TOPOLOGÍA I. Examen del Tema 2

- Grado en Matemáticas -Curso 2011/12

Nombre:

Razonar todas las respuestas

- 1. Sea (\mathbb{R}, τ_{in}) para p = 0, (\mathbb{R}, τ_{ex}) para q = 1 y la aplicación $f : (\mathbb{R}, \tau_{in}) \to (\mathbb{R}, \tau_{ex})$, $f(x) = x^2$. Estudiar si f es o no continua y probad que f es continua en x = 1.
- 2. Construir explícitamente un homeomorfismo entre el conjunto $X = \{(0, y); y \in \mathbb{R}\}$ y el dado por $Y = \{(x, x^2); -1 < x < 1\}$.
- 3. Sea un espacio topológico (X,τ) y $A=\{(x,x)\in X\times X;x\in X\}$. Establecer un homeomorfismo entre (X,τ) y $(A,(\tau\times\tau)_{|A})$. Estudiar cuándo A es abierto en $(X\times X,\tau\times\tau)$.
- 4. Sea X = [-1,2] y $A = [-1,0] \cup [1,2]$. En X se define la relación de equivalencia:

$$x R y$$
 si
$$\begin{cases} & \text{son iguales, } \delta \\ & x, y \in A \end{cases}$$

Probar que X/R es homeomorfo a \mathbb{S}^1 .

Soluciones

- 1. La aplicación no es continua. Por ejemplo, el conjunto $O = \{4\}$ es abierto en (\mathbb{R}, τ_{ex}) , pero $f^{-1}(O) = \{-2, 2\}$ no pertenece a τ_{in} .
 - Como $f(1) = 1^2 = 1$, tomamos bases de entornos de 1 en (\mathbb{R}, τ_{in}) , a saber, $\beta_1 = \{V = \{0,1\}\}$ y base de entornos de 1 en (\mathbb{R}, τ_{ex}) , esto es, $\beta_1' = \{V' = \mathbb{R}\}$. Es evidente que $f(V) = \{0,1\}$ está incluido en V' y por tanto, f es continua en x = 1.
- 2. El giro $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ dado por $\phi(x,y) = (-y,x)$ es un homeomorfismo y por tanto, $f_{|X}: X \to f(X) = \mathbb{R} \times \{0\}$ es un homeomorfismo.

El conjunto $\mathbb{R} \times \{0\}$ es homeomorfo a \mathbb{R} mediante $\psi(x,0) = x$.

La recta real \mathbb{R} es homeomorfa a (-1,1) mediante $\eta(x) = x/(1+|x|)$.

El conjunto Y es el grafo de la función x^2 y por tanto, es homeomorfo a su dominio, es decir, a (-1,1). El homeomorfismo es $\alpha(x,y)=x$.

El homeomorfismo pedido es por tanto, $f = \alpha^{-1} \circ \eta \circ \psi \circ \phi$, es decir,

$$f(0,y) = (-\frac{y}{1+|y|}, \frac{y^2}{(1+|y|)^2}.$$

3. Se define la aplicación $f:A\to X$ mediante f(x,x)=x. Esta aplicación es biyectiva y su inversa es g(x)=(x,x). La aplicación f es continua, ya que $f=p_{|A}$, donde $p:(X\times X,\tau\times\tau)\to (X,\tau)$ es la primera proyección, p(x,y)=x. La aplicación g es continua. Para ello, se considera $h:X\to X\times X$ mediante h(x)=(x,x). Esta aplicación es continua ya que al componer con las proyecciones queda $p\circ h=1_X$. Como Im(h)=A, entonces $h:(X,\tau)\to (A,(\tau\times\tau)_{|A})$ es continua. Pero esta aplicación es justamente g.

Si el conjunto A es abierto, entonces todo punto suyo es interior a A. Sea $x \in X$. Entonces existen $O, O' \in \tau$ tales que $(x, x) \in O \times O' \subset A$. Tomamos $G = O \cap O'$. Entonces $(x, x) \in G \times G \subset A$. Si G tiene más de un elemento, a saber, $y \in G$, $x \neq y$, entonces $(x, y) \in G \times G \subset A$: contradicción. Por tanto, $G = \{x\}$. Esto prueba que $\{x\}$ es un conjunto abierto. Ya que esto se hace para todo $x \in X$, se concluye que si A es abierto, entonces la topología τ es la discreta. El recíproco es inmediato, es decir, si τ es la topología discreta,

entonces $\tau \times \tau$ es la topología discreta en $X \times X$, luego todo subconjunto suyo es abierto, en particular, el conjunto A.

Se concluye entonces con que A es abierto en $(X \times X; \tau \times \tau)$ si y sólo si τ es la topología discreta.

4. Las clases de equivalencia son [0] = A y $[x] = \{x\}$ si $x \notin A$.

Se define $f: X \to \mathbb{S}^1$ mediante

$$f(x) = \begin{cases} (1,0) & \text{si } x \in [-1,0] \\ (\cos(2\pi x), \sin(2\pi x)) & \text{si } x \in [0,1] \\ (1,0) & \text{si } x \in [1,2] \end{cases}$$

Ya que f(x)=(1,0)=f(0)=f(1) para $x\in A$, entonces xR_fy si y sólo si xRy.

La aplicación f es continua pues la restricción a los cerrados de X dados por A y [0,1] es continua: en el primer caso, la aplicación es constante; en el segundo es la aplicación $x \longmapsto (\cos(2\pi x), \sin(2\pi x))$, que ya es continua vista de \mathbb{R} a \mathbb{S}^1 .

La aplicación es sobreyectiva, pues $f(X) = f([0,1]) = \mathbb{S}^1$.

El conjunto X es un intervalo cerrado, luego es un conjunto cerrado y acotado en \mathbb{R} ; la imagen, \mathbb{S}^1 , está incluido en \mathbb{R}^2 . Por tanto, f es cerrada.

Como conclusión, f es una identificación, probamos que $X/R \cong \mathbb{S}^1$.