NED University of Engineering & Technology - Department of Computer & Information Systems Engineering

Calculate the point of intersection of both the NOW. Signals. More precise value can be obtained by Zoom In.

Point of intersection is 0.68

3 3 1 4 1 A 1 1000

Write a sequence of MATLAB commands in the space below to plot the discrete time sinusoid $x(n) = \cos \omega n$ (-5 < n < 5) for the following values of angular frequency. You must divide your figure into 6 subplots. What's the conclusion?

- $\Leftrightarrow \omega = 0.10\pi$
- $\Leftrightarrow \omega = 0.25\pi$
- $\Rightarrow \omega = \pi$
- $\Leftrightarrow \omega = 1.25\pi$
- $\Leftrightarrow \omega = 1.50\pi$
- $\Leftrightarrow \omega = 2\pi$

Digital Communication Systems Lab Session 3 Lab Session 3
Digital Control of Engineering & Technology – Department of Computer & Information Systems Engineering
Generate a time vector t from -0.5 to 0.5 with a step size of 0.001. Implement the function
where $p=0.1$. In order to simulate an A/D converter, perform the following tasks:
Plot x and its magnitude spectrum in a two-panel figure window. What is the bandwidth of x ?
2. Set the sampling frequency to twice the bandwidth of the signal x (which is approximately
25Hz). Generate a rectangular pulse train starting at -0.5 to 0.5 where the step size is 1/
(sampling frequency) and with a duration of 0.0001. In a two-panel figure window, plot the
pulse train and its magnitude spectrum.
NO DITORMAN
ENGINEER
5 18/ 4
3. What is the relation between the time and frequency domain representation of the pulse train?
a time-domain graph shows how a signal changes over
time where as Freewances domain mach shows how much
of the signal lies with in each frequency band over a
range of facovorency.
4. Sample x using the pulse train and plot the resulting sampled version of x . Also, plot its
magnitude spectrum. What can you observe from both prots?
The magnitude of spectron, we observed now must energy
In contributed in freque domain.
distributed

EXERCISE
1. Apply gain of +5 to an exponential signal, part of which is propagated ahead to get a further gain of +2 and another part is fed back to the source after experiencing a loss of -3. Attaches scopes at appropriate points and obtain the wave form of the resultant signal. Attach the figures and the plot.

Five source symbols of the alphabet of a source and their probabilities are shown

Symbol	Probability	
S0	0.4	
S1	0.2	
S2	0.2	
S3	0.1	
S4 .	0.1	

a) Build the Huffman code tree for the message and find the codeword for each character.

Symbol	Probability	Symbol	
A	0.4	D	Probability
C	0.1	D	0.3
E	0.06	E	0.1
		F	0.04

rinine:
The code word for each symbol.

	chay	freq	Code	Code length
1	F	4	[1110	C
2	E	6	11111	
3	C	10	SINFHIO.	4
4	0	10	110	3
5_	В	30	10	2
6	A	40	0	5%
		(10)	mail region to the second	0)

The average number of transmitted binary digits per code word.

Total no of bits =
$$1 \times (0) \times$$

103

Total no of bit, = 220

dal Communication Systems Lab Session 10

University of Engineering & Technology - Department of Computer & Information Systems Engineering Aug. no. of bits = Total bits / highest no = 220/100 Aug no of bits = 2.2 bits Write MATLAB code to obtain Huffman code for the given source. Symbols = [1, 2, 3, by 5, 6];

dict = huffman dict (symbols, p);

hoode = huffman dict (sig, dict);

dusig = huffman deco (hoode, ditt); current have > fumvalue Symbol = { 'A' 'B' 'C' 'B' E' 'F' };

P = [0-4 0-3 0-1 0.1 0.06 0.04];

dict = huffmandict ((ymbol, P); hoode = hoffmanienco !!

Only for positive values of t, if bit 1 is represented by a square wave with +5 Volts and bit 0 with -5 Volts, and if the duration of a bit is 1-second, then plot a time graph for the following sequence: 1011010001

