

Semester: July 2023-October 2023

Maximum Marks: 30 Examination: In-Semester Examination Duration: 1hr. 15 min.

Programme code: 01
Programme: B. Tech Computer Engineering Class: SY

Name of the Constituent College:
K. J. Somaiya College of Engineering COMP

Course Code: 116U01C301 Name of the Course:

Integral Transform and Vector Calculus

Question No.		Max. Marks	СО	BT
Q.1	Attempt any THREE of the following	74 JULY 1	CO1	
(a)	Find the Laplace transform of $f(t) = t e^t \sin 2t \cos t$	06		LEVEL APP
(b)	Evaluate $\int_0^\infty \frac{\cos 6t - \cos 4t}{t} dt$ using Laplace transforms.	06		LEVEL APP
(c)	Find the inverse Laplace transforms of $\left(\frac{1}{(s-2)(s+2)^2}\right)$	06		LEVEL APP
(d)	Find the inverse Laplace transforms of $log \left(1 + \frac{1}{s^2}\right)$	06		LEVEL
Q.2	Attempt any ONE of the questions set (a) or (b)			
(a)	(i) Write the Fourier series of $f(x)$ in the interval $0 \le x \le 2\pi$ and formula for Fourier constants a_0 , a_n and b_n .	01		LEVEL :
	(ii) For $f(x) = \left(\frac{\pi - x}{2}\right)^2$, $0 \le x \le 2\pi$ obtain Fourier constants a_0 , a_n and b_n	05		
	(iii) Write the Fourier series of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 \le x \le 2\pi$	01		
	(iv) Deduce $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$ from Fourier series	01		
	(v) Deduce $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ from Fourier series	01	Y	
	(vi) Deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$	01		

	(vii) By using Parseval's identity prove that $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots$	02		
(b)	(i) Define Even function. Examine for $f(x) = x^2, -\pi \le x \le \pi$	01	aximum M ogramme c ogramme:	LEVEL 3
	(ii) Write the Fourier series of even function $f(x)$ in the interval $-\pi \le x \le \pi$ and formula for Fourier constants a_0 , a_n and b_n .	01	me of the c J. Somaly: corse Cede	
	(iii) For $f(x) = x^2, -\pi \le x \le \pi$ obtain Fourier constants a_0 , a_n and b_n .	04	noitzai	
	(iv) Write the Fourier series of $f(x) = x^2$ in the interval $-\pi \le x \le \pi$	01	A LV	
	(v) Deduce $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$ from Fourier series	01		
	(vi) Deduce $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ from Fourier series	01		
	(vii) Deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$	01	ad res	
	(viii) By using Parseval's identity prove that $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots$	02		