Otimização de custos e emissões de CO₂ nas operações de *pull out* de risers através de Algoritmos Genéticos

Versão: 26/10/2020

Milene França

Master em Business Intelligence – PUC Rio

ALGORITMOS GENÉTICOS

Algoritmos Genéticos e Seleção Natural

- Os algoritmos genéticos (GAs) foram concebidos utilizando o mecanismo de **Seleção Natural em Genética**.
- Segundo o princípio da evolução das espécies proposto por Darwin:

"Quanto melhor o indivíduo se adaptar ao seu meio ambiente, maior será a sua chance de sobreviver e gerar descendentes"

Algoritmos Genéticos e Seleção Natural

Algoritmos Genéticos	Seleção Natural
Solução para um problema	Sobrevivência do indivíduo em um meio ambiente
Utilizando técnicas matemáticas para representá-los	Cromossomos e genes
Através da evolução das soluções	Combinações (crossover) e mutações das espécies
Nas condições estabelecidas para aquele problema	Meio ambiente
Para chegar a uma solução	Indivíduo "mais resistente "

Uso de Algoritmos Genéticos

Problema n-Rainhas

Problema das *n*-Rainhas: distribuir *n* rainhas do jogo de xadrez em um tabuleiro de tamanho "*n* x *n*", sem que uma rainha ameace outra. Isto significa que duas rainhas não podem se localizar numa mesma linha, coluna ou diagonal.

N = 50?

Decodificação e representação cromossômica

PULL OUT DE RISERS

Risers

Custos e Emissões CO₂ em *Pull Out* de Risers

Problema: otimização de custos e emissões de CO₂ para realização de *pull out* de risers

Variáveis:

- alternativas de pull out;
- embarcações;
- combustível;
- emissão de CO₂;
- tipo de riser (óleo, umbilical, injeção etc.)
- condições locais (inexistência de rota de abandono);
- condições técnicas (ausência de integridade);
- permanência da UEP na locação;
- distância da UEP até a costa.

Função objetivo: otimização custos e emissões de CO₂

Método ou algoritmo: "Solver" do Microsoft Excel®

Utilizado para teste de hipóteses, para determinar o valor máximo ou mínimo de uma célula, considerada a função objetivo, alterando outras células (genes e o cromossomo), respeitando as restrições ou limites estabelecidos do problema.

Estudo de Caso UEP-1

Alternativas Pull Out de Risers do Estudo de Caso UEP-1

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento
- Alternativa B: Corte no corpo da linha, pull out de 1ª extremidade e recolhimento

Pull out de 2ª Extremidade

 Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Decodificação das alternativas *Pull Out* de Risers para o Estudo de Caso UEP-1

	Embarcação	Tempo por riser (d)				
Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento						
Instalação de peso morto	RSV	1,00				
Quebra de conexão	RSV	2,00				
Pull out de 1ª extremidade	PLSV	1,00				
Recolhimento (0,3km/h)	PLSV					
Alternativa B: Corte no corpo da linha, pull ou	it de 1 ^a extremidade e	recolhimento				
Instalação de peso morto	RSV	1,00				
Corte do tramo riser no leito marinho	RSV	1,50				
Pull out de 1ª extremidade	PLSV	1,00				
Recolhimento (0,3km/h)	PLSV					
Alternativa D: Desconexão na CRF, pull out de	e 2 ^a extremidade e rec	colhimento				
Instalação de peso morto	RSV	1,00				
Quebra de conexão	RSV	2,00				
Instalação de cabeça de tração	RSV	2,00				
Pull out de 2ª extremidade	PLSV	0,50				
Recolhimento (0,3km/h)	PLSV					
Totais Adicionais a todas Alternativas	Totais Adicionais a todas Alternativas					
Transporte (86km e 30h)	PLSV	1,25				
Descarregamento (5un)	PLSV	6,00				

Características dos Risers do Estudo de Caso UEP-1

N°	Comp. (m)	Alternativa	
1	2.560	D	
2	1.358	D	
3	2.580	D	
4	987	D	
5	2.687	В	
6	3.651	D	
7	1.243	A	
8	4.253	A	
9	1.897	D	
10	2.635	A	
11	1.856	В	
12	4.015	А	
13	1.688	А	
14	3.879	D	
15	1.658	D	
16	1.589	D	
17	2.781	D	
18	1.589	А	
19	789	А	
20	1.543	D	
21	875	А	
22	905	А	
23	1.020	А	

