Session 38: Advanced Big-O Facts

- Big-O for more functions
- Big-O for combined functions

More big-O facts

```
\forall n > m, n, m \text{ constant:}
x^m \text{ is } O(x^n) \text{ but } x^n \text{ is not } O(x^m)
\forall a > 0, b > 0, n > m, a, b, n, m \text{ constant:}
\log_b(x^m) \text{ is } O(\log_a(x^n))
\log_a(x^n) \text{ is } O(\log_b(x^m))
and they are all O(\log(x))
```

Big-O Estimates for the Factorial Function

Factorial function

$$f(n) = n! = 1 \times 2 \times \cdots \times n$$
.
 $n! = 1 \times 2 \times \cdots \times n \leq n \times n \times \cdots \times n = n^n$
 $n!$ is $O(n^n)$ taking $C = 1$ and $k = 1$.

Logarithm of factorial function: log *n*!

Given that $n! \le n^n$ then $\log(n!) \le n \log(n)$.

Hence, $\log(n!)$ is $O(n \log(n))$ taking C = 1 and k = 1.

Combinations of Functions

If f(x) is O(g(x)) and g(x) is O(h(x)) then f(x) is O(h(x))

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 * f_2)(x)$ is $O(g_1(x) * g_2(x))$

If $f_1(x)$ and $f_2(x)$ are both O(g(x)) then $(f_1 + f_2)(x)$ is O(g(x))

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|,|g_2(x)|))$

Combinations of Functions

Proof for

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$

Summary

- Big-O for powers, logarithms and factorials
- Big-O for sum and product of functions