Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(Adamantan-1-yl)-2-chloroacetamide

Oluseye K. Onajole, Thavendran Govender, Hendrik G. Kruger and Glenn E. M. Maguire *

^aSchool of Chemistry, University of KwaZulu–Natal, Durban 4000, South Africa, and ^bSchool of Pharmacy and Pharmacology, University of KwaZulu–Natal, Durban 4000. South Africa

Correspondence e-mail: maguireg@ukzn.ac.za

Received 18 March 2011; accepted 12 May 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.037; wR factor = 0.106; data-to-parameter ratio = 21.9.

In the title compound, $C_{12}H_{18}CINO$, which was synthesized as part of a study into potential antituberculosis agents, the adamantine skeleton displays shorter than normal C—C bond lengths ranging between 1.5293 (18) and 1.5366 (15) Å. The structure also displays intermolecular N—H···O hydrogen bonding, which forms an infinite chain in the a-axis direction.

Related literature

For background to the title compound, see: Plakhotnik *et al.* (1982). For the synthesis of the title compound, see: Lee *et al.* (2003); Bogatcheva *et al.* (2006, 2010); Onajole *et al.* (2010). For related polycyclic structures, see: Venkataramanan *et al.* (2004); Fokin *et al.*, (2009).

Experimental

Crystal data

 $C_{12}H_{18}CINO$ $M_r = 227.72$ Orthorhombic, *Pbca* a = 9.3656 (2) Å b = 13.7515 (3) Å c = 18.7917 (4) Å $V = 2420.20 (9) \text{ Å}^3$ Z = 8 Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$

T = 173 K $0.26 \times 0.16 \times 0.15 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.928$, $T_{\max} = 0.958$ 5629 measured reflections 3003 independent reflections 2568 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.007$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.106$ S = 1.053003 reflections

137 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26$ e Å $^{-3}$ $\Delta \rho_{\rm min} = -0.33$ e Å $^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N1-H1\cdots O1^{i}$	0.88	1.97	2.8301 (12)	165

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN*; data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2092).

References

Bogatcheva, E., Hanrahan, C., Chen, P., Gearhart, J., Sacksteder, K., Einck, L., Nacy, C. & Protopopova, M. (2010). *Bioorg. Med. Chem. Lett.* **20**, 201–205. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). *J. Med. Chem.* **49**, 3045–3048.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Fokin, A. A., Merz, A., Fokina, N. A., Schwertfeger, H., Liu, S. L., Dahl,
J. E. P., Carlson, R. K. M. & Schreiner, P. R. (2009). Synthesis, 6, 909–912.
Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry,
C. E. J. (2003). J. Comb. Chem. 5, 172–187.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Onajole, O. K., van Govender, P., Heiden, P. D., Kruger, H. G., Maguire, G. E. M., Wiid, I. & Govender, T. (2010). Eur. J. Med. Chem. 45, 2075–2079.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Plakhotnik, V. M., Kovtun, V. Y. & Yashunskii, V. G. (1982). *Zh. Org. Khim.* **18** 1001–1005

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Venkataramanan, B., Saifudin, M.-A., Jagadese, J. V. & Suresh, V. (2004). CrystEngComm, 6, 284–289.

supplementary m	aterials	

Acta Cryst. (2011). E67, o1444 [doi:10.1107/S1600536811018046]

N-(Adamantan-1-yl)-2-chloroacetamide

O. K. Onajole, T. Govender, H. G. Kruger and G. E. M. Maguire

Comment

As part of an ongoing study into the anti-tuberculosis activity of admantane derivatives (Lee *et al.*, 2003, Bogatcheva *et al.*, 2006, 2010, Onajole *et al.*, 2010), the title compound, an adamantane derivative, serves as a precursor in the synthesis of potential anti-tuberculosis agents (Onajole *et al.* 2010). Although, the compound is known (Plakhotnik *et al.*, 1982), its crystal structure has not been reported.

