Crowdsourcing Genome Wide Association **Studies**

Bastian Greshake and Philipp Bayer

28.12.2011

Overview

- Introduction
 - Association studies?
- Open GWAS
 - In company vaults
 - Out of vaults
- Privacy & Implications
 - Some Implications
 - Consequences
- Discussion
 - Outlook

What are GWAS?

Genome-wide Association Studies

What are GWAS?

- Genome-wide Association Studies
- Link genetic variants (SNPs) to certain traits like eye or hair colour or to diseases like Diabetes, types of cancer

000000000 Association studies?

Introduction

Single Nucleotide Polymorphism

Source: http://en.wikipedia.org/wiki/File:Dna-SNP.svg

How to analyse SNPs?

Source: http://en.wikipedia.org/wiki/File:NA_hybrid.svg

How do GWAS work?

= Healthy person = Carrier of disease

How do GWAS work?

How do GWAS work?

Healthy people

rs6983267: T/G

How do GWAS work?

Some GWAS-examples

• Sladek et al. (2007) identified four gene locations linked to heightened type 2 diabetes risk

Some GWAS-examples

- Sladek et al. (2007) identified four gene locations linked to heightened type 2 diabetes risk
- Kogan et al. (2011) linked rs53576 (G:G) to pro-social behaviour

Some GWAS-examples

- Sladek et al. (2007) identified four gene locations linked to heightened type 2 diabetes risk
- Kogan et al. (2011) linked rs53576 (G:G) to pro-social behaviour
- The Wellcome Trust Case Control Consortium (2007) linked 24 locations to 7 major diseases

Problems with GWAS

Large enough sample size

Problems with GWAS

- Large enough sample size
- Correcting for multiple testing

Problems with GWAS

- Large enough sample size
- Correcting for multiple testing
- Correlation != Causation

Putting GWAS to use

- Direct-To-Consumer genetic testing
- Analyse about 1 million SNPs and provide summary of disease risks & ancestry
- About \$200 for a genotyping

Putting GWAS to use

- Direct-To-Consumer genetic testing
- Analyse about 1 million SNPs and provide summary of disease risks & ancestry
- About \$200 for a genotyping
- Providers: 23andMe, deCODEme, FamilyTree DNA, ...

Putting GWAS to use

- Direct-To-Consumer genetic testing
- Analyse about 1 million SNPs and provide summary of disease risks & ancestry
- About \$200 for a genotyping
- Providers: 23andMe, deCODEme, FamilyTree DNA, ...
- You get access to the raw data!

Numbers on DTC

• 23andMe alone has over 100.000 customers

Numbers on DTC

- 23andMe alone has over 100.000 customers
- 76 % of their customers agree to participate in research

Numbers on DTC

- 23andMe alone has over 100,000 customers.
- 76 % of their customers agree to participate in research
- 59 % of them share phenotypic information with 23andMe

Research in company labs

• 23andMe published results of studies with up to 30.000 participants

Research in company labs

- 23andMe published results of studies with up to 30.000 participants
- Replication of older GWAS

Research in company labs

- 23andMe published results of studies with up to 30.000 participants
- Replication of older GWAS
- Finding new associations for Parkinsons disease

Data sharing

People are already sharing the raw data of DTC tests

Data sharing

- People are already sharing the raw data of DTC tests
- 1-5 % of 23andMe customers would be enough to perform simple GWAS

Data sharing

- People are already sharing the raw data of DTC tests
- 1-5 % of 23andMe customers would be enough to perform simple GWAS
- The Personal Genome Project: Open data, but closed participation

Willing to share?

Willing to share?

What can happen to your open data?

Positive and negative consequences

What can happen to your open data?

- Positive and negative consequences
 - Possibly extremely bad consequences

What can happen to your open data?

