FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

Úloha 4: Měření dutých objemů vážením a kompresí plynu

Měření Poissonovy konstanty vzduchu

Datum měření: 23. 10. 2009	Jméno: Jiří Slabý
Pracovní skupina: 1	Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:30
Spolupracovala: Eliška Greplová	Hodnocení:

Abstrakt

Určovali jsme objem lahve dvě metodami – metodou vážení $V = (1,024 \pm 0,001) \text{dm}^3$ a metodou komprese plynu $V_{lahev} = (1,030 \pm 0,009) \text{dm}^3$. Poté jsme určovali Poissonovu konstantu metodou adiabatické expanze a určili jsme ji jako $\kappa = 1,31 \pm 0,02$.

1 Úvod

Měření dutých objemů budeme provádět dvěma metodami. Zvláště užitečná je ta druhá – metoda komprese plynu. Dá se použít tam, kde nelze použít metodu první – metodu vážení – například při měření objemu cisteren.

Naším úkolem je i změření Poissonovy konstanty vzduchu. Tato konstanta má velmi zajímavou historii. Siméon Poisson tuto konstantu roku 1823 zvolil tak, aby mu při řešení úloh o šíření zvuku vycházela správně jeho rychlost [1]. Šíření zvuku (jak se později ukázalo) je adiabatický proces. Teprve později se zjistilo, že tato konstanta je charakteristikou plynu.

1.1 Pracovní úkoly

1.1.1 Měření dutých objemů vážením a kompresí plynu [2]

- 1. Jednolitrovou láhev zvažte prázdnou.
- 2. Jednolitrovou láhev zvažte plnou vody.
- 3. Z obou výsledků určete objem lahve.
- 4. Objem prázdné jednotlitrové lahve určete kompresí plynu.
- 5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4.

1.1.2 Měření Poissonovy konstanty vzduchu [3] [4]

- 1. Změřte kompresí plynu objem baňky systému s kmitajícím pístkem.
- 2. Změřte Poissonovu konstantu metodou adiabatické expanze a současně metodou kmitajícího pístku.
- 3. Oba výsledky porovnejte. Výsledek metody kmitajícího pístku považujte za tabulkovou hodnotu Poissonovy konstanty.

2 Experimentální uspořádání a metody

2.1 Měření dutých objemů vážením a kompresí plynu

Pomůcky: měřený objem, speciální plynová byreta s porovnávacím ramenem, katetometr, váhy, závaží, teploměr

2.1.1 Měření objemu vážením

Vnitřní prostor nádoby vyplníme kapalinou o určité hustotě, nádobu zvážíme takto naplněnou a poté prázdnou. Vnitřní objem nádoby pak určíme jako

 $V = \frac{m_v}{\rho_v} = m_v V_v \tag{1}$

kde ρ_v je hustota vody a V_v je objem jednotkové hmotnosti vody v odpovídajících jednotkách. Pro 1 g vody (a tudíž objem v cm³) platí pro V_v číselný vztah

$$V_v = 0,9998(1+0,00018t) \left[\frac{\text{cm}^3}{\text{g}}, {}^{\circ}\text{C} \right]$$

kde t je teplota (ve stupních Celsia).

2.1.2 Měření objemu kompresí plynu

Lahev o objemu V_{lahev} připojíme ke zvláštní byretě viz obr. 1. Nejprve při zavřeném ventilu 6 a otevřeném ventilu 5 pomocí tlaku zásobníku balónkem 3 nastavíme nulovou hladinu na stupnici a objem V_0 . Zavřeme ventil 5 a zvýšujeme tlak až se objem v byretě 1 a přilehlé nádobě zmenší na objem V_1 . Rozdíl V_0-V_1 označíme ΔV . Tlaky v kapalině se musí vyrovnávat, takže z rozdílu Δh hladin v trubici 2 a byretě 1 můžeme určit změnu tlaku uvnitř nádoby Δp oproti původnímu tlaku atmosférickému p. Z Boyle-Mariottova zákona dostaneme

$$V = (V_0 - V_1) \frac{p}{\Delta p} \tag{2}$$

kde změnu tlaku tedy určíme podle vztahu

$$\Delta p = \Delta h \rho_v g$$

kde g je tíhové zrychlení a ρ_v hustota vody za daných podmínek. Musíme si ale uvědomit, že v objemu V je započítán i objem trubičky spojující byretu s měřeným objemem a vodou nevyplněný objem byrety. Objem V' této části ale můžeme změřit tak, že místo měřené lahve trubici na konci zaslepíme a opakujeme stejnou metodu. Odečtením od objemu V obdržíme výslednou hodnotu V_{lahev} .

