Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

GERA-866 18 March 1964

EAR-0325 COPY / OF/

5

TEMPERATURE-ALTITUDE

TEST REPORT

KP-I SIDE LOOKING RADAR EQUIPMENT

STATINTL

ABSTRACT

This report presents the results of the temperature-altitude test conducted on the KP-I Side Looking Radar Equipment while installed in a simulated vehicle section. Results of the tests indicate that, in most cases, temperatures encountered during both normal operating and vehicle emergency conditions are not beyond system or component limitations. Temperatures measured on mock-ups of several critical components in the Antenna subsystem suggest possible problem areas during vehicle emergency conditions. Marginal reliability is indicated for these components at emergency temperatures. Recommendations are made to alleviate these marginal conditions.

TABLE OF CONTENTS

	Page No
Abstract	ii.
Table of Contents	iii
List of Illustrations and Data	iv
SECTION A - Factual Data	1
1. Purpose of Test	1
2. Description of Test Assembly	ı
3. Description of Test Equipment	4
SECTION B - Test Procedures	6
1. Introduction	6
2. Environmental Requirements	6
3. Functional Test Requirements	6
4. Environmental Test Procedures	7
SECTION C - Test Results	29
1. General	29
2. Test Results	31
SECTION D - Data Analysis	43
1. General	43
2. Operating Stabilization	44.
3. Non-Operating Stabilization	45
4. Emergency Stabilization	46
5. Pressure Information	46
SECTION E - Conclusions	103
Appendix	107

LIST OF ILLUSTRATIONS AND DATA

Tigure No	<u>Title</u>	Page No
l a	Test Assembly	2
. 1 b	Test Assembly Nomenclature	3
2	Antenna Control-Thermocouple Locations	16
3	Synchronizer - Thermocouple Locations	
4	Receiver - Thermocouple Locations	17
5	Transmitter - Thermocouple Locations	18
6	System Junction - Thermocouple Locations	19
7 a	Lower Compartment - Thermocouple Locations	20
7 b	Dome and Support Channel - Thermocouple Locations	21
.7 c	Dome and Support Channel - Thermocouple Locations	22
7 d	Lower Compartment, Dome, Support Channel and Miscellaneous Thermocouple Nomenclature	23 24
8	Cooling Air Flow Schematic - Pressure Tap Locations	27
9	Test Set-Up Photograph	27 28
10	Temperature History - Antenna Control - Power On	48
าา	Temperature History - Antenna Control - Power On	49
12	Temperature History - Antenna Control - Power On	50 50
13	Temperature History - Synchronizer - Power On	51
14	Temperature History - Synchronizer - Power On	52
15	Temperature History - Synchronizer - Power On	53. ·
16	Temperature History - Synchronizer - Power On	54
17	Temperature History - Receiver - Power On	55 55
18	Temperature History - Receiver - Power On	56 56
19	Temperature History - Receiver - Power On	57
20	Temperature History - Transmitter or or On	58 °
21	Temperature History - Transmitter Fower On	5 9

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

LIST OF ILLUSTRATIONS AND DATA

Con't

Figure No.	<u>Title</u>	Page No.
22	Temperature History - Transmitter - Power On	60
23	Temperature History - Transmitter - Power On	61
24	Temperature History - System Junction - Power On	62
25	Temperature History - Lower Compartment - Power On	63
26	Temperature History - Lower Compartment - Power On	64
27	Temperature History - Antenna Array - Power On	65
28	Temperature History - Lower Compartment - Power On	66
29	Temperature History - Lower Compartment - Power On.	67
30	Temperature History - Support Channel - Power On	68
31	Temperature History - Dome Insulation - Power On	69
32	Temperature History - Dome Insulation - Power On	70
33	Temperature History - Lower Compartment - Power On	71
34	Temperature History - Cooling Air Manifolds - Power On	72
35	Temperature History - Antenna Control - Emergency	73
36	Temperature History - Antenna Control - Emergency	74
37	Temperature History - Antenna Control - Emergency	75
38	Temperature History - Synchronizer - Emergency	76
39	Temperature History - Synchronizer - Emergency	, 77
4 0	Temperature History - Synchronizer - Emergency	78
41	Temperature History - Synchronizer - Emergency	79
4 2	Temperature History - Receiver - Emergency	80
43	Temperature History - Receiver - Emergency	81
44	Temperature History - Receiver - Emergency	82
45	Temperature History - Transmitter - Emergency	83
46	Temperature History - Transmitter - Emergency	84
47	Temperature History - Transmitter - Emergency	85
կ8 Approve	Temperature History - Transmitter - Emergency d For Release 2000/04/12: CIA-RDP67B00657R000100210001-6	86

Approved For Release 2000/04/12: CIA-RDP67B00657R000100210001-6 LIST OF ILLUSTRATIONS AND DATA

Con't

Figure No.	<u>Title</u>	Page No.
49	Temperature History - System Junction - Emergency	87
50	Temperature History - Lower Compartment - Emergency	88
51	Temperature History - Lower Compartment - Emergency	89
52	Temperature History - Antenna Array - Emergency	90
53	Temperature History - Lower Compartment - Emergency	91
54	Temperature History - Lower Compartment - Emergency	92
55	Temperature History - Support Channel - Emergency	93
56	Temperature History - Dome Insulation - Emergency	94
57	Temperature History - Dome Insulation - Emergency	95
58	Temperature History - Lower Compartment - Emergency	96
59	Temperature History - Cooling Air Manifolds - Emergency	97
60	Temperature History - Synchronizer Internal Ambient	98
61	Temperature History - Synchronizer External Ambient - R.H.	99
62	Temperature History - Synchronizer External Ambient - L.H.	100
63	Temperature History - Synchronizer - R.H. Side	101
64	Temperature History - Synchronizer - L.H. Side	102

Table No.	<u>Title</u>	Page No.
1	. Summary of Air Flow - Pressure Data	. 32
2	Electrical Test Data	36

SECTION A

PHYSICAL DATA

1. Purpose of Test

The purpose of this test was to determine the temperature and cooling air flow-pressure characteristics of the KP-I Side Looking Radar equipment under simulated temperature-altitude environments for various operating modes.

2. <u>Description of Test Assembly</u>

The KP-I radar equipment was installed in a full scale simulated vehicle section for testing. The simulated vehicle section is shown in Illustrations 1 & 2 of the Appendix. The radar equipment tested consisted of the Transmitter, Receiver, Synchronizer, Antenna Control Unit, System Junction Unit, Antenna and Antenna Subsystem (see Figure 1). A working engineering model of the Synchronizer Unit was used. Mock-ups of the various other units were tested. These mock-ups closely simulated size, shape, and internal configuration of actual units. The units were electrically wired to dissipate the following heat loads during the operating modes:

Unit Description	Heat Dissipation	(Watts)
Antenna Control	120	
Receiver	275	
Transmitter	2700	
Antenna	50	
Antenna Drive	160	
System Junction	50	12
Synchronizer Unit	40 *	

Approved For Release 2000/04/12: CIA-RDP67B00657R000100210001-6 (3) 6 7 0 (13 (2 3" DIA COOLING AIR INLET 2" DIA INLET AIR INLET 9 COOLING AIR: 8 TEST ASSEMISLY FIGURE la

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12/RECIA-RDP67B00657R000100210001-6

NOMENCLATURE

1.	Lower Compartment Assembly
2.	Support Channel
3.	Dome
4.	Antenna Control Unit
5.	Synchronizer Unit
6.	Receiver Unit
7.	Transmitter
8.	System Junction Box
9.	Antenna Array
10.	Vertical Gyroscope and Housing
11.	Azimuth Gyroscope and Housing
12.	Accelerometer and Housing
13.	Cooling Air Manifold - Inlet
14.	Cooling Air Duct - Synchronizer Inlet
15.	Cooling Air Duct - Antenna Control Inlet
16.	Cooling Air Manifold - Exhaust
17.	Cooling Air Duct - Receiver Inlet
18.	Cooling Air Duct - Synchronizer Exhaust
19.	Cooling Air Duct - Antenna Control Exhaust
20.	Antenna Drive
21.	Antenna Support - AFT
22.	Antenna Support - FWD

2. *
Con't The Synchronizer Unit was operated in the BIT mode during
functional testing and dissipated approximately forty (40) watts.

Models of the vehicle cooling air ducts and manifolds (Illustrations 3&4 of the Appendix) were also installed in the simulated vehicle section. Air was supplied to the upper compartment through a three inch diameter inlet tube. The upper compartment air circuit consisted of a parallel air path through the Antenna Control and Synchronizer Unit (air flow equally divided) in series with the Receiver and Transmitter Units. The air flow was divided between the heat exchanger (cold plate) and the klystron collector heat sink in the Transmitter Unit. Air was then exhausted through ports in the support channel to the lower compartment.

Cooling air was introduced to the lower compartment through a two inch diameter supply line. Total flow passed through the System Junction Unit and was then divided equally between the accelerometer, the vertical gyroscope and the azimuth gyroscope.

3. <u>Description of Test Equipment</u>

Test apparatus were used to create, control and monitor the environments to which the equipment was subjected. Special test equipment was also used to evaluate the operation of the Synchronizer Unit under the extreme temperature-altitude conditions. A list of test equipment is given below:

Instrumenta- tion	Type	Range	Make	Model	S/N	Calibration Expires
Manometer	W	60-inches	Meriam Inst Co	33Kb35	M13852	3 -12- 64
Manometer	W	60-inches	fI	M202	H10993	3-12-64
Manometer	W	60-inches	11	M202	H1.0982	3-11-64
Manometer	W	34-inches	11	ML03J	J30873	2-20-64
Manometer	W	34-inches	81	M103	J3087107	2-20-64
Manometer	W	130-inches	# 1	M103	J30872	2-20-64
Manometer	W	130-inches	11	MLO3	J30871	2-20-64
Brown	IC	-150 - +1000°F	Minn Hny- well	156x12-P	940402	2-20-64
Brown	CC	-100 - + 600°F	п	156x12-P	797417	2-20-64
Strip Chart	CC	-100 - + 600 ⁰ F	n	Y153x(67) P16-x-(106)A1	501N L	2-20-64
Strip Chart	CC	-100 - + 350 ^o F	п	K153x84-C- II-III-41	R260594 0001	3-29-64
Strip Chart	IC	0 - 1200 [°] F	Ħ	Y153x(67) P16-x-(106)A	5114N L	3-27-64
Strip Chart	IC	0 - 1200°F	ti	153x62P16- x-23	6608	3-5-64
Digital Recorder	CC	± 100 M.V.	Systron	1231	307	Calibrate Daily
Oscilloscope	585A		Tectronix		006674	
Counter	522B		GAC	111917	EE-S118-	41 3-7-64
Power Supply		0 - 50 VDC	KEPCO	SM-36-5M	C-33810)
Power Supply		0 - 50 VDC	KEPCO	SC-32-2.5	C-16137	?
Power Supply			GAC	PS-171	010263	
Wattmeter		o - 2500 W	Weston	310	16973	2-20-64
GAC Test Rack	:		Std Relay			

SECTION B

TEST PROCEDURES

1. <u>Introduction</u>

This test procedure defines the chronological sequence of events, methods of performing the tests, and use of the test equipment.

2. Environmental Requirements

Tests were performed at reduced pressures simulating an altitude of at least 75,000 ft. and not exceeding 100,000 ft. Chamber ambient temperatures were maintained so that skin temperatures of the simulated vehicle section were stabilized at 525 +25 of. Altitude and section skin temperatures were maintained even with the introduction of cooling air with various mass flow rates from 1.5 to 11.0 lbm/min.

3. Functional Test Requirements

Functional tests were conducted on the Synchronizer Unit to detect circuit malfunctions, frequency deviations and operational degradation encountered under the simulated environment. Testing consisted of a pre-test performance check, a performance check under the simulated environments and a post-test performance check. Pre-test and post-test checks were made at standard temperature and pressure. The following function parameters were measured during the performance checks:

- a) PRF Trigger
- b) Transmitter Trigger

3. Functional Test Requirements (Con't)

- c) Range Marks
- d) Sweep Trigger
- e) Film Drive
- f) Data Block Command
- g) Motion Compensation Signals
- h) Altimeter

In addition, the Synchronizer Power Supply was provided with external loads and performance checked during the temperature-altitude test. The Synchronizer Unit was externally energized during the testing.

4. Environmental Test Procedures

A) Facility - The facility consisted of a large temperature-altitude chamber with the capability of maintaining altitudes in excess of 80,000 ft. with high air mass rates (25-30 lbm/min) discharging into the chamber. High temperature capability was obtained inside an insulated enclosure within the chamber. High pressure - high temperature air was the heating medium used within the enclosure.

B) Instrumentation

- 1) Thermocouples Thermocouples were used to monitor temperatures throughout the test assembly. Thermocouples were located to measure the following temperatures:
 - a) Cooling Air Temperatures
 - b) Unit Skin Temperatures

- c) Inner and Outer Assembly Wall Temperatures
- d) Component Temperatures
- e) Inner Ambient Air Temperatures

The temperatures measured by these thermocouples were recorded on Brown Strip Chart Recorders and a Systron Model 1231 Digital Recorder. Thermocouple locations are given in figures 2 thru 7.

2) Static Pressure Taps - Fourteen static pressure taps were installed in the equipment to monitor cooling air flow and to determine pressure drop information through ducts and electronic units. Pressure taps were located as follows:

Tap Number	Location
Pl	3" diameter duct inlet
P ₂	3" diameter duct - downstream from metering orifice
P ₃	Inlet duct between Antenna Control and Synchronizer Units
P ₁₄	Outlet duct between Antenna Control and Synchronizer Units
P5	Transmitter inlet plenum
P ₆	Ambient - adjacent to Transmitter Unit
P ₇	2" diameter duct inlet
P8	2" diameter duct - downstream from metering orifice.
Р9	5/8" dia. air supply hose (to azimuth gyro) - adjacent to System Junction Unit
P ₁₀	5/8" dia. air supply hose (to vertical gyro) - adjacent to System Junction Unit

Tap Number	Location
P_{11}	Forward Lower Compartment - Ambient
P ₁₂	Aft Lower Compartment - Ambient
P13	5/8" diameter air supply hose (to accelerometer) - adjacent to System Junction Unit
P_{γ}),	Air duct - downstream from 3" metering section

Pressure tap locations are shown in Figure 8. Pressure measurements were made on water or mercury manometers as required. The following differential pressures were measured:

$$\Delta P_{1-2}$$
, ΔP_{3-4} , ΔP_{4-5} , ΔP_{5-6} , ΔP_{7-8} , ΔP_{9-12} , ΔP_{10-12} , ΔP_{13-12} and ΔP_{14-3} .

C) Cooling Air Flow Rate Measurement

- 1) Instrumentation Thin plate orifice metering sections were installed by GAC and the test contractor as depicted in Figure 8. The test contractors metering sections were used to set and regulate the cooling air flow rate at the required test levels. The GAC flow sections were used to check the flow conditions set by the test contractor.
- 2) GAC Orifice Design and Calibration For a square edge orifice, the fluid flow rate is proportional to the pressure drop and fluid density as given below:

$$W = KA (2 pg \Delta P)^{1/2}$$
 (1),

where W - Fluid mass flow rate

K - Velocity of approach correction factor

A - Area of the orifice opening

p - Fluid density

g - Gravitational constant

▲ P - Pressure drop across the orifice

To apply Eq. 1 and obtain accurate measurement of flow rate, the orifice opening must be sized so that Reynolds Number is greater than 100,000.

