Непрекъснатост на съставна крива

Нека f(u), $u \in [a,b]$ и g(v), $v \in [m,n]$ — криволинейни дъги с точка на съединяване B, т.е. $B = f(u) \cap g(v)$, B = f(b) = g(m).

Дали тези криви ${m f}$ и ${m g}$ се съединяват гладко в съставна крива ${m h} = {m f} \cup {m g}$?

 $g(v), v \in [m,n]$

Разглеждаме:

"десния край" f(b) на лявата крива f(u) и "левия край" g(m) на дясната крива g(v). Ако f(b) = g(m), то $h \in C^0$ -непрекъсната в т. на съединяване f(b) = g(m), озн. $h \in C^0$. Ако $f^{(i)}(b) = g^{(i)}(m)$, $\forall i \leq k \in \{1,2,...\}$ в B, то $h \in C^k$ -непрекъсната в т. на съединяване B = f(b) = g(m), озн. $h \in C^k$, $k \in \{1,2,...\}$.

 C^k -непрекъснатост $\Rightarrow C^i$ -непрекъснатост, $\forall i \leq k$.

Ако $\boldsymbol{f}^{(k)}(b) \neq \boldsymbol{g}^{(k)}(m) \Rightarrow$ няма C^i -непрекъснатост за никое $i \geq k$.

Пример. Нека една крива h се състои от дъги на две параболи:

$$f(u) = (u, -u^2, 0), u \in [-1;0];$$

$$g(v) = (v, v^2, 0), v \in [0;1].$$

$$\Rightarrow$$
 $f(0) = g(0) = O -$ т. на съед.

Дали кривата е C^2 -непрекъсната в т. O?

$$f(u) = (u, -u^2, 0)$$

$$g(v) = (v, v^2, 0)$$

$$f'(u) = (1, -2u, 0)$$

$$g'(u) = (1, 2v, 0)$$

$$f''(u) = (0, -2, 0)$$
 $g''(v) = (0, 2, 0)$

$$f'(0) = g'(0) = (1, 0, 0) \Rightarrow \underline{h} = f \cup g \in C^1$$
-непрекъсната в т. на съед. O .

$$f''(0) = (0, -2, 0) \neq g''(0) = (0, 2, 0) \Rightarrow \underline{h \notin C^2} \text{ B } O.$$

$$\varkappa(\mathbf{f}(u)) = 2/(1 + 4u^2)^{3/2}$$
 $\varkappa(\mathbf{g}(v)) = 2/(1 + 4v^2)^{3/2}$

$$\varkappa(\mathbf{f}(0)) = \varkappa(\mathbf{g}(0)) = 2$$
 \Rightarrow **h** е **ж-непрекъсната** в т. на съед. $O = \mathbf{f}(0) = \mathbf{g}(0)$.

∴ $\mathbf{h} \in C^1$ и \mathbf{h} е $\mathbf{\varkappa}$ -непрекъсната, обаче не е C^2 -непрекъсната.

Проблеми с параметричното представяне

Чрез C^k -непрекъснатостта се установява гладко съединяване на крива.

Да разгледаме следните две отсечки определени от колинеарни точки *A, B, C*:

$$f(u) = A + u (B - A), u \in [0;1]$$
 $u = g(v) = B + v (C - B), v \in [0;1].$

т. $f(u) \in \text{ отс. } AB$, т. $g(v) \in \text{ отс. } BC$

 $\pmb{AB}, \pmb{BC} \in \pmb{C}^0$ в т. на съед. \pmb{B} . Дали отс. $\pmb{AC} \in \pmb{C}^1$ в т. \pmb{B} ?

$$f'(u) = B - A$$
 $g'(v) = C - B$

 \Rightarrow $f'(u) \neq g'(v)$ \therefore $AC = AB \cup BC \notin C^1$ в т. B?! \therefore Проблем на параметризацията

Нормираме колинеарните вектори ${\it B}-{\it A}$ и ${\it C}-{\it B}$ и променяме дефин. интервали на $\it u$ и $\it v$.

$$F(u) = A + u (B - A) / |B - A|$$
 $G(v) = B + v (C - B) / |C - B|$
 $u \in [0; |B - A|]$ $v \in [0; |C - B|]$
 $F'(u) = (B - A) / |B - A|$ $G'(v) = (C - B) / |C - B|$

$$\Rightarrow$$
 $F'(u) = G'(v) = един. вектор по $AC \xrightarrow{} \Rightarrow AC \in C^1$ в т. $B$$

∴ смяната на параметризацията на дъгите може да преодолее проблема.

