(T)

一. 判断 (10分)

- 1. 设X, Y是 K上的线性空间, 算子T: $X \to Y$ 则 $\{x \in X | Tx = 0\}$ 是X的子 空间.
- (T) 2. $\{1, \cos x, \sin x, \cdots, \cos n x, \sin n x, \cdots\}$ 线性无关.
- 3. 对 Legendre 多项式 $p_0(x), p_1(x), ..., p_n(x)$,有 (T) $span\{p_0(x), p_1(x), ..., p_n(x)\} = span\{1, x, ..., x^n\}.$
- 4. $\forall A \in \mathbb{C}^{n \times n}$, 则 $A^H A$ 可对角化.
- 5. 设R(x)是 Hermite 插值余项,则节点 $x_k, k = 0,1,\dots,n$ 为R(x)的 (T)二重零点.
- 6. Cotes 系数 $C_k^{(n)}$ 只与求积节点的个数有关而与被积函数和积分区 (\mathbf{V}) 间无关.
- 7. 设 $A \in \mathbb{C}^{n \times n}$, $\|\cdot\| \in \mathbb{C}^{n \times n}$ 上的任意方阵范数,则

$$||A|| \le \rho(A) + \varepsilon, \forall \varepsilon > 0.$$

- 8. $\forall A \in \mathbb{C}^{n \times n}$, 则 $(e^A)^H = e^{A^H}$.
- 9. 若 $\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} A_i f(x_i)$ 为 Gauss 型求积公式,则 $\sum_{i=0}^{n} |A_i| = 2.$
- 10. 若正规矩阵 $A \in \mathbb{C}^{n \times n}$, 其特征值均为实数, 则A为酉矩阵.

二、填空 (10分)

- 3. 设 $M_2 \in \mathbb{R}^{n \times n}$ 是 Seidel 迭代矩阵,则 M_2 的所有特征值中绝对值最小的为 0 (第一列元素均为 0)
- (4) 若 $\int_a^b f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$ 为插值型求积公式, $l_k(x)$, $(k=0,1,\cdots,n)$ 是 n 次 Lagrange 插值基函数, 令 $f(x) = l_k(x)$ 则 $\int_a^b l_k(x)dx = \underline{b}$...
- 5. 设酉矩阵 $A \in \mathbb{C}^{3\times 3}$ 、且 $det(\lambda E A) = (\lambda 1)^3$ 则 $\lambda E A$ 的不变因子 $d_3(\lambda) = \lambda \uparrow$

$$\Xi \cdot (8 \, \beta) \ \partial A = \begin{bmatrix} 2 & 1 & 0 \\ -4 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}, \ \bar{x}A \ \bar{n} \ \bar{n} \ \bar{x} \ \bar{x}$$

S131A305 学院名称:

四.(8分)求解初值问题

$$\frac{dx_{1}(t)}{dt} = 2x_{1}(t) + x_{2}(t) + 4x_{3}(t),$$

$$\frac{dx_{1}(t)}{dt} = 2x_{2}(t),$$

$$\frac{dx_{1}(t)}{dt} = 3x_{1}(t) + x_{1}(t),$$

$$\frac{dx_{1}(t)}{dt} = 3x_{1}(t),$$

五. $(8 \, f)$ 已知线性方程组为 $\begin{bmatrix} 4 & 0 & 3 \\ 1 & 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}$

(1)写出 Seidel 迭代格式, (2) 判断迭代格式收敛性.

1)
$$(A_{1}^{(k+1)} = \frac{1}{4} (-3A_{2}^{(k)} + 3))$$

 $A_{2}^{(k+1)} = \frac{1}{5} (-b_{1}^{(k+1)} + 5X_{2}^{(k)} + 3)$
 $A_{2}^{(k+1)} = \frac{1}{6} (-8X_{1}^{(k+1)} - 3X_{2}^{(k+1)} + 2)$
 $A_{1}^{2} = (D-1)^{-1} U = \begin{bmatrix} 4 & 2 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 \\ -8 & 3 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -8 & 3 & 0 \end{bmatrix} = \begin{bmatrix}$

六.(8分)由下列插值条件

x_k	1.63	1.73	1.95 2	lo 2.28	2.53
$f(x_k)$	14.094	16.844	18.475	20.963	23.135

用三次 Newton 插值多项式计算f(2.10)的近似值(结果保留至小数点后第 3 位)

