EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 88810163.1

2 Anmeldetag: 16.03.88

(B) (mt. Cl.4: **C 07 C 97/10** C 07 C 149/42, C 07 C 147/12,

C 07 D 295/10, C 07 C 103/44,

C 07 D 295/12, C 08 F 2/50,

G 03 F 7/00

@ Priorităt: 26.03.87 CH 1152/87

(3) Veröffentlichungstag der Anmeldung: 28.09.88 Patentblatt 88/39

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB IT LI NL SE

7) Anmelder: CIBA-GEIGY AG Ktybeckstrasse 141 CH-4002 Basel (CH)

Erfinder: Desobry, Vincent, Dr. Route du Confin 50 CH-1723 Marty (CH) Dietilker, Kurt, Dr. Av. Jean-Marie Musy 6 CH-1700 Fribourg (CH)

Hüsler, Rinaldo, Dr. Route du Confin 52 CH-1723 Marly (CH)

Rutsch, Werner, Dr. Av. Jean-Marie Musy 6 CH-1700 Fribourg (CH)

Rembold, Manfred, Dr. Im Asschfeld 21 CH-4147 Assch (CH)

Sitek, Franciszek, Dr. Grossmattweg 11 CH-4106 Therwil (CH)

Patentanspruch für folgenden Vertragsstaat:ES

Neue alpha-Aminoacetophenone als Photoinitiatoren.

Verbindungen der Formel I, II, III und IIIa

worin Ar¹ einen unsubstitulerten oder substitulerten aromatischen Rest bedeutet und mindestens einer der Reste R¹ und R² eine Alkenyi-, Cycloalkenyi- oder Arylmethylgruppe bedeutet, sind wirkungsvolle Photoinitiatoren für die Photopolymerisation ungesättigter Verbindungen. Sie eignen sich insbesondere zur Photohärtung pigmentierter Systeme.

Beschreibung

10

20

35

40

45

55

60

Neue α-Aminoacetophenone als Photoinitiatoren

Die Erfindung betrifft neue Derivate des α-Aminoacetophenons, die durch eine Allyl- oder Aralkylgruppe in α-Stellung gekennzeichnet sind, sowie ihre Verwendung als Photoinitiatoren für die Photopolymerisation von ethylenisch ungesättigten Verbindungen, insbesondere für die Photohärtung von pigmentierten Systemen, wie Druckfarben oder Welsslack.

Derivate des α -Aminoacetophenons sind aus der EP-A-3002 als Photoinitiatoren für ethylenisch ungesättigte Verbindungen bekannt. Besitzen diese Verbindungen in 4-Stellung des Phenylrestes einen Schwefel oder Sauerstoff enthaltenden Substituenten, so sind die Verbindungen besonders geeignet als Photoinitiatoren für pigmentierte photohärtbare Systeme (EP-A-88.050 und 117.233), beispielsweise für UV-härtbare Druckfarben.

In der EP-A-138.754 sind Derivate des α-Aminoacetophenons beschrieben, die in 4-Stellung des Phenylrestes eine Aminogruppe besitzen. Diese Verbindungen werden in Kombination mit Photosensibilisatoren aus der Klasse der aromatischen Carbonylverbindungen verwendet.

Es wurde nunmehr gefunden, dass sich aus dieser allgemeinen Klasse von α -Aminoacetophenonen solche durch besonders hohe Wirksamkeit als Photoinitiatoren auszeichnen, die in α -Stellung mindestens eine Alkenyl- oder Aralkylgruppe enthalten. Diese Verbindungen eignen sich vor allem für die Verwendung in Druckfarben.

Im einzelnen handelt es sich um die Verbindungen der Formel I, II, III oder IIIa,

$$Ar^{1} \longrightarrow \begin{matrix} R^{1} & R^{3} \\ R^{2} & R^{3} \end{matrix}$$

$$Ar^{1} \longrightarrow C \longrightarrow C \longrightarrow X \longrightarrow C \longrightarrow Ar^{1} \longrightarrow Ar^{1}$$

$$Ar^{1} \xrightarrow{R^{1}} Y \xrightarrow{R^{1}} Q \xrightarrow{R^{1}} III$$

$$Ar^{1} = \begin{pmatrix} R^{2} & R$$

50 worin Ar1 einen aromatischen Rest der Formel IV, V, VI oder VII bedeutet,

worin X einen zweiwertigen Rest der Formel

-N(R¹¹)- oder -N(R¹¹)-R¹²-N(R¹¹)- bedeutet,
Y C₁-C₆-Alkylen, Cyclohexylen oder eine direkte Bindung bedeutet,
Y' Xylylen, C₄-C₆-Alkendiyl, C₆-C₁₀-Alkadiendiyl, Dipentendiyl oder Dihydroxylylen bedeutet,
U -O-, -S- oder -N(R¹⁷)- bedeutet,
V -O-, -S-, -N(R¹⁷)-, -CO-, -CH₂-, -CH₂CH₂-, C₂-C₆-Alkyliden oder eine direkte Bindung bedeutet,
W unverzweigtes oder verzweigtes C₁-C₇-Alkylen oder C₂-C₆-Alkyliden bedeutet,
30
R¹ entweder
(a) ein Rest der Formei

$$-(CHR^{13})$$
 p C R^{16} R^{15} R^{16} R^{16} R^{16}

worin p null oder 1 ist, oder (b) ein Rest der Formel

ist, wobei q 0, 1, 2 oder 3 bedeutet oder (c) ein Rest der Formel

ist, worin Ar^2 einen unsubstituierten oder durch Halogen, OH, C_1 - C_{12} -Alkyl oder durch OH, Halogen, -N(R¹¹)₂, -C₁-C₁₂-Alkoxy, -COO(C_1 - C_{18} -Alkyl), -CO(OCH_2CH_2)_nOCH₃ oder -OCO(C_1 - C_4)-Alkyl substituiertes C_1 -C₄-Alkyl, C_1 - C_{12} -Alkoxy oder durch -COO(C_1 - C_{18} -Alkyl) oder -CO(OCH_2CH_2)_nOCH₃ substituiertes C_1 -C₄-Alkoxy, -(OCH₂CH₂)_nOH, -(OCH₂CH₂)_nOCH₃, C_1 -C₈-Alkylthio, Phenoxy, -COO(C_1 - C_{18} -Alkyl), -CO(OCH_2CH_2)_nOCH₃, Phenyl oder Benzoyl substituierten Phenyl-, Naphthyl-, Furyl-, Thienyl- oder Pyrldylrest bedeutet, worin n 1-20 ist, oder

(d) zusammen mit R2 einen Rest der Formel

bildet, worin m 1 oder 2 ist,

R² eine der für R¹ gegebenen Bedeutungen hat oder C₅-C₆-Cycloalkyl, unsubstituiertes oder durch C₁-C₄-Alkoxy, Phenoxy, Halogen oder Phenyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder durch Halogen, C₁-C₁₂-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl bedeutet,

R³ Wasserstoff, C₁-C₁₂-Alkyl, durch Hydroxy, C₁-C₄-Alkoxy, -CN oder -COO(C₁-C₄-Alkyl) substituiertes C₂-C₄-Alkyl, C₃-C₅-Alkenyl, C₅-C₁₂-Cycloalkyl oder C₇-C₉-Phenylalkyl bedeutet,

R⁴ C₁-C₁₂-Alkyl, durch Hydroxy, C₁-C₄-Alkoxy, -CN oder -COO(C₁-C₄-Alkyl) substituiertes C₂-C₄-Alkyl, C₃-C₅-Alkenyl, C₅-C₁₂-Cycloalkyl, C₇-C₉-Phenylalkyl, Phenyl oder durch Halogen, C₁-C₁₂-Alkyl, C₁-C₄-Alkoxy oder -COO(C₁-C₄-Alkyl) substituiertes Phenyl bedeutet oder R⁴ zusammen mit R² C₁-C₇-Alkylen, C₇-C₁₀-Phenylalkylen, o-Xylylen, 2-Butenylen oder C₂-C₃-Oxa- oder Azaalkylen bedeutet, oder R³ und R⁴ zusammen C₂-C₃-Alkylen bedeuten das durch -O₂-S₂-CO₂ oder -N(R¹⁷)- unterbrochen sein kann

R³ und R⁴ zusammen C₃-C₇-Alkylen bedeuten, das durch -O-, -S-, -CO- oder -N(R¹⁷)- unterbrochen sein kann oder durch Hydroxy, C₁-C₄-Alkoxy oder -COO(C₁-C₄-Alkyl) substituiert sein kann,

R⁵, R⁶, R⁷, R⁸ und R⁹ unabhängig voneinander Wasserstoff, Halogen, C₁-C₁₂-Alkyl, C₅-C₆-Cycloalkyl, Phenyl, Benzyl, Benzoyl oder eine Gruppe -OR¹⁸, -SR¹⁹, -SO₂-R¹⁹, -SO₂-R¹⁹, -N(R²⁰)(R²¹), -NH-SO₂-R²² oder

$$30 \qquad -Z - \underbrace{\begin{array}{c} & & & \\ & - & \\ & & \end{array}}_{R^2} \underbrace{\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array}}_{R^3}$$

bedeuten, worin Z -O-, -S-, -N(R11)-, -N(R11)-R12-N(R11)- oder

20

25

35

bedeutet, wobei im Falle, das R¹ Allyl und R² Methyl ist, R⁵ nicht -OCH₃ ist, und im Falle, dass R¹ Benzyl ist und R² Methyl oder Benzyl ist, R⁵ nicht -OCH₃, -SCH₃ oder -SO-CH₃ ist,

45 R10 Wasserstoff, C1-C12-Alkyl, Halogen oder C2-C8-Alkanoyl bedeutet,

R¹¹ Wasserstoff, C₁-C₈-Alkyl, C₃-C₅-Alkenyl, C₇-C₉-Phenylalkyl, C₁-C₄-Hydroxyalkyl oder Phenyl bedeutet, R¹² unverzweigtes oder verzweigtes C₂-C₁₆-Alkylen, das durch ein oder mehrere -O-, -S- oder -N(R¹¹)-unterbrochen sein kann,

R13 Wasserstoff, C1-C8-Alkyl oder Phenyl bedeutet,

R¹⁴, R¹⁵ und R¹⁶ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten oder R¹⁴ und R¹⁵ zusammen C₃-C₇-Alkylen sind,

R¹⁷ Wasserstoff, C₁-C₁₂-Alkyl, das durch ein oder mehrere -O- unterbrochen sein kann, C₃-C₅-Alkenyl, C₇-C₉-Phenylaikyl, C₁-C₄-Hydroxyalkyl, -CH₂CH₂CN, -CH₂CH₂COO(C₁-C₄-Alkyl), C₂-C₈-Alkanoyl oder Benzoyl bedeutet.

Fig. Wasserstoff, C₁-C₁₂-Alkyl, durch -CN, -OH, C₁-C₄-Alkoxy, C₃-G₆-Alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂COO(C₁-C₄-Alkyl), -COOH oder -COO(C₁-C₄-Alkyl) substituiertes C₁-C₆-Alkyl, -(CH₂CH₂O)_nH mit n = 2-20, C₂-G₈-Alkanoyl, C₃-C₁₂-Alkenyl, Cyclohexyl, Hydroxycyclohexyl, Phenyl, durch Halogen, C₁-C₁₂-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, C₇-C₉-Phenylalkyl oder -Si(C₁-C₈Alkyl)_r(Phenyl)_{3-r}mit r = 1, 2 oder 3 bedeutet.

R19 Wasserstoff, C1-C12-Alkyl, C3-C12-Alkenyl, Cyclohexyl, durch -SH, -OH, -CN, -COO(C1-C4-Alkyl), C1-C4-Alkoxy, -OCH2CH2CN oder -OCH2CH2COO(C1-C4-Alkyl) substituiertes C1-C6-Alkyl, Phenyl, durch Halogen, C1-C12-Alkyl oder C1-C4-Alkoxy substituiertes Phenyl oder C7-C9-Phenylalkyl bedeutet, R20 und R21 unabhängig voneinander Wasserstoff, C1-C12-Alkyl, C2-C4-Hydroxyalkyl, C2-C10-Alkoxyalkyl, C3-C5-Alkenyl, C5-C12-Cycloalkyl, C7-C9-Phenylalkyl, Phenyl, durch Halogen, C1-C12-Alkyl oder C1-C4-Alkoxy

substituiertes Phenyl, C2-C3-Alkanoyl oder Benzoyl bedeuten, oder

0 204 30 1	
R ²⁰ und R ²¹ zusammen C ₂ -C ₈ -Alkylen bedeuten, das durch -O-, -S- oder -N(R ¹⁷)- unterbrochen sein kann, oder durch Hydroxy, C ₁ -C ₄ -Alkoxy oder -COO(C ₁ -C ₄ -Alkyl) substituiert sein kann, R ²² C ₁ -C ₁₈ -Alkyl, unsubstituiertes oder durch Halogen, C ₁ -C ₁₂ -Alkyl oder C ₁ -C ₈ -Alkoxy substituiertes Phenyl oder Naphthyl bedeutet, oder um ein Säureadditlonssalz einer solchen Verbindung, insbesondere um Verbindungen der Formel I, worln Ar¹ eine Gruppe der Formel IV, V oder Vil ist und R¹, R², R³, R³, R³, R³, R³, R³, R³, R¹, V, U und W die oben gegebene Bedeutung haben. R¹4, R¹5 und R¹8 als C₁-C₄-Alkyl können z.B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec.Butyl oder	
tert.Butyl sein. R ² , R ¹¹ und R ¹³ als C ₁ -C ₈ -Alkyl können darüber hinaus auch z.B. Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl oder 2,2,4,4-Tetramethylbutyl sein. R ³ , R ⁴ , R ⁵ , R ⁶ , R ⁷ , R ⁸ , R ⁹ , R ¹⁰ , R ¹⁷ , R ¹⁸ , R ¹⁹ , R ²⁰ und R ²¹ als C ₁ -C ₁₂ -Alkyl können darüber hinaus auch z.B. Nonyl, Decyl, Isodecyl, Undecyl oder Dodecyl sein. R ³ , R ⁴ , R ¹¹ , R ¹⁷ , R ²⁰ und R ²¹ als C ₃ -C ₅ -Alkenyl können z.B. Allyl, Methallyl, Crotyl oder Dimethylallyl sein, wobel Allyl bevorzugt ist. R ¹⁸ und R ¹⁹ als C ₃ -C ₁₂ -Alkenyl können darüber hinaus auch z.B. Hexenyl, Octenyl	10
oder Decenyl sein. R ² , R ⁵ , R ⁶ , R ⁷ , R ⁸ und R ⁹ als C ₅ -C ₆ -Cycloalkyl sind insbesondere Cyclohexyl. R ³ , R ⁴ , R ²⁰ und R ²¹ als C ₅ -C ₁₂ -Cycloalkyl können darüber hinaus auch z.B. Cyclooctyl oder Cyclododecyl sein. R ³ , R ⁴ , R ¹⁹ , R ¹⁸ , R ¹⁹ , R ²⁰ und R ²¹ als C ₇ -C ₉ -Phenylalkyl sind insbesondere Benzyl. Y als C ₁ -C ₆ -Alkylen kann z.B. Methylen, Di-, Tri-, Tetra-, Penta-oder Hexamethylen sein. W als C ₁ -C ₇ -Alkylen	10
 kann z.B. Methylen, Ethylen, Propylen-1,2 oder Hexylen-1,2 sein. V und W als C₂-C₆-Alkyliden k\u00f6nnen z.B. Ethyliden, Propyliden, Butyliden, Isobutyliden oder Hexyliden sein. Beispiele f\u00fcr Ar² sind die Gruppen Phenyl, 1-Naphthyl, 2-Naphthyl, 2-Furyl, 2-Thienyl, 3-Pyrldyl, 4-Chlorphenyl, Tolyl, 4-Isopropylphenyl, 4-Octylphenyl, 3-Methoxyphenyl, 4-Phenoxyphenyl, 4-Phenoxyphenyl, 4-Benzoylphenyl, 4-Chlor-1-naphthyl oder 4-Methyl-2-pyridyl. 	20
Beispiele für R ² als substitulertes Alkyl sind die Gruppen 2-Methoxyethyl, 3-Butoxypropyl, 2-Isopropoxyethyl, 4-Phenoxybutyl, 2-Chlorethyl, 3-Chlorpropyl, 2-Phenylethyl oder 3-Phenylpropyl. Beispiele für R ² als substitulertes Phenyl sind die Gruppen 4-Chlorphenyl, 3-Methoxyphenyl, 4-Tolyl oder 4-Butylphenyl. R ³ und R ⁴ als substitulertes Alkyl können z.B. 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Hydroxylsobutyl, 2-Ethoxyethyl, 2-Methoxypropyl, 2-Butoxyethyl, 2-Cyanethyl, 2-Ethoxycarbonylethyl oder 2-Methoxycarbonylethyl sein.	2:
R ⁴ als substituiertes Phenyl kann z.B. 3-Chlorphenyl, 4-Chlorphenyl, 4-Tolyl, 4-tert.Butylphenyl, 4-Dodecytphenyl, 3-Methoxyphenyl oder 3-Methoxycarbonylphenyl sein. Wenn R ⁴ zusammen mit R ² Alkylen oder Phenylalkylen bedeuten, so ergeben diese zusammen mit dem C-Atom und dem N-Atom, an das sie gebunden sind vorzugswelse einen 5- oder 6-gliedrigen heterocyclischen Ring.	30
Wenn R ³ und R ⁴ zusammen Alkylen oder unterbrochenes Alkylen bedeuten, so ergeben diese zusammen mit dem N-Atom, an das sie gebunden sind, vorzugsweise einen 5- oder 6-gliedrigen heterocyclischen Ring, z.B. einen Pyrrolidin-, Piperidin-, Morpholin-, Thiomorpholin-, Piperidon- oder Piperazinning, der durch eine oder mehrere Alkyl-, Hydroxy, Alkoxy- oder Estergruppen substitulert sein kann,	32
R ¹⁰ , R ¹⁷ und R ¹⁸ als C ₂ -C ₈ -Alkanoyi können z.B. Propionyi, Butyryi, Isobutyryi, Hexanoyi oder Octanoyi, insbesondere aber Acetyi sein. R ¹¹ , R ¹⁷ , R ²⁰ und R ²¹ als C ₁ -C ₄ -Hydroxyalkyi bzw. C ₂ -C ₄ -Hydroxyalkyi können z.B. Hydroxymethyi, 2-Hydroxyethyi, 2-Hydroxypropyi oder 4-Hydroxybutyi sein. R ¹² als Alkylen oder unterbrochenes Alkylen kann z.B. Ethylen, Tri-, Tetra-, Penta-, Hexa-, Octa- oder	40
Dodecamethylen, 2,2-Dimethyl-trimethylen, 1,3,3-Trimethyltetramethylen, 3-Oxa-pentamethylen, 3-Oxaheptamethylen, 4,7-Dioxa-decamethylen, 4,9-Dioxadodecamethylen, 3,6,9,12-Tetraoxa-tetradecamethylen, 4-Azaheptamethylen, 4,7-Di(methylaza)-decamethylen oder 4-Thia-heptamethylen sein. Wenn R ¹⁴ und R ¹⁵ zusammen C ₃ -C ₇ -Alkylen Bedeuten, so bedeuten sie insbesondere 1,3- oder 1,4-Aikylen wie z.B. 1,3-Propylen, 1,3-Butylen, 2,4-Pentylen, 1,3-Hexylen, 1,4-Butylen, 1,4-Pentylen oder 2,4-Hexylen.	41
R ¹⁸ , R ¹⁹ , R ²⁰ und R ²¹ als substituiertes Phenyl kann z.B. 4-Chlorphenyl, 3-Chlorphenyl, 4-Tolyl, 4-tert.Butylphenyl, 4-Nonylphenyl, 4-Dodecylphenyl, 3-Methoxyphenyl oder 4-Ethoxyphenyl sein. R ¹⁸ als Gruppe -Si(C ₁ -C ₈ -Alkyl) _r (Phenyl) _{3-r} kann insbesondere -Si(CH ₃) ₃ , -Si(Phenyl) ₂ CH ₃ , -Si(CH ₃) ₂ Phenyl, -Si(CH ₃) ₂ [C(CH ₃) ₂ CH(CH ₃) ₂] und -Si(Phenyl) ₃ sein. R ¹⁸ als substituiertes C ₁ -C ₈ -Alkyl kann z.B. 2-Hydroxyethyl, 2-Methoxyethyl oder 2-Allyloxyethyl sein.	50
R ¹⁹ als substituiertes C ₁ -C ₈ -Alkyl kann z.B. 2-Mercaptoethyl, 2-Hydroxyethyl, 2-Hydroxypropyl, 2-Methoxyethyl, -CH ₂ CH ₂ OCH ₂ CH ₂ CN oder -CH ₂ CH ₂ OCH ₂ COOCH ₃ sein. R ²⁰ und R ²¹ als Alkoxyalkyl können z.B. Methoxyethyl, Ethoxyethyl, 2-Ethoxypropyl, 2-Butoxyethyl, 3-Methoxypropyl oder 2-Hexyloxyethyl sein. R ²⁰ und R ²¹ als C ₂ -C ₃ -Alkanoyl sind insbesondere Acetyl.	55
R ²² als substituiertes Phenyl oder Naphthyl kann z.B. 4-Tolyl, 4-Bromphenyl, 3-Chlorphenyl, 4-Butylphenyl, 4-Octylphenyl, 4-Decylphenyl, 4-Dodecylphenyl, 3-Methoxyphenyl, 4-Isopropoxyphenyl, 4-Butoxyphenyl, 4-Octyloxyphenyl, Chlornaphthyl, Nonylnaphthyl oder Dedecylnaphthyl sein.	60
Wenn R ²⁰ und R ²¹ zusammen Alkylen oder unterbrochenes Alkylen bedeuten, so blidet dieses zusammen	•

mit dem N-Atom, an das es gebunden ist, einen heterocyclischen Ring, vorzugsweise einen 5-oder 6-gliedrigen Ring, der durch Alkyl-, Hydroxy-, Alkoxy- oder Estergruppen substitutert sein kann. Beispiele für solche Ringe sind ein Pyrrolidin-, Piperidin-, 4-Hydroxypiperidin-, 3-Ethoxycarbonyl-piperidin-, Morpholin-,

2,6-Dimethylmorpholin-, Piperazin-oder 4-Methylpiperazinring.

