Asymptotically Optimal Inapproximability of Maxmin k-Cut Reconfiguration

⇔Shuichi Hirahara

(National Institute of Informatics, Japan)

Naoto Ohsaka⇒

(Cyber Agent, Inc., Japan)

Q. Is there a proper 3-coloring of a given graph?

Q. Is there a proper 3-coloring of a given graph?

k-Coloring Reconfiguration [Cereceda-van den Heuvel-Johnson circa 2010]

graph G & proper k-colorings a_{ini} , a_{tar} : $V(G) \rightarrow [k]$ • Input:

• Output: $\vec{a} = (a^{(1)} := a_{ini}, ..., a^{(T)} := a_{tar})$ (reconf. sequence) S.t.

 $\forall a^{(t)}$ is proper (feasibility)

 $\Delta(a^{(t)}, a^{(t+1)}) \leq 1$ (adjacency)

k-Coloring Reconfiguration

[Cereceda-van den Heuvel-Johnson circa 2010]

•Input: graph G & proper k-colorings a_{ini} , a_{tar} : $V(G) \rightarrow [k]$

• Output: $\vec{a} = (a^{(1)} := a_{ini}, ..., a^{(T)} := a_{tar})$ (reconf. sequence) S.t.

 $\forall a^{(t)} \text{ is proper}$ (feasibility)

 $\Delta(a^{(t)}, a^{(t+1)}) \leq 1$ (adjacency)

Complexity of k-Coloring Reconfiguration

witness = reconf. sequence? exponentially long

Q. Find a 3-coloring maximizing frac. of bichromatic edges

Q. Find a 3-coloring maximizing frac. of bichromatic edges

Maxmin k-Cut Reconfiguration $\begin{cases} approx. version of \\ k$ -Coloring Reconf.

- graph G & k-colorings a_{ini} , a_{tar} : $V(G) \rightarrow [k]$ • Input:
- Output: $\vec{a} = (a^{(1)} := a_{ini}, ..., a^{(T)} := a_{tar})$ (reconf. sequence) S.t.

¥-a^(t)-is proper (feasibility)

 $\Delta(a^{(t)}, a^{(t+1)}) \leq 1$ (adjacency)

• Goal: maximize min_t (frac. of bichromatic edges on $a^{(t)}$)

Complexity of Maxmin k-Cut Reconf.

• PSPACE-hard to solve exactly $\forall k \ge 4$ Since k-Coloring Reconfiguration is PSPACE-complete [Bonsma-Cereceda 2009]

• **PSPACE**-hard to approximate if k = 4

Follows from the PCRP theorem + gap-preserving reductions [Bonsma-Cereceda 2009] [Hirahara-O. STOC 2024] [Karthik C. S.-Manurangsi 2023] [O. STACS 2023]

Q. What is asymptotic behavior of approximability w.r.t. the number k of available colors?

Our contribution

Optimal approx. factor = $1 - \Theta(\frac{1}{\nu})$

- **PSPACE**-hardness of $(1 \frac{\varepsilon}{k})$ -approx.
- $(1 \frac{2}{k})$ -approx. algorithm

Just like Max k-Cut... not surprising. [Kann-Khanna-Lagergren-Panconesi 1997] [Guruswami-Sinop 2013]

Gap reductions between reconfiguration problems are NONTRIVIAL

PSPACE-hardness

Input: graph G & k-colorings a_{ini} , a_{tar} opt $_G(a_{ini}, a_{tar}) := opt.$ value

PSPACE-hard to distinguish between

(Completeness) opt_G(
$$a_{ini}$$
, a_{tar}) $\geq 1 - \delta_c/k$

 $\exists reconf. sequence \ \forall k$ -coloring (1 - δ_c/k)-frac. of edges are bichromatic

(Soundness) opt_G(
$$a_{ini}$$
, a_{tar}) < 1 - δ_s/k

 \forall reconf. sequence $\exists k$ -coloring (δ_s/k) -frac. of edges are monochromatic

: Maxmin k-Cut Reconfiguration is PSPACE-hard to approximate within $1-(\delta_s-\delta_c)/k$

● PSPACE-hardness of ollows from the PCRP theorem (two talks ago!) [Bonsma-Cereceda 2009] [Hirahara-O. STOC 2024]

[Karthik C. S.-Manurangsi 2023] [O. STACS 2023]

Why existing reductions do not work?

Apply reduction from Max 2-Cut to Max k-Cut [Kann-Khanna-Lagergren-Panconesi 1997] [Guruswami-Sinop 2013]

2-coloring a_{ini} of G

2-coloring a_{tar} of G

$$\triangle$$
 opt_G(α_{ini} , α_{tar}) = $\frac{1}{2}$

Why existing reductions do not work?

Apply reduction from Max 2-Cut to Max k-Cut [Kann-Khanna-Lagergren-Panconesi 1997] [Guruswami-Sinop 2013]

k-coloring β_{ini} of H

k-coloring β_{tar} of H

opt_H(
$$\beta_{ini}$$
, β_{tar}) $\geq 1 - O(1/k^2)$

Recolor vertices of $V_1, V_2, ..., V_{k/2}$ in this order

Our construction

 \P "Encode" a 2-coloring of a vertex by a k-coloring of a $k \times k$ grid (See the paper for motivation)

2-coloring a_{ini} of G

2-coloring a_{tar} of G

Our construction

Figure 1. The second of a vertex by a k-coloring of a $k \times k$ grid (See the paper for motivation)

Test if a k-coloring of H "encodes" a (near-)proper 2-coloring of G

Test if a k-coloring of a $k \times k$ grid is close to being "striped"

 $\frac{1}{4}$ -far from being "striped"

- 2-query verifier V given oracle access to $f: [k]^2 \rightarrow [k]$ s.t.
- •f is "striped"

- \Rightarrow Vf accepts w.p. 1
- •f is ϵ -far from being "striped" $\Rightarrow V^{f}$ rejects w.p. $\Omega(\epsilon/k)$

Stripe" testing

Test if a k-coloring of a $k \times k$ grid is close to being "striped"

 $\frac{1}{4}$ -far from being "striped"

- 2-query verifier V given oracle access to $f: [k]^2 \rightarrow [k]$ s.t.
- •f is "striped"

- \Rightarrow V^f accepts w.p. 1
- •f is ϵ -far from being "striped" $\Rightarrow V^{f}$ rejects w.p. $\Omega(\epsilon/k)$

Conclusion

- \square Approx. threshold of Maxmin k-Cut Reconf. = 1 $\Theta(1/k)$
- Optimal hidden constant in $\Theta(1/k)$?
- Perfect completeness?

• Improved analysis of (generalized) "stripe" testing?

4	1	1	8	1	1	1	1
2	2	2	2	2	7	6	2
3	3	6	3	7	3	3	3
4	8	4	4	4	4	1	4
3	5	5	5	2	5	5	5
6	6	6	6	6	7	6	2
7	1	7	5	7	7	7	7
8	8	3	8	8	4	8	8