Содержание

1	Множества и операции над ними	2
2	Отображения	4
3	Отношения на множестве. Отношения эквивалентности и разбиение на классы	6
4	Бинарные операции. Единственность единичного элемента. Определение моноида и полугруппы	7
5	Группы: примеры, свойство сокращения, изоморфизм	7
6	Кольца и поля: определение и примеры	8
7	Свойства делимости. Существование НОД и НОК	9
8	Теорема о делении с остатком для целых чисел	10
9	Алгоритм Евклида	11
10	Теорема о линейном представлении НОД	11
11	Взаимная простота с произведением	12
12	Взаимная простота: связь с делимостью	13
13	Свойство составных чисел. Лемма о существовании простого делителя	13
14	Бесконечность множества простых чисел	14
15	Основная теорема арифметики	14
16	Сравнения и их свойства	15
17	Кольцо вычетов	15
18	Теорема Вильсона, малая теорема Ферма	16
19	Китайская теорема об остатках	17
20	Группа обратимых элементов. Обратимые элементы в кольце вычетов. Теорема Эйлера	19
2 1	Вычисление функции Эйлера	20
22	Построение поля комплексных чисел. Комплексное сопряжение	21
23	Комплексная плоскость. Свойства модуля	23
24	Неравенство треугольника	23
25	Тригонометрическая форма комплексного числа. Умножение и деление	24
26	Формула Муавра. Корни из комплексных чисел	2 5
27	Комплексные корни из единицы. Первообразные корни	26
2 8	Кольцо многочленов. Переход к стандартной записи	28
2 9	Степень многочлена. Многочлены над областью целостности	29
30	Деление с остатком для многочленов. Теорема Безу	31
31	Число корней многочлена. Формальное и функциональное равенство многочленов	32

32 Интерполяционная формула Лагранжа	33
33 Метод интерполяции Ньютона	34
34 Делимость в области целостности	34
35 Евклидовы кольца. НОД в евклидовом кольце	35
36 Свойства взаимно простых элементов в евклидовом кольце	37
37 Факториальность евклидова кольца	37
38 Разложение многочлена на неприводимые множители над $\mathbb R$ и $\mathbb C$	38
39 Производная многочлена, её свойства	40
40 Кратные корни и производная	42
41 Формула Тейлора	43
42 Построение поля частных: леммы о классах эквивалентности	44
43 Построение поля частных: доказательство теоремы	45
44 Поле рациональных функций. Правильные дроби	46
45 Лемма о дроби, знаменатель которой разложен на взаимно простые множители	47
46 Разложение правильной дроби в сумму правильных примарных дробей	48
47 Разложение правильной примарной дроби и произвольной дроби в сумму простейших	49
48 Рациональный корень целочисленного многочлена. Следствие о целом корне	50
49 Многочлены над \mathbb{Z} : содержание многочлена, примитивные многочлены	51
50 Лемма Гаусса	52
51 Редукционный критерий неприводимости. Следствие про рациональный корень	52
${f 52}$ Факториальность $\mathbb{Z}[X]$	53
53 Критерий неприводимости Эйзенштейна	54

1. Множества и операции над ними

Понятия "множество" и "элемент" считаем интуитивно понятными

Обозначение. Запись $x \in A$ означает, что элемент x принадлежит множеству A. Используется также запись $x \notin A$, оначающая, что элемент x **не** принадлежит множеству A

Определение 1. Пустым множеством называется множество, не содержащее ни одного элемента

Обозначение. ∅

Определение 2. Множество B называется подмножеством множества A, если любой элемент множества B принадлежит множеству A

Обозначение. $B \subset A$

Подмножество B множества A называется собственным, если $B \neq A, B \neq \emptyset$

Операции над множествами.

1. Пересечением множеств A и B называется множество $\{x \mid x \in A$ и $x \in B\}$

Обозначение. $A \cap B$

2. Объединением множеств A и B называется множество $\{x \mid x \in A \text{ или } x \in B\}$

Обозначение. $A \cup B$

3. **Разностью** множеств A и B называется множество $\{x \mid x \in A$ и $x \notin B\}$

Обозначение. $A \setminus B$

4. Предположим, что все рассматриваемые множества являются подмножествами некоторого универсального множества \mathbb{U} . Тогда множество $\mathbb{U}\setminus A$ называется дополнением A

Обозначение. \overline{A}

5. Симметрической разностью множеств A и B называется множество $(A \setminus B) \cup (B \setminus A)$

Обозначение. $A\triangle B$

Порядок действий.

- 1. Дополнение
- 2. Пересечение
- 3. Объединение, разность, симметрическая разность

Свойства.

- 1. Дистрибутивность
 - (a) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Доказательство.

• Докажем, что $(A \cap B) \cup C \subset (A \cup C) \cap (B \cup C)$: Пусть $x \in (A \cap B) \cup C$. Тогда выполнено хотя бы одно из условий:

i.
$$x \in A \cap B \implies \begin{cases} x \in A \\ x \in B \end{cases} \implies \begin{cases} x \in A \cup C \\ x \in B \cup C \end{cases} \implies x \in (A \cup C) \cap (B \cup C)$$
ii. $x \in C \implies \begin{cases} x \in A \cup C \\ x \in B \cup C \end{cases} \implies x \in (A \cup C) \cap (B \cup C)$

ii.
$$x \in C \implies \begin{cases} x \in A \cup C \\ x \in B \cup C \end{cases} \implies x \in (A \cup C) \cap (B \cup C)$$

• Докажем, что
$$(A \cup C) \cap (B \cup C) \subset (A \cap B) \cup C$$
: Пусть $x \in (A \cup C) \cap (B \cup C)$. Тогда
$$\begin{cases} x \in A \cup C \\ x \in B \cup C \end{cases}$$

Рассмотрим два случая:

i.
$$x \in C \implies x \in (A \cap B) \cup C$$

ii. $x \notin C$:

$$\left. \begin{array}{l} x \in A \cup C \implies x \in A \\ x \in B \cup C \implies x \in B \end{array} \right\} \implies x \in A \cap B \implies x \in (A \cap B) \cup C$$

(b) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

Доказательство.

• Докажем, что $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$:

Пусть $x \in (A \cup B) \cap C$. Тогда $x \in C$ и выполнено хотя бы одно из условий:

i.
$$x \in A \implies x \in A \cap C$$

ii.
$$x \in B \implies x \in B \cap C$$

В обоих случаях, $x \in (A \cap C) \cup (B \cap C)$

• Докажем, что $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$: Пусть $x \in (A \cap C) \cup (B \cap C)$. Тогда выполнено хотя бы одно из условий:

i.
$$\begin{cases} x \in A \\ x \in C \end{cases}$$

ii.
$$\begin{cases} x \in B \\ x \in C \end{cases}$$

В обоих случаях, $x \in C$. Кроме того, выполнено $x \in A$ или $x \in B$, а значит, $x \in A \cup B \implies x \in (A \cup C) \cap (A \cup B)$

2. Законы де-Моргана:

(a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Доказательство.
$$x \in \overline{A \cup B} \iff x \notin (A \cup B) \iff \begin{cases} x \notin A \\ x \notin B \end{cases} \iff \begin{cases} x \in \overline{A} \\ x \in \overline{B} \end{cases} \iff x \in \overline{A} \cap \overline{B}$$

(b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Доказательство.
$$x \in \overline{A \cap B} \iff x \in (A \cap B) \iff \begin{bmatrix} x \notin A \\ x \notin B \end{bmatrix} \iff \begin{bmatrix} x \in \overline{A} \\ x \in \overline{B} \end{bmatrix} \iff x \in \overline{A \cup B}$$

Определение 3. Прямым, или декартовым произведением множеств A и B называется множество, состоящее из всех упорядоченных пар (a,b), де $a \in A, b \in B$

Обозначение. $A \times B$

Обозначение. Межде множествами $(A \times B) \times C$ и $A \times (B \times C)$ есть взаимно однозначное соответствие. Для таких множеств часто используется обозначение $A \times B \times C$

Обозначение. Множество $\underbrace{A \times A \times ... \times A}_{n}$ обозначается A^{n}

2. Отображения

Определение 4. Отображением, или функцией из множества X в множество Y называется правило, которое каждому элементу множества X сопоставляет ровно один элемент из множества Y Множество X называется областью определения, множество Y – областью значений

Определение 5. Образом отображения f называется множество элементов вида f(x)

Обозначение. Im f, f(X)

To ecth, Im
$$f = \{ f(x) \mid x \in X \}$$

Определение 6. Прообразом элемента $y \in Y$ называется множество элементов $x \in X$, которые при этом отображении переходят в y

Обозначение. $f^{-1}(y)$

To есть, $f^{-1}(y) = \{ x \in X \mid f(x) = y \}$

Можно рассматривать прообраз любого подмножества образа: если $Y_1 \subset Y$, то

$$f^{-1}(y) = \{ x \in X \mid \exists y \in Y_1 : f(x) = y \}$$

Определение 7. Отображение $f: X \to Y$ называется сюръективным, если прообраз любого элемента $y \in Y$ содержит хотя бы один элемент

Определение 8. Отображение $f: X \to Y$ называется инъективным, если прообраз любого элемента $y \in Y$ содержит не более одного элемента

Определение 9. Отображение $f: X \to Y$ называется биективным, если прообраз любого элемента $y \in Y$ содержит ровно один элемент

Примечание. Если отображение f биективно, то оно одновременно инъективно и сюръективно

Определение 10. Тождественным отображением называется такое отображение $e_X: X \to X$, что $e_X(x) = x$ для любого $x \in X$

Определение 11. Пусть для множеств X,Y,Z заданы отображения $f:Y\to Z,g:X\to Y$. Композицией отображений f и g называется отображение $f\circ g:X\to Z$, определённое условием:

$$(f \circ g)(x) = f(g(x))$$

Свойство. Операция композиции ассоциативна, то есть $(f \circ g) \circ h = f \circ (g \circ h)$ Отсюда следует, что можно использвать обозначение $f \circ g \circ h$

Доказательство.
$$\bigg((f \circ g) \circ h \bigg) (x) = f \bigg(g \big(h(x) \big) \bigg) = \bigg(f \circ (g \circ h) \bigg) (x)$$

Определение 12. Пусть заданы отображения $f: X \to Y$ и $g: Y \to X$. Отображение g называется обратным к отображению f, если $f \circ g = e_Y, g \circ f = e_X$

Обозначение. f^{-1}

Теорема 1 (существование обратного отображения). Обратное отображение к отображению f существует тогда и только тогда, когда f является биекцией

Доказательство.

• Необходимость

Докажем, что если $f:X\to Y$ является биекцией, то существует отображение $g:Y\to X$, для которого выполнено $f\circ g=e_Y, g\circ f=e_X$: Пусть $y\in Y$

$$f$$
 – биекция $\implies \exists ! x \in X : f(x) = y$

Положим $g(y)\coloneqq x$

Тогда
$$\begin{cases} \forall x \in X & g(f(x)) = x \\ \forall y \in Y & f(g(y)) = y \end{cases}$$

• Достаточность

Докажем, что если для некоторого отображения $g: Y \to X$ выполнено $f \circ g = e_Y, g \circ f = e_X$, то f является биекцией:

- Проверим, что f сюрьекция: Пусть $y \in Y$. Тогда g(y) является прообразом y в X для отображения f
- Проверим, что f инъекция: Пусть $y \in Y$ и x_1, x_2 различные прообразы y при отображении f. Тогда

$$x_1 = g(f(x_1)) = f(y) = g(f(x_2)) = x_2 -$$

Теорема 2 (единтсвенность обратного отображения). Пусть f – биекция из X в Y. Тогда отображение, обратное к f, единственно. То есть не существует различных отображений g_1 и g_2 из Y в X, таких, что:

$$f \circ g_1 = e_y$$
, $g_1 \circ f = e_x$, $f \circ g_2 = e_Y$, $g_2 \circ f = e_X$

Доказательство. Предположим, что два таких отображения существуют. Тогда существует такой $y \in Y$, то $g_1(y) \neq g_2(y)$. Положим $x_1 := g_1(y), x_2 := g_2(y)$. Тогда:

$$f(x_1) = f(g_1(y)) = y,$$
 $f(x_2) = f(g_2(y)) = y$

Полчили, что у y есть два прообраза. $\frac{1}{2}$ с инъективностью f

Примечание. Из этой теоремы следует, что обозначение f^{-1} корректно

3. Отношения на множестве. Отношения эквивалентности и разбиение на классы

Определение 13. Бинарным отношением между X и Y называется подмножетво $X \times Y$

Обозначение. Пусть задано бинарное отношение $\omega \subset X \times Y$. Тогда условие $(x,y) \in \omega$ записывают как $x \omega y$

Обозначение. Если Y = X, то говорят, что задано отношение на X

Примечание. Любое отображение можно считать отношением

Определение 14. Бинарное отношение ω на множестве X называется:

- 1. Рефлексивным, если для любого x выполнено x ω x
- 2. Антирефлексивным, если ни для какого x не выполнено x ω x
- 3. Симметричным, если $x \omega y \implies y \omega x$
- 4. Ассиметичным, если ни для каких x, y не выполенено одновременно $x \omega y$ и $y \omega x$
- 5. Антисимметричным, если $x \omega y$ и $y \omega x$ выполнены одновременно только при x=y
- 6. Транзитивным, если $x \omega y, y \omega z \implies x \omega z$

Определение 15. Бинарное отношение на множестве X называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно

Определение 16. Предположим, что на множестве X задано отношение эквивалентности \sim . Классом эквивалентности элемента a называется множество элементов, эквивалентных a, то есть $\{x \in X \mid x \sim a\}$

Теорема 3 (разбиение на классы эквивалентности). Предположим, что на множестве X задано отношение эквивалентности \sim . Тогда множество X разбивается на классы эквивалентности. То есть X является объединением непересекающихся подмножеств, каждое из которых является классом эквивалентности некоторого элемента

Доказательство. Требуется доказать, что:

1. любой элемент множества X принадлежит некоторому классу эквивалентности **Доказательство.** Элемент a принадлежит классу эквивалентности \overline{a} , так как по рефлексивности выполнено $a \sim a$

2. лобые два класса эквивалентности либо не пересекаются, либо совпадают

Доказательство. Предположим, что два класса эквивалентности \bar{a} и \bar{b} содержат хотя бы один общий элемент x. Докажем, что эти классы совпадают:

Требуется доказать, что $\overline{a} = \overline{b}$. Это равносильно тому, что $\overline{a} \subset \overline{b}$ и $\overline{b} \subset \overline{a}$. Докажем первое включение (второе доказывается аналогично):

$$x \in \overline{a} \implies x \sim a \xrightarrow[\text{симметричность}]{} a \sim x$$

$$x \in \overline{b} \implies x \sim b$$

$$\xrightarrow[\text{транзитивность}]{} a \sim b$$

$$y \in \overline{a} \implies y \sim a \\ a \sim b$$

$$\xrightarrow[\text{транзитивность}]{} y \sim b \implies y \in \overline{b}$$

П

4. Бинарные операции. Единственность единичного элемента. Определение моноида и полугруппы

Определение 17. Пусть X – множество. Бинарной алгебраической операцией на X называется отображение $X \times X \to X$

Обозначение. Множество X с операцией * обозначается (X,*)

Примечание. Можно рассматривать n-арные оперции, то есть отображения $X^n \to X$

Определение 18. Бинарная операция на множестве X называется:

- 1. Ассоциативной, если (a*b)*c = a*(b*c) для любых $a,b,c \in X$
- 2. Коммутативной, если a*b=b*a для любых $a,b\in X$

Определение 19. Элемент $e \in X$ называется единичным (нейтральным), если для любого $a \in X$ выполнено a*e=e*a=a

Примечание. Если операция обозначена как +, нейтральный элемент обозначают как 0

Свойство (единственность единичного элемента). Пусть на множестве X задана бинарная алгебраическая операция *. Тогда существует не более одного единичного элемента

Доказательство. Пусть элементы $e_1,e_2\in X$ таковы, что $e_1*a=a*e_1=a,\ e_2*a=a*e_2=a$ для любого $a\in X$

Рассмотрим элемент $e_1 * e_2$. Из того, что e_1 – нейтральный, следует, что $e_2 = e_1 * e_2$. Из того, что e_2 – нейтральный, следует, что $e_1 = e_1 * e_2$. Таким образом,

$$e_2 = e_1 * e_2 = e_1$$

Определение 20. Полугруппой называется множество с заданной на нём бинарной ассоциативной операцией

Определение 21. Моноидом называется полугруппа, в которой существует нейтральный элемент

5. Группы: примеры, свойство сокращения, изоморфизм

Определение 22. Множество G с бинарной операцией * называется группой, если:

- 1. операция * ассоциативна
- 2. существует нейтральный элемент e
- 3. для любого $a \in G$ существует обратный элемент $a^{-1} \in G$ такой, что $a*a^{-1} = a^{-1}*a = e$

Обозначение. (G,*)

Определение 23. Группа (G, *) называется абелевой (коммутативной), если операция * коммутативна

Примеры.

