<u> – דוח מעבדה 2- 201553245 קובי עיני</u>

alu + floating point :cpu

Performance Test Case

לאחר הוספת רגיסטרים לשמירת האופרנדים והתוצאה, להלן הנתונים:

:op – code טבלת

פעולה רצויה	OP – binary	OP - decimal
Mul	0000	0
Mac	0001	1
Max	0010	2
Min	0011	3
Rst	0100	4
Shl	0110	6
Shr	0111	7
Add	1000	8
Sub	0101	5

טבלה 1 – OP-codes

<u>טסט עבור ה – ALU</u>

איור 2 – טסט ALU – כפל, מינ', מקס, חיבור

צריבת הקוד ל-FPGA:

לאחר צריבת הקוד, קיבלנו את המסך הבא:

Flow Status	Successful - Fri May 04 14:40:30 2018
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	ass2
Top-level Entity Name	ALU_mantle
Family	Cyclone II
Device	EP2C20F484C6
Timing Models	Final
Total logic elements	230 / 18,752 (1 %)
Total combinational functions	226 / 18,752 (1 %)
Dedicated logic registers	58 / 18,752 (< 1 %)
Total registers	58
Total pins	46 / 315 (15 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	1 / 52 (2 %)
Total PLLs	0 / 4 (0 %)

Entity		Logic Cells	Dedicated Logic Registers
□ P ALU_mantle		320 (0)	90 (0)
🖃 🔛 ALU:alu_uu		300 (0)	48 (0)
🖦 🔛 arithmeticUnit:au_uu		194 (47)	48 (0)
- 🔛 outputSelector:os_uu		89 (89)	0 (0)
🔛 🔛 shift_right_or_left:srl_uu		17 (17)	0 (0)
→ P DFF_Register:dffa_uu		8 (8)	8 (8)
→ Pi DFF_Register:dffb_uu		8 (8)	8 (8)
→ 課 DFF_Register:dffop_uu		4 (4)	4 (4)
. ├ 🔛 DFF_falling:dmachigh_uu	Parameter S	ettings	8 (8)

איור 6– סיכום צריבת הקוד ל – FGPA – כמות רכיבים לוגיים

כמו שניתן לראות, מספר יחידות הלוגיקה המנוצלות עבור היחידה שבנינו הינו נמוך, ועומד על מעט יותר מאחוז. רוב היחידות הלוגיות מנוצלות עבור המחבר ועבור הבורר ביציאת יחידת ה – ALU.

התדר המקס' עבור היחידה שמימשנו הינו:

I	Sion Proder Finax Sammary				
ı		Fmax	Restricted Fmax	Clock Name	Note
ı	1	43.24 MHz	43.24 MHz	clk	

<u>איור 7 – תדר מקס'</u>

```
create_clock -name {clk} -period 25.000 [get_ports {clk}]
derive_pll_clocks
```

איור 8– קביעת זמן מחזור למימוש תדר מקס

על ידי קביעת זמן המחזור ל – 25,000 פיקו שניות, נקבל תדר שעון 40 מגה הרץ, העומד בתאני התדר המקס' של המערכת.

המסלול הקריטי במערכת שבנינו, נמצא במעבר דרך כניסה A, רגיסטר A, המכפל, דרך ה – FA של המחבר N ביטים ולבסוף דרך הבורר ביציאת ה – ALU, דרך רגיסטר יצאה LOW והחוצה ליציאה LOW.

כמו שניתן להבין, הפעולה הגוררת את המסלול הקריטי הינה פעולת ה – 0001, MAC, פעולה זו גורת את המסלול מאחר ומצריכה מעבר מידע דרך הכי הרבה רכיבים ב – ALU, (רגיסטר כניסה, מכפל, מחבר, בורר, רגיסטר יציאה). בנוסף, פעולה זו דורשת את המחבר, הרכיב הגדול ב – ALU.

עבור יחידה המיודעת לבצע פעולת MAC מרובה, נקבע את השעון כמו שמתואר למעלה.

אם היחידה אינה מיועדת לבצע פעולת MAC למכביר, נייצר פעולות nop לאחר קבלת האופרנד של enop על מנת לתת ליחידה את הזמן הנדרש לחישוב.