Alle diese Verbindungen besitzen mindestens eine basische Aminogruppe und lassen sich daher durch Addition von Säuren in die entsprechenden Salze überführen. Die Säuren können anorganische oder organische Säuren sein. Beispiele für solche Säuren sind HCl, HBr, H2SO4, H3PO4, Mono- oder Polycarbonsäuren wie z.B. Essigsäure, Oelsäure, Bernsteinsäure, Sebacinsäure, Weinsäure oder CF3COOH, Sulfonsäuren wie z.B. CH3SO3H, C12H26SO3H, p-C12H25-C6H4-SO3H, p-CH3-C6H4-SO3H oder CF3SO3H.

Bevorzugt sind Verbindungen der Formel I, worin Ar¹ eine Gruppe der Formel IV ist, R⁵ und R⁶ Wasserstoff, Halogen, C₁-C₁₂-Alkyl oder eine Gruppe -OR¹⁶, -SR¹⁶, -SOR¹⁶, -SO₂-R¹⁶, -N(R²⁰)(R²¹), -NHSO₂R²² oder

-2-10 -2-1 -2-1 -2-1 -2-1 -2-1

15

30

35

60

bedeuten, worin Z -O-, -S-, -N(R¹¹)- oder -N(R¹¹)-R¹²-N(R¹¹)-bedeutet, R⁷ und R⁸ Wasserstoff oder Halogen und R⁹ Wasserstoff, Halogen oder C₁-C₁₂-Alkyl sind und R¹, R², R³, R⁴, R¹¹, R¹², R¹⁸, R¹⁹, R²⁰, R²¹ und R²² die oben gegebenen Bedeutungen haben, wobei im Falle, dass R¹ Allyl ist und R² Methyl ist, R⁵ nicht -OCH₃ ist, und im Falle, dass R¹ Benzyl ist und R² Methyl oder Benzyl ist, R⁵ nicht -OCH₃, -SCH₃ oder -SOCH₃ ist.

Unter den Verbindungen der Formel I, worin Ar¹ eine Gruppe der Formel IV ist, in der R⁵ eine Gruppe -OR¹⁸, -SR¹⁹, -N(R²⁰)(R²¹) oder

$$-Z - \underbrace{\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & -C \end{array}}_{R^2} \underbrace{\begin{array}{c} R^1 \\ R^2 \end{array}}_{R^2} \underbrace{\begin{array}{c} R^3 \\ R^4 \end{array}}_{R^4}$$

bedeutet, sind diejenigen bevorzugt, bei denen R⁶ Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeutet oder eine der für R⁵ gegebenen Bedeutungen hat, R⁷ und R⁸ Wasserstoff oder Halogen und R⁹ Wasserstoff oder C₁-C₄-Alkyl bedeuten, Z -O-, -S-oder -N(R¹¹)- bedeutet,

R¹ entweder

(a) ein Rest der Formel

ist oder

(b) ein Rest der Formel -CH(R¹³)-Ar² ist, worin Ar² ein unsubstituierter oder durch Halogen, C₁-C₄-Alkyl Methylthio, Methoxy oder Benzoyl substituierter Phenylrest ist,

R² eine der für R¹ gegebenen Bedeutungen hat oder C₁-C₆-Alkyl ist.

R³ und R⁴ unabhängig voneinander C₁-C₁₂-Alkyl, durch C₁-C₄-Alkoxy, -CN oder -COO(C₁-C₄-Alkyl) substituiertes C₂-C₄-Alkyl, Allyl, Cyclohexyl oder Benzyl bedeuten oder R³ und R⁴ zusammen C₄-C₆-Alkylen bedeuten, welches durch -O- oder -N(R¹7)- unterbrochen sein kann,

R11 Wasserstoff, C1-C4-Alkyl, Allyl, Benzyl oder C2-C4-Alkanoyl bedeutet,

R12 C2-C6-Alkylen bedeutet,

R¹³, R¹⁴, R¹⁵ und R¹⁶ unabhängig voneinander Wasserstoff oder Methyl bedeuten,

R17 Wasserstoff, C1-C4-Alkyl, Benzyl, 2-Hydroxyethyl oder Acetyl bedeutet,

R18 Wasserstoff, C₁-C₄-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl, 2-Allyloxyethyl, Allyl, Cyclohexyl, Phenyl, Benzyl oder -Si(CH₃)₃ bedeutet,

R¹⁹ Wasserstoff, C₁-C₁₂-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl, Phenyl, p-Tolyl oder Benzyl bedeutet, R²⁰ und R²¹ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₆-Alkoxy-alkyl, Acetyl, Allyl oder Benzyl bedeuten oder R²⁰ und R²¹ zusammen C₄-C₆-Alkylen bedeuten, das durch -O- oder -N(R¹⁷)- unterbrochen

sein kann, wobei im Falle, dass R¹ Allyl ist, R⁵ nicht -OCH₃ ist, und im Falle, dass R¹ Benzyl ist und R² Methyl oder Benzyl ist. R⁵ nicht -OCH₃ oder -SCH₃ ist.

Besonders bevorzugt sind Verbindungen der Formel I, worin Ar¹ eine Gruppe der Formel IV ist, in der R⁵ eine Gruppe -OR¹8, -SR¹9 oder -N(R²0)(R²¹) bedeutet, R⁶ Wasserstoff, Chlor oder C₁-C₄-Alkyl bedeutet oder eine der für R⁶ gegebenen Bedeutungen hat, R⁶ und R՞ð Wasserstoff oder Chlor und R⁶ Wasserstoff oder

 C_1 - C_4 -Alkyl bedeuten, R^1 entweder (a) ein Rest der Formel - CH_2 - $C(R^{14})$ = $CH(R^{15})$ ist oder (b) ein Rest der Formel -CH2-Ar2 ist, worin Ar2 ein unsubstitulerter oder durch Halogen, C1-C4-Alkyl, CH3S-, CH3O- oder Benzyl substitulerter Phenylrest ist. R² eine der für R¹ gegebenen Bedeutungen hat oder C₁-C₄-Alkyl Ist, R³ und R⁴ unabhängig voneinander C1-C6-Aikyi, 2-Methoxyethyi, Aliyi oder Benzyi sind oder R³ und R⁴ zusammen Tetramethylen, Pentamethylen oder 3-Oxapentamethylen bedeuten, R14 und R15 Wasserstoff oder Methyl bedeuten, R¹⁸ C₁-C₄-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl oder Phenyl bedeutet, R19 C1-C12-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl, Phenyl oder p-Tolyl bedeutet, R²⁰ und R²¹ Wasserstoff, C₁-C₄-Alkyl, 2-Methoxyethyl, Acetyl oder Allyl bedeuten oder R²⁰ und R²¹ zusammen C₄-C₅-Alkylen bedeuten, das durch -O- oder -N(CH₅)-unterbrochen sein kann, wobel im Falle, dass R1 Allyl ist, R5 nicht -OCH3 ist, und im Falle, dass R1 Benzyl ist und R2 Methyl oder Benzyl ist, R5 nicht -OCH3 oder -SCH3 ist. Unter diesen Verbindungen sind solche bevorzugt, worin R⁵ eine Gruppe -SR¹⁸ ist, R¹ ein Rest der Formel 15 20 ist, und entweder R7 und R8 Wasserstoff sind oder R6, R7, R8 und R9 Wasserstoff sind, sowie solche, worln R1 Allyl ist. Unter den Verbindungen der Formel I, worin Ar1 eine Gruppe der Formel IV ist; in der R5 eine Gruppe -N(R²⁰)(R²¹) ist, sind diejenigen bevorzugt, bei denen R⁷ und R⁸ Wasserstoff sind, sowie diejenigen, bei denen R6, R7, R8 und R9 Wasserstoff sind, sowie diejenigen, bei denen R1 Allyl oder Benzyl ist. Bevorzugt sind weiterhin Verbindungen der Formel I, worin Ar1 eine Gruppe der Formel IV ist, in der R5 Wasserstoff, Halogen oder C1-C12-Alkyl Ist und R6, R7, R8 und R9 Wasserstoff sind, R1 Allyl oder Benzyl bedeutet, R2 C1-C6-Alkyl, Allyl oder Benzyl bedeutet, R3 und R4 unabhängig voneinander C1-C12-Alkyl, durch C1-C4-Alkoxy, -CN oder -COO(C1-C4-Alkyl) substituiertes C2-C4-Alkyl, Allyl, Cyclohexyl oder Benzyl bedeuten oder R3 und R4 zusammen C4-C6-Alkylen bedeuten, welches durch -O- oder -N(R17)-unterbrochen sein kann, und R17 Wasserstoff, C1-C4-Alkvi oder 2-Hydroxyethvi bedeutet. Beispiele für einzelne Verbindungen der Formel I sind: 1. 2-(Dimethylamino)-2-ethyl-1-(4-morpholinophenyl)-4-penten-1-on 2. 2-(Dimethylamino)-2-methyl-1-(4-morpholinophenyl)-4-penten-1-on 3. 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-propan-1-on 4. 4-Morpholino-4-(4-morpholinobenzyl)-hepta-1,6-dien 5. 2-Ethyl-2-morpholino-1-(4-morpholinophenyl)-4-penten-1-on 6. 2-Benzyl-2-(dimethylamino)-1-[4-(dimethylamino)-phenyl]-butan-1-on 7. 4-Dimethylamino-4-(4-dimethylaminobenzoyl]-hepta-1,6-dien 8. 4-(Dimethylamino)-4-(4-morpholinobenzoyl)-hepta-1,6-dien 9. 2-(Dimethylamino)-2-(4-dimethylaminophenyl)-2-ethyl-4-penten-1-on 45 10. 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-butan-1-on 11. 2-Benzyl-2-(dimethylamino)-1-[4-(dimethylamino)-phenyl]-4-penten-1-on 12. 2-Benzyl-1-[4-(dimethylamino)-phenyl]-2-(dimethylamino)-3-phenyl-propan-1-on 13. 2-Ethyl-1-[4-(methylthio)-phenyl]-2-morpholino-4-penten-1-on 14. 4-[4-(Methylthio)-benzoyl]-4-morpholino-hepta-1,6-dien 50 15. 4-(Dimethylamino)-4-(4-methoxybenzoyl)-hepta-1,6-dien 16. 4-(4-Methoxybenzoyi)-4-morpholino-hepta-1,6-dien 17. 1-(4-Methoxyphenyl)-2-morpholino-2-phenyl-4-penten-1-on

27. 2-Ethyl-4-methyl-1-[4-(methylthio)-phenyl]-2-morpholino-4-penten-1-on

20. 2-(Dimethylamino)-2-ethyl-1-[4-(methylthio)-phenyl]-4-penten-1-on 21. 2-Benzyl-2-(dimethylamino)-1-[4-(methylthio)-phenyl]-4-penten-1-on 22. 4-(Dimethylamino)-4-[4-(methylthio)-benzoyl]-1,6-heptadlen

30. 2-Allyl-1-[4-(methylthio)-phenyl]-2-morpholino-hexan-1-on

18. 2-Ethyl-1-(4-methoxyphenyl)-2-morpholino-4-penten-1-on 19. 2-Benzyl-2-(dimethylamino)-1-[4-(methylthio)-phenyl]-butan-1-on

23. 2-(Dimethylamino)-3-(4-fluorphenyl)-2-methyl-1-[4-(methylthio)-phenyl]-propan-1-on 24. 3-(4-Chlorphenyl)-2-(dimethylamino)-2-methyl-1-[4-(methylthlo)-phenyl]-propan-1-on 25. 3-(2-Chlorphenyl)-2-(dimethylamino)-2-methyl-1-[4-(methylthio)-phenyl]-propan-1-on

26. 3-(4-Bromphenyl)-2-(dimethylamino)-2-methyl-1-[4-(methylthio)-phenyl]-propan-1-on

55

```
31.2-(Dimethylamino)-1-[4-(methylthio)-phenyl]-2-methyl-3-(4-methylphenyl)-propan-1-on
           32. 2-(Dimethylamino)-1,3-bis-[4-(methylthio)-phenyl]-2-methyl-propan-1-on
           33. 2-(Dimethylamino)-1-[4-(methylthio)-phenyl]-2-methyl-3-(4-methoxyphenyl)-propan-1-on
           34. 1-[4-(Methylthio)-phenyl]-2-methyl-2-morpholino-4-penten-1-on
           35. 2-(Dimethylamino)-1-[4-(methylthlo)-phenyl]-2-methyl-4-penten-1-on
5
           36. 1-[4-(Methylthio)-phenyl]-2-morpholino-2-phenyl-4-penten-1-on
           37. 2-(Dimethylamino)-1-[4-(methylthlo)-phenyl]-2-phenyl-4-penten-1-on
           38. 2-(Dimethylamino)-1-[4-(methylthio)-phenyl]-2,3-diphenyl-propan-1-on
           39. 2-Methyl-2-morpholino-1-(4-morpholinophenyl)-4-penten-1-on
           40. 2-Benzyl-2-morpholino-1-(4-morpholinophenyl)-4-penten-1-on
10
           41. 2-Ethyl-2-morpholino-1-(4-morpholinophenyl)-4-penten-1-on
           42. 1-[4-(Dimethylamino)-phenyl]-2-methyl-2-morpholino-4-penten-1-on
           43. 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-3-phenyl-propan-1-on
           44. 4-[4-(Dimethylamino)-benzoyl]-4-morpholino-hepta-1,6-dien
           45. 2-(Dimethylamino)-1-[4-(dimethylamino)-phenyl]-2-methyl-4-penten-1-on
15
           46. 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-4-penten-1-on
           47. 1-[4-(Dimethylamino)-phenyl]-2-ethyl-4-methyl-2-morpholino-4-penten-1-on
           48. 1-[4-(Dimethylamino)-phenyl]-2-ethyl-2-morpholino-4-hexen-1-on
           49. 2-Ethyl-2-morpholino-1-(4-morpholinophenyl)-4-hexen-1-on
           50. 2-Ethyl-4-methyl-2-morpholino-1-(4-morpholinophenyl)-4-penten-1-on
           51. 1-[4-(Bis-(2-methoxyethyl)amino)-phenyl]-2-methyl-2-morpholino-4-penten-1-on
20
           52. 1-[4-(Dibutylamino)phenyl]-2-methyl-2-morpholino-4-penten-1-on
           53. 2-Methyl-1-[4-(4-methyl-piperazin-1-yl)-phenyl]-2-morpholino-4-penten-1-on
           54. 2-Benzyl-2-(dimethylamino)-1-(4-methoxyphenyl)-butan-1-on
            55. 1-[4-(Diethylamino)-phenyl]-2-methyl-2-morpholino-4-penten-1-on
25
            56. 2-Methyl-2-morpholino-1-[4-(pyrrolidin-1-yl)-phenyl]-4-penten-1-on
            57. 2-Benzyl-2-(dimethylamino)-1-(4-piperidinophenyl)-butan-1-on
            58. 2-Ethyl-2-(dimethylamino)-1-(4-piperidinophenyl)-4-penten-1-on
            59. 2-Benzyl-1-[4-(diethylamino)phenyl]-2-ethyl-butan-1-on
            60. 1-[4-(Diethylamino)phenyl]-2-ethyl-4-penten-1-on
            61. 2-Benzyl-2-(dimethylamino)-1-[4-(2-hydroxyethylthio)-phenyl]-butan-1-on
30
            62. 2-Ethyl-1-[4-(2-hydroxyethylthio)-phenyl]-2-morpholino-4-penten-1-on
            63. 1-[4-(Diallylamino)-phenyl]-2-methyl-2-morpholino-4-penten-1-on
            64. 3-(4-Benzoylphenyl)-2-(dimethylamino)-2-methyl-1-[4-(methylthio)-phenyl]-propan-1-on
            65. 2-(Dimethylamino)-3-(3,4-dimethoxyphenyl)-2-methyl-1-phenyl-propan-1-on
            66. 2-(Dimethylamino)-3-(3,4-dimethoxyphenyl)-2-methyl-1-[4-(methylthio)-phenyl]-propan-1-on
35
            67. 3-(4-Benzoylphenyl)-2-(dimethylamino)-2-methyl-1-phenyl-propan-1-on
            68. 2-Benzyl-2-(dimethylamino)-1-(4-fluorphenyl)-butan-1-on
            69. 4-(Dimethylamino)-4-(4-fluorbenzoyl)-hepta-1,6-dien
            70. 2-Ethyl-2-morpholino-1-[4-(4-methylphenylsulfonyl)-phenyl]-4-penten-1-on
 40
            71. 2-(Dimethylamino)-2-ethyl-1-[4-(methylsulfonyl)phenyl]-4-penten-1-on
            72. 2-Benzyl-2-(dimethylamino)-1-[4-(methylphenylsulfonyl)phenyl]-butan-1-on
            73. 2-Benzyl-2-(dimethylamino)-1-[4-(methylsulfonyl)phenyl]-butan-1-on
            74. 1-(4-Fluorphenyl)-2-methyl-2-morpholino-4-penten-1-on
            75. 4-(4-Fluorbenzoyl)-4-morpholino-hepta-1,6-dien
 45
            76. 2-Benzyl-2-(dimethylamino)-1-(4-fluorphenyl)-4-penten-1-on
            77. 2-Benzyl-2-(dimethylamino)-1-(4-fluorphenyl)-3-phenyl-propan-1-on
             78. 2-(Dimethylamino)-2-ethyl-1-(4-fluorphenyl)-4-penten-1-on
             79. 2-Benzyl-1-(4-fluorphenyl)-2-morpholino-4-penten-1-on
             80. 2-Ethyl-1-(4-fluorphenyl)-2-morpholino-4-penten-1-on
 50
             81. 2-Benzyl-2-(dimethylamino)-1-(4-fluorphenyl)-propan-1-on
             82. 2-(Dimethylamino)-1-(4-fluorphenyl)-2-methyl-4-penten-1-on
             83. 2-Benzyl-2-(dimethylamino)-1-(4-hydroxyphenyl)-butan-1-on
             84. 2-Benzyl-1-[4-(ethoxycarbonylmethyloxy)phenyl]-2-(dlmethylamino)-butan-1-on
             85. 2-Benzyl-2-(dimethylamino)-1-[4-(2-hydroxyethyloxy)phenyl]-butan-1-on
 55
             86. 2-Benzyl-1-(4-chlorphenyl)-2-(dimethylamino)-butan-1-on
             87. 2-Benzyl-1-(4-bromphenyl)-2-(dimethylamino)-butan-1-on
             88. 1-(4-Bromphenyl)-2-ethyl-2-morpholino-4-morpholino-4-penten-1-on
             89. 2-Ethyl-1-(4-methoxyphenyl)-2-morpholino-3-penten-1-on
             90. 2-(Dimethylamino)-2-ethyl-1-(4-methoxyphenyl)-4-penten-1-on
  60
             91. 2-Benzyl-1-[4-(dimethylamino)phenyl]-2-morpholino-4-penten-1-on
             92. 2-Benzyl-2-(dimethylamino)-1-[4-(dimethylamino)phenyl]-propan-1-on
             93. 2-Methyl-2-morpholino-1-phenyl-4-penten-1-on
             94. 2-Benzyl-2-morpholino-1-phenyl-4-penten-1-on
              95. 2-(Dimethylamino)-2-methyl-1-phenyl-4-penten-1-on
  65
```

