Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5 Вычислительная математика

Вариант: №1

Группа _	P3208
Студент	Абдуллин И.Э.
Преподаватель	Машина Е.А.

Цель работы:

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Выполнение

1) Вычислительная реализация задачи

Таблица из варианта:

х	у	x1	x2
0,25	1,2557	0,251	0,402
0,3	2,1764	0,512	0,372
0,35	3,1218	0,255	0,405
0,4	4,0482	0,534	0,384
0,45	5,9875	0,272	0,445
0,5	6,9195	0,551	0,351
0,55	7,8359	0,294	0,437

Таблица конечных разностей:

x_{i}	$\boldsymbol{\mathcal{Y}}_{i}$	Δy_{i}	$\Delta^2 y_{i}$	$\Delta^3 y_i$	$\Delta^4 y_i^{}$	$\Delta^5 y_i$	$\Delta^6 y_{i}$
0,25	1,2557	0,9207	0,0247	-0,0437	1,0756	-4,1277	10,1917
0,3	2,1764	0,9454	-0,019	1,0319	-3,0521	6,064	
0,35	3,1218	0,9264	1,0129	-2,0202	3,0119		
0,4	4,0482	1,9393	-1,0073	0,9917			
0,45	5,9875	0,932	-0,0156				
0,5	6,9195	0,9164					
0,55	7,8359						

Вычисление формулой Ньютона:

Интерполирования вперед для:

$$x = \{0,251; 0,255; 0,272; 0,294\}$$

$$N_{6}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!}\Delta^{2}y_{0} + \frac{t(t-1)(t-2)}{3!}\Delta^{3}y_{0} + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^{4}y_{0} + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!}\Delta^{5}y_{0} + \frac{t(t-1)(t-2)(t-3)(t-4)(t-6)}{6!}\Delta^{6}y_{0}$$

$$t = \frac{x - x_0}{h}$$

x	t	$N_{6}(x)$
0.251	0.02	1,22013
0.255	0.1	1,12252
0.272	0.44	1,26425
0.294	0.88	1.98

Интерполирования назад для:

$$x = \{0,534; 0,551; 0,512\}$$

$$\begin{split} N_6(x) &= \ y_6 + t\Delta y_5 + \frac{t(t+1)}{2!}\Delta^2 y_4 + \frac{t(t+1)(t+2)}{3!}\Delta^3 y_3 + \frac{t(t+1)(t+2)(t+3)}{4!}\Delta^4 y_2 + \\ & \frac{t(t+1)(t+2)(t+3)(t+4)}{5!}\Delta^5 y_1 + \frac{t(t+1)(t+2)(t+3)(t+4)(t+6)}{6!}\Delta^6 y_0 \end{split}$$

$$t = \frac{x - x_i}{h}$$

x	t	$N_{6}(x)$
0.534	0.68	7,54265
0.551	0.02	7.94313
0.512	0.24	7.13944

Вычисление формулой Гаусса:

Интерполирование второй формулой для $x = \{0,372; 0,384; 0,351\}$

$$\begin{split} P_6(x) = \ y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^3 y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!} \Delta^4 y_{-2} + \\ \frac{(t+2)(t+1)t(t-1)(t-2)}{5!} \Delta^5 y_{-3} + \frac{(t+3)(t+2)(t+1)t(t-1)(t-2)}{6!} \Delta^6 y_{-3} \end{split}$$

$$t = \frac{x - x_0}{h}$$

x	t	$N_{6}(x)$
0,372	-0.056	3.15171
0,384	-0.32	3.46121
0,351	0.24	3.10282

Интерполирование первой формулой для $x = \{0,402; 0,405; 0,445; 0,437\}$

$$P_{6}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!}\Delta^{2}y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^{3}y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^{4}y_{-2} + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^{5}y_{-2} + \frac{(t+2)(t+1)t(t-1)(t-2)(t-3)}{6!}\Delta^{6}y_{-3}$$

x	t	$N_6(x)$
0,402	0.004	4.15755
0,405	0.01	4.31572
0,445	0.09	5.85526
0,437	0.074	5.62025

Код программы

```
@InterpolationMethod(id = 1, name = "Jarpahæa")
public static double lagrange(double[] x, double[] y, double value) {
   double result = 0;
   for (int i = 0; i < x.length; i++) {
      double c1 = 1, c2 = 1;
      for (int j = 0; j < x.length; j++) {
        if (i != j) {
            c1 *= value - x[j];
            c2 *= x[i] - x[j];
        }
    }
   result += y[i] * c1 / c2;
}
return result;
}
private static double[][] subNewtonCreateTable(double[] y) {
   int n = y.length;</pre>
```

```
double[][] table = new double[n][n];
public static double newtonFiniteDifferences(double[] x, double[] y, double
double[][] table = subNewtonCreateTable(y);
```

```
double temp = t;
  for (int yi = 1; yi < i; yi++) temp *= (temp + yi);
  result += (temp * table[x.length - i - 1][i]) / factorial(i);
  }
}
return Math.round(result);
}</pre>
```

```
public static double stirling(double[] x, double[] y, double value) {
```

```
System.out.println("Heverhoe число узлов. Формула Весселя не применяется");

return NaN;

}

double[][] table = createTableGauss(y);

int mid = y.length / 2;

double h = x[1] - x[0];

double t = (value - x[mid]) / h;

if (Math.abs(t) < 0.25 || Math.abs(t) > 0.75) {

    System.out.println("Fesynbrar no формуле Весселя содержит большур погрешность");

}

double result = (y[mid] + y[mid + 1]) / 2 + (t - 0.5) * table[1](mid];

for (int i = 2; i < mid; i++) {

    double mul = 1;

    for (int j = 0; j < i; j++) {

        mul *= (t + Math.pow(-1, j) * j);

    }

    int n = i - 1;

    result +=

        mul * (table[2 * n][mid - n] + table[2 * i - 2][mid - n + 1]) / (2 * factorial(2 * n));

    result += (t - 0.5) * mul * (table[2 * n + 1][mid - n]) / factorial(2 * n + 1);

}

return result;
```

Вывол

В ходе лабораторной работы я научился интерполировать функции с помощью метода Лагранжа, метода Ньютона с конечными разностями, метода Бесселя и Стирлинга.