Пример. Нека $h = f(u) \cup g(v)$, $u, v \in [0;1]$

$$f(u) = (-\cos(u^2\pi/2), \sin(u^2\pi/2), 0)$$

$$g(v) = (\sin(v^2\pi/2), \cos(v^2\pi/2), 0)$$

$$B = f(u) \cap g(v),$$
 $B(0,1,0) = f(1) = g(0)$

$$f(u) = (-\cos(u^{2}\pi/2), \sin(u^{2}\pi/2), 0)$$

$$f'(u) = (\pi u.\sin(u^{2}\pi/2), \pi u.\cos(u^{2}\pi/2), 0) \Rightarrow |f'(u)| = \pi u$$

$$f''(u) = (\pi^{2}u^{2}.\cos(u^{2}\pi/2), -\pi^{2}u^{2}.\sin(u^{2}\pi/2), 0)$$

$$f'(u) \times f''(u) = (0, 0, -\pi^{3}u^{3}) \Rightarrow |f'(u) \times f''(u)| = \pi^{3}u^{3}$$

$$\kappa(u) = \pi^{3}u^{3} / (\pi u)^{3} = 1$$

$$g(v) = (\sin(v^{2}\pi/2), \cos(v^{2}\pi/2), 0)$$

$$g'(v) = (\pi v \cdot \cos(v^{2}\pi/2), -\pi v \cdot \sin(v^{2}\pi/2), 0) \Rightarrow |g'(v)| = \pi v$$

$$g''(v) = (-\pi^{2}v^{2} \cdot \cos(v^{2}\pi/2), -\pi^{2}v^{2} \cdot \cos(v^{2}\pi/2), 0)$$

$$g'(v) \times g''(v) = (0, 0, -\pi^{3}u^{3}) \Rightarrow |g'(v) \times g''(v)| = \pi^{3}v^{3}$$

$$\varkappa(v) = \pi^{3}v^{3} / (\pi v)^{3} = 1$$

$$\Rightarrow$$
 $g'(0) = g''(0) = (0,0,0)$ \Rightarrow $g(v)$ не е добре дефинирана в т. B .

Като резултат не можем да говорим за непрекъснатост в т. на съед. изобщо.

Обаче от фигурата изглежда сякаш \boldsymbol{h} има някаква непрекъснатост, понеже наймалкото \boldsymbol{f} и \boldsymbol{g} имат обща допирателна в т. \boldsymbol{B} .

Нека да репараметризираме тези криви.

Нека $u^2 = p$ в f(u) и нека $v^2 = q$ в g(v). Новите уравнения са:

$$f(p) = (-\cos(\frac{\pi}{2}p), \sin(\frac{\pi}{2}p), 0)$$

$$g(q) = (\sin(\frac{\pi}{2}q), \cos(\frac{\pi}{2}q), 0)$$

$$f'(p) = (\frac{\pi}{2}\sin(\frac{\pi}{2}p), \frac{\pi}{2}\cos(\frac{\pi}{2}p), 0)$$

$$g'(q) = (\frac{\pi}{2}\cos(\frac{\pi}{2}q), -\frac{\pi}{2}\sin(\frac{\pi}{2}q), 0)$$

$$f''(p) = (\frac{\pi^2}{4}\cos(\frac{\pi}{2}p), -\frac{\pi^2}{4}\sin(\frac{\pi}{2}p), 0)$$

$$g''(q) = (-\frac{\pi^2}{4}\sin(\frac{\pi}{2}q), -\frac{\pi^2}{4}\cos(\frac{\pi}{2}q), 0)$$