96. 2-Benzyl-2-(dimethylamino)-1-phenyl-propan-1-on	
97. 4-Benzoyl-4-(dimethylamino)-hepta-1,6-dien	•
98. 2-Benzyl-2-(dimethylamino)-1,3-diphenyl-propan-1-on	
99. 2-Benzyl-2-(dimethylamino)-1-phenyl-4-penten-1-on	•
100. 2-(Dimethylamino)-2-ethyl-1-phenyl-4-penten-1-on	. 5
	. ,
101. 2-Benzyl-2-(dimethylamino)-1-phenyl-butan-1-on	
102. 1,2-Diphenyl-2-morpholino-4-penten-1-on	
103. 3-(4-Chlorphenyl)-2-(dimethylamino)-2-methyl-1-phenyl-propan-1-on	
104. 3-(4-Bromphenyl)-2-(dimethylamino)-2-methyl-1-phenyl-propan-1-on	
105. 3-(2-Chlorphenyl)-2-(dimethylamino)-2-methyl-1-phenyl-propan-1-on	10
106. 3-(3,4-Dimethoxyphenyl)-2-(dimethylamino)-2-methyl-1-phenyl-propan-1-on	,,,
107. 2-(Dimethylamino)-2-methyl-3-(4-methylphenyl)-1-phenyl-propan-1-on	
108. 2-(Dimethylamino)-2-methyl-3-[4-(methylthio)-henyl]-1-phenyl-propan-1-on	
109. 2-(Dimethylamino)-3-(4-fluorphenyi)-2-methyl-1-phenyi-propan-1-on	
110. 2-(Dimethylamino)-3-(4-methoxy-phenyl)-2-methyl-1-phenyl-propan-1-on	15
111. 2-Ethyl-1-(4-fluorphenyl)-4-methyl-2-morpholino-4-penten-1-on	
112. 2-Ethyl-1-(4-fluorphenyl)-5-methyl-2-morpholino-4-penten-1-on	•
113. 2-(Benzylmethylamino)-2-ethyl-1-(4-morphollnophenyl)-4-penten-1-on	
114. 2-(Allylmethylamino)-2-ethyl-1-(4-morpholinophenyl)-4-penten-1-on	
115. 2-Benzyl-2-(benzylmethylamino)-1-(4-morpholinophenyl)-4-butan-1-on	20
116. 2-Benzyl-2-(butylmethylamino)-1-(4-morpholinophenyl)-4-butan-1-on	
117. 2-(Butylmethylamino)-1-(4-morpholinophenyl)-4-penten-1-on	;
· · · · · · · · · · · · · · · · · · ·	
118. 1-(4-Acetylaminophenyl)-2-benzyl-2-dimethylamino-butan-1-on	
119. 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-pentan-1-on	
120. 2-Aliyi-2-dimethylamino-1-(4-morpholinophenyi)-pentan-1-on	25 .
121. 2-Morpholino-1-[4-(2-methoxyethyloxy)phenyi]-2-methyl-4-penten-on	
122. 4-Morpholino-4-[4-(2-hydroxyethyithio)benzoyl]-5-methyl-1-hexen	
123. 1-(4-Bromphenyi)-2-morpholino-2-methyl-4-penten-1-on	
124. 4-(4-Brombenzoyi)-4-morpholino-5-methyl-1-hexen	
	00
125. 1-(4-[2-Hydroxyethylthio]phenyl)-2-methyl-2-morpholino-4-penten-1-on	<i>30</i>
126. 1-(4-[2-(Allyloxy)-ethoxy]phenyl)-2-ethyl-2-morpholino-4-penten-1-on	
127. 1-(4-[2-(Allyloxy)-ethoxy]phenyl)-2-methyl-2-morphollno-4-penten-1-on	
128. 1-(4-[2-(Methoxy)-ethoxy]phenyt)-2-ethyl-2-morpholino-4-penten-1-on	
129. 2-Benzyl-2-dimethylamino-1-[4-(2-methoxyethylamino)phenyl]-butan-1-on	
130. 2-Benzyl-2-dimethylamino-1-(4-methylaminophenyl)-butan-1-on	<i>35</i>
	.
131. 2-Benzyl-2-dimethylamino-1-[4-(N-acetylmethylamino)phenyl]-butan-1-on	
132. 2-Benzyl-2-diethylamino-1-(4-morpholino-phenyl)-butan-1-on	
133. 2-Diethylamino-2-ethyl-1-(4-morpho l ino-phenyl)-4-penten-1-on	
140. 2-Benzyl-2-(dimethylamino)-1-(3,5-dimethyl-4-methoxy-phenyl)-butan-1-on	
141. 2-Benzyl-1-(2,4-dichlorphenyl)-2-(dimethylamino)-butan-1-on	40
142. 2-(Dimethylamino)-2-ethyl-1-(3,4-dichlorphenyl)-4-penten-1-on	
143. 2-Benzyl-1-(3,4-dichlorphenyl)-2-(dirhethylamino)-butan-1-on	
144. 1-(3-Chlor-4-morpholino-phenyl)-2-(dimethylamino)-butan-1-on	
145. 2-Benzyl-1-(3-Chlor-4-morpholino-phenyl)-2-(dimethylamino)-butan-1-on	
146. 2-Benzyl-2-dimethylamino-1-(4-dimethylamino-3-ethyl)-butan-1-on	45
147. 2-Benzyl-2-dimethylamino-1-(4-dimethylamino-2-methyl-phenyl)-butan-1-on	
148. 9-Butyl-3,6-di(2-benzyl-2-dimethylamino-butyryl)carbazol	
149. 9-Butyl-3,6-di(2-methyl-2-morpholino-4-penten-1-on-1-yl)-carbazol	
150. 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-on-Trifluoracetat	
151. 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-on-p-Toluolsulfonat	50
152. 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-on-Camphersulfonat	
153. 4-(Dimethylamino)-4-[4-(phenyloxy)-benzoyl]-hepta-1,6-dlen	
154. 2-Benzyl-2-(dimethylamino)-1-(4-isopropyloxyphenyl)-4-penten-1-on	
155. 1-(4-Butyloxyphenyl)-2-ethyl-2-morpholino-4-penten-1-on	
	EE
156. 1-(4-Allyloxyphenyl)-2-benzyl-2-(dimethylamino)-butan-1-on	<i>55</i>
157. 2-Methyi-2-morpholino-1-[4-(trimethylsilyloxy)-phenyl]-4-penten-1-on	
158. 2-Benzyl-2-(dimethylamino)-1-[4-((1,1,2-trimethylpropyl-dimethyl)-silyloxy)-phenyl]-butan-2-o	n
159. 2-Ethyl-1-[4-(ethylthio)-phenyl]-2-morpholino-4-penten-1-on	
160. 2-Benzyl-1-[4-(butylthlo)-phenyl]-2-(dimethylamino)-3-phenyl-propan-1-on	
161. 1-[4-(Isopropylthio)-phenyl]-2-methyl-2-morpholino-4-penten-1-on	60
162. 1-[4-(Allyithio)-phenyi]-2-ethyl-2-morpholino-4-penten-1-on	-
	•
163. 1-[4-(Benzylthio)-phenyl]-2-benzyl-2-(dimethylamino)-propan-1-on	
164. 2-Benzyl-2-(dimethylamino)-1-(4-mercaptophenyl)-butan-1-on	•
165. 2-Benzyl-1-[4-(cyclohexylthio)-phenyl]-2-(dimethylamino)-3-phenyl-propan-1-on	
166. 2-Ethyl-1-[4-(4-methylphenytthio)-phenyt]-2-morpholino-4-penten-1-on	<i>6</i> 5
·	

```
167. 2-Benzyl-2-(dimethylamino)-1-[4-(octylthio)-phenyl]-butan-1-on
            168. 2-Benzyl-1-[4-(chlorphenylthio)-phenyl]-2-(dimethylamino)-4-penten-1-on
            169. 2-Methyl-1-[4-(2-methoxycarbonylethylthio)-phenyl]-2-morpholino-4-penten-1-on
            170. 1-[4-(Butylsulfinyl)-phenyl]-2-(dimethylamino)-2-ethyl-4-penten-1-on
            171. 1-[4-(Benzolsulfonyl)-phenyl]-2-benzyl-2-(dimethylamino)-butan-1-on
5
            172. 2-Benzyl-2-(dimethylamino)-1-[4-(methylsulfinyl)-phenyl]-butan-1-on
            173. 2-Ethyl-1-[4-(4-methylphenylsulfonyl)-phenyl]-2-morpholino-4-penten-1-on
            174. 1-(3,4-Dimethoxyphenyl)-2-ethyl-2-morpholino-4-penten-1-on
            175, 2-Benzyl-1-(3,4-dimethoxyphenyl)-2-(dimethylamino)-butan-1-on
            176. 4-(3.4-Dimethoxybenzoyl)-4-(dimethylamino)-hepta-1,6-dien
10
            177. 1-(1,3-Benzodioxol-5-yl)-2-benzyl-2-(dimethylamino)-butan-1-on
            178. 1-(1,3-Benzodioxol-5-yl)-2-methyl-2-morpholino-4-penten-1-on
            179. 2-Benzyl-2-(dimethylamino)-1-(3,4,5-trimethoxyphenyl)-butan-1-on
            180. 1-(Dibenzofuran-3-yl)-2-ethyl-2-morpholino-4-penten-1-on
            181. 1-(4-Benzoylphenyl)-2-benzyl-2-(dimethylamino)-propan-1-on
15
            182. 2-[2-Benzyl-2-(dimethylamino)-butanoyl]-fluorenon
            183. 2-(2-Methyl-2-morpholino-4-pentencyl)-xanthon
            184, 2-[2-Allyl-2-(dimethylamino)-4-pentencyl]-acridanon
            185. 2-[2-Benzyl-2-(dimethylamino)-butanoyl]-dibenzosuberon
            186. 1-(N-Butylcarbazol-3-yl)-2-ethyl-2-morpholino-4-penten-1-on
20
            187. 2-Benzyl-1-(N-butylcarbazol-3-yl)-2-(dimethylamino)-butan-1-on
            188. 2-Aliyi-2-(dimethylamino)-1-(N-methylphenothiazin-2-yl)-4-penten-1-on
            189, 2-Benzyl-1-(N-butyl-phenoxazin-2-yl)-2-morpholino-propan-1-on
            190, 2-Benzyl-2-(dimethylamino)-1-(xanthen-2-yl)-butan-1-on
             191. 1-(Chroman-6-yl)-2-ethyl-2-morpholino-4-penten-1-on
25
             192. 2-Benzyl-2-(dimethylamino)-1-(N-methylindolin-5-yl)-propan-1-on
             193. 1-(N-Butylindolin-5-yl)-2-ethyl-2-morpholino-4-penten-1-on
             194. 1-(5,10-Dibutyl-5,10-dihydrophenazin-6-yl)-2-(dimethylamino)-4-penten-1-on
             195. 2-Benzyl-1-(1,4-dimethyl-1,2,3,4-tetrahydrochinoxalin-6-yl)-2-(dimethylamino)-butan-1-on
             196. 1-(1,4-Dibutyl-1,2,3,4-tetrahydrochinoxalin-6-yl)-2-ethyl-2-morpholino-4-penten-1-on
30
             197. 2-Benzyl-1-(2,3-dihydro-2,3-dimethyl-benzothiazol-5-yl)-2-(dimethylamino)butan-1-on
             198. 1-(2,3-Dihydrobenzofuran-5-yl)-2-methyl-2-morpholino-4-penten-1-on
             199. 2-Benzyl-1-(2,3-dihydrobenzofuran-5-yl)-2-(dimethylamino)-butan-2-on
            200. 1-(4-Aminophenyl)-2-benzyl-2-(dimethylamino)-butan-2-on
            201, 1-[4-(Butylamino)phenyl]-2-methyl-2-morpholino-4-penten-1-on
35
             202. 2-Benzyl-2-(dimethylamino)-1-[4-(isopropylamino)phenyl]-butan-1-on
            203. 2-Ethyl-1-(4-methoxyphenyl)-2-piperidino-4-penten-1-on
            204. 2-Methyl-2-(N-methylpiperazino)-1-[4-(N-methylpiperazino)phenyl]-4-penten-1-on
             205. 2-Benzyl-2-[di(2-methoxyethyl)-amino]-1-[4-(thiomethyl)phenyl]-butan-1-on
             206. 2-(Dibutylamino)-1-(4-methoxyphenyl)-2-methyl-4-penten-1-on
40
             207. 1-[4-(Dimethylamino)-phenyl]-2-ethyl-2-(methylphenylamino)-4-penten-1-on
             208. 2-Methyl-1-(methoxyphenyl)-2-oxazolidino-4-penten-1-on
             209. 2-Ethyl-1-(4-morpholinophenyl)-2-piperidino-4-penten-1-on
             210. 2-Methyl-2-piperidino-1-(4-piperidinophenyl)-4-penten-1-on
             211. 2-Ethyl-1-[4-(methylthio)phenyl]-2-piperidino-4-penten-1-on
45
             212. 2-Benzyl-2-(dibutylamino)-1-[4-(methylthio)phenyl]-butan-1-on
            213. 2-(Dibutylamino)-2-methyl-1-[4-(dimethylamino)phenyl]-4-penten-1-on
             214. 2-Benzyl-2-(dibutylamino)-1-(4-morpholinophenyl)-butan-1-on
             215. 2-(Dimethylamino)-1-[4-(dimethylamino)-phenyl]-2-[(1-cyclohexenyl)-methyl]-butan-1-on
             216. 2-(Dimethylamino)-2-(2-cyclopentenyi)-1-(4-morpholinophenyi)-propan-1-on
50
            217. 2-Ethyl-2-(4-morpholinobenzoyl)-N-methyl-1,2,3,6-tetrahydropyridin
             218. 2-(Dimethylamino)-1-[4-(dimethylamino)-phenyl]-2,4,5-trimethyl-4-hexen-1-on
             219. 2-(Dimethylamino)-1-[4-(dimethylamino)-phenyl]-2-(2-pinen-10-yl)-butan-1-on
             220. 2-Benzyl-2-(dimethylamino)-1-[4-(2,6-dimethylmorpholin-4-yl)phenyl]-butan-1-on
             221. 2-Ethyl-2-(2,6-dimethylmorpholin-4-yl)-1-[4-(2,6-dimethylmorpholin-4-yl)phenyl]-4-penten-1-on
55
             222. 1-[4-(Dimethylamino)phenyl]-2-ethyl-2-(2,6-dimethylmorpholin-4-yl)-4-penten-1-on
             223. 1-[4-(2,6-Dimethylmorpholin-4-yl)phenyl]-2-methyl-2-morpholino-4-penten-1-on
             224. 2-Ethyl-1-[4-(2-hydroxyethyloxy)phenyl]-2-morpholino-4-penten-1-on
             225. 1-[4-(2-Methoxyethyloxy)phenyl]-2-methyl-2-morpholino-4-penten-1-on
             226. 1-[4-(2-Hydroxyethylthio)phenyl]-2-morpholino-2-propyl-4-penten-1-on
60
             227. 2-Benzyl-2-(dimethylamino)-1-[4-(2-methoxyethylthio)phenyl]-butan-1-on
             228. 2-(Dimethylamino)-2-isopropyl-1-(4-morpholino-phenyl)-4-penten-1-on
             229. 2-Benzyl-1-(3,5-dichlorphenyl)-2-(dimethylamino)-butan-1-on
             230. 1-(3,5-Dichior-4-methoxyphenyl)-2-methyl-2-morpholino-4-penten-1-on
             231. 2-(Diallylamino)-2-ethyl-1-(4-morpholinophenyl)-4-penten-1-on
65
```

232. 1-[4-(Dimethylamino)phenyl]-2-methyl-2-(pyrrolldin-1-yl)-4-penten-1-on	
232. 1-[4-(Dimetrylamino)-1-(4-methylphenyl)butan-1-on	
233. 2-Benzyi-z-(difficitiyialimo)-1-(4-motiyipinoty)-2aten-1-on 234. 1-(4-Dodecylphenyl)-2-ethyl-2-morpholino-4-penten-1-on	
	5
	5
236. Dodecylbenzolsulionat von 2-Benzyl-2-indipriorind 1-(4-morpholinophenyl)-butan-1-on. 237. Dodecylbenzolsulionat von 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-butan-1-on.	
237. Dodecylbenzolsulfonat von z-beitzjiz-(umetrylamino) (vintan-1-on	
237. Dodecytberizoisuiloriat voi 238. 2-Dimethylamino-2-(4-dodecylbenzyl)-1-(4-morpholinophenyl)-butan-1-on	
239. 2-(4-Ethylbenzyl)-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-on	•
239. 2-(4-Ethylbertzyr)-2-dimetrylatilist (4-morpholinophenyl)-butan-1-on 240. 2-Dimethylamino-2-(4-isopropylbenzyl)-1-(4-morpholinophenyl)-butan-1-on	10
0.44 0 Dimethylomino-1-(A-dimethylaminophenyl)-1-(4-methylobitzyl)-butair-1-bit	
0.40 0 Discrete demine 2 (A-hydrovymethylbenzyl)-1-14-morpholinphenyl)-butair-1-01	
243. 2-(4-[Acetyloxyethyl]benzyl]-2-dimetrylatililo-1-(4-morpholinophenyl)-butzn-244. 2-Dimethylamino-2-(4-[2-(2-methoxyethyloxy)-ethyloxy]benzyl)-1-(4-morpholinophenyl)-butzn-	
	. نرد
1-on 245. 2-Dimethylamino-2-(4-[2-(2-[2-methoxyethoxy]-ethoxycarbonyl)-ethyl]benzyl)-1-(4-morpholino-	15
246. 2-(4-[2-Brometnyi]benzyi)-2-dimethylamino-1-(4-morpholinophenyi)-butan-1-on 247. 2-(4-[2-Diethylaminoethyi]benzyi)-2-dimethylamino-1-(4-morpholinophenyi)-butan-1-on	
247. 2-(4-(2-Diethylamino-1-(4-dimethylaminophenyl)-2-(4-dodecylbenzyl)-butan-1-on 248. 2-Dimethylamino-1-(4-dimethylaminophenyl)-2-(4-dodecylbenzyl)-butan-1-on	100
248. 2-Dimethylamino-1-(4-dimethylaminophomyl)-2 (4-leopromylbenzyl)-butan-1-on	20
248. 2-Dimethylamino-1-(4-dimethylaminophenyi)-2-(4-isopropyibenzyi)-butan-1-on 249. 2-Dimethylamino-1-(4-dimethylaminophenyi)-2-(4-isopropyibenzyi)-butan-1-on	
249. 2-Dimethylamino-1-(4-dimethylbenzyl)-1-(4-morpholinophenyl)-butan-1-on 250. 2-Dimethylamino-2-(3,4-dimethylbenzyl)-1-(4-morpholinophenyl)-bu-	
250. 2-Dimethylamino-2-(3,4-dimethylbenzyi)-1-(4-morpholinophenyi)-bu- 251. 2-Dimethylamino-2-[4-(2-(2-methoxyethoxy)-ethoxycarbonyi)benzyi]-1-(4-morpholinophenyi)-bu-	
to a discount of the control of the	
and a (planethylamina) 0 // methylhenzyllala(4-mormhollhoulhenzyllala)	25
	EU
	:
and 4 (4 th) A and 0 mothov/mron//amin0innenvij-2-Delizyi-2-(dilibutiyatilito) button	
269. 2-Benzyl-z-(di[2-methoxyethyl]amino)-1-(4-morpholinophenyl)-4-penten-1-on	30
270. 2-Etnyl-2-(dil2-methoxyethylamino)-1-(4-morpholinophenyl)-hexan-1-on 271. 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-hexan-1-on	
271. 2-Benzyl-2-(dimetrylamino)-1-(4-morpholinophenyl)-hentan-1-on	
271. 2-Benzyl-2-(dimetrylamino) -1-(4-morpholinophenyi)-heptan-1-on 272. 2-Benzyl-2-(dimetrylamino) -1-(4-morpholinophenyi)-ortan-1-on	
273. 2-Benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-octan-1-on	
273. 2-Benzyl-2-(dimetrylamino)-1-(4-morpholinophenyl)-hexan-1-on 274. 2-Benzyl-2-(dimethylamino)-4,5,5-trimethyl-1-(4-morpholinophenyl)-hexan-1-on	35
274. 2-Benzyl-2-(dimetrylamino)-4,0,5-u intetry) 1-(4-morpholinophenyl)-butan-1-on 275. 2-(Dimethylamino)-2-(4-morpholinophenyl)-butan-1-on 1-00	
	40
	45
286. 2-(4-Butylbenzyl)-2-(butylmethylamino)-1-(4-morpholinophenyl)-hexan-1-on	
287. 2-(4-Butylberi2y)-2-(butylberiybreit) 1 gind	
Beispiele für einzelne Verbindungen der Formel II sind:	:
252. N,N'-Bis[1-ethyl-1-(4-morpholinobehzoyl)-3-butenyl]-piperazin	<i>50</i>
252. N,N'-Bis[1-ethyl-1-(4-filor)-hollinosis (25)), 3-butenyi]-piperazin 253. N,N'-Bis[1-aliyi-1-(4-(dimethylamlino)-benzoyi]-methylamlin	
254. N,N-Bis[1-ethyl-1-(4-(methylthio)-benzoyl)-butenyl]-hexamethylendiamin 255. N,N'-Bis[1-ethyl-1-(4-(methylthio)-benzoyl)-benzoyl-butenyl]-hexamethylendiamin	
255. N,N'-Bis[1-ethyl-1-(4-(methylthio)-benzoyl)-buterlyl-rexametryl-rickathetryl-3,6,9,12-tetraoxa-tetrade- 256. N,N'-Bis[1-benzyl-1-(4-morpholinobenzoyl)-propan-1-yl]-N,N'-dimethyl-3,6,9,12-tetraoxa-tetrade-	
cemethylendiamin	55
in a state of the distance of the Cormol III SINO	~
	: -
	•
ACC 4 A DISTO (Almothylamino)-2-(A-MATHOXVDB)(ZUVI)-V-PITOTIYI-P/OPALIYI	
260. 1,4-Bis[2-(dimetrylamino)-2-(4-morpholinobenzoyl)-butyl)benzol 261. 1,4-Bis[2-(dimetrylamino)-2-(4-morpholinobenzoyl)-butyl)benzol	60
261. 1,4-Bis[2-(ulinethylamino) -3,8-bis(4-morpholinobenzoyl)-dec-5-en 262. 3,8-Bis(dimethylamino) -3,8-bis(4-morpholinobenzoyl)-decan	
262. 3,8-Bis(dimethylamino)-5,6-dimethyliden-3,8-bis(4-morpholinobenzoyl)-decan 263. 3,8-Bis(dimethylamino)-5,6-dimethyliden-3,8-bis(4-morpholinobenzoyl)-decan	
Bei den meisten dieser Verbindungen ist Hin- oder Hindung under C-Benzyllerung ein. Die Ein	
Bei den meisten dieser Verbindungen ist R1 - oder R1 und R2 - ein Substitution von der C-Benzyllerung ein. Die Ein Die Synthese solcher Verbindungen schliesst meist eine C-Allylierung/Benzyllerung. Die Synthese erfolgt	65
Die Synthese solcher Verbindungen schliesst meist eine C-Anylletung der Solcher Verbindung der Anleitung der Anleitung der Anleitung der Solcher Verbindung der Solcher Verbind	

dann in der folgenden Reihenfolge von Reaktionsschritten:

Reaktion 1
$$Ar^{1}$$
—CO—CH₂—R²

Reaktion 1 Ar^{1} —CO—CHBr—R²

Ar¹—CO—CHBr—R²

NHR³ R⁴

Ar¹—CO—CH—NR³ R⁷

Reaktion 3 R^{1} Hal + Base

Ar¹—CO—CH—NR³ R⁵

Die Ausgangsketone sind bekannte Verbindungen, die z.B. durch eine Friedel-Crafts-Reaktion hergestellt werden können. Die Reaktionsschritte 1 und 2 sind bekannte Reaktionen, die z.B. in der EP-A-3002 näher beschrieben sind. Man kann beide Reaktionen hintereinander ausführen ohne das Bromketon zu isolieren.

Die Reaktion 3 wird im folgenden ausführlich beschrieben. Im Falle einer C-Allylierung kann sie über den Enol-allylether als Zwischenprodukt verlaufen im Sinne einer Claisen-Umlagerung. Im Falle einer C-Benzylierung oder C-Allylierung kann diese über ein quartäres Benzylammoniumsalz bzw. Allylammoniumsalz als Zwischenprodukt verlaufen Im Sinne einer Stevens-Umlagerung. In beiden Fällen wird jedoch das Zwischenprodukt nicht isoliert. Wenn sowohl R¹ wie R² Allyl- bzw. Benzylgruppen sind, so startet man die oben aufgeführte Reaktionsfolge mit einem Aryl-methyl-keton Ar¹-CO-CH3 und führt die Reaktion 3 zweimal durch, wobei man einmal R¹Hal und einmal R²Hal verwendet.

Befinden sich am aromatischen Rest Ar¹ Substituenten, die gegenüber den Reaktionen 1, 2 oder 3 nicht inert sind, so führt man die Synthese mit einem Hilfssubstituenten durch, der in einem anschliessenden Schritt 4 in den gewünschten Substituenten verwandelt wird. Beispielsweise kann man die Synthesen mit einer Nitroarylverbindung durchführen und diese anschliessend zur entsprechenden Aminoverbindung reduzieren. Oder man startet mit einer Halogenarylverbindung und ersetzt anschliessed das Halogen durch -OR¹8, -SR¹9 oder -NR²0R²¹ in einer nukleophilen Austauschreaktion. Eine Gruppe -SR¹9 kann anschliessend oxidiert werden zu -SO-R¹9 oder -SO₂R¹9.

Zur Synthese von Verbindungen der Formel II verwendet man in der Reaktionsstufe 2 ein primäres Amln R¹¹NH₂ oder ein sekundäres Diamin R¹¹-NH-R¹²-NH-R¹¹ oder Piperazin und schliesst die Reaktion 3) und gegebenenfalls 4) an.

Zur Synthese von Verbindungen der Formel III startet man mit einem Bis-arylketon der Formel

$$Ar^{1}-CO-CH_{2}-Y-CH_{2}-CO-Ar^{1}$$

und unterwirft es den Reaktionen 1, 2, 3.

Ist R¹ ein Substituent vom Vinyl-Typ, so lassen sich solche Verbindungen aus den entsprechenden Allylverbindungen durch eine katalysierte Doppelbindungsisomerisierung herstellen. Ist R¹ ein Substituent der Formel

25

30

40

55

65

so wird dieser wie ein Allylrest eingeführt unter Verwendung einer Halogenverbindung der Formel

Eine weitere Möglichkeit zur Synthese von Verbindungen der Formel I ist die Umsetzung eines α -Aminonitriis mit einer Aryl-lithium-Verbindung und anschliessender Hydrolyse:

 $NC - \overset{R^1}{\overset{}{C}} - NR^3R^4 + Ar^1 Li \longrightarrow \xrightarrow{H_2O} Ar^1 - \overset{O}{\overset{}{C}} - \overset{R^1}{\overset{}{C}} - NR^3R^4$

Solche Reaktionen sind z.B. von Cromwell und Hess im J. Am. Chem. Soc. 83, 1237 (1961) beschrieben worden. Die α -Aminonitrile sind durch eine Strecker-Synthese aus R¹-CO-R² direkt zugänglich oder können durch Allyllerung oder Benzyllerung eines α -Aminonitrils NC-CHR²-NR³R⁴ hergestellt werden. Die Allyllerung von α -Aminonitrilen ist z.B. von T.S. Stevens im J. Chem. Soc. 1930, 2119 beschrieben.

Verbindungen der Formel I, worin R¹ und R² zusammen mit dem C-Atom, an das sie gebunden sind, einen Cycloalkenring bilden, können analog durch Umsetzung von Aryl-lithlum-Verbindungen mit den entsprechenden cyclischen Nitrilen hergestellt werden. Die cyclischen Nitrile lassen sich durch Cycloaddition von α -Aminocrylonitrilen an 1,3-Diene gewinnen, wie dies z.B. von Brucher und Stella in Tetrahedron $\underline{41}$, 875 (1985) beschrieben wurde:

$$CH_2 = C$$
 CN
 CH_2
 $C-R^{1.5}$
 CH_2
 $C-R^{1.5}$
 CH_2
 $CR^{1.5}$
 $R^{1.5}$
 $R^{1.5}$
 $R^{1.5}$
 $R^{1.5}$

35

50

Schliesslich besteht auch die Möglichkeit, die α-Bromketone mit einem tertiären Allyi- oder Benzylamin umzusetzen und das entstandene Quartärsalz einer Stevens-Umlagerung zu unterwerfen:

$$Ar^1-CO-CHBr-R^2+R^1-NR^3R^4\longrightarrow \xrightarrow{Base} Ar^1-CO-C-NR^3R^4$$

Erfindungsgemäss können die Verbindungen der Formel I, II und III als Photoinitiatoren für die Photopolymerisation von ethylenisch ungesättigten Verbindungen bzw. Gemischen, die solche Verbindungen enthalten, verwendet werden. Die ungesättigten Verbindungen können eine oder mehrere olefinische Doppelbindungen enthalten. Sie können niedermolekular (monomer) oder höhermolekular (oligomer) sein. Beispiele für Monomere mit einer Doppelbindung sind Alkyl- oder Hydroxyalkyl-acrylate oder -methacrylate, wie z.B. Methyl-, Ethyl-, Butyl-, 2-Ethylhexyl- oder 2-Hydroxyethylacrylat, Isobornylacrylat, Methyl- oder

Ethylmethacrylat. Weitere Belspiele hierfür sind Acrylnitril, Acrylamid, Methacrylamid, N-substituierte (Meth)acrylamide, Vinylester wie Vinylacetate, Vinylether wie Isobutylvinylether, Styrol, Alkyl- und Halogenstyrole, N-Vinylpyrrolidon, Vinylchlorid oder Vinylidenchlorid.

Beispiele für Monomere mit mehreren Doppelbindungen sind Ethylenglykol-, Propylenglykol-, Neopentylglykol-, Hexamethylenglykol-, oder Bisphenol-A-diacrylat, 4,4'-Bis(2-acryloyloxyethoxy)-diphenylpropan, Trimethylolpropan-triacrylat, Pentaerythrit-triacrylat oder -tetraacrylat, Vinylacrylat, Divinylbenzol, Divinylsuccinat, Diallylphthalat, Triallylphosphat, Triallylisocyanurat oder Tris-(2-acryloyloxyethyl)isocyanurat.

Beispiele für höhermolekulare (oligomere) mehrfach ungesättigte Verbindungen sind acrylierte Epoxidharze, acrylierte Polyether, acrylierte Polyurethane oder acryllerte Polyester. Weitere Beispiele für ungesättigte Oligomere sind ungesättigte Polyesterharze, die melst aus Maleinsäure, Phthalsäure und einem oder mehreren Diolen hergestellt werden und Molekulargewichte von etwa 500 bis 3000 besitzen. Solche ungesättigte Oligomere kann man auch als Prepolymere bezeichnen.

Häufig verwendet man Zweikomponenten-Gemische eines Prepolymeren mit einem mehrfach ungesättigten Monomeren oder Dreikomponentengemische, die ausserdem noch ein einfach ungesättigtes Monomer enthalten. Das Prepolymere ist hierbei in erster Linie für die Eigenschaften des Lackfilmes massgebend, durch seine Variation kann der Fachmann die Eigenschaften des gehärteten Filmes beeinflussen. Das mehrfach ungesättigte Monomere fungiert als Vernetzer, das den Lackfilm unlöslich macht. Das einfach ungesättigte Monomere fungiert als reaktiver Verdünner, mit dessen Hilfe die Viskosität herabgesetzt wird, ohne dass man ein Lösungsmittel verwenden muss.

15

20

30

35

45

55

Solche Zwei- und Dreikomponentensysteme auf der Basis eines Prepolymeren werden sowohl für Druckfarben als auch für Lacke, Photoresists oder andere photohärtbare Massen verwendet. Als Bindemittel für Druckfarben werden vielfach auch Einkomponenten-Systeme auf der Basis photohärtbarer Prepolymerer verwendet.

Ungesättigte Polyesterharze werden meist in Zweikomponentensystemen zusammen mit einem einfach ungesättigten Monomer, vorzugsweise mit Styrol, verwendet. Für Photoresists werden oft spezifische Einkomponentensysteme verwendet, wie z.B. Polymalelnimide, Polychalkone oder Polyimide, wie sie in der DE-OS 2 308 830 beschrieben sind.

Die ungesättigten Verbindungen können auch im Gemisch mit nicht-photopolymerisierbaren filmbildenden Komponenten verwendet werden. Diese können z.B. physikalisch trocknende Polymere bzw. deren Lösungen in organischen Lösungsmitteln sein, wie z.B. Nitrocellulose oder Celluloseacetobutyrat. Diese können aber auch chemisch bzw. thermisch härtbare Harze sein, wie z.B. Polylsocyanate, Polyepoxide oder Melaminharze. Die Mitverwendung von thermisch härtbaren Harzen ist für die Verwendung in sogenannten Hybrid-Systemen von Bedeutung, die in einer ersten Stufe photopolymerisiert werden und in einer zweiten Stufe durch thermische Nachbehandlung vernetzt werden.

Die photopolymerisierbaren Gemische können ausser dem PhotoInitiator verschiedene Additive enthalten. Beispiele hierfür sind thermische Inhibitoren, die eine vorzeitige Polymerisation verhindern sollen, wie z.B. Hydrochinon oder sterisch gehinderte Phenole. Zur Erhöhung der Dunkellagerstabilität können z.B. Kupferverbindungen, Phosphorverbindungen, quartäre Ammoniumverbindungen oder Hydroxylaminderivate verwendet werden. Zwecks Ausschluss des Luftsauerstoffes während der Polymerisation kann man Paraffin oder ähnliche wachsartige Stoffe zusetzen, die bei Beginn der Polymerisation an die Oberfläche wandern. Als Lichtschutzmittel können in geringer Menge UV-Absorber, wie z.B. solche vom Benztriazol-, Benzophenonoder Oxalanilid-Typ, zugesetzt werden. Noch besser ist der Zusatz von Lichtschutzmitteln, die UV-Licht nicht absorbieren, wie z.B. von sterisch gehinderten Aminen (HALS).

In bestimmten Fällen kann es von Vorteil sein, Gemische von zwei oder mehr der erfindungsgemässen Photoinitiatoren zu verwenden. Selbstverständlich können auch Gemische mit bekannten Photoinitiatoren verwendet werden, z.B. Gemische mit Benzophenon, Acetophenonderivaten, Benzoinethern oder Benzilketalen

Zur Beschleunigung der Photopolymerisation können Amine zugesetzt werden, wie z.B. Triethanolamin, N-Methyl-diethanolamin, p-Dimethylaminobenzoesäure-ethylester oder Michlers Keton. Die Wirkung der Amine kann verstärkt werden durch den Zusatz von aromatischen Ketonen vom Typ des Benzophenons.

Eine Beschleunigung der Photopolymerisation kann weiterhin durch Zusatz von Photosensibilisatoren geschehen, welche die spektrale Empfindlichkeit verschleben bzw. verbreitern. Dies sind insbesondere aromatische Carbonylverbindungen wie z.B. Benzophenon-, Thioxanthon-, Anthrachinon- und 3-Acylcumarinderivate sowie 3-(Aroylmethylen)-thiazoline.

Die Wirksamkeit der erfindungsgemässen Photoinitiatoren lässt sich stelgern durch Zusatz von Titanocenderivaten mit fluororganischen Resten, wie sie in den EP-A-122.223 und 186.626 beschrieben sind, z.B. in einer Menge von 1-20 %. Beispiele für solche Titanocene sind Bis(methylcyclopentadlenyl)-bis(2,3,6-trifluorphenyl)-titan, Bis(cyclopentadlenyl)-bis(4-dibutylamino-2,3,5,6-tetrafluorphenyl)-titan, Bis(methylcyclopentadlenyl)-2-(trifluormethyl)phenyl-titan-trifluoracetat oder Bis(methylcyclopentadlenyl)-bis(4-decyloxy-2,3,5,6-tetrafluorphenyl)-titan. Für diese Gemische eignen sich vor allem flüssige α-Aminoketone.

Die erfindungsgemässen photohärtbaren Zusammensetzungen können für verschiedene Zwecke verwendet werden. In erster Linie ist ihre Verwendung in pigmentierten oder eingefärbten Systemen von Bedeutung, wie z.B. für Druckfarben, für photographische Reproduktionsverfahren, Bildaufzeichnungsverfahren und zur Herstellung von Reliefformen.

Ein weiteres wichtiges Einsatzgebiet sind Anstrichstoffe, die pigmentiert oder unpigmentiert sein können. Besonders wertvoll sind die Gemische in Weisslacken, darunter versteht man durch TiO₂ pigmentierte Anstrichstoffe. Weitere Einsatzgebiete sind die Strahlenhärtung von Photoresists, die Photovernetzung silberfreier Filme sowie die Herstellung von Druckplatten. Eine weitere Verwendung ist die für Aussenanstriche, die im Tageslicht oberflächlich nachhärten.

Die Photoinitiatoren werden für die angeführten Anwendungsgebiete zweckmässig in Mengen von 0,1 bis 20 Gew.%, vorzugsweise etwa 0,5 bis 5 Gew.%, bezogen auf die photopolymerisierbare Zusammensetzung, angewendet.

Die Polymerisation erfolgt nach den bekannten Methoden der Photopolymerisation durch Bestrahlung mit Licht, das reich an kurzwelliger Strahlung ist. Als Lichtqueilen sind z.B. Quecksilbermitteldruck-, -hochdruck- und -niederdruckstrahler, superaktinische Leuchtstoffröhren, Metallhalogenid-Lampen oder Laser geeignet, deren Emissionsmaxima im Bereich zwischen 250 und 450 nm liegen. Im Falle einer Kombination mit Photosensibilisatoren oder Ferrocenderivaten kann auch längerweiliges Licht oder Laserstrahlen bis 600 nm verwendet werden.

Die Herstellung und Verwendung der erfindungsgemässen Photoinitiatoren ist in den folgenden Beispielen näher beschrieben. Hierin bedeuten Telle Gewichtsteile, Prozente Gewichtsprozente und die Temperatur ist in Celsius-Graden angegeben.

20

25

30

45

50

55

Belspiel 1: Herstellung eines α-Benzylketons

A) 1-(4-Fluorphenyl)-2-dimethylamino-butanon-1

F--CO-CH-N(CH₃)₂

240 g (0,98 mol) 1-(4-Fluorphenyl)-2-brombutanon-1 (hergestellt durch Bromlerung von 4-Fluorbutyrophenon nach der in der EP-A-3002 beschriebenen Methode) werden in 250 ml Diethylether gelöst. Diese Lösung wird zu einer Mischung von 265 g (5,87 mol) Dimethylamin in 1250 ml Diethylether bei 0° langsam zugetropft. Nach 12-stündigem Rühren bei 0° wird das überschüssige Dimethylamin bei Raumtemperatur durch Durchblasen von N₂ entfernt und die Suspension auf Wasser gegossen. Die Etherphase wird mit Wasser gewaschen und über MgSO₄ getrocknet. Nach Filtration und Eindampfen der Lösung verbielben 202,8 g Rohprodukt als farbloses Oel, das ohne weitere Reinigung für die weltere Umsetzung verwendet wird.

Das NMR-Spektrum (CDCi₃) des Rohproduktes stimmt mit der angegebenen Struktur überein: 7,8-8,23 (m, 2H); 6,8-7,3 (m, 2H); 3,75 (d \times d, 1H); 2,3 (s, 6H); 1,46-2,3 (m, 2H); 0,83 (t, 3H).

B) 1-(4-Fluorphenyl)-2-dimethylamino-2-benzyl-butanon-1

100 g (0,48 mol) 1-(4-Fluorphenyl)-2-dimethylamino-butanon-1 (Rohprodukt aus A) werden in 330 ml Acetonitril gelöst. Dazu werden unter Rühren 98,1 g (0,57 mol) Benzylbromid langsam zugetropft. Nach 12-stündigem Rühren bei Raumtemperatur wird das Lösungsmittel im Vakuum abdestilliert. Der Rückstand wird in 500 ml Wasser gelöst und die Lösung auf 55-60° erwärmt. Bei dieser Temperatur tropft man 113 g einer 34%igen NaOH-Lösung (0,96 mol) zu und rührt 30 Minuten nach.

Nach Abkühlung wird das Reaktionsgemisch mit Diethylether extrahlert, die Etherphase über MgSO4 getrocknet und eingedampft. Es hinterbleiben 117,1 g Rohprodukt, das ohne weitere Reinigung für die weitere Umsetzung verwendet wird. Das NMR-Spektrum des Rohproduktes stimmt mit der angegebenen Struktur überein.

NMR (CDCl₃)-δ (ppm): 8,1-8,53 (m, 2H); 6,76-7,5 (m, 7,H); 3,16 (s, 2H); 2,33 (s, 6H); 1,53-2,2 (m, 2H); 0,65 (t, 3H).

