CS 5112 Hash Tables Perfect Hashing

Can we have a hash table w/no collisius?

We could happy into a really big array.

Suppose we have a items and in state.

E (# of colliding pairs) =
$$\sum_{i < j} Pr(h(x_i) = h(x_j))$$

1 2 5 4 ... $n^2 - n = n(n-1) = \sum_{i < j} \frac{1}{n} = \frac{n(n-1)}{2} \cdot \frac{1}{n} = \frac{n(n-1)}{2}$

The substitute of the interior of the state o

Elt of colliding pairs $\int = \sum_{i \leq j} Pr(h(x_i) = h(x_j))$ $1 \geq 3 \leq 4 \leq n$ $n^2 - n = n(n-1) = \sum_{i \leq j} \frac{1}{nn} = \frac{n(n-1)}{2} = \frac{n(n-1)}{2n}$ If $m \geq n(n-1)$, then this is $\leq \frac{1}{2}$.

Suppose X is a RV. w/ X >0.

Then
$$Pr(X \geqslant a) \leq \frac{\mathbb{E} \times 3}{a}$$
 for $a > 0$.
 $Proof. \quad \mathbb{E} \times 3 = \sum_{i \geqslant a} : Pr(X = i) \Rightarrow \sum_{i \geqslant a} : Pr(X = i)$

$$\begin{array}{c}
i \geqslant 0 \\
\geqslant \sum_{i \geqslant a} \rho_r(x=i) \\
= \alpha \sum_{i \geqslant a} P_r(X=i) = \alpha P_r(X \geqslant a)
\end{array}$$

We could high into a really big array.

Suppose we lime in items and in stats.

EE# collishing paires & \frac{1}{2}.

 $E\{\# \text{ of colliding pairs}\} = \sum_{i \neq j} \Pr(h(x_i) = h(x_j))$ Pr (#f colliding perse >1) $= \sum_{i \in I} \frac{1}{m} = \frac{n(n-1)}{2} \cdot \frac{1}{m} = \frac{n(n-1)}{2m}$ by Markous. If m > n (n-1), then this is \$ \frac{1}{2}. Expectation = 2 + 2 - 4 + 3 \ + \ \ \ = \ \frac{1}{2}

Static Hash Tables.

Two operations: Construct (array of a items)

```
Really 5, hash table.

Construct: 1. Prole hash function 6(1)

2. Try & put all items into the array 6(a)

7. It 2 his, retry 1.
                  Query: 1. Look at h(k).
```

FKS Perfect Hashing

L	ورو	1	1:					Le-	el '	2 :	Each Sucket is a really by huh lable (i.e. collising thee)
											huh table (i.e. collising tree)
1		h,	G-		→	1 2	N.				
2		h,	G-	-		3	4		_		Let C, be the # & items
3						5	7		2	•	in bucket t.
t t									1	6	The level 2 table for t
ċ									٢.	7	hy Ce2 slots,
h		hn	G					~			

FKS Perfect Hashing

What about space? Level 1: Uses O(n) Len 2: Di C12 space E[Ce2]