仕様書番号 LCY-05044B

2005年 8月 30日

参考仕様書

品名 <u>TFT-LCDモシ゛ュール</u>

型名 LQO70Y5DEO1

おことわり

本書は参考仕様書です。

製品改良等のため記載内容を予告なく変更する ことがありますので、最終設計に際しましては 納入仕様書をお取り寄せください。

シャープ株式会社 モバイル液晶事業本部

第1設計センター 第2開発部

奈良県天理市櫟本町2613番地の1

- ○本参考仕様書は弊社の著作権にかかわる内容も含まれていますので、取り扱いには充分にご注意頂 くと共に、本技術資料の内容を弊社に無断で複製しないようお願い申し上げます。
- ○本参考仕様書に掲載されている応用例は、弊社製品を使った代表的な応用例を説明するためのものであり、本技術資料によって工業所有権、その他権利の実施に対する保証または実施権の許諾を行うものではありません。また、弊社製品を使用したことにより、第三者と工業所有権等にかかわる問題が発生した場合、弊社は一切その責を負いません。
- ○本製品は、AV・カーナビゲーション・自動車用補助的表示装置に使用されることを目的に開発・ 製造されたものです。
- ○本製品を、運送機器(航空機、列車、自動車等)・防災防犯装置・各種安全装置などの機能・精度等において高い信頼性・安全性が必要とされる用途に使用される場合は、これらのシステム・機器全体の信頼性及び安全性維持のためにフェールセーフ設計や冗長設計の措置を講じる等、システム・機器全体の安全設計にご配慮頂いたうえで本製品をご使用下さい。
- ○本製品を、航空宇宙機器、幹線通信機器、原子力制御機器、生命維持にかかわる医療機器などの極めて高い信頼性・安全性が必要とされる用途への使用は意図しておりませんので、これらの用途には 使用にならないで下さい。
- ○本参考仕様書に記載される本製品の使用条件や使用上の注意事項等を逸脱して使用されること等に 起因する損害に関して、弊社は一切その責任を負いません。
- ○本製品につきご不明な点がありましたら、事前に弊社販売窓口までご連絡頂きますようお願い致します。

1. 概要

本TFT-LCDモジュールは、アモルファス・シリコン薄膜トランジスタ(Thin Film Transistor) を用い、アスペクト比17:9のパネルを使用した、26万色表示可能なアクティブ・マトリックス型液晶ディスプレイ(Liquid Crystal Display)・モジュールです。モジュール概要を表4-1に示します。

2. 特長

- ・デュアルビュー液晶技術により、2種類の画像を左右別々に表示。
- ・アスペクト比17:9のパネルを使用し、ワイド画面化に対応。
- ・7.0型画面で、ストライプ配列384,000画素構成の高精細画像。
- ・18ビット(6ビット×RGB)のデータ信号による262,144色表示可能。
- ・新広視野角化技術の採用。 (最適視角:6時方向)
- ・アクティブ・マトリックス駆動方式採用により高コントラスト画像を実現。
- ・低反射ブラックマトリクスの採用により外光反射を低減。
- ・COG実装技術を用いた薄型・軽量・コンパクトなモジュール形態。
- ・水平/垂直方向の画像反転表示が可能。(水平反転を行うと、画像が左右反転し、かつ左右の画像 が入れ替わります)

3. 構造及びモジュール外形

モジュール外形寸法図を図1に示します。

モジュールは、TFT-LCDパネル、ドライバーIC、FPC、フレーム、シールド表ケース、 バックライトから構成されています。

(バックライト駆動用DC/ACインバータ回路はモジュールに内蔵されていません)

4. 機械的仕様

表4-1

秋 4 1			· · · · · · · · · · · · · · · · · · ·
項目	仕	単位	備考
画面サイズ	17.7 [7型]対角	cm	
有効表示領域	156.00(水平)×82.8(垂直)	mm	
ドット構成	800 × RGB × 480	ドット	【注4-1】
ドットピッチ	0.065(水平)×0.1725(垂直)	mm	
画素配列	R, G, B縦ストライプ		
表示モード	ノーマリーホワイト	<u> </u>	
外形寸法	171.6 (W) ×93.2 (H) ×11.25 (D)	mm	【注4-2】
質量	Max. 280	g 、	

