### Sistemas Inteligentes

REGRESSÃO

### O que é Regressão?

Técnica para contrução de models que caracterizem relações entre uma variável dependente, y, e uma ou mais variáveis independents,  $x_1, x_2, ....$ 



$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

### Exemplo

Considere o cálculo da media final dos alunos em uma disciplina da universidade.

A média depende de 6 notas de exercícios, duas provas e um projeto final

#### Poderíamos perguntar:

- Esqueci quais eram os pesos de cada nota na média final do curso. Será que conseguiria estimar isso a partir da planilha com as notas dos alunos e a média final?
- Perdi a nota da prova final dos alunos. Será que conseguiria estimar qual seria a média final dos alunos a partir das outras notas?
- Qual o nível de importância de cada componente? Será que eu conseguiria predizer se um aluno irá bem na disciplina apenas baseado nos exercícios? Ou apenas baseado nas notas das provas?

### Regressão Linear

De maneira geral, a regressão assume que y é uma função das variáveis independentes  $x_1, x_2, ...$ , que podem ser agrupadas em um vetor  $\mathbf{x} = [x_1, x_2, ...]^T$ . A forma da função é definida por um conjunto de parâmetros, geralmente expressos por um vetor de parâmetros  $\mathbf{w}$ , ou seja

$$y = f(\mathbf{x}, \mathbf{w})$$

No caso particular da regressão linear

$$y = \mathbf{w}^T \mathbf{x} = \begin{bmatrix} w_0 & w_1 & \cdots & w_N \end{bmatrix} \begin{bmatrix} 1 \\ \chi_1 \\ \vdots \\ \chi_N \end{bmatrix}$$

Quando há apenas uma variável independente, obtemos a equação de uma reta

$$y = w_1 x_1 + w_0$$

### Como ajustar os parâmetros?



$$S_{xx} = \sum_{i} [x(i) - \bar{x}]^{2}$$

$$S_{yy} = \sum_{i} [y(i) - \bar{y}]^{2}$$

$$S_{xy} = \sum_{i} [[x(i) - \bar{x}]][y(i) - \bar{y}]$$

Uma vez que tenhamos os dados para extrair o modelo, pode-se empregar o método dos **mínimos quadrados** para obter os valores dos parâmetros  $w_1$  e  $w_0$ 

O objetivo, nesse caso, é obter os parâmetros de maneira que o erro de aproximação seja o menor possível. Para isso, define-se a função custo a ser minimizada, que corresponde a

$$\sum_{i} e_{i}^{2} = \sum_{i} [y(i) - (w_{0} + w_{1}x(i))]^{2}$$

E a solução é dada por

$$w_0 = \bar{y} - w_1 \bar{x} \text{ e } w_1 = \frac{S_{xy}}{S_{xx}}$$

## E no caso de regressão múltipla?

Quando há mais de uma variável independente, a formulação matricial pode ser bastante conveniente para obter a solução de mínimos quadrados. Seja a função a ser estimada definida por  $y = \mathbf{w}^T \mathbf{x}$ , para cada vetor de entrada  $\mathbf{x}(i)$  obteremos um valor de saída  $y(i) = \mathbf{w}^T \mathbf{x}(i)$ .

Podemos agrupar os L vetores de entrada e L valores de saída desejada de maneira que

$$\underbrace{\begin{bmatrix} 1 & x_1(1) & x_2(1) & \cdots & x_N(1) \\ 1 & x_1(2) & x_2(2) & \cdots & x_N(2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1(L) & x_2(L) & \cdots & x_N(L) \end{bmatrix}}_{\mathbf{\Phi}} \underbrace{\begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_N \end{bmatrix}}_{\mathbf{w}} - \underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(L) \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} e(1) \\ e(2) \\ \vdots \\ e(L) \end{bmatrix}}_{\mathbf{e}}$$

