Algebraic Geometry 2 MasterMath Course, Spring 2018

Carel Faber and Robin de Jong

The spectrum of a ring

Rings will be commutative with 1.

Let R be a ring. We define the *spectrum* of R, denoted Spec(R).

As a set, $\operatorname{Spec}(R)$ simply consists of the prime ideals of R. We write [P] for the point (element) of $\operatorname{Spec}(R)$ corresponding to the prime ideal P of R.

We make $\operatorname{Spec}(R)$ into a topological space as follows: the closed sets will be the sets

$$V(A) = \{ [P] \mid P \supseteq A \},\$$

where $A \subseteq R$ is an arbitrary ideal of R.

Exercise 1.1 asks you to show that this defines a topology on Spec(R). It is called the *Zariski topology*.

The following open sets play a crucial role. For $f \in R$, define D(f) as

$$\{[P] \mid f \notin P\};$$

this is called the distinguished open set associated to f.

It is easy to see that

$$\operatorname{Spec}(R) - V(A) = \cup_{f \in A} D(f),$$

so the distinguished open sets form a basis of the topology.

Exercise 1.3(i): the closure of $\{[P]\}$ equals V(P). So [P] is a closed point of $\operatorname{Spec}(R)$ if and only if P is a maximal ideal.

Let Z be an irreducible closed subset of $\operatorname{Spec}(R)$. Then a point $z \in Z$ is called a *generic point* of Z if Z equals the closure of z, i.e., every nonempty open subset of Z contains z.

Proposition 1: If $x \in \operatorname{Spec}(R)$, then the closure of x is irreducible. So x is a generic point of this set.

Conversely, every irreducible closed subset $Z \subseteq \operatorname{Spec}(R)$ equals V(P) for some prime ideal $P \subset R$, and [P] is its unique generic point.

Proposition 2: Let $\{f_{\alpha} \mid \alpha \in S\}$ be a set of elements of R. Then $\operatorname{Spec}(R) = \bigcup_{\alpha \in S} D(f_{\alpha})$ if and only if 1 is in the ideal generated by the f_{α} 's.

Proof: The equality holds \iff no prime ideal contains the ideal generated by the f_{α} 's \iff 1 is in that ideal.

Note: If this happens, then finitely many f_{α} 's suffice.

Corollary: Spec(R) is quasi-compact.

Proof: It suffices to check that every covering by distinguished open sets has a finite subcover. (Check this.) But now we use Prop. 2 and the remark above.

(Generalization: D(f) is quasi-compact. Assume the f_{α} are such that $D(f_{\alpha}) \subseteq D(f)$. Then $D(f) = \cup_{\alpha \in S} D(f_{\alpha}) \iff$ each prime ideal not containing f does not contain some $f_{\alpha} \iff$ no prime ideal not containing f contains all f_{α} 's \iff a prime ideal containing all f_{α} 's contains $f \iff f$ is in the radical of the ideal generated by the f_{α} 's $\iff \exists n \geq 1$ such that f^n is in that ideal $\iff \exists n \geq 1$ such that f^n is in the ideal generated by $f_{\alpha_1}, \ldots, f_{\alpha_k}$. Then $D(f) = \bigcup_{j=1}^k D(f_{\alpha})$ and we are done as above.)

Let us write X for $\operatorname{Spec}(R)$ and X_f for D(f). Then $X_f \cap X_g = X_{fg}$ (easy).

Moreover, $X_f \supseteq X_g \iff g \in \sqrt{(f)}$. (Note: $g \notin \sqrt{(f)}$) $\iff \exists P \colon f \in P, g \notin P \iff \exists P \colon [P] \notin X_f, [P] \in X_g \iff X_f \not\supseteq X_g.)$

So, for every ring R (commutative with 1), we have made a topological space $\operatorname{Spec}(R)$. We have also seen some properties of it, directly related to some properties of ideals and prime ideals. No doubt, you have noticed the similarity between the topology of $\operatorname{Spec}(R)$ and the (Zariski) topology of an affine variety.

The next step in making a geometric object out of $\operatorname{Spec}(R)$ (so that we can do algebraic geometry with arbitrary rings R as above, instead of only with finitely generated k-algebras with k algebraically closed) is to find/define the right class of functions.