【注4-1】アイポイントでの解像度は $400 \times RGB \times 480$ ドットになります。 (定義は『9.光学的特性』内の、【注9-4】を参照下さい。)

【注4-2】TYP値表現。詳細寸法、公差は図1のモジュール外形寸法図を参照下さい。 (バックライトハーネス、FPC、取り付けボスを除く。)

5. 入力端子名称および機能

5-1) TFT液晶パネル駆動部

表5-1

端子	記号	機能	備考
	V10	階調電圧	VIII 3
1			
2	V9	階調電圧 	·
3	V7	性調電圧 	
4	V5	階調電圧	
5	V3	階調電 <u>厂</u>	· ·
6	V0	階調電圧 スプライズ マナログ電源電圧	
7	VSHA	ソースドライバ アナログ電源電圧	【注5-1】
8	SPR	ソースドライバ スタート信号1	【注5-1】
9	LBR	水平方向スキャン切り替え信号	【任3-1】
10	GND	GND	
11	CK	ソースドライバ クロック信号	
12	N.C.	OPEN	
13	GND	GND	
14	LS	ソースドライバ データ転送信号	
15	VSHD	ソースドライバ デジタル電源電圧	
16	B5	BLUE データ信号 (MSB)	
17	B4	BLUE データ信号	
18	B3	BLUE データ信号	
19	B2	BLUE データ信号	
20	B1	BLUE データ信号	
21	В0	BLUE データ信号 (LSB)	
22	GND	GND	
23	G5	GREEN データ信号 (MSB)	
24	G4	GREEN データ信号	
25	G3	GREEN データ信号	
26	G2	GREEN データ信号	
27	G1	GREEN データ信号	
28	G0	GREEN データ信号 (LSB)	
29	GND	GND (MGP)	
30	R5	RED データ信号 (MSB)	
31	R4	RED データ信号	
32	R3	RED データ信号	<u> </u>
33	R2	RED データ信号	
34	R1	RED データ信号 (TGP)	
35	R0	RED データ信号 (LSB)	7 /A-11
36	SPL	ソースドライバ スタート信号 2	【注5-1】
37	CS	CS電極駆動信号	
38	VCOM	対向電極駆動信号	
39	VCOM	対向電極駆動信号	
40	VDD	ゲートドライバ 電源電圧 Hiレベル	
41	SPS	ゲートドライバ スタート信号	
42	CLS	ゲートドライバ クロック信号	【注5-1】
43	U/L	垂直方向スキャン切り替え信号	【注5-1】
44	MODE1	出力モード切り替え信号1	【注5-2】
45	MODE2	出力モード切り替え信号2	【任5一2】
46	VCC	ゲートドライバ ロジック電源電圧 Hiレベル	
47	N.C.	OPEN	
48	VEE	ゲートドライバ 電源電圧 Loレベル	· ·
49	N.C.	OPEN	
50	VSS	ゲートドライバ ロジック電源電圧 Loレベル	

【注5-1】垂直及び水平方向のスキャン方向の制御を行います。

表5-2

表示モード	U/L	LBR	SPL	SPR
標準表示	Lo	Hi	入力	出力
左右反転表示	Lo	Lo	出力	入力
上下反転表示	Hi	Hi	入力	出力
上下左右反転表示	Hi	Lo	出力	入力

【注】Lo=GND、Hi=VSH

【注5-2】6-1)項"電源投入時の注意事項"参照

MODE1、MODE2を設定する事で、ゲートドライバ出力のモードを選択できます。

表5-3

MODE1	MODE2	ゲートドライバ出力モード
Hi	Hi	通常モード
Lo	Hi	使用しないで下さい。
Hi	Lo	飛び越し2パルスモード
Lo	Lo	全出力をVEEレベルに固定

図5-1. ゲート出力タイミング

5-2) バックライト部

表5-4

端子No.	記号	機能	備考
1	VL1	ランプ入力端子(低電圧側)	
2	VL2	ランプ入力端子(高電圧側)	