Since the flow rate, as given in Eq. 1, is calculated using the value of inlet density, a fluid expansion factor must be applied when measurement of altitude conditions is required. An expression for the expansion factor is,

$$Y = 1 - \left[0.41 + 0.35 (\beta)^{4}\right] \frac{\Delta P}{kP}$$
 (2),

where

Y - Expansion factor

eta - Orifice to tube diameter ratio

 $\ensuremath{k\text{--}}$ Ratio of specific heats of the fluid

P - Inlet absolute pressure

Combining equations (1) and (2), the expression for compressible fluid flow through a square edge orifice is,

$$\dot{W} = KAY \left(2 \text{ pg } \Delta P \right)^{1/2} \tag{3}$$

From the above design information the following flow equations were determined for calculation of inlet cooling air supply to the test assembly.

Three inch diameter supply to upper compartment,

$$W_1 = 8.7 \, Y \sqrt{\frac{P_{1/\Delta}P_2}{T_{ex}}} \tag{4},$$

Two inch diameter supply to lower compartment,

$$W_2 = 8.13 Y \sqrt{\frac{P_7 \gamma \Delta P_8}{T_{IN}}}$$
 (5)

Calibration tests using sonic nozzles (accuracy * 2%) were performed at sea level and simulated altitude conditions. From the results it was concluded that the cooling air mass rate could be determined within seven (7) percent accuracy.

D) Set Up

The test assembly (with the KP-I Radar equipment installed) was positioned on a test stand in the insulated enclosure within the temperature-altitude chamber as shown in Figure 9.

Thermocouple leads, cable assemblies and power leads were insulated and routed through the high temperature ambient by means of insulated ducts. Thermocouple leads were connected to chamber terminal boards or routed directly through chamber ports to the recording devices. Power leads were connected to variacs outside the chamber for proper voltage adjustment. Cables (from the Synchronizer Unit) were attached to test equipment outside the chamber. Pressure taps were connected to manometers outside the chamber.

A three (3) inch air supply line was connected to the test assembly. A second air supply line was attached to the lower compartment air supply duct (2 inch line). A motorized regulator valve was installed on the cooling air exhaust line. A motorized control was also connected to the Transmitter damper control.

Pressure drops through the Antenna Control and Synchronizer units were adjusted so that the cooling air would divide equally between the two packages. Flow through the Transmitter Unit was adjusted for an air flow of 2.5 lbm/min. around the klystron collector and 7.0 lbm/min. through the cold plate.

E) Thermal Test Procedure

- 1) Pre-test Flow Data Check -.Pressure tests were conducted at both sea level and altitude prior to temperature testing. Pressure information and cooling air flow data was recorded for $W_1 = 9.5$ lb/min and $W_2 = 1.5$ lb/min.
- 2) Warm-Up The assembly skin temperature was raised to a temperature of 525 +25 oF by introducing hot air into the chamber at a temperature not exceeding 725 oF. Chamber ambient pressure was reduced to a value simulating an altitude of 80,000 90,000 feet. Assembly skin temperatures were maintained at 525 +25 oF. Internal assembly temperatures were stabilized and maintained for 15 minutes. Cooling air was gradually introduced to maintain the temperature of the dome insulation inner wall to 120 oF until

maximum flow was obtained (9.5 lbm/min). Pressure and temperature data was recorded.

3) Stabilization Tests

- a) Run No. 1 Stabilization, Radar Equipment Non-operating With internal assembly temperatures stabilized as per the warm-up conditions, cooling air (W₂ = 1.50 lb/min @ 80°F) was introduced to the lower compartment. Cooling air flow to the upper compartment (W₁) was maintained at 9.5 lb/min. Internal assembly temperatures were allowed to stabilize. Pressure and temperature data were recorded throughout the stabilization period.
- b) Run No. 2 Stabilization, Radar Equipment Energized The radar equipment was energized with internal temperatures
 stabilized at values obtained in Run No. 1. Cooling air
 flows for the upper and lower compartments were maintained at
 9.5 lb/min. and 1.5 lb/min. respectively. The inlet cooling
 air temperature was 80°F. Functional tests were performed on
 the Synchronizer Unit when temperature stabilization was
 reached. Pressure and temperature data were recorded throughout the test period.
- c) Run No. 3 Stabilization at Emergency Conditions Emergency operating conditions were introduced with internal
 temperatures stabilized as per Test Run No. 2. The radar

equipment was de-energized, and cooling air flow reduced to 0.75 lb/min. in both the upper and lower compartments. Cooling air temperature was held at 80°F and external skin temperatures were maintained at 525°F. Operation at these conditions continued for 15 minutes after internal assembly temperature stabilization. Pressure and temperature data were recorded throughout the test.

- d) Run No. 4 Radar Equipment Non-Operating Cooling air flow rates were increased at the end of the stabilization period obtained in Test Run No. 3. Flow in the upper compartment was increased to 7.5 lb/min. W2 was increased to 1.5 lb/min. Cooling air inlet temperature was maintained at 80°F, and internal assembly temperatures were allowed to stabilize. Pressure and temperature data were recorded.
- e) Run No. 5 Radar Equipment Energized The radar equipment was energized at the end of the stabilization period of Test Run No. 4. Cooling air flow and temperature was maintained at the values specified for Run No. 4. Operation was maintained for 15 minutes after internal assembly temperatures had stabilized. Temperature and pressure data were recorded throughout the test.

- f) Run No. 6 Stabilization at Emergency Conditions The radar equipment was de-energized and cooling air flow was reduced to simulate emergency conditions. Cooling air flow rate W₁ was reduced to 0.9 lb/min. W₂ was reduced to 0.6 lb/min. Cooling air inlet temperature was 80°F. Assembly skin temperatures were maintained at 525°F. Emergency conditions were maintained until stabilization was obtained. Pressure and temperature data were recorded throughout the test period.
- g) Run No. 7 Radar Equipment Non-Operating Cooling air flow rates were increased at the end of the stabilization period obtained in Test Run No. 6. Flow in the upper compartment (W₁) was increased to 9.0 lb/min. Flow in the lower compartment (W₂) was increased to 1.5 lb/min. The cooling air inlet temperature was 80°F. Internal temperatures were allowed to stabilize.
- h) Run No. 8 Radar Equipment Operating The radar equipment was energized at the end of Test No. 7. Cooling air flow and temperature was maintained as per Test No. 7. Operation was maintained for 15 minutes after internal temperatures were stabilized. Temperature and pressure data were recorded throughout the test.

	NOMENCLATURE
7.C.#	DESCRIPTION
123456789011	INLET COOLING AIR EXHAUST COOLING AIR EXTERNAL-AMBIENT INTERNAL-COMPONENT INTERNAL-COMPONENT INTERNAL-CHASSIS EXTERNAL-TOP COVER EXTERNAL-L.H.SKIN EXTERNAL-R.H.SKIN EXTERNAL-LOWER SKIN

ANTENNA CONTROL - THERMOCOUPLE LOCATIONS
FIGURE 2

	SIGNATURE ATURE
	NOMENCLATURE
T.C. #	DESCRIPTION
12	INLET COOLING AIR
13	EXHAUST COOLING AIR
14	EXTERNAL - AMBIENT
15	EXTERNAL - AMBIENT
16	EXTERNAL - AMBIENT
17	INTERNAL - P.C. BOARD
18	INTERNAL - P.C. BOARD
19	INTERNAL - POWER SUPPLY
20	INTERNAL - HEAT SINK
21	INTERNAL - BETWEEN P.C. BOARDS
22	INTERNAL - BETWEEN P.C. BOARDS
23	INTERNAL - FREE AIR
24	INTERNAL - FREE AIR
25	EXTERNAL - TOP COVER
26	EXTERNAL - R.H. SIDE
27	EXTERNAL - L.H. SIDE

SYNCHRONIZER - THERMOCOUPLE LOCATIONS FIGURE 3

	NOMENCLATURE
T.C.#	DESCRIPTION
28	INLET COOLING AIR
29	EXHAUST COOLING AIR
30	EKTERNAL - AMBIENT
3/	CHANNEL EXHAUST AIR
32	INTERNAL- BETWEEN P.C. BOARDS
33	INTERNAL - P.C. BOARD
34	INTERNAL - FREE AIR
35	EXTERNAL - TOP COVER
36	EXTERNAL - TOP COVER
37	EXTERNAL - R.H. SIDE
38	EXTERNAL- L.H. SIDE

RECEIVER - THERMOCOUPLE LOCATIONS FIGURE 4

	NOMENCLATURE
T.C.#	DESCRIPTION
39	INLET COOLING AIR
40	EXHAUST COOLING AIR- COLLECTOR
	HEAT SINK
41	EXHAUST COOLING AIR - COLD PLATE
42	INTERNAL-COLD PLATE
43	INTERNAL - COLD PLATE
44	INTERNAL-COLLECTOR HEAT SINK
45	EXTERNAL-AMBIENT
46	EXTERNAL-AMBIENT
47	EXTERNAL -AMBIENT
48	EXTERNAL-AMBIENT
49	EXTERNAL - TOP COVER
50	EXTERNAL-TOP COVER
5/	EXTERNAL - COLD PLATE
5Z	EXTERNAL - COLO PLATE
53	EXTERNAL - L.H. SIDE

TRANSMITTER MODULATOR - THERMOCOUPLE LOCATIONS FIGURE 5

NOMENCLATURE		
T.C.#	DESCRIPTION	
54	INTERNAL - COMPONENT	
55	INLET COOLING AIR	
56	EXTERNAL - SKIN	
57	INTERNAL - FREE AIR	
58	INTERNAL - FREE AIR	
59	INTERNAL - COMPONENT	

SYSTEM JUNCTION-THERMOCOUPLE LOCATIONS
FIGURE 6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6 - 21 -

LOWER COMPARTMENT - THERMOCOUPLE LOCATIONS FIGURE 7a (SEE FIGURE TO FOR NOMENCLATURE)

Approved For Release 2000/04/12: CIA-RDP67B00657R000100210001-6

SECTION VIEW L'KG OUTB'D @ TRANS. MOD. UNIT

DOME AND SUPPORT CHANNEL-THERMOCOUPLE LOCATIONS
FIGURE 7 b
(SEE FIGURE 18 FOR NOMENCLATURE)

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

@ ANTENNA CONTROL UNIT

SECTION VIEW LK'G OUTB'D

@ ANTENNA CONTROL UNIT

DOME AND SUPPORT CHANNEL - THERMOCOUPLE LOCATIONS
FIGURE 70
Approved For Release 2000/04/f2 CVA-RDP69806657 R000106210001-6

FIGURE 7 d

LOWER COMPARTMENT, DOME, SUPPORT CHANNEL AND MISCELLANEOUS THERMOCOUPIE NOMENCLATURE

T.C. No.	Description
60	Accelerometer Body
61	Vertical Gyroscope Body
62	Azimuth Gyroscops Body
63	Vertical Gyroscope Housing
64	Azimuth Gyroscope Housing
65	Accelerometer Housing
66	Accelerometer - Air Supply Tube
67	Vertical Gyroscope - Air Supply Tube
68	Accelerometer - Air Exhaust
69	Antenna Array
70	Antenna Drive
71	Antenna Support
72	Antenna Support
73	Lower Compartment = Insulation
74	Lower Compartment - Insulation
7 5	Lower dempartment = Insulation
76	Lower Compartment - Free Air
77	Lower Compartment = Free Air
78	Lower Compartment = Insulation
79	Lower Compartment = Insulation
· 80	Lower Compartment = Free Air

FIGURE 7 d Con't

	25	
-	25	-

T.C. No.	Description			
81	Lower Compartment - Free Air			
82	Lower Compartment - Free Air			
83	Lower Compartment - Free Air			
84	Air Exhaust to Lower Compartment			
85	Air Exhaust to Lower Compartment			
86	Dome - Insulation			
87	Dome - Insulation			
88	Dome - Insulation			
89	Support Channel			
90	Support Channel			
91	Support Channel			
92	Free Air - Between Channel and Dome			
93	Free Air - Between Channel and Dome			
94	Dome - Insulation			
95	Dome - Insulation			
96	Dome - Insulation			
97	Dome - Insulation			
98	Dome - Insulation			
99	Support Channel			
100	Support Channel			
101	Support Channel			
102	Free Air - Between Channel and Dome			
103	Free Air - Between Channel and Dome			
•				

FIGURE 7 d Con't

T.C. No.	Description
104	Dome - Insulation
105	Inlet Manifold - Outer Skin - FWD
106	Inlet Manifold - Outer Skin - AFT
107	Exhaust Manifold - Outer Skin - FWD
108	Exhaust Manifold - Outer Skin - AFT
109	Assembly Exhaust Air

FIGURE 8 a COOLING AIR FLOW SCHEMATIC -

FIGURE NO. 9

Test Set-Up

SECTION C

TEST RESULTS

1. General

A. The thermal test was conducted on the KP-I Radar Equipment during period 7 January to 13 January 1964. Tests were conducted at the AiResearch Manufacturing Company. Tests were witnessed by the following:

L。	L.	Harmon	GAC	D/404A
Н。	D.	Nutt	GAC	D/404A
W.	M.	Boley	GAC	D/451A

- B. The equipment was exposed to a high temperature ambient with outer skin temperatures maintained at 525°F for approximately 50 hours. Chamber ambient pressure was reduced to simulate an altitude of 80,000 feet or better during 43 hours of this time.
- C. The following tests were conducted on the radar equipment:
 - 1. Warm-Up
 - 2. Temperature stabilization with the radar equipment non-operating. Cooling air flow rates, W_1 and W_2 , equal to 9.5 lb/min. and 1.5 lb/min. respectively (Test Run No. 1).
 - 3. Temperature stabilization with the radar equipment operating. $W_1 = 9.5 \text{ lb/min}$; $W_2 = 1.5 \text{ lb/min}$. (Test Run No. 2)
 - 4_{\circ} Temperature stabilization at emergency conditions (Test Run No.3).
 - 5. Temperature stabilization with the radar equipment non-operating. $W_1 = 6.9 \text{ lb/min}$; $W_2 = 1.5 \text{ lb/min}$. (Test Run No. 4).

1. General (Con't)

- 30 -

- 6. Temperature stabilization with the radar equipment operating. $W_1 = 6.9 \text{ lb/min}$; $W_2 = 1.5 \text{ lb/min}$ (Test Run No. 5).
- 7. Temperature stabilization at emergency conditions. $W_1 = 0.9 \text{ lb/min;} \quad W_2 = 0.6 \text{ lb/min. (Test Run No. 6).}$
- 8. Temperature stabilization with the radar equipment non-operating. $W_7 = 7.5 \text{ lb/min}$; $W_2 = 1.5 \text{ lb/min}$. (Test Run No. 7).
- 9. Temperature stabilization with the radar equipment operating.

$$W_1 = 7.5 \text{ lb/min}$$
; $W_2 = 1.5 \text{ lb/min}$. (Test Run No. 8).

D. Cooling Air Flow Measurement - Values of cooling air flow rates obtained from the internal monitor orifice indicate that the testing contractor maintained air flow rate within the specified tolerance for the following tests:

3" Dia. Supply Line	2" Dia	. Supply Line
Warm-Up	Ru	n No. 1
Run No. 1	Ru	n No. 2
Run No. 2	Ru	n No. 3
	Ru	n No. 4
	Ru	n No. 5
	Ru	n No. 6
	Ru	n No. 7
	Ru	n No. 8

1. General (Con't)

No flow values were obtained for the three inch diameter supply line using the GAC flow section during Runs 3 and 6. Specified flow values were below the design range of the orifice.

