Dummit & Foote Ch. 1: Groups

Scott Donaldson

2022

1. (11/14/22)

Let G be a group. Determine which of the following binary operations are associative:

- a) The operation \star on $\mathbb Z$ defined by $a\star b=a-b$: Not associative. $3\star(2\star 1)=3-1=2$ but $(3\star 2)\star 1=3-2=1$.
- b) The operation \star on $\mathbb R$ defined by $a \star b = a + b + ab$: Associative.

$$a \star (b \star c) = a \star (b + c + bc) = a + b + c + bc + ab + ac + abc =$$
$$(a + b + ab) \star c = (a \star b) \star c$$

- c) The operation \star on $\mathbb Q$ defined by $a\star b=\frac{a+b}{5}$: Not associative. $0\star(1\star1)=0+2/5=2/5$ but $(0\star1)\star1=1/5\star1=6/5*1/5=6/25$.
- d) The operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b) \star (c,d) = (ad+bc,bd)$: Associative.

$$((a,b) \star (c,d)) \star (e,f) = (ad + bc,bd) \star (e,f) =$$

 $(adf + bcf + bde,bdf) = (a,b) \star (cf + de,df) = (a,b) \star ((c,d) \star (e,f)).$

e) The operation \star on $\mathbb{Q} - \{0\}$ defined by $a \star b = a/b$: Not associative. $(1 \star 2) \star 3 = 1/6$ but $1 \star (2 \star 3) = 3/2$.

2. (11/14/22)

Decide which of the binary operations in the preceding exercise are commutative.

- a) Not commutative. 1-2=-1 but 2-1=1.
- b) Commutative. $a \star b = a + b + ab = b + a + ba = b \star a$.

- c) Commutative. $a \star b = \frac{a+b}{5} = \frac{b+a}{5} = b \star a$.
- d) Commutative. $(a,b)\star(c,d)=(ad+bc,bd)=(cb+da,db)=(c,d)\star(a,b).$
- e) Not commutative. 1/2 = 1/2 but 2/1 = 2.

3. (11/15/22)

Prove that addition of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative.

Proof. Let $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}/n\mathbb{Z}$. Suppose that $(\bar{a} + \bar{b}) + \bar{c} = \bar{d}$ and $\bar{a} + (\bar{b} + \bar{c}) = \bar{e}$. Then:

$$\bar{d} - \bar{c} = \bar{a} + \bar{b} \Rightarrow \bar{a} = (\bar{d} - \bar{c}) - \bar{b}$$

And:

$$\bar{e} - \bar{a} = \bar{b} + \bar{c} \Rightarrow \bar{e} = ((\bar{d} - \bar{c}) - \bar{b}) + \bar{b} + \bar{c} = \bar{d} - \bar{c} + \bar{c} = \bar{d}$$
 Therefore $\bar{d} = \bar{e}$, so $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$.