The molecule displays a number of C—C bond lengths that are shorter than the expected bond length of 1.54 Å. These bonds range between 1.5293 (18) Å for C6—C7 to 1.5366 (16) for C1—C2 in the adamantine skeleton (Fig. 1). The structure exhibits intermolecular hydrogen bonding between N1 and O1 of adjacent molecules, which forms an infinite chain in the *a*-axis direction. The isopropyl (Venkataramanan *et al.*, 2004) amide derivative has a similar bonding arrangement in its structure. Interestingly, the structure report for the bicyclic analogue of the title compund (Fokin *et al.*, 2009) reveals no N–H···O hydrogen bonding in the crystal lattice.

Experimental

Amantadine.HCl (4 g, 26.5 mmol) was dissolved in dichloromethane (40 ml). To this solution was slowly added chloroacetyl chloride (2.987 g, 26.5 mmol) after which the reaction was refluxed gently for 2 h. The reaction mixture was filtered and the resultant solution was concentrated *in vacuo*. The crude product was purified on silica gel using dichloromethane:ethyl acetate (7:3) as eluent to give the title compound (6.52 g, 89%) as a white crystalline solid. Crystals suitable for X-ray analysis were grown in methanol at room temperature. Melting point: 357–359 K.

Refinement

X-ray single-crystal intensity data were collected on a Nonius Kappa-CCD diffractometer using graphite monochromated MoKa radiation (l = 0.71073 Å). Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). The strategy for the data collections was evaluated using the Bruker Nonius "Collect" program (Nonius, 2000). Data were scaled and reduced using *DENZO-SMN* software (Otwinowski & Minor, 1997). Absorption corrections were performed using *SADABS* (Sheldrick, 2008). The structure was solved by direct methods and refined employing full-matrix least-squares with the program *SHELXL97* (Sheldrick, 2008) refining on F^2 . All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions in a riding model with U_{iso} set at 1.2 times those of their parent atoms and refined with simple bond length constraints (*e.g.* 0.88 Å for N—H and others 0.99 Å).

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 40% probability level and all hydrogen atoms omitted for clarity. All non-hydrogen atoms are shown as ellipsoids with probability level of 40%.

N-(Adamantan-1-yl)-2-chloroacetamide

Crystal data

 $C_{12}H_{18}CINO$ F(000) = 976

 $M_r = 227.72$ $D_x = 1.250 \text{ Mg m}^{-3}$

Orthorhombic, Pbca Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab Cell parameters from 5629 reflections

a = 9.3656 (2) Å $\theta = 3.0-28.3^{\circ}$

b = 13.7515 (3) Å $\mu = 0.29 \text{ mm}^{-1}$ c = 18.7917 (4) Å T = 173 K

 $V = 2420.20 (9) \text{ Å}^3$ Block, colourless

Z = 8 0.26 × 0.16 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 3003 independent reflections

Radiation source: fine-focus sealed tube 2568 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.007$

 1.2° φ scans and ω scans $\theta_{max} = 28.3^{\circ}, \, \theta_{min} = 3.0^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -12 \rightarrow 12$

 $T_{\text{min}} = 0.928, T_{\text{max}} = 0.958$ $k = -18 \rightarrow 18$ 5629 measured reflections $l = -24 \rightarrow 25$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full

Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.037$ H-atom parameters constrained

 $wR(F^2) = 0.106$ $w = 1/[\sigma^2(F_0^2) + (0.058P)^2 + 0.664P]$ where $P = (F_0^2 + 2F_c^2)/3$

where $P = (P_0 + 2P_c)/3$ S = 1.05 $(\Delta/\sigma)_{\text{max}} = 0.001$

3003 reflections $\Delta \rho_{max} = 0.26 \text{ e Å}^{-3}$

137 parameters $\Delta \rho_{min} = -0.33 \text{ e Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0078 (14)

