Intro to intro to statistics

Frank Edwards 9/6/21

Welcome to Graduate statistics training!

Stats camp goals

- 1. Get your software set up
- 2. Remind you what these things mean:

$$log(x)$$

$$y = 2 + 3x$$

$$\frac{d}{dx}x^3 = 3x^2$$

$$\sum_{x=1}^{10} x$$

Today: Let's install software

Step 1 Install R. https://cran.r-project.org/

Step 2

Install RStudio. https://www.rstudio.com/

Today: Let's install software

Step 1

```
Install R. https://cran.r-project.org/
```

Step 2

Install RStudio. https://www.rstudio.com/

• Does anyone have problems with regular access to a computer that can run R?

Problems?

Getting started in RStudio

 $\boldsymbol{\cdot}\,$ The script and the console

Getting started in RStudio

- · The script and the console
- · Make it pretty! (You will be spending lots of time here...)
 - Themes
 - · Pane layouts

Getting started in RStudio: packages

Install packages

install.packages("tidyverse")

Getting started in RStudio: packages

· Load packages

```
library(tidyverse)
```

```
## -- Attaching packages -----
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.3 v dplyr 1.0.7
## v tidyr 1.1.3
                 v stringr 1.4.0
## v readr 2.0.0 v forcats 0.5.1
## -- Conflicts ------
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```

Problems?

2 + 2

2 * 2

2 / 2

2 ^ 3

sqrt(4)

```
# I am a comment! I help you read code!
# the <- operator makes assignments
# Make a new variable called 'x', set it equal to 2
x <- 2
x^2</pre>
```

Compute the following in R (with x = 2)

x³

- x³
- · 2x

- x³
- · 2x
- $\frac{x}{2}$

- x³
- · 2x
- $\frac{x}{2}$
- $(2+x)^2$

- x³
- · 2x
- $\frac{x}{2}$
- $(2+x)^2$

· Are you running RStudio?

- · Are you running RStudio?
- Have you installed tidyverse?

- · Are you running RStudio?
- · Have you installed tidyverse?
- When you type 2==3 in the console and hit enter, what does it say?

- · Are you running RStudio?
- · Have you installed tidyverse?
- When you type 2==3 in the console and hit enter, what does it say?

Exciting! You are programming in R!

Break

Welcome back: math time!

Agenda today

- 1. Math notation and key concepts
- 2. Exponents, logarithms
- 3. Lines and graphs

Real numbers and integers

Real numbers (doubles)

- · Any continuous number
- \cdot E.g. 4, 4.189, 2/3, π

Integers

- · Any whole number
- · 10, -10, 24, 87

Variables

- · May take on any value
- Represented by letters, such as x, y, z
- \cdot Can be used in any mathematical operation

Functions

- \cdot Maps each element of set x to an element of set y
- Often denoted by f, g, h
- $\cdot f(x) = 2x + 3$

Parameters (statistics)

- · Variable that represent a feature of a population
- Represented by Greek letters, such as μ,σ,ε

Summation

Represented as \sum , with integer begin and end points

$$\sum_{x=1}^{3} x$$

Summation

Represented as \sum , with integer begin and end points

$$\sum_{x=1}^{3} x$$

$$\sum_{x=1}^{3} x = 1 + 2 + 3 = 6$$

Summation in R

In R, we can calculate a sum using the sum() function

```
# make an integer vector from 1 to 3
x<-1:3
# x<-c(1,2,3) is equivalent
sum(x)</pre>
```

[1] 6

Summation review

Compute the following by hand, and then in R

$$\sum_{x=3}^{8}(x+1)$$

$$\sum_{x=1}^{4} 2x$$

Exercises (solutions)

Compute the following in R

$$\sum_{x=3}^{8}(x+1)$$

$$\sum_{x=1}^{4} 2x$$

Exercises (solutions)

Compute the following in R

$$\sum_{x=3}^{8} (x+1)$$

$$\sum_{x=1}^{4} 2x$$

