Total No. of Questions: 6

(a) ROM

(b) RAM

Total No. of Printed Pages:3

Branch/Specialisation: All

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2018 CS3CO29/EC3CO07/EI3CO07/IT3CO09/OE00005

Digital Electronics

(c) EPROM (d) EEPROM

P.T.O.

Duration: 3 Hrs. Maximum Marks: 60

Programme: B.Tech.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

Q.1 (MCQs) should be written in full instead of only a, b, c or d.							
Q.1	i.	Decimal 43 in hexadecimal and BCD number system is respectively	1				
		(a) B2,0100 011 (b) 2B,0100 0011					
		(c) 2B,0011 0100 (d) B2,0100 0100					
	ii.	A four-variable switching function has minterms m6 and m9. If the					
		literals in these midterms are complemented, the corresponding					
		minterm numbers are					
		(a) m3 and m6 (b) m9 and m6					
		(c) m2 and m0 (d) m6 and m8					
	iii.	The two-input of this gate is basically a modulo two adders	1				
		(a) Ex-OR (b) OR gate (c) AND gate (d) NOR gate					
	iv.	In a BCD adder circuit, a correction of	1				
		(a) 1 is required (b) 3 is required					
		(c) 6 is required (d) 4 is required					
v. The output Q_n of a J-K flip flop is zero. It changes to one (1) w							
		a clock pulse is applied. The input J_n and K_n are respectively					
		(a) 1 and x (b) 0 and x (c) x and 0 (d) x and 1					
	vi.	A 4-bit synchronous counter uses flip flop with propagation delay	1				
		time of 25ns each. The maximum possible time required for					
		change of state will be					
		(a) 25ns (b) 50ns (c) 75ns (d) 100ns					
	vii.	Memory that is called a read write memory is	1				
		·					

	viii.	PLA refers to	1		
		(a) Programmable Loaded Array			
		(b) Programmable Logic Array			
		(c) Programmable Array Logic			
		(d) None of these			
	ix.	TTL stands for	1		
		(a) Transistor- Transmit Logic			
		(b) Transistor- Transistor Logic			
	(c) Transistor- Transfer Logic				
		(d) Transistor- Transistor Logical			
	х.	Which is the fastest logic family	1		
		(a) RTL (b) DTL (c) ECL (d) TTL			
Q.2	i.	Explain "Minterms & Don't care terms.	2		
	ii.	Convert the following:	3		
		(a) $(1\ 0\ 1\ 1\ 1\ 1\ 0\ 1)_2 = ()_8$			
		(b) $(C \ 3 \ A \ 6)_{16} = ()_2$			
		$(c) (370)_8 = ()_{16}$			
	iii.	Express the following function in a sum of min-terms & product of	5		
		max terms? Also implement using logic gates.			
		F(A, B, C) = (A + B) (B + C)			
OR	iv.	Find the minimal sum of products for the Boolean expression	5		
		$F(A, B, C, D) = \Sigma m (1,2,3,7,8,9,10,11,14,15)$			
		using the Quine – McCluskey method.			
Q.3	i.	A combinational switching network has four inputs (A, B, C, D)	3		
		and one output Z. The output is to be zero (0) if the input			
		combination is a valid Excess 3 coded decimal digit. If any other			
		combination of input is there output will be one (1). Design the			
		network using basic gates.			
	ii.	For a full adder, first make the truth table & then using tabular	7		
		method simplify the expression for sum and carry. Also draw the			
		circuit for full adder.			
OR	iii.	Draw & explain the BCD adder circuit.	7		