Pro drobné nastavování úrovně komprese plynu v lze použít místo balónku 3 injekční stříkačku 4 obr. 1. Rozdíly hladin určujeme katetometrem.

2.2 Měření Poissonovy konstanty vzduchu

Pomůcky: teploměr, barometr, skleněná báň se dvěma kohouty, otevřený manometr, gumový měch, stopky s optickou branou

Poissonova konstanta je poměr měrných tepel při stálém tlaku C_p a při stálém objemu C_V

$$\kappa = \frac{C_p}{C_V}$$

Obr. 1: Aparatura k měření objemů kompresí plynů 1-byreta, 2-srovnávací trubice, 3-balónek, 4-injekční stříkačka, 5,6-ventily

2.2.1 Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou

Obr. 2: Experimentální uspořádání při Clément-Désormesově metodě

Vzduch v báni je pod atmosférickým tlakem b. Manometr je naplněn vodou. Pomocí balónku napojeného na ventil 1 při zavřeném ventilu 2 viz obr. 2 zvýšíme v báni tlak na tlak p_1 . V manometru bude rozdíl hladin h. Poté adiabaticky plyn o objemu V_1 expandujeme a to krátkým otevřením ventilu 2. Objem bude V_2 , teplota se sníží. Tlak se vyrovná s atmosférickým, takže v nádobě bude $p_2 = b$. Pak se začne plyn izochoricky oteplovat na původní teplotu. V nádobě pak bude tlak p_3 . V manometru bude pak rozdíl hladin h'. Z Poissonova zákona plyne

$$\frac{p_1}{p_2} = \left(\frac{V_1}{V_2}\right)^{\kappa}.$$

Pro izotermickou změnu dostaneme z Boyle-Mariottova zákona

$$\frac{p_1}{p_3} = \frac{V_2}{V_1}.$$

Spojíme-li tyto dvě rovnice a použijeme Taylorův vzorec na logaritmus obdržíme konečný výsledek

$$\kappa = \frac{h}{h - h'}.\tag{3}$$

Pokud se zaměříme na chyby při měření je třeba si všimnou nezanedbatelnosti času přiotevření ventilu. V prvním přiblížení můžeme vzít závislost κ na čase lineární.

2.2.2 Měření Poissonovy konstanty vzduchu metodou kmitajícího pístku

Do baňky na obr. 3 se přivádí plyn, který nadzvedá pístek 1. Když se pístek dostane nad otvor 2, plyn unikne, pístek poklesne a znovu dochází k nadzvedávání pístku. Při vhodném nastavení pumpy 3 bude pístek kmitat kolem otvoru 2. Děj s plynem můžeme považovat za adiabatický. Můžeme pak napsat pohybovou rovnici pístku a vyjádřit změnu tlaku z rovnice adiabaty. Před lineárním členem stojí úhlová frekvence, která se dá vyjádřit i jako $\frac{2\pi}{\pi}$. Teď už dostáváme konečný výraz pro Poissonovu konstantu κ

$$\kappa = \frac{4mV}{T^2pr^4}$$
 kde
$$p = b + \frac{mg}{\pi r^2}$$

m je hmotnost pístku, V objem baňky, T perioda kmitů, p okamžitý tlak v baňce, b atmosférický tlak, r poloměr pístku a g tíhové zrychlení.

