

Représentation des NURBS par Systèmes Itérés de Fonctions

L. Morlet, M. Neveu, S. Lanquetin, et C. Gentil LE2I - Université de Bourgogne Franche-Comté Journées GTMG 2018

- 1 Introduction aux IFS/CIFS
- NURBS quadratiques
- NURBS cubiques
- 4 Généralisation
- 6 Conclusion

Lucas MORLET GTMG 2018 1 / 2⁻¹

LES SYSTÈMES ITÉRÉS DE FONCTIONS (IFS)

Historique

- 1981 : création par Hutchinson
- 1988 : développement par Barnsley

Définition

Ensemble de transformations contractantes $\{T_0 \dots T_n\}$ appliqué de manière itérative sur un compact.

Après une infinité d'itération, une structure autosimilaire est obtenue quelque soit le compact de départ

Fougère dite "de Barnsley" ©Wikipédia

AUTOMATES CONTROLLED IFS

Les automates CIFS sont créés de la manière suivante :

- Chaque état de l'automate correspond à un attracteur
- Chaque transition représente une transformation du CIFS

EXEMPLE: L'ALGORITHME DE CHAIKIN

Soit une B-Spline quadratique uniforme définie par le polygone de contrôle $P = [P_1, P_2, P_3]$.

Elle est également définie par le polygone $Q = [Q_{1b}, Q_2, Q_{2b}, Q_3]$:

$$Q_i = \frac{1}{4}P_{i-1} + \frac{3}{4}P_i$$
 et $Q_{ib} = \frac{3}{4}P_i + \frac{1}{4}P_{i+1}$

EXEMPLE: L'AUTOMATE CIFS DE CHAIKIN

$$G: P = [P_1, P_2, P_3] \mapsto Q_G = [Q_{1b}, Q_2, Q_{2b}]$$

$$\mathcal{D}: \textbf{\textit{P}} = [\textbf{\textit{P}}_1, \textbf{\textit{P}}_2, \textbf{\textit{P}}_3] \mapsto \textbf{\textit{Q}}_{\mathcal{D}} = [\textbf{\textit{Q}}_2, \textbf{\textit{Q}}_{2b}, \textbf{\textit{Q}}_3]$$

$$M_{\mathcal{G}} = egin{pmatrix} rac{3}{4} & rac{1}{4} & 0 \ rac{1}{4} & rac{3}{4} & 0 \ 0 & rac{3}{4} & rac{1}{4} \end{pmatrix} \qquad M_{\mathcal{D}} = egin{pmatrix} rac{1}{4} & rac{3}{4} & 0 \ 0 & rac{3}{4} & rac{1}{4} \ 0 & rac{1}{4} & rac{3}{4} \end{pmatrix}$$

- Création de supports fractales arborescents (Gouaty 2012)
- Raccord entre des surfaces différentes (Podkorytov 2014)

- 1 Introduction aux IFS/CIFS
- NURBS quadratiques
- 3 NURBS cubiques
- 4 Généralisation
- **6** Conclusion

NON UNIFORM RATIONAL B-SPLINES

Définition

Soit une courbe NURBS de degré *d* composée de *m* morceaux.

- Polygone de contrôle $P = [P_0 \dots P_{n-1}]$ où n = m + d
- Vecteur nodal $T = [t_0 \dots t_{\nu-1}]$ où $\nu = n + d 1$
- Vecteur inter-noeuds $U = [u_0 \dots u_{v-2}]$ où $u_i = t_{i+1} t_i$

Formule de Cox-De Boor

$$\mathcal{C}(t) = \frac{\sum\limits_{i=0}^{n-1} \omega_{i} P_{i} N_{i}^{d}(t)}{\sum\limits_{i=0}^{n-1} \omega_{i} N_{i}^{d}(t)} \quad \begin{cases} N_{i}^{0}(t) = \begin{cases} 1 & \text{si } t \in [t_{i}; t_{i+1}[\\ 0 & \text{sinon} \end{cases} \\ N_{i}^{d}(t) = \frac{t - t_{i}}{t_{i+d} - t_{i}} N_{i}^{d-1}(t) + \frac{t_{i+d+1} - t}{t_{i+d+1} - t_{i+1}} N_{i+1}^{d-1}(t) \end{cases}$$

BLOSSOMING (RAMSHAW, 1987)

Sont définies les fonctions de floraisons $\mathcal{B}(t_i \dots t_j) = \{t_i \dots t_j\}$

Symétrie
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonale
$$C(t) = \{t \dots t\}$$

Multi-affinité
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consécutivité
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

BLOSSOMING (RAMSHAW, 1987)

Sont définies les fonctions de floraisons $\mathcal{B}(t_i \dots t_i) = \{t_i \dots t_i\}$

Symétrie
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonale
$$C(t) = \{t \dots t\}$$

Multi-affinité
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consécutivité
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

BLOSSOMING (RAMSHAW, 1987)

Sont définies les fonctions de floraisons $\mathcal{B}(t_i \dots t_i) = \{t_i \dots t_i\}$

