Introduction

The dataset that you will be wrangling (and analyzing and visualizing) is the tweet archive of Twitter user @dog_rates, also known as WeRateDogs. WeRateDogs is a Twitter account that rates people's dogs with a humorous comment about the dog. These ratings almost always have a denominator of 10. The numerators, though? Almost always greater than 10. 11/10, 12/10, 13/10, etc. Why? Because "they're good dogs Brent." WeRateDogs has over 4 million followers and has received international media coverage.

WeRateDogs downloaded their Twitter archive and sent it to Udacity via email exclusively for you to use in this project. This archive contains basic tweet data (tweet ID, timestamp, text, etc.) for all 5000+ of their tweets as they stood on August 1, 2017. More on this soon.

Table of Contents

- 1. Gather
- 2. Assess
- 3. Clean

Gather

First Source

In [2]:

twitter archive = pd.read csv('twitter-archive-enhanced.csv')

In [3]:

twitter_archive.head()

Out[3]:

tweet_id in_reply_to_status_id in_reply_to_user_id timestamp

0	892420643555336193	NaN	NaN	2017-08- 01 16:23:56 +0000	href="http://twitter.
1	892177421306343426	NaN	NaN	2017-08- 01 00:17:27 +0000	href="http://twitter.
2	891815181378084864	NaN	NaN	2017-07- 31 00:18:03 +0000	href="http://twitter.
3	891689557279858688	NaN	NaN	2017-07- 30 15:58:51 +0000	href="http://twitter.
4	891327558926688256	NaN	NaN	2017-07- 29 16:00:24 +0000	href="http://twitter.

In [4]:

twitter archive.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2356 entries, 0 to 2355
Data columns (total 17 columns):
     Column
                                 Non-Null Count
                                                  Dtype
     tweet id
 0
                                 2356 non-null
                                                  int64
 1
     in reply to status id
                                 78 non-null
                                                  float64
     in reply to user id
                                                  float64
 2
                                 78 non-null
 3
    timestamp
                                 2356 non-null
                                                  object
                                 2356 non-null
                                                  object
 4
     source
                                 2356 non-null
                                                  object
 5
     text
                                                  float64
     retweeted status id
                                 181 non-null
 6
 7
     retweeted status user id
                                 181 non-null
                                                  float64
 8
     retweeted status timestamp 181 non-null
                                                  object
 9
     expanded urls
                                 2297 non-null
                                                  object
                                                  int64
 10 rating numerator
                                 2356 non-null
 11
    rating denominator
                                 2356 non-null
                                                  int64
 12
    name
                                 2356 non-null
                                                  object
                                 2356 non-null
                                                  object
 13
    doggo
 14
    floofer
                                 2356 non-null
                                                  object
                                 2356 non-null
 15 pupper
                                                  object
                                 2356 non-null
 16 puppo
                                                  object
dtypes: float64(4), int64(3), object(10)
memory usage: 313.0+ KB
```

Second source(url)

In [5]:

```
url = 'https://d17h27t6h515a5.cloudfront.net/topher/2017/August/599fd2ad_image-p
redictions/image-predictions.tsv'
response = requests.get(url)
with open('image_predictions.tsv', 'wb') as file:
    file.write(response.content)

df_image = pd.read_csv('image_predictions.tsv', sep='\t')
```

In [6]:

```
df_image.head()
```

Out[6]:

	img_num	jpg_url	tweet_id	
Welsh_spr	1	https://pbs.twimg.com/media/CT4udn0WwAA0aMy.jpg	666020888022790149	0
	1	https://pbs.twimg.com/media/CT42GRgUYAA5iDo.jpg	666029285002620928	1
Germ	1	https://pbs.twimg.com/media/CT4521TWwAEvMyu.jpg	666033412701032449	2
Rhodesi	1	https://pbs.twimg.com/media/CT5Dr8HUEAA-IEu.jpg	666044226329800704	3
minia	1	https://pbs.twimg.com/media/CT5IQmsXIAAKY4A.jpg	666049248165822465	4

In [7]:

