实验六 中断控制器 8259A

实验目的

掌握中断的工作原理。

理解和掌握 8259A 中断控制器的单片使用,单级中断、多级中断嵌套时的工作原理和编程应用方法,并能综合应用于各种领域。

了解共阴极数码管显示数字的原理。

实验内容

将8259中断控制器与CPU相连,IRQ2作为单级中断输入,如图6-1所示。 实现8259控制中断,IR2实现计数加并在数码管上显示结果,0~9循环显示。

图6-1 8259中断控制器连线

实验学时

本实验内容共用2学时,一次实验完成。

实验步骤

1. 硬件连接

(1) 共阴极七段显示数码管,如图 6-2 所示。 其显示 16 进制数字形的编码,如下所示:

显示十六进制数	7段代码	用十六进制表示	
	hgfedcba		
0	00111111	3F	
1	00000110	06	a
2	01011011	5B	f
3	01001111	4F	
4	01100110	66	,—,
5	01101101	6D	e c
6	01111101	7D	' h
7	00000111	07	d O
8	01111111	7F	图 6-2 数码管显示接线
9	01100111	67	
A	01110111	77	
В	01111100	7C	
C	00111001	39	
D	01011110	79	
F	01110001	71	

(2) 使用 8255 并行接口实现数码管的显示。用 8255 的 PA 和 PC 分别作为数码管的段码 (A \sim H) 和位码 (BIT1 \sim BIT6)。实验中,8255 和七段数码管的硬件连线如图 6-3 所示。

图6-3 数码管显示接线

(3) 按照图 6-1,连接 8259 中断控制器的各引脚。

2. 软件编程

运行 A86 软件,根据实验内容的描述,编写实验程序。

- (1) 新建 8259(文件目录)工程的*.project 文件。
- (2) 添加 **8259**(文件名)的*. asm 文件, 屏幕显示源文件内容, 编写符合实验内容要求的 8259 功能代码。
- (3)选"启动调试",在状态栏显示程序编译、连接、传送整个过程的相关信息,汇编、连接、传送无误的话光标移至源文件中的 START(程序的起始位置) 所在行。
- (4) 在"调试"菜单中点击"开始调试",进入调试环境,根据自己的要求选择调试操作,观察调试过程中,指令执行情况,包括各寄存器及数据区内容的变化等。选择"继续"操作,就是连续运行程序。
 - (5) 运行程序,未按动脉冲按钮时,无显示; 按动 AN2 显示"0",再按一次,数字加"1"显示; 连续按动,数据在"0~9"循环。

实验思考问题

实验中使用的是"六位共阴极数码管",改动实验连线和程序,实现六位共阴极数码管的动态显示?

实验报告要求

- (1)本次实验报告要求写实验内容的硬件连线(拍照)、8259 程序代码、实验结果等,记录调试过程中遇到的典型问题以及解决方法。
- (2) 画出执行的流程图,分为两个流程图,主程序流程图和中断服务子程序流程图。