Symétrie
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonale
$$C(t) = \{t \dots t\}$$

Multi-affinité
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consécutivité
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

BLOSSOMING (RAMSHAW, 1987)

Sont définies les fonctions de floraisons $\mathcal{B}(t_i \dots t_i) = \{t_i \dots t_i\}$

Symétrie
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonale
$$C(t) = \{t \dots t\}$$

Multi-affinité
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consécutivité
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

BLOSSOMING (RAMSHAW, 1987)

Sont définies les fonctions de floraisons $\mathcal{B}(t_i \dots t_i) = \{t_i \dots t_i\}$

Symétrie
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonale
$$C(t) = \{t \dots t\}$$

Multi-affinité
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consécutivité
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

CALCUL D'UN POINT D'UNE B-SPLINE QUADRATIQUE UNIFORME

INSERTION DE NOEUD AU MILIEU POUR UNE NURBS QUADRATIQUE

$$\begin{cases} Q_i &= \frac{u_i}{2(u_{i-1}+u_i)} P_{i-1} + \frac{2u_{i-1}+u_i}{2(u_{i-1}+u_i)} P_i \\ Q_{ib} &= \frac{u_i+2u_{i+1}}{2(u_i+u_{i+1})} P_i + \frac{u_i}{2(u_i+u_{i+1})} P_{i+1} \end{cases}$$

Lucas MORLET GTMG 2018 11 / 2⁻¹

LES TRANSFORMATIONS QUADRATIQUES NON-UNIFORMES

$$G: \begin{cases} P = [P_{1}, P_{2}, P_{3}] \\ U = [u_{1}, u_{2}, u_{3}] \end{cases} \rightarrow \begin{cases} Q_{G} = [Q_{1b}, Q_{2}, Q_{2b}] \\ V_{G} = [u_{1}, u_{2}, u_{2}] \end{cases}$$

$$D: \begin{cases} P = [P_{1}, P_{2}, P_{3}] \\ U = [u_{1}, u_{2}, u_{3}] \end{cases} \rightarrow \begin{cases} Q_{D} = [Q_{2}, Q_{2b}, Q_{3}] \\ V_{D} = [u_{2}, u_{2}, u_{3}] \end{cases}$$

$$M_{G}(u_{1}, u_{2}, u_{3}) = \begin{pmatrix} \frac{u_{1} + 2u_{2}}{2(u_{1} + u_{2})} & \frac{u_{1}}{2(u_{1} + u_{2})} & 0 \\ \frac{u_{2}}{2(u_{1} + u_{2})} & \frac{2u_{1} + u_{2}}{2(u_{1} + u_{2})} & 0 \\ 0 & \frac{u_{2} + 2u_{3}}{2(u_{2} + u_{3})} & \frac{u_{2}}{2(u_{2} + u_{3})} \end{cases}$$

$$M_{D}(u_{1}, u_{2}, u_{3}) = \begin{pmatrix} \frac{u_{2}}{2(u_{1} + u_{2})} & \frac{2u_{1} + u_{2}}{2(u_{1} + u_{2})} & 0 \\ 0 & \frac{u_{2} + 2u_{3}}{2(u_{2} + u_{3})} & \frac{u_{2}}{2(u_{2} + u_{3})} \\ 0 & \frac{u_{3}}{2(u_{2} + u_{3})} & \frac{2u_{2} + 2u_{3}}{2(u_{2} + u_{3})} \end{pmatrix}$$

AUTOMATE CIFS DE NURBS QUADRATIQUES

- 1 Introduction aux IFS/CIFS
- NURBS quadratiques
- NURBS cubiques
- 4 Généralisation
- **6** Conclusion

NURBS CUBIQUES

LES TRANSFORMATIONS CUBIQUES NON-UNIFORMES

Les NURBS de degré 3 sont définies au minimum par

- 4 points de contrôle;
- 6 noeuds;
- 5 inter-noeuds.

$$\mathcal{G}: \begin{cases} P = [P_0, P_1, P_2, P_3] \\ U = [u_0, u_1, u_2, u_3, u_4] \end{cases} \mapsto \begin{cases} Q_{\mathcal{G}} = [Q_{1b}, Q_2, Q_{2b}, Q_3] \\ V_{\mathcal{G}} = [u_1, u_1, u_2, u_2, u_3] \end{cases}$$
$$\mathcal{D}: \begin{cases} P = [P_0, P_1, P_2, P_3] \\ U = [u_0, u_1, u_2, u_3, u_4] \end{cases} \mapsto \begin{cases} Q_{\mathcal{D}} = [Q_2, Q_{2b}, Q_3, Q_{3b}] \\ V_{\mathcal{D}} = [u_1, u_2, u_2, u_3, u_3] \end{cases}$$

AUTOMATE CIFS DE NURBS CUBIQUES

- 1 Introduction aux IFS/CIFS
- 2 NURBS quadratiques
- 3 NURBS cubiques
- 4 Généralisation
- **6** Conclusion

