Diferențiabilitate

Cursul 9

Matematică - anul I

Facultatea de Informatică, UAIC

e-mail: adrian.zalinescu@info.uaic.ro

web: https://profs.info.uaic.ro/~adrian.zalinescu

6 Decembrie 2021

Cuprins

- Derivatele funcțiilor de o singură variabilă
- Diferenţiabilitate Gâteaux
- Diferenţiabilitate Fréchet
- Derivate de ordin superior
 - Serii Taylor

Derivatele funcțiilor de o singură variabilă

Noțiunea de derivată captează ideea de viteză de schimbare a valorii unei funcții în raport cu variabila sa.

Fie $A \subseteq \mathbb{R}$ un interval cu interior nevid și $f : A \to \mathbb{R}$.

Definiție

• Derivata lui f într-un punct $x_0 \in A$ este limita

$$f'(x_0) = \frac{df}{dx}(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \overline{\mathbb{R}}.$$

- Spunem că f este derivabilă într-un punct x₀ ∈ A dacă derivata lui f în x₀ există și este finită.
- Notăm f' sau $\frac{df}{dx}$ funcția $x \mapsto f'(x)$ definită pe o submulțime a lui A ce consistă în elementele lui A în care f este derivabilă.
- Dacă $x_0 \in A$ este un punct de acumulare la stânga (la dreapta) a lui A, numim derivata la stânga (la dreapta) a lui f în x_0 limita (în cazul în care există)

$$f_s'(x_0):=\lim_{x\nearrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\in \overline{\mathbb{R}}\quad \left(f_d'(x_0):=\lim_{x\searrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\in \overline{\mathbb{R}}\right).$$

Fie $A \subseteq \mathbb{R}$ un interval cu interior nevid.

Propoziție

Fie $f: A \to \mathbb{R}$ și $x_0 \in A$. Dacă f este derivabilă în x_0 , atunci f este continuă în x_0 .

Definiție

- Spunem că o funcție $f: A \to \mathbb{R}$ este de *clasă* C^1 dacă f este derivabilă pe A si f' este continuă.
- Notăm $C^1(A)$ familia tuturor funcțiilor $f:A\to\mathbb{R}$ de clasă C^1 .
- Notăm C(A) familia tuturor funcțiilor continue $f:A\to \mathbb{R}$.

Din propoziția de mai sus, $C^1(A) \subseteq C(A)$.

Reguli de derivare

Fie $A, B \subseteq \mathbb{R}$ două intervale cu interioare nevide și $x_0 \in A$.

Teoremă

i) Dacă $f,g:A\to\mathbb{R}$ sunt derivabile în x_0 și $\alpha,\beta\in\mathbb{R}$, atunci $\alpha f+\beta g$ și fg sunt derivable în x_0 și

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0);$$

 $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$ (regula lui Leibniz).

Dacă, în plus, $g(x_0) \neq 0$, atunci $\exists \varepsilon > 0$, $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap A : g(x) \neq 0$ și 1/g, f/g sunt derivabile în x_0 cu

$$\begin{split} &\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g(x_0)^2}; \\ &\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}. \end{split}$$

Teoremă

ii) Dacă funcția $f:A\to B$ este derivabilă în x_0 și g este derivabilă în $f(x_0)$, atunci $g\circ f$ este derivabilă în x_0 și

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$
 (regula lanţului).

iii) Dacă funcția $f:A\to B$ este continuă, bijectivă și derivabilă în x_0 astfel încât $f'(x_0)\neq 0$, atunci f^{-1} este continuă, derivabilă în $f(x_0)$ și

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Dacă funcțiile f și g sunt derivabile, regulile de mai sus pot fi scrise ca:

- (f+g)' = f' + g';
- (fg)' = f'g + fg';
- $\left(\frac{1}{f}\right)' = -\frac{f'}{f}$ (dacă $0 \notin \operatorname{Im} f$);
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (dacă $0 \notin \operatorname{Im} g$);

•
$$(g \circ f)' = (g' \circ f) \cdot f';$$

•
$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$
 (dacă $0 \notin \operatorname{Im} f'$).

Ultimele două reguli pot fi ușor memorate dacă vedem pe f ca pe o schimbare de variabilă y=f(x):

$$dx = \frac{1}{\frac{dy}{dx}}.$$

Dacă $f:A \to \mathbb{R}_+^*$ și $g:A \to \mathbb{R}$ sunt funcții derivabile, atunci avem:

$$(f^g)' = \left(e^{g \ln f}\right)' = e^{g \ln f} \left(g' \ln f + \frac{gf'}{f}\right) = f^g (\ln f)g' + f^{g-1}f'g.$$

Derivatele funcțiilor elementare

- $c' = \frac{\mathrm{d}c}{\mathrm{d}x} = 0$, $x \in \mathbb{R}$, pentru $c \in \mathbb{R}$;
- $(a^x)' = a^x \ln a$, $x \in \mathbb{R}$, pentru $a \in \mathbb{R}_+^*$;
- $\bullet (e^x)' = e^x, x \in \mathbb{R};$
- $\bullet \ (\log_a x)' = \frac{1}{x \ln a}, \ x \in \mathbb{R}, \ \mathsf{pentru} \ a \in \mathbb{R}_+^* \smallsetminus \{1\};$
- $(\ln x)' = \frac{1}{x}, x \in \mathbb{R};$
- $(x^p)' = px^{p-1}, x \in \mathcal{D}_p$, pentru $p \in \mathbb{R}$,

unde \mathcal{D}_p este domeniul maxim de definiție al funcției putere.

