Hashing method for Image Retrieval

Student: Huy Le-Nhat

Instructor: Tien-Dung Mai

University of Information Technology

Subject: CS530 - Computer Science

Email: 20520056@gm.uit.edu.vn

- Purpose
- 2 Introduction

Problem Hashing Method in Image Retrieval

3 Related Works

Locally Sensitive Hashing (LSH)
Random Projection Method & Multi-hash Table
Deep Supervised Hashing (DSH)

- 4 Approach
 - Pipeline Loss Function
 - Relaxation & Regularization
- **5** Experiment
- **6** Conclusion

- 1 Purpose
- 2 Introduction
- Related Works
- 4 Approach
- **5** Experiment
- **6** Conclusion

Purpose

- What hashing for image retrieval is
- Read the article Deep Supervised Hashing for Fast Image Retrieval
 [1] CVPR 2016
- Learn techniques (theory & experiment):
 - Deep Supervised Hashing (DSH) [3]
 - Locally Sensitive Hashing (LSH) [2]
 - Compare DSH & LSH

- 1 Purpose
- 2 Introduction
- Related Works
- 4 Approach
- **5** Experiment
- **6** Conclusion

Image Retrieval Problem

Problem Description

- Input: A query image
- Output: A set of retrieved images that are similar to the query image

Figure 1: Image retrieval - flow chart

Index & Searching in Image Retrieval Problem

Some index & searching methods for image retrieval:

- Text-based method
- Feature-Based method
- Hashing-Based method
- Graph-Based method
- Learning-Based method
- Hybrid method

Hashing Method in Image Retrieval

Figure 2: Image hashing

Important: More similar images \longleftrightarrow more similar hash values

Hashing Method in Image Retrieval

Figure 3: Flow chart of the image retrieval based on hashing method

Hashing Method in Image Retrieval

Properties

- Advantages: compact and fast retrieval time
- Disadvantages: low-dimensional hash values \longrightarrow contain less information

Hashing is useful for tasks like efficient data storage and retrieval, especially for big data (images).

Some hashing methods:

- Locally Sensitive Hashing
- Iterative Quantization
- Spectral Hashing
- Deep Supervised Hashing

- 1 Purpose
- 2 Introduction
- 3 Related Works
- 4 Approach
- **5** Experiment
- **6** Conclusion

Locally Sensitive Hashing (LSH)

Concept: hash similar input items into the same buckets

Figure 4: Locally Sensitive Hashing

Random Projection Method & Multi-hash Table

$$\left[\begin{array}{c} Projected(P) \end{array}\right]_{k\times n} = \left[\begin{array}{c} Random(R) \end{array}\right]_{k\times d} \left[\begin{array}{c} Original(D) \end{array}\right]_{d\times n}$$

Figure 5: Random Projection Method

- One random projection is respective to one hash table
- Multi-hash table: more accuracy
- Calculate similarity: Jaccard distance, Cosine distance, Hamming distance, Euclidean distance

Locally Sensitive Hashing (LSH)

- Simple and quick to implement, fast query
- Well-suited for approximate visual-similarity search in large datasets
- Disadvantages: Require a long-length hash code for high accuracy, inefficiently preserve images' semantics

Deep Supervised Hashing (DSH)

Figure 6: Deep Supervised Hashing Example

Deep Supervised Hashing (DSH)

- Well-preserved semantic information
- High accuracy and fast query
- Disadvantages: Complex in network design, parameter tuning, and needing enough labeled data to work effectively

- Purpose
- 2 Introduction
- Related Works
- 4 Approach
- **5** Experiment
- **6** Conclusion

Pipeline

Figure 7: Model pipeline

Utilize the Siamese structure to pass sequentially each pair of images to the training process.

Loss Function

Equation

$$L(b_1, b_2, y) = \frac{1}{2} (1 - y) D_h(b_1, b_2) + \frac{1}{2} y \max(m - D_h(b_1, b_2), 0)$$

$$s.t.b_j \in \{+1, -1\}^k, j \in \{1, 2\}$$
(1)

Where:

- *b_i* is a binary vector
- y = 0 if two binary vectors are similar, and y = 1 otherwise
- D_h(.,.) denotes the Hamming distance between two binary vectors
- m > 0 is a margin threshold parameter

Loss Function

Total Loss Function

$$\mathbf{L} = \sum_{i=1}^{N} L(b_{i,1}, b_{i,2}, y)$$
 (2)

$$s.t.b_{i,j} \in \{+1,-1\}^k, i \in \{1..N\}, j \in \{1,2\}$$

Issue: intractable to train the network with back propagation algorithm because of the binary constraints on $b_{i,j} \longrightarrow \text{Relaxation}$