6. 絶対最大定格

表6-1

GND = 0V

衣り一1					,	JIVD OV
項		記号	MIN.	MAX.	単位	備考
ソース電源電圧	こ アナログ 電源	VSHA	-0.3	+6.0	V	Ta=25℃
	デジタル電源	VSHD	-0.3	+6.0	V	11
ゲート電源電圧		VDD	-0.3	+35.0	V	11
		VCC - VSS	-0.3	+6.0	V	11
		VEE - VSS	-0.3	+35.0	V	11
		VDD - VEE(VSS)	-0.3	+35.0	V	"
入力信号電圧	デジタル信号	VID	-0.3	VSHD+0.3	V	〃【注6-1】
	アナログ、信号	VIA	-0.3	VSHA+0.3	V	〃【注6-2】
共通電極駆動信	号	COM	-4	+6	V	11
保存温度		Tstg	-40	+85	℃	【注6-3,4】
動作温度(パネル゚ロ	面)	Topr1	-30	+85	℃	【注6-5,6】
動作温度(周囲])	Topr2	-30	+65	$^{\circ}$	【注6-6】

- 【注6−1】SPL、SPR、R0~R5、G0~G5、B0~B5、LS、CK、LBR、MODE1、MODE2、R/L、SPS、CLS
- 【注6-2】V0、V3、V5、V7、V9、V10
- 【注6-3】モジュールのいかなる部分に関しても本定格を越えないようにしてください。
- 【注6-4】最大湿球温度57℃以下、結露させないでください。結露した場合電気的リークが発生し、本仕様を満足しない場合があります。
- 【注6-5】動作温度は動作のみを保証する温度でありコントラスト、応答速度、その他の表示品位に関してはTa=+25 ℃にて判定を行います。
- 【注6-6】バックライト点灯時の周囲温度。(参考値)

7. 電気的特性

7-1) TFT液晶パネル駆動部

表7-1 推奨動作条件

GND = 0V, Ta = +25°C

及1 I IEX301	1 -1-11								
項	目			記号	MIN.	TYP.	MAX.	単位	備考
ソース電源電圧	アナログ電	源		VSHA	+5.0	+5.3	+5.6	V	
	テ゛シ゛タル電	直源	-	VSHD	+2.5	+2.7	+3.6	V	
ゲート電源電圧	TFT	Hi		VDD	+13.8	+14.0	+14.2	V	
	駆動用	Lo	AC	VEE AC	_	COM AC	-	Vp-p	【注7-1】
	電源		DC	VEE DC	-12.8	-13.0	-13.2	V	
	ロシ゛ック	Hi		VCC	VSS+VSHD	VSS+	VSS+VSHD	V	【注7-2】
	用				-0.1	VSHD	+0.1		
	電源	Lo		VSS	-18.0	-18.4	-18.8	V	
基準電圧				V0~V10	0		VSHA	V	【注7-3】
ソース入力電圧	Hi入力			VIHS	0.8×VSHD –		VSHD	V	【注7-6】
	Lo入力			VILS	GND		$0.2 imes ext{VSHD}$	V	
ソース入力電流	Hi入力			I IHS1		_	10	μΑ	【注7-4】
]	Hi入力			I IHS2	_		400	μΑ	【注7-5】
	Lo入力			I ILS	_	_	10	μΑ	【注7-6】
ゲート入力電圧	Hi入力			V IHG	$0.8 \times VSHD$	_	VSHD	V	【注7-7】
	Lo入力			V ILG	GND		$0.2 imes ext{VSHD}$	V	
ゲート入力電流	Hi入力			I IHG	_	_	1.0	μΑ	·
	Lo入力			I ILG	_		1.0	μΑ	
対向電極駆動用信	言号		AC	COMAC	_	±3.6	±4.0	Vp-p	
(VCOM)			DC	COMDC1	+0.5		+2.5	V	【注7-8】
CS電極駆動用信-	号		AC	COMAC	-	±3.6	±4.0	Vp-p	
(CS)			DС	COMDC2	-5.3	-5.5	-5.7	V	【注7-1】

【注】電源投入時の注意事項

電源投入及び遮断は次のような順序で行ってください。

投入 VSHD,VSHA,VSS,VCC → ロジック信号,VEE→ VDD → MODE1,MODE2 遮断 VDD → VEE,ロジック信号(MODE1,MODE2含む) → VSS,VCC,VSHA,VSHD *但し、 VSS < VCC

