TD 8 : compléments sur l'intégration

1 Compléments : Intégration sur un segment

Exercice 1 (La formule de Taylor pour e¹)

- **1.** Calculer les intégrales : $I_0 = \int_0^1 e^{-t} dt$, $I_1 = \int_0^1 t e^{-t} dt$, et $I_2 = \int_0^1 \frac{t^2}{2} e^{-t} dt$.
- **2.** Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{n!} e^{-t} dt$.
 - a) Montrer que pour $n \in \mathbb{N}$, on a : $I_{n+1} = \frac{e^{-1}}{n!} + I_n$.
 - **b)** En déduire que pour $n \in \mathbb{N}$, on a : $I_{n+1} = e^{-1} \sum_{k=0}^{n} \frac{1}{k!} + I_0$.
 - c) En déduire que pour $n \in \mathbb{N}$, on a : $e = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{t^{n+1}}{(n+1)!} e^{1-t} dt$.
- 3. Étude de la convergence pour $n \to 0$
 - a) Montrer l'encadrement $0 \leqslant \int_0^1 \frac{t^{n+1}}{(n+1)!} e^{1-t} dt \leqslant e^1 \int_0^1 \frac{t^{n+1}}{(n+1)!} dt$.
 - **b)** En déduire que $e = \sum_{k=0}^{+\infty} \frac{1}{k!}$

Proposition 1 (Sommes de Riemann)

Soit $f:[a;b]\to\mathbb{R}$ une fonction continue. Alors pour $n\to+\infty$, on a la convergence :

$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + \frac{k}{n}(b-a)\right) \longrightarrow \int_{a}^{b} f(t) dt.$$

Exercice 2 (Avec des sommes de Riemann (I))

- **1.** Rappeler les hypothèses pour avoir : $\lim_{n \to +\infty} \left[\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \right] \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(t) dt.$
- **2.** a) En déduire la limite des suites : $a_n = \frac{1}{n} \sum_{k=1}^n 1$, $b_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n}$, $c_n = \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^2$.
 - $\mathbf b)$ Comparer le résultat avec les formules donnant

$$\sum_{k=1}^{n} 1, \sum_{k=1}^{n} k, \text{ et } \sum_{k=1}^{n} k^{2}.$$

Exercice 3 (Avec des sommes de Riemann (II))

- 1. Montrer que l'on peut écrire : $\forall n \geq 1$, $H_{2n} H_n = \sum_{i=1}^n \frac{1}{n+i}$. 2. Montrer que l'on a : $\lim_{n \to +\infty} \left[H_{2n} H_n \right] = \int_1^2 \frac{\mathrm{d}x}{x}$. (On écrira : $H_{2n} H_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + \frac{i}{n}}$.)
- 2. Montrer que i on $a_{n \to +\infty}$:

 3. Conclure que $\lim_{n \to +\infty} \left[H_{2n} H_n \right] = \ln(2)$.

 4. Montrer de même que $\lim_{n \to +\infty} \left[H_{3n} H_n \right] = \ln(3)$.

 (On écrira : $H_{3n} H_n = \frac{2}{2n} \sum_{i=1}^{2n} \frac{1}{1 + 2\frac{i}{2n}} \to \int_1^3 \frac{\mathrm{d}x}{x}$.)
- **5.** En calculant de deux façons $\lim_{n\to+\infty} \left[H_{6n}-H_n\right]$, montrer que $\ln(6)=\ln(2)+\ln(3)$.

Exercice 4 (Avec des sommes de Riemann (III))

- **1.** a) Pour a > 0, calcular $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{k}$. (pourquoi a > 0?)
 - b) En déduire un équivalent pour $n \to +\infty$, de la suite des sommes partielles $\sum_{i=1}^{n} k^{a}$.
- **2.** a) Montrer: $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(1 + \frac{k}{n} \right) = 2 \ln(2) 1.$
 - **b)** Montrer qu'on a : $\sum_{k=1}^{n} \ln \left(1 + \frac{k}{n} \right) = \ln \left[(2n)! \right] \ln(n!) n \ln(n)$.
 - c) En déduire un équivalent de la suite : $u_n = \ln\left(\frac{(2n)!}{n!}\right)$.

Exercice 5 (Pratique du changement de variables)

- a) Rappeler une primitive de $t \mapsto \frac{t}{1+t^2}$.
 - b) Par le changement de variables $t = \ln(x)$, calculer l'intégrale $I = \int_1^{e^2} \frac{\ln(x) dx}{x(1 + \ln^2(x))}$
- **2.** Par le changement de variables $t = \ln(x)$, calculer $J = \int_1^3 \frac{1 + \ln(x) + \ln^5(x)}{x} dx$.
- **3.** Par le changement de variables $t=x^2$, calculer l'intégrale $K=\frac{1}{\sqrt{2\pi}}\int_0^1 x\ \mathrm{e}^{-\frac{x^2}{2}}\,\mathrm{d}x$.

