

Lista 4 - Transformações Lineares.

- 1) Seja $T:R^3\to R^2$ uma transformação linear definida por $T(1,1,1)=(1,2),\ T(1,1,0)=(2,3)$ e T(1,0,0)=(3,4).
 - 1. Determinar T(x, y, z)
 - 2. Determinar $v \in R$ tal que T(v) = (-3, -2)
 - 3. Determinar $v \in R$ tal que T(v) = (0,0)
- 2) Seja T o operador linear no R^3 tal que T(1,0,0) = (0,2,0), T(0,1,0) = (0,0,-2) e T(0,0,1) = (-1,0,3). Determinar T(x,y,z) e o vetor $v \in R^3$ tal que T(v) = (5,4,-9).
- 3) Determinar a transformação linear $T: P_2 \to P_2$ tal que T(1) = x, $T(x) = 1 x^2$ e $T(x^2) = x + 2x^2$. No problemas 4 à 7 são apresentadas transformações lineares. Para cada uma delas:
 - 1. Determinar o núcleo, uma base para esse subespaço e sua dimensão. T é injetora? Justificar.
 - 2. Determinar a imagem, uma base para esse subespaço e sua dimensão. T é sobrejetora? Justificar.
- 4) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x y 2z, -x + 2y + z, x 3z).
- 5) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x 3y, x z, z x).
- 6) $T: P_1 \to R^3, T(at+b) = (a, 2a, a-b)$
- 7) $T: M(2,2) \to \mathbb{R}^2, T(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) = (a-b, a+b).$
- 8) Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(-2,3) = (-1,0,1) e T(1,-2) = (0,-1,0).
 - 1. Determinar T(x,y).
 - 2. Determinar N(T) e Im(T).
 - 3. Té injetora? É sobrejetora?
- 9) Consideremos a transforamação linear $T: R^3 \to R^2$ definida por T(x, y, z) = (2x + y z, x + 2y) e as bases A = (1, 0, 0), (2, -1, 0), (0, 1, 1) do R^3 e B = (-1, 1), (0, 1) do R^2 , determinar a matriz $[T]_R^A$.
- 10) Seja

$$[T] = \begin{pmatrix} 1 & -2 \\ 2 & 0 \\ -1 & 3 \end{pmatrix} \tag{1}$$

a matriz canônica de uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$. Se T(v) = (2, 4, -2), calcular v.

11) Seja o espaço vetorial M(2,2), e a transformação linear $T:V\to R^3$

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b, c-d, 2a) \tag{2}$$

- 1. mostrar que T é linear.
- 2. Determinar $[T]_B^A$. sendo A e B as bases canônicas de M(2,2) e \mathbb{R}^3 , respectivamente.
- 3. Calcular $v \in V$ tal que T(v) = (3, -2, 4).
- 4. Determinar N(T).

12) Consideremos o operador linear

$$T: R^2 \to R^2 \tag{3}$$

$$(x,y) \to (x+2y, x-y) \tag{4}$$

e as bases A = (-1,1),(1,0) e B = (2,-1),(-1,1) e C canônica. Determinar $[T]_A$, $[T]_B$ e $[T]_C$.

13) Verificar se a transformação $T: \mathbb{R}^2 \to \mathbb{R}^3$, definida por:

1.
$$u = (u_1, u_2) \to T(u) = (3u_1, 2u_2, 3u_1 - u_2),$$

2.
$$u = (u_1, u_2) \to T(u) = (u_1 + 2u_2, u_2, u_1 - u_2)$$

é linear.

14) Verificar se a transformação $T: \mathbb{R}^3 \to \mathbb{R}^3$, definida por:

1.
$$u = (u_1, u_2, u_3) \to T(u) = (u_1 + 2u_2, 0, u_1 - 2u_2 + u_3),$$

2

3.
$$u = (u_1, u_2, u_3) \to T(u) = (u_1, \cos u_2, \sin u_3)$$

é linear.

15) Sejam $V = M_{2\times 2}$ e a transformação linear $T: V \to R$, definida por:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \to T(A) = a + b + c + d. \tag{5}$$

Mostre que T é linear.

16) Verificar se $T: K_n \to R$ (onde $K_n(x)$ é o espaço vetorial dos polinômios de grau $\leq n$), definida por:

$$T(P_n(x)) = \int_a^b P_n dx \tag{6}$$

a e $b \in R$, isto é, se a aplicação T, que a cada polinômio $P_n(x) \in K_n(x)$ associa o valor da integral, é uma transformação linear.

17) Verificar se $T: K_n \to R$ (onde $K_n(x)$ é o espaço vetorial dos polinômios de grau $\leq n$), definida por:

$$T(P_n(x)) = \frac{dP_n}{dx} \tag{7}$$

isto é, se a aplicação T, que a cada polinômio $P_n(x) \in K_n(x)$ associa o valor da derivada, é uma transformação linear.

18) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$, que satisfaz:

$$T(-1,2,1) = (-1,-4), T(1,0,2) = (-3,3) e T(-2,-1,0) = (-3,0).$$

Determinar T(u).

19) Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$, que satisfaz:

$$T(1,2) = (4,2,-5) e T(3,0) = (6,0,3).$$

Determinar T(u).

20) Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, que satisfaz:

$$T(2,1) = (7,4) e T(1,0) = (1,3)$$

Determinar T(u).