

A spatially resolved study of hard X-ray emission in Kepler's SNR:

Indications of different regimes of particle acceleration

Vincenzo Sapienza

INAF - Osservatorio Astronomico di Palermo Department of Physics and Chemistry "Emilio Segré" - University of Palermo

Collaborators:

M. Miceli, A. Bamba, S. Katsuda, Y. Terada, T. Nagayoshi, F. Bocchino, S. Orlando, G. Peres

SNR as source of cosmic rays

Synchrotron emission is a powerful tool to study:

- The distribution the accelerated electrons
- The mechanism that limits their maximum energy

Young SNRs have high shock velocities

Good acceleration efficiency <

We chose the young **Kepler's SNR**

First detection of hard non-thermal X-ray with Suzaku

Nagayoshi et al. (2021):

Suzaku X-ray spectrum of Kepler's SNR

Hard non-thermal X-rays of Kepler's SNR

Distance (pc)	Age (yrs)	Physical origin
~5000	418	type la SN

Shock interacting with dense circumstellar medium $v_{sh} \sim 2000 \text{ km/s}$

Shock expanding in subtle homogeneous medium $v_{sh} \sim 5000\text{-}6000 \text{ km/s}$

Spatially resolved spectral analysis

Non-thermal radiation from Kepler's SNR

Chandra flux image

First Hard X-rays Images of Kepler's SNR

Sapienza et al. Subm. to ApJ: **NuSTAR** counts images in 3-8 keV, 8-15 keV and 15-30 keV from left to right

First Hard X-rays Images of Kepler's SNR

Sapienza et al. Subm. to ApJ: **NuSTAR** counts images in 3-8 keV, 8-15 keV and 15-30 keV from left to right

Loss limited model

Loss-limited spectrum model is

(Zirakashvili & Aharonian 2007):

$$\tau_{\text{sync}}$$
 ~ 60 yrs (B=100 μG E=20 TeV)

$$\tau_{\rm sync} < \tau_{\rm age}$$

Relation between ϵ_0 and shock velocity

η related to the magnetic turbulences

$$\frac{dN_X}{d\varepsilon} \propto \left(\frac{\varepsilon}{\varepsilon_0}\right)^{-2} \left[1 + 0.38 \left(\frac{\varepsilon}{\varepsilon_0}\right)^{1/2}\right]^{11/4} \exp\left[-\left(\frac{\varepsilon}{\varepsilon_0}\right)^{1/2}\right]$$
cutoff photon energy

$$au_{sync} pprox 12.5 \left(\frac{E}{100 \text{TeV}} \right)^{-1} \left(\frac{B}{100 \mu \text{G}} \right)^{-2} \text{ yrs}$$

$$\varepsilon_0 = \frac{1.6}{\eta} \left(\frac{v_{sh}}{4000 \text{ km s}^{-1}} \right)^2 \quad \text{keV}$$

Spatially resolved spectral analysis

15-30 keV 21 10 12 13 20

Sapienza et al. Subm. to ApJ: pn (black) FPMA (red) and FPMB (green) spectra of region 7 with best fit model and residuals in 4.1-30 keV band

Sapienza et al. Subm. to ApJ: NuSTAR counts map of Kepler's SNR in 3-8 keV band

ϵ_0 vs. current shock velocity

Sapienza et al. Subm. to ApJ: ε_o vs. Coffin et al. (2022, Solid crosses)/Katsuda et al. (2008, dashed crosses) v_{ch}

 t_{acc} ~300 yrs using v_{sh} from northern regions and B=100 μ G

ϵ_0 vs. average shock velocity

Sapienza et al. Subm. to ApJ: ε_0 vs. average velocity using Sato & Hughes (2017) center

Average shock velocity = shock radius / age of the remnant

Two different regimes of acceleration

Sapienza et al. Subm. to ApJ:

 $\varepsilon_{
m 0}$ vs. Coffin et al. (2022, Solid crosses)/Katsuda et al. (2008, dashed crosses) $v_{
m sh}$

Sapienza et al. Subm. to ApJ:

 ε_{0} vs. average velocity using Sato & Hughes (2017) center

Spectral Energy Distribution

Recent detection of γ-rays from Kepler's SNR

X-ray data from this project

One-zone Lepto-hadronic model:

- Synchrotron for X-rays and Radio
- Inverse Compton and Pion decay for γ-rays

а	E _{cut} (TeV)	B (μG)	n (cm ⁻³)	W _p (erg)
2.44	16	100	20	4.2x10 ⁴⁸

Sapienza et al. in prep: Radio: DeLaney et al. (2002). X-ray: Sapienza et al. in prep, Nagayoshi et al. (2021). γ-ray: Acero et al. (2022), Prokhorov et al. (2021).

Summary

First data analysis on NuSTAR data from Kepler's SNR

Spatially resolved spectral analysis with a loss limited model

Brighter non-thermal emission in the north than in the south

Electrons in inhomogeneous medium northern regions are accelerated closer to Bohm (effect of turbulences?)

SED: Indication of hadronic acceleration in Kepler's SNR

Broadband spectra as crosscheck

Sapienza et al. Subm. to ApJ: pn (black) FPMA (red) and FPMB (green) spectra of region 7 with best fit model and residuals in 0.3-30 keV band

Model with three thermal components and loss limited model

$$1 < \chi^2 / \text{d.o.f.}$$
 (400-700) < 1.4

Hard Knot spectrum

Sapienza et al. Subm. to ApJ: pn (black) FPMA (red) and FPMB (green) spectra of hard knot region with best fit model and residuals in 4.1-30 keV band

Sapienza et al. Subm. to ApJ: NuSTAR counts map of Kepler's SNR in 15-30 keV band

Quadratic vs. constant

