自然语言处理

Natural Language Processing

权小军 教授

中山大学数据科学与计算机学院 quanxj3@mail.sysu.edu.cn

应用展示

http://ictclas.nlpir.org/nlpir/

内容

- □中文分词基本方法概述
- □中文分词技术的评测
- □小结

4.1中文分词基本方法概述

中文分词基本方法概述

中文分词方法

基于词典的分词方法

基于字序列标注的方法

最大匹配法 最短路径法 半词罚分法 最大概率法

最大熵模型 CRF模型

.

中文分词基本方法概述

中文分词方法

基于词典的分词方法

基于字序列标注的方法

最大匹配法 最短路径法 半词罚分法 最大概率法

最大熵模型 CRF模型

.

分"词

'合"词

4.2 基于词典的分词方法

基于词典的分词方法

1. 基于词典的分词方法

思考: 你会怎么做?

基于词典的分词方法

- 1. 基于词典的分词方法
 - a. 最大匹配法

输入: S1= "计算语言学课程是两个课时"

输出: S2=""

词典
• • •
计算语言学
课程
课时
• • •
• • •

输入: S1="计算语言学课程是两个课时"

输出: S2=""

设定最大词长MaxLen = 5

W= 计算语言学

词典
• • •
计算语言学
课程
课时
• • •

输入: S1= "计算语言学课程是两个课时"

输出: S2=""

设定最大词长MaxLen = 5

W= 计算语言学

.

词典
• • •
计算语言学
课程
课时
• • •

输入: S1= "计算语言学课程是两个课时"

输出: S2=""

设定最大词长MaxLen = 5

W1= 计算语言学

.

词典
•••
计算语言学
课程
课时
• • •

大规模真实语料中99%的词例 (token) 的长度都在5字以内 [1]

[1] 黄昌宁、赵海, 2007, 中文分词十年回顾, 《中文信息学报》2007年第3期, 8-19页。

最大匹配法的问题

□无法发现分词歧义 → 单向最大匹配改为双向

正向最大匹配和逆向最大匹配结果不同,意味着存在分词歧义。

最大匹配法的问题

□无法发现分词歧义→ 单向最大匹配改为双向

正向最大匹配和逆向最大匹配结果不同,意味着存在分词歧义。

```
      FMM
      有意/
      见/
      分歧/

      BMM
      有/
      意见/
      分歧/
```