The following flow discrepancies were observed during Runs 4, 5, 7 and 8.

Run No.	GAC Flow Section	Testing Contractor's Flow Section
4	6.9 lb/min.	7.5 lb/min.
5	6.9 lb/min.	7.5 lb/min.
7	7.5 lb/min.	9.0 lb/min.
8	7.5 lb/min.	9.0 lb/min.

The above discrepancies were noted during testing and the testing contractor was made aware of the problem. The testing contractor was unable to determine the cause of the discrepancies and the tests were continued. Subsequent investigation showed that the test facility flow values were inconsistent with air circuit pressure drops as well as with the GAC flow section measurement. Therefore, for the purpose of data analysis, GAC flow values were used. Calibration data indicate that these values are accurate within 7 percent.

2. Test Results

A. Pre-test and Warm-up - Pressure information and cooling air flow data for the pre-test flow check is given in Table 1. Pressure data recorded during and after the warm-up phase is also recorded.

Approved For Release 2000/04/12 ; CIA-RDP67B00657R000100210001-6

3.25 5.3 3.5 5.0 5.0 # 4 D 3 (01/11/20) 80. 5.7 Ġ P.4 ("H42) o i 5.8 6.1 8.3 8. 2.3 6.1 /:/ N 1. 1 K (34/2) 28.7 0.62 29.6 25.5 6.8 10.3 151 1.2 M 0 13 1/2 ("Hga) 2.50 2.80 2.35 2.5 2.5 2.45 1.6 6.3 2.70 1.5 2.15 ("Hga) 1.35 2.25 245 2.20 P.9 1.7 1 1.7 ? 35.2 6.81 37.0 6.6 34.6 35.0 10 AP12 (".420) 33.4 151 31.0 0 9 dP,2 ("420) 13.5 14.2 12.6 1 W 601 12.0 0.0 6.4 Ò Ġ 0 1 10/8 ("420) 0.0 5.3 8.6 1,00 5.3 8.3 8.3 5.3 2.7 (0 P7 (1/19a) 7.45 3.45 7.35 7.2 19 3. 7.4 2.6 V 41 Vi 54Pc ("420) 0 5.55 6.0 1.62 11.3 13.4 18.4 2.2 1:0 14.2 14.7 4.1 13 7.25 41PS ("420) 7.15 9.65 1.50 8.6 e e is 3.7 1.2 6.1 6. 9.1 0.95 26.9 (mH2O) 27.0 26.0 35.0 35.4 24.6 36.1 6.0 3 DP4 M 9.2 0 10.5 5.6N \triangleleft 2.95 (64,,) 7.5 7.5 3.0 0.0 , DP2 5 9.6 74 9.6 13.1 ď. ("Hga) 35.5 15.2, 15.4 32.6 8. 12.3 12.3 M 6:11 1.2 53 1:// 15 WE WE 7. 1.50 0.60 1.50 1.50 1.50 1.8 0.61 1.5 1 0 (NIW/W87) 9.5 7.50 1.50 10.2 9.5 12: 0.91 0.91 8.5 2.0 9.5 6. ž 88,000 000/88 75,000 000/18 75,000 000'06 15,000 (FEET) 25,000 00'000 76,000 5.6. 5.7. 6.4 6.8 SEA LEVEL CHECK PRE-N/ARM \mathcal{O} TEST 1 *ŏ*∕ 5 3 4 W

SUMMARY OF DIR FLOW-

TABLE NO.

PRESSURE DATA

METERED IN INCIES OF WITER ("420)

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

A discrepancy in pressure data was noted at the completion of the warm-up condition. Static pressure losses across units for a particular flow were observed to be less after the assembly was subjected to temperature and altitude than before.

A change in the status of chamber availability by the test contractor made it impossible to investigate the obvious flow problems that had arisen. It was felt that the test period remaining at this point was not sufficient to undertake disassembly of the enclosure and test assembly for investigation and still perform the required stabilization tests. The test was therefore continued in order to gain as much data as possible in the remaining test time.

discrepancy noted during the warm-up test has shown that a break had occurred in a seam of the Antenna Control Unit. This allowed cooling air loss and resulted in static pressure changes throughout the assembly.

Tests conducted at GAC have also shown that air losses of about 28% were experienced during the test runs. It was found that the percentage loss did not vary appreciably with different flow rates. Flow through the Synchronizer Unit was from 8-10% lower than specified values. Flow into the Antenna Control Unit was conversely 8-10% higher than the specified values. It was found, however, that only

50% of this air remained in the air circuit after entering the Antenna Control Unit. Measured flow values for the various units at each thest condition is given below:

	Air Flow (lbm per min.)					
Unit	Warm-Up	Run 1 and 2	Run 3	Run 4 and 5	Run 6 a and 6 b	Run 7 and 8
Antenna Control	5.54	5.17	0.38	3.79	0.48	4.07
Synchronizer	<u>4.66</u>	4.33	0.33	3.11	0.43	3.43
Receiver	7.33	6.83	0.50	4.95	0.65	5.40
Transmitter	7.33	6.83	0.50	4.95	0.65	5.40
System Junction	0	1.50	0.75	1.50	0.60	1.50
Accelerometer	0	0.50	0.25	0.50	0.20	0.50
Vertical Gyroscope	0	0.50	0.25	0.50	0.20	0.50
Azimuth Gyroscope	0	0.50	0.25	0.50	0.20	0.50
Leakage	2.87	2.67	:21	1.95	0.26	2.10

Pressure information and cooling air flow data for Test Runs 1 through 8 inclusive is recorded in Table Al of Appendix. Pressure information reflects the above flow conditions. No flow discrepancies were noted in the lower compartment.

C. Test Run #1 - Stabilized temperatures with the radar equipment non-operating is given at t = 0 in Table A2 of the Appendix.

D. Test Run # 2

- 1. Environmental Temperature data for all monitored points is given in Table A2 of the Appendix. Plots of the temperature histories for points of prime concern are given in Figures Al thru A29 inclusive. These plots show the temperature response of the radar equipment from non-operating stabilized temperatures to operating stabilized temperatures with $W_1 = 9.5 \text{ lb/min.}$
- 2. Functional Test A functional test was performed on the Synchronizer Unit when temperature stabilization was reached. In general, operation was satisfactory and little degradation in performance was noted. Only two electrical problems were encountered. Temperature sensitive circuitry caused a film drive malfunction. A failure was also noted in the clutter-lock circuitry. Subsequent inspection showed this to be caused by a damaged bandpass filter. There was no degradation noted in the performance of the Synchronizer power supply during the temperature altitude testing. Electrical test data for the functional test is given in Table 2.
- E. Test Run #3 Cooling air flow problems were encountered while subjecting the test assembly to the emergency test conditions. The required flow of 0.75 lb/min. was too small for accurate measurement

TABLE 2

Test Data

KP-I Synchronizer Checkout

1. PRF TRIG

Repetition rate (measured with a Berkely counter)

	Test No. 1 Room Temperature	Test No. 2 High Alt. & Temp.
Range 1	1850 cps	1850 cps
Range 4	2233	2233
Range 5	1961	1961

Range No. 1 pulse characteristics measured with the oscilloscope. Termination 100 ohms.

Test 1		Test 2
Tr	.055 usec	.060 usec
Tf	.160	·160
Pw	3.52	3.52
Amp	5.8	5.65

2. XMTR TRIG

Characteristics measured with oscilloscope; termination 100 ohms

	Test 1	Test 2
Tr	.075 usec	•100
Tf	.100	。100
Pw	3.4	3.4
Amp	5.65 volts	5.6 volts
Delay fro	om 11.6 usec	12 usec
Jitter	.003	•003

- 36 -

TABLE 2

Con't

3. RANGE MARKS

Not Available -- (Range mark test output present, but insufficient to ascertain range mark characteristics -- faulty connection)

4. SWEEP TRIGGER

	Test 1	Test 2 (High Alt. & Temp.)
Amp	5.5 volts	5.6 volts
Pw	3.5 usec	3.6 usec
Tr	.110	.100
Tf	.120	.120

Delay From PRF TRIF

Range	Test 1	Test 2
1	292.5 usec	294 usec
2	353	355
3	400	401
4	15.5	15.5
5	15.5	15.5
6	76	77.5
7	122.5	123.5
8	184.5	186
9	245.5	248
10	307	308.5
11	369.2	370

NOTE: The delay from PRF was measured with the delayed sweep control on the oscilloscope. The above deviations are due to errors in

measurement since any errors in the countdown chain would have been Approved For Release 2000/04/12: CIA-RDP67B00657R000100210001-6

TABLE 2

Con't

5. DATA BLOCK COMMAND - Termination 100 ohms

	Test 1	Test 2
Amp	5.3 volts	5.2 volts
Pw	3.1 usec	3.2 usec
Tr	.080	.100
Tf	.100	.•120
		ii .

6. FILM DRIVE (Sin & Cos)

	Test 1	Test 2 (High Alt. & Temp.)
Amp	8.2 volts	8 volts
Tr	15 usec	15 usec
Tf	15 usec	10 usec
Frequency	400 cps	200 cps

7. MOTION COMPENSATION

The motion compensation circuitry operated properly at room temperature, but failed to respond at the 2nd test.

8. ALTIMETER

Altitude Setting	Test 1	Test 2
10,000	0001100101	0001100101
50,000	0100011001	0100011000
75,000	0101110011	0101110011
100,000	1111110110	1111110010

by the test facility flow metering apparatus. The monitor orifice within the test assembly was used to measure and set flow. Values obtained were questionable because the orifice was not designed or calibrated for flows of this magnitude. Pressure information measured during subsequent emergency test runs indicate upper compartment flow was below required values. Flow in the lower compartment (W_2) was satisfactorily regulated by the test facility metering section.

The transistion from operating flow to emergency flow conditions made it difficult to control inlet cooling air temperatures. Inlet temperatures varied considerably during the period of stabilization. The effects of air temperature variation is noted in the temperature history curves (Figures A32 through A40 of the Appendix). Temperature data for all thermocouple locations recorded during Test Run #3 are given in Table 3 of the Appendix.

It should be noted that stabilized temperature values are higher than would be normally expected because of the uncontrolled cooling air temperature and low flow conditions complicated by the break in the Antenna Control Unit.

F. Test Run #4 - Stabilized temperature with the radar equipment non-operating is given at t = 0 in Table A4 of the Appendix. As was previously shown, W_1 = 6.9 lbm per min. and W_2 = 1.5 lbm per min.

2. <u>Test Results</u> (Con't)

- G. Test Run #5 Temperature data for all monitored points is given in Table A4 of the Appendix. Temperature history curves (Figures A1 through A28 and Figure A30 in the Appendix) are given for points of prime concern. These plots show the temperature response of the radar equipment beginning with non-operating stabilization to a operating stabilized condition with $W_1 = 6.9$ lb/min. ans $W_2 = 1.5$ lb/min. It should be noted that many temperature values are high as a result of the air leakage from the Antenna Control Unit.
- H. Test Run #6 Cooling air problems were again encountered while attempting to simulate emergency operating conditions. The cooling air flow rate was adequately measured and controlled by installation of an additional metering orifice in the test facility. The major problem encountered was in maintaining the cooling air at a constant temperature.

Time required for the installation of the additional orifice and the poor regulation of the cooling air temperature during stabilization made it impossible to examine the time-temperature response of the system when subjected to emergency conditions. In addition to this, it was not possible to obtain cooling air at 80°F in the 3 inch diameter supply line and in the 2 inch diameter supply line simultaneously. As a result, two stabilization tests were conducted. Temperatures were stabilized both with the inlet temperature of

the 3" supply at 80°F and with the inlet temperature of the lower compartment cooling air at 80°F. The inlet temperature of W₂ was 120°F when W₁ was maintained at 80°F; the inlet temperature of W₁ was 45°F when W₂ was maintained at 80°F. Emergency stabilized temperatures are given in Tables No. A6 and A7 of the Appendix. It should be noted that some temperatures are excessive because of the air leakage in the Antenna Control Unit.

I. Test Runs #7 & #8 - Stabilized temperatures with the radar equipment non-energized is given at t = 0 in Table A5 of the Appendix. It should be noted that the required flows for these tests were $W_1 = 9.0 \text{ lb/min.}$ and $W_2 = 1.5 \text{ lb/min.}$ As was previously shown, the air flow in the 3 inch diameter supply line was not maintained at the required level for Tests 7 and 8. For purposes of data evaluation, the GAC flow value ($W_1 = 7.5 \text{ lb/min.}$) should be used.

Curves showing time-temperature response of the radar equipment from non-operating to energized stabilization are given in the Appendix (Figures Al through A28 and Figure A31). Temperature data for all points monitored during this test are given in Table A5 of the Appendix.

2. <u>Test Results</u> (Con't)

J. Synchronizer Unit, Temperature Effects - As was previously noted, two electrical failures were encountered while operating during Test Run No. 2. Post test inspection of the Unit also showed mechanical damage that occurred at some point during the test. The irridite finish on the Synchronizer Case was oxidized. Sleeving on wiring within the unit was found to have shrunk and split. Solder connections on the interconnecting cables had melted and flowed into the connector. It was also found that a bandpass filter (clutter-lock circuit) had burst from temperature and pressure effects.

SECTION D

DATA ANALYSIS

1. General

Temperature and pressure data obtained from the temperature-altitude tests performed on the radar equipment in many cases required adjustment to compensate for the air leakage from the Antenna Control.

Flow through the Antenna Control and Synchronizer Units for any particular energized run varied by less than 10% from the specified flow. Therefore, temperatures in these units are comparable to those that would have been encountered without the rupture. Temperature correction for variations in cooling air inlet temperatures was required, however, to compare data from the various test runs.

Cooling air flow through the Receiver and Transmitter Units for any particular energized run was reduced about 28% from specified values as a result of the Antenna Control rupture. Temperature data recorded for points associated with these units were therefore in excess of values that would be expected in the actual case. Pressure information for these boxes was low because of the reduced flow.

The cooling air leakage and inlet temperature problems complicated by the parallel - series air flow circuit necessitated a detailed analysis of each thermocouple temperature history for all runs in order to adjust data to required flow conditions. The analysis included:

- a) Determination of test flow values at the point of concern.
- b) Comparison and extrapolation of test data for the various flow and temperature conditions.

1. General (Con't)

- c) Examination of the overall heat transfer coefficient for each unit at the various test conditions.
- d) Comparison of cooling air temperature changes through the different units for each test run.
- e) Determination and comparison of non-electrical heat loads as a function flow.
- f) Determination of heat flow paths and directions as indicated by test parameters.
- g) An evaluation of the compatibility of the recorded temperature information with theoretical conditions imposed by the test parameters.

