Chapitre XIV

Convexité

I. FONCTION CONVEXE ET FONCTION CONCAVE

A. DÉFINITIONS

Soit f une fonction dérivable sur un intervalle I et $\mathscr C$ sa courbe représentative dans un repère.

f est convexe sur I si quels que soient les points A et B de la courbe $\mathscr C$ sur I, le segment [AB] est au dessus de $\mathscr C$ entre A et B.

f est concave sur I si quels que soient les points A et B de la courbe $\mathscr C$ sur I, le segment [AB] est en dessous de $\mathscr C$ entre A et B.

FIGURE 14.1. – Illustration de la Définition

B. Propriété

Si f est convexe sur I, pour tous réels a et b de I, $f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}$.

Si f est concave sur I, pour tous réels a et b de I, $f\left(\frac{a+b}{2}\right) \ge \frac{f(a)+f(b)}{2}$.

1. DÉMONSTRATION

Supposons f convexe.

Soit A (a; f(a)) et B (b; f(b)) deux points de \mathscr{C} , alors [AB] est au dessus de \mathscr{C} ,

en particulier, le milieu de [AB] d'abscisse $\frac{a+b}{2}$ et d'ordonnée $\frac{f(a)+f(b)}{2}$ est au dessus de l'image de $\frac{a+b}{2}$ par f.

C. Propriété (admise)

f est convexe sur I si et seulement si ${\mathscr C}$ est située au dessus de chacune de ses tangentes sur I

f est concave sur I si et seulement si ${\mathscr C}$ est située en dessous de chacune de ses tangentes sur I

FIGURE 14.2. – Illustration de la Propriété

D. DÉFINITION

A est un point d'inflexion de $\mathscr C$ si au point A, la courbe traverse sa tangente.

FIGURE 14.3. – Exemple d'un Point d'Inflexion

E. REMARQUE

Lorsque f change de convexité, sa courbe $\mathscr C$ admet un point d'inflexion.

II. LIEN AVEC LA DÉRIVÉE

A. DÉFINITION

Soit f une fonction dérivable sur I dont la fonction dérivée f' est dérivable sur I. La dérivée de f' se nomme la dérivée seconde de f et se note f''.

B. Propriété

Soit f une fonction dérivable deux fois sur un intervalle I.

f est convexe sur I si et seulement si :

- f' est croissante sur I
- f'' est positive sur I
- La courbe représentative est située au dessus de ses tangentes sur I

C. Propriété

f est concave sur I si et seulement si :

- f' est décroissante sur I
- f'' est négative sur I
- La courbe représentative est située en dessous de ses tangentes sur I

D. Propriété

Si $\mathscr C$ est la courbe représentative de f dans un repère, $\mathscr C$ admet un point d'inflexion au point d'abscisse a si et seulement si f'' s'annule et change de signe en a.

FIGURE 14.4. – Illustration de l'Évolution de la Convexité en Fonction de la Dérivée Seconde