Solutions to Basics of Geometry

Dennis Chen

GPV1

Contents

§1 AMC 10A 2020/12

Triangle AMC is isosceles with AM = AC. Medians \overline{MV} and \overline{CU} are perpendicular to each other, and MV = CU = 12. What is the area of $\triangle AMC$?

§ 1.1 Solution

Because the centroid splits the median in a 2 to 1 ratio, PM = PC = 8. Also note that the height from P to MC is $\frac{1}{3}$ of the height from A to MC, so [AMC] = 3[PMC]. Also note that $[PMC] = \frac{8\cdot 8}{2} = 32$, so [AMC] = 96.

§ 2 Brazil 3rd Phase Level 2 2004/1

In the figure, ABC and DAE are isosceles triangles (AB = AC = AD = DE) and the angles BAC and ADE have measures 36° .

- 1. Using geometric properties, calculate the measure of angle $\angle EDC$.
- 2. Knowing that BC = 2, calculate the length of segment DC.
- 3. Calculate the length of segment AC.

§ 2.1 Solution

The main idea is expressing angles in terms of differences of other angles.

- 1. Note that $\angle DAC = \angle DAE \angle CAB = 72^{\circ} 36^{\circ} = 36^{\circ}$, and also note that $\angle EDC = \angle ADC \angle ADE = 72^{\circ} 36^{\circ} = 36^{\circ}$.
- 2. Note that $\angle DAC = \angle CAB$ from our progress on the first part, so DC = BC = 2.
- 3. By the Law of Sines, $\frac{AC}{DC} = \frac{AC}{2} = \frac{\sin 72^{\circ}}{\sin 36^{\circ}} = \frac{2\sin 36^{\circ}\cos 36^{\circ}}{\sin 36^{\circ}} = 2\cos 36^{\circ}$, so $AC = 4\cos 36^{\circ} = \sqrt{5} + 1$.

§ 3 Unsourced

Let circles ω_1 and ω_2 intersect at X,Y. Let line ℓ_1 passing through X intersect ω_1 at A and ω_2 at C, and let line ℓ_2 passing through Y intersect ω_1 at B and ω_2 at D. If ℓ_1 intersects ℓ_2 at P, prove that $\triangle PAB \sim \triangle PCD$.

§ 3.1 Solution

We only prove it for the configuration below. We can use directed angles or casework to take care of all configurations.

We want to prove that $\angle PAB = \angle PCD$. Note that

$$\angle PCD = \angle 180^{\circ} - \angle XCD = \angle XYD = 180^{\circ} - \angle XYB = \angle XAB = \angle PAB.$$

§ 4 AMC 10B 2011/17

In the given circle, the diameter \overline{EB} is parallel to \overline{DC} , and \overline{AB} is parallel to \overline{ED} . The angles AEB and ABE are in the ratio 4:5. What is the degree measure of angle BCD?

§ 4.1 Solution

Note that $\angle EAB = 90^\circ$, as AB is a diameter. Thus $\angle AEB = 40^\circ$ and $\angle ABE = 50^\circ$. Since AB and DE are parallel, the measures of the arcs must be the same, so $\angle BED = 50^\circ$. By the cyclic quadrilateral criterion, $\angle BCD = 180^\circ - \angle BED = 130^\circ$.

Note that the fact that DC is parallel to EB is irrelevant, other than determining the configuration.

§ 5 Dennis Chen

Consider rectangle ABCD with AB = 6, BC = 8. Let M be the midpoint of AD and let N be the midpoint of CD. Let BM and BN intersect AC at X and Y respectively. Find XY.

§ 5.1 Solution

Let BD intersect AC and MN at P and Q, respectively. Note that $\triangle BXY \sim \triangle BMN$, and also note that the similarity taking $\triangle BXY$ to $\triangle BMN$ also takes P to Q. Since $BP = \frac{2}{3}BQ$, $XY = \frac{2}{3}MN = \frac{10}{3}$.

§6 AMC 10A 2019/13

Let $\triangle ABC$ be an isosceles triangle with BC = AC and $\angle ACB = 40^{\circ}$. Construct the circle with diameter \overline{BC} , and let D and E be the other intersection points of the circle with the sides \overline{AC} and \overline{AB} , respectively. Let F be the intersection of the diagonals of the quadrilateral BCDE. What is the degree measure of $\angle BFC$?

§ 6.1 Solution

Notice that $\angle BFC = \angle DFE$. Now note that $\angle BEC = \angle BDC = 90^{\circ}$, so CE and BD are altitudes. Now note that $\angle FEA = \angle FDA = 90^{\circ}$, so FEAD is also cyclic. Thus $\angle DFE = 180^{\circ} - \angle DAE = 110^{\circ}$.

