Institutionen för Matematik

SF1624 Algebra och geometri Läsåret 2022-23

Modul 4

1. ÖVNINGSUPPGIFTER UR BOKEN

Ch 4.4. 3, 5, 9, 19, 21, 26

Ch 6.1. 5, 9, 15, 19, 23, 25, 36;

Ch 6.2. 3, 9, 15;

Ch 6.3. 1, 3, 9, 15;

Ch 6.4. 1, 3, 7, 13, 23;

Ch 7.1. 1, 5, 11;

Ch 7.2. 1, 5, 7, 13,19.

2. FLER UPPGIFTER ATT ARBETA MED

Uppgift 1. En linjär avbildning $T: \mathbf{R}^n \to \mathbf{R}^m$ ges av multiplikation med matrisen A.

(a) Om
$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 7 & 4 \\ 2 & 5 & 5 & 1 \end{bmatrix}$$
 – bestäm n och m

(b) Skriv, utan att räkna, ner vad funktionsvärdet $T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}$ blir.

Uppgift 2. Bestäm matrisen för den linjära avbildning T från \mathbf{R}^2 till \mathbf{R}^3 som avbildar

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ på } \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \text{ och } \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ på } \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$

Uppgift 3. Den linjära avbildningen T från \mathbf{R}^2 till \mathbf{R}^2 uppfyller att

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\5\end{bmatrix}, \quad \text{och} \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\9\end{bmatrix}.$$

Beräkna
$$T \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
.

Uppgift 4. Finns det någon linjär avbildning S från \mathbb{R}^2 till \mathbb{R}^2 sådan att

$$S\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix}, \quad S\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\1\end{bmatrix} \quad \text{och} \quad S\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\5\end{bmatrix}?$$

Uppgift 5. På vad avbildas linjen $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $t \in \mathbf{R}$, av den linjära avbildning som ges av matrisen $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Uppgift 6. Bestäm matrisen för den linjära avbildning från \mathbb{R}^2 till \mathbb{R}^2 som roterar alla vektorer 45 grader moturs runt origo.

Uppgift 7. Bestäm matrisen för den linjära avbildning från \mathbb{R}^2 till \mathbb{R}^2 som speglar alla vektorer i x-axeln.

Uppgift 8. Bestäm matrisen för den linjära avbildning från \mathbb{R}^2 till \mathbb{R}^2 som projicerar alla vektorer på linjen y=3x/4.

Uppgift 9. Bestäm matrisen för den linjära avbildning från \mathbb{R}^3 till \mathbb{R}^3 som projicerar alla vektorer på x_1x_2 -planet.

Uppgift 10. Bestäm matrisen för den linjära avbildning från \mathbb{R}^3 till \mathbb{R}^3 som projicerar alla vektorer på planet $2x_1 + 2x_2 + x_3 = 0$

Uppgift 11. Bestäm matrisen för den linjära avbildning från \mathbb{R}^3 till \mathbb{R}^3 som speglar alla vektorer i planet med ekvation $x_1 = x_2$.

Uppgift 12. Bestäm matrisen för den linjära avbildning från \mathbb{R}^3 till \mathbb{R}^3 som roterar alla vektorer 60 grader runt z-axeln moturs sett från z-axelns spets.

Uppgift 13. Bestäm nollrum (kernel, kärna) och bildrum (kolonnrum, range) till den linjära avbildning som ges av matrisen

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 5 & 2 & 0 & 1 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

Uppgift 14. Avgör om vektorn $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ tillhör nollrummet till den linjära avbildning som ges av matrisen $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

Uppgift 15. Avgör om vektorn $\begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$ tillhör bildrummet till den linjära avbildning som ges av matrisen $\begin{bmatrix} 2 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & -1 & -1 \end{bmatrix}$

Uppgift 16. Bestäm nollrum och bildrum till den linjära avbildning från \mathbb{R}^3 till \mathbb{R}^3 som består i projektion på planet med ekvation 3x + 48y - z = 0.

Uppgift 17. Bestäm nollrum och bildrum till matrisen $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ -1 & 1 & 1 & 0 \end{bmatrix}.$

Uppgift 18. En avbildning T från \mathbb{R}^3 till \mathbb{R}^2 är given av

$$T(x_1, x_2, x_3) = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ 2x_1 - x_2 \end{bmatrix}.$$

Är T linjär? Bestäm i så fall matrisen för T och även kärna och bildrum till T.

