

IN THE CLAIMS:

The text of all pending claims, (including withdrawn claims) is set forth below. Cancelled and not entered claims are indicated with claim number and status only. The claims as listed below show added text with underlining and deleted text with ~~strikethrough~~. When strikethrough cannot easily be perceived, or when five or fewer characters are deleted, [[double brackets]] are used to show the deletion. The status of each claim is indicated with one of (original), (currently amended), (cancelled), (withdrawn), (new), (previously presented), or (not entered).

Please AMEND claims 1-8 in accordance with the following:

- a 5
1. (CURRENTLY AMENDED) An acoustic signal processor comprising:
an input unit into which acoustic signals are input;
a detector determination unit for detecting determining a frequency band having the a
highest energy level out of the among frequency bands constituting comprising the input
acoustic signals input into the input unit; and
a variable equalizer having characteristic for maintaining the energy level of the acoustic
signals input into the input unit substantially at a constant level for frequency bands lower than
the frequency band detected determined by said the detector determination unit, and for
increasing the amplification degree of the energy level of the acoustic signals input into the input
unit as the frequency increases for the frequency bands higher than the frequency band
detected determined by said the detector determination unit.
 2. (CURRENTLY AMENDED) The acoustic signal processor according to Claim
claim-1, wherein said the variable equalizer has a 6-[dB] db/octave high pass filter characteristic.
 3. (CURRENTLY AMENDED) The acoustic signal processor according to Claim
claim 1, wherein further comprising a delay circuit for providing at an input side of the variable
equalizer to provide a delay time, corresponding to a response delay time unique to said the
variable equalizer, to the input acoustic signals, is inserted at the input side of the variable
equalizer.

4. (CURRENTLY AMENDED) The acoustic signal processor according to Claim claim 1, wherein further comprising an A/D converter ~~is inserted at the~~ an output side of ~~said~~ the variable equalizer.

5. (CURRENTLY AMENDED) The acoustic signal processor according to Claim claim 1, wherein the a rise frequency of the variable equalizer shifts to ~~the~~ a low frequency side as the energy level of the input acoustic signals decreases, and the rise frequency of the variable equalizer shifts to ~~the~~ a high frequency side as the energy level of the input acoustic signals increases.

a5
cont

6. (CURRENTLY AMENDED) The acoustic signal processor according to Claim claim 1, wherein the amplification degree of the variable equalizer is ~~in the~~ approximately 15 [dB] db to 25 [dB] range db.

7. (CURRENTLY AMENDED) The acoustic signal processor according to Claim claim 3, wherein the response time of ~~said~~ the variable equalizer is 5 [msec] msec or less when ~~the~~ a high pass filter characteristic shifts to ~~the~~ a high frequency side, and is 10 [msec] msec or less when the high pass filter characteristic shifts to ~~the~~ a low frequency side.

8. (CURRENTLY AMENDED) An acoustic signal processor, comprising:
an A/D converter ~~for~~ digitizing input acoustic signals; and
a processor ~~comprised of~~ comprising a micro-processor unit or a digital signal processor ~~for generating~~ to generate digital acoustic signals, ~~performing~~ perform frequency analysis on the digital acoustic signals input from ~~said~~ the A/D converter, and ~~amplifying~~ the amplify frequency bands higher than ~~the~~ a frequency band at which ~~the~~ an energy level is ~~the~~ highest among the digital acoustic signals input from the A/D converter.