Московский государственный университет имени М.В. Ломоносова Университет МГУ-ППИ в Шэньчжэне Факультет вычислительной математики и кибернетики

Регуляризующие алгоритмы в неустойчивых равновесных задачах

Выпускная квалификационная работа

Студент: Сюй Минчуань Научный руководитель: к.ф-м.н., доцент ВМК МГУ Будак Борис Александрович

Кратое введение о равновесном программировании

Рассматривается задача **равновесного программирования**: найти точку v_* из условий

$$v_* \in \mathbf{W} \subseteq \mathbb{R}^n$$
, $\Phi(v_*, v_*) \leqslant \Phi(v_*, w)$, $w \in \mathbf{W}$,
 $\mathbf{W} = \{ w \in \mathbf{W_0} : g_i(w) \leqslant 0, i = \overline{1, m}, g_i(w) = 0, i = \overline{m+1, s} \}$, (1)

где $\mathbf{W_0}$ - множество из \mathbb{R}^n (обычно имеет простой вид, возможно $\mathbf{W_0} = \mathbb{R}^n$).

Типичные равновесные задачи:

Задача математического программирования.

Задача поиска седловых точек.

Задача поиска равновесия по Нэшу.

Существующие методы к решению равновесной задачи

• Градиентный метод прогнозного типа.

Применяется в случае $\mathbf{W} = \mathbb{R}^n$.

Схема метода: начальное приближение $v_0 \in \mathbf{W}$ - задано;

$$\begin{cases} u_k = v_k - \alpha_k \nabla_w \Phi(v_k, v_k), \\ v_{k+1} = v_k - \alpha_k \nabla_w \Phi(u_k, u_k), \end{cases}$$

где $k = 0,1,2,\ldots$, параметры $\alpha_k > 0$.

- Экстраградиентный метод
- Метод линеаризации
- Проксимальный метод
- Непрерывные варианты методов
- Метод стрельбы
- . . .

Перечислимые выше методы уже хорошо изучены. Отметим, что проблема **неустойчивости** задачи существенна, для которой требуются изменения в методах.

Неустойчивость к возмущению данных

Допустим, что

$$\lim_{\delta \to 0} \left| \Phi^{\delta}(v, w) - \Phi(v, w) \right| = 0;$$

$$\lim_{\delta \to 0} \left\| \nabla_w^{\delta} \Phi(v, w) - \nabla_w \Phi(v, w) \right\| = 0.$$
(2)

Однако подход к использованию метода с приближенными данными из (2) не всегда дает возможность получить приближенное решение задачи.

Исследования данной тематики могут найти в работах Антипин А.С., Васильев Ф.П., Шпирко С.В., Будак Б.А. и др.

Основные методы регуляризации

- Метод стабилизации: Введем функцию Тихонова: $t_{\delta}(v,w) = \Phi_{\delta}(v,w) + \alpha\Omega(w), \quad w \in \mathbf{W_0}, \alpha > 0.$ Будем искать точку, удовлетворяющую условиям $v_{\delta} \in \mathbf{W_0}, \quad t_{\delta}(v_{\delta},v_{\delta}) \leqslant t_{\delta}(v_{\delta},w) + \varepsilon, \forall w \in \mathbf{W_0}, \varepsilon > 0.$ Точки, выполняющие данные условия, сходятся к исходному решению при подобном выборе параметров. Сочетание с штрафной функцией:
 - Вместо сложного множества W работаем на более простом множестве W_0 (возможно $W_0 = \mathbb{R}^n$), добавив штрафное слагаемое $AP_\delta(w)$ в тихоновскую функцию.
- Метод невязки.
- Метод квазирешений.

Часть 1. Метод стабилизации с новым стабилизатором $-\alpha_k \|v-w\|^2$

Некоторые предварительные рассуждения:

• Допустим, что для некоторой точки $v_* \in \mathbf{W}_*$ существуют постоянные $v > 0, c_i \geqslant 0$ такие, что

$$\Phi(v_*, v_*) \leqslant \Phi(v_*, w) + \sum_{i=1}^{s} c_i [g_i^+(w)]^v, \quad \forall w \in \mathbf{W_0}$$
(3)

• Достаточное условие для непустоты $\mathbf{W}_{*\delta}$.

$$BA^{-v/(p-v)} + \delta \|v_*\|^2 (3+A) + 2(\delta + A\delta) \le 1/2\varepsilon(\delta),$$

$$\alpha \|v_* - w\|^2 + \|w\|^2 (\delta + A\delta) \le 1/2\varepsilon(\delta), \forall w \in \mathbf{W_0}, \delta > 0$$
(4)

где $v_* \in \mathbf{W}_*$ взята из условия (3), B - константа определенного вида.

