台北市立松山高中 111 學年度第一學期期末考高一數學科試題

一、單選題(20分)(每題4分,不倒扣)
1. 二次函數 $f(x) = x^2 + 4x + 2$,當變數 x 在 $-4 \le x \le -3$ 的範圍時,求 $f(x)$ 的最小值? (A) -2 (B) 2 (C) -1 (D) 1 (E) 0
2. 已知 $f(x)$ 除以 $x^2 - 2x - 3$ 的餘式為 $x + 2$,求 $f(x)$ 除以 $x - 3$ 的餘式為何? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5
3. 設多項式 $f(x) = x^4 + 8x^3 + 9x^2 + 27x$,試求 $f(-7)$ 之值? (A) -91 (B) -13 (C) -3 (D) 13 (E) 91
4. 設 $f(x)$ 為實係數二次多項式,已知 $f(x)$ 在 $x=-2$ 時有最大值 1 ,且 $f(-3)=-5$ 。試問 $f(0)$ 之值為下列哪一個選項? (A) -21 (B) -22 (C) -23 (D) -24 (E)條件不足,無法確定
$5. y = f(x) = ax^3 + cx$ 的圖形在 $x = 1$ 附近的局部特徵近似(一次近似) $y = 12(x-1) + 4$,則 $f(x)$ 除以 $x + 1$ 的餘式為下列哪一個選項? (A) -8 (B) -4 (C) 0 (D) 4 (E) 8
二、多重選擇題(20分)(每題全對5分,錯一個得3分,錯兩個1分,其餘零分)
1. 已知 $f(x)$, $g(x)$, $q(x)$, $r(x)$ 均為多項式,設 a , b , c , k 均為實數。請問下列敘述何者正確?
(A)
(C) 若 $g(x) = ax + bx + c$ 為常數多項式,則 $a = b$ (C) 若 $f(x) = g(x) \cdot g(x) + r(x)$,則 $r(x) = 0$ 或 $0 \le \deg r(x) < \deg g(x)$
(D)
(E) 若 $f(x)$, $g(x)$ 皆非零多項式,則 $\deg(f(x) \cdot g(x)) = \deg f(x) + \deg g(x)$
2. 下列何者為多項式 $6x^3 - x^2 - 19x - 6$ 的因式 ? (A) $x+2$ (B) $x-2$ (C) $2x+3$ (D) $3x-1$ (E) $3x+1$ 。 3. 設 deg $f(x) \ge 4$,若 $f(x)$ 除以($x-1$) 2 餘式為 $3x+2$, $f(x)$ 除以($x+2$) 2 餘式為 $5x-3$,
請問下列敘述何者正確?
 (A) x-1 除 f(x)餘式為 5 (B) x+2 除 f(x)餘式為−13
(C) (x-1) (x+2) 除 f(x)餘式為 6 x-1
(D) ($x-1$) ² ($x+2$) 除 $f(x)$ 餘式為 $-x^2+5$ $x+1$ (E) ($x-1$) ² ($x+2$) ² 除 $f(x)$ 餘式為 x^3-x^2+2 $x+3$