- $\bullet (\sin x)' = \cos x;$
- $\bullet (\cos x)' = -\sin x;$
- $(\operatorname{tg} x)' = \frac{1}{(\cos x)^2}$, $x \in \mathbb{R} \setminus \{(2k+1)\frac{\pi}{2} \mid k \in \mathbb{N}\}$;
- $(\operatorname{ctg} x)' = -\frac{1}{(\sin x)^2}, x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{N}\};$
- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1);$
- $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, x \in (-1,1);$
- $(\operatorname{arctg} x)' = \frac{1}{1+x^2}, x \in \mathbb{R};$
- $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}, x \in \mathbb{R}.$

Derivatele funcțiilor vectoriale de o singură variabilă

Definiția funcțiilor reale derivabile poate fi ușor adaptată pentru funcții de o variabilă cu valori în \mathbb{R}^m , deoarece limita

$$f'(x_0) := \lim_{x \to x_0} \frac{1}{x - x_0} \left(f(x) - f(x_0) \right)$$

are sens pentru funcții $f:A\to\mathbb{R}^m$ cu $x_0\in A$. Ca în cazul limitelor de funcții, derivatele pot fi calculate pe componente:

Fie A un interval cu interior nevid, $x_0 \in A$ și $f: A \to \mathbb{R}^m$ o funcție cu componentele f_1, f_2, \ldots, f_m .

Propoziție

f este derivabilă în x_0 dacă și numai dacă f_1, f_2, \ldots, f_m sunt derivabile în x_0 . În acest caz, $f'(x_0) = (f'_1(x_0), \ldots, f'_m(x_0))$.

Reguli similare de calcul se aplică și în acest caz.

Teoremă

Fie A un interval cu interior nevid, $x_0 \in A$ și $f, g: A \to \mathbb{R}^m$, $\varphi: A \to \mathbb{R}$, derivabile în x_0 . Atunci:

i) f + g este derivabilă în x_0 și

$$(f+g)'(x_0) = f'(x_0) + g'(x_0);$$

ii) $\langle f, g \rangle$ este derivabilă în x_0 și

$$(\langle f,g\rangle)'(x_0) = \langle f'(x_0),g(x_0)\rangle + \langle f(x_0),g'(x_0)\rangle;$$

iii) φf este derivabilă în x_0 și

$$(\varphi f)'(x_0) = \varphi'(x_0)f(x_0) + \varphi(x_0)f'(x_0).$$

Derivate direcționale și diferențiabilitate Gâteaux

- Pentru funcții f de mai multe variabile, raportul $\frac{f(\mathbf{x})-f(\mathbf{x}_0)}{\mathbf{x}-\mathbf{x}_0}$ nu este definit, așa că a defini derivata în modul acesta nu este posibil.
- Există mai multe posibilități de a ocoli această dificultate. Una este să considerăm derivate direcționale, opțiune ce este bazată pe observația că derivata unei funcții $f:A\to\mathbb{R}$ într-un punct x_0 poate fi scrisă ca

$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}.$$

Definiție

Fie $D \subseteq \mathbb{R}^n$ o mulțime deschisă nevidă și $f: D \to \mathbb{R}^m$ o funcție.

• Dacă $\mathbf{x}_0 \in D$ și $\mathbf{u} \in \mathbb{R}^n$, spunem că f este derivabilă în \mathbf{x}_0 $\hat{\mathit{in}}$ direcția \mathbf{u} dacă limita

$$f'(\mathbf{x}_0; \mathbf{u}) := \lim_{t \to 0} \frac{1}{t} \left(f(\mathbf{x}_0 + t\mathbf{u}) - f(\mathbf{x}_0) \right) \in \mathbb{R}^m$$

există. În acest caz, $f'(\mathbf{x}_0; \mathbf{u})$ se numește derivata direcțională a lui f în \mathbf{x}_0 în directia \mathbf{u} .

Definiție

- Dacă $\mathbf{x}_0 \in D$ și f este derivabilă în \mathbf{x}_0 în orice direcție $\mathbf{u} \in \mathbb{R}^n$, spunem că f este $G \hat{a} teaux diferențiabilă în <math>\mathbf{x}_0$. $D \hat{b} f este atunci funcția <math>\mathbf{u} \mapsto f'(\mathbf{x}_0; \mathbf{u})$ și se notează $D f(\mathbf{x}_0)$.
- Dacă $\mathbf{x}_0 \in D$ și f este diferențiabilă Gâteaux în \mathbf{x}_0 , spunem că f este Gâteaux derivabilă în \mathbf{x}_0 dacă în plus $Df(\mathbf{x}_0) : \mathbb{R}^n \to \mathbb{R}^m$ este o aplicație liniară.
- Spunem că f este Gâteaux diferențiabilă sau Gâteaux derivabilă pe o submulțime $D_0 \subseteq D$ dacă f este Gâteaux diferențiabilă, respectiv Gâteaux derivabilă în orice punct $\mathbf{x}_0 \in D_0$.

