

LES METHODES DE L'ANALYSE SPATIALE

M. Amharref; FST- Tanger

Introduction

- A Partie théorique
- I Concept de l'Analyse spatiale
- II Données spatiales
- III Méthodes de l'analyse spatiale
- 1- Méthodes d'analyse des formes spatiales
- 2- Méthodse d'analyse des relations spatiales
- **B Partie pratique** ()

TP + TD

ANALYSE DE LA FORME DES DISTRIBUTIONS phénomène discontinu (ensemble points)

1- Objectifs:

- *- Analyse de la <u>structure</u> globale d'un nuage de points (<u>distribution</u> des objets ou d'un phénomène)
 - * Déterminer le <u>modèle théorique</u> qui <u>s'ajuste</u> le mieux à la distribution observée ,(lois ????)
- *- Identifie les processus générateurs de ces distributions

2- Méthodologie

- * Caractériser <u>la distribution observée</u> à partir des données existantes : (à partir des données réelles)
- * Déterminer parmi <u>les modèles théorique</u>s la <u>distribution</u> <u>théorique qui s'ajuste le mieux</u> (Poisson, Binomiale....) (ne pas fixer a priori la forme du modèle théorique <u>correspondant à distribution</u> <u>observée</u>)
- *Comparer ou Mesurer l'écart entre la distribution observée et une distribution théorique choisie (calcul de résidus entre les deux distribution)
- * Tester la signification de ces écarts par des tests statistiques; χ^2 student, ...
- *(Eventuellement mesurer l'écart entre deux distributions observées)

Pour caractériser la répartition spatiale d'un phénomène ou d'un ensemble d'objet, ou d'activités, il y a trois approches :

3- Approches méthodologiques: Trois

- * Analyse par carroyage (Quadras): basée sur la <u>fréquence</u> et la <u>densit</u>é des nuages de points
- * Analyse du voisinage : basée sur la distance
- * Analyse de contiguïté : basée sur <u>la topologie</u> du voisinage

<u>5- Méthode des Quadras</u> : <u>Analyse par carroyage</u> basée sur la fréquence et la densité des entités (utilise les cordonnées des points)

Soit un semis de N points distribués sur un espace E (deux démarche s : soit en utilise les densité soit les frequences)

DENSITE

1- dénombrement :

On recouvre l'espace E d'un ensemble de K mailles de formes régulières. On associe à chaque maille i le nombre Di de points qu'elle contient, puis on calcule :

- * le nombre moyen de points par maille **D=N/K** ;
- * la variance du nombre de points par maille $V(D) = k(Di D)^2$

2-l'indice de concentration

On en déduit IC

IC=V(D)/D (variance/moyenne des densités)

- IC= 1 : distribution aléatoire (loi de Poisson)
- **☞ IC>1 :** distribution plutôt concentrée (loi binomiale négative)
- **☞ IC<1 :** distribution plutôt régulière (loi binomiale positive)
- NB: même si l'indice indique que la distribution est concentrée cela n'indique pas forcement une dépendance, car même un phénomène aléatoire pourrait (cas rares) aboutir a ce type de distribution. IL faut tester la forme par test statique (voir suite)

FREQUENCES /

- 1- On dénombre le nombre de mailles en fonction du nombre de points qu'elles contiennent. On note **K(n)** le nombre de mailles comportant **n** points.
- 2 On détermine les effectifs théoriques **K***(**n**) qui seraient obtenus si la distribution était aléatoire à l'aide de la formule suivante :

$$K^*(n) = K \frac{D^n}{n!} \exp(-D)$$

3 - On teste l'égalité des deux distributions K(n) et K*(n) à l'aide d'un test du Chi-2 ou Student (voir cours el Moussaoui).

