EE 112 (MBP): HW 1 (January 2017)

- 1. Construct truth tables for $X_1 = \overline{A}B + A\overline{B}$ and $X_2 = \overline{AB}(A+B)$, and show that they are equivalent.
- 2. Write the Boolean expression for X. Simplify the expression and determine the conditions for which X=0.

3. Write the Boolean expression for X, and construct its truth table.

4. (a) Show that $\overline{A} + AB = \overline{A} + B$. (b) Using this identity, simplify the expression for the output X in the figure. What function is this circuit performing?

- 5. Implement the function $Y = \overline{A}(B+C) + D$ using (a) only NAND gates, (b) only NOR gates.
- 6. Implement the function in Q 5 using (i) a 16-to-1 MUX, (ii) an 8-to-1 MUX.
- 7. Minimise the functions Y_1 , Y_2 , Y_3 given by the following K-maps.

∖AB						
Cl	$D \setminus$	00	01	11	10	
	00	1	1	1	1	
	01	1	X	0	0	
	11	0	0	X	1	
	10	0	1	1	0	
	Y_1					

∖ AB					
CI	$\sqrt{0}$	00	01	11	10
	00	X	0	1	1
	01	1	0	0	1
	11	0	0	0	0
	10	1	0	1	1
			Y_2		

\ AB							
(C/	00	01	11	10		
	0	X	0	1	1		
	1	1	0	0	1		

 Y_3