The idea is very simple: we want to associate the localisation R_f to X_f . (As will soon become clear, the abstract concept of a sheaf is natural here. But we don't need it yet.)

We need to check several things: see Exercise 1.4. After checking the statements in the remark there,

one shows, for a prime ideal P of R, that R_P is the direct limit of the rings R_f over the f such that $[P] \in X_f$.

Lemma 1. Suppose $X_f = \bigcup_{\alpha \in S} X_{f_\alpha}$. If $g \in R_f$ has image 0 in all rings R_{f_α} , then g = 0.

Lemma 2. Suppose $X_f = \bigcup_{\alpha \in S} X_{f_\alpha}$. Suppose we have $g_\alpha \in R_{f_\alpha}$ such that g_α and g_β have the same image in $R_{f_\alpha f_\beta}$. Then $\exists g \in R_f$ with image g_α in R_{f_α} for all α .

So, assigning R_f to X_f , we get what one may call a "sheaf on the basis of open subsets X_f ."

As earlier, let $X = \operatorname{Spec}(R)$. Recall from last time: assigning R_f to X_f , we get what one may call "a sheaf on the basis $\{X_f\}$ of open subsets."

We want to extend this assignment to all open sets, to get an actual sheaf \mathcal{O}_X . There is no choice: $\mathcal{O}_X(U)$ will be the set of elements $\{s_P\}$ of the direct product $\prod_{[P]\in U}R_P$ for which there exists a covering of U by distinguished open subsets X_{f_α} together with elements $s_\alpha\in R_{f_\alpha}$ such that s_P equals the image of s_α in s_P whenever s_{f_α} .

Several verifications are necessary:

- $\mathcal{O}_X(U)$ is a ring;
- if $V \subset U$, the coordinate projection from $\prod_{[P] \in U} R_P$ to $\prod_{[P] \in V} R_P$ takes $\mathcal{O}_X(U)$ to $\mathcal{O}_X(V)$, so that \mathcal{O}_X is a presheaf;
- \mathcal{O}_X is in fact a sheaf;
- $\mathcal{O}_X(X_f) = R_f$ (i.e., the new rule agrees with the old rule);
- the stalk of \mathcal{O}_X at [P] is R_P .

See the exercises for today.

Since points are not necessarily closed, there are also natural maps between the stalks: assume $P_1 \subseteq P_2$ and write x_i for $[P_i]$. Then x_2 is in the closure of x_1 , so an open that contains x_2 contains x_1 as well. This gives a map $\mathcal{O}_{x_2} \to \mathcal{O}_{x_1}$; check that this is the natural map $R_{P_2} \to R_{P_1}$. (No surprises here, but please check it anyway.)

Proposition 3. Let R be a ring and $f \in R$. Let $X = \operatorname{Spec}(R)$ and let $Y = \operatorname{Spec}(R_f)$. Then X_f with the restriction of \mathcal{O}_X to X_f is isomorphic to Y with \mathcal{O}_Y .

Proof: There is a natural bijection between X_f and Y. One checks that it is a homeomorphism (exercise). A distinguished open subset of X in X_f is of the form X_{fg} ; it corresponds to Y_g . The two sheaves have sections R_{fg} on these open sets; this sets up an isomorphism.

Definition 1. A **scheme** is a topological space X, together with a sheaf of rings \mathcal{O}_X on X, such that there exists an open covering $\{U_\alpha\}$ of X such that $\forall \alpha$ the pair $(U_\alpha, \mathcal{O}_X|_{U_\alpha})$ is isomorphic to $(\operatorname{Spec}(R_\alpha), \mathcal{O}_{\operatorname{Spec}(R_\alpha)})$ for some ring R_α .

Definition 2. An **affine scheme** is a scheme (X, \mathcal{O}_X) isomorphic to $(\operatorname{Spec}(R), \mathcal{O}_{\operatorname{Spec}(R)})$ for some ring R.

Remark 1: An affine scheme (Y, \mathcal{O}_Y) has a basis of open sets U such that $(U, \mathcal{O}_Y|_U)$ is again an affine scheme (consider the Y_f for $f \in \mathcal{O}_Y(Y)$ and use Prop. 3 above).

Remark 2: For U open in a scheme X, we have that $(U, \mathcal{O}_X|_U)$ is a scheme. (Note: X is covered by open affines U_{α} , hence $U \cap U_{\alpha}$ is covered by open affines since it is open in U_{α} .)

