R² is a straight-chained alkyl moiety selected from the group consisting of -(CH₂)₃CH₃, -(CH₂)₅CH₃, -(CH₂)₇CH₃ and -(CH₂)₉CH₃, or an alkenyl group or alkynyl group having from 1 to 23 carbon atoms in the aliphatic chain;

RECEIVED

NOV 27 200

TECH CENTER (690, 2900

Z² is a phosphorylcholine attachment-inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and -OX²X³;

X¹ is selected from the group consisting of -C(O)H, -CO₂H, CH₃, C(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl chain having from 1 to 6 carbons, an amino group, a fluorine, a chlorine, and a group having the formula C(R³R⁴)OH;

X² is selected from the group consisting of CH₂-, C(CH₃)₂-, Si(PO₄)₂-, Si(PO₄)₂-, Si(CH₃)₂-, Si(CH₃)-, Si(CH₃)-, Si(CH₃)-, Si(CH₃

X³ is selected from the group consisting of -C(O)H, -CO2H, -CH3, -C(CH3)3, -Si(CH3)3, -SiCH3(C(CH3)3)2, -Si(C(CH3)3)3, -Si(PO4)2C(CH3)3, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl-chain having from 1 to 6 carbons, an amino moiety, a chlorine, a fluorine, or a group having the formula C(R³R⁴)OH, wherein each of R³ and R⁴ is independently an alkyl-onain having from 1 to 6 carbons, a phenyl group or an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl-chain;

wherein when Z^2 is an amino group, R^2 is an aliphatic chain having from 1 to 9 or from 19 to 23 carbon atoms in the aliphatic chain;

and wherein the compound comprises at least about 5 mole percent of the lipid.

16. (amended) A compound having the formula R¹-Y¹-CHZ¹-CH(NY²Y³)-CH₂-Z², wherein:

R¹ is a straight-chained alkyl, alkenyl or alkynyl group having from 5 to 19 carbon atoms in the aliphatic chain;

Y¹ is -CH=CH-, -C≡C- or -CH(OH)CH(OH)-;

Z¹ is OH or a phosphorylcholine attachment/inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and -OX²X³;

is H, a phenyl group, an alkyl-substituted phenyl group having from 1 to about 6 carbons in the alkyl chain, or an alkyl chain having from 1 to 10 carbons;

Y³ is H or a group having the formula fC(O)R² or -S(O)₂R²;

Balan Jack

- R² is a straight-chained alkyl moiety selected from the group consisting of -(CH₂)₃CH₃, -(CH₂)₅CH₃, -(CH₂)₇CH₃ and -(CH₂)₉CH₃, an alkenyl group group having from 1 to 23 carbon atoms in the aliphatic chain and an alkynyl group having from 1 to 23 carbon atoms in the aliphatic chain;
- Z² is OH or a phosphorylcholine attachment-inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and -OX²X³;
- X¹ is selected from the group consisting of -C(O)H, -CO2H, CH3, C(CH3)3, Si(CH3)3, Si(CH3)3, SiCH3(C(CH3)3)2, Si(C(CH3)3)3, Si(PO4)2C(OH3)3, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl chain having from 1 to 6 carbons, an amino group, a fluorine, a chlorine, and a group having the formula C(R³R⁴)OH;

X² is selected from the group consisting of CH₂-, C(CH₃)₂-, Si(PO₄)₂-, Si(CH₃)₂-, Si(CH₃)₂-

SiCH3(C(CH3)3)2, -Si(C(CH3)3)3, -Si(PO4)2C(CH3)3, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl-chain having from 1 to 6 carbons, an amino moiety, a chlorine, a fluorine, or a group having the formula C(R³R⁴)OH, wherein each of R³ and R⁴ is independently an alkyl chain having from 1 to 6 carbons, a phenyl group or an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain;

wherein when Z^2 is an amino group, R^2 is an aliphatic chain having from 1 to 9 or from 19 to 23 carbon atoms in the aliphatic chain.

27. (amended) The compound of claim 16 having the formula CH₃(CH₂)₁₂
CH=CH-CHZ¹-CH(NHY³)-CH₂-Z₂

Brief

B3