## Appendix J – Extended Metric for Rotating Spacetime and CTC (UBT)

## J.1 Overview

In the Unified Biquaternion Theory (UBT) the complex time  $\tau = t + i\psi$  introduces a slow, phase-sector deformation of rotating spacetimes. We revisit the Kerr (and Kerr–Newman) geometry and use  $g_{\phi\phi} < 0$  as a practical criterion for azimuthal closed timelike curves (CTC). Small  $\psi$ -dependent perturbations shift the ergosurface without creating exterior CTCs when energy conditions are respected.

## J.2 Kerr Baseline and $\psi$ -Perturbation

For Kerr with mass M and spin a, the outer ergosurface satisfies

$$r_E(\theta) = M + \sqrt{M^2 - a^2 \cos^2 \theta} \,. \tag{1}$$

In UBT we model a small phase-sector deformation by

$$r_E(\theta; \psi) \approx r_E(\theta) (1 + \varepsilon \psi), \qquad |\varepsilon \psi| \ll 1.$$
 (2)

Below we plot  $r_E(\theta; \psi)$  for  $\psi \in \{-1, 0, +1\}$  and compare with the event horizon  $r_+ = M + \sqrt{M^2 - a^2}$ .

**Parameters used in the figure:** M = 1, a = 0.8,  $\varepsilon = 0.10$ . Angles are in degrees.

## J.3 Interpretation and Relevance to UBT

What the plot shows. The curves are the outer ergosurface as a function of polar angle  $\theta$ . At the poles ( $\theta = 0^{\circ}, 180^{\circ}$ ) the ergosurface meets the horizon; at the equator ( $\theta = 90^{\circ}$ ) it bulges outward. A small UBT phase  $\psi$  perturbs this shape:  $\psi > 0$  inflates,  $\psi < 0$  deflates.

Why it matters. The ergoregion controls frame dragging and the availability of Penroselike processes. In the CTC analysis, the location of the  $g_{\phi\phi}=0$  boundary is the practical diagnostic; UBT predicts controlled shifts of this boundary via the  $\psi$ -sector, while keeping exterior causality intact when energy conditions are satisfied.



Figure 1: Ergosphere boundary  $r_E(\theta; \psi)$  for a Kerr black hole with M=1, a=0.8 under a small UBT phase-sector deformation ( $\varepsilon=0.10$ ). Positive  $\psi$  expands, negative  $\psi$  contracts the ergosurface. The dashed line marks the event horizon  $r_+$ .