PATENT ABSTRACTS OF JAPAN

(11)Publication number:

58-056236

HO4-3013

(22)Date of filing:

(43)Date of publication of application: 02.04.1983

(51)Int.Cl.

G11B 7/08 // G01B 11/00

(21)Application number: 56-152086

28.09.1981

(71)Applicant: HITACHI LTD

(72)Inventor: NAKAMURA SHIGERU

TSUNODA YOSHITO SHIGEMATSU KAZUO KAKU TOSHIMITSU MAEDA TAKESHI KATO TAKESHI

(54) OPTICAL TRACK POSITION DETECTOR

(57)Abstract:

PURPOSE: To obtain a stable track shift signal, by distributing the two photodetecting parts of a photodetector within a region where the 0-order and 1-order beams of the reflected luminous flux overlap to each other and detecting a change of intensity which is caused by the interference of the 0-order and ± 1 - order beams.

CONSTITUTION: The luminous flux delivered from a semiconductor laser 1 is focused on the information recording surface 5 on a disk 4. With irradiation of a light spot 9, the reflected light sent from a track 8 is received by a photodetector which has two photodetecting parts 7a and 7b set symmetrically to each other in the track direction and then undergoes the differential amplification 10. Thus a track shift signal is obtained. The parts 7a and 7b are provided at a region 13a where the 0-order and +1-order diffracted beams 11 and 12a overlap to each other and at a region 13b where the 0-order and -1-order diffracted beams 11 and 12b overlap to each other respectively. As a result, only the interference effect between the 0-order and ± 1 -order diffracted beams is detected beams is detected. This makes it possible to detect a stable track shift signal although the track pitch is smaller than the diameter of the light spot.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

9日本国特許庁(JP)

⑩ 特 許 出 願 公 告

許 公 報(B2)

平4-3013

®Int. Cl. 5

識別記号 庁内整理番号 2900公告 平成4年(1992)1月21日

G 11 B 7/09

C 2106-5D

発明の数 2 (全7頁)

❷発明の名称		光学置	的卜	ラック位間	量検	出装置およびそれを用いた光学的記録再生装	
				-	②特	頁	昭56-152086
					❷出 ▮	I	昭56(1981) 9月28日 @昭58(1983) 4月2日
@発	明	者	ф.	村		滋	東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製
							作所中央研究所内
個発	明	者	角	田	莪	人	東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製
							作所中央研究所内
個発	明	者	重	松	和	男	東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製
							作所中央研究所内
@発	明	者	賀	来.	敏	光	東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製
							作所中央研究所内
@発	明	者	前	田	武	志	東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製
							作所中央研究所内
@発	明	者	加	蕼		到	東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製
							作所中央研究所内
创出	頣	人	株式	会社	日立製作	所	東京都千代田区神田駿河台 4 丁目 6 番地
<i>7</i> 10	理	人	弁理	注 ,	小川 围	男	外1名
審	査	官	Ξ	友	英	=	
多参	考 文	煽	特開	- 昭:	52-93223	(J	JP,A) 特開 昭52-129246 (JP,A)

1

切特許請求の範囲

1 光源と、上記光源からの光束を収束作用を有 する光学素子を介して所定の記録面上に設けられ たトラックへ収束スポットとして導く第1の光学 手段と、上記記録面からの反射光束を検出する光 5 2 上記受光部の配置される領域は、上記反射光 検出器と、上記光学素子を介して得られる上記反 射光束を上記光源からの光束と分離して上記光検 出器へ導く第2の光学手段と、上記光検出器の出 力信号によつて上配収束スポットと上記トラック とのずれを検出する手段とを備え、上記光検出器 10 だけ離れた 2点をそれぞれ中心とする直径Aの 2 は上記トラツクの長さ方向を対称軸として対称な 位置にそれぞれ離間して配置された少なくとも2 個の受光部を有し、該受光部は上配反射光東中の 上記トラツクを横切る方向に生じる 1 次回折光と O次回折光とが重なる領域を上配トラックを横切 15 はsinψι=λ/Pを満足する角、N.A.は上配光学

