AMENDMENT

USSN: 10/741,326

Subject matter to be added is in bold and underlined.

Subject matter to be deleted is in bold and with strikethrough.

In the Claims:

Please enter rewritten claims 1-4 and 6 as follows.

This listing of claims will replace all prior versions and listings of claims in the application.

Claim 1. (Currently amended) A compound of formula I:

$$\begin{array}{c|c}
R^3 & R^{2b} & Z \\
\hline
C & B & X^a \\
R^2 & A \\
R^{2a} & I
\end{array}$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

A is selected from CO₂H, CH₂CO₂H, -CO₂R⁶, -CONHOH, and -CONHOR⁵, -CONHOR⁶;

ring B is a 5 membered non-aromatic carbocycle;

ring C forms a spiro ring on Ring B and is a 5 membered heterocycle comprising: carbon atoms, 0-1 carbonyl groups, 0-1 double bonds, and 1 ring heteroatoms selected from O, N, NR², and S(O)_p and substituted with 0-6 R^e;

Z is phenyl substituted with 0-4 R^b;

Ua is absent or is O;

 X^a is absent or is C_{1-3} alkylene;

Ya is absent:

Za is substituted with 0-5 Rc and selected from the group: benzoimidazolyl, indolyl, benzothiazin-4-yl, 1,1-dioxido-2,3-dihydro-4*H*-1,4-benzothiazin-4-yl, 1,1-dioxido-3,4-dihydro-2*H*-1-benzothiopyran-4-yl, 3,4-dihydro-2*H*-chromen-4-yl, 2*H*-chromen-4-yl, and benzofuranyl;

 R^1 is selected from H, C_{1-4} alkyl, phenyl, and benzyl;

 $R^{2} \text{ is selected from Q, Cl, F, } (C_{1-10} \text{ alkylene substituted with } 0\text{--}3 \text{ } R^{b1}) - Q, \\ (C_{2-10} \text{ alkenylene substituted with } 0\text{--}3 \text{ } R^{b1}) - Q, \\ (C_{2-10} \text{ alkynylene substituted with } 0\text{--}3 \text{ } R^{b1}) - Q, \\ (CR^{a}R^{a1})_{r1}O(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}C(O)(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}C(O)(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}C(O)O\text{-}C_{2-5} \text{ alkenylene, } (CR^{a}R^{a1})_{r1}C(O)O\text{-}C_{2-5} \text{ alkynylene, } \\ (CR^{a}R^{a1})_{r1}OC(O)(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}OC(O)(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}C(O)NR^{a}(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}NR^{a}C(O)(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}NR^{a}C(O)O(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}NR^{a}C(O)O(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}NR^{a}C(O)O(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}NR^{a}C(O)D(CR^{a}R^{a1})_{r}-Q, \\ (CR^{a}R^{a1})_{r1}NR^{a}C(O)D(CR^{a}R^{a1})_{r}-Q,$

 R^{2a} is selected from H, C_{1-6} alkyl, OR^a , $NR^aR^{a\,1}$, and $S(O)_pR^a$;

R^{2b} is H or C₁₋₆ alkyl;

0-5-Rd:

Q is selected from H₇ and a C₃₋₁₃ carbocycle substituted with 0-5 R^d and a 5-14

membered heterocycle comprising: carbon atoms and 1-4 heteroatoms

selected from the group consisting of N, O, and S(O)_p and substituted with

USSN: 10/741,326

$$\begin{split} R^3 \text{ is selected from } Q^1, & \text{Cl}, \text{F}, \text{C}_{1\text{-}6} \text{ alkylene-}Q^1, \text{C}_{2\text{-}6} \text{ alkenylene-}Q^1, \text{C}_{2\text{-}6} \text{ alkynylene-}Q^1, \\ & (\text{CR}^a\text{R}^{a1})_{r1}\text{O}(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, (\text{CR}^a\text{R}^{a1})_{r1}\text{NR}^a(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, \\ & (\text{CR}^a\text{R}^{a1})_{r1}\text{NR}^a\text{C}(\text{O})(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, (\text{CR}^a\text{R}^{a1})_{r1}\text{C}(\text{O})\text{NR}^a(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, \\ & (\text{CR}^a\text{R}^{a1})_{r1}\text{C}(\text{O})(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, (\text{CR}^a\text{R}^{a1})_{r1}\text{C}(\text{O})\text{O}(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, \\ & (\text{CR}^a\text{R}^{a1}_2)_{r1}\text{S}(\text{O})_{n}(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1, \text{ and } (\text{CR}^a\text{R}^{a1})_{r1}\text{SO}_2\text{NR}^a(\text{CR}^a\text{R}^{a1})_{r}\text{-}Q^1; \end{split}$$

