REILLY, Johnny (jcr20)

Imperial College London

Department of Computing Academic Year 2020-2021

Page created Tue Nov 3 23:15:03 GMT 2020

70051 rac101 2 t5 jcr20 v1

Electronic submission

Mon - 02 Nov 2020 20:07:54

jcr20

Exercise Information

Module: 70051 Introduction to Symbolic

Artificial Intelligence (MSc AI)

Exercise: 2 (CW)

Title: Logic FAO: Craven, Robert (rac101)

Issued: Tue - 20 Oct 2020

Due: Tue - 03 Nov 2020

Assessment: Individual Submission: Electronic

Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-10-30 11:53:08

For Markers only: (circle appropriate grade)

| REILLY, Johnny (jcr20) | 01928630 | t5 | 2020-10-30 11:53:08 | A* A B C D E F

Intro to Symbolic AI Coursework 1

Johnny Reilly (jcr20)

October 2020

Exercise 1

RETURN TO CHECK ALL

- \mathbf{i} p Michael is either fulfilled or rich
 - r Michael will live a fulfilled life

$$((\neg p) \to (\neg r))$$

- \mathbf{ii} p The snowstorm does arrive
 - q Raheem will wear his boots
 - r I'm sure the snowstorm will arrive

$$(((\neg p) \lor q) \land r)$$

- iii p Akira is on set
 - q Toshiro is on set
 - r Filming will begin
 - s The caterers have cleared out

$$((p \land q) \to (r \leftrightarrow s))$$

- \mathbf{iv} p Irad arrived
 - q Sarah arrived

$$((p \vee \neg q) \wedge (\neg (p \wedge \neg q)))$$

- ${f v}$ p Herbert heard the performance
 - q Anne-sophie heard the performance
 - r Anne-sophie answered her phone calls

$$((\neg r) \to (\neg (p \land q)))$$

Exercise 2

i A is satisfiable if there is some atomic evaluation function $v : \mathcal{A} \to \{\mathbf{t}, \mathbf{f}\}$ such that $h_v(A) = \mathbf{t}$ where \mathcal{A} is the set of propositional atoms in A and h_v is the propositional evaluation function based on v

i.e A evaluates to true is true for some choice of truth values of its propositional atoms.

ii A and B are logically equivalent if for all possible v, $h_v(A) = h_v(B)$. i.e You cannot distinguish between A and B based on their truth values given any evaluation of their propositional atoms.

iii $\neg A$ is satisfiable iff there is an atomic evaluation function v such that $h_v(\neg A) = \mathbf{t}$. Following the rule for negation in Definition 1.5, we see that this is true iff $h_v(\neg \neg A) = \mathbf{f}$, which is equivalent to saying $\neg \neg A \not\equiv \top$ since $h_v(\top) = \mathbf{t}$.

Exercise 3

p	q	\mathbf{r}	(p	\wedge	$\neg q$	\leftrightarrow	\neg	$(\neg r$	\vee	$\neg p))$	$ \rightarrow $	$(\neg \neg q$	\rightarrow	r)
\overline{t}	t	t	t	f	f	f	t	f	f	f	t	t	t	t
\mathbf{t}	\mathbf{t}	f	t	f	f	\mathbf{t}	f	t	\mathbf{t}	f	f	t	\mathbf{f}	f
\mathbf{t}	f	\mathbf{t}	t	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	f	f		f		\mathbf{t}
\mathbf{t}	f	f	t	\mathbf{t}	\mathbf{t}	f	\mathbf{f}	\mathbf{t}	\mathbf{t}	f	t	f	\mathbf{t}	f
f	\mathbf{t}	\mathbf{t}	f	f	f	\mathbf{t}	f	f	\mathbf{t}	t	t	t	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{t}	f	f	f	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	t	f	t	f	f
\mathbf{f}	f	\mathbf{t}	f	f	\mathbf{t}	\mathbf{t}	f	\mathbf{f}	t	t	t	t	f	f
\mathbf{f}	f	f	f	f	\mathbf{t}	\mathbf{t}	f	\mathbf{t}	t	t	t	f	\mathbf{t}	f

The principal connective is shown separated by double vertical lines, there are two f's in that column so the formula is not valid.