- 1. \mathbb{R}^* : множество $\mathbb{R}\setminus\{0\}$, операция умножение Нейтральный элемент: e=1. Обратный: $a^{-1}=\frac{1}{a}$
- 2. Аналогично определяется \mathbb{Q}^* Эти группы абелевы
- 3. Абелевыми группами по умножению являются множества положительных чисел \mathbb{R}_+^* , \mathbb{Q}_+^*
- 4. \mathbb{R} не группа по умножению, нет обратного у 0
- 5. $\mathbb{Z} \setminus \{0\}$ не группа по умножению, нет обратных (кроме 1)
- 6. $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$, операция сложение. Это абелевы группы
- 7. № не группа по сложению, нет нейтрального элемента
- 8. Группа биекций произвольного множества X в себя, операция композиция
- 9. Группа движений плоскости, операция композиция
- 10. Подмножества произвольного множества, операция \triangle

Свойство (сокращение). Пусть G – группа, $a, b, c \in G$

- Если ac=bc, то a=bДоказательство. $ac=bc \implies (ac)c^{-1}=(bc)c^{-1} \implies a(cc^{-1})=b(cc^{-1}) \implies ae=be \implies$
- Если ca = cb, то a = bДоказательство. Аналогично

Определение 24. Группы (G,\cdot) и (H,*) называются изоморфными, если существует биекция $f:G\to H$, такая что $\forall x,y \quad f(x\cdot y)=f(x)*f(y)$

Обозначение. $G \cong H$

6. Кольца и поля: определение и примеры

Определение 25. Кольцом называется множество R, на котором заданы операции + и \cdot , и выполняются следующие свойства:

- 1. R абелева группа по сложению
- 2. Дистрибутивность: $\forall a, b, c \in R \quad (a+b)c = ac+bc, \quad a(b+c) = ab+ac$

Примеры.

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ – кольца

- 2. № не кольцо
- 3. $m\mathbb{Z}$ (множество целых чисел, делящихся на m) кольцо
- 4. Множество многочленов с вещественными (целыми, рациональными) коэффициентами кольцо

Обозначение. $\mathbb{R}[x], \mathbb{Z}[x], \mathbb{Q}[x]$

5. Кольцо вычетов по модулю m

Обозначение. \mathbb{Z}_m

Определение 26. Кольцо называется областью целостности, если оно коммутативно, ассоциативно и из равенства ab=0 следует, что a=0 или b=0

Примеры.

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ области целостности
- 2. \mathbb{Z}_m область целостности $\iff m$ простое

Определение 27. Кольцо называется полем, если для него выполняются свойства:

- 1. Ассоциативность умножения
- 2. Коммутативность умножения
- 3. Существование нейтрального по умножению
- 4. Существование обратного по умножению

Примеры.

- 1. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 2. \mathbb{Z} не поле (нет обратных)
- 3. \mathbb{Z}_m поле $\iff m$ простое

Примечание. Любое поле явяется областью целостности

7. Свойства делимости. Существование НОД и НОК

Определение 28. Говорят, что число a делится на число b, если существует такое число c, что a=bc **Обозначение.** $a \\cdots b$

Свойства.

- 1. Если a и b делятся на c, то a+b и a-b делятся на c
 - **Доказательство.** Пусть d,e таковы, что $a=dc,\ b=ec.$ Тогда $a+b=(d+e)c,\ a-b=(d-e)c$

- 2. Если a делится на b, то ak делится на b для любого k
 - **Доказательство.** Пусть c таково, что a=bc. Тогда ak=(ck)b
- 3. Транзитивность: если a : b, b : c, то a : c
 - **Доказательство.** Пусть $a = db, \ b = ec.$ Тогда a = (de)c
- 4. Если a делится на b, то $|a| \ge |b|$ или a = 0

Доказательство. Пусть a = bc. Тогда $|a| = |b| \cdot |c|$. При этом $|c| \ge 1$ или c = 0

- 5. Число 1 является делителем любого числа
- 6. Число 0 является кратным любого числа

Определение 29. Наибольшим общим делителем чисел $a_1, ..., a_k$ называется наибольшее натуральное число, на которое делятся числа $a_1, ..., a_k$

Обозначение. $HOK(a_1,...,a_k), (a_1,...,a_k)$

Определение 30. Наименьшим общим кратным чисел $a_1,...,a_k$ называется наибольшее натуральное число, которое делится на числа $a_1,...,a_k$

Обозначение. $HOK(a_1,...,a_k), [a_1,...,a_k]$

Теорема 4.

1. Для любого набора чисел $a_1,...,a_k$, в который входит хотя бы одно ненулевое число, существует $HOД(a_1,...,a_k)$

Доказательство. Множество общих натуральных делителей непусто, так как в него входит 1. Оно ограничено сверху числом $|a_i|$, где a_i — ненулевое число. В непустом ограниченном сверху множестве есть наибольший элемент

2. Для любого набора чисел $a_1,...,a_k$ в котором ни одно из чисел не равно 0, существует $\mathrm{HOK}(a_1,...,a_k)$

Доказательство. Множество общих натуральных кратных непусто, так как в него входит модуль произведения всех чисел. Оно ограничено снизу числом 0. В непустом ограниченом снизу множестве есть наименьший элемент \Box

8. Теорема о делении с остатком для целых чисел

Теорема 5. Пусть $a\in\mathbb{Z},\ b\in\mathbb{N}.$ Тогда существуют единственные $q,r\in\mathbb{Z},$ такие что a=bq+r и $0\leq r\leq b-1$

Доказательство.

• Существование

Рассмотрим множество $A \coloneqq \{ a - bx \mid x \in \mathbb{Z} \}$

Среди его элементов есть неотрицательные: например, при $a \ge 0$ можно взять $a-b\cdot 0$, при a < 0 можно взять a-ba

Обозначим через r наименьший неотрицательный элемент множества A, то есть наименьший элемент множества $B = A \cap (\mathbb{N} \cup \{0\})$

$$r \in A \implies \exists \, q \in \mathbb{Z} : r = a - bq$$

Проверим, что эти r и q удовлетворяют условию:

$$r \in \mathbb{N} \cup \{0\} \implies r \ge 0$$

Если бы выполнялось $r \geq b$, то элемент r-b тоже принадлежал бы множеству B, однако, r минимальное, занчит r < b-1

• Единственность

Предположми, что $a = bq_1 + r_1 = bq_2 + r_2$, $0 \le r_1, r_2 \le b - 1$

$$r_1 - r_2 = b(q_2 - q_1) \implies (r_1 - r_2) : b \implies \begin{bmatrix} |r_1 - r_2| \ge b \\ r_1 - r_2 = 0 \end{bmatrix}$$

Первое неравенство не выполняется, так как из неравенств $0 \le r_1, r_2 \le b-1$ следует, что:

$$-(b-1) \le r_1 - r_2 \le b-1$$

9. Алгоритм Евклида

Алгоритм. Даны натуральные числа a и b, причём $a \ge b$

- 1. Если a : b, то алгоритм заканчивается, его результат равен b
- 2. Если $a \not | b$, то алгоритм применяется к паре b, r, где r остаток от деления a на b

Лемма 1. Для любых a, b, k выполнено

$$HOД(a,b) = HOД(a+kb,b)$$

Доказательство. Обозначим через M_1 множество общих делителей a и b, обозначим через M_2 множество общих делителей a+kb и b. Достаточно доказать, что $M_1=M_2$

• $M_1 \subset M_2$

$$d \in M_1 \implies \left\{ \begin{matrix} a \vdots d \\ b \vdots d \implies kb \vdots d \end{matrix} \right\} \implies a + kb \vdots d \implies d \in M_2$$

• $M_2 \subset M_1$

$$d \in M_2 \implies \left\{ a + kb : d \implies \begin{Bmatrix} kb : d \\ a + kb : d \end{Bmatrix} \implies (a + kb) - kb : d \implies a : d \end{Bmatrix} \implies d \in M_1$$

Теорема 6 (алгоритм Евклида). Для любых чисел алгоритм Евклида заканчивается за конечное число шагов, и его результат равен НОД

Доказательство.

• Алгоритм заканчивается за конечное количество шагов, так как поледовательность получаемых остатков убывает и ограничена снизу числом 0:

$$b > r_1 > r_2 > \dots > 0$$

• Шаг 2 алгоритма не меняет НОД:

$$a = bq + r \implies \text{HOД}(a, b) = \text{HOД}(r, b)$$

• Так как b является делителем a и b, и любой делитель числа b не превосходит b:

$$a : b \implies b = \text{HOД}(a, b)$$

10. Теорема о линейном представлении НОД

Теорема 7 (линейное представление НОД). Пусть $a,b\in\mathbb{N}$

- 1. $\exists x, y \in \mathbb{Z} : ax + by = \text{HOД}(a, b)$
- 2. Пусть k общий делитель a и b. Тогда НОД (a,b) : k

Доказательство. Положим $M\coloneqq \{\,au+bv\mid u,v\in\mathbb{Z}\,\}$

Обозначим через d наименьший положительный элемент M

Обозначим x, y : d = ax + by

Докажем, что d – общий делитель a и b, и что для любого общего делителя k чисел a и b выполнено d : k. Из этого следует утверждение теоремы

1. Докажем, что a, b : d:

Пусть $a \not d$. Разделим a на d с остатком:

$$a = dq + r$$
, $0 < r < d$

Тогда:

$$r = a - dq = a - (ax + by) = a(1 - x) + b(-y) \in M$$

Получаем, что r – положительный элемент множества M, меньший, чем d – $\frac{1}{2}$

$$2. \begin{array}{c} a \vdots k \\ b \vdots k \end{array} \} \implies \begin{Bmatrix} ax \vdots k \\ by \vdots k \end{Bmatrix} \implies (ax + by) \vdots k$$

11. Взаимная простота с произведением

Определение 31. Целые числа a и b называются взаимно простыми, если НОД (a,b)=1

Определение 32. Целые числа $a_1,...,a_k$ называются взаимно простыми в совокупности, если

$$HOД(a_1,...,a_k)=1$$

Определение 33. Целые числа $a_1,...,a_k$ называются попарно взаимно простыми, если НОД $(a_i,a_j)=1$ для любых различных i,j

Лемма 2 (линейное представление единицы). Числа a и b взаимно просты $\iff \exists x, y : ax + by = 1$

Доказательство.

• **⇒**

Из теоремы о линейном представлении НОД

• =

Пусть $d=\mathrm{HOД}\,(a,b).$ Тогда из свойств делимости получаем, что (ax+by) : d Значит, 1 : $d\implies d=1$

Свойство (взаимная простота с произведением). Если каждое из чисел $a_1, ..., a_k$ взаимно просто с b, то $a_1 \cdot ... \cdot a_k$ взаимно просто с b

Доказательство. Индукция по k

База. k = 2:

Требуется доказать такое утверждение: если a_1 и b взаимно просты, a_2 и b взаимно просты b взаимно просты

Пусть x_1, x_2, y_1, y_2 таковы, что:

$$a_1x_1 + b_1y = 1,$$
 $a_2x_2 + by_2 = 1$

Перемножим:

$$a_1x_1a_2x_2 + a_1x_1by_2 + by_1a_2x_2 + b^2y_1y_2 = 1$$

$$(a_1a_2)(x_1x_2) + b(a_1x_1y_2 + y_1a_2x_2 + by_1y_2) = 1$$

Получили линейное представление единицы через a_1a_2 и b. Значит, по лемме, a_1a_2 и b взаимно просты **Переход.** $k \to k+1$: По индукционному предположению $a_1 \cdot \ldots \cdot a_k$ и b взаимно просты. Применяем утверждение для k=2

По индукционному предположению $a_1 \cdot ... \cdot a_k$ и b взаимно просты. Применяем утверждение для k=2 к числам $a_1 \cdot ... \cdot a_k$ и a_{k+1}

12. Взаимная простота: связь с делимостью

Свойство (взаимная простота и делимость).

1. Пусть ab і c и пусть числа a c взаимно просты. Тогда b і c

Доказательство. Запишем линейное представление единицы через а и с:

$$ax + cy = 1$$

Умножим на b:

$$bax + bcy = b$$

В левой части неравенства оба слагаемых делятся на c, значит b делится на c

2. Пусть $a \vdots b, \ a \vdots c,$ числа b и c взаимно просты. Тогда $a \vdots bc$

Доказательство. Пусть a = bk, a = cm

Запишем линейное представление единицы через b и c:

$$bx + cy = 1$$

Умножим на k:

$$k = bkx + cyk = ax + cyk = cmx + cyk$$

Подставим в формулу для a:

$$a = bk = bc(mx + ky) \vdots bc$$

13. Свойство составных чисел. Лемма о существовании простого делителя

Определение 34. Число p наывается простым, если p>1, и у p нет натуральных делителей, кроме 1 и p

Число называется составным, если оно больше 1 и не простое

Обозначение. Будем обозначать множетсво простых чисел буквой $\mathbb P$

Свойство. Число a составное $\iff \exists b, c : a = bc, \quad 1 < b, c < a$

Доказательство.

 $\bullet \implies$

Из того, что $a \notin \mathbb{P}$ следует, что у a есть делитель b, такой что 1 < b < a По определению делимости сущетсвует такое c, что a = bc. Для $c = \frac{a}{b}$ выполнено 1 < c < a

• =

У a есть делитель $b \neq 1, \neq a$, значит, $a \notin \mathbb{P}$

Лемма 3 (о существовании простого делителя). У любого натурального числа, большего единицы, существует хотя бы один простой делитель

Доказательство. Индукция по n

База. n=2. Простой делитель – 2

Переход. Предположим, что n > 2 и для любого k, такого что 1 < k < n, у k есть простой делитель Рассмотрим два случая:

• $n \in \mathbb{P}$

У n есть простой делитель n

• $n \notin \mathbb{P}$

У n есть делитель k, такой, что 1 < k < n. По индукционному предположению, у k есть простой делитель p

Получаем, что $n : k, k : p \implies n : p$

14. Бесконечность множества простых чисел

Теорема 8 (Евклида). Множество простых чисел бесокнечно

Доказательство. Пусть $p_1, ..., p_k$ – все простые числа

Положим $N = p_1 \cdot \ldots \cdot p_k + 1$

По лемме, у N есть простой делитель. То есть, $\exists i : N : p_i$. При этом:

$$N-1=p_i(p_1\cdot\ldots\cdot p_{i-1}\cdot p_{i+1}\cdot\ldots\cdot p_k)\vdots p_i$$

Тогда:

$$1 = N - (N - 1) : p_i$$

Противоречие

15. Основная теорема арифметики

Теорема 9 (основная теорема арифметики). Любое натуральное число, большее 1, можно представить в виде произведения простых чисел. Такое представление единственно с точностью до порядка сомножиетелей

Доказательство.

• Существование

Докажем по индукции

База. n=2. Разложение: 2=2

Переход. Предположим, что все числа, меньшие n, раскладываются на простые множтели. Докажем, что n тоже раскладывается:

Рассмотим два случая:

- $n \in \mathbb{P}$. Тогда n = n разложение на простые
- $-n \notin \mathbb{P}$

У n есть простой делитель p, причём $p \neq n$

Тогда 1

По индукционному предположению, $\frac{n}{p}$ раскладывается на простые множители. Умножим разложение для $\frac{n}{p}$ на p, получим разложение для n

• Единственность

Пусть n — наименьшее натуральное число, которое можно представить в виде произведения простых разными способами

Пусть

$$n = p_1 \cdot \ldots \cdot p_k, \qquad n = q_1 \cdot \ldots \cdot q_m$$

Если $p_i=q_j$ для некоторых i,j, то $\frac{n}{p_i}=\frac{n}{q_j}$ тоже раскладывается на простые множители разными способами. Это противоречит минимальности n

Получаем, что $p_i \neq q_i$ для любых i, j

Рассмотрим p_1 . Все числа $q_1, ..., q_m$ взаимно просты с p_1 , так как делители любого q_j – это 1 и q_j , делители p_1 – это 1 и p_1 , общий делитель – только 1

По свойству взаимно простых чисел, произведение $q_1 \cdot ... \cdot q_m$ взаимно просто с p_1 . Но, при этом, оно равно n, и следовательно, делится на p_1

Следствие. Если произведение нескольких чисел делится на простое число p, то хотя бы один из сомножителей делится на p

16. Сравнения и их свойства

Определение 35. Пусть m — натуральное число. Числа a и b называются сравнимыми по модулю m, если a-b : m

Обозначение. $a \equiv b \pmod{m}, \quad a \equiv b$

Теорема 10. Отношение $\equiv \mathop{\rm является}_m$ отношением эквивалентности

Доказательство.

- Рефлексивность: a a = 0 : m
- Симметричность: $a-b : m \implies b-a = -(a-b) : m$
- Транзитивность: $a b : m, b c : m \implies a c = (a b) + (b c) : m$

Свойства (арифметические свойства сравнений). Пусть $a \equiv b, \quad c \equiv d$

 $\bullet \ a+c \equiv b+d, \quad a-c \equiv b-d$

Доказательство. $(a\pm c)-(b\pm d)=(a-b)\pm(c-d)$: m

• $ac \equiv bd$

Доказательство. ac - bd = ac - bc + bc - bd = (a - b)c + b(c - d) : m

Свойство (решение линейного сравнения). Пусть $a,b\in\mathbb{Z}, \quad m\in\mathbb{N} \quad (a,m)=1.$ Тогда:

• Сравнение $ax \equiv b$ имеет решение

Доказательство. $(a,m)=1 \implies \exists \, \widetilde{x}, \widetilde{y}: a\widetilde{x}+m\widetilde{y}=1 \implies a\widetilde{x} \equiv 1 \Longrightarrow a(b\widetilde{x}) \equiv b \implies x=b\widetilde{x}$ является решением сравнения

• Если x_1, x_2 – решения, то $x_1 \equiv x_2$

Доказательство.

17. Кольцо вычетов

Определение 36. Классами вычетов по модулю m называются классы эквивалентности на $\mathbb Z$ по отношению $\frac{\mathbb Z}{m}$

Определение 37. Набор чисел называется полной системой вычетов по модулю m, если в него входит по одному представителю из каждого класса вычетов

Определение 38. $\overline{a} + \overline{b} = \overline{a+b}, \qquad \overline{a}\overline{b} = \overline{ab}$

Теорема 11 (кольцо вычетов). Пусть $m \in \mathbb{N}, m > 1$. Рассмотрим классы вычетов по модулю m

• Сумма и произведение классов вычетов определены корректно, то есть результат не зависит от выбора представителей классов

Доказательство (для суммы). Пусть a_1, a_2 – представители одного класса, и b_1, b_2 – другого Нужно доказать, что $a_1 + b_1$ и $a_2 + b_2$ принадлежат одному классу Применим свойства сравнений:

$$\begin{vmatrix} a_1 \stackrel{=}{\underset{m}} a_2 \\ b_1 \stackrel{=}{\underset{m}} b_2 \end{vmatrix} \implies a_1 + b_1 \stackrel{=}{\underset{m}} a_2 + b_2$$

• Классы вычетов образуют ассоциативное коммутативное кольцо с единицей

Доказательство.