2. Operating Stabilization

Data from Test Runs #2, 5 and 8 was considered in determining temperature values for cooling air flow rates of 8.5 lb/min and 1.5 lb/min. for the 3 inch diameter supply line and 2 inch diameter supply line respectively. Flow conditions for the test runs were as follows:

TEST NO.	1 & 2	4 & 5	7 & 8
Flow lb/min.	9.5	6.9	7.5
Inlet Temperature ^O F	79 ⁰	86°	70°
Antenna Control Flow lb/min.	5.17	3.79	4.07
Synchronizer Flow lb/min.	4.33	3.11	3.43
Receiver & Transmitter Flow lb/min.	6.83	4 • 95	5.40

2. Operating Stabilization (Con't)

•	1 & 2	4 & 5	7 & 8
TEST NO.	2.67	1.95	2.10
Leakage Rate lb/min.	1.5	1.5	1.5
System Junction Flow 1b/min.	0.5	0.5	0.5
Accelerometer Flow lb/min.	0.5	0.5	0.5
Vertical Gyroscope Flow lb/min.	•	0.5	0.5
Azimuth Gyroscope Flow lb/min.	0.5		·

This data in conjunction with tabulated data and temperature history curves was used in determining adjusted time-temperature response characteristics of the radar equipment and the test apparatus. Curves showing the temperature response of the radar equipment from non-operating stabilization to temperature stabilization in the energized condition are given in Figures 15 through 34 inclusive for $W_1 = 8.5 \text{ lb/min.}$ and $W_2 = 1.5 \text{ lb/min.}$ and assembly inlet temperature of 80°F.

3. Non-Operating Stabilization

Stabilized values of unit and assembly temperature were determined for 8.5 and 1.5 lbm/min. cooling air flow through the three inch and two inch supply lines, respectively. Test Run No's. 1, 4 and 7 were considered at stabilized temperature conditions and at the flow conditions presented above. Temperatures determined are given at t = 0 on Figures 15 through 34 inclusive.

4. Emergency Temperature Stabilization .

Data from Test Runs #3 and 6 were considered in determining adjusted emergency temperature values. Temperature data from Test Run #6 showed temperature stabilization for W_1 = 0.9 lb/min. and W_2 = 0.6 lb/min. Variations in cooling air inlet temperatures for W_1 and W_2 necessitated two stabilization periods. This resulted in a more accurate temperature survey of the test assembly. An accurate measurement of flow for Run #3 was not obtained. Pressure data taken for this run, however, indicated a flow of 0.5 lb/min. or less through the upper compartment for most of the test time. Results of Run #3 give an indication of the time-temperature response characteristics of the radar equipment under emergency conditions.

Analysis of the above data enabled formulation of emergency temperature data for an upper compartment cooling air flow rate (W_1) of 0.9 lb/min. and a lower compartment cooling air flow rate (W_2) of 0.8 lb/min. Curves showing the temperature response of the radar equipment from operating stabilized conditions to temperature stabilization during vehicle emergency conditions are given in Figures 35 through 59.

5. Pressure Information

Pressure data recorded for the various flow conditions required adjustment to compensate for air leakage at the Antenna Control Unit rupture. Values measured for \triangle Pl4-3, \triangle P3-4, \triangle P4-5, and \triangle P5-6 (see Figure 8) are erroneous for any particular flow because of the air circuit change which resulted from the box rupture. The pressure loss from point 14 to point 3 was slightly higher because of an increase

5. Pressure Information (con't)

in flow to the Antenna Control Unit. Pressure loss through the Antenna Control is given by ΔP_{3-4} . This loss is considerably less than would normally be expected because of the air leakage. Pressure differentials, ΔP_{4-5} and ΔP_{5-6} , are indicators of flow through the Receiver and Transmitter Units respectively. These pressure differences were approximately 50% of values expected for full flow since flow losses amounted to nearly 30%.

Adjustment of pressure information for an upper compartment flow of 8.5 lb/min. required examination of the test flow data as well as post-test sea level flow checks made with the Antenna Control Unit repaired. Sea level pressure values were adjusted to altitude conditions by considering average air densities at the points of interest for the operating mode. Pressure differences at altitude are equal to the product of the fluid density ratio (sea level to altitude) and the sea level pressure difference.

$$\Delta P_{\text{alt}} = \frac{P_{\text{SL}}}{P_{\text{A7t}}} \Delta P_{\text{SL}}$$

Values found for a flow of 8.5 lb/min. are as follows:

$$\triangle P_{1l_{1}-3} = 5.0 \text{ H}_{2}0$$
 $\triangle P_{3-l_{1}} = 28.8 \text{ H}_{2}0$
 $\triangle P_{l_{1}-5} = 16.1 \text{ H}_{2}0$
 $\triangle P_{5-6} = 35.9 \text{ H}_{2}0$

It should be noted that Δ P5-6 is based upon 75% of total flow through the Transmitter heat exchanger (cold plate).

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

٠٢.

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12: CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

(T.C. LOCATIONS FIG. Nº 4)

FIGURE Nº 46 (T.C. LOCATIONS FIG. Nº 5)

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6 30-64

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

(T.C. LOCATIONS FIG. Nº 7)

Approved For Release 2000/04/12: CIA-RDP67B00657R000100210001-6 SKNCHRONIZ AMBIENT - RH. SIDE TEMPERATURE HISTORY FIGURE EXTERNAL M4E 3 X 8 TO THE INCH 46 0543
7 X 10 INCHES MADE IN 15 A.
REUFFEL & ESSER CO. E C EMERGENCY TEMP. MAX. EXPECT

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

EMPERATURE

KT X 10 INCHES MAPE IN CH 46 0543

8 X 8 TO THE INCH 46 0543
7 X 10 INCHES AMPRIN U S.A.
KEUFFEL & ESSER CO.

Ž M Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

0543

8 TO THE INCH 4

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

SECTION E

CONCLUSIONS

Results of the thermal test conducted on the KP-I Radar Equipment indicate that the operation of radar equipment should not be adversely affected under normal vehicle operation.

A cooling air flow rate of 8.5 lb/min. @ 80°F through the upper compartment appears adequate to maintain unit internal ambient temperatures and surrounding air temperatures for equipment operation. Test results indicate that component temperatures will be maintained below the component specification limits.

Data indicates that temperatures found within the Antenna Control,

Synchronizer and Receiver Units will be below 170°F during the operating

mode. Components used in these units generally have a specified upper ambient

temperature limit of 85°C (185°F). The Transmitter Unit experienced

somewhat higher temperatures but no temperature problems are anticipated

with this unit. Components used have rated temperature limits far in excess

of measured values.

Component temperatures monitored in the lower compartment show that no major problems should exist when operating under normal conditions ($W_2 = 1.5 \text{ lb/min}$). Temperature of the Antenna array is at 290°F which is 35°F less than the specified limits. Temperature sensitive components such as the vertical gyroscope, azimuth gyroscope and accelerometer were also maintained at an acceptable level (less than $185^{\circ}F$).

Results of the vehicle emergency tests indicate that no serious problems should be expected during short duration emergency conditions. Temperatures reached in 30-40 minutes at emergency conditions are generally below the temperature limits specified for 40 minutes exposure. In some cases emergency temperatures exceeded component specifications. It is felt however, that the short duration for which the emergency condition prevailed should not cause component failure or reduce system reliability appreciably in most instances.

This fact is further evidenced by the results of temperature testing on the Synchronizer Unit. Control of cooling air temperature and flow was not adequately maintained during test No. 3. Ambient air temperatures within the Unit reached 343°F (Figure No. 60) during this vehicle emergency test. This temperature was approximately 103°F higher than should be encountered during vehicle emergency conditions (see Figure No. 40). Post test inspection of the Synchronizer Unit uncovered no catastrophic component failures.

A performance check at GAC subsequent to the thermal test showed that no additional electrical problems had occurred after the functional test (during Run #2). Exposure to the emergency tests and the temperature cycling as shown in Figures 61-64 caused no damage.

The two electrical problems encountered in the Synchronizer Unit during the operating portion of the tests can be attributed to a temperature sensitive circuit (film drive circuit) and a faulty component. The film drive circuit is being modified to alleviate temperature problems. The

bandpass filter that caused a malfunction in the clutterlock circuit was a substandard part used in the engineering model and did not meet the environmental specifications imposed upon system components. It is felt that this component exhibited a short circuit during the operating test, Run #2, and burst during subsequent emergency conditions. It should be noted that schedule considerations and component availability made it necessary to use substandard or substitute components in some cases.

Mechanical problems noted in the Synchronizer Unit were minor and resulted both from use of substandard materials and exposure to unrealistic temperature conditions. External ambient temperatures surrounding the Synchronizer Unit exceeded actual expected values by 90°F. This resulted in oxidation of the irridite finish on the box and the melting of solder in the external cable connectors. Actual temperature values will not be sufficient to melt solder or to destroy the finishes on production units. These units will be coated with a white conversion coating capable of withstanding the temperatures encountered during vehicle emergency conditions. The split sleeving roted in the post test inspection is attributable to the use of low temperature vinyl material. High temperature materials are specified for production units.

Emergency temperatures for the accelerometer, vertical gyroscope, and azimuth gyroscope (Figure No. 50) indicate possible damage could occur even when subjected to emergency conditions for short durations (30-40 minutes). It is felt that the present cooling air flow is not sufficient to maintain these components to acceptable levels or assure maximum reliability.

Examination of the feasibility of component modification is suggested. It is felt that a component specification limit of 250°F would offer a higher degree of system reliability.

It has been observed that heat pickup by cooling air in the cooling air ducts and manifolds is appreciable. For instance, the cooling air temperature rise between the assembly inlet and the Synchronizer Unit is $10^{\circ}F$. The temperature rise between the Synchronizer exhaust and Receiver inlet is $11^{\circ}F$. These temperature rises signify loads of 360 and 500 watts respectively. In view of this, it is suggested that cooling ducts and manifolds be insulated where possible. It should be noted that care was taken in assuring that the ducts were not in thermal contact with the dome insulation. Heat pickup on the whole was from ambient conditions around the ducts.

It should be noted that the failure or rupture of the Antenna Control Unit is not indicative of structural or manufacturing inadequacies. The unit in question was a mockup and was not fabricated to the stringent manufacturing standards nor subject to the quality assurance provisions as required for production units.

APPENDIX

TEST DATA AND ILLUSTRATIONS

Figure No.	
Figure No.	A the United
Al	Temperature History - Data Plot - Energized - T.C. No. 1
A2	Temperature History - Data Plot - Energized - T.C. No. 2
A3	Temperature History - Data Plot - Energized - T.C. No. 3
AI_{\perp}	Temperature History - Data Plot - Energized - T.C. No. 4
A5	Temperature History - Data Plot - Energized - T.C. No. 12
A 6	Temperature History - Data Plot - Energized - T.C. No. 13
A7	Temperature History - Data Plot - Energized - T.C. No. 15
A8	Temperature History - Data Plot - Energized - T.C. No. 24
A 9	Temperature History - Data Plot - Energized - T.C. No. 28
Alo	Temperature History - Data Plot - Energized - T.C. No. 29
All	Temperature History - Data Plot - Energized - T.C. No. 30
Al2	Temperature History - Data Plot - Energized - T.C. No. 31
Al3	Temperature History - Data Plot - Energized - T.C. No. 32
All	Temperature History - Data Plot - Energized - T.C. No. 34
Al5	Temperature History - Data Plot - Energized - T.C. No. 40
A16	Temperature History - Data Plot - Energized - T.C. No. 41
Al7	Temperature History - Data Plot - Energized - T.C. No. 43
A18	Temperature History - Data Plot - Energized - T.C. No. 44
Al9	
A20	Temperature History - Data Plot - Energized - T.C. No. 45
A21	Temperature History - Data Plot - Energized - T.C. No. 47
A22	Temperature History - Data Plot - Energized - T.C. No. 55
	Temperature History - Data Plot - Energized - T.C. No. 58
A23	Temperature History - Data Plot - Energized - T.C. No. 60

APPENDIX

Con't

Figure No.	<u>Title</u>
A24	Temperature History - Data Plot - Energized - T.C. No. 61
A25	Temperature History - Data Plot - Energized - T.C. No. 62
A26	Temperature History - Data Plot - Energized - T.C. No. 69
A27	Temperature History - Data Plot - Energized - T.C. No. 70
A 28	Temperature History - Data Plot - Energized - T.C. No. 85
A29	Temperature History - Lower Compartment - Ambient - Run No. 2
A30	Temperature History - Lower Compartment - Ambient - Run No. 5
A3l	Temperature History - Lower Compartment - Ambient - Run No. 8
A32	Temperature History - Data Plot - Run No. 3 - Emergency
A33	Temperature History - Data Plot - Run No. 3 - Emergency
A34	Temperature History - Data Plot - Run No. 3 - Emergency
A35	Temperature History - Data Plot - Run No. 3 - Emergency
A36	Temperature History - Data Plot - Run No. 3 - Emergency
A37	Temperature History - Data Plot - Run No. 3 - Emergency
A38	Temperature History - Data Plot - Run No. 3 - Emergency
A39	Temperature History - Data Plot - Run No. 3 - Emergency
ALIO	Temperature History - Data Plot - Run No. 3 - Emergency

APPENDIX

Con't

<u>Table No.</u>	<u>Title</u>
Al	Air Flow - Pressure Data
A2	Test Data - Run No. 2
A3	Test Data - Run No. 3
A.4.	Test Data - Run No. 5
A5	Test Data - Run No. 8
A 6	Stabilized Temperature - Emergency Condition
A7	Stabilized Temperature - Emergency Condition

Illustration No.	Title
1.	Simulated Vehicle Section - Photograph
2	Simulated Vehicle Section - Upper Compartment - Photograph
3	Inlet Cooling Air Manifold - Photograph
4	Exhaust Cooling Air Manifold - Photograph

