Lista de Exercícios 1: Parte II Projeto e Análise de Algoritmos Prof^a. Jerusa Marchi

- 1. Acesse https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation e faça os *Quizzes* da pag.
- 2. Em cada uma das seguintes situações, indique se f=O(g) ou $f=\Omega(g)$ ou ambos (caso $f=\Theta(g)$):

	f(n)	g(n)			f(n)	q(n)
(a)	n - 100	n - 200	(i	<u> </u>	$\frac{(\log n)^{\log n}}{(\log n)^{\log n}}$	<i>5</i> ()
(b)	$n^{rac{1}{2}}$	$n^{\frac{2}{3}}$	`.		_	$\frac{n}{\log n}$
(c)	100n + log n	$n + (\log n)^2$	(j		$\sqrt{n} \ n^{rac{1}{2}}$	$(log \ n)^3 \ 5^{lg \ n}$
(d)	n log n	$10n \ log \ 10n$	(k	_		3^n
(e)	log~2n	$log \ 3n$	(1	_	$n2^n$ 2^n	2^{n+1}
(f)	$10 \log n$	$log(n^2)$	(n			$\frac{2^{n-1}}{2^n}$
(g)	$rac{n^2}{log\;n}$	$n (log n)^2$	(n	(n!	$\frac{2^{n}}{2(\lg n)^2}$
(h)	$n^{0,1}$	$(\log n)^{10}$	(0))	$(\log n)^{\log n}$	$Z^{(ig^{-1i})}$

- 3. Para os exercícios da lista anterior, estabeleça suas complexidades utilizando notação assintótica.
- 4. São dados 2n números distintos distribuídos em dois arrays de n elementos A e B ordenados de modo que

$$A[1] > A[2] > \ldots > A[n]$$
e $B[1] > B[2] > \ldots > B[n]$

O problema é achar o n-ésimo maior número dentre estes 2n elementos.

- (a) Obtenha o limite inferior para o número de comparações necessárias para resolver este problema
- (b) Apresente um algoritmo cuja complexidade no pior caso seja igual ao valor obtido acima, ou seja um algoritmo ótimo