- 双向最大匹配法可以发现链长为奇数的交集型歧义, 但无法发现链长为偶数的交集型歧义
 - 0 正向最大匹配和逆向最大匹配结果相同

FMM & BMM 原子/ 结合/ 成分/ 子时/

- 双向最大匹配法可以发现链长为奇数的交集型 歧义
 - ,但无法发现链长为偶数的交集型歧义
 - 0 正向最大匹配和逆向最大匹配结果相同

FMM & BMM 原子/ 结合/ 成分/ 子时/

• 无法发现组合型歧义

- 双向最大匹配法可以发现链长为奇数的交集型 歧义
 - ,但无法发现链长为偶数的交集型歧义
 - 0 正向最大匹配和逆向最大匹配结果相同

FMM & BMM 原子/ 结合/ 成分/ 子时/

- 无法发现组合型歧义
- 在最大匹配法的基础上进行修改,如何给出"改错"的触发条件带有一定的主观性

- 双向最大匹配法可以发现链长为奇数的交集型 歧义
 - ,但无法发现链长为偶数的交集型歧义
 - 0 正向最大匹配和逆向最大匹配结果相同

FMM & BMM 原子/ 结合/ 成分/ 子时/

- 无法发现组合型歧义
- 在最大匹配法的基础上进行修改,如何给出"改错"的触发条件带有一定的主观性

需要更全面地考虑分词的改进办法

基于词典的分词方法

- 1. 基于词典的分词方法
 - a. 最大匹配法
 - b. 最优路径法

最优路径法

• 看待汉语词语切分问题的新视角:词图上的最优路径求解问题

最优路径法

看待汉语词语切分问题的新视角:词图上的最 优路径求解问题

- 词图给出了一个字符串的全部切分可能性
- 分词任务: 寻找一条起点S到终点E的最优路径

基于词典的分词方法

- 1. 基于词典的分词方法

 - a. 最大匹配法 1) 词数最少的路径最优 b. 最优路径法

■ 基本思想: 在词图上选择一条词数最少的路径

- 基本思想: 在词图上选择一条词数最少的路径
- 优点: 好于单向的最大匹配方法
 - 最大匹配: 独立自主|和平|等|互利|的|原则 (6 words)
 - 最短路径: 独立自主|和|平等互利|的|原则 (5 words)

- 基本思想: 在词图上选择一条词数最少的路径
- 优点: 好于单向的最大匹配方法
 - 最大匹配: 独立自主|和平|等|互利|的|原则 (6 words)
 - 最短路径: 独立自主|和|平等互利|的|原则 (5 words)
- ■缺点:同样无法解决大部分交集型歧义

- 基本思想: 在词图上选择一条词数最少的路径
- 优点: 好于单向的最大匹配方法
 - 最大匹配: 独立自主|和平|等|互利|的|原则 (6 words)
 - 最短路径: 独立自主|和|平等互利|的|原则 (5 words)
- 缺点:同样无法解决大部分交集型歧义
 - 他说的确实在理

分词一:???

分词二:???

分词三:???

- 基本思想: 在词图上选择一条词数最少的路径
- 优点: 好于单向的最大匹配方法
 - 最大匹配: 独立自主|和平|等|互利|的|原则 (6 words)
 - 最短路径: 独立自主|和|平等互利|的|原则 (5 words)
- 缺点:同样无法解决大部分交集型歧义
 - 他说的确实在理

分词一:他|说|的|确实|在理

分词二:他|说|的确|实在|理

分词三:他|说|的确|实|在理

基于词典的分词方法

- 1. 基于词典的分词方法

 - a. 最大匹配法 1) 词数最少的路径最优b. 最优路径法 2) 半词法

半词法分词: 词数最少且半词最少

大多数单字在语境里如果能组成合适的词就不倾向于单独使用!

基本概念	半词	如果一个字不单独作为词使用,就是半词。
	整词	如果一个字更倾向于自己成词而不倾向于和别的字组成词,这类"单字词"就称之为"整词"。这类词就是一般说的单字高频成词语素,比如"人、说、我"等。
基本思路	充分利用半词和整词的差别,尽量选择没有半词落单的分词方案。	

■在词图的路径优劣评判中引入罚分机制

- ■在词图的路径优劣评判中引入罚分机制
- 罚分规则:
 - 1) 每个词对应的边罚1分。

- ■在词图的路径优劣评判中引入罚分机制
- 罚分规则:
 - 1) 每个词对应的边罚1分。
 - 2) 每个半词对应的边加罚1分。

- ■在词图的路径优劣评判中引入罚分机制
- 罚分规则:
 - 1) 每个词对应的边罚1分。
 - 2) 每个半词对应的边加罚1分。
 - 3) 一个分词方案的评分为它所对应的路径上所有边的 罚分之和。

- ■在词图的路径优劣评判中引入罚分机制
- 罚分规则:
 - 1) 每个词对应的边罚1分。
 - 2) 每个半词对应的边加罚1分。
 - 3) 一个分词方案的评分为它所对应的路径上所有边的 罚分之和。
 - 4) 最优路径就是罚分最低的分词路径。

半词法分词

他|说|的|确实|在理 (1+1+1+1+1 = 5分)

他 | 说 | 的确 | 实 | 在理 (1+1+1+2+1 = 6分)

他 | 说 | 的确 | 实在 | 理 (1+1+1+1+2 = 6分)

半词法分词

但是: 仍然无法解决"有意见分歧"的问题!

