DW - MODELAGEM DIMENSIONAL

Módulo02 Parte 2

1

MODELAGEM DIMENSIONAL

- Técnica de modelagem onde a informação reside na intersecção de várias dimensões
- "A capacidade de poder observar um banco de dados no formato de um cubo..."

[Daniel Diniz]

- Dimensões
 - Armazenam as informações-base das medidas registradas no fatos, representando as

Negócio

Armazenam as medidas (métricas) associadas

aos eventos de negócio

■ Fatos -> Observações do

3

Modelagem Dimensional

- Modelo Dimensional
 - A representação dos fatos e dimensões num modelo se dá através de dois elementos:
 - Tabelas Dimensão
 - · Representam as dimensões do cubo
 - · Cliente, Tempo, Produto
 - Tabelas Fato
 - Representam as métricas relativas a intersecção das dimensões
 - Total de Vendas, Total em Estoque

- Tabela Dimensão
 - · guardam os atributos do negócio
 - são utilizadas para restringir as pesquisas feitas
 - · servem como título das colunas em consultas

5

Modelagem Dimensional

- Tabela Fato e suas Métricas
 - Guardam as medidas do negócio.
 - Cada medida tem uma interseção de todas as dimensões
 - As métricas são aditivas, ou sejam, podem ser acumulados
 - Fatos possuem valores contínuos

Esquema Estrela

- Existem variações de como organizar os dados em uma modelagem dimensional.
- A forma mais comum utilizada é o esquema estrela tradicional, onde existe apenas uma tabela fato cercada por tabelas dimensões ligadas apenas à tabela central (fato).
- Alguma redundância é aceita visando melhor compreensão e performance no uso do modelo

7

Modelagem Dimensional

Tabela fato sem métrica

9

Modelagem Dimensional

- Esquema Estrela
 - Constelações (Esquema Estrela com múltiplas tabela fato)
 - Quando existem fatos n\u00e3o relacionados ent\u00e3o \u00e9 poss\u00edvel existir mais de uma tabela fato
 - · Quando a freqüência de carga dos dados operacionais é distinta
 - Exemplo: tabela fato de vendas (carga semanal) e tabela fato de vendas previstas(carga mensal)

- Esquema flocos de neve
 - O esquema floco de neve é uma variação do esquema estrela no qual todas as tabelas dimensão são normalizadas na terceira forma normal (3FN)
 - Reduzem a redundância mas aumentam a complexidade do esquema e consequentemente a compreensão por parte dos usuários
 - Dificultam as implementações de ferramentas de visualização dos dados
 - Impossibilitam o uso de esquemas de indexação mais eficientes

11

Modelagem Dimensional

- Granularidade
 - Granularidade é o nível de representação mais específico utilizado para armazenar os dados.
 - Podem existir hierarquias de conceitos, onde a modelagem é o nível mais inferior.
 - Exemplo

Classe Produto (Refrigerante)

Tipo Produto (Guaraná)

Marca (Guaraná-Antarctica)

Caract. Unit. (2Litros)

- Granularidade e Agregação:
 - A escolha da Granularidade, determina as análises que podem ser feitas. Com Granularidade baixa, temos dados para agregar na hora da análise.
 - · Exemplo:
 - · Seja uma tabela Dimensão Tempo

•	Ano	(2000)
•	Semestre	(1)
•	Mês	(3)
•	Semana	(13)
•	Dia	(2)

 com as informações acima poderíamos agrupar qualquer evento até a granularidade dia. Não sendo possível agregar por hora do dia!

13

Modelagem Dimensional

Ferramentas OLAP

- Uma ferramenta OLAP caracteriza-se por um conjunto de tecnologias para acesso e análise de dados.
- Possui a finalidade de prover suporte à tomada de decisão, permitindo um ambiente amigável e flexível.

15

Tipos de Ferramentas OLAP

- ROLAP Ferramentas que operam sob banco de dados relacionais
- MOLAP Ferramentas que operam sob banco de dados multidimensionais
- HOLAP Ferramentas que operam tanto sob banco de dados multidimensionais quanto relacionais
- DOLAP Ferramentas voltadas ao uso desktop

Ferramentas OLAP - Requisitos

- Rapidez no acesso e no cálculo às informações
 - Executar consultas e realizar cálculos com ótima performance é primordial para uma ferramenta OLAP em função do volume de agregação envolvido nas operações
- Análise avançada
 - Deve prover operações sofisticadas como por exemplo normalização, médias, etc...
- Flexibilidade
 - De Visualização permitir ao usuário escolher como a informação será visualizada (tabela, gráfico, matriz)
 - De Interface deve possuir uma interface amigável e intuitiva
 - De Definição permitir ao usuário alterar os descritores (formatar células, definir fórmulas, customizar gráficos)
 - De análise permite ao usuário definir quais operações podem ser realizadas em uma determinada consulta

