§1 Normal Subgroups and Factor Groups

Definition 1.1. A subgroup $H \subset G$ is <u>normal</u> if gH = Hg for all $g \in G$.

Example 1.2 1. Every subgroup of H is normal if G is abelian.

- 2. If [G:H]=2, then H is normal. This is because $gH\cup H=G=H\cup Hg$.
- 3. Let $H \subset D_h$ be a subgroup of rotations. Then H is normal (because $[D_h : H] = 2$). However, let $R = \langle r \rangle$ where r is reflection, then R is not normal in D_n .
- 4. $\{e\} \subset G$ and $G \subset G$ are normal.

Theorem 1.3

Let $N \subset G$ be a subgroup. TFAE

- 1. N is normal in G.
- 2. $gNg^{-1} \subset N$ for all $g \in G$.
- 3. $gNg^{-1} = N$ for all $g \in G$.

Note 1.4. For $S \subset G$ and $x, y \in G$, $xSy = \{xsy : s \in S\}$

Proof.

 $(1 \Rightarrow 2)$ We must show that $gng^{-1} \in N$ for all $n \in N$.

$$gN = Ng \Rightarrow \exists n' \in N \text{ such that } gn = n'g$$

Hence: $(gn)g^{-1} = (n'g)g^{-1} = n' \in N$

 $(2 \Rightarrow 3)$ Suffices to show that $N \subset gNg^{-1}$.

$$g^{-1}ng \in g^{-1}N(g^{-1})^{-1} \subset N \Rightarrow g^{-1}ng = n'$$
 for some $n' \in N$
So $n = gn'g^{-1}$

 $(3 \Rightarrow 1)$ Right multiply by g. $gNg^{-1} = N$ gives gN = Ng.

§1.1 Factor Group or Quotient Group

Definition 1.5. Let $N \subset G$ be a normal subgroup of G. The left cosets of N in G form a group whose operation is (aN)(bN) = (abN). This is the <u>quotient group</u> of G and N, denoted by G/N.

Theorem 1.6

G/N is really a group!

Proof.

1. To show: Operation is well defined. If aN = a'N and bN = b'N, then abN = a'b'N.

We know that $a' = an_1$ and $b' = bn_2$ where $n_1, n_2 \in N$. Hence $a'b' = (an_1)(bn_2)$. Because Nb = bN, we have that $n_1b = bn_3$ for some $n_3 \in N$. Therefore $a'b' = a(n_1b)n_2 = a(bn_3)n_2 = abn_3n_2$.

Thus a'b'N = abN since $(ab)^{-1}(a'b') = b^{-1}a^{-1}abn_3n_2 = n_3n_2 \in N$.

2. To show: Associativity.

$$aN(bNcN) = aN(bcN) = a(bc)N = abcN$$

 $(aNbN)cN = (abN)cN = (ab)cN = abcN$

To show: Identity. eNxN = exN = xN = xeN = xNeN

To show: Inverses. $(xN)(x^{-1}N) = xx^{-1}N = eN = x^{-1}xN = x^{-1}NxN$

Recall 1.7. If G is finite, |G/N| = |G:N| = |G|/|N|

Example 1.8

 \mathbb{Z}_n is just notation for $\frac{\mathbb{Z}}{n\mathbb{Z}}$

Example 1.9

 $H \subset D_n$ be subgroup of rotations. $D_n/H \cong \mathbb{Z}_2$ since $[D_n: H] = 2$.

Example 1.10

 $S_n/A_n \cong \mathbb{Z}_2$

(Gautier) Cole Killian - 260910531 (October 23, 2019)

Example 1.11

 $N = \{\pm 1\}$ is normal in Q. It's cosets are:

$$1N = \{\pm 1\} = N1$$

$$jN = \{\pm j\} = Nj$$

$$kN = \{\pm k\} = Nk$$

$$iN = \{\pm i\} = Ni$$

What is Q/N? Note: |Q/N| = [Q:N] = 4.

Example 1.12