Govher Sapardurdyyeva

4. Determine the single-precision and double-precision machine representation of the following decimal numbers:

a.
$$1.0, -1.0$$
 b. $+0.0, -0.0$ c. -9876.54321
ad. 0.234375 ae. 492.78125 f. 64.37109375
g. -285.75 h. 10^{-2}

Single precision $\Rightarrow 23 \text{ bits}$

Bias rep 8 bits

Jouble precision $\Rightarrow 53 \text{ bits}$
 $2^{n-1} - 1 = 127$

(a) $1.0 \cdot 2^{\circ} = 1.0$

Sign:

Exponent = $0 + 127 = 127$
 $127 \mid 2 = 63 \mid (1)$
 $112 = 15 \mid (1)$
 $15 \mid 2 = 7 \mid (1)$
 $17 \mid 2 = 3 \mid (1)$
 $17 \mid 2 = 0 \mid (1)$
 $17 \mid 2 = 0 \mid (1)$

Single precision machine representation of 1.0 and -1.0

Sign	Exponent	Mantissa
0	01111111	000000000000000000000000000000000000000
1	01111111	000000000000000000000000000000000000000

Double precision machine representation of 1.0 and -1.0

Sign	Exponent	Mantissa
0	01111111	000000000000000000000000000000000000000
1	01111111	000000000000000000000000000000000000000

Hex representation:

1.0 = 3F800000

-1.0 = BF800000

1)
	b)

Decimal	Sign	Exponent	Mantissa (single precision)	Mantissa (Double precision)
0.0	0	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
-0.0	1	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Hex value:

0.0 = 00000000

-0.0 = 80000000

c) -9876.54321

$$f \approx ponent = 127 + 13 = 140_{0} = 1000 1100_{2}$$
Single precision:
1100 0110 0001 1010 0101 0010 1100

1100 0110 0001 1010 0101 0010 0010 1100

Hex value: C61A522C

Double precision:

1023 + 13 = 1036

Binary = 10000001100

1100 0000 1100 0011 0100 1010 0100 0110 1110 0001 0101 1000 0000 0000 0000 0000

Hex Value:

C0C34A46E1580000

a)
$$64.37109375 = 1.000000010111110000000000 \cdot 2^{6}$$

mantissa
 $1023 + 6 = 1029$

Single: 0100 0010 1000 0000 1011 1110 0000 0000

Hex: 4280BE00

Hex: 405017C000000000

16. Consider a computer that operates in base β and carries n digits in the mantissa of its floating-point number system. Show that the rounding of a real number x to the nearest machine number \tilde{x} involves a relative error of at most $\frac{1}{2}\beta^{1-n}$.

Hint: Imitate the argument in the text.

Assume x is the floating point approximation to a number \tilde{x} , then according the chapter 1.1, the absolute rounding error would be:

And the relative error would be: $\frac{1 \cancel{x} - \cancel{x}}{\cancel{x}}$

The floating point representation of a base 3 number with n digits in mantissa would be:

In this case, m is mantissa such that $1 \le m \le 13$ And e is the exponent.

Considering that the difference between floating point numbers is $\,\,eta\,$ times the exponent factor of LSB of the mantissa, the absolute rounding error

$$|\hat{x} - \hat{x}| = \frac{1}{2} \beta^{-n} |\hat{x}|$$

Now, the relative error is:
$$\left|\frac{\bar{x}-x}{|\bar{x}|}\right| \le \frac{|\bar{x}-x|}{|\bar{x}|} \le \frac{|\bar{x}-x|}{$$

Since:

$$|\hat{\chi}| \leq |\chi| \Rightarrow \frac{|\bar{\chi} - \chi|}{|\chi|} \leq \frac{|\bar{\chi} - \chi|}{|\bar{\chi}|} = \frac{|\underline{\chi} \beta^{(-)}|\bar{\chi}|}{|\bar{\chi}|} = \frac{1}{2} \beta^{(-)} |\underline{\chi}|$$

We see that the rounding of a real number x to the nearest machine number x has a relative error at most 33-n