Non-archimedean Analysis

Use $\coverimage{filename}$ to add an image

Contents

1	Valuation fields	1
	1.1 Absolute values and completion	1
	1.2 Non-archimedean fields	3
2	Ultra-metric spaces	4
3	Residue fields and reductions	4
4	Finite field extensions	5
	4.1 Finite-dimensional vector space	5
	4.2 Finite field extensions	5
5	Analytic functions	5
	5.1 Continuous functions	5
	5.2 Power series	5
	5.3 Tate algebras	10
6	Example: p-adic fields	6
	6.1 p-adic fields	6
	6.2 Completion	6

1 Valuation fields

1.1 Absolute values and completion

Definition 1.1. Let **k** be a field. An *absolute value* on **k** is a function $\|\cdot\|$: $\mathbf{k} \to \mathbb{R}_{\geq 0}$ satisfying the following properties for all $x, y \in \mathbf{k}$:

- (a) ||x|| = 0 if and only if x = 0;
- (b) $||xy|| = ||x|| \cdot ||y||$;
- (c) $||x + y|| \le ||x|| + ||y||$.

A field **k** equipped with an absolute value $\|\cdot\|$ is called a *valuation field*.

Remark 1.2. Let **k** be a field. Recall that a *valuation* on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y);$
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) \ge \min\{v(x), v(y)\}.$

We can extend v to the whole field k by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0,1)$. Then v

induces an absolute value $|\cdot|_v: \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_v$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Example 1.3. Let \mathbf{k} be a field. The *trivial absolute value* on \mathbf{k} is defined as

$$||x|| := \begin{cases} 0, & x = 0; \\ 1, & x \neq 0. \end{cases}$$

Definition 1.4. Let **k** be a field. Two absolute values $\|\cdot\|_1$ and $\|\cdot\|_2$ on **k** are said to be *equivalent* if there exists a real number $c \in (0,1)$ such that

$$||x||_1 = ||x||_2^c, \quad \forall x \in \mathbf{k}.$$

Lemma 1.5. Let **k** be a field and $\|\cdot\|_1$, $\|\cdot\|_2$ be two absolute values on **k**. Then the following statements are equivalent:

- (a) $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent;
- (b) $\|\cdot\|_1$ and $\|\cdot\|_2$ induce the same topology on \mathbf{k} ;
- (c) The unit disks $D_1 = \{x \in \mathbf{k} : ||x||_1 < 1\}$ and $D_2 = \{x \in \mathbf{k} : ||x||_2 < 1\}$ are the same.

Proof. The implications (a) \Rightarrow (b) is obvious. Now we prove (b) \Rightarrow (c). For any $x \in D_1$, we have $x^n \to 0$ as $n \to \infty$ under the absolute value $\|\cdot\|_1$ and thus under $\|\cdot\|_2$. Therefore, $\|x\|_2^n \to 0$ as $n \to \infty$, which implies that $\|x\|_2 < 1$, i.e., $x \in D_2$. Similarly, we can prove that $D_2 \subseteq D_1$.

Finally, we prove (c) \Rightarrow (a). If $\|\cdot\|_1$ is trivial, then $D_1 = \{0\}$ and thus $\|\cdot\|_2$ is also trivial. In this case, they are equivalent. Suppose that both $\|\cdot\|_1$ and $\|\cdot\|_2$ are non-trivial. Pick any $x, y \in D_1 \setminus \{0\}$. Then there exist real numbers $\alpha, \beta > 0$ such that $\|x\|_1 = \|x\|_2^{\alpha}$ and $\|y\|_1 = \|y\|_2^{\beta}$. If $\|x\|_1 = \|y\|_1$, then $x/y, y/x \notin D_1$. Thus $\|x/y\|_2 = 1$ and hence $\|x\|_2 = \|y\|_2$, which implies that $\alpha = \beta$. Hence we can assume that $\|x\|_1 > \|y\|_1$. Yang: To be continued.

Note that equivalent absolute values induce the same topology on the field \mathbf{k} .

Definition 1.6. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that \mathbf{k} is *complete* if the metric $d(x, y) := \|x - y\|$ makes \mathbf{k} a complete metric space.

Lemma 1.7. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field and $(\hat{\mathbf{k}}, \|\cdot\|)$ its completion as a metric space. Then the operations of addition and multiplication on \mathbf{k} can be extended to $\hat{\mathbf{k}}$ uniquely, making $(\hat{\mathbf{k}}, \|\cdot\|)$ a complete valuation field containing \mathbf{k} as a dense subfield.

Proof. Yang: To be added.

Unlike the real number field \mathbb{R} , even a valuation field is complete, we can not expect the theorem of nested intervals to hold.

Definition 1.8. A valuation field $(\mathbf{k}, \|\cdot\|)$ is called *spherically complete* if every decreasing sequence of closed balls in \mathbf{k} has a non-empty intersection.

Example 1.9. The field \mathbb{C}_p of p-adic complex numbers is not spherically complete, see Yang: to be added.

