Amended Claims

1. (Previously presented) A method of magnetic
resonance imaging comprising:

5

10

15

- (a) administering a magnetic resonance contrast agent to a subject which contrast agent alters T_1 , T_2 and ${T_2}^{\star}$ magnetic resonance characteristics;
- (b) exciting magnetic resonance in a region of interest of the subject which receives the contrast agent;
- (c) applying a first echo planar readout waveform during the excited resonance and generating a plurality of data lines of first image data;
 - (d) applying a second echo planar readout waveform during the excited resonance after the first echo planar readout waveform and generating a plurality of lines of T_2 or ${T_2}^{\star}$ weighted image data;
 - (e) reconstructing the image data to generate a first image representation and a T_2 or ${T_2}^\star$ weighted image representation; and
 - (f) correcting the T_2 or ${T_2}^\star$ weighted image representation with the first image representation.
- 2. (Currently amended) The \underline{A} method as set forth in claim 1, further including of magnetic resonance imaging comprising:

- applying a first echo planar readout waveform during the excited resonance and generating first image data having T_1 contrast;

15

- applying an a refocusing RF inversion pulse between after the first and second echo planar readout waveform;
- applying a second echo planar readout waveform after the refocusing RF inversion pulse and generating second image data having T_2 contrast and some T_1 contrast;
- reconstructed image having T₁ contrast;
- $\frac{\text{correcting the second reconstructed image based on}}{\text{the first reconstructed image to reduce the }T_1}$
 - 3. (original) The method as set forth in claim 1, further including:
 - applying a third echo planar readout waveform and generating the other of T_2 and ${T_2}^\star$ weighted image data.
 - **4.** (original) The method as set forth in claim **3**, further including:
 - applying an RF inversion pulse between the second and third echo planar readout waveforms, such

5

5

5

15

Application No.: 09/885,884

that the second echo planar readout waveform generates ${T_2}^\star$ weighted data and the third echo planar readout waveform generates T_2 weighted data.

5. (original) The method as set forth in claim 4, further including:

reconstructing the T_2 weighted data into a T_2 weighted image representation; and

modifying the T_2 weighted image representation with the first image representation.

- **6.** (Currently amended) A method of magnetic resonance imaging comprising:
 - (a) administering a magnetic resonance contrast agent to a subject which contrast agent alters T_1 , T_2 and ${T_2}^\star$ magnetic resonance characteristics;
 - (b) exciting magnetic resonance in a region of interest of the subject which receives the contrast agent;
- (c) applying a first echo planar readout waveform and generating first image data;
 - (d) applying a second echo planar readout waveform and generating T_2 or ${T_2}^*$ weighted image data;
 - (e) reconstructing (i) the T_2 or T_2^* weighted image data and (ii) a portion of the first image data temporally adjacent to the T_2 or T_2^* weighted image data to generate a T_2 or T_2^* weighted image representation; and
- (f) reconstructing $\underline{\text{(i)}}$ a portion of the T_2 or ${T_2}^*$ weighted image data $\underline{\text{temporally adjacent to the}}$

first image data and (ii) the first image data
to generate a first image representation; and

(g) correcting the T_2 or ${T_2}^\star$ weighted image representation with the first image representation.

25

5

5

10

- 7. (Currently amended) The method as set forth in claim 6, wherein the portion of the T_2 or ${T_2}^{\star}$ weighted readout waveform used to generate the first image representation temporally adjacent to the first image data and the portion of the first image data used to generate the T_2 or ${T_2}^{\star}$ weighted image representation temporally adjacent to the T_2 or ${T_2}^{\star}$ weighted image data include interleaved data lines adjacent an edge of k-space.
- 8. (original) The method as set forth in claim 7, further including:

generating additional data lines by conjugate symmetry.

- 9. (original) The method as set forth in claim 1,
 further including:
 - repeating steps (b)-(f) a plurality of times to generate a series of first image representations and a series of T_2 or ${T_2}^{\star}$ weighted image representations; and
 - combining the series of first image representations and the series of T_2 or ${T_2}^\star$ weighted image representations to generate a third series depicting a temporal evolution of the contrast agent in the region of interest.

10. (original) The method as set forth in claim 1,
further including:

5

10

5

- (g) combining the first image representation and the T_2 or ${T_2}^\star$ weighted image representation to generate a third image representation; and
- repeating steps (b)-(g) a plurality of times to generate a series of third image representations depicting a temporal evolution of the contrast agent in the region of interest.
- 11. (original) The method as set forth in claim 1, wherein the contrast agent includes a gadolinium chelate.
- 12. (Currently amended) A method of magnetic
 resonance imaging comprising:
 - (a) administering a magnetic resonance contrast agent to a subject which contrast agent alters $\frac{\text{at least one of}}{\text{tresonance characteristics;}} \quad \text{T}_2 \quad \text{and} \quad \text{T}_2^{\, \star} \quad \text{magnetic}$
 - (b) exciting magnetic resonance in a region of interest of the subject which receives the contrast agent, the exciting including applying a radio frequency excitation pulse and subsequently applying a refocusing inversion pulse;
- (c) during a deadtime between the radio frequency
 excitation pulse and the refocusing pulse,
 applying a first echo planar readout waveform
 and generating first image data;

