Teoría de Lenguajes

Clase Teórica 2 Autómatas Finitos

Primer cuatrimestre 2024

Bibliografía

Capítulo 2, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

En esta clase

- ▶ Definición de autómata finito no determinístico con transiciones λ (AFND- λ)
- ▶ Teorema: Para todo AFND- λ hay un AFND que reconoce el mismo lenguaje.

Definición (Autómata Finito No Determinístico con transiciones λ)

Un AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q es conjunto de estados

S as al alfabeta de entre e

 Σ es el alfabeto de entrada q_0 es estado inicial

 \overline{F} es conjunto de estados finales

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q).$

Demostraremos que para todo AFND- λ hay un AFND que reconoce el mismo lenguaje. Vamos a necesitar herramientas.

Relaciones

Dados los conjuntos A y B, se llama relación de A en B a cualquier subconjunto de $A\times B$.

Una relación $R \subseteq A \times A$ es reflexiva cuando

$$\forall a \in A, (a, a) \in R.$$

Ejemplo: " \leq "sobre \mathbb{N} .

Una relación $R \subseteq A \times A$ es simétrica cuando

$$\forall a,b \in A, \Big(\mathrm{Si} \ (a,b) \in R \ \mathrm{entonces} \ (b,a) \in R \Big).$$

Ejemplo: " \neq "sobre \mathbb{N} .

Una relación $R \subseteq A \times A$ es transitiva cuando

$$\forall a,b,c \in A, \Big(\mathsf{Si} \ (a,b) \in R \ \land \ (b,c) \in R \ \text{ entonces } \ (a,c) \in R \Big).$$

Ejemplo: "a paralela a b", en el conjunto de rectas del plano.

Una relación es de equivalencia, cuando es reflexiva, simétrica y transitiva.

Composición de relaciones

Sean $A,\ B$ y C tres conjuntos, y sean R y G dos relaciones tales que $R\subseteq A\times B$ y $G\subseteq B\times C.$

La relación de composición: $G \circ R \subseteq A \times C$ se define como

$$G\circ R=\left\{ \left(a,c\right),a\in A,c\in C:\exists b\in B\text{ tal que }aRb\wedge bGc\right\} .$$

Una relación R definida sobre A es de identidad (id_A) si se cumple que

$$\forall a, b \in A, \ a id_A b \text{ si y solo si } a = b.$$

La relación de identidad es el elemento neutro de la composición. Dada una relación $R\subseteq A\times B$ es cierto que

$$id_B \circ R = id_A = R$$

Relación potencia

Dada una relación $R\subseteq A\times A$, y dado n se define la potencia $R^n\subseteq A\times A$ como

$$R^n = \left\{ \begin{array}{ll} id_A & \text{si } n = 0 \\ R \circ R^{n-1} & \text{si no} \end{array} \right.$$

con $R = R^1$.

Notar que \mathbb{R}^n es un conjunto de pares, cualquiera sea el valor de n.

Clausura transitiva

Dada una relación $R \subseteq A \times A$ se define clausura transitiva R^+ ,

$$R^+ = \bigcup_{k=1}^{\infty} R^k.$$

Proposición

- 1. $R \subseteq R^+$
- 2. R^+ es transitiva
- 3. Si $S \subseteq A \times A$, $R \subseteq S$ y S es transitiva entonces $R^+ \subseteq S$.

Entonces, R^+ es la relación transitiva más pequeña que contiene a R.

Demostración de la proposición

Queremos ver que si aR^+b y bR^+c enonces aR^+c .

Si aR^+b , entonces existe una secuencia de elementos d_1,\ldots,d_n tal que $d_1Rd_2,\ldots,d_{n-1}Rd_n$, donde $d_1=a$ y $d_n=b$. Por lo tanto, aR^nb . Análogamente, como bR^+c entonces existe una secuencia de elementos e_1,\ldots,e_m tal que $e_1Re_2,\ldots,e_{m-1}Re_m$, donde $e_1=b$ y $e_m=c$. Por lo tanto bR^mc . Concluimos que $aR^{n+m}c$ y esto implica aR^+c .

Ahora demostremos que si $R\subseteq S$ y S es transitiva entonces $R^+\subseteq S$. Supongamos aR^+b . Entonces, existe una secuencia de elementos c_1,\ldots,c_n tal que $c_1Rc_2,\ldots,c_{n-1}Rc_n$, donde $c_1=a$ y $c_n=b$. Como $R\subseteq S$ tenemos que $c_1Sc_2,\ldots,c_{n-1}Sc_n$, y como S es transitiva entonces, la aplicación repetida de la transitividad nos lleva a que c_1Sc_n , o sea aSb.

Clausura transitiva reflexiva: R^*

$$R^* = R^+ \cup id = \bigcup_{i=0}^{\infty} R^i$$
.