- Positive and negative consequences
 - Possibly extremely bad consequences
- Up to you to decide whether you want to open your data

Positive consequences

More knowledge about yourself

Positive consequences

- More knowledge about yourself
- Cheap, open science

Positive consequences

- More knowledge about yourself
- Cheap, open science
- Great data-source for citizen scientists

• People know more about you than you might like

- People know more about you than you might like
 - Including your boss, insurance company, government...

- People know more about you than you might like
 - Including your boss, insurance company, government...
- Knowledge isn't static: Future research could show new, negative (or positive) associations.

- People know more about you than you might like
 - Including your boss, insurance company, government...
- Knowledge isn't static: Future research could show new, negative (or positive) associations.
- Personal SNPs very similar to parents and relatives

Somebody Else's Problem? A case study

Me: rs1219648(A/A)

rs1219648(A/A): 1.64x risk for breast cancer rs1219648(A/G): 1.20x risk for breast cancer

rs1219648(G/G): "normal" risk

Somebody Else's Problem? A case study

rs1219648(A/G): 1.64x risk for breast cancer rs1219648(A/G): 1.20x risk for breast cancer

rs1219648(G/G): "normal" risk

Introduction

Consequences

rs1219648(G/G): "normal" risk

Possible Solutions

• What about laws?

Possible Solutions

- What about laws?
 - US: Genetic Information Nondiscrimination Act (GINA, 2008)

Possible Solutions

- What about laws?
 - US: Genetic Information Nondiscrimination Act (GINA, 2008)
 - Germany: Gendiagnostikgesetz (GenDG, 2010)

No central repository for open genotypings!

- No central repository for open genotypings!
- We've created openSNP.org

Introduction

- No central repository for open genotypings!
- We've created openSNP.org
- open source repository for CC0-genotypings from 23andme, deCODEme and others

Introduction

- No central repository for open genotypings!
- We've created openSNP.org
- open source repository for CC0-genotypings from 23andme, deCODEme and others
- Allows users to annotate with phenotypes (hair colour, nicotine dependence...)

- No central repository for open genotypings!
- We've created openSNP.org
- open source repository for CC0-genotypings from 23andme, deCODEme and others
- Allows users to annotate with phenotypes (hair colour, nicotine dependence...)
- Everybody can download everything

Introduction

- No central repository for open genotypings!
- We've created openSNP.org
- open source repository for CC0-genotypings from 23andme, deCODEme and others
- Allows users to annotate with phenotypes (hair colour, nicotine dependence...)
- Everybody can download everything
- So far: 78 genotypings and 188 users

Discussion

Conclusions

• Open GWAS are the future of personalised medicine

Conclusions

- Open GWAS are the future of personalised medicine
- It's in the hands of users to make or break the situation

Conclusions

- Open GWAS are the future of personalised medicine
- It's in the hands of users to make or break the situation
- Chance to take science into our own hands

Future of openSNP

• We've won the PLoS/Mendeley Binary Battle

Future of openSNP

- We've won the PLoS/Mendeley Binary Battle
- Constantly improving the project

Introduction

Future of openSNP

- We've won the PLoS/Mendeley Binary Battle
- Constantly improving the project
- Trying to get funds for free genotypings

The end

WE CAN'T BE SURE ABOUT
THIS, BUT WE'VE ANALYZED
GENES ON SEVERAL OF YOUR
CHROMOSOMES, AND IT'S HARD
TO AVOID THE CONCLUSION:

Thanks for listening. Any questions?

Outlook

Do et al. (2011) Web-Based Genome-Wide Association Study Identifies Two Novel Loci and a Substantial Genetic Component for Parkinson's Disease. PLoS Genetics 7(6): e1002141. doi:10.1371/journal.pgen.1002141 Eriksson et al. (2010) Web-Based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits.

PLoS Genet 6(6): e1000993. doi:10.1371/journal.pgen.1000993

Kogan, et al. (2011): Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proceedings of the National Academy of Sciences

Sladek et al. (2007): A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445 (7130): 881-5.

The Wellcome Trust Case Control Consortium (2007): Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661-678.