Probabilidad - 2º Curso (Grado en Matemáticas y Doble Grado en Física y Matemáticas) Convocatoria extraordinaria y examen de incidencias ordinaria (14 de julio de 2021)



## Apellidos, nombre:

1. Sea (X,Y) un vector aleatorio. Se pretenden predecir, por mínimos cuadrados, los valores de la variable Y a partir de una función lineal de la variable X, y viceversa.

- a) Obtener de forma razonada los coeficientes del modelo lineal de Y sobre X.
- b) Si 5y x + 1 = 0 y 2x 5y + 2 = 0 son las rectas de regresión del vector (X, Y): identificar la recta de regresión de Y sobre X; obtener una medida de la proporción de varianza de cada variable que queda explicada por el modelo de regresión lineal y calcular la esperanza del vector (X, Y).
- 2. Sean  $X_1, \ldots, X_n$  v.a. continuas e independientes, tales que  $\exists E[X_i] \forall i = 1, \ldots, n$ , con momento no centrado de orden dos finito y  $g_1, \ldots, g_n : \mathbb{R} \longrightarrow \mathbb{R}$  funciones medibles. Justificar de forma razonada las siguientes afirmaciones:
  - a)  $\exists E[X_1 \cdots X_n] = E[X_1] \cdots E[X_n]$ .
  - b)  $\exists E[g_1(X_1) \cdots g_n(X_n)] = E[g_1(X_1)] \cdots E[g_n(X_n)].$
  - c)  $\operatorname{Var}(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i), \quad \forall \ a_1, \dots, a_n \in \mathbb{R}.$
  - d)  $(X_1, \ldots, X_n)$  es un vector aleatorio continuo.
  - e) Si para cualquier  $n \in \mathbb{N}$ , se tienen las hipótesis anteriores, adicionalmente a que su distribución es idéntica, es decir, la misma para todas las componentes, determinar el límite en probabilidad y casi seguramente de la secuencia  $(S_n - E[S_n])/n$ , así como la variable aleatoria que define el límite en distribución o en ley de la secuencia  $(S_n - E[S_n])/\sqrt{\text{Var}(S_n)}$ , siendo  $S_n = \sum_{i=1}^n X_i$ .
- 3. Definimos el experimento de lanzar 10 veces una moneda, y se denota por X la variable aleatoria que indica el número de lanzamientos hasta que aparece cara. X vale cero si no aparece cara. La variable Y denota el número de lanzamientos hasta que aparece cruz. Dicha variable vale cero si no aparece cruz.
  - a) Calcular la función masa de probabilidad conjunta
  - b) Calcular la distribución condicionada X/Y, para los diferentes valores de  $Y = 0, \dots, 10$ .
- 4. Sea (X,Y) una variable aleatoria bidimensional con distribución uniforme en el recinto

$$C = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1, x \ge 0, y \ge 0\}.$$

- a) Calcular la función de distribución de probabilidad conjunta.
- b) Calcular las funciones de densidad condicionadas.
- 5. Se considera (X,Y) la distribución uniforme en el cuadrado unidad.
  - a) Calcular la función de densidad de probabilidad de Z = (X + Y, X Y)
  - b) La función de densidad de probabilidad conjunta del máximo y el mínimo.

<sup>&</sup>lt;sup>1</sup>Puntuación: 2 puntos para Problema 1; 2 puntos para Problema 2; 2 puntos para Problema 3; 2 puntos para Problema 4; 2 puntos para Problema 5