Sieci Komputerowe

Wykład 4. Warstwa sieciowa. Adresacja IP.

Zadania warstwy sieciowej

- Adresacja logiczna
- Trasowanie (ang. routing)
 - Urządzenia pracujące w warstwie trzeciej nazywają się ruterami.
- Fragmentacja i defragmentacja danych (w razie potrzeby)

Adres IP

- Adres IPv4 składa się z czterech oktetów
- Dla wygody stosuje się zapis dziesiętny, oktety oddziela się kropkami:
 - 193.0.96.129
 - -10.2.6.1
- Adres IP jest przypisany do interfejsu sieciowego komputera, można to zrobić np. poleceniem:
 - ifconfig eth1 10.2.6.1 netmask 255.255.255.0

Przydzielanie adresów IP

- Alokacją adresów zajmuje się IANA (Internet Assigned Number Authority)
- IANA przydziela adresy dla RIR (Regional Internet Registry)
- Dla Europy RIR to RIPE NCC (www.ripe.net)

Klasy adresów IP

List of All Possible Valid Network Numbers

	Class A	Class B	Class C
First Octet Range	1 to 126	128 to 191	192 to 223
Valid Network Numbers	1.0.0.0 to 126.0.0.0	128.1.0.0 to 191.254.0.0	192.0.1.0 to 223.255.254.0
Number of Networks in This Class	$2^7 - 2$	$2^{14} - 2$	$2^{21} - 2$
Number of Hosts Per Network	$2^{24} - 2$	$2^{16} - 2$	$2^8 - 2$
Size of Network Part of Address (bytes)	1	2	3
Size of Host Part of Address (bytes)	3	2	1

- Dodatkowo istnieją klasy D (224.0.0.0 do 239.255.255.255) oraz E (240.0.0.0 do 254.255.255.255)
- Zarezerwowane:127.0.0.0, 128.0.0.0, 191.255.0.0, 192.0.0.0, 223.255.255.0

Klasy prywatne

Class	Range of Addresses
A	10.0.0.0–10.255.255.255
В	172.16.0.0–172.31.255.255
С	192.168.0.0–192.168.255.255

- Ww. adresy są nierutowane w Internecie
- Przeznaczone do wykorzystania np. w sieciach, gdzie stosuje się translację adresów (NAT)

Formaty adresów

Class A, B, and C IP Addresses and Their Formats

Class A	Network (8)	Host (24)							
	8	1		4	- 5				
Class B	Network (16)			Host (16)					
	130	. 4	-	100	. 1				
Class C		Network (24)							
	199	. 1	•	1	. 1				

- Np. klasa B dla adresacji hostów przeznacza 16 bitów
- Dla sieci 130.4.0.0:
 - Adres 130.4.0.0 jest adresem sieci, a 130.4.255.255 dla tej sieci to adres rozgłoszeniowy (ang. broadcast).
 - Można zaadresować 2^16-2 hostów.

Komunikacja w ramach tej samej sieci

- Komunikacja w ramach tej samej sieci (między adresami IP należącymi do tej samej sieci, np. 128.1.2.3 i 128.1.4.5) odbywa się bezpośrednio
- Komunikacji między hostami o adresach należących do innych sieci (np. 128.1.2.3 i 128.2.1.2) następuje za pośrednictwem rutera

Sieć IP

Figure 12-2 Network Topology Using Six IP Networks

Przykład adresacji

Maska podsieci

- Maska została wprowadzona ze względu na mało efektywny "sztywny" podział adresów na klasy
- Służy do określenia dla danego adresu IP adresu podsieci (umożliwia elastyczny podział adresacji na podsieci)
- Maski odpowiadające klasom adresów
 - Klasa A maska 255.0.0.0
 - Klasa B maska 255.255.0.0
 - Klasa C maska 255.255.255.0

Wyznaczanie adresu podsieci

Iloczyn logiczny

0	AND	0	0
0	AND	1	0
1	AND	0	0
1	AND	1	1

Bitwise Boolean AND Example

	Decimal	Binary
Address	150.150.2.1	1001 0110 1001 0110 0000 0010 0000 0001
Mask	255.255.255.0	1111 1111 1111 1111 1111 0000 0000
Result of AND	150.150.2.0	1001 0110 1001 0110 0000 0010 0000 0000

