

Udine, 27 September 2025

popswap • RO

PopSwap (popswap)

Pentru un număr întreg dat N, S_N este mulțimea tuturor permutărilor lui (0,...,N-1). Mai mult, E_N este mulțimea tuturor perechilor ordonate (p,q) unde:

- p și q sunt elemente din S_N ;
- \bullet p și q pot fi obținute una din cealaltă prin interschimbarea a două elemente adiacente.

Rețineți că, dacă $(p,q) \in E_N$, atunci $(q,p) \in E_N$.

Scopul vostru este să etichetați fiecare element din S_N cu un număr natural unic din $[0, 2^{60})$, adică să produceți o funcție injectivă \mathcal{L} (numită o *etichetare*) de la S_N la mulțimea numerelor naturale mai mici decât 2^{60} .

Calitatea unei etichetări este măsurată de doi parametri care ar trebui minimizati:

- magnitudinea $M(\mathcal{L})$, definită ca fiind cel mai mic număr natural k astfel încât $2^k > \mathcal{L}(p)$ pentru toate elementele p din S_N .
- apropierea, definită ca fiind:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

unde \oplus este operația sau exclusiv pe biți (bitwise exclusive or) și popcount(x) este numărul de biți setați în reprezentarea binară a lui x.

Sarcina voastră este să găsiți o etichetare \mathcal{L} care să obțină valori mici atât pentru $M(\mathcal{L})$, cât și pentru $C(\mathcal{L})$. Rețineți că nu este necesară o soluție optimă.

Implementare

Aceasta este o problemă doar de ieșire (output-only task). Ar trebui să trimiteți un fișier de ieșire separat pentru fiecare fișier de intrare. Fișierele de intrare și ieșire ar trebui să respecte următorul format.

Formatul de intrare

Fișierele de intrare constau dintr-o singură linie care conține un număr întreg N și indicele G al intrării.

Formatul de ieșire

Fișierele de ieșire ar trebui să conțină N! linii, a i-a dintre ele conținând eticheta celei de-a i-a permutări în ordine lexicografică.¹

Punctaj

Această problemă are exact 2 cazuri de test: input000.txt și input001.txt, în ambele N=10.

Scorul pentru soluția voastră la fiecare caz de test este determinat ca $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, unde $S_C(\mathcal{L})$ și $S_M(\mathcal{L})$ sunt funcții ale etichetării voastre de ieșire \mathcal{L} .

- $S_C(\mathcal{L}) = \left(\min(1, 36 \cdot 10^6/C(\mathcal{L}))\right)^2$ pentru fiecare intrare.
- $S_M(\mathcal{L})$ este diferit pentru fiecare intrare, conform tabelelor următoare. Între valorile specificate în tabele, S_M variază liniar.

popswap Pagina $1 \dim 2$

¹Formal, date două permutări $p \neq q$, spunem că p este lexicografic mai mică decât q dacă și numai dacă $p_k < q_k$ unde k este cel mai mic indice astfel încât $p_k \neq q_k$.

O ieșire formată incorect (malformed output) primește întotdeauna zero puncte.

input000.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0
60	6
< 25	60

input001.txt		
$M(\mathcal{L})$	$S_M(\mathcal{L})$	
> 25	0	
25	0	
≤ 22	40	

Scorul pentru problemă este suma scorurilor de la fiecare caz de test.

Exemple de intrare/ieșire

input	output
3 -1	32
	16
	8
	4
	2
	1

Explicație

Rețineți că **primul exemplu** nu este un caz de test oficial, deoarece $N \neq 10$ și $G \notin \{0,1\}$. Ieșirea exemplu reprezintă următoarea etichetare:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ dacă } p = (0, 1, 2) \\ 16 \text{ dacă } p = (0, 2, 1) \\ 8 \text{ dacă } p = (1, 0, 2) \\ 4 \text{ dacă } p = (1, 2, 0) \\ 2 \text{ dacă } p = (2, 0, 1) \\ 1 \text{ dacă } p = (2, 1, 0) \end{cases}$$

Deoarece $2^5 \not > 32$ dar $2^6 > 32$, magnitudinea etichetării este $M(\mathcal{L}) = 6$. Deoarece există $3! \cdot (3-1) = 12$ elemente în E_3 și deoarece popcount $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ pentru toate $p, q \in S_N$, apropierea etichetării este $C(\mathcal{L}) = 12 \cdot 2 = 24$.

popswap Pagina 2 din 2