LINEAR ALGEBRA REVIEW QCP 2020-2

FABIO A. GONZÁLEZ

UNIVERSIDAD NACIONAL de COLOMBIA

1. Vector Space - Defined over a field K (Ror C) - Vectors e V - Scalars & K - Operations 0 vector Yy 14>+0= 14> $\begin{bmatrix}
V_1 \\
V_2 \\
V_3
\end{bmatrix} = \begin{bmatrix}
\omega_1 \\
\omega_2 \\
\omega_3
\end{bmatrix} = \begin{bmatrix}
\alpha \cdot V_1 + V_1 \\
\alpha V_2 + \omega_2 \\
\alpha V_3 + \omega_3
\end{bmatrix}$ $|\psi\rangle = \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{vmatrix}$ 1 > ket 7 Dirac Notation < 1 Bra Braket Notation.

2. Dirac Notation

Notation	Description
z^*	Complex conjugate of the complex number z .
	$(1+i)^* = 1-i$ $\dot{c} = \sqrt{-1}^{\ell}$
$ \psi angle$ blum	N Vector. Also known as a ket.
$\langle \psi $ Ro	Vector dual to $ \psi\rangle$. Also known as a bra .
$\langle \varphi \psi \rangle$	Inner product between the vectors $ \varphi\rangle$ and $ \psi\rangle$.
$ arphi angle\otimes \psi angle$	Tensor product of $ \varphi\rangle$ and $ \psi\rangle$.
$\Psi \!\!>\! arphi angle \psi angle$	Abbreviated notation for tensor product of $ \varphi\rangle$ and $ \psi\rangle$.
A^*	Complex conjugate of the A matrix.
A^T	Transpose of the A matrix.
A^\dagger	Hermitian conjugate or adjoint of the A matrix, $A^{\dagger} = (A^T)^*$.
	$\left[\begin{array}{cc} a & b \\ c & d \end{array} \right]^{\dagger} = \left[\begin{array}{cc} a^* & c^* \\ b^* & d^* \end{array} \right].$
$\langle \varphi A \psi \rangle$	Inner product between $ arphi angle$ and $A \psi angle$.
	Equivalently, inner product between $A^{\dagger} \varphi\rangle$ and $ \psi\rangle$.

3. Bases and linear independence

- Spaning Set
$$\begin{cases}
|V_1\rangle_1, \dots, |V_n\rangle_2 & \forall |V\rangle \in V \\
|V\rangle = \sum_i a_i |V_i\rangle \\
|V\rangle = \begin{bmatrix} 1 \\ 2 \end{bmatrix} & |V\rangle = \sum_i a_i |V_i\rangle \\
|V\rangle = \begin{bmatrix} 1 \\ 2 \end{bmatrix} & |V\rangle =$$

 $\{|v_1\rangle,...,|v_n\rangle\}$ $\{|a_1|...a_n|a_1|v_1\rangle+..+a_n|v_n\rangle=0$ of least one ai to

- Basis: a non-linear dependent set that spans V # elements of a basis = Dimension of the space

- Makrix representation

$$d | V_1 \rangle, ..., | V_n \rangle g$$
 a basis for V
 $d | V_1 \rangle, ..., | V_n \rangle g$ a basis for W
 $d | V_1 \rangle, ..., | W_n \rangle g$ a basis for W
 $d | V_1 \rangle = \sum_{j=1}^{n} A_{ij} | W_j \rangle$
 $d | V_j \rangle = \sum_{j=1}^{n} A_{ij} | W_j \rangle$
 $d | V_j \rangle = \sum_{j=1}^{n} A_{ij} | W_j \rangle$

 $A(|V\rangle) = \sum_{i} A(\alpha_{i}|V_{i}\rangle) = \sum_{i} \sum_{j} \alpha_{i}A_{ij}|W_{j}\rangle$

A | Vi>:= A(|Vi>)

S. Parli Matrices

$$\sigma_0 \equiv I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\sigma_1 \equiv \sigma_x \equiv X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\sigma_2 \equiv \sigma_y \equiv Y \equiv \left[egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight] \qquad \sigma_3 \equiv \sigma_z \equiv Z \equiv \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight]$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$X \mid 0 \rangle = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{vmatrix} 1 \\ 0 \end{pmatrix}$$

$$X \mid 1 \rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

6. Inner product - Inner product $(,): \forall \times \forall \rightarrow C$ $\langle \times | \omega \rangle := (|v\rangle | v)$ 1. Linear in the second $|v\rangle = (|v\rangle | \omega\rangle$ $|v\rangle = (|v\rangle | \omega\rangle)$ $|v\rangle = (|v\rangle | \omega\rangle)$ $|v\rangle = (|v\rangle | \omega\rangle)$ $|v\rangle = (|v\rangle | \omega\rangle)$ < \ | w> := (14>, 1w>) 2. ([v], (w)) = ([w], [v])* 3. (IV) IV) ≥0 (IV) IV>) =0 <> IV>=0 - Dual vector

1V> => <V|: V > (IV>, IW>) <V| (IW>) = <V|W> - Inner product space = Hilbert space if the dimension is firite - orthogonality, norm IV> and IW> are orthogonal if <VIW>=0 1/2 is normal 1/2 is normal if || 1/2 || = < v | v > = 1 - Orthonormal Basis $\forall i \mid ||1 \vee i \rangle|| = 7$ {IVL>, IVn>] is a Basis, it is orthonormal if Yit's < vi | Vi > = 0

$$C(\lambda) = det | A - \lambda I | C(\lambda) = 0$$

$$A = \underbrace{\times}_{i} 1i \times \langle i |$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 \times \langle 0 | - | 1 \times \langle 1 |$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 2 [0 > < 0 | + 2 | 1 > < 1 |$$

8. Adjoints and Hermitian operators - Adjoint of A $(\langle v \rangle, A | w \rangle) = (\langle v \rangle, \langle v \rangle)$ - Hermithan or Self adjoint Projector

W is a subspace of V

II), ... Id> orthonormal basis for V, IL>... IR> O.b. for W.

P = \(\frac{k}{i=1} \) \(\frac{k}{i} \) \(\frac{k}{k} \) \(\frac{k} \) \(\frac{k}{k} \) \(\frac{k}{k} \) \(\frac{k}{k} \) \(\ - Projector - Normal AAt = AtA (Ulv>, Ulw>) = <v | Ut ulw> = < V | I | W > $U^{\dagger}U = I$ $UU^{\dagger} = I$ - Unitary = < 4 | w >