$$\chi^2_{Ob} = \sum_{i} (F_i - F_m)^2 * 1/F_m$$

avec $F_{m} = \sum_{i} (F_{i})/n = M/n$

Où F_i : fréquence observée par maille, M: nombre total de points et n: nombre de mailles. On compare les chis 2 observé χ^2_{Ob} et théorique χ^2_{α}

Si $\chi^2_{Ob} \ge \chi^2_{\alpha}$ à (n-1) degré de liberté, $\underline{\alpha}$: est un risque d'erreur aléatoire fixé (généralement de 5%)

alors H₀ est rejetée

(ca d<u>que la distribution observée</u> n'est pas aléatoire, ; elle est structurée en fonction des <u>critères spatiale</u>)

NB: En fonction des résultats du test on conclue au caractère aléatoire ou non aléatoire de la distribution observée

exemple: si IC >1, la distribution semble être concentrée, MAIS on trouve que $\chi^2_{Ob} \ge \chi^2_{\alpha}$ avec un risque d'erreur de 10 ou 20 %, La distribution n'est pas concentrée et que l'hypothèse que la distribution est aléatoire ne peut pas être rejetée dans ce cas la (car le risque d'erreur est fixé à $\alpha > 5\%$)

Exercice d'application: analysez cette distribution

Carte par point des églises et des chapelles dans le sud du comté de Leicester, UK . (d'après Unwin D., 1981, p. 30)

Détail de la démarche : Analyse par carroyage (Quadras) :

a-Définition du territoire d'analyse :

- -Superposition d'une grille à maille carrées sur le territoire d'analyse (Taille de la maille??? entre 1/d à 2/d ; d: densité)
- -Traitement des mailles n'ayant pas la même chance de recevoir des entités : *Elimination des mailles hors du territoire homogène (ex: plan d'eau) * Traitement particulier des mailles se superposant aux frontières

b-Création d'un vecteur des fréquences observées :

- Comptage du nombre de points par maille
- Comptage du nombre de mailles contenant 0, 1, 2, 3, r points

c-Calcul du vecteur des fréquences attendues :

- -choix d'une distribution théorique —exemples: aléatoire: Poisson concentrée : Binomiale négative,....
- -calcul du nombre de points attendus par maille selon la distribution théorique choisie
- -comptage du nombre de maille contenant 0, 1,2,..r points

d-Comparaison des vecteurs des fréquences :

- -Test de χ² entre les deux distributions (<u>observée et attendue</u> ou théorique) : voir cours EL Moussaoui (analyse des données)
- Exemple : distribution attendue est de type aléatoire (Poisson) avec un nombre moyen observé de points par maille supérieur à 2 On pose l'hypothèse que :
- **H**₀: <u>pas de différence</u> entre la distribution <u>observée</u> et la distribution <u>théorique</u>
- H₁: <u>différence significative</u> entre les deux distributions

$$\chi^{2}_{Ob} = \sum_{i} (F_{i} - F_{m})^{2} * 1/F_{m}$$
 avec $F_{m} = \sum_{i} (F_{i})/n = M/n$

a · act un risque d'arrour aléatoire fivé (généralement de 5%)

- Où F_i : fréquence observée par maille, M : nombre total de points et n : nombre de mailles
- Si $\chi^2_{Ob} \ge \chi^2_{\alpha}$ à (n-1) degré de liberté, alors H_0 est rejetée (ca d que la distribution observée n'est pas aléatoire, elle est plutôt structurée cad dépendante d'un certains nombre de paramètres)

e-Test de l'indice de dispersion ou de concentration :

- -Calcul de l'indice de dispersion : soit le rapport de la variance sur la moyenne du nombre de points par maille
- Test de Student sur l'écart entre l'indice de distribution observé et l'indice attendu (théorique)
- Exemple : distribution attendue est aléatoire où l'indice de distribution est unitaire
- On pose l'hypothèse que :
- **H**₀: <u>pas de différence</u> entre la distribution <u>observée</u> et la distribution <u>théorique</u>
- H₁: <u>différence significative</u> entre les deux distributions

$$t_{O} = (1/F_{m} * S_{F}^{2} - 1)/\sqrt{2/(n-1)}$$
 avec $S_{F}^{2} = 1/n-1 * \sum_{i}^{n} (F_{i} - F_{m})^{2}$

