Solution 1: Algorithm Introduction & Divide and Conquer

1 Problem

Let $F(x) = \sum_{k=0\cdots n} a_k x^k$ be a polynomial equation, where $a_0\cdots a_n$ are stored in an array $A[0\cdots n]$. Given an input integer x, we can find the corresponding output value F(x). For example, the coefficients of the polynomial $F(x) = 1 + x + 2x^2$ can be stored in an array < 1, 1, 2 >. When x = 2, F(x) equals to 11.

The basic algorithm (illustrated in Algorithm 1) is designed for solving this problem. The idea is that, for every k (line 2), compute $A[k] \cdot x^k$ (line 3-5) first and then sum up the results (line 7).

```
Algorithm 1: Basic Algorithm
```

```
Input: coefficient array A[0 \cdots n] representing a_0 \cdots a_n
Input: x
Output: corresponding value F(x)

1 sum = 0

2 for k=0 to n do

3 | temp = A[k]

4 | for i = 1 to k do

5 | temp = temp \cdot x

6 | sum = sum + temp

7 return sum
```

2 Time Complexity

Analyze the time complexity of Algorithm 1.

Solution:

Table 1 illustrates the time complexity of every line. Sum up the cost of every line gives $O(n^2)$.

Table 1: Time Complexity of Each Line

Line	Time Complexity
1	O(1)
2	n+1=O(n)
3	same as Line 2
4	$\sum_{k=0n} k = \frac{n(n+1)}{2} = O(n^2)$
5	same as Line 4
6	same as Line 2
7	O(1)

3 Incremental Algorithm

• Design an incremental algorithm for solving the problem. hint: $F(x) = \sum_{k=0\cdots n} a_k x^k$ can be reorganized as $F(x) = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + xa_n) \cdots))$

- Consider the polynomial equation $F(x) = 4 + 2x + 3x^2 + x^3$. Show the running steps of your algorithm when x = 2.
- \bullet Analyze the time complexity of your algorithm.

Solution:

- \bullet Refer to Algorithm 2.
- Refer to Table 2.
- Time complexity is O(n).

Algorithm 2: Incremental Algorithm

Input: coefficient array $A[0 \cdots n]$ representing $a_0 \cdots a_n$

Input: x

Output: corresponding value F(x)

- 1 sum = 0
- 2 for k=n downto θ do
- $\mathbf{3} \quad \big\lfloor \ sum = x \cdot sum + A[k]$
- $\mathbf{4}$ return sum

Table 2: Running Steps

k	sum
3	$0 \cdot 2 + A[3] = 1$
2	$1 \cdot 2 + A[2] = 5$
1	$5 \cdot 2 + A[1] = 12$
0	$12 \cdot 2 + A[0] = 28$

Answer to question 4

```
BinarySearch(A, n_L, n_R, k)
1. if n_L > n_R
    return (-1)
                         //not found
3. else
   mid = (n_L + n_R)/2
    if (k == A[mid])
6.
        return ( mid )
    else if (k \le A[mid])
7.
8.
           return BinarySearch (A, n_L, mid-1, k)
9.
         else
           return BinarySearch (A, mid+1, n_R, k)
10.
```

• Let T(n) be the running time

- Line 1 and 2
 Take O(1) time
- Line 3 and 4
 Take O(1) time
- Line 5 and 6
 Take O(1) time
- **Line 7 to 10**Take T(*n*/2) time

Which is correct?

$$T(n) = 2T(n/2) + O(1) \times T(n) = T(n/2) + O(1) \checkmark$$

Answer to question 5

- Solve the recurrence $T(n) = 5T(n/3) + n^2$ ---- using the **master method**

 - $f(n) = n^2$
 - Since $f(n) / n^{\log_b a} = \Omega(n^{0.54})$, e.g., use $\varepsilon = 0.54 > 0$,
 - And we have that $a f(n/b) / f(n) = [5 (n/3)^2] / n^2 = 5/9 < 1$
 - So we get:

$$T(n) = O(n^2)$$

---- using the recursion tree

Recursion Tree for: $T(n) = 5 T(n/3) + n^2$

Recursion Tree for: $T(n) = 5 T(n/3) + n^2$

• Time at **leaf** level:

 $cn^{\log_3 5} = cn^{1.46}$

• Number of **non-leaf** levels L: $\log_3 n$

 \circ Consider the level i (level 0 is the top level)

• Input size of a subproblem: $n/3^i$

• Number of subproblems: 5^i

• Combine time of a subproblem: $(n/3^i)^2$

• Total time at this level: $5^i (n/3^i)^2$

 \circ Total time T(n):

$$\Sigma_{i=0,L-1} 5^i (n/3^i)^2 + cn^{1.46}$$

 $= \sum_{i=0.. L-1} (5/9)^i n^2 + c n^{1.46}$

 $= O(n^2)$