

Deep Learning-based Trajectory Prediction using Improved HiVT

System Control Lab. 44211032-5 SUN Honglin

2022/2/6

Contents

1. Introduction

1.1 Background & Research Target

1.2 Issue & Idea

2. Deep Learning-based Trajectory Prediction

- 2.0 Intro to HiVT (Hierarchical Vector Transformers)
- 2.1 Computational Efficiency Improvement
- 2.2 Prediction Accuracy Improvement

3. Simulations

3.1 Simulation Setup

3.2 Visualization Results

3.3 Quantitative Comparisons

3.4 Effectiveness Validation

4. Conclusions

1.2 Issue & Idea

Issue

- ☐ Most learning-based methods require heavy computation
 - → Hard to apply to vehicles
- ☐ Long latency will make the prediction meaningless

TABLE I: Comparison of some deep learning-based methods (LaneGCN as the baseline of accuracy)

(
Method	Accuracy	#Param	Device (GPU)	
LaneGCN	100.00%	3,701K	GTX TITAN X	
Scene Transformer	110.71%	15,296K	Tesla V100	
GOHOME	94.05%	400K	RTX 2080 Ti	
HiVT-64 [4]	99.77%	653K	RTX 2080 Ti	

Idea

Perform a two-stage modification on HiVT-64:

- Improve the computational efficiency
 - Cut down parameters and layers
 - Modify or remove some operations
 - Implement a new local encoder
- Improve the prediction accuracy
 - Refine the network structure
 - Introduce more useful features
 - Improve the training strategy

TABLE II: Comparison of some devices (RTX 2080 Ti as the baseline of performance)

one y			
·	Device	Performance	Power
5	RTX 2080 Ti	100.0%	250 W
	GTX 1070 Max-Q	42.0%	115 W
Owleand	Jetson AGX Xavier	10.5%	30 W
Onboard AI chips	Jetson AGX Orin	39.6%	60 W

[4] Zhou, Zikang, et al. "HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. 3

Contents

1. Introduction

1.1 Background & Research Target

1.2 Issue & Idea

2. Deep Learning-based Trajectory Prediction

- 2.0 Intro to HiVT (Hierarchical Vector Transformers)
- 2.1 Computational Efficiency Improvement
- 2.2 Prediction Accuracy Improvement

3. Simulations

3.1 Simulation Setup

3.3 Quantitative Comparisons

3.2 Visualization Results

3.4 Effectiveness Validation

4. Conclusions

2.0 Intro to HiVT (Hierarchical Vector Transformers)

Local regions

☐ Small circular regions centered at each agent

Modules inside the model

(4 stacked Transformers)

- a. Agent-Agent interaction $\times T$ Encode agents' interaction in local region at each time step
- b. <u>Temporal transformer</u> Capture temporal information
- c. <u>Agent-Lane interaction</u>
 Encode the map information
- d. Global interaction × 3
 Encode the relationship
 between local regions
 (Perform 3 times)

Local feature matrix:

Spatio-temporal information of the local region

Global feature matrix:

Spatio-temporal information and geometric relationship with other local regions

Fig. 4: Overview of HiVT

WASEDA UNIVERSITY

2.1 Computational Efficiency Improvement

Implement a new local encoder

- ☐ <u>Original local encoder</u>
- 1. Agent-Agent Interaction $\times T$
- 2. Temporal Transformer
- 3. Agent-Lane Interaction
- ☐ A-A interaction module: time-consuming
 - Not all agents have interaction with each other

Fig. 13: Issue of A-A interaction

Fig. 12: Original local encoder

2.1 Computational Efficiency Improvement

Implement a new local encoder

- ☐ Original local encoder
- 1. Agent-Agent Interaction $\times T$
- 2. Temporal Transformer
- 3. Agent-Lane Interaction
- d. Agent-Agent Interaction \times 1 C. 2. Temporal Transformer b. Temporal Transformer Interaction Local Lanes Agent Agent Agent A-L a. A-A Encoder Interaction Interaction Interaction Interaction Encoder Encoder Interaction h_3 T-1 Local Lanes T-1 T-2 **→** Timeline **→** Timeline

Fig. 12: Original local encoder

Fig. 14: Proposed local encoder

☐ Proposed local encoder

b. Temporal Transformer

c. Agent-Lane Interaction

a. Agent Encoder $\times T$

A-L before A-A:

of each agent

Enrich the features

Refine the network structure

- ☐ Modify the trajectory generation
 - Change the decoder output size: 30-position dense output $(0.1s \times 30)$
 - \rightarrow 3-position sparse output (1s \times 3)
 - \square Fewer data need to learn: $30 \times 2 \rightarrow 3 \times 2$
 - ☐ Makes the model easier to converge
 - Use cubic B-spline interpolation to complete the full trajectory
 - □ Driving purpose with 1-second interval is almost deterministic
 - → Enough for the mathematical method to interpolate an accurate trajectory