Observație. Deoarece

$$f'(\mathbf{x}_0; \alpha \mathbf{u}) = \lim_{t \to 0} \frac{1}{t} \left(f(\mathbf{x}_0 + t\alpha \mathbf{u}) - f(\mathbf{x}_0) \right)$$
$$= \lim_{s \to 0} \frac{\alpha}{s} \left(f(\mathbf{x}_0 + s\mathbf{u}) - f(\mathbf{x}_0) \right) = \alpha f'(\mathbf{x}_0; \mathbf{u})$$

pentru orice $\alpha \in \mathbb{R}$ și $\mathbf{u} \in \mathbb{R}^n$, remarcăm că:

• existența derivatei direcționale $f'(\mathbf{x}_0; \alpha \mathbf{u})$ este echivalentă cu existența lui $f'(\mathbf{x}_0; \mathbf{u})$ dacă $\alpha \in \mathbb{R}^*$, $\mathbf{u} \in \mathbb{R}^n \setminus \{\mathbf{0}_{\mathbb{R}^n}\}$;

• de aceea, în definiția diferențiabilități se poate cere existența lui $f'(\mathbf{x}_0; \mathbf{u})$ doar pentru versorii $\mathbf{u} \in \mathbb{R}^n$;

• dacă f este diferențiabilă în \mathbf{x}_0 , aplicația $\mathrm{D} f(\mathbf{x}_0): \mathbb{R}^n \to \mathbb{R}^m$ este omogenă; de aceea, pentru derivabilitatea lui f în \mathbf{x}_0 , este de ajuns să cerem doar ca $\mathrm{D} f(\mathbf{x}_0)$ să fie aditivă.

Funcțiile constante și funcțiile liniare sunt Gâteaux derivabile. Intr-adevăr, dacă $c \in \mathbb{R}$ și $T \in L(\mathbb{R}^n; \mathbb{R}^m)$, atunci

$$c'(\mathbf{x}_0; \mathbf{u}) = \lim_{t \to 0} \frac{1}{t}(c - c) = 0$$

şi

$$T'(\mathbf{x}_0; \mathbf{u}) = \lim_{t \to 0} \frac{1}{t} \left(T(\mathbf{x}_0 + t\mathbf{u}) - T(\mathbf{x}_0) \right) = T(\mathbf{u}), \ \forall \mathbf{x}_0, \mathbf{u} \in \mathbb{R}^n.$$

În consecință, $\mathrm{D}c(\mathbf{x}_0)=0$, $\mathrm{D}T(\mathbf{x}_0)=T$, $orall \mathbf{x}_0 \in \mathbb{R}^n$.

Derivate parțiale

Fie $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ baza canonică în \mathbb{R}^n . Fie $D\subseteq\mathbb{R}^n$ o mulțime deschisă nevidă , $\mathbf{x}_0\in D$ și $f:D\to\mathbb{R}^m$ o funcție.

Definiție

Dacă f este derivabilă în \mathbf{x}_0 în direcția \mathbf{e}_k pentru un $k \in \{1, ..., n\}$, spunem că f admite o derivată parțială în raport cu x_k în \mathbf{x}_0 , pe care o notăm

$$\frac{\partial f}{\partial x_k}(\mathbf{x}_0) := f'(\mathbf{x}_0; \mathbf{e}_k).$$

Observăm că derivata parțială a lui f în raport cu x_k în \mathbf{x}_0 se obține după cum urmează: dacă $\mathbf{x}_0 = (x_1^0, \dots, x_n^0) \in D$, atunci

$$\frac{\partial f}{\partial x_k}(\mathbf{x}_0) = \lim_{t \to 0} \frac{1}{t} \left(f(\mathbf{x}_0 + t\mathbf{e}_k) - f(\mathbf{x}_0) \right)
= \lim_{t \to 0} \frac{1}{t} \left(f(x_1^0, \dots, x_{k-1}^0, x_k^0 + t, \dots, x_n^0) - f(x_1^0, \dots, x_{k-1}^0, x_k^0, \dots, x_n^0) \right).$$

Bineînțeles,
$$\frac{\partial f}{\partial x_k}(\mathbf{x}_0) = \left(\frac{\partial f_1}{\partial x_k}(\mathbf{x}_0), \dots, \frac{\partial f_m}{\partial x_k}(\mathbf{x}_0)\right) \in \mathbb{R}^m$$
.

Existența derivatelor parțiale ale unei funcții de mai multe variabile nu implică existența tuturor derivatelor direcționale (adică a diferențiabilității Gâteaux) în acel punct, după cum ne arată următorul exemplu:

Exemplu. Fie $f: \mathbb{R}^2 \to \mathbb{R}$ definită de

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

Atunci $\frac{\partial f}{\partial x}(0,0)=0$ și $\frac{\partial f}{\partial y}(0,0)=0$, dar

$$\frac{f((0,0)+t(u,v))-f((0,0))}{t}=\frac{\frac{t^2uv}{t^2(u^2+v^2)}}{t}=\frac{1}{t}\frac{uv}{u^2+v^2}.$$

Aşadar derivata direcţională f'((0,0);(u,v)) nu există dacă $uv \neq 0$.

Jacobianul

Fie $D\subseteq\mathbb{R}^n$ o mulțime deschisă nevidă, $\mathbf{x}_0\in D$ și $f:D\to\mathbb{R}^m$ o funcție Gâteaux derivabilă în \mathbf{x}_0 .

Definiție

- Matricea din \mathcal{M}_{mn} asociată cu $\mathrm{D}f(\mathbf{x}_0)$ (în raport cu bazele canonice din \mathbb{R}^n și \mathbb{R}^m) se numește *matricea jacobiană* a lui f în \mathbf{x}_0 și este notată $\mathrm{J}_f(\mathbf{x}_0)$.
- În cazul m=1, matricea jacobiană a lui f în \mathbf{x}_0 se numește de asemenea gradientul lui f și se mai notează $\nabla f(\mathbf{x}_0)$.
- În cazul m=n, determinantul lui $J_f(\mathbf{x}_0)$ se numește jacobianul lui f în \mathbf{x}_0 și se notează $\frac{\mathrm{D}(f_1,\ldots,f_n)}{\mathrm{D}(\mathbf{x}_1,\ldots,\mathbf{x}_n)}(\mathbf{x}_0)$, unde f_1,\ldots,f_n sunt componentele lui f.

