CSE 401

Computer Engineering (2)

هندسة الحاسبات (2)

4th year, Comm. Engineering
Winter 2016

Lecture #10

Dr. Hazem Ibrahim Shehata Dept. of Computer & Systems Engineering

Credits to Dr. Ahmed Abdul-Monem Ahmed for the slides

Adminstrivia

- Midterm:
 - —New date: Thursday, May 5, 2016
 - —New time: 12:30pm 2:00pm
 - —Location: classroom #27321 (قاعة 44)
 - —Coverage: lectures #1 → #7
- Assignment #2:
 - —For those who emailed me a softcopy, please hand in the original hardcopy this week!!
- Tutorial:
 - —To be held on Wednesday at 12:00pm.

Website: http://hshehata.github.io/courses/zu/cse401/
Office hours: Monday 11:30am – 12:30pm

Chapter 10. Computer Arithmetic (Cont.)

Outline

- Integer Representation
 - -Sign-Magnitude, Two's Complement, Biased
- Integer Arithmetic
 - —Negation, Addition, Subtraction
 - -Multiplication, Division
- Floating-Point Representation
 - —IEEE 754
- Floating-Point Arithmetic
 - —Addition, Subtraction
 - —Multiplication, Division
 - —Rounding

Real Numbers

- Numbers with fractions.
- Could be done in pure binary
 - $-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed? 0010110100.111010
 - —Very large/small numbers cannot be represented.
 - e.g., 0.0000001, 1000000000
 - —Fractional part of the quotient in dividing very large numbers will be lost.
- Moving/floating?
 - —How do you show where it is?
 - $-976,000,000,000,000 = 9.76 \times 10^{14}$
 - $-0.00000000000000976 = 9.76 \times 10^{-14}$

Can do the same with binary numbers.
What do we need to

Floating-Point Representation

$$\pm S \times 2^E$$

Expor	nent	Significand (Mantissa)
-------	------	------------------------

- The base 2 is the same for all numbers
 need not be stored.
- Number is stored in a binary word with 3 fields:
 - Sign: +/-
 - Significand S
 - Exponent E
- Normal number: most significant digit of the significand (mantissa) is nonzero → 1 for base 2 (binary).
- What number to store in the significand field?
 0.00101
 - Normal form: 1.011×2^{-3} Store only 011 in the significand field!
- There is an implicit 1 to the left of the binary point (normalized).
- Exponent indicates place value (floating-point position).

Floating-Point Representation Biased Exponent

- - e.g., 8-bit exponent: $0 \le E' \le 255$
- The stored exponent E' is a biased exponent
 - $E' = E + (2^{k-1}-1)^{bias}$
 - e.g., for 8-bit exponent, E' = E + 127
 - $--127 \le E \le 128$
- Why?

- Nonnegative floating-point numbers can be treated as unsigned integers for comparison purposes.
- —This is not true for 2's comp. or sign-magnitude representations.

Normalization

- FP numbers are usually normalized.
 - —i.e., exponent is adjusted so that leading bit (MSB) of mantissa is non-zero, i.e., 1.
 - —c.f., Scientific notation where numbers are normalized to give a single digit before the decimal point, e.g. 3.123 x 10³.
- Since the MSB of mantissa is always 1, there is no need to store it!

Floating-Point Examples

0 10010011 10100010000000000000000

```
-1717698.56
-1.638125 \times 2^{20}
-1.1010001 \times 2^{10100}
```

1 10010011 101000100000000000000000

```
1.638125 × 2<sup>-20</sup>
1.1010001 × 2<sup>-10100</sup>
```

0 01101011 101000100000000000000000

FP Ranges (32-bit)

- 32-bit FP number, 8-bit exponent, 23-bit mantissa.
- Largest +ve number (2-2-23) × 2128
 - -Largest true exponent: 128 0.111...11
 - -Largest mantissa: $1 + (1 2^{-23}) = 2 2^{-23}$
- Smallest +ve number 2⁻¹²⁷
 - —Smallest true exponent: −127
 - —Smallst mantissa: 1
- Smallest –ve number (2–2²³) × 2¹²⁸
- Largest –ve number –2⁻¹²⁷
- Accuracy
 - —The effect of changing LSB of mantissa.
 - -23-bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - —About 6 decimal places.

Expressible Numbers (32-bit)

(a) Twos Complement Integers

(b) Floating-Point Numbers

Density of Floating Point Numbers

- 32-bit FP number \rightarrow 2³² different values represented.
- No more individual values are represented with floating-point numbers. Numbers are just spread out.
- Numbers represented in the FP representation are not spaced evenly along the line number. Why?
- Range-precision tradeoff
 - —More bits for exponent → wider range & less precision
 - —Reason: there is a fixed number of values that can be represented!
 - —To increase both range and precision → use more bits!!!

