1. If ϕ : $G \to H$ is a homomorphism with kernel $ker(\phi)$, then ϕ is injective iff $ker(\phi) = \{e\}$

Proof. (=>) Given that ϕ is injective, let $g \in G$ such that $\phi(g) = e$. From the homomorphism, we know that $\phi(e) = e$. Hence, $\phi(g) = \phi(e)$. By the injectivity, g = e. Therefore, $ker(\phi) = \{e\}$.

(<=) Given that $ker(\phi) = \{e\}$, let $g_1, g_2 \in G$ such that $\phi(g1) = \phi(g2)$.

$$\phi(g_1) = \phi(g_2)$$

$$\phi(g_1)\phi(g_2)^{-1} = e$$

$$\phi(g_1)\phi(g_2^{-1}) = e$$

$$\phi(g_1g_2^{-1}) = e$$

Since e is the only element in K, $g_1g_2^{-1}=e$. It implies that $g_1=((g_2)^{-1})^{-1}=g_2$. Therefore, ϕ is injective.

2. Let *C* be the center of *G*. Prove $C \subseteq G$.

Proof. We have proved that the center of G is a subgroup of G in write up 7. Now we need to show it is a normal subgroup. Let $c \in C$, $g \in G$. $gcg^{-1} = cgg^{-1} = c$. Therefore, $C \subseteq G$.

3. Prove that any intersection of normal subgroups of *G* is itself a normal subgroup of *G*.

Proof. Let H and K be two arbitrary normal subgroups of G. We need to first prove that $H \cap K$ is a subgroup of G.

First $H \cap K$ must contains the identity because both H and K contain it. Second, let $a,b \in H \cap K$. It implies that $a,b \in H$ and $a,b \in K$. That is $ab \in H$ and $ab \in G$, and hence $ab \in H \cap K$. Third, let $a^{-1} \in H \cap K$. It implies that $a^{-1} \in H$ and $a^{-1}inK$. Hence, $a^{-1} \in H \cap K$.

Then, let $g \in G$ and $a \in H \cap K$. We know that $gag^{-1} \in H$ because H is a normal subgroup. Similarly, $gag^{-1} \in K$. Hence, $gag^{-1} \in H \cap K$.

Therefore, we can conclude that any intersection of normal subgroups of *G* is itself a normal subgroup of *G*.

4. Let ϕ : $G \to H$, where ϕ is surjective. Prove that if G is cyclic, then H is cyclic. (assumed homomorphism)

Proof. Since G is cylic, we have an element x such that $G = \langle x \rangle$. Let $g \in G$ and we can represent g and x^m where m is an integer. Hence, $\phi(g) = \phi(x^m) = (\phi(x))^m = h \in H$ by homomorphism. Then we know that $H \in \langle \phi(x) \rangle$. We also know from the surjectivity that $\langle \phi(x) \rangle \in H$. Therefore, $H = \langle \phi(x) \rangle$, which proves that H is cyclic.

5. Let ϕ : $G \to H$, where ϕ is surjective. Prove that if every element of G has finite order, then every element of H also has finite order.(assumed homomorphism)

Proof. Since every element of G has a finite order, let ord(g) = m and $g^m = e, g \in G, m \in \mathbb{Z}$. Let $h = \phi(g)$. We have $\phi(g^m) = \phi(e) = e$ and $\phi(g^m) = (\phi(g))^m$ from homomorphism. Hence, $\phi(g^m) = e = (\phi(g))^m = h^m$. Therefore, $h \in H$ has finite order(any factor of m). Since the choice of g is arbitrary, every other element of H also has finite order.