Switching

Switched Networks

- Long distance transmission is typically done over a network of switched nodes
- Switching nodes not concerned with content of data
- End devices are hosts
 - Computer, server, phone, etc.
- A collection of nodes and links is a communication network
- Data (packet/message/circuit) routed by being switched from node to node

Nodes

- Nodes may connect to other nodes only, or to stations and other nodes
- Node to node links usually multiplexed
- Network is usually partially connected
 - · Some redundant connections are desirable for reliability
- · Three different switching technologies
 - · Circuit switching
 - · Packet switching
 - Virtual circuit switching

Switching

- · Circuit Switching
 - Fixed and mobile telephone network
 - Frequency Division Multiplexing (FDM)
 - Time Division Multiplexing (TDM)
 - Optical rings (SDH)
- Packet Switching
 - Internet
 - · Statistical multiplexing
- · Virtual circuit switching
 - Data is switched as packets but routed through logical circuits
 - · Takes the best of both forms of switching

Circuit Switching

- Dedicated communication path between two stations
- Three phases
 - Establish
 - Transfer
 - Disconnect
- Must have switching capacity and channel capacity to establish connection
- Must have intelligence to work out routing

Circuit Switching - Applications

- Inefficient
 - Channel capacity dedicated for duration of connection
 - If no data, capacity wasted
- Set up (connection) takes time
- Once connected, transfer is transparent
- Developed for voice traffic (phone)

Telecom Components

- Subscriber
 - · Devices attached to network
- Subscriber line
 - Local Loop
 - Subscriber loop
 - Connection to network
 - Few km up to few tens of km
- Exchange
 - Switching centers
 - End office supports subscribers
- Trunks
 - Branches between exchanges
 - Multiplexed

Circuit Switching Concepts

- Digital Switch
 - Provide transparent signal path between devices
- Network Interface
- Control Unit
 - Establish connections
 - · Generally on demand
 - Handle and acknowledge requests
 - · Determine if destination is free
 - construct path
 - · Maintain connection
 - Disconnect

Blocking or Non-blocking

- Blocking
 - A network is unable to connect stations because all paths are in use
 - A blocking network allows this
 - · Used on voice systems
 - · Short duration calls
- Non-blocking
 - Permits all stations to connect (in pairs) at once
 - Used for some data connections

Space Division Switching

- Developed for analog environment
- Separate physical paths
- Crossbar switch
 - Number of crosspoints grows as square of number of stations
 - Loss of crosspoint prevents connection
 - Inefficient use of crosspoints
 - All stations connected, only a few crosspoints in use
 - · Non-blocking

Multistage Switch

- Reduced number of crosspoints
- More than one path through network
 - Increased reliability
- More complex control
- · May be blocking
 - No path available through the fabric even if the output port is free

Time Division Switching

- Modern digital systems rely on intelligent control of space and time division elements
- Use digital time division techniques to set up and maintain virtual circuits
- Partition low speed bit stream into pieces that share higher speed stream

Time division switching

- Key idea: when demultiplexing, position in frame determines output link
- Time division switching interchanges sample position within a frame:
 Time slot interchange (TSI)

#19

Time Slot Interchange (TSI): example

sessions: (1,3) (2,1) (3,4) (4,2)

Read and write to shared memory in different order

#20

Circuit Switching Pros & Cons

- Advantages
 - · Limited overhead
 - Very efficient switching fabrics
 - · Highly parallelized
- Disadvantages
 - · Requires signalling for switching tables set-up
 - · Underutilization of resources in the presence of bursty traffic and variable rate traffic

Example of bursty traffic (ON/OFF voice flows)

On (activity) period

OFF period

VOICE SOURCE MODEL for conversation (Brady):

average ON duration (talkspurt): 1 second average OFF duration (silence): 1,35 seconds

$$activity = \frac{T_{ON}}{T_{ON} + T_{OFF}} = \frac{1}{1 + 1.35} = 42.55\%$$
 (before packetization)

Efficiency = utilization % = source activity

Packet Switching: Multiplexing/Demultiplexing

- Data from any conversation can be transmitted at any given time
 - A single conversation can use the entire link capacity if it is alone
- · How to demultiplex?
 - Use meta-data (header) to describe data

Message/packet Switching vs circuit switching

header mesg/pack

Router:

- reads header (destination address)
- selects output path

- Advantages
 - Transmission resources used only when needed (data available)
 - · No signalling needed
- Disadvantages
 - Overhead
 - Inefficient routing fabrics (needs to select output per each packet)
 - Processing time at routers (routing table lookup)
 - · Queueing at routers

Packet Switching

- Data are sent as formatted bit-sequences, so-called packets.
- Packets ha
 Header Data Trailer
 - · Header and Trailer carry control information (e.g., destination address, check sum)
- At each node the entire packet is received, stored briefly, and then forwarded to the next node based on the header information (Store-and-Forward Networks)
- · Allows statistical multiplexing

Packet-Switching vs. Circuit-Switching

- Most important advantage of packet-switching over circuit switching: ability to exploit statistical multiplexing
 - · More efficient bandwidth usage
- However, packet-switching needs to buffer and deal with congestion
 - · More complex switches
 - Harder to provide good network services (e.g., delay and bandwidth guarantees)

29

Virtual-Circuit Switching

- · Hybrid of circuit switching and packet switching
- Data is transmitted as packets
- · All packets from one packet stream are sent along a pre-established path (=virtual circuit)
- Packet header only contains local virtual circuit identifier (VCI)
- · Demultiplexing and switching based on VCI
- Guarantees in-sequence delivery of packets
- Example: ATM/MPLS networks

Virtual-Circuit Switching

- Communication with virtual circuits takes place in three phases
 - 1. VC establishment
 - 2. data transfer
 - 3. VC disconnect
- Note: packet headers don't need to contain the full destination address of the packet

Connections and Signaling

- Permanent vs. switched virtual connections (PVCs, SVCs)
 - static vs. dynamic. PVCs last "a long time"
 - E.g., connect two bank locations with a PVC
 - SVCs are more like a phone call
 - PVCs administratively configured (but not "manually")
 - SVCs dynamically set up on a "per-call" basis
- Topology
 - point to point
 - · point to multipoint
 - multipoint to multipoint
- Challenges: How to configure these things?
 - · What VCI to use?
 - · Setting up the path

Virtual Circuit Switching: Label ("tag") Swapping

• Global VC ID allocation -- Bad Solution: Per-link uniqueness. Change VCI each hop.

Input Port		Input VCI	Output Port	Output VCI
R1:	1	5	3	9
R2:	2	9	4	2
R4:	1	2	3	5