Логистическая регрессиия

Методы анализа данных

Москва, МФТИ, 2020

План

- Линейные модели
- Логистическая регрессия
- Обучение логистической регрессии
- Практические советы при обучении

1D разделимость

Feature 1

2D разделимость

3D разделимость

Модель для линейной регрессии

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x^j$$
 (1)

Обозначения:

- w₀ свободный коэффициент
- х^j признаки
- w_i веса признаков

$$a(x) = \sum_{j=1}^{d+1} w_j x^j = w \cdot x \tag{2}$$

Модель для логистической регрессии

Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x^j$$
 (3)

Данная прямая задает нормаль для разделяющей гиперпоскости Логистическая регрессия

$$h(x) = a(x) > 0 \tag{4}$$

Данная гиперпоскость разделяет классы

- ullet $a(x) > 0 \Rightarrow x \in K_0$ нулевой класс
- ullet $a(x) \leq 0 \Rightarrow x \in K_1$ первый первый класс

Пример линейной модели для классифиикации

Стоит ли пойти работать в Яндекс?

• Зарплата: 100000

• Расстояние до дома: 20км

ДМС: Да

• Я ленивый?: Да

Пример линейной модели для классифиикации

Стоит ли пойти работать в Яндекс?

- Зарплата: 100000
- Расстояние до дома: 20км
- ДМС: Да
- Я ленивый?: Да

Построим модель (свободный член в начале)

- x = (1, 100000, 20, 1, 1) вектор объекта
- $\mathbf{w} = (20, 2/10000, -1, 30, -45)$ вектор весов
- a(x) = 20 + 20 20 + 30 45 = 5 > 0

Вердикт - идем!

Обучение логистической регрессии

Введем метки классов:

- $y_i = 1$ класс K_1
- $y_i = -1$ класс K_0

Отступ (не путать с зазором в SVM)

$$M(x_i) = y_i \langle x_i, w \rangle \tag{5}$$

Отступ положителен если мы верно классифицировалии x_i и отрицателен если нет

Эмперический риск

Эмперический риск - сумма ошибок классификации

$$Q(w) = \sum_{i=1}^{m} [a(x_i, w) \neq y_i] = \sum_{i=1}^{m} [M(x_i) < 0] \to \min_{w}$$
 (6)

Цель обучения - минимизировать эмпирический риск на обучающей выборке. Минимизация эмперического риска - сложная комбинаторная задача.

Аппроксимация эмперического риска

В случае логистической регрессии $\left[M<0
ight] \leq \log_2(1+e^{-M})$

Функция потерь логистической регрессии

$$L_{log}(X, \vec{y}, \vec{w}) = \sum_{i=1}^{\ell} \log(1 + \exp^{-y_i \langle x_i, w \rangle})$$
 (7)

Данная функция минимизируется различными алгоритмами градиентного спуска, в том чиисле стохастического (SGD)

Обзор разных алгоритмов оптимизации https://ruder.io/optimizing-gradient-descent/

Регуляризация

$$\arg\min_{\vec{w}} L_2(X, \vec{y}, \vec{w}) = \arg\min_{\vec{w}} \left(C \sum_{i=1}^{\ell} \log(1 + \exp^{-y_i \langle x_i, w \rangle}) + |\vec{w}|^2 \right) \quad (8)$$

$$\arg\min_{\vec{w}} L_1(X, \vec{y}, \vec{w}) = \arg\min_{\vec{w}} \left(C \sum_{i=1}^{\ell} \log(1 + \exp^{-y_i \langle x_i, w \rangle}) + |\vec{w}| \right) \quad (9)$$

Сигмоида как оценка вероятности

Хотелось бы использовать данную оценку вероятности для i-го объекта

$$p_i = \sigma(\langle x_i, w \rangle) = \frac{1}{1 + \exp^{-\langle x_i, w \rangle}}$$
 (10)

Связь с линейной регрессией

Задача обучения линейной регрессии сводится к задаче минимизации ошибки:

$$\min_{w} \frac{1}{\ell} \sum_{j=1}^{\ell} (\langle x_i, w \rangle - y_i)^2$$
 (11)

- ullet $p_i = \sigma(\langle x_i, w
 angle) \in [0,1]$ вероятность
- $log(rac{p_i}{1-p_i}) \in \mathbb{R}$ логарифм отношения вероятностей, его и будем предсказывать линейной регрессией

Таким образом

$$log(\frac{p_i}{1-p_i}) = \langle x_i, w \rangle \tag{12}$$

Отсюда получаем $p_i = \sigma(\langle x_i, w \rangle)$

Сигмоида как оценка вероятности

Оценка вероятности для і-го объекта

$$p_i = \sigma(\langle x_i, w \rangle) = \frac{1}{1 + \exp^{-\langle x_i, w \rangle}}$$
 (13)