```
df_image.info()
```

```
RangeIndex: 2075 entries, 0 to 2074
Data columns (total 12 columns):
    Column
              Non-Null Count Dtype
              _____
                              ____
 0
    tweet id 2075 non-null
                              int64
              2075 non-null
                              object
 1
    jpg url
 2
              2075 non-null
                              int64
    img_num
              2075 non-null
                              object
 3
    р1
    pl conf 2075 non-null
                              float64
 4
 5
    p1 dog
              2075 non-null
                              bool
              2075 non-null
 6
    p2
                              object
 7
    p2 conf
              2075 non-null
                              float64
 8
    p2 dog
              2075 non-null
                              bool
 9
    p3
              2075 non-null
                              object
 10 p3 conf
              2075 non-null
                              float64
    p3 dog
             2075 non-null
                              bool
dtypes: bool(3), float64(3), int64(2), object(4)
memory usage: 152.1+ KB
```

<class 'pandas.core.frame.DataFrame'>

Third Source(API)

In [8]:

```
import tweepy

consumer_key = 'CIhlMvNExGkmRqgUAAu9owbdz'
consumer_secret = 'POclv62TqNLMn2kggZzwIkj4HzLRJOCldpZNwafNr6DndO56Tn'
access_token = '831110322480152578-eLWzG97jNVj2Uf6XXHi3fNrNkq7hl4y'
access_secret = 'pCq1RENOEtAioLRTwCKPR6YhlmI94Cza7waRXbrmfrnTr'

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_secret)

api = tweepy.API(auth, wait_on_rate_limit=True)
```

In [9]:

```
##from timeit import default timer as timer
#tweet ids = twitter archive.tweet id.values
#len(tweet ids)
# Query Twitter's API for JSON data for each tweet ID in the Twitter archive
\#count = 0
#fails dict = {}
#start = timer()
# Save each tweet's returned JSON as a new line in a .txt file
#with open('tweet json.txt', 'w') as outfile:
   # This loop will likely take 20-30 minutes to run because of Twitter's rate
limit
   for tweet_id in tweet_ids:
        count += 1
        print(str(count) + ": " + str(tweet id))
             tweet = api.get status(tweet id, tweet mode='extended')
            print("Success")
            json.dump(tweet. json, outfile)
             outfile.write('\n')
       #except tweepy.TweepError as e:
        # print("Fail")
          # fails dict[tweet id] = e
           # pass
#end = timer()
#print(end - start)
#print(fails dict)
```

In [10]:

Out[10]:

	tweet_id	favorites	retweets
0	892420643555336193	36192	7703
1	892177421306343426	31209	5698
2	891815181378084864	23499	3778
3	891689557279858688	39473	7862
4	891327558926688256	37684	8480

In [11]:

```
tweet json.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1752 entries, 0 to 1751
Data columns (total 3 columns):
    Column
               Non-Null Count
                               Dtype
                -----
 0
    tweet id
               1752 non-null
                               object
 1
    favorites 1752 non-null
                               object
 2
    retweets
               1752 non-null
                               object
dtypes: object(3)
memory usage: 41.2+ KB
```

Assess

Let's Assess the twitter archive, df image, tweet json dataframes and find out quality and tidyness issues

In [80]:

```
twitter archive.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2356 entries, 0 to 2355
Data columns (total 17 columns):
 #
     Column
                                 Non-Null Count
                                                 Dtype
     _____
                                 _____
                                                 ____
    tweet id
                                 2356 non-null
                                                 int64
 0
                                                 float64
    in reply to status id
                                 78 non-null
 1
                                                 float64
 2
    in_reply_to_user_id
                                 78 non-null
                                 2356 non-null
                                                 object
 3
    timestamp
 4
    source
                                 2356 non-null
                                                 object
 5
    text
                                 2356 non-null
                                                 object
                                 181 non-null
                                                 float64
 6
    retweeted status id
 7
     retweeted_status_user_id
                                 181 non-null
                                                 float64
     retweeted status timestamp 181 non-null
                                                 object
 8
 9
     expanded urls
                                 2297 non-null
                                                 object
    rating numerator
                                 2356 non-null
                                                 int64
 10
 11 rating denominator
                                 2356 non-null
                                                 int64
 12 name
                                 2356 non-null
                                                 object
 13 doggo
                                 2356 non-null
                                                 object
    floofer
                                 2356 non-null
                                                 object
 14
 15 pupper
                                 2356 non-null
                                                 object
                                 2356 non-null
                                                 object
dtypes: float64(4), int64(3), object(10)
```

memory usage: 313.0+ KB

In [12]:

