Seleção Ótima da Tensão de Modo Comum para Conversores NPC

Vítor Paese De Carli 5 de julho de 2024

1 Introdução

O conversor estático proposto é um inversor NPC trifásico a três fios que deverá atuar como formador de rede. Isto é, o conversor deve ter a capacidade de operar em modo ilhado e também conectado a rede elétrica convencional. Quando em modo ilhado, o seu objetivo é imitar o comportamento de um gerador síncrono, permitindo gerar a referência de tensão e frequência da microrrede (MR) a qual ele está submetido. Por outro lado, quando estiver conectado a rede da concessionária, as referências de tensão e frequência serão impostas pela rede externa, portanto o conversor deverá atuar controlando a sua potência exportada ou importada. Verifique na Figura 1 a topologia da MR.

Figura 1: Topologia do Inversor Proposto.

Para atingir tal objetivo, o conversor é alimentado por um *Battery Energy Storage System* (BESS) através de um barramento de tensão contínua. Por sua vez, essa energia deverá ser transformada por meio da comutação das chaves de potência de modo a promover o rastreamento de uma referência de tensão senoidal sobre o capacitor do filtro LC.

2 Especificações do Sistema

Com o intuito de restringir as condições de contorno da aplicação, uma pesquisa foi promovida para encontrar estudos de caso similares [1]. Através desta análise, foram identificados parâmetros críticos, como a tensão do barramento, indutância e capacitância do filtro.

Estes parâmetros foram selecionados para otimizar a eficiência e a estabilidade do conversor, garantindo sua operação adequada tanto em modo ilhado quanto conectado à rede. O divisor capacitivo foi tomado com capacitâncias relativamente baixas para a potência do inversor, isto porque a seleção de uma baixa capacitância evidencia o benefício da malha de controle da tensão no ponto central do divisor capacitivo que será exposta mais adiante. As especificações do sistema são apresentadas na Tabela 1.

Descrição	Símbolo	Valor
Potência Nominal	S_{nom}	225 kVA
Tensão do Barramento CC	V_{DC}	1000 V
Capacitância do Divisor Capacitivo	$C_{1,2}$	$1500~\mu\mathrm{F}$
Indutância do Filtro	L_f	$0.5~\mathrm{mH}$
Resistência Série do Indutor	L_f	$0.05~\Omega$
Capacitância do Filtro	C_f	$150~\mu\mathrm{F}$
Resistência de Amortecimento	R_d	$0.1~\Omega$
Tensão Nominal da Rede	V_{grid}	440 V
Frequência Nominal da Rede	f_{grid}	60 Hz
Frequência de Chaveamento	f_{sw}	$20~\mathrm{kHz}$
Deadtime	t_{dead}	50 ns

Tabela 1: Especificações do Sistema.

3 Método de Modulação

Em [2], é proposto um método de seleção da tensão de modo comum para inversores de topologia NPC e T-Type. O método consiste na seleção ótima da tensão de modo comum v_0 de modo que seja possível controlar a corrente i_0 através do ponto central dos capacitores do barramento CC. Posteriormente, através do controle de i_0 também é possível rastrear uma referência para a tensão no ponto central V_{c_2} . A referência neste caso é exatamente a metade de V_{DC} , garatindo que tensão divida-se igualmente no divisor capacitivo composto pelo capacitores C_1 e C_2 .

