- 4. **Spring2020.** Let R be a commutative ring with 1. Call ideals I, J relatively prime if I + J = R. Prove the following two statements independently (i.e., statement (a) is not used to prove statement (b)).
 - (a) Assume I, J are relatively prime and $I \cap J = 0$. Prove that $R \cong R/I \times R/J$.
 - (b) Prove that if I and J are relatively prime, so are I^m and J^n for any positive integers m, n.

a) Consider the map

$$\phi: R \longrightarrow R/\# \times R/J$$

$$c \mapsto (c+\#, c+J)$$

We will show \$:5 an :somorphism.

homomorphism

each of its coordinates.

: risective

Note ker $\phi = I \cap J$, and $I \cap J = \emptyset$ by assumption. So ϕ is injective.

surjective

Since I+J=R, there exist some $i \in I$, $j \in J$ such that x+y=1. Then $i=1-j \Rightarrow \varphi(i)=(0,1)$ and similarly $\varphi(j)=(1,0)$.

Lef
$$(c_1 + I, c_2 + J) \in R/I \times R/J$$
. Then

$$\phi(jc_1 + ic_2) = \phi(jc_1) + \phi(ic_2)$$

$$= \phi(j)\phi(c_1) + \phi(i)\phi(c_2)$$

$$= (i_1 \circ)(c_1 + I, c_1 + J) + (o, i)(c_2 + I, c_2 + J)$$

$$= (c_1 + I, o) + (o, c_2 + J)$$

$$= (c_1 + I, c_2 + J)$$

so \$ is subjective and we have shown the :somorphism.