GICH_APR<n>, Active Priorities Registers, n = 0 - 3

The GICH APR<n> characteristics are:

Purpose

These registers track which preemption levels are active in the virtual CPU interface, and indicate the current active priority. Corresponding bits are set to 1 in this register when an interrupt is acknowledged, based on <u>GICH_LR<n></u>.Priority, and the least significant bit set is cleared on EOI.

Configuration

This register is present only when FEAT_GICv3_LEGACY is implemented and EL2 is implemented. Otherwise, direct accesses to GICH_APR<n> are res0.

This register is available when the GIC implementation supports interrupt virtualization.

The number of registers required depends on how many bits are implemented in <u>GICH LR<n></u>.Priority:

- When 5 priority bits are implemented, 1 register is required (GICH APR0).
- When 6 priority bits are implemented, 2 registers are required (GICH APR0, GICH APR1).
- When 7 priority bits are implemented, 4 registers are required (GICH APR0, GICH APR1, GICH APR2, GICH APR3).

Unimplemented registers are RAZ/WI.

Attributes

GICH APR<n> is a 32-bit register.

Field descriptions

P < x >, bit [x], for x = 31 to 0

Active priorities. Possible values of each bit are:

P <x></x>	Meaning
0b0	There is no interrupt active at
	the priority corresponding to that bit.
0b1	There is an interrupt active at the priority corresponding to that bit.

The correspondence between priorities and bits depends on the number of bits of priority that are implemented.

If 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority groups, and the active state of these priorities are held in GICH APRO in the bits corresponding to Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority groups, and:

- The active state of priorities 0 124 are held in GICH_APR0 in the bits corresponding to 0:Priority[6:2].
- The active state of priorities 128 252 are held in GICH_APR1 in the bits corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority groups, and:

- The active state of priorities 0 62 are held in GICH_APR0 in the bits corresponding to 00:Priority[5:1].
- The active state of priorities 64 126 are held in GICH_APR1 in the bits corresponding to 01:Priority[5:1].
- The active state of priorities 128 190 are held in GICH_APR2 in the bits corresponding to 10:Priority[5:1].
- The active state of priorities 192 254 are held in GICH_APR3 in the bits corresponding to 11:Priority[5:1].

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing GICH_APR<n>

These registers are used only when System register access is not enabled. When System register access is enabled the following registers provide equivalent functionality:

- In AArch64:
 - For Group 0, ICH APOR<n> EL2.
 - For Group 1, ICH AP1R<n> EL2.
- In AArch32:
 - For Group 0, <u>ICH APOR<n></u>.
 - For Group 1, ICH AP1R<n>.

GICH_APR<n> can be accessed through the memory-mapped interfaces:

Component	Offset	Instance	
GIC Virtual	0x00F0 + (4	GICH_APR <n></n>	
interface control	* n)		

This interface is accessible as follows:

- When GICD CTLR.DS == 0, accesses to this register are **RW**.
- When an access is Secure, accesses to this register are **RW**.
- When an access is Non-secure, accesses to this register are **RW**.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	Registers	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.