Uppgift 19. Låt $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix}$.

- (a) Avgör om vektorn $\begin{bmatrix} -1\\1\\-1 \end{bmatrix}$ kan skrivas som en linjärkombination av A:s kolonner. (b) Avgör om vektorn $\begin{bmatrix} -1\\1\\-1 \end{bmatrix}$ ligger i bildrummet för A

Uppgift 20. Låt S vara den linjära avbildning som betstår i rotation 30 grader moturs i \mathbb{R}^2 och låt T vara den linjära avbildning som består i projetion på x_2 -axeln.

- (a) Bestäm matriserna för S och T.
- (b) Är någon av S och T inverterbar? Bestäm i förekommande fall inversens matris.

(c) Hur ska matriserna för S och T multipliceras för att ge matrisen för den linjära avbildning som består i att man först roterar alla vektorer 30 grader och sedan projicerar på x_2 -axeln?

Uppgift 21. Bestäm kärna och bildrum till avbildningarna i uppgifterna 6,7,8,9,10.

3. Lite längre uppgifter

Följande uppgifter förses inte med svar. Diskutera gärna lösningar med övningsassistenterna!

Uppgift 3.1. (a) Låt $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ vara rotationen kring origo med vinkel 90° ($\pi/2$ radianer) moturs. Bestäm standardmatrisen, A, för T_1 .

- (b) Låt $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ vara speglingen i linjen y=-x. Bestäm standardmatrisen, B, för T_2 .
- (c) Bestäm standardmatrisen, C, för sammansättningen $T_2 \circ T_1$.
- (d) Avbildningen $T_2 \circ T_1$ är en spegling. I vilken linje? Motivera ditt svar.

Uppgift 3.2. Den linjära avbildningen $R: \mathbb{R}^3 \to \mathbb{R}^3$ är rotation kring vektorn $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ med vinkel $\frac{2}{3}\pi$ enligt högerhandregeln.

- (a) Bestäm standardmatrisen A till R. Ange matrisen A^6 .
- (b) Den linjära avbildningen $S \colon \mathbb{R}^3 \to \mathbb{R}^3$ ges av $S(\vec{x}) = R(\vec{x}) + 3\vec{x}$. Bestäm bildrummet till S.
- (c) Bestäm nollrummet (kärnan) till S. Vad är dimensionen av bildrummet till S?

Uppgift 3.3. Låt

$$\vec{u_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \vec{u_2} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{u_3} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \ \vec{u_4} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

- (a) Finns det någon **linjär** avbildning L så att $L(\vec{u_1}) = \vec{u_2}$ och $L(\vec{u_3}) = \vec{u_4}$? Om ja: Hur många sådana L finns det? Ange stardardmatrisen för en sådan avbildning L. Om svaret är nej: Förklara.
- (b) Finns det någon **linjär** avbildning L sådan att $L(\vec{u_1}) = \vec{u_2}$ och $L(\vec{u_3}) = \vec{u_4}$, samt att L avbildar planet -x y + z = 0 på planet x + z = 0? Förklara.

4. FÖRSLAG PÅ ARBETSUPPGIFTER TILL SEMINARIUM 4

Dessa uppgifter kan användas som arbetsmaterial/diskussionsuppgifter vid seminariet.

Uppgift 4.1. Den linjära avbildningen $T : \mathbb{R}^2 \to \mathbb{R}^2$ uppfyller

$$T\left(\begin{bmatrix}5\\10\end{bmatrix}\right) = \begin{bmatrix}2\\11\end{bmatrix} \quad \text{och} \quad T\left(\begin{bmatrix}0\\5\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix}.$$

- (a) Bestäm standardmatrisen A till avbildningen T.
- (b) Kontrollera att A är sin egen invers.

Uppgift 4.2. Låt

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 2 \\ -2 \\ 4 \\ 0 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}$$

vara tre vektorer i \mathbb{R}^4 .

- (a) Bestäm en bas för det delrum av \mathbb{R}^4 som vektorerna spänner upp.
- (b) Bestäm en vektor i \mathbb{R}^4 som inte ligger i detta delrum.

Uppgift 4.3. Den linjära avbildningen $T \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ ges av

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + y \\ x - 2y \\ y - x \end{bmatrix}.$$

- (a) Bestäm matrisen för T.
- (b) Avgör om någon av vektorerna

$$\vec{v} = \begin{bmatrix} 2\\3\\-2 \end{bmatrix}$$
 eller $\vec{w} = \begin{bmatrix} 4\\-1\\1 \end{bmatrix}$

ligger i bildrummet im(T).

