Ongoing MINEX Report Card

Template Generator 4L

Last Updated: October 9, 2015

Participant Details

Company: Beijing Hisign Technology Co., Ltd.

Date Submitted: 2/27/2014 Date Validated: 9/1/2014 Date Completed: 9/15/2014

Library	Size (bytes)	MD5 Checksum	
libminex.dll	13964800	e880b896d596d56e930f96c69cd2e537	
libminex.lib	2124	7fea9917b41ac1a27143a8b4f72d1d37	

NOTE: NIST plans to decertify Windows-based libraries in MINEX III.

Compliance Test Results

The following presents **PIV compliance** results per the criteria detailed in NIST Special Publication 800-76-2: Biometric Specifications for Personal Identity Verification.

PIV: FAIL

- All certified matchers must be able to match templates from this template generator with an FNMR_{FMR}(0.01) ≤ 0.01 using two fingers (4.5.2.2-3). ✓
- Minutia density plots derived from generated templates do not exhibit a periodic, grid-like, or geometric structure without reasonable justification.

 (See Section 3.4)

Notes

- This report will be updated as new matching algorithms and template generators pass the compliance test. These updates will not change the PASS/FAIL decision above.
- NIST reserves the right to decertify a template generator if it later discovers the template generator violates PIV specifications in some previously undetected way.

Contents

Pa	articipant Details	_		
Co	ompliance Test Results	1		
N	Notes			
1	Introduction	3		
2	Methodology 2.1 Dataset			
	2.2 Accuracy Metrics2.3 Interoperability			
3	Results	5		
	3.1 Single Finger			
4	Performance Tables	12		
5	References	20		
L	ist of Figures			
	1 MINEX Interoperability Test Setup 2 DET (Single Finger) 3 DET (Left Index) 4 DET (Right Index) 5 FNMR @ FMR = 0.01 (Single Finger) 6 DET (Two Finger) 7 FNMR @ FMR = 0.01 (Two Finger) 8 Minutia Counts 9 2D Minutia density plots.			
L	ist of Tables			
	1 Single finger			
	2 Right index finger			
	3 Left index finger			
	4 Two finger	18		

1 Introduction

Testing is performed at a NIST facility. Each participant's submission is validated by NIST before undergoing full testing to ensure it operates correctly. If the matcher passes the validation procedure, it is then used to compare standard fingerprint templates. Performance is assessed against templates created by a template generator submitted by the participant as well as templates created by other compliant template generators.

2 Methodology

Testing is performed at a NIST facility. Each participant's submission is validated by NIST before undergoing full testing to ensure it operates correctly. If the template generator passes the validation procedure, performance is assessed by using MINEX compliant matching algorithms to compare templates created by the template generator. These matchers were submitted to the ongoing MINEX program by various participants.

2.1 Dataset

Testing is performed over a single dataset of sequestered fingerprint images. The images were collected by U.S. Visit at ports of entry into the United States. They consist of Live-scan plain impressions of left and right index fingers. WSQ [1] compression was applied to all images at a ratio of 15:1. The most recent capture of each subject was treated as the authentication sample, and the next most recent as the enrolled sample.

The dataset was divided into $123\,962$ mated and $124\,994$ non-mated subject pairings. Since both left and right index fingerprints are available for each subject, this provides $247\,924$ mated and $249\,988$ nonmated single-finger comparisons (after database consolidation). This also means that when left and right index fingers are fused at the score level [2, 7], the sets condense to $123\,962$ mated and $124\,994$ nonmated comparison scores.

2.2 Accuracy Metrics

Core matching accuracy is presented in the form of Detection Error Tradeoff (DET) plots [6], which show the trade-off between the False Match Rate (FMR) and the False Non-Match Rate (FNMR) as a decision threshold is adjusted. Formally, let m_i (i=1...M) be the ith mated comparison score, and n_j (j=1...N) the jth non-mated comparison score. Then the statistics are

$$FMR(\tau) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}\{n_j \ge \tau\},\tag{1}$$

$$FNMR(\tau) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\{m_i < \tau\}.$$
 (2)

where $\mathbb{1}\{A\}$ is the indicator [3] of event A. Equations 1 and 2 define the curve parametrically with the decision threshold, τ , as the free parameter. In some figures and tables, FNMR is presented as a function of FMR. This relationship is determined by

$$FNMR_{FMR}(\alpha) = \min_{\tau} \{ FNMR(\tau) \mid FMR(\tau) \le \alpha \},$$
 (3)

which reads as the smallest FNMR that can be achieved while maintaining an FMR less than or equal to α , the targeted FMR. This method of relating the two error statistics ensures FNMR is well-defined for all $0 \le \alpha \le 1$. It also imposes a natural penalty on matching algorithms that produce heavily discretized scores.

Figure 1: MINEX Interoperability Test Setup

2.3 Interoperability

Interoperability is tested in a manner similar to *Scenario 1* from the MINEX Evaluation Report [4] (see Figure 1). An enrolment template is prepared using submission X. Submission Y is used to prepare the authentication template and perform the match. The authentication template is always prepared by the same submission used to compare the templates. However, enrolment templates need not originate from the same submission. When they do, we refer to as "native" mode.

3 Results

This section details the performance of template generator 4L. Sections 3.1 and 3.2 present accuracy results for single finger and two finger matching respectively. Section 3.3 presents information on the number of minutia the template generator finds in the samples.

3.1 Single Finger

Singe finger comparison results show the combined results for left and right index comparisons. For reference, NIST Special Publication 800-76-2 requires that the template generator achieve an accuracy of FNMR_{FMR} $(0.01) \le 0.01$ against all compliant matchers.

Figure 2: Single finger DET statistics for template generator 4L. Each box shows the distribution of FNMRs at a fixed FMR across different matchers. The whisker ends show the minimum and maximum FNMRs. The brown curve shows the DET curve when the matcher and template generators were submitted by the same participant. The orange DET curve shows pooled performance when all matchers compare templates created by 4L.

Right Index Finger

Figure 3: Right Index Finger DET statistics for template generator 4L. Each box shows the distribution of FNMRs at a fixed FMR across different matchers. The whisker ends show the minimum and maximum FNMRs. The brown curve shows the DET curve when the matcher and template generators were submitted by the same participant. The orange DET curve shows pooled performance when all matchers use templates created by 4L.

Left Index Finger

Figure 4: Left Index Finger DET statistics for template generator 4L. Each box shows the distribution of FNMRs at a fixed FMR across different template generators. The brown curve shows the DET curve when the matcher and template generators were submitted by the same participant. The orange DET curve shows pooled performance when all matchers use templates created by 4L.

Single Finger

Figure 5: Single Finger FNMRs at FMR=0.0001 when MINEX compliant matchers compare templates created by template generator 4L. Each box represents uncertainty about the true FNMR. The box edges mark the 50% confidence intervals while the whiskers mark the 90% confindence intervals. The numbers on the right show the actual computed FNMRs.

3.2 Two Finger

This section presents accuracy when different MINEX compliant matchers compare templates created by template generator 4L. Two finger fusion is achieved by averaging the scores for left and right index fingers for each person.

Figure 6: Two Finger DET statistics for template generator 4L. Each box shows the distribution of FNMRs at a fixed FMR across different matchers. The whisker ends show the minimum and maximum FNMRs. The brown curve shows the DET curve when the matcher and template generators were submitted by the same participant. The orange DET curve shows pooled performance when all matchers use templates created by 4L. Score-level fusion is achieved by averaging the scores for left and right index fingers.

Figure 7: Two Finger FNMR at FMR=0.01 when different matchers compare templates created by template generator 4L. Each box represents uncertainty about the true FNMR. The box edges mark the 50% confidence intervals while the whiskers mark the 90% confindence intervals. The numbers on the right show the actual computed FNMRs. Score-level fusion is achieved by averaging the scores for left and right index fingers.

3.3 Minutia Counts

This section presents information relating to the number of minutia the template generator finds in fingerprint images. The relative number of minutia found in common fingerprint images has been shown to influence matching outcomes [8, 5].

Figure 8: Probability distribution of the number of minutia the template generator found in the samples. The average probability distribution shows the combined distribution of minutia counts across all compliant template generators.

10

3.4 Minutia Density Plots

Minutia density plots show where the template generator tends to find minutia in fingerprint images. They are 2D histograms where the degree of illumination at an (x,y) coordinate indicates how frequently the software located a minutiae point at that location. The purpose of showing minutia density plots is to determine whether the template generator exhibits regional preference when locating minutia.

NIST has determined that this template generator produces minutia exhibiting a periodic structure. This is an indication that the template generator is departing from the minutia placement requirements of INCITS 378, clause 5. The expected pattern is a locally uniform distribution, and the appearance of local structure indicates systematic non-conformance with the standard. Given such behavior negatively affects interoperability[8], developers are asked to determine the cause of such behavior – for example, as an artifact of a tilebased image processing algorithms applied to the input fingerprint image and to resubmit corrected algorithms.