§7 Miquel's Theorem

Consider $\triangle ABC$ with D on BC, E on CA, and F on AB. Prove that (AEF), (BFD), and (CDE) concur.

§ 7.1 Solution

We only prove the case where D, E, F are on segments BC, CA, AB. The other configurations can be proved with directed angles.

Let (AEF) and (BFD) intersect at P. We then prove that P lies on (CED). Note that

$$\angle DPE = 360^{\circ} - \angle EPF - \angle FPD = 360^{\circ} - (180^{\circ} - \angle A) - (180^{\circ} - \angle B) = \angle A + \angle B.$$

Since $\angle A + \angle DPE = 180^{\circ}$, (CDPE) is cyclic.

§8 Unsourced

Consider $\triangle ABC$ with D on segment BC, E on segment CA, and F on segment AB. Let the circumcircles of $\triangle FBD$ and $\triangle DCE$ intersect at $P \neq D$. If $\angle A = 50^{\circ}, \angle B = 35^{\circ}$, find $\angle DPE$.

§ 8.1 Solution

By Miquel's Theorem, (CDPE) is cyclic, so $\angle DPE = 180^{\circ} - \angle C = 85^{\circ}$.

§ 9 AIME II 2018/4

In equiangular octagon CAROLINE, $CA = RO = LI = NE = \sqrt{2}$ and AR = OL = IN = EC = 1. The self-intersecting octagon CORNELIA encloses six non-overlapping triangular regions. Let K be the area enclosed by CORNELIA, that is, the total area of the six triangular regions. Then $K = \frac{a}{b}$, where a and b are relatively prime positive integers. Find a + b.

§ 9.1 Solution

Say that the center of CAROLINE is M, and let MA and MR intersect CO at W and X, and let MI and MN intersect LE at Y and Z.

By similar triangles, $WX = \frac{AR}{3} = \frac{1}{3}$, so $[MWX] = \frac{1}{2} \cdot (\frac{1}{3} \cdot \frac{1}{2}) = \frac{1}{12}$. This implies that $CW = \frac{CO - WX}{2} = \frac{3 - \frac{1}{3}}{2} = \frac{4}{3}$, so $[CAW] = \frac{1}{2} \cdot (\frac{4}{3} \cdot 1) = \frac{2}{3}$. Now note

$$[CORNELIA] = 4[CAW] + 2[WMX] = 4 \cdot \frac{2}{3} + 2 \cdot \frac{1}{12} = \frac{17}{6},$$

so the answer is 17 + 6 = 23.

§ 10 Brazil 3rd Phase Level 2 2007/1

Let ABC be a triangle with circumcenter O. Let P be the intersection of straight lines BO and AC and ω be the circumcircle of triangle AOP. Suppose that BO = AP and that the measure of the arc OP in ω , that does not contain A, is 40° . Determine the measure of the angle $\angle OBC$.

§ 10.1 Solution

Note that BO = AO = AP, so $\triangle AOP$ is isosceles. Thus $\angle OAP = 20^\circ$, implying $\angle AOC = 140^\circ$, and $\angle AOP = \angle APO = 80^\circ$, implying that $\angle AOB = 100^\circ$. So $\angle OBC = 360^\circ - 140^\circ - 100^\circ = 120^\circ$, or $\angle OBC = 30^\circ$.

§ 11 Unsourced

Consider square ABCD and some point P outside ABCD such that $\angle APB = 90^{\circ}$. Prove that the angle bisector of $\angle APB$ also bisects the area of ABCD.

§ 11.1 Solution

Let Q, R, S be the rotations of P about O by $90^{\circ}, 180^{\circ}, 270^{\circ}$ counterclockwise. Note that PR is the angle bisector of $\angle APB$ and PR bisects the area of [PQRS]. Since the area we added to both halves of ABCD is the same, PR also bisects ABCD.

§ 12 AMC 10B 2018/12

Line segment \overline{AB} is a diameter of a circle with AB=24. Point C, not equal to A or B, lies on the circle. As point C moves around the circle, the centroid (center of mass) of $\triangle ABC$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?

§ 12.1 Solution

Let O be the center of the circle and G be the centroid of $\triangle ABC$. Since O is also the midpoint of AB and thus lies on CG, we're motivated to make use of the 2:1 ratio. CO always has length 12, so it follows that GO always has length 4. This means that the locus of G is a circle with center O and radius 4 by definition, so the area is $16\pi \approx 50$.

§ 13 Formula of Unity Qualifying Round Grade 11 2018/4

A point O is the center of an equilateral triangle ABC. A circle that passes through points A and O intersects the sides AB and AC at points M and N respectively. Prove that AN = BM.

§ 13.1 Solution

Note that $\angle MBO = 30^\circ = \angle NAO$, $\angle ANO = 180^\circ - \angle AMO = \angle BMO$, and AO = BO, so $\triangle BMO \cong \triangle ANO$. Thus AN = BM.