- Нейтральный по сложению $\overline{0}$
- Нейтральный по умножению $\overline{1}$
- Обратный по сложению к \overline{a} $\overline{(-a)}$

Все свойства следуют из аналогичных свойств для чисел

• Кольцо классов вычетов является полем тогда и только тогда, когда $m \in \mathbb{P}$

Доказательство. Ассоциативное коммутативное кольцо с единицей является полем \iff у любого ненулевого элемента есть обратный по умножению

— \Leftarrow Пусть a — такой элемент что $\overline{a} \neq \overline{0}$. Тогда $a \not\mid m$

$$\left. \begin{array}{l} m \in \mathbb{P} \\ a \not \mid m \end{array} \right\} \implies (a, m) = 1$$

По свойству о решении линейного сравнения, существует x, такой, что $ax \equiv 1$. Тогда $\overline{a} \cdot \overline{x} = 1$, класс \overline{x} является обратным к \overline{a} по умножению

Пусть $m \notin \mathbb{P}, m = ab, a, b > 1$

Докажем, что у класса \overline{a} нет обратного. Пусть есть, $\overline{x}=(\overline{a})^{-1}$. Тогда

$$\overline{b} = \overline{1} \cdot \overline{b} = \overline{xa} \cdot \overline{b} = \overline{xm} = \overline{0}$$

Ho b / m - 1

18. Теорема Вильсона, малая теорема Ферма

Теорема 12 (Вильсона). $p \in \mathbb{P} \implies (p-1)! \stackrel{=}{\underset{p}{=}} -1$

Доказательство.

- p = 2 Подставим: $1! \equiv -1$, верно
- p > 2 Докажем, что равенство $x = x^{-1}$ выполнено только для x = 1 и x = p 1: Преобразуем формулы, и учтём, что поле является областью целостности:

$$x = x^{-1} \iff x \cdot x = x - 1 \cdot x \iff x^2 = 1 \iff x^2 - 1 = 0 \iff (x - 1)(x + 1) = 0 \iff \begin{bmatrix} x - 1 = 0 \\ x + 1 = 0 \end{bmatrix}$$

Получили, что все элементы, кроме 1 и p-1 разбиваются на пары обратных. Следовательно,

$$1 \cdot 2 \cdot \dots \cdot (p-1) = 1 \cdot (p-1) \cdot (x_1 x_1^{-1}) \cdot (x_2 x_2^{-1}) \cdot \dots = (p-1) \cdot 1 \cdot 1 \cdot \dots = p-1 \underset{p}{\equiv} -1$$

Лемма 4. Пусть $p \in \mathbb{P}$

Тогда для любого $a \in \mathbb{Z}_p, a \neq 0$ набор элементов $0 \cdot a, 1 \cdot a, ..., (p-1) \cdot a \in \mathbb{Z}_p$ является перестановкой элементов $0, 1, ..., (p-1) \in \mathbb{Z}_p$

Другая формулировка. Для любого $a \in \mathbb{Z}, a \not | p$ набор чисел $0 \cdot a, 1 \cdot a, ..., (p-1) \cdot a \in \mathbb{Z}_p$ является полной системой вычетов по модулю p

Доказательство. Докажем, что все элементы $0 \cdot a, 1 \cdot 1, ..., (p-1) \cdot a \in \mathbb{Z}_p$ различны:

Пусть это не так, и ax = ay для некоторых x, y

Тогда a(x-y)=0

Из того, что $a \neq 0$ и \mathbb{Z}_p – область целостности, следует, что x-y=0, и таким образом, x=y В наборе $0 \cdot a, 1 \cdot a, ..., (p-1) \cdot a$ все элементы различны, их количество равно p. Следовательно, это все элементы \mathbb{Z}_p

Теорема 13 (малая теорема Ферма). $p \in \mathbb{P}, \quad a \not \mid p \implies a^{p-1} \equiv 1$

Доказательство. Рассмотрим кольцо \mathbb{Z}_p

По лемме, совпадают наборы элементов $0 \cdot a, 1 \cdot a, ..., (p-1) \cdot a$ и 0, 1, ..., (p-1)

Уберём из каждого набора 0 и перемножим

Получим, что в \mathbb{Z}_p выполнено равенство

$$(1 \cdot a)(2 \cdot a)...((p-1) \cdot a) = 1 \cdot 2 \cdot ... \cdot (p-1)$$

Поделим обе части на $1 \cdot 2 \cdot ... \cdot (p-1)$, получим, что $a^{p-1} = 1$ в \mathbb{Z}_p

19. Китайская теорема об остатках

Теорема 14 (китайская теорема об остатках для двух сравнений). Пусть m и n взаимно просты Тогда для любых a и b существует решение системы

$$\begin{cases} x \equiv a \\ x \equiv b \end{cases}$$

Если x_1, x_2 – два решения системы, то $x_1 \equiv x_2$

Другая формулировка. Если a и b независимо друг от друга пробегают полные системы вычетов по модулям m и n, то x пробегает полную систему вычетов по модулю mn

17

Доказательство.

• Существование решения

Положим $X=\{\,0,1,...,mn-1\,\}\,,\quad M=\{\,0,1,...,m-1\,\}\,,\quad N=\{\,0,1,...,n-1\,\}\,,\quad Y=M\times N$ Построим оотображение $f:X\to Y$ по правилу: $f(x)=(r_m,r_n)$, где r_m и r_n – остатки x от деления на m и n соответственно

— Докажем, что f — инъекция: Пусть

$$f(x) = (r_m, r_n), \qquad f(x') = (r_m, r_n)$$

Тогда

$$\left.\begin{array}{l}
x \equiv r_m \equiv x' \\
x \equiv r_n \equiv x' \\
x \equiv n = n
\end{array}\right\} \implies \left.\begin{cases}
x - x' : m \\
x - x' : n
\end{cases}\right\} \implies x - x' : mn \implies x = x'$$

Получили, что образы разных элементов не могут совпадать

— Докажем, что f — биекция: Мощности множеств X и Y равны:

$$|X| = mn,$$
 $|Y| = |M| \cdot |N| = mn$

Мощность Im(f) равна мощности X, так как f – инъекция. Следовательно, Im(f) = Y

Из того, что f - биекция, следует, что существует обратное отображение f^{-1} Рассмотрим систему. Пусть r_m и r_n - остатки a и b от деления на m и n. Тогда $x=f^{-1}(r_m,r_n)$ - решение системы

• Пусть x_1, x_2 – решения. Тогда

$$\begin{vmatrix}
x_1 \stackrel{\equiv}{=} a \stackrel{\equiv}{=} x_2 \\
x_1 \stackrel{\equiv}{=} b \stackrel{\equiv}{=} x_2 \\
x_1 - x_2 \stackrel{:}{:} n
\end{vmatrix} \implies x_1 - x_2 \stackrel{:}{:} mn$$

Теорема 15 (китайская теорема об остатках в общем виде). Пусть $m_1, m_2, ..., m_k$ попарно взаимно просты. Тогда для любых $a_1, a_2, ..., a_k$ существует решение системы

$$\begin{cases} x \equiv a_1 \\ x \equiv a_2 \\ m_2 \end{cases}$$

$$x \equiv a_k$$

$$x \equiv a_k$$

Если x_1, x_2 – два решения системы, то $x_1 - x_2 \\\vdots \\ m_1 \\ m_2 \\... \\ m_k$

Доказательство. Индукция по k

База. k=2 – это предыдущая теорема

Переход. $k \to k+1$

Рассмотрим систему

$$\begin{cases} x \equiv a_1 \\ x \equiv a_2 \\ \dots \\ x \equiv a_k \\ x \equiv b \end{cases}$$

где числа $m_1, ..., m_k, n$ попарно взаимно просты. Положим $m = m_1 \cdot ... \cdot m_k$. Тогда m и n взаимно просты по свойству о взаимной простоте с произведением

Применим индукционное предположение к системе из первых k сравнений. Система имеет решение x_0 , и любое другое решение сравнимо с x_0 по модулю m. Следовательно, система из k+1 сравнений

равносильна системе

$$\begin{cases} x \equiv x_0 \\ x \equiv b \end{cases}$$

Применяя КТО для двух сравнений получаем, что эта система имеет решение, и для любых двух решений x_1, x_2 выполнено

$$x_1 - x_2 : mn = m_1 m_2 ... m.n$$

20. Группа обратимых элементов. Обратимые элементы в кольце вычетов. Теорема Эйлера

Определение 39. Пусть R – коммутативное кольцо с единицей. Элемент $x \in R$ называется обратимым, если существует x^{-1} , такой что $xx^{-1} = 1$. Элемент x^{-1} называется обратным к x

Обозначение. Множество обратимых элементов обозначается R^*

Примечание. В некоммутативном кольце можно рассматривать левые обратные и правые обратные

Свойство. Пусть R – коммутативное ассоциативное кольцо с единицей. Тогда R^* с операцией умножения является группой

Доказательство.

ullet Проверим, что R^* замкнуто относительно умножения, то есть

$$x, y \in R^* \implies xy \in R^*$$

Обратным к элементу xy является элемент $y^{-1}x^{-1}$, так как

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = x \cdot q \cdot x^{-1} = xx^{-1} = 1$$

- Операция ассоциативна, так как кольцо ассоциативно
- $1 \in \mathbb{R}^*$, так как $1 \cdot 1 = 1$, и, следовательно, $1 = q^{-1}$
- Проверим, что для любого $x \in R^*$ выполнено $x^{-1} \in R^*$: Из равенства $xx^{-1} = 1$ следует, что x является обратным к x^{-1} . Следовательно, x^{-1} обратим

Лемма 5 (НОД с вычетом). Рассмотрим вычеты по модулю n. Пусть $a, x \in \mathbb{Z}$ таковы, что $x \in \overline{a}$. Тогда НОД (x, n) = НОД(a, n)

Доказательство. Имеем x=a+nq для некоторого q. По лемме из доказательства алгоритма Евклида выполнено

$$HOД(a,n) = HOД(a+qn,n) = HOД(x,n)$$

Определение 40. Вычет \overline{a} по модулю n называется примитивным, если НОД (a,n)=1

Примечание. Из леммы следует, что определение корректно, то есть свойство примитивности не зависит от выбора предстваителя класса

Теорема 16 (обратимые элементы в кольце вычетов). Множество обратимых элементов кольца \mathbb{Z}_n совпадает с множеством примитивных вычетов

Доказательство. $\overline{a} \in \mathbb{Z}_n$ обратим $\iff \exists \, \overline{x} \in \mathbb{Z}_n : \overline{a}x = \overline{1} \iff \exists \, x \in \mathbb{Z} : ax \equiv 1 \iff \exists \, x, q \in \mathbb{Z} : ax \equiv$

ax - nq = 1

По теореме о линейном предствалении НОД последнее уравнение равносильно тому, что $1 \, \vdots \, \text{НОД} \, (a,n)$. Это равносильно тому, что $\text{НОД} \, (a,n) = 1$

Определение 41. Количество примитивных вычетов по модулю n обозначается $\varphi(n)$. Функция $\varphi(n)$ называется функцией Эйлера

Теорема 17 (Эйлера). НОД
$$(a,n)=1 \implies a^{\varphi(n)} \equiv 1$$

Доказательство. Положим $k \coloneqq \varphi(n)$. Нужно доказать, что $\overline{a}^k = \overline{1}$ в \mathbb{Z}_n

Пусть $\mathbb{Z}_n^* = \{\overline{x_1}, ..., \overline{x_k}\}$

Из того, что (a,n)=1 следует, что $\overline{a}\in\mathbb{Z}_n^*$

Элеенты $ax_1, ..., ax_k$ принадлежат \mathbb{Z}_n^* и различны по свойству сокращения в группе. Следовательно, наборы $\overline{x_1}, ..., \overline{x_k}$ и $\overline{ax_1}, ..., \overline{ax_k}$ освпадают с точностью до перестановки

Перемножим и вынесесем из каждого сомножителя \overline{a} :

$$\overline{1} \cdot \overline{x_1} \cdot \dots \cdot \overline{x_k} = \overline{a^k} \cdot \overline{x_1} \dots \overline{x_k}$$

Сократим на $\overline{x_1}...\overline{x_k}$ и получим, что $\overline{a^k}=\overline{1}$ в \mathbb{Z}_n

21. Вычисление функции Эйлера

Теорема 18 (мультипликативность функции Эйлера). Если m и n взаимно просты, то

$$\varphi(mn) = \varphi(m) \cdot \varphi(n)$$

Доказательство.

• Пусть $x \in \mathbb{Z}$. Обозначим через r_m и r_n остатки x от деления на m и n соответственно. Докажем, что

$$\mathrm{HOД}\left(x,mn\right)=1\iff egin{cases} \mathrm{HOД}\left(x,m
ight)=1\\ \mathrm{HOД}\left(x,n
ight)=1 \end{cases}$$

Числа x и mn взамино просты \iff у x нет общих простых делителей с mn \iff у x нет общих простых делителей, ни с m, ни с n \iff число x взаимно просто и с m, и с n По лемме про НОД с вычетом, из этого следует, что

$$\mathrm{HOД}(x,mn) = 1 \iff \begin{cases} \mathrm{HOД}(r_m,m) = 1 \\ \mathrm{HOД}(r_n,n) = 1 \end{cases}$$

• Обозначим через X множество остатков от деления на mn, взаимно простых с mn, через M – множество остатков от деления на m, взаимно простых с m, через N – множество остатков от деления на n, и положим $Y = M \times N$. Тогда

$$|X| = \varphi(mn), \quad |M| = \varphi(m), \quad |N| = \varphi(n), \quad |Y| = \varphi(m) \cdot \varphi(n)$$

Нужно доказать, что |X| = |Y|

Построим отображение $f: X \to Y$. Пусть $x \in X$ и r_n, r_m – остатки от деления x на m, n. Тогда $(r_n, r_m) \in Y$. Положим $f(x) = (r_n, r_m)$

— Проверим, что f — инъекция: Пусть

$$f(x_1) = \text{HOД}(r_n, r_m), \qquad f(x_2) = \text{HOД}(r_n, r_n)$$

Тогла

$$\begin{vmatrix} x_1 \stackrel{\equiv}{=} r_m \stackrel{\equiv}{=} x_2 \\ x_1 \stackrel{\equiv}{=} r_n \stackrel{\equiv}{=} x_2 \end{vmatrix} \implies \begin{vmatrix} x_1 - x_2 & \vdots & m \\ x_1 - x_2 & \vdots & n \end{vmatrix} \implies x_1 - x_2 & \vdots & mn \implies x_1 = x_2$$

ullet Проверим, что f – сюръекция:

Пусть
$$y \in Y, y = \text{HOД}(r_n, r_m)$$

По КТО существует
$$x\in\mathbb{Z}$$
, такой, что
$$\begin{cases} x\equiv r_m\\ x\equiv r_n \end{cases}$$

Можно выбрать x так, что выполняется $0 \le x < mn$

Из того, что r_m, r_n взаимно просты с m, n следует, что x взаимно прост с mn

Получили, что $x \in X$. Элемент $x \in X$ является проообразом элемента $y \in Y$

Доказано, что f – биекция. Следовательно, |X| = |Y|

Следствие. Если числа $m_1, ..., m_k$ попарно взаимно просты, то

$$\varphi(m_1 \cdot \ldots \cdot m_k) = \varphi(m_1) \cdot \ldots \cdot \varphi(m_k)$$

Лемма 6. $p \in \mathbb{P} \implies \varphi(p^a) = p^a - p^{a-1}$

Доказательство. Множество чисел, взаимно простых с p^a совпадает с множеством чисел, не делящихся на p

Рассмотрим натуральные числа, не превосходящие p^a . Среди них $\frac{1}{p}p^a=p^{a-1}$ делятся на p, остальные p^a-p^{a-1} не делятся на p

Теорема 19 (формула для функции Эйлера). Пусть $n=p_1^{a_1}\cdot...\cdot p_k^{a_k},\quad a_i>0$. Тогда верны равенства:

$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_k}\right)$$

$$\varphi(n) = (p_1^{a_1} - p_1^{a_1 - 1}) \cdot \ldots \cdot (p_k^{a_k} - p_k^{a_k - 1})$$

Доказательство. Докажем вторую формулу (первая получается из неё вынесением всех множителей вида $p_i^{a_i}$):

Числа $p_1^{a_1},...,p_k^{a_k}$ попарно взаимно просты, следовательно,

$$\varphi(n) = \varphi(p_1^{a_1}) \cdot \dots \cdot \varphi(p_k^{a_k})$$

Применим к каждому сомножителю лемму, получим нужное равенство

22. Построение поля комплексных чисел. Комплексное сопряжение

Определение 42. Комплексными числами называются пары вещественных чисел Если z=(a,b), то a и b называются вещественной и мнимой частью z

Обозначение. $a = \operatorname{Re} z$, $b = \operatorname{Im} z$

Число (0,1) называется мнимой единицей

Арифметические операции над комплексными числами определяются равенствами:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 - b_1 b_2, a_1 b_2 + b_1 a_2)$$

Обозначение. Множество комплексных чисел обозначается С

Вложение вещественных чисел в комплексные. Пара (a,0) отождествляется с вещественным числом a. Свойство равенства и арифметические операции для вещественных чисел и для пар (a,0) согласованы:

$$(a_1,0) = (a_2,0) \iff \begin{cases} a_1 = a_2 \\ 0 = 0 \end{cases} \iff a_1 = a_2$$

$$(a_1,0) + (a_2,0) = (a_1 + a_2, 0 + 0) = (a_1 + a_2, 0)$$

$$(a_1,0)\cdot(a_2,0)=(a_1\cdot a_2-0\cdot 0,a_1\cdot 0+0\cdot a_2)=(a_1a_2,0)$$

Теорема 20 (поле комплексных чисел). Множество $\mathbb C$ является полем

При этом, 0 и 1 явлются нейтральными элементами по сложению и умножению Для z=(a,b) выполнено:

- $\bullet \ -z = (-z, -b)$
- ullet если $z \neq 0$, то $z^{-1} = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2} \right)$

То есть, выполнены следующие свойства:

- 1. Коммутативность сложения: $z_1+z_2=z_2+z_1$ Доказательство. $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)=(a_2+a_1,b_2+b_1)=(a_2,b_2)+(a_1,b_1)$ \square
- 2. Ассоциативность сложения: $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 3. Нейтральный элемент по сложению: z + 0 = z
- 4. Обратный элемент по сложению: (a, b) + (-a, -b) = 0
- 5. Дистрибутивность: $z_1(z_2+z_3)=z_1z_2+z_1z_3$, $(z_1+z_2)z_3=z_1z_3+z_2z_3$
- 6. Коммутативность умножения: $z_1z_2 = z_2z_1$
- 7. Ассоциативность умножения: $(z_1z_2)z_3 = z_1(z_2z_3)$
- 8. Нейтральный элемент по умножению: $z \cdot 1 = z$
- 9. Обратный элемент по умножению: $(a,b)\cdot\left(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}\right)=(1,0)$

Алгебраическая запись комплексного числа. Комплексное число (a,b) записывается как a+bi. В частности, i=(0,1)

Знак "+" соответствует сложению в $\mathbb C$

Определение 43. Пусть z = a + bi. Число a - bi называется сопряжённым к z

Обозначение. \overline{z}

Свойства.

