Local Max-Entropy and Free Energy Principles Solved by Belief Propagation

Olivier Peltre

Univ. Artois, Laboratoire de Mathématiques de Lens (LML)

Introduction

Belief Propagation (BP) is an old algorithm with many applications [Gallager 64, Pearl 82] (low-density decoding, bayesian inference, AI, stereovision, condesed matter simulation ...)

[Yedidia 05]

Generalized Belief Propagation (GBP) works with hypergraphs (i.e. coverings) instead of graphs

This talk is not about GBP,

[Kikuchi 51, Morita 57, Yedidia 05]

It is about the geometric and statistical problems solved by GBP stationary states

GBP can be viewed a soft constraint satisfaction solver trying to reach consistent local probability distributions under energy conservation constraints.

Continuous-time diffusion equations generalise GBP with improved stability

[P 20, 21]

Introduction

Example: Spin Glasses

K random graph on a set of vertices $\Omega = \{1, \dots, N\}$

 $(x_i) \in \{\pm 1\}^N$ random microstate of the system

 $(w_{ij}) \in \mathbb{R}^{K_1}$ random couplings on the edges of K

 $(b_i) \in \mathbb{R}^N$ random magnetic fields (or $b_i = B$)

Hamiltonian = Total Energy

$$H(x) = \sum_{ij \in K_1} w_{ij} x_i x_j + \sum_{i \in K_0} b_i x_i$$

Gibbs state = Graphical Model

$$p(x) = \frac{e^{-\beta H(x)}}{\sum_{x} e^{-\beta H(x)}}$$

Introduction

In thermodynamics, it is common to work with the following functionals:

- $S(\mathcal{U})$ Boltzmann entropy : defined as log-number of microstates having energy $\,\mathcal{U}$
- $\mathcal{F}(eta,\mathcal{U})$ variational free energy : defined by $\ \mathcal{U}-\frac{1}{eta}S(\mathcal{U})$
- F(eta) free energy : defined as $\min_{\mathcal{U}} \mathcal{F}(eta,\mathcal{U})$, or from the partition function by $-\frac{1}{eta} \ln Z(eta)$

The Legendre transform relates these functionals, defining an energy-temperature relationship $\,\mathcal{U}(eta)$

Thermodynamic equilibrium with different constraints: on ${\mathcal U}$ and ${\mathcal \beta}$ respectively

not tractable in practice

Short range interactions \Rightarrow local approximations efficiently computed by GBP

Bethe-Kikuchi approximations

Cluster Variation Method

Outline

I. Local statistics : topology and combinatorics

II. Cluster variational principles solved by GBP

III. Example of diffusion with singularities

I.1. Microstates and Total Energy

We consider a free sheaf $E: \mathcal{P}^{op}(\Omega) \to \mathbf{Set}$ of microstates, given by:

$$E_{\mathrm{a}} = \prod_{i \in \mathrm{a}} E_i$$
 for all $\mathrm{a} \subseteq \Omega$

The restriction maps $\pi^{a \to b}: E_a \to E_b$ for every $b \subseteq a$ simply forget the state of atoms outside of b. We will write:

$$x_{\mathrm{a}|\mathrm{b}} = \pi^{\mathrm{a} \to \mathrm{b}}(x_{\mathrm{a}})$$

A statistical system on $\ E_\Omega$ is classically defined by a hamiltonian or energy function $\ H_\Omega:E_\Omega\to\mathbb{R}$ One can always define a finest covering $K\subseteq\mathcal{P}(\Omega)$ such that $\ H_\Omega$ decomposes as a sum of local interactions:

$$H_{\Omega}(x_{\Omega}) = \sum_{\mathbf{a} \in K} h_{\mathbf{a}}(x_{\Omega|\mathbf{a}})$$

I.2. Observables

Local observables form a cosheaf $\mathbb{R}^E:\mathcal{P}(\Omega) o \mathbf{Alg}_c$ of commutative algebras

The extension maps $\pi^{\mathbf{a} o \mathbf{b} \, *} : \mathbb{R}^{E_{\mathbf{b}}} o \mathbb{R}^{E_{\mathbf{a}}}$ for all $\mathbf{b} \subseteq \mathbf{a}$ can be viewed as inclusions $\mathbb{R}^{E_{\mathbf{b}}} \subseteq \mathbb{R}^{E_{\mathbf{a}}}$

Def.