- (d) after the applying of the refocusing pulse, applying a second echo planar readout waveform and generating T_2 or ${T_2}^{\star}$ weighted second image data, wherein at least one of the steps of generating the first image data and generating the second image data includes generating image data—using—a partial—parallel—imaging technique;
- (e) reconstructing the image data to generate a $\text{first image representation and a T_2} \text{ } \text{weighted image representation; and }$

20

30

5

- (f) correcting the T_2 $\frac{}{\text{or}-T_2}$ weighted image representation with the first image representation.
- amended) A method 13. (Currently of contrast enhanced magnetic resonance imaging in which a subject is injected with a contrast agent that alters T_1 and T_2 decay characteristics, magnetic resonance is excited in a region of interest, the excited magnetic resonance is permitted to decay for a preselected duration to optimize one of T_2 and ${T_2}^{\star}$ weighting, and after the preselected duration an echo planar sequence is applied to generate T_2 or ${T_2}^*$ weighted data, which T_2 or ${T_2}^*$ weighted data is most strongly affected by the effect of the contrast agent on T_2 decay and is secondarily affected by the effect of the contrast agent on T1 decay which continues after the preselected duration, the method further including:

using the T_1 weighted data to correct the T_2 or T_2^* weighted data for the effect of the continuing T_1 decay to generate a T_2 or T_2^* image that is corrected for the effect of the contrast agent on T_1 decay.

14-16. (Canceled)

5

5

10

- 17. (Currently amended) The imaging method
 according to claim 1, wherein:
- in the step of reconstructing the $\frac{T_2}{T_2}$ or $\frac{T_2}{T_2}$ weighted image representation, a portion of the encoded and read resonance from the first echo planar readout waveform is reconstructed into the $\frac{T_2}{T_2}$ or $\frac{T_2}{T_2}$ weighted image representation.
- 18. (Currently amended) The imaging method according to elaim 1, wherein:

the first echo planar readout waveform phase encoding includes,

phase encoding a first portion of the resonance such that a k_y component single-steps in a first direction, and

phase encoding a second portion of the resonance such that the k_y component double-steps in the first direction;

the second echo planar readout waveform phase encoding includes,

phase encoding a first portion of the 15 resonance such that the component double-steps opposite to the first direction, and phase encoding a second portion of the resonance such that the k_v 20 component single-steps opposite to the first direction; and the reconstructing step includes, reconstructing the first and second of the first 25 portions echo planar readout waveform and the first portion of the second echo planar readout waveform into the first image representation, and reconstructing the second portion of 30 the first echo planar readout waveform the first and second portions of the second planar readout waveform echo 35 into the second image representation.

- 19. (Currently amended) A magnetic resonance
 imaging apparatus comprising:
 - a main magnet which generates a temporally constant magnetic field through an examination region;
 - an RF system which excites and manipulates magnetic resonance in the examination region and which receives and demodulates magnetic resonance signals from the examination region into data lines;

- a sorter which sorts the data lines between a first data memory and a second data memory;
 - a gradient magnetic field system which generates magnetic field gradients across the examination region to spatially encode the resonance signals;
 - a sequence controller which,

15

20

25

30

35

- (ii) controls the RF and gradient systems to implement a first echo planar readout waveform during a deadtime preceding the inversion RF pulse which generates $non-T_2$ T_1 weighted data lines;
- (iv) controls the sorter to sort the $\frac{\text{non-T}_2}{\text{data lines between the first and}}$ second data memories; and
- a reconstruction processor which reconstructs data lines from the first data memory into a first image representation and data lines from the

second data memory into a second image representation.

20. (Canceled)

5

10

5

21. (original) The magnetic resonance apparatus as
set forth in elaim 20 claim 19 wherein:

the sequence controller controls the sorter to sort

- (i) all of the $\frac{T_1}{T_2}$ mon- $\frac{T_2}{T_2}$ weighted data lines and a portion of the $\frac{T_2}{T_2}$ weighted data lines into the first image memory and
- (ii) all of the T_2 or T_2^* weighted data lines and a portion of the T_1 non- T_2 weighted data lines into the second image memory.
- 22. (original) The magnetic resonance apparatus as set forth in claim 19 wherein the RF system further includes:
 - a phased array receive coil; and
 - a partial parallel imaging (PPI) integrator which processes the readout of the phased array receive coil to generate data lines.
- 23. (original) The magnetic resonance apparatus as set forth in claim 22 wherein the partial parallel imaging (PPI) integrator processes the readout of the phased array receive coil using one of a simultaneous acquisition of spatial harmonics (SMASH) technique, a sensitivity encoding (SENSE) technique, and a parallel imaging with localized sensitivities (PILS) technique.