

On partially entanglement breaking channels

Dariusz Chruściński and Andrzej Kossakowski
 Institute of Physics, Nicolaus Copernicus University,
 Grudziądzka 5/7, 87–100 Toruń, Poland

Abstract

Using well known duality between quantum maps and states of composite systems we introduce the notion of Schmidt number of a quantum channel. It enables one to define classes of quantum channels which partially break quantum entanglement. These classes generalize the well known class of entanglement breaking channels.

1 Introduction

In quantum information theory [1] a quantum channel is represented by a completely positive trace preserving map (CPT) between states of two quantum systems living in \mathcal{H}_A and \mathcal{H}_B . Consider $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^d$. Then the states of both systems are defined by semi-positive elements from $M_d \cong \mathbb{C}^d \otimes \mathbb{C}^d$. Due to the Kraus-Choi representation theorem [2] any CPT map

$$\Phi : M_d \longrightarrow M_d , \quad (1)$$

may be represented by

$$\Phi(\rho) = \sum_{\alpha} K_{\alpha} \rho K_{\alpha}^* , \quad (2)$$

where the Kraus operators $K_{\alpha} \in M_d$ satisfies trace-preserving condition $\sum_{\alpha} K_{\alpha}^* K_{\alpha} = I_d$. It is, therefore, clear that all the properties of Φ are encoded into the family K_{α} . In the present paper we show how the structure of Φ depends upon the rank of Kraus operators. In particular it is well known [3, 4] that if all K_{α} are rank one then Φ defines so called entanglement breaking channel (EBT), that is, for any state ρ from $M_d \otimes M_d$, $(\text{id}_d \otimes \Phi)\rho$ is separable in $M_d \otimes M_d$.

Definition 1 We call a channel (1) an r -partially entanglement breaking channel (r -PEBT) iff for an arbitrary ρ

$$SN[(\text{id}_d \otimes \Phi)\rho] \leq r , \quad (3)$$

where $SN(\sigma)$ denotes the Schmidt number of σ .

Clearly, EBT channels are 1-PEBT. Let us recall [5] that

$$SN(\sigma) = \min_{p_k, \psi_k} \left\{ \max_k SR(\psi_k) \right\} , \quad (4)$$

where the minimum is taken over all possible pure states decompositions

$$\sigma = \sum_k p_k |\psi_k\rangle\langle\psi_k| ,$$

with $p_k \geq 0$, $\sum_k p_k = 1$ and ψ_k are normalized vectors in $\mathbb{C}^d \otimes \mathbb{C}^d$. The Schmidt rank $\text{SR}(\psi)$ denotes the number of non-vanishing Schmidt coefficients in the Schmidt decomposition of ψ . This number characterizes the minimum Schmidt rank of the pure states that are needed to construct such density matrix. It is evident that $1 \leq \text{SN}(\rho) \leq d$ and ρ is separable iff $\text{SN}(\rho) = 1$. Moreover, it was proved [5] that the Schmidt number is non-increasing under local operations and classical communication.

Let us denote by S_k the set of density matrices on $\mathbb{C}^d \otimes \mathbb{C}^d$ that have Schmidt number at most k . One has $\mathcal{S} = S_1 \subset S_2 \subset \dots \subset S_d = \mathcal{P}$ with \mathcal{S} and \mathcal{P} being the sets of separable and all density matrices, respectively. Recall, that a positive map $\Lambda : M_d \rightarrow M_d$ is k -positive, if $(\text{id}_k \otimes \Lambda)$ is positive on $M_k \otimes M_d$. Due to Choi [6] Λ is completely positive iff it is d -positive. Now, Λ is k -positive iff $(\text{id}_d \otimes \Lambda)$ is positive on S_k . The set of k -positive maps which are not $(k+1)$ -positive may be used to construct a Schmidt number witness operator W which is non-negative on all states in S_{k-1} , but detects at least one state ρ belonging to S_k [7, 8] (see also [9]), i.e.

$$\text{Tr}(W\sigma) \geq 0 , \quad \sigma \in S_{k-1} , \quad (5)$$

and there is a $\rho \in S_k$ such that $\text{Tr}(W\rho) < 0$.

