

Course > Week 10 > Practic... > Q9: M...

Q9: MDPs and Reinforcement Learning: Mini-Grids

Problem 9: MDPs and Reinforcement Learning: Mini-Grids

The following problems take place in various scenarios of the gridworld MDP (as in Project 3). In all cases, \boldsymbol{A} is the start state and double-rectangle states are exit states. From an exit state, the only action available is \boldsymbol{Exit} , which results in the listed reward and ends the game (by moving into a terminal state \boldsymbol{X} , not shown).

From non-exit states, the agent can choose either \boldsymbol{Left} or \boldsymbol{Right} actions, which move the agent in the corresponding direction. There are no living rewards; the only non-zero rewards come from exiting the grid.

Throughout this problem, assume that value iteration begins with initial values $V_0(s) = 0$ for all states s. Also remember that the reward is only obtained *after* taking the exit action.

Part 1

First, consider the following mini-grid. For now, the discount is $\gamma=1$ and legal movement actions will always succeed (and so the state transition function is deterministic).

Part 1.1

0.0/1.0 point (ungraded)

Part 1.4

0.0/1.0 point (ungraded)

After how many iterations $m{k}$ will we have $m{V_k}\left(m{A}
ight) = m{V^*}\left(m{A}
ight)$?

O 2	
O 3	
● 4 ✓	
O 5	
O 6	
They will never become	e equal for any finite value of $m{k}$.
Submit You have used 0	of 2 attempts
• Answers are displayed	within the problem
Part 2 Now the situation is as before	re, but the discount $oldsymbol{\gamma}$ is less than $oldsymbol{1}$.
Part 2.1	
0.0/2.0 points (ungraded) If $\gamma=0.5$, what is the optim	nal value $V^st (A)$?
1.25	Answer: 1.25
Submit You have used 0	of 2 attempts

Part 2.2

0.0/2.0 points (ungraded)

For what range of values γ of the discount will it be optimal to go Right from A? Remember that $0 \leq \gamma \leq 1$.

- $0 \le \gamma \le 1$
- $0 \frac{1}{10} \le \gamma \le 1$
- $\gamma = 1$
- $0 -\infty \le \gamma \le +\infty$
- lacksquare For no values of γ will it be optimal to go Right from A.

Submit

You have used 0 of 2 attempts

Part 3

Let's kick it up a notch! The Left and Right movement actions are now stochastic and fail with probability f. When an action fails, the agent moves Up or Down with probability f/2 each. When there is no square to move Up or Down into (as in the one-dimensional case), the agent stays in place. The Exit action does not fail.

Part 3.1

0.0/1.0 point (ungraded)

For the following mini-grid, the failure probability is f=0.5. The discount is back to $\gamma=1$.

What is the optimal value $V^*(A)$?

10 Answer: 10

Submit You have used 0 of 2 attempts

Part 3.2

0.0/1.0 point (ungraded)

When running value iteration, what is the smallest value of k for which $V_k\left(A\right)$ will be non-zero?

4 Answer: 4

Submit You have used 0 of 2 attempts

Part 3.3

0.0/1.0 point (ungraded)

What will $V_k\left(ar{A}
ight)$ be when it is first non-zero?

1.25 **Answer:** 1.25

Submit You have used 0 of 2 attempts

Part 3.4

0.0/1.0 point (ungraded)

After how many iterations $m{k}$ will we have $m{V_k}\left(m{A}\right) = m{V^*}\left(m{A}\right)$?

O 2			
0 3			
0 4			
0 5			
0 6			

Submit

You have used 0 of 2 attempts

ullet They will never become equal for any finite value of ${m k}$. ullet

1 Answers are displayed within the problem

Part 4

Now consider the following mini-grid. Again, the failure probability is f=0.5 and $\gamma=1$. Remember that failure results in a shift Up or Down, and that the only action available from the double-walled exit states is Exit.

Part 4.1

0.0/1.0 point (ungraded) What is the optimal value $V^*\left(A\right)$?

0.125 **Answer:** 0.125

Submit You have used 0 of 2 attempts

1 Answers are displayed within the problem

Part 4.2

0.0/1.0 point (ungraded)

zero?	iteration, what is the smallest value of $m{k}$ for which $m{V_k}\left(m{A} ight)$ will be non-
4	Answer: 4
Submit You ha	ve used 0 of 2 attempts
Part 4.3	
0.0/1.0 point (ungraded What will $V_k\left(A ight)$ be	l) when it is first non-zero?
0.125	Answer: 0.125
Submit You ha	ve used 0 of 2 attempts
3 Answers are dis	splayed within the problem
	splayed within the problem
Part 4.4 0.0/1.0 point (ungraded	
Part 4.4 0.0/1.0 point (ungraded	
Part 4.4 0.0/1.0 point (ungraded After how many itera	
Part 4.4 0.0/1.0 point (ungraded After how many iteration) 2	
Part 4.4 0.0/1.0 point (ungraded After how many iteration) 2	

ullet They will never become equal for any finite value of ${m k}$.

Submit

You have used 0 of 2 attempts

1 Answers are displayed within the problem

Part 5

Finally, consider the following mini-grid (rewards shown on left, state names shown on right).

In this scenario, the discount is $\gamma=1$. The failure probability is actually f=0, but, now we do not actually know the details of the MDP, so we use reinforcement learning to compute various values. We observe the following transition sequence (recall that state X is the end-of-game absorbing state):

8	a	<i>s</i> ′	r
$oldsymbol{A}$	Right	R	0

R	Exit	\boldsymbol{X}	16
\boldsymbol{A}	Left	$oldsymbol{L}$	0
$oldsymbol{L}$	Exit	X	4
$oldsymbol{A}$	Right	R	0
R	Exit	X	16
\boldsymbol{A}	Left	$oldsymbol{L}$	0
L	Exit	X	4

Part 5.1

0.0/2.0 points (ungraded)

After this sequence of transitions, if we use a learning rate of lpha=0.5, what would temporal difference learning learn for the value of A? Remember that $V\left(s\right)$ is intialized with 0 for all s

3 Answer: 3

Submit You have used 0 of 2 attempts

Part 5.2

0.0/2.0 points (ungraded)

If these transitions repeated many times and learning rates were appropriately small for convergence, what would temporal difference learning converge to for the value of \boldsymbol{A} ?

10 Answer: 10

Submit You have used 0 of 2 attempts

Part 5.3

0.0/2.0 points (ungraded)

After this sequence of transitions, if we use a learning rate of $\alpha=0.5$, what would Q-learning learn for the Q-value of (A,Right)? Remember that Q(s,a) is initialized with 0 for all (s,a).

© All Rights Reserved