Volume Optimality in Conformal Prediction with Structured Prediction Sets

Chao Gao¹, Liren Shan², Vaidehi Srinivas³, Aravindan Vijayaraghavan³

¹University of Chicago, ²Toyota Technological Institute at Chicago, ³Northwestern University

Problem Setting

Goal: designing conformal methods with formal guarantees on the **size** of the output confidence sets

Problem statement: For some $\alpha \in (0,1)$, dataset of n labeled calibration samples $(X_1,Y_1),\ldots,(X_n,Y_n)\in \mathcal{X}\times \mathbb{R}$, and test example X_{n+1} that corresponds to an unknown true label Y_{n+1} , construct a prediction set $\widehat{C}(X_{n+1})$, satisfying the coverage requirement:

$$\mathbb{P}\left(Y_{n+1} \in \widehat{C}(X_{n+1})\right) \ge 1 - \alpha.$$

 \mathbb{P} refers to the joint distribution over all n+1 pairs of observations $(X_1,Y_1),\ldots,(X_n,Y_n),(X_{n+1},Y_{n+1})$ including the test sample. In addition to achieving coverage, the conformal set $\widehat{C}=\widehat{C}(X_{n+1})$ should be efficient, i.e., small.

Overview of Results

Most conformal methods provide formal guarantees on coverage, and validate the size of sets empirically. We investigate the problem of formally achieving **volume optimality**:

Question: Given calibration samples $(X_1, Y_1), ..., (X_n, Y_n)$ drawn i.i.d. from distribution P, can we find the smallest (in volume/Lebesgue measure) data-dependent set $\widehat{C} \subset \mathcal{Y}$ that satisfies coverage for $(X_{n+1}, Y_{n+1}) \sim P$?

- Impossibility result: Any distribution-free method that satisfies coverage can only find a trivial solution whose volume is sub-optimal.
- Structured Prediction Sets and Restricted Volume Optimality: For $\mathscr C$ of bounded VC-dimension, it is possible to compete with the smallest $C \in \mathscr C$ that achieves coverage, via standard uniform convergence
- Conformalized Dynamic Programming: A new conformity score based on dynamic programming achieves volume optimality with respect to unions of k intervals, as long as a reasonable estimator of the conditional CDF is available. (Extension of the framework of [Izbicki, Shimizu, Stern, JMLR '22], [Chernozhukov, Wüthrich, Zhu, PNAS '21])

Informal Theorem: For $(X_1,Y_1),\ldots,(X_{n+1},Y_{n+1})\sim P$ drawn i.i.d., and given $\alpha\in(0,1),k\geq 1$, conformalized dynamic programming can find a set \widehat{C} such that

$$\operatorname{vol}(\widehat{C}) \leq \operatorname{Opt}_{k}(P, 1 - \alpha + \varepsilon),$$

for some appropriately chosen small $\varepsilon > 0$. A conformalizing procedure ensures that we achieve finite sample coverage for exchangeable data.

Impossibility Result

Can be seen as consequence of a **nonparametric testing** lower bound.

From samples Y, we cannot distinguish between \mathcal{D}_1 (uniform on **blue** region), and \mathcal{D}_2 (uniform on **green** region). Thus any distribution-free method that achieves coverage on \mathcal{D}_1 , must provide a very large conformal set on \mathcal{D}_2 . (Construction holds even in 1 dimension.)

Structured Prediction Sets

We define **restricted volume optimality**. For a given k, let \mathscr{C}_k be the set family of all unions of k intervals. Let

$$\mathsf{Opt}_k(P, 1 - \alpha) = \inf_{C \in \mathscr{C}_k} \{ \mathsf{vol}(C) : P(C) \ge 1 - \alpha \}.$$

- (1) Since \mathscr{C}_k is a set family of bounded VC-dimension, the coverage of sets in \mathscr{C}_k over i.i.d. samples exhibits **uniform convergence**, thus it is statistically tractable to find a set \widehat{C} such that, for a small $\varepsilon > 0$, $\operatorname{vol}(\widehat{C}) \leq \operatorname{Opt}_{\varepsilon}(P, 1 \alpha + \varepsilon)$.
- (2) Restricted optimality coincides with true optimality for P that can be approximated by a distribution with at most k modes (e.g., P that admits a good KDE)
- (3) Efficiently computable using dynamic programming
- (4) Reasonable to restrict k from the perspective of interpretability (k=1 is already interesting)

Conformalized Dynamic Programming (DP)

- Dynamic programming alone achieves a coverage guarantee over i.i.d. samples given number of samples scaling with k (VC-dimension of \mathcal{C}_k)
- For finite sample coverage over exchangeable samples, we design a **conformity score** based on dynamic programming, which plugs into a split conformal framework
- Dynamic programming procedure can be applied to the **estimated c.d.f.** of Y|X, achieve **approximate conditional coverage** and **conditional restricted volume optimality** when the estimated c.d.f has low error

Experiments

Comparison to density estimation (KDE)

Avoiding density estimation allows our method to achieve lower volume. KDE requires fine-tuning the bandwidth ρ , whereas Conformalized DP is robust to the setting of the parameter k.

Figure 1: Mixture of Gaussian data for target coverage 0.8 (Left) Conformalized KDE [Lei, Robbins, Wasserman JASA '13] with $\rho=0.5$ (Right) Conformalized Dynamic Programming with k=3

Figure 2: Performance of Conformalized KDE (left) and Conformalized DP (right) on mixture of Gaussian data for target coverage 0.8, with different parameter settings

Comparison to Conformalized Quantile Regression Methods Our conformalizing procedure adapts to skewed data distributions.

Figure 3: (Left) DCP-QR* [Chernozhukov, Wüthrich, Zhu PNAS '21], (Center) Conformalized DP for k=1, (Right) Conformalized DP for k=5, on synthetic data from [Romano, Patterson, Candès NeurlPS '19]