

T-SUM 프로그램 주차별 활동 보고서

팀명	개화	장소	온라인	주차	3주, 2025. 10, 201수), 22:00 ~ 23:00
활동 주제	MLP	기반 손	늘글씨 숫지	인식	모델 구현 및 구조 이해
팀 공통왕	수는 뒤로용형모경층징 so록 crea 확이루전정, 명경 다이라 역 전 등 하 있다. 이 어로 구을 51 학 x 였다. 하 의 다 의 어로 구을 51 학 x 였다. 학생은 점통의 가 다 가 그었은 점통의 가 이 를 있다. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	텔이 28는하라하의 '를 이 손도' 서적 2. M 한 터 큰 습 가 기 ID 기	현을 형 는 입 이 있 해 모 함 9 ML는 역 preserved 이 일 등 이 이 일 등 이 이 일 등 이 이 일 이 일 이 있 해 모 함 이 의 이 의 의 이 의 의 의 의 의 의 의 의 의 의 의 의 의	로 ㅏㅓ를 함 등, 홍성하지 PR용수 를 에 달 학급하는 선 한 10년 이 은 84화 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12	r Perceptron)를 활용한 손글씨 생하였다. 먼저 Keras에서 제공하 용과 테스트용 데이터로 분리한 자원 벡터로 변환하고 0~1 범위 터는 to_categorical() 함수를 활 써, 다중 클래스 분류에 적합한 분이 보이 보이 보이 보이 된다. 충, 출력층으로 구성된 MLP 인식 하는 함수를 받아들이며, 연식 사용하여 비선형적 도 다양의 벡터를 받아들이며, 모드와 각 수 옵티마이저와 categorical 다 검파일하였으며, 에포크를 거 가지 향상되는 학습 과정을 직접 와 학습 원리를 중점적으로 다 음식층, 출력층으로 이어지는 과 의 함상되는 학습 의적으로 지 다 함상되는 학습 연전파 설 사용하였다. 를 조절 방식에 대해 상세히 신 사이미지 처리와 비교하여, 신 소의 불력을 만들어낸 등하였다. 를 실행에 머물지 않고, 각 모드 전 배경을 이해할 수 있었다. 된 실행에 마물지 않고, 각 모드 전 배경을 이해할 수 있었다. 된 실행에 마물지 않고, 각 모드 전 배경을 이해할 수 있었다. 된 일행에 막물이 함께 언급 답 응용 가능성까지 함께 언급 답 응용 가능성까지 함께 언급 답 응용 가능성까지 함께 언급 답 응용 가능성하지 함께 언급 답 등용 가능성하지 함께 연급 답 등용 가능성하지 함께 연급
	멘티 이름	11.4	_		용 및 역량 증가 정도
멘티별 활동내용	심규상	치, 편 습니다 출력이 치와	년향이 어떻 나. 특히 Re I 달라지는 편향 값을	성게 작 eLU 깉 - 과정 조절 [₹]	공신경망에서 활성화 함수, 가중 동하는지 직접 확인할 수 있었는 활성화 함수를 적용했을 때을 확인할 수 있었습니다. 가중하는 과정이 학습과 연결된다는 내감할 수 있었습니다.

		이번 실습을 통해 단순 이론이 아니라 실제 동작 원		
		리를 직접 경험하며 이해 수준이 높아진 것 같습니 다.		
		이번 실습을 통해 MNIST 데이터셋을 활용한 인공신		
	김민서 손수민	경망의 기본 원리를 배웠습니다. 또한 다층 퍼셉트론		
		(MLP)의 구조와 활성화 함수, 가중치, 편향이 실제로		
		동작하는 방식을 직접 확인하며, 정규 강의시간에는		
		복잡하게 느껴졌던 딥러닝 개념을 이번 멘토링을 통		
		해 명확히 이해하였습니다. 이러한 경험은 딥러닝 모		
		델의 설계부터 구현까지의 전반적인 과정을 이해하는		
		데 큰 도움이 되었으며, 앞으로 더 복잡한 인공지능		
		문제를 해결하는 데 필요한 실질적인 역량을 강화하		
		는 계기가 되었습니다. 3주차 수업에서는 다층 퍼셉트론의 구조와 숫자 이미		
		3구자 구립에서는 다음 피접트폰의 구조와 굿자 이미 지를 활용한 학습 과정을 배웠고, 코드 설명을 통해		
		시글 글 8년 국립 최 8월 대		
		텔터 전에 프로 표셨다. 그는 하다		
		처리 과정을 경험했다. 이를 통해 인공신경망 모델		
		학습의 전체적인 흐름을 이해하고, 데이터 전처리에		
		서 훈련까지 이어지는 실제 구현 역량을 강화했다.		
	박성호	MNIST 데이터를 활용한 인공신경망 실습을 통해 딥		
		러닝의 기본 원리를 직접 체험할 수 있었습니다.		
		처음에는 복잡해 보였던 신경망 모델이 실제로 손글 스피르 이시하는 기점은 비명		
		씨 숫자를 인식하는 과정을 보며, 이론으로만 접했던 개념들이 명확하게 이해되었습니		
		이온으로인 섭했던 개념들이 당확야계 이애되었습니 다.		
		│ ^{└│.} │훈련 과정에서 정확도가 점차 향상되는 것을 확인하┃		
		문년 최정에서 성력조기 남서 성정되는 것을 탁년하 였던 의미가 깊었던 수업이였습니다.		
증빙 사진				

승밍 사신

MLP 기반 손글씨 숫자 인식 모델 구현 출석체크

참여자 및 지도교수 서명부

구분	소속	학번	성명	서명
멘토	응용수리과학부 데이터계산과학전공	2021270013	이건우	0/74
멘티	응용수리과학부 데이터계산과학전공	2023270032	손수민	E201
멘티	디지털경영학과	2022271335	김민서	1014
멘티	컴퓨터융합소프트웨어 학과	2022270603	심규상	∜ [발산
멘티	인공지능사이버보안 학과	2023270147	박성호	4,43
지도교수		L	4345	