

Первая Студенческая Универсиада по эконометрике МГУ имени М. В. Ломоносова

6 – 8 апреля 2012, Москва

Задания 1-го тура

Задача 1

Рассматривается задача статистической оценки (по наблюдениям $y_1, y_2, ..., y_n$) неизвестного параметра θ в модели

$$y_i = \theta + \theta \, \varepsilon_i, \quad i = 1, 2, ..., n,$$
 (1)

где случайные величины $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ подчиняются (0; 1)-нормальному распределению и взаимнонезависимы.

- 1. Являются ли остатки модели (1) гомоскедастичными?
- 2. Выведите МНК-оценку параметра θ . Является ли она наилучшей в классе линейных несмещенных оценок?
- 3. Выведите распределение МНК-оценки параметра θ .
- 4. Существует ли оценка параметра θ, превосходящая по эффективности (хотя бы в асимптотическом по п→∞ смысле) МНК-оценку? Если «нет», то почему, если «да», то объясните почему и выведите вид этой оценки. Что можно сказать о распределении предложенной Вами оценки?

Задача 2

Рассматривается задача статистической оценки параметров θ_0 и θ_1 в модели

$$y_i = \theta_0 + \theta_1 \ x_i + \varepsilon_i \tag{1}$$

по наблюдениям

$$\{x_i; y_i\}, i = 1, ..., n_1, n_1 + 1, ..., n_1 + n_2,$$
 (2)

где

$$x_i = \begin{cases} x^{(1)} & \text{при } i = 1, 2, \dots, n_1; \\ x^{(2)} & \text{при } i = n_1 + 1, \dots, n_1 + n_2, \end{cases}$$
 (2')

а остатки $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ подчиняются (0; σ^2)-нормальному распределению и взаимнонезависимы (величина σ^2 не известна).

1. Будет ли прямая, проходящая через точки $(x^{(1)}; \overline{y}^{(1)})$ и $(x^{(2)}; \overline{y}^{(2)})$, где $\overline{y}^{(1)} = \frac{1}{n_1} \sum_{i=1}^{n_1} y_i \quad u \quad \overline{y}^{(2)} = \frac{1}{n_2} \sum_{i=n_1+1}^{n_2} y_i , \ \text{состоятельной, несмещенной } u \ \text{эффективной}$

оценкой для линии регрессии у по х? Если «да», «нет», то почему?

2. K наблюдениям (2) – (2') добавлено еще k-2 групп наблюдений ($k \ge 3$):

$$(x^{(j)}; y_i), i = n_1 + \dots + n_{j-1} + 1, \dots, n_1 + \dots + n_{j-1} + n_j, j = 3, \dots, k$$

однако исследователю известны лишь агрегированные данные вида

$$(x^{(1)}; \overline{y}^{(1)}), (x^{(2)}; \overline{y}^{(2)}), \dots, (x^{(k)}; \overline{y}^{(k)})$$
 (3)

Требуется описать и обосновать процедуру построения наилучших (линейных по y_1, \ldots, y_n) оценок для параметров θ_0 и θ_1 по наблюдениям (3).

Задача 3

Рассматривается проблема так называемого дистанционного экспресс-анализа финансово-экономического состояния банка, а именно, задача построения и оценки показателя надежности банка на базе значений ограниченного числа его наиболее информативных балансовых показателей.

Специальный анализ показал, что к таким балансовым переменным могут быть отнесены: $x^{(1)}$ — доля суммы пассивов в валюте баланса банка; $x^{(2)}$ — доля кредитов экономике в сумме работающих активов и $x^{(3)}$ — отношение балансовой прибыли к балансовым убыткам.

С целью информационного обеспечения решения этой задачи проведено обследование 500 наиболее крупных (по сумме пассивов и величине капитала) банков, в результате которого были получены следующие данные:

$$(x_i^{(1)}, x_i^{(2)}, x_i^{(3)}, y_i), \quad i = 1, 2, ..., 500,$$
 (*)

где $y_i = 1$, если i-й банк отнесен к категории проблемных, и $y_i = 0$, если i-й банк отнесен к категории надежных.