Observable fields on $K\subseteq \mathcal{P}(\Omega)$ form a chain complex $\left(C_{ullet}(K,\mathbb{R}^E),\delta\right)$ where:

- $C_0 = \oplus_{\mathbf{a}} \mathbb{R}^{E_{\mathbf{a}}}$ consists of potentials $[h_{\mathbf{a}}: E_{\mathbf{a}} o \mathbb{R} \mid \ \mathbf{a} \in K]$
- $C_1=\oplus_{\mathbf{b}\subset\mathbf{a}}\mathbb{R}^{E_\mathbf{b}}$ consists of heat fluxes $\ [arphi_{\mathbf{a} o\mathbf{b}}:E_\mathbf{b} o\mathbb{R}\ |\ \mathbf{a},\mathbf{b}\in K\ \mathrm{and}\ \mathbf{b}\subseteq\mathbf{a}]$

and the codifferential $\delta:C_1\to C_0$ acts by:

$$\delta \varphi_{\rm b}(x_{\rm b}) = \sum_{\rm b \subseteq a} \varphi_{\rm a \to b}(x_{\rm b}) - \sum_{\rm c \subseteq b} \varphi_{\rm b \to c}(x_{\rm b|c})$$

Gauss thm. = Total energy conservation

P 20

Two potentials $\,h\,$ and $\,h'\,$ are homologous, i.e. $\,h'=h+\delta \varphi$ if and only if:

$$\sum_{\mathbf{a} \in K} h_{\mathbf{a}}(x_{\Omega|\mathbf{a}}) = \sum_{\mathbf{a} \in K} h'_{\mathbf{a}}(x_{\Omega|\mathbf{a}})$$

I.3. Densities and Beliefs

Local densities define a functor $\mathbb{R}^{E\,*}:\mathcal{P}(\Omega)^{op} o\mathbf{Vect}$ of vector spaces

The pushforwards $\pi_*^{\mathbf{a} o \mathbf{b}}: \mathbb{R}^{E_\mathbf{a}*} o \mathbb{R}^{E_\mathbf{b}*}$ for all $\mathbf{b} \subseteq \mathbf{a}$ denote partial integration on fibers $\{x_{\mathbf{a}|\mathbf{b}} = x_\mathbf{b}\}$

Def. (Prop.)

Density fields on $K\subseteq \mathcal{P}(\Omega)$ form a cochain complex $\left(C_{\bullet}(K,\mathbb{R}^E)^*,d\right)$ where the differential $d:C_0^*\to C_1^*$ acts by:

$$dp_{a\to b}(x_b) = p_b(x_b) - \sum_{x_{a|b}=x_b} p_a(x_a)$$

A density field $p \in C_0^*$ is said consistent if dp = 0

Def.

Beliefs lie in the convex subspace $\Delta_0 \subseteq C_0^*$ of positive local probability measures

Consistent beliefs lie in the convex polytope $\Gamma_0 \subseteq \Delta_0$ intersecting $\operatorname{Ker}(d)$

Consistent beliefs $p \in \Gamma_0$ act as local substitutes for global probabilities $p_\Omega \in \operatorname{Prob}(E_\Omega)$ (although positivity of the linear extension $p_\Omega \in \mathbb{R}^{E_\Omega*}$ is generally not guaranteed)

I.4. Local Gibbs Correspondence

GBP tries to solve 2 different kinds of constraints simultaneously:

- **–** Energy conservation on $h \in C_0$: potentials lie in $[h] = h + \delta C_1$ during evolution
- Marginal consistency on $p\in\Delta_0$: beliefs lie in $\Gamma_0\subseteq \mathrm{Ker}(d)$ at equilibrium

A local correspondence $\ C_0 o \Delta_0 \$ is therefore essential to the dynamic of GBP:

Def.

