計算理論 第8回 第5章: 文脈自由文法と言語(1/2)

基礎工学部情報科学科中川 博之

計算理論(後半)の進め方, 概要

- 担当:中川博之
 - TAは前半と同じ 吉田 征樹 君 (M1)
- テキスト、ミニレポートの形態も基本的に同じ
 - ミニレポートの回答期限: 翌週月曜の23:59
- ・ 主に扱う内容: 文脈自由文法とその応用, その先に見えるもの
 - 最後の数回はテキストの範囲を越えます

講義の予定(中川担当分)

- ・ 第8回 文脈自由文法と構文木
- ・ 第9回 文脈自由文法の応用
- 第10回 プッシュダウンオートマトン
- ・ 第11回 文脈自由言語の標準形
- ・ 第12回 文脈自由言語の反復補題
- ・ 第13回 文脈自由言語の閉包性と決定問題
- 第14回 文脈依存言語
- ・ 第15回 チューリングマシンと決定可能性
- 第16回 期末試験(第8~15回講義分)

本日の概要

- 第5章: 文脈自由文法と言語(の前半)
 - テキスト: p.192~
 - 5.1 文脈自由文法
 - 5.2 構文木
- 重要概念
 - 文脈自由文法, 文脈自由言語, 導出, 構文木

5.1 文脈自由文法

5.1.1 直観的な例: 回文

- 回文 (palindrome):
 - 前から読んでも後ろから読んでも同じ文字列
- 例
 - トマト
 - たけやぶやけた
 - 悪い鉄柵が腐っているわ
 - wasitacatisaw
- 【回文の定義】文字列 w が回文 ⇔ w = w^R
 - w^R:文字列 w の前後を反転したもの

回文言語 L_{pal}

- ここではアルファベット{0,1}に限定した回文を考える
- 回文言語 L_{pal}を集合として考えると
 - 属する文字列の例: 010, 0110, 101101, 1, 0, ε
 - 属さない文字列の例: 10, 110, 0101
- ・ 形式的な定義
 - $L_{pal} = \{w \in \{0, 1\}^* \mid w = w^R\}$
 - L_{pal}は正則言語ではない

回文の再帰的な定義

- 基礎: ε, 0, 1は回文である
- 再帰:もしwが回文なら, 0w0と1w1も回文 回文はこれらの規則で構成できるものに限る

- この言語の定義は再帰的構造を有している
- →文脈自由文法はこのような<u>再帰的定義</u>を 形式的に記述する記法

文脈自由文法

- 再帰的定義を形式的に記述する記法のひとつ
 - いくつかの規則で構成
- 回文を定義する規則
 - 1. $P \rightarrow \epsilon$
 - 2. $P \rightarrow 0$
 - 3. $P \rightarrow 1$
 - 4. $P \rightarrow 0P0$
 - 5. $P \rightarrow 1P1$

- 1~3が基礎, 4,5が再帰に該当
- Pは回文のクラスを表す変数 規則4のイメージ: 「Pが回文のクラスに属せば, OPOも 回文クラスに属する」

5.1.2 文脈自由文法の定義

文脈自由文法 (Context-Free Grammar: CFG)
 Gは以下の4つ組で定義される

$$G = (V, T, P, S)$$

- V: 変数 (variable) の集合
 - 非終端記号 (nonterminal symbol) とも呼ぶ
- T: 終端記号 (terminal) の集合
- P: 生成規則 (production rule)の集合
- S: 出発記号 (start variable, start symbol)

回文文法 Gpal

• 回文文法G_{pal}をG = (V, T, P, S)の形式に当ては めると...

```
-V = \{P\}
-T = \{0, 1\}
-P = \{P \rightarrow \epsilon, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1\}
-S = P
```

よって,
$$G_{pal} = (\{P\}, \{0, 1\}, \{P \rightarrow \epsilon, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1\}, P)$$

