

Model Development Phase Template

Date	21 June 2024
Team ID	740037
Project Title	Estimating Presence or Absence of Smoking through bio signals
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
Model Building With Random Forest Classifier
In [53]: from sklearn.ensemble import HandomForestclassifier
In [54]: rf = RandomForestClassifier(criterion = 'entropy', random_state = 0)
In [55]: rf
Out[55]: RandomForestClassifier(criterion='entropy', random_state=0)
In [SG]: rf.fit(x_train,y_train)
Out[56]: RandomForestClassifier(criterion='entropy', random_state=0)
In [57]: y_train_pred = rf.predict(x_train)
In [58]: y_test_pred = rf.predict(x_test)
In [59]: #Confusion Matrix For Training Data With Random Forest Classifier
In [60]: confusion_matrix(y_train , y_train_pred)
out[60]: array([[24542, 0], dtype=int64)
In [61]: #Accuracy for Training Data with Mandom Forest classifier
In [62]: accuracy_score(y_train,y_train_pred)*100
Out[62]: 99.99740616813219
In [63]: #Classifiacation Report For Training Data With Random Forest classifi
In [64]: print(classification_report(y_train,y_train_pred))
                       precision recall f1-score
         accuracy
macro avg
weighted avg
                                                1.00
                                                         38553
```


Model Building With Decision Tree
from sklearn.tree import DecisionTreeClassifier
deci - DecisionTreeClassifier(criterion - 'entropy', randon_state - 0)
deel.fit(=_train,y_train)
DesisiontreeClassifier(eriterion='entropy', random_state=0)
y_train_pred = deei.prediet(x_train)
y_test_pred - decl.predict(x_test)
MConfusion matrix for training data with devision tree
eonfusion_matrim(y_train , y_train_pred)
array([[24848, 0], [0, 14008]), dtype=int84)
Macoundary For Froining Date with Decision Free
assurasy_score(y_train,y_train_pred)*100
100.0

Model Building with Logistic Regression

from sklearn.linear_model import logisticRegression

logi = LogisticRegression()

logi
logisticRegression()

logi.fit(x_train, y_train)
LogisticRegression()

from sklearn.metrics import confusion_matrix, accuracy_score, classification_report

y_train_pred = logi.predict(x_train)

y_test_pred - logi.predict(x_test)

confusion_matrix(y_train_y_train_pred)

array([[19128, 8488], [4375, 9630]], dtype=int64)

Accuracy_For Training_Data_With_Logistic Regression

occuracy_score(y_train,y_train_pred)*100

74.55969704043784

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Random forest classifier	Model Building With Random Forest Classifier In [53]: from sklearm.ensemble import mandomprorestclassifier In [54]: rf = Randomprorestclassifier(criterion = 'entropy', random_state = 0) In [55]: rf Out[53]: Randomprorestclassifier(criterion='entropy', random_state=0) In [55]: rf.fit(x_train,y_train) Out[54]: Randomprorestclassifier(criterion='entropy', random_state=0) In [57]: y_train_pred = rf.gredict(x_train) In [57]: y_train_pred = rf.gredict(x_train) In [58]: v_test_pred = rf.gredict(x_train) In [58]: v_test_pred = rf.gredict(x_test) In [59]: econfusion_matrix(y_train , y_train_pred) Out[69]: erray([(24548, 0], [1, 14841]), dtype=inte4) In [61]: eccuracy_score(y_train,y_train_pred)**100 Out[69]: 29.99740616812219 In [63]: eccuracy_score(y_train,y_train_pred)**100 Out[69]: 29.99740616812219 In [64]: print(classification_report(y_train,y_train_pred)) precision recall f1-score support	69%	confusion_matrix(y_test, y_test_pred) array([[8915, 1476], [1388, 4744]], dtype=int64)

Decision tree	Model Building With Decision Tree from sklears.tree import DecisionTreeClassifier deci = DecisionTreeClassifier(criterion = "entropy", random_state = 0) deci.fit(x_train,y_train) DecisionTreeClassifier(enterion="entropy", random_state=0) y_train_ared = deci.gredict(x_train) y_test_ored = deci.gredict(x_test) #Confusion matrix for fracting data with decision free confusion_matrix[y_train , y_train_ared) array[[[14548,	64%	<pre>in [83]: eonfusion_matrix(y_test, y_test_pred) Out[83]: array([[8467, 1924],</pre>
Logistic Regression		76.4%	<pre>in [83]: eonfusion_matrix(y_test, y_test_pred) Out[83]: array([[8487, 1924],</pre>
	Model Building with Logistic Regression from sklearn.linear_model import LogisticRegression logi = LogisticRegression() logi.fit(x_train, y_train) LogisticRegression() from sklearn.metrics import confusion_matrix, accuracy_score, classification_report y_train_pred = logi.predict(x_train) y_test_pred = logi.predict(x_test) # confusion_matrix For Training Data with Training Data confusion_matrix(y_train ,y_train_pred) array([[1sils, Nass],		
Gradient Boosting		75%	

SMARIDRIDGE STREET Internz	Smart internz
Decident	Decision
	NAN
	Detailed Develope Control of the Act of the