Part 2 - Final Modelling

After our exploration and model spot-checking in Part 1, we will progress to applying our best models in a pipeline after some grid searches for optimal parameters and see if we can improve the result with a voting ensemble.

Show hidden markdown

Show hidden cell

Import Data

Show hidden code

Train data:							
(2056, 13)							
Id fixed	acidity	volatile aci	.dity	citric	acid	res	idual sugar
\							
0 0	8.0		0.50		0.39		2.2
1 1	9.3		0.30		0.73		2.3
2 2	7.1		0.51		0.03		2.1
3 3	8.1		0.87		0.22		2.6
4 4	8.5		0.36		0.30		2.3
chlorides	free sul	lfur dioxide	tota]	l sulfur	diox	ide	density
pH \							
0 0.073		30.0			3	9.0	0.99572
3.33							
1 0.092		30.0			6	7.0	0.99854
3.32							
2 0.059		3.0			1:	2.0	0.99660
3.52							
3 0.084		11.0			6	5.0	0.99730
3.20							
4 0.079		10.0			4	5.0	0.99444
3.20							
sulphates	alcohol	quality					
0 0.77	12.1	6					
1 0.67	12.8	6					
2 0.73	11.3	7					
3 0.53	9.8	5					
4 1.36	9.5	6					

Prepare Data

Split data into Train and Validation Sets

```
In [3]:
# Evaluate using a train and a test set
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
#numerical predictor (NP) and response locations
NP_first_loc = 'fixed acidity' #ignore col 0 which is the ID
NP_last_loc = 'alcohol'
outcome_loc = 'quality'
NP_first_iloc = train.columns.get_loc(NP_first_loc) #ignore col 0 which is the ID
#print("NP_first_iloc:",NP_first_iloc, "\n" )
NP_last_iloc = train.columns.get_loc(NP_last_loc)
#print("NP_last_iloc:",NP_last_iloc, "\n" )
outcome_iloc = train.columns.get_loc(outcome_loc)
#Original Data
X = train.loc[:,NP_first_loc:NP_last_loc]
#print("\nX shape: ", X.shape)
#print("First two rows of X:\n", X.iloc[0:2, :], "\n")
Y = train.loc[:,outcome_loc]
#print("\n\nFist 10 rows of Y: \n", Y.iloc[0:10])
#Split Data
test_size = 0.25
seed = 100 #re-evaluate with different seeds to estimate variance?
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=test_size, rand
om_state=seed)
```

Lazy Predict

Just because we found out about this package, we'll slip in a quick look at the lazy predict results to compare to what we determined in Part 1.

In [4]:

pip install lazypredict

Show hidden output

```
In [5]:
```

```
from lazypredict.Supervised import LazyClassifier

clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_val, Y_train, Y_val)
models
```

100%| 29/29 [00:08<00:00, 3.34it/s]

Out[5]:

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model					
AdaBoostClassifier	0.26	0.30	None	0.29	0.20
LinearDiscriminantAnalysis	0.59	0.30	None	0.57	0.04
QuadraticDiscriminantAnalysis	0.57	0.28	None	0.55	0.01
LogisticRegression	0.60	0.28	None	0.57	0.09
BernoulliNB	0.57	0.27	None	0.55	0.02
PassiveAggressiveClassifier	0.50	0.27	None	0.49	0.02
RandomForestClassifier	0.59	0.27	None	0.56	0.48
NearestCentroid	0.25	0.27	None	0.31	0.01
SGDClassifier	0.57	0.26	None	0.54	0.08
CalibratedClassifierCV	0.59	0.26	None	0.54	1.93
LGBMClassifier	0.55	0.26	None	0.53	3.84
ExtraTreesClassifier	0.57	0.26	None	0.54	0.38
SVC	0.58	0.26	None	0.54	0.24
GaussianNB	0.54	0.26	None	0.53	0.02
Perceptron	0.51	0.25	None	0.48	0.02
BaggingClassifier	0.54	0.25	None	0.52	0.12
LinearSVC	0.58	0.25	None	0.52	0.55
RidgeClassifier	0.58	0.24	None	0.51	0.02
RidgeClassifierCV	0.58	0.24	None	0.51	0.02
ExtraTreeClassifier	0.46	0.24	None	0.45	0.02
DecisionTreeClassifier	0.46	0.24	None	0.46	0.03
LabelSpreading	0.45	0.24	None	0.45	0.24
LabelPropagation	0.45	0.24	None	0.45	0.19
KNeighborsClassifier	0.51	0.23	None	0.47	0.04
DummyClassifier	0.43	0.17	None	0.26	0.01