המסלול הקריטי מתואר באיורים 9,10.

באיורים 11 – 16 ניתן לראות את תוצאות ה – RTL viewer, עבור רכיבי היחידה.

Hardware Test Case

איור Top-level - 17 של המערכת.

<u>'פונק</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת מספר דרך המתגים	8 בט	כניסה	Α
שעון	ביט	כניסה	Clk
seven - יציאות הספרות ל	7 ביט	כניסה	D0,D1,D2,D3
segment			
וקטור מצב עבור חיסור	6 ביט	יציאה	Status_vec1
A,B,OP עבור אופרנד A דגימת	ביט	יציאה	key0-3
בחירת 16 הביט הגבוהים או	ביט	כניסה	SW_8
הנמוכים			

port table for TOP LRVRL – 18 איור

critical path for TOP LRVRL - 19 איור

כמו שניתן לראות, גם עבור היחדיה החדשה שיצרנו, גם כאן, המבלול הקריטי הינו עבור פקודת המאק. ולכן התדר המקס' עבור המערכת יהיה זהה למקרה הראשון.

Fmax	Restricted Fmax	Clock Name	Note	
44.32 MHz	44.32 MHz	clk		

f-max for TOP LRVRL – 20 איור

flow summery and logic usage from quartus for TOP LRVRL - 21 איור

• הטסט עבור ה – LEVEL-TOP זהה לשר הטסים המוצגים מטה, אלא בהצגה ל – seven segment, על כן אציג את פעולות החיבור והכפל של IEEE

למימוש המערכת, יצרתי רכיבים נוספים, ממיר נקודה קבועה לנקודה צפה, מכפל ומחבר נקודה צפה, ובורר אשר יברור את הכפל והחיבור, כמו גם בורר עבור המערכת כולה, אשר ממיר לתצוגת שבע סגמנטים.

להלן פירוט הרכיבים:

<u>רגיטרי הכניסות: DFF</u> , עבור שבע ביטים, המקבל תמיד Id ומופעל בעליית שעון. אנו משתמשים בו לשמירת ערכי OP,B,A יציבים.

DFF - 23 איור

ממיר נקודה קבועה לנקודה צפה

<u>איור 24 – ממיר נקודה קבועה לנקודה צפה</u>

	<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u> </u>
ſ	הכנסת מספר דרך המתגים	8 בט	כניסה	Fixed_Num
ſ	הוצאת מספר בייצוג IEEE	32 ביט	יציאה	IEEE_Num

איור 25 – טבלת פורטים עבור ממיר נקודה קבועה לנקודה צפה

<u>0.75 , -0.25 , -6.75 , 30.25 , -31.5 , -31.75 , -0 , 0 , -31.75 , 20.25 , -6.75 , 30.25 , -26.75 , 30.25 , -26.75 , 30.25 , -26.75 , 30.25 , -26.75 , -27.75 , -0.25 , -27.75 , -0.25 , -27.75 , -0.25 , -27.75 </u>

הממיר מעתיק את ה – MSB מחפש את האחד המוביל עבור החלק השלם או השבר, מייצג את 23 הביטים ה – LSB בלעדיו ומנרמל את האקספוננט בהתאם. לבסוף, מתקבל וקטור של 32 ביטים המייצג מספר בנקודה צפה.

מכפל נקודה צפה:

<u>איור 27 – מכפל נק צפה</u>

	<u>פונק'</u>	<u>גודל</u>	<u> </u>	<u>שם</u>
	הכנסת מספר בייצוג IEEE	32 ביט	כניסה	A,B
Ī	תוצאה בייצוג IEEE	32 ביטים	כניסה	С
			<u>פל נק צפה</u>	<u>איור 28 – טבלת פורטים עבור מכנ</u>
		-11.:	25 -5.625 718.857	539.15625

איור 29 – טסט עבור מכפל נק צפה

כופל את המנטיסות, לאחר שרשור אחד מוביל ב-MSB, ולאחר מכן, מחפש את האחד המוביל. במקרה שלנו האחד יכול להתקבל בביט ה -MSB או אחד אחריו ולכן המכפל, בודק את שני המצבים, מעביר את המנטיסה הנכונה ומנרמל את האקספוננט בהתאם. ביט הסימן מתקבל על ידי קסור בים שני ביטי הסימן של המספרים הנכפלים. הדעת ניתנה לגבי כפל באפס, ונשמר מקרה קצה עבור מקרה זה.