Relaxation

Relax constraints:

- $b_{i,j} \longrightarrow \text{real value}$
- Hamming distance → Euclidean distance

Loss Function

$$L(b_1, b_2, y) = \frac{1}{2} (1 - y) \|b_1 - b_2\|_2^2 + \frac{1}{2} y \max(m - \|b_1 - b_2\|_2^2, 0)$$
(3)

Regularization

Regularizer

$$\alpha (\||b_1| - 1\|_1 + \||b_2| - 1\|_1)$$
 (4)

Function: encourage the real-valued outputs to approach the desired discrete values (reducing the discrepancy between the real-valued network output space and the desired Hamming space)

Regularization

Loss Function

$$L(b_{1}, b_{2}, y) = \frac{1}{2} (1 - y) \|b_{1} - b_{2}\|_{2}^{2}$$

$$+ \frac{1}{2} y \max(m - \|b_{1} - b_{2}\|_{2}^{2}, 0)$$

$$+ \alpha (\||b_{1}| - 1\|_{1} + \||b_{2}| - 1\|_{1})$$
(5)

Total Loss Function

$$\mathbf{L} = \sum_{i=1}^{N} \{ \frac{1}{2} (1 - y_i) \| b_{i,1} - b_{i,2} \|_2^2 + \frac{1}{2} y_i \max(m - \| b_{i,1} - b_{i,2} \|_2^2, 0) + \alpha (\| |b_{i,1}| - 1 \|_1 + \| |b_{i,2}| - 1 \|_1) \}$$

(6)

Loss Function

Sub-gradients

$$\frac{\partial Term_{1}}{\partial b_{i,j}} = (-1)^{j+1} (1 - y_{i}) (b_{i,1} - b_{i,2})
\frac{\partial Term_{2}}{\partial b_{i,j}} = \begin{cases} (-1)^{j} y_{i} (b_{i,1} - b_{i,2}) &, ||b_{i,1} - b_{i,2}||_{2}^{2} < m \\ 0 &, \text{ otherwise} \end{cases}
\frac{\partial Regularizer}{\partial b_{i,j}} = \begin{cases} 1 &, -1 \le b_{i,j} \le 0 \text{ or } b_{i,j} \ge 1 \\ -1 &, \text{ otherwise} \end{cases}$$
(7)

- 1 Purpose
- 2 Introduction
- 3 Related Works
- 4 Approach
- **5** Experiment
- **6** Conclusion

- Dataset: Fashion-MNIST (10 classes, 70000 images)
- Hyper-parameters:
 - DSH:
 - learning rate: 0.003
 - hash-size: 8, 12 and 16
 - margin (m): hash-size * 2
 - regularizer (α): 0.005 and 0.1
 - epoch: 20
 - LSH:
 - feature extractor: HOG (Histogram of oriented gradients)
 - hash-size: 8, 12 and 16
 - number of hash tables: 8 and 16
- Evaluation metric: mAP@10

No. Hash-tables \Hash-size	8-bits	12-bit	16-bits
8	0.6223	0.6401	0.6494
16	0.6775	0.6923	0.6940

Table 1: LSH - *mAP*@10

Regularizer \Hash-size	8-bits	12-bit	16-bits
0.005	0.7305	0.7650	0.7744
0.01	0.7184	0.7576	0.7801

Table 2: DSH - mAP@10

Figure 8: Visualization 1

Figure 9: Visualization 2

- 1 Purpose
- 2 Introduction
- Related Works
- 4 Approach
- **5** Experiment
- **6** Conclusion

Conclusion

Hashing method: compact and fast retrieval time

DSH:

- Using labeled data to train the deep neural network
- Higher precision than many other hashing methods: LSH, SH (Spectral Hashing), ITQ (Interactive Quantization), CNNH, ... (proven in the article)

Future works: build a better structure Deep Neural Network for DSH

Thanks for listening

Any Questions? Comment?

References

- [1] Haomiao Liu et al. "Deep supervised hashing for fast image retrieval". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016, pp. 2064–2072.
- [2] Youmeng Luo et al. "Image Retrieval Algorithm Based on Locality-Sensitive Hash Using Convolutional Neural Network and Attention Mechanism". In: *Information* 13.10 (2022), p. 446.
- [3] Xiaopeng Zhang. "A survey on deep hashing for image retrieval". In: *arXiv preprint arXiv:2006.05627* (2020).