Special details

Experimental. X-ray single-crystal intensity data were collected on a Nonius Kappa-CCD diffractometer using graphite monochromated MoKa radiation (l = 0.71073?Å). Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). The strategy for the data collections was evaluated using the Bruker Nonius "Collect" program (Nonius, 2000). Data were scaled and reduced using DENZO-SMN software (Otwinowski & Minor, 1997). Absorption corrections were performed using SADABS (Sheldrick, 2008). The structure was solved by direct methods and refined employing full-matrix least-squares with the program SHELXL97 (Sheldrick, 2008) refining on F2. All non-hydrogen atoms were refined anisotropically. Half sphere of data collected using *COLLECT* strategy (Nonius, 2000). Crystal to detector distance = 30 mm; combination of φ and ω scans of 1.0°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	y	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.14558 (4)	0.52848 (3)	0.15642 (2)	0.04867 (14)
O1	0.10158 (8)	0.66702 (7)	0.27321 (5)	0.0342 (2)
N1	0.33518 (9)	0.70366 (7)	0.29263 (5)	0.0280(2)
H1	0.4228	0.6889	0.2797	0.034*
C1	0.31869 (11)	0.77662 (8)	0.34943 (6)	0.0246 (2)
C2	0.23383 (13)	0.86513 (9)	0.32293 (6)	0.0316(3)
H2A	0.2809	0.8930	0.2804	0.038*
H2B	0.1361	0.8448	0.3094	0.038*
C3	0.46993 (11)	0.80966 (9)	0.36968 (6)	0.0304(3)
Н3А	0.5262	0.7531	0.3863	0.037*
Н3В	0.5182	0.8374	0.3274	0.037*
C4	0.24600 (12)	0.73351 (8)	0.41519 (6)	0.0278 (2)
H4A	0.3012	0.6769	0.4325	0.033*
H4B	0.1488	0.7110	0.4026	0.033*
C5	0.22636 (14)	0.94200 (9)	0.38192 (7)	0.0360(3)
H5	0.1710	0.9995	0.3645	0.043*
C6	0.37733 (15)	0.97414 (9)	0.40223 (8)	0.0398(3)
H6A	0.4255	1.0029	0.3603	0.048*
Н6В	0.3726	1.0242	0.4400	0.048*

¹H NMR (CDCl₃, 600 MHz): $\delta_{\rm H}$ 1.64 (m, 6H), 1.96 (m, 6H), 2.04 (s, 3H), 3.87 (s, 2H), 6.19 (s, NH).

¹³C NMR (CDCl₃, 100 MHz); δ_C 29.3 (CH), 36.1 (CH₂), 41.1 (CH₂), 42.8 (CH₂), 52.3 (C), 164.5 (C=O).

C7	0.46230 (12)	0.88638 (9)	0.42878 (7)	0.0333 (3)
H7	0.5611	0.9074	0.4418	0.040*
C8	0.38820 (13)	0.84361 (10)	0.49427 (6)	0.0343 (3)
H8A	0.3833	0.8931	0.5324	0.041*
H8B	0.4434	0.7874	0.5123	0.041*
C9	0.23705 (13)	0.81098 (9)	0.47388 (6)	0.0316(3)
Н9	0.1886	0.7827	0.5166	0.038*
C10	0.15142 (13)	0.89847 (10)	0.44707 (7)	0.0369(3)
H10A	0.1442	0.9480	0.4851	0.044*
H10B	0.0536	0.8777	0.4341	0.044*
C11	0.22906 (11)	0.65799 (8)	0.25909 (6)	0.0275 (2)
C12	0.28360 (14)	0.59104 (11)	0.20014 (7)	0.0417(3)
H12A	0.3506	0.5432	0.2210	0.050*
H12B	0.3370	0.6302	0.1649	0.050*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0435 (2)	0.0562(2)	0.0463 (2)	-0.00949 (15)	-0.01151 (14)	-0.01454 (15)
O1	0.0177 (4)	0.0510 (5)	0.0338 (4)	-0.0016 (3)	-0.0025 (3)	-0.0013 (4)
N1	0.0165 (4)	0.0365 (5)	0.0311 (5)	-0.0006(3)	0.0008(3)	-0.0052 (4)
C1	0.0186 (4)	0.0289 (5)	0.0263 (5)	-0.0003 (4)	-0.0003 (4)	-0.0008 (4)
C2	0.0311 (6)	0.0326 (6)	0.0313 (6)	0.0019 (5)	-0.0032 (5)	0.0047 (5)
C3	0.0196 (5)	0.0377 (6)	0.0340 (6)	-0.0036 (4)	-0.0005 (4)	-0.0040(5)
C4	0.0259 (5)	0.0288 (5)	0.0287 (5)	-0.0026 (4)	0.0014 (4)	0.0022 (4)
C5	0.0370(6)	0.0284 (5)	0.0425 (7)	0.0061 (5)	-0.0044(5)	0.0009 (5)
C6	0.0448 (7)	0.0296 (6)	0.0450(8)	-0.0077(5)	0.0000(6)	-0.0006(5)
C7	0.0251 (5)	0.0375 (6)	0.0371 (6)	-0.0067(5)	-0.0017 (4)	-0.0062 (5)
C8	0.0338 (6)	0.0390 (6)	0.0302 (6)	0.0002 (5)	-0.0050 (5)	-0.0048 (5)
C9	0.0297 (5)	0.0376 (6)	0.0274 (5)	-0.0026 (5)	0.0039 (4)	-0.0006(5)
C10	0.0291 (6)	0.0408 (7)	0.0407 (7)	0.0054 (5)	0.0025 (5)	-0.0089(5)
C11	0.0211 (5)	0.0350 (5)	0.0264 (5)	-0.0015 (4)	-0.0021 (4)	0.0013 (4)
C12	0.0292 (6)	0.0578 (8)	0.0380(6)	-0.0083 (6)	0.0008 (5)	-0.0170 (6)