例5.3: 式の文法G_{exp}

- ・ (単純化した)式を表現するCFGを考える
 - 演算子と識別子により構成
- 演算子:加算と乗算に限る(+と*のみ)
 - 括弧の使用も許す
- 識別子: 構成要素はa, b, 0, 1に限る
 - (制約1)最初の文字はaまたはbに限定
 - (制約2)その後に{a,b,0,1}*の任意の列を追加
 - 正則表現で書くと (a+b)(a+b+0+1)*
 - 識別子の例: a, b, a0, bab002
- 式の例: a, a1b+b0a, ba*(a0+b1), a+(a*b)

文脈自由文法で書くと...

• 式のクラスを変数E, 識別子のクラスを変数I で表現する

```
    G<sub>exp</sub> = (V, T, P, S)
    - V = {E, I}
    - T = {a, b, 0, 1, +, *, (, )}
    - P (次スライド)
    - S = E
```

Gexpの生成規則集合P

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $1 \rightarrow a$

- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $1 \rightarrow 1b$
 - 9. $1 \to 10$
 - $10.1 \rightarrow 11$

規則1~4:式の構成法に関する規則

規則5~10: 識別子の構成法に関する規則

生成規則の簡潔な表現法

- Pの要素をきちんと書くと10行になる
 - 簡潔に記述したい...
- →頭部の変数が同一の生成規則を1つに まとめる
 - 本体を縦棒で区切って列挙
 - E → I | E+E | E*E | (E)
 - I → Ia | Ib | I0 | I1 | a | b
- $G_{exp} = (\{E, I\}, \{a, b, 0, 1, +, *, (,)\}, \{E \rightarrow I \mid E + E \mid E * E \mid (E), I \rightarrow Ia \mid Ib \mid I0 \mid I1 \mid a \mid b\}, E)$

5.1.3 文法による導出

- 生成規則の適用目的
 - ある文字列が言語に属しているかを判定
 - 生成規則の適用法は2つある
- 方法1: 再帰的推論(逆方向)
 - 本体から頭部へと生成規則を適用
- 方法2: 導出(順方向)
 - 頭部から本体へと生成規則を適用

方法1:再帰的推論(逆方向)

- 本体から頭部へと生成規則を適用
 - [START] 終端記号だけの列
 - 本体と合致する文字列を頭部の変数に置き換えることを繰り返す
 - [GOAL] 出発記号 (1つの変数)

• 例:

- 1. 00100 から 00P00 を推論
- 2. 00P00 から OPO を推論
- 3. OPO から P を推論

方法2: 導出(順方向)

- 頭部から本体へと生成規則を適用
 - [START] 出発記号 (1つの変数)
 - 記号列中の変数に生成規則を適用し置換
 - [GOAL] 終端記号だけの列

• 例: P ⇒ 0P0 ⇒ 00P00 ⇒ 00100

記法

- 本講義(およびテキスト)で用いる記法
 - 英小文字の最初の方 (a, b, ...):終端記号
 - ・ 数字や演算記号(+や括弧など)も終端記号
 - 英大文字の最初の方(A, B, ...): 変数
 - 英小文字で最後の方 (w, zなど): 終端記号の列
 - 英大文字で最後の方 (X, Yなど): 終端記号または 変数
 - ギリシャ小文字(α, βなど):終端記号と変数の一方または両方が含まれる列

導出を表す関係記号

• ⇒: 生成規則を頭部から本体へと(1回)適用する 過程を記述する記号

- $\alpha A\beta \Rightarrow_G \alpha \gamma \beta$
 - 文脈自由文法 G=(V, T, P, S)
 - α, β: (VUT)*中の列
 - A∈V:変数
 - (A→ γ) ∈ P : 生成規則
- 特にGが明らかなとき, ⇒ を⇒ と記す