17

Operações OLAP

 Para exemplificar as operações OLAP observe o cubo abaixo apresentado

Análise do Cubo

 Fatia-se o cubo a fim de encontrar a visão apropriada da informação que se queira consultar

19

Drill down e Roll UP

- Movimentam a visão dos dados sobre uma dimensão
- Drill Down
 - Aumenta o nível de detalhamento da informação, diminuindo o nível de granularidade.
 - · Você "desce" no detalhe da informação
- Roll Up
 - Aumenta o nível de detalhe, diminuindo o detalhamento da informação.
 - Você "sobe" no detalhe da informação

Roll Up - Exemplo

· Roll Up sobre a dimensão tempo

Volume de Produção (em milhares)			20	04	
		Trim. 1	Trim. 2	Trim. 3	Trim. 4
Região RS		78	67	22	56
Sul	SC	90	67	88	99

Volume de Produção			2004	
(em milhar	es)	Janeiro	Fevereiro	Março
Região	RS	30	26	22
Sul	SC	28	30	32

21

Drill Down - Exemplo

• Drill Down sobre a dimensão Localização Geográfica

Volume de Produção		Telefone	Celular	Pag	jers
(em milhar	es)	1001	1002	2001	2002
Região RS		33	12	8	12
Sul	SC	45	34	20	23

Volume de Produção (em milhares)		Telefone	Celular	Pag	jers
		1001	1002	2001	2002
	Canoas	13	4	2	5
RS	Porto Alegre	20	8	6	7

Drill Across

 Ocorre quando o usuário pula um nível hierárquico da informação. Por exemplo pula de ano para mes, sem passar pelos níveis semestre e trimestre

23

Drill Through

- Acontece quando o usuário está analisando uma informação sobre uma dimensão e passa a analizá-la por outra.
 - Exemplo: O usuário está analisando as vendas através da dimensão vendedor e passa a analisá-las através da dimensão cidade.

Slice

 "Corta" o cubo mas mantém a mesma perspectiva da visualização das informações

25

Slice

· Abaixo observamos as vendas de celulares e pagers

Volume de Produção		(Celulares e Page	rs
(em milhar	es)	Janeiro	Fevereiro	Março
Região	RS	30	26	22
Sul	SC	28	30	32

Tabela 1

 Agora está representado apenas uma fatia do cubo onde observamos as vendas somente de celulares e pagers

Volume de Produção			Celulares	
(em milhai	res)	Janeiro	Fevereiro	Março
Região	RS	22	18	18
Sul	SC	19	27	25

Tabela 2

Dice

- Representa a mudança de perspectiva da visão do usuário
- Representa ter um cubo nas mãos e girar pelas diversas faces

27

Dice - Exemplo

 A seguir temos a visão das vendas no sentido estado, cidade, ano, modelo e produto

Volume de Produção (em milhares)		2006				
		Telefone Celular		Pagers		
(6	iii iiiiiiai esj	1001	1002	2001	2002	
RS	Canoas	13	4	2	5	
	Porto Alegre	20	8	6	7	

 Abaixo aplicamos a operação Dice, modificando o sentido para modelo, produto, ano, estado e cidade

Volume de Produção (em milhares)		2	006
		RS	
(cili illilliares	,	Canoas	Porto Alegre
Telefone Celular	1001	13	20
	1002	4	8
A	2001	2	6
Pagers	2002	5	7

Pivoteamento

 A forma mais comum de visualização é através da escolha de duas dimensões (slice). A operação de pivoteamento corresponde a inversão dos eixos das dimensões para, por exemplo, uma posterior rolagem.

29

Exemplo

- Construa um modelo dimensional para atender à seguinte necessidade:
 - O gerente de vendas de uma determinada empresa necessita obter as informações de valor total de vendas de cada produto e de cada cliente, número de vendas de cada produto e de cada cliente e os cinco clientes que mais compraram um determinado produto. Estas informações devem ser acessadas com periodicidade mensal.

Exemplo

 O gerente de vendas de uma determinada empresa necessita obter as informações de valor total de vendas de cada produto e de cada cliente, número de vendas de cada produto e de cada cliente e os cinco clientes que mais compraram um determinado produto. Estas informações devem ser acessadas com periodicidade mensal.

31

Leitura

- Leitura dos capítulos 6,7,8 e 9 do livro
 - MACHADO, Felipe Nery Rodrigues. Tecnologia e projeto de data warehouse: uma visão multidimensional. 1. ed. São Paulo: Érica, 2004. 318 p. ISBN 8536500123