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

2	("HED)				1.30	30A	pr pr	bye	d F	or	Re	lea	se v	20 ?!	0 0 100	04/	12:	S.6 D	A-F	5.7 DE	P67	B0 7:5	065 2'5	7R 2.2	8. 800	010 م انخ	02 8/5	100 2:3	01. 2.7	6 2:5	5.65	0.0	5.9	5.9	5.81	5.85
\vdash	- 1	_	-	ð,		`	`	`			1			0	0		Ŋ		Ŋ		Α,	70	5		`	γ.	\v	6	3	ζ,	,0,	0	,20	~	5	5
810	("HGA)	1.2	1.1	30.29	30.1	30.1	30.1	30.1	7.38		1		7.85	1	7.7		2.0	7.2	7.2	7.2	2.7	22	7.2	2.2	215	2.2	22	2%	22	7.2	22	7.3	7.3	7.3	2.3	7.3
AP.,	("HzO)		1	t	1	1		ı	1		ľ		I	5.3	١		36.0	32.0	32.5	33.3	53.5	33.45	33.3	33./	30.3	2.92	27.7	23.8	23.6	23.3	23.8	25.3	25.6	25.8	25.7	25.6
	("HGA)	í	1	1	29.23	29.23	29.23	29.23	1.8		1		2.45	2.45	2.45		1.95	2,10	2:30	2.25	2.25	2.25	2.25	2.22	2.23	2:70	2.70	02.2	2.70	2:30	2.70	2.75	2.75	2.80	2.75	2.80
0,1	("HGA)	ı	ı	1	29.23	29.23	29.23	29.23	1.80		1		2.45	2.45	2.45		1.82	2,10	2:30	2.25	2.25	2.25	2.25	22:2	22.2	222	222	2.22	2.22	2.25	2.23	2.25	2.32	2.25	2.25	8/2
-	("H2O)	1	1	1	-	-	1	i	1		1		1	6.1	ı		44.4	40,1	40.7	41.6	41.9	41.7	41.6	41.3	38.5	34.6	33.4	3/.35	3/.2	31.0	31.5	82.9	33.5	33.5	53.3	33.₽
	("H2O)	١	1	ı	١	١	1	1	1	1	ı		1	6.0	1		14.4	14.7	15.7	15.2	15.15	15.0.	15.1	15.0	0.0	8.8	8.9	6.0	0.0	0,0	9.5	6.1	2.9	4.0	6.9	6.3
11P3 0		1	-	1	.1	ا	1						-1	1.4	1		5.3	5.2	5.4	5.3	5.4	5.3	5.4	5.3	5.3	5:35	5.30		5.30	5.30	5.30	5.30	8.50	5.3	5.3	5.3
	("HGA) (1			9.23	29.23	23.23	29.23	85				8	3.5	P.		7.35	7.35	7.50				2.40	7.40	7.40	2,40	7.45	2,40	7.30	7.35	7.35	2.8	0.60	7.4	2.8	7.45
	-#		9	۱ ام	9 29.		-				2		8		0			-							_	_				-						
54P	("HzO)	0.0	5.86	5.55	1.89	8.	8.	1.90	1.9		1.62		16.35	14.2	14.2		15.	14.8	14.9	15.3	15.5	15.4	15.4	15.3	15.32	15.33	15.	14.8	14.7	14.7	16.0	12.3	17.9	18.1	68.3	18.3
adPs	("H2O)	4.2	3.65	3.7	14.95	14.95	14.30	14.90	i		27.		10.8	1.6	1.6		8.9	8.3	9.5	9.6	6.7	9.7	66	6.6	9.7	9.7	9.65	9.65	9.65	9.60	9.20	8.0	0%	8.9	00.00	8.8
3 d P4	("HzO)	9.2	8.9	5.5	6.97	6.97	86.98	6.38	40.7		6.9		39.3	34.9	35.0		376	35.8	36.1	36.2	36.5	36.3	36.4	36.3	36.4	36.3	36.3	36.1	36./	36.1	35.8	35.7	35.9	35.8	35.7.	35.5
		39.6 ₾	39.0₽	40.1A	3.0	3.0	3.0	3.0	3.6		5.0		10.0	5.6	9.5		8.6	8.6	8.6	8.6	97.	9.7	9.7	9.65	9.65	9.65	9.65	2,60	9.60	09%	9.60	9.60	9.65	9.65	8.85	4.7
	("HGA)	28.85	28.88	28.85	32.45	32.45	32.45	32.45	15.4		32.6		16.8.	15.1	15.2	-	3.4	1.5.1	15.5	15.3	/5.3	15.3	15.3	15.25	15.30	15.28	15.3	/5.3	, 15.3	15.3	15.3	15.3	154	15.4	15.4	15.4
_		1	1	ı	Ĩ	1	ı	ı	1		ı		0	0	0	`	1.5	75./	75./	1,5,	1,5/	1,5%	1,5/	1,5,	,5:	1,5,	1,5	15/	\s.	1,5%	1,5,	1.0%	13	1,5,	151	1,8/
W,	(LBM/MIN) (LBM/MIN)	9.6	9.6	9.5	5.5	5.5	2,5	2,5	9.5		9.5		10.2	8.6	2.01		15.6	3.	26	15.	15.00	2.5	2.8	9.5	2.5	2.9	25.00	20,5	9.5	4.5	15.6	15.6	2.5	9.5	'S.	15.6
ALT.		2913700	15:00 SEALEVEL	15:30 SEALEVEL	 09:15 SEALEVEZ	09:30 Sealovel	09.45*SEalover	10:00 Sealever	10:30 81,500		SEALENEL		75,000	75,000	75,000		80,000	80,000	15,000	75,000	75,000	76,000	77,000	26,000	76,000	26,000	76,000	76,000	76,000	76,000	76,000	26,000	27,000	77,000	26,000	27,000
TIME		, 14:30 SEALEVEL				- 1	29.45*				15.20	- 1	18:30	18:45	18:00	Ť	19:30	19:45	20:00	20.15	20.30	20:45	81:00	21:15	21:30	21:45	00:22	\$1:22	22:30	22:45	23.00	23:15	23:30	23:45	24.00	00:15
RUM		PRE-TEST 1/6	PRE-TEST 110	AE- TEST 110	WARM UP 1/1	WARMUP "I"	WARM UP 11.	Warm UP 11.	WaemUp 1/1,		SEALENEL !!		WARN UP 1/11	WARDA UP 11.	WARN UP "		/" /	///	//	//	///	/ /"	///	/ ///	/ //	/	/" /	/ //	///////////////////////////////////////	///	2		2		N	

	1												- 04		10.4	40	. ^			D0	70					مفد										
("HEO)	5.00	5.8	5.8	5.8	5.8	1.7 de	0	9.7.	28	or F	1]	67 7.7	/:/	6.1	1.8	6.1	6.7	4.5	4.3	4.3	4.3	4.3	4.3	4.3	4.25	4.3	4.2	4.2 6	4.1	4.2		9.2	4.2	4.3	2.0
# J.	7.3	7.3	7.3	7.3	7.3	2.4	1.75	1.4	12	1,4	7.3	1	/:/	///	/'/	1.7	/:/	/:/	5.8	5.6	5.6	5.55	5.55	5:53	5.54	5.54	5.54	5.4	5.4	5.3	5.4	5.4	5.4	5.4	5.4	5.5
13 DP 12 ("H2O)	25.8	25.6	25.6	25.5	25.5	2.85	2.15			1.73	10.3	16.7	13.4	10.1	13.3	12.3	13.4	15.1	429	391	37.6	36.3	35.0	34.2	33.3	32.1	3/15	28.6	28.0	27.1	26.6	26.3	26.0	26.0	26.0	26.2
("HGA) '	2.80	2.80	2.80	2.80	2.80	2.6	2.6	2.5	0	i a	6	11	9./	9.1	1.6	1.65	1.6	1.5	1.7	1.7	1.83	6:1	6.1	2.0	2.0	2.2	2.1	2.2	2:2	2.35	2.4	2.3	24.	2.45	2.45	2.40
("HGA)	5.18	2.2	2.2	2.2	2.2	1.7	1.7	1.3		;	5	0.7	0.7	0.7			0.7	0.7	1.7	1.8	8.1	8./	8./	8:1	1.8	1.8	1.7	1.7	1.7	1.7	1.7	7.5	1.7	1.7	1.7	1.7
("H2O)	33.7	33.5	33.4	33.4	33.5	5.5	, Se >	11.8	3 ,	15.1	13.1	100	100		16.5	15.6	8.9	18.9	51.0	46.8		94.0	42.8	420	41.0	39.9	39.0	36.0	35.5	34.6	34.1	33.8	33.6	33.6	33.6	33.8
3 4P,2 "	4.9	6.4	6.35	6.4	6.9	245	0	10	100	10.45	7.11	12/	12.2			12.4	12.2	12.6	14.3	121	6/1/	11.8	8:11	11.8	8://	11.84	11.8	10.6	10.6	10.7	011	11.2	11.3	11.4	11.4	11.4
74P8 S	5.3	5.4	5.3	5.3	5.3	29	0	j 0	0 !	2.2	9 0	000		2.7	2.2	2.7	27	2.7	5.5	2.4	54	5.4	5.4	5.5	5.5	5.5	5.5	5.3	5.3	5.3	30	5.5	5.3	5.3	5.3	5.3
P, ("HGA) 7	245	245	245	245	245	42	10	101	4.6	4.2	4.4	4.4	4.5	41	41	4.1	4.1	4.1	2.8	2.5	2.5	7.45	7.45	250	12.50	2.50	2.50	7.20	7.20	7.20	270	2.20	7.20.		2.20	7.20
5 d P 6 ("H20)	18.3	18.4	18.4	184	184	2		رن بر و	2.5	.45	50	2 1	75.7	1.3	12	/.3	1.4	1.4	75/	136	000	120	121	120	1.0	8/1	11.7	1/3	1.3	11.3	120	13.7	191	14.4	14.5	14.5
44Ps 5	8.8	82	98	70	9 9		7	2.03	9./	7.7		.3	0.0	0 0	500	00.	6.1	6	0		N N	0	67	00	205	7.6	1.7	6.9	6.9	6.9	1	8.3		6.0	6.0	0.0
3 1 Pq ("H20)		-	 		-	, 6	2 1	٧٠٠	7,2	0	0	0	0 0	2 6	2 6	20	10		100	01/6	050	06.2	200	25.50	2000	050	28.4	3/10	245	246	140	650	650	280	236	23.6
			-	1	_		1.80	7.73	/:/	.05	A4.75	4.4	5.5	5.0	0 1	0.0		9 /	-	+	-	+	1.1	1		10	-	+-	0 1	0 1	0	0.9	67	0 9	6.9	6.9
P_1 , AP_2 ("HGA) ("HG)	-	ļ.	-	1	1	-	-	2.2			.	1	1 5	0 0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1.	2.1	4.11	* "	4.//	4//	7.11	1.11	7/19	"//	/ / /	1	1	///	/ / //	1.11	/ / /	131
	₩	2	-	-	-	7.5	5%	.75	.75	.75	.75	.75	.75	5,	175	5/2	1 6	50	-	1	3 1	700,	1.50	00.	5,0	15.	3 12	3 15	35.	1.50	3 12	3,	19	5 15	3/2	15.7
i (1.8		-	+	+	1	1.5		-		-		77	7/	11.	11.	11.	7	11		-	-	7.50	7.50	7.50	7.50	2	7.50	200	000	1.30	3 1	7007	300	35.6	36.7	18
/M (18M/)	7	-	+	-	\perp		8	0	2	2	17.	`\	-					1	4-	1-	. j .		-	1	1		_	+	1	_			-	_	_	_
ALT.	1,000	- 1		15,000	10,000	15,000	75,000	75,000	75,000		- [1	- 1				-		- 1	-1		- 1			_		-1			88,000	00,00	08:30 88:000	08.43 40.000	00000
TIME	11. 00.20		112 00.45		1/2 0/:15	1/2 01:30	1/2 01 45	00:20 2//	1/12 02:15	08:30 21	1/2 02:45	1/2 08:00			- 1		- 1	- 1	1	- 1						1/2 06.30	1/2 06.93			•	1/2 01.45	1			ı	1/2 09.10
RUN					1	1				3			1		W	T	T		T	-				4	4	4	4	4	4,	4	4	0 1	0 1	J 4	7	۸ ر

7	DATA
TABLE Nº	- PRESSURE
•	AIR FLOW

("HEO)	5.0	5.4	5.3	5.3	5.8	8.3 bb		ed 8.8	5.3 of	r Rele	ase 2	Ŧ	A	4/12	: 4.2	RDP	67.B00	657R0	9.4 9.6	3,250	8.251	001 2.5 6.	3.7 0	8.7	3.7	3.7	3.00	3.5	3,6	48
P14 ("HGA)	5.5	5.8	5,0	5.8	5.8	5.6	5.8	5.8	5.8	1	20		2.4		1.8	1.8	1.8	8.7	6.1	6.1	6.1	61.	6.1	6:1	6.1	1.8	1.8	1.8	1.8	2.2
13 DP.2 ("HEO)	26.0	28.1	28.5	0.62	28.9	29.0	0.62	0.62	28.8	1	404		+00		33.0	2.9	6.2	7.3	9.3	0.6	8.95	8.3	2.8	2.8	2.8	2.8	80	8.7	11.9	10.9
Pie ("HGA)	2.55	2.6	2.6	2.5	2.55	2.5	2.5	. 2.5	500	1.2	10	2.6	20	3	9.	1.7	8./	8./	1.3	1.5	1.6	1.6	1.3	1.3	1.3	1.30	1.3	1.3	1.3	5.
P., ("HGA)	1.95	1.75	1.75	1.75	1.7	1.7	1.7	1.7	1.7	Į.	7/	1.7			/:/	1.3	1.25	1.05	1.3	1.35	1.35	1.35	1.02	1.02	1.02	/:/	1:1	/:/	1.05	1.2
10 AP 12 ("H2C)	33.9	36.0	36.5	378	37.0	37.1	\$7.0	37.0	86.9	ı	100	400	100		39.7	2.1	4.25	10.7	9%	2.9	6.65	4.9	10.7	10.7	10.7	11.0	10.8	3.5	13.8	801
\$ 4P,2 ("H2O)	11.4	13.4	13.6	13.6	13.7	13.5	13.5	13.5	181	<u> </u>	ı	6//			1		1	10.2	4.01	9.2	8.3	8.2	10.6	10.6	10.6	10.1	10.8	101	11.7	177
7478 ("H2O)	5.3	5.4	5.4	5.4	5.6	5.6	5.6	5.6	5.6	1	04	001	001	2.2	4.6	6.1	1.85	1.85	1.7	1.85	8.1	1.8	8	28	2.8	6:1	6.1	1.0	7.2	00
Pz ("46A)	222	7.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	7:2	70	130	120	2	6.65	3.2	133	3./	45	1.55	3.5	3.2	3.15	3.15	3.15	3.15	3.1	3.7	3.4	20
5 1 Pe ("H20)	14.2	15.0	12:1	15.2	15.2	151	15.2	15.2	14.5	2.1	74	, V	7 6	}	2.2	61	6.1	2.85	2.1	2.2	2.2	2.25	2.9%	230	2.40	8.3	3,4	3.4	6.3	100
42Ps ("H20)	6.0	6.5	6.5	9.9	6	9.9	9.	6.6	6.7	2.3	0		00	3	2.2	1.7	1.6	20	1.45	7.5	1.5	1.5	6:1	6.1	1.9	6.1	8.1	1.9	2.0	17
3 d Pq ("H2O)	236	25.6	25.8	25.9	26.0	26.0	26.0	26.0	26.0			3 00	3 0	3		4.0	4.0	6.0	/:/	0.95	0.95	0.95	0.95	0.95	0.95	1.0	2.1	2.0	6.0	00
, AP ₂	6.9	2.8	7.2	2.2	7.33	7.4	7.4	2.4	7.4	A22.0	000	A 29 &	A 29.2		△ 9.3	86 V	689	A 11.7	A 106	A 10.5	A 10.5	D.01 A	6/1/ 8	6118	611	₽//8	A 14.2	A 15.2	A 123	
P, ("WGA)	1.7.1	8:11	8:11	8:11	11.85	6.11	6.11	11.9	6:11	1.7	1	27.5	9 1		1.7	21	20.0	2.8 \$ 11.7	2.35	l	2.3	8.3	2.3	2.3	2.3	2.15	2.5	2.6	2.2	1
WZ BW/MIN)	1.50	1.50	1.50	1.8	1.50	1.50	1.50	1.50	1.50	0.60	000	500	200	6	0.6	0.0	0.6	9:0	0.0	0.6	0.6	9.0	0.6	0.6	9.6	9.0	9.0	9.0	0.0	17 9
W, W2 (CBM/MIN) (LBM/MIN)	2.50	05:2	7.50	7.50	7.50	7.50	7.50	250	2.50	0.90	101	101	101	4.0	6.0	16:0	160	0.9/	16:0	16:0	160	16:0	6.0	6.0	6.0	6.0	ľ	١	9.0	, ,
ALT. (4.66T) (4	90,000	000006	00000	000'06	30.000	90,000	30,000	000 06	90,000	000006	000 00	90,000	000000	200/0/	000'06	18,000	18,000	85,000	75,000	25.000	15,000	75,000	88,000	88,000	000'88	000 88	000'88	88,000	88,000	000 00
TIME	1/2 09:30	50:60 21/	00:01	10.15	10:30	10:45	00:11	L	1		11_		04.00	M. 4/ 2//	1/2 16:00	17:00	112 17:28	1/2 19:00	08.61 2/	19:45	20:02	20:15	20:30	20:05	000'88 00:12 2/	1/2 21:15 88,000	1/2 21:30 88,000	1/2 21:45		
RUN	5 //									64 1			Ţ	10	64 11	11 10	11/19	119	11	Ů	1	64 "	68		68		68	_		

