Algorithmique et Programmation 3 TP 3: Racine Carrée et La Bifurcation de Feigenbaum

12/11/2020

1 Racine Carrée

On peut calculer la racine carrée d'un nombre A par l'algorithme suivant :

Algorithm 1: Racine carrée

- ı Choisir au hasard un nombre X
- 2 while $\varepsilon < |X \sqrt{A}|$ do
- $\mathbf{3} \quad | \quad X = \frac{1}{2} \left(X + \frac{A}{X} \right)$
- 4 Retourner X
- 1. Écrivez cet algorithme.
- 2. Comparez l'algorithme avec la fonction sqrt de Python. Ensuite, calculez la racine carrée de tous les entiers entre 1 et 1 milliard et voyez le nombre d'itérations utilisées. Attention, pour utiliser la fonction sqrt il faut d'abord importer la librairie math: from math import *.
- 3. Pourquoi est-ce que cet algorithme fonctionne?

2 La bifurcation de Feigenbaum

Considérez la suite suivante,

$$x_{n+1} = 1 - \mu x_n^2, \ x_0 \in [0, 1]$$
(1)

La suite $(x_n)_n$ représente l'évolution de la taille (en proportion) d'une population biologique au fil des générations. Selon la valeur de μ l'équation (1) peut générer une suite convergente, une suite soumise à oscillations ou une suite chaotique.

- 1. Écrivez une fonction qui calcule la suite de Feigenbaum étant donné μ et x_0 .
- 2. À partir du même point initial x_0 , étudiez les différentes suites obtenues quand on considère
 - (a) $0 \le \mu \le 0.75$
 - (b) $0.75 \le \mu \le 1.25$
 - (c) $1.25 \le \mu \le 1.368$
 - (d) $1.368 \le \mu \le 1.401$
 - (e) $1.401 <= \mu <= 2$

Pour cela, pensez à utiliser la librairie matplotlib.