# Earning dynamics and selection in health insurance market

Yaming Cao

The Ohio State University

August 24, 2022

#### Motivation

- Improve welfare analysis for policies to combat Adverse selection can save a lot of money
  - Adverse selection: sicker individuals have higher incentive to purchase health insurance and healthier people drop out of the market, leading to higher premium, low take-up and welfare loss.
  - An enormous amount of money is spent every year to reduce adverse selection
- Limited consideration of earning dynamics in welfare analysis
  - Consumption risk also consists of earning risks
  - Data limitation in estimating relationship between earning and medical spending
  - Earning dynamics might affect WTP for health insurance
- This paper: investigate the impact of introducing consideration of earning dynamics on adverse selection in Health insurance market

#### What's new

- Utilize new data
  - Literature: usually ignores heterogeneity in earning dynamic in welfare analysis for health insurance policies—Data limitation
  - Combines Utah UI records and All-payer Claims Data in Utah
    - estimate the joint distribution of earning and medical spending
- First to investigate the impact of earning volatility and correlation between earning and medical risk on adverse selection
- Combine the discussion of health-related policy and non-health related policy (in progress)
  - Literature: usually separate discussion of two types of policies
  - This paper: examine the impact of non-health related policy, e.g. unemployment insurance, on health insurance market
- Main finding: ignoring heterogeneity in earning dynamics tend to overestimate the adverse selection

#### Earning distribution prediction

$$w(\theta_{it}) = exp(\underbrace{f_W(\theta_{it})}_{\text{mean log earning}} + \underbrace{\epsilon(\theta_{it})}_{\text{log earning error}})$$

Earning distribution prediction

• "Persistent shock": Type realization in t:  $Pr(\theta_{it})$ 

• "Transitory shock": Log earning errors  $\epsilon(\theta_{it})$ 

Heterogeneity and WTP

John vs. Tom: Medical risk

Tom vs. Jerry: Earning volatility

• Jerry vs. Alice: correlation between earning and medical spending

Tom vs. Anna: Earning mean

| Name  | E(W)    | SD(W) | E(M) | ρ        |
|-------|---------|-------|------|----------|
| John  | 40,000  | 0     | 3000 | 0        |
| Tom   | 40,000  | 0     | 5000 | 0        |
| Jerry | 40,000  | 2,000 | 5000 | 0        |
| Alice | 40,000  | 2,000 | 5000 | negative |
| Anna  | 400,000 | 0     | 5000 | 0        |

#### Deviation from textbook Akerlof model

#### Textbook Akerlof model



- Heterogeneity in earning dynamic change WTP
- Resorting: the expected cost of next person to buy the insurance is no longer always lower than the previous buyer

#### Overview of the talk

- Earning's impact on WTP
- Model: prediction of earning and medical spending
- Oecomposition
- Ounterfactuals: subsidy and mandate
- Conclusion
- Future studies

# Earning impact intuition

#### **Decision Problem**

- Setting
  - Homogenous concave utility function u(.)
  - Saving is not allowed for now

Uninsured vs. Fully insured

### Impact of earning on WTP is ambiguous

 We might think: People with higher earning volatility are willing to pay more for health insurance because they face more consumption risks.

- However, the impact of earning volatility on WTP is ambiguous because of another force:
  - "More expensive plan": Have to give up more utility to pay for premium when earning volatility is higher.

### Earning volatility: force 1

- Same consumption mean.
- Orange: higher consumption volatility
- ullet More consumption volatility, worse off if being uninsured: WTP  $\uparrow$



### Earning volatility: force 2

- Orange: Higher earning volatility case
- $\bullet$  Higher earning volatility, higher utility to give up for premium: WTP  $\downarrow$



#### Earning mean: force 1

ullet Lower mean predicted earning, worse off if being uninsured: WTP  $\uparrow$ 



#### Earning mean: force 2

 $\bullet$  Lower earning mean, higher utility to give up to pay for premium: WTP  $\downarrow$ 



#### Impact of correlation

Compare with the case that earning and medical spending are independent,

- Negative: Lower earning when higher medical spending, WTP ↑
  - Reallocating consumption from bad state to good state, making bad state worse, good state better
  - More likely case: bad health leads to lower earnings

- ullet Positive: Higher earning when higher medical spending, WTP  $\downarrow$ 
  - **Implicit insurance**: reallocating consumption from good state to bad state, making bad state better, good state worse

Is it possible to design a policy to utilize the correlation between w and m?

