KARNATAK LAW SOCIETY'S

GOGTE INSTITUTE OF TECHNOLOGY

UDYAMBAG, BELAGAVI – 590008

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)
(Approved By AICTE, New Delhi)

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

COURSE PROJECT

DESIGN AND ANALYSIS OF ALGORITHM

RACHANA KAMPLI 2GI18IS032

LAXMI NYAMAGOUD 2GI18IS020

HEMANTH I T 2GI18IS015

ROHAN KOKATANUR 2GI18IS066

Guided by:
Prof. Gururaj Kulkarni

TITLE: RECURRENCE RELATION

OBJECTIVES:

TO LEARN

- > WHAT IS RECURRENCE RELATION
- ➤ METHODS FOR SOLVING RECURRENCE RELATIONS
- > COMMON RECURRENCE TYPES IN ALGORITHM ANALYSIS
- CALCULATION OF TIME EFFICIENCY

DEFINITION:

- In Mathematics, a RECURRENCE RELATION is an equation that recursively defines a sequence or multidimensional array of values, once one or more initial terms are given; each further term of the sequence or array is defined as a function of the preceding terms.
 - x(n)=x(n-1) +n for n >0 is called a recurrence relation or recurrence equation
 - x(0) = 0 is called initial condition

METHODS FOR SOLVING RECURRENCE RELATIONS

- Method of forward substitution
- Method of backward substitution
- Linear second-order recurrences with constants coefficients
- Mathematical analysis of recursive algorithm

COMMON RECURRENCE TYPES IN ALGORITHM ANALYSIS

- Decrease by one
- Decrease by constant factor
- Divide and conquer

MATHEMATICAL ANALYSIS OF RECURSIVE ALGORITHM

ALGORITHM TO CALCULATE 'N' FACTORIAL

- //Input: a non-negative integer n
- //output: the value of n!

if n=0 return 1

else return f(n-1) *n

Calculating time efficiency:

Using Back Substitution Method

$$M(n)=M(n-1)+1$$

$$M(n-1) = [M(n-2) +1]$$

$$M(n)=[M(n-2)+1]+1$$

$$M(n) = M(n-1) + 1$$

$$M(n)=M(n-n)+n$$

$$M(n)=M(0)+n$$

$$M(n)=1+n$$

The basic operation is "MULTIPLICATION"

In this algorithm the basic operation gets executed 'n-1' times

The time efficiency of algorithm is theta(n)

Conclusion:

We get to know what is recurrence relation, methods for solving a recurrence relation and recurrence type in algorithm analysis and we analyse a algorithm and find its time efficiency, basic operation and how many times the basic operation gets executed.