In [76]: # import libaries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

In [242]: x=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red - 11_winequality-re

Out[242]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcc
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
					•••						
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	,
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	•
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	•
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

In [243]: x=x.head(10)

Out[243]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5

```
In [244]:
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 10 entries, 0 to 9
           Data columns (total 12 columns):
            #
                 Column
                                         Non-Null Count Dtype
            0
                 fixed acidity
                                         10 non-null
                                                          float64
            1
                volatile acidity
                                                          float64
                                         10 non-null
                                                          float64
            2
                 citric acid
                                         10 non-null
            3
                residual sugar
                                         10 non-null
                                                          float64
            4
                 chlorides
                                         10 non-null
                                                          float64
            5
                 free sulfur dioxide
                                         10 non-null
                                                          float64
            6
                 total sulfur dioxide
                                         10 non-null
                                                          float64
            7
                 density
                                         10 non-null
                                                          float64
            8
                 рΗ
                                         10 non-null
                                                          float64
            9
                 sulphates
                                         10 non-null
                                                          float64
            10
                alcohol
                                         10 non-null
                                                          float64
            11
                quality
                                         10 non-null
                                                          int64
           dtypes: float64(11), int64(1)
           memory usage: 1.1 KB
In [245]:
Out[245]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                   'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
                   'pH', 'sulphates', 'alcohol', 'quality'],
                  dtype='object')
In [246]: d=x[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar']]
Out[246]:
               fixed acidity volatile acidity citric acid residual sugar
            0
                      7.4
                                   0.70
                                            0.00
                                                           1.9
            1
                      7.8
                                   0.88
                                            0.00
                                                           2.6
            2
                      7.8
                                   0.76
                                            0.04
                                                           2.3
            3
                     11.2
                                   0.28
                                            0.56
                                                           1.9
            4
                      7.4
                                   0.70
                                            0.00
                                                           1.9
            5
                      7.4
                                   0.66
                                            0.00
                                                           1.8
            6
                      7.9
                                   0.60
                                            0.06
                                                           1.6
            7
                      7.3
                                   0.65
                                            0.00
                                                           1.2
                                   0.58
                                            0.02
            8
                      7.8
                                                           2.0
            9
                      7.5
                                   0.50
                                                           6.1
                                            0.36
```

In [214]:

Out[214]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_l
count	1.000000e+01	10.000000	10.000000	10.000000	10.000000	10.
mean	3.443881e+07	10.350000	-66.580708	36.667971	-66.570116	36.
std	1.342943e+07	6.460693	23.394088	12.883834	23.390384	12.
min	1.582227e+07	2.500000	-74.005043	0.000000	-74.002720	0.
25%	2.465233e+07	5.850000	-73.998451	40.730757	-73.989303	40.
50%	3.601534e+07	8.700000	-73.975656	40.741278	-73.967168	40.
75%	4.485598e+07	12.800000	-73.963340	40.745346	-73.962684	40.
max	5.061106e+07	24.500000	0.000000	40.790844	0.000000	40.

3 of 8

In [215]:

Out[215]: <seaborn.axisgrid.PairGrid at 0x190c880c670>

In [247]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[247]: <AxesSubplot:xlabel='residual sugar', ylabel='Density'>

In [249]:

In [250]:

Out[250]: <AxesSubplot:>

In [251]: x=x1[['citric acid']]

```
In [252]: # to split my dataset into traning and test date
           from sklearn.model_selection import train_test_split
In [253]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
Out[253]: LinearRegression()
In [254]:
           -5.551115123125783e-17
In [255]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[255]:
                     Co-efficient
            citric acid
                            1.0
In [256]: prediction=lr.predict(x_test)
Out[256]: <matplotlib.collections.PathCollection at 0x190cede38b0>
            0.06
            0.05
            0.04
            0.03
            0.02
            0.01
            0.00
                0.00
                       0.01
                              0.02
                                     0.03
                                            0.04
                                                   0.05
                                                           0.06
In [257]: L
Out[257]: 1.0
In [258]: -
Out[258]: 1.0
In [259]:
```

```
In [260]: rr=Ridge(alpha=10)
      rr.fit(x_train,y_train)
Out[260]: -18.382270484550485
In [261]: la=Lasso(alpha=10)
Out[261]: Lasso(alpha=10)
In [262]:
Out[262]: -19.61516034985423
In [263]: | from sklearn.linear_model import ElasticNet
      en=ElasticNet()
Out[263]: ElasticNet()
In [264]:
Out[264]: array([0.])
In [265]:
Out[265]: array([0.13714286, 0.13714286, 0.13714286])
In [266]:
Out[266]: 0.13714285714285715
In [267]:
Out[267]: -19.61516034985423
In [269]:
      Mean Absolute Error 4.2789845740761244e-17
In [270]:
      Mean Squared Error 1.9620411308444965e-33
In [271]:
      Root Mean Squared Error 4.4294933466983516e-17
 In [ ]:
```

8 of 8