5. FACIT OCH LÖSNINGSTIPS

Titta inte i facit förrän du har löst uppgifterna så bra du kan!

1. (a)
$$n=4$$
 och $m=3$ (ses på matrisens format) (b) $\begin{bmatrix} 1\\1\\5 \end{bmatrix}$ (andra kolonnen i A)

$$2. \begin{bmatrix} 2 & 1 \\ 0 & 3 \\ 1 & -1 \end{bmatrix}$$

$$3. \begin{bmatrix} 12 \\ 33 \end{bmatrix}$$

4. Nej (ty om
$$S$$
 är linjär måste $S\left(\begin{bmatrix}1\\0\end{bmatrix}\right)+S\left(\begin{bmatrix}0\\1\end{bmatrix}\right)=S\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$

5. På linjen
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} + t \begin{bmatrix} 5 \\ 13 \end{bmatrix}, \ t \in \mathbf{R}$$

(I uppgift 6,7,8 får man matrisen genom att tänka ut vad som händer med basvektorerna $\begin{bmatrix}1\\0\end{bmatrix}och\begin{bmatrix}0\\1\end{bmatrix}.$)

6.
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$7. \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$8. \begin{bmatrix} 16/25 & 12/25 \\ 12/25 & 9/25 \end{bmatrix}$$

(I uppgift 9, 10, 11 får man matrisen genom att tänka ut vad som händer med basvektorerna $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ och $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.)

$$9. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

10.
$$\frac{1}{9} \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}$$

11.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

12.
$$\begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0\\ \sqrt{3}/2 & 1/2 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- 13. Nollrummet är span $\left\{\begin{bmatrix} -1\\2\\-1\\1\end{bmatrix}\right\}$. Bildrummet är span $\left\{\begin{bmatrix} 1\\5\\1\end{bmatrix},\begin{bmatrix} 2\\2\\1\end{bmatrix},\begin{bmatrix} 3\\0\\2\end{bmatrix}\right\}$ dvs hela \mathbf{R}^3
- 14. Nej. (Det är bara att multiplicera och se om det blir $\vec{0}$)
- 15. Nej. (Det är bara att kolla om ekvationssystemet $A\vec{x}=\vec{b}$ har lösning, där A är matrisen och \vec{b} är vektorn)
- 16. Bildrummet är planet och nollrummet är spannet av normalvektorn till planet. (Tänk efter vad nollrum och bildrum betyder, inga räkningar behövs för att svara på frågan)

17. Nollrummet är span
$$\left\{\begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix}\right\}$$
. Bildrummet är span $\left\{\begin{bmatrix} 1\\1\\-1 \end{bmatrix},\begin{bmatrix} 1\\0\\1 \end{bmatrix},\begin{bmatrix} 0\\1\\1 \end{bmatrix}\right\}$ dvs hela \mathbf{R}^3

18.
$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 0 \end{bmatrix}$$
. Bildrummet är span $\{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix}\}$, dvs hela \mathbf{R}^2 , och nollrummet är span $\begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$

19. Obs att (a) och (b) är exakt samma fråga! Svaret är Ja. (Lös ekvationssystem, helt enkelt)

- 20. S har matrisen $\begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$ och T har $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ och den sökta sammansättningen får matrisen $TS = \begin{bmatrix} 0 & 0 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$
- 21. På denna uppgift behöver man inte räkna, det är i stort sett bara att skriva ner svaret:
 - Uppgift 6: Nollrummet är $\{\vec{0}\}$ och bildrummet är hela \mathbf{R}^2
 - Uppgift 7: Nollrummet är $\{\vec{0}\}$ och bildrummet är hela \mathbf{R}^2

 - Uppgift 7: Nollrummet är span $\left\{\begin{bmatrix} -3\\4 \end{bmatrix}\right\}$ och bildrummet är span $\left\{\begin{bmatrix} 4\\3 \end{bmatrix}\right\}$ Uppgift 9: Nollrummet är span $\left\{\begin{bmatrix} 0\\0\\1 \end{bmatrix}\right\}$ och bildrummet är x_1x_2 -planet. Uppgift 10: Nollrummet är span $\left\{\begin{bmatrix} 2\\2\\1 \end{bmatrix}\right\}$ och bildrummet är planet 2x+2y+z=0