Methodology for Assessing the State of the Dractice for Domain Y

Practice for Domain A				
Spencer Smith McMaster University, Canada smiths@mcmaster.ca				
Jacques Carette McMaster University, Canada carette@mcmaster.ca				
Olu Owojaiye McMaster University, Canada owojaiyo@mcmaster.ca				
Peter Michalski McMaster University, Canada michap@mcmaster.ca				
Ao Dong McMaster University, Canada donga9@mcmaster.ca				
— Abstract —				
2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro				
Keywords and phrases Author: Please fill in \keywords macro				
Contents				
1 Introduction				
2 Overview of Steps in Assessing Quality of the Domain Software				
3 Identify Candidate Software				
4 Domain Analysis				
5 Empirical Measures 5.1 Raw Data				
6 User Experiments				

7 Analytic Hierarchy Process

8 Quality Specific Measures

8.3

8.4

 $\mathbf{2}$

 $\mathbf{2}$

2

4

4

5

2 Methodology for Assessing the State of the Practice for Domain X

8.7	Performance [owner —PM]	
8.8	Usability [owner —JC]	
8.9	Maintainability [owner —PM]	
8.10	Reusability [owner —PM]	
	Portability [owner —PM]	
	Understandability [owner —JC]	Į.
	Interoperability [owner —AD]	1
	Visibility/Transparency [owner —AD]	Į.
	Reproducibility [owner —SS]	Į.
	Productivity [owner —AD]	Į.
	Sustainability [owner —SS]	L
	Completeness [owner —AD]	L
	Consistency [owner —AD]	١
	Modifiability [owner —JC]	
	Traceability [owner —JC]	
	Unambiguity [owner—SS]	
	Verifiability [owner —SS]	
	Abstract [owner —SS]	
Usir	ng Data to Rank Family Members	5

1 Introduction

Purpose and scope of the document. [Needs to be filled in. Should reference the overall research proposal, and the "state of the practice" exercise in particular. —SS]

Overview of Steps in Assessing Quality of the Domain Software

- 1. Identify domain. (Provide criteria on a candidate domain.)
- 2.

3 Identify Candidate Software

4 Domain Analysis

Commonality analysis. Follow as for mesh generator (likely with less detail).

5 Empirical Measures

5.1 Raw Data

Measures that can be extracted from on-line repos.

[Still at brainstorm stage. —AD]

- number of contributors
- number of watches
- number of stars
- number of forks
- number of clones
- number of commits

Smith et al. 3

- number of total/code/document files
- lines of total/logical/comment code
- lines/pages of documents (can pdf be extracted?)
- number of total/open/closed/merged pull requests
- number of total/open/closed issues
- number of total/open/closed issues with assignees

5.2 Processed Data

Metrics that can be calculated from the raw data.

[Still at brainstorm stage. —AD]

- percentage of total/open/closed issues with assignees Visibility/Transparency
- lines of new code produced per person-day Productivity
- lines/pages of new documents produced per person-day Productivity
- number of issues closed per person-day Productivity
- percentage of comment lines in the code maintainability [Not Ao's qualities —AD]

5.3 Tool Test - HubListener

[This section is currently a note of unorganized contents. Most parts will be removed or relocated. —AD]

GitHub repo

Raw:

- Number of Files
- Number of Lines
- Number of Logical Lines
- Number of Comments

Cyclomatic: Intro

Cyclomatic Complexity

Halstead: Intro

- Halstead Effort
- Halstead Bugs
- Halstead Length
- Halstead Difficulty
- Halstead Time
- Halstead Vocabulary
- Halstead Volume

Environment 1:

- Hardware: laptop
- OS: Windows 10
- Node.js version: 12
- npm version: 6
- Does it work: No
- Errors: errors during "npm install" step

Environment 2:

- Hardware: Google Cloud VM
- OS: Ubuntu 18.04

4 Methodology for Assessing the State of the Practice for Domain X

- Node.js version: 8npm version: 3Does it work: No
- Errors: errors during "npm install" step

Environment 3:

■ Hardware: Google Cloud VM

OS: Ubuntu 18.04
Node.js version: 8
npm version: 6
Does it work: Yes

Errors: see following tests

Test 1 on environment 3:

- Repo: 3D Slicer Github repo
- Command line or web app: web app
- Quick Analyze checked: Yes
- Time Consumption: 96s
- Errors/problems: data of total/open/closed issues are missing, data of Cyclomatic and Halstead metrics are missing.

Test 2 on environment 3:

- Repo: 3D Slicer Github repo
- Command line or web app: web app
- Quick Analyze checked: NoTime Consumption: 4.3hrs
- Errors/problems: the web app lost response after the analysis

Test 3/4 on environment 3:

- Ao's repo Github repo
- Command line or web app: web app
- Quick Analyze checked: Yes/No
- Time Consumption: 121s/117s
- Errors/problems: most data are missing

Test 5/6 on environment 3:

- HubListener Github repo
- Command line or web app: web app
- Quick Analyze checked: Yes/No
- Time Consumption: 49s/131s
- Errors/problems: none

[This citation needs to be deleted later. It's here because my compiler doesn't work with 0 citations —AD] Emms [2019]

6 User Experiments

Describe experiments with users to assess usability, performance etc.

7 Analytic Hierarchy Process

Describe process. Domain expert review.

Smith et al. 5

8	Quality Specific Measures
8.1	Installability [owner —00]
8.2	Correctness [owner —OO]
8.3	Verifiability/Testability [owner —OO]
8.4	Validatability [owner —OO]
8.5	Reliability [owner —00]
8.6	Robustness [owner —PM]
8.7	Performance [owner —PM]
8.8	Usability [owner —JC]
8.9	Maintainability [owner —PM]
8.10	Reusability [owner —PM]
8.11	Portability [owner —PM]
8.12	Understandability [owner —JC]
8.13	Interoperability [owner —AD]
8.14	Visibility/Transparency [owner —AD]
8.15	Reproducibility [owner —SS]
8.16	Productivity [owner —AD]
8.17	Sustainability [owner —SS]
8.18	Completeness [owner —AD]
8.19	Consistency [owner —AD]
8.20	Modifiability [owner —JC]
8.21	Traceability [owner —JC]
8.22	Unambiguity [owner —SS]
8.23	Verifiability [owner —SS]
8.24	Abstract [owner —SS]
9	Using Data to Rank Family Members

Describe AHP process (or similar).

6 REFERENCES

References

Steve Emms. 16 best free linux medical imaging software. https://www.linuxlinks.com/medicalimaging/, 2019. [Online; accessed 02-February-2020].