Observații.

1. Fie $f:D\to\mathbb{R}^m$ o funcție Gâteaux derivabilă în \mathbf{x}_0 . Se poate arăta cu ușurință că $\mathbf{J}_f(\mathbf{x}_0)=egin{bmatrix} \nabla f_1(\mathbf{x}_0)\\ \vdots\\ \nabla f_m(\mathbf{x}_0) \end{bmatrix}$, adică matricea ce are ca linii elementele lui $\nabla f_k(\mathbf{x}_0)$ pentru $k\in\{1,\ldots,m\}$.

Pe de altă parte,

$$J_f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f}{\partial x_n}(\mathbf{x}_0) \end{bmatrix},$$

adică matricea ce are drept coloane elementele lui $\frac{\partial f}{\partial x_i}(\mathbf{x}_0)$ pentru $i \in \{1, \dots, n\}$:

$$J_f(\textbf{x}_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\textbf{x}_0) & \frac{\partial f_1}{\partial x_2}(\textbf{x}_0) & \dots & \frac{\partial f_1}{\partial x_n}(\textbf{x}_0) \\ \frac{\partial f_2}{\partial x_1}(\textbf{x}_0) & \frac{\partial f_2}{\partial x_2}(\textbf{x}_0) & \dots & \frac{\partial f_2}{\partial x_n}(\textbf{x}_0) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\textbf{x}_0) & \frac{\partial f_m}{\partial x_2}(\textbf{x}_0) & \dots & \frac{\partial f_m}{\partial x_n}(\textbf{x}_0) \end{bmatrix}.$$

Particularizând pentru cazul m = 1, obţinem

$$abla f(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}_0) & \dots & \frac{\partial f}{\partial x_n}(\mathbf{x}_0) \end{bmatrix}.$$

Putem vedea matricea linie $\nabla f(\mathbf{x}_0)$ ca un element al lui \mathbb{R}^n ; în acest caz putem scrie

$$f'(\mathbf{x}_0; \mathbf{u}) = \langle \nabla f(\mathbf{x}_0), \mathbf{u} \rangle = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0) u_i, \ \forall \mathbf{u} = (u_1, \dots, u_n) \in \mathbb{R}^n.$$

2. Dacă o funcție $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ este Gâteaux derivabilă într-un punct $\mathbf{x}_0\in D$, nu putem deduce continuitatea lui f în \mathbf{x}_0 , ci doar continuitatea direcțională a lui f în \mathbf{x}_0 , adică continuitatea în 0 a funcției $t\mapsto f(\mathbf{x}_0+t\mathbf{u})$ pentru orice $\mathbf{u}\in\mathbb{R}^n$.

Totuși, situația se schimbă dacă cerem ca derivatele parțiale să existe și să fie mărginite într-o vecinătate a lui \mathbf{x}_0 :

Fie $D \subseteq \mathbb{R}^n$ o mulțime deschisă nevidă, $\mathbf{x}_0 \in D$ și $f: D \to \mathbb{R}^m$.

Teoremă

Dacă există $V \in \mathscr{V}(\mathbf{x}_0)$ astfel încât derivatele parțiale $\frac{\partial f}{\partial x_i}(\mathbf{x})$ să existe pentru orice $\mathbf{x} \in V \cap D$ și $\frac{\partial f}{\partial x_i}$ sunt mărginite pe $V \cap D$ pentru orice $i = \overline{1, n}$, atunci f este continuă în \mathbf{x}_0 .

Observație. O condiție suficientă ca $\frac{\partial f}{\partial x_i}$ să fie mărginită pe o vecinătate a lui \mathbf{x}_0 este ca ea să fie continuă în \mathbf{x}_0 .

Fie $A \subseteq \mathbb{R}^n$ o mulțime nevidă.

Definiție

- Dacă A este deschisă, spunem că o funcție $f:A\to\mathbb{R}^m$ este de clasă C^1 dacă toate derivatele parțiale ale lui f există și sunt continue.
- Dacă A este deschisă, notăm $C^1(A; \mathbb{R}^m)$ familia tuturor funcțiilor $f: A \to \mathbb{R}$ ce sunt de clasă C^1 . Dacă m = 1, o vom nota mai simplu $C^1(A)$.
- Notăm $C(A; \mathbb{R}^m)$ familia tuturor funcțiilor continue $f: A \to \mathbb{R}$. Dacă m = 1, o vom nota doar C(A).

Teorema precedentă și remarca de mai jos ne permite să conchidem că $C^1(D; \mathbb{R}^m) \subseteq C(D; \mathbb{R}^m)$ pentru orice submulțime deschisă $D \subseteq \mathbb{R}^n$.

Diferențiabilitate Fréchet

Remarcăm că o funcție $f:A\to\mathbb{R}$ este derivabilă într-un punct x_0 dacă există $a\in\mathbb{R}$ astfel încât

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - a(x - x_0)}{|x - x_0|} = 0.$$

În acest caz, $a = f'(x_0)$. Pentru cazul mai multor variabile, o altă posibilitate este de a înlocui în proprietatea de mai sus numărul real a cu o matrice, sau, echivalent, un operator liniar.

Fie $D \subseteq \mathbb{R}^n$ o mulţime deschisă nevidă și $f: D \to \mathbb{R}^m$ o funcţie.