(a) Minutia density plot for 251 874 368x368 right indexes. (b) Minutia density plot for 251 874 368x368 left indexes.

(c) Minutia density plot for 123 120 500x500 right indexes. (d) Minutia density plot for 123 120 500x500 left indexes.

Figure 9: 2D Minutia density plots.

4 Performance Tables

The following tables present accuracy numbers, including estimates of uncertainty in the form of 90% confidence bounds. These tables are provided because most of the figures in the main body of the report do not present actual accuracy numbers.

Table 1: Single finger FNMRs at various FMRs when 4L and MINEX compliant matchers compare templates created by template generator 4L.

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
A	0.0127 ± 0.0004	0.0180 ± 0.0004	0.0261 ± 0.0005
В	_	_	_
С	0.0438 ± 0.0007	0.0787 ± 0.0009	0.126 ± 0.001
D	0.0207 ± 0.0005	0.0341 ± 0.0006	0.0531 ± 0.0007
F	0.0440 ± 0.0007	0.0805 ± 0.0009	0.126 ± 0.001
G	0.0385 ± 0.0006	0.0501 ± 0.0007	0.0743 ± 0.0009
1C	0.0402 ± 0.0006	0.0688 ± 0.0008	0.105 ± 0.001
1E	0.0300 ± 0.0006	0.0463 ± 0.0007	0.0735 ± 0.0009
1F	0.0312 ± 0.0006	0.0525 ± 0.0007	0.0828 ± 0.0009
1G	0.0312 ± 0.0006	0.0525 ± 0.0007	0.0828 ± 0.0009
1I	0.0388 ± 0.0006	0.0769 ± 0.0009	0.156 ± 0.001
1J	0.0335 ± 0.0006	0.0637 ± 0.0008	0.105 ± 0.001
1L	0.0213 ± 0.0005	0.0352 ± 0.0006	0.0535 ± 0.0007
1R	0.0395 ± 0.0006	0.0777 ± 0.0009	0.134 ± 0.001
1T	0.0488 ± 0.0007	0.0948 ± 0.0010	0.185 ± 0.001
1W	0.0350 ± 0.0006	0.0611 ± 0.0008	0.106 ± 0.001
2A	0.0438 ± 0.0007	0.0787 ± 0.0009	0.126 ± 0.001
2C	0.0333 ± 0.0006	0.0654 ± 0.0008	0.131 ± 0.001
2G	0.0230 ± 0.0005	0.0441 ± 0.0007	0.0755 ± 0.0009
2I	0.0269 ± 0.0005	0.0599 ± 0.0008	1.0000000 ± 0.0000005
2J	0.0440 ± 0.0007	0.0854 ± 0.0009	0.136 ± 0.001
2N	0.0285 ± 0.0005	0.0481 ± 0.0007	0.0730 ± 0.0009
20	0.0127 ± 0.0004	0.0244 ± 0.0005	0.0462 ± 0.0007
2Q	0.0171 ± 0.0004	0.0290 ± 0.0006	0.0484 ± 0.0007
2R	0.0300 ± 0.0006	0.0475 ± 0.0007	0.0766 ± 0.0009
2S	0.0303 ± 0.0006	0.0525 ± 0.0007	0.0824 ± 0.0009
2T	0.0522 ± 0.0007	0.0817 ± 0.0009	0.115 ± 0.001
2Y	0.0244 ± 0.0005	0.0425 ± 0.0007	0.0688 ± 0.0008
3A	0.0106 ± 0.0003	0.0163 ± 0.0004	0.0249 ± 0.0005
3D	0.0366 ± 0.0006	0.0592 ± 0.0008	0.0865 ± 0.0009
3G	0.0272 ± 0.0005	0.0483 ± 0.0007	0.0758 ± 0.0009
3J	0.0337 ± 0.0006	0.0486 ± 0.0007	0.0694 ± 0.0008
3N	0.0272 ± 0.0005	0.0580 ± 0.0008	0.114 ± 0.001
3O	0.0372 ± 0.0006	0.0735 ± 0.0009	0.136 ± 0.001
3Q	0.0406 ± 0.0007	0.0815 ± 0.0009	0.134 ± 0.001
3T	0.0202 ± 0.0005	0.0350 ± 0.0006	0.0605 ± 0.0008
3W	0.0352 ± 0.0006	0.0601 ± 0.0008	0.0950 ± 0.0010
3Z	0.0105 ± 0.0003	0.0164 ± 0.0004	0.0272 ± 0.0005
4A	0.0411 ± 0.0007	0.0628 ± 0.0008	0.0942 ± 0.0010
4H	0.0086 ± 0.0003	0.0150 ± 0.0004	0.0250 ± 0.0005

Table 1: (continued)

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
4I	0.0271 ± 0.0005	0.0494 ± 0.0007	0.0819 ± 0.0009
4J	0.0085 ± 0.0003	0.0151 ± 0.0004	0.0227 ± 0.0005
4L	0.0140 ± 0.0004	0.0204 ± 0.0005	0.0299 ± 0.0006
40	0.0202 ± 0.0005	0.0378 ± 0.0006	0.0632 ± 0.0008
4P	0.0110 ± 0.0003	0.0164 ± 0.0004	0.0241 ± 0.0005
4Q	0.0126 ± 0.0004	0.0250 ± 0.0005	0.0483 ± 0.0007
4S	0.0069 ± 0.0003	0.0125 ± 0.0004	0.0208 ± 0.0005
4T	0.0172 ± 0.0004	0.0346 ± 0.0006	0.0635 ± 0.0008
4U	0.0128 ± 0.0004	0.0213 ± 0.0005	0.0335 ± 0.0006
4X	0.0266 ± 0.0005	0.0389 ± 0.0006	0.0565 ± 0.0008
4Z	0.0156 ± 0.0004	0.0274 ± 0.0005	0.0447 ± 0.0007

Table 2: Right index finger FNMRs at various FMRs when 4L and MINEX compliant matchers compare templates created by template generator 4L.

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
A	0.0082 ± 0.0004	0.0115 ± 0.0005	0.0171 ± 0.0006
В	_	_	_
С	0.0322 ± 0.0008	0.065 ± 0.001	0.106 ± 0.001
D	0.0147 ± 0.0006	0.0251 ± 0.0007	0.0392 ± 0.0009
F	0.0323 ± 0.0008	0.064 ± 0.001	0.105 ± 0.001
G	0.0261 ± 0.0007	0.0327 ± 0.0008	0.052 ± 0.001
1C	0.0296 ± 0.0008	0.053 ± 0.001	0.086 ± 0.001
1E	0.0233 ± 0.0007	0.0357 ± 0.0009	0.060 ± 0.001
1F	0.0215 ± 0.0007	0.0386 ± 0.0009	0.062 ± 0.001
1G	0.0215 ± 0.0007	0.0386 ± 0.0009	0.062 ± 0.001
1I	0.0293 ± 0.0008	0.063 ± 0.001	0.130 ± 0.002
1J	0.0246 ± 0.0007	0.050 ± 0.001	0.084 ± 0.001
1L	0.0151 ± 0.0006	0.0264 ± 0.0007	0.0415 ± 0.0009
1R	0.0305 ± 0.0008	0.064 ± 0.001	0.118 ± 0.002
1T	0.0344 ± 0.0009	0.068 ± 0.001	0.129 ± 0.002
1W	0.0257 ± 0.0007	0.0469 ± 0.0010	0.078 ± 0.001
2A	0.0322 ± 0.0008	0.065 ± 0.001	0.106 ± 0.001
2C	0.0235 ± 0.0007	0.052 ± 0.001	0.129 ± 0.002
2G	0.0152 ± 0.0006	0.0303 ± 0.0008	0.057 ± 0.001
2I	0.0186 ± 0.0006	0.0469 ± 0.0010	1.00000 ± 0.00001
2J	0.0319 ± 0.0008	0.066 ± 0.001	0.107 ± 0.001
2N	0.0196 ± 0.0006	0.0358 ± 0.0009	0.057 ± 0.001
20	0.0080 ± 0.0004	0.0165 ± 0.0006	0.0346 ± 0.0009
2Q	0.0107 ± 0.0005	0.0186 ± 0.0006	0.0311 ± 0.0008
2R	0.0224 ± 0.0007	0.0360 ± 0.0009	0.065 ± 0.001
2S	0.0213 ± 0.0007	0.0376 ± 0.0009	0.063 ± 0.001
2T	0.0380 ± 0.0009	0.062 ± 0.001	0.090 ± 0.001
2Y	0.0172 ± 0.0006	0.0317 ± 0.0008	0.053 ± 0.001
3A	0.0068 ± 0.0004	0.0105 ± 0.0005	0.0165 ± 0.0006
3D	0.0267 ± 0.0008	0.0436 ± 0.0010	0.064 ± 0.001
3G	0.0190 ± 0.0006	0.0352 ± 0.0009	0.058 ± 0.001
3J	0.0248 ± 0.0007	0.0370 ± 0.0009	0.052 ± 0.001
3N	0.0188 ± 0.0006	0.0452 ± 0.0010	0.092 ± 0.001
30	0.0259 ± 0.0007	0.055 ± 0.001	0.100 ± 0.001
3Q	0.0295 ± 0.0008	0.063 ± 0.001	0.119 ± 0.002
3T	0.0138 ± 0.0005	0.0249 ± 0.0007	0.0471 ± 0.0010
3W	0.0254 ± 0.0007	0.0465 ± 0.0010	0.074 ± 0.001
3Z	0.0067 ± 0.0004	0.0106 ± 0.0005	0.0185 ± 0.0006
4A	0.0319 ± 0.0008	0.049 ± 0.001	0.071 ± 0.001
4H	0.0053 ± 0.0003	0.0095 ± 0.0005	0.0155 ± 0.0006

