コンピュータグラフィクス論

- アニメーション(3) -

2018年6月7日 高山 健志

流体アニメーション

https://www.youtube.com/watch?v=KoEbwZq2ErU

https://www.youtube.com/watch?v=6WZZARzpckw

https://www.youtube.com/watch?v=WFwi0qLV8hQ

二つの異なるアプローチ

Eulerian

- 格子上のセルに速度とその他情報を保存
 - e.g. 煙の密度、温度
- ・場の勾配等を計算しやすい → 流体計算の王道
- オフライン用途に適する

Lagrangian

- パーティクルに情報を持たせ、速度に従って動かす
- 場の勾配等の計算に工夫が必要 → ハック (?)
- リアルタイム用途に適する

Stable Fluids [Stam, SIGGRAPH 99]

- 時間幅によらず無条件に安定 → ゲーム向き
- 超簡潔なサンプルコード
 - ・500行未満、外部ライブラリ不使用
 - http://www.dgp.toronto.edu/people/stam/reality/Research/zip/CDROM_GDC03.zip
- ゲーム開発者向けの易しい解説記事
 - Real-Time Fluid Dynamics for Games (GDC 2003)

定常的な速度場に沿った物理量の移流

・物理量:温度、煙の密度、etc

- 方法:
 - ・陽的な方法 → 不安定
 - Semi-Lagrangian 法 → 安定

陽的な方法 [Foster 96]

- Given: 2D 領域上の (定常) 速度場 **u**: ℝ² → ℝ²
- ある物理量 q の時刻 t における分布を $q_n: \mathbb{R}^2 \to \mathbb{R}$ とする
- 時刻 t+h における分布 q_{n+1} を陽的に求める:

ける分布を
$$q_n: \mathbb{R}^2 \mapsto \mathbb{R}$$
 とする $\mathbf{Q}_n: \mathbb{R}^2 \mapsto \mathbb{R}$ $\mathbf{Q}_n: \mathbb{R}^2 \mapsto \mathbb{R}$ とする $\mathbf{Q}_n: \mathbb{R}^2 \mapsto \mathbb{R}$ $\mathbf{Q}_n: \mathbb{R}^2 \mapsto \mathbb{$

• (u(x)·∇) を微分演算子と見なした書き方:

$$q_{n+1}(\mathbf{x}) = q_n(\mathbf{x}) - h(\mathbf{u}(\mathbf{x}) \cdot \nabla) q_n(\mathbf{x})$$

(後でまた出てくる)

(u(x)·∇) の直感的な意味:

速度場 u の風が吹く中で、右に掛かる物理量 が微小時間にどれだけ変化するか?

- 問題点:数値的に不安定 ◎
 - 変化量が時間幅 h に比例 $\rightarrow h$ を大きくしすぎると、物理量の総和が元よりも大きくなる

Semi-Lagrangian 法 [Stam 99]

• 時刻 t-h において位置 $\tilde{\mathbf{x}}$ にあったパーティクルが、時刻 t において位置 $\tilde{\mathbf{x}}$ に流れ着いたとして、位置 $\tilde{\mathbf{x}}$ を現在の速度場 $\tilde{\mathbf{u}}$ を逆に辿ることで推定する

$$\tilde{\mathbf{x}} = \operatorname{trace}(\mathbf{u}, \mathbf{x}, -h)$$

• これを使って次の時刻の物理量を求める

$$q_{n+1}(\mathbf{x}) = q_n(\tilde{\mathbf{x}})$$

- パーティクル自体のデータは不要
- trace の方法:線形予測、Runge-Kutta, etc
- q_n をリサンプリングして q_{n+1} を求めるので、時間幅によらず安定!
 - 物理量の総和が元よりも大きくなることは原理的に起こり得ない

動的に変化する速度場

- ・定常的な速度場によって移流するスカラー場: $q_{n+1}(\mathbf{x}) = q_n(\mathbf{x}) h\left(\mathbf{u}(\mathbf{x}) \cdot \nabla\right) q_n(\mathbf{x})$
- それ自身によって移流し、動的に変化する速度場: $\mathbf{u}_{n+1}(\mathbf{x}) = \mathbf{u}_n(\mathbf{x}) h\left(\mathbf{u}_n(\mathbf{x}) \cdot \nabla\right) \mathbf{u}_n(\mathbf{x})$

そのままでは全然流体っぽくならない!

もっと渦を巻くべき!

