

A filtering framework for Finite Volume / Element schemes

Julia Docampo, Matthew Picklo, Soraya Terrab and Jennifer K. Ryan

Post-processing data with SIAC filters

Bramble, Schatz (Math Comp 1977), Cockburn et al. (Math Comp 2002)

- **1** Superconvergence: for a DG/FEM solution of degree p
 - Proven 2p + 1 order (L^2 and L^∞ norms) for linear PDEs
 - Observed 2p + 1 order for non-linear PDEs
- **2** Smoothness: the filtered data is a (local) 2p + 1 polynomial
 - Removes oscillations in the error
 - Recovers continuity levels across element interfaces

Applications

Flow visualization Shock detection Multiresolution analysis Cut cells

Jallepalli, Docampo, Ryan, Haimes, Kirby (TVCG 2017)

Post-processing data with SIAC filters

Goal:

- > Establish a filtering framework for general purpose
- > Create a standalone tool for general applications

> SIAC filters overview

- → Superconvergence, kernel structure and filter properties
- → Applications to multidimensional data
- > The software package

SIAC filtering: superconvergence for DG solutions

- ✓ Reduces oscillations
- ✓ General error reduction

Smoothness-Increasing Accuracy-Conserving filters

We post-process our data via convolution:

$$\mathsf{data}^\star(x) = \int_{\mathbb{R}} \mathbf{K}(y-x) \cdot \mathsf{data}(y) dy$$

SIAC kernel: weighted sum of Bespline functions.

$$K^{(r+1,n)}(\cdot) = \sum_{\gamma=1}^{r+1} e_{\gamma} \cdot B_{\mathsf{T}_{\gamma},n}(\cdot)$$

Choose $c'_{\gamma}s$ to satisfy **consistency** + r-moments:

$$\int_{\mathbb{R}} K(x)dx = 1, \qquad \int_{\mathbb{R}} K(x)x^{j}dx = 0, \quad j = 1, 2, \dots, r.$$

- > This ensures data accuracy is preserved
- For 2p + 1 superconvergence, we need 2p moments

SIAC kernel: $K^{(r+1,n)} = \sum_{\gamma=1}^{r+1} c_{\gamma} \cdot B_{\tau_{\gamma},n}$

(Some) B-splines properties:

- ➤ Compact support (smaller integral region)
- \triangleright Smoothness of n-2 (remove oscillations)
- ➤ Derivatives as divided differences (superconvergence theory)

→ Optimal order, 3

 \rightarrow Continuity: C^0 (n=2)

 \rightarrow Continuity: C^1 (n=3)

→ Optimal order: 5

Polynomial functions: filtering linear data (p = 1)Docampo, Jacobs, Li, Ryan (CAF 2020) ²-projection **Target** Interpolant (No Galerkin orthogonality) Exact 0.10 0.10 Data Quadratic $\widetilde{\mathbb{X}}$ Filtered **Function** -0.450.83 0.83 0.2 X 0.2 X 0.16 0.16 Cubic $\widetilde{\mathbb{X}}$ $\stackrel{(\times)}{\times}$ **Function**

We can recover the exact function for the L^2 -projected data!

0.83

-0.16

X

0.83

-0.16

Filtering in multidimensions

> Tensor filter: natural extension to higher dimension

$$K = k_x \otimes k_y \Rightarrow u^*(\overline{x}, \overline{y}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k_x \left(\frac{\overline{x} - x}{h_x}\right) \cdot k_y \left(\frac{\overline{y} - y}{h_y}\right) u(x, y) dx dy$$

➤ Line filter: choose angle of rotation and perform a line integral Docampo, Mirzargar, Ryan, and Kirby (SISC 2017).

$$K = k_{\Gamma} \Rightarrow u^{*}(\overline{x}, \overline{y}) = \int_{\Gamma} k_{\Gamma} \left(\frac{\Gamma(0) - \Gamma(t)}{h_{t}} \right) u(\Gamma(t)) dt$$

Footprints for a uniform mesh and quadratic kernels $K^{(5,3)}$

Tensor: 196 2*d*-integrals

Line: 21 1d-integrals

2D filters: superconvergence & error reduction

- **Provable** 2p + 1 order for linear problems + uniform meshes
- **Observed** 2p + 1 order also for non-linear equations

Example: Burgers eq. with source term and uniform quad mesh

		DG		LSIAC		TSIAC	
		$ e _{2}$					
p = 1	40 ²	3.02e-03	2.01	3.34e-04	3.32	1.37e-04	3.05
		7.52e-04					
p = 2	40 ²	4.01e-05 4.93e-06	3.00	9.37e-06	6.04	4.66e-07	4.65
	80^{2}	4.93e-06	3.02	2.95e-07	4.99	1.52e-08	4.93

Error contours p = 2, $N = 40^2$

Post-processing data with SIAC filters

✓ SIAC filters overview

Moment preservation + B-splines + L^2 -initialization \Rightarrow **provable** 2p+1 **superconvergence**

Multidimensional data

Line filter: computationally efficient

Tensor filter: theory extends naturally from 1d

> The software package

- → Structure and compatibility
- → Examples of applications

A standalone tool written in julia

- Mesh map: element indices, connectivity (and boundaries)
- **Data:** quadrature points or a modal file
- Pipe with .vtu files using VTKDatalO (needs Python)
- using Julia multi-threading & distributed memory Parallel:

Currently supporting 1D & 2D data:

Mesh

	Kernel		Uniform		Non-uniform	
Filter	Symmetric	Shifted	Quads	Triangles	Quads	Triangles
Tensor						
Line						

CPU times: Dell XPS, 4 cores, 25 points per element

CPU times: MareNostrum4, max 48 cores (1 node)

Examples on non-uniform meshes: quads

Error contours (log)

LSIAC filtering: triangular meshes and Paraview

Error contours $(p = 1, n = 20^2)$ for a sine wave (DG at t = 0)

Wrapping up: hopefully you will remember...

SIAC filters: increase smoothness and reduce errors

- \rightarrow 2p + 1 superconvergence
 - moment conditions + Bsplines + L^2 -initialization
- → Theoretical estimates
 - equations (linearity), mesh type & domain boundaries
- → Multidimensional data

tensor filter (accuracy) vs. line filter (CPU efficiency)

The Julia Package: currently supporting 1D & 2D data

Mesh

	Kernel		Uniform		Non-uniform	
Filter	Symmetric	Shifted	Quads	Triangles	Quads	Triangles
Tensor						
Line						

The MSIAC tool is a joint project with Prof. Jennifer K. Ryan

Visit us!

https://siac_magic.gitlab.io/siac-magic-tools

Acknowledgements

- BSC supercomputing facilities: MareNostrum4
- This project is funded through The European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 893378

Gracias !!