The Gibbs correspondence for $\beta>0$ is written $\ p=\rho^{\beta}(H)$ with $\ H=\zeta h$ as:

$$p_{\mathbf{a}}(x_{\mathbf{a}}) = \frac{1}{Z_{\mathbf{a}}^{\beta}} \, \mathrm{e}^{-\beta H_{\mathbf{a}}(x_{\mathbf{a}})} \qquad \text{with} \qquad H_{\mathbf{a}}(x_{\mathbf{a}}) = \sum_{\mathbf{b} \subseteq \mathbf{a}} h_{\mathbf{b}}(x_{\mathbf{a}|\mathbf{b}})$$

- $\,\,\zeta:C_0 o C_0\,\,$ is the zeta transform, combinatorial automorphism of $\,\,C_0$
- $\,
 ho^{eta}:C_0 o\Delta_0\,$ is a softmin yielding local Gibbs states at inverse temperature $\,eta=rac{1}{T}$

I.5. Möbius inversion and Bethe numbers

Thm. (Möbius inversion)

(Dirichlet, Rota 64, P 20)

The Möbius transform $\mu:C_0 o C_0$ inverting ζ acts by Dirichlet convolution as:

$$\mu(H)_{\mathbf{a}}(x_{\mathbf{a}}) = \sum_{\mathbf{b} \subseteq \mathbf{a}} \mu_{\mathbf{a} \to \mathbf{b}} \cdot H_{\mathbf{b}}(x_{\mathbf{a}|\mathbf{b}}) \qquad \qquad = \quad h_{\mathbf{a}}(x_{\mathbf{a}})$$

Coefficients $\mu_{a o b} \in \mathbb{Z}$ can be recursively computed by N sparse matrix products, denoting by N the maximal degree of C_{ullet} (= maximal length of a strict chain in K)

The reciprocal pair (ζ,μ) can moreover be extended to full automorphisms $C_{ullet} o C_{ullet}$

Def. (Prop.)

Bethe-Kikuchi numbers $(c_{
m a})_{{
m a}\in K}$ are defined by the following equivalent formulas:

(i)
$$\forall b \in K$$
 $\sum_{a \supseteq b} c_a = 1$

(ii)
$$\forall b \in K$$
 $c_b = \sum_{a \supseteq b} \mu_{a \to b}$

Outline

I. Local statistics : topology and combinatorics

II. Cluster variational principles solved by GBP

III. Example of diffusion with singularities

II.2 Regionwise Information Functionals

Def.

For all $a \subseteq \Omega$ and $\beta > 0$ consider the following functionals:

- Shannon entropy given by:

$$S_{\mathbf{a}}: \operatorname{Prob}(E_{\mathbf{a}}) \to \mathbb{R}$$

$$S_{\mathrm{a}}(p_{\mathrm{a}}) = -\sum_{E_{\mathrm{a}}} p_{\mathrm{a}} \ln(p_{\mathrm{a}})$$

Variational free energy given by:

$$\mathcal{F}_{\mathbf{a}}^{\beta}$$
: $\operatorname{Prob}(E_{\mathbf{a}}) \times \mathbb{R}^{E_{\mathbf{a}}} \to \mathbb{R}$

$$\mathcal{F}_{\mathrm{a}}^{\beta}(p_{\mathrm{a}}, H_{\mathrm{a}}) = \mathbb{E}_{p_{\mathrm{a}}}[H_{\mathrm{a}}] - \frac{1}{\beta}S_{\mathrm{a}}(p_{\mathrm{a}})$$