Definiție

• Pentru $\mathbf{x}_0 \in D$, spunem că f este diferențiabilă Fréchet în \mathbf{x}_0 dacă există un operator liniar $T \in L(\mathbb{R}^n; \mathbb{R}^m)$ astfel încât

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{1}{\|\mathbf{x}-\mathbf{x}_0\|}\left(f(\mathbf{x})-f(\mathbf{x}_0)-T(\mathbf{x}-\mathbf{x}_0)\right)=\mathbf{0}_{\mathbb{R}^m}.$$

În acest caz, operatorul T se numește diferențiala Fréchet a lui f în \mathbf{x}_0 și se notează $\mathrm{d}f(\mathbf{x}_0)$.

Observație. Un alt mod de a exprima faptul că f este diferențiabilă Fréchet în \mathbf{x}_0 este că există $T \in \mathrm{L}(\mathbb{R}^n;\mathbb{R}^m)$ și o funcție continuă $\alpha:D \to \mathbb{R}^m$ astfel încât $\alpha(\mathbf{x}_0) = \mathbf{0}_{\mathbb{R}^m}$ și

$$f(\mathbf{x}) = f(\mathbf{x}_0) + T(\mathbf{x} - \mathbf{x}_0) + \|\mathbf{x} - \mathbf{x}_0\| \alpha(\mathbf{x}), \ \forall \mathbf{x} \in D.$$

De fapt, α se poate defini prin

$$\alpha(\mathbf{x}) := \left\{ \begin{array}{ll} \frac{1}{\|\mathbf{x} - \mathbf{x}_0\|} \left(f(\mathbf{x}) - f(\mathbf{x}_0) - T(\mathbf{x} - \mathbf{x}_0) \right), & \mathbf{x} \in D \smallsetminus \{\mathbf{x}_0\}; \\ \mathbf{0}_{\mathbb{R}^m}, & \mathbf{x} = \mathbf{x}_0. \end{array} \right.$$

Legătura între diferențiabilitatea Fréchet și diferențiabilitatea Gâteaux este dată de următorul rezultat:

Teoremă

Fie $D\subseteq \mathbb{R}^n$ o mulțime deschisă nevidă și $f:D\to \mathbb{R}^m$ o funcție. Dacă f este diferențiabilă Fréchet într-un punct $\mathbf{x}_0\in D$, atunci f este derivabilă Gâteaux în \mathbf{x}_0 și $\mathrm{D} f(\mathbf{x}_0)=\mathrm{d} f(\mathbf{x}_0)$.

• O consecință imediată a acestei teoreme este că diferențiala Fréchet este unică, deoarece derivata Gâteaux este unică (datorită faptului că $Df(\mathbf{x}_0)(\mathbf{u}) = f'(\mathbf{x}_0; \mathbf{u})$, pentru orice $\mathbf{u} \in \mathbb{R}^n$).

• O altă consecință este că dacă f este diferențiabilă Fréchet în $\mathbf{x}_0 \in D$, atunci f are derivate parțiale în \mathbf{x}_0 și

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = \mathrm{d}f(\mathbf{x}_0)(\mathbf{e}_i), \ \forall i \in \{1, \dots, n\}.$$

• Funcțiile constante și aplicațiile liniare sunt diferențiabile Fréchet differentiable, de asemenea. Într-adevăr, dacă $c \in \mathbb{R}$ and $T \in L(\mathbb{R}^n; \mathbb{R}^m)$,

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{1}{\|\mathbf{x} - \mathbf{x}_0\|} \left(c - c - \mathbf{0}_{\mathrm{L}(\mathbb{R}^n;\mathbb{R}^m)} (\mathbf{x} - \mathbf{x}_0) \right) = \mathbf{0}_{\mathbb{R}^m}$$

şi

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{1}{\|\mathbf{x} - \mathbf{x}_0\|} \left(T(\mathbf{x}) - T(\mathbf{x}_0) - T(\mathbf{x} - \mathbf{x}_0) \right) = \mathbf{0}_{\mathbb{R}^m},$$

ceea de demonstrează clar afirmația și chiar mai mult, că $dc(\mathbf{x}_0) = 0$, $dT(\mathbf{x}_0) = T$, $\forall \mathbf{x}_0 \in \mathbb{R}^n$.

• Fie $\operatorname{pr}_i:D\to\mathbb{R}$ proiecția pe componenta i:

$$\operatorname{pr}_{i}(x_{1},\ldots,x_{n})=x_{i},\ (x_{1},\ldots,x_{n})\in D,\ i=\overline{1,n}.$$

Diferențiala Fréchet a lui pr_k este în mod tradițional notată dx_k :

$$dx_i(u_1,\ldots,u_n)=u_i, (u_1,\ldots,u_n)\in\mathbb{R}^n, i=\overline{1,n}.$$

Deoarece

$$df(\mathbf{x}_0)(\mathbf{u}) = f'(\mathbf{x}_0; \mathbf{u}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0) u_i$$

= $\sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0) dx_i(\mathbf{u}), \ \forall \mathbf{u} = (u_1, \dots, u_n) \in \mathbb{R}^n,$

avem

$$df(\mathbf{x}_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0) dx_i.$$

Fie $D \subseteq \mathbb{R}^n$ o mulțime deschisă nevidă, $\mathbf{x}_0 \in D$ și $f: D \to \mathbb{R}^m$ o funcție.

Prin contrast cu derivabilitatea Gâteaux, diferențiabilitatea Fréchet implică continuitatea:

Teoremă

Dacă f este diferențiabilă Fréchet în \mathbf{x}_0 , atunci f este continuă în \mathbf{x}_0 .

O condiție suficientă pentru diferențiabilitatea Fréchet este dată de următorul rezultat:

Teoremă

Dacă există $V \in \mathscr{V}(\mathbf{x}_0)$ astfel încât derivatele parțiale $\frac{\partial f}{\partial x_i}(\mathbf{x})$ există pentru orice $\mathbf{x} \in V \cap D$ și $\frac{\partial f}{\partial x_i}$ sunt continue pe $V \cap D$ pentru orice $i = \overline{1, n}$, atunci f este diferențiabilă Fréchet în \mathbf{x}_0 .