C) 1-(4-Dimethylaminophenyl)-2-dimethylamino-2-benzyl-butanon-1

 $CH_2 - CO - CH_3 - CO - CH_3 - CO - CH_3 - CO - CH_3 - CO - CH_5$

Ein Rührautoklav wird gefüllt mit 50 g (0,167 mol) 1-(4-Fluorphenyl)-2-dimethylamino-2-benzylbutanon-1 (Rohprodukt aus B), 300 ml Dimethylformamid und 23,1 g (0,167 mol) Kaliumcarbonat. Dann werden 22,6 g (0,5 mol) Dimethylamin under Druck (3-4 bar) zugegeben. Die Mischung wird auf 100° erwärmt und 24 h bei dieser Temperatur gerührt.

Nach dem Abkühlen wird das überschüssige Dimethylamin verdampft, die Reaktionsmischung auf Eis/Wasser gegossen und mit Diethylether extrahiert. Die Etherphase wird mit Wasser gewaschen, über MgSO4 getrocknet und im Vakuum eingedampft. Der flüssige Rückstand wird mittels Mitteldruck-Chromatographie gereinigt, als Elutionsmittel wird Ethylacetat/Hexan 15:85 verwendet.

Man erhält 44 g Reinprodukt, das aus Ethanol kristallisiert.

Smp. 77°-80°.

25 Analyse

5

15

20

30

35

40

Ber. C 77,74 % H 8,70 % N 8,63 % Gef. C 77,59 % H 8,71 % N 8,62 %.

Beispiel 2: Herstellung eines α-Allyiketons

D) 1-(4-Fluorphenyl)-2-morpholino-2-ethylpent-4-en-1-on

Eine Dispersion von 12,4 g (0,51 mol) Natriumhydrid in 50 ml Hexan wird mit 300 ml Dimethylformamid (DMF) verdünnt. In diese Suspension tropft man unter Rühren innerhalb von 2 Stunden eine Lösung von 117,7 g (0,47 mol) 1-(4-Fluorphenyl)-2-morpholinobutanon-1 in 250 ml DMF.

Dazu gibt man bei Raumtemperatur innerhalb einer Stunde 70,8 g (0,58 mol) Allylbromid und erwärmt das Reaktionsgemisch auf 110° bis in einer Probe dünnschicht-chromatographisch kein Ausgangsmaterial mehr festgestellt werden kann. Nach dem Abkühlen wird das Reaktionsgemisch auf Eis/Wasser gegossen und mit Diethylether extrahiert. Die Etherphase wird über MgSO₄ getrocknet und im Vakuum eingedampft.

Man erhält als Rückstand 127 g eines öligen Rohproduktes, das ohne weltere Reinigung für die anschliessende Reaktion verwendet werden kann. Das NMR-Spektrum des Rohproduktes entspricht der angegebenen Struktur.

NMR (CDCl₃), δ (ppm): 8,46 (d x d, 2H); 7 (t, 2H); 4,8-6,5 (m, 3H); 3,5-3,9 (m, 4H); 2,4-3,2 (m, 6H); 1,7-2,3 (m, 2H); 0,75 (t, 3H).

45 Beispiel 3: Drucklose Kernaminierung

E) 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanon-1

608,7 g (2,03 mol) 1-(4-Fluorphenyl)-2-dimethylamino-2-benzyl-butanon-1 (Beispiel 1, B), 354,2 g (4,06 mol) Morpholin, 562 g (4,06 mol) K₂CO₃ und 2000 ml Dimethylsulfoxid werden unter Rühren 12 h auf 160° erwärmt. Nach dieser Zeit zeigt eine Probe im Dünnschichtchromatogramm kein Ausgangsketon mehr. Die auf Raumtemperatur abgekühlte Reaktionslösung wird auf Els gegossen und mit Dichlormethan extrahiert. Die organische Phase wird über MgSO₄ getrocknet, filtriert und eingedampft. Der ölige Rückstand kristallisiert aus Ethanol. Das Produkt schmilzt bei 111-119°.

Analyse

Ber. C 75,37 % H 8,25 % N 7,64 % Gef. C 75,40 % H 8,27 % N 7,63 %.

Beispiel 4: Herstellung eines Diallylketons

F) 2-Dimethylamino-1-(4-fluorphenyl)-4-pentenon-1

65

5

118 g (0,65 mol) α -Dimethylamino-4-fluoracetophenon werden in 350 ml Acetonitrii gelöst. In dieser Lösung werden bei ca. 25° 94,5 g (0,78 mol) Allylbromld langsam zugetropft und das Reaktionsgemisch 12 h bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum verdampft und der feste Rückstand in warmem Wasser (ca. 60°) gelöst. Nach langsamer Zugabe von 169 ml 30% liger wässriger NaOH (1,27 mol) und Kühlung auf Raumtemperatur wird mit Diethylether extrahlert. Die Etherphase wird getrocknet und eingedampft. Man erhält als Rückstand das rohe 2-Dimethylamino-1-(4-fluorphenyi)-4-pentenon-1 als Oel, das ohne weltere Reinigung für die folgende Umsetzung verwendet wird. Das NMR-Spektrum des Produktes stimmt mit der angegebenen Struktur gut überein: 7,83-8,23 m (2H, H_B), 6,9-7,26 m (2H, H_A), 4,76-6,0 m (3H, H_{olefin}), 3,96 d x d (1H, J = 6 Hz, J = 8,5 Hz, Hc), 2,2-2,7 m (2H, H_D), 2,3s (6H, H_E).

10

G) 4-Dimethylamino-4-(4-fluorbenzoyl)-heptadien-1,6

20

15

25

131 g (0,59 mol) des Rohproduktes aus F) in 350 ml Acetonitril und 85,9 g (0,71 mol) Allylbromid werden wie bei F) umgesetzt. Die Neutralisation des Reaktionsgemisches erfolgt mit 160 ml 30% iger NaOH (1,2 mol). Die Isolierung des Rohproduktes geschieht ebenfalls wie bei F). Das Reaktionsprodukt ist ein geibliches Oel, das ohne weltere Reinigung zur nächsten Stufe (Kernaminierung) verwendet werden kann.
NMR (CDCl₃): 8,53-8,1 m (2H, H_B), 7,2-6,7 m (2H, H_A), 6,1-4,7 m (6H, H_{oleffn}), 2,8-2,5 m (4H, H_{allyl}), 2,4s (6H,

.95

30

Beispiel 5: Synthese von 3,6-Dibutyryl-9-butyl-9H-carbazol

H) Synthese von N-Butylcarbazol

N-CH₃).

Eine Suspension von 100 g (0,6 mol) Carbazol in 200 ml Toluol wird unter Rühren zum Rückfluss erwärmt. Nach Abkühlen auf 95° gibt man zuerst 26,8 g (0,12 mol) Triethylbenzylammonlumchlorid und dann eine Lösung von 169,8 g KOH in 180 ml Wasser zu. Die Temperatur sinkt dadurch auf 65°. Nun gibt man innerhalb von 5 Minuten 205,6 g (1,5 mol) Butylbromid unter kräftigem Rühren zu, wobel die Temperatur auf 92° steigt. Man hält noch 10 Minuten am Rückfluss, wobel sich alles Carbazol auflöst. Dann trennt man die wässrige Phase ab. Die Toluolphase wird mit wenig Wasser gewaschen, über Na₂CO₃ getrocknet und im Vakuum eingedampft. Der ölige Rückstand wird in 300 ml Hexan warm gelöst und geklärt. Beim Abkühlen kristallisiert das Produkt in beigefarbenen Kristallen, die bei 50-52° schmelzen.

45

i) Friedel-Crafts-Reaktion

In eine Suspension von 93,3 g (0,7 mol) AlCl₃ in 100 ml Methylenchlorid werden unter Rühren und Kühlung auf -10° bis -5° in 30 Minuten 46,9 g (0,44 mol) Buttersäurechlorid zugetropft. Anschliessend wird bei -10° bis -5° innerhalb von 2 Stunden eine Lösung von 22,3 g (0,1 mol) N-Butylcarbazol in 50 ml CH₂Cl₂ zugetropft. Die Suspension wird 16 h bei 0° bis 20° gerührt und dann auf Els gegossen. Die entstandene Emulsion wird zweimal mit CHCl₃ extrahiert, das Extrakt wird mit Wasser gewaschen, über MgSO₄ getrocknet und eingedampft. Das rohe 3,6-Dibutyryi-9-butyl-9H-carbazol wird aus 80 ml Ethanol umkristallisiert. Die erhaltenen Kristalle schmelzen bei 107-109°.

In analoger Weise erhält man aus 81,4 g Propionylchlorid und 44,7 g N-Butylcarbazol das 3,6-Dipropionyl-9-butyl-9H-carbazol, das bei 142-144° schmilzt.

In Analogie zu den allgemeinen Herstellungsbeispielen A-I werden die in den folgenden Tabellen aufgeführten Produkte hergestellt.

6

_	۱
e	ļ
٦	ļ
аb	l
F	Ì

	ı	% %	% %	36 S6	* *	% %	% %	% %
		8,85%	9,25 %	7,95 %	% 56 % % 75,7	7,81 %	8,63%	9,78%
	9 2	ဆ်ဆ်		7,				
	Analyse H	8,92	8,678,64	8,01 8,09	8,16 8,12	8,43 8,41	8,70	9,15 9,25
	Ar							
	ပ	72,11 72,08	71,49	74,97 75,09	71,32	70,36 69,87	77,74 77,59	75,48 75,48
		ber. gef.	ber. gef.	ber. gef.	ber. gef.	ber. gef.	ber. gef.	ber. gef.
	che ten	61°		٥			°o	
	Physikalische Eigenschaften	58- 61°		90-92°			77-80°	
	ysil	Smp.	ન	Smp. 9	ą		Smp.	r,
	F I	S	0e1	ST	0e]	0e1	Sm	0e]
		3)2	3)2	3)2	.^.	.^.	3)2	3)2
	-NR ³ R ⁴	-N(CH3)2	-N(CH ₃)2	-N(CH3)2	!	!_!	-N(CH3)2	-N(CH3)2
	T	t	ī	1	T	1	T	1
		Ethy 1	Methyl	Methyl	Allyl	Ethyl	Ethyl	Allyl
	R2	Etl	Me	Me	A1.	西	BE	AI
:			-	, L	~ 4	-	уĵ	a
	R1	Allyl	Allyl	Benzyl	Allyl	Allyl	Benzyl	Allyl
		•		-		•		
		Ł	Ž.	, I	1	Ł	l3)2N-	3)2N-
	R5	i i	i i	i i	i, i	i, i	(снз)	(снз)
			O	J	3	J	•	•
	in- Nr.							
	Verbin- dung Nr	7	8	m	4	70	•	7

Verbin- dung Nr.	R5	R¹	R²	-NR ³ K	Phys1 Eigen	Physikalische Eigenschaften		ບ	Analyse H	z
æ		Allyl	Allyl	-N(CH ₃) ₂	Smp.	65-67°	ber. gef.	73,14 73,05	8,59 8,51	8,59 % 8,51 %
6	(CH ₃) ₂ N	Allyl	Ethyl	-N(CH ₃) ₂	Smp.	34-37°	ber. gef.	74,41	9,55	10,21 % 10,23 %
10		Benzyl	Ethyl	-N(CH ₃) ₂	Smp.	110-119°	ber. gef.	75,37 75,38	8,25	7,64 %
11	(CH ₃) ₂ N-	Benzyl	Allyl	-N(CH ₃) ₂	Smp.	68-70°	ber. gef.	78,53 78,54	8,38	8,33 % 8,10 %
12	(CH ₃) ₂ N-	Benzyl	Benzyl	-N(CH ₃) ₂	Smp.	132-133°	ber. gef.	80,79	7,82	7,25 % 7,21 %
13	CH ₃ S-	Allyl	Ethy1		061		ber. gef.	67,68 67,43	7,89	4,38 % 4,22 %
14	CH ₃ S—	Allyl	Allyl		0e1		ber. gef.	68,85 68,83	7,61	4,23 % 4,17 %
. 51	CH ₃ 0-	Allyl	Allyl	-N(CH ₃) ₂	0e1		ber. gef.	74,69	8,48	5,12 % 5,04 %
16	CH ₃ O-	Allyl	Allyl	O I	0e]		ber. gef.	72,35 72,51	7,99	4,44 % 4,14 %

Verbin- dung Nr.	R ⁵	\mathbb{R}^1	R²	-NR3R4	Physikalische Eigenschaften	ůς	ဎ	Ana lyse H	2	လ
17	-0 є н э	Allyl	Phenyl		Smp.84-86°	ber. gef.	75,19	7,17	3,99 3	% %
18	CH 3 O-	Allyl	Ethyl		0el	ber. gef.	71,26	8,30	4,62 %	96 9g
19	CH ₃ S-	Benzyl	Ethyl	-N(CH ₃) ₂	0e1	ber. gef.	73,35 73,47	7,69	4,28	9,79 % 9,61 %
20	CH ₃ S-	Allyl	Ethyl	-N(CH3)2	0el	ber. gef.	69,27 69,24	8,35	5,05	11,55 %
21	CH ₃ S-	Allyl	Benzyl	-N(CH ₃) ₂	0e1	ber. gef.	74,29	7,42	4,123,92	9,44 % 9,26 %
22	CH ₃ S-	Allyl	Allyl	-N(CH ₃) ₂	0e1	ber. gef.	70,55	8,01 8,00	4,82	11,08 % 10,93 %
23	CH ₃ S-	4-Fluor- benzyl	Methyl	-N(CH ₃) ₂	061	ber. gef.	68,85 68,89	6,69	4,22	9,67 % 9,57 %
24	CH ₃ S-	4-Chlor- benzyl	Methyl	-N(CH ₃) ₂	Smp.69-70°	ber. gef.	65, 60 65, 30	6,37	4,03	9,22 %

Verbin- dung Nr.	R³	R1	R ²	-NR3Rt	Physikalische Eigenschaften	0 E	Ü	Analyse H	a z	s	
25	CH ₃ S-	2-Chlor- benzyl	Methyl	-N(CH ₃) ₂	0e1	ber. gef.	65,59 65,98	6,37 6,51	4,03	9,22 % 9,09 %	
26	CH ₃ S-	4-Brom- benzyl	Methyl	-N(CH ₃) ₂	0el	ber. gef.	58,16 58,35	5,65	3,57	8,17 % 7,99 %	
27	CH ₃ S-	Methallyl Ethyl	Ethyl	O I	0e1	ber. gef.	68,43 68,41	8,16	4,20	9,61 % 9,53 %	
28	CH ₃ S-	2-Butenyl	. Ethyl		0e1	ber. gef.	68,43 68,46	8,16	4,20	9,61 % 9,63 %	
29	CH ₃ S-	Allyl	Benzyl		0e1	ber. gef.	72,40	7,13 7,31	3,67	8,40 % 8,25 %	
30	CH ₃ S-	Allyl	Butyl	N-	0e1	ber. gef.	69,12 68,98	8,418,29	4,03 3,80	9,23 % 9,26 %	
31	CH ₃ S-	4-Methyl- Methyl benzyl	. Methyl	-N(CH ₃) ₂	Smp.74-75°	ber. gef.	73,35 72,84	7,69	4,28	9,79 %	
32	CH3S-	4-Methyl- thio- benzyl	Methyl	-N(CH3)2	0e1	ber. gef.	66,81. 66,70	7,01	3,89 6,9	17,83 % 17,41 %	

Verbin- dung Nr.	R5	R1	R²	-NR ³ R ⁴	Physikalische Eigenschaften	e c	ပ	Analyse H	2	S	
33	CH ₃ S-	4-Methoxy- benzyl	Methyl	-N(CH ₃) ₂	0e.l	ber. gef.	69,93 69,50	7,34	4,08	9,33 9	% %
34	CH ₃ S-	Allyl	Methyl	o i	0e]	ber. gef.	66,85 66,92	7,59	4,59	10,50	% %
35	CH ₃ S-	Allyl	Methyl	-N(CH ₃) ₂	0e 1	ber. gef.	68,40 68,09	8,04	5,32	12,17	% %
36	CH ₃ S-	Allyl	Phenyl	O I	Smp.97-99°	ber.	71,90	98,9	3,81	8,72	% %
37	CH ₃ S-	Allyl	Phenyl	-N(CH ₃) ₂	0e1	ber. gef.	73,81 73,36	7,12	4,30 4,05	9,85	% %
38	CH ₃ S-	Benzyl	Phenyl	-N(CH ₃) ₂	Smp.142-143°	ber. gef.	76,76 76,95	6,71 6,75	3,73	8,54	% %
39		Allyl	Methyl	o i	0e1	ber. gef.	69,74 69,43	8,19	8,13	% %	
. 04		Allyl	Benzyl	N-	Smp.150°	ber. gef.	74,26	7,67	6,68	% %	
41	(CH ₃) ₂ N-	Allyl	Ethy1	N-	0e]	ber. gef.	72,12	8,92	8,85	% %	

Analyse H S	8,67 9,26 % 8,72 9,12 %	7,53 6,54 % 7,59 6,47 %		8,59 8,53 % 8,84 7,83 %	8,53 7,83 10,76 9.65	8,53 % 7,83 % 7,83 % 9.65 9.65 7,40 % 7,12 %	8,53 % 7,83 % 7,83 % 9.65 9.65 7,12 % 8,48 % 8,48 %	8,53 % 10,76 9.65 7,40 % 8,48 % 8,48 % 8,48 % 7,99 % 8,48 %
Ana C H	71,49	78,47		73,14 73,42	73,14 73,42 73,81 73,41	73,14 73,42 73,81 73,41 76,16	73,14 73,42 73,81 73,41 76,16 76,27 72,69	73,14 73,42 73,41 76,16 76,27 72,69 72,69 72,69
Physikalische Eigenschaften	wachs-ber.	Smp.177-178° ber. gef.		Uel Def.		. 91-93°	. 91-93°	. 91-93°
-nr³ r+		-N(CH ₃) ₂	O	Ì	-N(CH ₃) ₂	-N(CH ₃) ₂	-N(CH ₃) ₂	-N(CH ₃) ₂
R²	Methyl	Benzyl	Allyl		Methyl	Methyl Benzyl	Methyl Benzyl Ethyl	Methyl Benzyl Ethyl
R¹	Allyl	Benzyl	Allyl	•	Allyl	Allyl	Allyl Allyl Methallyl	Allyl Allyl Methallyl 2-Butenyl
R5	(CH ₃) ₂ N-		(CH ₃) ₂ N-		(CH ₃) ₂ N-	(CH ₃) ₂ N-	(CH ₃) ₂ N-	(CH ₃) ₂ N- (CH ₃) ₂ N- (CH ₃) ₂ N-
Verbin- dung Nr.	42	43	77		45	45	45 46 47	46 47 48

Verbin- dung Nr.	ո- Nr.	R1	R ²	-NR ³ R ⁴	Physikalische Eigenschaften	e c	ပ	Analyse H	S.	S	
50		Methallyl	l Ethyl		0el	ber. gef.	70,93 70,42	8,66	7,52	% %	
51	(CH30CH2CH2)2N-	Allyl	Methyl		0e1	ber. gef.	67,66 67,81	8,78 8,76	7,17	% %	
52	-N ² (6H ⁶))	Allyl	Methyl		0e1	ber. gef.	74,57	9,91	7,25	% %	
53	CH ₃ -N-1	Allyl	Methyl	O I	0el	ber. gef.	70,55	8,74	11,75	5° 6°	
54	CH30-	Benzyl	Ethyl	-N(CH ₃) ₂	0el	ber. gef.	77,13	8,09	4,50	% %	
55	(C2H ₅) ₂ N-	Allyl	Methyl	N.	0e1	ber. gef.	72,69 72,66	9,15 9,15	8,48	% %	
56	<u></u>	Allyl	Methy1	O	Smp.98-99°	ber. gef.	73,14 73,10	8,59 8,59	8,53	5° 5°	
57		Benzyl	Ethy1	-N(CH ₃) ₂	Smp.76-81°	ber. gef.	79,08 78,96	8,85 8,79	7,68	% %	

Springer Springer (1997)

					×0 ×0		96 96		96 96
S	84 S4	સ્ક સ્ક	se se	8,97 %	9,17 %		7,68 %	% %	8,58
z	8,90	7,95	9,26	3,92	4.01		3,35	4.27	3.75
Analyse H	9,62	9,15 9,08	9,99	7,61 7,51	7,79		6,52	7,69	7,29
U	76,39 76,40	78,36	75,45 75,35	70,55 70,18	65,30 64,54		74,79 74,53	73,36 73,03	67,53 67,41
ه د	ber. gef.	ber. gef.	ber. gef.	ber. gef.	ber. gef.		ber. gef.	ber. gef.	ber. gef.
Physikalische Eigenschaften	0el	0e1	0e]	0el	0e1	06]	Smp.135-136° ber. gef.	Smp.116-117°	0e1
-NR3 R4	-N(CH ₃) ₂	-N(CH ₃) ₂	-N(CH ₃) ₂	-N(CH ₃) ₂			-N(CH ₃) ₂	-N(CH ₃) ₂	-N(CH ₃) ₂
R ²	Ethyl	Ethyl	Ethyl	Ethyl	Ethyl	Methyl	Methyl	Methyl	Methyl
R.ł	Allyl	Benzyl	Allyl	Benzyl	Allyl	- Ally1	4-Benzoyl- benzyl	3,4-Dimeth- oxybenzyl	3,4-Dimeth- oxybenzyl
n- R ⁵ Vr.		(C2H5)2N-	(C ₂ H ₅) ₂ N-	HOCH 2 CH 2 S-	HOCH2CH2S-	63 (CH ₂ =CH-CH ₂) ₂ N-	CH ₃ S-	ж.	CH3S-
Verbin- dung Nr	58	59	09	61	62	63 (64	65	99