1. (a) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

Доказательство. Пусть
$$z_1=a_1+b_1i,\quad z_2+a_2+b_2i.$$
 Тогда
$$\overline{z_1}=a_1-b_1i,\qquad \overline{z_2}=a_2-b_2i$$

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i, \qquad \overline{z_1 + z_2} = (a_1 + a_2) - (b_1 + b_2)i$$

$$\overline{z_1} + \overline{z_2} = (a_1 + a_2) - (b_1 + b_2)i$$

(b) $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

Доказательство. Пусть $z_1 = a_1 + b_1 i$, $z_2 + a_2 + b_2 i$. Тогда

$$\overline{z_1} = a_1 - b_1 i, \qquad \overline{z_2} = a_2 - b_2 i$$

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i, \quad \overline{z_1 z_2} = (a_1 + a_2) - (b_1 + b_2)i$$

$$\overline{z_1} \cdot \overline{z_2} = (a_1 a_2 - (-b_1)(-b_2)) + (a_1(-b_2) + (-b_1)a_2)i = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + b_1 a_2)i$$

 $z \cdot \overline{z} \in \mathbb{R}, \quad z \cdot \overline{z} \in \mathbb{R}$ для любого $z \in \mathbb{C}$

Причём, при $z\neq 0$ выполнено $z\cdot \overline{z}>0$ Доказательство. Пусть z=a+bi. Тогда $z+\overline{z}=2a,\quad z\cdot \overline{z}=a^2-(bi)^2=a^2+b^2$

23. Комплексная плоскость. Свойства модуля

Изображение комплексных чисел на плоскости. На плоскости задана система координат, оси называются вещественной и мнимой, и обозначаются Re и Im

Комплексное число z=a+bi изображается точкой с координатами (a,b)

Определение 44. Модулем комплексного числа называется расстояние от 0 до точки, изображающей это число

Обозначение. |z|

Определение 45. Аргументом ненулевого комплексного числа называется угол между направлением оси Re и направлением на точку, изображающую это комплексное число

Аргумент определён с точностью до 2π , то есть аргумент – это класс эквивалентности по отношению

$$x \sim y \iff x - y = 2\pi k, \quad k \in \mathbb{Z}$$

Обозначение. arg(z)

Примечание. Модуль и аргумент – полярные координаты соответствующей точки

Свойства.

- 1. $|z|^2 = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2$ Доказательство. Следует из формулы расстояния между точками на плоскости \square
- 2. $|z|=|-z|=|\overline{z}|$ Доказательство. Пусть z=x+yi. Тогда $-z=(-z)+(-y)i, \quad \overline{z}=x+(-y)i$. Подставим в предыдущий пункт, получим, что все три модуля равны $\sqrt{x^2+y^2}$

24. Неравенство треугольника

Теорема 21 (неравенство треугольника). Для любых комплексных чисел $z_1,...,z_n$ выполнено

$$|z_1 + \dots + z_n| \le |z_1| + \dots + |z_n|$$

Доказательство. Индукция по n

База. n=2

Пусть $z_1 = a + bi$, $z_2 = c + di$. Тогда

$$z_1 + z_2 = (a+c) + (b+d)i$$
, $|z_1| = \sqrt{a^2 + b^2}$, $|z_2| = \sqrt{c^2 + d^2}$, $|z_1 + z_2| = \sqrt{(a+c)^2 + (b+d)^2}$

Требуется доказать, что для любых вещественных чисел a, b, c, d выполнено неравенство

$$\sqrt{(a+c)^2 + (b+d)^2} \le \sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}$$

Возведём в квадрат:

$$(a+c)^{2} + (b+d)^{2} \le a^{2} + b^{2} + 2\sqrt{a^{2} + b^{2}}\sqrt{c^{2} + d^{2}}$$

$$a^{2} + 2ac + c^{2} + b^{2} + 2bd + d^{2} \le a^{2} + b^{2} + 2\sqrt{a^{2} + b^{2}}\sqrt{c^{2} + d^{2}}$$

$$2ac + 2bd \le 2\sqrt{a^{2} + b^{2}}\sqrt{c^{2} + d^{2}}$$

 $ac + bd \le \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$

Возведём в квадрат:

 $a^{2}c^{2} + 2abcd + b^{2}d^{2} \le (a^{2} + b^{2})(c^{2} + d^{2})$ $a^{2}c^{2} + 2abcd + b^{2}d^{2} \le a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2}$ $0 \le a^{2}d^{2} - 2abcd + b^{2}c^{2}$ $0 \le (ad - bc)^{2}$

Это верно всегда

Переход. $n \rightarrow n+1$

Положим $z' = z_1 + ... + z_n$. Тогда по индукционному предположению выполнено

$$|z'| \le |z_1| + \dots + |z_n|$$
$$|z_1 + \dots + z_n + z_{n+1}| = |z' + z_{n+1}| \le |z'| + |z_{n+1}| \le |z_n| + \dots + |z_n| + |z_{n+1}|$$

Следствие.

• $|z_1-z_2| \leq |z_1|+|z_2|$ Доказательство. Применим неравенство треугольника к z_1 и $-z_2$ и учтём, что $|-z_2|=|z_2|$

• $|z_1-z_2| \le |z_1|-|z_2|$ Доказательство. Имеем $|z_1|=|(z_1-z_2)+z_2| \le |z_1-z_2|+|z_2|$

• $|z_1 + z_2| \le |z_1| - |z_2|$ Доказательство. Получается из предыдущего пункта заменой z_2 на $-z_2$

25. Тригонометрическая форма комплексного числа. Умножение и деление

Теорема 22 (тригонометрическая форма). Пусть $z \in \mathbb{C}, \quad z \neq 0$

1. Пусть $x = \operatorname{Re} z$, $y = \operatorname{Im} z$, r = |z|, $\varphi = \arg(z)$. Тогда

$$r = \sqrt{x^2 + y^2}, \qquad \cos \varphi = \frac{x}{r}, \qquad \sin \varphi = \frac{y}{r}$$

Доказательство. Первая формула следует из формулы расстояния между точками на плоскости, вторая и третья – из определения синуса и косинуса и подобия треугольников

2. Пусть $\varphi = \arg(z), \quad r = |z|$. Тогда

$$z = r(\cos \varphi + i \sin \varphi)$$

Доказательство. Положим $x\coloneqq \operatorname{Re} x,\quad y\coloneqq \operatorname{Im} z.$ Тогда из предыдущего пункта следует что $x=r\cos\varphi,\quad y=r\sin\varphi.$ Подставим:

$$r(\cos \varphi + i \sin \varphi) = r \cos \varphi + ir \sin \varphi = x + iy = z$$

3. Пусть для некоторых $r, \varphi \in \mathbb{R}, \quad r > 0$ выполнено

$$z = r(\cos\varphi + i\sin\varphi)$$

Тогда $r=|z|, \quad \varphi=\arg(z)$

Доказательство. Положим $x \coloneqq \operatorname{Re} z, \quad y \coloneqq \operatorname{Im} z$

Приравняем и раскроем скобки:

$$x + yi = z = r\cos\varphi + ir\sin\varphi \implies \begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

Пусть $\rho=|z|, \quad \psi=\arg(z).$ Тогда из первого пункта следует, что $x=\rho\cos\psi, \quad y=\rho\sin\psi$ Проверим, что $r=\rho$:

$$r = \sqrt{r^2} = \sqrt{r^2 \cos^2 \varphi + r^2 \sin^2 \varphi} = \sqrt{x^2 + y^2} = \sqrt{\rho^2 \cos^2 \psi + \rho^2 \sin^2 \psi} = \sqrt{\rho^2} = \rho$$

Получили, что

$$\begin{cases} x = \rho \cos \varphi \\ x = \rho \cos \psi \end{cases} \implies \cos \varphi = \cos \psi$$

Следовательно, φ и ψ совпадают с точностью до $2\pi k$

Определение 46. Тригонометрической формой числа $z \in \mathbb{C}, \quad z \neq 0$ называется запись

$$z = r(\cos \varphi + i \sin \varphi), \qquad r = |z|, \quad \varphi = \arg z$$

Теорема 23 (умножение комплексных чисел в тригонометрической форме). При умножении комплексных чисел их модули перемножаются, аргументы – складываются То есть для любых комплексных чисел $z_1, ..., z_n$, не равных 0, выполнено

$$|z_1 \cdot \dots \cdot z_n| = |z_1| \cdot \dots \cdot |z_n|$$
$$\arg(z_1 \cdot \dots \cdot z_n) = \arg(z_1) + \dots + \arg(z_n)$$

Доказательство. Индукция по n

База. n = 2

Пусть $z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1), \quad z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2).$ Тогда

$$\begin{split} z_1 z_2 &= r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) = \\ &= r_1 r_2 \bigg((\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) + i (\cos \varphi_1 \sin \varphi_2 + \sin \varphi_1 \cos \varphi_2) \bigg) = \\ &= (r_1 r_2) \bigg(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \bigg) \end{split}$$

Переход. $n \rightarrow n+1$

Пусть $z' = z_1 z_2 ... z_n$

По индукционному предположению, выполнено

$$|z'| = |z_1| \cdot \dots \cdot |z_n|, \quad \arg z' = \arg(z_1) + \dots + \arg(z_n)$$

Применяя утверждение для n=2 к z' и z_n , получаем нужные равенства

Следствие (тригонометрическая форма обратного числа). Для любого $z \neq 0$ выполнено

$$|z^{-1}| = |z|^{-1}, \qquad \arg z^{-1} = -\arg z$$

26. Формула Муавра. Корни из комплексных чисел

Теорема 24 (возведение в степень комплексных чисел в тригонометрической форме). Пусть $z\in\mathbb{C},\quad r=|z|,\quad \varphi=\arg z,\quad n\in\mathbb{Z}.$ Тогда $z^n=r^n\big(\cos(n\varphi)+i\sin(n\varphi)\big)$

Доказательство.

• n = 0

$$z^{0} = 1,$$
 $r^{0}(\cos(0\varphi) + i\sin(0\varphi)) = 1(1 + i \cdot 0) = 1$

• n > 0

Применим теорему о произведении в тригонометрической форме к $z_1=z_2=...=z_n=z$

• *n* < 0

Положим $n_1 = -n$, $z_1 = z^{-1}$, применим формулу для тригонометрической формы обратного числа и доказанное утверждение для $n_1 > 0$:

$$z^n = z_1^{n_1} = \left(\frac{1}{r}\left(\cos(-\varphi) + i\sin(-\varphi)\right)\right)^{n_1} = \frac{1}{r^{n_1}}\left(\cos(-n_1\varphi) + i\sin(-n_1\varphi)\right) = r^n\left(\cos(n\varphi) + i\sin(n\varphi)\right)$$

Следствие (формула Муавра). Пусть $z = \cos \varphi + i \sin \varphi$, $n \in \mathbb{Z}$. Тогда $z^n = \cos(n\varphi) + i \sin(n\varphi)$

Теорема 25 (извлечение корня в тригонометрической форме). Пусть $a \in \mathbb{C}, \quad a \neq 0, \quad n \in \mathbb{N}$. Тогда уравнение $z^n = a$ имеет n решений

Если $a = r(\cos \varphi + i \sin \varphi)$, то решениями уравнения являются числа вида

$$z_k = r^{1/n} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \qquad k = 0, 1, ..., (n-1)$$

Доказательство. Будем искать решение в виде $z = \rho(\cos\psi + i\sin\psi)$

Возведём z в n-ю степень в тригонометрической форме и приравняем к a:

$$\rho^{n}(\cos(n\psi) + i\sin(n\psi)) = r(\cos\varphi + i\sin\varphi)$$

Следовательно,

$$\rho^n = r, \qquad n\psi = \varphi + 2\pi k, \qquad k \in \mathbb{Z}$$

Получаем, что корни уравнения имеют вид

$$z_k = r^{1/n} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k \in \mathbb{Z}$$

Проверим, что при k=0,1,...,(n-1) корни z_k различны, и любой другой корень совпадает с одним из этих корней

Модели всех чисел z_k равны. Следовательно,

$$z_k = z_l \iff \arg z_k = \arg z_l \iff \frac{\varphi + 2\pi k}{n} = \frac{\varphi + 2\pi l}{n} + 2\pi m, \quad m \in \mathbb{Z} \iff \\ \iff \varphi + 2\pi k = \varphi + 2\pi l + 2\pi mn, \quad m \in \mathbb{Z} \iff k \equiv l$$

Следовательно, z_k и z_l совпадают тогда и только тогда, когда k и l принадлежат одному классу вычетов по модулю n

27. Комплексные корни из единицы. Первообразные корни

Определение 47. Число $\varepsilon\in\mathbb{C}$ называется корнем n-й степени из единицы, если $\varepsilon^n=1$

Обозначение. Будем обозначать корни из единицы как

$$\varepsilon_k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, \qquad k = 0, 1, ..., (n-1)$$

Свойства.

1. Корни *n*-й степени из 1 образуют группу с операцией умножения

Доказательство.

• Замкнутость относительно операции: Проверим, что если x,y – корни n-й степени из 1, то xy – корень n-й степени из 1:

- Ассоциативность следует из ассоциативности в С
- Существование единицы: Число 1 является корнем n-й степени из 1, так как $1^n=1$
- Существование обратного: Проверим, что если x корень n-й степени из 1, то $\frac{1}{x}$ корень n-й степени из 1:

$$\left(\frac{1}{x}\right)^n = \frac{1}{x^n} = \frac{1}{1} = 1$$

2. Пусть $a\in\mathbb{C},\quad a\neq 0,\quad x$ — некоторый корень n-й степени из a. Тогда $\varepsilon_0x,...,\varepsilon_{n-1}x$ — все корни p-й степени из a

Доказательство.

• Докажем, что если $y=\varepsilon_i x$, то y – корень n-й степени из a:

$$y^n = x^n \varepsilon_i^n = a \cdot 1 = a$$

• Докажем, что если y – корень n-й степени из 1, то $y = \varepsilon_i x$ для некоторого x, то есть $\frac{y}{x}$ является корнем n-й степени из 1:

$$\left(\frac{y}{x}\right)^n = \frac{y^n}{x^n} = \frac{a}{a} = 1$$

Определение 48. Число $\varepsilon \in \mathbb{C}$ называется первообразным корнем n-й степени из единицы, если $\varepsilon^n = 1$, и $\varepsilon^k \neq 1$ при $1 \leq k < n$

Другое название. Корень, принадлежащий показателю *n*

Свойства. Рассмотрим корни *n*-й степени из единицы

1. Корень ε_k является первообразным тогда и только тогда, когда НОД (k,n)=1

Доказательство. Докажем, что $\varepsilon_k^m = 1 \iff km : n$:

Разделим km на n с остатком: пусть km = nq + r, $0 \le r < n$. Тогда

$$\varepsilon_k^m = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\right)^m = \cos\frac{2\pi km}{n} + i\sin\frac{2\pi km}{n} = \cos\frac{2\pi r}{n} + i\sin\frac{2\pi r}{n}$$

Правая часть равна 1 тогда и только тогда, когда r=0

- Пусть НОД (k,n)=1. Тогда из условия km : n следует, что m : n. Для $1 \le m < n$ это не выполнено, корень является первообразным
- Пусть НОД (k,n) = d > 1Тогда для $m = \frac{n}{d} < n$ выполнено mk : n, корень не является первообразным

П

2. Пусть ε_k – первообразный корень. Тогда любой корень k-й степени из единицы равен ε_k^m для некоторого m

Доказательство. Числа $\varepsilon_k, \varepsilon_k^2, ..., \varepsilon_k^n$ являются корнями k-й степени из единицы Докажем, что они различны:

Пусть $\varepsilon_k^m = \varepsilon_k^l, \quad 0 < m < l < k$ Тогда $\varepsilon_k^{l-m} = 1$. Это противоречит тому, что ε_k – первообразный корень

28. Кольцо многочленов. Переход к стандартной записи

Определение 49. Пусть A – кольцо. Многочленом над кольцом A будем называть последовательность $(a_0, a_1, ...)$, в которой только конечное количество членов отлично от нуля

Пусть $P = (a_0, a_1, ...), Q = (b_0, b_1, ...)$. Суммой P + Q называется многочлен $(c_0, c_1, ...)$, заданный условием $\forall k \quad c_k = a_k + b_k$

Произведением PQ называется многочлен $(d_0, d_1, ...)$, заданный условием

$$\forall k \quad d_k = a_0 b_k + a_1 b_{k-1} + \dots + a_{k-1} b_1 + a_k b_0$$

Обозначение. Множество многочленов над кольцом A обозначается A[x]

Теорема 26 (кольцо многочленов).