O consecință a acestui rezultat este că dacă $f \in C^1(D; \mathbb{R}^m)$, atunci f este Fréchet diferențiabilă.

Reguli de derivare

Teoremă

Fie $D \subseteq \mathbb{R}^n$ și $E \subseteq \mathbb{R}^m$ mulțimi deschise nevide.

i) Dacă $f,g:D\to\mathbb{R}^m$ sunt diferențiabile Fréchet în $\mathbf{x}_0\in D$ și $\alpha,\beta\in\mathbb{R}$, atunci $\alpha f+\beta g$ este diferențiabilă Fréchet în \mathbf{x}_0 și

$$d(\alpha f + \beta g)(\mathbf{x}_0) = \alpha df(\mathbf{x}_0) + \beta dg(\mathbf{x}_0), \ \forall \alpha, \beta \in \mathbb{R}.$$

ii) Dacă $f:D\to\mathbb{R}^m$ și $\varphi:D\to\mathbb{R}$ sunt diferențiabile Fréchet în $\mathbf{x}_0\in D$, atunci φf este diferențiabilă Fréchet în \mathbf{x}_0 și

$$d(\varphi f)(\mathbf{x}_0) = d\varphi(\mathbf{x}_0)f(\mathbf{x}_0) + \varphi(\mathbf{x}_0)df(\mathbf{x}_0).$$

Teoremă

iii) Dacă $\varphi:D\to\mathbb{R}$ este diferențiabilă Fréchet în $\mathbf{x}_0\in D$ și $\varphi(\mathbf{x}_0)\neq 0$, atunci există o vecinătate deschisă $D_0\subseteq D$ a lui \mathbf{x}_0 astfel încât $0\not\in \varphi[D_0]$, $\frac{1}{\varphi}:D_0\to\mathbb{R}$ este diferențiabilă Fréchet în \mathbf{x}_0 și

$$d\left(\frac{1}{\varphi}\right)(\mathbf{x}_0) = -\frac{1}{\varphi(\mathbf{x}_0)^2}d\varphi(\mathbf{x}_0).$$

iv) Dacă $f:D\to E$ este diferențiabilă Fréchet în \mathbf{x}_0 , $g:E\to\mathbb{R}^p$ este diferențiabilă Fréchet în $f(\mathbf{x}_0)$, atunci $g\circ f$ este diferențiabilă Fréchet în \mathbf{x}_0 și

$$d(g \circ f)(\textbf{x}_0) = dg(f(\textbf{x}_0)) \circ df(\textbf{x}_0) \text{ (regula lanțului)}$$

În termeni de matrice jacobiene, regula lanțului poate fi scrisă ca

$$J_{g \circ f}(\mathbf{x}_0) = J_g(f(\mathbf{x}_0)) \cdot J_f(\mathbf{x}_0)$$

sau, în termeni de derivate parțiale,

$$\frac{\partial (g_j \circ f)}{\partial x_i}(\mathbf{x}_0) = \sum_{k=1}^m \frac{\partial g_j}{\partial y_k}(f(\mathbf{x}_0)) \frac{\partial f_k}{\partial x_i}(\mathbf{x}_0), \ \forall i = \overline{1, n}, \ \forall j = \overline{1, p}.$$

În cazul m=n=p, aplicând determinanții relației matriceale de mai sus, obținem

$$\frac{\mathrm{D}(g_1\circ f,\ldots,g_n\circ f)}{\mathrm{D}(x_1,\ldots,x_n)}(\mathbf{x}_0) = \frac{\mathrm{D}(g_1,\ldots,g_n)}{\mathrm{D}(y_1,\ldots,y_n)}(f(\mathbf{x}_0)) \cdot \frac{\mathrm{D}(f_1,\ldots,f_n)}{\mathrm{D}(x_1,\ldots,x_n)}(\mathbf{x}_0).$$

De aceea, dacă $f:D\to E$ este bijectivă și f^{-1} este de asemenea diferențiabilă Fréchet în $f(\mathbf{x}_0)$, atunci $J_f(\mathbf{x}_0)$ este nesingulară, $J_{f^{-1}}(f(\mathbf{x}_0))=(J_f(\mathbf{x}_0))^{-1}$ și

$$\frac{D(f_1, \dots, f_n)}{D(x_1, \dots, x_n)}(\mathbf{x}_0) \neq 0;
\frac{D(f_1^{-1}, \dots, f_n^{-1})}{D(x_1, \dots, x_n)}(f(\mathbf{x}_0)) = \frac{1}{\frac{D(f_1, \dots, f_n)}{D(x_1, \dots, x_n)}(\mathbf{x}_0)}.$$

Definiție

Fie $D, E \subseteq \mathbb{R}^n$ mulțimi deschise nevide. O funcție $f: D \to E$ se numește difeomorfism dacă f este bijectivă, $f \in C^1(D; \mathbb{R}^n)$ și $J_f(\mathbf{x})$ este nesingulară pentru orice $\mathbf{x} \in D$.

Se poate arăta că dacă $f: D \to E$ este un difeomorfism, atunci $f^{-1} \in C^1(E; \mathbb{R}^n)$.

Derivate de ordin superior

Vom considera mai întâi cazul funcțiilor reale de o variabilă.

