2020 年下半年初中数学网络教学资源学生作业答案

第7周(10月12日~10月16日)

下载链接:链接: https://pan.baidu.com/s/1W0WUpXBeL8ZheXTquVv51A 提取码: upxs

下载二维码:

课序	课题	作业答案
21	2.3 分数的 大小比较②	1. C. 2. C. 3. $\frac{7}{10}$. 4. $\frac{1}{16}$, $\frac{3}{16}$, $\frac{5}{16}$, $\frac{7}{16}$, $\frac{9}{16}$, $\frac{11}{16}$. 5. 无数个; $\frac{12}{29}$, $\frac{12}{25}$, $\frac{12}{23}$, $\frac{12}{19}$, $\frac{12}{17}$. 6. 方法一: $1 - \frac{17}{18} = \frac{1}{18}$, $1 - \frac{20}{21} = \frac{1}{21}$, $\boxed{B} \rightarrow \frac{1}{18} > \frac{1}{21}$, $\boxed{M} \stackrel{17}{18} < \frac{20}{21}$. $\boxed{5}$ 法二: $\frac{17}{18} = \frac{119}{126}$, $\frac{20}{21} = \frac{120}{126}$, $\boxed{B} \rightarrow \frac{119}{126} < \frac{120}{126}$, $\boxed{M} \stackrel{17}{18} < \frac{20}{21}$. $\boxed{5}$ 法三: $\frac{17}{18} = \frac{340}{360}$, $\frac{20}{21} = \frac{340}{357}$, $\boxed{B} \rightarrow \frac{340}{360} < \frac{340}{357}$, $\boxed{M} \bigcirc \stackrel{17}{18} < \frac{20}{21}$. 除以上方法, 其他方法老师可酌情批改.
22	2.4 分数的加减法①	1. (1) $\frac{23}{24}$; (2) $\frac{4}{35}$; (3) $\frac{3}{5}$; (4) $\frac{73}{60}$. 2. (1) $\frac{2}{3} - \frac{3}{5} = \frac{10 - 9}{15} = \frac{1}{15}$; (2) $\frac{3}{7} - \frac{2}{21} = \frac{9 - 2}{21} = \frac{1}{3}$; (3) $\frac{3}{8} + \frac{1}{6} = \frac{9 + 4}{24} = \frac{13}{24}$; (4) $\frac{2}{15} + \frac{1}{35} = \frac{14 + 3}{105} = \frac{17}{105}$. 1. (1) $\frac{3}{4}$; (2) $\frac{7}{20}$; (3) $\frac{17}{30}$; (4) $\frac{67}{80}$.
23	2.4 分数的 加减法②	1. (1) $\frac{3}{4}$; (2) $\frac{7}{20}$; (3) $\frac{17}{30}$; (4) $\frac{67}{80}$. 2. $\frac{47}{160}$. 3. $\frac{37}{40}$ v.t., $\frac{3}{40}$ v.t. 4. $\frac{1}{128}$.
24	2.4 分数的 加减法③	1. (1) $3\frac{7}{9}$; (2) $\frac{10}{3}$; (3) $6\frac{1}{2}$; (4) $\frac{25}{9}$; (5) $\frac{53}{11}$. 2. D. 3. 7 或 8. 4. (1) $\frac{26}{5} > \frac{29}{6}$; (2) $\frac{8}{3} < \frac{17}{5} < 3\frac{2}{3}$. 5. a 可以是 1, 2, 3, 4, 5.

