	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100


```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree
```


Lemma 16.2

Let C be an alphabet in which each character $c \in C$ has frequency c.freq. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Lemma 16.3

Let C be a given alphabet with frequency c.freq defined for each character $c \in C$. Let x and y be two characters in C with minimum frequency. Let C' be the alphabet C with the characters x and y removed and a new character z added, so that $C' = C - \{x,y\} \cup \{z\}$. Define f for C' as for C, except that z.freq = x.freq + y.freq. Let T' be any tree representing an optimal prefix code for the alphabet C'. Then the tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.