- Si $t_0 \ge t_\alpha$ à (n-1) degré de liberté, alors H_0 est rejetée (ca d<u>que là</u> distribution observée n'est pas aléatoire)
- <u>α : est un risque d'erreur aléatoire fixé (généralement de 5%)</u>

-Contraintes des analyses des formes des distributions :

* Problème d'échelle:

- Si les entités ponctuelles symbolisent des entités zonales, la taille réelle peut interférer sur les distances entre les objets.
- Une distribution pouvant être concentrée a une échelle et apparaître dispersée à une autre (ou l'inverse)
- * Problème d'homogénéité de l'espace : l'espace est supposé homogène dans toutes les directions (isotrope); si non la distribution peut être la cause d'un phénomène exogène (présence d'un lac, barrière....)
- * Problème des limites du territoire: il devrait s'étendre indéfiniment, si non les frontières réduisent les densités et les chances de voisinage et de contiguïté (il faut <u>faire des corrections de bord</u>)

6- Analyse du voisinage : analyse sur la base des distances

6.1- La méthode du voisin le plus proche R (stat du 1 ordre)

Elle se base sur la <u>distance minimale moyenne</u> d'un point quelconque à son voisin le plus proche..

NB: Coordonnées x, y des points, (transformation en distance???;

euclidienne: la distance à vol d'oiseau, rectiligne: distance de Manhattan...)

$$DEij = \sqrt{(Xi - Xj)^2 + (Yi - Yj)^2}$$

$$DRij = |Xi - Xj| + |Yi - Yj|$$

DEij	1	2	3	4	5
1	0	30	22	28	160
2	30	0	45	22	130
3	22	45	0	30	170
4	28	22	30	0	140
5	160	130	170	140	0

a- Principe de la méthode du plus proche voisin (R)

- Soit un semis de point N distribué sur un espace de surface S; de densité $\mathbf{d} = \mathbf{N/S}$
 - a-On calcule pour chaque point i la distance d_{min}(i) qui le sépare de son voisin le plus proche
 - b- on calcule la moyenne des distances observées au plus proches voisins do
 - **c** on détermine la distance théorique moyenne du plus proche voisin **d**_T dans le cas d'une distribution aléatoire
 - **d** on calcul l'indice $R : \mathbf{R} = \mathbf{d_0} / \mathbf{d_T}$
- (R est indice de dispersion qui peut être utilisé pour comparer la différence entre distribution observée et théorique)
 - e- on test le caractère aléatoire de la distribution par un test

Rest le rapport de la distance moyenne minimale observée (d_O) à distance moyenne minimale attendue (d_T)

$$\mathbf{R} = \mathbf{d_O}/\mathbf{d_T}$$

* La distance minimale moyenne observée (d_0): $d_0 = 1/N \sum d_{0i}$ (N nombre de point)

doi: distance minimale entre chaque point et son voisin le plus proche

* La distance moyenne minimale attendue (d_T)

Sous l'hypothèse d'une distribution aléatoire <u>de même</u> <u>densité</u>, la distance moyenne attendue est donnée par la loi de Poisson

$$d_T = 1/2\sqrt{S/N} = 0.5/\sqrt{d}$$

S: surface du territoire; N: nombre de point, d:densité

- R renseigne sur la forme de la distribution il varie [0, 2.15];
- **R** = **0** la répartition est concentrée (groupée)
- R = 1 répartition est aléatoire (pas de différence entre la distribution réelle et aléatoire);
- R= 2,15 la répartition est parfaitement régulière (triangle équilatéral ; points parfaitement équidistants

Nb:

* les valeurs extrêmes de R sont très probables (concentration absolue (R = 0) et Semis parfaitement régulier (disposer en un semi triangulaire équilatéral parfaitement régulier (R= 2,149)) n'existent pas!!