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1º extremidade e recolhimento
- Alternativa B: Corte no corpo da linha, pull out de 1ª extremidade e recolhimento

Pull out de 2ª Extremidade

 Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Resultados do "caso base" para as funções objetivo do Estudo de Caso UEP-1

	Riser (km)	Emissão CO ₂ (mil Ton)	Custo Riser (USD MM)	Custo Carbono (USD MM)	Total (USD MM)
Alt. A	19,01	70,26	6,79	0,70	7,49
Alt. B	4,54	12,46	1,29	0,12	1,41
Alt. D	24,48	103,33	8,17	1,03	9,20
Transporte		55.040,00	55,04	1,88	0,55
Descarregamento		9.216,00	9,22	9,00	0,09
		250,31	27,13	2,50	29,63

Resultados Obtidos para Estudo de Caso UEP-1 (RSV sempre que possível)

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento
- Alternativa B: Corte no corpo da linha, pull out de 1º extremidade e recolhimento

Pull out de 2ª Extremidade

• Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Padrão		otimizações	
D	Α	А	Α
D	Α	Α	Α
D	Α	Α	Α
D	Α	Α	Α
В	В	В	В
D	А	А	Α
Α	Α	Α	Α
Α	Α	Α	Α
D	Α	А	Α
Α	Α	А	Α
В	В	В	В
Α	А	А	А
Α	А	А	Α
D	А	А	А
D	А	А	А
D	А	А	А
D	Α	А	Α
Α	Α	Α	Α
Α	А	A	А
D	Α	A	Α
Α	Α	A	Α
Α	Α	А	Α
Α	Α	А	Α
27,13	26,58	26,58	26,58
250,31	224,54	224,54	224,54
29,63	28,82	28,82	28,82
100%	98,0%	98,0%	98,0%
100%	89,7%	89,7%	89,7%
100%	97,3%	97,3%	97,3%

	, , , ,	7 (7.	/ \
Custo Riser (USD MM):	27,13	26,58	26,58	26,58
Emissão CO ₂ (mil Ton):	250,31	224,54	224,54	224,54
Custo Riser e CO ₂ (USD MM):	29,63	28,82	28,82	28,82
Otimização Custo Riser (%):	100%	98,0%	98,0%	98,0%
Otimização Emissão CO ₂ (%):	100%	89,7%	89,7%	89,7%
Otimização Custo Riser e CO ₂ (%):	100%	97,3%	97,3%	97,3%

Resultados Obtidos para Estudo de Caso UEP-1 (RSV e PLSV)

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento
- Alternativa B: Corte no corpo da linha, pull out de 1º extremidade e recolhimento

Pull out de 2ª Extremidade

• Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Padrão	RSV e PLSV	PLSV
D	А	D
D	А	D
D	А	D
D	А	D
В	В	В
D	Α	D
Α	А	D
Α	А	D
D	А	D
Α	А	D
В	В	В
Α	A	D
Α	Α	D
D	А	D
D	А	D
D	А	D
D	А	D
Α	А	D
Α	А	D
D	Α	D
Α	А	D
Α	A	D
Α	А	D
27,13	26,58	22,13
250,31	224,54	127,30
29,63	28,82	23,40
100%	98,0%	81,6%
100%	89,7%	50,9%
100%	97,3%	79,0%

	<i>,</i> ,	7.1	ם
Custo Riser (USD MM):	27,13	26,58	22,13
Emissão CO ₂ (mil Ton):	250,31	224,54	127,30
Custo Riser e CO ₂ (USD MM):	29,63	28,82	23,40
Otimização Custo Riser (%):	100%	98,0%	81,6%
Otimização Emissão CO ₂ (%):	100%	89,7%	50,9%
Otimização Custo Riser e CO ₂ (%):	100%	97,3%	79,0%

Estudo de Caso UEP-2

Alternativas Pull Out de Risers do Estudo de Caso UEP-2

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento
- Alternativa C: Pull out de 1ª extremidade, deposição temporária no leito e recolhimento posterior

Pull out de 2ª Extremidade

 Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Decodificação das alternativas *Pull Out* de Risers para o Estudo de Caso UEP-2

