Домашнее задание 7. Группа 277, осень 2015

Задача 1. Всегда ли существует достаточная статистика, несмещенная оценка, оценка максимума правдоподобия, эффективная оценка, оптимальная оценка? Привести примеры.

Задача 2. Существует ли оптимальная, но не эффективная оценка?

Задача 3 (Задача 19). При измерении длины стержня, истинная длина которого равна $\ell > 0$ (и неизвестна), ошибка измерения имеет распределение $\mathcal{N}(0,k\ell)$, где k — известное число. Найти оценку наибольшего правдоподобия для параметра , построенную на основании независимых измерений X_1, X_2, \ldots, X_n длины стержня.

Задача 4 (Задача 20). Найти оценки наибольшего правдоподобия и эффективные оценки (если они существуют): а) параметра λ в пуассоновском распределении 6) параметра μ в показательном распределении в) параметра p в биномиальном распределении с n испытаниями. Являются ли полученные оценки несмещенными, состоятельными?

Задача 5 (Задача 40). В результате наблюдения точечного случайного процесса (потока событий) получена выборка (X_1, \ldots, X_n) моментов появления в нем событий. Предполагая, что наблюдаемый процесс является пуассоновским, найти ММП-оценки для интервала времени между событиями и для интенсивности потока событий.

Задача 6 (Задача 64). Значение сигнала Y на входе некоторого устройства может быть либо нулем, либо единицей. Значение Y недоступно для измерения. На выходе устройства наблюдается (и измеряется) величина , являющаяся суммой входного сигнала и гауссовского шума с нулевым математическим ожиданием и известной дисперсией σ^2 . Построить оптимальное байесовское решающее правило для классификации входных сигналов на основании измерения величины X при известных вероятностях $P\{Y=0\}=p,\ P\{Y=1\}=1-p.$