LABORATÓRIO 5: Regressão Linear

Fernado Bispo, Jeff Caponero

Sumário

arte 1: Regressão Linear Simples - Diagnóstico do modelo	
Metodologia	
Resultados	
Ajuste do Modelo	
Significância do Modelo	
Análise de Resíduos	

Introdução

O laboratório desta semana está subdividido em duas partes com análises de dois conjuntos de dados distintos que visa a continuidade da aplicação das técnicas de Regressão Linear Simples com a aplicabilidade das técnicas de análise de resíduos e transformação de variáveis inclusive. Para melhor desenvolvimento do processo de analise, este relatório foi dividido em duas partes contendo as análises de cada um dos conjuntos de dados e contando com suas respectivas apresentações sobre o contexto a ser analisado.

Parte 1: Regressão Linear Simples - Diagnóstico do modelo

Metodologia

O conjunto de dados *trees*, disponível no pacote *datasets*, contém informações de 31 cerejeiras (*Black cherry*) da Floresta Nacional de Allegheny, relativas a três características:

- Volume de madeira útil (em metros cúbicos (m³));
- Altura (em metros (m));
- Circunferência (em metros(m)) a 1,37 de altura.

Para esta atividade serão considerados apenas as informações referentes ao volume e altura das árvores. Com base nestes dados se desenvolverá:

- (a) Ajuste um modelo linear simples para volume como função da altura da árvore;
- (b) Avalação gráfica dos resíduos Jacknife para diagnóstico do modelo ajustado;
- (c) Transformações das característricas;
- (d) Avaliação da transformação mais apropriada dentro da família proposta por Box e Cox;
- (e) Indicação da melhor transformação analisada.

Resultados

Ajuste do Modelo

2,0

R = 0.5982; R² = 0.3579; p < 0.001

y = -2.5 + 0.14 x; R²_{adj} = 0.34

1,5

0,0

19

20

21

22

23

Altura (m)

Figura 1: Modelo Ajustado entre o Volume e Altura

Significância do Modelo

Após o ajuste do modelo existe a necessidade de se avaliar a significância do mesmo, o teste de hipótese para tal situação será realizado, contendo as seguintes hipóteses:

$$H_0: \hat{\beta_1} = 0$$

$$H_1: \hat{\beta_1} \neq 0.$$

As Tabelas 4 e 5 trazem os principais resultados da tabela ANOVA e do Intervalo de Confiança para os parâmetros, possibilitando assim inferir sobre o modelo ajustado.

Tabela 1:	Analise de	Variancia	(ANOVA)

	GL	Soma de Quadrados	Quadrado Médio	Estatística F-Snedecor	p-valor
Regressão	1	2,326	2,326	16,164	0
Resíduos	29	4,174	0,144	NA	NA

Legenda:

¹ GL: Graus de Liberdade

Tabela 2: Intervalos de Confiança para os parâmetros estimados no MRLS.

	LI	LS
Beta 0	,	-0,772
Beta 1	0,070	$0,\!216$

Legenda:

Com base na Tabela 1, avaliando o p-valor é possível afirmar que o modelo é significante rejeitando assim H_0 que tem como pressuposto $\hat{\beta}_1 = 0$.

Através dos Intervalos de Confiança calculados é possível afirmar com 95% de confiança é possível afirmar que o verdadeiro valor de β_0 está entre (-4,1624; -0,7717) e que o verdadeiro valor de β_1 está entre (0,0704; 0,2163).

 $^{^1}$ LI: Limite Inferior (alpha = 2,5%)

 $^{^2}$ LS: Limite Superior (alpha = 97,5%)

^{*} Nível de Significância de 5%.

Análise de Resíduos

Figura 5: Análise de resíduos do modelo ajustado

A Figura que trada da Homogeneidade de Variâncias (Locação-Escala) mostra que há um problema na variabilidade dos dados, ou seja, há uma mudança na variabilidade dos dados, caracterizando uma Heterocedasticidade dos dados.

Parte 2: Regressão Linear Múltipla -Estimação pontual