

Sources and Monitors

2019 CSNS McStas School

McStas

- A source component generates Monte Carlo neutrons.
 In McStas terms this means:
 - Set the neutron state to something representative of the source we are trying to model.
 - i.e.: insert values in the neutron state vector {x,y,z, vx,vy,vz, t, sx,sy,sz, p} drawn from appropriate distributions.

EXAMPLE:

Neutrons from a uniform wavelength distribution emerging from a circular aperture.

Access the docs

IMPORTANT:

All (and more) of this information can be found in the online pdf component documentation, e.g.

http://www.mcstas.org/documentation/manual/mcstas-2.5-components.pdf

- also distributed with your McStas installation - mcdoc -c

The component documentation along with the command:

"mcdoc <component_you_are_searching_for>" are your best friends when using McStas

Sources: Example 1

Neutron spatial coordinates are picked from a uniform distribution on a circle with radius R.

6. marts 2019

Sources: Example 1

Length of the velocity vector encodes the wavelength

SNS

Sources: Example 1

Neutron velocity vector is picked to point at a ROI.

In McStas: this is defined by the parameters: focus_xw, focus_yh, and dist

Sources: Example 1

TRACE

```
COMPONENT origin = Progress_bar()
AT(0,0,0) ABSOLUTE

COMPONENT src = Source_simple(
   radius=0.05, lambda0=2.5, dlambda=1.5,
   focus_xw=0.1, focus_yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
```

2019 CSNS McStas School

McStas

6. marts 2019

Monitors: in general

Monitors:

Intensity probe of the beam

Detectors:

Should detect all neutrons → Efficiency as high as possible

2019 CSNS McStas School

McStas

SIMULATIONS (McStas):

In McStas:

- We can program monitors and detectors to behave any way we like. We refer to both of those indistinguishably as 'monitors'.
- E.g. monitor with Efficiency =100% and Transparency=100%
- With exception of PSD_Detector that models a "physical" He³ detector)

Monitors: Example PSD_monitor

When the simulation has been completed, the detected intensity in pixel (i,j) is:

$$I(i,j) = \sum_{x_k, y_k \in pixel(i,j)} p_k; k = ray number.$$

... during simulation, the pixels are maintained as running sums.

2019 CSNS McStas School

Monitors: Example PSD_monitor and L_monitor

2019 CSNS McStas School

源


```
TRACE
COMPONENT origin = Progress bar()
AT(0,0,0) ABSOLUTE
COMPONENT src = Source simple(
   radius=0.05, lambda0=2.5, dlambda=1.5,
   focus xw=0.1, focus yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
COMPONENT psd = PSD monitor(
   xwidth=0.2, yheight=0.2, filename="psd.dat")
AT (0,0,5) RELATIVE src
COMPONENT lm = L monitor(
   xwidth=0.2, yheight=0.2, filename="lm.dat",
   Lmin=0, Lmax=8)
AT (0,0,5+0.01) RELATIVE src
```


Example 1: Results

2019 CSNS McStas School

McStas

Example 1: Results

Example 1: Results

2019 CSNS McStas School

Monitors: information content

2019 CSNS McStas School

McStas

/home/erkn/CSNS workshop sandbox/sources monitors/example1 20190314 130241

Sources: Mathematical sources

Source_simple:

- Square or circular surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.
- > Neutrons are directed towards a square target.

Source_div:

- Square surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.
- > Neutrons have a divergence defined by either uniform or Gaussian distribution.

2019 CSNS McStas School

McStas

Source_simple docs

2019 CSNS McStas School

McStas

Try "mcdoc Source_simple" or

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

This component replaces Source_flat, Source_flat_lambda, Source flux and Source flux lambda.

2019 McS

Source_simple docs

2019 CSNS McStas School

McStas

Try "mcdoc Source_simple"

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

Description

The routine is a circular neutron source, which aims at a square target centered at the beam (in order to improve MC-acceptance rate). The angular divergence is then given by the dimensions of the target. The neutron energy is uniformly distributed between lambda0-dlambda and lambda0+dlambda or between E0-dE and E0+dE. The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs).

This component replaces Source flat, Source flat lambda, Source flux and Source flux lambda.

