Homework 3

习题 1 19

1. 在以下循环是否存在循环间相关? 请给出理由

```
for (int i = 0; i < 100; i++) {
    A[i] = B[2 * i + 4];
    B[4 * i + 5] = A[i];
}</pre>
```

对于B寄存器, a = 2, b = 4, c = 4, d = 5, 则 GCD(c, a) = 2, d - b = 1 | GCD(c, a), 因此存在循环间相关; 对于A寄存器属于循环内相关

2. 在以下循环中, 找出所有真相关、输出相关和反相关。通过重命名来消除输出相关和反相关

- 真相关 (写后读RAW): S1 -> S2, S1 -> S4, S3 -> S4: A;
- 反相关(读后写WAR): S1->S3, S2->S3: A; S1->S2: B; S3->S4: C
- 输出相关(写后写WAW): S1 -> S3: A
- 重命名消除输出相关和反相关

3. 考虑以下循环, S1 和 S2 之间是否存在相关? 这一循环是否为并行的? 如果不是,说明如何使其成为并行的

S1 和 S2 之间不存在循环内相关,但是存在循环间相关,因为 S1 语句的 B[i] 需要由上一循环的 S2 语句的 B[i + 1] 获取,因此无法直接并行化,可以改为

习题 2 20

假定一个虚设 GPU 具有以下特性:

- 时钟频率为 1.5 GHz
- 包含 16 个 SIMD 处理器,每个处理器包含 16 个单精度浮点单元;
- 片外存储器带宽为 100GB/S
- 假定操作数可以被写为 y=Ax+b,每个操作数是 32 位,基本操作 CPI 假设为 1
- 1. 不考虑存储器带宽,假定所有存储器延迟可以隐藏,则这一 GPU 的峰值单精度浮点吞吐量为多少 GFLOP/s?

$$rac{16 imes 16}{rac{1}{1.5 ext{G}} ext{G}} = 384 ext{GFLOP/s}$$

- 2. 在给定存储器带宽限制下,这一吞吐量是否可持续?如果不可持续,请绘制题目条件中的GPU的 roofline模型,横坐标为计算强度 (Flops/Byte),纵坐标为性能 (GFLOP/s),标注好题目假设对应的点的坐标
 - 不可持续,原因:每个操作数 32 位,一条指令要读取2个操作数 x,y(假设A,b是常量只读一次,忽略不计),那么在达到峰值单精度浮点吞吐量的条件下

$$384\mathrm{G/s} \times 32\mathrm{bits} \times 2 = 3072\mathrm{GB/s} > 100\mathrm{GB/s}$$

因此不可持续

• roofline model: (1, 100) 和 (3.84, 384) 是按照 $100 \mathrm{GB/s}$ 计算得来,即左边那条斜线的斜率为 100,然后 (3.84, 384) 这个交点是由 384/100=3.84得来,之后右边的水平线对应的就是

习题 3 20

指令序号	指令	改变状态	
1	p0 : read 120	p0 b0 (S, 120, 00 20)	
2	p0 : write 120 <- 80	p0 b0 (M, 120, 00 80); p3 b0 (I, 120, 0020)	-
3	p3 : write 120 <- 80	p3 b0 (M, 120, 00 80)	-
4	p1 : read 110	p0 b2 (S, 110, 0030); p1 b2(S, 110, 0030); p3 b2(S, 110, 0030)	00 30
5	p0 : write 108 <- 48	p0 b1 (M, 108, 0048); p3 b1 (I, 108, 0008)	-

指令序号	指令	改变状态	返回
6	p0 : write 130 <- 78	p0 b0 (M, 130, 0078)	-
7	p3 : write 130 <- 78	p3 b3 (M, 130, 0078)	-

习题 4 20

- 根据 DSM, 可以保证 s1 -> s2, s3 -> s4, s5 -> s6 的顺序
- 那么 00 11 10 不是一个合法输出,因为一开始需要输出 00 , 那么就有两个进程还未赋值对应变量,假设是A打印了信息 00 , 即执行了 s1, s2 语句; 之后要输出 11 , 那么假设是 B 打印了该信息,说明此时必须执行了 s1, s2, s3, s4, s5 才能保证; 因此最后执行语句时只能是 11 而不是 10 ; 因此 00 11 10 不是一个合法输出

习题 5 17

指令	L1缓存最终状态	L2缓存最终状态	存储器最终状态	读取返回值
a p0,0: read 100	不变	不变	不变	00 10
b p0,0: read 128	P0,0.B1 S 128 00 28	L2 , U L2,1.B2 DM E 128 00 28	M1.128	00 28
c p0,0: write 128 <- 78	P0,0.B1 M 128 00 78	L2,0 L2,1.B2 DM E 128 00 20	M1.128	-

指令	L1缓存最终状态	L2缓存最终状态	存储器最终状态	读取返回值
d p0,0: read 120	P0,0.B1	L2 , 0 _{L2,1.B0}	M1.120	00 20
	S 120 00 20	DS P3.1:E 120 00 20	DS C0,C1 00 20	00 20