Semis de points et échelle des valeurs remarquables de R Échelle des Forme du semis de points valeurs de R régulier 2,149 triangulaire régulier 2,000 quadrangulaire Dispersion 1,667 croissante 1,333 aléatoire 1,000 0,667 Concentration croissante 0,333 concentré O .18 points Source: d'après P.J. Taylor, Quantitative methods, Geography Wavelands Press, 1977.

- Test du R (voisin le plus proche)

Pour tester la validité de l'écart au modèle aléatoire on utilise : <u>le test de Student</u> et on considère que :

La distribution est significativement concentrée si distance minimale observée do:

$$\mathbf{d_{O}} < \mathbf{d_{T}} - (\mathbf{t} * \mathbf{\sigma_{d0}})$$

$$\sigma_{d0} = 0.26/\sqrt{N^2/S}$$
 N: nombre de points, S: surface . (σ_{d0}) : l'erreur standard de d_0

t est lu sur la table de Student en fonction de degré de liberté (ddl = N-1)

Exp: avec un risque d'erreur de 5%
$$d_O < d_T - (1.96 * \sigma_{d0});$$

<u>la distribution est significativement dispersée si :</u>

$$d_{O}>d_{T}+(t*\sigma_{d0})$$

Exp: avec un risque d'erreur de 5%

$$d_{O}>d_{T}+(1.96*\sigma_{d0});$$

$$R(1) = 0.36$$

 $R(2) = 0.61$

$$R(1) = 0.36$$

 $R(2) = 0.97$

$$R(1) = 0.36$$

 $R(2) = 1.79$

Intérêt de l'analyse à plusieurs niveaux de voisinage

b- le voisin le plus proche d'ordre K

Le voisinage pourrait être étendue à un rang de voisinage quelconque (k)

- * Calcul de la distance moyenne observée entre points voisins de rang k D_k
 - Pour chaque point, on mesure la distance vis-àvis du 1^{er} , 2^e , 3^e ... K^e voisin = d_k
 - Calcul de la distance moyenne observée :

$$D_k = 1/N \sum d_k$$
 (N nombre de point)

- * Calcul de la distance moyenne attendue entre points voisins de rang $k D_0(k)$
- -Sous l'hypothèse d'une distribution aléatoire, la distance moyenne attendue est donnée par la loi de Poisson :

$$D_0(K) = \frac{K(2K)!}{(2^K K!)^2 \sqrt{N/S}} ex: D_0(1) = 1/2\sqrt{N/S} D_0(2) = 3/4\sqrt{N/S}$$

Test du voisin le plus proche d'ordre K; R(K): test par simulation

Si $D(k) > D_0(k)$: le semi est <u>régulièrement espacé</u> à <u>cet ordre</u> de voisinage;

Si $D(k) < D_0(k)$: le semi est <u>concentré</u> à cet ordre

Aléatoire??? D(k) ???

- L'analyse <u>de multiples distributions aléatoires</u> montre que les valeurs de R(k) varient <u>autour de 1</u> avec une erreur-standard σ[R(k)]
- Pour N>30, on construit un intervalle de confiance autour de la valeur théorique unitaire, avec un risque d'erreur de $\alpha (1 \pm \alpha \sigma R(k))$
- (voir fig ci-dessous)
- Aléatoire : la valeur de [R(k)] est comprise entre les bornes de l intervalle de confiance
- Concentrée: la valeur de [R(k)] est inferieure à la borne inferieur de l'intervallé de confiance
- **Dispersée**: la valeur de [R(k)] est supérieure à la borne supérieure de l'intervalle de confiance (distribution est max pour R(k) = 2,149): triangle equilateral

