

Dijkstra's Algorithm Similar to Prim's algorithm Use a set S store the vertices whose shortest path have been found Use an array dist store the shortest distances from source v to all visited vertices The algorithm Let S={v}, all entries in dist = ∞ For each vertex w not in S, update dist dis{w|=min(dist[u]+length((u,w)),dist[w]) u is the newly added vertex to S adjacent to w Add to S the vertex x not in S but of the minimum cost in dist. Repeat last two steps until S include all vertices.

6.4.3

All-Pairs Shortest Paths

- Apply the single source shortest path to each of *n* vertices.
- Floyd-Warshall's algorithm
 - $A^{-1}[i][j]$: is just the length[i][j]
 - $A^{n-1}[i][j]$: the length of the shortest *i*-to-*j* path in G
 - \circ $A^k[i][j]$: the length of the shortest path from i to j going through no intermediate vertex of index greater than k.
 - $\stackrel{\circ}{\circ} \stackrel{A^{k}[i][j]}{=} \min\{A^{k-1}[i][j], A^{k-1}[i][k] + A^{k-1}[k][j] \}, \\ k > 0$

Floyd-Warshall's Algorithm

• There are only two possible paths for $A^k[i][j]!$ • The path dose not pass vertex k.

• The path dose pass vertex k. $A^k[i][j] = \min\{A^{k-1}[i][j], A^{k-1}[i][k] + A^{k-1}[k][j]\}, k \ge 0$

Floyd-Warshall's Algorithm 1. void MatrixWDigraph::AllLengths(const int n) 2. {// length[n][n] stores edge length between // adjacent vertices // a[i][j] stores the shortest path from i to j 5. f (int i = 0; i < n; i + 1) f (n) 5. for (int j = 0; j < n; j + 1) f (n) a[i][j]= length[i][j]; 8. // path with top vertex index k for (int k= 0; k<n; k++) $\cdots \rightarrow O(n)$ 10. // all other possible vertices 11. for (int i= 0; i<n; i++)----- O(n)for (int j= 0; j<n; j++)---- $\theta(n)$ 13. if((a[i][k]+a[k][j]) <a[i][j]) a[i][j] = a[i][k] + a[k][j];15. Time complexity: $O(n^3)$

Transitive Closure

- The transitive closure matrix A+:
- A⁺ is a matrix such that A⁺ [i][j] = 1 if there is a path of length > 0 from i to j in the graph; otherwise, A⁺[i][j] = 0.
- The reflexive transitive closure matrix A*:
 - A* is a matrix such that A*[i][j] = 1 if there is a path of length ≥ 0 from i to j in the graph; otherwise, A*[i][j] = 0.
- Use Floyd-Warshall's algorithm! $A^k[i][j] = A^{k-1}\left[i\right][j] \mid\mid (A^{k-1}[i][k] \stackrel{\&\&}{A}^{k-1}[k][j])$