Litter size and fertility: Learning from the data

Data

Parsing (PDF -> table)

See here for PDF to table conversion and parcing.

Load and clean the data

First of all, we load the litter size data (the number of pups born etc.) per strain from the already generated txt files, and then do a small quality check: Look at the distributions of the litter size (it should look like a Poisson, or at least be one-modal).

```
names(mousebreeding)
##
    [1] "B6cBrd"
                         "B6D2F1"
                                         "B6J_CrlF"
                                                          "B6J_Fue"
    [5] "Balbc"
                                         "CD1_1999_2010" "CD1_2010_2020"
                         "Card9_KO"
                         "FcRn"
                                         "NMRI"
    [9] "DBA2_J_Fue"
for (ii in 1:length(mousebreeding)){
  par(mfrow=c(2,2))
  hist(mousebreeding[[ii]]$pups_born, breaks = 20, col = "orange")
  hist(mousebreeding[[ii]]$pups_beforeW, breaks = 20, col = "red")
  hist(mousebreeding[[ii]]$weaned_f, breaks = 20, col = "pink")
  hist(mousebreeding[[ii]]$weaned_f, breaks = 20, col = "blue")
}
```


Histogram of mousebreeding[[ii]]\$weane Histogram of mousebreeding[[ii]]\$weane

Quite often, only pups of one particular gender are required for the experiment. Therefore, all pups of the other gender are killed - and this is usually not stated in the data. Therefore, I filter all these cases out. Here is the number of litters per strain before (left) and after cleaning (right).

nlitters

##		before	after
##	B6cBrd	94	77
##	B6D2F1	721	565
##	B6J_CrlF	483	444
##	B6J_Fue	1371	1219
##	Balbc	139	116
##	Card9_KO	237	211
##	CD1_1999_2010	954	593
##	CD1_2010_2020	992	280
##	DBA2_J_Fue	204	178
##	FcRn	182	145
##	NMRI	387	375

names(table_list_clean)

```
## [1] "B6cBrd" "B6D2F1" "B6J_CrlF" "B6J_Fue" 
## [5] "Balbc" "Card9_KO" "CD1_1999_2010" "CD1_2010_2020" 
## [9] "DBA2_J_Fue" "FcRn" "NMRI"
```

```
for (ii in 1:length(table_list_clean)){
  par(mfrow=c(2,2))
  hist(table_list_clean[[ii]]$pups_born, breaks = 20, col = "orange")
  hist(table_list_clean[[ii]]$pups_beforeW, breaks = 20, col = "red")
  hist(table_list_clean[[ii]]$weaned_f, breaks = 20, col = "pink")
  hist(table_list_clean[[ii]]$weaned_f, breaks = 20, col = "blue")
}
```


4

8

12

10

Histogram of table_list_clean[[ii]]\$weane Histogram of table_list_clean[[ii]]\$weane

10

15

Histogram of table_list_clean[[ii]]\$weane Histogram of table_list_clean[[ii]]\$weane

Histograms with a Pois and NB fit for each strain

hists_list

[[1]]

Strain: B6cBrd

Number of litters: 77

[[2]] Strain: B6D2F1

Number of litters: 565

[[3]]

Strain: B6J_CrlF

Number of litters: 444

[[4]]

Strain: B6J_Fue

Number of litters: 1219

[[5]]

Strain: Balbc

[[6]]

Strain: Card9_KO

Number of litters: 211

[[7]]

Strain: CD1_1999_2010

Number of litters: 593

[[8]] Strain: CD1_2010_2020

Number of litters: 280

[[9]]

Strain: DBA2_J_Fue

Number of litters: 178

[[10]] Strain: FcRn

Number of litters: 145

[[11]]

