Детектирование активности голоса основанное на автокорреляционной функции с использованием вейвлет преобразование и оператора энергии Тигера

Voice Activity Detection(VAD) Based on Auto-Correlation Function Using Wavelet Transform and Teager Energy Operator

Что такое и Зачем нужно детектирование

- VAD предоставляет возможность различить речь и шум, является основной частю разлиных систем речевой коммуникации, таких как кодирование речи, распознавание, hand-free телефонии и устрания эха.
- Пример:
- VAD схема используется в коммуникациях основанных на GSM для удлинения времени работы батареи клиента путём прерывания передачи сигнала при обнаружении пауз в речи.

Для сжатия речевых сигналов и уменьшения трафика в VoIP системах.

Дискретноей вейвлет преобразование (Discrete wavelet transform- DWT)

Трехуровневая вейвлет декомпозиция с использованием фильтров

Опертор енергии Тигера

(Teager Energy Operator – TEO)

$$\psi_c[s(t)] = [\dot{s}(t)]^2 - s(t)\ddot{s}(t)$$

$$\dot{s} = ds/dt$$

$$\psi_d[s(n)] = s(n)^2 - s(n+1)s(n-1)$$

Эксперименты показывают что значение энергии Тигера для речи много больше чем для шума.

Полосовая автокорреляционная функция (Subband Auto-Correlation Function -SACF)

$$R(k) = \sum_{n=0}^{p-k} s(n)s(n+k), \quad k = 0,1,.....p$$
 Автокорреляционная функция

Полосовая – применяется к частотным полосам сигнала, полученным при помощи вейвлет преобразования.

Полосовая автокорреляционная функция (Subband Auto-Correlation Function -SACF)

Hормализовання - R(0) = 1

D1, D2, D3, A3 – полосы сигнала после DWT

Средняя дельта полосовая автокореляционная функция (Mean Delta Subband Signal Auto-Correlation Function -MDSACF)

М

Огибающая речевой актитвности(Speech Activity Envelope -SAE)

Средняя дельта полосовая автокореляционная функция (Mean Delta Subband Signal Auto-Correlation Function -MDSACF)

14

Огибающая речевой актитвности(Speech Activity Envelope -SAE)

Принятие решения Речь-Шум

$$T_s = \mu_n + \alpha_s \cdot \sigma_n$$

 $T_s = \mu_n + \alpha_s \cdot \sigma_n$, - адаптивный порог речи

$$T_n = \mu_n + \beta_n \cdot \sigma_n,$$

 $T_n = \mu_n + \beta_n \cdot \sigma_n$, - адаптивный порог шума

$$\mu_n(t) = \gamma \cdot \mu_n(t-1) + (1-\gamma) \cdot SAE(t),$$

$$\sigma_n(t) = \sqrt{[SAE_{buffer}^2]_{mean} - [\mu_n(t)]^2} ,$$

$$\alpha_s \sim 5$$
 $\beta_n \sim -1$
 $\gamma \sim 0.95$

$$[\mathit{SAE}_{\mathit{buffer}}^{2}]_{\mathit{mean}}(t) = \gamma \cdot [\mathit{SAE}_{\mathit{buffer}}^{2}]_{\mathit{mean}}(t-1) + (1-\gamma) \cdot \mathit{SAE}(t)^{2} \,.$$

if
$$(SAE(t) > T_s)$$
 $VAD(t)=1$
else if $(SAE(t) < T_n)$ $VAD(t)=0$;
else $VAD(t)=VAD(t-1)$.

- принятие решения

Принятие решения Речь-Шум

Результаты. Качество

		Вероятность верного решения(%)			Вероятность неверного решения(%)		
Тип	С/Ш (dВ)	Данный VAD	Chen's VAD	G.729B VAD	Данный VAD	Chen's VAD	G.729B VAD
Автом обиль ный	30	99.1	97.3	92.1	6.2	6.9	7.3
	10	97.3	96.1	86.5	8.6	9.3	16.3
	-5	92.6	93.5	72.3	10.5	10.9	21.5
Завод ской	30	96.9	97.2	96.9	7.6	10.3	9.1
	10	93.1	94.1	82.3	8.8	13.2	18.9
	-5	87.2	85.6	70.7	10.9	15.4	26.4
Белый шум	30	99.1	97.2	98.4	1.3	1.9	2.0
	10	98.5	98.1	86.3	1.5	1.8	3.6
	-5	93.2	92.9	60.5	1.6	2.3	3.3
Среднее		95.22	94.67	82.89	6.33	8	12.04

Результаты. Скорость вычисления

Тип VAD	Время вычисления свойства	Время принятия решения		
G.729B	0.048 s	0.023 s		
Chen'VAD	4.126 s	0.098 s		
Данный VAD	0.23 s	0.12 s		

Bcë.

Ссылка:

Bing-Fei Wu, **Kun-Ching Wang** "Voice Activity Detection Based on Auto-Correlation Function Using Wavelet Transform and Teager Energy Operator" Computational Linguistics and Chinese Language Processing Vol. 11, No. 1, March 2006, pp. 87-100