Q¹ is selected from H, phenyl substituted with 0-3 R^d, and naphthyl substituted with 0-3 R^d and a 5-10 membered heteroaryl comprising: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-3 R^d:

Ra, at each occurrence, is independently selected from H, C₁₋₄ alkyl, phenyl and benzyl;

 $R^{a\,l}$, at each occurrence, is independently selected from H and C_{1-4} alkyl;

 R^{a2} , at each occurrence, is independently selected from C_{1-4} alkyl, phenyl and benzyl;

R^b, at each occurrence, is independently selected from C₁₋₆ alkyl, OR^a, Cl, F, Br, I, =O,
-CN, NO₂, NR^aR^{a1}, C(O)R^a, C(O)OR^a, C(O)NR^aR^{a1}, R^aNC(O)NR^aR^{a1},
OC(O)NR^aR^{a1}, R^aNC(O)OR^a, S(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, NR^aS(O)₂NR^aR^{a1},
OS(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, S(O)_nR^{a2}, CF₃, and CF₂CF₃;

- R^{b1}, at each occurrence, is independently selected from OR^a, Cl, F, Br, I, =O, -CN, NO₂, and NR^aR^{a1};
- R^c, at each occurrence, is independently selected from C₁₋₆ alkyl, OR^a, Cl, F, Br, I, =O, -CN, NO₂, NR^aR^{a1}, C(O)R^a, C(O)OR^a, C(O)NR^aR^{a1}, R^aNC(O)NR^aR^{a1}, OC(O)NR^aR^{a1}, R^aNC(O)OR^a, S(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, NR^aS(O)₂NR^aR^{a1}, OS(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, S(O)_pR^{a2}, CF₃, CF₂CF₃, CH₂F, CHF₂, CF₂CH₃, C(CH₃)₂F, OCF₃, <u>and</u> C₃₋₁₀ carbocycle substituted with 0-3 R^{c1}-and a 5-14 membered heterocycle comprising: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-3 R^{c1};
- R^{c1}, at each occurrence, is independently selected from C₁₋₆ alkyl, OR^a, Cl, F, Br, I, =O,
 -CN, NO₂, NR^aR^{a1}, C(O)R^a, C(O)OR^a, C(O)NR^aR^{a1}, R^aNC(O)NR^aR^{a1},
 OC(O)NR^aR^{a1}, R^aNC(O)OR^a, S(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, NR^aS(O)₂NR^aR^{a1},
 OS(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, S(O)_pR^{a2}, CF₃, CF₂CF₃, CH₂F, and CHF₂;
- Rd, at each occurrence, is independently selected from C₁₋₆ alkyl, ORa, Cl, F, Br, I, =O, -CN, NO₂, NRaRa¹, C(O)Ra, C(O)ORa, C(O)NRaRa¹, RaNC(O)NRaRa¹, OC(O)NRaRa¹, RaNC(O)ORa, S(O)₂NRaRa¹, NRaS(O)₂Ra², NRaS(O)₂NRaRa¹, OS(O)₂NRaRa¹, NRaS(O)₂Ra², S(O)_pRa², CF₃, CF₂CF₃, and C₃₋₁₀ carbocycle and a 5-14 membered heterocycle comprising: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p,
- Re, at each occurrence, is independently selected from C₁₋₆ alkyl, ORa, Cl, F, Br, I, =O,
 -CN, NO₂, NRaRa¹, C(O)Ra, C(O)ORa, C(O)NRaRa¹, RaNC(O)NRaRa¹,
 OC(O)NRaRa¹, RaNC(O)ORa, S(O)₂NRaRa¹, NRaS(O)₂Ra², NRaS(O)₂NRaRa¹,

OS(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, S(O)_pR^{a2}, CF₃, CF₂CF₃, C₃₋₁₀ carbocycle substituted with 0-2 R^{c1}, <u>and</u> (CR^aR^{a1})_{r1}-C₃₋₁₀ carbocycle substituted with 0-2 R^{c1}, a 5-14 membered heterocycle comprising carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{e1}, and (CR^aR^{a1})_{r1}-5-14 membered heterocycle comprising carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-2 R^{e1};

