Computer Science 112 Data Structures

Lecture 10:

Binary Search Binary Search Trees

Midterm Exam

- Sunday, March 1
- 3-4:20
- Rooms to be announced
- Know which recitation you are registered for

Review: Big O for Block Search

- Sorted array, size n
- think of it as m blocks of s elements each
- compare target with last element of first block: a[s-1]
 - if target == a[s-1] target has been found
 - else if target < a[s-1] search from start of block to a[2-1]
 - otherwise, redo on next block
- What is worst case cost? What is average cost?

New: Search an ordered array

- Question game
 - You think of a number between 1 and 1,000
 - I will guess a number
 - You tell me if your number is
 - the same as my guess,
 - bigger than my guess,
 - smaller than my guess

Search an ordered array

• In an ordered array, one test can rule out a whole region of the array

```
if (a[10] < target){
    // if we get here target can't be in a[j] for
    // 0 <= j <= 10</pre>
```

```
?? ?? ?? ?? ?? ??
0 1 2 3 4 5 6
Search for 30
left right mid
0 6
```



```
?? ?? ?? 29 ?? ?? ??
0 1 2 3 4 5 6
Search for 30
left right mid
4 6
```



```
?? ?? ?? 29 ?? 35 ??
0 1 2 3 4 5 6
Search for 30
left right mid
4 4
```

```
?? ?? ?? ?? ?? ?? ??
0 1 2 3 4 5 6
Search for 32
left right mid
0 6
```

```
?? ?? ?? 29 ?? ?? ??
0 1 2 3 4 5 6
Search for 32
left right mid
```

```
      ??
      ??
      ??
      ??
      ??
      ??

      0
      1
      2
      3
      4
      5
      6

      Search for 32
      left right mid

      4
      6
```



```
?? ?? ?? 29 ?? 35 ??
0 1 2 3 4 5 6
Search for 32
left right mid
4 4
```

```
?? ?? ?? 29 30
0 1 2 3 4 5 6
Search for 32
left right mid
5 4
```

See BinarySearch.java
See RecursiveBinSearch.java

How Many Questions

- How many questions for 1000 numbers?
 - Each question eliminates 1/2 of possibilities
 - Therefore each question doubles the size of array you can search
 - Therefore size = $2^{questions}$
 - Therefore $log_2(size) = questions$
 - $-\operatorname{Log}_2(1000) \approx 10$
 - Answer: 10 questions

Searching an array Performance

- Search among 1 Million entries
- Check 1 million entries per second
 - Sequential search
 - 1 million operations needed
 - Requires 1 second
 - Binary earch
 - 20 operations needed
 - Requires 20 microseconds
 - **50,000** times faster

Searching an array Performance

- Search among 1 <u>B</u>illion entries
- Check 1 million entries per second
 - Sequential search
 - 1 billion operations needed
 - Requires 1000 seconds about 20 minutes
 - Binary search
 - 30 operations needed
 - Requires 30 microseconds
 - 30 million times faster

Binary Search Trees

- Why can't we do binary search on a linked list?
 - can't jump to middle
- Lets keep a pointer to the middle!
- Then what?

This looks like a binary tree!

Binary Tree Nodes

- Each node has
 - a data field
 - a left subtree, which is a Binary Tree Node
 - a right subtree, which is a Binary Tree Node

Binary Search Tree

- data at a node is > any data in left subtree
- data at a node is < any data in right subtree
- Therefore, to print a BST in data order:
 - Print left subtree in data order
 - Print data
 - Print right subtree in data order

Search

- Searching a BST is easy
 - if node = null, search fails
 - if node.data equals target, found
 - if target < node.data, search on left subtree
 - else search on right subtree
- See BST.java, BSTApp.java

Insert

Search, fail, insert where failed

Insert

Search, fail, insert where failed

