九州大学大学院数理学府 平成18年度修士課程入学試験 数学専門科目問題(数学コース)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から2題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.

$$\begin{bmatrix} \mathbf{1} \end{bmatrix} \quad G = \left\{ \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) \middle| a, b, c \in \mathbb{R} \right\}$$
とおく.

- (1) Gは行列の乗法に関して群をなすことを示せ.
- (2) G の中心 $Z = \{x \in G \mid xy = yx, \forall y \in G\}$ を求めよ.
- (3) 商群 G/Z は加法群 $\mathbb{R} \times \mathbb{R}$ と同型であることを示せ.
- [2] p を素数とし、 $\mathbb{Z}[x]$ を \mathbb{Z} 係数の一変数多項式環とする.
 - (1) $\mathbb{Z}[x]$ において p で生成されるイデアル (p) は素イデアルであることを示せ.
 - (2) $\mathbb{Z}[x]$ の極大イデアル I で、 $(p) \subset I$ であるものの例を一つあげよ.
 - (3) $\mathbb{Z}[x]$ のモニックな元

$$f(x) = x^{n} + \sum_{i=0}^{n-1} a_{i} x^{i}$$

(ただし, $i=0,1,\ldots,n-1$ に対し $a_i\in\mathbb{Z}$ である) が次の条件をみたすとする:

 p^2 は a_0 を割らないが、p はすべての a_i (i = 0, 1, ..., n-1) を割る.

このとき f(x) は既約であることを示せ.

(4) $\mathbb{Z}[x]$ の元 $\sum_{i=0}^{p-1} x^i$ は既約であることを示せ.

[3] $\zeta = e^{2\pi\sqrt{-1}/7}$ とし、 $\alpha = \zeta + \zeta^2 + \zeta^4, \ \beta = \zeta^3 + \zeta^5 + \zeta^6, \ \gamma = \zeta + \zeta^6, \ \delta = \zeta^2 + \zeta^5, \ \varepsilon = \zeta^3 + \zeta^4$ とおく、

- (1) $\alpha + \beta$, $\alpha\beta \in \mathbb{Q}$ となることを示せ.
- (2) 拡大次数 $[\mathbb{Q}(\alpha):\mathbb{Q}]$ を求めよ.
- (3) $\gamma + \delta + \varepsilon$, $\gamma \delta + \delta \varepsilon + \varepsilon \gamma$, $\gamma \delta \varepsilon \in \mathbb{Q}$ となることを示せ.
- (4) 拡大次数 $[\mathbb{Q}(\varepsilon):\mathbb{Q}]$ を求めよ.
- [4] $(x,y), (x',y') \in \mathbb{R}^2$ に対して

$$(x,y) \sim (x',y') \Leftrightarrow (x-x',y-y') \in \mathbb{Z}^2$$

により同値関係を定め、この同値関係による商空間を $T^2=\mathbb{R}^2/\sim$ とおく、 $(x,y)\in\mathbb{R}^2$ を含む同値類を $[x,y]\in T^2$ と書き、p(x,y)=[x,y]で写像 $p:\mathbb{R}^2\to T^2$ を定める.

次に、 T^2 上に

$$[x,y] \simeq [x',y'] \Leftrightarrow [x,y] = [x',y']$$
 b 3 V it $[x,y] = [-x',-y']$

により同値関係を定め、この同値関係による商空間を $X=T^2/\simeq$ とおく。 $[x,y]\in T^2$ を含む同値類を $[[x,y]]\in X$ と書き, $\pi[x,y]=[[x,y]]$ で写像 $\pi:T^2\to X$ を定める.

- (1) p を $I \times I \subset \mathbb{R}^2$ に制限した写像は T^2 への連続な全射となり、 $\overset{\circ}{I} \times \overset{\circ}{I}$ に制限した写像は単射となることを示せ、ただし,I は閉区間 [0,1] を表し, $\overset{\circ}{I}$ は開区間 (0,1) を表す.
- (2) $\pi \circ p : \mathbb{R}^2 \to X$ を $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x+y \le 1\}$ に制限した写像は X への連続な全射となり、 $\{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0, x+y < 1\}$ に制限した写像は単射となることを示せ、
- (3) $(x,y) \in \{(x,y) \in \mathbb{R}^2 \mid x+y=1, x>0, y>0\}$ とする.

$$\pi[x,y] = \pi[x',y']$$

となるすべての $[x',y'] \in T^2$ を求めよ、次に、このような点が自分自身(すなわち [x,y])に限るような T^2 の点をすべて求めよ、

- (4) *X* がコンパクトになることを示せ.
- (5) *X* が 2 次元球面と同相となることを示せ.