MODE1、MODE2端子は電源投入時にLow電圧を入力し、VDDが完全に立ち上がってから2垂直同期期間以上Low電圧を保持してください。その後、電源をOFFするまで少なくともどちらかの端子はHigh電圧を保持してください。

【注7-1】VCOMと同一振幅、同一位相にて極性反転してください。

【注7-2】但し、 2.5V≦VCC-VSS≦3.6V の範囲以内であること。

【注7-3】階調用基準電源です。共通電極駆動信号(VCOM)の極性が切り替わる毎に本基準電圧も 切り替えてください。VO(黒)電源はVCOMと逆相、V10(白)は、VCOMと同相になります。 各電源振幅のセンター値(DCレベル)はVO(黒)のセンター値を基準とすると、V3、V5、 V7、V9、V10と白側へ行くに従い、液晶の特性にしたがって正方向にシフトしてください。 このシフト量はVCOM信号のDC調整をV0階調表示の場合に調整した後、各階調電源表示 においてフリッカーが発生しないように調整してください。

【注7-4】R0~R5、G0~G5、B0~B5、SPR、SPL、CK、LS、LBR端子に適用

【注7-5】PS端子に適用

【注7-6】R0~R5、G0~G5、B0~B5、SPR、SPL、CK、LS、LBR、PS、端子に適用

【注7-7】CLS、SPS、MODE1、MODE2、R/L端子に適用

【注7-8】 1 水平走査毎かつ 1 垂直走査毎に振幅COMACを振幅のセンター値COMDCで極性を 切り替えてください。またCOMDC調整は、モジュール毎にフリッカーが最小になるよ うに又コントラストが最大になるように調整してください。

7-2) バックライト部

表7-2

項目	記号	MIN	TYP	MAX	単位	備考
放電管電圧	VL	590	660	730	Vrms	Ta=+25℃、IL=6.0mArms/本
放電管電流	IL	5.5	6.0	6.5	mArms	Ta=+25℃、通常時
	ILB	_	_	9.0	mArms	ブースト時(0℃以下、5分以内)
放電管電力	W	_	7.92	-	W	Ta=+25℃、ランプ2本分
点灯可能周波数	fL	30		100	kHz	
放電開始電圧	VS		_	1850	Vrms	Ta=+25°C
トランス出力[Vrms]				2075	Vrms	Ta=-30°C
放電開始電圧	VLS	_	_	1125	Vrms	Ta=+25°C
インバータ出力[Vrms]		_	_	1280	Vrms	Ta=-30℃

(モジュール状態にてシールドケースGND接続時,NF電源 AS-114S,点灯周波数 55KHz, バラスト容量 18pF) 注意事項… 点灯開始電圧は、インバータとバックライトの接続リード線の引き回しによって影響を 受けますので、量産時にはセットにて充分確認頂きたく。 インバータについては、上表を満足し、正負両波対称でスパイク波の発生が無く、 正弦波のものを使用下さい。

