

- . CPV & are freed not (be) homogeneous, i.e., processing rates need not be identical
- . A task can be assisted to any CPU for processing
- . After processing the jobs are sent back to Host H.
- · X: Throughput, ratio q jobs @ # to tome # of tasks N in the system.
 - =) We need to maximing X.

N: #q tasks in the system

M: #9 CPUS including the host

Nj: Expected # q tasks @ CPU; j=1,...,M

Mj: mean service rate of cpuj, assumed to le a poisson process

Pij: probability that a took is assigned to CPU;

model Closed- Queveing Model

· After processing, he jubs are sent back to (A) (CPU,) => Pi =1 for j=2,...,M.

· Pij are the decision variables

. State of the multiprocessor system N= (N1, N2,...,NM)

From the literature, the steady-state distribution of trusks $P\{\overline{N}\} = \frac{1}{G(N)} \prod_{j=1}^{M} (X_i)^{N_i} \dots (I)$ is given by:

$$M_1 X_1 = \sum_{j=2}^{M} (u_j X_j \cdot P_{ij}) \cdot (2)$$

 $M_j \times_j = M_1 \times_1 +_{ij} \dots (3)$

where, (X1,..., Xm) is the real-positive Solution to the eigenvector-like equations 2 G(N) - normalizing constant.

Also, from the literature, $N_j = \sum_{k=1}^{N} \left\{ \frac{G(N-k)}{G(N)} \right\} X_j^k, j=1,...,M$

2 Utilination of CPUj is,

 $U_{j} = \left\{ \frac{G(N-1)}{G(N)} \right\} X_{j}, j = 1, ..., M$ $\longrightarrow (5)$

Thus, throughput X can be obtained as,

$$X = \left(\frac{N}{N}\right)$$

$$= \frac{1}{N} \sum_{k=1}^{N} \left\{ \frac{G(N-k)}{G(N)} \right\} X_{k}^{k} \qquad (6)$$

Example: M1=20, M2=40, M3=80, N=5

(A) $p_{12} = 0.8$, $p_{13} = 0.2$, $N_1 = 4.3072$ $\Rightarrow X = 86.14\%$

(B) P12=0.6/ P13=0.4, N1=4.4661 => X=89.32%

- . Computing (Pij) is a difficult task.
- often- due veing system, for a close of & bomodel, as a limited-byger open-a system.
 - Since N is finite, we can consider the open-duevery system to have averes of finite byger longth N

Thus, expected
$$\#$$
 g tasks $@ [PV] is$, $@ [N] = N - \sum_{j=2}^{M} N_j - (8)$
 $\Rightarrow y = (N_j) = (N_j - \sum_{j=2}^{M} N_j) - (9)$

From (7) we observe that for large N , we approximate N_j as, $(2^{nd} + evm + fw)$

approximate Nj as,
approximate Nj as,
$$\frac{p_{ij}M_{i}}{(10)!} = \frac{p_{ij}M_{i}}{M_{ij} - (p_{ij}M_{i})} \begin{cases} 2^{nd} \text{ ferm for } \\ \text{large N becomes } \\ \text{negligible} \end{cases}$$

Example:
$$M_1 = 20$$
, $M_2 = 40$, $M_3 = 80$, $N = 5$

$$p_{12} = 0.6$$
, $p_{13} = 0.4$

Using (7), we have,
$$\chi = 89.29\%$$
 Very small error.
Using (10), we have, $\chi = 89.20\%$

For his method to be valid, following condition must hold:

Mj - Pij M1 70

$$=) p_{ij} \langle (\mu i/\mu_{i}) - (\mu_{i}) \rangle$$

$$=) p_{ij} \langle (\mu i/\mu_{i}) - (\mu_{i}) \rangle$$

$$=) former, since
$$\sum_{j=2}^{M} p_{ij} = 1 \text{ the equation}$$

$$= (\mu_{i}) \text{ also } \Rightarrow (\mu_{i}) \wedge (\mu_{$$$$

This it is necessary for illy to satisfy (12) for fee system to be valid.

Thus, for the approximate analysis, we consider each cpuj to be an independent M|M|I aveve aim arrival rate PijMI & service value Mij.

The expected # q tasks @ CPUs 2 to Mis: $\frac{M}{J=2} N_j = \sum_{j=2}^{M} \left(\frac{p_{ij}M_i}{M_j - p_{ij}M_i}\right)^{-1} (13)$

The Optimal Pois are the solution to the following constrained minimissation problem following constrained minimissation problem fossed as:

minimirge
$$\frac{M}{2} \left\{ \frac{b_{ij} M_{i}}{M_{ij} - b_{ij} M_{i}} \right\}$$
Subject to
$$\frac{M}{2} b_{ij} = 1$$

$$\frac{M}{j=2} b_{ij} = 1$$

$$\frac{M}{j=2}$$

Note that we are interested in chasing a distribution by that satisfies (11).

The augumented cost function could be written

$$L = \sum_{j=2}^{M} \left\{ \frac{p_{ij} M_{1}}{M_{j} - P_{ij} M_{1}} \right\} - K \left\{ \sum_{j=2}^{M} p_{ij} - 1 \right\} - \sum_{j=2}^{M} L_{j} P_{i,j}$$

$$L = \sum_{j=2}^{M} \left\{ \frac{p_{ij} M_{1}}{M_{j} - P_{ij} M_{1}} \right\} - K \left\{ \sum_{j=2}^{M} p_{i,j} - 1 \right\} - \sum_{j=2}^{M} L_{j} P_{i,j}$$

Where, K& Lj (j=2,...,M) are Lagrangian multipliers & Lj is such that.

Lj
$$= 0$$
, when $\beta_{ij} = 0$ $= (16)$
Lj $= 0$, when $\beta_{ij} \neq 0$

Thus,
$$Solution$$
 (8)
$$\frac{\partial L}{\partial p_{ij}} = \frac{M_1 M_2^i}{(M_1^i - p_{ij} M_1)^2} - K - L_j = 0 - (17)$$

Since $L_j \neq 0$ only if $h_j = 0$, we have $L_j = \left(\frac{\mu_j}{\mu_j}\right) - k$ for all $j \notin \{h_j \neq 0\}$

If $h_{ij} \neq 0$, we have $L_{ij} = 0$. Hence from (17) for all $i \in \{p_{ij}, 70\}$,

$$\frac{\mu_{i}\mu_{j}}{(\mu_{j}-\mu_{ij}\mu_{i})^{2}} = K$$

$$(\mu_{j}-\mu_{ij}\mu_{i})^{2}$$

$$(\mu_{j}-\mu_{ij}\mu_{i})^{2}$$

$$(\mu_{i}-\mu_{ij}\mu_{i})^{2}$$

Since $\sum bij = 1 + j \in \{bij > 0\}$, we have, $\sum \left(\frac{Mi}{mi} - \sqrt{\frac{Mj}{mk}}\right) = 1, j \in \{bij > 0\}$

This implies,

$$k = M_{1} \begin{bmatrix} \frac{1}{2} & \sqrt{M_{1}} \\ \frac{1}{2} & \sqrt{M_{1}} & -M_{1} \end{bmatrix} = \begin{cases} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{cases}$$

$$VSins (19) in [18) we have
$$V(19) = \frac{1}{2} & \frac{1}{2} &$$$$