Al 5030: Probability and Stochastic Processes Homework 2: Solutions

1 Sample Space, Algebra, σ -Algebra

1. Let Ω be a sample space, and let \mathscr{F} be a σ -algebra of subsets of Ω . Argue that \mathscr{F} is closed under countable intersections. Hint: Apply De Morgan's laws.

Solution: Let $A_1, A_2, \ldots \in \mathscr{F}$. Because \mathscr{F} is closed under set complements, it follows that $A_1^c, A_2^c, \ldots \in \mathscr{F}$. Noting that \mathscr{F} is closed under countable unions, it then follows that $\bigcup_{i=1}^{\infty} A_i^c \in \mathscr{F}$. Using De Morgan's law, we have

$$\bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c \in \mathscr{F}.$$

This proves the desired result.

2. Let Ω be a sample space. Let \mathscr{F}_1 and \mathscr{F}_2 be two σ -algebras of subsets of Ω . Show, via an example, that $\mathscr{F}=\mathscr{F}_1\cup\mathscr{F}_2$ is not necessarily a σ -algebra. Note: This exercise shows that union of σ -algebras is not necessarily a σ -algebra.

Solution: Consider the following example:

$$\begin{split} \Omega &= \{1,2,3,4,5,6\},\\ \mathscr{F}_1 &= \{\phi,\Omega,\{1\},\{2,3,4,5,6\}\},\\ \mathscr{F}_2 &= \{\phi,\Omega,\{2\},\{1,3,4,5,6\}\}. \end{split}$$

Notice that $\{1\} \in \mathscr{F}_1 \cup \mathscr{F}_2, \{2\} \in \mathscr{F}_1 \cup \mathscr{F}_2$, but $\{1,2\} \notin \mathscr{F}_1 \cup \mathscr{F}_2$. Therefore, $\mathscr{F}_1 \cup \mathscr{F}_2$ is not a σ -algebra.

- 3. Let Ω be a sample space.
 - (a) Let \mathscr{F}_1 and \mathscr{F}_2 be two σ -algebras of subsets of Ω . Show that $\mathscr{F} = \mathscr{F}_1 \cap \mathscr{F}_2$ is also a σ -algebra.
 - (b) More generally, let \mathcal{I} be an arbitrary index set (finite, countably infinite, or uncountable), and for each $i \in \mathcal{I}$, let \mathscr{F}_i be a σ -algebra of subsets of Ω . Show that

$$\mathscr{F} = \bigcap_{i \in \mathcal{I}} \mathscr{F}_i$$

is also a σ -algebra.

This exercise shows that intersection of σ -algebras is necessarily a σ -algebra.

Solution: We prove the result in part (b) above, and note that the result in part (a) simply follows by setting $\mathcal{I}=\{1,2\}$. First, we note that $\Omega\in\mathscr{F}_i$ for every $i\in\mathcal{I}$, and therefore $\Omega\in\mathscr{F}$. Next, suppose that $A\in\mathscr{F}$. This implies that $A\in\mathscr{F}_i$ for every $i\in\mathcal{I}$, which in turn implies that $A^c\in\mathscr{F}_i$ for each $i\in\mathcal{I}$, and therefore $A^c\in\bigcap_{i\in\mathcal{I}}\mathscr{F}_i$. Lastly, suppose that $A_1,A_2,\ldots\in\mathscr{F}$ (or equivalently, $\{A_1,A_2,\ldots\}\subseteq\mathscr{F}$). This implies that $\{A_1,A_2,\ldots\}\subseteq\mathscr{F}_i$ for every $i\in\mathcal{I}$, from which it follows that $\bigcup_{j=1}^\infty A_j\in\mathcal{F}_i$ for each $i\in\mathcal{I}$, thereby implying that $\bigcup_{j=1}^\infty A_i\in\mathscr{F}$. This demonstrates that \mathscr{F} is a σ -algebra.

4. Let Ω be a sample space, and let $\mathscr F$ be a σ -algebra of subsets of Ω . Fix $B \in \mathscr F$, and consider the collection

$$\mathscr{G} = \{A \cap B : A \in \mathscr{F}\}.$$

That is, \mathscr{G} is a collection of subsets of B formed by taking the intersection of each set in \mathscr{F} with B. Show that \mathscr{G} is a σ -algebra of subsets of B.

Solution:

- (a) To see that $B \in \mathscr{G}$, we simply note that $B = \Omega \cap B$, and $\Omega \in \mathscr{F}$.
- (b) Suppose that $C \in \mathscr{G}$. We now show that the complement of C with respect to B, i.e., $B \setminus C$, is an element of \mathscr{G} . Because $C \in \mathscr{G}$, it follows that $C = A \cap B$ for some $A \in \mathscr{F}$. Clearly, $A^c = \Omega \setminus A \in \mathscr{F}$. Furthermore, $B \setminus C = B \cap C^c = B \cap (B^c \cup A^c) = B \cap A^c$, where the complements A^c, B^c, C^c are with respect to Ω . Thus, we have $B \setminus C = A^c \cap B$, and noting that $A^c \in \mathscr{F}$, it follows that $B \setminus C \in \mathscr{G}$.
- (c) Suppose that $C_1, C_2, \ldots \in \mathscr{G}$. Then, by definition, there exist sets $A_1, A_2, \ldots \in \mathscr{F}$ such that $C_1 = A_1 \cap B$, $C_2 = A_2 \cap B$, etc. We then note that $\bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$, and therefore $B \cap (\bigcup_{i=1}^{\infty} A_i) \in \mathscr{G}$. Using the distributive law of sets, we note that $B \cap (\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} B \cap A_i = \bigcup_{i=1}^{\infty} C_i$, thus proving that $\bigcup_{i=1}^{\infty} C_i \in \mathscr{G}$.