Fig. 16: Example of a driving purpose (go straight)

- Every 1 second
- •: Every 0.1 second

(a) Directly output all positions (original)

(b) Sparse output with interpolation (proposed)

Fig. 15: Comparison of different output

Refine the network structure

Original

☐ Modify the fusion method of edge attributes (e) inside global interaction module

Proposed $e_{ii} = \phi_{\text{MLP}}([R_{ii}p_{ij}, \sin(\theta_{ij}), \cos(\theta_{ij})]) e_{ij} = [R_{ij}p_{ij}, \sin(\theta_{ij}), \cos(\theta_{ij})]$ $h_i = \phi_{\text{MLP}}([h_i, e_{ij}])$ $\rightarrow Q = W_{Q_{\text{node}}} h_i$ $K = W_{K_{\text{node}}} h_{i}$ Retains more $V = W_{V_{\text{node}}} \boldsymbol{h}_{j}$ node information Linear Query Matrix (O) Target Matrix \rightarrow softmax $(\frac{QK^{\top}}{\sqrt{d_k}})V$ Linear Key Matrix (K)Output Matrix Source Matrix Linear Linear Projection Value Matrix (V)

Fig. 7: Scaled-dot product attention inside the transformers

Introduce more useful features

☐ Add learnable time weights to the temporal transformer

Fig. 21: Time weights

☐ Fusing lane adjacency relationship as semantic information

Fig. 22: Example usage of lane adjacency relationship

Overall comparison of the decoder structure

Overall structure of the modified HiVT

Contents

1. Introduction

1.1 Background & Research Target

1.2 Issue & Idea

2. Deep Learning-based Trajectory Prediction

- 2.0 Intro to HiVT (Hierarchical Vector Transformers)
- 2.1 Computational Efficiency Improvement
- 2.2 Prediction Accuracy Improvement

3. Simulations

3.1 Simulation Setup

3.3 Quantitative Comparisons

3.2 Visualization Results

3.4 Effectiveness Validation

4. Conclusions

3.1 Simulation Setup

Hardware: i7-8750H & GTX 1070 Max-Q Software: Ubuntu 20.04 LTS & PyTorch 1.12 Training: 131 epochs, max learning rate 5e-4

- **Argoverse 1 Motion Forecasting Dataset** [6]
- ☐ The same as used in HiVT and other papers
- ☐ Data was collected in Miami and Pittsburgh
- \square 324,557 scenarios in the dataset, split into:
 - Training set: 205,942 scenarios
 - Validation set: 39,472 scenarios
 - Test set: 78,143 scenarios
- □ 5 seconds of data for each scenario
 - 10 Hz sampling rate
- □ Task
 - 2-second historical trajectory + Map **▶** Predict
 - 3-second possible future trajectories $(30 \text{ positions} \times \text{ number of trajs.})$

[6] Chang, Ming-Fang, et al. "Argoverse: 3D Tracking and Forecasting with Rich Maps." *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition. 2019.

Fig. 24: Example of map data structure

3.1 Simulation Setup

K=1: Consider the highest prob. trajectory K=6: Consider all the 6 trajectories

Visualization

- ☐ Predict 6 possible future trajectories
 - Yellow line: Historical trajectory (2s)
 - Red line: True future trajectory (3s)
 - Green lines: Predicted trajectories, probability declines from 1 to 6
 - Cyan dots: Final positions of other agents
 - Gray polygons: Lane segments
 - Gray arrows: Lane directions
- ☐ Good prediction: Close to the red line
- ☐ Plot one vehicle's prediction result
- ☐ Darker green indicates a higher probability

Fig. 25: Example of prediction result

WASEDA UNIVERSITY

3.1 Simulation Setup

Metrics (Lower is better)

☐ minADE: Minimum Average Displacement Error

$$\min ADE = \min \left(\frac{1}{T} \sum_{t=1}^{T} ||\widehat{\boldsymbol{y}}_t - \boldsymbol{y}_t||_2 \right)$$

- \square minFDE: Minimum Final Displacement Error minFDE = min($\|\widehat{y}_T y_T\|_2$)
- □ brier-minFDE [7]: minFDE + probability term
 - → Evaluate both regression and classification performance

brier-minFDE = min(
$$\|\hat{\boldsymbol{y}}_T - \boldsymbol{y}_T\|_2 + (1 - \boldsymbol{p})^2$$
)

☐ MR: Miss Rate

$$MR = \frac{\text{#scenarios_with_minFDE} > 2[m]}{\text{#scenarios}}$$

Fig. 29: Calculation of minFDE

 \hat{y}_t : Predicted future positions at time step t

 y_t : True position at time step t

p: Predicted probabilities of future positions

[7] Brier, Glenn W. "Verification of Forecasts Expressed in Terms of Probability." *Monthly Weather Review* 78.1 (1950): 1-3.

