

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Integrados Analógicos Projecto de Alto Nível de um ADC e DAC

Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

$\acute{\mathbf{I}}\mathbf{ndice}$

1	Intr	rodução	1
2	Intr	rodução Teórica	1
	2.1	Conversores A/D e Conversores D/A	1
	2.2	SINAD, SNR e ENOB	2
	2.3	Janela Rectangular, Janela de Hamming e Janela de Blackman-Harris	2

1 Introdução

Com este trabalho laboratorial pretende-se introduzir o *software* Cadence, projectando um conversor AD/DA de alto nível. Analisando os conversores analógico-digitais (ADC) pode-se melhor compreender o conceito de *Fast Fourier Transform* (FFT), e a maneira como pode ser aplicada para medir parâmetros dos ADC, como a SINAD e o ENOB. Pretende-se também estudar o efeito de aplicar diversas janelas sobre a FFT.

2 Introdução Teórica

2.1 Conversores A/D e Conversores D/A

Começando por analisar os conversores analógico-digitais, as arquitecturas que os permitem podem ser divididas em três categorias: baixa-a-média velocidade, média velocidade e alta velocidade. O ADC utilizado neste trabalho é de aproximações sucessivas (SAR), sendo de média velocidade e exactidão.

Os conversores deste tipo estão entre os mais populares para realizar ADCs devido à sua versatilidade - conseguem efectuar conversões rápidas ou podem ser utilizados para que haja uma maior exactidão, operando a baixa potência nos dois casos. Este conjunto de características deriva de, no caso mais simples, o conversor necessitar apenas de um só comparador, um banco de condensadores com interruptores e pouca lógica de controlo digital. Na figura abaixo está esquematizado o circuito referido.

Figura 1: ADC construído com uma arquitectura de aproximações sucessivas.

OS ADCs de aproximações sucessivas têm por base o algoritmo de procura conhecido como "procura binária", onde os dados podem ser calculados em N passos, para um conjunto de dados organizados de tamanho 2^N .

Este algoritmo EXPLICAR AQUI

Assim, o conversor aplica o algoritmo para determinar a palavra digital mais próxima que corresponde ao sinal de entrada. Isto implica que são necessários N ciclos de relógio para completar uma conversão de N bits.

O diagrama de blocos de um ADC unipolar de aproximações sucessivas que utiliza também um DAC é apresentado de seguida.

Figura 2: Diagrama de blocos de um ADC de aproximações sucessivas.

Existe um circuito sample-and-hold que permite adquirir a tensão de entrada. De seguida um comparador analógico de tensão compara a tensão de entrada com a saída do DAC e coloca o resultado da comparação no registo de aproximações sucessivas (SAR). O SAR fornece ao DAC um código digital da tensão de entrada e então, o DAC, para comparação com a tensão de referência, fornece ao comparador uma tensão analógica igual ao código digital que saiu do SAR.

2.2 SINAD, SNR e ENOB

O signal-to-noise and distortion (SINAD) é uma medida da perfomance dinâmica geral de um ADC. É o rácio entre a amplitude do sinal em root-mean-square (valor eficaz) e o valor médio da root-sum-square das restantes componentes espectrais, incluindo harmónicas, mas excluindo a componente DC. O cálculo do SINAD em dB é feito de acordo com a equação 2.1.

SINAD =
$$10 \times \log_{10} \left(\frac{A_{bin(f_{in})}^2}{\sum_{n=2}^{\text{size}/2} \left(A_n^2 - A_{bin(f_{in})}^2 \right)} \right)$$
 (2.1)

O signal-to-noise ratio (SNR) é calculado a partir dos dados da FFT, tal como a SINAD, mas as harmónicas do sinal são excluídas dos cálculos, deixando apenas os termos de ruído. De uma maneira mais abstracta pode ser descrito como a comparação entre o nível de sinal desejado ao nível de ruído. O cálculo do SNR em dB é feito de acordo com a equação 2.2.

$$SNR = 6.02N + 1.76 \tag{2.2}$$

O effective number of bits (ENOB) é uma medida da resolução de um ADC. De facto, a resolução de um ADC é dada pelo número de bits que são utilizados para representar um valor analógico porém, todos os ADCs reais introduzem ruído e distorção. Assim, o ENOB especifica o número efectivo de bits que se tem na realidade, quando se considera a existência de ruído. O cálculo do ENOB é feito de acordo com a equação 2.3.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$
 (2.3)

2.3 Janela Rectangular, Janela de Hamming e Janela de Blackman-Harris

Sobre a FFT podem-se aplicar diversas janelas, procurando reduzir assim