1.2 Non-archimedean fields

Definition 1.10. Let $(\mathbf{k}, \|\cdot\|)$ be a valuation field. We say that \mathbf{k} is non-archimedean if its absolute value $\|\cdot\|$ satisfies the strong triangle inequality:

$$||x + y|| \le \max\{||x||, ||y||\}, \quad \forall x, y \in \mathbf{k}.$$

Otherwise, we say that \mathbf{k} is archimedean.

Let **k** be a non-archimedean field. Then easily see that $\{x \in \mathbf{k} : ||x|| \le 1\}$ is a subring of **k**. Moreover, it is a local ring whose maximal ideal is $\{x \in \mathbf{k} : ||x|| < 1\}$.

Definition 1.11. Let \mathbf{k} be a non-archimedean field. The ring of integers of \mathbf{k} is defined as

$$\mathbf{k}^{\circ} := \{ x \in \mathbf{k} : ||x|| \le 1 \}.$$

Its maximal ideal is

$$\mathbf{k}^{\circ \circ} := \{ x \in \mathbf{k} : ||x|| < 1 \}.$$

The residue field of \mathbf{k} is defined as

$$k_{\mathbf{k}} := \mathbf{\tilde{k}} := \mathbf{k}^{\circ}/\mathbf{k}^{\circ \circ}.$$

Yang: Is the valuation on residue field trivial?

Lemma 1.12. Recall that a metric space is *totally bounded* if for every $\varepsilon > 0$, it can be covered by finitely many balls of radius ε . A metric space is compact if and only if it is complete and totally bounded.

Proof. Yang: To be added.

Definition 1.13. Let **k** be a non-archimedean field. The *residue absolute value* on the residue field $\mathcal{R}_{\mathbf{k}}$ is defined as

$$|x| := \inf_{y \in \varphi^{-1}(x)} ||y||, \quad \forall x \in \mathcal{k}_{\mathbf{k}},$$

where $\varphi: \mathbf{k}^{\circ} \to \mathcal{K}_{\mathbf{k}}$ is the canonical projection.

Proposition 1.14. Let **k** be a non-archimedean field. Then the residue absolute value on the residue field $\mathcal{A}_{\mathbf{k}}$ is trivial.

Proof. For any $x \in \mathcal{K}_{\mathbf{k}}$, if x = 0, then by definition |x| = 0. If $x \neq 0$, then $\forall y \in \varphi^{-1}(x)$, we have $y \in \mathbf{k}^{\circ} \setminus \mathbf{k}^{\circ \circ}$, i.e., ||y|| = 1. Thus by definition |x| = 1.

Proposition 1.15. Let **k** be a non-archimedean field. Set $I_r := \{x \in \mathbf{k} : ||x|| < r\}$ for each $r \in (0,1)$. They are ideals of the ring of integers \mathbf{k}° . Then we have

$$\widehat{\mathbf{k}}^{\circ} \cong \varprojlim_{r>0} \mathbf{k}^{\circ}/I_r.$$

Yang: To be checked.

Slogan Locally compact \iff pro-finite.

Proposition 1.16. Let **k** be a non-archimedean field. Then **k** is totally bounded iff \mathbf{k}°/I_r is finite for each $r \in (0,1)$.

Proposition 1.17. \mathbf{k}° is noetherian iff \mathbf{k} is a discrete valuation field. and complete. Yang: To be revised.

2 Ultra-metric spaces

Definition 2.1. A metric space (X, d) is called an *ultra-metric space* if its metric d satisfies the strong triangle inequality:

$$d(x, z) \le \max\{d(x, y), d(y, z)\}, \quad \forall x, y, z \in X.$$

Proposition 2.2. Let (X, d) be an ultra-metric space. Then for any $x \in X$ and r > 0, the closed ball $B(x,r) := \{y \in X : d(x,y) \le r\}$ satisfies the following properties:

- (a) For any $y \in B(x,r)$, we have B(x,r) = B(y,r).
- (b) Any two closed balls in X are either disjoint or one is contained in the other.

Yang: To be revised.

We will use B(x,r) to denote the open ball with center x and radius r. We will use E(x,r) to denote the closed ball with center x and radius r.

Proposition 2.3. Let (X, d) be an ultra-metric space. Then X is totally disconnected, i.e., the only connected subsets of X are the singletons. Yang: To be revised.

3 Residue fields and reductions

Theorem 3.1 (Hensel's lemma). Let $(\mathbf{k}, \|\cdot\|)$ be a complete non-archimedean field and $f(T) \in \mathbf{k}^{\circ}[T]$ be a monic polynomial. Suppose that the reduction $\widetilde{f}(T) \in \mathcal{K}_{\mathbf{k}}[T]$ of f(T) factors as

$$\widetilde{f}(T) = g(T)h(T),$$

where $g(T), h(T) \in \mathcal{K}_{\mathbf{k}}[T]$ are monic polynomials that are coprime in $\mathcal{K}_{\mathbf{k}}[T]$. Then there exist monic polynomials $G(T), H(T) \in \mathbf{k}^{\circ}[T]$ such that

$$f(T) = G(T)H(T),$$

and the reductions $\widetilde{G}(T)$, $\widetilde{H}(T) \in \mathcal{K}_{\mathbf{k}}[T]$ of G(T), H(T) are g(T), h(T) respectively. Yang: To be checked.