In the next section we investigate basic properties of PEBT channels. Then in section 4 we generalize the discussion to multipartite entangled states.

2 Properties of PEBT channels

Using well known duality between quantum CPT maps (1) and states of the composite quantum system living in $\mathbb{C}^d \otimes \mathbb{C}^d$ [10, 11] we may assign a Schmidt number to any CPT map. Take any CPT map Φ and define a state [12]

$$\rho_\Phi = (\text{id}_d \otimes \Phi) P_d^+ , \quad (6)$$

where $P_d^+ = |\psi_d^+\rangle\langle\psi_d^+|$ with $\psi_d^+ = d^{-1/2} \sum_k e_k \otimes e_k$ being a maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$ (e_k ; $k = 1, 2, \dots, d$ denote the orthonormal base in \mathbb{C}^d).

Definition 2 A Schmidt number of Φ is defined by

$$\text{SN}(\Phi) = \text{SN}(\rho_\Phi) , \quad (7)$$

where ρ_Φ stands for the ‘dual’ state defined in (6).

Actually, in [11] a CPT map $\Phi : M_d \rightarrow M_d$ was called an r -CPT iff $\text{SN}(\Phi) \leq r$. We show that r -PEBT channels are represented by r -CPT maps.

Note, that using Kraus decomposition (2) we may express the Schmidt number of Φ in analogy to (4) as follows:

$$\text{SN}(\Phi) = \min_{K_\alpha} \left\{ \max_\alpha \text{rank } K_\alpha \right\} . \quad (8)$$

The analogy between (4) and (8) is even more visible if we make the following observation: any vector $\psi \in \mathbb{C}^d \otimes \mathbb{C}^d$ may be written as $\psi = \sum_{i,j=1}^d x_{ij} e_i \otimes e_j$ and hence, introducing a ψ -dependent operator $F \in M_d$ such that $x_{ij} = \langle j|F|i\rangle$, one has

$$\psi = \sum_{i=1}^d e_i \otimes F e_i . \quad (9)$$

Using the maximally entangled state ψ_d^+ it may be rewritten in perfect analogy to (6):

$$\psi = \sqrt{d} (\text{id}_d \otimes F) \psi_d^+ . \quad (10)$$

Clearly, the above formula realizes an isomorphism between $\mathbb{C}^d \otimes \mathbb{C}^d$ and M_d . Note, that the normalization condition $\langle \psi | \psi \rangle = 1$ implies $\text{Tr}(F^* F) = 1$. Moreover, two vectors ψ_1 and ψ_2 are orthogonal iff the corresponding operators F_1 and F_2 are trace-orthogonal, i.e. $\text{Tr}(F_1^\dagger F_2) = 0$. It is evident that $\text{SR}(\psi) = \text{rank } F$. Moreover, the singular values of F are nothing but the Schmidt coefficients of ψ . Hence, the separable pure states from $\mathbb{C}^d \otimes \mathbb{C}^d$ correspond to rank one operators from M_d .

Consider now the corresponding one-dimensional projector $|\psi\rangle\langle\psi|$. It may be written as

$$|\psi\rangle\langle\psi| = \sum_{i,j=1}^d e_{ij} \otimes F e_{ij} F^* , \quad (11)$$

with $\text{Tr}(F^\dagger F) = 1$. In (11) a rank one operator $e_{ij} \in M_d$ equals to $|i\rangle\langle j|$ in Dirac notation. Hence the Schmidt class S_k may be defined as follows: $\rho \in S_k$ iff

$$\rho = \sum_{\alpha} p_{\alpha} P_{\alpha} , \quad (12)$$

with $p_{\alpha} \geq 0$, $\sum_{\alpha} p_{\alpha} = 1$ and

$$P_{\alpha} = \sum_{i,j=1}^d e_{ij} \otimes F_{\alpha} e_{ij} F_{\alpha}^* , \quad (13)$$

with $\text{rank } F_{\alpha} \leq k$, and $\text{Tr}(F_{\alpha} F_{\alpha}^*) = 1$. That is, S_k is a convex combination of one dimensional projectors corresponding to F 's of rank at most k .