1-73 16.844

$$f(2.10) = 16.844 + 7.414 \times (2.10+13) * 0.32 \times 0.37 \times 0.37 \times 0.15 + 2.193 \times 0.37 \times (-0.18) \times 0.15$$

$$= 19.578$$

七. $(10\ eta)$ 用Romberg算法求积分 $\int_0^4 \frac{1}{2+x^2} dx$ 的近似值,并将计算结果列

干下表(计算结果保留至小数占后第5位)

1 下农(月异归未休田主小数点归免 3 世)							
k	T_{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	$R_{2^{k-3}}$			
0	1<111111						
1	D 188889	0.81482					
2	0.86869	0.86196	0.86510				
3	0.88991	0.87032	0.87088	0.87097			
4	0.87029	0.87042	0.87043	0.87042			

课程名称:工程数学基础 课程编号: S131A305 学院名称: ___

八. (10 分) 用 Legendre 多项式求函数 $f(x) = \sin \frac{\pi x}{2}$ 在 $P_3[-1,1]$ 上的三次最佳 平方逼近 $S_3^*(x)$,并求 $\delta^2 = \left\| f - S_2^* \right\|_2^2$ (结果保留到小数点后第 5 位,取

$$S_{5}^{*}(h) = \frac{3}{3} \frac{8}{5^{2}} h + \frac{7}{2} \left(\frac{48}{52} - \frac{480}{70^{2}} \right) \cdot \frac{1}{2} (5 h^{2} - 5 h)$$

$$S_{1}^{*}(s) \frac{3}{2} \frac{3}{2} dh$$

$$= S_{1}^{*} \frac{1}{2} (1 - 0.5 \pi h) dh$$

$$= \frac{1}{2} \left(h - \frac{1}{2} S_{1} h \pi h \right) \Big|_{1}^{1} = \frac{1}{4} \frac{0.000000}{4 \pi h}$$

$$= \frac{1}{2} \left(h - \frac{1}{2} S_{1} h \pi h \right) \Big|_{1}^{1} = \frac{1}{4} \frac{0.000000}{4 \pi h}$$

$$\begin{cases} 2 \\ 5 \\ -3 \end{cases} \cdot \frac{1}{2} (5 - 3 - 3 - 3) \\ = 1 - \frac{3}{2} \cdot (\frac{8}{7 \cdot 2}) - \frac{7}{2} \cdot (\frac{48}{7 \cdot 2} - \frac{48}{74})^{2} \\ = 0.00002$$

九.(8分)写出用标准 Runge-Kutta 方法解下列初值问题的计算公式.

$$\begin{cases} y'' - x^2 - yy' = 0, & 0 < x \le 1 \\ y(0) = 1, & y'(0) = 2, \end{cases}$$

$$\begin{cases} 3 = 4 \\ y(0) = 0, & 3(0) = 2 \end{cases}$$

$$\begin{cases} y'' + x^2 - yy' = 0, & 0 < x \le 1 \\ y'' + y' = 0, & 0 < x \le 1 \end{cases}$$

$$\begin{cases} 3 = 4 \\ y'(0) = 2, & 3(0) = 2 \end{cases}$$

$$\begin{cases} y'' - x^2 - yy' = 0, & 0 < x \le 1 \\ 3 = 4 \end{cases}$$

$$\begin{cases} 3 = 4 \\ y'(0) = 2, & 3(0) = 2 \end{cases}$$

$$\begin{cases} y'' - x^2 - yy' = 0, & 0 < x \le 1 \end{cases}$$

$$\begin{cases} 3 = 4 \\ y'(0) = 2, & 3(0) = 2 \end{cases}$$

$$\begin{cases} 3 = 4 \\ y'(0) = 2, & 3(0) = 2 \end{cases}$$

$$\begin{cases} 3 = 4 \\ y'(0) = 2, & 3(0) = 2 \end{cases}$$

$$\begin{cases} 3 = 4 \\ y'' + 2 \\ y'$$

课程名称:工程数学基础 课程编号: S131A305 学院名称: _______ 专业名称: ______ 班 ____ 学号: ______ 姓名: ____

十.(10分) 证明

- 1. 内积空间X中的任何正交系M都是线性无关的.
- 2. $\forall A \in \mathbb{C}^{n \times n}$, 则 $\|A\|_2 \leq \|A\|_F$