### Regressão — Least Squares

Como o objetivo é minimizar o erro quadrático, temos que

$$\sum_{i} e(i)^{2} = \mathbf{e}^{T} \mathbf{e}$$

$$= (\mathbf{\Phi} \mathbf{w} - \mathbf{y})^{T} (\mathbf{\Phi} \mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T} \mathbf{\Phi}^{T} - \mathbf{y}^{T}) (\mathbf{\Phi} \mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{T} \mathbf{\Phi}^{T} \mathbf{\Phi} \mathbf{w} - \mathbf{y}^{T} \mathbf{\Phi} \mathbf{w} - \mathbf{w}^{T} \mathbf{\Phi}^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y}$$

Como queremos encontrar o conjunto de parâmetros que minimiza a função custo, devemos obter  ${\bf w}$  tal que

$$\nabla_{\mathbf{w}} \left( \sum_{i} e(i)^{2} \right) = 0$$

### Least Squares

O cálculo do gradiente (derivada da função custo em relação a cada um dos parâmetros) pode ser feito utilizando algumas "regras de cálculo matricial", similares às regras de derivação vistas em FVV

$$\frac{\partial}{\partial \mathbf{w}}(\mathbf{w}^T \mathbf{a}) = \frac{\partial}{\partial \mathbf{w}}(\mathbf{a}^T \mathbf{w}) = \mathbf{a}$$

$$\frac{\partial}{\partial \mathbf{w}} \mathbf{w}^T \mathbf{A} \mathbf{w} = (\mathbf{A} + \mathbf{A}^T) \mathbf{w}$$

se **A** for simétrica 
$$\rightarrow \frac{\partial}{\partial \mathbf{w}} \mathbf{w}^T \mathbf{A} \mathbf{w} = 2\mathbf{A} \mathbf{w}$$

#### Least Squares

Assim,

$$\frac{\partial}{\partial w}(\mathbf{w}^T \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - \mathbf{y}^T \mathbf{\Phi} \mathbf{w} - \mathbf{w}^T \mathbf{\Phi}^T \mathbf{y} + \mathbf{y}^T \mathbf{y}) = 2\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - 2\mathbf{\Phi}^T \mathbf{y} = \mathbf{0}$$

Ou seja,

$$\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} - \mathbf{\Phi}^T \mathbf{y} = \mathbf{0}$$

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

### Regressão polinomial

O mesmo ferramental matemático se aplica para regressão com outros modelos, desde que sejam **lineares nos parâmetros**. Um exemplo é o modelo polinomial, i.e.,

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_N x^N$$

Note que o modelo pode ser descrito na forma matricial

$$y = \underbrace{\begin{bmatrix} a_0 & a_1 & \cdots & a_N \end{bmatrix}}_{\mathbf{w}^T} \underbrace{\begin{bmatrix} 1 \\ \chi \\ \vdots \\ \chi^N \end{bmatrix}}_{\mathbf{x}}$$

Exatamente o mesmo modelo que vimos na regressão múltipla.

### Regressão polinomial

Nesse caso, a matriz  $\Phi$  assume a seguinte forma

$$\mathbf{\Phi} = \begin{bmatrix} 1 & x_1(1) & x_1^2(1) & \cdots & x_1^N(1) \\ 1 & x_1(2) & x_1^2(2) & \cdots & x_1^N(2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1(L) & x_1^2(L) & \cdots & x_1^N(L) \end{bmatrix}$$

Mas a solução continua sendo dada por

$$\mathbf{w} = \underbrace{(\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T}_{pseudo\ inversa} \mathbf{y}$$

### Regressão Linear — Funções Base

De maneira geral, a regressão assume que y é uma função das variáveis independentes  $x_1, x_2, ...$ , que podem ser agrupadas em um vetor  $\mathbf{x} = [x_1, x_2, ...]^T$ . A forma da função é definida por um conjunto de parâmetros, geralmente expressos por um vetor de parâmetros  $\mathbf{w}$ , ou seja

$$y = f(\mathbf{x}, \mathbf{w})$$

Assumindo que a função é linear nos parâmetros, pode-se empregar o mesmo ferramental matemático desenvolvido para uma classe mais ampla de modelos, baseados na combinação de funções base, ou seja

$$y = \mathbf{w}^T \mathbf{\phi}(\mathbf{x}) = \begin{bmatrix} w_1 & \cdots & w_N \end{bmatrix} \begin{bmatrix} \phi_1(\mathbf{x}) \\ \vdots \\ \phi_N(\mathbf{x}) \end{bmatrix}$$

onde  $\phi_i(\cdot)$  denotam funções pré-definidas (possivelmente não-lineares) do vetor  ${\bf x}$ 

### Exemplos de funções base



Polynomial basis functions





Sigmoidal basis functions (já vi isso antes...)