る両方向に上記反射光束の光軸の光検出器面上で のズレ量だけ平行移動して狭くした領域内に配置 されていることを特徴とする光学的トラック位置 検出装置。

東の光軸を中心とする直径Aの円が上配中心から 上記トラツクを横切る両方向に

$$\left(\frac{\tan(\psi_1-\theta)}{2\tan\theta}+\frac{1}{2}\right)$$
 A

つの円にそれぞれ重なる領域を上記両方向に上記 反射光束の光軸ズレ量だけ平行移動して狭くした 領域である、但し、A上記反射光束の光検出器面 上での直径、 θ は $\sin\theta$ =N.A.を満足する角、 ψ_1

3

索子の開口数、λは上記光束の波長、Pは上記ト ラックのピッチであることを特徴とする特許請求 の範囲第1項記載の光学的トラック位置検出装 骨。

3 光源と、複数のトラツクを有するデイスク状 5 の情報記録媒体と、上記光源からの光束を収束作 用を有する光学素子を介して上記情報記録媒体上 の上記トラックへ収束スポットとして導く第1の 光学手段と、上記情報記録媒体からの反射光束を れる上記反射光束を上記光源からの光束と分離し て上記光検出器へ導く第2の光学手段と、上記光 検出器の出力信号によつて上記収束スポットと上 記トラツクとのずれを検出する手段と、該検出手 段からの出力に応じて、上配収束スポットが上配 15 トラックを追従するように上記収束スポットの位 置を制御するトラツキング手段とを備え、上記光 検出器は上記トラックの長さ方向を対称軸として 対称な位置にそれぞれ離間して配置された少なく 東中の上記トラックを横切る方向に生じる1次回 折光と0次回折光とが重なる領域を上記トラック を横切る両方向に上記反射光束の光軸の光検出器 面上でのズレ量だけ平行移動して狭くした領域内 に配置されると共に、上記検出手段は上記2個の 25 -60702号、特開昭52-19246号がある。 受光部の出力信号の差から上記ずれを検出するこ とを特徴とする光学的記録再生装置。

4 上記受光部の配置される領域は、上配反射光 東の光軸を中心とする直径Aの円が上記中心から 上記トラツクを横切る両方向に

$$(\frac{\tan(\psi_1-\theta)}{2\tan\theta}+\frac{1}{2})$$
 A

だけ離れた2点をそれぞれ中心とする直径Aの2 つの円にそれぞれ重なる領域を上配両方向に上記 領域である、但し、Aは上記反射光束の光検出器 面上での直径、 θ は $sin\theta$ =N.A.を満足する角、 ψιはsinψι = λ/Pを満足する角、N.A.は上記光 学素子の開口数、入は上記光束の波長、Pは上記 求の範囲第3項記載の光学的記録再生装置。

5 上記第2の光学手段は、上記光源と上記光学 素子との間の光路中に配置され、上記反射光束を 該光源からの光束と分離して取り出す手段と、こ

の手段によつて取り出された該反射光束を2つの 光束に分離する手段と、この手段によつて分離さ れた光束の一方から焦点ずれの信号を検出する手 段とを有し、上記光検出器が上記分離手段によつ て分離された光束の他方を受光するよう配置され ていることを特徴とする特許請求の範囲第3項又 は第4項記載の光学的記録再生装置。

発明の詳細な説明

本発明は、光デイスク装置など、情報を光学的 検出する光検出器と、上記光学素子を介して得ら 10 に配録及び再生する装置に用いられ、情報配録媒 体上に分布した所定のトラック位置と光スポット 位置とのズレを検出するための光学的トラツク位 置検出装置およびそれを用いた光学的記録再生装 置に関する。

従来、光デイスク装置などで、光スポットの中 心位置と案内溝(トラツク)の中心位置とのズレ は、トラツクからの反射光の光強度分布のピーク 位置が、トラックズレ方向に動くことを用いて、 反射光束を等分する2分割光検出器の差動出力信 とも2個の受光部を有し、該受光部は上記反射光 20 号をトラックズレ検出信号としていた。そこで、 検出感度が高く検出誤差が少ない安定なトラック ズレ検出を行なうために、光検出器の2分割暗線 幅を小さくして必要な検出感度を得ていた。

この種の装置に関連するものとして、特開昭49

しかし、情報配録の高密度化にともない、トラ ツクピッチが小さくなると、近接のトラックにも 光スポツトが照射され、トラツクのくりかえしが あたかも回折格子として働き、トラツクずれによ 30 つて 0次回折光と± 1次回折光との干渉効果著し

