# **КУРСОВОЙ ПРОЕКТ** по дисциплине «Теория автоматов»

## ПРОЕКТИРОВАНИЕ

Николаев Д.Е.

Репин С.А.

### СОДЕРЖАНИЕ

| 1. | Абстрактный синтез | 3 |
|----|--------------------|---|
| 2. | Структурный синтез | 4 |

#### 1. АБСТРАКТНЫЙ СИНТЕЗ

Будем использовать следующие алфавиты:

$$\begin{array}{lcl} A_{\text{bx}} & = & \{0,1,2,3,\$\} \\ B_{\text{bhx}} & = & \{0,1,2,3,\mathrm{i}\} \end{array}$$

#### Составим информативное дерево

Построим таблицу входов и выходов для автомата Мили:

|    | $q_0$   | $q_1$   | $q_2$   | $q_3$   |
|----|---------|---------|---------|---------|
| 0  | $q_0$ i | $q_1$ i | $q_2$ i | $q_3$ i |
| 1  | $q_1$ i | $q_1$ i | $q_2$ i | $q_3$ i |
| 2  | $q_2$ i | $q_2$ i | $q_2$ i | $q_3$ i |
| 3  | $q_3$ i | $q_3$ i | $q_3$ i | $q_3$ i |
| \$ | $q_0$ 0 | $q_0$ 1 | $q_0$ 2 | $q_0$ 3 |

В соответствии с таблицей составим диаграмму автомата:



Минимизируем автомат Мили. Для этого найдем все эквивалентные состояния:

| $q_1$ | ×     |       |       |
|-------|-------|-------|-------|
| $q_2$ | ×     | ×     |       |
| $q_3$ | ×     | X     | X     |
|       | $q_0$ | $q_1$ | $q_2$ |

Из таблица видно, что в автомате отсутствуют эквивалентные состояния, то есть он уже минимален.

#### 2. СТРУКТУРНЫЙ СИНТЕЗ