	Embarcação	Tempo por riser (d)			
Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento					
Instalação de peso morto	RSV	1,00			
Quebra de conexão	RSV	2,00			
Pull out de 1ª extremidade	PLSV	1,00			
TNP associado a campanha de desmobilização	PLSV	1,50			
Recolhimento (0,3km/h)	PLSV				
Alternativa C: Pull out de 1 ^a extremidade, depos	ição temporária no	leito e recolhimento			
posterior					
Pullout de 1ª extremidade	PLSV	1,00			
Deposição no fundo marinho	PLSV	0,50			
TNP associado a campanha de desmobilização	PLSV	1,50			
Quebra de conexão	RSV	2,00			
Recuperação da extremidade	PLSV	0,50			
Recolhimento (0,3km/h)	PLSV				
Alternativa D: Desconexão na CRF, pull out de 2	2ª extremidade e red	colhimento			
Instalação de peso morto	RSV	1,00			
Quebra de conexão	RSV	2,00			
Instalação de cabeça de tração	RSV	2,00			
Pull out de 2ª extremidade	PLSV	0,50			
TNP associado a campanha de desmobilização	PLSV	1,50			
Recolhimento (0,3km/h)	PLSV	•			
Totais Adicionais a todas Alternativas					
Tamponamento da linha de óleo	RSV	2,00			
Transporte (86km e 30h)	PLSV	1,25			
Descarregamento (5un)	PLSV	6,00			

Características dos Risers do Estudo de Caso UEP-2

localess	Comm. (m)	Linha de	Ausência de	Inexistência de	A Ita wa atin
Index	Comp. (m)	óleo	integridade de riser	rota de abandono	Alternativas
1	2560	N	N N	N	С
2	1358	N	N	N	С
3	3579	S	N	N	С
4	987	N	N	N	С
5	2687	N	N	N	С
6	3651	N	N	N	С
7	1243	N	N	N	С
8	4253	S	N	N	С
9	1897	N	N	N	С
10	2635	N	N	N	С
11	1856	N	N	N	С
12	1589	N	S	N	D
13	854	N	N	N	С
14	956	N	N	S	А
15	1456	N	N	N	С
16	2514	N	N	N	С
17	1032	N	N	N	С
18	798	N	N	N	С
19	2987	N	N	N	С
20	1568	N	N	N	С
21	1698	N	N	N	С
22	4568	S	N	N	С
23	1789	N	N	N	С
24	2036	N	N	N	С
25	5014	S	N	N	С
26	1056	N	N	N	С
27	987	N	S	N	D
28	1120	N	N	N	С
29	4015	S	N	N	С
30	1688	N	N	N	С
31	3879	N	N	N	С
32	1658	N	N	N	С
33	1589	N	N	N	С
34	2781	N	N	N	С
35	1589	N	N	N	С
36	789	N	N	S	А
37	1543	N	N	N	С
38	875	N	N	N	С
39	905	N	N	N	С
40	1020	N	N	N	С

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento
- Alternativa C: Pull out de 1ª extremidade, deposição temporária no leito e recolhimento posterior

Pull out de 2ª Extremidade

 Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Resultados do "caso base" para as funções objetivo do Estudo de Caso UEP-2

	Custo Riser (USD MM)	Riser e UEP (USD MM)	Emissão CO ₂ (mil Ton)	Total (USD MM)
Alt. A	2,17	3,32	17,19	3,49
Alt. C	48,20	59,23	328,08	62,51
Alt. D	2,11	3,23	16,83	3,40
Tamponamento da linha de óleo	1,00	1,00	14,21	1,14
Transporte	7,20	7,20	63,44	7,83
Descarregamento	21,60	21,60	19,03	21,79
TOTAL:	82,28	95,59	458,78	100,18

Resultados Obtidos para Estudo de Caso UEP-2

(RSV sempre que possível)

Pull out de 1ª Extremidade

- Alternativa A: Desconexão na CRF, pull out de 1ª extremidade e recolhimento
- Alternativa C: Pull out de 1ª extremidade, deposição temporária no leito e recolhimento posterior