Theorem 1 *A quantum channel $\Phi \in r\text{-PEBT}$ iff $\text{SN}(\Phi) \leq r$.*

Proof. Note, that $\text{SN}(\Phi) \leq r$ iff there exists a Kraus decomposition such that all Kraus operators K_{α} satisfy $\text{rank } K_{\alpha} \leq r$. Indeed, using (2) and (13) one has

$$(\text{id}_d \otimes \Phi) P_d^+ = \sum_{i,j=1}^d e_{ij} \otimes \Phi(e_{ij}) = \sum_{\alpha} p_{\alpha} P_{\alpha} ,$$

with

$$p_{\alpha} = \frac{1}{d} \text{Tr}(K_{\alpha}^\dagger K_{\alpha}) , \quad F_{\alpha} = \frac{1}{\sqrt{dp_{\alpha}}} K_{\alpha} .$$

The above relations simply translate the isomorphism between states and CPT maps in terms of operators K_α and F_α . Suppose now that Φ is r -PEBT and let ρ be an arbitrary state in M_d

$$\rho = \sum_{\beta} p_{\beta} \sum_{i,j=1}^d e_{ij} \otimes F_{\beta} e_{ij} F_{\beta}^* ,$$

with arbitrary $F_\alpha \in M_d$ such that $\text{Tr}(F_\alpha F_\alpha^*) = 1$. One has

$$(\text{id}_d \otimes \Phi)\rho = \sum_{\alpha,\beta} p_{\alpha\beta} \sum_{i,j=1}^d e_{ij} \otimes \tilde{F}_{\alpha\beta} e_{ij} \tilde{F}_{\alpha\beta}^* , \quad (14)$$

with

$$p_{\alpha\beta} = \frac{1}{d} \text{Tr}(K_\alpha K_\alpha^*) p_{\beta} , \quad \tilde{F}_{\alpha\beta} = \sqrt{\frac{dp_{\beta}}{p_{\alpha\beta}}} K_\alpha F_\beta ,$$

where K_α are Kraus operators representing an r -CPT map Φ satisfying $\text{rank } K_\alpha \leq r$. Now,

$$\text{rank}(K_\alpha F_\beta) \leq \min\{\text{rank } K_\alpha, \text{rank } F_\beta\} \leq r ,$$

and hence $(\text{id}_d \otimes \Phi)\rho \in S_r$. The converse follows immediately. \square

As a corollary note that since $\text{rank}(K_\alpha F_\beta) \leq \text{rank } F_\beta$ one finds

$$\text{SN}((\text{id}_d \otimes \Phi)\rho) \leq \text{SN}(\rho) , \quad (15)$$

which shows that indeed SN does not increase under a local operation defined by $\text{id}_d \otimes \Phi$.

Theorem 2 *A map Φ is r -CPT iff $\Lambda \circ \Phi$ is CPT for any r -positive map Λ .*

Proof. Suppose that Φ is r -CPT and take an arbitrary k -positive Λ :

$$(\text{id}_d \otimes \Lambda \circ \Phi) P_d^+ = (\text{id}_d \otimes \Lambda) [(\text{id}_d \otimes \Phi) P_d^+] \geq 0 ,$$

since $(\text{id}_d \otimes \Phi) P_d^+ \in S_r$. Conversely, let $\Lambda \circ \Phi$ be CPT for any r -positive Λ , then $(\text{id}_d \otimes \Lambda \circ \Phi) P_d^+ \geq 0$ implies that $(\text{id}_d \otimes \Phi) P_d^+ \in S_r$ and hence Φ is r -CPT. Actually, the same is true for $\Phi \circ \Lambda$. \square

