Problem 1

The discrete Fourier transform. Let V and W be two n-dimensional vector spaces over a field F, and $T:V\to W$ a linear transformation.

- (a) Define when we say that T is invertible.
- (b) Suppose V and W are finite dimensional. Show that TFAE:
 - 1. T is invertible.
 - 2. T maps a basis \mathscr{B} of V to a basis $\mathscr{C} = \{T(v); v \in \mathscr{B}\}$ for W.
- (c) Let N > 1, be an integer, and consider the set $\mathbb{Z}_N = \{0, 1, 2, \dots, N 1\}$, with the addition and multipication is defined modulo N. Inside the vector space $\mathscr{H} = \mathbb{C}(\mathbb{Z}_N)$ of all functions from \mathbb{Z}_N to \mathbb{C} , consider the subset

$$\mathscr{D} = \{ \delta_t : t \in \mathbb{Z}_N \},\,$$

where δ_t is the delta function at t, $\delta_t(s) = 1$ if s = t, and 0 otherwise, and consider the subset

$$\mathscr{E} = \{e_w : w \in \mathbb{Z}_N\},\$$

where e_w is the function given by

$$e_w(s) = \frac{1}{\sqrt{N}} e^{\frac{2\pi i}{N} w s}, \quad s \in \mathbb{Z}_N.$$

- 1. Show that \mathscr{E} is a basis for \mathscr{H} . You can do it using the following facts.
 - The dimenson of \mathcal{H} is N.
 - The elements of $\mathscr E$ are linearly independent. To show this you can use the fact that on $\mathscr H$ we have the so called "inner product"

$$\langle,\rangle: \mathscr{H} \times \mathscr{H} \to \mathbb{C},$$

given by

$$\langle f, g \rangle = \sum_{s \in \mathbb{Z}_N} f(s) \overline{g(s)},$$

where $\overline{g(s)}$ is the complex conjugate of g(s). Then we have,

Fact. The collection \mathscr{E} satisfies

$$\langle e_w, e_{w'} \rangle = \begin{cases} 1, & w = w' \\ 0, & w \neq w'. \end{cases}$$

In particular, using the fact that \langle,\rangle is linear in the first coordinate, i.e., $\langle f+f',g\rangle=\langle f,g\rangle+\langle f',g\rangle$ and $\langle af,g\rangle=a\langle f,g\rangle$ for every $f,f'\in\mathscr{H},a\in\mathbb{C}$, it is easy to show the linear independency of \mathscr{E} .

2. The operator $F_N: \mathcal{H} \to \mathcal{H}$ that is given by

$$F_N[\delta_t] = e_{-t}$$

is called the discrete Fourier transform modulo N. For $f \in \mathcal{H}$, denote $\hat{f} = F_N(f)$. Show that

1. we have the formula

$$\hat{f}(w) = \frac{1}{\sqrt{N}} \sum_{t \in \mathbb{Z}_N} f(t) e^{-\frac{2\pi i}{N} wt},$$

for $w \in \mathbb{Z}_N$

3. The operator F_N is invertible.

Problem 2

Diagonalization. Let T be an operator on a vector space V over a field \mathbb{F} .

- (a) We say that
 - 1. a scalar $\lambda \in \mathbb{F}$ is an eigenvalue of T if
 - 2. a vector $v \in V, v \neq 0$ is an eigenvector, with eigenvalue $\lambda \in \mathbb{F}$, if
- (b) Show that if $\mathscr{B} = \{v_1, v_2, \dots, v_n\}$ is an ordered basis of V, consisting of eigenvectors of T, then there exists scalars $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{F}$ such that

$$[T]_{\mathscr{B}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

Remark. The process (if possible) of finding a basis \mathscr{B} of V consisting of eigenvectors of T, and the corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, is called a diagonalization of T.

- (c) Consider the space $\mathscr{H} = \mathbb{C}(\mathbb{Z}_3)$.
 - 1. we have an operator called time shift

$$\begin{cases} L: \mathcal{H} \to \mathcal{H}, \\ L[f](t) = f(t-1), \end{cases}$$

for every $f \in \mathcal{H}, t \in \mathbb{Z}_3$. Find a diagonalization of L, and write the corresponding diagonal matrix

$$D = [L]_{\mathscr{B}}.$$

2. in addition, we have an operator called frequency shift

$$\begin{cases} M: \mathcal{H} \to \mathcal{H}, \\ M[f](t) = e^{\frac{2\pi i}{3}t} f(t), \end{cases}$$

for every $f \in \mathcal{H}, t \in \mathbb{Z}_3$. Find a diagonalization of M, and write the corresponding diagonal matrix

$$D = [M]_{\mathscr{B}}.$$

Problem 3

Heisenberg's commutation relations. consider the vector space $\mathscr{H} = \mathbb{C}(\mathbb{Z}_N)$.

(a) For every $\tau \in \mathbb{Z}_N$, we have an operator $L_\tau : \mathcal{H} \to \mathcal{H}$, called time shift, given by

$$L_{\tau}[f](t) =$$

and, for every $\omega \in \mathbb{Z}_N$, we have an operator $M_\omega : \mathcal{H} \to \mathcal{H}$, called frequency shift, given by

$$M_{\omega}[f](t) =$$

- (b) Show that $M_{\omega} \circ L_{\tau} = e^{-\frac{2\pi i}{N}\omega\tau} L_{\tau} \circ M_{\omega}$, for every $\tau, \omega \in \mathbb{Z}_N$.
- (c) Show that for every $\tau, \omega \in \mathbb{Z}_N$,

$$L_{\tau} \circ F_N = F_N \circ M_{\tau},$$

2

where F_N is the discrete Fourier transform modulo N described in Problem 1.