Introduction to Text Classification Using Python

Mohammad Fazeli

November 21, 2019

Why Classify Text?

- There are lots of it.
- Requires a lot of efforts.

What is Machine Learning?

- ► There are different types of ML.
- ► A good intuitive definition would be:
 - Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. (wikipedia)

What is Machine Learning?

Why Use Machine Learning?

- ▶ The stuff is hard to program.
- Like spam detection(older SysAdmins problem now solved).

What We are Going to Do?

- ▶ Use machine learning to split texts to classes.

- Google Translate
- ► Chatbots like the following:

Hipmunk

Whole Foods Market

Madison Reed

Duolingo

Amtrak

Domino's Pizza

News Aggregators

Headlines More Headlines

Sondland, in Act of Defiance, Says He Followed Trump's Orders in Ukraine Pressure Scheme

The New York Times ⋅ 2 hours ago □ < :

 Trump says 'it's all over' for impeachment inquiry after Sondland testimony

Fox News · 4 hours ago

 Why Does ASAP Rocky Keep Coming Up at the Impeachment Hearing?

Slate · 3 hours ago

 Gordon Sondland's impeachment testimony on Trump and Ukraine adds up to bribery

USA TODAY - 3 hours ago - Opinion

Trump Is Doing Exactly What He Was Elected to Do

The New York Times · 6 hours ago · Opinion

View full coverage

^

Spam filters

► Sentiment Analysis

	3			
Sentiment	Tweet mention			
Positive	Maybe I'm mad but I'm now the proud owner of a potentially #bendy #iPhone6, it's so much bigger than the #4s Finally got to see an iPhone 6 today. Not revolutionary at all but it's absolutely gorgeous. (And I want one). #iPhone6			
Negative	I'm not sure I want it. It's too big to fit in my back pocket! lol #iphone6 I'm really disappointed with the #iPhone6. It took them 2 years to change the screen & size. Let down.			

Lets Implement One for Persian

- The data-set is Hamshahri.
- ► Hamshahri with labels as categories.
- ► Target is demonstration for Persian.
- The million dollar question is:
- ▶ "How to represent text as points in Rⁿ"

Let's formalize

- ightharpoonup Text as Vector in $R^{|V|}$
- ► Called an "embedding" because it's embedded into a space
- ► The standard way to represent meaning in NLP
- ► TF-IDF
 - A common baseline model
 - But works very good
 - Sparse vectors
 - Documents are represented by a simple function of the counts of nearby words

Term-document matrix

Each document is represented by a vector of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	1	1	8	15	
oldier	2	2	12	36	
fool	37	58	1	5	
clown	5	117	0	0	

Visualizing document vectors

Vectors are the basis of information retrieval

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	5	117	0	0

- ▶ Vectors are similar for the two comedies
- ► Different than the history
- ► Comedies have more fools and wit and fewer battles.

Reminders from linear algebra

dot-product
$$v.w = \sum_{i=1}^{N} v_i \times w_i = v_1 \times w_1 + v_2 \times w_2 + \dots + v_N \times w_N$$

$$\tag{1}$$

vector length
$$|v| = \sqrt{\sum_{i=1}^{N} v_i^2}$$
 (2)

Cosine Distance

cosine distance
$$d(v, w) = \frac{v \cdot w}{|v| \times |w|}$$
 (3)

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

Frequency is non-negative, so cosine range 0-1

But raw frequency is a bad representation

- ► Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information
- But overly frequent words like the, it, or they are not very informative about the context
- ▶ Need a function that resolves this frequency paradox!

TF-IDF: combine two factors

tf: term frequency. frequency count (usually log-transformed):

$$\mathsf{tf}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{count}(t,d) & \text{ if } \mathsf{count}(t,d) > 0 \\ 0 & \text{ otherwise} \end{array} \right.$$

$$\mathrm{idf}_i = \log\left(rac{N}{\mathrm{df}_i}
ight)$$
 cument frequency: tf-

- Idf: inverse document frequency: tf-Words like "the" or "good" have very low idf
- ▶ tf-idf value for word t in document d: $w_{l,d} = tf_{l,d} \times idf_l$