```
twitter_archive.query('rating_denominator <10')</pre>
```

Out[12]:

tweet_id in_reply_to_status_id in_reply_to_user_id timestamp

313	835246439529840640	8.352460e+17	26259576.0	2017-02- 24 21:54:03 +0000	href="http://twi
516	810984652412424192	NaN	NaN	2016-12- 19 23:06:23 +0000	href="http://twi
2335	666287406224695296	NaN	NaN	2015-11- 16 16:11:11 +0000	href="http://twi

In [82]:

twitter_archive.describe()

Out[82]:

tweet_id in_reply_to_status_id in_reply_to_user_id retweeted_status_id retweeted_

count	2.356000e+03	7.800000e+01	7.800000e+01	1.810000e+02
mean	7.427716e+17	7.455079e+17	2.014171e+16	7.720400e+17
std	6.856705e+16	7.582492e+16	1.252797e+17	6.236928e+16
min	6.660209e+17	6.658147e+17	1.185634e+07	6.661041e+17
25%	6.783989e+17	6.757419e+17	3.086374e+08	7.186315e+17
50%	7.196279e+17	7.038708e+17	4.196984e+09	7.804657e+17
75%	7.993373e+17	8.257804e+17	4.196984e+09	8.203146e+17
max	8.924206e+17	8.862664e+17	8.405479e+17	8.874740e+17

In [84]:

twitter_archive.doggo.value_counts()

Out[84]:

None 2259 doggo 97

Name: doggo, dtype: int64

```
In [85]:
twitter_archive.floofer.value_counts()
Out[85]:
None
           2346
floofer
             10
Name: floofer, dtype: int64
In [86]:
twitter_archive.pupper.value_counts()
Out[86]:
None
          2099
pupper
           257
Name: pupper, dtype: int64
In [87]:
twitter_archive.puppo.value_counts()
Out[87]:
None
         2326
           30
puppo
Name: puppo, dtype: int64
In [91]:
twitter_archive.name.value_counts()
Out[91]:
None
           745
            55
а
Charlie
            12
Oliver
            11
Cooper
            11
Dot
             1
Blue
             1
Lorelei
             1
Claude
space
             1
Name: name, Length: 957, dtype: int64
```

Let's find out out some unusal names which I have noticed by visual assessment

```
In [92]:
```

```
lc = []
for row in twitter_archive['name']:
    if row[0].islower() and row not in lc:
        lc.append(row)
print(lc)
```

```
['such', 'a', 'quite', 'not', 'one', 'incredibly', 'mad', 'an', 'ver y', 'just', 'my', 'his', 'actually', 'getting', 'this', 'unacceptabl e', 'all', 'old', 'infuriating', 'the', 'by', 'officially', 'life', 'light', 'space']
```

As IQR is 10, find out numerator which are below 10

In [93]:

```
twitter_archive.query('rating_denominator <10')</pre>
```

Out[93]:

tweet_id in_reply_to_status_id in_reply_to_user_id timestamp

313	835246439529840640	8.352460e+17	26259576.0	2017-02- 24 21:54:03 +0000	href="http://twi
516	810984652412424192	NaN	NaN	2016-12- 19 23:06:23 +0000	href="http://twi
2335	666287406224695296	NaN	NaN	2015-11- 16 16:11:11 +0000	href="http://twi

In [88]:

```
df_image.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2075 entries, 0 to 2074
Data columns (total 12 columns):
```

```
#
     Column
               Non-Null Count
                               Dtype
               _____
 0
     tweet id 2075 non-null
                               int64
 1
    jpg_url
               2075 non-null
                               object
 2
               2075 non-null
                               int64
     img num
                               object
 3
     р1
               2075 non-null
 4
               2075 non-null
                               float64
    p1 conf
 5
               2075 non-null
    pl dog
                               bool
 6
               2075 non-null
                               object
    p2
 7
               2075 non-null
                               float64
     p2_conf
 8
     p2 dog
               2075 non-null
                               bool
 9
               2075 non-null
                               object
     p3
 10
    p3 conf
               2075 non-null
                               float64
               2075 non-null
                               bool
 11
     p3 dog
dtypes: bool(3), float64(3), int64(2), object(4)
memory usage: 152.1+ KB
```

In [89]:

