CS 341 Automata Theory STUDENT NAME - EID Homework 13

Due: Tuesday, April 17

This assignment covers Sections 21.1 - 21.3

a) Show the graph that corresponds to G.

a) Show that $\{a\}$ is mapping reducible to H.

1) In Appendix E.3, we describe a straightforward use of reduction that solves a grid coloring problem by reducing it to a graph problem. Given the grid G shown here:

	Solution.	
b)	Use the graph algorithm we describe to find a coloring of G .	

- Solution.
- Social Conference Conf
- 2) In this problem, we consider the relationship between H and a very simple language $\{a\}$.
 - Solution.
 - b) Is it possible to reduce H to $\{a\}$? Prove your answer.
 - Answer.
 - Proof. \Box

- 3) Show that H_{ALL} is not in D by reduction from H.
- 4) For each of the following languages L, state whether or not it is in D. Prove your answer. Assume that any input of the form $\langle M \rangle$ is a description of a Turing machine.
 - ${\rm a)}\ \{\langle M\rangle\ :\ {\rm ab}\in L(M)\}.$

Solution.

Answer. \Box

Proof.

b) $\{\langle M, w \rangle : \text{TM } M$, on input w, begins by moving right one square onto w. Then it never moves off w $\}$.

		Answer.	
		Proof.	
	c)	$\{\langle M \rangle : \text{ there exists a string } w \text{ such that } w < \langle M \rangle \text{ and that } M \text{ accepts } w\}.$	
		Answer.	
		Proof.	
5)	mo	Appendix J.2, we proved Theorem J.1, which tells us that the safety of even a very simple secured is undecidable, by reduction from H_{ϵ} . Show an alternative proof that reduces $A = \{\langle M, w \rangle :$ a Turing machine and $w \in L(M)\}$ to the language Safety.	
	Pr	roof.	