Floating Point Range

Special Values (single-precision)

E'	F	Meaning	Notes
000000	00	0	+0.0 and -0.0
000000	XX	Valid number	Non normalized or denormal number = (-1)Sx 2^(-126)x (0.F)
1111111 1	00	Infinity	
1111111 1	XX	Not a Number	

Range of numbers

Normalized (positive range; negative is symmetric)

Unnormalized

Compare FP numbers (<, > ?)

```
Examples:
1 . A= 0 0111 1111 110...0 B=0 1000 0000 110...0
+(1.11)_2\times2^{(127-127)}=1.750 +(1.11)_2\times2^{(128-127)}=
  (11.1)_2=3.500
0 0111 1111 110...0 0 1000 0000 110...0
  +0111 1111 < + 1000 0000 implies B>A
directly comparing exponents as unsigned values gives result
2. A = 1 \ 0111 \ 1111 \ 110...0 B = 1 \ 1000 \ 0000 \ 110...0
    -f \times 2^{(011111111)} -f \times 2^{(10000000)}
For exponents: 0111 1111 < 1000 0000
So -f \times 2(0111\ 1111) > -f \times 2(1000\ 0000)
If (both S=1) and (E'B > E'A) then A > B
```

Floating Point addition is not Associative

$$(x + y) + z \neq x + (y + z)$$

Assignment

- (A B C D 0 0 0 0 0 0 0 0 0 0 0 0 0)₁₆ is in
 IEEE double precision floating point format.
 Convert to its decimal value.
- 2.Represent binary +tive number 1101011 in IEEE single precision floating point format.
- 3.Represent decimal number -0.75 in IEEE single precision floating point format.

Example

Represent $(+7)_{10}$ in IEEE double precision floating point :

- 1.Convert to binary $(+7)_{10} = (111)_2$
- 2.Normalized $(111)_2 = 1.11 \times 2^2$
- 3. 52 bit mantissa = 110......000
 50 zeros
- 4. Biased exponent in excess 1023 = 2+1023=1025 2^{10}
- 0 1 000 000 000 1 110......000
 - Biased exponent in ______ 50 zeros excess 1023

Floating Point Rep -- Underflow

- Result of arithmetic operation on floating point number too small to be stored in computer then underflow
- 2 floating point numbers are subtracted
 If at least one zero is in most significant
 position of mantissa then underflow
 i.e. result= 0.0001111 x 2 is underflow
 Corrected to 1.111 x 2-4

By left shift and decreasing exponent until non zero bit in left most position

Floating Point Rep -- Underflow

 In division of floating point numbers exponents are subtracted

If exponent E' < 1 or E < -126 (in single precision) and E< -1022(in double precision) then underflow

Cannot be Corrected

Floating Point Rep -- Overflow

- Result of arithmetic operation on floating point number too large to be stored in computer then overflow
- 2 floating point numbers of same sign are added.

If carry from most significant position then mantissa overflow

i.e. result = 10.1111×2 is overflow

Corrected to 1.01111 x 2²

By right shift and increasing exponent by same amount

Floating Point Rep -Overflow

 In multiplication of floating point numbers exponents are added

If exponent E' > 254 or E > 127 (in single precision) and E' > 2046 or E> 1023(in double precision) then overflow

Cannot be Corrected

Floating Point Rep of Num

Single precision floating point normalized number with exponent: range

Double precision floating point normalized number with exponent range

$$-1022 <= E <= 1023, 1 <= E' <= 2046$$

Special Values:

E'=0,M=0 exact zero value represented

E'=255, M=0 infinity(i.e. divide by zero a normal num)

Two more

Special Values defined for IEEE Standard Floating Point Format (754)

- E'=0,M=0 exact zero value represented
- E'=255,M=0 infinity(i.e. a normal num divide by zero)
- E'= 0, M not =0 denormal numbers $(+/-)0.M \times 2^{-126}$
 - Gradual underflow accommodated to handle very
 - small numbers
- E'=255, M not = 0 Not a Number(NaN) result of zero divided by zero, $\sqrt{-1}$

How are special values set?

- Processor sets exception flag for:
 - Underflow
 - Overflow
 - Divide by zero (E'=255 set, M=0 set:- infinity)
 - Invalid(if 0/0 or √-1 operation attempted)
 - (E'=255 and M= non zero set :- NaN not a number)
 - Inexact (if rounding off required)
- When exceptions occur, results are set to special value

2's-Complement Overflow

(5 bit signed integer: range(-2^{5-1} to $+2^{5-1}$

•If X, Y have opposite signs overflow never occurs whether carry-out exists or not

No Carry-out
$$10110 \quad (+ \quad 5_{10})$$
 $10110 \quad (- \quad 10_{10})$ $10010 \quad (+ \quad 10_{10})$ $10010 \quad (+ \quad 5_{10})$ $100101 \quad (+ \quad 5_{10})$

If X, Y have same sign and result sign differs, overflow occurs

11001 (-
$$7_{10}$$
)

10110 (- 10_{10})

1.01111 (+ 15_{10})

Carry-out, Overflow

$$00111 \quad (+ \quad 7_{10})$$

$$01010 \quad (+ \quad 10_{10})$$

$$10001 \quad (- \quad 15_{10})$$

No Carry-out, Overflow

Overflow: An Error

• Examples: Addition of 3-bit integers (range - 4 to +3)

•
$$3+2=5$$
 011 = 3
010 = 2
= 101 = -3 (error)

- Overflow rule:
 - If two numbers with the same sign bit (both positive or both negative) are added, the overflow occurs if and only if the result has the opposite sign.
 - OR Carry-in into MSB ≠ Carryout from MSB

Floating Pointer Arithmetic Operations

Flow Chart Floating **Point** Number Addition

the sum to be unnormalized, we must repeat step 3.

Add/Subtract Rule

- Choose the number with the smaller exponent and shift its mantissa right a number
 of steps equal to the difference in exponents.
- Set the exponent of the result equal to the larger exponent.
- Perform addition/subtraction on the mantissas and determine the sign of the result.
- 4. Normalize the resulting value, if necessary.

Flowchart
Floatig
Point
Number
Multipli-cation
Patterson
et. al.

3.16 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if causes the sum to be unnormalized, we must repeat step 3.

Multiply Rule

- Add the exponents and subtract 127.
- 2. Multiply the mantissas and determine the sign of the result.
- Normalize the resulting value, if necessary.

Divide Rule

- Subtract the exponents and add 127.
- 2. Divide the mantissas and determine the sign of the result.
- Normalize the resulting value, if necessary.

The addition or subtraction of 127 in the multiply and divide rules results from using the excess-127 notation for exponents.

Floating Point Add Subtract Signs

SA	SB	Add/Sub		SR
1	0	1		1
0	0	1	If E'A>E'B	0
0	0	1	If E'A <e'b< td=""><td>1</td></e'b<>	1
0	0	1	If E'A=E'B If FA>FB If FA <fb< td=""><td>0</td></fb<>	0
1	1	1		0
1	0	0	If E'A>E'B	1
1	0	0	If E'A <e'b< td=""><td>0</td></e'b<>	0
1	0	0	If E'A=E'B If FA>FB If FA <fb< td=""><td>1 0</td></fb<>	1 0

Floating Point Add Subtract Signs

0	1	0	If E'A>E'B	0
0	1	0	If E'A <e'b< td=""><td>1</td></e'b<>	1
0	1	0	If E'A=E'B If FA>FB If FA <fb< td=""><td>0 1</td></fb<>	0 1
0	0	0		0
1	1	0		1