Réseaux de neurones

IFT 780

Réseaux de neurones par graphe

Par Pierre-Marc Jodoin

1

Concepts fondamentaux

Un graph (\mathcal{G}) est constitué de nœuds (\mathcal{V}) et d'arêtes (\mathcal{E}) :

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\begin{split} \mathcal{V} &= \{a,b,c,....,k\} \\ \mathcal{E} &= \{ab,ad,bf,...,kj\} \end{split}$$

Matrice d'adjacence $A \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$

5

5

Matrice d'adjacence

 $A \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \text{ tel que } a_{ij} = \begin{cases} 1, & (i,j) \in \mathcal{E} \\ 0, & sinon \end{cases}$

$$A = \begin{pmatrix} & & \vdots \\ & & \vdots \\ & & a_{ij} & - - - \end{pmatrix} j$$

 $|\mathcal{V}|$: nombre de nœuds dans le graphe

A est symétrique pour tout graphe non orienté

Différentes configurations

Orienté vs non orienté

• Non oriente \cdot A oriente \cdot A = A^T • Orienté : $A = A^T$ • Orienté : A est assimétrique Ex: dans un réseau social, les relations d'amis peuvent être bidirectionnelles ou non.

Poids: Une arête peut avoir un poids $w_{ij} \in R$

Ex: dans une molécule, un poids peut être la force d'attraction entre 2 atomes.

Caractéristiques: les nœuds/arêtes peuvent avoir des caractéristique $\vec{x}_i \in R^d$ Ex: dans une molécule, un noeud peut contenir le nombre d'électrons, protons, neutrons (donc 3 caractéristiques).

Multi-relationnel : différents types d'arêtes $(i, j, t) \in \mathcal{E}$ Ex: dans un graph social, t est la relation (parent, époux, etc)

Hétérogène : différents types de nœuds

Ex: dans un réseau d'interactions sociales (personnes, institutions, objets, etc)₈

Invariance et équivariance

Pourquoi les CNNs ont ces propriétés?

19

Convolution

$$(x*h)(i,j) = \sum_{n} \sum_{m} x(i-n,j-m)h(n,m)$$

- implique un produit scalaire + une translation
 les poids du filtre sont fixes pour l'ensemble des pixels

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	3,	22	1	0
2 0 0 2 2	02	02	1_{o}	3	1
	30	1,	22	2	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0	0	2	2
	2	0	0	0	1

Convolution

$$(x*h)(i,j) = \sum_{n} \sum_{m} x(i-n,j-m)h(n,m)$$

Par conséquent

- La sortie d'une convolution (et CNN) est prévisible lorsque le signal est translaté
 Les calculs sont locaux (fenêtre NxN)
 Les petites variations locales ne contaminent pas la sortie
- - C'est l'intérêt d'avoir des petites convolutions (3x3) à travers plusieurs couches d'un réseau profond

22

23

Le graphe le plus simple:

un ensemble de points

(un graphe sans arête)

Ensemble de points

Très pertinent : conduite autonome, reconstruction 3D, Lidar...

25

Graphes sans arête

Que des nœuds

$$G = (\mathcal{V},)$$

Soit $\vec{x}_i \in \mathbb{R}^d$ le vecteur de caractéristiques du nœud i.

Soit $\pmb{X} \in R^{|\mathcal{V}| \times d}$ la matrice de caractéristiques contenant les vecteurs de tous les nœuds i

$$\boldsymbol{X} = (\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n)^T$$

26

Ensemble de points

Ex.: ensemble de 5 nœuds avec des caractéristiques 2D

$$\vec{x}_{a} = \begin{pmatrix} 12\\25 \end{pmatrix}$$

$$\vec{x}_{b} = \begin{pmatrix} -4\\33 \end{pmatrix}$$

$$\vec{x}_{e} = \begin{pmatrix} 8\\-23 \end{pmatrix}$$

$$\vec{x}_{e} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$\vec{x}_{e} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$\vec{x}_{e} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

$$X = \begin{bmatrix} 8 & -23^{\circ} \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}$$