$$f''(p) \times f'''(p) = g'(q) \times g'''(q) = (0, 0, -(\pi/2)^3)$$

$$|\mathbf{f}'(p) \times \mathbf{f}''(p)| = |\mathbf{g}'(q) \times \mathbf{g}''(q)| = (\pi/2)^3$$
$$|\mathbf{f}'(p)| = |\mathbf{g}'(q)| = \pi/2$$
$$\varkappa(p) = \varkappa(q) = 1$$

$$\therefore f'(1) = g'(0) = (\pi/2, 0, 0) \implies h \in C^1$$
-непрекъсната в $B = f(1) = g(0)$

$$f''(1) = g''(0) = (0, -(\pi/2)^2, 0)$$
 \Rightarrow h e C^2 -непрекъсната в $B = f(1) = g(0)$

$$\varkappa(p) = \varkappa(q) = 1 \implies \varkappa(1) = \varkappa(0) \implies \underline{h} \in \varkappa$$
-непрекъсната

Естествен параметър

Има ли параметризация, която да е надеждна при изследване на непрекъснатостта?

Отговорът е "да", като се използва **дължината на дъгата** като параметър.

Нека f(u), $u \in [a,b]$ има дължина s_0 . Сменяме u с параметър s, който е дължината на дъгата от началото ѝ. $\therefore s = 0 \Leftrightarrow u = a, s = s_0 \Leftrightarrow u = b$.

$$\Rightarrow f(s), s \in [0,s_0] \Rightarrow f'(s) = df(s) / ds = 1$$

Поради това f(s) се нарича ecmecmbe + a параметризация на кривата.

Формулата за смяна на параметъра е

$$s = \int_a^u |f'(u)| \, \mathrm{d}u = F(u) - F(a), \ u \in [a,b]$$
 ако $\exists F^{-1} \Rightarrow u = F^{-1}(\mathsf{s} + F(a)), F(a) = \mathsf{const} \quad \Rightarrow$ $f(u), u \in [a,b] \quad \Rightarrow \quad f(F^{-1}(\mathsf{s} + F(a))), s \in [0, s_0] - \mathsf{ectectb}.$ параметризация

Геометрична непрекъснатост

 $\exists \ \emph{C}^1$ -непрек. и lpha-непрек. криви, но не са \emph{C}^2 -непрек. или дори не са двукратно диференцируеми.

Тези криви изглеждат гладки в т. на съед.

След смяна на параметъра някои от тях могат да станат C^2 -непрек., но смяната може трудно да се намери.

Съставна естествено-параметризирана крива $\boldsymbol{h} = \boldsymbol{f}(s_1) \cup \boldsymbol{g}(s_2), \, s_1 \in [0, s_{01}], \, s_2 \in [0, s_{02}]$ се нарича **геометрично-непрекъсната от степен k** (т.е. \boldsymbol{G}^k -непрекъсната) в т. на съед. $\boldsymbol{B} = \boldsymbol{f}(s_{01}) = \boldsymbol{g}(0)$ \Leftrightarrow $\boldsymbol{f}^{(i)}(s_{01}) = \boldsymbol{g}^{(i)}(0), \, \forall i \leq k \in \{1, 2, ...\}.$

Естественият параметър не е задължителен:

Съставна крива $h = f(u) \cup g(v), u \in [a,b], v \in [m,n]$ се нарича **геометрично-**

непрекъсната от степен k (т.е. G^k -непрекъсната) в B = f(b) = g(m)

$$\Rightarrow \exists \mathbf{f} = \mathbf{f}(u), \mathbf{g} = \mathbf{g}(v): \mathbf{f}^{(i)}(b) = \mathbf{g}^{(i)}(m), \forall i \leq k \in \{1,2,\ldots\}.$$

Как да намерим такива параметризации?

Случаите k = 1 и k = 2 са доста прости.

