

Hands on UnSupervised Learning Algorithm with Python, Scikit Learn [case: clustering]

Instructor:
Heru Praptono
[heru.pra@cs.ui.ac.id]

Agenda

- UnSupervised Learning Algorithm Refresher
- Clustering with Scikit Learn
 - Partitional vs hierarchical
 - DBSCAN
- Visualisation
 - Use Pandas, Matplotlib
- Get your hands dirty

UnSupervised Algorithm Concept Refresher

• Given a number of instances in dataset $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ where $\mathbf{x} \in \mathcal{R}^D$

- **Learning**: Estimate the distribution of $p(\theta|\mathcal{D})$
- Inference: So that we find the interesting "pattern" in data $p(\mathbf{x}|\theta)$

UnSupervised Algorithm Concept Refresher

- Some popular tasks:
 - Clustering
 - Dimensionality reduction
 - Latent variable representation
 - ... and other, depending on the case..but in principle, "let data tells about its interesting characteristic pattern"

UnSupervised Algorithm Concept Refresher

• Clustering:

Clustering is the segmentation of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often according to some defined distance measure.

pusilkom

Clustering

- Partitional clustering: Partitional algorithms determine all clusters at once. They include: K-means and its derivatives
- Hierarchical algorithms: these fnd successive clusters using previously established clusters
 - Agglomeratve ("botom-up"): Agglomeratve algorithms begin with each element as a separate cluster and merge them into successively larger clusters.
 - <u>Divisive ("top-down")</u>: Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters
- Density-based: based on connectivity and density functions

Clustering (distance measure)

Distance measure will determine how the similarity of two elements is calculated and it will influence the shape of the clusters.

They include for example:

1. The **Euclidean distance** (also called 2-norm distance) is given by:

$$d(x, y) = 2\sqrt{\sum_{i=1}^{p} |x_i - y_i|^2}$$

2. The Manhattan distance (also called taxicab norm or 1-norm) is given by:

$$d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

Clustering (distance measure)

3. The <u>maximum norm</u> is given by:

$$d(x, y) = \max_{1 \le i \le p} |x_i - y_i|$$

4. <u>Inner product space</u>: The angle between two vectors can be used as a distance measure when clustering high dimensional data

 $\theta = \arccos(x \cdot y / |x| |y|)$

Good Clustering...

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation
- The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns

Requirements of Clustering

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

pusilkom u

Clustering (k-Means)

- The **k-means algorithm** is an algorithm to cluster n objects based on attributes into k partitions, where k < n.
- An algorithm for partitioning (or clustering) N data points into K disjoint subsets S_j containing data points so as to minimize the sum-of-squares criterion

$$J = \sum_{j=1}^{K} \sum_{n \in \mathcal{S}_j} |x_n - \mu_j|^2,$$

• where x_n is a vector representing the the n^{th} data point and u_j is the geometric centroid of the data points in S_i .

We will demonstrate on how k-means works

- Simply speaking k-means clustering is an algorithm to classify or to group the objects based on attributes/features into K number of group.
- K is positive integer number.
- The grouping is done by minimizing the sum of squares of distances between data and the corresponding cluster centroid.

How k-Means works

Let us see..

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Step 1:

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters. In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Chosen as initial centroids

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

pusilkom ui

K-means: Example

Step 2:

- Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

$$=(4.12,5.38)$$

individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1,2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2,2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Step 3:

- Now using these centroids we compute the Euclidean distance of each object, as shown in table.
- Therefore, the new clusters are: {1,2} and {**3**,4,5,6,7}
- Next centroids are: m1=(1.25,1.5)
 and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

- Step 4:
 The clusters obtained are:
 {1,2} and {3,4,5,6,7}
- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

Let's try [the example] with scikit-learn

pusilkom u

Clustering (K-Means)

```
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
import pylab as pl
iris = load iris()
pca = PCA(n_components=2).fit(iris.data)
pca_2d = pca.transform(iris.data)
pl.figure('Reference Plot')
pl.scatter(pca_2d[:, 0], pca_2d[:, 1], c=iris.target)
```


Clustering (K-Means)

```
kmeans = KMeans(n_clusters=3, random_state=111)
kmeans.fit(iris.data)
pl.figure('K-means with 3 clusters')
pl.scatter(pca_2d[:, 0], pca_2d[:, 1],
c=kmeans.labels_)
pl.show()
```


Clustering (K-Means)

Reference data

Clustering (K-Means)

Clustered with K-Means

The others: (1) Hierarchical Clustering


```
from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
import numpy as np
np.random.seed(4711) # for repeatability of this tutorial
a = np.random.multivariate normal([10, 0], [[3, 1], [1, 4]],
size=[100,])
b = np.random.multivariate normal([0, 20], [[3, 1], [1, 4]],
size=[50,])
X = np.concatenate((a, b), axis = 0)
print(X.shape) # 150 samples with 2 dimensions
plt.scatter(X[:,0], X[:,1])
plt.show()
```


pusilkom u

```
Z = linkage(X, 'ward')
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('sample index')
plt.ylabel('distance')
dendrogram (
   Ζ,
   leaf_rotation=90., # rotates the x axis labels
   leaf_font_size=8., # font size for the x axis labels
plt.show()
```


pusilkom u

Hierarchical Clustering (Truncating)

```
plt.title('Hierarchical Clustering Dendrogram (truncated)')
plt.xlabel('sample index or (cluster size)')
plt.ylabel('distance')
dendrogram (
   Ζ,
   truncate mode='lastp', # show only the last p merged clusters
   p=12, # show only the last p merged clusters
   leaf rotation=90.,
   leaf font size=12.,
   show_contracted=True, # to get a distribution impression in truncated
   branches
plt.show()
```


The others: (2) DBSCAN

pusilkom ui

DBSCAN

```
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples generator import make blobs
from sklearn.preprocessing import StandardScaler
# ######Generate sample Data
centers = [[5, 5], [-5, -1], [0, 0]]
X, labels_true = make_blobs(n_samples=750, centers=centers,
cluster std=0.4, random state=0)
X = StandardScaler().fit transform(X)
```


pusilkom ui

DBScan

```
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core samples mask = np.zeros like(db.labels , dtype=bool)
core samples mask[db.core sample indices] = True
labels = db.labels
# Number of clusters in labels, ignoring noise if present.
n \text{ clusters} = len(set(labels)) - (1 \text{ if } -1 \text{ in labels else } 0)
print('Estimated number of clusters: %d' % n_clusters_)
print ("Homogeneity: %0.3f" % metrics.homogeneity score (labels true,
labels))
print("Silhouette Coefficient: %0.3f"% metrics.silhouette_score(X, labels))
```


DBSCAN

```
import matplotlib.pvplot as plt
unique labels = set(labels)
colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
   if k == -1:
     # Black used for noise.
     col = [0, 0, 0, 1]
   class_member_mask = (labels == k)
   xy = X[class member mask & core samples mask]
   plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
   markeredgecolor='k', markersize=14)
   xy = X[class member mask & ~core samples mask]
   plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
   markeredgecolor='k', markersize=6)
#plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
```


DBSCAN

pusilkom u

Cohesion and Separation in Clustering

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster

Sihoutte Coefficient/Index in Clustering

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, I
 - Calculate a = average distance of i to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by
 - -s = 1 a/b if a < b, (or s = b/a 1 if a >= b, not the usual case)
 - Typically between 0 and 1.
 - The closer to 1 the better.
- Can calculate the Average Silhouette width for a cluster or a clustering

It is now your turn..and explore on your own