Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on September 2, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

The Black-Scholes formula is a limiting case of the binomial formula (infinitely many periods) for the price of a European option.

TABLE 12.1

Binomial option prices for different numbers of binomial steps. As in Figure 10.3, all calculations assume that the stock price S = \$41, the strike price K = \$40, volatility $\sigma = 0.30$, risk-free rate r = 0.08, time to expiration T = 1, and dividend yield $\delta = 0$.

Number of Steps (n)	Binomial Call Price (\$)
1	7.839
4	7.160
10	7.065
50	6.969
100	6.966
500	6.960
∞	6.961

- Consider an European call (or put) option written on a stock
- \triangleright Assume that the stock pays dividend at the continuous rate δ

$$d_1 = \frac{\ln(S/K) + (r - \delta + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$
 and $d_2 = d_1 - \sigma\sqrt{T}$

Put-call Parity
$$P = C + Ke^{-rT} - Se^{-\delta T}$$

5

Example 12.1-1 Let S = \$41, K = \$40, $\sigma = 0.3$, r = 8%, T = 0.25 (3 months), and $\delta = 0$. Compute the Black-Scholes call and put prices.

When is the Black-Scholes formula valid?

Assumptions aboutstock return distribution

- Continuously compounded returns on the stock are normally distributed and independent over time (no "jumps")
- ► The volatility of continuously compounded returns is known and constant
- Future dividends are known, either as dollar amount or as a fixed dividend yield

Assumptions about the economic environment

- ► The risk-free rate is known and constant
- ► There are no transaction costs or taxes
- ▶ It is possible to short-sell costlessly and to borrow at the risk-free rate

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

This section is left to motivated students to study.

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

What happens to the option price when one and only one input changes?

- ▶ Delta (Δ): change in option price when stock price increases by \$1
- ▶ Gamma (Γ): change in delta when option price increases by \$1
- ightharpoonup Vega: change in option price when volatility increases by 1%
- ▶ Theta (θ) : change in option price when time to maturity decreases by 1 day
- \triangleright Rho (ρ): change in option price when interest rate increases by 1%
- ▶ Psi (ψ) : change in the option premium due to a change in the dividend vield

➤ The Greek measure of a portfolio is weighted average of Greeks of individual portfolio components

$$\Delta_{\text{portfolio}} = \sum_{i=1}^{N} n_i \Delta_i$$

13

Delta

Delta (Δ) : change in option price when stock price increases by \$1.

$$\Delta = \begin{cases} \frac{\partial C(S, K, \sigma, T - t, \delta)}{\partial S} = +e^{-\delta(T - t)}N(+d_1) & \text{Call} \\ \frac{\partial P(S, K, \sigma, T - t, \delta)}{\partial S} = -e^{-\delta(T - t)}N(-d_1) & \text{Put} \end{cases}$$

14

FIGURE 12.1

Call (top graph) and put (bottom graph) deltas for 40-strike options with different times to expiration. Assumes $\sigma=30\%,\ r=8\%,\$ and $\delta=0.$

Gamma and Vega

Gamma (Γ): change in delta when option price increases by \$1

$$\Gamma = \frac{\partial^2 \textit{C}(\textit{S},\textit{K},\sigma,\textit{r},\textit{T}-\textit{t},\delta)}{\partial \textit{S}^2} = \frac{\partial^2 \textit{P}(\textit{S},\textit{K},\sigma,\textit{r},\textit{T}-\textit{t},\delta)}{\partial \textit{S}^2} = \frac{\textit{e}^{-\textit{d}(\textit{T}-\textit{t})\textit{N}'(\textit{d}_1)}}{\textit{S}\sigma\sqrt{\textit{T}-\textit{t}}}$$

Vega: change in option price when volatility increases by 1%

$$\mathrm{Vega} = \frac{\partial \textit{\textbf{C}}(\textit{\textbf{S}}, \textit{\textbf{K}}, \sigma, \textit{\textbf{r}}, \textit{\textbf{T}} - t, \delta)}{\partial \sigma} = \frac{\partial \textit{\textbf{P}}(\textit{\textbf{S}}, \textit{\textbf{K}}, \sigma, \textit{\textbf{r}}, \textit{\textbf{T}} - t, \delta)}{\partial \sigma} = \textit{\textbf{Se}}^{-\delta(T-t)} \textit{\textbf{N}}'(\textit{\textbf{d}}_1) \sqrt{T - t}$$

FIGURE 12.2

Gamma (top panel) and vega (bottom panel) for 40-strike options with different times to expiration. Assume $\sigma=30\%$, r=8%, and $\delta=0$. Vega is the sensitivity of the option price to a 1 percentage point change in volatility. Otherwise identical calls and puts have the same gamma and vega.