Функция правдоподобия

$$P(\vec{y} \mid X, \vec{w}) = \prod_{i=1}^{\ell} P(y = y_i \mid \vec{x_i}, \vec{w})$$
 (14)

LogLoss

Пусть p_i - вероятность принадлежности в 1 класс Пусть $y_i \in 0,1$ Функция правдоподобия через схему Бернулли

$$P(\vec{y} \mid X, \vec{w}) = \prod_{i=1}^{\ell} P(y = y_i \mid \vec{x_i}, \vec{w}) = \prod_{i=1}^{\ell} p_i^{y_i} (1 - p_i)^{1 - y_i} \to max \quad (15)$$

Прологорифмируем и получим LogLoss

$$logloss = \sum_{i=1}^{\ell} \left(-y_i log(p_i) - (1 - y_i) log(1 - p_i) \right) \rightarrow min \qquad (16)$$

Рассматорим задачу из одного признакаазом

Пускай объекты разделены на классы следующим образом

На данной бинарной задаче

Обучим логистическую регрессию

Получим вероятности

И прологорифмируем их

График логлосса для одного объекта (0 класс)

LogLoss в случае нескольких классов

Бинарная классификация

$$logloss = \frac{1}{\ell} \sum_{i=1}^{\ell} \left(-y_i log(p_i) - (1 - y_i) log(1 - p_i) \right)$$
 (17)

Многоклассовая классификация

$$logloss = \frac{1}{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{K} (-y_{i,j} log(p_{i,j}))$$
 (18)

Логистическая регрессия - подготовка

- Заполнение NaN
- StandardScaler/MinMaxScaler (повышает точность и ускоряет)
- Замена кат признаков на OHE, TargetEncoding (LabelEncoding обычно плохо работает, так как у меток нет порядка)
 Но иногда можно, с учетом смысла:
 education = {'No':0, 'School': 1, 'University': 2, 'PhD': 3} лы

Логистическая регрессия - подготовка

 Признаки с нелинейной зависимостью можно разбить на интервалы

```
df['temp_good'] = df.loc[(df['temp'] < 37)&(df['temp'] > 36), 'temp'].fillna(0)
df['temp_bad'] = df.loc[~((df['temp'] < 37)&(df['temp'] > 36)), 'temp'].fillna(0)
df.fillna(0)
```

	temp	temp_good	temp_bad
0	34.5	0.0	34.5
1	39.0	0.0	39.0
2	36.6	36.6	0.0
3	36.1	36.1	0.0
4	35.0	0.0	35.0
5	41.0	0.0	41.0

Логистическая регрессия - интерпретация результатов

- Коэффициенты признаков
- Вклад признаков (помноженный на значения признаков)

eli5: https://github.com/TeamHG-Memex/eli5

y=0 top features		y=1 top features		y=2 top features	
Weight?	Feature	Weight?	Feature	Weight?	Feature
+0.772	keith	+1.096	graphics	+0.948	rutgers
+0.656	okcforum	+0.637	software	+0.817	christians
+0.625	mathew	+0.609	image	+0.754	church
+0.593	atheism	+0.586	host	+0.734	clh
+0.574	writes	+0.573	nntp	+0.681	christ
+0.541	psuvm	+0.529	42	+0.610	athos
+0.523	wingate	+0.510	tiff	+0.534	christian
+0.511	umd	+0.506	looking	+0.528	1993
+0.504	benedikt	+0.501	files	+0.495	petch
+0.501	islamic	+0.481	ftp	+0.482	love
+0.482	psu	+0.473	card	+0.450	bassili
10732 more positive		12994 ma	ore positive	+0.424	geneva
16774 more negative		14512 mc	re negative	12074 n	nore positive
-0.475	organization	-0.472	jesus	15432 more negative	
-0.480	christ	-0.506	writes	-0.463	tin
-0.548	lines	-0.539	okcforum	-0.549	software
-0.554	thanks	-0.584	keith	-0.550	newsreader
-0.554	christians	-0.606	church	-0.566	article
-0.591	graphics	-0.642	christian	-0.793	posting
-0.764	rutgers	-0.674	bible	-0.904	graphics
-0.844	subject	-0.754	people	-0.960	nntp
-0.901	<bias></bias>	-0.822	god	-1.013	host

Shap: https://github.com/slundberg/shap

Логистическая регрессия - плюсы

- Легко интерпретируема "на пальцах"
- Дает ответ на вопрос "почему ответ 0"/"что сделать чтобы ответ стал 1"
- Быстрое предсказание
- Просто реализуется на любом языке, многие корпоративные пакеты ее содержат
- Можно быстро найти зависимые признаки (научиться двумя признаками предсказывать третий)

Логистическая регрессия - минусы

- Требует подготовки данных
- Как правило, не лучший результат
- В случае линейной регрессии нужен постпроцессинг (отрицательные продажи)