#### Consumption floor

- Abstract welfare policies that protect consumption risk
  - Definition: People's consumption in bad state is guaranteed to be above consumption floor because government will transfer wealth to the them in bad state
  - e.g. bankruptcy, unemployment insurance

- What does consumption floor do?
  - Wealth transfer
  - Reduction in consumption volatility

 Heterogenous protection: Earning dynamic affects the amount of protection from consumption floor

### Precautionary saving

 We discussed contemporary consumption risk — uncertainty over which state of world would realize in current period

- People also have the need to smooth consumption between today and future
  - Risk can be persistent
  - People will build up asset to help protect their consumption risk over time
  - Large medical bill or unemployment may reduce asset holding ⇒ protecting asset is one motive to buy Health insurance
  - Earning dynamic heterogeneity ⇒ Heterogeneous Asset holding

#### Data

#### Data

- 2013-2015 All-payer Claims Data
  - insurance coverage of most people in Utah, and medical utilization records for inpatient, outpatient, physician office visits and prescription drug consumptions

- Utah UI records
  - Earning and employment status
  - employer-employee matches

Linkage between the two data

#### Sample selection

• Age: 25-64

- Always insured from 2013-2015
  - medical spending unobserved for uninsured people

- Earn positive amount for at least one quarter from 2014-2015
  - Reduce the probability of including people who left labor force

### Summary Statistics by health type

 People with higher spending are more likely to earn less, and more likely to be not employed, some evidence for negative correlation

|                            | (1)     | (2)                                 | (3)               | (4)               | (5)                               |
|----------------------------|---------|-------------------------------------|-------------------|-------------------|-----------------------------------|
|                            | All     | Health type $= 1$ (Lowest spending) | Health type $= 2$ | Health type $= 3$ | Health type = 4(Highest spending) |
|                            | mean    | mean                                | mean              | mean              | mean                              |
| Age                        | 43.5    | 41.2                                | 47.2              | 47.4              | 47.7                              |
| Male                       | 0.5     | 0.6                                 | 0.4               | 0.4               | 0.4                               |
| Quarterly Earning          | 15875   | 16188                               | 15940             | 15465             | 14282                             |
| Quarterly Earning(Imputed) | 14762   | 15124                               | 14840             | 14304             | 12960                             |
| Not employed               | 7.0     | 6.6                                 | 6.9               | 7.5               | 9.3                               |
| Total medical spending     | 1063    | 162                                 | 751               | 1488              | 6536                              |
| Acg risk score             | 1.2     | 0.5                                 | 1.2               | 1.9               | 4.8                               |
| N                          | 3776220 | 2382740                             | 562828            | 440348            | 390304                            |

### Model

#### Overview

 Goal: develop a prediction model of joint earning and medical spending distribution

- 2 Two steps
  - Prediction of earning and medical spending conditional on type
  - Type transitions
    - multinomial logit model

### Prediction of earning

Prediction of earning in next period t (when type realized is  $\theta_{it}$ ):

$$w(\theta_{it}) = exp(\underbrace{f_W(\theta_{it})}_{\text{mean log earning}} + \underbrace{\epsilon(\theta_{it})}_{\text{log earning error}})$$

- Uncertainty over
  - ullet "Persistent shock": Type realization in t:  $Pr( heta_{it})$
  - "Transitory shock": Log earning errors  $\epsilon(\theta_{it})$
- Earning mean prediction:
  - **1** Expectation over log earning errors:  $\bar{w}(\theta_{it}) = \int w(\theta_{it}) dF(\epsilon)$
  - **2** Expectation over both log earning errors and possible types:  $E(\bar{w}(\theta_{it})) = \sum_{\theta_{it} \in \Theta} Pr(\theta_{it})\bar{w}(\theta_{it})$
- $\bullet$  Correlation: types  $\theta_{it}$  determines both earning and medical spending

#### Earning equation

When earning positive amount at t,

$$InW_{it} = a\alpha_i + bQ_{it} \times k_{it}^{\mu} + dk_{it}^{\sigma} + eH_{it} + fX_{it} + \epsilon_{it}$$
 (1)

where,

- W<sub>it</sub> is the earning at time t.
- $\alpha_i$ : person earning type
- $Q_{it}$  is the job mobility transition type in period t from period t-1.
- $k_{it}^{\mu}$  represents the pay level type of destination firm, and  $k_{it}^{\sigma}$  stands for the volatility type of the destination firm
- ullet  $H_{it}$  is the indicator of which health type transition happens from period t-1 to t
- $\bullet$   $X_{it}$  are the covariates, include age, gender and year-quarter dummies
- $\epsilon_{it}$  is the error term

### **Types**

- Health types
  - 4 categories, based on annual ACG risk scores
- Person and firm earning level fixed type link
  - Two way fixed effects model
- Job mobility
  - Stayers: staying in the same firm
  - Movers to a different firm
  - Newly zero earners: moving from earning positive amount to earning zero
  - Newly positive earners: moving from earning zero to earning positive amount
- Firm earning volatility type link
  - Proxy for uncertainty about transitory error conditional on types