Processus ponctuel homogène

Loi de Poisson

Groupement complet

Distance au voisin le plus proche $d_* \approx 0$

Modèle aléatoire de référence

$$d_{a} = 0.5 \sqrt{\frac{S}{N}}$$

Equirépartition

$$d_{o} = 1,075 \sqrt{\frac{S}{N}}$$

Test sur la distribution des fréquences cumulées de $\sqrt{\mathbf{R}(\mathbf{K})}$:

Intérêt : prise en compte de la totalité des valeurs plutôt que la seule moyenne

Dans une distribution aléatoire, les fréquence cumulées se distribuent de façon normale : elle forment une droite sur le diagramme

Comparaison entre distribution observée et aléatoire : Analyse graphique:

*situation concentrée, la distribution présente une concavité tournée

vers le bas au dessus de la droite

* situation dispersée, la distribution présente une concavité tournée vers <u>le haut en dessous</u> de la droite

Limitation du voisin le plus proche??

- * limite pour K??? (voisinage) peut aller jusqu'à N-1; mais nécessite une correction de l'Effet de bord de la zone d'étude?
 - faire une <u>zone tampon : buffer (surface du buffer??</u>, nbre de point N? f (k) : S et N est d autant grands que K élevé)
 - remplacer la distance au k ^e plus proche par la <u>distance</u> théorique attendue (certains logiciels tels que CrimeStat)
- Pas de test significatif de l'écart entre D(k) et $D_0(k)$ (tentatives Getis, Boots, Cressie : test de Student sur l'ecart des moyenne :

 $|\mathbf{D}(\mathbf{k}) - \mathbf{D}_0(\mathbf{k})| / \sigma[\mathbf{R}(\mathbf{k})]$ (a un risque α)

Mais la valeur du test décline rapidement avec l'élévation de K)

- * Confond la distribution d'un nuage de points en agrégat à des échelles emboités avec la distribution aléatoire
- D'où l'intérêt de l'analyse du second ordre (tel que k Ripley)

Exercice: points de crimes dans une ville: analyse la structure: voisinage (surface: 64km2

i	Xi	Yi
1	1.5	7
2		7
3	1 1.5	6.8
4	0.5	5.8
5	2.2	7.5
6	0.3	7
7	0.6	4.8
8	1.8	4.1 5.2
9	2.1	5.2
10	2.1	5.8
11	1.6	7.2
11 12	3.1	6.4
13	0.7	2.9
14 15 16	0.1 1.5	2.9 2.6 4.4 5.3
15	1.5	4.4
16	3.1	5.3
17	3.1 5.2	6.2
18	5.1	7.9
19	1.7	1
20	2.4	1.8
21 22	4.2	5
22	7	6.1
23	6.8	3.8
24	7.2	0.3

(1) Tableau d	e données	
i	Χi	Yi
1	1,5	7
2	1	7
3	1,5	6,8
2 3 4	0,5	5,8
5	2,2	7,5
5 6 7 8	0,3	7
7	0,6	4,8
	1,8	4,1
9	2,1	5,2
10	4,3	5,8
11	1,6	7,2
12	3,1	6,4
13	0,7	2,9
14	0,1	2,6
15	1,5	4,4
16	3,1	5,3
17	5,2	6,2
18	5,1	7,9
19	1,7	1
20	2,4	1,8
21	4,2	5
22	7	6,1
23	6,8	3,8
24	7,2	0,3

8							
7 -	- 8						
6 -		•	•	-		22 • 22	
5 -	•	•	•			. /	
4	• •				d=2	.1	
3						†	- }
2	•	20	•	-		\	1
1		=1.1			d=3	.5	
o —	19					24	- 1