Q.4		Attempt any two:	
	i.	Explain the operation of a J-K flip-flop. What is meant by race around condition in J.K flip flop?	5
	ii.	Design a mod-6 synchronous counter.	5
	iii.	Realize a J-K flip-flop using S-R Flip-Flop.	5
Q.5	i.	Write short note on RAM.	4
	ii.	Implement the function $F1=\sum (0,1,2,5,7)$ and $F2=\sum (1,2,4,6)$ using PROM.	6
OR	iii.	Explain the PLA structure.	6
Q.6		Attempt any two:	
	i.	Draw & explain the circuit of a standard TTL.	5
	ii.	Draw and explain how a CMOS logic circuit works.	5
	iii.	Define the following:	5
		(a) Propagation delay time of a logic gate	
		(b) Figure of merit	
		(c) Fan out & Fan-in	
		(d) Noise Margin	

Marking Scheme CS3CO29/EC3CO07/EI3CO07/IT3CO09/OE00005 Digital Electronics

CDJ	CO2)	TECSCOOTIEISCOOTIIISCOOTIOE00003 D	igital Dicetionic			
Q.1	i.	Decimal 43 in hexadecimal and BCD number respectively (b) 2B,0100 0011	per system is	1		
	ii. A four-variable switching function has minterms m6 and m9. If the literals in these midterms are complemented, the corresponding minterm numbers are (b) m9 and m6					
	iii.	The two-input of this gate is basically a modulo tw (a) Ex-OR	o adders	1		
	iv. In a BCD adder circuit, a correction of (c) 6 is required					
	v. The output Q_n of a J-K flip flop is zero. It changes to one (1) when clock pulse is applied. The input J_n and K_n are respectively (a) 1 and x					
	vi. A 4-bit synchronous counter uses flip flop with propagation delay time of 25ns each. The maximum possible time required for change of state will be (a) 25ns					
	vii.					
	viii.	` '				
	ix.	TTL stands for (b) Transistor- Transistor Logic				
	х.	Which is the fastest logic family (c) ECL		1		
Q.2	i.	Explanation of "Minterms Explanation of Don't care terms.	1 mark 1 mark	2		
	ii.	Convert the following: 1 mark for each (a) $(1\ 0\ 1\ 1\ 1\ 1\ 0\ 1)_2 = (\)_8$ (b) $(C\ 3\ A\ 6)_{16} = (\)_2$ (c) $(3\ 7\ 0)_8 = (\)_{16}$	(1 mark *3)	3		
	iii.	Expression of sum of min-terms	2.5 marks	5		

OR	iv.	Expression of Product of max terms For finding out expression $F(A,B,C,D) = \Sigma m (1,2,3,7,8,9,10,11,14,15)$ using the Quine – McCluskey method	2.5 marks 5 marks	5
Q.3	i.	Designing	2 marks	3
		Design using basic gates.	1 mark	
	ii.	Making the truth table	2 marks	7
		Tabular method simplification of the expression for	sum and carry 3 marks	
		Drawing of the circuit for full adder	2 marks	
OR	iii.	Explanation the BCD adder circuit and designing.	5 marks	7
		Truth table	2 marks	
Q.4		Attempt any two:		
	i.	Explanation of the operation a J-K flip-flop.	2.5 marks	5
		Explanation of by race around condition in JK flip		
			2.5marks	
	ii.	Design a mod-6 synchronous counter.		5
	iii.	Realize a J-K flip-flop using S-R Flip-Flop.		5
Q.5	i.	Write short note on RAM.		4
	ii.	Implement the function $F1=\sum (0,1,2,5,7)$	3 marks	6
		and $F2=\Sigma(1,2,4,6)$ using PROM.	3 marks	
OR	iii.	Explain the PLA structure.		6
Q.6		Attempt any two:		
	i.	Explanation of the circuit of a standard TTL.	3 marks	5
		Diagram	2 marks	
	ii.	Explanation of how a CMOS logic circuit works.	3 marks	5
		Diagram	2 marks	
	iii.	Define the following:		5
		(a) Propagation delay time of a logic gate	1 mark	
		(b) Figure of merit	1 mark	
		(c) Fan out & Fan-in	2 marks	
		(d) Noise Margin	1 mark	