The above properties collectively demonstrate that \mathscr{G} is σ -algebra of subsets of B.

5. Let Ω be a sample space. Consider the collection

$$\mathscr{A}_1 = \{ A \subseteq \Omega : A \text{ is finite or } \Omega \setminus A \text{ is finite} \}. \tag{1}$$

- (a) Prove that \mathcal{A}_1 is an algebra.
- (b) Construct an example to show that \mathscr{A}_1 is not necessarily a σ -algebra. Hint: Consider $\Omega = \mathbb{R}$ and $A = \mathbb{Q}$, the set of rational numbers. What do you know about \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$?

Solution:

(a) First, we note that $\Omega \in \mathscr{A}_1$, as $\Omega \setminus \Omega = \emptyset$ is finite. Next, suppose that $A \in \mathscr{A}_1$. Then, by definition, either A is finite or $\Omega \setminus A$ is finite. Equivalently, $\Omega \setminus A$ is finite or $\Omega \setminus (\Omega \setminus A) = A$ is finite, thereby proving that $\Omega \setminus A \in \mathscr{A}_1$. Lastly, fix $n \in \mathbb{N}$, and suppose that $A_1, A_2, \ldots, A_n \in \mathscr{A}_1$. Let $\mathcal{I} \subseteq \{1, \ldots, n\}$ be such that A_i is finite for each $i \in \mathcal{I}$. Notice that

$$\bigcup_{i=1}^{n} A_{i} = \left(\bigcup_{i \in \mathcal{I}} A_{i}\right) \cup \left(\bigcup_{i \notin \mathcal{I}} A_{i}\right).$$

If $\mathcal{I}=\{1,\ldots,n\}$, then it follows that $\bigcup_{i\in\mathcal{I}}A_i=\bigcup_{i=1}^nA_i$ is finite, and therefore belongs to \mathscr{A}_1 . On the other hand, if $\mathcal{I}\subset\{1,\ldots,n\}$, then $\Omega\setminus A_i$ is finite for every $i\notin\mathcal{I}$. This implies that $\Omega\setminus (\bigcup_{i=1}^nA_i)\subset\bigcap_{i\notin\mathcal{I}}(\Omega\setminus A_i)$ is finite, and therefore $\Omega\setminus (\bigcup_{i=1}^nA_i)\in\mathscr{A}_1$. This proves that $\bigcup_{i=1}^nA_i\in\mathscr{A}_1$, thereby demonstrating that \mathscr{A}_1 is an algebra.

- (b) Consider $\Omega=\mathbb{R}, A=\mathbb{N}$. Let $A_i=\{i\}$ for all $i\in\mathbb{N}$. Clearly, A_i is finite for each $i\in\mathbb{N}$. We now claim that $A=\bigcup_{i=1}^\infty A_i\notin\mathscr{A}_1$. Indeed, we have $A=\mathbb{N}$, and therefore neither A nor $\Omega\setminus A$ is finite. This shows that \mathscr{A}_1 is not closed under countable intersections, thereby failing to meet the requirements of a σ -algebra.
- 6. Let Ω be a sample space. Consider the collection

$$\mathscr{A}_2 = \{ A \subset \Omega : A \text{ is countable or } \Omega \setminus A \text{ is countable} \}. \tag{2}$$

Prove that \mathcal{A}_2 is a σ -algebra.

Hint: Recall that countable means finite or countably infinite.

Use the lemma "countable union of countable sets is countable" covered in class.

Solution: First, we note that $\Omega \in \mathscr{A}_2$, as $\Omega \setminus \Omega = \emptyset$ is finite (hence countable). Next, suppose that $A \in \mathscr{A}_2$. Then, by definition, either A is countable or $\Omega \setminus A$ is countable. Equivalently, $\Omega \setminus A$ is countable or $\Omega \setminus (\Omega \setminus A) = A$ is countable, thereby proving that $\Omega \setminus A \in \mathscr{A}_2$. Lastly, suppose that $A_1, A_2, \ldots \in \mathscr{A}_2$. Let $\mathcal{I} \subseteq \{1, 2, \ldots\}$ be such that A_i is countable for each $i \in \mathcal{I}$. Notice that

$$\bigcup_{i=1}^{\infty} A_i = \left(\bigcup_{i \in \mathcal{I}} A_i\right) \cup \left(\bigcup_{i \notin \mathcal{I}} A_i\right).$$

If $\mathcal{I}=\{1,2,\ldots\}$, then it follows that $\bigcup_{i\in\mathcal{I}}A_i=\bigcup_{i=1}^\infty A_i$ is countable (this follows from the fact that countable union of countable sets is countable), and therefore belongs to \mathscr{A}_2 . On the other hand, if $\mathcal{I}\subset\{1,2,\ldots\}$, then $\Omega\setminus A_i$ is countable for every $i\notin\mathcal{I}$. This implies that $\Omega\setminus (\bigcup_{i=1}^\infty A_i)\subset \bigcap_{i\notin\mathcal{I}}(\Omega\setminus A_i)$ is at most countable, and therefore $\Omega\setminus (\bigcup_{i=1}^\infty A_i)\in\mathscr{A}_1$. This proves that $\bigcup_{i=1}^\infty A_i\in\mathscr{A}_2$, thereby demonstrating that \mathscr{A}_2 is a σ -algebra.