Verbin- dung Nr.		R5	R1	R²	-NR³R4	Physikalische Elgenschaften	a c	ν υ	Analyse H	z	S
67	Ħ		4-Benzoy benzyl	4-Benzoyl- Methyl benzyl	-N(CH ₃) ₂	Smp.106-108°	ber. gef.	80,83	6,78	3,79	× ×
89	Œ		Benzyl	Ethyl	-N(CH3)2	Smp.62-65°	ber. gef.	76,22	7,417,40	4.68 %	
69	ţ z ı		Allyl	Allyl	-N(CH ₃) ₂	0e1					
70	70 CH3	, , , , , , , , , , , , , , , , , , ,	-S0 ₂ - Allyl	Ethy1		glasig	ber. gef.	67,42 66,98	6,48	3,28 3,12	7,50 %
11	CH3 SO2-	1	Allyl	Ethyl	-N(CH ₃) ₂	Smp.74-75°	ber. gef.	62,11 62,03	7,49	4,53 1	10,36 % 10,27 %
72	CH ₃		•-SO ₂ - Benzyl	Ethyl	-N(CH ₃) ₂	Smp.107-108°	ber. gef.	71,69	6,71	3,22 3,16	7,36 % 7,39 %
73	CH3SO2-	1 8	Benzyl	Ethyl	-N(CH ₃) ₂	glasig	ber. gef.	66,82 66,74	7,01	3,90 3,81	8,92 %8,94 %
74	ĵ u		Allyl	Methyl	i i	0e]	ber. gef.	69,29 69,02	7,27	5,05 % 4,86 %	
75	ţzq		Allyl	Allyl		0e1	ber. gef.	71,26	7,31	4,62 % 4,50 %	
16	<u>የ</u> ዲ		Allyl	Benzyl	-N(CH ₃) ₂	0e.1					

Rs	R1	R2	-NR3R4	Physikalische Eigenschaften	a c	U	Analyse H	2	S
	Benzyl	Benzyl	-N(CH3)2	0el					
	Allyl	Ethyl	-N(CH ₃) ₂	0e1					
	Allyl	Benzyl	o i	0e1					
	Allyl	Ethyl		0e1					
	Benzyl	Methyl	-N(CH ₃) ₂	0e1					
	Allyl	Methyl	-N(CH ₃) ₂	0e1					
	Benzyl	Ethyl	-N(CH ₃) ₂	Smp.110-119°					
٥	C2H5OOCCH2O- Benzyl	Ethyl	-N(CH ₃) ₂	0e1	ber. 7 gef. 7	72,04 72,00	7,62	3,65 % 3,57 %	
HOCH 2 CH 2 O-	Benzyl	Ethyl	-N(CH ₃) ₂	0e]	ber. 7 gef. 7	73,87 73,83	7,97	4,10 % 3,82 %	
	Benzyl	Ethyl	-N(CH ₃) ₂	Smp.67-69°	ber. 7 gef. 7	72,25	7,02	4,43 % 4,34 %	

Verbin- dung Nr.	R³	R²	R ²	-NR3R4	Physikalische Eigenschaften	a) E	v	Analyse H	Z	S
I	Вг	Benzyl	Ethyl	-N(CH ₃) ₂	Smp.53~55°		ber. 63,34 gef. 63,22	6,15 6,19	3,89 % 3,87 %	
	Br	Allyl	Ethyl	i i	0el	ber. gef.	57,96 58,42	6,30	3,98 % 3,94 %	
	CH30-	l-Propenyl	Ethy1	N-I	0e1	ber. gef.	71,26	8,31 8,31	4,62 %	
	CH30-	Allyl	Ethyl	-N(CH ₃) ₂	0e1					
Ō	(CH ₃) ₂ N-	Allyl	Benzyl		0e1	ber. gef.	ber. 76,16 gef. 76,17	7,99	7,40 %7,13 %	
ت	(CH3)8N-	Benzyl	Methyl	-N(CH ₃) ₂	Smp.107-108°					
	æ	Allyl	Methyl	i į	flüssig	her. gef.	74,10 74,28	8,16	5,40 %	
	æ	Allyl	Benzyl	o i	0el	ber. gef.	78,77	7,51	4,11 % 3,73 %	
	æ	Allyl	Methyl	-N(CH ₃) ₂	flüssig	ber. gef.	77,40	8,80	6,45 % 6,41 %	

Verbin- R ⁵ dung Nr.	R5	R1	R²	-NR3 R4	Physikalische Eigenschaften		່ ບ	Analyse H	z	S
96	н	Benzyl	Methyl	-N(CH ₃) ₂	flüssig	her. gef.	80,86 80,80	7,928,06	5,24 % 5,17 %	
65	æ	Allyl	Allyl	-N(CH ₃) ₂	0e1	ber. gef.	79,97	8,70	5,76 % 5,64 %	
86	æ	Benzyl	Benzy1	-N(CH ₃) ₂	0el					
66	Ħ	Allyl	Benzyl	-N(CH ₃) ₂	0e1	ber. gef.	81,87	7,90	4,77 %	
100	æ	Allyl	Ethyl	-N(CH ₃) _Z	flüssig	ber. gef.	77,88	9,15	6,05 % 6,01 %	
101	ж	Benzyl	Ethyl	-N(CH3)2	061	ber. gef.	81,10 81,14	8,24	4,98 % 4,93 %	
102	Ħ	Allyl	Phenyl	O I	Smp.87-88°	ber. gef.	ber. 78,47 gef. 78,17	7,21	4,36 % 4,32 %	
103	æ	4-Chlor- benzyl	Methyl	-N(CH ₃) ₂	Smp.86-87°	ber. gef.	71,63	6,68	4,64 % 4,62 %	
104	Ħ	4-Brom- benzyl	Methyl	-N(CH ₃) ₂	Smp.101-102° ber. gef.	ber. gef.	62,43 62,35	5,82	4,04 % 3,96 %	
105	Ħ	2-Chlor- benzyl	Methyl	-N(CH ₃) ₂	0el	ber. gef.	71,63	6,68	4,64 % 4,35 %	

Verbin- dung Nr.	R5	R¹	R ²	-nr³ R4	Physikalische Eigenschaften		C A	Analyse H	z	S
106	Н	3,4-Dimeth- oxybenzyl	Methyl	-N(CH ₃) ₂	Smp.116-117°	ber. gef.	73,36 73,03	7,69	4,27 % 4,11 %	
107	æ	4-Methyl- benzyl	Methyl	-N(CH ₃) ₂	0e.l	ber. gef.	81,10 80,57	8,24	4,98 % 4,94 %	
108	×	4-Methyl- thiobenzyl	Methyl	-N(CH ₃) ₂	0e1	ber. gef.	ber. 72,80 gef. 72,70	7,40	4,47 % 4,34 %	
109	Ħ	4-Fluor- benzyl	Methyl	-N(CH ₃) ₂	0e]	ber. gef.	75,76 75,82	7,06	4,91 % 4,74 %	
110	#	4-Methoxy- benzyl	Methyl	-N(CH ₃) ₂	0el	ber. gef.	ber. 76,74 gef. 76,39	7,80	4,70 % 4,51 %	
ננו	ÎΞ	Methallyl	Ethyl		0e1					
112	Σε _ι	2-Butenyl	Ethyl		0e]					
113		Allyl	Ethyl	-N(CH3)(Benzyl)	1 0e].	ber. gef.	ber. 76,49 gef. 76,58	8,22	7,14%6,81%	
114		Allyl	Ethyl	-N(CH3)(A11y1)	0e1	ber. gef.	ber. 73,65 gef. 73,68	8,83	8,18 % 7,90 %	

ļ

Verbin- dung Nr	R³	R1	R²	-NR ³ R ⁴	Physikalische Eigenschaften	υ		Analyse H N	S
115		Benzyl	Ethyl	-N(CH3)(Benzyl)	Smp. 60-65°	ber. 78 gef. 78	78,70 78,59	7,74	6,33 % 6,66 %
116		Benzyl	Ethyl	-N(CH3)(C4H9)	0e1	ber. 70 gef. 70	76,43	8,8 8,83	6,86 % 6,73 %
117		Allyl	Ethyl	-N(CH3)(C4H9)	0e.].	ber. 7. gef. 7.	73,70	9,56	7,81 % 7,66 %
118	CH3CONH-	Benzyl	Ethyl	-N(CH ₃) ₂	Слав				
119		Benzyl	Propyl	-N(CH3)2	Glas	ber. 75,75 gef. 76,08		8,48 8,54	7,36 % 6,96 %
120	i	Allyl	Propyl	-N(CH3)2	Smp. 62-64°	ber. 7. gef. 7.	72,69	9,15	8,48 8,53 %
121	CH30CH2CH20-	Allyl	Methyl		0e1	ber. 68,44 gef. 68,26		8,168,24	4,20 % 3,97 %
122	HOCH2CH2S-	Allyl	Isopropyl	O N	0e1				

Verbin- dung Nr	n- R³ Nr.	RI	R2	-nr³ r'	Physikalische Eigenschaften	C		Analyse H	z	တ
123	Br	Allyl	Methyl	O	0el					
124	Вг	Allyl	Isopropyl		0e1					
125	HOCH2CH2S-	Allyl	Methyl	o i	0e.l	ber. 6 gef. 6	64,45 64,78	7,51	4,18	9,56 % 9,63 %
126	126 CH ₂ =CHCH ₂ OCH ₂ CH ₂ O-	Allyl	Ethyl		0e]	ber. 7 gef. 7	70,75 70,75	8,37	3,75 % 3,76 %	
121	127 CH2=CHCH2OCH2CH2O-	Allyl	Метһуј	O I	. 0el					
128	CH30CH2CH2O-	Allyl	Ethyl		0el	ber. 69,14 ber. 69,23	69,14 69,23	8,418,34	4,03 % 3,93 %	
129	CH3 OCH2 CH2 NH~	Benzyl	Ethyl	-N(CH3)2	0el					
130	CH ₃ NH-	Benzyl	Ethyl	-N(CH3)2	0e.].		•			
131	CH3 CH3CON-	Benzyl	Ethyl	-N(CH ₃) ₂	0e. <u>1</u> .					

Verbin- R ⁵ dung Nr.	R1	R²	-NR ³ R ⁴	Physikalische Eigenschaften	ပ	Analyse H	s S
132 o	Benzyl	Ethyl	-N(C ₂ H ₅) ₂	Smp. 76-79°	ber. 76,10 gef. 75,83	0 8,69 3 8,64	7,10 % 7,09 %
133 O	Allyl	Ethyl	-N(C ₂ H ₅) ₂	0e.L	ber. 73,22 gef. 73,03	2 9,36 3 9,40	8,13 % 7,64 %
CH3,, 186 OH3	Benzyl	Ethyl	-N(CH ₃) ₂	Smp. 103-105°C	ber. 76,10 gef. 75,80	0 8,68 0 8,75	7,10 %
240 0	4-Isobutyl- benzyl	Ethyl	-N(CH3)2	Smp. 136-137°C	ber. 76,43 gef. 76,26	3 8,88 6 8,83	6,86 % 6,71 %
246 O	4-(2-Brom- ethyl)- benzyl	Ethyl	-N(CH3)2	Harz	ber. 63,42 gef. 63,13	2 7,03 3 7,28	5,92 % 5,54 %
264 0	4-Metyhl- benzyl	Ethyl	-N(CH ₃) ₂	Smp. 75-76°С	ber. 75,75 gef. 75,61	5 8,48 1 8,53	7,36 % 7,26 %
265 0	4-Butyl- benzyl	Ethyl	-N(CH ₃) ₂	Harz	ber. 76,74 gef. 76,58	4 9,06 8 9,12	6,63 % 6,45 %

Verbin- dung Nr.	in- R ⁵ Nr.	R1	R ²	-NR ³ R ⁴	Physikalische Elgenschaften		C An	Analyse H	S	
266		4-Isobutyl- benzyl	Ethyl	-N(CH ₃) ₂	Smp. 77-80°C	ber. gef.	ber. 76,74 9,06 gef. 76,60 9,10	9,06	6,63 %	
267	CH ₃ O(CH ₂) ₃ NH-	Benzyl	Ethyl	-N(CH ₃) ₂	0e1	ber. gef.	ber. 74,96 gef. 75,39	8,57	7,60 % 7,40 %	
268	CH3CO CH3O(CH2)3N-	Benzyl	Ethyl	-N(CH ₃) ₂	0el	ber. gef.	ber. 73,14 gef. 73,07	8,35	6,82 % 6,77 %	
269		Benzyl	Ethyl	-N(CH2CH2OCH3)2	0el	ber. gef.	ber. 71,34 gef. 71,11	8,43	6,16 % 5,96 %	
270		Allyl	Ethyl	-N(CH2CH2OCH3)2	0e1	ber. gef.	ber. 68,29 gef. 67,91	8,97	6,92 % 6,75 %	

Tabelle 2	21			% /	ī							
			R5 8		;CON	-NR ³ R ⁴						
Verbin- dung Nr.	R5	R6	Rg Bg	R³	R1	R2	-NR ³ R ⁴	Physikalische Eigenschaften	9 C	C Ar	Analyse H	z
140	CH30-	CH3	Ħ	СН3	Benzyl	Ethyl	-N(CH ₃) ₂	Smp.68-70°	ber. gef.	77,84	8,61	4,13 3,93
141	c1	æ	C1	Ħ	Benzyl	Ethyl	-N(CH ₃) ₂	0e1	ber. gef.	65,15 65,07	6,04	3,95
142	. [3	ដ	Ħ	æ	Allyl	Ethyl	-N(CH ₃) ₂	0e]	ber. gef.	60,01 59,95	6,38	4,67 9
143	1 3	C1	×	Ħ	Benzyl	Ethy1	Ethyl -N(CH ₃) ₂	0e1	ber. gef.	65,15 65,19	6,04	4,00
144		ដ	Ħ	Ħ	Allyl	Ethyl	Ethyl -N(CH ₃) ₂	06]	ber.	65,04 64,40	7,76	7,98
145		13	Ħ	Ħ	Benzyl	Ethyl	-N(CH ₃) ₂	-N(CH ₃) ₂ Smp.110-111				••
146	(CH ₃) ₂ N-	н	H	C2Hs	Benzyl	Ethyl	-N(CH ₃) ₂	0e1				
147	(CH ₃) ₂ N-	H	CH3	H	Benzyl	Ethyl	-N(CH ₃) ₂	Smp. 101-103° ber. gef.	ber. gef.	ber. 78,06 gef. 77,97	8,93	8,28

Tabelle 3

Verb. Nr.	R ¹	R ₂	-NR ³ R ⁴	R ¹⁷
148	Benzyl	Ethyl	$-N(CH_3)_2$	C4H9

Telb. Mr.	Eigenschaft	 С	н	N
148	Glas			6,67 % 6,41 %
149	Glas			7,17 % 6,87 %

Tabelle 4 - Salze

Verb.	Α	Smp.	Analyse		
Nr.			С	H	N
150	CF ₃ C00-		62,49 62,18		5,83 % 5,54 %
151	CH ₃		66,89 66,76		5,20 % 4,78 %
152	CH ₃ -C-CH ₃		66,19 65,57		4,68 % 4,38 %

Beispiel 5: Photohärtung einer blauen Druckfarbe	
	•
Eine blaue Druckfarbe wird nach folgender Rezeptur hergestellt:	
52 Telle Setalin® AP 565 (Urethanacrylatharz der Fa. Synthese, Holland),	
15 Telle 4,4'-Di-(β-acryloyloxyethoxy)-diphenylpropan-2,2 (Ebecryl® 150, UCB, Belgien) 23 Telle Irgalithblau® GLSM (Ciba-Gelgy AG, Basel).	5
Das Gemisch wird auf einem 3-Walzenstuhl homogenisiert und bis auf eine Korngrösse von < 5 µm	٠.
gemahlen.	
Von dieser Druckfarbe werden jewells 5 g mlt der gewünschten Menge an Photoinitiator auf einer Fellerreibmaschine unter einem Druck von 180 kg/m² unter Wasserkühlung homogen vermischt. Es werden Proben mit 3 % und 6 % Photoinitiator - bezogen auf die Druckfarbe - hergestellt. Von diesen Druckfarben werden mit einem Probedruckgerät (Fa. Prüfbau, BR Deutschland) Offsetdrucke auf 4 x 20 cm Streifen aus Kunstdruckpapier gemacht. Die Druckbedingungen sind	10
Auflage Druckfarbe 1,5 g/m ²	
Anpressdruck (Liniendruck) 25 kp/cm	45
Druckgeschwindigkeit 1 m/sec Hierbei wird eine Druckwalze mit Metalloberfläche (Aluminium) verwendet.	15
Die bedruckten Proben werden in einem UV-Bestrahlungsgerät der Fa. PPG mit zwei Lampen von je 80 W/cm gehärtet. Die Bestrahlungszeit wird durch Variation der Transportgeschwindigkeit der Probe variiert. Die Oberflächentrocknung der Druckfarbe wird unmittelbar nach der Bestrahlung durch den sogenannten	
Fransfer-Test geprüft. Dabei wird ein welsses Papier unter einem Liniendruck von 25 kp/cm an die bedruckte Probe angepresst. Wenn das Papier farbios bleibt, ist der Test bestanden. Wenn sichtbare Mengen Farbe auf den Teststreifen übertragen werden, so ist dies ein Zeichen, dass die Oberfläche der Probe noch nicht genügend gehärtet ist.	20
In der Tabelle 5 ist die maximale Transportgeschwindigkeit angegeben, bei der der Transfer-Test noch	
Destanden wurde. Zur Prüfung der Durchhärtung der Druckfarbe werden ebenfalls Offset-Drucke hergestellt wie vorhin Deschrieben, jedoch werden Druckwalzen mit Gummi-Oberfläche verwendet und es wird die Metallselte von Aluminiumbeschichteten Papierstreifen bedruckt.	25
Die Bestrahlung geschieht wie oben beschrieben. Unmittelbar nach der Bestrahlung wird die Durchhärtung n einem REL-Durchhärtungsprüfgerät getestet. Dabei wird auf die bedruckte Probe ein mit Stoff überspannter Aluminium-Zylinder aufgesetzt und unter einem Druck von 220 g/cm² innerhalb 10 sec einmal um die eigene Achse gedreht. Wenn dabei auf der Probe sichtbare Beschädigungen entstehen, so ist die Druckfarbe ungenügend durchgehärtet. In den Tabellen wird die maximale Transportgeschwindigkeit angegeben, bei der	30
der REL-Test noch bestanden wurde.	
	<i>35</i>
	40
	40
	40
	40 45
	45
	45
	45
	45
	45
	45
	45
	45
	45
	45 50

Tabelle 5

Photoinitiator	Konz.	Transfer- Test (m/min)	REL-Test (m/min)
Verbindung Nr. 1	3 %	> 170	150
ū	6 %	> 170	> 170
Verbindung Nr. 2	3 %	> 170	130
retornadng nev e	6 %	> 170	> 170
Verbindung Nr. 3	3 %	> 170	140
verbinding ar. 3	6 %	> 170	> 170
Verbindung Nr. 4	3 %	> 170	130
verbinding wr. 4	6 %	> 170	> 170
Verbindung Nr. 5	3 %	> 170	120
verbinding Mr. 3	6 %	> 170	> 170
Verbindung Nr. 6	3 %	> 170	160
verbinding wr. o	6 %	> 170	> 170
Washington No. 7	3 %	> 170	130
Verbindung Nr. 7	6 %	> 170	> 170
Vanhindung Ne 9	3 %	> 170	150
Verbindung Nr. 8	5 % 6 %	> 170	> 170

Verbindung Nr. 9	3 %	> 170	130
	6 %	> 170	> 170
Verbindung Nr. 10	3 %	> 170	130
	6 %	> 170	160
Verbindung Nr. 11	3 %	> 170	130
	6 %	> 170	160
Verbindung Nr. 39	3 %	140	80
	6 %	> 170	140
Verbindung Nr. 40	3 %	110	70
	6 %	140	70
Verbindung Nr. 41	3 %	> 170	110
	6 %	> 170	150
Verbindung Nr. 42	3 %	110	60
	6 %	> 170	90
Verbindung Nr. 44	3 %	110	70
	6 %	> 170	110
Verbindung Nr. 45	3 %	> 170	110
	6 %	> 170	160
Verbindung Nr. 46	3 %	> 170	120
	6 %	> 170	160
Verbindung Nr. 47	3 %	> 170	50
Verbindung Nr. 48	3 %	> 170	110
Verbindung Nr. 51	3 %	70	50
	6 %	> 170	110
Verbindung Nr. 53	3 %	120	60
	6 %	> 170	130
Verbindung Nr. 63	3 %	80	40
	6 %	> 170	80
Verbindung Nr. 91	3 %	110	70
	6 %	> 170	70
Verbindung Nr. 92	3 %	> 170	100
	· 6 %	> 170	120
Verbindung Nr. 118	3 %	140	. 100
Verbindung Nr. 119	3 %	160	80
Verbindung Nr. 120	3 %	170	150
Verbindung Nr. 121	3 %	120	90

	Verbindung Nr. 125	3 %	130	100
5	Verbindung Nr. 148	3 %	120	80
	Verbindung Nr. 149	3 %	170	110

10

15

20

25

30

35

Beispiel 6: Photohärtung eines Weisslackes

Es wird ein Weisslack nach folgender Rezeptur hergestellt:

17,6 g Ebecryl® 593 (Polyesteracrylatharz der Fa. UCB, Belgien),

11,8 g N-Vinylpyrrolidon

19,6 g Titandioxid RTC-2 (Titandioxid der Fa. Tioxide, England),

19,6 g Sachtolith® HDS (Lithopone der Sachtleben Chemie, BRD),

11,8 g Trimethylolpropan-trisacrylat,

19,6 g Setalux UV 2276 (acryliertes Epoxidharz auf der Basis von Bisphenol A, Kunstharzfabrik Synthese,

Holland).

