Graphics for inference

- What is my model telling me?
- ► How can I tell other people?

Principles

- Graphs tell stories better than tables do
 - Use graphs to illustrate comparisons
 - ▶ Be careful about *units*
- Distinguish between (scientific) variables and (statistical) parameters
- Keep P values in their place
- ▶ What to do about raw data?

Smoking data

Smoking data

Smoking data

Regression coefficients

Standardized effect on fev (L/s)

Partial correlations with fev

Comparing effects on different response variables

- ▶ Put response variables on same scale:
 - Standardize
 - Logs
 - Proportions

Shape of response

Standard prediction plot

Marginal prediction plot

Combined

Variables vs. parameters

- ► A coefficient plot is most useful when each *variable* corresponds to a single statistical *parameter*
 - Binary predictor
 - Linear predictor
- More detailed shape information should be preferred when there is more than one parameter for a single logical variable
 - More than two categories
 - Splines and polynomials

No standard approach

- ► There are many different ways to try to capture marginal effects of a single variable
 - Particularly if it's associated with more than one parameter
- ▶ JD likes to calculate from the model "center"
 - This is the average value from each predictor column of the model matrix
 - Relatively stable
 - A bit divorced from physical reality

P values