- Pentru o funcție derivabilă $f: A \to \mathbb{R}$, se poate defini $f': A \to \mathbb{R}$.
- De aceea, putem vorbi de derivabilitatea noii funcții f': derivata lui f' într-un punct x₀ ∈ A, dacă există, va fi notată f"(x₀) sau d²f/dx²(x₀) și este numită derivata de ordin doi a lui f în x₀.
- Dacă f' este derivabilă, atunci derivata lui f' definește o funcție, numită derivata de ordin doi a lui $f: f'': A \to \mathbb{R}$.
- Procesul poate continua: dacă $f^{(n-1)}:A \to \mathbb{R}$ este derivata de ordin n-1 a lui f (pentru $n \geq 3$), atunci $f^{(n)}(x_0)$ sau $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}(x_0)$ notează, în cazul în care există, derivata lui $f^{(n-1)}$ în $x_0 \in A$ și se numește derivata de ordin n a lui f în x_0 .
- Dacă $f^{(n-1)}$ este derivabilă, atunci derivata acesteia definește funcția $f^{(n)}: A \to \mathbb{R}$, numită derivata de ordin n a lui f.

Un caz particular de derivate direcționale de ordin superior este constituit de derivatele parțiale de ordin superior:

Fie $D\subseteq\mathbb{R}^n$ o mulțime deschisă nevidă și $f:D\to\mathbb{R}^m$ o funcție. Dacă $i_1,\ldots,i_p\in\{1,\ldots,n\}$ pentru $p\geq 2$, derivata parțială de ordin p a lui f în raport cu $x_{i_1},x_{i_2},\ldots,x_{i_p}$ într-un punct $\mathbf{x}_0\in D$ este definită recursiv ca

$$\frac{\partial^p f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_p}}(\mathbf{x}_0) := \frac{\partial \left(\frac{\partial^{p-1} f}{\partial x_{i_2} \dots \partial x_{i_p}}\right)}{\partial x_{i_1}}(\mathbf{x}_0),$$

cu condiția ca derivata parțială (de ordin p-1) $\frac{\partial^{p-1}f}{\partial x_2...\partial x_p}$ există într-o vecinătate a lui \mathbf{x}_0 și admite derivată parțială în raport cu x_{i_1} în \mathbf{x}_0 . Dacă $i_1=\dots=i_p=i$, în loc de $\frac{\partial^p f}{\partial x_1...\partial x_p}$ putem scrie $\frac{\partial^p f}{\partial x_i^p}$. Dacă nu este cazul, derivata parțială se numește derivată parțială mixtă. Următoarele rezultate oferă condiții suficiente pentru schimbarea ordinii indicilor i_1,\dots,i_p .

Fie $D\subseteq\mathbb{R}^n$ o mulțime deschisă nevidă, $\mathbf{x}_0\in D$, $f:D\to\mathbb{R}^m$ o funcție și $i,j\in\{1,\dots n\}$ cu $i\neq j$.

Teoremă (Schwarz)

Dacă derivatele parțiale mixte $\frac{\partial^2 f}{\partial x_i \partial x_j}$ și $\frac{\partial^2 f}{\partial x_j \partial x_i}$ există pe o vecinătate a lui \mathbf{x}_0 și sunt continue în \mathbf{x}_0 , atunci

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{x}_0).$$

Teoremă (Young)

Dacă derivatele parțiale $\frac{\partial f}{\partial x_i}$ și $\frac{\partial f}{\partial x_j}$ există într-o vecinătate deschisă a lui \mathbf{x}_0 și sunt Fréchet diferențiabile în \mathbf{x}_0 , atunci $\frac{\partial^2 f}{\partial x_i \partial x_i}$ și $\frac{\partial^2 f}{\partial x_i \partial x_i}$ există și sunt egale.

În condițiile teoremelor Schwarz sau Young, se pot ordona (și grupa) i_1,\ldots,i_p în derivata parțială mixtă $\frac{\partial^p f}{\partial x_{i_1}\partial x_{i_2}...\partial x_{i_p}}$ și aceasta se poate scrie ca

$$\frac{\partial^p f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}},$$

unde, pentru $i=\overline{1,n}$, α_i este numărul de i care apar în lista i_1,\ldots,i_p . Vectorul $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_n)\in\mathbb{N}^n$ se numește *multi-indice* și avem $p=|\alpha|:=\alpha_1+\cdots+\alpha_n$. De fapt, în expresia (\star) , se pot omite termenii $\partial x_i^{\alpha_i}$ dacă $\alpha_i=0$.

Diferențiabilitatea Fréchet de ordin superior poate fi introdusă după cum urmează:

Definiție

Fie $D\subseteq \mathbb{R}^n$ o mulțime deschisă nevidă, $f:D\to \mathbb{R}^m$ o funcție și $p\in \mathbb{N}^*\setminus\{1\}$.

- Spunem că f este diferențiabilă Fréchet de ordin p în $\mathbf{x}_0 \in D$ dacă există o vecinătate deschisă $D_0 \subseteq D$ a lui \mathbf{x}_0 astfel încât toate derivatele parțiale de ordin p-1 există în D_0 și sunt diferențiabile Fréchet în \mathbf{x}_0 .
- Spunem că f este diferențiabilă Fréchet de ordin p într-o submulțime $D_0 \subseteq D$ dacă f diferențiabilă Fréchet de ordin p în orice punct $\mathbf{x}_0 \in D_0$.
- Dacă f este Fréchet diferențiabilă Fréchet de ordin p în $\mathbf{x}_0 \in D$, atunci diferențiala Fréchet de ordin p în \mathbf{x}_0 este definită ca $\mathbf{d}^p(\mathbf{x}_0): \mathbb{R}^n \to \mathbb{R}^m$ prin

$$d^{p}(\mathbf{x}_{0})(\mathbf{u}) := \sum_{1 \leq i_{1}, \dots, i_{p} \leq n} u_{i_{1}} \cdot \dots \cdot u_{i_{p}} \cdot \frac{\partial^{p} f}{\partial x_{i_{1}} \dots \partial x_{i_{p}}}(\mathbf{x}_{0}), \ \mathbf{u} = (u_{1}, \dots, u_{n}) \in \mathbb{R}^{n}.$$