流体らしさのための必須条件:非圧縮性

$$\nabla \cdot \mathbf{u}(\mathbf{x}) = 0 \quad \forall \mathbf{x}$$

微分演算子 (u·▼) とは 意味が違うことに注意

(以降簡単のため、位置 x を適宜省略する)

- 至る所で発散がゼロ (divergence-free)
 - 各局所領域について、外部からの流入量と外部への流出量の合計がぴったり一致する
 - 視覚的には、渦を巻く現象として現れる
- 移流後のベクトル場 w は、一般に非圧縮性条件を満たさない!
- ヘルムホルツの定理
 - 任意のベクトル場は、 divergence-free なベクトル場とスカラー場の勾配の和に分解できる:

$$\mathbf{w} = \mathbf{u} + \nabla q$$

• 流体計算のアルゴリズム:条件 $\nabla \cdot \mathbf{u} = 0$ から q を求め、そこから \mathbf{u} を求める

ラプラシアン演算子

$$\Delta = \nabla \cdot \nabla$$

$$\nabla \cdot \mathbf{u} = 0 \iff \nabla \cdot (\mathbf{w} - \nabla q) = 0 \iff \Delta q = \nabla \cdot \mathbf{w}$$
 ポアソン方程式

ポアソン (Poisson) 方程式

• 一般形:

$$\Delta q = f$$

- CG に限らず、様々な工学・自然科学分野で頻繁に登場
- 特別な場合:

$$\Delta q = \nabla \cdot \mathbf{w}$$

- ベクトル場 w は guiding vector field と呼ばれることもある
- ・スカラー場 q は以下のエネルギーを最小化 \rightarrow projection と呼ばれる

$$E(q) = \int_{\Omega} \|\mathbf{w} - \nabla q\|^2$$

直感的な意味:

あらゆるスカラー場のうち、勾配が ベクトル場 w に最も近いものを求める

- 大規模疎行列で表される方程式
- よくある解法:
 - Gauss-Seidel → 実装が簡単、遅い (サンプルコードで採用)
 - (Preconditioned) Conjugate Gradient → 速い
 - Multigrid → かなり速バ、実装が大変 (?)

拡散

• 分布がより滑らかになろうとする効果

拡散方程式

$$\frac{\partial q}{\partial t} = \nu \, \Delta q \qquad \qquad \nu : 係数$$

- 直感的な意味:
 - ラプラシアン演算子 △は、(周囲の値の平均 中心の値) を表す
 - 時間の経過とともに、スカラー場の凸凹がならされていく
- ・陽的な解法

$$q_{n+1}(\mathbf{x}) = q_n(\mathbf{x}) + h \nu \, \Delta q_n(\mathbf{x})$$

- ・ 変化量が時間幅 h に比例 → 不安定
- 陰的な解法

$$q_n(\mathbf{x}) = q_{n+1}(\mathbf{x}) - h \nu \Delta q_{n+1}(\mathbf{x})$$

- 時間幅 h によらず安定
- 大規模疎行列で表される方程式 (Poisson 方程式と同様)

非圧縮 Navier-Stokes 方程式

ρ : 係数

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho}\nabla p + \nu\Delta \mathbf{u} + \mathbf{f}$$
移流

形性
外力

• x 成分:

$$\frac{\partial u_{\mathbf{x}}}{\partial t} = -\left(u_{\mathbf{x}}\frac{\partial u_{\mathbf{x}}}{\partial x} + u_{\mathbf{y}}\frac{\partial u_{\mathbf{x}}}{\partial y}\right) - \frac{1}{\rho}\frac{\partial p}{\partial x} + \nu\left(\frac{\partial^{2} u_{\mathbf{x}}}{\partial x^{2}} + \frac{\partial^{2} u_{\mathbf{x}}}{\partial y^{2}}\right) + f_{\mathbf{x}}$$

- projection で求めたスカラー場 $q(\mathbf{x}) = p(\mathbf{x})/\rho$ は、圧力に相当
 - 圧力の高い所から低い所へ向かって加速度が発生

シミュレーションの流れ

- 速度場の更新 (vel_step)
 - 外力の加算
 - 拡散
 - project
 - 移流
 - project

速度場 u(x) の方程式

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho} \nabla p + \nu \Delta \mathbf{u} + \mathbf{f}$$

- •煙の密度場の更新 (dens_step)
 - ・外部ソースの加算
 - 拡散
 - 移流

煙の密度場 $d(\mathbf{x})$ の方程式

$$\frac{\partial d}{\partial t} = -(\mathbf{u} \cdot \nabla)d + \nu \Delta d + s$$