Часть 1. Метод стабилизации с новым стабилизатором $-\alpha_k \|v-w\|^2$

Некоторые предварительные рассуждения:

- Кососимметричность функции: $\Phi(w,w) \Phi(w,v) \Phi(v,w) + \Phi(v,v) \geqslant 0, \quad \forall w,v \in \mathbf{W_0}.$
- Пусть приближения $\Phi_{\delta}(v,w), P_{\delta}(w)$ для функций $\Phi(v,w), P(w)$ таковы, что

$$\left| \Phi_{\delta}(v, w) - \Phi(v, w) \right| \leq \delta \left(1 + \|v\|^2 + \|w\|^2 \right), \quad v, w \in \mathbf{W}_{\mathbf{0}}, \delta > 0,$$

$$\left| P_{\delta}(w) - P(w) \right| \leq \delta \left(1 + \|w\|^2 \right), \quad w \in \mathbf{W}_{\mathbf{0}}, \delta > 0.$$
(5)

Часть 1. Метод стабилизации с новым стабилизатором $-\alpha_k \|v-w\|^2$

Результат 1: Теорема о сходимости метода стабилизации

Пусть выполнены следующие условия

- 1) W_0 замкнутое ограниченное множество, функции $g_i(w), |g_i(w)|, \Phi(w,w)$ полунепрерывны снизу на $\mathbf{W_0}; \Phi(v,w)$ полунепрерывна сверху по v на $\mathbf{W_0}; \forall w \in W_0; \mathbf{W}_* \neq \emptyset;$ для некоторой $v_* \in \mathbf{W}_*$ выполнено условие (3); $\Phi(v,w)$ кососимметрична на $\mathbf{W_0};$
- **2)** $\Omega(v,w) = -\alpha_k \|v-w\|^2$ cmaбuлизатор задачи, P(w) штрафная функция при $p\geqslant v;$
- **3)** приближения $\Phi_{\delta}(v,w), P_{\delta}(w)$ функций $\Phi(v,w), P(w)$ удовлетворяют условиям (5);
- 4) параметры $\alpha=\alpha(\delta)>0,\ A=A(\delta)>0,\ \varepsilon=\varepsilon(\delta)>0,\delta>0,$ удовлетворяют условиям (4) и, кроме того $\lim_{\delta\to 0}\alpha(\delta)=0,\lim_{\delta\to 0}A(\delta)=0$
- $0, \lim_{\delta \to 0} \varepsilon(\delta) = 0, \lim_{\delta \to 0} \delta A(\delta) = 0, \sup_{\delta > 0} \tfrac{3\delta + \delta A(\delta)}{\alpha(\delta)} < +\infty, \sup_{\delta > 0} \tfrac{\varepsilon(\delta)}{\alpha(\delta)} < +\infty.$

Тогда $\mathbf{W}_{*\delta} \neq \emptyset, \forall \delta > 0$, и $\lim_{\delta \to 0} \rho(v_{\delta}, \mathbf{W}_{*}) = 0$, $\lim_{\delta \to 0} \rho(\Phi(v_{\delta}, v_{\delta}), \Phi_{*}) = 0$. где $\Phi_{*} = \{y | y = \Phi(v, v), v \in \mathbf{W}_{*}\}$, причем сходимость равномерная

относительно выбора $\Phi_{\delta}(v,w), P_{\delta}(w)$ и точки v_{δ} из $\mathbf{W}_{*\delta}$.

Часть 2. Экстраградиентный метод с новым стабилизатором $-\alpha_k \|v-w\|^2$

Было предложена

Теорема о выпуклости и замкнутости \mathbf{W}_*

Пусть $\mathbf{W_0}$ - выпуклое замкнутое множество из \mathbb{E}^n , функция $\Phi(v,w),g_i(w)$ при $i=\overline{1,m+s}$ обладают определенными особенностями. Пусть $\mathbf{W}_*\neq\emptyset$. Тогда \mathbf{W}_* - выпукло, замкнуто и задача имеет $e\partial uncm ee hoe}$ нормальное решение.

Введем функцию Тихонова

$$T_k(v,w) = \Phi(v,w) + A_k P(w) - \alpha_k ||v-w||^2$$
, где $v,w \in \mathbf{W_0}, A_k > 0, \alpha_k > 0, k = 0,1,\ldots$

 $v,w \in \mathbf{W_0}, A_k > 0, \alpha_k > 0, \kappa = 0,1,\dots$ Пусть вместо точных $\nabla_w \Phi(v,w), \nabla_w P(w)$ известны

приближения $\{\nabla_w^k \Phi(v,w)\}, \{\nabla_w^k P(w)\}$ такие, что

$$\|\nabla_w^k \Phi(v, w) - \nabla_w \Phi(v, w)\| \leqslant \delta_k (1 + \|v\| + \|w\|), \quad \forall v, w \in \mathbf{W_0},$$

$$\|\nabla_w^k P(w) - \nabla_w P(w)\| \leqslant \delta_k (1 + \|w\|), \quad \forall w \in \mathbf{W_0}, \delta_k > 0, k = 0, 1, \dots$$
(6)