Die obigen Komponenten werden zusammen mit 125 g Glasperlen (Durchmesser 4 mm) in einer 250 ml Glasflasche während mindestens 24 Stunden auf eine Korngrösse von maximal 5 μm gemahlen.

Die so erhaltene Stammpaste wird in Portionen geteilt und jede Portion mit jeweils 2 % der in der Tabelle 6 angegebenen Photoinitiatoren durch Einrühren bei 60°C gemischt und die Mischungen nochmals 16 Stunden

mit Glasperlen gemahlen.

Die so hergestellten Weisslacke werden in einer Dicke von 70 μm mit einer Rakel auf Glasplatten aufgetragen. Die Proben werden einerseits in einem PPG-Bestrahlungsgerät mit einer Lampe von 80 W/cm und andererseits in einem Bestrahlungsgerät der Fa. Fusion Systems (USA) mit einer D-Lampe in jeweils einem Durchgang belichtet. Dabei wird die Geschwindigkeit des Durchganges der Proben durch das Bestrahlungsgerät laufend gesteigert bis keine ausreichende Härtung mehr eintritt. Die maximale Geschwindigkeit, bei der noch ein wischfester Lackfilm entsteht, ist in Tabelle 6 als "Härtungsgeschwindigkeit" angegeben.

Tabelle 6

	Photoinitiator	Härtungsgeschwi	hwindigkeit (m/min)	
40	(jeweils 2 %)	PPG-Gerät 80 W	Fusion D-Lampe	
	Verbindung Nr. 1	60	130	
45	Verbindung Nr. 3	50	170	
	Verbindung Nr. 4	50	110	
	Verbindung Nr. 6	140	> 200	
50	Verbindung Nr. 7	80	> 200	
	Verbindung Nr. 8	70	150	
	Verbindung Nr. 12	. 50	120	
55	Verbindung Nr. 14	70	-	
	Verbindung Nr. 15	50	-	

60

Beispiel 7: Sensibilisierte Photohärtung eines Weisslackes

Es wird wie in Beispiel 6 vorgegangen. Zusätzlich zu den 2 % Photoinitiator werden jedoch noch 0,5 % (bezogen auf den Lack) Isopropylthioxanthon als Sensibilisator zugesetzt. Dadurch tritt eine merkliche Steigerung der Härtungsgeschwindigkeit ein. Die Ergebnisse sind in Tabelle 7 aufgeführt.

Tabelle 7

Photoinitiator (jeweils 2 %)	Sensibilisator	Härtungsgesc PPG-Gerät	hwindigkeit (m/min) Fusion D-Lampe
 			·
Verbindung Nr. 1	-	60	130
	0,5 %	130	180
_			
Verbindung Nr. 3	-	50	170
	0,5 %	1.00	> 200
	· .		,
Verbindung Nr. 4	-	50	110
	0,5 %	80	160
			:
Verbindung Nr. 6	-	140	> 200
	0,5 %	170	> 200
Verbindung Nr. 7	-	80	> 200
	0,5 %	170	> 200
•			
Verbindung Nr. 8	-	70	150
	0,5 %	120	> 200
Verbindung Nr. 12	2 -	50	120
	0,5 %	110	> 200
		•	

Beispiel 8: Photohärtung einer schwarzen Offset-Druckfarbe

Eine photohärtbare schwarze Offset-Druckfarbe wird mit jeweils 3 % der in Tabelle 8 angegebenen Photoinitiatoren vermischt und in einer Auflage von 1,5 g/m² auf ein mit Aluminiumfolie kaschiertes Papier gedruckt, wobei wie in Beispiel 5 verfahren wird. Auch die Härtung geschieht wie in Beispiel 5 beschrieben im PPG-Gerät mit zwei Lampen à 80 Watt. Die Härtung wird durch den Transfer-Test kontrolliert - wie in Beispiel 5 beschrieben. Tabelle 8 gibt die maximale Transportgeschwindigkeit im Bestrahlungsgerät an, bei der der Transfer-Test noch eben bestanden wird.

60

50

55

Tabelle 8

5	Photoinitiator	Härtungsgeschwindigkeit PPG-Gerät (m/min)
10	Verbindung Nr. 6	120
	Verbindung Nr. 8	130
15	Verbindung Nr. 9	130
15	Verbindung Nr. 10	110

Beispiel 9: Herstellung eines Photoresist

Eine Mischung von

20

25

30

35

40

50

37,64 g Pentaerythrit-triacrylat

10,76 g Hexamethoxymethylmelamin (Cymel® 301, Cyanamid Corp.)

47,30 g eines carboxylgruppenhaltigen thermoplastischen Polyacrylates (Carboset® 525, Goodrich Corp.) und

4,30 g Polyvinylpyrrolidon

100,00 g

wird unter Zusatz von 0,5 g Irgalithgrün GLN (Ciba-Geigy AG) in 319 g Methylenchlorid und 30 g Methanol gelöst. Dieser Lösung werden die in Tabelle 9 angegebenen Mengen an Verbidung Nr. 10 als Photoinitiator

Die viskose Lösung wird in einer Dicke von 200 μm auf Aluminiumbleche aufgetragen und die Proben werden 15 mln bei 60° getrocknet. Die Trockenschichtdicke beträgt etwa 45 μm. Die Probe wird mit einer Polyesterfolie (76 μm) bedeckt. Auf die Folie wird ein optischer Stufenkeil mit 21 Stufen (Stouffer-Keil) gelegt und durch Vakuum fixiert.

Dann wird die Probe durch den Stufenkeil belichtet. Hierzu wird eine 5 kW Staublampe in einem Abstand von 30 cm verwendet. Die Belichtungsdauer beträgt 20 sec. Nach der Belichtung wird die Polyesterfolle entfernt und die Probe in einem Ultraschallbad entwickelt. Als Entwickler wird eine Lösung von 15 g Na₂SiO₃•9 H₂O, 0,16 g KOH, 3 g Polyethylenglykol 6000 und 0,5 g Lävulinsäure in 1000 g Wasser verwendet. Nach kurzer Trocknung bei Raumtemperatur wird die Probe beurteilt. Angegeben wird die höchste Stufe, welche komplett abgebildet ist und eine klebfreie Oberfläche aufweist.

Tabelle 9

<i>55</i>	Initiator	Höchste abgebildete Stufe
60	0,1 % Verbindung Nr. 10	10
	0,5 % Verbindung Nr. 10	14
	1,0 % Verbindung Nr. 10	16

Beispiel 10: Herstellung einer Druckplatte

88,6 Teile eines Butadien-Styrol-Copolymerisates (Cariflex® TR 1107, Shell Chemie) werden auf einem Kalander bei 140° aufgeschmolzen und bei 100° werden 11 Teile Hexandici-diacrylat, 0,3 Teile eines phenolischen Antioxidans (Topanol® OC, ICI Comp.), 0,01 Teile Sudanschwarz B und 0,4 Teile der Verbindung Nr. 10 zugemischt und bei dieser Temperatur 10 mln homogenisiert.

Aus dieser Mischung werden zwischen 2 Polyesterfollen Platten von 2 mm Dicke gepresst. Die Proben werden auf der Rückseite durch die Folie 2 min belichtet in einem BASF-Nyloprint-Belichter (40 W-Lampen). Dann wird die Folie der Vorderseite durch ein Test-Negativ ersetzt und diese Seite 6 Minuten durch das Negativ belichtet.

Die belichtete Probe wird in einem Bürstenbad mit einer Mischung von 4 Teilen Tetrachlorethylen und 1 Teil Butanol entwickelt, wobei die löslichen Teile ausgewaschen werden. Nach einer Trocknung von 60 min bei 80° wird die zweite Folie entfernt und die Druckplatte zur Fixierung nacheinander in eine 0,4% ge wässrige Bromlösung und in eine 1,15% ge Na₂S₂O₃/Na₂CO₃-Lösung getaucht und anschliessend mit Wasser gespült.

Schliesslich wird jede Seite 6 min nachbelichtet. Alle Teile des Test-Negativs sind deutlich abgebildet, die Lochtiefe beträgt 34 µm, die Reliefhöhe 450 µm.

Patentansprüche

1. Eine Verbindung der Formel I, II, III oder Illa

$$Ar^{1} \xrightarrow{R^{1}} Y \xrightarrow{R^{1}} Ar^{1} \qquad III$$

$$Ar^{1} \xrightarrow{R^{2}} Y' \xrightarrow{R^{2}} Ar^{1} \qquad IIIa$$

worin Ar1 einen aromatischen Rest der Formel IV, V, VI oder VII bedeutet,

6

60

10

20

*3*0

35

45

$$R^{5} \longrightarrow R^{8} \qquad \text{IV}, \qquad R^{10} \longrightarrow V$$

$$R^{10} \longrightarrow R^{10} \longrightarrow V$$

$$R^{10} \longrightarrow R^{10} \longrightarrow V$$

$$R^{10} \longrightarrow V$$

15 WO

25

30

50

65

X einen zweiwertigen Rest der Formel

-N(R¹¹)- oder -N(R¹¹)-R¹²-N(R¹¹)-bedeutet,

Y C1-C6-Alkylen, Xylylen, Cyclohexylen oder eine direkte Bindung bedeutet,

Y' Xylylen, C4-C8-Alkendiyi, C6-C10-Alkadiendiyi, Dipentendiyi oder Dihydroxylylen bedeutet,

U-O-, -S- oder -N(R17)- bedeutet,

V-O-, -S-, -N(R¹⁷)-, -CO-, -CH₂-, -CH₂CH₂-, C₂-C₆-Alkyliden oder eine direkte Bindung bedeutet,

W unverzweigtes oder verzweigtes C1-C7-Alkylen oder C2-C6-Alkyliden bedeutet,

R1 entweder

(a) ein Rest der Formel

$$-(CHR^{13}) \frac{R^{14} R^{15}}{p} = \frac{R^{16}}{1 + R^{16}}$$
 ist,

worin p null oder 1 ist, oder

(b) ein Rest der Formel

ist, wobei q 0, 1, 2 oder 3 bedeutet oder (c) ein Rest der Formel

ist, worin Ar² einen unsubstituierten oder durch Halogen, OH, C₁-C₁₂-Alkyl oder durch OH, Halogen, -N(R¹¹)₂, -C₁-C₁₂-Alkoxy, -COO(C₁-C₁₈-Alkyl), -CO(OCH₂CH₂)_nOCH₃ oder -OCO(C₁-C₄)-Alkyl substituiertes C₁-C₄-Alkyl, C₁-C₁₂-Alkoxy oder durch -COO(C₁-C₁₈-Alkyl) oder -CO(OCH₂CH₂)_nOCH₃ substituiertes C₁-C₄-Alkoxy, -(OCH₂CH₂)_nOH, -(OCH₂CH₂)_nOCH₃, C₁-C₈-Alkylthio, Phenoxy, -COO(C₁-C₁₈-Alkyl), -CO(OCH₂CH₂)_nOCH₃, Phenyl oder Benzoyl substituierten Phenyl-, Naphthyl-, Furyl-, Thienyl- oder Pyridyrest bedeutet, worin n 1-20 ist,

oder

(d) zusammen mit R2 einen Rest der Formel

bildet, worin m 1 oder 2 ist,

 R^2 eine der für R^1 gegebenen Bedeutungen hat oder C_5 - C_6 -Cycloalkyl, unsubstituiertes oder durch C_1 - C_4 -Alkoxy, Phenoxy, Halogen oder Phenyl substituiertes C_1 - C_{12} -Alkyl oder unsubstituiertes oder durch Halogen, C_1 - C_{12} -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl bedeutet,

10

15

30

35

40

45

55

60

65

R³ Wasserstoff, C_1 - C_{12} -Alkyl, durch Hydroxy, C_1 - C_4 -Alkoxy, -CN oder -COO(C_1 - C_4 -Alkyl) substitulertes C_2 - C_4 -Alkyl, C_3 - C_5 -Alkenyl, C_5 - C_1 2-Oycloalkyl oder C_7 - C_9 -Phenylalkyl bedeutet,

 R^4 C_1 - C_1 2-Alkyl, durch Hydroxy, C_1 - C_4 -Alkoxy, -CN oder -COO(C_1 - C_4 -Alkyl) substituiertes C_2 - C_4 -Alkyl, C_3 - C_6 -Alkenyl, C_6 - C_1 2-Cycloalkyl, C_7 - C_9 -Phenylalkyl, Phenyl oder durch Halogen, C_1 - C_1 2-Alkyl, C_1 - C_4 -Alkoxy oder -COO(C_1 - C_4 -Alkyl) substituiertes Phenyl bedeutet oder R^4 zusammen mit R^2 C_1 - C_7 -Alkylen, C_7 - C_{10} -Phenylalkylen, o-Xylylen, 2-Butenylen oder C_2 - C_3 -Oxa- oder Azaalkylen bedeutet, oder

 R^3 und R^4 zusammen C_3 - C_7 -Alkylen bedeuten, das durch -O-, -S-, -CO- oder -N(R^{17})- unterbrochen sein kann oder durch Hydroxy, C_1 - C_4 -Alkoxy oder -COO(C_1 - C_4 -Alkyl) substitutert sein kann,

 R^5 , R^6 , R^7 , R^8 und R^9 unabhāngig voneinander Wasserstoff, Halogen, C_1 - C_{12} -Alkyl, C_5 - C_6 -Cycloalkyl, Phenyl, Benzyl, Benzyl oder eine Gruppe -OR¹⁸, -SR¹⁹, -SO-R¹⁹, -SO₂-R¹⁹, -N(R²⁰)(R²¹), -NH-SO₂-R²² oder

$$-Z-\underbrace{\begin{array}{c} \cdot - \cdot \\ \cdot = \cdot \end{array}}_{R^2} \underbrace{\begin{array}{c} R^1 \\ R^2 \end{array}}_{R^4}$$

bedeuten, worin Z -O-, -S-, -N(R^{11})-, -N(R^{11})- R^{12} -N(R^{11})- oder

bedeutet, wobei im Falle, das R1 Allyl und

 R^2 Methyl ist, R^6 nicht -OCH3 ist, und Im Falle, dass R^1 Benzyl ist und R^2 Methyl oder Benzyl ist, R^6 nicht -OCH3, -SCH3 oder -SO-CH3 ist,

R¹⁰ Wasserstoff, C₁-C₁₂-Alkyl, Halogen oder C₂-C₈-Alkanoyl bedeutet,

R11 Wasserstoff, C1-C8-Alkyl, C3-C5-Alkenyl, C7-C9-Phenylalkyl, C1-C4-Hydroxyalkyl oder Phenyl bedeutet,

R12 unverzweigtes oder verzweigtes C2-C16-Alkylen, das durch ein oder mehrere -O-, -S- oder -N(R11)-unterbrochen sein kann,

R13 Wasserstoff, C1-C8-Alkyl oder Phenyl bedeutet,

 R^{14} , R^{15} und R^{16} unabhängig voneinander Wasserstoff oder C_1 - C_4 -Alkyl bedeuten oder R^{14} und R^{15} zusammen C_3 - C_7 -Alkylen sind,

R¹⁷ Wasserstoff, C₁-C₁₂-Alkyl, das durch ein oder mehrere -O- unterbrochen sein kann, C₃-C₅-Alkenyl, C₇-C₉-Phenylalkyl, C₁-C₄-Hydroxyalkyl, -CH₂CH₂CN, -CH₂CH₂COO(C₁-C₄-Alkyl), C₂-C₈-Alkanoyl oder Benzoyl bedeutet,

R18 Wasserstoff, C1-C12-Alkyl, durch -CN, -OH, C1-C4-Alkoxy, C3-C6-Alkenoxy, -OCH2CH2CN, -OCH2CH2COO(C1-C4-Alkyl), -COOH oder -COO(C1-C4-Alkyl) substitulertes C1-C6-Alkyl, -(CH2CH2O) $_{n}$ H mit n = 2-20, C2-C8-Alkanoyl, C3-C12-Alkenyl, Cyclohexyl, Hydroxycyclohexyl, Phenyl, durch Halogen, C1-C12-Alkyl oder C1-C4-Alkoxy substitulertes Phenyl, C7-C8-Phenylalkyl oder

 $-Si(C_1-C_8Alkvi)_r(Phenvi)_{3-r}$ mit r=1, 2 oder 3 bedeutet,

R¹⁹ Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₁₂-Alkenyl, Cyclohexyl, durch -SH, -OH, -CN, -COO(C₁-C₄-Alkyl), C₁-C₄-Alkoxy, -OCH₂CH₂CN oder -OCH₂CH₂COO(C₁-C₄-Alkyl) substituiertes C₁-C₆-Alkyl, Phenyl, durch Halogen, C₁-C₁₂-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl oder C₇-C₉-Phenylalkyl bedeutet, R²⁰ und R²¹ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₄-Hydroxyalkyl, C₂-C₁₀-Alkoxyalkyl, C₃-C₅-Alkenyl, C₅-C₁₂-Cycloalkyl, C₇-C₉-Phenylalkyl, Phenyl, durch Halogen, C₁-C₁₂-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, C₂-C₃-Alkanoyl oder Benzoyl bedeuten, oder R²⁰ und R²¹ zusammen C₂-C₈-Alkylen bedeuten, das durch -O-, -S- oder -N(R¹⁷)- unterbrochen sein kann, oder durch Hydroxy, C₁-C₄-Alkoxy oder -COO(C₁-C₄-Alkyl) substituiert sein kann, und R²² C₁-C₁₈-Alkyl, unsubstituiertes oder durch Halogen, C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy substituiertes Phenyl oder Naphthyl bedeutet, oder ein Säureadditionssalz einer solchen Verbindung.

2. Eine Verbindung gemäss Anspruch 1 der Formel I, worin Ar¹ eine Gruppe der Formel IV, V oder VII ist und R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, U, V und W die in Anspruch 1 gegebenen Bedeutungen haben.

3. Eine Verbindung gemäss Anspruch 2 der Formel I, worin Ar¹ eine Gruppe der Formel IV ist, R⁵ und R⁶ Wasserstoff, Halogen,C₁-C₁₂-Alkyl oder eine Gruppe -OR¹⁸, -SR¹⁹, -SO-R¹⁹, -SO₂-R¹⁹, -N(R²⁰)(R²¹), -NH-SO₂-R²² oder

bedeuten, worin Z-O-, -S-, -N(R11)- oder -N(R11)-R12-N(R11)- oder

5

10

15

20

25

35

40

50

55

60

65

bedeutet,

R⁷ und R⁸ Wasserstoff oder Halogen und R⁹ Wasserstoff, Halogen oder C₁-C₁₂-Alkyl sind und R¹, R², R³, R⁴, R¹¹, R¹², R¹⁸, R¹⁹, R²⁰ und R²² die in Anspruch 1 gegebenen Bedeutungen haben, wobei im Falle, dass R¹ Allyl ist und R² Methyl ist, R⁵ nicht -OCH₃ ist, und im Falle, dass R¹ Benzyl ist und R² Methyl oder Benzyl ist, R⁵ nicht -OCH₃, -SCH₃ oder -SOCH₃ ist.

