Lecture 2

Alexandra Chronopoulou

COLLEGE OF LIBERAL ARTS & SCIENCES

Department of Statistics 101 Illini Hall, MC-374 725 S. Wright St. Champaign, IL 61820-5710

© Alexandra Chronopoulou. Do not distribute without permission of the author.

Learning objectives

In this lecture we will:

- introduce the Simple Linear Regression Model (SLR).
- use the least-squares approach to estimate the model parameters.
- discuss goodness-of-fit and regression through the origin
- use R to fit a SLR model to the data.

University Admissions Example

The director of admissions of a small college administered a newly designed entrance test to 20 students selected at random from the freshman class in a study to determine whether a student's grade point average (GPA) at the end of the freshman year (Y) can be predicted from the entrance test score (X).

University Admissions Example

Based on the scatterplot:

- What conclusions do you draw?
- Which variable depends on the other?
- How can we initially describe the data? Is there a trend?

Equation of a Straight Line

- Mathematically, a straight line is defined as follows:

$$y = \underbrace{m}_{slope} x + \underbrace{b}_{intercept}$$

- The notation we use in regression is typically:

$$y = \underbrace{\beta_0}_{intercept} + \underbrace{\beta_1}_{slope} x$$

- One Response Y
- One Predictor X
- The data come in pairs:

$$x_1$$
 y_1
 x_2 y_2
 \vdots \vdots
 x_n y_n

(n denotes the total number of observations)

Regression Model

- A Regression Model is a statistical relationship.
 - The Y's (dependent variable) tend to vary with the (independent variable)
 X in a systematic (linear) fashion.
 - There is a "scattering" of points around the statistical relationship.
- From the regression model describing the relation, we have that:
 - There is a probability distribution of Y for every level of X: the probability
 of Y happening at that level of X.
 - Each probability distribution of Y has a mean or "center".
 - The means of all distributions vary in some systematic fashion.

 \Rightarrow Y is a RANDOM VARIABLE that has a distribution for every level of the independent variable.

Simple Linear Regression (SLR) Model

Simple Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
dep. variable known constant, has specific random error value in ith trial

where the **intercept** β_0 , the **slope** β_1 , and the **error variance** σ^2 are the *model parameters*.

Model Assumptions

The **errors** $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are assumed to

- have **mean zero**: $\mathbb{E}(\varepsilon_i) = 0$
- be uncorrelated: $Cov(\varepsilon_i, \varepsilon_i) = 0$, $i \neq j$,
- be **homoscedastic**: $Var(\varepsilon_i) = \sigma^2$ does not depend on *i*.

Interpretation of β_1 , β_0

- β_1 is the change in the mean of the probability distribution function of y per unit change in x.
- β_0 is the intercept, when x=0. It is the mean of the probability distribution function of y (at x=0) this is the only time it has meaning. Otherwise β_0 has no particular meaning.

Least-Squares

Method of Least Squares

Model:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $i = 1, ..., n$

Goal

- Estimate β_0 , and β_1 and gain the *estimated* regression line.
- Consider the responses y_i and the expected responses $\mathbb{E}(y_i)$. We would like to minimize the difference between what we have (y_i) and what we expect $(\mathbb{E}(y_i))$, i.e.

$$\min [y_i - \mathbb{E}(y_i)] \Leftrightarrow \min [y_i - (\beta_0 + \beta_1 x_i)]$$

- Find estimates of β_0 , β_1 to minimize this quantity.
- The best line will be closest to the actual data points.

Method of Least Squares

- The data we have are $(x_i, y_i)_i$.
- The quantity we want to minimize is

$$y_i - (\beta_0 + \beta_1 x_i)$$

which can be positive or negative. So ...

- We minimize the *Residual Sum of Squares (RSS)* instead

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

to obtain $(\hat{\beta_0}, \hat{\beta_1})$.

⇒ Method of Least Squares!

Method of Least Squares

– To find the solution and obtain $(\hat{\beta}_0, \hat{\beta}_1)$, we have

$$\frac{\partial \mathsf{RSS}}{\partial \beta_0} = 0 \quad \Leftrightarrow -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial \mathsf{RSS}}{\partial \beta_1} = 0 \quad \Leftrightarrow -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

Re-arrange the equations to obtain

$$\beta_0 n + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

- Then, solve the system with respect to β_0 , β_1 .

Least Square Estimators

LS Estimators

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Alternative Representation of $\hat{\beta_1}$

$$\hat{\beta}_{1} = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}(x_{i} - \bar{x})^{2}} := \frac{S_{xy}}{S_{xx}} = r_{xy}\sqrt{\frac{S_{yy}}{S_{xx}}}$$

where
$$S_{xy} = \sum_i (x_i - \bar{x})(y_i - \bar{y})$$
, $S_{xx} = \sum_i (x_i - \bar{x})^2$, $S_{yy} = \sum_i (y_i - \bar{y})^2$

$$r_{xy} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$
 the sample correlation

University Admissions Example (Revisited)

In our previous example, the fitted regression line is:

$$(\mathsf{GPA}) = 3.0539 + 0.7785 \cdot (\mathsf{Entrance\ Score})$$

How should we interpret the line?

Sample Correlation & Linear Regression

University Admissions Example (Revisited)

- Suppose you only have the following information available:

	Mean	Variance
Entrance Score	2.5	0.52
GPA	5	0.48

$$Corr(GPA, Entrance Score) = 0.81$$

- If you knew your entrance score was 4.3, could you guess your GPA?