To introduce another class of quantum operations let us recall the notion of co-positivity: a map Λ is r -co-positive iff $\tau \circ \Lambda$ is r -positive, where τ denotes transposition in M_d . In the same way Φ is completely co-positive (CcP) iff $\tau \circ \Phi$ is CP. Let us define the following convex subsets in $M_d \otimes M_d$: $S^r = (\text{id}_d \otimes \tau) S_r$. One obviously has: $S^1 \subset S^2 \subset \dots \subset S^n$. Note, that $S^1 = S_1 = \mathcal{S}$ and $S_n \cap S^n$ is a set of all PPT states.

Now, following [11] we call a CcP map Φ an (r,s) -CPT if

$$(\text{id}_d \otimes \Phi) P_d^+ \in S_r \cap S^s , \quad (16)$$

that is

$$\rho_\Phi \in S_r \quad \text{and} \quad (\text{id}_d \otimes \tau)\rho_\Phi \in S_s .$$

Hence, if ρ_ϕ is a PPT state, then Φ is (r, s) -CPT for some r and s . In general there is no relation between (r, s) -CPT and (k, l) -CPT for arbitrary r, s and k, l . However, one has

$$(1, 1)\text{-CPT} \subset (2, 2)\text{-CPT} \subset \dots \subset (n, n)\text{-CPT} ,$$

and $(n, n)\text{-CPT} \equiv \text{CPT} \cap \text{CcPT}$.

Theorem 3: A map Φ is (r, s) -CPT iff for any r -positive map Λ_1 and s -co-positive map Λ_2 the composite map $\Lambda_1 \circ \Lambda_2 \circ \Phi$ is CPT.

3 Examples

Example 1: Let us consider so called isotropic state in d dimensions

$$\mathcal{I}_\lambda = \frac{1-\lambda}{d^2} I_d \otimes I_d + \lambda P_d^+ , \quad (17)$$

with $-1/(d^2 - 1) \leq \lambda \leq 1$. It is well known [13] that \mathcal{I}_λ is separable iff $\lambda \leq 1/(d + 1)$. Now, let $\Psi : M_d \rightarrow M_d$ be an arbitrary positive trace preserving map and define a CPT map Φ_λ by

$$(\text{id}_d \otimes \Phi_\lambda) P_d^+ = (\text{id}_d \otimes \Psi) \mathcal{I}_\lambda . \quad (18)$$

One easily finds

$$\Phi_\lambda(\rho) = \frac{1-\lambda}{d} \text{Tr} \rho I_d + \lambda \Psi(\rho) . \quad (19)$$

Clearly, for $\lambda \leq 1/(d + 1)$ (i.e. when \mathcal{I}_λ is separable) Φ_λ is $(1, 1)$ -CPT, i.e. both Φ_λ and $\tau \circ \Phi_\lambda$ are EBT.

Example 2: Let us rewrite an isotropic state \mathcal{I}_λ in terms of fidelity $f = \text{Tr}(\mathcal{I}_\lambda P_d^+)$:

$$I_f = \frac{1-f}{d^2-1} (I_d \otimes I_d - P_d^+) + f P_d^+ . \quad (20)$$

It was shown in [5] that $\text{SN}(\mathcal{I}_f) = k$ iff

$$\frac{k-1}{d} < f \leq \frac{k}{d} . \quad (21)$$

Defining a CPT map Φ_f

$$(\text{id}_d \otimes \Phi_f) P_d^+ = \mathcal{I}_f , \quad (22)$$

one finds

$$\Phi_f(\rho) = \frac{1-f}{d^2-1} \text{Tr} \rho I_d + \frac{d^2 f - 1}{d^2-1} \rho . \quad (23)$$

This map is k -CPT iff f satisfies (21) and hence it represents an r -PEBT channel.

