Chapitre 05 – De la structure à la polarité d'une entité chimique

Pour chaque question, indiquer la (ou les) bonne(s) réponse(s)

A B C

1 La formation d'une molécule ou d'un ion

1. Dans le schéma de Lewis d'un atome, le point (•) représente un électron :	de la couche interne.	de la couche de valence.	susceptible de former une liaison covalente.
2. L'atome d'azote dont le schéma de Lewis est donné ci-contre :	peut s'entourer de trois atomes.	peut s'entourer de deux atomes.	peut former trois liaisons covalentes.
3. Dans la molécule de dichlore, dont le schéma de Lewis est donné ci-contre, un atome de chlore est entouré de : $ \overline{\underline{C\ell}} - \overline{\underline{C\ell}} $	4 électrons.	7 électrons.	8 électrons.
4. La molécule de disulfure de dihydrogène H_2S_2 est formée d'atomes, dont les schémas de Lewis sont donnés ci-dessous : \overline{S} \cdot H \cdot \text{Le schéma de Lewis de la molécule est :}	\$=H—H=\$	н— <u>ड</u> — <u>ड</u> —н	н—н— <u>s</u> =\$
5. L'ion chlorure, dont le schéma de Lewis est donné ci-contre, est entouré de : $ \overline{\underline{C\ell}} $	8 électrons.	9 électrons.	10 électrons.
6. Dans l'ion hydroxyde, dont le schéma de Lewis est donné ci-dessous :	l'atome d'hydrogène est entouré de 2 électrons.	l'atome d'oxygène est entouré de 8 électrons.	l'atome d'oxygène est entouré de 9 électrons.

2 La géométrie des édifices atomiques

7. La géométrie de la molécule de phosgène, dont le modèle est représenté ci-contre, est :	pyramidale.	triangulaire.	tétraédrique.
8. La géométrie de l'ion ammonium dont le shéma de H—N—H Lewis est donné ci-contre, est :	pyramidale.	triangulaire.	tétraédrique.
9. La géométrie de l'ion ammonium NH ₄ + est due à :	la répulsion entre les doublets.	la répulsion entre les atomes.	la présence de la charge positive.

Les molécules polaires et apolaires

10. L'électronégativité d'un atome traduit son aptitude à :	former une liaison avec un autre atome.	attirer le doublet qui le lie à un autre atome.	obtenir une configuration électronique identique à celle d'un gaz noble.
11. Les atomes de chlore Cℓ et d'hydrogène H ont pour électronégativités respectives 3,2 et 2,2.	La liaison H—Cℓ est polarisée.	La molécule de chlorure d'hydrogène HCℓ est apolaire.	Le doublet d'électrons est plus proche de l'atome d'hydrogène H que de l'atome de chlore Cℓ.

Exercice

Un herbicide controversé

Mobiliser et organiser ses connaissances; proposer un modèle.

Dans l'industrie, le trichlorure de phosphore $PC\ell_3$ est un intermédiaire de synthèse d'herbicides comme le glyphosate.

• Établir le schéma de Lewis de la molécule de trichlorure de phosphore $PC\ell_3$. Données

• P $(1s^2 2s^2 2p^6 3s^2 3p^3)$; C ℓ $(1s^2 2s^2 2p^6 3s^2 3p^5)$.

2 Exercice

Un traitement de l'eau

| Mobiliser et organiser ses connaissances ; utiliser un modèle pour expliquer.

L'acide hypochloreux est l'espèce active utilisée pour le traitement de l'eau de certaines piscines. La molécule d'acide hypochloreux est modélisée ci-contre.

Interpréter la géométrie de la molécule autour de l'atome d'oxygène, à partir de son schéma de Lewis :

$$H - \overline{O} - \overline{C\ell}$$

Le méthanol

Mobiliser et organiser ses connaissances ; utiliser un modèle pour prévoir.

Le méthanol, dont le modèle de sa molécule est donné ci-contre, est un alcool produit naturellement par de nombreuses variétés de bactéries.

La molécule de méthanol est-elle polaire ou apolaire ?