Wynikiem iloczynu jest adres podsieci

Przykład maskowania

- Zastosowanie maski 255.255.255.0 dla adresu klasy B:
 - NNNNNNNNNNNNNNNNSSSSSSSS.HHHHHHHH
 - N network, S subnet, H host
- Spowodowało to powstanie 2^8 podsieci
- Np. dla sieci 150.150.0.0 i maski
 255.255.255.0, powstaną następujące podsieci:
 - 150.150.0.0, 150.150.1.0, 150.150.2.0 itd. aż do 150.150.255.0
 - w każdej z powyższych podsieci można zaadresować 2^8-2 hostów

Sieć IP - adresowanie z użyciem maski

150.150.2.0 Hannah 150.150.1.0 150.150.2.1 150.150.2.2 Frame Relav 150.150.5.0 150.150.6.0 150.150.3.0 150.150.4.0 Vinnie Wendell 150.150.4.2

Figure 12-3 Same Network Topology, Using One IP Network, with Six Subnets

 Można uzyskać bardziej efektywne wykorzystanie adresów

Zapis maski w postaci prefiksowej

- 150.150.2.1/24 odpowiada zapisowi
 150.150.2.1 255.255.255.0
- 255.255.255.0 binarnie: 11111111 11111111
 1111111 00000000
- /24 (czyt. slash 24) ilość cyfr 1 w masce, dla maski np. 255.255.255.0 wynosi 24

Adres rozgłoszeniowy

Table 4-16 Calculating the Broadcast Address: Address 130.4.102.1, Mask 255.255.255.0

Address	130.4.102.1	1000 0010 0000 0100 0110 0110 0000 0001
Mask	255.255.255.0	1111 1111 1111 1111 1111 0000 0000
AND Result	130.4.102.0	1000 0010 0000 0100 0110 0110 0000 0000
Broadcast	130.4.102.255	1000 0010 0000 0100 0110 0110 1111 1111

Table 4-17 Calculating the Broadcast Address: Address 199.1.1.100, Mask 255.255.255.0

Address	199.1.1.100	1100 0111 0000 0001 0000 0001 0110 0100
Mask	255.255.255.0	1111 1111 1111 1111 1111 0000 0000
AND Result	199.1.1.0	1100 0111 0000 0001 0000 0001 0000 0000
Broadcast	199.1.1.255	1100 0111 0000 0001 0000 0001 1111 1111

- Adres rozgłoszeniowy (ang. broadcast) służy do wykonywania transmisji do wszystkich hostów w danej podsieci
- Aby określić adres broadcast należy zamienić bity określające adresy hostów na

Trudniejsze maski

Decimal and Binary Values in a Single Octet of a Valid Subnet Mask

Decimal	Binary
0	0000 0000
128	1000 0000
192	1100 0000
224	1110 0000
240	1111 0000
248	1111 1000
252	1111 1100
254	1111 1110
255	1111 1111

- Nie składają się z oktetów będących samymi jedynkami oraz zerami
- Maska ma np. postać: 255.255.255.192

Przykład maskowania

- Zastosujmy maskę 255.255.255.192 (/26) dla adresu klasy C:
 - NNNNNNNNNNNNNNNNNNNNNNSSHHHHHH
 - Uzyskaliśmy 2^2 podsieci
 - Np. dla 193.0.96.0/26 uzyskamy podsieci:
 193.0.96.0, 193.0.96.64, 193.0.96.128, 193.0.96.192
 - W każdej podsieci można zaadresować 2^6 2 hostów

Adres rozgłoszeniowy dla maski /22

Table 12-18 Calculating Broadcast Address, Address 130.4.102.1, Mask 255.255.252.0

Address	130.4.102.1	1000 0010 0000 0100 0110 0110 0000 0001
Mask	255.255.252.0	1111 1111 1111 1111 1111 1100 0000 0000
AND result	130.4.100.0	1000 0010 0000 0100 0110 0100 0000 0000
Broadcast	130.4.103.255	1000 0010 0000 0100 0110 0111 1111 1111

 Jest to przykład wyznaczania adresu podsieci i adresu rozgłoszeniowego dla "trudniejszej" maski

Maski - ćwiczenie

TABLE 3-5

Binary to decimal conversion for byte values.

Bit Position	8	7	6	5	4	3	2	1
Decimal Value	128	64	32	16	8	4	2	1

- Dla ułatwienia: aby zamienić liczbę 0010 1011 na postać dziesiętna należy zsumować: 32+8+2+1=43
- Jaki będzie adres podsieci, oraz adres rozgłoszeniowy dla
 - adresu 167.88.99.5/27
 - adresu 167.88.99.70/27
- Ile hostów można zaadresować w każdej z ww. podsieci?