### Medical spending equation

$$lnM_{it} = \rho lnM_{i,t-1} + AX_{it} + BH_{it} + C\alpha_i + D\phi_i + Gr_{it} + \nu_{it}$$
 (2)

- M<sub>it</sub> is the medical spending of last year.
- r<sub>it</sub> is the average health insurance coverage of the year of prediction interest.
- $X_{it}$  is time varying observables, here includes time dummies, age, gender
- ullet  $\phi_i$  is the time-invariant health conditions like diabetes and hypertension

Quarterly prediction: divide the annual prediction by 4

## Health type

• Negative correlation between earning and medical spending



(a) Log quarterly earning



(b) Log annual medical spending

### Job mobility

- Earning on average is higher if end up in a firm with higher pay type
- Conditional on the destination firm pay type, movers and new earners are on average earning less than stayers



#### Health impact on transitions of types

- Health type link
  - persistent
  - Older people are harder to transit out of bad health state
- Job mobility link
  - Zero earning state is persistent
  - Sicker people are harder to transit out of zero earning state

# Decomposition

#### Decomposition

- Different earning measures
  - $w(\theta_{it})$ : earning prediction with type uncertainty and transitory errors
  - $\bar{w}(\theta_{it})$ : expectation over transitory errors
  - $E(\bar{w}(\theta_{it}))$ : expectation over both type uncertainty and transitory errors
  - $E(\bar{w})$ : population expectation over  $E(\bar{w}(\theta_{it}))$

|   | Step                                                                                    | Take up | Equilibrium Premium | Consumer surplus<br>per person | Transfer from<br>consumption floor |
|---|-----------------------------------------------------------------------------------------|---------|---------------------|--------------------------------|------------------------------------|
| 1 | Only heterogenous in Medical risk<br>Earning: $E(\bar{w})$ , Asset: 0                   | 10.75%  | 2815                | 98.41                          | 50.69                              |
| 2 | Add average asset holding consideration Earning: $E(\bar{w})$ , Asset: $\bar{A}$        | 31.78%  | 1939                | 941.74                         | 12.033                             |
| 3 | Add heterogeneity in asset holding<br>Earning: $E(\bar{w})$ , Asset: $A_i$              | 50.33%  | 1571                | 877.59                         | 7.13                               |
| 4 | Add heterogeneity in earning mean<br>Earning: $E(\bar{w}(\theta_{it}))$ , Asset: $A_i$  | 40.63%  | 1580                | 710.00                         | 63.25                              |
| 5 | Add heterogeneity in type uncertainty<br>Earning: $\bar{w}(\theta_{it})$ , Asset: $A_i$ | 39.98%  | 1589                | 697.00                         | 68.18                              |
| 6 | Add heterogeneity in transitory errors<br>Earning: $w(\theta_{it})$ , Asset: $A_i$      | 37.09%  | 1614                | 629.59                         | 76.42                              |

#### Demand, MC and AC

- "Resorting": MC is not monotonically decreasing; AC shifts down
- Demand shifts down



(a) AC



(b) MC(local polynomial fit)



### Counterfactual

### Counterfactual: subsidy and mandate

- Setting:
  - apply ACA policy and group everyone in the sample in one market
  - Allow heterogenous asset holding for all models in counterfactual analysis

- Theory behind policies
  - Subsidy: changes in utility cost of premium
  - Mandate: changes in expected utility of uninsured

### Counterfactual: subsidy and mandate

#### Take-aways:

• the impact of subsidy and mandate changes when earning risk heterogeneity is not considered

| Model      |                           | Equilibrium | Take-up | Consumer Surplus | Cost of public |
|------------|---------------------------|-------------|---------|------------------|----------------|
|            |                           | Premium     | rake-up | per person       | funds          |
| -          | Baseline                  | 1571        | 50.33%  | 877.59           | 0              |
| Status quo | $E(\bar{w})$              | 1580        | 40.67%  | 710.01           | 0              |
|            | $E(\bar{w}(\theta_{it}))$ | 1614        | 37.09%  | 629.60           | 0              |
|            | Baseline                  | -240        | +17.02% | +466.27          | +117.89        |
| Subsidy    | $E(\bar{w})$              | -253        | +24.17% | +348.06          | +106.12        |
|            | $E(\bar{w}(\theta_{it}))$ | -281        | +29.64% | +364.82          | +116.11        |
|            | Baseline                  | -166        | +12.17% | +240.26          | +0             |
| Mandate    | $E(\bar{w})$              | -193.95     | +13.29% | +233.24          | +0             |
|            | $E(\bar{w}(\theta_{it}))$ | -214        | +14.29% | +229.23          | +0             |

#### Conclusion

- Impact of earning on WTP for health insurance is ambiguous
  - Expected utility of being uninsured
  - Utility give up to pay for premium changes with earning mean and volatility
  - Consumption floor
  - Asset protection incentive