<u>Случай *k* = 1.</u>

Съставна крива $h = f(u) \cup g(v)$, $u \in [a,b]$, $v \in [m,n]$, като f(u), $g(v) \in C^0$, се нарича

 ${m G}^{1}$ -непрекъсната в т. на съед. ${m B}={m f}(b)={m g}(m)$ \iff ${m f}'(b) \uparrow \uparrow {m g}'(m)$ в ${m B}$, т.е.

f'(b) = a.g'(m), a > 0.

Ако a = 1, то $f'(b) = g'(m) \Leftrightarrow f(u), g(v) \in C^1$ в B.

∴ от C^1 -непрекъснатост $\Rightarrow G^1$ -непрекъснатост, но не и обратното.

От G^1 -непрек., т.е $f'(b) \uparrow \uparrow g'(m) \Rightarrow$ допирателните им съвпадат в B.

Обратното не е вярно, т.е. ако допирателните на f и g съвпадат в B, не следва, че f, $g \in G^1$ в B. Например:

<u>Случай *k* = 2.</u>

Критерий на Нийлсон за G^2 -непрекъснатост:

Съставна крива $h = f(u) \cup g(v)$, $u \in [a,b]$, $v \in [m,n]$, като f(u), $g(v) \in C^1$, се нарича G^2 -непрекъсната в B = f(b) = g(m) \Leftrightarrow f''(b) - g''(m) | | f'(b) = g'(m), т.е. f''(b) - g''(m) = a. $f'(b) = a \cdot g'(m)$, a = const.

Ако a = 0 в критерия на Нийлсон, то f''(b) = g''(m) : $f(u), g(v) \in C^2$ в **В**.

 \Rightarrow or C^2 -непрекъснатост \Rightarrow G^2 -непрекъснатост, но не и обратното.

Пример. Нека $h = f(u) \cup g(v)$ от параболични дъги с т. на съед. B(0, 1, 0):

$$f(u) = (-1 + u^2, 2u - u^2, 0), u \in [0,1];$$
 $g(v) = (2v - v^2, 1 - v^2, 0), v \in [0,1]$

Т. на съед. е $\mathbf{B} = \mathbf{f}(1) = \mathbf{g}(0) = (0, 1, 0)$.

$$f'(u) = (2u, 2-2u, 0)$$
 $\Rightarrow |f'(u)| = 2(1-2u+2u^2)^{1/2}$

$$f''(u) = (2, -2, 0)$$

$$f'(u) \times f''(u) = (0, 0, -4)$$
 $\Rightarrow |f'(u) \times f''(u)| = 4 \Rightarrow \varkappa(u) = 1/[2(1 - 2u + 2u^2)^{3/2}]$

$$g'(v) = (2-2v, -2v, 0)$$
 $\Rightarrow |g'(v)| = 2(1-2v+2v^2)^{1/2}$

$$g''(v) = (-2, -2, 0)$$

$$g'(v) \times g''(v) = (0, 0, -4)$$
 $\Rightarrow |g'(v) \times g''(v)| = 4 \Rightarrow \varkappa(v) = 1/[2(1 - 2v + 2v^2)^{3/2}]$

$$f'(1) = g'(0) = (2, 0, 0) \Rightarrow \underline{h} \in C^1$$
 в т. на съед. $B) \Rightarrow \underline{h} \in G^1$ в B

$$f''(1) = (2, -2, 0) \neq g''(0) = (-2, -2, 0) \Rightarrow h$$
 не е C^2 -непрекъсната в B

За f и g имаме $\kappa = 1/2$ в т. на съед. $B = f(1) = g(0) \implies h \in \kappa$ -непрекъсната в B

Понеже $\boldsymbol{h} \in \boldsymbol{C}^1$ в т. \boldsymbol{B} и $\boldsymbol{f}''(1) - \boldsymbol{g}''(0) = (4,0,0) = 2(2,0,0) = 2\boldsymbol{f}'(1) = 2\boldsymbol{g}'(0) \Rightarrow$ (съгл. крит. Нийлсон) \boldsymbol{h} е \boldsymbol{G}^2 -непрекъсната в т. на съед. $\boldsymbol{B}(0,1,0)$.