Strain: NMRI

Number of litters: 375

Litter means etc. by strain

```
names(table_list_clean)
                                                          "B6J Fue"
    [1] "B6cBrd"
                         "B6D2F1"
                                         "B6J_CrlF"
##
    [5] "Balbc"
                         "Card9_KO"
                                         "CD1_1999_2010" "CD1_2010_2020"
    [9] "DBA2_J_Fue"
                         "FcRn"
                                         "NMRI"
mousebreeding_by_strain_clean <- c(</pre>
  table_list_clean[c('B6cBrd', 'B6D2F1', 'B6J_CrlF', 'B6J_Fue',
                   'Balbc',
                   'Card9_KO', 'DBA2_J_Fue', 'FcRn', 'NMRI')],
  list(rbind(table_list_clean[["CD1_1999_2010"]],
        table_list_clean[["CD1_2010_2020"]]))
  )
names(mousebreeding_by_strain_clean) [length(mousebreeding_by_strain_clean)] <- "CD1"</pre>
str(mousebreeding_by_strain_clean)
## List of 10
## $ B6cBrd
                :'data.frame': 77 obs. of 5 variables:
     ..$ bitrh_dates : chr [1:77] "13.03.2014" "02.12.2014" "02.11.2014" "07.08.2014" ...
```

```
..$ pups_born : num [1:77] 8 3 4 5 8 8 8 6 4 6 ...
##
##
     ..$ pups_beforeW: num [1:77] 8 3 4 4 8 8 4 4 4 6 ...
     ..$ weaned f
##
                  : num [1:77] 6 2 2 2 4 0 2 2 0 3 ...
##
     ..$ weaned_m : num [1:77] 2 1 2 2 4 0 2 2 0 3 ...
              :'data.frame': 565 obs. of 5 variables:
##
##
    ..$ bitrh dates : chr [1:565] "26.06.2014" "15.05.2014" "19.04.2014" "01.04.2014" ...
##
    ..$ pups_born : num [1:565] 8 6 8 5 7 10 17 2 1 7 ...
##
     ..$ pups_beforeW: num [1:565] 8 6 8 7 11 10 14 2 1 6 ...
##
     ..$ weaned_f : num [1:565] 4 4 4 3 6 7 6 1 0 2 ...
##
    ..$ weaned_m
                  : num [1:565] 4 2 4 4 5 3 8 1 0 4 ...
   $ B6J_CrlF :'data.frame': 444 obs. of 5 variables:
    ..$ bitrh_dates : chr [1:444] "30.08.2017" "17.07.2017" "01.06.2017" "19.04.2017" ...
##
    ..$ pups_born : num [1:444] 4 4 5 5 2 4 4 2 5 5 ...
##
     ..$ pups_beforeW: num [1:444] 4 4 5 5 2 3 4 2 5 5 ...
##
##
    ..$ weaned_f
                   : num [1:444] 2 2 2 4 1 2 1 0 1 3 ...
                   : num [1:444] 2 2 2 1 0 1 3 0 4 2 ...
##
    ..$ weaned_m
##
   $ B6J_Fue
              :'data.frame': 1219 obs. of 5 variables:
    ..$ bitrh dates : chr [1:1219] "15.09.2014" "01.08.2014" "19.06.2014" "24.04.2014" ...
##
##
     ..$ pups_born : num [1:1219] 4 8 9 4 6 8 8 6 8 4 ...
     ..$ pups_beforeW: num [1:1219] 4 5 6 7 6 8 8 4 9 9 ...
##
##
    ..$ weaned_f : num [1:1219] 2 4 5 4 2 4 0 2 5 8 ...
##
    ..$ weaned_m : num [1:1219] 2 1 1 3 4 4 0 2 4 1 ...
               :'data.frame': 116 obs. of 5 variables:
##
   $ Balbc
##
     ..$ bitrh_dates : chr [1:116] "05.08.2014" "19.06.2014" "15.05.2014" "17.07.2015" ...
##
     ..$ pups_born : num [1:116] 7 8 5 4 3 4 5 3 7 3 ...
    ..$ pups_beforeW: num [1:116] 7 7 5 4 3 4 5 3 7 3 ...
##
     ..$ weaned_f
                   : num [1:116] 3 4 3 0 1 2 0 2 0 1 ...
    ..$ weaned_m
                   : num [1:116] 4 3 2 0 2 2 0 1 0 2 ...
##
   $ Card9_KO :'data.frame': 211 obs. of 5 variables:
    ..$ bitrh_dates : chr [1:211] "24.08.2019" "11.06.2019" "13.05.2019" "22.04.2019" ...
     ..$ pups_born : num [1:211] 10 4 10 1 4 5 5 2 2 4 ...
##
##
     ..$ pups_beforeW: num [1:211] 10 4 10 1 4 5 5 2 2 4 ...
##
     ..$ weaned_f : num [1:211] 4 1 0 0 2 3 1 1 1 3 ...
##
     ..$ weaned_m : num [1:211] 6 3 0 0 2 2 4 1 1 1 ...
   $ DBA2_J_Fue:'data.frame': 178 obs. of 5 variables:
##
    ..$ bitrh_dates : chr [1:178] "11.06.2020" "01.05.2020" "04.04.2015" "02.02.2015" ...
##
##
    ..$ pups born : num [1:178] 5 5 4 8 2 6 3 3 7 5 ...
##
    ..$ pups_beforeW: num [1:178] 5 5 4 8 2 6 2 3 7 5 ...
##
     ..$ weaned f
                  : num [1:178] 0 1 3 4 0 4 1 0 2 0 ...
    ..$ weaned_m
                   : num [1:178] 0 4 1 4 0 2 1 0 5 0 ...
##
##
               :'data.frame': 145 obs. of 5 variables:
    ..$ bitrh_dates : chr [1:145] "24.07.2019" "17.05.2019" "03.02.2020" "07.01.2020" ...
##
     ..$ pups_born : num [1:145] 5 3 7 7 7 6 4 3 3 6 ...
##
     ..$ pups_beforeW: num [1:145] 5 3 7 7 7 4 4 3 3 6 ...
##
    ..$ weaned_f
                  : num [1:145] 3 2 1 4 4 2 2 2 0 3 ...
    ..$ weaned_m : num [1:145] 2 0 6 3 3 2 2 0 0 3 ...
##
               :'data.frame': 375 obs. of 5 variables:
   $ NMRI
##
    ..$ bitrh_dates : chr [1:375] "26.11.2017" "03.10.2017" "10.09.2017" "13.08.2017" ...
    ..$ pups_born : num [1:375] 8 13 4 14 16 12 11 14 10 4 ...
     ..$ pups_beforeW: num [1:375] 7 13 4 14 16 12 11 14 10 4 ...
##
##
    ..$ weaned_f : num [1:375] 6 7 3 5 4 8 4 4 6 2 ...
##
    ..$ weaned m
                  : num [1:375] 0 0 0 0 0 0 0 2 3 0 ...
## $ CD1
               :'data.frame': 873 obs. of 5 variables:
   ..$ bitrh_dates : chr [1:873] "06.03.2007" "07.03.2007" "06.03.2007" "06.03.2007" ...
```

```
## ..$ pups_born : num [1:873] 7 3 3 5 3 7 5 5 5 8 ...
## ..$ pups_beforeW: num [1:873] 7 3 3 5 3 7 5 5 5 8 ...
## ..$ weaned_f : num [1:873] 3 2 1 3 2 4 2 3 1 6 ...
## ..$ weaned_m : num [1:873] 4 1 2 2 1 3 3 2 4 2 ...
```