Example 3: Consider

$$\rho = \sum_{\alpha=1}^{d^2} p_\alpha \sum_{i,j=1}^d e_{ij} \otimes F_\alpha e_{ij} F_\alpha^* , \quad (24)$$

where

$$p_\alpha \geq 0 , \quad \sum_{\alpha=1}^{d^2} p_\alpha = 1 , \quad F_\alpha = \frac{U_\alpha}{\sqrt{d}} , \quad (25)$$

and U_α defines a family of unitary operators from $U(d)$ such that

$$\text{Tr}(U_\alpha U_\beta^*) = \delta_{\alpha\beta} , \quad \alpha, \beta = 1, 2, \dots, d^2 . \quad (26)$$

The corresponding ‘dual’ quantum channel Φ is given by

$$\Phi(\sigma) = \sum_{\alpha=1}^{d^2} K_\alpha \sigma K_\alpha^* , \quad (27)$$

with $K_\alpha = \sqrt{p_\alpha} U_\alpha$. Note, that for $p_\alpha = 1/d^2$ one obtains a completely depolarizing channel, i.e.

$$\frac{1}{d^2} \sum_{\alpha=1}^{d^2} U_\alpha e_{ij} U_\alpha^* = \delta_{ij} . \quad (28)$$

Now, following [14] consider a map

$$\Lambda_\mu(\sigma) = I_d \text{Tr} \sigma - \mu \sigma , \quad (29)$$

which is k (but not $(k+1)$)-positive for

$$\frac{1}{k+1} \leq \mu \leq \frac{1}{k} . \quad (30)$$

One has

$$\begin{aligned} (\text{id}_d \otimes \Lambda_\mu)\rho &= \sum_{\alpha=1}^{d^2} p_\alpha \sum_{i,j=1}^d e_{ij} \otimes [I_d \text{Tr}(F_\alpha e_{ij} F_\alpha^*) - \mu F_\alpha e_{ij} F_\alpha^*] \\ &= \frac{1}{d} I_d \otimes I_d - \sum_{\alpha=1}^{d^2} \mu p_\alpha \sum_{i,j=1}^d e_{ij} \otimes F_\alpha e_{ij} F_\alpha^* \\ &= \frac{1}{d} \sum_{\alpha=1}^{d^2} (1 - d\mu p_\alpha) \sum_{i,j=1}^d e_{ij} \otimes F_\alpha e_{ij} F_\alpha^* , \end{aligned} \quad (31)$$

where we have used (28). It is therefore clear that if for some $1 \leq \alpha \leq d^2$, $p_\alpha > 1/(d\mu)$ and μ satisfies (30), then $\text{SN}(\rho) \geq k+1$. Equivalently, a ‘dual’ quantum channel (27) belongs to $\{d\text{-PEBT} - k\text{-PEBT}\}$.

4 PEBT channels and multipartite entanglement

Consider now a multipartite entangled state living in $\mathcal{H} = (\mathbb{C}^d)^{\otimes N}$ for some $N \geq 2$. Any $\psi \in \mathcal{H}$ may be written as follows:

$$\psi = \sum_{i_1, \dots, i_K=1}^d e_{i_1} \otimes \dots \otimes e_{i_K} \otimes F(e_{i_1} \otimes \dots \otimes e_{i_K}) , \quad (32)$$

where F is an operator

$$F : (\mathbb{C}^d)^{\otimes K} \longrightarrow (\mathbb{C}^d)^{\otimes N-K},$$

and $1 \leq K \leq N - 1$. Again, normalization of ψ implies $\text{Tr}(F^*F) = 1$. Clearly, such representation of ψ is highly non-unique. One may freely choose K and take K copies of \mathbb{C}^d out of $(\mathbb{C}^d)^{\otimes N}$. Any specific choice of representation depends merely on a specific question we would like to ask. For example (32) gives rise to the following reduced density matrices:

$$\rho_B = \text{Tr}_A |\psi\rangle\langle\psi| = \text{Tr}_{12\dots K} |\psi\rangle\langle\psi| = FF^* \in M_d^{\otimes N-K}, \quad (33)$$

and

$$\rho_A = \text{Tr}_B |\psi\rangle\langle\psi| = \text{Tr}_{K+1\dots N} |\psi\rangle\langle\psi| = F^*F \in M_d^{\otimes K}. \quad (34)$$