7-3) 入力信号のタイミング特性

図2-1、2-2に入力信号タイミング波形を示します。

表 7 一 3

VSHA=+5.3V、VSHD= (+2.7V) 、GND=0V、Ta=25℃

		記号	MIN	TYP	MAX	 単位	適用端子
	クロック周波数	fck	_	33.2	34.6	MHz	DCLK
リソ	クロックHiレヘ゛ルハ゜ルスi幅	Tcwh	12	_	_	ns	
	クロックLoレヘ゛ルハ゜ルス幅	Tcwl	13	_	_	ns	
	クロック立上り時間	Tcr	_	_	4	ns	
	クロック立下り時間	Tcf	_		4	ns	
ス	スタートハ゜ルス周波数	fsp	_	31.5	31.8	kHz	SPL
	スタートパ゚ルスセットアップ゚時間	Tsusp	4	_	_	ns	SPR
	スタートハ゜ルスホールト゛時間	Thsp	0		_	ns	【注7-10】
	スタートハ゜ルス帽	Twsp	1/fck	1/fck	1.5/fck	ns	
	LS信号周波数	flp	_	fsp	_	kHz	LS
	LSセットアップ。時間(CLS)	Tsulp	5.0	_	_	μ s	
	LSセットアップ 時間 (SPL,SPR)	Tsulpsp	1/fck	<u> </u>		ns	
	LSホールド時間(DCLK)	Thlpck	20			ns	
	LS信号Hi灬叫幅	Twlp	1/fck		_	ns	
	データセットアップ時間	Tsud	15		_	ns	R0~R5、G0~
	データホールド時間	Thd	10		_	ns	G5; B0~B5
	クロック周波数	fcls		fsp	_	kHz	CLS
ゲ	クロックハ゜ルス幅	Twl	5.5		(1/fcls)-53	<u>μ</u> s	
	クロック立上り 時間	Trcl			1/fck	ns	
	クロック立下り時間	Tfcl		-	1/fck	ns	
	スタートハ゜ルス周波数	fsps		60	65	Hz	SPS
ト	スタートパ゚ルスセットアップ。時間	Tsusps	100		_	ns	·
	スタートハ゜ルスホールト゛時間	Thsps	300			ns	
	スタートパルス立上り時間	Trsps			100	ns	
	スタートパルス立下り時間	Tfsps		_	100	ns	
	COM信号セットアップ。時間	Tsucom	3	—	_	με	УСОМ
	COM信号ホールド時間	Thcom	0		_	μs	CS
	COM信号立上り時間	Trcom		<u> </u>	2	μs	
	COM信号立下り時間	Tfcom		_	2	μs	
	階調信号セットアップ。時間	Tsuv0	3	-	_	μs	V0、V3、V5
ļ	階調信号ホールド時間	Thv0	0	_		μs	V7、V9、V10
	階調信号立上り時間	Trv0			2	μs	
	階調信号立下り時間	Tfv0			2	μ s	

【注7-10】スタートパルスの'Hi'期間(Twsp)内にDCLKの立上りが1回のみ存在すること。

7-4)消費電流

表7-4

Ta=25°C

IJ	Ī 🗏	記号	電圧条件	MIN	TYP	MAX_	単位	備考
ソース電流	アナロク゛	ISHA	VSHA=+5.3V	_	40	95	m A	
	テ゛シ゛タル	ISHD	VSHD=+2.7V	_	8.0	19	m A	
ゲート電流	High	IDD	VDD=+14.0V	_	0.20	0.35	m A	
	Lo	· IEE	VEE=-13.0±3.6V	_	-0.20	-0.35	m A	
	ロシ゛ックHi	ICC	VCC=-15.7V	-	0.05	0.10	m A	
	ロシ゛ックLo	ISS	VSS=-18.4V	_	-0.10	-0.20	m A	

*測定条件

表示パターン:

1 画素毎に21階調(GS21) と42階調(GS42) を交互に表示した縦ストライプパターン

駆動条件

fck=33.2MHz、fsp=30.3kHz、fsps=60Hz、専用コントロールIC『LZ9JG17』を使用。標準表示

7-5) 入力信号と画面表示

UP

R1R	G1L	B1R	R1L	G1R	BiL	 R400R	G400L	B400R	R400L	G400R	B400
DH1	DH1	DH1	DH1	DH1	DH1	DH1	DH1	DH1	DH1	DH1	DH
R1R	G1L	B1R	R1L	G1R	B1L	R400R	G400L	B400R	R400L	G400R	B400
DH2	DH2	DH2	DH2	DH2	DH2	 DH2	DH2	DH2	DH2	DH2	DH
				1 1 1 1 1							
R1R	G1L	B1R	R1L	G1R	B1L	R400R	G400L	B400R	R400L	G400R	B400
DH479	DH479	DH479	DH479	DH479	DH479	 DH479	DH479	DH479	DH479	DH479	DH4
R1R	G1L	B1R	RIL	G1R	B1L	 R400R	G400L	B400R	R400L	G400R	B400
DH480	DH480	DH480	DH480	DH480	DH480	DH480	DH480	DH480	DH480	DH480	DH4