La clausura λ de un estado q, $Cl_{\lambda}\left(q\right)$, es el conjunto de estados alcanzable desde q, siguiendo sólo transiciones λ . Usamos la noción de clausura transitivo-reflexiva para definir Cl_{λ} .

Definición (clausura λ de un estado)

Dado un AFND- λ $(Q, \Sigma, \delta, q_o, F)$, sea $R \subseteq Q \times Q$ tal que $(q, p) \in R$ si y solo si $p \in \delta(q, \lambda)$. Definimos $Cl_{\lambda} : Q \to \mathcal{P}(Q)$,

$$Cl_{\lambda}(q) = \{p : (q, p) \in R^*\}$$

Notar que $q \in Cl_{\lambda}(q)$.

Definición (clausura λ de un conjunto de estados P)

$$Cl_{\lambda}(P) = \bigcup_{q \in P} Cl_{\lambda}(q).$$

Extendemos la definición de δ a conjuntos de estados, $\delta : \mathcal{P}(Q) \times (\Sigma \cup {\lambda}) \to \mathcal{P}(Q)$,

$$\delta\left(P,a\right) = \bigcup_{q \in P} \delta\left(q,a\right)$$

Definición (función transición-sin- $\lambda \ \widehat{\delta}$)

Dado un AFND- λ $M=(Q,\Sigma,\delta,q_0,F)$ con $\delta:Q\times(\Sigma\cup\{\lambda\})\to\mathcal{P}(Q)$ definimos la función de transición -sin- λ $\widehat{\delta}:Q\times\Sigma\to\mathcal{P}(Q)$

$$\widehat{\delta}(q, a) = Cl_{\lambda} \Big(\delta \big(Cl_{\lambda}(q), a \big) \Big)$$

Extendemos $\widehat{\delta}$ a conjuntos de estados, $\widehat{\delta} : \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$,

$$\widehat{\delta}(P,a) = \bigcup_{x \in P} \widehat{\delta}(q,a)$$

Extendemos $\widehat{\delta}$ a palabras $\widehat{\delta}: Q \times \Sigma^* \to \mathcal{P}\left(Q\right)$,

$$\widehat{\delta}(q,\lambda) = Cl_{\lambda}(q)$$

$$\widehat{\delta}(q, xa) = Cl_{\lambda}\left(\delta(\widehat{\delta}(q, x), a)\right)$$

Notar que $\widehat{\delta}(q, a)$ puede ser distinto de $\delta(q, a)$.

Atención!!

Aqui se usa $\widehat{\delta}$ para definir aceptación en AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle.$

Definición (cadena aceptada por un AFND- λ)

Una cadena $x\in \Sigma^*$ es aceptada por AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si $\widehat{\delta}\left(q_0,x\right)\cap F\neq \phi.$

Definición (lenguaje aceptado por un AFND- λ)

Sea AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. El lenguaje aceptado por M, $\mathcal{L}(M)$, es el conjunto de cadenas aceptadas por M,

$$\mathcal{L}\left(M\right) = \left\{x : \widehat{\delta}\left(q_0, x\right) \cap F \neq \phi\right\}.$$

Teorema (equivalencia entre AFND y AFND- λ)

Dado un AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ hay un AFND $M'=\langle Q, \Sigma, \delta', q_0, F' \rangle$ tal que $\mathcal{L}(M)=\mathcal{L}(M')$.

Demostración del teorema

Sea AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ donde $\delta: Q \times \Sigma \cup \{\lambda\} \to \mathcal{P}(Q)$. Usaremos las versiones extendidas de δ en ambos argumentos, conjuntos de estados, y palabras de Σ^* .

Sea $\widehat{\delta}:Q\times\Sigma\to\mathcal{P}(Q)$ la función de transición-sin λ . Usaremos también las versiones extendidas en $\widehat{\delta}$ en ambos argumentos, conjuntos de estados, y palabras de Σ^* .

Definimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$, donde $\delta' : Q \times \Sigma \to \mathcal{P}(Q)$,

$$\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right), \text{ para cada } a\in\Sigma \text{ y } q\in Q$$

Definimos δ' para conjuntos y para cadenas de la manera estandard, $\delta': \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ y $\delta': Q \times \Sigma^* \to \mathcal{P}(Q)$.

$$F' = \left\{ \begin{array}{cc} F & \text{, si } Cl_{\lambda}\left(q_{0}\right) \cap F = \emptyset \\ \\ F \cup \left\{q_{0}\right\} & \text{, si no.} \end{array} \right.$$

Observar que $F' \supseteq F$.

Debemos ver para toda $x \in \Sigma^*$, $x \in \mathcal{L}(M)$ si y solo si $x \in \mathcal{L}(M')$.

Caso $x = \lambda$.