- [5] n は 2 以上の自然数とする. n 次元ユークリッド空間 \mathbb{R}^n 内の 2 つのベクトル v_1, v_2 からなる組 (v_1, v_2) に対し、条件
 - (i) 各 v_i の長さは 1,
 - (ii) v_1 と v_2 は直交する,

を考える. $\mathbb{R}^n \times \mathbb{R}^n$ を \mathbb{R}^{2n} と自然に同一視し,

$$V = \{(v_1, v_2) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n} \mid (v_1, v_2) \text{ it (i) } \& \text{ (ii) } \& \text{ β \ref{thm}} \}$$

とおく. このとき, V は \mathbb{R}^{2n} の 2n-3 次元 C^{∞} 級部分多様体になることを示せ.

[6] xy 平面上の C² 曲線

$$\gamma(s) = (x(s), y(s)) \qquad (-a \le s \le a)$$

が与えられているとする. ただし, y(s)>0 $(-a\leq s\leq a)$, かつs は弧長パラメータとする. すなわち

$$\left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2 = 1$$

である. この曲線をx軸のまわりに回転させて得られる回転面のガウス曲率が一定で-1であるとき、以下を示せ.

- $(1) \frac{d^2y}{ds^2} = y が成り立つ.$
- (2) さらに $\frac{dy}{ds}$ (0) = 0 とすると,

$$y(0) \le \frac{1}{\sinh a}$$

が成り立つ.

[7] n を 2 以上の自然数, a_1, a_2, \ldots, a_n を相異なる複素数,

$$f(z) = (z - a_1)(z - a_2) \cdots (z - a_n)$$

とする.

- (1) $\frac{1}{f(z)}$ の $z = a_j$ における留数を求めよ.
- (2) $\sum_{j=1}^{n} \frac{1}{f'(a_j)} = 0$ であることを示せ.
- $(3) 0 \leq k \leq n-1$ に対して $\sum_{j=1}^{n} \frac{a_{j}^{k}}{f'(a_{j})}$ を求めよ.
- [8] A(x) は n 次正方行列で、各成分が x について開区間 (a,b) 上で連続であるとする、Y(x) は n 次正方行列で、開区間 (a,b) 上で

$$\frac{dY(x)}{dx} = A(x)Y(x) \tag{E_0}$$

をみたし、ある $x_0 \in (a,b)$ について $Y(x_0) = I$ が成り立つものとする.ただし I は n 次の単位行列である.

(1) $\frac{d}{dx} \det Y(x) = (\operatorname{tr} A(x)) \det Y(x) \tag{E_1}$

が成り立つことを示し、任意の $x \in (a,b)$ に対して $\det Y(x) \neq 0$ であることを示せ.

(2) M_0 を $n \times n$ 定数行列とし, $M(x) = Y(x)M_0Y(x)^{-1}$ とおく.このとき M(x) は

$$\frac{dM(x)}{dx} = A(x)M(x) - M(x)A(x)$$
 (E₂)

をみたすことを示せ.

(3) 上の (E_2) を M(x) に対する微分方程式とみなす. N(x) を (E_2) の解とする と、勝手な $x_1, x_2 \in (a,b)$ に対し、 $N(x_1)$ と $N(x_2)$ とは相似な行列であることを示せ. なお、2つの正方行列 N_1, N_2 が相似であるとは、ある正則行列 P が存在して $N_1 = PN_2P^{-1}$ となるときをいう.

- [9] 測度空間 (X, \mathfrak{B}, μ) で考える. すなわち, X は集合, \mathfrak{B} は X の部分集合から成る一つの σ -加法族(σ -algebra), μ は \mathfrak{B} を定義域とする測度である.
- (1) $A_n \in \mathfrak{B}$ $(n=1,2,\ldots)$ とし、 $\sum\limits_{n=1}^{\infty}\mu(A_n)<\infty$ であると仮定する.このとき $\mu\Bigl(\limsup_{n\to\infty}A_n\Bigr)=0$ であることを示せ.
- (2) $\{f_n\}_{n=1}^{\infty}$ と $\{g_n\}_{n=1}^{\infty}$ はともに X 上の \mathfrak{B} 可測な関数の列で,

$$\sum_{n=1}^{\infty} \mu(\{x \in X \mid f_n(x) \neq g_n(x)\}) < \infty$$

をみたしていると仮定する. このとき, $\mu(A)=0$ となる $A\in\mathfrak{B}$ を適当にとれば, 各 $x\notin A$ に対して, 番号 $n_0\in\mathbb{N}$ が存在して, $n\geq n_0$ をみたすすべての $n\in\mathbb{N}$ に対して $f_n(x)=g_n(x)$ となることを示せ.