O primeiro passo para realização de tal algoritmo, é a transformação dos sinais de interesse para coordenadas $\alpha\beta0$ através da matriz de transformação invariante em potência exposta em (1).

$$\begin{bmatrix} v_{ag} \\ v_{ag} \\ v_{ag} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} v_{\alpha} \\ v_{\beta} \\ v_{0} \end{bmatrix} = \mathbf{T_{abc}} \cdot \mathbf{v}_{\alpha\beta\mathbf{0}}$$
(1)

Todas tensões de modo comum selecionadas, devem levar a valores de v_{xg} realizáveis, isto é, que estão dentro da faixa de operação do barramento CC.

$$0 \le \mathbf{v_{abc_n}} \le V_{DC} \tag{2}$$

Resolvendo as inequações para v_0 dadas por (1) e (2), determina-se uma região de solução para a tensão de modo comum pelo encontro de seu limite inferior e superior.

$$max(c_1, c_2, c_3) \le v_0 \le max(c_4, c_5, c_6)$$
 (3)

Onde as condições c_n são dadas por:

$$c_{1} = -\sqrt{2}v_{\alpha}$$

$$c_{2} = \frac{v_{\alpha}}{\sqrt{2}} - \sqrt{\frac{3}{2}}v_{\beta}$$

$$c_{3} = \frac{v_{\alpha}}{\sqrt{2}} + \sqrt{\frac{3}{2}}v_{\beta}$$

$$c_{4} = \sqrt{3}V_{DC} + c_{1}$$

$$c_{5} = \sqrt{3}V_{DC} + c_{2}$$

$$c_{6} = \sqrt{3}V_{DC} + c_{3}$$

$$(4)$$

Uma vez que a região solução foi definida, o objetivo é encontrar o valor de v_0 que promove a circulação da menor corrente i_0 através do ponto central. O ponto de partida é a definição da expressão que descreve i_0 conforme (5).

$$i_o = \sum_{x \in \{a,b,c\}} 2i_x |v_{xg} - \frac{V_{DC}}{2}| \tag{5}$$

$$0 = 2\left(i_a \left| v_{an} - \frac{V_{DC}}{2} \right| + i_b \left| v_{bn} - \frac{V_{DC}}{2} \right| + i_c \left| v_{cn} - \frac{V_{DC}}{2} \right| \right) - i_0 \tag{6}$$

$$0 = f(v_0, i_0) \tag{7}$$

Resumidamente, o objetivo é minimizar o módulo da função em tempo real através da execução recursiva da própria, guardando o valor de f que resultar em f_{min} . Note que a execução recursiva demanda fardo computacional e, portanto, a quantidade de vezes que f deverá ser executada deve respeitar a capacidade do processador que a executa.

Por fim, baseado nos sinais de controle v_{α} , v_{β} e no sinal de v_0 obtido, aplica $\mathbf{T_{abc}}^{-1}$ para encontrar o vetor $\mathbf{v_{abc_n}}$. O vetor em questão consiste nos sinais modulantes que serão comparados com as portadoras do modulador PWM, que no caso, implementa *phase-disposition*.

4 Lei de Controle

O foco do presente trabalho é a modulação do conversor, logo, a apresentação da lei de controle de tensão é sucinta. A lei de controle consiste na execução de uma malha interna de corrente baseada em realimentação de estados através da seleção dos ganhos por DLQR. A malha externa de tensão impõe uma corrente de referência para a malha interna e é baseada na execução de um controlador proporcional-ressonante com realimentação de estados também utilizando DLQR. Para mais detalhes a respeito de tal lei, o leitor deverá tomar conhecimento de [3].

Entretanto, um algoritmo de controle auxiliar deve ser implementado para garantir a convergência da tensão do ponto central para $\frac{V_{DC}}{2}$. A lei é simples e consiste na medição da tensão sobre o capacitor C_2 , da sua comparação com metade de V_{DC} e multiplicação do erro por um ganho proporcional K_p .

