Keyless Door Locking System Project Design Specification and Requirements Document

Version 1.1

Tuesday, October 25, 2016

By

Zaher Ayyach, Rabie Ayyach, Adam Motola, Tuna Poanessa, Tsegaslase Mebrahtu

A. Background

Keys are small and very easy to lose. They are also a hassle to use in the dark because the key hole cannot be seen and insertion of the key is not easy in such a situation. To top that off if they are not physically present in the same location as the door it is not possible to unlock it.

According to IKEA, if the key were to be eliminated from the equation we could save an average of 6 minutes in the morning, which is the amount of time we spend looking for our keys. We could also solve other problems like allowing our kids into the house even when we are not at home, or giving access to a delivery person so they can place our package inside the house among other things. The possibilities are endless.

B. Needs Statement

Today, to lock or unlock doors either we are using physical keys or cards. The limitations of the current practice is that if a key or card is lost, the door can't be unlocked. According to IKEA, We spend an average of 6 minutes in the morning looking for our keys. We often lose items because of "a breakdown at the interface of attention and memory" says Daniel L. Schacter, a psychology professor at Harvard University. A solution must be found to alleviate some of the burden of looking for lost items in particular keys which cost the average person roughly 36 hours per year.

C. Objective

In order to solve the problems presented by the locking mechanism used in most residences today we propose to create a keyless door locking system which is cheap, durable, and easy to use.

D. Requirements

a. <u>Hardware Requirements</u>

Requirement	Priority	Justification
Use a two layer PCB that is	Must	External constraint
between 9 and 900 cm ²		
Have a PCB with no side of the	Must	External constraint
board being less than 2 cm or		
more than 30 cm.		
Have Digital or Analogue	Must	External constraint
processor		
Have the processor on the PCB	Must	External constraint
Have one or more sensors	Must	External constraint
Have one or more actuators	Must	External constraint
Must use components that can	Must	External constraint
be hand soldered or easily		
soldered in a crude reflow oven.		
Must have at least 25% surface	Must	External constraint
mount components		

b. Functional Requirements

Requirement	Priority	Justification
Unlock and lock without the use	Must	The purpose of the project is to
of a key		eliminate the use of a key to
		unlock and lock doors
Only permit access to authorized	Must	If anyone can unlock the door
users		then it wouldn't be safe
Stay locked if power is lost to	Must	It wouldn't be safe otherwise
system		
Allow entry in case of power	Must	No one would buy it otherwise
outage		because they would get locked
		out in a power outage
Provide a log of when the lock	Should	To allow the owner to check
was locked or unlocked		when someone entered the
		house
Provide a log of who locked/	should	To allow the owner to check
unlocked the door		who entered/left the house
Be connected to the internet	May	So it can be integrated with
		surveillance systems
Notify user if lock has been	May	To allow the user to know that
physically damaged		the lock has been compromised
Have an EDs that illuminates	May	To visually alert the user that the
when door is opened		door is unlocked

c. Performance Requirements

Requirement	Priority	Justification
Successfully lock and unlock	Must	No one would want to use it
99.5% of the time		otherwise
Can receive multiple lock and	Must	In case the user accidently sends
unlock requests from authorized		too many requests
users without glitching		

d. Economic and Marketing Requirements

Requirement	Priority	Justification
Must be less than \$70 per unit	Must	Otherwise it would be too
		expensive / to increase sales
Should not use non-standard	Must	They are more expensive to buy
components		and are harder to find in case a
		repair is needed

e. Power Requirements

Requirement	Priority	Justification
Be connected to the power grid	Must	So that the user doesn't have to
		worry about forgetting to
		replace the battery and getting
		locked out
Have a battery in case of a	May	One possible solution for entry
power outage		when there is a power outage

f. Maintainability

Requirement	Priority	Justification
Can be replaced by a novice in	Must	In case the unit becomes
20 minutes		defective
Have Code and engineering	Must	External constraint
documentation		
Allows replacement of worn	Should	So the user doesn't have to buy
parts		a new unit every time something
		goes wrong
Can be maintained with readily	Should	Otherwise it would be more
available tools		costly to the user

g. Operational Environment

Requirement	Priority	Justification
Can operate from a temperature	Must	So that it can work in all
of -40° to 70°		weather conditions

h. <u>Usability</u>

Requirement	Priority	Justification
User can figure out how to use	Must	If it is too complicated people
the device in 5 minutes by		won't buy it
reading the instructions the first		
time around		