Contextual Text Mining: Mining Topics with Social Network Context

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Contextual Text Mining: Mining Topics with Social Network as Context

Topic Analysis with Network Context

- The context of a text article can form a network, e.g.,
 - Authors of research articles may form collaboration networks
 - Authors of social media content form social networks
 - Locations associated with text can be connected to form a geographic network
- Benefit of joint analysis of text and its network context
 - Network imposes constraints on topics in text (authors connected in a network tend to write about similar topics)
 - Text helps characterize the content associated with each subnetwork
 (e.g., difference in opinions expressed in two subnetworks?)

Network Supervised Topic Modeling: General Idea [Mei et al. 08]

• Probabilistic topic modeling as optimization: maximize likelihood

$$\Lambda^* = \arg \max_{\Lambda} p(\text{TextData} \mid \Lambda)$$

- Main idea: network imposes constraints on model parameters Λ
 - The text at two adjacent nodes of the network tends to cover similar topics
 - Topic distributions are smoothed over adjacent nodes
 - Add network-induced regularizers to the likelihood objective function

Any generative model

Any network

$$\Lambda^* = \arg\max_{\Lambda} f(p(\text{TextData} \mid \Lambda), r(\Lambda, \text{Network}))$$

Any way to combine

Any regularizer

Instantiation: NetPLSA [Mei et al. 08]

Network-induced prior: Neighbors have similar topic distribution

Mining 4 Topical Communities: Results of PLSA

Can't uncover the 4 communities (IR, DM, ML, Web)

Topic 1		Topic 2		Topic 3		Topic 4	
term	0.02	peer	0.02	visual	0.02	interface	0.02
question	0.02	patterns	0.01	analog	0.02	towards	0.02
protein	0.01	mining	0.01	neurons	0.02	browsing	0.02
training	0.01	clusters	0.01	vlsi	0.01	xml	0.01
weighting	0.01	stream	0.01	motion	0.01	generation	0.01
multiple	0.01	frequent	0.01	chip	0.01	design	0.01
recognition	n 0.01	e	0.01	natural	0.01	engine	0.01
relations	0.01	page	0.01	cortex	0.01	service	0.01
library	0.01	gene	0.01	spike	0.01	social	0.01

Mining 4 Topical Communities: Results of NetPLSA

Uncovers the 4 communities well

Information Retrieval	Data Mining	Machine Learning	Web	
retrieval 0.13	mining 0.11	neural 0.06	web 0.05	
information 0.05	data 0.06	learning 0.02	services 0.03	
document 0.03	discovery 0.03	networks 0.02	semantic 0.03	
query 0.03	databases 0.02	recognition 0.02	services 0.03	
text 0.03	rules 0.02	analog 0.01	peer 0.02	
search 0.03	association 0.02	vlsi 0.01	ontologies 0.02	
evaluation 0.02	patterns 0.02	neurons 0.01	rdf 0.02	
user 0.02	frequent 0.01	gaussian 0.01	management 0.01	
relevance 0.02	streams 0.01	network 0.01	ontology 0.01	

Text Information Network

- In general, we can view text data that naturally "lives" in a rich information network with all other related data
- Text data can be associated with
 - Nodes of the network
 - Edges of the network
 - Paths of the network
 - Subnetworks
 - **—** ...
- Analysis of text should be using the entire network!

Suggested Reading

• [Mei et al. 08] Qiaozhu Mei, Deng Cai, Duo Zhang, and ChengXiang Zhai. 2008. Topic modeling with network regularization. In *Proceedings of the 17th international conference on World Wide Web* (WWW 2008). ACM, New York, NY, USA, 101-110. DOI=10.1145/1367497.1367512