

ACOUSTIC MONITORING OF BATS WITH SELF-ORGANIZING

MAPS

Arne Deloose

BATS IN BELGIUM

- 18 species (1 200 species worldwide)
- Reported to the EU every six years (habitat directive)
- Monitoring difficult because bats are nocturnal flying animals → acoustic monitoring

ECHOLOCATION

ACOUSTIC MONITORING

- Different bats use different sounds
- Recorded using bat detectors

SPECTROGRAM

<u>ANALYSIS</u>

- Manual analysis
 - Time consuming
 - High expertise
- Commercial software
 - Regionality (reference library)
 - Expensive licenses
 - Limited costumization

PARTIAL SOFTWARE TOOL

- Uses both manual input and automated techniques
- Software:
 - Extracts all sounds
 - Computes features
 - Divides sounds into groups
- User:
 - Labels groups instead of sounds

<u>FEATURES</u>

- Frequency features
 - Average frequency, duration,...
- Relative shape features
 - Reference library
 - SSIM

MDS WITH UNLABELED DATA

SOM

EXAMPLE APPLICATION

- Six random recordings with 726 pulses
- Standard reference library with 5 species
- 100 groups (neurons)

CONTENTS OF ONE NEURON

– 9 pulses

CONTENTS OF ANOTHER NEURON

28 pulses

CONCLUSION

- Tool dramatically reduces analysis time
- Challenges:
 - Rare species with a few pulses?
 - How many groups? Size reference library?
 - Similar species?

QUESTIONS?

CHALLENGES: DOUBLE AND ECHO

GHENT

UNIVERSITY

BIOGEOGRAPHICAL REGIONS

HANDHELD DETECTOR

NEW SPECIES

Dataset	Species	Number	Р	Cohen's kappa
Training	eser	12	0.67	0.55
Training	nlei	10	0.58	0.46
Training	ppip	12	0.98	0.95
Validation	hsav	13	0.94	0.93
Validation	msch	52	0.73	0.42
Validation	ppyg	17	0.06	-0.19

Table 7.3 Results of experiment 3. Top half shows the training dataset (INBO), bottom half shows the validation dataset (Barataud). The bat species are: *Eptesicus serotinus* (eser), *Nyctalus leisleri* (nlei), *Pipistrellus pipistrellus* (ppip) *Hypsugo savii* (hsav), *Myotis schreibersii* (msch) and *Pipistrellus pygmaeus* (ppip). P is the relative observed agreement. The number of neighbours (K) is five.

MORPHOLOGY

GRAPHICAL

CURRENT STATUS BELGIUM

VISUALISATION TOOL

CLASS BOUNDARIES

Feature 1

Feature 1

BOUNDARIES NORTHERN BAT

MDS/TSNE

 $\widehat{\underline{\underline{}}}$

GHENT

UNIVERSITY

27