ClassiPlant

Jason Sizemore, Juno Lee, Kevin Than

Overview

Objective:

This application is designed to provide information about plants in Pierce County, Washington. Or for a user to identify a plant by inputting observable information

Target audience:

Anyone interested in native plants around the area, wanting to learn more and be more

observant about nature

Main features:

A list of all native plants
Search up a plant by name and get information
Try to find a plant's name by inputting information

Entity Relational Diagram

Normalization Proof

Tree Table:

FD1: treeID → flower, fruit, color, bark type, min, max

Candidate Key for Tree: treelD as it is the candidate key and needed to identify flower, fruit, color, bark type, min, and max

Proof: Since FD1 has a determinant as a candidate key (treeID), this relation is BCNF.

Plant name Table:

FD1: nameID → common name, scientific name

Candidate Key for Plant_name: nameID as it is the candidate key and is needed to identify common name and scientific name

Proof: Since FD1 has a determinant as a candidate key (nameID), this relation is BCNF.

Shrub Table:

FD1: shrubID → flower, fruit, min, max

Candidate Key for Shrub: shrubID as it is the candidate key and needed to identify flower, fruit, min, and max

Proof: Since FD1 has a determinant as a candidate key (shrubID), this relation is BCNF.

Herbs_Groundcover Table:

FD1: herbID → flower, fruit, min, max

Candidate Key for Herbs_Groundcover: herbID as it is the candidate key and needed to identify flower, fruit, min, and max

Proof: Since FD1 has a determinant as a candidate key (herbID), this relation is BCNF.

Flower Table:

 $\label{localization} FD1: flowerID {\longrightarrow} blooming_season, petal_num, shape, colorflower {\longrightarrow} blooming_season, petal_num, shape, color$

FlowerID is a candidate Key for Flower as it needed to identity blooming_season, petal_num, shape, color

Proof: Since FD1 has a determinant as a candidate key, this relation is BCNF

Fruit Table:

Candidate Key for Fruit: fruit (as it is the candidate key and needed to identify season, color, shape, size)

Proof: Since FD1 has a determinant as a candidate key (fruit), this relation is BCNF.

Leaf Table:

FD1: leafID → leaf shape, leaf margins, foliage type, surface texture, length

Candidate Key for Leaf: leafID as it is the candidate key and is needed to identify leaf shape, leaf margins, foliage type, surface texture, length

Proof: Since FD1 has a determinant as a candidate key (leafID), this relation is BCNF.

Safety Table:

FD1: safeID → edibility, dangers

Candidate Key for Safety: safeID as it is the candidate key and is needed to identify edibility and dangers

Proof: Since FD1 has a determinant as a candidate key (safeID), this relation is BCNF.

Relational Schema

Demo

Challenges

Making the schema

Making sure data is correct

Tired

Future Enhancements

Add more information, so users understand terminology

Give options for input rather than

short answer

Web implementation/GUI

Add pictures

Drop down menu with options

Allow users to add to database