

N-Channel JFETs

PRODUCT SUMMARY						
Part Number	V _{GS(off)} (V)	$r_{DS(on)}$ Max (Ω)	I _{D(off)} Typ (pA)	t _{ON} Typ (ns)		
J105	−4.5 to −10	3	10	14		
J106	−2 to −6	6	10	14		
J107	−0.5 to −4.5	8	10	14		

FEATURES

Low On-Resistance: J105 < 3 Ω Fast Switching—t_{ON}: 14 ns Low Leakage: 10 pA

Low Leakage: 10 pALow Capacitance: 20 pF

Low Insertion Loss

BENEFITS

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response
- Eliminates Additional Buffering

APPLICATIONS

- Analog Switches
- Choppers
- Sample-and-Hold
- Normally "On" Switches
- Current Limiters

DESCRIPTION

The J105/106/107 are high-performance JFET analog switches designed to offer low on-resistance and fast switching. $r_{DS(on)}\!<\!3\,\Omega$ is guaranteed for the J105 making this device the lowest of any commercially available JFET.

The low cost TO-226AA (TO-92) plastic package is available in a wide range of tape-and-reel options (see Packaging Information). For similar products in TO-206AC (TO-52) packaging, see the U290/291 data sheet.

TO-226AA (TO-92)

Top View

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage	-25 V
Gate Current	50 mA
Storage Temperature	150°C
Operating Junction Temperature	150°C

Notes

a. Derate 2.8 mW/°C above 25°C

					Limits						
	Symbol	Test Conditions		Typ ^a	J105		J106		J107		
Parameter					Min	Max	Min	Max	Min	Max	Unit
Static											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$		-35	-25		-25		-25		٧
Gate-Source Cutoff Voltage	V _{GS(off)}	$V_{DS} = 5 \text{ V}, I_D = 1 \mu A$			-4.5	-10	-2	-6	-0.5	-4.5	
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 V,	V _{GS} = 0 V		500		200		100		mA
Cata Bayaraa Current		$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$		-0.02		-3		-3		-3	
Gate Reverse Current	I _{GSS}		T _A = 125°C	-10							
Gate Operating Current ^b	I _G	V _{DG} = 10 V,	I _D = 25 mA	-0.01							nA
Drain Cutoff Current	I _{D(off)}	V _{DS} = 5 V, V	′ _{GS} = −10 V	0.01		3		3		3	1
Drain Cutoff Current			T _A = 125°C	5							
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 V$,	I _D = 1 mA			3		6		8	Ω
Gate-Source Forward Voltage	$V_{GS(F)}$	$I_G = 1 \text{ mA}$,	V _{DS} = 0 V	0.7							V
Dynamic				•							
Common-Source Forward Transconductance ^b	9fs	$V_{DS} = 10 \text{ V}, I_{D} = 25 \text{ mA}$ f = 1 kHz		55							- mS
Common-Source Output Conductance ^b	gos			5							
Drain-Source On-Resistance	r _{ds(on)}	$V_{GS} = 0 \text{ V}, I_D = 0 \text{ mA}$ f = 1 kHz				3		6		8	Ω
Common-Source Input Capacitance	C _{iss}	$V_{DS} = 0 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		120		160		160		160	
Common-Source Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 0 \text{ V, V} $ $f = 1$	′ _{GS} = −10 V MHz	20		35		35		35	- pF
Equivalent Input Noise Voltage	e n	V _{DG} = 10 V, f = 1	I _D = 25 mA kHz	3							nV∕ √Hz
Switching				_				_		_	
Turn-On Time	t _{d(on)}	V _{DD} = 1.5 V, V _{GS(H)} = 0 V See Switching Diagram		6							
	t _r			8							ns
Turn-Off Time	t _{d(off)}			5							
Turn-On Tillie	t _f			9							1

NVA

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW $\leq\!300~\mu s$ duty cycle $\leq\!3\%.$

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)

SWITCHING TIME TEST CIRCUIT						
	J105	J106	J107			
$V_{GS(L)}$	-12V	-7V	-5V			
R _L *	50 Ω	50 Ω	50 Ω			
I _{D(on)}	28 mA	27 mA	26 mA			

^{*}Non-inductive

Input Pulse

Rise Time < 1 ns Fall Time < 1 ns Pulse Width 100 ns PRF 1 MHz

Sampling Scope

Rise Time 0.4 ns Input Resistance 10 M Ω Input Capacitance 1.5 pF

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.