

32-bit

Microcontroll

ers

MCU Development Tools for

HC32F460 Series

user manual

Applicable objects

Product Series	Product Model
F Series	HC32F460

This manual uses the *HC32F460PETB* as an example.

declaration Ming Dynasty (1368-1644)

- ★ Xiaohua Semiconductor Corporation ("XHSC") reserves the right to make changes, corrections, enhancements, or modifications to XHSC products and/or this document at any time without notice. Users are encouraged to obtain the most current information prior to placing an order.XHSC products are sold under the terms and conditions of sale set forth in the basic contract of purchase and sale.
- ★ Customer shall select the appropriate XHSC product for your application and design, validate and test your application to ensure that your application meets the appropriate standards and any safety, security or other requirements. The Customer shall be solely responsible for this.
- ★ XHSC hereby confirms that no license to any intellectual property is granted, either expressly or impliedly.
- ★ Resale of XHSC products under terms different from those set forth herein shall void any warranty commitment by XHSC with respect to such products.
- ★ Any graphics or lettering with the "®" or "™" logos are trademarks of XHSC. All other product or service names displayed on XHSC products are the property of their respective owners.
- **★** The information in this notice supersedes and replaces the information in previous versions.

© 2023 Siu Wah Semiconductor Limited All Rights Reserved

table of contents table of contents

Ap	plica	ıble obj	ects	2
de	clarat	ion		Ming
3				
tak	le of	content	s	Table of Contents
4				
1	Ove	rview		6
	1.1	Intro	duction to Development Tools	6
	1.2	Intro	duction to Circuit Board Components	6
2	Har	dware	Circuit	8
	2.1	Circu	uit Specifications	8
	2.2	Hard	ware Description	8
		2.2.1	System Overview	9
		2.2.2	Power supply	9
		2.2.3	Debugging Interface	9
		2.2.4	Individual keys	
		2.2.5	Indicator light	10
		2.2.6	Test needles	10
		2.2.7	Clock	10
		2.2.8	Matrix Keyboard	10
		2.2.9	UART	11
		2.2.10	I2C	11
		2.2.11	SPI	12
		2.2.12	QSPI	12
		2.2.13	TF CARD	12
		2.2.14	SMART CARD	13
		2.2.15	USB	13
		2.2.16	CAN	13
		2.2.17	AUDIO	13
		2.2.18	OLED	13
		2.2.19	Analog Functions	13
		2.2.20	Needle jumpers and toggle switch settings	14
		2.2.21	Pin Multiplexing	14
3	Dri	ver Libr	ary	
	3.1		f460_ddl_SHA512	

X	HS	C小华半导体 XIAOHUA SEMICONDUCTOR	www.xhsc.com.cn
	3.2	C か辛辛等体 hc32f460_ddl	16
		hc32f460_template	
	3.4	IDE Support Packages	17
4	Tool	Use	18
	4.1	Debugging Instructions.	18
	4.2	Program Burning	23
Ve	rsion]	Revision Record	24

1 summarize

1.1 Introduction to Development Tools

This series **Evaluation Board** (hereinafter referred to as **EVB**) is a development tool based on the **HC32F460PETB-LQFP100** chip design and includes the on-board **CMSIS DAP**; **the EVB** provides the necessary peripheral configurations for evaluating the **HC32F460**.

1.2 Introduction to Circuit Board Components

1	USBFS VBUS Indicator	2	Micro-USB (USBFS)
3	Mode selection jumper (HC32F460JETA)	4	DAP Status Indicator
5	SWD Interface (HC32F460JETA)	6	Micro-USB (USBDAP)
7	USBDAP VBUS Indicator	8	Full board power switch
9	Power channel selection (5V0)	10	SWD Interface (HC32F460PETB)
11	HC32F460PETB Power Jumpers	12	Mode selection jumper (HC32F460PETB)
13	JTAG Interface	14	TRACE interface
15	JTAG Power Indicator	16	TRACE Power Indicator
17	MCU Status Indicator	18	wake-up call button
19	reset button	20	Matrix Keyboard
21	32.768KHz crystal	22	8MHz Crystal
23	TF CARD Interface	24	User indicator *4
25	MCU pin test pins*4	26	OLED Interface
27	speaker connector	28	3.5mm headphone jack
29	3.5mm LINE IN connector	30	microphones
31	AUDIO CODEC Clock Source Selection Dip Switch	32	ADC potentiometer
33	ADC Interface	34	LVD Potentiometer
35	I2C interface	36	CAN Interface
37	USART3/ SPI3 Interface	38	USART4/ SPI4 Interface
39	USART1/ SPI1 Interface	40	USART3/ SPI3 Interface
41	HC32F460PETB	42	SMART CARD Interface

