Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A)=2$, tutte le altre $rk(A)=3$;
	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora det A = 0 Se A è una matrice simmetrica allora A² è simmetrica → M simmetrica se M → M^T → M^T . M^T .
	 Se A e una manne a sumirente a de sumirente a para a sumirente a se m → m → m · m · m · m · m · m · m · m ·
	 A³ - A = I₂ → A(A² - I) = I ⇒ (A² - I) = A⁻¹ quindi AA⁻¹ = I (A è invertibile) A³ - A = 0 → A(A² - I) = 0 ⇒ A = 0, A² - I = 0 ⇒ A = 0, A² = I quindi A è invertibile se A² = I altrimenti se A = 0 non è invertibile
	$\bullet A^3-A=\begin{pmatrix}1&1\\2&3\end{pmatrix} \rightarrow A(A^2-I)=\begin{pmatrix}1&1\\2&3\end{pmatrix} \Rightarrow A=\begin{pmatrix}1&1\\2&3\end{pmatrix}, A^2-I=\begin{pmatrix}1&1\\2&3\end{pmatrix} \Rightarrow A^2=\begin{pmatrix}1&1\\2&3\end{pmatrix}+I=\begin{pmatrix}1&1\\2&3\end{pmatrix}$
Esercizio 3	$\begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix}$ poi calcolo il determinante delle due A e uso il teorema di Binét: $\det \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$
	1, $\det \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix} = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
	• A è invertibile, allora $\det(A) > 0 \to \text{Falso}$, per Binét A è invertibile se $\det A \neq 0$ (quindi può essere anche negativo).
	• Se A è B sono invertibili, AB è invertibile \to Vero, AB è invertibile se $\det(AB) \neq 0$ e per Binét $\det(AB) = \det A \cdot \det B \neq 0$
	• Se $A^{13} = B$ e B è invertibile, allora A è invertibile \rightarrow Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile
	• I vettori colonna di $A \in M_n(\mathbb{R})$ generano $\mathbb{R}^n \to A$ è invertibile perchè visto che i vettori sono base di \mathbb{R}^n allora la matrice ha rango $n(\text{massimo})$ e quindi è invertibile
	• Se $A \in M_{3,4}(\mathbb{R})$ ha due minori distinti di ordine 3 con determinante nullo, $\operatorname{rk}(A) < 3 \to \operatorname{vero}$, sappiamo che esistono solo due sottomatrici 3×3 quindi se entrambe hanno determinante nullo allora $\operatorname{rk}(A) < 3$

Qui ci andranno gli esercizi già fatti

	$\sqrt{1} = 1$	$\sqrt{4} = 2$	$\sqrt{9} = 3$	$\sqrt{16} = 4$	$\sqrt{25} = 5$
	$\sqrt{36} = 6$	$\sqrt{49} = 7$	$\sqrt{64} = 8$	$\sqrt{81} = 9$	$\sqrt{100} = 10$
	$\sqrt{121} = 11$	$\sqrt{144} = 12$	$\sqrt{169} = 13$	$\sqrt{196} = 14$	$\sqrt{225} = 15$
	$\sqrt{256} = 16$	$\sqrt{289} = 17$	$\sqrt{324} = 18$	$\sqrt{361} = 19$	$\sqrt{400} = 20$
	- II	$\sqrt{484} = 22$	$\sqrt{529} = 23$	$\sqrt{576} = 24$	$\sqrt{625} = 25$
	$\sqrt{676} = 26$	$\sqrt{729} = 27$	$\sqrt{784} = 28$	$\sqrt{841} = 29$	$\sqrt{900} = 30$
J					