- R^5 , at each occurrence, is selected from C_{1-10} alkyl substituted with 0-2 R^b , and C_{1-8} alkyl substituted with 0-2 R^f ;
- Rf, at each occurrence, is selected from phenyl substituted with 0-2 Rb and biphenyl substituted with 0-2 Rb;
- R^6 , at each occurrence, is selected from phenyl, naphthyl, $C_{1\text{-}10}$ alkyl-phenyl- $C_{1\text{-}6}$ alkyl-, $C_{3\text{-}11}$ cycloalkyl, $C_{1\text{-}6}$ alkylcarbonyloxy- $C_{1\text{-}3}$ alkyl-, $C_{2\text{-}10}$ alkoxycarbonyl, $C_{3\text{-}6}$ cycloalkylcarbonyloxy- $C_{1\text{-}3}$ alkyl-, $C_{3\text{-}6}$ cycloalkoxycarbonyloxy- $C_{1\text{-}3}$ alkyl-, $C_{3\text{-}6}$ cycloalkoxycarbonyl, phenoxycarbonyl, phenyloxycarbonyloxy- $C_{1\text{-}3}$ alkyl-, phenylcarbonyloxy- $C_{1\text{-}3}$ alkyl-, $C_{1\text{-}6}$ alkoxy- $C_{1\text{-}6}$ alkylcarbonyloxy- $C_{1\text{-}3}$ alkyl-, $[5\text{-}(C_1\text{-}C_5\text{ alkyl})\text{-}1,3\text{-}dioxa\text{-cyclopenten-2-one-yl]methyl,}$ $[5\text{-}(R^a)\text{-}1,3\text{-}dioxa\text{-cyclopenten-2-one-yl]methyl,}$ (5-aryl-1,3-dioxa-cyclopenten-2-one-yl]methyl, (5-aryl-1,3-dioxa-cyclopenten-2-one-yl]methyl,
- R^7 is selected from H and C_{1-10} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl- C_{1-3} alkyl-, and phenyl- C_{1-6} alkyl-;

USSN: 10/741,326

 R^{7a} is selected from H and C_{1-10} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl- C_{1-3} alkyl-, and phenyl- C_{1-6} alkyl-;

R⁸ is selected from H and C₁₋₄ linear alkyl;

 R^9 is selected from H, C_{1-8} alkyl substituted with 1-2 Rg, C_{3-8} cycloalkyl substituted with 1-2 Rg, and phenyl substituted with 0-2 R^b ;

Rg, at each occurrence, is selected from C_{1-4} alkyl, C_{3-8} cycloalkyl, C_{1-5} alkoxy, and phenyl substituted with 0-2 Rb;

p, at each occurrence, is selected from 0, 1, and 2;

r, at each occurrence, is selected from 0, 1, 2, 3, and 4; and

r1, at each occurrence, is selected from 0, 1, 2, 3, and 4.

Claim 2. (Currently amended) A compound according to Claim 1, wherein the compound is of formula II:

$$\begin{array}{c|c}
 & O \\
 & H \\
 & Z \\
 & V^a \\
 & Z^a \\
 & V^a \\
 & Z^a \\
 & A \\
 & H
\end{array}$$

II

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

Z is phenyl substituted with 0-3 Rb;

$$\begin{split} R^2 \ \text{is selected from Q, C_{1-6} alkylene-Q, C_{2-6} alkenylene-Q, C_{2-6} alkynylene-Q,} \\ (CR^aR^{a1})_{r1}O(CR^aR^{a1})_{r}-Q, (CR^aR^{a1})_{r1}NR^a(CR^aR^{a1})_{r}-Q, \\ (CR^aR^{a1})_{r1}C(O)(CR^aR^{a1})_{r}-Q, (CR^aR^{a1})_{r1}C(O)O(CR^aR^{a1})_{r}-Q, \\ (CR^aR^{a1})_{r}C(O)NR^aR^{a1}, (CR^aR^{a1})_{r1}C(O)NR^a(CR^aR^{a1})_{r}-Q, \\ (CR^aR^{a1})_{r1}S(O)_{n}(CR^aR^{a1})_{r}-Q, \ \text{and } (CR^aR^{a1})_{r1}SO_2NR^a(CR^aR^{a1})_{r}-Q; \end{split}$$