```
df_image.describe()
```

Out[89]:

	tweet_id	img_num	p1_conf	p2_conf	p3_conf
count	2.075000e+03	2075.000000	2075.000000	2.075000e+03	2.075000e+03
mean	7.384514e+17	1.203855	0.594548	1.345886e-01	6.032417e-02
std	6.785203e+16	0.561875	0.271174	1.006657e-01	5.090593e-02
min	6.660209e+17	1.000000	0.044333	1.011300e-08	1.740170e-10
25%	6.764835e+17	1.000000	0.364412	5.388625e-02	1.622240e-02
50%	7.119988e+17	1.000000	0.588230	1.181810e-01	4.944380e-02
75%	7.932034e+17	1.000000	0.843855	1.955655e-01	9.180755e-02
max	8.924206e+17	4.000000	1.000000	4.880140e-01	2.734190e-01

In [90]:

```
tweet_json.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1752 entries, 0 to 1751
Data columns (total 3 columns):
    Column
#
               Non-Null Count Dtype
    _____
               _____
    tweet id
 0
               1752 non-null
                              object
    favorites 1752 non-null
                              object
 1
 2
    retweets
               1752 non-null
                              object
```

dtypes: object(3)
memory usage: 41.2+ KB

In [95]:

```
tweet_json.describe()
```

Out[95]:

	tweet_id	favorites	retweets
count	1752	1752	1752
unique	1752	1480	1366
top	748324050481647620	0	521
freq	1	161	5

Tidiness

- 1. Merge all the three dataframes into one data frame
- 2. doggo,floofer,pupper and puppo should be melted.

Quality

- 1. Removein_reply_to_status_id,in_reply_to_user_id,retweeted_status_id,retweeted_status_user_id,retweeted_status_id,retweeted_status_user_id,retweeted_status_id,retweeted_status_user_id,retweeted_status_id,retweeted_status_user_id,retweeted_status_id,retweeted_id,retweeted_id,retweeted_id,retweeted_id,retweeted_id,retweeted_id,retweeted_id,retweeted_id,retweeted_i
- 2. favorites & retweets should be int64
- 3. As per WeRateDogs the denominators are mostly 10 or above.
- 4. source column is illegible
- 5. tweet_id should be object
- 6. Columns which have None replace with NaN.
- 7. Time_stamp dtpye is object
- 8. Incorrect dogs name like: "a", "an", "such", "the", "very", etc...

Tidiness issues

```
In [99]:
```

```
#Define
#Merge all the three dataframes into one data frame
```

```
In [100]:
```

#code

from functools import reduce

In [15]:

dfs = [twitter_archive,tweet_json,df_image]

In [16]:

df = reduce(lambda left,right: pd.merge(left,right,on='tweet_id'), dfs)

In [101]:

#Test

df.sample(5)

Out[101]:

	tweet_id	timestamp	source	text	numerator	denominator	nam
254	832998151111966721	2017-02-18 17:00:10+00:00	Twitter for iPhone	This is Rhino. He arrived at a shelter with an	13	10	Rhin
1412	668466899341221888	2015-11-22 16:31:42+00:00	Twitter for iPhone	Here is a mother dog caring for her pups. Snaz	4	10	Nal
1312	670417414769758208	2015-11-28 01:42:22+00:00	Twitter for iPhone	Sharp dog here. Introverted. Loves purple. Not	6	10	Non
537	788412144018661376	2016-10-18 16:11:17+00:00	Twitter for iPhone	This is Dexter. He breaks hearts for a living	11	10	Dexte
847	684567543613382656	2016-01-06 02:49:55+00:00	Twitter for iPhone	This is Bobby. He doesn't give a damn about pe	4	10	Bobb

Issue 2

In [102]:

#Define

#doggo,floofer,pupper and puppo should be melted.