1. Сумма и произведение многочленов определены корректно, то есть в последовательностях $(c_0,c_1,...)$ и $(d_0,d_1,...)$ только конечное число членов отлично от нуля

Доказательство. Пусть N, M таковы, что $\begin{cases} \forall k > N & a_k = 0 \\ \forall k > M & b_k 0 \end{cases}$

- $\forall k > \max\{M, N\}$ $c_k = 0$
- $\forall k > M+N \quad d_k = 0$, так как в сумме

$$d_k = a_0 b_k + a_1 b_{k-1} + \ldots + a_{k-1} b_1 + a_k b_0 = \sum_{i+j=k} a_i b_j$$

для каждой пары (i,j) выполнено i>M или j>N, следовательно, в каждом слагаемом хотя бы один из сомножителей равен 0

2. Множество A[x] является кольцом

Доказательство. Нужно проверить свойства: • Ассоциативность сложения – следует из ассоциативности в A• Коммутативность сложения – следует из коммутативности в A• Нейтральный по сложению: Положим N = (0,0,...) $P + N = (a_0,a_1,...) + (0,0,...) = (a_0 + 0,a_1 + 0,...) = (a_0,a_1,...) = P$ • Обратный по сложению – следует из существования обратного по сложению в A• Дистрибутивность: Пусть $P = (a_0,a_1,...), \quad Q = (b_0,b_1,...), \quad R = (c_0,c_1,...)$ Докажем, что (P+Q)R = PR + QR, записав формулу для k-го элемента последовательности: $P + Q = (a_0 + b_0,a_1 + b_1,...)$ $(P+Q)R = (...,(a_0+b_0)c_k + (a_1+b_1)c_{k-1} + ... + (a_{k-1}b_{k-1})c_1 + (a_k+b_k)c_0,...)$ $PR = (...,a_0c_k + a_1c_{k-1} + ... + a_k - k_1c_1 + a_kc_0,...)$ $QR = (...,b_0c_k + b_1c_{k-1} + ... + b_{k-1}c_1 + b_kc_0,...)$

 $(P+Q)R = (\dots, (a_0c_k + a_1c_{k-1} + \dots + a_{k-1}c_1 + a_kc_0) + (b_0c_k + b_1c_{k-1} + \dots + b_{k-1}c_1 + b_kc_0), \dots)$

Обозначение. Пусть $a \in A$. Элемент a отождествляется с многочленом (a,0,0,...)

Корректность. Пусть $a, b \in A$. Тогда a + b и ab определены в A и в A[x] одинаково

Обозначение. Положим x = (0, 1, 0, 0, ...)

```
Свойства (переход к стандартной записи). Пусть A – ассоциативное кольцо с единицей
  1. Пусть b \in A. Тогда для любого P = (a_0, a_1, ...) выполнено bP = (a_0b, a_1b, ...)
        Доказательство. Пусть bP = (c_0, c_1, ...). Тогда
                                     c_k = ba_k + 0b_{k-1} + 0a_{k-2} + \dots = ba_k \quad \forall k
                                                                                                            П
  2. Для любого P = (a_0, a_1, ...) выполнено xP = (0, a_0, a_1, ...)
        Доказательство. Пусть xP = (c_0, c_1, ...). Тогда c_0 = a_0 \cdot 0 = 0
                                  c_k = 0a_k + 1a_{k-1} + 0a_{k-2} + \dots = a_{k-1} \quad \forall k > 1
                                                                                                            3. x^n = (0, 0, ..., 0, 1, 0, ...), где 1 записано на месте с номером n
        Доказательство. Следует из предыдущего пункта
                                                                                                            4. Пусть P = (a_0, a_1, a_2, ..., a_n, 0, 0, ...). Тогда P = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n
        Доказательство. Из первого и третьего пункта слудет, что для a \in A выполнено ax^n =
        (0,0,...,0,a,0,...), где a записано на месте с номером n
        Применим эту формулу к a_0, a_1x, a_2x^2, ... и сложим
```

Обозначение. Будем использовать обозначение $P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$

29. Степень многочлена. Многочлены над областью целостности

Определение 50. Пусть $P=(a_0,a_1,...)$ – многочлен, отличный от нуля. Степенью P называется $\max\{k\mid a_k\neq 0\}$

Обозначение. $\deg P$

Если P – нулевой многочлен, полагаем $\deg P = -\infty$

Теорема 27 (многочлены над областью целостности). Пусть A – область целостности. Тогда

1. Для любых многочленов P,Q выполнено $\deg(P+Q) \leq \max \{\deg P, \deg Q\}$

Доказательство. Пусть $n=\max \{\deg P,\deg Q\}\,,\quad P=(a_0,a_1,...),\quad Q=(b_0,b_1,...)$ При i>n выполнено

$$\begin{vmatrix} a_i = 0 \\ b_i = 0 \end{vmatrix} \implies a_i + b_i = 0$$

2. Для любых многочленов P,Q выполнено $\deg(PQ)=\deg P+\deg Q$

Доказательство. Если P=0 или Q=0, то PQ=0. Равенство $-\infty=-\infty+k,$ где $k\in\mathbb{Z}$ или $k=-\infty,$ верно

Пусть $P \neq 0$, $Q \neq 0$, $\deg P = k$, $\deg Q = m$

Докажем, что $PQ \neq 0$ и $\deg(PQ) = k + m$:

Пусть

$$P = (a_0, a_1, ...),$$
 $Q = (b_0, b_1, ...),$ $PQ = (c_0, c_1, ...)$

Тогда

$$\begin{vmatrix} a_k \neq 0 \\ b_m \neq 0 \end{vmatrix} \implies a_k b_m \neq 0$$

 $a_i=0$ при i>k, и $b_i=0$ при i>m

Докажем, что $c_{k+m} \neq 0$:

$$c_{k+m} = a_0 b_{k+m} + \ldots + a_k b_m + \ldots + a_{k+m} b_0 = a_0 \cdot 0 + \ldots + a_k b_m + 0 \cdot b_0 = a_k b_m \neq 0$$

Докажем, что $c_n = 0$ при i > k + m:

$$c_n = \sum_{i+j=k+m} a_i b_j$$

для каждой пары (i,j) выполнено i>k или j>m, следовательно, в каждом слагаемом хотя бы один из сомножителей равен 0

3. A[x] – область целостности

Доказательство.

• Коммутативность:

Пусть
$$P = (a_0, a_1, ...), \quad Q = (b_0, b_1, ...), \quad PQ = (c_0, c_1, ...), \quad QP = (d_0, d_1, ...)$$

$$c_k = \sum_{i+j=k} a_i b_j = \sum_{i+j=k} b_j a_i = d_k$$

• Ассоциативность:

Пусть $P = (a_0, a_1, ...), \quad Q = (b_0, b_1, ...), \quad R = (c_0, c_1, ...)$

Пусть $(PQ) = (d_0, d_1, ...), \quad d_k = \sum_{i+j=k} a_i b_j$, и коээфициент многочлена (PQ)R на n-м месте равен

$$\sum_{k+l=n} d_k c_l = \sum_{k+l=n} \left(\sum_{i+j=k} a_i b_j \right) c_l = \sum_{i+j+l=n} a_i b_j c_l$$

Аналогично доказывается, что соответствующий коэффициент многочлена P(QR) равен этой же сумме

• Из второго пункта следует, что произведение ненулевых многочленов – ненулевой многочлен

30. Деление с остатком для многочленов. Теорема Безу

Определение 51. Пусть K – поле, $F(x), G(x) \in K[x], \quad G(x) \neq 0$. Если для многочленов Q(x) и R(x) выполнено

$$F(x) = Q(x)G(x) + R(x), \qquad \deg R < \deg G$$

то Q(x) и R(x) называются неполным частным и остатком от деления F(x) на G(x)

Теорема 28 (деление многочленов с остатком). Пусть K – поле, $F(x), G(x) \in K[x], \quad G(x) \neq 0$ Тогда существуют единственные многочлены Q(x) и R(x), для которых выполнено

$$F(x) = Q(x)G(x) + R(x), \qquad \deg R < \deg G$$

Доказательство.

• Существование

Положим

$$A = \{ F(x) - T(x)G(x) \mid T(x) - \text{многочлен} \}$$

В множестве A выберем многочлен наименьшей степени. Обозначим его через R(x), и обозначим через Q(x) таком многочлен, что R(x) = F(x) - Q(x)G(x)

Докажем, что эти многочлены Q(x) и R(x) подходят:

Равенство F(x) = Q(x)G(x) + R(x) выполнено. Проверим, что $\deg R < \deg G$:

Пусть это не так.

Положим $G(x) := a_n x^n + ... + a_0$, $R(x) := b_m x^m + ... + b_0$, $a_n \neq 0$, $b_m \neq 0$, $m \geq n$

Положим

$$R_1(x) = R(x) - \frac{b_m}{a_n} x^{m-n} G(x)$$

Тогда $R_1(x) \in A$, так как

$$R_1(x) = F(x) - \left(T(x) + \frac{b_m}{a_n} x^{m-n}\right) G(x)$$

При этом, $\deg R_1 < \deg R$

Получили противоречие с тем, что R(x) – многочлен наименьшей степени в множестве A

• Единственность

Предположим, что

$$F(x) = Q_1 G(x) + R_1(x), \qquad \deg R_1 < \deg G$$

$$F(x) = Q_2(x)G(x) + R_2(x), \qquad \deg R_2 < \deg G$$

 $Q_1(x) \neq Q_2(x), \qquad R_1(x) \neq R_2$

Приравняем формулы для F(x):

$$Q_1(x)G(x) + R_1(x) = Q_2(x)G(x) + R_2(x)$$

Преобразуем:

$$(Q_1(x) - Q_2(x))G(x) = R_2(x) - R_1(x)$$

Степени многочленов в левой и правой части должны быть равны. Но, по свойствам степени суммы и произведения многочленов, выполнено

$$\deg\left((Q_1 - Q_2)G\right) = \deg(Q_1 - Q_2) + \deg G \ge \deg G$$

$$\deg(R_1 - R_2) \ge \max \{ \deg R_1, \deg R_2 \} < \deg G$$

Противоречие

Теорема 29 (Безу). Пусть K – поле, $F(x) \in K[x]$, и $c \in K$

Тогда остаток от деления многочлена F(x) на (x-c) равен F(c)

Доказательство. Остаток от деления – многочлен, степень которого не выше 0, следовательно, это константа

Обозначим остаток через r. Тогда

$$F(x) = Q(x)(x - c) + r$$

Подставив x = c, получаем

$$F(c) = Q(c)\underbrace{(c-c)}_{=0} + r$$

Следствие. Число c является корнем многочлена $F(x) \iff F(x) \vdots (x-c)$

Доказательство. Многочлен F(x) делится на двучлен (x-c) тогда и только тогда, когда остаток от деления F(x) на (x-c) равен 0. По теореме Безу, это равносильно тому, что F(c)=0

31. Число корней многочлена. Формальное и функциональное равенство многочленов

Теорема 30 (о количестве корней многочлена). Пусть K – поле, $F(x) \in K[x]$, $F(x) \neq 0$. Тогда количество корней многочлена F(x) не превосходит $\deg F$

Докажем, что многочлен P(x) степени n имеет не более n корней:

 \mathbf{M} ндукция по n

База. n=0. Многочлен P(x) – ненулевая константа. У него нет корней

Переход. $n \rightarrow n+1$

Пусть P(x) – многочлен степени n+1

Если у P(x) нет корней, то утверждение верно

Пусть у многочлена P(x) есть корень c. Тогда, по следствию к теореме Безу, выполнено P(x) = Q(x)(x-c) для некоторого многочлена Q(x)

По свойству степени произведения, выполнено

$$n + 1 = \deg P = \deg Q + \deg(x - c) = \deg Q + 1$$

следовательно, $\deg Q = n$

По индукционному предположению, у многочлена Q(x) не более n корней Для любого корня x_0 многочлена P(x) выполнено

$$0 = P(x_0) = (x_0 - c)Q(x_0)$$

Следовательно, x_0 равно c или одному из корней многочлена Q(x). Таким образом, у многочлена P(x) не более n+1 корней

Следствие (формальное и функциональное равенство). Пусть K – бесконечное поле, $F,G \in K[x]$ Если для любого $c \in K$ выполнено F(c) = G(c), то F = G, то есть соответсвующие коэффициенты F и G совпадают

Доказательство. Пусть $F \neq G$

Положим H = F - G

Тогда H – ненулевой многочлен. Следовательно, H имеет не более $\deg H$ корней. Но $H(c)=0 \quad \forall c \in k$

32. Интерполяционная формула Лагранжа

Теорема 31 (интерполяционная формула Лагранжа). Пусть K – поле

Для любых различных $x_1,...,x_n \in K$ и любых чисел $y_1,...,y_n$ существует единственный многочлен $F \in K[x]$, такой, что $\deg F \leq (n-1)$, и $F(x_i) = y_i$ для любого i Многочлен можно найти по формуле

$$F(x) = L_1(x)y_1 + L_2(x)y_2 + \dots + L_n(x)y_n$$

где

$$L_i(x) = \frac{(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$

Доказательство.

• Существование и формула

Проверим, что многочлен, заданный формулой, подходит:

- Оценим степень:

Для любого i выполнено $\deg L_i(x) = (n-1)$, следовательно, $L_i(x)y_i$ – либо многочлен степени (n-1), либо нулевой многочлен, следовательно

$$\deg F \le \max \{ \deg L_1, ..., \deg L_n \} \le n - 1$$

— Проверим, что F(x) принимает нужные значения: Заметим, что $L_i(x_i) = 1$, $L_i(x_j) = 0$ при $i \neq j$. Действительно,

$$L_i(x_i) = \frac{(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}{(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)} = 1$$

а при $i \neq j$, в формуле для $L_i(x_j)$ в числителе есть нулевой сомножитель $(x_j - x_j)$ Теперь найдём значения F(x) в точках x_i :

$$F(x_i) = L_1(x_i)y_1 + \dots + L_i(x_i)y_i + \dots + L_n(x_n) = 0y_1 + \dots + 1y_i + \dots + 0y_n = y_i$$

• Единтсвенность

Прдеположим, что для различных многочленов F(x) и G(x) выполнено $\deg F, \deg G \leq (n-1), \quad F(x_i) = G(x_i) = y_i$ Положим R(x) = F(x) - G(x). Тогда

$$\deg R \le \max \{ \deg F, \deg G \} \le n-1$$

33. Метод интерполяции Ньютона

Алгоритм (метод интерполяции Ньютона). Для данных различных $x_1,...,x_n$ и произвольных $y_1,...,y_n$ требуется построить многочлен F(x), такой, что $\deg F \leq n-1$ и $F(x_i)=y_i$

Построим последовательно многочлены $L_1(x),...,L_n(x)$, такие, что $\deg L_k \leq k-1, \quad L_k(x_i)=y_i$ при $i\leq k$

В качетсве F(x) подойдёт $L_n(x)$

- Многочлен $L_1(x)$ это константа y_1
- Многочлен $L_k(x)$ определим по формуле

$$L_k(x) = L_{k-1}(x) + A_{k-1}g_{k-1}(x)$$

где

$$g_{k-1}(x) = (x - x_1)...(x - x_{k-1}),$$
 $A_{k-1} = \frac{y_k - F_{k-1}(x_k)}{q_{k-1}(x_k)}$

Теорема 32. Метод интерполяции Ньютона корректно определён, и результат его применения – требуемый многочлен

Доказательство.

- Число A_k корректно определено, так как $g(x_k) \neq 0$
- Неравенство $\deg F_k \le (k-1)$ доказывается по **индукции**:

База. k=1: $\deg F_1=0$ или $\deg F_1=-\infty$

Переход. Имеем $\deg g_{k-1} \leq (k-1)$, следовательно, $\deg A_k g_{k-1} = k-1$ или $\deg A_k g_{k-1} = 0$

$$\left. \frac{\deg F_{k-1} \le k - 2 < k - 1}{\deg A_k g_{k-1} \le k - 1} \right\} \implies \deg F_{k-1} + a_k g_{k-1} \le k - 2 < k - 1$$

При i < k выполнено $g(x_i) = 0$, следовательно,

$$F_k(x_i) = F_{k-1}(x_i) + a_k \cdot 0 = F_k(x_i) = y_i$$

П

• Равенство $F(x_k) = y_k$ проверяется подстановкой в формулу

34. Делимость в области целостности

Свойства.

- 1. Если a и b делятся на c, то a+b и a-b делятся на c Доказательство. Пусть d, e таковы, что a=dc, b=ec. Тогда a+b=(d+e)c, a-b=(d-e)c \square
- 2. Если a делится на b, то ak делится на b для любого kДоказательство. Пусть c таково, что a = bc. Тогда ak = (ck)b
 - •

3. Транзитивность: если a : b, b : c, то a : c Доказательство. Пусть a = db, b = ec. Тогда a = (de)c

Определение 52. Пусть A – область целостности, $a,b \in A$ Элементы $a,b \in A$ называются ассоциированными, если a : b и b : a

Примеры.