複数回の導出

• * : ⇒ を0回以上に拡張したもの

• 再帰的定義

- 基礎: α ⇒ α

- 再帰: α * β かつ β * γ ならば α * γ

特にGが明らかなとき, * を* と記す

導出の例

$$E \underset{G_{exp}}{\Longrightarrow} E * E$$

$$\underset{G_{exp}}{\Longrightarrow} I * E$$

$$\underset{G_{exp}}{\Longrightarrow} a * E$$

$$\underset{G_{exp}}{\Longrightarrow} a * (E)$$

$$\underset{G_{exp}}{\Longrightarrow} a * (I + E)$$

$$\underset{G_{exp}}{\Longrightarrow} a * (a + E)$$

よって
$$E_{G_{exp}}^{*}a*(a+b0)$$

5.1.4 最左導出と最右導出

最左導出:常に最も左の変数に生成規則を 適用する導出方法

- 特に文法を明示するとき: _{えら}あるいは **
- 例: 01<u>A</u>0B1C10 ≥ 01<u>2</u>0B1C10

最左導出の例(文法はG_{exp}だが省略)

最右導出

最右導出:常に最も右の変数に生成規則を 適用する導出方法

- 特に文法を明示するとき: _君 あるいは 😤
- 例: 01A0B1<u>C</u>10 ≥ 01A0B1<u>2</u>10

5.1.5 ある文法の言語

- L(G): 文法G=(V, T, P, S) が生成する言語
 - Gの出発記号から導出できる終端記号列の集合

• 形式的定義: L(G) = {w∈T* | S ⇒ w}

文脈自由言語

文法Gが文脈自由文法のとき、 言語 L(G) は文脈自由言語

- 文脈自由言語(Context-Free Language: CFL)
 - 文脈自由文法Gにより定義される言語

L ⇔ L(G)であることの証明

- L: ある言語 (文字列の集合)
- G:ある文法が与えられたときに、L ⇔ L(G) を示す
- 証明方法: L ⇒ L(G) と L ← L(G)を示す
 - L⇒L(G): 任意のw∈Lに対してw∈L(G)を示す (十分性)
 - L ← L(G): 任意のw∈L(G)に対してw∈Lを示す (必要性)

例: L(G_{pal})は回文の集合(定理5.7)

- 証明すべきこと:
 - 任意のw∈{0,1}*に対してwは回文 ⇔ w ∈ L(G_{pal})
- これを証明するためには
 - 十分性: wは回文 ⇒ w ∈ L(G_{pal})
 - 必要性: wは回文 ← w ∈ L(G_{pal})

を証明すればよい

$$G_{pal} = (\{P\}, \{0, 1\}, \{P \rightarrow \epsilon | 0 | 1 | 0 P 0 | 1 P 1\}, P)$$

十分性の証明 (1/2)

- ・ 証明したいこと: wは回文 ⇒ w ∈ L(G_{pal})
 - → <u>回文の長さ | w | に関する帰納法</u>で証明
- 基礎: |w| = 0 または |w| = 1のとき
 - wはε, 0, 1のいずれか
 - いずれも生成規則P → ε, P → 0, P → 1 により生成可能. つまりL(G_{pal}) に属する

十分性の証明 (2/2)

- 帰納: |w| ≥ 2のとき
 - wが回文であるためには, w=0x0 か w=1x1 の形でなければならない
 - また, xも回文でなければならない
 - このとき, |x| = |w|-2であり, 帰納法の仮定より xはG_{pal}により生成可能(P^{*}⇒x)
 - -w = 0x0 のとき, $P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0$
 - -w = 1x1 のとき, $P \Rightarrow 1P1 \stackrel{*}{\Rightarrow} 1x1$
 - つまり, |w| ≥ 2のときもwは L(G_{pal})に属する
- よって、任意の回文wは G_{pal}で導出可能

必要性の証明 (1/2)

