Amin Zolfagharian - 610300118

Problem 1.

Let $f(n, m, x) = (x + m)^n$. This function is partial recursive since addition and power are both partial recursive functions. By s-m-n there exists a computable total function s such that $f(n, m, x) \cong \phi_{s(n,m)}(x)$. This proves the problem:

$$(x+m)^n = f(n,m,x) \cong \phi_{s(n,m)}(x)$$

Problem 2.

Since f is a total computable function there exists a standard URM-program F that computes f. Now we will propose an algorithm for a URM program that computes h(x):

Let $r = \rho(F)$.

Start: T(1, r + 1)

Z(1)

Program: I

J(1, r + 1, End)

S(1)

J(1, 1, Program)

End: Z(1)

S(1)

This program runs over all of numbers, starting from 0. Since f is total then for any x, f(x) halts. This program runs F over all numbers and if for some y, f(y) = x then gives 1 as output and halts. If there is no such y such that f(y) = x then the program never halts. Now if h is the function for this program we would have:

$$h(x) = \begin{cases} 1 & \text{if there exists y such that } f(y) = x \iff x \in Ran(x) \\ \uparrow & \text{if there is no y such that } f(y) = x \iff x \notin Ran(x) \end{cases}$$

This proves the problem.

Problem 3.

Let $f(u, v, x) = \phi_u(\phi_v(x))$. Since this function is computable (both ϕ_u and ϕ_v are computable), then by s-m-n theorem, there exists a total and computable $g: \mathbb{N}^2 \to \mathbb{N}$ such that:

$$\phi_u(\phi_v(x)) = f(u, v, x) \cong \phi_{g(u,v)}(x)$$

Problem 4.

Let $g(x,y) = \phi_x(f(y))$. Since both f and ϕ_x are computable then g is also computable. By s-m-n theorem there exists a total computable k such that:

$$f(x,y) \cong \phi_{k(x)}(y)$$

 $\implies \phi_{k(x)}(y) = \phi_x(f(y))$

Thus we have:

$$y \in W_{k(x)} \iff f(y) \in W_x \iff y \in f^{-1}(W_x)$$

 $\implies W_{k(x)} = f^{-1}(W_x)$

Problem 5.

(i)
$$\beta(J(m, n, q)) = 4(\pi(\pi(m - 1, n - 1), q - 1)) + 3$$
:

$$\pi(3 - 1, 4 - 1) = 2^{2}(2 \times 3 + 1) - 1 = 27$$

$$\pi(27, 2 - 1) = 2^{27}(2 \times 1 + 1) - 1 = 3 \cdot 2^{27} - 1$$

$$\implies \beta(J(3, 4, 2)) = 4(3 \cdot 2^{27} - 1) + 3 = 3 \cdot 2^{29} - 1$$

(ii) 503 = 4(125) + 3. Therefore this code belongs to a jump instruction.

$$125 = 2^{1}(2 \times 31 + 1) - 1 \implies 125 = \pi(1, 31)$$

$$1 = 2^{1}(2 \times 0 + 1) - 1 \implies 1 = \pi(1, 0)$$

$$\implies 125 = \zeta(2, 1, 32)$$

$$\implies \beta^{-1}(503) = J(2, 1, 32)$$

(iii) First we compute the code for each instruction, then we use them to compute the program code:

$$\beta(T(3,4)) = 4(\pi(3-1,4-1)) + 2 = 4(\pi(2,3)) + 2 = 4 \cdot 27 + 2 = 110$$

$$\beta(S(3)) = 4(3-1) + 1 = 9$$

$$\beta(Z(1)) = 4(1-1) = 0$$

$$\tau(111,9,0) = 2^{110} + 2^{120} + 2^{121} - 1$$

(iv)
$$100 = 2^0 + 2^2 + 2^5 + 2^6 - 1$$
. Thus $\tau^{-1}(100) = (0, 1, 2, 0)$

$$\beta^{-1}(0) = Z(1)$$

$$\beta^{-1}(1) = S(1)$$

$$\beta^{-1}(2) = T(1, 1)$$

$$\beta^{-1}(0) = Z(1)$$

Thus the program is: Z(1), S(1), T(1,1), Z(1).

Problem 6.

Kleene's Normal Form: There exists a total computable function $U : \mathbb{N} \to \mathbb{N}$ such that for any $n \in \mathbb{N}$ There exists a decidable predicate like $T_n(e, \overrightarrow{x}, z)$ such that for any computable function $f : \mathbb{N}^n \to \mathbb{N}$ we have:

$$f(\overrightarrow{x}) = U(\mu_z(T_n(e, \overrightarrow{x}, z)))$$

Proof: Let $T_n(e, \vec{x}, z) = S_n(e, \vec{x}, l(z), r(z))$ where e is the code of f and U(x) = l(x), where l and r are inverse of π such that $x = \pi(l(x), r(x))$. Now if $f(\vec{x}) \downarrow$, then after t steps the program for f halts for some t and has an output k. then for $z = \pi(k, t)$ we have $T_n(e, \vec{x}, z) = 1$. Also for any z that $T_n(e, \vec{x}, z) = 1$, value of l(z) is the same. Since it is the output of f over \vec{x} after t steps such that the computation is over. Thus in this case $f(\vec{x}) = U(\mu_z(T_n(e, \vec{x}, z)))$. Now if $f(\vec{x}) \uparrow$ then $T_n(e, \vec{x}, z) = 0$ for any z. Thus $U(\mu_z(T_n(e, \vec{x}, z))) \uparrow$. This proves the problem.

The importance of this theorem is that since the characteristic function for S_n is partial recursive then the characteristic function for T_n is also partial recursive, and U is also partial recursive, Therefore $f(\vec{x})$ can be written with only one usage of μ .