Geometric parameters (Å, °)

C11—C12	1.7567 (13)	C5—C10	1.5329 (19)
O1—C11	1.2293 (13)	C5—H5	1.0000
N1—C11	1.3340 (14)	C6—C7	1.5293 (18)
N1—C1	1.4729 (14)	C6—H6A	0.9900
N1—H1	0.8800	C6—H6B	0.9900
C1—C4	1.5304 (15)	C7—C8	1.5303 (17)
C1—C3	1.5354 (14)	C7—H7	1.0000
C1—C2	1.5366 (15)	C8—C9	1.5336 (16)
C2—C5	1.5334 (17)	C8—H8A	0.9900
C2—H2A	0.9900	C8—H8B	0.9900
C2—H2B	0.9900	C9—C10	1.5312 (18)
C3—C7	1.5335 (16)	С9—Н9	1.0000
C3—H3A	0.9900	C10—H10A	0.9900

C4—9 1.5357 (16) C11—C12 1.5283 (17) C4—H4A 0.9900 C12—H12B 0.9900 C5—C6 1.5298 (18) U1—N12B 0.9900 C5—C6 1.5298 (18) U1—N1—C1 12.580 (9) C7—C6—H6B 109.8 C11—N1—H1 117.1 C5—C6—H6B 109.8 C1—N1—H1 117.1 H6A—C6—H6B 109.2 N1—C1—C3 106.53 (9) C6—C7—C8 109.25 (10) N1—C1—C3 109.32 (10) C4—C1—C3 106.53 (9) C6—C7—C3 109.82 (10) N1—C1—C2 111.04 (9) C6—C7—H7 109.5 C4—C1—C3 109.59 (9) C8—C7—H7 109.5 C3—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 109.85 (9) C3—C7—H7 109.5 C3—C1—C2 109.59 (9) C7—C8—C9 109.28 (10) C3—C2—L12A 109.8 C7—C8—C9 109.28 (10) C3—C2—L12A 109.8 C7—C8—H8A 109.8 C1—C2—H2B 109.8 C7—C8—H8A 109.8 <th>С3—Н3В</th> <th>0.9900</th> <th>C10—H10B</th> <th>0.9900</th>	С3—Н3В	0.9900	C10—H10B	0.9900
C4—H4A 0.9900 C12—H12B 0.9900 C4—H4B 0.9900 C12—H12B 0.9900 C5—C6 1.5298 (18) C11—N1—C1 125.80 (9) C7—C6—H6B 109.8 C11—N1—H1 117.1 C5—C6—H6B 109.8 109.8 C1—N1—H1 117.1 H6A—C6—H6B 109.8 N1—C1—C4 111.59 (9) C6—C7—C8 109.25 (10) N1—C1—G3 106.53 (9) C6—C7—C3 109.32 (10) C4—C1—C3 108.95 (9) C8—C7—H7 109.5 C4—C1—C2 110.74 (9) C6—C7—H7 109.5 C3—C1—C2 109.78 (9) C3—C7—H7 109.5 C3—C1—C2 109.85 (9) C7—C8—E9 109.28 (10) C5—C2—E12A 109.8 C7—C8—H8A 109.8 C1—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C3—H3A 109.7 C10—C9—C8 109.62 (10)	C4—C9	1.5357 (16)	C11—C12	1.5283 (17)
C4—H4B 0,9900 C12—H12B 0,9900 C5—C6 1,5298 (18) 109.8 C11—N1—C1 125.80 (9) C7—C6—H6B 109.8 C11—N1—H1 117.1 C5—C6—H6B 109.8 C1—N1—H1 111.59 (9) C6—C7—C8 109.25 (10) N1—C1—C3 106.53 (9) C6—C7—C3 109.32 (10) C4—C1—C3 108.95 (9) C8—C7—C3 109.82 (10) N1—C1—C2 111.04 (9) C6—C7—H7 109.5 C3—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 109.85 (9) C3—C7—H7 109.5 C3—C1—C2 109.89 (9) C3—C7—H7 109.5 C3—C2—H2A 109.8 C7—C8—H8A 109.8 C3—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2A 109.8 C7—C8—H8A 109.8 C3—C2—H2B 109.8 C9—C8—H8B 109.8 C3—C2—H2B 109.8 C9—C8—H8B 109.8 C3—C3—H3 109.7 C10—C9—C8 109.6 (10)	C4—H4A			
C11—N1—C1 125 80 (9) C7—C6—H6B 109 .8 C11—N1—H1 117.1 C5—C6—H6B 109 .8 C1—N1—H1 117.1 H6A—C6—H6B 108.2 N1—C1—C4 111.59 (9) C6—C7—C8 109.25 (10) N1—C1—C3 106.53 (9) C6—C7—C3 109.32 (10) C4—C1—C3 108 95 (9) C6—C7—H7 109.5 N1—C1—C2 110,4 (9) C6—C7—H7 109.5 C3—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 109.85 (9) C3—C7—H7 109.5 C3—C1—C2 109.89 (9) C7—C8—C9 109.28 (10) C5—C2—C112A 109.8 C7—C8—H8A 109.8 C1—C2—H2A 109.8 C7—C8—H8A 109.8 C5—C2—H2B 109.8 C9—C8—H8B 109.8 C5—C2—H2B 109.8 C9—C8—H8B 109.8 C7—C3—H3A 109.7 C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C10—C9—C5<	C4—H4B	0.9900	C12—H12B	0.9900
C11—N1—H1 117.1 C5—C6—H6B 109.8 C1—N1—H1 117.1 H6A—C6—H6B 108.2 N1—C1—C4 111.59 (9) C6—C7—C8 109.25 (10) N1—C1—C3 106.53 (9) C6—C7—C3 109.32 (10) C4—C1—C3 108.95 (9) C8—C7—H7 109.5 N1—C1—C2 111.04 (9) C6—C7—H7 109.5 C3—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 108.85 (9) C3—C7—H7 109.5 C5—C2—C1 109.59 (9) C7—C8—H8A 109.8 C5—C2—H12A 109.8 C7—C8—H8A 109.8 C1—C2—H12A 109.8 C7—C8—H8A 109.8 C1—C2—H12B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 H2A—C2—H2B 109.2 H8A—C8—H8B 108.3 C7—C3—H3A 109.7 C8—C9—C4 109.31 (9) C1—C3—H3A 109.7 C8—C9—C4 109.39 (9) C1—C3—H3A 109.7 C8—C9—C4				
