Machine Learning: Assignment #3 Winter 2018

Due: Jan 10th, 23.59.59 CST (UTC +8).

1. Neural Networks

The codes of this section are in the *neural_networks* folder.

In this problem, we will implement the feedforward and backpropagation process of the neural networks. We will use digital.mat as our experiment data. Finish fullyconnect_feedforward, fullyconnect_backprop, relu_feedforward, relu_backprop and the testing part in run.m/run.ipynb. Then we can train three layer (data, hidden-relu, loss) neural networks and report test accuracy.

Supplementary Knowledges:

- i) Instead of using MSE loss function, we adopt softmax loss function here. Recall that in Assignment #2, we used logistic regression to classify two classes. And softmax regression model is a model that extends logistic regression to classify more clases than two ¹. In this problem, we have 10 classes. The softmax loss part codes are done.
- ii) We can use $gradient_check.m/gradient_check.py$ to check the correctness your computation. If $\frac{d}{d\theta}J(\theta)=\lim_{\epsilon\to 0}\frac{J(\theta+\epsilon)-J(\theta)}{\epsilon}$ holds, then we are in the right way. ²
- iii) Weight decay and momentum are used to update weight paramters in $get_new_weight_inc.m/get_new_weight_inc.py$.

2. K-Nearest Neighbor

The codes of this section are in the knn folder.

In this problem, we will play with K-Nearest Neighbor (KNN) algorithm and try it on real-world data. Implement KNN algorithm (in knn.m/knn.py), then answer the following questions.

(a) In $knn_exp.m/knn_exp.ipynb$, try KNN with different K (you should at least experiment K = 1, 10 and 100) and plot the decision boundary.

You are encouraged to vectorize³⁴ your code, otherwise the experiment time might be extremely long. You may find the MATLAB build-in functions pdist2, sort, max and hist useful. Also, you can use the function $eudist2^5$ written by Prof. Deng Cai⁶.

¹http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression

²http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization

³http://www.mathworks.cn/cn/help/matlab/matlab_prog/vectorization.html

⁴https://stackoverflow.com/questions/47755442/what-is-vectorization

⁵http://www.cad.zju.edu.cn/home/dengcai/Data/code/EuDist2.m

⁶Prof. Deng Cai is an expert on MATLAB, you can find all his code at http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. You can learn how to write fast MATLAB code by reading his code.

- (b) We have seen the effects of different choices of K. How can you choose a proper K when dealing with real-world data?
- (c) Now let us use KNN algorithm to hack the CAPTCHA of a website⁷ that we are all familiar with:

Finish hack.m/hack.py to recognize the CAPTCHA image using KNN algorithm.

You should label some training data yourself, and store the training data in $hack_data.mat/hack_data.npz$. Helper functions $extract_image$ and $show_image$ are give for your convenience.

Remember to submit $hack_data.mat/hack_data.npz$ along with your code and report.

3. Decision Tree and ID3

Consider the scholarship evaluation problem: selecting scholarship recipients based on gender and GPA. Given the following training data:

Gender	GPA	Scholarship	Count
F	Low	+	10
\mathbf{F}	High	+	95
M	Low	+	5
M	High	+	90
\mathbf{F}	Low	-	80
F	High	-	20
${ m M}$	Low	-	120
${ m M}$	High	-	30

Draw the decision tree that would be learned by ID3 algorithm and annotate each non-leaf node in the tree with the information gain attained by the respective split.

⁷http://jwbinfosys.zju.edu.cn/default2.aspx

4. K-Means Clustering

The codes of this section are in the *kmeans* folder.

Finally, we will run our first unsupervised algorithm – k-means clustering. Implement k-means algorithm (in kmeans.m/kmeans.py), then answer the following questions.

Note that there are different kind of methods to setup initial cluster centers for k-means algorithm, we will use a simple one - randomly choose K samples from dataset as initial cluster centers.

- (a) Run your k-means algorithm on $kmeans_data.mat$ with the number of clusters K set to 2. Repeat the experiment 1000 times. Use $kmeans_plot.m/kmeans_plot.py$ to visualize the process of k-means algorithm for the two trials with largest and smallest SD (sum of distances from each point to its respective centroid).
- (b) You should observe the issue that the outcome of k-means algorithm is very sensitive to cluster centroids initialization form the above experiment. How can we get a stable result using k-means?
- (c) Run your k-means algorithm on the digit dataset $digit_data.mat$ with the number of clusters K set to 10, 20 and 50. Visualize the centroids using $show_digit.m/show_digit.py$. You should be able to observe that k-means algorithm can discover the patterns in dataset without any label information.
- (d) Another important application of k-means is Vector quantization. Vector quantization is a classical quantization technique from signal processing. It works by dividing a large set of points (vectors) into groups, then representing the data points by their group centroid points, as in k-means and some other clustering algorithms.

Here we will use vector quantization to do image compression. By clustering image pixel value into K groups, we can represent each pixel with log(K) bits, instead of 24 bits (RGB, each channel has 8bit depth).

Finish vq.m/vq.ipynb. Compress images with K set to 8, 16, 32 and 64. I have provided you some sample images, however use your own photos is encouraged.

What is the compress ratio if we set K to 64 (Optionally, you can compute the compress ratio using Huffman encoding)?

Please submit your homework report to at http://assignment.zjulearning.org:8081 in pdf format, with all your code in a zip archive.

⁸https://en.wikipedia.org/wiki/Vector_quantization