Table 2: (continued)

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
4I	0.0201 ± 0.0007	0.0385 ± 0.0009	0.071 ± 0.001
4J	0.0052 ± 0.0003	0.0094 ± 0.0005	0.0146 ± 0.0006
4L	0.0089 ± 0.0004	0.0137 ± 0.0005	0.0209 ± 0.0007
4O	0.0134 ± 0.0005	0.0249 ± 0.0007	0.0462 ± 0.0010
4P	0.0068 ± 0.0004	0.0104 ± 0.0005	0.0146 ± 0.0006
4Q	0.0088 ± 0.0004	0.0169 ± 0.0006	0.0371 ± 0.0009
4S	0.0045 ± 0.0003	0.0082 ± 0.0004	0.0136 ± 0.0005
4 T	0.0118 ± 0.0005	0.0249 ± 0.0007	0.0417 ± 0.0009
4U	0.0087 ± 0.0004	0.0148 ± 0.0006	0.0244 ± 0.0007
4X	0.0181 ± 0.0006	0.0274 ± 0.0008	0.0416 ± 0.0009
4Z	0.0100 ± 0.0005	0.0174 ± 0.0006	0.0303 ± 0.0008

 $\label{thm:complex} \textbf{Table 3: } \textit{Left index finger FNMRs at various FMRs when 4L and MINEX compliant matchers compare templates created by template generator 4L.}$

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
A	0.0172 ± 0.0006	0.0244 ± 0.0007	0.0352 ± 0.0009
В	_	_	_
С	0.055 ± 0.001	0.094 ± 0.001	0.141 ± 0.002
D	0.0269 ± 0.0008	0.0435 ± 0.0010	0.069 ± 0.001
F	0.056 ± 0.001	0.097 ± 0.001	0.142 ± 0.002
G	0.051 ± 0.001	0.069 ± 0.001	0.102 ± 0.001
1C	0.051 ± 0.001	0.085 ± 0.001	0.122 ± 0.002
1E	0.0370 ± 0.0009	0.058 ± 0.001	0.086 ± 0.001
1F	0.0408 ± 0.0009	0.066 ± 0.001	0.106 ± 0.001
1G	0.0408 ± 0.0009	0.066 ± 0.001	0.106 ± 0.001
1I	0.049 ± 0.001	0.091 ± 0.001	0.176 ± 0.002
1J	0.0425 ± 0.0009	0.077 ± 0.001	0.126 ± 0.002
1L	0.0276 ± 0.0008	0.0443 ± 0.0010	0.069 ± 0.001
1R	0.049 ± 0.001	0.091 ± 0.001	0.146 ± 0.002
1T	0.062 ± 0.001	0.119 ± 0.002	0.238 ± 0.002
1W	0.0445 ± 0.0010	0.076 ± 0.001	0.133 ± 0.002
2A	0.055 ± 0.001	0.094 ± 0.001	0.141 ± 0.002
2C	0.0434 ± 0.0010	0.079 ± 0.001	0.134 ± 0.002
2G	0.0307 ± 0.0008	0.058 ± 0.001	0.093 ± 0.001
2I	0.0359 ± 0.0009	0.075 ± 0.001	1.00000 ± 0.00001
2J	0.056 ± 0.001	0.105 ± 0.001	0.165 ± 0.002
2N	0.0374 ± 0.0009	0.061 ± 0.001	0.091 ± 0.001
20	0.0177 ± 0.0006	0.0322 ± 0.0008	0.055 ± 0.001
2Q	0.0233 ± 0.0007	0.0391 ± 0.0009	0.067 ± 0.001
2R	0.0376 ± 0.0009	0.060 ± 0.001	0.090 ± 0.001
2S	0.0396 ± 0.0009	0.068 ± 0.001	0.099 ± 0.001
2T	0.073 ± 0.001	0.102 ± 0.001	0.139 ± 0.002
2Y	0.0317 ± 0.0008	0.052 ± 0.001	0.081 ± 0.001
3A	0.0143 ± 0.0006	0.0224 ± 0.0007	0.0332 ± 0.0008
3D	0.0467 ± 0.0010	0.074 ± 0.001	0.106 ± 0.001
3G	0.0357 ± 0.0009	0.063 ± 0.001	0.093 ± 0.001
3J	0.0426 ± 0.0009	0.061 ± 0.001	0.085 ± 0.001
3N	0.0361 ± 0.0009	0.072 ± 0.001	0.137 ± 0.002
3O	0.0475 ± 0.0010	0.092 ± 0.001	0.173 ± 0.002
3Q	0.052 ± 0.001	0.097 ± 0.001	0.146 ± 0.002
3T	0.0266 ± 0.0008	0.0455 ± 0.0010	0.071 ± 0.001
3W	0.0450 ± 0.0010	0.074 ± 0.001	0.119 ± 0.002
3Z	0.0141 ± 0.0006	0.0220 ± 0.0007	0.0331 ± 0.0008
4A	0.050 ± 0.001	0.077 ± 0.001	0.118 ± 0.002
4H	0.0122 ± 0.0005	0.0207 ± 0.0007	0.0351 ± 0.0009

Table 3: (continued)

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
4I	0.0345 ± 0.0009	0.061 ± 0.001	0.096 ± 0.001
4J	0.0121 ± 0.0005	0.0208 ± 0.0007	0.0310 ± 0.0008
4L	0.0190 ± 0.0006	0.0271 ± 0.0008	0.0374 ± 0.0009
40	0.0275 ± 0.0008	0.051 ± 0.001	0.080 ± 0.001
4P	0.0153 ± 0.0006	0.0224 ± 0.0007	0.0334 ± 0.0008
4Q	0.0166 ± 0.0006	0.0340 ± 0.0008	0.059 ± 0.001
4S	0.0093 ± 0.0004	0.0170 ± 0.0006	0.0276 ± 0.0008
4T	0.0216 ± 0.0007	0.0454 ± 0.0010	0.085 ± 0.001
4U	0.0171 ± 0.0006	0.0286 ± 0.0008	0.0428 ± 0.0009
4X	0.0352 ± 0.0009	0.050 ± 0.001	0.072 ± 0.001
4Z	0.0216 ± 0.0007	0.0366 ± 0.0009	0.064 ± 0.001

Table 4: Two finger FNMRs at various FMRs when 4L and MINEX compliant matchers compare templates created by template generator 4L.