そこで、トラツクズレによる光強度分布変化 は、従来のピーク位置が動く変化よりも、0次と 土1次回折光の重なる領域内での干渉による強度 反射光束の光軸ズレ量だけ平行移動して狭くした 35 変化が著しくなり、従来の光検出器形状では安定 なトラックズレ検出を行なうとが困難となつた。

また、トラツキング制御のために光スポットを 動かすと、これに伴なつて光検出器面上の反射光 束も振られ、これ振れ分がトラックずれ信号に混 トラツクのピツチであることを特徴とする特許請 40 入し、正確なトラツクズレ検出を行なうことが困 難であつた。

> 本発明は、情報記録媒体上の複数のトラツクが 回折格子の作用をすることを用いて、光検出器の 受光部を配置する領域を、トラックピッチと波長

と絞りこみレンズの開口数で定め、該光検出器で 0次と±1次回折光の干渉による強度変化を検出 して、安定なトラックズレ信号を得ることのでき る光学的トラック位置検出装置を提供することを 目的とする。

本発明は、トラツクずれ検出用の光検出器が、 ① 0次回折光と±1次回折光の干渉領域内に配 置される

- ② トラック方向に対し、軸対称な形状で、
- ③ トラック追従時や、デイスクの傾きによつて 10 生じる反射光の光軸ずれの最大移動量分だけ、 上記干渉領域を狭くした領域内に配置したこと を特徴とするものである。

本発明によれば、トラック追従時やデイスクの 少させることができ、もつて常に安定かつ正確な トラツキング制御を行なうことができる。

以下、本発明を実施例を参照して詳細に説明す る。

第1図は、本発明による光学的トラック位置検 20 出装置の概略構成を示す図である。半導体レーザ 1から出た光束は、レンズ2によつて平行光とな りハーフミラー6及び絞り込みレンズ3を通つて デイスク4上の情報記録面5に収束される。情報 ポツト 9 がトラツク 8 を照射するとトラツクから の反射光に回折パターンが発生する。この反射光 は再び、絞り込みレンズ3を通つて平行光とな り、ハーフミラー6によつて反射され、トラック を左右にはさむ如くトラック方向(図では、紙面 30 に垂直な方向)に対して対称に配置された 2個の 受光部7a, 7bを有する光検出器によつて受光 され電気信号として検出される。受光部 7 a, 7 bからの2つの出力は差動増幅器10に供給さ れ、その差を検出することによりトラックズレ信 35 号が得られる。このトラックズレ信号に応じて、 光スポット9をトラック方向に垂直の方向に移動 させることにより、光スポットがトラックの中心 を追従するよう制御する。なお、光スポットを移 動させる手段としては、例えば絞り込みレンズの 40 周りに取りつけたアクチュエータにトラツクズレ 信号を供給して、絞り込みレンズだけを移動させ る手段や、光学ヘッド全体を移動させる手段など 公知の手段で構成できる。

ここで、本発明によるトラツクズレ信号の検出 原理について説明する。

本発明は、トラツクズレ信号を、複数のトラツ クがあたかも回折格子の作用をなくすことによる 5 0次回折光と±1次回折光の干渉効果を用いて検 出するものである。第2図は0次及び土1次回折 光の出方を説明するトラツク方向に垂直な断面図

$$\frac{\lambda}{2N, A, \sqrt{1-(N, A,)^2}} < P \le \frac{\lambda}{N, A, A}$$

の場合を示す。但し、Pはトラック8の間隔(ト ラツクピッチ)、N.A.は絞り込みレンズ3の開口 数、λは光の波長である。11,12a,12b 傾きによつて生じる反射光の光軸ずれの影響を減 15 は各々0次、+1次、-1次の回折光の領域を示 し、土1次回折の光軸は0次回折光の光軸0。と Psint = 入をみたす角小をなし、各々の回折光 は各々の中心光軸と絞りこみレンズ3のN.A.= sin hetaで決まる立体角hetaの領域内に回折する。第3 図は、第2図の上方からレンズ3の開口平面を見 た図である。±1次回折光領域 12a, 12bは 本来楕円形となるものであるが、実際上は中心を 0+1、0-1とする円形と考えて充分である。斜線で 示される領域13aと13bは、それぞれ11と 記録面5にはトラツク8が設けられており、光ス 25 12 a, 11と12 bの重なる領域を示す。ここ で、領域13a13bとの間隔D、0oと0+1及び 0.と0-1の間隔について説明する。レンズ3の開 口14の直径をA、レンズ3の焦点距離をfとす ると、第2図から明らかなように、間隔Dは、