1	-
	- 1

Graphes sans arête

Remarque: en faisant cela, nous avons imposé un ordre dans la matrice $X : \vec{x}_e$ est en premier et \vec{x}_d est en dernier

$$\vec{x}_{b} = \begin{pmatrix} -4 \\ 33 \end{pmatrix} \bigcirc \qquad \vec{x}_{a} = \begin{pmatrix} 12 \\ 25 \end{pmatrix} \\ \vec{x}_{e} = \begin{pmatrix} 8 \\ -23 \end{pmatrix} \\ \vec{x}_{c} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \bigcirc \qquad \qquad X = \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}$$

28

Graphes sans arête

Remarque: l'ordre dans lequel les nœuds sont inscrits ne change pas la nature de l'ensemble des nœuds.

$$X = \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} \qquad X = \begin{bmatrix} -4 & 33 \\ 12 & 25 \\ 8 & -23 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} \qquad X = \begin{bmatrix} -4 & 33 \\ 12 & 25 \\ 8 & -23 \\ 7 & 33 \\ 1 & 2 \end{bmatrix}$$

Toujours le même ensemble de nœuds

29

Ce qu'on souhaite (pour la classification)

Ce qu'on souhaite (pour la classification)

$$f\left(\left[\begin{smallmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{smallmatrix}\right) = f\left(P\left(\begin{smallmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{smallmatrix}\right)\right)$$

On veut que le réseau de neurones soit invariant à la permutation des lignes de X

31

Permutation matricielle

Une matrice de permutation contient des 0 et des 1 permettant de permuter des lignes.

$$\mathbb{P}_{21345}X = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} = \begin{bmatrix} 12 & 25 \\ 8 & -23 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix}$$

$$\mathbb{P}_{32514}X = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 & 5 \end{bmatrix} = \begin{bmatrix} -4 & 33 \\ 12 & 25 \\ 7 & 33 \\ 8 & -23 \\ 1 & 2 & 5 \end{bmatrix}$$

32

Réseau invariant à la permutation

Un réseau de neurones est invariant à la permutation si pour toute matrice de permutation \mathbb{P}

$$f(\mathbb{P}X) = f(X)$$

Réseau invariant à la permutation

Un réseau de neurones est invariant à la permutation si pour toute matrice de permutation $\mathbb P$

Matrice de Matrice de caractéristiques permutation

$$f(\mathbb{P}X) = f(X)$$

Réseau de neurones

34

Deep Sets

Un réseau très générique et invariant à la permutation est celui proposé par [Zaheer et al 2017]

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

 $\phi(.)$ et $\psi(.)$ sont des réseaux de neurones, e.g. Perceptron

M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos1, R. Salakhutdinov, A.J. Smola Deep Sets, NeuRIPS 2017.

35

Deep Sets

Un réseau très générique et invariant à la permutation est celui proposé par [Zaheer et al 2017]

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

 $\phi(.)$ et $\psi(.)$ sont des réseaux de neurones, e.g. MLP 2 couches (ou plus)

$$\begin{array}{ll} \rightarrow & \phi(\vec{v}) = \sigma(W_\phi^2 \sigma \big(W_\phi^1 \vec{v} + \vec{b}_\phi^1\big) + \vec{b}_\phi^2\big) \\ \rightarrow & \psi(\vec{v}) = \sigma(W_\psi^2 \sigma \big(W_\psi^1 \vec{v} + \vec{b}_\psi^1\big) + \vec{b}_\psi^2\big) \end{array}$$

$$\rightarrow \psi(\vec{v}) = \sigma(W_+^2 \sigma(W_+^1 \vec{v} + \vec{h}_+^1) + \vec{h}_+^2)$$

M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos1, R. Salakhutdinov, A.J. Smola Deep Sets, NeuRIPS 2017.