```
In [18]:
```

```
#Code
df['type_dog'] = df['text'].str.extract('(doggo|floofer|pupper|puppo)')
```

In [19]:

```
df[['type_dog','doggo', 'floofer', 'pupper', 'puppo']].head(15)
```

Out[19]:

	type_dog	doggo	floofer	pupper	puppo
0	NaN	None	None	None	None
1	NaN	None	None	None	None
2	NaN	None	None	None	None
3	NaN	None	None	None	None
4	NaN	None	None	None	None
5	NaN	None	None	None	None
6	NaN	None	None	None	None
7	NaN	None	None	None	None
8	NaN	None	None	None	None
9	doggo	doggo	None	None	None
10	NaN	None	None	None	None
11	NaN	None	None	None	None
12	puppo	None	None	None	puppo
13	NaN	None	None	None	None
14	puppo	None	None	None	puppo

In [20]:

```
df = df.drop(['doggo', 'floofer', 'pupper', 'puppo'], axis=1)
```

```
In [21]:
#Test
df.head(1)
Out[21]:
```

tweet_id in_reply_to_status_id in_reply_to_user_id timestamp

1 rows × 27 columns

Quality issues

```
In [22]:
```

```
In [23]:
```

```
#Test
df.sample(2)
```

Out[23]:

	tweet_id	timestamp	source	text	rating
57	879862464715927552	2017-06- 28 00:42:13 +0000	<a href="http://twitter.com/download/iphone" r</a 	This is Romeo. He would like to do an entrance	
648	770787852854652928	2016-08- 31 00:58:39 +0000	<a href="http://twitter.com/download/iphone" r</a 	This is Winston. His tongue has gone rogue. Do	

```
In []:

#define
#favorites & retweets should be int64

In [24]:

#code
def change(column):
    df[column] = df[column].astype(int)

In [25]:

change('favorites')
change('retweets')
```

```
In [26]:
```

```
#test
df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 1544 entries, 0 to 1543 Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	tweet_id	1544 non-null	object
1	timestamp	1544 non-null	object
2	source	1544 non-null	object
3	text	1544 non-null	object
4	rating_numerator	1544 non-null	int64
5	rating_denominator	1544 non-null	int64
6	name	1544 non-null	object
7	favorites	1544 non-null	int64
8	retweets	1544 non-null	int64
9	jpg_url	1544 non-null	object
10	p1	1544 non-null	object
11	p1 conf	1544 non-null	float64
12	p1 dog	1544 non-null	bool
13	p2	1544 non-null	object
14	p2 conf	1544 non-null	float64
15	p2_dog	1544 non-null	bool
16	p3	1544 non-null	object
17	p3_conf	1544 non-null	
	p3_dog	1544 non-null	bool
19	type_dog	233 non-null	object
	es: bool(3), float64		
	221 CL KD	` , .	-

memory usage: 221.6+ KB

Issue 3

```
In [27]:
```

```
#define
#As per IQR is 10, remove below 10.
df.query('rating_denominator <10')</pre>
```

Out[27]:

	tweet_id	timestamp	source	text ı
405	810984652412424192	2016-12- 19 23:06:23 +0000	<a href="http://twitter.com/download/iphone" r</a 	Meet Sam. She smiles 24/7 & secretly aspir
1524	666287406224695296	2015-11- 16 16:11:11 +0000	<a href="http://twitter.com/download/iphone" r<="" th=""><th>This is an Albanian 3 1/2 legged Episcopalian</th>	This is an Albanian 3 1/2 legged Episcopalian

```
In [28]:
#code
df.drop([405],inplace=True)
df.drop([1524],inplace=True)

In [29]:
#test
df.query('rating_denominator <10')
Out[29]:
    tweet_id timestamp source text rating_numerator rating_denominator name favorites r</pre>
```

Issue 4

```
In [30]:
#define
#source column is illegible
#code
import re
df['source'] = df['source'].apply(lambda x: re.findall(r'>(.*)<', x)[0])</pre>
In [31]:
#Test
df['source'].value counts()
Out[31]:
Twitter for iPhone
                       1503
Twitter Web Client
                         29
TweetDeck
                         10
Name: source, dtype: int64
```

```
In [32]:

#define
#tweet_id should be object

#code
df['tweet_id'] = df['tweet_id'].astype(str)
```

```
In [33]:
#test
df.tweet_id.dtypes
Out[33]:
dtype('0')
```