> $\frac{D}{2} = f \tan(\psi_1 - \theta)$ と表わされ、焦点距離 f は、 $ftan\theta = \frac{A}{2}$ であるから、

 $\frac{D}{2} = \frac{A \tan(\psi_1 - \theta)}{2 \tan \theta}$ となる。0₀と0₊₁及び0₀と 0-1の間隔は、第3図から明らかなように、とも に

ク

ナ

ク

で

あるので、

結局、

$$(\frac{\tan(\psi_1-\theta)}{2\tan\theta}+\frac{1}{2})$$
 A

で与えられる。特にP=λ/N.A.のときにはψ1 $=\theta$ よつてD=0となり領域13aと13bとは 接する。レンズ3を通過した反射光は平行光とな つて、光検出器に入射するので、光検出器面上で

の光(以下、検出光と称す)は第3図と同じ分布 を示し、円14中3つの部分に分かれており、ト ラツクズレにより13aと13bの光強度が変化 する。なお、図中の16は検出光の光軸を通るト 上の光強度分布を示した図で、トラツクズレによ り実線から破線に示すごとく13aと13bの領 域の光強度分布にアンパランスが生ずる。したが つて、トラックズレ信号を得るためには、第3図 に示した13aと13bの領域内に光検出器を配 10 の実線はトラツクズレがない場合の光強度分布を 置して、0次回折光と1次回折光の干渉による光 強度変化を検出する。なお、上配領域外に広がる 光検出器を用いた場合には、デイスク反射面の微 細構造による雑音や、トラツク溝形状の非対称性 による誤差などがトラックズレ信号に混入し、安 15 分布がずれることは言うまでもない。 定なトラックずれ検出はできない。なお、

$$P \le \frac{\lambda}{2N.A.\sqrt{1-(N.A.)^2}}$$
 の場合には、0

次回折光と土1次回折光の重なり合う領域はな 20

また、P> \ N.A.の場合は、± 1 次回折光の 回折角がむがむく0となり第5図のごとく、±1 次回折光12aと12bとが重なる領域12ab が生じるので、領域12abは除外する。 ψ_1 <0 25 よる光強度変化のみが検出できる。領域13a', を考慮すれば、0。と0+1及び0。と0-1の間隔は、や

はり
$$(\frac{\tan(\psi_1-\theta)}{2\tan\theta}+\frac{1}{2})$$
 Aで与えられる。

以上の説明から、本発明で用いられる光検出器 は、トラック方向に対して対称に配置された少な 30 くとも2個の受光部を有し、該受光部は、検出光 の光軸を中心とする直径Aの円が上記中心からト ラック方向に垂直な両方向に

$$(\frac{\tan(\psi_1-\theta)}{2\tan\theta}+\frac{1}{2})$$
 A

だけ離れた2点中心とする直径Aの2個の円にそ れぞれ重なる領域であつて、上記3個の円が重な る領域を含まない領域に配置される。

本発明によれば、光検出器は0次回折光と+1 クピツチが光スポツト径より小さい場合でも安定 なトラツクズレ信号を検出することができる。

本発明を、光デイスク装置などに用いる場合、 トラックズレ制御手段によつては、検出光が光軸

ずれを起すことがある。このような例として、検 出したトラツクズレ信号に応じて絞り込みレンズ 3のみをトラツクのズレ方向に移動する手段が知 られている。第6図の実線で示す円14は第3図 ラツク方向軸を示す。第4図は、第3図の線15 5 で示した検出光と同じものである。トラツクズレ を補正するためレンズ3が線15に沿つて右側に ε ずれると検出光軸 0 は0 に示すごと ぐ $\delta = 2\varepsilon$ ず れ、検出光は破線14′で示すごとくなる。第7 図は第6図の線15上の光強度分布を示す。図中 示し、破線は絞り込みレンズを右側にεだけ移動 したことによつて検出光がるだけ右にずれた場合

8

このような検出光の光軸ズレを起すトラックズ レ制御手段を用いる場合には、第3図において斜 線で示した領域13aと13bが、両側から検出 光の光軸ズレ量δだけ平行移動し狭くなり、第6 図に斜線で示した領域13a、13bになること は容易に理解できる。