A slightly different way to represent ψ reads as follows

$$\psi = \sum_{i_1, \dots, i_{N-1}=1}^d e_{i_1} \otimes \dots \otimes e_{i_{N-2}} \otimes e_{i_{N-1}} \otimes F_{i_1\dots i_{N-2}} e_{i_{N-1}}, \quad (35)$$

where

$$F_{i_1\dots i_{N-2}} : \mathbb{C}^d \longrightarrow \mathbb{C}^d,$$

for any $i_1, \dots, i_{N-2} = 1, 2, \dots, d$. Now, normalization of ψ implies

$$\sum_{i_1, \dots, i_{N-2}=1}^d \text{Tr} \left(F_{i_1\dots i_{N-2}}^* F_{i_1\dots i_{N-2}} \right) = 1. \quad (36)$$

One has the following relation between different representations:

$$\langle e_{i_N} | F_{i_1\dots i_{N-2}} | e_{i_{N-1}} \rangle = \langle e_{i_1} \otimes \dots \otimes e_{i_{N-1}} | F | e_{i_N} \rangle. \quad (37)$$

Example 4. For $N = 3$ we have basically three representations:

$$\psi = \sum_{i=1}^d e_i \otimes Fe_i, \quad (38)$$

$$\psi = \sum_{i,j=1}^d e_i \otimes e_j \otimes F'(e_i \otimes e_j), \quad (39)$$

and

$$\psi = \sum_{i,j=1}^d e_i \otimes e_j \otimes F_i e_j, \quad (40)$$

with

$$F : \mathbb{C}^d \longrightarrow (\mathbb{C}^d)^{\otimes 2}, \quad F' = F^T : (\mathbb{C}^d)^{\otimes 2} \longrightarrow \mathbb{C}^d, \quad F_i : \mathbb{C}^d \longrightarrow \mathbb{C}^d.$$

As an example take $d = 2$ and let us consider two well known 3-qubit states [15]:

$$|\text{GHZ}\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle), \quad (41)$$

and

$$|W\rangle = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle) . \quad (42)$$

One finds for GHZ-state:

$$F' = (F_1, F_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = F^T , \quad (43)$$

and for W-state:

$$\tilde{F}' = (\tilde{F}_1, \tilde{F}_2) = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \tilde{F}^T . \quad (44)$$

Note, that for both states $\text{rank}(F) = \text{rank}(\tilde{F}) = 2$. There is, however, crucial difference between F_i and \tilde{F}_i : $\text{rank}(F_i) = 1$, whereas $\text{rank}(\tilde{F}_1) = 2$. Both states possess genuine 3-qubit entanglement. The difference consists in the fact that GHZ-state is 2-qubit separable whereas W-state is 2-qubit entangled [16]:

$$\rho_{23}^{\text{GHZ}} = \text{Tr}_1 |\text{GHZ}\rangle \langle \text{GHZ}| = \sum_{k=0}^1 \sum_{i,j=0}^1 e_{ij} \otimes F_k e_{ij} F_k^* , \quad (45)$$

with $\text{SN}(\rho_{23}^{\text{GHZ}}) = 1$,

and

$$\rho_{23}^{\text{W}} = \text{Tr}_1 |\text{W}\rangle \langle \text{W}| = \sum_{k=0}^1 \sum_{i,j=0}^1 e_{ij} \otimes \tilde{F}_k e_{ij} \tilde{F}_k^* , \quad (46)$$

with $\text{SN}(\rho_{23}^{\text{W}}) = 2$.

