Search

home / study / engineering / computer science / computer science questions and answers / note: stop-and-go protocol = alternate bit protocol = ...

Question: Note: Stop-and-go protocol = Alternate bit protocol = Stop-an...

Note: Stop-and-go protocol = Alternate bit protocol = Stop-and-wait protocol

a) Suppose the Stop-and-go protocol is used with 840-byte data frames and 40 byte ack frames on a link with a 8 ms propagation delay in each direction. In the absence of transmission errors, what are the throughput (in packets per second) and efficiency if the link data rate is 1 kbps? 100 kbps? 10 Mbps? 1

b) You must have found the above protocol to be very inefficient over links with very high data rates. Let's try replacing it by a sliding window protocol. At 1 Gbps, what would the throughput and efficiency be if the window size is 10 packets? 100? 1000? 10,000? What is the ideal window size?

Expert Answer ①

Anonymous answered this

28 answers

Was this answer helpful?

DATA Packet size: 840bytes=6720bits

ACK packet size 40bytes=320bits

P = propagation delay = 8ms

C= link data rate

Imagine no transmission errors, negligible framing overhead, and negligible processing time p.

a) With the Stop-and-go protocol:

T = d + 2P + a + p = d + 2P + a (p is the processing time, assumed negligible)

- T: Time to send a data frame and receive the corresponding ACK
- d: Time to transmit a data frame
- P: Time for the frame to propagate from the sender to the receiver
- a: Time for the receiver to transmit an ACK

Throughput = 1/T (packet/second)

Efficiency = d/T (no units)

C	d	a	P	T	Throughput	Efficiency
Ikbps	6.72sec	320msec	8ms	7.056 sec	0.142pkts/s	95%
100kbps	67.2 msec	3.2 msec	8ms	86.4 msec	11.6 pkts/s	77.8%
10Mbps	0.672 msec	0.032msec	8ms	16.7 msec	59.9 pkts/s	4.0%
1Gbps	6.72 μ sec	0.3 μ sec	8ms	16 msec	62.5 pkts/s	0.042%

b) By a sliding window protocol following the similar opinions

Efficiency = min [(W.d/T), 1]

(the throughput can not be greater than C (C and throughput should be in similar units).

C	Window size	T	Throughput	Efficiency
1Gbps	10	16 msec	625 pkts/s	0.42%
1Gbps	100	16 msec	6.25 kpkts/s	4.2%
1Gbps	1000	16 msec	62.5 kpkts/s	42%
1Gbps	10,000	16 msec	148.8 kpkts/s	100%

The ideal window is: $W_i = T/d = 2381$ frames

Comment >

Post a question

Answers from our experts for your tough homework questions

Enter question

Continue to post

20 questions remaining

My Textbook Solutions

Introductio... 3rd Edition

Essentials... 1st Edition

Student... 8th Edition

View all solutions

Home Study tools ∨ My courses ∨ My books My folder

Career Life

rdt 3.0 in which sequence numbers alternate between 0 and 1): a. With the SR protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window. b. With GBN, it is possible for the sender to receive an ACK for a...

A: See answer 100% (5 ratings)

Q: TCP congestion control – Consider sending a large file from one host to another over a TCP connection that has no loss. a) Suppose TCP uses AIMD for its congestion control without slow start. Assuming cwnd increases by 1 MSS every time a batch of ACKs is received, and assuming constant round-trip times, how long does it take for cwnd to increase from 1 MSS to 6 MSS? b) What is the...

A: See answer

Show more ✓

COMPANY~

LEGAL & POLICIES

CHEGG PRODUCTS AND SERVICES

CHEGG NETWORK

CUSTOMER SERVICE~

© 2003-2022 Chegg Inc. All rights reserved.