```
x < -c(1, 2, 3, 4) \# or 1:4

sum(2*x)
```

Products

Represented as \prod , with integer begin and end points

$$\prod_{x=1}^{4} x$$

Products

Represented as \prod , with integer begin and end points

$$\prod_{x=1}^{4} x$$

$$\prod_{x=1}^{4} x = 1 \times 2 \times 3 \times 4$$

Products

Represented as \prod , with integer begin and end points

$$\prod_{x=1}^{4} x$$

$$\prod_{x=1}^{4} x = 1 \times 2 \times 3 \times 4$$

In R:

[1] 24

Exponents and logarithms

Exponents

 a^n Is equal to a multiplied by itself n times

Exponents

 a^n Is equal to a multiplied by itself n times

•
$$2^3 = 2 \times 2 \times 2 = 8$$

Exponents

aⁿ Is equal to a multiplied by itself n times

•
$$2^3 = 2 \times 2 \times 2 = 8$$

$$\cdot 5^4 = 5 \times 5 \times 5 \times 5 = 625$$

In R, we can calculate exponents using the ^

2^3

[1] 8

5^4

[1] 625

$$x^1 = x$$

$$x^1 = x$$

$$x^0 = 1$$

$$x^1 = x$$

$$x^0 = 1$$

$$x^k + x^l = x^{k+l}$$

$$x^{1} = x$$

$$x^{0} = 1$$

$$x^{k} + x^{l} = x^{k+l}$$

$$(x^{k})^{l} = x^{kl}$$

$$x^{1} = x$$

$$x^{0} = 1$$

$$x^{k} + x^{l} = x^{k+l}$$

$$(x^{k})^{l} = x^{kl}$$

 $(xy)^k = x^k \cdot y^k$

$$x^{1} = x$$

$$x^{0} = 1$$

$$x^{k} + x^{l} = x^{k+l}$$

$$(x^{k})^{l} = x^{kl}$$

 $(xy)^k = x^k \cdot y^k$

$$\left(\frac{x}{y}\right)^k = \left(\frac{x^k}{y^k}\right)$$

$$\left(\frac{x}{y}\right)^k = \left(\frac{x^k}{y^k}\right)$$
$$\frac{x^k}{x^l} = x^{k-l}$$

$$\left(\frac{x}{y}\right)^k = \left(\frac{x^k}{y^k}\right)$$
$$\frac{x^k}{x^l} = x^{k-l}$$
$$x^{1/k} = \sqrt[k]{x}$$

Exponents in R

```
x<-4
x^3
```

[1] 64

Exponents in R

```
x<-4
x^3
```

[1] 64

$$x^{(2+3)}$$

[1] 1024

Exponents in R

```
X < -4
x^3
## [1] 64
x^{(2+3)}
## [1] 1024
## for base e, use exp()
exp(4)
## [1] 54.59815
```

$$\log_c(a) = x$$
$$c^x = a$$

$$\log_c(a) = x$$
$$c^x = a$$

$$3^2 = 9$$

$$\log_c(a) = x$$
$$c^x = a$$

$$c^{x}=a$$

$$3^2 = 9$$

$$\log_3(9)=2$$

Common logarithms

- The most common log bases are 2, 10, and e = 2.718
- · Log with base e is called a natural log, ln
- The R function log() has a default base e
- \cdot We use log base e to model many exponential growth processes

$$10^2 = 100$$

$$10^2 = 100$$

$$\log_{10}(100) = 2$$

$$10^2 = 100$$

$$\log_{10}(100) = 2$$

$$e^2 = 7.389056$$

$$10^2 = 100$$

$$\log_{10}(100) = 2$$

$$e^2 = 7.389056$$

$$\log_{e}(7.389056)=2$$

Logarithm rules

$$\log(x \cdot y) = \log(x) + \log(y)$$

Logarithm rules

$$\log(x \cdot y) = \log(x) + \log(y)$$
$$\log(x^n) = n \log(x)$$

Logarithm rules

$$\log(x \cdot y) = \log(x) + \log(y)$$
$$\log(x^n) = n \log(x)$$
$$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$

Logarithms in R

For statistics, it is safe to assume that \log means \ln . In R, this is the default

```
log(10)

## [1] 2.302585

log(10, base = 10)

