Alpha-Investing Sequential Control of Expected False Discoveries

Dean Foster Bob Stine

Department of Statistics
Wharton School of the University of Pennsylvania
www-stat.wharton.upenn.edu/~stine

Joint Statistics Meeting, Salt Lake City
August 2007

Overview

- Background
- Alpha-investing Rules
- Simulations
 - Comparison to batch procedures
 - Applying to an infinite stream
- 4 Discussion

Opportunities for Using Domain Knowledge in Testing

Situations in applications

- Clinical trial
 - ► Choice of secondary hypotheses to test in a clinical trial depends on the outcome of the primary test.
- Variable selection
 - Pick interactions to add to a regression model after detect interesting main effects (select from p rather than p^2).
- Data preparation
 - Construct retrieval instructions for extraction from database.
 - Geographic search over region based on neighbors.

Sequential decisions

- Choice of next action depends on what has happened so far.
- Maintain control chance for false positive error.

Bob Stine (U Penn) Alpha-investing JSM 2007 3 / 16

Keeping Track of a Sequence of Tests and Errors

• Collection of *m* **null** hypotheses

$$H_1, H_2, \ldots, H_m, \ldots$$

specify values of parameters θ_i (H_i : $\theta_i = 0$).

- Tests produce p-values $p_1, p_2, \dots, p_m, \dots$
- Reject H_i if p_i is smaller than α_i

$$R(m) = \sum_{j} R_{j}, \quad R_{j} = \left\{ egin{array}{ll} 1 & ext{if } p_{j} < lpha_{j} \\ 0 & ext{otherwise} \end{array}
ight.$$

• How to control the unobserved number of incorrect rejections?

$$V^{\theta}(m) = \sum V_j^{\theta}, \quad V_j^{\theta} = \left\{ egin{array}{ll} 1 & ext{if } p_j < lpha_j ext{ but } \theta_j = 0 \\ 0 & ext{otherwise} \end{array}
ight.$$

Bob Stine (U Penn) Alpha-investing JSM 2007 4 / 16

Several Criteria Are Used to Control Error Rates

• Family-wise error rate, the probability for any incorrect rejection

$$FWER(m) = P(V^{\theta}(m) > 0)$$

Conservative when testing 1,000s of tests.

 False discovery rate, the expected proportion of false rejections among the rejected hypotheses

$$FDR(m) = E\left(\frac{V^{\theta}(m)}{R(m)}|R(m) > 0\right)P(R(m) > 0)$$

Less conservative with larger power.

Marginal false discovery rate, the ratio of expected counts

$$mFDR_{\eta}(m) = \frac{E \ V^{\theta}(m)}{E \ R(m) + \eta}$$

Typically set $\eta = 1 - \alpha \approx 1$. (Convexity: *FDR* > *mFDR*)

Wharton

Bob Stine (U Penn) Alpha-investing JSM 2007 5 / 16

Batch Procedures Vary the Level α_i

- "Batch" procedures have all *m* p-values at the start.
- Bonferroni (alpha-spending) controls $FWER(m) < \alpha$.

Reject
$$H_i$$
 if $p_i < \alpha/m$

• Benjamini-Hochberg "step-down" procedure (BH) controls $FDR(m) < \alpha$ for independent tests (and some dependent tests). For the ordered p-values $p_{(1)} < p_{(2)} < \cdots < p_{(m)}$

Reject
$$H_{(j)}$$
 if $p_{(j)} < j\alpha/m$

• Weighted BH procedure (wBH, Genovese et al, 2006) controls $FDR(m) < \alpha$ using a priori information to weight tests.

Reject
$$H_{(j)}$$
 if $p_{(j)} < W_{(j)} j \alpha/m$

More power: $W_i > 1$ for false nulls, else $W_i < 1$.

Bob Stine (U Penn) Alpha-investing JSM 2007 6 / 16

Alpha-Investing Resembles Alpha-Spending

Initial alpha-wealth to "invest" in testing {H_i}

$$W(0) = \alpha$$

 Alpha-investing rule determines level for test of H_j, possibly using outcomes of prior tests

$$\alpha_j = \mathcal{I}_{W(0)}(\{R_1, R_2, \dots, R_{j-1}\})$$

Difference from alpha-spending:
 Rule earns more alpha-wealth when it rejects a null hypothesis

$$W(j) - W(j-1) = \begin{cases} \omega & \text{if } p_j \leq \alpha_j, \\ -\alpha_j/(1-\alpha_j) & \text{if } p_j > \alpha_j. \end{cases}$$

Earns payout ω if rejects H_j ; pays $\alpha_j/(1-\alpha_j)$ if not.