Free energy given by:

$$F_{\mathbf{a}}^{\beta} \colon \mathbb{R}^{E_{\mathbf{a}}} \to \mathbb{R}$$

$$F_{\mathbf{a}}^{\beta}(H_{\mathbf{a}}) = -\frac{1}{\beta} \ln \sum_{E_{\mathbf{a}}} e^{-H_{\mathbf{a}}}$$

$$(i) \quad F_{\rm a}^{\beta}(H_{\rm a}) = \min \mathcal{F}_{\rm a}^{\beta}(-,H_{\rm a}) \ \ \text{for all} \ H_{\rm a} \in \mathbb{R}^{E_{\rm a}}$$

(ii) the differential $F_{\mathbf{a}*}^{\beta}: H_{\mathbf{a}} \mapsto \rho_{\mathbf{a}}^{\beta}(H_{\mathbf{a}})$ of $F_{\mathbf{a}}^{\beta}$ coïncides with the Gibbs state map Then:

$$(iii) \quad \rho_{\rm a}^\beta(H_{\rm a}) \text{ maximises } S_{\rm a} \text{ under the constraint } \mathbb{E}_{p_{\rm a}}[H_{\rm a}] = \mathcal{U}_{\rm a} \text{ for some } \ \mathcal{U}_{\rm a} \in \mathbb{R}$$

II.1 Faithful Diffusions

We consider continuous-time diffusion equations in C_0 defined by a flux functional $\Phi:C_0 o C_1$

$$\frac{dv}{dt} = \delta\Phi(v)$$
 with $v_{|t=0} = h$

Energy conservation $v\in[h]=h+\delta C_1$ is therefore naturally enforced by any discrete integrator. homology class (GBP equivalent but with $\Delta t=1\,$!)

Def.

Given $\,eta>0$, we call consistent manifold the subspace $\,{
m Fix}^{eta}\subseteq C_0$ defined by ;

$$Fix^{\beta} = \{ v \in C_0 \mid p = \rho^{\beta}(\zeta v) \in \Gamma_0 \}$$

Given a flux functional $\Phi:C_0 o C_1$, we say that:

- $\,\Phi$ is consistent if $\,\Phi_{|{\rm Fix}^\beta}=0\,$
- Φ is faithful if $\delta\Phi(v)=0 \ \Rightarrow \ v\in \mathrm{Fix}^{\beta}$ and Φ is consistent.

Consistent diffusions are stationary for $v \in [h] \cap \operatorname{Fix}^{\beta}$

Faithful diffusions are stationary only for $v \in [h] \cap \operatorname{Fix}^{\beta}$

II.3 Variational Free Energy Principle

Problem 1.

Chose an inverse temperature ~eta>0~ and local energies $~H=\zeta h\in C_0~$

Find $p \in \Gamma_0$ critical for the Bethe-Kikuchi variational free energy $\check{\mathcal{F}}: \Delta_0 \times C_0 \to \mathbb{R}$:

$$\check{\mathcal{F}}(p,H) = \sum_{\mathbf{a} \in K} c_{\mathbf{a}} \mathcal{F}_{\mathbf{a}}(p_{\mathbf{a}}, H_{\mathbf{a}})$$

Thm 1.

[Yedidia 05, P 19]

Let $\beta>0$ and $H=\zeta h\in C_0$

Solutions of problem 1 are given by $\ p=
ho^{eta}(\zeta v)$ for all $v\in C_0$ such that:

$$v \in [h] \cap \operatorname{Fix}^{\beta}$$

II.4 Max-Entropy Principle

Problem 2.