A 0.0010 ± 0.0001 0.0027 ± 0.0002 0.0067 ± 0.0003 B - - - C 0.0073 ± 0.0003 0.0160 ± 0.0004 0.0295 ± 0.0006 D 0.0075 ± 0.0003 0.0155 ± 0.0004 0.0307 ± 0.0006 G 0.0043 ± 0.0002 0.0091 ± 0.0003 0.0155 ± 0.0004 IC 0.066 ± 0.0003 0.0131 ± 0.0004 0.0219 ± 0.0005 1E 0.0033 ± 0.0002 0.0059 ± 0.0003 0.0155 ± 0.0004 1G 0.0041 ± 0.0002 0.0084 ± 0.0003 0.0155 ± 0.0004 1G 0.0041 ± 0.0002 0.0084 ± 0.0003 0.0155 ± 0.0004 1G 0.0041 ± 0.0002 0.0084 ± 0.0003 0.0155 ± 0.0004 1I 0.0059 ± 0.0003 0.0174 ± 0.0004 0.0512 ± 0.0007 1J 0.0043 ± 0.0002 0.0046 ± 0.0003 0.0168 ± 0.0007 1L 0.0026 ± 0.0002 0.0046 ± 0.0002 0.0076 ± 0.0003 1R 0.0062 ± 0.0003 0.0165 ± 0.0004 0.0483 ± 0.0007 1T 0.0063 ± 0.0003 0.0160 ± 0.0004 0.0585 ± 0.0008	Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
$\begin{array}{c} \textbf{C} & 0.0073 \pm 0.0003 & 0.0160 \pm 0.0004 & 0.0295 \pm 0.0006 \\ \textbf{D} & 0.0020 \pm 0.0001 & 0.0035 \pm 0.0002 & 0.0059 \pm 0.0003 \\ \textbf{F} & 0.0075 \pm 0.0003 & 0.0155 \pm 0.0004 & 0.0307 \pm 0.0006 \\ \textbf{G} & 0.0043 \pm 0.0002 & 0.0091 \pm 0.0003 & 0.0155 \pm 0.0004 \\ \textbf{1C} & 0.0066 \pm 0.0003 & 0.0131 \pm 0.0004 & 0.0219 \pm 0.0005 \\ \textbf{1E} & 0.0033 \pm 0.0002 & 0.0059 \pm 0.0003 & 0.0109 \pm 0.0003 \\ \textbf{1F} & 0.0041 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0004 \\ \textbf{1G} & 0.0041 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0004 \\ \textbf{1I} & 0.0059 \pm 0.0003 & 0.0174 \pm 0.0004 & 0.0512 \pm 0.0007 \\ \textbf{1J} & 0.0043 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0007 \\ \textbf{1J} & 0.0043 \pm 0.0002 & 0.0094 \pm 0.0003 & 0.0168 \pm 0.0007 \\ \textbf{1I} & 0.0065 \pm 0.0002 & 0.0094 \pm 0.0003 & 0.0168 \pm 0.0007 \\ \textbf{1I} & 0.0065 \pm 0.0002 & 0.0046 \pm 0.0002 & 0.0076 \pm 0.0003 \\ \textbf{1R} & 0.0062 \pm 0.0003 & 0.0165 \pm 0.0004 & 0.0483 \pm 0.0007 \\ \textbf{1T} & 0.0065 \pm 0.0003 & 0.0165 \pm 0.0004 & 0.0483 \pm 0.0007 \\ \textbf{1W} & 0.0043 \pm 0.0002 & 0.0046 \pm 0.0004 & 0.0526 \pm 0.0007 \\ \textbf{2A} & 0.0073 \pm 0.0003 & 0.0166 \pm 0.0004 & 0.0295 \pm 0.0006 \\ \textbf{2C} & 0.0044 \pm 0.0002 & 0.0016 \pm 0.0004 & 0.0295 \pm 0.0006 \\ \textbf{2C} & 0.0025 \pm 0.0002 & 0.0016 \pm 0.0003 & 0.0379 \pm 0.0006 \\ \textbf{2C} & 0.0025 \pm 0.0002 & 0.0056 \pm 0.0002 & 0.0110 \pm 0.0003 \\ \textbf{2I} & 0.0026 \pm 0.0002 & 0.0089 \pm 0.0003 & 1.000000 \pm 0.000005 \\ \textbf{2J} & 0.0075 \pm 0.0003 & 0.0184 \pm 0.0004 & 0.0334 \pm 0.0006 \\ \textbf{2N} & 0.0032 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0110 \pm 0.0003 \\ \textbf{2Q} & 0.0017 \pm 0.0001 & 0.0031 \pm 0.0002 & 0.0061 \pm 0.0003 \\ \textbf{2R} & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0110 \pm 0.0003 \\ \textbf{2R} & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0110 \pm 0.0003 \\ \textbf{2R} & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0111 \pm 0.0003 \\ \textbf{3A} & 0.0010 \pm 0.0001 & 0.0031 \pm 0.0004 & 0.0219 \pm 0.0005 \\ \textbf{3D} & 0.0050 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0114 \pm 0.0003 \\ \textbf{3G} & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0114 \pm 0.0003 \\ \textbf{3J} & 0.0051 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0141 \pm 0.0004 \\ \textbf{3J} & 0.0052 \pm 0.0002 & 0.0069 \pm 0.0003 & 0.0144 \pm 0.0004 \\ \textbf{3J} & 0.0052 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0144 \pm 0.$	A	0.0010 ± 0.0001	0.0027 ± 0.0002	0.0067 ± 0.0003
$\begin{array}{c} D \\ \hline \\ F \\ \hline \\ 0.0075 \pm 0.0003 \\ \hline \\ F \\ \hline \\ 0.0075 \pm 0.0003 \\ \hline \\ C \\ \hline \\ 0.0043 \pm 0.0002 \\ \hline \\ 1C \\ 0.0066 \pm 0.0003 \\ \hline \\ 1D \\ 0.0031 \pm 0.0004 \\ \hline \\ 1D \\ 0.0033 \pm 0.0002 \\ \hline \\ 0.0059 \pm 0.0003 \\ \hline \\ 1D \\ 0.0033 \pm 0.0002 \\ \hline \\ 0.0059 \pm 0.0003 \\ \hline \\ 1D \\ 0.0041 \pm 0.0002 \\ \hline \\ 0.0084 \pm 0.0003 \\ \hline \\ 1D \\ 0.0041 \pm 0.0002 \\ \hline \\ 0.0084 \pm 0.0003 \\ \hline \\ 0.0174 \pm 0.0004 \\ \hline \\ 1D \\ 0.0041 \pm 0.0002 \\ \hline \\ 0.0084 \pm 0.0003 \\ \hline \\ 0.0174 \pm 0.0004 \\ \hline \\ 1D \\ 0.0043 \pm 0.0002 \\ \hline \\ 0.0094 \pm 0.0003 \\ \hline \\ 0.0165 \pm 0.0004 \\ \hline \\ 1D \\ 0.0065 \pm 0.0002 \\ \hline \\ 0.0046 \pm 0.0003 \\ \hline \\ 0.0165 \pm 0.0004 \\ \hline \\ 0.0065 \pm 0.0003 \\ \hline \\ 1D \\ 0.0065 \pm 0.0003 \\ \hline \\ 0.0165 \pm 0.0004 \\ \hline \\ 0.0065 \pm 0.0003 \\ \hline \\ 1D \\ 0.0065 \pm 0.0003 \\ \hline \\ 0.0165 \pm 0.0004 \\ \hline \\ 0.0065 \pm 0.0003 \\ \hline \\ 0.0165 \pm 0.0004 \\ \hline \\ 0.0065 \pm 0.0007 \\ \hline \\ 1D \\ 0.0043 \pm 0.0002 \\ \hline \\ 0.0046 \pm 0.0004 \\ \hline \\ 0.0055 \pm 0.0008 \\ \hline \\ 2D \\ 0.0073 \pm 0.0003 \\ \hline \\ 0.0166 \pm 0.0004 \\ \hline \\ 0.0065 \pm 0.0008 \\ \hline \\ 2D \\ 0.0073 \pm 0.0003 \\ \hline \\ 0.0110 \pm 0.0003 \\ \hline \\ 0.0110 \pm 0.0003 \\ \hline \\ 2D \\ 0.0025 \pm 0.0002 \\ \hline \\ 0.0089 \pm 0.0003 \\ \hline \\ 0.0089 \pm 0.0003 \\ \hline \\ 0.0034 \pm 0.0006 \\ \hline \\ 2D \\ 0.0075 \pm 0.0003 \\ \hline \\ 0.0089 \pm 0.0003 \\ \hline \\ 0.0089 \pm 0.0003 \\ \hline \\ 0.0034 \pm 0.0006 \\ \hline \\ 0.0034 \pm 0.0006 \\ \hline \\ 0.0032 \pm 0.0006 \\ \hline \\ 0.0003 \pm 0.0001 \\ \hline \\ 0.0032 \pm 0.0002 \\ \hline \\ 0.0068 \pm 0.0002 \\ \hline \\ 0.0068 \pm 0.0003 \\ \hline \\ 0.00110 \pm 0.0001 \\ \hline \\ 0.0032 \pm 0.0002 \\ \hline \\ 0.0068 \pm 0.0003 \\ \hline \\ 0.00110 \pm 0.0001 \\ \hline \\ 0.0032 \pm 0.0002 \\ \hline \\ 0.0068 \pm 0.0003 \\ \hline \\ 0.00111 \pm 0.0003 \\ \hline \\$		_	_	_
$\begin{array}{c} F & 0.0075 \pm 0.0003 & 0.0155 \pm 0.0004 & 0.0307 \pm 0.0006 \\ G & 0.0043 \pm 0.0002 & 0.0091 \pm 0.0003 & 0.0155 \pm 0.0004 \\ IC & 0.0066 \pm 0.0003 & 0.0131 \pm 0.0004 & 0.0219 \pm 0.0005 \\ 1E & 0.0033 \pm 0.0002 & 0.0059 \pm 0.0003 & 0.0109 \pm 0.0003 \\ IF & 0.0041 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0004 \\ IG & 0.0041 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0004 \\ II & 0.0059 \pm 0.0003 & 0.0174 \pm 0.0004 & 0.0512 \pm 0.0007 \\ IJ & 0.0043 \pm 0.0002 & 0.0094 \pm 0.0003 & 0.0168 \pm 0.0007 \\ IJ & 0.0043 \pm 0.0002 & 0.0094 \pm 0.0003 & 0.0168 \pm 0.0004 \\ IL & 0.0026 \pm 0.0003 & 0.0165 \pm 0.0004 & 0.0433 \pm 0.0007 \\ IT & 0.0065 \pm 0.0003 & 0.0165 \pm 0.0004 & 0.0483 \pm 0.0007 \\ IT & 0.0065 \pm 0.0003 & 0.0186 \pm 0.0004 & 0.0526 \pm 0.0007 \\ IW & 0.0043 \pm 0.0002 & 0.0204 \pm 0.0005 & 0.0685 \pm 0.0008 \\ 2A & 0.0073 \pm 0.0003 & 0.0160 \pm 0.0004 & 0.0295 \pm 0.0006 \\ 2C & 0.0044 \pm 0.0002 & 0.0113 \pm 0.0003 & 0.0379 \pm 0.0006 \\ 2C & 0.0044 \pm 0.0002 & 0.00156 \pm 0.0002 & 0.0110 \pm 0.0003 \\ 2I & 0.0025 \pm 0.0002 & 0.0056 \pm 0.0002 & 0.0110 \pm 0.0003 \\ 2I & 0.0026 \pm 0.0002 & 0.0089 \pm 