Exercise Set 2

Ryan C. Bleile

January 26, 2012

Operators

There are three operators that will will consider.

- 1. $T_1: f \to x \frac{df}{dx}$ The domain of the operator is quadratic polynomials: $f = a_0 + a_1 x + a_2 x^2$
- 2. T_2 takes points in the plane. The action is rotation by angle θ about the origin.
- 3. T_3 takes as its input the position, velocity, and acceleration of a free falling object; the output is the position, velocity, and acceleration 1 second later. (Note that the equation of motion of the object can be stated as $\frac{d^3x}{dt^3} = 0$ where x(t) is the position.)

1 Problem 1

Represent each operator with a matrix.

1.1 T_1

In order to write T_1 in matrix form, first we will define our function as a vector, secondly preform the operation once on the function, and thirdly we will write the solution as a vector using the same definition from the function space.

Starting with the function space:

$$f = a_0 + a_1 x + a_2 x^2 \equiv \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$$

Now we must preform the operation T_1 on f

$$T[f] = x(\frac{d}{dx}(a_0) + \frac{d}{dx}(a_1x) + \frac{d}{dx}(a_2x^2))$$

$$= 0 + a_1x + 2a_2x^2$$

$$T[f] = \begin{bmatrix} 0 \\ a_1 \\ 2a_2 \end{bmatrix}$$

Now working backward we can form the matrix that would perform this operation.

$$\left[\begin{array}{c} T \end{array} \right] \left[\begin{matrix} a_0 \\ a_1 \\ a_2 \end{matrix} \right] = \left[\begin{array}{c} 0 \\ a_1 \\ 2a_2 \end{matrix} \right]$$

filling in the values required to turn the initial vector into the final vector we find that the operator T_1 is

$$T_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

1.2 T_2

In order to derive a rotation matrix for the coordinates (x,y) we will start first with a rotation of zero degrees. In order to get this result from an x, y vector we can write:

$$\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

This is the case when the rotation $(\theta) = 0$. In order to write a formula that emulates this we may write the zero's as $\sin \theta$ and the one's as $\cos \theta$. However in order to achieve the proper rotation, the sin term that is on the y component must be multiplied by -1. This was derived through trial and error process. This means that in order to transform the vector:

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

into a rotated vector of the form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix}$$

we would need a matrix of the form:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

1.3 T_3

Operator T_3 is an action upon the vector:

$$\begin{bmatrix} x_0 \\ v_0 \\ a_0 \end{bmatrix}$$

Moving from the definition

$$\frac{d^3x}{dt^3} = 0$$

we will integrate in order to find expressions for a, v, and x. From our basic physics knowledge it is known that

$$\frac{d^2x}{dt^2} = a$$
$$\frac{dx}{dt} = v$$

Also, with the knowledge that a is constant we are able to derive a value for v and then a value for x. To find v will will integrate a.

$$v = \int adt$$

$$= at + c$$

$$v(0) = v_0$$

$$v(t) = at + v_0$$

Now we can integrate our solution for v in order to find x:

$$x = \int v(t)dt$$

$$= \int at + v_0$$

$$= \frac{1}{2}at^2 + v_0t + c$$

$$x(0) = x_0$$

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

now we have an equation representing a, v and x.

If we apply the transformation now to a,v,x than we will be able find a matrix representing T_3 . Transformation T_3 applied to the vector

$$\begin{bmatrix} x_0 \\ v_0 \\ a_0 \end{bmatrix}$$

applying the operation one step at a time:

 a_0 is transformed into a_0 v_0 is transformed into $a_0 + v_0$ x_0 is transformed into $\frac{1}{2}a_0 + v_0 + x_0$ giving us a vector:

$$\begin{bmatrix} x_0 + v_0 + \frac{1}{2}a_0 \\ v_0 + a_0 \\ a_0 \end{bmatrix}$$

Using the same process to work backwards and find the matrix we see that:

$$\begin{bmatrix} T & x_0 \\ v_0 \\ a_0 \end{bmatrix} = \begin{bmatrix} x_0 + v_0 + \frac{1}{2}a_0 \\ v_0 + a_0 \\ a_0 \end{bmatrix}$$

and this gives us

$$\begin{bmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_0 \\ v_0 \\ a_0 \end{bmatrix} = \begin{bmatrix} x_0 + v_0 + \frac{1}{2}a_0 \\ v_0 + a_0 \\ a_0 \end{bmatrix}$$

2 Problem 2

Using Matrix representation find compute $T_1^2(x^2)$

Now if we write out the operator in matrix form and multiply it by itself then we can find an operator for T_1^2

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} * \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Applying the T_1^2 on x^2 , first we must write x^2 as a vector. Using the same form as we defined for this domain.

$$x^2 \equiv \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and now applying the T_1^2 operator:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$$

3 Problem 3

An inverse of the rotation matrix can be found through a trial and error process or geometric reasoning. In order for the coordinate (x,y) to be rotated

clockwise instead of counter clock wise than the sine term on the y coordinate must be positive and the sine term on the x coordinate must be negative. This produces this matrix:

$$T_2^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

When the operator T_3 is multiplied with T_3^{-1} than it should produce a net effect of no rotation. As should the other multiplication T_3^{-1} times T_3 . We can show this by doing the matrix multiplication as seeing the resultant matrix:

$$T_3^{-1} * T_3$$

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} * \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$T_3 * T_3^{-1}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} * \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4 Problem 4

Computing T_3^n

$$T_3 = \begin{bmatrix} 1 & 1 & .5 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_3^2 = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_3^3 = \begin{bmatrix} 1 & 3 & 4.5 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_3^4 = \begin{bmatrix} 1 & 4 & 8 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

From this we see that the general formula for \mathbb{T}_3^n is:

$$T_3^n = \begin{bmatrix} 1 & n & \frac{n^2}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$$

The physical meaning of the T_3^2 operator is that instead of giving the acceleration, velocity, and displacement one second ahead of the given vector it will give it two seconds a head (t+2 instead of t+1).