Deep Sets

$$f(X) = \phi(\sum_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

Comme la somme, d'autres opérateurs sont invariants aux permutations (ex. min, max, moyenne, etc.)

41

Deep Sets

$$f(X) = \phi(\bigoplus_{i \in \mathcal{V}} \psi(\vec{x}_i))$$

Comme la somme, d'autres opérateurs sont invariants aux permutations (ex. min, max, moyenne, etc.).

Il est d'usage de représenter l'opérateur d'agrégation par $\bigoplus_{i \in \mathcal{V}}$

Graphes sans arête : classification des nœuds (segmentation)

On cherche un réseau de neurones équivariant à la permutation

Matrice de caractéristiques

$$f(\mathbb{P}X) = \mathbb{P} f(X)$$
Matrice de permutation

Réseau de neurones

43

Graphes sans arête : classification des nœuds (segmentation)

$$f(X) = \mathbf{\Phi} \big(\bigoplus_{i \in \mathcal{V}} \psi(\vec{x}_i) \big)$$

On a qu'à retirer l'opérateur d'agrégation

$$f(\mathbf{X}) = \begin{pmatrix} \boldsymbol{\psi}(\vec{\mathbf{X}}_1) \\ \boldsymbol{\psi}(\vec{\mathbf{X}}_2) \\ \dots \\ \boldsymbol{\psi}(\vec{\mathbf{X}}_N) \end{pmatrix}$$

et c'est le mieux qu'on puisse faire avec des graphes sans arête.

44

Deep Sets, illustration (MLP 3 couches)

$$f(X) = \phi(\psi_2(\psi_1(\vec{x}_i))$$

		п	H (=)	
$\begin{bmatrix} 8 & -23 \\ 12 & 25 \\ -4 & 33 \\ 1 & 2 \\ 7 & 33 \end{bmatrix} \rightarrow$	$\begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \vec{x}_5 \end{bmatrix} \qquad \psi_1$	$\begin{bmatrix} \vec{h}_1 \\ \vec{h}_2 \\ \vec{h}_3 \\ \vec{h}_4 \\ \vec{h}_5 \end{bmatrix} \rightarrow \psi_2$	$h^{(2)}_{3}$ ϕ	$ \begin{cases} f(\vec{x}_1) \\ f(\vec{x}_2) \\ f(\vec{x}_3) \\ f(\vec{x}_4) \\ f(\vec{x}_5) \end{cases} f(X) $

En résumé

l'apprentissage sur des ensembles de points se fait en appliquant une fonction équivariante ψ sur chaque nœud indépendamment

$$\vec{h}_i = \psi(\vec{x}_i)$$

auquel on ajoute un agrégateur invariant si nécessaire

$$f(X) = \mathbf{\phi} \Big(\bigoplus_{i \in \mathcal{V}} \psi(\vec{x}_i) \Big)$$

Apprentissage sur des graphes

52

Apprentissage sur des graphes

$$\mathcal{G}=(\mathcal{V},\mathcal{E})$$

Matrice d'adjacence

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{e} \end{pmatrix}$$

On souhaite toujours avoir un réseau invariant/équivariant

53

Ce qu'on souhaite

Ensemble de points

Graphe

$$f(\checkmark) = f(\checkmark)$$

Apprentissage sur des graphes

Matrice de caractéristiques

$$G = (V, \mathcal{E})$$

$$X = \begin{bmatrix} \vec{x}_a \\ \vec{x}_b \\ \vec{x}_c \\ \vec{x}_d \\ \vec{x} \end{bmatrix}$$

Matrice d'adjacence

	a	b	c	d	e	
	/1	1	1	1	0\	a
A =	1	1	0	1	0	b
A =	1	0	1	0	1	c
	1	1	0	1	0	d
	/0	0	1	0	1/	e

On souhaite toujours avoir un réseau invariant/équivariant

55

Permutation des nœuds a et c

Matrice de caractéristiques

Matrice d'adjacence

$$A = \begin{pmatrix} \mathbf{c} & \mathbf{b} & \mathbf{a} & \mathbf{d} & \mathbf{e} \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{d} \end{pmatrix}$$