课序	课题	作业答案
21	9.10 整式 的乘法 (4)	1. (1) $\frac{1}{81} - a^4$. (2) $16 - y^4$. 2. (1) $-2x^2 - 14x + 24$. (2) $a^2 - 4b^2 + 12b - 9$. (3) $4x^2 - 3y^2$. (4) $4x^4 + 4x^3 + 3x^2 - x - 1$. 3. $a = 2, b = -3$.
22	メルガー メール	1. B. 2. (1) $x^{2}-1$; (2) $a-\frac{1}{2}$; (3) $2a+1$; (4) $-x-y$; (5) $\frac{1}{3}, \frac{1}{3}$. 3. (1) $9a^{2}-4$; (2) $4-\frac{1}{4}x^{2}$; (3) $y^{2}-0.64x^{2}$; (4) $9-4a^{2}$; (5) $6a^{2}-6b^{2}+5ab$.; (6) $-x^{2}+2xy-y^{2}$. 4. (1) $4x^{2}-25$; (2) $1-4a^{2}$; (3) $\frac{1}{9}a^{2}-\frac{1}{4}b^{2}$; (4) $\frac{1}{4}x^{4}-\frac{1}{9}$; (5) $4x^{2}-9y^{2}$; (6) $9b^{2}-4a^{2}$.
23	9.11 平方 差公式 (2)	1. (1) 39996; (2) 3999975; (3) 1599.99; (4) $399\frac{77}{81}$. 2. (1) $x^4 - 1$. (2) $16a^4 - \frac{1}{16}$. (3) $a^4 - 16$. (4) $\frac{1}{81}y^4 - x^4$. 3. (1) $5x^2 - 5y^2$. (2) $x^4 - x^2$. (3) $3x^2 - 17$. (4) $a^4 - 5$. (5) $a^4 - 25$.
24	9.12 完全平方公式(1)	1.C 2. (1) $x^2 - y^2$. (2) $x^2 - 2xy + y^2$. (3) $-x^2 - 2xy - y^2$. (4) $y^2 - x^2$. (5) $a+1$. (6) $a-1$. (7) $4ab$. (8) $2a^2 + 2b^2$.

3. (1)
$$a^2 + 6a + 9$$
. (2) $\frac{1}{9}x^2 + 2xy + 9y^2$.

(3)
$$x^2 - 4xy + 4y^2$$
. (4) $9a^2 - 3a + \frac{1}{4}$.

(5)
$$16a^2 - 16a + 4$$
. (6) $x^2 + 6xy + 9y^2$.

4. (1)
$$-7x-15$$
. (2) $2x+5$. (3) $a^2-3ab+b^2$.

(4)
$$-2a^2 + 4a + 11$$
. (5) $3x^2 + \frac{1}{4}$. (6) $-ab$.

5.(1)
$$x^2 + 6x + 9$$
. (2) 9. (3) $6xy$. (4) a . (5) $16y^2$.

(6) 4*ab*.

课序	课题	作业答案
21	一程小二元是	1. B. 2. C. 3. C. 4. C. 5. 因为关于 x 的一元二次方程 $-x^2+(2k+1)x+2-k^2=0$ 有实数根,所以 $\Delta=b^2-4ac=(2k+1)^2+4(2-k^2)\geq 0$,即 $4k+9\geq 0$. 解得 $k\geq -\frac{9}{4}$. 所以当 $k\geq -\frac{9}{4}$ 时,原方程有实数根. 6. (1) $x_1=\frac{2+\sqrt{5}}{3}$, $x_2=\frac{2-\sqrt{5}}{3}$; (2) $x_1=2+\sqrt{3}$, $x_2=2-\sqrt{3}$; (3) $x_1=2$, $x_2=-1$; (4) $x_1=8$, $x_2=-6$. 7. $2(x-\frac{\sqrt{30}-4}{2})(x+\frac{\sqrt{30}+4}{2})$. 8. (1) 450 (1+12%) =504 (万元); (2) 设该商店去年8、9月份营业额的月增长率为 x . 根据题意,得方程350(1+ x)²=504. 所以 $x_1=0.2$, $x_2=-2.2$ (不合题意,舍去). 得 $x=0.2=20$ %. 答:该商店去年"十一黄金周"这七天的总营业额为504万元; 该商店去年8、9月份营业额的月增长率为20%.
22	专题:关于 一元二次方 程的求根公 式	略.
23	专题:数字世界一个"平方和"等式宝塔的构建	1. 55. 2. $\frac{n(n+1)(2n+1)}{6}$. 3. 🕸.
24	18.1 函数的概念①	 (1) 存在,嬰儿的体重是该婴儿成长经过的月数的函数. (2) 不存在. (3) 不存在. (4) 存在,某班支援灾区的捐款数 (元)是该班学生个人捐款平均数的函数. (1)圆的周长 C(cm)随着半径 r(cm)的变化而变化,由 C=2πr,在 r 的允许取值的范围内,当 r 取定一个值时, C 的值随之确定,