TABLE Nº AI

("HEO)	3.25	3.5	15.95	4.7	5.0	SVe S	4.9		- 1	4.8	5,2	5.0				The second secon									ı								-
("WGA)	2.0	1.8	1.8	6,1	6.1	6.15	6.15	6.0	6.0	6.1	6.0	6.0																	a				-
13 DP 12 ("H2O)	10.9	10.4	10.25	32.2	29.6	29.6	0.62	28.4	28.4	28.5	28:1	28.2												•				-					-
P.2 ("HGA)	1.4	1.3	1.3	8.03	2.5	19.0	9:6	2.55	2.5	2.55	2.55	2.50								1 :													
("HGA)	1.25	/:/	11/	2.4	2.4	2.4	8:3	2.2	2.15	2.5	2.15,	2.15									İ												
10 AP 12 ("H2O)	11.6	136	1:21	40.2	35.2	.33.7	33.4	33.7	35.0	34.0	35.4	85.0																				-	
3 4P,2 ("H2O)	11.2	12.4	12.05	15.7	14.2	14.4	14.2	14.1	14.1	14.0	14.3	14.9																					
7 dPs ("420)	2.0	2:0	5.0	5.3	5.3	5.2	5.3	7,	5.1	5.7	2.5	5.3																					-
P7 ("HGA)	3.45	3.45	3.45	7.8	2.4	7.4	7.35	7.35	7.35.	7.35	2.4	7.4				-		1				-											-
5 DP 6 ("HzO)	3.9	2.6	63	10.7	9:11	12.1	12.4	12.7	13.3	12.2	13.4	13.4				i			1		-												
4DPs ("H2O)	2.0	6.1	1.85	27	2.25	12	2.0	2.0	2.0	6.6	7.7	21.5				+-	+-		-														
3 d Pa " ("H20)	3.2	1.0	1.3	28.4	26.9	26.7	26.5	26.4	26.85	25.7	27.2	0.12																					
1 Pg ("HG)	A 19.3	A 12.45	Ø /3./	7.5	7.5	7.5	2.5	2.5	7.5	7.4	7.5	7.5.		+	+ *	1				+ -		-		-									
P, 1Ps ("HGA) ("HG)	1.5	2.1	8.3	521	123	12.3	123	123	12.2	12.15	124	12.3	† ·	-		+ : :						-	1			1	-					-	
	0.0	19.0	19.0	57	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5			+				+-			+											-
W, We (LBM/MIN) (LBM/MIN)	6.0	0.915	0.915	9.0	9.0	0.6	0.6	9,0	9.6	9.0	0.6	9.0											-						-				-
ALT. (FEET) (88,000	88,000	88,000	25.000	25.000	25,000	75.000	29,000	2000	75,000	80,000	81,000			1				+		-		-										
TIME	1/2 22:30	1/2 22:45	00:82 21/	11,3 00:30				1/3 01:30	1/3 01:45	1/3 02:00	1/3 02:15	A				1											-						
RUN	68		1	1											T																		

Approved For Release 2000/04/12: CIASRDP 7 B00657R000100210001-6

TEST CONDITION: STABILIZATION - SYSTEM ENERGIZED,

DATE 1-11-64 START 2230 HR. END 0130 HR.

COOLING AIR FLOW:

3" DIA INLET 4.5 "MIN. 3 2" DIA INLET 1.5 "	MIN.
---	------

T.C.	T= O	7× 15	T= 30	T=45	T+75	7:105
. 1	81	83	85	86	88	28
2	86	90	92.	94	97	97
. 3	113	130	152	161	174	179
4	118	133	153	162	175	179
5	80	82	84	86	89	90
6	84	94	97	99	101	108
7	85	91	94	96	98	99
8	92	93	101	105	111	113
9	.90	94	99	102	107	109
10	92	101	108	101	114	117
11	92	98.	101	102	,106	107
12	81	82	85	85	27	. 88
13	86	91	9,3	100	105	106
14	113.	130	.152	161	174	179
15	139	192	232	246	265	273
16	137	157	185	200	219	227.
17	.79	8.5	85	87	88	89
18	82	89	94	95	96.	98
19	88	95	103	105	112.	11.3
20	.87	96	101	104	109	(11
21	78 .	81	84	85	8.8	90
22	82	87	88	90	91	92
23	86	89	94	95	99	100
24	85	86	95	100	107	110
25	112	118	151	166	185	192

T.C.	T= 135	T= 165 °F	T= °F	Ta °F	T ₂	T= °F
l	89	28				
2	98	98				
3	181	182				
4	181	182				
5	90	90				
6	109	. 108				
7	99	100				
8	114	114				
9	109	110				
10	117	118				
1)	108	109				
12	89	89				
13	110	110		· ·		
14	181	182				
15	277	277				
16	2,32	232				
17	91	90				
18	98	98				
19	123	126				·
20	111	112				
21	90	90			•	
22	95	95				
23	104	104	·			
24	111	122				
25	195	196				

T.C.	T= 0 °F	T= 15	T= 30 °F	T=45 °F	T:75 °F	T=105
26	91	99	108	111	117	119
27	83	85	89	89	93	93
28	99	109	119	122	129	132
29	102	118	131	137	145	148
30	138	180	231	252	280	292
31	185	195	210	216	227	232
32	96	99	132	146	164	170
33	100	106	124	134	158	163
39	102	126	139	145	152	157
35	108	112	140	154	172	178
36	117	142	174	188	206	214
37	112	137	151	163	171	176
38	113	125	141	151	164	169
37	104	129	143	150	160	163
40	132	242	283	297	317	324
41	148	212	269	291	325	333
42	104	142	170	181	198	205
43	106	124	185	208	239	250
44	102	227	305	317	333	340
46	134	121	237	260	292	304
46	138	180	231	252	280	292
47	128	237	581	797	318	328
48	152	172	212	231	258	268
49	128	138	210	243	284	298
50	183	160	217	242	276	290

T.C.	T= 135	T= 165 °F	T: °F	T ₂	T: °F	Τ= °F
26	121	122				
27	94	94				
58	133	134				
29	150	150				
30	297	299				
3/	234	254				
32	172	174				
33	166	167				
34	159	158				
35	181	183				
36	213	218				
37,	178	178				
38	171	172				
31	165	166				
40	328	327				
41	339	340				
42	208	209				
43	255	157				
44	344	344				
45	310	211				
96	297	299				
47	332	332				
48	275	276				
49	304	306				
50	295	298				

TABLE Nº AZ TEST DATA - RUN Nº 2 (CONTINUED)

T.C.	T= 0 °F	T= 15 °F	T= 30	T= 45	T= 75	7=105 °F
51	114	146	190	210	238	250
52	145	192	249	264	283	289
53	126	186	255	282	318	330
84	115	117	120	122	127	130
55	97	100	101	103	105	108
56	249	258	270	276	286	290
57	110	113	116	117	122	123
58	116	120	123	125	130	132
57	115	118	121	123	128	129
60	152	153	162	166	177	180
61	156	156	162	167	178	183
62	139	142	148	152	159	162
63	235	239	253	260	273	276
69	225	325	355	367	376	380
65		192	204	211	555	55)
66		195	204	209	218	222
67	175	180	188	192	201	204
68		160	167	172	180	185
69		230	247	255	269	275
78	210	213	230	240	252	257
71		200	220	233	25)	257
72		260	270	278	290	296
73		284	294	300	309	312
74		227	240	249	5.60	264
76		251	262	267	280	284

T.C	T= 135	T= 1%5	T= °F	Ta °F	T= °F	T= °F
51	254	256				
25	294	294				
23	336	338				
59	130	130				
22	107	106				
56	291	292	-			
\$7	125	124				
58	133	132				
51	130	128				
60	183	183	***************************************			
61	185	185				
62	164	164				
63	277	277				
64	382	383				
66	230	230				
66	224.	224				
67	205	205				
68	186	185				
69	277	2.78				
70	258	260				
71	259	266		-		
72	298	299				
73	312	313				
74	265	266				
75	285	286				

T.C.	°F 0	T= 15 °F	T= 30 °F	T= 4\$	T=75 °F	T=105
76	235	243	262	270	284	289
77	2.40	246	260	267	279	284
78	253	258	270	278	288	293
79	180	197	222	232	248	253
86	234	245	259	265	278	282
81	232	243	257	263	266	277
85	206	274	247	257	271	277
83	2.16	225	241	249	262	266
84	182	19'5	210	216	227	232
85	156	170	189	198	210	216
86	213	216	220	224	229	232
87	180	196	247	275	311	322
88	322	327	341	348	360	364
89	232	240	262	277	295	303
90	159	200	249	265	287	295
91	186	289	327	339	352	359
92	270	278	289	294	300	-303
93	280	291	307	314	325	294
99	161.	180	220	240	269	281
95	181	202	239	255	277	285
96	295	300	313	327	333	339
97	157	165	188	200	215	222
98	303	304	312	319	329	335
99	275	279	291	297	307	311
100	155	159	166	170	176	179

T.C.	T= .135	T= 165 °F	T= °F	Ta °F	T= °F	7= °F
76	291	290				
٦٦	285	286				
78	295	295				
79	257	257				
80	283	283				
81	279	279				
85	279	280				
33	268	269				
84	234	234				
32	218	218				
86	233	234				
87	330	322				
88	367	367				
87	306	30 8		•		
90	300	301				
9,	, ઉદ્ધાર	363				·
92	303	305				·
93	297	297				
94	286	289				
95	288	290				
96	392	34 2				
97	223	224				
98	336	337				
99	314	315				
100	181	182				

T.C.	T= 0	T= 15	T= 30	T= 45	T= 75	T=105
No	°F	°F	°F	°F	°F	°F
101	266	279	293	300	311	317
102	270	278	289	294	300	276
103	223	235	257	266	28.5	285
104	195.	521	247	258	272	279
105	121	123	126	127	132	134
106	128	127	129	131	133	135
107	138	145	155	160	166	170
108	139	144	148	157	162	165
109	216	११र	236	245	255	257
110						
111						
112						
113						
114					•	
115						
	,					

T.C.	T= 135	T=165	Ta ·	Ta °F	T: °F	7= °F
101	318	319				
102	279	281				
103	290	290				
104	282	583				
105	134	134				
106	136	136				
107	172	172				
108	166	167				
109	262	263				
118						
11)						
112						
113						
114	,					
115						
					•	

Approved For Release 2008 104 12 TO A RD 157 150657 R000100210001-6

TEST CONDITION: STABILIZATION - EMERGENCY

DATE 1-12-64 START 0115 HR. END 0415 HR.

COOLING AIR FLOW:

3" DIA. INLET _____ #/MIN. 2" DIA. INLET 0.75 #MIN.

T.C.	T= O °F	7= 15 °F	T= 30 F	T045	7:60 °F	T=75
1	88	115	156	215	238	318
2	98	122	160	214	242	317
3	182	198	214	231	247	293
4	182	202	228	271	385	368
5	90	106	142	215	282	324
6	104	123	157	200	226	299
7	101	121	158	206	231	311
8	114	138	158	243	268	262
9	110	132	166	220	261	3.2.2
10	118	141	176	223	259	321
11	109	134	176	224	202	इ₹६
12	88	110	143	186.	204	265
13	109	124	144	174	188	229
14	185	198	214	231	247	293
15	272	244	243	272	283	331
16	234	238	233	269	297	336
17	90	107	134	169	174	211
18	98	110;	137	172	174	203
19	157	126	142	170	179	215
20	112	121	140	172	202.	230
21	90	94	116	156	172	204
22	95	107	137	178	178	225
23	104	115	135	171	181	223
24	122	119	133	170	194	233
25	196	211	206	230	258	297

T.C.	T= 90	T= 105	T= 120	T= 185	T= 150	T=165
	°F	°F	°F	°F	°F	°F.
	324	329	330	332	332	
2	337	341	347	350	351	
3	313	333	345	363	363	
4	384	393	396	397	396	
5	334	340	342	344	346	
<u>د</u>	320	336	341	34 9	351	
7	329	342	347	354	351	
8	262	271	272	274	278	
9	338	339	34 s	347	353	
10	345	362	368	375	377	
11	353	367	366	368	372	
12	279	291	302	317	312	
13	250	277	298	326	330	
14	313	333	345	363	363	
15	346	359	367	380	384	
16	383	361	365	373	372	
17	233	2.59	. 281	314	318	
18	231	258	278	308	312	
19	236	267	286	317	328	
20	257	280	302	331	341	
21	232	260	280	294	308	
22	250	270	284	306	317	
23	251	273	296	321	327	
24	260	585	303	324	326	
25	316	332	342	347	357	

T.C Nº	T= 0 °F	T= 15	T= \$0 °F	T=45	T= 60	7= 75 °F
26	122	134	155	190	211	282
27	94	115	148	199	220	248
28	134	155	185	228	247	313
29	150	162	194	230	265	297
30	293	289	275	292	310	339
31	233	22.5	283	315	384	393
32	174	167	163	187	206	242
33	168	165	168	186	197	221
34	158	163	192	225	248	291
35	183	184	198	242	273	316
36	218	217	223	243	264	305
37	178	183	207	240	267	312
38	173	-181	210	239	765	307
39	166	168	198	229	258	296
40	322	247	247	290	323	328
41	335	313	318	324	.341	346
42	210	212	230	253	270	292
43	257	263	288	274	285	30;
44	344	550	200	248	272 .	302
45	307	315	312	321	340	345
46	293	589	275	292	310	339
47	328	251	257	290	338	335
48	275	308	309	324	353	368
49	3136	290	270	.541	311	332
50	293	301	295	295	295	326

T.C.	T= 90 °F	T=105	T= 120	T= 135	T=150	T= 165
26	269	297	315	341	347	
27	295	302	314	323	3 29	
28	330	351	363	380	385	
29	326	346	360	376	383	
30	352	366	373	383	391	
31	403	410	407	411	414	
35	270	298	320	334	350	****
33	243	276	302	3 39	350	
34	316	341	356	377	379	
35	337	354	359	360+	360+	
36	323	347	361	381	382	
37	332	357	369	387	389	
58	331	351	365	378	383	
39	324	343	357	375	380	
40	345	355	366	379	383	
41	353	355	361	373	378	
42	202	320	329	346	352	
43	3/2	324.	333	340	349	
44	320	336	346	354	360+	
45	350	353	358	383	391	
46	352	366	373	363	363	
47	344	359	364	376	384	
48	371	374	377	386	390	
49	344	354	360 t	360+	360+	
50	334	343	349	362	368	