2 hardware circuit

2.1 Circuit Specifications

The MCU supports a wide voltage range (1.8~3.6V) and a wide temperature range (-40~105°C) During use, please ensure that the operating conditions do not exceed the absolute maximum ratings.

2.2 Hardware Description

It is recommended to go to Siu Wah Semiconductor's official website https://www.xhsc.com.cn to find the corresponding chip model and download the schematic diagram.

HC32F460PETB-LOFP100

2.2.1 System Overview

The EVB hardware system is shown below:

2.2.2 electric power source

The EVB uses the MICRO USB connector to power the whole board, please make sure the USB host has enough power supply capacity. Toggle switch SW1 is used to control the power on/off of the whole board.

2.2.3 debugging interface

The EVB is configured with SWD, JTAG, TRACE interfaces and on-board DAP, and users can select the interface for debugging according to actual needs.

2.2.4 independent keypad

The EVB is configured with 2 independent buttons, 1 reset button and 1 wake-up button. They are connected to the MCU via the pins in the table below:

silkscreen	Pins/Functions
К0	NRST/Reset Button
K10	PB1/Wakeup button

2.2.5 indicator light

The EVB is configured with 10 indicators, namely the power indicator, status indicator and user indicator.

silkscreen	Pins/Functions
LED0	PD3/Red Indicator
LED1	PD4/Green Indicator
LED2	PD5/Yellow indicator
LED3	PD6/Blue Indicator
LED4	VBUS_FS Indicator
LED5	VBUS_DAP indicator
LED6	TRACE Power Indicator
LED7	JTAG Power Indicator
LED8	MCU Status Indicator
LED9	DAP Status Indicator

2.2.6 test pin

The EVB is configured with four sets of 2*13 test pins that connect to the MCU pins to provide user test or extended functionality.

2.2.7 clocks

The EVB is configured with two external clocks, a 32.768KHz secondary crystal and an 8MHz primary crystal.

2 sets of crystals are connected to the MCU through the pins in the following table:

silkscreen	Pins/Functions	Connecting Peripherals	
Y1	PH0/ XTAL_OUT	OMILE Main County	
	PH1/ XTAL_IN	8MHz Main Crystal	
Y2	PC15/ XTAL32_IN	22.760VU=dawawtol	
	PC14/ XTAL32_OUT	32.768KHz secondary crystal	

2.2.8 Matrix Keyboard

The EVB is configured with a 3x3 matrix keypad that provides the user with 9 key functions.

2.2.9 **UART**

The EVB is configured with a 4-group UART interface through which it communicates with an external UART system.

The UART interface pin connections are shown below:

silkscreen	Pins/Functions
	PC4/ USART1_RX
	PA7/ USART1_TX
J1	PC5/ USART1_RTS
	PB0/ USART1_CTS
	PA8/ USART1_CK
	PA3/ USART2_RX
	PA2/ USART2_TX
J5	PA1/ USART2_RTS
	PA0/ USART2_CTS
	PD7/ USART2_CK
	PC13/ USART3_RX
	PH2/ USART3_TX
J2	PEO/ USART3_RTS
	PE1/ USART3_CTS
	PB15/ USART3_CK
	PB9/ USART4_RX
	PE6/ USART4_TX
J6	PE5/ USART4_RTS
	PE4/ USART4_CTS
	PE3/ USART4_CK

2.2.10 I2C

The EVB is equipped with a 32768*8bit on-board EEPROM chip, BL24C256, which can be used for I2C function testing.

The EVB is configured with a Group 1 I2C interface through which it communicates with external I2C systems.

The I2C interface pin connections are shown below:

silkscreen	Pins/Functions
ıs	PE15/ I2C3_SCL
J3	PB5/ I2C3_SDA

2.2.11 SPI

The EVB is configured with a 4-group SPI interface, through which the function of communicating with an external SPI system is performed.