0.0003 & 1.000000 \pm 0.000005 \\ 2J & 0.0075 \pm 0.0003 & 0.0184 \pm 0.0004 & 0.0334 \pm 0.0006 \\ 2N & 0.0032 \pm 0.0002 & 0.0063 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 2Q & 0.0017 \pm 0.0001 & 0.0031 \pm 0.0002 & 0.0061 \pm 0.0003 \\ 2R & 0.0032 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 2R & 0.0033 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 2R & 0.0032 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 3A & 0.0010 \pm 0.0001 & 0.0016 \pm 0.0001 & 0.0027 \pm 0.0002 \\ 3D & 0.0032 \pm 0.0002 & 0.0066 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3T & 0.0075 \pm 0.0002 & 0.0066 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3G & 0.0032 \pm 0.0002 & 0.0066 \pm 0.0003 & 0.0114 \pm 0.0003 \\ 3G & 0.0033 \pm 0.0002 & 0.0066 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3G & 0.0032 \pm 0.0002 & 0.0066 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3G & 0.0038 \pm 0.0002 & 0.0066 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3G & 0.0038 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0144 \pm 0.0006 \\ 3T & 0.0028 \pm 0.0002 & 0.0106 \pm 0.0004 & 0.0358 \pm 0.0006 \\ 3T & 0.0028 \pm 0.0002 & 0.0106 \pm 0.0004 & 0.0243 \pm 0.0005 \\ 3D & 0.0038 \pm 0.0001 & 0.01016$	С	0.0073 ± 0.0003	0.0160 ± 0.0004	0.0295 ± 0.0006
$\begin{array}{c} G \\ 1C \\ 0.0066 \pm 0.0003 \\ 1C \\ 0.0066 \pm 0.0003 \\ 1E \\ 0.0033 \pm 0.0002 \\ 0.0059 \pm 0.0003 \\ 0.0131 \pm 0.0003 \\ 0.0109 \pm 0.0005 \\ 1E \\ 0.0033 \pm 0.0002 \\ 0.0084 \pm 0.0003 \\ 0.0155 \pm 0.0004 \\ 0.0109 \pm 0.0003 \\ 1F \\ 0.0041 \pm 0.0002 \\ 0.0084 \pm 0.0003 \\ 0.0155 \pm 0.0004 \\ 1G \\ 0.0041 \pm 0.0002 \\ 0.0084 \pm 0.0003 \\ 0.0155 \pm 0.0004 \\ 0.0151 \pm 0.0004 \\ 1I \\ 0.0059 \pm 0.0003 \\ 0.0174 \pm 0.0004 \\ 0.0512 \pm 0.0007 \\ 1J \\ 0.0043 \pm 0.0002 \\ 0.0094 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 0.0483 \pm 0.0007 \\ 1T \\ 0.0065 \pm 0.0003 \\ 0.0186 \pm 0.0004 \\ 0.00483 \pm 0.0007 \\ 1W \\ 0.0043 \pm 0.0002 \\ 0.0204 \pm 0.0005 \\ 0.00483 \pm 0.0007 \\ 0.0004 \\ 0.0295 \pm 0.0008 \\ 0.0073 \pm 0.0003 \\ 0.0113 \pm 0.0003 \\ 0.0379 \pm 0.0006 \\ 0.00110 \pm 0.0003 \\ 0.0075 \pm 0.0002 \\ 0.0089 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.00110 \pm 0.0003 \\ 0.00110 \pm 0.0003 \\ 0.0002 \pm 0.0001 \\ 0.0003 \pm 0.0002 \\ 0.0063 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.00110 \pm 0.0003 \\ 0.001110 \pm 0.0003 \\ 0.0003 \pm 0.0002 \\ 0.0068 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.00110 \pm 0.0003 \\ 0.00111 \pm 0.00$	D	0.0020 ± 0.0001	0.0035 ± 0.0002	0.0059 ± 0.0003
$\begin{array}{c} 1C \\ 1E \\ 0.0033 \pm 0.0002 \\ 0.0059 \pm 0.0003 \\ 0.0109 \pm 0.0003 \\ 0.0155 \pm 0.0004 \\ 0.0041 \pm 0.0002 \\ 0.0084 \pm 0.0003 \\ 0.0155 \pm 0.0004 \\ 0.0512 \pm 0.0007 \\ 0.0041 \pm 0.0002 \\ 0.0094 \pm 0.0003 \\ 0.0174 \pm 0.0004 \\ 0.0512 \pm 0.0007 \\ 0.0043 \pm 0.0002 \\ 0.0094 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0004 \\ 0.0168 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 0.0048 \pm 0.0007 \\ 0.0048 \pm 0.0002 \\ 0.0046 \pm 0.0004 \\ 0.0048 \pm 0.0007 \\ 0.0048 \pm 0.0002 \\ 0.0020 \pm 0.0004 \\ 0.0032 \pm 0.0008 \\ 0.0032 \pm 0.0003 \\ 0.0160 \pm 0.0004 \\ 0.0295 \pm 0.0006 \\ 0.00113 \pm 0.0003 \\ 0.0379 \pm 0.0006 \\ 0.00110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.00005 \pm 0.0000005 \\ 0.00005 \pm 0.00000 \\ 0.00005 \pm 0.00001 \\ 0.0003 \pm 0.00002 \\ 0.0003 \pm 0.00002 \\ 0.0003 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0011 \pm 0.0003 \\ 0.0011 \pm 0.0003 \\ 0.00017 \pm 0.0003 \\ 0.0011 \pm 0.0002 \\ 0.0002 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0011 \pm 0.00004 \\ 0.0219 \pm 0.0005 \\ 0.0003 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0011 \pm 0.00002 \\ 0.0068 \pm 0.0003 \\ 0.0111 \pm 0.00003 \\ 0.0111 \pm 0.00003 \\ 0.00111 \pm 0.00003 \\ 0.0011 \pm 0.00002 \\ 0.0068 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0011 \pm 0.00002 \\ 0.0068 \pm 0.0003 \\ 0.0111 \pm 0.00003 \\ 0.0111 \pm 0.00003 \\ 0.0111 \pm 0.00003 \\ 0.0111 \pm 0.00003 \\ 0.00111 \pm 0.00$	F	0.0075 ± 0.0003	0.0155 ± 0.0004	0.0307 ± 0.0006
$\begin{array}{c} 1E & 0.0033 \pm 0.0002 & 0.0059 \pm 0.0003 & 0.0109 \pm 0.0003 \\ 1F & 0.0041 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0004 \\ 1G & 0.0041 \pm 0.0002 & 0.0084 \pm 0.0003 & 0.0155 \pm 0.0004 \\ 1I & 0.0059 \pm 0.0003 & 0.0174 \pm 0.0004 & 0.0512 \pm 0.00007 \\ 1J & 0.0043 \pm 0.0002 & 0.0094 \pm 0.0003 & 0.0168 \pm 0.0004 \\ 1L & 0.0026 \pm 0.0002 & 0.0046 \pm 0.0002 & 0.0076 \pm 0.0003 \\ 1R & 0.0062 \pm 0.0003 & 0.0165 \pm 0.0004 & 0.0483 \pm 0.0007 \\ 1T & 0.0065 \pm 0.0003 & 0.0186 \pm 0.0004 & 0.0483 \pm 0.0007 \\ 1W & 0.0043 \pm 0.0002 & 0.0204 \pm 0.0005 & 0.0685 \pm 0.0008 \\ 2A & 0.0073 \pm 0.0003 & 0.0160 \pm 0.0004 & 0.0295 \pm 0.0006 \\ 2C & 0.0044 \pm 0.0002 & 0.0113 \pm 0.0003 & 0.0379 \pm 0.0006 \\ 2C & 0.0044 \pm 0.0002 & 0.0113 \pm 0.0003 & 0.0379 \pm 0.0006 \\ 2C & 0.0025 \pm 0.0002 & 0.0056 \pm 0.0002 & 0.0110 \pm 0.0003 \\ 2I & 0.0026 \pm 0.0002 & 0.0089 \pm 0.0003 & 1.000000 \pm 0.000005 \\ 2J & 0.0075 \pm 0.0003 & 0.0184 \pm 0.0004 & 0.0334 \pm 0.0006 \\ 2N & 0.0032 \pm 0.0002 & 0.0063 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 2Q & 0.0017 \pm 0.0001 & 0.0031 \pm 0.0002 & 0.0049 \pm 0.0002 \\ 2Q & 0.0017 \pm 0.0001 & 0.0032 \pm 0.0002 & 0.0061 \pm 0.0003 \\ 2R & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0145 \pm 0.0007 \\ 2S & 0.0033 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0145 \pm 0.0007 \\ 2S & 0.0033 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0145 \pm 0.0007 \\ 2S & 0.0033 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0145 \pm 0.0007 \\ 2Y & 0.0032 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0141 \pm 0.0003 \\ 3A & 0.0010 \pm 0.0001 & 0.0014 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3G & 0.0035 \pm 0.0002 & 0.0065 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3G & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0069 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0069 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3N & 0.0038 \pm 0.0002 & 0.0069 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0144 \pm 0.0004 \\ 3N & 0.0022 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0164 \pm 0.0004 \\ 3D & 0.0052 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0164 \pm 0.0004 \\ 3D & 0.0052 \pm 0.0002 & 0.010$	G	0.0043 ± 0.0002	0.0091 ± 0.0003	0.0155 ± 0.0004
$\begin{array}{c} 1F \\ 1G \\$	1C	0.0066 ± 0.0003	0.0131 ± 0.0004	0.0219 ± 0.0005
