Série 5

Réponses à l'exercice 5.1: CONVOLUTION

- 1) $F(\omega) = \frac{1}{j\omega s}$.
- 2) $F_1(\omega) = \frac{1}{j\omega+1}$. $F_2(\omega) = \frac{1}{j\omega+2}$. $F_3(\omega) = \frac{1}{j\omega+1} - \frac{1}{j\omega+2}$.
- 3) $f_3(t) = e^{-t}u(t) e^{-2t}u(t)$.
- 4) Propriété de convolution : $F_3(\omega) = F_1(\omega) \cdot F_2(\omega) \Rightarrow f_3(t) = (f_1 * f_2)(t)$. D'après les tables de convolution (A-4), on a bien $(f_1 * f_2)(t) = u(t) \frac{e^{-t} e^{-2t}}{-1 (-2)} = f_3(t)$.

Réponses à l'exercice 5.2 : ANALYSE DE SYSTÈME

- 1) (a) $h_{11}(t) = \frac{1}{3}u(t)e^{-\frac{2}{3}t}$.
 - (b) $H_{12}(\omega) = 2e^{-6j\omega}$.
 - (c) $H_1(\omega) = \frac{2}{3} \frac{e^{-6j\omega}}{j\omega + \frac{2}{3}}$.
- 2) (a) $h_2(t) = \frac{1}{6}u(t)e^{-\frac{2}{3}t}$.
 - (b) $H_a(\omega) = \frac{1}{6} \frac{4e^{-6j\omega} + 1}{j\omega + \frac{2}{3}}$.
- 3) (a) $h_b(t) = 3\delta'(t) + 2\delta(t)$.
 - (b) $H(\omega) = \frac{1}{2}(4e^{-6j\omega} + 1).$ 4x(t-6) + x(t) = 2y(t).
 - (c) Le système est causal et BIBO-stable.
 - (d) Voir graphes ci-dessous.

i.
$$y(t) = \frac{1}{2} rect(t) + \frac{1}{8} rect(t+6)$$
.

FIGURE 1 – La fonction $y(t) = \frac{1}{2} \operatorname{rect}(t) + \frac{1}{8} \operatorname{rect}(t+6)$.

ii.
$$y(t) = 2u(t-6) + \frac{1}{2}u(t)$$
.

FIGURE 2 – La fonction $y(t) = 2u(t-6) + \frac{1}{2}u(t)$.

Réponses à l'exercice 5.3 : DUALITÉ

- 1) $f(t) = \frac{1}{jt+1} \frac{1}{jt-1}$.
- **2)** $S_1(\omega) = \frac{1}{j\omega+1}$. $S_2(\omega) = -\frac{1}{j\omega-1}$
- 3) Dualité: $f(t) = S_1(t) + S_2(t) \Rightarrow F(\omega) = 2\pi \left(s_1(-\omega) + s_2(-\omega)\right) = 2\pi e^{-|\omega|}$.
- 4) Dualité : $g(t) = \frac{1}{2\pi} F(t) \Rightarrow G(\omega) = f(-\omega) = \frac{2}{\omega^2 + 1}$.

Réponses à l'exercice 5.4 : DÉCALAGE ET DILATATION

- 1) $X(\omega) = \frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}}$.
- 2) Propriété de décalage $\Rightarrow Y(\omega) = e^{-j\omega/2}X(\omega) + e^{j\omega/2}X(\omega) = 2\cos\left(\frac{\omega}{2}\right)\frac{\sin\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}} = 2\frac{\sin\omega}{\omega}.$
- **3)** y(t) = x(t/2).
- 4) Propriété de dilatation $\Rightarrow Y(\omega) = 2X(2\omega)$. On vérifie que l'on retrouve le résultat du 2).