The SPI interface pin connections are shown below:

silkscreen	Pins/Functions
	PA7/ SPI1_NSS
]]1	PC5/ SPI1_MISO
, , <u>, , , , , , , , , , , , , , , , , </u>	PB0/ SPI1_MOSI
	PA8/ SPI1_SCK
	PA2/ SPI2_NSS
J5	PA1/ SPI2_MISO
ا ا	PA0/ SPI2_MOSI
	PD7/ SPI2_SCK
	PH2/ SPI3_NSS
J2	PEO/ SPI3_MISO
ا ا	PE1/ SPI3_MOSI
	PB15/ SPI3_SCK
	PE6/ SPI4_NSS
J6	PE5/ SPI4_MISO
١٠٠	PE4/ SPI4_MOSI
	PE3/ SPI4_SCK

2.2.12 QSPI

The EVB is configured with an 8MB on-board QSPI FLASH chip, W25Q64, which can be used for QSPI function testing.

2.2.13 TF CARD

The EVB is configured with one TF CARD interface, through which

the TF CARD read/write function is realized. The TF CARD

interface pin functions are shown below:

silkscreen	Pins/Functions
J29	PC8/ SDIO_D0
	PC9/ SDIO_D1
	PC10/ SDIO_D2
	PC11/ SDIO_D3
	PC12/ SDIO_CLK
	PD2/ SDIO_CMD

2.2.14 SMART CARD

The EVB is configured with one SMART CARD interface, through which the SMART CARD read/write function is realized.

The SMART CARD interface pin functions are shown below:

silkscreen	Pins/Functions
J20	PAO/ RESET
	PA1/ PWR_EN
	PA2/ USART2_TX
	PA3/ USART2_RX
	PD7/ USART2_CK
	PE7/ CARD_DETECT

2.2.15 USB

The EVB is configured with two Micro-USB ports, through which the entire board can be powered by 5V0.

The MCU supports USBFS function with full-speed PHY integrated inside the chip.

The EVB provides an on-board USB power supply chip, TPS2051BD, to power the device when acting as a host.

2.2.16 CAN

The EVB is equipped with an on-board CAN PHY chip, TJA1042T/3, which supports the CAN2.0B function and provides a CAN interface through which it realizes the function of communicating with the external CAN system.

2.2.17 **AUDIO**

The EVB is configured with one Audio Codec chip, WM8731SEDS, and Audio PA chip, BL6281, and provides an on-board MIC,

3.5mm headphone jack and **Line in** connector as well as a speaker jack for recording and audio input and output.

2.2.18 OLED

The EVB is configured with one OLED interface through which the OLED display function is realized.

The OLED interface pin functions are shown below:

silkscreen	Pins/Functions
126	PD0/ I2C2_SCL
J26	PD1/ I2C2_SDA

2.2.19 analog function

The EVB is configured with a 5-pin analog functional pinout containing 4 ADC

input channels for ADC functional testing. The EVB is configured with 2 adjustable potentiometers for ADC and LVD functionality testing, connected to the MCU via the pins in the table below:

silkscreen	Pins/Functions	Connecting Peripherals
R76	PC0/ ADC12_IN10	10KΩ adjustable potentiometer
R75	PB2/ PVD2EXINP	10KΩ adjustable potentiometer

2.2.20 Needle jumpers and toggle switch settings

The status of the jumpers and toggle switches need to be confirmed before powering up, and the settings are as follows:

silkscre	functionality	set up	default
en			(setting)
J20	MCU Power Consumption Test	Short-circuit: MCU normal power supply Disconnect: MCU power consumption test with meter pens	short circuit
J10	DAP Mode Selection	connected in series Short pin 12: DAP enters UBOOT mode to upgrade its own firmware. Short pin 23: DAP enters ISP mode to upgrade its own firmware. Disconnect: DAP enters USER mode	turn off (electric
J24	MCU Mode Selection	Short-circuit: BOOT mode Disconnect: USER mode	switch) turn off (electric switch)
Ј9	AUDIO clock selection	Toggle to right: use external crystal Toggle to left: use MCK	right side

2.2.21 pin multiplexing

Some of the MCU pins on the EVB are multiplexed to multiple peripheral modules, it should be noted that this results in modules with multiplexed pins not being able to be used at the same time: when the TRACE interface is used, the USART4/ SPI4(J6) interface cannot be used;