$\begin{array}{c} 1G \\ 1I \\ 0.0059 \pm 0.0003 \\ 1I \\ 0.0043 \pm 0.0002 \\ 0.0094 \pm 0.0003 \\ 0.0174 \pm 0.0004 \\ 0.0512 \pm 0.0007 \\ 1J \\ 0.0043 \pm 0.0002 \\ 0.0094 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 1L \\ 0.0026 \pm 0.0002 \\ 0.0046 \pm 0.0002 \\ 0.0046 \pm 0.0002 \\ 0.0076 \pm 0.0003 \\ 1R \\ 0.0065 \pm 0.0003 \\ 0.0165 \pm 0.0004 \\ 0.0483 \pm 0.0007 \\ 1T \\ 0.0065 \pm 0.0003 \\ 0.0186 \pm 0.0004 \\ 0.0433 \pm 0.0007 \\ 1W \\ 0.0043 \pm 0.0002 \\ 0.0204 \pm 0.0005 \\ 0.0085 \pm 0.0008 \\ 2A \\ 0.0073 \pm 0.0003 \\ 0.0160 \pm 0.0004 \\ 0.0043 \pm 0.0008 \\ 2C \\ 0.0044 \pm 0.0002 \\ 0.0113 \pm 0.0003 \\ 0.0160 \pm 0.0002 \\ 0.0013 \pm 0.0003 \\ 0.0379 \pm 0.0006 \\ 2G \\ 0.0025 \pm 0.0002 \\ 0.0056 \pm 0.0002 \\ 0.0089 \pm 0.0002 \\ 0.0113 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 2I \\ 0.0026 \pm 0.0002 \\ 0.0089 \pm 0.0003 \\ 0.0184 \pm 0.0004 \\ 0.0334 \pm 0.0006 \\ 2V \\ 0.0032 \pm 0.0002 \\ 0.0063 \pm 0.0003 \\ 0.0184 \pm 0.0004 \\ 0.0334 \pm 0.0002 \\ 0.0049 \pm 0.0001 \\ 0.0031 \pm 0.0002 \\ 0.0068 \pm 0.0002 \\ 0.0061 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0017 \pm 0.0003 \\ 0.0050 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.00145 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0145 \pm 0.0004 \\ 0.0219 \pm 0.0005 \\ 0.0007 \pm 0.0003 \\ 0.0114 \pm 0.0004 \\ 0.0219 \pm 0.0005 \\ 0.0005 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0001 \\ 0.0027 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0001 \\ 0.0050 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0001 \\ 0.0027 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0004 \\ 0.0027 \pm 0.0002 \\ 0.0086 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0004 \\ 0.0027 \pm 0.0002 \\ 0.0086 \pm 0.0003 \\ 0.00111 \pm 0.0004 \\ 0.0050 \pm 0.0002 \\ 0.0086 \pm 0.0003 \\ 0.0114 \pm 0.0004 \\ 0.0050 \pm 0.0002 \\ 0.0069 \pm 0.0003 \\ 0.0114 \pm 0.0004 \\ 0.0050 \pm 0.0006 \\ 0.0008 \pm 0.0006 \\ 0.000$	1E	0.0033 ± 0.0002	0.0059 ± 0.0003	0.0109 ± 0.0003
$\begin{array}{c} 11 \\ 1J \\ 0.0043 \pm 0.0002 \\ 0.0094 \pm 0.0003 \\ 0.0168 \pm 0.0004 \\ 1L \\ 0.0026 \pm 0.0002 \\ 0.0046 \pm 0.0002 \\ 0.0046 \pm 0.0002 \\ 0.0076 \pm 0.0003 \\ 1R \\ 0.0062 \pm 0.0003 \\ 0.0165 \pm 0.0004 \\ 0.0186 \pm 0.0004 \\ 0.0483 \pm 0.0007 \\ 1T \\ 0.0065 \pm 0.0003 \\ 0.0186 \pm 0.0004 \\ 0.0043 \pm 0.0002 \\ 0.0204 \pm 0.0005 \\ 0.0685 \pm 0.0008 \\ 0.0085 \pm 0.0008 \\ 0.0073 \pm 0.0003 \\ 0.0160 \pm 0.0004 \\ 0.0295 \pm 0.0006 \\ 0.0044 \pm 0.0002 \\ 0.0013 \pm 0.0003 \\ 0.0160 \pm 0.0004 \\ 0.0295 \pm 0.0006 \\ 0.0025 \pm 0.0006 \\ 0.0025 \pm 0.0002 \\ 0.0013 \pm 0.0003 \\ 0.0113 \pm 0.0003 \\ 0.0113 \pm 0.0003 \\ 0.0110 \pm 0.0000 \\ 0.00110 \pm 0.0000 \\ 0.00110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.00110 \pm 0.0003 \\ 0.00110 \pm 0.0002 \\ 0.0061 \pm 0.0002 \\ 0.0061 \pm 0.0002 \\ 0.0061 \pm 0.0002 \\ 0.0068 \pm 0.0002 \\ 0.0061 \pm 0.0003 \\ 0.0145 \pm 0.0004 \\ 0.0219 \pm 0.0004 \\ 0.0219 \pm 0.0005 \\ 0.0035 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0005 \\ 0.0075 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0004 \\ 0.0219 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0004 \\ 0.0219 \pm 0.0002 \\ 0.0069 \pm 0.0003 \\ 0.0114 \pm 0.0004 \\ 0.0027 \pm 0.0002 \\ 0.0086 \pm 0.0003 \\ 0.0141 \pm 0.0004 \\ 0.0028 \pm 0.00002 \\ 0.0069 \pm 0.0003 \\ 0.0141 \pm 0.0004 \\ 0.0058 \pm 0.00002 \\ 0.0069 \pm 0.0003 \\ 0.0164 \pm 0.0004 \\ 0.0358 \pm 0.00006 \\ 0.00088 \pm 0.00002 \\ 0.0106 \pm 0.0003 \\ 0.0164 \pm 0.0004 \\ 0.0358 \pm 0.0006 \\ 0.00088 \pm 0.00002 \\ 0.01010 \pm 0.0001 \\ 0.0016 \pm 0.0001 \\ 0.0027 \pm 0.0002 \\ 0.0076 \pm 0.0003 \\ 0.00$	1F	0.0041 ± 0.0002	0.0084 ± 0.0003	0.0155 ± 0.0004
$\begin{array}{c} 1J \\ 1L \\ 0.0026 \pm 0.0002 \\ 1R \\ 0.0062 \pm 0.0002 \\ 1R \\ 0.0062 \pm 0.0003 \\ 0.0165 \pm 0.0004 \\ 0.046 \pm 0.0002 \\ 0.0076 \pm 0.0003 \\ 0.0165 \pm 0.0004 \\ 0.0483 \pm 0.0007 \\ 1T \\ 0.0065 \pm 0.0003 \\ 0.0186 \pm 0.0004 \\ 0.0526 \pm 0.0007 \\ 1W \\ 0.0043 \pm 0.0002 \\ 0.0020 \pm 0.0005 \\ 0.0685 \pm 0.0008 \\ 0.0113 \pm 0.0003 \\ 0.0110 \pm 0.0006 \\ 0.0111 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0002 \pm 0.0001 \\ 0.0032 \pm 0.0002 \\ 0.0063 \pm 0.0002 \\ 0.0063 \pm 0.0002 \\ 0.0063 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0014 \pm 0.0003 \\ 0.0143 \pm 0.0004 \\ 0.0219 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0003 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0143 \pm 0.0004 \\ 0.0219 \pm 0.0005 \\ 0.0005 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0005 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0005 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0005 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0111 \pm 0.0004 \\ 0.0027 \pm 0.0002 \\ 0.0066 \pm 0.0003 \\ 0.0114 \pm 0.0004 \\ 0.0038 \pm 0.00005 \\ 0.0005 \pm 0.00005 \\ 0.0005 \pm 0.00005 \\ 0.0006 \pm 0.0003 \\ 0.0141 \pm 0.0004 \\ 0.0058 \pm 0.0006 \\ 0.0003 \\ 0.0014 \pm 0.0004 \\ 0.0058 \pm 0.0006 \\ 0.0003 \\ 0.0014 \pm 0.0004 \\ 0.0058 \pm 0.0006 \\ $	1G	0.0041 ± 0.0002	0.0084 ± 0.0003	0.0155 ± 0.0004
$\begin{array}{c} 1L \\ 1R \\ 0.0026 \pm 0.0002 \\ 1R \\ 0.0062 \pm 0.0003 \\ 1R \\ 0.0062 \pm 0.0003 \\ 0.0165 \pm 0.0004 \\ 0.0483 \pm 0.0007 \\ 1T \\ 0.0065 \pm 0.0003 \\ 0.0186 \pm 0.0004 \\ 0.0526 \pm 0.0007 \\ 1W \\ 0.0043 \pm 0.0002 \\ 0.0204 \pm 0.0005 \\ 0.0685 \pm 0.0008 \\ 2A \\ 0.0073 \pm 0.0003 \\ 0.0113 \pm 0.0003 \\ 0.0113 \pm 0.0003 \\ 0.0379 \pm 0.0006 \\ 2C \\ 0.0044 \pm 0.0002 \\ 0.0013 \pm 0.0003 \\ 0.0025 \pm 0.0002 \\ 0.0056 \pm 0.0002 \\ 0.0089 \pm 0.0002 \\ 0.0089 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.0003 \\ 0.0110 \pm 0.00005 \\ 0.00005 \pm 0.00003 \\ 0.0110 \pm 0.00003 \\ 0.0110 \pm 0.00005 \\ 0.00005 \pm 0.00003 \\ 0.0110 \pm 0.00003 \\ 0.0110 \pm 0.00005 \\ 0.00005 \pm 0.00003 \\ 0.0110 \pm 0.00003 \\ 0.0110 \pm 0.00005 \\ 0.00005 \pm 0.00001 \\ 0.0031 \pm 0.0002 \\ 0.0068 \pm 0.0002 \\ 0.0068 \pm 0.0002 \\ 0.0068 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0017 \pm 0.0001 \\ 0.0032 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0017 \pm 0.0001 \\ 0.0032 \pm 0.0002 \\ 0.0068 \pm 0.0003 \\ 0.0068 \pm 0.0003 \\ 0.0145 \pm 0.0004 \\ 0.0219 \pm 0.0004 \\ 0.0219 \pm 0.0005 \\ 0.0005 \pm 0.0005 \\ 0.0005 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0005 \\ 0.0005 \pm 0.0002 \\ 0.0065 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.0111 \pm 0.0003 \\ 0.00111 \pm 0.0004 \\ 0.0027 \pm 0.0002 \\ 0.0086 \pm 0.0003 \\ 0.0111 \pm 0.0004 \\ 0.0027 \pm 0.0002 \\ 0.0086 \pm 0.0003 \\ 0.0114 \pm 0.0004 \\ 0.0022 \pm 0.0004 \\ 0.0038 \pm 0.0002 \\ 0.0069 \pm 0.0003 \\ 0.0141 \pm 0.0004 \\ 0.0358 \pm 0.0006 \\ 0.00088 \pm 0.00002 \\ 0.0016 \pm 0.0003 \\ 0.0016 \pm 0.0004 \\ 0.0358 \pm 0.0006 \\ 0.0005 \pm 0.0002 \\ 0.0016 \pm 0.0003 \\ 0.0016 \pm 0.0004 \\ 0.0022 \pm 0.0006 \\ 0.00088 \pm 0.00002 \\ 0.0016 \pm 0.0003 \\ 0.0016 \pm 0.00003 \\ 0.0016 \pm 0.00003 \\ 0.0016 \pm 0.00004 \\ 0.0027 \pm 0.0002 \\ 0.0076 \pm 0.00003 \\ 0.0016 \pm 0.00004 \\ 0.0024 \pm 0.00004 \\ 0.0003 \\ 0.0016 \pm 0.00004 \\ 0.0003 \\ 0.0016 \pm 0.00004 \\ 0.0003 \\ 0.0016 \pm 0.00004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0$	1I	0.0059 ± 0.0003	0.0174 ± 0.0004	0.0512 ± 0.0007
