Machine Learning Basics

Victor Bouvier, Sidetrade DTY @CentraleSupelec

September 8, 2020

Who I am

Maybe you already know me

- · Centrale P2016+1
- PhD student @MICS
- · Cifre collaboration @Sidetrade

Who I am

Maybe you already know me

- · Centrale P2016+1
- PhD student @MICS
- · Cifre collaboration @Sidetrade

What is my research focus

- Deep Learning methods aim to learn powerful data representation for solving a large set of tasks
- Since DL methods don't need any pre-processing (or a few...),
 representations is highly sensitive to the data distribution (bias),
- I am working on learning deep representations of data unbiased to known nuisance factors

Content

- 1. Tasks
 - · Generalization,
 - Metrics,
 - · Capacity and Regularization.
- 2. Supervised Learning
 - · Regression VS Classification
 - · Naive Bayes
 - · Local-template matching
 - · Linear models and kernel trick
 - · Ensemble methods: Bagging VS Boosting
- 3. Unsupervised learning
 - K-means
 - · PCA
- 4. Model selection

Machine Learning and Artificial Intelligence

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

Task & Machine Learning

Machine Learning aims to reproduce a given task T which maps an input X to an input Y by 'learning it' from the data.

Tasks (non-exhaustive)

Classification

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

- Classification
- · Regression

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

- Classification
- · Regression
- Translation

Task & Machine Learning

Machine Learning aims to reproduce a given task T which maps an input X to an input Y by 'learning it' from the data.

- Classification
- · Regression
- Translation
- · Anomaly detection

Task & Machine Learning

Machine Learning aims to reproduce a given task T which maps an input X to an input Y by 'learning it' from the data.

- Classification
- · Regression
- Translation
- · Anomaly detection
- Synthesis and sampling

Task & Machine Learning

Machine Learning aims to reproduce a given task T which maps an input X to an input Y by 'learning it' from the data.

- Classification
- Regression
- Translation
- · Anomaly detection
- Synthesis and sampling
- · Imputation of missing values

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

- Classification
- Regression
- Translation
- · Anomaly detection
- · Synthesis and sampling
- · Imputation of missing values
- Denoising

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

- Classification
- · Regression
- Translation
- · Anomaly detection
- · Synthesis and sampling
- · Imputation of missing values
- Denoising
- · Density estimation

The curse of learning the task

from the data

Machine Learning model

For a given x, a ML model outputs a probability distribution of y. The mapping is defined by a set of parameters θ .

$$x \longrightarrow p_{\text{model}}(y|x;\theta)$$

Machine Learning model

For a given x, a ML model outputs a probability distribution of y. The mapping is defined by a set of parameters θ .

$$x \longrightarrow p_{\text{model}}(y|x;\theta)$$

Machine Learning model

For a given x, a ML model outputs a probability distribution of y. The mapping is defined by a set of parameters θ .

$$x \longrightarrow p_{\text{model}}(y|x;\theta)$$

Maximum Likelihood Estimation (MLE)

When samples of data are available $(x_i)_{i=1}^n$ and we want to learn a model $p_{\text{model}}(x;\theta)$ by finding a set of parameters θ

Machine Learning model

For a given x, a ML model outputs a probability distribution of y. The mapping is defined by a set of parameters θ .

$$x \longrightarrow p_{\text{model}}(y|x;\theta)$$

Maximum Likelihood Estimation (MLE)

When samples of data are available $(x_i)_{i=1}^n$ and we want to learn a model $p_{\text{model}}(x;\theta)$ by finding a set of parameters θ

$$\theta_{\text{MLE}} = \arg\max_{\theta} \prod_{i=1}^{n} p_{\text{model}}(y_i|x_i;\theta) = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\text{model}}(y_i|x_i;\theta)$$

Machine Learning model

For a given x, a ML model outputs a probability distribution of y. The mapping is defined by a set of parameters θ .

$$x \longrightarrow p_{\text{model}}(y|x;\theta)$$

Maximum Likelihood Estimation (MLE)

When samples of data are available $(x_i)_{i=1}^n$ and we want to learn a model $p_{\text{model}}(x;\theta)$ by finding a set of parameters θ

$$\theta_{\text{MLE}} = \arg\max_{\theta} \prod_{i=1}^{n} p_{\text{model}}(y_i|x_i;\theta) = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\text{model}}(y_i|x_i;\theta)$$

