ÜBUNG 1 UMFORMUNG VON DIFFERENTIALGLEICHUNGEN HÖHERER ORDNUNG

Formen Sie die folgenden Systeme von Differentialgleichungen höherer Ordnung in äquivalente Systeme erster Ordnung um.

1.

$$v'''''(x) - a(x)u'(x) = f(x),$$

$$u''(x) + b(x)v(x) = g(x)$$

2.

$$v'''''(x) - a(x)u''(x) = f(x),$$

$$u''(x) + b(x)v(x) = g(x)$$

4 Punkte

ÜBUNG 2 LÖSBARKEITSEIGENSCHAFTEN

Untersuchen Sie mit Hilfe der Resultate aus der Vorlesung die Lösbarkeitseigenschaften (eindeutig, global, beschränkt, exponentiell stabil) der folgenden AWA:

1.
$$u'(t) = u(t)^2$$
, $t \ge 0$, $u(0) = 1$,

2.
$$u'(t) = -u(t)^2$$
, $t \ge 0$, $u(0) = 1$,

3.
$$u'(t) = u(t)^{1/2}, t \ge 0, u(0) = 1,$$

4.
$$u'(t) = \cos(u(t)) - 2u(t), \quad t \ge 0, \ u(0) = 1.$$

4 Punkte

ÜBUNG 3 LINEARE ANFANGSWERTAUFGABEN

1. Zeigen Sie, dass für die lineare AWA

$$y'(t) = ay(t) + b(t), \quad t \ge t_0, \qquad y(t_0) = y_0 \qquad t_0 \in \mathbb{R}, y_0 \in \mathbb{R}^n$$

mit $a \in \mathbb{R}$ und stetigem $b : \mathbb{R} \to \mathbb{R}$ durch

$$y(t) = e^{at}y_0 + \int_{t_0}^t e^{a(t-\tau)}b(\tau) dt$$

eine Lösung gegeben ist.

2. Bestimmen Sie die Lösung der AWA

$$x'(t) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} x(t), \qquad x(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

 $mit x: [0, \infty) \to \mathbb{R}^2.$

ÜBUNG 4 KONVERGENZORDNUNG (PROGRAMMIERAUFGABE)

Betrachten Sie die AWA

$$u'(t) = -200tu(t)^2$$
, $t_0 := -3 \le t \le 3$, $u(t_0) = \frac{1}{901}$.

Schreiben Sie ein Programm, welches Approximationen der analytischen Lösung mit Hilfe des expliziten Euler Verfahrens berechnet. Verifizieren Sie für konstante Schrittweiten $h=2^{-i},\,i=5,\ldots,10$ die Konvergenz 1. Ordnung dieses Verfahrens zum Zeitpunkt t=1. (Exakte Lösung $u(t)=(1+100t^2)^{-1}$)

4 Punkte