ARIMA Models

Lecture 09

Dr. Colin Rundel

$MA(\infty)$

MA(q)

From last time,

$$MA(q): \qquad y_t = \delta + w_t + \theta_1 \ w_{t-1} \ + \theta_2 \ w_{t-2} \ + \cdots + \theta_q \ w_{t-q}$$

Properties:

$$\begin{split} E(y_t) &= \delta \\ \gamma(0) &= Var(y_t) = (1+\theta_1^2+\theta_2+\dots+\theta_q^2)\,\sigma_w^2 \\ \gamma(h) &= \left\{ \begin{array}{ll} \theta_h + \theta_1\;\theta_{1+h} + \theta_2\;\theta_{2+h} + \dots + \theta_{q-h}\;\theta_q & \text{if } h \in \{1,\dots,q\} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

and is stationary for any values of $(\theta_1, \dots, \theta_q)$

$MA(\infty)$

If we let $q \to \infty$ then process will be stationary if and only if the moving average coefficients (θ 's) are square summable, i.e.

$$\sum_{i=1}^{\infty} \theta_i^2 < \infty$$

which is necessary such that $Var(y_t) < \infty$ so that the weak stationarity conditions are met.

Sometimes, a slightly stronger condition known as absolute summability, $\sum_{i=1}^{\infty} |\theta_i| < \infty$ is necessary (e.g. for some CLT related asymptotic results).

Invertibility

If an MA(q) process, $y_t = \delta + \theta_q(L)w_t$, can be rewritten as a stationary AR process then the process is said to be invertible.

MA(1) w/ $\delta = 0$ example:

Invertibility vs Stationarity

A MA(q) process is *invertible* if $y_t = \delta + \theta_q(L) w_t$ can be rewritten as an exclusively AR process (of possibly infinite order), i.e. $\phi(L) y_t = \alpha + w_t$.

Conversely, an AR(p) process is *stationary* if $\phi_p(L)$ $y_t = \delta + w_t$ can be rewritten as an exclusively MA process (of possibly infinite order), i.e. $y_t = \delta + \theta(L) \, w_t$.

So using our results w.r.t. $\phi(L)$ it follows that if all of the roots of $\theta_q(L)$ are outside the complex unit circle then the moving average process is invertible.

Differencing

Difference operator

We will need to define one more notational tool for indicating differencing

$$\Delta y_t = y_t - y_{t-1}$$

Just like the lag operator we will indicate repeated applications of this operator using exponents

$$\Delta^{2}y_{t} = \Delta(\Delta y_{t})$$

$$= (\Delta y_{t}) - (\Delta y_{t-1})$$

$$= (y_{t} - y_{t-1}) - (y_{t-1} - y_{t-2})$$

$$= y_{t} - 2y_{t-1} + y_{t-2}$$

Note that Δ can even be expressed in terms of the lag operator L,

$$\Delta^{\rm d} = (1 - L)^{\rm d}$$

Differencing and Stocastic Trend

Using the two component time series model

$$y_t = \mu_t + x_t$$

where μ_t is a non-stationary trend component and x_t is a mean zero stationary component.

We have already shown that differencing can address deterministic trend (e.g. $\mu_t = \beta_0 + \beta_1 t$). In fact, if μ_t is any k-th order polynomial of t then $\Delta^k y_t$ is stationary.

Differencing can also address stochastic trend such as in the case where μ_t follows a random walk.

11

Stochastic trend - Example 1

Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ with v_t being a stationary process with mean 0.

Differenced stochastic trend

1 forecast::ggtsdisplay(diff(d\$y))

Stationary?

Is y_t stationary?

Difference Stationary?

Is Δy_t stationary?

Stochastic trend - Example 2

Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ but now $v_t = v_{t-1} + e_t$ with e_t being stationary.

Differenced stochastic trend

1 forecast::ggtsdisplay(diff(d\$y))

Twice differenced stochastic trend

1 forecast::ggtsdisplay(diff(d\$y,differences = 2))

Difference stationary?

Is Δy_t stationary?

2nd order difference stationary?

What about $\Delta^2 y_t$, is it stationary?

ARIMA

ARIMA Models

Autoregressive integrated moving average are just an extension of an ARMA model to include differencing of degree d to y_t before including the autoregressive and moving average components.

ARIMA(p, d, q):
$$\phi_p(L) \Delta^d y_t = \delta + \theta_q(L) w_t$$

Box-Jenkins approach:

- 1. Transform data if necessary to stabilize variance
- 2. Choose order (p, d, q) of ARIMA model
- 3. Estimate model parameters (δ , ϕ s, and θ s)
- 4. Diagnostics

Sta 344 - Fall 2022

23

Using forecast - random walk with drift

Some of R's base timeseries handling is a bit wonky, the forecast package offers some useful alternatives and additional functionality.

```
1 rwd = arima.sim(n=500, model=list(order=c(0,1,0)), mean=0.1)
   forecast::Arima(rwd, order = c(0,1,0), include.constant = TRUE)
Series: rwd
ARIMA(0,1,0) with drift
Coefficients:
       drift.
      0.1764
s.e. 0.0416
sigma^2 = 0.8649: log likelihood = -672.69
AIC=1349.39 AICc=1349.41 BIC=1357.81
```

EDA

1 forecast::ggtsdisplay(rwd)

Differencing - Order 1

1 forecast::ggtsdisplay(diff(rwd))

Differencing - Order 2

1 forecast::ggtsdisplay(diff(rwd, 2))

Differencing - Order 3

```
1 forecast::ggtsdisplay(diff(rwd, 3))
```


AR or MA?

