Contents

1	Solı	ution summary	1
2	Det	ailed Solution	1
	2.1	Find $T(n)$ and Big-Oh	1
	2.2	Find T(n) and Big-Oh	2
	2.3	Find $T(n)$ and Big-Oh	2
	2.4	Find $T(n)$ and Big-Oh	3
	2.5	Find $T(n)$ and Big-Oh	4
	2.6	Find $T(n)$ and Big-Oh	4
	2.7	Find T(n) and Big-Oh	5

1 Solution summary

Q No	O(n)
1	log n
2	log n
3	log n
4	$n^{2*}\log n$
5	n*log n
6	$n^{(1/2)}$
7	n^2

2 Detailed Solution

2.1 Find T(n) and Big-Oh

```
A()
{
    while(n>1)
    {
        n=n/2;
    }
}
```

Statement	O(n)
n > 1	$(\log_2 n) + 1$
$\mathrm{n}=\mathrm{n}/2$	$\log_2 n$

```
\begin{split} T(n) &= \sum O(n) \\ T(n) &= \log_2 \, n + 1 + \log_2 \, n \\ T(n) &= 2^* log_2 \, n + 1 \\ let \, f(n) &= T(n) \\ f(n) &= O(g(n)) \text{ if } f(n) <= c(g(n)) \\ 2^* log_2 \, n + 1 <= c^* log_2 \, n \\ dividing \, by \, log_2 \, n \, both \, sides \\ c &= 4 \, and \, and \, N >= 2 \\ f(n) &<= 4^* log_2 \, n \, for \, N >= 2 \\ Time \, complexity \, is &= O(log \, n) \end{split}
```

2.2 Find T(n) and Big-Oh

```
A()
{
  for (i=1; i<=n; i=i*2)
    print("welcome");
}</pre>
```

Statement	O(n)
i = 1	1
i <= n	$\log_2 n + 1$
i = i*2	$\log_2 n$
print	$\log_2 n$

```
\begin{split} T(n) &= \sum O(n) \\ T(n) &= 1 + \log_2 n + 1 + \log_2 n + \log_2 n \\ T(n) &= 3*\log_2 n + 2 \\ Time\ complexity &= O(\log n) \end{split}
```

2.3 Find T(n) and Big-Oh

```
A()
{
  for (i=1; i<=n; i=i*3)
    print("welcome");
}</pre>
```

Statement	O(n)
i = 1	1
i <= n	$\log_3 n + 1$
i = i*3	$\log_3 n$
print	$\log_3 n$

```
\begin{split} T(n) &= \sum O(n) \\ T(n) &= 1 + \log_3 n + 1 + \log_3 n + \log_3 n \\ T(n) &= 3*\log_3 n + 2 \\ Time\ complexity &= O(\log\,n) \end{split}
```

2.4 Find T(n) and Big-Oh

```
A()
{
  int i, j, k;
  for (i=n/2; i<=n; i++)
    for (j=1; j<=n/2; j++)
      for (k=1; k<=n; k=k*2)
{
    print("welcome");
}
}</pre>
```

Statement	O(n)
i = n/2	1
i <= n	$\mathrm{n}/2{+}1$
i++	n/2
j = 1	n/2(1)
$\mathrm{j} <= \mathrm{n}/2$	$n/2(n/2{+}1)$
j++	n/2(n/2)
k = 1	$n^2/4(1)$
k <= n	$n^2/4(\log_2 n+1)$
k = k*2	$n^2/4(\log_2 n)$
print	$n^2/4(1)$

```
\begin{split} T(n) &= \sum_{} O(n) \\ T(n) &= n^2/4 (\log_2 n) + \dots \\ Time \ complexity \ O(n^2 * log \ n) \end{split}
```

2.5 Find T(n) and Big-Oh

```
A()
{
   int i,j,k;
   for (i=n/2; i<=n; i++)
        {
        for (j=1; j<=n; j=2*j)
{
      for (k=1; k<=n; k=k*2)
        print("welcome");
}
    }
}</pre>
```

```
Statement
             O(n)
i,j,k
             3
i=n/2
             1
i \le n
             n/2 + 1
i++
             n/2
j = 1
             n/2(1)
j \le n
             n/2(\log_2 n + 1)
j = j*2
             n/2(\log_2 n)
k = 1
             n/2(\log_2 n)(1)
k <= n
             n/2(\log_2 n)(\log_2 n)+1
k = k*2
             n/2(\log_2 n)(\log_2 n)
```

```
\begin{split} T(n) &= \sum O(n) \\ T(n) &= 3 + 1 + n/2 + 1 + n/2 + n/2 + n/2 (\log_2 n + 1) \dots \\ T(n) &= n^* (\log_2 n)^2 + \log_2 n + n + c \\ T(n) &= 2^* n (\log_2 n) + \log_2 n + n + c \\ f(n) &= T(n) \\ 2^* n (\log_2 n) + \log_2 n + n <= c^* n (\log_2 n) \\ c &= 3.5 \text{ when } n > 2 \\ Time \ complexity &= O(n^* log\ n) \end{split}
```

2.6 Find T(n) and Big-Oh

```
AC() { i=1,s=1;
```

```
while (s \le n)
    {
       i++;
       s=s+i;
      print("welcome");
    }
}
                     Statement
                                 O(n)
                     i=1,\,s{=}1
                     s <= 2
                                 k(k+1)/2 +1 > n
                     i++
                                 k(k+1)/2 > n
                     s=s{+}i
                                 k(k+1)/2 > n
   T(n) = \sum O(n)
   T(n) = 2 + 3*k(k+1)/2 > n
   k^*(k+1) > c^*n
   k^2 = c*n
   k=n^{\left( 1/2\right) }
   Time complexity = O(n^{(1/2)})
      Find T(n) and Big-Oh
2.7
A()
{
  int i, j, k, n;
  for (i=1; i<=n; i++)
    {
       for (j=1; j<=i; j++)
{
  for (k=1; k<=100; k++)
      print("welcome");
}
    }
```

}

Statement	O(n)
i,j,k,n	4
i=1	1
i <= n	n+1
i++	n
j=1	n(1)
j <= 1	n(n+1)/2+1
j++	$\mathrm{n}(\mathrm{n}{+}1)/2$
k = 1	m n(n+1)/2
k <= 100	n(n+1)/2*(100)+1
k++	n(n+1)/2*(100)
print	n(n+1)/2*(100)

$$T(n) = \sum O(n)$$

$$T(n) = \overline{c^*}n(n+1)$$

$$\begin{split} T(n) &= \sum_{} O(n) \\ T(n) &= c^* n(n{+}1) \\ Time \ complexity &= O(n^2) \end{split}$$