

Figure 51.8: The affine hyperplane $H = \{x \in \mathbb{R}^3 \mid x + y + z - 2 = 0\}$. The half space H_+ faces the viewer and contains the point (0,0,10), while the half space H_- is behind H and contains the point (0,0,0).

Then if φ is the affine form given by $\varphi(x) = \langle x, u \rangle + c$, this affine form is nonconstant iff $u \neq 0$, and u is normal to the hyperplane H, in the sense that if $x_0 \in H$ is any fixed vector in H, and x is any vector in H, then $\langle x - x_0, u \rangle = 0$.

Indeed, $x_0 \in H$ means that $\langle x_0, u \rangle + c = 0$, and $x \in H$ means that $\langle x, u \rangle + c = 0$, so we get $\langle x_0, u \rangle = \langle x, u \rangle$, which implies $\langle x - x_0, u \rangle = 0$.

Here is an observation which plays a key role in defining the notion of subgradient. An illustration of the following proposition is provided by Figure 51.9.

Proposition 51.9. Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ be a nonconstant affine form. Then the map $\omega \colon \mathbb{R}^{n+1} \to \mathbb{R}$ given by

$$\omega(x,\alpha) = \varphi(x) - \alpha, \quad x \in \mathbb{R}^n, \ \alpha \in \mathbb{R},$$

is a nonconstant affine form defining a hyperplane $\mathcal{H} = \omega^{-1}(0)$ which is the graph of the affine form φ . Furthermore, this hyperplane is nonvertical in \mathbb{R}^{n+1} , in the sense that \mathcal{H} cannot be defined by a nonconstant affine form $(x,\alpha) \mapsto \psi(x)$ which does not depend on α .

Proof. Indeed, φ is of the form $\varphi(x) = h(x) + c$ for some nonzero linear form h, so

$$\omega(x,\alpha) = h(x) - \alpha + c.$$

Since h is linear, the map $(x, \alpha) = h(x) - \alpha$ is obviously linear and nonzero, so ω is a nonconstant affine form defining a hyperplane \mathcal{H} in \mathbb{R}^{n+1} . By definition,

$$\mathcal{H} = \{(x, \alpha) \in \mathbb{R}^{n+1} \mid \omega(x, \alpha) = 0\} = \{(x, \alpha) \in \mathbb{R}^{n+1} \mid \varphi(x) - \alpha = 0\},\$$

which is the graph of φ . If \mathcal{H} was a vertical hyperplane, then \mathcal{H} would be defined by a nonconstant affine form ψ independent of α , but the affine form ω given by $\omega(x,\alpha) = \varphi(x) - \alpha$ and the affine form $\psi(x)$ can't be proportional, a contradiction.