データの画面表示位置〔H,V〕

8. 入力信号と表示基本色および各色の輝度階調

表8-1

2	色	データ信号																		
	輝度階調	GrayScale	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	В1	B2	В3	B4	B5
	黒	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	青	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
基	緑		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
本	シアン		0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
色	赤	-	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	マゼンタ		1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	黄	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	白	_	1	1	1	1	1	1	1	1	_1	1	1	1	1	1	1	1	1	1
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0	0	0	0
	Û	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
赤	暗	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
の	仓	\downarrow			`															
階	Û	\downarrow			`							l								
調	明	GS61	1	0	1	1	1_	1	0	0	0	0	0	0	0	0	0	0	0	0
	û	GS62	0	1_	1	1	1_	_1_	0	0	0	0	0	0	0	0	0	0	0	0
	赤	GS63	1	1	_1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
緑	暗	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	_0
の	企	→										ν ν								
階	<u></u>	↓																		_
調	明	GS61	0	0	0	0	0	0	1	0	1	1	1		0	0	0	0	0	0
	Λ= Û	GS62	0_	0	0	0_	0	0	0	1	1	1	1	1 1	0	0	0	0	0	0
	緑	GS63	0	0	0	0	0	0	1	1	1	1	1		0	0				-
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	_		0	0	0	0
=	· 13	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>0</u> 1	0	0	0	$\frac{0}{0}$
青の	暗	$\frac{\mathrm{GS2}}{\downarrow}$	0	U			U		U					U		т	0		<u> </u>	\dashv
の階	Û	\downarrow											-							\dashv
	明明	GS61	0	0	<u>`</u>	0	0	0	0	0	<u>`</u>	0	0	0	1	0	1	1	1	1
調	① - 2	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	青	GS62 GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	$\frac{1}{1}$	1	1	_ <u>_</u>	1
L	月	4500	U	v				· ·					U	v				-		

^{0:}Low レベル電圧 1:High レベル電圧

各色表示用のデータ信号6ビット入力にて、各色64階調を表示し、合計18ビットのデータの組み合わせにより262,144色の表示が可能です。

9. 光学的特性

表9-1

Ta=25℃

項目		記号	条件	MIN.	TYP.	MAX.	単位	備考
視角範囲	水平	θ 21, θ 22	CR≧5	60	65		。 (度)	【注9-1】
	垂直	θ 11	(Single View	60	65		。(度)	
		θ 12	表示時)	55	60	_	。(度)	
コントラスト比		CRmax.	θ =0°	100		· _		【注9-2】
			(Single View				:	
			表示時)					
クロストーク		XT(ep)	30°	_	3.0	5.0		【注9-3,4】
成分比								-
観察領域		Φ in	L=70cm	_	20	23	。(度)	【注9-5】
		Φout	,XT≦10	46	50		。(度)	
応答速度	立上り	Tr	θ = 0 °	_	30	60	m s	【注9-6】
	立下り	τd			50	100	m s	
パネル面	正面	Υ0	IL=6.0mArms	150	220		cd/m^2	【注9-7】
輝度	Dual View	Y30	(ランプ1本当り)	210	320		$\rm cd/m^2$	
	アイホ゜イント		(信号入力無し)					
パネル面色度		х	IL=6.0mArms	0.265	0.315	0.365		【注9-8】
		у	(ランプ1本当り)	0.295	0.345	0.395		

[※] ランプ定格点灯後30分後に測定します。また光学的特性測定は、下図9-1、図9-2、図9-3の 測定方法を用いて、暗室あるいはこれと同等な状態にて行います。

図9-1 視角範囲/コントラスト/応答速度/クロストーク成分比/観察領域測定方法

【正面輝度】

図9-2 色度測定方法

【Dual Viewアイポイント輝度】

図 9 - 3 輝度測定方法

【注9-1】視角範囲の定義

【注9-2】コントラスト比の定義 次式にて定義します。

> コントラスト比(CR) = <u>白色表示(GS63)の画面輝度</u> 黒色表示(GS0)の画面輝度

【注9-3】アイポイントの定義(上から見た図)

・ 画面の中心から法線方向に画面から700mm離れた点Cを通り、かつ、画面と平行となる線(二点鎖線D)上での、画面の中心と法線のなす角度が30°になるポイントをアイポイント(Φ ep)として定義します。

【注9-4】クロストーク成分比(XTep)の定義

観察者A側に全面白表示、観察者B側に全面黒表示した場合の観察者B側アイポイントでの輝度(Ld)と、観察者A側、観察者B側ともに黒表示した場合の観察者B側のアイポイントでの輝度(Lb)を用いてアイポイントでのクロストーク成分比(XTep)は次式にて定義します。