מחבר נקודה צפה:

<u>איור 30 – מחבר נק צפה</u>

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת מספר בייצוג IEEE	32 ביט	כניסה	A,B
חיבור/חיסור	ביט	כניסה	Sub
תוצאת הפעולה בייצוג IEEE	32 ביט	יציאה	res

איור 31 – טבלת פורטים עבור מחבר נק צפה

במודל זה, נעזרנו באיור התיאורטי ממבוא למחשבים. המודל מכיל:

-<u>מחסר אקספוננטים</u> למציאת בסיס גבוה ונרמול, ועבור חישוב הסימן:

<u>איור 33 – מחסר אקס'</u>

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u> </u>
הכנסת האקס'	8 בט	כניסה	exponent_a, exponent_b
ההפרש בין האקס'	8 ביט	יציאה	sub_size
מוציא אחד עבור חישוב מחשב הסימן ומחליף המנטיסות	ביט	יציאה	sign

<u>איור 34 – טבלת פורטים עבור מחסר אקס'</u>

-<u>מחליף מיקום</u> ראשון, עבור קביעת המנטיסה שתעבור יישור:

איור 35 – מחליף מיקום

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	שם
הכנסת המנט'	23 ביט	כניסה	f1,f2
קביעת ההחלפה לי מחסר האקס'	ביט	כניסה	swaper
מוציא מנט'1 עם שרשור 001	26 ביט	יציאה	Exit1
מויצא מנט2 למיישר המנט' עם	24 ביט	יציאה	Exit2
שרשור 1			

איור 36 – טבלת פורטים עבור מחליף מיקום

-<u>יחידת יישור מנטיסה,</u> המקבלת את ההפרש בין האקספוננטים ומיישרת את המנטיסה הנחוצה בהתאם, על ידי הזזה ימינה:

איור 37 – יחידת ישור מנטיסות

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת המנט'	24 ביט	כניסה	f1
קביעת מספר הביטים ליישור על ידי מחסר האקס'	8 ביט	כניסה	Anum
מוציא מנט' עם שרשור 00	26 ביט	יציאה	fnew

איור 38 – טבלת פורטים עבור יחידת יישור מנטיסות

-<u>מחליף מיקום</u> שני לווידוא סדר החיסור הנכון, למשל בחיסור מספר שלילי וחיובי:

<u>איור 39 –מחליף מיקום</u>

<u>פונק'</u>	<u>גודל</u>	<u>C'III</u>	<u>שם</u>
הכנסת המנט'	23 ביט	כניסה	f1,f2
קביעת ההחלפה לי מחסר האקס'	ביט	כניסה	swaper
מוציא מנט'1 עם שרשור 2 אפסים	26 ביט	יציאה	Exit1
'מויצא מנט2 למיישר המנט	23 ביט	יציאה	Exit2

איור 40 – טבלת פורטים עבור מחליף מיקום

- -<u>מחבר</u> ראשון, לחיבור או חיסור המנטיסה ו<u>מחבר</u> שני לביצוע ערך מוחלט למנטיסה בשעת הצורך.
- -<u>יחידת sign computation,</u> אשר מחשבת האם יש צורך בחיסור או חיבור, עבור המחבר הראשון , ועוזרת בחישוב סימן התוצאה. היחידה מממשת את הפונקציה הלוגית + B'CE + B'CD + BC'E + ultra (P + B'CD + BC'E + B'CD + BC'E):

sign computation איור 41 – יחידת

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
לוגיקה למוצא	ביט	כניסה	Sign,
			sign_significand,s1,s2,fanot,
מוציא קו לחישוב הסימן בתוצאה ולמחבר לביצוע חיסור	ביט	יציאה	sign_substract,Sr
או חיבור			

sign computation איור 42 – טבלת פורטים עבור יחידת

יחידה לחישוב המנטיסה הגבוהה יותר, עבור חישוב יחידת ה sign comp – יחידה לחישוב המנטיסה הגבוהה יותר,