When infinite data is available:

$$\theta_{\text{MLE}} = \arg\min_{\theta} E_{p_{\text{data}}(x,y)}[-\log p_{\text{model}}(y|x;\theta)]$$

$$\theta_{\mathrm{MLE}} = \arg\min_{\theta} \mathbb{E}_{p_{\mathrm{data}}(\mathbf{X}, \mathbf{y})} [-\log p_{\mathrm{model}}(\mathbf{y}|\mathbf{X}; \theta)]$$

Empirical distribution

· Only a sample of data is available

$$\theta_{\mathrm{MLE}} = \arg\min_{\theta} \mathbb{E}_{p_{\mathrm{data}}(\mathbf{X}, \mathbf{y})} [-\log p_{\mathrm{model}}(\mathbf{y} | \mathbf{X}; \theta)]$$

Empirical distribution

- · Only a sample of data is available
- $(x_i) \sim \hat{p}_{\text{data}}$ the empirical distribution:

$$\hat{p}_{\text{data}}(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i) \delta(y - y_i) \neq p_{\text{data}}(x,y)$$

$$\theta_{\mathrm{MLE}} = \arg\min_{\theta} \mathbb{E}_{\hat{p}_{\mathrm{data}}(\mathbf{X}, \mathbf{y})} [-\log p_{\mathrm{model}}(\mathbf{y} | \mathbf{X}; \theta)]$$

Empirical distribution

- · Only a sample of data is available
- $(x_i) \sim \hat{p}_{\text{data}}$ the empirical distribution:

$$\hat{p}_{\text{data}}(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i) \delta(y - y_i) \neq p_{\text{data}}(x,y)$$

$$\theta_{\mathrm{MLE}} = \arg\min_{\theta} \mathbb{E}_{\hat{\mathbf{p}}_{\mathrm{data}}(\mathbf{X}, \mathbf{y})} [-\log p_{\mathrm{model}}(\mathbf{y}|\mathbf{X}; \theta)]$$

Empirical distribution

- · Only a sample of data is available
- $(x_i) \sim \hat{p}_{\text{data}}$ the empirical distribution:

$$\hat{p}_{\text{data}}(x,y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i) \delta(y - y_i) \neq p_{\text{data}}(x,y)$$

From Deep Learning Book

Overfitting

Overfitting

Machine Learning is not optimization - Overfitting

Overfitting

How to ensure that the model learns p_{data} and not \hat{p}_{data} ?

Machine Learning is not optimization - Overfitting

Overfitting

How to ensure that the model learns p_{data} and not \hat{p}_{data} ?

Train - Test procedure

- 1. Split at random the dataset $\mathcal D$ into two non-overlapping subsets $\mathcal D_{tr}$ and $\mathcal D_{ts}$
- 2. Train the model on $\mathcal{D}_{\mathrm{tr}}$
- 3. Evaluate the model on \mathcal{D}_{ts}

Capacity and generalization gap

Capacity and Regularization

Occam's razor

This principle states that among competing hypotheses that explain known observations equally well, we should choose the "simplest" one.

Regularization

- · Regularization aims to reduce overfitting during training
- Not discovering at test time that the model has overfitted the training data...

What you learn is not what you

want (or expected)

Importance of metrics in Machine Learning

Accuracy is not enough

- You are hired to boot a model for anomaly detection in a insurance company
- You train a binary classifier (1 is an anomaly)
- You have 0.01% of labeled anomaly. What is the baseline model (accuracy-wise)?

Confusion matrix is all you need

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

$$\texttt{Error_rate} = \frac{\mathit{FP} + \mathit{FN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

Confusion matrix is all you need

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

$${\tt Sensibility} = \frac{TP}{TP+FN}$$

$$1-{\tt Specificity} = \frac{FP}{TN+FP} = 1-\frac{TN}{TN+FP}$$

Confusion matrix is all you need

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

$$\begin{aligned} \text{Precision} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}} \\ \text{Rappel} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} \\ \text{F_mesure} &= 2 \frac{\text{Precision} \times \text{Rappel}}{\text{Precision} + \text{Rappel}} \end{aligned}$$

Supervised VS Unsupervised

Learning

Supervised VS Unsupervised Learning

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

Supervised VS Unsupervised Learning

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

Supervision

is the case when the dataset is $\mathcal{D} = (x_i, y_i)_{i=1}^n$ i.e. when output samples are available.

Supervised VS Unsupervised Learning

Task & Machine Learning

Machine Learning aims to reproduce a given task *T* which maps an input *X* to an input *Y* by 'learning it' from the data.