- 1. Предложите метод (модель), с помощью которого можно ввести и оценить по значениям $(x^{(1)}, x^{(2)}, x^{(3)})$ показатель надежности банка.
- 2. Подробно опишите процедуру эконометрического анализа предложенной Вами модели на основании исходных данных вида (*) в частности: описать функцию правдоподобия имеющихся в Вашем распоряжении наблюдений (*) в рамках выбранной Вами модели, дать обоснование предложенного вида функции;

пояснить в результате решения какой оптимизационной задачи будут получены оценки параметров Вашей модели?

Задача 4

По результатам $(x_i^{(1)}, x_i^{(2)}, y_i)$, i=1,2,...,58, обследования 58-ми однотипных предприятий проведен статистический анализ производственной функции Кобба-Дугласа $y_i = \theta_0(x_i^{(1)})^{\theta_1} \, (x_i^{(2)})^{\theta_2} e^{\varepsilon_i},$

описывающей зависимость объема выпуска продукции (y_i) от основных факторов производства: капитала $(x_i^{(1)})$ и труда $(x_i^{(2)})$, в предположении постоянства отдачи от масштаба производства, т.е. при гипотетичном условии

$$\theta_1 + \theta_2 = 1 \tag{1}$$

(случайные остатки $\varepsilon_1, \varepsilon_2, ..., \varepsilon_{58}$ предполагаются статистически независимыми и одинаково $(0, \sigma^2)$ -нормально распределенными).

Применение МНК к прологарифмированной модели

$$\ln y_i = \theta_0' + \theta_1 \ln x_i^{(1)} + \theta_2 \ln x_i^{(2)} + \varepsilon_i, \quad i = 1, 2, \dots, 58$$
 (2)

 $(\theta_{0}^{'} = \ln \theta_{0})$ с учетом ограничения (1) дало, в частности, следующие результаты:

$$\hat{\theta_0} = 3,21; \hat{\theta_1} = 0,63; \hat{\theta_2} = 0,37$$
.

- 1. Пояснить (на экономически содержательном уровне), что означает «постоянство отдачи от масштаба».
- 2. Вывести формулы для вычисления МНК-оценок параметров θ_0 , θ_1 и θ_2 в уравнении (2) с учетом ограничения (1).
- 3. Описать процедуру проверки гипотезы (1) по наблюдениям $(x_i^{(1)}, x_i^{(2)}, y_i)$, i = 1, 2, ..., 58.
- 4. Проанализировать эластичности объема выпуска у по капиталу $x^{(1)}\left(\mathfrak{I}_{y,x^{(1)}}\right)$ и по труду $x^{(2)}\left(\mathfrak{I}_{y,x^{(2)}}\right)$. Какие выводы о приоритетных направлениях инвестирования в производство позволяет сделать этот анализ?

Задача 5

Анализируемый временной ряд определяется соотношением:

$$x(t) = x(t-1) - 0.5x(t-2) + \delta(t), \tag{1}$$

в котором остатки $\delta(1), \delta(2), \ldots$ — взаимнонекоррелированы, имеют нулевые средние значения и постоянные дисперсии $D\delta(t) = \sigma_0^2$), не зависящие от t.

- 1. Проверить стационарность ряда (1).
- 2. Вычислить значения автокорреляционной функции $(a.\kappa.\phi.)$ r(k) = corr(x(t), x(t+k)) для k = 0, 1, 2, 3.
- 3. Определить значение частной а.к.ф. pr(2) = corr(x(t), x(t+2) | x(t+1)).

Чем модель (1) отличается от моделей ARIMA (2; 1; 0), ARIMA (2; 0; 0) и ARIMA (1; 0; 0), где ARIMA (p; k; q) — это модель авторегрессии проинтегрированного скользящего среднего с параметрами p (порядок авторегрессии), k (порядок интегрирования модели) и q (порядок скользящего среднего p0 остатках).