On souhaite toujours avoir un réseau invariant/équivariant

56

Permutation

La permutation de 2 (ou plus) éléments dans un graphe implique la permutation de la matrice ${\bf X}$

la double permutation de la matrice d'adjacence

 $\mathbb{P}A\mathbb{P}^T$

Permutation sur les graphes

 $Invariance \ ({\tt pour \ la \ classification \ du \ graphe})$

$$f(\mathbb{P}X, \mathbb{P}A\mathbb{P}^T) = f(X, A)$$

Équivariance (pour la classification des nœuds)

$$f(\mathbb{P}X, \mathbb{P}A\mathbb{P}^T) = \mathbb{P}f(X, A)$$

59

Voisinage (neighbourhood)

Le voisinage d'un nœud i dans un graphe est généralement constitué de nœuds avec lesquels il partage une arête

$$\mathcal{N}_i = \{j \colon (i,j) \in \mathcal{E} \ \lor (j,i) \in \mathcal{E}\}$$

On peut mettre les vecteurs de caractéristiques du voisinage dans une matrice

$$\pmb{X}_{\mathcal{N}_i} = \left\{ \vec{x}_j \colon \in j \in \mathcal{N}_i \right\}$$

Et définir une fonction sur le voisinage

$$\phi(\vec{x}_i, X_{\mathcal{N}_i})$$

Quel est le contenu de $\phi(\vec{x}_i, X_{\mathcal{N}_i})$

Rappel

 $\phi(.), \psi(.)$ et $\rho(.)$ sont des réseaux de neurones, e.g.

$$\rightarrow \quad \rho(\vec{v}) = \sigma(\mathbf{W}_{\rho}\vec{v} + \vec{\mathbf{b}}_{\rho}) \qquad \quad \rho(\vec{u}, \vec{v}) = \sigma(\mathbf{W}_{\rho}\vec{u} + \mathbf{V}_{\rho}\vec{v} + \vec{\mathbf{b}}_{\rho})$$

GNN à convolution

$$\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{id} \psi(\vec{x}_i)\right)$$

 $avec \ c_{id} \in \mathcal{R}$

En général,

- c_{id} est une constante issue de A non apprise par le réseau
- $\bigoplus_{i \in \mathcal{N}_d}$ est une sommation/moyenne

70

GNN à convolution

$$\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{id} \psi(\vec{x}_i)\right)$$

 $avec \ c_{id} \in \mathcal{R}$

Exemple d'une solution viable

$$\vec{h}_d = \phi \left(c_{ad} \psi(\vec{x}_a) + c_{bd} \psi(\vec{x}_b) + c_{cd} \psi(\vec{x}_c) + c_{dd} \psi(\vec{x}_d) \right)$$

M. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spe F. Wu et al Simplifying Graph Convolutional Networks, ICLR 2019

71

GNN à convolution

Plusieurs variantes possibles...

$$\vec{h}_d = \phi \underbrace{\left(\Sigma_{i \in \mathcal{N}_d} c_{id} \vec{x}_i \right)}_{\text{Somme pondérée des voisins}}$$

et si $c_{id} = A_{id}$ (contenu de la matrice d'adjacence)

$$\vec{h}_d = \phi(A_d X)$$

Pour le graph au complet

$$H = \phi(AX)$$

Thomas N. Kipf and Max Welling Semi-Supervised Classification with Graph Convolutional Networks, 2016

 \vec{h}_d Très utile pour les graphes homophiles (le poids des arêtes encodent la similarité)

Très utilisé industriellement

Pour le graph au complet

$$H=\phi(AX)$$

M. Defferrad et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NeuRIPS 2016 F. Wu et al Simplifying Graph Convolutional Networks, ICLR 2019

73

Et si

GNN d'attention

 $\vec{h}_d = \phi\left(\vec{x}_d, \oplus_{i \in \mathcal{N}_d} \alpha(\vec{x}_i, \vec{x}_d) \psi(\vec{x}_i)\right)$

 $avec \ \alpha(\vec{x}_i,\vec{x}_d) \in \mathcal{R}$

 $\alpha(\vec{x}_i, \vec{x}_d)$ est une fonction qui détermine **l'intensité du lien** entre les nœuds i et d.