Obr. 3: Experimentální uspořádání při metodě kmitajícího pístku 1-pístek, 2-otvor, 3-pumpa

3 Výsledky

3.1 Měření objemu vážením

Nejdříve jsme vážili lahev prázdnou a poté plnou, vždy včetně víčka. Pro obě varianty jsme provedli dvě měření. Výsledky jsou v tab. 1 Teplota vody byla $t=(21,0\pm0,1)^{\circ}\mathrm{C}$. Vnitřní objem nádoby určený podle (1)

$$V = (1,024 \pm 0,001) \text{dm}^3$$

	m_{pr} [g]	m_{pl} [g]
	559,6	1580,8
	560,3	1580,2
průměr	559,9	1580,6

Tab. 1: Měření objemu vážením

3.2 Měření objemu kompresí plynu

Nejdříve jsme měřili objem trubičky a nenaplněné části byrety. Na konec trubičky jsme přišroubovali zaslepenou malou skleničku. Nastavili jsme počáteční hodnotu na 24 % objemu byrety. Pak jsme zvýšili o jeden dílek na 25 % objemu, jeden procentní bod je tedy roven rozdílu V_0-V_1 a je dle výrobce roven $V_0-V_1=0,656~{\rm cm}^3$. Následovalo měření výšky hladiny katetometrem. Výšku hladiny blíže k měřené lahvi jsme označili h_0 a výšku hladiny otevřené do místnosti h_1 . Hodnoty naleznete v tab. 2. Atmosférický tlak b jsme změřili barometrem jako 744 torr, což odpovídá zhruba b=99 191 Pa. Pro každé měření jsme dopočítali objem hadičky a nevyplněné části byrety V' analogicky podle vzorce (2). Po statistickém zpracování obdržíme $V'=(63,3\pm0,9)~{\rm cm}^3$.

$h_0 [\mathrm{mm}]$	$h_1 [\mathrm{mm}]$	$\Delta h \text{ [mm]}$	V' [cm ³]
168,42	66,00	102,42	64,53
168,27	72,08	96,19	68,71
169,00	73,50	95,50	69,21
168,25	68,21	100,04	66,06
168,60	71,60	97,00	68,14

Tab. 2: Měření objemu hadičky a nevyplněné části byrety kompresní metodou

Vyměnili jsme zaslepenou lahvičku za měřenou lahev a tentokrát nastavili počáteční úroveň na nulu. Opět jsme zvyšovali tlak až do hodnoty 25 %. Rozdíl objemů tak byl $V_0-V_1=16,4~{\rm cm}^3$. Pro každou hodnotu jsme spočítali celkový objem lahve, trubičky a nevyplněné části byrety V. Data jsou uvedena v tab. 3. Celkově dostáváme $V=(1,097\pm0,008)~{\rm dm}^3$. Pokud odečteme trubičku a přiléhající prázdnou část byrety dostaneme konečný výsledek

$$V_{lahev} = (1,030 \pm 0,009) \text{dm}^3.$$

$h_0 [\mathrm{mm}]$	$h_1 [\mathrm{mm}]$	$\Delta h \text{ [mm]}$	$V [\mathrm{dm}^3]$
169,99	15,08	$154,\!91$	1,067
167,51	15,09	$152,\!42$	1,084
167,57	17,44	150,14	1,101
168,47	20,32	148,15	1,115
167,19	17,51	149,69	1,104
167,00	14,11	152,89	1,081
168,80	22,58	146,22	1,130

Tab. 3: Měření objemu lahve kompresní metodou

3.3 Měření Poissonovy konstanty vzduchu

Z technických důvodů jsme neměli k dispozici funkční aparaturu k měření metodou kmitajícího pístku. Určíme tedy Poissonovu konstantu pro vzduch pouze metodou Clément-Désormesovou.

3.3.1 Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou

Nejdříve jsme nádobu natlakovali a chvíli čekali, až se vyrovnají teploty, pak jsme změřili počáteční rozdíl výšek hladin na manometru h. Poté jsme na krátkou dobu t otevřeli ventil a plyn provedl adiabatickou expanzi. Dobu otevření t jsme změřili stopkami s optickou branou. Pak jsme opět čekali až se výška hladin ustálí. Zapsali jsme si jejich rozdíl jako h'. Data naleznete v tab. 4. Pro každé měření jsme vypočítali Poissonovu konstantu podle vzorce (3). Tato měření jsme vynesli do obr. 4. V prvním přiblížení lze chybu způsobenou tím, že doba, po kterou je otevřen ventil, není zanedbatelná, odstranit proložením přímkou. Proložíme-li námi změřené hodnoty např. v programu gnuplot, dostanem pro časový okamžik t=0 hodnotu Poissonovy konstanty včetně chyby

$$\kappa = 1,31 \pm 0,02$$

Ještě jsme zkoušeli, jak těsní měřící aparatura. Natlakovali jsme ji a čekali. Ovšem nedocházelo k výraznějšímu snižování tlaku, a tak jsme se po dohodě s asistentem rozhodli tento jev zanedbat a nedělat žádnou korekci.