Kalkulator podsieci

Ipcalc dla linuksa ułatwia obliczenia:

```
ipcalc 167.88.99.5/27
Address: 167.88.99.5
Netmask: 255.255.255.224 = 27
HostMin: 167.88.99.0/27
HostMax: 167.88.99.30

Retwork: 167.88.99.30
HostMax: 167.88.99.31

Indicates: 167.88.99.5/27
Indicates: 167.88.99.1
Indicates: 167.88.99.30
Indicates: 167.88.99.31
Indicates: 167.88.99.31
Indicates: 167.88.99.5/27
Indicates: 167.88.99.31
Indicates: 167.88.99.5/27
Indicates: 167.88.99.5/27
Indicates: 167.88.99.30
Indicates: 167.88.99.30
Indicates: 167.88.99.30
Indicates: 167.88.99.30
Indicates: 167.88.99.30
Indicates: 167.88.99.31
In
```

Routing IP

- Routing (rutowanie, trasowanie) to decyzja dotycząca skierowania pakietu IP do routera lub komputera podejmowana zazwyczaj w oparciu o docelowy adres IP
- Jądro systemu operacyjnego podejmuje ww. decyzję na podstawie wpisu do tablicy FIB (ang. Forwarding Information Base)
- Można także wpływać na trasy uwzględniając m.in. źródłowy adres IP (tzw. policy routing)
 - W linuksie pakiet iproute2 (polecenie ip)

Ruting statyczny

- Ruter podejmuje decyzję o skierowaniu pakietu na podstawie ręcznego (statycznego) wpisu do tablicy rutingu
- Dodawanie statyczne wpisu do tablicy rutingu:
 - route add -net 192.168.0.0/24 gw cob.mimuw.edu.pl
- Wynik polecenia route:

Destination	Gateway	Genmask	Flags	Metric	Ref	Use Iface
192.168.0.0	cob.mimuw.edu.p	255.255.255.0	υG	0	0	0 eth0
10.1.20.0	*	255.255.255.0	U	0	0	0 eth1
localnet	*	255.255.255.0	U	0	0	0 eth0
default	spider1.mimuw.e	0.0.0.0	UG	0	0	0 eth0

Adres 0.0.0.0/0

• Wynik polecenia route -n (netstat -rn):

kernel IP rout	ing table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.0.0	10.1.1.9	255.255.255.0	UG	0	0	0	eth0
10.1.20.0	0.0.0.0	255.255.255.0	U	0	0	0	eth1
10.1.1.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
0.0.0.0	10.1.1.31	0.0.0.0	UG	0	0	0	eth0

Routing - przykład

Ruting dynamiczny

Router A Advertising Routes Learned from Router C

- Nie trzeba dodawać wpisów ręcznie
- Informacje o dostępnych podsieciach są rozgłaszane (służą do tego odpowiednie protokoły

Tablica rutingu rutera B

Router B Routing Table Before Receiving the Update Shown in Figure 5-14

Group		Next-Hop Router	Metric	Comments
162.11.7.0	EO		О	This is a directly connected route.
162.11.8.0	SO	_	0	This is a directly connected route.

Router B Routing Table After Receiving the Update Shown in Figure 5-14

Group	Outgoing Interface	Next-Hop Router	Metric	Comments
162.11.5.0	SO	162.11.8.1	1	Learned from Router A, so next-hop is Router A.
162.11.7.0	EO	_	0	This is a directly connected route.
162.11.8.0	SO	_	0	This is a directly connected route.
162.11.9.0	SO	162.11.8.1	1	Learned from Router A, so next-hop is Router A.
162.11.10.0	SO	162.11.8.1	2	This one was learned from Router A, which learned it from Router C.

VLSM (Variable Lenght Subnet Masking)

- Można stosować różne maski dla danej klasy adresu
- Umożliwia lepsze wykorzystanie adresów

Sumaryzacja rozgłaszanych podsieci

 Można rozgłaszać wiele podsieci rozgłaszając tylko jedną sieć "klasową"

CIDR (Clasless Interdomain Routing)

 CIDR jest uogólnieniem VLSM, rozgłaszana sieć nie musi uwzględniać klas (maska /22)