If $N = 2K$ any state vector $\psi \in (\mathbb{C}^d)^{\otimes N} = (\mathbb{C}^d)^{\otimes K} \otimes (\mathbb{C}^d)^{\otimes K}$ may be represented by (32) with

$$F : (\mathbb{C}^d)^{\otimes K} \longrightarrow (\mathbb{C}^d)^{\otimes K} . \quad (47)$$

Hence, an arbitrary state ρ from $M_d^{\otimes K} \otimes M_d^{\otimes K}$ reads as follows

$$\rho = \sum_{\alpha} p_{\alpha} \sum_{i_1, \dots, i_K=1}^d \sum_{j_1, \dots, j_K=1}^d e_{i_1 j_1} \otimes \dots \otimes e_{i_K j_K} \otimes F_{\alpha} (e_{i_1 j_1} \otimes \dots \otimes e_{i_K j_K}) F_{\alpha}^* . \quad (48)$$

Clearly, $\text{SN}(\rho) \leq r$ iff $\text{rank}(F_{\alpha}) \leq r$ for all F_{α} appearing in (48). Then the corresponding quantum channel

$$\Phi : M_d^{\otimes K} \longrightarrow M_d^{\otimes K} , \quad (49)$$

possesses Kraus decomposition with $K_{\alpha} = \sqrt{d^K p_{\alpha}} F_{\alpha}$ and hence is r -PEBT. For other aspects of multipartite entanglement see e.g. [17].

Acknowledgments

This work was partially supported by the Polish State Committee for Scientific Research Grant *Informatyka i inżynieria kwantowa* No PBZ-Min-008/P03/03.

References

- [1] M. A. Nielsen and I. L. Chuang, *Quantum computation and quantum information*, Cambridge University Press, Cambridge, 2000
- [2] K. Kraus, *States, Effects and Operations: Fundamental Notions of Quantum Theory*, Springer-Verlag, 1983
- [3] M. Horodecki, P. Shor and M.B. Ruskai, Rev. Math. Phys **15**, 629 (2003)
- [4] M.B. Ruskai, Rev. Math. Phys. **15**, 643 (2003)
- [5] B. Terhal and P. Horodecki, Phys. Rev. A **61**, 040301 (2000)
- [6] M.-D. Choi, Lin. Alg. Appl. **10**, 285 (1975)
- [7] A. Sanpera, D. Bruss and M. Lewenstein, Phys. Rev. A **63**, 050301(R) (2001)
- [8] F. Hulpke, D. Bruss, M. Lewenstein and A. Sanpera, Quant. Inf. Comp. **4**, 207 (2004)
- [9] J. Eisert and H.J. Briegel, Phys. Rev. A **64** (2001) 022306
- [10] K. Życzkowski and I. Bengtsson, Open Syst. Inf. Dyn. **11**, 3 (2004)
- [11] M. Asorey, A. Kossakowski, G. Marmo and E.C.G. Sudarshan, Open Syst. Inf. Dyn. **12**, 319 (2005)
- [12] A. Jamiołkowski, Rep. Math. Phys. **3**, (1972)
- [13] M. Horodecki and P. Horodecki Phys. Rev. A **59**, 4206 (1999)
- [14] J. Tomiyama, Lin. Alg. Appl. **69** (1985) 169
T. Takasaki and J. Tomiyama, Math. Z. **184** (1983) 101
- [15] D.M. Greenberger, M. Horne and A. Zeinerger, in *Bell's theorem , Quantum Theory and Conceptions of the Universe*, edited by M. Kafatos (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 69.
- [16] J.K. Korbicz, J.I. Cirac and M. Lewenstein, Phys. Rev. Lett. **95** (2005) 120502
- [17] W. Dür, J.I. Cirac and R. Tarrach, Phys. Rev. Lett. **83** (1999) 3562;
W. Dür and J.I. Cirac, Phys. Rev. A **61** (2000) 042314;
A. V. Thapliyal, Phys Rev. A **59** (1999) 3336;
H.A. Carteret, A. Higuchi and A. Sudbery, J. Math. Phy. **41** (2000) 7932