Gaussian basis functions (relacionada a métodos de kernel)

### Regressão Linear com Funções Base

A matriz  $\Phi$  assume a seguinte forma

$$\mathbf{\Phi} = \begin{bmatrix} 1 & \phi_1(\mathbf{x}(1)) & \phi_2(\mathbf{x}(1)) & \cdots & \phi_N(\mathbf{x}(1)) \\ 1 & \phi_1(\mathbf{x}(2)) & \phi_2(\mathbf{x}(2)) & \cdots & \phi_N(\mathbf{x}(2)) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\mathbf{x}(L)) & \phi_2(\mathbf{x}(L)) & \cdots & \phi_N(\mathbf{x}(L)) \end{bmatrix}$$

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

Solução também está relacionada a outra abordagem estatística para estimação de parâmetros denominada de **máxima verossimilhança**.

### Interpretação geométrica do mínimos quadrados

#### Considere

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = \left[ oldsymbol{arphi}_1, \ldots, oldsymbol{arphi}_M 
ight] \mathbf{w}_{\mathrm{ML}}.$$

$$\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T}$$
  $\mathbf{t} \in \mathcal{T}$ 

$$\uparrow_{\text{N-dimensional M-dimensional}}$$

S é gerado por  $\varphi_1, \dots, \varphi_M$   $\mathbf{w}_{\mathsf{ML}}$  minimiza a distância entre  $\mathbf{t}$  e sua projeção orthogonal.



### Polinômio de grau 0



### Polinômio de grau 3



### Polinômio de grau 9



### Overfitting



Root-Mean-Square (RMS) Error:  $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^\star)/N}$ 

### Coeficientes dos polinômios

|                          | M=0  | M = 1 | M = 3  | M = 9       |
|--------------------------|------|-------|--------|-------------|
| $\overline{w_0^{\star}}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$            |      | -1.27 | 7.99   | 232.37      |
| $w_2^\star$              |      |       | -25.43 | -5321.83    |
| $w_3^{\star}$            |      |       | 17.37  | 48568.31    |
| $w_4^{\star}$            |      |       |        | -231639.30  |
| $w_5^{\star}$            |      |       |        | 640042.26   |
| $w_6^{\star}$            |      |       |        | -1061800.52 |
| $w_7^{\star}$            |      |       |        | 1042400.18  |
| $w_8^\star$              |      |       |        | -557682.99  |
| $w_9^{\star}$            |      |       |        | 125201.43   |

# Influência do tamanho do conjunto de dados

POLINÔMIO DE GRAU 9

OLINÔMIO DE GRAU 9



## Como controlar o ajuste do modelo?

A fim de obter um modelo que tenha melhor desempenho na generalização, podemos tentar limitar a magnitude dos parâmetros

Para isso, podemos incluir um termo de penalização na função custo (termo de regularização)

$$\sum_{i} e(i)^2 + \lambda \parallel \mathbf{w} \parallel^2$$

Quanto maior a magnitude dos coeficientes, maior será o valor da função custo. Portanto, a inclusão do termo de regularização tende a privilegiar soluções com a norma de **w** pequena. A solução, nesse caso, a solução é dada por

