Ejercicios Probabilidad

Hugo Del Castillo Mola

20 de noviembre de 2022

Índice general

1.	Probabilidad															2															
	1.1.	Entrega 4																													2

Capítulo 1

Probabilidad

1.1. **Entrega 4**

Ejercicio 1.1 (Ejercicio 2, Hoja 6). *Estudiar, para cada una de las siguientes funciones, si es función característica de alguna variable aleatoria y, en caso afirmativo, determinar la función de probabilidad correspodiente.*

(I)
$$\varphi(t) = \sum_{n=0}^{\infty} a_n \cos(nt)$$
 con $a_n \ge 0$ y $\sum_{n=0}^{\infty} a_n = 1$,

(II)
$$\varphi(t) = \frac{1}{1+a(1-e^{it})} \cos a > 0$$
.

Solución.

(I) Sea $\varphi_n(t)=\cos(nt)$ función característica, entonces $\sum_{n=0}^\infty a_n \varphi_n(t)$ es una combinación lineal convexa de $\{\varphi_n, n\in\mathbb{N}\}$ numerable. Por tanto, $\varphi(t)$ también es función característica.

Para X_n v.a. discreta con $D_{X_n}=\{-n,n\}$ y función de masa

$$p_{X_n} = \begin{cases} \frac{1}{n} & \text{si } x \in D_X \\ 0 & \text{si } x \notin D_X \end{cases}$$

Entonces, se tiene que

$$\varphi_n(t) = \mathbb{E}[e^{itX_n}]$$
$$= \frac{e^{itn} + e^{-itn}}{2} = \cos(nt)$$

Por tanto la función de distribución asociada a φ_n es una distribución uniforme discreta U(-n,n).

(II) Aplicando el teorema de inversión

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \frac{1}{1 + a(1 - e^{it})} dt$$