- 4. 下列哪些不等式與(x-1)(x-2)>0有相同的解?
 - (A) $(x-1)(x-2)(x-3)^2 \ge 0$
 - (B) (1-x) (2-x)>0
 - (C) (x-1) (x-2) $(x+3)^2 > 0$
 - (D) (x-1) (x-2) $(-x^2+2x-5)>0$
 - (E) $(x-1)^3 (x-2)^5 > 0$
- 三,填充題(50分)(全對才給分)(每格5分)
- 1. 試求以(2x+1)除 $(12x^3+x+12)$ 之商式 。
- 2. 設 a,b,c 均 為 實 數 。 $x^2 + x + 2 = a(x-1)(x-2) + b(x-2)(x-3) + c(x-3)(x-1)$ 。 試 求 b = 。
- 3. 已知 $f(x) = x^{2023} + 6x^3 6x^2 + 6x$ 除以(x-1)的餘式為_____。
- 4. 若二次函數 $f(x) = kx^2 + 6x + (k+9)$ 的圖形恆在函數g(x) = -2x + 3 圖形的上方, 試求實數k的範圍
- 5. 試解不等式: $(x^2-4)(x^3-1) \ge 0$ 請用區間表示為_____。
- 6. 設 f(x) 為一多項式, $\deg f(x) \ge 2$, 若 f(x) 除以 x+1 的餘式為 -3, f(x) 除以 x-2 的餘式為 6,則 f(x) 除以 x^2-x-2 的餘式為 ______。
- 7. 試求三次函數 $y = f(x) = -3x^3 9x^2 2x + 1$ 圖形的對稱中心 。
- 8. 若將 $y = 2x^3 6x^2 + 2x + 5$ 沿著 x 軸方向平移 h 單位,再沿著 y 軸方向平移 k 單位後變成對稱中心為(5,4)的三次函數 $y = ax^3 + bx^2 + cx + d$, 其中 a,b,c,d,h,k 均為實數 試求 c = 。
- 9. 已知 $f(x) = 2x^3 + 5x 8$, $g(x) = x^2 + ax + b$, 其中 $a \neq 0, b \neq 0$ 均為實數某人計算 f(x) 除以 g(x) 時,將 x^3 誤看成 x^2 ,因而計算出餘式為 x 6, 試求 f(x) 除以 g(x) 的正確餘式為
- 10. 已知三次函數 y=f(x) 圖形的對稱中心為(1,2), 且通過(2,3) 與(3,16) 兩點,試求 y=f(4)=____。 四. 混合題 $(10\, 分)$
- 1. 三次實係數多項函數 y=f(x) 部分圖形,如下圖(-)所示,

- (1)試求 P點坐標為(,0)。(填充題 2 分)
- (2)廣域看函數 y=f(x) 的圖形特徵會近似於函數 h(x)的圖形,則 h(x)=? (拉遠看) (填充題 2 分)
- (3)求此三次多項函數 V=f(X)。 (計算題 3 分)
- (4)問 y=f(x) 圖形在 x=2 附近的局部特徵一次近似為函數 g(x) 的圖形,則 g(x)=? (拉近看) (計算題 3 分)

台北市立松山高中 111 學年度第一學期期末考高一數學科答案卷

班級:____座號:____姓名:____

一、單選題(20分)(每題4分,不倒扣)

1	2	3	4	5
С	E	A	С	В

二、多重選擇題(20分)(每題全對5分,錯一個得3分,錯兩個1分,其餘零分)

1	2	3	4
BE	BCE	ABCD	BE

三、填充題(50分)(全對才給分)(每格5分)*第5格作答請用區間表示*

1	2	3	4	5
$6x^2 - 3x + 2$	2	7	k > 2	[-2,1]∪[2,∞)
6	7	8	9	10
3 <i>x</i>	(-1, -3)	146	15x - 12	53

四、混合題(10分)*第(3)題. 第(4)題需寫出完整的計算過程*

若空格不夠,可寫在背面,但須在正面說明。

1.(1)
$$P(4,0)$$
 (填充題 2 分) (2) $h(x) = \frac{1}{10}x^3$ (填充題 2 分)

$$f(-1) = 2, f(2) = -1$$
代入上式

整理解得
$$a = \frac{1}{10}, b = \frac{-4}{10}$$

$$f(x) = \frac{1}{10}(x+3)(x-1)(x-4)$$

或
$$f(x) = \frac{1}{10}x^3 - \frac{1}{5}x^2 - \frac{11}{10}x + \frac{6}{5}$$

(計算題3分)

$$(4) f(x) = \frac{1}{10} (x^3 - 2x^2 - 11x + 12)$$

$$f(x) = \frac{1}{10} \left[(x-2)^3 + 4(x-2)^2 - 7(x-2) - 10 \right]$$

在 X=2 附近的局部特徵一次近似為

$$g(x) = \frac{-7}{10}(x-2)-1$$

$$\implies g(x) = \frac{-7}{10}x + \frac{2}{5}$$

(計算題3分)