M. Velickovic et al. Graph Attention Network, ICLR 2018
S. Brody et al How Attentive are Graph Attention Networks? ICLR 2022

74

GNN convolutif vs GNN d'attention

 $\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} c_{di} \psi(\vec{x}_j)\right)$

 $\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} \alpha(\vec{x}_i, \vec{x}_d) \psi(\vec{x}_j)\right)$

Dans les 2 cas, on a une **somme pondérée** des vecteurs transformés par un réseau ψ

Dans le cas d'un GNN multicouches

- Les coefficients c_{di} sont fixes et les mêmes pour toutes les couches
 Les coefficients α(x̄_i, x̄_d) s'adaptent au contenu de chaque couche.

GNN avec passage de messages

 $\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} \psi(\vec{x}_i, \vec{x}_d)\right)$

Les arêtes apprennent l'information à combiner à chaque nœud

77

GNN avec passage de messages

 $\vec{h}_d = \phi\left(\vec{x}_d, \bigoplus_{i \in \mathcal{N}_d} \psi(\vec{x}_i, \vec{x}_d)\right)$

Différences

- GNN conv : Les coefficients c_{dl} sont fixes et sont des scalaires
 GNN attention : Les coefficients α(x̄_l, x̄_d) s'adaptent et sont des scalaires
 GNN PM : Les éléments ψ(x̄_l, x̄_d) s'adaptent et sont des vecteurs

 $P.\ Battaglia\ ct\ al.\ Relational\ inductive\ biases,\ deep\ learning,\ and\ graph\ networks,\ arXiv:1806.01261\ 2018$

78

Les 3 approches implémentent une combinaison de MLPs

81

Version la plus générique des GNNs à ce jour

Graph Nets*

* P.W Battaglia et al. Relational inductive biases, deep learning, and graph networks, arXiv:1806.01261 2018 github.com/deepmind/graph_nets

Version générique des GNNs

Mise à jour d $\vec{h}_{ij} = \psi_i(\vec{x}_i)$

 $\begin{aligned} & \text{Mise à jour des arêtes} \\ & \vec{h}_{ij} = \psi \big(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g \big), \qquad \forall ij \in \mathcal{E} \end{aligned}$

86

Version générique des GNNs

 \bar{h}_{ad}

 $\begin{array}{ll} \textbf{Agr\'egation des ar\^etes de chaque nœud} \\ \vec{h}_{N_k} = \bigoplus_{ij \in N_k} \vec{h}_{ij} & \forall k \in \mathcal{V} \end{array}$

87

Version générique des GNNs

 $\begin{aligned} &\text{Mise à jour des } \mathbf{arêtes} \\ &\vec{h}_{ij} = \psi \big(\vec{x}_i, \vec{x}_j, \vec{x}_{ij}, \vec{x}_g \big), \qquad \forall ij \in \mathcal{E} \end{aligned}$

Agrégation des **arêtes** de chaque nœud $\vec{h}_{N_k} = \bigoplus_{ij \in N_k} \vec{h}_{ij} \qquad \forall k \in \mathcal{V}$

 $\begin{array}{ll} \textbf{Mise à jour des nœuds} \\ \vec{h}_k = \phi \big(\vec{x}_k, \vec{h}_{N_k}, \vec{x}_g \big) & \forall k \in \mathcal{V} \end{array}$

En conclusion...

Principe d'invariance Principe d'équivariance 3 familles • GNN convolutif • GNN d'attention • GNN passage de messages Graph Nets = le GNN le plus générique qui soit GNN = des MLP bien agencés!