- C 和 r 之间存在确定的依赖关系. C 是 r 的函数, 函数解析式是 $C=2\pi r$.
- (2) 等腰三角形顶角的度数 y 随着底角 x 的变化而变化,由 y=180-2x,在 x 的允许取值的范围内,当 x 取定一个值时,y 的值随之确定,y 和 x 之间存在确定的依赖关系. y 是 x 的函数,函数解析式是 y=180-2x.
- (3) 周长为 15 厘米的等腰三角形,腰长 a (厘米) 随着底边长 b (厘米) 的变化而变化,由 $a = \frac{15-b}{2}$,在 b 的允许取值的范围内,当 b 取定一个值时,a 的值随之确定,a 与 b 之间存在确定的依赖 关系. a 是 b 的函数,函数解析式是 $a = \frac{15-b}{2}$.
- (4) 购买笔的总价 S (元) 随着购买支数 n (支) 的变化而变化,由 S=2n,在 n 的允许取值的范围内,当 n 取定一个值时,S 的值随之确定,S 与 n 之间存在确定的依赖关系. S 是 n 的函数,函数解析式是 S=2n.
- (5) 乙种袋装米的千克数 y 随着甲种袋装米的千克数 x 的变化而变化,由 y=25-x,在 x 的允许取值的范围内,当 x 取定一个值时,y 的值随之确定,y 与 x 之间存在确定的依赖关系. y 是 x 的函数,函数解析式是 y=25-x.
- 3. $s = 7.12t \quad (t \ge 0)$.
- 4. 变量: 注入水的流量 O, 注满水池所需的时间 t;

常量:水池的容量300立方米.

由 Qt=300, 可知 Q 随着 t 的变化而变化, 在 t 的允许取值的范围内, 当 t 取定一个值时, Q 的值随之确定, Q 与 t 之间存在确定的依赖关系. 所以 Q 是 t 的函数, 函数解析式是 $Q=\frac{300}{4}$.

5. (1) 变量: 时间和记忆量. 从列表和图像中可见, 当时间 t变化时,记忆量 Q 也随之变化, Q 与 t 之间存在确定的依赖关系. Q 是 t 的函数. (2) 略.