Données

- $\chi(H) = 2.2$; $\chi(C) = 2.6$ et $\chi(O) = 3.4$.
- Les valeurs des électronégativités des atomes d'hydrogène et de carbone étant proches, les liaisons C-H sont non polarisées.

7 Attribuer, à un atome, son schéma de Lewis Choisir un modèle.

 Choisir, parmi les représentations suivantes, le schéma de Lewis de l'atome de soufre $S(1s^2 2s^2 2p^6 3s^2 3p^4)$.

La molécule de diazote est formée de deux atomes d'azote $N(1s^2 2s^2 2p^3)$.

 Choisir, parmi les représentations suivantes, le schéma de Lewis de cette molécule :

$$(a) (N=N)$$

(14) Proposer le schéma de Lewis d'un ion

Proposer un modèle.

Le schéma de Lewis de l'ion ammonium est proposé ci-dessous.

- 1. Rechercher la place des éléments azote N et phosphore P dans le tableau périodique.
- Proposer le schéma de Lewis de l'ion phosphonium PH₄ et justifier la charge portée par l'atome de phosphore.

(16) Nommer une figure géométrique

Mobiliser ses connaissances.

 Nommer la géométrie de la molécule de chlorosilane $SiH_3C\ell$.

 Associer les géométries pyramidale à base triangulaire, tétraédrique et coudée aux atomes de la molécule d'aminochlorométhanol.

Données

H(□); C(□); N(□); O(□); Cℓ(□).

19 Choisir un modèle

Utiliser un modèle pour prévoir.

Les schémas de Lewis des molécules de phosphine PH 3 et d'acide cyanhydrique HCN sont donnés dans le tableau

 Parmi les modèles proposés, choisir celui rendant compte de la géométrie de chacune des molécules.

Schéma de Lewis	Modèle 1	Modèle 2
H— <u>P</u> —H H		
H—C≡N		

20 Prévoir la polarité d'une molécule

Utiliser un modèle pour prévoir.

 Parmi les deux molécules dont les modèles sont fournis, laquelle est une molécule polaire ? Justifier.

> Borane BH₃

> Ammoniac NH₂

Données

• $\chi(H) = 2.2$; $\chi(B) = 2.0$ et $\chi(N) = 3.0$.

21 Justifier la polarité d'une molécule

Utiliser un modèle pour prévoir.

Le modèle de la molécule de trichlorométhane est donné ci-contre.

Justifier que cette molécule est polaire.

Données

• $\chi(H) = 2.2$; $\chi(C) = 2.6$ et $\chi(C\ell) = 3.2$.

25) A chacun son rythme

Un précurseur du nylon

Utiliser un modèle pour expliquer ; rédiger une explication.

Commencer par résoudre l'énoncé compact. En cas de difficultés, passer à l'énoncé détaillé.

L'oxime est un intermédiaire de synthèse du nylon. Le modèle de sa molécule est reproduit ci-dessus.

Données

- H(a); C(a); N(a); O(a).
- H (1s¹); C (1s² 2s² 2p²); N (1s² 2s² 2p³); O (1s² 2s² 2p⁴).
- Justifier la géométrie de cette molécule autour des atomes de carbone C, d'azote N et d'oxygène O.
- 1. Déterminer le nombre d'électrons de valence des atomes d'hydrogène, de carbone, d'azote et d'oxygène.
- 2. Établir le schéma de Lewis de chaque atome.
- 3. Assembler les schémas de Lewis des atomes afin d'obtenir le schéma de Lewis de la molécule d'oxime.
- 4. Pour chacun des atomes C, N et O, déterminer le nombre d'atomes et de doublets non liants entourant chacun d'eux.
- 5. Utiliser le résultat de la question précédente pour justifier la géométrie de la molécule autour de ces atomes.

(27) Un agent de blanchiment

Proposer un modèle.

L'acide oxalique est un agent de blanchiment. Un modèle de la molécule d'acide oxalique est proposé ci-dessous.

- Établir le schéma de Lewis de la molécule d'acide oxalique.
- 2. Nommer puis justifier la géométrie de la molécule autour des atomes de carbone (1) et d'oxygène (2).

H (1s¹); C (1s² 2s² 2p²); O (1s² 2s² 2p⁴).