T.	C. T= 0	T= 15	r=3 °F	0 T= 4	S T= 6	0 T= 75
5	253	266	247	271	283	297
25	- 291	258	265	259	270	290
53	332	310	291	294	305	313
59	130	150	160	169	178	189
55	106	137	135	141	150	155
56			-	-	120	661
57	124	148	153	160	170	1,00
58	131	157	163	174	184	180
57	158	155	160	170	177	196
60	183	215	246	270		190
61	185	205	230	253	295	324
62	165	193	216	233	273	296
63	5.18	320	355	390	250	2.70
64	384	314	343	378	418	440
65	230	265	305	353	409	430
66	223	278	303		390	4-18
67	205	2.55	274	335	367	387
68	185	235	256	295	350	342
69	274	295		282	310	336
70	260	280	330	284	427	473
71.	260		205	337	367	392
72	299	282	332	384	415	480
73	313	314	350	387	367	444
74		358	338	424	455	475
75	265	320	334	423	449	468
	286	345	406	440	469	485

T.C.	T= 90	T= 10\$	T= 120	T= 135	T= 150	' T=165
51	308	319	327	343	352	
52	300	314	325	343	349	
53	322	333	339	356	363	
54	187	183	185	187	188	190
55	132	136	138	147	148	147
26		_				
57	166	166	167	174	175	175
58	188	185	185	190	190 .	190
59	189	176	176	182	184	184
66	342	324	326	375	323	323
61	317	318	दे।ऽ	314	3/2	311
62	277	270	265	265	265	265
63	435	430	424	420	420	420
64	425	415	410	407	407	407
65	426	421	413	410	407	408
66	382	372	370	51.p4.	365	366
67	335	327	326	323	325	325
68	340	332	330	325	325	326
69	487	484	475	464	466	
70	397	400	394	392	390	390
7/	495	487	480	476	475	474
72	456	445	445	430	429	430
73	467	460	456	448	448	448
14	465	447	445	436	436	436
75	470	463	461	452	452	457

TEST DATA - RUN Nº 3

	T.C.	T= 0	, , , , ,	T= 15 T= 30		0	T=4	2	T= 6	0	T=-	75
	76	290	33.0		335		 		°F	······································	°F	
	77.	286	330		378		423		457		47	7
	78	2.90	119		345		420		450		47	0
-	19	258	291		338		382		418		430	6
8	36	280	223			-	412		477		506	>
8	31	274	311		358		411		946	>	470)
1	12	277		\dashv	349		400		431		456	,
	3	269	317		366	_	435		475		507	
 	4	233	313		370	\perp	435		488		512	
	5		252		283	_	315		384		393	
		272	253		297	_	366		479		470	\dashv
8		235	247		269		307		361		384	7
8		332	342		340		350	T	370		3.85	7
8	_ -	365	391		407		439		458	1	485	\neg
8		303	333		360		381		398	- 1	125	+
90		297	583	_	290		313		331		358	\dashv
91		اع) في	304		325		372		719	_	923	\dashv
92		99	283		297		329	1	384		392	-
93		28	367		402		434		457	1	183	-
94	+-	85	314		331		56	-	380		199	\dashv
95		90	277] 2	181		297	T	314	 	339	\dashv
96	3	41	358	3	391		192	1		 		$\frac{1}{2}$
97	1_2	25	252	ì	.73		297	1	471		513	-
98	3:	32	351		89		140		72		350	}
99	3	14	343	1	377	,	119		42		- 40	-
100	18	12.	231		82		27		64		74 18	
							·L					,

T.C.	T= 90 °F	T= 105	T= 120	T= 155	T= (50	7=,165 °F
76	470	460	456	448	448	448
77	458	445	442	435	434	429
78	438	435	427	420	420	
79	508	495	488	478	478	
80	463	456	492	440	438	COTOR
81	456	439	431	423	420	direction.
85	507	485	481	474	474	_
83	507	496	486	480	482	
84	403	410	407	411	414	
85	479	469	464	459	458	
86	379	364	358	354	352	
87	397	398	298	400	402	407
88	489	474	463	455	452	
89	422	416	409	413	413	-
90	370	370	374	382	389	
91	427	421	424	426	427	
92	392	378	372	366	370	Special specia
93	484	468	458	452	451	-
94	399	396	397	399	405	*******
95	388	379	385	392	395	400
96	516	509	497	488	485	· ·
97	378	386	390	394	395	398
98	511	499	487	478	475	No.
99	470	458	451	452	449	
100	432	433	429	426	426	Continue

TABLE Nº A3 TEST DATA - RUN Nº 3 (CONTINUED)

T.C.	T=0 °F	T= 15 °F	T= 30 °F	T=45 °F	T= 40 °F	T=7\$ °F
161	313	330	366	403	436	469
102	280	304	354	411	453	484
103	290	3(1	373	423	455	494
104	279	288	329	378	444	463
105	134	163	213	302	389	421
106	137	163	216	279	358	387
107	172	203	249	327	387	323
108	167	184	226	285	346	453
109	263	289	340	383	422	443
110						
111						
112						
113						
114						
115						
-						

T.C.	T= 90 °F	T= 105 °F	T= 120 °F	T= 135 °F	T=150 °F	T=165
161	467	468	460	462	459	
102	483	470	459	450	450	
103	499	483	476	968	467	
104	468	464	457	458	454	
105	417	404	400	344	396	
106	381	367	366	363	361	
107	462	463	458	455	457	
108	403	411	416	421	423	
109	442	427	420	418	418	
110						
111						
112	·					
113						
114						
115						

Approved For Release 2000 104/12 : CANDEST ROUGHOUS 10001-6

TEST CONDITION: STABILIZATION - SYSTEM ENERGIZED

DATE 1-12-64 START 0745 HR. END 1000 HR.

COOLING AIR FLOW:

3" DIA. INLET 6.9 #MIN. , 2" DIA. INLET 1.5 #MIN.

T.C.	°F	Tz 15	T= 30 °F	T=45 °F	T=40 °F	T=75 °F
1	99	102	103	104	104	104
2	105	109	112	112	113	114
3	139	162	181	194	20%	209
4	142	167	187	200	209	210
5	98	0	104	105	107	107
G	109	116	119	121	125	123
7	109	112	113	116	116	117.
8	115	119	127	131	134	134
9	108	114	150	124	126	127
10	113	122	129	132	134	136
11	(13	120.	123	125	126	127
12	97	98	101	102	103	103
13	105	114	123	127	130	132
14	139	162	181	194	203	209
15	178	235	265	285	296	304
16	167	194	222	244	254	265
17	96	99	102	104	104	.104
18	105	109	112	114.	114	.115
19	109	130	138	144	147	150
20	107	1(8	124	128	131	132
21	94	100	103.	104	106	106
22	100	108	109	111	111	111
23	104	110	116	119	121	124
74	1.04	116	132	138	145	147
25	141	155	195	211	228	235

T.C		T= 105	T= 120	T= 135	T:	\
1	105	106	106	104		
2	114	116	115	114		
3	214	215	217	217		
4	218	550	223	223		
5	107	108	110	108		
6	124	125	125	123		
7	119	150	119	119		
8	136	137	139	138		
9	128	130	130	130		
10	137	138	139	137		
11	129	130	130	130		
12	102	105	105	104		
13	133	135	135	134		
14	214	215	217	217		
15	310	313	318	318		
16	274	276	284	283		
17	106.	107	107	106		
18	116	116	117	116		
19	152	154	154	152		
20	132	134	134	133		
21	107	107	109	108		
22	108	110	110	108		
23	124	125	126	125		
24	149	150	152.	151		
25	240	243	745	243		

T.C.	T= 0 °F	T= 15 °F	T= 30 °F	T= 45 °F	T=60 °F	7=75 °F
26	111	124	132	138	142	144
27	100	102.	105	107	108	110
58	122	136	145	151	155	158
29	130	169	184	195	202	,206
30	175	234	284	318	339	35 5
31	213	228	238	244	250	252
32	118	129	167	181	195	199
33	123	125	154	166	173	179
34	133	163	177	186	193	199
35	135	146	170	195	211	218
36	145	184	215	236	250	258
37	139	173	193	204	210	2/5
38	140	159	177	190	200	205
39	135	169	184	195	202	206
40	177	214	316	342	360	366
41	182	246	307	35 3	373	390
42	134	191	220	237	252	263
43	135	172	245	273	311	322
44	165	331	362	385	385	390
45	169	223	281	329	353	368
46	175	234	284	318	339	355
47	180	287	334	360	375	2586
48	188	215	252	284	30 Z	322
49	159	185	269	303	348	360
50	165	211	257	302	328	347

T.C.	T= 90 °F	T= 105 °F	T= 120 °F	T= /35	T= °F	°₽
26	146	148	148	148		
27	109	[1]	111	110		
58	161	162	162	162		
29	210	212	217	210		
30	368	373	377	377		7
31	254	257	258	259		
32	203	205	208	208		
33	182	184	185	186		
34	201	201	50°	200		
35	224	227	231	230		
36	266	270	272	272		
37	220	222	225	223		
38	212	215	219	218		
39	210	212	2.12	210		
40	377	374	380	375		
41	405	411	419	418	•	
42	272	272	274	273		
43	533	338	344	342		
44	391	392	390	3 87		
45	392	398	400	401		
46	368	373	377	377		
47	392	390	394	388		
48	338	345	356	328		
49	373	377	381	384		
50	368	375	382	381		

T.C.	T= 0 °F	T= 15 °F	T= 30	T= 45	T= 60	T=75
51	147	195	232	266	291	, 304
52	139	239	302	332	350	359
53	159	518	295	344	368	389
54	141	145	148	150	150	150
55	123	125	125	127	127	127
56	284	292	296	304	307	309
57	137	142	144	145	145	145
58	144	150	150	152	154	154
59	142	147	149	150	150	150
60	183	186	194	197	202	203
61	187	190	195	199	203	204
62	169	174	177	180	185	183
63	270	277	287	294	300	300
64	260	362	282	283	287	289
65	223	230	243	250	756	258
66	224	230	237	242	248	248
67	209	215	550	225	\$27	229
68	188	193	500	204	206	207
69	259	2711	285	300	303	312
70	241	247	257	262	766.	268
71	235	240	260	272	283	588
72	297	300	310	315	322	322
73	312	312	372	329	332	335
74	260	263	277	283	290	292
75	304	306	313	318	324	327

T.C Nº		T= 165	T= 120	T= 135	T:	T= °F
51	320	336	333	336		
52	372	374	376	372		
53	404	410	417	419		
54	150	151	152	153		
22	126	127	120	131		
56	307	313	314	313		
57	145	145	147	14.8		-
58	153	154	155	157		
59	150	150	151	152		
60	205	206	208	208		
61	205	206	208	209		
62	183	184	185	186		
63	301	304	309	308		
64	290	292	296	296		
65	260	261	265	266		
66	250	250	254	254		
67	230	230	232	232		
68	210	210	210	212		
69	314	318	319	320		
70	273	272	277	278		
71	290	292	296	296		
72	325	325	330	330		
73	336	337	34-3	343		
74	794	294	300	300		
75	326	330	337	330		

T.C		T= 15	T= 30	T= 45	1	1 -
76		288	301	°F	o F	°F.
77	280	287		310	318	370
78	-		300	309	315	317
79	284	293	301	304	309	311
80	270	3 3 8	260	271	283	285
	 	280	291	296	299	305
81	268	277	284	291	295	296
82	243	258	279	290	297	301
83	258	269	285	293	297	301
84	213	558	238	244	250	252
85	195	212	225	235	243	246
86	233	233	238	240	239	239
87	215	246	312	338	-	
88	346	349	362	369	375	376
89	268	276	294	313	325	332
90	196	244	290	314	332	339
91	221	331	372	388	401	406
92	256	260	264	274	274	277
93	312	322	335	344	351	354
94	202	222	262	294	318	
95	212	240	275	294		336
96	325	327	338	343	352	303
97	190	205	229		225	357
98	335	336	339	240	26 =	255
99	303	306		347	298	358
100	204		317	321	324	331
.00	204	207	212	217	250	223

T.C	-; - ; -	T= 105	T=120	T= 135	T=	7 ₌
76	324	325	332	330		
77	320	322	327	327		
78	314	313	317	321		
79	291	293	301	295		
80	303	306	313	311		
81	301	300	305	304		
82	306	311	313	315		
83	305	309	313	310		
84	254	257	258	259		
88	254	253	256	255		
86	241	242	248	245		
87						
88	378	379	386	390		
89	343	347	353	352		
90	352	354	359	358		
91	409	409	410	411		,
92	278	284	284	289		
93	356	360	365	365		
94	349	356	362	363	1	
95	319	322	328	328		
96	356	358	368	370		
97	260	262	265	264		
98	357	357	362	365		
79	329	332	341	337		
100	221	221	226	221		

T.C.	T= 0	T= 15	T= 30	T= 45	T:60	T=75
101	294	303	1		٥E	°F.
102	267		311	323	327	330
103	260	271	280	291	294	295
104	231.	269	287	296	303	309
105	144	251	275	290	298	304
106	151	145	148	151	151	152
107		151	152	154	154	155
	169	178	187	200	200	206
108	(63	169	177	183	185	189
109	250	265	272	280	287	287
110						
111						
115						
113						
114						
115					,	

101 332 334 340 329 102 297 301 306 301 103 310 315 320 317 104 307 305 311 311 105 152 156 156 156 155 106 156 157 158 159 107 205 205 212 208 108 190 190 198 194 109 287 294 297 296 110 111 112 113 114 115,	T.C.	T= 90 °F	T= 105 °F	T= 120 °F	74 135 °F	T= °F	7 ₌ °F.
103 310 315 320 317 104 307 305 311 311 105 152 156 156 155 106 156 157 158 159 107 205 205 212 208 108 190 199 194 109 287 294 297 296 110 111 112 - 113 114 115 ,	101	332	334	340	329		
104 307 305 311 311 105 152 156 156 155 106 156 157 158 159 107 205 205 212 208 108 190 190 191 194 109 287 294 297 296 110 112 - - 113 114 - - 115 , - -	IOS	297	301	306	301		
105 152 156 156 155 106 156 157 158 159 107 205 205 212 208 108 190 197 194 109 287 294 297 296 110 112 - 113 114 115 ,	103	310	315	320	317		
106 156 157 158 159 107 205 205 212 208 108 190 190 191 194 109 287 294 297 296 110 111 112 113 114 115 116	104	307	305	311	311		
107 205 205 212 208 108 190 198 194 109 287 294 297 296 110 111 112 - 113 114 115 ,	102	152	156	156	155		
108 190 197 194 109 287 294 297 296 110 111 112 - 113 114 115	106	156	157		159		
109 287 294 297 296 110 111 112 - 113 114 115	107	205	205	212	208		
	108	190	190	198	194		
	109	287	294	297	296		
112 . 113 . 114 . 115 ,	110						
114	115						
114	112	-					
us ,	113						
	114						
	115	•					
							,

						411	
						-	

Approved For Release 2000 104/42 - 214-12 DR67 80657 R000100210001-6

TABLE Nº A5

TEST CONDITION: STABILIZATION - SYSTEM ENERGIZED

DATE 1-13-64 START 0030 HR. END 0245 HR.

COOLING AIR FLOW:

3" DIA. INLET 7.5 #MIN. , 2" DIA. INLET 15 #MIN.