Chose a mean energy $\ensuremath{\mathcal{U}} \in \mathbb{R}$ and local energies $H = \zeta h \in C_0$

Find $p\in\Gamma_0$ constrained to $\langle p,h\rangle=\mathcal{U}$ for the Bethe-Kikuchi entropy $\check{S}:\Delta_0\to\mathbb{R}$:

$$\check{S}(p) = \sum_{\mathbf{a} \in K} c_{\mathbf{a}} S_{\mathbf{a}}(p_{\mathbf{a}})$$

Where
$$\langle p,h \rangle = \sum_{\mathbf{a} \in K} \mathbb{E}_{p_{\mathbf{a}}}[h_{\mathbf{a}}] = \sum_{\mathbf{a} \in K} c_{\mathbf{a}} \, \mathbb{E}_{p_{\mathbf{a}}}[H_{\mathbf{a}}] \, = \, \mathcal{U}$$

Thm 2.

Let $\mathcal{U} \in \mathbb{R}$ and $H = \zeta h \in C_0$

Solutions of problem 2 are given by $\ p=
ho^1(\zeta ar v)$ for all $\ ar v\in C_0$ such that:

$$\exists \beta > 0 \quad \bar{v} \in [\beta h] \cap \operatorname{Fix}^1$$

N.B. Letting
$$v=etaar{v}$$
 one then recovers $v\in[h]\cap\operatorname{Fix}^{eta}$

II.5 Free Energy Principle

Problem 3.

Chose an inverse temperature $\,eta>0\,$ and local energies $\,H=\zeta h\in C_0\,$

Find $V=\zeta v\in C_0$ constrained to $v\in [h]$ critical for the Bethe-Kikuchi free energy $\check{F}:C_0\to\mathbb{R}$:

$$\check{F}(V) = \sum_{\mathbf{a} \in K} c_{\mathbf{a}} F_{\mathbf{a}}(V_{\mathbf{a}})$$

Let us call weakly consistent manifold
$$\operatorname{Fix}_+^\beta = \{v + \epsilon \,|\, v \in \operatorname{Fix}^\beta, \epsilon \in \operatorname{Ker}(c\zeta)\}$$
 (retracts linearly on Fix^β , coı̈ncides with Fix^β when $c_a \neq 0$ for all $a \in K$)

Thm 3.

Let
$$\beta > 0$$
 and $H = \zeta h \in C_0$

Solutions of problem 1 are given by $V=\zeta v$ for all $v\in C_0$ such that:

$$v \in [h] \cap \operatorname{Fix}_+^{\beta}$$

Outline

I. Local statistics : topology and combinatorics

II. Cluster variational principles solved by GBP

III. Example of diffusion with singularities

III.1 Energy-Temperature Relationship(s)

Problems 1, 2 and 3 all imply finding some $v\in[h]\cap\mathrm{Fix}^\beta$ (i.e. conservative and consistent), however with different constraints:

- Free energy principles (1,3) with temperature constraints on $\,\beta=rac{1}{T}\,$
- The max-entropy principle (2) with mean energy constraints on $\mathcal{U}=\langle p,h
 angle$

Therefore solutions of (2) might not coïncide with solutions of (1) and (3).

There may exist multiple stationnary energies fore one given temperature constraint, and reciprocally.

Energy-Temperature Diagrams:

 ${\cal K}$ graph with two loops

$$E_i = \{\pm\}$$
$$E_{ij} = \{\pm\}^2$$

III.2 Singularities on cyclic graphs

Singularities of the projection $\Pi:C_0 o C_0/\delta C_1$ restricted to ${
m Fix}^{eta}$ are ranked by dimension

$$S_k = \{ v \in \operatorname{Fix}^{\beta} \mid \operatorname{Ker}(\Pi_*) \cap \delta C_1 \text{ of dimension } k \}$$

This makes $\operatorname{Fix}^{\beta} = \sqcup_{k \geq 0} \mathcal{S}_k$ a stratified space

On simple graphs with 2+ loops one can parameterise the singular surface $\,\mathcal{S}_1\,$

(smooth in C_0)

Linearised diffusion does not restrict to an isomorphism of δC_1 on singularities