A saída da malha consiste na ação de controle dita $i_{0_{ref}}$, portanto a execução da função f passa a ser dada em função da referência de corrente. Isto é:

$$0 = f(v_0, i_{0_{ref}}) \tag{8}$$

5 Simulação

A planta elétrica, modulação e leis de controle anteriormente apresentadas são simuladas em *Virtual Hardware-In-The-Loop* (VHIL) com passo de simulação $0.25~\mu s$. Para atingir modularidade e, portanto, alta portabilidade para microcontroladores, as rotinas implementadas em linguagem C foram desenvolvidas no formato de biblioteca utilizando o recurso de inclusão de *dynamic-linked-libraries* (DLL) do software *Typhoon HIL Control Center* [4]. ¹

De forma mais específica, a implementação no formato de biblioteca consiste no desenvolvimento de um arquivo de header (.h) que contém os protótipos de função e em uma arquivo de implementação (.c) que contém o código completo das funções. Dessa forma, a biblioteca validada no VHIL pode ser incluída de forma rápida e segura num microcontrolador. Observe na Tabela 2 o código equivalente que deverá ser incluído na Interrupt-Service-Routine para solução da modulação geométrica otimizada.

Tabela 2: Código da Modulação Geométrica Otimizada.

Linha	Código
1	v0 = computeV0(i0, vdc, val, vbe, ia, ib, ic);
2	alphaBetaToAbc_PI(val, vbe, v0, &van, &vbn, &vcn);

6 Resultados

Os resultados foram obtidos para o sistema em modo ilhado, apresentando as variáveis de interesse para diferentes variações de carga e também para constatação do impacto da malha de controle da tensão no ponto central do divisor capacitivo. As subseções a seguir detalham esses resultados.

6.1 Regime Permanente para Diferentes Cargas

Na análise do regime permanente para diferentes cargas, os *subplots* fornecem informações específicas para cada caso: o primeiro quadrante compara a tensão de referência V_0 com a tensão medida V_C ; o segundo mostra a corrente de referência I_{Lf0} em comparação com a corrente medida I_{Lf} ; o terceiro *subplot* exibe a forma de onda da tensão V_{AB} não filtrada; e

¹Código Fonte e Arquivos de Simulação: github.com/Paesee/3phase_npc_inverter.

o último apresenta os sinais modulantes para as fases A, B e C. Observe nas Figuras 2-5 os resultados para cada caso descrito da seguinte forma:

- CASO 1: Operação sem carga na microrrede.
- CASO 2: Carga resistiva de 180 kW aplicada ao sistema.
- CASO 3: Carga indutiva de 230 kVA com fator de potência 0.8.
- CASO 4: Carga capacitiva de 230 kVA com fator de potência -0.8.

Figura 2: Caso 1: Regime Permanente sem Carga.

6.2 Impacto do Controle da Tensão no Ponto Central

No contexto do impacto do controle da tensão no ponto central V_{mid} , os quadrantes revelam o comportamento dinâmico dessa variável ao longo do tempo. Em um cenário específico onde a malha de controle de V_{mid} é temporariamente desativada por 300 ms e posteriormente reiniciada, observa-se a flutuação de V_{mid} , seguida pela sua convergência para o valor desejado quando a malha é novamente acionada em 600 ms. Na Figura 6 o resultado apresentado em cada quadrante diz respeito ao impacto do controle de V_{mid} para os quatro casos descritos anteriormente em sua respectiva ordem.

Figura 3: Caso 2: Regime Permanente para Carga Resistiva.

Figura 4: Caso 3: Regime Permanente para Carga Indutiva.

Figura 5: Caso 4: Regime Permanente para Carga Capacitiva.

Figura 6: Impacto da Malha de Controle da Tensão V_{mid} .

Referências

- [1] A. P. Meurer, "CONTROLE HIERÁRQUICO PARA INVERSORES FORMADORES DE REDE EM MICRORREDES AC," Tese de Doutorado, UFSM, 2023.
- [2] G. Balen and other, "Optimum geometric carrier-based modulation for npc and t-type inverters," *IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society*, 2019.
- [3] A. T. Pereira and H. Pinheiro, "Inner loop controllers for grid-forming converters," 2022 14th Seminar on Power Electronics and Control (SEPOC), 2022.
- [4] Typhoon HIL. (2023) C function. [Online]. Available: https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/c_function.html