

中文社区面对面

Jina生态提供端到端的神经搜索开发体验

处理非结构化数据的python库

支持不同数据类型的云原生神经搜索框架

神经搜索系统模块的分享平台

神经搜索系统的结果调优器

使用Jina Cloud部署和管理神经搜索系统

神经搜索系统的低代码环境

提供文字与图片的向量表示

CLIP-as-service

版本更新

CLIP as service

CLIP-as-service 是提供 \underline{CLIP} 模型 推理服务的 \underline{T} 推理服务的 \underline{T} 定的低延迟、易扩展,高可靠性的特点使其能作为微服务轻松集成到神经搜索解决方案中。

- 快速:提供 TensorRT、ONNX 和 PyTorch(无JIT)模型推理引擎, 推理吞吐量可以高达 800QPS。同时拥有专为大数据和高稳定性任务设计的非阻塞请求和响应。
- 灵活:可在单块 GPU 下支持部署多个 CLIP 模型, 同时做到负载平衡。
- 易用:无需学习,极简的客户端和服务端设计让使用变得十分直观。
- 现代:客户端支持异步请求。可以任意选择 gRPC、HTTP 和 WebSocket 协议。
- 集成:原生集成神经搜索生态系统 (包括 Jina 和 Docarray), 快速搭建跨模态/多模态应用。

Release Notes v0.5

- 支持 多语言的 CLIP 模型, 可以处理100 余种语言的文本
- 支持 OpenCLIP 预训练模型, 由 LAION-400M 数据集训练的 CLIP 模型
- 支持使用 Finetuner 微调后的 CLIP 模型 <u>说明文档</u>
 - a. 使用 SaaS 服务, 只需提供训练数据, 由云端完成 CLIP 模型微调
- 基于 CLIP 模型提供 Zero-shot learning 的视觉推理能力, <u>Colab Notebook</u>

Finetuner

神经搜索系统的结果调优器

Finetuner

神经搜索系统的结果调优器

- 🔰 封装好了神经搜索调优的最佳实践
- A 高效调优预训练模型,性能 SOTA!
- → 云端分配计算资源, 高速调优

```
import finetuner
from finetuner.callback import EvaluationCallback
finetuner.login()
run = finetuner.fit(
   model='resnet50',
    run_name='resnet50-tll-run',
    train_data='tll-train-da',
    callbacks=[EvaluationCallback(query_data='tll-eval-da')],
# five minutes later ...
finetuner.login()
run = finetuner.get_run('resnet50-tll-run')
print(run.status())
print(run.logs())
run.save_artifact('resnet-tll')
```


Documentation

Benchmark

Model	Task	Metric	Pretrained	Finetuned	Delta
BERT	Quora Question Answering	mRR	0.835	0.967	15.8%
		Recall	0.915	0.963	5.3%
ResNet	Visual similarity search on TLL	mAP	0.102	0.166	62.7%
		Recall	0.235	0.372	△ 58.3%
CLIP	Deep Fashion text-to-image search	mRR	0.289	0.488	△ 69.9%
		Recall	0.109	0.346	217.0%

^[*] All metrics evaluation on k@20, trained 5 epochs using Adam optimizer with learning rate of 1e-5.

Notebook 任务介绍

- 数据集:
 - Kaggle 的数据集
 - 5个人物, 各 100 张图片。
 - Albedo
 - Ayaka
 - Hu Tao
 - Kokomi
 - Neither (None of the above)
- 搭建一个动漫搜索系统
 - Query: text (eg. "Ayaka")
 - Result: relevant image(s)
- Finetuner 的任务:
 - CLIP (fine-tuned with 250 images)

一起点亮 GitHub 期待大家 Star

用 Finetuner 之前的效果

Query: 'Hu Tao fighting'

X (Ayaka)

(Neither)

(Neither)

X (Ayaka)

'Ayaka dancing'

X (Hutao)