Source_simple docs

2019 CSNS McStas School

McStas

Name	Unit	Description	Default
radius	m	Radius of circle in (x,y,0) plane where neutrons are generated.	0.1
yheight	m	Height of rectangle in (x,y,0) plane where neutrons are generated.	0
xwidth	m	Width of rectangle in (x,y,0) plane where neutrons are generated.	0
dist	m	Distance to target along z axis.	0
focus_xw	m	Width of target	.045
focus_yh	m	Height of target	.12
E0	meV	Mean energy of neutrons.	0
dE	meV	Energy half spread of neutrons (flat or gaussian sigma).	0
lambda0	AA	Mean wavelength of neutrons.	0
dlambda	AA	Wavelength half spread of neutrons.	0
flux	1/(s*cm**2*st*energy unit)	flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.	1
gauss	1	Gaussian (1) or Flat (0) energy/wavelength distribution	0
target_index	1	relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.	+1

McStas: Source simple - Mozilla Firefox

Q Search

2019

McStas

Example 1: Results revisited

Example 1: Results revisited

2019 CSNS McStas School

McStas

Example 1: Results revisited

McStas

6. marts 2019

Sources: Source model overview

- Mathematical:
 - Source_simple.comp
 - Source_div.comp
- Pulsed sources:
 - > ESS_butterfly.comp
 - > ESS_moderator.comp
 - Moderator.comp
 - > SNS_source.comp (*)
 - > SNS_source_analytic (*)
 - ViewModISIS (*)
 - ISIS_moderator.comp (*)

- Reactors:
 - > Source_Maxwell_3.comp
 - > Source_gen.comp
 - Source_gen4.comp
 - Source_multi_surfaces.comp (*)
 - I/O mechanisms:
 - MCPL_input/output.comp
 - Virtual_input/output.comp
 - Virtual_mcnp_ss_input/output.comp

24

- Virtual_tripoli4_input/output.comp
- Vitess_input/output.comp

Sources: Source_Maxwell_3

2019 CSNS McStas School

McStas


```
COMPONENT source = Source_Maxwell_3(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Parameters from the PSI cold source

Initial position and direction: as for Source_simple

McStas

6. marts 2019

Sources: Source Maxwell 3

COMPONENT source = Source Maxwell 3 (yheight=0.156, xwidth=0.126, Lmin=0.1, Lmax=9.0, dist=1.5, focus xw = 0.025, focus yh = 0.12, T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)

Parameters from the PSI cold source

Intensity at a given wavelength drawn from a sum of (up to) 3 normalized Maxwellian distributions:

$$I(\lambda) = \sum_{i \in 1,2,3} I_i M(\lambda, T_i); \qquad M(\lambda, T_i) = 2 \alpha^2 \exp(\frac{-\alpha}{\lambda^2}) / \lambda^5;$$

$$\alpha = 949.0 K A A^2 / T_i$$

Sources: Source_Maxwell_3

2019 CSNS McStas School

McStas

6. marts 2019

26, yh = 0.12, I3=0.95E11) om the PSI cold source

Sources: Source_Maxwell_3

2019 CSNS McStas School

McStas

6. marts 2019

COMPONENT source = Source_Maxwell
Lmin=0.1, Lmax=9.0, dis
T1=150.42, I1=3.67E11,

Just for fun – let's see what happens if we remove the fast peak...

Input parameters

SNS

2019 CSNS McStas School

McStas

Parameters in **boldface** are required; the others are optional.

Name	Unit	Description	Default
size	m	Edge of cube shaped source (for backward compatibility)	0
yheight	m	Height of rectangular source	0
xwidth	m	Width of rectangular source	0
Lmin	AA	Lower edge of lambda distribution	
Lmax	AA	Upper edge of lambda distribution	
dist	m	Distance from source to focusing rectangle; at (0,0,dist)	
focus_xw	m	Width of focusing rectangle	
focus_yh	m	Height of focusing rectangle	
T1	K	1st temperature of thermal distribution	
T2	K	2nd temperature of thermal distribution	300
T3	K	3nd temperature of	300
I1	1/(cm**2*st)	flux, 1 (in flux units, see above)	
I2	1/(cm**2*st)	flux, 2 (in flux units, see above)	0
I3	1/(cm**2*st)	flux, 3	0
target_index	1	relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.	+1
lambda0	AA	Mean wavelength of neutrons.	0
dlambda	AA	Wavelength spread of neutrons.	0

McStas

6. marts 2019

Sources: Source_gen (Source_gen4)

```
COMPONENT source = Source_gen(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Almost the same as Source_Maxwell_3: but with optional flux-files as input.

Sources: Source gen (Source gen4)

Input parameters

2019 CSNS McStas School

McStas

DTU 🛱	NEUTRONS FOR SCIENCE SPALLATION
	SOURCE

Parameters in ${f boldface}$ are required; the others are optional.