- ・ 証明したいこと: w ∈ L(G_{pal}) ⇒ wは回文
- P⇒w ならばwは回文であることを示せばよい
 - → 生成規則の適用回数nに関する帰納法
- 基礎:n=1のとき
 - -P⇒ε, P⇒0, P⇒1 のいずれか
 - ε, 0, 1いずれも回文であるため成立

必要性の証明 (1/2)

- 帰納:n+1のとき (n≥1)
 - 帰納法の仮定: 生成規則をn回以下適用してできた 文字列xは回文である
 - 2回以上導出を適用するとき, 導出は P⇒0P0または P⇒1P1のいずれかで始まる
 - P⇒0P0のとき, P⇒0P0⇒0x0
 - P⇒1P1のとき, P⇒1P1⇒1x1
 - 仮定より、n回適用して出来た文字列xは回文であり、 そのとき、0x0と1x1はいずれも回文である
 - よってn+1のときに成立
- ・ 従って、w ∈ L(G_{pal}) ⇒ wは回文

5.1.6 文形式

文法G=(V, T, P, S)から得られる列α

を文形式と呼ぶ

- 変数と終端記号のいずれを含んでもよい
- 最左導出で得られる文形式を 左文形式, 最右導出で得られる文形式を 右文形式 と呼ぶ

5.2 構文木

構文木 (parse tree)

• 構文木(parse tree): 導出を表現する木構造

コンパイラにおいては、ソースコードを表現するデータ構造として用いられる

5.2.1 構文木の構成

- Given: G=(V, T, P, S)
- Gの構文木とは次の条件を満たす木
 - 1. 各内部節点のラベル: V中の変数
 - 2. 各葉のラベル: V中の変数, T中の終端記号, ε
 - εはその葉以外に兄弟節点がない場合のみ用いる
 - 3. 内部節点(親)のラベルがA, 子節点のラベルが 左から順に X₁, X₂, ..., X_k ならば, A→ X₁X₂ ... X_k が生成規則集合Pに含まれる

例5.10: 構文木の例

- ・ 回文文法における1つの構文木
 - 導出 P⇒0110 を示す構文木
 - $-P \Rightarrow 0P0 \Rightarrow 01P10 \Rightarrow 01\epsilon10$

構文木の成果

- ・ 構文木の成果:葉のラベルを左から右に並べて 得られる文字列のこと
 - 根の変数から導かれる文形式の一つ
- 特に重要な構文木
 - (1) 成果が終端記号列であるもの
 - 葉のラベルがすべて終端記号かε
 - (2) 根のラベルが出発記号のもの
- (1),(2)とも満たす木の成果は, 当該文法が生成 する言語に含まれる列
 - 言語を、「出発記号を根とし、終端記号を成果とするような構文木の成果の集合」と定義することができる

例5.11

- E *⇒ a*(a+b00)
 - この構文木は, a*(a+b00)がG_{exp}の 言語に属している ことを示している

再帰的推論・導出と構文木

以下の5つは同値

- 1. 再帰的推論:本体から頭部への変換(推論)により、変数Aを出発記号とする終端記号列wが決定できる
- 2. 導出:A ^{*}→ w
- 3. 最左導出:A ⇒ w
- 4. 最右導出:A ≱ w
- 5. 構文木: Aを根としwを成果とする構文木が存在

証明は省略(テキストp.209~)

ミニレポート

ミニレポート:8-1

- テキスト p.204 問5.1.1(a)
- 次の言語に対する文脈自由文法を作れ {0ⁿ1ⁿ|n≥1}

ミニレポート

ミニレポート: 8-2

- テキストp.204 問5.1.2 a), b), c)
- 次の文法は正則表現0*1(0+1)*と同じ言語を 生成する
 - $-S \rightarrow A1B$
 - $-A\rightarrow 0A|\epsilon$
 - $-B\rightarrow 0B|1B|\epsilon$
 - 次の列の再左導出と最右導出を示せ.
 - -a)00101
 - -b) 1001
 - -c)00011