Multi-Agent interactions

Wassila Ouerdane & Nicolas Sabouret

3 novembre 2018

CONTENTS

Interaction mechanisms

Indirect interactions

Direct interactions Speech Acts Theory Message structure

How does this work?

Interaction protocols

Conclusion

Problem

- ► Agents run asynchronously
- ► Method invocation is synchronous

Problem

- ► Agents run asynchronously
- ► Method invocation is synchronous

- ► Actions modify the environment
- ► (Asynchronous) perception of the modification

Problem

- ► Agents run asynchronously
- ► Method invocation is synchronous

- ► Actions modify the environment
- ► (Asynchronous) perception of the modification

Problem

- ► Agents run asynchronously
- ► Method invocation is synchronous

- ► Actions modify the environment
- ► (Asynchronous) perception of the modification

Problem

- ► Agents run asynchronously
- ► Method invocation is synchronous

- ► Actions modify the environment
- ► (Asynchronous) perception of the modification

Indirect interactions

Principle

Interaction mechanisms

- ► No intention to communicate to a specific agent
- ► Modification of the environment perceived by others

Indirect interactions

Principle

Interaction mechanisms

- ► No intention to communicate to a specific agent
- ► Modification of the environment perceived by others

Architectures

▶ Blackboard : shared centralized ressource, free modification (1990)

Indirect interactions

Principle

- ► No intention to communicate to a specific agent
- ► Modification of the environment perceived by others

Architectures

- ▶ Blackboard : shared centralized ressource, free modification (1990)
- ► Geographical situatedness (1995)
 - ► Environment = grid of cells that can be modified
 - ► Agents move to the positions they need to observe
 - ► Also used for simulation
- ► Stigmergy (1997)
 - ► Cell content modified without agent action
 - ► Global modification that can use nearby cells
 - ► Simulation of ant colonies

AGENTS AND ARTIFACTS (2003)

Alexandro Ricci

Principle

Indirect interactions through specific objects (artifacts)

AGENTS AND ARTIFACTS (2003)

Alexandro Ricci

Principle

Indirect interactions through specific objects (artifacts)

Artifact

- ► Stores data (like agents do...)
- ► Has a set of invocation methods (like web services...)
- ► No autonomy! → No possibilty to refuse a request
- ► KR-based representation of operations for agents to reason upon
- ► Process data asynchronously (like agents do...)

AGENTS AND ARTIFACTS (2003)

Alexandro Ricci

Principle

Indirect interactions through specific objects (artifacts)

Artifact

- ► Stores data (like agents do...)
- ► Has a set of invocation methods (like web services...)
- ► No autonomy! → No possibilty to refuse a request
- ► KR-based representation of operations for agents to reason upon
- ► Process data asynchronously (like agents do...)

Agents

- ► Ask for data processing by an artifact
- ► Register to receive an alert when the operation is done
- Can register to monitor a communication artefact

DIRECT INTERACTIONS

Principle

- ► Intention to communicate to a specific agent
 - ► Messages with sender, recipient and structured content

DIRECT INTERACTIONS

Principle

- ► Intention to communicate to a specific agent
 - ► Messages with sender, recipient and structured content

Problem: heterogeneity

Communication layers:

- ightharpoonup Transport level ightharpoonup environment
- ► Syntax level → message structure
- ► Semantic level → knowledge representation
- ightharpoonup Pragmatic level ightharpoonup protocols
- \Rightarrow This has to be normalised!

CONTENTS

Interaction mechanisms

Interaction mechanisms

Indirect interactions

Direct interactions Speech Acts Theory

Message structure

How does this work?

Interaction protocols

Conclusion

Speech Acts Theory I

Searle, 1969

Communication is an action

 $Communicate \rightarrow change\ interlocutor \hbox{'s mental state}$

Speech Acts Theory I

Searle, 1969

Communication is an action

Communicate \rightarrow change interlocutor's mental state

Three aspect of a speech act

- ► Locutory : the act of saying
- ► Illocutory : the intention of the speech
- ► Perlocutory : the effect of the speech

Speech Acts Theory I

Searle, 1969

Communication is an action

Communicate → change interlocutor's mental state

Three aspect of a speech act

- ► Locutory : the act of saying
- ► Illocutory : the intention of the speech
- ► Perlocutory : the effect of the speech

Illocutory act

Performative(Content)

Examples: Assert(rain), Order(rain), Question(rain), ...

Speech Acts Theory II

Different researchers, different theories...

Searle

► Assertive acts : Facts

▶ Directive acts : *Actions* + *Questions*

« Do the action to tell about the Face »

▶ Promissive acts : *Commitments*

► Expressive acts : *Emotions*

► Declarative acts : Protocols

Speech Acts Theory II

Different researchers, different theories...

Searle

► Assertive acts : Facts

► Directive acts : *Actions* + *Questions*

« Do the action to tell about the Face »

▶ Promissive acts : *Commitments*

► Expressive acts : *Emotions*

► Declarative acts : Protocols

Sperber & Wilson

► Say that : assertions and promisses

► Say about : orders

► Ask if : questions

Speech Acts Theory II

 ${\it Different\ researchers,\ different\ theories...}$

Searle

► Assertive acts : Facts

► Directive acts : Actions + Questions

« Do the action to tell about the Face »

▶ Promissive acts : *Commitments*

► Expressive acts : *Emotions*

► Declarative acts : Protocols

Sperber & Wilson

► Say that : assertions and promisses

► Say about : orders

► Ask if : questions

⇒ Need to define the **semantics** of each performative!