DÉGRÉ QUELCONQUE ET DÉDOUBLEMENT D'INTER-NOEUDS

degré 1 : $W \mapsto WW$ degré 2 : $VWX \mapsto VVWWXX$ degré 3 : $UVWXY \mapsto UUVVWWXXYY$ degré 4 : $TUVWXYZ \mapsto TTUUVVWWXXYYZZ$

États de l'automate

Pour une NURBS de degré d :

- Le vecteur inter-noeud est de longueur (2d 1)
- Le nombre maximal de dédoublements est n = [(log₂(2d - 1)]
- Pour un nombre de dédoublements i ∈ [0; n], le vecteur inter-noeud contient 2ⁱ fois chaque inter-noeud
- L'inter-noeud central est toujours le même

DÉGRÉ QUELCONQUE ET DÉDOUBLEMENT D'INTER-NOEUDS

degré 1 : $W \mapsto WW$ degré 2 : $VWX \mapsto VVWWXX$ degré 3 : $UVWXY \mapsto UUVVWWXXYY$ degré 4 : $TUVWXYZ \mapsto TTUUVVWWXXYYZZ$

États de l'automate

Pour une NURBS de degré d :

- Le vecteur inter-noeud est de longueur (2d 1)
- Le nombre maximal de dédoublements est n = \[(log₂(2d - 1) \]
- Pour un nombre de dédoublements i ∈ [0; n], le vecteur inter-noeud contient 2ⁱ fois chaque inter-noeud
- L'inter-noeud central est toujours le même

DÉGRÉ QUELCONQUE ET DÉDOUBLEMENT D'INTER-NOEUDS

```
degré 1 : W \mapsto WW
degré 2 : VWX \mapsto VVWWXX
degré 3 : UVWXY \mapsto UUVVWWXXYY
degré 4 : TUVWXYZ \mapsto TTUUVVWWXXYYZZ
```

États de l'automate

Pour une NURBS de degré d :

- Le vecteur inter-noeud est de longueur (2d 1)
- Le nombre maximal de dédoublements est n = [(log₂(2d - 1)]
- Pour un nombre de dédoublements $i \in [0; n]$, le vecteur inter-noeud contient 2^i fois chaque inter-noeud
- L'inter-noeud central est toujours le même

DÉGRÉ QUELCONQUE ET DÉDOUBLEMENT D'INTER-NOEUDS

États de l'automate

Pour une NURBS de degré d :

- Le vecteur inter-noeud est de longueur (2d 1)
- Le nombre maximal de dédoublements est n = \[(log_2(2d - 1)) \]
- Pour un nombre de dédoublements i ∈ [0; n], le vecteur inter-noeud contient 2ⁱ fois chaque inter-noeud
- L'inter-noeud central est toujours le même

DÉGRÉ QUELCONQUE ET DÉDOUBLEMENT D'INTER-NOEUDS

degré 1 : $W \mapsto WW$ degré 2 : $VWX \mapsto VVWWXX$ degré 3 : $UVWXY \mapsto UUVVWWXXYY$ degré 4 : $TUVWXYZ \mapsto TTUUVVWWXXYYZZ$

États de l'automate

Pour une NURBS de degré d :

- Le vecteur inter-noeud est de longueur (2d-1)
- Le nombre maximal de dédoublements est n = \[(log_2(2d - 1)) \]
- Pour un nombre de dédoublements i ∈ [0; n], le vecteur inter-noeud contient 2ⁱ fois chaque inter-noeud
- L'inter-noeud central est toujours le même

DÉGRÉ QUELCONQUE ET DÉDOUBLEMENT D'INTER-NOEUDS

degré 1 : $W \mapsto WW$ degré 2 : $VWX \mapsto VVWWXX$ degré 3 : $UVWXY \mapsto UUVVWWXXYY$ degré 4 : $TUVWXYZ \mapsto TTUUVVWWXXYYZZ$

États de l'automate

Pour une NURBS de degré d :

- Le vecteur inter-noeud est de longueur (2d-1)
- Le nombre maximal de dédoublements est n = \[(log_2(2d - 1)) \]
- Pour un nombre de dédoublements i ∈ [0; n], le vecteur inter-noeud contient 2ⁱ fois chaque inter-noeud
- L'inter-noeud central est toujours le même

GÉNÉRATION DE SURFACES PAR PRODUIT TENSORIEL

Soient les transformations :

- \mathcal{G} et \mathcal{D} sur Hor = [A, B, C]
- \mathcal{H} et \mathcal{B} sur Ver = [V, W, X]
- * quelconque

- 1 Introduction aux IFS/CIFS
- NURBS quadratiques
- 3 NURBS cubiques
- 4 Généralisation
- **6** Conclusion

- Création de supports fractales arborescents (Gouaty 2012)
- Raccord entre des surfaces différentes (Podkorytov 2014)

- Création de supports fractales arborescents (Gouaty 2012)
- Raccord entre des surfaces différentes (Podkorytov 2014)