- Q is selected from H, and a C₃₋₆ carbocycle substituted with 0-5 R^d, and a 5-10 membered heterocycle comprising: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-5 R^d;
- R^b, at each occurrence, is independently selected from C_{1-6} alkyl, OR^a , Cl, F, Br, =O, -CN, NR^aR^{a1} , $C(O)R^a$, $C(O)OR^a$, $C(O)NR^aR^{a1}$, $S(O)_2NR^aR^{a1}$, $S(O)_pR^{a2}$, and CF_3 ;
- R^c, at each occurrence, is independently selected from C₁₋₆ alkyl, OR^a, Cl, F, Br, =O,
 -CN, NR^aR^{a1}, C(O)R^a, C(O)OR^a, C(O)NR^aR^{a1}, S(O)₂NR^aR^{a1}, S(O)_pR^{a2}, CF₃,
 CH₂F, CHF₂, CF₂CH₃, C(CH₃)₂F, OCF₃, and C₃₋₆ carbocycle substituted with
 0-2 R^{c1} and a 5-6 membered heterocycle comprising: carbon atoms and 1-4
 heteroatoms selected from the group consisting of N, O, and S(O)_p and
 substituted with 0-2 R^{c1};
- R^{c1}, at each occurrence, is independently selected from C₁₋₆ alkyl, OR^a, Cl, F, Br, I, =O, -CN, NO₂, NR^aR^{a1}, C(O)R^a, C(O)OR^a, C(O)NR^aR^{a1}, R^aNC(O)NR^aR^{a1}, OC(O)NR^aR^{a1}, R^aNC(O)OR^a, S(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, NR^aS(O)₂NR^aR^{a1}, OS(O)₂NR^aR^{a1}, NR^aS(O)₂R^{a2}, S(O)_pR^{a2}, CF₃, CF₂CF₃, CH₂F, and CHF₂;

Rd, at each occurrence, is independently selected from C₁₋₆ alkyl, ORa, Cl, F, Br, =O,
-CN, NRaRal, C(O)Ra, C(O)ORa, C(O)NRaRal, S(O)₂NRaRal, S(O)_pRa², CF₃,
and C₃₋₆ carbocycle and a 5-6 membered heterocycle comprising: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p;

USSN: 10/741,326

 R^7 is selected from H and C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl- C_{1-3} alkyl-, and phenyl- C_{1-6} alkyl-;

 R^{7a} is selected from H and C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl- C_{1-3} alkyl-, and phenyl- C_{1-6} alkyl-;

 R^9 is selected from H, C_{1-6} alkyl substituted with 1-2 Rg, C_{3-6} cycloalkyl substituted with 1-2 Rg, and phenyl substituted with 0-2 Rb; and

Rg, at each occurrence, is selected from C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{1-5} alkoxy, and phenyl substituted with 0-2 Rb.

Claim 3. (Currently amended) A compound according to Claim 2, wherein the compound is of formula IIIa or IIIb:

$$R^2N$$
 S^3
 H
 NR^1
 NR^1
 Y^a
 Z^a
 Y^a
 Z^a

IIIa

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

A is selected from -CO₂H, CH₂CO₂H, -CONHOH, -CONHOR⁵, -N(OH)CHO, and -N(OH)COR⁵;

 R^2 is selected from Q, C_{1-6} alkylene-Q, C_{2-6} alkenylene-Q, C_{2-6} alkynylene-Q, $(CR^aR^{a1})_{r1}C(O)(CR^aR^{a1})_{r}-Q, (CR^aR^{a1})_{r1}C(O)O(CR^aR^{a1})_{r}-Q,$ $(CR^aR^{a2})_{r1}C(O)NR^aR^{a1}, (CR^aR^{a2})_{r1}C(O)NR^a(CR^aR^{a1})_{r}-Q,$ and $(CR^aR^{a1})_{r1}S(O)_{p}(CR^aR^{a1})_{r}-Q;$

- Q is selected from H₇ and a C₃₋₆ carbocycle substituted with 0-3 R^d and a 5-10 membered heterocycle comprising: earbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p and substituted with 0-3 R^d:
- R^b , at each occurrence, is independently selected from C_{1-4} alkyl, OR^a , Cl, F, =0, NR^aR^{a1} , $C(O)R^a$, $C(O)OR^a$, $C(O)NR^aR^{a1}$, $S(O)_2NR^aR^{a1}$, $S(O)_pR^{a2}$, and CF_3 ;
- R^c, at each occurrence, is independently selected from C₁₋₆ alkyl, OR^a, Cl, F, Br, =O, NR^aR^{a1}, C(O)R^a, C(O)NR^aR^{a1}, S(O)₂NR^aR^{a1}, S(O)_pR^{a2}, CF₃, CH₂F, CHF₂, CF₂CH₃, C(CH₃)₂F, cyclopropyl, 1-methylcyclopropyl, and cyclobutyl;