Supervision

is the case when the dataset is $\mathcal{D} = (x_i, y_i)_{i=1}^n$ i.e. when output samples are available.

Limits of such paradigm

- Considering the joint distribution, a supervised learning problem is an unsupervised learning problem,
- Considering marginal distribution, an unsupervised learning problem is several supervised learning problem (self-supervised learning).

Yann Lecun's cake

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- ▶ The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- ▶ Predicts future frames in videos
- Millions of bits per sample
- (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Some very classical models

Classification VS Regression models

Naives Bayes
$$X = (X_1, ..., X_n) \rightarrow Y$$

$$\mathbb{P}(Y|X) = \frac{\mathbb{P}(X|Y)\mathbb{P}(Y)}{\mathbb{P}(X)} \approx \frac{\mathbb{P}(X_1|Y)\cdots\mathbb{P}(X_n|Y)\mathbb{P}(Y)}{\mathbb{P}(X)} \propto \mathbb{P}(X_1|Y)\cdots\mathbb{P}(X_n|Y)\mathbb{P}(Y)$$

k-NNs

The case of linear separability

Linear separation

Linear separation

Linear separation

From linear to non-linear separability

Non-linear separability

Non-linear separability

Non-linear separability

Kernel trick

Mercer's theorem

Let $K: \mathcal{R}^d \times \mathcal{R}^d$ continuous, symetric and semi-definite positive, then it exists $\varphi: \mathcal{R}^d \to \mathcal{R}^{d'}$ such that:

$$\forall (x,y) \in \mathcal{R}^d, K(x,y) = \varphi(x)\varphi(y)$$

Kernel trick

Kernel trick

Limitations

- Linear kernel $K(x,y) = x \cdot y$
- Polynomial kernel $K(x,y) = (1 + x \cdot y)^d$
- Gaussian kernel $K(x,y) = \exp(-\gamma ||x-y||^2)$
- Quadratic kernel $K(x, y) = (1 + \gamma ||x y||^2)^{-\alpha}$

There is no reason for this kernel to work...

Non-linear separation

than a single strong learner

A lot of weak learners is better

Boosting VS Bagging

quantdare.com/
what-is-the-difference-between-bagging-and-boosting/

Boosting VS Bagging

quantdare.com/
what-is-the-difference-between-bagging-and-boosting/

Boosting VS Bagging

quantdare.com/
what-is-the-difference-between-bagging-and-boosting/

Bagging decision trees: Random Forest

Those algorithms do local template matching

Those algorithms do local template matching

$$\hat{y}(x) = \arg\max_{y \in \mathcal{Y}} \sum_{i=1}^{n} \mathbf{1}(y = y_i) w(x, x_i)$$

- 1($y = y_i$): is the vote of the training point x_i
- $w(x, x_i)$ is its contribution to the vote:
 - $w(x, x_i) = 1$
 - · $\lim_{||x-x_i||\to\infty} w(x,x_i) = 0$

Those algorithms do local template matching

$$\hat{y}(x) = \arg\max_{y \in \mathcal{Y}} \sum_{i=1}^{n} \mathbf{1}(y = y_i) w(x, x_i)$$

- 1($y = y_i$): is the vote of the training point x_i
- $w(x,x_i)$ is its contribution to the vote:
 - $w(x, x_i) = 1$
 - · $\lim_{||x-x_i||\to\infty} w(x,x_i) = 0$

Local template matching

- k NN: it's definition...
- · SVM:

$$\sum_{i=1}^{n} \alpha_i y_i \varphi(x_i) \cdot \varphi(x) = \sum_{i=1}^{n} \alpha_i y_i K(x, x_i), \quad \alpha_i \in \{0, 1\}$$

 Random Forest divides around training points with hard separation

Some very classical unsupervised

models

Yann Lecun's cake

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- ▶ The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
- (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

K-Means

Principal Component Analysis

Model selection

Hyperparameters

· Train / test split,

Hyperparameters

- · Train / test split,
- · Model,

Hyperparameters

- · Train / test split,
- · Model,
- · Initializers,
- · Number of parameters (Capacity),

Hyperparameters

- · Train / test split,
- · Model,
- · Initializers,
- · Number of parameters (Capacity),
- Regularization coefficient

• ..

Hyperparameters

- Train / test split,
- · Model,
- · Initializers,
- · Number of parameters (Capacity),
- · Regularization coefficient

• ...

Train - Validation - Test sets

- · For each combination of parameters train a model on a train set
- · Select the best model on the validation set
- · Evaluate the model generalize well on the test set

Grid search

