Estruturas Algébricas

Lista 3

- 1) Determine $a \in \mathbb{Z}$ tal que o polinômio $x^4 ax^3 + 8x^2 8x + a$ seja o quadrado de um polinômio em $\mathbb{Z}[x]$.
- 2) Sejam A um anel, $a \in A$ e x uma indeterminada sobre A. Mostre que a função avaliação em a

$$v_a \colon A[x] \longrightarrow A$$

 $p(x) \longmapsto p(a)$

é um homomorfismo de anéis.

- 3) Seja $p(x) \in A[x]$, onde A é um anel e seja v_1 a função avaliação em 1. Mostre que $v_1(p(x)) = p(1)$ é a soma dos coeficientes de p(x).
- 4) Determine a soma dos coeficientes do polinômio em $\mathbb{Z}[x]$:

$$(x^{n} - 4x^{3} + 3x + 1)^{364}(x^{m} - 4x^{3} + 3x^{2} + 1)^{397} - (x^{k} + x^{k-1} - 2x^{2} + 1).$$

- 5) Determine os valores dos números inteiros a para que o polinômio $a^2x^4 + 4x^3 + 4ax + 7$ seja divisível por x + 1 em $\mathbb{Z}[x]$.
- 6) Sejam A um domínio e $a \in A \setminus \{0\}$.
 - a) Sob que condições $x^n + a^n$ é divisível por x + a em A[x]?
 - b) Sob que condições $x^n a^n$ é divisível por x + a em A[x]?
- 7) Determine o polinômio $p(x) \in \mathbb{Q}[x]$ de grau 7 tal que

$$p(1) = p(2) = \dots = p(7) = 8$$
 e $p(0) = 1$.

8) Seja $h\colon A\to B$ um homomorfismo de anéis. Mostre que a aplicação definida por

$$\tilde{h}: A[x] \longrightarrow B[x]$$
 $a_0 + \dots + a_n x^n \longmapsto h(a_0) + \dots + h(a_n) x^n$

é um homomorfismo de anéis.

- 9) Sejam K um corpo e $p(x) \in K[x]$.
 - a) Se K é infinito, mostre que a função polinomial associada a p(x) é invertível; isto é, existe um polinômio $q(x) \in A[x]$ tal que p(q(x)) = q(p(x)) = x, para todo $x \in A$, se, e somente se, p(x) = ax + b, com $a, b \in K$ e $a \neq 0$. Neste caso, qual é a função inversa de p(x)?
 - b) Se $K=\mathbb{Z}_2$, mostre que a função polinomial associada ao polinômio $p(x)=x^2$ é a função identidade, logo invertível.
- 10) Mostre que, para todo $n \in \mathbb{N}$, o número 1 é raiz dupla do polinômio $x^{n+1} n(x-1) x \in \mathbb{Z}[x]$.