

Puras y Aplicadas Enero - Marzo, 2008

## MA-1112 — Practica: semana 5 —

Ejercicios sugeridos para la semana 5. Cubre el siguiente material: Cálculo de volumenes de sólidos de revolución.

Para hallar el volumen de un sólido de revolución utilizaremos los métodos vistos en teoria: Método de discos, arandelas o cascarones (tubos). Para más información vea las ultimas 9 paginas.

1. En los siguientes problemas dibuje la region R acotada por las gráficas de las ecuaciones dadas y muestre la rebanada representativa. Después encuentre el volumen del sólido generado al hacer girar R en torno al eje x.

a) 
$$y = \frac{x^2}{\pi}, x = 4, y = 0.$$
 Solución:



Utilizando el método de discos:  $V=\pi \int_0^4 (\frac{x^2}{\pi})^2 dx = \frac{1024}{5\pi}$ .

b) 
$$y = \frac{1}{x}, x = 2, x = 4, y = 0.$$

MA-1112



Utilizando el método de discos:  $V=\pi \int_2^4 (\frac{1}{x})^2 dx = \frac{\pi}{4}.$ 

c)  $y = \sqrt{9 - x^2}, y = 0$  entre x = -2 y x = 3. Solución:



Utilizando el método de discos:  $V=\pi\int_{-2}^3(\sqrt{9-x^2})^2dx=\frac{116\pi}{3}.$ 

2. En los siguientes problemas dibuje la region R acotada por las gráficas de las ecuaciones dadas y muestre la rebanada representativa. Después encuentre el volumen del sólido generado al hacer girar R en torno al eje y.

a) 
$$y = \sqrt{x}, x = 0, y = 3.$$

MA-1112



Utilizando el método de cascarones:  $V=2\pi\int_0^9(3-\sqrt{x})xdx=\frac{243\pi}{5}$ . Otra posibilidad, con el método de discos  $V=\pi\int_0^3(y^2)^2dy$ .

b) 
$$x = 2\sqrt{y}, x = 0, y = 4.$$

Solución:



Utilizando el método de cascarones:  $V=2\pi\int_0^4(4-(\frac{x^2}{4}))xdx=32\pi.$  Otra posibilidad, con el método de discos  $V=\pi\int_0^4(2\sqrt{y})^2dy.$ 

c) 
$$x = y^{3/2}, y = 9, x = 0.$$

MA-1112



Utilizando el método de cascarones:  $V=2\pi\int_0^{27}x(9-x^{2/3})dx=\frac{6561\pi}{4}.$  Otra posibilidad, con el método de discos  $V=\pi\int_0^9(y^{3/2})^2dy.$ 

**d**) 
$$y = 4x, y = 4x^2$$
.

#### Solución:



Utilizando el método de cascarones:  $V=2\pi\int_0^1x(4x-4x^2)dx=\frac{2\pi}{3}$ . Otra posibilidad, con el método de arandelas  $V=\pi\int_0^4((\frac{\sqrt{y}}{2})^2-(\frac{y}{4})^2)dy$ .

3. Encuentre el volumen del sólido generado al hacer girar la región en el primer cuadrante acotada por la curva  $y^2=x^3$ , la recta x=4 y el eje x, en torno a:



## MA-1112

a) La recta x = 4.

#### Solución:

Utilizando el método de cascarones:  $V=2\pi\int_0^4 (4-x)\sqrt{x^3}dx=\frac{1024\pi}{35}$ .

b) La recta y = 8.

## Solución:



En el grafico, podemos observar que el solido de revolucion cuyo volumen deseamos calcular es la figura de color rojo. Utilizando el método de arandelas:  $V=\pi\int_0^4\left(8^2-(8-\sqrt{x^3})^2\right)dx$   $\frac{704\pi}{5}$ .

4. Sea R la región acotada por  $y=x^2$  y y=x. Encuentre el volumen del sólido que resulta cuando R se hace girar alrededor de:



a) El eje x. Solución:

# N 0 - -02 - -04 - -08 - -1 -0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 Y

MA-1112

Utilizando el método de arandelas:  $V=\pi \int_0^1 (x^2-x^4) dx = {2\pi \over 15}.$ 

b) El eje y.

#### Solución:

Utilizando el método de cascarones:  $V=2\pi\int_0^1(x-x^2)xdx=\frac{\pi}{6}.$ 

c) La recta y = x.

#### Solución:

Al girar la region acotada por  $y=x^2$  y y=x alrededor de la recta y=x, podemos observar que al intersectar el solido con cualquier seccion transversal perpendicular nos dara una region cuya area no es ni cuadrada, ni triangular o redonda. Pero, sí concideramos una sección transversal diagonal de manera que la region interseccion resultante sea una circunferencia, tendriamos el area de una figura geometrica conocida; solamente faltara expresar su radio r en función de la variable x.



Observando la figura anterior, podemos deducir que r= hipotenusa  $\times\cos(\pi/4)$  donde hipotenusa  $=x-x^2$ . Entonces,  $r=\frac{\sqrt{2}}{2}(x-x^2)$ . Por lo tanto,  $A(x)=\pi r^2=\frac{\pi}{2}(x-x^2)^2$  y  $V=\int_0^1 A(x)dx$ . Es decir,  $V=\int_0^1 \frac{\pi}{2}(x-x^2)^2dx=\frac{\pi}{60}$ .

5. La base de un sólido es la región acotada por  $y=1-x^2$  y  $y=1-x^4$ . Las secciones transversales del sólido, que son perpendiculares al eje x, son cuadrados. Encuentre el volumen del sólido.

MA-1112



 $V=2\int_0^1A(x)dx$ , con  $A(x)=l^2(x)$  (observe que la región de la base del solido es simetrica con respecto al eje y). El lado del cuadrado en función de la variable x esta dado por  $l(x)=(1-x^4)-(1-x^2)=x^2-x^4$ . Asi,  $V=2\int_0^1(x^2-x^4)^2dx=\frac{16}{315}$ .

## **TUBOS**



 $V_n = 2 \pi R \cdot H \cdot \Delta y$ 



 $V_n = 2 \pi R \cdot H \cdot \Delta x$ 

## **DISCOS**





# **ARANDELAS**



 $V = \pi (R^2 - r^2) \cdot \Delta x$ 



 $V = \pi (R^2 - r^2) \cdot \Delta y$ 

# Sólido de revolución generado por un recinto plano al girar alrededor del eje OY





# Proyección sobre el eje OX:







Por tubos: 
$$V = \int_{x=0}^{x=R} 2\pi x \cdot [H - f(x)] dx$$

# Proyección sobre el eje OY:



Por discos: 
$$V = \int_{y=0}^{y=H} \pi \left[ f^{-1}(y) \right]^2 dy$$

# Sólido de revolución generado por un recinto plano al girar alrededor del eje OX



Recinto generador



Sólido de revolución generado

# Proyección sobre el eje OX:







$$V_0 = \pi \cdot [H^2 - f^2(x_0)] \cdot \Delta x$$

Por arandelas: 
$$V = \int_{x=0}^{x=R} \pi \cdot \left[ H^2 - [f(x)]^2 \right] dx$$

# Proyección sobre el eje OY:

