Bayesian Optimization of a Wearable Assistive Device Using an Estimator Stopping Process

Charles Liu cliu02@g.harvard.edu

IACS, Harvard University

May 4, 2018

Soft Exosuit

Process Overview

Observations represent underlying process with some Gaussian noise

$$y \sim f + \mathcal{N}(0, \sigma_n^2)$$
$$f \sim \mathbb{G}(0, \kappa)$$
$$\kappa(x_i, x_j | \sigma_\theta^2, I) = \sigma_\theta^2 \exp(-\frac{1}{2} d^2(\frac{x_i}{I}, \frac{x_j}{I}))$$

Given some training data, closed form posterior distribution at any point x

$$\bar{\mu}(x) = K(X, x)^{T} [K(X, X) + \sigma_{n}^{2} I]^{-1} Y$$

$$\bar{\sigma}^{2}(x) = \kappa(x, x | \theta) - K(X, x)^{T} [K(X, X) + \sigma_{n}^{2} I]^{-1} K(X, x)$$

$$K(X, x)_{i} = \kappa(x_{i}, x | \theta)$$

$$K(X, X)_{ij} = \kappa(x_{i}, x_{j} | \theta),$$

where $X = \{x_i\}_{i=1}^n$ and $Y = \{y_i\}_{i=1}^n$.

duction Parameter Selection Metabolic Estimation Stopping Models Results Conclusion

σ_{θ}^2 Effect

troduction Parameter Selection Metabolic Estimation Stopping Models Results Conclusion

Hyperparameter Estimation

$$EI(x|S) = \int_{\infty}^{\infty} max(0, y^* - y)p(y|x)dy$$
$$= z\bar{\sigma}(x)\Phi(z) + \bar{\sigma}(x)\phi(z)$$
$$z = \frac{y^* - \bar{\mu}(x) + \xi}{\bar{\sigma}(x)},$$

where y^* is the best value observed so far, $\Phi(z)$ and $\phi(z)$ are the standard normal CDF and PDF functions, and ξ is a scaling parameter to adjust the tradeoff between exploration-exploitation

Bayesian Optimization

```
Objective Function F(x)
Acquisition Function g(\mu, \sigma^2)
Specify Exploration Points \mathbb{E} = \{e_1, e_2, ..., e_n\}
Training Samples \mathbb{S}
for i = 1 to n
     \mathbb{S} = \mathbb{S} \cup \{e_i, F(e_i)\}
end
while t < T
     Update GP Hyperparameters \theta
     Given f(x|\theta, \mathbb{S}) \sim \mathcal{N}(\mu_x, \sigma_x^2),
     x^* = \arg\max_{\mathbf{x} \in \mathbb{X}} g(\mu_{\mathbf{x}}, \sigma_{\mathbf{y}}^2)
     \mathbb{S} = \mathbb{S} \cup \{x^*, F(x^*)\}
end
```

Instantaneous Energetic Cost

Kalman Filter

System Dynamics

$$x(t+1) = F(x(t), v(t), t)$$
$$z(t) = H(x(t), w(t), t)$$

Update Equations

$$\hat{x}(t) = \hat{x}(t|t-1) + Ky$$
 $P_x(t) = P_x(t|t-1) - KP_y(t|t-1)K^T$
 $K = P_{xy}(t|t-1)P_y^{-1}(t|t-1)$
 $y = z(t) - H(\hat{x}(t|t-1), w(t), t)$

Stopping Models

Unscented Transform

where $\lambda = \alpha^2 (N + \kappa) - N$, and α , κ , and β are scaling parameters. Given y = g(x),

$$ar{y} pprox \sum_{i=0}^{2N} W_i^{(m)} g(\chi_i)$$
 $P_y pprox \sum_{i=0}^{2N} W_i^{(c)} (g(\chi_i) - ar{y}) (g(\chi_i) - ar{y})^T$

Time constants τ_0 , τ characterizing rate of change of cost constants c_0 , c

$$x = [c_0 \ c \ au_0 \ au]$$
 $F(x(t), v(t), t) = x(t) + v(t)$
 $H(x(t), w(t), t) = c(1 - e^{-t \over au}) + c_0 e^{-t \over au_0} + w(t)$

ntroduction Parameter Selection **Metabolic Estimation** Stopping Models Results Conclusion

Measurement Noise

troduction Parameter Selection **Metabolic Estimation** Stopping Models Results Conclusion

Estimator in Subject Trials

Stopping Problem Formulation

Ν	Finite horizon
X_t	State at time t
$P(X_t X_{t-1})$	State transitions, typically Markovian
λ	$DiscountFactor\in(0,1]$
r(X)	Bounded reward function for continuing at state X
g(X)	Bounded reward function for stopping at state X

Via backward induction

$$J_N(x) = g(x)$$

$$J_n(x) = \max\{g(x), r(x) + \lambda \mathbb{E}_{P(y|x)}[J_{n+1}(y)]\}$$

Optimal stopping point

$$\tau = \min_t J_t(X_t) = g(X_t)$$

Distribution of Interest

Given

Current Estimate:
$$\hat{x}_t \sim \mathcal{N}(\mu_{x_t}, \sigma_{x_t}^2)$$

Best Estimate: $\hat{x}^* \sim \mathcal{N}(\mu_{x^*}, \sigma_{x^*}^2)$

We are concerned with

$$\hat{x}_t - \hat{x}^* \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mu_{x_t} - \mu_{x^*}$$

$$\sigma^2 = \sigma_{x_*}^2 + \sigma_{x^*}^2$$

$$X_t = \mu$$

$$P(X_t|X_{t-1}) = P(X_t) \sim \mathcal{N}(\mu, \sigma^2)$$

$$r(x) = K\sigma - x$$

$$g(x) = 0$$

Stopping condition $X_t > K\sigma$

Success/Failure Model

Define success as

Introduction

$$\Phi(\frac{\mu}{\sigma}) > K,$$

for risk tolerance K. Define model as

$$X_{t} = (\alpha_{t} + \alpha_{0}, \beta_{t} + \beta_{0})$$

$$P(X_{t+1}) = \begin{cases} (\alpha_{t} + \alpha_{0} + 1, \beta_{t} + \beta_{0}) \\ \text{w.p. } \frac{\alpha_{t} + \alpha_{0}}{\alpha_{t} + \alpha_{0} + \beta_{t} + \beta_{0}} \\ (\alpha_{t} + \alpha_{0}, \beta_{t} + \beta_{0} + 1) \\ \text{w.p. } \frac{\beta_{t} + \beta_{0}}{\alpha_{t} + \alpha_{0} + \beta_{t} + \beta_{0}} \end{cases}$$

$$r(X_{t}) = \frac{\alpha_{t} + \alpha_{0}}{\alpha_{t} + \alpha_{0} + \beta_{t} + \beta_{0}},$$

with smoothing priors α_0 , β_0 and success/failures α_t , β_t

Multi-Armed Bandit Problem

Which is the better option?

- Option 1: 20 successes, 20 failures
- Option 2: 3 successes, 4 failures

Define Gittins Index as

$$\nu(x) = (1 - \lambda) \min_{K} \{ J_0(x) = g(x) = K \}$$

$$\nu((30, 30)) = 0.5133$$

$$\nu((4, 6)) = 0.5289$$

In the case of single option, must set another threshold $\nu(x) < V$

Use the exploration phase of Bayesian optimization to tune

thresholds in either model, with final distribution for each point as "best" value. Consider a window of values at time t

e_{00}	e_{01}	e_{02}	e ₀₃	e ₀₄	e_{05}	e ₀₆	e ₀₇	e ₀₈	<i>e</i> 09	_
e_{10}	e_{11}	e_{12}	e ₁₃	e ₁₄	e_{15}	e ₁₆	e ₁₇	e ₁₈	e_{19}	
e ₂₀	e ₂₁	e ₂₂	e ₂₃	e ₂₄	e ₂₅	e ₂₆	e ₂₇	e ₂₈	<i>e</i> ₂₉	

Use most risk averse threshold in window: max σ -offset, min for Gittins

Hip-Only Trials

Multi-Joint Trials

Future Work

Acknowledgements