C11—N1—H1 117.1 C5—C6—H6B 109.8 C1—N1—H1 117.1 H6A—C6—H6B 108.2 N1—C1—C4 111.59 (9) C6—C7—C8 109.25 (10) N1—C1—C3 106.53 (9) C6—C7—C3 109.32 (10) C4—C1—C3 108.95 (9) C8—C7—H7 109.5 N1—C1—C2 111.04 (9) C6—C7—H7 109.5 C3—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 108.85 (9) C3—C7—H7 109.5 C5—C2—C1 109.59 (9) C7—C8—H8A 109.8 C5—C2—H12A 109.8 C7—C8—H8A 109.8 C1—C2—H12A 109.8 C7—C8—H8A 109.8 C1—C2—H12B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 H2A—C2—H2B 109.2 H8A—C8—H8B 108.3 C7—C3—H3A 109.7 C8—C9—C4 109.31 (9) C1—C3—H3A 109.7 C8—C9—C4 109.39 (9) C1—C3—H3A 109.7 C8—C9—C4	C11—N1—C1	125.80 (9)	C7—C6—H6B	109.8
C1—N1—H11 117.1 H6A—C6—H6B 108.2 N1—C1—C4 111.59 (9) C6—C7—C8 109.25 (10) N1—C1—C3 106.53 (9) C6—C7—C3 109.32 (10) C4—C1—C3 108.95 (9) C8—C7—C3 109.82 (10) N1—C1—C2 111.04 (9) C6—C7—H7 109.5 C4—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 109.59 (9) C3—C7—H7 109.5 C5—C2—C1 109.59 (9) C7—C8—C9 109.28 (10) C5—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2B 109.8 C7—C8—H8A 109.8 C5—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C3—H3A 109.7 C10—C9—C4 109.62 (10) C1—C3—H3B 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C8—C9—H9 <td></td> <td>* /</td> <td></td> <td></td>		* /		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
N1—C1—C3				
C4—C1—C3 108.95 (9) C8—C7—C3 109.82 (10) N1—C1—C2 111.04 (9) C6—C7—H7 109.5 C4—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 108.85 (9) C3—C7—H7 109.5 C5—C2—C1 109.59 (9) C7—C8—C9 109.28 (10) C5—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2B 109.8 C7—C8—H8B 109.8 C5—C2—H2B 109.8 C9—C8—H8B 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 H2A—C2—H2B 109.2 H8A—C8—H8B 108.3 C7—C3—G1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C8—C9—C4 109.39 (9) C1—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—H4A 109.7 C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A <td></td> <td>` ′</td> <td></td> <td>` ′</td>		` ′		` ′
N1—C1—C2				
C4—C1—C2 109.78 (9) C8—C7—H7 109.5 C3—C1—C2 108.85 (9) C3—C7—H7 109.5 C5—C2—C1 109.59 (9) C7—C8—C9 109.28 (10) C5—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 C5—C2—H2B 109.8 C9—C8—H8B 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 C1—C2—H2B 108.2 H8A—C8—H8B 109.3 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C8 109.62 (10) C1—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C10—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C1—C4—H4A 109.7 C9—C10—H10A 109.8 C1—C4—H4B 109.7 C9—C10—H10B				
C3—C1—C2 108.85 (9) C3—C7—H7 109.5 C5—C2—C1 109.59 (9) C7—C8—C9 109.28 (10) C5—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2A 109.8 C9—C8—H8B 109.8 C5—C2—H2B 109.8 C9—C8—H8B 109.8 C1—C2—H2B 108.2 H8A—C8—H8B 109.8 H2A—C2—H2B 108.2 H8A—C8—H8B 108.3 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C10—C9—C4 109.79 (1) C1—C3—H3B 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C8—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C1—C4—H4B 109.7 C9—C10—H10B 109.8 H4A—C4—H4B 109.7 C9—C10—H10B				