基于词典的分词方法

- 1. 基于词典的分词方法

 - a. 最大匹配法 1) 词数最少的路径最优b. 最优路径法 2) 半词法

 - 3) 最大概率法分词

最大概率法分词:字串成词概率最大的路径最优

基本思想: 在词图上选择词串概率最大的分词路经 作为最优结果

最大概率法分词:字串成词概率最大的路径最优

基本思想: 在词图上选择词串概率最大的分词路经作为最优结果

路径1: 0-1-3-5

路径2: 0-2-3-5

该走哪条路呢?

输入字符串S:有意见分歧

词串W1:有/意见/分歧/

词串W2: 有意/见/分歧/

输出:???

输入字符串S:有意见分歧

词串W1:有/意见/分歧/

词串W2: 有意/见/分歧/

输出:??? Max(P(W1|S), P(W2|S))?

输入字符串S:有意见分歧

词串W1:有/意见/分歧/

词串W2: 有意/见/分歧/

输出:???

Max(P(W1|S), P(W2|S))?

$$P(W \mid S) = \frac{P(S \mid W) \times P(W)}{P(S)} \approx P(W)$$

$$P(W) = P(w_1, w_2, ..., w_i) \approx P(w_1) \times P(w_2) \times ... \times P(w_i)$$

$$P(w_i) = \frac{w_i \text{ 在语料库中的出现次数n}}{\text{语料库中的总词数N}} = \frac{Freq(w_i)}{N}$$

输入字符串S:有意见分歧

词串W1:有/意见/分歧/

词串W2: 有意/见/分歧/

输出:???

Max(P(W1|S), P(W2|S))?

$$P(W \mid S) = \frac{P(S \mid W) \times P(W)}{P(S)} \approx P(W)$$

独立性假设

$$P(W) = P(w_1, w_2, ..., w_i) \approx P(w_1) \times P(w_2) \times ... \times P(w_i)$$

$$P(w_i) = \frac{w_i 在语料库中的出现次数n}{语料库中的总词数N} = \frac{Freq(w_i)}{N}$$

词语	概率
• • •	•••
有	0.0180
有意	0.0005
意见	0.0010
见	0.0002
分歧	0.0001
• • •	•••

词语	概率
• • •	
有	0.0180
有意	0.0005
意见	0.0010
见	0.0002
分歧	0.0001
• • •	• • •

$$P(W1) = P(有) * P(意见) * P(分歧)$$

= 1.8×10^{-9}
 $P(W2) = P(有意) * P(见) * P(分歧)$
= 1.0×10^{-11}

问题: 怎么找出概率最大的分词序列?

用动态规划算法求解最优路径

□动态规划算法:最优路径中的第i个词 W_i 的累积概率等于它的左邻词 W_{i-1} 的累积概率乘以 W_i 自身的概率。

$$P'(w_i) = P'(w_{i-1}) \times P(w_i)$$

用动态规划算法求解最优路径

□动态规划算法:最优路径中的第i个词 W_i 的累积概率等于它的左邻词 W_{i-1} 的累积概率乘以 W_i 自身的概率。

$$P'(w_i) = P'(w_{i-1}) \times P(w_i)$$

□ 为方便计算, 一般把概率转化为路径代价

$$C = -\log(P)$$

$$C'(w_i) = C'(w_{i-1}) + C(w_i)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

最小累积代价 最佳左邻词

1) 对一个待分词的字串 S, 按照从左到右的顺序取出 全部候选词w₁, w₂, ··· , w_i, ··· , w_n;

- 1) 对一个待分词的字串 S,按照从左到右的顺序取出 全部候选词w₁, w₂, ···, w_i, ···, w_n;
- 2) 到词典中查出每个候选词的概率值P(w_i),转换为代价C(w_i),并记录每个候选词的全部左邻词;