$\begin{array}{c} 1R & 0.0062 \pm 0.0003 & 0.0165 \pm 0.0004 & 0.0483 \pm 0.0007 \\ 1T & 0.0065 \pm 0.0003 & 0.0186 \pm 0.0004 & 0.0526 \pm 0.0007 \\ 1W & 0.0043 \pm 0.0002 & 0.0204 \pm 0.0005 & 0.0685 \pm 0.0008 \\ 2A & 0.0073 \pm 0.0003 & 0.0160 \pm 0.0004 & 0.0295 \pm 0.0006 \\ 2C & 0.0044 \pm 0.0002 & 0.0113 \pm 0.0003 & 0.0379 \pm 0.0006 \\ 2G & 0.0025 \pm 0.0002 & 0.0056 \pm 0.0002 & 0.0110 \pm 0.0003 \\ 2I & 0.0026 \pm 0.0002 & 0.0089 \pm 0.0003 & 1.000000 \pm 0.000005 \\ 2J & 0.0075 \pm 0.0003 & 0.0184 \pm 0.0004 & 0.0334 \pm 0.0006 \\ 2N & 0.0032 \pm 0.0002 & 0.0063 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 2Q & 0.0017 \pm 0.0001 & 0.0031 \pm 0.0002 & 0.0064 \pm 0.0002 \\ 2Q & 0.0017 \pm 0.0001 & 0.0032 \pm 0.0002 & 0.0064 \pm 0.0003 \\ 2R & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0145 \pm 0.0004 \\ 2T & 0.0075 \pm 0.0003 & 0.0143 \pm 0.0004 & 0.0219 \pm 0.0005 \\ 2Y & 0.0032 \pm 0.0002 & 0.0065 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3A & 0.0010 \pm 0.0001 & 0.0016 \pm 0.0001 & 0.0027 \pm 0.0002 \\ 3D & 0.0055 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3G & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3G & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3S & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3S & 0.0035 \pm 0.0002 & 0.0087 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0087 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3N & 0.0028 \pm 0.0002 & 0.0087 \pm 0.0003 & 0.0356 \pm 0.0006 \\ 3Q & 0.0038 \pm 0.0002 & 0.0140 \pm 0.0004 & 0.0358 \pm 0.0006 \\ 3T & 0.0022 \pm 0.0002 & 0.0140 \pm 0.0004 & 0.0358 \pm 0.0006 \\ 3T & 0.0022 \pm 0.0002 & 0.0140 \pm 0.0004 & 0.0358 \pm 0.0006 \\ 3Z & 0.00088 \pm 0.00010 & 0.0016 \pm 0.0001 & 0.0027 \pm 0.0002 \\ 4A & 0.0069 \pm 0.0003 & 0.0130 \pm 0.0004 & 0.0243 \pm 0.0005 \\ \end{array}$	1J	0.0043 ± 0.0002	0.0094 ± 0.0003	0.0168 ± 0.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1L	0.0026 ± 0.0002	0.0046 ± 0.0002	0.0076 ± 0.0003
$\begin{array}{c} 1W & 0.0043 \pm 0.0002 & 0.0204 \pm 0.0005 & 0.0685 \pm 0.0008 \\ 2A & 0.0073 \pm 0.0003 & 0.0160 \pm 0.0004 & 0.0295 \pm 0.0006 \\ 2C & 0.0044 \pm 0.0002 & 0.0113 \pm 0.0003 & 0.0379 \pm 0.0006 \\ 2G & 0.0025 \pm 0.0002 & 0.0056 \pm 0.0002 & 0.0110 \pm 0.0003 \\ 2I & 0.0026 \pm 0.0002 & 0.0089 \pm 0.0003 & 1.000000 \pm 0.000005 \\ 2J & 0.0075 \pm 0.0003 & 0.0184 \pm 0.0004 & 0.0334 \pm 0.0006 \\ 2N & 0.0032 \pm 0.0002 & 0.0063 \pm 0.0003 & 0.0110 \pm 0.0003 \\ 2O & 0.0020 \pm 0.0001 & 0.0031 \pm 0.0002 & 0.0049 \pm 0.0002 \\ 2Q & 0.0017 \pm 0.0001 & 0.0032 \pm 0.0002 & 0.0061 \pm 0.0003 \\ 2R & 0.0035 \pm 0.0002 & 0.0068 \pm 0.0003 & 0.0145 \pm 0.0004 \\ 2T & 0.0075 \pm 0.0003 & 0.0143 \pm 0.0004 & 0.0219 \pm 0.0005 \\ 2Y & 0.0032 \pm 0.0002 & 0.0065 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3A & 0.0010 \pm 0.0001 & 0.0016 \pm 0.0001 & 0.0027 \pm 0.0002 \\ 3D & 0.0052 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0111 \pm 0.0003 \\ 3G & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3S & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3S & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3S & 0.0035 \pm 0.0002 & 0.0086 \pm 0.0003 & 0.0114 \pm 0.0004 \\ 3S & 0.0035 \pm 0.0002 & 0.0087 \pm 0.0003 & 0.0141 \pm 0.0004 \\ 3S & 0.0038 \pm 0.0002 & 0.0087 \pm 0.0003 & 0.0356 \pm 0.0006 \\ 3Q & 0.0038 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0356 \pm 0.0006 \\ 3Q & 0.0052 \pm 0.0002 & 0.0140 \pm 0.0004 & 0.0358 \pm 0.0006 \\ 3T & 0.0022 \pm 0.0002 & 0.0140 \pm 0.0004 & 0.0358 \pm 0.0006 \\ 3T & 0.0022 \pm 0.0002 & 0.0106 \pm 0.0003 & 0.0164 \pm 0.0004 \\ 3Z & 0.00088 \pm 0.00010 & 0.0016 \pm 0.0001 & 0.0027 \pm 0.0002 \\ 4A & 0.0069 \pm 0.0003 & 0.0130 \pm 0.0004 & 0.0243 \pm 0.0005 \\ \end{array}$	1R	0.0062 ± 0.0003	0.0165 ± 0.0004	0.0483 ± 0.0007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1T	0.0065 ± 0.0003	0.0186 ± 0.0004	0.0526 ± 0.0007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1W	0.0043 ± 0.0002	0.0204 ± 0.0005	0.0685 ± 0.0008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2A	0.0073 ± 0.0003	0.0160 ± 0.0004	0.0295 ± 0.0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2C	0.0044 ± 0.0002	0.0113 ± 0.0003	0.0379 ± 0.0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2G	0.0025 ± 0.0002	0.0056 ± 0.0002	0.0110 ± 0.0003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2I	0.0026 ± 0.0002	0.0089 ± 0.0003	1.000000 ± 0.000005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2J	0.0075 ± 0.0003	0.0184 ± 0.0004	0.0334 ± 0.0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N	0.0032 ± 0.0002	0.0063 ± 0.0003	0.0110 ± 0.0003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.0020 ± 0.0001	0.0031 ± 0.0002	0.0049 ± 0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2Q	0.0017 ± 0.0001	0.0032 ± 0.0002	0.0061 ± 0.0003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2R	0.0035 ± 0.0002	0.0068 ± 0.0003	0.0500 ± 0.0007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2S	0.0033 ± 0.0002	0.0074 ± 0.0003	0.0145 ± 0.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2T	0.0075 ± 0.0003	0.0143 ± 0.0004	0.0219 ± 0.0005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2Y	0.0032 ± 0.0002	0.0065 ± 0.0003	0.0111 ± 0.0003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3A	0.0010 ± 0.0001	0.0016 ± 0.0001	0.0027 ± 0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3D	0.0050 ± 0.0002	0.0086 ± 0.0003	0.0150 ± 0.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3G	0.0035 ± 0.0002	0.0069 ± 0.0003	0.0114 ± 0.0003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3]	0.0051 ± 0.0002	0.0087 ± 0.0003	0.0141 ± 0.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0.0028 ± 0.0002	0.0079 ± 0.0003	0.0222 ± 0.0005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0038 ± 0.0002	0.0106 ± 0.0003	0.0356 ± 0.0006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0052 ± 0.0002	0.0140 ± 0.0004	0.0358 ± 0.0006
3W 0.0052 ± 0.0002 0.0103 ± 0.0003 0.0164 ± 0.0004 3Z 0.00088 ± 0.00010 0.0016 ± 0.0001 0.0027 ± 0.0002 4A 0.0069 ± 0.0003 0.0130 ± 0.0004 0.0243 ± 0.0005				
3Z 0.00088 ± 0.00010 0.0016 ± 0.0001 0.0027 ± 0.0002 4A 0.0069 ± 0.0003 0.0130 ± 0.0004 0.0243 ± 0.0005		0.0052 ± 0.0002	0.0103 ± 0.0003	0.0164 ± 0.0004
	4A	0.0069 ± 0.0003	0.0130 ± 0.0004	0.0243 ± 0.0005
		0.0011 ± 0.0001	0.0018 ± 0.0001	0.0029 ± 0.0002

