Exploratory Data Analysis (EDA)

Theory and Math Behind Key Concepts

Report Error

Outline

Missing Values

Outliers

Irrelevant / Redundant Data

Data Type Correction

Categorical Variables

Normalization and Standardization

Summary Table

Missing Values

Missing Values

Definition: Data entries where values are not recorded.

Types:

- MCAR Missing Completely at Random
- MAR Missing at Random
- MNAR Missing Not at Random

Imputation Example: Mean

$$x_{\text{imputed}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

3

Outliers

Outliers

Definition: Observations significantly different from the rest.

Detection Methods:

• IQR Method:

$$IQR = Q_3 - Q_1$$
, Lower = $Q_1 - 1.5 \times IQR$, Upper = $Q_3 + 1.5 \times IQR$

• Z-Score Method:

$$z_i = \frac{x_i - \mu}{\sigma}$$

• If $|z_i| > 3$, it's an outlier.

4

Irrelevant / Redundant Data

Irrelevant or Redundant Data

Definition: Features that add little or no useful information.

Methods:

- Correlation Analysis
- Variance Thresholding
- Principal Component Analysis (PCA)

Pearson Correlation:

$$\rho_{X,Y} = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Data Type Correction

Data Type Correction

Goal: Ensure appropriate types for modeling (e.g., integers, floats, categories).

Examples:

- Convert strings to datetime
- Map numerical codes to categories
- Cast floats to integers (if discrete)

Categorical Variables

Categorical Variables

Types:

- Nominal (e.g., color)
- Ordinal (e.g., education level)

Encoding Methods:

• One-Hot Encoding:

$$\mathsf{Red} \to [1,0,0], \quad \mathsf{Blue} \to [0,1,0]$$

Label Encoding:

Low =
$$0$$
, Medium = 1 , High = 2

Normalization and Standardization

Normalization

Definition: Rescale features to a fixed range, usually [0, 1].

Formula:

$$x_i' = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Use case: Distance-based models like KNN, K-Means.

Standardization

Definition: Rescale features to mean 0 and standard deviation 1.

Formula:

$$x_i' = \frac{x_i - \mu}{\sigma}$$

Use case: Models assuming normal distribution (e.g., PCA, linear regression).

Summary Table

EDA Summary Table

Step	Method	Math
Missing Values	Mean Imputation	$x' = \frac{1}{n} \sum x_i$
Outliers	IQR, Z-score	$z = \frac{x - \mu}{\sigma}$
Redundant Data	Correlation, PCA	$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$
Data Types	Type casting	N/A
Categorical	One-Hot/Label Encoding	Encoding to vectors or integers
Normalization	Min-Max Scaling	$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$
Standardization	Z-score Scaling	$x' = \frac{x - \mu}{\sigma}$