CONTENTS

Interaction mechanisms

Indirect interactions

Direct interactions Message structure

FIPA-ACL STANDARD

http://www.fipa.org

Message structure

- ► Recipient(s) = list of agent IDs
 - ► The environment must provide each agent with a unique ID
- ► Performative = 1 value in a list of predefined possible acts
- ► Content expressed in any knowledge representation language
 - ► First Order Logics, Lisp syntax, ...

FIPA-ACL STANDARD

http://www.fipa.org

Message structure

- ► Recipient(s) = list of agent IDs
 - ► The environment must provide each agent with a unique ID
- ► Performative = 1 value in a list of predefined possible acts
- ► Content expressed in any knowledge representation language
 - ► First Order Logics, Lisp syntax, ...

Usual representation : $\langle snd, perf(rcv, content) \rangle$

Communication management elemements

- ▶ Sender
- ► Name of the content language
- ► Ontology referred to for Knowledge Representation
- ► Conversation ID and number of the message in the conversation

Interaction mechanisms

Interaction mechanisms

Interaction mechanisms

Interaction mechanisms

Synchronous method calls

Synchronous method calls

Asynchronous

Environement's role

Interaction mechanisms

Agent Management Service (AMS)

- ► Loading agents in the MAS
- ► Allocation of Agent IDs
- ► Management of the agents' list
- ► Running threads
- ► Message sending

Environement's role

Agent Management Service (AMS)

- ► Loading agents in the MAS
- ► Allocation of Agent IDs
- ► Management of the agents' list
- ► Running threads
- ► Message sending

In case of multi-platforms:

- ► Brokers for message sending
- ► Mobile agents : threads cloning, starting, ending...

Environement's role

Agent Management Service (AMS)

- ► Loading agents in the MAS
- ► Allocation of Agent IDs
- ► Management of the agents' list
- ► Running threads
- ► Message sending

In case of multi-platforms:

- ► Brokers for message sending
- ► Mobile agents : threads cloning, starting, ending...

Directory Facilitator (DF)

Yellow pages...

- ► Agents register their services and IDs
- ightharpoonup Search interface : service \rightarrow ID

AUTONOMOUS AGENTS

Sender agent...

- ► Can send a message anytime
- ► Can't know if and when his message is being processed

AUTONOMOUS AGENTS

Sender agent...

- ► Can send a message anytime
- ► Can't know if and when his message is being processed

Recipient agents...

- ► Can receive a message anytime
- ► Can process this message anytime Especially if they are overloaded...
- ► Can ignore a message

AUTONOMOUS AGENTS

Sender agent...

- ► Can send a message anytime
- ► Can't know if and when his message is being processed

Recipient agents...

- ► Can receive a message anytime
- ► Can process this message anytime Especially if they are overloaded...
- ► Can ignore a message

Autonomy

Agents must take into account the autonomy of each other.

► But they cannot do anything! → Protocols!

Protocols

Describes how agents can interact in the MAS

Protocols

Describes how agents can interact in the MAS

- ► Inspired from UML sequence diagrams
- ► Describes message exchange between roles
 - ► An agent can adopt several roles
 - ► A role can be fulfilled by several different agents

Interaction protocols I

Protocols

Describes how agents can interact in the MAS

- ► Inspired from UML sequence diagrams
- ► Describes message exchange between roles
 - ► An agent can adopt several roles
 - ► A role can be fulfilled by several different agents

Protocols

Describes how agents can interact in the MAS

- ► Inspired from UML sequence diagrams
- ► Describes message exchange between roles
 - ► An agent can adopt several roles
 - ► A role can be fulfilled by several different agents

Protocols

Describes how agents can interact in the MAS

- ► Inspired from UML sequence diagrams
- ► Describes message exchange between roles
 - ► An agent can adopt several roles
 - ► A role can be fulfilled by several different agents

Conditions

Interaction mechanisms

- ► Number of messages sent (arrow end)
- ► Timeouts
 - ► Messages received after timeout are considered out of the protocol

Interaction mechanisms

0

Direct interactions

INTERACTION PROTOCOLS III

Operators

Interaction mechanisms

ightharpoonup OPT ightharpoonup some parts can be are optional

Operators

Interaction mechanisms

- ightharpoonup OPT ightharpoonup some parts can be are optional
- ightharpoonup LOOP ightharpoonup some parts can be repeted randomly

Operators

Interaction mechanisms

- ightharpoonup OPT ightharpoonup some parts can be are optional
- ightharpoonup LOOP ightharpoonup some parts can be repeted randomly
- ightharpoonup ALT \rightarrow one or the other

Operators

Interaction mechanisms

► Operators can be combined

Contract-Net Protocol

Standard for agents to agree on a transaction.

► FIPA standard

Interaction mechanisms

► The « must-know » protocol

What's next?

Tutorial

Using the JADE platform for MAS programming