Pull out de 2ª Extremidade

 Alternativa D: Desconexão na CRF, pull out de 2ª extremidade e recolhimento

Padrão	RSV e PLSV				
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	D	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
D	D	D	D	D	
С	D	С	D	D	
Α	D	D	D	D	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	D	
С	D	D	D	D	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	D	
D	D	D	D	D	
С	D	С	D	D	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
С	D	С	D	С	
Α	D	D	D	D	
С	D	С	D	С	
С	D	С	D	D	
С	D	С	D	D	
С	D	С	D	D	
82,28	73,18	81,93	73,18	79,93	
95,59	96,13	95,46	96,13	95,47	
458,78	439,99	457,72	439,99	453,67	
100,18	100,53	100,03	100,53	100,01	
100%	88,94%	99,57%	88,94%	97,14%	
100%	100,56%	99,86%	100,56%	99,87%	
100%	95,90%	99,77%	95,90%	98,89%	
100%	100,35%	99,85%	100,35%	99,83%	

Riser (USDMM):
Riser e UEP (USDMM):
Emissão CO₂ (mil Ton):
TOTAL (USDMM):
Otimização Riser (%):
Otimização Riser e UEP (%):
Otimização Emissão CO₂ (%):
Otimização TOTAL (%):

Resultados Obtidos para Estudo de Caso UEP-2

(RSV e PLSV)

Padrão	RSV e PLSV			PLSV				
С	D	С	D	С	D	D	D	D
C	D	С	D	С	D	D	D	D
C	D	С	D	С	D	D	D	D
C	D	C	D	D	D	D	D	D
C	D	C	D	C	D	D	D	D
C	D	C	D	C	D	D	D	D
C	D	C	D	C	D	D	D	D
C	D	C	D	C	D	D	D	D
C	D	C	D	C	D	D	D	D
C	D	C	D	C	D	D	D	D
C	D	C	D	C	D	D	D	D
D	D	D	D	D	D	D	D	D
С	D	C	D	D	D	D	D	D
A	D	D	D	D	D	D	D	D
C	D	C	D	С	D	D	D	D
C	D	C	D	C	D	D	D	D
		C	D			D		D
С	D D		D D	D D	D	D	D	D D
С		D			D		D	
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	D	D	D	D	D
D	D	D	D	D	D	D	D	D
С	D	С	D	D	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	С	D	D	D	D
Α	D	D	D	D	D	D	D	D
С	D	С	D	С	D	D	D	D
С	D	С	D	D	D	D	D	D
С	D	С	D	D	D	D	D	D
C	D	С	D	D	D	D	D	D
82,28	73,18	81,93	73,18	79,93	66,68	66,68	66,68	66,68
95,59	96,13	95,46	96,13	95,47	79,41	79,41	79,41	79,41
458,78	439,99	457,72	439,99	453,67	291,07	291,07	291,07	291,07
100,18	100,53	100,03	100,53	100,01	82,32	82,32	82,32	82,32
100%	88,94%	99,57%	88,94%	97,14%	81,04%	81,04%	81,04%	81,04%
100%	100,56%	99,86%	100,56%	99,87%	83,07%	83,07%	83,07%	83,07%
100%	95,90%	99,77%	95,90%	98,89%	63,44%	63,44%	63,44%	63,44%
100%	100,35%	99,85%	100,35%	99,83%	82,17%	82,17%	82,17%	82,17%
	Otimização Riser em relação ao RSV (%):				91,1%	81,4%	91,1%	83,4%
Otimização Riser e UEP em relação ao RSV (%):				82,6%	83,2%	82,6%	83,2%	
					66,2%	64,2%		
					82,3%			
Oninização 1017E em relação ao 100 v (70).								

Otimizações alcançadas para o Estudo de Caso UEP-2

Função Objetivo	Caso Base	Otimização	Ganho Percentual
Riser	USD 82,28 MM	USD 66,68 MM	15,60 %
Riser e UEP	USD 95,59 MM	USD 79,41 MM	16,18 %
Emissão CO ₂	458,78 mil ton	291,07 mil ton	167,71 %
Custo TOTAL (Riser, UEP e CO ₂)	USD 100,18 MM	USD 82,32 MM	17,86 %

Conclusões e Recomendações

- GA se mostrou efetivo como ferramenta para as seguintes otimizações das atividades de *pull out* de risers:
- Custos;
- Emissões de CO₂;
- Embarcações;
- Combinação de alternativas para realização de pull out de risers, considerando os custos, emissões de CO₂ e embarcações disponíveis