Let us return to $X = \operatorname{Spec}(R)$. We can view the elements of R as 'functions': take $x = [P] \in \operatorname{Spec}(R)$; an element a of R gives an element of R_P , hence of $k(x) = R_P/(P \cdot R_P)$, the residue field of

Notation: we write a(x) for this element of k(x); we call it the value of a at x. More generally, whenever $x \in U$ open and $a \in \mathcal{O}_X(U)$ we get a natural element a(x) in k(x).

 $R_P = \mathcal{O}_{\mathsf{x}}$, which equals the quotient field of R/P.

Discussion: it is reasonable to ask that function values lie in fields. Note that the values at different points lie in different fields. The example $\operatorname{Spec}(\mathbb{Z})$ shows that this is unavoidable (and in fact natural).

Note: for $a \in R$: the value of a at every point of $\operatorname{Spec}(R)$ is zero $\iff a$ is nilpotent. In particular: a is not necessarily equal to zero!

These functions (and function values) play a role in the definition of a morphism between schemes:

Definition 3. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be schemes. A **morphism** from X to Y is a continuous map $f: X \to Y$ together with homomorphisms $f_V^\#: \mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}(V))$ for each V open in Y such that (a) for $V_1 \subset V_2$ open in Y:

$$f_{V_1}^{\#} \circ \operatorname{res}_{V_2,V_1}^{Y} = \operatorname{res}_{f^{-1}(V_2),f^{-1}(V_1)}^{X} \circ f_{V_2}^{\#};$$

(b) for
$$V \subset Y$$
 open, $x \in f^{-1}(V)$, $a \in \mathcal{O}_Y(V)$: $a(f(x)) = 0 \implies (f_V^{\#}(a))(x) = 0$.

Note: the maps $f_V^\#$ need to be given explicitly now; this takes some getting used to. Equivalently, there should be a map $f^\#\colon \mathcal{O}_Y \to f_*\mathcal{O}_X$ between sheaves on Y, such that (b) holds. Here $f_*\mathcal{O}_X$ is the **direct image** sheaf: $f_*\mathcal{O}_X(V) := \mathcal{O}_X(f^{-1}(V))$.

There is another way of looking at (b): for $x \in X$, write y = f(x); for each V open in Y containing y, we have $f_V^\#$; take the direct limit:

$$\mathcal{O}_{Y,y}
ightarrow \mathsf{lim}\, \mathcal{O}_X(f^{-1}(V))
ightarrow \mathcal{O}_{X,x}$$

(where the second arrow is natural); this map is denoted $f_x^{\#}$, and the condition is:

$$f_{\mathsf{x}}^{\#}(\mathfrak{m}_{\mathsf{y}})\subseteq\mathfrak{m}_{\mathsf{x}}$$

or equivalently

$$(f_{\scriptscriptstyle X}^{\#})^{-1}(\mathfrak{m}_{\scriptscriptstyle X})=\mathfrak{m}_{\scriptscriptstyle Y}.$$

Note that $f_x^\#$ induces a map k_x : $k(y) \to k(x)$ on the residue fields of the stalks and that $k_x(a(y)) = (f_V^\#(a))(x)$ for $y \in V$ open and $a \in \mathcal{O}_Y(V)$.

The natural composition of morphisms gives rise to the category of schemes.

Theorem 1. Let X be a scheme and let R be a ring. To a morphism $f: X \to \operatorname{Spec}(R)$, associate the homomorphism $f^{\#}: R = \mathcal{O}_{\operatorname{Spec}(R)}(\operatorname{Spec}(R)) \to \mathcal{O}_{X}(X)$. This induces a bijection between $\operatorname{Mor}(X,\operatorname{Spec}(R))$ and $\operatorname{Hom}(R,\mathcal{O}_{X}(X))$.

Corollary 1. The category of affine schemes is isomorphic to the category of commutative rings with unit, with arrows reversed.

Corollary 2. Spec(\mathbb{Z}) is the final object in the category of schemes, i.e., for every scheme X there is a unique morphism $X \to \operatorname{Spec}(\mathbb{Z})$.

Analogously: every scheme X admits a canonical morphism to $\operatorname{Spec}(\mathcal{O}_X(X))$.