Continuous-time diffusion improves over GBP by yielding smooth trajectories, even nearby singularities

III.3 GBP and Bethe Diffusions

Let us define the conditional free energy functional $F_{a o b}:\mathbb{R}^{E_a} o\mathbb{R}^{E_b}$ by:

$$F_{\mathrm{a} \rightarrow \mathrm{b}}[V_{\mathrm{a}}|x_{\mathrm{b}}] = -\ln \! \sum_{x_{\mathrm{a}|\mathrm{b}} = x_{\mathrm{b}}} \! \mathrm{e}^{-V_{\mathrm{a}}(x_{\mathrm{a}})} \\ \Rightarrow F_{\mathrm{a} \rightarrow \mathrm{b}}[V_{\mathrm{b}}|x_{\mathrm{b}}] = V_{\mathrm{b}}(x_{\mathrm{b}})$$

And the free energy gradient $\mathcal{D}:C_0 \to C_1$ by:

$$\mathcal{D}(V)_{\mathrm{a} \rightarrow \mathrm{b}}(x_{\mathrm{b}}) = V_{\mathrm{b}}(x_{\mathrm{b}}) - F_{\mathrm{a} \rightarrow \mathrm{b}}[V_{\mathrm{a}}|x_{\mathrm{b}}] \\ \hspace{1cm} = F_{\mathrm{a} \rightarrow \mathrm{b}}[V_{\mathrm{b}} - V_{\mathrm{a}} \,|\, x_{\mathrm{b}}]$$

We may then define the diffusion fluxes $\,\Phi_{GBP}=-\delta \mathcal{D}\zeta\,\,$ and $\,\Phi_{Bethe}=-\delta \mu \mathcal{D}\zeta\,\,$:

$$\frac{dV_{\rm b}}{dt} = \sum_{\mathbf{a} \in \mathcal{D}} \sum_{\mathbf{c} \in \mathbf{b}} F_{\mathbf{a} \to \mathbf{c}} (V_{\mathbf{a}} - V_{\mathbf{c}})$$

$$\begin{array}{c|c}
C_0 & \xrightarrow{\zeta} & C_0 \\
\delta & & \downarrow \mathcal{D} \\
C_1 & \longleftarrow & C_1
\end{array}$$

$$\frac{dV_{\rm b}}{dt} = \sum_{\mathbf{a} \subset \mathbf{b}} c_{\mathbf{a}} F_{\mathbf{a} \to \mathbf{a} \cap \mathbf{b}} (V_{\mathbf{a}} - V_{\mathbf{a} \cap \mathbf{b}})$$

Thm (P 20)

FAITHFUL

LOCALLY FAITHFUL

Thank you!

Repository:

github.com/opeltre/topos

References:

Belief Propagation

Gallager 1963: Low-Density Parity-Check Codes, MIT Press

Pearl 1982 : Reverend Bayes on Inference Engines : A Distribute Hierarchichal Approach, AAAI-82

Yedidia Freeman Weiss 2005: Constructing Free Energy Approximations and GBP algorithms, IEEE (51)

Peltre 2021 : Belief Propagation as Diffusion, GSI 21 Proceedings

Bethe-Kikuchi Free Energies

Bethe Bragg 1935: Statistical Theory of Superlattices, Proceedings of the Royal Society of London

Kikuchi 1951: A Theory of Cooperative Phenomena, Phys. Rev. (81)

Morita 1957: Cluster Variation Method of Cooperative Phenomena and its Generalisation I, J. Phys. Soc. Japan

Yedidia Freeman Weiss 2005: Constructing Free Energy Approximations and GBP algorithms, IEEE (51)
Peltre 2022: Local Max-Entropy and Free Energy Principles solved by GBP, MaxEnt 22 - arxiv: 2207.00841

PhD thesis

Message Passing Algorithms and Homology, 2020, Université Paris Cité - arxiv: 2009.11631