- 1) 对一个待分词的字串 S,按照从左到右的顺序取出 全部候选词w₁, w₂, ···, w_i, ···, w_n;
- 2) 到词典中查出每个候选词的概率值P(w_i),转换为代价C(w_i),并记录每个候选词的全部左邻词;
- 3) 按照公式1计算每个候选词的累计代价,同时比较 得到每个候选词的最佳左邻词;

- 1) 对一个待分词的字串 S,按照从左到右的顺序取出 全部候选词w₁, w₂, ···, w_i, ···, w_n;
- 2) 到词典中查出每个候选词的概率值P(w_i),转换为代价C(w_i),并记录每个候选词的全部左邻词;
- 3) 按照公式1计算每个候选词的累计代价,同时比较得到每个候选词的最佳左邻词;
- 4) 如果当前词w_n是字串S的尾词,且累计代价C'(w_n) 最小,则w_n就是S的终点词;

- 1) 对一个待分词的字串 S,按照从左到右的顺序取出 全部候选词w₁, w₂, ···, w_i, ···, w_n;
- 2) 到词典中查出每个候选词的概率值P(w_i),转换为代价C(w_i),并记录每个候选词的全部左邻词;
- 3) 按照公式1计算每个候选词的累计代价,同时比较得到每个候选词的最佳左邻词;
- 4) 如果当前词wn是字串S的尾词,且累计代价C'(wn) 最小,则wn 就是S的终点词;
- 5) 从wn开始,按照从右到左顺序,依次将每个词的最佳左邻词输出,即为S的分词结果。

序号	候选词	代价	累计代价	最佳左邻

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0
3	合成	4.194	7.767	0

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0
3	合成	4.194	7.767	0
4	成	2.800	6.343	1
			_	

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0
3	合成	4.194	7.767	0
4	成	2.800	6.343	1
5	成分	3.908	7.451	1
6	分	2.862	9.205	4
7	分子	3.465	9.808	4

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0
3	合成	4.194	7.767	0
4	成	2.800	6.343	1
5	成分	3.908	7.451	1
6	分	2.862	9.205	4
7	分子	3.465	9.808	4
8	子	3.304	10.755	5
9	子时	6.000	13.451	5

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0
3	合成	4.194	7.767	0
4	成	2.800	6.343	1
5	成分	3.908	7.451	1
6	分	2.862	9.205	4
7	分子	3.465	9.808	4
8	子	3.304	10.755	5
9	子时	6.000	13.451	5
10	时	2.478	12.286	7

序号	候选词	代价	累计代价	最佳左邻
0	结	3.573	3.573	-1
1	结合	3.543	3.543	-1
2	合	3.518	7.091	0
3	合成	4.194	7.767	0
4	成	2.800	6.343	1
5	成分	3.908	7.451	1
6	分	2.862	9.205	4
7	分子	3.465	9.808	4
8	子	3.304	10.755	5
9	子时	6.000	13.451	5
10	时	2.478	12.286	7

□并不能解决所有的交集型歧义问题

例: 这事的确定不下来

□并不能解决所有的交集型歧义问题

例: 这事的确定不下来

W1= 这/事/的确/定/不/下来/

W2= 这/事/的/确定/不/下来/

P(W1) < P(W2)

□并不能解决所有的交集型歧义问题

例: 这事的确定不下来

W1= 这/事/的确/定/不/下来/

W2= 这/事/的/确定/不/下来/

P(W1) < P(W2)

□一般也无法解决组合型歧义问题

□并不能解决所有的交集型歧义问题

例:这事的确定不下来

W1= 这/事/的确/定/不/下来/

W2= 这/事/的/确定/不/下来/

P(W1) < P(W2)

□一般也无法解决组合型歧义问题

例: 做完作业才能看电视

W1=做/完/作业/才能/看/电视/

W2= 做/完/作业/才/能/看/电视/

P(W1) > P(W2)