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{y}$$

### Regularização



### Regularização



### Regularização

Podem ser considerados outros tipos e regularização



### Regressão – Exemplo 1

| Age | SBP | Age | SBP | Age       | SBP |
|-----|-----|-----|-----|-----------|-----|
| 22  | 131 | 41  | 139 | <b>52</b> | 128 |
| 23  | 128 | 41  | 171 | 54        | 105 |
| 24  | 116 | 46  | 137 | 56        | 145 |
| 27  | 106 | 47  | 111 | 57        | 141 |
| 28  | 114 | 48  | 115 | 58        | 153 |
| 29  | 123 | 49  | 133 | 59        | 157 |
| 30  | 117 | 49  | 128 | 63        | 155 |
| 32  | 122 | 50  | 183 | 67        | 176 |
| 33  | 99  | 51  | 130 | 71        | 172 |
| 35  | 121 | 51  | 133 | 77        | 178 |
| 40  | 147 | 51  | 144 | 81        | 217 |

Pressão x Idade de 33 mulheres jovens

#### SBP (mm Hg)



### Regressão – Exemplo 2

| Age | CD | Age | CD | Age | CD |
|-----|----|-----|----|-----|----|
| 22  | 0  | 40  | 0  | 54  | 0  |
| 23  | 0  | 41  | 1  | 55  | 1  |
| 24  | 0  | 46  | 0  | 58  | 1  |
| 27  | 0  | 47  | 0  | 60  | 1  |
| 28  | 0  | 48  | 0  | 60  | 0  |
| 30  | 0  | 49  | 1  | 62  | 1  |
| 30  | 0  | 49  | 0  | 65  | 1  |
| 32  | 0  | 50  | 1  | 67  | 1  |
| 33  | 0  | 51  | 0  | 71  | 1  |
| 35  | 1  | 51  | 1  | 77  | 1  |
| 38  | 0  | 52  | 0  | 81  | 1  |

Idade x Sinais de Morte por Doença Coronária



Como analisar os dados? Regressão linear?

### Reorganizando os dados

|           |            | Diseased |     |  |
|-----------|------------|----------|-----|--|
| Age group | # in group | #        | %   |  |
| 20 - 29   | 5          | 0        | 0   |  |
| 30 - 39   | 6          | 1        | 17  |  |
| 40 - 49   | 7          | 2        | 29  |  |
| 50 - 59   | 7          | 4        | 57  |  |
| 60 - 69   | 5          | 4        | 80  |  |
| 70 - 79   | 2          | 2        | 100 |  |
| 80 - 89   | 1          | 1        | 100 |  |

"Probabilidade de morrer por doença coronária"

Porcentagem de mortes por doença coronária (%) x Faixa Etária



### Função Logística

Probability of disease



 $\mathcal{X}$ 

### Regressão Logística

Caso particular de regressão que é útil quando a variável dependente é binária ou multinomial

Nesse caso, modela-se a "probabilidade" de ocorrência de um determinado evento. Observe que

$$p(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} \rightarrow \frac{p(x)}{1 - p(x)} = e^{\alpha + \beta x}$$

onde  $\frac{p(x)}{1-p(x)}$  representa a razão entre a probabilidade de ocorrência e de não-ocorrência de y (odds ratio), que pode ser colocada em uma forma mais conveniente utilizando o logaritmo, i.e.

$$\ln \frac{p(x)}{1 - p(x)} = \operatorname{logit}(p(x)) = \alpha + \beta x$$

### Ajuste dos parâmetros por Máxima Verossimilhança

No caso da regressão logística utiliza-se o método de máxima verossimilhança → resultado coincide com o método de mínimos quadrados apenas em situações específicas (i.e., o resíduo do modelo apresenta distribuição normal)

O método consiste em determinar o conjunto de parâmetros que maximiza o valor de uma determinada função custo, denominada função de verossimilhança, que está associada ao modelo estatístico definido para os dados observados.

### Ajuste de Curvas com ruído



### Função de Verossimilhança

Suponha que tenhamos um modelo para os dados observados, e devido à presença de ruído/incertezas, o modelo é descrito em termos de distribuições de probabilidade

 $\circ$  Por exemplo, suponha que o valor observado x[0] esteja relacionado a um modelo generativo do tipo

$$x[0] = \theta + w[0]$$

onde w[0] corresponde a um ruído aditivo gaussiano

Nesse caso, o valor de y[0] possui uma distribuição de probabilidade associada, de maneira que

$$p(x[0]; \theta) = \frac{1}{\sqrt{2\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x[0] - \theta)^2\right]$$

i.e., depende do valor do parâmetro desconhecido  $\theta$ .