4. Eine Verbindung gemäss Anspruch 3 der Formel I, worin Ar¹ eine Gruppe der Formel IV ist, in der R⁵ eine Gruppe -OR¹⁸, -SR¹⁹, -N(R²⁰)(R²¹) oder

$$-Z - \underbrace{\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & - \end{array}}_{R^2} \underbrace{\begin{array}{c} R^1 \\ R^2 \end{array}}_{R^4}$$

bedeutet, R⁶ Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeutet oder eine der für R⁵ gegebenen Bedeutungen hat, R⁷ und R⁸ Wasserstoff oder Halogen und R⁹ Wasserstoff oder C₁-C₄-Alkyl bedeuten, Z -O-, -S- oder -N(R¹¹)-bedeutet,

R1 entweder

(a) ein Rest der Formel

ist oder

(b) ein Rest der Formel -CH(R¹³)-Ar² ist, worin Ar² ein unsubstituierter oder durch Halogen, C₁-C₁₂-Alkyl, C₁-C₄-Alkoxy, -(OCH₂CH₂)_nOCH₃ oder Benzoyl substituierter Phenylrest ist, wobei n 1-10 ist,

 R^2 eine der für R^1 gegebenen Bedeutungen hat oder C_1 - C_8 -Alkyl ist,

R³ und R⁴ unabhängig voneinander C₁-C₁₂-Alkyl, durch C₁-C₄-Alkoxy, -CN oder -COO(C₁-C₄-Alkyl) substituiertes C₂-C₄-Alkyl, Allyl, Cyclohexyl oder Benzyl bedeuten oder R³ und R⁴ zusammen C₄-C₆-Alkylen bedeuten, welches durch -O- oder -N(R¹7)- unterbrochen sein kann,

5

15

60

R11 Wasserstoff, C1-C4-Alkyl, Allyl, Benzyl oder C2-C4-Alkanoyl bedeutet,

R13, R14, R15 und R16 unabhängig voneinander Wasserstoff oder Methyl bedeuten,

R17 Wasserstoff, C1-C4-Alkyl, Benzyl, 2-Hydroxyethyl oder Acetyl bedeutet,

R¹⁸ Wasserstoff, C₁-C₄-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl, 2-Allyloxyethyl, Allyl, Cyclohexyl, Phenyl, Benzyl oder -Si(CH₃)₃ bedeutet,

R¹⁹ Wasserstoff, C₁-C₁₂-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl, Phenyl, p-Tolyl oder Benzyl bedeutet, R²⁰ und R²¹ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₂-C₆-Alkoxy-alkyl, Acetyl, Allyl oder Benzyl bedeuten oder R²⁰ und R²¹ zusammen C₄-C₆-Alkylen bedeuten, das durch -O- oder -N(R¹⁷)-unterbrochen sein kann,

wobei im Falle, dass R¹ Allyl ist, R⁵ nicht -OCH₃ ist, und im Falle, dass R¹ Benzyl ist und R² Methyl oder Benzyl ist, R⁵ nicht -OCH₃ oder -SCH₃ ist.

5. Eine Verbindung gemäss Anspruch 4, worln Ar¹ eine Gruppe der Formel IV ist, in der R⁵ eine Gruppe -OR¹8, -SR¹9-N(R²0)(R²¹) bedeutet, R⁶ Wasserstoff, Chlor oder C₁-C₄-Alkyl bedeutet oder eine der für R⁵ gegebenen Bedeutungen hat, R² und R⁶ Wasserstoff oder Chlor und R⁶ Wasserstoff oder C₁-C₄-Alkyl bedeuten, R¹ entweder (a) ein Rest der Formel -CH₂-C(R¹⁴) = CH(R¹⁶) ist oder (b) ein Rest der Formel -CH₂-Ar² ist, worln Ar² ein unsubstitulerter oder durch Halogen, C₁-C₁₂-Alkyl, C₁-C₄-Alkoxy, -(OCH₂CH₂)nOCH₃ oder Benzoyl substitulerter Phenylrest ist, wobel n 1-10 ist,

R² eine der für R¹ gegebenen Bedeutungen hat oder C₁-C₈-Alkyl ist,

R³ und R⁴ unabhängig voneinander C₁-C₆-Alkyl, 2-Methoxyethyl, Allyl oder Benzyl sind oder R³ und R⁴ zusammen Tetramethylen, Pentamethylen oder 3-Oxapentamethylen bedeuten,

R14 und R15 Wasserstoff oder Methyl bedeuten,

R¹⁸ C₁-C₄-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl oder Phenyl bedeutet,

R¹⁹ C₁-C₁₂-Alkyl, 2-Hydroxyethyl, 2-Methoxyethyl, Phenyl oder p-Tolyl bedeutet,

R²⁰ und R²¹ Wasserstoff, C₁-C₄-Alkyl, 2-Methoxyethyl, Acetyl oder Allyl bedeuten oder

 R^{20} und R^{21} zusammen C_4 - C_5 -Alkylen bedeuten, das durch -O- oder -N(CH₃)-unterbrochen sein kann, wobei im Falle, dass R^1 Allyl ist, R^5 nicht -OCH₃ ist, und Im Falle, dass R^1 Bënzyl ist und R^2 Methyl oder Benzyl ist, R^5 nicht -OCH₃ oder -SCH₃ ist.

6. Eine Verbindung gemäss Anspruch 5, worln R⁵ eine Gruppe -SR¹⁹ ist, R⁷ und R⁸ Wasserstoff sind, R¹ ein Rest der Formel

und alle anderen Substituenten die in Anspruch 5 gegebenen Bedeutungen haben.

7. Eine Verbindung gemäss Anspruch 6, worln R⁶ und R⁹ Wasserstoff sind und alle anderen Substituenten die in Anspruch 6 gegebenen Bedeutung haben.

8. Eine Verbindung gemäss Anspruch 6, worin R¹ Aliyi ist und alle anderen Substituenten die in Anspruch 6 gegebene Bedeutung haben.

9. Eine Verbindung gemäss Anspruch 5, worin R^5 eine Gruppe -N(R^{20})(R^{21}) ist, R^7 und R^8 Wasserstoff sind und alle anderen Substituenten die in Anspruch 5 gegebenen Bedeutungen haben.

10. Eine Verbindung gemäss Anspruch 9, worin R⁶ und R⁹ Wasserstoff sind und alle anderen Substituenten die in Anspruch 9 gegebene Bedeutung haben.

11. Eine Verbindung gemäss Anspruch 9, worln R¹ Allyl oder Benzyl ist und alle anderen Substituenten die in Anspruch 9 gegebene Bedeutung haben.

12. Eine Verbindung gemäss Anspruch 3 der Formel I, worin Ar¹ eine Gruppe der Formel IV ist, in der R⁶ Wasserstoff, Halogen oder C₁-C₁₂-Alkyl ist und R⁶, R⁷, R⁸ und R⁹ Wasserstoff sind, R¹ Allyl oder Benzyl bedeutet, R² C₁-C₈-Alkyl, Allyl oder Benzyl bedeutet, R³ und R⁴ unabhängig voneinander C₁-C₁₂-Alkyl, durch C₁-C₄-Alkyl, -CN oder -COO(C₁-C₄-Alkyl) substitulertes C₂-C₄-Alkyl, Allyl, Cyclohexyl oder Benzyl bedeuten oder R³ und R⁴ zusammen C₄-C₆-Alkylen bedeuten, das durch durch -O- oder -N(R¹7)-unterbrochen sein kann, und R¹7 Wasserstoff, C₁-C₄-Alkyl oder 2-Hydroxyethyl bedeutet.

13. Verwendung einer Verbindung des Anspruches 1 als Photoinitiator für die Photopolymerisation ethylenisch ungesättigter Verbindungen.

14. Verwendung gemäss Anspruch 13 einer Verbindung des Anspruches 4 als Photoinitiator für die Photohärtung von pigmentierten Systemen wie Druckfarben oder Welsslacke.

15. Verwendung gemäss Anspruch 14 einer Verbindung des Anspruches 12 für die Photohärtung von unpigmentierten Systemen.

16. Verwendung gemäss Anspruch 13 einer Verbindung des Anspruches 1 als Photoinitiator für die

Herstellung von Photoresists oder Druckplatten.

- 17. Verwendung gemäss Anspruch 13 einer Verbindung des Anspruches 1 als Photoinitiator für Aussenanstriche, die im Tageslicht oberflächlich nachhärten.
- 18. Photohärtbare Zusammensetzung, enthaltend
 - A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung und
 - B) als Photoinitiator mindestens eine Verbindung des Anspruches 1.
- 19. Photohärtbare Zusammensetzung gemäss Anspruch 18, enthaltend
 - A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung,
 - B) als Photoinitiator mindestens eine Verbindung des Anspruches 4 und
 - C) ein weisses oder farbiges Pigment.
- 20. Photohärtbare Zusammensetzung gemäss Anspruch 19, enthaltend
 - A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung,
 - B) als Photoinitiator mindestens eine Verbindung des Anspruches 4,
 - C) ein weisses oder farbiges Pigment und
 - D) als Photosensibilisator eine aromatische Carbonylverbindung aus der Klasse der Benzophenone, Thioxanthone, Anthrachinone, 3-Acylcumarine und 3-(Aroylmethylen)-thiazoline.
- 21. Photohärtbares Gemisch gemäss Anspruch 18, enthaltend
 - A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung und
 - B) als Photoinitiator ein Gemisch von
 - B₁) mindestens einer Verbindung des Anspruches 1 und
 - B2) einem Aryl-titanocen-Derivat, das im Arylrest durch Fluor oder CF3 substituiert ist.

Patentansprüche für den folgenden Vertragsstaat: ES

- 1. Photohärtbare Zusammensetzung, enthaltend
- A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung und
- B) als Photoinitiator mindestens eine Verbindung der Formel I, II, III oder IIIa

$$Ar^1$$
 R^1 R^3

$$Ar^1 \longrightarrow \begin{matrix} \begin{matrix} & & & & & \\ & & & & \\ & & & & \end{matrix}$$

45

50

5

10

15

20

25

30

35

40

IIIa

55

worin Ar1 einen aromatischen Rest der Formel IV, V, VI oder VII bedeutet,

60

-N____N__ ,

25

 $\begin{array}{l} -N(R^{11})\text{-} \text{oder -N}(R^{11})\text{-}R^{12}\text{-}N(R^{11})\text{-} \text{bedeutet}, \\ Y\,C_1\text{-}C_6\text{-}\text{Alkylen, Xylylen, Cyclohexylen oder eine direkte Bindung bedeutet}, \\ Y'\,Xylylen, C_4\text{-}C_8\text{-}\text{Alkendiyl, C}_6\text{-}C_{10}\text{-}\text{Alkadiendiyl, Dipentendiyl oder Dihydroxylylen bedeutet}, \\ U\,-\text{O-, -S- oder -N}(R^{17})\text{-} \text{ bedeutet}, \\ V\,-\text{O-, -S-, -N}(R^{17})\text{-, -CO-, -CH}_2\text{-, -CH}_2\text{CH}_2\text{-, C}_2\text{-}\text{Alkyliden oder eine direkte Bindung bedeutet}, } \\ W\,\text{unverzweigtes oder verzweigtes C}_1\text{-}\text{C}_7\text{-}\text{Alkylen oder C}_2\text{-}\text{C}_6\text{-}\text{Alkyliden bedeutet}, } \\ R^1\,\text{entweder} \\ \text{(a) ein Rest der Formel} \end{array}$

35

30

$$-(CHR^{13}) \frac{R^{14} R^{15}}{p} \frac{R^{16}}{C} - R^{16}$$
 ist,

lst, worin p null oder 1 ist, oder (b) ein Rest der Formel

45

ist, wobei q 0, 1, 2 oder 3 bedeutet oder

R¹³

(c) ein Rest der Formel

60

65

55

ist, worin Ar² einen unsubstituierten oder durch Halogen, OH, C₁-C₁₂-Alkyl oder durch OH, Halogen, -N(R¹¹)₂, -C₁-C₁₂-Alkoxy, -COO(C₁-C₁₈-Alkyl), -CO(OCH₂CH₂)_nOCH₃ oder -OCO(C₁-C₄)-Alkyl substituiertes C₁-C₄-Alkyl, C₁-C₁₂-Alkoxy oder durch -COO(C₁-C₁₈-Alkyl) oder -CO(OCH₂CH₂)_nOCH₃ substituiertes C₁-C₄-Alkoxy, -(OCH₂CH₂)_nOH, -(OCH₂CH₂)_nOCH₃, C₁-C₈-Alkylthlo, Phenoxy, -COO(C₁-C₁₈-Alkyl), -CO(OCH₂CH₂)_nOCH₃, Phenyl oder Benzoyl substituierten Phenyl-, Naphthyl-, Furyl-, Thlenyl- oder

Pyridylrest bedeutet, worin n 1-20 ist, oder

(d) zusammen mit R2 einen Rest der Formel

5

10

oder

7

15

20

bildet, worin m 1 oder 2 ist,

R² eine der für R¹ gegebenen Bedeutungen hat oder C⁵-C⁶-Cycloalkyl, unsubstituiertes oder durch C1-C4-Alkoxy, Phenoxy, Halogen oder Phenyl substituiertes C1-C12-Alkyl oder unsubstituiertes oder durch Halogen, C₁-C₁₂-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl bedeutet, R3 Wasserstoff, C1-C12-Alkyl, durch Hydroxy, C1-C4Alkoxy, -CN oder -COO(C1-C4-Alkyl) substituiertes C2-C4-Alkyl, C3-C5-Alkenyl, C5-C12-Cycloalkyl oder C7-C9-Phenylalkyl bedeutet, R⁴ C₁-C₁₂-Alkyl, durch Hydroxy, C₁-C₄-Alkoxy, -CN oder -COO(C₁-C₄-Alkyl) substituiertes C₂-C₄-Alkyl, C3-C5-Alkenyl, C5-C12-Cycloalkyl, C7-C9-Phenylalkyl, Phenyl oder durch Halogen, C1-C4-Alkyl, C1-C4-Alkoxy oder -COO(C1-C4-Alkyl) substituiertes Phenyl bedeutet oder R4 zusammen mit R2 C1-C7-Alkylen, 25 C7-C10-Phenylalkylen, o-Xylylen, 2-Butenylen oder C2-C3-Oxa- oder Azaalkylen bedeutet, oder R³ und R⁴ zusammen C₃-C7-Alkylen bedeuten, das durch -O-, -S-, -CO- oder -N(R¹7)- unterbrochen sein kann, oder durch Hydroxy, C1-C4-Alkoxy oder -COO(C1-C4-Alkyl) substituiert sein kann, R5, R6, R7, R8 und R9 unabhängig voneinander Wasserstoff, Halogen, C1-C12-Alkyl, C5-C6-Cycloalkyl, Phenyl, Benzyl, Benzoyl oder eine Gruppe -OR18, -SR19, -SO-R19, -SO₂-R19, -N(R20)(R21), -NH-SO₂-R22

30

35

oder

$$-z$$

40

bedeuten, worln Z -O-, -S-, -N(R11)-, -N(R11)-R12-N(R11)- oder

45

50

bedeutet, wobei im Falle, dass R1 Allyl und R² Methyl ist, R⁵ nicht -OCH₃ ist, und im Falle, dass R¹ Benzyl ist und R² Methyl oder Benzyl ist, R⁵ nicht -OCH3, -SCH3 oder -SO-CH3 ist,

 R^{10} Wasserstoff, C_1 - C_{12} -Alkyl, Halogen oder C_2 - C_8 -Alkanoyl bedeutet,

R11 Wasserstoff, C1-C8-Alkyl, C3-C5-Alkenyl, C7-C9-Phenylalkyl, C1-C4-Hydroxyalkyl oder Phenyl

bedeutet. 55

R12 unverzweigtes oder verzweigtes C2-C16-Alkylen, das durch ein oder mehrere -O-, -S- oder -N(R11)unterbrochen sein kann,

R13 Wasserstoff, C1-C8-Alkyl oder Phenyl bedeutet,

R¹⁴, R¹⁵ und R¹⁶ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten oder R¹⁴ und R¹⁵

zusammen C3-C7-Alkylen sind, 60

R¹⁷ Wasserstoff, C₁-C₁₂-Alkyl, das durch ein oder mehrere -O- unterbrochen sein kann, C₃-C₅-Alkenyl, C7-C9-Phenylalkyl, C1-C4-Hydroxyalkyl, -CH2CH2CN, -CH2CH2COO(C1-C4-Alkyl), C2-C8-Alkanoyl oder Benzoyl bedeutet,

R18 Wasserstoff, C1-C12-Alkyl, durch -CN, -OH, C1-C4-Alkoxy, C3-C6-Alkenoxy, -OCH2CH2CN, -OCH₂CH₂COO(C₁-C₄-Alkyl0), -COOH oder -COO(C₁-C₄-Alkyl) substituiertes C₁-C₆-Alkyl,

-(CH ₂ CH ₂ O) _n H mit n = 2-20, C ₂ -C ₈ -Alkanoyl, C ₃ -C ₁₂ -Alkanyl, Cyclohexyl, Hydroxy cyclohexyl, Phenyl, durch Halogen, C ₁ -C ₁₂ -Alkyl oder C ₁ -C ₄ -Alkyl oder C ₁ -C ₆ -Alkyl) _r (Phenyl) _{s-r} mit r = 1, 2 oder C ₁ -C ₈ -Alkyl) _r (Phenyl) _{s-r} mit r = 1, 2 oder C ₁ -C ₈ -Alkyl) _r (Phenyl) _{s-r} mit r = 1, 2 oder C ₁ -Alkyl) _r (Phenyl) _{s-r} mit r = 1, 2 oder C ₁ -Alkyl) _{s-r} (C ₁ -C ₁ -Alkyl) _{s-r} (C	
R ¹⁹ Wasserstoff, C ₁ -C ₁₂ -Alkyl, C ₃ -C ₁₂ -Alkenyl, Cyclohexyl, durch -SH, -OH, -CN, -COO(C ₁ -C ₄ -Alkyl), C ₁ -C ₄ -Alkoxy, -OCH ₂ CH ₂ CN oder -OCH ₂ CH ₂ COO(C ₁ -C ₄ -Alkyl) substituiertes C ₁ -C ₆ -Alkyl, Phenyl, durch Halogen, C ₁ -C ₁₂ -Alkyl oder C ₁ -C ₄ -Alkoxy substituiertes Phenyl oder C ₇ -C ₉ -Phenylalkyl bedeutet, R ²⁰ und R ²¹ unabhängig voneinander Wasserstoff, C ₁ -C ₁₂ -Alkyl, C ₂ -C ₄ -Hydroxyalkyl, C ₂ -C ₁₀ -Alkoxyalkyl, C ₃ -C ₆ -Alkenyl, C ₆ -C ₁₂ -Cycloalkyl, C ₇ -C ₉ -Phenylalkyl, Phenyl, durch Halogen, C ₁ -C ₁₂ -Alkyl oder	5
C1-C4-Alkoxy substituiertes Phenyl, C2-C3-Alkanoyl oder Benzoyl bedeuten, oder	
R ²⁰ und R ²¹ zusammen C ₂ -C ₈ -Alkylen bedeuten, das durch -O-, -S- oder -N(R ¹⁷)- unterbrochen sein	10
kann, oder durch Hydroxy, C ₁ -C ₄ -Alkoxy oder -COO(C ₁ -C ₄ -Alkyl) substituiert sein kann, und	
R ²² C ₁ -C ₁₈ -Alkyl, unsubstituiertes oder durch Halogen, C ₁ -C ₁₂ -Alkyl oder C ₁ -C ₈ -Alkoxy substituiertes Phenyl oder Naphthyl bedeutet, oder ein Säureadditionssalz einer solchen Verbindung.	
2. Photohärtbare Zusammensetzung gemäss Anspruch 1, enthaltend	
A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung.	15
B) als Photoinitiator mindestens eine Verbindung des Anspruches 1 und	15
C) ein weisses oder farbiges Pigment.	
3. Photohärtbare Zusammensetzung gemäss Anspruch 2, enthaltend	
A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung.	:
B) als Photoinitiator mindestens eine Verbindung des Anspruches 1,	20
C) ein weisses oder farbiges Pigment und	
 D) als Photosensibilisator eine aromatische Carbonylverbindung aus der Klasse der Benzophe- 	
none, Thioxanthone, Anthrachinone, 3-Acylcumarine und 3-(Aroylmethylen)-thiazoline.	
4. Photohäribares Gemisch gemäss Ansprudir 1, enthaltend	
A) mindestens eine ethylenisch ungesättigte photopolymerisierbare Verbindung und	<i>25</i>
B) als Photoinitiator ein Gemisch von	
B ₁) mindestens einer Verbindung des Anspruches 1 und	
B ₂) einem Aryi-titanocen-Derivat, das im Aryirest durch Fluor oder CF ₃ substituiert ist.	.: '
	do
	30