Fertility

```
load("../external/mouse_data/mouse3/fertility/nfemales.Rdata")
pre tab list <- lapply(</pre>
  names(table_list_clean), FUN = function(df_name){
    df <- table_list_clean[[df_name]]</pre>
    originalPDF_file <- summaryDF$originalPDF[which(</pre>
        summaryDF$strainNameShort == df_name)]
    df_clean <- as.data.frame(</pre>
      apply(data.frame(df[,2:3]),
          c(1,2),
          as.numeric))
    rowmax <- apply(df_clean, 1, max)</pre>
      round(mean(rowmax),1),
      median(rowmax),
      max(rowmax),
      length(rowmax),
      nrow(mousebreeding[[df_name]]),
      nfemales[originalPDF_file],
      df name)
})
```

```
sum(mousebreeding[[4]]$pups_born==0)
```

```
## [1] 0
pre_tab_df <- data.frame(do.call(rbind, pre_tab_list))</pre>
colnames(pre_tab_df) <- c("mean", "median", "max", "n_trust_breedings", "n_tot_breedings", "n_fertile",</pre>
#fertility <- round(</pre>
\# as.numeric(pre_tab_df$n_fertile)/as.numeric(pre_tab_df$n_ttot_breedings)*100,
# digits = 1)
strain stats <- data.frame(</pre>
            strain = pre_tab_df[,c("strain")],
            #fertility = fertility,
            litter_mean = as.numeric(pre_tab_df[,c("mean")]),
            litter_median = as.numeric(pre_tab_df[,c("median")]),
            litter_max = as.numeric(pre_tab_df[,c("max")]),
            n_trust_breedings = as.numeric(pre_tab_df[,c("n_trust_breedings")]),
            n_tot_breedings = as.numeric(pre_tab_df[,c("n_tot_breedings")])
            #n_fertile = as.numeric(pre_tab_df[,c("n_fertile")])
          )
```