2 Convergence et calcul par passage à la limite

Exercice 6 (Intégrations par parties)

Justifier l'existence et calculer les intégrales suivantes :

$$I_{1} = \int_{1}^{\infty} \frac{\ln(t)}{t^{3}} dt, \quad I_{2} = \int_{1}^{\infty} \frac{\ln(t)}{t^{2}} dt, \quad I_{3} = \int_{1}^{\infty} \frac{\ln^{2}(t)}{t^{3}} dt, \quad I_{4} = \int_{0}^{\infty} t^{3} e^{-\frac{t^{2}}{2}} dt.$$

$$I_{5} = \int_{0}^{1} \ln(t) dt, \quad I_{6} = \int_{0}^{1} \frac{\ln(t)}{\sqrt{t}} dt, \quad I_{7} = \int_{0}^{1} \frac{\ln^{2}(t)}{\sqrt{t}} dt, \quad I_{8} = \int_{-\infty}^{1} (t-1) e^{t} dt.$$

Que donne le changement de variables $x = \ln(t)$ dans celles « à logarithme »?

Exercice 7 (Intégrales Eulériennes (version exponentielles))

On fixe a > 0;

1. a) Montrer que pour
$$x \ge 0$$
, on a :
$$\int_0^x e^{-at} dt = \frac{1}{a} - \frac{e^{-at}}{a}.$$

b) En déduire convergence et valeur de
$$\int_0^{+\infty} e^{-at} dt = \frac{1}{a}$$
.

2. Montrer pour
$$n \in \mathbb{N}$$
, $x \ge 0$:
$$\int_0^x t^{n+1} e^{-at} dt = -\frac{1}{a} x^{n+1} e^{-ax} + \frac{n+1}{a} \int_0^x t^n e^{-at} dt.$$

3. En passant à la limite, montrer la relation
$$\int_0^{+\infty} t^{n+1} e^{-at} dt = \frac{n+1}{a} \int_0^{+\infty} t^n e^{-at} dt.$$

4. En déduire par récurrence l'expression :
$$\forall n \in \mathbb{N}, \quad \int_0^{+\infty} t^n e^{-at} dt = \frac{n!}{a^{n+1}}.$$

Exercice 8 $(Int\'egrales\ Eul\'eriennes\ (version\ logarithmes))$

1. a) Montrer pour
$$x \to 0^+$$
, le comportement asymptotique : $\ln(x) = o\left(\frac{1}{\sqrt{x}}\right)$.

b) En déduire que l'intégrale
$$\int_0^1 \ln(x) dx$$
 converge.

c) Montrer que
$$\int_0^1 \ln(x) dx = -1$$
.

2. Montrer de même (convergence puis valeur) que
$$\int_0^1 \ln^2(x) dx = 2$$
.

3. Par le changement de variables
$$x = e^{-t}$$
, montrer que $\int_0^1 \ln(x) dx = -\int_0^{+\infty} e^{-t} dt$

4. De même, montrer :
$$\int_0^1 \ln^2(x) dx = \int_0^{+\infty} t e^{-t} dt$$
.

5. De même, on pourra montrer :
$$\forall n \in \mathbb{N}$$
, $\int_0^1 \ln^n(x) dx \stackrel{\text{récu.}}{=} \frac{(-1)^n}{n!} = (-1)^n \int_0^{+\infty} t^n e^{-t} dt$.

Exercice 9 (Comparaison séries-intégrales)

- **1.** Soit $f: [0; +\infty[\to \mathbb{R}]]$ une fonction continue **décroissante**.
 - a) Soit $n \in \mathbb{N}^*$. Donner un encadrement de f(t) pour $t \in [n; n+1]$.
 - **b)** En déduire un encadrement de $\int_{0}^{n+1} f(t) dt$.
 - c) En déduire pour $n \ge 2$, l'encadrement $\int_{n}^{n+1} f(t) dt \le f(n) \le \int_{n-1}^{n} f(t) dt$
 - **d)** En déduire que l'on a $\forall n \in \mathbb{N}$: $\int_1^{N+1} f(t) dt \leqslant \sum_{n=1}^N f(n) \leqslant f(1) + \int_1^N f(t) dt$.
- **2.** Application pour $f: \left\{ \mathbb{R} \to \mathbb{R} : t \mapsto \frac{1}{t} \right\}$ **a)** Montrer que l'on a : $\int_{1}^{N+1} \frac{\mathrm{d}t}{t} \leqslant \sum_{n=1}^{N} \frac{1}{n} \leqslant 1 + \int_{1}^{N} \frac{\mathrm{d}t}{t}.$
 - b) En déduire la divergence de la série harmonique $\sum_{n>1} \frac{1}{n}$.
- **3.** Application pour $f: \left\{ \mathbb{R} \to \mathbb{R} \text{ , avec } \alpha > 0 \text{, pour } \alpha \neq 1 \atop t \mapsto \frac{1}{t^{\alpha}} \right\}$
 - a) Montrer que l'on a :

$$\int_{1}^{N+1} \frac{\mathrm{d}t}{t^{\alpha}} \leqslant \sum_{n=1}^{N} \frac{1}{n^{\alpha}} \leqslant 1 + \underbrace{\int_{1}^{N} \frac{\mathrm{d}t}{t^{\alpha}}}_{=\frac{1}{\alpha-1} \frac{1}{N^{\alpha-1}} + \mathrm{cst.}}$$

b) En déduire l'énoncé du critère de convergence pour la série de Riemann : $\sum_{i=1}^{n} \frac{1}{n^{\alpha}}$

