

Using Visualization in the development of Multilayer radiating structures for mm Waves

Based on the work by Amélia Ramos, J. Nuno Matos DETI/IT

The problem

 Millimeter-Waves migration: 5G and IoT demands (higher frequencies, smaller devices and antennas)

Objectives

- Design, implement and test of Yagi-Uda antennas using Computer Simulated Technology (CST):
 - operating at 2.4 GHz and 24 GHz
 - printed Yagi-like prototypes

- Performance comparison:
 - planar
 - multilayer

Users, Context of use, and Goals of using Vis

Researchers,

Office and Laboratory using a Laptop/PC

 Visualization was used to guide the design, assess the quality and usefulness of the results and compare both antennas

Electromagnetic systems

3S SIMULIA

CST STUDIO SUITE

Data

Simulated data (using commercial S/W)

(CST STUDIO SUITE Electromagnetic Field Simulation S/W)

- quantitative value (gain) 2D/3D grid data,
- quantitative value (gain) along frequency
- Measured data

(in a simplified version of an anechoic chamber, built in the laboratory)

(adapted from Schroeder et al., 2006)

The visualizations creator was also user: a researcher/developer who conducted in all phases

But there were other users: other researchers

Visualization along the process

- Simulated data design phase
- Measured data test phase

To guide the design, check prototype characteristics, assess quality and usefulness

Visualization of simulated data

- Representing a gain along the frequency (continuous quantitative phenomenon, adequate sampling)
- Visualization technique: insight:
 - line chart

- checking operation frequency

- 3D grid data continuous quantitative variable in 3D space (using adequate sampling)
- Visualization techniques:
 - Isosurface
 (possible to represent continuous phenomena)
 - Color coding
 (using a popular, while not perceptually effective color scale)

- Main insight:
 - 3D radiation pattern shows directional antenna

 3D grid data – continuous quantitative variable in 3D space (using adequate sampling)

- Visualization techniques:
 - Polar line chart(on plane of interest)
- Insights:
 - Directional antenna
 - Gain vs direction(w/ greater accuracy)

Polar diagram of the radiation pattern of the 2.4 GHz antenna (plane $\varphi=0^{\circ}$).

Comparing measured with simulated data

Same variables as before

Visualization technique:

- line chart

Insight

- comparing with the simulation:

(slightly different frequency)

Visualization of measured data

Same variables as before

- Visualization technique:
 - line chart (on an interest plane) (different pattern)

Insight:

- comparing with the simulation:

3D view of the antenna's radiation pattern (a) with reflector and (b) with ground plane.

Concluding remarks

- Comparison between planar and multilayer prototypes,
- Slightly different measured and simulation results,
- Multilayer radiating structures seem a promising alternative,
- Good matching of both prototypes regarding simulated and measured radiation pattern
- Visualization was most valuable along the process to guide the design and confirm that goals were met

References

- A. Ramos, *Multilayer radiating structures for mmWaves*, MSc Dissertation, University of Aveiro, 2018.
- A. Ramos, T. Varum, and J. N. Matos, "Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors," *Sensors*, vol. 18, no. 9, p. 2914, Sep. 2018, doi: 10.3390/s18092914.
- CST Studio Suite, https://www.3ds.com/products-suite/ (accessed Feb/2022)