§ 14 AMC 10A 2021/17

Trapezoid ABCD has $\overline{AB} \parallel \overline{CD}$, BC = CD = 43, and $\overline{AD} \perp \overline{BD}$. Let O be the intersection of the diagonals \overline{AC} and \overline{BD} , and let P be the midpoint of \overline{BD} . Given that OP = 11, the length AD can be written in the form $m\sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. What is m+n?

§ 14.1 Solution

§ 15 Memorial Day Mock AMC 10 2018/21

In the following diagram, $m \angle BAC = m \angle BFC = 40^{\circ}$, $m \angle ABF = 80^{\circ}$, and $m \angle FEB = 2m \angle DBE = 2m \angle FBE$. What is $m \angle ADB$?

§ 15.1 Solution

Since $\angle BAC = \angle BFC = 40^{\circ}$, BAFC is cyclic. Now let $\angle EDB = x$. Since $\angle FEB = 2x$, $\angle EDB + \angle EBD = 2x$. This implies that $\angle EBD = x$, or that ED = EB.

Now look at $\triangle ADB$. Note that $\angle ADB = x$, $\angle DAB = \angle FAC + \angle CAB = 2x + 40^\circ$, and $\angle ABD = \angle ABF + \angle FBC = 80^\circ + x$, so $x + 2x + 40^\circ + 80^\circ + x = 5x + 120^\circ = 180^\circ$, implying that $x = 12^\circ$.

§ 16 FARML 2012/6

In triangle ABC, AB=7, AC=8, and BC=10. D is on AC and E is on BC such that $\angle AEC=\angle BED=\angle B+\angle C$. Compute the length AD.

§ 16.1 Solution

Angle chase to find $\triangle ABC \sim \triangle EDC \sim \triangle EBA$. So $BE=7\cdot\frac{7}{10}=\frac{49}{10},$ implying $CE=10-\frac{49}{10}=\frac{51}{10},$ and $CD=\frac{10}{8}\cdot\frac{51}{10}=\frac{51}{8},$ implying $AD=8-\frac{51}{8}=\frac{13}{8}.$

§ 17 USAJMO 2020/4

Let ABCD be a convex quadrilateral inscribed in a circle and satisfying DA < AB = BC < CD. Points E and F are chosen on sides CD and AB such that $BE \perp AC$ and $EF \parallel BC$. Prove that FB = FD.

§ 17.1 Solution

We outline the solution, which is motivated from trying to construct circles.

- 1. Prove that FB = FE.
- 2. Prove that (AFOED) is cyclic, where O is the circumcenter of (ABCD).

To prove the first assertion, note that $\overline{BC} \parallel \overline{EF}$, $\angle FEB = \angle CEB$, and since $\triangle ABC$ is isosceles, $\angle ABE = \angle CBE$. Thus $\angle ABE = \angle FBE = \angle FEB$, so FB = FE.

To prove the second assertion, note that $\angle FAD = \angle BAD = 180^{\circ} - \angle BCD = 180^{\circ} - \angle FED$, so A lies on (FED). Now note that $\angle AOD = 2\angle ACD$ and

$$\angle AED = 180^{\circ} - \angle AEC = 180^{\circ} - 2\angle AEB = \angle 180^{\circ} - 2(90^{\circ} - \angle CAE) = 2\angle CAE = 2\angle ACD,$$

so O also lies on (AFED).

To finish, note that $\angle BFE = 180^{\circ} - 2 \angle FBE = 2 \angle BCA$, implying that

$$\angle DFE = 180^{\circ} - \angle AFD - \angle BFE = 180^{\circ} - \angle AOD - 2\angle ACD =$$

$$180^{\circ} - 2\angle ACD - 2\angle BCA = 180^{\circ} - 2\angle BCD = 180^{\circ} - \angle BOD = \angle EOD = \angle EFD.$$

§ 18 MAST Diagnostic 2020

Consider $\triangle ABC$ with D on line BC. Let the circumcenters of $\triangle ABD$ and $\triangle ACD$ be M,N, respectively. Let the circumcircle of $\triangle MND$ intersect the circumcircle of $\triangle ACD$ again at $H \neq D$. Prove that A, M, H are collinear.

§ 18.1 Solution

It is obvious that $\triangle AMN \sim \triangle DMN$, and note that $\triangle AMN \sim \triangle ABC$ since $\angle AMN = \frac{1}{2}\angle AMD = \angle ABC$. Now note that $\angle DNM = \angle DHM$ and $\angle AHD = \angle ACD$ by cyclic quadrilaterals and $\angle DNM = \angle DCA$ by similar triangles, so $\angle DHM = \angle DHA$.