Comparison with the original HiVT-64 model

Fig. 26: Turning left

Comparison with the original HiVT-64 model (zoom in)

Fig. 26: Turning left

Comparison with the original HiVT-64 model

Fig. 27: Turning right (long historical trajectory)

Comparison with the original HiVT-64 model (zoom in)

Fig. 27: Turning right (long historical trajectory)

Comparison with the original HiVT-64 model

Fig. 28: Turning right (short historical trajectory)

Comparison with the original HiVT-64 model (zoom in)

Fig. 28: Turning right (short historical trajectory)

3.3 Quantitative Comparisons

3.3 Quantitative Comparisons

Specification Comparison

- ☐ Inference speed (frames per second)
 - Test 3 times with the same 5,000 samples and take the average

Local

Encoder

- ☐ GPU memory cost
 - Feed the same

 data to the network
 - Measure the memory cost

Fig. 30: Rough structure of the model

Decoder

Global

Interactor

in each module

TABLE III: Specification comparison

		Inference	GPU Memory Cost (MB)					
Model	#Param.	Speed (fps)	Local Encoder	Global Interactor	Decoder	Others [†]		
Original	653,369	19.11	430	22	4	10		
Proposed	395,809	70.70	242	2	4	6		
Improve	39.4%	270.0%	43.7%	90.9%	0.0%	40.0%		
Lightest*	389,689	74.05	/	/	/	/		

^{*} The model after first-stage modifications.

Positions

Probabilities

[†] Includes model and pre-trained weights.

3.4 Effectiveness Validation

Ablation study

TABLE IV: Ablation study of the second-stage modifications (Validation set, K=6)

Decoder Mods.	Encoder Mods.	Training Strategy	minADE	minFDE	MR	brier- minFDE	#Param.
			0.71	1.06	10.9%	1.72	389,689
\checkmark			0.70	1.04	10.3%	1.69	391,117
✓	\checkmark		0.70	1.03	10.1%	1.69	395,809
✓	\checkmark	✓	0.70	1.02	9.8%	1.67	395,809

Validation of time weights

Fig. 31: Time weights

3.4 Effectiveness Validation

Validation of edge attributes fusion

TABLE V: Comparison with the original fusion method (Validation set)

Model		K=1]	K=6	
Model	minADE	minFDE	MR	minADE	minFDE	MR	brier-minFDE
Original	1.37	2.99	49.1%	0.70	1.03	10.1%	1.69
Proposed	1.35	2.92	48.8%	0.70	1.02	9.8%	1.67

Fig. 17: Illustration of edge attributes

☐ Original

$$\mathbf{e}_{ij} = \phi_{\text{MLP}}([R_{ij}\boldsymbol{p}_{ij}, \sin(\theta_{ij}), \cos(\theta_{ij})])$$
$$\boldsymbol{h}_j = \boldsymbol{h}_j$$

□ <u>Proposed</u>

$$\mathbf{e}_{ij} = [R_{ij}\mathbf{p}_{ij}, \sin(\theta_{ij}), \cos(\theta_{ij})]$$

$$\mathbf{h}_{j} = \phi_{\text{MLP}}([\mathbf{h}_{j}, \mathbf{e}_{ij}]) \quad Q = W_{Q_{\text{node}}}\mathbf{h}_{i}$$

$$K = W_{K_{\text{node}}}\mathbf{h}_{j} + W_{K_{\text{edge}}}\mathbf{e}_{ij}$$

$$V = W_{V_{\text{node}}}\mathbf{h}_{j} + W_{V_{\text{edge}}}\mathbf{e}_{ij}$$

Contents

1. Introduction

1.1 Background & Research Target

1.2 Issue & Idea

2. Deep Learning-based Trajectory Prediction

- 2.0 Intro to HiVT (Hierarchical Vector Transformers)
- 2.1 Computational Efficiency Improvement
- 2.2 Prediction Accuracy Improvement

3. Simulations

3.1 Simulation Setup

3.3 Quantitative Comparisons

3.2 Visualization Results

3.4 Effectiveness Validation

4. Conclusions

4. Conclusions

Conclusions

- ☐ Simulation results: The proposed model outperforms the original in both computational efficiency and accuracy
 - Computational efficiency improvement:
 - ☐ Inference speed: $2.8x \uparrow$

Number of parameters: 40.4% ↓

- ☐ No considerable accuracy degradation
- Prediction accuracy improvement:
 - ☐ Inference speed: $2.7x \uparrow$