课序	课题	作业答案
26	相似三角形单元复习与小结②	1.略; 2.略; 3. (1) ①略; ②解: 设 $AP = x$, 则 $DP = 5 - x$, 由 $\triangle ABP$ $ \triangle DPC$, 得 $\frac{AB}{AP} = \frac{PD}{DC}$, 即 $\frac{2}{x} = \frac{5 - x}{2}$, 解得 $x_1 = 1$, $x_2 = 4$, 则 AP 的长为 1 或 4. (2) ①解: 易得 $\triangle ABP \hookrightarrow \triangle DPQ$, $\therefore \frac{AB}{PD} = \frac{AP}{DQ}$. 即 $\frac{2}{5 - x} = \frac{x}{2 + y}$, 得 $y = -\frac{1}{2}x^2 + \frac{5}{2}x - 2$, (1 <x<4). ②<math="">AP = 2 或 $AP = 3 - \sqrt{5}$.</x<4).>
27	相似三角形单元讲评①	1.提示: 过点 A 作 AG // DF 分别交 BE 、 CF 于点 H 、 G , CF = 4.2. 2.提示: 过点 A 作 AG // DC 分别交 EF 、 BC 于点 H 、 G ,设 AD = x ,则 EH = $5-x$, BG = $15-x$. 得 $\frac{5-x}{15-x} = \frac{2}{7}$,解得 x = 1 ,即 AD = 1 . 3.提示: 延长 BA 、 CD 相交 于点 K . 由 AD // BC ,得 ΔHAD ΔHBC . 设 $S_{REAEFD} = 5k$,则 $S_{REBECF} = 13k$. 由 相似 三角形性质,可得 $S_{\Delta HAD} = \frac{81}{8}k$, $\frac{AE}{EB} = \frac{1}{2}$.
28	相似三角形单元讲评②	1.提示: 先证明 $\triangle ACE \hookrightarrow \triangle ABF$,得 $\frac{AC}{AB} = \frac{CE}{BF}$, 再由 $CE/\!\!/BF$,得 $\frac{CE}{BF} = \frac{DE}{DF}$.可证结论. 2.提示: 先证明 $\triangle ADB \hookrightarrow \triangle EAC$,得 $\frac{AB}{CE} = \frac{BD}{AC}$,又 $AB = AC = BC$,可证结论. 3.提示: 先证明 $\triangle ADF \hookrightarrow \triangle ACD$,得 $AD^2 = AF \cdot AC$,同理得 $ADB^2 = BG \cdot BE$,又 $AD = DB$,可证结论.
29	25.1 锐角的 三角比的意 义①	1. $\tan M = 2$, $\tan N = \frac{1}{2}$, $\cot M = \frac{1}{2}$, $\cot N = 2$. 2. $\tan P = \frac{3}{4}$, $\cot P = \frac{4}{3}$.

-		
		3. (1) $a \tan \alpha \stackrel{?}{=} \frac{a}{\cot \alpha}$; (2) $\frac{a}{\tan \beta} \stackrel{?}{=} a \cot \beta$.
		4. (1) $CD = 6$; (2) $\cot A = \frac{2}{3}$, $\tan \angle BCD = \frac{3}{2}$.
		5. 方法一: 因为 $\angle ADE = \angle B$, 所以 $\tan \angle ADE = \tan B = \frac{3}{2}$.
		方法二: 因为 $\Delta ADE \hookrightarrow \Delta ABC$,所以 $\frac{AE}{DE} = \frac{AC}{BC}$,
		$\tan \angle ADE = \frac{AE}{DE} = \frac{AC}{BC} = \frac{3}{2}.$
	25.1 锐角的 三角比的意义②	1. (1) $SQ = \sqrt{5}$; (2) $\sin S = \frac{\sqrt{5}}{5}$, $\cos S = \frac{2\sqrt{5}}{5}$,
		$\sin Q = \frac{2\sqrt{5}}{5} , \cos Q = \frac{\sqrt{5}}{5} .$
		2. $\tan A = \frac{3}{2}$, $\cot A = \frac{2}{3}$, $\sin A = \frac{3\sqrt{13}}{13}$, $\cos A = \frac{2\sqrt{13}}{13}$.
		3. (1) $AC = t \cos \alpha$, $BC = t \sin \alpha$;
		(2) $AC = t \sin \beta$, $BC = t \cos \beta$.
30		4. $\tan \alpha = \frac{1}{4}$, $\cot \alpha = 4$, $\sin \alpha = \frac{\sqrt{17}}{17}$, $\cos \alpha = \frac{4\sqrt{17}}{17}$.
		5. 方法一: 因为 $\angle ACD = \angle B$, $AB = 5$,
		所以 $\sin \angle ACD = \sin B = \frac{4}{5}$.
		方法二:由勾股定理和相似三角形可求得 $AB=5$, $AD=\frac{16}{5}$,
		所以 $\sin \angle ACD = \frac{AD}{AC} = \frac{\frac{16}{5}}{4} = \frac{4}{5}$.