Table 4: (continued)

Matcher	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
4I	0.0032 ± 0.0002	0.0067 ± 0.0003	0.0133 ± 0.0004
4J	0.0010 ± 0.0001	0.0017 ± 0.0001	0.0027 ± 0.0002
4L	0.0011 ± 0.0001	0.0018 ± 0.0001	0.0032 ± 0.0002
4O	0.0022 ± 0.0002	0.0049 ± 0.0002	0.0102 ± 0.0003
4P	0.0010 ± 0.0001	0.0019 ± 0.0001	0.0032 ± 0.0002
4Q	0.0011 ± 0.0001	0.0027 ± 0.0002	0.0054 ± 0.0002
4S	0.00035 ± 0.00006	0.00084 ± 0.00010	0.0015 ± 0.0001
4 T	0.0010 ± 0.0001	0.0028 ± 0.0002	0.0066 ± 0.0003
4U	0.0011 ± 0.0001	0.0021 ± 0.0002	0.0032 ± 0.0002
4X	0.0033 ± 0.0002	0.0054 ± 0.0002	0.0090 ± 0.0003
4Z	0.0019 ± 0.0001	0.0038 ± 0.0002	0.0083 ± 0.0003

5 References

- [1] Jonathan N. Bradley, Christopher M. Brislawn, and Thomas Hopper. FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression. In *SPIE*, *Visual Information Processing II*, 1961. 3
- [2] Patrick Grother Elham Tabassi, George W. Quinn. When to fuse two biometrics. In *IEEE Computer Society on Computer Vision and Pattern Recognition, Workshop on Multi-Biometrics*, 2006. 3
- [3] Robert Fontana, Giovanni Pistone, and Maria Rogantin. Cliassification of two-level factorial fractions. *Journal of Statistical Planning and Inference*, 87:149–172, 2000. 3
- [4] P. Grother, M. McCabe, C. Watson, M. Indovina, W. Salamon, P. Flanagan, E. Tabassi, E. Newton, and C. Wilson. Performance and Interoperability of the INCITS 378 Fingerprint Template. Technical report, NIST, 2006.
- [5] Olaf Henniger and Dirk Scheuermann. Minutiae template conformance and interoperability issues. In Arslan Brömme, Christoph Busch, and Detlef Hühnlein, editors, *BIOSIG*, volume 108 of *LNI*, pages 25–32. GI, 2007. 10
- [6] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. The DET curve in assessment of detection task performance. In *Proc. Eurospeech*, pages 1895–1898, 1997. 3
- [7] George W. Quinn. Evaluation of latent fingerprint technologies: Fusion. In NIST Latent Fingerprint Testing Workshop Recognition, Workshop, 2009. 3
- [8] Elham Tabassi, Patrick Grother, Wayne Salamon, and Craig Watson. Minutiae interoperability. In Arslan Brömme, Christoph Busch, and Detlef Hühnlein, editors, *BIOSIG*, volume 155 of *LNI*, pages 13–30. GI, 2009. 10, 11