Часть 2. Экстраградиентный метод с новым стабилизатором $-lpha_k \|v-w\|^2$

Результат 2: "Промежуточная" теорема

Пусть выпольнены условия предыдущей теоремы; $\nabla_w \Phi(v,w), \nabla_w g_i(w)$ на $\mathbf{W_0}$, функции $T_k(v,w)$ - выпуклы, выполнено условие $(3)(v_*$ - нормальное решение); параметры удовлетворяют: $p \geqslant v, p > 1, \alpha_k > 0, A_k > 0, \alpha_k \to 0$, и $A_k \to +\infty, \alpha_k A_k^{v/(p-v)} \to +\infty$. Тогда z_k , являющиеся точками равновесия функции Тихонова, существуют однозначно $\forall k$, и

$$\begin{split} &\lim_{k\to\infty}\|\boldsymbol{z}_k-\boldsymbol{v}_*\|=\mathbf{0}, \lim_{k\to\infty}A_kP(z_k)=0, &\|z_k\|\leqslant R_k\leqslant \sup_{k\geqslant 0}R_k=R, \\ &\|z_k-z_m\|\leqslant \frac{|A_m-A_k|R_1}{2\alpha_k}, \forall k,m=0,1,...,R_1,R_2,...- \text{ постоянные}. \end{split}$$

Часть 2. Экстраградиентный метод с новым стабилизатором $-\alpha_k \|v-w\|^2$

Предлагаемый в данной работе **регуляризующий экстраградиентный метод**:

$$\begin{aligned} u_k &= \Pr_{\mathbf{W_0}}(v_k - \beta_k [\nabla_w^k \Phi(v_k, v_k) + A_k \nabla_w^k P(v_k)]), \\ v_{k+1} &= \Pr_{\mathbf{W_0}}(v_k - \beta_k [\nabla_w^k \Phi(v_k, u_k) + A_k \nabla_w^k P(u_k) - 2\alpha_k (v_k - u_k)]) \end{aligned}$$

Пусть для параметров выполнены условия:

$$\alpha_k > 0, A_{k+1} \geqslant A_k > 0, \beta_k > 0, \delta_k > 0, \lim_{k \to \infty} \beta_k = 0, \lim_{k \to \infty} \delta_k = 0,$$

$$\sup_{k \geqslant 0} \beta_k (1 + A_k) < \frac{1}{L}, \lim_{k \to \infty} \frac{\delta_k + \delta_k A_k}{\alpha_k} = 0, \lim_{k \to \infty} \frac{A_{k+1} - A_k}{\alpha_k^2 \beta_k} = 0.$$
(7)

Часть 2. Экстраградиентный метод с новым стабилизатором $-\alpha_k \|v-w\|^2$

Результат 3: Сходимость регуляризованного метода

Пусть выполнены все условия предыдущей теоремы, и пусть $\nabla_w \Phi(v,w), \nabla_w P(w)$ удовлетворяют условию Липлища. Пусть также выполнено модифицированное условие Липшица вида:

$$\|\nabla_w \Phi(v, w) - \nabla_w \Phi(w, w)\| \leqslant L\|v - w\|, \forall v, w \in \mathbf{W_0}, L = \text{const} > 0. \tag{8}$$

Вместо точных $\nabla_w \Phi(v,w), \nabla_w P(w)$ известны их приближения $\{\nabla_w^k \Phi(v,w)\}, \{\nabla_w^k P(w)\}$, удовлетворяющие условиям (6). Параметры $\{\alpha_k\}, \{\beta_k\}, \{\delta_k\}, \{A_k\}$ метода удовлетворяют условиям (7).

Тогда последовательность $\{v_k\}$, порожденная методом при любом выборе начального приближения $v_0 \in \mathbf{W_0}$, сходится к нормальному решению v_* задачи, причем сходимость равномерна относительно выбора $\{\nabla_w^k \Phi(v,w)\}, \{\nabla_w^k P(w)\}$ из (6).

Часть 3. Численный расчёт: проверка способности метода

Результат 4: Тестирование на примерах

В основном, надо попробовать сдедать программу, обеспечивающую нахождение точки равновесия.

Тестовые примеры:

$$\Phi(v,w) = vw, \mathbf{W} = \{ w \in \mathbb{E}^1 : |w| \le 1 \}, \mathbf{W}_* = \{ 0 \}.$$

$$\Phi(v,w) = vw^2, \mathbf{W} = \{w \in \mathbb{E}^1 : |w| \le 1\}, \mathbf{W}_* = \{0, -1\}.$$

Вычислительный процесс сходится к реальному решению исходной задачи с нужной точностью.

Заключение

- Постановка равновесного программирования, примеры
- Существующие методы решения
- Неустойчивость задачи и методы регуляризации
- Применение нового стабилизатора
 - Метод стабилизации для неустойчивых равновесных задач с использованием нового стабилизатора
 - Регуляризованный экстраградиентный метод с использованием нового стабилизатора
 - Численная проверка

Спасибо за внимания!