STAT 630 Problem Set 10 Nikko Cleri

November 29, 2021

Question I.

7.1.1

(a) The joint distribution is $\pi(\theta) f_{\theta}(s)$:

	s = 1	s=2
$\pi(1)f_1(s)$	1/10	1/10
$\pi(2)f_2(s)$	2/15	4/15
$\pi(3)f_3(s)$	6/20	2/20

we have m(1) = 8/15 and m(2) = 7/15, so

$$\pi(\theta|s) = \frac{\pi(\theta)f_{\theta}(s)}{m(s)}$$

gives

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta s=1)$	3/16	1/4	9/16
$\pi(\theta s=2)$	3/14	4/7	3/14

For the four two-element cases, we have

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta (1,1))$	9/256	1/16	81/256
$\pi(\theta (1,2))$	9/224	4/28	27/224
$\pi(\theta (2,1))$	9/224	4/28	27/224
$\pi(\theta (2,2))$	9/196	16/49	9/196

So the highest probability for θ for each are 3, 2, 2, and 2, respectively.

(b) We now have

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta (1,1,1))$	27/4096	1/64	729/4096
$\pi(\theta (1,1,2))$	27/3584	4/112	243/3584
$\pi(\theta (1,2,1))$	27/3584	4/112	243/3584
$\pi(\theta (2,1,1))$	27/3584	4/112	243/3584
$\pi(\theta (1,2,2))$	27/3136	16/196	81/3136
$\pi(\theta (2,1,2))$	27/3136	16/196	81/3136
$\pi(\theta (2,2,1))$	27/3136	16/196	81/3136
$\pi(\theta (2,2,2))$	27/2744	64/343	27/2744

So the highest probability for θ for each are 3, 3, 3, 3, 2, 2, 2, and 2, respectively.

Question II.

7.1.2

(a) The posterior is of the form Beta $(n\bar{x} + \alpha, n(1 - \bar{x} + \beta))$ which has

$$\mu = \frac{n\bar{x} + \alpha}{n\bar{x} + \alpha + n(1 - \bar{x} + \beta)}$$

$$\sigma^{2} = \frac{(n\bar{x} + \alpha)(n(1 - \bar{x} + \beta))}{(n\bar{x} + \alpha + n(1 - \bar{x} + \beta))^{2}(n\bar{x} + \alpha + n(1 - \bar{x} + \beta) + 1)}$$

(b) For $\alpha = \beta = 2$ and n = 50, $\bar{x} = 0.56$, we have Beta(30, 122) with

$$\mu = 0.71$$

$$\sigma^2 = 0.001$$

(c) The mode of the distribution is given by the global maximum, so we take the derivative of the pdf and set equal to zero

$$\frac{\partial}{\partial x} \left[\frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \right] = 0$$

$$= -\frac{(1-x)^b x^{a-2} ((b+a-2)x - a + 1)}{(x-1)^2}$$

$$\implies x = \frac{a-1}{b+a-2}$$

This gives the posterior mode 0.193.

- (d) See the following plot
- (e) The 90% and 95% credible intervals are (0.147, 0.252) and (0.138, 0.264), respectively.

Question III.

7.1.3

(a) Given n = 10, $\bar{x} = 1$ when $\sigma_0^2 = 1$, $\mu_0 = 0$ and $\tau_0^2 = 10$, we have the distribution

$$N\left[\left(\frac{1}{\tau_0^2} + \frac{n}{\sigma_0^2} \right)^{-1} \left(\frac{\mu_0}{\tau_0^2} + \frac{n\bar{x}}{\sigma_0^2} \right), \left(\frac{1}{\tau_0^2} + \frac{n}{\sigma_0^2} \right)^{-1} \right]$$

The probability that $\mu > 0 \approx 0.991$ from R.

(b) For $\sigma_0^2 = 4$, the probability that $\mu > 0 \approx 0.807$ from R.

Figure 1: Prior and posterior distributions for question 2 part d.

- (c) For $\sigma_0^2=4$ and $\tau_0^2=2$, the probability that $\mu>0\approx 0.756$ from R.
- (d) From R, the 99% Bayes credible interval for the conditions in part c is (-0.654, 2.320).

Question IV.

7.1.4

- (a) With a sample from Poisson(λ) and priors from Gamma(a,b), the posterior is Gamma($a+\sum x_i,b+n$).
- (b) Assuming independence between the data and the priors, we have the posterior mean and variance as

$$\mu = \frac{a + \sum x_i}{n + b}$$
$$\sigma^2 = \frac{a + \sum x_i}{(n + b)^2}$$

(c) For the given conditions

$$\mu = \frac{2+27}{20+3} = \frac{29}{23}$$
$$\sigma^2 = \frac{2+27}{(20+3)^2} = \frac{29}{23^2}$$

(d) the 95% is (0.844, 1.759)

Question V.

7.1.9

(a) For a Uniform [0.4,0.6] prior with the likelihood Binomial (n, θ) , we have

$$\pi(\theta|x) = \frac{5I_{[0.4,0.6]}\binom{n}{x}\theta^x(1-\theta)^{n-x}}{m(x)}$$

so for x = n, we have the normalization $m = 5\left(\frac{\theta^{1.6}}{1.6} + \frac{\theta^{1.4}}{1.4}\right)$ so the posterior is

$$\pi(\theta|x) = \frac{I_{[0.4,0.6]}\theta^x}{\frac{\theta^{1.6}}{1.6} + \frac{\theta^{1.4}}{1.4}}$$

- (b) No, we have an indicator function $I_{[0.4,0.6]}$
- (c) We should choose a prior which includes the possible values of the unknown parameter.

Question VI.

7.2.10

(a) Similarly to question 4, we have the prior as $Gamma(a_0, b_0)$ and likelihood gives the posterior $Gamma(n + a_0, b_0 + \sum x_i)$. The mode of a Gamma distribution is $\frac{n+a_0-1}{b_0+\sum x_i}$. The posterior mean and variance are then

$$\mu = \frac{n + a_0}{b_0 + \sum x_i}$$
$$\sigma^2 = \frac{n + a_0}{(b_0 + \sum x_i)^2}$$

- (b) For case one, we have $a_0 = 16$ and $b_0 = 4$. This gives the prior Gamma(16,4) For case 2, $a_0 = 1$ and $b_0 = 1/4$, which gives Gamma(1,1/4).
- (c) The first case posterior becomes Gamma(36, 106), and the second case becomes Gamma(21, 102.25), with means 36/106 and 21/102.25, respectively. See the following figures.
- (d) The respective 90% credible intervals are (0.252,0.438) and (0.138,0.284).

Figure 2: Posterior distributions for question 6 part b.

Question VII.

- (a) H_0 is favored for x = 1, 2, 3, 4
- **(b)** H_0 is favored for x = 1, 2, 3, 4, 5
- (c) We have the following likelihood ratios

	x = 1	x=2	x = 3	x = 4	x = 5	x = 6
$\frac{f_1(x)}{f_0(x)}$	0.5	0.31	0.287	0.514	2.077	20

so we rank the likelihood ratios x = 6, 5, 4, 1, 2, 3 decreasing.

- (d) For $\alpha = 0.15$, the likelihood ratio test rejects if X>2.077. For $\alpha = 0.02$, the likelihood ratio test rejects if X>20.
- (e) The power for $\alpha = 0.15$ is 0.67. The power for $\alpha = 0.15$ is 0.40.

Figure 3: Posterior distributions for question 6 part c.