Issue 6

```
In [97]:
#define
#Columns which have None replace with NaN.
df['type dog'] = df['type dog'].replace('None',np.NaN)
In [98]:
#test
df['type_dog'].value_counts()
Out[98]:
           144
pupper
doggo
            61
            25
puppo
             3
floofer
Name: type dog, dtype: int64
```

```
In [36]:
```

```
#define
#Time_stamp dtpye is object

#code
df['timestamp'] = pd.to_datetime(df['timestamp'])
```

```
In [37]:
```

```
#test
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1542 entries, 0 to 1543
Data columns (total 20 columns):
 #
     Column
                         Non-Null Count
                                         Dtype
                         _____
                                          ____
 0
     tweet id
                         1542 non-null
                                          object
    timestamp
                         1542 non-null
                                          datetime64[ns, UTC]
 1
 2
     source
                         1542 non-null
                                         object
    text
                         1542 non-null
                                         object
 3
                         1542 non-null
                                          int64
 4
    rating numerator
 5
    rating denominator
                        1542 non-null
                                          int64
 6
                         1542 non-null
                                         object
 7
    favorites
                         1542 non-null
                                          int64
 8
    retweets
                         1542 non-null
                                          int64
 9
     jpg url
                         1542 non-null
                                          object
 10 p1
                         1542 non-null
                                         object
 11
    p1 conf
                         1542 non-null
                                          float64
                         1542 non-null
 12
    p1 dog
                                         bool
                         1542 non-null
                                         object
 13
    p2
                         1542 non-null
                                          float64
 14
    p2 conf
                         1542 non-null
 15
    p2 dog
                                         bool
                         1542 non-null
                                         object
 16
    p3
 17
     p3_conf
                         1542 non-null
                                          float64
                         1542 non-null
                                         bool
 18
    p3 dog
                         233 non-null
                                          object
 19
    type dog
dtypes: bool(3), datetime64[ns, UTC](1), float64(3), int64(4), objec
t(9)
memory usage: 221.4+ KB
```

Issue 8

In [38]:

```
In [39]:
#test
df.name.value_counts()
Out[39]:
         429
None
Penny
Charlie
Tucker
             8
Во
Trooper
             1
Kyle
Zeek
             1
Crystal
Grizzie
Name: name, Length: 725, dtype: int64
In [40]:
df = df.rename(columns={'rating_numerator':'numerator','rating_denominator':'den
ominator'})
```

Data Visualisation

Dogs with high likes

In [77]:

```
plt.figure(figsize=(11,8))
sns.boxplot(x="type_dog", y="favorites", data=df).set_title('Dog categories with
total of favorites');
```


According to box plot it is precived that puppo has highest recored rate of likes followed by doggo,floofer, & pupper

Distribution of Rating Numerators

```
In [46]:
gdf = df.query('numerator <= 14')

In [54]:
a = gdf.groupby(['numerator']).count()['tweet_id']

In [58]:
b = np.array(a)

In [76]:
a.plot(kind='bar',figsize=(11,8))
plt.xlabel('Rating Numerator')
plt.ylabel('Frequency')
plt.title('Distribution of Rating Numerators');</pre>
```


Form perceiving the bar graph, it illustrates that ratings are 14 and below, and ratings above 20 are usually given to images that contain more than one or less than 5 dogs. So, 14 is considered as the maximum rating.

Corelation between likes an retweets

In [74]:

```
plt.figure(figsize=(11,8))
sns.set(font_scale=1.5)
ax = sns.scatterplot(x='favorites',y='retweets',data=df,color='#00539CFF')
ax.set(xlabel='Likes', ylabel='Retweets')
ax.set_title('corelation between likes and retweets')
```

Out[74]:

Text(0.5, 1.0, 'corelation between likes and retweets')

From perceiving the scatter plot, it illustrates the strong relationship between retweets and likes 'favorites'. The increase in retweets directs to an increase in likes.