- 1. Кольцо \mathbb{Z} . Числа, ассоциированные с a это $\pm a$
- 2. Кольцо $\mathbb{R}[x]$. Многочлены, ассоциированные с P(x) это cP(x), где c ненулевое число

Свойства. Пусть А – область целостности с единицей

1. Элементы $a,b \in A$ ассоцированы $\iff \exists u : a = bu$ и u – обратимый элемент

Доказательство.

- ullet \Longrightarrow Пусть $a=bc,\quad b=ad$ Тогда ab=(cd)(ab), следовательно, cd=1, и c обратим
- \Leftarrow Пусть a=bu и u обратим. Тогда $b=au^{-1}$
- 2. Пусть $a,b \in A, \quad a : b$, элементы a_1,b_1 ассоциированы с a,b осстветственно. Тогда $a_1 : b_1$ Доказательство. Пусть $a = bc, \quad a = ua_1, \quad b = wb_1$, и u,w обратимы. Тогда $a_1 = b_1(u^{-1}wc)$

Определение 53. Пусть A – область целостности с единицей. Элемент $p \in A$ называется неразложимым (простым), если он необратим, и его нельзя представить в виде p = ab, где a, b – необратимые элементы

Определение 54. Пусть K – поле, A = K[x]

Неразложимый в A многочлен называется неприводимым над K

Определение 55. Пусть A – область целостности, $a, b \in A$ Элемент $d \in A$ называется НОД(a, b), если a, b : d и для $x \in A$ выполнено $a, b : x \implies d : x$

Определение 56. Элементы a и b называются взаимно простыми, если 1 является НОД (a,b)

Свойства.

- 1. Если d является НОД (a,b), и d_1 ассоциирован с d, то d_1 является НОД (a,b) Доказательство. Свойство делимости сохраняется при замене элементов на ассоциированные. Если a,b : d, то $a,b : d_1$; если d : x, то $d_1 : x$
- 2. Если d_1, d_2 являются НОД (a, b), то d_1 и d_2 ассоциированы Доказательство. Из того, что d_1 является общим делителем, и d_2 является НОД, следует, что $d_2 : d_1$. Аналогично, $d_1 : d_2$

Определение 57. Кольцо A называется факториальным, если оно является областью целостности с единицей;

Любой элемент $a \in A \setminus \{0\}$ можно представить в виде произведения $a = up_1...p_r$, где u – обратим, p_i неразложимы;

Такое представление единственно с точностью до замены сомножитлей на ассоциированные и их перестановки

35. Евклидовы кольца. НОД в евклидовом кольце

Определение 58. Пусть A – область целостности с единицей. Кольцо A называется евклидовым, если существует отображение

$$\delta: A \setminus \{0\} \to \mathbb{N} \cup \{0\}$$

такое, что

- 1. $\delta(ab) \geq \delta(a) \quad \forall a, b \in K \setminus \{0\}$
- 2. для любых $a\in K,\quad b\in K\backslash\{\,0\,\}$ сущетсвуют $q,r\in K,$ такие, что a=bq+r и выполнено $\delta(r)<\delta(b)$ или r=0

Отображение δ называется евклидовой нормой

Лемма 7. Пусть A – евклидово, δ – евклидова норма, и $a,b \in A \setminus \{0\}$. Тогда

1. если a : b, то $\delta(a) \ge \delta(b)$

Доказательство. Существует c такое, что a = bc, следовательно,

$$\delta(a) = \delta(bc) \ge \delta(b)$$

2. если a и b ассоццированы, то $\delta(a) = \delta(b)$

Доказательство. Из предыдущего пункта следует, что $\delta(a) \geq \delta(b)$ и $\delta(b) \geq \delta(a)$

3. если a = bc и c необратим, то $\delta(a) > \delta(b)$

Доказательство. Докажем, что $b \not\mid a$. Пусть для некоторого d выполнено b = ad. Тогда

$$a = bc = (ad)c = a(dc) \implies dc = 1$$

Это противоречит тому, что c не обратим

"Разделим с остатком" b на a: пусть q,r таковы, что a=bq+r, и $\delta(r)<\delta(a)$ или r=0 Из того, что b : a, следует, что $r\neq 0$. Из того что a : b, следует, что

$$r = a - bq \vdots b$$

Следовательно,

$$\delta(a) > \delta(r) \ge \delta(b)$$

Теорема 33 (НОД в евклидовом кольце). Пусть A — евклидово кольцо, $a,b \in A$, и $(a,b) \neq (0,0)$ Тогда

- 1. Существует HOД(a,b)
- 2. Пусть d явлется НОД (a,b). Тогда существуют $x,y\in A$, такие, что ax+by=d

Доказательство. Положим $M \coloneqq \{au + bv \mid u, v \in A\}$

Пусть $m := \min \{ \delta(c) \mid c \in M, c \neq 0 \}$

Пусть $d_0 \in M$ таков, что $\delta(d_0) = m$, и x_0, y_0 таковы, что $d_0 = ax_0 + by_0$

Докажем, что d_0 – общий делитель a и b

Пусть $a \not d_0$. Тогда существуют q, r, такие, что

$$a = d_0 q + r, \qquad r \neq 0, \qquad \delta(r) < \delta(d_0)$$

Тогда

$$r = a - d_0 q = a - (ax_0 + by_0) = a(1 - x_0) + b(-y_0) \in M,$$
 $\delta(r) < m$

Получаем противоречие

Докажем, что если k – общий делитель, то d : k:

$$\begin{cases} a : k \\ b : k \end{cases} \implies \begin{cases} ax_0 : k \\ by_0 : k \end{cases} \implies ax + by : k$$

Получили, что d_0 является НОД (a,b), и для него существует линейное представление Пусть d – произвольный НОД (a,b). Тогда $d=wd_0$ для некоторого обратимого w. Следовательно, $d=a(2x_0)+b(wy_0)$

36. Свойства взаимно простых элементов в евклидовом кольце

Свойство (взаимная простота с произведением). Пусть A – евклидово кольцо, $a_1,...,a_k, \quad b \in A,$

 $HOД(a_i, b) = 1 \quad \forall i$

Тогда $(a_1 \cdot \ldots \cdot a_k, b) = 1$

Доказательство. Индукция по k

База. k = 2:

Требуется доказать такое утверждение: если a_1 и b взаимно просты, a_2 и b взаимно просты b взаимно просты

Пусть x_1, x_2, y_1, y_2 таковы, что:

$$a_1x_1 + b_1y = 1,$$
 $a_2x_2 + by_2 = 1$

Перемножим:

$$a_1x_1a_2x_2 + a_1x_1by_2 + by_1a_2x_2 + b^2y_1y_2 = 1$$

$$(a_1a_2)(x_1x_2) + b(a_1x_1y_2 + y_1a_2x_2 + by_1y_2) = 1$$

Получили линейное представление единицы через a_1a_2 и b. Значит, по лемме, a_1a_2 и b взаимно просты **Переход.** $k \to k+1$:

По индукционному предположению $a_1\cdot\ldots\cdot a_k$ и b взаимно просты. Применяем утверждение для k=2 к числам $a_1\cdot\ldots\cdot a_k$ и a_{k+1}

Свойство (взаимная простота и делимость). Пусть A – евклидово кольцо, $a,b,c\in A$

1.
$$Ab : c$$
 $BOД(a,c) = 1$ $\Longrightarrow b : c$

Доказательство. Запишем линейное представление единицы через а и с:

$$ax + cy = 1$$

Умножим на b:

$$bax + bcy = b$$

 \Box

В левой части неравенства оба слагаемых делятся на c, значит b делится на c

 $\left. \begin{array}{l} a \vdots b \\ 2. \ a \vdots c \\ \text{ НОД} \left(b, c \right) = 1 \end{array} \right\} \implies a \vdots bc$

Доказательство. Пусть $a = bk, \ a = cm$

Запишем линейное представление единицы через b и c:

$$bx + cy = 1$$

Умножим на k:

$$k = bkx + cyk = ax + cyk = cmx + cyk$$

Подставим в формулу для а:

$$a = bk = bc(mx + ky) \vdots bc$$

37. Факториальность евклидова кольца

Теорема 34. Евклидово кольцо факториально

Доказательство.

• Докажем, что любой ненулевой элемент можно представить в виде произведения неразложимых

элементов и обратимого элемента:

Пусть сущетсвуют элементы, которые нельзя так представить. Выберем из них элемент a, на котором значение δ минимально

Элемент a не является обратимым и не является неразложимым, так как иначе a=a было бы подходящим произведением

Следовательно, существуют такие b, c, что a = bc, и b, c не обратимы

Тогда $\delta(b) < \delta(a), \quad \delta(c) < \delta(a),$ и, следовательно, для b,c существуют представления нужного вида:

$$b = up_1 \cdot \ldots \cdot p_k, \qquad c = wq_1 \cdot \ldots \cdot q_m$$

Перемножив их, получим представление для a:

$$a = (uw)p_1 \cdot \ldots \cdot p_k \cdot q_1 \cdot \ldots \cdot q_m$$

Противоречие

• Докажем, что представление единственно с точностью до перестановки сомножителей и замены сомножителей на ассоциированные

Пусть для некоторых элементов представление не единственно, и a – такой элемент с минимальным значением δ . Пусть

$$a = up_1 \cdot \dots \cdot p_k, \qquad a = wq_1 \cdot \dots \cdot q_m$$

Из неразложимости p_1 следует, что среди сомножителей второго произведения есть элемент, делящийся на p_1

Это не элемент u, так как иначе оказалось бы, что $q=uu^{-1}$: p_1 , а p_1 – не делитель 1

Переставив сомножители, будем считать, что $q_1
otin p_1$

Из неразложимости q_1 следует, что q_1 и p_1 ассоциированы, пусть $q_1=vp_1$. Тогда

$$up_1p_2\cdot\ldots\cdot p_k=a=(wv)p_1\cdot q_2\cdot\ldots\cdot q_m\implies up_2\cdot\ldots\cdot p_k=(wv)\cdot q_2\cdot\ldots\cdot q_m$$

Обозначим элемент из последнего равенства через b. Тогда

$$a = p_1 b \implies \delta(b) < \delta(a)$$

Следовательно, представление для b единственно, то есть k=m, и, после перестановки сомножителей, p_i ассоциирован с q_i при $i\geq 2$

Для i=1 это уже доказано

Следствие. Кольцо многочленов над любым полем факториально

38. Разложение многочлена на неприводимые множители над $\mathbb R$ и $\mathbb C$

Определение 59. Пусть K – поле, $P \in K[x], c \in K$, и c – корень P(x)

Показателем кратности корня c называется такое число $n \in \mathbb{N}$, что $\begin{cases} P(x) : (x-c)^n \\ P(x) \not : (x-c)^{n+1} \end{cases}$

Если показатель кратности равен 1, корень называется простым, если больше 1 – кратным

Теорема 35 (основная теорема алгебры). Любой многочлен с комплексными коэффициентами, отличный от константы, имеет комплексный корень

Без доказательства

Следствие. Многочлен с комплексными коэффициентами степени n имеет ровно n корней с учётом кратности (т. е. корень кратности k учитывается как k корней) Многочлен можно представить в виде

$$P(x)a(x-x_1)(x-x_2)...(x-x_n)$$

Доказательство. Индукция по n

База. n = 1 – очевидно

Переход. $n \to n+1$

Нужно доказать для P(x), $\deg P = n + 1$

По основной теореме алгебры, P имеет корень. Обозначим его c

По теореме Безу, P(x): (x-c), то есть P(x)=(x-c)G(x), где $\deg G=\deg P-\deg(x-c)=n$

П

По индукционному предположению, G(x) имеет n корней

Лемма 8 (сопряжённые корни вещественного многочлена). Пусть $P(x) \in \mathbb{R}[x]$, и c – корень P(x)Тогда \bar{c} – тоже корень P(x)

Доказательство. Пусть $P(x) = \sum a_n x^n$

Тогда $\sum a_n c^n = 0$

 $a_n \in \mathbb{R} \implies \overline{a_n} = a_n$

Подставим \overline{c} в P(x):

$$P(\overline{c}) = \sum a_n(\overline{c})^n = \sum \overline{a_n}(\overline{c})^n = \overline{\sum a_n c^n} = \overline{0} = 0$$

Теорема 36 (разложение многочлена с вещественными коэффициентами). Пусть $P(x) \in \mathbb{R}[x]$ Тогда P(x) можно представить в виде

$$P(x) = a(x - x_1)(x - x_2)...(x^2 + p_1x + q_1)(x^2 + p_2x + q_2)...$$

где $x^2 + p_i x + q_i$ – квадратные трёхчлены, не имеющие вещественных корней

Доказательство. Пусть $n = \deg P$

Докажем утверждение **индукцией** по n

База. n = 0. Многочлен P(x) – константа

Переход. Пусть утверждение доказано для всех многочленов степени меньше n. Докажем его для многочленов степени n

• У многочлена P(x) есть вещественный корень x_1 Тогда $P(x) = (x - x_1)Q(x)$, причём $Q(x) \in \mathbb{R}[x]$

Применим к многочлену Q(x) индукционное предположение, и умножим полученное для Q(x)разложение на $x - x_1$

• У многочлена P(x) нет вещественных корней

По основной теореме алгебры, у P(x) есть корень $z_1 \in \mathbb{C} \setminus \mathbb{R}$

Тогда $\overline{z_1}$ – тоже корень P(x) и $\overline{z_1} \neq z_1$

По теореме Безу, $P(x) = (x - z_1)Q_1(x)$ для некоторого многочлена $Q_1(x)$

 $P(\overline{z_1}) = 0 \implies Q_1(\overline{z_1}) = 0$

По теореме Безу, $Q_1(x) = (x - \overline{z_1})Q_2(x)$

Положим $H(x) := (x - z_1)(x - \overline{z_1})$

Тогда P(x) = H(x)R(x)

$$H(x) = x^2 + p_1 x + q_1,$$
 где $p_1 = -(z_1 - \overline{z_1}),$ $q_1 = z_1 \overline{z_1}$

По лемме, коэффициенты H(x) вещественные

Следовательно, коэффициенты R(x) вещественные

Применим к многочлену R(x) индукционное предположение, и умножим полученное для R(x)разложение на $(x^2 + p_1x + q_1)$

Следствие. Пусть $P(x) \in \mathbb{R}[x]$, и c – корень P(x)

Тогда показатели кратности корней c и \bar{c} равны

Доказательство. Индукция по $\deg P$

Пусть $c \in \mathbb{R} \setminus \mathbb{C}$, пусть $H(x) := (x - c)(x - \overline{c})$, и P(x) := H(x)R(x)

• Если c не является корнем R(x), то c и \bar{c} – корни P(x) кратности 1

• Пусть c – корень R(x) кратности m Тогда \overline{c} – тоже корень R(x) кратности m

Следовательно, c и \overline{c} – корни P(x) кратности m+1

39. Производная многочлена, её свойства

Определение 60. Производной многочлена $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ называется многочлен $na_n x^n + (n-1)a_{n-1} x^{n-2} + ... + a_1$

Обозначение. P'(x)

Короткая запись. Если $P(x) = \sum_{n>0} a_n x^n$, то $P'(x) = \sum_{n>1} n a_n x^{n-1}$

Свойства.

1. Если P(x) – константа, то P'(x) = 0

2. Пусть K – поле, $P(x) \in K[x]$, и P(x) не константа. Тогда $\deg P' = \deg P - 1$

3.
$$\left(P(x) + Q(x)\right)' = P'(x) + Q'(x)$$

Доказательство. Пусть $P(x)=\sum_{n\geq 0}a_nx^n,\quad Q(x)=\sum_{n\geq 0}b_nx^n.$ Тогда

$$\left(P(x) + Q(x)\right)' = \left(\sum_{n \ge 0} (a_n + b_n)(x^n)\right)' = \sum_{n \ge 1} n(a_n + b_n)x^{n-1}$$

$$P'(x) + Q'(x) = \sum_{n \ge 1} n a_n x^{n-1} + \sum_{n \ge 1} n b_n x^{n-1}$$

Следствие. $\left(P_1(x) + P_2(x) + ... + P_n(x)\right)' = P_1'(x) + P_2'(x) + ... + P_n'(x)$

Доказательство. Выводится индукцией из третьего свойства

4. Если
$$c$$
 – константа,
то $\left(cP(x)\right)'=cP'(x)$

Доказательство. Пусть $P(x) = \sum_{n>0} a_n x^n$. Тогда

$$\left(cP(x)\right)' = \left(c\sum_{n\geq 0} a_n x^n\right)' = \left(\sum_{n\geq 0} ca_n x^n\right)' = \sum_{n\geq 1} nca_n x^{n-1}$$

$$cP'(x) = c\left(\sum_{n\geq 0} a_n x^n\right)' = c\sum_{n\geq 1} na_n x^{n-1} = \sum_{n\geq 1} nca_n x^{n-1}$$

5.
$$\left(P(x)Q(x)\right)' = P'(x)Q(x) + P(x)Q'(x)$$

Доказательство.