Folosind multiindici, formula ce definește pe $d^p(\mathbf{x}_0)$ este similară cu cea care definește pe $(u_1 + \cdots + u_n)^p$. De exemplu, dacă n = 2 și m = 1,

$$d^{p}(\mathbf{x}_{0})(u_{1}, u_{2}) = \sum_{j=0}^{p} C_{p}^{j} \frac{\partial^{p} f}{\partial x_{1}^{j} \partial x_{2}^{p-j}} (\mathbf{x}_{0}) u_{1}^{j} u_{2}^{p-j}.$$

Serii Taylor

O aplicație importantă a derivatelor de ordin superior este formula lui Taylor, care poate fi scrisă acum pentru funcții de mai multe variabile.

Teoremă (formula lui Taylor)

Fie $D\subseteq\mathbb{R}^n$ o mulțime nevidă, $f:D\to\mathbb{R}$ o funcție Fréchet diferențiabilă de ordin p+1 pe o bilă $B(\mathbf{x}_0;r)\subseteq D$, unde $p\in\mathbb{N}^*$. Atunci, pentru orice $\mathbf{x}\in B(\mathbf{x}_0;r)$ există $t\in(0,1)$ astfel încât

$$\begin{split} f(\mathbf{x}) &= f(\mathbf{x}_0) + \mathrm{d} f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2!} \mathrm{d}^2 f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \dots + \frac{1}{p!} \mathrm{d}^p f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) \\ &+ \frac{1}{(p+1)!} \mathrm{d}^p f(\xi)(\mathbf{x} - \mathbf{x}_0), \end{split}$$

unde $\xi := \mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0)$.

Definiție

Fie $D \subseteq \mathbb{R}^n$ o mulțime nevidă și $f \in C^{\infty}(D)$.

• Seria Taylor asociată lui f într-o vecinătate a unui punct (în jurul punctului) $\mathbf{x}_0 \in D$ este următoarea serie:

$$f(\mathbf{x}_0) + \sum_{p=1}^{\infty} \frac{1}{p!} d^p f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0).$$

- În cazul $\mathbf{x}_0 = \mathbf{0}_{\mathbb{R}^n}$ seria Taylor de mai sus se numește *seria Maclaurin* asociată lui f.
- Spunem că o funcție este *analitică* într-o bilă $B(\mathbf{x}_0; r) \subseteq D$ dacă seria Taylor asociată lui f în jurul lui \mathbf{x}_0 converge la $f(\mathbf{x})$ pentru orice $\mathbf{x} \in B(\mathbf{x}_0; r)$.
- În cazul n = 1, seria Taylor asociată unei funcții este o serie de puteri.
- Reciproc, dacă o funcție f este definită de o serie de puteri $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ pe domeniul ei de convergență, atunci f este analitică în (-r,r), unde $r \in [0,+\infty]$ este raza ei de convergență.

De fapt,

$$f^{(p)}(x) = \sum_{k=0}^{\infty} (k+1) \cdot \dots \cdot (k+p) a_{k+p}(x-x_0)^k, \ \forall x \in (-r,r), \ \forall p \in \mathbb{N}^*.$$

Aşadar, $f^{(p)}(x_0) = p! a_p$ şi seria Taylor asociată lui f în jurul lui x_0 este chiar $\sum_{k=0}^{\infty} a_k (x - x_0)^k \text{ (ceea ce demonstrează că } f \text{ este analitică în } (-r, r)\text{)}.$

• Totuși, convergența seriei Taylor asociată unei funcții f nu implică faptul că suma ei este f. De exemplu, fie $f: \mathbb{R} \to \mathbb{R}$ definită de

$$f(x) := \begin{cases} e^{-\frac{1}{x^2}}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

Atunci $f^{(p)}(0) = f(0) = 0$, $\forall p \in \mathbb{N}^*$, deci seria Maclaurin asociată este seria nulă; așadar suma ei (zero) este diferită de f pe orice interval centrat în 0.

Examples

Mai jos redăm câteva serii Maclaurin pentru câteva functii analitice cunoscute:

•
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots, x \in (-1,1);$$

•
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \ x \in (-1,1);$$

•
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \ x \in \mathbb{R};$$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \ x \in \mathbb{R};$$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots, \ x \in \mathbb{R};$$

•
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, \ x \in \mathbb{R}.$$

6 Decembrie 2021 A. Zălinescu (lasi) Cursul 9

- E. Cioară, M. Postolache, Capitole de analiză matematică, Editura "Fair Partners", București, 2010.
- R. M. Dăneţ, S. D. Niţă, I. Popescu, M. V. Popescu, F. Voicu, Curs modern de analiză matematică, Editura "Fair Partners", Bucureşti, 2010.
- D. Guichard & al., Single and Multivariable Calculus, Creative Commons, San Francisco, 2016.
- 📡 F. Iacob, *Matematică pentru anul II ID*, seria 2004-2005.
- R. Luca-Tudorache, Analiză matematică. Calcul diferențial, Editura Tehnopress, Iași, 2005.
- David B. Massey, Worldwide Multivariable Calculus, Worldwide Center of Mathematics, LLC, 2015.
- E. Popescu, Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- A. Precupanu, Bazele analizei matematice, Editura Polirom, Iași, 1998.