IEEE 754

- Standard for floating-point representation.
- Adopted 1985 and revised 2008.
- IEEE 754-2008 defines many FP formats for different purposes:

Format	Format Type				
Format	Arithmetic Format	Basic Format	Interchange Format		
binary16			X		
binary32	X	X	X		
binary64	X	X	X		
binary128	X	X	X		
binary $\{k\}$ $(k = n \times 32 \text{ for } n > 4)$	X		X		
decimal64	X	X	X		
decimal128	X	X	X		
decimal $\{k\}$ $(k = n \times 32 \text{ for } n > 4)$	X		X		
extended precision	X				
extendable precision	X				

IEEE 754 - Binary32/64/128 Formats

IEEE 754 - Binary32/64/128 Interpretations

	Sign	Biased Exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	all 1s	0	8
minus infinity	1	all 1s	0	-∞
quiet NaN	0 or 1	all 1s	$\neq 0$; first bit = 1	qNaN
signaling NaN	0 or 1	all 1s	$\neq 0$; first bit = 0	sNaN
positive normal nonzero	0	0 < e < 255	f	$2^{e-127}(1.f)$
negative normal nonzero	1	0 < e < 255	f	$-2^{e-127}(1.f)$
positive subnormal	0	0	$f \neq 0$	$2^{-126}(0.f)$
negative subnormal	1	0	f ≠ 0	$-2^{-126}(0.f)$
positive normal nonzero	0	0 < e < 2047	f	$2^{e-1023}(1.f)$
negative normal nonzero	1	0 < e < 2047	f	$-2^{e-1023}(1.f)$
positive subnormal	0	0	$f \neq 0$	$2^{-1022}(0.f)$
negative subnormal	1	0	f ≠ 0	$-2^{-1022}(0.f)$
positive normal nonzero	0	0 < e < 32767		$2^{e-16383}(1.f)$
negative normal nonzero	1	0 < e < 32767	f	$-2^{e-16383}(1.f)$
positive subnormal	0	0	f ≠ 0	$2^{-16382}(0.f)$
negative subnormal	1	0	f ≠ 0	$-2^{-16382}(0.f)$

IEEE 754 - Binary32/64/128 Parameters

Ромомолог	Format			
Parameter	Binary32	Binary64	Binary128	
Storage width (bits)	32	64	128	
Exponent width (bits)	8	11	15	
Exponent bias	127	1023	16383	
Maximum exponent	127	1023	16383	
Minimum exponent	-126	-1022	-16382	
Approx normal number range (base 10)	$10^{-38}, 10^{+38}$	$10^{-308}, 10^{+308}$	$10^{-4932}, 10^{+4932}$	
Trailing significand width (bits)*	23	52	112	
Number of exponents	254	2046	32766	
Number of fractions	2^{23}	2^{52}	2^{112}	
Number of values	1.98×2^{31}	1.99×2^{63}	1.99×2^{128}	
Smallest positive normal number	2^{-126}	2^{-1022}	2^{-16362}	
Largest positive normal number	$2^{128} - 2^{104}$	$2^{1024} - 2^{971}$	$2^{16384} - 2^{16271}$	
Smallest subnormal magnitude	2^{-149}	2^{-1074}	2^{-16494}	

Note: *not including implied bit and not including sign bit

IEEE 754 - NaNs

- NaN:
 - —Symbolic entity encoded in FP format
 - —Types: Signaling (sNaN) or Quiet (qNaN)
 - —Both types have the same format:

- —F distinguishes between the two types:
 - F=**0**xxxx..xx → sNaN, F=**1**xxxx..xx → qNaN
- Signaling NaN:
 - —Signals an invalid operation exception whenever it appears as an operand. Ex.: uninitialized variables
- Quite NaN:
 - —Propagates without signaling exceptions.

IEEE 754 - Quiet NaN

Operation	Quiet NaN Produced By	
Any	Any operation on a signaling NaN	
Add or subtract	Magnitude subtraction of infinities: $ (+\infty) + (-\infty) $ $ (-\infty) + (+\infty) $ $ (+\infty) - (+\infty) $ $ (-\infty) - (-\infty) $	
Multiply	$0 \times \infty$	
Division	$\frac{0}{0}$ or $\frac{\infty}{\infty}$	
Remainder	$x \text{ REM } 0 \text{ or } \infty \text{ REM } y$	
Square root	\sqrt{x} , where $x < 0$	

IEEE 754 - Effect of Subnormal Numbers

(a) 32-Bit format without subnormal numbers

(b) 32-Bit format with subnormal numbers

FP Arithmetic +/-

- Algorithm:
 - 1. Check for zeros.
 - 2. Align significands (adjusting exponents).
 - 3. Add or subtract significands.
 - 4. Normalize result.
 - 5. Round result.

FP Addition & Subtraction Flowchart

Reading Material

- Stallings, Chapter 10:
 - —Pages 341-352
 - —Pages 356-358