C5—C2—C1 109.59 (9) C7—C8—C9 109.28 (10) C5—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2B 109.8 C9—C8—H8A 109.8 C5—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 H2A—C2—H2B 108.2 H8A—C8—H8B 109.8 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.39 (9) C1—C3—H3A 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—C5 109.26 (10) C1—C4—H4B 109.7 C5—C10—H10A 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B				
C5—C2—H2A 109.8 C7—C8—H8A 109.8 C1—C2—H2A 109.8 C9—C8—H8A 109.8 C5—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 H2A—C2—H2B 108.2 H8A—C8—H8B 109.3 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3A 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C1—C4—H4A 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C4—C5—C1 109.68 (11) O1—C11—C1 122.81 (10) C6—C5—C1 109.72 (10) O1—C11—C1	C5—C2—C1		C7—C8—C9	109.28 (10)
C1—C2—H2A 109.8 C9—C8—H8A 109.8 C5—C2—H2B 109.8 C7—C8—H8B 109.8 C1—C2—H2B 109.8 C9—C8—H8B 109.8 L2A—C2—H2B 108.2 H8A—C8—H8B 108.3 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C10—C9—H9 109.4 H3A—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 109.7 C9—C10—C5 109.26 (10) C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C1				` ,
C1—C2—H2B 109.8 C9—C8—H8B 109.8 H2A—C2—H2B 108.2 H8A—C8—H8B 108.3 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C8—C9—H9 109.4 K13A—C3—H3B 108.2 C4—C9—H9 109.4 K13A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—C12 12.28 (10) C10—C5—C2 109.72 (10) O1—C11—C12 12.28 (10) C10—C5—C5 109.4 C11—C12—C11 112.84 (9) C2—C5—H5 109.4	C1—C2—H2A	109.8		
C1—C2—H2B 109.8 C9—C8—H8B 109.8 H2A—C2—H2B 108.2 H8A—C8—H8B 108.3 C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3B 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C8—C9—H9 109.4 K13A—C3—H3B 108.2 C4—C9—H9 109.4 K13A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—C12 12.28 (10) C10—C5—C2 109.72 (10) O1—C11—C12 12.28 (10) C10—C5—C5 109.4 C11—C12—C11 112.84 (9) C2—C5—H5 109.4	C5—C2—H2B	109.8	C7—C8—H8B	109.8
C7—C3—C1 109.89 (9) C10—C9—C8 109.62 (10) C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3A 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C5—C10—H10B 109.8 C1—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 122.81 (10) C10—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10)		109.8	C9—C8—H8B	109.8
C7—C3—H3A 109.7 C10—C9—C4 109.71 (10) C1—C3—H3A 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C9—C10—H10B 109.8 C1—C4—H4B 109.7 C9—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—H6A 109.8	H2A—C2—H2B	108.2	H8A—C8—H8B	108.3
C1—C3—H3A 109.7 C8—C9—C4 109.39 (9) C7—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C5—C10—H10B 109.8 C1—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C5—C6—H6A 109.8	C7—C3—C1	109.89 (9)	C10—C9—C8	109.62 (10)
C7—C3—H3B 109.7 C10—C9—H9 109.4 C1—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C5—C10—H10B 109.8 C1—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C2 60.26 (14)	C7—C3—H3A	109.7	C10—C9—C4	109.71 (10)
C1—C3—H3B 109.7 C8—C9—H9 109.4 H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C5—C10—H10B 109.8 C1—C4—H4B 109.7 C9—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) 01—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) 01—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—H5 109.4 C11—C12—H12B 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C5—C6—C5 109.53 (10) C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C2 60.26 (14)<	C1—C3—H3A	109.7	C8—C9—C4	109.39 (9)
