средним и известной дисперсией:

C

2649899

$$M\eta_n = 0, M\eta_n \overline{\eta}_n = \sigma_n^2, M\eta_n \overline{\eta}_m = 0, m \neq n,$$

$$M\zeta_n = 0, M\zeta_n \overline{\zeta}_n = \delta_n^2, M\zeta_n \overline{\zeta}_m = 0, m \neq n,$$

а $F(\theta)$ - функция амплитудно-фазового распределения суммарной диаграммы направленности, общая для всех строковых и столбцевых диаграмм, k_j и ρ_j - комплексные коэффициенты отражения целей в вертикальной и горизонтальной плоскостях, μ_j и γ_j - обобщенные углы цели с номером j в горизонтальной и вертикальной плоскостях:

 $\mu_{j} = \frac{D \sin \theta_{j}}{\lambda} 2\pi$, $\gamma_{j} = \frac{D \sin \beta_{j}}{\lambda} 2\pi$, D-расстояние между фазовыми центрами приемных диаграмм, λ - длина волны, через \overline{x} обозначено комплексно сопряженное число с числом x; далее осуществляют цифровую обработку вектора сигналов S_{n}^{*} и C_{k}^{*} для

формирования вектора измерений целей по углу места и курсовому углу, по которым определяют обобщенные углы целей, корреляционную матрицу ошибок измерений и корреляционную матрицу векторного шума и, используя матрицу Вандермонда, определяют угловые координаты близко расположенных целей.

Стр.: 2