• Сначала докажем равенство для случая, когда Q(x) – одночлен, то есть $Q(x) = bx^k$ Случай k=0 следует из свойств 1 и 4. Считаем, что k>0 Найдём $\left(P(x)Q(x)\right)'$:

$$P(x)Q(x) = \sum_{n>0} a_n b x^{n+k}$$

и n+k>0 для любого $n\geq 0$, следовательно,

$$\left(P(x)Q(x)\right)' = \sum_{n>0} (n+k)a_n bx^{n+k-1}$$

Найдём P'(x)Q(x) + P(x)Q'(x):

$$P'(x)Q(x) + P(x)Q'(x) = \sum_{n \ge 1} na_n x^{n-1} \cdot bx^k + \sum_{n \ge 1} na_n x^n \cdot kbx^{k-1} = \sum_{n \ge 1} na_n bx^{n+k-1} + \sum_{n \ge 0} ka_n bx^{n+k-1}$$

Заметим, что, если довабить в первую сумму в правной части слагаемое, соответствующее n=0, то есть $0a_0bx^{-1}$, то сумма не изменится:

$$P'(x)Q(x) + P(x)Q'(x) = \sum_{n>0} na_n bx^{n+k-1} + \sum_{n>0} ka_n bx^{n+k-1} = \sum_{n>0} (n+k)a_n bx^{n+k-1}$$

Равенство для случая $Q(x) = bx^k$ доказано

• Докажем утверждение для произвольного Q(x), пользуясь тем, что оно верно для случая, когда Q(x) является одночленом, и свойством производной суммы: Представим Q(x) в виде суммы одночленов:

$$Q(x) := Q_0(x) + Q_1(x) + \dots + Q_m(x)$$

где $Q_k(x) = b_k x^k$, Тогда

$$\left(P(x)Q(x)\right)' = \left(\sum P(x)Q_k(x)\right)' = \sum \left(P'(x)Q_k(x) + P(x)Q'_k(x)\right) =
= \sum P'(x)Q_k(x) + \sum P(x)Q'_k(x) = P'(x)\sum Q_k(x) + P(x)\sum Q'_k(x) =
= P'(x)Q(x) + P(x)\left(\sum Q_k(x)\right)' = P'(x)Q(x) + P(x)Q'(x)$$

Следствие.

$$\left(P_1(x)P_2(x)...P_k(x)\right)' = P_1(x)P_2(x)...P_k(x) + P_1(x)P_2'(x)...P_k(x) + ... + P_1(x)P_2(x)...P_k'(x)$$

Доказательство. Индукция по k

База. k=2 – предыдущее свойство

Переход. $k \rightarrow k+1$

Положим $Q(x) = P_1(x)P_2(x)...P_k(x)$. Тогда

$$\begin{split} \left(P_{1}(x)P_{2}(x)...P_{k}(x)P_{k+1}(x)\right)' &= \left(Q(x)P_{k+1}(x)\right)' = Q'(x)P_{k+1}(x) + Q(x)P'_{k+1}(x) = \\ &= \left(P'_{1}(x)P_{2}(x)...P_{k}(x) + P_{1}(x)P'_{2}(x)...P_{k}(x) + ... + P_{1}(x)P_{2}(x)...P'_{k}(x)\right)P_{k+1}(x) + \\ &\quad + P_{1}(x)P_{2}(x)...P_{k}(x)P'_{k+1}(x) = \\ &= P'_{1}(x)P_{2}(x)...P_{k}(x)P_{k+1}(x) + P_{1}(x)P'_{2}(x)...P_{k}(x)P_{k+1}(x) + ... + \\ &\quad + P_{1}(x)P_{2}(x)...P'(x)P_{k+1}(x) + P_{1}(x)P_{2}(x)...P_{k}(x)P'_{k+1}(x) \end{split}$$

6.
$$\left(P^k(x)\right)' = kP'(x)P^{k-1}(x)$$

Доказательство. Следует из предыдущего свойства, применённого к

$$P_1(x) = P_2(x) = \dots = P_k(x) = P(x)$$

Примечание. Производные высших порядков определяются как обычно:

$$P''(x) = \left(P'(x)\right)', \quad ..., \quad P^{(k)}(x) = \left(P^{(k-1)}(x)\right)'$$

40. Кратные корни и производная

Теорема 37 (кратный корень и производная). K – поле, $P(x) \in K[x]$, и c – корень P(x) Тогда равносильны утверждения:

- ullet с кратный корень P(x)
- P'(c) = 0

Доказательство. По теореме Безу, P(x) = (x-c)Q(x) для некоторого Q(x) Применяя теорему Безу к Q(x), получаем, что

$$c$$
 – кратный корень $\iff P(x) \vdots (x-c)^2 \iff Q(x) \vdots (x-c) \iff Q(c) = 0$

Найдём производную P(x) как производную произведения:

$$P'(x) = (x-c)'Q(x) + (x-c)Q'(x) = 1 \cdot Q(x) + (x-c)Q'(x) = Q(x) + (x-c)Q'(x)$$

Подставим x = c:

$$P'(c) = Q(c) + (c - c)Q'(x) = Q(c)$$

Следовательно, $P'(c) = 0 \iff Q(c) = 0$

Следствие. Пусть c – корень многочлена P(x), и число n таково, что $P^{(i)}(c)=0$ при $i\leq n-1$, и $P^{(n)}(c)\neq 0$

Тогда n – показатель кратности корня c

Доказательство. Докажем по индукции

База. n = 1 – по теореме

Переход.

Положим $P_1(x) = P'(x)$

Тогда $P_1^{(i)}(x) = P^{(i+1)}(x)$ для любого i

Достаточно доказать, что показатель кратности c для $P_1(x)$ на один меньше, чем для P(x)

Пусть $P(x) = (x-c)^m Q(x)$, где $Q(x) \not (x-c)$. Тогда

$$P_1(x) = \left((x-c)^m Q(x) \right)' = \left((x-c)^m \right)' Q(x) + (x-c)^m Q'(x) = k(x-c)' (x-c)^{m-1} Q(x) + (x-c)^m Q'(x) = k(x-c)^{m-1} Q(x) + (x-c)^m Q'(x) = k(x-c)^{m-1} \left(kQ(x) + (x-c)Q'(x) \right)$$

второй сомножитель не делится на (x-c)

41. Формула Тейлора

Теорема 38 (формула Тейлора). Пусть $P \in \mathbb{R}[x]$, $\deg P = n$

Тогда для любого $c \in K$ выполнено

$$P(x) = P(c) + \frac{P'(c)}{1!}(x-c) + \frac{P''(c)}{2!}(x-c)^2 + \dots + \frac{P^{(n)}(c)}{n!}(x-c)^n$$

Доказательство.

• Докажем, что существуют некоторые $d_0, d_1, ..., d_n$, для которых выполнено

$$P(x) = d_0 + d_1(x - c) + \dots + d_n(x - c)^n$$

Индукция по n

База. $n \leq 0$. Тогда P(x) – константа, $P(x) = d_0$ для некоторого d_0

Переход. Пусть для всех многочленов степени (n-1) утверждение верно, докажем для многочлена P(x) степени n:

Поделим P(x) на (x-c) с остатком. Пусть P(x) = Q(x)(x-c) + r

Применим к Q(x) предположение индукции. Пусть $Q(x) = c_0 + c_1(x-c) + ... + c_{n-1}(x-c)^{n-1}$

Тогда подойдут $d_0=r, \quad d_i=c_{i-1}$ при $i\geq 1$

• Докажем, что $d_k = \frac{P^{(k)}(c)}{k!}$:

Найдём значение k-й производной в точке c для суммы

$$d_0 + d_1(x-c) + ... + d_n(x-c)^n$$

Положим $H_i(x) = (x-c)^i$

- При i < k выполнено $\deg H_i < k$, следовательно, $H_i^{(k)}(x) = 0$
- При $i \geq k$ выполнено $H_i^{(k)}(x) = k(k-1)...(k-i+1)(x-c)^{k-i}$ Следовательно,
 - * При i=k выполнено

$$H_k^{(k)}(x) = k(k-1)...1(x-c)^0 = k!, H_k^{(k)}(c) = k!$$

* При i>k выполнено

$$H_k^{(k)}(c) = k(k-1)...(k-i+1) \cdot 0^{k-i} = 0$$

Получаем, что $P^{(k)}(c) = d_k k! \implies d_k = \frac{p^{(k)}(c)}{k!}$

42. Построение поля частных: леммы о классах эквивалентности

Обозначение. Будем использовать слдующие обозначения:

- А область целостности
- M множество пар (a, b), где $b \neq 0$
- ρ отношение на M, заданное правилом:

$$(a,b) \rho (c,d)$$
, если $ad = bc$

Лемма 9. Отношение ρ является отношениием эквивалентности

Доказательство.

• Рефлексивность:

$$ab = ab \implies (a, b) \rho (b, a)$$

• Симметричность:

$$(a,b) \rho (c,d) \implies ad = bc \implies cb = da \implies (c,d) \rho (a,b)$$

• Транзитивность:

Докажем, что из условий (a,b) ρ (c,d) и (c,d) ρ (e,f) следует (a,b) ρ (e,f): Нужно доказать, что из равенств ad=bc и cf=ed следует равенство af=be Домножим на "знаменатели" и сложим:

$$0 = (ad - bc)f + (cf - ed)b = adf - edb = d(af - eb) \xrightarrow[d \neq 0]{} af = be$$

Определение 61. Пусть $(a, b), (c, d) \in M$

Их суммой и произведением называются пары (ad + bc, bd) и (ac, bd)

Замечание о корректности. Пары (ad + bc, bd) и (ac, bd) принадлежат M, так как

$$\left. \begin{array}{l} b \neq 0 \\ d \neq 0 \end{array} \right\} \implies bd \neq 0$$

Лемма 10. Пусть $u, v, u', v' \in M$, $u \rho u', v \rho v'$ Тогда $(u + v) \rho (u' + v'), \quad (uv) = (u'v')$

Доказательство. Отношение ρ транзитивно, поэтому достаточно проверить, что сумма (произведение) переходдят в эквивалентную при замене одного слагаемого (сомножителя) на эквивалентный, то есть

$$v \rho v' \implies (u+v) \rho (u+v'), \quad (uv) = (uv'), \qquad u \rho u' \implies (u+v) \rho (u'+v), \quad (uv) = (u'v)$$

Проверим первое утверждение (второе проверяется аналогично):

Пусть u = (a, b), v = (c, d), v' = (c', d'). Тогда cd = dc'

Нужно доказать, что:

• $(ad + bd, bd) \rho (ad' + bc', bd')$

$$(ad + bc)bd' - bd(ad' + bc') = b^{2}(cd' - dc') = b^{2} \cdot 0 = 0$$

• $(ac,bd) \rho (ac',bd')$

$$ac \cdot bd' - bd \cdot ac' = ab(cd' - dc') = ab \cdot 0 = 0$$

43. Построение поля частных: доказательство теоремы

Теорема 39 (поле частных). Пусть A – область целостности с единицей

Пусть K – множество классов эквивалентности M по отношению ρ с введёнными выше операциями сложения и умножения

 ${
m Torдa}\ K$ – ${
m none}$

Доказательство. Будем обозначать через \overline{x} класс элемента x

Пусть x = (a, b), y = (c, d), z = (e, f)

• Ассоциативность сложения:

$$x + y = (ad + bc, bd), \qquad (x + y) + z = \left((ad + bc)f + (bd)e, (bd)f \right) = (adf + bcf + bde, bdf)$$

$$y+z=(cf+de,df), \qquad x+(y+z)=\bigg(a(df)+b(cf+de),b(df)\bigg)=(adf+bcf+bde,bdf)$$

• Нейтральный элемент по сложению: 0 = (0, 1)

$$x + (0,1) = (a,b) + (0,1) = (a \cdot 1 + 0 \cdot b, 1 \cdot b) = (a,b) = x$$

$$(0,1) + x = (0,1) + (a,b) = (0 \cdot b + a \cdot 1, 1 \cdot b) = (a,b) = x$$

Докажем, что для любого $b \neq 0$ выполнено $\overline{(0,b)} = 0$:

$$0 \cdot 1 = b \cdot 0 \implies (0, b) \ \rho \ (0, 1) \implies \overline{(0, b)} = \overline{(0, 1)} = 0$$

Докажем, что если $\overline{(a,b)}=0$, то a=0:

$$\overline{(a,b)} = \overline{(0,1)} \implies a \cdot 1 = b \cdot 0 \implies a = 0$$

• Обратный по сложению: -(a, b) = (-a, b)

$$(a,b) + (-a,b) = (ab + b(-a), b^2) = (0,b^2) \implies \overline{(a,b)} + \overline{(-a,b)} = 0$$

- Коммутативность сложения, дистрибутивность, асоциативность и коммутативность сложения доказываются аналогично
- Обратный по умножению:

Пусть $\overline{(a,b)} \neq \underline{0}$. Тогда $a \neq 0$

Докажем, что (b,a) является обратным к (a,b):

$$\overline{(a,b)}\cdot\overline{(b,a)}=\overline{(ab,ba)}=1$$

Определение 62. Построенное поле называется полем частных области целостности A

Примечание. Существование единицы не обязательно. Достаточно, чтобы область целостности содержала хотя бы один ненулевой элемент

Переход к стандартным обозначениям. Вложим A в K, по правилу $a \mapsto \overline{(a,1)}$ Операции сложения и умножения согласованы:

$$(a,1) + (b,1) = (a \cdot 1 + 1 \cdot b, 1 \cdot 1) = (a+b,1)$$

$$(a,1) \cdot (b,1) = (a \cdot b, 1 \cdot 1) = (ab,1)$$

Пусть $a, b \in A$, $b \neq 0$. Проверим, что частное a и b равно $\overline{(a, b)}$:

$$\overline{(a,b)} \cdot \overline{(b,1)} = \overline{(ab,b)}, \qquad (ab,b) \ \rho \ (a,1)$$

Далее вместо $\overline{(a,b)}$ будем писать $\frac{a}{b}$

44. Поле рациональных функций. Правильные дроби

Определение 63. Пусть K – поле

Поле частных кольца K[x] называется полем рациональных функций над K

Обозначение. K(x)

Элементы K(x) называются рациональными функциями или рациональными дробями (над K)

Далее рассмтариваются многочлены и рациональные функции над некоторым полем K

Определение 64. Рациональная дробь $\frac{F}{G}$ называется несократимой, если НОД (F,G)=1

Определение 65. Многочлен называется нормализованным, если его старший коэффициент равен 1

Определение 66. Рациональная дробь называется нормализованной, если она несократима, и её знаменатель - нормализованный многочлен

Свойство. Для любой рациональной дроби существует равная ей нормализованная дробь

Определение 67. Рациональная дробь $\frac{F}{G}$ называется правильной, если $\deg F < \deg G$

Свойства.

1. Если $\frac{F_1}{G_1} = \frac{F_2}{G_2}$, и $\frac{F_1}{G_1}$ – правильная дробь, то $\frac{F_2}{G_2}$ – тоже правильная дробь Доказательство. $F_1G_2 = G_1F_2 \implies \deg F_1 + \deg G_2 = \deg G_1 + \deg F_2 \implies \deg G_2 - \deg F_2 = \deg G_1 - \deg F_1 > 0$

2. Сумма и произведение правильных рациональных дробей является правильной рациональной дробью

Доказательство. Пусть $\frac{F_1}{G_1}, \frac{F_2}{G_2}$ – правильные дроби

$$a := \deg F_1, \qquad b := \deg G_1, \qquad c := \deg F_2, \qquad d := \deg G_2$$

Тогда a < b, c < d

$$\deg(F_1 G_2 + F_2 G_1) \le \max\{a + d, b + c\} < b + d = \deg(G_1 G_2)$$
$$\deg(F_1 F_2) = a + c < b + d = \deg(G_1 G_2)$$

3. Любую рациональную дробь можно единственным образом представить в виде суммы многочлена и правильной дроби

Доказательство. Пусть $\frac{F}{G}$ – рациональная дробь

• Существование Разделим F на G с остатком, пусть F = QG + R, $\deg R < \deg G$. Тогда подходит представление

 $\frac{F}{G} = Q + \frac{R}{G}$

• Единственность Пусть

$$P_1 + \frac{R_1}{S_1} = P_2 + \frac{R_2}{S_2}, \qquad P_1 \neq P_2$$

Положим $P := P_1 - P_2$. Тогда P является разностью правильных дробей, следовательно, P можно представить в виде

$$P = \frac{R}{S}, \qquad \deg R < \deg S$$

Умножим на S:

$$SP = R$$

Степень многочлена в левой части больше, чем в правой. Противоречие

45. Лемма о дроби, знаменатель которой разложен на взаимно простые множители

Лемма 11 (сумма дробей с взаимно простыми знаменателями). Пусть $\frac{F}{G_1...G_k}$ – правильная рациональная дробь, многочлены G_i – попарно взаимно просты Тогда дробь $\frac{F}{G_1...G_k}$ можно представить в виде

$$\frac{F_1}{G_1}+\ldots+\frac{F_k}{G_k}$$

где $\frac{F_i}{G_i}$ – правильные дроби, причём такое разложение единственно

Доказательство.