H3A—C3—H3B 108.2 C4—C9—H9 109.4 C1—C4—C9 109.61 (9) C9—C10—C5 109.26 (10) C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 C9—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 C11—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 </td <td>C7—C3—H3B</td> <td>109.7</td> <td>C10—C9—H9</td> <td>109.4</td>	C7—C3—H3B	109.7	C10—C9—H9	109.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C3—H3B	109.7	C8—C9—H9	109.4
C1—C4—H4A 109.7 C9—C10—H10A 109.8 C9—C4—H4A 109.7 C5—C10—H10B 109.8 C1—C4—H4B 109.7 C9—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C5—C6—H6A 109.8 C11—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8—C9 60.43 (13) <	НЗА—СЗ—НЗВ	108.2	C4—C9—H9	109.4
C9—C4—H4A 109.7 C5—C10—H10A 109.8 C1—C4—H4B 109.7 C9—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C5—C6—H6A 109.8 C11—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 59.45 (12) C3—C7—C8—C9 60.43 (13) <tr< td=""><td>C1—C4—C9</td><td>109.61 (9)</td><td>C9—C10—C5</td><td>109.26 (10)</td></tr<>	C1—C4—C9	109.61 (9)	C9—C10—C5	109.26 (10)
C1—C4—H4B 109.7 C9—C10—H10B 109.8 C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13) <	C1—C4—H4A	109.7	C9—C10—H10A	109.8
C9—C4—H4B 109.7 C5—C10—H10B 109.8 H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 59.45 (12) C3—C7—C8—C9 60.43 (13) C3—C1—C2—C5 59.73 (12) C7—C8—C9—C10 -60.35 (13)	C9—C4—H4A	109.7	C5—C10—H10A	109.8
H4A—C4—H4B 108.2 H10A—C10—H10B 108.3 C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)	C1—C4—H4B	109.7	C9—C10—H10B	109.8
C6—C5—C10 109.68 (11) O1—C11—N1 125.04 (11) C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)	C9—C4—H4B	109.7	C5—C10—H10B	109.8
C6—C5—C2 109.72 (10) O1—C11—C12 122.81 (10) C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.53 (10) C11—C12—H12B 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				108.3
C10—C5—C2 109.21 (10) N1—C11—C12 112.15 (9) C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)	C6—C5—C10	109.68 (11)	O1—C11—N1	125.04 (11)
C6—C5—H5 109.4 C11—C12—C11 112.84 (9) C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)	C6—C5—C2		O1—C11—C12	122.81 (10)
C10—C5—H5 109.4 C11—C12—H12A 109.0 C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C2—C5—H5 109.4 C11—C12—H12A 109.0 C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C7—C6—C5 109.53 (10) C11—C12—H12B 109.0 C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C7—C6—H6A 109.8 C11—C12—H12B 109.0 C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C5—C6—H6A 109.8 H12A—C12—H12B 107.8 C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C11—N1—C1—C4 62.57 (14) C5—C6—C7—C3 59.83 (13) C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C11—N1—C1—C3 -178.63 (11) C1—C3—C7—C6 -60.28 (13) C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)	C5—C6—H6A	109.8	H12A—C12—H12B	107.8
C11—N1—C1—C2 -60.26 (14) C1—C3—C7—C8 59.57 (13) N1—C1—C2—C5 -176.69 (9) C6—C7—C8—C9 60.43 (13) C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)	C11—N1—C1—C4		C5—C6—C7—C3	59.83 (13)
N1—C1—C2—C5	C11—N1—C1—C3	-178.63 (11)	C1—C3—C7—C6	-60.28 (13)
C4—C1—C2—C5 59.45 (12) C3—C7—C8—C9 -59.46 (13) C3—C1—C2—C5 -59.73 (12) C7—C8—C9—C10 -60.35 (13)				
C3—C1—C2—C5				
N1—C1—C3—C7 179.85 (9) C7—C8—C9—C4 59.99 (13)				
	N1—C1—C3—C7	179.85 (9)	C'/—C8—C9—C4	59.99 (13)

