

Модели в продакшен. Управление кластером.

одержание курса

02

03

04

05

06

6. Рекомендательные системы. Виды. Их метрики. Spark.ML

План:

- 1. Рекомендательные системы. Их задачи.
- 2. Content based vs Collaborative filtering.
- 3. Feedback Implicit vs Explicit.
- 4. Метрики рекомендательных систем. Как понять, что рекомендации хорошие.
- 5. Как решать такую задачу. Матричные разложения. ALS.
- 6. Реализация в Spark.ML.

Рекомендательные системы. Их задачи.

- 1. Предмет рекомендации что рекомендуется.
- 2. Цель рекомендации зачем рекомендуется.
- 3. Контекст рекомендации что пользователь в этот момент делает.
- 4. Источник рекомендации кто рекомендует:
- 5. Степень персонализации.
- 6. Прозрачность.
- 7. Формат рекомендации.
- 8. Алгоритмы.

Статья вводная про рекомендательные системы

Как выбрать постер?

Виды рекомендательных систем

Можно выделить два основных типа рекомендательных систем. Их, конечно же больше, но мы сегодня будем рассматривать именно эти и в особенности коллаборативную фильтрацию.

- 1. Content-based
 - Пользователю рекомендуются объекты, похожие на те, которые этот пользователь уже употребил.
 - Похожести оцениваются по признакам содержимого объектов.
 - Сильная зависимость от предметной области, полезность рекомендаций ограничена.
- 2. Коллаборативная фильтрация (Collaborative Filtering)
 - Для рекомендации используется история оценок как самого пользователя, так и других пользователей.
 - Более универсальный подход, часто дает лучший результат.
 - Есть свои проблемы (например, холодный старт).

Классическая постановка

В классической постановке задачи всё, что у нас есть — это матрица оценок user-item. Она очень разрежена и наша задача — заполнить пропущенные значения. Обычно в качестве метрики используют RMSE предсказанного рейтинга, но есть мнение, что это не совсем правильно и следует учитывать характеристики рекомендации как целого, а не точность предсказания конкретного числа.

	M1	M2	МЗ	M4	M5
4	3	1	1	3	1
1	1	2	4	1	3
	3	1	1	3	1
(1)	4	3	5	4	4

Feedback - Implicit vs Explicit.

Feedback - как пользователь дает нам знать, что его интересует

Explicit - Стандартный подход к коллаборативной фильтрации на основе матричного факторизации рассматривает записи в матрице пользователь-элемент как явные предпочтения, данные пользователем элементу, например, пользователи, дающие оценки фильмам.

Implicit - Во многих реальных случаях использования обычно имеется доступ только к неявной обратной связи (например, просмотры, клики, покупки, лайки, акции и т. Д.).

Метрики рекомендательных систем. Как понять, что рекомендации хорошие.

Как понять, что рекомендации хорошие.

Online evaluation

Наиболее предпочтительный способ оценки качества системы — прямая проверка на пользователях в контексте бизнес-метрик. Это может быть CTR, время, проведенное в системе, или количество покупок. Но эксперименты на пользователях дороги, а выкатывать плохой алгоритм даже на малую группу пользователей не хочется, поэтому до онлайн-проверки пользуются оффлайн метриками качества.

Offline evaluation

В качестве метрик качества обычно используют метрики ранжирования, например, МАР@k и nDCG@k.

Offline evaluation

Отличная статья про метрики качества ранжирования

Еще один вариант, кроме метрик ранжирования - RMSE с ней сегодня в основном и будем работать.

$$RMSE = \sqrt{\frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} (\hat{r}_{ui} - r_{ui})^2}$$

Как решать такую задачу. Матричные разложения. ALS.

Матрица взаимодействий

	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
(1)	4	3	5	4	4

Dependent Rows and Columns

	M1	M2	МЗ	M4	M5	
4	3	1	1	3	1	—
	3	1	1	3	1	
(3)						

Dependent Rows and Columns

	M1	M2	МЗ	M4	M5
	3			3	
	1			1	
	3			3	
(1)	4			4	

M1 = M4

Dependent Rows and Columns

	M1	M2	МЗ	M4	M5	
4						
4	1	2	4	1	3	
	3	1	1	3	1	
0	4	3	5	4	4	

Recommender Systems

	M1	M2	МЗ	M4	M5	
49	3	1	1	3	1	
1	1	2	4	1	3	
	3	1	1	3		
0	4	3	5	4	4	

Movie 5

Как научиться выделять сразу все зависимости?

Has a Sad Dog

Comedy

Sexy Canadian Ryan

Features

Drama

Big Boat

Meryl Streep

Scary

Matrix Factorization

	Comedy	Action
M1	3	1
M2	1	2
МЗ	1	4
M4	3	1
M5	1	3

	M1	M2	M3	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
0	4	3	5	4	4

Matrix Factorization

	M1	M2	M3	M4	M5
4	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
1	4	3	5	4	4

OLS (Ordinary Least Squares)

Метрика, которую оптимизируем

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - y_i)^2}{n}}$$

ALS (Alternating Least Squares)

Users
$$\begin{pmatrix} ? & 3 & 5 & ? \\ 1 & ? & ? & 1 \\ 2 & ? & 3 & 2 \\ ? & ? & ? & 5 \end{pmatrix} \approx \begin{pmatrix} x \\ x \\ f \end{pmatrix}$$
 (Chris

$$\min_{x,y} \sum_{u,i} (r_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- r_{ui} = user u's rating for movie i
- $x_u = \text{user } u's \text{ latent factor vector}$
- x_i = item i's latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

ALS (Alternating Least Squares)

Можно решать последовательность задач минимизации - поочередно фиксируя матрицу пользователей и матрицу фильмов.

Так задача превращается в последовательность задач OLS (Ordinary Least Squares)

$$\min_{x,y} \sum_{u,i} (r_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- r_{ui} = user u's rating for movie i
- x_u = user u's latent factor vector
- x_i = item i's latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

Реализация в Spark.ML

Реализация в Spark.ML

IO bottleneck (input/output performance)

Spark to the rescue!!

Vs

Вглубь ALS spark.ml

В видео есть код на scala, а также ребята последовательно рассказывают, как удалось с помощью кэширования в spark-е значительно ускорить все вычисления.

Видео про рекомендации музыки Spotify с помощью Spark

ALS on Amazon Reviews on 16 Nodes

Number of Ratings