The lazy prediction confirms that an LDA model is a good option.

Tune LDA model

Grid Search for solver

```
In [6]:
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model = LinearDiscriminantAnalysis()
# define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# define grid
grid = dict()
grid['solver'] = ['svd', 'lsqr', 'eigen']
# define search
search = GridSearchCV(model, grid, scoring='accuracy', cv=cv, n_jobs=-1)
# perform the search
results = search.fit(X_train, Y_train)
# summarize
print('Mean Accuracy: %.3f' % results.best_score_)
print('Config: %s' % results.best_params_)
```

```
Mean Accuracy: 0.563
Config: {'solver': 'lsqr'}
```

Grid Search for Shrinkage parameter

In [7]:

```
from numpy import arange
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# define model
model = LinearDiscriminantAnalysis(solver='lsqr')
# define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
# define grid
grid = dict()
grid['shrinkage'] = arange(0, 1, 0.01)
# define search
search = GridSearchCV(model, grid, scoring='accuracy', cv=cv, n_jobs=-1)
# perform the search
results = search.fit(X_train, Y_train)
# summarize
print('Mean Accuracy: %.3f' % results.best_score_)
print('Config: %s' % results.best_params_)
```

Mean Accuracy: 0.563 Config: {'shrinkage': 0.0}

Featue Extraction and Modeling Pipeline

In [8]: # Create a pipeline that extracts features from the data then creates a model from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline from sklearn.pipeline import FeatureUnion from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # create feature union features = [] features.append(('pca', PCA(n_components=8))) #features.append(('select_best', SelectKBest(k=9))) feature_union = FeatureUnion(features) #define test harness kfold = KFold(n_splits=10, random_state=100, shuffle=True) # create pipeline estimators = [] estimators.append(('feature_union', feature_union)) #estimators.append(('standardize', StandardScaler())) #estimators.append(('lda', LinearDiscriminantAnalysis(solver='lsqr', shrinkage = (0.0))estimators.append(('lda', LinearDiscriminantAnalysis())) model = Pipeline(estimators) # evaluate pipeline results = cross_val_score(model, X_train, Y_train, cv=kfold) print("Model Cross Validation result: %f (%f)" % (results.mean(), results.std ()))

Model Cross Validation result: 0.571944 (0.037023)

Results proved slightly better with default settings.

Voting Ensemble

```
In [9]:
```

```
# Create a pipeline that extracts features from the data then creates a model
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from lightqbm import LGBMClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
#define test harness
kfold = KFold(n_splits=10, random_state=100, shuffle=True)
# create pipeline
estimators_C = []
estimators_C.append(('lda', LinearDiscriminantAnalysis()))
estimators_C.append(('LGBM_C', LGBMClassifier()))
estimators_C.append(('RF_C', RandomForestClassifier()))
# create the ensemble model
ensemble_C = VotingClassifier(estimators_C, voting = 'hard')
results_C = cross_val_score(ensemble_C, X_train, Y_train, cv=kfold)
print("Accuracy: %.3f (%.3f)" % (results_C.mean(), results_C.std()))
```

Accuracy: 0.573 (0.046)

The best results is attained by the single LDA model