Exercice 10 (Un équivalent $de \ln(k)$)

- **1.** Montrer que pour $n \ge 2$, on a : $\ln(n!) = \sum_{k=1}^{n} \ln(k) = \sum_{k=2}^{n} \ln(k)$.
- 2. Par une comparaison série-intégrale (Attention au sens de variations!), montrer pour une certaine fonction F à expliciter :

$$\forall n \ge 2, \quad F(n) - F(1) \le \ln(n!) \le F(n+1) - F(2).$$

3. En déduire pour $n \to \infty$, l'équivalent $\ln(n!) \sim n \ln(n)$.

Autour des probas 3

Exercice 11 (Densité)

- **1.** Soit $\theta > 0$ et $k \ge 0$ un entier. Montrer que la fonction $f_{\theta}: \mathbb{R} \to \mathbb{R}$ définit une densité: $f_{\theta}: x \mapsto \begin{cases} \frac{k+1}{\theta^{k+1}} x^k & \text{si } 0 \leq x \leq \theta \\ 0 & \text{sinon.} \end{cases}$
- 2. Soit X une variable aléatoire admettant f_{θ} pour densité.
 - (Quel est le rapport avec $\mathcal{U}[0;\theta]$?) a) Calculer la fonction de répartition de X.
 - b) Calculer l'espérance $\mathbb{E}[X]$.

Exercice 12 (Une densité)

- 1. Montrer que $\int_0^1 \ln^2(x) dx$ converge et vaut 2.
- **2.** Montrer que $\int_{-\infty}^{0} e^{2x} dx$ converge et vaut $\frac{1}{2}$.
- **3.** Montrer que la fonction $f: x \mapsto \begin{cases} \frac{2}{5} e^{2x} & \text{pour } x \leq 0 \\ \frac{2}{5} \ln^2(x) & \text{pour } 0 < x \leq 1 \\ 0 & \text{sinon.} \end{cases}$

Exercice 13 (Gaussiennes)

- a) Montrer pour $x \ge 1$, l'encadrement : $0 \le \exp\left(-\frac{x^2}{2}\right) \le \exp\left(-x\right)$.
 - **b)** En déduire la convergence de l'intégrale : $\int_{1}^{+\infty} e^{-\frac{x^2}{2}} dx$.
- **2.** Montrer la convergence de l'intégrale $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx$. Rappeler sa valeur (c'est du cours).
- **3.** Soient $\mu \in \mathbb{R}$, et $\sigma > 0$. Par changement de variables affine, en déduire $\int_{-\infty}^{+\infty} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$.
- **4.** Quelle est la valeur de $\int_0^{+\infty} e^{-\frac{x^2}{2}} dx$?

Exercice 14 (Moments de la loi exponentielle)

Soit $\lambda > 0$ et soit X une variable aléatoire de loi exponentielle $\mathcal{E}(\lambda)$.

- 1. Rappeler l'expression de la densité f de X.
- **2.** Montrer que X admet un moment à tout ordre et que $\forall n \in \mathbb{N}, \, \mu_n(X) = \frac{n!}{\lambda^n}$. (on utilisera l'Exercice 7)
- **3.** Retrouver la valeur de la variance : $Var(X) = \frac{1}{\lambda^2}$.

Exercice 15 (La loi d'Erlang)

Soit
$$\lambda > 0$$
 et $n \in \mathbb{N}$.

On définit une fonction $f_n : \mathbb{R} \to \mathbb{R}$ par la formule $f_n : x \mapsto \begin{cases} \lambda^{n+1} \cdot \frac{x^n}{n!} \cdot e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$

1. Montrer que la fonction f_n est une fonction densité.

$$\begin{cases} 0 & \text{si } x < 0 \end{cases}$$

- (On utilisera le résultat de l'Exercice 7)
- **2.** Quelle densité reconnaît-on pour n = 0?
- 3. Pour quelle valeur de x la densité $f_n(x)$ est-elle maximisée? (le **mode** de la distribution) $(X \hookrightarrow \mathcal{E}(\lambda, n) : loi d'Erlang)$ Soit X une variable aléatoire admettant f_n pour densité.
- **4.** Montrer que la variable X admet une espérance et que : $\mathbb{E}[X] = \frac{n+1}{\lambda}$.
- 5. Montrer que la variable X admet moment d'ordre 2 et que : $\mathbb{E}[X^2] = \frac{(n+1)(n+2)}{\lambda^2}.$
- ${\bf 6.}\,$ En déduire que X admet une variance et que $Var(X) = \frac{n+1}{\lambda^2}$.