	Name	Unit	Description	Default
	flux_file	str	Name of a two columns [lambda flux] text file that contains the wavelength distribution of the flux in either [1/(s*cm**2*st)] or [1/(s*cm**2*st*AA)] (see flux_file_perAA flag) Comments (#) and further columns are ignored. Format is compatible with McStas/PGPLOT wavelength monitor files. When specified, temperature and intensity values are ignored.	"NULL"
	xdiv_file	str	Name of the x-horiz. divergence distribution file, given as a free format text matrix, preceded with a line '# xylimits: xmin xmax xdiv_min xdiv_max'	"NULL"
	ydiv_file	str	Name of the y-vert. divergence distribution file, given as a free format text matrix, preceded with a line '# xylimits: ymin ymax ydiv_min ydiv_max'	"NULL"
	radius	m	Radius of circle in (x,y,0) plane where neutrons are generated. You may also use 'yheight' and 'xwidth' for a square source	0.0
	dist	m	Distance to target along z axis.	0
	focus_xw	m	Width of target.	0.045
	focus_yh	m	Height of target.	0.12
	focus_aw	deg	maximal (uniform) horz. width divergence	0
	focus_ah	deg	maximal (uniform) vert. height divergence	0
	E0	meV	Mean energy of neutrons.	0
	dE	meV	Energy spread of neutrons, half width.	0
	lambda0	AA	Mean wavelength of neutrons.	0
	dlambda	AA	Wavelength spread of neutrons, half width	0
	I1	1/(cm**2*sr)	Source flux per solid angle, area and Angstrom if $I1=0$, the source emits 1 in $4*PI$ whole space.	1
	yheight	m	Source y-height, then does not use radius parameter	0.1
	xwidth	m	Source x-width, then does not use radius parameter	0.1
	verbose	0/1	display info about the source1 unactivate source.	0
19	T1	K	Temperature of the Maxwellian source, 0=none	0

Sources: Source_gen (Source_gen4)

```
COMPONENT source = Source_gen(yheight=0.156, xwidth=0.126, flux_file="file1.dat", xdiv_file="file2.dat", ydiv_file="file3.dat")
```

Almost the same as Source_Maxwell_3: but with optional fluxand divergence-files as input.

Source_gen4: Same as for Source_gen but more accurate tail-description for PSI.

To generate files – e.g.

```
Monitor_nD(options="auto lambda per cm2", filename="file1.dat")
Monitor_nD(options="x hdiv, all auto", filename="file2.dat")
Monitor_nD(options="y vdiv, all auto", filename="file3.dat")
```


McStas

6. marts 2019

Sources: Source_gen (Source_gen4)

```
COMPONENT source = Source_gen(yheight=0.156, xwidth=0.126,

Lmin=0.1, Lmax=9.0, dist=1.5, focus_xw = 0.025, focus_yh = 0.12,

T1=150.42, I1=3.67E11, T2=38.74, I2=3.64E11, T3=14.84, I3=0.95E11)
```

Almost the same as Source_Maxwell_3: but with optional flux-files as input.

Sources: Pulsed sources

2019 CSNS McStas School

McStas

Simplest case:

Use a continuous mathematical source and add time dependence:

```
COMPONENT src = Source_simple(
    radius=0.05, lambda0=2.5, dlambda=1.5,
    focus_xw=0.1, focus_yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
EXTEND
%{
    t=rand01()*1e-6;
%}
```


Sources: Pulsed sources

2019 CSNS McStas School

McStas

Simplest case:

Use a continuous mathematical source and add time dependence:

Sources: SNS_source

2019 CSNS McStas School

McStas

Sources: ViewModISIS

2019 CSNS McStas School

McStas

Sources: ESS_butterfly

3

2019 CSNS McStas School

McStas

Monitors (some)

1D

- L_monitor $\rightarrow I(\lambda)$

- TOF_monitor $\rightarrow I(t)$

- Hdiv_monitor $\rightarrow I(divergence_x)$

- MeanPolLambda $\rightarrow \langle \bar{\boldsymbol{p}} \rangle (\lambda)$

- E_monitor $\rightarrow I(E)$

2D

- PSD_monitor $\rightarrow I(x, y)$

- PSD_monitor_4PI $\rightarrow I(\theta, \phi)$

- PolLambda_monitor $\rightarrow I(\bar{P}, \lambda)$

nD

- Monitor_nD

or

I(X,Y)

or

Z(X,Y,Z)

or ...

2019 CSNS McStas School

McStas

6. marts 2019

McStas

COMPONENT my_L_monitor = L_monitor(xwidth=0.2, yheight=0.2, nL=20, filename="Output.L", Lmin=2, Lmax=10)

