

Diseños Factoriales 2k en Bloques- Introducción

- Por lo general, NO es posible correr todos los tratamientos de un diseño factorial 2^k bajo las mismas condiciones experimentales, es decir, durante la planeación del experimento aparece alguna restricción adicional que hace necesario considerar al menos un factor de bloque en el estudio.
- El **objetivo** del experimento repartido en **bloques** es estudiar el efecto de los **k** -factores sobre la respuesta, NO es el objetivo estudiar el efecto del **bloque**, pero una vez incluídos en el experimento se puede evaluar su efecto sobre la respuesta y conocer la pertinencia de haberlo considerado.

Diseños Factoriales 2k en Bloques- Introducción

■ El uso adecuado de los **bloques** incrementa la precisión del experimento. Es un medio para darle un mayor rango de validez al estudio y adicionalmente se tienen conclusiones válidas dentro de distintos bloques que son inevitables y están siempre presentes en el proceso.

Casos Típicos donde se utilizan BLOQUES

- 1. No es posible realizar el factorial 2^k en un mismo día ya sea por:
 - a. La lentitud de las corridas o
 - **b.** La lentitud del proceso de medición o
 - **c.** Por la cantidad de corridas.
- 2. Si se considera que el **día** puede afectar los resultados del estudio, entonces se incorporaría al experimento el **día** como un factor de bloqueo.
- **3.** Si el proceso de estudio es sensible a los cambios de **turno**, entonces los turnos deberán considerarse como factor de **bloque**.

Casos Típicos- Continuación

- **4.** Cuando un **lote de material** NO alcanza para hacer todas las corridas experimentales y se sospecha que las diferencias entre lotes podrían sesgar los resultados, entonces es necesario repartir adecuadamente las corridas experimentales a varios lotes (**bloques**).
- **5.** Cuando en un experimento NO es posible contar con el mismo **operador** o con el mismo **instrumento de medición**, y si estos pueden influir en el desempeño del proceso, entonces hay que considerarlos como factores de bloque.
- 6. Si los bloques son las réplicas.

Caso de Estudio 7: Réplicas como Bloques

- Se desea estudiar el efecto del tamaño de la broca (Factor A) y la velocidad de la broca (factor B) sobre la vibración de la ranura (respuesta).
- Se decide utilizar un diseño factorial 2² con cuatro (4) réplicas, ie.
 4-repeticiones por tratamiento.
- El total de corridas $\mathbf{n} \times \mathbf{2^2} = \mathbf{4} \times \mathbf{2^2} = \mathbf{16}$, y se realizan en orden aleatorio.
- El tamaño de la broca utilizada es: 1/16 y 1/8 plg y la velocidad considerada es 40 y 90 rev/seg.

Caso de Es	tudio 7	7: C	Cor	ntin	uac	ión						
Los datos ol	otenido	s s	on									
A:Broca	B:Vel. O		rden		A B		Vibr.			Total		
1/16 1/8 1/16 1/8	40 40 90 90	4 1 3 2	8 6 7 5	12 10 11 9	14 13 15 16	Ī 1	- + +	18.2 27.2 15.9 41.0	18.9 24.0 14.5 43.9	12.9 22.4 15.1 36.3	14.4 22.5 14.2 39.9	(1): 64.4 a: 96.1 (b): 59.7 ab: 161.1
A Bro	A Broca B Vel.		BI			BII	В	Ш	BIV	To	otales	
-		-		1	8.2	1	8.9	12	2.9	14.4	(1)	=64.4
+		-		2	7.2	2	24.0	22	2.4	22.5	a=	=96.1
-		+		1	5.9	1	4.5	15	5.1	14.2	b=	=59.7
+		+		4	1.0	4	13.9	36	5.3	39.9	ab=	: 161.1
Tota	Totales		<i>Y</i> 1		-	<i>Y</i> 2	<i>Y</i> .	.3	<i>Y</i> 4		<u>Y</u>	
				10	3.3	1	01.3	86	5.7	91.0	3	81.3

