Definition 1.1. The global Lefschetz number of f is the intersection number $I(\Delta, graph(f))$, denoted L(f).

Theorem 1.2. (Smooth Lefschetz Fixed-Point Theorem) Let $f: X \to X$ be a smooth map on a compact orientable manifold. If $L(f) \neq 0$, then f has a fixed point.

Proposition 1.3. L(f) is a homotopy invariant.

Proposition 1.4. If f is homotopic to the identity, then L(f) equals the Euler characteristic of X. In particular, if X admits a smooth map $f: X \to X$ that is homotopic to the identity and has no fixed points, then $\chi(X) = 0$.

Definition 1.5. $f: X \to X$ is a Lefschetz map if $graph(f) \ \overline{\cap} \ \Delta$

Proposition 1.6. Every map $f: X \to X$ is homotopic to a Lefschetz map.

Given any x a fixed point of a Lefschetz map, we have $graph(f) \ \ \overline{\sqcap} \ \Delta$ if and only if

$$(1.7) graph(df_x) + \Delta_x = T_x(X) \times T_x(X).$$

And this implies that df_x has no nonzero fixed point.

Definition 1.8. A fixed point x is a Lefshetz fixed point of f if df_x has no nonzero fixed point.

So f is a Lefschetz map if and only if all its fixed points are Lefschetz. If x is a Lefschetz fixed point, we denote the orientation number of (x, x) in the intersection $\Delta \cap graph(f)$ by $L_x(f)$, called the local Lefschetz number of f at x. Thus for f Lefschetz map,

(1.9)
$$L(f) = \sum_{f(x)=x} L_x(f).$$

x is a Lefschetz fixed point if and only if $df_x - I$ is an isomorphism of $T_x(X)$.

Proposition 1.10. The local Lefschetz number $L_x(f)$ at a Lefschetz fixed point is 1 if the isomorphism $df_x - I$ preserves orientation on $T_x(X)$, and -1 if the isomorphism reverses orientation. That is the sign of $L_x(f)$ equals the sign of the determinant of $df_x - I$.

Proposition 1.11. (Splitting Proposition) Let U be a neighborhood of the fixed point x that contains no other fixed points of f. Then there exists a homotopy f_t of f such that f_t has only Lefschetz fixed points in U, and each f_t equals f outside some compact subset of U.

Definition 1.12. Suppose that x is an isolated fixed point of f in \mathbb{R}^k . If B is a small closed ball centered at x that contains no other fixed point, then the degree of map

$$(1.13) z \to \frac{f(z) - z}{|f(z) - z|}$$

is called the local Lefschetz number of f at x, denoted $L_x(f)$.

Proposition 1.14. At Lefschetz fixed points, the two definitions of $L_x(f)$ agree.

Proposition 1.15. Suppose that the map f in \mathbb{R}^k has an isolated fixed point at x, and let B be a closed ball around x containing no other fixed point of f. Choose any map f_1 that equals f outside some compact subset of Int(B) but has only Lefschetz fixed points in B. Then

(1.16)
$$L_x(f) = \sum_{f_1(z)=z} L_z(f_1),$$

for any $z \in B$.

Theorem 1.17. (Local Computation of the Lefschetz Number). Let $f: X \to Y$ be any smooth map on a compact manifold, with only finitely many fixed points. Then the global Lefschetz number equals the sum of the local Lefschetz numbers:

(1.18)
$$L(f) = \sum_{f_x(x)} L_x(f).$$

2. Examples

Example 2.1. The Euler characteristic of S^2 is 2.

Proof. Let $\pi: \mathbb{R}^3 \to S^2$ be the projection $\pi(x) = x/|x|$. Then we define the map $f: S^2 \to S^2$:

$$(2.2) f(x) = \pi(x + (0, 0, -1/2)).$$

This map has a source at (0,0,1), a sink at (0,0,-1) and no fixed point elsewhere, which gives L(f) = 2. Also the map $F: S^2 \times I \to S^2$ defined by

(2.3)
$$F(x,t) = \pi(x + (0,0,-t/2))$$

is a homotopy between f and the identity map. By Proposition 1.4, we know that

$$\chi(S^2) = 2.$$

Corollary 2.5. Every map of S^2 that is homotopic to the identity must possess a fixed point. In particular, the antipodal map is not homotopic to the identity.

Example 2.6. The surface of genus k admits a Lefschetz map homotopic to the identity, with one source, one sink, and 2k saddles. Consequently, its Euler characteristic is 2-2k.

Example 2.7. The Euler characteristic of a compact connected Lie group is zero.

Proof. Let the compact connected Lie group be G and let $g \in G$ such that $g \neq 1$. Define $f: G \to G$ by $f(x) = g \cdot x$. This smooth map is homotopic to id_G but has no fixed point. Then we know

$$\chi(G) = L(f) = 0.$$

3. Homology version

Theorem 3.1. (The Lefschetz fixed point theorem) Let X be a closed smooth manifold and let $f: X \to X$ be a smooth map with all fixed points nondegenerate. Then

(3.2)
$$L(f) = \sum_{i} (-1)^{i} Tr(f_* : H_i(X; \mathbb{Q}) \to H_i(X; \mathbb{Q})).$$

Example 3.3. (Brouwer Fixed Point Theorem) Every smooth $f: D^n \to D^n$ has a fixed point.

Proof. Since D^n is contractible, we know that the only nontrivial homology group of D^n is $H_0(D^n) = \mathbb{Z}$. Then we know that

(3.4)
$$L(f) = L(f) = \sum_{i} (-1)^{i} Tr(f_* : H_i(X) \to H_i(X)) = 1.$$

Then f must have a fixed point.