08 浙江工业大学高等数学期中考试试卷 A

Ę	学院: _	× 3	班级:		姓=	名:	下腹水。	学号:		- UB		
	题 号	_	_	=	四	五	六	七	总分			
	得分		de la company	122	Xton 1	X	2-44	<u>-</u> ,				
٠,	填空题(每小题 4	分):							,		
1.	$\lim_{x\to\infty} (1-$	$(\frac{2}{r})^{2x} = $ _	e *	o								
	_	<i>x</i>		(k +	$-x^2$	\boldsymbol{x}	≤ 0					
2.	. 当 k=	F	时, $f(x)$)={	1 1	.i.,	在	x = 0 §	业连续 。			
3	. 若函数	f(x)在	a的一个	邻域 $U($	a) 内有定	三义,则	$\lim_{h\to 0} \frac{f(a)}{a}$	$\frac{(h-1)-f}{h}$	$\frac{(a-h)}{4}$ 存	在是		
	(x)在 (x) = (a)							,,,				
			4			-	1					
4.	. 函数 ƒ	(x) = x	$-\ln(1+x)$:) 的单	调增加区	间是	0,+10)		_°			
5. 设 $y = xe^{-\sin x}$,则 $dy = \frac{e^{-\sin x}}{(1 - \chi \cos x)dx}$												
6. 设 $f(x) = (x+1)(x+2)\cdots(x+n)$,则 $f'(0) = h!(+ \frac{1}{2}+\cdots+ \frac{1}{n})$ 。												
7. 设 $\lim_{x \to \infty} f'(x) = 3$,则 $\lim_{x \to \infty} [f(x+2) - f(x)] = 6$ 。 $\lim_{x \to \infty} f'(x) = \frac{1}{2} \int_{x \to \infty} f(x) - f(x) = \frac{1}{2} \int_$												
8.	. 设函数 y	y = f(x) ?	生 x_0 处可	·导, Δy	$= f(x_0 \cdot$	+h)-f	(x_0) , \mathbb{Q}	則当 h →	0时, Δy	$-dy$ \rightarrow	mf(x)-2 = 6	
	h的	S							Figure 1-1			
二、 1.	判断下列 . 若 lim f	各命题 (x)g(x)	(结论) 爿 , lim ƒ	是否正确 (x)都存	(在括弧 在,则 li ×-	【内填入 mg(x)→a	√或×) 也存在((每小匙	(3分):	XSX		
2.	. 设 <i>f</i> (x)	$=\begin{cases} x^k \sin x \end{cases}$	$ \begin{array}{ccc} 1 & x = 0 \\ 0 & x = 0 \end{array} $	± 0 , 则 = 0	当 k > 1 F	f(x))在 x = ()处连续	可导。()	/) L	X = 0 2	,
	. 若函数 j ('(x)≤g'(
有 f	$G'(x) \le g'(x)$	(x) .	X)	त्राभी: .	+IX)=X	g(x)= 0x-1	> Xe}y	tix) < gix) [1] (A)		

4. 设 $f(x) = (x^2 - 3x + 2)\sin x$, 则方程 f'(x) = 0 在 $(0,\pi)$ 内至少有 3 个根。($\sqrt{}$)

fio)=0 f(1)=0 f(2)=0 f(2)=0

- 5. 如果某质点做直线运动,其位置函数是 s=s(t) ,如果质点的运动速度是单调减少的,则 s=s(t) 的图形是一条(向上)凸弧。(\checkmark)
- 三、试解下列各题(每小题7分):

1. 求极限
$$\lim_{x\to 0} \frac{e^{-x^2} - \cos x}{x^2}$$
 。
$$\bigoplus_{\chi\to 0} \frac{-2\chi \ell + \zeta \chi}{2\chi} = \lim_{\chi\to 0} \left(-\ell + \frac{\zeta \chi}{2\chi}\right) = -1 + \frac{1}{2} = -\frac{1}{2}$$

$$\bigoplus_{\chi\to 0} \frac{1-\chi^2 + 0|\chi\rangle - \left(1-\frac{\chi^2}{2} + 0|\chi\rangle\right)}{\chi^2} = \lim_{\chi\to 0} \frac{-\frac{\chi^2}{2} + 0|\chi\rangle}{\chi^2} = -\frac{1}{2}$$

2.
$$x \in \mathbb{R} \lim_{x \to \infty} [(a^{\frac{1}{x}} + b^{\frac{1}{x}})/2]^{2x}$$
, $(x + a > 0, b > 0)$

$$= \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 1 + 1 \right) \frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) = \sum_{x \to \infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} - 2x \right) =$$

3. 讨论函数 $f(x) = \frac{e^{\frac{1}{x}} + 2}{e^{\frac{1}{x}} - 2}$ 的连续性,并指出间断点的类型。

$$X = 0 \quad \frac{1}{m^2} \quad \text{Aiolity} \quad 3 \quad \text{X} \neq 0 \quad \text{M} \times \frac{1}{m^2} \quad \text{If} \quad \frac{1}{m^2} \quad \frac$$

四、试解下列各题(每小题7分):

1. 设函数 y = f(x) 由方程 $e^y + xy = e$ 所确定,求: y'(0), y''(0)

$$e^{y'} + y + xy' = 0 \qquad y' = -\frac{y}{e^{y} + x}$$

$$x = 0 \text{ if } y = 1 \qquad y' = -\frac{1}{e}$$

$$y'' = -\frac{y'(e^{y} + x) - y'(e^{y} + 1)}{(e^{y} + x)^{2}} = \frac{1}{e^{z}}$$

$$y'' = -\frac{1}{e^{y} + x} = -\frac{1}{e^{y} + x} = \frac{1}{e^{z}}$$

2.
$$\frac{dy}{dx} = \frac{1}{1+t^2}, \quad \vec{x} : \frac{dy}{dx}, \quad \frac{d^2y}{dx^2}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dt}} = \frac{1}{1+t^2} = \frac{1}{1+t^2}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\frac{dy}{dx}}{\frac{dx}{dt}} = \frac{-\frac{1}{1+t^2}}{\frac{1}{1+t^2}} = -\frac{1+t^2}{t^3}$$

五、(6 分) 求函数 $f(x) = \tan x$ 的带有佩亚诺型余项的 3 阶麦克劳林公式。

$$f(x) = f(0) + f(0) x + \frac{f(0)}{2} x^{2} + \frac{f(0)}{6} x^{3} + o(x^{3})$$

$$f(x) = Seix \qquad f'(x) = 2 Seix + anx \qquad f''(x) = 4 Seix + anx + 2 Seix + 2 Seix + anx + 2 Seix + 2 Seix$$

六、(6 分)设函数 f(x) 在区间[0,2]上可导, f(0)=0 , f(1)=2 , f(2)=-2 , 试证:至少存在一个 $\xi \in [0,2]$, 使 $f'(\xi)=0$ 。

七、 (6) 设 g(x) 二阶连续可导,且 g(0) = 0 , $g'(0) \neq 0$, $f(x) = (1 - \cos x)g(x)$,证 明曲线 y = f(x) 在 x = 0 处必出现拐点。

$$f(x) = S_{in} \times g(x) + (1 - C_{in} \times y) = S_{in} \times g(x) + (1 - C_{in} \times y) = S_{in} \times g(x) + (1 - C_{in} \times y) = S_{in} \times g(x) + 2 S_{in} \times g(x) + (1 - C_{in} \times y) = S_{in} \times g(x) + (1 - C_$$