T.C.	T=0 °F	7= 15 °F	T= 30	T-45	7:40 °F	T=75
1	84	85	86	86	85	86
2	89	93	94	94	94	96
3	144	161	180	191	197	201
4	143	159	170	180	185	187
5	88	87	88	පිපි	පිප	පුපු
6	90	99	101	103	103	103
7	91	96	96	97	98	98
8	102	105	109	110	112	113
9	98	101	104	106	107	108
10	102	107'	111	114	115	116
11	100	103	107	107	108	108
12	83	83	84	84	84	.84
13	96	103	106	109	110	111
14	144	161	180	191	197	201
15	179	219	243	260	271	274
16	171	191	205	221	229	235
17	85	85	86	-86	87	87
18	84	94	95	95	96	96
19	100	114	119	121	123	124
20	95	103	108	110	110	111,
21	83	86	86	86	87	86
22	82	89	89	89	89	90
23	94	9.1	98	100	100	101
24	100	112	117	120	123.	123
25	148	174	191	202	2.10	215

TABLE Nº A5 TEST DATA - RUN Nº 8 (CONTINUED)

T.C.	T= 90 °F	T= 105	T= 120	T= 135	T: °F	T= °F
1	87	84	86	88		
2	96	95	95	97		
3	202	208	207	2.08		
4	188	191	193	192		
5	88	88	88	89		
6	104	103	.104	105		
7	98	97	99	99		
8	112	113	114	115		
9	109	108	110	110		
10	117	117	117	118		
11	109	107	109	109		
12	83	83	84	84		
13	111	111	111	113		
14	202	208	207	208		
15	281	283	281	281		
16	2 33	242	243	244	***	
17	86	86	88	88		
18	96	96	96	98		
19	124	125	152	126		
20	112	112	1/3	1/3		
21	87	86	87	87		
22	90	8-1	90	91		`
23	101	101	102	104		
24	125	125	125	125		
25	216	218	220	551		

TEST DATA - RUN Nº 8

T.C Nº	T=0	T= 15 ¿	T= 30 °F	T≈ 45	T:60 °F	7=75 °F
26	104	111	116	120	121	123
, 27	87	87	89	89	89	89
28	111	119	124	128	129	130
29	151	142	155	161	164	166
30	190	240	273	296	310	322
31	202	208	213	216	220	221
32	120	139	156	165	172	174
33	124	128	138	148	151	154
34	121	148	158	164	167	163
35	136	155	170	179	187	190
34	150	180	199	211	219	229
37	139	163	178	190	194	198
38	140	150	163	172	177	181
39	155	147	164	170	173	175
40	178	261	286	304	312	221
41	213	238	275	300	319	378
42	139	182	202	213	223	232
43	170	218	249	267	281	290
44	170	218	249	267	281	290
45	205	240	281	311	333	344
46	190	240	273	296	310	322
47	165	265	295	3//	321	327
48	219	227	259	288	303	317
49	187	245	281	300	315	324
50	308	218	258	291	315	325

T.C.	T= 90 °F	T= 105	T=120	T= 135	T: °F	\T= \circ\F
26	124	123	125	125		
27	40	89	91	91		
28	131	131	132	133		
29	169	169	169	166	*)	
30	331	331	332	338		
31	221	227	228	227		
32	176	177	177	177		
33	155	157	157	158		
34	170	170	170	171		
35	194	195	195	196		
36	229	234	231	236		
37	200	204	202	206		
38	182	185	186	186		
39	179 .	(78	179	180		
40	324	328	327	327		
41	338	341	347	348		
42	235	233	2,35	240		
43	297	299	300	300		•
44	297	299	300	300		7
45	352	360	361	361		
46	331	33	332	3		
47	334	336	335	336		
48	322	329	329	335		
49	331	333	335	335		
50	332	340	34 ≰	343.		

T.C.	T=0	T= 15.	T: 30 °F	T= 45 °F	T= 00	7 ₌ 75 °F
51	180	204	232	254	271	281
52	145	233	278	305	317	323
53	184	237	287	318	337	349
54	121	121	121	121	120	121
55	92	92	90	92	93	94
56	278	274	278	288	285	288
57	110	110	108	110	110	110
58	119	119	116	117	118	118
59	116	115	113	115	115	116
60	170	172	175	178	179	180
61	175	174	175	176	177	178
62	149	150	150	151	150	151
63	269	272	278	286	282	283
64	252	260	265	268	270	272
65	216	222	228	233	235	236
66	206	210	213	218	222	222
67	185	186	188	192	192	190
68	167	170	171	175	176	176
69	275	275	281	291	293	297
70	235	237	241	245	248	249
71	227	235	245	254	260	262
72	294	243	293	300	304	302
73	304	308	311	317	316	316
74	266	270	275	280	281	281
75	290	295	298	304	306	306

T.C.	T= 90 °F	T= 105	T= 120	T= 135	T:	T= °F
51	293	297	299	303		
52	325	326	530	329		
53	356	363	365	369		
54	172.	122	122	125		
55	91	90	94	95		
56	288	293	293	293		,
57	110	110	110	112		
58	119	117	120	121		
59	115	114	115	118		
60	179	181	180	180		
61	180	180	180	180		
62	155	153	152	155		
63	284	286	284	285		
64	275	274	274	275		
65	239	240	239	240		
66	525	55%	227	225		
67	193	192	192	193		
68	177	177	177	180	·	
69	302	306	302	304		
70	249	250	250	250		
71	265	268	268	270		
72	304	305	303	305		
73	320	318	317	320		
74	285	284	284	28 5		
75	308	308	308	310		

T.C.	T=0 °F	T= 15	T= 30 °F	T= 45 °F	T= 60 °F	7=75 °F
76	270	278	284	292	295	295
77	270	278	284	288	293	294
78	276	279	284	288	290	291
79	223	232	241	253	259	266
හ	261	267	2.74	282	287	290
81	260	262	270	580	281	282
82	243	255	269	282	287	287
83	255	262	269	581	282	287
84	202	208	213	216	220	221
85	191	207	214	228	233	233
84	222	226	224	225	230	228
87	236	274	305	328	346	356
88	33 8	344	352	363	362	363
89	287	277	294	308	327	324
90	210	242	271	289	204	308
91	213	306	328	342	348	352
92	256	258	260	261	268	261
93	305	316	326	333	336	336
94		234	259	286	305	316
95	223	247	265	278	288	294
96		319	326	334	342	344
97		198	209	217	224	228
98		324	329	338	338	341
99		297	303	310	312	313
100		195	199	204	208	206

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

T.C.	T= 90 °F	T= 105	T= 170	T= 135	T≃ °F	T= °F
76	299	299	298	३०७		
77	296	295	295	297		
78	293	293	294	293		
79	268.	270	267	26 is	-	
80	290	292	289	289		
81	285	283	८४.	285		
82	290	293	292	293		
83	287	289	289	286		
.84	221	227	228	227		
85	238	238	239	240		
86	232	230	232	232		,
87	368	369	372	373		
88	365	366	366	367		
89	336	338	338	340		
90	313	314	318	370		
91	352	355	355	3 55		
92	271	267	267	2.67		
93	339	341	342	339		
94	323	352	335	325		
95	298	300	301	302		
96	345	349	344	344		
97	230	231	232	232		
98	341	343	345	347		
99	312	316	312	313		
100	210	२०८	207	207		

TABLE Nº A5 TEST DATA - RUN Nº 8 (CONTINUED)

T.C.	T= 0	T= 15	T= 30	T= 45	T: 60	T= 75
101	285	291	300	310	313	315
102	257	263	267	273	279	278
103	257	270	281	249	294	293
104	231	243	25 <i>9</i>	270	277	28 <i>0</i>
105	132	130	132	133	134	135
106	137	135	135	137	137	137
107	161	165	169	174	רדו	178
108	159	162	165	169	170	170
109	398	400	406	410	410	410
110						
111						`
112						
113						
114						
115						
						,

T.C.	T= 90	T= 105	T= 120		T:	T=
101	315	321	322	° F	°F	°F
107	278	279	282	279		
103	295	296	297	299		
104	283	287	287	285		
105	135	135	137	136		
106	137	135	137	138		
107	179	179	181	181		
801	171	172	173	173		
109	405	410	410	412		
110						
111						
112					~	
113						
114						
115						
	<u> </u>					

TABLE NºAG

STABILIZED TEMPERATURE (EMERGENCY CONDITION)

AIR FLOW:

3" DIA. INLET .90 MIN. , AIR TEMP. 80° F 2" DIA. INLET .60 MIN. , AIR TEMP. 120° F

T.C. TEMP(°F) N° @ 2230 HRC. Q 2245 HRS. N° @ 2230 HRC. Q 2245 HRS. N° Q 2230 HRC. Q 2245 HRS. N° Q 2230 HRS. Q 2246 HRS. Q 2230 HRS. Q 2246 HRS. Q 2230 HRS. Q 2266 RS. Q 236 R		ſ	F 0	T								
1 215 219 16 293 · 296 2 227 230 17 209 216 3 295 295 18 205 211 4 300 306 19 231 233 5 198 215 20 233 234 6 310 310 21 204 204 7 212 228 22 194 205 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 32 32 32				@ 2230 H	°F)	TEMP. @ 2245	(°F) HRS.		. ,	=MP(°F)		(°F)
2 227 230 17 209 216 3 295 295 18 205 211 4 300 306 19 231 233 5 198 215 20 233 234 6 310 310 21 204 204 7 212 228 22 194 205 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 32 32		-	1	215		219		10	[RS.
3 295 295 18 205 211 4 300 306 19 231 233 5 198 215 20 233 234 6 310 310 21 204 204 7 212 228 22 194 205 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 32 32 32			2	227		230)	17				
4 300 306 19 231 233 5 198 215 20 233 234 6 310 310 21 204 204 7 212 228 22 194 205 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 326 326			3	295		295		18	_		-	
5 198 215 20 233 234 6 310 310 21 204 204 7 212 228 22 194 205 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 30 30			4	300		306		19	+		 	
6 310 310 21 204 204 7 212 228 22 194 204 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 326 326		1	5	180	-				-	31	233	
310 310 21 204 204 7 212 228 22 194 205 8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 326 32		-	+			215	1	20	23	33	234	
8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 326 32		 		310	-+-	310		21	20	4	204	
8 199 210 23 220 226 9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 32 30				212		228		72	19	4	205	-
9 226 236 24 231 231 10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 32		8	<u> </u>	199		210		23	22	0		\dashv
10 245 259 25 286 282 11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 326 326		9		226		236	1	24				\dashv
11 236 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 326 32		10		745	+-		+-				231	
12 256 252 26 250 252 12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 32	F		+-			259	7	25	28	6	282	
12 208 216 27 192 215 13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 32 32	\vdash		2	236		252	2	6	25	0	252	1
13 235 234 28 295 297 14 295 295 29 314 321 15 326 326 326 30 30		12	3	801		216	2	27	197			-
14 295 295 29 314 321 15 326 326 326 30 30		3	2	35	2	234	28	8				$\frac{1}{2}$
15 326 326 320	ţ	4	2	0.5	<u> </u>		-		<u> </u>	-	297	
37/- 37/-		5				.95	7.5		314		321	
	-	7	3	26	3	26	30		36e	,	369	

TABLE NºA6

T.C. Nº	TEMP(°F) @ 2230 HRS.	TEMP (°F) @ 2245 HRS.	T.C.	TEMP.(F) @2250 HRS.	TEMP(°F) @2245 HRS.
31	358	351	51	365	3 65
32	1232	270	52	356	357
33	295	294	53	370	371
34	306	311	54	220	218
35	311	311	55	158	158
36	331	333	56	413	414
37	320	323	57	200	200
38	326	329	58	222	221
39	.314	321	59	211	210
40	366	370	60	344	34-0
41	384	388	6)	336	335
42	347	352	હ્ય	296	294
43	357	358	63	411	413
44	357	358	64	460	400
45	380	383	65	390	397
46	368	369	66	368	370
47	363	366	67	342	342
48	384	386	68	343	343
49	364	365	69	448	447
50	375	376	70	380	380

TABLE Nº AG

T.C.	TEMP.(°F) @ 2230 HRs.	TEMP(°F) @ 2245 HRS.	T.C.	TE M P.(F) @2230 HRS.	TEMP(°F) @2245 HRS.
71	412	415	91	440	448
72	425	425	92	338	340
73	436	436	93	447	450
74	435	436	94	397	401
75	439	440	95	351	349
76	440	442	96	453	454
77	421	422	97	230	330
78	413	414	28	445	445
79	410	418	ವಿಎ	403	406
80	420	425	100	456	459
81	412	415	101	4-09	410
87	429	436	102	406	413
83	427	436	103	429	433
84	358	351	104	390	396
8 5	376	380	105	292	307
86	309	311	106	261	279
87			107	340	359
88	450	452	108	325	336
89	410	411	109		
90	385	385	110		

TABLE Nº A7

STABILIZED TEMPERATURE (EMERGENCY CONDITION)

AIR FLOW:

3" DIA. INLET .90 MIN. , AIR TEMP. 45°F'
2" DIA. INLET .60 MIN. , AIR TEMP. 80°F

7.6					
T.C		TEMP. (°F) @ 2015 HRS		Temp(CE)	
1	189	189	16	282	281
2	205	206	17	203	206
3	279	278	18	197	197
4.	791	291	19	225	222
5	196	196	20	225	228
6	205	୧୦୫	21	195	194
7	212	212	22	186	186
8	881	186	23	213	213
9	214	215	24	225	225
10	241	243	25	275	275
11	237	238	26	245	243
12	202	200	27	193	193
13	. 226	225	28	284	285
14	279	278	29	312	311
15	315	312	30	363	357

TABLE NºA7

(CONTINUE D)

T.C.	TEMP (°F) @ 2000 HRS.	TEMP (°F) @2015 HRS	T.C.	TEMP.(°F) @2000 HRS.	TEMP (°F) @ 2015 HRS.
31	340	341	51	342	344
32	294	292	52	338	342
33	290	289	53	349	355
34	305	304	54	186	187
3 5	309	309	55	124	121
36	325	325	56	402	401
37	313	313	57	167	165
38	320	321	58	191	189
39	312	311	57	179	177
40	356	357	60	328	329
41	368	370	61	309	315
42	337	338	62	272	274
43	343	345	63	399	299
44	343	345	64	390	389
45	360	366	65	384	384
44	353	357	66	355	355
47	356	356	67	322	321
48	364	365	68	328	329
49	253	354	ශ	4-34	434
50	354	355	70	361	362

TABLE Nº A7

(CONTINUED)

T.C.	TEMP.(°F) @ 2000 Hrs.	TEMP. (°F) @2015 HRS.	T.C.	TE MP.(°F) @2000 HRS.	TEMP (°F) @2015 HRS.
ור	361	362	91	396	397
72	4-10	4.10	92	217	316
73	413	414	೨૩	432	432
74	435	426	94	376	379
75	439	440	95	544	344
76	433	43.0	96	446	443
77	421	422	97	328	328
78	392	371	98	433	435
79	406	406	99	395	390
80	410	407	100	347	345
81	397	293	101	401	401
82	423	421	102	=94	375
83	. 423	42.1	103	419	419
84	340	341	104	388	386
85	:57	358	105	284	282
80	288	289	106	757	257
87			107	346	346
88	436	434	108	328	325
82	392	393	100)	
90	366	370	110		

ILLUSTRATION NO. 1

Simulated Vehicle Section

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

ILLUSTRATION NO. 2
Simulated Vehicle Section
Upper Compartment

Approved For Release 2000/04/12 : CIA-RDP67B00657R000100210001-6

ILLUSTRATION NO. 3

Inlet Cooling Air Manifold

ILLUSTRATION NO. 4

Exhaust Cooling Air Manifold