境界条件の設定

速度の壁方向の成分をゼロにする

左右と上下の壁を連続させる

一定の値を与え続ける

- より複雑なケースを扱うためには、高度な技術が必要
 - 丸みを帯びた形状、格子幅よりも薄いシート、etc

発展的な話題

レベルセット法による水面の表現

- 水面までの符号付き距離場 $\phi(\mathbf{x})$ を導入
 - $\phi(\mathbf{x}) < 0$ なら液体、 $\phi(\mathbf{x}) > 0$ なら空気
 - ・初期状態を適当に与える
- 速度場に従って $\phi(\mathbf{x})$ を移流
- 圧力計算の際、水面 $\phi(\mathbf{x}) = 0$ において $p(\mathbf{x}) = 0$ という境界条件を設定

https://www.youtube.com/watch?v=Ss89OpQ_u54 http://code.google.com/p/levelset2d/

いろいろな移流アルゴリズム

- Semi-Lagrangian
- Upwind
- MacCormack
- WENO5
- QUICK

Smoothed Particle Hydrodynamics

- Lagrangian 法の代表格
- Navier-Stokes 方程式を、多数の粒子を使って近似

$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho}\nabla p + \nu \Delta \mathbf{u} + \mathbf{f}$

移流項

→ 粒子自体を速度に従って動かすことで表現

圧力項と粘性項

→ 連続的な圧力場 p と速度場 u を、多数の 粒子の分布から推定 Smoothed Particle Hydrodynamics

https://www.youtube.com/watch?v=M8WPINWAWPY

Smoothing kernel による連続的な場の近似

- Smoothing kernel の例: $W(r) = \frac{315}{64\pi h^9} (h^2 r^2)^3$
- 密度場 ρ(x) の近似:

$$\rho(\mathbf{x}) = \sum_{j} m_{j} W(\|\mathbf{x} - \mathbf{x}_{j}\|)$$

- j 番目の粒子の密度: $\rho_i = \rho(\mathbf{x}_i)$
- 速度場の近似:

$$\mathbf{u}(\mathbf{x}) = \sum_{j} \frac{m_{j}}{\rho_{j}} \mathbf{u}_{j} W(\|\mathbf{x} - \mathbf{x}_{j}\|)$$

- ・圧力は、密度に比例する!
 - ポアソン方程式を解く必要が無い
- $p(\mathbf{x}) = k \, \rho(\mathbf{x})$

気体の状態方程式:

$$pV = nRT$$

• 関数の微分は、W の形から解析的に求まる

格子法と粒子法のハイブリッド

	格子法	粒子法
移流計算	数値拡散する⊗	数値拡散しない◎
圧力計算	正確 ②	不正確 ☺

• PIC (Particle In Cell) 法と FLIP (FLuid Implicit Particle) 法

Height field による水面の近似

```
initialize u[i,j] as you like
set v[i,j] = 0
loop
    v[i,j] +=(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1])/4 - u[i,j]
    v[i,j] *= 0.99
    u[i,j] += v[i,j]
endloop
```

• WebGL実装

- http://madebyevan.com/webgl-water/
- http://dblsai.github.io/WebGL-Fluid/
- http://jsdo.it/cx20/cAmU

discrete

参考情報

- JavaScriptによる実装
 - http://www.ibiblio.org/e-notes/webgl/gpu/fluid.htm
 - https://nerget.com/fluidSim/
 - http://dev.miaumiau.cat/sph/
 - http://www.miaumiau.cat/examples/SPH/v1/
 - http://nullprogram.com/fun-liquid/webgl/
 - http://p.brm.sk/fluid/
- C++による実装
 - http://code.google.com/p/flip3d/
 - http://code.google.com/p/levelset2d/
 - http://code.google.com/p/smoke3d/
 - http://code.google.com/p/2dsmoke/
 - http://www.cs.ubc.ca/~rbridson/download/simple_flip2d.tar.gz
- 書籍
 - Fluid Simulation for Computer Graphics, by R. Bridson, 2008
 - 安東遼一氏による Computer Graphics Gems JP 2012 の記事
 - Chapter 13: ベクタ形式で出力可能な美しいマーブリング模様の生成法
 - Chapter 14: FLIP法による格子&粒子のハイブリッド流体シミュレーション
 - 付録コード: http://book.borndigital.jp/support/CGGems2012/CGGems2012.zip