Autoencoders

Here we go!

Autoencoder

Dataset e hiperparámetros

```
cost_function: MSE
epochs: 100000
patience: 1000 epochs
weights_init : {
    relu: He,
        sigmoid: Xavier,
        tanh: Xavier
}
topology: [35, 100, 20,
50, 10,2 ...]
```


Optimizadores - SGD

Optimizadores - Momentum

Optimizadores - Adam

Arquitectura

Inicialización

1. ReLU Activation: He Initialization:

$$\mathbf{W}^{(i)} \sim \mathcal{N}(0, \sqrt{\frac{2}{n_i}})$$

where n_i is the number of neurons in the previous layer.

2. Sigmoid or Tanh Activation: Xavier Initialization:

$$\mathbf{W}^{(i)} \sim \mathcal{N}(0, \sqrt{\frac{1}{n_i}})$$

3. Default Initialization: Small standard deviation:

$$\mathbf{W}^{(i)} \sim \mathcal{N}(0, 0.01)$$

Latent Space

Morphing Between Two Latent Points

Proceso y arquitectura

noise: gaussian
activation: tanh
optimizer: adam

seed: 42 std: 0.2

noise: gaussian
activation: tanh
optimizer: adam

Resultados

seed: 42

topology: [35, 50, 25, 2, 25, 50, 35]

std: 0.2

std: 0.3

std: 0.4

std: 0.5

90.71%

84.91%

78.57%

noise: gaussian activation: tanh optimizer: adam

Resultados

topology: [35, 50, 25, 12, 25, 50, 35]

std: 0.2

std: 0.3

std: 0.4

std: 0.5

97.14%

92.23%

87.05%

¿En qué se diferencia?

- Modela una distribución probabilística en el entrenamiento.
- Añade pérdida para **asemejar la distribución latente a una gaussiana estándar**.
- Enfocada en la generación y/o interpolación, a diferencia de la extracción de características y encoding robusto.
- Requiere ser entrenada con un dataset limpio, con poco ruido.

MNIST

Dataset

 28x28 píxeles donde cada uno tiene un valor entre 0 y 255 que se condice con la escala de grises

Sample 36922

- 60000 elementos
- 10 conjuntos discretos con poca variabilidad

Reconstruction

- Buenas reconstrucciones
- La nitidez depende de qué tan cerca del centroide está

Casos excepcionales

Denoising

Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed

Hallucinations

Casos excepcionales

Denoising

Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed Original Reconstructed

Hallucinations

Generation

- Como el conjunto de números es discretizado, es muy difícil juzgar la validez de las generaciones
 - Además hay prevalencia de generaciones idénticas a las de entrenamiento, fallando el objetivo de generación.

Gusanos

Imitaciones

Emojis

Dataset

- 28x28 píxeles donde cada uno tiene un valor entre 0 y 255 que se condice con la escala de grises
- 2951 elementos
- Alta variabilidad
- Alta proporción de rostros

```
seed = 42
encoder_topology = [4900, 500, 300, 128, 64]
decoder_topology = [64, 128, 300, 500, 4900]
optimizer = Adam
activation_fn = ReLU
```


Reconstruction

- La diversidad del dataset hace que el vae no reconstruye adecuadamente para prácticamente ningún elemento.
- Un entrenamiento más extenso, una dataset mas grande o una dimensionalidad del espacio latente más alta podrían mejorar el desempeño
- Dadas las limitaciones reducir la variabilidad es lo más viable.

Generation

- En general se encontraron estos 4 clusters de generación
- Se puede notar la "intención" del VAE en cada una de las generación
- No logra cumplir el objetivo

Faces

Dataset

- 70x70 píxeles donde cada uno tiene un valor entre 0 y 255 que se condice con la escala de grises
- 1000 elementos
- Baja variabilidad

```
seed = 42
encoder_topology = [4900, 500, 300, 128, 64]
decoder_topology = [64, 128, 300, 500, 4900]
optimizer = Adam
activation_fn = ReLU
epochs = 500
```


Generation

 Logramos conseguir un generador de imágenes aterradoras

Generation

Conclusiones

- El **aumento de la dimensionalidad** en el espacio latente suele ser **beneficioso** siempre y cuando no se caiga en la **falacia de las dimensiones**.
- La **reducción de dimensionalidad** en el espacio latente puede ayudar a encontrar **patrones** o formas de **agrupar** la información, además de arrastrar los beneficios de otros reductores de dimensionalidad (compresión, visualización de información, etc).
- Como siempre, tamaño y calidad del dataset son factores clave, al igual que el hardware.
- Para el objetivo de **denoising** se vieron resultados muy positivos, los negativos incluso pueden ser utilizados para detección de anomalías.
- Para objetivos generativos existen mejores herramientas que las exploradas, los limitantes probablemente sean otros factores y no la herramienta.
- El **espacio latente** es un **espacio vectorial**, tiene más compresión que un embedding clásico, aun así se puedan explorar operaciones.
- La interpolación a través del espacio latente puede tener algunos usos interesantes con transiciones suaves.

