	,
The set $\mathbb N$ contains?	The set ${\mathbb R}$ contains?
The set $\mathbb Z$ contains?	The set $\mathbb Q$ contains?
What is this?	What is this?
$What\ does\ X\subseteq Y\ mean?$	What does' mean after a set (or c)?
What does $x \in X$ mean?	What does $x \notin X$ mean?
For each a in X , $a \in X \iff a \in Y$. How is this represented?	How else could we express: $X \subseteq Y \iff Y \subseteq X$

The set of natural numbers (all non-negative integers).

The set of integers.

1

5

4

 $The \ universal \ set, \ containing \ all \ possible \ elements.$

The null set.

X is a subset of YThe complement of the set. E.g. X': Y is a superset of X

6

8

X is included in YY includes X

x is not a member of Xx is contained in / is a member of X

> 10 9

X = YX = Y

What does $X \cup Y$ mean?		What does $X \cap Y$ mean?	
	13	14	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6
The truth table for the implies function is:			
Input 1 Input 2 Input 1 implies Input 2		An operation is $a1 \circledast a2 = a2 \circledast a1$	
	17	18	.8
An operation is if : $(a1 \circledast a2) \circledast a3 = a1 \circledast (a2 \circledast a3)$		Is $(v + w + x)$ a valid expression in the formal language?	
	19	20	0
Is $(x + 4)$ a valid expression in the formal language?		Is $((x \times 0) + (y + z))$ a valid expression in the formal language?	
	21	22	2
What expression does this parse tree represent? $\frac{y-z}{x-(-)}$		Evaluate the following parse tree $ \frac{10}{140} \frac{3 1}{\cdot} (\times) $ $ \frac{140}{\cdot} (\div) $	
	23	2^{c}	4

The intersection of the sets X and Y.

The union of the sets X and Y.

14

The truth table for the or function is:

Input 1	Input 2	Input 1 or Input 2
\overline{T}	T	T
\overline{T}	F	T
\overline{F}	T	T
\overline{F}	F	F

16

An operation is commutative if:

$$a1 \circledast a2 = a2 \circledast a1$$

The truth table for the implies function is:				
$Input\ 1$	Input 2	Input 1 implies Input 2		
T	T	T		
T	F	F		
F	T	T		
F	F	T		

18

No, there aren't enough brackets. ((v+w)+x) would be valid though!

An operation is associative if: $(a1 \circledast a2) \circledast a3 = a1 \circledast (a2 \circledast a3)$

20 19

No, since there are too many brackets. $((x \times 0) + (y + z))$ would be valid though!

No, since 4 isn't an allowable atom. (x + 0) would be valid though!

22 21

$$(140 \div (10 - (3 \times 1))) = 20$$

$$\frac{10 \quad \frac{3}{3} (\times)}{20} (\div)$$

$$(x - (y \times z))$$

Use the fact that \cup is associative to re-arrange: $X \cup (Y \cup Z)$	Use the fact that \cap is associative to re-arrange: $X \cap (Y \cap Z)$
Use the distributive law on: $X \cup (Y \cap Z)$	Use the distributive law on: $X \cap (Y \cup Z)$
Use absorbsion on: $X \cup (X \cap Y)$	Use absorbsion on: $X \cap (X \cup Y)$
What three things happen when De Morgan's law is applied to an expression?	What does involution mean?
What is the symbol for logical negation?	What is the symbol for conjunction?
What is the symbol for disjunction?	What is the symbol for logical and?

What is the symbol for logical or?	What is the symbol for implication?
What is the symbol for bi-implication?	The truth table for the bi-implication function is: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
An expression is a when all of it's possible outcomes are true	An expression is when at least one of it's possible outcomes are true
An expression is a when none of it's possible outcomes are true	What is the notation to say A is a tautology?
What is the notation to say A is satisfiable?	What is the notation to say A is a contradiction?
Use the fact that \vee is associative to re-arrange: $X \vee (Y \vee Z)$	Use the fact that \wedge is associative to re-arrange: $X \wedge (Y \wedge Z)$

 \Longrightarrow \vee

38 37

The truth table for the bi-implication function is:

Input 1	Input 2	$Input 1 \iff Input 2$
T	T	T
T	F	F
F	T	F
F	F	T

40 39

$$42$$
 41

$$\models A$$
 An expression is a contradiction when none of it's possible outcomes are true

$$44$$
 43

$$\not\models A$$
 $\not\models \neg A$

$$46$$
 45

$$\begin{array}{ccc} Y \wedge (X \wedge Z) & & & Y \vee (X \vee Z) \\ & & & or \\ Z \wedge (X \wedge Y) & & & Z \vee (X \vee Y) \end{array}$$

What are the two possible rearrangements of $A \implies B$?	What is the rearrangement of $\neg(A \implies B)$
What is the rearrangement of $A \implies \neg B$?	Rearrange $A \iff B$
Rearrange $A \iff B$	Rearrange $A \iff B$
$Rearrange \neg (A \iff B)$ 55	$Rearrange \neg (A \iff B)$
What two conditions are there for Negation Normal Form?	What two steps do we do to get an expression into Negation Normal Form?
What three conditions are there for Conjunctive Normal Form?	What two steps do we do to get an expression into Conjunctive Normal Form?

$$A \wedge \neg B$$

$$\neg A \vee B \\ \neg B \implies \neg A$$

50

49

$$(A \Longrightarrow B) \land (B \Longrightarrow A)$$

$$B \implies \neg A$$

52

51

$$(A \wedge B) \vee (\neg A \wedge \neg B)$$

$$(\neg A \lor B) \land (\neg B \lor A)$$

54

53

$$\neg (A \land B) \land (A \lor B)$$

$$(A \wedge \neg B) \vee (B \wedge \neg A)$$

56

55

- 1. Remove all implication and bi-implication operations by applying the logical identities
- 2. Apply De Morgan's laws to any expressions that are negated
- 1. The expression is build up of literals using only conjunction and disjunction
- 2. Negation can be used, but only on literals, not expressions

