7. Комбинаторика

Базовые понятия:

- Алфавит (Alphabet) Σ (или X, $Ex. X = \{a, b, c\}$) множество символов в нашей системе
- Диапазон (Range) $[n] = \{1, ..., n\}$ конечное множество последовательных натуральных чисел
- Расстановка (Ordered arrangement) последовательность каких-либо элементов (тоже самое, что кортеж), $Ex. \ x = (a,b,c,d,b,b,c) \ |x| = n$ Расстановку можно представить как функцию $f: [n] \to \sum_{\text{domain}} \infty$, которая по порядковому номеру выдает символ $ranf = \{c \in \Sigma \mid \exists i \in [n] : f(i) = c\}$
- Перестановка (Permutation) $\pi:[n] \to \Sigma$, где $n=|\Sigma|$ Расстановка π биекция между [n] и Σ

 Одна из задач комбинаторики - посчитать количество различных расстановок или перестановок при заданных n и Σ

• k-перестановка (k-permutation) - расстановка из k различных элементов из Σ

$$Ex.$$
 $\underbrace{|31475|}_{5 ext{-perm из }\Sigma=[7]}=5$ k -перестановка - инъекция $\pi:[k] o \Sigma$ $(k \le n=|\Sigma|)$

- P(n,k) множество всех k-перестановок алфавита $\Sigma = [n]$ (если исходный алфавит не состоит из чисел, то мы можем сделать биекцию между ним и [n]) $P(n,k) = \{f \mid f : [k] \to [n]\}$ Чаще интересует не само множество, а его размер, поэтому под обозначением P(n,k) подразумевается |P(n,k)|
- $S_n = P_n = P(n, n)$ множество всех перестановок. Также чаще всего нас будет интересовать не множество, а его размер $|S_n| = n!$ всего существует n! перестановок $|P(n,k)| = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$
- Циклические k-перестановки (Circular k-permutations) $\pi_1, \pi_2 \in P(n,k)$ циклические эквивалентны тогда и только тогда: $\exists s \mid \forall i \ \pi_1((i+s)\%k) = \pi_2(i)$

 $P_C(n,k)$ - множество всех циклических k-перестановок в Σ

$$|P_C(n,k)| \cdot k = |P(n,k)|$$

 $|P_C(n,k)| = \frac{|P(n,k)|}{k} = \frac{n!}{k(n-k)!}$

• Неупорядоченная расстановка k элементов (Unordered arrangement of k elements) - мультимножество Σ^* размера k

$$Ex. \ \Sigma^* = \{ \triangle, \triangle, \Box, \triangle, \circ, \Box \}^* = \{ 3 \cdot \triangle, 2 \cdot \Box, 1 \cdot \circ \} = (\Sigma, r)$$
 Неупорядоченную расстановку можно представить как функцию: $r: \Sigma \to \mathbb{N}, \quad r(x)$ - кол-во повторений объекта x

• k-сочетание (k-combination) - неупорядоченная перестановка из k различных элементов из Σ (еще называют k-подмножеством, k-subset)

Соответственно C(n,k) - множество всех таких k-сочетаний

$$|C(n,k)| = C_n^k = \binom{n}{k}$$

$$C(n,k) = \binom{\Sigma}{k}$$

$$\binom{n}{k} \cdot k! = |P(n,k)|$$

$$|C(n,k)| = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Th. Биномиальная теорема (Binomial theorem):

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

 $egin{pmatrix} n \ k \end{pmatrix}$ - биномиальный коэффициент

Th. Мультиномиальная теорема (Multinomial theorem)

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_i \in 1...n, \\ k_1 + \dots + k_r = n}} {n \choose k_1, \dots, k_r} x_1^{k_1} \cdot \dots \cdot x_r^{k_r}$$

$$\binom{n}{k_1,\ldots,k_r}=rac{n!}{k_1!\ldots k_r!}$$
 - мультиномиальный коэффициент