Examples of Policies for Alpha-Investing Rules

- Aggressive policy anticipates clusters of $\theta_i \neq 0$
 - ▶ Investing rule: If last rejected hypothesis is H_{k^*} , then

$$\mathcal{I}_{W(0)}(\{R_1, R_2, \dots, R_{j-1}\}) = \frac{W(j-1)}{1+j-k^*}, \quad j > k^*$$

- Invest most immediately after reject H_{k^*} :

 Invest $\frac{1}{2}$ of current wealth to test H_{k^*+1} Invest $\frac{1}{3}$ of current wealth to test H_{k^*+2}
- Revisiting policy mimics BH step-down procedure
 - ▶ Test every hypothesis first at level α/m .
 - ▶ If reject at least one, alpha-wealth remains $\geq W(0)$.
 - ▶ Test remaining hypotheses conditional on $p_i > \alpha/m$.
 - ▶ Rejects H_i if $p_i \le 2 \alpha/m$ (like BH).
 - Continue while at least one is rejected until wealth is spent.

Theory: Alpha-Investing Uniformly Controls mFDR

- Stop early: Do you care about every hypothesis that's rejected, or are you most interested in the first few?
 - Scientist studies first 10 genes identified from micro-array.
 - ▶ What is FDR when stop early?
- Uniform control of mFDR A test procedure *uniformly controls mFDR* $_{\eta}$ at level α if for any finite stopping time T,

$$\sup_{\theta} \frac{E_{\theta}\left(V^{\theta}(T)\right)}{E_{\theta}\left(R(T)\right) + \eta} < \alpha$$

Theorem

An alpha-investing rule $\mathcal{I}_{W(0)}$ with initial alpha-wealth $W(0) \leq \alpha \eta$ and pay-out $\omega \leq \alpha$ uniformly controls mFDR_{η} at level α .

wynarton Williams

Why control mFDR rather than FDR?

$$extit{FDR}(m) pprox E\left(rac{V^{ heta}(m)}{R(m)}
ight) \qquad extit{mFDR}_{\eta}(m) = rac{E\ V^{ heta}(m)}{E\ R(m) + \eta}$$

- They produce similar control in the type of problems we consider, as shown in simulation.
- By controlling a ratio of means, we are able to identify a martingale:

Lemma

The process

$$A(j) = \alpha R(j) - V^{\theta}(j) + \eta \alpha - W(j)$$

is a sub-martingale

$$E(A(j) | A(j-1), ..., A(1)) \ge A(j-1)$$
.

₹ University of Pennsyes

Two Simulations of Alpha-Investing

Comparison to batch

 Fixed collection of hypotheses
 H₁.... H₂₀₀

•
$$H_i : \mu_i = 0$$

 Spike and slab mixture, iid sequence

$$\mu_j = \left\{ \begin{array}{l} N(0, 2\log m) \\ 0 \end{array} \right.$$

10,000 replications

Testing an infinite stream

 Infinite sequence of hypotheses
 H₁.... H₄₀₀₀....

•
$$H_i : \mu_i = 0$$

- Hidden Markov chain
 - ▶ 10% or 20% $\mu_j = 3$
 - Average length of cluster varies
- 1,000 replications, halted at 4,000 tests

11 / 16

Procedures That Use Domain Knowledge

Oracle-based Weighted BH

- Oracle reveals which hypotheses to test
- Only test $m m_0$ that are false
- Threshold for p-values

$$j \alpha/m \Rightarrow j\alpha/(m-m_0)$$

 Spread available alpha-level over fewer hypotheses

Alpha-investing

- Scientist able to order hypotheses by μ_i
- Test them all, but start with false
- Aggressive investing

$$\alpha/2 \Rightarrow (\alpha + \omega)/2$$

 Initial rejections produce alpha-wealth for subsequent tests.

12 / 16

Alpha-Investing+Order Outperforms wBH+Oracle

- Test m = 200 hypotheses, $\mu_i \sim$ spike–and–slab mixture
- Step-down: BH, wBH with oracle,
- Alpha-investing: aggressive(∇, △), mimic BH (∘)

13 / 16

Testing an Infinite Stream of Hypotheses

- Generate μ_i from Markov chain
 - ▶ 10% (∘) or 20% (×) non-zero means
 - Fixed alternative: $\mu_i = 0$ or 3
- 1,000 sequences of hypotheses, snapshot at 4,000 tests
- Investing rule: Aggressive alpha-investing

Whartor

Summary

Alpha-investing ...

- Allows testing of a dynamically chosen, infinite stream of hypotheses
- Underlying martingale proves alpha-investing obtains uniform control of mFDR (≈ FDR)
- Exploits domain knowledge to improve power of tests
- Further details in paper at

```
stat.wharton.upenn.edu/~stine
```

- What's next?
 - Applications in variable selection
 - Universal policies for alpha-spending

FDR and mFDR Produce Similar Types of Control

Simulation of tests

- m = 200 hypotheses
- Proportion π_1 false
- Spike–and–slab mixture $\mu_j = \begin{cases} N(0, 2 \log m) \\ 0 \end{cases}$
- 10,000 replications

Procedures

- Naive, Bonferroni, BH step-down, wBH with oracle
- Solid: FDR
 Dashed: mFDR

16 / 16

JSM 2007