の光強度分布を示す。絞り込みレンズが左側に移

動した場合の説明は省略するが、左方向に検出光

したがつて、領域 1 3a', 1 3b'内に、光検出 器の受光部を配置すれば、検出光の光軸ずれにか かわらず、常に0次回折光と1次回折光の干渉に 13bは、第6図から明らかなように、検出光の 光軸を中心とする直径Aの円が該中心からトラツ ク方向に垂直な両方向に

$$(\frac{\tan(\psi_1-\theta)}{2\tan\theta}+\frac{1}{2})$$
 A

だけ離れた2点中心とする直径Aの2個の円にそ れぞれ重なる領域を、上記両方向に検出光の光軸 ズレ量δだけ平行移動して狭くした領域である。

第8図は本発明の光学的トラック位置検出装置 35 を備えた光学的情報再生装置の一実施例を示す図 であり、第9図は第8図の装置で用いられる光検 出器の一例を示す図である。第8図の説明におい て、第1図と重複する説明は省略する。16は半 導体レーザーから出射されたレーザ光の偏平な光 次回折光の干渉効果だけを検出するので、トラツ 40 強度分布を等方的な光強度分布に変換するための プリズム、6′はデイスクからの反射光を取り出 すための偏光ピームスプリッタ、17はλ/4 板、18は偏光ビームスプリツタ6′からの光を 分離するためのハーフプリズム、19は焦点ずれ

(5)

特公 平 4-3013

信号及び情報信号を検出する検出手段である。

検出手段19は本発明に直接関係がないので、 その詳細な説明は省略するが、かかる検出手段は 公知であり、例えば、シリンドリカルレンズと 4 分割の光検出器を用いて構成することができる。 5 離だけ離れて配置された光検出器を用いた。 検出手段19によって検出された焦点ずれ信号 を、例えばレンズ3の周囲に設けられたアクチュ エータ(図示せず)に供給し、レンズ3を矢印2 1の方向に移動させることにより自動焦点制御が を検出するための光検出器で、その詳細は第9図 に示す。光検出器 2 0 a, 2 0 bからの 2 つの出 力は差動増幅器 10によつて差分され、トラック ズレ信号が検出される。この信号を例えはレンズ 3の周囲に設けたアクチュエータ (図示せず) に 15 供給し、レンズ3を矢印22の方向に移動させる ことによりトラツキング制御が行なわれる。

レーザ光の波長 λを0.83μπ、トラツクピツチ Pを1.6μm、レンズ3の開口数N.A.を0.5、検出 136の間隔DはD⇒0.3㎜である。さらにトラ ツクズレεが最大0.2mmp-p (ε=±0.1mm)とする と、検出光の最大ズレるはる=2ε±0.2㎜である から、検出光の軸ズレを考慮した検出器配置領域 13a'と13b'第9図に示す実線 α , β で囲まれ25器の一例を示す図である。 た領域である。よつて第8図の装置で用いる光検

出器20a,20bとしては、それぞれ第9図の 実線 α , β で囲まれた領域内に入る検出器ならば 何んでもよいが、本実施例では第9図の斜線で示 すように0.5㎜×2.0㎜の2個の受光面が2.3㎜の距

10

以上説明したごとく本発明によれば、光検出器 は0次回折光と±1次回折光の干渉効果だけを検 出するので、トラツクピツチが光スポット径より 小さい場合でも安定なトラツクズレ信号を検出で 行なわれる。20aと20bはトラツクズレ信号 10 きるので、高密度の情報記録際再生が可能とな る。また、検出光の光軸ずれがあつても安定なト ラツクズレ信号を検出でき、安定なトラツキング 制御を行なうことができる。

図面の簡単な説明

第1図は、本発明の光学的トラック位置検出装 置の概略構成を示す図、第2図は、0次と±1次 の回折先の出方を説明する図、第3図はトラック ズレ検出光の検出に用いる領域の一例を説明する 図、第4図は、検出光の光強度分布の変化を説明 面上の検出光束径 φを4.5 cm とすると、13 a と 20 する図、第5 図及び第6 図は、それぞれ検出光の 検出に用いる領域の他の例を説明する図、第7図 は光軸ズレによる検出光の光強度分布の変化を説 明する図、第8図は本発明装置を備えた光学的情 報再生装置の一実施例を示す図、第9図は光検出

> 第 17

(6)

寺公 平 4-3013

第 3 図

第 5 包

第 4 図

第 4 回

第 8 図

(7)

特公 平 4-3013