Sample Correlation & Linear Regression

 The "unit-free, location/scale invariant" version of the GPA (Y) and the "unit-free, location/scale invariant" version of the Entrance Score (X) have the following relationship

$$\frac{y - \mu_y}{\sigma_y} \approx r_{xy} \frac{x - \mu_x}{\sigma_x}$$

- If we now take the sample equivalent of this expression, we get

$$\frac{y - \bar{y}}{\sqrt{S_{yy}}} \approx r_{xy} \frac{x - \bar{x}}{\sqrt{S_{xx}}}$$

- Re-arranging the terms

$$y \approx \underbrace{\left(\bar{y} - r_{xy}\sqrt{\frac{S_{yy}}{S_{xx}}}\bar{x}\right)}_{=\hat{\beta}_{0}} + \underbrace{\left(r_{xy}\sqrt{\frac{S_{yy}}{S_{xx}}}\right)}_{=\hat{\beta}_{1}}x$$

Fitted Values & Residuals

– Given $\hat{\beta}_0$, $\hat{\beta}_1$, the LS estimates of the regression coefficients, we call

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

the fitted value (or predicted value) at x_i , or the prediction of y_i .

- The *i*th residual is the difference between y_i (observed value) and its prediction (fitted value):

$$r_i = y_i - \hat{y}_i$$

Residuals

Some Properties

- 1. $\sum_{i} r_{i} = 0$
- 2. $RSS = \sum_{i} r_i^2$ is a minimum
- 3. $\sum_i y_i = \sum_i \hat{y}_i$
- 4. $\sum_{i} x_{i} r_{i} = 0$
- 5. $\sum_{i} \hat{y}_{i} r_{i} = 0$
- 6. The regression line always goes through the point (\bar{x}, \bar{y}) . (Why?)

The error variance is estimated by

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_i r_i^2$$

and the degrees of freedom (df) of the residuals is

(sample size)
$$-$$
 ($\#$ of parameters) $= n - 2$

Goodness of Fit

Goodness of Fit: R-square

Total Variation Breakdown

The total variation in the response y, measured by the Total Sum of Squares (TSS), can be decomposed as follows:

$$\sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} (y_{i} - \frac{\hat{y}_{i}}{\hat{y}_{i}} + \frac{\hat{y}_{i}}{\hat{y}_{i}} - \bar{y})^{2} = \sum_{i} (r_{i} + \hat{y}_{i} - \bar{y})^{2}$$
$$= \sum_{i} r_{i}^{2} + \sum_{i} (\hat{y}_{i} - \bar{y})^{2}$$
$$TSS = RSS + FSS$$

the Residual Sum of Squares (RSS) and the Fitted value Sum of Squares (FSS).

Remark: The cross-product term vanishes due to orthogonality:

$$\sum_{i} r_{i} (\hat{y}_{i} - \bar{y}) = \hat{\beta}_{0} \sum_{i} r_{i} + \hat{\beta}_{1} \sum_{i} r_{i} x_{i} - \bar{y} \sum_{i} r_{i} = 0$$

Goodness of Fit: *R*-square

Coefficient of Determination (R^2)

$$R^{2} = \frac{\sum_{i} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = \frac{FSS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- $-0 \le R^2 \le 1$
- It measures the effect of X in reducing the variation in Y.
- The larger R^2 is, the more the total variation of y is reduced by reducing the independent variable x.
 - The closer \mathbb{R}^2 is to 1, the greater the degree of linear association between X and Y
- We also have that $r_{xy} = \pm \sqrt{R^2}$, where the sign is the sign of the slope.

Misunderstandings

- $-R^2$ measures the *relative reduction* of TSS
- Both R^2 and r_{xy} measure the degree of linear association (i.e. the actual relation may be curvilinear).
- In the 'University Admissions' Example, $R^2=0.6538$. What is your conclusion?

Affine Transformations

Affine Transformations of the Data

Suppose we have a SLR model of Y on X, i.e. $y_i = \beta_0 + \beta_1 x_i$.

- Rescale y_i by $\tilde{y_i} = ay_i + b$ and then regress $\tilde{y_i}$ on x_i . How would the LS estimates and R^2 be affected?
- Rescale x_i by $\tilde{x}_i = ax_i + b$ and then regress y_i on \tilde{x}_i . How would the LS estimates and R^2 be affected?
- Regress x on y instead, will the LS line be the same?
 How about R²?

Birds Eggs Study

A study is conducted to understand the relationship between the height of a bird's egg and its weight. Based on the data collected, the following regression line was obtained:

$$\mathsf{Height}\ = -1.774 + 1.444\ \mathsf{Width}$$

- Is the intercept $\hat{\beta}_0 = -1.774$ meaningful here?
- Can we fit a model without an intercept? What does it change?

Reference: Kimber, H. (1995). The 'golden egg'. Teaching Statistics, 17(2), 34-7.

 Sometimes we want to fit a line with no intercept (a.k.a. regression through the origin):

$$y_i \approx \beta_1 x_i$$

– Using LS, we estimate β_1 by

$$\hat{\beta}_1 = \frac{\sum_i x_i y_i}{\sum_i x_i^2}$$

 The ordinary definition of R-square is no longer meaningful; A negative R-square is possible, since RSS may be larger than TSS.

In a model with no intercept, we have the following decomposition:

$$\sum_{i} y_{i}^{2} = \sum_{i} (y_{i} - \hat{y}_{i} + \hat{y}_{i})^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \sum_{i} \hat{y}_{i}^{2}$$

and a modified R-square

$$\tilde{R}^2 = 1 - \frac{RSS}{\sum_i y_i^2}$$