PLSC 502 – Autumn 2016 Variation

September 15, 2016

Range and Percentiles

Range:

$$\mathsf{Range}(X) = \mathsf{max}(X) - \mathsf{min}(X)$$

The kth percentile is the value of the variable below which k percent of the observations fall.

- 50th percentile = \check{X}
- 0th percentile = minimum(X)
- 100th percentile i= maximum(X)

More Percentiles

- *Quartiles* = {25th, 50th, 75th percentiles}
- Interquartile Range (IQR):

$$IQR(X) = 75th percentile(X) - 25th percentile(X)$$

• Deciles = {10th, 20th, 30th, etc. percentiles}

"Mean Deviation"

$$\frac{1}{N}\sum_{i=1}^{N}(X_{i}-\bar{X}).$$

$$\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}) = \frac{1}{N} \left[\left(\sum_{i=1}^{N} X_i \right) - N \bar{X} \right]$$

$$= \frac{1}{N} \left[\sum_{i=1}^{N} X_i - N \left(\frac{1}{N} \sum_{i=1}^{N} X_i \right) \right]$$

$$= \frac{1}{N} \left(\sum_{i=1}^{N} X_i - \sum_{i=1}^{N} X_i \right) = \frac{1}{N} (0)$$

$$= 0$$

Mean Squared Deviation

$$MSD = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

team	points	
Bears	14	

team	points
Bears	 14
Giants	20

You cannot learn about more characteristics of data than you have observations.

Variance:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(X_i - \bar{X})^2}$$

"Geometric" Standard Deviation:

$$\sigma_G = \exp\left[\sqrt{rac{\sum_{i=1}^N (\ln X_i - \ln ar{X}_G)^2}{N}}
ight]$$

NFL Points Data

```
> with(NFL, summary(points))
  Min. 1st Qu. Median Mean 3rd Qu. Max.
     0.0 16.0 23.0 22.4 28.2 39.0
> with(NFL, var(points))
[1] 87.4
> with(NFL, sd(points))
[1] 9.35
```

Absolute Deviations and MAD

Median Absolute Deviation ("MAD"):

$$\mathsf{MAD} = \mathsf{median}[|X_i - \check{X}|]$$

Mean Absolute Deviation:

Mean Absolute Deviation
$$=\frac{1}{N}\sum_{i=1}^{N}|X_i-\bar{X}|$$

Moments

kth moment:

$$M_k = \mathsf{E}[(X - \mu)^k]$$

- First moment = mean: $\mu = E(X)$.
- Second moment variance: $\sigma^2 = E[(X \mu)^2]$.

Skewness

Third moment = *skewness*:

$$M_3 = \mathsf{E}[(X - \mu)^3]$$

More typically:

$$\mu_{3} = \frac{M_{3}^{2}}{\sigma^{3}}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{3}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{3/2}}$$

- Skewness = $0 \rightarrow \text{symmetrical}$
- Skewness $> 0 \rightarrow$ "positive" (tail to the right)
- Skewness $< 0 \rightarrow$ "negative" (tail to the left)

Skewness Illustrated

Symmetry

If a distribution is symmetrical, then:

- $\mu_3 = 0$
- $\check{X} = (Q_{25} + Q_{75})/2$,
- $MAD = \frac{IQR}{2}$

Kurtosis

Fourth moment = kurtosis:

$$M_4 = \mathsf{E}[(X - \mu)^4]$$

More typically ("excess kurtosis"):

$$\mu_4 = \frac{M_4}{\sigma^4} - 3$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^4}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right]^2} - 3$$

Note that:

$$\frac{\textit{M}_4}{\sigma^4} \ge \left(\frac{\textit{M}_3}{\sigma^3}\right)^2 + 1$$

Kurtosis Explained

- Fat-tailed/"Peaked" = leptokurtic: μ_4 is large / (much) greater than zero.
- Medium-tailed = mesokurtic: μ_4 is close to zero.
- Thin-tailed/"Flat" = platykurtic: μ_4 is small / negative.

Kurtosis Illustrated

NFL Points Data

```
> library(moments)
> with(NFL, skewness(points))
[1] -0.229
> with(NFL, kurtosis(points))
[1] 2.66
```

Dichotomous Variables

Variance:

$$\sigma_D^2 = \bar{D} \times (1 - \bar{D})$$

and so the standard deviation is:

$$\sigma_D = \sqrt{ar{D} imes (1 - ar{D})}$$

Implies:

- $\sigma_D > \sigma_D^2$
- $\max(\sigma_D^2) \leftrightarrow \bar{D} = 0.5$

Best Practices...

Summary Statistics

	Standard				
Variable	Mean	Deviation	Minimum	Maximum	
Assassination	0.01	0.09	0	1	
Previous Assassinations Since 1945	0.45	0.76	0	4	
GDP Per Capita / 1000	5.83	6.04	0.33	46.06	
Political Unrest	0.01	1.01	-1.67	20.11	
Political Instability	-0.03	0.92	-4.66	10.08	
Executive Selection	1.54	1.34	0	4	
Executive Power	3.17	2.39	0	6	
Repression	1.67	1.19	0	3	

Note: N = 5614. Statistics are based on all non-missing observations in Model X.