## Qual o valor de $\theta$ "faz mais sentido"?

Suponha que o valor observado de x[0] = -10.

 $\circ$  Neste caso, é mais razoável supor que  $heta= heta_1$  ,  $heta= heta_2$  ou  $heta= heta_3$ ?



O valor de  $\theta$  mais razoável é aquele que maximiza a função  $p(x[0]; \theta)$ , denominada de *função de verossimilhança*. Note que pode-se construir a função de verossimilhança também para o caso em que temos acesso a mais do que uma observação e também mais do que um parâmetro, i.e.,  $p(y; \theta)$ 

### Voltado ao caso da Regressão Logística

Considere o caso em que a variável dependente é binária ( $y = \{0,1\}$ )

- Seja p(y = 1|x) = p e p(y = 0|x) = 1 p
- Assim, a função de verossimilhança, é dada por

$$L(\alpha, \beta) = p(\mathbf{y}|\mathbf{x}, \alpha, \beta) = \prod_{i} p^{y_i} (1 - p)^{1 - y_i}$$

$$L(\alpha, \beta) = \prod_{i} \left(\frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}\right)^{y_i} \left(\frac{1}{1 + e^{\alpha + \beta x_i}}\right)^{1 - y_i} = \prod_{i} \frac{\left(e^{\alpha + \beta x_i}\right)^{y_i}}{1 + e^{\alpha + \beta x_i}}$$

Como a função envolve exponenciais, é conveniente trabalhar com o seu logaritmo, i.e.,

$$\log L(\alpha, \beta) = \sum_{i} y_{i}(\alpha + \beta x_{i}) - \log(1 + e^{\alpha + \beta x_{i}})$$

### Métodos Iterativos para o MLE

Como não é possível obter uma forma fechada para os parâmetros que maximizam  $\log L(\alpha,\beta)$  utilizam-se métodos iterativos para a busca

 A exemplo do que foi visto no algoritmo backpropagation, uma possibilidade é utilizar o gradiente da função para isso, i.e.,

$$\frac{\partial \log L(\alpha, \beta)}{\partial \alpha} = \sum_{i} y_{i} - \frac{e^{\alpha + \beta x_{i}}}{1 + e^{\alpha + \beta x_{i}}}$$
$$\frac{\partial \log L(\alpha, \beta)}{\partial \beta} = \sum_{i} x_{i} y_{i} - \frac{x_{i} e^{\alpha + \beta x_{i}}}{1 + e^{\alpha + \beta x_{i}}}$$

O algoritmo iterativo de busca é descrito pelas seguintes equações de atualização

$$\alpha \leftarrow \alpha + \mu \frac{\partial \log L(\alpha, \beta)}{\partial \alpha}$$
$$\beta \leftarrow \beta + \mu \frac{\partial \log L(\alpha, \beta)}{\partial \beta}$$

Outros métodos de otimização podem ser utilizados (e.g., Gradiente Conjugado, Newton, etc)

### Regressão Bayesiana

Ao invés de considerar o modelo com parâmetros fixos, podemos formular o problema considerando que os parâmetros também possuem uma distribuição de probabilidade associada.

A abordagem explora a regra de Bayes

verossimilhança

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}, \theta)}{p(\mathbf{x})} = \underbrace{\frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})}}_{p(\mathbf{x})}$$

Distribuição *a posteriori* 

Distribuição *a priori* 

Note que a distribuição  $p(\mathbf{x})$  não depende dos parâmetros, e por essa razão representa apenas um fator de normalização. A estimativa dos parâmetros, nesse caso, é conhecida como solução de máxima a posteriori (MAP)

### Outras abordagens

Regressão com *Decision Trees* (e random forests)

Support Vector Machines (Support Vector Regression)

Redes Neurais Artificiais

Deep Learning Networks

Sistemas Fuzzy