Aquí tienes un **proyecto real con datos simulados** en una base de datos MySQL, aplicando cada una de las funciones de cadena en un análisis de opiniones de clientes sobre productos.

🖈 Proyecto: Análisis de Opiniones de Clientes en una Tienda Online

Objetivo: Analizar las opiniones de los clientes para identificar tendencias, limpiar datos y mejorar la experiencia de usuario.

🛠 1. Creación de la Base de Datos y Tablas

```
CREATE DATABASE tienda_online;
USE tienda_online;
CREATE TABLE clientes (
 cliente_id INT PRIMARY KEY AUTO_INCREMENT,
 nombre VARCHAR(50),
 email VARCHAR(100),
 telefono VARCHAR(15)
);
CREATE TABLE productos (
 producto_id INT PRIMARY KEY AUTO_INCREMENT,
 nombre VARCHAR(100),
 categoria VARCHAR(50),
 precio DECIMAL(10,2)
);
CREATE TABLE opiniones (
 opinion_id INT PRIMARY KEY AUTO_INCREMENT,
 cliente_id INT,
 producto_id INT,
 review_text TEXT,
 fecha DATE,
```

```
FOREIGN KEY (cliente_id) REFERENCES clientes(cliente_id),
 FOREIGN KEY (producto_id) REFERENCES productos(producto_id)
);
```

2. Insertar Datos Simulados

INSERT INTO clientes (nombre, email, telefono) VALUES ('Ana López', 'ana.lopez@gmail.com', '987654321'), ('Carlos Díaz', 'carlos_diaz@hotmail.com', '915234567'), ('María Pérez', 'maria_perez@yahoo.com', '123456789'), -- Error en longitud ('Luis Gómez', 'luis_gomez@gmail.com', '912345678');

INSERT INTO productos (nombre, categoria, precio) VALUES

('Laptop ASUS', 'Electrónica', 1200.00),

('Celular Samsung', 'Electrónica', 800.00),

('Audífonos Sony', 'Accesorios', 150.00),

('Smartwatch Apple', 'Wearables', 600.00);

INSERT INTO opiniones (cliente_id, producto_id, review_text, fecha) VALUES

- (1, 1, 'Excelente producto, pero el envío fue lento.', '2025-01-15'),
- (2, 2, 'MALISIMA calidad, no lo recomiendo!!', '2025-01-16'),
- (3, 3, 'Buena relación calidad/precio, aunque esperaba más.', '2025-01-17'),
- (4, 4, 'Es caro, pero vale la pena cada centavo.', '2025-01-18');

🚺 3. Consultas Aplicando Funciones de Cadena

1. UPPER() y LOWER() → Normalización de Comentarios

SELECT LOWER(review_text) AS comentario_normalizado

FROM opiniones;

📌 Caso de uso: Análisis de frecuencia de palabras clave sin importar mayúsculas o minúsculas.

2. TRIM(), LTRIM(), RTRIM() → Limpieza de Datos

SELECT telefono, TRIM(telefono) AS telefono_limpio

FROM clientes;

Caso de uso: Eliminar espacios extras en números de teléfono para mejorar la calidad del dato.

3. LEFT() y RIGHT() → Segmentación por Código de Área

SELECT LEFT(telefono, 3) AS codigo_area, COUNT(*) AS clientes

FROM clientes

GROUP BY codigo_area;

★ Caso de uso: Identificar qué regiones tienen más clientes para campañas de marketing.

4. SUBSTRING() → Extracción de Dominio de Email

SELECT SUBSTRING(email, LOCATE('@', email) + 1) AS dominio, COUNT(*) AS cantidad FROM clientes

GROUP BY dominio;

★ Caso de uso: Analizar qué proveedores de correo usan los clientes para personalizar estrategias de marketing.

5. REPLACE() → Normalización de Comentarios

SELECT REPLACE(review_text, 'MALISIMA', 'Mala') AS review_limpio

FROM opiniones;

Caso de uso: Reemplazar palabras negativas en análisis de sentimiento para mejorar precisión.

6. LOCATE() → Detección de Problemas en Opiniones

SELECT review_text

FROM opiniones

WHERE LOCATE('malo', LOWER(review_text)) > 0;

📌 Caso de uso: Identificar cuántos clientes mencionan problemas en sus opiniones.

7. CONCAT() → Creación de ID Únicos de Opiniones

SELECT CONCAT(fecha, '-', opinion_id) AS id_opinion

FROM opiniones;

★ Caso de uso: Generar identificadores únicos para cada opinión para facilitar su rastreo.

🔍 ¿Cómo Resolverlo Tú Mismo?

- 1. Ejecuta las consultas en MySQL.
- 2. Interpreta los resultados.
- 3. Modifica las consultas para explorar más datos.
- 4. Usa estos insights para tomar decisiones en un negocio real.

Ahora tienes una base de datos lista para analizar opiniones y tomar decisiones basadas en datos reales. ¡Manos a la obra! 🎯