測定ポイントはパネル中央部(2mmΦ)とします。

○ XT(ep)の定義

アイポイント(+30度、-30度)でのクロストーク成分比をXTepと定義します。

○ XT(ea)の定義

アイポイントの左右±5度範囲をアイエリアと規定します。アイエリア内での平均クロストーク成分比をXT(ea)と定義します。

【注9-5】観察領域の定義

注9-3に記載の、画面の中心から法線方向に700mmの画面と平行となる二点鎖線D上で、クロストーク成分比が8以下となるアイポイントよりパネル中央側の角度を Φ inとし、同2以下となるアイポイントより外側の角度を Φ outとして観察領域を定義します。

 Φ in は 0度方向からスキャンし、クロストーク成分比が8になった角度を表し、 Φ out は 80,80度方向からスキャンしクロストーク成分比が2になった角度を表します。

○参考データ(下表は参考データであり仕様を保証するものではありません)

【クロストーク成分比の 角度 (φ) に対する変化の 一般的な傾向】

【注9-6】応答速度の定義

下図に示すように白及び黒状態となる信号を入力し、その時の受光器出力の時間変化にて定義します。

【注9-7】パネル面輝度の定義

TOPCON輝度計BM-7による、測定角1°でのパネル面中央部の点灯30分後の測定値。(初期特性)インバータ駆動周波数:49kHz(周波数upによる輝度up含まず)

【注9-8】パネル面色度

TOPCON輝度計BM-7による、測定角1°でのパネル面中央部の点灯30分後の測定値。(初期特性)インバータ駆動周波数:49kHz(周波数upによる輝度up含まず)

10. 機械的性能

10-1) 外観 著しい欠陥のないこと。(図1:モジュール外形寸法図参照)

10-2) パネル 面圧縮強度

パネル破壊 直径15mmの平滑な面でパネル中央を19Nで加圧しても破壊しないこと。 (注意) 微小加重にかかわらず、長期に渡り有効表示領域に圧力を加えると、 機能上支障が出る場合がありますので、注意願います。

10-3) 入出力コネクタ性能

A)液晶パネル駆動部入出力コネクタ

①適用コネクター : FH12-50S-0.5SH (ヒロセ電機(株) 製)

②FPC耐屈曲性 : フィルムカバーレイコート片面配線部

屈曲半径無し、ハゼ折(但し折り曲げは手による、折り曲げは1回)

の条件にて屈曲試験を行い、断線しないこと。

B) バックライト蛍光管駆動部入出力コネクタ【日本圧着端子(株)製】

端子名	使用コネクタ ハウジング	適合コネクタ (プラグ)
CN1	BHR-04VS-1	SM04(4.0)-BHS-1-TB

11. 表示品位

カラー液晶ディスプレイモジュール表示品位に関する基準は、出荷検査基準書を適用します。 <u>TFT-LCDモジュール信頼性試験条件</u>

表11

注意) 温度条件は、6.表6-1の動作温度条件に基づきます。

		the state of the s
No.	試 験 項 目	試 験 内 容
1	高温保存	周囲温度85℃の雰囲気中で240h放置
2	低温保存	周囲温度−40℃の雰囲気中で240h放置
3	高温高湿動作	周囲温度60℃,湿度90%RHの雰囲気中で
		2 4 0 h 動作
4	高温動作	パネル面上温度85℃の240h動作
5	低温動作	周囲温度−30℃の雰囲気中で240h動作
6	静電耐圧	±200V・200pF (0Ω) 各端子1回
7	耐衝撃性	980m/s ² ·6ms, ±X;±Y; ±Z 各3回
		(JIS C0041, A-7 条件C)
8	振動	周波数範囲:8~33.3Hz
		全振幅 : 1.3 mm
		掃引割合 : 33.3Hz~400Hz
		加速度 : 29.4 m/ s² (3 G)
		周期 : 15分
		X,Z,方向各 2 時間, Y 方向 4 時間(計 8 時間) 【注】
		(JIS D1601)
9	熱衝撃	-30℃~+85℃/200サイクル
		$(0.5\mathrm{h})$ $(0.5\mathrm{h})$

【評価方法】標準状態において、表示品位検査条件の下、実使用上支障となる変化がないこと。 【注】X, Y, Z方向の定義を示す。

図1 モジュール外形寸法図