When the SMART CARD is used, the USART2/ SPI2(J5)

interface cannot be used. Pin multiplexing is shown

below:

PIN	USART4	SPI4	TRACE
PE3	CK	SCK	TRACED0
PE4	CTS	MOSI	TRACED1
PE5	RTS	MISO	TRACED2
PE6	TX	NSS	TRACED3

PIN	USART2	SPI2	SMART CARD
PA3	RX	-	RX

PA2	TX	NSS	TX
PA1	RTS	MISO	PWR_EN
PA0	CTS	MOSI	RESET
PD7	CK	SCK	CLK

3 driver library

This series of chips support third-party **IDE** development, mainly support **IAR** and **Keil MDK** and other mainstream development environments, please refer to "Siu Wah Semiconductor Familiarize yourself with the configuration and use of the "**MCU** Development Environment Usage" document.

After familiarizing yourself with the IDE development tools, please go to the Siu Wah Semiconductor official website https://www.xhsc.com.cn to find the corresponding chip model. **HC32F460PETB**, download driver library and samples:

HC32F460PETB-LQFP100

3.1 hc32f460_ddl_SHA512

The SHA512 hash of hc32f460 ddl.

3.2 hc32f460_ddl

Examples of the main structure of the driver library and sample support packages can be found in the following figure (the specific composition is based on the actual **DDL** support package used)

Documents:

This directory provides **chm** files containing code comments,

data structures, API descriptions, and so on. drivers:

This directory mainly includes the **BSP** code of the development board, **CMSIS** files, **APIs** used for each **IP** operation, header files of data structures and source files, which can be used directly by users for their own applications or to familiarize themselves with the operation of the underlying registers.

Midwares:

This directory contains mainly header and source files configured for the implementation of specialized functions, as well as files provided by third parties.

PROJECTS:

The catalog mainly includes the use routines of common functions of each IP (both IAR and Keil development tools are supported) and advanced applications. Users can use this sample to quickly familiarize themselves with the implementation of common functions of each IP and the use of driver libraries, which can be directly downloaded, debugged and run in conjunction with the accompanying hardware demo boards of this series of chips.

utils:

This directory mainly includes some auxiliary tools and scripts.

3.3 hc32f460_template

The template mainly provides the system minimum project corresponding to this series of MCUs. Users who wish to develop their own application programs (including drivers for special needs) for a specific model of chip do not need to build a project from scratch, but can directly use the template to directly develop application-related drivers or applications.

3.4 IDE Support Packages

The IDE support package mainly provides pack files for the Keil MDK for this chip.

Attention:

When using *Keil* as a development tool for debugging and downloading, you need to make sure that the *Keil* tool support package for this series of chips is installed correctly, or copy the <storage *directory>:\mcu\MDK*.FLM* file to the *Keil* installation path (<installation *directory>:\Keil\ARM\Flash*) of your personal computer and configure and select the appropriate *.FLM file for the chip you are using in the Keil project configuration download option. *Keil* Project Configuration download option to configure and select the appropriate *.*FLM* file for the chip you are using.

4 Tool Use

4.1 Debugging Instructions

To realize the serial port function through CMSIS DAP, if the computer OS is Win7, you need to install the virtual serial port driver first (Win10 can ignore this step) Please contact the relevant technical support personnel to obtain the virtual serial port driver vcom_driver_xhsc file, and then open the device manager and follow the steps below to install it:

The driver will start to install, and the following screen will be displayed after a few seconds, which means it is installed correctly:

4.2 Program Burning

HC32F460 series MCUs can be programmed by Siu

Wah programmer. The in-circuit programmer

supports **UART** mode and the wiring is shown in

the following figure:

The offline programmer supports **UART** mode and **SWD** mode, and the wiring is shown in the figure below:

For the specific programming process, please go to the Siu Wah Semiconductor official website https://www.xhsc.com.cn to find the corresponding chip model and refer to the Siu Wah programmer information for operation.

Version Revision Record

version	revision date	revision
number		
Rev1.0	2020/11/20	First Edition Release.
Rev1.1	2022/07/15	Company Logo updated.
Rev2.0	2023/08/07	Modify the hardware description and modify the ddl file structure.