assume that $x_i = x(t_i)$ for some arbitrary $i \in \mathbb{N}$. Then by definition of (2),

$$x_{i+1} = \begin{cases} x_i + h & |x_i + h| < 1\\ 0 & |x_i + h| \ge 1. \end{cases}$$

If $x_i + h < 1$, then

$$x_{i+1} = x(t_i) + h = (t_i + x_0) \pmod{1} + h < 1.$$

Using the fact that $h = \delta t_{i+1}$,

$$x_{i+1} = t_i + x_0 + h \pmod{1}$$

$$= t_i + x_0 + \delta t_{i+1} \pmod{1}$$

$$= t_{i+1} + x_0 \pmod{1}$$

$$= x(t_{i+1}).$$

If $x_i + h \ge 1$, then $x_{i+1} = 0$. Since

$$x(t_i + \delta t_{i+1}) = t_i + \delta t_{i+1} + x_0 \pmod{1} = x_i + 1 - x_i \pmod{1} = 0,$$

then $x(t_{i+1}) = x_{i+1}$, completing the proof by induction.