## [1] 1
```

Exercises

Compute the following in R. Assume x = 6

- 1. x^4
- 2. $2x^{5+x}$
- 3. *e*^x
- 4. log(x)
- 5. log(2x + 3)
- 6. $log(\frac{1}{2x})$

Coordinates and lines

The coordinate plane

Plotting points

For coordinate pairs $(x_1, y_1), (x_2, y_2), (x_3, y_3)$, we can plot each point along an x and y axis.

Example: (0, -2), (4, 3), -6, 8)

Lines

The typical equation for a line is y = mx + b where m is the slope and by is the y-intercept.

Lines

The typical equation for a line is y = mx + b where m is the slope and by is the y-intercept.

You will often see a line expressed as a regression equation:

$$y = \beta_0 + \beta_1 x$$

where β_0 is the y-intercept and β_1 is the slope.

The slope

Slope measures the steepness of a line. A line with a positive slope has increasing values of y as x increases. A line with a negative slope has decreasing values of y for increasing values of x.

The slope

Slope measures the steepness of a line. A line with a positive slope has increasing values of y as x increases. A line with a negative slope has decreasing values of y for increasing values of x.

We can calculate the slope with two coordinates on the line $(x_1,y_1),(x_2,y_2)$

The slope

Slope measures the steepness of a line. A line with a positive slope has increasing values of y as x increases. A line with a negative slope has decreasing values of y for increasing values of x.

We can calculate the slope with two coordinates on the line $(x_1,y_1),(x_2,y_2)$

The slope is the ratio of the difference in y values to the difference in x values.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

The y-intercept

The y-intercept is the value of y when x = 0. If we have the value of one point on the line, and the slope, we can obtain the y-intercept

The y-intercept

The y-intercept is the value of y when x = 0. If we have the value of one point on the line, and the slope, we can obtain the y-intercept

$$b = y_1 - m \cdot x_1$$

Example: intercept = 0, slope = 1

Example: intercept = 0, slope = 0.2

Example: intercept = 0, slope = -1

Example: intercept = 5, slope = -1

Example: intercept = -5, slope = -1

Example

Given the points (1,3) and (4,6), the slope is $m=\frac{6-3}{4-1}=1$ and the y-intercept is $b=3-1\cdot 1=2$. The equation of the line is y=1x+5

Functions

Functions, in general

A function maps each element in a set X to an element in set Y

• Linear function: f(x) = x + 5

Functions, in general

A function maps each element in a set X to an element in set Y

- Linear function: f(x) = x + 5
- Quadratic function: $f(x) = x^2 + 2x + 3$

Functions, in general

A function maps each element in a set X to an element in set Y

- Linear function: f(x) = x + 5
- Quadratic function: $f(x) = x^2 + 2x + 3$
- Exponential function: $f(x) = e^{2x} + 6$

Graphical forms of functions: linear

Graphical forms of functions: quadratic

Graphical forms of functions: exponential

Graphical forms of functions: logarithmic

We can easily define functions in R.

$$f(x) = 2(x+3)^3$$

We can easily define functions in R.

$$f(x) = 2(x+3)^3$$

$$f_x < -function(x) \{2 * (x + 3)^2\}$$

 $f_x(3)$

```
## [1] 72
```

We can easily define functions in R.

$$f(x) = 2(x+3)^3$$

$$f_x < -function(x) \{2 * (x + 3)^2\}$$

 $f_x(3)$

$$g(x) = \frac{x-1}{5}$$

We can easily define functions in R.

$$f(x) = 2(x+3)^3$$

$$f_x < -function(x) \{2 * (x + 3)^2\}$$

 $f_x(3)$

[1] 72

$$g(x) = \frac{x-1}{5}$$

$$g_x$$
-function(x){(x-1)/5}
 g_x (4)

[1] 0.6

Exercises

Define and evaluate the following functions in R. Assume x=2

1.
$$f(x) = 2x$$

2.
$$f(x) = \frac{x}{2}$$

3.
$$f(x) = 2(x+1)^3$$

Matrices

What is a matrix?

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

What is a matrix?

A matrix is a rectangular array of numbers, with dimensions expressed as rows \times columns

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

So A is a 3 \times 3 matrix, B is a 3 \times 2 matrix, and C is a 2 \times 3 matrix.

Matrix notation

We can identify each element of a matrix with its column and row position, where x_{ij} refers to the value in the *i*th row and *j*th column of matrix X. Note that we use uppercase letters for a matrix, and lowercase letters for elements of a matrix.

$$\mathbf{X} = \left[\begin{array}{ccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{array} \right]$$

Vectors

Vectors are one-dimensional arrays of values. Either an n-row column or an n-column row:

OR

Special matrices

A diagonal matrix has zero values except on the diagonal:

$$\left[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 9
\end{array}
\right]$$

An identity matrix is a special case of a diagonal matrix, where all values on the diagonal are equal to 1

$$\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]$$

These matrices are also symmetric, where all $x_{ij} = x_{ji}$. Symmetric matrices must be square.

Matrix operations

Matrix transpose

A transpose interchanges the rows and columns of a matrix, or rotates it. The dimensions are switched, so an $n \times k$ matrix becomes a $k \times n$ matrix. We denote a transpose with a T

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} B^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Addition and subtraction

Two matrices (or vectors) can be added or subtracted only if they have identical dimensions. Then add or substract the correspoding elements of the matrices.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix}$$

Multplication by scalar

Matrices and vectors can be multiplied by constant values (called scalars).

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} 4B = \begin{bmatrix} 4 & 8 & 12 \\ 16 & 20 & 24 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} 3C = \begin{bmatrix} 3 \\ 6 \\ 9 \\ 12 \end{bmatrix}$$