EDA

ts1 - Finding d

ts2 - Finding d

ts1 - Models

р	d	q	aic	aicc	bic
0	1	0	814.14	814.16	817.66
1	1	0	757.83	757.88	764.87
2	1	0	735.41	735.51	745.98
0	1	1	784.81	784.86	791.86
1	1	1	748.57	748.67	759.13
2	1	1	720.70	720.87	734.79
0	1	2	710.79	710.89	721.36
1	1	2	712.75	712.92	726.84
2	1	2	714.00	714.24	731.61

ts2 - Models

р	d	q	aic	aicc	bic
0	1	0	1072.99	1073.01	1076.51
1	1	0	768.43	768.48	775.47
2	1	0	705.91	706.00	716.47
0	1	1	951.02	951.06	958.06
1	1	1	728.80	728.89	739.36
2	1	1	704.81	704.97	718.90
0	1	2	839.03	839.13	849.59
1	1	2	709.16	709.32	723.24
2	1	2	705.68	705.92	723.28

ts1 - final model

Fitted:

```
1 forecast::Arima(ts1, order = c(0,1,2))
Series: ts1
ARIMA(0,1,2)
Coefficients:
        ma1
              ma2
     0.4421 0.5849
s.e. 0.0495 0.0547
sigma^2 = 0.9858: log likelihood = -352.4
AIC=710.79 AICC=710.89 BIC=721.36
```

Truth:

```
1 ts1 = arima.sim(n=250, model=list(order=c(0,1,2), ma=c(0.4,0.5)))
```

ts2 - final model

Fitted:

```
1 forecast::Arima(ts2, order = c(2,1,0))
Series: ts2
ARIMA(2,1,0)
Coefficients:
        ar1
            ar2
     0.4388 0.4760
s.e. 0.0552 0.0553
sigma^2 = 0.9636: log likelihood = -349.95
AIC=705.91 AICC=706 BIC=716.47
```

Truth:

```
1 ts2 = arima.sim(n=250, model=list(order=c(2,1,0), ar=c(0.4,0.5)))
```

Residuals

ts1 Residuals

ts2 Residuals

Automatic model selection

ts1:

ts2:

Electrical Equipment Sales

Data

1st order differencing

2nd order differencing

Model

```
1 forecast::Arima(elec_sales, order = c(3,1,0))
Series: elec_sales
ARIMA(3,1,0)
Coefficients:
         arl ar2 ar3
     -0.3488 \quad -0.0386 \quad 0.3139
s.e. 0.0690 0.0736 0.0694
sigma^2 = 9.853: log likelihood = -485.67
AIC=979.33 AICc=979.55 BIC=992.32
```

Residuals

```
1 forecast::Arima(elec_sales, order = c(3,1,0)) %>% residuals() %>%
2 forecast::tsdisplay(points=FALSE)
```


Model Comparison

Model choices:

```
1 forecast::Arima(elec_sales, order = c(3,1,0))$aicc
[1] 979.5477
1 forecast::Arima(elec_sales, order = c(3,1,1))$aicc
[1] 978.4925
1 forecast::Arima(elec_sales, order = c(4,1,0))$aicc
[1] 979.2309
1 forecast::Arima(elec_sales, order = c(2,1,0))$aicc
[1] 996.8085
```

Automatic selection:

```
1 forecast::auto.arima(elec_sales)
Series: elec_sales
ARIMA(3,1,1)
```

Coefficients:

ar1 ar2 ar3 ma1 0.0519 0.1191 0.3730 -0.4542 s.e. 0.1840 0.0888 0.0679 0.1993

sigma^2 = 9.737: log likelihood = -484.08
AIC=978.17 AICc=978.49 BIC=994.4

Model fit

```
plot(elec_sales, lwd=2, col=adjustcolor("black", alpha.f=0.75))
forecast::Arima(elec_sales, order = c(3,1,0)) %>% fitted() %>%
lines(col=adjustcolor('red',alpha.f=0.75),lwd=2)
```


Model forecast

```
1 forecast::Arima(elec_sales, order = c(3,1,0)) %>%
2 forecast::forecast() %>% autoplot()
```

Forecasts from ARIMA(3,1,0) 120 100 80 60 2000 2005 2010 Time

Model forecast - Zoom

```
forecast::Arima(elec_sales, order = c(3,1,0)) %>%
forecast::forecast() %>% autoplot() + xlim(2009,2014)
```

Forecasts from ARIMA(3,1,0)

Sta 344 - Fall 2022

49

General Guidance

- 1. Positive autocorrelations out to a large number of lags usually indicates a need for differencing
- 2. Slightly too much or slightly too little differencing can be corrected by adding AR or MA terms respectively.
- 3. A model with no differencing usually includes a constant term, a model with two or more orders (rare) differencing usually does not include a constant term.
- 4. After differencing, if the PACF has a sharp cutoff then consider adding AR terms to the model.
- 5. After differencing, if the ACF has a sharp cutoff then consider adding an MA term to the model.
- 6. It is possible for an AR term and an MA term to cancel each other's effects, so try models with fewer AR terms and fewer MA terms.