C4—C1—C3—C7	-59.64 (12)	C1—C4—C9—C10	59.49 (12)
C2—C1—C3—C7	60.05 (12)	C1—C4—C9—C8	-60.79 (12)
N1—C1—C4—C9	177.60 (9)	C8—C9—C10—C5	59.74 (13)
C3—C1—C4—C9	60.26 (11)	C4—C9—C10—C5	-60.40 (13)
C2—C1—C4—C9	-58.85 (12)	C6—C5—C10—C9	-59.57 (13)
C1—C2—C5—C6	60.02 (13)	C2—C5—C10—C9	60.70 (13)
C1—C2—C5—C10	-60.23 (13)	C1—N1—C11—O1	-3.61 (19)
C10—C5—C6—C7	60.04 (14)	C1—N1—C11—C12	176.78 (10)
C2—C5—C6—C7	-59.92 (14)	O1—C11—C12—C11	-0.73 (17)
C5—C6—C7—C8	-60.38 (13)	N1—C11—C12—C11	178.88 (9)

Hydrogen-bond geometry (Å, $^{\circ}$)

 D— $H \cdots A$ D—H $H \cdots A$ $D \cdots A$ D— $H \cdots A$

 N1— $H1 \cdots O1^i$ 0.88
 1.97
 2.8301 (12)
 165

Symmetry codes: (i) x+1/2, y, -z+1/2.

Fig. 1