Supongamos $\lambda \in \mathcal{L}(M)$. Entonces, $\widehat{\delta}(q_0,\lambda) \cap F \neq \emptyset$. Como $\widehat{\delta}(q_0,\lambda) = Cl_\lambda(q_0)$ tenemos $Cl_\lambda(q_0) \cap F \neq \emptyset$. Luego $F' = F \cup \{q_0\}$ y por lo tanto $q_0 \in F'$, entonces $\lambda \in \mathcal{L}(M')$.

Supongamos $\lambda \in \mathcal{L}\left(M'\right)$. Entonces, $\delta'(q_0,\lambda) \cap F' \neq \emptyset$.

Por definición de δ' tenemos $\delta'(q_0, \lambda) = \{q_0\}.$

Luego $q_0 \in F'$ y necesariamente $Cl_{\lambda}(q_0) \cap F \neq \emptyset$,

Luego $q_0 \in F$ y necesariamente $Ct_\lambda(q_0) \cap F \neq \emptyset$, (asumir $Ct_\lambda(q_0) \cap F = \emptyset$ implica F = F' y $q_0 \notin F'$, lo que contradice $q_0 \in F'$).

Dado que $\widehat{\delta}(q_0,\lambda) = Cl_{\lambda}(q_0)$, tenemos $\widehat{\delta}(q_0,\lambda) \cap F \neq \emptyset$, y por la definición de palabra aceptada en AFND- λ , $\lambda \in \mathcal{L}(M)$.

Caso $|x| \geq 1$. Debemos ver que $x \in \mathcal{L}(M)$ si y solo si $x \in \mathcal{L}(M')$.

Demostremos que $\delta'(q_0, x) = \widehat{\delta}(q_0, x)$, para todo $x \in \Sigma^+$.

Lo hacemos por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de M', $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right).$

Caso inductivo |x| > 1. Sea x = wa y asumamos que vale para w.

$$\delta'(q_0, wa) = \delta'(\underline{\delta'(q_0, w)}, a) = \delta'(\widehat{\underline{\delta}(q_0, w)}, a),$$

las expresiones tomadas por las llaves son iguales por h.i.

y para cualquier $P \subseteq Q$

$$\delta'\left(P,a\right) = \bigcup_{q \in P} \delta'\left(q,a\right) = \bigcup_{q \in P} \widehat{\delta}\left(P,a\right) = \widehat{\delta}\left(P,a\right)$$

haciendo $P = \widehat{\delta}(q_0, w)$, tenemos que

$$\delta'\left(q_{0},wa\right)=\delta'\left(\widehat{\delta}\left(q_{0},w\right),a\right)=\widehat{\delta}\left(\widehat{\delta}\left(q_{0},w\right),a\right)=\widehat{\delta}\left(q_{0},wa\right).$$

Seguimos con el caso $|x| \ge 1$.

Supongamos $x\in\mathcal{L}\left(M\right)$. Entonces, $\widehat{\delta}\left(q_{0},x\right)\cap F\neq\varnothing$, Por lo tanto, $\delta'\left(q_{0},x\right)\cap F'\neq\varnothing$, ya que $F\subseteq F'$ Concluimos $x\in\mathcal{L}\left(M'\right)$.

Supongamos $x \in \mathcal{L}\left(M'\right)$. Entonces, $\delta'\left(q_{0},x\right) \cap F' \neq \varnothing$. Dado que F' = F ó $F' = F \cup \{q_{0}\}$, $\left(\widehat{\delta}\left(q_{0},x\right) \cap F \neq \varnothing\right) \text{ ó } \left(\widehat{\delta}\left(q_{0},x\right) \cap \{q_{0}\} \neq \varnothing \wedge Cl_{\lambda}\left(q_{0}\right) \cap F \neq \varnothing\right) \text{ por def. de } F'$

implica

$$x \in \mathcal{L}(M)$$
 ó $x \in \mathcal{L}(M)$ luego $x \in \mathcal{L}(M)$.

Г

Ejercicios

- 1. Demostrar que ara cada AFND $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ existe otro AFND - λ $M'=\langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M)=\mathcal{L}(M')$ y F' tiene un único estado final.
- 2. Indicar Verdadero o Falso y justificar Sea Σ un alfabeto con al menos dos símbolos, y sea a un símbolo de Σ . Sea AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. Considerar el AFND- λ $M' = \langle Q, \Sigma \setminus \{a\}, \delta', q_0, F \rangle$ que se obtiene de reemplazar todas las transiciones con el símbolo a por transiciones λ . Es decir,
 - para todo $q \in Q$, para todo $x \in \Sigma$ tal que $x \neq a$, $\delta'(q,x) = \delta(q,x)$,
 - para todo $q \in Q$, $\delta'(q, \lambda) = \delta(q, a)$, ¿Cual es el lenguaje aceptado por M'?
- 3. ¿Se puede acotar superiormente cuantas transiciones requiere la aceptación de una palabra en un AFND- λ ?