<u>איור 43 – יחידה לחישוב מנט' גבוהה</u>

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u> </u>
הכנסת המנט'	23 ביט	כניסה	A,B
1 או אפס לפי המנט הגבוהה	ביט	יציאה	С

<u>איור 44 – טבלת פורטים עבור יחידה לחישוב מנט' גבוהה</u>

<u>יחידה לבחירת האקספוננט להצגה בתוצאה,</u> כלומר האקס' אליו ביצענו יישור:

איור 45 – יחידה בחירת אקס' בתוצאה

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת המנט'	26 ביט	כניסה	f1,f2
לוגיקה לקביעת ההחלפה	ביט	כניסה	sign,sign_a,sign_b
מוציא מנט' למחבר הראשון	26 ביט	יציאה	exit1, exit2

<u>איור 46 – טבלת פורטים עבור</u> <u>יחידה בחירת אקס' בתוצאה</u>

<u>יחידה לספירת אפסים,</u> עבור יישור המנטיסה ונרמול בהתאם לאקס':

<u>איור 47 – יחידה לספירת אפסים מובילים</u>

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת המנט'	25 ביט	כניסה	fraction
הוצאתכמות האפסים	5 ביט	יציאה	rounding
המובילים			

איור 48 – טבלת פורטים עבור יחידה לספירת אפסים מובילים

יחידה המבצעת נרמול לפי הנדרש לאקס':

איור 49 – יחידת נרמול אקס'

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת האקס'	8 ביט	כניסה	exponent_a, exponent_b
מוציא אקס' מתאים	8 ביט	יציאה	selceted_exp

איור 50 – טבלת פורטים יחידת נרמול אקס'

יחידה לנרמול ועיגול עבור המנטיסה:

<u>איור 51 – יחידה לנרמול ועיגול מנט'</u>

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
הכנסת המנט'	25 ביט	כניסה	fin
מספר האפסים המובילים	ביט	כניסה	Anum
מוציא מנט מנורמלת	25 ביט	יציאה	fout

איור 52 – טבלת פורטים עבור יחידה לנרמול ועיגול מנט^י

בורר עבור הנקודה הצפה:

בורר לפי ה OP האם להוציא את מוצא המחבר או המכפל:

איור 53 – בורר תוצאות הנק' הצפה

פונק'	<u>גודל</u>	כיוון	<u>שם</u>
הכנסת OP	4 ביט	כניסה	ОР
מוצא המכפל והמחבר	32 ביט	כניסה	A,B
מוציא את תוצאת המחבר או המכפל בהתאם ל-OP	32 ביט	יציאה	С

איור 54 – טבלת פורטים עבור בורר הנק' הצפה

- <u>בורר הממיר לשבע ספרות:</u>

seven segment – בורר את מוצא ה-ALU ויחידות ה

hex - ייצוג ב seven segment — מספר ב	מספר דצימאלי
40	0
79	1
24	2
30	3
19	4
12	5
02	6
78	7
00	8
18	9
08	10
03	11
46	12
21	13
06	14
OE	15

seven segment איור 55 – טבלת ייצוג

איור 56 – בורר הממיר לשבע ספרות

<u>פונק'</u>	<u>גודל</u>	<u>כיוון</u>	<u>שם</u>
כניסות עבור מוצע ה - ALU	8 ביט	כניסה	HIGH_alu,LOW_alu
- כניסה עבור מוצא בורר ה	32 ביט	כניסה	HI_LO_fp
IEEE			
כניסה עבור ה - OP	4 ביט	כניסה	OP
לברירה בין הצגת 16 הביט העליונים או הנמוכים	ביט	כניסה	8_SW
seven segment מוצא בתצוגת	7 ביט	יציאה	Digit0, Digit1, Digit2, Digit3
Penell Reguletti 1181211T KZIIT	0.7.1	1114.7.	DIGITO, DIGITT, DIGITZ, DIGITS

איור 57 – טבלת פורטים עבור בורר הממיר לשבע ספרות

<u>דוגאות לשימוש בסיגנל טאפ:</u>

00h 0h

שינוי וקטור הסטאטוס בהתאם

<u>חיסור:</u>

0

<u>כפל נקודה צפה</u>

<u>פעולת מאק:</u>

