```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
         BostonTrain = pd.read csv("C:/Users/hp/Documents/LP5/deep learning/boston train.csv")
In [3]:
         BostonTrain.head()
In [4]:
                         zn indus chas
Out[4]:
            ID
                  crim
                                         nox
                                                rm age
                                                             dis rad tax ptratio
                                                                                  black
                                                                                         Istat medv
            1 0.00632 18.0
                              2.31
                                      0 0.538 6.575 65.2 4.0900
                                                                   1 296
                                                                                  396.90
                                                                                          4.98
                                                                                                24.0
                                                                             15.3
            2 0.02731
                        0.0
                              7.07
                                      0 0.469 6.421 78.9 4.9671
                                                                   2 242
                                                                             17.8 396.90
                                                                                          9.14
                                                                                                21.6
            4 0.03237
                        0.0
                              2.18
                                      0 0.458 6.998 45.8 6.0622
                                                                   3 222
                                                                             18.7 394.63
                                                                                          2.94
                                                                                                33.4
            5 0.06905
                              2.18
                                      0 0.458 7.147 54.2 6.0622
                                                                   3 222
                                                                             18.7 396.90
                                                                                          5.33
                                                                                                36.2
                        0.0
            7 0.08829 12.5
                                      0 0.524 6.012 66.6 5.5605
                                                                             15.2 395.60 12.43
                                                                                                22.9
                              7.87
                                                                   5 311
```

In [5]: BostonTrain.info()
BostonTrain.describe()

11	COTUMNI	NOII	Naii Coanc	Deype	
0	ID	333	non-null int64		
1	crim	333	non-null float6		
2	zn	333	non-null float		
3	indus	333	non-null	float64	
4	chas	333	non-null	int64	
5	nox	333	non-null	float64	
6	rm	333	non-null	float64	
7	age	333	non-null	float64	
8	dis	333	non-null floa		
9	rad	333	non-null	int64	
10	tax	333	non-null	int64	
11	ptratio	333	non-null	float64	
12	black	333	non-null	float64	
13	lstat	333	non-null	float64	
14	medv	333	non-null	float64	

dtypes: float64(11), int64(4)

memory usage: 39.1 KB

age	rm	nox	chas	indus	zn	crim	ID	
333.000000	333.000000	333.000000	333.000000	333.000000	333.000000	333.000000	333.000000	count
68.226426	6.265619	0.557144	0.060060	11.293483	10.689189	3.360341	250.951952	mean
28.133344	0.703952	0.114955	0.237956	6.998123	22.674762	7.352272	147.859438	std
6.000000	3.561000	0.385000	0.000000	0.740000	0.000000	0.006320	1.000000	min
45.400000	5.884000	0.453000	0.000000	5.130000	0.000000	0.078960	123.000000	25%
76.700000	6.202000	0.538000	0.000000	9.900000	0.000000	0.261690	244.000000	50%
93.800000	6.595000	0.631000	0.000000	18.100000	12.500000	3.678220	377.000000	75%
100.000000	8.725000	0.871000	1.000000	27.740000	100.000000	73.534100	506.000000	max

```
In [6]: BostonTrain.drop('ID', axis = 1, inplace=True)
```

In [7]: BostonTrain.plot.scatter('rm', 'medv')

Out[5]:

Out[7]: <AxesSubplot:xlabel='rm', ylabel='medv'>


```
In [8]: plt.subplots(figsize=(12,8))
sns.heatmap(BostonTrain.corr(), cmap = 'RdGy')
```

Out[8]: <AxesSubplot:>

In [9]: sns.pairplot(BostonTrain, vars = ['lstat', 'ptratio', 'indus', 'tax', 'crim', 'nox',
Out[9]: <seaborn.axisgrid.PairGrid at 0x1a76cc99ca0>

In [10]: sns.pairplot(BostonTrain, vars = ['rm', 'zn', 'black', 'dis', 'chas', 'medv'])

Out[10]: <seaborn.axisgrid.PairGrid at 0x1a772a36130>

Out[16]: Text(0, 0.5, 'Predicted Y')


```
In [17]: from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 3.0423188024993966 MSE: 17.576764164505587 RMSE: 4.192465165568533