计组week2

题目一

(1)

工艺良率=1/(1+(缺陷参数×晶圆面积 $/2))^2$

$$A:1/(1+(0.020\times3.14\times(15/2)2/(84\times2)))^2=0.96$$

$$B:1/(1+(0.031\times3.14\times(20/2)2/(100\times2)))^2=0.91$$

(2)

单位价格=晶圆成本/(工艺良率×晶片数量)

A:单位价格=12/(0.96×84)=0.15元

B:单位价格=15/(0.89×100) =0.17元

题目二

不妨设百分比直接对应秒数方便计算

(1)

如果只优化加法指令,使其速度提升 25%,则加法指令的时间变为 70x 0.8 = 56 ,乘法指令和跳转指令的时间分别为 21 和 9,分别计算占比:

加法: 56/86

乘法: 21/86

跳转: 9/86

因此,新的平均运行时间是原来的86/100=86%。

(2)

设乘法优化x%

则
$$21 imes rac{1}{1+x\%} + 70 + 9 = 86$$

得到: x=200, 即提升200%

(3)

设乘法优化x%

则
$$9 imes rac{1}{1+x\%} + 70 + 21 = 86$$

显然x无正解, 所以只提升跳转指令无法降低到 (1) 的水平

题目三

(1)

对于 C1 CPU: 执行时间 = CPI × 指令条数 / 时钟频率 = $2 \times 5 \times 10^9/5 \times 10^9 = 2$ 秒

对于 C2 CPU: 执行时间 = CPI × 指令条数 / 时钟频率 = $1.8 \times 3.3 \times 10^9/3 \times 10^9 = 1.98$ 秒

从上述计算可以看出,尽管 C1 的时钟频率比 C2 更高,但在相同的基准程序下,C2 的执行时间更短,即 C2 的性能更好。

(2)

对于 C1 CPU: $MIPS = 指令条数/(执行时间×10^6) = 5×10^9/(2×10^6) = 2500 MIPS$

对于 C2 CPU: MIPS = 指令条数/(执行时间× 10^6) = $3.3 \times 10^9/(1.98 \times 106) = 1666.67 MIPS$

从上述计算可以看出,尽管 C1 的 MIPS 比 C2 更高,但在相同的基准程序下,C2 的性能更好,这表明 MIPS 不是比较不同 CPU 性能的可靠指标。

(3)

因为不同的 CPU指令集、结构、优化程度等方面不同。

例如,一些 CPU 采用的指令集在运行程序时需要的指令数更少。

因此,不同的 CPU 上执行相同的程序,其指令条数可能会有所不同

题目四

PFLOPS指每秒 10^{15} 次浮点运算,所以最后答案数量级为 10^{16}

所以选D

实验题1

						② 添加题目
ID	状态	題名	难度	通过/提交	Tag	总分
46	•	上升沿检测	Medium	579 / 635	无	10
47	•	双边沿检测	Medium	559 / 590	无	10
48	•	计数器	Medium	580 / 593	无	10
49	•	十进制计数器	Medium	569 / 581	无	10
50	•	带使能的计数器	Hard	567 / 582	无	10
51	•	秒表	Hard	402 / 443	时序逻辑	10
52	•	移位寄存器	Easy	441 / 444	无	10
53	•	查找表	Easy	396 / 418	无	10