Trigonometry Formulas

1. Definitions and Fundamental Identities

Sine:
$$\sin \theta = \frac{y}{r} = \frac{1}{\csc \theta}$$

Cosine:
$$\cos \theta = \frac{x}{r} = \frac{1}{\sec \theta}$$

Tangent:
$$\tan \theta = \frac{y}{x} = \frac{1}{\cot \theta}$$

2. Identities

$$\sin(-\theta) = -\sin\theta, \quad \cos(-\theta) = \cos\theta$$

$$\sin^2\theta + \cos^2\theta = 1, \quad \sec^2\theta = 1 + \tan^2\theta, \quad \csc^2\theta = 1 + \cot^2\theta$$

$$\sin 2\theta = 2 \sin \theta \cos \theta$$
, $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}, \quad \sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos (A - B) = \cos A \cos B + \sin A \sin B$$

Trigonometric Functions

Radian Measure

$\frac{s}{r} = \frac{\theta}{1} = \theta$	or	$\theta = \frac{s}{r},$
$180^{\circ} = \pi \text{ rad}$	lians.	

Degrees	Radialis	
$\sqrt{2}$ 45 45 90	$ \begin{array}{c c} \sqrt{2} & \frac{\pi}{4} \\ \frac{\pi}{4} & \frac{\pi}{2} \end{array} $	
$ \begin{array}{c c} & 30 \\ \hline 2 & \sqrt{3} \\ \hline 60 & 90 \\ \hline 1 & \end{array} $	$ \begin{array}{c c} \frac{\pi}{6} \\ \sqrt{3} \\ \frac{\pi}{3} & \frac{\pi}{2} \end{array} $	

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\sin\left(A - \frac{\pi}{2}\right) = -\cos A, \qquad \cos\left(A - \frac{\pi}{2}\right) = \sin A$$

$$\sin\left(A + \frac{\pi}{2}\right) = \cos A, \qquad \cos\left(A + \frac{\pi}{2}\right) = -\sin A$$

$$\sin A \sin B = \frac{1}{2}\cos(A - B) - \frac{1}{2}\cos(A + B)$$

$$\cos A \cos B = \frac{1}{2} \cos (A - B) + \frac{1}{2} \cos (A + B)$$

$$\sin A \cos B = \frac{1}{2} \sin (A - B) + \frac{1}{2} \sin (A + B)$$

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$

$$\sin A - \sin B = 2\cos\frac{1}{2}(A + B)\sin\frac{1}{2}(A - B)$$

$$\cos A + \cos B = 2\cos\frac{1}{2}(A + B)\cos\frac{1}{2}(A - B)$$

$$\cos A - \cos B = -2\sin\frac{1}{2}(A + B)\sin\frac{1}{2}(A - B)$$

Domain: $(-\infty, \infty)$ Range: [-1, 1]

Domain: $(-\infty, \infty)$ Range: [-1, 1]

Domain: All real numbers except odd integer multiples of $\pi/2$ Range: $(-\infty, \infty)$

Domain: All real numbers except odd integer multiples of $\pi/2$

Range: $(-\infty, -1] \cup [1, \infty)$

Range: $(-\infty, -1] \bigcup [1, \infty)$

Range: $(-\infty, \infty)$