$\underset{\text{Michael Spivak}}{\text{C\'ALCULO INFINITESIMAL}}$

Resolución de problemas por FODE

Índice general

1.	Fun	ciones																					3
	1.1.	Problemas	 							 									 				4

1

Funciones

Definición 1.1 El conjunto de los números a los cuales se aplica una función recibe el nombre de dominio de la función.

Definición 1.2 Si f g son dos funciones cualesquiera, podemos definir una nueva función f+g denominada **suma** de f+g mediante la ecuación:

$$(f+g)(x) = f(x) + g(x)$$

Para el conjunto de todos los x que están a la vez en el dominio de f y en el dominio de g, es decir:

 $dominio \ (f+g) = dominio \ f \ \cap \ dominio \ g$

Definición 1.3 El dominio de $f \cdot g$ es dominio $f \cap$ dominio g

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Definición 1.4 Se expresa por dominio $f \cap dominio g \cap \{x : g(x) \neq 0\}$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Definición 1.5 (Función constante)

$$(c \cdot g)(x) = c \cdot g(x)$$

TEOREMA 1.1
$$(f + g) + h = f + (g + h)$$

Demostración.- La demostración es característica de casi todas las demostraciones que prueban que dos funciones son iguales: se debe hacer ver que las dos funciones tienen el mismo dominio y el mismo valor para cualquier número del dominio. Obsérvese que al interpretar la definición de cada lado se obtiene:

$$[(f+g)+h](x) = (f+g)(x) + h(x)$$

$$= [f(x)+g(x)] + h(x)$$

$$y$$

$$[f+(g+h)](x) = f(x) + (g+h)(x)$$

$$= f(x) + [g(x) + h(x)]$$

Es esta demostración no se ha mencionado la igualdad de los dos dominios porque esta igualdad parece obvia desde el momento en que empezamos a escribir estas ecuaciones: el dominio de (f+g)+h y el de f+(g+h) es evidentemente dominio $f\cap$ dominio $g\cap$ dominio h. Nosotros escribimos, naturalmente f+g+h por (f+g)+h=f+(g+h)

TEOREMA 1.2 Es igual fácil demostrar que $(f \cdot g) \cdot g = f \cdot (g \cdot h)$ y ésta función se designa por $f \cdot g \cdot h$. Las ecuaciones f + g = g + f y $f \cdot g = g \cdot f$ no deben presentar ninguna dificultad.

Definición 1.6 (Composición de función)

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es $\{x : x \text{ est\'a en el dominio de } g \mid y \mid g(x) \text{ est\'a en el dominio de } f\}$

$$D_{f \circ g} = \{ x \mid x \in D_g \land g(x) \in D_f \}$$

Propiedad 1.1 $(f \circ g) \circ h = f \circ (g \circ h)$ La demostración es una trivalidad.

Definición 1.7 Una función es una colección de pares de números con la siguiente propiedad: Si (a,b) y (a,c) pertenecen ambos a la colección, entonces b=c; en otras palabras, la colección no debe contener dos pares distintos con el mismo primer elemento.

Definición 1.8 Si f es una función, el **dominio** de f es el conjunto de todos los a para los que existe algún b tal que (a,b) está en f. Si a está en el dominio de f, se sigue de la definición de función que existe, en efecto, un número b único tal que (a,b) está en f. Este b único se designa por f(a).

1.1. Problemas

1. Sea f(x) = 1/(1+x). Interpretar lo siguiente:

(i)
$$f(f(x))$$
 (¿Para que x tiene sentido?)

Respuesta.- Sea $f\left(\frac{1}{1+x}\right)$ entonces $\frac{1}{1+\frac{1}{1+x}}$, por lo tanto $\frac{1-x}{x+2}$ de donde llegamos a la conclusión de que x se cumple para todo número real de 1 y -2

(ii)
$$f\left(\frac{1}{x}\right)$$

Respuesta. $\frac{1}{1+\frac{1}{x}} = \frac{1}{\frac{x+1}{x}} = \frac{x}{x+1}$ por lo tanto se cumple para todo $x \neq -1, 0$

(iii)
$$f(cx)$$

Respuesta.- $\frac{1}{1+cx}$ donde se cumple para todo $x \neq -1$ si $c \neq 0$

(iv)
$$f(x+y)$$

Respuesta.- $\frac{1}{1+x+y}$ donde se cumple para todo $x+y \neq -1$

(v)
$$f(x) + f(y)$$

Respuesta. $\frac{1}{1+x} + \frac{1}{1+y} = \frac{x+y+2}{(1+x)(1+y)}$ siempre y cuando $x \neq -1$ y $y \neq -1$

(vi) ¿Para que números
$$c$$
 existe un número x tal que $f(cx) = f(x)$?

Respuesta.- Para todo c ya que $f(c \cdot 0) = f(0)$

(vii) ¿Para que números c se cumple que f(cx) = f(x) para dos números distintos x?

Respuesta.- Solamente c=1 ya que f(x)=f(cx) implica que x=cx, y esto debe cumplirse por lo menos para un $x\geq 1$

2. Sea
$$g(x) = x^2$$
 y sea

$$h(x) = \begin{cases} 0, & x \ racional \\ 1, & x \ irracional \end{cases}$$

(i) ¿Para cuáles
$$y$$
 es $h(y) \le y$?

Respuesta-. Se cumple para $y \geq 0$ si yes racional, o para todo $y \geq 1$

(ii) ¿Para cuáles
$$y$$
 es $h(y) \le g(y)$?

Respuesta-. Para $-1 \le y \le 1$ siempre que y sea racional y para todo y tal que $|y| \le 1$

(iii) ¿Qué es g(h(z)) - h(z)?

Respuesta-.

$$g(h(z)) = \begin{cases} 0, & z^2 \ racional \\ 1, & z^2 \ irracional \end{cases}$$

Por lo tanto el resultado es 0

(iv) ¿Para cuáles w es $g(w) \leq w$?

Respuesta-. Para todo w tal que $0 \le w \le 1$

(v) ¿Para cuáles ϵ es $g(g(\epsilon)) = g(\epsilon)$?

Respuesta-. Para -1,0,1

3. encontrar el dominio de las funciones definidas por las siguientes fórmulas:

(i)
$$f(x) = \sqrt{1 - x^2}$$

Respuesta.- Por la propiedad de raíz cuadrada, se tiene $1-x^2 \geq 0$ entonces $x^2 \leq 1$ por lo tanto el dominio son todos los x tal que $|x| \leq 1$

(ii)
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

Respuesta.- Se observa claramente que el dominio es $-1 \leq x \leq 1$

(iii)
$$f(x) = \frac{1}{x-1} + \frac{1}{x-2}$$

Respuesta.- Operando un poco tenemos

$$f(x) = \frac{2x - 3}{(x - 1)(x - 2)},$$

sabemos que el denominador no puede ser 0 por lo tanto el $D_f = \{x \mid x \neq 1, x \neq 2\}$

(iv)
$$f(x) = \sqrt{1-x^2} + \sqrt{x^2-1}$$

Respuesta.- Claramente notamos que el dominio de f es [-1,1] ya que si se tomara un número mayor a este daría un número imaginario.

(v)
$$f(x) = \sqrt{1-x} + \sqrt{x-2}$$

Respuesta.- Notamos que no cumple para ningún x ya que si $0 \le x \le 1$ entonces no se cumple para $\sqrt{x-2}$ y si $x \ge 2$ no se cumple para $\sqrt{1-x}$