Color Representation

Foley & Van Dam, Chapter 13

Color Representation

- Visible Light Spectrum
- Color Matching
- Trichromatic Color Theory
- Psychophysics
- CIE standard
- RGB and CMYK Color Spaces
- HLS Color Model
- YIQ Color Model

Visible Light Spectrum and Colors

Light is an electro-magnetic radiation

- Hue: distinguished among colors
- Saturation: how far is color from a gray of equal intensity
- Lightness: perceived intensity of a reflective surface
- Brightness: perceived intensity of emitting surface

Spectral Power Distribution

• The **Spectral Power Distribution** of a light is a function $f(\lambda)$ defining the energy at each wavelength

Color Matching Experiment

- Three primary lights are set to match a test light
- Metamer: two lights visually undistinguishable (they might have different spectral power distributions)

Trichromatic Color Theory

- **Trichromatic**: "tri"=three "chroma"=color also tristimulus color vision is based on three primaries (three dimensional)
- Thomas Young
 - A few different retinal receptors operating with different wavelength sensitivities allow humans to perceive colors
 - Suggested 3 receptors
- Helmholtz & Maxwell
 - Color matching with 3 primaries

The Human Eye

Retinal Photoreceptors

Cones: Sensitive to high illumination levels (Photopic vision)

Less sensitive than rods

5 million cones in each eye

Only cones in fovea (approx. 50,000)

Density decreases with distance from fovea

3 types differing in their spectral sensitivity: L, M, and S

Retinal Photoreceptors

Linear Color Spaces

 Colors in 3D color space can be described as linear combinations of 3 basis colors called primaries

The representation of the color having spectrum:

Is given by (A, B, C)

Choosing The Primaries

 Stiles & Burch (1959) used 3 monochromatic primaries of wavelengths 444.4, 525.3 and 645.2

Color Matching Diagram

Problem: Subtractive components

CIE Color Standard

• CIE: Commision Internationale d'Eclairage (1931) defined a standard system (CIE- XYZ) for color representation

- Weights are non negative over the visible wavelengths
- The 3 primaries associated with x y z color matching functions cannot be easily realized in hardware
- y was chosen to equal *luminance* of monochromatic lights

CIE Color Standard

If X, Y and Z are the weights used to define a color C, then the chromaticity values x, y, z (independent from the luminosity) are given by:

CIE Color Standard

Color Gamut: A convex sum of several colors

RGB Color Representation

 In a CRT each color can be defined by the required power of each electron gun:

$$C = rR + gG + bB$$

The intensity is defined as:

$$I = r + g + b$$

•The chroma(ticy) is defined as: $C = \frac{rR + gG + bB}{r + g + b}$

RGB Color Images

			<u> </u>	111		14		126		36		12	36		
					L	36	<u>L</u> 1	11	L	36		12	L	17	111
	Į	20	<u>00</u>	3	6	1	2	3	6	1	4	3	6	12	36
		20	าก	1	11	<u> 1</u>	4	1	26		7	1	11	14	36
10	12	8	12	6	20	00	12	<u> </u>	11	1	4	3	6	17	111
17	36		36		14	<u>. </u>	36		72	<u>.</u>	7	1	11	12	36
12	17	<u> </u>	12	6	17	<u>' </u>	11	1	20	0	2	1	26		
14	20	0	36		12	2	12	26	17		4	3	6		
126	20	0	11	1	14	ŀĪ	36	3	72	2					
36	12		17		72	2	10)6	15	5					

10 200 111	128 36 14	126 126	200 36	12 14 12	111 36 36
17 200 36	36 111 111	36 14 36	14 126 12	36 17	<mark>72</mark> 111
12	17	126	17	111	200
36	36	111	36	14	36
17	111	200	36	12	36
14	200	36	12	126	17
17	126	72	126	17	111
14	36	12	36	14	36
126	200	111	14	36	<mark>72</mark>
200	36	12	36	12	126
17	111	14	126	17	111
36 72 12	12 126	17 200	72 111 36	106 14 12	155 36

RGB to CIE-XYZ Conversion

RGB to CIE-XYZ is a linear transformation:

$$\begin{bmatrix} 2.365 & -0.515 & 0.005 \\ -0.897 & 1.426 & -0.014 \\ -0.468 & 0.089 & 1.009 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

- R = monochromatic primary 700nm
- G = monochromatic primary 546.1nm
- B = monochromatic primary 435.8nm

RGB vs. CMY(K) Color Scheme

- RGB and CMYK (Cyan, Magenta, Yellow and black) are hardware-oriented representations
- CMY is used in color photography and (with K) in most color printers

RGB is Additive

 $\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$

CMY is Subtractive

The HLS Color Model

• HLS: Hue Lightness, Saturation similar to

HSV: Hue Saturation Value

Munsell Book of Colors

Hue (red, green, yellow, blue ...)
Saturation (pink, bright red,)
Lightness (black, grey, white)

The YIQ Color Model

- Based on the concept of opponent colors
- Used in NTSC Television (National Television Systems Committee)
- Similar method (YC_bC_r) used in JPEG and MPEG

$$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

- Y = Luminance
- I = Red-Green
- Q = Blue-Yellow

The YIQ Color Model

- The human eye is more sensitive to luminosity than to colors, so it is possible to save space by encoding colors more coarsely
- Preferred by the NTSC because of backward compatibility with B/W TV

I - Blur

Q - Blur

Summary

- CIE-XYZ
 - Tristimulus Coordinates
 - Device Independent
 - Universal standard
- CIE-Lab
 - Perceptual Space, used to assess image quality
- RGB and CMY
 - Hardware oriented
 - Additive spaces used for CRT, printers, photography
- YIQ and YC_bC_r
 - Opponent Space
 - Used for color television broadcast and image compression
- HLS
 - Perceptual Digitized Space
 - Used for Human Interactive Painting