Number of parameters: 39.4% ↓

☐ GPU memory cost: 45.5% ↓

Accuracy*: ~ 5.5% ↑

- → The two-stage modifications are effective
- ☐ Ablation study: Each modification contributes to the accuracy improvement
- ☐ Modifications in this research are more effective on small models (Refer to Appendix 6)
 - As the number of parameters increases, the advantage becomes smaller:
 - ☐ Hidden size = 64, Accuracy: $\sim 5.5\% \uparrow$
 - ☐ Hidden size = 128, Accuracy: $\sim 4.0\% \uparrow$

Thanks for Listening

Appx. 4 Detailed Comparison of Parameters

Original model

Proposed model

Number of params: 653,369 Number of params: 395,809

name	#params	name	#params
model	 0.7M	model	 0.4M
local_encoder	0.4M	local_encoder	0.3M
local_encoder.aa_encoder	86.0K	local_encoder.agt_embed	8.8K
local_encoder.temporal_encoder	0.2M	local_encoder.bos_token	1.3K
local_encoder.al_encoder	76.3K	local_encoder.temporal_encoder	0.1M
global_interactor	0.3M	local_encoder.al_encoder	63.8K
global_interactor.rel_embed	13.4K	local_encoder.aa_encoder	62.7K
global_interactor.global_interactor_layers	0.2M	global_interactor	92.2K
global_interactor.norm	0.1K	global_interactor.global_interactor_layer	67.1K
global_interactor.multihead_proj	25.0K	global_interactor.multihead_proj	25.1K
decoder	37.5K	decoder	30.4K
decoder.aggr_embed	8.4K	decoder.aggr_embed	8.4K
decoder.loc	8.2K	decoder.loc	8.8K
decoder.scale	8.2K	decoder.scale	4.6K
decoder.pi	12.7K	decoder.pi	8.5K

Appx. 5 Metrics Comparison

Metrics Comparison

TABLE A5-1: Metrics comparison (Validation set)

Model	minADE	minFDE	MR	minADE	minFDE	MR	brier-minFDE
Original	1.4293	3.1138	0.5022	0.7082	1.0757	0.1117	1.7384
Proposed	1.3480	2.9234	0.4875	0.6955	1.0157	0.0984	1.6707
<i>Improve</i>	5.69%	6.11%	2.92%	1.80%	5.57%	11.91%	3.89%
#Trajs.		K=1]	K=6	

TABLE A5-2: Metrics comparison (<u>Test set</u>)

Model	minADE	minFDE	MR	minADE	minFDE	MR	brier-minFDE
Original	1.7771	3.9306	0.5991	0.8552	1.3672	0.1625	2.0372
Proposed	1.7161	3.7626	0.5762	0.8349	1.2654	0.1422	1.9338
Improve	3.43%	4.28%	3.82%	2.38%	7.44%	12.49%	5.07%
#Trajs.		K=1				K=6	

Appx. 6 Comparison with Other Methods

Comparison with other methods on the leaderboard [8]

TABLE A6: Comparison with other methods on the leaderboard (<u>Test set</u>, K=6)

Model	minADE	minFDE	MR	brier-minFDE	#Params.
LaneGCN	0.8679	1.3640	0.1634	2.0585	3,701K
DenseTNT	0.8817	1.2815	0.1258	1.9759	1,103K
GOHOME	0.9425	1.4503	0.1048	1.9834	400K
HOME + GOHOME	0.8904	1.2919	0.0846	1.8601	5,100K
Scene Transformer	0.8026	1.2321	0.1255	1.8868	15,296K
HiVT-64	0.8552	1.3672	0.1625	2.0372	653K
HiVT-128	0.8209	1.2800	0.1482	1.9493	2,560K
Proposed 🔪	0.8349	1.2654	0.1422	1.9338	396K
Proposed-128	0.8140	1.2213	0.1326	1.8909	1,553K

Hidden size = 64

Hidden size = 128

Appx. 7 Detailed Comparisons

Ablation study

TABLE A7-1: Ablation study of the second-stage modifications (Validation set, K=6)

Decoder Mods.	Encoder Mods.	Training Strategy	minADE	minFDE	MR	brier- minFDE	#Param.
			0.7110	1.0608	0.1091	1.7236	389,689
✓			0.7042	1.0346	0.1027	1.6935	391,117
✓	\checkmark		0.7041	1.0295	0.1005	1.6852	395,809
✓	\checkmark	✓	0.6955	1.0157	0.0984	1.6707	395,809

Validation of edge attributes fusion

TABLE A7-2: Comparison with the original fusion method (Validation set)

Model		K=1				K=6	
Model	minADE	minFDE	MR	minADE	minFDE	MR	brier-minFDE
Original	1.3732	2.9864	0.4913	0.7018	1.0280	0.1010	1.6868
Proposed	1.3480	2.9234	0.4875	0.6955	1.0157	0.0984	1.6707