0.0

20

40

Stock Price (\$)

Theta

Theta (θ) : change in option price when time to maturity decreases by 1 day

$$\begin{aligned} \operatorname{Call} \ \theta &= \frac{\partial C(S,K,\sigma,r,T-t,\delta)}{\partial t} \\ &= \delta S e^{-\delta(T-t)} N(d_1) - r K e^{-r(T-t)} N(d_2) - \frac{K e^{r(T-r)} N'(d_2) \sigma}{2 \sqrt{T-t}} \end{aligned}$$

$$\operatorname{Put} \ \theta &= \frac{\partial P(S,K,\sigma,r,T-t,\delta)}{\partial t} \\ &= \operatorname{Call} \ \theta + r K e^{-r(T-t)} + \delta S e^{-\delta(T-t)} \end{aligned}$$

18

FIGURE 12.3

Call (top panel) and put (bottom panel) prices for options with different strikes at different times to expiration. Assumes $S=\$40, \sigma=30\%, r=8\%,$ and $\delta=0.$

FIGURE 12.4

Theta for calls (top panel) and puts (bottom panel) with different expirations at different stock prices. Assumes K=\$40, $\sigma=30\%$, r=8%, and $\delta=0$.

Rho and Psi

Rho (ρ) : change in option price when interest rate increases by 1%

$$\begin{aligned} & \text{Call } \rho = \frac{\partial \textit{C}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \textit{r}} = + (\textit{T} - \textit{t})\textit{K}\textit{e}^{-\textit{r}(\textit{T} - \textit{t})}\textit{N}(+\textit{d}_2) \\ & \text{Put } \rho = \frac{\partial \textit{P}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \textit{r}} = - (\textit{T} - \textit{t})\textit{K}\textit{e}^{-\textit{r}(\textit{T} - \textit{t})}\textit{N}(-\textit{d}_2) \end{aligned}$$

Psi (ψ) : change in the option premium due to a change in the dividend yield

$$\begin{aligned} \operatorname{Call} \ \psi &= \frac{\partial \textit{C}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \delta} = -(\textit{T} - \textit{t})\textit{Ke}^{-\delta(\textit{T} - \textit{t})}\textit{N}(+\textit{d}_1) \\ \operatorname{Put} \ \psi &= \frac{\partial \textit{P}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \delta} = +(\textit{T} - \textit{t})\textit{Ke}^{-\delta(\textit{T} - \textit{t})}\textit{N}(-\textit{d}_1) \end{aligned}$$

FIGURE 12.5

Rho (top panel) and psi (bottom panel) at different stock prices for call options with different maturities. Assumes K = \$40, $\sigma =$ 30%, r = 8%, and $\delta = 0$.

TABLE 12.1

Binomial option prices for different numbers of binomial steps. As in Figure 10.3, all calculations assume that the stock price S=\$41, the strike price K=\$40, volatility $\sigma=0.30$, risk-free rate r=0.08, time to expiration T=1, and dividend yield $\delta=0$.

Number of Steps (n)	Binomial Call Price (\$)
1	7.839
4	7.160
10	7.065
50	6.969
100	6.966
500	6.960
∞	6.961

Delta (Δ): change in option price when stock price increases by \$1

Option Elasticity (Ω): If stock price S changes by 1%, what is the percentage change in the value of the option C:

$$\Omega = \frac{\text{Percentage change in option price}}{\text{Percentage change in stock price}} = \frac{\frac{\epsilon \Delta}{C}}{\frac{\epsilon}{S}} = \frac{S\Delta}{C}.$$

24

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

Problems: 12.3, 12.4, 12.6, 12.7, 12.9,

Due Date: TBA