USSN: 10/741,326

 R^d , at each occurrence, is independently selected from C_{1-6} alkyl, OR^a , Cl, F, Br, =0, NR^aR^{a1} , $C(O)R^a$, $C(O)NR^aR^{a1}$, $S(O)_2NR^aR^{a1}$, $S(O)_pR^{a2}$, CF_3 , and phenyl;

 R^5 , at each occurrence, is selected from C_{1-4} alkyl substituted with 0-2 R^b , and C_{1-4} alkyl substituted with 0-2 R^f ;

s and s1 combine to total 2; and

 s^2 and s^3 combine to total 3.

Claim 4. (Currently amended) A compound according to Claim 3, wherein the compound is of formula IVa or IVb:

$$R^{2}N$$
 S^{3}
 NR^{1}
 NR^{1}
 $NR^{2}N$
 $NR^{2}N$
 $NR^{2}N$
 NR^{3}
 NR^{4}
 NR^{4}

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

X^a is absent or is CH₂ or CH₂CH₂;

Z^a is substituted with 0-3 R^c and selected from the group: benzimidazolyl, indolyl, 1,1-dioxido-2,3-dihydro-4*H*-1,4-benzothiazin-4-yl, 1,1-dioxido-3,4-dihydro-2*H*-1-benzothiopyran-4-yl, 3,4-dihydro-2*H*-chromen-4-yl, and 2*H*-chromen-4-yl;

R¹ is selected from H, CH₃, and CH₂CH₃;

- R^2 is selected from Q, C_{1-6} alkylene-Q, C_{2-6} alkynylene-Q, $C(O)(CR^aR^{a1})_r$ -Q, $C(O)O(CR^aR^{a1})_r$ -Q, $C(O)NR^a(CR^aR^{a1})_r$ -Q, and $S(O)_p(CR^aR^{a1})_r$ -Q;
- Q is selected from H, cyclopropyl substituted with 0-1 R^d, cyclobutyl substituted with 0-1 R^d, cyclopentyl substituted with 0-1 R^d, cyclohexyl substituted with 0-1 R^d, and phenyl substituted with 0-2 R^d and a heteroaryl substituted with 0-3 R^d, wherein the heteroaryl is selected from pyridyl, quinolinyl, thiazolyl, furanyl, imidazolyl, and isoxazolyl;

R^a, at each occurrence, is independently selected from H, CH₃, and CH₂CH₃;

Ra1, at each occurrence, is independently selected from H, CH3, and CH2CH3;

Ra2, at each occurrence, is independently selected from H, CH3, and CH2CH3;

p, at each occurrence, is selected from 0, 1, and 2;

r, at each occurrence, is selected from 0, 1, 2, and 3;

r1, at each occurrence, is selected from 0, 1, 2, and 3;

s and s¹ combine to total 2; and

s² and s³ combine to total 3.

Claim 5. (Canceled)

Claim 6. (Currently amended) A compound according to Claim 4, wherein the compound is of formula IVa or IVb, wherein;

Z is phenyl;

Za is a-substituted with 0-2 Rc and selected from the group: 1*H*-benzimidazol-1-yl, 1*H*-indol-1-yl, 1*H*-indol-3-yl, and 1,1-dioxido-2,3-dihydro-4*H*-1,4-benzothiazin-4-yl;

R¹ is H;

R^c, at each occurrence, is independently selected from methyl, ethyl, propyl, isopropyl, butyl, t-butyl, CF₃, CHF₂, CH₂F, CF₂CH₃, C(CH₃)₂F, NH₂, NH(CH₃), N(CH₃)₂, cyclopropyl, 1-methylcyclopropyl, and cyclobutyl₅

Claim 7. (Previously presented) A compound according to Claim 1, wherein the compound is selected from the group:

(5R,7S,8R)-N-hydroxy-8-({4-[(2-methyl-1*H*-benzimidazol-1-yl)methyl]benzoyl}amino)-1-oxaspiro[4.4]nonane-7-carboxamide;