• Существование

 $\mathbf{И}$ ндукция по k

База. k = 2

По теореме о линейном представлении НОД, можно представить F в виде $F = H_1G_1 + H_2G_2$ Разделим на G_1G_2 :

$$\frac{F}{G_1 G_2} = \frac{H_1}{G_2} + \frac{H_2}{G_1}$$

Представим каждое слагаемое в виде суммы многочлена и правильной дроби:

$$\frac{F}{G_1 G_2} = \left(P_1 + \frac{F_1}{G_1}\right) + \left(P_2 + \frac{F_2}{G_2}\right)$$

Преобразуем:

$$P_1 + P_2 = \frac{F}{G_1 G_2} - \left(\frac{F_1}{G_1} + \frac{F_2}{G_2}\right)$$

Левая часть равенства – многочлен, правая – правильная дробь. Следовательно, обе части равентсва равны 0, и

$$\frac{F}{G_1 G_2} = \frac{F_1}{G_1} + \frac{F_2}{G_2}$$

Переход. $k \rightarrow k+1$

Многочлены $G_1...G_k$ и G_{k+1} взаимно просты. Представим дробь $\frac{F}{G_1...G_kG_{k+1}}$ в виде суммы правильных дробей:

$$\frac{H}{G_1...G_k} + \frac{F_{k+1}}{G_{k+1}}$$

Теперь применим индукционное предположение к первому слагаемому

Единственность

Пусть

$$\frac{F_1}{G_1} + \frac{F_2}{G_2} + \ldots + \frac{F_k}{G_k} = \frac{H_1}{G_1} + \frac{H_2}{G_2} + \ldots + \frac{H_k}{G_k}$$

где $\frac{F_i}{G_i}, \frac{H_i}{G_i}$ — правильные дроби Положим $T_i \coloneqq F_i - H_i.$ Тогда $\deg T_i < \deg G_i,$ и

$$\frac{T_1}{G_1} + \frac{T_2}{G_2} + \ldots + \frac{T_k}{G_k} = 0$$

Требуется доказать, что $T_i = 0$ для любого i

Для удобства обозначений докажем это для случая i=1, то есть докажем, что $F_1=H_1$

Преобразуем равенство:

$$\frac{T_1}{G_1} = \frac{-T_2}{G_2} + \ldots + \frac{-T_k}{G_k}$$

$$T_1G_2...G_k = -T_2 \prod_{i \neq 2} G_i - ... - T_k \prod_{i \neq k} G_i$$

Правая часть равенства делится на G_1 , следовательно, левая тоже делится на G_1 При этом, $G_2...G_k$ и G_1 взаимно просты. Следовательно, $T_1
otin G_1$

46. Разложение правильной дроби в сумму правильных примарных дробей

Определение 68. Нормализованная рациональная дробь называется примарной, если она имеет вид $\frac{1}{P^n}$, где P – неприводимый нормализованный многочлен

Лемма 12 (сумма примарных дробей). Любую правильную дробь можно представить в виде суммы правильных примарных дробей

$$rac{F_1}{P_1^{S_1}}+...+rac{F_k}{P_k^{S_k}}, \qquad P_i$$
 различны

Причём, такое разложение единственно

Доказательство. Пусть $\frac{F}{G}$ – нормализованная правильная дробь. Разложим G в произведение нормализованных неприводимых многочленов: $G = P_1^{S_1}...P_k^{S_k}$

- Существование Применим лемму о сумме дробей с взаимно простыми знаменателями к $G_i = P_i^{S_i}$
- Еслинственность

Пусть есть два представления. Добавив, если нужно, слагаемые вида $\frac{0}{P^k}$, будем считать, что

$$rac{F_1}{P_1^{S_1}}+...+rac{F_k}{P_k^{S_k}}=rac{H_1}{P_1^{t_1}}+...+rac{H_k}{P_k^{t_k}}, \qquad P_i$$
 различны

Вычтем:

$$\frac{F_1P_1^{t_1}-H_1P_1^{S_1}}{P_1^{S_1+t_1}}+\ldots+\frac{F_kP_1^{t_k}-H_kP_1^{S_k}}{P_k^{S_k+t_k}}=0$$

Получили представление 0 в виде суммы дробей с взаимно простыми знаменателями Такое представление единственно, следовательно, числители всех дробей равны 0 Следовательно, соответствующие слагаемые равны

47. Разложение правильной примарной дроби и произвольной дроби в сумму простейших

Определение 69. Нормализованная рациональная дробь называется простейшей, если она имеет вид $\frac{F}{P^n}$, где P – нормализованный неприводимый многочлен, и $\deg F < \deg P$

Лемма 13 (разложение примарной дроби в сумму простейших). Любую правильную примарную дробь $\frac{F}{P^n}$ можно представить в виде суммы простейших дробей со знаменателями P^i , причём такое представление единственно

Доказательство.

• Существование

Докажем, что примарную дробь $\frac{F}{P^n}$ можно представить в виде суммы простейших

 $\mathbf{И}$ ндукция по n

База. n=1. В этом случае, $\deg F < \deg P$, и дробь является простейшей

Переход. $n \rightarrow n+1$

Разделим F на P с остатком:

$$F = PQ + R$$
, $\deg R < \deg P$

Подставим в формулу:

$$\frac{F}{P^{n+1}} = \frac{PQ + R}{P^{n+1}} = \frac{Q}{P^n} + \frac{R}{P^{n+1}}$$

К первому слагаемому можно применить индукционное предположение, а второе является простейшей дробью

• Единственность

Пусть есть два представления. Добавив, если нужно, слагаемые вида $\frac{0}{D^i}$, будем считать, что

$$\frac{F_1}{P} + \frac{F_2}{P^2} + \ldots + \frac{F_k}{P^k} = \frac{H_1}{P} + \frac{H_2}{P^2} + \ldots + \frac{H_k}{P^k}$$

где $\deg F_i < \deg P$, $\deg H_i < \deg P$

Положим $T_i \coloneqq F_i - H_i$. Тогда

$$\frac{T_1}{P} + \frac{T_2}{P^2} + \dots + \frac{T_k}{P^k} = 0, \qquad \deg T_i < \deg P$$

Предположим, что не все T_i равны нулю

Пусть m таково, что $T_m \neq 0$ и $T_i = 0$ при i > m. Тогда

$$\frac{T_1 P^{k-1} + T_2 P^2 + \ldots + T_{m-1} P + F_m}{P^m} = 0, \qquad T_m \neq 0$$

Теорема 40 (разложение дроби в сумму простейших). Правильная рациональная дробь может быть представлена в виде суммы простейших дробей, причём такое представление единственно

Доказательство.

• Существование

Правильную дробь можно представить в виде суммы примарных, а примарную – в виде суммы простейших

• Единственность

Пусть есть два представления:

$$\left(\frac{T_{11}}{P_1} + \frac{T_{12}}{P_1^2} + \ldots\right) + \left(\frac{T_{21}}{P_2} + \frac{T_{22}}{P_2^2} + \ldots\right) + \ldots = \left(\frac{H_{11}}{P_1} + \ldots + \frac{H_{12}}{P_1^2} + \ldots\right) + \left(\frac{H_{21}}{P_2} + \frac{H_{22}}{P_2^2} + \ldots\right) + \ldots$$

Обозначим $F_{ij} := T_{ij} - H_{ij}$

$$\left. \frac{\deg T_{ij} < \deg P_i}{\deg H_{ij} < \deg P_i} \right\} \implies \deg F_{ij} < \deg P_i \implies \frac{F_{ij}}{P_i^j}$$
 — простейшая

Вычтем одно разложение из другого (в новых обозначениях):

$$\left(\frac{F_{11}}{P_1} + \frac{F_{12}}{P_1^2} + \dots\right) + \left(\frac{F_{21}}{P_2} + \frac{F_{22}}{P_2^2} + \dots\right) + \dots = 0$$

Сумма в каждой скобке является примарной дробью вида $\frac{F_i}{P_i^{n_i}}$

Представление в виде суммы примарных дробей единственно, следовательно, сумма в каждой скобке равна 0

Разложение примарной дроби $\frac{F_i}{P_i^{n_i}}$ в сумму простейших $\sum_j \frac{F_{ij}}{P_i^j}$ единственно, следовательно, каждое слагаемое в каждой скобке равно 0

48. Рациональный корень целочисленного многочлена. Следствие о целом корне

Теорема 41 (рациональный корень). Пусть $F \in \mathbb{Z}[x]$, и

$$F(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Пусть $\frac{p}{q}$ — корень F(x), и НОД (p,q)=1 Тогда $\begin{cases} a_n \vdots q \\ a_0 \vdots p \end{cases}$

Доказательство. Подставим:

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} x^{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \frac{p}{q} + a_0 = 0$$

Умножим на q^n :

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0$$

Все слагаемые, кроме последнего, делятся на p, следовательно, последнее слагаемое тоже делится на p

Учитывая, что НОД (p,q) = 1, получаем что $a_0
vert p$ Все слагаемые, кроме первого, делятся на q. Аналогично получаем $a_n
vert q$

Следствие. Пусть $F \in \mathbb{Z}[x]$, и старший коэффициент F(x) равен 1

Тогда любой рациональный корень F(x) является целым числом, и свободный член a_0 делится на любой ненулевой целый корень

Доказательство. Пусть $\frac{p}{q}$ – корень F(x), и НОД (p,q)=1. Тогда

$$q : q \implies q = \pm 1 \implies \frac{p}{q} \in \mathbb{Z}$$

49. Многочлены над \mathbb{Z} : содержание многочлена, примитивные многочлены

Определение 70. Пусть $F(x) \in \mathbb{Z}[x]$, $F(x) = a_0 + a_1 x + ... + a_n x^n$ Содержанием многочлена F(x) называется НОД $(a_0, a_1, ..., a_n)$

Обозначение. c(F)

Определение 71. Многочлен F называется примитивным, если $F \in \mathbb{Z}[x]$, и c(F) = 1

Свойства.

1. Пусть $F \in \mathbb{Z}[x]$, и $F_1(x) = \frac{1}{c(F)} \cdot F(x)$. Тогда $F_1(x)$ – примитивный многочлен

Доказательство. Коэффициенты многочлена разделим на их НОД. В результате получим целые взаимно простые числа $\hfill\Box$

2. Пусть $F_1(x), F_2(x)$ – примитивные, $q \in \mathbb{Q}, \quad F_2(x) = qF_1(x).$ Тогда $q = \pm 1$

Доказательство. Пусть $q = \frac{r}{s}$ – несократимая дробь. Тогда $rF_1(x) = sF_2(x)$ Пусть $F_1(x) = \sum a_i x^i$, $F_2(x) = \sum b_i x^i$. Тогда

$$ra_i = sb_i \quad \forall i \implies sb_i \vdots r \quad \forall i \implies r = \pm 1$$

Аналогично, $s=\pm 1$

3. Пусть $F(x) \in \mathbb{Q}[x]$. Тогда существует единственное положительное число $q \in \mathbb{Q}$, для которого многочлен qF(x) является примитивным

Доказательство.

• Существование

Пусть N – общее кратное знаменателей всех коэффициентов, и $F_1=NF(x)$ Тогда $F_1(x)\in\mathbb{Z}[x]$

По (1), многочлен $\frac{1}{c(F_1)}F_1(x)$ – целочисленный и примитивный

Число $q = \frac{N}{c(F_1)}$ подходит

• Единственность

Пусть $F_1(x)=q_1F(x),$ и $F_2(x)=q_2F(x)$ – целочисленные примитивные Применим (2) к $q=\frac{q_1}{q_2},$ получим, что $\frac{q_1}{q_2}=1$

Г

50. Лемма Гаусса

Лемма 14 (Гаусса). Пусть $F(x), G(x) \in \mathbb{Z}[x]$, и H(x) = F(x)G(x). Тогда

ullet Если F(x), G(x) – примитивные, то H(x) – примитивный

Доказательство. Пусть $P(x) = \sum a_i x^i$, $G(x) = \sum b_i x^i$, $H(x) = \sum d_i x^i$

Предположим, что H(x) не примитивный

Тогда для некоторого $p \in \mathbb{P}$ выполнено $d_i \in p \quad \forall i$

Из того, что F(x), G(x) — примитивные, следует, что **не** все a_i делятся на p, и **не** все b_i делятся на p

Пусть

$$k \min \{i \mid a_i \not p \}, \qquad l = \min \{i \mid b_i \not p \}$$

Тогда

$$d_{k+l} = a_0 b_{k+l} + \dots + a_k b_l + \dots + a_{k+l} b_0 \not / p$$

 \Box

так как $a_k b_l \not / p$, а остальные слагаемые делятся на p. Противоречие

• c(H) = c(F)c(G)

Доказательство. Пусть $F_1(x) = \frac{1}{c(F)}F(x), \quad G_1(x) = \frac{1}{c(G)}G(x).$ Тогда

$$\frac{1}{c(F)c(G)}H(x) = F_1(x)G_1(x)$$

Применяя (1), получаем, что $\frac{1}{c(F)c(G)}H(x)$ – примитивный многочлен

При этом, $\frac{1}{c(H)}H(x)$ – тоже примитивный многочлен

Следовательно, c(H) = c(F)c(G)

51. Редукционный критерий неприводимости. Следствие про рациональный корень

Определение 72. Многочлен $P \in \mathbb{Z}[x]$ называется неприводимым над \mathbb{Z} , если его нельзя разложить в произведение двух многочленов из $\mathbb{Z}[x]$, отличных от константы

Теорема 42 (редукционный критерий неприводимости).

- 1. Пусть $F(x) \in \mathbb{Z}[x]$, и F(x) неприводим над \mathbb{Z} . Тогда F(x) неприводим над \mathbb{Q}
- 2. Пусть $F(x) \in \mathbb{Z}[x]$, $G(x), H(x) \in \mathbb{Q}[x]$, и F(x) = G(x)H(x) Тогда существуют $G_1(x), H_1(x) \in \mathbb{Z}[x]$, ассоциированные с G(x), H(x) над \mathbb{Q} , такие, что $F(x) = G_1(x)H_1(x)$

Доказательство. Достаточно доказать (2)

• Докажем утверждение для случая, когда F(x) – примитивный По свойству (14), сущетсвуют такие $q_G, q_H \in \mathbb{Q}$, что $q_G, q_H > 0$, и многочлены $q_GG(x), q_HH(x)$ принадлежат $\mathbb{Z}[x]$ и являются примитивными Тогда многочлен

$$(q_G q_H)F(x) = q_q G(x) \cdot q_H H(x)$$

является примитивным по лемме Гаусса

Многочлены F(x) и $(q_g q_H) F(x)$ – примитивные, следовательно, по свойству 2, выполнено $q_g q_H = 1$

Получаем, что

$$F(x) = q_a G(x) \cdot q_H H(x)$$

Многочлены $q_GG(x)$ и $q_HH(x)$ подойдут в качестве $H_1(x)$ и $G_1(x)$

• Докажем утверждение в общем случае Многочлен $\frac{1}{c(F)}F(x)$ – примитивный, и он раскладывается в произведение

$$\frac{1}{c(F)}F(x) = \frac{1}{c(F)}G(x)\cdot H(x)$$

Существуют целочисленные многочлены $G_0(x)$ и $H_0(x)$, асоциированные с G(x) и H(x), для которых выполнено

$$\frac{1}{c(F)}F(x) = G_0(x)H_0(x)$$

В качетсве $G_1(x)$ и $H_1(x)$ подойдут $c(F)G_0(x)$ и $H_0(x)$

52. Факториальность $\mathbb{Z}[X]$

Теорема 43. Любой многочлен с целыми коэффициентами можно представить в виде произведения простых чисел и примитивных многочленов, неприводимых над \mathbb{Q}

Такое представление единственно с точностью до перестановки сомножителей и умножения сомножиелей на -1

Доказательство.

• Существование

Пусть $F(x) \in \mathbb{Z}[x]$

Расссмотрим F(x) как элемент $\mathbb{Q}[x]$

Кольцо $\mathbb{Q}[x]$ факториально, поэтому F(x) можно представить в виде произведения обратимого элемента и неразложимых элементов

В $\mathbb{Q}[x]$ обратимыми элементами являются ненулевые константы, а неразложимыми – неприводимые над \mathbb{Q} многочлены

Пусть

$$F(x) = aP_1(x)...P_k(x)$$

Заменив $P_1(x)$ на $aP_1(x)$, будем считать, что

$$F(x) = aP_1(x)...P_k(x),$$
 P_i неприводим над \mathbb{Q}

По редукционному критерию неприводимости, существуют многочлены $H_i \in \mathbb{Z}[x]$, такие, что $H_i(x) = q_i P_i(x)$, и

$$F(x) = H_1(x)...H_k(x)$$

Пусть
$$T_i(x) := \frac{1}{c(H_i)} H_i(x)$$

Тогда многочлены $T_i(x)$ примитивны и неприводимы над \mathbb{Q} , так как ассоциированы с неприводимыми многочленами $P_i(x)$. Получили разложение

$$F(x) = aT_1(x)...T_k(x),$$
 где $b = c(H_1)...c(H_k)$

Разложим b в произведение простых чисел, и если нужно, -1 Получится требуемое разложение P(x)

• Единственность

Пусть

$$F(x) = \pm p_1 p_2 \dots T_1(x) T_2(x) \dots, \qquad F(x) = \pm q_1 q_2 \dots H_1(x) H_2(x) \dots$$

где $p_i,q_i\in\mathbb{P},$ и $T_i(x),H_i(x)$ – примитивные многочлены, неприводимые над $\mathbb Q$

По лемме Гаусса, произведения $T_1(x)T_2(x)$... и $H_1(x)H_2(x)$... являются примитивными многочленами, следовательно,

$$c(F) = \pm p_1 p_2 \dots, \qquad c(F) = \pm q_1 q_2 \dots$$

Из факториальности кольца $\mathbb{Q}[x]$ следует, что произведения $T_1(x)T_2(x)...$ и $H_1(x)H_2(x)...$ совпадают с точностью до перестановки сомножителей и замены на ассоциированные

53. Критерий неприводимости Эйзенштейна

Теорема 44 (критерий неприводимости Эйзенштейна). Пусть $a_0,a_1,...,a_{n-1}\in\mathbb{Z},\quad p\in\mathbb{P},\quad a_i\stackrel{.}{:}p$ для любого i, и $a_0\not p^2$

Тогда многочлен $F(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ неприводим над $\mathbb Q$

Доказательство. Предположим, что F(x) приводим над \mathbb{Q}

Тогда F(x) приводим над \mathbb{Z}

Пусть

$$F(x) := G(x)H(x), \qquad G(x), H(x) \in \mathbb{Z}[x], \qquad G(x) := \sum b_i x^i, \quad H(x) := \sum c_i x^i$$

причём, G(x) и H(x) – не константы

Число $b_0c_0=a_0$ делится на p и **не** делится на p^2

Следовательно, одно из чисел b_0, c_0 делится на p, а второе – не делится

НУО будем считать, что $b_0 : p$, $c_0 \not p$

Старший коэффициент F(x) не делится на p, следовательно, не все b_i делятся на p

Пусть $k := \min \{ i \mid b_i \not \mid p \}$

Тогда $k \leq \deg G < \deg F = n$

Имеем $a_k = b_0 c_k + ... + b_{k-1} c_1 + b_k c_0$ / p, так как все слагаемые, кроме последнего, делятся на p, а последнее — не делится на p — $\not \equiv$