h [cm]	h' [cm]	t [s]	κ [-]
14,4	3,4	$0,\!255$	1,31
12,3	2,8	0,140	1,29
14,2	3,2	$0,\!275$	1,29
11,2	2,2	0,294	1,24
15,0	3,0	0,117	1,25
19,8	4,1	0,111	1,26
9,5	2,1	0,166	1,28
8,9	2,1	0,146	1,31
22,2	5,6	0,087	1,34
12,9	3,1	0,056	1,32

Tab. 4: Měření Poissonovy konstanty metodou Clément-Désormesovou

Obr. 4: Závislost Poissonovy konstanty κ na časové délce otevření ventilu t

4 Diskuze

4.1 Měření objemu

Určili jsme objem lahve metodou vážení $V=(1,024\pm0,001){\rm dm^3}$ a objem téže lahve metodou komprese plynu $V_{lahev}=(1,030\pm0,009){\rm dm^3}$. V prvním případě ale musíme chybu brát velmi s rezervou, protože je určena pouze z dvojice hodnot. V druhém případě zase musíme brát ohled na pomalý pohyb rozhraní voda-vzduch. Ten mohl být způsoben např. netěstnostmi nebo ohřátím plynu v reservoáru při tlakování. Chybové intervaly obou metod se překrývají.

4.2 Měření Poissonovy konstanty vzduchu

Zde jsme bohužel mohli měřit pouze jednou metodou. Poissonova konstanta nám vyšla $\kappa=1,31\pm0,02$. Tabulková hodnota je udávána $\kappa_t=1,40$ [5]. Chyby v měření metodou Clément-Désormesovou můžeme nalézt hlavně v odhadnutí času, kdy je soustava už v rovnováze a tedy v zaznamenání správných hodnot. U metody extrapolace jsme se taktéž snažili, aby hodnoty nebyly pouze v jednom čase kolem cca 0,150 s, ale byly v celém úseku od 0,1 až po 0,25 s, což samozřejmě mohlo naopak zhoršit idealitu provedené adiabatické expanze. Zajímavé je si všimnout, že dvě hodnoty s nejnižším časem se nejvíce přiblížily tabulkové hodnotě. Bohužel se nedá říci, že by se jednalo o trend, protože následující dvě hodnoty jsou pro změnu velmi vzdálené tabulkové hodnotě.

5 Závěr

Objem lahve jsme stanovili nejdříve metodou vážení na $V=(1,024\pm0,001){\rm dm}^3$ a poté metodou komprese $V_{lahev}=(1,030\pm0,009){\rm dm}^3$. Tyto hodnoty jsou si blízké.

Poissonovu konstantu pro vzduch jsme určili jako $\kappa=1,31\pm0,02,$ což znamená, že tabulková hodnota $\kappa_t=1,40$ je vyšší.

6 Literatura

- [1] ŠTOLL, I., Dějiny fyziky, 1.vyd., Praha, 584 s, Prometheus, 2009
- [2] FJFI ČVUT, Měření dutých objemů vážením a kompresí plynu [online], [cit. 28. října 2009], http://praktika.fjfi.cvut.cz/objemy/Objemy.pdf
- [3] FJFI ČVUT, *Určení Poissonovy konstanty vzduchu* [online], [cit. 28. října 2009], http://praktika.fjfi.cvut.cz/Poisson/Poisson.pdf
- [4] FJFI ČVUT, *Určení Poissonovy konstanty metodou kmitajícího pístku* [online], [cit. 28. října 2009], http://fyzport.fjfi.cvut.cz/Praktika/PoissonPist/mans/Cespiro/praktika.pdf
- [5] MIKULČÁK, J., Matematické, fyzikální a chemické tabulky & vzorce pro střední školy, 1. vyd., Praha, 278 s, Prometheus, 2006