- (5R,7S,8R)-N-hydroxy-8-({4-[(2-isopropyl-1H-benzimidazol-1-yl)methyl]benzoyl}amino)-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-*N*-hydroxy-8-[(4-{[2-(trifluoromethyl)-1*H*-benzimidazol-1-yl]methyl}benzoyl)amino]-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-({4-[(2-tert-butyl-1H-benzimidazol-1-yl)methyl]benzoyl}amino)-N-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-*N*-hydroxy-8-({4-[(2-methyl-1*H*-indol-3-yl)methyl]benzoyl}amino)-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-[(4-{[2-(difluoromethyl)-1*H*-benzimidazol-1-yl]methyl}benzoyl)amino]-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-8-({4-[(2-cyclopropyl-1*H*-benzimidazol-1-yl)methyl]benzoyl}amino)-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-8-({4-[(2-cyclobutyl-1*H*-benzimidazol-1-yl)methyl]benzoyl}amino)-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-*N*-hydroxy-8-({4-[(2-methyl-1*H*-indol-1-yl)methyl]benzoyl}amino)-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-N-hydroxy-8-[(4-{[2-(1-methylcyclopropyl)-1H-benzimidazol-1-yl]methyl}benzoyl)amino]-1-oxaspiro[4.4]nonane-7-carboxamide;

(5R,7S,8R)-8-[(4-{[2-(fluoromethyl)-1*H*-benzimidazol-1-yl]methyl}benzoyl)amino]-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;

- (5R,7S,8R)-8-[(4-{[2-(1-fluoro-1-methylethyl)-1*H*-benzimidazol-1-yl]methyl}benzoyl)amino]-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-N-hydroxy-8-{[4-(1*H*-indol-3-ylmethyl)benzoyl]amino}-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-[(4-{[2-(1,1-difluoroethyl)-1*H*-benzimidazol-1-yl]methyl}benzoyl)amino]-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-({4-[(2,3-dimethyl-1*H*-indol-1-yl)methyl]benzoyl}amino)-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-({4-[(2-ethyl-1*H*-indol-3-yl)methyl]benzoyl}amino)-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-N-hydroxy-8-[(4-{[2-(trifluoromethyl)-1H-indol-1-yl]methyl}benzoyl)amino]-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-{[4-(1,1-dioxido-3,4-dihydro-2*H*-1-benzothiopyran-4-yl)benzoyl]amino}N-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5R,7S,8R)-8-{[4-(3,4-dihydro-2*H*-chromen-4-yl)benzoyl]amino}-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-8-{[4-(2*H*-chromen-4-yl)benzoyl]amino}-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;

N-{(5*R*,7*R*,8*S*)-8-[(hydroxyamino)carbonyl]-1-oxaspiro[4.4]non-7-yl}-2-[(2-isopropyl-1*H*-benzimidazol-1-yl)methyl]-1,3-thiazole-4-carboxamide;

- (5R,7S,8R)-8-({4-[(1,1-dioxido-2,3-dihydro-4*H*-1,4-benzothiazin-4-yl)methyl]benzoyl}amino)-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;
- (5*R*,7*S*,8*R*)-8-({4-[(2,2-dimethyl-1,1-dioxido-2,3-dihydro-4*H*-1,4-benzothiazin-4-yl)methyl]benzoyl}amino)-*N*-hydroxy-1-oxaspiro[4.4]nonane-7-carboxamide;

or a pharmaceutically acceptable salt form thereof.

Claim 8. (Original) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt form thereof.

Claim 9. (Original) A method of treating an inflammatory disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt form thereof.

Claims 10-11. (Canceled)

Claim 12. (Withdrawn) A method of treating a disease or condition by administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt form thereof, wherein the disease or condition is selected from Crohn's disease, psoriasis, psoriatic arthritis, rheumatoid arthritis, and spondylitis.

Claim 13. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 2 or a pharmaceutically acceptable salt form thereof.

Claim 14. (Previously presented) A method of treating an inflammatory disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 2 or a pharmaceutically acceptable salt form thereof.

Claim 15. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 3 or a pharmaceutically acceptable salt form thereof.

Claim 16. (Currently amended) A method of treating an inflammatory disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 4-3 or a pharmaceutically acceptable salt form thereof.

Claim 17. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 4 or a pharmaceutically acceptable salt form thereof.

Claim 18. (Previously presented) A method of treating an inflammatory disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 4 or a pharmaceutically acceptable salt form thereof.

USSN: 10/741,326

Claim 19. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 6 or a pharmaceutically acceptable salt form thereof.

Claim 20. (Previously presented) A method of treating an inflammatory disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 6 or a pharmaceutically acceptable salt form thereof.

Claim 21. (Previously presented) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 7 or a pharmaceutically acceptable salt form thereof.

Claim 22. (Previously presented) A method of treating an inflammatory disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 7 or a pharmaceutically acceptable salt form thereof.