Exercise 4

i CNF: a, b, d, g, h DNF: b, d, e, g, h

ii let S be a formula in CNF, refutation-soundness and -completeness states that S is unsatisfiable if and only if there is a resolution derivation of \emptyset from S $(S \vdash_{res(PL)} \emptyset)$. This means that, we can replace pairs of clauses in S by their resolvents and preserve satisfiability. If we can derive \emptyset then S is satisfiable, if we do not reach \emptyset and can no longer resolve any clauses, then S is unsatisfiable. (This is much quicker than building a truth table for S).

iii

a

$$\{\{p,s\},\{q,r\},\{\neg s,q\},\{\neg p,\neg r,\neg s\}\}$$
 pure rule: q
$$\{\{p,s\}\}$$
 pure rule: $\neg r$
$$\{\}$$
 pure rule: p

b

Exercise 5

Using the atoms:

$$p-$$
I'm going, $q-$ You're going, $r-$ Tara's going

we can write the argument as

$$(\neg p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (r \lor \neg p)$$
 therefore q

Recall that an argument $A_1, ..., A_n$ therefore B is valid iff $A_1 \wedge ... \wedge A_n \wedge \neg B$ is unsatisfiable. So we need to determine the satisfiability of the following CNF:

$$S = \{ \{\neg p, \neg q\}, \{q, \neg r\}, \{r, \neg p\}, \{\neg q\} \}$$

$$\{ \{\neg r\}, \{r, \neg p\} \}$$
 unit prop.: $\neg q$
$$\{ \{\neg r\}, \{r\} \}$$
 pure rule: $\neg p$ unit prop.: r

The presence of {} in the last line indicates that S is unsatisfiable, therefor the argument is valid.

Exercise 6

i Constants = {andrea} Predicates₂ = {aunt, cupcake}. aunt(X,Y) reads 'X is Y's aunt', cupcake(X,Y): 'X gave a cupcake to Y'. $\forall X(aunt(X,a) \rightarrow \exists Y(\neg(Y=andrea) \land cupcake(X,Y)))$

```
ii 1-Predicates = {computer}
    2-Predicates = {connected}
    computer(X) reads 'X is a computer, connected(X, Y): 'X is connected to
\forall X(computer(X) \land \neg connected(X, X) \rightarrow \exists Y(computer(Y) \land connected(Y, X)))
iii Constants = {klee, kandinsky}
    1-Predicates = {painting, british}
    2-Predicates = {sameroom}
    1-Functions = {gallery, artist}
    \operatorname{gallery}(X) is the \operatorname{gallery}(X) is the \operatorname{gallery}(X) is the artist who made X, paint-
ing(X): X is a painting, british(X): X is british, sameroom(X, Y): X and Y are
in the same room.
\forall X(painting(X) \land (artist(X) = klee) \land british(gallery(X))
\rightarrow \forall Y (painting(Y) \land (artist(Y) = kandinsky) \land (qallery(Y) = qallery(X)) \rightarrow sameroom(X, Y)))
   1-Predicates = \{body\}
    2-Predicates = {loves}
    body(X) reads 'X is somebody', loves(X,Y) reads 'X loves Y'
\exists X(body(X) \land \neg \exists Y(body(Y) \land loves(X,Y))) \rightarrow \neg \forall Z(body(Z) \rightarrow \exists W(body(W) \land loves(Z,W)))
```

Exercise 7

For simplicity, if a(X,Y) then we say that X 'connects to' Y (via an arrow).

- i 'Everything that k connects to (via an arrow) is not j'. False because a(k, j)
- ii 'If l is a circle then l connects to a black circle' **True** because l is a circle and connects to j which is a black circle.
- iii 'Something does not connect to something other than itself' True, both unlabelled squares do not connect to anything other than themselves.
- iv 'Everything that is not square connnects to a black circle' False because j is not square but only connects to l which is not black.
- ${\bf v}$ 'Everything that connects to something other than itself connects to something that connects to it'

False, k connects to j which is not k, but j does not connect to k

 \mathbf{vi} 'Every (perhaps not distinct) pair of things that both connect to j connect to each other'

False, $a(k,j) \wedge a(k,j)$ but $\neg a(k,k)$