Lab 10

IIR Filter Design

Band-Pass Filter (5 points)

A discrete bandpass filter must fulfill the following specifications: the passband frequencies are $f_{p1} = 12MHz$, $f_{p2} = 25MHz$, the stopband frequencies $f_{s1} = 3MHz$ and $f_{s1} = 30MHz$ and the attenuations are $A_p = 1dB$ and $A_s = 60dB$. The sampling frequency of the system is $f_m = 80MHz$. Using the Butterworth, Chebyshev-I and Chebyshev-II approximations, do the following:

- 1. Design the filter H(z), calculating the filter's order n, ϵ^2 and the cut-off frequency of the corresponding analog filter.
- 2. Plot the frequency response in Magnitude, phase and group delay of the discrete filters and make sure they fulfill the specifications.
- 3. Plot the impulse response of the three filters in the same figure.
- 4. Generate a discrete random signal (normal distribution) with zero mean and variance $\sigma = 1$. The samples will be sampled at $f_m = 80MHz$. Filter that signal with the three filters designed in the previous step.
- 5. Plot the three results in the same figure in a time axis.

Low-Pass Filters (5 Points)

In file din.mat is given the baseband signal of a GMSK modulator. The sampling frequency is 32MHz and the symbol period is $0.5\mu s$. Design a low-pass filter with the following specifications:

- Passband frequency, $f_p = 1.8MHz$.
- Passband Attenuation, $A_p = 1dB$.
- Stopband frequency, $f_s = 6MHz$.

- Stopband Attenuation, $A_s = 60db$.
- 1. Design 3 digital filters, Butterworth, Chebyshev-I and Chebyshev-II.
- 2. Plot the frequency responses of the three filters (Magnitude Response and Group Delay)
- 3. Filter the signal din with the three obtained filters and plot them in the same figure.
- 4. Explain the delay differences between the filters with the frequency responses of the filters.