分词方法

- 1. 基于词典的分词方法

 - a. 最大匹配法
 b. 最优路径法
 7) 词数最少的路径最优
 2) 半词法
 3) 最大概率法分词
- 2. 基于字序列标注的分词方法

4.3 基于字序列标注的分词方法

字位标注法

□分词可以看做是对字加"词位标记"的过程

字位标注法

- □分词可以看做是对字加"词位标记"的过程
- □ "人"的词位分类示例:

В	E	M	S
词首	词尾	词中	独立词
<mark>人</mark> 们	古 <mark>人</mark>	小 <mark>人</mark> 国	听 <mark>人</mark> 说

□字位标注的原理: 根据字本身及其上下文的特征, 来决定当前字的词位标注

特征模板示例	含义		
C_0	当前字		
C_{-2}, C_{-1}, C_1, C_2	当前字的左边第二字,第一字,右边第一字,第二字		
$C_{-1}C_0, C_0C_1$	当前字跟其左边一个字,当前字跟其右一个字		
$C_{-2}C_{-1}, C_1C_2$	当前字的左边两个字,当前字的右边两个字		
$C_{-1}C_1$	当前字的左边一个字加右边一个字		
T ₋₁	左边第一个字的字位标注		
T ₋₂	左边第二个字的字位标注		
Default feature	缺省特征(当上述特征都不适用时)		

自然句形式	已结婚的和尚未结婚的都应该到计生办登记					
词切分结果	已/ 结婚/ 的/ 和/ 尚未/ 结婚/ 的/ 都/ 应该/ 到/ 计生办/ 登记/					
字标注结果	已结婚的和尚未结婚的都应该到计生办登记					
	SBESSBESSBESBMEBE					

C ₀ 生成的特征	C_1C0生成的特征	C ₀ C ₁ 生成的特征
和	的和	和尚
尚	和尚	尚未
未	尚未	未结
结	未结	结婚
婚	结婚	婚的
的	婚的	的都

CRF 工具包: http://crfpp.googlecode.com/svn/trunk/doc/index.html

Maximum Entropy工具包: https://github.com/lzhang10/maxent

SVM 工具包: http://www.svms.org/software.html

基于LSTM+CRF的序列标注方法

基于字序列标注的方法的优点

- □ 能够平衡地看待词表词和未登录词的识别问题。文本中的词表词和未登录词都是用统一的字标注来实现的
- □ 在学习架构上,既可以不必专门强调词表词信息,也不用专门设计特定的未登录词(如人名、地名、机构名)识别模块,这使得分词系统的设计大大简化
- □ 在字标注过程中,所有的字根据预定义的特征进行词位特性的学习,获得一个概率模型。然后,在待分字串上,根据字与字之间的结合紧密程度,得到一个词位的标注结果
- □ 在这样一个分词过程中,分词成为字重组的简单过程, 结果令人满意的

基于字序列标注的方法的优点

- □ 能够平衡地看待词表词和未登录词的识别问题。文本中的词表词和未登录词都是用统一的字标注来实现的
- □ 在写**简单、鲁棒性强、效果好!!** 征进行词位为 在待分字 由上,根据字与字之间的结合紧密程度,得到一个词位的标注结果
- □ 在这样一个分词过程中,分词成为字重组的简单过程, 结果令人满意的

4.4 中文分词技术的评测

中文分词技术的评测

□

□

中文分词技术的评测

- □

 □

- □分词质量对NLP应用系统的影响
 - [1) 分词质量对MT的影响 2) 分词质量对IR的影响

□准确率(precision)

□准确率(precision)

□ 召回率(recall)

□准确率(precision)

□ 召回率(recall)

□ F-评价(F-measure 综合准确率和召回率的评价指标)

$$F1 = \frac{2*P*R}{P+R}$$

Thank you!

权小军 中山大学数据科学与计算机学院