#### Decomposition

- Adverse selection is not only determined by medical risk, earning dynamics also matter
- Ignoring heterogeneity in earning dynamics tend to overestimate the adverse selection

#### Counterfactual

 the impact of subsidy and mandate changes when earning risk heterogeneity is not considered

### Next steps and future studies

- More counterfactual analysis
  - Government insurance on earning
  - Insurance that changes the correlation between earning and medical spending
- Allow choices among plans with different level of coverage
- Single agent to family
  - Marriage is also an implicit insurance
  - Changes the distribution of earning risk and medical risk
    - assortative mating is probably making inequality worse
- Reclassification risk and long-term insurance
  - Definition: changes in health status lead to changes in premiums over time if allow premium to depend on health status
  - Bad earning shock is persistent, reclassification risk is worse if we consider earning dynamics

# Appendix

### Person and firm earning fixed types

$$In(W_{ijt}) = \underbrace{\gamma_i}_{\text{Person type}} + \underbrace{\Phi_{j(it)}}_{\text{Firm earning type}} + \beta X_{it} + \eta_{ijt}$$
(3)

#### where,

- $\gamma_i$  is the person effects
- $\Phi_{j(it)}$  is the firm fixed effects, and j(it) stands for the firm j that worker i matches to in period t.
- $X_{it}$  is the year-quarter fixed effects



### Firm earning volatility type

- Proxy for the level of earning volatility an average employee faces inside each firm
- Divide firms into 4 categories based on  $SD(F_i)$ 
  - Log earning difference between quarter t-1 and t:  $ln(W_{i,t-1,t}) = ln(W_{it}) ln(W_{i,t-1})$
  - standard deviation of the log earning difference for each firm j:  $SD(F_i) = SD(\Delta ln(W_{i,t-1,t}))$



### Health type transition matrix

Table: Health type transition from t-1 to t for female

| Age   |   | 1    | 2    | 3    | 4    |
|-------|---|------|------|------|------|
|       | 1 | 0.81 | 0.09 | 0.06 | 0.03 |
| 26.20 | 2 | 0.56 | 0.21 | 0.15 | 0.08 |
| 26-30 | 3 | 0.44 | 0.17 | 0.25 | 0.14 |
|       | 4 | 0.31 | 0.13 | 0.18 | 0.38 |
|       | 1 | 0.61 | 0.23 | 0.1  | 0.07 |
| 61 64 | 2 | 0.45 | 0.26 | 0.21 | 0.08 |
| 61-64 | 3 | 0.22 | 0.16 | 0.44 | 0.18 |
|       | 4 | 0.14 | 0.09 | 0.29 | 0.48 |
|       |   |      |      |      |      |



## Currently Positive earners

| Person type      |                | Stayer | Mover | No earning |
|------------------|----------------|--------|-------|------------|
|                  | Stayer         | 0.931  | 0.033 | 0.037      |
| Lowest earning   | Mover          | 0.792  | 0.154 | 0.054      |
|                  | New earner     | 0.797  | 0.064 | 0.139      |
|                  | Stayer         | 0.984  | 0.01  | 0.006      |
| Highest earning  | Mover          | 0.938  | 0.052 | 0.01       |
|                  | New earner     | 0.953  | 0.022 | 0.025      |
| Types: Healthies | t, Male, 36-40 | 1      |       |            |

## Currently zero earners

| Lowest earning person(1) |             |           | Highest earning person (6) |             |            |
|--------------------------|-------------|-----------|----------------------------|-------------|------------|
|                          | Earning = 0 | Earning>0 |                            | Earning = 0 | Earning >0 |
| Healthiest               | 0.755       | 0.245     | Healthiest                 | 0.726       | 0.274      |
| Sickiest                 | 0.784       | 0.216     | Sickiest                   | 0.758       | 0.242      |
| Types: 36-40, Male       |             |           |                            |             |            |



## Currently zero earners

| Panel A:            | Firm earning level type |       |       |                 |  |
|---------------------|-------------------------|-------|-------|-----------------|--|
| Person earning type | 1(Lowest earning)       | 2     | 3     | 4(Highest risk) |  |
| Lowest (1)          | 0.321                   | 0.28  | 0.235 | 0.164           |  |
| Highest(6)          | 0.171                   | 0.267 | 0.227 | 0.335           |  |
| Panel B:            | Firm earning risk type  |       |       |                 |  |
| Person earning type | 1(Lowest risk)          | 2     | 3     | 4(Highest risk) |  |
| Lowest (1)          | 0.139                   | 0.2   | 0.267 | 0.394           |  |
| Highest(6)          | 0.196                   | 0.274 | 0.278 | 0.252           |  |
| Types: Male, 36-40  |                         |       |       |                 |  |