Analyse complexe

Théorème de

l'application conforme

Question 1/4

Formule de Cauchy

Réponse 1/4

Si
$$f \in H(U)$$
, γ est un lacet \mathcal{C}^1 par morceaux et $z \in U \setminus \gamma([0, 1])$ alors

et
$$z \in U \setminus \gamma([0,1])$$
 alors
$$\frac{1}{2\mathrm{i}\pi} \int_{\gamma} \frac{f(w)}{w-z} \,\mathrm{d}w = I(z,\gamma) f(z)$$

Question 2/4

Logarithme d'une fonction holomorhe

Réponse 2/4

Si U est simplement connexe¹ et $f: U \to \mathbb{C}^*$ est holomorphe alors f admet un logarithme holomorphe, ie, il existe $F \in H(U)$ telle que $f = e^F$

^{1.} Tout lacet est homotope au lacet constant

Question 3/4

CNS pour que l'ouvert U soir simplement connexe

Réponse 3/4

$$U = \mathbb{C}$$
 ou U est biholomorphe à $D(0,1)$

Question 4/4

Racine carrée d'une fonction holomorhe

Réponse 4/4

Si U est simplement connexe¹ et $f: U \to \mathbb{C}^*$ est holomorphe alors f admet une racine carrée, ie, il existe $F \in H(U)$ telle que $f = F^{2z}$

^{1.} Tout lacet est homotope au lacet constant

^{2.} L'existence d'une racine carrée est équivalent au caractère simplement connexe