一起点亮

GitHub

'Albedo flying'

X (Ayaka)

(Neither)

如何使用 Finetuner

- - 一起点亮 GitHub 期待大家 Star

- Fine-tuning CLIP involves two models:
 - o clip image encoder
 - o clip text encoder
- Optimize the clip loss jointly
- Luckily, Finetuner makes this easy!


```
pushing

Pushing

pun = finetuner.fit(
    model='openai/clip-vit-base-patch32', # fine-tune CLIP
    train_data=pairs,
    learning_rate=1e-5,
    cpu=False,
)

250/250 • 122 OPS • 0:00:00 • 26.1 MB
```

使用 Finetuner 后的效果

Query: 'Hu Tao fighting'

(Hu Tao)

X (Albedo)

(Hu Tao)

(Neither)

'Ayaka dancing'

(Ayaka)

'Albedo flying'

(Albedo)

(Albedo)

口红搜索神器

西门良

口红搜索引擎

Simon Liang - 西门良 - 广州先思科技

灵感

- 给女朋友选礼物是难题
- 送口红看似简单, 实则很难
- 口红颜色搭配和肤色唇色相关, 千人千色

命 首页

Q搜索

English

口红搜索

上传自拍, 让AI给你找合适的口红!

请确保上传的照片有全脸, 否则上传会出错, 需要刷新页面重 新上传。

Q 搜索

启发

换个角度思考问题

- "什么口红适合我女朋友" -> "和我女朋友肤色相近的人都在用什么口 红"

思路

- 需要稳定提取肤色和唇色
- Google's MediaPipe Face Mesh
- 无监督学习方法(K-means)提取HSV值,构建直方图向量,进行相似度比较

使用 Jina 的开发部署流程

- Notebook 确认算法
- 数据使用 DocArray 封装建模
- 算法拆解成对应的 Executors
- 数据库选型,构建数据集
- 编写 FastAPI 服务对接 Jina Gateway, 添加业务代码
- 部署运行

<u>GitHub - Ihr0909/lipstick-db: 聪明的AI口红数据库Smart AI Lipstick Database </u>

开发 & 部署的经验

- 基于 DocArray 建模时, 数据层级尽可能平整, 方便 读写
- MacOS 本地开发要注意 multiprocessing 配置问题
- Annlite 数据库性能好, 使用简单, 但是要注意搜索时内存开销, 生产环境建议使用外部向量存储
- K8s 部署需要添加必要的 (gRPC) health checks, 监控 k8s pod 内部的Executor Jina pod 运行情况

Why I like Jina

- DocArrays
 - 灵活、Pythonic、容易序列化/反序列化/传输
- Flexible Executor Compositions
 - DocArrays in, DocArrays out
 - FastAPI类似的接口定义
 - 把步骤拆解, 实现资源隔离, 灵活分配和 组合
 - 允许同时使用TF、PyTorch、Paddle的ML Pipeline
- Easy to Work with
 - 方便科学家把算法工程化
 - 方便工程师使用深度学习算法
- Cross-Modal
 - Voice chatbots voice -> text -> NLU -> chatbot -> text -> voice
- Cloud Native

What I like to see in Jina

- 更多开源的生产实战样例
 - 部署到 k8s, 和前端整合, 等等
- Better DocArray
 - DocArray 存储分治 (binary blobs in S3, vectors in Weaviate, texts in ES)
 - Better Dataclass modeling
- 更多生产平台整合
 - 国内平台服务的支持
 - One-click deploy to AWS / Azure / GCP

Thanks!

My GitHub: https://github.com/lhr0909

My Bilibili: 西门良

Our Company: https://senses.chat

Our Company GitHub: https://github.com/senses-chat

Our OSS Work:

- <u>https://github.com/senses-chat/rasa-paddlenlp</u> Rasa框架中文支持
- https://github.com/senses-chat/operator 微信客服机器人框架

Thank you!