N.b. a literal is a formula that is either atomic or the negation of an atomic formula (i.e. x or $\neg x$)

58

- 1. Get rid of nested brackets using identities
- 2. Use the distributive identities to bring all the disjunctions inside the conjunctions.
- 1. The formula must be in NNF already
- 2. There must be no nested brackets
- 3. Conjunction must be used outside of the brackets, and disjunction inside the brackets

What is the CNF test for tautologies?	What three conditions are there for Disjunctive Normal Form?
What is the DNF test for contradictions?	What is the universal quantifier?
What is the existential quantifier?	What can we do to a universal quantifier with a negation such as this: $\neg \forall x P(x)$
What can we do to an existential quantifier with a negation such as this: $\neg \exists x P(x)$	What is the arity of a unary symbol?
Is disjunction inclusive or exclusive?	What does 'iff' mean?
What does 'PL' stand for?	What is a truth valuation?

(x = T, y = F)

If $A \iff B$ is a tautology, what does that mean?	How can we show that $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$?
73	74
How does $\mathbb{P}(A^c)$ relate to $\mathbb{P}(A)$?	If $B \subseteq A$ what is the probability of the set difference between A and B ?
75	76
$\mathbb{P}(A \cup B) =$	$\mathbb{P}(A^c\cap B) =$
77	78
$\mathbb{P}(A \cap B^c) = $	Define a probability measure
13	
What condition must be satisfied for two events to be disjoint?	What two conditions must be satisfied for a mapping to be a probability measure?
01	02
How do we find the probability of an event?	What does an indicator function do?
83	84

$$\mathbb{P}(A \cup B) = \sum_{i=1}^{n} 1_{A \cup B}(\omega_i) p_i$$

$$= \sum_{i=1}^{n} (1_A(\omega_i) + 1_B(\omega_i)) p_i$$

$$= \sum_{i=1}^{n} (1_A(\omega_i)) p_i + \sum_{i=1}^{n} (1_A(\omega_i)) p_i$$

$$= \mathbb{P}(A) + \mathbb{P}(B)$$

A and B are logically equivalent.

74

$$\mathbb{P}(A | B) = \mathbb{P}(A) - \mathbb{P}(B)$$

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

Also, $\mathbb{P}(B) \ge \mathbb{P}(A)$

76 75

 $\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

78

77

A probability measure is a mapping between a collection of events and the probability that each event will occur.

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$

80

79

73

The probability measure of the event Ω must equal 1. $\mathbb{P}(\Omega) = 1$ If A and B are disjoint, then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

The events must have no intersection: $A \cap B = \emptyset$

82

81

If an element is inside a set, then the indicator function returns 1, otherwise, it returns 0. The notation is $1_{SET}(ELEMENT)$.

Add up all the probability measures inside the event:

$$\sum_{i=1}^{n} 1_A(\omega_i) p_i$$

Where n is the number of elements inside Ω .

$\mathbb{P}(A^c \cap B) =$	How do we find the probability of a set in a sample space where all the outcomes are equally likely?
How do we find the binomial coefficient $\binom{n}{k}$?	How do we find the number of selections possible in a set when order is important and items can be replaced?
How do we find the number of selections possible in a set when order is important and items cannot be replaced?	What is the probability that an event A will occur if we know that an event B will occur?
How do we represent the probability of one event A occurring given that another event B will occur?	What is the definition of the independence of two events?
What are the two crucial properties of partitions?	If n events are mutually disjoint, then what is the sum of their probabilities?
What is the condition for the law of total probability to be true?	What is the formula for the law of total probability?

$$\mathbb{P}(A) = \frac{\#A}{\#\Omega}$$

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

 n^k

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$$

$$\frac{n!}{(n-k)!}$$

$$\mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A|B)\left(=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}\right)$$

 $\mathbb{P}(A_0 \cup \cdots \cup A_n)$

The pieces do not overlap and together they make up the whole sample space.

$$\mathbb{P}(A) = \mathbb{P}(A|E_1)\mathbb{P}(E_1) + \dots + \mathbb{P}(A|E_n)\mathbb{P}(E_n)$$

The events must be mutually disjoint. (They often form a partition of the sample space)

Describe the law of total probability in English. 97	What is the definition of conditional probability?
What is the definition of the multiplicative law?	Define Bayes' theorem.
What can you do with $Var(aX + b)$?	How do you find the standard deviation of a random variable?
What is the variance of a random variable that contains one element?	Var(X) = ?
What is the formula for a geometric series?	What is the formula for the chain rule?

$$\mathbb{P}(E_i|A) = \frac{\mathbb{P}(E_i \cap A)}{\mathbb{P}(A)}$$

Take a partition of a sample space consisting of the events E_1 to E_n . For any event A, the probability of A is equal to the sum of the probability of A choose E_m multiplied by the probability of E_m for each m from 1 to n.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

$$\mathbb{P}(E_i \cap A) = \mathbb{P}(A|E_i)\mathbb{P}(E_i)$$

$$SD(X) = \sqrt{Var(X)}$$

$$Var(aX + b) = a^2 Var(X)$$

$$Var(X) = \mathbb{E}(X - \mu)^2 = \sum_{i=1}^{m} (r_i - \mu)^2 \mathbb{P}(X = r_i)$$

$$y = f(x)^{n}$$
$$\frac{\delta y}{\delta x} = n \cdot f(x)^{n-1} \cdot f'(x)$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$