Ahora,

$$SS_{\text{Bloque}} = \sum_{k=1}^{4} \frac{Y_{..k}^2}{4} - \frac{Y_{..k}^2}{16}$$

$$= \frac{1}{4} (103.3^2 + 101.3^2 + 86.7^2 + 91.0^2) - \frac{381.3^2}{16}$$

$$= 44.36$$

La hipótesis a contrastar es:

 H_0 : Efecto de Bloque = 0 v.s H_1 : Efecto de Bloque $\neq 0$ La estadística de prueba usada es:

$$\boxed{F = \frac{MS_{\text{Bloque}}}{MS_E} = \frac{SS_{\text{Bloque}}/(n-1)}{SS_E/(2^k(n-1) - gl(SS_{\text{Bloque}}))} \sim F_{n-1\;;\;2^k(n-1) - gl(SS_{\text{Bloque}})}.}$$

Tabla ANOVA-Recalculada								
	Of Sum Sq Mean Sq F value Pr(>1	<u>-</u> ")						
Broca	1 1107.2 1107.2 364.21 1.3	72179e-08						
Vel	1 227.3 227.3 74.77 1.18	83049e-05						
Broca:Vel	1 303.6 303.6 99.87 1.18	83049e-05						
Bloque	3 44.36 14.79 4.86 0.02	281						
Error	9 27.36 3.04							
Total	15 1709.83							

En este caso, note que:

$$\mathbf{F_{cal}} = rac{\mathbf{MS_{Bloque}}}{\mathbf{MS_{E}}} = rac{\mathbf{44.36}}{\mathbf{3.04}} = \mathbf{4.86}$$

y el valor crítico de la Tabla $F_{0.05,\,3,\,9}=qf(0.95,3,9)=3.862548$, de donde se rechaza la hipótesis Nula de que el efecto del bloque(**réplicas**) no es significativo.

Por tanto, a un nivel de significancia del 5%, las réplicas tienen un efecto significativo en la vibración de la ranura.

De forma análoga al hacer la prueba de significancia tanto de la interacción entre la velocidad y el tamaño de la broca, y los efectos principales se concluye que todos son significativos a un nivel de significancia del 5%.

Taller 6

La resistividad de una oblea de silicio está influenciada por varios factores. Los resultados de un diseño factorial 2^4 es llevado a cabo durante un paso de procesamiento crítico son mostrados en la siguiente tabla:

Run	\boldsymbol{A}	В	\boldsymbol{C}	\boldsymbol{D}	Resistivity
1	-	-	_		1.92
2	+	450 m	<u> </u>	9 <u></u>	11.28
3	-	+		64 500	1.09
4	+	+	1255.873	8 	5.75
5	-	_	+	8:	2.13
6	+	<u> </u>	+	ii-	9.53
7	_	+	+	· -	1.03
8	+	+	+	(6 <u></u>	5.35
9	-	-		+	1.60
10	+	-		+	11.73
11	_	+		+	1.16
12	+	+	-	+	4.68
13	-	_	+	+	2.16
14	+	-	+	+	9.11
15	_	+	+	+	1.07
16	+	+	+	+	5.30

Preguntas Taller 6

- Estimar los efectos de cada uno de los factores principales y los efectos de interacción doble. Grafique los efectos estimados en un gráfico de probabilidad normal, úselo para seleccionar un modelo tentativo.
- 2. Ajuste el modelo obtenido en la parte 1. y haga el análisis de residuales para la verificación de los supuestos. ¿Hay indicios de que el modelo no es adecuado?
- 3. Repita el análisis de las partes 1 y 2 con ln(y) como variable respuesta. ¿Existen indicios de que la transformación ha sido apropiada?

Preguntas Taller 6-Continuación

- **4.** Ajuste un modelo en términos de las variables codificadas que puede ser usado para predecir la resistividad.
- 5. Suponga que el experimentador ha realizado cuatro corridas al centro junto con las 16 corridas experimentales anteriores. Las medidas de resistividad en el centro fueron: 8.15, 7.63, 8.95 y 6.48. Analice el experimento otra vez con los puntos centrales. ¿Qué conclusiones se pueden obtener?