4 Finite field extensions

4.1 Finite-dimensional vector space

Proposition 4.1. Let V be a finite-dimensional vector space over a complete non-archimedean field \mathbf{k} . Then all norms on V are equivalent. Yang: To be checked.

4.2 Finite field extensions

Proposition 4.2. Let \mathbf{k} be a complete non-archimedean field and ℓ a finite extension of \mathbf{k} . Then the absolute value on ℓ is uniquely determined by the absolute value on \mathbf{k} . Yang: To be checked.

Proposition 4.3. Let \mathbf{k} be an algebraically closed non-archimedean field. Then its completion $\hat{\mathbf{k}}$ is also algebraically closed. Yang: To be checked.

5 Analytic functions

5.1 Continuous functions

5.2 Power series

Proposition 5.1. Let $(\mathbf{k}, \|\cdot\|)$ be a complete non-archimedean field and $\sum_{n=0}^{+\infty} a_n$ be a series in \mathbf{k} . Then the series $\sum_{n=0}^{+\infty} a_n$ converges if and only if $\lim_{n\to+\infty} a_n = 0$. Yang: To be checked.

5.3 Tate algebras

Definition 5.2. Let $(\mathbf{k}, \|\cdot\|)$ be a complete non-archimedean field.

6 Example: p-adic fields

6.1 *p*-adic fields

Construction 6.1. Let K be a number field and \mathfrak{p} be a prime ideal of the ring of integers \mathcal{O}_K of K. Considering the localization $(\mathcal{O}_K)_{\mathfrak{p}}$ of \mathcal{O}_K at \mathfrak{p} , which is a discrete valuation ring, denote by $v_{\mathfrak{p}}: K^{\times} \to \mathbb{Z}$ the corresponding discrete valuation. The p-adic absolute value on K associated to \mathfrak{p} is defined as

$$|x|_{\mathfrak{p}} := N(\mathfrak{p})^{-\nu_{\mathfrak{p}}(x)}, \quad \forall x \in K,$$

where $N(\mathfrak{p}) := \#(\mathcal{O}_K/\mathfrak{p})$ is the norm of \mathfrak{p} .

The completion of K with respect to the p-adic absolute value $|\cdot|_{\mathfrak{p}}$ is denoted by $K_{\mathfrak{p}}$, called the \mathfrak{p} -adic field.

One can just focus on the case $K=\mathbb{Q}$ and $\mathfrak{p}=(p)$ for a prime number p.

Example 6.2. Let p be a prime number. For every $r \in \mathbb{Q}$, we can write r as $r = p^n \frac{a}{b}$, where $n \in \mathbb{Z}$ and $a, b \in \mathbb{Z}$ are integers not divisible by p. The p-adic absolute value on \mathbb{Q} is defined as

$$|r|_p := p^{-n}$$
.

The p-adic field \mathbb{Q}_p can be described concretely as follows:

$$\mathbb{Q}_p = \left\{ \sum_{i=n}^{+\infty} a_i p^i \middle| n \in \mathbb{Z}, a_i \in \{0, 1, \dots, p-1\} \right\}.$$

For $x = \sum_{i=n}^{+\infty} a_i p^i \in \mathbb{Q}_p$ with $a_n \neq 0$, its *p*-adic absolute value is given by $|x|_p = p^{-n}$. The operations of addition and multiplication on \mathbb{Q}_p are defined similarly as those on decimal expansions.

Proposition 6.3. The multiplicative group \mathbb{Q}_p^{\times} of the p-adic field \mathbb{Q}_p admits the following decomposition:

$$\mathbb{Q}_p^{\times} \cong p^{\mathbb{Z}} \times \mathbb{Z}_p^{\times},$$

where $p^{\mathbb{Z}} := \{p^n \mid n \in \mathbb{Z}\}$ and $\mathbb{Z}_p^{\times} := \{x \in \mathbb{Q}_p \mid |x|_p = 1\}$ is the group of units of the ring of p-adic integers \mathbb{Z}_p . Yang: To be checked.

Yang: What is the relation between the finite extension of \mathbb{Q}_p and K_p ?

6.2 Completion

Proposition 6.4. The algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p is not complete with respect to the extension of the p-adic absolute value $|\cdot|_p$.

Construction 6.5. Let p be a prime number. The field \mathbb{C}_p of p-adic complex numbers is defined as the completion of the algebraic closure of \mathbb{Q}_p with respect to the unique extension of the p-adic absolute value $|\cdot|_p$ on \mathbb{Q}_p . The field \mathbb{C}_p is algebraically closed and complete with respect to $|\cdot|_p$. Yang: To be completed.

7

Proposition 6.6. The field \mathbb{C}_p of p-adic complex numbers is not spherically complete.

Construction 6.7. Let p be a prime number. Yang: We construct the spherically complete p-adic field Ω_p . Yang: To be completed.