(3)	calc	ul des	d	istances	
au	plus			voisin	

i	dmin	ı
1	0,2	
1 2 3 4 5 6 7 8 9	0,5	
3	0,2	
4	1,0	
5	0,7	
6	0,7	
7	1,0	
8	0,4	
9	1,0	
10.	0,8	
11	0,2	
11 12	1,1	l
13	0,7	
14	0,7	
15	0,4	l
16	1,0	
17	1,0	
18	1,7	
19	1,1	
20	1,1	
21	0,8	
22	1,8	
23	2,3	
24	3,5	
moyenne (Ro)	0,99	
écart-type (Eo)	0,74	

Surface	€	64
effectif	2	24
densité	0,37	7 5
distances th moyenne écart-type	éorique au pla (Rt) (Et)	us proche voisin 0,816 0,087

(5) Calcul de l'indice R

R= Ro/Rt =

z=[Ro-Rt]/Et

1,22
=> L'indice est supérieur à 1
ce qui indique une tendance à la
dispersion
=> La distribution observée est
plus régulière qu'une distribution
selon un processus de Poisson

(6) test d'adéquation entre distribution observée et distribution aléatoire

RO = dO; RT = dT; $\sigma dO = Et$

Conclusion : Contrairement à ce que laisserait penser la pémière impression visuelle, la distribution est plutôt dispersée.

Mais son caractère aléatoire ne peut être rejeté.

6.2- La méthode K de Ripley (stat du 2 ordre)

Elle répond à :

- A quelle échelle existe-t-il une organisation spatiale (dim structure du nuage de points)?

Elle indique des agrégats locaux (concentrations) dans un semis de points (points chaud)

Elle se base sur:

Rapport de la <u>densité locale</u> sur la <u>densité moyenne</u> du semis dans des <u>cercles de rayon croissant</u> (structure à différentes échelles)

Sous l'hypothèse nulle, le nombre de point attendu n_{dp} dans un cercle de rayon dp dépend de la densité du semis et de la surface du cercle espèrance mathématique de np;

espèrance mathématique de np: $E(n_{dp}) = \frac{N}{S} \pi (dp)^{2}$

* Localement, si le **nb observé** est nettement plus grand que le nb **attendu**, c'est un **Agrégat (regroupement)**

* Une densité nettement plus faible forme une Lacune

a- Fonction K de Ripley :

La fonction K_{dp} de Ripley est la somme pondérée des paires de points (k_{ij}) (j différent de i) situées dans le rayon de recherche (K est le dénombrement systématique sur un rayon dp).

$$K_{dp} = \frac{S}{N(N-1)} \sum_{i} \sum_{j} k_{ij}$$

dp est le rayon de recherche et S est la surface de la zone d'étude

- $FE(K_{dp}) = dp$
- $rac{1}{2}$ (Si $d_{ij} < dp$, alors $k_{ij} = 1$, sinon $k_{ij} = 0$)
- La fonction K_{dp} suit approximativement une loi exponentielle croissante et son espérance $E(K_{dp})$ est croissant; c est pour cela que besag
- Besag a proposé une transformé plus facile à lire d'espérance nulle E(Ldp)=0, qui **devient négative** pour des valeurs élevées (effet de bord)

b- Fonction L de Besag-Riplay:

La fonction L de Besag permet la comparaison entre plusieurs zones d'études et entre plusieurs semis sur la même zone d'étude

$$L_{dp} = \sqrt{rac{K_{dp}}{\pi}} - dp$$

- \blacksquare La valeur attendue de L_{dp} est d'espérance nulle E(Ldp)=0
- un intervalle de confiance est crée par des simulations (min 100)
- La représentation de la fonction (Ldp) en fonction de <u>la distance</u> fournit le Corrélogramme de Ripley-Besag
 - Si la courbe Ldp observée est <u>au-dessus</u> de l'intervalle de confiance, alors le semis est <u>agrégé</u> à cette échelle
 - Si la courbe Ldp tombe dans les limites de l'intervalle de confiance, alors le semis a une distribution aléatoire à cette échelle
 - Si la courbe Ldp observée est en-dessous de l'intervalle de confiance, alors le semis est régulièrement espacé à cette échelle

