Contrastive Learning for Speech Enhancement

郭品辰,黃仁鴻

Outline

- Introduction
- Method
- Experiment
- Conclusion

Introduction

日常生活中有許多任務都仰賴語音作為資訊傳遞的媒介。 然而充滿在現實環境中的各種噪音干擾會嚴重影響語音任務的效能。 因此,將這些雜訊去除的語音增強技術就成了重要的前置處理單元。

Introduction

而語音增強的問題就是不論在何種噪音環境,面對相同的語音,模型都能夠抽取出相同的特徵並將其還原。

這部分想法與近年流行自監督方法中的對比學習(Contrastive Learning)不謀而合。

對比學習希望相似樣本間的特徵編碼能越像越好,而負樣本的特徵差異則是越大越好。

Introduction

我們認為,藉由 CL 的方法來學習語音特徵,應該會具備比一般深 度學習的語音增強方法更高的性能。

然而,在 SE 問題中不容易訂定 frame level 的負樣本。 為此,本研究使用無須負樣本的 BYOL 與 SimSiam 這兩種方法作 為研究主軸,並與未使用 CL 方法的模型進行比較。

Introduction CL Methods Comparison

method	batch size	negative pairs	momentum encoder
SimCLR	4096	Υ	
MoCo v2	256	Υ	Υ
BYOL	256 ~4096		Υ
SwAV	4096		
SimSiam	256		

BYOL

Momentum Update

BYOL CL Loss

$$z' = E'(S + N)$$
$$p = P(E(S + N))$$

$$CL Loss$$

$$= -\frac{Sim(p_1, z_2') + Sim(p_2, z_1')}{2}$$

SimSiam

$$z = E(S + N)$$

 $p = P(z)$

$$\begin{array}{l}
CL Loss \\
= -\frac{Sim(p_1, z_2) + Sim(p_2, z_1)}{2}
\end{array}$$

Similarity

$$Sim(\vec{p}, \vec{z}) = \frac{\vec{p} \cdot SG(\vec{z})}{\|\vec{p}\|_2 \|SG(\vec{z})\|_2}$$

Mix Loss

$$\hat{S} = D(p)$$

$$SE Loss = -\frac{SISNR(\hat{S}_1, S_1) + SISNR(\hat{S}_2, S_2)}{2}$$

$$Mix Loss = CL Loss + 0.1 * SE Loss$$


```
bz,1,(l 64)->bz,64,l
DSB(1,32)
DSB(32,64)
            Conv1d(64,128,3)
DSB(64,128)
           Concatenate()
  Conv1d(256,128,1)
Main
                           Main
Block(128,256,9,16,8)
                           Block(128,256,9,16,8)
Main
                           Main
Block(128,256,9,16,8)
                           Block(128,256,9,16,8)
Main
Block(128,256,9,16,8)
                           Conv1d(128,64,3)
Main
                           bz,64,l->bz,1,(l 64)
Block(128,256,9,16,8)
```

Conv1d(C_i,C_o,5,group=g)

GELU()

Maxpool1d(4,4)

BatchNorm1d()

Down Sample Block(C_i,C_o,g)

 .					
BatchNorm1d()					
Conv1d(C _i ,N*2,5)					
GELU()					
Chunk(2)					
BatchNorm1d()					
Conv1d(N,N,d*2-1,					
group=g)					
GELU()					
Conv1d(N,N,k,					
<pre>dila=d,group=g)</pre>					
GELU()					
Add					
BatchNorm1d()					
Conv1d(N,C _i ,5)					
GELU()					
 Add					

Main Block(C_i,N,k,d,g)

Experiment

	Normal	BYOL	SimSiam
_	使用 SE loss	使用 1	Mix loss
Round	每 50 個 epoch 京 loss 與 SE loss		loss (Mix
Pretrain	前 50 個 epoch 係 都使用 SE loss	吏用 Mix	loss,之後
Round (100 step)	每 100 個 epoch (Mix loss 與 SE		
Few	將 train data 與	test da	ata 交換

Experiment

Data

	Train	Test		
Speech	TIMIT(4120)	TIMIT(500)		
Noise	Nonspeech(75)	Nonspeech(25)		
SNR(dB)	-10, -5, 0, 5, 10	-7.5, -2.5, 2.5, 7.5		

Hyperparameter

	1	#	
Optimizer:SGD	lr_	momentum	weight decay
optimizer.3db	0.05	0.9	0.0001
Batch Size	$N_1 + N_2 = 128 + 128$		
BYOL τ		0.	99

CL vs Normal

BYOL

SimSiam

Train Similarity

Experiment

Evaluation Metrics

Model -	Evaluation Metrics				
Mode t	PESQ	STOI	SI-SNR		
Noisy	1.813	0.764	0.001		
Normal	2.273	0.814	7.146		
BYOL	2.392	0.844	9.174		
BYOL round	2.461	0.858	9.378		
BYOL round(100 s)	2.474	0.861	9.526		
SimSiam	2.374	0.84	8.884		
SimSiam round	2.472	0.861	9.529		

PESQ

Model -	SNR:	-7.5	-2.5	2.5	7.5
		PESQ			
Noisy		1.337	1.644	1.971	2.3
Normal		1.826	2.138	2.438	2.688
BYOL		1.875	2.253	2.59	2.851
BYOL round	d	1.904	2.3	2.671	2.97
BYOL round	d(100 s)	1.913	2.308	2.683	2.991
SimSiam		1.873	2.24	2.563	2.82
SimSiam r	ound	1.937	2.317	2.672	2.962

STOI

Model -	SNR:	-7.5	-2.5	2.5	7.5
		STOI			
Noisy		0.643	0.728	0.809	0.878
Normal		0.702	0.793	0.859	0.904
BYOL		0.734	0.826	0.889	0.928
BYOL round		0.746	0.841	0.904	0.942
BYOL round	(100 s)	0.75	0.844	0.906	0.944
SimSiam		0.729	0.822	0.885	0.926
SimSiam ro	und	0.753	0.845	0.905	0.942

Experiment

SI-SNR

Model –	SNR:	-7.5	-2.5	2.5	7.5	
Mode t		SI-SNR				
Noisy		-7.497	-2.498	2.503	7.498	
Normal		2.611	6.065	8.972	10.935	
BYOL		3.677	7.785	11.281	13.951	
BYOL round		3.396	7.772	11.615	14.728	
BYOL round	(100 s)	3.457	7.859	11.784	15.004	
SimSiam		3.544	7.508	10.913	13.572	
SimSiam ro	und	3.583	7.935	11.751	14.847	

Few Data

10 ————

Conclusion

- 在訓練前期利用 CL Loss 對中間特徵進行約束能夠加速模型收斂。
- 中後期使用 CL Loss 會降低模型的收斂速度與效能。
- 使用 CL Loss 能夠抑制 Overfitting 的問題。
- 與 SimSiam 相比,BYOL 的 CL Loss 需要更長一點的時間收斂。

Todo

- 測試不同比例混和的 Mix Loss 效果。
- 使用複數的噪音跟語音混和進行訓練。
- 研究 Mix Loss 的自適應混合權重。
- 區分噪音種類進行訓練。

Reference

- Bootstrap your own latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020.
- Exploring simple siamese representation learning. CoRR, abs/2011.10566, 2020.