Fonction L de Besag ajustée

Corrélogramme de la fonction L de Ripley-Besag pondérée (avec correction des effets de bord)

Critère de décision : la distance maximale entre la fonction L et la limite supérieure de l'intervalle de confiance indique l'échelle optimum d'agrégation

c- correction des effets de bord

Il existe différents algorithmes de correction des effets de bord_selon la surface de la zone

La fonction k de Ripley devient :

$$K_{dp} = \frac{S}{N^2} \sum_{i} \sum_{j} w_{ip} k_{ij}$$

Avec W_{ip} coefficient de correction de l'effet de bord associé à chaque pas de distance

- * La correction W_{ip} est l'inverse de la circonférence (ci) du cercle de rayon dp qui est inclus dans la zone d'étude $W_{ip} = 1/c_i(dp)$
- * La correction reproduit en miroir la densité interne de la zone d'étude
- * Par prudence, il vaut mieux limité l'évaluation de la fonction K de Ripley à <u>un rayon de recherche maximal dp</u> égal <u>à la moitié du plus</u> <u>petit côté du rectangle de la zone d'étude</u>

Une étude de cas

Localisation des IAA en Picardie 1997 (pondérée par l'emploi)

Fonction L de Besag ajustée

Corrélogramme de la fonction L de Ripley-Besag pondérée (avec correction des effets de bord)

Critère de décision : industrie Agro-Alim est concentrée sur 20Km, avec une concentration max (l'échelle optimum d'agrégation) est aux environ de 5km

Quelques types de distribution de references:

a- Distribution Aléatoires:

une distribution est aléatoire (distribution loi de Poisson) si

- 1- tous les emplacements de l'espace ont <u>la même probabilité</u> d'accueillir un point
- 2- la position d'un point nouveau <u>est indépendante</u> de la position des points précédents
- <u>b- Distribution Concentrées</u> (groupée : **binomiale négative**):

une distribution aura tendance à être concentrée si

- 1- certains emplacements de l'espace ont <u>plus de chances</u> d'accueillir un point
- 2- la localisation d'un premier point <u>favorise l'apparition</u> d'autres points à proximité

- c- Distributions Dispersées (semis équi-répartis, régulièrement espacé : binomiale positive)
- une distribution aura tendance à être régulière si
- 1- tous les emplacements de l'espace ont <u>la même probabilité</u> d'accueillir un point
- 2- la localisation d'un premier point <u>défavorise l'apparition</u> d'autres points à proximité

NB:

- Une distribution <u>concentrée ou dispersée</u> traduisent souvent une <u>dépendance</u> dans la localisation des points
 - On espère généralement montrer qu'une distribution <u>n'est pas</u> <u>aléatoire</u> pour <u>s'interroger sur les causes</u> de cette distribution (causes spatiales)

Les processus générateurs des distributions: !!!!

- * Aléatoires (loi de Poisson):
- Résultat du <u>hasard</u>, -Processus <u>complexe</u>
- <u>Combinaison d'interaction</u> qui conduit à une distribution semblable à l'aléatoire ; (phénomènes agissants <u>dans divers sens</u> <u>et a faible intensité</u>)
- * Concentrées (groupée : loi binomiale négative) :
- L'implantation d'une nouvelle unité est plus probable dans des zones a <u>forte densité (m^me unité)</u> (minimise espacement entre les unités)
 - Par <u>attraction</u> ou par <u>contagion</u>, (ex: campus universitaire modèles épidémiologiques, ministères : optimisé les services, échanges)
- Dispersées (semis équiréparti) : loi binomiale positive):
 - L'implantation d'une nouvelle unité est plus probable dans des zones a <u>faible densité</u> (occuper le plus régulièrement l'espace)
 - Par <u>répulsion</u> ou par <u>concurrence</u>
 - Distribution aux sommets de triangles équilatéraux
- (ex: pharmacie...)